Chapter 13 - Complex Numbers and Functions. Complex Differentiation

Selected Problem set 13.1

1. Powers of i. Show that
$$i^{2} = -1$$
, $i^{3} = -i$, $i^{4} = 1$, $i^{9} = i$, ... and $1/i = -i$, $1/i^{2} = -1$, $1/i^{3} = i$, ...
$$z_{1}z_{2} = (x_{1}, y_{1})(x_{2}, y_{2}) = (x_{1}x_{2} - y_{1}y_{2} - x_{1}y_{2} + x_{2}y_{1}).$$

$$i^{2} = (0, 1)(0, 1) = (0 - 1, 0 + 0) = (-1, 0) = -1 + 0, i = -1$$

$$i^{2} = 1^{2} \cdot y = -1 \cdot 1 = (-1, 0)(0, 1) = (0 - 0, -1 + 0) = (0, -1) = 7$$

$$i^{4} = (1, 0)(1, 0) = -1 - 1 = 1$$

$$i^{5} = 1^{4} \cdot 1 = 1 \cdot 1 = 1$$

$$i^{7} = 1 - 1 = 1$$

8–15 COMPLEX ARITHMETIC

Let $z_1 = -2 + 11i$, $z_2 = 2 - i$. Showing the details of your work, find, in the form x + iy:

8.
$$z_1z_2$$
, $\overline{(z_1z_2)}$

9. Re
$$(z_1^2)$$
, $(\text{Re } z_1)^2$

10. Re $(1/z_2^2)$, $1/\text{Re }(z_2^2)$

11.
$$(z_1 - z_2)^2 / 16$$
, $(z_1/4 - z_2/4)^2$

$$(2.-2.)^{2}/16 = (-4+12i)^{2}/16 = (16-144-96i)/16$$

$$= (-128-96i)/16 = -8-6i$$

$$(2./4-2./4)^{2} = [(-\frac{1}{2}+\frac{1}{4}i)-(\frac{1}{2}-\frac{1}{4}i)]^{2}$$

$$= (-(+3i)^{2} = 1-9-6i = -8-6i$$

16–20 Let z = x + iy. Showing details, find, in terms of x and y:

16. Im
$$(1/z)$$
, Im $(1/z^2)$

17. Re
$$z^4 - (\text{Re } z^2)^2$$

$$|7 \quad Z^{2} = (x^{2} - y^{2}) + 2xy i$$

$$Z^{4} = [(x^{2} - y^{2})^{2} - 4x^{2}y^{2}] + 4xy(x^{2} - y^{2})^{2}$$

$$ReZ^{4} = (x^{2} - y^{2})^{2} - 4x^{2}y^{2}$$

$$(ReZ^{2})^{2} (x^{2} - y^{2})^{2}$$

$$ReZ^{4} - (ReZ^{2})^{2} = -4x^{2}y^{2}$$

Selected Problem set 13.2

13.2 ... 1. 3. 7. ... 11. 21. 29

1–8 POLAR FORM

Represent in polar form and graph in the complex plane as in Fig. 325. Do these problems very carefully because polar forms will be needed frequently. Show the details.

1.
$$1 + i$$

2.
$$-4 + 4i$$

5.
$$\frac{\sqrt{2+i/3}}{\sqrt{8}}$$

6.
$$\frac{\sqrt{3}-10i}{-\frac{1}{2}\sqrt{3}+5}$$

7.
$$1 + \frac{1}{2}\pi i$$

8.
$$\frac{-4+19}{2+5i}$$

 $\sqrt{1+\left(\frac{\pi}{2}\right)^2}=\sqrt{1+\left(\frac{\pi}{2}\right)^2}$

$$+$$
 (Sm (artan $\frac{\pi}{2}$))

$$\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{1}{2} \int_{\mathbb{R}$$

$$0 = \frac{2}{\sqrt{1-x^2}}$$

$$2i = 265\frac{\pi}{2} + 2iSin\frac{\pi}{2}$$

$$Q = 1 - \frac{Q}{2}$$

$$-2i = 2 \cos(-\frac{\pi}{2}) + 2i \sin(-\frac{\pi}{2})$$

9-14 **PRINCIPAL ARGUMENT**

Determine the principal value of the argument and graph it as in Fig. 325.

9.
$$-1 + i$$

10.
$$-5$$
, $-5 - i$, $-5 + i$

11.
$$3 \pm 4i$$

12.
$$-\pi - \pi i$$

13.
$$(1+i)^{20}$$

14.
$$-1 + 0.1i$$
, $-1 - 0.1i$

$$|| r = \sqrt{3^2 + (\pm 4)^2} = S$$
Ary $z = \text{Circtan} \frac{\pm 4}{3}$

21-27 **ROOTS**

Find and graph all roots in the complex plane.

