2.2 Thm. Ist $f: X \to \mathbb{R}$ eine stetige Funktion so gilt für jede konvergente Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \in X$ für alle n und

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n).$$

2.3 Thm. Komposition, Produkt, Quotient und Summe stetiger Funktion sind stetige Funktionen.

2.4 Thm. Die folgenden Funktionen sind stetig:

- (a) Polynomialfunktionen und ihre Quotienten.
- (b) Funktionen $f(x) = x^a$ mit $a \in \mathbb{R}$ auf $(0, +\infty)$
- (c) Exponentialfunktionen $f(x) = a^x$ mit a > 0,
- (d) Logarithmische Funktionen $f(x) = \log_a x$ mit a > 0 und $a \neq 1$,
- (e) Sinus, Kosinus, Tangens
- (f) Arcus Sinus, Arcus Kosinus, Arcus Tangens.

2.5 Def (Rechtsseitiger Grenzwert einer Funktion). Sei $f: X \to \mathbb{R}$ Funktion auf $X \subseteq \mathbb{R}$ und $a \in \mathbb{R}$ Häufungspunkt von $X \cap [a, +\infty)$. Man nennt f konvergent für $x \to a+$, wenn ein Wert $y \in \mathbb{R}$ existiert mit der Eigenschaft, dass für jedes $\epsilon > 0$ ein $\delta > 0$ existiert, sodass für alle $x \in X$ mit $a < x < a + \delta$ die Ungleichung $|f(x) - y| < \epsilon$ erfüllt ist.

Den Wert nennt man den rechtsseitigen Grenzwert und bezeichnet als

$$y = \lim_{x \to a+} f(x).$$

Bsp.

Lim
$$xgn = 1$$
 $x \rightarrow 0+$
 $x \rightarrow 0+$

$$\lim_{x\to\infty} \frac{\sin x + 2|x|}{3x - |x|} = \lim_{x\to\infty} \frac{\sin x + 2x}{3x - x}$$

$$= \lim_{x\to\infty} \left(\frac{\sin x + 2x}{3x - x}\right)$$

2.6 Def (Linksseitiger Grenzwert einer Funktion). Sei $f: X \to \mathbb{R}$ Funktion auf $X \subseteq \mathbb{R}$ und $a \in \mathbb{R}$ ein Häufungspunkt von $X \cap (-\infty, a]$. Der rechtsseitiger Grenzwert

$$y = \lim_{x \to a-} f(x)$$

ist ein Wert y mit der Eigenschaft, dass für jedes $\epsilon > 0$ ein $\delta > 0$ existiert, sodass für alle $x \in X$ mit $a - \delta < x < a$ die Ungleichung $|f(x) - y| < \epsilon$ erfüllt ist.

2.7.

(a) Alternative Bezeichnungen:

$$x\downarrow a$$
 an der Stelle von $x\to a+$ und $x\uparrow a$ an der Stelle von $x\to a^-$

(b) Bestimmte Divergenz gegen ∞ und $-\infty$ für $x \to a+$ und $x \to a^-$ kann analog zur bestimmten Divergenz für $x \to a$ eingeführt werden.

- **2.8 Thm** (Beschreibung der Konvergenz über die rechts- und linksseitige Konvergenz). *Sei* $f: X \to \mathbb{R}$ und a ein Häufungspunkt von $X \cap [a, +\infty)$ und $(-\infty, a] \cap X$. Dann sind die folgenden Bedingungen äquivalent:
 - (i) f(x) ist konvergent für $x \to a$.
 - (ii) f(x) ist konvergent für $x \to a+$ und für $x \to a-$, und es gilt $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$.

Gegebenenfalls gilt $\lim_{x\to a} f(x) = \lim_{x\to a+} f(x) = \lim_{x\to a-} f(x)$.

