BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenlegungsschrift

_® DE 19637108 A 1

PATENTAMT

- 196 37 108.2 (21) Aktenzeichen: 12. 9.98 Anmeldetag:
 - Offenlegungstag: 19. 3.98

(51) Int. Cl.6:

B 60 R 21/32 B 60 R 21/02 B 60 R 22/00 B 60 R 21/16 B 60 R 22/12 B 60 N 2/42 G 01 B 11/14 G 01 B 17/00

B 60 Q 9/00

(71) Anmelder:

Adam Opel AG, 65428 Rüsselsheim, DE

(72) Erfinder:

Kraft, Anton, Dipl.-Ing., 65510 Idstein, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 44 33 601 C1 DE 38 02 159 C2 43 41 500 A1 DE DE 40 23 109 A1 DE 34 29 764 A1 GB 22 89 332 A US 54 72 235 EP 04 73 324 A1 Wa 94 23 973 A1 wo 94 22 693 A1

THEYSOHN,H.BRUNK,W.,KELLNER,H.: Eine neue Methode zur Kabelfreien, vollautomatisch auswertbaren Bewegungsanalyse des menschlichen Ganges. In: Biomedizinische Technik, Bd. 25, H. 12, 1980, S.319-323;

- (A) Insassenschutzsystem für Kraftfahrzeuge sowie ein Verfahren zur kontinuierlichen Überwachung der Sitzposition des Insassen
- Die Erfindung betrifft ein Insessenschutzsystem, insbesondere für Kraftfahrzeuge, mit mindestens einer Abstandsmeßeinrichtung (12) zur kontinuierlichen Überwachung der Sitzposition eines auf einem Fahrzeugsitz (4) mittels eines Sicherheitsgurtes (3) angeschnallten insassen (1) in Relation zu mindestens einem für diesen Fahrzeugsitz (4) vorgesehenen Airbag (6), wobei der Sicherheitsgurt (3) über den Schulter- und/oder Brustbereich des Insassen (1) geführt und die Abstandsmeßeinrichtung (12) eine oder mehrere Sende- und Empfangsvorrichtungen (13, 14, 14a, 14b) für reflektierbare Strahlen, beispielsweise Licht-, Ultraschalloder Radarstrahlen, aufweist sowie ein Verfahren zur kontinuierlichen Überwachung der Sitzposition des Insassen (1). Zur Erhöhung der Sicherheit des Insassen (1) ist dabei vorgesehen, daß die Abstandsmeßeinrichtung (12) zum Detektieren von einem oder mehreren Referenzpunkten oder -bereichen (7) des Sicherheitsgurtes (3) im Schulter- und/ oder Brustbereich ausgebildet und der Sicherheitsgurt (3) zum Bilden der Referenzpunkte oder -bereiche (7) für die Abstandsmessung (12) punkt- oder abschnittsweise strahlenreflektierend ausgebildet ist.

Beschreibung

Die Erfindung betrifft ein Insassenschutzsystem, insbesondere für Kraftfahrzeuge, mit einer Abstandsmeßeinrichtung zur kontinuierlichen Überwachung der Sitzposition eines auf einem Fahrzeugsitz mittels eines Sicherheitsgurtes angeschnallten Insassen in Relation zu mindestens einem für diesen Fahrzeugsitz vorgesehenen Airbag, wobei der Sicherheitsgurt über den Schulter- und/oder Brustbereich des Insassen geführt und die 10 cherheitsgurtes) durch Bestimmung des entfernungs-Abstandsmeßeinrichtung eine oder mehrere Sende- und Empfangsvorrichtungen für reflektierbare Strahlen, beispielsweise Licht-, Ultraschall- oder Radarstrahlen, aufweist sowie ein Verfahren zur kontinuierlichen Überwachung der Sitzposition des Insassen.

Ein Insassenschutzsystem nach dem Oberbegriff des Patentanspruches 1 sowie ein Verfahren nach dem Oberbegriff des Patentanspruches 12 sind aus der DE 40 23 109 A1 bekannt. Gemäß dieser Druckschrift wird die Sitzposition des Insassen in Relation zu den 20 zugehörigen Schutzvorrichtungen, wie beispielsweise Airbags, mittels Sensoren kontinuierlich überwacht und in einem rechnergestützten System ausgewertet, um daraus im Falle eines Unfalls den Zeitpunkt und den Umfang der einzuleitenden Schutzmaßnahmen abzulei- 25 ten. Die Sensierung der Position des Insassen bzw. dessen Körperteile erfolgt dabei mittels Abstands- bzw. Positionsmeßeinrichtungen, die Strahlen aussenden und empfangen.

