0.1 函数构造类

0.1.1 单中值点问题

例题 0.1

1. 设 $f \in C[0,2] \cap D(0,2)$ 满足 f(0) = f(2) = 0, $\lim_{r \to 1} \frac{f(x) - 2}{r - 1} = 5$. 则存在 $\xi \in (0,2)$ 使得

$$f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

2. 设 $f \in C[0,1] \cap D(0,1)$, f(0) = 0, 证明: 存在 $u \in (0,1)$, 使

$$f'(u) = \frac{uf(u)}{1 - u}.$$

3. 设 $f \in C[-1,2] \cap D(-1,2)$ 且有 $f(-1) = f(2) = -\frac{1}{2}, f(\frac{1}{2}) = 1$. 证明对任何实数 $\lambda \in \mathbb{R}$, 都存在 $\xi \in (-1,2)$, 使

$$f'(\xi) = \lambda \left[f(\xi) - \frac{\xi}{2} \right] + \frac{1}{2}.$$

笔记 我们在草稿纸上构造函数,构造过程无需展示给别人或者卷面.构造的本质是猜测,所以无需严格的逻辑.

1. Step1 考虑微分方程 $y' = \frac{2x - y}{x}$, 解得 $y = \frac{c}{x} + x$. Step2 分离常数 c 得 c = x(y - x), 常数变易得构造函数 c(x) = x(f(x) - x). 2. Step1 考虑微分方程 $y' = \frac{xy}{1 - x}$, 解得 $y = \frac{ce^{-x}}{x - 1}$. Step2 分离常数 c 得 $c = e^{x}(x - 1)y$, 常数变易得构造函数 $c(x) = e^{x}(x - 1)f(x)$. 3. Step1 考虑微分方程 $y' = \lambda \left[y - \frac{x}{2} \right] + \frac{1}{2}$, 解得 $y = ce^{\lambda x} + \frac{x}{2}$.

Step2 分离常数 c 得 $c = \frac{y - \frac{x}{2}}{cdx}$, 常数变易得构造函数 $c(x) = \frac{f(x) - \frac{x}{2}}{cdx}$.

证明

1. 由 $\lim_{x \to 1} \frac{f(x) - 2}{x - 1} = 5$ 及 $f \in C[0, 2]$ 可知

$$f(1) = \lim_{x \to 1} f(x) = 5 \lim_{x \to 1} (x - 1) + 2 = 2.$$

从而

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{f(x) - 2}{x - 1} = 5.$$

构造函数 c(x) = x(f(x) - x), 我们求导得

$$c'(x) = f(x) - 2x + xf'(x). (1)$$

注意到

$$c(0) = 0, c(1) = 1, c(2) = -4.$$

于是由 Lagrange 中值定理得 $\alpha \in (0,1), \beta \in (1,2)$, 使得

$$c'(\alpha) = \frac{c(1) - c(0)}{1 - 0} = 1, c'(\beta) = \frac{c(1) - c(2)}{1 - 2} = -5.$$

由导数介值定理知存在 $\xi \in (0, \eta)$ 使得 $c'(\xi) = 0$. 由(1)知

$$f'(\xi) = \frac{2\xi - f(\xi)}{\xi}.$$

这就完成了证明.

2. 构造 $c(x) = e^{x}(x-1)f(x)$,则 c(0) = c(1) = 0,由罗尔中值定理,存在 $u \in (0,1)$,使得 c'(u) = 0,这恰好是

$$f'(u) = \frac{uf(u)}{1 - u}.$$

3. 构造 $c(x) = \frac{f(x) - \frac{x}{2}}{a^{\lambda x}}$. 注意到

$$c(-1) = 0, c(2) = -\frac{3}{2e^{2\lambda}}, c\left(\frac{1}{2}\right) = \frac{3}{4e^{\frac{\lambda}{2}}}.$$

由零点定理知存在 $\theta \in (\frac{1}{2},2)$, 使得 $c(\theta)=0$. 再由罗尔中值定理知存在 $\xi \in (-1,\theta) \subset (-1,2)$, 使 $c'(\xi)=0$, 即

$$f'(\xi) = \lambda \left[f(\xi) - \frac{\xi}{2} \right] + \frac{1}{2}.$$

例题 0.2 设 $f \in D[0,1]$ 且 f(0) > 0, f(1) > 0, $\int_0^1 f(x)dx = 0$, 证明存在 $\xi \in (0,1)$, 使得

$$f'(\xi) + 3f^{3}(\xi) = 0.$$

 $\dot{\mathbf{L}}$ 虽然本题直接考虑微分方程: $\mathbf{v}' + 3\mathbf{v}^2 = 0$ 解出 \mathbf{v} , 然后常数变易也不难得到构造函数. 但是下述证明的方法旨在 介绍一种新的解决这类问题的方法.

 $\stackrel{ extbf{Q}}{ extbf{Q}}$ 笔记 此类构造虽然仍然是一阶构造, 但是要把部分 f 视为已知函数来构造, 对于本题, 即 $3f^2$ 视为已知的函数. 考 虑 $y' + 3f^2y = 0$. 解得 $y = ce^{-\int_0^x 3f^2(t)dt}$, 分离变量得构造函数 $c(x) = f(x)e^{\int_0^x 3f^2(t)dt}$.

