Der Beitrag soll – wenn möglich – in Ausgabe [12 2016] veröffentlicht werden.

Rubrik: Industrie 4.0

Intelligentes Elektroniksystem für Condition Monitoring in Industrie 4.0

Mikro-elektromechanisches Elektroniksystem zur Zustands-, Verschleiß-, Prozess- und Anlagenüberwachung

E. Uhlmann, A. Laghmouchi, R. Ehrenpfordt, E. Hohwieler, C. Geisert

Prof. Dr. h. c. Dr.-Ing. Eckart Uhlmann

Dipl.-Ing. Abdelhakim Laghmouchi

Institut für Produktionsanlagen und Konstruktionstechnik (IPK)

Pascalstr 8-9, D-10587 Berlin

Tel. +49 (0)30 / 39006-129

Fax +49 (0)30 / 391-1037

E-Mail: abdelhakim.laghmouchi@ipk.fraunhofer.de

Internet: www.ipk.fraunhofer.de

Dipl.-Ing. Ricardo Ehrenpfordt

Zentralbereich Forschung und Vorausentwicklung

Robert Bosch GmbH

Robert-Bosch-Campus 1, D-71272 Renningen

Tel. +49 (0)71 / 1811-6158

Fax +49 (0)71 / 811-5183560

E-Mail: ricardo.ehrenpfordt@de.bosch.com

Danksagung:

Die Autoren danken dem Bundesministerium für Bildung und Forschung für die Förderung sowie dem Projektträger VDI/VDE Innovation + Technik GmbH für die Betreuung des in dieser Veröffentlichung vorgestellten Verbundprojekts "Mikro-elektromechanisches Elektroniksystem zur Zustandsüberwachung in der Industrie 4.0 (AMELI4.0)".

Inhalt

Im Rahmen dieses Fachartikels werden die geplanten Arbeiten des Forschungsprojekts "AMELI4.0" vorgestellt. Der Schwerpunkt dieses Projekts liegt in der Entwicklung und Umsetzung hochintegrierter, vernetzter, energieautarker MEMS-Multisensorsysteme (Mikro-Elektro-Mechanische Systeme - MEMS) mit intelligenter Echtzeit-Datenverarbeitung auf

Sensorebene bei hoher Daten- und Systemsicherheit. Das Multisensorsystem integriert mehrere MEMS-Sensoren zur Erfassung von Körperschall und akustischer Schall in Kombination mit der energieeffizienten Signalvorverarbeitung auf Sensorebene (Smart Data statt Big Data) bei hoher Systemrobustheit in einem modularen Hardware- und Plattformdesign. Des Weiteren werden die adressierten Anwendungsfälle und der Forschungsschwerpunkt des Fraunhofer IPK zum Thema Datenanalyse sowie -management vorgestellt.

Intelligent electronic system for condition monitoring in Industrie 4.0

Micro electro-mechanical system electronic system for condition, process and system monitoring

Abstract

This scientific article illustrates the planned works of the research project "AMELI4.0", whose key aspect is the development and implementation of high integrated, networked, energy self-sufficient MEMS multi sensor systems (micro electro-mechanical systems - MEMS) with intelligent real-time data processing on sensor level under high data and system security. The multi sensor system integrates several MEMS sensor for measurement of structure-borne noise (acoustic emission) and airborne sound in combination with energy efficient signal pre-processing on sensor level (smart data instead of big data) under high robust system and a modular hardware and platform. Moreover, the use cases and research focus of Fraunhofer IPK in the field of data analytics and management will be presented.

1 Einleitung

Industrie 4.0 ist das dominierende Thema der deutschen Industrie und entsprechend für den Erhalt der Wettbewerbsfähigkeit des Standortes Deutschland und die Sicherstellung eines stetigen Wachstums elementar. Ein Schwerpunkt von Industrie 4.0 ist die vernetzte Produktion, d. h. die Vernetzung von Anlagen, Werkzeugen, Prozessen und Produkten untereinander sowie mit Lieferanten und Kunden. Der Branchenverband Bitkom schätzt das wirtschaftliche Potenzial der vernetzten Produktion für Deutschland bis 2025 auf nahezu 80 Milliarden Euro [1]. Nach einer Studie von Mckinsey [2] wird die vorausschauende Instandhaltung (Predictive Maintenance) einer der wichtigsten Anwendungsbereiche für das Internet der Dinge (IoT). Das Einsparungspotenzial bis 2025 wird auf bis zu 630 Milliarden USD geschätzt. Dabei spielen die Auswertealgorithmen eine entscheidende Rolle bei der Datenanalyse und Diagnose.

