Introduction to Machine Learning

CART: In a nutshell

Learning goals

- Understand basic structure of CART models
- Understand basic concepts used to fit CART models

LEARNING AND PREDICTION WITH CARTS

Output Input: Labeled data Sepal Width Sepal Length **Species** 3,5 5,1 Setosa Tree Tree 3.0 5.9 Virginica Learner Model 2.5 6.3 Virginica

Versicolor

Training

Input: Unlabeled data

6.2

2.2

 Sepal Width
 Sepal Length
 Species

 3,0
 7,7
 ?

 3,1
 6,9
 ?

 2,3
 6,3
 ?

 3,0
 5,6
 ?

Prediction

Level of Happiness

Setosa

Versicolor

Virginica

Versicolor

Tree

Model

WHAT IS A TREE?

Basic idea:

- Divide feature space into sub-regions.
- For each region, learn best constant prediction from training data.

Classification And Regression Trees are a class of models that can:

- model non-linear feature effects
- facilitate interactions of features
- be inherently interpreted

WHAT IS A TREE?

A decision tree is a set of hierarchical binary partitions, e.g., your evening planning decision (target) could be based on a decision tree:

WHAT IS A TREE?

Instead of life choices, we can predict the ${\rm Species}$ of flowers described in the ${\rm iris}$ data set using features ${\rm Sepal.Width}$ and ${\rm Sepal.Length}$.

CART AS A PREDICTOR

Instead of the visual description, we can also describe trees through their division of the feature space \mathcal{X} into **rectangular regions**, Q_m :

$$f(\mathbf{x}) = \sum_{m=1}^{M} c_m \mathbb{I}(\mathbf{x} \in Q_m),$$

TASKS FOR CART

- CARTs can have categorical and numerical targets.
- In both cases, the leafs, i.e., the ultimate nodes, define the predictions.

Categorical target: Numerical target:

HOW TO FIT A CART

- A recursive greedy search in the feature space optimizes CARTs
- In each iteration, the best split is selected

Iteration 1:

HOW TO FIT A CART

Iteration 2:

× ×

Iteration 3:

HOW TO FIT A CART

- This procedure can run until each observation has its own leaf.
- Then, the tree will not generalize well and overfit:

⇒ In practice, trees are often used as base learners for ensemble learners like Random Forests.

