

### Sistemas Operacionais Embarcados para Plataformas Multiprocessadas

Federal University of Santa Catarina Software/Hardware Integration Lab

Prof. Dr. Antônio Augusto Fröhlich Prof. Dr. Giovani Gracioli

#### Agenda



- O papel dos multiprocessadores em sistemas embarcados
- Arquiteturas multiprocessadas
- Técnicas de SO para ocultar as latências introduzidas pelos multiprocessadores
- Exemplos e avaliação

#### Introdução









- Sistemas embarcados em hardware dedicado
  - DSPs, comunicação wireless, codecs
- Evolução da tecnologia dos processadores e diminuição dos custos
  - Arquiteturas multicore em sistemas embarcados
- Sistemas embarcados possuem restrições temporais
  - Aspectos arquiteturais dos processadores afetam a previsibilidade

# Uma plataforma multiprocessada de pesquisa moderna



# Uma plataforma multiprocessada de pesquisa real





















the latency we hide









the control we need





```
Buf buf[N];
int i;
...
send(sock,
    &buf[i],
    sizeof(Buf),
    0);
++i %= N;
...
i = i==0?i-1:N-1;
...
```





```
Buf buf[N];
int i;
...
send(sock,
    &buf[i],
    sizeof(Buf),
    0);
++i %= N;
...
i = i==0?i-1:N-1;
...
```

where is "i"?





```
Buf buf[N];
int i;
...
send(sock,
    &buf[i],
    sizeof(Buf),
    0);
++i %= N;
...
i = i==0?i-1:N-1;
...
```

where is "i"?





```
Buf buf[N];
int i;
...
send(sock,
    &buf[i],
    sizeof(Buf),
    0);
++i %= N;
...
i = i==0?i-1:N-1;
...
```





```
Buf buf[N];
int i;
send(sock,
  &buf[i],
  sizeof(Buf),
++i %= N;
i = i = 0?i - 1:N - 1;
  load i, r0
  inc
  store r0, i
 3/21/18
```





```
Buf buf[N];
                                          PMU
                                                  FPU
                                                         PMU
int i;
                                                     PROC
                                     PROC
send(sock,
   &buf[i],
                                      MMU
                                                     MMU
   sizeof(Buf),
                                    L1 Cache
                                                    L1 Cache
                                            L2 Cache
++i %= N;
                                  MP
                                          DMA
                                                 Timers
                                                          IC
i = i = 0?i - 1:N - 1;
                                                                 L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                   1/0
   inc
                                       Cache
                                                Bus
                                                                 Cache
                                MEM
                                                           MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```





```
Buf buf[N];
                                         PMU
                                                  FPU
                                                         PMU
int i;
                                                     PROC
                                     PROC
send(sock,
   &buf[i],
                                      MMU
                                                     MMU
   sizeof(Buf),
                                    L1 Cache
                                                    L1 Cache
                                            L2 Cache
++i %= N;
                                  MP
                                          DMA
                                                 Timers
                                                          IC
i = i = 0?i - 1:N - 1;
                                                                 L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                   1/0
   inc
                                       Cache
                                                Bus
                                                                 Cache
                                MEM
                                                          MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```





```
Buf buf[N];
                                     PMU
                                             FPU
                                                   PMU
int i;
                                               PROC
                                 PROC
send(sock,
  &buf[i],
                                  MMU
                                                MMU
  sizeof(Buf),
                                L1 Cache 5
                                              L1 Cache
                                       L2 Cache
++i %= N;
                               MP
                                      DMA
                                            Timers
                                                    IC
i = i = 0?i - 1:N - 1;
                             I/O
                             Cache
                                       5
   load i, r0
   inc
                                   Cache
                                           Bus
                             MEM
                                                    MEM
   store r0, i
                                   PROC
                                           Phv
 3/21/18
```





