Verifica del Software - Esercizi parte 2 Università degli Studi di Padova

Mirko Bez

19 febbraio 2017

Indice Esercizio 1 2 Esercizio 2 3 Esercizio 3 4 Esercizio 4 4 Esercizio 5 4 Esercizio 6 5 Esercizio 7 5 Esercizio 8 6 Esercizio 9 6

Esercizio 1

Consegna Let (α, C, A, γ) be a Galois connection. Prove that:

- (A) γ is injective, \iff
- (B) $\alpha \circ \gamma = id \iff$
- (C) α is surjective.

Svolgimento Alcune definizioni utili:

Definizione 1. (Galois Connection) (α, C, A, γ) è una Galois connection se:

- 1. A, C sono poset
- 2. $\alpha: C \to A \ monotona$
- 3. $\gamma: A \to C \ monotona$
- 4. $\forall c \in C. \ c \leq_C \gamma(\alpha(c))$
- 5. $\forall a \in A. \ \alpha(\gamma(a)) \leq_A a$

Definizione 2. (Funzione iniettiva) Una funzione $f: X \to Y$ è iniettiva se:

$$\forall a, b \in X. \ f(a) = f(b) \implies a = b$$

 $(B) \Longrightarrow (A)$ Assumo che valga l'ipotesi (B) ovvero che $\alpha \circ \gamma = id$. Assumo per assurdo che non valga l'ipotesi (A) ovvero che γ non sia iniettiva, quindi:

$$\exists a, b \in A. \ \gamma(a) = \gamma(b) \land a \neq b$$

Siano a,b due elementi diversi di A ($a \neq b$) che vengono mappati allo stesso elemento di C, ovvero $\gamma(a) = \gamma(b)$. Essendo (C, \leq_C) un poset, per la riflessività della relazione \leq_C , valgono anche le relazioni:

- I) $\gamma(a) \leq_C \gamma(b)$
- II) $\gamma(b) \leq_C \gamma(a)$

Partendo dalla relazione I) ottengo:

$$\gamma(a) \leq_C \gamma(b) \Longrightarrow \text{ per la monotonia di } \alpha$$

 $\alpha(\gamma(a)) \leq_A \alpha(\gamma(b)) \Longrightarrow \text{ per l'ipotesi (B)}$
 $a \leq_A b$

Partendo dalla relazione II) ottengo:

$$\gamma(b) \leq_C \gamma(a) \Longrightarrow \text{ per la monotonia di } \alpha$$
 $\alpha(\gamma(b)) \leq_A \alpha(\gamma(a)) \Longrightarrow \text{ per l'ipotesi (B)}$
 $b \leq_A a$

Siccome valgono al contempo $a \leq_A b$ e $b \leq_A a$ allora per l'antisimmetria del poset (A, \leq_A) a = b. Che è in contrasto con l'ipotesi iniziale che $a \neq b$.

 $(A) \Longrightarrow (C)$ Assumo γ iniettiva, ovvero $\forall a, b \in A$. $\gamma(a) = \gamma(b) \Longrightarrow a = b$. Devo dimostrare che α suriettiva, ovvero:

$$\forall a \in A. \ \exists c \in C. \ \alpha(c) = a$$

Per fare ciò assumo che α sia non suriettiva ovvero

$$\exists a \in A. \ \forall c \in C. \ \alpha(c) \neq a$$

e sia a_0 un elemento tale che $\alpha(c) \neq a_0 \forall c \in C$.

$$\alpha(\gamma(a_0)) \leq_A a_0$$
 Siccome è una GC $\gamma(\alpha(\gamma(a_0))) \leq_C \gamma(a_0)$ Poichè γ monotona

Inoltre siccome $\gamma(a_0) \in C$ vale

$$\gamma(a_0) \le \gamma(\alpha(\gamma(a_0)))$$

Quindi unendo i due risultati (per l'antisimmetria di \leq_C) ottengo:

$$\gamma(a_0) = \gamma(\alpha(\gamma(a_0)))$$
 Siccome γ iniettiva $a_0 = \alpha(\gamma(a_0))$ Contraddizione

Avendo ottenuto una contraddizione ottengo che sotto l'assunzione (A) non può esistere un $a_0 \in A$ tale che $\alpha(c) \neq a$ e quindi α è necessariamente suriettiva.

$$\overline{(C) \implies (B)}$$
 Assumo α suriettiva ovvero:

$$\forall a \in A. \ \exists c \in C. \ \alpha(c) = a$$

Assumo che non valga (B) $\alpha \circ \gamma \neq id$ ovvero:

$$\exists a \in A : \alpha(\gamma(a)) \neq a$$

Sia a_0 tale che $\alpha(\gamma(a_0)) \neq a_0$. Siccome (α, A, C, γ) è una GC vale $\alpha(\gamma(a_0)) \leq a_0$. Dimostrando $a_0 \leq_A \alpha(\gamma(a_0))$ otterrei una contraddizione.

