

Lecture 02 Linear Algebra Basics

Chao Zhang
College of Computing
Georgia Tech

Linear Algebra Basics

- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

Why Linear Algebra?

 Linear algebra provides a way of compactly representing and operating on sets of linear equations

$$4x_1 - 5x_2 = -13 \qquad -2x_1 + 3x_2 = 9$$

can be written in the form of Ax = b

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}$$

- A ∈ ℝ^{m×n}denotes a matrix with m rows and n columns, where elements belong to real numbers.
- x ∈ Rⁿ denotes a vector with n real entries. By convention an n dimensional vector is often thought as a matrix with n rows and 1 column.

Linear Algebra Basics

- Transpose of a matrix results from flipping the rows and columns. Given $A \in \mathbb{R}^{m \times n}$, transpose is $A^{\top} \in \mathbb{R}^{n \times m}$
- For each element of the matrix, the transpose can be written as → A[⊤]_{ij} = A_{ji}
- The following properties of the transposes are easily verified
 - $\bullet (A^{\mathsf{T}})^{\mathsf{T}} = A$
 - \bullet $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}$
 - $(A + B)^{\top} = A^{\top} + B^{\top}$
- A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^{\top}$ and it is anti-symmetric if $A = -A^{\top}$. Thus each matrix can be written as a sum of symmetric and anti-symmetric matrices.

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

Norms

- Norm of a vector ||x|| is informally a measure of the "length" of a vector
- More formally, a norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies
 - For all $x \in \mathbb{R}^n$, $f(x) \ge 0$ (non-negativity)
 - f(x) = 0 is and only if x = 0 (definiteness)
 - For $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, f(tx) = |t|f(x) (homogeneity)
 - For all $x, y \in \mathbb{R}^n$, $f(x + y) \le f(x) + f(y)$ (triangle inequality)
- Common norms used in machine learning are
 - ℓ_2 norm

•
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Norms

• ℓ₁ norm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

- ℓ_{∞} norm
 - $\bullet ||x||_{\infty} = max_i|x_i|$
- All norms presented so far are examples of the family of ℓ_p norms, which are parameterized by a real number $p \ge 1$
 - $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{-1}{p}}$
- Norms can be defined for matrices, such as the Frobenius norm.
 - $||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{tr(A^T A)}$

Vector Norm Examples

Special Matrices

- The identity matrix, denoted by $I \in \mathbb{R}^{n \times n}$ is a square matrix with ones on the diagonal and zeros everywhere else
- A diagonal matrix is matrix where all non-diagonal matrices are 0. This is typically denoted as D = $diag(d_1, d_2, d_3, ..., d_n)$
- Two vectors x, y ∈ Rⁿ are orthogonal if x. y = 0. A square matrix U ∈ R^{n×n} is orthogonal if all its columns are orthogonal to each other and are normalized
- It follows from orthogonality and normality that
 - \bullet U^TU = I = UU^T
 - $||Ux||_2 = ||x||_2$

- Linear Algebra Basics
- Norms
- Multiplications

- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

Multiplications

- The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is given by $C \in \mathbb{R}^{m \times p}$, where $C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$
- Given two vectors $x, y \in \mathbb{R}^n$, the term x^Ty (also $x \cdot y$) is called the **inner product** or **dot product** of the vectors, and is a real number given by $\sum_{i=1}^n x_i y_i$. For example,

$$x^{\mathsf{T}}y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \sum_{i=1}^3 x_i y_i$$

• Given two vectors $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, the term xy^\top is called the outer product of the vectors, and is a matrix given by $(x_iy_i)^\top = x_iy_i$. For example,

Multiplications

$$xy^{\mathsf{T}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{bmatrix}$$

 The dot product also has a geometrical interpretation, for vectors in x, y ∈ R² with angle θ between them

which leads to use of dot product for testing orthogonality, getting the Euclidean norm of a vector, and scalar projections.

Inner Product Properties

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors

Inner Product Properties

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors

Inner Product Properties

The inner product is a measure of correlation between two vectors, scaled by the norms of the vectors

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion

- Trace and Determinant
- Eigen Values and Eigen Vectors
- Matrix Decomposition
- Matrix Calculus

Linear Independence and Matrix Rank

• A set of vectors $\{x_1, x_2, ..., x_n\} \subset \mathbb{R}^m$ are said to be *(linearly)* independent if no vector can be represented as a linear combination of the remaining vectors. That is if

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \alpha_2, ... \in \mathbb{R}$ then we say that the vectors are linearly **dependent**; otherwise the vectors are linearly independent

• The column rank of a matrix A ∈ R^{m×n} is the size of the largest subset of columns of A that constitute a linearly independent set. Row rank of a matrix is defined similarly for rows of a matrix.

