MATH 470 Independent Study in Matrix Theory: The Kronecker Product

Thomas Zhang

Preview: Why Might We Care

There are certain kinds of matrix equations of particular interest; let's start with some linear ones

- 1. AX = B
- 2. AX + XB = C (Lyapunov's equation when C is Hermitian; commute if A = B, C = 0)
- 3. AXB = C
- 4. $A_1XB_1 + A_2XB_2 + \cdots + A_kXB_k = C$ (Bapat and Sunder's equation of interest is a special case where $B_i = A_i^*$ and C = I)
- $5. \ AX + YB = C.$

Some non-linear matrix equations are also of interest, in particular quadratic equations

1 Basic Properties

Definition 1.1 $\otimes: M_{m,n}(\mathbb{F}) \times M_{p,q}(\mathbb{F}) \to M_{mp,nq}(\mathbb{F}),$

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

Let's start with the straightforward properties of the Kronecker product

- 1. $(cA) \otimes B = A \otimes (cB)$
- $2. \ (A \otimes B)^{\top} = A^{\top} \otimes B^{\top}$
- $3. \ (A \otimes B)^* = A^* \otimes B^*$
- 4. $(A \otimes B) \otimes C = A \otimes (B \otimes C)$ (associativity)
- 5. $(A+B)\otimes C=(A\otimes C)+(B\otimes C)$ (distributivity pt 1)

6.
$$A \otimes (B + C) = (A \otimes B) + (A \otimes C)$$
 (distributivity pt 2)

7. If A, B are Hermitian, then $A \otimes B$ is also Hermitian.

Next, we look at a few important properties that require a bit of proof.

Lemma 1.2 (Mixed-product property) Let $A \in M_{m,n}$, $B \in M_{p,q}$, $C \in M_{n,k}$, $D \in M_{q,r}$ such that $A \otimes B \in M_{mp,nq}$ and $C \otimes D \in M_{nq,kr}$ where matrix multiplication makes sense. Then

1.
$$(A \otimes B)(C \otimes D) = AC \otimes BD$$

2.
$$\implies (A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$
 (if A, B are nonsingular)

Proof: 1: This follows if we're careful about indexing the blocks of our matrices.

2: Apply 1 and observe $(A \otimes B)(A^{-1} \otimes B^{-1}) = AA^{-1} \otimes BB^{-1} = I_m \otimes I_p$ but at the same time by the uniqueness of inverse this implies $(A \otimes B)^{-1} = (A^{-1} \otimes B^{-1})$.

Another magical thing about Kronecker products is how they preserve a lot of eigenvalue/singular value properties in some form. First we introduce the following notation:

Definition 1.3 We can "spaghettify" a matrix $A \in M_{m,n}$ by turning it into a vector $vec(A) \in \mathbb{F}^{mn}$ by defining the following operation:

$$vec(A) := [a_{11}, \dots, a_{m1}, a_{12}, \dots, a_{m2}, \dots, a_{1n}, \dots, a_{nm}]^{\top},$$

basically putting the columns of the matrix end to end. A pretty cool corollary is that you can verify the Frobenius inner product $tr(A^*B)$ is in fact an inner product by verifying it in spaghettified form.

Now for some cool eigenvalue FACTS

Theorem 1.4 Let $A \in M_n$, $B \in M_m$, with $\lambda \in \sigma(A)$, $x \in \mathbb{C}^n$ and $\mu \in \sigma(B)$, $y \in \mathbb{C}^m$ as accompanying eigenpairs, then

$$\lambda \mu \in \sigma(A \otimes B)$$
, with corresponding eigenvector $x \otimes y \in \mathbb{C}^{mn}$.

This implies that every eigenvalue of $A \otimes B$ is a product of eigenvalues of A and B, counting multiplicities. Therefore, $\sigma(A \otimes B) = \sigma(B \otimes A)$.

