Page 86

Properties of the Laplace Transform

1. Let f, f_1 , and f_2 be functions whose Laplace transform exists for $s > \alpha$ and let c be a constant. Then for $s > \alpha$, prove the following:

(a)
$$\mathcal{L}\{f_1 + f_2\} = \mathcal{L}\{f_1\} + \mathcal{L}\{f_2\}.$$

$$\int_{0}^{3} \frac{1}{3} + \frac{1}{3} = \int_{0}^{\infty} e^{-st} \left(f_{1}(t) + f_{2}(t) \right) dt \\
= \int_{0}^{\infty} \left(e^{-st} f_{1}(t) + e^{-st} f_{2}(t) \right) dt \\
= \int_{0}^{\infty} e^{-st} f_{1}(t) + \int_{0}^{\infty} e^{-st} f_{2}(t) dt \\
= \int_{0}^{\infty} e^{-st} f_{1}(t) + \int_{0}^{\infty} e^{-st} f_{2}(t) dt$$

(b)
$$\mathcal{L}\{cf\} = c\mathcal{L}\{f\}$$
.

$$\int_{0}^{\infty} \mathcal{L}\{cf\} = c\mathcal{L}\{f\}\}$$

$$= c \int_{0}^{\infty} e^{-st} dt$$

$$= c \int_{0}^{\infty} \mathcal{L}\{f\} = c\mathcal{L}\{f\}$$

$$= c \int_{0}^{\infty} \mathcal{L}\{f\} = c\mathcal{L}\{f\}$$

$$3 = \frac{6}{32\cos(3t)} + 5 - 4e^{6t} = \frac{6}{3^{2}+9} + \frac{5}{5} - \frac{4}{5-6} = \frac{6}{5-6}$$

$$3 = \frac{6}{3^{2}+9} + \frac{5}{5-6} = \frac{6}{5-6}$$

$$3 = \frac{6}{3^{2}+9} + \frac{5}{5-6} = \frac{6}{5-6}$$

$$3 = \frac{6}{3^{2}+9} + \frac{5}{5-6} = \frac{6}{5-6}$$

$$3 = \frac{6}{5^{2}+9} + \frac{5}{5-6} = \frac{4}{5-6}$$

$$3 = \frac{6}{5^{2}+9} + \frac{5}{5-6} = \frac{6}{5-6}$$

$$3 = \frac{6}{5^{2}+9} + \frac{6}{5^{2}+9} = \frac{6}{5-6} = \frac{6}{5-6}$$

$$3 = \frac{6}{5^{2}+9} + \frac{6}{5^{2}+9} = \frac{6}{5^{2}+9$$

10 D E

Laplace Transform of $q(t) = e^{at} f(t)$

1. If the Laplace transform $\mathcal{L}\{f\}(s) = F(s)$ exist for $s > \alpha$ then show that $\mathscr{L}\lbrace e^{at}f(t)\rbrace = F(s-a), \text{ for } s > \alpha + a.$

$$\begin{aligned}
J &= \begin{cases} e^{t} + f(t) \end{cases} = \int_{e}^{\infty} - st & \text{if } t = \int_{e}^{\infty} - t(s-a) f(t) \\
&= \int_{e}^{\infty} - t \cdot u & \text{if } t \neq \text{if$$

2. Using the property above and the fact that $\mathscr{L}\{\cos(bt)\} = \frac{s}{s^2+b^2}$ for s>0, find $\mathscr{L}\{e^{at}\cos(bt)\}$.

$$2 (\cos(bt)) = \frac{5}{5^2 + b^2}, 5 > 0$$

$$F(s) = \frac{s}{s^2 + b^2}$$

$$\int_{a}^{a} \left\{ e^{at} \cos(bt) \right\} = F(s-a)$$

$$=\frac{S-a}{\left(S-\alpha\right)^2+b^2}$$
 S>a

Section 6.2: Laplace Transform of Derivatives

A function is of **exponential order** α if there exists positive constants C and T such that

$$|f(t)| < Ce^{\alpha t}$$
 for all $t > T$.

For example:

- $f(t) = \cos(5t)e^{7t}$ has $\alpha = 7$.
- e^{t^2} does not have an exponential order.
- 3. If f(t) is continuous on $[0, \infty)$ and f'(t) is piecewise continuous on $[0, \infty)$ with both exponential order α , then prove for $s > \alpha$,

$$\mathscr{L}{f'} = s\mathscr{L}{f} - f(0) = sF(s) - f(0).$$

4. Using the property from problem 3 and the fact that $\mathscr{L}\{\cos{(bt)}\} = \frac{s}{s^2+b^2}$ for s > 0, find $\mathscr{L}\{\sin{(bt)}\}$.

5. If $\mathscr{L}{f(t)} = F(s)$ for all $s > \alpha$, using the property from problem 3, show that

$$\mathcal{L}\{f''(t)\} = s^2 F(s) - s f(0) - f'(0)$$
 for all $s > \alpha$.

6. Using induction show that

$$\mathscr{L}{f^{(n)}} = s^n \mathscr{L}{f} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

7. Let $F(s) = \mathcal{L}\{f\}$ and assume f(t) is piecewise continuous on $[0, \infty)$ and of exponential order α . Prove that for $s > \alpha$ if follows that

$$\mathscr{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n F}{ds^n}.$$

8. Using the definition of the Laplace transform, the result that $\mathcal{L}\{e^{at}\}=\frac{1}{s-a}$ for s>a and the property above, find a formula for $\mathcal{L}\{t^ne^{at}\}$.

Common Laplace Transforms

f(t)	$F(s) = \mathcal{L}\left\{f(t)\right\}$
1	$\left \frac{1}{s}, s > 0 \right $
e^{at}	$\frac{1}{s-a}, \ s>a$
$t^n, n=1,2,\ldots$	$\frac{n!}{s^{n+1}}, \ s > 0$
$\sin\left(bt\right)$	$\frac{b}{s^2 + b^2}, \ s > 0$
$\cos(bt)$	$\frac{s}{s^2 + b^2}, \ s > 0$
$e^{at}t^n, \ n=1,2,\dots$	$\frac{n!}{(s-a)^{n+1}}, \ s > a$
$e^{at}\sin\left(bt\right)$	$\frac{b}{(s-a)^2 + b^2}, \ s > a$
$e^{at}\cos\left(bt\right)$	$\frac{s-a}{(s-a)^2+b^2}, \ s>a$

Common Properties of Laplace Transforms

L.1 $\mathscr{L}\{cf(t)\}=c\mathscr{L}\{f(t)\}$, where c is a constant.

L.2
$$\mathscr{L}\left\{f_1(t) + f_2(t)\right\} = \mathscr{L}\left\{f_1(t)\right\} + \mathscr{L}\left\{f_2(t)\right\}$$

 $\text{L.3 If } F(s) = \mathscr{L}\left\{f(t)\right\} \text{ exists for all } s > \alpha, \text{ then } \mathscr{L}\left\{e^{at}f(t)\right\} = F(s-a) \text{ for all } s > \alpha + a.$

L.4 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then for all $s > \alpha$,

$$\mathscr{L}\left\{f^{(n)}(t)\right\} = s^n \mathscr{L}\left\{f(t)\right\} - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

L.5 If $F(s) = \mathcal{L}\{f(t)\}$ exists for all $s > \alpha$, then $\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n F}{ds^n}$ for all $s > \alpha$.