证明 证法一: 构造函数 $c(x) = f(x)e^{\int_0^x 3f^2(t)dt}$, 注意到

$$c'(x) = e^{\int_0^x 3f^2(t)dt} [f'(x) + 3f^3(x)].$$

以及由积分中值定理, 我们知道存在 $\theta \in (0,1)$, 使得

$$f(\theta) = \int_0^1 f(x)dx = 0.$$

注意到若 f 只有一个零点,则因为 f(0) > 0, f(1) > 0, 我们知道 f(x) > 0, $\forall x \in [0, \theta) \cup (\theta, 1]$, 从而 $\int_0^1 f(x) dx > 0$, 这就是一个矛盾! 于是存在 $\theta_1 \neq \theta_2$, 使得 $f(\theta_1) = f(\theta_2) = 0$. 现在就有 $c(\theta_1) = c(\theta_2) = 0$, 由罗尔中值定理, 存在 $\xi \in (0,1)$, 使得 $c'(\xi) = 0$, 即

$$f'(\xi) + 3f^3(\xi) = 0.$$

证法二: 构造函数 $c(x) = f(x)e^{\int_0^x 3f^2(t)dt}$, 注意到

$$c'(x) = e^{\int_0^x 3f^2(t)dt} [f'(x) + 3f^3(x)].$$

以及由积分中值定理, 我们知道存在 $\theta \in (0,1)$, 使得

$$f(\theta) = \int_0^1 f(x)dx = 0.$$

从而 $c(\theta) = 0$. 因为 f(0), f(1) > 0, 所以 c(0), c(1) > 0. 又由 $c \in C[0,1]$, 故 c(x) 在 [0,1] 上可取到最大、最小值. 由 于 $c(\theta) = 0 < c(0), c(1)$, 因此 c(x) 只能在 (0,1) 上可取到最小值, 即存在 $\xi \in (0,1)$, 使得 $c(\xi) \le c(x)$, $\forall x \in [0,1]$. 由 费马引理可知 $c'(\xi) = 0$, 即

$$f'(\xi) + 3f^3(\xi) = 0.$$

例题 **0.3** 设 $f \in C^1[0,1]$, 证明存在 $\xi \in [0,1]$, 使得

$$f'(\xi) = \int_0^1 (12x - 6)f(x)dx.$$

② 笔记 核心想法: 分部积分转移导数, 但是需要控制非积分部分为零. 注 $\int_0^1 (12x-6)f(x)dx = \int_0^1 (6x^2-6x)'f(x)dx$ 的原因: 我们希望利用分部积分后能够直接转移导数而没有多余部 分, 因此我们待定 $\int_0^1 (12x-6)f(x)dx = \int_0^1 (ax^2+bx+c)'f(x)dx$, 即 $12x-6=(ax^2+bx+c)'$. 分部积分得到 $\int_0^1 (12x - 6)f(x)dx = \int_0^1 (ax^2 + bx + c)'f(x)dx = (ax^2 + bx + c)f(x)\Big|_0^1 - \int_0^1 (ax^2 + bx + c)f'(x)dx.$

我们希望 $(ax^2 + bx + c)f(x)\Big|_0^1 = (a + b + c)f(1) - cf(0) = 0$, 即希望 x = 0, 1 恰好是 $ax^2 + bx + c$ 的根, 并且 $12x - 6 = (ax^2 + bx + c)'$. 从而

$$\begin{cases} a+b+c=0\\ c=0\\ 2a=12\\ b=-6 \end{cases} \Rightarrow \begin{cases} a=6\\ b=-6\\ c=0 \end{cases}.$$

由此可知, 满足我们期望的二次函数只有 $6x^2-6x$, 即 $\int_0^1 (12x-6)f(x)dx = \int_0^1 (6x^2-6x)'f(x)dx$. 证明

$$\int_{0}^{1} (12x - 6) f(x) dx = \int_{0}^{1} (6x^{2} - 6x) f(x) dx \xrightarrow{\underline{\text{分 中值定理}}} - \int_{0}^{1} (6x^{2} - 6x) f(x) dx$$

$$\underline{\frac{\text{积分 中值定理}}{\text{f'}(\xi) \int_{0}^{1} (6x - 6x^{2}) dx} = f'(\xi), \xi \in [0, 1].$$

例题 0.4

1. 设 $f \in D^2[0,1]$ 使得 f(0) = f(1), 证明存在 $\eta \in (0,1)$ 使得

$$f''(\eta) = \frac{2f'(\eta)}{1-n}.$$

2. 设 $f \in D^2[0, \frac{\pi}{4}], f(0) = 0, f'(0) = 1, f(\frac{\pi}{4}) = 1$, 证明存在 $\xi \in (0, \frac{\pi}{4})$, 使得

$$f''(\xi) = 2f(\xi)f'(\xi).$$

注

1. 考虑微分方程 $y'' = \frac{2y'}{1-x}$, 解得 $y' = \frac{c}{(1-x)^2}$, 常数变易得到构造函数 $c(x) = (1-x)^2 f'(x)$.

2. 虽然我们可以通过解微分方程得到构造函数,但是也不要忘记直接猜测构造函数的想法. 当需要考虑的微分方程比较难解时,就只能猜测构造函数.

