#### **Text Classification**

Mehrdad Bozorg Student ID: 2911337



### Summery of research



- Topic
  - Hybrid Class Semantics Classifier (HCSC)

- Problem Definition
  - Given: Set of Documents
    - Consists of labeled  $(D^L)$  and unlabeled  $(D^U)$
    - Predefined Classes
  - Goal: Finding a classifier to assign label to unlabeled documents

## Main challenges



- Sparse data
  - Too many features for each document
    - Decrease efficiency
    - Decrease accuracy
- Semantic mismatching between documents
  - Word with different meaning in different contexts
  - Documents with different word sets, but the same concepts
- Lack of labeled data
  - Affects generality and accuracy

#### Proposed solution



- Preprocessing
  - To solve sparsity of data
- Semi-supervised learning classification
  - To solve lack of labeled data
- Semantic Kernel Method
  - To solve semantic mismatching

### Main steps of algorithm



- Preprocessing
- Calculation of Meaning Values
- Labeling
- Kernel Evaluation
- Classification

# Algorithm road map





### Preprocessing



- Stop-words Elimination
  - nltk.corpus is used
- Stemming
  - nltk.stem is used
- Infrequent words elimination
  - Threshold 3
- Feature Selection
  - Information Gain
  - 200 words selected

### Calculation of meaning values



- Semantic kernel method
  - Consider the importance of words in each class
    - Intensify the importance of core words for each class
    - Decrease the importance of general words for each class
- Class Meaning Kernel (CMK)
  - Use Helmholtz principle in Gestalt theory



#### CMK main steps



- Calculate Number of False Alarms (NFA) of events for words
  - Co-occurrence of m-tuples of words together with word w in the same document
  - (NFA < 1) indicates meaningless words</li>

- Compute Meaningfulness Matrix M
- $\forall d \in D^U$ : d.M indicates meaningfulness of d in each class
- Argmax(d.M) indicates label of d

#### Kernel evaluation



- Class Weighting Kernel (CWK)
  - Similar to TFIDF Method
  - Compute weight of each word in each class → Matrix W
  - $d_1WW^Td_2$  calculates similarity between  $d_1$  and  $d_2$

#### Classification



- Supervised learning algorithm
- Support Vector Machine Classifier
  - sklearn in python (Nusvc and SVC)
  - One-against-one method

## Experiment environment



| System Configuration |                       |  |
|----------------------|-----------------------|--|
| OS                   | Windows 7             |  |
| CPU                  | 1.8 GHz Intel core i3 |  |
| RAM                  | 4 GB                  |  |

Programming environment: Python 3.5

# Data set description



| Number of train set items      | 8158             |
|--------------------------------|------------------|
| Number of labeled data items   | 817              |
| Length of train set            | 1,883,279 words  |
| Number of unlabeled data items | 7342             |
| Number of test Set items       | 6960             |
| Number of Classes              | 15               |
| Data distribution              | Equal in classes |

# Testing and empirical results



| Proportion of labeled over unlabeled data | 1/9 |
|-------------------------------------------|-----|
| Proportion of Train set over Test set     | 8/7 |
| Expected precision                        | 0.9 |
| My best precision                         | 0.5 |

#Correct assigned label #Test set

#### **Future works**



- Designing a new algorithm by combining different method in each step of text classification
- Investigation of graph-based document representation

#### References



- [1] B. Altınel, M. C. Ganiz, A new hybrid semi-supervised algorithm for text classification with class-based semantics, J. Knowledge-Based Systems 108 (2016) 50–64.
- [2] B. Altınel, M. C. Ganiz, B. Diri, A corpus-based semantic kernel for text classification by using meaning values of terms, J. Engineering Applications of Artificial Intelligence43(2015)54–66.
- [3] B. Altınel, B. Diri, M. C. Ganiz, A novel semantic smoothing kernel for text classification with class-based weighting, J. Knowledge-Based Systems 89 (2015) 265–277.
- [4] A. K. Uysal, An improved global feature selection scheme for text classification, J. Expert Systems with Applications 43 (2016) 82–92.