安徽大学 2011—2012 学年第 1 学期 《信息论》考试试卷 (AB 合卷)

院/系		年	级	_ 牟 亚		性名	学	号	
			T	T	T				
	题	号	_	=	三	四	五	总 分	
	得	分							
一、填	空题							得分	
1、接口] y 后,₹		 送的符号	· 是 x 的信.	息量是		o	
2、香	农信息的	定义						o	
3、在t	己知事件	$z \in Z$ 的	条件下, 持	妾收到 y 后	5获得关于	事件 x 的	条件互信息	I(x;y z)的	表达
式)	<u> </u>				c	,			
4、通	言系统模	型主要	分成五个部	邓分分别为	J:			0	
5、研	究信息传	输系统	的目的就是	是要找到信	息传输过	程的共同規	现律,以提	高信息传输	的可
靠性	生、有效	性、	和_		,使信息位	专输系统过	达到最优化	0	
6、某	信源 S	共有 32	2 个信源	符号,其	实际熵 🚜	。=1.4 比特	寺/符号,」	则该信源剩	余度
为			o						
7、信	道固定的	情况下,	,平均互信	言息 <i>I(X;Y</i>) 是输入信	源概率分	布 P(x) 的_	型凸函数	t .
信	原固定的	情况下,	,平均互信	言息 <i>I(X;Y</i>)是信道传	递概率 <i>P</i> ((y x)的	型凸函数。	,
8、当位	言源与信	道连接	时,若信息	息传输率达	到了信道	容量,则和	 你此信源与	i信道达到匹	配。
信认	道剩余度	定义为_			o				
9、已	印信源 &	(的熵)	H(X)=0.92	比特/符号	分,则该信源	的五次无	记忆扩展信	言源 X ⁵ 的信	息熵
H($X^{5}) = $		o						

10 、将 H_{∞} , H_{6} , H_{0} , H_{4} , H_{1} 从大到小排列为	o	
11、根据香农第一定理,对于离散无记忆信源 <i>S</i> ,用含 <i>r</i> 个字母的码符号序列进行变长编码,总能找到一种无失真的唯一可译码,使每个码长满足:		
12、多项式剩余类环 $F_q[x]/(f(x))$ 是域的充要条件为	o	
13、多项式剩余类环 $F_q[x]/(x^n-1)$ 的任一理想的生成元 g	$g(x) = \int x^n - 1 = \int$	关 系
为。		
14、有限域 $F_{2^{12}}$ 的全部子域为	0	
15、国际标准书号(ISBN)由十位数字 $a_1a_2a_3a_4a_5a_6a_7a_8a_9a_{10}$ 组成(诸 a _i ∈ F ₁₁ ,满,	足:
$\sum_{i=1}^{10} ia_i \equiv 0 \pmod{11}$),其中前九位均为 0-9,末位 0-10,当末位为	10 时用 X 表	示。
《Handbook of Applied Cryptography》的书号为 ISBN: 7-121-01339-	, 《Coding	g and
Information Theory》的书号为 ISBN: 7-5062-3392。		
二、判断题	得分	
二 、判断题 1 、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。	得分)
)
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。)
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。 2、离散信源的信息熵是信源无失真数据压缩的极限值。)
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。 2、离散信源的信息熵是信源无失真数据压缩的极限值。 3、对于无噪无损信道,其输入和输出有确定的一一对应关系。)
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。 2、离散信源的信息熵是信源无失真数据压缩的极限值。 3、对于无噪无损信道,其输入和输出有确定的一一对应关系。	()
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。 2、离散信源的信息熵是信源无失真数据压缩的极限值。 3、对于无噪无损信道,其输入和输出有确定的一一对应关系。 () 4、对于有噪无损信道,其输入和输出有确定的一一对应关系。	((8长,必存在一 ²)
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。 2、离散信源的信息熵是信源无失真数据压缩的极限值。 3、对于无噪无损信道,其输入和输出有确定的一一对应关系。 () 4、对于有噪无损信道,其输入和输出有确定的一一对应关系。 5、设有噪信道的信道容量为 C,若信息传输率 $R > C$,只要码长 n 足够	((8长,必存在一 ²)
1、互信息 $I(x;y)$ 与平均互信息 $I(X;Y)$ 都具有非负性质。 2、离散信源的信息熵是信源无失真数据压缩的极限值。 3、对于无噪无损信道,其输入和输出有确定的一一对应关系。 () 4、对于有噪无损信道,其输入和输出有确定的一一对应关系。 5、设有噪信道的信道容量为 C ,若信息传输率 $R > C$,只要码长 n 足够道编码和相应的译码规则,使译码平均错误概率 P_E 为任意小。反之,是	((8长,必存在一 ²)

