Advanced Bayesian Learning

Lecture 6 - Beyond mean-field VI

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Fixed form VI

- The independence assumption in mean field VI is restrictive.
- Fixed form VI:
 - lacktriangle Assume parametric form $q_{\lambda}(heta)$ with hyperparameters λ
 - ▶ Optimize KL $[q_{\lambda}(\theta) || p(\theta|\mathbf{y})]$ wrt λ .
- As before, we actually optimize lower bound $LB(\lambda)$.
- Ex 1: $q_{\lambda} = N(\theta | \mu, \Sigma)$, $\lambda = (\mu, \mathbf{L})$, with Cholesky $\Sigma = \mathbf{L} \mathbf{L}^T$.
- Ex 2: $q_{\lambda} = N(\theta | \mu, \mathbf{a} \mathbf{a}^T + \mathbf{D}), \ \lambda = (\mu, \mathbf{a}, \mathbf{d}), \text{ where } \mathbf{a} \text{ is a vector, } \mathbf{D} = \text{Diag}(\mathbf{d}).$
- **E**x 3: q_{λ} is a copula, mixture of normals etc etc
- From now on: vectors will not be **bold**.

Fixed form VI - Gradient based optimization

Gradient ascent: optimize $LB(\lambda)$ wrt λ using step size a > 0

for
$$t=1,2,...$$
 until convergence do:
$$\lambda^{(t+1)} = \lambda^{(t)} + a \cdot \nabla_{\lambda} \mathrm{LB}(\lambda^{(t)})$$

- Stop when changes in $\mathrm{LB}(\lambda^{(t)}) < \epsilon$.
- Lower Bound

$$LB(\lambda) = \mathbb{E}_{q_{\lambda}} \left[\log \frac{p(y|\theta)p(\theta)}{q_{\lambda}(\theta)} \right] = \int q_{\lambda}(\theta)h_{\lambda}(\theta)d\theta$$

$$h_{\lambda}(\theta) := \log rac{p(y|\theta)p(\theta)}{q_{\lambda}(\theta)} = \log p(y|\theta)p(\theta) - \log q_{\lambda}(\theta).$$

Gradient of LB is an expectation wrt $q_{\lambda}(\theta)$

$$\begin{split} \nabla_{\lambda} \mathrm{LB}(\lambda) &= \int \nabla_{\lambda} \left(q_{\lambda}(\theta) h_{\lambda}(\theta) \right) d\theta \text{ [interchange } \int \text{ and } \nabla_{\lambda} \right] \\ &= \int \left(\left(\nabla_{\lambda} q_{\lambda}(\theta) \right) h_{\lambda}(\theta) + q_{\lambda}(\theta) \left(\nabla_{\lambda} h_{\lambda}(\theta) \right) \right) d\theta \text{ [product rule]} \\ \mathrm{Since } \nabla_{\lambda} \log q_{\lambda}(\theta) &= \nabla_{\lambda} q_{\lambda}(\theta) / q_{\lambda}(\theta) \text{ we have } \nabla_{\lambda} q_{\lambda}(\theta) = q_{\lambda}(\theta) \nabla_{\lambda} \log q_{\lambda}(\theta) \\ \nabla_{\lambda} h_{\lambda}(\theta) &= \nabla_{\lambda} \left(\log p(y|\theta) p(\theta) - \log q_{\lambda}(\theta) \right) = -\nabla_{\lambda} \log q_{\lambda}(\theta) = -\frac{\nabla_{\lambda} q_{\lambda}(\theta)}{q_{\lambda}(\theta)} \end{split}$$
 Using that
$$\int q_{\lambda}(\theta) \left(\frac{\nabla_{\lambda} q_{\lambda}(\theta)}{q_{\lambda}(\theta)} \right) d\theta = \int \nabla_{\lambda} q_{\lambda}(\theta) d\theta = \nabla_{\lambda} \int q_{\lambda}(\theta) d\theta = \nabla_{\lambda} 1 = 0 \end{split}$$

$$\nabla_{\lambda} \mathrm{LB}(\lambda) &= \int \left(\left(\nabla_{\lambda} q_{\lambda}(\theta) \right) h_{\lambda}(\theta) + q_{\lambda}(\theta) \left(\nabla_{\lambda} h_{\lambda}(\theta) \right) \right) d\theta \\ &= \int q_{\lambda}(\theta) \left(\nabla_{\lambda} \log q_{\lambda}(\theta) \right) h_{\lambda}(\theta) d\theta - \int q_{\lambda}(\theta) \left(\frac{\nabla_{\lambda} q_{\lambda}(\theta)}{q_{\lambda}(\theta)} \right) d\theta \\ &= \int q_{\lambda}(\theta) \left(\nabla_{\lambda} \log q_{\lambda}(\theta) \right) h_{\lambda}(\theta) d\theta \\ &= \mathbb{E}_{q_{\lambda}} \left(h_{\lambda}(\theta) \nabla_{\lambda} \log q_{\lambda}(\theta) \right) \end{split}$$

