EDAN20 - Lab 2

André Frisk - an8218fr-s

September 2021

Language Models

This lab teaches the student about language models and a more introduction to regular expressions. The previous lab used regular expressions in the introduction part, however in this lab the student must write own regular expressions to be used later on when creating bigrams and unigrams when trying to compute the probability of a sentence and to guess the best candidate for a sentence or a word to be written.

Regular expression function

This function is used primarily as a preparation before inserting the list of words in the prediction functions and unigram and bigram further on. This function firstly creates a regular expression sequence_boundaries, that matches a punctuation, a sequence of spaces and a uppercase letter, in other words a end of a sentence. When this regular expression is matched it should be replaced with sentence_markup which inserts a <s> at the beginning of a sentence and </s> at the end and with the text in between. As the regular expression checks for the end of a sentence the beginning and the end of the text does not have these signs, so they are added manually. Then the newlines are swapped with a blank space and punctuation is removed and the text is set to lowercase. This text is then split so that every word is separated and inserted in a list.

```
def segment_sentences(text):
    sentence_boundaries = r"([.:;?!]\s+(\p{Lu}))+"
    sentence_markup = r" </s>\n<s> \2"
    text = re.sub(sentence_boundaries, sentence_markup, text)
    text = "<s> " + text + " </s>"
    text = re.sub(r"\s+", ' ', text)
    text = re.sub("[.:;?!]",'', text)
    return text.lower()
```

Computing the likelihood of a sentence

Unigrams

The text that was used in the regular expression function above is inserted into unigrams which computes a sentence's probability using unigram frequency (separate list of number of times a word appears). This table that is seen in the Appendix consists of several parts: the words sent in to the function, the frequency of that specific word in the text, how many words that there are in total in the text and the probability of that specific word to appear. To calculate the probability of a word just take the frequency of that word divided by the total amount of words in the text. In the unigrams we calculate four other variables:

- Probability unigram: with a probability starting at 1, every probability of the sent in sentence is multiplied to this starting probability
- Geometric mean probability: is the average rate of return of a set of values calculated using the products of the terms. It takes several values and multiplies them together and sets them to the $\frac{1}{n}$ th power. This is done taking the total probability of the unigram and to the power of the $\frac{1}{sentence-length}$.
- Entropy rate: computes the per word probability of a word sequence, the lower the better.
- Perplexity: a measurement of how well a probability distribution predicts a sample. A low perplexity indicates the probability distribution is good at predicting the sample.

Bigrams

The text that was used in the regular expression function above is inserted into bigrams which computes a sentence's probability using the frequency from unigram and bigram (number of times two words appear after each other, for example 'nils' 'holgersson', which appears 6 times). Using bigrams that is at the start of a sentence a <s> is inserted at the beginning of the sentence in these test cases. This table that is seen in the Appendix consists of several parts that are a bit different from the unigram table (except the four variables appearing after the table as in the unigrams table, total probability, geometric mean etc.):

- wi: the sentence sent in
- wi+1: the sentence sent in but one word forward
- Ci,i+1: how many times this combination of two words appear in the text, for example 'en gång'
- C(i): number of appearances of the word checked in wi
- P(wi+1|wi): conditional probability, if the events of wi occurred then then this is the probability of A under the condition B. For example, the probability of that a person has a cough is quite low, however if the person is sick the probability is higher, P(cough|sick)

Online prediction of words

The program is supposed to handle two cases, to predict the next word in a sentence and to predict the current word the user is currently typing in. To handle this more efficient a trigrams is created which takes the regular expression text from above into the trigrams function and creates a dictionary. It counts the amount of times three words appear after each other. For example if the call to the trigram frequencies with ('det', 'var', 'en') is done then the dictionary will print out 330 as these three words appear after each other 330 times in Selma.txt

A program is written to rank the five first candidates to a word that is currently being written at the start of a sentence, using the bigram frequencies.

```
current_word_predictions_1 = []
freqlist = list(frequency_bigrams.items())
candidates = [word for word in freqlist if word[0][0]
== '<s>' and word[0][1].startswith(starting_text)]
sorted_candidates = sorted(candidates, key = lambda word : (-word[1],word[0][1]))
current_word_predictions_1 = [x[0][1] for x in sorted_candidates[0:cand_nbr]]
```

This program takes the bigram frequencies and puts the words that starts with <s> the input word (for example 'de'). The program will then sort the highest frequency first of these words and print out which five words that could be the possible word that the user is typing in.

