Bayesian Approach to Machine Learning (2)

Rohit Budhiraja

Machine Learning for Wireless Communications (EE798L)

Jan. 29, 2024

Recap of last lecture and today's agenda

- Recap of last class
 - Started motivating Bayesian approach by taking a coin game example
 - Bayesian approach also allows us to incorporate our prior belief about the model
 - Bayesian approach, similar to regularization, can avoid complex models
- Today's agenda
 - Discuss Bayesian approach in detail
 - Reference: Chap 3 of FCML

Posterior distribution of r (recap)

• From Bayes' rule

$$p(r|y_N) = \frac{P(y_N|r) p(r)}{P(y_N)}$$

- First quantity is likelihood $P(y_N|r)$, and second quantity is prior distribution p(r)
- For coin toss example,

$$P(y_N|r) = {N \choose y_N} r^{y_N} (1-r)^{N-y_N}$$

$$p(r) = {\Gamma(\alpha+\beta) \over \Gamma(\alpha)\Gamma(\beta)} r^{\alpha-1} (1-r)^{\beta-1}$$

- Last quantity is $P(y_N)$, which is called marginal distribution of y_N
- Called so because it is computed by integrating r out of the joint density $p(y_N, r)$

$$P(y_N) = \int_{r=0}^{r=1} p(y_N, r) dr$$

- $P(y_N)$, acts as a normalising constant to ensure that $p(r|y_N)$ is a properly defined density
- Marginal likelihood, in all but a small minority of cases, it is very difficult to calculate

Conjugate priors

• Before we calculate posterior $p(r|y_N)$ for our coin toss example using Bayes' rule

$$p(r|y_N) = \frac{P(y_N|r)p(r)}{P(y_N)}$$

- We discuss about conjugate likelihood-prior pair
- Likelihood-prior pair is said to be conjugate
 - If they result in a posterior which is of the same form as the prior, and is mathematically convenient
 - ullet Enables us to compute posterior density analytically without worrying about computing $P\left(y_{N}\right)$
- Common conjugate pairs
 - Prior Likelihood
 - Gaussian Gaussian
 - Beta Binomial
 - Gamma Gaussian
 - Dirichlet Multinomial
- For binomial likelihood, we will obviously pick Beta prior

Posterior distribution (1)

• Returning to our example, we can omit $P(y_N)$. Posterior distribution

$$p(r|y_N) \propto P(y_N|r) p(r)$$

• Replacing the terms on the right hand side with a binomial and beta distribution gives

$$\rho(r|y_N) \propto \left[\left(\begin{array}{c} N \\ y_N \end{array} \right) r^{y_N} (1-r)^{N-y_N} \right] \times \left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} r^{\alpha-1} (1-r)^{\beta-1} \right]$$

- A prior and likelihood are conjugate, we know that p(r|yN) has to be a beta density
- \bullet Beta density, with parameters δ and γ has the following general form:

$$p(r) = Kr^{\delta-1}(1-r)^{\gamma-1},$$

where K is a constant

- If we can arrange all the terms, including r, on RHS of equation into that looks like $r^{\delta-1}(1-r)^{\gamma-1}$
 - We already know the marginal likelihood $P(y_N)$ (normalising constant)
 - Must be $\frac{\Gamma(\delta+\gamma)}{\Gamma(\delta)\Gamma(\gamma)}$ because we already know that posterior has beta density
- Since we know $P(y_N)$, we do not need to compute it

Posterior distribution (2)

• Rearranging above equation gives us

$$\rho(r|y_N) \propto \left[\binom{N}{y_N} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \right] \times \left[r^{y_N} r^{\alpha-1} (1-r)^{N-y_N} (1-r)^{\beta-1} \right] \\
\propto r^{y_N+\alpha-1} (1-r)^{N-y_N+\beta-1} \\
\propto r^{\delta-1} (1-r)^{\gamma-1}$$

where $\delta = y_N + \alpha$ and $\gamma = N - y_N + \beta$.