2.9 Bsp.

$$\lim_{x \to 0+} \arctan \frac{1}{x} = \frac{\pi}{2},$$

$$\lim_{x \to 0-} \arctan \frac{1}{x} = -\frac{\pi}{2}.$$

 $\Rightarrow f(x)$ ist divergent für $x \to 0$.

2.10 Def. Eine Menge $M \subseteq \mathbb{R}$, die beschränkt und abgeschlossen ist, nennt man **kompakt**.

2.11 Bsp.

(a) [a, b] ist kompakt für alle $a, b \in \mathbb{R}$ mit $a \leq b$.

2.12 Thm (Satz von Weierstraß). Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion auf einem kompakten Intervall. Dann erreicht die Funktion f auf [a,b] ihr Minimum und Maximum. Das heißt, es gibt $s,t\in\mathbb{Z}$ mit $f(s)\leq f(x)\leq f(t)$ für alle $x\in[a,b]$.

(G, b)

2.13 Thm (Zwischenwertsatz). Sei $f:[a,b]\to\mathbb{R}$ stetige Funktion auf einem Intervall [a,b] mit $a,b\in\mathbb{R}$ und a< b. Sei $f(a)\leq y\leq f(b)$ oder $f(b)\leq y\leq f(a)$. Dann existiert ein $\xi\in[a,b]$ mit $f(\xi)=y$.

2.14. Der Beweis vom Zwischenwertsatz basiert auf einem konstruktiven Ansatz. Man kann den Suchraum für ξ iterativ halbieren.

Beneis dieses Theorem ist algorithmisch. man Rann en solches & beliebig gut apporkimillen. Dichotomic - Apporxionation. Mit dem goldenen Shnitt – ehr noll besisse Approximation. Voskile désses Metroder: heres skolen brænsceklinger en & skrighet !

3 Asymptotisches Verhalten

3.1 Def. Eine Teilmenge M von \mathbb{R} heißt

- (a) **nach oben beschränkt**, wenn für eine Konstante $C \in \mathbb{R}$ die Ungleichung $x \leq C$ für alle $x \in M$ erfüllt ist.
- (b) **nach unten beschränkt**, wenn für eine Konstante $c \in \mathbb{R}$ die Ungleichung $x \geq c$ für alle $x \in M$ erfüllt ist.
- (c) **beschränkt**, wenn M nach oben und nach unten beschränkt ist.

3.2 Def. Sei $f:X\to\mathbb{R}$ Funktion auf einer Menge X, die nach oben nicht beschränkt ist. Mann nennt y den Grenzwert der Funktion f(x) für $x\to\infty$, wenn für jedes $\epsilon>0$ ein $N\in\mathbb{R}$ existiert, für welches die Ungleichung $|f(x)-y|\le\epsilon$ für alle $x\in X$ mit $x\ge N$ erfüllt ist. Schreibwiese: $\lim_{x\to\infty}f(x)=y$.

Malog sam Grenzweit liver Folge.

3.3 Def. Sei $f:X\to\mathbb{R}$ Funktion auf einer Menge X, die nach unten nicht beschränkt ist. Mann nennt y den Grenzwert der Funktion f(x) für $x\to-\infty$, wenn für jedes $\epsilon>0$ ein $M\in\mathbb{R}$ existiert, für welches die Ungleichung $|f(x)-y|\le\epsilon$ für alle $x\in X$ mit $x\le M$ erfüllt ist. Schreibwiese: $\lim_{x\to-\infty}f(x)=y$.

Paspilget « in Vergleich 2 m 3.2.

3.4 Bsp.

- (a) $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$. Wir hatten bereits ein solches Beispiel mit einer Variablen n aus \mathbb{N} . Nun haben wir eine Variable x, die innerhalb der <u>reellen</u> Zahlen gegen ∞ geht.
- (b) $\lim_{x\to\infty} \arctan x = \frac{\pi}{2}$
- (c) $\lim_{x\to-\infty} \arctan x = -\frac{\pi}{2}$

Tobo: GeoGebra
insklieren um whe
Pildes zughnerieren
Cond dehn di
Tikz Enspheleen!

