Prima prova in itinere di Geometria ed algebra lineare cod. 082747

Ingegneria Automatica - 4 Maggio 2009

Versione A

Esercizio 1. (5+2+2 punti) Sia dato il sistema lineare AX = B dove

$$(A|B) = \left(\begin{array}{ccc|c} 1 & 1 & a & 1 \\ a-1 & 1 & 2 & a-1 \\ a & 0 & a+1 & 0 \end{array} \right).$$

- (1) Stabilire, al variare di $a \in \mathbb{R}$, se e quante soluzioni ammette il sistema.
- (2) Calcolare le soluzioni del sistema quando queste sono infinite.
- (3) Siano $\alpha: x + y + az = 1, \beta: (a-1)x + y + 2z = a 1, \gamma: ax + (a+1)z = 0$ tre piani nello spazio affine \mathbb{R}^3 . Senza effettuare altri calcoli, stabilire per quali valori di $a \in \mathbb{R}$ $\alpha \cap \beta$ è una retta, e per quali valori di $a \in \mathbb{R}$ γ è parallelo alla retta $\alpha \cap \beta$.

Svolgimento. Operiamo sulle righe di (A|B), effettuando l' operazione elementare $R_2 - R_1 \rightarrow R_2$.

Se $a \neq 2$, effettuiamo ancora $\frac{1}{a-2}R_2 \rightarrow R_2, R_3 - aR_2 \rightarrow R_3$ ed otteniamo la matrice ridotta

$$\left(\begin{array}{cc|cc} 1 & \boxed{1} & a & 1 \\ \boxed{1} & 0 & -1 & 1 \\ 0 & 0 & 1+2a & -a \end{array}\right).$$

Se, invece, a=2, otteniamo la matrice ridotta per righe

$$\left(\begin{array}{cc|cc} 1 & \boxed{1} & 2 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 2 & 0 & 3 & 0 \end{array}\right).$$

Possiamo allora calcolare i ranghi di Ae di (A|B)al variare di $a\in\mathbb{R},$ ed abbiamo

$$r(A) = \begin{cases} 2 & \text{se } a = 2 \text{ oppure } a = -\frac{1}{2} \\ 3 & \text{se } a \neq -\frac{1}{2}, 2 \end{cases} \qquad r(A|B) = \begin{cases} 2 & \text{se } a = 2 \\ 3 & \text{se } a \neq 2 \end{cases}.$$

Usando il Teorema di Rouché-Capelli, concludiamo affermando che

se $a \neq -\frac{1}{2}, 2$, il sistema lineare AX = B ha una sola soluzione;

se a=2, il sistema AX=B ha ∞^1 soluzioni; se $a=-\frac{1}{2}$, il sistema AX=B non ha soluzioni.

Posto a = 2, e dette $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ le incognite, le due equazioni significative del

sistema sono 2x + 3z = 0 e x + y + 2z = 1. Posto z = 2t, dalla prima equazione ricaviamo x = -3t, e sostituendo nella seconda equazione, y = 1 - t. Le soluzioni del sistema, per a=2, sono allora

$$S = \left\{ \left(\begin{array}{c} -3t \\ 1-t \\ 2t \end{array} \right) \mid t \in \mathbb{R} \right\}.$$

L' intersezione tra i piani α e β è una retta ogni volta che le prime due righe della matrice (A|B) sono non proporzionali, ovvero se $a \neq 2$. Il piano γ è parallelo alla retta $\alpha \cap \beta$ se il sistema non ha soluzioni, ed $a \neq 2$. In conclusione, γ è parallelo alla retta $\alpha \cap \beta$ per $a = -\frac{1}{2}$.

Esercizio 2. (3+5+1 punti) Sia data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita come

$$f(x, y, z) = (x + y - z, -x + 3y - z, -x + y + z).$$

- (1) Calcolare la matrice $A = M_{B,B}(f)$ associata ad f rispetto alla base B = ((1,1,1),(0,1,1),(0,0,1)) di \mathbb{R}^3 .
- (2) Dopo aver calcolato il polinomio caratteristico di f, gli autovalori di f ed una base per ogni autospazio, stabilire se f è semplice, ed in caso affermativo, costruire una matrice P invertibile che diagonalizza A e la matrice diagonale D associata.
- (3) Senza effettuare altri calcoli, determinare i valori di $h \in \mathbb{R}$ per cui $f + h\mathbf{1}_{\mathbb{R}^3} : \mathbb{R}^3 \to \mathbb{R}^3$ non è suriettiva, dove $\mathbf{1}_{\mathbb{R}^3} : \mathbb{R}^3 \to \mathbb{R}^3$ è l'identità di \mathbb{R}^3 .

Svolgimento. Dalla definizione di f, ricaviamo che f(1,1,1)=(1,1,1), f(0,1,1)=(0,2,2), f(0,0,1)=(-1,-1,1). Quindi, (1,1,1) è autovettore per f relativo all' autovalore 1, mentre (0,1,1) è autovettore per f relativo all' autovalore 2. Inoltre,

$$[f(1,1,1)]_B = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, [f(0,1,1)]_B = \begin{pmatrix} 0\\2\\0 \end{pmatrix}, [f(0,0,1)]_B = \begin{pmatrix} -1\\0\\2 \end{pmatrix}$$
. Quindi, la

matrice associata ad f rispetto alla base B è uguale a

$$A = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

Il polinomio caratteristico di f è $p(t) = \det(A-tI) = (1-t)(2-t)^2$. Le sue radici sono $t_1 = 1, t_2 = 2$ entrambe reali, e quindi gli autovalori di f sono $t_1 = 1, t_2 = 2$. Le loro molteplicità sono m(1) = 1, m(2) = 2.

L' autospazio V(1) ha dimensione $1 \leq \dim(V(1)) \leq m(1) = 1$, ossia $\dim(V(1)) = 1$. Quindi, $V(1) = \mathcal{L}(\overrightarrow{u_1} = (1, 1, 1))$, ed una sua base è $B_1 = (\overrightarrow{u_1})$.

L' autospazio V(2) è formato dai vettori $\overrightarrow{v} \in \mathbb{R}^3$ le cui componenti $X = [\overrightarrow{v}]_B$ risolvono il sistema lineare (A-2I)X = O. La matrice A-2I è già ridotta per righe, e l' unica equazione del sistema è -x-z=0. Quindi

$$V(2) = \left\{ \overrightarrow{v} \in \mathbb{R}^3 \mid [\overrightarrow{v}]_B = \left(\begin{array}{c} x \\ y \\ -x \end{array} \right), x, y \in \mathbb{R} \right\}.$$

Posto x=1,y=0, otteniamo il vettore $\overrightarrow{u_2}=(1,1,1)-(0,0,1)$, mentre, posto x=0,y=1, otteniamo il vettore $\overrightarrow{u_3}=(0,1,1)$. Una base di V(2) è allora $B_2=(\overrightarrow{u_2},\overrightarrow{u_3})$ e dim(V(2))=2. Visto che $E=(\overrightarrow{u_1},\overrightarrow{u_2},\overrightarrow{u_3})$ è una base di \mathbb{R}^3 formata da autovettori di f, allora f è semplice. Inoltre, una matrice P che diagonalizza A è

$$P = M_{E,B}(\mathbf{1}_{\mathbb{R}^3}) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix},$$

mentre la matrice diagonale $D = P^{-1}AP$ è uguale a

$$D = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

La matrice associata ad $f + h\mathbf{1}_{\mathbb{R}^3}$ rispetto alla base $B \in A + hI$, e questa matrice ha rango $\neq 3$ solo se h = -1, oppure h = -2. Ovviamente, si poteva utilizzare anche la base E di autovettori, e si sarebbe ottenuta la stessa risposta.

