Forme analytique du théorème de Hahn-Banach

1 Enoncé

Soit $p: E \to \mathbb{R}$ une application telle que:

$$p(\lambda x) = \lambda p(x) \quad \forall x \in E, \lambda \ge 0,$$

$$p(x+y) \le p(x) + p(y).$$

Soit $G \subseteq E$ un sous-espace vectoriel et $g: G \to \mathbb{R}$ une application linéaire telle que $g(x) \leq p(x)$ pour tout $x \in G$.

Alors il existe une forme linéaire f définie sur E qui prolonge g et telle que $f(x) \leq p(x)$ pour tout $x \in E$.

2 Notations et Définitions

Definition 2.1. P muni d'une relation d'ordre partiel \leq . On dit que Q inclu dans P est totalement ordonné si pour tout (a,b) de Q, on $a \leq b$ ou $b \leq a$.

Definition 2.2. Soit Q un sous-ensemble de P; on dit que $c \in P$ est un majorant de Q si $\forall a \in Q$, $a \leq c$.

Definition 2.3. $m \in P$ est un élément maximal de P si $\forall x \in P$ tel que $m \le x$, on a = m.

Definition 2.4. P est inductif si tout sous-ensemble totalement ordonné de P admet un majorant.

Lemma 1. (Lemme de Zorn) Tout ensemble ordonné, inductif, non vide, admet un élément maximal.

3 Démonstration

Soit $P = \{h : D(h) \subseteq E \to \mathbb{R} \mid D(h) \text{ sous-espace vectoriel de } E, h \text{ linéaire, } G \subseteq D(h), h \text{ prolonge } g, \text{ et } h(x) \leq p(x) \text{ pour tout } x \in D(h)\}.$ On munit P de la relation d'ordre suivante:

 $h_1 \leq h_2 \Leftrightarrow D(h_1) \subseteq D(h_2)$ et h_2 prolonge h_1 .

Ceci représente effectivement une relation d'ordre puisque:

- $h_1 \leq h_1$ (Réflexive)
- $h_1 \le h_2$ et $h_2 \le h_1 \Rightarrow h_1 = h_2$ (Antisymétrique)
- $h_1 \le h_2$ et $h_2 \le h_3 \Rightarrow h_1 \le h_3$ (Transitive)

Puisque $g \in P$, P est non vide.

Soit $Q \subseteq P$ un sous-ensemble ordonné défini par $Q = \{h_i \mid i \in I\}$ tel que $D(h) = \bigcup_{i \in I} (D(h_i))$ et $h(x) = h_i(x)$ si $x \in D(h_i)$.

Il faut montrer que h majore Q pour dire que P est inductif.

Pour tout x dans D(h), h(x) existe.

Soit $x \in D(h)$ et supposons qu'il existe i_1 et i_2 tels que $x \in D(h_{i1})$ et $x \in D(h_{i2})$.

Donc

$$\begin{cases} h(x) = h_{i1}(x), \\ h(x) = h_{i2}(x). \end{cases}$$

Et on sait que Q est totalement ordonné, donc $h_{i1} \leq h_{i2}$ ou bien $h_{i2} \leq h_{i1}$. Pour $h_{i1} \leq h_{i2}$, on a $D(h_{i1}) \subseteq D(h_{i2})$ et $h_{i1}(x) = h_{i2}(x)$ pour x dans $D(h_{i1})$. Le même raisonnement s'applique pour le cas où $h_{i1} \leq h_{i2}$.

On peut voir l'unicité des valeurs de h, donc h est bien définie et majore Q. Par conséquent, P est inductif.

D'après le lemme de Zorn, P admet un élément maximal que l'on notera f. Montrons que D(f)=E.

Supposons par l'absurde que $D(f) \neq E$. Soit $x_0 \notin D(f)$. Posons $D(h) = D(f) + \mathbb{R}x_0$.

Pour $x \in D(f)$, définissons $h(x + tx_0) = f(x) + t\alpha$ où α est tel que $h \in P$. On sait que $h(x + tx_0) \le p(x + tx_0)$, donc

$$\begin{cases} f(x) + \alpha \le p(x + x_0), \\ f(x) - \alpha \le p(x - x_0), \end{cases}$$

pour tout $x \in D(f)$.

C'est-à-dire qu'il faut choisir α tel que

$$\sup_{y \in D(f)} (f(y) - p(y - x_0)) \le \alpha \le \inf_{x \in D(f)} (p(x + x_0) - f(x)).$$

Ce choix est possible puisque

$$f(y) - p(y - x_0) \le p(x + x_0) - f(x),$$

pour tout $x \in D(f)$ et tout $y \in D(f)$.

On a donc

$$f(x) + f(y) \le p(x+y) \le p(x+x_0) + p(y-x_0).$$

On conclut que f est majorée par h et que $f \neq h$, ce qui est absurde puisque f est maximale.