Siccome abbiamo a che fare con una GC (e α, γ totali):

$$\gamma(\alpha(a_0)) \leq_C \gamma(\alpha(\gamma(a_0)))$$

Se γ fosse iniettiva seguirebbe immediatamente il risultato cercato, ovvero $a_0 \leq (\alpha(\gamma(a_0)))$. Dimostro che γ debba per forza essere iniettiva:

TODO: DIMOSTRA INIETTIVITÀ DI γ

Esercizio 2

Consegna Let C and A be complete lattices and let (α, C, A, γ) be a Galois connection. Prove the following properties:

- 1. $\gamma(\alpha(\top_C)) = \top_C$
- 2. for any $a \in A$, $\gamma(a) = \land \{c \in C \mid \alpha(c) \leq_A a\}$
- 3. for any $c_1, c_2 \in C$, $\alpha(c_1 \vee_C c_2) = \alpha(c_1) \vee_A \alpha(c_2)$
- 4. for any $c \in C$, $\gamma(\alpha(\gamma(\alpha(c)))) = \gamma(\alpha(c))$

Svolgimento

Esercizio 3

Consegna Let C and A be complete lattices, (α, C, A, γ) be a Galois insertion, $op : C^2 \to C$ be a monotone concrete operation and $op^a : A_2 \to A$ be a monotone abstract operation. Prove the following equivalence:

$$\forall (a_1, a_2) \in A^2 : \alpha(op(\gamma(\alpha_1), \gamma(\alpha_2))) \leq_A op^a(a_1, a_2) \iff \\ \forall (c_1, c_2) \in C^2 : op(c_1, c_2) \leq_C \gamma(op^a(\alpha(c_1), \alpha(c_2)))$$

Svolgimento

Esercizio 4

Consegna Let $\langle C, \leq_C \rangle$ be a complete lattice and let $S \subseteq C$ be a subset of C which is meet-closed, that is:

$$\forall Y \subseteq S. \land_C Y \in S$$

Prove that $\langle S, \leq_C \rangle$ can be viewed as an abstract domain of C where the concretization map $\gamma: S \to C$ is the identity.

Svolgimento

Esercizio 5

Consegna Let C and A be complete lattices, (α, C, A, γ) be a Galois insertion, $f: C \to C$ be a monotone concrete operation and $f^{\sharp}: A \to A$ be a monotone abstract operation such that: $f \circ \gamma = \gamma \circ f^{\sharp}$. Prove that $\alpha(gfp(f)) = gfp(f^{\sharp})$.

Svolgimento

Esercizio 6

Consegna Let C and A be complete lattices, (α, C, A, γ) be a Galois insertion, $f: C \to C$ be a monotone concrete operation and $f^{\sharp}: A \to A$ be a monotone abstract operation such that: $\alpha \circ f = f^{\sharp} \circ \alpha$.

- 1. Prove that $\alpha(lfp(f)) = lfp(f^{\sharp})$.
- 2. Give a counterexample to the equality $lfp(f) = \gamma(lfp(f^{\sharp}))$.

Svolgimento

Esercizio 7

Consegna Let $(\alpha, \langle A, \leq_A \rangle, \langle \wp(Z), \subseteq \rangle, \gamma)$ be a Galois connection. Let Let \mathbb{S}^A , $Var \to A$ and consider the standard pointwise order \sqsubseteq between functions: $s_1^{\sharp} \sqsubseteq s_2^{\sharp}$ when for any $x \in Var$, $s_1^{\sharp}(x) \leq_A s_2^{\sharp}(x)$. Prove that $(\alpha_s, wp(State), \mathbb{S}^A, \gamma_s)$ is a Galois connection, where:

- $\alpha_s(T) \triangleq \lambda x. \alpha(\{s(x)|s \in T\})$
- $\gamma_s(s^{\sharp}) \triangleq \{s \in State | \forall x \in Var.\alpha(\{s(x)\}) \leq_A s^{\sharp}(x)\}$

Svolgimento

Esercizio 8

Consegna Consider the following abstract domain of $\langle \wp(\mathbb{Z}, \subseteq) \rangle$

Svolgimento

Esercizio 9

Svolgimento