INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4556B MSI

Dual 1-of-4 decoder/demultiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

Dual 1-of-4 decoder/demultiplexer

HEF4556B MSI

DESCRIPTION

The HEF4556B is a dual 1-of-4 decoder/demultiplexer. Each has two address inputs (A $_0$ and A $_1$), an active LOW enable input (\overline{E}) and four mutually exclusive outputs which are active LOW (\overline{O}_0 to \overline{O}_3). When used as a decoder, \overline{E} when HIGH, forces \overline{O}_0 to \overline{O}_3 HIGH. When used as a demultiplexer, the appropriate output is selected by the information on A $_0$ and A $_1$ with \overline{E} as data input. All unselected outputs are HIGH.

HEF4556BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4556BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4556BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

E enable inputs (active LOW)

A₀ and A₁ address inputs

 \overline{O}_0 to \overline{O}_3 outputs (active LOW)

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Philips Semiconductors Product specification

Dual 1-of-4 decoder/demultiplexer

HEF4556B MSI

TRUTH TABLE

INPUTS			OUTPUTS				
Ē	A ₀	A ₁	\overline{O}_0	\overline{O}_1	\overline{O}_{2}	\overline{O}_3	
L	L	L	L	Н	Н	Н	
L	Н	L	Н	L	Н	Н	
L	L	Н	Н	Н	L	Н	
L	Н	Н	Н	Н	Н	L	
Н	Х	Х	Н	Н	Н	Н	

Notes

- 1. H = HIGH state (the more positive voltage)
- 2. L = LOW state (the less positive voltage)
- 3. X = state is immaterial

Philips Semiconductors Product specification

Dual 1-of-4 decoder/demultiplexer

HEF4556B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$A_n \to \overline{O}_n$	5		130	255	ns	103 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	50	100	ns	39 ns + (0,23 ns/pF) C _L
	15		35	65	ns	27 ns + (0,16 ns/pF) C _L
	5		105	210	ns	78 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	85	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
$\overline{E}_n \to \overline{O}_n$	5		120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	45	90	ns	34 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
	5		105	205	ns	78 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	40	80	ns	29 ns + (0,23 ns/pF) C _L
	15		30	60	ns	22 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$4400 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	18 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	43 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

APPLICATION INFORMATION

Some examples of applications for the HEF4556B are:

- Code conversion.
- Address decoding.
- Demultiplexing: when using the enable input as data input.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.