Chapitre 34

Espaces préhilbertiens réels

$\bf 34$	l Espaces préhilbertiens réels	1
	34.4 Produit scalaire canonique sur \mathbb{R}^n	2
	34.5 Exemple	2

34.4 Produit scalaire canonique sur \mathbb{R}^n

Théorème 34.4

L'application

$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}; (X, Y) \mapsto {}^{\mathrm{t}}XY = \sum_{k=1}^n x_k y_k$$

est un produit scalaire sur \mathbb{R}^n , appelé produit scalaire canonique.

Pour $X, Y \in \mathbb{R}^n$:

$$-tXY \in \mathbb{R} \text{ donc } ^tYX = ^t(^tXY) = ^tXY$$

— bilinéarité : RAF

-
$${}^tXX = \sum_{k=1}^n x_k^2 \ge 0$$
 et $\sum_{k=1}^n x_k^2 = 0 \Leftrightarrow \forall k \in [1, n], x_k = 0 \Leftrightarrow x = 0$

34.5 Exemple

Exemple

Montrer que

$$(X,Y)\mapsto {}^tX\begin{pmatrix}2&1\\1&2\end{pmatrix}Y$$

est un exemple de produit scalaire sur \mathbb{R}^2 distinct du produit scalaire usuel.

— bilinéarité : RAF

— Pour
$$X, Y \in \mathbb{R}^2$$
, ${}^tX \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} Y \in \mathbb{R}$, donc:

$${}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}Y = {}^{t}\begin{pmatrix} {}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}Y \end{pmatrix}$$
$$= {}^{t}Y^{t}\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X$$
$$= {}^{t}Y\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X$$

On a:

$${}^{t}X\begin{pmatrix} 2 & 1\\ 1 & 2 \end{pmatrix}X = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2x+y\\ x+2y \end{pmatrix}$$
$$= 2x^{2} + 2xy + 2y^{2}$$
$$= \underbrace{2(x^{2} + xy + y^{2})}_{\geq 0 \text{ car } x^{2} + xy + y^{2} \geq |xy|}$$

En particulier, si ${}^tX\begin{pmatrix}2&1\\1&2\end{pmatrix}X=0$ alors |xy|=0, puis x=y=0. La forme est définie positive.