Tutorial: Isocenter shifting imageguidance in SlicerRT

<u>Csaba Pinter</u>¹, Andras Lasso¹, An Wang², Gregory C. Sharp³, David Jaffray², and Gabor Fichtinger¹

¹Laboratory for Percutaneous Surgery, Queen's University, Kingston, ON, Canada ²University Health Network, Toronto, ON, Canada ³Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA

Learning objective

This tutorial demonstrates how to perform a radiation therapy research workflow using the SlicerRT toolkit:

Isocenter shifting image-guidance

Material

Dataset available on the Slicer Training page:

https://www.slicer.org/wiki/Documentation/Nightly/ Training#Slicer4 Radiation Therapy Tutorial

- Supported platforms:
 - 🧲 Windows, 🥌 Mac OSX, 🐧 Linux
 - 32-bit is not supported!

Overview

- 1. Install SlicerRT extension
- 2. Load data from DICOM and nrrd files
- 3. Perform rigid registration on CT images
- 4. Transform day 2 dose volume
- 5. Accumulate dose distributions
- 6. Compute dose volume histogram
- +1. Create isodose lines and surfaces
- +2. Compare dose distributions using gamma

1/1. Install 3D Slicer

 Download latest 3D Slicer from http://download.slicer.org

- Follow the usual steps to install an application
 - Different for each operating system

1/2. Install SlicerRT extension

1/3. Install SlicerRT extension

2/1. Unpack tutorial datasets

 Find the dataset you downloaded named SlicerRT_WorldCongress_TutorialIGRT_Dataset.zip

- Unpack it to a local folder of your choice
 - Different for each operating system

2/2. Import planning DICOM data

Drag&drop folder named EclipseEntPhantomRtData onto Slicer

You'll be prompted for database folder here

Note

If not importing via drag&drop, DICOM data can be imported and loaded from the DICOM browser that can be opened from the toolbar

2/3. Load planning study

2/4. Change shown volumes

2/5. Tweak display

2/6. Explore loaded data

Subject hierarchy:

- Explore data in tree view
- Show/hide branches clicking the eye buttons
- Access options by right click

2/7. Load day 2 data

Drag&drop folder named EclipseEntComputedDay2Data onto Slicer

Note

- Data type selection dialog does not appear if you drag&drop files rather than folders, as files will be handled as non-DICOM
- Non-DICOM data can be also loaded in the dialog that appears after clicking

Data can be saved using

2/8. Add day 2 non-DICOM data to subject hierarchy

2/9. Add day 2 non-DICOM data to subject hierarchy

- 1. Drag&drop '2_ENT_IMRT_ Day2' on the study 'Day 2'
- 2. Do the same with '5_RTDOSE-Day2'

Note: You can select both nodes while holding the Control/Cmd or Shift button, then drag&drop both at the same time

2/10. Convert day 2 dose volume actually a dose

3/1. Register CT volumes

Note

You can also initiate registration from subject hierarchy (alternative way for previous step):

3/2. Explore volume differences

4/1. Clone dose volume

To be able to compare the non-registered (= uncorrected) and the registered (= isocenter shifted) results.

- 1. Switch to Subject hierarchy
- 2. Select 'Clone node' in context menu for day 2 dose
- 3. Rename it to '5_RTDOSE_Day2 Rigid'

4/2. Transform cloned dose volume

Note

We can transform the whole study too if we want to transform multiple objects (an alternative way for previous step):

5/1. Accumulate dose distributions

5/2. Accumulate dose distributions

6/1. Compute DVH for unregistered

- 1. Go to module Radiotherapy / Dose Volume Histogram
- 2. Choose unregistered accumulated dose
- 3. Choose '3: RTSTRUCT: ENT'

Optional: Choose individual structures to speed up computation

4. Click 'Compute DVH'

6/2. Compute DVH for registered

6/3. Quantify improvement

6/4. Visualize improvement

Congratulations!

Thanks for attending!

Appendix: Optional steps for IGRT

Optional 1/1. Isodose lines/surfaces

1. Choose Radiotherapy / Isodose module

3. Select '5: RTDOSE: BRAI1' volume as Dose volume

2. Click Apply

3. Select '5_RTDOSE_Day2' volume as Dose volume

4. Click Apply

Optional 1/2. Visualize isodose lines

Optional 1/3. Isodose lines/surfaces

Optional 2/1. Compare dose volumes using gamma comparison

Optional 2/2. Evaluate improvement

Plan dose vs

Uncorrected Day 2 dose

Plan dose vs Corrected Day 2 dose

