MH1810 Math 1 Part 2 Limits and Continuity

Tang Wee Kee

Nanyang Technological University

Continuous Functions

Very often, we are interested in functions which are continuous on an intervals, or disjoint union of intervals.

We shall discuss two useful results related to a function which is continuous on a closed and bounded interval [a, b].

- Intermediate Value Theorem;
- Extreme Value Theorem.

Intervals and End-points

Consider intervals

$$(a, b), [a, b), (a, b], [a, b], (a, \infty), [a, \infty), (-\infty, b), (-\infty, b].$$

The points a and b are called endpoints.

The point a is a left endpoint and b is a right endpoint.

A point x in an interval is called an interior point of the interval if it is not an endpoint.

Continuous on Interval

Definition

The function f is said to be continuous on the interval I if

- f is continuous at every interior point c of I, i.e., $\lim_{x\to c} f(x) = f(c)$.
- ② If the left endpoint a of I is included in I, f is continuous from the right there, i.e., $\lim_{x\to a^+} f(x) = f(a)$.
- **3** If the right endpoint b of I is included in I, f is continuous from the left there, i.e., $\lim_{x \to b^-} f(x) = f(b)$.

Graph of a Continuous Function on an interval

- a curve which has no break and no jump.

Known Continuous Functions

Some known functions which are continuous on their domains.

- polynomials
- n-root functions
- trigonometric functions
- exponential functions and logarithmic functions
- hyperbolic functions

For the above functions, to determine $\lim_{\substack{x\to c}} f(x)$ limit at a point x=c, we can simply substitute the value c into the function.

Heaviside Function

Example

The Heaviside function

$$H(x) = \begin{cases} 0 & ; for x < 0, \\ 1 & ; for x \ge 0. \end{cases}$$

is continuous on the interval $[0, \infty)$, but not on $(-\infty, \infty)$ and not on $(-\infty, 0]$.

Combination of Continuous Functions

Theorem.

Suppose functions f and g are continuous on a set S. Then the following combinations of functions

$$f \pm g$$
, $f \cdot g$, f/g (provided $g(c) \neq 0$)

are also continuous on S.

Example

The function f defined by $f(x) = \frac{\sin(x - e^x)}{\ln x}$ is continuous on $(1, \infty)$.

Composite of Continuous Functions

Proposition

Suppose the function f is continuous on its domain D_f and the function g is continuous on the range R_f of f. Then the composite function $g \circ f$ is continuous on D_f .

Example

Consider $f(x) = x^3$ and $g(x) = \sin x$ which are continuous on \mathbb{R} . Their composite functions $f \circ g(x) = (\sin x)^3$ and $g \circ f(x) = \sin(x^3)$ are also continuous on \mathbb{R} .

Example (a): Composite Function

Example

Let $f(x) = \sqrt{x-4}$ on $[4, \infty)$ and $g(x) = x^2$.

Find the composite function $g \circ f$ and its the domain where $g \circ f$ is continuous on

Solution

Since f is continuous on $[4,\infty)$ and $g(x)=x^2$ is continuous on \mathbb{R} , the composite function $g\circ f$ is continuous on the domain on which $(g\circ f)(x)$ is defined.

Example (a): Composite Function

Solution (cont'd)

To find this domain, we note that $g \circ f(x) = g(f(x))$

$$= g\left(\sqrt{x-4}\right) \ \ \textit{provided} \ x-4 \geq 0, \ \textit{i.e.,} \ x \geq 4$$

$$=\left(\sqrt{x-4}\right)^2=x-4$$
 provided $x\geq 4$

Thus, we have $(g \circ f)(x) = x - 4$ and its domain is $[4, \infty)$.

We conclude that $(g \circ f)(x) = x - 4$ is continuous on $[4, \infty)$.

Note

Although the composite function $g \circ f$ and h(x) = x - 4 have the same expression, they are considered different functions because $(g \circ f)(x) = x - 4$ is only defined on $[4, \infty)$ while h(x) = x - 4 holds for every x in \mathbb{R} .

Example (b): Composite Function

Example

Let $f(x) = \sqrt{x-4}$ on $[4, \infty)$ and $g(x) = x^2$.

Find the composite function $f \circ g$ and its the domain where $f \circ g$ is continuous on.

Solution

To find the domain and $f \circ g$, we proceed to determine $(f \circ g)(x)$ as follows:

$$(f \circ g)(x) = f(g(x)).$$

Example (b): Composite Function

Solution (cont'd)

To determine $(f \circ g)(x)$ as follows:

$$(f \circ)g(x) = f(g(x)) = f(x^2)$$
, which holds for every real number x , $= \sqrt{x^2 - 4}$, which holds provided $x^2 > 4$.

Thus, we have $(f \circ g)(x) = \sqrt{x^2 - 4}$ where $x \ge 2$ or $x \le 2$. The domain of $f \circ g$ is $(-\infty, 2] \cup [2\infty)$.

The composite function $f \circ g$ is continuous on its domain $(-\infty, 2] \cup [2\infty)$.

Inverse of Continuous Function

Proposition

If f is an one-to-one continuous function, then its inverse f^{-1} is continuous.

So, we have more continuous functions: $\sin^{-1} x$, $\cos^{-1} x$,...

Intermediate Value Theorem

For a function f which is continuous on a closed and bounded interval [a, b], there are interesting and useful results. One of them is the Intermediate Value Theorem.

Intermediate Value Theorem

Theorem

Suppose that f is continuous on the closed and bounded interval [a, b] where $f(a) \neq f(b)$.

