Minimzing MSE for Linear Models

BACK TO. 2-5 NOTES PAGE 2 Complexity of solving equations or finding matrix inverse is $O(Nd^2 + d^3)$

Minimizing MSE for Non-Linear Equations

 $MSE(\theta)$ is concave so you can use gradient descent:

$$\theta^{new} = \theta^{current} - stepSize * gradient(MSE)$$

Stochastic Gradient Descent can also be used, faster but noisier

Probabilistic Interpretation of Regression

p(y|x): for fixed x, there is variation in y 2 types of variation: - Measurement noise - Unobserved Variables 2 sources of variability: p(y|x): variability in y given x p(x): distribution of input data in the space We have a joint distribution: p(x,y) = p(y|x)p(x) and we learn p(y|x)

Modeling Framework

 $y_x = E[y|x] + e$ where

 y_x : what we observe

E[y|x]: what we try to learn with $f(x,\theta)$

e: unpredictable error term

Simple Model:

$$p(y|x) = N(f(x,\theta),\sigma^2)$$
 where $f(x,\theta) = \theta^T x$

Conditional Likelihood for Regression

$$L(\theta) = \prod p(y_i|x_i,\theta)$$

As an example, we can use a Gaussian model for $p(y|x, \theta)$.

This will give us

$$p(y|x,\theta) = \frac{1}{\sigma\sqrt{2\pi}}exp(-\frac{1}{2\sigma^2}(y - f(x,\theta))^2)$$

This equation comes from the fact that $E[y|x] = f(x,\theta)$. After doing some algebra

$$logL(\theta) \propto -MSE(\theta)$$

Thus maximizing log likelihood is the same as minimizing MSE. This gives us a useful framework to go beyond.

Bayesian View of Regression

Posterior Density on θ is:

$$p(\theta|D_x, D_y) \propto p(D_x, D_y|\theta)p(\theta) = p(D_y|D_x, \theta)p(D_x|\theta)p(\theta)$$

$$p(\theta|D_x, D_y) \propto p(D_y|D_x, \theta)p(\theta)$$

This is because we do not model $p(D_x|\theta)$

TODO: BACK TO GAUSSIAN ERROR MODEL IN 2-19 NOTES

Properties of Minimizing MSE

Because of this fact:

$$MSE(\theta) = \int \int (y - f(x; \theta))^2 p(x, y) dx dy$$

It eventually (**TODO: make sure you can derive this. 2-19 notes**) holds that the optimal value is when $f(x;\theta) = E[y_x]$.

We are limited because

Bias: $f(x, \theta)$ might not be able to exactly approximate $E[y_x]$

Variance: Even if so, only have finite data to learn $E[y_x]$

Tradeoff exists between complex model with low bias but high variance and

simple model with high bias and low variance

Bias-Variance Tradeoff

TODO: DERIVE THIS FROM 2-19 NOTES Eventually we have $MSE_x = \sigma_{yx}^2 + Bias^2 + Variance$ This leads to the fundamental bias-variance tradeoff

- simple models with few parameters have high bias, but low variance
- complex models with many parameters have low bias, but high variance