Esercizio 3. (5+3+1) punti) Sia dato il sottoinsieme

$$U = \left\{ A = \left(\begin{array}{ccc} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{array} \right) \mid a, b, c \in \mathbb{R} \right\}$$

dello spazio vettoriale V su $\mathbb R$ delle matrici 3×3 ad entrate reali.

- (1) Verificare che U è un sottospazio di V. Calcolarne poi una base e la dimensione.
- (2) Calcolare quali matrici di U sono invertibili. Posto poi a=1, calcolare A^{-1} al variare dei parametri b, c, con $A \in U$.
- (3) Stabilire per quali valori di $n \in \mathbb{N}$ lo spazio vettoriale \mathbb{R}^n è isomorfo ad U.

Svolgimento. La matrice nulla, vettore nullo di V, è in U e corrisponde ai valori a=b=c=0 dei parametri.

$$= b = c = 0 \text{ def parametri.}$$
La somma di $\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$ e $\begin{pmatrix} a' & b' & c' \\ 0 & a' & b' \\ 0 & 0 & a' \end{pmatrix}$ è uguale a $\begin{pmatrix} (a+a') & (b+b') & (c+c') \\ 0 & (a+a') & (b+b') \\ 0 & 0 & (a+a') \end{pmatrix}$

ed è ancora in U essendo triangolare alta con gli elementi sulla diagonale principale uguali tra loro, come anche sono uguali tra loro gli elementi di posto (1,2) e (2,3). Quindi, U è chiuso rispetto alla somma dei suoi elementi.

Infine, se $x \in \mathbb{R}$ è uno scalare, ed $\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \in U$, allora il loro prodotto è

$$\left(\begin{array}{ccc}
xa & xb & xc \\
0 & xa & xb \\
0 & 0 & xa
\end{array}\right)$$

ed è ancora in U essendo triangolare alta, ed avendo uguali tra loro gli elementi sulla diagonale principale, ed uguali tra loro gli elementi di posto (1,2) e (2,3). Quindi, U è chiuso anche rispetto al prodotto per uno scalare.

In conclusione, U è un sottospazio dello spazio vettoriale V su $\mathbb R$ delle matrici 3×3 ad entrate reali.

Separando il contributo dei vari parametri, abbiamo

$$\begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

e quindi ogni elemento di U è combinazione lineare delle tre matrici a destra dell' uguale. Tali matrici sono anche linearmente indipendenti. Infatti, se una loro combinazione lineare è uguale alla matrice nulla, evidentemente gli scalari devono essere nulli:

$$a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

allora a = b = c = 0, come annunciato.

Quindi, U ha dimensione 3 ed una sua base è

$$B = \left(\left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right), \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right), \left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \right).$$

Sia $A \in U$ una matrice. r(A) = 3 se e solo se $a \neq 0$. Quindi sono invertibili tutti e soli gli elementi di U con $a \neq 0$. Posto a = 1, con calcoli facili, si ricava che la matrice aggiunta classica di A è

$$Adj(A) = \begin{pmatrix} 1 & -b & b^2 - c \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{pmatrix}.$$

Visto che $det(A) = a^3 = 1$, abbiamo che $A^{-1} = Adj(A)$.

 \mathbb{R}^n è isomorfo ad U se e solo se $n = \dim(\mathbb{R}^n) = \dim(U) = 3$, come previsto dalla teoria.

Esercizio 4. (1+3+1 punti) Dare la definizione di autovalore per un endomorfismo $f:V\to V$. Dimostrare poi che "f è iniettivo se e solo se 0 non è autovalore di f". Infine, dati gli endomorfismi $f:V\to V$ e $g:V\to V$ aventi lo stesso vettore $\overrightarrow{v}\in V$ come autovettore, stabilire se \overrightarrow{v} è autovettore per f+g, indicando il relativo autovalore.

Svolgimento. Per rispondere alle prime due domande basta consultare un libro di teoria.

Siano $\lambda, \mu \in \mathbb{K}$ scalari che verificano $f(\overrightarrow{v}) = \lambda \overrightarrow{v}, g(\overrightarrow{v}) = \mu \overrightarrow{v}$. Allora

$$(f+q)(\overrightarrow{v}) = f(\overrightarrow{v}) + q(\overrightarrow{v}) = \lambda \overrightarrow{v} + \mu \overrightarrow{v} = (\lambda + \mu) \overrightarrow{v}.$$

Quindi \overrightarrow{v} è autovettore per f+g relativo alla somma degli autovalori corrispondenti di f e g.

Prima prova in itinere di **Geometria ed algebra lineare cod. 082747** Ingegneria Automatica - 4 Maggio 2009

Versione **B**

Esercizio 5. (5+2+2 punti) Sia dato il sistema lineare AX=B dove

$$(A|B) = \left(\begin{array}{ccc|c} 1 & a+1 & 1 & 1 \\ a+1 & a+2 & 0 & 0 \\ a & 2 & 1 & a \end{array} \right).$$

- (1) Stabilire, al variare di $a \in \mathbb{R}$, se e quante soluzioni ammette il sistema.
- (2) Calcolare le soluzioni del sistema quando queste sono infinite.
- (3) Siano $\alpha: x + (1+a)y + z = 1, \beta: (a+1)x + (a+2)y = 0, \gamma: ax + 2y + z = a$ tre piani nello spazio affine \mathbb{R}^3 . Senza effettuare altri calcoli, stabilire per quali valori di $a \in \mathbb{R}$ $\alpha \cap \beta$ è una retta, e per quali valori di $a \in \mathbb{R}$ γ è parallelo alla retta $\alpha \cap \beta$.

Esercizio 6. (3+5+1 punti) Sia data l'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita come

$$f(x, y, z) = (-x + 2y - 2z, -x + 2y - z, -x + y).$$

- (1) Calcolare la matrice $A = M_{B,B}(f)$ associata ad f rispetto alla base B = ((2,1,1),(1,1,0),(0,1,0)) di \mathbb{R}^3 .
- (2) Dopo aver calcolato il polinomio caratteristico di f, gli autovalori di f ed una base per ogni autospazio, stabilire se f è semplice, ed in caso affermativo, costruire una matrice P invertibile che diagonalizza A e la matrice diagonale D associata.
- (3) Senza effettuare altri calcoli, determinare i valori di $h \in \mathbb{R}$ per cui $f + h\mathbf{1}_{\mathbb{R}^3} : \mathbb{R}^3 \to \mathbb{R}^3$ non è suriettiva, dove $\mathbf{1}_{\mathbb{R}^3} : \mathbb{R}^3 \to \mathbb{R}^3$ è l'identità di \mathbb{R}^3 .