考虑微分方程:y''=2yy',解得 $y'=y^2+c$,得到构造函数 $c(x)=f'(x)-f^2(x)$. 但是根据这个构造函数结合已知条件再利用中值定理无法得到结论. $(f(\frac{\pi}{4})=1$ 用不了) 因此需要构造更加具体的函数才行.

然而原问题等价于利用 Rolle 中值定理找一个中值点 $\xi \in (0, \frac{\pi}{4})$, 使得 $c'(\xi) = 0$. 但由条件只能得到 c(0) = 1, $c(\frac{\pi}{4})$ 无法确定. 因此我们希望还能找一个点 $x_0 \in (0, \frac{\pi}{4})$, 使得 $c(x_0) = f'(x_0) - f^2(x_0) = 1$.

将这个看作一个新的中值问题, 即已知设 $f \in D^2[0, \frac{\pi}{4}], f(0) = 0, f'(0) = 1, f(\frac{\pi}{4}) = 1$, 证明: 存在 $x_0 \in (0, \frac{\pi}{4}),$ 使得

$$c(x_0) = f'(x_0) - f^2(x_0) = 1.$$

考虑微分方程: $y'-y^2=1$, 解得 $\arctan y=x+C$, 常数变易得到新的构造函数 $g(x)=\arctan f(x)-x$. 由条件可知 $g(0)=g(\frac{\pi}{4})=0$, 从而由 Rolle 中值定理可知, 存在 $x_0\in(0,\frac{\pi}{4})$, 使得 $g'(x_0)=0\Leftrightarrow f'(x_0)-f^2(x_0)=1$. 从而找到了满足我们需求的中值点 x_0 , 故结论得证.(具体证明见下述证明)

证明

1. 令 $c(x) = (1-x)^2 f'(x)$, 则 $c'(x) = 2(x-1)f'(x) + (1-x)^2 f''(x)$. 由 f(0) = f(1) 及 Rolle 中值定理可得, 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$. 从而 $c(1) = c(\xi) = 0$, 再根据 Rolle 中值定理可得, 存在 $\eta \in (0,1)$, 使得

$$c'(\eta) = 0 \Leftrightarrow f''(\eta) = \frac{2f'(\eta)}{1 - \eta}.$$

2. 令 $c(x) = f'(x) - f^2(x)$, $g(x) = \arctan f(x) - x$, 则 $g'(x) = \frac{f'(x) - f^2(x) - 1}{1 + f^2(x)}$. 进而由条件可得 $g(0) = g(\frac{\pi}{4}) = 0$, g'(0) = 0. 于是由 Rolle 中值定理可知, 存在 $a \in (0, \frac{\pi}{4})$, 使得 g'(a) = 0, 即 $f'(a) = f^2(a) + 1$. 从而 c(a) = 0

 $1, c(0) = f'(0) - f^2(0) = 1$, 故再由 Rolle 中值定理可得, 存在 $\xi \in (0, \frac{\pi}{4})$, 使得

$$c(1) = 0 \Leftrightarrow f''(\xi) = 2f(\xi)f'(\xi).$$

0.1.2 多中值点问题

例题 0.5 设 $f \in C[0,1] \cap D(0,1)$ 且 f(0) = 0, f(1) = 1. 证明存在互不相同的 $\lambda, \mu \in (0,1)$ 使得

$$f'(\lambda)(1+f'(\mu))=2.$$

笔记 核心想法:插入一个点c,将两个中值点问题转换为如何确定这单个插入点c的问题.

注 思路分析: 待定 $c \in (0,1)$, 运用拉格朗日中值定理, 我们知道存在 $\lambda \in (0,c)$, $\mu \in (c,1)$, 使得

$$f'(\lambda) = \frac{f(c) - f(0)}{c - 0} = \frac{f(c)}{c}, f'(\mu) = \frac{f(c) - f(1)}{c - 1} = \frac{f(c) - 1}{c - 1}.$$

需要

$$2 = f'(\lambda)(1 + f'(\mu)) = \frac{f(c)}{c} \left[1 + \frac{f(c) - 1}{c - 1} \right],$$

只需找到一个 $c \in (0,1)$ 使得上式成立. 但是直接考虑上式比较困难, 我们希望能找到一个特殊的 c 从而将上式化简. 因此待定 k, 我们希望 f(c) 同时满足 $\frac{f(c)-1}{c-1}=k$ (这里期望 f(c) 满足 $\frac{f(c)}{c}=k$ 也可以), 从而上式就转化为

$$2 = \frac{kc - k + 1}{c} \cdot (k + 1) \Leftrightarrow \left(k^2 + k - 2\right)c - \left(k^2 - 1\right) = 0$$
$$\Leftrightarrow (k - 1)\left[(k + 2)c - k - 1\right] = 0 \Leftrightarrow k = 1 \stackrel{\longrightarrow}{\Longrightarrow} k = \frac{1 - 2c}{c - 1}.$$

若取 k=1, 则我们只需找到一个 $c\in(0,1)$, 使得 $\frac{f(c)-1}{c-1}=1$, 即 f(c)=c. 此时令 g(x)=f(x)-x, 则现在我们只需找到一个 $c\in(0,1)$, 使得 g(c)=0 即可. 但是由条件可知 g(0)=g(1)=0, 无法用中值定理直接找出 $c\in(0,1)$, 使得 g(c)=0. 故取 k=1 不能找到满足我们的需求的 c.