We now have

$$p(r|y_N) = \frac{\Gamma(\delta + \gamma)}{\Gamma(\delta)\Gamma(\gamma)} r^{\delta - 1} (1 - r)^{\gamma - 1}$$

$$= \frac{\Gamma(\alpha + \beta + N)}{\Gamma(\alpha + y_N)\Gamma(\beta + N - y_N)} r^{y_N + \alpha - 1} (1 - r)^{N - y_N + \beta - 1}$$

- Notice posterior parameters are computed by adding
 - number of heads (y_N) to first prior parameter (α) and number of tails $(N y_N)$ to second (β)
- ullet This allows us to gain some intuition about prior parameters lpha and eta
 - ullet Can be thought of as the number of heads and tails in lpha+eta previous hypothetical tosses

Posterior distribution (3)

- Fair coin $\alpha = \beta = 50$: equivalent to tossing a coin 100 times and obtaining 50 heads and 50 tails
- Biased scenario $\alpha = 5, \beta = 1$: equivalent to 6 tosses and obtaining 5 heads
- Analogy of α and β is not perfect as
 - ullet α and β don't have to be integers and can be less than 1 (0.3 heads doesn't make much sense)

Posterior evaluation for first prior (1)

• Investigate evolution of posterior distribution for beta prior with $\alpha=1,\beta=1$ (no prior knowledge)

- ullet We first compute mean and variance of R under the prior $\mathcal{B}\left(lpha,eta
 ight)$
 - Used for comparing different steps in posterior evolution
- Mean of beta-distributed r.v. is $\mathbf{E}_{p(r)}\{R\} = \frac{\alpha}{\alpha + \beta}$ (Tut. problem)
 - For $\alpha = \beta = 1$, $\mathbf{E}_{p(r)}\{R\} = \frac{1}{2}$
- Variance of a beta-distributed r.v. is $\mathbf{var}\{R\} = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ (Tut. problem)
 - For $\alpha=\beta=1$, $\operatorname{var}\{R\}=\frac{1}{12}$

Posterior evaluation for first prior (2)

Our posterior is

$$p(r|y_N) = \frac{\Gamma(\alpha + \beta + N)}{\Gamma(\alpha + y_N)\Gamma(\beta + N - y_N)} r^{y_N + \alpha - 1} (1 - r)^{N - y_N + \beta - 1}$$

$$= \mathcal{B}(\delta, \gamma), \text{ with parameters } \delta = \alpha + y_N \text{ and } \gamma = \beta + N - y_N$$

• Mean of R under posterior $p(r|y_N) = \mathcal{B}(\delta, \gamma)$

$$\mathbf{E}_{\rho(r|y_N)}\{R\} = \frac{\delta}{\delta + \gamma}$$

- Illustrate evolution of posterior we will look at how it changes for every toss
- New customer hands over Re 1 and stall owner starts tossing the coin first toss results in a head
- Posterior distribution after one toss is $p(r|y_N) = \mathcal{B}(\delta, \gamma)$
 - With $\alpha = \beta = 1$, N = 1 toss and $y_N = 1$ head:

$$\delta = \alpha + y_N = 1 + 1 = 2$$

 $\gamma = \beta + N - y_N = 1 + 1 - 1 = 1$

Posterior evaluation for first prior after first coin toss (1)

• Posterior distribution is shown as solid line and prior is shown as a dashed line

- Single observation has had quite a large effect posterior is very different from prior
 - ullet All values of r were equally likely in prior
 - ullet This has now changed higher values are more likely than lower values with zero density at r=0
- Consistent with evidence
 - observing one head makes high values of r slightly more likely and low values slightly less likely
- Posterior is still very broad, as we have observed only one toss

Posterior evaluation for first prior after first coin toss (2)

