

GRADE 95%

## **Natural Language Processing & Word Embeddings**

## 95%

| 1. | Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 |
|----|----------------------------------------------------------------------------------------------------------------|
|    | dimensional, so as to capture the full range of variation and meaning in those words.                          |

1 / 1 point

| _        |    |    |
|----------|----|----|
| <b>a</b> | Ea | le |
|          |    |    |

○ True



The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 400.

2. What is t-SNE?

1/1 point

- A linear transformation that allows us to solve analogies on word vectors
- A supervised learning algorithm for learning word embeddings
- An open-source sequence modeling library
- A non-linear dimensionality reduction technique



Yes

3. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

1/1 point

| x (input text)               | y (happy?) |  |  |
|------------------------------|------------|--|--|
| I'm feeling wonderful today! | 1          |  |  |
| I'm bummed my cat is ill.    | 0          |  |  |
| Really enjoying this!        | 1          |  |  |

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

O False

True



Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

1/1 point

$$\square$$
  $e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$ 

$$ightharpoonup e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

✓ Correct

$$\square$$
  $e_{boy} - e_{girl} \approx e_{sister} - e_{brother}$ 

$$lacksquare$$
  $e_{host}-e_{sist}pprox e_{hostham}-e_{sistem}$ 

 $lacksquare X_{ij}$  is the number of times word j appears in the context of word i.

|   | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                  |     |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| [ | $	heta_i$ and $e_j$ should be initialized to 0 at the beginning of training.                                                                                                                                                                                                                                                                                               |     |
| - | $ ot\hspace{-0.5cm} oldsymbol{artheta}_i$ and $e_j$ should be initialized randomly at the beginning of training.                                                                                                                                                                                                                                                           |     |
|   | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                  |     |
| 1 | lacksquare The weighting function $f(.)$ must satisfy $f(0)=0.$                                                                                                                                                                                                                                                                                                            |     |
|   | Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.                                                                                                                                                                                                                          |     |
| 1 | You have trained word embeddings using a text dataset of $m_1$ words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of $m_2$ words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful? | 1/1 |
| ( | $lacksquare m_1 >> m_2$ $m_1 << m_2$                                                                                                                                                                                                                                                                                                                                       |     |
|   | ✓ Correct                                                                                                                                                                                                                                                                                                                                                                  |     |