- Enunciado

D es la matriz que se obtiene como $D=3\cdot A\cdot C^{-1}+B^t$ siendo A,B,C las matrices: $A=\begin{pmatrix}1&2\\-3&4\end{pmatrix}B=\begin{pmatrix}-1&2\\-3&1\end{pmatrix}C=\begin{pmatrix}-1&2\\4&-2\end{pmatrix}$ La única opción que muestra los coeficientes de la matriz D es:

A)
$$D = \begin{pmatrix} 21 & -6 \\ 57 & -42 \end{pmatrix}$$

B)
$$D = \begin{pmatrix} 4 & -1 \\ 7 & 0 \end{pmatrix}$$

C)
$$D = \begin{pmatrix} -3 & 36 \\ 69 & 72 \end{pmatrix}$$

$$D) D = \begin{pmatrix} 5 & 2 \\ 2 & -1 \end{pmatrix}$$

Opción correcta: B)

Resolución

Para obtener los coeficientes de la matriz D, primero tenés que calcular la inversa de la matriz C y obtendrás los coeficientes $\begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{6} \end{pmatrix}$. Luego, tenés que calcular la matriz traspuesta de B y obtener $\begin{pmatrix} -1 & -3 \\ 2 & 1 \end{pmatrix}$. Y, con esas matrices, calcular $D = 3 \cdot A \cdot C^{-1} + B^t$.

- Enunciado

Si A, B, C son matrices de 3×3 tales que: det(B) = 3, A = 2B + BC y $C = \begin{pmatrix} 1 & -6 & 5 \\ 4 & 3 & 2 \\ -1 & 2 & -1 \end{pmatrix}$, elegí la única opción que muestra el determinante de la matriz A.

- A) 312
- B) 36
- C) 104
- D) 108

Opción correcta: A)

Resolución

Como la matriz B es un factor común en la igualdad A=2B+BC, podés expresar dicha matriz como $A=B(2\cdot I+C)$. Y, luego, aplicando las propiedades de los determinantes, calcular $det(A)=det(B)\cdot det(2\cdot I+C)$.

- Enunciado

Sea la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ con matriz: $A_T = \begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ Y sea el subespacio $S = \langle (-1;0;1); (-1;2;1) \rangle$ Indicá la única opción que muestra una base de T(S).

- A) $\{(-5; -1; -1); (5; 1; 1)\}$
- B) $\{(5;-1;-1);(5;1;1)\}$
- C) $\{(5;-1;-1);(5;1;1)\}$
- D) $\{(5;1;1)\}$

Opción correcta: B) o C)

Resolución

Para hallar T(S) hay que tener presente que es el subespacio cuyos generadores son: $\langle T(-1;0;1); T(-1;2;1)\rangle$. Entonces, hallamos cada uno de estos vectores generadores usando el dato de la matriz de T:

$$\begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix} \quad \mathbf{y} \quad \begin{pmatrix} -2 & 0 & 3 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}$$

Finalmente, podemos deducir que $T(S) = \langle (5; -1; -1); (5; 1; 1) \rangle$. Luego, una base de T(S) es $\{(5; -1; -1); (5; 1; 1)\}$.

- Enunciado

Sea la transformación lineal $T: \mathbb{R}^4 \to \mathbb{R}^3$ con expresión funcional: $T(x_1; x_2; x_3; x_4) = (-x_2 + x_3; -x_1 + x_3; -x_1)$ Indicá la opción que muestra una base del Nu(T):

- A) $\{(0;0;0)\}$
- B) $\{(0;0;0;1)\}$
- C) $\{(0;0;0;0);(0;0;0;1)\}$
- D) $\{(0;0;0;-1);(1;-1;-1;0)\}$

Opción correcta: B)

Resolución

El núcleo de una transformación lineal es aquel subespacio formado por todos los vectores del conjunto de partida de T cuya imagen es el vector nulo del espacio de llegada correspondiente. Por lo que para hallar estos vectores, planteamos: $T(x_1; x_2; x_3; x_4) = (-x_2 + x_3; -x_1 + x_3; -x_1) = (0; 0; 0)$. De aquí, mirando la segunda igualdad, igualamos coordenada a coordenada y nos queda un sistema de tres ecuaciones cuya solución es el conjunto de vectores buscado. Resolviendo el sistema se llega a que la solución es $x_1 = x_2 = x_3 = 0$ y no tenemos condiciones para x_4 por lo que podemos plantear que la solución del sistema es $(0;0;0;x_4)$ y concluímos que el $Nu(T) = \langle (0;0;0;1) \rangle$, entonces una base para este subespacio es $\{(0;0;0;1)\}$.

- Enunciado

Sean los complejos w = 1 - i y z = 2 + i. El argumento de $\frac{w^2}{z + \overline{z}}$ es

- A) π
- B) $\frac{3\pi}{2}$
- C) $\frac{\pi}{2}$
- D) π

Opción correcta: B)

Resolución

Para hallar argumento, primero debemos realizar la cuenta propuesta. Al realizar las operaciones obtenemos que el resultado es $-\frac{1}{2}i$. El argumento del complejo $-\frac{1}{2}i$ es $\frac{3\pi}{2}$.

- Enunciado

Dado el complejo $z=2\sqrt{3}-6i$ la única opción que muestra su forma polar es

- A) $4\sqrt{3} \cdot (\cos(\frac{\pi}{3}) + \sin(\frac{\pi}{3})i)$
- B) $48 \cdot (\cos(\frac{5\pi}{3}) + \sin(\frac{5\pi}{3})i)$
- C) $48 \cdot \left(\cos\left(\frac{\pi}{3}\right) + \sin\left(\frac{\pi}{3}\right)i\right)$
- D) $4\sqrt{3} \cdot \left(\cos\left(\frac{5\pi}{3}\right) + \sin\left(\frac{5\pi}{3}\right)i\right)$

Opción correcta: D)

Resolución

Para expresar el complejo en su forma polar, debemos hallar el módulo y el argumento. El módulo es la raíz cuadrada de la suma de los cuadrados de la parte real y la parte imaginaria: $4\sqrt{3}$. Para hallar el argumento, debemos calcular el arcotangente del cociente entre la parte imaginaria y la parte real, teniendo en cuenta en el cuadrante en que se encuentra el complejo. El argumento da $\frac{5\pi}{3}$. Luego la forma polar es $4\sqrt{3} \cdot (\cos(\frac{5\pi}{3}) + \sin(\frac{5\pi}{3})i)$.

- Enunciado

Dados los polinomios: $P(x) = x^6 - 8x^5 + 17x^4 - 16x^3 - 33x^2 + 504x - 945$ y Q(x) = x - 2 El resto de la división del polinomio P(x) por Q(x)es:

- A) 117
- B) -117
- C) 1728
- D) -1728

Opción correcta: B)

Resolución

Por el teorema del resto sabemos que el resto de P(x): Q(x) se calcula como P(2) = -117 pues x = 2 es raíz de Q.

- Enunciado

Sean los polinomios $P \in \mathbb{C}[X]$ y $Q \in \mathbb{R}[X]$ tales que $P(x) = (x^2 + 1)Q(x)$.

P tiene grado 5. Indicá la opción que muestra la cantidad de raíces complejas que puede tener como máximo Q.

- A) 0
- B) 1
- C) 2
- D) 3

Opción correcta: C)

Resolución

Como el grado de Q es tres y $Q \in \mathbb{R}[X]$, si tiene una raíz compleja entonces debe tener como raiz a su conjugada. Por lo tanto el máximo de raíces complejas es dos.