1 Planteamiento del Problema

Se desea resolver analíticamente la ecuación de Poisson en dos dimensiones:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -\left(\cos(x+y) + \cos(x-y)\right),\,$$

en el dominio $0 < x < \pi, \ 0 < y < \frac{\pi}{2},$

con las siguientes condiciones de frontera:

$$u(x,0) = \cos x,$$

$$u\left(x, \frac{\pi}{2}\right) = 0,$$

$$u(0, y) = \cos y,$$

$$u(\pi, y) = -\cos y.$$

2 Reducción de la fuente

Usando la identidad trigonométrica:

$$\cos(x+y) + \cos(x-y) = 2\cos x \cos y,$$

la ecuación se simplifica a:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -2\cos x \cos y.$$

3 Solución Particular

Proponemos una solución particular de la forma:

$$u_p(x,y) = A\cos x \cos y.$$

Calculando las derivadas:

$$\frac{\partial^2 u_p}{\partial x^2} = -A\cos x \cos y, \quad \frac{\partial^2 u_p}{\partial y^2} = -A\cos x \cos y,$$

por lo tanto:

$$\frac{\partial^2 u_p}{\partial x^2} + \frac{\partial^2 u_p}{\partial y^2} = -2A\cos x \cos y.$$

Igualando con el término fuente, se obtiene $A=1,\,{\bf y}$ así:

$$u_p(x,y) = \cos x \cos y.$$

4 Solución Homogénea

La solución general de la ecuación de Poisson es:

$$u(x,y) = u_h(x,y) + u_p(x,y),$$

donde u_h satisface:

$$\nabla^2 u_h = 0.$$

Sin embargo, al verificar las condiciones de frontera con $u_p(x,y) = \cos x \cos y$, se ve que ya las cumple todas:

$$u(x, 0) = \cos x \cdot 1 = \cos x,$$

 $u(x, \frac{\pi}{2}) = \cos x \cdot 0 = 0,$
 $u(0, y) = 1 \cdot \cos y = \cos y,$
 $u(\pi, y) = -1 \cdot \cos y = -\cos y.$

Por lo tanto, la solución homogénea $u_h(x,y)$ debe ser cero.

5 Solución Final y Dominio

La solución analítica es:

$$u(x,y) = \cos x \cos y,$$

válida en el dominio cerrado $0 \le x \le \pi, \ 0 \le y \le \frac{\pi}{2}$, ya que satisface la ecuación diferencial y las condiciones de frontera.