PMU

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

L2 Cache

**Timers** 

Cache

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
                                                                                     PMU
int i;
                                                     PROC
                                     PROC
                                                                                 PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                     L1 Cache 5
                                                    L1 Cache
                                                                                L1 Cache
                                            L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                              MP
                                                                                     DMA
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                    1/0
   inc
                                       Cache
                                                Bus
                                                                  Cache
                                                                           Bus
                                 MEM
                                                           MEM
                                                                                      MEM
   store r0, i
                                       PROC
                                                Phv
                                                                  PROC
                                                                           Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



```
Buf buf[N];
                                         PMU
                                                  FPU
                                                         PMU
int i;
                                                    PROC
                                     PROC
send(sock,
   &buf[i],
                                     MMU
                                                     MMU
   sizeof(Buf),
                                    L1 Cache 5
                                                    L1 Cache
                                            L2 Cache
++i %= N;
                                  MP
                                          DMA
                                                 Timers
                                                          IC
i = i = 0?i - 1:N - 1;
                                                                 L3 Cache
                                I/O
                                 Cache
                                           5
                                                                      MEM
   load i, r0
                                                                   1/0
   inc
                                       Cache
                                                Bus
                                                                 Cache
                                MEM
                                                          MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```





PMU

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

**PMU** 

L2 Cache

**Timers** 

Cache

**PROC** 

MEM

DMA

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
int i;
                                                     PROC
                                     PROC
                                                                                PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                     L1 Cache 5
                                                    L1 Cache
                                                                               L1 Cache
                                            L2 Cache
++i %= N;
                                   MP
                                          DMA
                                                 Timers
                                                          IC
                                                                              MP
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                    1/0
   inc
                                       Cache
                                                Bus
                                                                 Cache
                                                                          Bus
                                 MEM
                                                           MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
                                                                          Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

**PMU** 

L2 Cache

**Timers** 

Cache

**PROC** 

MEM

DMA

**PROC** 

MMU

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
int i;
                                                     PROC
                                     PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
   sizeof(Buf),
                                     L1 Cache
                                                     L1 Cache
                                                                                L1 Cache
                                            L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                              MP
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                    1/0
   inc
                                       Cache
                                                Bus
                                                                  Cache
                                                                           Bus
                                 MEM
                                                           MEM
   store r0, i
                                       PROC
                                                Phv
                                                                  PROC
                                                                           Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



```
Buf buf[N];
int i;
send(sock,
  &buf[i],
  sizeof(Buf),
++i %= N;
                          MP
i = i = 0?i - 1:N - 1;
                         I/O
                         Cache
  load i, r0
  inc
                        MEM
  store r0, i
 3/21/18
```





PMU

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

L2 Cache

**Timers** 

Cache

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
                                                                                     PMU
int i;
                                                     PROC
                                     PROC
                                                                                 PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                     L1 Cache 6
                                                     L1 Cache
                                                                                L1 Cache
                                             L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                              MP
                                                                                      DMA
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                    1/0
   inc
                                       Cache
                                                Bus
                                                                  Cache
                                                                           Bus
                                 MEM
                                                           MEM
                                                                                      MEM
   store r0, i
                                       PROC
                                                Phv
                                                                  PROC
                                                                           Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

L2 Cache

**Timers** 

Cache

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
                                                                                     PMU
int i;
                                                     PROC
                                     PROC
                                                                                 PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                     L1 Cache 6
                                                    L1 Cache
                                                                                L1 Cache
                                            L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                              MP
                                                                                      DMA
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                    1/0
   inc
                                       Cache
                                                Bus
                                                                  Cache
                                                                           Bus
                                 MEM
                                                           MEM
                                                                                      MEM
   store r0, i
                                       PROC
                                                Phv
                                                                  PROC
                                                                           Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

5

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

L2 Cache

**Timers** 

Cache

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
                                                                                     PMU
int i;
                                                     PROC
                                     PROC
                                                                                 PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                     L1 Cache 6
                                                    L1 Cache
                                                                                L1 Cache
                                            L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                              MP
                                                                                      DMA
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                    1/0
   inc
                                       Cache
                                                Bus
                                                                  Cache
                                                                           Bus
                                 MEM
                                                           MEM
                                                                                      MEM
   store r0, i
                                       PROC
                                                Phv
                                                                  PROC
                                                                           Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

5

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

**PMU** 

L2 Cache

**Timers** 

Cache

**PROC** 

MEM

DMA

```
Buf buf[N];
                                          PMU
                                                  FPU
                                                          PMU
int i;
                                                     PROC
                                     PROC
                                                                                PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                    L1 Cache 6
                                                                             ■ L1 Cache
                                                    L1 Cache
                                            L2 Cache
++i %= N;
                                   MP
                                          DMA
                                                 Timers
                                                          IC
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                       MEM
   load i, r0
                                                                   1/0
   inc
                                       Cache
                                                Bus
                                                                 Cache
                                                                          Bus
                                 MEM
                                                           MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
                                                                          Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



```
Buf buf[N];
                                           PMU
                                                    FPU
                                                            PMU
                                                                                        PMU
                                                                                                        PMU
int i;
                                                       PROC
                                                                                                   PROC
                                       PROC
                                                                                   PROC
send(sock,
   &buf[i],
                                       MMU
                                                        MMU
                                                                                    MMU
                                                                                                    MMU
   sizeof(Buf),
                                      L1 Cache 6
                                                                                ■ L1 Cache
                                                      L1 Cache
                                                                                                  L1 Cache
                                                                                                          5
                                              L2 Cache
                                                                                          L2 Cache
++i %= N;
                                    MP
                                            DMA
                                                   Timers
                                                            IC
                                                                                        DMA
                                                                                                Timers
                                                                                                         IC
i = i = 0?i - 1:N - 1;
                                                                    L3 Cache
                                  I/O
                                                                                                          Bus
                                  Cache
                                              5
                                                                         MEM
   load i, r0
                                                                      1/0
   inc
                                         Cache
                                                  Bus
                                                                    Cache
                                                                             Bus
                                                                                               Cache
                                                                                                         Bus
                                  MEM
                                                             MEM
                                                                                         MEM
   store r0, i
                                                                                                        Phy
                                         PROC
                                                  Phv
                                                                    PROC
                                                                             Phv
                                                                                               PROC
 3/21/18
                             Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

5

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

**Timers** 

Cache

