

(51) 国際特許分類6 B60R 25/10, H04B 7/26	A1	(11) 国際公開番号 WO99/08909
		(43) 国際公開日 1999年2月25日(25.02.99)
(21) 国際出願番号 PCT/JP98/03482		
(22) 国際出願日 1998年8月5日(05.08.98)		
(30) 優先権データ 特願平9/223502 1997年8月20日(20.08.97) JP		
(71) 出願人（米国を除くすべての指定国について） 株式会社 ローカス(LOCUS CORPORATION)[JP/JP] 〒542-0081 大阪府大阪市中央区南船場1丁目16番20号 ムラキビル5階 Osaka, (JP)		(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ヨーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 歐州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) 発明者；および (75) 発明者／出願人（米国についてのみ） 神島博昭(KOSHIMA, Hiroaki)[JP/JP] 熊本勝彦(KUMAMOTO, Katsuhiko)[JP/JP] 〒542-0081 大阪府大阪市中央区南船場1丁目16番20号 ムラキビル5階 株式会社 ローカス内 Osaka, (JP)		添付公開書類 国際調査報告書
(74) 代理人 弁理士 深見久郎, 外(FUKAMI, Hisao et al.) 〒530-0054 大阪府大阪市北区南森町2丁目1番29号 住友銀行南森町ビル Osaka, (JP)		

(54)Title: POSITIONING SYSTEM AND MOBILE COMMUNICATION DEVICE

(54)発明の名称 位置特定システムおよび移動用通信機

(57) Abstract

A mobile communication device that can communicate with a center station by using a PHS, is mounted on a vehicle, and includes a vibration detection unit. When the device is set in a theft search mode and the vehicle movement is detected by the vibration detection unit, the device measures the electric field intensity of a base station nearby and sends the result of measurement to the center station that manages vehicles. Therefore, the system can detect that a vehicle has been stolen and track and locate the moving position of the vehicle.

- S1 ... Is theft search mode ON
- S2 ... Is detection signal entered from vibration detection unit
- S3 ... Measure electric field intensity of base station nearby
- S4 ... Send theft information (including results of measurement)
- S5 ... Is theft search mode OFF
- S6 ... Is send condition met
- S7 ... Is there a send command
- S8 ... Is there a send command

PHSを利用してセンター局との交信を行なうことが可能な移動用交信機は車両に搭載される。移動用交信機は振動検出部を含む。移動用交信機が盗難検索モードに設定されている際に振動検出部で車両の移動が検出されれば、当該移動用交信機で周辺の基地局の電界強度を計測して車両を管理するセンター局へその計測結果を送信する。その結果、車両の盗難が発生した際に、その旨を把握でき、かつ、その移動位置を特定可能なシステムを提供できる。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AL アルバニア	FI フィンランド	LK スリ・ランカ	SI スロヴェニア
AM アルメニア	FR フランス	LR リベリア	SK スロヴァキア
AT オーストリア	GA ガボン	LS レソト	SL シエラ・レオネ
AU オーストラリア	GB 英国	LT リトアニア	SN セネガル
AZ アゼルバイジャン	GD グレナダ	LU ルクセンブルグ	SZ スワジ蘭ド
BA ボスニア・ヘルツェゴビナ	GE グルジア	LV ラトヴィア	TD チャード
BB バルバドス	GH ガーナ	MC モナコ	TG トーゴー
BE ベルギー	GM ガンビア	MD モルドバ	TJ タジキスタン
BF ブルガリア・ファソ	GN ギニア	MG マダガスカル	TM トルクメニスタン
BG ブルガリア	GW ギニア・ビサオ	MK マケドニア旧ユーゴスラヴィア	TR トルコ
BJ ベナン	GR ギリシャ	共和国	TT トリニダッド・トバゴ
BR ブラジル	HR クロアチア	ML マリ	UA ウクライナ
BY ベラルーシ	HU ハンガリー	MN モンゴル	UG ウガンダ
CA カナダ	ID インドネシア	MR モーリタニア	US 米国
CF 中央アフリカ	IE アイルランド	MW マラウイ	UZ ウズベキスタン
CG コンゴ	IL イスラエル	MX メキシコ	VN ヴィエトナム
CH スイス	IN インド	NE ニジェール	YU ユーゴースラビア
CI コートジボアール	IS アイスランド	NL オランダ	ZW ジンバブエ
CM カメルーン	IT イタリア	NO ノールウェー	
CN 中国	JP 日本	NZ ニュー・ジーランド	
CU キューバ	KE ケニア	PL ポーランド	
CY キプロス	KG キルギスタン	PT ポルトガル	
CZ チェコ	KP 北朝鮮	RO ルーマニア	
DE ドイツ	KR 韓国	RU ロシア	
DK デンマーク	KZ カザフスタン	SD スーダン	
EE エストニア	LC セントルシア	SE スウェーデン	
ES スペイン	LI リヒテンシュタイン	SG シンガポール	

明細書

位置特定システムおよび移動用交信機

5 技術分野

この発明は位置特定システムおよび移動用交信機に関し、詳しくは、複数の無線ゾーンからなるゾーン制通信システムを用いた位置特定システム、および複数の無線ゾーンのそれぞれに設けられた基地局をベースにして移動しながら交信するための移動用交信機に関する。

10

背景技術

複数の無線ゾーンからなるゾーン制通信システムの一例としては、たとえば、 P H S (Personal Handiphone System、簡易型携帯電話) のような小ゾーン制無線通信システムが知られている。

15 移動用交信機の一例となる P H S の携帯端末機は、家庭内ではコードレスホンとして使用されるが、そのまま持ち出して屋内公衆基地局あるいは屋外公衆基地局等を介して公衆網やデジタル網に接続できる。すなわち文字通り簡易携帯電話としても使用することができる。 P H S が既存のセルラー方式の携帯電話（ここでは、既存の携帯電話方式をセルラー方式と総称することにする）と大きく異なる点は、 P H S が小ゾーン制である点である。

セルラー方式携帯電話は、移動局の出力が 6 0 0 ミリワット以上で都市部では半径 2 ~ 3 km ごとに基地局を設置している。基地局の出力は 2 5 ~ 4 5 ワットである。また、郊外では 1 0 km 程度の距離をカバーすることもある。

これに対し、 P H S の移動局の出力は 1 0 ミリワット程度の微弱な出力であり、 25 基地局の出力は都市部では 2 0 ミリワット、郊外でも 1 0 0 ミリワットにすぎないので基地局と移動局との通信可能距離は都市部では約 1 0 0 m 程度、郊外でも約 5 0 0 m になる。

この無線ゾーンが小さいという特徴を活かして、以下の例のように、 P H S を位置検出システムに応用しようとする試みがなされている。すなわち、移動局が

周辺の複数の基地局の電波を受信して、基地局の識別符号と送信電界値とをデータ対とする複数対の位置情報を基地局を介して位置管理局に伝送し、位置管理局はその位置情報とデータベースを参照して移動局の位置を検出するなどというシステムが提案されている。

