Correlation

February 24, 2017

1 DGP

Model 1

$$y = 3x_1^2x_5^2 + x_3 + 3.5x_4^2 + 3.2x_1 + 7x_2^3 + \varepsilon,$$

$$(x_1, \dots, x_5) \stackrel{D}{\sim} \mathcal{N}(0, I_5). \ x_j = d_j + q\left(\sum_{i=1}^5 x_i\right), \ d_j\text{'s are i.i.d. } \mathcal{N}(0, 1), \ p \ge j > 5.$$

Model 2

$$y = 3.1x_1x_2 + 4.1\sin(x_3x_4) - 3.7x_5 - 4.2x_2 + \varepsilon,$$

$$(x_1, \dots, x_5) \stackrel{\mathcal{D}}{\sim} \mathcal{N}(0, I_5). \ x_j = d_j + q\left(\sum_{i=1}^5 x_i\right), \ d_j\text{'s are i.i.d. } \mathcal{N}(0, \sqrt{0.25}), \ p \ge j > 5.$$

Results

 $n=600, R=30, p=1000, q=(3/20)^{1/2}$, all relevent variables were retrieved in every case.

2 Algorithm

step1

Set $K_n = 10$. Grouped OGA to order 4 on y; expanding $x_{\hat{j}_{1i}}$, $i = 1, ..., K_n$ to fourth order (polynomial); run the OGA + HDIC + Trim on y and this expended data set and get subset A_1 as well as the corresponding residual \hat{y}_1 .

step2

Find the grouped OGA path of length K_n for \hat{y}_1 , denoting them as $x_{\hat{j}_{2i}}$, $i = 1, ..., K_n$; union these K_n variables and \mathcal{A}_1 and expand them to order 4 polynomials; run the OGA + HDIC + Trim on y(note this) and get subset \mathcal{A}_2 as well as the corresponding residual \hat{y}_2 .

step3

Ideally, we need to find a rule for stopping these procedure so we can move on to y^2 . Let's pretend we did it.

step4

Find the grouped OGA path of length K_n for \hat{y}_2^2 , denoting them as $x_{\hat{j}_{3i}}$, $i = 1, ..., K_n$; union these K_n variables and A_2 and expand them to order 4 polynomials; run the OGA + HDIC + Trim on y(note this) and get subset A_3 as well as the corresponding residual \hat{y}_3 .

step5

Again, here we need to find another rule to stop the procedure for y^2 , and this should be the end of the while procedure. The last A_3 is reported.

Remark. In our cases, all relevent variables are included and no further gain in fitting power for antoher round. Step 2 is reuqired, however.