```
Buf buf[N];
                                          PMU
                                                   FPU
                                                          PMU
                                                                                     PMU
int i;
                                                      PROC
                                      PROC
                                                                                 PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                 MMU
   sizeof(Buf),
                                     L1 Cache 6
                                                     L1 Cache
                                                                              ■ L1 Cache
                                             L2 Cache
                                                                                        L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                                      DMA
i = i = 0?i - 1:N - 1;
                                                                  L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                        MEM
   load i, r0
                                                                    1/0
   inc
                                        Cache
                                                 Bus
                                                                  Cache
                                                                           Bus
                                 MEM
                                                           MEM
                                                                                      MEM
   store r0, i
                                        PROC
                                                 Phv
                                                                  PROC
                                                                           Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



```
Buf buf[N];
                                           PMU
                                                    FPU
                                                            PMU
                                                                                       PMU
                                                                                                        PMU
int i;
                                                       PROC
                                                                                                   PROC
                                      PROC
                                                                                   PROC 4
send(sock,
   &buf[i],
                                       MMU
                                                       MMU
                                                                                   MMU
                                                                                                    MMU
   sizeof(Buf),
                                      L1 Cache 6
                                                                               ■ L1 Cache
                                                      L1 Cache
                                                                                                  L1 Cache
                                                                                                          5
                                              L2 Cache
                                                                                          L2 Cache
++i %= N;
                                    MP
                                            DMA
                                                   Timers
                                                            IC
                                                                                        DMA
                                                                                               Timers
                                                                                                         IC
i = i = 0?i - 1:N - 1;
                                                                    L3 Cache
                                  I/O
                                                                                                         Bus
                                  Cache
                                             5
                                                                         MEM
   load i, r0
                                                                      1/0
   inc
                                        Cache
                                                  Bus
                                                                   Cache
                                                                             Bus
                                                                                               Cache
                                                                                                        Bus
                                  MEM
                                                             MEM
                                                                                        MEM
   store r0, i
                                                                                                        Phy
                                        PROC
                                                  Phv
                                                                   PROC
                                                                             Phv
                                                                                               PROC
 3/21/18
                             Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

5

IC

Bus

Bus

Phy

```
Buf buf[N];
                                           PMU
                                                   FPU
                                                           PMU
                                                                                       PMU
int i;
                                                      PROC
                                                                                                  PROC
                                      PROC
                                                                                  PROC 4
send(sock,
   &buf[i],
                                       MMU
                                                       MMU
                                                                                  MMU
                                                                                                   MMU
   sizeof(Buf),
                                     L1 Cache 6
                                                     L1 Cache
                                                                                 L1 Cache
                                                                                                 L1 Cache
                                             L2 Cache
                                                                                         L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                            IC
                                                                                       DMA
                                                                                              Timers
i = i = 0?i - 1:N - 1;
                                                                   L3 Cache
                                  I/O
                                  Cache
                                             5
                                                                        MEM
   load i, r0
                                                                     1/0
   inc
                                        Cache
                                                 Bus
                                                                   Cache
                                                                            Bus
                                                                                              Cache
                                 MEM
                                                            MEM
                                                                                       MEM
   store r0, i
                                        PROC
                                                 Phv
                                                                   PROC
                                                                            Phv
                                                                                              PROC
 3/21/18
                             Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

5

IC

Bus

Bus

Phy

**PROC** 

MMU

L1 Cache

L2 Cache

**Timers** 

Cache

**PROC** 

MEM

```
Buf buf[N];
                                         PMU
                                                  FPU
                                                         PMU
                                                                                    PMU
int i;
                                                     PROC
                                     PROC
                                                                               PROC 4
send(sock,
   &buf[i],
                                      MMU
                                                     MMU
                                                                                MMU
   sizeof(Buf),
                                    L1 Cache 6
                                                                            L1 Cache
                                                    L1 Cache
                                            L2 Cache
++i %= N;
                                  MP
                                          DMA
                                                 Timers
                                                          IC
                                                                                    DMA
i = i = 0?i - 1:N - 1;
                                                                 L3 Cache
                                 I/O
                                 Cache
                                            5
                                                                      MEM
   load i, r0
                                                                   1/0
   inc
                                       Cache
                                                Bus
                                                                 Cache
                                                                          Bus
                                MEM
                                                          MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
                                                                          Phv
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



5

