14.02.25. Геометрія 8

- Урок №42
- Тема. Теорема Піфагора

Мета: сформулювати теорему Піфагора; формувати вміння і навички застосовувати теорему під час розв'язування задач, розвивати логічне мислення; інтерес до математики. Тип уроку: урок засвоення нових знань.

Піфагор

Піфагор Самоський (570 – 496 рр. до н. е.) — давньогрецький філософ, математик, релігійний та політичний діяч.

Піфагор є засновником в Кротоні (Південна Італія) Піфагорійської школи, яка поклала початок математичних наук. Крім математики,

Піфагорійці займалися філософією, астрономією та теорією музики.

До заслуг Піфагора належить відкриття та доведення теореми Піфагора.

Про теорему Піфагора

- Теорема Піфагора одна із найвизначніших теорем математики, яка встановлює співвідношення між сторонами прямокутного трикутника.
- З неї або з її допомогою можна вивести більшість теорем. Вона застосовується в геометрії практично на кожному кроці.
- Відомо, що ця теорема не була відкрита Піфагором. Однак саме Піфагор першим дав її повноцінне доведення.
- На даний момент в науковій літературі зафіксовано кілька сотень доведень даної теореми.

Теорема Піфагора

Теорема: У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів.

Дано: $\triangle ABC$, $C = 90^{\circ}$.

Довести: $AB^2 = AC^2 + BC^2$.

Доведення. Проведемо з вершини прямого кута С висоту CD.

 $AC^2 = AB \ AD, BC^2 = AB \ BD.$

Додамо почленно ці рівності. Отримаємо:

 $AC^{2} + BC^{2} = AB AD + AB BD = AB(AD + BD) =$ = $AB AB = AB^{2}$.

Отже, $AB^2 = AC^2 + BC^2$. Доведено.

То теорема Піфагора може бути записана так:

$$c^2 = a^2 + b^2$$

• У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів

Якщо a, b — катети прямокутного трикутника, а c — його гіпотенуза, то з формули $c^2 = a^2 + b^2$ можна отримати наступні формули:

$$c = \sqrt{a^2 + b^2}$$

$$a^2 = c^2 - b^2$$

$$a = \sqrt{c^2 - b^2}$$

$$b^2 = c^2 - a^2$$

$$b = \sqrt{c^2 - a^2}$$

За цими формулами за двома будь-якими сторонами прямокутного трикутника знаходимо його третю сторону.

Теорема обернена до теореми Піфагора

Теорема: Якщо квадрат сторони трикутника дорівнює сумі квадратів двох інших сторін, то цей трикутник прямокутний.

За цією теоремою трикутник зі сторонами 3 см, 4 см і 5 см — прямокутний, оскільки $3^2 + 4^2 = 5^2$. Такий трикутник називають *єгипетським*.

Єгипетські трикутники — це такі прямокутні трикутники сторони яких пропорційні числам 3, 4 і 5.

Египетські трикутники (a, b — катети, c — гіпотенуза)

a	3	6	9	12	15	18	21	24	27	30
b	4	8	12	16	20	24	28	32	36	40
c	5	10	15	20	25	30	35	40	45	50

Старовинні задачі

Задача індійського математика XII століття Бхаскари

На березі ріки росла самотня тополя. Раптом налетіли вітри і зламали її стовбур. Бідна тополя впала, утворивши кут між стовбуром і поверхнею води річки. Запам'ятай тепер, що в цьому місці річка У чотири лише фута була шириною. Верхівка зламалася, залишивши всього три фути від усього стовбура. Прошу тебе, швидко тепер мені скажи: «Яка за велика в тополі висота?»

Розв'язання

$$AB^2 = AC^2 + BC^2$$
. $AB^2 = 3^2 + 4^2 = 9 + 16 = 25$.
 $AB = \sqrt{25} = 5$ (футів)
1 фут = 0,3048 м, тому $AB = 1,524$ м.

Задача з підручника «Арифметики» Леонтія Магницкого (XVIII століття)

 $BC = 2 \ 2 \ 11 = 44 (cmonu)$

Сталося деякій людині до стіни сходи приставити, стіни ж тієї висота була 117 стоп. І узяв він драбину завдовжки 125 стоп. І дізнатися він хоче, на скільки стоп, цю драбину нижнім кінцем від стіни відставити треба.

Розв'язання

$$BC^{2} = AB^{2} - AC^{2}$$
.
 $BC^{2} = 125^{2} - 117^{2} = (125 - 117)(125 + 117) = 8 242 = 2 4 2 121$.

Цікаво знати

Піфагора Встановлено, що теорема зустрічається у вавилонських текстах, написаних за 1200 років до Піфагора. Про те, що трикутник зі сторонами 3, 4 і 5ϵ прямокутний, знали за 2000 років до н. е. єгиптяни, які користувалися відношенням при будівництві. У Китаї про квадрат гіпотенузи знали принаймні за 500 років до Піфагора. Ця теорема була відома й у Стародавній Індії; про це свідчать твердження, що містяться в сутрах Будхаяни.

Три додатніх цілих числа a, b і c, таких що $a^2 + b^2 = c^2$ називаються числами Піфагора (піфагоровою трійкою), найвідомішими з яких ϵ 3, 4, 5.

В 1940 році було надруковано книгу Е. Луміса «Теорема Піфагора», в якій є 370 різних способів доведення теореми Піфагора, серед яких є доведення, запропоноване президентом США Джеймсом Гарфілдом.

Факт великої кількості доведень теореми відображено в художній літературі: в повісті «Пригоди Електроніка» Євгенія Велтистова головний герой на шкільному уроці математики приводить біля дошки 25 різних доведень теореми Піфагора.

Домашне завдання

Повторити § 15, 17
Опрацювати § 18, вивчити правила

Виконати завдання за посиланням або №651, 653, 657, 659, 661