Nachteilig bei diesem Stand der Technik ist jedoch, 30 daß die Strahlen der Abstands- bzw. Positionsmeßeinrichtungen direkt den Insassen bzw. dessen Körperteile detektieren, deren räumliche Lage unter Umständen durch beispielsweise Kleidung, Kopfbedeckung oder mitgeführte Gegenstände nicht genau ermittelt werden 35 kann. Bei einer mehrfachen Anordnung der Sensoren können diese sich gegenseitig beeinflussen und zu einem Fehlauslösen bzw. Systemausfall führen. Die Vermeidung dieser Nachteile bzw. die Reduzierung der auftretenden Fehler ist bei diesem Insassenschutzsystem je- 40 doch mit einem beträchtlichen Aufwand verbunden.

Die Aufgabe der vorliegenden Erfindung besteht nun darin, die Sicherheit eines Insassen in einem Kraftfahrzeug mit einem Insassenschutzsystem nach dem Oberbegriff des Patentanspruches 1 mit einfachen Mitteln zu 45 verbessern sowie ein Verfahren zur Erhöhung der Sicherheit bei der kontinuierlichen Überwachung der Sitzposition des Insassen zu schaffen.

Der erste Teil dieser Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Abstandsmeßeinrichtung zum 50 Detektieren von einem oder mehreren Referenzpunkten oder -bereichen des Sicherheitsgurtes im Schulterund/oder Brustbereich des Insassen ausgebildet und der Sicherheitsgurt zum Bilden der Referenzpunkte oder -bereiche für die Abstandsmessung punkt- oder ab- 55 nachfolgend anhand eines Ausführungsbeispieles und schnittsweise strahlenreflektierend ausgebildet ist.

Dieser Gestaltung liegt die Erkenntnis zugrunde, daß eine optimale Schutzwirkung des Airbags nur dann erreicht werden kann, wenn zum Zeitpunkt des Auslösens des Airbags zwischen dem Insassen bzw. dessen zu 60 schützenden Körperteilen und dem Airbag ein Sicherheitsabstand vorhanden ist, welcher im Falle eines Unfalls eine vollständige Entfaltung des Airbag vor dem Aufprall des Insassen auf das Lenkrad ermöglicht. Dieser Sicherheitsabstand darf nicht unterschritten werden, 65 da sonst die Gefahr einer Verletzung des Insassen durch den sich mit einer hohen Geschwindigkeit entfaltenden Airbag besteht.

Der Sicherheitsabstand zwischen dem Insassen und dem Airbag kann durch unterschiedliche Verfahren und Einrichtungen zur Abstandsmessung ermittelt und überwacht werden. Dafür sind insbesondere elektroakustisch oder mit Funkwellen kleiner Wellenlänge (Radarwellen) arbeitende Abstandsmeßeinrichtungen geeignet, bei welchen das Messen der Entfernung zwischen der Sendevorrichtung und dem strahlenreflektierenden Objekt (Referenzpunkte oder -bereiche des Siproportionalen Zeitunterschiedes zwischen dem Aus senden der Strahlen und dem Empfang der passiv reflektierten Strahlen (Laufzeitmessung) erfolgt. Bei diesen Verfahren kann die Sendevorrichtung auch als Emp-15 fangsvorrichtung benutzt werden.

Zum Senden und Empfangen von Strahlen können dabei magnetostriktiv oder piezoelektrisch wirkende Schwingungserzeuger oder Sende- und Empfangsantennen für elektromagnetische Strahlen benutzt werden. Die reflektierten Strahlen werden in der Empfangsvorrichtung aufgefangen und in Spannungsschwankungen bzw. elektrische Signale umgewandelt, die in einer elektronischen Einrichtung zum Bestimmen der einzuleitenden Schutzmaßnahmen umgerechnet und ausgewertet werden. Durch räumliche Ausrichtung einer solchen Sende/Empfangsvorrichtung bzw. zielgerichtetes Bündeln der Strahlen können auf einfache Weise die zu überwachenden Referenzpunkte oder -bereiche des Sicherheitsgurtes im Schulter und/oder Brustbereich des Insassen bestimmt werden. Bei dieser Ausbildung kann der Sicherheitsgurt über einen größeren Bereich mit einer strahlenreflektierenden Schicht versehen sein, um eine Detektierung dieser Schicht bei hinsichtlich der Größe unterschiedlichen Insassen zu gewährleisten.

