Cognome	Nome	Matricola
Cognotic	1101110	Widdicold

(Ingegneria Civile)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 24 aprile 2010

Esercizio 1. Si risponda alle seguenti domande (NOTA BENE: affinché il compito venga valutato è necessario rispondere correttamente ad almeno due delle seguenti tre domande):

- V F Un sistema di equazioni lineari (a coefficienti reali) può avere un insieme di soluzioni costituito da due vettori.
- V F Una funzione lineare trasforma sempre vettori linearmente indipendenti del suo dominio in vettori linearmente indipendenti del codominio.
- V F Affinché una matrice abbia rango 1, essa deve avere una sola riga.

Esercizio 2. Siano U e V sottospazi di \mathbb{R}^8 , con dim U=6 e dim V=5.

- \overline{V} F Se $U + V = \mathbb{R}^8$ allora \mathbb{R}^8 è somma diretta di U e V.
- \overline{V} F Se V non è contenuto in U allora $U + V = \mathbb{R}^8$.
- \overline{V} \overline{F} Deve necessariamente essere $3 \leq \dim(U \cap V) \leq 5$.

Esercizio 3. Si scriva il numero complesso $z = \frac{1+i^7}{(2+i)^2}$ nella forma a+ib.

Esercizio 4. Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori

$$u_1 = (2, 0, 1, -1), \quad u_2 = (1, 1, 2, 0), \quad u_3 = (4, -2, -1, -3),$$

e sia W il sottospazio vettoriale di \mathbb{R}^4 di equazione x + y + 2z = 0.

- (a) Si determini la dimensione e una base di U.
- (b) Si dica per quale valore di t il vettore v = (1 + t, 1, 3, -1) appartiene a U.
- (c) Si determinino le equazioni cartesiane di U.
- (d) Si determini la dimensione e una base di $U \cap W$.
- (e) Si determini la dimensione e una base di U+W.
- (f) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $f^{-1}(W) = U$ (la risposta deve essere adequatamente giustificata).

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo

$$f(1,0,1) = (3,0,6), \quad f(0,1,1) = (0,2,2), \quad f(1,1,0) = (1,4,6).$$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determini una base del nucleo e una base dell'immagine di f.
- (c) Si stabilisca se \mathbb{R}^3 è somma diretta di Ker(f) e di Im(f).
- (d) Si determini per quale valore di t il vettore $v_t = (2,3,t)$ appartiene all'immagine di f.
- (e) Per il valore di t trovato nel punto precedente si determini $f^{-1}(v_t)$.

Esercizio 6. Siano dati i vettori $v_1 = (1, 1, 1), v_2 = (2, 0, 1), v_3 = (1, 1, 3)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = 3v_1, f(v_2) = 2v_2, f(v_3) = 2v_3 + 2v_2$.

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determinino gli autovalori e gli autovettori di f.
- (c) Si verifichi che gli autospazi di f sono in somma diretta.

(Ingegneria Civile)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 24 aprile 2010

Esercizio 1. Si risponda alle seguenti domande (NOTA BENE: affinché il compito venga valutato è necessario rispondere correttamente ad almeno due delle seguenti tre domande):

- V F Affinché una matrice abbia rango 1, essa deve avere una sola riga.
- V F Un sistema lineare può avere il vettore nullo come soluzione.
- V F Una funzione lineare trasforma sempre vettori linearmente indipendenti del suo dominio in vettori linearmente indipendenti del codominio.

Esercizio 2. Siano U e V sottospazi di \mathbb{R}^8 , con dim U=6 e dim V=5.

- V F Se $U + V = \mathbb{R}^8$ allora \mathbb{R}^8 è somma diretta di U e V.
- [V] [F] Deve necessariamente essere $3 \leq \dim(U \cap V) \leq 5$.
- V F Se V non è contenuto in U allora $U + V = \mathbb{R}^8$.

Esercizio 3. Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori

$$u_1 = (0, 2, -1, 2), \quad u_2 = (1, 3, -1, 1), \quad u_3 = (-2, 0, -1, 4),$$

e sia W il sottospazio vettoriale di \mathbb{R}^4 di equazione 2x - y + z = 0.

