DETERMINATION OF ABSOLUTE LEVEL ENERGIES OF $5 sns \ ^1S_0$ AND $5 snd \ ^1D_2$ RYDBERG SERIES OF Sr

R. BEIGANG, K. LÜCKE, A. TIMMERMANN and P.J. WEST

Institut für Atom- und Festkörperphysik, FU Berlin, 1000 Berlin 33, Fed. Rep. Germany

and

D. FRÖLICH

Institut für Angewandte Physik, Universität Hannover, 3000 Hannover 1, Fed. Rep. Germany

Received 8 February 1982

Using an evacuated wavemeter the energies of members of the 5sns $^{1}S_{0}$ and 5snd $^{1}D_{2}$ Rydberg series of Sr have been determined between principal quantum numbers 10 < n < 80 with an absolute accuracy of ± 30 MHz. The high accuracy allows for the detection of weak perturbations as demonstrated for the $4d^{2}$ $^{3}P_{0}$ perturber of the 5sns $^{1}S_{0}$ series. Refined ionization limits for the stable Sr isotopes are presented.

The advent of precise wave meters in combination with frequency stabilized cw dye lasers and Doppler-free spectroscopic methods offers the possibility to improve the accuracy of experimentally determined energy levels by at least two orders of magnitude [1, 2]. Investigations of high Rydberg states using wave meters with an accuracy up to 10^{-8} have been reported recently for the alkaline elements [3,4]. Due to the high accuracy information about weak interactions or perturbations and refined ionization limits can be obtained directly.

Here we report on the determination of level energies for the 5sns 1S_0 and 5snd 1D_2 Rydberg series of Sr between principal quantum numbers $10 \le n \le 80$. Rydberg states were excited via two-photon transitions from the $5s^2$ 1S_0 ground state with a cw ring dye laser working in the wavelength range 420 nm $\le \lambda \le 470$ nm with Stilbene 3.

A single mode output power up to 200 mW in a bandwidth of 1 MHz was achieved, sufficient for two-photon excitation. The excited Rydberg atoms were detected with a shielded thermionic diode [5] in a stainless steel oven which was heated to 650°C corresponding to a vapor pressure of 25 mTorr. In fig. 1 the optical set-up is shown schematically follow-

Fig. 1. Principle scheme of the experimental set-up.

ing the conventional set-up for two-photon spectroscopy. To prevent the feedback into the laser cavity an optical isolator was used which consisted of an optical Faraday rotator and a Glan-Thompson polarizer. For the time necessary to determine the laser frequency the laser was locked to the ⁸⁸Sr component. This isotope has the highest abundancy in the natural mixture of strontium (82.56%). The energy difference to the other three stable isotopes ⁸⁴Sr,

⁸⁶Sr, ⁸⁷Sr was determined using a stable Fabry-Perot interferometer with a free spectral range of 125 MHz.

The wave meter used in our experiment was of the Michelson type with an optical arrangement similar to the one described in ref. [6]. The basic interferometric assembly consists of two solid retroreflectors and a precision beam splitter cube, whose outer surfaces partially serve as mirrors in the fixed and moving arms of the interferometer, respectively, making internal alignment neither possible nor necessary. The travelling retroflector is mounted on a carriage, which is moved on polished steel rods in the evacuated chamber (p < 0.1 Torr), making corrections regarding pressure, temperature, and humidity unnecessary. The angular movement of this retroflector (BK-7) is limited to less than 0.5 deg, resulting in a negligible chromatic error for measurements in the visible spectral range. As the wave meter is a true Michelson interferometer where the reflected beam is collinear with the incoming beam, parallelism of the reference and the signal beam is easily achieved by adjusting both beams for maximal interaction between the wave meter and the respective laser (and thereafter decoupling the wave meter from the lasers by means of optical isolators, if necessary); we estimate that the deviation from parellelism of the two beams is less than 0.1 mrad, resulting in an uncertainty of the frequency determination of less than 5 X 10^{-9} .

