Maths: DM NX

Il est important avant de commencer lire ce DM d'avoir bien compris le tableau et les exemples suivants

symbole		prononciation
usuel	DM	
0	r	fé
1	Ŋ	ur
2	Þ	tur
3	F	an
4	R	rai
5	<	kau
6	Χ	gèb
7	P	wun
8	H	hag
9	†	nau
10	\$	je
11	1	ei
=	X	ing/i ng
+	1	ti
_	Y	al
×	M	dag
÷	1	lag
€	ξ	so
A	K	per
3	₿	ber
∃!	!₿	\
>	M	man
<	M	е
<u>></u>	MX	maning
<u> </u>	ΜX	ehwing
<i>‡</i>	\$	naing
C	ķ	suz
)	*	zus
	•	

 $\mathsf{XP} \uparrow \mathrel{<<} \mathsf{XNFF}$ ce qui est équivalant à 79+65=144

$$e^{\mathbf{3}}\underset{\mathbf{3}}{\overset{}{\otimes}}\underset{\rightarrow\mathbb{M}}{\overset{}{\wedge}}\mathbb{N}\uparrow\mathbf{3}\uparrow\frac{\mathbf{3}^{\,\flat}}{\,\flat\,!}\uparrow\dots\uparrow\frac{\mathbf{3}^{\,\mathtt{B}}}{\,\mathtt{B}!}\uparrow o\left(\mathbf{3}^{\,\mathtt{B}}\right)$$

est équivalant à

$$e^x \underset{x \to 0}{=} 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{x!} + o(x^n)$$

Problème : nombres algébrique et extensions de corps

Partie I. extensions de corps

N=° ↑. Premiers exemples a.

il est évidant que $\mathbb R$ est un sous-corps de $\mathbb C$ et de plus $\mathbb C$ est de dimension finis, donc $\mathbb C$ est une extention finie de $\mathbb R$

de plus soit $\maltese \in \mathbb{C}$ alors

Ainsi comme \mathbb{N} et i ne sont pas colinéaire dans \mathbb{R} , $\mathrm{Vect}(\mathbb{N},i)$ forme une base de \mathbb{C} Ainsi $[\mathbb{C}:\mathbb{R}]$

soit igoplus un sous-corps qui contient $\Bbb R$

comme $[\mathbb{R} : \mathbb{R}] \times \mathbb{N}$ et que l'on vient de prouver que $[\mathbb{C} : \mathbb{R}] \times \mathbb{N}$

il apparait donc comme condition que, $\mathbb{N} M \times [m : \mathbb{R}] M \times \mathbb{R}$

Ainsi $[\oplus : \mathbb{R}] \times \mathbb{N}$ ou $[\oplus : \mathbb{R}] \times \mathbb{N}$

Et ansi \oplus $X \mathbb{R}$ ou \oplus $X \mathbb{C}$

b.

Soit $9 \in \mathbb{Q}(\sqrt{\triangleright})$, alors $\triangleright \mathbb{B}, 4 \in \mathbb{Q}, 9 \times \mathbb{B} \uparrow 4 \sqrt{\triangleright}$, alors prenons $4 \times \mathbb{P}$ ainsi $\mathfrak{G} \times \mathfrak{A} \in \mathbb{Q}$, donc $\mathbb{Q} \models \mathbb{Q}(\sqrt{\triangleright})$ et comme \mathbb{Q} est un corps $\operatorname{de} \mathbb{Q}(\sqrt{})$

de plus, soit $\mathfrak{G} \in \mathbb{Q}(\sqrt{\triangleright})$ alors \mathfrak{B} \mathfrak{A} , $\mathfrak{A} \in \mathbb{Q}$, $\mathfrak{G} \times \mathbb{R} \cap \mathbb{R}$, soit un telle \mathfrak{A} , \mathfrak{A} donc $9 \times 4 \uparrow \exists \sqrt{\triangleright} \in \text{Vect}(\lceil 1, \sqrt{\triangleright} \rceil)$

