无穷级数 (三)

- 1. 证明: 若一个在数集 A 上有界的函数列一致收敛, 则极限函数在 A 上也有界.
- 2. 设 $\{f_n\}$ 是在 ${\bf R}$ 上一致连续的函数列, 若这序列在 ${\bf R}$ 上一致收敛, 则极限函数 在 ${\bf R}$ 上一致连续.
 - 3. 设 $\{p_n\}$ 是多项式函数列, 若它在 \mathbf{R} 上一致收敛, 则极限函数也是一个多项式.
- 4. 设 $\{f_n\}$ 是一个在 [a,b] 上单调的函数列, 且逐点收敛于 [a,b] 上的一个连续函数, 证明 $\{f_n\}$ 在 [a,b] 上一致收敛.
 - 5. 设 A 上的一个函数列 $\{f_n\}$ 满足
 - $(1)f_n(x) \ge 0$ 对所有 $x \in A$ 及 $n \ge 1$;
 - $(2)f_n(x) \geq f_{n+1}(x)$ 外有 $x \in \mathbb{Z} \setminus \mathbb{Z}$ n > 1
 - $(3)\sup_{x\in A}f_n(x)\to 0 (n\to\infty).$

证明: $\sum_{n=1}^{\infty} (-1)^{n+1} f_n(x)$ 在 A 上一致收敛.

6. 设 $\sum_{n=1}^{\infty} f_n^2(x)$ 在 A 上逐点收敛, 若

$$\sup_{x \in A} \left(\sum_{n=1}^{\infty} f_n^2(x) \right) < +\infty,$$

且 $\sum c_n^2$ 收敛, 则 $\sum c_n f_n(x)$ 在 A 上一致收敛.

- 7. 设 $\{f_n\}$ 在 [a,b] 上单调. 证明: 若 $\sum f_n(x)$ 在 [a,b] 的端点绝对收敛,则 $\sum_{n=1}^{\infty} f_n(x)$ 在区间 [a,b] 上绝对且一致收敛.
- 8. 设 $\sum \frac{1}{|a_n|}$ 收敛. 则对不含 $a_n (n \ge 1)$ 的任一有界集 A, 级数 $\sum_{n=1}^{\infty} \frac{1}{x-a_n}$ 在 A 上绝对且一致收敛.