Algebra liniowa - Kolokwium I

Zachariasz Jażdżewski

14 kwietnia 2024

1 Definicje

Definicja 1 (Przestrzeń liniowa). System algebraiczny $(V,K,+,\cdot)$, gdzie V jest niepustym zbiorem wektorów, K jest ciałem, + jest dodawaniem wektorów, a \cdot jest mnożeniem wektorów przez skalary oraz spełnione są warunki:

- 1. $\forall_{x,y\in V}$ x+y=y+x
- 2. $\forall_{x,y,z\in V}$ x + (y+z) = (y+x) + z
- 3. $\exists_{0 \in V} \forall_{x \in V} \quad x + 0 = x$
- **4.** $\forall_{x \in V} \exists_{-x \in V} \quad x + (-x) = 0$
- 5. $\forall_{\alpha \in K} \forall_{x,y \in V} \quad \alpha(x+y) = \alpha x + \alpha y$
- **6.** $\forall_{\alpha,\beta\in K} \forall_{x\in V} \quad (\alpha+\beta)x = \alpha x + \beta x$
- 7. $\forall_{\alpha,\beta\in K}\,\forall_{x\in V}\quad \alpha(\beta x)=(\alpha\beta)x$
- 8. $\forall_{x \in V} \quad 1x = x$, gdzie 1 to jedynka ciała K.

Definicja 2 (Podprzestrzeń liniowa). Podprzestrzenią liniową przestrzeni $(V, K, +, \cdot)$ nazywamy przestrzeń $(W, K, +, \cdot)$ gdzie W jest podzbiorem V.

Definicja 3 (Kombinacja liniowa wektorów). Kombinacją liniową wektorów v_1, v_2, \ldots, v_n o współczynnikach $\alpha_1, \alpha_2, \ldots, \alpha_n$ nazywamy wektor

$$v = \sum_{i=1}^{n} \alpha_i v_i$$

Przykład. Kombinacją liniową wektorów $u_1 = (1, 2, 3)$ i $u_2 = (4, 5, 6)$ jest wektor

$$v = 5u_1 - 3u_2 = 5(1, 2, 3) - 3(4, 5, 6) = (5, 10, 15) - (12, 15, 18) = (-7, -5, -3)$$

Definicja 4 (Liniowo niezależny układ wektorów). Układ wektorów (v_1, v_2, \ldots, v_n) jest liniowo niezależny, jeśli równanie wektorowe

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$$

ma tylko zerowe rozwiązanie.

Inaczej.

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0 \iff (x_1, x_2, \dots, x_n) = (0, 0, \dots, 0)$$

Definicja 5 (Liniowo zależny układ wektorów). Układ wektorów jest liniowo zależny, jeśli nie jest on liniowo niezależny, czyli gdy równanie wektorowe

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = 0$$

ma rozwiązanie niezerowe.

Inaczej. Układ jest liniowo zależny, jeśli istnieją skalary x_1, x_2, \ldots, x_n nie wszystkie równe zeru, takie, że spełnione jest równanie powyżej.

Definicja 6 (Baza przestrzeni). Bazą przestrzeni V jest układ $B=(v_1,v_2,\ldots,v_n)$ wektorów z przestrzeni V, który

- 1. Jest liniowo niezależny
- 2. Generuje przestrzeń B, czyli $\mathcal{L}(B) = V$

Definicja 7 (Wymiar przestrzeni V). Wymiar przestrzeni V to ilość elementów dowolnej bazy przestrzeni wektorowej V. Jeśli przestrzeń V nie jest skończenie wymiarowa, to jest ona nieskończenie wymiarowa.

Notacja. Wymiar przestrzeni V zapisujemy jako $\dim V$ od angielskiego "dimension".

Przykład..

- Przestrzeń \mathbb{R}_3 jest 3-wymiarowa.
- Przestrzeń $\mathbb{R}_n[x]$ wielomianów stopnia co najwyżej n-tego jest wymiaru n+1.
- Przestrzeń $V = \{0\}$ jest 0-wymiarowa.

Definicja 8 (Wektor współrzędnych). Niech v będzie wektorem przestrzeni V generowanej przez bazę $B = (b_1, b_2, \dots, b_n)$.

$$v = r_1b_1 + r_2b_2 + \dots + r_nb_n$$

Wektorem współrzędnych wektora v względem bazy B nazywamy wektor

$$[v]_B = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}$$

skalary r_1, r_2, \ldots, r_n nazywamy współrzędnymi wektora v względem bazy B.