- (a) Si determini la dimensione e una base di U.
- (b) Si dica per quale valore di t il vettore v = (1, 1 + t, -2, 3) appartiene a U.
- (c) Si determinino le equazioni cartesiane di U.
- (d) Si determini la dimensione e una base di $U \cap W$.
- (e) Si determini la dimensione e una base di U+W.
- (f) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $f^{-1}(W) = U$ (la risposta deve essere adequatamente giustificata).

Esercizio 4. Siano dati i vettori $v_1=(1,1,0),\ v_2=(0,2,1),\ v_3=(-1,1,3)$ e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ un'applicazione lineare tale che $f(v_1)=2v_1,\ f(v_2)=v_2,\ f(v_3)=v_3+2v_2.$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determinino gli autovalori e gli autovettori di f.
- (c) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 5. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo

$$f(1,1,0) = (4,-2,0), \quad f(0,-1,1) = (-4,3,2), \quad f(1,0,-1) = (2,-3,-4).$$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determini una base del nucleo e una base dell'immagine di f.
- (c) Si stabilisca se \mathbb{R}^3 è somma diretta di Ker(f) e di Im(f).
- (d) Si determini per quale valore di t il vettore $v_t = (t, 2, 1)$ appartiene all'immagine di f.
- (e) Per il valore di t trovato nel punto precedente si determini $f^{-1}(v_t)$.

Esercizio 6. Si scriva il numero complesso $z = \frac{2 - i^7}{(1 + 2i)^2}$ nella forma a + ib.

Cognome	Nome	Matricola
	rione	IIIGIIICOIG

(Ingegneria Civile)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 24 aprile 2010

Esercizio 1. Si risponda alle seguenti domande (NOTA BENE: affinché il compito venga valutato è necessario rispondere correttamente ad almeno due delle seguenti tre domande):

- V F Un sistema lineare può avere il vettore nullo come soluzione.
- V F Affinché una matrice abbia rango 1, essa deve avere una sola riga.
- V F Un sistema di equazioni lineari (a coefficienti reali) può avere un insieme di soluzioni costituito da due vettori.

Esercizio 2. Siano U e V sottospazi di \mathbb{R}^8 , con dim U=6 e dim V=5.

- V F Deve necessariamente essere $3 \leq \dim(U \cap V) \leq 5$.
- V F Se V non è contenuto in U allora $U + V = \mathbb{R}^8$.
- V F Se $U + V = \mathbb{R}^8$ allora \mathbb{R}^8 è somma diretta di U e V.

Esercizio 3. Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori

$$u_1 = (1, -1, 0, 2), \quad u_2 = (1, 0, -1, 1), \quad u_3 = (1, 3, -4, -2),$$

e sia W il sottospazio vettoriale di \mathbb{R}^4 di equazione x + 2y + w = 0.

- (a) Si determini la dimensione e una base di U.
- (b) Si dica per quale valore di t il vettore v = (1 + t, -1, 1, 1) appartiene a U.
- (c) Si determinino le equazioni cartesiane di U.
- (d) Si determini la dimensione e una base di $U \cap W$.
- (e) Si determini la dimensione e una base di U+W.
- (f) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $f^{-1}(W) = U$ (la risposta deve essere adequatamente giustificata).

Esercizio 4. Si scriva il numero complesso $z=\frac{2+i^5}{(3-i)^2}$ nella forma a+ib.

Esercizio 5. Siano dati i vettori $v_1 = (2,0,1), \ v_2 = (1,1,1), \ v_3 = (0,-1,1)$ e sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = -2v_1, \ f(v_2) = 2v_2, \ f(v_3) = 2v_3 - v_2$.

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determinino gli autovalori e gli autovettori di f.
- (c) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 6. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo

$$f(0,1,-1) = (-1,3,5), \quad f(1,1,0) = (-2,3,4), \quad f(-1,0,1) = (5,-2,1).$$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determini una base del nucleo e una base dell'immagine di f.
- (c) Si stabilisca se \mathbb{R}^3 è somma diretta di Ker(f) e di Im(f).
- (d) Si determini per quale valore di t il vettore $v_t = (0, -3, t)$ appartiene all'immagine di f.
- (e) Per il valore di t trovato nel punto precedente si determini $f^{-1}(v_t)$.