et supposons par l'absurde $\triangleright 4$, $\bowtie 2 \mathbb{Z} \mathbb{Q} \bowtie \mathbb{Q}^*$, $\bowtie 4 \mathbb{Z} \bowtie 4 \mathbb{Z} \bowtie 4 \mathbb{Z}$

alors $\frac{9}{11}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{V}$ ce qui est absurde car $\frac{9}{11}$ $\stackrel{\checkmark}{E}$ \mathbb{Q} , donc $\stackrel{\checkmark}{Y}$ $\stackrel{\checkmark}{X}$ $\stackrel{\checkmark}{F}$ Ainsi $(\mathbb{N}, \sqrt{ \mathbb{P}})$ est une base de $\mathbb{Q} (\sqrt{ \mathbb{P}})$

Donc $\left[\mathbb{Q}\left(\sqrt{\mathbb{P}}\right):\mathbb{Q}\right]$ \mathbb{X}

c. i.

Soit $P \leq \mathbb{Q}[X]$ tel que $P(\sqrt[||F||]) \times \mathbb{F}$

prenons la divisions euclidienne de $X^{\dagger} \Upsilon \triangleright par P$

ce qui nous donne X^{\upharpoonright} Υ \trianglerighteq Υ PQ \uparrow R avec $Q \in \mathbb{Q}_{\upharpoonright}[X]$ et $R \in \mathbb{Q}[X]$ tel que deg R \sqcap \trianglerighteq

or un polynôme dans $\mathbb R$ qui possède une racine complexe possède sont conjugée

En évaluant notre expression précédente en $\sqrt[h]{\triangleright}$ on obtient :

$$\left(\sqrt[l]{\flat}\right)^{\flat} \uparrow \flat \not \flat \not \flat \not \times \underbrace{P\!\left(\sqrt[l]{\flat}\right)}_{\not \flat \not \flat} \uparrow R$$

donc R $\$ et donc deg R $\$ ainsi P divise X[↑] ↑ ▶

Ainsi Comme P divise $X^{\dagger} \uparrow \flat$ et que deg P $\flat ,$ alors P et $X^{\dagger} \not\vdash \mathsf{poss\`ede}$ deux racines en commun dont $\!\!\!\sqrt[4]{\mathsf{P}}$ et comme $X^{\dagger} \uparrow \flat \ \ (X \uparrow \sqrt[k]{\flat}) (X \uparrow \sqrt[k]{\flat} e^{i\frac{\pi}{\flat}}) (X \uparrow \sqrt[k]{\flat} e^{i\frac{\nu}{\hbar}})$ donc P à en plus une racine complexe ce qui n'est pas le cas pour P donc $P \not X \mathbb{Q}[X]$ ce qui est absurde $\operatorname{Donc} \mathscr{K} P \stackrel{<}{\cdot} \mathbb{Q}[X], P \left(\sqrt[\mathfrak{p}] \right) \stackrel{<}{\times} \mathbb{F}$

donc $\mathbb{Q}(\sqrt[k]{\mathbb{P}})$ est une extensions finis et $[Q(\sqrt[k]{\mathbb{P}}):\mathbb{Q}]$ \mathbb{X}

d.

Soient $\mathbb{H}_{\mathbb{N}}, \cdots, \mathbb{H}_{n} \in \mathbb{Q}$ tels que $\sum_{\mathbb{T} \times \mathbb{N}}^{n} \mathbb{H}_{\mathbb{T}} \ln(p_{\mathbb{T}}) \times \mathbb{F}$, alors

$$\ln\left(\prod_{{\mathcal{I}}}^n p_{{\mathcal{I}}}^{{\mathsf{H}}_{{\mathcal{I}}}}\right) \mathsf{XF} \ \mathrm{Donc} \ \prod_{{\mathcal{I}}}^n p_{{\mathcal{I}}}^{{\mathsf{H}}_{{\mathcal{I}}}} \mathsf{X} \mathsf{N}$$

$$\left(\prod_{\gamma \in \mathbb{N}}^n p_{\gamma}^{\mathbf{x}_{\gamma}}\right)^{\frac{1}{\gamma}} \otimes \mathbb{N} \Leftrightarrow \prod_{\gamma \in \mathbb{N}}^n p_{\gamma}^{\mathbf{x}_{\gamma}} \otimes \mathbb{N}$$