5 ところで、昨今、車両などを狙った悪質な盗難事件が相次いで発生し、問題となっている。また、盗難グループも組織化し、手口も巧妙化しているために、車両などの盗難行為自体を防止することが困難となってきている。そして、一旦、車両などが盗まれれば、車両自体が移動手段となって究めて短時間に長距離へ移動することになるために、その発見が困難となる。

10 また、車両などに限らず、手荷物、その他の携帯品についても、一旦、盗難にあれば、それを探し出すことは極めて困難である。

かかる場合、従来の位置検出システムをさらに応用して、予め車両、手荷物その他の携帯品などに移動用交信機を忍ばせておき、盗難が発生した際に所有者自身のその旨の申告に基づいて移動用交信機へ発信して位置情報を送信させ、移動用交信機とともに移動する車両、手荷物、その他の携帯品などの位置を特定できるようにすることが考えられる。

15 しかしながら、この方法では、車両などの所有者自身が盗難に会ったことに気づいた時点からしか盗難車両などの追跡を行なうことができないために、盗難に気づいた時点では、すでに盗難車両が海外へ搬出されており、携帯品が使用されてたりして、盗難による被害の発生を実質的に防止できないという問題が生じる。

20 本発明は係る実情に鑑み考え出されたものでありその目的は、車両、その他の携帯品などの盗難があった際に、早期に盗難の発生を知ることができ、かつ、極力迅速にその盗難品を発見することのできる位置特定システムおよび移動用交信機を提供することである。

発明の開示

請求の範囲第1項に記載の位置特定システムは、複数の無線ゾーンからなるゾーン制通信システムを用いた位置特定システムであって、

前記複数の無線ゾーンのそれぞれに設けられた基地局と、
当該基地局をベースにして移動しながら交信するための移動用交信機と、
当該移動用交信機と交信する交信局と、
当該移動用交信機とともに移動する移動体の移動を検知する移動検知器とを含

5 み、

前記移動用交信機は、
複数の前記基地局から到達する電波の電界強度を測定可能な測定器と、
所定の移動禁止条件が成立している際に前記移動検知手段で前記移動体の移動
が検知されたことを条件にして、前記測定器の測定結果に基づく所定の位置特定
10 用情報を前記交信局へ送信する送信器とを含み、

前記交信局は、
受信された前記位置特定用情報に基づいて、前記移動禁止条件が成立している
にもかかわらず前記移動体が移動していることを報知する報知器と、
受信された前記位置特定用情報に基づいて、前記移動用交信機とともに移動す
る移動体の移動位置を特定する位置特定器とを含むことを特徴とする。

請求の範囲第1項に記載の発明に従うと、所定の移動禁止条件が成立している
際に前記移動検知手段で前記移動体の移動が検知されたことを条件にして、前記
測定手段の測定結果に基づく所定の位置特定用情報が前記交信局へ送信されるた
めに、車両、その他の携帯品などの盗難があった際に、早期に盗難の発生を知る
20 ことができ、かつ、極力迅速にその盗難品を発見することのできる位置特定シス
テムを提供できる。

請求の範囲第2項に記載の発明は、複数の無線ゾーンのそれぞれに設けられた
基地局をベースにして移動しながら交信するための移動用交信機であって、
当該移動用交信機とともに移動する移動体の移動を検知する移動検知器と、
25 複数の前記基地局から到達する電波の電界強度を測定可能な測定器と、
所定の移動禁止条件が成立している際に前記移動検知器で前記移動体の移動が
検知されたことを条件にして、前記測定器の測定結果に基づく情報であつて前記
移動用交信機とともに移動する移動体の移動位置を特定可能な位置特定用情報を
当該移動用交信機と交信する交信局へ送信する送信器とを含むことを特徴とする。

請求の範囲第2項に記載の発明に従うと、所定の移動禁止条件が成立している際に前記移動検知器で前記移動体の移動が検知されたことを条件にして、前記測定手段の測定結果に基づく所定の位置特定用情報が前記交信局へ送信されるために、移動用交信機を盗んだ人あるいは盗難車両といった移動体の移動位置を特定⁵できる。

請求の範囲第3項に記載の発明は、請求の範囲第1項に記載の発明の構成に加えて、前記移動検知器は、前記測定器で測定される電界強度に従って順位づけられた基地局の順位が前記移動禁止条件の成立後に変化することによって前記移動用交信機とともに移動する移動体の移動を検知することを特徴とする。

請求の範囲第3項に記載の発明に従うと、位置特定用情報の生成に必要な測定手段を利用して前記移動体の移動を検知するために、移動検知器の少なくとも一部を前記測定手段で兼用でき、システムコストを低減できる。

請求の範囲第4項に記載の発明は、請求の範囲第1項に記載の発明の構成に加えて、前記移動検知手段は、前記移動体の移動に伴って生じる振動に基づいて前記移動用交信機とともに移動する移動体の移動を検知することを特徴とする。

請求の範囲第4項に記載の発明に従うと、前記移動体の移動に伴って生じる振動に基づいて前記移動体の移動が検知されるために、移動を即座に検知できる。

図面の簡単な説明

図1は、移動端末の位置表示システムの全体構成を示す図である。

図2は、公衆用システムにおける基地局と移動端末間の通信の発識別符号と着識別符号の構成の一例を示す図である。

図3は、自営用システムにおける基地局と移動端末間の通信の発識別符号と着識別符号の構成の一例を示す図である。

図4は、移動用交信機の回路構成を示すブロック図である。

図5は、センター局の構成例を示すブロック図である。

図6は、センター局の構成例を示すブロック図である。

図7は、移動局の位置を特定する方法を表す原理図である。

図8は、センター局の制御回路の一例を示す図である。

図9は、盜難情報送信処理の処理手順を示すフローチャートである。

図10は、送信モード変更処理の処理手順を示すフローチャートである。

図11は、センター局で実行される処理の手順を示すフローチャートである。

図12は、移動用交信機の回路構成を示すブロック図である。

5 図13は、盜難情報送信処理の処理手順を示すフローチャートである。

図14は、センター局で実行される処理の手順を示すフローチャートである。

発明を実施するための最良の形態

第1実施形態

以下この発明の実施の形態を図面を参照して説明する。図1は、第1実施形態
10 に係るPHSを利用した盜難車両の位置特定システムの全体構成図である。図1
において、1は移動用交信機100(図2参照)が搭載された移動端末、2a、
2b、2c、・・・は移動端末1との間で通話や呼出しエリアの登録を行なう基
地局、3a、3b、3c、・・・は、各基地局2a、2b、2c、・・・の無線
ゾーン(マイクロセル)、4は、複数の無線ゾーン3a、3b、3c、・・・で
15 構成された一斉呼出エリア、5は一斉呼出エリア4内の移動端末1への回線接続
制御を行なう制御局、9は移動端末1と通信を行なうセンター局である。

