МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО

ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

Дисциплина: Теория цифровых автоматов

по теме Диагностика неисправностей комбинационных схем с одним выходом

Выполнил: ст. группы ВТ-32

Воскобойников И. С.

Проверил: Рязанов Ю. Д.

Цель работы: научиться строить диагностические тесты и алгоритмы распознавания неисправностей комбинационных схем с одним выходом.

Задание

При выполнении лабораторной работы нужно решить следующую задачу.

Дано:

- комбинационная схема с одним выходом, построенная при выполнении лабораторной работы № 3;
- 2) множество одиночных неисправностей, состоящее из неисправностей «константа 0» и «константа 1» на каждом входе схемы.

Найти: диагностический тест для заданного множества неисправностей.

Построить: алгоритм распознавания неисправностей.

Для решения задачи нужно выполнить следующие задания.

- 1. Написать программу моделирования исправной схемы и построить таблицу истинности булевой функции, реализуемой исправной комбинационной схемой.
- 2. Для каждой неисправности написать программу моделирования схемы с этой неисправностью и построить таблицу истинности функции неисправности.
- 3. Определить, существуют ли в множестве неисправностей необнаружимые и неразличимые неисправности.
- 4. Составить матрицу функций неисправностей, содержащей попарно различные строки. Столбцы матрицы соответствуют наборам входных сигналов, а строки векторам-значений функций неисправности. Каждой строке матрицы поставить в соответствие множество подозреваемых неисправностей.
- 5. Составить диагностическую матрицу, заменив в матрице функций неисправностей каждую функцию неисправности соответствую-щей разностной функцией.
- 6. По диагностической матрице найти минимальный диагностический тест.
- 7. В матрице функций неисправностей (см. п. 4) оставить только столбцы, соответствующие наборам входных сигналов, принадлежащим диагностическому тесту.
- 8. По полученной в п. 7 матрице построить алгоритм распознавания неисправностей в виде диагностического дерева.
- 9. Используя программу моделирования комбинационной схемы с неисправностью и алгоритм распознавания неисправностей написать программу для проведения диагностического эксперимента.

Задание 1: таблица истинности исправной схемы и программа, моделирующая ее работу

```
bool FuncDNF(bool *x)
{
    bool z1 = x[2] && x[4],
            z2 = x[0] \&\& x[1],
             z3 = !x[1] \&\& x[3],
             z4 = !x[0] \&\& x[3],
             z5 = x[2] \&\& !x[4],
             z6 = !x[2] \&\& x[4],
             z7 = !x[0] \&\& !x[1],
             z8 = !x[2] \&\& !x[4],
             z9 = x[3] \&\& z2,
             z11 = x[0] && !x[1],
             z10 = !x[3] \&\& z11;
    bool u1 = z1 && z2,
            u2 = z1 \&\& z3,
             u3 = z4 \&\& z5,
             u4 = z4 \&\& z6
            u5 = z7 \&\& z8,
            u6 = z8 \&\& z9,
             u7 = z5 \&\& z10,
             u8 = z6 \&\& z10;
    bool y1 = u1 \mid \mid u2,
             y2 = u3 | | u4,
             y3 = u5 || u6,
             y4 = u7 | | u8,
             y5 = y1 | | y2,
             y6 = y3 | | y4;
    return y5|| y6;
}
```

x1	x2	x3	x4	x5	F	
0	0	0	0	0	1	
0	0	0	0	1	0	
0	0	0	1	0	1	
0	0	0	1	1	1	
0	0	1	0	0	0	
0	0	1	0	1	0	
0	0	1	1	0	1	
0	0	1	11	1	1	
0	1	0	0	0	0	
0	1	0	0	1	0	
0	1	0	1	0	0	
0	1	0	1	1	1	
0	1	1	0	0	0	
0	1	1	0	1	0	
0	11	11	11	0	1	
0	11	11	11	11	0	
1	0	0	0	0	0	
11	0	0	0	1	1	
11	0	0	11	0	0	
1	0	0	1	1	0	
1	0	1	0	0	1	
11	0	1	0	1	0	
1	0	11	11	0	0	
1	0	1	1	1	1	
1	1	0	0	0	0	
1	1	0	0	1	0	
11	1	0	11	0	1	
1	1	0	1	1	0	
1	1	1	0	0	0	
11	1	11	0	1	1	
1	1	1	1	0	0	
1	1	1	1	1	1	

