Lecture 12

Gaussian Process Models

Colin Rundel 02/27/2017

Multivariate Normal

Multivariate Normal Distribution

For an n-dimension multivate normal distribution with covariance Σ (positive semidefinite) can be written as

$$\sum_{n imes 1} \sim N(oldsymbol{\mu}_{n imes 1}, \sum_{n imes n})$$
 where $\{oldsymbol{\Sigma}\}_{ij} = \sigma_{ij}^2 =
ho_{ij} \, \sigma_i \, \sigma_j$

$$\begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}, \begin{pmatrix} \rho_{11}\sigma_1\sigma_1 & \cdots & \rho_{1n}\sigma_1\sigma_n \\ \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \cdots & \rho_{nn}\sigma_n\sigma_n \end{pmatrix} \end{pmatrix}$$

Density

For the n dimensional multivate normal given on the last slide, its density is given by

$$(2\pi)^{-n/2} \det(\mathbf{\Sigma})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{Y} - \boldsymbol{\mu})' \mathbf{\Sigma}_{n \times n}^{-1} (\mathbf{Y} - \boldsymbol{\mu})\right)$$

and its log density is given by

$$-\frac{n}{2}\log 2\pi - \frac{1}{2}\log \det(\boldsymbol{\Sigma}) - -\frac{1}{2}(\mathbf{Y} - \boldsymbol{\mu})'\boldsymbol{\Sigma}_{n \times n}^{-1}(\mathbf{Y} - \boldsymbol{\mu})$$

To generate draws from an n-dimensional multivate normal with mean $oldsymbol{\mu}$ and covariance matrix $oldsymbol{\Sigma}$,

To generate draws from an n-dimensional multivate normal with mean $oldsymbol{\mu}$ and covariance matrix $oldsymbol{\Sigma}$,

 \cdot Find a matrix **A** such that $oldsymbol{\Sigma} = {\sf A}\,{\sf A}^t$, most often we use ${\sf A} = {\sf Chol}(oldsymbol{\Sigma})$

To generate draws from an n-dimensional multivate normal with mean $oldsymbol{\mu}$ and covariance matrix $oldsymbol{\Sigma}$,

- \cdot Find a matrix **A** such that $oldsymbol{\Sigma} = {\sf A}\,{\sf A}^t$, most often we use ${\sf A} = {\sf Chol}(oldsymbol{\Sigma})$
- · Draw n iid unit normals ($\mathcal{N}(0,1)$) as $oldsymbol{z}$

To generate draws from an n-dimensional multivate normal with mean $oldsymbol{\mu}$ and covariance matrix $oldsymbol{\Sigma}$,

- \cdot Find a matrix **A** such that $oldsymbol{\Sigma} = {\sf A}\,{\sf A}^t$, most often we use ${\sf A} = {\sf Chol}(oldsymbol{\Sigma})$
- · Draw n iid unit normals ($\mathcal{N}(0,1)$) as $oldsymbol{z}$
- · Construct multivariate normal draws using

$$Y = \mu + Az$$

Bivariate Example

$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$

Proposition - For an n-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

Proposition - For an n-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,

$$y_i = \mathcal{N}(\mu_i, \, \gamma_{ii})$$

Proposition - For an n-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,

$$y_i = \mathcal{N}(\mu_i, \, \gamma_{ii})$$

For a bivariate marginal distribution,

$$\mathbf{y}_{ij} = \mathcal{N}\left(egin{pmatrix} \mu_i \ \mu_j \end{pmatrix}, \ egin{pmatrix} \gamma_{ii} & \gamma_{ij} \ \gamma_{ji} & \gamma_{jj} \end{pmatrix}
ight)$$

Proposition - For an n-dimensional multivate normal with mean μ and covariance matrix Σ , any of the possible marginal distributions will also (multivariate) normal.

For a univariate marginal distribution,

$$y_i = \mathcal{N}(\mu_i, \, \gamma_{ii})$$

For a bivariate marginal distribution,

$$\mathbf{y}_{ij} = \mathcal{N}\left(egin{pmatrix} \mu_i \ \mu_j \end{pmatrix}, egin{pmatrix} \gamma_{ii} & \gamma_{ij} \ \gamma_{ji} & \gamma_{jj} \end{pmatrix}
ight)$$

For a k-dimensional marginal distribution,

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \mu_{i_1} \ dots \end{aligned} , & egin{pmatrix} \gamma_{i_1i_1} & \cdots & \gamma_{i_1i_k} \ dots & \ddots & dots \ \gamma_{i_ki_1} & \cdots & \gamma_{i_ki_k} \end{pmatrix} \end{aligned} \end{aligned}$$

Conditional Distributions

If we partition the n-dimensions into two pieces such that $\mathbf{Y}=(\mathbf{Y}_1,\ \mathbf{Y}_2)^t$ then

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Conditional Distributions

If we partition the *n*-dimensions into two pieces such that $\mathbf{Y}=(\mathbf{Y}_1,\ \mathbf{Y}_2)^t$ then

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

then the conditional distributions are given by

$$\begin{aligned} & \mathbf{Y}_1 \mid \mathbf{Y}_2 = a \ \sim \mathcal{N}(\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12} \, \boldsymbol{\Sigma}_{22}^{-1} \, (a - \boldsymbol{\mu}_2), \ \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \, \boldsymbol{\Sigma}_{22}^{-1} \, \boldsymbol{\Sigma}_{21}) \\ & \\ & \mathbf{Y}_2 \mid \mathbf{Y}_1 = b \ \sim \mathcal{N}(\boldsymbol{\mu}_2 + \boldsymbol{\Sigma}_{21} \, \boldsymbol{\Sigma}_{11}^{-1} \, (b - \boldsymbol{\mu}_1), \ \boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \, \boldsymbol{\Sigma}_{11}^{-1} \, \boldsymbol{\Sigma}_{21}) \end{aligned}$$