各基地局2a、2b、2c、・・・は、電気通信回線設備6a、6b、6
c、・・・で制御局5と接続され、センター局9は回線30で制御局5と接続さ
れている。基地局2a、2b、2cは、移動端末1と制御局5との呼接続を可能
20 にするために、制御局5の一斉呼出エリア番号を含む信号を周期的に送出してい
る。制御局5が管理する基地局2a、2b、2cからは、同じ一斉呼出エリア番
号が送出され、さらに、各基地局ごとに異なる基地局識別符号が送出されている。

ここで、図2および図3を参照して、一斉呼出エリア番号と基地局識別符号に
ついて説明する。図2および図3は、基地局(CS)2a、2b、2c・・・から
25 移動端末(PS)1へ送信される通信用スロットの一部を例示した図である。
特に、図2は公衆用システムの場合を例示するものであり、図3は自営用シス
テムの場合を例示するものである。

図2を参照して、公衆用システムの場合には、発識別符号(CS-ID)は4
2ビットで構成されており、電話事業者の区別符号である9ビットの事業者識別

符号と屋外公衆用基地局を特定する 33 ビットの屋外公衆用付加 ID 符号とを含む。屋外公衆用付加 ID 符号はあるエリア内にある複数の基地局に一斉に呼出をかけ、特定の端末機を呼出すための一斉呼出エリア番号と付加 ID 番号とを含む。この屋外公衆用付加 ID 符号により、基地局を特定可能な基地局識別符号が構成 5 されている。なお、移動局（移動端末）を特定する着識別符号（PS-ID）は 28 ビットで構成されている。これらの制御情報を受信した移動端末 1 が同様の着識別符号と発識別符号とを含む通信用スロットを基地局へ送信することで基地局をベースにした通信が行なわれている。

次に図 3 を参照して、自営用システムの場合には、基地局を特定する発識別符 10 号は 42 ビットで構成されており、自営用システムの呼出符号を表わすシステム 呼出符号 29 ビットと自営用システムの基地局 ID コードを表わす付加 ID の 1 3 ビットとを含む。この発識別符号により、基地局を特定可能な基地局識別符号 15 が構成されている。なお、移動局（移動端末）を特定する着識別符号は 28 ビットで構成されている。

さて、再び図 1 を参照して、隣接する一斉呼出エリア（図示省略）における制 20 御局 5 からは異なる一斉呼出エリア番号が送出される。移動端末 1 は、この一斉 呼出エリア番号の変化を検出し、制御局 5 に通信のベースとなる基地局の登録を行なう。

具体的には、移動端末 1 に搭載された移動用交信機 100 は、その電源投入時に「制御チャネル選択」状態で同期確立後、一斉呼出エリア番号が最大の電界強度で受信された基地局を制御局 5 に登録し、その基地局との間で無線区間のハンドシェイクを確立する。これにより、リンクチャネルが確立される。リンクチャネルが確立している状態で移動端末 1 またはセンター局 9 より発呼動作があれば、サービスチャネルが確立され、呼が接続されて通信が可能となる。

リンクチャネルの確立中は、リンクチャネルの確立している基地局の電界強度 25 を監視し、所定のしきい値の電界強度より下回れば、その時点で一番強い電界強度となる基地局との間で再度ハンドシェイクを確立し直す。このことをハンドオーバーという。

ここで、移動端末 1 は、盗難防止のために移動用交信機 100 が搭載された車

両である。この移動端末 1 の所有者が予め移動端末 1 を盗難防止モードに設定して移動端末 1 から離れる。内部の移動用交信機 100 は車両の移動を検知する機能を有しており、盗難防止モードに設定されている際に車両が移動したことを契機に周辺の複数の基地局 2a、2b、2c、…から到達する電波の電界強度 5 を継続的に測定する。そして、自動的にセンター局 9 へ発呼してその測定結果を含む盗難情報を継続的にセンター局 9 へ送信する。

センター局 9 は、たとえば、この盗難車両の位置特定システムを管理する管理会社である。センター局 9 には、各基地局 2a、2b、2c、…の位置特定用情報、電界強度に基づいて基地局と移動端末 1 との距離を特定可能な情報、地図情報などの記憶されたデータベースや、そのデータベースに基づいて算出された移動端末 1 の位置を画面上に表示させる表示器、盗難の発生したことを報知する報知手段などが設けられている。したがって、盗難情報が移動端末 1 から送信されれば、直ちに盗難の発生を把握でき、その移動端末 1 の移動位置を表示器の画面上で追跡することができる。

なお、PHS システムの性格上、都市部においては特に基地局のカバーエリア 15 が小さいために、移動端末 1 が高速で移動している場合には、頻繁にハンドオーバーが発生し、基地局間における無線回線制御機能が追従できなくなる可能性がある。したがって、この場合には、高速で走行中の移動端末 1 の位置情報をリアルタイムで把握することが困難となるおそれもある。しかしながら、移動端末 1 20 が交差点その他で停止または減速があるので、そのときを狙って通信を行なわれるようになるとかかる問題は解消される。また、このようなタイミングで各基地局 2a、2b、2c、…の電界強度を測定するように構成すれば、移動端末 1 の移動時に測定する場合と比較してフェージングの影響による測定誤差を極力小さくすることができる。一方、郊外においては一般に各基地局の 25 カバーエリアが大きいので、位置位置情報の収集には何ら問題はない。

図 4 は移動端末 1 に搭載された移動用交信機 100 の回路構成を示すブロック図である。図 4 を参照して、移動用交信機 100 は、送受信用のアンテナ 20 と、アンテナ 20 で受信した信号を增幅、復調するための受信部 21 と、受信部 21 で復調された信号に基づいて基地局 6 を特定するための識別符号（ID）を検出

する I D検出部 22と、受信部 21で増幅された信号に基づいて電界強度を測定する受信電界強度測定部 23と、送信用情報の生成、変調、増幅を行ない、アンテナ 20から送信するための送信部 26と、盗難モードの設定などを行なうための操作部 28と、車両の振動を検出するための振動検出部 27と、メモリ 25と、
5 移動用交信機 100全体を制御する制御回路 24とを含む。

操作部 28が操作されて盗難モードに設定されれば、その旨が制御部 24で把握される。なお、盗難モードの設定および解除にあたっては、暗証番号の入力が必要とされるようにしてもよい。特に、盗難モードの解除にあたって適切な暗証番号の入力を条件とすることにより、盗人が逃走中にこのシステムに気づいて
10 盗難モードを解除してしまうことを防止できる。また、盗難モードの設定については、その設定のし忘れを防止するために、車両がロックされることを条件に自動的に行なわれるよう構成してもよい。

振動検出部 27は、車両の移動に伴って生じる振動を検知するものである。この振動検出部 27は、車両自体の振動を検知するものであってもよく、車両が振動することによる移動用交信機 100の振動を検知するものであってもよい。また、車両のエンジンが稼働すれば、これに伴って車体が振動するため、この振動を検知するものであってもよい。また、移動用交信機 100自身には振動検出部 27を設けることなく、振動検出部 27からの検知信号が入力される入力部を設け、車両側にこの入力部に検知信号を出力する振動検出部 27を一体的に取付け
15 てもよい。

