### INTRODUÇÃO A CIÊNCIA DOS MATERIAIS

PROF<sup>a</sup> Dr<sup>a</sup>.Claudia Joseph Nehme.

## 1. INTRODUÇÃO



- Condições de Serviço: ditam as propriedades exigidas do material. É raro o material ideal.
  - resistência ⇒ ↓ ductilidade
- Deterioração das propriedades durante uso:
  - ↓ Resistência ⇒ ↑ Temperatura ou Corrosão
- Fatores Econômicos (custo): também inclui despesas incorridas durante a fabricação (processamento).

## 1. INTRODUÇÃO



#### 2. ESTRUTURA

- ESTRUTURA: geralmente relacionada ao arranjo de seus componentes internos.
  - ESTRUTURA SUB-ATÔMICA: envolve elétrons no interior dos átomos individuais e as interações com seus núcleos;
  - ESTRUTURA ATÔMICA: engloba a organização dos átomos ou moléculas em relação uns aos outros;
  - ESTRUTURA MICROSCÓPICA: contém grandes grupos de átomos normalmente conglomerados;
  - ESTRUTURA MACROSCÓPICA: pode ser vista a olho nu.



### 2. ESTRUTURA

| Classe do estudo                | Ciência dos<br>Materiais                                     | Ciência e Engenharia dos<br>Materiais          | Engenharia dos<br>Materiais   |
|---------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------|
| Nível                           | microestrutural                                              | mesoestrutural                                 | macroestrutural               |
| Escala                          | 10 <sup>-7</sup> - 10 <sup>-3</sup> mm                       | 10 <sup>-3</sup> - 1 mm                        | >1 mm                         |
| Estrutura                       | molecular                                                    | fases, grãos                                   | todo material                 |
| Exemplos                        | moléculas de<br>celulose<br>silicatos de cálcio<br>hidratado | células da madeira<br>pasta de cimento         | madeira<br>concreto           |
| Técnicas de ensaios             | porosimetria a Hg<br>microscopia<br>eletrônica               | estrutura das fases                            | propriedades<br>mecânicas     |
| Interpretação dos<br>resultados | modelos estruturais<br>teoria das<br>deformações             | modelos multifásicos<br>transferência de massa | diagramas<br>gráficos         |
| Uso da informação               | conhecimento<br>novos materiais                              | conhecimento<br>parâmetros                     | custos, ensaios<br>parâmetros |



#### 3. PROPRIEDADES

- PROPRIEDADE: é uma peculiaridade do material em termos do tipo e da intensidade da resposta a um estímulo específico que lhe é imposto. As definições das propriedades são feitas de maneira independente da forma e do tamanho do material.
  - MECÂNICA: relaciona deformação com uma carga ou força aplicada;
  - ELÉTRICA: o estímulo é um campo elétrico;
  - TÉRMICA: capacidade calorífica e condutividade térmica;
  - MAGNÉTICA: demonstram a resposta de um material à aplicação de um campo magnético;
  - ÓTICA: o estímulo é a radiação eletromagnética ou a luminosa;
  - DETERIORATIVA: indica a reatividade química dos materiais.



### 3. PROPRIEDADES

| ASPECTO ECONÔMICO    | Preço e disponibilidade<br>Capacidade de reciclagem                                                                                                                                                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FÍSICA GERAL         | Densidade                                                                                                                                                                                               |
| MECÂNICA             | Módulo de elasticidade Resistência à deformação e à tração Dureza Tenacidade Limite de fadiga Limite de resistência à deformação a quente (creep) Característica de amortecimento Condutividade térmica |
| TÉRMICA              | Condutividade térmica Calor específico Coeficiente de expansão térmica                                                                                                                                  |
| ELÉTRICA E MAGNÉTICA | Constante dielétrica Permeabilidade magnética                                                                                                                                                           |
| INTERAÇÃO AMBIENTAL  | Oxidação<br>Corrosão<br>Desgaste                                                                                                                                                                        |
| PRODUÇÃO             | Facilidade no processamento União Acabamento                                                                                                                                                            |
| ESTÉTICA             | Cor<br>Textura<br>Sensação táctil                                                                                                                                                                       |

## 4. CLASSIFICAÇÃO DOS MATERIAIS

A classificação tradicional dos materiais é geralmente baseada na estrutura atômica e química:

- Metais
  Cerâmicas
  Polímeros

  Classificação tradicional
- Compósitos (combinação de dois ou mais)
- Semicondutores (características elétricas peculiares)
- Biomateriais (Mat. Biocompatíveis)



## 4. CLASSIFICAÇÃO DOS MATERIAIS

- METAIS: são normalmente combinações de elementos metálicos.
   Possuem grande número de elétrons não-localizados, ou seja, não estão ligados a qualquer átomo em particular.
  - Propriedades:
    - Condutores de eletricidade e calor;
    - Não transparentes à luz visível;
    - Têm aparência lustrosa quando polidos;
    - Geralmente são resistentes e deformáveis;
    - São muito utilizados para aplicações estruturais.



