Predicate Logic

Predicates

Proposition with variables.

Example:

$$P(x) := [x > 3]$$

 $P(x, y) := [x + 2 = y]$

Quantifiers

∀x For ALL x
∃y There EXISTS some y

∀ is like AND

Let x range over set $\{1, 2, 3, 4, 5, 6\}$ P(x) ::= [x > 3]

 $\forall x P(x)$

same as P(1) AND P(2) AND P(3) AND P(4) AND P(5) AND P(6)

3 is like OR

Let x range over set $\{1, 2, 3, 4, 5, 6\}$ P(x) ::= [x > 3]

 $\exists x. P(x)$

same as P(1) OR P(2) OR P(3) OR P(4) OR P(5) OR P(6)

```
x, y \in \mathbb{R}

Q(x, y) ::= [x + y = 0]

\forall x \exists y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{N} = \{1, 2, ...\}
Q(x, y) ::= [x + y = 0]
\forall x \exists y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{N} = \{1, 2, ...\}
Q(x, y) ::= [x + y = 0]
\exists x \forall y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{N} = \{1, 2, ...\}
Q(x, y) ::= [x * y = 0]
\exists x \forall y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{R}

Q(x, y) := [(x * y)^2 \ge 0]

\forall x \forall y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{R}

Q(x, y) ::= [x^2 + y^2 = 13]

\exists x \exists y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{R}

Q(x, y) ::= [x^2 + y^2 = -6]

\exists x \exists y \ Q(x, y) = ?
```

```
x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}

Q(x, y, z) ::= [x + y = z]

\forall x \forall y \exists z \ Q(x, y, z) = ?
```

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T

```
x = 1

y = 1

z = 2, 1 + 1 = 2: T

What's the quantifier before z?
```

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T

What's the quantifier before z?

 $\exists z$

$$x = 1$$
 $y = 1$
 $z = 2, 1 + 1 = 2$: T

$$\forall x \forall y \exists z [x + y = z]$$

What's the quantifier before y? $\forall y$

What's the quantifier before y? $\forall y$

$$x = 1$$
 T
 $y = 1$
 $z = 1, 1 + 1 = 2$: T
 $y = 2$
 $z = 3, 1 + 2 = 3$: T

$$x = 1$$

$$T \quad y = 1$$

$$z = 1, 1 + 1 = 2: T$$

$$y = 2$$

$$z = 3, 1 + 2 = 3: T$$

$$y = -1$$

 $z = 0, 1 - 1 = 0: T$

$$x = 1$$

$$y = 1$$

$$z = 1, 1 + 1 = 2$$

$$y = 2$$

$$z = 3, 1 + 2 = 3$$

$$y = -1$$

$$z = 0, 1 - 1 = 0$$

$$\forall x \forall y \exists z [x + y = z]$$

What's the quantifier before $x? \forall x$

What's the quantifier before $x? \forall x$

$$x = 2$$

$$T \quad y = 1$$

$$z = 3, 2 + 1 = 3: T$$

$$y = -3$$

$$z = 3, 2 - 5 = -3: T$$

$$y = 0$$

$$z = 2, 2 + 0 = 2: T$$

```
x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}

Q(x, y, z) ::= [x + y = z]

\exists x \forall y \forall z \ Q(x, y, z) = ?
```

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T
What's the quantifier before z ?
 $\forall z$

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T
 $z = 1, 1 + 1 = 1$: F

What's the quantifier before z?

 $\forall z$

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T
 $z = 1, 1 + 1 = 1$: F

What's the quantifier before z?

∀z

$$x = 1$$

 $y = 1$
 $z = 2, 1 + 1 = 2$: T
 $z = 1, 1 + 1 = 1$: F

$$\exists x \forall y \forall z [x + y = z]$$

What's the quantifier before y? $\forall y$

What's the quantifier before y? $\forall y$

$$\exists x \forall y \forall z [x + y = z]$$

What's the quantifier before $x?\exists X$

What's the quantifier before $x?\exists x$


```
x \in \mathbb{N}, y \in \mathbb{N}, z \in \mathbb{N}

Q(x, y, z) ::= [x = yz]

\forall x \exists y \exists z \ Q(x, y, z) = ?
```

 $\forall x \exists y \exists z [x = yz]$

Negating Nested Quantifiers

Negating nested quantifiers

```
Find the negation of \forall x \exists y \exists z \ Q(x, y, z), where Q(x, y, z) := [x = yz]
```

- $\neg (\forall x \exists y \exists z Q(x, y, z))$
- $\equiv \exists x \neg (\exists y \exists z Q(x, y, z))$
- $\equiv \exists x \forall y \neg (\exists z Q(x, y, z))$
- $\equiv \exists x \forall y \forall z \neg (Q(x, y, z))$

Negating nested quantifiers

```
\equiv \exists x \forall y \forall z \neg (x = yz)
```

$$\equiv \exists x \forall y \forall z (x \neq yz)$$

Negating nested quantifiers

Find the negation of $\forall x \exists y \exists z \ Q(x, y, z) \lor P(x, y, z)$, where

$$Q(x, y, z) := [x = yz]$$

 $P(x, y, z) := [x + y > z]$

$$\exists x \forall y \forall z (x \neq yz) \land (x + y \leq z)$$