Reedo-Solomono ir BCH kodai

Keedo-Solomono kodai	2
Apibendrintieji Reedo-Solomono kodai	3
Apibendrintieji Reedo-Solomono kodai	4
Atskiras atvejis	5
Ciklinis kodas	6
Bendresnis teiginys	7
Nauja idėja	8
BCH kodai	Ç
Kaip BCH kodus nusakyti tiesiogiai?	10
Kaip BCH kodus nusakyti tiesiogiai?	11
Kitas būdas apibrėžti BCH kodus	12
Pavyzdys	13
Pavyzdys	14
Pavyzdys	15
Pavyzdys	16
Pavyzdys	17

Reedo-Solomono kodai

Apibrėžimas. Tegu $\mathbb{F}_q = \{\alpha_1, \alpha_2, \dots, \alpha_q\}$ (apibrėžtumo dėlei tarkime $\alpha_q = 0$), o $1 \le k \le q$ yra natūralusis skaičius. Tiesinį kodą, kurio generuojanti matrica yra

$$G_k = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_q \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_q^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_q^{k-1} \end{pmatrix},$$

vadiname Reedo-Solomono kodu ir žymėsime $\mathbf{RS}_{q,k}$.

2 / 17

Apibendrintieji Reedo-Solomono kodai

Apibrėžimas. Tegu $\mathbf{v}=(v_1,v_2,\ldots,v_n)$ yra žodis sudarytas tik iš nenulinių \mathbb{F}_q elementų, o $\mathbf{a}=(\beta_1,\beta_2,\ldots,\beta_n)$ – būtinai iš skirtingų šio kūno elementų. Kodą, kurio generuojanti matrica yra

$$\begin{pmatrix} v_1 & v_2 & \dots & v_n \\ v_1\beta_1 & v_2\beta_2 & \dots & v_n\beta_n \\ v_1\beta_1^2 & v_2\beta_2^2 & \dots & v_n\beta_n^2 \\ \dots & \dots & \dots & \dots \\ v_1\beta_1^{k-1} & v_2\beta_2^{k-1} & \dots & v_n\beta_n^{k-1} \end{pmatrix}$$

vadinsime apibendrintuoju Reedo-Solomono kodu ir žymėsime $\mathbf{RS}_{n,k}(\mathbf{v},\mathbf{a}).$

3 / 17

Apibendrintieji Reedo-Solomono kodai

Jeigu
$$k_1 \leq k_2$$
, tai $\mathbf{RS}_{n,k_1}(\mathbf{v},\mathbf{a}) \subset \mathbf{RS}_{n,k_2}(\mathbf{v},\mathbf{a})$.
Teorema. Kodo $\mathbf{RS}_{n,k}(\mathbf{v},\mathbf{a}) \ (1 \leq k \leq n)$ parametrai yra

$$[n, k, n - k + 1].$$

Atskiras atvejis

Pasirinkime skaičių n, kuris dalija q-1 ir kūne \mathbb{F}_q pasirinkime elementą $\beta,$ kurio eilė yra n.

Sudarykime rinkinį a taip:

$$\mathbf{a} = (1, \beta, \beta^2, \dots, \beta^{n-1}).$$

ir imkime

$$\mathbf{v} = \mathbf{a}_0 = (1^0, \beta^0, (\beta^2)^0, \dots, (\beta^{n-1})^0) = (1, 1, \dots, 1).$$

Dabar galime sudaryti Reedo-Solomono kodą $\mathbf{RS}_{n,k}(\mathbf{a}_0,\mathbf{a})$.

5 / 17

Ciklinis kodas

Teorema. Jeigu $\beta \in \mathbb{F}_q$ yra n-os eilės kūno elementas,

$$\mathbf{a} = (1, \beta, \beta^2, \dots, \beta^{n-1}), \quad \mathbf{a}_0 = (1, 1, \dots, 1),$$

tai kodas $\mathbf{RS}_{n,k}(\mathbf{a}_0,\mathbf{a})$ yra ciklinis, o vienas iš jo generuojančių daugianarių yra

$$g(x) = (x - \beta)(x - \beta^2) \dots (x - \beta^{n-k})$$

6 / 17

Bendresnis teiginys

Teoremą galima suformuluoti ir kiek bendriau. Jei pažymėsime

$$\mathbf{a}_m = (1^m, \beta^m, (\beta^2)^m, \dots, (\beta^{n-1})^m),$$

tai $\mathbf{RS}_{n,k}(\mathbf{a}_m,\mathbf{a})$ kodas irgi bus ciklinis, o jo generatorius — daugianaris

$$g(x) = (x - \beta^{1-m})(x - \beta^{2-m})\dots(x - \beta^{n-k-m}).$$

Nauja idėja

Tarkime sukonstravome kokį nors tiesinį [n,k,d] kodą $\mathbf{L} \subset \mathbb{F}_q^n$ $(q=p^m)$. Kadangi $\mathbb{F}_p^n \subset \mathbb{F}_q^n$, tai galime sudaryti sankirtą $\mathbf{L}^* = \mathbf{L} \cap \mathbb{F}_p^n$.

Aibė \mathbf{L}^* netuščia (nulinis žodis jai tikrai priklauso), ji sudaro \mathbb{F}_p^n tiesinį poerdvį.

Taigi \mathbf{L}^* yra tiesinis kodas iš abėcėlės \mathbb{F}_p žodžių.

Žinios apie jo parametrus: tai $[n,k^*,d^*]$ kodas, čia $k^* \leq k, d^* \geq d$.

