LECTURE 9

SPRING 2021
APPLIED MACHINE LEARNING
CIHANG XIE

SLIDE CREDIT:

DHRUV BATRA

ANDREW ZISSERMAN

TODAY

- Review of Logistic Regression
- Support Vector Machine

PROBABILITY REVIEW

- Odds
- Logit function
- Logistic function

	notation	Range Equivalents		
Standard probability	p	0	0.5	1
Odds	$\frac{p}{q}$	0	1	+∞
Log odds (logit)	$\log(\frac{p}{q})$		0	+∞

LOGISTIC FUNCTION

https://walkccc.github.io/CS/ML/5/

PROPERTIES OF LR

- One parameter per data dimension (feature) and a bias
- Features can be discrete or continuous
- Output of the model $y \in [0, 1]$
- Allows for gradient-based learning of parameters

BEST 02

Maximum likelihood estimation:

$$\max_{\theta} \ ll(w) = \max_{\theta} \ \sum_{i} \log P(y^{(i)}|x^{(i)};\theta)$$

with:

$$P(y^{(i)} = +1|x^{(i)}; \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

$$P(y^{(i)} = -1|x^{(i)}; \theta) = 1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}}$$

MULTICLASS PROBABILISTIC REGRESSION

• Recall:

- A weight vector for each class: $heta_c$
- Score (activation) of a class c: $z_c = \theta_c \cdot \phi(x)$
- Prediction highest score wins

$$y = \operatorname*{argmax}_{c} \theta_{c}. \phi(x)$$

How to make the scores into probabilities?

$$Z_1, Z_2, Z_3 \rightarrow \frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3}}$$

 θ_{c_1} . $\phi(x)$ biggest

SEPARABLE CASE: DETERMINISTIC DECISION - MANY OPTIONS

SEPARABLE CASE: PROBABILISTIC DECISION – CLEAR PREFERENCE

SUPPORT VECTOR MACHINE (SVM)

$$\min_{\boldsymbol{\theta}} \frac{1}{2} \, \boldsymbol{\theta}^T \boldsymbol{\theta}$$
 s.t. $y^{(i)} (\boldsymbol{\theta}^T x^{(i)} + \boldsymbol{b}) \geq 1, \forall i$

NOT linearly separable $\theta^T x + b = +1$ outlier $\theta^T x + b = -1$ Add some flexibilities? If margin >= 1, don't care If margin < I, pay linear penalty

SOFT MARGIN SVM

$$\min_{\theta,\xi,b} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^N \xi_i$$
s.t.
$$y^{(i)} (\theta^T x^{(i)} + b) + \xi_i \ge 1,$$

$$\xi_i \ge 0, \forall i$$

ξ_i is the "slack" variable

- for $0 < \xi_i \le 1$ point is between margin and correct side of hyperplane. This is a margin violation
- for $\xi_i > 1$ point is misclassified

SOFT MARGIN SVM

$$\min_{\theta,\xi,b} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^N \xi_i$$
s.t.
$$y^{(i)} (\theta^T x^{(i)} + b) + \xi_i \ge 1,$$

$$\xi_i \ge 0, \forall i$$

C is a regularization parameter:

- small C allows constraints to be easily ignored \rightarrow large margin
- large C makes constraints hard to ignore → narrow margin
- C = ∞ enforces all constraints: hard margin

GRADIENT DESCENT FOR SVM

$$y^{(i)}(\theta^T x^{(i)} + b) + \xi_i \ge 1 \& \xi_i \ge 0$$

$$\xi_i = \max\{0, 1 - y^{(i)}(\theta^T x^{(i)} + b)\}$$

$$\min_{\theta, b} \frac{1}{2} \theta^T \theta + C \sum_{i=1}^{N} \max \{0, 1 - y^{(i)} (\theta^T x^{(i)} + b)\}$$

EXERCISE

HTTPS://BIT.LY/3AHLBZC

READING MATERIAL: LAGRANGIAN DUALITY

HTTPS://BIT.LY/3GIFCFJ

QUESTIONSP