Physics 4310 Homework #10

3 problems Due by Friday, April 15

1.

Write the wavefunction $\psi(x_1, x_2)$ of two non-interacting particles in a harmonic oscillator (see chapter 2.3, particularly equations 2.59 and 2.62) in the lowest possible energy eigenstate, if the particles are

- (a) ... distinguishable particles
- (b) ... bosons
- (c) ... fermions.

2.

Suppose I have two noninteracting particles of mass m in the infinite square well. How much larger is the square separation distance $\langle (x_1 - x_2)^2 \rangle$ if they are identical fermions, than if they are distinguishable particles?

3.

Consider the potential of evenly-spaced delta functions $V(x) = \alpha \sum_{j=0}^{N-1} \delta(x-ja)$ in a system with periodic boundary conditions $\psi(x+Na)=\psi(x)$. In class we said/will say that

$$\psi(x) = A\sin kx + B\cos kx, \qquad 0 < x < a$$

- and that $\psi(x+a) = e^{iKa}\psi(x)$ where $K = \frac{2\pi n}{Na}$ for some integer n. (a) Write the wavefunction $\psi(x)$ for the region -a < x < 0. (This is in the book but it's worth working it out on your own, with the book as reference.)
- (b) Use the boundary conditions at x = 0 to show that

$$\cos Ka = \cos z + \beta \frac{\sin z}{z}$$

1

where $\beta = \frac{m\alpha a}{\hbar^2}$ and z = ka.