Definicja 9 (Izomorfizm przestrzeni). Izomorfizm przestrzeni V na przestrzeń W to przekształcenie $\varphi\colon V\to W$ spełniające warunki:

- 1. φ jest różnowartościowe i $\varphi(V) = W$
- 2. $\forall_{x,y \in V} \quad \varphi(x+y) = \varphi(x) + \varphi(y)$
- 3. $\forall_{x \in V} \forall_{\alpha \in K} \quad \varphi(\alpha \cdot x) = \alpha \cdot \varphi(x)$

Definicja 10 (Macierz przejścia od bazy do bazy). Macierzą przejścia z bazy $B=(b_1,b_2,\ldots,b_3)$ do bazy $C=(c_1,c_2,\ldots,c_n)$ przestrzeni wektorowej V jest

$$P_C^B = \begin{bmatrix} | & | & | \\ [b_1]_C & [b_2]_C & \dots & [b_n]_C \\ | & | & | \end{bmatrix}$$

Inaczej. Macierz przejścia z bazy B do bazy C to macierz w której kolumny to wektory współrzędnych elementów b_1, b_2, \ldots, b_n bazy B względem bazy C.

Definicja 11 (Przekształcenie liniowe). Przekształcenie liniowe przestrzeni V w przestrzeń W to funkcja $T\colon V\to W$ spełniająca warunki:

1. T(x + y) = T(x) + T(y)

(addytywność przekształcenia)

2. $T(\alpha \cdot x) = \alpha \cdot T(x)$

(jednorodność przekształcenia)

Uwaga. Warunki 1. i 2. są równoznaczne z poniższym warunkiem

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

3

Definicja 12 (Obraz przekształcenia). Obraz przekształcenia T to zbiór

$$\text{Im } T = T(V) = \{ T(x) : x \in V \}$$

Inaczej. Obrazem przekształcenia jest zbiór wszystkich wektorów z przestrzeni V przekształcenych w przestrzeń W za pomocą przekształcenia T.

Notacja. Obraz przekształcenia T oznaczamy przez $\operatorname{Im} T$ od angielskiego "image".

Definicja 13 (Jądro przekształcenia). Jądro przekształcenia T to zbiór

$$\operatorname{Ker} T = T^{-1}(\{0\}) = \{x \in V : T(x) = 0\}$$

Inaczej. Jądrem przekształcenia jest zbiór takich wektorów przestrzeni V, które po przekształceniu dają wektor zerowy przestrzeni W.

Notacja. Jądro przekształcenia T oznaczamy przez $\operatorname{Ker} T$ od angielskiego "kernel".

Definicja 14 (Monomorfizm). Przekształcenie $T\colon V\to W$ jest monomorfizmem, gdy każdy wektor z przestrzeni W jest obrazem co najwyżej jednego wektora z przestrzeni V.

Inaczej. Przekształcenie jest monomorfizmem, jeśli jest różnowartościowe (jest iniekcją).

$$\forall_{x,x'\in V} \quad T(x) = T(x') \implies x = x'$$

Definicja 15 (Epimorfizm). Przekształcenie $T\colon V\to W$ jest epimorfizmem, gdy każdy wektor z przestrzeni W jest obrazem co najmniej jednego wektora z przestrzeni V.

Inaczej. Przekształcenie jest epimorfizmem, jeśli jest funkcją "na" (jest suriekcją).

$$\forall_{y \in W} \, \exists_{x \in V} \quad y = T(x)$$

Definicja 16 (Macierz przekształcenia liniowego). Macierzą przekształcenia liniowego $T\colon V\to W$ z przestrzeni V o bazie $B=(b_1,b_2,\ldots,b_n)$ w przestrzeń W o bazie $C=(c_1,c_2,\ldots,c_n)$ jest

$$[T]_C^B = \begin{bmatrix} | & | & | \\ [T(b_1)]_C & \dots & [T(b_n)]_C \end{bmatrix}$$

Inaczej. Macierz przekształcenia liniowego T względem baz B i C to macierz w której kolumny to wektory C-współrzędnych wektorów $T(b_1), \ldots, T(b_n)$.

2 Twierdzenia

Twierdzenie 1 (Twierdzenie wymiarowe). Jeśli $T\colon V\to W$ jest przekształceniem liniowym i V jest przestrzenią skończonego wymiaru, to

$$\dim \operatorname{Ker} T + \dim \operatorname{Im} T = \dim V$$

Dowód. Niech (a_1, \ldots, a_r) i (b_1, \ldots, b_p) będą odpowiednio bazami przestrzeni Ker T i Im T. Niech $b_i' \in V$ będą wektorami takimi, że $T(b_i') = b_j$ dla $j \in \{1, \ldots, p\}$.

