LMAT1323 Topologie Examen - 8 janvier 2019

Ralof de Rivebois

17 avril 2020

Exercice 1

- 1. faux (considérer les fonctions constantes).
- 2. pas vu.
- 3. pas vu.
- 4. vrai (sous-ensemble fermé d'un compact est compact, sous-ensemble compact d'un hausdorff est fermé)
- 5. faux (f peut être la fonction constante, alors τ peut êre la topologie indiscrète)
- 6. faux ($x \sim y \iff x = y$ $\implies X \cong X/\sim \implies X/\sim \text{hausdorff} \iff X \text{hausdorff}$)
- 7. vrai (résultat de exos 6.6-3 et 6.4)
- 8. faux (on peut le voir par un dessin dans \mathbb{R}^2 avec des ensembles de la forme \subset et \supset , l'intersection resemble à = qui n'est pas connxe)

Exercice 2

Puisque $f: X \to Y$ continue et X est connexe, $f(X) \subset Y$ doit être connexe. Puisque Δ est la topologie discrète, seul les singletons sont connexes.

Tous les autres ensembles $U \subset Y$ peuvent être écrit comme ceci : fixons $x \in U$. Alors

$$U = \{x\} \cup \bigcup_{y \in U \backslash \{x\}} \{y\}$$

avec

$$\{x\}, \bigcup_{y \in U \setminus \{x\}} \{y\} \in \Delta$$

donc U n'est pas connexe.

Puisque seul les singletons sont connexes dans Y et que $f(X) \subset Y$ est connexe, nous déduisons que f(X) est un singleton, c'est-à-dire qu'il existe $y \in Y$ tel que f(x) = y pour tout $x \in X$.

Exercice 3

Puisque X est normé, il est métrique et donc M et N sont métriques en tant que sous-ensembles d'un métrique.

Considérons une suite $(u_k)_{k\in\mathbb{N}}$ convergeante vers $a\in X$ tel que $u_k\in M+N$ pour tout $k\in\mathbb{N}$.

Montrons que $a \in M + N$:

Puisque $u_k \in M + N$ pour tout $k \in \mathbb{N}$, il existe des suites $(m_k)_{k \in \mathbb{N}}$, $(n_k)_{k \in \mathbb{N}}$ tel que $u_k = m_k + n_k$ avec $m_k \in M$, $n_k \in N$ pour tout $k \in \mathbb{N}$.

Puisque M est compact, il est séquentiellement compact et donc $(m_k)_{k\in\mathbb{N}}$ admet une sous-suite $(m_{k_j})_{j\in\mathbb{N}}$ qui converge (notons m la limite de $(m_{k_j})_{j\in\mathbb{N}}$).

Puisque M est métrique, il est hausdorff et puisqu'il est également compact, il est fermé. Nous avons donc que $m \in M$. Nous avons également, pour $j \in \mathbb{N}$,

$$u_{k_j} = m_{k_j} + n_{k_j}$$

$$\iff n_{k_j} = u_{k_j} - m_{k_j}$$

et donc $(n_{k_j})_{j\in\mathbb{N}}$ converge (en tant que somme de suites convergeante) vers un élement $n\in X$. Puisque N est fermé, $n\in N$. Nous avons donc

$$\lim_{j \to \infty} u_{k_j} = \lim_{j \to \infty} m_{k_j} + \lim_{j \to \infty} n_{k_j}$$

$$\iff a = m + n \in M + N$$

et donc M + N est fermé.

Exercie 4

Considérons la fonction $f: X \times Y \to Y \times X$ définie par f(x,y) = (y,x). Cette fonction est clairement bijective et d'inverse $g: Y \times X \to X \times Y : (y,x) \mapsto (x,y)$.

Nous allons montrer que f est continue (la preuve de la continuité de g est analogue, il suffit d'inverser les x, X et les y, Y).

Soit $O \subset Y \times X$ ouvert. Pour $(y,x) \in O$, il existe $U_y \subset Y$ et $U_x \subset X$ ouverts tel que $x \in U_x$, $y \in U_y$ et $U_y \times U_x \subset O$. Remarquons que

$$f^{-1}(U_y \times U_x) = U_x \times U_y.$$

qui est ouvert dans $X \times Y$.