Задание 2: для каждой неисправности написать программу моделирования схемы с этой неисправностью и построить таблицу истинности функции неисправности.


```
bool function(bool *x, int xn, bool flag)
{
    int tx;
    if (xn != 0)
    {
        tx = x[xn - 1];
        if (flag)
            x[xn - 1] = 1;
        else
            x[xn - 1] = 0;
}
bool z1 = x[2] && x[4],
        z2 = x[0] && x[1],
        z3 = !x[1] && x[3],
        z4 = !x[0] && x[3],
        z5 = x[2] && x[4],
        z6 = !x[2] && x[4],
        z7 = !x[0] && !x[1],
```

```
z8 = !x[2] \&\& !x[4],
             z9 = x[3] \&\& z2,
             z11 = x[0] \&\& !x[1],
             z10 = !x[3] \&\& z11;
    bool u1 = z1 && z2,
             u2 = z1 \&\& z3,
             u3 = z4 \&\& z5,
             u4 = z4 \&\& z6,
             u5 = z7 \&\& z8,
             u6 = z8 \&\& z9,
             u7 = z5 \&\& z10,
             u8 = z6 \&\& z10;
    bool y1 = u1 | | u2,
             y2 = u3 | | u4,
             y3 = u5 | | u6,
             y4 = u7 | | u8,
             y5 = y1 | | y2,
             y6 = y3 | | y4;
    if (xn != 0)
        x[xn - 1] = tx;
    return y5 || y6;
}
void output(int m, int n, bool **table, bool *fres, bool **f)
    for (int i = 0; i < m; i++)
         cout << "x" << i + 1 << " ";
    cout << "f\t";</pre>
    for (int i = 0; i < 10; i++)
        cout << "f" << i + 1 << "\t";
    cout << "\n";
    for (int i = 0; i < n; i++)
         for (int j = 0; j < m; j++)
             cout << table[i][j] << " ";</pre>
         cout << fres[i] << "\t";
         cout << function(table[i], 1, false) << "\t";</pre>
         \verb|cout| << function(table[i], 1, true)| << " \t";
         cout << function(table[i], 2, false) << "\t";</pre>
         cout << function(table[i], 2, true) << "\t";</pre>
         cout << function(table[i], 3, false) << "\t";</pre>
         cout << function(table[i], 3, true) << "\t";</pre>
         cout << function(table[i], 4, false) << "\t";</pre>
         cout << function(table[i], 4, true) << "\t";</pre>
        cout << function(table[i], 5, false) << "\t";</pre>
        cout << function(table[i], 5, true) << "\t";</pre>
        cout << "\n";</pre>
    cout << check test(2, true);</pre>
    cout << "\n";
}
```

x1	x2	x 3	х4	x5	f	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
0	0	0	0	0	1	1	0	1	0	1	0	1	1	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0
0	0	0	1	0	1	1	0	1	0	1	1	1	1	1	1
0	0	0	1	1	1	1	0	1	1	1	1	0	1	1	1
0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1
0	0	1	1	1	1	1	1	1	0	1	1	0	1	1	1
0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1
0	1	0	1	1	1	1	0	1	1	1	0	0	1	0	1
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
0	1	1	1	0	1	1	0	1	1	0	1	0	1	1	0
0	1	1	1	1	0	0	1	1	0	1	0	0	0	1	0
1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1
1	0	0	0	1	1	0	1	1	0	1	0	1	0	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0	0	1	1	0	1	0
1	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	1	0	1	0	1
1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0
1	1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
1	1	0	1	1	0	1	0	0	0	0	1	0	0	1	0
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1
1	1	1	0	1	1	0	1	0	1	0	1	1	1	0	1
1	1	1	1	0	0	1	0	0	0	1	0	0	0	0	1
1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1

Задание 3: Определить, существуют ли в множестве неисправностей необнаружимые и неразличимые неисправности.

В данной схеме необнаружимых неисправностей нет, так как ни одна из функций неисправностей, не совпадает с исходной функцией.

Неразличимых неисправностей также нет, так как ни одна функция неисправности не совпадает с другой функцией неисправности.