Range and Null Space

- The span of a set of vectors $\{x_1, x_2, ..., x_n\}$ is the set of all vectors that can be expressed as a linear combination of the set $\{v: v = \sum_{i=1}^{n} \alpha_i x_i, \alpha_i \in \mathbb{R}\}$
- If $\{x_1, x_2, ..., x_n\} \in \mathbb{R}^n$ is a set of linearly independent set of vectors, then span $(\{x_1, x_2, ..., x_n\}) = \mathbb{R}^n$
- The range of a matrix $A \in \mathbb{R}^{m \times n}$, denoted as $\mathcal{R}(A)$, is the span of the columns of A
- The nullspace of a matrix $A \in \mathbb{R}^{m \times n}$, denoted $\mathcal{N}(A)$, is the set of all vectors that equal 0 when multiplied by A
 - $\mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$

Row and Column Space

- The row space and column space are the linear subspaces generated by row and column vectors of a matrix
- Linear subspace, is a vector space that is a subset of some other higher dimension vector space
- For a matrix $A \in \mathbb{R}^{m \times n}$
 - $Col\ space(A) = span(columns\ of\ A)$
 - Rank(A) = dim(row space(A)) = dim(col space(A))

Matrix Rank: Examples

What are the ranks for the following matrices?

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

Matrix Inverse

- The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} and is the unique matrix such that $A^{-1}A = I = AA^{-1}$
- For some square matrices A⁻¹ may not exist, and we say that A is singular or non-invertible. In order for A to have an inverse, A must be full rank.
- For non-square matrices the inverse, denoted by A^+ , is given by $A^+ = (A^TA)^{-1}A^T$ called the **pseudo inverse**

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant

- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

Matrix Trace

The trace of a matrix A ∈ R^{n×n}, denoted as tr(A), is the sum
of the diagonal elements in the matrix

$$tr(A) = \sum_{i=1}^{n} A_{ii}$$

- The trace has the following properties
 - For $A \in \mathbb{R}^{n \times n}$, $tr(A) = trA^{\mathsf{T}}$
 - For $A, B \in \mathbb{R}^{n \times n}$, tr(A + B) = tr(A) + tr(B)
 - For $A \in \mathbb{R}^{n \times n}$, $t \in \mathbb{R}$, $tr(tA) = t \cdot tr(A)$
 - For A, B, C such that ABC is a square matrix tr(ABC) = tr(BCA) = tr(CAB)
- The trace of a matrix helps us easily compute norms and eigenvalues of matrices as we will see later

Matrix Determinant

Definition (Determinant)

The determinant of a square matrix A, denoted by |A|, is defined as

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

where M_{ij} is determinant of matrix A without the row i and column j.

For a
$$2 \times 2$$
 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$|A| = ad - bc$$

Properties of Matrix Determinant

Basic Properties

- \bullet $|A| = |A^T|$
- \bullet |AB| = |A||B|
- ullet |A|=0 if and only if A is not invertible
- If A is invertible, then $\left|A^{-1}\right| = \frac{1}{|A|}$.

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

Eigenvalues and Eigenvectors

• Given a square matrix $A \in \mathbb{R}^{n \times n}$ we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^n$ is an eigenvector if

$$Ax = \lambda x, \qquad x \neq 0$$

- Intuitively this means that upon multiplying the matrix A with a vector x, we get the same vector, but scaled by a parameter λ
- Geometrically, we are transforming the matrix A from its original orthonormal basis/co-ordinates to a new set of orthonormal basis x with magnitude as λ

Computing Eigenvalues and Eigenvectors

We can rewrite the original equation in the following manner

$$Ax = \lambda x, \quad x \neq 0$$

 $\Rightarrow (\lambda I - A)x = 0, \quad x \neq 0$

- This is only possible if (λI A) is singular, that is |(λI A)| =
 0.
- Thus, eigenvalues and eigenvectors can be computed.
 - Compute the determinant of $A \lambda I$.
 - This results in a polynomial of degree n.
 - Find the roots of the polynomial by equating it to zero.
 - The n roots are the n eigenvalues of A. They make $A \lambda I$ singular.
 - For each eigenvalue λ , solve $(A \lambda I)x$ to find an eigenvector x

Eigenvalue Example

Eigenvalues

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix} \quad \begin{array}{c} \lambda_1 = -5 \\ \lambda_2 = 2 \end{array}$$

Determine eigenvectors: $Ax = \lambda x$

$$\begin{array}{c} x_1 + 2x_2 = \lambda x_1 \\ 3x_1 - 4x_2 = \lambda x_2 \end{array} \Rightarrow \begin{array}{c} (1 - \lambda)x_1 + 2x_2 = 0 \\ 3x_1 - (4 + \lambda)x_2 = 0 \end{array}$$

