Basic Python Functions

First Tutorial for 3CP3 class

Python Indentation and basic syntax

Python uses whitespace and indentation to construct the code structure

```
numbers = [0,1,2,3,4,5,6,7,8,9,10]
#A function to calculate the mean of a given list of numbers

def mean(list):
    sum = 0
    for i in list:
        sum += i
    return sum / len(list)

print(mean(numbers))
```

A comment that is

not executed

More readable and uniform

Whitespace to define_

the block of coding

Python is case sensitive, so it encourages precision and clarity while coding.

Basic operations

You can compute basic operations directly.

• But working with multiple variable is useful to assign each variable a name.

• And then you can print the variable that you stored the operation.

You can print multiple variables, strings, arrays...

List and operations with lists

You can create lists and populate them with numbers and strings.

```
empty_list = []
mixed_list = [1,2,'Hello world',False]
float_list = [1.2,2.3,4.5,2.0,4.5]
```

- Lists are:
 - 1. Ordered
 - 2. Mutable
 - 3. Denoted by square brackets
- You can check the length of a list

```
print(len(empty_list))
print(len(mixed_list))
```

 You can add more variables to your list by using the append command

```
empty_list = []
empty_list.append(3)
print(empty_list)
```

- Given a list L = [1,2,3,4,5,6,7,8,9]. We can access a specific position of the list using slicing.
 - The whole list: *L[:]*
 - Everything after (and including) index position i : *L[i:]*
 - Everything before index position i: L[:i]
 - Everything before the position j steps from the end: *L[:-j]*
 - Everything after (and including) the position j steps from the end: *L[-j:]*

- *L[0] = [1]*
- *L[2:]* = [3,4,5,6,7,8,9]
- *L[:4]* = [1,2,3,4]
- *L[-2:]* = [8,9]
- *L[:-6] = [1,2,3]*

Functions

A function in Python works the same as a function in math: you define an input and an output.

- And you put the list of outputs inside a parenthesis followed by:
- This defines the function $f(x)=x^3+1$ and to evaluate the function in each input you do,

Conditional Statements

• There are instances where we want to only execute a particular block of code if a certain condition is true.

```
if condition:
    #code to execute if condition is true
```

For multiple conditions, the syntax is,

```
if condition:
    # code to execute if condition is true
elif condition:
    # code to execute if above condition is false and this condition is true
else:
    # code to execute if all previous conditions are false
```

- Comparison operations,
 - Equals x == y
 - Not Equal x != y
 - Less Than (strictly) x < y
 - Greater Than (strictly) x > y
 - Less Than or Equal to x <= y
 - Greater Than or Equal to x >= y

Loop

• When programming, there are times when you need to repeatedly perform a specific operation/action while updating certain parameters. In these situations, we use loops,

for item in sequence:
#code to be executed

Exercise

• Test the convergence of the alternating series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
Converges to ln(2)

Quick Feedback on Quiz 1

- Pay attention to the information on the website on how to send the files. You need to follow the template there otherwise your quiz will not be accepted.
- You don't need to write #return print() (This can lead to errors)
- For the next assignments you can delete the #Write your code here.
- Do not write the exercise asking for the input of an user:

Like: input = #add your value here

The code must work on its own.

Last Class

• I think it is still not super clear how does the definition of a function works using Python.

What happens if I try to print the value of 'a' outside the function?

NameError: name 'a' is not defined

A function can have many variables

What if we want to change the values of 'a' and 'b'?

Derivatives

You can evaluate derivatives and integrals symbolically using the SymPy library.

- Calculate the derivative of the logistic function by hand and using SymPy.
- Write the derivative as f'(x) = f(x)(1 f(x))

$$f(x) = \frac{1}{(1+e^{-x})} = \frac{e^x}{1+e^x} \longrightarrow \text{Logistic function}$$