King Abdulaziz University

Mechanical Engineering Department

MEP 460 Heat Exchanger Design

Double pipe heat Exchanger

Feb. 2019

Ch. 7 Double pipe heat exchangers

- 1-Introduction
- 2-Advantages and disadvantages of double pipe HX
- 3-Double pipe HX geometry
- 4-Unfinned outside surface of inner pipe
- 5-Example 7.1
- 6-Finned outer surface of the inner pipe
- 7-Example 7.2
- 8-Series & parallel combination of hairpins HX
- 9-Total pressure drop in double pipe HX

1-Introduction

Tubular Heat Pipe Configurations of Inner Tubes

Hairpin double pipe heat exchangers

1-Introduction

Double-pipe hairpin sections—Available in both finned and bare tube designs. Shell sizes range from 2" to 6" IPS. Applications: Ideal for all severe operating conditions. A simple, low-cost section is also available for standard petroleum, petrochemical or chemical service.

Finned and un-finned double pipe heat exchangers

Cross section view of bare tubes inside shell

Cross section view of fintubes inside shell

Multi tube double pipe heat exchangers

Multi-tube hairpin sections—Available in both finned and bare tube designs. Shell sizes range from 3" to 16" IPS. Applications: Designs are available to meet most heat exchanger requirements; from heating heavy oils and asphalts to light chemicals, gasoline, butanes, and other hydrocarbons. Also available are designs for high-pressure-gas heat transfer and for processing lethal or hard-to-contain fluids and gases such as hydrogen, dowhterm and acids.

2-Advantages and disadvantages of double pipe heat exchanges

advantages

Good for sensible heating or cooling

Up to 50 ² heat transfer area

Good for one or two fluids at high pressure

Can be used at severe fouling condition since it can easily be

cleaned

Can achieve pure parallel or counter flow arrangement

U tube or hairpin heat exchanger can handle thermal

expansion

Extra units can be easily added

Disadvantages

Bulky

Expensive

3-Double pipe geometry

Cross section area for annulus flow

$$A_c = \left(\frac{\pi}{4}\right) \left[D_i^2 - d_o^2\right]$$

Hydraulic diameter for heat transfer calculations and pressure drop calculations for annulus flow

D_e for heat transfer calculations

By definition the hydraulic diameter

$$D_h = \frac{4 \text{ min. flow area}}{\text{wetted premiter}}$$

Perimeter for heat transfer calculations

$$P_h = \pi d_o$$

Hydraulic diameter for heat transfer calculations

$$D_e = \frac{4A_c}{P_h} \qquad A_c = \left(\frac{\pi}{4}\right) \left[D_i^2 - d_o^2\right]$$

$$D_e = \frac{4(\pi D_i^2/4 - \pi d_o^2/4)}{\pi d_o} = \frac{D_i^2 - d_o^2}{d_o} \qquad Nu = \frac{hD_e}{k}$$

Annulus flow velocity

$$V_a = \frac{\dot{m}_a}{\rho_a A_c} \qquad R_{e_a} = \left(\frac{\rho_a V_a D_h}{\mu_a}\right)$$

Hydraulic diameter for heat transfer calculations and pressure drop calculations for annulus flow

D_h for pressure drop calculations

Perimeter for pressure drop calculations

$$P_w = \pi(D_i + d_o)$$

Cross section area

$$A_c = (\pi/4)(D_i^2 - d_o^2)$$

Hydraulic diameter for pressure calculations

$$D_h = \frac{4A_c}{P_w}$$

$$D_h = \frac{4(\pi D_i^2/4 - \pi d_o^2/4)}{\pi (D_i + d_o)} = D_i - d_o$$

$$Re_{Dh} = \frac{\rho_a V_a D_h}{\mu_a}$$

Pressure drop calculations

Inside the tubes

$$\Delta p_t = f \frac{2L}{d_i} \rho \frac{u_m^2}{2} N_{hp} = f \frac{2L}{d_i} \frac{G^2}{2\rho} N_{hp}$$

Pumping power

$$P_t = \frac{\Delta p_t \dot{m}_t}{\eta_p \rho}$$

Flow in the annulus

$$\Delta P_a = f \frac{2L}{D_h} \rho \frac{u_a^2}{2} N_{hp}$$

Assuming the length of hairpin HX to be L

Pumping power

$$P_a = \frac{\Delta p_a \dot{m}_a}{\eta_p \rho}$$

 N_{hp} is the number of hairpins HX

Example 7.1

Example 7.1

Water at a flow rate of 5,000 kg/h will be heated from 20°C to 35°C by hot water at 140°C. A 15°C hot water temperature drop is allowed. A number of 3.5 m hairpins of 3 in. (ID = 0.0779 m) by 2 in. (ID = 0.0525 m, OD = 0.0603 m) counterflow double-pipe heat exchangers with annuli and pipes, each connected in series, will be used. Hot water flows through the inner tube. Fouling factors are: R_{fi} = 0.000176 m² · K/W, R_{fo} = 0.000352 m² · K/W. Assume that the pipe is made of carbon steel (k = 54 W/m · K). The heat exchanger is insulated against heat losses.

- 1. Calculate the number of hairpins.
- 2. Calculate the pressure drops.

Inner tube side heat transfer coefficient—First calculate the Reynolds number to determine if the flow is laminar or turbulent.

From the appendix, the properties of hot water at $T_b = 132.5$ °C are

$$\rho = 932.53 \text{ kg/m}^3$$
, $c_p = 4.268 \text{ kJ/kg} \cdot \text{K}$
 $k = 0.687 \text{ W/m} \cdot \text{K}$, $\mu = 0.207 \times 10^{-3} \text{ Pa} \cdot \text{s}$
 $Pr = 1.28$

The hot water mass flow rate is calculated as follows:

$$Q = (\dot{m}c_p)_c \Delta T_c = (\dot{m}c_p)_h \Delta T_h$$

$$\dot{m}_h = \frac{(\dot{m}c_p)_c \Delta T_c}{c_p \Delta T_h} = \frac{(5,000/3,600) \times 4.179 \times (35-20)}{4.268 \times (15)} = 1.36 \text{ kg/s}$$

The hot water mass flow rate is calculated as follows:

$$Q = (\dot{m}c_p)_c \Delta T_c = (\dot{m}c_p)_h \Delta T_h$$

$$\dot{m}_h = \frac{(\dot{m}c_p)_c \Delta T_c}{c_p \Delta T_h} = \frac{(5,000/3,600) \times 4.179 \times (35-20)}{4.268 \times (15)} = 1.36 \text{ kg/s}$$

where $c_p = 4.179 \text{ kJ/kg} \cdot \text{K}$ for cold water at $T_b = 27.5^{\circ}\text{C}$. The velocity and Reynolds number are calculated as follows:

$$u_{m} = \frac{\dot{m}_{h}}{\rho_{h} A_{c}} = \frac{1.36}{(932.53) \left(\frac{\pi}{4}\right) (0.0525)^{2}} = 0.673 \text{ m/s}$$

$$Re = \frac{\rho u_{m} d_{i}}{\mu} = \frac{4 \dot{m}_{h}}{\pi \mu d_{i}} = \frac{4 \times 1.36}{\pi \times 0.207 \times 10^{-3} \times 0.0525} = 159,343$$

