Module Guide for Software Engineering

Team 8 – Rhythm Rangers

Ansel Chen Muhammad Jawad Mohamad-Hassan Bahsoun Matthew Baleanu Ahmed Al-Hayali

January 16, 2025

1 Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

2 Reference Material

This section records information for easy reference.

2.1 Abbreviations and Acronyms

symbol	description
AC	Anticipated Change
DAG	Directed Acyclic Graph
M	Module
MG	Module Guide
OS	Operating System
R	Requirement
SC	Scientific Computing
SRS	Software Requirements Specification
Software Engineering	Explanation of program name
UC	Unlikely Change
[etc. —SS]	[—SS]

Contents

1	Rev	vision I	History	i
2	Ref 2.1		Material viations and Acronyms	ii ii
3	Inti	roducti	on	1
4	Ant	icipate	ed and Unlikely Changes	2
	4.1 4.2		pated Changes	2
5	Mo	dule H	ierarchy	2
6	Cor	nectio	n Between Requirements and Design	3
7	Mo	dule D	ecomposition	3
	7.1	Hardw	vare Hiding Modules (M1)	4
	7.2		iour-Hiding Module	4
		7.2.1	Master User Interface Input Module (M??)	4
		7.2.2	First-Match Text Field Input Module (M??)	4
		7.2.3	URL Input Module (M??)	4
		7.2.4	Audio File Input Module (M??)	5
		7.2.5	Spotify Query Search & Select (M??)	5
		7.2.6	Tempo (BPM) Feature Extraction Module (M??)	5
		7.2.7	Key and Scale Feature Extraction Module (M??)	5
		7.2.8	Instrument Type Feature Extraction Module (M??)	6
		7.2.9	Vocal Gender Feature Extraction Module (M??)	6
		7.2.10	Dynamic Range Feature Extraction Module (M??)	6
		7.2.11	Instrumentalness Feature Extraction Module (M??)	6
		7.2.12	Contour Feature Extraction Module (M??)	7
			Mood Feature Extraction Module (M??)	7
			Recommendation Module (M??)	7
			Program Results Interface Module (M??)	7
	7.3		re Decision Module	8
		7.3.1	Database (M??)	8
		7.3.2	Pre-Processing Module (M??)	8
		7.3.3	Spotify API (M??)	8
		7.3.4	Deezer API (M??)	8
		7.3.5	Genre Fetcher (M??)	9
8	Tra	ceabilit	ty Matrix	9

9 Use Hierarchy Between Modules	10
10 User Interfaces	11
11 Design of Communication Protocols	11
12 Timeline	11
List of Tables	
1 Module Hierarchy	9
List of Figures	
1 Use hierarchy among modules	10

3 Introduction

Decomposing a system into modules is a commonly accepted approach to developing software. A module is a work assignment for a programmer or programming team (Parnas et al., 1984). We advocate a decomposition based on the principle of information hiding (Parnas, 1972). This principle supports design for change, because the "secrets" that each module hides represent likely future changes. Design for change is valuable in SC, where modifications are frequent, especially during initial development as the solution space is explored.

Our design follows the rules layed out by Parnas et al. (1984), as follows:

- System details that are likely to change independently should be the secrets of separate modules.
- Each data structure is implemented in only one module.
- Any other program that requires information stored in a module's data structures must obtain it by calling access programs belonging to that module.

After completing the first stage of the design, the Software Requirements Specification (SRS), the Module Guide (MG) is developed (Parnas et al., 1984). The MG specifies the modular structure of the system and is intended to allow both designers and maintainers to easily identify the parts of the software. The potential readers of this document are as follows:

- New project members: This document can be a guide for a new project member to easily understand the overall structure and quickly find the relevant modules they are searching for.
- Maintainers: The hierarchical structure of the module guide improves the maintainers' understanding when they need to make changes to the system. It is important for a maintainer to update the relevant sections of the document after changes have been made.
- Designers: Once the module guide has been written, it can be used to check for consistency, feasibility, and flexibility. Designers can verify the system in various ways, such as consistency among modules, feasibility of the decomposition, and flexibility of the design.

