Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

A lógica de primeira ordem

Índice

Introdução

② O sintaxe

3 A semântica

Introdução

Neste momento podemos argumentar

Se chover, fico em casa. Chove Fico em casa.

Introdução

Neste momento podemos argumentar

Se chover, fico em casa. Chove Fico em casa.

Ainda não podemos argumentar

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Aprender português (ou alemão) significa ...

Aprender português (ou alemão) significa ...

1. Aprender o alfabeto.

Aprender português (ou alemão) significa . . .

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

Aprender português (ou alemão) significa

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

2. Aprender ortografia e gramática.

Aprender português (ou alemão) significa . . .

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

2. Aprender ortografia e gramática.

Ou seja, que palavras (= sequências de símbolos) podemos escrever. E em que ordem.

Aprender português (ou alemão) significa . . .

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

2. Aprender ortografia e gramática.

Ou seja, que palavras (= sequências de símbolos) podemos escrever. E em que ordem.

Por exemplo, "futebol" conta mas "hhcdqwldb" não.

Aprender português (ou alemão) significa

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

2. Aprender ortografia e gramática.

Ou seja, que palavras (= sequências de símbolos) podemos escrever. E em que ordem.

Por exemplo, "futebol" conta mas "hhcdqwldb" não.

"Eu sou do Porto" está ótimo mas "Porto sou Eu do" não.

Aprender português (ou alemão) significa

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

2. Aprender ortografia e gramática.

Ou seja, que palavras (= sequências de símbolos) podemos escrever. E em que ordem.

Por exemplo, "futebol" conta mas "hhcdqwldb" não.

"Eu sou do Porto" está ótimo mas "Porto sou Eu do" não.

3. Aprender o que as palavras significam (a interpretação).

Aprender português (ou alemão) significa

1. Aprender o alfabeto.

Ou seja, que símbolos podemos utilizar.

2. Aprender ortografia e gramática.

Ou seja, que palavras (= sequências de símbolos) podemos escrever. E em que ordem.

Por exemplo, "futebol" conta mas "hhcdqwldb" não.

"Eu sou do Porto" está ótimo mas "Porto sou Eu do" não.

3. Aprender o que as palavras significam (a interpretação).

Por exemplo, "Eichhörnchen" significa

ח	efir	ic:	റ ്
$\boldsymbol{\nu}$	CIII	πçα	3 0

Um alfabeto de 1ª ordem consiste em:

Definição

Um alfabeto de 1^a ordem consiste em:

1. uma coleção de variáveis,

Definição

- 1. uma coleção de variáveis,
- 2. os símbolos " \land , \lor , \Rightarrow , \Leftrightarrow , \neg , $\mathbf{0}$, $\mathbf{1}$ " da lógica proposicional,

Definição

- 1. uma coleção de variáveis,
- 2. os símbolos " \land , \lor , \Rightarrow , \Leftrightarrow , \neg , $\mathbf{0}$, $\mathbf{1}$ " da lógica proposicional,
- 3. os quantificadores: os símbolos " \exists " (existe) e " \forall " (para todos),

Definição

- 1. uma coleção de variáveis,
- 2. os símbolos " \land , \lor , \Rightarrow , \Leftrightarrow , \neg , $\mathbf{0}$, $\mathbf{1}$ " da lógica proposicional,
- 3. os quantificadores: os símbolos "∃" (existe) e "∀" (para todos),
- 4. (o símbolo de igualdade "=").

Definição

- 1. uma coleção de variáveis,
- 2. os símbolos " \land , \lor , \Rightarrow , \Leftrightarrow , \neg , $\mathbf{0}$, $\mathbf{1}$ " da lógica proposicional,
- 3. os quantificadores: os símbolos "∃" (existe) e "∀" (para todos),
- 4. (o símbolo de igualdade "=").
- 5. Além destes símbolos, e dependente do contexto, temos
 - uma coleção de símbolos de constante,
 - uma coleção de símbolos de função (aqui cada símbolo f tem uma "aridade" $n \in \mathbb{N}$ o número de argumentos),
 - uma coleção de símbolos de predicado (= relações) de n argumentos.

Exemplos

Exemplo (espaços vetoriais)

O alfabeto da teoria de espaços vetoriais consiste em (além dos símbolos de lógica e dos variáveis):

- o símbolo de constante 0,
- ullet para cada $lpha\in\mathbb{R}$, o símbolo de função $lpha\cdot-$ de aridade 1, e
- o símbolo de função + de aridade 2.

Exemplos

Exemplo (espaços vetoriais)

O alfabeto da teoria de espaços vetoriais consiste em (além dos símbolos de lógica e dos variáveis):

- o símbolo de constante 0,
- ullet para cada $lpha\in\mathbb{R}$, o símbolo de função $lpha\cdot-$ de aridade 1, e
- o símbolo de função + de aridade 2.

Exemplo (a teoria de conjuntos)

O alfabeto da teoria de conjuntos consiste em (além dos símbolos de lógica e dos variáveis):

• o símbolo de predicado \in de aridade 2.

Definição

Definimos agora recursivamente o conceito de termo:

Exemplo

Definição

Definimos agora recursivamente o conceito de termo:

1. Cada variável e cada símbolo de constante é um termo.

Exemplo

Definição

Definimos agora recursivamente o conceito de termo:

1. Cada variável e cada símbolo de constante é um termo.

Exemplo

Consideramos a linguagem com as variáveis x, y, z, um símbolo de constante a, um símbolos de função i de um argumento e um símbolo de função m de dois argumentos. Então, as seguintes expressões são termos:

x, y, z, a.

Definição

Definimos agora recursivamente o conceito de termo:

- 1. Cada variável e cada símbolo de constante é um termo.
- 2. Se f é um símbolo de função de n variáveis e t_1, \ldots, t_n são termos, então $f(t_1, \ldots, t_n)$ é um termo.

Exemplo

Consideramos a linguagem com as variáveis x, y, z, um símbolo de constante a, um símbolos de função i de um argumento e um símbolo de função m de dois argumentos. Então, as seguintes expressões são termos:

x, y, z, a.

Definição

Definimos agora recursivamente o conceito de termo:

- 1. Cada variável e cada símbolo de constante é um termo.
- 2. Se f é um símbolo de função de n variáveis e t_1, \ldots, t_n são termos, então $f(t_1, \ldots, t_n)$ é um termo.

Exemplo

- x, y, z, a.
- i(a), i(x), m(z, y), m(a, z), ...

Definição

Definimos agora recursivamente o conceito de termo:

- 1. Cada variável e cada símbolo de constante é um termo.
- 2. Se f é um símbolo de função de n variáveis e t_1, \ldots, t_n são termos, então $f(t_1, \ldots, t_n)$ é um termo.

Exemplo

- x, y, z, a.
- i(a), i(x), m(z, y), m(a, z), ...
- m(i(x), x), i(m(x, a)), m(m(z, a), i(x)), ...

Definição

Definimos agora recursivamente o conceito de termo:

- 1. Cada variável e cada símbolo de constante é um termo.
- 2. Se f é um símbolo de função de n variáveis e t_1, \ldots, t_n são termos, então $f(t_1, \ldots, t_n)$ é um termo.

Exemplo

- x, y, z, a.
- i(a), i(x), m(z, y), m(a, z), ...
- m(i(x), x), i(m(x, a)), m(m(z, a), i(x)), ...
- . . .

Definição

Um átomo é uma expressão $P(t_1, \ldots, t_n)$ onde P é um símbolo de predicado de n argumentos e t_1, \ldots, t_n são termos.

Definição

Um átomo é uma expressão $P(t_1, \ldots, t_n)$ onde P é um símbolo de predicado de n argumentos e t_1, \ldots, t_n são termos.

Nota

• Se consideramos também o símbolo "=",

$$t_1 = t_2$$

 $\acute{\text{e}}$ um átomo, para todos os termos t_1, t_2 .

Definição

Um átomo é uma expressão $P(t_1, \ldots, t_n)$ onde P é um símbolo de predicado de n argumentos e t_1, \ldots, t_n são termos.

Nota

• Se consideramos também o símbolo "=",

$$t_1 = t_2$$

é um átomo, para todos os termos t_1, t_2 .

• As fórmulas **0**, **1** consideram-se também como átomos.

Definição

Um átomo é uma expressão $P(t_1, \ldots, t_n)$ onde P é um símbolo de predicado de n argumentos e t_1, \ldots, t_n são termos.

Definição

Definimos agora recursivamente o conceito de fórmula:

• Cada átomo é uma fórmula.

Definição

Um átomo é uma expressão $P(t_1, \ldots, t_n)$ onde P é um símbolo de predicado de n argumentos e t_1, \ldots, t_n são termos.

Definição

Definimos agora recursivamente o conceito de fórmula:

- Cada átomo é uma fórmula.
- ullet Se φ e ψ são fórmulas, então

$$(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \Rightarrow \psi), \neg \varphi, \mathbf{0}, \mathbf{1}$$

são fórmulas.

Fórmulas

Definição

Um átomo é uma expressão $P(t_1, \ldots, t_n)$ onde P é um símbolo de predicado de n argumentos e t_1, \ldots, t_n são termos.

Definição

Definimos agora recursivamente o conceito de fórmula:

- Cada átomo é uma fórmula.
- Se φ e ψ são fórmulas, então

$$(\varphi \wedge \psi), (\varphi \vee \psi), (\varphi \Rightarrow \psi), \neg \varphi, \mathbf{0}, \mathbf{1}$$

são fórmulas.

ullet Se arphi é uma fórmula e x é uma variável, então

$$\forall x \varphi$$
 e $\exists x \varphi$

são fórmulas.

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

- $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:
 - O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".
- $(\forall x \exists y \ x < y) \land (a < x)$:

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

- $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:
 - O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - O alcance de " \forall " é " $\exists y \ x < y$ ".

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

- $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:
 - O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - O alcance de " \forall " é " $\exists y \ x < y$ ".
 - O alcance de " \exists " é "x < y".

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

- $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:
 - O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - O alcance de " \forall " é " $\exists y \ x < y$ ".
 - O alcance de " \exists " é "x < y".
- $\forall x \exists y (x < y \land a < x)$:

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

- $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:
 - O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - O alcance de " \forall " é " $\exists y \ x < y$ ".
 - O alcance de " \exists " é "x < y".
- $\forall x \exists y (x < y \land a < x)$:
 - O alcance de " \forall " é " $\exists y (x < y \land a < x)$ ".

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

- $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:
 - O alcance de " \forall " é " $(\text{gato}(x) \Rightarrow \text{garras}(x))$ ".
- $(\forall x \exists y \ x < y) \land (a < x)$:
 - O alcance de " \forall " é " $\exists y \ x < y$ ".
 - O alcance de " \exists " é "x < y".
- $\forall x \exists y (x < y \land a < x)$:
 - O alcance de " \forall " é " $\exists y (x < y \land a < x)$ ".
 - O alcance de " \exists " é " $x < y \land a < x$ ".

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Variável livre e ligada

Uma ocorrência de uma variável numa fórmula diz-se ligada se a ocorrência da variável está dentro do alcance de um quantificador utilizado para essa variável. Uma ocorrência de uma variável numa fórmula diz-se livre se essa ocorrência não é ligada.

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Variável livre e ligada

Uma ocorrência de uma variável numa fórmula diz-se ligada se a ocorrência da variável está dentro do alcance de um quantificador utilizado para essa variável. Uma ocorrência de uma variável numa fórmula diz-se livre se essa ocorrência não é ligada.