Eigenvector for $\lambda_1 = -5$

$$\begin{array}{ll}
6x_1 + 2x_2 = 0 \\
3x_1 + x_2 = 0
\end{array} \implies \mathbf{x}_1 = \begin{bmatrix} -0.3162 \\ 0.9487 \end{bmatrix} \text{ or } \mathbf{x}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$

Eigenvector for $\lambda_1 = 2$

$$\begin{vmatrix} -x_1 + 2x_2 = 0 \\ 3x_1 - 6x_2 = 0 \end{vmatrix} \Rightarrow \mathbf{x}_2 = \begin{bmatrix} 0.8944 \\ 0.4472 \end{bmatrix} \text{ or } \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Matrix Eigen Decomposition

- All the eigenvectors can be written together as AX = XΛ
 where the diagonals of X are the eigenvectors of A, and Λ is a
 diagonal matrix whose elements are eigenvalues of A
- If the eigenvectors of A are invertible, then $A = X\Lambda X^{-1}$
- There are several properties of eigenvalues and eigenvectors
 - $Tr(A) = \sum_{i=1}^{n} \lambda_i$
 - $\bullet |A| = \prod_{i=1}^n \lambda_i$
 - Rank of A is the number of non-zero eigenvalues of A
 - ullet If A is non-singular then $1/\lambda_i$ are the eigenvalues of A^{-1}
 - The eigenvalues of a diagonal matrix are the diagonal elements of the matrix itself!

Properties of Eigendecomposition

- For a symmetric matrix A, it can be shown that eigenvalues are real and the eigenvectors are orthonormal. Thus it can be represented as UΛU^T
- Considering quadratic form of A,

•
$$x^{\mathsf{T}}Ax = x^{\mathsf{T}}U\Lambda U^{\mathsf{T}}x = y^{\mathsf{T}}\Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2$$
 (where $y = U^{\mathsf{T}}x$)

- Since y_i^2 is always positive the sign of the expression always depends on λ_i . If $\lambda_i > 0$ then the matrix A is positive definite, if $\lambda_i \geq 0$ then the matrix A is positive semidefinite
- For a multivariate Gaussian, the variances of x and y do not fully describe the distribution. The eigenvectors of this covariance matrix capture the directions of highest variance and eigenvalues the variance

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition

Matrix Calculus

Singular Value Decomposition

- Singular value decomposition, known as SVD, is a factorization of a real matrix with applications in calculating pseudo-inverse, rank, solving linear equations, and many others.
- For a matrix $M \in \mathbb{R}^{m \times n}$ assume $n \leq m$
 - ullet $M=U\Sigma V^{ op}$ where $oldsymbol{\mathsf{U}}\in\mathbb{R}^{m imes m}$, $V^{ op}\in\mathbb{R}^{n imes n}$, $\Sigma\in\mathbb{R}^{m imes n}$
 - The m columns of U, and the n columns of V are called the left and right singular vectors of M. The diagonal elements of Σ , Σ_{ii} are known as the singular values of M.
 - Let v be the ith column of V, and u be the ith column of U, and σ be the ith diagonal element of Σ

$$Mv = \sigma u$$
 and $M^{\mathsf{T}}u = \sigma v$

Singular Value Decomposition

- Singular value decomposition is related to eigenvalue decomposition
 - Suppose $X = [x_1 u \quad x_2 u \dots \quad x_m u] \in \mathbb{R}^{m \times n}$
 - Then covariance matrix is $C = \frac{1}{m}XX^{\top}$
 - Starting from singular vector pair

•
$$M^{\mathsf{T}}\mathbf{u} = \sigma \mathbf{v}$$

$$\Rightarrow MM^{\mathsf{T}}\mathbf{u} = \sigma Mv$$

$$\Rightarrow MM^{\mathsf{T}}\mathbf{u} = \sigma^2 u$$

$$\Rightarrow Cu = \lambda u$$

Geometric Meaning of SVD

SVD Example

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{M} \qquad \mathbf{U} \qquad \mathbf{\Sigma} \qquad \mathbf{V}^{\mathrm{T}}$$

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus

Matrix Calculus

• For a vector x, b $\in \mathbb{R}^n$, let $f(x) = b^{\mathsf{T}}x$, then $\nabla_x b^{\mathsf{T}}x$ is equal to b

•
$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k$$

• Now for a quadratic function, $f(x) = x^T A x$, with $A \in \mathbb{S}^n$, $\frac{\partial f(x)}{\partial x_k} = 2Ax$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{i=1}^n A_{ij} x_i x_j$$

$$\bullet = \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\bullet = 2\sum_{i=1}^{n} A_{ki} x_i$$

• Let $f(X) = X^{-1}$, then $\partial(X^{-1}) = -X^{-1}(\partial X)X^{-1}$

Summary

- Linear Algebra Basics
- Norms
- Multiplications
- Matrix Inversion
- Trace and Determinant
- Eigen Values and Eigen Vectors
- Singular Value Decomposition
- Matrix Calculus