- 第2页

过程中丢失一些信息,以后的系统不管如何处理,如不触及到丢失信息过程的输入端,就不能再恢复已丢失的信息。

()

7、对于离散信道[X, p(y|x), Y],有 $H(X|Y) \le H(P_E) + P_E \log(r-1)$,并且不管采用什么译码规则,上述费诺不等式成立。

()

- 8、码 C={0,10,1100,1110,1011,1101}是唯一可译码。
- 9、一定存在码长分别为 1, 2, 3, 3, 3, 4, 5, 5 的二元即时码。

()

三、计算题

得分

)

1、设

$$X \sim \begin{pmatrix} a_1 & a_2 \\ 1/2 & 1/2 \end{pmatrix}, \quad Y \sim \begin{pmatrix} b_1 & b_2 & b_3 & b_4 \\ 1/4 & 1/4 & 1/4 & 1/4 \end{pmatrix},$$

$$Z \sim \begin{pmatrix} c_1 & c_2 & c_3 & c_4 & c_5 & c_6 & c_7 & c_8 \\ 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 & 1/8 \end{pmatrix}$$

计算H(X), H(Y), H(Z)。

当X,Y,Z为统计独立时,计算H(XYZ)。

2、有一离散无记忆信源

$$\begin{pmatrix} X \\ P(x) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 \\ \frac{2}{3} & \frac{1}{6} & \frac{1}{6} \end{pmatrix} , \quad \sum_{i=1}^3 p(x_i) = 1 .$$

求该信源的二次扩展信源,并计算二次扩展信源的信源熵。

3、求下述两信道的信道容量及其达到信道容量时的输入概率分布。

- 4、设二元对称信道的传递矩阵为 $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$,求此信道的信道容量及相应的最佳输入概率分
- 布。当输入概率分布为 $P(0) = \frac{3}{4}$, $P(1) = \frac{1}{4}$ 时,求 $H(X \mid Y)$ 和I(X; Y)。

5、设有一马尔可夫信源,其状态集为 $\{S_1,S_2,S_3\}$,符号集为 $\{a_1,a_2,a_3\}$ 。在某状态下发某符号的概率为 $P(a_k|S_i)$,i,k=1,2,3。见下图:

计算此马尔可夫信源熵 H_{∞} 。

6、一阶马尔可夫信源的状态图如下图所示,信源 X 的符号集为 $\{0,\ 1,\ 2\}$ 并定义 $\overline{p}=1-p$ 。

- (1) 求信源平稳后的概率分布 **P**(0), **P**(1), **P**(2);
- (2) 求此信源的熵。

7、求以x+2为生成多项式的长为 3 的三元循环码 C 的全体码字。

8、求以x+1为生成多项式的长为 3 的二元循环码 C 的全体码字。

四、综合题

得 分

1、设有一离散信道,其信道传递矩阵为 $\begin{pmatrix} 1/3 & 1/6 & 1/2 \\ 1/2 & 1/3 & 1/6 \\ 1/6 & 1/2 & 1/3 \end{pmatrix}$,并设 $P(x_1) = \frac{1}{2}$, $P(x_2) = P(x_3) = \frac{1}{4}$ 。

试分别按最小错误概率准则和最大似然译码准则确定译码函数,并计算相应的平均错误概率。

2、信源空间为 $\begin{pmatrix} S \\ P(s) \end{pmatrix} = \begin{pmatrix} s_1, & s_2, & s_3, & s_4, & s_5, & s_6, & s_7, & s_8 \\ 0.4, & 0.2, & 0.1, & 0.1, & 0.05, & 0.05, & 0.05, & 0.05 \end{pmatrix}$,码符号为 $X = \{0,1,2\}$,试构造一种三元紧致码,并计算平均码长。

3、设 C 是二元[6,3]线性码,其校验矩阵为 $H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$ 。试求全体码字,列

简明译码表; 当收到的字为 $\beta = 010011$, 如何译码?

五、证明题

得分

1、证明:最大离散熵定理,即

$$H(p_1, p_2, \dots, p_q) \le H(\frac{1}{q}, \frac{1}{q}, \dots, \frac{1}{q}) = \log q$$

2、证明:条件熵不大于无条件熵,即 $H(X_2 \mid X_1) \le H(X_2)$ 。

3、设C是q元[n,k]线性码,证明:

$$d(C) = W(C),$$

其中 $d(C) = \min\{D(c_i, c_j) | c_i, c_j \in C, c_i \neq c_j\}$, $W(C) = \min\{W(c) | c \in C, c \neq 0\}$ 。

4、循环码 ℂ 的对偶码 C^{\perp} 仍为循环码。