Mit der erfindungsgemäßen strahlenreflektierenden Ausbildung des Sicherheitsgurtes, dessen Referenzpunkte bzw. -bereiche von den Strahlen der Abstandsmeßeinrichtung direkt detektierbar sind, kann die Sendeleistung der Sendevorrichtung herabgesetzt und die Qualität der reflektierten Strahlen wesentlich verbessert werden, ohne daß unerwünschte Reflexionen aus dem Innenraum des Kraftfahrzeuges die Funktionsweise der Abstandsmeßeinrichtung stören. Dadurch kann die Sitzposition des Insassen und somit auch der Sicherheitsabstand wesentlich genauer ermittelt und überwacht werden, als es im Stand der Technik möglich ist.

Das Verfahren zur kontinuierlichen Überwachung der Sitzposition des Insassen ist erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 12 dargelegt. Eine vorteilhafte Weiterbildung dieses Verfahrens zeigen die Merkmale des Patentanspruches 13 auf.

Die Erfindung läßt zahlreiche Ausführungsformen zu. Ein erfindungsgemäßes Insassenschutzsystem wird einer Zeichnung näher erläutert.

Die Zeichnung zeigt teilweise schematisch eine räumliche Darstellung des Innenraumes eines Kraftfahrzeuges 2 mit einem auf einem Kraftfahrzeugsitz 4 mittels eines Sicherheitsgurtes 3 angeschnallten Insassen 1, wobei der Sicherheitsgurt 3 diagonal über die Schulter und die Brust des Insassen 1 geführt ist.

Am Kraftfahrzeugsitz 4 ist im Bereich des Lenkrades 5 ein Airbag 6 angeordnet, welcher im Falle eines Frontalunfalls durch seine Entfaltung den Insassen 1 vor einem direkten Aufprall auf das Lenkrad 5 bzw. die Lenksäule 11 schützen soll. Der Airbag 6 ist so aufgebaut, daß er mit unterschiedlichen Geschwindigkeiten und/oder im geringeren Umfang und/oder mit einer gesteuerten Gasmenge aufgeblasen werden kann.

Im Innenraum des Kraftfahrzeuges 2 ist weiterhin eine Abstandsmeßeinrichtung 12 vorgesehen, welche auf dem Prinzip der Ultraschall-Abstandsmessung 5 durch reflektierte Strahlen funktioniert und im wesentlichen aus einer Sende- und Empfangsvorrichtung 13, einer elektronischen Einrichtung 15, und mehreren weiteren Empfangsvorrichtungen 14, 14a, 14b besteht. Mit Hilfe der Abstandsmeßeinrichtung 12 werden kontinu- 10 ierlich die veränderlichen Abstände A1, A2, A3, A4 ermittelt und überwacht, welche sich jeweils etwa zwischen einem angestrahlten Bereich 7 des Sicherheitsgurtes 3 und der Sende- und Empfangsvorrichtung 13 (A1), der Armaturentafel 8 (A2), dem Lenkrad 5 (A3) 15 und der Lenksäule 11 (A4) erstrecken.

Zur Verbesserung der Qualität und Intensität der reflektierten Strahlen ist der Sicherheitsgurt 3 im Brustbereich des Insassen 1 über eine größere Strecke mit einer in der Zeichnung nicht dargestellten strahlenreflektie- 20 renden Schicht aus in das Gurtband 10 des Sicherheitsgurtes 3 eingearbeiteten Metallfäden versehen.

Aus den ermittelten Abständen A1, A2, A3, A4 wird ein momentaner Abstand zwischen einem bestimmten Referenzpunkt oder -abschnitt des Sicherheitsgurtes 3 25 im angestrahlten Bereich 7 und dem Airbag 6 errechnet und mit einem minimalen Sicherheitsabstand verglichen, welcher im Falle eines Unfalls eine maximale Schutzwirkung des Airbags 6 ermöglicht und während des Betriebes des Kraftfahrzeuges 2 nicht unterschrit- 30 ten werden darf. Die Abstandsmeßeinrichtung 12 ist aus Sicherheitsgründen so aufgebaut, daß beim zeitweisen Uberdecken von einer oder mehreren Empfangsvorrichtungen 14, 14a, 14b, beispielsweise durch eine lenkende Hand des Insassen 1, der momentane Abstand mit 35 Hilfe der nicht verdeckten Empfangsvorrichtungen errechnet wird.