若取 $k = \frac{1-2c}{c-1}$,则我们只需找到一个 $c \in (0,1)$,使得 $\frac{f(c)-1}{c-1} = \frac{1-2c}{c-1}$,即 f(c) = 2-2c.此时令 g(x) = f(x) + 2x - 2,则现在我们只需找到一个 $c \in (0,1)$,使得 g(c) = 0 即可. 由条件可知 g(0) = -2,g(1) = 1,从而由连续函数介值定理可得,存在 $c \in (0,1)$,使得 g(c) = 0. 故取 $k = \frac{1-2c}{c-1}$ 能找到满足我们的需求的 c,进而就确定了满足题目要求的 λ 和 μ .

证明 令 g(x) = f(x) + 2x - 2, 则由条件可知 g(0) = -2, g(1) = 1, 从而由连续函数介值定理可得, 存在 $c \in (0,1)$, 使得 g(c) = 0, 即 f(c) = 2 - 2c. 运用 Lagrange 中值定理, 我们知道存在 $\lambda \in (0,c)$, $\mu \in (c,1)$, 使得

$$f'(\lambda) = \frac{f(c) - f(0)}{c - 0} = \frac{f(c)}{c}, f'(\mu) = \frac{f(c) - f(1)}{c - 1} = \frac{f(c) - 1}{c - 1}.$$

再结合 f(c) = 2 - 2c 可得

$$f'(\lambda)(1+f'(\mu)) = \frac{f(c)}{c} \left[1 + \frac{f(c)-1}{c-1} \right] = 2.$$

故结论得证.

例题 0.6 设 $f \in C[0,1] \cap D(0,1)$ 使得 f(0) = 0, f(1) = 1,正实数满足 $\lambda_1 + \lambda_2 + \cdots + \lambda_n = 1$ 。证明存在互不相同的 $x_1, x_2, \cdots, x_n \in (0,1)$,使得

$$\sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = 1.$$

 $\stackrel{ extstyle 2}{ extstyle 2}$ 笔记 核心想法: 插入n-1 个点 y_i , 将 n 个中值点问题转换为如何确定这些插入点 y_i 的问题.

注 思路分析: 证明的想法就是插入 n-1 个点 $0=y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = 1$ 之后用 Lagrange 定理得

$$f'(x_i) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}}, x_i \in (y_{i-1}, y_i), i = 1, 2, \dots, n.$$

于是需要满足

$$1 = \sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = \sum_{i=1}^{n} \frac{\lambda_i(y_i - y_{i-1})}{f(y_i) - f(y_{i-1})}.$$

自然期望

$$f(y_i) - f(y_{i-1}) = \lambda_i, i = 1, 2, \dots, n.$$
 (2)

此时就有

$$\sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = \sum_{i=1}^{n} (y_i - y_{i-1}) = 1.$$

而为了得到(2), 我们只需反复用介值定理即可. 由条件可知 $0 = f(0) < \lambda_1 < f(1) = 1$, 从而由连续函数介值定理可得, 存在 $y_1 \in (0,1)$, 使得 $f(y_1) = \lambda_1$. 进而 $\lambda_1 = f(y_1) < \lambda_1 + \lambda_2 < f(1) = 1$, 于是再由连续函数介值定理可得, 存在 $y_2 \in (y_1,1)$, 使得 $f(y_2) = \lambda_1 + \lambda_2$. 以此类推, 反复利用介值定理即可得到

$$f(y_i) = \lambda_1 + \lambda_2 + \dots + \lambda_i, i = 1, 2, \dots, n - 1.$$

其中 $0 = y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = 1$.

证明 由条件可知 $0 = f(0) < \lambda_1 < f(1) = 1$, 从而由连续函数介值定理可得, 存在 $y_1 \in (0,1)$, 使得 $f(y_1) = \lambda_1$. 进而 $\lambda_1 = f(y_1) < \lambda_1 + \lambda_2 < f(1) = 1$, 于是再由连续函数介值定理可得, 存在 $y_2 \in (y_1,1)$, 使得 $f(y_2) = \lambda_1 + \lambda_2$. 以此类推, 反复利用介值定理即可得到

$$f(y_i) = \lambda_1 + \lambda_2 + \dots + \lambda_i, i = 1, 2, \dots, n - 1.$$

其中 $0 = y_0 < y_1 < y_2 < \cdots < y_{n-1} < y_n = 1$. 再利用 Lagrange 定理得

$$f'(x_i) = \frac{f(y_i) - f(y_{i-1})}{y_i - y_{i-1}}, x_i \in (y_{i-1}, y_i), i = 1, 2, \dots, n.$$

于是

$$\sum_{i=1}^{n} \frac{\lambda_i}{f'(x_i)} = \sum_{i=1}^{n} \frac{\lambda_i(y_i - y_{i-1})}{f(y_i) - f(y_{i-1})} \sum_{i=1}^{n} (y_i - y_{i-1}) = 1.$$

故结论得证.