On a

$$O = \bigcup_{(y,x)\in O} U_y \times U_x$$

donc

$$f^{-1}(O) = f^{-1} \left(\bigcup_{(y,x) \in O} U_y \times U_x \right)$$
$$= \bigcup_{(y,x) \in O} f^{-1} \left(U_y \times U_x \right)$$
$$= \bigcup_{(y,x) \in O} U_x \times U_y,$$

c'est-à-dire $f^{-1}(O) \subset X \times Y$ est une union d'ouverts de $X \times Y$, donc il est ouvert.

Exercice 5

(a)

 $-\mathcal{O}_1$:

 $\varnothing \in \mathcal{O}$ car il n'existe pas $x \in \varnothing$ donc il n'y a rien à verifier. $\mathbb{R} \in \mathcal{O}$ car pour $x \in \mathbb{R}$, on prend a = x - 1, b = x + 1 et alors $x \in]a,b[\subset \mathbb{R}$.

 $-\mathcal{O}_2$:

Soit $\{U_i\}_{i\in I}$ un ensemble d'éléments de \mathcal{O} .

Pour $x \in \bigcup_{i \in I} U_i$, il existe $i \in I$ tel que $x \in U_i$. Donc il existe $a, b \in \mathbb{R}$ tel que

$$x\in]a,b[\subset U_i\subset \bigcup_{i\in I}U_i$$

ou

$$x\in]a,b[\backslash \Sigma\subset U_i\subset \bigcup_{i\in I}U_i$$

et donc

$$\bigcup_{i\in I} U_i \in \mathcal{O}.$$

 $-\mathcal{O}_3$:

Soient $n \in \mathbb{N}_*$ et $\{U_k\}_{1 \leq k \leq n}$ un ensemble fini d'éléments de \mathcal{O} . Soit $x \in \bigcap_{k=1}^n U_k$. Puisque x est dans l'intersection de tous les U_k , $x \in U_k$ pour tout $1 \leq k \leq n$. Donc, pour tout $1 \leq k \leq n$, il existe a_k , $b_k \in \mathbb{R}$ tel quel

$$x \in]a_k, b_k[\subset U_k]$$
 (1)

011

$$x \in]a_k, b_k[\setminus \Sigma \subset U_k.$$
 (2)

Si $x \in \Sigma$, alors (2) est impossible. Alors, en posant

$$]a,b[=\bigcap_{k=1}^{n}]a_k,b_k[,$$

on obtient

$$x\in]a,b[\subset \bigcap_{k=1}^n U_k.$$

Si $x \notin \Sigma$, alors si, pour un certain $1 \le k \le n$

$$x \in]a_k, b_k[\subset U_k,$$

on a également

$$x \in]a_k, b_k[\setminus \Sigma \subset U_k]$$

(c'est-à-dire $(1) \implies (2)$).

Alors, en posant $]a,b[=\bigcap_{k=1}^{n}]a_k,b_k[$, on obtient que

$$x \in]a, b[\setminus \Sigma \subset \bigcap_{k=1}^n U_k.$$

Dans les deux cas, on conclut que

$$\bigcap_{k=1}^{n} U_k \in \mathcal{O}.$$

(b) Notons ≠ la topologie usuelle de ℝ (qui

Notons τ la topologie usuelle de \mathbb{R} (qui est hausdorff). On remarque que $\tau \subset \mathcal{O}$ et donc $(\mathbb{R}, \mathcal{O})$ est hausdorff.

En effet, les ouverts de τ sont des unions et des intersections d'intervalles]a,b[, or, pour $x \in]a,b[$, on a $x \in]a,b[\subset]a,b[$ ce qui montre que les intervalles ouverts de (\mathbb{R},τ) sont ouverts dans (\mathbb{R},\mathcal{O}) . Puisque nous avons montré que les unions et intersections d'éléments de \mathcal{O} sont dans \mathcal{O} , nous déduisons que les unions et intersections d'intervalles ouverts de (\mathbb{R},τ) appartiennent à \mathcal{O} , c'est-à-dire $\tau \subset \mathcal{O}$.