The rest of the document is organized as follows. Section 4 lists the anticipated and unlikely changes of the software requirements. Section 5 summarizes the module decomposition that was constructed according to the likely changes. Section 6 specifies the connections between the software requirements and the modules. Section 7 gives a detailed description of the modules. Section 8 includes two traceability matrices. One checks the completeness of the design against the requirements provided in the SRS. The other shows the relation between anticipated changes and the modules. Section 9 describes the use relation between modules.

4 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of the change, the possible changes are classified into two categories. Anticipated changes are listed in Section 4.1, and unlikely changes are listed in Section 4.2.

4.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden inside the modules. Ideally, changing one of the anticipated changes will only require changing the one module that hides the associated decision. The approach adapted here is called design for change.

AC1: The specific hardware on which the software is running.

AC2: The format of the initial input data.

...

[Anticipated changes relate to changes that would be made in requirements, design or implementation choices. They are not related to changes that are made at run-time, like the values of parameters. —SS]

4.2 Unlikely Changes

The module design should be as general as possible. However, a general system is more complex. Sometimes this complexity is not necessary. Fixing some design decisions at the system architecture stage can simplify the software design. If these decision should later need to be changed, then many parts of the design will potentially need to be modified. Hence, it is not intended that these decisions will be changed.

UC1: Input/Output devices (Input: File and/or Keyboard, Output: File, Memory, and/or Screen).

...

5 Module Hierarchy

This section provides an overview of the module design. Modules are summarized in a hierarchy decomposed by secrets in Table 1. The modules listed below, which are leaves in the hierarchy tree, are the modules that will actually be implemented.

M1: Hardware-Hiding Module

. . .

Level 1	Level 2
Hardware-Hiding Module	
	?
	?
	?
Behaviour-Hiding Module	?
	?
	?
	?
	?
	?
Software Decision Module	?
	?

Table 1: Module Hierarchy

6 Connection Between Requirements and Design

The design of the system is intended to satisfy the requirements developed in the SRS. In this stage, the system is decomposed into modules. The connection between requirements and modules is listed in Table 2.

[The intention of this section is to document decisions that are made "between" the requirements and the design. To satisfy some requirements, design decisions need to be made. Rather than make these decisions implicit, they are explicitly recorded here. For instance, if a program has security requirements, a specific design decision may be made to satisfy those requirements with a password. —SS

7 Module Decomposition

Modules are decomposed according to the principle of "information hiding" proposed by Parnas et al. (1984). The Secrets field in a module decomposition is a brief statement of the design decision hidden by the module. The Services field specifies what the module will do without documenting how to do it. For each module, a suggestion for the implementing software is given under the Implemented By title. If the entry is OS, this means that the module is provided by the operating system or by standard programming language libraries. Software Engineering means the module will be implemented by the Software Engineering software.

Only the leaf modules in the hierarchy have to be implemented. If a dash (-) is shown,

this means that the module is not a leaf and will not have to be implemented.

7.1 Hardware Hiding Modules (M1)

N/A

7.2 Behaviour-Hiding Module

Secrets: The contents of the required behaviours.

Services: Includes programs that provide externally visible behaviour of the system as specified in the software requirements specification (SRS) documents. This module serves as a communication layer between the hardware-hiding module and the software decision module. The programs in this module will need to change if there are changes in the SRS.

Implemented By: -

7.2.1 Master User Interface Input Module (M??)

Secrets: The format and structure of the input data.

Services: Handles user interaction, calling of the sub-input modules.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.2 First-Match Text Field Input Module (M??)

Secrets: The format and structure of the input data.

Services: Takes in multiple song requests from the user.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.3 URL Input Module (M??)

Secrets: The format and structure of the input data.

Services: Takes in URL input from User

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.4 Audio File Input Module (M??)

Secrets: The format and structure of the input data.

Services: Takes in an audiofile and grabs metadata from the user.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.5 Spotify Query Search & Select (M??)

Secrets: The format and structure of the input data.

Services: Takes in a user input, query searches it and then allows a user to select one of the query results.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.6 Tempo (BPM) Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Extracts the Tempo (BPM) from the audio signal.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.7 Key and Scale Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.8 Instrument Type Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.9 Vocal Gender Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.10 Dynamic Range Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.11 Instrumentalness Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.12 Contour Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.13 Mood Feature Extraction Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.14 Recommendation Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.2.15 Program Results Interface Module (M??)