Uma variável numa fórmula diz-se livre quando ocorre pelo menos uma vez livre na fórmula (e as vezes se diz que é ligada quando ocorre pelo menos uma vez ligada na fórmula).

Alcance de um quantificador

Nas fórmulas da forma $\forall x \varphi \in \exists x \varphi$, a fórmula φ é o alcance do quantificador \forall respetivamente \exists .

Variável livre e ligada

Uma ocorrência de uma variável numa fórmula diz-se ligada se a ocorrência da variável está dentro do alcance de um quantificador utilizado para essa variável. Uma ocorrência de uma variável numa fórmula diz-se livre se essa ocorrência não é ligada.

Uma variável numa fórmula diz-se livre quando ocorre pelo menos uma vez livre na fórmula (e as vezes se diz que é ligada quando ocorre pelo menos uma vez ligada na fórmula).

Nota

Uma fórmula diz-se fechada quando não tem variáveis livres.

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

A variável x ocorre ligada. A fórmula é fechada.

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

A variável x ocorre ligada. A fórmula é fechada.

• $(\forall x \exists y \ x < y) \land (a < x)$:

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

A variável x ocorre ligada. A fórmula é fechada.

• $(\forall x \exists y \ x < y) \land (a < x)$:

A variável y ocorre ligada e a variável x ocorre livre e ligada. A fórmula não é fechada

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

A variável x ocorre ligada. A fórmula é fechada.

• $(\forall x \exists y \ x < y) \land (a < x)$:

A variável y ocorre ligada e a variável x ocorre livre e ligada. A fórmula não é fechada

• $\forall x \exists y (x < y \land a < x)$:

Exemplos

• $\forall x (\text{gato}(x) \Rightarrow \text{garras}(x))$:

A variável x ocorre ligada. A fórmula é fechada.

• $(\forall x \exists y \ x < y) \land (a < x)$:

A variável y ocorre ligada e a variável x ocorre livre e ligada. A fórmula não é fechada

• $\forall x \exists y (x < y \land a < x)$:

As variáveis x e y ocorrem ligadas. A fórmula é fechada

A semântica

D	efir	nic	-30	`
$\boldsymbol{\nu}$	CIII	пυ	Jal	,

Uma interpretação de uma alfabeto de 1ª ordem consiste em:

Definição

Uma interpretação de uma alfabeto de 1ª ordem consiste em:

• um conjunto D,

Definição

Uma interpretação de uma alfabeto de 1ª ordem consiste em:

- um conjunto *D*,
- a cada símbolo de constante associamos um elemento de D,

Definição

Uma interpretação de uma alfabeto de 1^a ordem consiste em:

- um conjunto *D*,
- a cada símbolo de constante associamos um elemento de D,
- a cada símbolo de função f com n argumentos associamos uma função $D^n \to D$ (tipicamente também denotada por f),

Definição

Uma interpretação de uma alfabeto de 1^a ordem consiste em:

- um conjunto D,
- a cada símbolo de constante associamos um elemento de D,
- a cada símbolo de função f com n argumentos associamos uma função $D^n \to D$ (tipicamente também denotada por f),
- a cada símbolo de predicado P com n argumentos associamos um subconjunto de D^n (ou, equivalentemente, uma função

$$P: D^n \longrightarrow \{0,1\}$$

onde $P(a_1, ..., a_n) = 1$ quando $(a_1, ..., a_n)$ pertence a este conjunto).

Definição

Uma interpretação de uma alfabeto de 1ª ordem consiste em:

- um conjunto D,
- a cada símbolo de constante associamos um elemento de D,
- a cada símbolo de função f com n argumentos associamos uma função $D^n \to D$ (tipicamente também denotada por f),
- a cada símbolo de predicado P com n argumentos associamos um subconjunto de D^n (ou, equivalentemente, uma função

$$P: D^n \longrightarrow \{0,1\}$$

onde $P(a_1, ..., a_n) = 1$ quando $(a_1, ..., a_n)$ pertence a este conjunto).

• (As vezes consideramos também: a cada variável associamos um elemento de *D*.)

Interpretação de termos

Dada um interpretação (digamos I) de uma linguagem, definimos recursivamente a interpretação de termos:

$$I(f(t_1,\ldots,t_n))=f(I(t_1),\ldots,I(t_n))\in D.$$

Interpretação de termos

Dada um interpretação (digamos I) de uma linguagem, definimos recursivamente a interpretação de termos:

$$I(f(t_1,\ldots,t_n))=f(I(t_1),\ldots,I(t_n))\in D.$$

Exemplo

Consideramos a linguagem com um símbolo de função binária f (ou seja, de dois argumentos) e um símbolo de constante a.

Para a interpretação I com $D=\mathbb{Z}$ e

$$f: D^2 \to D, (n, m) \mapsto |n| - |m|, I(a) = 0, I(x) = -2 e I(y) = 1,$$

temos:

Interpretação de termos

Dada um interpretação (digamos I) de uma linguagem, definimos recursivamente a interpretação de termos:

$$I(f(t_1,\ldots,t_n))=f(I(t_1),\ldots,I(t_n))\in D.$$

Exemplo

Consideramos a linguagem com um símbolo de função binária f (ou seja, de dois argumentos) e um símbolo de constante a.

Para a interpretação I com $D=\mathbb{Z}$ e

$$f: D^2 \to D, (n, m) \mapsto |n| - |m|, I(a) = 0, I(x) = -2 e I(y) = 1,$$

temos:

•
$$I(f(a,x)) = |0| - |-2| = -2$$
.

Interpretação de termos

Dada um interpretação (digamos I) de uma linguagem, definimos recursivamente a interpretação de termos:

$$I(f(t_1,...,t_n)) = f(I(t_1),...,I(t_n)) \in D.$$

Exemplo

Consideramos a linguagem com um símbolo de função binária f (ou seja, de dois argumentos) e um símbolo de constante a.

Para a interpretação I com $D=\mathbb{Z}$ e

$$f: D^2 \to D, (n, m) \mapsto |n| - |m|, I(a) = 0, I(x) = -2 e I(y) = 1,$$

temos:

- I(f(a,x)) = |0| |-2| = -2.
- I(f(f(x,y),a)) = |(|-2|-|1|)-|0|| = 1.

Interpretação de fórmulas

Dada uma interpretação I de um alfabeto de 1^a ordem, definimos recursivamente a validade de fórmulas (relativa à I):

Interpretação de fórmulas

Dada uma interpretação I de um alfabeto de 1^a ordem, definimos recursivamente a validade de fórmulas (relativa à I):

• A fórmula $P(t_1, \ldots, t_n)$ é válida quando

$$P(I(t_1),\ldots,I(t_2))=1.$$

Interpretação de fórmulas

Dada uma interpretação I de um alfabeto de 1^a ordem, definimos recursivamente a validade de fórmulas (relativa à I):

• A fórmula $P(t_1, \ldots, t_n)$ é válida quando

$$P(I(t_1),\ldots,I(t_2))=1.$$

A validade das fórmulas

$$(\varphi \wedge \psi), \quad (\varphi \vee \psi), \quad (\varphi \Rightarrow \psi), \quad \neg \varphi, \quad \mathbf{0}, \quad \mathbf{1}$$

define-se como na lógica proposicional.

Interpretação de fórmulas

Dada uma interpretação I de um alfabeto de 1^a ordem, definimos recursivamente a validade de fórmulas (relativa à I):

• A fórmula $P(t_1, \ldots, t_n)$ é válida quando

$$P(I(t_1),\ldots,I(t_2))=1.$$

A validade das fórmulas

$$(\varphi \wedge \psi), \quad (\varphi \vee \psi), \quad (\varphi \Rightarrow \psi), \quad \neg \varphi, \quad \mathbf{0}, \quad \mathbf{1}$$

define-se como na lógica proposicional.

 A fórmula ∀x φ é válida quando φ é válida para "todas as interpretações da variável x".

Interpretação de fórmulas

Dada uma interpretação I de um alfabeto de 1^a ordem, definimos recursivamente a validade de fórmulas (relativa à I):

• A fórmula $P(t_1,\ldots,t_n)$ é válida quando

$$P(I(t_1),\ldots,I(t_2))=1.$$

A validade das fórmulas

$$(\varphi \wedge \psi), \quad (\varphi \vee \psi), \quad (\varphi \Rightarrow \psi), \quad \neg \varphi, \quad \mathbf{0}, \quad \mathbf{1}$$

define-se como na lógica proposicional.

- A fórmula $\forall x \varphi$ é válida quando φ é válida para "todas as interpretações da variável x".
- A fórmula $\exists x \varphi$ é válida quando φ é válida para "alguma interpretação da variável x".

Exemplos

Interpretamos as seguintes termos e fórmulas em $D=\mathbb{R}$ (onde os símbolos "comuns" têm o significado "habitual").

Exemplos

Interpretamos as seguintes termos e fórmulas em $D=\mathbb{R}$ (onde os símbolos "comuns" têm o significado "habitual").

• $\cos(\pi) + 3$?

Exemplos

Interpretamos as seguintes termos e fórmulas em $D=\mathbb{R}$ (onde os símbolos "comuns" têm o significado "habitual").

• $cos(\pi) + 3$? Interpretação: 2.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- *x* < 4?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \exists y \ y < 4$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \,\exists y \,y <$ 4? Interpretação: valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? N\u00e3o podemos interpretar exceto se sabemos a interpreta\u00e7\u00e3o de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \,\exists y \,y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \exists y \ y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \, \exists y \, y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.
- $(\forall x \, x < 4) \Rightarrow 1 = 0$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \exists y \ y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.
- $(\forall x \, x < 4) \Rightarrow 1 = 0$? Interpretação: valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \exists y \ y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.
- $(\forall x \, x < 4) \Rightarrow 1 = 0$? Interpretação: valida.
- $\forall x \exists y x < y$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \,\exists y \,y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.
- $(\forall x \, x < 4) \Rightarrow 1 = 0$? Interpretação: valida.
- $\forall x \exists y \ x < y$? Interpretação: valida.

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \exists y \ y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.
- $(\forall x \, x < 4) \Rightarrow 1 = 0$? Interpretação: valida.
- $\forall x \exists y \ x < y$? Interpretação: valida.
- $\exists x \, \forall y \, x \leq y$?

Exemplos

- $cos(\pi) + 3$? Interpretação: 2.
- 3 < 4? Interpretação: valida.
- x < 4? Não podemos interpretar exceto se sabemos a interpretação de x.
- $\forall x \, x < 4$? Interpretação: não valida.
- $\forall y \ y < 4$? Interpretação: não valida.
- $\forall y \exists y \ y < 4$? Interpretação: valida.
- $\forall x (x < 4 \Rightarrow 1 = 0)$? Interpretação: não valida.
- $(\forall x \, x < 4) \Rightarrow 1 = 0$? Interpretação: valida.
- $\forall x \exists y \ x < y$? Interpretação: valida.
- $\exists x \, \forall y \, x \leq y$? Interpretação: não valida.

Nota

• Se uma fórmula φ é válida numa interpretação, diz-se também que φ é "avaliada em 1" (nesta interpretação).

Nota

- Se uma fórmula φ é válida numa interpretação, diz-se também que φ é "avaliada em 1" (nesta interpretação).
- Se uma fórmula φ não é válida numa interpretação, diz-se também que φ é "avaliada em 0" (nesta interpretação).

