Slowly, then all at once: Uncovering the dynamics of a catastrophe

Davide Papapicco, Graham Donovan, Lauren Smith and Merryn Tawhai

MARSDEN FUND TE PÜTEA RANGAHAU **A MARSDEN**

1. The Question

What does the desertification of the Sahara, 6000 years ago, and the Great Recession of 2008 have in common?

They both unfolded in two phases: first gradually and then suddenly!

Fig. 1: Examples of real-world catastrophic transitions in dynamical systems.

Is this a generic trait of catastrophic collapses in nature? Are there early-warning signs that can forecast these events?

We consider a minimal working model that can reproduce tipping phenomena between alternative stable states

$$dx = f(x, \mu) dt + \sigma(x) dW,$$

$$d\mu = \varepsilon(t) dt,$$
 (1)

- Cubic drift: $f(x, \mu) = -\mu 2x + 3x^2 0.8x^3$
- Additive stochastic diffusion: $\sigma(x) = \sigma > 0$
- Linear ramp of the bifurcation parameter μ : $\varepsilon(t) = \varepsilon > 0$
- Pair of saddle-node bifurcations: $\mu \approx -0.371$ and $\mu \approx 1.621$
- Analogy with Langevin dynamics: overdamped particle in a quartic potential landscape $V(x, \mu)$ s.t. $f(x, \mu) = -\partial_x V$

Fig. 2: Timeseries of a solution of (1) and its potential ($\sigma = 0.3$, $\varepsilon = 0.01$).

2. The Problem

Tipping points

Mechanisms to escape the basin of attraction:

- A bifurcation is reached (B-tipping)
- The parameter drift is too fast (R-tipping)
- The Brownian noise dominates (N-tipping)

Fig. 3: Tipping mechanism visualised: R-tipping (top) in a deterministic ($\sigma = 0$) cubic [1]; N-tipping (bottom) in a stationary ($\varepsilon = 0$) quartic; B-tipping shown in **Fig. 2**.

Critical slowing down

As the bifurcation is approached the stable equilibria become increasingly weaker in attracting nearby solutions.

Increases in variance precede B-tipping [2].

Fig. 4: B-tipping of (1) in a fast-slow ($\varepsilon = 10^{-3}$), stochastic ($\sigma = 5.10^{-2}$) regime (yellow) and its variance (teal) computed on a sliding window.

3. The Method

An alternative measure of imminent catastrophe

Far from the bifurcation and at equilibrium (1) is topologically equivalent to an Ornstein-Uhlenbeck process $f(x) = -\theta(x - a) + \sigma dW$, where $\theta = \partial x V(a)$.

A solution starting at x = a will thus tip, with some probability $p_{esc} > 0$, over the local maxima x = b (boundary of the basin of attraction) of the scalar potential.

Fig. 5: Stationary ($\varepsilon = 0$) escape time distribution (bottom right) of an ensemble of N=3000 overdamped particles (bottom left) out of the basin of attraction of the potential (top) at fixed parameter value μ =0. The histogram $p_{\rm esc}(t)$ approximates an inverse Gaussian distribution at noise level $\sigma = 1.0$.

Fig. 6: Steps of the escape probability algorithm illustrated: parameter sweep simulation ($\varepsilon = 0$, $\sigma = 0.2$) of an ensemble of N=3000 particles evolving according to (1).

(Top) Ensemble histograms of the stationary density (yellow) and the solution of the (non-linear) optimisation problem (teal).

(Middle) True potential function V(x) (yellow) and its local reconstruction $V_*(x)$ (teal) from the solution of the optimisation problem.

(Bottom) Cubic term of the Taylor expansion of the potential around x = a (yellow) and its approximation (teal).

4. The Results

- The error improves as we approach the bifurcation, i.e. $||V - V_*||_2 \rightarrow 0$ as $\mu \rightarrow \mu_c$
- find a probabilistic early-warning signal for (1) in stationary ($\varepsilon = 0$) and low-noise regimes ($\sigma \sim 10^{-1}$)
- What's next? Generalisation of the method to systems in quasi-stationary $(0 < \varepsilon \ll 1)$ regimes [4]
- 350**--**0.035 0.000 1.5 0.9

Fig. 7: (Left) Approximation error of the reconstruction of the potential landscape V(x) for the ensemble simulation performed in Fig. 6. (Right) Probability-to-tip early-warning signal (teal), computed out of the reconstructed potential $V_*(x)$, compared to the stationary variance (yellow) for an indicative timeseries in the ensemble.

5. The Literature

[1] Ashwin, P. et al., Philos. Trans. R. Soc. A, Vol. 370 (2012)

[2] Kuehn, C., Physica D, Vol. 240 (2011)

[3] Kramers, H., Physica, Vol. 7 (1940)

[4] Donovan, G., Physica A, Vol. 646 (2024)

6. Bella ciao! 👋 😀

Email: dpap666@aucklanduni.ac.nz **ORCiD:** 0000-0002-5091-2599

GitHub: papadeiv

