Wednesday 04/12	
Caves d'Esclangon (floor -1), 16h30	
Learning to Mitigate Externalities: the Coase Theorem with Hindsight Rationality	Antoine Scheid
ogarithmic Smoothing for Pessimistic Off-Policy Evaluation, Selection and Learning	Imad Aouali, Otmane Sakhi
Extensive-Form Game Solving via Blackwell Approachability on Treeplexes. Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algorithms.	Julien Grand-Clément
The Value of Reward Lookahead in Reinforcement Learning	Nodov Marlia
Reinforcement Learning with Lookahead Information	Nadav Merlis
MetaCURL: Non-stationary Concave Utility Reinforcement Learning	Bianca Marin Moreno
A Concept-Based Explainability Framework for Large Multimodal Models	Pegah Khayatan, Jayneel Parekh
Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits	Flore Sentenac
DEFT: Efficient Finetuning of Conditional Diffusion Models by Learning the Generalised	Shreyas Padhy, Alexander Denker
Causal Contrastive Learning for Counterfactual Regression Over Time	Mouad El Bouchattaoui
Shape analysis for time series	Samuel Gruffaz
Confidence Calibration of Classifiers with Many Classes	Adrien Le Coz
Model-free Low-Rank Reinforcement Learning via Leveraged Entry-wise Matrix Estimation	Alexandre Proutiere
Jnravelling in Collaborative Learning	Aymeric Capitaine
DU-Shapley: A Shapley Value Proxy for Efficient Dataset Valuation	Maxime Vono
Near-Optimal Distributionally Robust RL with General Lp Norms	Diagra Clavier
Fime-Constrained Robust MDPs	Pierre Clavier
Hall d'Esclangon (floor 0), 16h30	
Archaeoscape: Bringing Aerial Laser Scanning Archaeology to the Deep Learning Era	Yohann Perron
Towards training digitally-tied analog blocks via hybrid gradient computation	Maxence Ernoult
WFCRL: A Multi-Agent Reinforcement Learning Benchmark for Wind Farm Control	Claire Bizon-Monroc
Binding in hippocampal-entorhinal circuits enables compositionality in cognitive maps	Sonia Mazelet
An eye for an ear: zero-shot audio description leveraging an image captioner with	
audio-visual token distribution matching	Hugo Malard
When is an Embedding Model More Promising than Another	Maxime Darrin
Boosting Generalization in Parametric PDE Neural Solvers through Adaptive Conditioning	Armand Kassai, Jean-Noel Vittaut
General Detection-based Text Line Recognition	Syrine Kalleli, Raphael Baena
Bridging semantics and pragmatics in information-theoretic emergent communication	Eleonora Gualdoni
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes	Shreyas Padhy
Only Strict Saddles in the Energy Landscape of Predictive Coding Networks?	El Mehdi Achour
Combining Statistical Depth and Fermat Distance for Uncertainty Quantification	Hai-Vy Nguyen, Reda Chhaibi
The Well: a Large-Scale Collection of Diverse Physics Simulations for Machine Learning	Lucas Meyer
teration heads: A Mechanistic Study of Chain-of-Thought	Vivien Cabannes
MicroAdam: Accurate Adaptive Optimization with Low Space Overhead and Provable Convergence	Thomas Robert
DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut	Paul Couairon
MaNo: Exploiting Matrix Norm for Unsupervised Accuracy Estimation under Distribution	
Shifts	Ambroise Odonnat, Vasilii Feofanov
Don't Know: Explicit Modeling of Uncertainty with an [IDK] Token	Konstantin Dobler
SCAI (floor 1), 16h30	
A generalized neural tangent kernel for surrogate gradient learning	Luke Eilers
Dimension-free deterministic equivalents for random feature regression	Leonardo Defilippis
Barely Random Algorithms for Metrical Task Systems	Romain Cosson
Statistical and Geometrical properties of Kernel Kullback-Leibler divergence	Clémentine Chazal
Topological Generalization Bounds for Discrete-Time Stochastic Optimization Algorithms	Benjamin Dupuis
Optimal Classification under Performative Distribution Shift	Edwige Cyffers, Olivier Cappé, Jamal Atif
Nonconvex Federated Learning on Compact Smooth Submanifolds With Heterogeneous	
Data	Jiaojiao Zhang Adeline Fermanian, Sohiban Surendran, Antoine
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation	Godichon-Baggioni
A Novel Approach to Loss Landscape Characterization without Over-Parametrization	Rustem Islamov
/ariational Graph Contrastive Learning	Shifeng Xie
n-context Quantile Regression for Multi-product Inventory Management using Time-series	
Transformers	Sohom Mukherjee
Bandits with Abstention under Expert Advice	Maximilian Thiessen
An Analysis of Elo Rating Systems via Markov Chains	Luca Zanetti
Implicit Bias of Mirror Flow on Separable Data	Scott Pesme, Radu Dragomir

Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient	Fordinand Conone Antoine Codishan Bossiani
Descent and Adaptive Entropic Regularization	Ferdinand Genans, Antoine Godichon-Baggioni Michal Valko
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving	
Diffeomorphic interpolation for efficient persistence-based topological optimization	Théo Lacombe
Progressive Entropic Optimal Transport Solvers Parnian Kassraie	
Learning Elastic Costs to Shape Monge Displacements	