21.
$$\sqrt[3]{1+i}$$
 22. $\sqrt[3]{3+4i}$

22.
$$\sqrt[3]{3+4i}$$

$$2|x| = \sqrt{1+1} = \sqrt{2}$$

$$3\sqrt{1+1} = \sqrt[6]{2} \left(\cos \frac{\sqrt[4]{4} + 2\sqrt{2}}{3} + 1 \sin \frac{\sqrt{4} + 2\sqrt{2}}{3} \right)$$

$$Q = \frac{7}{12}, \qquad Q_1 = \frac{3}{4}, \qquad Q_2 = \frac{17}{12}$$
Are tights
$$\frac{1}{12}, \qquad \frac{1}{12}, \qquad \frac{$$

EQUATIONS

Solve and graph the solutions. Show details.

28.
$$z^2 - (6 - 2i)z + 17 - 6i = 0$$

29.
$$z^2 + z + 1 - i = 0$$

$$29 = \frac{1 \pm \sqrt{1 - 4 \cdot 1 \cdot (1 - i)}}{2}$$

Selected Problem set 13.3

13,3 1, 11, 15, 23

1-8 REGIONS OF PRACTICAL INTEREST

Determine and sketch or graph the sets in the complex plane given by

1.
$$|z+1-5i| \leq \frac{3}{2}$$

COMPLEX FUNCTIONS AND THEIR DERIVATIVE

10–12 Function Values. Find Re f, and Im f and their values at the given point z.

10.
$$f(z) = 5z^2 - 12z + 3 + 2i$$
 at $4 - 3i$

11.
$$f(z) = 1/(1-z)$$
 at $1-i$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x)^2 + iy^2} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x)^2 + iy^2} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{(1-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{f(-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{f(-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x) + iy} = \frac{1}{f(-x)^2 + iy^2}$$

$$\frac{f(z) = 1 - z}{f(-x)^2 + iy^2}$$

$$f(1-i) = \frac{1}{1-1+i} = \frac{1}{i}$$

= $\frac{1}{1-1+i} = \frac{1}{i}$
= $\frac{1}{1-1+i} = \frac{1}{i}$
Re $f(1-i) = 0$ Lon $f(1-i) = -1$

14–17 Continuity. Find out, and give reason, whether f(z) is continuous at z = 0 if f(0) = 0 and for $z \neq 0$ the function f is equal to:

14.
$$(\text{Re } z^2)/|z|$$

15.
$$|z|^2 \operatorname{Im} (1/z)$$

16.
$$(\text{Im } z^2)/|z|^2$$

17. (Re z)/
$$(1 - |z|)$$

$$\begin{aligned}
|Z|^2 &= X + iy \\
|Z|^2 &= X^2 + y^2 \\
&= Im \left(\frac{X - iy}{X + iy}\right) \\
&= \frac{X - iy}{(X + iy)(X - iy)} \\
&= \frac{-y}{X^2 + y^2} \\
|Z|^2 &= Im \left(\frac{1}{Z}\right) = -y \\
|Im \left(-y\right) = 0 = +10 \\
|Z \rightarrow 0|
\end{aligned}$$

Continuous

18.
$$(z-i)/(z+i)$$
 at i **19.** $(z-4i)^8$ at $=3+4i$

20.
$$(1.5z + 2i)/(3iz - 4)$$
 at any z. Explain the result.

21.
$$i(1-z)^n$$
 at 0

22.
$$(iz^3 + 3z^2)^3$$
 at $2i$ **23.** $z^3/(z+i)^3$ at i

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$\frac{(z_{0}+\Delta z)^{3}}{(z_{0}+\Delta z+i)^{3}} = \frac{z_{0}^{3}}{(z_{0}+\Delta z+i)^{3}}$$

$$= \frac{(z_{0}+\Delta z)^{3}(z_{0}+i)^{2}-z_{0}^{3}(z_{0}+\Delta z+i)^{3}}{(z_{0}+\Delta z+i)^{3}-z_{0}^{3}(z_{0}+\Delta z+i)^{3}}$$

$$= \frac{(z_{0}+\Delta z+i)^{3}(z_{0}+i)^{2}}{(z_{0}+\Delta z+i)^{3}-(z_{0}^{2}+\Delta z+z_{0}$$

$$\mathcal{B} = \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{2}$$

$$f'(20) = \frac{3z^{2}(2+i)^{3}-z^{3}\cdot 3(z+i)^{2}}{(z+i)^{6}} = \frac{z^{2}(3z+3i-3z)}{(z+i)^{4}}$$

$$= \frac{3z^{2}i}{(z+i)^{4}} + f'(i) = \frac{3\cdot(-1)\cdot i}{(2i)^{4}} = -\frac{3}{16}i$$

Selected Problem set 13.4

13.4 1.5, 15, 21, 23

1. Cauchy–Riemann equations in polar form. Derive (7) from (1).

2–11 CAUCHY-RIEMANN EQUATIONS

Are the following functions analytic? Use (1) or (7).

