Introduction

Il existe déjà de multiples ouvrages traitant de S-Plus ou R. Dans la majorité des cas, toutefois, ces deux logiciels sont présentés dans le cadre d'applications statistiques spécifiques. Le présent ouvrage se concentre plutôt sur l'apprentissage du langage de programmation sous-jacent aux diverses fonctions statistiques, le S.

Cette seconde édition est principalement une réorganisation du contenu de la première édition. Les chapitres sur la régression linéaire et les séries chronologiques ont été éliminés et les annexes C et D ont été déplacées dans le corps du document. Nous avons également corrigé plusieurs coquilles suite à la révision effectuée par Mme Mireille Côté.

Le texte est la somme de notes et d'exercices de cours donnés par l'auteur à l'École d'actuariat de l'Université Laval. Les six premiers chapitres, qui constituent le cœur du document, proviennent d'une partie d'un cours où l'accent est mis sur l'apprentissage d'un (deuxième) langage de programmation par des étudiants de premier cycle en sciences actuarielles. Les applications numériques et statistiques de S-Plus et R présentées aux chapitres ??, ?? et ?? sont étudiées plus tard dans le cursus universitaire.

Les cours d'introduction au langage S sont donnés à raison de une heure par semaine de cours magistral suivie de deux heures en laboratoire d'informatique. C'est ce qui explique la structure des six premiers chapitres : les éléments de théorie, contenant peu voire aucun exemple, sont présentés en rafale en classe. Puis, lors des séances de laboratoire, les étudiantes et étudiants sont appelés à lire et exécuter les exemples se trouvant à la fin des chapitres. Chaque section d'exemples couvre l'essentiel des concepts présentés dans le chapitre et les complémente souvent. L'étude de ces sections fait donc partie intégrante de l'apprentissage du langage S.

Le texte des sections d'exemples est disponible en format électronique dans le site Internet

http://vgoulet.act.ulaval.ca/intro_S

Certains exemples et exercices trahissent le premier public de ce document :

ii Introduction

on y fait à l'occasion référence à des concepts de base de la théorie des probabilités et des mathématiques financières. Les contextes actuariels demeurent néanmoins peu nombreux et ne devraient généralement pas dérouter le lecteur pour qui ces notions sont moins familières.

Les chapitres **??** (fonctions d'optimisation), **??** (générateurs de nombres aléatoires) et **??** (planification d'une simulation en S) sont structurés de manière plus classique, notamment parce que le texte y est en prose.

Le texte prend parti en faveur de l'utilisation de GNU Emacs et du mode ESS pour l'édition de code S. Les annexes contiennent de l'information sur l'utilisation de S-Plus et R avec cet éditeur.

Dans la mesure du possible, cet ouvrage tâche de présenter les environnements S-Plus et R en parallèle, en soulignant leurs différences s'il y a lieu. Les informations propres à S-Plus ou à R sont d'ailleurs signalées en marge par les marques «S+» et «R», respectivement. Étant donné la nette préférence de l'auteur pour R, les divers extraits de code ont généralement été exécutés avec ce moteur S.

À moins d'erreurs et d'omissions (que les lecteurs sont invités à nous faire connaître), les informations données à propos de S-Plus sont exactes pour les versions 6.1 (Linux et Windows), 6.2 Student Edition (Windows) et 7.0 (Linux et Windows). Pour R, la version 2.4.1 (Linux et Windows), soit la plus récente lors de la rédaction, a été utilisée comme référence.

On notera enfin que cet ouvrage n'a aucune prétention d'exhaustivité. C'est ce qui explique les nombreux renvois au livre de Venables et Ripley (2002), plus complet.

L'auteur tient à remercier M. Mathieu Boudreault pour sa collaboration dans la rédaction des exercices.

Vincent Goulet < vincent.goulet@act.ulaval.ca> Québec, janvier 2007

Table des matières

In	trodu	ction	i
1	Prés	entation du langage R	1
	1.1	Bref historique	1
	1.2	Description sommaire de R	2
	1.3	Interfaces	3
	1.4	Stratégies de travail	3
	1.5	Éditeurs de texte	5
	1.6	Anatomie d'une session de travail	8
	1.7	Répertoire de travail	9
	1.8	Consulter l'aide en ligne	9
	1.9	Où trouver de la documentation	9
	1.10	Exemples	10
	1.11	Exercices	11
A	GNU	Emacs et ESS : la base	13
	A.1	Mise en contexte	13
	A.2	Installation	14
	A.3	Description sommaire	14
	A.4	Emacs-ismes et Unix-ismes	15
	A.5	Commandes de base	16
	A.6	Anatomie d'une session de travail (bis)	19
	A.7	Configuration de l'éditeur	20
	A.8	Aide et documentation	20
В	CNIII	Free Documentation License	21
D	B.1	APPLICABILITY AND DEFINITIONS	21
	B.2	VERBATIM COPYING	23
	B.2 B.3	COPVING IN OHANTITY	23

Table of	

Index		33	
Bibliographie			
AΓ	DDENDUM: How to use this License for your documents	29	
B.1	0 FUTURE REVISIONS OF THIS LICENSE	28	
B.9	TERMINATION	28	
B.8	B TRANSLATION	28	
B.7	AGGREGATION WITH INDEPENDENT WORKS	27	
В.6	6 COLLECTIONS OF DOCUMENTS	27	
B.5	COMBINING DOCUMENTS	26	
B.4	MODIFICATIONS	24	

1 Présentation du langage R

Objectifs du chapitre

- ► Comprendre ce qu'est un langage de programmation interprété.
- Connaître la provenance du langage R et les principes ayant guidé son développement.
- Mettre en place sur son poste de travail un environnement de développement en R
- ► Savoir démarrer une session R et exécuter des commandes simples.
- Comprendre l'utilité des fichiers de script R et savoir les utiliser de manière interactive.
- ► Savoir créer, modifier et sauvegarder ses propres fichiers de script R.

1.1 Bref historique

À l'origine fut le S, un langage pour «programmer avec des données» développé chez Bell Laboratories à partir du milieu des années 1970 par une équipe de chercheurs menée par John M. Chambers. Au fil du temps, le S a connu quatre principales versions communément identifiées par la couleur du livre dans lequel elles étaient présentées : version «originale» (*Brown Book;* Becker et Chambers, 1984), version 2 (*Blue Book;* Becker et collab., 1988), version 3 (*White Book;* Chambers et Hastie, 1992) et version 4 (*Green Book;* Chambers, 1998); voir aussi Chambers (2000) et Becker (1994) pour plus de détails.