Esercizio 7. (5+3+1 punti) Sia dato il sottoinsieme

$$U = \left\{ A = \left(\begin{array}{ccc} a & b & c \\ b & c & 0 \\ c & 0 & 0 \end{array} \right) \mid a, b, c \in \mathbb{R} \right\}$$

dello spazio vettoriale V su \mathbb{R} delle matrici 3×3 ad entrate reali.

- (1) Verificare che U è un sottospazio di V. Calcolarne poi una base e la dimensione.
- (2) Calcolare quali matrici di U sono invertibili. Posto poi c=1, calcolare A^{-1} al variare dei parametri a, b, con $A \in U$.
- (3) Stabilire per quali valori di $n \in \mathbb{N}$ lo spazio vettoriale \mathbb{R}^n è isomorfo ad U.

Esercizio 8. (1+3+1 punti) Dare la definizione di autovalore per un endomorfismo $f:V\to V$. Dimostrare poi che "f non è iniettivo se e solo se 0 è autovalore di f". Infine, dati gli endomorfismi $f:V\to V$ e $g:V\to V$ aventi lo stesso vettore $\overrightarrow{v}\in V$ come autovettore, stabilire se \overrightarrow{v} è autovettore per $f\circ g$, indicando il relativo autovalore.

Seconda prova in itinere di **Geometria ed algebra lineare** 1 Luglio 2009

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 9. In un riferimento cartesiano ortogonale monometrico, sia data la conica

$$\Gamma: x^2 + y^2 - 4xy - 2x - 2y + 1 = 0.$$

- (1) Calcolare l'equazione della retta tangente a Γ in A(1,0).
- (2) Classificare, determinare una forma canonica ed il relativo cambio di riferimento, e disegnare la conica Γ .

Svolgimento. La matrice completa associata alla conica Γ è

$$B = \left(\begin{array}{rrr} 1 & -2 & -1 \\ -2 & 1 & -1 \\ -1 & -1 & 1 \end{array}\right)$$

e quindi la retta polare per A relativa a Γ ha equazione

$$\pi_A: \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} B \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

ossia $\pi_A : y = 0$. Visto che $A \in \Gamma$, come si verifica facilmente dall' equazione di Γ e dalle coordinate di A, allora π_A è la retta tangente a Γ per A.

Il determinante di B è uguale a $\det(B)=-9\neq 0$ e quindi r(B)=3. Di conseguenza, Γ è non degenere. La matrice associata alla parte di secondo grado dell' equazione di Γ è

$$A = \left(\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right)$$

ed il suo polinomio caratteristico è $p(t)=t^2-2t-3$. Quindi gli autovalori sono discordi, e di conseguenza Γ è un' iperbole. Gli autovalori di A sono $t_1=3,t_2=-1$, entrambi di molteplicità 1, mentre $\det(B)/\det(A)=3$. Una forma canonica di Γ è $\alpha X^2+\beta Y^2+\gamma=0$, con α e β autovalori di A e $\gamma=\det(B)/\det(A)$. Posto $\alpha=-1,\beta=3$, allora si ha $-X^2+3Y^2+3=0$, e quindi

$$\Gamma: \frac{X^2}{3} - Y^2 = 1.$$

L' autospazio di A relativo all' autovalore -1 è generato dal vettore di componenti (1,1) e quindi l' autospazio relativo all' autovalore 3 è generato dal vettore di componenti (-1,1). Normalizzando i due vettori, si ottiene la matrice ortogonale P del cambio di riferimento.

Il centro di simmetria dell' iperbole è il punto le cui coordinate risolvono il sistema

$$\begin{cases} x - 2y - 1 = 0 \\ -2x + y - 1 = 0 \end{cases}$$

L' unica soluzione del sistema è (-1,-1) e quindi il cambio di riferimento è associato all' equazione matriciale

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array}\right) \left(\begin{array}{c} X \\ Y \end{array}\right) + \left(\begin{array}{c} -1 \\ -1 \end{array}\right).$$

Nel nuovo sistema di riferimento, gli asintoti hanno equazione $\frac{X}{\sqrt{3}} \pm Y = 0$ ed i vertici hanno coordinate $(\pm\sqrt{3},0)$.

Un disegno qualitativo è allora facile da tracciare.

Esercizio 10. In un riferimento cartesiano ortogonale monometrico, siano dati il punto A(0,1,0) o la retta x = 1-t

punto A(0,1,0) e la retta $r: \left\{ \begin{array}{l} x=1-t \\ y=t \\ z=1+t \end{array} \right.$.

- (1) Calcolare l'equazione di una retta s per A ortogonale ad r. Quante rette verificano le proprietà richieste? Quali tra queste hanno distanza massima e distanza minima da r?
- (2) Verificare, dopo averne calcolato l' equazione, che l' insieme S dei punti P equidistanti da A e da r formano un cilindro parabolico.

Svolgimento. Un vettore \overrightarrow{v} parallelo ad r ha componenti (-1,1,1). Un vettore \overrightarrow{u} ortogonale a \overrightarrow{v} ha componenti (1,1,0), ad esempio. La retta per A parallela a \overrightarrow{u} ha equazione parametrica x=t,y=1+t,z=0. Ovviamente, esistono infinite rette per A ortogonali ad r e sono tutte e sole le rette per A contenute nel piano α ortogonale ad r per A, che ha equazione -x+(y-1)+z=0 ossia $\alpha:-x+y+z-1=0$. Sia A la proiezione ortogonale di A su A0 ossia A1 essendo A2. La chiaro che A3 chiaro che A4 e A5 e quindi, la retta avente distanza minima è la retta A5 passante per A6 e A6, e quindi A7 e A8 visto che tale retta verifica A8.

Sia P(x,y,z) un punto. La sua distanza da A è

$$d(A, P) = \sqrt{x^2 + (y - 1)^2 + z^2}$$

La sua distanza da r è invece

$$d(r,P) = \frac{\sqrt{(y-z+1)^2 + (-x-z+2)^2 + (x+y-1)^2}}{\sqrt{3}}$$

e quindi la superficie S ha equazione

$$S: x^2 + y^2 + z^2 - 2xy - 2xz + 2yz + 6x - 6y + 6z - 3 = 0.$$

La matrice B completa associata alla quadrica è

$$B = \left(\begin{array}{rrrr} 1 & -1 & -1 & 3 \\ -1 & 1 & 1 & -3 \\ -1 & 1 & 1 & 3 \\ 3 & -3 & 3 & -3 \end{array}\right).$$

Riducendo tale matrice, si ottiene facilmente che r(B)=3, e quindi S è o un cono oppure un cilindro. La matrice A associata alla parte quadratica dell' equazione di S è

$$A = \left(\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{array}\right)$$

ed il suo polinomio caratteristico è $p(t) = -t^3 + 3t^2$. Quindi t = 0 è autovalore di molteplicità 2 di A e quindi S è un cilindro parabolico.