Hence, the flow is turbulent; a correlation can be selected from Chapter 3. Prandtl's correlation is used here with constant properties:

To determine the heat transfer coefficient in the annulus, the following properties at $T_b = 27.5$ °C from the appendix are used:

$$\rho = 996.4 \text{ kg/m}^3$$
, $c_p = 4.179 \text{ kJ/kg} \cdot \text{K}$
 $k = 0.609 \text{ W/m} \cdot \text{K}$, $\mu = 8.41 \times 10^{-6} \text{ Pa} \cdot \text{s}$
 $Pr = 5.77$

The velocity of cold water, u_m , through the annulus is calculated:

$$u_{m} = \frac{\dot{m}}{A_{c}\rho} = \frac{5,000/3,600}{\frac{\pi}{4}(0.0779^{2} - 0.0603^{2})(996.4)} = 0.729 \text{ m/s}$$

$$D_{h} = \frac{4A_{c}}{P_{w}} = D_{i} - d_{o} = 0.0779 - 0.0603 = 0.0176 \text{ m}$$

$$Re = \frac{\rho u_{m}D_{h}}{u} = \frac{996.4 \times 0.729 \times 0.0176}{0.841 \times 10^{-3}} = 15,201$$

Therefore, the flow is turbulent. Prandtl's correlation is also used for the annulus:

$$f = (3.64 \log_{10} Re_b - 3.28)^{-2} = [3.64 \log_{10} (15,201) - 3.28]^{-2} = 7.021 \times 10^{-3}$$

 $f/2 = 3.51 \times 10^{-3}$

$$Nu_b = \frac{(f/2)(Re_b)Pr_b}{1 + 8.7(f/2)^{1/2}(Pr_b - 1)}$$

$$Nu_b = \frac{(3.51 \times 10^{-3})(15,201)(5.77)}{1 + 8.7(3.51 \times 10^{-3})^{1/2}(5.77 - 1)} = 89.0$$

$$Nu_b = \frac{(f/2)(Re_b)Pr_b}{1 + 8.7(f/2)^{1/2}(Pr_b - 1)}$$

where

$$f = (1.58 \ln Re - 3.28)^{-2}$$

= $[1.58 \ln (1,59,343) - 3.28]^{-2}$
= 4.085×10^{-3}

$$Nu_b = \frac{(0.004085/2)(1,59,343)(1.28)}{1+8.7\left(\frac{0.004085}{2}\right)^{1/2}(1.28-1)} = 375.3$$

$$h_i = \frac{Nu_b k}{d_i} = \frac{375.3 \times 0.687}{0.0525} = 4911 \text{ W/m}^2 \cdot \text{K}$$

To determine the heat transfer coefficient in the annulus, the following properties at $T_b = 27.5$ °C from the appendix are used:

The equivalent diameter for heat transfer, from Equation 7.7, is

$$D_e = \frac{D_i^2 - d_o^2}{d_o} = \frac{0.0779^2 - 0.0603^2}{0.0603} = 0.0403 \text{ m}$$

and

$$h_o = \frac{Nu_b k}{D_e} = \frac{89.0 \times 0.609}{0.0403} = 1345 \text{ W/m}^2 \cdot \text{K}$$

The overall heat transfer coefficient based on the outside area of the inner tube is

$$\frac{1}{U_f} = \frac{d_o}{d_i h_i} + \frac{d_o R_{fi}}{d_i} + \frac{d_o \ln(d_o/d_i)}{2k} + R_{fo} + \frac{1}{h_o}$$

$$= \frac{0.0603}{0.0525 \times 4,911} + \frac{0.0603 \times 1.76 \times 10^{-4}}{0.0525}$$

$$+ \frac{0.0603 \ln(\frac{603}{525})}{2 \times 54} + 3.52 \times 10^{-4} + \frac{1}{1345}$$

$$U_f = 622 \text{ W/m}^2 \cdot \text{K}$$

The heat transfer surface area can be calculated as follows:

The heat transfer surface area can be calculated as follows:

$$A_o = \frac{Q}{U_o \Delta T_m}$$

$$\Delta T_m = \Delta T_1 = \Delta T_2 = 105$$
°C

The heat duty of the heat exchanger is

$$Q = (\dot{m}c_p)_c \Delta T_c = 1.389 \times 4.179 \times 15 = 87.1 \text{ kW}$$

So,

$$A_o = \frac{87.1 \times 1,000}{622 \times 105} = 1.33 \text{ m}^2$$

The heat transfer area per hairpin is

$$A_{hp} = 2\pi d_o L = 2\pi \times 0.0603 \times 3.5 = 1.325 \text{ m}^2$$

$$\frac{A_o}{A_{hv}} = \frac{1.33}{1.325} = 1$$

Therefore, the number of the hairpins, N_{hp} , equals 1.

To determine the pressure drop in the tube side, the frictional pressure drop can be calculated from Equation 4.16:

$$\Delta p_t = 4f \frac{2L}{d_i} N_{hp} \frac{\rho u_m^2}{2}$$

$$\Delta p_i = 4 \times 4.085 \times 10^{-3} \frac{2 \times 3.5}{0.0525} \times 1 \times 932.53 \frac{(0.673)^2}{2} = 460.1 \text{ Pa}$$

To calculate the pumping power for the tube stream, Equation 4.19 for pumping power is used:

$$P_t = \frac{\Delta p_t \cdot \dot{m}_h}{\eta_p \rho_h} = \frac{460.1 \times 1.36}{0.80 \times 932.33} = 0.84 \text{ W}$$

For pressure drop in the annulus side,

$$\Delta p_a = 4f \frac{2L}{D_h} \rho \frac{u_m^2}{2} N_{hp}$$

$$\Delta p_a = 4 \times 7.02 \times 10^{-3} \frac{2 \times 3.5}{0.0176} \times 996.41 \frac{(0.719)^2}{2} \times 1 = 2876.4 \text{ Pa}$$

The clean heat transfer coefficient based on the outside heat transfer area is

$$\frac{1}{U_c} = \frac{d_o}{d_i h_i} + \frac{d_o \ln(d_o/d_i)}{2k} + \frac{1}{h_o}$$

$$= \frac{0.0603}{0.0525 \times 4,911} + \frac{0.0603 \ln(603/525)}{2 \times 54} + \frac{1}{1345}$$

$$U_c = 948 \text{ W/m}^2 \cdot \text{K}$$

The cleanliness factor can also be calculated

$$CF = \frac{U_f}{U_c} = \frac{622}{948} = 0.66$$

as can be the percentage over surface:

$$OS = 100U_c R_{ft}$$

$$R_{ft} = \frac{1 - CF}{U_c CF} = \frac{1 - 0.66}{948 \times 0.66} = 0.543 \times 10^{-3} \text{ m}^2 \cdot \text{K/W}$$

$$OS = 100 \times 948 \times 0.543 \times 10^{-3} = 51.5\%$$

Kakac used expression for finding the heat transfer coefficient for both inside the pipe and in the annulus See Ch. 3 & 4

$$Nu_b = \frac{(f/2)Re_b Pr_b}{1 + 8.7(f/2)^{1/2} (Pr_b - 1)}$$

Based on three-layer turbulent boundary layer model, Pr > 0.5

$$f = (1.58 \ln Re_b - 3.28)^{-2}$$

Valid for $2,300 < Re_b < 5 \times 10^6$ and $0.5 < Pr_b < 2,000$

Or in log form

$$f = (3.64 \log_{10} Re_b - 3.28)^{-2}$$

$$\Delta p_t = 4f \frac{2L}{d_i} N_{hp} \frac{\rho u_m^2}{2}$$

For hairpin of length L.

