CODE No.: 19BT40401 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-19) Regular Examinations August – 2021

ANALOG COMMUNICATIONS

[Electronics and Communication Engineering]

Time: 3 hours					Max. Marks: 60					
UNIT-I										
1.	a)	Define standard form of Amplitude Modulation (AM) and explain the time and frequency domain expression of AM wave.	6 Marks	L2	CO1	PO2				
	b)	The output power of an AM Transmitter is 1KW when sinusoidal signal modulated to depth of 100%. Calculate the power in each side band when the modulation depth is reduced to 50%. (OR)	6 Marks	L2	CO1	PO2				
2.	a)	Discuss about frequency domain description of VSB modulation with neat diagram.	6 Marks	L2	CO1	PO1				
	b)	Explain coherent detection of SSB waves with the help of block diagram. UNIT-II	6 Marks	L3	CO1	PO2				
3.	a)	An FM radio link has a frequency deviation of 40KHz, the modulating signal frequency is 4 KHz. Calculate bandwidth needed for the link. What will be the bandwidth, if the frequency deviation is reduced to 20 KHz.	6 Marks	L1	CO1	PO2				
	b)	Explain the FM demodulation using first order PLL. (OR)	6 Marks	L2	CO1	PO4				
4.	a)	Show that frequency modulation can be derived using phase modulation.	6 Marks	L4	CO1	PO2				
	b)	Explain how zero crossing detector can be used as an FM demodulator.	6 Marks	L2	CO1	PO4				
		UNIT-III								
5.	a)	Discuss in detail about threshold effect in FM system.	6 Marks	L4	CO2	PO2				
	b)	An FM receiver receives an FM Signal v(t) = $10 \cos (2\pi 10^8 t + 6) \sin (2\pi 10^6 t)$. Calculate Figure of Merit of this receiver.	6 Marks	L4	CO2	PO2				
		(OR)								
6.	a)	Derive the expression for signal to noise ratio at the output of envelope detector of a normal AM System.	6 Marks	L4	CO2	PO2				
	b)	A message signal band limited to 10 KHz is transmitted through channel after modulation, power loss in the channel is 40dB and double sided noise power spectral density is given by 10^{-10} Watt/Hz. Find the transmitted power required to get output SNR of 50dB. If modulation schemes used is i) AM with μ =1; ii) FM with β =4.	6 Marks	L1	CO2	PO1				
7.	a)	Draw the block diagram of low level and high level AM transmitter and explain its working.	6 Marks	L1	CO3	PO1				
	b)	Draw the block diagram of super heterodyne receiver and explain the function of each block.	6 Marks	L1	CO3	PO3				
		(OD)								

8.	a)	Explain about simple AGC and delayed AGC.	6 Marks	L4	CO3	PO2					
	b)	A super heterodyne receiver the intermediate frequency is	6 Marks	L1	CO3	PO1					
		15MHz and the local oscillator frequency is 3.5GHz. If the									
		frequency of the received signal is greater than the local									
		oscillator frequency, then what is image frequency?									
	UNIT-V										
9.	a)	Explain the Time division multiplexing.	6 Marks	L1	CO4	PO1					
	b)	Explain the PWM modulation and its generation with neat	6 Marks	L3	CO4	PO2					
		sketches.									
(OR)											
10	a)	Explain the generation and demodulation of PPM with the help	6 Marks	L1	CO4	PO1					
		of block diagram.									
	b)	Compare the PAM, PWM and PPM.	6 Marks	L2	CO4	PO1					

