MAT – 112: Calculus I and Modeling Solution 6

Thomas R. Cameron

3/23/2018

Other Problems

Problem 1. The Volume of a right circular cone is given by

$$V = \frac{\pi}{3}r^2h,$$

where r is the radius of the circle and h is the height of the cone. In our current scenario we have r = x and h = y + 3. Furthermore, since the cone is inscribed by a sphere of radius 3 we have $x^2 + y^2 = 3^2$. Therefore, we can write the volume as a function of y:

$$V(y) = \frac{\pi}{3}(9 - y^2)(y + 3)$$

= $\frac{\pi}{3}(27 + 9y - 3y^2 - y^3),$

where $0 \le y \le 3$. Therefore, we can find the absolute max volume of the cone by finding the critical points and comparing the volume at the critical points and end points. Note that

$$V'(y) = \frac{\pi}{3}(9 - 6y - 3y^2),$$

which is zero when y = -3 and y = 1. Furthermore,

$$V(0) = 9\pi,$$

 $V(1) = \frac{32}{3}\pi,$
 $V(3) = 0.$

Therefore, the max volume of the cone is $\frac{32}{3}\pi$ and occurs when y=1 and $x=\sqrt{8}$.