

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Sistemas de Numeração



## Para que servem os números?

O ser humano precisa contar para determinar quantidades de coisas, com as quantidades ele pode fazer operações matemáticas e comparações.

- Assim, os números permitem representar quantidades de forma simbólica.
- Os símbolos utilizados são chamados de dígitos.
- Em alguns sistemas a posição do símbolo faz diferença (sistemas posicionais), enquanto que em outros o símbolo já representa a quantidade.
- Dependendo do sistema podem existir diferentes tipos e quantidades de símbolos.
- Um exemplo: O sistema decimal usa-se os dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 e 9). Esse sistema também é posicional, pois 09 é diferente de



### Sistema decimal

### Características do sistema decimal:

- Utiliza 10 símbolos (dígitos). 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
- Ele é um sistema posicional, onde a posição do dígito tem um peso dado pela base (10) elevado ao expoente da posição.
- Assim, o número representado 135, corresponde a 1 centena (10² = 100), 3 dezenas (10¹ = 10) e 5 unidades (10⁰ = 1).

```
1*10^{2} + 3*10^{1} + 5*10^{0} = 1*100 + 3*10 + 5*1 = 100 + 30 + 5 = 135
```



### Sistema decimal

### Com o sistema podemos

- contar quantidades,
- representar quantidades inteiras e fracionárias,
- fazer operações de soma, subtração, multiplicação, divisão, entre outras;
- comparar valores (quantidades).

### Por exemplo:

..., 34, 35, 36, 37, ...  

$$21 + 46 + 100 = 100 + 20 + 40 + 1 + 6 = 100 + 60 + 7 = 167;$$
  
 $3 \times 6 = 6 + 6 + 6 = 18;$   
 $35/7 = (5+5+5+5+5+5+5)/7 = (5*7)/7 = 5;$   
 $12/10 = 1,2$   
 $145 > 14,5; 230 = 2,3\times10^2$ 



# Existem outros sistemas de numeração que interessam?

Sim. Nos computadores e circuitos digitais, para fazer a representação de números são utilizadas normalmente duas tensões, sendo uma para representar o dígito "0" (0 volt), e outra para representar o dígito "1" (X volts).

- Este sistema é chamado de sistema binário, pois só tem dois dígitos (1 e 0).
- Da mesma forma que o sistema decimal ele é posicional, e permite representar quantidades e fazer operações matemáticas e comparações
- Outro sistema que é usado para representar os números binários é o sistema hexadecimal e também o sistema octal (já em desuso).



## Sistema binário

Características do sistema binário:

- Utiliza 2 símbolos (dígitos). 0 e 1
- Ele é um sistema posicional, onde a posição do dígito tem um peso dado pela base (2) elevado ao expoente da posição
- Assim, o número representado 111, corresponde a 1 quadra (2² = 4), 1 dupla (2¹ = 2) e 1 unidade (2⁰ = 1).

```
1*2^{2} + 1*2^{1} + 1*2^{0} = 1*4 + 1*2 + 1*1 = 7
```



## Sistema binário

### Com o sistema podemos

- contar quantidades,
- representar quantidades inteiras e fracionárias,
- fazer operações de soma, subtração, multiplicação, divisão, entre outras;
- comparar valores (quantidades).

### Por exemplo:

```
..., 100, 101, 110, 111, ...
101 + 110 = 1*4 + 1*1 + 1*4 + 1*2 = 1*8 + 1*2 + 1 = 1011;
* 11 * 101 = 101 + 101 + 101 = 1111;
110 / 10 = (11 + 11) / 10 = 11;
101 / 10 = 10, 1
1100101 > 10100; 101 = 1,01x2^{2}
```



## Os pesos dos dígitos no sistema binário

| peso    | <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| peso    | 128                   | 64                    | 32                    | 16                    | 8                     | 4                     | 2                     | 1                     |
| binário | 1                     | 0                     | 1                     | 1                     | 0                     | 1                     | 0                     | 1                     |

```
1*128 + 0*64 + 1*32 + 1*16 + 0*8 + 1*4 + 0*2 + 1*1

128 + 32 + 16 + 4 + 1 = 181
```



