LECTURE 21

The exponential function e^x

The inverse of ln(x) is e^x .

$$e^{\ln(x)} = \ln(e^x) = x.$$

$$\frac{d}{dx}e^x = e^x.$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C.$$

$$e^x e^y = e^{x+y}.$$

$$\frac{d}{dx}(a^x) = a^x \ln(a).$$

$$\int a^x \, dx = \frac{1}{\ln(a)} a^x.$$

You will recall from the previous lecture that the natural log function $y = \ln(x)$ is an increasing function. Hence it is 1 - 1 and thus invertible. The inverse of $\ln(x)$ is without doubt the most important function in all of mathematics....the exponential function $y = e^x$.

The irrational real number e is approximately 2.71828 and can be defined in many ways:

 $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$

or

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

What makes e^x such a fascinating function is the simple fact $\frac{d}{dx}e^x = e^x$. It is its own derivative! No other function has this remarkable property. The exponential function e^x is immune to calculus!

The graphs of the two functions are reflected in y = x in the usual manner.

Sketch:

Observe that $Dom(ln(x)) = (0, \infty) = Range(e^x)$ and $Range(ln(x)) = \mathbb{R} = Dom(e^x)$.

Both functions are increasing however the exponential function grows with enormous strength while the natural log function increases very weakly.

Further properties of the two functions are:

- a) $e^{\ln(x)} = x$. This is just $(f^{-1} \circ f)(x) = x$.
- b) $\ln(e^x) = x$. This is just $(f \circ f^{-1})(x) = x$.
- c) $\frac{d}{dx}e^x = e^x$.
- d) $\frac{d}{dx}e^{f(x)} = e^{f(x)}f'(x).$
- e) $\int e^x dx = e^x$.
- f) $\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C.$
- $g) \quad e^x e^y = e^{x+y}.$

Note that g) indicates that the inverse of ln(x) actually has something to do with exponentials!!

Proofs:

- a) and b) This is just the definition of the inverse function!
- c) We start with $\ln(e^x) = x$ and differentiate both sides with respect to x.

- d) This is just the chain rule.
- e) follows from c)
- f) Exercise.

g)
$$e^{x+y} = e^{\ln(e^x) + \ln(e^y)} = e^{\ln(e^x e^y)} = e^x e^y$$
.

 \star

Example 1:

- a) Evaluate $\int_{\ln(2)}^{\ln(5)} e^{3x} dx$.
- b) Solve $2^x = 9$.
- c) Find $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$.
- d) Find $\frac{d}{dx}(x^3e^{5x})$.

$$\bigstar$$
 a) 39 b) $\frac{\ln(9)}{\ln(2)} \approx 3.17$ c) $2e^{\sqrt{x}} + C$ d) $e^{5x} \{3x^2 + 5x^3\}$ \bigstar

$$c)$$
 $2e^{\sqrt{x}} +$

$$e^{5x}\{3x^2 + 5x^3\}$$

The functions 2^x , 3^x and 7^x are also exponential functions. Why do we obsess about e^x ? Only e^x is equal to its own derivative! So what is the derivative of 3^x ? To answer this question we use what is called logarithmic differentiation. This is simply taking the log of both sides before differentiating implicitly. This works well to eliminate troublesome exponentials.

Example 2: Find $\frac{d}{dx}(7^x)$.

 \bigstar $7^x \ln(7)$ \bigstar

It follows from the same argument that

$$\frac{d}{dx}(a^x) = a^x \ln(a),$$

and hence after integrating both sides with respect to x

$$\int a^x \, dx = \frac{1}{\ln(a)} a^x.$$

Proof:

*

Example 3: Use the above facts to find:

a)
$$\frac{d}{dx}(4^x) =$$

b)
$$\frac{d}{dx}(e^x) =$$

c)
$$\frac{d}{dx}(e^5 + \ln 7) =$$

$$d) \int 6^x dx =$$

 \star

The process of logarithmic differentiation is a versatile tool, handy whenever exponents are blocking your path:

Example 4: Use logarithmic differentiation to find $\frac{dy}{dx}$ for $y = \frac{x\sqrt{x^2 + 1}}{x^2 - 1}$

Example 5: Find $\frac{dy}{dx}$ for $y = x^x$

$$\bigstar \quad y = x^x \{1 + \ln(x)\} \quad \bigstar$$

The same \log tricks can also be used on limits. Simply give the limit a name and then \log both sides:

Example 6: Evaluate $\lim_{x \to \infty} x^{\frac{1}{x}}$

Example 7: Evaluate $\lim_{x \to \infty} (1 + \frac{1}{x})^x$