Gaussian Processes

From Shumway,

A process, $\mathbf{Y} = \{Y_t : t \in T\}$, is said to be a Gaussian process if all possible finite dimensional vectors $\mathbf{y} = (y_{t_1}, y_{t_2}, ..., y_{t_n})^t$, for every collection of time points $t_1, t_2, ..., t_n$, and every positive integer n, have a multivariate normal distribution.

q

Gaussian Processes

From Shumway,

A process, $\mathbf{Y} = \{Y_t : t \in T\}$, is said to be a Gaussian process if all possible finite dimensional vectors $\mathbf{y} = (y_{t_1}, y_{t_2}, ..., y_{t_n})^t$, for every collection of time points $t_1, t_2, ..., t_n$, and every positive integer n, have a multivariate normal distribution.

So far we have only looked at examples of time series where T is discete (and evenly spaces & contiguous), it turns out things get a lot more interesting when we explore the case where T is defined on a *continuous* space (e.g. \mathbb{R} or some subset of \mathbb{R}).

Gaussian Process Regression

$$\bm{Y} = \{Y_t \, : \, t \in [0,1]\},$$

Imagine we have a Gaussian process defined such that

$$Y = \{Y_t \, : \, t \in [0,1]\},$$

 $\boldsymbol{\cdot}$ We now have an uncountably infinite set of possible $Y_t s.$

$$Y = \{Y_t : t \in [0,1]\},\$$

- We now have an uncountably infinite set of possible Y_t s.
- We will only have a (small) finite number of observations Y_1, \ldots, Y_n with which to say something useful about this infinite dimension process.

$$Y = \{Y_t : t \in [0,1]\},\$$

- We now have an uncountably infinite set of possible Y_t s.
- We will only have a (small) finite number of observations Y_1, \ldots, Y_n with which to say something useful about this infinite dimension process.
- The unconstrained covariance matrix for the observed data can have up to n(n+1)/2 unique values (p>>>n)

$$Y = \{Y_t \, : \, t \in [0,1]\},$$

- We now have an uncountably infinite set of possible Y_t s.
- We will only have a (small) finite number of observations Y_1, \ldots, Y_n with which to say something useful about this infinite dimension process.
- The unconstrained covariance matrix for the observed data can have up to n(n+1)/2 unique values (p >>> n)
- Necessary to make some simplifying assumptions:
 - · Stationarity
 - · Simple parameterization of Σ

Covariance Functions

More on these next week, but for now some simple / common examples Exponential Covariance:

$$\Sigma(\mathbf{y}_t, \mathbf{y}_{t'}) = \sigma^2 \exp\left(-\left|t - t'\right| \mathbf{1}\right)$$

Squared Exponential Covariance:

$$\Sigma(y_t, y_{t'}) = \sigma^2 \exp\left(-\left(|t - t'| l\right)^2\right)$$

Powered Exponential Covariance ($p \in (0,2]$):

$$\Sigma(y_t, y_{t'}) = \sigma^2 \exp\left(-\left(|t - t'| l\right)^p\right)$$

Covariance Function Decay

Example

Prediction

Our example has 15 observations which we would like to use as the basis for predicting Y_t at other values of t (say a grid of values from 0 to 1).

Prediction

Our example has 15 observations which we would like to use as the basis for predicting Y_t at other values of t (say a grid of values from 0 to 1).

For now lets use a square exponential covariance with $\sigma^2=$ 10 and l= 10

Prediction

Our example has 15 observations which we would like to use as the basis for predicting Y_t at other values of t (say a grid of values from 0 to 1).

For now lets use a square exponential covariance with $\sigma^2=$ 10 and l= 10

We therefore want to sample from $Y_{pred} | Y_{obs}$.

$$\mathbf{Y}_{pred} \mid \mathbf{Y}_{o} \text{bs} = \mathbf{y} \ \sim \mathcal{N}(\mathbf{\Sigma}_{po} \ \mathbf{\Sigma}_{obs}^{-1} \ \mathbf{y}, \ \mathbf{\Sigma}_{pred} - \mathbf{\Sigma}_{po} \ \mathbf{\Sigma}_{pred}^{-1} \ \mathbf{\Sigma}_{op})$$

Draw 1

Draw 4

Draw 5

Many draws later

Exponential Covariance

Powered Exponential Covariance (p = 1.5)

Back to the square exponential

Changing the range (1)

Effective Range

For the square exponential covariance

$$Cov(d) = \sigma^2 \exp(-(l \cdot d)^2)$$

 $Corr(d) = \exp(-(l \cdot d)^2)$

we would like to know, for a given value of *l*, beyond what distance apart must observations be to have a correlation less than 0.05?

Changing the scale (σ^2)


```
## model{
     y ~ dmnorm(mu, inverse(Sigma))
##
##
     for (i in 1:N) {
##
       mu[i] <- 0
##
##
##
     for (i in 1:(N-1)) {
##
       for (j in (i+1):N) {
##
          Sigma[i,j] \leftarrow sigma2 * exp(-pow(l*d[i,j],2))
##
          Sigma[j,i] <- Sigma[i,j]</pre>
##
       }
##
     }
##
##
##
     for (k in 1:N) {
##
       Sigma[k,k] \leftarrow sigma2 + 0.01
##
##
     sigma2 \sim dlnorm(0, 1)
##
              ~ dt(0, 2.5, 1) T(0,) # Half-cauchy(0,2.5)
##
## }
```

Trace plots

param	post_mean	post_med	post_lower	post_upper
l	5.981289	5.833655	4.2669795	8.456006
sigma2	2.457979	2.032632	0.8173064	7.168197

Fitted models

Forcasting