```
Buf buf[N];
                                          PMU
                                                          PMU
                                                                                      PMU
                                                                                                      PMU
int i;
                                                      PROC 5
                                                                                                 PROC 5
                                      PROC
                                                                                 PROC
send(sock,
   &buf[i],
                                      MMU
                                                      MMU
                                                                                  MMU
                                                                                                  MMU
   sizeof(Buf),
                                     L1 Cache 6
                                                  L1 Cache 5
                                                                                              L1 Cache
                                                                              L1 Cache
                                             L2 Cache
                                                                                         L2 Cache
++i %= N;
                                   MP
                                           DMA
                                                  Timers
                                                           IC
                                                                                      DMA
                                                                                             Timers
                                                                                                       IC
  = i = = 0?i - 1:N - 1;
                                                                   L3 Cache
                                 I/O
                                                                                                       Bus
                                  Cache
                                             5
                                                                        MEM
   load i, r0
                                                                    1/0
   inc
                                                                           Bus
                                        Cache
                                                 Bus
                                                                  Cache
                                                                                             Cache
                                                                                                      Bus
                                 MEM
                                                            MEM
                                                                                       MEM
   store r0, i
                                                                                                      Phy
                                        PROC
                                                 Phv
                                                                  PROC
                                                                           Phv
                                                                                             PROC
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```



PMU

5

IC

Bus

Bus

Phy

PROC 5

MMU

```
Buf buf[N];
                                         PMU
                                                         PMU
                                                                                    PMU
int i;
                                                    PROC 5
                                     PROC
                                                                               PROC
send(sock,
   &buf[i],
                                      MMU
                                                     MMU
                                                                                MMU
   sizeof(Buf),
                                    L1 Cache 6
                                                 L1 Cache 5
                                                                                            L1 Cache
                                                                            L1 Cache
                                            L2 Cache
                                                                                       L2 Cache
++i %= N;
                                  MP
                                          DMA
                                                 Timers
                                                          IC
                                                                                     DMA
                                                                                            Timers
  = i = = 0?i - 1:N - 1;
                                                                 L3 Cache
                                 I/O
                                Sach
                                            5
                                                                      MEM
   load i, r0
                                                                   1/0
   inc
                                      Cach
                                                                          Bus
                                                Bus
                                                                 Cache
                                                                                           Cache
                                                          MEM
                                                                                     MEM
   store r0, i
                                       PROC
                                                Phv
                                                                 PROC
                                                                          Phv
                                                                                           PROC
 3/21/18
                            Giovani Gracioli e Antônio Augusto Fröhlich (http://www.lisha.ufsc.br/)
```







multiprocessor control









asynchronous interrupts













# Várias oportunidades de pesquisa







# Como lidar com essas questões arquiteturais?



- Todas as questões arquiteturais revisadas, impactam o tempo de execução das aplicações
- Se a aplicação embarcada tem restrições temporais, podem causar a perda dos prazos (deadlines)
- Solução
  - Sistema Operacional Embarcado e de Tempo Real para multiprocessadores

### Confinamento de recursos



- O RTOS deve esconder a latência da arquitetura
- Confinamento de recursos
  - Particionamento da memória compartilhada
- Escalonamento consciente de recursos compartilhados
  - Particionamento de tarefas
  - Monitoramento de eventos arquiteturais
  - Migração de tarefas
  - Questões de implementação

### Confinamento de recursos



- O RTOS deve esconder a latência da arquitetura
- Confinamento de recursos
  - Particionamento da memória compartilhada
- Escalonamento consciente de recursos compartilhados
  - Particionamento de tarefas
  - Monitoramento de eventos arquiteturais
  - Migração de tarefas
  - Questões de implementação

## Particionamento de memória cache



- Memória virtual → guia a alocação de páginas físicas
- Coloração de páginas
- Páginas físicas são mapeadas em um grupo de linhas da cache
- Páginas da cor A são mapeadas nas linhas da cache da cor A
- Revisão de memória cache



### Arquiteturas de memória cache



- Uniform Memory Access (UMA)
  - Tempo de acesso a memória é uniforme, independentemente do processor
- cache-coherent Non-Uniform Memory Access (ccNUMA)
  - Tempo de acesso varia conforme o processador
  - Usa comunicação entre os processadores para manter a coerência entre as caches
- A cache é organizada em linhas com algumas dezenas de bytes