VI - Stochastic gradient ascent

Gradient of LB is an expectation wrt $q_{\lambda}(\theta)$

$$\nabla_{\lambda} \mathrm{LB}(\lambda) = \mathbb{E}_{q_{\lambda}} \left[\nabla_{\lambda} \log q_{\lambda}(\theta) \times h_{\lambda}(\theta) \right]$$

Monte Carlo: simulate $\theta^{(1)}, \ldots, \theta^{(S)} \sim q_{\lambda}(\theta)$ and estimate

$$\widehat{
abla_{\lambda} \mathrm{LB}(\lambda)} = rac{1}{S} \sum_{s=1}^{S}
abla_{\lambda} \log q_{\lambda}(\theta_{s}) imes h_{\lambda}(\theta_{s})$$

Algorithm 1: Basic FFVB algorithm

Input: Initial value $\lambda^{(0)}$, tolerance ϵ , step sequence $\{a_t\}_{t=0}^{\infty}$ for $t=0,1,\ldots$ until convergence do

- lacksquare Generate $heta_s \sim q_{\lambda^{(t)}}(heta)$, for $s=1,\ldots,S$
- Estimate the LB gradient unbiasedly

$$\widehat{\nabla_{\lambda} \mathrm{LB}(\lambda)} = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\theta_{s}) \times h_{\lambda}(\theta_{s})|_{\lambda = \lambda^{(t)}}$$

■ Update

$$\lambda^{(t+1)} = \lambda^{(t)} + \mathbf{a}_t \cdot \widehat{\nabla_{\lambda} \mathrm{LB}(\lambda^{(t)})}$$

end

Output: Optimal λ

Monitoring convergence

Sufficient conditions for convergence:

$$a_t>0, \ \sum_t a_t=\infty \ {\rm and} \ \sum_t a_t^2<\infty$$

Example:

$$a_t = \begin{cases} \epsilon_0 & \text{if } t \le \tau \\ \epsilon_0 \frac{\tau}{t} & \text{if } t > \tau \end{cases}$$

- Hard to monitor convergence on $LB(\lambda^{(t)})$ since it is noisy.
- Check convergence on local average:

$$\overline{\operatorname{LB}}(\lambda^{(t+1)}) = t_W^{-1} \sum_{k=1}^{t_W} \widehat{\operatorname{LB}(\lambda^{(t-k+1)})}$$

MNT: $t_W = 20$ or $t_W = 50$ and tolerance $\epsilon = 10^{-5}$ common.

Adaptive learning rate

- **Learning rate** a_t should be small when $\mathbb{V}\left(\nabla_{\lambda}\widehat{\mathrm{LB}(\lambda^{(t)})}\right)$ is large, otherwise optimizer may backtrack.
- Algorithm above used same learning rate a_t for all λ_k .
- But $\mathbb{V}\left(\nabla_{\lambda_k}\widehat{\mathrm{LB}(\lambda^{(t)})}\right)$ may vary with different λ_k .
- lacksquare Scale gradients with moving average of $\mathbb{V}\left(\widehat{\nabla_{\lambda_k}\mathrm{LB}(\lambda^{(t)})}\right)$
- Let $g_t = \nabla_{\lambda} \widehat{\mathrm{LB}(\lambda^{(t)})}$ and $v_t = g_t^2$ (elementwise, i.e. $g_t \odot g_t$).

Stochastic gradient ascent with adaptive gradients

Algorithm 2: FFVB algorithm with adaptive gradients

Input: Initial value $\lambda^{(0)}$, tolerance ϵ , step sequence $\{\alpha_t\}_{t=0}^{\infty}$, unbiased gradient estimator g, g_0 and v_0 , β_1 and β_2 .