The next program works similar to the previous program but it predicts the next possible word in the sentence written using the trigram frequencies.

```
next_word_predictions = []
trigramfreqlist = list(frequency_trigrams.items())
candidates1 = [word for word in trigramfreqlist if word[0][0]
== tokens[1] and word[0][1] == tokens[2]]
sorted_candidates1 = sorted(candidates1, key = lambda word : (-word[1],word[0][2]))
candidates_5 = sorted_candidates1[0:5]
next_word_predictions = [word[0][2] for word in candidates_5]
```

The program goes through the trigram frequencies list and checks if the two last words in the sentence sent in is matched with the current word in the trigram list, if it is it takes the third word that appears after these two last words in the sentence and puts in into a list which then is sorted to show the highest frequent word first. The list with the five next possible words is printed out.

The last program also works as the previous two programs but combined. Here a sentence is sent in and a word which is currently being written, the program shall then predict the current possible candidate using the trigram frequencies and the functionality of the two other program in this section. The program checks the current word in trigram frequencies and checks if the last two words is equal to the one being checked and checks all the words in this trigram frequency list that also start with the letters that are currently being written. This returns a list of the five possible candidates that goes well with this sentence.

Peter Norvig's notebook: segmentation

The string used was

"what will you do to day after school imight go seemy grand mother ather house but after that imight study". The result was the following:

segment(): ['what', 'will', 'youdotodayaftersc', 'hoolimightgoseemy', 'grandmother', 'atherhousebutaft', 'erthatimightstudy']

```
segment2(): ['what', 'will', 'you', 'do', 'today', 'after', 'school', 'i', 'might', 'go', 'see', 'my', 'grandmother', 'at', 'her', 'house', 'but', 'after', 'that', 'i', 'might', 'study'].
```

As seen of the result segment2() handled it perfectly while segment() did not. This is because segment() takes the maximum candidate in Pwords of these words, if these words that are scrambled together doesn't have a high probability and can't be found then a correct segmentation of text can't be found. segment2() however, uses bigram modeling which checks both the lists P2w and P1w to gain a conditional probability which checks the current and previous word together. This makes it easier for the program to compare words and find a better word for the segmentation. This works about the same as above with bigrams as it checks the previous words and tries to check in which word it could be to create a fully restored and logical sentence using probability.

Appendix

In this appendix the tables for the unigrams and bigrams are shown with the caption of the figures being the text that was tested with these functions.

======			
wi	C(wi)	#words	P(wi)
======			
det	21108	1041518	0.020266572445219382
var	12090	1041518	0.011608056701852488
en	13514	1041518	0.0129752918336505
gång	1332	1041518	0.0012789025249683634
en	13514	1041518	0.0129752918336505
katt	16	1041518	1.5362192492112473e-05
som	16288	1041518	0.0156387119569705
hette	97	1041518	9.313329198343188e-05
nils	87	1041518	8.353192167586158e-05
	59033	1041518	0.05667976933667973
======			

Prob. unigrams: 5.366006871766503e-27 Geometric mean prob.: 0.0023602886742622193 Entropy rate: 8.378943970226945e-05

Perplexity: 423.67698955831355

Figure 1: Unigram: det var en gång en katt som hetter nils </r>

======		=======	=======	==========	===
wi	wi+1	Ci,i+1	C(i)	P(wi+1 wi)	
======			=======	=========	===
<s></s>	det	5672	59033	0.09608185252	3165
det	var	3839	21108	0.18187417093	04529
var	en	712	12090	0.05889164598842	20185
en	gång	706	13514	0.052242119283	705785
gång	en	20	1332	0.01501501501501	5015
en	katt	6	13514	0.00044398401657	54033
katt	som	2	16 0.	125	
som	hette	45	16288	0.00276277013	7524558
hette	nils	0	97	0 *backoff:	8.353192167586158e-05
nils		2	87 0	.022988505747126	436
======					

