第1章

コホモロジー

R を環とする.

定義 1.1: 良い被覆

位相空間 X の開被覆 $\left\{U_{\alpha}\right\}_{\alpha\in\Lambda}$ が良い被覆 (good cover) であるとは、 $\forall n\in\mathbb{N},\ \forall\alpha_1,\,\ldots,\,\alpha_n\in\Lambda$ に対して

$$U_{\alpha_1}\cap\cdots\cap U_{\alpha_n}
eq\emptyset$$
 \Longrightarrow $U_{\alpha_1}\cap\cdots\cap U_{\alpha_n}$ は可縮

が成り立つこと.

以下では $U_{\alpha_1...\alpha_n} \coloneqq U_{\alpha_1} \cap \cdots \cap U_{\alpha_n}$ と略記する.

1.1 導来関手

1.2 層係数コホモロジー

位相空間 X を 1 つ固定する. X 上の**開集合の圏** \mathbb{O}_X を,

- X の開集合を対象とする
- X の任意の開集合 $U,V\subset X$ に対して

$$\operatorname{Hom}_{\mathbb{O}_X}\left(U,\,V\right) \coloneqq \begin{cases} \{\, \text{包含写像} \,\, U \hookrightarrow V \,\}, & U \subset V \\ \emptyset, & U \not\subset V \end{cases}$$

と定義する.

定義 1.2: 前層

位相空間 X 上の, 小圏 S に値をとる前層 (presheaf) とは, 関手

$$P \colon \mathbb{O}_X^{\mathrm{op}} \longrightarrow \mathcal{S}$$

のこと<u>a</u>.

 a 最も一般的には、関手 $P\colon \mathcal{C}^{\mathrm{op}} \longrightarrow \mathcal{S}$ のことを圏 \mathcal{C} 上の \mathcal{S} に値をとる前層と呼ぶ https://ncatlab.org/nlab/show/presheaf

位相空間 X 上の,圏 S に値をとる**前層の圏** $\mathbf{PSh}(X, S)$ とは,

- *S* に値をとる前層を対象とする.
- S に値をとる前層 $P, Q: \mathbb{O}_X^{\mathrm{op}} \longrightarrow S$ に対して、自然変換

$$F \colon P \Longrightarrow Q$$

を射とする

圏のこと.

【例 1.2.1】定数前層

圏 S の対象 A に対して定まる前層

$$A_X \colon \mathbb{O}_X^{\operatorname{op}} \longrightarrow \mathcal{S},$$

$$U \longmapsto A,$$

$$(U \hookrightarrow V) \longmapsto \operatorname{id}_A$$

のことを**定数前層** (constant presheaf) と呼ぶ.

【例 1.2.2】微分形式のなす前層

X を C^{∞} 多様体とする. このとき

$$C_X^\infty \colon \mathbb{O}_X^{\mathrm{op}} \longrightarrow \mathbb{R}\text{-}\mathbf{Mod},$$

$$U \longmapsto C^\infty(U),$$

$$(\iota \circ U \hookrightarrow V) \longmapsto \left(f \longmapsto f \circ \iota \right)$$

なる対応は前層である. 同様に、 $\forall q \in \mathbb{Z}_{>0}$ に対して

$$\begin{split} \Omega_X^q \colon \mathbb{O}_X^{\mathrm{op}} &\longrightarrow \mathbb{R}\text{-}\mathbf{Mod}, \\ U &\longmapsto \Omega^q(U), \\ (\iota \colon U \hookrightarrow V) &\longmapsto \left(\omega \longmapsto \iota^*\omega\right) \end{split}$$

なる対応は前層である.

定義 1.3: 層

前層 $P \in \mathrm{Ob}(\mathrm{PSh}(X,\mathcal{S}))$ が層 (sheaf) であるとは,

- X の任意の開集合 $U\subset X$ および U の開被覆 $\left\{U_{\alpha}\right\}_{\alpha\in\Lambda}$
- 任意の族 $\big\{x_\alpha\in P(U_\alpha)\big\}_{\alpha\in\Lambda}$ であって、 $\forall \alpha,\,\beta\in\Lambda$ に対して

$$P(U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\alpha})(x_{\alpha}) = P(U_{\alpha} \cap U_{\beta} \hookrightarrow U_{\beta})(x_{\beta})$$

を充たすもの

に対して、 $x \in P(U)$ が一意的に存在して

$$\forall \alpha \in \Lambda, \ P(U_{\alpha} \hookrightarrow U)(x) = x_{\alpha}$$

を充たすこと.

