Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 (Currently Amended). A compound of formula (I) or a pharmaceutically acceptable salt, oster and/- or N-oxide derivative thereof:

①

wherein:

one of Z^1 , Z^2 , and Z^3 , Z^4 and Z^5 is N, and Z^4 , Z^5 and remainder of Z^1 , Z^2 , and Z^3 not equal to N are CR^{1a} ;

R¹ and R^{1a} are independently hydrogen; hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, CONH₂, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkylthio; nitro; azido; acyl; acyloxy; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups; and

additionally when Z^5 is CR^{1a} , R^{1a} may be (C_{1-4}) alkyl- CO_2H or (C_{1-4}) alkyl- $CONH_2$ in which the C_{1-4} alkyl is substituted by R^{12} ; (C_{1-4}) alkyl substituted by cyano, amino or guanidino; aminocarbonyl optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, er $CH(R^{13})CO_2H$ or $CH(R^{13})CONH_2$ optionally further substituted N-substituted by (C_{1-6}) alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6}) alkenyl; hydroxy(C_{1-6})alkyl; carboxy; cyano or (C_{1-6}) alkoxycarbonyl;

wherein R^{13} is a natural α -amino acid side chain or its enantiomer;

 R^2 is hydrogen, or (C_{1-4}) alkyl or (C_{1-4}) alkenyl optionally substituted with 1 to 3 groups selected from:

amino optionally substituted by one or two (C₁₋₄)alkyl groups; carboxy;

 (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) alkenylcarbonyl; aminocarbonyl, wherein the amino group is optionally substituted by hydroxy, (C_{1-4}) alkyl, hydroxy (C_{1-4}) alkyl, aminocarbonyl (C_{1-4}) alkyl, (C_{2-4}) alkenyl, (C_{1-4}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-4}) alkenylsulphonyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl or (C_{2-4}) alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R^{10} ; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted

by R^{10} ; 5-oxo-1,2,4-oxadiazol-3-yl; thiol; halogen; (C_{1-4}) alkylthio; trifluoromethyl; azido; hydroxy optionally substituted by (C_{1-4}) alkyl, (C_{2-4}) alkenyl, (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl; oxo;

 (C_{1-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or (C_{1-4}) aminosulphonyl, wherein the amino group is optionally substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl;

R³ is hydrogen; or

R³ is in the 2-, 3- or 4-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl, wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl, (C_{1-6}) alkyl, aminocarbonyl; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl, or 5-oxo-1,2,4-oxadiazol-3-yl; or

 (C_{1-4}) alkyl optionally substituted or ethenyl substituted with any of the substituents listed above for \mathbb{R}^3 and up to 3 groups for \mathbb{R}^{12} independently selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenyloxycarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenyloxycarbonyl or aminocarbonyl, wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋₆)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, (C₂₋₆)alkenylsulphonyl or aminocarbonyl, wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl,

wherein the amino group is optionally substituted by (C_{1-6}) alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6})alkenyl, (C_{1-6})alkoxycarbonyl, (C_{1-6})alkylcarbonyl, (C_{2-6})alkenyloxycarbonyl or (C_{2-6})alkenylcarbonyl and optionally further substituted by (C_{1-6})alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6})alkenyl; oxo; (C_{1-6})alkylsulphonyl; (C_{2-6})alkenylsulphonyl; or (C_{1-6})aminosulphonyl, wherein the amino group is optionally substituted by (C_{1-6})alkyl or (C_{2-6})alkenyl; in addition when R^3 is disubstituted with a hydroxy or amino containing substituent and corboxy containing substituent those may together form a cyclic exter or amide linkage

in addition when R³ is disubstituted with a hydroxy or amino containing substituent and carboxy containing substituent these may together form a cyclic ester or amide linkage, respectively; or

when R^3 is in the 3- or 4-position it may with R^2 or R^4 form a C_{3-5} alkylene group optionally substituted by a group R^5 selected from:

 (C_{1-12}) alkyl; hydroxy (C_{1-12}) alkyl; (C_{1-12}) alkoxy (C_{1-12}) alkyl; (C_{1-12}) alkyl; (C_{1-12}) alkoxy (C_{3-6}) cycloalkyl; hydroxy (C_{3-6}) cycloalkyl; (C_{1-12}) alkoxy (C_{3-6}) cycloalkyl; (C_{1-12}) alkoxy (C_{3-6}) cycloalkyl;

 (C_{1-12}) alkanoyloxy (C_{3-6}) cycloalkyl; (C_{3-6}) cycloalkyl (C_{1-12}) alkyl; hydroxy-, (C_{1-12}) alkoxy- or (C_{1-12}) alkanoyloxy- (C_{3-6}) cycloalkyl (C_{1-12}) alkyl; cyano; cyano (C_{1-12}) alkyl; (C_{2-12}) alkenyl; (C_{2-12}) alkyl; tetrabydrofund; mono- or di- (C_{1-12}) alkyl; amino (C_{1-12}) alkyl;