振動検出部 27で車両の振動が検知されれば、検知信号が制御部 24に入力される。制御部 24は、検知信号が入力された際に盗難防止モードに設定されていることを条件に、受信電界強度測定部 23で測定される各基地局の電界強度と I
D検出部 22で検出される各基地局の識別符号とをそれぞれ対にした位置情報を
20 生成する。そして、センター局 9へ発呼してそれらの位置情報を含む盗難情報を送信する。その後、盗難防止モードが解除されるまで受信電界強度測定部 23で繰返し各基地局の電界強度が測定され、予め定められたタイミングで盗難情報が逐次送信される。センター局 9では、繰返し送信されてくる盗難情報を利用して、
25 盗難車両（移動端末 1）を追跡できる。なお、盗難情報の送信タイミングは、操

作部 28 の操作、あるいはセンター局 9 の遠隔制御により随時設定することができる。この送信タイミングの詳細については後述する。

この移動用交信機 100 は、盗難防止システム専用の交信機であるため、通常の PHS に設けられる音声回路や表示回路は取り除かれている。通常の通話機能は不要だからである。つまり、移動端末 1 とリンクチャネルの確立している基地局の特定は、主として PHS の制御チャネルを使用して行なわれるわけであるから、各種プッシュボタン、液晶の表示器、スピーカ、マイクおよびこれらの関係する電子回路部品等を適宜省略することができる。このようにすれば、移動用交信機 100 をより安価で提供でき、また、小型化、軽量化することができる。もちろん、通話機能を付加して車両内での通話を可能とするように構成してもよい。また、日常携帯して使用されているごく普通の PHS に振動検出部 27 からの検知信号が入力される入力部を設け、車両の所定位置に必要に応じて搭載することにより、上述した移動用交信機 100 として機能するように構成してもよい。

図 5 はセンター局 9 の構成の一部を例示した図である。図 5 を参照して、センター局 9 は、たとえばパソコンまたはワークステーション 12 と、パソコンまたはワークステーション 12 に接続されたディスプレイ 61 およびキーボード 11 を含む。パソコンまたはワークステーション 12 にはセンター用モデム 13 が接続され、センター用モデム 13 を介して電話局の交換局に接続されている。なお、多数の移動端末 1 を管理するにあたっては複数の電話回線とモデムとが用意されていることが望ましい。もちろん、アナログの電話回線に限ることなく、ISDN を利用してもよい。

ディスプレイ 61 のスクリーンに映し出された電子地図 10 の中には、移動端末 1 (移動局) の移動した軌跡 18 が図示する態様でタイムスタンプとともに表示される。11 はキーボードを示している。マウスは省略しているが、操作において当然利用されるものである。

図 6 は移動端末 1 の位置検出のための演算と、得られた位置を表示器 37 に表示された地図上で特定するためのセンター局 9 側のシステムの要素を示す一例である。図 6 において、34 は電話回線、35 は信号復調回路、36 は移動局の位置検出演算回路、37 は表示器、38 は基地局 6 のデータベース、39 は移動局

の位置データベース、40は地図データベース、41は移動局への発呼回路、42は車両のデータベースである。

重要なことは、移動端末1から送られてきた各基地局の識別符号や電界強度などのデータだけでは移動端末1の位置はわからないという点である。それを可能にするためには予め各基地局2a、2b、2c、・・・の識別符号に対応して各基地局の位置（所番地または緯度と経度）および各基地局の送信電力、アンテナの高さ等の基地局情報を基地局のデータベース38として準備しておく必要がある。また同時に電子地図のデータベース40も準備されている必要がある。このような環境下で移動端末1から送られてきた複数の基地局のデータを用いて、たとえば次のような手法により、移動端末1の位置を特定できる。

すなわち、受信電力は送受信機間のアンテナの距離の二乗に反比例することを示すフリースの伝達公式（下記の（1）参照）を利用して、図4の受信電界強度測定部23によって得られる受信電力の大きさから各基地局2a、2b、2c、・・・と移動端末1との距離を計算できることになる。図7にその基本原理を示す。

$$\text{受信電力} = \frac{\text{送信機のアンテナ利得} \times \text{受信機のアンテナ利得} \times \text{送信電力}}{(4\pi \times \text{送信受信機間の距離} / \text{電波の波長})^2} \dots (1)$$

図7を参照して上記式（1）から逆算して得られる送受信機間の距離をrメートルとすれば、移動端末1の位置は、移動端末1の位置において最も電界強度の強い基地局Aから半径約rメートルのほぼ円周上に位置していることがわかる。A基地局の次に電界強度の強いB基地局やC基地局からこの半径rメートルの円に向かって接線を引くことによって上記の半径rメートルの円が区切られて円弧を形成すると、この円弧33上に移動端末1が存在する。その結果、より高い精度で移動端末1の位置を特定することができる。電界強度の最も強い基地局Aから移動端末1までの距離rを計算し、基地局Aを中心として半径rの円をかき、電界強度が第2、第3…順位の基地局B、C、…の位置より半径rの円に接線を引き、円弧33を形成し、一方では基地局の位置情報を地図のデータベース40を参照して地図上に移動局を表示させるのが移動端末1の位置検出演算回路36であり、これらのデータを蓄えられたのが移動端末1のデータベース39である。

図8はセンター局9の具体的構成を示すブロック図である。図8を参照して、センター局9は、センター局9を構成する装置全体を制御するCPU60と、CPU60に接続され、移動端末1の位置を地図上に表示するCRT61と、センター局9としての動作を規定するプログラム等を記憶するROM62、RAM63と、外部機器とのインターフェイスとなるI/Oインターフェイス64とを含む。
5 I/Oインターフェイス64には、I/Oインターフェイス64を介して地図データを表示するためのCD-ROM駆動装置65、移動端末1から送信された盗難情報を受信するセンタ局用モデム13、PHSシステム用の交換局を介して移動端末1と呼接続するための自動発呼装置66、必要に応じて自動発呼装置66において発呼を行ない必要な情報を入手後直ちに回線を切断する回線切断ユニット6
10 18が接続されている。

また、I/Oインターフェイス64を介してこのシステムに加入している所定の加入者に盗難が発生した旨を報知するための情報が送信され、必要に応じて移動端末1の移動位置を特定可能な情報（移動端末1の位置する住所など、あるいは前記盗難情報自体）が併せて送信される。ここで所定の加入者として、たとえば、
15 盗難車両の搜索に携わる警備会社あるいは盗難車両の所有者本人などをその例に挙げることができる。もちろん、センター局9自体が警備会社であってもよく、また盗難車両の所有者本人の自宅であってもさしつかえない。この加入者の電話番号その他の加入者情報は、加入者データベース（加入者DB）69に記憶され
20 ている。