Et donc $\mathbf{H}_{\mathbb{N}} \ \& \cdots \ \& \ \mathbf{H}_{n} \ \& \ \mathbb{M}$

Ainsi $(\ln(p_{\mathbb{N}}), \dots, \ln(p_n))$ est libre

Et donc la dimmension de $\mathbb R$ n'est pas finis, donc $\mathbb R$ n'est pas une extention finis de $\mathbb Q$

 $N=^{\circ}$.

$$\text{soit } \mathbf{9} \stackrel{\textstyle <}{\stackrel{\textstyle <}{}} \mathbf{L} \text{, alors } ! \mathbb{B} \, \mathbf{B}_{\mathbb{N}}, \cdots, \mathbf{B}_n \stackrel{\textstyle <}{\stackrel{\textstyle <}{}} \mathbf{K} \text{ tel que, } \mathbf{9} \stackrel{\textstyle \times}{\stackrel{\textstyle \times}{\stackrel{\textstyle \times}{}}} \sum_{n=1}^n \alpha_{\mathbf{x}} \, \mathbf{B}_{\mathbf{x}}$$

Or on a
$$\mbox{$$

Ainsi
$$! \exists \, \mathbf{H}_{\mathbb{N}}, \cdots, \mathbf{H}_{n} \leq \mathbf{K} \leq k, ! \exists \, \mathbf{\mathcal{Y}}_{\mathbb{N}}, \cdots, \mathbf{\mathcal{Y}}_{p} \leq k, \mathbf{9} \, \mathbf{X} \sum_{\substack{\mathbb{N} \ \mathbb{N} \leq \mathbf{X} \ \mathbb{N} \leq n \\ \mathbb{N} \ \mathbb{N} \leq \mathbf{X} \ \mathbb{N} \leq p}} \alpha_{\mathbf{X}} \beta_{\mathbf{X}} \mathbf{H}_{\mathbf{X}} \mathbf{\mathcal{Y}}_{\mathbf{X}}$$

Donc **9** s'écrit d'une manière unique comme des élément de k, donc la famille $(\alpha_i\beta_j)_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{c$

Donc L est une extensions finis de k et $[L:k] \times [L:K][K:k]$

Partie II. Éléments algébriques

 $N=^{\circ}$.

 $\begin{array}{l} \text{pour montrer que } \mathbb{K}[\alpha] \mathbin{\check{\times}} \{P(\alpha), P \mathbin{\check{\times}} \mathbb{K}[X]\}, \\ \text{on montre que } \{P(\alpha), P \mathbin{\check{\times}} \mathbb{K}[X]\} \mathbin{\check{\times}} \operatorname{Vect}_{\mathbb{K}}(\alpha^n, n \mathbin{\check{\times}} \mathbb{N}) \\ \text{pour cela,} \end{array}$

$$\mathfrak{M} \, \xi \, \{P(\alpha), P \, \xi \, \mathbb{K}[X]\} \Leftrightarrow \\ \xi \, \mathcal{J}_{\mathbb{F}} \, , \cdots, \mathcal{J}_{n} \, \xi \, \mathbb{K} \, \, \mathfrak{M} \, \, \\ \xi \, \sum_{\mathbf{H} \, \, \S \, \mathbb{F}} \, \mathcal{J}_{\mathbf{H}} \, \alpha^{\mathbf{H}} \, \xi \, \mathrm{Vect}_{\mathbb{K}}(\alpha^{n}, n \, \xi \, \mathbb{N}) \, \\ \xi \, \mathbb{K}[\alpha] \,$$