Cognome	_ Nome	_ Matricola

(Ingegneria Civile)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 24 aprile 2010

Esercizio 1. Si risponda alle seguenti domande (NOTA BENE: affinché il compito venga valutato è necessario rispondere correttamente ad almeno due delle seguenti tre domande):

- V F Una funzione lineare trasforma sempre vettori linearmente indipendenti del suo dominio in vettori linearmente indipendenti del codominio.
- V F Un sistema di equazioni lineari (a coefficienti reali) può avere un insieme di soluzioni costituito da due vettori.
- V F Data una matrice quadrata con determinante diverso da zero, scambiando due righe il determinante diventa uguale a zero.

Esercizio 2. Siano U e V sottospazi di \mathbb{R}^8 , con dim U=6 e dim V=5.

- V F Se V non è contenuto in U allora $U + V = \mathbb{R}^8$.
- \overline{V} F Se $U + V = \mathbb{R}^8$ allora \mathbb{R}^8 è somma diretta di U e V.
- V F Deve necessariamente essere $3 \le \dim(U \cap V) \le 5$.

Esercizio 3. Si scriva il numero complesso $z = \frac{1 - i^5}{(3 + i)^2}$ nella forma a + ib.

Esercizio 4. Sia $f:\mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo

$$f(1,-1,0) = (0,-4,4), \quad f(0,-1,1) = (-3,-1,-5), \quad f(1,0,1) = (1,1,1).$$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determini una base del nucleo e una base dell'immagine di f.
- (c) Si stabilisca se \mathbb{R}^3 è somma diretta di Ker(f) e di Im(f).
- (d) Si determini per quale valore di t il vettore $v_t = (-1, -2, t)$ appartiene all'immagine di f.
- (e) Per il valore di t trovato nel punto precedente si determini $f^{-1}(v_t)$.

Esercizio 5. Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori

$$u_1 = (3, -1, 2, 0), \quad u_2 = (1, 0, 2, -1), \quad u_3 = (3, -2, -2, 3),$$

e sia W il sottospazio vettoriale di \mathbb{R}^4 di equazione x - y + 2w = 0.

- (a) Si determini la dimensione e una base di U.
- (b) Si dica per quale valore di t il vettore v = (2, -1, t + 2, 1) appartiene a U.
- (c) Si determinino le equazioni cartesiane di U.
- (d) Si determini la dimensione e una base di $U \cap W$.
- (e) Si determini la dimensione e una base di U + W.
- (f) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $f^{-1}(W) = U$ (la risposta deve essere adequatamente giustificata).

Esercizio 6. Siano dati i vettori $v_1 = (-1, 1, 2), v_2 = (1, 0, -1), v_3 = (1, 3, 0)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = v_1, f(v_2) = 2v_2, f(v_3) = 2v_3 - 2v_2$.

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determinino gli autovalori e gli autovettori di f.
- (c) Si verifichi che gli autospazi di f sono in somma diretta.

Cognome	Nome	Matricola

(Ingegneria Civile)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 24 aprile 2010

Esercizio 1. Si risponda alle seguenti domande (NOTA BENE: affinché il compito venga valutato è necessario rispondere correttamente ad almeno due delle seguenti tre domande):

- V F Data una matrice quadrata con determinante diverso da zero, scambiando due righe il determinante diventa uguale a zero.
- V F Un sistema di equazioni lineari (a coefficienti reali) può avere un insieme di soluzioni costituito da due vettori.
- V F Affinché una matrice abbia rango 1, essa deve avere una sola riga.

Esercizio 2. Siano U e V sottospazi di \mathbb{R}^8 , con dim U=6 e dim V=5.

- V F Se V non è contenuto in U allora $U + V = \mathbb{R}^8$.
- V F Deve necessariamente essere $3 \le \dim(U \cap V) \le 5$.
- [V] [F] Se $U + V = \mathbb{R}^8$ allora \mathbb{R}^8 è somma diretta di U e V.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo

$$f(-1, -1, 0) = (-5, -6, -4), \quad f(1, 0, -1) = (3, 2, 4), \quad f(0, 1, -1) = (6, 2, 10).$$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determini una base del nucleo e una base dell'immagine di f.
- (c) Si stabilisca se \mathbb{R}^3 è somma diretta di Ker(f) e di Im(f).
- (d) Si determini per quale valore di t il vettore $v_t = (0, 2, t)$ appartiene all'immagine di f.
- (e) Per il valore di t trovato nel punto precedente si determini $f^{-1}(v_t)$.