#### <u>Metais</u>

- Resistentes e deformáveis
- ✓ Boa ductilidade
- Alta condutividade elétrica e térmica
- ✓ Não transparente sob luz visível
- **✓** Superfície brilhante





Materiais metálicos são formados geralmente por combinações de elementos metálicos.

| IΑ       | i i      |          |          |          |          |          |          |          |          |          |          |          |           |           |          | ī         | 0        |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|----------|
| 1<br>H   | ΠA       | 280      |          |          |          |          |          |          |          |          |          | ША       | IVA       | V A       | VIA      | VIIA      | 2<br>He  |
| 3<br>Li  | 4<br>Be  |          |          |          |          |          |          |          |          |          |          | 5<br>B   | 6<br>C    | 7<br>N    | 8<br>O   | 9<br>F    | 10<br>Ne |
| 11<br>Na | 12<br>Mg | ШВ       | IVB      | V B      | VIB      | VIIB     | 53       | VIII     |          | I B      | нв       | 13<br>Al | 14<br>Si  | 15<br>P   | 16<br>S  | 17<br>Cl  | 18<br>Ar |
| 19<br>K  | 20<br>Ca | 21<br>Se | 22<br>Ti | 23<br>V  | 24<br>Cr | 25<br>Mn | 26<br>Fe | 27<br>Co | 28<br>Ni | 29<br>Cu | 30<br>Zn | 31<br>Ga | 32<br>Ge  | 33<br>As  | 34<br>Se | 35<br>Br  | 36<br>Kr |
| 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr | 41<br>Nb | 42<br>Mo | 43<br>Te | 44<br>Ru | 45<br>Rh | 46<br>Pd | 47<br>Ag | 48<br>Cd | 49<br>In | 50<br>Sn  | 51<br>Sb  | 52<br>Te | 53<br>I   | 54<br>Xe |
| 55<br>Cs | 56<br>Ba | 57<br>La | 72<br>Hf | 73<br>Ta | 74<br>W  | 75<br>Re | 76<br>Os | 77<br>Ir | 78<br>Pt | 79<br>Au | 80<br>Hg | 81<br>Tl | 82<br>Pb  | 83<br>Bi  | 84<br>Po | 85<br>At  | 86<br>Rn |
| 87<br>Fr | 88<br>Ra | 89<br>Ac | 58<br>Ce | 59<br>Pr | 60<br>Nd | 61<br>Pm | 62<br>Sm | 63<br>Eu | 64<br>Gd | 65<br>Tb | 66<br>Dy | 67<br>Ho | 68<br>Er  | 69<br>Tm  | 70<br>Yb | 71<br>Lu  | 4-07     |
|          |          |          | 90<br>Th | 91       | 92<br>U  | 93<br>Np | 94       | 95<br>Am | 96<br>Cm | 97<br>Bk | 98<br>Cf | 99<br>Es | 100<br>Fm | 101<br>Md | 102      | 103<br>Lw |          |

## 4. CLASSIFICAÇÃO DOS MATERIAIS

- CERÂMICOS: compostos entre os elementos metálicos e nãometálicos; são freqüentemente óxidos, nitretos e carbetos.
  - Propriedades:
    - Isolantes de eletricidade e calor;
    - Resistentes à alta temperatura e ambientes abrasivos (mais que metais e polímeros);
    - Duros, porém muito quebradiços.



#### **Cerâmicas**

- ✓ Alta resistência mecânica e baixa ductilidade
- ✓ Alta estabilidade química e térmica
- ✓ Bons isolantes térmico e elétrico
- ✓ Alta dureza e baixo coeficiente de expansão





Cerâmicas são formados por combinações de elementos metálicos e não metálicos.

