Recommendation Systems: Collaborative Filtering using Matrix Factorization

A Presentation by Group 13

Group Members

Name	ASU ID	Email-ID
Visaj Nirav Shah	1225369210	vshah47@asu.edu
Darsh Vaidya	1225514966	dvaidya5@asu.edu
Malvi Mungalpara	1225184103	mmungalp@asu.edu
Meet Kishorbhai Lakhani	1225636854	mlakhan3@asu.edu
Vibavari Gurunathan	1225412305	vnolas25@asu.edu
Rohit Rajesh Rughwani	1223264705	rrughwan@asu.edu

Recommendation Systems

Endless influx of information and products

- Enter Recommendation Systems
 - Machine Learning-based systems that provide customized suggestions to users by analyzing their interests and mapping it to a large library of content

 Helps discover content/products that a user might be interested in but aware of

Recommendation Systems

- Content Filtering
 - Profile-based
 - Attributes of users (i.e., their interests) and attributes of products
 (e.g., genre, actors, category) are used
 - Difficult to collect all the information

- Collaborative Filtering
 - Relies of past user behavior no explicit profiling
 - Relationship between users and different product items is used
 - Neighborhood methods and Latent Factor methods

Problem Description

 Build a collaborative filtering-based recommendation system using matrix factorization method that can detect latent factors, and utilize them for improving recommendations

- Why collaborative filtering?
 - Independent of domain

Methodology

Flowchart enlisting the steps followed

Data Ingestion: About Dataset

 Netflix Prize Competition dataset released by Netflix in 2006, currently available on Kaggle

- 100,000,000+ movie reviews (i.e., rows) in total
 - For hyperparameter tuning, we use 1% of the dataset
 - For final model training, we use 10% of the dataset

• 17,770 movies and 480,189 users

• Ratings $\in \{1, 2, 3, 4, 5\}$

Data Aggregation

Features		
UserID		
MovieID		
Ratings		
Date		
Year		

- Making data usable
 - Flatten the hierarchical structure
 - Create custom features based on existing features
 - Extract Year from Date
 - Rearrange the columns

Data is split across 4 .txt files, so merge all data in a single .csv file

Sort the rows based on Date of review

The Math

• For each product *i*, we create a vector (*q*) that contains its rating by each of the users *j*. Similarly, we create vectors (*p*) for each users.

• The matrix multiplication $q^T p$ results in the ratings matrix, r

- Intuition behind the method: Single Value Decomposition
 - Think about splitting a large number into two prime factors

• The missing values can be imputed, but recent models use regularization to solve the issue $\sum_{n=1}^{\infty} \frac{(r_n - a^T n_n)^2 + \lambda (||a_n||^2 + ||n_n||^2)}{r_n + \lambda (||a_n||^2 + ||n_n||^2)}$

$$\min_{q \cdot p \cdot p} \sum_{(u,i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda(||q_i||^2 + ||p_u||^2)$$

The Model

PyTorch implementation of an Embedding model

Criterion is Mean Squared Error

Optimized using Stochastic Gradient Descent

Hyperparameter search space for GridSearchCV:

```
parameters = {
        'batch size': [1024, 2048, 4096, 8192],
        'epoch': [10, 50, 100],
        'lr': [0.01, 0.1]
}
```

Custom GridSearchCV

 GridSearchCV is a standard technique to learn the best hyperparameters for the model

Hyperparameters to be checked: Batch Size, # epochs, Learning Rate

- Cross validation for temporal data
 - Cannot use regular cross validation need to create rolling folds
 - Forming folds based on Year
 - 2-fold cross validation

Results and Analysis

Root Mean Square Error (RMSE)

RMSE: Metric for evaluating model performance

Netflix's RMSE	0.9514
Required RMSE for Grand Prize	0.8563
Authors' RMSE	0.8614
Our RMSE	1.3339

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

Variation of RMSE vs. Hyperparameters

Variation of RMSE and Loss vs. Epochs in the final model

Conclusion and Future Works

Conclusion

- Matrix factorization is an efficient method for building a recommendation system, especially for such large datasets.
 - Easy scalability
 - Sparsity of data is not a problem

RMSE as a metric is a good judge of model performance

 Recommendation systems create immense value for a variety of businesses because of their satisfactory predictions

Future Works

- Parallelize code
 - Our custom GridSearchCV function is slow
 - Creating workers which run in parallel can increase performance
- Using GPUs for working with a larger dataset
 - Currently, we are only using 10% of the dataset
 - Limitations of personal computers
 - With GPUs, we can train our model on the full dataset which will further reduce the RMSE
- Integrate metadata in matrix factorization
 - More information, better recommendations
- Explore using reinforcement learning

Thank you