Nota

- Se uma fórmula φ é válida numa interpretação, diz-se também que φ é "avaliada em 1" (nesta interpretação).
- Se uma fórmula φ não é válida numa interpretação, diz-se também que φ é "avaliada em 0" (nesta interpretação).
- Se uma fórmula φ não tem variáveis livres, a interpretação das variáveis é *irrelevante*.

Nota

- Se uma fórmula φ é válida numa interpretação, diz-se também que φ é "avaliada em 1" (nesta interpretação).
- Se uma fórmula φ não é válida numa interpretação, diz-se também que φ é "avaliada em 0" (nesta interpretação).
- Se uma fórmula φ não tem variáveis livres, a interpretação das variáveis é *irrelevante*.

Ainda mais notação

Se uma fórmula φ é válida numa interpretação \emph{I} , diz-se também que

Nota

- Se uma fórmula φ é válida numa interpretação, diz-se também que φ é "avaliada em 1" (nesta interpretação).
- Se uma fórmula φ não é válida numa interpretação, diz-se também que φ é "avaliada em 0" (nesta interpretação).
- Se uma fórmula φ não tem variáveis livres, a interpretação das variáveis é irrelevante.

Ainda mais notação

Se uma fórmula φ é válida numa interpretação \emph{I} , diz-se também que

• I é um modelo de φ , ou

Nota

- Se uma fórmula φ é válida numa interpretação, diz-se também que φ é "avaliada em 1" (nesta interpretação).
- Se uma fórmula φ não é válida numa interpretação, diz-se também que φ é "avaliada em 0" (nesta interpretação).
- Se uma fórmula φ não tem variáveis livres, a interpretação das variáveis é irrelevante.

Ainda mais notação

Se uma fórmula φ é válida numa interpretação \emph{I} , diz-se também que

- I é um modelo de φ , ou
- I satisfaz φ .

Um Exemplo

Exemplo (Espaços vetoriais)

Um espaço vetorial é um modelo das fórmulas (no alfabeto da teoria de espaços vetoriais):

- 1. $\forall u \forall v \quad u + v = v + u$,
- 2. $\forall u \forall v \forall w \quad u + (v + w) = (u + v) + w$,
- 3. $\forall u \quad u + 0 = u$,
- 4. $\forall u \quad 0 \cdot u = 0$,
- 5. $\forall u \quad 1 \cdot u = u$,
- 6. $\forall u \quad \alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot u$,
- 7. $\forall u \ (\alpha + \beta) \cdot u = (\alpha \cdot u) + (\beta \cdot u),$
- 8. $\forall u \, \forall v \quad \alpha \cdot (u + v) = (\alpha \cdot u) + (\alpha \cdot v)$.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

• válida (ou uma tautologia) quando é válida em *cada* interpretação.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

 válida (ou uma tautologia) quando é válida em cada interpretação. Notação: Escreve-se |= φ quando φ é válida.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em cada interpretação. Notação: Escreve-se |= φ quando φ é válida.
- consistente quando é válida em alguma interpretação.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em cada interpretação. Notação: Escreve-se ⊨ φ quando φ é válida.
- consistente quando é válida em alguma interpretação.

Nota

 Uma fórmula não válida diz-se inválida e uma fórmula não consistente diz-se inconsistente.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em cada interpretação. Notação: Escreve-se ⊨ φ quando φ é válida.
- consistente quando é válida em alguma interpretação.

Nota

- Uma fórmula não válida diz-se inválida e uma fórmula não consistente diz-se inconsistente.
- Uma fórmula φ é inconsistente se e só se $\neg \varphi$ é válida.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em cada interpretação. Notação: Escreve-se ⊨ φ quando φ é válida.
- consistente quando é válida em alguma interpretação.

Nota

- Uma fórmula não válida diz-se inválida e uma fórmula não consistente diz-se inconsistente.
- Uma fórmula φ é inconsistente se e só se ¬φ é válida.
 Portanto, uma fórmula inconsistente diz-se também uma contradição.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em *cada* interpretação. **Notação:** Escreve-se $\models \varphi$ quando φ é válida.
- consistente quando é válida em alguma interpretação.

Nota

- Uma fórmula não válida diz-se inválida e uma fórmula não consistente diz-se inconsistente.
- Uma fórmula φ é inconsistente se e só se ¬φ é válida.
 Portanto, uma fórmula inconsistente diz-se também uma contradição.

Definição

As fórmulas φ e ψ dizem-se equivalentes quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Tautologias e Fórmulas consistentes

Uma fórmula φ diz-se

- válida (ou uma tautologia) quando é válida em cada interpretação. **Notação:** Escreve-se $\models \varphi$ quando φ é válida.
- consistente quando é válida em alguma interpretação.

Nota

- Uma fórmula não válida diz-se inválida e uma fórmula não consistente diz-se inconsistente.
- Uma fórmula φ é inconsistente se e só se ¬φ é válida.
 Portanto, uma fórmula inconsistente diz-se também uma contradição.

Definição

As fórmulas φ e ψ dizem-se equivalentes quando $\varphi \Leftrightarrow \psi$ é uma tautologia. Neste caso escrevemos $\varphi \equiv \psi$.

Definição

Uma fórmula ψ diz-se consequência (semântica ou lógica) das fórmulas $\varphi_1, \ldots, \varphi_n$ quando, para toda a interpretação I, se $\varphi_1, \ldots, \varphi_n$ são válidas em I, então ψ é valida em I.

Definição

Uma fórmula ψ diz-se consequência (semântica ou lógica) das fórmulas $\varphi_1, \ldots, \varphi_n$ quando, para toda a interpretação I, se $\varphi_1, \ldots, \varphi_n$ são válidas em I, então ψ é valida em I.

Em símbolos: $\varphi_1, \ldots, \varphi_n \models \psi$.

Definição

Uma fórmula ψ diz-se consequência (semântica ou lógica) das fórmulas $\varphi_1,\ldots,\varphi_n$ quando, para toda a interpretação I,

se $\varphi_1, \ldots, \varphi_n$ são válidas em I, então ψ é valida em I.

Em símbolos: $\varphi_1, \ldots, \varphi_n \models \psi$.

Teorema

Sejam $\varphi_1, \ldots, \varphi_n$ e ψ fórmulas. Então, ψ é consequência de $\varphi_1, \ldots, \varphi_n$ se e só se a fórmula

$$(\varphi_1 \wedge \cdots \wedge \varphi_n) \Rightarrow \psi$$

é válida.

Definição

Uma fórmula ψ diz-se consequência (semântica ou lógica) das fórmulas $\varphi_1, \ldots, \varphi_n$ quando, para toda a interpretação I, se $\varphi_1, \ldots, \varphi_n$ são válidas em I, então ψ é valida em I.

Em símbolos: $\varphi_1, \ldots, \varphi_n \models \psi$.

Teorema

Sejam $\varphi_1, \ldots, \varphi_n$ e ψ fórmulas. Então, ψ é consequência de $\varphi_1, \ldots, \varphi_n$ se e só se a fórmula

$$(\varphi_1 \wedge \cdots \wedge \varphi_n) \Rightarrow \psi$$

é válida. Ou seja:

$$\varphi_1, \dots, \varphi_n \models \psi$$
 se e só se $\models ((\varphi_1 \land \dots \land \varphi_n) \Rightarrow \psi)$
se e só se $\varphi_1 \land \dots \land \varphi_n \models \psi$.

Teorema

Seja R uma relação de equivalência num conjunto X. Então, para todos os $x,y\in X$,

$$x R y$$
 se e só se $[x] = [y]$.

Recordamos: $[x] = \{z \in X \mid x R z\}.$

Teorema

Seja R uma relação de equivalência num conjunto X. Então, para todos os $x,y\in X$,

$$x R y$$
 se e só se $[x] = [y]$.

Na linguagem de 1ª ordem

Teorema

Seja R uma relação de equivalência num conjunto X. Então, para todos os $x,y\in X$,

$$x R y$$
 se e só se $[x] = [y]$.

Na linguagem de 1ª ordem

Precisamos um símbolo de relação R com dois argumentos, e consideramos as fórmulas:

Teorema

Seja R uma relação de equivalência num conjunto X. Então, para todos os $x,y\in X$,

$$x R y$$
 se e só se $[x] = [y]$.

Na linguagem de 1^a ordem

Precisamos um símbolo de relação R com dois argumentos, e consideramos as fórmulas:

$$\varphi_{1} \equiv \forall x \ R(x,x),$$

$$\varphi_{2} \equiv \forall x \ \forall y \ (R(x,y) \Rightarrow R(y,x)),$$

$$\varphi_{3} \equiv \forall x \ \forall y \ \forall z \ ((R(x,y) \land R(y,z)) \Rightarrow R(x,z)),$$

$$\psi \equiv \forall x \ \forall y \ (R(x,y) \Leftrightarrow \forall z \ (R(z,x) \Leftrightarrow R(z,y))).$$

Teorema

Seja R uma relação de equivalência num conjunto X. Então, para todos os $x,y\in X$,

$$x R y$$
 se e só se $[x] = [y]$.

Na linguagem de 1^a ordem

Precisamos um símbolo de relação R com dois argumentos, e consideramos as fórmulas:

$$\varphi_{1} \equiv \forall x \ R(x,x),$$

$$\varphi_{2} \equiv \forall x \ \forall y \ (R(x,y) \Rightarrow R(y,x)),$$

$$\varphi_{3} \equiv \forall x \ \forall y \ \forall z \ ((R(x,y) \land R(y,z)) \Rightarrow R(x,z)),$$

$$\psi \equiv \forall x \ \forall y \ (R(x,y) \Leftrightarrow \forall z \ (R(z,x) \Leftrightarrow R(z,y))).$$

O teorema acima escreve-se como: $\varphi_1, \varphi_2, \varphi_3 \models \psi$.

Na lógica proposicional

Por exemplo: $(p \Rightarrow q), \neg q \models \neg p$.

Na lógica proposicional

Por exemplo: $(p \Rightarrow q), \neg q \models \neg p$.

Podemos validar esta consequência verificando *todas* as interpretações (ou seja, criar a tabela de verdade).

Na lógica proposicional

Por exemplo: $(p \Rightarrow q), \neg q \models \neg p$.

Podemos validar esta consequência verificando *todas* as interpretações (ou seja, criar a tabela de verdade).

Na lógica de 1^a ordem

Como verificar (sobre relações de equivalências)

$$\varphi_1, \varphi_2, \varphi_3 \models \psi$$
?

Na lógica proposicional

Por exemplo: $(p \Rightarrow q), \neg q \models \neg p$.

Podemos validar esta consequência verificando *todas* as interpretações (ou seja, criar a tabela de verdade).

Na lógica de 1ª ordem

Como verificar (sobre relações de equivalências)

$$\varphi_1, \varphi_2, \varphi_3 \models \psi$$
?

Agora não podemos verificar todas as interpretações!!

Na lógica proposicional

Por exemplo: $(p \Rightarrow q), \neg q \models \neg p$.

Podemos validar esta consequência verificando *todas* as interpretações (ou seja, criar a tabela de verdade).

Na lógica de 1^a ordem

Como verificar (sobre relações de equivalências)

$$\varphi_1, \varphi_2, \varphi_3 \models \psi$$
?

Agora não podemos verificar todas as interpretações!!