Donc $\{P(\alpha), P \in \mathbb{K}[X]\} \otimes \mathbb{K}[\alpha]$

soient $\mathbb{B}, \mathbb{7} \leq \mathbb{K}[\alpha]$, alors $P, Q \leq \mathbb{K}[X], P(\alpha) \otimes \mathbb{B}$ et $Q(\alpha) \otimes \mathbb{7}$, alors:

- $\mathbb{M} \in \mathbb{K}[\alpha]$
- $\exists \Upsilon \nabla P(\alpha) \Upsilon Q(\alpha) (P \Upsilon Q)(\alpha) \text{ et } P \Upsilon Q \in \mathbb{K}[X]$

Donc $\mathbb{K}[\alpha]$ est un sous-anneau de \mathbb{L}

Et $\operatorname{Vect}(\alpha^n, n \leq \mathbb{N})$ est le plus petit ensemble stable par \uparrow et \mathbb{N} , ce qui fais de luis le plus petit sous-anneau contanant α et \mathbb{K}

 $N=^{\circ} R$.

procédons par double inclusion pour prouver que α est algébrique sur $\mathbb K$ si et seulement si il existe $n \leq \mathbb N$ tel que $(1,\alpha,\cdots,\alpha^n)$ soit une famille liée

(⇒) Supposons que α est algébrique sur \mathbb{K} , alors

$$\mathbb{B}\,\,\mathfrak{M}\,\,\tilde{\leqslant}\,\,\mathbb{K}[X],\,\mathfrak{M}(\alpha)\,\,\tilde{\lozenge}\,\,\mathbb{F}\,\Leftrightarrow\,\mathbb{B}\,\,n\,\,\tilde{\leqslant}\,\,\mathbb{N},\,\mathbb{B}\,\,\mathbf{H}_{\mathbb{F}}\,,\,\cdots,\,\mathbf{H}_{n}\,\,\tilde{\leqslant}\,\,\mathbb{K},\,\mathfrak{W}(\alpha)\,\,\tilde{\lozenge}\,\,\sum_{\Im\,\,\tilde{\lozenge}\,\,\mathbb{F}}^{n}\,\,\mathbf{H}_{\Im}\,\alpha^{\Im}\,\,\tilde{\lozenge}\,\,\mathbb{F}$$

Donc
$$Y \sum_{n=1}^{n} \mathbf{H}_{n} \alpha^{n} \mathbf{X} \mathbf{H}_{n}$$

Donc
$$(1, \alpha, \dots, \alpha^n)$$
 est liée

(⇐) Supposons que $(1, \alpha, \dots, \alpha^n)$ soit liée, alors:

$$\mathbb{B}\,\mathbf{H}_{\mathbb{F}}\,,\cdots,\mathbf{H}_{n}\,\tilde{\,}\,\,\mathbb{K},\mathbb{B}\,\mathbf{\Lambda}\,\tilde{\,}\,\,\mathbb{N},\mathbf{+}\,\,\alpha^{\mathbf{\Lambda}}\,\,\mathbb{X}\,\sum_{\substack{\gamma\ \ \gamma\ \ \alpha\ \ \alpha}}^{n}\,\mathbf{H}_{\gamma}\,\alpha^{\gamma}$$

Donc
$$\sum_{\substack{\gamma \ \chi \not | \\ \gamma \ \circ \ \gamma}}^{n} \exists_{\gamma} \alpha^{\gamma} \uparrow \not \leftarrow \alpha^{\gamma} \not \downarrow \not \parallel$$

en posant ኘፋጷፄ, on obtient

$$\sum_{\substack{\mathcal{I} \ \mathcal{X} \ \mathcal{I} \\ \mathcal{I} \ \diamond \ \mathcal{I}}}^{n} \mathbf{H}_{\mathcal{I}} \alpha^{\mathcal{I}} \mathbf{I} + \alpha^{\mathcal{I}} \times \sum_{\substack{\mathcal{I} \ \mathcal{X} \ \mathcal{I} \ \mathcal{I}}}^{n} \mathbf{H}_{\mathcal{I}} \alpha^{\mathcal{I}} \times \mathbf{I}$$

$$\operatorname{Or} \sum_{{\color{black} \gamma} \times {\color{black} \nu}}^n {\color{black} \bowtie}_{{\color{black} \gamma}} \alpha^{{\color{black} \gamma}} \, {\color{black} \in} \, \mathbb{R}[X]$$

Donc α est algébrique

```
Par le principe de double inclusion \alpha est algébrique si et seulement si il existe n \leq \mathbb{N} tel que (1, \alpha, \dots, \alpha^n) est liée
```

N=° <.