Dès la fin des années 1980 et pendant près de vingt ans, le S a principalement été popularisé par une mise en œuvre commerciale nommée S-PLUS. En 2008, Lucent Technologies a vendu le langage S à Insightful Corporation, ce qui a effectivement stoppé le développement du langage par ses auteurs originaux. Aujour-d'hui, le S est commercialisé de manière relativement confidentielle sous le nom Spotfire S+ par TIBCO Software.

Ce qui a fortement contribué à la perte d'influence de S-PLUS, c'est une nouvelle mise en œuvre du langage développée au milieu des années 1990. Inspirés à la fois par le S et par Scheme (un dérivé du Lisp), Ross Ihaka et Robert Gentleman proposent un langage pour l'analyse de données et les graphiques qu'ils nomment R (Ihaka et Gentleman, 1996). À la suggestion de Martin Maechler de l'ETH de Zurich, les auteurs décident d'intégrer leur nouveau langage au projet GNU ¹, faisant de R un logiciel libre.

Ainsi disponible gratuitement et ouvert aux contributions de tous, R gagne rapidement en popularité là même où S-PLUS avait acquis ses lettres de noblesse, soit dans les milieux académiques. De simple dérivé «*not unlike S*», R devient un concurrent sérieux à S-PLUS, puis le surpasse lorsque les efforts de développement se rangent massivement derrière le projet libre. D'ailleurs John Chambers place aujourd'hui ses efforts de réflexion et de développement dans le projet R (Chambers, 2008).

1.2 Description sommaire de R

R est un environnement intégré de manipulation de données, de calcul et de préparation de graphiques. Toutefois, ce n'est pas seulement un «autre» environnement statistique (comme SPSS ou SAS, par exemple), mais aussi un langage de programmation complet et autonome.

Tel que mentionné précédemment, le R est un langage principalement inspiré du S et de Scheme (Abelson et collab., 1996). Le S était à son tour inspiré de plusieurs langages, dont l'APL (autrefois un langage très prisé par les actuaires) et le Lisp. Comme tous ces langages, le R est *interprété*, c'est-à-dire qu'il requiert un autre programme — l'*interprète* — pour que ses commandes soient exécutées. Par opposition, les programmes de langages *compilés*, comme le C ou le C++, sont d'abord convertis en code machine par le compilateur puis directement exécutés par l'ordinateur.

Le programme que l'on lance lorsque l'on exécute R est en fait l'interprète. Celui-ci attend que l'on lui soumette des commandes dans le langage R, commandes qu'il exécutera immédiatement, une à une et en séquence.

Par analogie, Excel est certes un logiciel de manipulation de données, de mise en forme et de préparation de graphiques, mais c'est aussi au sens large un langage de programmation interprété. On utilise le langage de programmation lorsque l'on entre des commandes dans une cellule d'une feuille de calcul. L'interprète exécute les commandes et affiche les résultats dans la cellule.

http://www.gnu.org

1.3. Interfaces 3

Le R est un langage particulièrement puissant pour les applications mathématiques et statistiques (et donc actuarielles) puisque précisément développé dans ce but. Parmi ses caractéristiques particulièrement intéressantes, on note :

- ▶ langage basé sur la notion de vecteur, ce qui simplifie les calculs mathématiques et réduit considérablement le recours aux structures itératives (boucles) ;
- ▶ pas de typage ni de déclaration obligatoire des variables;
- programmes généralement courts, en général quelques lignes de code seulement;
- ▶ temps de développement très court.

1.3 Interfaces

R est d'abord et avant tout une application n'offrant qu'une invite de commande du type de celle présentée à la figure 1.1. En soi, cela n'est pas si différent d'un tableur tel que Excel : la zone d'entrée de texte dans une cellule n'est rien d'autre qu'une invite de commande ², par ailleurs aux capacités d'édition plutôt réduites.

- ▶ Sous Unix et Linux, R n'est accessible que depuis la ligne de commande du système d'exploitation (terminal). Aucune interface graphique n'est offerte avec la distribution de base de R.
- ► Sous Windows, une interface graphique plutôt rudimentaire est disponible. Elle facilite certaines opérations tel que l'installation de packages externes, mais elle offre autrement peu de fonctionnalités additionnelles pour l'édition de code R.
- ▶ L'interface graphique de R sous Mac OS X est la plus élaborée. Outre la console présentée à la figure 1.1, l'application R. app comporte de nombreuses fonctionnalités, dont un éditeur de code assez complet.

1.4 Stratégies de travail

Dans la mesure où R se présente essentiellement sous forme d'une invite de commande, il existe deux grandes stratégies de travail avec cet environnement statistique.

1. On entre des expressions à la ligne de commande pour les évaluer immédiatement :

> 2 + 3

^{2.} Merci à Markus Gesmann pour cette observation.

FIG. 1.1: Fenêtre de la console sous Mac OS X au démarrage de R

[1] 5

On peut également créer des objets contenant le résultat d'un calcul. Ces objets sont stockés en mémoire dans l'espace de travail de R :

```
> x <- exp(2)
> x
[1] 7.389056
```

Lorsque la session de travail est terminée, on sauvegarde une image de l'espace de travail sur le disque dur de l'ordinateur afin de pouvoir conserver les objets pour une future séance de travail :

```
> save.image()
```

Par défaut, l'image est sauvegardée dans un fichier nommé .RData dans le dossier de travail actif (voir la section 1.7) et cette image est automatiquement chargée en mémoire au prochain lancement de R, tel qu'indiqué à la fin du message d'accueil :

[Sauvegarde de la session précédente restaurée]

1.5. Éditeurs de texte 5

Cette approche, dite de «code virtuel et objets réels» a un gros inconvénient : le code utilisé pour créer les objets n'est pas sauvegardé entre les sessions de travail. Or, celui-ci est souvent bien plus compliqué que l'exemple ci-dessus. De plus, sans accès au code qui a servi à créer l'objet x, comment savoir ce que la valeur 7,389056 représente au juste?

2. L'approche dite de «code réel et objets virtuels» considère que ce qu'il importe de conserver d'une session de travail à l'autre n'est pas tant les objets que le code qui a servi à les créer. Ainsi, on sauvegardera dans ce que l'on nommera des *fichiers de script* nos expressions R et le code de nos fonctions personnelles. Par convention, on donne aux fichiers de script un nom se terminant avec l'extension . R.

Avec cette approche, les objets sont créés au besoin en exécutant le code des fichiers de script. Comment ? Simplement en copiant le code du fichier de script et en le collant dans l'invite de commande de R. La figure 1.2 illustre schématiquement ce que le programmeur R a constamment sous les yeux : d'un côté son fichier de script et, de l'autre, l'invite de commande R dans laquelle son code a été exécuté.

