2012-2013 第一学期概率论期末考试试卷

一. 判断选择题 (每题 3 分,答题请写在试卷上):							
1. 设 A,B,C 是三个随机事件,则在下列不正确的是							
$(A)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$							
$(B)(A \cup B) \cap C = A \cup (B \cap C)$							
$(C)A \cap (B \cap C) = (A \cap B) \cap C$							
$(D)A \cap (\overline{B \cap C}) = (A \cap \overline{B}) \cup (A \cap \overline{C})$							
2. 设事件 <i>A</i> 与自身独立,则 <i>A</i> 的概率为							
(A)0	(B)1	(C)0 或 1	(D)1/2				
3. 设 $f(x)$ 和 $g(x)$ 为两个概率密度函数,则下述还是密度函数的是							
(A)f(x)/g(x)		(B)f(x)-g(x)	(B)f(x)-g(x)				
(C)(f(x) + g(x))/2		(D)(1+f(x))(1-f(x))	(D) $(1 + f(x))(1 - g(x))$				
4. 随机变量 X 和 Y 独立, Y 和 Z 独立, 且都有期望方差, 则必有							
(A)X 和 Z	独立	(B)X 和 Z 不相	送				
(C)X 和 Z 相关		(D)Cov(X, Y)	(D)Cov(X, Y) = 0				
5. 设 $0 < P(B) < 1$,则 $P(A B) = P(A \overline{B})$ 成立的充分必要条件是							
(A)P(AB) = P(A)P(B)		(B)P(A+B) =	(B)P(A+B) = P(A) + P(B)				
(C)P(A) =	P(B)	$(D)P(A) = P(\bar{B})$	(\overline{S})				
6. 设 X ₁ ,	X_n 为来自均匀	J 分布 $U(-\theta,\theta)$ 的一组	样本,θ 为未知参数,则下				
总量为统计量的	是						
$(A)\bar{X}-\theta$		$(B) \max_{1 \le i \le n} (X_i - \theta)$	$-\min_{1 \le i \le n} (X_i - \theta)$				
$(C)\max_{1\leq i\leq n}(X_i)$	$(-\theta)$	$(D) \min_{1 \le i \le n} (X_i - \theta)$					
1_0_10		1_10_10	10 的两组样本, 若两个总				

体的方差相同,则使用两样本 t 检验时 t 分布的自由度为 . . .

(A) 犯一类错误	(B) 犯第二类错误					
(C) 犯第一类或者第二类错误	(D) 同时犯第一类和第二类错误					
9. 假设总体密度为 $f_{\theta}(x)$,其中 θ 为	3参数. 若 X 为来自该总体的样本,则下述					
不正确的是						
(A) 固定 x 时 $f_{\theta}(x)$ 为似然函数	(B) 固定 θ 时 $f_{\theta}(x)$ 为似然函数					
(C) 固定 θ 时 $f_{\theta}(x)$ 为密度函数	$(D)f_{\theta}(x)$ 衡量了不同 θ 下观测到 x 的可					
能性大小						
10. 假设总体 X 为取值 $0,1,2$ 的	离散型随机变量,且取各值的概率分别为					
P(X = 0) = 0.5, P(X = 1) = p, P(X = 1)	(2) = 0.5 - p,其中 $0 为参数. 则$					
当使用拟合优度检验时,检验统计量的深	新近卡方分布的自由度为					
(A)3 (B)2	(C)1 (D)0					
二.(15 分) 设昆虫产卵数目服从参	数为1的Poisson分布,而每个卵孵化为					
幼虫的概率为 p ,各卵是否孵化相互独立,试求						
(1) 一个昆虫产生 m 个幼虫的概率	-					
(2) 若已知某个昆虫产生了 m 个幼	1 虫,求该昆虫产了 $n(n \ge m)$ 个卵的概率。					
三. $(15 分)$ 设随机变量 X,Y 相互独立,且 X 服从均匀分布 $U(-1,1),Y$ 服						
从均值为 1/2 的指数分布,则						
(1) 求随机变量 $Z = (X+1)Y$ 和	X 的相关系数.					
(2) 求条件概率 $P(Z > 1 X = 0)$.						
四.(15 分) 当 PM2.5 值全天监测平	华均在 35 微克/立方米以内时,空气质量属					
于一级. 现观测到合肥市琥珀山庄过去	长 10 天的日平均 PM2.5 值分别为 28.24,					
31.48,33.85,39.34,37.78,30.21,29.92,31.21,30.17,37.84. 若假设琥珀山庄区域日						
均 PM2.5 值 X 服从正态分布,各天日均 PM2.5 值相互独立. 则						

(C)18

(D)20

(A)9

(B)10

8. 当原假设 H_0 为真时,检验 ϕ 有可能_

五.(15 分)设甲乙两家食用盐工厂生产的食盐每袋重量均服从正态分布(忽略重量不可取负值).现从这两家工厂产品中各随机抽出 10 件标称为 500 克的袋装食盐,分别测得抽出各袋食盐的重量(单位为克)为

(2) 若感兴趣空气质量为一级的概率 $p = P(X \le 35)$, 试基于观测的日均数

(1) 试给出日均 PM2.5 值的 95% 置信上限.