Esercizio 11. Dopo aver calcolato centro e raggio della sfera σ di equazione $x^2+y^2+z^2-2x=0$ in un riferimento cartesiano ortogonale monometrico, determinare l' equazione di una retta tangente a σ parallela al vettore \overrightarrow{v} di componenti ${}^t(0,1,0)$ rispetto alla base ortonormale fissata. Quante rette verificano tale proprietà? Cosa forma l' insieme di tali rette? Calcolare infine l' equazione delle circonferenze intersezione di σ con piani ortogonali a \overrightarrow{v} e di raggio metà del raggio di σ .

Svolgimento. Il centro di σ è (1,0,0), mentre il raggio è uguale a 1. Visto il centro ed il raggio, possiamo dire che l' origine O è un punto di σ ed il piano tangente a σ in tale punto ha equazione x=0, ossia è il piano [yz]. Visto che \overrightarrow{v} è parallelo all' asse y, una retta tangente a σ parallela a \overrightarrow{v} è proprio l' asse y che ha evidentemente equazione x=0,z=0. Esistono infinite rette che verificano la precedente proprietà ed i loro punti di contatto con σ formano la circonferenza $\Gamma=\sigma\cap[xz]$. L' insieme di tali rette individua il cilindro tangente a σ con generatrici parallel all' asse y ed avente direttrice Γ .

I piani che tagliano circonferenze di raggio $\frac{1}{2}$ distano $\frac{\sqrt{3}}{2}$ da (1,0,0). Essendo poi piani ortognali all' asse y, essi hanno equazioni della forma y=costante. Imponendo la distanza dal centro di σ , si hanno i due piani $y=\pm\frac{\sqrt{3}}{2}$.

Esercizio 12. Dare la definizione di matrice ortogonale. Sia poi V uno spazio vettoriale reale con prodotto scalare di dimensione n, e sia $f:V\to V$ un endomorfismo con $M_{B,B}(f)$ matrice ortogonale, essendo B una base ortonormale di V. Dimostrare che f conserva il prodotto scalare, e che è invertibile.

Svolgimento. Basta consultare un libro di teoria.

Geometria ed algebra lineare - 20 Luglio 2009

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 13. Sia dato il sottospazio di \mathbb{R}^3

$$U = \mathcal{L}((1,1,t), (1,t,1), (0,1,t))$$

con $t \in \mathbb{R}$.

- (1) Calcolare $\dim(U)$ al variare di $t \in \mathbb{R}$.
- (2) Posto t=1, esprimere, se possibile, uno dei generatori di U come combinazione lineare degli altri due.
- (3) Posto t=1, scrivere un' applicazione lineare $T:\mathbb{R}^3\to\mathbb{R}^3$ avente U come immagine. T è iniettiva? Ne esiste una per cui $\ker(T)\subseteq \operatorname{Im}(T)$? Ed una per cui $\ker(T)=\operatorname{Im}(T)$?

Svolgimento. Fissiamo la base canonica di \mathbb{R}^3 , e scriviamo le componenti dei vettori dati come righe della matrice

$$A = \left(\begin{array}{ccc} 1 & 1 & t \\ 1 & t & 1 \\ 0 & 1 & t \end{array}\right).$$

Dalla teoria, sappiamo che $r(A) = \dim(U)$. D' altra parte, r(A) = 3 se, e solo se, $\det(A) \neq 0$. Effettuando i calcoli, otteniamo che $\det(A) = t^2 - 1$ e quindi $\dim(U) = 3$ se, e solo se, $t \neq \pm 1$.

Posto poi t=-1, riduciamo la matrice A tramite le operazioni elementari $R_2-R_1\to R_2, R_3+\frac{1}{2}R_2\to R_3$ eseguite in sequenza, ed otteniamo

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right)$$

da cui deduciamo che $\dim(U) = r(A) = 2$.

Infine, posto t=1, riduciamo la matrice A tramite l' operazione elementare $R_2-R_1\to R_2$ ed otteniamo

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

Quindi, anche in questo caso, $\dim(U) = r(A) = 2$. Detti $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}$ i tre generatori di U, nell' ordine del testo, e visto che per t = 1 i primi due vettori sono uguali, abbiamo $\overrightarrow{v_2} = 1$ $\overrightarrow{v_1} + 0$ $\overrightarrow{v_3}$.

abbiamo $\overrightarrow{v_2} = 1$ $\overrightarrow{v_1} + 0$ $\overrightarrow{v_3}$. Infine, sia $B = (\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ una base di \mathbb{R}^3 , e sia $T : \mathbb{R}^3 \to \mathbb{R}^3$ l' applicazione lineare definita da $T(\overrightarrow{u_i}) = \overrightarrow{v_i}$, per i = 1, 2, 3. Chiaramente, $\operatorname{Im}(T) = U, T$ non è suriettiva essendo $U \neq \mathbb{R}^3$, e quindi non è neanche iniettiva, essendo dim $\ker(T) = \dim \mathbb{R}^3 - \dim U = 1$. In alternativa, osserviamo che $\overrightarrow{u_2} - \overrightarrow{u_1} \in \ker(T)$, visto che $T(\overrightarrow{u_2} - \overrightarrow{u_1}) = T(\overrightarrow{u_2}) - T(\overrightarrow{u_1}) = \overrightarrow{v_1} - \overrightarrow{v_2} = \overrightarrow{0}$, e $\overrightarrow{u_2} - \overrightarrow{u_1} \neq \overrightarrow{0}$ essendo $\overrightarrow{u_1}, \overrightarrow{u_2}$ linearmente indipendenti.

Perché $\ker(T) \subseteq \operatorname{Im}(T)$, deve capitare che $\overrightarrow{u_2} - \overrightarrow{u_1} \in U$, mentre non può capitare che $\ker(T) = \operatorname{Im}(T)$ perché i due sottospazi hanno dimensione diversa.

Esercizio 14. Sia dato il prodotto scalare standard su \mathbb{R}^3 , e sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l' endomorfismo definito come T(-1,0,0) = (-1,-2,0), T(0,2,0) = (4,2,0), T(0,0,-1) = (0,0,1).

- (1) Dopo aver verificato che T è simmetrico, calcolare una base ortonormale di \mathbb{R}^3 formata da autovettori di T, la matrice di cambio base, e la matrice diagonale associata.
- (2) Usando i calcoli precedenti, ridurre a forma canonica la quadrica Q: ${}^{t}\underline{x}M\underline{x}=0$ dove $\underline{x}={}^{t}(x\ y\ z)$, e classificarla.
- (3) Classificare la conica $\Gamma = Q \cap \alpha$ dove $\alpha : x + 2y z 1 = 0$.

Svolgimento. Sappiamo che la base canonica C è una base ortonormale di \mathbb{R}^3 , avendo scelto il prodotto scalare standard in tale spazio vettoriale. Dalle condizione assegnate, ricaviamo che $T(1,0,0)=(1,2,0),\ T(0,1,0)=(2,1,0),\ T(0,0,1)=(0,0,-1).$ Scrivendo in componenti tali vettori rispetto a C, otteniamo la matrice associata a T rispetto a C e quindi

$$M_{C,C}(T) = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Essendo $M_{C,C}(T)$ simmetrica e C ortonormale, abbiamo che T è simmetrico. Per comodità, sia $A = M_{C,C}(T)$. Il polinomio caratteristico di T è $p(t) = \det(A - tI) = (-1 - t)(t^2 - 2t - 3) = -(t + 1)^2(t - 3)$, e quindi gli autovalori di T sono $t_1 = -1$ di molteplicità m(-1) = 2, e $t_2 = 3$ di molteplicità m(3) = 1.

