CS 7800: Advanced Algorithms

Class 8: Network Flow II

Choosing Good Augmenting Paths

Jonathan Ullman September 30, 2025

Ford-Fulkerson can be Slow

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph G_f
- Repeat until you get stuck

Choosing Good Augmenting Paths

Last Time: Ford Fulkerson (integer capacities) needs at most val(f") augmenting paths
- Might be tight for some choice of paths

Today: How to make better choices of paths
- widest augmenting path
- shortest augmenting path

Widest augmenting path

- Can find the widest augmenting path in time $O(m \log n)$ in several different ways
 - BFS + binary search
 - Variants of Prim's or Kruskal's MST algorithm

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v*
- Value of aug path: ≥ 1
- Flow remaining in G_f : $\leq v^* 1$
- # of aug paths: $\leq v^*$

Wider Fath

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in G_f :
- # of aug paths:

- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a widest augmenting s-t path with capacity B
- Key Claim: $B \ge \frac{v^*}{m}$

widert path > value of max flow #of edges

Proof:

• If widest path has capacity B then sand there disconnected in the graph of only edges with capacity > B

- f^* is a maximum flow with value $v^* = val(f^*)$
- P is a widest augmenting s-t path with capacity B
- Key Claim: $B \ge \frac{v^*}{m}$
- Proof:

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v*
- Value of aug path: ≥ 1
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: >
- Flow remaining in G_f : $\leq v^* 1$ Flow remaining in G_f : $\leq (1 \frac{1}{m}) \cdot v^*$
 - # of aug paths: $\frac{1}{2} m \cdot \ln(\sqrt{r}) + 1$
- If there exists an any path, it has value >1 2) After t augmentations, flow remaining is & J*. (1-in) t & J*. e

Choosing Good Augmenting Paths

```
Last Time: Ford Fulkerson (integer capacities) needs at most val(f") augmenting paths

- Might be tight for some choice of paths
```

Today: How to make better choizer of paths

- widest augmenting path

- at most $O(m-\ln(r^n))$ paths

- at most $O(m^2 - \log n \cdot \log r^n)$ time

- shortest augmenting path

Shortest augmenting path

• Can find the shortest augmenting path in time $\mathcal{O}(m)$ using breadth-first search

• **Theorem:** Shortest augmenting path terminates after at mn/2 augmenting paths

No dependence on capacities! Even for mational capacities

Proof Sketch (Full Proof is Challenging):

Ley Claim
No edge can be saturated and the unsaturated more
than 1/2 times

- **Key Claim:** No edge reappears more than n/2 times
- Proof Sketch (Full Proof is Challenging):

· "Run breadth-first search on G;"

- · level: (v) = length of the shortest path from s to v in G;

 (1) No edge from level & to k+2 or higher
 - 3 Shortest paths always go forward in level

- **Key Claim:** No edge reappears more than n/2 times
- Proof Sketch (Full Proof is Challenging):

· Let
$$G_i$$
 be the residual graph after i paths $(G_0 = G)$
· level: $(U) = \text{length of the shortest path from s to U in G_i
Claim 1: For all U and all i level: $(U) \leq \text{level}_i(U)$$

- **Key Claim:** No edge reappears more than n/2 times
- Proof Sketch (Full Proof is Challenging):

- **Key Claim:** No edge reappears more than n/2 times
- Proof Sketch (Full Proof is Challenging):

Choosing Good Augmenting Paths

Summary

- Last Class: Can solve maximum flow in time $O(m \cdot v^*)$
 - Can be very slow when capacities are large
 - Cannot be improved if we allow arbitrary augmenting paths
- Today: Improving running time by choosing better paths
 - Widest Augmenting Path: $O(m \cdot \log v^*)$
 - Shortest Augmenting Path: $O(m^2n)$
- Still actively studied!
 - Can solve maximum flow in O(mn) using augmenting path* algos
 - Recent Breakthrough: Can solve maximum flow in time* $m^{1+o(1)}$
- Later On: Using maximum-flow as a building block for solving many more problems