Tipicamente fazemos uma prova (= argumentação), ou seja, escrevemos uma sequência de fórmulas

$$\varphi_1 \quad \varphi_2 \quad \varphi_3 \quad \dots \quad \text{algo esperto}^a \quad \dots \quad \psi$$

^aJustificado pelo anterior

Aplicamos certas regras de inferência, por exemplo:

Aplicamos certas regras de inferência, por exemplo:

$$\frac{\varphi \ \psi}{\varphi \wedge \psi} \qquad \frac{\varphi \wedge \psi}{\varphi} \qquad \frac{\varphi \wedge \psi}{\psi}$$

Aplicamos certas regras de inferência, por exemplo:

$$\frac{\varphi \ \psi}{\varphi \wedge \psi} \qquad \frac{\varphi \wedge \psi}{\varphi} \qquad \frac{\varphi \wedge \psi}{\psi}$$

е

$$egin{array}{c|c} arphi \ \ arphi \$$

Aplicamos certas regras de inferência, por exemplo:

$$\begin{array}{ccc} \varphi & \psi & & \varphi \wedge \psi & & \varphi \wedge \psi \\ \hline \varphi \wedge \psi & & \varphi & & \psi \end{array}$$

е

е

$$\frac{\begin{bmatrix} \varphi \\ \vdots \\ \psi \end{bmatrix}}{\varphi \Rightarrow \psi} \qquad \frac{\varphi \quad (\varphi \Rightarrow \psi)}{\psi}$$

Dedução (automática)

Índice

4 Introdução

5 Formas normais de fórmulas

6 Dedução com quantificadores

Unificação

Definição

O conjunto $\{\varphi_1,\ldots,\varphi_n\}$ de fórmulas diz-se consistente quando existe um modelo I que satisfaz $\varphi_1,\ldots,\varphi_n$.

Definição

O conjunto $\{\varphi_1,\ldots,\varphi_n\}$ de fórmulas diz-se consistente quando existe um modelo I que satisfaz $\varphi_1,\ldots,\varphi_n$.

Teorema

 $\{\varphi_1,\ldots,\varphi_n\}$ é inconsistente se e só se $\varphi_1,\ldots,\varphi_n\models \mathbf{0}$.

Definição

O conjunto $\{\varphi_1,\ldots,\varphi_n\}$ de fórmulas diz-se consistente quando existe um modelo I que satisfaz $\varphi_1,\ldots,\varphi_n$.

Teorema

 $\{\varphi_1,\ldots,\varphi_n\}$ é inconsistente se e só se $\varphi_1,\ldots,\varphi_n\models \mathbf{0}$.

Nota

$$\neg \psi \equiv (\psi \Rightarrow \mathbf{0}) \quad \mathbf{e} \quad \neg \neg \psi \equiv \psi.$$

Definição

O conjunto $\{\varphi_1,\ldots,\varphi_n\}$ de fórmulas diz-se consistente quando existe um modelo I que satisfaz $\varphi_1,\ldots,\varphi_n$.

Teorema

$$\{\varphi_1,\ldots,\varphi_n\}$$
 é inconsistente se e só se $\varphi_1,\ldots,\varphi_n\models\mathbf{0}$.

Nota

$$\neg \psi \equiv (\psi \Rightarrow \mathbf{0}) \quad \text{e} \quad \neg \neg \psi \equiv \psi.$$

Portanto:

$$\{ \varphi_1, \dots, \varphi_n, \neg \psi \}$$
 é inconsistente se e só se

$$\varphi_1,\ldots,\varphi_n,\neg\psi\models\mathbf{0}$$

$$\varphi_1, \dots, \varphi_n \models (\neg \psi \Rightarrow \mathbf{0})$$
 se e só se $\varphi_1, \dots, \varphi_n \models \psi$.

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \mathbf{0}$$

de fórmulas onde $\psi_i \in \{\varphi_1, \dots, \varphi_n\}$ ou ψ_i é "consequência" das fórmulas anteriores.

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \mathbf{0}$$

de fórmulas onde $\psi_i \in \{\varphi_1,\dots,\varphi_n\}$ ou ψ_i é "consequência" das fórmulas anteriores.

Consequência como?

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \mathbf{0}$$

de fórmulas onde $\psi_i \in \{\varphi_1,\dots,\varphi_n\}$ ou ψ_i é "consequência" das fórmulas anteriores.

Consequência como? Utilizando a regra a $\frac{\neg \psi \lor \theta \quad \psi \lor \varphi}{\theta \lor \varphi}$.

^aNeste momento ignoramos os quantificadores

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \mathbf{0}$$

de fórmulas onde $\psi_i \in \{\varphi_1,\dots,\varphi_n\}$ ou ψ_i é "consequência" das fórmulas anteriores.

Consequência como? Utilizando a regra $\frac{\psi\Rightarrow\theta\ \ \psi\lor\varphi}{\theta\lor\varphi}$.

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \mathbf{0}$$

de fórmulas onde $\psi_i \in \{\varphi_1,\dots,\varphi_n\}$ ou ψ_i é "consequência" das fórmulas anteriores.

Consequência como? Utilizando a regra $\frac{\neg \psi \lor \theta \quad \psi \lor \varphi}{\theta \lor \varphi}.$

Deduções

Questão: Como justificar $\varphi_1, \ldots, \varphi_n \models \mathbf{0}$?

Como já observamos, uma dedução consiste numa sequência

$$\psi_1 \quad \psi_2 \quad \dots \quad \mathbf{0}$$

de fórmulas onde $\psi_i \in \{\varphi_1,\dots,\varphi_n\}$ ou ψ_i é "consequência" das fórmulas anteriores.

Consequência como? Utilizando a regra $\frac{\neg \psi \lor \theta \quad \psi \lor \varphi}{\theta \lor \varphi}$.

Em particular:

$$rac{
eg \psi \ \psi \lor arphi}{arphi}$$
 e $rac{
eg \psi \ \psi}{oldsymbol{0}}$.

Também se escreve ◊ em lugar de 0.

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Para poder aplicar a regra de dedução, rescrevemos as fórmulas como

$$\varphi$$
, $\neg \varphi \lor \psi$, $\neg \psi$.

Agora:

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Para poder aplicar a regra de dedução, rescrevemos as fórmulas como

$$\varphi$$
, $\neg \varphi \lor \psi$, $\neg \psi$.

Agora: φ , $\neg \varphi \lor \psi$,

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Para poder aplicar a regra de dedução, rescrevemos as fórmulas como

$$\varphi$$
, $\neg \varphi \lor \psi$, $\neg \psi$.

Agora: φ , $\neg \varphi \lor \psi$, ψ ,

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Para poder aplicar a regra de dedução, rescrevemos as fórmulas como

$$\varphi$$
, $\neg \varphi \lor \psi$, $\neg \psi$.

Agora: φ , $\neg \varphi \lor \psi$, ψ , $\neg \psi$,

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Para poder aplicar a regra de dedução, rescrevemos as fórmulas como

$$\varphi, \quad \neg \varphi \lor \psi, \quad \neg \psi.$$

Agora: φ , $\neg \varphi \lor \psi$, ψ , $\neg \psi$, \diamondsuit .

Exemplo

Deduzimos agora

$$\varphi, (\varphi \Rightarrow \psi) \models \psi;$$

ou seja

$$\varphi, (\varphi \Rightarrow \psi), \neg \psi \models \mathbf{0}.$$

Para poder aplicar a regra de dedução, rescrevemos as fórmulas como

$$\varphi$$
, $\neg \varphi \lor \psi$, $\neg \psi$.

Agora: φ , $\neg \varphi \lor \psi$, ψ , $\neg \psi$, \diamondsuit .

Exemplo (De facto: TPIJB)

$$(\varphi \lor \psi), (\varphi \Rightarrow \theta), (\psi \Rightarrow \theta) \models \theta$$

Formas normais de fórmulas

Fórmulas na forma normal

Fórmulas na forma normal

Definição

- Um literal é um átomo ou a negação de um átomo.
- Uma fórmula φ diz-se na forma normal conjuntiva (disjuntiva) quando

$$\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n \qquad (\varphi = \varphi_1 \vee \cdots \vee \varphi_n)$$

onde cada φ_i é da forma

$$L_1 \vee \cdots \vee L_k \qquad (L_1 \wedge \cdots \wedge L_k)$$

com literais L_i .

Fórmulas na forma normal

Definição

- Um literal é um átomo ou a negação de um átomo.
- \bullet Uma fórmula φ diz-se na forma normal conjuntiva (disjuntiva) quando

$$\varphi = \varphi_1 \wedge \cdots \wedge \varphi_n \qquad (\varphi = \varphi_1 \vee \cdots \vee \varphi_n)$$

onde cada φ_i é da forma

$$L_1 \vee \cdots \vee L_k \qquad (L_1 \wedge \cdots \wedge L_k)$$

com literais L_i .

Uma fórmula da forma

$$Qx_1 \ldots Qx_n \quad \varphi$$

onde φ é uma fórmula sem quantificadores e Q denota " \exists " ou " \forall " diz-se na na forma normal prenex.

Definição

Para $k \in \mathbb{N}$, uma k-cláusula é uma disjunção de k literais.

$$L_1 \vee \cdots \vee L_k$$

Definição de la constant de la const

Para $k \in \mathbb{N}$, uma k-cláusula é uma disjunção de k literais.

$$L_1 \vee \cdots \vee L_k$$

Nota

• Uma 1-cláusula é apenas um literal.

Definição

Para $k \in \mathbb{N}$, uma k-cláusula é uma disjunção de k literais.

$$L_1 \vee \cdots \vee L_k$$

Nota

- Uma 1-cláusula é apenas um literal.
- Uma 0-cláusula é a fórmula "falsa" 0. (No que se segue denotada também por ◊.)

Definição

Para $k \in \mathbb{N}$, uma k-cláusula é uma disjunção de k literais.

$$L_1 \vee \cdots \vee L_k$$

Nota

- Uma 1-cláusula é apenas um literal.
- Uma 0-cláusula é a fórmula "falsa" 0. (No que se segue denotada também por ◊.)
- Portanto, uma fórmula na forma normal conjuntiva é uma conjunção de cláusulas.

Definição

Para $k \in \mathbb{N}$, uma k-cláusula é uma disjunção de k literais.

$$L_1 \vee \cdots \vee L_k$$

Nota

- Uma 1-cláusula é apenas um literal.
- Uma 0-cláusula é a fórmula "falsa" 0. (No que se segue denotada também por ◊.)
- Portanto, uma fórmula na forma normal conjuntiva é uma conjunção de cláusulas.
- Uma conjunto $\{\varphi_1, \dots, \varphi_n\}$ de cláusulas identificamos com a conjunção de cláusulas

$$\varphi_1 \wedge \cdots \wedge \varphi_n$$
.

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

$$(p \wedge (q \vee r)) \equiv (p \wedge q) \vee (p \wedge r),$$

$$(p \vee (q \wedge r)) \equiv (p \vee q) \wedge (p \vee r).$$

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

Mover ¬ mais para o interior

•
$$\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$$
 e $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$.

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

Mover ¬ mais para o interior

- $\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$ e $\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$.
- $\bullet \ \neg \forall x \, \varphi \, \equiv \, \exists x \, \neg \varphi \qquad \text{e} \qquad \neg \exists x \, \varphi \, \equiv \, \forall x \, \neg \varphi.$

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

Mover ¬ mais para o interior

- $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$ e $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$.
- $\neg \forall x \varphi \equiv \exists x \neg \varphi$ e $\neg \exists x \varphi \equiv \forall x \neg \varphi$.

