Allowed Steps. When Solving for Variables in Inequalities

- <u>Add</u> something to both sides.
- Subtract something from both sides.
- Multiply both sides by a positive number.
- \bullet $\underline{\mathbf{Divide}}$ both sides by a $\mathbf{positive}$ number.
- <u>Multiply</u> both sides by a <u>negative</u> number and <u>reverse</u> the inequality. $\leq \qquad \leq \qquad \uparrow$
- <u>Divide</u> both sides by a **negative** number and <u>reverse</u> the inequality.

Not Allowed. When Solving for Variables in Inequalities Multiply or divide both sides by an expression containing <u>variables</u>.

Notation Conversions.

Inequality	\leftrightarrow	Interval
2 < x < 7	\leftrightarrow	(2,7)
$2 \le x < 7$	\leftrightarrow	[2, 7)
$2 < x \le 7$	\leftrightarrow	(2, 7]
$2 \le x \le 7$	\leftrightarrow	[2, 7]
$-3 \le x$	\leftrightarrow	$[-3,\infty)$
-3 < x	\leftrightarrow	$(-3,\infty)$
x < 5	\leftrightarrow	$(-\infty, 5)$
$x \leq 5$	\leftrightarrow	$(-\infty, 5]$
$x \neq 5$	\leftrightarrow	$(-\infty,5)\cup(5,\infty)$
$-3 \le x < 2 \text{ or } x > 4$	\leftrightarrow	$[-3,2)\cup(4,\infty)$
all real numbers	\leftrightarrow	$(-\infty,\infty)$

Example. Solve -6x + 4 < 34 for x.

• Subtract 4 from each side:

$$-6x+4-4 < 34-4 \implies -6x < 30$$

• Divide both sides by -6 <u>and</u> reverse the inequality:

$$\frac{-6x}{-6} > \frac{-30}{-6} \implies x > -5$$

• Write in interval from:

$$x > -5 \quad \Rightarrow \quad (-5, \infty)$$

Example. Solve $5 < -2x + 7 \le 11$ for x.

• Subtract 7 from each section:

$$5-7 < -2x + 7 - 7 \le 11 - 7 \implies -2 < -2x \le 4$$

• Divide each section -2 and reverse the inequalities:

$$\frac{-2}{-2} > \frac{-2x}{-2} \ge \frac{4}{-2} \quad \Rightarrow \quad 1 > x \ge -2$$

• Write in interval from:

$$1 > x \ge -2 \quad \Rightarrow \quad [-2, 1)$$

Example. Solve $\frac{x+1}{3} - \frac{2x-4}{6} \le -\frac{x}{2}$ for x.

• Clear the denominators by multiplying both sides by $\frac{6}{1}$:

$$\frac{6}{1} \left(\frac{x+1}{3} - \frac{2x-4}{6} \right) \le \frac{6}{1} \left(-\frac{x}{2} \right) \implies \frac{2 \cdot \cancel{3}}{1} \cdot \frac{x+1}{\cancel{3}} - \frac{\cancel{6}}{1} \cdot \frac{2x-4}{\cancel{6}} \le \frac{\cancel{2} \cdot \cancel{3}}{1} \cdot -\frac{x}{\cancel{2}}$$
$$\implies 2(x+1) - (2x-4) \le -3x$$

• Distribute the 2 and -:

$$2(x+1) - (2x-4) \le -3x \implies 2x+2-2x+4 \le -3x$$

• Simplify as much as possible before moving forward:

$$2x + 2 - 2x + 4 \le -3x \quad \Rightarrow \quad 6 \le -3x$$

• Divide both sides by -3 and reverse the inequality:

$$\frac{6}{-3} \ge \frac{-3x}{-3} \quad \Rightarrow \quad -2 \ge x$$

• Write in interval from:

$$-2 \ge x \quad \Rightarrow \quad (-\infty, -2]$$