Package 'deepNN'

August 25, 2023

Title Deep Learning
Version 1.2
Description Implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout. Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi Neural Networks YouTube playlist. Michael A. Nielsen https://neuralnetworksanddeeplearning.com/ Neural Networks and Deep Learning.
Depends R (>= $3.2.1$)
Imports stats, graphics, utils, Matrix, methods
License GPL-3
RoxygenNote 7.2.3
Encoding UTF-8
NeedsCompilation no
Author Benjamin Taylor [aut, cre]
Maintainer Benjamin Taylor benjamin.taylor.software@gmail.com>
Repository CRAN
Date/Publication 2023-08-25 13:10:02 UTC
R topics documented:
addGrad
addList
backprop_evaluate
bias2list
biasInit
download_mnist

2 deepNN-package

	NN-package <i>deepNN</i>	
Index		38
	wQloss	37
	wmultinomial	
	weights2list	
	updateStopping.regression	34
	updateStopping.classification	33
	updateStopping	33
	train	
	stopping.revdir	30
	stopping.maxit	
	stopping.default	
	stopping	
	softmax	
	smoothReLU	
	ReLU	25
	Qloss	
	no_regularisation	
	NNpredict.regression	
	NNpredict	
	NNgrad_test	
	nnetpar	19
	network	18
	nbiaspar	17
	multinomial	17
	MLP_net	16
	memInit	15
	logistic	14
	L2_regularisation	13
	L1_regularisation	13
	ident	12
	hyptan	11
	gradInit	10
	dropoutProbs	9

Description

Teaching resources (yet to be added) and implementation of some Deep Learning methods. Includes multilayer perceptron, different activation functions, regularisation strategies, stochastic gradient descent and dropout.

Usage

deepNN

addGrad 3

Format

An object of class logical of length 1.

Details

sectionDependencies The package deepNN depends upon some other important contributions to CRAN in order to operate; their uses here are indicated:

stats, graphics.

sectionCitation deepNN: Deep Learning. Benjamin M. Taylor

references Thanks go to the following references for helping to inspire and develop the package: Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach (2016, ISBN:978-0262035613) Deep Learning. Terrence J. Sejnowski (2018, ISBN:978-0262038034) The Deep Learning Revolution. Grant Sanderson (3brown1blue) https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi Neural Networks YouTube playlist. Michael A. Nielsen http://neuralnetworksanddeeplearning.com/ Neural Networks and Deep Learning

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

Author(s)

Benjamin Taylor, Department of Medicine, Lancaster University

addGrad

addGrad function

Description

A function to add two gradients together, gradients expressed as nested lists.

Usage

```
addGrad(x, y)
```

Arguments

- x a gradient list object, as used in network training via backpropagation
- y a gradient list object, as used in network training via backpropagation

Value

another gradient object

4 addList

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

addList

addList function

Description

A function to add two lists together

Usage

```
addList(x, y)
```

Arguments

x a list y a list

Value

a list, the elements of which are the sums of the elements of the arguments x and y.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

backpropagation_MLP

backpropagation_MLP backpropagation_MLP	agation_ML	P function
---	------------	------------

Description

A function to perform backpropagation for a multilayer perceptron.

Usage

```
backpropagation_MLP(MLPNet, loss, truth)
```

Arguments

MLPNet	output from the function MLP_net, as applied to some data with given parameters
loss	the loss function, see ?Qloss and ?multinomial
truth	the truth, a list of vectors to compare with output from the feed-forward network

Value

a list object containing the cost and the gradient with respect to each of the model parameters

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

6 backprop_evaluate

evaluate backprop_evaluate function

Description

A function used by the train function in order to conduct backpropagation.

Usage

```
backprop_evaluate(parameters, dat, truth, net, loss, batchsize, dropout)
```

Arguments

parameters	network weights and bias parameters as a vector
dat	the input data, a list of vectors
truth	the truth, a list of vectors to compare with output from the feed-forward network
net	an object of class network, see ?network
loss	the loss function, see ?Qloss and ?multinomial
batchsize	optional batchsize argument for use with stochastic gradient descent
dropout	optional list of dropout probabilities ?dropoutProbs

Value

the derivative of the cost function with respect to each of the parameters

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

bias2list 7

bias2list	bias2list function	

Description

A function to convert a vector of biases into a ragged array (coded here a list of vectors)

Usage

```
bias2list(bias, dims)
```

Arguments

bias a vector of biases

dims the dimensions of the network as stored from a call to the function network, see

?network

Value

a list object with appropriate structures for compatibility with the functions network, train, MLP_net and backpropagation_MLP

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

8 download_mnist

biasInit

biasInit function

Description

A function to inialise memory space for bias parameters. Now redundant.