| IA<br>1<br>H | II A     |    |          |          |         |          |          |          |          |          |          | ША       | IVA       | VA        | VIA     | VIIA      | O<br>2<br>He |
|--------------|----------|----|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|---------|-----------|--------------|
| 3<br>Li      | 4<br>Be  |    |          |          |         |          |          |          |          |          |          | 5<br>B   | 6<br>C    | 7<br>N    | 8<br>O  | 9<br>F    | 10<br>Ne     |
| 11<br>Na     | 12<br>Mg | ШВ | IVB      | VВ       | VIB     | VIIB     |          | VIII     |          | I B      | ПВ       | 13<br>Al | 14<br>Si  | 15<br>P   | 16<br>S | 17<br>Cl  | 18<br>Ar     |
| 19           | 20       | 21 | 22       | 23       | 24      | 25       | 26       | 27       | 28       | 29       | 30       | 31       | 32        | 33        | 34      | 35        | 36           |
| K            | Ca       | Sc | Ti       | V        | Cr      | Mn       | Fe       | Co       | Ni       | Cu       | Zn       | Ga       | Ge        | As        | Se      | Br        | Kr           |
| 37           | 38       | 39 | 40       | 41       | 42      | 43       | 44       | 45       | 46       | 47       | 48       | 49       | 50        | 51        | 52      | 53        | 54           |
| Rb           | Sr       | Y  | Zr       | Nb       | Mo      | Te       | Ru       | Rh       | Pd       | Ag       | Cd       | In       | Sn        | Sb        | Te      | I         | Xe           |
| 55           | 56       | 57 | 72       | 73       | 74      | 75       | 76       | 77       | 78       | 79       | 80       | 81       | 82        | 83        | 84      | 85        | 86           |
| Cs           | Ba       | La | Hf       | Ta       | W       | Re       | Os       | Ir       | Pt       | Au       | Hg       | Tl       | Pb        | Bi        | Po      | At        | Rn           |
| 87           | 88       | 89 | 58       | 59       | 60      | 61       | 62       | 63       | 64       | 65       | 66       | 67       | 68        | 69        | 70      | 71        |              |
| Fr           | Ra       | Ac | Ce       | Pr       | Nd      | Pm       | Sm       | Eu       | Gd       | Tb       | Dy       | Ho       | Er        | Tm        | Yb      | Lu        |              |
|              |          |    | 90<br>Th | 91<br>Pa | 92<br>U | 93<br>Np | 94<br>Pu | 95<br>Am | 96<br>Cm | 97<br>Bk | 98<br>Cf | 99<br>Es | 100<br>Fm | 101<br>Md | 320     | 103<br>Lw | 1            |

## 4. CLASSIFICAÇÃO DOS MATERIAIS

•POLÍMEROS: compreendem os materiais comuns de plástico e borracha. Muitos deles são compostos orgânicos que tem sua química baseada no carbono, no hidrogênio e em outros elementos não-metálicos; além disso, possuem estruturas moleculares muito grandes.

#### •Propriedades:

- Alta flexibilidade;
- Baixa densidade.



#### <u>Polímeros</u>

- ✓ Grande espectro de resistência e ductilidade
- ✓ Leveza
- **✓** Baixo isolamento térmico e elétrico
- ✓ Alta dureza e baixo coeficiente de expansão





Materiais poliméricos são formados por compostos orgânicos consistindo de longas cadeias moleculares.

| IA       | 13       |          |          |          |          |          |          |          |          |          |          |          |           |           |          | -         | o        |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|-----------|----------|
| H        | II A     | 2        |          |          |          |          |          |          |          |          |          | ША       | IVA       | VA '      | VIA      | VIIA      | 2<br>H   |
| 3<br>Li  | 4<br>Be  |          |          |          |          |          |          |          |          |          | 20       | 5<br>B   | 6<br>C    | 7<br>N    | 8<br>O   | 9<br>F    | 10<br>N  |
| 11<br>Na | 12<br>Mg | ШВ       | IVB      | V B      | VIB '    | VIIB     | 102      | VIII     |          | I B      | н в      | 13<br>Al | 14<br>Si  | 15<br>P   | 16<br>S  | 17<br>CI  | 18<br>Ar |
| 19<br>K  | 20<br>Ca | 21<br>Sc | 22<br>Ti | 23<br>V  | 24<br>Cr | 25<br>Mn | 26<br>Fe | 27<br>Co | 28<br>Ni | 29<br>Cu | 30<br>Zn | 31<br>Ga | 32<br>Ge  | 33<br>As  | 34<br>Se | 35<br>Br  | 36<br>K  |
| 37<br>Rb | 38<br>Sr | 39<br>Y  | 40<br>Zr | 41<br>Nb | 42<br>Mo | 43<br>Tc | 44<br>Ru | 45<br>Rh | 46<br>Pd | 47<br>Ag | 48<br>Cd | 49<br>In | 50<br>Sn  | 51<br>Sb  | 52<br>Te | 53<br>I   | 54<br>X  |
| 55<br>Cs | 56<br>Ba | 57<br>La | 72<br>Hf | 73<br>Ta | 74<br>W  | 75<br>Re | 76<br>Os | 77<br>Ir | 78<br>Pt | 79<br>Au | 80<br>Hg | 81<br>Tl | 82<br>Pb  | 83<br>Bi  | 84<br>Po | 85<br>At  | 80<br>Ri |
| 87<br>Fr | 88<br>Ra | 89<br>Ac | 58<br>Ce | 59<br>Pr | 60<br>Nd | 61<br>Pm | 62<br>Sm | 63<br>Eu | 64<br>Gd | 65<br>Tb | 66<br>Dy | 67<br>Ho | 68<br>Er  | 69<br>Tm  | 70<br>Yb | 71<br>Lu  | 78       |
|          |          |          | 90<br>Th | 91<br>Pa | 92<br>U  | 93<br>Np | 94<br>Pu | 95<br>Am | 96<br>Cm | 97<br>Bk | 98<br>Cf | 99<br>Es | 100<br>Fm | 101<br>Md |          | 103<br>Lw |          |