L' autospazio V(3) contiene tutti e soli i vettori di \mathbb{R}^3 le cui componenti X rispetto a C risolvono il sistema lineare omogeneo (A-3I)X=O e quindi sono tutti e soli i vettori le cui componenti rispetto a C sono ${}^t(a,a,0)$ con $a\in\mathbb{R}$. Passando ai vettori, abbiamo che $V(3)=\mathcal{L}(\overrightarrow{e_1})$ con $\overrightarrow{e_1}$ vettore di modulo 1 in tale autospazio. Svolgendo i calcoli, otteniamo che $[\overrightarrow{e_1}]_C={}^t(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$.

L' autospazio V(-1) contiene tutti e soli i vettori le cui componenti X rispetto a C risolvono il sistema lineare omogeneo (A+I)X=O e quindi sono tutti e soli i vettori le cui componenti rispetto a C sono ${}^t(a,-a,b)$, con $a,b\in\mathbb{R}$. Un vettore di modulo 1 in tale autospazio è, ad esempio, $\overrightarrow{e_2}$ le cui componenti sono $[\overrightarrow{e_2}]_C={}^t(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0)$. Il secondo vettore della base ortonormale di V(-1) è $\overrightarrow{e_3}=\overrightarrow{e_1}\wedge\overrightarrow{e_2}$ ed ha componenti $[\overrightarrow{e_3}]_C={}^t(0,0,-1)$.

In conclusione, la matrice ortogonale di cambio base $M_{B,C}(1_{\mathbb{R}^3})$ da $B=(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ alla base canonica C è uguale a

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Ovviamente, la matrice $M_{B,B}(T)$ è diagonale, ed è uguale a

$$M_{B,B}(T) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

La quadrica Q ha forma canonica $3X^2 - Y^2 - Z^2 = 0$ ed il cambio di riferimento è descritto da $\underline{x} = P\underline{X}$ dove P è la matrice precedentemente calcolata. È evidente che Q è un cono con vertice nell' origine (gli assi sono stati solo ruotati, non è stata

effettuata alcuna traslazione), ed è di rotazione, avendo un autospazio di dimensione 2. L' asse di rotazione è l' asse X.

La conica Γ ha equazione

$$\Gamma: \left\{ \begin{array}{l} x + 2y - z - 1 = 0 \\ x^2 + 4xy + y^2 - z^2 = 0 \end{array} \right..$$

Proiettiamo ortogonalmente Γ sul piano [xy] calcolando l' equazione del cilindro S avente Γ come direttrice e generatrici parallele all' asse z. L' equazione di S si calcola facilmente eliminando z dall' equazione di Q usando l' equazione di $\alpha: z = x+2y-1$, da cui $S: x^2 + 4xy + y^2 - (x+2y-1)^2 = 0$ ossia $S: -3y^2 + 2x + 4y - 1 = 0$. Tagliando con z=0, otteniamo una conica nel piano [xy] che si verifica essere una parabola. Quindi S è un cilindro parabolico, e quindi Γ è una parabola, essendo sezione piana di un cilindro parabolico.

Esercizio 15. Siano date le rette $r: \left\{ \begin{array}{ll} y=0 \\ z=0 \end{array} \right.$ ed $s: \left\{ \begin{array}{ll} x=0 \\ y=1 \end{array} \right.$

- (1) Verificare che r ed s sono sghembe e calcolare la loro distanza.
- (2) Calcolare l' equazione della conica del piano $\beta:y=2$ formata dai punti equidistanti da r e da s, e classificarla.

Svolgimento. Il sistema lineare AX = B che descrive l'intersezione delle rette r ed s ha matrice completa associata

$$(A|B) = \left(\begin{array}{ccc|c} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right)$$

ed è facile osservare che r(A)=3 mentre r(A|B)=4 (basta effettuare l' operazione elementare $R_4-R_1\to R_4$). Quindi le due rette sono sghembe. Visto che la retta r è l' asse x mente la retta s è parallela all' asse z ed incidente l' asse y, la loro retta comune perpendicolare è l' asse y che interseca le due rette nei punti O(0,0,0) e A(0,1,0). La distanza tra le due rette è quindi uguale alla distanza tra O ed A e quindi è d(r,s)=1.

Sia P(x,y,z) un punto dello spazio. La sua proiezione ortogonale su r è il punto $P_1(x,0,0)$, mentre la sua proiezione su s è il punto $P_2(0,1,z)$. Quindi, $d(P,r)=\sqrt{y^2+z^2}$ mentre $d(P,s)=\sqrt{x^2+(y-1)^2}$. Uguagliando le due distanze ed elevando al quadrato, otteniamo che il luogo dei punti equidistanti dalle due rette ha equazione $S: x^2-z^2-2y+1=0$. S è una quadrica liscia (r(B)=4) e la forma quadratica ad essa associata ha autovalori 0,1,-1. S è quindi un paraboloide iperbolico. Intersecando S con il piano $\beta:y=2$ otteniamo l' equazione di Γ che risulta essere

$$\Gamma: \left\{ \begin{array}{l} y=2\\ x^2-z^2=3 \end{array} \right.$$

e quindi Γ è un' iperbole equilatera di semiassi $\sqrt{3}$.

Esercizio 16. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo tale che

$$T(1,2,1) = (-1,-2,-1), T(2,2,0) = (-2,-2,0), T(0,0,1) = (0,0,3).$$

(1) L'endomorfismo T è diagonalizzabile?

- (2) Dare la definizione di endomorfismo diagonalizzabile.
- (3) Enunciare e dimostrare una condizione necessaria e sufficiente perché un endomorfismo T sia diagonalizzabile.

Svolgimento. I vettori (1,2,1),(2,2,0),(0,0,1) sono l.i. ed autovettori per T: i primi due relativi all' autovalore -1, mentre il terzo è relativo all' autovalore 3. Quindi esiste una base di \mathbb{R}^3 formata da autovettori di T e quindi T è diagonalizzabile (detto anche semplice).

Per gli altri due punti basta consultare un libro di testo.

Geometria ed algebra lineare - 15 Settembre 2009

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate.

Esercizio 17. Siano date le rette

$$r: \left\{ \begin{array}{ll} -2x + hy + hz = 1 \\ hy + (h-2)z = 1 \end{array} \right. \qquad s: \left\{ \begin{array}{ll} -2x + (h+1)y = h \\ -2x + hy + z = h \end{array} \right. .$$

- (1) Determinare la loro mutua posizione al variare di $h \in \mathbb{R}$.
- (2) Posto h=0, determinare l'equazione della superficie ottenuta ruotando s attorno ad r. Classificare poi la superficie S ottenuta.
- (3) Usando i calcoli fatti, stabilire quali superfici si ottengono per rotazione di s intorno ad r al variare del parametro $h \in \mathbb{R}$.

