CS 353 Fall 2018

Homework 5 Solutions

Due: 7 December, Friday till 17:00

- **Q.1** Consider the set F of functional dependencies on the relation schema
- r(A, B, C, D, E, F) given as $F = \{AB \rightarrow C, B \rightarrow D, F \rightarrow CE, DE \rightarrow F\}$

Determine whether each of the following functional dependencies can be derived from F:

- a) BE \rightarrow FC
- **b**) $AF \rightarrow D$
- c) CE \rightarrow B
- \mathbf{d}) FD \rightarrow A

Solution

- a) $(BE)^+ = BEDFC$ and hence YES b) $(AF)^+ = AFCE$ and hence NO c) $(CE)^+ = CE$ and hence NO d) $(FD)^+ = FDCE$ and hence NO
- **Q.2** Consider the relation r and the set of functional dependencies as given in Q1. Show that the BE \rightarrow C hold on r using ONLY Armstrong's Axioms. In each step of the proof, specify the axiom you are using.

Solution

- $B \rightarrow D$ given in the F $BE \rightarrow DE$ augmentation $BE \rightarrow F$ transitivity $BE \rightarrow CE$ transitivity $CE \rightarrow C$ reflexivity $BE \rightarrow C$ transitivity
- **Q.3** Given relation r(A, B, C, D, E, F), for each of the following set of functional dependencies, determine whether the decomposition of R into r1(A,B,E,D) and r2(A,B,C,F) is a lossless-join decomposition or not:
 - $\mathbf{a}) F1 = \{AB \to C, B \to D\}$
 - **b**) $F2 = \{F \rightarrow CE, DE \rightarrow F\}$

Solution

- a) $(r1 \cap r2)^+$ with respect to F1 = ABCD and ABCD is not a super key for r1 nor r2 and hence the decomposition is NOT lossless-join with respect to F1
- b) $(r1 \cap r2)^+$ with respect to F2 = AB and AB is not a super key for r1 nor r2 and hence the decomposition is NOT lossless-join with respect to F2

1

Q.4 Consider the following set F of functional dependencies on the relation schema

$$F=\{A \rightarrow BCF, B \rightarrow DE, D \rightarrow A\}$$

- a) Compute candidate keys for r
- **b)** Given a canonical cover for F
- c) Provide a 3NF decomposition of r

Solution

a) We start with sets of single attributes:

$A^+ = ABCDEF$	A is a candidate key
$B^+ = ABCDEF$	B is a candidate key
$C^+ = C$	C is NOT a candidate key
$D^+ = ABCDEF$	D is a candidate key
$E^+ = E$	E is NOT a candidate key

 $F^+ = F$ F is NOT a candidate key

Potential candidate keys as sets of two attributes may not contain A, B and D attributes and hence we only need to check CE, CF and EF

Potential candidate keys as sets of three attributes may not contain A, B and D attributes and hence we only need to check ECF:

$$(CEF)^+ = CEF$$
 CEF is NOT a candidate key

Hence, the candidate keys are A, B and D

- b) No pairs of functional dependencies can be combined using the union rule
 - Check if B is extraneous in A \rightarrow BCF:

$$F' = \{ A \rightarrow CF, B \rightarrow DE, D \rightarrow A \}$$

 A^+ under F' = ACF and A^+ does not include B, hence B is NOT extraneous

- Check if C is extraneous in A \rightarrow BCF:

$$F' = \{ A \rightarrow BF, B \rightarrow DE, D \rightarrow A \}$$

A⁺ under F' = ABDEF and A⁺ does not include C, hence C is NOT extraneous

- Check if F is extraneous in A \rightarrow BCF:

$$F'=\{A \rightarrow BC, B \rightarrow DE, D \rightarrow A\}$$

 A^+ under F' = ABCDE and A^+ does not include F, hence F is NOT extraneous

- Check if D is extraneous in $B \rightarrow DE$:

$$F' = \{ A \rightarrow BCF, B \rightarrow E, D \rightarrow A \}$$

 B^+ under F' = BE and B^+ does not include D, hence D is NOT extraneous

- Check if E is extraneous in B \rightarrow DE:

$$F' = \{ A \rightarrow BCF, B \rightarrow D, D \rightarrow A \}$$

 B^+ under $F^- = BDACF$ and B^+ does not include E, hence E is NOT extraneous As a result, the original set $F = \{A \to BCF, B \to DE, D \to A\}$ is a canonical cover

Q.5 Given relation r as r = (A, B, C, D, E) and the set F of functional dependencies as $F = \{A \rightarrow BE, C \rightarrow D, B \rightarrow C\}$, give a BCNF decomposition of r using the functional dependencies only in F.