Set $\bar{g} \leftarrow g_0$ and $\bar{v} \leftarrow v_0$

for $t = 0, 1, \dots$ until convergence do

$$\bar{v} \leftarrow \beta_2 \bar{v} + (1 - \beta_2) g_t^2$$
 [elementwise]

$$lacksquare$$
 $\lambda^{(t+1)} = \lambda^{(t)} + \alpha_t \cdot \bar{g} / \sqrt{\bar{v}}$ [elementwise]

end

Output: Optimal λ

Natural gradient

- Same distance in λ -space can give very different changes in $\mathrm{KL}(q_{\lambda} \| p(\theta | y))$ depending on the geometry of $q_{\lambda}(\theta)$.
- Example: changing the mean of $q_{\lambda}(\theta)$ can have very different effect on $\mathrm{KL}(q_{\lambda} || p(\theta|y))$ depending on the variance of $q_{\lambda}(\theta)$.
- The natural gradient solves this:

$$\nabla_{\lambda} LB(\lambda)^{\text{nat}} = I_F^{-1}(\lambda) \nabla_{\lambda} LB(\lambda)$$

where $I_F(\lambda) = \mathbb{V}_{q_\lambda} \left(\nabla_\lambda \log q_\lambda(\theta) \right)$ is the Fisher Information.

- Compute inverse by iterative conjugate gradient: Solve approximately $I_F(\lambda)x = \nabla_{\lambda} LB(\lambda)$ for x.
- In exponential families, $\nabla_{\lambda} LB(\lambda)^{\text{nat}}$ is simpler than $\nabla_{\lambda} LB(\lambda)$, see Blei et al. (2017).

Variance reduction by control variates

The variance of gradient estimator

$$\widehat{\nabla_{\lambda} \mathrm{LB}(\lambda)} = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} \log q_{\lambda}(\theta_{s}) \times h_{\lambda}(\theta_{s})$$

is often large. Problematic for stochastic gradient ascent.

Estimator with control variates c_k

$$\widehat{\nabla_{\lambda_k} \mathrm{LB}(\lambda)} = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda_k} \log q_{\lambda}(\theta_s) \times (h_{\lambda}(\theta_s) - c_k)$$

- Unbiased since $\mathbb{E}\left(\nabla_{\lambda} \log q_{\lambda}(\theta)\right) = 0$. Lower variance.
- **Optimal** c_i that minimizes $\mathbb{V}\left(\widehat{\nabla_{\lambda_k} \mathrm{LB}(\lambda)}\right)$ derived in MNT.
- **Optimal** c_i estimated in gradient ascent. Algorithm 3, MNT.

The reparametrization trick

- Suppose we can generate $\theta \sim q_{\lambda}(\cdot)$ by generating $\varepsilon \sim p_{\varepsilon}(\cdot)$ and the deterministic transformation $\theta = g(\lambda, \varepsilon) \sim q_{\lambda}(\cdot)$.
- Ex: $q_{\lambda}(\cdot) = N(\mu, \Sigma)$, then $g(\lambda, \varepsilon) = \mu + \Sigma^{1/2} \varepsilon$, $\varepsilon \sim N(0, I)$.
- LB(λ) can be expressed as an expectation wrt $\varepsilon \sim p_{\varepsilon}(\cdot)$

$$LB(\lambda) = \mathbb{E}_{q_{\lambda}}(h_{\lambda}(\theta)) = \mathbb{E}_{p_{\varepsilon}}(h_{\lambda}(g(\lambda, \varepsilon)))$$

lacksquare The lacksquare The lacksquare The lacksquare lacksquare The lacksquare lacksquare lacksquare lacksquare The lacksquare lacksquare

$$\nabla LB(\lambda) = \mathbb{E}_{p_{\varepsilon}} \left(\nabla_{\lambda} g(\lambda, \varepsilon) \nabla_{\theta} h_{\lambda}(\theta) \right)$$

since $\mathbb{E}_{p_{\varepsilon}}(\nabla_{\theta}h_{\lambda}(\theta)) = 0$ (MNT).

■ Unbiased estimator by generating $\varepsilon_1, \ldots, \varepsilon_S \stackrel{\textit{iid}}{\sim} p_{\varepsilon}(\cdot)$

$$\widehat{\nabla_{\lambda} \text{LB}(\lambda)} = \frac{1}{S} \sum_{s=1}^{S} \nabla_{\lambda} g(\lambda, \varepsilon_{s}) \nabla_{\theta} h_{\lambda}(g(\lambda, \varepsilon_{s}))$$

Lower variance since uses gradient information $\nabla_{\theta} h_{\lambda}(\theta)$.

 $^{^{1}}$ Xu et al (2019). Variance Reduction Properties of the Reparameterization Trick. AlStats.