GENOT: A Neural Optimal Transport Framework for Single Cell Genomics	Marco Cuturi
Thursday 05/12	
Thursday 05/12 Hall d'Esclangon (floor 0), 12h30	
Natermarking Makes Language Models Radioactive	Pierre Fernandez, Tom Sander
Benchmarking Uncertainty Disentanglement: Specialized Uncertainties for Specialized Tasks	Michael Kirchhof
FairJob: A Real-World Dataset for Fairness in Online Systems	Mariia Vladimirova
Consent in Crisis: The Rapid Decline of the Al Data Commons	Christopher Klamm
Functional Bilevel Optimization for Machine Learning	Ieva Petrulionyte, Julien Mairal
Mirror and Preconditioned Gradient Descent in Wasserstein Space	Clément Bonet
The Road Less Scheduled	Konstantin Mishchenko
What makes unlearning hard and what to do about it	Kairan Zhao
Learning with Fitzpatrick Losses	Seta Rakotomandimby, Michel De Lara, Mathieu Blondel
_earning to Embed Distributions via Maximum Kernel Entropy	Oleksii Kachaiev
Piecewise deterministic generative models	Dario Shariatian
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with	
annealing	David Perera
ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation	Victor Letzelter
earning the Infinitesimal Generator of Stochastic Diffusion Processes	VIII. 11. 11. 11.
From Biased to Unbiased Dynamics: An Infinitesimal Generator Approach	Vladimir Kostic
Neural Conditional Probability for Inference	Vladimir Kostic, Karim Lounici
Expected Probabilistic Hierarchies	,
Shaving Weights with Occam's Razor: Bayesian Sparsification for Neural Networks using the Marginal Likelihood	Bertrand Charpentier
Theoretical guarantees in KL for Diffusion Flow Matching	Alain Oliviero-Durmus, Marta Gentiloni Silveri
Near-Optimality of Contrastive Divergence Algorithms	Pierre Glaser
Regression under demographic parity constraints via unlabeled post-processing	Gayane Taturyan
SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning	Paul Mangold
00Al (flaan 4) 40b00	
SCALITION 1 12030	
SCAI (floor 1), 12h30	Be III also Biorista Bioris Blanco Malaki B
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series	Paul Krzakala, Rémi Flamary, Florence d'Alché-Buc
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting	Vasilii Feofanov
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models	Vasilii Feofanov Ziwei Ji
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial	Vasilii Feofanov Ziwei Ji Louis Bethune
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Fowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Fowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting MNAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Open linear networks for regression are implicitly regularized towards flat minima SOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Fowards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching Improved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits Improved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs Fou Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms Computing the Bias of Constant-step Stochastic Approximation with Markovian Noise	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr Nicolas Gast
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem Overcoming Brittleness in Pareto-Optimal Learning Augmented Algorithms Computing the Bias of Constant-step Stochastic Approximation with Markovian Noise Activation Map Compression through Tensor Decomposition for Deep Learning	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr Nicolas Gast Enzo Tartaglione, Aël Quélennec
Any2Graph: Deep End-To-End Supervised Graph Prediction With An Optimal Transport Loss Analysing Multi-Task Regression via Random Matrix Theory with Application to Time Series Forecasting ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models Understanding Visual Feature Reliance through the Lens of Complexity Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits Supra-Laplacian Encoding for Transformer on Dynamic Graphs Continuous Product Graph Neural Networks Wormhole loss for partial shape matching mproved learning rates in multi-unit uniform price auctions Optimizing the coalition gain in Online Auctions with Greedy Structured Bandits mproved Algorithms for Contextual Dynamic Pricing Deep linear networks for regression are implicitly regularized towards flat minima BOLD: Boolean Logic Deep Learning AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Field mplicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs You Don't Need Data-Augmentations in Self-Supervised Learning Aligning Embeddings and Geometric Random Graphs: Informational Results and Computational Approaches for the Procrustes-Wasserstein Problem	Vasilii Feofanov Ziwei Ji Louis Bethune Julien Zhou, Thibaud Rahier Yannis Karmim Aref Einizade, Jhony H. Giraldo Thomas Dagès Hugo Richard, Marius Potfer Hugo Richard, Dorian Baudry Nadav Merlis Pierre Marion Van Minh Nguyen, Ba-Hien Tran Louis Serrano, Jean-Noel Vittaut Mustafa Shukor Théo Moutakanni Mathieu Even, Luca Ganassali, Jakob Maier Christoph Dürr Nicolas Gast