Remember f=f_{Kakac}/4

Incropera Expression for turbulent flow heat transfer coefficient

$$Nu_D = \frac{(f/8)(Re_D - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$$

(8.62)^d Turbulent, fully developed,
$$0.5 \le Pr \le 2000$$
, $3000 \le Re_D \le 5 \times 10^6$, $(L/D) \ge 10$

$$f = (0.790 \text{ In } Re_D - 1.64)^{-2}$$

Turbulent, fully developed, smooth walls, $3000 \le Re_D \le 5 \times 10^6$

$$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$$

(8.20)^c Turbulent, fully developed

$$Nu_D = 0.023 \, Re_D^{4/5} \, Pr^n$$

(8.60)^d Turbulent, fully developed,
$$0.6 \le Pr \le 160$$
, $Re_D \ge 10,000$, $(L/D) \ge 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$

6-Finned outer surface of the inner pipe

 $\mbox{H}_{\mbox{\scriptsize f}}$ fin height δ Fin thickness $\mbox{N}_{\mbox{\scriptsize f}}$ no of fins per tube

N_t no of tubes

Hairpin Heat exchanger with multi-tube finned inner pipe

The wetted perimeter for hydraulic diameter

$$P_w = \pi (D_i + d_o N_t) + 2H_f N_f N_t$$

For calculating the heat transfer equivalent diameter

$$P_h = (\pi d_o + 2H_f N_f) N_t$$

Cross section flow area

$$A_c = \frac{\pi}{4} \left(D_i^2 - d_o^2 N_t \right) - \delta H_f N_t N_f$$

$$4A_c \qquad 4A_c$$

Symbol	meaning
N _t	Number of tubes
N_{f}	Number of fins/tube
H _f	Fin height
δ	Fin thickness
L	Heat exchanger length

6-Finned outer surface of the inner pipe

Area of the un-finned part $A_u = 2N_t(\pi d_o L - N_f L\delta)$

Area of the fins

$$A_f = 2N_t N_f L (2H_f + \delta)$$

Total area = Un-finned area + finned are

$$A_t = A_u + A_f = 2N_t L(\pi d_o + 2N_f H_f)$$

Surface overall efficiency

$$\eta_o = 1 - \left(\frac{A_f}{A_t}\right) \left(1 - \eta_f\right)$$

Efficiency for straight fin

$$\eta_f = \frac{\tanh(mH_f)}{mH_f}$$
 $m = \sqrt{\frac{2h}{\delta k}}$

Clean and fouled overall heat transfer coefficient Finned double pipe

$$\frac{1}{U_{of}A_{t}} = \frac{1}{h_{i}A_{i}} + \frac{R_{fi}}{A_{i}} + R_{w} + \frac{R_{fo}}{A_{t}\eta_{o}} + \frac{1}{h_{o}A_{t}\eta_{o}}$$

$$\frac{1}{U_{of}} = \frac{1}{h_{i}(A_{i}/A_{t})} + \frac{R_{fi}}{(A_{i}/A_{t})} + A_{t}R_{w} + \frac{R_{fo}}{\eta_{o}} + \frac{1}{h_{o}\eta_{o}}$$

$$A_{t} = A_{u} + A_{f} = 2N_{t}L(\pi d_{o} + 2N_{f}H_{f})$$

$$R_{w} = \frac{\ln(d_{o}/d_{i})}{2\pi kL}$$

$$A_{i} = \pi d_{i}(2L)$$

$$\eta_{o} = \left[1 - \frac{A_{f}}{A_{t}}(1 - \eta_{f})\right]$$

You may assume a length for the hairpin HX and then find the number hairpins required.

For clean surface
$$\frac{1}{U_c} = \frac{1}{h_i(A_i/A_t)} + A_t R_w + \frac{1}{h_o \eta_o}$$

Cleanliness factor CF

$$CF = \frac{U_{of}}{U_{c}}$$

$$OS = 100U_c R_{ft}$$

where

$$\eta_f = \frac{\tanh(mH_f)}{mH_f}$$

$$m = \sqrt{\frac{2h}{\delta k_f}}$$

$$R_{ft} = \frac{1 - CF}{U_c CF}$$

Ch. 3 correlations for convective heat transfer coefficients (Laminar internal flows)

TABLE 3.1

Laminar Forced Convection Correlations in Smooth Straight Circular Ducts

Number	Correlation	Limitations and Remarks	Ref.
1	$Nu_T = 1.61(Pe_b d/L)^{1/3}$	$Pe_b d/L > 10^3$, constant wall temperature	1, 2
	$Nu_T = 3.66$	$Pe_bd/L < 10^2$, fully developed flow in a circular duct, constant wall temperature	
2	$Nu_T = [(3.66)^3 + (1.61)^3 Pe_b d/L)^{1/3}$	Superposition of two asymptiocs given in case 1 for the mean Nusselt number, $0.1 < Pe_b d/L < 10^4$	3
3	$Nu_T = 3.66 + \frac{0.19 (Pe_b d/L)^{0.8}}{1 + 0.177 (Pe_b d/L)^{0.467}}$	Thermal entrance region, constant wall temperature, $0.1 < Pe_y d/L < 10^4$	4
4	$Nu_H = 1.953(Pe_bd/L)^{1/3}$	$Pe_b d/L > 10^2$, constant heat flux	1, 2
	$Nu_H = 4.36$	$Pe_bd/L > 10$, fully developed flow in a circular duct, constant heat flux	1, 2
5	$Nu_T = 0.664 \frac{1}{(Pr)^{1/6}} \left(Pe_b \frac{d}{L} \right)^{1/2}$	$Pe_bd/L > 10^4$, $0.5 < Pr < 500$, simultaneously developing flow	6
6	$Nu_{T} = Nu + \phi \left(\frac{d_{o}}{D_{i}}\right) \frac{0.19 \left(PeD_{h}/L\right)^{0.8}}{1 + 0.117 \left(PeD_{h}/L\right)^{0.467}}$	Circular annular duct, constant wall temperature, thermal entrance region	8
	$\varphi(d_o/D_i) = 1 + 0.14 (d_o/D_i)^{-1/2}$	Outer wall is insulated, heat transfer through the inner wall	
	$\varphi(d_o/D_i) = 1 + 0.14 (d_o/D_i)^{0.1}$	Heat transfer through outer and inner wall	
7	$Nu_T = 1.86 (Re_b P r_b d/L)^{1/3} (\mu_b/\mu_w)^{0.14}$	Thermal entrance region, constant wall temperature, $0.48 < Pr_b < 16,700$, $4.4 \times 10^{-3} < (\mu_b/\mu_w) < 9.75$, $(Re_bPr_bd/L)^{1/3}(\mu_b/\mu_w)^{0.14} > 2$	11
8	$Nu_H = 1.86 (Re_b Pr_b d/L)^{1/3} (\mu_b/\mu_w)^{0.152}$	Thermal entrance region, constant wall heat flux, for oils $0.8 \times 10^3 < Re_b < 1.8 \times 10^3$, $1 < (T_w/T_b) < 3$	13
9	$Nu_H = 1.23 (Re_b Pr_b d/L)^{0.4} (\mu_b/\mu_w)^{1/6}$	Thermal entrance region, constant heat flux, $400 < Re_b < 1,900, 170 < Pr_b < 640$, for oils	14
10	$Nu_b = 1.4(Re_bPr_bd/L)^{1/3}(\mu_b/\mu_w)^n$	Thermal entrance region, $n = 0.05$ for heating liquids, $n = 1/3$ for cooling liquids	15