Usage

biasInit(dims)

Arguments

dims

the dimensions of the network as stored from a call to the function network, see ?network

Value

memory space for biases

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

download_mnist

download_mnist function

Description

A function to download mnist data in .RData format. File includes objects train_set, truth, test_set and test_truth

Usage

download_mnist(fn)

dropoutProbs 9

Arguments

fn the name of the file to save as

Value

a list, the elements of which are the sums of the elements of the arguments x and y.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/
- 5. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998
- 6. http://yann.lecun.com/exdb/mnist/

See Also

```
network, train, backprop_evaluate, MLP_net, backpropagation_MLP
```

Examples

```
# Don't run at R check because the file is large (23Mb)
# download_mnist("mnist.RData")
```

 ${\tt dropoutProbs}$

dropoutProbs function

Description

A function to specify dropout for a neural network.

Usage

```
dropoutProbs(input = 1, hidden = 1)
```

Arguments

input inclusion rate for input parameters hidden inclusion rate for hidden parameters

10 gradInit

Value

returns these probabilities in an appropriate format for interaction with the network and train functions, see ?network and ?train

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

gradInit

gradInit function

Description

A function to initialise memory for the gradient.

Usage

gradInit(dim)

Arguments

dim

the dimensions of the network as stored from a call to the function network, see ?network

Value

memory space and structure for the gradient, initialised as zeros

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

hyptan 11

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

hyptan

hyptan function

Description

A function to evaluate the hyperbolic tanget activation function, the derivative and cost derivative to be used in defining a neural network.

Usage

hyptan()

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, ReLU, smoothReLU, ident, softmax

Examples

12 ident

ident

ident function

Description

A function to evaluate the identity (linear) activation function, the derivative and cost derivative to be used in defining a neural network.

Usage

```
ident()
```

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, softmax

Examples

L1_regularisation 13

L1_regularisation

L1_regularisation function

Description

A function to return the L1 regularisation strategy for a network object.

Usage

```
L1_regularisation(alpha)
```

Arguments

alpha

parameter to weight the relative contribution of the regulariser

Value

list containing functions to evaluate the cost modifier and grandient modifier

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, L2_regularisation, no_regularisation

L2_regularisation

L2_regularisation function

Description

A function to return the L2 regularisation strategy for a network object.

Usage

```
L2_regularisation(alpha)
```

Arguments

alpha

parameter to weight the relative contribution of the regulariser

14 logistic

Value

list containing functions to evaluate the cost modifier and grandient modifier

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, L1_regularisation, no_regularisation

logistic

logistic function

Description

A function to evaluate the logistic activation function, the derivative and cost derivative to be used in defining a neural network.

Usage

logistic()

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, ReLU, smoothReLU, ident, softmax

memInit 15

Examples

memInit

memInit function

Description

A function to initialise memory space. Likely this will become deprecated in future versions.

Usage

```
memInit(dim)
```

Arguments

dim

the dimensions of the network as stored from a call to the function network, see ?network

Value

memory space, only really of internal use

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

MLP_net

MLP_net	MLP_net function	
---------	------------------	--

Description

A function to define a multilayer perceptron and compute quantities for backpropagation, if needed.

Usage

```
MLP_net(input, weights, bias, dims, nlayers, activ, back = TRUE, regulariser)
```

Arguments

input	input data, a list of vectors (i.e. ragged array)
weights	a list object containing weights for the forward pass, see ?weights2list
bias	a list object containing biases for the forward pass, see ?bias2list
dims	the dimensions of the network as stored from a call to the function network, see ?network
nlayers	number of layers as stored from a call to the function network, see ?network
activ	list of activation functions as stored from a call to the function network, see ?network
back	logical, whether to compute quantities for backpropagation (set to FALSE for feed-forward use only)
regulariser	type of regularisation strategy to, see ?train, ?no_regularisation ?L1_regularisation, ?L2_regularisation

Value

a list object containing the evaluated forward pass and also, if selected, quantities for backpropagation.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

multinomial 17

multinomial

multinomial function

Description

A function to evaluate the multinomial loss function and the derivative of this function to be used when training a neural network.

