

Team 23: Retail

MEET THE TEAM

\$\$

SANCHITA GODSE

GEETHASREE NAGARAJU

AGENDA

4/4	
75	

Introduction	A little bit about the topic.
Our Problem	Why we chose this topic and what we hope to achieve.
ERD and Explanation	Entities and relationships we created.
Reports	5 Reports
Conclusion	Final Outcome of our Project.

01

Introduction

WHY RETAIL?

Retail refers to the sale of products to consumers for domestic or personal use. Since retail is an important part of the economy and retail business performance has a big impact on the development and prosperity of a region, hence we were interested in studying this topic.

02

Our Problem

Retail Database Construction Challenge

The retail industry significantly impacts the economy and regional development, making it crucial to optimize operations and gain insights into customer behavior. To achieve this, a retail chain operating across the country aims to streamline its data management processes. However, constructing a comprehensive retail database is complex and challenging. It must accurately capture entity types such as customers, orders, products, suppliers, stores, inventory, employees, and promotions, while adhering to industry best practices and relevant regulations. The challenge is to construct an efficient and comprehensive retail database that provides valuable insights into customer behavior and operational efficiency.

03 ERD

Explanations

Entity Explanation

Customer Entity

customer_id
first_name, last_name
email_address, phone_number

Orders Entity

order_id n_items mode_of_delivery customer_id, salesperson_id

Order details Entity

order_id, product_id date_time store_id selling_price

Sales_person

salesperson_id contact_salesperson n_deals_success

Product

product_id price weight, color category_id

Product_Supplier

product_id, supplier_id brand_name n_supplied date_supplied

Entity Explanation

<u>Supplier</u>

supplier_id supplier_name contact_supplier

Store

store_id state pincode

Category

category_id category_name subcategory_name

Employee

employee_id employee_position employee_salary store_id

Store_Inventory

store_id product_id n_left min_stock

Offers

offer_id offer_type percentage_off

Store Promotions

store_id offer_id category_id offer_validity_days offer_start_date

04 Reports

Report 1: Sales analysis by store

SQL Code:

```
SELECT
    order details.store id as STORE,
    store_details.pincode as PINCODE,
    count(order details.product id) as "Total Products Sold",
    sum(order details.selling price) as "Total Sale",
    store details.employee_cnt as "Total Employee Count"
FROM
order details JOIN
            (SELECT s.store_id, s.pincode, count(e.employee_id) as employee_cnt
             FROM store s JOIN employee e on s.store id = e.store id
             GROUP BY s.store id) as store details
ON order details.store id = store details.store id
WHERE order details.date time > '2022-04-07'
GROUP BY order details.store id
ORDER BY "Total Sale" DESC:
```

Business value:

- (i) which store is generating the highest sales?
- (ii) is the employee count at each of the stores affecting the sales?

Output:

**STORE	¹²³ PINCODE *	123 Total Products Sold	•	¹²³ Total Sale	¹²³ Total Employee Count	•
ST1	6,103		7	775		8
ST2	10,001		2	210		6
ST3	90,001		3	375		4
ST4	75,001		4	360		2
ST3	90,001		3	375		2

Report 2: Customer purchase behavior patterns

SQL Code:

```
SELECT
    store orders.store id, orders.customer id,
    SUM(store orders.selling price) as "Total Sale",
    SUM(CASE WHEN MONTH(store orders.date time) IN (1,2,3,4)
             THEN store orders.selling price ELSE @ END) AS first quarter sale,
    SUM(CASE WHEN MONTH(store_orders.date_time) IN (5,6,7,8)
             THEN store_orders.selling_price ELSE @ END) AS second_quarter_sale,
    SUM(CASE WHEN MONTH(store_orders.date_time) IN (9,10,11,12)
             THEN store orders.selling price ELSE @ END) AS third quarter sale
FROM orders JOIN (
                SELECT order id, store id,
                SUM(selling price) AS selling price, date time
                FROM order details
                WHERE store id = 'ST1'
                GROUP BY order id
                UNION
                SELECT order id, store id,
                SUM(selling price) AS selling price, date time
                FROM order details
                WHERE store id = 'ST2'
                GROUP BY order id
                ) AS store orders
ON orders.order_id = store_orders.order_id
GROUP BY orders.customer id
ORDER BY SUM(store orders.selling price) DESC
LIMIT 5:
```

Business value:

- (i) Is there a pattern in purchase behaviour of top customers in a year?
- (ii) can business provide customized promotions to its valuable customers in particular season? (individual marketing decisions)

Output:

store_id *	[®] customer_id ▼	Total Sale	123 first_quarter_sale	second_quarter_sale	third_quarter_sale
ST1	₫ 2	475	200	275	0
ST1	☑ 1	425	425	0	0
ST2	₫ 3	210	0	210	0
ST2	☑ 5	125	50	75	0
ST2	☑ 4	110	110	0	0

Report 3: Inventory management and tracking of product stock levels and reordering

SQL Code:

```
SELECT
    store_inventory.store_id,store_inventory.product_id, product_supplier_summ.supplier_cnt,
    (product_supplier_summ.total_supplied_stock - store_inventory.n_left) /
     DATEDIFF(now(), product_supplier_summ.date_supplied) AS move_out_rate
FROM store inventory JOIN
            (SELECT product id,
             COUNT(supplier_id) AS supplier_cnt,
             SUM(n_supplied) AS total_supplied_stock,
             MIN(date_supplied) AS date_supplied
             FROM product supplier
             GROUP BY product id) AS product supplier summ
ON store_inventory.product_id = product_supplier_summ.product_id
WHERE store_inventory.n_left < store_inventory.min_stock</pre>
ORDER BY store_inventory.store_id, 4 DESC;
```

Output:

	Busi	iness	va	lue:
--	------	-------	----	------

(i) what products are currently out of stock

(ii) what is the move out rate of each of these products? which products are in high demand?