Note: Unless otherwise stated, fluid properties are evaluated at the bulk mean fluid temperature, $T_b = (T_i + T_o)/2$.

Ch. 3 correlations for convective heat transfer coefficients (Turbulent internal flows)

TABLE 3.3

Correlations for Fully Developed Turbulent Forced Convection Through a Circular Duct with Constant Properties

Number	Correlation	Remarks and Limitations	Ref.
1	$Nu_b = \frac{(f/2)Re_bPr_b}{1 + 8.7(f/2)^{1/2}(Pr_b - 1)}$	Based on three-layer turbulent boundary layer model, Pr > 0.5	23, 24
2	$Nu_b = 0.021 \ Re_b^{\circ s} Pr_b^{\circ s}$	Based on data for common gases; recommended for Prandtl numbers ≈ 0.7	25
3	$Nu_b = \frac{(f/2)Re_bPr_b}{1.07 + 12.7(f/2)^{1/2}(Pr_b^{2/3} - 1)}$	Based on three-layer model with constants adjusted to match experimental data $0.5 < Pr_b < 2,000,$ $10^a < Re_b < 5 \times 10^6$	19
4	$Nu_b = \frac{(f/2)Re_bPr_b}{1.07 + 9(f/2)^{1/2}(Pr_b - 1)Pr_b^{-1/4}}$	Theoretically based; Webb found case 3 better at high Pr and this one the same at other Pr	20
5	$Nu_b = 5 + 0.015 Re_b^m Pr_b^n$ $m = 0.88 - 0.24/(4 + Pr_b)$	Based on numerical results obtained for $0.1 < P\tau_b < 10^4$, $10^4 < Re_b < 10^6$	21
	$n = 1/3 + 0.5 \exp(-0.6 Pr_b)$	Within 10% of case 6 for $Re_b > 10^4$	
	$Nu_b = 5 + 0.012 Re_b^{0.87} (Pr_b + 0.29)$	Simplified correlation for gases, $0.6 < P\tau_b < 0.9$	
6	$Nu_b = \frac{(f/2)(Re_b - 1000)Pr_b}{1 + 12.7(f/2)^{1/2}(Pr_b^{2/3} - 1)}$	Modification of case 3 to fit experimental data at low Re (2,300 < Re_b < 104)	22
	$f = (1.58 \ln Re_b - 3.28)^{-2}$	Valid for 2,300 $< Re_b < 5 \times 10^6$ and $0.5 < Pr_b < 2,000$	
	$Nu_b = 0.0214 (R\varepsilon_b^{\alpha_B} - 100)Pr_b^{\alpha_A}$	Simplified correlation for 0.5 < Pr < 1.5; agrees with case 4 within -6% and +4%	
	$Nu_b = 0.012 (Re_b^{0.67} - 280) Pr_b^{0.4}$	Simplified correlation for 1.5 < Pr < 500; agrees with case 4 within $-10%$ and $+0%$ for $3 \times 10^{\circ} < Re_b < 10^{\circ}$	
7	$Nu_b = 0.022 Re_b^{0.8} Pr_b^{0.5}$	Modified Dittus–Boelter correlation for gases ($Pr \approx 0.5 - 1.0$); agrees with case 6 within 0 to 4% for $Re_b \ge 5,000$	23

Properties are evaluated at bulk temperatures.

	TABLE 8.4 Summary of convection correlations	for flow	in a circular tube ^{a,b,e}
	Correlation		Conditions
	$f = 64/Re_D$	(8.19)	Laminar, fully developed
	$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform q_s''
Incopera 7 th ed.	$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s
Correlations for convective heat	$\overline{Nu}_D = 3.66 + \frac{0.0668 Gz_D}{1 + 0.04 Gz_D^{2/3}}$	(8.57)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_s , $Gz_D = (D/x) Re_D Pr$
transfer coefficient for	$\overline{Nu}_D = \frac{\frac{3.66}{\tanh[2.264~Gz_D^{-1/3} + 1.7~Gz_D^{-2/3}]} + 0.0499~Gz_D\tanh(Gz_D^{-1})}{\tanh(2.432~Pr^{1/6}~Gz_D^{-1/6})}$	(8.58)	Laminar, combined entry, $Pr \gtrsim 0.1$, uniform T_s , $Gz_D = (D/x)~Re_D~Pr$
internal flows	$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$	(8.20) ^c	Turbulent, fully developed
	$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, smooth walls, $3000 \lesssim Re_D \lesssim 5 \times 10^6$
	$Nu_D = 0.023 Re_D^{A/5} Pr^n$	(8.60) ^d	Turbulent, fully developed, $0.6 \lesssim Pr \lesssim 160$, $Re_D \gtrsim 10,000$, $(L/D) \gtrsim 10$, $n=0.4$ for $T_s > T_m$ and $n=0.3$ for $T_s < T_m$
	$Nu_D = 0.027 R \sigma_D^{4/5} P r^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.61) ^d	Turbulent, fully developed, $0.7 \lesssim Pr \lesssim 16,700$, $Re_D \gtrsim 10,000$, $L/D \gtrsim 10$
	$Nu_D = \frac{(f/8)(Re_D - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	(8.62) ^d	Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$
	$Nu_D = 4.82 + 0.0185 (Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform q_s'' , $3.6 \times 10^3 \lesssim Re_D \lesssim 9.05 \times 10^5$, $3 \times 10^{-3} \lesssim Pr \lesssim 5 \times 10^{-2}$, $10^2 \lesssim Re_D Pr \lesssim 10^4$
	$Nu_D = 5.0 + 0.025 (Re_D Pr)^{0.8}$	(8.65)	Liquid metals, turbulent, fully developed, uniform $T_{sr} Re_D Pr \gtrsim 100$