据给出 p 的极大似然估计.

甲厂: 495,494,500,502,501,492,495,495,499,503;

 $Z\Gamma$: 494,506,496,505,500,508,502,504,502,499.

试问甲乙两家工厂生产这种标称为 500 克的袋装盐重量上有无差异 ($\alpha = 0.05$).

六.(10 分) 为研究人们每天阅读电子书的时间 (T) 长短与购买实体书 (Y) 两者之间的关系,随机调查了 210 个人,结果如下

	t < 1	1 < t < 3	t > 3
购买	12	70	20
不购买	40	28	40

试在水平 $\alpha = 0.05$ 下判断每天阅读电子书的时间长短和购买实体书两者之间是否有关? 阅读电子书的时间长短和购买实体书之间呈现何种特点?

一. 判断选择题 (每题 3 分):

1. B 2. C 3. C 4. D 5. A 6. B 7. C 8. A 9. B 10. C 二.(15 分) (1)

$$P(X = m) = \sum_{n=m}^{\infty} P(X = m | Y = n) P(Y = n) = \sum_{n=m}^{\infty} {n \choose m} p^m q^{n-m} \frac{1}{n!} e^{-1}$$
$$= \frac{p^m}{m!} e^{-p}, \quad m = 0, 1, 2, \dots$$

(2)

$$P(Y = n | X = m) = \frac{P(X = m | Y = n)P(Y = n)}{P(X = m)}$$
$$= \frac{q^{n-m}}{(n-m)!}e^{-q}, \quad n = m, m+1, \dots$$

三.(15 分) (1) 由于 EZX = E[X(X+1)]EY = 1/6, Var(Z) = 5/12, 因此

$$\rho_{Z,X} = [EZX - EZ \cdot EX] / \sqrt{Var(Z)Var(X)} = 1/\sqrt{5}$$

求随机变量 Z = (X+1)Y 的期望和方差.

(2)
$$P(Z > 1|X = 0) = P(Y > 1) = e^{-2}$$
.

四. $(15 \ \beta)(1)$ 由于 $\bar{x}=33.004, s=3.95$, 在题设下易知日均 PM2.5 的 95% 置信上限为 $\bar{x}+\frac{S}{\sqrt{n}}t_{0.05}(n-1)$, 带入样本值得到 35.5.

(2) $p = P(X \le 35) = P(\frac{x-\mu}{\sigma} \le \frac{35-\mu}{\sigma}) = \Phi(\frac{35-\mu}{\sigma})$, 而 \bar{x} 和 $\sqrt{(n-1)/ns^2} = \sqrt{9/10}s = 3.75$ 为 μ 和 σ 的似然估计值,因此 p 的极大似然估计值为 $\hat{p} = \Phi(\frac{\bar{x}-\hat{\mu}}{\hat{\sigma}}) = \Phi(0.53) = 0.70$.

五.(15 分) 记 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_1, \sigma_1^2)$ 分别表示两家工厂袋装盐的重量分布

- (1) 考虑方差是否一致: 对假设 $H_0: \sigma_1^2 = \sigma_2^2 \leftrightarrow H_1: \sigma_1^2 \neq \sigma_2^2$, 由检验统计量 $F = S_x^2/S_y^2 = 14.71/19.6 = 0.75 > F_{0.975}(9,9) = 1/F_{0.025}(9,9) = 1/4.03 = 0.25$, 因此在 0.05 水平下不能拒绝零假设。
- (2) 考虑均值是否一致: 考虑假设 $H_0: \mu_1 = \mu_2 \leftrightarrow H_1: \mu_1 \neq \mu_2$, 由 (1) 结果知可以使用两样本 t 检验, 由检验统计量 $T = |\bar{x} \bar{y}|/\sqrt{(s_x^2 + s_y^2)/10} = 2.16 > t_{0.025}(18) = 2.10$, 因此拒绝零假设。即在 0.05 水平下拒绝"两家工厂的袋装食盐平均重量一致"这一假设。

六.(10 分) 假设每天阅读电子书时间长短与购买实体书之间无关,则由 Pearson 卡方检验有 $T = \sum \frac{(O-E)^2}{E} = 39.60 > \chi_{0.05}(2) = 5.99$,因此在 0.05 水平下拒绝"每天阅读电子书时间长短与购买实体书之间无关"这一假设。注意到在三类阅读时间下,购买实体书人的比例分别为 0.23,0.71 和 0.33,因此每天阅读电子书时间在 1 小时和 3 小时之间的人群购买实体书的比例最高,而当每天阅读电子书时间长于 3 小时后,购买实体书的人比例反而下降为 0.33.