La méthode d'apprentissage préconisée dans cet ouvrage suppose que le lecteur utilisera cette seconde approche d'interaction avec R.

1.5 Éditeurs de texte

Dans la mesure où l'on a recours à des fichiers de script tel qu'expliqué à la section précédente, l'édition de code R bénéficie grandement d'un bon éditeur de texte pour programmeur. Dans certains cas, l'éditeur peut même réduire l'opération de copier-coller à un simple raccourci clavier.

- ▶ Un éditeur de texte est différent d'un traitement de texte en ce qu'il s'agit d'un logiciel destiné à la création, l'édition et la sauvegarde de fichiers textes purs, c'est-à-dire dépourvus d'information de présentation et de mise en forme. Les applications Bloc-notes sous Windows ou TextEdit sous OS X sont deux exemples d'éditeurs de texte simples.
- ▶ Un éditeur de texte pour programmeur saura en plus reconnaître la syntaxe d'un langage de programmation et assister à sa mise en forme : indentation automatique du code, coloration syntaxique, manipulation d'objets, etc.

Le lecteur peut utiliser l'éditeur de texte de son choix pour l'édition de code R. Certains éditeurs offrent simplement plus de fonctionnalités que d'autres.

```
## Fichier de script simple contenant des expressions R pour
## faire des calculs et créer des objets.
2 + 3

## Probabilité d'une loi de Poisson(10)
x <- 7
10^x * exp(-10) / factorial(x)

## Petite fonction qui fait un calcul trivial
f <- function(x) x^2

## Évaluation de la fonction
f(2)</pre>
```

```
R version 2.14.0 (2011-10-31)
Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
[...]
> ## Fichier de script simple contenant des expressions R pour
> ## faire des calculs et créer des objets.
> 2 + 3
[1] 5
> ## Probabilité d'une loi de Poisson(10)
> x <- 7
> 10^x * exp(-10) / factorial(x)
[1] 0.09007923
> ## Petite fonction qui fait un calcul trivial
> f <- function(x) x^2
> ## Évaluation de la fonction
> f(2)
[1] 4
```

FIG. 1.2: Fichier de script (en haut) et invite de commande R dans laquelle les expressions R ont été exécutées (en bas). Les lignes débutant par # dans le fichier de script sont des commentaires ignorés par l'interprète de commandes.

1.5. Éditeurs de texte

```
000
                                           r script.R
 ## Fichier de script simple contenant des expressions R pour
 ## faire des calculs et créer des objets.
 ## Probabilité d'une loi de Poisson(10)
 10^x * exp(-10) / factorial(x)
  ## Petite fonction qui fait un calcul trivial
  f <- function(x) x^2
 ## Évaluation de la fonction
 O-U:--- script.R All (6,0) SVN@0 (ESS[S] [R] Rox ElDoc Abbrev)-
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
 R est un logiciel libre livré sans AUCUNE GARANTIE.
 Vous pouvez le redistribuer sous certaines conditions. Tapez 'license()' ou 'licence()' pour plus de détails.
 R est un projet collaboratif avec de nombreux contributeurs.
 Tapez 'contributors()' pour plus d'information et
  'citation()' pour la façon de le citer dans les publications.
 Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide en ligne ou 'help.start()' pour obtenir l'aide au format HTML. Tapez 'q()' pour quitter R.
 > .help.ESS <- help</pre>
 > options(STERM='iESS', editor='emacsclient')
 [1] 5
-U:**- *R*
                    Bot (23,2) (iESS [R]: run Abbrev)
```

FIG. 1.3: Fenêtre de GNU Emacs sous OS X en mode d'édition de code R. Dans la partie du haut, on retrouve le fichier de script de la figure 1.2 et dans la partie du bas, l'invite de commandes R.

- ► GNU Emacs est un très ancien, mais aussi très puissant éditeur pour programmeur. À la question 6.2 de la foire aux questions de R (Hornik, 2011), «Devrais-je utiliser R à l'intérieur de Emacs?», la réponse est : «Oui, absolument.»
 - En effet, combiné avec le mode ESS (*Emacs Speaks Statistics*), Emacs offre un environnement de développement aussi riche qu'efficace. Entre autres fonctionnalités uniques à Emacs, le fichier de script et l'invite de commandes R sont regroupés dans la même fenêtre, comme on peut le voir à la figure 1.3.
 - Emblême du logiciel libre, Emacs est disponible gratuitement et à l'identique sur toutes les plateformes supportées par R, dont Windows, OS X et Linux.
- ► Consulter l'annexe A pour en savoir plus sur GNU Emacs et apprendre les com-

mandes essentielles pour y faire ses premiers pas.

- ► Malgré tous ses avantages (ou à cause de ceux-ci), Emacs est un logiciel difficile à apprivoiser, surtout pour les personnes moins à l'aise avec l'informatique.
- Il existe plusieurs autres options que Emacs pour éditer efficacement du code R
 et le Bloc-notes de Windows n'en fait pas partie! Nous recommandons plutôt:
 - sous Windows, l'éditeur Notepad++ muni de l'extension NppToR (Redd, 2010), tous deux des logiciels libres;
 - toujours sous Windows, le partagiciel WinEdt muni de l'extension libre R-WinEdt (Ligges, 2003);
 - sous OS X, tout simplement l'éditeur de texte très complet intégré à l'application R. app, ou alors l'éditeur de texte commercial TextMate (essai gratuit de 30 jours);
 - sous Linux, Vim et Kate semblent les choix les plus populaires après Emacs dans la communauté R.

1.6 Anatomie d'une session de travail

Dans ses grandes lignes, toute session de travail avec R se réduit aux étapes ci-dessous.

- 1. Ouvrir un fichier de script existant ou en créer un nouveau à l'aide de l'éditeur de texte de son choix.
- 2. Démarrer une session R en cliquant sur l'icône de l'application si l'on utilise une interface graphique, ou alors en suivant la procédure expliquée à l'annexe A si l'on utilise GNU Emacs.
- 3. Au cours de la phase de développement, on fera généralement de nombreux aller-retours la ligne de commande où l'on testera des commandes et le fichier de script où l'on consignera le code R que l'on souhaite sauvegarder et les commentaires qui nous permettront de s'y retrouver plus tard.
- 4. Sauvegarder son fichier de script et quitter l'éditeur.
- 5. Si nécessaire et c'est rarement le cas sauvegarder l'espace de travail de la session R avec save.image(). En fait, on ne voudra sauvegarder nos objets R que lorsque ceux-ci sont très longs à créer comme, par exemple, les résultats d'une simulation.
- 6. Quitter R en tapant q() à la ligne de commande ou en fermant l'interface graphique par la procédure usuelle. Encore ici, la manière de procéder est quelque peu différente dans GNU Emacs; voir l'annexe A.