Prob. unigrams: 2.376829134050061e-19 Geometric mean prob.: 0.013727763740747877

Entropy rate: 6.186759560859045 Perplexity: 72.84507650956418

Figure 2: Bigram: det var en gång en katt som hetter nils </s>

======	======	======	======	====	======	======	=====	
wi	C(wi)	#W	ords	Р(wi)			
======	======		======	====	======	======	=====	
<s></s>	59033	1	041518		0.056679	7693366	57973	
se	1989	104	1518	0.	00190971	2554175	5732	
på	14250	10	41518	0	.0136819	5268828	37672	
nils	87	104	1518	8.	35319216	7586158	Be-05	
holgers	son	66	10415	18	6.33	6904402	2996396e	-05
tummeto	tt	110	10415	18	0.00	0105619	507338327	7326
	5903	3 :	1041518		0.05667	9769336	567973	

Prob. unigrams: 4.69275378876932e-20 Geometric mean prob.: 0.0017329075567666542 Entropy rate: 6.164860053134522e-05

Perplexity: 577.0648273159188

Figure 3: Unigram: se på nils holgersson tummetot
t $<\!/\mathrm{s}\!>$

=====							
wi	wi+1	Ci,i+1	C(:	i)	P(wi+1 wi))	
<s></s>	<s></s>	0	59033	0	======= *backoff:	0.05667976933667973	
<s></s>	se	196	59033	0.0	0033201768502	2363086	
se	på	167	1989	0.08	3961789844142	278	
på	nils	4	14250	0.00	0028070175438	359649	
nils	holg	ersson	66	87	0.75862068	396551724	
holger	sson	tummetott		1	66 0.0151	1515151515152	
tummet	ott		22	110	0.2		
=====							

Prob. unigrams: 1.0195930098944588e-11 Geometric mean prob.: 0.026901423668097765

Entropy rate: 5.2161736651506265 Perplexity: 37.172753841496274

Figure 4: Bigram: se på nils holgersson tummetot
t $<\!/\mathrm{s}\!>$

======	========	========	=======================================		
wi	C(wi)	#words	P(wi)		
======	========		=======================================		
pojken	1028	1041518	0.0009870208676182265		
sprang	201	1041518	0.00019298754318216295		
genast	508	1041518	0.0004877496116245711		
fram	2019	1041518	0.0019385166650984428		
till	9139	1041518	0.008774692324088494		
katten	40	1041518	3.8405481230281185e-05		
	59033	1041518	0.05667976933667973		
=======================================					

Prob. unigrams: 3.4401332589183384e-21 Geometric mean prob.: 0.0011930361666639812 Entropy rate: 6.526821960022392e-05

Perplexity: 838.1975567398285

Figure 5: Unigram: pojken sprang genast fram till katten </s>

wi	wi+1	Ci,i+1	C(i)	P(wi+1 wi)		
======	=======	========	======			
<s></s>	pojken	282	59033	0.0047769891416665254		
pojken	sprang	8	1028	0.007782101167315175		
sprang	genast	3	201	0.014925373134328358		
genast	fram	14	508	0.027559055118110236		
fram	till	514	2019	0.254581475978207		
till	katten	3	9139	0.000328263486158223		
katten		4	40 0	.1		

Prob. unigrams: 1.2778798572899351e-13 Geometric mean prob.: 0.014390305155136167

Entropy rate: 6.118759004150039 Perplexity: 69.4912296312967

Figure 6: Bigram: pojken sprang genast fram till katten </s>

wi	C(wi)	#words	P(wi)		
=======	=======	========	=======================================		
katten	40	1041518	3.8405481230281185e-05		
svarade	450	1041518	0.00043206166384066334		
inte	11355	1041518	0.01090235598424607		
genast	508	1041518	0.0004877496116245711		
	59033	1041518	0.05667976933667973		