図9は、盗難情報送信処理の処理手順を示すフローチャートである。移動端末1に搭載された移動用交信機100は、このフローチャートに基づいて以下に説明する処理を実行する。まず、ステップS（以下Sと略す）1において、盗難検索モードがオンに設定されているか否かが判断される。盗難検索モードがオンに設定されていない場合にはS8に進み、送信指令があったか否かが判断される。
25 この送信指令は、センター局9から送信される情報である。送信指令がなかった場合には処理が終了する。一方、送信指令があった場合には、S3に進み、周辺の基地局の電界強度を計測する処理がなされた後、S4でその計測結果を含む盗難情報がセンター局9へ送信される。盗難検索モードがオンに設定されていない

場合であってもセンター局9からの送信指令に応答して盗難情報が送信されるために、盗難車両で犯人が逃走中にこのシステムの存在に気が付いて盗難検索モードの設定を解除した場合にも、センター局9は必要に応じて随時位置情報を入手できる。

- 5 盗難検索モードがオンに設定されている場合にはS 2に進み、振動検出部27から検出信号が入力されているか否かが判断される。そして、検出信号が入力されていない場合には移動端末1が移動していないものと判断され、前記S 8に処理が移行する。振動検出部27から検出信号が入力されている場合には移動端末1が移動したものと判断され、S 3に進む。S 3では、周辺の基地局2a, 2b, 10 2c…から到達する電波の電界強度が受信電界強度測定部23(図4参照)で計測される。そして、その計測結果が制御部24に入力される。

次にS 4に進み、センター局9に発呼して盗難情報を送信する処理が実行される。この盗難情報には、S 3で計測された各基地局の電界強度の計測結果、後述する送信モードの種類を示す情報などが含まれている。次にS 5に進み、盗難検索モードがオフに変更されたか否かが判断される。盗難検索モードがオフに変更された場合には処理が終了する。一方、盗難検索モードがオフに変更されていない場合にはS 6に進み、送信条件が成立しているか否かが判断される。ここで送信条件とは、再度各基地局の電界強度を計測し、その計測結果などを盗難情報としてセンター局9へ送信する処理を実行するための条件である。この送信条件は、20 移動用交信機100で設定されている送信モードの種類により異なる。送信モードは図10で後述するように、センター局9からの遠隔指令または移動用交信機100の操作によって複数種類の中から予め任意に選択しておくことが可能である。また、盗難された移動端末1を追跡する際に必要に応じて変更可能である。なお、送信モードが後述する連続送信モードに設定されている場合以外はS 4で25 盗難情報を送信した後、直ちに呼を開放する。一方、連続送信モードに設定されている場合には、盗難情報を送信した後も継続して呼を維持する。

S 6で送信条件が成立したと判断された場合には前記S 3に進み、周辺の基地局の電界強度が再度計測され、S 4でその計測結果などが盗難情報として再度センター局9へ送信される。一方、送信条件が成立していない場合にはS 7に進み、

センター局9から送信指令があったか否かが判断される。そして、送信指令があった場合には、送信条件が成立していなくともS3、S4に処理が移行して最新の計測結果などが盗難情報としてセンター局9へ送信される。センター局9では、この送信指令に応じて移動用交信機100から盗難情報が送信されるか否かを確認することによって、移動用交信機100が正常な状態にあるのか否かを判別できる。たとえば、移動用交信機100から継続的に送信されていた盗難情報がある時点から途絶えた場合には、それが単に送信条件を満たしていないことに起因するものであるのか、あるいは故障その他の異常事態の発生に起因するものなのかを判断できないからである。

S6で送信条件が成立していないと判断され、かつ、S7で送信指令がないと判断された場合には、前記S5に戻り、S5～S7のいずれかのステップでYESの判断がされるまで、S5～S7の判断が繰返し実行される。

図10は、送信モード変更処理の処理手順を示すフローチャートである。移動用交信機100は、以下に説明する処理手順に従って、盗難情報を送信するタイミングを定めるための送信モードを変更する。

まずS11において、送信モードの変更要求があるか否かが判断され、要求がない場合には処理が終了する。送信モードの変更は、移動用交信機100に設けられた操作部28の操作、またはセンター局9からの所定の指令信号に応じて行なわれる。送信モードの変更の要求があった場合には、S12に進み、連続送信モードへ変更すべきものであるか否かが判断される。連続送信モードへの変更要求であった場合にはS13に進み、送信モードが連続送信モードに変更され、処理が終了する。

ここで、連続送信モードとは、センター局9との間で一旦接続された呼を開放することなく維持し続けて、電界強度の最新の計測結果を次々に送信するモードである。この連続送信モードでは、受信電界強度測定部23で新たに各基地局の電界強度が計測され次第、その計測結果がセンター局9へ次々に送信される。この連続送信モードによれば、移動端末1の移動状況を細やかに把握することができる。

S12でNOと判断された場合にはS14に進み、タイマモードへの変更要求

であるか否かが判断され、タイマモードへの変更要求である場合にはS 1 5に進みタイマモードに変更する処理が実行される。

タイマモードとは、設定された送信間隔時間 t に応じて盗難情報（電界強度の測定結果を含む）をセンター局9へ送信するモードである。送信間隔時間 t は、操作部28またはセンター局9からの指令信号により任意に設定可能である。このタイマモードによれば、移動端末1の移動状況（移動速度や移動間隔など）に応じて移動用交信機100から盗難情報を送信させることができる。たとえば、移動端末1の移動速度が速い場合には送信間隔時間を短く設定し、移動速度が遅い場合にはこれを長く設定するなどすることが考えられる。

S 1 4でNOと判断されればS 1 6に進み、ハンドオーバーモードへの変更要求であるか否かが判断される。ハンドオーバーモードへの変更要求である場合にはS 1 7に進み、ハンドオーバーモードに変更される。

ハンドオーバーモードとは、移動端末1の移動に伴ってハンドオーバーが生じるごとに盗難情報を送信するモードである。ハンドオーバーが発生したということは、それまでリンクの確立していた基地局の電界強度が移動端末1の移動により所定のしきい値以下に低下し、その時点で最も電界強度の強い基地局との間でリンクが新たに再確立されたということである。したがって、その瞬間を狙って盗難情報を送信するべくセンター局9との呼を接続する制御（電話をかける制御）を開始すれば、安定した状態で盗難情報を送信できる可能性が高い。リンクの再確立した時点ではそのリンクの確立した基地局の無線ゾーン中央付近に移動端末1が位置している可能性が高いために、その地点から次のハンドオーバーが発生する地点までの距離が長い状態にあり、盗難情報の送信中に再度ハンドオーバーが発生する可能性が低いからである。これにより、たとえ移動端末1が高速で移動しており、このために基地局間における無線回線制御機能が追従できなくなる可能性のあるほど頻繁にハンドオーバーが発生する場合であっても、極力、センター局9との間での安定した通信を確保することができる。

S 1 6でNOと判断された場合にはS 1 8に進み、CSモードへの変更要求であるか否かが判断される。CSモードへの変更要求である場合にはS 1 9に進み、CSモードに変更される。