### Sistema hexadecimal

### Características do sistema hexadecimal:

- É utilizado para representação simplificada do sistema binário.
- Utiliza 16 símbolos (dígitos). 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D
   E, F. onde os dígitos A a F representam as quantidades 10 a 15 respectivamente.
- Ele é um sistema posicional, onde a posição do dígito tem um peso dado pela base (16) elevado ao expoente da posição.
- Assim, o número representado A47, corresponde a A  $(10) * (16^2 = 256), 4 * (16^1 = 16) e 7 * (16^0 = 1).$

$$A*16^{2} + 4*16^{1} + 7*16^{0}$$
 $10*256 + 4*16 + 7*1$ 
 $2560 + 64 + 7 = 2631$ 



Para não confundir 10 com 10, é necessário utilizar uma notação quando se está trabalhando com mais de um sistema ao mesmo tempo.

Exemplos de notações utilizadas:

- As quantidades 5, 257 e 101 são representadas por 101<sub>2</sub>
   101<sub>10</sub> nos sistemas binário, hexadecimal e decimal.
- A quantidade 168 é representada por 10110101<sub>2</sub> A8<sub>16</sub>
   168<sub>10</sub> nos sistemas binário, hexadecimal e decimal.

Assim podemos dizer que só existem 10 tipos de pessoas, as que entendem sistema binário e as que não entendem.



## **Outros sistemas**

- Sistema octal (Base 8)
- Sistema egipcio hieroglífico,
- Sistema Romano
- Sistema Maia
- Sistema Guarani

Estes sistema tem apenas interesse histórico, pois não são mais utilizados na prática.



# Como posso fazer a conversão de um sistema para outro?

Existem vários métodos para fazer a conversão, desde o tradicional método de dividir ou multiplicar pela base, até métodos mais rápidos como usar os pesos dos dígitos, tabelas de conversão rápida e ainda as calculadoras e softwares online para conversão.

Vamos entender como isso acontece.



- A quantidade de objetos pode ser contada e ser representada nos diversos sistemas numéricos.
- Você consegue imaginar um método para fazer essa contagem em cada um deles?











• Divida o número decimal por 2 até resultar 0 (zero).



 O último bit obtido é o bit mais significativo (MSB de most significant bit).



### Método 1 - Decimal para Binário (Divisão por 2)









### Método 2 - Decimal para Binário (Subtraindo os pesos)

93<sub>10</sub>

| bit     | 7                     | 6                     | 5                     | 4                     | 3                     | 2                     | 1                     | 0                     |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| peso    | <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
| peso    | 128                   | 64                    | 32                    | 16                    | 8                     | 4                     | 2                     | 1                     |
| binário |                       |                       |                       |                       |                       |                       |                       |                       |

- Comece pelo maior peso que é menor que o resto que você tem, começando com o valor original
- Repita até chegar ao peso 1.





### Método 2 - Decimal para Binário (Subtraindo os pesos)

93<sub>10</sub>

| bit     | 7                     | 6                     | 5                     | 4                     | 3                     | 2                     | 1                     | 0                     |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| peso    | <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
| peso    | 128                   | 64                    | 32                    | 16                    | 8                     | 4                     | 2                     | 1                     |
| binário | 0                     | 1                     | 0                     | 1                     | 1                     | 1                     | 0                     | 1                     |

```
93 < 128 então não tem 128 (bit 7 = 0)
```

$$13 \ge 8$$
, então **tem 8**, e resta  $13-8 = 5$ ; (bit  $3 = 1$ )

$$5 \ge 4$$
, então **tem 4**, e resta 5-4 = 1; (bit 2 = 1)

$$1 < 2$$
, então não tem 2. (bit  $1 = 0$ )

 $1 \ge 1$ , então **tem 1**, e resta NADA; (bit 0 = 1)

01011101,

<sup>93 ≥ 64,</sup> então **tem 64**, e resta 93-64 = 29; (bit 6 = 1)

<sup>29 &</sup>lt; 32, então não tem 32. (bit 5 = 0)





#### Método 3 - Binário para Decimal (Somando os pesos)

## **1011101**<sub>2</sub>

| bit     | 7                     | 6                     | 5                     | 4                     | 3                     | 2                     | 1                     | 0                     |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| peso    | <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
| peso    | 128                   | 64                    | 32                    | 16                    | 8                     | 4                     | 2                     | 1                     |
| binário | 0                     | 1                     | 0                     | 1                     | 1                     | 1                     | 0                     | 1                     |