Svolgimento. Scrivendo un unico sistema con le equazioni che definiscono le due rette, otteniamo il sistema lineare AX=B con

$$(A|B) = \begin{pmatrix} -2 & h & h & 1\\ 0 & h & h-2 & 1\\ -2 & h+1 & 0 & h\\ -2 & h & 1 & h \end{pmatrix}.$$

Riduciamo tale matrice effettuando la sequenza di operazioni elementari $R_3 - R_1 \rightarrow R_3, R_4 - R_1 \rightarrow R_4, R_2 \leftrightarrow R_3, R_3 - hR_2 \rightarrow R_3$, ed otteniamo

$$\begin{pmatrix} -2 & h & h & 1 & 1 \\ 0 & 1 & -h & h-1 & h-1 \\ 0 & 0 & h^2+h-2 & -h^2+h+1 \\ 0 & 0 & 1-h & h-1 \end{pmatrix}.$$

Se h = 1, si ottiene la matrice

$$\left(\begin{array}{ccc|ccc|c}
-2 & 1 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),$$

mentre se $h \neq 1$, effettuiamo ancora le operazioni elementari $R_3 \leftrightarrow R_4, R_4 + (h + 2)R_3 \rightarrow R_4$ ed otteniamo la matrice

$$\left(\begin{array}{cc|ccc}
-2 & h & h & 1 \\
0 & 1 & -h & h-1 \\
0 & 0 & 1-h & h-1 \\
0 & 0 & 0 & 2h-1
\end{array}\right).$$

In conclusione, abbiamo che, se h=1, r(A)=2, r(A|B)=3, e quindi r ed s sono parallele, se $h=\frac{1}{2}$, allora r(A)=r(A|B)=3, e quindi r ed s sono incidenti, ed infine, se $h\neq\frac{1}{2},1$, allora r(A)=3, r(A|B)=4, e quindi r ed s sono sghembe.

Per h=0, dalle equazioni di r abbiamo $x=z=-\frac{1}{2}, \, \forall y,$ quindi r è parallela al'asse y e le sue equazioni parametriche risultano $r:x=-\frac{1}{2},y=\tau,z=-\frac{1}{2}.$

Procedendo analogamente, si ricava una forma parametrica per la retta s, e si ottiene $s: x=t, y=2t, z=2t, t\in \mathbb{R}$.

Si vede immediatamente che le rette non sono ortogonali, ed essendo sghembe, si ricava che la superficie S ottenuta ruotando s attorno ad r è un iperboloide ad

una falda. Calcoliamo ora l' equazione di S. Il piano ortogonale ad r passante per il punto P(t,2t,2t) di s ha equazione $\alpha_t: y=2t$. La sfera di centro $(-\frac{1}{2},0,-\frac{1}{2})\in r$ e passante P ha equazione $\sigma_t: (x+\frac{1}{2})^2+y^2+(z+\frac{1}{2})^2=(t+\frac{1}{2})^2+(2t)^2+(2t+\frac{1}{2})^2$. La superficie S è data dall' unione delle circonferenze $\alpha_t\cap\sigma_t, t\in\mathbb{R}$, ed ha quindi equazione

 $\begin{cases} y = 2t \\ x^2 + y^2 + z^2 + x + z = 9t^2 + 3t \end{cases}.$

Ricavando il parametro t dalla prima equazione, e sostituendo nella seconda, otteniamo l' equazione cartesiana di S, ossia $S:4x^2-5y^2+4z^2+4x-6y+4z=0$. La matrice B quadrata di ordine 4 associata ad S è

$$B = \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & -\frac{5}{4} & 0 & -\frac{3}{4} \\ 0 & 0 & 1 & \frac{1}{2} \\ 12 & -\frac{3}{4} & \frac{1}{2} & 0 \end{pmatrix},$$

ed il suo determinante è $\det(B) = \frac{1}{16}$. Quindi, S è una quadrica liscia ed ha punti iperbolici. La matrice A associata alla parte quadratica dell' equazione di S è diagonale, e quindi A ha un autovalore positivo doppio, ed uno negativo semplice. Concludiamo quindi che S è un iperboloide ad una falda di rotazione.

S è un cilindro per h=1, un cono per $h=\frac{1}{2}$, ed un iperboloide ad una falda per $h\neq\frac{1}{2},1$. Non è richiesto, ma si può osservare facilmente che le rette r ed s non sono mai ortogonali.

Esercizio 18. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l' endomorfismo definito come

$$T(1,1,0) = (-1,-1,0), T(1,-1,0) = (0,3,1), T(0,1,1) = (0,2,2).$$

- (1) Calcolare la matrice associata a T rispetto ad una base di \mathbb{R}^3 a scelta.
- (2) Calcolare poi gli autovalori di T, una base per ogni suo autospazio e dire se T è diagonalizzabile. In caso affermativo, esibire una base di \mathbb{R}^3 formata da autovettori di T, la matrice di T rispetto a tale base, e la relativa matrice di cambio base.
- (3) Senza effettuare altri calcoli, determinare il massimo numero di vettori linearmente indipendenti di \mathbb{R}^3 le cui immagini tramite T sono ancora linearmente indipendenti.

Svolgimento. I vettori (1,1,0),(1,-1,0),(0,1,1) sono linearmente indipendenti, come si verifica facilmente , e quindi B=((1,1,0),(1,-1,0),(0,1,1)) è una base di \mathbb{R}^3 . Calcoliamo $M_{B,B}(T)$. È evidente che T(1,1,0)=-(1,1,0), e che T(0,1,1)=2(0,1,1), e quindi che (1,1,0) è autovettore relativo all' autovalore -1, mentre (0,1,1) è autovettore relativo all' autovalore 2. Infine, T(1,-1,0)=(1,1,0)-(1,-1,0)+(1,1,0). Visto che la matrice $M_{B,B}(T)$ ha per colonne le componenti di T(1,1,0),T(1,-1,0),T(0,1,1) rispetto alla base B, abbiamo

$$M_{B,B}(T) = \left(\begin{array}{ccc} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 2 \end{array} \right).$$

Detta $A = M_{B,B}(T)$, il polinomio caratteristico di T si calcola come $\det(A - tI) = (t+1)^2(2-t)$, e quindi le sue radici sono $t_1 = -1, t_2 = 2$ con molteplicità m(-1) = 2, m(2) = 1.

L' autospazio V(-1) contiene tutti e soli i vettori le cui componenti $X = {}^t[\overrightarrow{v}]_B$ risolvono il sistema (A+I)X = O. Effettuando i calcoli, otteniamo che $X = {}^t(a,0,0), a \in \mathbb{R}$, e quindi $V(-1) = \mathcal{L}((1,1,0))$ e dim $(V(-1)) = 1 \neq m(-1)$.

L' autospazio V(2) verifica invece $\dim(V(2)) = 1$, essendo m(2) = 1, e quindi $V(2) = \mathcal{L}((0,1,1))$.

Di conseguenza, T non è diagonalizzabile.

Visto che 0 non è autovalore per T, T è invertibile, e quindi le immagini dei vettori di una base di \mathbb{R}^3 sono vettori linearmente indipendenti. Il numero cercato è quindi 3.