CSモードとは、それまで電界強度の一番強かつた基地局の電界強度よりも他の基地局の電界強度が強くなったタイミングで、次の盗難情報を送信するモードである。具体的には、周辺の各基地局の電界強度を計測した際に一番強い電界強度の基地局の識別符号を記憶しておき、その後電界強度の計測を繰返し実行し、
5 一番強い電界強度となる基地局の識別符号が先に記憶していた識別符号と異なる際に、その時点での計測結果を盗難情報として送信するモードである。電波の見通し状況にもよるが、移動端末1は、各基地局の中でも電界強度の一番強い基地局に最も近い位置にあることが推定される。したがって、このCSモードによれば、センター局9は、移動端末1に最も近い位置にある基地局が変化するタイミングごとに盗難情報を入手できる。このため、最大の電界強度となる一の基地局との対応関係のみで移動端末1の移動位置を大まかに把握したい場合には最も効率よく盗難情報を入手でき、通信コストを低減できる。

なお、先に説明したハンドオーバーモードでは、それまで電界強度の一番強かつた基地局の電界強度よりも他の基地局の電界強度が強くなつたタイミングで盗難情報が送信されるわけではない。一旦、ある基地局との間でリンクが確立すれば、たとえ移動端末1の移動に伴つて他の基地局の電界強度の方が強くなつたとしても、すでにリンクの確立している基地局の電界強度が所定のしきい値以下とならない限りハンドオーバーが発生しないためである。

S18でNOと判断された場合にはS20に進み、スピードモードへの変更要求であるか否かが判断される。スピードモードへの変更要求である場合にはS21に進み、送信モードがスピードモードに変更される。

スピードモードとは、移動端末1の移動速度が所定速度以下であることを条件に所定の送信時間間隔で盗難情報を送信するモードである。

このスピードモードによれば、たとえば移動端末1が交差点の赤信号で停止した際などにセンター局9との呼が接続されて盗難情報が送信されることになる。したがつて、前記所定速度を移動端末1の移動に起因するフェージングの影響を考慮して適宜設定することにより、極力フェージングの影響の少ない測定結果を入手できる。移動通信システムの中でも特に高い周波数を利用するPHSでは、移動端末1の移動に伴う電波のフェージングの影響が大となり、電界強度の計測

結果にも影響を及ぼすことになる。特に、移動端末1がこの実施の形態に示すように高速で移動し得る車両などである場合には、電界強度を計測するタイミングにより、その計測誤差が大きく異なる。このスピードモードによれば、移動端末が比較的低速で走行している際、または完全に停止している際に計測された電界強度のみをセンター局9へ送信することが可能となるために、センター局9では移動端末1の位置特定を精度良く行なうことができる。なお、移動端末1の速度の計測に際しては、車両に通常備えられているスピードメータを利用することが考えられる。また、計測誤差の小さい計測結果を入手するために、このスピードモードに代えて、たとえば次のような手法を利用したモードを追加することも考えられる。

すなわち、受信電界強度測定部23において微小時間で複数回各基地局の電界強度を測定し、その算術平均値を演算する。そして、各計測値とのばらつきから測定精度を演算してその精度が所定の範囲内であることを条件に演算された算術平均値を計測結果としてセンター局9へ送信することが考えられる。

S20でNOと判断された場合にはS22に進み、エラー処理が実行された後処理が終了する。

図11は、センター局9のCPU60（図8参照）で実行される処理の手順を示すフローチャートである。

まずS31において、盗難情報が受信されたか否かが判断される。盗難情報が受信された場合にはS32に進み、所定のタイマがセットされる。このタイマは、盗難情報を送信してきた移動端末1が所定時間を経過しても次の盗難情報を送信してこないか否かを後述のS42で判断するために設けられている。

次にS33に進み、移動端末1から送信されてきた盗難情報に基づいて盗難車両とその移動位置を特定する処理が実行される。なお、盗難車両の特定は、図6に示した車両のデータベース42により特定され、移動位置は同じく基地局のデータベース38と地図データベース40等により特定される。次にS34に進み、車両の盗難を警備会社へ連絡し、盗難車両を特定するための盗難車両特定用情報を警備会社へ送信する処理が実行される。これにより、警備会社に車両の盗難が報知されることになる。次にS35に進み、表示器37のディスプレイ60上に

盗難車両の移動位置を表示する処理が実行され、処理が終了する。

S 3 1 で盗難情報が受信されていない場合にはS 3 6 に進み、タイマが稼働中であるか否かが判断される。ここでのタイマとは、S 3 2 でセットされたタイマである。タイマが稼働していない場合には、すなわち、車両の盗難事故が発生していないこととなる。したがってこの場合には、そのまま処理が終了する。一方、タイマが稼働している場合には、少なくとも1回盗難情報が送信されており、盗難事故が発生していることになる。そこでこの場合にはS 3 7 に進み、盗難車両に搭載されている移動用交信機100の送信モードはタイマモードであるか否かが判断される。この送信モードの判断は、既にS 3 1 で受信されている盗難情報に基づいて行なわれる。送信モードがタイマモードである場合にはS 3 8 に進み、タイマモードで設定されている送信間隔時間が既に経過しているか否かが判断される。送信間隔時間が経過していない場合には処理が終了する。一方、送信間隔時間が経過している場合には、本来、移動端末1から盗難情報が送信されなければならないにもかかわらず、何らかの異常事態の発生により通信が途絶えていることとなる。したがってこの場合にはS 3 9 に進み、所定の報知が行なわれる。この報知は、たとえば、図5に示したディスプレイ61上で移動局の軌跡18を点滅させるなどすることが考えられる。次にS 4 0 に進み、異常の発生している移動端末1へ送信指令情報が送信される。なお、この送信指令情報を受信した移動端末1は、盗難検索モードのON/OFF、その他状況の如何にかかわらず、直ちに盗難情報をセンター局9へ送信する。

次にS 4 1 に進み、S 3 2 でセットされたタイマがリセットされ、再度計時が開始される。

一方、S 3 7 で送信モードがタイマモードでないと判断された場合にはS 4 2 に進み、S 3 2 またはS 4 1 でセットされたタイマが所定時間を計時しているか否かが判断される。そして所定時間を計時していない場合には処理が終了する。

一方、所定時間を既に計時している場合には前記S 3 9 、S 4 0 、S 4 1 の処理が実行される。これにより、移動用交信機100から継続的に送信されていた盗難情報がある時点から途絶えて所定時間が経過したことが報知され、交信の途絶えている移動用交信機100へ送信指令情報が送信されることになる。この送信

指令情報に対して移動用交信機 100 から何らの応答もない場合には、移動用交信機 100 あるいはこれを搭載する車両で故障その他の異常事態が発生したと推定できる。一方、送信指令情報に応答して盗難情報が送信されてきた場合には、その情報を解析することにより、詳細な原因を把握できる。たとえば、送信モードがハンドオーバーモードに設定されている際に移動端末 1 が停車状態を継続すれば後続の盗難情報は送信されてこなくなる。このような場合に送信指令情報に応答した盗難情報を待つことにより、移動端末 1 が停車しているのか否かを判別できる。