- Coloque os bits em ordem na tabela e coloque os pesos sobre eles.
- Se o bit for 1, some o peso da posição se for 0, 0 x qualquer\_coisa = 0

$$1011101_2 = 64 + 16 + 8 + 4 + 1 = 93_{10}$$





### Método 4 - Decimal para Hexadecimal (Divisão por 16)

- 93<sub>10</sub> 16
- Divida o número decimal por 16 até resultar 0 (zero).
- Os restos das divisões são os dígitos do número hexadecimal correspondente.
- Substituindo (10 por A, 11 por B, 12 por C, 13 por D, 14 por E e 15 por F
- -80 5 16
- 13 -0 0 D 5

$$93_{10} = 5 \times 16 + 13 \times 1$$

$$93_{10} = 5 \times 16 + D \times 1 = 5D_{16}$$

$$93_{10} = 5 \times 16^1 + D \times 16^0 = 5D_{16}$$





#### Método 5 - Hexadecimal para Decimal (Somando os pesos)

| peso        | 16 <sup>3</sup> | 16 <sup>2</sup> | 16 <sup>1</sup> | 16 <sup>0</sup> |
|-------------|-----------------|-----------------|-----------------|-----------------|
| peso        | 4096            | 256             | 16              | 1               |
| hexadecimal | 0               | 0               | 5               | D ⇒ 13          |

- Coloque os dígitos em ordem na tabela e coloque os pesos sobre eles.
- Multiplique o valor dos dígitos pelos pesos, some

$$5D_{16} = 5 \times 16 + 13 \times 1 = 93_{10}$$





### Método 6 - Binário para Hexadecimal (converta de 4 em 4 bits)

- Agrupe os bits em grupos de 4 começando pelo LSB
- Para cada grupo de 4 bits, consulte a tabela e substitua pelo valor hexadecimal (0 a F) correspondente.
- Se faltar bits para completar o grupo mais à esquerda, complete com 0 (zeros).

| Decimal | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
|---------|------|------|------|------|------|------|------|------|
| Hexa    | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
| Binário | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
| Decimal | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   |
| Hexa    | 8    | 9    | A    | В    | С    | D    | E    | F    |
| Binário | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |



### Método 6 - Binário para Hexadecimal (converta de 4 em 4 bits)

1011101<sub>2</sub>

| binário         | 0 | 1   | 0      | 1 | 1 | 1   | 0      | 1 |
|-----------------|---|-----|--------|---|---|-----|--------|---|
|                 |   | Gru | po 2 — | > |   | Gru | oo 1 — | ; |
| hexadeci<br>mal |   | ţ   | 5      |   |   | 13  | ⇒ D    |   |

$$1011101_2 = 5D_{16}$$



### Método 7 - Hexadecimal para Binário (converta de 4 em 4 bits)

| hexaded<br>mal | i | ţ    | 5      |   |   | 13 = | ⇒ D    |   |
|----------------|---|------|--------|---|---|------|--------|---|
|                |   | Grup | oo 2 — | > |   | Grup | oo 1 — | > |
| binário        | 0 | 1    | 0      | 1 | 1 | 1    | 0      | 1 |

$$5D_{16} = 01011101_2 = 1011101_2$$



- E se quiser evitar os Métodos 4 e 5, tem alguma alternativa?
   Sim.
- Converter de decimal para binário (Método 1 ou 2) e aplicar o Método 6 para converter para hexadecimal.
- Converter de hexadecimal para binário pelo Método 7 e converter de binário para decimal pelo Método 3







#### Método 8 - Calculadora

clique esquerdo Ver [x] modo científico

- 1) selecione o sistema original
- 2) digite o valor numérico
- 3) selecione o sistema final











### Exercícios de prática de conversão de bases

Para cada números decimais a seguir:

- 1. converta-os para o sistema binário e hexadecimal.
- 2. Depois retorno do binário para o decimal e do hexadecimal para o binário.
- 3. Mostre como fez a conversão, e qual método utilizou (de 1 a 7)
- 4. Confira se deu tudo certo com a calculadora (Método 8)

| 74  | 47  |  |
|-----|-----|--|
| 30  | 100 |  |
| 10  | 70  |  |
| 170 | 190 |  |
| 233 | 255 |  |
| 48  | 81  |  |