As a reference laser we use a longitudinal Zeeman HeNe laser [7] whose frequency was measured as $473\ 612\ 196\ MHz\pm1.5\ MHz$. The moving retroreflector travels over a distance of 87 cm, covering 5.5×10^6 fringes of the reference laser in approximately 5 s, which results in an average fringe frequency of about 1.1 MHz. Due to efficient mechanical decoupling of the travelling carriage from its driving system, the modulation spectrum of the cariage velocity is essentially limited to frequencies well below 100 Hz. Therefore fringe interpolation by means of frequency multiplication is easily achieved. Using two phase-locked loops, we multiply both, reference and signal fringe frequency, by a factor of 10. The multiplied reference fringe frequency is fed to a counter preset to 47361220, which starts and stops the counting of the 10-fold signal fringe frequency. The content of the signal counter is displayed, directly indicating the frequency of the dye laser in 10 MHz units.

The basic uncertainty of this wave meter results from the limited reference count, giving a measurement error of ± 10 MHz. The next important error sources are the 8-digit approximation of the reference laser frequency, resulting in a systematic error of 4 MHz, and the non-collinearity of signal and reference beam, giving ± 2.5 MHz uncertainty. We estimate that the total inaccuracy of our wave meter is smaller than ± 15 MHz.

In addition to errors induced by the wave meter itself, there are several sources for uncertainties which have to be taken into account when claiming an accuracy of 2×10^{-8} . Frequency shifts due to the dc Stark effect are avoided by inserting a grid between the excitation and detection regime of the diode and operating the diode at a very low voltage ($\leq 0.5 \text{ V}$). The influence of the voltage across the diode was checked for different principal quantum numbers n and up to n = 40 no shift was observed. For higher quantum numbers n there was a small dependence on the bias voltage and the measured energy values had to be corrected to zero voltage.

Pressure shifts caused by collisions with foreign gas or Sr ground state atoms were checked independently by changing the buffer gas pressure or the temperature of the oven. The influence of foreign gas shifts was reduced by keeping the buffer gas pressure low or extrapolating to zero pressure. We have operated the pipe at an Ar-buffer gas pressure of 100 mTorr. Increasing the pressure to 1 Torr and 10 Torr resulted in a frequency shift of 20 MHz and 200 MHz, respectively for n = 60. Corrections were necessary starting at principal quantum numbers $n \sim 35$. For higher principal quantum numbers the influence of perturbing effects on the accurate level position becomes more severe and detailed studies of pressure shifts should be carried out to extract level energies with an accuracy of 2×10^{-8} .

From the $5s^2$ 1S_0 ground state the 5sns 1S_0 and 5snd 1D_2 Rydberg series are accessible via two-photon transitions. In the region around principal quantum numbers n=16 strong singlet—triplet mixing between the 1D_2 and 3D_2 series results in a breakdown of pure Russel—Saunders coupling and transitions to 5snd 3D_2 levels become allowed [8].

It is convenient to describe unperturbed Rydberg

series by Langer's formula, which is derived from second order perturbation theory [9]:

$$\delta = n - n^* = a + bT_n + cT_n^2 + dT_n^3 + \sum_{i} \frac{\alpha_i}{T_n - T_i}$$
 (1)

where δ is the quantum defect and

$$n^* = R_{Sr}/T_n$$
, $T_n = E_{ion} - E_n$.

 $E_{\rm ion}$ is the ionization limit, E_n the level energy and $R_{\rm Sr}$ the Rydberg constant for ${\rm Sr}(R_{\rm Sr}=109~736.627~{\rm cm}^{-1}$ [10]). Weak perturbations are included in eq. (1) using additional constants α_i corresponding to term values T_i of perturbing energy levels. Strong perturbations, like singlet—triplet mixing of the $5 {\rm snd}~^1{\rm D}_2$ and $^3{\rm D}_2$ series of Sr, cannot be treated with Langer's formula and a more sophisticated MQDT analysis has to be applied. In the case of Sr this was done using a five channel fit by Esherick [8].