Solution

For $A \rightarrow BE$: A is a super key, hence no violation of BCNF

For $C \rightarrow D$: C is NOT a super key of r, hence

r1=(CD) is in BCNF

r2=(ABCE)

For $B \rightarrow C$: B is NOT a super key of r2, hence

r21=(BC) is in BCNF r22=(ABE) is in BCNF

The BCNF decomposition of r is (C,D), (B,C), (A,B,E)

Q.6 Considering the relation r(A,B,C,D,E,F) and the set of functional dependencies as $F = \{C \rightarrow AE, B \rightarrow C, D \rightarrow ECB, A \rightarrow F\}$

Check if the decomposition of r as below is dependency preserving:

r1(A,C) r2(B,C,F) r3(C,D,E)

Solution

```
- for C \rightarrow AE we have:
```

```
result=C
```

using r1:

 $(result \cap r1)^+ = C^+ = CAEF$

 $t=(result \cap r1)^+ \cap r1 = CAEF \cap r1 = AC$

result = result U t = AC

using r2:

 $(result \cap r2)^+ = (AC \cap BCF)^+ = C^+ = CAEF$

 $t=(result \cap r2)^+ \cap r2 = CAEF \cap BCF = CF$

 $result = result \cup t = ACF$

using r3:

 $(result \cap r3)^+ = (ACF \cap CDE)^+ = C^+ = CAEF$

 $t=(result \cap r3)^+ \cap r3 = CAEF \cap CDE = CE$

 $result = result \cup t = ACFE$

no need to repeat over since the result includes rhs of the functional dependency C→AE

```
- for B \rightarrow C we have:
result=B
using r1:
(result \cap r1)^+ = \emptyset
t=(result \cap r1)^+ \cap r1 = \emptyset
result = result \cup t = B
using r2:
(result \cap r2)^+ = B^+ = BCAEF
t=(result \cap r2)^+ \cap r2 = BCAEF \cap BCF = BCF
result = result \cup t = B \cup BCF = BCF
no need to proceed as the result includes C
    - for D \rightarrow ECB we have:
result = D
using r1:
(result \cap r1)^+ = \emptyset
t=(result \cap r1)^+ \cap r1 = \emptyset
result = result \cup t = D
using r2:
(result \cap r2)^+ = \emptyset
t=(result \cap r2)^+ \cap r2 = \emptyset
result = result \cup t = D
using r3:
(result \cap r3)^+ = D^+ = DECBAF
t=(result \cap r3)^+ \cap r3 = CDE
result = result \cup t = CDE
using r1:
(result \cap r1)^+ = C^+ = CAEF
t=(result \cap r1)^+ \cap r1 = AC
result = result \cup t = CDE \cup AC = CDEA
using r2:
(result \cap r2)^+ = (CDEA \cap BCF)^+ = (C)^+ = CAEF
t=(result \cap r2)^+ \cap r2 = CAEF \cap BCF = CF
result = result \cup t = CDEAF
using r3:
(result \cap r3)^+ = (CDEAF \cap CDE)^+ = (CDE)^+ = ABCDEF
```

```
t=(result \cap r3)^+ \cap r3 = ABCDEF \cap CDE = CDE
result = result \cup t = CDEAF
```

using r1:

(result \cap r1)⁺ = (CDEAF \cap AC)⁺ = (AC)⁺ = ACFE t=(result \cap r1)⁺ \cap r1 = ACFE \cap AC = AC result = result \cup t = CDEAF \cup AC = CDEAF since the result does not change, we stop here

As the rhs of functional dependency $D \to ECB$ is not included in the result, we conclude that the decomposition is not dependency preserving.