Évidemment, les étapes 1 et 2 sont interchangeables, tout comme les étapes 4, 5 et 6.

1.7 Répertoire de travail

Le répertoire de travail (*workspace*) de R est le dossier par défaut dans lequel le logiciel 1) va rechercher des fichiers de script ou de données; et 2) va sauvegarder l'espace de travail dans le fichier .RData. Le dossier de travail est déterminé au lancement de R.

- ▶ Les interfaces graphiques démarrent avec un répertoire de travail par défaut. Pour le changer, utiliser l'entrée appropriée dans le menu Fichier (Windows) ou Divers (Mac OS X). Consulter aussi les foires aux questions spécifiques aux interfaces graphiques (Ripley et Murdoch, 2011; Iacus et collab., 2011) pour des détails additionnels sur la gestion des répertoires de travail.
- Avec GNU Emacs, la situation est un peu plus simple puisque l'on doit spécifier un répertoire de travail chaque fois que l'on démarre un processus R; voir l'annexe A.

1.8 Consulter l'aide en ligne

Les rubriques d'aide des diverses fonctions disponibles dans R contiennent une foule d'informations ainsi que des exemples d'utilisation. Leur consultation est tout à fait essentielle.

▶ Pour consulter la rubrique d'aide de la fonction foo, on peut entrer à la ligne de commande

```
> ?foo
ou
> help(foo)
```

1.9 Où trouver de la documentation

La documentation officielle de R se compose de six guides accessibles depuis le menu Aide des interfaces graphiques ou encore en ligne dans le site du projet R³, Pour le débutant, seuls *An Introduction to R* et, possiblement, *R Data Import/Export* peuvent s'avérer des ressources utiles à court terme.

^{3.} http://www.r-project.org

Plusieurs livres — en versions papier ou électronique, gratuits ou non — ont été publiés sur R. On en trouvera une liste exhaustive dans la section Documentation du site du projet R.

Depuis plusieurs années maintenant, les ouvrages de Venables et Ripley (2000, 2002) demeurent des références standards *de facto* sur les langages S et R. Plus récent, Braun et Murdoch (2007) participe du même effort que le présent ouvrage en se concentrant sur la programmation en R plutôt que sur ses applications statistiques.

1.10 Exemples

```
### Générer deux vecteurs de nombres pseudo-aléatoires issus
### d'une loi normale centrée réduite.
x <- rnorm(50)
y < - rnorm(x)
### Graphique des couples (x, y).
plot(x, y)
### Graphique d'une approximation de la densité du vecteur x.
plot(density(x))
### Générer la suite 1, 2, ..., 10.
1:10
### La fonction 'seq' sert à générer des suites plus générales.
seq(from = -5, to = 10, by = 3)
seq(from = -5, length = 10)
### La fonction 'rep' sert à répéter des valeurs.
rep(1, 5)
                 # répéter 1 cinq fois
rep(1:5, 5)
                # répéter le vecteur 1,...,5 cinq fois
rep(1:5, each = 5) # répéter chaque élément du vecteur cinq fois
### Arithmétique vectorielle.
v <- 1:12
                 # initialisation d'un vecteur
v + 2
                 # additionner 2 à chaque élément de v
v * -12:-1
                 # produit élément par élément
v + 1:3
                 # le vecteur le plus court est recyclé
### Vecteur de nombres uniformes sur l'intervalle [1, 10].
v < -runif(12, min = 1, max = 10)
```

1.11. Exercices

```
### Pour afficher le résultat d'une affectation, placer la
### commande entre parenthèses.
( v < - runif(12, min = 1, max = 10) )
### Arrondi des valeurs de v à l'entier près.
( v < - round(v) )
### Créer une matrice 3 x 4 à partir des valeurs de
### v. Remarquer que la matrice est remplie par colonne.
( m \leftarrow matrix(v, nrow = 3, ncol = 4) )
### Les opérateurs arithmétiques de base s'appliquent aux
### matrices comme aux vecteurs.
m + 2
m * 3
m ^ 2
### Éliminer la quatrième colonne afin d'obtenir une matrice
### carrée.
(m < -m[, -4])
### Transposée et inverse de la matrice m.
t(m)
solve(m)
### Produit matriciel.
m %*% m
                      # produit de m avec elle-même
m %*% solve(m)
                      # produit de m avec son inverse
round(m %*% solve(m)) # l'arrondi donne la matrice identité
### Consulter la rubrique d'aide de la fonction 'solve'.
?solve
### Liste des objets dans l'espace de travail.
ls()
### Nettoyage.
rm(x, y, v, m)
```

1.11 Exercices

1.1 Démarrer une session R et entrer une à une les expressions ci-dessous à la ligne de commande. Observer les résultats.

```
> ls()
> pi
> (v <- c(1, 5, 8))
> v * 2
> x <- v + c(2, 1, 7)
> x
> ls()
> q()
```

- 1.2 Ouvrir dans un éditeur de texte le fichier de script contenant le code de la section précédente. Exécuter le code ligne par ligne et observer les résultats. Repéter l'exercice avec un ou deux autres éditeurs de texte afin de les comparer et de vous permettre d'en choisir un pour la suite.
- 1.3 Consulter les rubriques d'aide d'une ou plusieurs des fonctions rencontrées lors de l'exercice précédent. Observer d'abord comment les rubriques d'aide sont structurées — elles sont toutes identiques — puis exécuter quelques expressions tirées des sections d'exemples.
- 1.4 Exécuter le code de l'exemple de session de travail R que l'on trouve à l'annexe A de Venables et collab. (2011). En plus d'aider à se familiariser avec R, cet exercice permet de découvrir les fonctionnalités du logiciel en tant qu'outil statistique.

A GNU Emacs et ESS: la base

Emacs est l'Éditeur de texte des éditeurs de texte. Conçu à l'origine comme un éditeur pour les programmeurs (avec des modes spéciaux pour une multitude de langages différents), Emacs est devenu au fil du temps un environnement logiciel en soi dans lequel on peut réaliser une foule de tâches différentes : rédiger des documents LETEX, interagir avec R, SAS ou un logiciel de base de données, consulter son courrier électronique, gérer son calendrier ou même jouer à Tetris!

Cette annexe passe en revue les quelques commandes essentielles à connaître pour commencer à travailler avec GNU Emacs et le mode ESS. L'ouvrage de Cameron et collab. (2004) constitue une excellente référence pour l'apprentissage plus poussé de l'éditeur.