位相空間 X 上の,圏 S に値をとる層の圏 $\mathrm{Sh}(X,S)$ とは,

- Sに値をとる層を対象とする.
- S に値をとる層 $P, Q: \mathbb{O}_X^{\mathrm{op}} \longrightarrow S$ に対して, 自然変換

$$F \colon P \Longrightarrow Q$$

を射とする

圏のこと. $\mathcal S$ がアーベル圏のとき、圏 $\mathrm{Sh}(X,\mathcal S)$ もまたアーベル圏である [?, p.298, 命題 4.30]. X を位相空間とする. 加法的関手

$$A \colon \operatorname{Sh}(X, R\operatorname{-}\mathbf{Mod}) \longrightarrow R\operatorname{-}\mathbf{Mod}$$
 (1.2.1)

を,

- 任意の層 $P \in Ob(Sh(X, R-Mod))$ に対して R-加群 $P(X) \in Ob(R-Mod)$ を対応付ける
- 層 $P,Q \in \mathrm{Ob}(\mathrm{Sh}(X,R\text{-}\mathbf{Mod}))$ の間の任意の自然変換 $F\colon P \Longrightarrow Q$ に対して、R-加群の準同型 $F_X\colon P(X) \longrightarrow Q(X)$ を対応付ける

関手として定義する.

定義 1.4: 層係数コホモロジー

加法的関手 (1.2.1) の右導来関手を $(H^n(X, -))_{n \in \mathbb{Z}_{\geq 0}}$ と書く. 層 $P \in \mathrm{Ob}(\mathrm{Sh}(X, R\operatorname{-\mathbf{Mod}}))$ を係数とする位相空間 X の**層係数コホモロジー** (sheaf cohomology) とは,

$$H^n(X, P)$$

のこと.

1.3 Čech コホモロジー

位相空間 X および前層 $P \in Ob(PSh(X, R-Mod))$ を与える.

X の開被覆 $\mathcal{U}\coloneqq \left\{U_{lpha}
ight\}_{lpha\in\Lambda}$ をとる. $orall n\in\mathbb{Z}_{\geq0}$ に対して

$$\check{C}^{n}(\mathcal{U}, P) := \prod_{(\alpha_{0}, \dots, \alpha_{n}) \in \Lambda^{n+1}} P(U_{\alpha_{0} \dots \alpha_{n}})$$

と定義し,

$$\delta^{n+1} : \check{C}^n(\mathcal{U}, P) \longrightarrow \check{C}^{n+1}(\mathcal{U}, P), \tag{1.3.1}$$

$$\left(x_{\alpha_0 \dots \alpha_n}\right)_{(\alpha_0, \dots, \alpha_n)} \longmapsto \left(\sum_{j=0}^{n+1} (-1)^j P(U_{\alpha_0 \dots \alpha_{n+1}} \hookrightarrow U_{\alpha_0 \dots \hat{\alpha_j} \dots \alpha_{n+1}})(x_{\alpha_0 \dots \hat{\alpha_j} \dots \alpha_{n+1}})\right)_{(\alpha_0, \dots, \alpha_{n+1})}$$

と定義すると $\delta^{n+1} \circ \delta^n = 0$ であるから、R-Mod の図式

$$\cdots \xrightarrow{\delta^{n-1}} \check{C}^{n-1}(\mathcal{U}, P) \xrightarrow{\delta^n} \check{C}^n(\mathcal{U}, P) \xrightarrow{\delta^{n+1}} \check{C}^{n+1}(\mathcal{U}, P) \xrightarrow{\delta^{n+2}} \cdots$$

はコチェイン複体である. この複体を Čech 複体と呼ぶ.

定義 1.5: Čech コホモロジー

Čech 複体 $(\check{C}^{\bullet}(\mathcal{U}, P), \delta^{\bullet})$ のコホモロジーのことを X の開被覆 \mathcal{U} に関する P 係数 $\check{\mathbf{Cech}}$ コホモロジーと呼び、 $\check{\mathbf{M}}^{\bullet}(\mathcal{U}, \mathbf{P})$ と書く.

