Single-cell RNA-sequencing (scRNA-seq): knowing the in and outs of the data generated

Ken Lau, Assistant Professor of Cell and Developmental Biology ken.s.lau@vanderbilt.edu
CQS Summer Academy (8/13/2018)

http://www.mc.vanderbilt.edu/vumcdept/cellbio/laulab/index.html
Twitter: @KenLauLab

About me and single cells

 Started lab at Vanderbilt in 2013 with focus on single-cell biology of the gut (IBD and colon cancer)

- Multiplex imaging, CyTOF, scRNA-seq
- Training at Toronto/MIT/Harvard on multivariate analysis, mathematical modeling, and tissue systems
- inDrop in lab since August 2016 (first 1cell customer outside of Boston), > 50 samples ran so far > 500 000 cells sequenced; we have two systems

Outline

- Introduction to scRNA-seq techniques
- Discussion on scRNA-seq data issues
- Brief Python introduction

https://github.com/KenLauLab/Discovery_Oriented_Data_Science

Bulk data versus single-cell data

VS.

Bulk Single-cell

Bulk RNA-seq

1 sample x 25,000 Genes

Single-cell RNA-seq

X25,000 Genes

scRNAseq protocols

Cell Encapsulation techniques

- Droplet-Based
- Well-Based
- Microfluidic capture (Fluidigm C1)

Lysis and RT

- Coupled requires balanced mix
- Uncoupled enables more aggressive lysis

RNA capture strategies

- Poly dT priming
- Targeting / enrichment

Indexing strategies

- During capture/RT (typically per **cell** indexes barcodes)
- After RT (typically per **well** indexes)

Amplification strategies

PCR vs IVT

Typical logic for a scRNA-seq experiment

Alessandra Dal Molin, Barbara Di Camillo; How to design a single-cell RNA-sequencing experiment: pitfalls, challenges and perspectives, *Briefings in Bioinformatics*, , bby007,

Single cell suspension***

Single-cell encapsulation/ Library preparation

Sequencing and alignment (Bioinformatics I)

Well-known methods to isolate single cells

Laser-capture microdissection

(i) Cell selection

(ii) Laser sectionning

(iii) Cell transfer on a membrane

Fluorescenceactivated cell sorting

Plate-Based scRNAseq

 Isolate RNA, label transcripts using barcoded RT primers (3' seq) or through template switching library prep (enables full length)

Relative to other platforms:

- ~10μl/ cell, <1000 cells (higher volume, lower throughput)
- Deeper sequencing possible flexibility
- Number of wells become limiting (doublet rate vs. cost)

Microfluidic capture scRNAseq (Fluidigm C1)

Bead-based capture: Immobilized sets of indexed primers

 Each bead is coated with primers containing a barcode unique to that bead – (index for each cell)

Barcode UMI

 And a Unique Molecular Identifier (UMI) that uniquely tags each primer – (index for each transcript)

Droplet-based encapsulation

- Co-encapsulating cells and beads in thousands of 1-5nL droplets
- Beads carry barcoded poly-T primers to capture RNA
- Encapsulation rate follows Poisson distribution
- Excess of "vessels" to minimize doublets

Beads

inDrop (1cellBio)

Drop-seq (Chemgenes)

Chromium (10x Genomics)

Seq-Well - microwell sequencing (Shalek lab)

Seq-Well: Principle

Attach Semi-permeable Membrane

Size Exclusion → ≤ 1 bead per well

Sealing Oross Contamination

Deconvolving the data

Reads with same barcodes collapse into cells

Read with same UMIs collapse into transcript counts

Count unique LIMIs	Cell:	1	2	· · · N	
Count unique UMIs for each gene in each cell	GENE 1	1	2	14	
	GENE 2	4	27	8	
\longrightarrow	GENE 3	0	0	1	
	•	•	•		
Create digital	:	:	:	:	
expression matrix	GENE M	6	2	0	

scRNA-seq Data Exploration (and problems)

Table of genes and barcodes

Barcodes

Inflection point method for identifying barcodes with real cells

https://cgatoxford.wordpress.com/2017/05/18/estimating-the-number-of-true-cell-barcodes-in-single-cell-rna-seq/

Doublet rate determination

Klein et al, *Cell*, **161**, 2015 Macosko et al, *Cell*, **161**, 2015

Procedure for the isolation of high viability single-cells from tissues

Keep all reagents on ice and perform all procedures at 4°c, avoid working with overconcentrated tissue/cell solutions

Single-cell isolation for scRNA-seq to minimize dissociation artifacts

- cold protease from Bacillus licheniformis, soil bacteria from Himalayan glaciers
- enables tissue preparation on ice (at 4 degrees)

caveat – the efficacy for retrieving all cell types from all tissues unknown

Stressed/dying cells

Contaminant from free floating RNA and leaky cell corpses

Amplification bias in scRNA-seq

Non-linear amplification

- Highly expressed transcripts are inappropriately represented and replicated
- Sampling of RNA in a cell 1-10%
- Zero inflated data
- Count data negative binomial distribution