Prob. unigrams: 5.001316165884923e-15 Geometric mean prob.: 0.0013798022919385496

Entropy rate: 4.561285893589806e-05

Perplexity: 724.7415124923822

Figure 7: Unigram: katten svarade inte genast </s>

wi	wi+1	Ci,i+1	C(i)	P(wi+1 wi)	
======		========	======	==========	
<s></s>	katten	5	59033	8.469838903664053e-05	
katten	svara	de 1	40	0.025	
svarade	inte	22	450	0.0488888888888889	
inte	genast	18	11355	0.001585204755614267	
genast		52	508	0.10236220472440945	
======		=======	======	==========	

Prob. unigrams: 1.679771945792321e-11 Geometric mean prob.: 0.0069992267727963554

Entropy rate: 7.158588732985637 Perplexity: 142.87292474743987

Figure 8: Bigram: katten svarade inte genast </s>

======			
wi	C(wi)	#words	P(wi)
======	=======		
men	8144	1041518	0.00781935597848525
i	16501	1041518	0.015843221144521746
sitt	1070	1041518	0.0010273466229100217
eget	130	1041518	0.00012481781399841386
liv	362	1041518	0.00034756960513404475
såg	2284	1041518	0.0021929529782490557
hon	13313	1041518	0.012782304290468336
ingen	1593	1041518	0.0015294982899959483
mening	155	1041518	0.0001488212397673396
	59033	1041518	0.05667976933667973

Prob. unigrams: 1.9967803274089886e-27 Geometric mean prob.: 0.002138124691804367 Entropy rate: 8.515876147722111e-05

Perplexity: 467.6995704848711

Figure 9: Unigram: men i sitt eget liv såg hon ingen mening </s>

======					
wi	wi+1	Ci,i+1	C(i)	P(wi+1 wi)	
======		======		=======================================	
<s></s>	men	3824	59033	0.06477732793522267	
men	i	172	8144 0	.02111984282907662	
i	sitt	150	16501	0.009090358160111509	
sitt	eget	51	1070	0.04766355140186916	
eget	liv	9	130 0	.06923076923076923	
liv	såg	1	362 0.0	0027624309392265192	
såg	hon	105	2284	0.04597197898423818	
hon	ingen	13	13313	0.0009764891459475701	
ingen	mening		1 1593	0.0006277463904582549	
mening		31	1 155	0.2	

Prob. unigrams: 6.3892007025688715e-19 Geometric mean prob.: 0.015154606115654707

Entropy rate: 6.044099834345083 Perplexity: 65.9865385064017

Figure 10: Bigram: men i sitt eget liv såg hon ingen mening </s>

======			
wi	C(wi)	#words	P(wi)
======	=======		
han	21589	1041518	0.020728398357013515
hade	13198	1041518	0.012671888531931278
butik	2	1041518	1.920274061514059e-06
inne	419	1041518	0.0004022974158871954
i	16501	1041518	0.015843221144521746
staden	196	1041518	0.0001881868580283778
	59033	1041518	0.05667976933667973

Prob. unigrams: 3.429086169560137e-20 Geometric mean prob.: 0.0016569568538666113 Entropy rate: 6.208316873977394e-05

Perplexity: 603.516016525378

Figure 11: Unigram: han hade butik inne i staden </r>

======		=======		=======================================
wi	wi+1	Ci,i+1	C(i)	P(wi+1 wi)
======		=======		=======================================
<s></s>	han	5059	59033	0.08569783002727288
han	hade	2044	21589	0.09467784519894391
hade	butik	1	13198	7.576905591756326e-05
butik	inne	1	2 0.5	i
inne	i	214	419 0.5	107398568019093
i	staden	29	16501	0.0017574692442882249
staden		53	196	0.27040816326530615
		=======		

Prob. unigrams: 7.46083358123965e-11 Geometric mean prob.: 0.03574829524595414 Entropy rate: 4.8059817450543125

Perplexity: 27.973361893758454

Figure 12: Bigram: han hade butik inne i staden </s>