Kapitel III

Differentialrechnung I

Differentialrechnung für Funktionen einer Variablen

1 Ableitung

1.1 Def (Ableitung). Sei $f: X \to \mathbb{R}$ und $a \in X$ Häufungspunkt von X. Man nennt f differenzierbar in a, wenn ein endlicher Grenzwert

$$f'(a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existiert. Man nennt f'(a) die **Ableitung** von an der Stelle a. Somit ist die **Ableitung** f' eine Funktion auf der Menge aller $a \in X$, in deren die Funktion f differenzierbar ist.

1.2. Wenn man h = x - a an der Stelle von x benutzt, kann man die Formel für die Ableitung als

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

umschreiben.

Man schreibt auch in manchen Quellen & die Formel für die Koleihung so hins

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

 $\operatorname{mit} \, \Delta f := f(x + \Delta x) - f(x). \, \operatorname{Hierbei} \, \operatorname{ist}$

 Δx eine (beliebig klein werdende) Änderung von x und

 Δf die entsprechende Änderung von f bzgl. einer festen Stelle x.

 $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$ Quokient des Audes and des Audes and Audes als and Audes als vertes des von f bzgl. einer festen Stelle x.

Ist als ein Variabless namer aufzagnesser.

151

1.3 (Leibniz-Notation für die Ableitung und Differentiale). Leibniz hat die Ableitung als einen formalen Quotienten geschrieben

$$\frac{\mathrm{d} f}{\mathrm{d} x} = f'(x).$$

Motivation zu dieser Bezeichnung: die Ableitung ist der Grenzwert eines Quotienten. Diese Gleichung kann man auch formal and als

$$df = f'(x) dx$$
 and from law.

Hierbei nennt man df Differential von f und dx Differential von x. Das sind formale Symbole. Die intuitive Bedeutung dieser Gleichung ist:

$$\Delta f \approx f'(x) \Delta x.$$

Das Vorige Bedeutet: $\Delta f = f'(x)\Delta x + o(\Delta x)$ mit $\frac{o(\Delta x)}{\Delta x} \to 0$ für $\Delta x \to 0$.

1.4 (Approximation, Tangente). Die (affin)lineare Funktion f(a)+f'(a)(x-a) hat den gleichen Wert und die gleiche Ableitung in a wie die Funktion f. Mit Hilfe des Wertes f(a) von f an der Stelle f und der Ableitung von f an der Stelle g erhält man eine Approximation der Funktion f in einer kleinen Umgebung der Stelle g.

Geometrisch gesehen, beschreibt y=f(a)+f'(a)(x-a) den Graphen der Tangente zum Graphen von f an der Stelle (a,f(a)).

1.5.

- (a) Ist $f(t) \in \mathbb{R}$ die Position eines Objekts zum Zeitpunkt $t \in \mathbb{R}$, dann ist f'(t) die Geschwindigkeit des Objekts im Zeitpunkt t.
- (b) Hat man auf der reellen Achse einen Stab [0,L] der Länge L>0, bei dem die Masse des Abschnitts [0,x] für 0< x< L gleich m(x) ist, dann ist die Ableitung $\rho(x)=m'(x)$ die (lineare) Dichte im Punkt x.

- 1.6 Bsp. Wir berechnen einige Ableitungen direkt aus der Definition.
 - (a) Quadratische Funktion:

$$(x^2)' = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x+h) = 2x.$$

(b) Quadratische Wurzel:

$$(\sqrt{x})' = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

Die Wurzel im Nenner stört, daher wir der Bruch mit $\sqrt{x+h} + \sqrt{x}$ ergänzt, um von der Wurzel im Zähler loszuwerden. Mit der Verwendung der dritten binomischen Formel erhalten wir dann

$$(\sqrt{x})' = \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

Hierbei sollen wir voraussetzen, dass man x > 0 hat.