Mover os quantificadores mais para o exterior

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

Mover ¬ mais para o interior

- $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$ e $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$.
- $\neg \forall x \varphi \equiv \exists x \neg \varphi$ e $\neg \exists x \varphi \equiv \forall x \neg \varphi$.

Mover os quantificadores mais para o exterior

• $(\forall x \varphi) \land (\forall x \psi) \equiv \forall x (\psi \land \varphi).$

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

Mover ¬ mais para o interior

- $\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$ e $\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$.
- $\neg \forall x \varphi \equiv \exists x \neg \varphi$ e $\neg \exists x \varphi \equiv \forall x \neg \varphi$.

Mover os quantificadores mais para o exterior

- $\bullet \ (\forall x \, \varphi) \wedge (\forall x \, \psi) \equiv \forall x \, (\psi \wedge \varphi).$
- $(\exists x \varphi) \lor (\exists x \psi) \equiv \exists x (\psi \lor \varphi).$

Recordamos da lógica proposicional

- $\varphi \Rightarrow \psi \equiv \neg \varphi \lor \psi$, $\varphi \Leftrightarrow \psi \equiv (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$.
- As leis de distributividade.

Mover ¬ mais para o interior

- $\neg(\varphi \lor \psi) \equiv \neg \varphi \land \neg \psi$ e $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$.
- $\neg \forall x \varphi \equiv \exists x \neg \varphi$ e $\neg \exists x \varphi \equiv \forall x \neg \varphi$.

Mover os quantificadores mais para o exterior

- $(\forall x \varphi) \land (\forall x \psi) \equiv \forall x (\psi \land \varphi).$
- $(\exists x \varphi) \lor (\exists x \psi) \equiv \exists x (\psi \lor \varphi).$
- Suponha que ψ não contém a variável x:

$$(\forall x \, \varphi) \land \psi \equiv \forall x \, (\varphi \land \psi), \qquad (\exists x \, \varphi) \land \psi \equiv \exists x \, (\varphi \land \psi),$$
$$(\forall x \, \varphi) \lor \psi \equiv \forall x \, (\varphi \lor \psi), \qquad (\exists x \, \varphi) \lor \psi \equiv \exists x \, (\varphi \lor \psi).$$

Forma normal de Skolem

Definição

Uma fórmula na forma normal de Skolem a é uma fórmula fechada (= sem variáveis livres)

$$\forall x_1 \ldots \forall x_n \quad \varphi$$

onde φ é uma fórmula sem quantificadores na forma normal conjuntiva.

^aThoralf Albert Skolem, 1887 – 1963, matemático norueguês.

Forma normal de Skolem

Definição

Uma fórmula na forma normal de Skolem é uma fórmula fechada (= sem variáveis livres)

$$\forall x_1 \ldots \forall x_n \quad \varphi$$

onde φ é uma fórmula sem quantificadores na forma normal conjuntiva.

Nota

Como

$$\forall x_1 \dots \forall x_n \ (\varphi \wedge \psi) \equiv (\forall x_1 \dots \forall x_n \ \varphi) \wedge (\forall x_1 \dots \forall x_n \ \psi),$$

uma fórmula na forma normal de Skolem pode-se escrever como uma conjunção de fórmulas normal de Skolem $\forall x_1 \dots \forall x_n \ \varphi_i$ onde φ_i é uma cláusula $L_1 \lor \dots \lor L_n$.

A partir da forma normal prenex

A partir da forma normal prenex

• No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n \varphi$ por c, e

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n\varphi$ por c, e
 - 3. eliminar $\exists x_1$.

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n\varphi$ por c, e
 - 3. eliminar $\exists x_1$.
- No caso de $\forall x_1 \dots \forall x_{k-1} \exists x_k \ Q_{k+1} x_{k+1} \dots \ Q_n x_n \ \varphi \ (k > 1)$:

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n\varphi$ por c, e
 - 3. eliminar $\exists x_1$.
- No caso de $\forall x_1 \dots \forall x_{k-1} \exists x_k \ Q_{k+1} x_{k+1} \dots \ Q_n x_n \ \varphi \ (k > 1)$:
 - 1. Escolher um novo símbolo de função (digamos f) de k-1 argumentos,

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n\varphi$ por c, e
 - 3. eliminar $\exists x_1$.
- No caso de $\forall x_1 \dots \forall x_{k-1} \exists x_k \ Q_{k+1} x_{k+1} \dots \ Q_n x_n \ \varphi \ (k > 1)$:
 - 1. Escolher um novo símbolo de função (digamos f) de k-1 argumentos,
 - 2. substituir todas as ocorrências livres de x_k em $Q_{k+1}x_{k+1}\dots Q_nx_n \varphi$ por $f(x_1,\dots,x_{k-1})$, e

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n\varphi$ por c, e
 - 3. eliminar $\exists x_1$.
- No caso de $\forall x_1 \dots \forall x_{k-1} \exists x_k \ Q_{k+1} x_{k+1} \dots \ Q_n x_n \ \varphi \ (k > 1)$:
 - 1. Escolher um novo símbolo de função (digamos f) de k-1 argumentos,
 - 2. substituir todas as ocorrências livres de x_k em $Q_{k+1}x_{k+1}\dots Q_nx_n \varphi$ por $f(x_1,\dots,x_{k-1})$, e
 - 3. eliminar $\exists x_k$.

A partir da forma normal prenex

- No caso de $\exists x_1 \ Q_2 x_2 \dots \ Q_n x_n \ \varphi$:
 - 1. Escolher um novo símbolo de constante (digamos c),
 - 2. substituir todas as ocorrências livres de x_1 em $Q_2x_2...Q_nx_n\varphi$ por c, e
 - 3. eliminar $\exists x_1$.
- No caso de $\forall x_1 \dots \forall x_{k-1} \exists x_k \ Q_{k+1} x_{k+1} \dots \ Q_n x_n \ \varphi \ (k > 1)$:
 - 1. Escolher um novo símbolo de função (digamos f) de k-1 argumentos,
 - 2. substituir todas as ocorrências livres de x_k em $Q_{k+1}x_{k+1}\dots Q_nx_n \varphi$ por $f(x_1,\dots,x_{k-1})$, e
 - 3. eliminar $\exists x_k$.

Nota

Sejam ψ_1, \ldots, ψ_n as "skolemizações" das fórmulas $\varphi_1, \ldots, \varphi_n$: $\{\psi_1, \ldots, \psi_n\}$ é consistente se e só se $\{\varphi_1, \ldots, \varphi_n\}$ é consistente.

Dedução com quantificadores

A dedução com quantificadores (a ideia)

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

A dedução com quantificadores (a ideia)

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

$$\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$$

Aqui:

- "gato, garra" são símbolos de predicado de um argumento,
- "Tom" é um símbolo de constante.

A dedução com quantificadores (a ideia)

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

$$\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$$

Preparar para a dedução

 $\forall x \ (\neg gato(x) \lor garra(x)), \ gato(Tom), \ \neg garra(Tom).$

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

$$\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$$

Preparar para a dedução

```
(\neg gato(x) \lor garra(x))^a, gato(Tom), \neg garra(Tom).
```

^aNão escrevemos os quantificadores (mas não os esquecemos)

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

$$\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$$

Preparar para a dedução

 $(\neg gato(x) \lor garra(x))$, gato(Tom), $\neg garra(Tom)$.

Deduzimos agora:

 $gato(Tom), (\neg gato(x) \lor garra(x))$

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

 $\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$

Preparar para a dedução

 $(\neg gato(x) \lor garra(x))$, gato(Tom), $\neg garra(Tom)$.

Deduzimos agora:

 $\mathsf{gato}(\mathsf{Tom}), \quad \neg \mathsf{gato}(\mathsf{Tom}) \vee \mathsf{garra}(\mathsf{Tom})^a,$

^aEscrever "Tom" em lugar de "x"

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

 $\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$

Preparar para a dedução

 $(\neg gato(x) \lor garra(x))$, gato(Tom), $\neg garra(Tom)$.

Deduzimos agora:

 $\mathsf{gato}(\mathsf{Tom}), \quad \neg \mathsf{gato}(\mathsf{Tom}) \vee \mathsf{garra}(\mathsf{Tom})^a, \quad \mathsf{garra}(\mathsf{Tom}),$

^aEscrever "Tom" em lugar de "x"

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

 $\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$

Preparar para a dedução

 $(\neg gato(x) \lor garra(x))$, gato(Tom), $\neg garra(Tom)$.

Deduzimos agora:

gato(Tom), \neg gato(Tom) \lor garra(Tom)^a, garra(Tom), \neg garra(Tom), .

^aEscrever "Tom" em lugar de "x"

Exemplo

Todos os gatos têm garras. Tom é um gato.

Tom tem garras.

Na linguagem de 1^a ordem

 $\forall x (gato(x) \Rightarrow garra(x)), gato(Tom) \models garra(Tom)$

Preparar para a dedução

 $(\neg gato(x) \lor garra(x))$, gato(Tom), $\neg garra(Tom)$.

Deduzimos agora:

gato(Tom), \neg gato(Tom) \lor garra(Tom)^a, garra(Tom), \neg garra(Tom), \diamondsuit .

^aEscrever "Tom" em lugar de "x"

Definição

Uma substituição é uma função

 $\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}.$

Definição

Uma substituição é uma função

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}.$$

Se $\{v \mid \varphi(v) \neq v\} = \{v_1, \dots, v_n\}$ é finito, podemos descrever a substituição σ indicando apenas as substituições "relevantes":

$$t_1/v_1,\ldots,t_n/v_n$$

sendo $t_i = \sigma(v_i)$.

Definição

Uma substituição é uma função

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}.$$

Se $\{v \mid \varphi(v) \neq v\} = \{v_1, \dots, v_n\}$ é finito, podemos descrever a substituição σ indicando apenas as substituições "relevantes":

$$t_1/v_1,\ldots,t_n/v_n$$

sendo $t_i = \sigma(v_i)$.

A substituição

$$\{\text{variáveis}\} \longrightarrow \{\text{termos}\}, \ v \longmapsto v$$

denotamos por ε .

Definição

Uma substituição é uma função

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}.$$

Se $\{v \mid \varphi(v) \neq v\} = \{v_1, \dots, v_n\}$ é finito, podemos descrever a substituição σ indicando apenas as substituições "relevantes":

$$t_1/v_1,\ldots,t_n/v_n$$

sendo $t_i = \sigma(v_i)$.

A substituição

$$\{\text{variáveis}\} \longrightarrow \{\text{termos}\}, \ v \longmapsto v$$

denotamos por ε . Ou seja, $\varepsilon = \emptyset$.

Estender substituições:

Cada substituição $\sigma\colon \{\text{variáveis}\} \to \{\text{termos}\}$ se pode estender a uma função

$$\widehat{\sigma} \colon \{\mathsf{termos}\} \longrightarrow \{\mathsf{termos}\}$$

utilizando recursão:

Estender substituições:

Cada substituição σ : {variáveis} \rightarrow {termos} se pode estender a uma função

$$\widehat{\sigma} \colon \{\mathsf{termos}\} \longrightarrow \{\mathsf{termos}\}$$

utilizando recursão:

• $\widehat{\sigma}(v) = \sigma(v)$, para cada variável v.