Incropera, internal turbulent flow

$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$	(8.20) ^c	Turbulent, fully developed
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, smooth walls, $3000 \lesssim Re_D \lesssim 5 \times 10^6$
$Nu_D = 0.023 Re_D^{4/5} Pr^n$	$(8.60)^d$	Turbulent, fully developed, $0.6 \le Pr \le 160$, $Re_D \ge 10,000$, $(L/D) \ge 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$
$Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	$(8.61)^d$	Turbulent, fully developed, $0.7 \le Pr \le 16,700$, $Re_D \ge 10,000$, $L/D \ge 10$
$Nu_D = \frac{(f/8)(Re_D - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	$(8.62)^d$	Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$
$Nu_D = 4.82 + 0.0185 (Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform q_s'' , $3.6 \times 10^3 \leq Re_D \leq 9.05 \times 10^5$, $3 \times 10^{-3} \leq Pr \leq 5 \times 10^{-2}$, $10^2 \leq Re_D Pr \leq 10^4$

Incropera-Laminar flow

Table 8.4 Summary of convection correlations for flow in a circular tube a,b,e

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform $q_{s}^{\prime\prime}$
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s
$\overline{Nu}_D = 3.66 + \frac{0.0668 Gz_D}{1 + 0.04 Gz_D^{2/3}}$	(8.57)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_s , $Gz_D = (D/x) Re_D Pr$
$\overline{Nu_D} = \frac{\frac{3.66}{\tanh[2.264 \ Gz_D^{-1/3} + 1.7 \ Gz_D^{-2/3}]} + 0.0499 \ Gz_D \tanh(Gz_D^{-1})}{\tanh(2.432 \ Pr^{1/6} \ Gz_D^{-1/6})}$	(8.58)	Laminar, combined entry, $Pr \ge 0.1$, uniform T_s , $Gz_D = (D/x) Re_D Pr$

$$Gz = Graetz \ number = \left(\frac{D}{x}\right) Re \ Pr$$

Internal laminar flow-Kakac used correlation

A simple empirical correlation has been proposed by Seider and Tate¹¹ to predict the mean Nusselt number for laminar flow in a circular duct for the combined entry length with constant wall temperature as

$$Nu_T = 1.86 \left(\frac{Pe_b d_i}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_w}\right)^{0.14}$$
 (3.24)

which is valid for smooth tubes for $0.48 < Pr_b < 16,700$ and 0.0044 $< (\mu_b/\mu_w) < 9.75$. This correlation has been recommended by Whitaker¹² for values of $Peclet\ Number\ Pe=Re\ Pr$

$$\left(\frac{Pe_b d_i}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_w}\right)^{0.14} \ge 2 \tag{3.25}$$

Below this limit, fully developed conditions will be established and Equation 3.7 may be used for a good approximation. All physical properties are evaluated at the fluid bulk mean temperature except μ_w , which is evaluated at the wall temperature.

Example on Finned double pipe heat exchangers

Example 7.2

The objective of this example is to design an oil cooler with sea water using a finned tube double-pipe heat exchanger.

Engine oil at a rate of 3 kg/s will be cooled from 65°C to 55°C by sea water at 20°C. The sea water outlet temperature is 30°C, and it flows through the inner tube. The properties are given as

Fluid	Annulus Fluid, Oil	Tube-Side Fluid, Sea Water	,
Density, kg/m ²	885.27	1013.4	_
Specific heat, kJ/kg · K	1.902	4.004	
Viscosity, kg/m · s	0.075	9.64×10^{-4}	T _{ci} =20 °
Thermal conductivity, $W/m \cdot K$	0.1442	0.600	$T_{co} = 30^{\circ}$
Prandtl number, Pr	1,050	6.29	·co 30

m_dot=3 kg/s T_{hi} =65 °C T_{ho} =55 ° C

Number of tubes $N_t=1$

Number of fins per tube $=N_f=30$

The following design data are selected:

Length of hairpin = 4.5 m

Annulus nominal diameter = 2 in.

Nominal diameter of the inner tube = 3/4 in.

Fin height: $H_f = 0.0127$ m

Fin thickness: $\delta = 0.9 \text{ mm}$

Number of fins per tube = 30

Material throughout = carbon steel ($k = 52 \text{ W/m} \cdot \text{K}$)

Number of tubes inside the annulus, $N_t = 1$.

Proper fouling factors are to be selected, and the surface area of the heat exchanger as well as the number of hairpins including pressure drops and pumping powers for both streams are to be calculated.

See table 9.2 for detailed

information about the tubes

Procedure:

1-Since all 4 temperatures are known. One can get the main fluid properties at the mean value. The main properties are:

 C_p , ρ , k, μ , and Pr

2-Since m_h is known, calculate the heat load q

3-From 2 you can calculate the mass flow rate m_c (in the inner tube)

4-Calculate the cross sectional area for the flow inside the pipe and in the annulus, and the two velocities

5-Calculate the hydraulic diameter for pressure and heat transfer calculation (i.e. D_h, and D_e)

6-Caculate f & Re for both flows and Nu

7-Caculate h_i and h_o

8-Estimate R_{fi} and R_{fo} based on fluid type and tables in

Ch. 6 (Fouling)

9-Calculate U_{of} and U_c

10-Find CF and OS

Oil (hot)

m dot=3 kg/s $T_{hi}=65 \,^{\circ} C$ $T_{ho}=55 \circ C$

$$T_{ci}$$
=20 ° C
 T_{co} =30 ° C

$$\dot{m}_c = \frac{\left(\dot{m}c_p\right)_h \Delta T_h}{c_{pc} \Delta T_c}$$

$$= \frac{3 \times 1.902 \times (10)}{4.004 \times (10)} = 1.425 \text{ kg/}$$

Annulus—The net cross-sectional area in the annulus with longitudinal finned tubes is given by Equation 7.10:

$$\begin{split} A_c &= \frac{\pi}{4} \left(D_i^2 - d_o^2 N_t \right) - \left(\delta H_f N_f N_t \right) \\ &= \frac{\pi}{4} \left[\left(0.0525 \right)^2 - \left(0.0266 \right)^2 \right] - \left(0.9 \times 10^{-3} \right) \left(0.0127 \right) \left(30 \right) \left(1 \right) \\ &= 1.263 \times 10^{-3} \, \mathrm{m}^2 \end{split}$$

Inner Tube, Sea Water

$$u_m = \frac{\dot{m}_c}{\rho \pi \frac{d_i^2}{4}} = \frac{4 \times 1.425}{1013.4 \times \pi (0.0209)^2} = 4.1 \text{ m/s}$$

Oil (hot) m_dot=3 kg/s T_{hi}=65 ° C T_{ho}=55 ° C

Sea water(Cold)

$$T_{ci}$$
=20 ° C
 T_{co} =30 ° C

Example 7.2 continue $P_w = \pi \left(D_i + d_o N_t\right) + 2H_f N_f N_t$

$$P_w = \pi \left(D_i + d_o N_t \right) + 2H_f N_f N_t$$

$$= \pi \left(0.0525 + 0.0266 \right) + 2 \left(0.0127 \right) (30)$$

$$= 1.011 \text{ m}$$

$$D_h = \frac{4A_c}{P} = \frac{4 \left(1.263 \times 10^{-3} \right)}{1.011} = 5.0 \times 10^{-3} \text{ m}$$

The wetted perimeter for heat transfer can be calculated using Equation 7.9:

$$P_h = \pi d_o N_t + 2N_f H_f N_t$$

= $\pi (0.0266) (1) + 2(30) (0.0127) (1) = 0.845 \text{ m}$

The wetted perimeter for heat transfer can be calculated using Equation 7.9:

$$P_h = \pi d_o N_t + 2N_f H_f N_t$$

= $\pi (0.0266) (1) + 2(30) (0.0127) (1) = 0.845 \text{ m}$

and the equivalent diameter for heat transfer can be determined as follows:

$$D_e = \frac{4A_e}{P} = \frac{4(1.263 \times 10^{-3})}{0.845} = 5.98 \times 10^{-3} \text{ m}$$

$$Re = \frac{\rho u_m d_i}{\mu} = \frac{1013.4 \times 4.1 \times 0.02093}{9.64 \times 10^{-4}} = 90,082$$

Hence, the flow is turbulent. One of the turbulent forced convection corrections given in Chapter 3 can be selected.

