2. Ferlar í plani og pólhnit

Stærðfræðigreining IIB, STÆ205G, 7. janúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is

2.1

Inngangur

- Þegar við fáumst við verkefni í mörgum víddum höfum við frelsi til að velja hnitakerfi.
- Heppilegt val á hnitakerfi getur skipt sköpum við lausn verkefnis.

2.2

Pólhnit

Skilgreining 2.1

Látum $P = (x, y) \neq \mathbf{0}$ vera punkt í plani. Pólhnit P er talnapar $[r, \theta]$ þannig að r er fjarlægð P frá O = (0, 0) og θ er hornið á milli striksins \overline{OP} og x-ássins. (Hornið er mælt þannig að rangsælis stefna telst jákvæð, og leggja má við θ heil margfeldi af 2π .)

2.3

Pólhnit

Regla 2.2

Ef pólhnit punkts í plani eru $[r, \theta]$ þá má reikna xy-hnit hans (e. rectangular coordinates eða Cartesian coordinates) með formúlunum

$$x = r \cos \theta$$
 og $y = r \sin \theta$.

Ef við þekkjum xy-hnit punkts þá má finna pólhnitin út frá jöfnunum

$$r = \sqrt{x^2 + y^2}$$
 og $\tan \theta = \frac{y}{x}$.

(Ef x=0 þá má taka $\theta=\frac{\pi}{2}$ ef y>0 en $\theta=-\frac{\pi}{2}$ ef y<0. Þegar jafnan tan $\theta=\frac{y}{x}$ er notuð til að ákvarða θ þá er tekin lausn á milli $-\frac{\pi}{2}$ og $\frac{\pi}{2}$ ef x>0 en á milli $\frac{\pi}{2}$ og $\frac{3\pi}{2}$ ef x<0.)

2.4

Pólhnitagraf

Skilgreining og umræða 2.3

Látum f vera fall skilgreint fyrir θ þannig að $\alpha \leq \theta \leq \beta$. Jafnan $r = f(\theta)$ lýsir mengi allra punkta í planinu sem hafa pólhnit á forminu $[f(\theta), \theta]$ þar sem $\alpha \leq \theta \leq \beta$. Þetta mengi kallast pólhnitagraf fallsins f.

Pólhnitagraf er ferill í planinu sem má stika með stikaferlinum

$$\mathbf{r}: [\alpha, \beta] \to \mathbb{R}^2$$

með formúlu

$$\mathbf{r}(\theta) = [f(\theta), \theta] = (f(\theta)\cos\theta, f(\theta)\sin\theta).$$

2.5

Snertill við pólhnitagraf

Setning 2.4

Látum $r = f(\theta)$ vera pólhnitagraf fallsins f og gerum ráð fyrir að fallið f sé diffranlegt. Látum $\mathbf{r}(\theta)$ tákna stikunina á pólhnitagrafinu sem innleidd er í 2.3. Ef vigurinn $\mathbf{r}'(\theta) \neq \mathbf{0}$ þá gefur þessi vigur stefnu snertils við pólhnitagrafið og út frá $\mathbf{r}'(\theta)$ má reikna hallatölu snertils við pólhnitagrafið.

2.6

Flatarmál

Setning 2.5

Flatarmál svæðisins sem afmarkast af geislunum $\theta=\alpha$ og $\theta=\beta$ (með $\alpha\leq\beta$ og $\beta-\alpha\leq2\pi$) og pólhnitagrafi $r=f(\theta)$ (f samfellt) er

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta = \frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 d\theta.$$

2.7

Bogalengd

Setning 2.6

Gerum ráð fyrir að fallið $f(\theta)$ sé diffranlegt. Bogalengd pólhnitagrafsins $r = f(\theta)$, þegar $\alpha \leq \theta \leq \beta$, er gefin með formúlunni

$$s = \int_{\alpha}^{\beta} \sqrt{f'(\theta)^2 + f(\theta)^2} \, d\theta.$$

2.8