Usage

```
multinomial()
```

Value

a list object with elements that are functions, evaluating the loss and the derivative

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

 $network, train, backprop_evaluate, MLP_net, backpropagation_MLP, Qloss, no_regularisation, L1_regularisation, L2_regularisation \\$

nbiaspar

nbiaspar function

Description

A function to calculate the number of bias parameters in a neural network, see ?network

Usage

```
nbiaspar(net)
```

Arguments

net

an object of class network, see ?network

18 network

Value

an integer, the number of bias parameters in a neural network

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

network

network function

Description

A function to set up a neural network structure.

Usage

```
network(dims, activ = logistic(), regulariser = NULL)
```

Arguments

dims	a vector giving the dimensions of the network. The first and last elements are respectively the input and output lengths and the intermediate elements are the dimensions of the hidden layers
activ	either a single function or a list of activation functions, one each for the hidden layers and one for the output layer. See for example ?ReLU, ?softmax etc.
regulariser	optional regularisation strategy, see for example ?no_regularisation (the default) ?L1_regularisation, ?L2_regularisation

nnetpar 19

Value

a list object with all information to train the network

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

nnetpar

nnetpar function

Description

A function to calculate the number of weight parameters in a neural network, see ?network

Usage

```
nnetpar(net)
```

Arguments

net

an object of class network, see ?network

Value

an integer, the number of weight parameters in a neural network

20 NNgrad_test

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

NNgrad_test

NNgrad_test function

Description

A function to test gradient evaluation of a neural network by comparing it with central finite differencing.

Usage

```
NNgrad_test(net, loss = Qloss(), eps = 1e-05)
```

Arguments

net an object of class network, see ?network

loss a loss function to compute, see ?Qloss, ?multinomial

eps small value used in the computation of the finite differencing. Default value is

0.00001

Value

the exact (computed via backpropagation) and approximate (via central finite differencing) gradients and also a plot of one against the other.

NNpredict 21

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

NNpredict

NNpredict function

Description

A function to produce predictions from a trained network

Usage

```
NNpredict(
  net,
  param,
  newdata,
  newtruth = NULL,
  freq = 1000,
  record = FALSE,
  plot = FALSE
)
```

Arguments

net an object of class network, see ?network

param vector of trained parameters from the network, see ?train newdata input data to be predicted, a list of vectors (i.e. ragged array)

newtruth the truth, a list of vectors to compare with output from the feed-forward network

NNpredict NNpredict

freq	frequency to print progress updates to the console, default is every 1000th training point
record	logical, whether to record details of the prediction. Default is FALSE
plot	locical, whether to produce diagnostic plots. Default is FALSE

Value

if record is FALSE, the output of the neural network is returned. Otherwise a list of objects is returned including: rec, the predicted probabilities; err, the L1 error between truth and prediction; pred, the predicted categories based on maximum probability; pred_MC, the predicted categories based on maximum probability; truth, the object newtruth, turned into an integer class number

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

NNpredict.regression, network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

```
# Example 1 - mnist data

# See example at mnist repository under user bentaylor1 on githib

# Example 2

N <- 1000
d <- matrix(rnorm(5*N),ncol=5)

fun <- function(x){
    lp <- 2*x[2]
    pr <- exp(lp) / (1 + exp(lp))
    ret <- c(0,0)
    ret[1+rbinom(1,1,pr)] <- 1
    return(ret)
}

d <- lapply(1:N,function(i){return(d[i,])})

truth <- lapply(d,fun)</pre>
```

NNpredict.regression 23

```
net <- network( dims = c(5,10,2),
                activ=list(ReLU(),softmax()))
netwts <- train( dat=d,</pre>
                 truth=truth,
                 net=net,
                 eps=0.01,
                                      # run for 100 iterations
                 tol=100,
                 batchsize=10,
                                      # note this is not enough
                 loss=multinomial(), # for convergence
                 stopping="maxit")
pred <- NNpredict( net=net,</pre>
                     param=netwts$opt,
                    newdata=d,
                    newtruth=truth,
                     record=TRUE,
                     plot=TRUE)
```

 ${\tt NNpredict.regression} \quad \textit{NNpredict.regression function}$

Description

A function to produce predictions from a trained network

Usage

```
NNpredict.regression(
  net,
  param,
  newdata,
  newtruth = NULL,
  freq = 1000,
  record = FALSE,
  plot = FALSE
)
```

