CE 412 A: Water Supply & Wastewater Disposal Systems

Tutorial – 2022-23 II ● Part II: Wastewater Management

TUTORIAL 5 ● Tuesday, April 11, 2023

Exercise 1: Design Secondary Settling Tank(s) as a part of Secondary Treatment operations adopting an Activated Sludge Process for a locality with following information for which preceding unit were designed in Tutorials 3 & 4.

Water Supply	=	250 lpcd			
Population density	=	350 person per hectare			
Area served	=	690 hectares			
Wastewater reaching sewers	=	80% of W/S			
Peak Factor	=	3.0			
Infiltration Rate	=	7391 l per day per hectare			
Design Flow Reaching Sewage Treatment Plant (STP)	=	50 MLD			
Some Relevant Parameters/Data/Information					
Concentration of Fixed Suspended Solids	=	50 mg/L			
Mixed Liquor Suspended Solid Concentration, X	=	2,500 mg/L			
Suspended Solids Concentration in Settled Sludge from SST, X _r	=	8,500 mg/L			
Maximum Specific Substrate Utilization Rate, qmax	=	4 /d			
Ks	=	25 mg/L			
True Yield Coefficient, YT	=	0.5			
Endogenous Respiration Coefficient, kd	=	0.05 /d			
Outlet Weir Loading Rate	≤	125 m3/m/d			
HRT	≤	3 h			

Interfacial Velocities of Sludge Solids

Solids (C+X) mg/L	u, m/hr
2000	3.60
2500	1.86
3000	1.09
3500	0.69
4500	0.33
5000	0.24
6000	0.14
6500	0.11
8000	0.06
10000	0.03
12000	0.02

Interfacial Settling Velocity

$$u = g c^{-h}; g = 2 * 10^{10}; h = 2.9521$$

u = Interfacial settling velocity (in m/hr); C = Mixed Liquor Suspended Solids Concentration (in mg/L) = X + C $_{o}$ * (θ_{c}/θ); X = Biomass Concentration in Aeration Tank (AT), mg/L; C = Fixed Suspended Solids Concentration in inlet to AT, mg/L

Hint: Step1 – Compute q for given values of S_o, S, q_{max}, K_s; Step 2 – Compute θ: Step 3 – Compute θ_c; Step 4 – Compute C; Step 5 - Compute SOR for clarification using $u = g c^{-h}$; Step 6 – Compute R given X, X_r, θ & θ_c; Step 7 – Compute SOR for Limiting Solids Flux; Step 8 – Compute surface area of secondary settling tank using SOR from Steps 5 and 7; Choose whichever is larger; Step 9 – Compute Effluent Weir Length and Check for Weir Loading.

SOR for Limiting Solids Flux is given by following expression:

$$\frac{Q}{A} = \frac{g(h-1)(\frac{h}{h-1})^h (R)^{h-1}}{(C_0)^h (1+R)^h}$$

Exercise 2: Estimate the minimum concentration of nitrogen and phosphorous in the sewage that must be present for the biological activity to sustain in ASP as designed.

Exercise 3: Design a high-rate trickling filter followed by secondary clarifier with the information provided as follows.

Trickling Filter		
Design Flow Reaching Sewage Treatment Plant (STP)	=	50 MLD
Design Value of BOD	=	250 mg/l
Effluent Total BOD	=	30 mg/L
Number of Filters	=	4
Depth of packing media	=	3.0 m
Recirculation Ratio	=	2
Hydraulic constant for Packing media (n)	=	0.5
Rate constant at T at 20 °C (k ₂₀)	=	1.36 / d
Depth of Secondary Clarifier	=	4.0 m
Surface Overflow Rate of SC	=	$27 \text{ m}^3/\text{m}^2/\text{d}$

Filter Type	Filter Medium	OLR, kg/m³/d	HLR, $m^3/m^2/d$	% Removal	Depth	R
Low Rate	Rock, Slag	0.1 - 0.3	1 - 4	80 - 85	1.8 - 3	0
Intermediate Rate	Rock, Slag	0.3 - 1.2	10 - 30	65 - 85	1 - 3	0.5 - 3
High Rate	Rock	1.2 - 3	40 - 90	65 - 85	2 - 5	1 - 4
Super High Rate	Plastic	3 - 4	60 - 120	65 - 80	4 - 12	1 - 4
Roughing	Plastic	4 - 6	60 - 180	40 - 65	4 - 12	1 - 4