2.
$$f(z) = iz\overline{z}$$

3.
$$f(z) = e^{-2x} (\cos 2y - i \sin 2y)$$

$$4. f(z) = e^x (\cos y - i \sin y)$$

5.
$$f(z) = \text{Re}(z^2) - i \text{Im}(z^2)$$

$$u_x = v_y, \qquad \qquad u_y = -v_x$$

We mention that, if we use the polar form $z = r(\cos \theta + i \sin \theta)$ and set $f(z) = u(r, \theta) + iv(r, \theta)$, then the **Cauchy–Riemann equations** are (Prob. 1)

$$= \frac{1}{r} v_{\theta}, \qquad (r > 0).$$

$$= -\frac{1}{r} u_{\theta}$$

$$f(z) = U(Y,Q) + iV(f,Q)$$

$$U(Y,Q) = YCOSO$$

$$V(Y,Q) = YSMQ$$

$$U_{Y} = COSQ$$

$$V_{Y} = f_{Y}V_{Q}$$

$$\frac{\mathcal{V}_r = Sm0}{\mathcal{V}_{r0} = -YSm0} => \mathcal{V}_r = -\frac{1}{V}V_0$$

$$S = X + iy$$

 $Z^2 = (X^2 - y^2) + 2i X^y$

$$\mathcal{U} = \mathcal{Z}^2 = \chi^2 - y^2$$

$$\mathcal{V} = -\mathcal{Z}^2 = -2\chi y$$

$$U_X = 2X$$

$$Q_Y = -2X$$
 \Rightarrow NO

12–19 HARMONIC FUNCTIONS

Are the following functions harmonic? If your answer is yes, find a corresponding analytic function f(z) = u(x, y) + iv(x, y).

15.
$$u = x/(x^2 + y^2)$$

$$\frac{\partial U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = \frac{2x^2 - 6xy^2}{(x^2 + y^2)^2} + \frac{6xy^2 - 2x^3}{(x^2 + y')^2} = 0$$

harmonic.

$$U_{X} = \frac{(x^{2} + y^{2}) - \chi(2X)}{(x^{2} + y^{2})^{2}} = \frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}}$$

$$y = x \frac{-2y}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}$$

$$\int_{y}^{y} = \bigcup_{x} \chi = \frac{y^{2} - \chi^{2}}{(\chi^{2} + y^{2})^{2}}$$

$$\mathcal{O}_{X} = -\mathcal{O}_{y} = \frac{2Xy}{(X^{2}+y^{2})^{2}}$$

$$V = \sqrt{\left(y_1^2 + \chi y_2^2 - \frac{2\chi^2}{(y_1^2 + \chi^2)^2}\right)} dv$$

$$= -\frac{y}{y^2 + \chi^2} + h(x)$$

$$\sqrt{\lambda} = \frac{(\lambda_1 + \lambda_2)_3}{(\lambda_1 + \lambda_2)_3} + \frac{d\lambda}{d\lambda}$$

$$\frac{dh}{dx} = 0$$
 [et $h(x) = 0$

$$f(2) = N + i O = \frac{\chi}{\chi^2 + y^2} + i \left(\frac{\chi^2 + y^2}{\chi^2 + y^2} + C \right)$$

is real.

In answer's format, C is Imaginary

$$f(7) = \frac{1}{2} + C = \frac{x}{x^2 + y^2} + y \frac{-1}{x^2 + y^2} + C$$

21–24 Determine a and b so that the given function is harmonic and find a harmonic conjugate.

21.
$$u = e^{\pi x} \cos av$$
 \longrightarrow \bigvee not \bigvee

$$22. \ u = \cos ax \cosh 2y$$

23.
$$u = ax^3 + bxy$$

21.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 $\pi^2 e^{\pi x} \cos \alpha y - \alpha^2 e^{\pi x} \cos \alpha y = 0$
 $\alpha = \pm \pi \implies \cos \alpha y$
 $u_x = \pi \cdot e^{\pi x} \cos \alpha y$
 $u_y = -e^{\pi x} \cdot \alpha \cdot \sin \alpha y$
 $u_y = u_x = \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = -u_y = e^{\pi x} \cdot \alpha \cdot \sin \alpha y$
 $u_x = -u_y = e^{\pi x} \cdot \cos \alpha y$
 $u_x = -u_y = e^{\pi x} \cdot \cos \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \sin \alpha y + \sin \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^{\pi x} \cdot \cos \alpha y$
 $u_x = \pm \pi \cdot e^$

 $V = \pm e^{\pi x}$ sinay + C (Real)

$$\frac{\partial^{2}u}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} = 0$$

$$\frac{\partial(3ax^{2} + by)}{\partial x} + \frac{\partial(by)}{\partial y} = 0$$

$$6ax + 0 = 0$$

$$C = 0$$

$$U = b \times y$$

$$Ux = by$$

$$Uy = Ux = by$$

$$V = -bx$$

$$V = -bx$$

$$V = \frac{b}{2}y^{2} + h(x)$$

$$V = 0 + \frac{dh}{dx} = -bx$$

$$h(x) = -\frac{b}{2}x^{2} + C$$

$$V = \frac{b}{2}(y^{2} - x^{2}) + C$$