## 4. CLASSIFICAÇÃO DOS MATERIAIS

#### COMPÓSITOS:

- são constituídos de mais de um tipo de material insolúveis entre si;
- são "desenhados" para apresentarem a combinação das melhores características de cada material constituinte;
- muitos dos recentes desenvolvimento em materiais envolvem materiais compósitos;
- um exemplo clássico é o compósito de matriz polimérica com fibra de vidro. O material compósito apresenta a resistência da fibra de vidro associado a flexibilidade do polímero.



#### **Compósitos**

- Os materiais compósitos são formados por mistura de 2 ou mais materiais das classe apresentadas anteriormente e suas propriedades são resultado dessa combinação
- Podem ser identificadas fisicamente pela interface que há entre eles.





## 4. CLASSIFICAÇÃO DOS MATERIAIS

#### SEMICONDUTORES:

- apresentam propriedades elétricas que são intermediárias entre metais e isolantes;
- as características elétricas são extremamente sensíveis à presença de pequenas quantidades de impurezas, cuja concentração pode ser controlada em pequenas regiões do material;
- os semicondutores tornaram possível o advento do circuito integrado que revolucionou as indústrias de eletrônica e computadores.



#### <u>Semicondutores</u>

- Condutividade elétrica intermediária
- ✓ Propriedades elétricas são extremamente sensíveis à pureza química dos elementos



Micro sistemas eletro-mecânicos (MEMS)



"wafer"de Si para chips de computador



## 4. CLASSIFICAÇÃO DOS MATERIAIS

#### BIOMATERIAIS:

- são empregados em componentes para implantes de partes em seres humanos;
- esses materiais não devem produzir substâncias tóxicas e devem ser compatíveis com o tecido humano (isto é, não deve causar rejeição);
- metais, cerâmicos, compósitos e polímeros podem ser usados como biomateriais.



## 5. PROPRIEDADES X PRODUÇÃO



# MATERIAIS SEMICONDUTORES

### Isolantes, Semicondutores e Metais

- Isolante é um condutor de eletricidade muito pobre;
- Metal é um excelente condutor de eletricidade;
- Semicondutor possui condutividade entre os dois extremos acima.



#### Semicondutores

O material básico utilizado na construção de dispositivos eletrônicos semicondutores, em estado natural, não é um bom condutor, nem um bom isolante.



### Silício e o Germânio

- O silício e o germânio são muito utilizados na construção de dispositivos eletrônicos.
- O silício e o mais utilizado, devido as suas características serem melhores em comparação ao germânio e também por ser mais abundante na face da terra.

### Temperatura, Luz e Impurezas

Em comparação com os metais e os isolantes, as propriedades elétricas dos semicondutores são afetadas por variação de temperatura, exposição a luz e acréscimos de impurezas.

### MODELOS ATÔMICOS DE BOHR

- ▶ O átomo é constituído por partículas elementares, as mais importantes para o nosso estudo são os elétrons, os prótons e os nêutrons.
- ▶ Camada de Valência A última camada eletrônica (nível energético) é chamada camada de valência. O silício e o germânio são átomos tetravalentes, pois possuem quatro elétrons na camada de valência.

# Materiais Semicondutores

### Átomo de Silício

 Grande estabilidade física e química em temperatura

 4 elétrons na órbita externa: valência 4





#### Camada de Valência



- O silício e o germânio são átomos tetravalentes, pois possuem quatro elétrons na camada de valência.
- O potencial necessário para tornar livre qualquer um dos elétrons de valência é menor que o necessário para remover qualquer outro da estrutura.
- Os elétrons de valência podem absorver energia externa suficiente para se tornarem elétrons livres.

