Глубинное обучение в анализе графовых данных

0. Введение

О курсе. Организационное.

- 12 лекций и семинаров
- 5 домашних заданий (3 теоретических, 2 практических)
- Лекции по четвергам 14:40
- Семинары по четвергам 16:10

О курсе. Оценивание

- Итог = 0.7 О_н + 0.3 О_э, округление арифметическое
- О_н = (Кол-во баллов) / 7
- 3 практ. дз (10, 15, 20), 2 теор.дз (10, 15)
- Экзамен защита доп. дз (5) + устный ответ (5)
- Автоматы с 6.5 за накоп (при условии всех сданных* домашних заданий)
- Блоков нет

О курсе. Дедлайны

- Дедлайны мягкие, за каждый день просрока -10%, после трех дней приходит жесткий
- Два раза за курс сдать можно после жесткого (дается еще 4 дня)
- Сдавать после 7 дней нельзя
- Для сдачи* учитывается оценка без штрафа

О курсе. Выполнение домашних заданий

- Домашние задания выполняются индивидуально
- В случае подозрения на списывание студент вызывается на защиту

О курсе. Преподаватели

- Лектор Валитов Эльдар (AliExpress Russia)
- Семинарист Павел Федоров (ВТБ, Whalemap)

Глубинное обучение в анализе графовых данных

1. Графы и анализ данных.

Что такое графы

Что такое графы

G = (V, E), где V - множество вершин, E - множество ребер

Что такое графы

Граф?

Зачем нужны графы в контексте данных

- Графы являются обобщенным способом представления любой информации связанной с наличием взаимодействия между объектами
- Существует большое количество различных методов анализа графов, поэтому удобно приводить данные из различных областей к одному формату

Примеры графовых данных

Схема метрополитена

Социальный граф

схема трафика

Примеры графовых данных

Примеры графовых данных

компьютерная сеть

интернет

сети нейронов

Мотивация

Основные применения глубинного обучения сегодня - последовательные данные:

- NLP: "askfnkksnf" последовательность текста
- CV : структурированная из пикселей картинка
- Audio : звуковые волны

Мотивация

Отличительная особенность графов - связи между объектами, следовательно информацию можно обрабатывать шире и иначе

Где начало и конец?

Мотивация

Тренд GNN на ICLR

Подходы к анализу графовых данных без нейросетей

Многие задачи, решаемые с помощью глубинного обучения существуют давно для графовых данных, соответственно существовали какие-то методы решения этих задач с помощью обычных алгоритмов на графах

Подходы к анализу графовых данных без нейросетей

ссылка с примерами

Например:

• Рекомендательные системы - обходы

- Групповые вкусы пользователя начальные вершины обхода графа
- Делаем 3 случайных шага по графу
- В каждой вершине есть вероятность телепортироваться в начало обхода
- Конечные вершины графа кандидаты для рекомендации

Подходы к анализу графовых данных без нейросетей

Vehicle Route Problem - оптимизация маршрутов

Типы задач на графах

- 1. Edge-level задачи связанные с ребрами (классификация связей, регрессия, дополнение графа)
- Node-level задачи связанные с вершинами (классификация вершин, регрессия, кластеризация)
- 3. Graph-level специфичный для задач на графах тип задач (та же классификация, регрессия, генерация, эволюция)

Node-level задачи

Определение интересов человека по его окружению

Хотим выучить $f \colon (V, E) o \mathbb{R}^{|V|}$

Edge-level задачи

Сделать рекомендацию на друзей в социальной сети

Для всех пар v_i, v_j хотим сделать предсказание $f(v_i, v_j)$

Edge-level задачи

Сделать рекомендацию фильма или музыки

Для всех пар v_i, v_j хотим сделать предсказание $f(v_i, v_j)$

Graph-level задачи

Хотим научиться создавать графы с определенными характеристиками

И subgraph-level задачи

Предсказание времени прибытия машины (разбиение дороги на сегменты (вершины) и доступность из одного сегмента в другой (ребра)

Особенности алгоритмов на графах

Для работы со сложными системами возникает определенная проблема - выбор представления для использования методов анализа

Существуют некоторые базовые требования к алгоритмов на графах

Особенности алгоритмов на графах

Алгоритмы на графах должны работать независимо от перестановки индексов вершин

Особенности алгоритмов на графах

Алгоритмы на графах должны уметь принимать на вход графы разных размеров

Выбор представления данных

Важным этапом перед применением глубинного обучения является выбор представления

Нужно разобраться какими свойствами должен обладать граф для представления данных

Свойства представлений

Ориентированность - ребра имеют направление

Свойства представлений

Связность - наличие пути между всеми вершинами