0.1.3 只能猜的类型

来看一种很无趣的需要自己猜的类型. 此类问题的核心是两个中值参数相互制约, 此时需要你自己复原中值参数.

例题 0.7 设 $f \in C[0,1] \cap D(0,1)$ 且 f(0) = 0 且 $f(x) \neq 0, \forall x \in (0,1]$, 证明对任何 $\alpha > 0$, 存在 $\xi \in (0,1)$ 使得

$$\alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

注 注意到

$$\alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)} \Leftrightarrow \alpha f'(\xi) f(1-\xi) - f(\xi) f'(1-\xi) = 0.$$

因此想到构造函数 $g(x) = f^{\alpha}(x)f(1-x)$.

 $^{\flat}$ 笔记 不妨设 $f(x) > 0, \forall x \in (0,1]$ 的原因: 如果 f(x) < 0, 则 $f^{\alpha}(x)$ 可能无意义.

由 $f \in C[0,1]$ 且 $f(x) \neq 0$, $\forall x \in (0,1]$ 可知, f(x) 在 (0,1] 要么恒大于零,要么恒小于零. 否则由零点存在定理得到矛盾! 假设结论对 f(x) > 0, $\forall x \in (0,1]$ 成立,则当 f(x) < 0, $\forall x \in (0,1]$ 时,令 F(x) = -f(x) > 0, $\forall x \in (0,1]$,则 F(0) = 0. 从而由假设可知,对 $\forall \alpha > 0$,存在 $\xi \in (0,1)$,使得

$$\alpha \frac{F'(\xi)}{F(\xi)} = \frac{F'(1-\xi)}{F(1-\xi)} \Leftrightarrow \alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1-\xi)}{f(1-\xi)}.$$

故不妨设成立.

知, 存在 $\xi \in (0,1)$, 使得

$$g'(\xi) = 0 \Rightarrow g'(\xi) = \alpha f^{\alpha - 1}(\xi) f'(\xi) f(1 - \xi) - f^{\alpha}(\xi) f'(1 - \xi) \Rightarrow \alpha \frac{f'(\xi)}{f(\xi)} = \frac{f'(1 - \xi)}{f(1 - \xi)}.$$

0.1.4 中值极限问题

此类问题有一个固定操作,即对中值点再套一次中值定理,使得中值参数可以暴露出来,从而解出参数求 极限得到证明。

例题 0.8 设 $f \in C^2[0,1]$, f'(0) = 0, $f''(0) \neq 0$, 证明对任何 $x \in (0,1)$, 存在 $\xi(x) \in (0,1)$, 使得

$$\int_0^x f(t)dt = f(\xi(x))x,$$

且

$$\lim_{x \to 0^+} \frac{\xi(x)}{x} = \frac{1}{\sqrt{3}}.$$

证明 对 $\forall x \in (0,1)$, 由积分中值定理可知, 存在 $\xi(x) \in (0,1)$, 使得

$$\int_0^x f(t) dt = f(\xi(x))x.$$

从而对 $\forall x \in (0,1)$, 由 Taylor 定理可知, 存在 $\theta(x) \in (0,\xi(x))$, 使得

$$f(\xi(x)) = f(0) + f'(0)\xi(x) + \frac{1}{2}f''(\theta(x))\xi^{2}(x) = f(0) + \frac{f''(\theta(x))}{2}\xi^{2}(x).$$

从而将 $\int_{0}^{x} f(t)dt = f(\xi(x))x$ 代入上式可得

$$\int_0^x f(t)dt = x \left[f(0) + \frac{f''(\theta(x))}{2} \xi^2(x) \right].$$

故 $f''(\theta(x))\xi^2(x) = 2\left(\frac{\int_0^x f(t)dt}{x} - f(0)\right)$ 。于是

$$\lim_{x \to 0^+} \theta(x) = 0 \Rightarrow \lim_{x \to 0^+} f''(\theta(x)) = f''(0).$$

因此由 L'Hospital 法则可得

$$f''(0) \lim_{x \to 0^{+}} \frac{\xi^{2}(x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{f''(\theta(x))\xi^{2}(x)}{x^{2}} = \lim_{x \to 0^{+}} \frac{2\left(\int_{0}^{x} f(t)dt - xf(0)\right)}{x^{3}}$$
$$= \lim_{x \to 0^{+}} \frac{2\left(f(x) - f(0)\right)}{3x^{2}} = \lim_{x \to 0^{+}} \frac{f'(x)}{3x} = \frac{f''(0)}{3}.$$

又
$$f''(0) \neq 0$$
,故 $\lim_{x\to 0^+} \frac{\xi^2(x)}{x^2} = \frac{1}{3}$,因此 $\lim_{x\to 0^+} \frac{\xi(x)}{x} = \frac{1}{\sqrt{3}}$ 。
例题 0.9 设 f 在 $x=a$ 的邻域 $n+p$ 阶可导且 $p\geq 1$,于是有

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{(n)}(c)}{n!}(x - a)^n.$$
 (3)

如果对于 $j = 1, 2, \dots, p-1$ 都有 $f^{(n+j)}(a) = 0$, $f^{(n+p)}(a) \neq 0$, 求极限 $\lim_{x \to a} \frac{c-a}{r-a}$