Estender substituições:

Cada substituição σ : {variáveis} \rightarrow {termos} se pode estender a uma função

$$\widehat{\sigma} \colon \{\mathsf{termos}\} \longrightarrow \{\mathsf{termos}\}$$

utilizando recursão:

- $\widehat{\sigma}(v) = \sigma(v)$, para cada variável v.
- $\hat{\sigma}(c) = c$, para cada símbolo de constante c.

Estender substituições:

Cada substituição σ : {variáveis} \rightarrow {termos} se pode estender a uma função

$$\widehat{\sigma} \colon \{\mathsf{termos}\} \longrightarrow \{\mathsf{termos}\}$$

utilizando recursão:

- $\widehat{\sigma}(v) = \sigma(v)$, para cada variável v.
- $\hat{\sigma}(c) = c$, para cada símbolo de constante c.
- $\widehat{\sigma}(f(t_1,\ldots,t_n)=f(\widehat{\sigma}(t_1),\ldots,\widehat{\sigma}(t_n))$, para cada símbolo de função f de n argumentos e termos t_1,\ldots,t_n .

Substituição em fórmulas

Estender ainda mais

Dada uma substituição σ : {variáveis} \to {termos} e uma fórmula E (sem quantificadores),

Εσ

denota a fórmula obtida aplicando $\widehat{\sigma}$ ao todos os termos em E.

Substituição em fórmulas

Estender ainda mais

Dada uma substituição σ : {variáveis} \to {termos} e uma fórmula E (sem quantificadores),

$$E\sigma$$

denota a fórmula obtida aplicando $\widehat{\sigma}$ ao todos os termos em E.

Para um conjunto ${\mathcal E}$ de fórmulas (sem quantificadores), definimos:

$$\mathcal{E}\sigma = \{ E\sigma \mid E \in \mathcal{E} \}.$$

Exemplos

• $\sigma = \{f(z)/x, A/y\}$:

Exemplos

•
$$\sigma = \{f(z)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) =$$

Exemplos

•
$$\sigma = \{f(z)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) = R(f(z),A).$$

Exemplos

•
$$\sigma = \{f(z)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) = R(f(z),A).$$

Exemplos

•
$$\sigma = \{f(z)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) = R(f(z),A).$$

$$\widehat{\sigma}(R(x,y)) =$$

Exemplos

•
$$\sigma = \{f(z)/x, A/y\}$$
:

$$\widehat{\sigma}(R(x,y)) = R(f(z),A).$$

$$\widehat{\sigma}(R(x,y)) = R(f(z,y),A).$$

A composição de substituições

Definição

Sejam

$$\sigma, \theta \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}$$

substituições. A composta de θ após σ é a função

$$\theta \vartriangle \sigma = \widehat{\theta} \circ \sigma.$$

A composição de substituições

Definição

Sejam

$$\sigma, \theta \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}$$

substituições. A composta de θ após σ é a função

$$\theta \vartriangle \sigma = \widehat{\theta} \circ \sigma.$$

Nota

Para cada expressão (= termo, fórmula) $E: E(\theta \triangle \sigma) = (E\sigma)\theta.$

Exemplo

Consideramos as substituições

$$\sigma = \{A/x, g(x)/y, y/z\}, \quad \theta = \{f(y)/x, z/y, x/u\}.$$

$$\theta \land \sigma =$$

Exemplo

Consideramos as substituições

$$\sigma = \{A/x, g(x)/y, y/z\}, \quad \theta = \{f(y)/x, z/y, x/u\}.$$

$$\theta \triangle \sigma = \{\widehat{\theta}(A)/x, \,\widehat{\theta}(g(x))/y, \,\widehat{\theta}(y)/z, \,$$

Exemplo

Consideramos as substituições

$$\sigma = \{A/x, g(x)/y, y/z\}, \quad \theta = \{f(y)/x, z/y, x/u\}.$$

$$\theta \triangle \sigma = \{\widehat{\theta}(A)/x, \, \widehat{\theta}(g(x))/y, \, \widehat{\theta}(y)/z, \, x/u\}$$

Exemplo

Consideramos as substituições

$$\sigma = \{A/x, g(x)/y, y/z\}, \quad \theta = \{f(y)/x, z/y, x/u\}.$$

$$\theta \triangle \sigma = \{\widehat{\theta}(A)/x, \, \widehat{\theta}(g(x))/y, \, \widehat{\theta}(y)/z, \, x/u\}$$
$$= \{A/x, \, g(f(y))/y, \, z/z, \, x/u\}$$

Exemplo

Consideramos as substituições

$$\sigma = \{A/x, g(x)/y, y/z\}, \quad \theta = \{f(y)/x, z/y, x/u\}.$$

$$\theta \triangle \sigma = \{\widehat{\theta}(A)/x, \, \widehat{\theta}(g(x))/y, \, \widehat{\theta}(y)/z, \, x/u\}$$

$$= \{A/x, \, g(f(y))/y, \, z/z, \, x/u\}$$

$$= \{A/x, \, g(f(y))/y, \, x/u\}.$$

Exemplo

Substituição	X	У

Exemplo

Substituição	X	у
$\{y/x\}$		

Exemplo

Substituição	X	у
{ <i>y</i> / <i>x</i> }	у	

Exemplo

Substituição	X	y
{ <i>y</i> / <i>x</i> }	y	у

Exemplo

Substituição	X	y
$\{y/x\}$	y	у
$\{x/y\}$		

Exemplo

Substituição	X	у
$\{y/x\}$	у	У
$\{x/y\}$	X	

Exemplo

Substituição	X	У
$\{y/x\}$	y	У
$\{x/y\}$	X	X

Exemplo

Substituição	X	у
$\{y/x\}$	У	У
$\{x/y\}$	X	X
$\{f(f(A))/x, f(f(A))/y\}$		

Exemplo

Substituição	X	У
$\{y/x\}$	У	у
$\{x/y\}$	X	Х
$\{f(f(A))/x, f(f(A))/y\}$	f(f(A))	

Exemplo

Substituição	Х	У
$\{y/x\}$	У	у
$\{x/y\}$	X	Х
$\{f(f(A))/x, f(f(A))/y\}$	f(f(A))	f(f(A))

Exemplo

Consideramos as expressões $E_1 = x$ e $E_2 = y$:

Substituição	Х	У
$\{y/x\}$	У	у
$\{x/y\}$	X	Х
f(f(A))/x, f(f(A))/y	f(f(A))	f(f(A))

Nota:

$$\{f(f(A))/x, f(f(A))/y\} = \{f(f(A))/y\} \triangle \{y/x\}$$

$$= \{f(f(A))/x\} \triangle \{x/y\}.$$

Unificação

Definição

 \bullet Seja ${\mathcal E}$ um conjunto de expressões (termos, fórmulas). Uma substituição

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}$$

diz-se unificador de \mathcal{E} quando, para todos as expressões $E_1, E_2 \in \mathcal{E}, E_1 \sigma = E_2 \sigma$.

Unificação

Definição

 \bullet Seja ${\mathcal E}$ um conjunto de expressões (termos, fórmulas). Uma substituição

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}$$

diz-se unificador de \mathcal{E} quando, para todos as expressões $E_1, E_2 \in \mathcal{E}, E_1\sigma = E_2\sigma$.

• Um conjunto $\mathcal E$ de expressões diz-se unificável quando existe um unificador de $\mathcal E$.

Unificação

Definição

ullet Seja ${\mathcal E}$ um conjunto de expressões (termos, fórmulas). Uma substituição

$$\sigma \colon \{ \mathsf{variáveis} \} \longrightarrow \{ \mathsf{termos} \}$$

diz-se unificador de \mathcal{E} quando, para todos as expressões $E_1, E_2 \in \mathcal{E}, E_1\sigma = E_2\sigma$.

- Um conjunto $\mathcal E$ de expressões diz-se unificável quando existe um unificador de $\mathcal E$.
- Seja $\mathcal E$ um conjunto de expressões. Um unificador σ de $\mathcal E$ diz-se unificador mais geral (abreviação: mgu) de $\mathcal E$ quando, para qualquer unificador θ de $\mathcal E$, existe uma substituição λ tal que

$$\theta = \lambda \triangle \sigma$$
.

(Ou seja, cada unificador de \mathcal{E} se pode descrever como "acrescentar substituições acima do unificador mais geral".)

1.
$$\mathcal{E} = \{Q(x), Q(A)\}$$

Exemplos

1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x, y), Q(z)\}$

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x, y), Q(z)\}$ não é unificável.

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x, y), Q(z)\}$ não é unificável.
- 3. $\mathcal{E} = \{f(x), f(f(z))\}$

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x, y), Q(z)\}$ não é unificável.
- 3. $\mathcal{E} = \{f(x), f(f(z))\}\$ é unificável com $\sigma = \{f(z)/x\}$.

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x, y), Q(z)\}$ não é unificável.
- 3. $\mathcal{E} = \{f(x), f(f(z))\}\$ é unificável com $\sigma = \{f(z)/x\}.$
- 4. $\mathcal{E} = \{ f(x), f(f(x)) \}$

- 1. $\mathcal{E} = \{Q(x), Q(A)\}\$ é unificável com $\sigma = \{A/x\}$.
- 2. $\mathcal{E} = \{R(x, y), Q(z)\}$ não é unificável.
- 3. $\mathcal{E} = \{f(x), f(f(z))\}\$ é unificável com $\sigma = \{f(z)/x\}.$
- 4. $\mathcal{E} = \{f(x), f(f(x))\}$ não é unificável.

O procedimento

Seja $\mathcal{E} = \{E_1, \dots, E_n\}$ um conjunto de expressões:

O procedimento

Seja $\mathcal{E} = \{E_1, \dots, E_n\}$ um conjunto de expressões:

1. Começar com k = 0, $\mathcal{E}_0 = \mathcal{E}$, $\sigma_0 = \varepsilon$.

O procedimento

Seja $\mathcal{E} = \{E_1, \dots, E_n\}$ um conjunto de expressões:

- 1. Começar com k = 0, $\mathcal{E}_0 = \mathcal{E}$, $\sigma_0 = \varepsilon$.
- 2. **Se** \mathcal{E}_k tem apenas uma expressão, **então** σ_k é unificador mais geral de \mathcal{E} e podemos PARAR.

O procedimento

Seja $\mathcal{E} = \{E_1, \dots, E_n\}$ um conjunto de expressões:

- 1. Começar com k = 0, $\mathcal{E}_0 = \mathcal{E}$, $\sigma_0 = \varepsilon$.
- 2. **Se** \mathcal{E}_k tem apenas uma expressão, **então** σ_k é unificador mais geral de \mathcal{E} e podemos PARAR.
- 3. Determinar o conjunto das diferenças de \mathcal{E}_k ; isto é, o conjunto $\mathcal{D}_k = \{D_1, \dots\}$ das *primeiras* sub-expressões (a contar da esquerda) onde as expressões de \mathcal{E}_k são diferentes.