第 2 実施形態

次に、図 12～図 14 を用いて第 2 実施形態を説明する。図 12 は、第 2 実施形態に係る移動端末 1 に搭載された移動用交信機 200 の回路構成を示すブロック図である。この第 2 実施形態に係る移動用交信機 200 が、図 4 に示した移動用交信機 100 と異なる点は、振動検出部 27 が設けられていない点である。したがって、ここでは各符号の説明は省略する。そして、この移動用交信機 200 の制御上の特徴は、図 1 に示した各基地局 2a、2b、2c、…から発信される電波の電界強度を利用して車両が移動したか否かを検知する点にある。

すなわち、制御部 24 は、操作部 28 が操作されて盗難モードに設定された際に、受信電界強度測定部 23 で測定される各基地局の電界強度を比較して、一番強い電界強度で電波の受信される基地局を記憶する。その後、所定期間ごとに繰返し各基地局の電界強度を測定してその電界強度を比較し、一番強い電界強度の基地局が先に記憶した基地局と異なる場合に、移動端末 1 が移動したと判断して前述の盗難情報をセンター局 9 へ送信する。

この第 2 実施形態によれば、盗難の報知および位置特定に利用される盗難情報の生成に必要な受信電界強度測定部 23 を利用して移動端末 1 の移動を検知できるために、システムコストを低減できるという利点がある。

なお、ここでは、電界強度の一番強い基地局が変化することにより、移動端末 1 の移動を検知するようにしたが、電界強度の強さが 2 番目、3 番目、あるいはその他の特定の順位の基地局を記憶しておき、その順位が変化することで移動端末 1 の移動を検知するように構成してもよい。また、移動端末 1 の移動に起因す

るフェージングの発生を利用して、電界強度が所定の幅以上に変動することを検知してこれにより移動端末1が移動したと判断するように構成してもよい。

図13は、第2実施形態に係る移動端末200の盗難情報送信処理の処理手順を示すフローチャートである。まずS51において、盗難検索モードがオンに設定されているか否かが判断される。この処理内容については、図9のS1と同様である。盗難検索モードがオンに設定されていない場合には処理が終了し、盗難検索モードがオンに設定されている場合にはS52に進む。

次にS52では、周辺の基地局の電界強度を計測する処理が実行される。次にS53に進み、ID1 = NO DATAであるか否かが判断される。ID1および後述のID2は、所定アドレスにより特定されるメモリ25(図12参照)の領域の一部である。そして、このID1にデータが記憶されていない場合にはS61に進み、S52で計測された電界強度のうち、一番強い電界強度の基地局の識別符号(ID)をID1に記憶する処理が実行される。次にS59に進み、盗難検索モードがオフに変更されたか否かが判断される。そして、盗難検索モードが継続してオンにされている場合には前記S51に戻る。一方、盗難検索モードがオフに変更された場合にはS60に進み、ID1, ID2に記憶されているデータを消去する処理が実行され、処理が終了する。

S53でID1に既に基地局IDが記憶されている場合にはS54に進み、ID1に記憶されているデータをID2に記憶する処理が実行される。次にS55に進み、S52の計測結果に従い一番強い電界強度の基地局IDを改めてID1に記憶させる処理が実行される。これにより、ID1には最新の計測結果に基づく一番強い電界強度の基地局IDが記憶され、ID2には前回の計測結果に基づくデータが記憶される。

次にS56に進み、ID1のデータとID2のデータとが一致しているか否かが判断される。すなわち、前回の計測時点と今回の計測時点とで、一番強い電界強度の基地局が変化していないか否かが判断されることになる。そして、変化していない場合にはS57に進み、センター局9から送信指令情報が送信されたか否かが判断される。送信指令情報が送信されていない場合には前記S51に戻る。

S57でYESと判断された場合にはS58に進み、S52で計測された計測

結果を含む盗難情報をセンター局9へ送信する処理が実行される。S56でNOと判断され、S58で盗難情報が送信されることにより、センター局9では盗難の発生を認識でき、盗難車両および盗難車両の位置を特定できる。

次に、前記S59に進み、盗難検索モードがオフに変更されていなければ再びS52で周辺の基地局の電界強度が測定される。そして、以下前記S53～S56の各処理が実行されて、一番強い電界強度の基地局が先に記憶した基地局と異なるような計測結果が得られることを条件に、S58で2つ目以降の盗難情報が送信される。したがって、2つ目以降の盗難情報の送信タイミングは、図10で説明したCSモードと同様である。もちろんこれに代えて、先に説明した連続送信モードのごとく、一旦、盗難情報の送信が開始されれば次々と最新の計測結果を送信するように構成してもよい。

図14は、第2実施の形態に係るセンター局9のCPU60で実行される処理手順を示すフローチャートである。

まず、S71で移動端末1から盗難情報が受信された否かが判断される。ここで、このフローチャートに示すS71～S75は図11のS31～S35と同一であり、S76～S80は、同図11のS36, S39～S41, S42と同一であるために、ここではこれ以上の詳細な説明を省略する。

次に、以下に以上説明した各実施形態の変形例を列挙する。

(1) 各実施形態では、移動端末1を構成する移動体の一例として車両を例に挙げて説明した。しかしながら、前記移動用交信機とともに移動する移動体としては、車両に限られるものではない。たとえば、前記移動用交信機の一例となるPHS(簡易型携帯電話)そのものを盗難して逃走する人なども、ここにいうところの移動体の概念に含まれる。さらに、移動用交信機100, 200を超小型(たとえばカード状に薄型にするなど)に設計するなどして、鞄その他の携帯品に忍ばせておいたり、予め携帯品と一体的に構成したりしておき、携帯品が盗難に会えば自動的に移動用交信機100, 200から盗難情報がセンター局に送信されるように構成することもできる。この場合には、携帯品、あるいはその携帯品を持って逃走する人、その盗人がその携帯品とともに逃走に使用する車両などが移動体の概念に含まれることになる。つまり、ここでいう移動体とは、移動

用交信機を搭載して移動する物、移動用交信機を携帯して移動する人を含む概念である。

(2) 各実施形態では、移動端末1の移動位置を特定する方法としてディスプレイの電子地図上に表示する手段を採用している。しかしながら、これに代えて、あるいはこれに加えて、移動端末1の移動位置を音声により通知するように構成してもよい。たとえば、逃走中の盗難車両を追跡する追跡車自体がセンター局9である場合には、移動端末1の移動位置が画面表示されるのに加えて、その方向や距離が音声で案内されると都合がよい。

(3) 各実施形態では、移動端末1に搭載された移動用交信機100, 200から電界強度の計測値が送信されるものとした。しかしながらこれに代えて、移動用交信機100, 200が電界強度に応じて位置を演算し、その演算結果をセンター局9に送信するように構成してもよい。つまり、移動用交信機100, 200から送信される所定の位置特定用情報とは、電界強度の計測値そのものに限られるものではない。なお、このように構成した場合には、たとえば、センター局9の設備として示した基地局のデータベース38、移動局の位置データベース39、地図データベース40などを移動端末1に搭載しておくとよい。