The Petukhov-Kirillov correlation is used here:

$$f = (1.58 \ln Re - 3.28)^{-2} = (1.58 \ln 90, 082 - 3.28)^{-2} = 0.0046$$

$$Nu_b = \frac{(f/2)(Re_b)\Pr_b}{1.07 + 12.7(f/2)^{1/2}(Pr_b^{2/3} - 1)}$$

$$= \frac{(0.0023)(90,082)(6.29)}{1.07 + 12.7(0.0023)^{1/2}(6.29^{2/3} - 1)} = 513.8$$

$$h_i = \frac{Nu \cdot k}{d_i} = \frac{(513.8 \times 0.639)}{0.02093} = 15,685.9 \text{ W/m}^2 \cdot \text{K}$$

$$u_m = \frac{\dot{m}_h}{\rho A_c} = \frac{3}{885.27 \times 1.263 \times 10^{-3}} = 2.68 \text{ m/s}$$

$$Re = \frac{\rho u_m D_h}{\mu} = \frac{885.27 \times 2.68 \times 5 \times 10^{-3}}{0.075} = 158.17$$
Laminar

It is a laminar flow.

The Sieder-Tate correlation (Equation 3.24) can be used to calculate the heat transfer coefficient in the annulus:

$$Nu_b = 1.86 \left(Re_b Pr_b \frac{D_h}{L} \right)^{1/3} \left(\frac{\mu_b}{\mu_w} \right)^{0.14}$$

$$Re_b Pr_b \frac{D_h}{L} = (158.17) \left(1050 \right) \frac{5 \times 10^{-3}}{4.5} = 184.5$$

$$T_w \approx \frac{1}{2} \left(\frac{65 + 55}{2} + \frac{20 + 30}{2} \right) = 42.5^{\circ} \text{ C}$$

$$\mu_w = 0.197 \text{ Pa} \cdot \text{s}$$

$$\left(Re_b Pr_b \frac{D_h}{L}\right)^{1/3} \left(\frac{\mu_b}{\mu_w}\right)^{0.14} = \left(184.5\right)^{1/3} \left(\frac{0.075}{0.197}\right)^{0.14} = 4.97 > 2$$

Therefore, the Sieder-Tate correlation is applicable.

$$Nu_b = 1.86(184.5)^{1/3} \left(\frac{0.075}{0.197}\right)^{0.14} = 9.25$$

 $h_o = \frac{Nu \cdot k}{D} = \frac{9.15 \times 0.1442}{5.08 \times 10^{-3}} = 223 \text{ W/m}^2 \cdot \text{K}$

Note that Equation 3.25 is satisfied using Equation 3.24. Finned and unfinned heat transfer areas are given by Equations 7.11 and 7.12.

$$A_f = 2N_t N_f L (2H_f + \delta) = (2)(1)(30)(4.5)(2 \times 0.0127 + 0.9 \times 10^{-3})$$

$$A_f = 7.101 \text{ m}^2$$

$$A_u = 2N_t (\pi d_o L - N_f L \delta) = (2)(1)[\pi (0.0266)(4.5) - (30)(4.5)(0.9 \times 10^{-3})]$$

$$A_u = 0.509 \text{ m}^2$$

The total area of a hairpin is

$$A_t = A_u + A_f = 7.101 + 0.509 = 7.61 \text{ m}^2$$

$$\eta_f = \frac{\tanh(mH_f)}{mH_f}$$

$$m = \sqrt{\frac{2h_o}{\delta k_f}} = \sqrt{\frac{2(223.05)}{(0.9 \times 10^{-3})(52)}} = 97.63$$

$$\eta_f = \frac{\tanh(97.63 \times 0.0127)}{97.63 \times 0.0127} = 0.682$$

The overall surface efficiency, from Equation 2.14, is

$$\eta_o = \left[1 - \left(1 - \eta_f\right) \frac{A_f}{A_t}\right] = \left[1 - \left(1 - 0.682\right) \frac{7.101}{7.610}\right] = 0.703$$

Fouling factors and overall heat transfer coefficients

Should be Table 6.5 & 6.11

From Tables 5.5 and 5.11, the fouling resistances are

$$R_{fo} = 0.176 \times 10^{-3} \text{ m}^2 \cdot \text{K/W}$$
 (engine oil)
 $R_{ft} = 0.088 \times 10^{-3} \text{ m}^2 \cdot \text{K/W}$ (sea water)

$$U_{of} = \left[\frac{7.610}{(0.592)(15685.9)} + \frac{7.610}{0.592}(0.088 \times 10^{-3}) + \frac{7.610 \ln \left(\frac{0.0266}{0.0209} \right)}{2(52) \times \pi \times (2 \times 4.5)} + \frac{0.176 \times 10^{-3}}{0.703} + \frac{1}{(0.703)(223)} \right]^{-1}$$

$$= 108.6 \text{ W/m}^2 \cdot \text{K}$$

TABLE 6.5
TEMA Design Fouling Resistances for Industrial Fluids

Industrial Fluids	$R_f(m^2 \cdot K/W)$			
Oils	-			
Fuel oil no. 2	0.000352			
Fuel oil no. 6	0.000881			
Transformer oil	0.000176			
Engine lube oil	0.000176			
Quench oil	0.000705			
Cases and Vapors				
Manufactured gas	0.001761			
Engine exhaust gas	0.001761			
Steam (nonoil bearing)	0.000088			
Exhaust steam (oil bearing)	0.000264-0.000352			
Refrigerant vapors (oil bearing)	0.000352			
Compressed air	0.000176			
Ammonia vapor	0.000176			
CO ₂ vapor	0.000176			
Chlorine vapor	0.000352			
Coal flue gas	0.001761			
Natural gas flue gas	0.000881			
Liquids				
Molten heat transfer salts	0.000088			
Refrigerant liquids	0.000176			
Hydraulic fluid	0.000176			
Industrial organic heat transfer media	0.000352			
Ammonia liquid	0.000176			
Ammonia liquid (oil bearing)	0.000528			
Calcium chloride solutions	0.000528			
Sodium chloride solutions	0.000528			
CO ₂ liquid	0.000176			
Chlorine liquid	0.000352			
Methanol solutions	0.000352			
Ethanol solutions	0.000352			
Ethylene glycol solutions	0.000352			

Source: From, Standards of the Tubular Exchanger Manufacturers Association, 1988. With permission. ©1988 Tubular Exchanger Manufacturers Association.