Задание 4: Составить матрицу функций неисправностей, содержащей попарно различные строки. Столбцы матрицы соответствуют наборам входных сигналов, а строки — векторам-значений функций неисправности. Каждой строке матрицы поставить в соответствие множество подозреваемых неисправностей.

x1	x2	x 3	x4	x5	f	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
0	0	0	0	0	1	1	0	1	0	1	0	1	1	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0
0	0	0	1	0	1	1	0	1	0	1	1	1	1	1	1
0	0	0	1	1	1	1	0	1	1	1	1	0	1	1	1
0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1
0	0	1	1	1	1	1	1	1	0	1	1	0	1	1	1
0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1
0	1	0	1	1	1	1	0	1	1	1	0	0	1	0	1
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
0	1	1	1	0	1	1	0	1	1	0	1	0	1	1	0
0	1	1	1	1	0	0	1	1	0	1	0	0	0	1	0
1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1
1	0	0	0	1	1	0	1	1	0	1	0	1	0	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0	0	1	1	0	1	0
1	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	1	0	1	0	1
1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0
1	1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
1	1	0	1	1	0	1	0	0	0	0	1	0	0	1	0
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1
1	1	1	0	1	1	0	1	0	1	0	1	1	1	0	1
1	1	1	1	0	0	1	0	0	0	1	0	0	0	0	1
1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1

Задание 5: Составить диагностическую матрицу, заменив в матрице функций неисправностей каждую функцию неисправности соответствующей разностной функцией.

	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
x0	0	1	0	1	0	1	0	0	0	1
x1	0	1	0	0	0	0	0	1	1	0
x2	0	1	0	1	0	0	0	0	0	0
x3	0	1	0	0	0	0	1	0	0	0
x4	0	1	0	0	1	0	0	1	0	0
x5	0	0	0	0	0	0	0	1	0	0
x6	0	1	0	0	0	0	1	0	0	0
x7	0	0	0	1	0	0	1	0	0	0
x8	0	0	1	0	0	0	0	0	0	0
x9	0	0	0	0	0	0	0	1	0	0
x10	0	1	1	0	0	1	0	0	0	1
x11	0	1	0	0	0	1	1	0	1	0
x12	0	0	0	0	0	0	0	1	0	0
x13	0	1	0	0	0	0	0	0	0	0
x14	0	1	0	0	1	0	1	0	0	1
x15	0	1	1	0	1	0	0	0	1	0
x16	1	0	0	0	0	1	0	0	0	1
x17	1	0	0	1	0	1	0	1	1	0
x18	1	0	0	1	0	0	0	0	0	0
x19	1	0	0	0	0	1	1	0	0	0
x20	1	0	0	1	1	0	0	1	0	1
x21	0	0	0	1	1	0	0	1	1	0
x22	1	0	0	0	0	0	1	0	0	1
x23	0	0	0	0	1	0	1	0	1	0
x24	0	0	0	0	0	0	0	1	0	0
x25	0	0	1	0	0	1	0	0	0	0
x26	1	0	1	0	0	1	1	0	0	1
x27	1	0	0	0	0	1	0	0	1	0
x28	0	0	1	0	0	0	0	0	0	1
x29	1	0	1	0	1	0	0	0	1	0
x30	1	0	0	0	1	0	0	0	0	1
x31	1	0	0	0	1	0	0	0	1	0

Задание 6: Составить диагностическую матрицу, заменив в матрице функций неисправностей каждую функцию неисправности соответствую-щей разностной функцией.

Проверяющий тест: { x^{14} , x^{15} , x^{17} }, { x^{11} , x^{15} , x^{20} }, { x^0 , x^{21} , x^{17} } Минимальный диагностический тест: { x^0 , x^1 , x^2 , x^{14} , x^{15} , x^{17} }

Диагностический тест

Номер				Pa	азностнь	іе функц	ии			
набора	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
\mathbf{X}^{0}	0	1	0	1	0	1	0	0	0	1
\mathbf{x}^1	0	1	0	0	0	0	0	1	1	0
\mathbf{X}^2	0	1	0	1	0	0	0	0	0	0
X^{14}	0	1	0	0	1	0	1	0	0	1
X^{15}	0	1	1	0	1	0	0	0	1	0
X^{17}	1	0	0	1	0	1	0	1	1	0

Задание 7: В матрице функций неисправностей (см. п. 4) оставить только столбцы, соответствующие наборам входных сигналов, принадлежащим диагностическому тесту.