证明 由 Taylor 中值定理及条件可知,存在 $\theta \in U(a)$,使得

$$f^{(n)}(c) = f^{(n)}(a) + \frac{f^{(n+p)}(\theta)}{p!}(c-a)^p.$$
(4)

从而结合上式,再利用带 Peano 余项的 Taylor 公式可得

$$\lim_{x \to a^+} f^{(n+p)}(\theta) = \lim_{x \to a^+} p! \frac{f^{(n)}(c) - f^{(n)}(a)}{(c-a)^p} = \lim_{x \to a^+} p! \frac{\frac{f^{(n+p)}(a)}{p!}(c-a)^p + o((c-a)^p)}{(c-a)^p} = f^{(n+p)}(a).$$

于是利用(3)(4)式,再结合带 Peano 余项的 Taylor 公式可得

$$\lim_{x \to a^{+}} \left(\frac{c - a}{x - a} \right)^{p} = \lim_{x \to a^{+}} \left[p! \cdot \frac{f^{(n)}(c) - f^{(n)}(a)}{(x - a)^{p} f^{(n+p)}(\theta)} \right] = \lim_{x \to a^{+}} \left[p! \cdot \frac{\frac{n![f(x) - \sum_{j=0}^{n-1} \frac{f^{(j)}(a)}{j!}(x - a)^{j}}{(x - a)^{p} f^{(n+p)}(\theta)}}{\frac{(x - a)^{p} f^{(n+p)}(\theta)}{(x - a)^{p} f^{(n+p)}(\theta)}} \right]$$

$$= \lim_{x \to a^{+}} \left[n! p! \cdot \frac{f(x) - \sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x - a)^{j}}{(x - a)^{n+p} f^{(n+p)}(\theta)}} \right] = \frac{n! p!}{f^{(n+p)}(a)} \lim_{x \to a^{+}} \frac{\frac{f^{(n+p)}(a)}{(n+p)!}(x - a)^{n+p} + o[(x - a)^{n+p}]}{(x - a)^{n+p}}$$

$$= \frac{n! p!}{(n + p)!}.$$

$$\not \boxtimes \lim_{x \to a^{+}} \frac{c - a}{x - a} = \sqrt[p]{\frac{n! p!}{(n + p)!}} \circ$$

0.1.5 性态分析类

定理 0.1 (积分中值定理)

(1) $f(x) \in R[a,b], g(x)$ 是 [a,b] 上的非负递减函数,则存在 $\zeta \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = g(a) \int_{a}^{\zeta} f(x)dx.$$

(2) $f(x) \in R[a,b], g(x)$ 是 [a,b] 上的非负递增函数,则存在 $\zeta \in [a,b]$,使得

$$\int_{a}^{b} f(x)g(x)dx = g(b) \int_{\zeta}^{b} f(x)dx.$$

(3) $f(x) \in R[a, b], g(x)$ 是 [a, b] 上的单调函数,则存在 $\zeta \in [a, b]$,使得

$$\int_a^b f(x)g(x)dx = g(a)\int_a^\zeta f(x)dx + g(b)\int_\zeta^b f(x)dx.$$

(4) $f(x) \in R[a,b]$ 且不变号, $g(x) \in R[a,b]$, 则存在 η 介于 g(x) 上下确界之间, 使得

$$\int_{a}^{b} f(x)g(x)dx = \eta \int_{a}^{b} f(x)dx.$$

(5) $f(x) \in R[a,b]$ 且不变号, $g(x) \in C[a,b]$, 则存在 $\zeta \in (a,b)$, 使得

$$\int_{a}^{b} f(x)g(x)dx = g(\zeta) \int_{a}^{b} f(x)dx.$$

(6) 若 (1),(2),(3) 中再加入条件 g(x) 在 (a,b) 中不为常数,则结论可以加强到 $\zeta \in (a,b)$.

定理 0.2 (Hadamard 不等式)

f 是 [a,b] 上的下凸函数,则

$$\frac{f(a) + f(b)}{2} \geqslant \frac{1}{b - a} \int_{a}^{b} f(x) dx \geqslant f\left(\frac{a + b}{2}\right).$$

Ŷ 笔记 一句话积累证明:一边是区间再现,一边是换元到区间 [0,1]。

注 左边的不等式证明中的线性换元构造思路: 我期望找到一个线性函数 g(t), 使得令 x = g(t) 换元后, 有

$$\int_{a}^{b} f(x) dx \xrightarrow{\underline{x=g(t)}} \int_{0}^{1} f(g(t))g'(t) dt.$$

即 g(0) = a, g(1) = b。 因此 $g(t) = \frac{b-a}{1-0}t + a = a + (b-a)t$ 。 从而

$$\int_{a}^{b} f(x) dx \xrightarrow{x=a+(b-a)t} (b-a) \int_{0}^{1} f(a+(b-a)t) dt = (b-a) \int_{0}^{1} f((1-t)a+bt) dt.$$

证明 由 f 在 [a,b] 上下凸, 一方面, 我们有

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx = \int_{0}^{1} f(a(1-t)+bt)dt \leqslant \int_{0}^{1} [(1-t)f(a)+tf(b)]dt = \frac{f(a)+f(b)}{2}.$$

另一方面,我们有

$$\frac{1}{b-a} \int_a^b f(x)dx = \frac{1}{b-a} \int_a^b f(a+b-x)dx = \frac{1}{2(b-a)} \int_a^b [f(a+b-x)+f(x)]dx$$
$$\geqslant \frac{1}{b-a} \int_a^b f\left(\frac{a+b}{2}\right) dx = f\left(\frac{a+b}{2}\right).$$

故结论成立.