Fouling factors (Kakac Ch. 6)

TABLE 6.5

TEMA Design Fouling Resistances for Industrial Fluids

Industrial Fluids	R_f (m ² · K/W)			
Oils				
Fuel oil no. 2	0.000352			
Fuel oil no. 6	0.000881			
Transformer oil	0.000176			
Engine lube oil	0.000176			
Quench oil	0.000705			
Gases and Vapors				
Manufactured gas	0.001761			
Engine exhaust gas	0.001761			
Steam (nonoil bearing)	0.000088			
Exhaust steam (oil bearing)	0.000264-0.000352			
Refrigerant vapors (oil bearing)	0.000352			
Compressed air	0.000176			

Fouling factors (Kakac Ch. 6)

TABLE 6.11 Fouling Resistances for Water

Temperature of Heating Medium						
Temperature of Water Water Velocity (m/s)	Up to 115	°C 50°C	R_f (m ² · K/W) 115°C to 205°C Over 50°C			
350.000176	0.9 and Less	Over 0.9	0.9 and Less	Over 0.9		
	0.000528	0.000352	Cooling tower and artificial spray pond	Treated make up 0.0.52		
Cooling tower and artificial spray pond						
Treated make up	0.000176	0.000176	0.000352	0.000352		
Untreated	0.000528	0.000528	0.000881	0.000705		
City or well water	0.000176	0.000176	0.000352	0.000352		
River water						
Minimum	0.000352	0.000176	0.000528	0.000352		
Average	0.000528	0.000352	0.000705	0.000528		
Muddy or silty	0.000528	0.000352	0.000705	0.000528		
Hard (over 15 grains/gal)	0.000528	0.000528	0.000881	0.000881		
Engine jacket	0.000176	0.000176	0.000176	0.000176		
Distilled or closed cycle						
Condensate	0.000088	0.000088	0.000088	0.000088		
Treated boiler feedwater	0.000176	0.000088	0.000176	0.000176		
Boiler blowdown	0.000352	0.000352	0.000352	0.000352		

Sea water and brackish water are missing from this table

Source: From Standards of the Tubular Exchanger Manufacturers Association, 1988. With permission. ©1988 Tubular Exchanger Manufacturers Association.

Corrections for Table 6.11

TABLE 6.11
Fouling Resistances for Water

Temperature of Heating Medium Temperature of Water Water Velocity (m/s)	Up to 115°0	C 50°C	R _f (m ² · K/W) 115°C to 205°C Over 50°C		
350.000176	0.9 and Less	Over 0.9	0.9 and Less	Over 0.9	
sea water	0.0000 88	a.000068	0-00018	810000	
Brakish wheter	0.00035	C.CCO) E	0.00053	0.0003	
Cooling tower and artificial spray pond					
Treated make up	0.000176	0.000176	0.000352	0.000352	
Untreated	0.000528	0.000528	0.000881	0.000705	
City or well water	0.000176	0.000176	0.000352	0.000352	
River water			*********	0.000002	
Minimum	0.000352	0.000176	0.000528	0.000352	
Average	0.000528	0.000352	0.000705	0.000528	
Muddy or silty	0.000528	0.000352	0.000705	0.000528	
Hard (over 15 grains/gal)	0.000528	0.000528	0.000881	0.000881	
Engine jacket	0.000176	0.000176	0.000176	0.00031	
Distilled or closed cycle				0.000170	
Condensate	0.000088	0.000088	0.000088	0.000088	
Treated boiler feedwater		0.000088	0.000176	0.000176	
Boiler blowdown	0.000352	0.000352	0.000352	0.000352	

Source: From Standards of the Tubular Exchanger Manufacturers Association, 1988. With permission @1998 Tubular Fresh

From Fraas book Heat exchanger design

To convert the fouling factor form ft².hr. F/Btu to m²K/W multiply by 5.678

TABLE H5.4 Normal Fouling Factors' for Heat Transfer Equipmentb

Temperature of Heating Medium:	Up to 2		240 to	400°F°	
Temperature of Water:	125°F		Over 125°F		
	Water Velo		Water Velocity, ft.		
Types of Water	3 ft/s and Less	Over 3 ft/s	3 ft/s and Less	Over 3 ft/s	
Seawater	0.0005	0.0005	0.001	0.001	
Distilled	0.0005	0.0005	0.0005	0.000	
Treated boiler feedwater	0.001	0.0005	0.001	0.001	
Engine jacket	0.001	0.001	0.001	0.001	
City or well water (such as Great Lakes)	0.001	0.001	0.002	0.002	
Great Lakes	0.001	0.001	0.002	0.002	
Cooling tower and artificial spray pond:					
Treated make-up	0.001	0.001	0.002	0.002	
Untreated	0.003	0.003	0.005	0.004	
Boiler blowdown	0.002	0.002	0.002	0.002	
Brackish water	0.002	0.001	0.003	0.002	
River water:					
Minimum	0.002	0.001	0.003	0.002	
Mississippi	0.003	0.002	0.004	0.003	
Delaware, Schuylkill	0.003	0.002	0.004	0.003	
East River and New York Bay	0.003	0.002	0.004	0.003	
Chicago sanitary canal	0.008	0.006	0.010	0.008	
Muddy or silty	0.003	0.002	0.004	0.003	
Hard (over 15 grains/gal)	0.003	0.003	0.005	0.005	
Fouling factors—industrial oils:					
Clean recirculating oil				0.001	
Machinery and transformer oils				0.001	
Vegetable oils				0.003	
Quenching oil				0.004	
Fuel oil				0.005	
Fouling factors-industrial gases and vapor	rs:				
Organic vapors				0.0003	
Steam (non-oil bearing)				0.0003	
Alcohol vapors				0.0003	
Steam, exhaust (oil-bearing from recipro	cating engine	5)		0.001	
Refrigerating vapors (condensing from re				0.002	
Air	o.producing c	op. 2000107		0.002	
Coke oven gas and other manufactured	pas			0.01	
Diesel engine exhaust gas					
Fouling factors—industrial liquids:				0.01	
Organic				0.001	
Refrigerating liquids (heating, cooling or	evaporating)			0.001	
iverrigerating figures theating, cooming th				0.001	

^bReprinted by permission of Tubular Exchanger Manufacturers Association.