Arguments

net an object of class network, see ?network

param vector of trained parameters from the network, see ?train newdata input data to be predicted, a list of vectors (i.e. ragged array)

newtruth the truth, a list of vectors to compare with output from the feed-forward network freq frequency to print progress updates to the console, default is every 1000th train-

ing point

24 no_regularisation

record	logical, whether to record details of the prediction. Default is FALSE
plot	locical, whether to produce diagnostic plots. Default is FALSE

Value

if record is FALSE, the output of the neural network is returned. Otherwise a list of objects is returned including: rec, the predicted probabilities; err, the L1 error between truth and prediction; pred, the predicted categories based on maximum probability; pred_MC, the predicted categories based on maximum probability; truth, the object newtruth, turned into an integer class number

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

NNpredict, network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, bias2list, bias1nit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

no_regularisation no_regularisation function

Description

A function to return the no regularisation strategy for a network object.

Usage

```
no_regularisation()
```

Value

list containing functions to evaluate the cost modifier and grandient modifier

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

Qloss 25

See Also

network, train, L1_regularisation, L2_regularisation

Qloss

Qloss function

Description

A function to evaluate the quadratic loss function and the derivative of this function to be used when training a neural network.

Usage

Qloss()

Value

a list object with elements that are functions, evaluating the loss and the derivative

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, multinomial, no_regularisation, L1_regularisation, L2_regularisation

ReLU

ReLU function

Description

A function to evaluate the ReLU activation function, the derivative and cost derivative to be used in defining a neural network.

Usage

ReLU()

26 smoothReLU

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, smoothReLU, ident, softmax

Examples

smoothReLU

smoothReLU function

Description

A function to evaluate the smooth ReLU (AKA softplus) activation function, the derivative and cost derivative to be used in defining a neural network.

Usage

```
smoothReLU()
```

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

softmax 27

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, ident, soft-max

Examples

softmax

softmax function

Description

A function to evaluate the softmax activation function, the derivative and cost derivative to be used in defining a neural network. Note that at present, this unit can only be used as an output unit.

Usage

```
softmax()
```

Value

a list of functions used to compute the activation function, the derivative and cost derivative.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident

28 stopping.default

Examples

stopping

stopping function

Description

Generic function for implementing stopping methods

Usage

```
stopping(...)
```

Arguments

... additional arguments

Value

method stopping

See Also

stopping.default, stopping.maxit

stopping.default

 $stopping.default\ function$

Description

A function to halt computation when curcost < tol

Usage

```
## Default S3 method:
stopping(cost, curcost, count, tol, ...)
```

stopping.maxit 29

Arguments

cost the value of the loss function passed in

curcost current measure of cost, can be different to the parameter 'cost' above e.g. may

consider smoothed cost over the last k iterations

count iteration counttol tolerance, or limit... additional arguments

Value

..

See Also

stopping.maxit

stopping.maxit stopping.maxit function

Description

A function to halt computation when the number of iterations reaches a given threshold, tol

Usage

```
## S3 method for class 'maxit'
stopping(cost, curcost, count, tol, ...)
```

Arguments

cost the value of the loss function passed in

current measure of cost, can be different to the parameter 'cost' above e.g. may

consider smoothed cost over the last k iterations

count iteration counttol tolerance, or limit... additional arguments

Value

•••

30 train

stopping.	revdir
Stopping.	ICVUII

stopping.revdir function

Description

A function to halt computation when curcost > tol

Usage

```
## S3 method for class 'revdir'
stopping(cost, curcost, count, tol, ...)
```

Arguments

cost the value of the loss function passed in

curcost current measure of cost, can be different to the parameter 'cost' above e.g. may

consider smoothed cost over the last k iterations

count iteration count

tol tolerance, or limit

... additional arguments

Value

•••

See Also

stopping.maxit

train train function

Description

A function to train a neural network defined using the network function.

train 31

Usage

```
train(
 dat,
  truth,
 net,
 loss = Qloss(),
  tol = 0.95,
 eps = 0.001,
 batchsize = NULL,
 dropout = dropoutProbs(),
 parinit = function(n) {
     return(runif(n, -0.01, 0.01))
},
 monitor = TRUE,
 stopping = "default",
 update = "classification"
)
```

Arguments

dat	the input data, a list of vectors
truth	the truth, a list of vectors to compare with output from the feed-forward network
net	an object of class network, see ?network
loss	the loss function, see ?Qloss and ?multinomial
tol	stopping criteria for training. Current method monitors the quality of randomly chosen predictions from the data, terminates when the mean predictive probabilities of the last 20 randomly chosen points exceeds tol, default is 0.95
eps	stepsize scaling constant in gradient descent, or stochastic gradient descent
batchsize	size of minibatches to be used with stochastic gradient descent
dropout	optional list of dropout probabilities ?dropoutProbs
parinit	a function of a single parameter returning the initial distribution of the weights, default is uniform on $(-0.01,0.01)$
monitor	logical, whether to produce learning/convergence diagnostic plots
stopping	method for stopping computation default, 'default', calls the function stopping.default
update	and default for meth is 'classification', which calls updateStopping.classification

Value

optimal cost and parameters from the trained network; at present, diagnostic plots are produced illustrating the parameters of the model, the gradient and stopping criteria trace.