Proof: We apply the mixed-product property on $(A \otimes B)(x \otimes y)$:

$$(A \otimes B)(x \otimes y) = (Ax) \otimes (By) = (\lambda x) \otimes (\mu x) = \lambda \mu(x \otimes y).$$

We have just shown that $x \otimes y$ is indeed an eigenvector of $A \otimes B$ associated with eigenvalue $\lambda \mu$. To see that the spectrum $\sigma(A \otimes B)$ is precisely the product of all the eigenvalues of A and B accounting for multiplicity, we appeal to Schur's Decomposition Theorem, where we can find a unitary transformation of a matrix into an upper triangular matrix where the diagonal entries are precisely the eigenvalues. Say we have $A = SU_AS^*$, $B = TU_BT^*$. By Lemma 1.2.2, we see that the matrix $S \otimes T$ is also unitary. We then observe that

$$(S \otimes T)^*(A \otimes B)(S \otimes T) = (S^* \otimes T^*)(AS \otimes BT) = (S^*AS \otimes T^*BT) = U_A \otimes U_B.$$

We see that any product of eigenvalues from and A and B necessarily must be on the diagonal somewhere of $U_A \otimes U_B$, and $U_A \otimes U_B$ is precisely the Schur-triangularized matrix. Therefore, any eigenvalue of $A \otimes B$ is some product of eigenvalues of A and B.

Corollary 1.5 An immediate result from the previous theorem is that the Kronecker product of two positive (negative) semi-definite matrices is positive semi-definite, since the pointwise products of eigenvalues continue to be positive.

Theorem 1.6 (Singular Value Decomposition) Let $A \in M_{m,n}$, $B \in M_{p,q}$ have singular value decompositions: $A = V_A \Sigma_A W_A^*$, $B = V_B \Sigma_B W_B^*$ and $rank(A) = r_1$ and $rank(B) = r_2$. The non-zero singular values of $A \otimes B$ are the $r_1 r_2$ positive numbers $\{\sigma_i(A)\sigma_j(B)\}$. Furthermore, the singular values of $A \otimes B$ are the same as $B \otimes A$, which implies $rank(A \otimes B) = rank(B \otimes A) = r_1 r_2$.

So far, we have observed a general phenomenon where things are the same between $A \otimes B$ and $B \otimes A$. The problems and their solutions will establish a few more. All of these together are ultimately explained by the fact that $B \otimes A$ is permutation equivalent to $A \otimes B$, i.e. there are permutation matrices P, Q such that $B \otimes A = P(A \otimes B)Q$.

1.1 Exercises

- 1. Show that if $A \in M_n$ and $B \in M_m$ are square, then $\det(A \otimes B) = \det(A)^m \det(B)^n$, and $\det(A \otimes B) = \det(B \otimes A)$.
- 2. Show that if $A \in M_n$ and $B \in M_m$ are square, then $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B) = \operatorname{tr}(B \otimes A)$.
- 3. Show that $A \otimes B$ is normal if and only if $B \otimes A$ is normal.

2 Linear Matrix Equations and the Kronecker Product

Equipped with the basic properties of the Kronecker Product, we can go back and re-write the matrix equations in the Preview section. We first write them out then show a proof for one (I might come back and prove the rest when I'm done proving the cooler stuff):

- 1. $AX = B \implies (I \otimes A) \operatorname{vec}(X) = \operatorname{vec}(B)$
- 2. $AX + XB = C \implies [(I \otimes A) + (B^{\top} \otimes I)] \operatorname{vec}(X) = \operatorname{vec}(C)$
- 3. $AXB = C \implies (B^{\top} \otimes A)\text{vec}(X) = \text{vec}(C)$
- 4. $A_1XB_1 + A_2XB_2 + \cdots + A_kXB_k = C \implies [B_1^\top \otimes A_1 + \cdots + B_k^\top \otimes A_k] \operatorname{vec}(X) = \operatorname{vec}(C)$
- 5. $AX + YB = C \implies (I \otimes A)\operatorname{vec}(X) + (B^{\top} \otimes I)\operatorname{vec}(Y) = \operatorname{vec}(C)$

Proof of 3: Let $A \in M_{m,n}$, $B \in M_{p,q}$, and let A_k denote the k-th column of A. Observe that by matrix multiplication $(AXB)_k = A(XB)_k = AX(B_k)$. Using some more matrix multiplication facts, we get

$$AX(B_k) = A \Big[\sum_{i=1}^p b_{ik} X_i \Big]$$

= $[b_{1k}A \quad b_{2k}A \quad \dots \quad b_{pk}A] \text{vec}(X)$
= $(B_k^{\top} \otimes A) \text{vec}(X)$.

Therefore, stacking the q columns of B together we get

$$\operatorname{vec}(C) = \operatorname{vec}(AXB) = \begin{bmatrix} B_1^\top \otimes A \\ \vdots \\ B_q^\top \otimes A \end{bmatrix} \operatorname{vec}(X) = (B^\top \otimes A) \operatorname{vec}(X) \quad \blacksquare$$

A convenient, related fact is the following:

Lemma 2.1 For
$$A, B \in M_n$$
, $vec(AB) = (I_n \otimes A)vec(B)$.