例题 **0.10** 若 f 在 [0,1] 上有二阶导数且 f(0)=0, f(1)=1, $\int_0^1 f(x)dx=1$,证明存在 $\eta \in (0,1)$ 使得 $f''(\eta)<-2$ 。 注 通过 $f''(x)+2\geq 0$, $\forall x\in (0,1)$ 来推出 $f+x^2$ 在 [0,1] 下凸: 实际上,令 $g=f+x^2$,则 $g''\geq 0$, $\forall x\in (0,1)$,从而 g 在 (0,1) 下凸. 因为 $g=f+x^2\in C[0,1]$ 和 g 在 (0,1) 下凸我们就有

$$g(\lambda x + (1-\lambda)y) \leq \lambda g(x) + (1-\lambda)g(y), \forall x,y \in (0,1), \lambda \in [0,1].$$

上式中令x趋于0或者1也成立,再令y趋于1或者0也成立.因此g在[0,1]下凸。

证明 若不然,对任何 $x \in (0,1)$ 都有 $f''(x) \ge -2$,于是 $f(x) + x^2$ 是 [0,1] 的下凸函数。于是由**Hadamard** 不等式我们知道

$$\frac{4}{3} = \int_0^1 [f(x) + x^2] dx \le \frac{f(0) + 0^2 + f(1) + 1^2}{2} = \frac{2}{2} = 1,$$

矛盾! 现在存在 $\eta \in (0,1)$ 使得 $f''(\eta) < -2$

定理 0.3 (达布中值定理/导数介值定理)

设 $f \in D[a,b]$, 对任何介于 f'(a), f'(b) 之间的 η , 存在 $c \in [a,b]$ 使得 $f'(c) = \eta$.

证明 和连续函数介值定理一样, 我们只需证明导数满足零点定理。即不妨设 f'(a) < 0 < f'(b), 去找 $c \in [a,b]$ 使得 f'(c) = 0。事实上由极限保号性和

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = f'(a) < 0, \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b} = f'(b) > 0,$$

我们知道存在 $\delta > 0$. 使得

$$f(x) < f(a), \forall x \in (a, a+\delta], f(x) < f(b), \forall x \in [b-\delta, b).$$

因此 f 最小值在内部取到,此时由费马引理知最小值的导数为 0,从而证毕!

定理 **0.4** (加强的 **Rolle** 中值定理)

(a): 设 $f \in D(a,b)$ 且在 [a,b] 上 f 有介值性,则若 f(a) = f(b),必然存在 $\theta \in (a,b)$,使得 $f'(\theta) = 0$ 。

(b): 设
$$f \in C[a, +\infty) \cap D^1(a, +\infty)$$
 满足 $f(a) = \lim_{x \to +\infty} f(x)$, 则存在 $\theta \in (a, +\infty)$ 使得 $f'(\theta) = 0$ 。

🝷 笔记 一旦罗尔成立,所有中值定理和插值定理都会有类似的结果,可以具体情况具体分析。

证明 对于 (a): 不妨设 f 不恒为常数,则可取 $x_0 \in (a,b)$,使得 $f(x_0) \neq f(a)$,不妨设 $f(x_0) > f(a)$,则由 f 的介值性,我们知道存在 $x_1 \in (a,x_0), x_2 \in (x_0,b)$,使得

$$f(x_1) = \frac{f(a) + f(x_0)}{2}, f(x_2) = \frac{f(b) + f(x_0)}{2}.$$

因为 f(a) = f(b),我们知道 $f(x_1) = f(x_2)$,由 Rolle 中值定理 $(f \in C[x_1, x_2] \cap D(x_1, x_2))$ 可知, 存在 $\theta \in (a, b)$,使 得 $f'(\theta) = 0$ 。这就完成了 (a) 的证明。

对于 (b): 若对任何 $x \in (0, +\infty)$ 使得 $f'(x) \neq 0$, 则由导数介值性可知, f' 恒大于 0 或恒小于 0(否则, 由导数介值性可得到一个零点). 从而 f 在 $[0, +\infty)$ 严格单调,不妨设为递增。现在

$$f(x) \geqslant f(a+1) > f(a), \forall x \geqslant a+1,$$

于是

$$f(a) = \lim_{x \to +\infty} f(x) \geqslant f(a+1) > f(a),$$

这就是一个矛盾! 因此我们证明了存在 $\theta \in (a, +\infty)$ 使得 $f'(\theta) = 0$ 。

例题 0.11 设 f 在 [a,b] 连续,(a,b) 可微且不是线性函数,证明:存在 $\xi \in (a,b)$ 使得

$$f'(\xi) > \frac{f(b) - f(a)}{b - a}.$$

奎记 $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$ 这个线性构造必须记忆! 证明 考虑

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a),$$

则 g(a) = g(b) = 0 且 g 不是常值函数。 因 $g' \le 0$ 恒成立会导致 g 在 [a,b] 递减, 从而 0 = g(b) < g(a) = 0, 这不可能! 现在存在 $\xi \in (a,b)$ 使得 $g'(\xi) > 0$,即结论成立.