8 / 17

BCH kodai

Apibrėžimas. Tegu n yra skaičiaus q-1 $(q=p^m)$ daliklis, $\beta \in \mathbb{F}_q$ yra n-os eilės elementas, $1 \leq k \leq n, \ t=n-k+1,$

$$\mathbf{a}_0 = (1, 1, \dots, 1), \quad \mathbf{a}_1 = (1, \beta, \beta^2, \dots, \beta^{n-1}),$$

Kodą $\mathbf{L} = \mathbb{F}_p^n \cap \mathbf{RS}_{n,k}(\mathbf{a}_0,\mathbf{a}_1)$ vadinsime BCH kodu su numatytuoju minimaliuoju atstumu t.

9 / 17

Kaip BCH kodus nusakyti tiesiogiai?

Tegu $\mathbf{L} \subset \mathbb{F}_p^n$ yra BCH kodas, gautas iš kodo $\mathbf{RS}_{n,k}(\mathbf{a}_0,\mathbf{a}_1) \subset \mathbb{F}_q^n$. Tegu β yra Reedo-Solomono kodui konstravimui panaudotas n-osios eilės elementas. Tada Reedo-Solomono kodo generatorius yra

$$g(x) = (x - \beta)(x - \beta^2) \dots (x - \beta^{t-1}), \quad t = n - k + 1.$$

Visi Reedo-Solomono kodo žodžiai, interpretuojami kaip daugianariai, dalijasi iš g(x), kitaip tariant – elementai $\beta, \beta^2, \dots, \beta^{t-1}$ yra jų šaknys.

Kaip BCH kodus nusakyti tiesiogiai?

Kodo \mathbb{L} žodžius irgi galime interpretuoti kaip daugianarius, tačiau su koeficientais iš \mathbb{F}_p . Taigi tie patys elementai yra ir jų šaknys.

Jeigu elementas $\beta \in \mathbb{F}_q$ yra daugianario $f(x) \in \mathbb{F}_p[x]$ šaknis, tai f(x) turi dalytis iš elemento β minimalaus daugianario.

Taigi bet kuris BCH kodo žodis, interpretuojamas kaip daugianaris su koeficientais iš \mathbb{F}_p dalijasi iš minimaliųjų daugianarių

$$m_{\beta}(x), m_{\beta^2}(x), \ldots, m_{\beta^{t-1}}(x).$$

11 / 17

Kitas būdas apibrėžti BCH kodus

Teorema. BCH kodas $\mathbb{L}\subset\mathbb{F}_p^n$ su numatytuoju atstumu t yra ciklinis kodas, kurio generatorius yra mažiausias bendras minimaliųjų daugianarių

$$m_{\beta}(x), m_{\beta^2}(x), \ldots, m_{\beta^{t-1}}(x)$$

kartotinis; čia β yra n-os eilės elementas, kurį galime rasti plėtinyje \mathbb{F}_{p^k} , tokiame, kad p^k-1 dalijasi iš n.

12 / 17

Pavyzdys

Sukonstruokime BCH kodą $\mathbf{L} \subset \mathbb{F}_3^{13}$ su numatytuoju atstumu t=3.

n=13, kokiame kūne rasime n-os eilės elementą? Kadangi iš 13 dalijasi $q-1=3^3-1$, tai reiks plėtinio \mathbb{F}_{3^3} .

Geriausia jo konstrukcijai panaudoti primityvųjį trečios eilės daugianarį

$$f(x) = x^3 - x + 1.$$

Taigi galime laikyti, kad α yra primityvusis elementas ir skaičiuoti naudodamiesi sąryšiu $\alpha^3=\alpha-1.$

Pavyzdys

Reikalingas n-osios eilės elementas bus tiesiog $\beta=\alpha^2,$ o elementai, kurių minimaliuosius daugianarius teks skaičiuoti bus:

$$\beta_1 = \beta = \alpha^2, \quad \beta_2 = \beta^2 = \alpha^4 = \alpha^2 - \alpha.$$

14 / 17

Pavyzdys

Apskaičiuosime minimalųjį daugianarį $m_{\beta_1}(x)$. Elemento β_1 eilė yra 13, todėl reikia surasti mažiausiąjį m, kad $3^m \equiv 1 \pmod{13}$. Aišku, m = 3.

Galime užrašyti pirmojo elemento minimalųjį daugianarį:

$$m_{\beta_1}(x) = (x - \beta_1)(x - \beta_1^{3^1})(x - \beta_1^{3^2}) = (x - \alpha^2)(x - \alpha^6)(x - \alpha^{18}).$$
15 / 17

Pavyzdys

Elemento eta_2 eilė irgi tokia pati, taigi

$$m_{\beta_2}(x) = (x - \beta_2)(x - \beta_2^{3^1})(x - \beta_2^{3^2}) = (x - \alpha^4)(x - \alpha^{12})(x - \alpha^{36}),$$

 $\alpha^{36} = \alpha^{10}.$

16 / 17

Pavyzdys

Matome, kad bendrų daugiklių daugianariai neturi, taigi BCH kodo generuojantis daugianaris bus

$$g(x) = m_{\beta_1}(x)m_{\beta_2}(x).$$

Belieka sudauginti minimaliuosius daugianarius:

$$m_{\beta_1}(x) = x^3 + x^2 + x + 2, \quad m_{\beta_2}(x) = x^3 + x^2 + 2.$$

Taigi mūsų sukonstruoto kodo dimensija $k = n - \deg(g) = 7$.