Assignment5: 真实感渲染 计算机图形学基础, 2021 年秋季

夏佳志

中南大学,计算机学院

说明:

- 请独立完成本次作业,如有抄袭,成绩作无效处理;
- •本此作业与OpenGL 无关,为离线渲染入门,有一定的难度;相关 阅读、学习资料会在文档末尾列出;
- •你可以在QQ 群中对于作业内容直接提问,也可以对框架的问题或 bug,以 <u>Issue - CSUGL</u>的形式在 CSUGL 框架仓库中进行报告;
 - Gitee Repository CSUGL, 随时欢迎你参与框架的建设与维护;

1 准备

本此作业包含三个 vendor: CSUGL, CSUPBR 和 yaml-cpp; CSUGL 的准备和前两次作业一致; CSUPBR 与 yaml-cpp 已经准备好.

2 内容

2.1 Sphere intersection - 球面求交

完成 sphere.cpp 中的 intersect 和 intersectP

2.2 BSDF sample (simple) - 反射材质的采样(简易版)

完成 bsdf.cpp 中三种材质的简单采样

• Lambertian Reflection: 兰伯特漫反射

• SpecularReflection: 镜面反射

• SpecularTransmission: 镜面透射

2.3 场景搭建

学习示例场景的搭建方式,自己搭建一个场景.

3 要求

3.1 球面求交:

要求使用场景 sphere_test 进行测试

3.2 BSDF sample (simple)

要求使用场景 cornellbox 和 veach_mi 进行测试,需要和"4效果"中完全一致

3.3 场景搭建

- a) 模仿作业 0 的场景, (光源可以使用放置在远处的球型光源);
- b) 或: 也可以使用 model 中的其他模型,或者其他自己的模型;
- c) 或: 你也可以只使用 sphere, 只要搭建出和谐、美观、自然的场景即可;

注意,请将**场景配置文件.yml**,放在根目录的 assets/scene 的同名独立文件夹中。例如,你有一个场景 myscene,那么它所在的位置应该为:

- Assisgment5/
 - assets/
 - scene/
 - myscene/
 - myscene.yml

4 效果

Figure1. sphere_test (spp=1600)

Figure2. cornellbox (spp=1000)

Figure3. veach_mi

Figure4. sponza (spp=3000)

Figure5. sonpza (spp=50)
(a) global illumination (up),
(b) direct illumination (left),
(c) indirect illumination (right).

5 附录

折射率

Medium	Index of refraction
Vacuum	1.0
Air at sea level	1.00029
Ice	1.31
Water (C)	1.333
Fused quartz	1.46
Glass	1.5–1.6
Sapphire	1.77
Diamond	2.42

说明视频: https://www.bilibili.com/video/BV1pq4y1q7AE/

参阅资料:

1. Ray Tracing in One Weekend Series

这是**必读资料**,虽然**代码结构完全不同**,并且这三本书的内容已经过时,但是简单的 BSDF 反射模型部分可以学习此书(主要是第一本)

知乎上有部分章节的翻译,不过并不专业,对于理解可能产生误导,请以原文为主要参考.

2. <u>Physically Based Rendering: From Theory to Implementation (pbr-book.org)</u>
这是基于物理渲染的百科全书性质书籍,里面包括了 PBR 的实现代码,难度较大.

3. GAMES101-现代计算机图形学入门-闫令琪_哔哩哔哩_bilibili

这是 GAMES 系列第一个课程,其中包含了光线追踪的部分,非常适合入门学习.

4. <u>Direct Light using MIS (shadertoy.com)</u>

Shadertoy,一个有趣的 shader 代码与艺术分享网站。这个例子是基于 MIS 的 PathTracer,是目前商业渲染器比较常用的简单渲染器,同样的 SPP 数量下,效果比我们的 Whitted-Style 要好很多.

