QTL mapping in multi-parent populations

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

@kwbroman
 kbroman.org
 github.com/kbroman
kbroman.org/Teaching_UWStatGen2024

daviddeen.com

Intercross

Data

Genome scan

Genome scan

Permutation test

Permutation distribution

QTL intervals

Multiple QTL models

- ► Reduce residual variation greater power
- Separate linked QTL
- ► Identify interactions (epistasis)

Congenic line

Advanced intercross lines

Recombinant inbred lines

Recombinant inbred lines (selfing)

Collaborative Cross

MAGIC lines

Heterogeneous Stock/Diversity outbreds

DO genome

QTL analysis in DO

- ► Genotype reconstruction
- ► Treatment of QTL genotype
- Kinship correction

Genotype reconstruction

Hidden Markov model

Initial
$$\pi(g) = \Pr(G_1 = g)$$

Transition $t_i(g,g') = \Pr(G_{i+1} = g' \mid G_i = g)$

Emission $e_i(g) = \Pr(O_i \mid G_i = g)$

Treatment of QTL genotypes

Treatment of QTL genotypes

QTL effects (chr 1)

QTL effects (chr 7)

Linear mixed model

$$\mathbf{y}_{i} = \mu + \sum_{\mathbf{k}} \beta_{\mathbf{k}} \mathbf{q}_{i\mathbf{k}} + \epsilon_{i} \qquad \epsilon_{i} \sim \mathbf{N}(0, \sigma_{\mathbf{e}}^{2})$$

$$= \mu + \qquad \eta_{i} \qquad + \epsilon_{i} \qquad \eta_{i} \sim \mathbf{N}(0, \sigma_{\mathbf{p}}^{2})$$

$$\mathbf{cov}(\eta_{i}, \eta_{j}) = \sigma_{\mathbf{p}}^{2} (2\mathbf{k}_{ij})$$

Kinship and LOCO

- ▶ kinship coefficient measures similarity of two individuals' genomes
- generally estimated from genotype data
- ▶ generally using the "leave one chromosome out (loco)" method
 - Estimate kinship using all chromosomes except the one being scanned

LM vs LMM vs LOCO

Research topics

- ► Identifying the causal polymorphisms
- ▶ Joint analysis of high-dimensional outcomes
- Use of intermediate biochemical traits
- ► Cross-species analyses
- ▶ QTL × QTL interactions (epistasis)
- ► QTL × covariate interactions (e.g. sex, diet, or environment)

kbroman.org/Teaching_UWStatGen2024

kbroman.org

github.com/kbroman

@kwbroman

kbroman.org/qtl2