O procedimento

Seja $\mathcal{E} = \{E_1, \dots, E_n\}$ um conjunto de expressões:

- 1. Começar com k = 0, $\mathcal{E}_0 = \mathcal{E}$, $\sigma_0 = \varepsilon$.
- 2. **Se** \mathcal{E}_k tem apenas uma expressão, **então** σ_k é unificador mais geral de \mathcal{E} e podemos PARAR.
- 3. Determinar o conjunto das diferenças de \mathcal{E}_k ; isto é, o conjunto $\mathcal{D}_k = \{D_1, \dots\}$ das *primeiras* sub-expressões (a contar da esquerda) onde as expressões de \mathcal{E}_k são diferentes.
- 4. **Se** existem uma variável v e um termo t em \mathcal{D} e v não ocorre em t, **então**
 - $\bullet \ \sigma_{k+1} = (t/v) \triangle \sigma_k,$
 - $\mathcal{E}_{k+1} = \mathcal{E}_k(t/v)$,
 - k := k + 1 e voltar ao ponto (2);

se não PARAR com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(y, z), P(x, h(y)), P(A, h(A))\}$:

Exemplo

Consideramos $\mathcal{E} = \{P(y, z), P(x, h(y)), P(A, h(A))\}:$

Aqui:

- x, y, z são variáveis.
- A é um símbolo de constante.
- *h* é um símbolo de função de um argumento.
- P é um símbolo de predicado de dois argumentos.

Exemplo

Consideramos $\mathcal{E} = \{P(y, z), P(x, h(y)), P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{y, x, A\}$. Portanto:

$$\sigma_1 = \{x/y\}, \quad \mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(x, z), P(x, h(x)), P(A, h(A))\}$$

Exemplo

Consideramos $\mathcal{E} = \{P(y, z), P(x, h(y)), P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{y, x, A\}$. Portanto:

$$\sigma_1 = \{x/y\}, \quad \mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(x, z), P(x, h(x)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{x, A\}$. Portanto:

$$\sigma_2 = \{A/x\} \triangle \sigma_1 = \{A/x, A/y\},\$$
 $\mathcal{E}_2 = \mathcal{E}_1 \sigma_2 = \{P(A, z), P(A, h(A)), P(A, h(A))\}$

Exemplo

Consideramos $\mathcal{E} = \{P(y, z), P(x, h(y)), P(A, h(A))\}:$

0.
$$\mathcal{D}_0 = \{y, x, A\}$$
. Portanto:

$$\sigma_1 = \{x/y\}, \quad \mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(x, z), P(x, h(x)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{x, A\}$. Portanto:

$$\sigma_2 = \{A/x\} \triangle \sigma_1 = \{A/x, A/y\},
\mathcal{E}_2 = \mathcal{E}_1 \sigma_2 = \{P(A, z), P(A, h(A)), P(A, h(A))\}$$

2. $\mathcal{D}_2 = \{z, h(A)\}$. Portanto:

$$\sigma_3 = \{h(A)/z\} \triangle \sigma_2 = \{h(A)/z, A/x, A/y\},\$$

$$\mathcal{E}_3 = \mathcal{E}_2 \sigma_3 = \{P(A, h(A)), P(A, h(A)), P(A, h(A))\}$$

Exemplo

Consideramos $\mathcal{E} = \{ P(y, z), P(x, h(y)), P(A, h(A)) \}$:

0.
$$\mathcal{D}_0 = \{y, x, A\}$$
. Portanto:

$$\sigma_1 = \{x/y\}, \quad \mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(x,z), P(x,h(x)), P(A,h(A))\}$$

1. $\mathcal{D}_1 = \{x, A\}$. Portanto:

$$\sigma_2 = \{A/x\} \triangle \sigma_1 = \{A/x, A/y\},\$$
 $\mathcal{E}_2 = \mathcal{E}_1 \sigma_2 = \{P(A, z), P(A, h(A)), P(A, h(A))\}$

2. $\mathcal{D}_2 = \{z, h(A)\}$. Portanto:

$$\sigma_3 = \{h(A)/z\} \triangle \sigma_2 = \{h(A)/z, A/x, A/y\},\$$

 $\mathcal{E}_3 = \mathcal{E}_2 \sigma_3 = \{P(A, h(A)), P(A, h(A)), P(A, h(A))\}$

3. $\mathcal{E}_3 = \{P(A, h(A))\}.$ Logo: $mgu = \{A/x, A/y, h(A)/z\}.$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}$:

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}$:

0. $\mathcal{D}_0 = \{h(x), x, A\}$. Portanto:

$$\sigma_1 = \{A/x\},\$$
 $\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}$:

0.
$$\mathcal{D}_0 = \{h(x), x, A\}$$
. Portanto:

$$\sigma_1 = \{A/x\},\$$
 $\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$

1. $\mathcal{D}_1 = \{h(A), A\}.$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}$:

0. $\mathcal{D}_0 = \{h(x), x, A\}$. Portanto:

$$\sigma_1 = \{A/x\},$$

$$\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{h(A), A\}$. Como nenhuma variável pertence à \mathcal{D}_1 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{h(x), x, A\}$. Portanto:

$$\sigma_1 = \{A/x\},$$

$$\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{h(A), A\}$. Como nenhuma variável pertence à \mathcal{D}_1 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(x, h(A))\}:$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{h(x), x, A\}$. Portanto:

$$\sigma_1 = \{A/x\},$$

$$\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{h(A), A\}$. Como nenhuma variável pertence à \mathcal{D}_1 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(x, h(A))\}:$

0.
$$\mathcal{D}_0 = \{h(x), x, x\} = \{h(x), x\}.$$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{h(x), x, A\}$. Portanto:

$$\sigma_1 = \{A/x\},$$

$$\mathcal{E}_1 = \mathcal{E}\sigma_1 = \{P(h(A), z), P(A, h(y)), P(A, h(A))\}$$

1. $\mathcal{D}_1 = \{h(A), A\}$. Como nenhuma variável pertence à \mathcal{D}_1 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), P(x, h(A))\}:$

0. $\mathcal{D}_0 = \{h(x), x, x\} = \{h(x), x\}$. Como x (a única variável em \mathcal{D}_0) ocorre em h(x) (o único termo em \mathcal{D}_0 diferente do x), terminamos com a mensagem "Não é unificável".

Mais variações

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}$:

Mais variações

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}$:

$$0. \ \mathcal{D}_0=\{\neg\}.$$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{\neg\}$. Como nenhuma variável pertence à \mathcal{D}_0 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{\neg\}$. Como nenhuma variável pertence à \mathcal{D}_0 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), Q(A, h(A))\}$:

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{\neg\}$. Como nenhuma variável pertence à \mathcal{D}_0 , terminamos com a mensagem "Não é unificável".

Exemplo

Considerations $\mathcal{E} = \{P(h(x), z), P(x, h(y)), Q(A, h(A))\}:$

0. $\mathcal{D}_0 = \{P, Q\}.$

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), \neg P(A, h(A))\}:$

0. $\mathcal{D}_0 = \{\neg\}$. Como nenhuma variável pertence à \mathcal{D}_0 , terminamos com a mensagem "Não é unificável".

Exemplo

Consideramos $\mathcal{E} = \{P(h(x), z), P(x, h(y)), Q(A, h(A))\}$:

0. $\mathcal{D}_0 = \{P, Q\}$. Como nenhuma variável pertence à \mathcal{D}_0 , terminamos com a mensagem "Não é unificável".

Utilizamos as regras

• Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathrm{mgu}(\psi, \varphi)} \, \mathrm{BR}$

Utilizamos as regras

• Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathrm{mgu}(\psi, \varphi)} \, \mathrm{BR}$

• Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

Utilizamos as regras

• Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

Recordamos

Para justificar que

$$\varphi_1,\ldots,\varphi_n\models\psi$$

(ψ é consequência de $\varphi_1,\ldots,\varphi_n$), mostramos que

$$\{\varphi_1,\ldots,\varphi_n,\neg\psi\}$$

é inconsistente.

Utilizamos as regras

• Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathrm{mgu}(\psi, \varphi)} \, \mathrm{BR}$

• Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

O procedimento

Utilizamos as regras

- Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathsf{mgu}(\psi, \varphi)} \, \mathsf{BR}$
- Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

O procedimento

Para "refutar" um conjunto $\{\varphi_1,\varphi_2,\dots\}$ de fórmulas, aplicamos os seguintes passos:

1. transformar todas as fórmulas na forma normal de Skolem;

Utilizamos as regras

- Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathsf{mgu}(\psi, \varphi)} \, \mathsf{BR}$
- Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

O procedimento

- 1. transformar todas as fórmulas na forma normal de Skolem;
- 2. "ignorar" os quantificadores ∀ (já que não há outros e todas as variáveis são quantificadas);

Utilizamos as regras

- Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \, \mathrm{mgu}(\psi, \varphi)} \, \mathrm{BR}$
- Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

O procedimento

- 1. transformar todas as fórmulas na forma normal de Skolem;
- 2. "ignorar" os quantificadores ∀ (já que não há outros e todas as variáveis são quantificadas);
- 3. renomear as variáveis em cada cláusula tal que são distintas;

Utilizamos as regras

• Resolvente binária: $\frac{\neg \psi \lor \theta \quad \varphi \lor \gamma}{(\theta \lor \gamma) \operatorname{mgu}(\psi, \varphi)} \operatorname{BR}$

• Fator: $\frac{\varphi \lor \psi \lor \theta}{(\varphi \lor \theta) \, \mathsf{mgu}(\varphi, \psi)} \, \mathsf{Fator}$

O procedimento

- 1. transformar todas as fórmulas na forma normal de Skolem;
- 2. "ignorar" os quantificadores ∀ (já que não há outros e todas as variáveis são quantificadas);
- 3. renomear as variáveis em cada cláusula tal que são distintas;
- 4. sucessivamente aplicar as duas regras acima, até se obtém uma contradição (se for possível).

Exercício 19

Consideramos:

F1:
$$\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$$

F2: $\exists x \ G(x)$.

F3:
$$\exists x \forall y (P(y) \Rightarrow L(x, y))$$
.

Temos de verificar: $F1, F2 \models F3$.

Aqui:

- *G* e *P* são símbolos de predicado de um argumento e *L* é um símbolo de predicado de dois argumentos.
- x, y são variáveis.

Exercício 19

Consideramos:

F1: $\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$

F2: $\exists x \ G(x)$.

F3: $\exists x \forall y (P(y) \Rightarrow L(x,y))$. Negação: $\forall x \exists y P(y) \land \neg L(x,y)$).

Temos de verificar: $F1, F2, \neg F3 \models \mathbf{0}$.

Exercício 19

Consideramos:

F1: $\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$

F2: $\exists x G(x)$.

F3: $\exists x \forall y (P(y) \Rightarrow L(x,y))$. Negação: $\forall x \exists y P(y) \land \neg L(x,y)$).

Temos de verificar: $F1, F2, \neg F3 \models \mathbf{0}$.

Obter a forma normal ("skolemização")

Exercício 19

Consideramos:

- F1: $\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$
- F2: $\exists x \ G(x)$.
- F3: $\exists x \forall y (P(y) \Rightarrow L(x,y))$. Negação: $\forall x \exists y P(y) \land \neg L(x,y)$).

Temos de verificar: $F1, F2, \neg F3 \models \mathbf{0}$.

Obter a forma normal ("skolemização")

1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$

Exercício 19

Consideramos:

- F1: $\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$
- F2: $\exists x \ G(x)$.
- F3: $\exists x \forall y (P(y) \Rightarrow L(x, y))$. Negação: $\forall x \exists y P(y) \land \neg L(x, y)$).

Temos de verificar: $F1, F2, \neg F3 \models \mathbf{0}$.

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

Exercício 19

Consideramos:

- F1: $\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$
- F2: $\exists x \ G(x)$.
- F3: $\exists x \forall y (P(y) \Rightarrow L(x,y))$. Negação: $\forall x \exists y P(y) \land \neg L(x,y)$).

