3007 Final Exam Review

William Findlay April 22, 2018

Contents

1	Def	initions	ıs																																	
	1.1	Impera	ati	ve	vs	De	cla	ıra	ati	ve																								 		
		1.1.1																																		
		1.1.2																																		
	1.2	Scope																																		
		1.2.1	S_0	coj	Эе																													 		
		1.2.2	V	isi	bili	ty																												 		
	1.3	Applic	cati	ive	O	rde	r I	\mathbf{v}	alı	ıat	io	n	vs	s N	Vо	rn	a	1 ()r	de	r	Εī	al	ua	ati	on	ı.							 		
		1.3.1	A	рp	lic	ativ	re	Oı	rde	er	E٦	va.	lua	ati	ioı	n																		 		
		1.3.2	Ν	or	$_{ m ma}$	l O	rd	er	Е	va	lu	at:	ioi	n																				 		

1 Definitions

1.1 Imperative vs Declarative

1.1.1 Imperative

- Series of instructions
- Iterative functions
- Command driven, statement oriented
- Procedural
 - C
 - Pascal
 - Assembly
- · Object oriented
 - -C++
 - Java

1.1.2 Declarative

- No side effects
- Focus on relations
- "What to get" instead of "How to get"
- Order of statements *shouldn't* matter
- Examples:
 - SQL
 - Prolog
 - Regex

1.2 Scope vs Visibility

1.2.1 Scope

- The set of expressions for which the variable exists
- In lexical scoping
 - variables in the scope we were defined in
 - and local variables
 - who uses this?
 - * C-family languages
 - * Scheme
 - * Algol
- In dynamic scoping
 - variables in the scope we were *called* in
 - and local variables
 - who uses this?
 - * early LISP
 - * APL
 - * BASH

1.2.2 Visibility

• The set of expressions for which the variable can be reached

- If we declare a local variable with the same name as a variable in enclosing scope
 - that enclosing scope variable is now hidden
 - all references to *name* are to our locally scoped variable instead

1.3 Applicative Order Evaluation vs Normal Order Evaluation

1.3.1 Applicative Order Evaluation

- Strict evaluation
- Evaluate an expression before it is passed in as an argument
 - go as deep as you can until you hit primitives, then evaluate and go back
 - as deep into the nest as possible and work backwards

```
(double (* (+ 1 3) 4))
(double (* 4 4))
(double 16)
(* 16 2)
32
```

1.3.2 Normal Order Evaluation

- Lazy evaluation
- Evaluate an expression only when its value is needed
 - first **expand**, then **reduce** (double (* (+ 1 3) 4))
 (* (* (+ 1 3) 4) 2)
 (* (* 4 4) 2)
 (* 16 2)
 32