A.1 Mise en contexte

Emacs est le logiciel étendard du projet GNU («GNU is not Unix»), dont le principal commanditaire est la *Free Software Foundation* (FSF) à l'origine de tout le mouvement du logiciel libre.

- ▶ Richard M. Stallman, président de la FSF et grand apôtre du libre, a écrit la première version de Emacs et il continue à ce jour à contribuer au projet.
- ▶ Les origines de Emacs remontent au début des années 1980, une époque où les interfaces graphiques n'existaient pas, le parc informatique était beaucoup plus hétérogène qu'aujourd'hui (les claviers n'étaient pas les mêmes d'une marque d'ordinateur à une autre) et les modes de communication entre les ordinateurs demeuraient rudimentaires.
- L'âge vénérable de Emacs transparaît à plusieurs endroits, notamment dans la terminologie inhabituelle, les raccourcis clavier qui ne correspondent pas aux standards d'aujourd'hui ou la manipulation des fenêtres qui ne se fait pas avec une souris.

Emacs s'adapte à différentes tâches par l'entremise de *modes* qui modifient son comportement ou lui ajoutent des fonctionnalités. L'un de ces modes est ESS (*Emacs Speaks Statistics*).

- ► ESS permet d'interagir avec des logiciels statistiques (en particulier R, S+ et SAS) directement depuis Emacs.
- ▶ Quelques-uns des développeurs de ESS sont aussi des développeurs de R, dont la grande compatibilité entre les deux logiciels.
- ► Lorsque ESS est installé, le mode est activé automatiquement en ouvrant dans Emacs un fichier dont le nom se termine par l'extension .R.

A.2 Installation

GNU Emacs et le mode ESS sont normalement livrés d'office avec toutes les distributions Linux. Pour les environnements Windows et Mac OS X, le plus simple consiste à télécharger et installer les distributions préparées par le présent auteur. Consulter le site

http://vgoulet.act.ulaval.ca/emacs/

A.3 Description sommaire

Au lancement, Emacs affiche un écran d'information contenant des liens vers différentes ressources. Cet écran disparaît dès que l'on appuie sur une touche. La fenêtre Emacs se divise en quatre zone principales (voir la figure A.1) :

- 1. tout au haut de la fenêtre (ou de l'écran sous OS X), on trouve l'habituelle barre de menu dont le contenu change selon le mode dans lequel se trouve Emacs;
- 2. l'essentiel de la fenêtre set à afficher un *buffer*, soit le contenu d'un fichier ouvert ou l'invite de commande d'un programme externe;
- 3. la ligne de mode est le séparateur horizontal contenant diverses informations sur le fichier ouvert et l'état de Emacs;
- 4. le *minibuffer* est la région au bas de la fenêtre où l'on entre des commandes et reçoit de l'information de Emacs.

Il est possible de séparer la fenêtre Emacs en sous-fenêtres pour afficher plusieurs *buffers* à la fois. Il y a alors une ligne de mode pour chaque *buffer*.

FIG. A.1: Fenêtre GNU Emacs et ses différentes parties au lancement de l'application sous Mac OS X. Sous Windows et Linux, la barre de menu se trouve à l'intérieur de la fenêtre.

A.4 Emacs-ismes et Unix-ismes

Emacs a sa propre terminologie qu'il vaut mieux connaître lorsque l'on consulte la documentation. De plus, l'éditeur fait siennes certaines conventions du monde Unix et qui sont moins usitées sur les plateformes Windows et OS X.

- ▶ Dans les définitions de raccourcis claviers :
 - − C est la touche Contrôle (^);
 - M est la touche Meta, qui correspond à la touche Alt de gauche sur un PC ou la touche Option (√) sur un Mac (toutefois, voir l'encadré à la page suivante);

Par défaut sous Mac OS X, la touche Meta est assignée à Option (∇) . Sur les claviers français, cela empêche d'accéder à certains caractères spéciaux tels que $[,], \{ ou \}$.

Une solution consiste à plutôt assigner la touche Meta à Commande (策). Cela bloque alors l'accès à certains raccourcis Mac, mais la situation est moins critique ainsi.

Pour assigner la touche Meta à Commande (#), il suffit d'insérer les lignes suivantes dans son fichier de configuration .emacs (voir la section A.7) :

- ESC est la touche Échap (5) et est équivalente à Meta;
- SPC est la barre d'espacement;
- RET est la touche Ent rée (←).
- ► Toutes les fonctionnalités de Emacs correspondent à une commande pouvant être tapée dans le *minibuffer*. M-x démarre l'invite de commande.
- ► Le caractère ~ représente le dossier vers lequel pointe la variable d'environnement \$HOME (Linux, OS X) ou %HOME% (Windows). C'est le dossier par défaut de Emacs.
- ► La barre oblique (/) est utilisée pour séparer les dossiers dans les chemins d'accès aux fichiers, même sous Windows.
- ► En général, il est possible d'appuyer sur TAB dans le *minibuffer* pour compléter les noms de fichiers ou de commandes.

A.5 Commandes de base

Emacs comporte une pléthore de commandes, il serait donc futile de tenter d'en faire une liste exhaustive ici. Nous nous contenterons de mentionner les commandes les plus importantes regroupées par tâche.

Pour débuter, il est utile de suivre le Tour guidé de Emacs ¹ et de lire le tutoriel de Emacs, que l'on démarre avec C-h t.

^{1.} http://www.gnu.org/software/emacs/tour/ ou cliquer sur le lien dans l'écran d'accueil.

A.5.1 Les essentielles

M-x démarrer l'invite de commande

C-g bouton de panique : annuler, quitter! Presser plus d'une fois au besoin.

A.5.2 Manipulation de fichiers

Entre parenthèses, le nom de la commande Emacs correspondante. On peut entrer cette commande dans le *minibuffer* au lieu d'utiliser le raccourci clavier.

On remarquera qu'il n'existe pas de commande «nouveau fichier» dans Emacs. Pour créer un nouveau fichier, il suffit d'ouvrir un fichier n'existant pas.

```
C-x C-f ouvrir un fichier (find-file)
```

C-x C-s sauvegarder (save-buffer)

C-x C-w sauvegarder sous (write-file)

C-x k fermer un fichier (kill-buffer)

C-_ annuler (pratiquement illimité); aussi C-x u (undo)

C-s recherche incrémentale avant (isearch-forward)

C-r Recherche incrémentale arrière (isearch-backward)

M-% rechercher et remplacer (query-replace)

A.5.3 Sélection de texte, copier, coller, couper

```
C-SPC débute la sélection (set-mark-command)
```

C-w couper la sélection (kill-region)

M-w copier la sélection (kill-ring-save)

C-y coller (yank)

M-y remplacer le dernier texte collé par la sélection précédente (yank-pop)

- ► Il est possible d'utiliser les raccourcis clavier usuels de Windows (C-c, C-x, C-v) et OS X (ℋC, ℋX, ℋV) en activant le mode CUA dans le menu Options.
- ▶ On peut copier-coller directement avec la souris dans Windows en sélectionnant du texte puis en appuyant sur le bouton central (ou la molette) à l'endroit souhaité pour y copier le texte.