### Cache: localidade de referência



- Localidade temporal
  - Ao acessar uma palavra na memória principal, é muito provável que o processador volte a acessar essa mesma palavra novamente durante a execução dos programas
  - Exemplo: loop em um programa
- Localidade espacial
  - Ao acessar uma palavra na memória principal, é provável que em seguida o processador tente acessar uma palavra de memória subjacente à acessada previamente
  - Exemplo: array
- A cache se baseia nesses dois princípios

### Cache hit e miss



- Antes de realizar o acesso direto à uma palavra na memória principal, deve-se verificar se a palavra está na memória cache
- Cache hit
  - Se a palavra estiver presente na memória cache, ocorre um acerto (hit) e o dado é transferida rapidamente para o processador
- Cache miss
  - Se a palavra não estiver presente na cache ocorre uma falta (miss) e a palavra deve ser buscada da memória principal
- A taxa de acertos impacta consideravelmente o tempo de execução das aplicações

### Associatividade da cache



- Como a cache tem tamanho limitado, deve-se mapear os endereços da memória principal aos endereços da cache
- Três organizações diferentes de mapeamento
  - Cache diretamente mapeada
  - Cache totalmente associativa
  - Cache associativa mapeada por conjuntos

### Cache diretamente mapeada



- Um endereço da memória principal pode ser mapeado em apenas uma posição da cache
  - Linha da cache = (endereço da memória) % (número de linhas da cache)



### Cache totalmente associativa



- Cada endereço pode ser colocado em qualquer posição da cache
- É necessário um meio para encontrar o dado na cache
  - Tag: identificador único
  - Block offset: identificador da palavra dentro da linha
- Compara o tag com todas as posições da cache





# Cache associativa mapeada por conjunto



- Existe um número fixo de posições da cache nas quais uma palavra pode ser colocada (n-way)
- Número de conjuntos (set), com "n" posições por conjunto
   Memória
   Memória
  - Set = endereço % n. de sets
- Busca por todos os elementos de um conjunto

| tag | index | block offset |
|-----|-------|--------------|
|     |       |              |



# Algoritmos de substituição das linhas da cache



- Atualmente, os processadores usam o mapeamento associativo por conjunto
- Quando um conjunto estiver cheio, deve-se substituir uma linha da cache desse conjunto
  - Algoritmo de substituição das linhas da cache
- Principais
  - Aleatório
  - Menos usado recentemente (LRU) MIPS 24K/34K
  - Primeiro a chegar, primeiro a sair (FIFO) Intel Xcale, ARM9, ARM11
  - Pseudo-LRU TriCore 1798, PowerPC

### Memória virtual



- Mapear endereços lógicos em endereços físicos
- Dá a capacidade de manter programas que demandam mais memória do que memória física disponível
- Idéia central: dividir a memória em páginas
- Mecanismo chamado de paginação
- Unidade de gerenciamento de memória (MMU)
  - Faz a tradução dos endereços lógicas em endereços físicos

## Exemplo: paginação Intel





## Visão do endereço físico pela cache















- N heaps da aplicação
- N é igual ao número de cores
- Super color = N. da cor % n. máx. de cores
- SO usa uma heap do sistema, com uma cor diferente





- Anotações de código inseridas pelo desenvolvedor
- Sobrecarga do operador C++ new
  - Suporte por qualquer compilador C++ padrão

```
void * operator new(size_t bytes, colored alloc c = COLOR 0) {
   // aloca memória da heap definida por c
// example of how to use
int *data1 = new (COLOR0) int[5];
int *data2 = new (COLOR1) int[10];
//data1 and data2 usage
delete data1;
delete data2;
```



- Anotações de código inseridas pelo desenvolvedor
- Sobrecarga do operador C++ new
  - Suporte por qualquer compilador C++ padrão

```
void * operator new(size t bytes, colored alloc c = COLOR 0) {
   // aloca memória da heap definida por c
// example of now to use
int *data1 = new (COLOR0) int[5];
int *data2 = new (COLOR1) int[10];
//data1 and data2 usage
delete data1;
delete data2;
```



- Anotações de código inseridas pelo desenvolvedor
- Sobrecarga do operador C++ new
  - Suporte por qualquer compilador C++ padrão

```
void * operator new(size t bytes, colored alloc c = COLOR 0) {
   // aloca memória da heap definida por c
Il avample of how to use
int *data1 = new (COLOR0) int[5];
int *data2 = new (COLOR1) int[10];
//data1 and data2 usage
delete data1;
delete data2;
```