 $(C_{2-12}) \text{alkynyl}; \text{ tetrahydrofuryl}; \text{ mono- or di-}(C_{1-12}) \text{alkylamino}(C_{1-12}) \text{alkyl}; \\ \text{acylamino}(C_{1-12}) \text{alkyl}; (C_{1-12}) \text{alkyl- or acyl-aminocarbonyl}(C_{1-12}) \text{alkyl}; \text{ mono- or di-}(C_{1-12}) \text{alkylamino}(\text{hydroxy}) (C_{1-12}) \text{alkyl}; \text{ optionally substituted phenyl}(C_{1-12}) \text{alkyl}, \\ \text{phenoxy}(C_{1-12}) \text{alkyl}; \text{ optionally substituted} \\ \text{diphenyl}(C_{1-12}) \text{alkyl}; \text{ optionally substituted phenyl}(C_{2-12}) \text{alkenyl}; \text{ optionally substituted} \\ \text{benzoyl or benzoyl}(C_{1-12}) \text{alkyl}; \text{ optionally substituted heteroaryl} \text{ or heteroaryl}(C_{1-12}) \text{alkyl}; \text{ and optionally substituted heteroaroyl} \text{ or heteroaroyl}(C_{1-12}) \text{alkyl}; \end{aligned}$

wherein phenyl, benzoyl, heteroaryl and heteroaroyl groups are optionally substituted with up to five groups selected from halogen, mercapto, (C_{1-6}) alkyl, phenyl, (C_{1-6}) alkoxy, hydroxy(C_{1-6})alkyl, mercapto (C_{1-6}) alkyl, halo(C_{1-6})alkyl, hydroxy, optionally substituted amino, nitro, carboxy, (C_{1-6}) alkylcarbonyloxy, (C_{1-6}) alkoxycarbonyl, formyl, and (C_{1-6}) alkylcarbonyl groups;

 R^4 forms a group with R^3 as above defined, or is a group -CH₂- R^5 where R^5 is as defined above:

n is 0, 1 or 2;

A is NR^{11} or CR^6R^7 and B is NR^{11} , O, SO_2 or CR^8R^9 ; and wherein:

each of R⁶, R⁷, R⁸ and R⁹ is independently selected from: hydrogen; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl;

 (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents R^{12} as defined in R^3 ; (C_{1-6}) alkylsulphonyl; (C_{2-6}) alkenylsulphonyl; or (C_{1-6}) aminosulphonyl, wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl; or R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined; or R^6 and R^7 or R^8 and R^9 together represent oxo; provided that:

when A is NR¹¹, B is not NR¹¹, O or SO₂; when A is CO, B is not CO, O or SO₂; when n is 0 and A is NR¹¹, CR⁸R⁹ can only be CO; when A is CR⁶R⁷ and B is SO₂, n is 0; when n is 0, B is not NR¹¹ or O; and when A-B is CR⁷=CR⁹, n is 1 or 2;

R¹⁰ is selected from (C₁₋₄)alkyl; (C₂₋₄)alkenyl and aryl, each of which is optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl, wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₁₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; (C₁₋₆)alkylsulphonyl; trifluoromethylsulphonyl; (C₁₋₆)alkenylsulphonyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; and (C₂₋₆)alkenylcarbonyl;

R¹¹ is hydrogen; trifluoromethyl, (C_{1-6}) alkyl; (C_{1-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; aminocarbonyl, wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl or (C_{1-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl.

2 (Original). A compound according to claim 1 wherein:

- (a) Z^1 is N, and Z^2 - Z^5 are CH,
- (b) Z^{1} - Z^{5} are each CH, or
- (c) Z^5 is N, and Z^1 - Z^4 are CH.

Claims 3-10. (Cancelled)

11 (Original). A compound according to claim 1 wherein R^1 and R^{1a} are independently methoxy, amino(C_{3-5})alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro.

12 (Currently Amended). A compound according to claim 1 wherein R^3 is hydrogen; optionally substituted aminocarbonyl; optionally substituted (C_{1-4})alkyl; carboxy(C_{1-4})alkyl; optionally substituted aminocarbonyl(C_{1-4})alkyl; cyano(C_{1-4})alkyl; optionally substituted 2-oxo-oxazolidinyl or optionally substituted 2-oxo-oxazolidinyl(C_{1-4} alkyl).

- 13 (Original). A compound according to claim 1 wherein \mathbb{R}^3 is in the 3-position and the substituents at the 3- and 4-position of the piperidine ring are cis.
- 14 (Original). A compound according to claim 1 wherein A is NH and B is CO, or A is CHOH and B is CH₂.
 - 15 (Original). A compound according to claim 1 wherein R¹¹ is hydrogen.
- 16 (Original). A compound according to claim 1 wherein R^4 is (C_{5-12}) alkyl, optionally substituted phenyl (C_{2-3}) alkyl or optionally substituted phenyl (C_{3-4}) alkenyl.
- 17 (Currently Amended). A pharmaceutical composition comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable salt, ester and/ or N-oxide derivative thereof, and a pharmaceutically acceptable carrier.
- 18 (Currently Amended). A method of treating bacterial infections in mammals caused by *S.aureus and S. pneumoniae* organisms, which comprises administering to a mammal in need thereof an effective amount of a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable salt, ester and/ or N-oxide derivative thereof.
 - 19 (New). The compound according to claim 1, wherein the compound is:
 - 4-Heptylamino-1-(6-methoxy-[1,5]-naphthyridin-4-yl)aminocarbonylpiperidine;
- 4-Heptylamino-4-methoxycarbonyl-1-(6-methoxy-[1,5]-naphthyridine-4-yl)aminocarbonylpiperidine ;or
- 4-Heptylamino-4-hydroxymethyl-1-(6-methoxy-[1,5]-naphthyridine-4-yl)aminocarbonylpiperidine .