A.5.4 Manipulation de fenêtres

- C-x b changer de *buffer* (switch-buffer)
- C-x 2 séparer l'écran en deux fenêtres (split-window-vertically)
- C-x 1 conserver uniquement la fenêtre courante (delete-other-windows)
- C-x 0 fermer la fenêtre courante (delete-window)
- C-x o aller vers une autre fenêtre lorsqu'il y en a plus d'une (other-window)

A.5.5 Manipulation de fichiers de script dans le mode ESS

- C-c C-n évaluer la ligne sous le curseur dans le processus R, puis déplacer le curseur à la prochaine expression (ess-eval-line-and-step)
- C-c C-r évaluer la région sélectionnée dans le processus R (ess-eval-region)
- C-c C-f évaluer le code de la fonction courante dans le processus R (ess-eval-function)
- C-c C-l évaluer le code du fichier courant en entier dans le processus R (ess-load-file)
- C-c C-v aide sur une commande R (ess-display-help-on-object)

A.5.6 Interaction avec l'invite de commande R

- M-p, M-n navigation dans l'historique des commandes (previous-matching-history-from-input, next-matching-history-from-input)
- C-c C-e replacer la dernière ligne au bas de la fenêtre (comint-show-maximum-output)
- M-h sélectionner le résultat de la dernière commande (mark-paragraph)
- C-c C-o effacer le résultat de la dernière commande (comint-delete-output)
- C-c C-v aide sur une commande R (ess-display-help-on-object)
- C-c C-q terminer le processus R (ess-quit)

A.5.7 Consultation des rubriques d'aide de R

- h ouvrir une nouvelle rubrique d'aide, par défaut pour le mot se trouvant sous le curseur (ess-display-help-on-object)
- n, p aller à la section suivante (n) ou précédente (p) de la rubrique (ess-skip-to-next-section, ess-skip-to-previous-section)

- évaluer la ligne sous le curseur; pratique pour exécuter les exemples
 (ess-eval-line-and-step)
- r évaluer la région sélectionnée (ess-eval-region)
- q retourner au processus ESS en laissant la rubrique d'aide visible (ess-switch-to-end-of-ESS)
- x fermer la rubrique d'aide et retourner au processus ESS (ess-kill-buffer-and-qo)

A.6 Anatomie d'une session de travail (bis)

On reprend ici les étapes d'une session de travail type présentées à la section 1.6, mais en expliquant comment compléter chacune dans Emacs avec le mode ESS.

1. Lancer Emacs et ouvrir un fichier de script avec

ou avec le menu

```
File|Open file...
```

En spécifiant un nom de fichier qui n'existe pas déjà, on se trouve à créer un nouveau fichier de script. S'assurer de terminer le nom des nouveaux fichiers par .R pour que Emacs reconnaisse automatiquement qu'il s'agit de fichiers de script R.

2. Démarrer un processus R à l'intérieur même de Emacs avec

Emacs demandera alors de spécifier de répertoire de travail (*starting data di- rectory*). Accepter la valeur par défaut, par exemple

ou indiquer un autre dossier. Un éventuel message de Emacs à l'effet que le fichier .Rhistory n'a pas été trouvé est sans conséquence et peut être ignoré.

3. Composer le code. Lors de cette étape, on se déplacera souvent du fichier de script à la ligne de commande afin d'essayer diverses expressions. On exécutera également des parties seulement du code se trouvant dans le fichier de script. Les commandes les plus utilisées sont alors

C-x o pour se déplacer d'une fenêtre à l'autre;

C-c C-n pour exécuter une ligne du fichier de script;

C-c C-e pour replacer la ligne de commande au bas de la fenêtre.

4. Sauvegarder le fichier de script :

```
C-x C-s
```

Les quatrième et cinquième caractères de la ligne de mode changent de ** à --.

- 5. Sauvegarder si désiré l'espace de travail de R avec save.image(). On le répète, cela n'est habituellement pas nécessaire à moins que l'espace de travail ne contienne des objets importants ou longs à recréer.
- 6. Quitter le processus R avec

```
C-c C-q
```

Cette commande ESS se chargera de fermer tous les fichiers associés au processus R. On peut ensuite quitter Emacs en fermant l'application de la manière usuelle.

A.7 Configuration de l'éditeur

Une des grandes forces de Emacs est qu'à peu près chacune de ses facettes est configurable : couleurs, polices de caractère, raccourcis clavier, etc.

- Un utilisateur place ses commandes de configuration dans un fichier nommé . emacs (le point est important!) que Emacs lit au démarrage.
- ► Le fichier .emacs doit se trouver dans le dossier ~/, c'est-à-dire dans le dossier de départ de l'utilisateur sous Linux et OS X, et dans le dossier référencé par la variable d'environnement %HOME% sous Windows.

A.8 Aide et documentation

Emacs possède son propre système d'aide très exhaustif, mais dont la navigation est peu intuitive selon les standards d'aujourd'hui. Consulter le menu Help.

Autrement, on trouvera les manuels de Emacs et de ESS en divers formats dans les sites respectifs des deux projets :

```
http://www.gnu.org/software/emacs
http://ess.r-project.org
```

Enfin, si le désespoir vous prend au cours d'une séance de codage intensive, vous pouvez toujours consulter le psychothérapeute Emacs. On le trouve, bien entendu, dans le menu Help!

