

WHAT IS CLAIMED IS:

1. A method of etching a dielectric layer, comprising the steps of:
 - (a) providing an article having a dielectric layer thereon;
 - (b) depositing a photoresist on the dielectric layer;
 - (c) patterning the photoresist; and
 - (d) exposing the dielectric to an etch chemistry comprising an etchant and one or more member selected from NH₃, NF₃ and N₂O in an amount sufficient to control selectivity, profile, or both.
2. A method according to Claim 1, wherein the etch chemistry comprises NH₃.
3. A method according to Claim 1, wherein the etch chemistry comprises NF₃.
4. A method according to Claim 1, wherein the etch chemistry comprises N₂O.
5. A method according to Claim 1, wherein the etch chemistry comprises NH₃ and NF₃.
6. A method according to Claim 1, wherein the etch chemistry comprises NH₃ and N₂O.
7. A method according to Claim 1, wherein the etch chemistry comprises NF₃ and N₂O.
8. A method according to Claim 1, wherein the etch chemistry comprises NH₃, NF₃ and N₂O.
9. A method according to Claim 1, wherein the etchant comprises a hydrofluorocarbon, a fluorocarbon, a hydrochlorocarbon, or a chlorofluorocarbon.
10. A method according to Claim 1, wherein the etch chemistry further comprises an inert gas.

11. A method according to Claim 10, wherein the inert gas is selected from He, Ar and Ne.
12. A method of forming an interconnect structure having a first feature and a second feature, comprising the steps of:
- (a) providing an article comprising a conductive layer that has a dielectric layer thereon;
 - (b) depositing a first photoresist layer on the dielectric layer;
 - (c) patterning the first photoresist layer to form a first mask pattern defining the first feature;
 - (d) etching the dielectric layer using the first photoresist layer as a mask to form the first feature using an etch chemistry that comprises a member of the group NH₃, NF₃ and N₂O;
 - (e) removing the first photoresist;
 - (f) depositing a second photoresist layer on the article;
 - (g) patterning the second photoresist layer to form a second mask pattern defining the second feature;
 - (h) etching the dielectric layer using the second photoresist layer as a mask to form the second feature.
13. A method according to Claim 12, further comprising depositing copper or a copper alloy in the first and second feature.
14. A method according to Claim 13, wherein the dielectric layer comprises SiO₂ or a low K dielectric.
15. A method according to claim 12, wherein the etch chemistry comprises NH₃.
16. A method according to claim 12, wherein the etch chemistry comprises NF₃.
17. A method according to claim 12, wherein the etch chemistry comprises N₂O.
18. A method according to claim 12, wherein the etch chemistry further comprises an inert gas.

19. A method according to claim 18, wherein the inert gas is selected from the group consisting of He, Ne and Ar.

20. A method according to claim 12, wherein the etchant comprises one or more of a hydrofluorocarbon, a fluorocarbon, a hydrochlorocarbon, or a chlorofluorocarbon.

21. A dual damascene method of forming an interconnect structure having a via and a trench, comprising the steps of:

- (a) providing a semiconductor wafer comprising a conductive layer that has a dielectric layer thereon;
- (b) depositing a first photoresist layer on the dielectric layer;
- (c) patterning the first photoresist layer to form a first mask pattern defining the via;
- (d) etching the dielectric layer using the first photoresist layer as a mask to form the via using an etch chemistry that comprises a member of the group NH₃, NF₃ and N₂O;
- (e) removing the first photoresist;
- (f) depositing a second photoresist layer on the article;
- (g) patterning the second photoresist layer to form a second mask pattern defining trench;
- (h) etching the dielectric layer using the second photoresist layer as a mask to form the trench;
- (i) depositing copper or a copper alloy in the trench and via; and
- (j) etching the copper or copper alloy back to the surface of the dielectric layer.