例题 0.12

1. 设 $f ∈ C[0, \pi] \cap D(0, \pi)$ 满足

$$\int_0^{\pi} f(x) \cos x dx = \int_0^{\pi} f(x) \sin x dx = 0.$$

证明存在 $\xi \in (0, \pi)$, 使得 $f'(\xi) = 0$

2. 设 $f \in C[0, \frac{\pi}{2}]$ 满足

$$\int_0^{\frac{\pi}{2}} f(x)dx = \int_0^{\frac{\pi}{2}} f(x)\cos x dx = \int_0^{\frac{\pi}{2}} f(x)\sin x dx = 0.$$
 (5)

证明: $f \in (0, \frac{\pi}{2})$ 至少有三个互不相同的零点。

 $\stackrel{ extbf{?}}{ extbf{?}}$ 笔记 此类给出积分等式的问题,往往就是寻求给定积分等式的线性组合来实现目标。即本题我们要寻求合适的 $a,b\in\mathbb{R}$,考虑积分

$$\int_0^{\pi} f(x)(a\cos x + b\sin x)dx = 0.$$

一句话证明本题 1 问,就是寻求合适的 $a,b \in \mathbb{R}$,使得 $a\cos x + b\sin x$ 和 f 的符号一致。第 2 问可以待定系数解 方程来得到线性组合。

证明

1. 我们只需断言 f 在 $[0,\pi]$ 至少有两个不相同的零点,之后由罗尔定理就给出了存在 $\xi \in (0,\pi)$,使得 $f'(\xi) = 0$ 。由积分中值定理可知,存在 $x_0 \in (0,\pi)$,使得

$$\int_0^{\pi} f(x) \sin x dx = f(\theta) \int_0^{\pi} \sin x dx = 2f(x) = 0.$$

即 f 在 $(0,\pi)$ 上有一个零点 x_0 。若 f 在 $[0,\pi]$ 只有一个零点,则 f 在 $[0,x_0)$, $(x_0,\pi]$ 不同号(否则 f 不变号,则由 $\int_0^\pi f(x) \sin x dx = 0$ 知 f = 0,与 f 只有一个零点矛盾!)。不妨设

$$f(x) < 0, \forall x \in [0, x_0), f(x) > 0, \forall x \in (x_0, \pi].$$

于是可取

$$a \sin x + b \cos x = \sin(x - x_0)(a = \cos x_0, b = \sin x_0).$$

此时根据条件就有

$$\int_{0}^{\pi} f(x) \sin(x - x_{0}) dx = \int_{0}^{\pi} f(x) (\cos x_{0} \sin x - \sin x_{0} \cos x) dx = \cos x_{0} \int_{0}^{\pi} f(x) \sin x dx - \sin x_{0} \int_{0}^{\pi} f(x) \cos x dx = 0.$$
又注意到

$$f(x)\sin(x-x_0) > 0, \forall x \in [0,\pi] \setminus \{x_0\},\$$

故
$$0 = \int_0^{\pi} f(x) \sin(x - x_0) dx > 0$$
,矛盾! 这就完成了证明。

2. 不妨设 f 不恒为 0,由积分中值定理和(5)式知 f 在 $(0,\frac{\pi}{2})$ 至少有一个零点且变号。若 f 在 $(0,\frac{\pi}{2})$ 只变号一次,设在 x_1 变号,则 f 在 x_1 两侧符号相反。由(5)式得

$$\int_0^{\frac{\pi}{2}} f(x) \sin(x - x_1) dx = 0.$$

但是 $f(x)\sin(x-x_1)$ 不变号, 这就推出 f=0 而矛盾! 若 f 在 $(0,\frac{\pi}{2})$ 只变号两次, 设变号处为 x_1,x_2 , 考虑

$$g(x) \triangleq \sin x - \frac{\sin x_2 - \sin x_1}{\cos x_2 - \cos x_1} \cos x + \frac{\sin(x_2 - x_1)}{\cos x_2 - \cos x_1}, x \in [0, \frac{\pi}{2}].$$

注意到

$$g'(x) = \cos x + \frac{\sin x_2 - \sin x_1}{\cos x_2 - \cos x_1} \sin x = \frac{\sin x_2 - \sin x_1}{\cos x_2 - \cos x_1} \cos x \left(\tan x - \frac{\cos x_1 - \cos x_2}{\sin x_2 - \sin x_1} \right),$$

我们知 g' 在 $(0,\frac{\pi}{2})$ 有且只有一个零点。注意 $g(x_1)=g(x_2)=0$,我们由罗尔中值定理知道 g' 在 (x_1,x_2) 有零点,因此 g 当且仅当在 x_1,x_2 变号。现由(5)式得

$$\int_0^{\frac{\pi}{2}} f(x)g(x)dx = 0.$$

但是 fg 不变号,故 f=0,这就是一个矛盾! 至此我们证明了 f 在 $(0,\frac{\pi}{2})$ 至少有三个互不相同的零点。

10