Chapter 33, Problem 3ED

A Book of Abstract Algebra (2nd Edition)

Bookmark

Show all steps: ON

Problem
Let G be a group. The symbol $H \triangleleft G$ should be read, " H is a normal subgroup of G ." A maximal normal subgroup of G is an $H \triangleleft G$ such that, if $H \triangleleft J \triangleleft G$, then necessarily $J = H$ or $J = G$. Prove the following:
Let $K \triangleleft G$. If \mathcal{J} is a subgroup of G/K , let $\hat{\mathcal{J}}$ denote the union of all the cosets which are members of \mathcal{J} . If $\mathcal{J} \triangleleft G/K$, then $\hat{\mathcal{J}} \triangleleft G$. (Use part 2.)
Step-by-step solution
Step 1 of 4
Here, objective is to prove that $\stackrel{\circ}{g} \triangleleft G$
Comment
Step 2 of 4
If G is a finite group, then the group H is normal subgroup of G is denoted by $H \triangleleft G$
Consider $f: G \to H$ is a homomorphism, then $f(xy) = f(x).f(y); \forall x, y \in G$.
Comment
Step 3 of 4

Consider $K \triangleleft G$, g is a subgroup of $\frac{G}{K}$ and

Then, $f: G \to \frac{G}{K}$ is a natural homomorphism Let $x, y \in f^{-1}(g)$ Then, $f(x), f(y) \in g$ $f(xy) \in g$ $xy\in f^{-1}(g)$ $f^{-1}(g)$ is closed under multiplication. Comment Step 4 of 4 Let $z \in f^{-1}(g)$ $f(z) \in g$ $f(c)^{-1} \in g$ $f(c^{-1}) \in g$ $c^{-1} \in f^{-1}(g)$ $f^{-1}(g)$ is closed under inversion. So, $f^{-1}(g)$ is closed under multiplication and inversion. Therefore, $f^{-1}(g) < G$ is a subgroup of G, implies $f^{-1}(g) < G$ g < GHence, proved Comment

 \hat{g} is a union of all cosets which are members of g.

Consider $g \triangleleft \frac{G}{K}$