Predicting Kinase Selectivity Using Machine Learning

Challenge 1: Molecular Forecaster

Challenge

- Kinases
- Inhibitors
- Importance of Selectivity
 - Off-target effects
 - Side effects & drug effectiveness
 - Diversity of Kinase families

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.cell.com%2Fiscience%2Ffulltext%2FS2589-0042%252818%252930144-5&psig=AOvVawOxSWY7vw22laPmlKYz83kr&ust=1742229396109000&source=images&cd=vfe&opi=89978449&ved=OCBEQjRxqFwoTCOjx-rWEj4wDFQAAAAAdAAAAAAA

Strategy

- Classification
- Model: XGBoost Classifier
- Features used for model training
- SMILES representations

Accession Number	Entrez Gene Symbol	Kinase	Mutant	Kinase Group
NP_055726.3	AAK1	AAK1	NO	Other
NP_005148.2	ABL1	ABL1(E255K)-phosphorylated	YES	TK
NP_005148.2	ABL1	ABL1(F317I)-nonphosphorylated	YES	TK
NP_005148.2	ABL1	ABL1(F317I)-phosphorylated	YES	TK
NP_005148.2	ABL1	ABL1(F317L)-nonphosphorylated	YES	TK

Accession Number	Entrez Gene Symbol	Kinase	A-67456 3	AB-1010		AC220	AG-0137 36		AT-7519	2HQPA	AZD-217 1	886	BI-2536	BIBW-29 92
P_055726.	AAK1	AAK1	43	10001	10001	10001	1200	10001	10001	3000	10001	10001	2800	10001
IP_005148.	ABL1	ABL1(E2 55K)-pho sphorylat ed	10001	140	10001	10001	63	75	10001	9600	65	10001	5900	420

1	Compound	SMILES	Binding Mode (based on ABL1-phos. vsnonphos affinity)	S(300nM)	S(3000nM)
2	A-674563	CC1=C2C=C(C=CC2=NN1)C3=CC(=CN=C3)OCC(CC4=CC=CC=C4)N	undetermined	0.1166	0.2772
3	AB-1010	CC1=C(C=C(C=C1)NC(=O)C2=CC=C(C=C2)CN3CCN(CC3)C)NC4=NC(=CS4)C5=CN=CC=C5	Type II	0.0337	0.0622
4	ABT-869	CC1=CC(=C(C=C1)F)NC(=O)NC2=CC=C(C=C2)C3=C4C(=CC=C3)NN=C4N	undetermined	0.0648	0.1839
5	AC220	CC(C)(C)C1=CC(=NO1)NC(=O)NC2=CC=C(C=C2)C3=CN4C5=C(C=C(C=C5)OCCN6CCOCC6)SC4=N3	Type II	0.0285	0.0751
6	AG-013736	CNC(=0)C1=CC=CC=C1SC2=CC3=C(C=C2)C(=NN3)C=CC4=CC=CC=N4	Type I	0.057	0.1969
7	AST-487	CCN1CCN(CC1)CC2=C(C=C(C=C2)NC(=O)NC3=CC=C(C=C3)OC4=NC=NC(=C4)NC)C(F)(F)F	Type II	0.2617	0.4922
8	AT-7519	C1CNCCC1NC(=O)C2=C(C=NN2)NC(=O)C3=C(C=CC=C3Cl)Cl	undetermined	0.0674	0.0933
9	AZD-1152HQPA	CCN(CCCOC1=CC2=C(C=C1)C(=NC=N2)NC3=NNC(=C3)CC(=O)NC4=CC(=CC=C4)F)CCO	Туре II	0.0311	0.114