- Anotações de código inseridas pelo desenvolvedor
- Sobrecarga do operador C++ new
  - Suporte por qualquer compilador C++ padrão

```
void * operator new(size t bytes, colored alloc c = COLOR 0) {
   // aloca memória da heap definida por c
// example of how to use
int *data1 = new (COLOR0) int[5];
int *data2 = new (COLOR1) int[10];
//data1 and data2 usage
delete data1;
delete data2;
```

# Definição das cores em tempo de compilação



```
template <> struct Traits<IA32 MMU>: public Traits<void>
{
    static const bool page_coloring = true;
    static const bool user_centric = true; // false = OS centric
    static const unsigned int colors = 4;
}
```

# Definição das cores em tempo de compilação



```
template <> struct Traits<IA32 MMU>: public Traits<void>
{
    static const bool page_coloring = true;
    static const bool user_centric = true; // false = OS centric
    static const unsigned int colors = 4;
}
```



- Experimento: G-EDF, P-EDF, C-EDF
  - Intel i7-2600
  - Períodos selecionados uniformemente entre {25, 50, 100, 200}
  - Utilizações uniformes entre [0.1, 0.7]
  - WCET conforme o período e utilização
  - Tarefas executam uma função que lê e escreve no WSS (32KB, 64KB, 128KB, 256KB)
  - Todas tarefas executam por 200 períodos → tempo de execução de 40 s
- Três diferentes cenários
  - S1: SO e tarefas usam cores diferentes
  - S2: Tarefasm usam cores diferentes e SO não usa cor
  - S3: todas as tarefas alocam dados da mesma cor



Percentagem de deadlines perdidos





Percentagem de deadlines perdidos





Percentagem de deadlines perdidos





Percentagem de deadlines perdidos



# Qual o impacto do particionamento da cache?



Tempo de execução da aplicação (esperado 40s)

#### Total application execution time (in seconds)



## Qual o impacto do particionamento da cache?



Tempo de execução da aplicação (esperado 40s)

#### Total application execution time (in seconds)



# Qual o impacto do particionamento da cache?



Tempo de execução da aplicação (esperado 40s)

#### Total application execution time (in seconds)



## Algumas observações



- Particionamento da cache entrega maior previsibilidade
- Embora há perda de deadlines, é possível usar análise estática para estimar o WCET das tarefas que usam as mesmas cores
  - Interferência da aplicação nela mesma
- Cor exclusiva para o RTOS
  - Um RTOS leve não influência o tempo de execução das tarefas

#### Confinamento de recursos



- O RTOS deve esconder a latência da arquitetura
- Confinamento de recursos
  - Particionamento da memória compartilhada
- Escalonamento consciente de recursos compartilhados
  - Particionamento de tarefas
  - Monitoramento de eventos arquiteturais
  - Migração de tarefas
  - Questões de implementação

## Escalonamento tempo real



- Assume-se um grafo de tarefas G = (V, E)
- Escalonamento é um mapeamento das tarefas V em instantes de tempo em que essas tarefas iniciam suas execuções



■ Deve-se respeitar as restrições

### Prazos críticos e não críticos







- Prazo (deadline) crítico (hard)
  - Perda acarreta em catástrofe [Kopetz, 1997]
  - Ex: controle do airbag
- Todas as outras restrições são não críticas
  - Ex: vídeo sob demanda
- Focaremos em deadlines críticos

## Tarefas periódicas e aperiódicas 📮





- Tarefas que devem executar a cada p unidades de tempo são periódicas
- Todas as outras são aperiódicas
- Se existe um tempo de ativação mínimo entre duas execuções de uma tarefa aperiódica, ela é classificada como esporádica

## Escalonamento preemptivo ou não preemptivo





- Escalonador não preemptivo
  - Tarefas são executadas até o fim
  - Tempo de resposta a eventos externos pode ser longo
- Escalonador preemptivo
  - Uma tarefa pode "ceder" o processador a outra
  - Uso quando tarefas têm tempo de execução longos ou tempo de resposta a eventos curtos

### Escalonamento dinâmico



- Decisões de escalonamento realizadas em tempo de execução
- Baseia-se nas informações das tarefas no momento



### Escalonabilidade



 Um conjunto de tarefas é escalonável se existe um escalonamento para ele, respeitando as suas restrições

 Testes suficientes: testa condições suficientes

 Testes necessários: usado para mostrar que escalonamento não existe

Testes exatos: NP-hard



## Escalonamento tempo real



Modelo de tarefas periódico



- Cada instância de execução é chamado de job
- Cada tarefa Titem:
  - Um período (p<sub>i</sub>), Um tempo de execução (c<sub>i</sub>)
  - Um deadline (d<sub>i</sub>), Folga ou laxity (l<sub>i=</sub>d<sub>i-</sub>c<sub>i</sub>)



