Automatic Image Analysis Exercise 3 The Generalised Hough Transformation

(Due 23.06.2017)

Mid-term Exam

- Friday, <u>09.06.2017</u>, <u>10:15am</u>, <u>room H 3010</u>
- In place of an exercise
- Duration: ca. 30 min
- No grade, but pass is necessary to take part at the final exam
- Topics from lecture and exercise
- Questions in English, answers in English or German
- No books, no calculator, no script, no paper, ...

(ρ,θ) Invariance

A line in the image plane is defined by parameters (ρ,θ) :

In parameter space over (ρ,θ) , the line collapses to a point:

Invariant for all pixels on the line:

Line Detection

- 0) Compute (ρ,θ) at each line-pixel
- 1)Increment the parameter space at coordinate (ρ,θ)
- 2) A line leads to a pronounced maximum

Problem: (ρ,θ) are unknowns

→ Infinite number of potential lines intersect at every point

Solution:

- → Each line through a point (x,y) is defined by fixing its direction θ .
- → ρ can be computed from x,y and θ .
- \rightarrow For all directions θ : Compute ρ and increase element (ρ , θ) in parameter space

Hough Line Detector

- Alternative (more intelligent) solution: Use gradient information
- The local gradient direction fixes θ , and (ρ,θ) can be calculated directly
- It is no longer necessary to consider every possible line through each pixel!

Hough Line Detector

- Alternative (more intelligent) solution: Use gradient information
- The local gradient direction fixes θ , and (ρ,θ) can be calculated directly
- It is no longer necessary to consider every possible line through each pixel!

B(x,y)

Gradient in x direction

Gradient in y direction $G_{x}(x,y) = \frac{\partial}{\partial x} B(x,y) \quad G_{y}(x,y) = \frac{\partial}{\partial y} B(x,y)$

Hough Line Detector

• Each pixel (x,y) is associated with a gradient vector $(G_{x}(x,y),G_{y}(x,y))$.

• The angle $\theta_{c}(x,y)$ is easy to obtain, e.g. in C++:

$$\theta_G(x,y) = atan2(G_y(x,y),G_x(x,y))$$

• Once $\theta_{c}(x,y)$ is known, coordinates (ρ,θ) in parameter space are uniquely determined:

Hough Liniendetektor

- 1) Compute gradients in x and y
- 2) Determine ρ und θ using the local gradient direction
- 3) Increase $H_{l}(\rho,\theta)$ by the local gradient magnitude:

$$H_{L}(\rho, \theta) \leftarrow H_{L}(\rho, \theta) + \sqrt{G_{x}(x, y)^{2} + G_{y}(x, y)^{2}}$$

A line in I(x,y) produces a pronounced maximum $H_{l}(\rho,\theta)$.

Hough Liniendetektor

- An image I(x,y) is processed to discover instances of an object
- The object of interest is known from an example image O(x,y)
- Processing is once again concerned with accumulating "votes" in a parameter space $H_{c}(x,y,\theta,s)$.

Image I(x,y)-

Pronounced maxima in $H_{G}(x,y,\theta,s)$ indicate that the image contains an object of interest centered at (x,y), scaled by factor s, and rotated by angle θ .

- **Given**: the gradient vector (G_x,G_y) at each image location
- Required: possible locations of the object centre
 - → How can possible centre locations be infered from local gradient directions?
 - → Which locations in $H_{G}(x,y,\theta,s)$ are to be increased?

- → Exploit relation between local gradient and object center
- → The local gradient is ambiguous
 - → The same gradient occurs at different points on the object
 - → A given gradient direction may correspond to several possible object centres
 - \rightarrow In general, several locations in $H_{G}(x,y,\theta,s)$ must be increased

- → Exploit relation between local gradient and object center
- → The local gradient is ambiguous
 - → The same gradient occurs at different points on the object
 - → A given gradient direction may correspond to several possible object centres
 - → In general, several locations in $H_{G}(x,y,\theta,s)$ must be increased

- → Exploit relation between local gradient and object center
- → The local gradient is ambiguous
 - → The same gradient occurs at different points on the object
 - → A given gradient direction may correspond to several possible object centres
 - \rightarrow In general, several locations in $H_{G}(x,y,\theta,s)$ must be increased

- → Exploit relation between local gradient and object center
- → The local gradient is ambiguous
 - → The same gradient occurs at different points on the object
 - → A given gradient direction may correspond to several possible object centres
 - → In general, several locations in $H_{G}(x,y,\theta,s)$ must be increased

