### **Descriptive Statistics With R Software**

**Association of Variables** 

• •

**Quantile - Quantile and Three Dimensional Plots** 

**Shalabh** 

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

### Quantile – Quantile (QQ) Plots

When the quantiles of two variables are plotted against each other, we get the quantile-quantile plot.

This provides a summary of whether the distributions of two variables are the similar or not with respect to the location.

Plot the quantiles of the variables against each other.

### Quantile – Quantile (QQ) Plots

qqplot(x,y) produces a QQ plot of two datasets.

qqnorm(x) produces a normal QQ plot of the values in data vector x.

qqline(x) adds a line to a "theoretical", by default normal, QQ plot which passes through the probs quantiles, by default the first and third quartiles.

(i) All point of quantiles lie on or close to straight line at an angle of 45% from x – axis.

It indicates the two samples have similar distributions.



(ii) The y – quantiles are lower than the x – quantiles.

It indicates y values have a tendency to be lower than the x values.



(iii) The x – quantiles are lower than the y – quantiles.

It indicates x values have a tendency to be lower than the y values.



(iv) Indicates that there is a break point up to which the y quantiles are lower than the x quantiles and after that point, the y quantiles are higher than the x quantiles.



Height of 50 persons are recorded as follow:

```
166,125,130,142,147,159,159,147,165,156,149,164,137,166,135,142,
133,136,127,143,165,121,142,148,158,146,154,157,124,125,158,159,
164,143,154,152,141,164,131,152,152,161,143,143,139,131,125,145,
140,163
```

```
> height = c(166,125,130,142,147,159,159,147,
165,156,149,164,137,166,135,142,133,136,127,143,
165,121,142,148,158,146,154,157,124,125,158,159,
164,143,154,152,141,164,131,152,152,161,143,143,
139,131,125,145,140,163)
```

> qqnorm(height)

#### Normal Q-Q Plot



> qqline(height)

#### Normal Q-Q Plot



Data on marks obtained by 20 students out of 500 marks and the number of hours they studied per week are recorded as follows:

We know from experience that marks obtained by students increase as the number of hours increase.

| Marks                    | 337 | 316 | 327 | 340 | 374 | 330 | 352 | 353 | 370 | 380 |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Number of hours per week | 23  | 25  | 26  | 27  | 30  | 26  | 29  | 32  | 33  | 34  |

| Marks                    | 384 | 398 | 413 | 428 | 430 | 438 | 439 | 479 | 460 | 450 |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Number of hours per week | 35  | 38  | 39  | 42  | 43  | 44  | 45  | 46  | 44  | 41  |

```
marks =
c(337,316,327,340,374,330,352,353,370,380,384,39
8,413,428,430,438,439,479,460,450)
hours =
c(23,25,26,27,30,26,29,32,33,34,35,38,39,42,43,4
4,45,46,44,41)
```

> qqplot(marks,hours)



#### **3 Dimensional Scatter Plot**

```
scatterplot3d(x,y,z)
```

Plots a three dimensional (3D) point cloud of the data in x, y and z

Need a package scatterplot3d

```
install.packages("scatterplot3d")
```

library(scatterplot3d)

# 3 Dimensional Scatter Plot Example

The data on height (in cms.), weight (in kg.) and age (in years) of 5 persons are recorded as follows. We would like to create a 3 dimensional plot for this data.

| Person No. | Height (Cms.) | Weight (Kg.) | Age (Years) |
|------------|---------------|--------------|-------------|
| 1          | 100           | 30           | 10          |
| 2          | 125           | 35           | 15          |
| 3          | 145           | 50           | 20          |
| 4          | 160           | 65           | 30          |
| 5          | 170           | 70           | 35          |

#### **3 Dimensional Scatter Plot**

scatterplot3d() Plots a three dimensional (3D) point cloud

> install.packages("scatterplot3d")
> library(scatterplot3d)
> height = c(100, 125, 145, 160, 170)
> weight = c(30, 35, 50, 65, 70)
> age = c(10, 15, 20, 30, 35)

### **3 Dimensional Scatter Plot:**

> scatterplot3d(height, weight, age)



#### **3 Dimensional Scatter Plot:**

Direction of the figure can be changed.

> scatterplot3d(height, weight, age, angle = 120)



### **3 Dimensional Scatter Plot:**

Colours of points can be changed.

> scatterplot3d(height, weight, age, color="red")



- contour() for contour lines
- dotchart() for dot charts (replacement for bar charts)
- image() pictures with colors as third dimension
- mosaicplot() mosaic plot for (multidimensional) diagrams
   of categorical variables (contingency tables)
- persp() perspective surfaces over the x-y plane

#### **Example of perspective plot**

```
persp() perspective surfaces over the x-y plane
```

```
x = seq(-10, 10, length= 30)
y = x
f = function(x,y){r = sqrt(x^2+y^2);10*sin(r)/r}
z = outer(x, y, f)
z[is.na(z)] = 1
op = par(bg = "white")
```

### **Example of perspective plot**

```
persp(x,y,z, theta=30, phi=30, expand=0.5, col=
"lightblue")
```



#### **Example of perspective plot**

```
persp(x, y, z, theta = 30, phi = 30, expand =
0.5, col = "lightblue", ltheta = 120, shade =
0.75, ticktype = "detailed", xlab = "X", ylab =
"Y", zlab = "Sinc( r )")
```