• Mean of R under posterior $p(r|y_N) = \mathcal{B}(\delta, \gamma)$ with $\delta = 2$ and $\gamma = 1$ is

$$\mathbf{E}_{\rho(r|y_N)}\{R\} = \frac{\delta}{\delta + \gamma} = \frac{2}{3}$$

- Observing a solitary head has increased expected value of r from 1/2 to 2/3
 - Increase in expected value tells us that heads are slightly more likely than tails
- Variance of posterior is

$$\operatorname{var}\{R\} = \frac{\delta \gamma}{\left(\delta + \gamma\right)^2 \left(\delta + \gamma + 1\right)} = \frac{1}{18}$$

- Lower than prior variance of 1/12
 - Reduction in variance tells us that we have less uncertainty about the value of r than we did
- Stall owner tosses the second coin (N=2) and it lands tails. With one head $(y_N=1)$ and one tail

$$\delta = \alpha + y_N = 1 + 1 = 2$$

 $\gamma = \beta + N - y_N = 1 + 2 - 1 = 2$

Posterior evaluation for first prior after two coin tosses

- Posterior is now curved rather than straight observing a tail has made lower values more likely
- Expected value and variance are now $\mathbf{E}_{p(r|y_N)}\{R\} = \frac{1}{2}, \mathbf{var}\{R\} = \frac{1}{20}$
- ullet Expected value has decreased back to 1/2, which is same as under the prior
 - We might conclude that we haven't learnt anything
- Variance has decreased (from 1/18 to 1/20) less uncertainty in r and have learnt something
 - ullet In fact, we've learnt that r is closer to 1/2 than we assumed under the prior

Posterior evaluation for first prior after three coin tosses

• Third toss results in another head. We have N=3 tosses, $y_N=2$ heads and $N-y_N=1$ tail:

$$\delta=\alpha+\mathit{y_N}=1+2=3$$
 and $\gamma=\beta+\mathit{N}-\mathit{y_N}=1+3-2=2$

- · Observe that second head skews density to right, suggesting that heads are more likely than tails
- Entirely consistent with the evidence we have seen more heads than tails
- We have only seen three coins though, so there is still a high level of uncertainty
- Density suggests that r could potentially still be pretty much any value between 0 and 1
- Expected value and variance are now $\mathbf{E}_{p(r|y_N)}\{R\} = \frac{3}{5}$, $\mathbf{var}\{R\} = \frac{1}{25}$

Posterior evaluation for first prior after four coin tosses

• Toss 4 also comes up heads $(y_N = 3, N = 4)$, resulting in $\delta = 1 + 3 = 4$ and $\gamma = 1 + 4 - 3 = 2$

- Posterior is once again skewed to right we've now seen 3 H and 1 T so it is likely that r > 1/2
- ullet Notice the difference between N=3 posterior and N=4 posterior
 - ullet For very low values of r extra head has left us pretty convinced that r is not 0.1 or lower
- Expected value and variance are now $\mathbf{E}_{p(r|y_N)}\{R\} = \frac{2}{3}, \mathbf{var}\{R\} = \frac{2}{63} = 0.0317$
 - Expected value has increased and the variance has once again decreased

Posterior evaluation for first prior after ten coin tosses

- Remaining six tosses are made so that complete sequence is H, T, H, H, H, H, T, T, T, H
- Posterior distribution after N=10 tosses, with six heads and four tails i.e., $(y_N=6)$
 - ullet Has parameters $\delta=1+6=7$ and $\gamma=1+10-6=5$
- Expected value and variance are $\mathbf{E}_{p(r|y_N)}\{R\} = \frac{7}{12} = 0.5833, \mathbf{var}\{R\} = 0.0187$

- ullet Ten observations have increased expected value from 0.5 to 0.5833 and decreased variance from 1/12=0.0833 to 0.0187
- We see from figure that we can also be pretty sure that r > 0.2 and r < 0.9
- Uncertainty in value of r is still quite high because we have only observed ten tosses