Ratings in columns 3 and 4 are based on a temperature of the heating medium of 240 to 400° A. If the heating medium temperature is over 400°F and the cooling medium is known to scale, these ratings should be modified accordingly.

$$U_{\infty} = \frac{1}{\frac{A_t}{A_i h_i} + \frac{A_t \ln(d_o/d_i)}{2\pi k \cdot 2L} + \frac{1}{\eta_o h_o}}$$

$$= \left[\frac{7.610}{(0.592)(15685.9)} + \frac{7.610 \ln\left(\frac{0.0266}{0.0209}\right)}{2(52) \times \pi(2 \times 4.5)} + \frac{1}{(0.703)(223)} \right]^{-1}$$

$$= 127.6 \text{ W/m}^2 \cdot \text{K}$$

The cleanliness factor, CF, is determined as follows:

$$CF = \frac{U_{of}}{U_{oc}} = \frac{108.6}{127.6} = 0.85$$

The total heat transfer surface area is

$$A_o = \frac{Q}{U_o \Delta T_m}$$

 $Q = (\dot{m}c_p)_h (T_{h_1} - T_{h_2}) = (3)(1.902 \times 10^3)(65 - 55) = 57,060 \text{ W}$
 $\Delta T_m = \Delta T_1 = \Delta T_2 = 35^\circ \text{ C}$

Without fouling,

$$A_{\infty} = \frac{Q}{U_{\infty}\Delta T_m} = \frac{57,060}{(127.6)(35)} = 12.78 \text{ m}^2$$

With fouling,

$$A_{of} = \frac{Q}{U_{of}\Delta T_m} = \frac{57060}{(108.6)(35)} = 15.01 \text{ m}^2$$

The hairpin heat transfer surface area is

$$A_{kn} = A_t = 7.61 \text{ m}^2$$

and the number of hairpins can be determined:

$$N_{hp} = \frac{A_{of}}{A_{hp}} = \frac{15.01}{7.61} = 1.97$$

Pressure Drops and Pumping Powers—For the inner tube,

$$\Delta p_t = 4f \frac{2L}{d_i} \rho \frac{u_m^2}{2} N_{hp}$$

$$= 4(0.0046) \frac{4.5 \times 2}{0.0209} (1013.4) \frac{(4.1)^2}{2} (2) = 135 \text{ kPa}$$

Pumping Power

$$W_a = \frac{\Delta p_a \, \dot{m}_a}{\eta_a \rho_a} = \frac{(135 \times 10^3)(1.425)}{(0.80)(1013.4)} = 237.3 \text{ W}$$

In the annulus,

$$f_{cp} = \frac{16}{Re} = \frac{16}{158.17} = 0.1011$$

Using Equation 3.21b with Table 3.2, we have

$$f = f_{cp} \left(\frac{\mu_b}{\mu_w}\right)^{-0.5} = 0.1011 \left(\frac{0.075}{0.197}\right)^{-0.5} = 0.164$$

$$\Delta p_a = 4f \frac{2L}{D_h} \rho \frac{u_m^2}{2} N_{hp}$$

$$= 4(0.164) \frac{4.5 \times 2}{(5 \times 10^{-3})} (885.27) \frac{(2.68)^2}{2} (2) = 7.5 \text{ MPa}$$

$$w_a = \frac{\Delta p_a \dot{m}_a}{\eta_a \rho_a} = \frac{(7.5 \times 10^6)(3)}{(0.80)(885.27)} = 31.8 \text{ kW}$$

TABLE 9.2
Heat Exchanger and Condenser Tube Data

						Surface Area		Cross- Sectional Area	
	Nominal Pipe Size (in.)	Outside Diameter (in.)	Schedule Number or Weight	Wall Thickness (in.)	Inside Diameter (in.)	Outside (ft.²/ft.)	Inside (ft.²/ft.)	Metal Area (in.²)	Flow Area (in.²)
1			→ 40	0.113	0.824	0.275	0.216	0.333	0.533
	3/4	1.05	80	0.154	0.742	0.275	0.194	0.434	0.432
			40	0.133	1.049	0.344	0.275	0.494	0.864
	1	1.315	80	0.179	0.957	0.344	0.250	0.639	0.719
			40	0.140	1.38	0.434	0.361	0.668	1.496
	1-1/4	1.660	80	0.191	1.278	0.434	0.334	0.881	1.283
			40	0.145	1.61	0.497	0.421	0.799	2.036
	1-1/2	1.900	80	0.200	1.50	0.497	0.393	1.068	1.767
			\longrightarrow 40	0.154	2.067	0.622	0.541	1.074	3.356
\rightarrow	2	2.375	80	0.218	1.939	0.622	0.508	1.477	2.953
			40	0.203	2.469	0.753	0.646	1.704	4.79
	2-1/2	2.875	80	0.276	2.323	0.753	0.608	2.254	4.24
			40	0.216	3.068	0.916	0.803	2.228	7.30
	3	3.5	80	0.300	2.900	0.916	0.759	3.106	6.60
			40	0.226	3.548	1.047	0.929	2.680	9.89
	3-1/2	4.0	80	0.318	3.364	1.047	0.881	3.678	8.89

FIGURE 7.4
Two hairpin sections arranged in series.

Hairpin can be connected in series one after the other to get pure counter or pure parallel arrangement

But this may cause high pressure drop and excessive pumping power, therefore hairpin can be connected in parallel /series combinations.

FIGURE 7.6

Two double-pipe units in series on the annulus (shell) side and parallel on the tube side.

A correction factor for the LMTD must then apply

Original installation — four doube pipe sections 2 parallel × 2 series

To increase capacity 50%
— merely add one bank
3 parallel ×
2 series

To decrease capacity shut off one bank 1 parallel × 2 series

Parallel series combinations

The LMTD for double pipe HX with combination of series and parallel arrangement must be modified as follows:

$$Q == UA \Delta T_m = UAS(T_{hi} - T_{ci})$$

Where S is given by:

For one series hot fluid and n_1 parallel cold stream

$$S = \frac{1 - P_1}{\left(\frac{n_1 R_1}{R_1 - 1}\right) ln \left[\left(\frac{R_1 - 1}{R_1}\right) \left(\frac{1}{P_1}\right)^{1/n_1} + \left(\frac{1}{R_1}\right)\right]}$$

$$P_1 = \frac{T_{h2} - T_{c1}}{T_{h1} - T_{c1}} \qquad R_1 = \frac{T_{h1} - T_{h2}}{n_1 (T_{c2} - T_{c1})}$$

For one-series cold stream and n₂ parallel hot streams

$$S = \frac{1 - P_2}{\left(\frac{n_2}{1 - R_2}\right) ln \left[(1 - R_2) \left(\frac{1}{P_2}\right)^{1/n_2} + (R_2) \right]}$$

$$P_2 = \frac{T_{h1} - T_{c2}}{T_{h1} - T_{c1}} \qquad \qquad R_2 = \frac{n_2(T_{h1} - T_{h2})}{T_{c2} - T_{c1}}$$

9-Total pressure drop

All pressure losses must be taken into account for calculating the total pressure losses in heat exchanger. These sources of pressure drop must be considered

- 1-Friction or major losses due to wall friction
- 2-Minor losses such as pressure drop in inlet and outlet nozzles
- 3-Pressure drop due elevation difference between inlet and outlet
- 4-Pressure drop due momentum change

$$\Delta P_f = f \frac{2L}{D} \rho \frac{u_m^2}{2} N_{hp}$$

$$\Delta P_n = K_c \rho \frac{u_m^2}{2}$$

$$\Delta P_m = G^2 (\frac{1}{\rho_{out}} - \frac{1}{\rho_{in}})$$