Justifications

- Why XGBoost instead of other models?
- Our evaluation metrics: ML accuracy

5.2.2 CLASSIFICATION APPROACH

- MSE loss to evaluate S accuracy: $MSE = \frac{1}{n} \sum_{i=1}^{n} (S_i \hat{S}_i)^2$
- **Zero-One Loss** to evaluate classification accuracy (for both 300nM and 3000nM thresholds): $L(K_{d\text{pred}}, K_d) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left(K_{d\text{pred}}^{(i)} < 3000 \neq K_d^{(i)} < 3000 \right)$

```
def makeFeature(sourcedf, fxns:dict, type:{"inhibitor", "kinase"}):
    ''' fxns is a dictionary where:
        keys: column name, of the target column in sourcedf
        values: function, to apply to the target column in sourcedf and generate
                each feature value is then normalized
    featuredf = pd.DataFrame()
    for col, fxn in fxns.items():
        if type == "inhibitor":
            featuredf['Compound'] = sourcedf['Compound']
        else:
            featuredf['Kinase'] = sourcedf['Kinase']
        featuredf[col+" embedded"] = sourcedf[col].apply(fxn)
        featuredf[col+" embedded"] = MinMaxScaler().fit transform(np.array(featuredf))
    return featuredf
```

```
# returns an dataframe with both the inhibitor and kinase features for each poss
def createX(inhibitordf, kinasedf):
    result = pd.merge(inhibitordf, kinasedf, how='cross')
    return result

# returns a dataframe with the Kd for each possible inhibitor-kinase pair
def createY(sourcedf, Sthresh):
    Kdf = sourcedf.drop(['Accession Number', 'Entrez Gene Symbol'], axis=1)
    Kdf = Kdf.set index('Kinase')
```

stacked = Kdf.stack().reset index()

stacked.columns = ['Kinase', 'Compound', 'Kd']

return stacked.set index(['Compound', 'Kinase'])

stacked[f'Kd'] = (stacked['Kd'] < Sthresh).astype(int)

```
def XGBtrain(X, Y, title):
   data = X.merge(Y, on=['Compound', 'Kinase'], how='inner')
    x = data.iloc[:,:-1].values
   y = data.iloc[:,-1].values
   X train, X test, y train, y test = train test split(x, y, test size
   # X train, X val, y train, y val = train test split(X train, y train
    # the above is not needed because there are 12 inhibitors that will
   # for the challenge at 11:00 am on 3/16/2025
    model = XGBClassifier()
    model.fit(X train, y train)
    y train = np.array(y train).ravel()
    y pred = model.predict(X test)
   accuracy = accuracy score(y test, y pred) * 100
```

```
def selectivity(df, col, threshold):
    filtered_col = df[col][df[col] < threshold]
    sum = filtered_col.sum()
    count = filtered_col.count()
    return sum/count</pre>
```

example on the original Kd dataset given

selectivity(Kd, 'AB-1010', 3000)

Attempts

Implementation of SMILES string derived info using RDKit Fingerprint

```
from rdkit import Chem
  from rdkit.Chem import AllChem
  from rdkit import DataStructs
  from rdkit.Chem import Descriptors
  def get fingerprint(smiles):
      mol = Chem.MolFromSmiles(smiles)
      if mol is None: # Check for invalid molecules
          return None
      fpgen = AllChem.GetMorganGenerator(radius=2, fpSize=2048)
      fps = fpgen.GetFingerprint(mol)
      HD = Descriptors.NumHDonors(mol)
      HA = Descriptors.NumHAcceptors(mol)
      AR = Descriptors.NumAromaticRings(mol)
      RB = Descriptors.NumRotatableBonds(mol)
      TPSA = Descriptors.TPSA(mol)
      LogP = Descriptors.MolLogP(mol)
      MW = Descriptors.MolWt(mol)
      return {
          #'Fingerprint': fps,
          'HD': HD,
          'HA': HA.
          'AR': AR,
          'RB': RB,
          'TPSA': TPSA,
          'LogP': LogP,
          'MW': MW
  fingerprint columns = sensitivities["SMILES"].apply(get fingerprint).apply(pd.Series)
  sensitivities mod = pd.concat([sensitivities, fingerprint columns], axis=1)

√ 0.0s
```

Results: 20% of the original data (test set)

Results: predicting on the hidden test set (validation)

Future Considerations

- Alternative models like
 Random Forest or deep
 learning models like Graph
 Neural Networks (GNNs)
- Other molecular descriptors (like physicochemical properties)
- Visualizing the data using Cytoscape
- Measuring performance metrics using K-fold cross validation

