Lab 7

TA 余玄

6/15 23:55

Lab7 Deadline no demo

In this lab,

Must use sample code, otherwise no credit.

Outline

- 1. 2048 Game Rule
- 2. Game State
- 3. Temporal Difference Learning
- 4. n-tuple Network
- 5. Modify and Run Sample Code
- 6. Scoring Criteria
- 7. Reminders

2048 Game Rules (1/2)

2048 2

popup: **2** (90%), **4** (10%)

2048 Game Rules (2/2)

does not popup

Game State

Temporal Difference Learning (TD)

For each episode,

```
Initialize (before-)state s
While s is not terminal do
  a \leftarrow argmax_a, EVALUATE(s, a')
  r, s', s'' \leftarrow MAKE\ MOVE(s, a)
  STORE(s, a, r, s', s'')
  s \leftarrow s''
End While
For (s, a, r, s', s'') from terminal down to initial do
  LEARN EVALUATION(s, a, r, s', s'')
End For
                            perform TD backup
```

TD Backup Diagram

after-state:

state
after-state

9

TD Backup Diagram

state
after-state

TD Backup: State

TD Backup: After-State

state after-state

after-state:

Deep Learning and Practice 2020; NCTU CGI Lab

V(s')

 $V(s_{\mathsf{next}}')$

n-tuple network

n-tuple network (a.k.a. RAM-based neural network) is a type of artificial neural network.

- A large number of input nodes.
 - o Input values are either 1 or 0.
 - o Input is a sparse vector.
- No hidden layers.
- Only 1 output node.

Example: 2048 with n-tuple network

a 6-tuple pattern f_1

5	1	2	0
3	5	0	0
7	0	0	0
8	0	0	0

board \emph{s}

0.34

6.48

-3.14

0.25

All Isomorphisms

(Rotations and Reflections)

0x537150

5	1	2	0	
9	-5	0	0	
7	C.	0	0	
8	0	0	0	
0x873005				

Multiple n-tuple

Example: 4 kinds of 6-tuple

$$V(s) = f_1(s) + f_2(s) + f_3(s) + f_4(s)$$

... and more

Sample Code

- Implement V(state)
- Compile with C++11 support
 - o ex: g++ -std=c++11 -O3 -o 2048 2048.cpp
- Run and Train

Scoring Criteria

Show your work, otherwise no credit will be granted.

- Report (70%)
 - (DO explain; do not only copy and paste your codes.)
- Performance (30%)
 - The 2048-tile win rate in 1000 games, $\lceil \text{winrate}_{2048} \rceil$.

Reminders

- You can design your n-tuple.
- You should avoid using CNN in this lab.
- 2048-tile should appear within 10,000 episodes.

References

- 1. Szubert, Marcin, and Wojciech Jaśkowski. "Temporal difference learning of N-tuple networks for the game 2048." 2014 IEEE Conference on Computational Intelligence and Games. IEEE, 2014.
- 2. Kun-Hao Yeh, I-Chen Wu, Chu-Hsuan Hsueh, Chia-Chuan Chang, Chao-Chin Liang, and Han Chiang, Multi-Stage Temporal Difference Learning for 2048-like Games, accepted by IEEE Transactions on Computational Intelligence and Al in Games (SCI), doi: 10.1109/TCIAIG.2016.2593710, 2016.
- 3. Oka, Kazuto, and Kiminori Matsuzaki. "Systematic selection of n-tuple networks for 2048." International Conference on Computers and Games. Springer International Publishing, 2016.
- 4. moporgic. "Basic implementation of 2048 in Python." Retrieved from Github: https://github.com/moporgic/2048-Demo-Python.
- 5. moporgic. "Temporal Difference Learning for Game 2048 (Demo)." Retrieved from Github: https://github.com/moporgic/TDL2048-Demo.
- 6. lukewayne123. "2048-Framework" Retrieved from Github: https://github.com/lukewayne123/2048-Framework.