Tarea 1

Entrega: 21 de agosto de 2022

Problema 1

Resolver los siguientes ejercicios de Introducción al formalismo de la Mecánica Cuántica no relativista (Spinel):

(a) Con base en la propiedad (1.1.3), demostrar que el dual de $c|\beta\rangle = \langle \beta|c^*$.

Sean $|\gamma\rangle$ y $|\eta\rangle$ los ket definidos por: $|\gamma\rangle = (3+i)|a_1\rangle + 4|a_2\rangle - 6i|a_3\rangle$ y $|\eta\rangle = 2i|a_1\rangle + 3|a_3\rangle$, donde los kets $|a_i\rangle$ son ortonormales

- (b) Calcule la norma de los kets $|\gamma\rangle$ y $|\eta\rangle$ y determine sus kets normalizados $|\gamma'\rangle$ y $|\eta'\rangle$.
- (c) Encuentre los bras correspondientes a los kets $|\gamma'\rangle$ y $|\eta'\rangle$.
- (d) Calcule el producto interior $\langle \gamma', \eta' \rangle$ y demuestre por cálculo directo que es igual a $\{\langle \eta', \gamma' \rangle\}^*$.
- (e) Calcules los productos interiores $\langle a_1, \eta' \rangle$, $\langle a_2, \eta' \rangle$ y $\langle a_3, \eta' \rangle$. De acuerdo con sus resultados ¿qué interpretación geométrica puede dar al producto interior?

Problema 2

(a) Find the condition under which two vectors

$$|v_1\rangle = \begin{pmatrix} x \\ y \\ 3 \end{pmatrix}, \quad |v_2\rangle = \begin{pmatrix} 2 \\ x - y \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

are linearly independent.

(b) Show that a set of vectors

$$|v_1\rangle = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \quad |v_2\rangle = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \quad |v_3\rangle = \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}$$

is a basis of \mathbb{C}^3 .

(c) Let

$$|x\rangle = \begin{pmatrix} 1\\i\\2+i \end{pmatrix}, \quad |y\rangle = \begin{pmatrix} 2-i\\1\\2+i \end{pmatrix} \Gamma$$

Find $||x\rangle||$, $\langle x, y\rangle$ and $\langle y, x\rangle$.

(d) 1. Use the Gram-Schmidt orthonormalization to find an orthonormal basis $\{|e_k\rangle\}$ from a linearly independent set of vectors

$$|v_1\rangle = \begin{pmatrix} -1, & 2, & 2 \end{pmatrix}^t, \quad |v_2\rangle = \begin{pmatrix} 2, & -1, & 2 \end{pmatrix}^t, \quad |v_3\rangle = \begin{pmatrix} 3, & 0, & -3 \end{pmatrix}^t$$

2. Let

$$|u\rangle = (1, -2, 7)^t = \sum_k c_k |e_k\rangle$$

Find the coefficients c_k .

3. Let

$$|v_1\rangle = \begin{pmatrix} 1, & i, & 1 \end{pmatrix}^t, \quad |v_2\rangle = \begin{pmatrix} 3, & 1, & i \end{pmatrix}^t \Gamma$$

Find the orthonormal basis for a two-dimensional subspace spanned by $\{|v_1\rangle, |v_2\rangle\}$.