Limiti - Sommario

Tutto sui limiti.

Definizione di Limite di funzione

Idea fondamentale del limite di una funzione; definizione di limite in tutti i casi; dimostrazione dell'esistenza di un limite. Definizione di limite destro e sinistro.

O. Argomenti propedeutici

Per affrontare uno degli argomenti più importanti dell'**analisi matematica**, ovvero i *limiti*, è necessario conoscere e ricordare alcuni argomenti:

- Intorni di $x_0 \in ilde{\mathbb{R}}$
- Punti di aderenza e di accumulazione per un insieme $E\subseteq \mathbb{R}$

1. Idea fondamentale

IDEA. Prendiamo la una funzione di variabile reale (DEF 1.1.) del tipo

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

e consideriamo un punto $x_0 \in \tilde{\mathbb{R}}$ che è un *punto di accumulazione* per E (Punti di aderenza e di accumulazione, **DEF 2.1.**).

Ora voglio capire come posso rigorosamente formulare la seguente frase: "Se $x \in E$ si avvicina a $x_0 \in \tilde{\mathbb{R}}$, allora f(x) si avvicina a un valore $L \in \tilde{\mathbb{R}}$." Ovvero col seguente grafico abbiamo [GRAFICO DA FARE]

Oppure un caso più particolare, con

$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \mapsto x \cdot \sin(\frac{1}{x})$$

dove 0 è un punto di accumulazione per E (il dominio), ma non ne fa parte.

[GRAFICO DA FARE]

2. Definizione rigorosa

Ora diamo una *formalizzazione rigorosa* del concetto appena formulato sopra.

DEF 2.1. Definizione del LIMITE

Sia f una funzione di variabile reale di forma

$$f:E\longrightarrow\mathbb{R},E\subseteq\mathbb{R}$$

Siano $x_0, L \in \tilde{\mathbb{R}}$, x_0 un punto di accumulazione per E.

Allora definiamo il limite di una funzione

$$\lim_{x o x_0}f(x)=L$$

se è vera la seguente:

$$orall V ext{ intorno di } L, \exists E ext{ intorno di } x_0 ext{ tale che:} \ orall x \in E, x \in U \diagdown \{x_0\} \implies f(x) \in V$$

PROP 2.1. Questa *definizione* del limite può essere può essere interpretata in più casi.

CASO 1. Siano $x_0, L \in \mathbb{R}$. Quindi dei valori *fissi* sulla *retta reale*.

Abbiamo dunque il seguente disegno:

[DISEGNO DA FARE]

Ora interpretiamo la definizione del *limite* di f(x), $\lim_{x \to x_0} f(x) = L$ in questo caso:

$$orall V$$
 intorno di $L, \exists E$ intorno di x_0 tale che: $\forall x \in E, x \in U \setminus \{x_0\} \implies f(x) \in V$

significa

$$egin{aligned} orall arepsilon > 0, (L-arepsilon, L+arepsilon) \subseteq V, \exists \delta > 0: (x_0-\delta, x_0+\delta) \subseteq U \ & ext{tale che } orall x \in E \ & 0 < |x-x_0| < \delta \implies |f(x)-L| < arepsilon \end{aligned}$$

che graficamente corrisponde a [DISEGNO DA FARE]

OSS 2.1. Grazie a questa interpretazione è possibile creare un'analogia per il limite; infatti se immaginiamo che l'intorno di L con raggio ε è il bersaglio e se esiste il limite, allora deve essere sempre possibile trovare un intorno attorno x_0 con raggio δ tale per cui facendo l'immagine di tutti i punti in questo intorno, "colpisco" il "bersaglio" (ovvero l'intorno di L).

OSS 2.2. Alternativamente è possibile pensare all'esistenza del *limite* come una "macchina" che dato un valore ε ti trova un valore δ . Ora passiamo al secondo caso.

CASO 2. Ora interpretiamo

$$\lim_{x o x_0}f(x)=+\infty$$

ovvero dove $L \in \tilde{\mathbb{R}}$. Allora interpretando il significato del limite abbiamo:

$$egin{aligned} orall M>0, (M,+\infty), \exists \delta>0: (x_0-\delta,x_0+\delta)\subseteq U: \ & ext{tale che } orall x\in E, \ 0<|x-x_0|<\delta \implies x>M \end{aligned}$$

ovvero abbiamo graficamente che per una qualsiasi retta orizzontale x=M, troveremo sempre un intervallo tale per cui l'immagine dei suoi punti superano sempre questa retta orizzontale.

[DISEGNO DA FARE]

Ora al terzo caso.

CASO 3. Ora abbiamo

$$\lim_{x o +\infty} f(x) = L$$

ovvero dove $x_0 \in \tilde{\mathbb{R}}$. Interpretando la definizione si ha:

$$egin{aligned} orall arepsilon > 0, (L-arepsilon, L+arepsilon), \exists N > 0: (N,+\infty): \ & ext{tale che } orall x \in E, \ &x > N \implies |f(x)-L| < arepsilon \end{aligned}$$

ovvero graficamente ho un grafico di una funzione f(x), dove disegnando un qualsiasi intorno di L riuscirò sempre a trovare un valore N tale per cui tutti i punti dell'insieme immagine dell'intervallo $(N,+\infty)$ stanno sempre all'interno dell'intorno di L, indipendentemente da quanto stretto è questo intervallo.