Let p be any real number between f(a) and f(b).

Then there exists a number c in the open interval (a, b) such that f(c) = p.

Remark The number p is an **intermediate value** between f(a) and f(b).

Intermediate Value Theorem - Graphical Illustration

Intermediate Value Theorem: Applications

A typical use of the Intermediate Value Theorem is to locate a root of a function.

Recall that for a function f, we say x = c is a root of f if f(c) = 0.

IVT: Application(1) Finding Roots

Suppose f is continuous on [a, b] where f(a) and f(b) are opposite in signs. Then p = 0 is an intermediate value.

By the Intermediate Value Theorem, there is a real number $c \in (a, b)$ at which f(c) = 0.

Finding Roots

Example

For the polynomial $f(x) = x^3 - 5x^2 + 3$, do you think there is a root of f in the interval (0,1)? Justify your answer.

Application(2) Intersection of Curves

Example

Use Intermediate Value Theorem to explain why the two curves $y=\cos x$ and $y=x^2$ intersect at some point with x- coordinate c where $c\in(0,\frac{\pi}{2})$.

Application(2) Intersection of Curves

Solution

Curves $y = \cos x$ and $y = x^2$ intersect at some point with x- coordinate c means that

$$\cos c = c^2$$
.

By shifting all expressions to one side of the equation, the above equation is equivalent to

$$\cos c - c^2 = 0.$$

To find an appropriate function f, the above suggests $f(c) = \cos c - c^2$ and 0 is the intermediate value.

Thus, we consider

$$f(x) = \cos x - x^2$$
 where $x \in [0, \pi/2]$.

Application(2) Intersection of Curves

Solution (cont'd)

Thus, we consider

$$f(x) = \cos x - x^2 \text{ where } x \in [0, \pi/2].$$

Note that f is continuous on $[0,\pi/2]$, the values f(0)=1>0 and $f(\pi/2)=-(\pi/2)^2<0$.

By Intermediate Value Theorem, there is a real number $c \in (0, \pi/2)$ at which f(c) = 0, which means that the curves intersect at x = c.

Preserves Connectedness

The Intermediate Value Theorem says that a continuous function preserves 'connectedness'.

Corollary

Suppose f is continuous on (a, b) and f is not a constant function. Then the range of f is an interval.

Extreme Value Theorem

Another important result related to a continuous function defined on an closed and bounded interval [a,b] is the Extreme Value Theorem, which will be stated without proof. To discuss this theorem, we have to know what is meant by extreme values.

Global Maximum/Minimum

Definition

- (a) A function f has a global maximum (also known as an absolute maximum) at c if $f(c) \ge f(x)$ for all x in D, where D is the domain of f. The number f(c) is called the maximum value of f on D.
- (b) Similarly, f has a global minimum (also known as an absolute minimum) at c if $f(c) \le f(x)$ for all x in D, where D is the domain of f. The number f(c) is called the minimum value of f on D.
- (c) The maximum and minimum values of f are called the extreme values of f.

Example: A non-continuous function

Example

Consider $f: [-1,1] \to \mathbb{R}$ defined as follows:

$$f(x) = \begin{cases} -x & \text{if } x < 0; \\ 1 & \text{if } x \ge 0. \end{cases}$$

Does f have a global maximum and a global minimum on [-1, 1]?

Example: A non-continuous function

Solution

Note that f is not continuous on [-1, 1].

For $x \in [-1, 1]$ we have $0 < f(x) \le 1$. The range of f is (0, 1].

The function f has a global maximum since f(0) = 1, the maximum value for f on [-1,1].

However, f has no global minimum.

Example

Example

Let

$$f(x) = \frac{1}{x}, x \in (0, 1]$$

Then f has no global (or local) maximum. Its global minimum is 1 = f(1).

Note that f is continuous on (0,1] but (0,1] is not a closed interval.

Extreme Value Theorem

The important theorem below says that global maximum and global minimum are guaranteed when both continuity and closed-and-bounded condition are satisfied. We shall state without proof the Extreme Value Theorem.

Theorem (Extreme Value Theorem)

If f is a continuous function on a closed and bounded interval [a,b], then there are points c_1 and c_2 in [a,b] such that $f(c_1)=m$ is a global minimum and $f(c_2)=M$ is a global maximum for f.

Extreme Value Theorem - Consequence

As a consequence of both Intermediate Value Theorem and Extreme Value Theorem, we have:

Corollary

If $f:[a,b]\to\mathbb{R}$ is a continuous function, then the range R_f of f is a singleton $\{f(a)\}$ or a closed and bounded interval $[f(c_1),f(c_2)]$, for some $c_1\in[a,b]$ and $c_2\in[a,b]$.

Example

Example

Determine the range of the function f defined by $f(x) = 3x^2$, $x \in [-2, 1]$.

Solution The function $f(x) = 3x^2$ is continuous on [-2, 1].

For
$$-2 \le x \le 1$$
, note that $f(x) = 3x^2 \le 3(-2)^2 = 12 = f(-2)$ and $f(x) = 3x^2 \ge 3(0)^2 = f(0)$. That is, $f(0) \le f(x) \le f(-2)$.

Thus, the global maximum of f on [-2,1] is f(-2)=12 while its global minimum is f(0)=0.

The range of f is [0, 12].

Remark

In the topic on applications of differentiation, we shall learn a systematic way to search for extreme values of a continuous function over a closed and bounded interval [a, b].