By spaghettifying things through the Kronecker product, it is often heuristically important to pre-process the matrix equation. An example of pre-processing Horn and Johnson give is: let's say we're dealing with equation 2 and we want to deal with an equation where different similar transformations have been applied on A and B. Then we can translate the equation in the following way:

$$AX + XB = SAX + SXB$$

$$= SAXT + SXBT$$

$$= (SAS^{-1})SXT + SXT(T^{-1}BT) = SCT.$$

If we define $A' = SAS^{-1}$, $B' = SBS^{-1}$, X' = SXT, C' = SCT, we now have a hopefully nicer system to work with.

A natural thought to have at this point is: well what happens to linear transformations on the original matrices after you've taken Kronecker products? Borrowing some basic abstract algebra, we observe that the mapping vec: $M_{m,n} \to \mathbb{C}^{mn}$ is clearly an isomorphism, since any matrix and be strung out, and any long vector can be sliced up and arranged to form a matrix. The next fact follows:

Observation 2.2 $T: M_{m,n} \to M_{p,q}$ is a linear transformation. Then there exists a unique matrix $K(T) \in M_{mp,nq}$ such that if T(X) = Y, then vec(T(X)) = K(T)vec(X) = vec(Y).

Apparently, the next step is to classify all "linear derivations", where derivations are defined as all linear transformations where additionally T(XY) = T(X)Y + XT(Y) for all $X, Y \in M_n$. Kronecker products give us a rather surprising and convenient characterization of linear derivations:

Theorem 2.3 $T: M_n \to M_n$ is a linear derivation if and only if there is some $C \in M_n$ such that T(X) = CX - XC for all $X \in M_n$.

Proof: It is not difficult to verify that T(X) = CX - XC is a linear derivation. For the forward direction, we use the previous observations and lemmas to expand the following:

$$\operatorname{vec}(T(XY)) = \operatorname{vec}(T(X)Y) + \operatorname{vec}(XT(Y))$$

$$K(T)\operatorname{vec}(XY) = (I \otimes T(X))\operatorname{vec}(Y) + (I \otimes X)\operatorname{vec}(T(Y))$$

$$K(T)(I \otimes X)\operatorname{vec}(Y) = (I \otimes T(X))\operatorname{vec}(Y) + (I \otimes X)K(T)\operatorname{vec}(Y)$$

$$\iff (I \otimes T(X))\operatorname{vec}(Y) = K(T)(I \otimes X)\operatorname{vec}(Y) - (I \otimes X)K(T)\operatorname{vec}(Y)$$

$$I \otimes T(X) = K(T)(I \otimes X) - (I \otimes X)K(T).$$

Observe that $I \otimes X$ is 0 apart from $[I \otimes X]_{ii}$, referring to the *ii*-blocks. Therefore, $[K(T)(I \otimes X)]_{ii} = K_{ii}X$.

$$\implies [I \otimes T(X)]_{ii} = T(X) = K_{ii}X - XK_{ii} \text{ for each } i = 1, \dots, n.$$

We can pick any K_{ii} to be the matrix C to finish the proof.

We mentioned in the first section that $A \otimes B$ is permutation-equivalent to $B \otimes A$. To prove this, we do the brunt of the work in proving that vec(X) is permutation equivalent to $\text{vec}(X)^{\top}$.

Theorem 2.4 For arbitrary $X \in M_{m,n}$, there is a unique matrix $P(m,n) \in M_{mn}$ such that

$$P(m,n) = \sum_{i=1}^{m} \sum_{j=1}^{n} E_{ij} \otimes E_{ij}^{\top},$$

where each $E_{ij} \in M_{m,n}$ has entry 1 in position i, j and 0 everywhere else. It turns out that P(m, n) is a permutation matrix (such that $P(m, n) = P(n, m)^{\top} = P(n, m)^{-1}$).

Proof: Observe that we can write $x_{ij}E_{ij}^{\top} = E_{ij}^{\top}XE_{ij}^{\top}$ Therefore,

$$X^{\top} = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} E_{ij}^{\top} = \sum_{i=1}^{m} \sum_{j=1}^{n} E_{ij}^{\top} X E_{ij}^{\top}.$$

Now we can write out $\text{vec}(X^{\top})$:

$$\operatorname{vec}(X^{\top}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \operatorname{vec}(E_{ij}^{\top} X E_{ij}^{\top})$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (E_{ij} \otimes E_{ij}^{\top}) \operatorname{vec}(X).$$

