

Norwegian University of Science and Technology Deptartment of Mathematical Sciences TMA4190 Introduction to Topology Spring 2018

Exercise set 6

1 As a first test of our understanding of transversality, answer the following questions:

- a) Let $z = (a, b) \in S^1 \subseteq \mathbb{R}^2$ and let $N_z = \{(a, y) : y \in \mathbb{R}\}$ be the vertical line intersecting the circle at z. When is $S^1 \subseteq \mathbb{R}^2$ transverse to $N_z \subseteq \mathbb{R}^2$?
- b) Which of the following linear spaces intersect transversally?
 - The plane spanned by $\{(1,0,0),(2,1,1)\}$ and the y-axis in \mathbb{R}^3 .
 - $\mathbb{R}^k \times \{0\}$ and $\{0\} \times \mathbb{R}^l$ in \mathbb{R}^n . (The answer depends on k, l, and n.)
 - $V \times \{0\}$ and the diagonal in $V \times V$, for a real vector space V.
 - The spaces of symmetric $(A^t = A)$ and skew symmetric $(A^t = -A)$ matrices in M(n).
- c) Do SL(n) and O(n) meet transversally in M(n)?
- **a)** Let $f: X \to Y$ be a map transversal to a submanifold Z in Y. Then we know that $W = f^{-1}(Z)$ is a submanifold of X. Prove that $T_x(W)$ is the preimage of $T_{f(x)}(Z)$ under the linear map $df_x: T_x(X) \to T_{f(x)}(Y)$.
 - b) Let X and Z be transversal submanifolds of Y. Deduce from the previous point that, for every $y \in X \cap Z$,

$$T_y(X \cap Z) = T_y(X) \cap T_y(Z).$$

- 3 Let V be a vector space, and let Δ be the diagonal of $V \times V$. For a linear map $A \colon V \to V$, consider the graph $\Gamma(A) = \{(v, Av) : v \in V\}$. Show that $\Gamma(A) \ \ \ \ \ \Delta$ if and only if +1 is not an eigenvalue of A.
- Let $f: X \to X$ be a map, and let x be a fixed point of f, i.e. f(x) = x. If +1 is not an eigenvalue of $df_x: T_x(X) \to T_x(X)$, then x is called a *Lefschetz fixed point* of f. The map f is called a *Lefschetz map* if all its fixed points are Lefschetz. Prove that if X is compact and f is Lefschetz, then f has only finitely many fixed points.

(Hint: Show that the intersection of the graph of f and the diagonal of X is a 0-dimensional submanifold of $X \times X$.

 $\boxed{\mathbf{5}}$ Consider the following intersections in $\mathbb{C}^5 \setminus \{0\}$:

$$S_k^7 = \{z_1^2 + z_2^2 + z_3^2 + z_4^3 + z_5^{6k-1} = 0\} \cap \{|z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 + |z_5|^2 = 1\}.$$

Show S_k^7 is a 7-dimensional submanifold by showing that the intersection is transversal in $\mathbb{C}^5\setminus\{0\}$.

(Hint: At some point you may want to show that, at a point $z=(z_1,\ldots,z_5)$, the vector $w:=(\frac{m}{2}z_1,\frac{m}{2}z_2,\frac{m}{2}z_3,\frac{m}{3}z_4,\frac{m}{6k-1}z_5)$, with $m:=2\cdot 3\cdot (6k-1)$, lies in one of the tangent spaces but not in the other.)