## Utilização: característica importante em escalonamento



Utilização

$$\mu = \sum_{i=1}^{n} c_i / p_i$$

Condição necessária para escalonabilidade

$$\mu \leq m$$

## Rate Monotonic (1)



- Suposições
  - Todas as tarefas são periódicas e têm deadlines críticos
  - Tarefas são independentes
  - di = pi
  - ci é constante e conhecido para as tarefas
  - Tempo para troca de contexto é neglegível
  - Para mono-processador, a existe equação define o teste de escalonabilidade do algoritmo

$$\mu = \sum_{i=1}^{n} \frac{c_i}{p_i} \le n(2^{1/n} - 1)$$

### Rate Monotonic: utilização



$$\mu = \sum_{i=1}^{n} \frac{c_i}{p_i} \le n(2^{1/n} - 1)$$

$$\lim_{n \to \infty} (n(2^{1/n} - 1) = \ln(2)$$



## Rate Monotonic (2)



- Política
  - A prioridade é inversamente proporcional ao período
  - Tarefa com menor período tem maior prioridade
- Em qualquer momento, a tarefa com mais alta prioridade e que estiver pronta para execução, será escalonada

## Exemplo de escalonamento RM





 $T_1$  preempta  $T_2$  e  $T_3$ .  $T_2$  e  $T_3$  não se preemptam.

#### Falha do RM



Task 1: period 5, execution time 2

Task 2: period 7, execution time 4

$$\mu$$
=2/5+4/7=34/35  $\approx$  0.97  $2(2^{1/2}-1) \approx$  0.828





- Earliest Deadline First
  - Toda vez que uma tarefa chega é inserida em uma fila ordenada pelo deadline absoluto
  - Tarefa na cabeça da fila é executada
  - Se uma nova tarefa é inserida na cabeça da fila, ela preempta a tarefa que está sendo executada
  - Prioridades são dinâmicas, mudam a cada job
- Teste de escalonabilidade

• 
$$\sum_{i=1}^{n} \mu_{i} \leq 1$$





- Earliest Deadline First
  - Toda vez que uma tarefa chega é inserida em uma fila ordenada pelo deadline absoluto
  - Tarefa na cabeça da fila é executada
  - Se uma nova tarefa é inserida na cabeça da fila, ela preempta a tarefa que está sendo executada
  - Prioridades são dinâmicas, mudam a cada job
- Teste de escalonabilidade

• 
$$\sum_{i}^{n} \mu_{i} \leq 1$$





- Earliest Deadline First
  - Toda vez que uma tarefa chega é inserida em uma fila ordenada pelo deadline absoluto
  - Tarefa na cabeça da fila é executada
  - Se uma nova tarefa é inserida na cabeça da fila, ela preempta a tarefa que está sendo executada
  - Prioridades são dinâmicas, mudam a cada job
- Teste de escalonabilidade

• 
$$\sum_{i}^{n} \mu_{i} \leq 1$$





- Earliest Deadline First
  - Toda vez que uma tarefa chega é inserida em uma fila ordenada pelo deadline absoluto
  - Tarefa na cabeça da fila é executada
  - Se uma nova tarefa é inserida na cabeça da fila, ela preempta a tarefa que está sendo executada
  - Prioridades são dinâmicas, mudam a cada job
- Teste de escalonabilidade

• 
$$\sum_{i}^{n} \mu_{i} \leq 1$$





- Earliest Deadline First
  - Toda vez que uma tarefa chega é inserida em uma fila ordenada pelo deadline absoluto
  - Tarefa na cabeça da fila é executada
  - Se uma nova tarefa é inserida na cabeça da fila, ela preempta a tarefa que está sendo executada
  - Prioridades são dinâmicas, mudam a cada job
- Teste de escalonabilidade

• 
$$\sum_{i}^{n} \mu_{i} \leq 1$$





- Earliest Deadline First
  - Toda vez que uma tarefa chega é inserida em uma fila ordenada pelo deadline absoluto
  - Tarefa na cabeça da fila é executada
  - Se uma nova tarefa é inserida na cabeça da fila, ela preempta a tarefa que está sendo executada
  - Prioridades são dinâmicas, mudam a cada job
- Teste de escalonabilidade

• 
$$\sum_{i}^{n} \mu_{i} \leq 1$$



## Comparação EDF/RM





 $T_2$  não é preemptada devido ao seu deadline mais próximo.

