Name:	
Roll Number:	_

(Odd Semester 2022/23, IIT Kanpur)

INSTRUCTIONS

- 1. Write your **Name** and **Roll number** above.
- 2. This exam contains $\mathbf{6} \, + \, \mathbf{1}$ questions and is worth $\mathbf{60\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) If (L, \prec) is a linear ordering and L is infinite, then there exists an infinite $X \subseteq L$ such that X is well-ordered by \prec .
- (ii) There exists a bijection $f: \mathbb{R} \to \mathbb{R}^2$ satisfying: For every x, y in \mathbb{R} , f(x-y) = f(x) f(y).
- (iii) If $f:\omega\to\omega$ is a strictly increasing computable function, then range(f) is computable.
- (iv) There exists a finite $F \subseteq TA$ such that $PA \cup F$ is a complete \mathcal{L}_{PA} -theory.
- (v) The theory DLO (dense linear orderings without end points) is decidable.

Solution.

- (i) False. Take L to be the set of negative integers under the usual ordering.
- (ii) True
- (iii) True.
- (iv) False. TA is not computably axiomatizable.
- (v) True. DLO is both finitely (and hence computably) axiomatizable and complete.

Page 3 MTH302A

Question 2. [10 Points]

Using transfinite recursion, show that there exists $S \subseteq \mathbb{R}^2$ such that for every line $\ell \subseteq \mathbb{R}^2$,

$$|\ell \cap S| = |\ell \cap (\mathbb{R}^2 \setminus S)| = \mathfrak{c}.$$

Solution 1. Let \mathcal{L} be the family of all lines in plane. Note that $|\mathcal{L}| = |\mathbb{R}^2 \times \mathbb{R}^2| = |\mathbb{R}^2| = \mathfrak{c}$. Fix a sequence $\langle \ell_{\alpha} : \alpha < \mathfrak{c} \rangle$ such that for every $\ell \in \mathcal{L}$, $\{\alpha < \mathfrak{c} : \ell = \ell_{\alpha}\} = \mathfrak{c}$ (Why is there such a sequence? Use the fact that $|\mathfrak{c} \times \mathfrak{c}| = \mathfrak{c}$). Using transfinite recursion, construct a sequence $\langle (A_{\alpha}, B_{\alpha}) : \alpha < \mathfrak{c} \rangle$ of pairs of **disjoint** subsets of \mathbb{R}^2 such that the following hold.

- 1. $A_0 = B_0 = 0$ and if $\alpha < \beta < \mathfrak{c}$, then $A_{\alpha} \subseteq A_{\beta}$ and $B_{\alpha} \subseteq B_{\beta}$.
- 2. If $\gamma < \mathfrak{c}$ is a limit ordinal, then $A_{\gamma} = \bigcup_{\alpha < \gamma} A_{\alpha}$ and $B_{\gamma} = \bigcup_{\alpha < \gamma} B_{\alpha}$.
- 3. $|A_{\alpha} \cup B_{\alpha}| \leq \max(|\alpha|, \omega) < \mathfrak{c}$.
- 4. For every $\alpha < \mathfrak{c}$, $|(A_{\alpha+1} \setminus A_{\alpha}) \cap \ell_{\alpha}| = |(B_{\alpha+1} \setminus B_{\alpha}) \cap \ell_{\alpha}| = 1$.

Start by defining $A_0 = B_0 = 0$. At every limit stage $\gamma < \mathfrak{c}$, Clause 2 forces us to define $A_{\gamma} = \bigcup_{\alpha < \gamma} A_{\alpha}$ and $B_{\gamma} = \bigcup_{\alpha < \gamma} B_{\alpha}$. So we just need to describe $A_{\alpha+1}, B_{\alpha+1}$ for every $\alpha < \mathfrak{c}$. Clause 4 says we must choose two new points x_{α}, y_{α} from $\ell_{\alpha} \setminus (A_{\alpha} \cup B_{\alpha})$ and define $A_{\alpha+1} = A_{\alpha} \cup \{x_{\alpha}\}$ and $B_{\alpha+1} = B_{\alpha} \cup \{y_{\alpha}\}$. Note that $|\ell_{\alpha}| = \mathfrak{c}$ and $|A_{\alpha} \cup B_{\alpha}| < \mathfrak{c}$ so we can choose such points.