(iii) better inventory planning can reduce cost and lead to profits in long run

	store_id	product_id	123 supplier_cnt	•	¹²³ move_out_rate
	ST1	10004		2	10.0112
	ST1	10001		2	3.8265
	ST1	10007		2	2.065
	ST1	10010		2	1.0392
	ST1	10005		2	0.9336
	ST1	10009		2	0.84
	ST1	10002		2	0.6572
	ST1	10003		2	0.5867
	ST2	10004		2	9.9551
1	ST2	10008		2	2.2513
	ST2	10007		2	2.0569
	ST2	10010		2	1.0442
	ST2	10006		2	1.0065
	ST2	10005		2	0.9281
	ST2	10009		2	0.8425
	ST2	10002		2	0.6564
-	ST2	10003		2	0.5933

Report 4: Impact of promotions on sales

SQL Code:

```
SELECT
    store_promotion.store_id, store_promotion.category_id,
    store promotion.offer id, COUNT(order details.product id) as "Products Sold",
    SUM(CASE WHEN order_details.date_time BETWEEN
        DATE_SUB(store_promotion.offer_start_date, INTERVAL store_promotion.offer_validity_days DAY)
       AND store promotion.offer start date THEN order details.selling price
        ELSE 0 END) AS prior_offer_sales,
    SUM(CASE WHEN order_details.date_time BETWEEN store_promotion.offer_start_date
    AND DATE ADD(store promotion.offer start date, INTERVAL store promotion.offer validity days DAY)
       THEN order details.selling price
        ELSE 0 END) AS during offer sales,
    SUM(CASE WHEN order details.date time BETWEEN
        DATE_ADD(store_promotion.offer_start_date, INTERVAL store_promotion.offer_validity_days_DAY)
       AND DATE_ADD(store_promotion.offer_start_date, INTERVAL 2*store_promotion.offer_validity_days DAY)
        THEN order details.selling price
        ELSE 0 END) AS post offer sales
FROM store promotion
JOIN product ON store promotion.category id = product.category id
JOIN order details ON product.product id = order details.product id
GROUP BY store_promotion.store_id, store_promotion.category_id,
store promotion.offer id;
```

Business value:

- (i) Is an offer more effective than other on a specific category and a store?
- (ii) are there any offers that are not effective?

Output:

store_id	category_id	offer_id	123 Products Sold	-	prior_offer_sales	¹²³ during_offer_sales	123 post_offer_sales
ST1	A1	O1		6	200	350	0
ST1	A1	O2		6	200	350	0
ST1	A2	O3		8	0	0	110
ST1	A3	O1		4	0	0	0
ST1	A3	O3		4	0	0	0
ST1	A4	O2		2	0	0	200
ST2	A1	O2		6	0	100	175
ST2	A2	O3		8	585	185	0
ST2	A3	O3		4	0	0	0
ST2	A4	O1		2	0	0	200
ST2	A4	O2		2	0	0	О
ST2	A4	O3		2	0	0	0
ST3	A2	O2		8	0	110	75
ST3	A2	O3		8	0	110	110
ST3	A3	O1		4	345	0	0
ST3	A3	O2		4	0	0	0
ST4	A1	O1		6	200	350	0
ST4	A1	O2		6	0	0	175
ST4	A1	O3		6	200	350	0
ST4	A1	O4		6	0	275	75

Report 5: Discount optimization for Short and Long Duration Offers by Category

SQL Code:

```
SELECT
    store_promotion.category_id, category.category_name,
    AVG(CASE WHEN store_promotion.offer_validity_days < 15
             THEN offer.percentage_off ELSE @ END) AS discount_avg_short_duration,
    AVG(CASE WHEN store promotion.offer validity days >= 15
             THEN offer.percentage off ELSE @ END) AS discount avg long duration
FROM store promotion
JOIN offer ON store_promotion.offer_id = offer.offer_id
JOIN category ON store promotion.category id = category.category id
GROUP BY store_promotion.category_id;
```

Business value:

- (i) what are the optimal discount percentages of short and long duration offers per category?
- (ii) can business adjust its discounts as per its competetors to maximize benefit?

Output:

category_id *	category_name	discount_avg_short_duration	discount_avg_long_duration
A1	Clothing	2.8571	17.8571
A2	Electronic	7.5	20
A3	Home	13	9
A4	Beauty	0	21.25

05

Conclusion

Business Recommendations

- Implement Predictive Analytics to forecast demand, identify trends, and optimize inventory levels. This will help the business make data-driven decisions and improve supply chain management.
- Monitor Performance: Track key performance indicators (KPIs), such as sales, customer retention, and inventory turnover, using the system. This will help the business measure its progress and identify areas for improvement.

Thank You!