## **Materiais Semicondutores**

Cristal de Silício

#### Monocristal: Silício Monocristalino

- estrutura regular e homogênea
- ligações covalentes
- material quimicamente estável

#### Em estado puro (intrínsico):

- mau condutor a temperatura ambiente
- isolante a baixas temperaturas

#### Aumento da temperatura:

- provoca quebra das ligações
- um elétron livre provoca a formação de um buraco
- ocorre a geração de pares elétrons-buracos



#### Corrente em Semicondutores

• Em um semicondutor intrínseco, tanto elétrons quanto lacunas contribuem para o fluxo de corrente.

o Elétrons livres de sua posição fixa no reticulado: movem-se

na banda de condução.

Elétrons na banda de valência: movem-se ocupando posições disponíveis no reticulado, preenchendo os vazios deixados pelos elétrons livres - Condução de lacunas migrando ao longo do material no sentido oposto ao movimento do elétron livre.



#### **MATERIAIS EXTRINSECOS**

- Dopagem A adição de certos átomos estranhos aos átomos de silício ou germânio, chamados de átomos de impurezas, pode alterar a estrutura de camadas (bandas) de energia de forma suficiente mudar as propriedades elétricas dos materiais intrínsecos.
- Material extrínseco Um material semicondutor que tenha sido submetido a um processo de dopagem por impurezas e chamado de material extrínseco.
- Esses materiais são chamados de: tipo N e tipo P.

### MATERIAL DOPADO TIPO N

- Um método de dopagem consiste na utilização de elementos contendo 5 elétrons na camada de valência (penta-valente), como o antimônio, arsênio e fósforo.
- O quinto elétron, porém, fica desassociado de qualquer ligação. Esse elétron pode tornar-se livre mais facilmente que qualquer outro, podendo nessas condições vagar pelo cristal.
- O material tipo N resultante, e eletricamente neutro.

### MATERIAL DOPADO TIPO P

- O material tipo P é formado pela dopagem do semicondutor intrínseco por átomos trivalentes como o boro, gálio e índio.
- Há agora um número insuficiente de elétrons para completar as ligações covalentes. A falta dessa ligação é chamada de lacuna ou (buraco).
- Como uma lacuna pode ser preenchida por um elétron, as impurezas trivalentes acrescentadas ao silício ou germânio intrínseco, são chamados de átomos aceitadores ou receptores.
- O material tipo P resultante é eletricamente neutro.

### Semicondutores dopados ou extrínsecos

- Impurezas pentavalentes: antimônio, arsênico, fósforo à produzem semicondutores do tipo-n, por contribuirem com elétrons extras (impurezas doadoras).
- Impurezas trivalentes: bóro, alumínio, gálio à produzem semicondutores do tipo-p, por produzirem lacunas ou deficiência de elétrons (impurezas

aceitadoras).



#### Grafeno

O grafeno é o material mais forte já demonstrado, consistindo em uma folha plana de átomos de carbonos densamente compactados em uma grade de duas dimensões.

Recentemente, empresas de <u>semicondutores</u> estiveram realizando testes a fim de substituir o <u>silício</u> pelo grafeno devido à sua altíssima eficiência em comparação ao silício.





#### Curiosidades.

- Em teoria, um processador, ou até mesmo um circuito integrado, poderia chegar a mais de 500 GHz. O silício, por sua vez, trabalha abaixo de 5 GHz.
- O uso de grafeno proporcionaria equipamentos cada vez mais compactos, rápidos e eficientes, mas o grafeno é tão bom condutor que ainda não se sabe como fazer com que pare de conduzir, formando assim o sitema binário.
- Os trabalhos revolucionários sobre o grafeno valeram o Nobel da Física de 2010.
- Uma das aplicações mais recentes do grafeno foi a criação em laboratório de supercapacitores, que podem ser utilizados em baterias e carregam mil vezes mais rápido que as baterias de hoje em dia.



### Estrutura de bandas de energia



#### Exercícios

- 1. Quais as principais classes de materiais usados em engenharia?
- 2. Lista alguns materiais normalmente encontrados em engenharia.
- 3. Defina o que são materiais conjugados ou compósitos.
- 4. Dê exemplos de materiais que foram substituídos por outros em determinadas aplicações industriais. Explique as razões de tais substituições.



- ▶ 5. Atualmente, diversos componentes de motores de combustão são confeccionados a partir de materiais cerâmicos. Qual a principal vantagem do emprego desses materiais neste caso?
- 6. Considere um computador moderno. Pesquise os novos materiais envolvidos na construção dos mesmos.