[GRAFICO]

Infine all'ultimo caso.

CASO 4. Finalmente abbiamo

$$\lim_{x o +\infty} f(x) = +\infty$$

quindi per definizione ho

$$egin{aligned} orall M; (M,+\infty), \exists N; (N,+\infty): \ & ext{tale che } orall x \in E, \ x > N \implies f(x) > M \end{aligned}$$

ovvero ciò vuol dire che fissando un qualunque valore M riuscirò sempre a trovare un valore N tale per cui prendendo un qualsiasi punto x>N, il valore immagine di questo punto supererà sempre M.

OSS 2.3. Nota che questo *NON* deve necessariamente significare che la funzione è *monotona crescente*. Però vale il contrario: infatti

$$\forall x_0, x_1 \in E, x_1 > x_0 \implies f(x_1) > f(x_0)$$

possiamo fissare $f(x_0) = M$, $x_0 = N$, abbiamo allora

$$orall M, N, \exists x_1 \in E: x_1 > N \implies f(x_1) > M$$

questa condizione è sempre vera. In questo caso basta solamente prendere un qualsiasi $x_1>x_0$.

2.1. Infinitesimo

APPROFONDIMENTO PERSONALE a. Usando la *nostra* definizione del limite e ponendo $L=0, x=+\infty$, otteniamo un risultato che è consistente con la definizione di *infinitesimo* (1) secondo dei noti matematici russi, tra cui uno è Kolmogorov.

DEF 2.a. Si definisce un infinitesimo come una *grandezza variabile* α_n , denotata come

$$\lim_{x \to +\infty} lpha_n = 0 ext{ oppure } lpha_n o 0$$

che possiede la seguente proprietà:

$$orall arepsilon > 0, \exists N > 0: orall x \in E, x > N \implies |lpha_x| < arepsilon$$

OSS 2.a. Notiamo che la definizione dell'*infinitesimo* diventerà importante per il calcolo degli *integrali*, in particolare la *somma di Riemann*.

 $^{(1)}$ "[...] La quantità α_n che dipende da n, benché apparentemente complicata gode di una notevole proprietà: se n cresce indefinitamente, α_n tende a zero. Tale proprietà si può anche esprimere dicendo che dato un numero positivo ε , piccolo a piacere, è possibile scegliere un interno N talmente grande che per ogni n maggiore di N il numero α_n è minore, in valore assoluto, del lato numero ε ."

Estratto tratto da *Le matematiche: analisi, algebra e geometria* analitica di A.D. Aleksandrov, A. N. Kolmogorov e M. A. Lavrent'ev (1974, ed. Bollati Boringhieri, trad. G. Venturini).

3. Limite destro e sinistro

PREMESSA. Sia una funzione f di variabile reale del tipo

$$f:E\longrightarrow \mathbb{R}, E\subseteq \mathbb{R}$$

 $x_0 \in \mathbb{R}$ un punto di accumulazione per E, $L \in ilde{\mathbb{R}}.$ Allora definisco le seguenti:

DEF 3.1. Il limite della funzione f che tende a x_0 da destra come

$$\lim_{x o x_0^+}f(x)=L$$

come

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in E, \ x \in U \cap (x_0, +\infty) \implies f(x) \in V$$

ovvero come il *limite di f*, considerando però *solo* i punti che stanno a *destra* di x_0 .

[GRAFICO DA FARE]

DEF 3.2. Analogamente il limite della funzione f che tende a x_0 da sinistra è

$$\lim_{x o x_0^-}f(x)=L$$

ovvero

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in E, \ x \in U \cap (-\infty, x_0) \implies f(x) \in V$$

OSS 3.1. Si può immediatamente verificare che

$$\lim_{x o x_0}f(x)=L\iff \lim_{x o x_0^+}f(x)=\lim_{x o x_0^-}f(x)=L$$

Infatti l'insieme dei x del limite destro e/o sinistro su cui verifichiamo che $f(x) \in V$ è un sottoinsieme dell'insieme di cui si verifica col limite generale. Pertanto facendo l'unione tra questi due sottoinsiemi abbiamo

$$[U\cap (-\infty,x_0)]\cup [U\cap (x_0,+\infty)]=U\diagdown \{x_0\}$$

DEF 3.1. (DALLA DISPENSA) Avevamo appena osservato che coi limiti destri e/o sinistri abbiamo semplicemente fatto una restrizione all'insieme $U \setminus \{x_0\}$ di cui si cerca di verificare che $f(U \setminus \{x_0\}) \subseteq V$. Dunque definiamo il **limite della funzione ristretta a** B, un qualunque sottoinsieme di E per cui x_0 è di accumulazione:

$$\lim_{x o x_0} f_{|B}(x) = L$$

ovvero

$$orall V ext{ intorno di } L, \exists U ext{ intorno di } x_0: orall x \in B, \ x \in U \diagdown \{x_0\} \implies f(x) \in V$$

4. Strategia per verificare l'esistenza di limiti

Vogliamo sviluppare una serie di *strategie* per verificare l'esistenza dei limiti, ...

Teoremi sui Limiti

Teoremi sui limiti: unicità del limite, permanenza del segno, teorema dei due carabinieri, ... (DA FINIRE)