Soit $\mathfrak{Z} \subset \mathbb{L}$, alors \mathfrak{Z} est algébrique de degré \mathbb{N} sur \mathbb{K} si et seulement si $(\mathbb{N}, \mathfrak{Z})$ est liée si et seulement si il existe $\mathfrak{Z} \subset \mathbb{K}$. Donc on a bien $(\mathbb{N}, \mathfrak{Z})$ liée $\Leftrightarrow \mathfrak{Z} \subset \mathbb{K}$

N=° X.

Supposons que \mathbb{L} est une extention finie de \mathbb{K} et soit $\mathfrak{Z} \subset \mathbb{L}$ alors \mathfrak{Z} est algébrique sur \mathbb{K} si:

a

N=° ▷. a.

On sait par la définitions que $(1, \alpha, \cdots, \alpha^{d \ \ \ })$ est libre Et $\operatorname{Vect}(\alpha^n, n \in \mathbb{N}) \times \operatorname{Vect}(\alpha^n, n \in \mathbb{N}; d \ \)$ Ainsi $\operatorname{Vect}(\alpha^n, n \in \mathbb{N}; d \ \)$ est une base de $\mathbb{K}[\alpha]$

b.

Supposons que $\beta \diamond V$, alors prouvons que f_{β} est linéaire et bijective

• linéarité:

Soient $\exists \in \mathbb{K}, \exists, \bigstar \in \mathbb{K}[\alpha], f_{\beta}(\exists \exists \uparrow \bigstar) \otimes \beta \exists \exists \uparrow \beta \bigstar \otimes \exists f_{\beta}(\exists) \uparrow f_{\beta}(\maltese) \text{ donc } f_{\beta} \text{ ets linéaire}$ • bijectivité:

soit $\mathfrak{I} \subset \mathbb{K}[\alpha], f_{\beta}(\mathfrak{I}) \subset \mathbb{K}[\alpha]$ alors $\beta \subset \mathbb{K}[\alpha], f_{\beta}(\mathfrak{I}) \subset \mathbb{K}[\alpha]$ donc $\mathfrak{I} \subset \mathbb{K}[\alpha]$. Donc f_{β} est injéctive Et soient $\mathfrak{I}, \mathfrak{I} \subset \mathbb{K}[\alpha], f_{\beta}(\mathfrak{I}) \subset \mathfrak{I}$ alors $\mathfrak{I} \subset \mathbb{K}[\alpha]$ car $\beta \subset \mathbb{K}[\alpha]$ donc f_{β} est surjective et comme f_{β} va de $\mathbb{K}[\alpha]$ dans $\mathbb{K}[\alpha]$ f_{β} est un automorphisme

c.

a faire

d.

On a: $\mathbb{K} \not\models \mathbb{K}[\alpha]$, donc \mathbb{K} est un sous-corps de $\mathbb{K}[\alpha]$ De plus comme $\left(1,\alpha,\cdots,\alpha^{d} \uparrow^{\,\,}\right)$ est une base de $\mathbb{K}[\alpha]$ qui comporte d élément Ainsi $\mathbb{K}[\alpha]$ est une extensions finie de \mathbb{K} , avec $[\mathbb{K}[\alpha] : \mathbb{K}] \not\setminus d$

e.

