L3 损失函数和优化损失函数

2020年3月28日

1. 损失函数

a. 概念诠释:将参数W作为输入数据,用于定 量估计W的优劣程度

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i is image and y_i is (integer) label

b.

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

- c. N代表样本容量, 最终的损失值L即各样本损 失值的算术平均, f即上一讲中线性分类的函 数模型
- d. e.g.:
 - i. 多分类SVM损失函数(合页损失函数)

Given an example $\,(x_i,y_i)\,$ where $\,x_i\,$ is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

3.2 1.3

frog

the SVM loss has the form:

car 5.1 **4.9** 2.5
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
 frog -1.7 2.0 **-3.1** $= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

其中j是指其他类别 (非正确) 对应的预测

分数

"Hinge loss"

- ? 1) 损失函数可缩放,不会对损失函数产生 太大影响
 - 2) 初始化w时,通常使用很小的随机值, 在第一次迭代时,各分类的分数倾向于 为较小的均匀分布的值,因此损失函数 接近为类别数-1,否则可能存在bug
 - 3) 平方项损失函数可用来扩大错误(区分错误的严重性)
 - 4) e.g.

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

5) 如果有一个w的损失函数的值为零,对 其进行缩放得到的w损失值也为0(合 适的w不止一个,需要筛选出最佳的 w)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

引入正则项, 其中1为超参数

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i} \max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+ \overline{\lambda R(W)}$$

In common use:

L2 regularization $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$

$$R(W) = \sum_{k} \sum_{l} W_{k,l}^2$$

L1 regularization $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$

$$R(W) = \sum_{k} \sum_{l} |W_{k,l}|$$

Elastic net (L1 + L2) $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

Max norm regularization (might see later)

Dropout (will see later)

Fancier: Batch normalization, stochastic depth

Softmax Classifier (Multinomial Logistic Regression)

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

Q: What is the min/max possible loss L i?

ii. cat car frog

unnormalized log probabilities

1) 纠错:初始化时,损失函数值倾向于

In (总类别数)

iii. 差异: 前者在差距大于安全边际后不再关

					. 6 4-				\			
		注数技	居点,	后者	会癸	力进	一步	扩大	差 距。	,		
2. 仂	化											
a	1. 梯度	度: 偏	导数	组成	的向	量(多元	函数)	指向]		
	函数) 増大	的最	快方	向							
b	. 通常	常先计	算様	度表	达式	,然		数值核	弟度进	<u>ŧ</u>		
	行单	单元格	金 (此过	程最	好减	少问题	题的 参	>数 数	攵		
	量以		〉运行	时间)							
(. 步t	关(学	夕字	三) 关	键超	参						
	I. 当村						甲随村	几梯月	多不意	Ż Ż		
										•		