

Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 5 – Circuit Optimization

Asst.Prof.Dr. Preecha Tangworakitthaworn Semester 2/2023

Overview

- Part 5 Circuit Optimization
 - Map Manipulation
 - Simplification using Karnaugh Map Technique

Map Manipulation

- Using Map called Karnaugh Map (or K-Map) is a simple simplification technique.
- The K-map method of solving the logical expressions is referred to as the <u>graphical</u> technique of simplifying Boolean expressions.

Karnaugh Maps (K-map)

- A K-map is a collection of squares (or Cubes)
 - Each square represents a Minterm
 - The collection of squares is a graphical representation of a Boolean function
 - Adjacent squares differ in the value of one variable
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- The K-map can be viewed as
 - A reorganized version of the truth table
 - A topologically-warped Venn diagram as used to visualize sets in algebra of sets

K-Map Template (using Gray Code)

Each cell within a K-map has a definite <u>placed-value</u> (or variable value) which is obtained by using an encoding technique known as <u>Gray code</u>.

What is Gray Code?

Gray Code is an ordering of the binary numerical system such that two successive values differ in only one bit (binary digit).

Decimal	Binary	Gray Code
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

What is Gray Code?

Only 1-bit changes between each state transition

K-Map Template (Two Variables)

Two Variable Maps

Assigned values and variables to K-Map

K-Map and Truth Tables

- The K-Map is just a different form of the truth table.
- Example Two variable function:
 - We choose a,b,c and d from the set $\{0,1\}$ to implement a particular function, F(x,y).

Function Table

Input	Function
Values	Value
(x,y)	$\mathbf{F}(\mathbf{x},\mathbf{y})$
0 0	a
0 1	b
10	c
11	d

K-Map

	y = 0	y = 1
$\mathbf{x} = 0$	a	b
x = 1	c	d

How to draw K-Map?

Recommend

Assign Boolean expression into K-Map

How to draw K-Map?

$$F(X,Y) = XY + X\overline{Y} + \overline{X}Y$$

	0	Y	1
0			1
X 1	1		1

$$F(X,Y) = X$$

How to draw K-Map?

$$F(X,Y) = \sum_{m} (0, 1, 3)$$

	0	Y 1
0	1	1
X 1		1

$$F(X,Y) = \sum_{m} (1, 2)$$

K-Map Function Representation

• Example: F(x,y) = x

$$F = x$$
 $y = 0$ $y = 1$
 $x = 0$ 0 0
 $x = 1$ 1 1

For function F(x,y), the two adjacent cells containing 1's can be combined using the Minimization Theorem:

$$F(x,y) = x \overline{y} + x y = x$$

2 Cells in K-Map = 1 literal (output)

K-Map Function Representation

• Example: G(x,y) = x + y

$$G = x+y$$
 $y = 0$ $y = 1$
 $x = 0$ 0 1
 $x = 1$ 1 1

For G(x,y), two pairs of adjacent cells containing
 1's can be combined using the Minimization

Theorem:

Venn Diagram vs K-Map

Venn Diagram represents over-lapping area between 2 sets

K-Map represents overlapping area between 2 Adjacent

K-Map Template (Three Variables)

K-Map Template (Three Variables)

Example Functions

- By convention, we represent the minterms of F by a "1" in the map and leave the minterms of \overline{F} blank or put "0"
- Example: $F(x, y, z) = \Sigma_m(2,3,4,5)$

			y	
	0	1	³ 1	² 1
X	⁴ 1	⁵ 1	7	6
		7.		

Example:

$$G(a,b,c) = \Sigma_m(3,4,6,7)$$

Determination of Adjacent Cell

• if the binary value for an <u>index</u> differs in one bit position, the minterms are <u>adjacent</u> on the K-Map

Determination of Adjacent Cell

- Number of cell for Adjacent on the K-Map must equal to 2ⁿ
- Thus, Adjacent must be 1, 2, 4, 8, etc.

Determination of Adjacent Cell Combining Squares

- By combining squares, we reduce number of literals in a product term, reducing the literal cost
- On a 3-variable K-Map:
 - One square represents a minterm with three variables
 - Two adjacent squares represent a product term with two variables
 - Four "adjacent" terms represent a product term with one variable
 - Eight "adjacent" terms is the function of all ones (no variables) = 1.

Prime Implicants

- Implicant: A product term that has non-empty intersection with on-set F
 and does not intersect with off-set R
- Prime Implicant: An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant

Q: Is this a prime implicant?

A. Yes B. No

Maximum Adjacent Cells=2

Prime Implicants

- Implicant: A product term that has non-empty intersection with on-set F
 and does not intersect with off-set R
- Prime Implicant: An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant

Q: How about this one? Is it a prime implicant?

A. Yes

B. No

Maximum Adjacent Cells?

Prime Implicants

- Implicant: A product term that has non-empty intersection with on-set F
 and does not intersect with off-set R
- Prime Implicant: An implicant that is not a proper subset of any other implicant i.e. it is not completely covered by any single implicant

Q: Is the red group a prime implicant?

A. Yes

B. No: Because it is covered by a larger group

Maximum Adjacent Cells=4

Example: Combining Squares

Applying the Minimization Theorem three times:

$$F(x,y,z) = \overline{x} y z + x y z + \overline{x} y \overline{z} + x y \overline{z}$$

$$= yz + y\overline{z}$$

$$= xz$$

Thus the four terms that form a 2×2 square correspond to the term "y".

- Topological warps of 3-variable K-maps that show all adjacencies:
 - Venn Diagram

Cylinder

Example Shapes of 2-cell Adjacent:

Example Shapes of 4-cell Adjacent:

Example Shapes of 4-cell Adjacent:

Example Shapes of 4-cell Adjacent:

Simplification using K-Map

Step 1: Determine Adjacent Cells

Simplification using K-Map

- Step 2: Verify each variable (one by one),
 - 2.1: Adjacent covers either 0 or 1, keep this variable
 - 2.2: Adjacent covers both 0 and 1, remove this variable

Example 1

• Example: Simplify $F(X,Y,Z) = \overline{XYZ} + \overline{XYZ} + \overline{XYZ}$

Example 2

Example: Simplify $F(x, y, z) = \Sigma_m(1,2,3,5,7)$

$$F(x, y, z) = Z + XY$$

Four Variable Terms

- Four variable maps can have rectangles corresponding to:
 - A single 1 = 4 variables, (i.e. Minterm)
 - Two 1s = 3 variables,
 - Four 1s = 2 variables
 - Eight 1s = 1 variable,
 - Sixteen 1s = zero variables (i.e.Constant "1")

K-Map Template (Four Variables)

Five Variable or More K-Maps

• For five variable problems, we use two adjacent K-maps. It becomes harder to visualize adjacent minterms for selecting PIs. You can extend the problem to six variables by using four K-Maps.