Secrets: The format and structure of the input data.

Services: Converts the input data into the data structure used by the input parameters module.

Implemented By: [Your Program Name Here]

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.3 Software Decision Module

Secrets: The design decision based on mathematical theorems, physical facts, or programming considerations. The secrets of this module are *not* described in the SRS.

Services: Includes data structure and algorithms used in the system that do not provide direct interaction with the user.

Implemented By: -

7.3.1 Database (M??)

Secrets: The format and structure of the input data.

Services: Provides storage for generated features for pseudo-caching?

Implemented By: Database Service Name

Type of Module: [Record, Library, Abstract Object, or Abstract Data Type] [Information to include for leaf modules in the decomposition by secrets tree.]

7.3.2 Pre-Processing Module (M??)

Secrets: The format and structure of the input data.

Services: Converts audio files and references into audio data for processing by featurizers

Implemented By: Librosa Signal Processing Library

Type of Module: Library

7.3.3 Spotify API (M??)

Secrets: Spotify API methods, credentials and metadata.

Services: Song Metadata

Implemented By: Spotify

Type of Module: API Library

7.3.4 Deezer API (M??)

Secrets: Deezer API methods, credentials and metadata.

Services: Converts the input data into the data structure used by the input parameters

module.

Implemented By: Deezer

Type of Module: API Library

7.3.5 Genre Fetcher (M??)

Secrets: Genre label for a song

Services: Fetches a genre label for a required song

Implemented By: Undecided

Type of Module: Undecided (Deezer API call? User Self-label?)

8 Traceability Matrix

This section shows two traceability matrices: between the modules and the requirements and between the modules and the anticipated changes.

Req.	Modules
R1	M1, M??, M??, M??
R2	M??, M??
R3	M??
R4	M??, M??
R5	M??, M??, M??, M??, M??
R6	M??, M??, M??, M??, M??
R7	M??, M??, M??, M??
R8	M??, M??, M??, M??
R9	M??
R10	M??, M??, M??
R11	M??, M??, M??, M??

Table 2: Trace Between Requirements and Modules

AC	Modules	
AC1	M1	
AC2	M??	
AC??	M??	

Table 3: Trace Between Anticipated Changes and Modules

9 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. Parnas (1978) said of two programs A and B that A uses B if correct execution of B may be necessary for A to complete the task described in its specification. That is, A uses B if there exist situations in which the correct functioning of A depends upon the availability of a correct implementation of B. Figure 1 illustrates the use relation between the modules. It can be seen that the graph is a directed acyclic graph (DAG). Each level of the hierarchy offers a testable and usable subset of the system, and modules in the higher level of the hierarchy are essentially simpler because they use modules from the lower levels.

[The uses relation is not a data flow diagram. In the code there will often be an import statement in module A when it directly uses module B. Module B provides the services that module A needs. The code for module A needs to be able to see these services (hence the import statement). Since the uses relation is transitive, there is a use relation without an import, but the arrows in the diagram typically correspond to the presence of import statement. —SS]

[If module A uses module B, the arrow is directed from A to B.—SS]

Figure 1: Use hierarchy among modules

10 User Interfaces

[Design of user interface for software and hardware. Attach an appendix if needed. Drawings, Sketches, Figma —SS]

11 Design of Communication Protocols

[If appropriate —SS]

12 Timeline

[Schedule of tasks and who is responsible —SS]
[You can point to GitHub if this information is included there —SS]

References

- David L. Parnas. On the criteria to be used in decomposing systems into modules. *Comm. ACM*, 15(2):1053–1058, December 1972.
- David L. Parnas. Designing software for ease of extension and contraction. In *ICSE '78: Proceedings of the 3rd international conference on Software engineering*, pages 264–277, Piscataway, NJ, USA, 1978. IEEE Press. ISBN none.
- D.L. Parnas, P.C. Clement, and D. M. Weiss. The modular structure of complex systems. In *International Conference on Software Engineering*, pages 408–419, 1984.