CS5314 RANDOMIZED ALGORITHMS

Assignment 1 (Suggested Solution)

1 Questions

1. **Ans:**

- (a) $Pr(A) = (26 \times 25)/(52 \times 51)$.
- (b) Pr(B) = 26/52. (Reasoning: Each of the 52 cards has the same chance as being the third card, out of which 26 are black.)
- (c) $Pr(B \mid A) = 26/50$.
- (d) $\Pr(A \mid B) = \Pr(A \cap B) / \Pr(B) = \Pr(B \mid A) \Pr(A) / \Pr(B) = (26 \times 25) / (51 \times 50).$

2. **Ans:**

- (a) 16/36. (Reasoning: 16 cases with the desired outcome, each occurs with probability 1/36.)
- (b) 6/(6+12+18). (Reasoning: Denote #(a,b,c) as the number of cases with the outcomes of dice A, B, and C be a, b, and c, respectively. By counting, we have #(2,2,3)=6, #(3,2,2)=12, and #(2,3,2)=18.)
- 3. **Ans:** Let $\pi = 1 (1 p)(1 q) = p + q pq$, which is the probability that either X or Y (or both) succeeds in one trial.
 - (a) $\Pr(X = Y) = \sum_{i=0}^{\infty} ((1-p)(1-q))^i pq = pq/\pi$.
 - (b) Firstly, observe that $\min(X, Y)$ is a geometric random variable with parameter π , since it is the number of trials needed to have either X or Y succeeds. Also, $\max(X, Y) = X Y \min(X, Y)$. Thus, by linearity of expectation, we have:

$$\mathrm{E}[\max(X,Y)] = \mathrm{E}[X] + \mathrm{E}[Y] - \mathrm{E}[\min(X,Y)] = 1/p + 1/q - 1/\pi.$$

- (c) $Pr(\min(X, Y) = k) = (1 \pi)^{k-1}\pi$.
- (d) Firstly, we have:

$$\Pr(X = k \mid X \le Y) = \frac{\Pr(X = k \cap X \le Y)}{\Pr(X \le Y)} = \frac{(1 - \pi)^{k - 1} p}{p / \pi} = (1 - \pi)^{k - 1} \pi.$$

In other words, under the condition $X \leq Y$, X becomes a geometric random variable with parameter π , so that the desired answer is $1/\pi$.

Alternatively, we can see that under the condition $X \leq Y$, X is equal to $\min(X, Y)$, so that we can also derive the desired expected value as $1/\pi$ based on the result of part (c). How about the value $E[Y \mid Y \leq X]$?

4. **Ans:**

(a) Let X_i be an indicator such that $X_i = 1$ if and only if the *i*th card is not chosen. Thus, $E[X_i] = (1 - 1/n)^{2n}$. Consequently, the expected number of cards not chosen is $nE[X_i] = n(1 - 1/n)^{2n}$. (b) Let Y_i be an indicator such that $Y_i = 1$ if and only if the *i*th card is chosen exactly once. Thus, $\mathrm{E}[Y_i] = \binom{2n}{1}(1/n)(1-1/n)^{2n-1}$. Consequently, the expected number of cards chosen exactly once is $n\mathrm{E}[Y_i] = 2n(1-1/n)^{2n-1}$.

5. **Ans:**

(a) Firstly, we see that $E[Y_0] = 1$ and $E[Y_1] = 2p$. Next, for $i \ge 1$, we have

$$E[Y_i | Y_{i-1} = j] = 2pj,$$

so that

$$E[Y_i] = E[E[Y_i \mid Y_{i-1}]] = \sum_j Pr(Y_{i-1} = j)2pj = 2p E[Y_{i-1}].$$

Thus, we have $E[Y_i] = (2p)^i$.

(b) The total number of copies is $\sum_{i}(2p)^{i}$, which is bounded if and only if p < 1/2.

6. **Ans:**

(a) For $i \leq m$, $\Pr(E_i) = 0$ since we can never choose the best candidate. For i > m, E_i occurs if and only if ith is the best candidate, while the best of the first i-1 candidates is among the first m persons. Thus,

$$\Pr(E_i) = \frac{1}{n} \times \frac{m}{i-1}.$$

Based on this, we have:

$$\Pr(E) = \sum_{i>m} \Pr(E_i) = \frac{m}{n} \sum_{j=m+1}^{n} \frac{1}{j-1}.$$

(b) The desired answer follows immediately from the fact that:

$$\sum_{j=m+1}^{n} \frac{1}{j-1} \ge \int_{m}^{n} \frac{1}{x} dx = \ln n - \ln m.$$

(c) Let $f(m) = (m/n)(\ln n - \ln m)$. Then we have $f'(m) = (1/n)(\ln n - \ln m) + (m/n)(-1/m)$. By setting f'(m) = 0, we have m = n/e, which can maximize f(m) since f''(m) < 0. When m = n/e, $\Pr(E) \ge (m/n)(\ln n - \ln m) = 1/e$.