- → Exploit relation between local gradient and object center
- → The local gradient is ambiguous
 - → The same gradient occurs at different points on the object
 - → A given gradient direction may correspond to several possible object centres
 - \rightarrow In general, several locations in $H_{G}(x,y,\theta,s)$ must be increased

The R-Table stores, for each pixel on the edge of an object O, the local gradient direction and the displacement from the pixel to the object centre

$\theta = \frac{0 \cdot 2\pi}{A}$	\rightarrow	$d_{x}^{1,1}, d_{y}^{(1,1)}$	• • •	$d_{x}^{1,N_{1}},d_{y}^{1,N_{1}}$
$\theta = \frac{1 \cdot 2\pi}{A}$	\rightarrow	$d_{x}^{2,1},d_{y}^{(2,1)}$	•••	$d_{x}^{2,N_{2}},d_{y}^{2,N_{2}}$
$\theta = \frac{2 \cdot 2\pi}{A}$	→	$d_x^{3,1}, d_y^{(3,1)}$	• • •	d_x^{3,N_3}, d_y^{3,N_3}
•	\rightarrow		•	
$= \frac{(A-1)\cdot 2\pi}{1}$	\rightarrow	$d^{A,1}, d^{(A,1)}$	• • •	d^{A, N_A}, d^{A, N_A}

Row T of the R-Table

- Applies when local gradient direction is close to $2\pi(T-1)/A$
- The displacement to the centre is $(d_x^{T,1}, d_y^{T,1})$ or $(d_x^{T,2}, d_y^{T,2})$ or ... or $(d_x^{T,NT}, d_y^{T,NT})$

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[90, 120)	
[120, 150)	
[150, 180)	

Applying the R-Table

Considering an image location (x,y) with associated gradient direction θ :

- $\rightarrow \theta$ is discretised by dividing the interval [0,2 π] into A sub-intervals
- \rightarrow The sub-interval assigned to θ identifies a row of the R-Table
- → The row contains displacements $(d_x^{T,1..NT}, d_y^{T,1..NT})$ to possible object centres
- → H_G can be increased by the local gradient magnitude at points

$$(x+d_{x}^{T,1},y+d_{y}^{T,1})$$
 ... $(x+d_{x}^{T,NT},y+d_{y}^{T,NT})$

Applying the R-Table

Considering an image location (x,y) with associated gradient direction θ :

- $\rightarrow \theta$ is discretised by dividing the interval [0,2 π] into A sub-intervals
- \rightarrow The sub-interval assigned to θ identifies a row of the R-Table
- → The row contains displacements $(d_x^{T,1..NT}, d_y^{T,1..NT})$ to possible object centres
- $_{\mbox{\scriptsize J}}$ $\mbox{\scriptsize H}_{\mbox{\tiny G}}$ can be increased by the local gradient magnitude at points

$$(x+d_x^{T,1},y+d_y^{T,1})$$
 ... $(x+d_x^{T,NT},y+d_y^{T,NT})$

These steps compute $H_{G}(x,y,\theta=0,s=1)$. Scaled or rotated versions of the object are not detected.

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

- To detect objects of different scales,
 the R-Table is modified to describe a scaled version of the original object
- The updates to H_{G} are repeated at different scales to compute $H_{G}(x,y,\theta=0,s)$

The displacements stored in the R-Table are multiplied by the desired scale factor before H_G is updated for the current scale

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(1,0.5),(1,0),(1,-0.5),(-1,0.5),(-1,0),(-1,-0.5)
[30, 60)	
[60, 90)	
[90, 120)	(0.5,1),(0,1),(-0.5,1),(0.5,-1),(0,-1),(-0.5,-1)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	(1,0.5),(1,0),(1,-0.5),(-1,0.5),(-1,0),(-1,-0.5)
[30, 60)	
[60, 90)	
[90, 120)	(0.5,1),(0,1),(-0.5,1),(0.5,-1),(0,-1),(-0.5,-1)
[120, 150)	
[150, 180)	

- The R-Table is to be modified to describe a rotated version of the original object
- The rotation angle is assumed to be a multiple of $\phi = (2\pi)/A$
 - → Angular resolution in H_G is limited by the number of rows in the R-Table

- Gradients that used to be in row 1 are now associated with row 2
- The former last row becomes the new first row
 - → Rotation causes a circular shift of the rows of the R-Table

The direction to the object center stays constant with respect to the local gradient

The displacement vectors also rotate by angle φ:

$$\begin{pmatrix} d_{x}^{a,b} \\ d_{y}^{a,b} \end{pmatrix} \leftarrow \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \begin{pmatrix} d_{x}^{a,b} \\ d_{y}^{a,b} \end{pmatrix}$$