Sollte der Insasse 1 eine Sitzposition einnehmen, bei welcher der momentane Abstand geringer als der Sicherheitsabstand ist, so wird er darauf optisch und aku- 40 stisch durch eine an der Armaturentafel 8 befindliche Signalvorrichtung 9 aufmerksam gemacht und aufgefordert, seine Sitzposition zu ändern. Wenn der Insasse 1 sich im Falle eines Unfalls zum Zeitpunkt des Auslösens des Airbags 6 zu nahe am Airbag 6 befindet, so daß 45 durch die normale Entfaltung des Airbags 6 eine schwere Verletzung des Insassen 1 zu befürchten ist, wird durch die im Bereich eines Mitteltunnels 16 angeordnete elektronische Einrichtung 15 eine Entfaltung des Airbags 6 im geringeren Umfang veranlaßt.

Anstelle der Sende- und Empfangsvorrichtungen 13, 14, 14a, 14b können auch sendende und empfangende Ultraschallsensoren vorgesehen sein, deren Signale wie vorstehend beschrieben in der elektronischen Einrichtung ausgewertet werden. Da diese Ultraschallsensoren 55 nur auf den Empfang der von der strahlenreflektierenden Schicht des Sicherheitsgurtes 3 reflektierten Strahlen ausgelegt sind, ist eine hohe Zuverlässigkeit und Funktionsfähigkeit des Insassenschutzsystems gewährleistet

Patentansprüche

1. Insassenschutzsystem, insbesondere für Kraftfahrzeuge, mit mindestens einer Abstandsmeßein- 65 richtung zur kontinuierlichen Überwachung der Sitzposition eines auf einem Fahrzeugsitz mittels eines Sicherheitsgurtes angeschnallten Insassen in

Relation zu mindestens einem für diesen Fahrzeugsitz vorgesehenen Airbag, wobei der Sicherheitsgurt über den Schulter- und/oder Brustbereich des Insassen geführt und die Abstandsmeßeinrichtung eine oder mehrere Sende- und Empfangsvorrichtungen für reflektierbare Strahlen, beispielsweise Licht-, Ultraschall- oder Radarstrahlen, aufweist, dadurch gekennzeichnet, daß die Abstandsmeßeinrichtung (12) zum Detektieren von einem oder mehreren Referenzpunkten oder -bereichen (7) des Sicherheitsgurtes (3) im Schulter- und/oder Brustbereich ausgebildet und der Sicherheitsgurt (3) zum Bilden der Referenzpunkte oder -bereiche (7) für die Abstandsmessung (12) punkt- oder abschnittsweise strahlenreflektierend ausgebildet ist.

2. Insassenschutzsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Sicherheitsgurt (3) im Bereich des Referenzpunktes bzw. -bereiches (7) mit einer strahlenreflektierenden Schicht versehen ist. 3. Insassenschutzsystem nach Anspruch 2, dadurch

gekennzeichnet, daß die strahlenreflektierende Schicht aus in das Gurtband (10) des Sicherheitsgurtes (3) eingearbeiteten bzw. eingeflochtenen Metallfäden oder -folien besteht.

4. Insassenschutzsystem nach Anspruch 2, dadurch gekennzeichnet, daß die strahlenreflektierende Schicht als eine strahlenreflektierende Farbe doppelseitig auf das Gurtband (10) aufgetragen ist.

5. Insassenschutzsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die strahlenreflektierende Schicht zum Reflektieren des auftretenden Strahls zumindest in Richtungen der Sendeund Empfangsvorrichtungen (13, 14, 14a, 14b) ausgebildet ist.

6. Insassenschutzsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Referenzpunkt oder -bereich (7) am Sicherheitsgurt (3) durch gezielte räumliche Ausrichtung der Sendeund Empfangsvorrichtung (13, 14, 14a, 14b) bestimmt ist.

7. Insassenschutzsystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Sende- und Empfangsvorrichtung (13, 14, 14a, 14b) zum Abtasten eines örtlich begrenzten Horizontal- und/oder Vertikalstreifens im Schulter- und/oder Brustbereich des Insassen (1) ausgebildet ist.

8. Insassenschutzsystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Sende- und Empfangsvorrichtung (13, 14, 14a, 14b) zur Innenraumüberwachung beim Abstellen des Kraftfahrzeuges (2) ausgebildet ist.

9. Insassenschutzsystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Sende- und Empfangsvorrichtung (13, 14, 14a, 14b) zur Gurtanlegekontrolle ausgebildet ist.

10. Insassenschutzsystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß zum Auswerten bzw. Umrechnen der Ergebnisse der Abstandsmessung eine mit der Sende- und Empfangsvorrichtung (13, 14, 14a, 14b) verbundene elektronische Einrichtung (15) vorgesehen ist.

11. Insassenschutzsystem nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die elektronische Einrichtung (15) als integraler oder modularer Bestandteil eines zentralen Steuergerätes für alle Rückhaltesysteme des Kraftfahrzeugs (2) oder eines Bordcomputers ausgebildet ist.

12. Verfahren zur kontinuierlichen Überwachung

6

der Sitzposition des auf einem Fahrzeugsitz mittels eines Sicherheitsgurtes angeschnallten Insassen in Relation zu mindestens einem für diesen Fahrzeugsitz vorgesehenen Airbag, dadurch gekennzeichnet, daß zur Überwachung der Sitzposition der Abstand zwischen mindestens einem Referenzpunkt oder -bereich (7) des Sicherheitsgurtes (3) und dem Airbag (6) gemessen wird und die Ergebnisse der Abstandsmessung elektronisch ausgewertet werden, wobei bei Unterschreitung eines Sicherheitsabstandes zwischen dem Insassen (1) und dem Airbag (6) oder einem nicht ordnungsgemäßen Anlegen des Sicherheitsgurtes (3) eine optische und/ oder akustische Warnung des Insassen (1) ausgelöst

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß bei erheblicher Unterschreitung des Sicherheitsabstandes im Falle eines Unfalls der Airbag (6) nicht oder in einem geringeren Umfang bzw. langsamer aufgeblasen wird.

Hierzu 1 Seite(n) Zeichnungen

25

30

35

40

45

50

55

60 ·

- Leerseite -

Nummer: Int. Cl.⁶: Offenlegungstag: DE 196 37 108 A1 B 60 R 21/32 19. März 1998

PR:

FP:

DE1037108 12.09.1996;

19.03.1998 UP: 04.11.2005

AN: PAT 1998-180118 TT: Occupant protection system. e.g. for motor vehicle has distance measuring unit for detecting one or more reference points or regions of safety belt in shoulder and breast designed with beam reflecting coating layer DE19637108-A1 PN: PD: 19.03.1998 AB: The system comprises at least one distance measuring unit (12) for continuous monitoring of the seating position of an occupant strapped in a vehicle seat by a safety belt (3) working in conjunction with at least one airbag. The distance measuring unit has one or more transmitter and receiver systems for beams e.g. light, ultrasonic or radar beams. The distance measuring unit is designed for the detection of one or more reference points or regions (7) of the safety belt at the shoulder or the breast region. The belt is designed beam reflecting at points or regions for the forming of the reference points or regions for measuring the distance. The safety belt in the region of the reference point or the sections (7) is provided with a beam reflecting coating. The beam reflecting coating consists of metal threads of foils worked in or interwoven in the strap (10) of the safety belt.; Safety of occupants is improved simply and protection is increased by continuous monitoring of seating position of occupants. (GENK) GENERAL MOTORS CORP; (OPEL) OPEL AG ADAM; PA: IN: KRAFT A; FA: DE19637108-A1 19.03.1998; DE19637108-B4 27.10.2005; US6099030-A 08.08.2000; CO: DE; US; B60K-028/00; B60N-002/42; B60Q-009/00; B60R-021/01; IC: B60R-021/02; B60R-021/16; B60R-021/32; B60R-022/00; B60R-022/12; G01B-011/14; G01B-017/00; MC: S02-A06C; S02-A08; X22-J03B1; X22-J07; DC: Q13; Q14; Q16; Q17; S02; X22; FN: 1998180118.qif

This Page Blank (uspid)

Docket #_ \$4 - 0,3 P00050 Applicant: Not beck, et al.

Lerner Greenberg Stemer LLP
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101