In vitro transcription results in linear amplification of RNA

Negative binomial versus Gaussian distributions

Gaussian

- Continuous variable
- Symmetric

Negative Binomial

- Discrete variable (counts)
- Asymmetric at small means

Zero inflation in scRNA-seq

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	0	0 0	0	0	0	(0 0	0	0)	0	0	0	(0		0 0	0	C) (0	0	0	0 0 4
2	0	0 0	0	0	0	(1	0	0)	0	0	0	(0		0 (0	C) (0	0	0	0 0
3	0	0 0	0	0	0	(0 0	0	0)	2	0	0	(0		0 (0	0) (0	0	0	0 0 =
4	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) :	1 0	0	0	0 0
5	0	0 0	0	0	0	(0	0	0)	2	0	0	(0		0 (0	0) (0	0	0	0 0
6	0	0 0	0	0	0	(1	0	0)	1	0	0	(0		1 (0	0) (0	0	0	0 0
7	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) :	1 0	0	0	0 0
8	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0	0 0
9	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) (0	0	0	0 0
10	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0	0 0
11	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0	0 0
12	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) :	1 0	0	0	0 0
13	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) (0	0	0) 1
14	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0	0 0
15	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0) 1
16	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		1 (0	0) (0	0	0	0 0
17	0	0 0	0	0	0	(0	0	0)	0	-	0	(0		0 (0	0) (0	0	0	
18	0	0 0	0	0	0	(2	0	0)	0	0	0	(0		0 (0	0) (0	0	0	0 0
19	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0	0 0
20	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) (0	0	0	
21	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) (0	0	0	
22	0	0 0	0	0	0	(1	0	0)	1	0	0	(0		0 (0	0) (0	0	0) 0
23	0	0 0	0	0	0	,	0	0	0		0	-	0	(0		0 (0	C) (0	0	0	-
24	0	0 0	0	0	0	(0	0	0		0		0	(0		0 (, ,	0) (0	0	0	
25	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) (0	0	0	0 0
26	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) :	2 0	0	0	0 0
27	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	C) (0	0	0	-
28	0	0 0	0	0	0	,	0	0	0		0	-	0	(0		0 (, ,	C) (0	0	
29	0	0 0	0	0	0	(0	0	0)	0	0	0	(0		0 (0	0) (0	0	0	
30	0	0 0	0	0	0	,	0	0	0		0	•	0	(0		0 (, ,	0) (0	0	0	-
31	-	0 0	0	0	0	,	0	0	0		0	-	0	,			0 (, ,	0) (0	0	-
	-	0 0	0	0	0		0 0	0			0	-	0		-		0 (0	0	
	-	0 0	0	-	0		0 0	0			0	-	0	(0		1 (0) (-
	-	0 0	-	0	0		0	0	0	_	0	-	0				0 () (0 0
35	0	0 0	0				0	0			2		0	(0		0 () (0		0 0
36		0 0	0	0	0		0	0	0		1		0				0 (-				0		0 0
37	0	0 0	0	0	0	(0	0	0)	0	0	0) (0		0 0	0	C) (0	0	0	0 0

• Only 5% of this table is not 0!

What does this mean?

•	Statistical tests to determine differentially expressed genes with a zero-inflated
	negative binomial (ZINB)

False negatives (genes that are supposed to be expressed by appear as 0)

 Many genes (columns) have low counts due to shallow sampling of transcripts – this means the data are noisy

 Unreliable variables that need to be processed/filtered out prior to downstream analysis

Variance selection

Easiest – select genes that are the most variable

Variance = genes that are most different across all cells

$$\sigma^2 = \sum \frac{(X - \mu)^2}{N}$$

• Rank genes by top 500 most variable, for example, discard the rest

Highly variable axes = Principal Components

PCA (Principal Component Analysis)

- Principle of PCA is to maximize the Variance of X with the least amount of principal components (latent variables)
- What is variance? Spread of the data, information content, change etc.
- Variance is the covariance of a dataset with itself, i.e. Var(X) = Cov(X,X) → Maximize
- What are principal components? Linear combinations of original variables – linear transformation

Vectors and projections

PCA as a dimension reduction tool

Selection of principal components

PRINCIPAL COMPONENTS CAN BE ORDERED BY EIGENVALUES (VARIANCE CAPTURED)

Simple summary of this simple feature selection procedure

 Keep most variable genes (over all cells) for downstream analysis, discard rest as noise

 PCA identifies super axes (Principal Components) that are combinations of the original variables that captures the most variance in the data (by eigenvalues)

Orthogonal – no duplicate or redundant axes – so will only have a few of them