От автоматизации эксперимента к решению уравнений (Python и Wolfram Mathematica)

Модуль 2. Домашнее задание 1-2.

Размерные переменные (2 балла)

Создайте переменную $E = \frac{\text{m}v^2}{2} + \frac{\text{m}\omega^2 x^2}{2}$. Теперь присвойте параметрам m, v, ω , x числовые размерные значения (например, m = 2 kg, v = 10 m/s, $\omega = 1$ s⁻¹, x = 5 m), вычислите E_k .

(*your code here*)

Закон Стокса методом размерности (2 балла)

С помощью DimensionalCombinations определите, как сила трения F медленного шара в жидкости зависит от динамической вязкости жидкости μ , скорости шара в потоке жидкости V, и радиуса шара R. Подумайте, какие еще параметры могли бы войти в размерный анализ и почему они здесь не перечислены? (Ссылка на закон Стокса: https://en.wikipedia.org/wiki/Stokes%27_law)

(*your code here*)

Функции и чистые функции (3 балла)

Создайте функцию $f(x) = x^2 + \sin(x)$. Вычислите ее значение при $x = \frac{\pi}{2}$. Сделайте то же самое при помощи чистой функции (напоминание: чистая функция -- это способ применения функций "на лету", когда мы пользуемся спецсимволами, чтобы объявить и исполнить функцию на месте).

(*your code here*)

Базовые символьные функции (3 балла)

Создайте выражение $x \sin(x y)$, продифференцируйте его 5 раз по переменной y и 4 раза по переменной x. Упростите это выражение. Разложите получившееся выражение до 3 порядка по x вблизи точки x = 0.

(*your code here*)

Дифференциальное уравнение (3 балла)

Решите уравнение гармонического осциллятора с единичной массой, частотой ω и внешней затухающей силой $F e^{-\gamma t}$. Предполагайте, что x[0] = 0, $x'[0] = v_0 \setminus x''[t] + \omega^2 x = F \exp[-\gamma t]$

(*your code here*)

Интеграл (4 балла)

Возьмите интеграл функции $Sin(x) \, \frac{Exp(-\beta\,x)}{1+\alpha\,x}$ в пределах от 0 до бесконечности. Считайте, что параметры β и α положительные. Теперь любым удобным способом вычислите асимптотику этого интеграла при $\alpha \to \infty$. Можно воспользоваться, например, Series или Asymptotic.

(*your code here*)

Матричная экспонента (3 балла)

Создайте выражение для матрицы $\mathbf{A} = \begin{pmatrix} \mathbf{0} & -\mathbf{1} \\ -\mathbf{2} & \mathbf{1} \end{pmatrix}$. Вычислите решение системы дифференциальных уравнений $\frac{d\,\vec{\mathbf{x}}}{dt} = \mathbf{A}\,\vec{\mathbf{x}}$, начальные условия $x_1(0) = \tilde{x}, \ x_2(0) = \tilde{y}$. (*your code here*)