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)

32 train

- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

Examples

```
# Example 1 - mnist data
# See example at mnist repository under user bentaylor1 on githib
# Example 2
N <- 1000
d <- matrix(rnorm(5*N),ncol=5)</pre>
fun <- function(x){</pre>
    1p <- 2*x[2]
    pr \leftarrow exp(lp) / (1 + exp(lp))
    ret <- c(0,0)
    ret[1+rbinom(1,1,pr)] <- 1
    return(ret)
}
d <- lapply(1:N,function(i){return(d[i,])})</pre>
truth <- lapply(d, fun)</pre>
net <- network( dims = c(5,10,2),
                 activ=list(ReLU(),softmax()))
netwts <- train( dat=d,</pre>
                  truth=truth,
                  net=net,
                  eps=0.01,
                                       # run for 100 iterations
                  tol=100,
                  batchsize=10,
                                      # note this is not enough
                  loss=multinomial(), # for convergence
                  stopping="maxit")
pred <- NNpredict( net=net,</pre>
                     param=netwts$opt,
                     newdata=d,
                     newtruth=truth,
                     record=TRUE,
                     plot=TRUE)
```

updateStopping 33

updateStopping

updateStopping function

Description

Generic function for updating stopping criteria

Usage

```
updateStopping(...)
```

Arguments

... additional arguments

Value

method updateStopping

See Also

updateStopping.classification, updateStopping.regression

```
up date Stopping. classification \\ up date Stopping. classification function
```

Description

A function to update the stopping criteria for a classification problem.

Usage

```
## S3 method for class 'classification'
updateStopping(
   dat,
   parms,
   net,
   truth,
   testoutput,
   count,
   monitor,
   mx,
   curcost,
   ...
)
```

Arguments

data object

parms model parameters

net an object of class network

truth the truth, to be compared with network outputs testoutput a vector, the history of the stopping criteria

count iteration number

monitor logical, whether to produce a diagnostic plot

mx a number to be monitored e.g. the cost of the best performing parameter config-

uration to date

curcost current measure of cost, can be different to the value of the loss function e.g.

may consider smoothed cost (i.e. loss) over the last k iterations

... additional arguments

Value

curcost, testoutput and mx, used for iterating the maximisation process

updateStopping.regression

updateStopping.regression function

Description

A function to update the stopping criteria for a classification problem.

Usage

```
## S3 method for class 'regression'
updateStopping(
  dat,
  parms,
  net,
  truth,
  testoutput,
  count,
  monitor,
  mx,
  curcost,
  ...
)
```

weights2list 35

Arguments

data object

parms model parameters

net an object of class network

truth the truth, to be compared with network outputs testoutput a vector, the history of the stopping criteria

count iteration number

monitor logical, whether to produce a diagnostic plot

mx a number to be monitored e.g. the cost of the best performing parameter config-

uration to date

currost current measure of cost, can be different to the value of the loss function e.g.

may consider smoothed cost (i.e. loss) over the last k iterations

... additional arguments

Value

curcost, testoutput and mx, used for iterating the maximisation process

 $weights 2 list \ \textit{weights 2 list function}$

Description

A function to convert a vector of weights into a ragged array (coded here a list of vectors)

Usage

```
weights2list(weights, dims)
```

Arguments

weights a vector of weights

dims the dimensions of the network as stored from a call to the function network, see

?network

Value

a list object with appropriate structures for compatibility with the functions network, train, MLP_net and backpropagation_MLP

36 wmultinomial

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation

wmultinomial

wmultinomial function

Description

A function to evaluate the weighted multinomial loss function and the derivative of this function to be used when training a neural network. This is eqivalent to a multinomial cost function employing a Dirichlet prior on the probabilities. Its effect is to regularise the estimation so that in the case where we apriori expect more of one particular category compared to another then this can be included in the objective.