The $^{1}S_{0}$ series can be described with eq. (1). Using a least square fit procedure the constants a, b, c, d, α_{1} and the ionization limit were determined. To exclude errors due to pressure shifts or other uncertainties at high n values only level energies from n=10 to 34 were used for the fit. Fig. 2 shows the experimental data and the theoretical curve for the quantum defect δ using the following parameters: a=3.26897, $b=-1.23508\times 10^{-6}$ cm, $c=4.87532\times 10^{-10}$ cm², $d=-7.005\times 10^{-14}$ cm³, $\alpha_{1}=3.6059\times 10^{-2}$ cm⁻¹, and $E_{\rm ion}$ (88 Sr) = 45 932.1982 cm⁻¹. According to previous measurements there should be no perturber above n=10 [8]. Due to the accuracy of this experi-

Fig. 2. Plot of the quantum defect σ versus the principal quantum number n for 1S_0 states. The solid line is calculated from Langer's formula with the parameters given in the text.

ment, however, a weak influence of the $4d^2$ 3P_0 state at $44\,525.82$ cm $^{-1}$ is clearly observed. This state has to be included in the fit to obtain an agreement with the experimental data which is within our error bars of ± 0.001 cm $^{-1}$. The ionization limits for the isotopes 84 Sr are determined to $E_{\rm ion}$ (84 Sr) = $45\,932.1833$ cm $^{-1}$, and $E_{\rm ion}$ (86 Sr) = $45\,932.1912$ cm $^{-1}$. The odd isotope 87 Sr with a nuclear spin I=9/2 interacts with its F=9/2 counterpart of the 3 S₁ series [11] so that an additional frequency shift $\Delta E=-\frac{1}{2}a_{5s}(I+1)$ has to be included to determine the exact ionization limit (a_{5s} is the Fermi contact term of the lower s electron) [11]. The ionization limit is then given by E_{ion} (87 Sr) = $45\,932.2861$ cm $^{-1}$.

In table 1 the experimental energy values for the ¹S₀ series are compared with data predicted by eq. (1). The error for these data is less than ± 0.001 cm⁻¹ for principal quantum numbers $n \leq 34$. For higher n the deviations from the predicted data increase due to frequency shifts caused by self or foreign gas broadening. The data show an n-dependence of the frequency shift with a maximum around $n \sim 57$. In addition there is an oscillation superimposed on the frequency shift as a function of n. Similar effects were observed in the case of the alkaline elements [12,13]. The *n*-dependence of the pressure shift may be caused by collisions between Rydberg and ground state atoms [14]. For an interpretation of this effect a systematic study in the region of high principal quantum numbers is required.

The 5snd ${}^{1}D_{2}$ series is strongly perturbed by the ${}^{3}D_{2}$ series and the 4d6s ${}^{1}D_{2}$ and ${}^{3}D_{2}$ states. The latter two are spread over many principal quantum numbers n as determined by Esherick [8]. Although a fit to Langer's formula is not suitable under these conditions, a simple fit can still be used to predict level positions with the following assumptions:

- 1) The $4d^2$ 3P_2 and the 5s14d, 15d, 16d, 17d 3D_2 states were included as perturbers. The four 3D_2 states are mixed into the singlet series with a considerable amount and are therefore necessary for the fit.
- 2) In order to account for the 4d6s configuration a hypothetical center of gravity for the 3D_2 and 1D_2 levels was used.

This 7-parameter fit describes the $^{1}D_{2}$ series with an accuracy comparable to the 5 channel MQDT analysis. The agreement with the experimental data is better than 0.01 cm $^{-1}$. From the 7 parameters used