Номер	3 _F	начен	ие си	гнал	ОВ		Разностные функции									
набора	X1	X2	X3	X4	X5	F	f1	f2	f3	f4	f5	f6	f7	f8	f9	F10
X^0	0	0	0	0	0	1	1	0	1	0	1	0	1	1	1	0
X^1	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0
X^2	0	0	0	1	0	1	1	0	1	0	1	1	1	1	1	1
X^{14}	0	1	1	1	0	1	1	0	1	1	0	1	0	1	1	0
X^{15}	0	1	1	1	1	0	0	1	1	0	1	0	0	0	1	0
X^{17}	1	0	0	0	0	1	0	1	1	0	1	0	1	0	0	1

Задание 8: По полученной в п. 7 матрице построить алгоритм распознавания неисправностей в виде диагностического дерева.

9. Используя программу моделирования комбинационной схемы с неисправностью и алгоритм распознавания неисправностей написать программу для проведения диагностического эксперимента.

```
string check test(int xn, bool flag) {
    bool test[6][5] = \{\{0, 0, 0, 0, 0\},
                        \{0, 0, 0, 0, 1\},\
                        \{0, 0, 0, 1, 0\},\
                        \{0, 1, 1, 1, 0\},\
                        \{0, 1, 1, 1, 1\},\
                        {1, 0, 0, 0, 0}};
    if (function(test[0], xn, flag)) {
        if (function(test[1], xn, flag)) {
            if (function(test[4], xn, flag)) {
                return "error f9 (x5 = 0)";
            } else {
                return "error f8 (x4 = 1)";
            }
        } else {
            if (function(test[3], xn, flag)) {
                if (function(test[5], xn, flag)) {
                     if (function(test[4], xn, flag)) {
                         return "error f3 (x2 = 0)";
                     } else {
                         return "error F";
                     }
                } else {
                     return "error f1 (x1 = 0)";
                }
            } else {
                if (function(test[4], xn, flag)) {
                     return "error f5 (x3 = 0)";
                } else {
                    return "error f7 (x4 = 0)";
            }
        }
    } else {
        if (function(test[3], xn, flag)) {
            if (function(test[2], xn, flag)) {
                return "error f6 (x3 = 1)";
            } else {
                return "error f4 (x2 = 1)";
            }
        } else {
            if (function(test[1], xn, flag)) {
                return "error f2 (x1 = 1)";
            } else {
                return "error f10 (x5 = 1)";
            }
        }
   }
}
```

x1	x2	х3	х4	x5	f	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10
0	0	0	0	0	1	1	0	1	0	1	0	1	1	1	0
0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0
0	0	0	1	0	1	1	0	1	0	1	1	1	1	1	1
0	0	0	1	1	1	1	0	1	1	1	1	0	1	1	1
0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0
0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	1	1	0	1	1	1	1	0	1	1	1
0	0	1	1	1	1	1	1	1	0	1	1	0	1	1	1
0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	1
0	1	0	1	1	1	1	0	1	1	1	0	0	1	0	1
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
0	1	1	1	0	1	1	0	1	1	0	1	0	1	1	0
0	1	1	1	1	0	0	1	1	0	1	0	0	0	1	0
1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1
1	0	0	0	1	1	0	1	1	0	1	0	1	0	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0
1	0	0	1	1	0	1	0	0	0	0	1	1	0	0	0
1	0	1	0	0	1	0	1	1	0	0	1	1	0	1	0
1	0	1	0	1	0	0	0	0	1	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0	0	0	0	1	0	0	1
1	0	1	1	1	1	1	1	1	1	0	1	0	1	0	1
1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0
1	1	0	1	0	1	0	1	0	1	1	0	0	1	1	0
1	1	0	1	1	0	1	0	0	0	0	1	0	0	1	0
1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	1
1	1	1	0	1	1	0	1	0	1	0	1	1	1	0	1
1	1	1	1	0	0	1	0	0	0	1	0	0	0	0	1
1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	1
erro	or fe	6 (x	3 = 1	L)											