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

	θ	
1/	[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
	[30, 60)	
	[60, 90)	
	[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
	[120, 150)	
	[150, 180)	

$$\begin{pmatrix}
\cos(30) & -\sin(30) \\
\sin(30) & \cos(30)
\end{pmatrix}$$

Changing the R-Table: Orientation

The R-Table stores, for each pixel on the edge of an object O, the local gradient direction and the displacement from the pixel to the object centre

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

θ	
[0, 30)	
[30, 60)	(1.2,1.8),(1.7,1),(2.2,0.1),(-2.2,-0.1),(-1.7,-1),(-1.2,-1.8)
[60, 90)	
[90, 120)	
[120, 150)	(-0.1,2.2),(-1,1.7),(-1.8,1.2),(1.8,-1.2),(1,-1.7),(0.1,-2.2)
[150, 180)	

Changing the R-Table: Orientation

The R-Table stores, for each pixel on the edge of an object O, the local gradient direction and the displacement from the pixel to the object centre

θ	
[0, 30)	(2,1),(2,0),(2,-1),(-2,1),(-2,0),(-2,-1)
[30, 60)	
[60, 90)	
[90, 120)	(1,2),(0,2),(-1,2),(1,-2),(0,-2),(-1,-2)
[120, 150)	
[150, 180)	

_ /	θ	
7	[0, 30)	
· /	[30, 60)	(1.2,1.8),(1.7,1),(2.2,0.1),(-2.2,-0.1),(-1.7,-1),(-1.2,-1.8)
	[60, 90)	
)	[90, 120)	
	[120, 150)	(-0.1,2.2),(-1,1.7),(-1.8,1.2),(1.8,-1.2),(1,-1.7),(0.1,-2.2)
\	[150, 180)	

Alternative Formulation using Correlation

Traditional: R-Table

- The R-Table approach loops over pixels:
 - → Consider each local gradient direction
 - → Use displacement vectors from table to accumulate "votes" in H_G

Alternative: Direct Correlation

- Explicitly search for the object in the image
- Loop over parameters (s,θ)
 - → Scale s of the object
 - \rightarrow Orientation θ of the object
 - → Explicitly match the image with this version of the object
- The two formulations are (almost) identical

Preprocessing the Example Object

The Object of interest O(x,y) is processed to obtain two representations

1. Extraction of the complex gradients O^I(x,y)

2. Obtain the binary edge image $O^{B}(x,y)$

- Binary image indicating pixels on edges
 - → Large local gradient magnitude
- Obtained using threshold T^B:

$$O^{B}(x,y)=|O^{I}(x,y)|>(T^{B}\cdot max_{x,y}\{|O^{I}(x,y)|\})$$

Preprocessing the Image

The image I(x,y) containing objects of interest is processed similarly to give complex gradients $I^{I}(x,y)$

Correlation

$$H_G(x, y, \theta=0, s=1)=|\Re\{(O^I(x, y)O^B(x, y)) \odot I^I(x, y)\}|$$

Correlation counts all "votes" in each potential centre

• The correlation is high where gradient directions in O and I match

$$K = \left| \sum_{o_j} |o_j| \cdot |i_j| \cos(\theta_j) \right|$$

- The cosine term means that votes can also become negative
- The absolute value ensures that detection is possible irrespective of whether the object is brighter or darker than the background

Correlation in the Fequency Domain

- 1) Filter (object mask) and gradient image must have the same size before transformation
 - → Copy the object mask into a larger matrix

2) Centre the filter (the centre is shifted to coordinates (0,0))

- 3) Transfer filter and image to the frequency domain
- **4)** The spectrum of the result is the product of the image spectrum and the **complex conjugate** of the filter spectrum

Scale and Orientation

The correlation is repeated with scaled and rotated object masks to fill H_G

1) Changes in Scale

Binary object mask and complex object gradients are resized

2) Rotation

- Binary object mask and complex object gradients are rotated
- This rotation does not affect the directions of complex gradients!
 - Complex gradients are rotated by applying a phase shift
 - After rotating by θ , complex gradients are multiplied with exp(-i θ)

3) Normalisation

• To retain scale invariance, the magnitudes of complex gradients are normalised: $O^{I}(x,y) \leftarrow \frac{O^{I}(x,y)}{\sum \sum |O^{I}(x,y)|}$

Exercise 3

- 1)Theory part
- 2) Implementing the transformation
- 3) Detecting multiple objects in an image

Exercise 3 - Theory

The GHT provides the possibility to search for instances of the template object with different scale s and/or rotation θ by using a $\underline{4D}$ voting space $\underline{H(x,y,s,\theta)}$.