m 11 1

Table 1 Observed and calculated 5sns 1S_0 series

n	E _{obs} cm ⁻¹	E _{calc} cm ⁻¹	ΔE cm ⁻¹	δobs	^δ calc	
.10,	43512.1658	43512,1459	00006	3,26612	3.26612	
11.	44097.1224	44097.1221	.00032	3.26699	3.26699	
12,	44492.8348	44492.8349	00013	3.26847	3.26846	
13.	44773.6707	44773.6714	~.00073	3.26754	3+26754	
14.	44979,4540	44979.4546	00062	3.26783	3.26787	
15.	45134.9242	45134.9230	.00122	3.26800	3.26801	
16.	45255,2295	45255.2296	00009	3.26815	3.26815	
17.	45350+2296	45350-2286	.00104	3.26825	3.26826	
18.	45426.5505	45426.5499	.00054	3.26834	3.26834	
19.	45488.7868	45488.78 <i>6</i> 9	00012	3.26842	3.26842	
20	4EE40 0004	455 4A 2A24	00027	7 0/040	7 2/049	
20.	45540.2024	45540.2031	00077	3.26849	3.26848	
21.	45583,1688	45583.1689	00007	3.26853	3.26853	
22.	45619 4391	45619.4393	00021	3.26857	3.26857	
23,	45650.3365	45650.3365	00004	3.26860	3.26860	
24.	45676.8704	45676.8717	00128	3.26869	3.26863	
	APPLIES OF STREET	10740 DDT	20246	7 0/0/0	7 0/0/0	
24.	45719.8235	45719.8236	00010	3,26869	3.26869	
28.	45752.7832	45752.7832	00003	3.26873	3.26872	
30.	45778 - 6257	45778.6257	00003	3.26876	3.26876	
32.	45799,2620	45799 • 2619	.00011	3.26877	3.26878	
34.	45816.0028	45816.0018	.00101	3.26867	3.26880	
	*****************	AEOOO 7470	00000	7.0/040	7 14800	
34.	45829.7700	45829.7679	.00208	3.26849	3.26882 3.26883	
37.	45835.7511	45835.7512	00008	3.26884	3.26883	
38.	45841 - 2259	45841 - 2251	.00080	3.26868 3.26934	3.26884	
39.	45846,2435	45846.2459 45850.8622	00240 00224	3.26935	3.26884	
40.	45850.8600	4383048822	.00224	3120733	3120004	
41.	45855.1132	45855,1164	00323	3.24964	3.26885	
42,	45859.0421	45859.0454	00327	3.26972	3.26885	
43.	45862.6792	45862.6814	00221	3.26949	3.26886	
44.	45866.0496	45866+0529	00334	3.26989	3.26886	
45.	45869.1820	45869 - 1850	00301	3.26986	3.26887	
46.	45872.0971	45872.0998	00268	3.26982	3.26887	
47,	45874.8129	45874.8169	00398	3,27039	3.26887	
48.	45877.3506	45877.3538	00318	3,27018	3.26888	
49,	45879.7212	45879.7261	00493	3.27103	3.26888	
50.	45881.9438	45881,9478	00400	3.27074	3,26888	
51.	45884.0266	45884.0313	00470	3.27121	3.26888	
52.	45885.9825	45885.9878	~.00535	3.27171	3.26889	
53.	45887.8231	45887.8276	00447	3.27139	3.26889	
54.	45889.5561	45889.5596	00351	3.27098	3.26889	
55.	45891,1875	45891.1921	00460	3.27180	3.26889	
					7.0000	
56.	45892.7282	45892.7326	00444	3.27186	3.26890	
57.	45894.1817	45894.1880	00625	3.27332	3.26890	
59.	45895.5596	45895.5643	00466	3.27238	3.24890 3.26890	
59.	45896.8624	45896 - 8671	00469	3.27260		
60.	45898.0981	45898.1017	00361	3,27191	3,26890	
	46000 0707	AEGGG 2727	00198	3.27064	3.26890	
61.	45899 - 2707	45899.2727 45900.3844	00216	3.27090	3.26890	
62+	45900.3822			3,26975	3.26891	
63.	45901.439B	45901 4407	000B7	3.27091	3.26891	
64.	45902.4433	45902 4453	00196 00270	3.27091	3.26891	
65.	45903.3987	45903.4014	00270	3.2/100	3+200/1	
,,	45004 3007	45904.3122	00285	3.27211	3.26891	
66.	45904.3093	45905.1804	00357	3,27312	3.26891	
67.	45905.1769 45906.0078	45906.0088	00097	3.27011	3.26891	
68. 69.	45906.7987	45906.7996	00090	3.27007	3.26891	
70.	45907.5560	45907.5551	.00093	3.26766	3.26891	
70.	7974715460					
75.	45910.8718	45910.8708	.00098	3.26727	3.26892	
					3,26892	
80.	45913.5602	45913.5598	.00045	3.26800	3140074	

Table 2 Observed and calculated 5snd $^{1}D_{2}$ series using a=2.39528, $b=4.0930\times10^{-4}$ cm, $c=4.91020\times10^{-8}$ cm 2 and $d=2.04771\times10^{-11}$ cm 3 . The perturbers are listed in table 3.