Einen wesentlichen Bestandteil der vernetzten Produktion stellen elektronikbasierte Sensorsysteme dar. Einen immer stärkeren Anteil an diesen elektronikbasierten Sensorsystemen nehmen die integrierten Sensorsysteme (integrated IoT sensors) ein. Dies sind hochintegrierte, vernetzte, energieeffiziente (bis hin zu Energieautonomie), Echtzeit-Datenverarbeitung Multisensorsysteme mit auf Sensorebene Datensicherheit. Deren Realisierung und die damit belegten Herausforderungen, im Vergleich zur heutigen Industriesensorik werden von den beteiligten Partnern des AMELI4.0-Projekts (Robert Bosch GmbH, Siemens AG, Hahn-Schickard-Gesellschaft, Fraunhofer IPK, Binder-Elektronik GmbH, Schaudt Mikrosa GmbH und Stackeforce GmbH) adressiert. Für die deutsche Industrie gilt es, im Bereich der vernetzten Produktion, durch elektronikbasierte Sensorsysteme zum Treiber zu werden, um auch hier die weltweit führende Position und Rolle zu halten und auszubauen.

Die am Markt verfügbaren Industriesensoren sind überwiegend applikationsspezifische Lösungen. Sie sind kostenintensiv, kabelgebunden und besitzen ein begrenztes Maß an Intelligenz. Im Vergleich dazu sind MEMS-Sensoren hochintegrierte, miniaturisierte und kostengünstige Multisysteme mit niedrigstem Energieverbrauch. Sie stellen somit die Basis künftiger Sensorsysteme für die vernetze Produktion dar.

Werkzeugmaschinen werden zunehmend komplexer sowie hochautomatisierter [3]. Mit dem wachsenden Investitionsvolumen steigen auch die Anforderungen an die Zuverlässigkeit von Produktionsprozessen [4]. Der vorherrschende Trend bringt demnach hohe Ansprüche an die Werkzeugmaschinen und Anlagen mit sich, insbesondere hinsichtlich der Verfügbarkeit, der Produktivität sowie des Qualitätsniveaus.

Oftmals stehen diese Ziele jedoch in einem Spannungsfeld zueinander. So kann die Verfügbarkeit von Maschinen durch vorbeugende Wartungsarbeiten erhöht werden. Dies lässt sich allerdings häufig nur in Kombination mit kostspieligen Stillstandzeiten realisieren. Wird hingegen die Ausnutzung der vollen Komponentenlebensdauer unter Ausschluss vorbeugender Wartung verfolgt, müssen das Risiko und mithin die Kosten eines Ausfalls der gesamten Maschineneinheit in Kauf genommen werden.

Einhergehend mit den Herausforderungen des Industriezeitalters 4.0 werden grundsätzlich möglichst kurze Stillstandzeiten und niedrige Ausfallraten angestrebt, welche es gilt weitestgehend automatisiert und mit geeigneter Instandhaltung umzusetzen. Das Ziel ist es, durch eine Digitalisierung der Einheiten und Vernetzung aller Komponenten ein selbstlernendes System zu schaffen, welches einen möglichen Ausfall der Maschinen und damit entstehen Kosten vorbeugt [5]. Bild 1 zeigt die operativen Kosten einer Werkzeugmaschine in Deutschland nach Abele [6].

Bild 1: Operative Kosten einer Werkzeugmaschine in Deutschland nach Abele [6]

Im Fokus des Konsortiums steht die Entwicklung des elektronikbasierten Sensorsystems der Zukunft für Anwendungen im Bereich der vernetzten Produktion zur Früherkennung von Werkzeug- und Maschinenschäden sowie Optimierung von Wartungsintervallen und Produktionsprozessen. Darüber hinaus stellt die Entwicklung von Energy-Harvesting-Lösungen zur Energieerzeugung im Sensor selbst sowie die Datensicherheit und Robustheit des Gesamtsystems unter realistischen Bedingungen eines der zentralen Themen des Projekts dar.

2 MEMS-basiertes Sensornetzwerk für Monitoring-Anwendungen

Für Monitoring-Anwendungen in der Produktionsumgebung wird das Gesamtsystem gemäß Bild 2 definiert. Die Realisierung dieses Gesamtsystems erfolgt auf Basis von MEMSbasierten Multi-Sensorsystemen. Dabei stehen die Optimierung und Qualifizierung von Körperschallsensorik und akustischen MEMS-Mikrofonen im Fokus. Diese Sensoren aus dem Consumer- und Automobilbereich müssen für Industrieanforderungen optimiert und funktionsrobust gemacht werden. Für Monitoring-Aufgaben werden sie als vollständig energieautarkes MULTI-DOF MEMS-Sensorsystem (Degree of Freedom - sensorische Freiheitsgrade) mit kinetischen Harvestern und energieeffizienten sensornahen sowie adaptiven und selbstlernenden Auswertalgorithmen zur Verschleiß-, Zustands-, und Prozessüberwachung kombiniert. Eine hochzuverlässige System-Plattform mit hoher Autonomie und der Fähigkeit zur Selbstdiagnose und Selbstkonfiguration für Sensorsystem und Gateway inklusive der Anbindung an Industrie 4.0 Topologien durch geeignete Datenformate und Kommunikations-Standards (z. B. OPC-UA) sowie die Gewährleistung der Datensicherheit durch Absicherung der Kommunikation (Schutz von Authentifizierung, Integrität und Vertraulichkeit) vervollständigen den ganzheitlichen Systemansatz im Konsortium.