【例 1.3.1】Čech-de Rham 複体

X を C^{∞} 多様体とし, X の開被覆 \mathcal{U} をとる. 【例 1.2.2】において導入した前層 $\Omega_X^q: \mathbb{O}_X^{\mathrm{op}} \longrightarrow \mathbb{R}$ -Mod について,複体 $(\check{C}^{\bullet}(\mathcal{U}, \Omega_X^q), \delta^{\bullet})$ のことを Čech-de Rham 複体と呼ぶ. $\delta: \check{C}^n(\mathcal{U}, \Omega_X^l)$ の定義 (1.3.1) に $(-1)^l$ をつけることで,これは二重複体の構造 a を持つ:

 $^{^{}a}(-1)^{l}$ の因子は $\mathrm{d}\delta+\delta\mathrm{d}=0$ を成り立たせるために必要である.

命題 1.1: 良い被覆に関する Čech コホモロジー

定数前層 $\mathbb{R}_X: \mathbb{O}_X \longrightarrow \mathbb{R}$ -Mod について、もし \mathcal{U} が良い被覆ならば

$$H_{\mathrm{dR}}^{\bullet}(X; \mathbb{R}) \cong \check{H}^{\bullet}(\mathcal{U}; \mathbb{R}_X)$$

が成り立つ.

証明

1.4 Deligne-Beilinson コホモロジー

一般論には立ち入らず、[?, p.21, Appendix A] を参考に、本文中で必要になる最小限だけ Deligne-Beilinson コホモロジーを導入する.

 C^{∞} 多様体 X とその開被覆 U を一つ固定する. まず, Čech-de Rham 複体の de Rham 複体成分を次数 -1 に拡張する:

$$\check{C}^n(\mathcal{U},\,\Omega_X^{-1}) := \check{C}^n(\mathcal{U},\,\mathbb{Z}_X)$$

ただし \mathbb{Z}_X は圏 \mathbb{R} -Mod に値をとる定数前層である.そして

$$\mathbf{d}_{-1} \colon \check{C}^{n}(\mathcal{U}, \, \Omega_{X}^{-1}) \longrightarrow \check{C}^{n}(\mathcal{U}, \, \Omega_{X}^{0}),$$
$$(c_{\alpha_{0}...\alpha_{n}})_{(\alpha_{0}, ..., \alpha_{n})} \longmapsto ((x \longmapsto c_{\alpha_{0}...\alpha_{n}}))_{(\alpha_{0}, ..., \alpha_{n})}$$

と定義することで, 二重複体

$$\begin{split} \check{C}^0(\mathcal{U},\,\Omega_X^{-1}) & \stackrel{\mathrm{d}_{-1}}{\longrightarrow} \check{C}^0(\mathcal{U},\,\Omega_X^0) & \stackrel{\mathrm{d}}{\longrightarrow} \check{C}^0(\mathcal{U},\,\Omega_X^1) & \stackrel{\mathrm{d}}{\longrightarrow} \cdots & \stackrel{\mathrm{d}}{\longrightarrow} \check{C}^0(\mathcal{U},\,\Omega_X^{\dim X}) & \longrightarrow 0 \\ \downarrow^\delta & & \downarrow^\delta & & \downarrow^\delta & & \downarrow^\delta \\ \check{C}^1(\mathcal{U},\,\Omega_X^{-1}) & \stackrel{\mathrm{d}_{-1}}{\longrightarrow} \check{C}^1(\mathcal{U},\,\Omega_X^0) & \stackrel{\mathrm{d}}{\longrightarrow} \check{C}^1(\mathcal{U},\,\Omega_X^1) & \stackrel{\mathrm{d}}{\longrightarrow} \cdots & \stackrel{\mathrm{d}}{\longrightarrow} \check{C}^1(\mathcal{U},\,\Omega_X^{\dim X}) & \longrightarrow 0 \\ \downarrow^\delta & & \downarrow^\delta & & \downarrow^\delta & & \downarrow^\delta \\ \check{C}^2(\mathcal{U},\,\Omega_X^{-1}) & \stackrel{\mathrm{d}_{-1}}{\longrightarrow} \check{C}^2(\mathcal{U},\,\Omega_X^0) & \stackrel{\mathrm{d}}{\longrightarrow} \check{C}^2(\mathcal{U},\,\Omega_X^1) & \stackrel{\mathrm{d}}{\longrightarrow} \cdots & \stackrel{\mathrm{d}}{\longrightarrow} \check{C}^2(\mathcal{U},\,\Omega_X^{\dim X}) & \longrightarrow 0 \\ \downarrow^\delta & & \downarrow^\delta & & \downarrow^\delta & & \downarrow^\delta \\ \vdots & \vdots \\ \end{split}$$