The table on the right shows the R-table, which was generated by analysing the template object. As reference point the top-left corner of the object was chosen. The angles are defined relative to the x-axis and measured counter-clockwise.

Orientation	Displacement
[0, 45)	(0,10); (0,20)
[45, 90)	
[90,135)	
[135,180)	(-20,10); (-10,20)
[180,225)	
[225,270)	
[270,315)	(-10,0); (-20,0)
[315,360)	

Task 1:

Which R-table below corresponds to scale (s=1) with a counter-clockwise rotation of $\theta = 90^{\circ}$?

[]		<u> </u>				IV)	
Orientation	Displacement	Orientation	Displacement	Orientation	Displacement	Orientation	Displacement
[0, 45)	(-10,0); (-20,0)	[0, 45)	(0,-10); (0,-20)	[0, 45)		[0, 45)	
[45, 90)		[45, 90)		[45, 90)	(-10,0); (-20,0)	[45, 90)	(-20,10); (-10,20)
[90,135)		[90,135)	(-10,0); (-20,0)	[90,135)		[90,135)	
[135,180)	(-10,20);(-20,-10)	[135,180)		[135,180)		[135,180)	
[180,225)		[180,225)		[180,225)	(-10,-20);(-20,-10)	[180,225)	(-10,0); (-20,0)
[225,270)		[225,270)	(-10,-20);(-20,-10)	[225,270)		[225,270)	
[270,315)	(0,-10); (0,-20)	[270,315)		[270,315)		[270,315)	(0,10); (0,20)
[315,360)		[315,360)		[315,360)	(0,-10); (0,-20)	[315,360)	

Exercise 3 - Theory

The GHT provides the possibility to search for instances of the template object with different scale s and/or rotation θ by using a dD voting space dD.

The table on the right shows the R-table, which was generated by analysing the template object. As reference point the top-left corner of the object was chosen. The angles are defined relative to the x-axis and measured counter-clockwise.

Orientation	Displacement
[0, 45)	(0,10); (0,20)
[45, 90)	
[90,135)	
[135,180)	(-20,10); (-10,20)
[180,225)	
[225,270)	
[270,315)	(-10,0); (-20,0)
[315,360)	

Task 2:

Which simple geometric object does this R-table most likely represent?

i) A triangle

ii) A circle

iii) A square

iv) A parallelogram

- main (Usage: aia3 <path to template image> [<path to test image>])
 - → Test routine for the generalised Hough transformation (main function)
 - → Two different modes depending on number of input parameters:
 - → 1st: Only template image is specified (one parameter)
 - Rotated and scaled version of template image is generated
 - Hough transformation is used to find template within this image
 - → 2nd: Template as well as test image is specified (two parameters)
 - Hough transformation is used to find template within given image

Image

- main (Usage: aia3 <path to template image> [<path to test image>])
 - → Test routine for the generalised Hough transformation (main function)
 - → Two different modes depending on number of input parameters:
 - → 1st: Only template image is specified (one parameter)
 - Rotated and scaled version of template image is generated
 - Hough transformation is used to find template within this image
 - → 2nd: Template as well as test image is specified (two parameters)
 - Hough transformation is used to find template within given image

Hough Space

Detection

- main (Usage: aia3 <path to template image> [<path to test image>])
 - → Test routine for the generalised Hough transformation (main function)
 - → Two different modes depending on number of input parameters:
 - → 1st: Only template image is specified (one parameter)
 - Rotated and scaled version of template image is generated
 - Hough transformation is used to find template within this image
 - → 2nd: Template as well as test image is specified (two parameters)
 - Hough transformation is used to find template within given image

Object of Interest

Hough Space

Image

- main (Usage: aia3 <path to template image> [<path to test image>])
 - → Test routine for the generalised Hough transformation (main function)
 - → Two different modes depending on number of input parameters:
 - → 1st: Only template image is specified (one parameter)
 - Rotated and scaled version of template image is generated
 - Hough transformation is used to find template within this image
 - → 2nd: Template as well as test image is specified (two parameters)
 - Hough transformation is used to find template within given image

If an image contains more than a single object, a suitable thresholding procedure is needed to single out individual detections

1) Global Threshold

- Assume that all objects have received a vote in $H_{\rm G}$ that exceeds $T^{\rm O}$ * max($H_{\rm G}$)
- To is a fixed threshold

