Ch. 5: Optimal sample size allocation for cluster sampling

Math 255, St. Clair

1 / 12

Determining sample sizes for a cluster sample

Problem: You have a quantitative variable y and you want to estimate its population mean/total.

Question 1: How many SSU (elements) to sample?

Question 2: How many PSU (clusters) to sample?

Optional: How to do this in an optimal way to (a) achieve a desired margin of error or (b) not exceed by fixed survey budget?

An optimal solution is "easily" computable assuming equal cluster sizes!
M's are the equal and m's are equal

Optimal Allocation

This allocation is **optimal** because it both

- minimizes costs for a fixed SE/margin of error, or
- minimizes SE/margin of error for a fixed survey cost.

Mathematical Problem:

• Let c_1 be the cost per PSU (cluster) and c_2 be the cost per SSU (element). With c_0 fixed costs, the total survey costs are

$$C(m,n) = c_0 + c_1 n + c_2(mn)$$

• Variance is also a function of m and n and ANOVA MS.

3 / 12

Optimal Allocation: 1. SSU sample size

Solution: Use Lagrange Multiplier method to minimize one function (C or V) subject to the contraints of the other function.

• The optimal SSU (element) sample size is

$$m_{opt} = \sqrt{rac{c_1 M (N-1) (1-R_a^2)}{c_2 (NM-1) R_a^2}} pprox \sqrt{rac{c_1 (1-R_a^2)}{c_2 R_a^2}} ~~ ext{when}~ N >> M$$

where $R_a^2 = 1 - \frac{MSW}{S^2}$ is (roughly) the proportion of variability in y explained by the clusters

- sample lots of SSU when
 - PSU are more expensive, $c_1 > c_2$
 - \circ clusters are heterogeneous, $R_a^2 < 0.5$

Optimal Allocation: 2. PSU sample size:

(a) achieving a margin of error

Problem: How many PSU to sample to estimate $\bar{y}_{\mathcal{U}}$ with $(1 - \alpha)100\%$ confidence and a margin of error $e = z_{\alpha/2} SE(\hat{\bar{y}}_{unb})$?

Solution: Get optimal SSE size m_{opt} , if you ignore the FPC then

$$n_{opt} = rac{
u z_{lpha/2}^2}{e^2} ~~ ext{where}~~
u = rac{MSB}{M} + \left(1 - rac{m_{opt}}{M}
ight) rac{MSW}{m_{opt}}$$

• If *N* is smaller, don't ignore FPC and use:

$$n_{opt} = rac{
u z_{lpha/2}^2}{e^2 + rac{z^2 MSB}{NM}}$$

ullet To estimate t with e_t margin of error, just set $e=e_t/(NM)$.

5 / 12

Optimal Allocation: 2. PSU sample size:

(b) Do not go over budget

Problem: How many PSU to sample if your budget is C dollars (or man hours, etc...)?

Solution: Get optimal SSE size m_{opt} , then

$$n_{opt} = rac{C-c_0}{c_1+c_2m_{opt}}$$

Optimal Allocation

- The previous solutions for n are optimal when m_{opt} is used
 - \circ but you can use any m to obtain a given ME or cost, but it will not minimize the value of the other function
- You need a guess at MSB and MSW
 - \circ guess at variability of cluster totals: $MSB = S_t^2/M$
 - \circ guess at variability of within clusters: $MSW = \sum_{i}^{N} S_{i}^{2}/N$

7 / 12

Example: Dorms

- New GPA study: want to estimate average dorm GPA with a 95% ME of 0.2
 - $\circ N = 100$ rooms with M = 4 students per room
- Previous study: One-stage example 1(b)
 - $egin{aligned} \circ & msw = 0.18504, msb = 0.56392 ext{ and } \hat{S}^2 = 0.279 \ \circ & \hat{R}_a^2 = 1 0.18504/0.279 pprox 0.337 \end{aligned}$
- Costs? $c_1 = 2$ minutes to travel between rooms and $c_2 = 1$ minute to talk to each student.
- We want to minimize cost and get a ME of e=0.2

Example: Dorms

• SSU sample size:

$$m_{opt} = \sqrt{rac{2(4)(100-1)(1-0.337)}{1(400-1)(0.337)}} pprox 1.98 pprox 2$$

• Sample 2 students per room

```
> (m_opt <- sqrt(2*4*(100-1)*(1-0.337)/(1*(400-1)*0.337)) )
[1] 1.976141
```

9 / 12

Example: Dorms

• PSU sample size:

$$u = rac{0.56392}{4} + \left(1 - rac{2}{4}
ight)rac{0.18504}{4} pprox 0.18724$$

• Using FPC:

$$n_{opt} = rac{(0.18724)1.96^2}{0.2^2 + rac{1.96^0.56392}{400}} pprox 15.8 pprox 16$$

• Optimal solution: Sample 16 rooms, 2 students per room.

```
> (nu <- 0.56392/4 + (1-2/4)*0.18504/2 )
[1] 0.18724
> (n_opt <- 1.96^2*nu/(.2^2 + 1.96^2*0.56392/400) )
[1] 15.8381</pre>
```

Example: Dorms - check answer

- We used z = 1.96 for 95% confidence, but we should be using a t-distribution with n-1 degrees of freedom for CI when n is "small"
- Recheck solution with our larger multiplier, suggests a larger n

```
> qt(.975, df= 16-1)
[1] 2.13145
> (n_opt <- qt(.975,15)^2*nu/(.2^2 + qt(.975,15)^2*0.56392/400) )
[1] 18.33097</pre>
```

- Using a more accurate multiplier says we need n above 18!
- Try using n=19

```
> qt(.975, df= 19-1)
[1] 2.100922
> (n_opt <- qt(.975,18)^2*nu/(.2^2 + qt(.975,18)^2*0.56392/400) )
[1] 17.87983</pre>
```

• Final answer: n = 19 will give a ME of at most 0.2

11 / 12

Optimal Allocation: Unequal cluster sizes

- What if your clusters are different sizes?!
 - \circ if clusters are **not too variable**, the (almost) optimal solution could use \bar{M} to get m_{opt}
- If clusters sizes are variable, don't use the optimal solution for equal sizes!