Quicksort

Chapter 7
Read 7.1-7.3
Omit 7.4

7.1 Description of quicksort

Divide

Conquer

Combine

QUICKSORT(A,p,r)

- 1 **if** p < r
- 2 **then** q = PARTITION(A, p, r)
- 3 QUICKSORT(A,p,q-1)
- 4 QUICKSORT(A,q+1,r)

Partition(A, p, r)

```
1 x = A[r]
                             Complexity:
                             Partition on A[p...r] is \Theta(n)
2 i = p - 1
                             where n = r - p + 1
3 for j = p to r - 1
      if A[j] \leq x
              then i = i + 1
6
              swap A[i] and A[j]
   swap A[i+1] and A[r]
   return i +1
```

The operation of *Partition* on a sample array

Loop Invariant

At the beginning of any iteration of the loop of lines 3-6 with a j value between p and r-1, for any array index k,

- 1. if $p \le k \le i$, then $A[k] \le x$.
- 2. if $i + 1 \le k \le j 1$, then A[k] > x.
- 3. if k = r, then A[k] = x.

Thinking Assignment: Satisfy yourself that LI is true at initialization

Why the Loop Invariant is Maintained

Only two cases possible for what happens to A[j] in any one iteration of procedure *Partition*

Thinking Assignment:

What is the state of the array at termination?

Thinking Assignment: Write the complete Loop Invariant proof of correctness of Partition

How efficient is quicksort?

- Recursive algorithm
- So to answer this question we must determine the recurrences of the algorithm

Quicksort Recurrences

- T(n) = T(size of left partition) + T(size of right partition) + Θ(n)
- $T(1) = \Theta(1)$

 What are the possibilities for the partition sizes?

Quicksort Recurrences

- $T(n) = T(0) + T(n-1) + \Theta(n)$ = $T(n-1) + \Theta(n)$ = T(n-1) + cn
- $T(1) = \Theta(1) = c$
- You can easily show by backward substitution method (do this as an exercise to improve your skills) that these recurrences have the solution T(n) = Θ(n²)
- This is the worst case partitioning!
- Can you think of an input that will produce this kind of partition in every recursive call?

Quicksort Recurrences

 Partitioning can also divide the array equally: one partition of size floor(n/2) and the other of size ceiling(n/2)-1

- $T(n) \le 2T(n/2) + \Theta(n)$
- $T(1) = \Theta(1)$
- You can easily show by applying the master method (do this as an exercise to improve your skills) that if T(n) = 2T(n/2) + Θ(n) then T(n) = Θ(nlgn). So in this case Quicksort is O(nlgn)
- This is the best case partitioning. In fact, the split doesn't have to be 50-50. This complexity holds whenever the split is of constant proportionality.

Average Case Performance

 Good and bad splits tend to balance out in practice (see p. 176)

 So the average performance of quicksort is also O(nlgn) (see p.177-178)

 To get this balance, in practice we don't pick A[r] as the pivot; instead a median-ofthree approach is used to pick the pivot.

Median-of-Three Pivot Picking

```
Median-of-Three-Partition (A,p,r)
1 first=A[p]
2 \text{ m=floor}((p+r)/2)
3 middle=A[m]
4 last=A[r]
5 Median-of-Three=median(first,middle,last)
6 if Median-of-Three≠last then
   7 if Median-of-Three=first then index=p else index=m
   8 swap A[r] and A[index]
9 return Partition(A,p,r)
```

Modify the quicksort algorithm to call this partition procedure in step 2 instead

Random Sampling

 Another way to make sure of random distribution of good and bad splits is to choose randomly so that any of the r-p+1 elements in the array has an equal chance of being picked.

Randomized Quicksort

Randomized-Partition (A,p,r)

- 1. i=Random(p,r)
- 2. swap A[r] and A[i]
- return Partition(A,p,r)

Modify the quicksort algorithm to call this partition procedure in step 2 instead

Thinking Assignments

Quicksort can be modified to obtain an elegant and efficient linear (O(n)) algorithm **QuickSelect** for the selection problem.

```
Quickselect(A, p, r, k)
{p & r – starting and ending indexes of array A; to find k-th smallest number in
     non-empty array A; 1≤k≤(r-p+1)}
if p=r then return A[p]
else
     q=Partition(A,p,r)
     pivotDistance=q-p+1
     if k=pivotDistance then
        return A[q]
     else if k<pivotDistance then
        return Quickselect(A,p,q-1,k)
     else
        return Quickselect(A,q+1,r, k-pivotDistance)
```

Thinking Assignments

- Understand how Quickselect works by drawing a Recursion Tree for a specific input
- 2. Develop its recurrences, assuming as in the case of Quicksort that Partition divides the array evenly.
- 3. Solve to show that it is O(n) using any method