Il est évidant que $\mathbb{Q}(\sqrt[l]{\mathbb{P}}) \models \mathbb{C}$, et commme \mathbb{Q} est un sous groupe et que $\sqrt[l]{\mathbb{P}} \ngeq \mathbb{C}$, alors par les questions précédente: $\mathbb{Q}(\sqrt[l]{\mathbb{P}})$ est un sous-corps de \mathbb{C}

N=° ⅓.

i) \Rightarrow ii) est évidant car $\mathbb{K}[\alpha]$ est un corps et donc stable par \mathbb{M}

ii) \Rightarrow iii) Supposons que $\alpha^{\uparrow \uparrow \uparrow} \models \mathbb{K}[\alpha]$, alors \mathbb{R} $\mathfrak{M} \models \mathbb{K}[X]$, $\mathfrak{M}(\alpha) \not \land \alpha \uparrow \mathbb{N}$, soit \mathfrak{M} un telle polynôme, alors:

Et donc α est constructible

iii) \Rightarrow i) Supposons que α est algébrique sur \mathbb{K} , alors par la question $^{\triangleright}$.

 $\mathbb{K}[\alpha]$ est un sous-corps de \mathbb{L}

Ainsi par un raisonnement cyclique,

on a bien que $\mathbb{K}[\alpha]$ est un sous-corps de $\mathbb{L} \Leftrightarrow \alpha^{\mathsf{Y} \mathsf{h}} \mathsf{E}[\alpha] \Leftrightarrow \alpha$ est algébrique sur \mathbb{K}

Partie III. Polynômes minimal d'un élément algébrique

 $N=^{\circ} \uparrow$.

Si I_{α} na possède pas une polynôme de degré q,

alors soit $\mathfrak{U} \leq I_{\alpha}$ de degré q, alors soit Ξ sont coefficient dominant

alors le polynome $\frac{\mathfrak{M}}{\mathfrak{g}}$ est de degrés q et sont coefficient dominant vaut Γ De plus $\frac{\mathfrak{M}}{\mathfrak{g}}(\alpha) \mbox{ } \mb$

Donc I_{α} possède un polynôme unitaire de degrés q

Alors
$$\mathfrak{W}(\alpha) \neq \mathfrak{W}(\alpha) \times \sum_{\substack{\gamma \in \mathbb{N} \\ \gamma \neq 0}}^{\gamma + 1} \mathfrak{A}_{\gamma} \alpha^{\gamma} + \sum_{\substack{\gamma \in \mathbb{N} \\ \gamma \neq 0}}^{\gamma + 1} \mathfrak{P}_{\gamma} \alpha^{\gamma} \times \mathbb{N}$$

$$\operatorname{donc} \sum_{\mathbf{\Lambda} \ \S \ \mathbb{F}}^{q + 1} (\mathbf{H}_{\mathbf{\Lambda}} \ \Upsilon \ \mathbf{Y}_{\mathbf{\Lambda}}) \alpha^{\mathbf{\Lambda}}, \text{ et comme } \left(1, \alpha, \cdots, \alpha^{q \ \Upsilon \ \mathbb{I}}\right) \text{ est libre, on a: } \mathbb{K} \ \mathbf{\Lambda} \ \S \ \mathbb{F}; q \ \Upsilon \ \mathbb{I} \ \mathbb{F}, \mathbf{H}_{\mathbf{\Lambda}} \ \S \ \mathbf{Y}_{\mathbf{\Lambda}}$$

Ainsi on a bien ជវ 🗴 ឈ

Donc il existe un unique polynome unitaire de degré q dans I_{α}

 $N=^{\circ}$ \$.

Supposons par l'absurde que μ_{α} est réductible,

donc α est algébrique de degrés inférieur stricte à d, absurde !

Donc μ_{α} est irréductible

donc $\mathfrak{M} \leq I_{\alpha}$ et donc $\{\mu_{\alpha}, \mathfrak{W}, \mathfrak{W} \leq \mathbb{K}[X]\} \models I_{\alpha}$

Ainsi par double inclusion $\{\mu_{\alpha} \text{ ns}, \text{ns} \in \mathbb{K}[X]\} \times I_{\alpha}$