## Comparação EDF/RM



|                                           | RMS                                | EDF      |
|-------------------------------------------|------------------------------------|----------|
| Prioridades                               | Estática                           | Dinâmica |
| Funciona em um SO com prioridade estática | Sim                                | Não      |
| Utiliza todo o poder de processamento     | Não, apenas até $\mu=n(2^{1/n}-1)$ | Sim      |

#### Confinamento de recursos



- O RTOS deve esconder a latência da arquitetura
- Confinamento de recursos
  - Particionamento da memória compartilhada
- Escalonamento consciente de recursos compartilhados
  - Particionamento de tarefas
  - Monitoramento de eventos arquiteturais
  - Migração de tarefas
  - Questões de implementação

# Algoritmos de escalonamento para multiprocessadores

- Três abordagens tradicionais
  - Particionado
  - Global
  - Agrupado



| T1 |    | Т3 |    | T5 |    |
|----|----|----|----|----|----|
|    | T2 |    | T4 |    | T6 |



T3 T5 T6

P1

P2



T3 T5 T1 T2 T4 T6



T3 T5 T6

Fila de tarefas
P1
P2









- Estratégias de particionamento
- Particionamento de tarefas é similar ao problema do empacotamento (bin packing)



- Estratégias de particionamento
- Particionamento de tarefas é similar ao problema do empacotamento (bin packing)





- Estratégias de particionamento
- Particionamento de tarefas é similar ao problema do empacotamento (bin packing)





- Estratégias de particionamento
- Particionamento de tarefas é similar ao problema do empacotamento (bin packing)





- Estratégias de particionamento
- Particionamento de tarefas é similar ao problema do empacotamento (bin packing)



Heurísticas: first-fit, best-fit, worst-fit



T3 T5 T6



T3 T5 T6

P1

P2



T3 T5 T6





T3 T5 T6



T3 T5 T1 T2 T4 T6

























## Observações dos escalonadores



- Qual a melhor variação dos algoritmos de escalonamento para tarefas de tempo real críticas? Particionado, global ou agrupado?
  - Em geral, particionado tem uma melhor taxa de escalonabilidade
  - Testes de escalonabilidade para algoritmos globais são suficientes e pessimistas
  - Agrupado é interessante para multiprocessadores, quando o sobrecusto de acesso a dados em um processador remoto é considerável

[Gracioli et al. Implementation and Evaluation of Global and Partitioned Scheduling in a Real-Time OS. Real-time Systems, Vol. 49, Issue 6, pp 669-714 2013.]

## Confinamento de recursos



- O RTOS deve esconder a latência da arquitetura
- Confinamento de recursos
  - Particionamento da memória compartilhada
- Escalonamento consciente de recursos compartilhados
  - Particionamento de tarefas
  - Monitoramento de eventos arquiteturais
  - Migração de tarefas
  - Questões de implementação

## **Performance Monitoring Unit**



Medida do número de snoops da cache



## **Performance Monitoring Unit**



Medida do número de snoops da cache



## **Performance Monitoring Unit**



Medida do número de snoops da cache



## Confinamento de recursos



- O RTOS deve esconder a latência da arquitetura
- Confinamento de recursos
  - Particionamento da memória compartilhada
- Escalonamento consciente de recursos compartilhados
  - Particionamento de tarefas
  - Monitoramento de eventos arquiteturais
  - Migração de tarefas
  - Questões de implementação

## Influência do RTOS



- As ações do RTOS "tomam" o tempo das aplicações
- Sobrecusto introduzido pelo RTOS
  - Tempo de escalonamento
  - Troca de contexto
  - Tempo de liberação de tarefas
  - Tratamento de interrupções (IPI, timers, etc)
  - Tempo de contagem de ticks

## Fontes de sobrecusto





- Tais sobrecustos podem fazer com que tarefas de tempo real percam deadlines?
- Veremos alguns exemplos..

### Troca de contexto



#### Wost-case context switch overhead



## Tempo de liberação



#### Worst-case release overhead



## Tempo de contagem de tick



### Worst-case tick overhead



## Tempo de escalonamento



### Worst-case scheduler overhead



# Análise do sobrecusto do RTOS na escalonabilidade das tarefas



uti. uniform [0.001,0.1];period uniform [3,33]



Task set utilization cap (before adding OS overhead)

# Análise do sobrecusto do RTOS na escalonabilidade das tarefas



uti. uniform [0.001,0.1];period uniform [50,250]



Task set utilization cap (before adding OS overhead)

# Análise do sobrecusto do RTOS na escalonabilidade das tarefas



uti. uniform [0.5,0.9];period uniform [50,250]



Task set utilization cap (before adding OS overhead)

## Considerando a cache - CPMD



### Cache-related preemption and migration delays



## **CPMD** na escalonabilidade



uti. uniform [0.001,0.1];period uniform [3,33]



### Resumo



- Arquiteturas multiprocessadas em sistemas embarcados
  - Várias fontes de latência/sobrecusto
- Técnicas de RTOS para ocultar latência
  - Particionamento da cache compartilhada
  - Uso de contadores de desempenho de hardware
  - Implementação interna do RTOS