Esercizio 4. Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori

$$u_1 = (0, -1, 3, 2), \quad u_2 = (2, -1, 1, 0), \quad u_3 = (-6, 1, 3, 4),$$

e sia W il sottospazio vettoriale di \mathbb{R}^4 di equazione 2x + y + z = 0.

- (a) Si determini la dimensione e una base di U.
- (b) Si dica per quale valore di t il vettore v = (2, t 3, -2, -2) appartiene a U.
- (c) Si determinino le equazioni cartesiane di U.
- (d) Si determini la dimensione e una base di $U \cap W$.
- (e) Si determini la dimensione e una base di U+W.
- (f) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $f^{-1}(W) = U$ (la risposta deve essere adequatamente giustificata).

Esercizio 5. Si scriva il numero complesso $z = \frac{3-i^9}{(2-i)^2}$ nella forma a+ib.

Esercizio 6. Siano dati i vettori $v_1=(0,2,1),\ v_2=(1,1,-1),\ v_3=(-1,1,0)$ e sia $f:\mathbb{R}^3\to\mathbb{R}^3$ un'applicazione lineare tale che $f(v_1)=-3v_1,\ f(v_2)=v_2,\ f(v_3)=v_3-2v_2.$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determinino gli autovalori e gli autovettori di f.
- (c) Si verifichi che gli autospazi di f sono in somma diretta.

(Ingegneria Civile)

PROF. F. BOTTACIN, B. CHIARELLOTTO

1^a Prova di accertamento — 24 aprile 2010

Esercizio 1. Si risponda alle seguenti domande (NOTA BENE: affinché il compito venga valutato è necessario rispondere correttamente ad almeno due delle seguenti tre domande):

- V F Una funzione lineare trasforma sempre vettori linearmente indipendenti del suo dominio in vettori linearmente indipendenti del codominio.
- V F Un sistema lineare può avere il vettore nullo come soluzione.
- V F Affinché una matrice abbia rango 1, essa deve avere una sola riga.

Esercizio 2. Siano U e V sottospazi di \mathbb{R}^8 , con dim U=6 e dim V=5.

- [V] [F] Deve necessariamente essere $3 \leq \dim(U \cap V) \leq 5$.
- |V||F| Se V non è contenuto in U allora $U+V=\mathbb{R}^8$.

Esercizio 3. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita ponendo

$$f(0,1,1) = (4,-3,5), \quad f(-1,0,1) = (5,-5,5), \quad f(-1,1,0) = (3,-4,2).$$

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determini una base del nucleo e una base dell'immagine di f.
- (c) Si stabilisca se \mathbb{R}^3 è somma diretta di Ker(f) e di Im(f).
- (d) Si determini per quale valore di t il vettore $v_t = (4, t, 4)$ appartiene all'immagine di f.
- (e) Per il valore di t trovato nel punto precedente si determini $f^{-1}(v_t)$.

Esercizio 4. Siano dati i vettori $v_1 = (1, 0, -1), \ v_2 = (-2, 1, 1), \ v_3 = (0, 1, 2)$ e sia $f : \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare tale che $f(v_1) = v_1, \ f(v_2) = 3v_2, \ f(v_3) = 3v_3 + v_2$.

- (a) Si scriva la matrice di f rispetto alle basi canoniche.
- (b) Si determinino gli autovalori e gli autovettori di f.
- (c) Si verifichi che gli autospazi di f sono in somma diretta.

Esercizio 5. Sia U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori

$$u_1 = (2, -1, 0, 3), \quad u_2 = (1, 0, -1, 3), \quad u_3 = (1, -2, 3, -3),$$

e sia W il sottospazio vettoriale di \mathbb{R}^4 di equazione x + y - 2w = 0.

- (a) Si determini la dimensione e una base di U.
- (b) Si dica per quale valore di t il vettore v = (1, 1 + t, 1, 0) appartiene a U.
- (c) Si determinino le equazioni cartesiane di U.
- (d) Si determini la dimensione e una base di $U \cap W$.
- (e) Si determini la dimensione e una base di U+W.
- (f) Si dica se esiste una funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ tale che $f^{-1}(W) = U$ (la risposta deve essere adequatamente giustificata).

Esercizio 6. Si scriva il numero complesso $z = \frac{3+i^9}{(1-2i)^2}$ nella forma a+ib.