Do udowodnienia twierdzenia wymiarowego musimy udowodnić, że $B=(a_1,\ldots,a_r,b_1',\ldots,b_p')$ jest bazą przestrzeni V. Aby to zrobić musimy wykazać, że układ B jest liniowo niezależny. Bierzemy zatem pod uwagę kombinację liniową

$$\sum_{i=1}^{r} x_i a_i + \sum_{j=1}^{p} y_j b_j' = 0$$

Musimy pokazać, że wszystkie x_i i wszystkie y_j są równe 0.

$$0 \stackrel{1}{=} T(0) \stackrel{2}{=} T\left(\sum_{i=1}^{r} x_i a_i + \sum_{j=1}^{p} y_j b_j'\right) \stackrel{3}{=} \sum_{i=1}^{r} x_i T(a_i) + \sum_{j=1}^{p} y_j T(b_j') \stackrel{4}{=} \sum_{j=1}^{p} y_j b_j$$

Komentarz.

- 1. Wynika z liniowości przekształcenia T
- 2. Wektor zerowy możemy przedstawić jako jakąś kombinację liniową wektorów przestrzeni ${\cal V}$
- 3. Wyciągamy skalary przed przekształcenie $T(a_i)$ i $T(b'_i)$
- 4. Jako, że a_i sa elementami bazy jądra T, to po przekształceniu się zerują. Do tego z założenia $T(b_i') = b_j$

zatem

$$\sum_{j=1}^{p} y_j b_j = 0$$

Jako, że wektory b_j są liniowo niezależne, więc z powyższej równości otrzymujemy, że skalary y_j są równe 0.

Stąd, podstawiając do oryginalnej kombinacji liniowej otrzymujemy

$$\sum_{i=1}^{r} x_i a_i = 0$$

Z tej zaś równości i z liniowej niezależności wektorów a_i wynika, że skalary x_i są równe 0.

Teraz udowodnimy, że każdy wektor $v \in V$ jest kombinacją liniową wektorów układu B.

Przede wszystkim, ponieważ wektory b_j generują przestrzeń T(V) i $T(v) \in T(V)$, to istnieją skalary y_j takie, że

$$T(v) = \sum_{j=1}^{p} y_j b_j$$

Zauważmy teraz, że wektor

$$v - \sum_{i=1}^{p} y_i b_j' \in \operatorname{Ker} T$$

więc istnieją skalary x_i takie, że

$$v - \sum_{j=1}^{p} y_j b'_j = \sum_{i=1}^{r} x_i a_i$$

i dlatego

$$v = \sum_{i=1}^{r} x_i a_i + \sum_{j=1}^{p} y_j b_j'$$

Z powyższego wynika, że zbiór B jest bazą przestrzeni V i dlatego

$$\dim V = |B| = r + p = \dim \operatorname{Ker} T + \dim \operatorname{Im} T$$

Twierdzenie 2. Obraz $\operatorname{Im} T$ przekształcenia liniowego $T\colon V\to W$ jest podprzestrzenią przestrzeniW.

Dowód. Zbiór T(V) jest niepusty, bo $0 \in V$ i $0-T(0) \in T(V)$. Weźmy teraz dowolne wektory $y,y' \in T(V)$ i skalary $\alpha,\beta \in K$. Wystarczy pokazać, że

$$\alpha y + \beta y' \in T(V)$$

Niech $x, x' \in V$ będą takie, że T(x) = y i T(x') = y'. Wtedy $\alpha x + \beta y' \in V$. Stąd i z liniowości przekształcenia T wynika, że

$$\alpha y + \beta y' = \alpha T(x) + \beta T(x') = T(\alpha x + \beta x') \in T(V)$$

Twierdzenie 3. Jądro $\operatorname{Ker} T$ przekształcenia liniowego $T\colon V\to W$ jest podprzestrzenią przestrzeni W.

Dowód. Ponieważ $T(0)=0\in\{0\}$, więc $0\in \operatorname{Ker} T$ i dlatego zbiór $\operatorname{Ker} T$ jest niepusty. Niech $x,x'\in \operatorname{Ker} T$ i $\alpha,\beta\in K$. Do dowodu twierdzenia wystarczy pokazać, że $\alpha x+\beta x'\in \operatorname{Ker} T$. Ponieważ $x,x'\in \operatorname{Ker} T$, więc $T(x),T(x')\in\{0\}$ i dlatego $\alpha T(x)+\beta T(x')\in\{0\}$. Stąd i z liniowości przekształcenia T wynika, że

$$T(\alpha x + \beta x') \in \{0\}$$

zatem

$$\alpha x + \beta x' \in \operatorname{Ker} T$$

Twierdzenie 4. Addytywność (1.) i jednorodność (2.) przekształcenia liniowego są równoznaczne z

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

Dowód.

$$T(\alpha x + \beta y) \stackrel{1}{=} T(\alpha x) + T(\beta y) \stackrel{2}{=} \alpha T(x) + \beta T(y)$$