を得る.この 2 重複体を横方向に切り取り,かつ右斜め上方向に直和をとることで得られる複体を **Deligne-Beilinson 複体**と呼ぶ.あからさまには,ある $0 \le p \le \dim X + 1$ に対して

$$\mathbb{Z}(p)_{\mathbf{D}}^{q} := \begin{cases} \bigoplus_{n+m=q-1} \check{C}^{n}(\mathcal{U}, \, \Omega_{X}^{m}), & 0 \leq q \leq p \\ \bigoplus_{\substack{n+m=p-1, \\ m \leq p-1}} \check{C}^{n}(\mathcal{U}, \, \Omega_{X}^{m}), & q > p \end{cases}$$

と定義し $D := d + (-1)^{\text{deg}} \delta$ とおくと、図式

$$\cdots \xrightarrow{D} \mathbb{Z}(p)_{D}^{q} \xrightarrow{D} \mathbb{Z}(p)_{D}^{q+1} \xrightarrow{D} \cdots$$

はコチェイン複体になる.

定義 1.6: Deligne-Beilinson コホモロジー

 $0 \le p \le \dim X + 1$ を与える.

上述の複体 $(\mathcal{U}, \mathbb{Z}(p)_{\mathbf{D}}^{\bullet}, D)$ を開被覆 \mathcal{U} に関する **Deligne-Beilinson 複体**, そのコホモロジーを **Deligne-Beilinson コホモロジー**と呼ぶ. 記号として $H_{\mathbf{D}}^{\bullet}(\mathcal{U}; \mathbb{Z}(p)_{\mathbf{D}})$ と書く.

標準的射影 $\pi^q\colon \mathbb{Z}(p)^q_{\mathbb{D}}\longrightarrow \check{C}^q(\mathcal{U},\,\Omega_X^{-1})$ はチェイン写像

$$\cdots \xrightarrow{D} \mathbb{Z}(p)_{D}^{q} \xrightarrow{D} \mathbb{Z}(p)_{D}^{q+1} \xrightarrow{D} \cdots$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$

$$\cdots \xrightarrow{\delta} \check{C}^{q}(\mathcal{U}; \mathbb{Z}_{X}) \xrightarrow{\delta} \check{C}^{q+1}(\mathcal{U}; \mathbb{Z}_{X}) \xrightarrow{\delta} \cdots$$

となるので, 誘導準同型

$$H^q_D(\mathcal{U}; \mathbb{Z}(p)_D) \longrightarrow \check{H}^q(\mathcal{U}; \mathbb{Z}_X)$$

がある.

命題 1.2: Deligne-Beilinson コホモロジーと Čech コホモロジー

 $0 \le p \le \dim X + 1$ を与える.

(1) q < p ならば

$$H_D^q(\mathcal{U}; \mathbb{Z}(p)_D) \cong \check{H}^{q-1}(\mathcal{U}, \mathbb{R}/\mathbb{Z})$$

(2) q > p a > b

$$H_D^q(\mathcal{U}; \mathbb{Z}(p)_D) \cong \check{H}^{q-1}(\mathcal{U}, \mathbb{Z})$$

(3) q=p ならば、 \mathbb{Z} 加群の完全列

$$0 \longrightarrow \left\{ \substack{\text{closed global } (p-1)\text{-forms} \\ \text{with integral periods}} \right\} \longrightarrow \Omega^{p-1}(X; \mathbb{R}) \longrightarrow H^p_D\left(\mathcal{U}; \mathbb{Z}(p)_D\right) \longrightarrow \check{H}^p\left(\mathcal{U}, \mathbb{Z}\right) \quad \text{(exact)}$$

が成り立つ.

証明 (1)

命題 1.3: 良い被覆に関する Deligne-Beilinson コホモロジー

 $H_{\mathrm{D}}^{\bullet}(\mathcal{U};\mathbb{Z}(p)_{\mathrm{D}})$ は良い被覆 \mathcal{U} の取り方によらない.

証明