Now we have to verify that $P(m,n) = \sum_{i=1}^{m} \sum_{j=1}^{n} (E_{ij} \otimes E_{ij}^{\top})$ is indeed a permutation matrix. Let E'_{ij} be the unit matrices of the transposed matrix space M_{nm} such that $E'_{ij} = E_{ji}^{\top}$. Observe that

$$P(n,m) = \sum_{i=1}^{m} \sum_{j=1}^{n} (E'_{ij} \otimes E'_{ij}^{\top})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (E'_{ji} \otimes E_{ji})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (E_{ij} \otimes E_{ij})^{\top} = P(m,n)^{\top}.$$

To see that $P(m,n) = P(n,m)^{-1}$, observe that $X = (X^{\top})^{\top}$, so $\text{vec}(X) = P(n,m)\text{vec}(X^{\top}) = P(n,m)P(m,n)\text{vec}(X) \implies P(m,n) = P(n,m)^{-1}$. This completes the proof.

Corollary 2.5 For any $A \in M_{m,n}$, $B \in M_{p,q}$, then

$$B \otimes A = P(m, p)^{\top} (A \otimes B) P(n, q).$$

In fact,

$$\sum_{i=1}^{k} B_i \otimes A_i = P(m, p)^{\top} \Big(\sum_{i=1}^{k} A_i \otimes B_i\Big) P(n, q)$$

Corollary 2.6 Let $A_1, \ldots, A-r$ and B_1, \ldots, B_s be given square complex matrices. Then

$$\left(\bigoplus_{i=1}^r A_i\right) \otimes \left(\bigoplus_{j=1}^s B_j\right) = P(n,p)^{\top} \left(\bigoplus_{i,j=1}^r A_i \otimes B_j\right) P(n,p).$$

2.1 Exercises

1. Describe how to determine K(T) from T.

3 Kronecker Sums and the Equation AX + XB = C

Earlier, we brought up the equation AX + XB = C, which we see is a generalization of the form in which we see important equations like Lyapunov's equation. In the previous section we were able to re-write equations of that form:

$$AX + XB = C \implies [(I_m \otimes A) + (B^{\dagger}top \otimes I_n)]vec(X) = vec(C).$$

The "Kronecker form" of the above equation are the family of equations written in the form $(I_m \otimes A) + (B \otimes I_n)$. The Kronecker form actually tells us the following surprising fact

Theorem 3.1 Let $A \in M_n$ and $B \in M_m$ be given. If (λ, x) is an eigenpair of A and (μ, y) is an eigenpair of B, then $(\lambda + \mu, y \otimes x)$ is an eigenpair of the Kronecker form $(I_m \otimes A) + (B \otimes I_n)$. Similar to Theorem 1.4, it turns out every eigenvalue of $(I_m \otimes A) + (B \otimes I_n)$ is a sum of an eigenvalue from A and B: $\sigma[(I_m \otimes A) + (B \otimes I_n)] = \{\lambda_i + \mu_j\}$. Furthermore, $(I \otimes A)$ commutes with $(B^{\top} \otimes I)$, and $\sigma[(I_m \otimes A) + (B \otimes I_n)] = \sigma[(I_n \otimes B) + (A \otimes I_m)]$

Proof: to show commutativity, we use the mixed-product property:

$$(I_m \otimes A)(B \otimes I_n) = B \otimes A = (B \otimes I_n)(I_m \otimes A).$$

As for the claim about the eigenvalues, we do a similar trick we pulled in Theorem 1.4 and appeal to Schur's Decomposition Theorem such that $S^*AS = U_A$, $T^*BT = U_B$ are upper

triangular and have the eigenvalues of A and B as their diagonals.

$$(S \otimes T)^*(I_m \otimes A)(S \otimes T) = I_m \otimes U_A = \begin{bmatrix} U_A & & 0 \\ & U_A & \\ & & \ddots & \\ 0 & & U_A \end{bmatrix}$$
$$(S \otimes T)^*(B \otimes I_n)(S \otimes T) = U_B \otimes I_n = \begin{bmatrix} \mu_1 I_n & & 0 \\ & \mu_2 I_n & \\ & & \ddots & \\ 0 & & \mu_m I_n \end{bmatrix}$$

both of which are upper triangular matrices that contain the eigenvalues of $I_m \otimes A$ and $B \otimes I_n$ on the diagonal. Therefore, $(S \otimes T)^*[(I_m \otimes A) + (B \otimes I_n)](S \otimes T)$ will be upper triangular and the eigenvalues of the Kronecker form are clearly sums of eigenvalues of A and B accounting for multiplicity.