(c) Die Funktion 1/x:

$$(1/x)' = \lim_{h \to 0} \frac{1/(x+h) - 1/x}{h}.$$

Es bietet sich an, den Quotienten unter dem Grenzwert durch die Erweiterung mit (x+h)x zu svereinfachen:

$$(1/x)' = \lim_{h \to 0} \frac{x - (x+h)}{h(x+h)x} = \lim_{h \to 0} -\frac{1}{(x+h)x} = -\frac{1}{x^2}.$$

Hierbei sollen wir $x \neq 0$ voraussetzen.

1.7 Thm. Jede differenzierbare Funktion ist stetig, aber im Allgemeinen nicht umgekehrt.

Bereis geter.

1.8 Bsp. |x| ist stetig aber in 0 nicht differenzierbar. Es gibt Beispiele von Funktionen, die auf \mathbb{R} stetig aber an keiner Stelle differenzierbar sind.

- **1.9 Thm** (Rechenregeln für Differenzierbarkeit). Für differenzierbare Funktionen f und g gelten die folgenden Regel:
 - (a) Linearität: $(\alpha f + \beta g)' = \alpha f' + \beta g'$ mit $\alpha, \beta \in \mathbb{R}$
 - (b) Produktregel: (fg)' = f'g + fg'
 - (c) Quotientenregel: $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$
 - (d) Kettenregel: $(f \circ g)' = (f' \circ g)g'$.

1.10. Intuition hinter der Produktregel:

$$\Delta(fg) = (f + \Delta f)(g + \Delta g) - fg$$
$$= (\Delta f)g + f(\Delta g) + (\Delta f)(\Delta g).$$

Wenn Δf und Δg klein sind, dann ist $(\Delta f)(\Delta g)$ noch kleiner (zu klein). Wenn man durch Δx teilt, und dann Δx gegen 0 schickt, erhält man

$$(fg)' = f'g + fg'.$$

1.11 Bsp (zu Produktregel).

$$(x^2 \sin x)' = (x^2)' \sin x + x^2 (\sin x)'$$
 | Produktregel
= $2x \sin(x) + x^2 \cos(x)$. | Formeln für $(x^2)'$ and $(\sin x)'$

Abletungsrechnes und wieso onan sie onanchonal dech verneiden soll.

1.12. Intuition hinter der Quotientenregel:

Wenn man durch Δx teilt und dann Δx gegen 0 schickt, erhält man:

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

1.13 Bsp (zu Quotientenregel).

$$\left(\frac{\sin x}{x^2}\right)' = \frac{(\sin x)'x^2 - \sin x(x^2)'}{(x^2)^2}$$
$$= \frac{x^2 \cos x - 2x \sin x}{x^4}$$
$$= \frac{x \cos x - 2x \sin x}{x^3}.$$

1.14 Bsp (Intuition hinter der Kettenregel an einem Beispiel). Wir berechnen die Ableitung von $z(x) = \sin(x^2)$, wie es Leibniz gemacht hätte. Man hat $z = \sin y$ und $y = x^2$.

$$\frac{\mathrm{d}\,z}{\mathrm{d}\,x} = \frac{\mathrm{d}\,z}{\mathrm{d}\,y} \cdot \frac{\mathrm{d}\,y}{\mathrm{d}\,x}.$$
 (Ableitung ist "Quotient", wir ergänzen formal)
$$= (\frac{\mathrm{d}}{\mathrm{d}\,y}\sin y) \cdot (\frac{\mathrm{d}}{\mathrm{d}\,x}x^2)$$

$$= (\cos y) \cdot (2x)$$

$$= (\cos x^2) \cdot (2x)$$

$$= 2x \cos x^2.$$

Wie man es sonst schreibt is:

$$(\sin x^2)' = (\cos x^2) \cdot (x^2)' = (\cos x^2) \cdot (2x) = 2x \cos x^2.$$