Classification using the Hebb learning rule

1. Importing necessary libraries

import numpy as np

We begin by importing the numpy library required for the numerical operations involved in our analysis.

2. Defining the Hebbian network class

Next, we define a class implementing a neural network based on the Hebb learning rule.

- · It initialises the network with a weight matrix set to zero, where the size corresponds to the number of input features.
- The hebbian_learning method applies the Hebb learning rule by adjusting the weights according to the outer product of the input
 patterns and their corresponding target patterns, incrementally updating the weight matrix.
- The activate method computes the weighted sum of inputs and applies a threshold function to produce binary outputs. Here, it uses a bipolar representation, where the output is 1 for non-negative sums and -1 for negative sums.

```
class Hebbian_Network:
    def __init__(self, input_size):
        self.weights = np.zeros((input_size, input_size))

def hebbian_learning(self, inputs, targets):
    for input_pattern, target_pattern in zip(inputs, targets):
        self.weights += np.outer(input_pattern, target_pattern)

def activate(self, input_pattern):
    net_input = np.dot(self.weights, input_pattern)
    return np.where(net_input >= 0, 1, -1)
```

→ 3. Defining the training data

Now, we generate the training data for two letters (A and B) represented as 3x3 grids. Each pattern is flattened into a 9-dimensional array. Bipolar data is created by converting binary representations to bipolar values (1 and -1). The function returns both bipolar and binary inputs and their corresponding target patterns, which serve as identity mappings for training.

4. Training and testing the Hebbian network

Finally, we define the main execution block which:

- calls the generate_training_data function to create the training data for both bipolar and binary representations,
- initialises the Hebbian network with an input size of 9 (for the flattened 3x3 grid),
- trains the network using the bipolar training data and then tests it by activating the network with the training inputs, printing the results, and,
- resets the weights and trains the network again using the binary data, followed by testing and printing the outputs for the binary input
 patterns.

```
if __name__ == "__main__":
    (inputs_bipolar, targets_bipolar), (inputs_binary, targets_binary) = generate_training_data()
    hebbian_network = Hebbian_Network(input_size=9)
    hebbian_network.hebbian_learning(inputs_bipolar, targets_bipolar)

print("Testing with bipolar data:")
```

```
for input_pattern in inputs_bipolar:
   output = hebbian_network.activate(input_pattern)
   print(f'Input\ pattern: \{input\_pattern.reshape(3,3)\} \setminus nOutput: \{output.reshape(3,3)\} \setminus n')
 hebbian_network.weights = np.zeros((9,9))
 hebbian_network.hebbian_learning(inputs_binary, targets_binary)
   # Test the network with binary data
 print("Testing with Binary Data:")
 for input_pattern in inputs_binary:
     output = hebbian_network.activate(input_pattern)
     \rightarrow Testing with bipolar data:
    Input pattern: [[ 1 1 -3]
    [ 1 1 -3]
[ 1 1 1]]
    Output: [[ 1 1 -1]
    [ 1 1 -1]
[ 1 1 -1]]
    Input pattern: [[ 1 1 -3]
    [ 1 1 1]
[ 1 1 -3]]
    Output: [[ 1 1 -1]
    [ 1 1 -1]
     [ 1 1 -1]]
```

Testing with Binary Data: Input Pattern: [[1 1 -1]

Input Pattern: [[1 1 -1]

[1 1 -1] [1 1 1] [1 1 1]] Output: [[1 1 -1] [1 1 -1] [1 1 1]]

[1 1 1] [1 1 -1]] Output: [[1 1 -1] [1 1 1] [1 1 -1]]