Bild 2: Sensorsystem in der Produktionsumgebung

3. Anwendungsfälle

Das in diesem Forschungsprojekt zu entwickelnde Sensorsystem lässt sich zur Realisierung vorausschauender Instandhaltungsstrategie sowie Zustands- und Prozess-Monitoring in unterschiedlichen Industriefeldern einsetzen. In diesem Forschungsprojekt sind verschiedene Applikationen adressiert. Hierbei handelt es sich um Zustands- und Prozessüberwachung im Bereich der Werkzeugmaschinen sowie im Energiesektor. Bei den Werkzeugmaschinen sind dies kritische, verschleißbehaftete Komponenten, wie z. B. Kugelgewindetrieb oder Wälzlager. Aus dem Energiesektor werden verschleißbehaftete Komponenten von Nebenaggregaten, wie z. B. Pumpen oder Elektromotoren überwacht. Zudem wird das Sensorsystem zur Überwachung von Fertigungsprozessen an Werkzeugmaschinen, z. B. dem Schleifprozess, eingesetzt.

4. Forschungsschwerpunkt des Fraunhofer IPK

Im AMELI4.0-Projekt entwickelt das Fraunhofer IPK adaptive, robuste und selbstlernende Auswertealgorithmen zur Verschleiß-, Zustands-, und Prozessüberwachung für die im Projekt definierten Zielsysteme. Die Zuverlässigkeit dieser Algorithmen auf Basis von Sensorsignalen (Körperschall und akustischer Schall) hängt von vielen Faktoren ab. Beispielsweise beeinflusst die Qualität der Messung sehr stark die Funktionsrobustheit der Algorithmen. Daher stellt neben der kontinuierlichen Erfassung und der Dokumentation der Sensorsignale insbesondere die Entwicklung von intelligenten Analysealgorithmen eine große Herausforderung für die Realisierung von Condition-Monitoring-Lösungen dar. In diesem Kontext werden für die Zustandserkennung und -diagnose geeignete Algorithmen auf Basis von Verfahren des maschinellen Lernens entwickelt. Diese Algorithmen umfassen adaptive Ansätze zur Signalvorverarbeitung, Merkmalsextraktion und -auswahl, sowie deren Klassifizierung. Zudem wird ein Konzept für das Datenmanagement von verteilten Daten aus mehreren Sensorknoten und im Gateway erarbeitet. In Bild 3 ist das Schema zur Datenanalyse auf unterschiedlichen Ebenen im Rahmen dieses Forschungsprojektes dargestellt. Auf der Sensorebene werden Algorithmen zur Signalvorverarbeitung, wie z. B. Filteralgorithmen, realisiert. Dagegen werden Algorithmen zur Merkmalsauswahl und -klassifizierung sowie selbstlernende Verschleißmodelle auf der Gateway-Ebene realisiert.

Bild 3: Datenanalyse auf unterschiedlichen Ebenen

5 Zusammenfassung

Dieser Fachartikel gibt einen Überblick über die Zielsetzung des Forschungsprojekts AMELI4.0. Das Projekt zielt auf die Realisierung einer intelligenten Sensorlösung zur Verschleiß-, Zustands-, Prozess- und Anlagenüberwachung im Kontext von Industrie 4.0 in der Produktionsumgebung. Mit dem zu entwickelnden Sensorsystem zur Erfassung von Vibrationen, z. B. an der Produktionsanlage und ihren Komponenten, lässt sich eine kontinuierliche Zustandsüberwachung zur Vermeidung ungeplanter Instandhaltung und somit die Reduktion der Ausfallzeiten von Produktionsanlagen realisieren. Das neuartige System wird robuste und vernetzte Sensoren mit intelligenten Algorithmen zur Datenanalyse kombinieren. Über Diagnosesignale wie Körperschall überwacht das System den Betriebszustand von Maschinen kontinuierlich. Dadurch wird die Wartung und Instandhaltung verbessert sowie die Maschinenverfügbarkeit in der Produktion erhöht.

Literaturquellen

- [1] Bauer, W.; Schlund, S.; Marrenbach, D.; Ganschar, O: Industrie 4.0 Volkswirtschaftliches Potenzial für Deutschland, 2014.
- [2] Manyika, J.; Chui, M.; Bisson, P., Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D.: The Internet of Things: Mapping the Value Beyond the Hype. McKinsey Global Institute, 2015.
- [3] VDI 2888, (12.1999): Zustandsorientierte Instandhaltung. Berlin: Beuth.
- [4] Klein, H. W.: Zustandsüberwachung von Rollen-Profilschienenführungen und Kugelgewindetrieben. Ergebnisse aus der Produktionstechnik. Hrsg.: KLOCKE, F. Aachen, Fraunhofer IPT, 2011.
- [5] Bundesministerium für Bildung und Forschung (2015): Industrie 4.0; Innovationen für die Produktion von Morgen, 2015.
- [6] Abele, E.; Sielaff, T.; Schiffler, A.; Rothenbücher, S.: Analyzing Energy Consumption of Machine Tool Spindle Units and Identification of Potential for Improvements of Efficiency. In: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering. Berlin Heidelberg: Springer, 2011.