B GNU Free Documentation License

Version 1.2, November 2002 Copyright ©2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

B.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under

the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "**Document**", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "**you**". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The **"Cover Texts"** are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF

designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

B.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

B.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

B.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were

B.4. MODIFICATIONS 25

any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

- B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
- C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
- D. Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
- F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
- G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
- H. Include an unaltered copy of this License.
- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
- K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
- L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

- M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
- N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
- O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

B.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of

the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

B.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

B.7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

B.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

B.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

B.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

Bibliographie

- Abelson, H., G. J. Sussman et J. Sussman. 1996, *Structure and Interpretation of Computer Programs*, 2^e éd., MIT Press, ISBN 0-26201153-0.
- Becker, R. A. 1994, «A brief history of S», cahier de recherche, AT&T Bell Laboratories. URL http://cm.bell-labs.com/cm/ms/departments/sia/doc/94.11.ps.
- Becker, R. A. et J. M. Chambers. 1984, S: An Interactive Environment for Data Analysis and Graphics, Wadsworth, ISBN 0-53403313-X.
- Becker, R. A., J. M. Chambers et A. R. Wilks. 1988, *The New S Language: A Programming Environment for Data Analysis and Graphics*, Wadsworth & Brooks/Cole, ISBN 0-53409192-X.
- Braun, W. J. et D. J. Murdoch. 2007, *A First Course in Statistical Programming with R*, Cambridge University Press, ISBN 978-0-52169424-7.
- Cameron, D., J. Elliott, M. Loy, E. S. Raymond et B. Rosenblatt. 2004, *Leaning GNU Emacs*, 3e éd., O'Reilly, Sebastopol, CA, ISBN 0-59600648-9.
- Chambers, J. M. 1998, *Programming with Data: A Guide to the S Language*, Springer, ISBN 0-38798503-4.
- Chambers, J. M. 2000, «Stages in the evolution of S», URL http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html.
- Chambers, J. M. 2008, *Software for Data Analysis: Programming with R*, Springer, ISBN 978-0-38775935-7.
- Chambers, J. M. et T. J. Hastie. 1992, *Statistical Models in S*, Wadsworth & Brooks/-Cole, ISBN 0-53416765-9.
- Hornik, K. 2011, «The R FAQ», URL http://cran.r-project.org/doc/FAQ/R-FAQ.html, ISBN 3-90005108-9.

32 Bibliographie

Iacus, S. M., S. Urbanek et R. J. Goedman. 2011, «R for Mac OS X FAQ», URL http: //cran.r-project.org/bin/macosx/RMacOSX-FAQ.html.

- Ihaka, R. et R. Gentleman. 1996, «R: A language for data analysis and graphics», *Journal of Computational and Graphical Statistics*, vol. 5, nº 3, p. 299–314.
- Ligges, U. 2003, «R-winedt», dans *Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003)*, édité par K. Hornik, F. Leisch et A. Zeileis, TU Wien, Vienna, Austria, ISSN 1609-395X. URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/.
- Redd, A. 2010, «Introducing NppToR: R interaction for Notepad++», *R Journal*, vol. 2, nº 1, p. 62–63. URL http://journal.r-project.org/archive/2010-1/RJournal_2010-1.pdf.
- Ripley, B. D. et D. J. Murdoch. 2011, «R for Windows FAQ», URL http://cran.r-project.org/bin/windows/base/rw-FAQ.html.
- Venables, W. N. et B. D. Ripley. 2000, *S Programming*, Springer, New York, ISBN 0-38798966-8.
- Venables, W. N. et B. D. Ripley. 2002, *Modern Applied Statistics with S*, 4e éd., Springer, New York, ISBN 0-38795457-0.
- Venables, W. N., D. M. Smith et R Development Core Team. 2011, *An Introduction to R*, R Foundation for Statistical Computing. URL http://cran.r-project.org/doc/manuals/R-intro.html.

Les numéros de page en caractères gras indiquent les pages où les concepts sont introduits, définis ou expliqués.

```
!, 30
                                              _, 12
!=, 30
                                              abs, 55, 58, 59
*, 30
                                              affectation, 11
**, 30
                                               apply, 35, 40, 42, 67, 67, 68, 69, 73,
+, 30
                                                        97-99, 101
-, 30
                                              array, 16, 21, 23, 73
->, 11
                                              arrondi, 33
..., 67, 98
                                              as.data.frame, 18
/, 30
                                              attach, 18, 24
<, 30
                                              attribut, 14
<-, 11
<<-, 54
                                              bibliothèque, 32
<=, 30
                                              boucle, 35, 51, 96
=, 11
                                              break, 35, 42, 55, 58, 59
==, 30
                                              by, 10, 37
>, 30
                                              byrow, 31
>=, 30
[[, 133
                                              c, 15
[[]],17
                                              cat, 76
[ ], 15, 16, 18
                                              cbind, 17, 18, 23, 39
%*%, 30, 63
                                              ceiling, 33, 38
%/%, 30
                                               character, 15, 22
%%, 30
                                              character (mode), 13, 15, 18
%in%, 32, 38
                                               choose, 46
%0%, 34, 40
                                               class, 20-24, 72, 76
&, 30
                                               class (attribut), 14
^, 30
                                              colMeans, 34, 42, 68, 73
```

colnamos 10	logistique 02
col Sums 24 40 42 40 69	logistique, 92
colSums, 34 , 40, 42, 49, 68	mélange discret, 93
colVars, 34, 103	mélange Poisson/gamma, 93
compilé (langage), 2	normale, 62, 64, 92
complex (mode), 13 , 18	Pareto, 64, 78
cummax, 33 , 39	Poisson, 46, 51, 92
cummin, 33 , 39	t, 92
cumprod, 33 , 39, 46	uniforme, 92
cumsum, 33 , 39	Weibull, 92
data, 31, 37, 88	Wilcoxon, 92
data frame, 84	dnorm, 62
	dossier de travail, voir répertoire de
data frame, 18	travail
data.frame, 18	dpois,47
data.frame (classe), 18	Count town 22
dbeta, 87	écart type, 33
dbinom, 47	ecdf, 134
density, 10	else, 34 , 40, 41, 59, 76
detach, 18 , 25	Emacs, 7, 54, 56, 57
dgamma, 87, 88	C, 109
diag, 33, 39, 76	C-g, 109
diff, 33 , 39	C-r, 109
différences, 33	C-s, 109
$\dim, 20-24, 39, 73$	C-SPC, 109
dim (attribut), 14 , 16	C-w, 109
dimension, 14, 26	C-x 0, 110
${\tt dimnames}, 21, 31, 103$	C-x 1,110
dimnames (attribut), 14	C-x 2,110
distribution	C-x b, 110
bêta, 92	C-x C-f, 109
binomiale, 46, 92	C-x C-s, 109, 112
binomiale négative, 92	C-x C-w, 109
Cauchy, 92	C-x k, 109
exponentielle, 92	C-x o, 110
F, 92	C-x o ,111
gamma, 48, 64, 92	C-x u, 109
géométrique, 92	C-y, 109
hypergéométrique, 92	configuration, 112
khi carré, 92	M-%, 109
log-normale, 92, 93	M-w, 109
, ,	,