We can use this theorem to prove some solvability facts about the matrix equation AX + XB = C and its relatives.

Theorem 3.2 Going back to the matrix equation AX + XB = C, the equation has a unique solution $X \in M_{n,m}$ for each $C \in M_{n,m}$ if and only if $\sigma(A) \cap \sigma(-B) = \emptyset$.

Proof:We observe that if the Kronecker form $(I_m \otimes A) + (B^{\top} \otimes I_n)$ is invertible, then we have a solution for the equation given any C, otherwise, since there will be a non-trivial null space, the solutions to the equation will not be unique (special solution + particular solution). Since the eigenvalues of B and B^{\top} are the same, we can consider the Kronecker form $(I_m \otimes A) + (B \otimes I_n)$ from the previous theorem. Observe that the triangularized will have a 0 (eigenvalue 0 a.k.a. nontrivial nullspace) if some eigenvalue of A cancels out with an eigenvalue of B. Therefore, the Kronecker form is invertible, hence the equation is uniquely solvable for any C if $\sigma(A) \cap \sigma(-B) = \emptyset$, i.e. no eigenvalue of A cancels out with an eigenvalue of B.

Corollary 3.3 Let $A \in M_n$ and $B \in M_m$. AX - XB = 0 has a nonzero solution $X \in M_{n,m}$ if and only if $\sigma(A) \cap \sigma(-B) \neq \emptyset$ (i.e. Kronecker form has nontrivial nullspace).

Corollary 3.4 Let $A \in M_n$. The equation $XA + A^*X = C$ has a unique solution $X \in M_n$ for each $C \in M_n$ if and only if $\sigma(A) \cap \sigma(-A) = \emptyset$. Lookie here, smells like Lyapunov. We can show that $(I \otimes A^*) + (A^{\top} \otimes I)$ is the Kronecker form of the equation, and if we shift around the equation $AX + XA^* = C$, we get the Kronecker form $(I \otimes A) + (\overline{A} \otimes I)$

Corollary 3.5 Suppose that $XA + A^*X$ has a unique solution for every C. The solution X is Hermitian if and only if C is Hermitian. Furthermore, if $A \in M_n$ is positive stable (all eigenvalues have positive real part), then the equation has a unique solution X for each $C \in M_n$.

Horn and Johnson jump off the deep end in terms of symbols and technical proofs involving Jordan forms after this point, so I'll stick to stating the cool results:

Definition 3.6 Any polynomial that a matrix A satisfies must divide the characteristic polynomial ch(A). The **minimal polynomial** of matrix A is the lowest degree monic polynomial that A satisfies. A matrix is **non-derogatory** if the smallest degree polynomial that A satisfies (minimal polynomial) is precisely the characteristic polynomial of A (up to a factor of ± 1).

Theorem 3.7 Given $A \in M_n$, the set of matrices that commute with A is a subspace of M_n of at least n. The dimension is equal to n if and only if A is non-derogatory.

Definition 3.8 Let $A \in M_n$ be a given matrix. The **centralizer** of A is the set $C(A) := \{B \in M_n : AB = BA\}$, i.e. the set of all B that commute with A. The set of all polynomials of A can be denoted $P(A) := \{p(A) : p(t) \text{ is a polynomial}\}$. It is immediately clear that $P(A) \subseteq C(A)$. However, their relationship does not stop there.

Theorem 3.9 Let $A \in M_n$ be a given matrix and let $q_A(t)$ be the minimal polynomial of A. Then:

- 1. P(A) and C(A) are subspaces of M_n .
- 2. degree of $q_A(t) = \dim P(A) \le n$.
- 3. dim $C(A) \ge n$ with equality if and only if A is nonderogatory.

Corollary 3.10 A matrix $A \in M_n$ is non-derogatory if and only if every matrix that commutes with A is a polynomial in A.

Corollary 3.11 Given $A \in M_n$, $B \in M_n$ is a polynomial in A if and only if B commutes with every matrix that commutes with A.

Theorem 3.12 Let $A \in M_n$, $B \in M_n$ and $C \in M_{m,n}$ be given. Then there is some $X \in M_{m,n}$ such that AX - XB = C if and only if

$$\begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \text{ is similar to } \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

Theorem 3.13 Let $A \in M_{m,n}$, $B \in M_{p,q}$ and $C \in M_{m,q}$ be given. There are matrices $X \in M_{m,q}$ and $Y \in M_{n,p}$ such that AX - YB = C if and only if

$$rank \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} = rank \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$