Usage

```
wmultinomial(w, batchsize)
```

Arguments

w a vector of weights, adding up whose length is equal to the output length of the

net

batchsize of batch used in inference WARNING: ensure this matches with actual batchsize

used!

Value

a list object with elements that are functions, evaluating the loss and the derivative

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

wQloss 37

See Also

 $network, train, backprop_evaluate, MLP_net, backpropagation_MLP, Qloss, no_regularisation, L1_regularisation, L2_regularisation \\$

wQloss

wQloss function

Description

A function to evaluate the weighted quadratic loss function and the derivative of this function to be used when training a neural network.

Usage

wQloss(w)

Arguments

W

a vector of weights, adding up to 1, whose length is equalt to the output length of the net

Value

a list object with elements that are functions, evaluating the loss and the derivative

References

- 1. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
- 2. Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
- 3. Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist? list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- 4. http://neuralnetworksanddeeplearning.com/

See Also

 $network, train, backprop_evaluate, MLP_net, backpropagation_MLP, multinomial, no_regularisation, L1_regularisation, L2_regularisation\\$

Index

36, 37

```
* package
                                                     multinomial, 4-8, 10, 11, 15, 16, 17, 18-22,
    deepNN-package, 2
                                                               24, 25, 32, 36, 37
addGrad, 3, 4-8, 10, 11, 15, 16, 18-22, 24, 32,
                                                     nbiaspar, 4-8, 10, 11, 15, 16, 17, 18-22, 24,
         36
                                                               32, 36
addList, 4, 4, 5-8, 10, 11, 15, 16, 18-22, 24,
                                                     network, 4-18, 18, 19-22, 24-27, 32, 36, 37
                                                     nnetpar, 4-8, 10, 11, 15, 16, 18, 19, 19,
         32, 36
                                                               20-22, 24, 32, 36
backprop_evaluate, 4-6, 6, 7-12, 14-22,
                                                     NNgrad_test, 4-8, 10, 11, 15, 16, 18-20, 20,
         24–27, 32, 36, 37
                                                               21, 22, 24, 32, 36
backpropagation_MLP, 4, 5, 5, 6–12, 14–22,
                                                     NNpredict, 21, 24
         24–27, 32, 36, 37
                                                     NNpredict.regression, 22, 23
bias2list, 4-7, 7, 8, 10, 11, 15, 16, 18-22,
                                                     no_regularisation, 4-8, 10, 11, 13-22, 24,
         24, 32, 36
                                                               24, 25, 32, 36, 37
biasInit, 4-8, 8, 10, 11, 15, 16, 18-22, 24,
                                                     Qloss, 4-8, 10, 11, 15-22, 24, 25, 32, 36, 37
         32, 36
                                                     ReLU, 4-8, 10-12, 14-16, 18-22, 24, 25, 27,
deepNN (deepNN-package), 2
                                                               32, 36
deepNN-package, 2
download_mnist, 8
                                                     smoothReLU, 4-8, 10-12, 14-16, 18-22, 24,
dropoutProbs, 9
                                                               26, 26, 27, 32, 36
                                                     softmax, 4-8, 10-12, 14-16, 18-22, 24, 26,
gradInit, 4-8, 10, 10, 11, 15, 16, 18-22, 24,
                                                               27, 27, 32, 36
         32.36
                                                     stopping, 28
hyptan, 11
                                                     stopping.default, 28, 28
                                                     stopping.maxit, 28, 29, 29, 30
ident, 4–8, 10, 11, 12, 14–16, 18–22, 24, 26,
                                                     stopping.revdir, 30
         27, 32, 36
                                                     train, 4-22, 24-27, 30, 32, 36, 37
L1_regularisation, 4-8, 10, 11, 13, 14-22,
         24, 25, 32, 36, 37
                                                     updateStopping, 33
L2_regularisation, 4-8, 10, 11, 13, 13,
                                                     updateStopping.classification, 33, 33
         15–22, 24, 25, 32, 36, 37
                                                     updateStopping.regression, 33, 34
logistic, 4-8, 10-12, 14, 15, 16, 18-22, 24,
                                                     weights2list, 4-8, 10, 11, 15, 16, 18-22, 24,
         26, 27, 32, 36
                                                               32, 35, 36
                                                     wmultinomial, 36
memInit, 4-8, 10, 11, 15, 15, 16, 18-22, 24,
         32.36
                                                     wQloss, 37
MLP_net, 4-12, 14-16, 16, 17-22, 24-27, 32,
```