2) Identify Local Maxima

- Where an entire region of H_G received a high vote (>threshold), one should only consider local maxima of H_G as detection events.
- After applying the threshold, local maxima are considered the set of detected objects

 Mat makeTestImage(Mat& temp, double angle, double scale, double* scaleRange)

• temp: Grayscale image

• angle: Rotation angle

• scale: Scaling factor

• scaleRange: Scale range

→ Generates a rotated and scaled version of the input image

Image

• Mat rotateAndScale (Mat& temp, double angle, double scale)

temp: Grayscale image

angle: Rotation angle in radian

• scale: Scale factor

• return: Transformed image

→ Scales and rotates given image

- void circShift(Mat& in, Mat& out, int dx, int dy)
 - in: Image
 - out: Shifted image
 - dx, dy Shift in x- and y-direction
 - → Performs circular shift

- Mat calcDirectionalGrad(Mat& testImage, double sigma)
 - image: Grayscale image
 - sigma: Standard deviation of filter (not necessarily integer)
 - return: Complex gradient image (two channel image)
 - → Computes the complex gradients in an image
 - → 1st channel: gradients in x-direction
 - → 2nd channel: gradients in y-direction

void findHoughMaxima(vector< vector<Mat> >& houghSpace,
 double objThresh, vector<Scalar>& objList)

houghSpace: The four dimensional Hough space H_G

• objThresh: Global threshold for object detection.

Threshold is relative to the maximum of H_a

objList: List of hough space coordinates (scale, angle, x, y)

→ Applies a global threshold and identifies remaining local maxima in H_G

 void plotHoughDetectionResult(Mat& testImage, vector<Mat>& templ, vector<Scalar>& objList, double scaleSteps, double* scaleRange, double angleSteps, double* angleRange)

• testImage: Grayscale image

• temp1: Object mask (see makeObjectTemplate(..))

• objList: Indices (into the Hough space H_G) of the detected objects.

Each entry specifies a set of coordinates: (scale, angle, x, y)

scaleSteps: Resolution of the Hough space H_G in the scale dimension

• scaleRange: Minimum and maximum scales (e.g. [0.5, 2.0])

angleSteps: Resolution of Hough space H_G in the orientation dimension

• angleRange: Minimum and maximum angle(typically [0, 2*pi])

→ Visualises the results of object detection.

vector<Mat> makeObjectTemplate(Mat& templateImage,

double sigma, double templateThresh)

templateImage: Grayscale image with the object of interest

sigma: Std. deviation for the computation of image gradients

templateThresh: Threshold used to obtain the binary edge image

(relative to the maximum gradient magnitude)

return: 2-element Mat-vector:

[0] contains the binary edge mask

[1] contains the corresponding complex gradients

→ Creates a template of the object of interest, consisting of a binary edge map and a complex gradient image.

- void plotHough(vector< vector<Mat> >& houghSpace)
 - houghSpace: Computed 4D hough space
 - → Creates a single image from the 4D hough space
 - → Displays and saves it as image file

- void makeFFTObjectMask(vector<Mat>& templ, double scale, double angle, Mat& fftMask)
 - temp1: Template for the object of interest (edge mask and gradients)
 - scale: New scale factor for the object
 - angle: New orientation for the object
 - fftMask: Spectrum of the mask that is correlated with
 - a complex gradient image to find the object of interest, scaled by factor scale and rotated by angle radians.
 - → Computes the spectrum of O^IO^B for correlation with the complex gradient image.
 - → Note: O¹O^B means component wise multiplication
 - → Scales and rotates the object template (updating the phase of gradients included), followed by normalisation, centering and Fourier transformation

vector< vector<Mat> > generalHough (Mat& gradImage, vector<Mat>& temp1, double scaleSteps, double* scaleRange, double angleSteps, double* angleRange)
 gradIamge: Complex gradient image (with objects to be detected)
 temp1: Template of an object of interest
 scaleSteps: Resolution of the Hough space in the scale dimension
 scaleRange: Minimal and maximal scale factor (e.g. [0.5,2.0])
 angleSteps: Resolution of the Hough space in the orientation dimension
 angleRange: Smallest and largest orientation (typically [0,2*pi))

→ Computes the voting space of the generalised Hough transform

The computed Hough space H_c.

- Be careful to note the sequence of dimensions!
- → Useful functions: cv::mulSpectrum(), cv::dft()

• return:

Four "dimensions": scale, orientation, spatial dimensions

Optional

- Apply GHT to other detection / recogntion tasks
- → eg. leaf detection & recognition task from last exercise

How does performance change? On what does it depend?