	talls below	before enterir	g your candid	late informati	ion
Candidate surname			Other names		
Pearson Edexcel nternational Advanced Level	Centre	Number		andidate N	umber
Monday 8 Ju	ne 2	2020			
Morning (Time: 1 hour 30 minut	tes)	Paper Ref	erence W I	M03/0	1
Mathematics					
International Advance Further Pure Mathema			Advand	ed Leve	el

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1.	(a)	Use the definition of $\sinh x$ in terms of exponentials to show that
		$\sinh 3x \equiv 4\sinh^3 x + 3\sinh x$
		(2)
	(b)	Hence determine the exact coordinates of the points of intersection of the curve with equation $y = \sinh 3x$ and the curve with equation $y = 19 \sinh x$, giving your answers as simplified logarithms where necessary. (5)

	blank
Question 1 continued	
	Q1
(Total 7 marks)	

2. Determine

(i)
$$\int \frac{1}{3x^2 + 12x + 24} \, \mathrm{d}x$$

(4)

(ii)
$$\int \frac{1}{\sqrt{27 - 6x - x^2}} \, \mathrm{d}x$$

(4)

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

Question 2 continued	

Question 2 continued		blank
		Q2
	(Total 8 marks)	

3.

$$\mathbf{M} = \begin{pmatrix} 3 & -4 & k \\ 1 & -2 & k \\ 1 & -5 & 5 \end{pmatrix} \quad \text{where } k \text{ is a constant}$$

Given that 3 is an eigenvalue of M,

(a) find the value of k.

(3)

(b) Hence find the other two eigenvalues of M.

(3)

(c) Find a normalised eigenvector corresponding to the eigenvalue 3

(3)

	Leave
Question 3 continued	

uestion 3 continued	I		

Question 3 continued	blank
	_
	_
	_
	_
	Q3
(Total 9 mark	ks)
(2011)	

 $I_n = \int x^n \cos x \, \mathrm{d}x$

(a) Show that, for $n \ge 2$

$$I_n = x^n \sin x + nx^{n-1} \cos x - n(n-1)I_{n-2}$$
(4)

(b) Hence find the functions f(x) and g(x) such that

$$\int x^4 \cos x \, dx = f(x) \sin x + g(x) \cos x + c$$

where c is an arbitrary constant.

(5)

	Leave blank
Question 4 continued	

uestion 4 continu	ued		

Question 4 continued	blank
	Q4
(Total	9 marks)

The hyperbola *H* has equation $\frac{x^2}{25} - \frac{y^2}{4} = 1$

The line *l* has equation y = mx + c, where *m* and *c* are constants.

Given that l is a tangent to H,

(a) show that $25m^2 = 4 + c^2$

(4)

(b) Hence find the equations of the tangents to H that pass through the point (1, 2). **(5)**

(c) Find the coordinates of the point of contact each of these tangents makes with H.

	Leave
	blank
Question 5 continued	

Question 5 continued		

Question 5 continued		Leave blank
		Q5
	(Total 12 marks)	
	(10tai 12 illai K5)	

6.

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & a \end{pmatrix} \quad a \neq 1$$

(a) Find A^{-1} in terms of a.

(4)

$$\mathbf{B} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}$$

The straight line l_1 is mapped onto the straight line l_2 by the transformation represented by the matrix **B**.

The equation of l_2 is

$$(\mathbf{r} - (12\mathbf{i} + 4\mathbf{j} + 6\mathbf{k})) \times (-6\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = \mathbf{0}$$

(b) Find a vector equation for the line l_1

(4)

20

uestion 6 continued	
destion o continued	
	· ·

Question 6 continued		

Question 6 continued	blank
	Q6
(Total 8 marks)	
(Total o marks)	$\overline{}$

(7)

7. The curve C has parametric equations

$$x = \cosh t + t$$
, $y = \cosh t - t$ $0 \le t \le \ln 3$

(a) Show that

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2 = 2\cosh^2 t \tag{3}$$

The curve C is rotated through 2π radians about the x-axis. The area of the curved surface generated is given by S.

(b) Show that

$$S = 2\pi\sqrt{2} \int_0^{\ln 3} \left(\cosh^2 t - t \cosh t\right) dt$$
(2)

(c) Hence find the value of S, giving your answer in the form

$$\frac{\pi\sqrt{2}}{9}(a+b\ln 3)$$

where a and b are constants to be determined.

24

tion 7 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Question 7 continued

Question 7 continued		blank
		Q7
		7
	(Total 12 marks)	

8. The plane Π_1 has equation

$$x - 5y + 3z = 11$$

The plane Π_2 has equation

$$3x - 2y + 2z = 7$$

The planes $\Pi_{\scriptscriptstyle 1}$ and $\Pi_{\scriptscriptstyle 2}$ intersect in the line l.

(a) Find a vector equation for l, giving your answer in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$ where \mathbf{a} and \mathbf{b} are constant vectors and λ is a scalar parameter.

(5)

(5)

The point P(2, 0, 3) lies on Π_1

The line m, which passes through P, is parallel to l.

The point Q(3, 2, 1) lies on Π ,

The line n, which passes through Q, is also parallel to l.

(b) Find, in exact simplified form, the shortest distance between m and n.

	Leave
	blank
Question 8 continued	

Question 8 continued		

]
nection 9 continued	
uestion 8 continued	

(XXX)	$\times \times >$
$\times \times \times \times$	\sim
$\times \times \times \times$	$\sim\sim$
$(\times \times \times)$	\times
	XX.
	$\sim\sim$
	₩.
$\times \times \times \times$	~~
$\sim\sim$	\sim
	KXX -
0	
	\times
	KOO -
	\sim
$\times\!\!\times\!\!\times$	
	\bowtie
	~
	\otimes
XX	$\times \times$
VXX.	\sim
	\times
$\sqrt{\sqrt{\sqrt{2}}}$	$\sim\sim$
$\infty \infty$	
WRITE	i××.
	~~~
	$\sim$
	$\sim$
	K ( )
	XX.
	$\sim$
	KO .
	×
	KOO -
	$\Diamond \Diamond$
	$\infty$
	$\sim$
$\times \times \times \times \times$	$\times \times$
X. K. J.	
$\wedge \wedge \cap A$	88
$\propto \propto \propto$	~~
	:XX
XXX	KX2
$\wedge \wedge = \wedge$	
$\times$	$\sim\sim$
CYXX	KXO -
XXX	KX)
X 11	88
	$\sim$
$\times$	i××.
	$\Diamond \Diamond$
XXXX	XX
	$\sim$
$\sim\sim$	$\sim$
$\sim\sim\sim$	$\times\!\!\times$
$\propto \propto \propto$	$\sim$
$\times \times \times \times$	$\times \times$
(XXX)	××>
$\wedge \times \times \times$	/\X
$\sim\sim$	$\sim$
$\sim\sim\sim$	⊹⇔.
$\times \times \times \times$	
	~~
$\times\!\times\!\times\!\times$	$\sim$
$\ggg$	
$\ggg$	$\sim$
	$\otimes$
	$\sim$
	$\otimes$

		(TP 4 140 11)	
	TOTAL FOR	(Total 10 marks) PAPER: 75 MARKS	