Having completed the construction, define $A = \bigcup_{\alpha < \mathfrak{c}} A_{\alpha}$ and $B = \bigcup_{\alpha < \mathfrak{c}} B_{\alpha}$. It should be clear that A, B are disjoint subsets of \mathbb{R}^2 . So the only thing to check is $|\ell \cap A| = |\ell \cap B| = \mathfrak{c}$ for every $\ell \in \mathcal{L}$. But this follows from Clause 4 and the fact that each $\ell \in \mathcal{L}$ occurs \mathfrak{c} -times in the sequence $\langle \ell_{\alpha} : \alpha < \mathfrak{c} \rangle$.

Solution 2. For each $n < \omega$, let $C_n = \{x \in \mathbb{R}^2 : n < ||x|| < n+1\}$ (||x|| is the distance of x from the origin). Define $A_n = \bigcup_{n < \omega} C_{2n}$ and $B_n = \bigcup_{n < \omega} C_{2n+1}$. Note that for any line ℓ , $\{||x|| : x \in \ell\} = [d, \infty)$ where d is the distance of ℓ from the origin. It follows that both $\ell \cap A$ and $\ell \cap B$ contain line segments of positive length and hence have size continuum.

Remark. Although Solution 2 is simpler, the method of Solution 1 will also work for families other than lines. For example, circles, squares, rectangles, line segments etc.

Page 4 MTH302A

Question 3. [10 Points]

Let $\mathcal{L} = \{ \prec \}$ be the first order language with a binary relation symbol \prec .

- (a) [2 Points] Write down the axioms of the L-theory DLO (dense linear ordering without end points).
- (b) [4 Points] Show that the \mathcal{L} -structures $(\mathbb{R}, <)$ and $(\mathbb{R} \setminus \{0\}, <)$ are not isomorphic. Here < is the usual ordering of real numbers.
- (c) [4 Points] Show that DLO is not c-categorical.

Solution.

- (a) See Lecture Slide 138.
- (b) Suppose not and let $h: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be an order isomorphism. Put $L = \{h(x): x < 0\}$ and $R = \{h(x): x > 0\}$. As $L \subseteq \mathbb{R}$ is bounded from above, it has a least upper bound (supremum) say b. Fix $a \in \mathbb{R} \setminus \{0\}$ such that h(a) = b. Note that a < 0 or a > 0.
 - If a < 0, then a < a/2 < 0. So b = h(a) < h(a/2) and $h(a/2) \in L$. So b is not an upper bound of L which is a contradiction. If a > 0, then 0 < a/2 < a. So h(a/2) < h(a) = b and $h(a/2) \in R$. So b is not the least upper bound of L which is also a contradiction.
- (c) First check that both $(\mathbb{R}, <)$ and $(\mathbb{R} \setminus \{0\}, <)$ are models of DLO. By part (b), they are not isomorphic. So DLO is not \mathfrak{c} -categorical.

Page 5 MTH302A

Question 4. [10 Points]

Let \mathcal{L} be the empty language. For each $n \geq 2$, recall that $\exists_{\geq n}$ denotes the following \mathcal{L} -sentence:

$$(\exists x_1)(\exists x_2)\dots(\exists x_n)\left(\bigwedge_{i< j\leq n}\neg(x_i=x_j)\right)$$

Define $T = \{\exists_{\geq n} : n \geq 2\}.$

- (a) [4 Points] Show that T is a complete \mathcal{L} -theory.
- (b) [6 Points] Show that T is not finitely axiomatizable.
- (a) Note that \mathcal{M} is a model of T iff its domain M is infinite. Furthermore, if \mathcal{M}, \mathcal{N} are two models of T with |M| = |N|, then $\mathcal{M} \cong \mathcal{N}$ (every bijection $h: M \to N$ is an isomorphism as \mathcal{L} is empty). So T is κ -categorical for every $\kappa \geq \omega$. Hence T is a complete \mathcal{L} -theory (Lecture slide 137).
- (b) Suppose not and towards a contradiction, fix a finite set $F = \{\psi_k : 1 \le k \le n\}$ of \mathcal{L} -sentence such that for every \mathcal{L} -sentence ϕ , $F \vdash \phi$ iff $T \vdash \phi$. Note that for each k, $T \vdash \psi_k$ so we can fix a finite $S_k \subseteq T$ such that $S_k \vdash \psi_k$. Then $S = \bigcup_{1 \le k \le n} S_k$ is finite.

Let $S = \{\exists_{n_k} : 1 \leq k \leq m\}$. Define $n = \max(\{n_k : 1 \leq k \leq m\}) + 5$. As $T \vdash \exists_{\geq n}$, we also have $F \vdash \exists_{\geq n}$. As each sentence in F is a theorem of S, it follows that $S \vdash \exists_{\geq n}$ and therefore $S \models \exists_{\geq n}$. But this is impossible since if \mathcal{M} is an \mathcal{L} -structure with domain M of size $|M| = \max(\{n_k : 1 \leq k \leq m\})$, then $\mathcal{M} \models S$ and $\mathcal{M} \not\models \exists_{\geq n}$.