Temos de verificar: $F1, F2, \neg F3 \models \mathbf{0}$.

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x, y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

3. $\neg F3 \rightsquigarrow \forall x (P(f(x)) \land \neg L(x, f(x)))$

Aqui f é um símbolo de função de um argumento.

Exercício 19

Consideramos:

- F1: $\forall x (G(x) \Rightarrow \forall y (P(y) \Rightarrow L(x, y))).$
- F2: $\exists x G(x)$.
- F3: $\exists x \forall y (P(y) \Rightarrow L(x,y))$. Negação: $\forall x \exists y P(y) \land \neg L(x,y)$).

Temos de verificar: $F1, F2, \neg F3 \models \mathbf{0}$.

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

3. $\neg F3 \rightsquigarrow \forall x (P(f(x)) \land \neg L(x, f(x)))$ $\equiv \forall x P(f(x)) \land \forall x \neg L(x, f(x)).$

Aqui f é um símbolo de função de um argumento.

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

3.
$$\neg F3 \rightsquigarrow \forall x (P(f(x)) \land \neg L(x, f(x)))$$

$$\equiv (\forall x P(f(x))) \land (\forall x \neg L(x, f(x))).$$

Aqui f é um símbolo de função de um argumento.

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

3.
$$\neg F3 \rightsquigarrow \forall x (P(f(x)) \land \neg L(x, f(x)))$$

 $\equiv (\forall x P(f(x))) \land (\forall x \neg L(x, f(x))).$

Aqui f é um símbolo de função de um argumento.

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c),$$

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

3.
$$\neg F3 \rightsquigarrow \forall x (P(f(x)) \land \neg L(x, f(x)))$$

 $\equiv (\forall x P(f(x))) \land (\forall x \neg L(x, f(x))).$

Aqui f é um símbolo de função de um argumento.

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)),$$

Obter a forma normal ("skolemização")

- 1. F1 $\equiv \forall x \forall y (\neg G(x) \lor \neg P(y) \lor L(x,y)).$
- 2. F2 \rightsquigarrow G(c).

Aqui c é um símbolo de constante.

3.
$$\neg F3 \rightsquigarrow \forall x (P(f(x)) \land \neg L(x, f(x)))$$

 $\equiv (\forall x P(f(x))) \land (\forall x \neg L(x, f(x))).$

Aqui f é um símbolo de função de um argumento.

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x, y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x, y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

A Dedução

1. *G*(*c*)

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. *G*(*c*)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. *G*(*c*)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x, y)$, $mgu(G(c), G(x)) = \{c/x\}$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. *G*(*c*)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c, y)$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. *G*(*c*)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c, y)$
- 4. $P(f(x_1))$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. G(c)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c,y)$
- 4. $P(f(x_1))$, $mgu(P(y), P(f(x_1)) = \{f(x_1)/y\}$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. *G*(*c*)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c,y)$
- 4. $P(f(x_1))$, $mgu(P(y), P(f(x_1)) = \{f(x_1)/y\}$
- 5. $L(c, f(x_1))$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x,y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. *G*(*c*)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c,y)$
- 4. $P(f(x_1))$, $mgu(P(y), P(f(x_1)) = \{f(x_1)/y\}$
- 5. $L(c, f(x_1))$
- 6. $\neg L(x_2, f(x_2))$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x, y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. G(c)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c, y)$
- 4. $P(f(x_1))$, $mgu(P(y), P(f(x_1)) = \{f(x_1)/y\}$
- 5. $L(c, f(x_1))$
- 6. $\neg L(x_2, f(x_2))$, $mgu(L(c, f(x_1)), L(x_2, f(x_2))) = \{c/x_2, c/x_1\}$

Preparar as fórmulas

Portanto, temos as seguintes fórmulas:

$$\neg G(x) \lor \neg P(y) \lor L(x, y), G(c), P(f(x_1)), \neg L(x_2, f(x_2)).$$

- 1. G(c)
- 2. $\neg G(x) \lor \neg P(y) \lor L(x,y)$, $mgu(G(c), G(x)) = \{c/x\}$
- 3. $\neg P(y) \lor L(c, y)$
- 4. $P(f(x_1))$, $mgu(P(y), P(f(x_1)) = \{f(x_1)/y\}$
- 5. $L(c, f(x_1))$
- 6. $\neg L(x_2, f(x_2))$, $mgu(L(c, f(x_1)), L(x_2, f(x_2))) = \{c/x_2, c/x_1\}$
- **7**. ♦.

Mais um exemplo

Exemplo

$$\forall x (P(f(x)) \Rightarrow Q(a)), \forall x P(x) \models Q(a).$$

Aqui:

- x é uma variável.
- a é um símbolo de constante.
- f é um símbolo de função de um argumento.
- P e Q são símbolos de relação de um argumento.

Exemplo

$$\forall x (P(f(x)) \Rightarrow Q(a)), \forall x P(x) \models Q(a).$$

Consideramos as fórmulas

$$\neg P(f(x)) \lor Q(a), P(x), \neg Q(a).$$

Exemplo

$$\forall x (P(f(x)) \Rightarrow Q(a)), \forall x P(x) \models Q(a).$$

Consideramos as fórmulas

$$\neg P(f(x)) \lor Q(a), P(x), \neg Q(a).$$

- 1. $\neg P(f(x)) \lor Q(a)$
- 2. P(x)

Exemplo

$$\forall x (P(f(x)) \Rightarrow Q(a)), \forall x P(x) \models Q(a).$$

Consideramos as fórmulas

$$\neg P(f(x)) \lor Q(a), P(x), \neg Q(a).$$

- 1. $\neg P(f(x)) \lor Q(a)$
- 2. P(x), P(f(x)) e P(x) não são unificáveis!!?

Exemplo

$$\forall x (P(f(x)) \Rightarrow Q(a)), \forall x P(x) \models Q(a).$$

Consideramos as fórmulas

$$\neg P(f(x)) \lor Q(a), P(x), \neg Q(a).$$

A dedução:

- 1. $\neg P(f(x)) \lor Q(a)$
- 2. P(x), P(f(x)) e P(x) não são unificáveis!!?

Esquecemos renomear as variáveis: $P(x) \rightsquigarrow P(y) \dots$

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata *Mondschein*.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Lewis Caroll. Symbolic Logic. 1896.

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata Mondschein.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Na linguagem de 1^a ordem (português → formulês)

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata Mondschein.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Na linguagem de 1ª ordem (português → formulês)

• $\neg \exists x (B(x) \land \neg S(x)).$

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata Mondschein.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Na linguagem de 1^a ordem (português \rightsquigarrow formulês)

- $\neg \exists x (B(x) \land \neg S(x)).$
- $\forall x (P(x) \Rightarrow I(x)).$

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata Mondschein.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Na linguagem de 1^a ordem (português \rightsquigarrow formulês)

- $\neg \exists x (B(x) \land \neg S(x)).$
- $\forall x (P(x) \Rightarrow I(x)).$
- $\neg \exists x (I(x) \land S(x)).$

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata Mondschein.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven.

Na linguagem de 1^a ordem (português → formulês)

- $\neg \exists x (B(x) \land \neg S(x)).$
- $\forall x (P(x) \Rightarrow I(x)).$
- $\neg \exists x (I(x) \land S(x)).$
- $\forall x (P(x) \Rightarrow \neg B(x)).$

Exemplo (de Lewis Caroll)

- Ninguém que realmente aprecia o Beethoven falha de manter o silêncio durante a sonata *Mondschein*.
- Os porquinhos-da-índia são completamente ignorantes no que diz respeito à música.
- Ninguém que é completamente ignorante no que diz respeito à música consegue manter silêncio durante a sonata Mondschein.
- Portanto, os porquinhos-da-índia nunca realmente apreciam o Beethoven

Na linguagem de 1ª ordem (português → formulês)

- $\neg \exists x (B(x) \land \neg S(x)).$
- $\forall x (P(x) \Rightarrow I(x)).$
- $\neg \exists x (I(x) \land S(x)).$
- $\forall x (P(x) \Rightarrow \neg B(x))$. A negação: $\exists x (P(x) \land B(x))$.

Obter a forma normal ("skolemização")

• $\neg \exists x (B(x) \land \neg S(x))$

Obter a forma normal ("skolemização")

• $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x))$

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x))$

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x))$

- $\bullet \neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

 $\neg B(x) \lor S(x)$,

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

 $\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y),$

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z),$$

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

Obter a forma normal ("skolemização")

- $\bullet \neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

 $\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$

A dedução

P(c),

Obter a forma normal ("skolemização")

- $\bullet \neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(y) \lor I(y)$,

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

A dedução

$$P(c)$$
, $\neg P(c) \lor I(c)$, ^a

amgu de P(c) e P(y): c/y.

Obter a forma normal ("skolemização")

- $\bullet \neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$,

Obter a forma normal ("skolemização")

- $\bullet \neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(z) \lor \neg S(z)$

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

A dedução

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, ^a

amgu de I(c) e I(z): c/z.

Obter a forma normal ("skolemização")

- $\bullet \neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, $\neg S(c)$,

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, $\neg S(c)$, $\neg B(x) \lor S(x)$

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, $\neg S(c)$, $\neg B(c) \lor S(c)$

^amgu de
$$S(c)$$
 e $S(x)$: c/x .

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\bullet \ \forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\bullet \neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, $\neg S(c)$, $\neg B(c) \lor S(c)$
 $\neg B(c)$,

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\bullet \ \forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

$$\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$$

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, $\neg S(c)$, $\neg B(c) \lor S(c)$
 $\neg B(c)$, $B(c)$,

Obter a forma normal ("skolemização")

- $\neg \exists x (B(x) \land \neg S(x)) \equiv \forall x (\neg B(x) \lor S(x)).$
- $\bullet \ \forall x (P(x) \Rightarrow I(x)) \equiv \forall x (\neg P(x) \lor I(x)).$
- $\neg \exists x (I(x) \land S(x)) \equiv \forall x (\neg I(x) \lor \neg S(x)).$
- $\exists x (P(x) \land B(x)) \rightsquigarrow P(c) \land B(c)$.

Consideramos as seguintes fórmulas

 $\neg B(x) \lor S(x), \quad \neg P(y) \lor I(y), \quad \neg I(z) \lor \neg S(z), \quad P(c), \quad B(c).$

A dedução

$$P(c)$$
, $\neg P(c) \lor I(c)$, $I(c)$, $\neg I(c) \lor \neg S(c)$, $\neg S(c)$, $\neg B(c) \lor S(c)$

 $\neg B(c)$, B(c), \Diamond .

Observações finais

O método de resolução baseia-se no trabalho

John Alan Robinson. «A machine-oriented logic based on the resolution principle». Em: *Journal of the ACM* **12**.(1) (1965), pp. 23–41.

Este método é (correto e) completo na lógica de 1^a ordem no seguinte sentido:

Se

$$\varphi_1,\ldots,\varphi_n\models\psi,$$

então existe uma dedução de uma contradição a partir de $\varphi_1, \ldots, \varphi_n, \neg \psi$.

Mais informações

Sobre a programação (em lógica):

Harold Abelson e Gerald Jay Sussman. Structure and interpretation of computer programs. 2^a ed. MIT Press, 1996. URL: mitpress.mit.edu/sicp/full-text/book/book.html.

Em particular: 4.4. "Logical Programming".

Vídeos em: groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/