n	E _{obs} cm ⁻¹	Ecalc cm-1	ΔE cm ⁻¹	⁵obs	^δ calc
 	-obs Cit.				
10.	44239 - 4549	44239.4549	00005	1.94844	1.94844 1.99580
11.	44578.6890 44829.6648	44578, 6989 44829, 6648	.00006	2.02346	2.02346
12. 13.	45012.0249	45012.0249	00003	2,07954	2.07954
14.	45153,2785	45153.2785	00004	2.13058	2.13058
15.	45263.6196	45263.6196	.00001	2.18851	2.18851
16.	45362,1272	45362.1271	.00012 .00017	2.12569 2.16944	2.12569 2.16944
17. 18.	45433.2717 45492.6101	45433.2715 45492.6201	01004	2.20015	2.19997
19.	45542.2955	45542,2711	.02438	2.22364	2.22417
20.	45584 - 1831	45584 - 1782	,004B5	2.24271	2,24283 2,25809
21. 22.	45619.7872 45650.2617	45619,7890 45650,2709	00183 00919	2.25814 2.27122	2.27090
23.	45676.5325	45676.5461	01355	2.28239	2.28184
24.	45699.3308	45699.3442	01336	2.29192	2.29129
25.	45719.2336	45719,2462	01259	2.30020 2.30685	2.29952 2.30675
26. 28.	45736.7165 45765.8106	45736.7182 45765.8110	00173 00043	2.31880	2.31876
29.	45777.9907	45777.9913	00063	2.32385	2.32380
30.	45788.8895	45788.8870	.00252	2.32806	2.32831
31.	45798.6753	45798.6716	.0036B	2.33196 2.33559	2.33236 2.33601
32. 33.	45807.4942 45815.4703	45807.4907 45815.4667	.00349	2.33559	2,33932
34.	45822.7079	45822.7034	.00450	2.34167	2.34232
35.	45829,2918	45829.2891	.00268	2.34463	2.34505
		Annet			0.74955
36.	45835.3098	45835.2994 45840.7993	.01039 .01144	2.34575 2.34767	2.34755 2.34984
37. 38.	45840.8107 45845.8526	45845.8447	.00787	2.35031	2.35193
39.	45850.4882	45850 . 4844	.00379	2.35301	2.35386
40.	45854.7641	45854,7606	.00352	2.35479	2.35564
					0.75004
42.	45862.3725	45862.3656 45845.2552	.00694 .00579	2.35684 2.35845	2.35881 2.36022
43. 44.	45865.7610 45868.9075	45865.7552 45868.9042	+00328	2.36046	2.36154
45.	45871.8381	45871.8348	.00329	2.36160	2.36276
46.	45874.5690	45874,5667	.00230	2.36303	2.36390
					0.74.04
47. 48.	45877 . 1177. 45879 . 5076	45877.1174 45879.5026	.00028 .00496	2.36485 2.36381	2.36496 2.36596
49.	45881.7351	45881.7364	00125	2.36747	2.366B9
50.	45883.8322	45883.8311	.00110	2.36723	2.36777
51.	45885.7953	45885.7982	00288	2.37010	2.36859
				_ =	
52. 53.	45887.6482 45889.3906	45887.6477 45889.3889	.00046 .00165	2.36911 2.36912	2.36936 2.37009
54.	45891.0300	45891.0301	00011	2.37084	2.37079
55.	45892.5800	45892.5787	.00128	2.37058	2.37143
56.	45894.0409	45894.0416	00073	2.37255	2.37204
ピカ	AE005 A015	45005 4050	- 00750	9 77507	9 77949
57. 58.	45895.4215 45896.7331	45895.4250 45896.7346	00352 00146	2.37523 2.37431	2.37262 2.37317
59.	45897.9755	45897.9754	.00009	2.37361	2.37369
60.	45899.1528	45899.1523	.00051	2.37373	2.37418
61.	45900.2719	45900.2695	.00239	2.37245	2.37465
	4E001 7700	4500+ 7710	00.75	9 37740	2 77500
62. 63.	45901.3328 45902.3404	45901.3310 45902.3405	.00175 00013	2+37340 2+37565	2.37509 2.37551
64.	45903.3024	45903.3013	.00109	2.37475	2.37592
65.	45904.2175	45904.2165	.00103	2.37514	2.37630
66.	45905.0896	45905.0888	•00076	2.37578	2.37667
67.	45905.9232	45905.9211	.00214	2.37438	2.37702
68.	45906.7247	45906.7155	.00214	2.36557	2.37702
69.	45907.4771	45907.4746	.00254	2.37424	2.37767
70.	45708.1945	45908.2002	~,00566	2.38595	2,37797
74.	45910.8054	45910.8052	.00023	2.37868	2.37906
75.	45911.3891	45911.3901	00105	2,38113	2,37931
79.	45913.5019	45913.5056	00368	2.38773	2.38019
80.	45913.9752	45913.9840	00883	2.39920	2.38039