M-x, 109	factorial, 42, 47
M-y, 109	FALSE, 12
nouveau fichier, 109	fitdistr,87
rechercher et remplacer, 109	floor, 33 , 38
sélection, 109	fonction
sauvegarder, 109	anonyme, 54
sauvegarder sous, 109	appel, 30
ESS, 7, 54, 56	débogage, 56
C-c C-e, 110	définie par l'usager, 53
C-c C-e ,111	générique, 72
C-c C-f, 54, 110	maximum local, 83
C-c C-l, 110	minimum, 84, 85
C-c C-n, 56, 110	minimum local, 83
C-c C-n ,111	optimisation, 86
C-c C-o, 110	racine, 82
C-c C-q, 110, 112	résultat, 53
C-c C-r, 110	for, 35 , 36, 40, 41, 60, 70, 96–98
C-c C-v, 110	function, 53 , 55, 58–61, 74–76, 87, 88,
h, 110	98–101
l, 111	function (mode), 13
M-h, 110	
M-n, 110	gamma, 42, 47
M-p, 110	hand 22 30
n, 110	head, 32 , 38
p, 110	hist, 75, 78
q, 111	if, 34 , 36, 40–42, 55, 58, 59, 76
r, 111	ifelse, 35
x, 111	Im, 87
étiquette, 14, 26	indiçage
eval, 59	liste, 17 , 26
exists, 24, 25	matrice, 16, 18 , 27
exp, 47, 49	vecteur, 18 , 26
expression, 11	interprété (langage), 2
expression, 59	is.na, 15 , 25, 41
extraction, voir aussi indiçage	is.null, 15
dernières valeurs, 32	•
éléments différents, 32	$lapply, 35, 67, 69, \pmb{69}, 70, 74, 96$
premières valeurs, 32	length, 10, 13 , 19–23, 37–39
_	lfactorial,42
F, voir FALSE	lgamma, 42

library,88	d'un vecteur, 33
list, 17 , 21, 23, 24, 74, 88, 98, 99, 101	d'une somme, 84
list (mode), 13 , 17	fonction non linéaire, 84, 85
liste, 17	local, 83
log, 88	parallèle, 33
logical, 15 , 22	position dans un vecteur, 32
logical (mode), 13 , 14, 15, 18	mode, 13 , 26
longueur, 13 , 26	mode, 13 , 21, 23, 24, 76
lower, 87	moyenne
ls, 11	arithmétique, 33
	harmonique, 51
mapply, 70 , 74	pondérée, 51, 77
match, 32 , 38	tronquée, 33
matrice, 16, 43, 62, 63, 67	ms, 84 , 88
diagonale, 33	
identité, 33	NA, 14
inverse, 33	na.rm, 14 , 21, 73
moyennes par colonne, 34	names, 18, 21, 22, 25
moyennes par ligne, 34	names (attribut), 14
somme par colonne, 34	nchar, 20
sommes par ligne, 34	ncol, 11, 20, 22, 31, 34 , 37, 39, 73, 97,
transposée, 33	98
variance par colonne, 34	next, 35
variance par ligne, 34	nlm, 85 , 88
matrix, 11, 16 , 20–24, 37, 62, 73, 74,	nlmin, 84 , 85, 88
76, 97, 98	nlminb, 86
max, 10, 11, 33 , 39, 73	noms d'objets
maximum	conventions, 12
cumulatif, 33	réservés, 12
d'un vecteur, 33	Notepad++, 8
local, 83	$nrow, 11, 2022, 31, \pmb{34}, 37, 39, 73, 97,\\$
parallèle, 33	98
position dans un vecteur, 32	NULL, 15
$mean,14,21,\pmb{33},39,73,75,97-100$	NULL (mode), 15
median, 33 , 39 , $97-100$	numeric, 15 , 20, 22, 40, 41, 60
médiane, 33	numeric (mode), 13 , 15, 18
methods, 72 , 76	
min, 10, 11, 33 , 39	optim, 86 , 88
minimum	optimize, 83 , 87
cumulatif, 33	order, 32 , 38

outer, 34 , 40, 49, 54, 56	rev, 32 , 38, 39, 46
package, 32	rgamma, 88
MASS, 81, 86, 87	rm, 11
paste, 78	rnorm, 10, 75
pgamma, 49	round, 11, 33 , 38
plot, 10, 20, 72, 93	row.names, 18, 103
pmax, 33 , 39, 40	rowMeans, 34 , 42, 68, 97–99, 101
pmin, 33 , 39	rownames, 18, 97, 98, 103
pnorm, 62	rowSums, 34 , 40, 42, 68, 73
point fixe, 50, 54	rowVars, 34 , 103
polyroot, 83 , 87	runif, 10, 11, 91 , 97-100
print, 36, 40–42, 56, 58, 59, 72, 73, 76	S, 1, 2
prod, 33 , 34, 39, 40, 73	S+, 1
produit, 33	S-PLUS, 1
cumulatif, 33	sample, 20, 25, 39, 43, 73–75, 93
extérieur, 34	sapply, 35, 67, 69, 69 , 70, 71, 74, 75,
	96, 98, 99, 131
q, 8	save.image, 4, 8, 112
quantile, 33	Scheme, 2
quantile, 33 , 39	sd, 33 , 39, 75
Départaire de traveil 0	seq, 10, 24, 32 , 37, 42, 74
Répertoire de travail, 9	set.seed, 91
répertoire de travail, 9	simulation
racine	nombres uniformes, 91
d'un polynôme, 83	planification, 95–103
d'une fonction, 82	variables aléatoires, 91
.Random.seed, 91	solve, 11, 33 , 39
rang, 32	somme, 33
range, 33 , 39, 97–100	cumulative, 33
rank, 32 , 38	sort, 32 , 37
rbind, 17 , 18, 23	source, 102
Re, 87	start, 55, 58, 59, 88
Recall, 62	style, 57
renverser un vecteur, 32 rep, 10, 32 , 37, 40, 42, 74, 75	suite de nombres, 32
-	sum, 14, 33 , 39, 40, 73, 74, 88
repeat, 35 , 41, 50, 55, 58, 59	summary, 33 , 39, 40, 73, 74, 86
répétition de valeurs, 32	
replace, 25, 39	switch, 35
replicate, 71 , 75, 100, 101	sys.time, 60, 101
return, 53	system.time, 61, 101

```
T, voir TRUE
t, 11, 33, 39
{\tt table, 93}
tableau, 16, 43, 67
tail, 32, 38
tri, 32
TRUE, 12
trunc, 33, 38
unique, 32, 38
uniroot, 82,87
unlist, 17, 24, 74
upper,87
valeur présente, 45, 51, 52
var, 33, 39, 61, 97-99, 101
variable
    globale, 54
    locale, 54
variance, 33
vecteur, 15, 29
vide, voir NULL
vraisemblance, 84, 87
which, 32, 38
which.max, 32, 38
which.min, 32, 38
while, 35, 41, 61
WinEdt, 8
```