Page 6 MTH302A

Question 5. [10 Points]

- (a) [5 Points] Suppose $A \subseteq \omega$ and $B \subseteq \omega$ are both computable. Show that $\{x + y : x \in A \text{ and } y \in B\}$ is computable.
- (b) [5 Points] Let $E \subseteq \omega$ be computable. Show that $\{|x-y|: x, y \in E\}$ is c.e.

Solution.

(a) Put $C = \{x + y : x \in A \text{ and } y \in B\}$. Fix programs P and Q such that P computes 1_A and Q computes 1_B . Consider a program R that on input n does the following.

For each $0 \le k \le n$, run P with input k and Q with input n-k. If both P and Q output 1 for some $0 \le k \le n$, then R outputs 1. Otherwise R outputs 0.

It is clear that R computes 1_C . So C is computable. \clubsuit

(b) Put $W = \{|x - y| : x, y \in E\}$. Fix a program P that computes 1_E . Consider a program R that on input n does the following: Search for the least $k < \omega$ such that P outputs 1 on each of the inputs k and n + k. R halts as soon as such a k is found.

It is clear that R halts on input n iff $n \in W$. So W is c.e. \clubsuit

Page 7 MTH302A

Question 6. [10 Points]

Let $\mathcal{N} = (\omega, 0, S, +, \cdot)$ be the standard model of PA.

- (a) [6 Points] Define $False_{\mathcal{N}} = \{ \ulcorner \psi \urcorner : \mathcal{N} \models \neg \psi \}$. Show that $False_{\mathcal{N}}$ is not definable in \mathcal{N} .
- (b) [4 Points] Show that there are \mathcal{L}_{PA} -sentences ϕ and ψ such that PA does not prove either one of the following four sentences.
 - (i) ϕ .
 - (ii) $\neg \phi$.
 - (iii) $\phi \implies \psi$.
 - (iv) $\phi \implies (\neg \psi)$.

Solution.

(a) Towards a contradiction, assume $False_{\mathcal{N}}$ is definable in \mathcal{N} via the formula $\phi(x)$. So for every $n < \omega$, $n \in False_{\mathcal{N}}$ iff $\mathcal{N} \models \phi(n)$. Define $f : \omega \to \omega$ as follows. If $n = \lceil \psi \rceil$ for some \mathcal{L}_{PA} -sentence ψ , then $f(n) = \lceil (\neg \psi) \rceil$. Otherwise, f(n) = 0. It is clear that f is computable and hence definable in \mathcal{N} say via the \mathcal{L}_{PA} -formula $\eta(y, x)$.

Now consider the formula $\theta(x) \equiv (\exists y)(\eta(y,x) \land \phi(y))$. It is easy to check that $n \in True_{\mathcal{N}}$ iff $\mathcal{N} \models \theta(n)$. So $True_{\mathcal{N}}$ is definable in \mathcal{N} . A contradiction.

(b) Choose $\phi \in TA$ such that $PA \nvdash \phi$. Note that $PA \nvdash \neg \phi$ since if $PA \vdash \neg \phi$, then as $PA \subseteq TA$, both ϕ and $(\neg \phi)$ are in TA which is impossible.

Since $PA \cup \{\phi\}$ is a computable subset of TA, it cannot axiomatize TA. So we can choose $\psi \in TA$ such that $PA \cup \{\phi\} \nvdash \psi$. By deduction theorem, $PA \nvdash (\phi \implies \psi)$. Finally, to see that PA does not prove $\phi \implies (\neg \psi)$, use the fact that $PA \cup \{\phi\} \nvdash (\neg \psi)$ (otherwise TA would prove both ψ and $\neg \psi$).

Page 8 MTH302A

Bonus Question [5 Points]

Show that

$$\left|\left\{x>0: \lim_{n\to\infty}\operatorname{frac}((n!)x)=0\right\}\right|=\mathfrak{c}.$$

Here frac(x) denotes the fractional part of x. For example, $frac(\pi) = \pi - 3$ and frac(7) = 0.

Solution sketch. Let $G = \{x > 0 : \lim_{n \to \infty} \mathsf{frac}((n!)x) = 0\}$. For each $f \in 2^{\omega}$, define

$$x_f = \sum_{n>1} \frac{f(n)}{n!}$$

Put $W=\{x_f: f\in 2^\omega\}$. Check that $W\subseteq G$ and $|W|=|2^\omega|=\mathfrak{c}$.