Esercizio 19. Nello spazio vettoriale \mathbb{R}^3 con il prodotto scalare standard, siano dati i sottospazi $U = \mathcal{L}((1,1,1),(1,0,0))$ e $V = \mathcal{L}((1,1,0))$.

- (1) Dopo aver verificato che U+V è la loro somma diretta, calcolare una base ortonormale di U ed una di V.
- (2) Dette π_U e π_V le proiezioni ortogonali sui sottospazi U e V, rispettivamente, calcolare $\pi_U(\pi_V((1,2,0)))$.
- (3) Esistono sottospazi U e V per cui $\pi_U \circ \pi_V$ è l'applicazione nulla?

Svolgimento. I vettori (1,1,1),(1,0,0),(1,1,0) sono linearmente indipendenti e quindi U+V è somma diretta dei sottospazi U e V, rispettivamente di dimensione 2 ed 1. Una base ortonormale di V è data da $(\vec{e_3}) = \left(\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)\right)$. Una base ortonormale di U è invece data da $(\vec{e_1},\vec{e_2}) = \left((1,0,0),\left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right)$, come si ricava facilmente usando il metodo di Gram-Schmidt. Ricordando che $\pi_U(\vec{v}) = (\vec{v} \cdot \vec{e_1})$ $(\vec{v} \cdot \vec{e_2})$ $(\vec{v} \cdot \vec{e_2})$ $(\vec{v} \cdot \vec{e_2})$ $(\vec{v} \cdot \vec{e_3})$ $(\vec{v} \cdot \vec$

Esercizio 20. Si calcoli l' equazione verificata dai punti del piano la cui distanza dalla retta r: x - y = 1 è metà della distanza da F(0,2) e si classifichi la conica ottenuta.

Svolgimento. Sia P(x,y) un punto che verifica la condizione richiesta. Allora x,y verificano l'equazione

$$\frac{|x-y-1|}{\sqrt{2}} = \frac{1}{2}\sqrt{x^2 + (y-2)^2},$$

dove il primo membro è uguale alla distanza tra P e la retta r mentre il secondo membro è metà della distanza tra P ed F. Elevando al quadrato e semplificando l' equazione ottenuta, si ricava che il luogo γ dei punti che verificano la condizione data è descritto dall' equazione $\gamma: x^2-4xy+y^2-4x+8y-2=0$. La matrice completa della conica γ è

$$B = \left(\begin{array}{rrr} 1 & -2 & -2 \\ -2 & 1 & 4 \\ -2 & 4 & -2 \end{array}\right)$$

ed il suo determinante è $\det(B) = 18 \neq 0$. Quindi, γ è una conica non degenere. Visto che la matrice A associata alla parte di secondo grado dell' equazione di γ ha determinante $\det(A) = -3 < 0$ allora γ è un' iperbole.

Geometria ed algebra lineare - 9 Febbraio 2010

Tutti i calcoli devono essere riportati per la correzione, e le risposte devono essere giustificate. I primi tre esercizi valgono 9 punti ciascuno. L'esercizio 4 vale 5 punti.

Esercizio 21. Si considerino i sottospazi U, V di \mathbb{R}^4 generati nella maniera seguente

$$U = \mathcal{L}((1,1,1,1),(1,0,1,0))$$
 $V = \mathcal{L}((1,-1,1,-1),(-1,0,1,0)).$

- (1) Determinare una base e la dimensione del sottospazio U+V. Enunciare poi la Formula di Grassmann e calcolare la dimensione del sottospazio $U \cap V$.
- (2) Dotato \mathbb{R}^4 del prodotto scalare canonico, determinare il sottospazio U^{\perp} ortogonale ad U, ed una sua base ortonormale.
- (3) Giustificare poi la seguente affermazione "Esistono vettori non nulli di U^{\perp} ortogonali a tutti i vettori di V".

Svolgimento. Il sottospazio U+V è generato dai vettori (1,1,1,1), (1,0,1,0), (1,-1,1,-1), (-1,0,1,0). Scritti tali vettori come righe di una matrice A, si ottiene

$$A = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & -1 & 1 & -1 \\ -1 & 0 & 1 & 0 \end{array}\right).$$

Effettuando la successione di operazioni elementari $R_3 + R_1 \rightarrow R_3, R_3 - 2R_2 \rightarrow R_3, R_4 + R_2 \rightarrow R_4$, si ottiene la matrice ridotta per righe

$$\left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{array}\right).$$

Essendo $\dim(U+V)=r(A)$, si ha $\dim(U+V)=3$. Inoltre, una base di U+V è B=((1,1,1,1),(1,0,1,0),(0,0,2,0)), essendo queste le righe non nulle della matrice ridotta.

Formula di Grassmann: Siano U_1, U_2 sottospazi vettoriali dello spazio vettoriale V sul campo K. Allora $\dim(U_1 + U_2) + \dim(U_1 \cap U_2) = \dim(U_1) + \dim(U_2)$.

Essendo $\dim(U) = \dim(V) = 2$, si ha che $\dim(U \cap V) = 2 + 2 - 3 = 1$.

Il sottospazio U^{\perp} contiene tutti e soli i vettori (x,y,z,w) ortogonali a (1,1,1,1) e (1,0,1,0), essendo questi ultimi una base di U, come si verifica facilmente. Quindi, $U^{\perp}=\{(x,y,z,w)\in\mathbb{R}^4\mid x+y+z+w=0,x+z=0\}$. Risolvendo il sistema lineare omogeneo che lo definisce, si ha che $U^{\perp}=\mathcal{L}((1,0,-1,0),(0,1,0,-1))$. Essendo i due vettori ortogonali e di modulo $\sqrt{2}$, una base ortonormale di U^{\perp} è $B'=\left(\left(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}},0\right),\left(0,\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)\right)$.

I vettori ortogonali a tutti i vettori di V formano il sottospazio V^{\perp} . I vettori di U^{\perp} ortogonali a tutti i vettori di V sono allora tutti e soli i vettori del sottospazio $U^{\perp} \cap V^{\perp} = (U+V)^{\perp}$. Il sottospazio $(U+V)^{\perp}$ ha dimensione $\dim(U+V)^{\perp} = \dim(\mathbb{R}^4) - \dim(U+V) = 4-3 = 1$ e quindi esistono vettori non nulli di U^{\perp} ortogonali a tutti i vettori di V.

Esercizio 22. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l' endomorfismo definito come

$$f((x, y, z)) = (0, 3x + 3y + z, -x - y + z).$$

- (1) Determinare una base e la dimensione di ker(f) ed Im(f).
- (2) Calcolare gli autovalori di f e stabilire se l'endomorfismo f è diagonalizzabile.
- (3) Determinare una base per ogni autospazio di f, e, se esiste, un vettore di Im(f) che non sia autovettore.

Svolgimento. $\ker(f)$ è il sottospazio formato da tutti e soli i vettori che risolvono il sistema lineare omogeneo 3x+3y+z=0, -x-y+z=0. Con facili calcoli, si ha che x=-y, z=0, e quindi una base di $\ker(f)$ è $B_0=((1,-1,0))$, e $\dim(\ker(f))=1$. Dal Teorema del Rango, si ottiene che $\dim(\operatorname{Im}(f))=2$.