Table 3
Parameters and perturbers of the 5snd ¹D₂ series

i	configuration	α_i [cm ⁻¹]	T_i [cm $^{-1}$]
1	4d ^{2 3} P ₂	1.41171	44729.6 a)
2	6s4d 1D2	-1.24362×10^{-1}	45056.1 a)
3	$5s14d \stackrel{3}{D}_2$	-1.91179×10^{-2}	45171.4855 b)
4	$5s15d^3D_2$	6.30983×10^{-3}	45276.6501 b)
5	$5s16d^3D_2$	2.76760	45350.5057 b)
6	$6s4d$ $^{3}D_{2}$	9.92291×10^{-1}	45367.4 a)
7	$5s17d$ 3D_2	-1.72120×10^{-1}	45420.8374 b)

a) Ref. [8]. b) This work.

in this fit, of course, only the parameter a has a physical meaning: a is the quantum defect δ_{∞} when approaching the ionization limit.

In table 2 the experimental data are listed together with theoretical data using Langer's formula. With the exception of the $5 \times 10 \, d^{-1}D_2$ state there is good agreement with previous data obtained by Esherick [8] and Rubbmark [10]. Up to $n \approx 35$ the maximum error is again smaller than $0.001 \, \mathrm{cm}^{-1}$. For high principal quantum numbers there is no obvious n-dependent frequency shift as was the case for the $5 \times n \times 10^{-1}$ series.

In summary, the use of Doppler-free two-photon spectroscopy in combination with a wave meter allows for the energy determination of Rydberg states of Sr with an accuracy of 2×10^{-8} . Using an extended Rydber-Ritz formula the ionization limit for the isotope ⁸⁸Sr was determined to 45 532.1982 cm⁻¹ \pm 0.0010 cm⁻¹. Weak perturbations can be detected as demonstrated for the 5sns 1 S₀ series, which is perturbed by the 4d² 3 P₀ state.

This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 161. We acknowledge the continuous support and interest in this work by Professor E. Matthias. We also wish to thank Dr. K. Niemax for helpful discussions.

References

- F.V. Kowalski, R.T. Hawkins and A.L. Schawlow, J. Opt. Soc. Am. 66 (1976) 965.
- [2] S.A. Lee and J.L. Hall, Appl. Phys. Lett. 29 (1976) 367.
- [3] B.P. Stoicheff and E. Weinberger, Can. J. Phys. 57 (1979) 2143.
- [4] C.J. Lorenzen, K. Niemax and L.R. Pendrill, Optics Comm. 39 (1981) 370.
- [5] K.C. Harvey and B.P. Stoicheff, Phys. Rev. Lett. 38 (1977) 537.
- [6] Xia Hui-Rong, V.S. Benson and T.W. Hänsch, Laser Focus, March (1981) 54.
- [7] T. Baer, F.V. Kowalski and J.L. Hall, Applied Optics 19 (1980) 3173.
- [8] P. Esherick, Phys. Rev. A15 (1977) 1920.
- [9] W.R.S. Garton, J. Quant. Spectrosc. Radiat. Transfer. 2 (1962) 335.
- [10] J.R. Rubbmark and S.A. Borgström, Physica Scripta 18 (1978) 196.
- [11] R. Beigang and A. Timmermann, Phys. Rev. A25 (1982)
- [12] B.P. Stoicheff, Laser spectroscopy C, eds. A.R.W. McKellar, T. Oka and B.P. Stoicheff, Spinger Series in Optical Sciences (Springer, 1981) p. 299.
- [13] K. Niemax and K.-H. Wever, in: Spectral line shapes, ed. B. Wende (Walter de Gruyter, Berlin, 1981) p. 1083.
- [14] M. Matsuzawa, J. Phys. B: Atom. Molec. Phys. 10 (1977) 1543.