Proves and Problem Solving

February 6, 2023

1 Upper bounds and Least upper bound

1.1 Bounded Sequence

We say that a sequence (a_n) is **bounded** if the set of values a1,a2,... is a bounded set.

i.e. there are m,M such that $m \le a_n \le M$ for all n. **Proposition 6.1** Suppose the sequence (a_n) converges. Then it is bounded.

Proposition 6.3

Suppose that $x_n \to L$ as $n \to \infty$ and that $k \in \mathbb{N}$. Then $x_n^k \to L^k$ as $n \to \infty$.

1.2 Application: the existence of roots

Theorem 6.6

Let x>0 and $k\in\mathbb{N}.$ Then there is a unique y>0 such that $y^k=x.$

1.3 Infinite limits

Definition 6.4

Let x_n be a sequence of real numbers.

- (a) We say (x_n) tends to ∞ or **diverges** to ∞ , and write $x_n \to \infty$ as $n \to \infty$ if for all M > 0, there exists $N \in \mathbb{N}$ such that n > N implies $x_n \ge M$.
- (b) Similar for $x_n \to -\infty$