Il sottospazio Im(f) è invece generato dai vettori f(1,0,0) = (0,3,-1), f(0,1,0) = (0,3,-1), f(0,0,1) = (0,1,1). Si verifica facilmente che il primo ed il terzo sono linearmente indipendenti, mentre il secondo è uguale al primo. Quindi, una base di Im(f) è B' = ((0,3,-1),(0,1,1)), coerentemente con il calcolo precedente.

La matrice associata ad f rispetto alla base canonica di \mathbb{R}^3 è

$$A = M_{C,C}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 1 \\ -1 & -1 & 1 \end{pmatrix},$$

come si calcola facilmente usando la definizione. Il polinomio caratteristico di f è allora uguale a $p_f(t) = \det(A - tI) = (-t)((3 - t)(1 - t) + 1) = (-t)(t - 2)^2$. Le radici di tale polinomio sono $t_1 = 0, t_2 = 2$ entrambe reali, e quindi sono entrambi autovalori di f.

L' autospazio V(0) è uguale a $\ker(f)$ e quindi ha dimensione 1, ed una sua base è $B_0 = ((1, -1, 0))$.

L' autospazio V(2) è dato da tutti e soli i vettori che risolvono il sistema lineare omogeneo -2x=0, 3x+y+z=0, -x-y-z=0. Le soluzioni del sistema sono x=0, y=-z, e quindi V(2) ha $B_2=((0,1,-1))$ come base, e dimensione 1. Essendo $\dim(V(2))$ diversa dalla molteplicità di 2 come radice del polinomio caratteristico di f, f non è diagonalizzabile.

Per trovare un vettore di $\operatorname{Im}(f)$ che non sia autovettore, basta prendere un vettore della forma $a(0,3,-1)+b(0,1,1), a,b\in\mathbb{R}$, che non sia nè della forma $x(1,-1,0),x\in\mathbb{R}$, nè della forma $y(0,1,-1),y\in\mathbb{R}$. Basta allora scegliere a=1,b=0, e si ottiene $\overrightarrow{v}=(0,3,-1)$, ad esempio.

Esercizio 23. Sia $\mathcal{F}(x,y,\lambda)$ il fascio di coniche dato da

$$\mathcal{F}(x,y,\lambda): x^2 - 2(\lambda+1)xy - \lambda y^2 - 2\lambda x - 2\lambda y = 0.$$

- (1) Calcolare i valori del parametro λ per cui le coniche del fascio sono degeneri, e quelli per cui la conica è una circonferenza. Detta γ tale circonferenza, trovarne centro e raggio.
- (2) Scrivere l'equazione cartesiana del cilindro che proietta la conica di equazione $\mathcal{F}(x,y,1)=z=0$ parallelamente alla retta r dello spazio \mathbb{R}^3 avente equazioni x=y=z-1. Stabilire poi se, intersecando tale cilindro con un piano, si possono ottenere ellissi.

Svolgimento. La matrice 3×3 associata alla conica generica del fascio è

$$B = \left(\begin{array}{ccc} 1 & -\lambda - 1 & -\lambda \\ -\lambda - 1 & -\lambda & -\lambda \\ -\lambda & -\lambda & 0 \end{array} \right).$$

Il determinante di B è $\det(B) = -\lambda^3 - 3\lambda^2$ che si annulla per $\lambda = 0$ e per $\lambda = -3$. Quindi, la conica Γ_{λ} è degenere se, e solo se, $\lambda = 0$ oppure $\lambda = -3$.

La conica Γ_{λ} è una circonferenza se, e solo se, la parte quadratica dell' equazione è della forma kx^2+ky^2 per qualche k reale non nullo. Nel caso in esame, la condizione è equivalente a $\lambda=-1$. Posto $\lambda=-1$, la conica Γ_{λ} ha equazione $x^2+y^2+2x+2y=0$ e quindi il suo centro ha coordinate (-1,-1) ed il suo raggio è $\sqrt{2}$.

Il cilindro che proietta la conica Γ_1 di equazione $\begin{cases} x^2 - 4xy - y^2 - 2x - 2y = 0 \\ z = 0 \end{cases}$ parallelamente alla retta $r: x = t, y = t, z = 1 + t, t \in \mathbb{R}$, è formato da tutti e soli i punti le cui coordinate (x, y, z) soddisfano il sistema

$$\begin{cases} x = x_0 + t \\ y = y_0 + t \\ z = z_0 + t \\ z_0 = 0 \\ x_0^2 - 4x_0y_0 - y_0^2 - 2x_0 - 2y_0 = 0 \end{cases}$$

Eliminando i parametri x_0, y_0, z_0, t , si ottiene l' equazione cartesiana del cilindro cercato, ed essa è $S: x^2 - 4xy - y^2 + 2xz + 6yz - 4z^2 - 2x - 2y + 4z = 0$.

La conica Γ_1 è un' iperbole. Infatti, la parte quadratica dell' equazione è associata alla matrice

$$A = \left(\begin{array}{cc} 1 & -2 \\ -2 & -1 \end{array}\right)$$

che ha determinante negativo. Quindi, S contiene solo iperboli come coniche non degeneri, essendo un cilindro iperbolico.

Esercizio 24. Sia $f: V \to V$ un endomorfismo. Dare la definizione di autovalore, di autovettore e di autospazio per f. Supponendo poi che $V = \mathbb{R}^n$ ed f ammetta un autospazio di dimensione k relativo ad un autovalore $k \neq 0$, dimostrare che dim $(\ker(f) \leq n - k)$, e si fornisca un esempio in cui l'uguaglianza viene ottenuta.

Svolgimento. Per le definizioni si veda un testo di teoria.

La dimensione k dell' autospazio $V(\lambda)$ è ovviamente non superiore alla dimensione di \mathbb{R}^n , ossia $k \leq n$.

Se f è iniettivo, allora $\dim(\ker(f)) = 0 \le n - k$. Se f non è iniettivo, allora 0 è autovalore per f, e l' autospazio ad esso associato è $V(0) = \ker(f)$. Essendo la somma di autospazi distinti sempre diretta, abbiamo che $\dim(\ker(f)) + \dim(V(\lambda)) = \dim(V(0) + V(\lambda)) \le \dim(\mathbb{R}^n)$, da cui si ottiene la disuguaglianza da dimostrare.

Diamo ora un esempio di endomorfismo che realizza l' uguaglianza. Sia $(\overrightarrow{e_1}, \ldots, \overrightarrow{e_n})$ una base di \mathbb{R}^n , sia $\lambda \neq 0$ un numero reale, e sia k un intero che verifica $1 \leq k \leq n$. Sia f l' unico endomorfismo che soddisfa le condizioni seguenti: $f(\overrightarrow{e_i}) = \lambda \overrightarrow{e_i}$ se $i = 1, \ldots, k$, e $f(\overrightarrow{e_i}) = 0$ se $i = k+1, \ldots, n$. Si verifica facilmente che f ha l' autospazio $V(\lambda)$ di dimensione k ed il nucleo di dimensione n - k.