(4) 図7では、複数の基地局の電界強度を用いて移動端末1の移動位置を特定する方法を示した。しかしながら、移動端末1の移動位置を特定する方法はこれに限られるものではない。たとえば、移動端末1との位置関係において電界強度の一番強い基地局を特定し、その基地局そのものの設置位置を移動端末1の移動位置と擬制してディスプレイの電子地図上に表示するようにしてもよい。また、その基地局を中心とした所定の図形（円、橢円、その他その基地局の電波の電界強度分布に応じた図形など）を表示することで移動端末1の移動位置としてもよい。なお、この場合には、送信モードをCSモードに設定するのが望ましい。

(5) 各実施形態では、ゾーン制通信システムとして、PHSのような1つの基地局がカバーするエリアの小さい小ゾーン方式の移動通信システムを例に挙げて説明した。しかしながら本発明はPHSのみに限って適用されるものではなく、各基地局がより大きなエリアをカバーする移動通信システムにも適用可能である。重要なことは、移動用交信機100, 200自体が盗難の有無を判断して、交信

を開始し、位置情報を随時送信する点にある。ただし、各基地局がカバーするエリアが小さいものであればあるほど、また、基地局が密集していればいるほど、位置特定の精度は向上するといえる。

請求の範囲

1. 複数の無線ゾーンからなるゾーン制通信システムを用いた位置特定システムであって、

- 5 前記複数の無線ゾーンのそれぞれに設けられた基地局と、
当該基地局をベースにして移動しながら交信するための移動用交信機と、
当該移動用交信機と交信する交信局と、
前記移動用交信機とともに移動する移動体の移動を検知する移動検知手段とを
含み、

- 10 前記移動用交信機は、
複数の前記基地局から到達する電波の電界強度を測定可能な測定手段と、
所定の移動禁止条件が成立している際に前記移動検知手段で前記移動体の移動
が検知されたことを条件にして、前記測定手段の測定結果に基づく所定の位置特
定用情報を前記交信局へ送信する送信手段とを含み、

- 15 前記交信局は、
受信された前記位置特定用情報に基づいて、前記移動禁止条件が成立している
にもかかわらず前記移動体が移動していることを報知する報知手段と、
受信された前記位置特定用情報に基づいて、前記移動用交信機とともに移動す
る移動体の移動位置を特定する位置特定手段とを含むことを特徴とする、位置特
定システム。

2. 複数の無線ゾーンのそれぞれに設けられた基地局をベースにして移動しな
がら交信するための移動用交信機であって、
当該移動用交信機とともに移動する移動体の移動を検知する移動検知手段と、
複数の前記基地局から到達する電波の電界強度を測定可能な測定手段と、
所定の移動禁止条件が成立している際に前記移動検知手段で前記移動体の移動
が検知されたことを条件にして、前記測定手段の測定結果に基づく情報をであつて
前記移動用交信機とともに移動する移動体の移動位置を特定可能な位置特定用情
報を当該移動用交信機と交信する交信局へ送信する送信手段とを含むことを特徴
とする、移動用交信機。

3. 前記移動検知手段は、前記測定手段で測定される電界強度に従って順位づけられた基地局の順位が前記移動禁止条件の成立後に変化することによって前記移動用交信機とともに移動する移動体の移動を検知することを特徴とする、請求の範囲第1項に記載の位置特定システム。
4. 前記移動検知手段は、前記移動体の移動に伴って生じる振動に基づいて前記移動用交信機とともに移動する移動体の移動を検知することを特徴とする、請求の範囲第1項に記載の位置特定システム。

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/03482

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁶ B60R25/10, H04B7/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁶ B60R25/10, H04B7/26

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Jitsuyo Shinan Koho 1926-1998 Toroku Jitsuyo Shinan Koho 1994-1998
 Kokai Jitsuyo Shinan Koho 1971-1998 Jitsuyo Shinan Toroku Koho 1996-1998

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP, 8-136639, A (Japan Radio Co., Ltd.), 31 May, 1996 (31. 05. 96) (Family: none)	1-4
Y	JP, 8-304525, A (Nippon Telegraph & Telephone Corp.), 22 November, 1996 (22. 11. 96) (Family: none)	1-4
Y	JP, 6-28590, A (Mitsubishi Electric Corp.), 4 February, 1994 (04. 02. 94) (Family: none)	1-2
Y	JP, 8-149568, A (Sony Corp.), 7 June, 1996 (07. 06. 96) (Family: none)	3
Y	Microfilm of the specification and drawings first annexed to the request of Japanese Utility Model Application No. 108941/1988 (Laid-open No. 29860/1990) (NOK Corp.), 26 February, 1990 (26. 02. 90) (Family: none)	4

Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
2 November, 1998 (02. 11. 98)

Date of mailing of the international search report
10 November, 1998 (10. 11. 98)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/03482

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP, 5-164832, A (DGR Inc.), 29 June, 1993 (29. 06. 93) (Family: none)	1-2
A	JP, 7-329721, A (Japan Avitation Electronics Industry Ltd.), 19 December, 1995 (19. 12. 95) (Family: none)	1-4
A	JP, 3-112751, A (Nokia Mobile Phones Ltd.), 14 May, 1991 (14. 05. 91) & EP, 417944, A & FI, 89437, A	1-4

A. 発明の属する分野の分類（国際特許分類（IPC））
Int. C1°B60R25/10, H04B7/26

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））
Int. C1°B60R25/10, H04B7/26

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1998
日本国公開実用新案公報 1971-1998
日本国登録実用新案公報 1994-1998
日本国実用新案登録公報 1996-1998

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP, 8-136639, A (日本無線株式会社), 31. 5 月. 1996 (31. 05. 96) (ファミリーなし)	1-4
Y	JP, 8-304525, A (日本電信電話株式会社), 22. 11月. 1996 (22. 11. 96) (ファミリーなし)	1-4
Y	JP, 6-28590, A (三菱電機株式会社), 04. 2月. 1994 (04. 02. 94) (ファミリーなし)	1-2
Y	JP, 8-149568, A (ソニー株式会社), 07. 6月. 1 996 (07. 06. 96) (ファミリーなし)	3

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたものの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

02. 11. 98

国際調査報告の発送日

10.11.98

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

大谷 謙仁

3D

9433

電話番号 03-3581-1101 内線 3342

C(続き) 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
Y	日本国実用新案登録出願63-108941号(日本国実用新案登録出願公開02-29860号)の願書に最初に添付した明細書及び図面の内容を撮影したマイクロフィルム(エヌオーケー株式会社), 26. 2月. 1990(26. 02. 90)(ファミリーなし)	4
Y	JP, 5-164832, A(ディー・ジー・アール インコーポレテッド), 29. 6月. 1993(29. 06. 93)(ファミリーなし)	1-2
A	JP, 7-329721, A(日本航空電子工業株式会社), 19. 12月. 1995(19. 12. 95)(ファミリーなし)	1-4
A	JP, 3-112751, A(ノキア モービル フォーンズ リミテイド), 14. 5月. 1991(14. 05. 91)&EP、417944, A&FI, 89437, A	1-4