

Why

Take a vector space, and consider the set of continuous linear functionals on that space. Given a suitable norm, this space is a complete normed space.

Defining result

Proposition 1. Let $(V, \|\cdot\|)$ be a normed space. The set V^* of all continuous linear functionals on V is a complete normed space with respect to pointwise algebraic operations and norm $\|\cdot\|_*: V \to \mathbf{R}$ defined by

$$||F||_* = \sup_{x \in V, ||x|| \le 1} |F(x)|.$$

Proof. We argue (1) V^* is a vector space, (2) $\|\cdot\|_*$ is a norm, and (3) $(V, \|\cdot\|_*)$ is complete.¹

We call $(V^*, \|\cdot\|_*)$ the dual space (or Banach dual of V). Notice that $(V^*, \|\cdot\|_*)$ is complete regardless of whether the original normed space $(V, \|\cdot\|)$ is complete.

Basic dual norm property

Notice that the dual norm satisfies a familiar property.

Proposition 2. For any vector x in a normed space $(V, \|\cdot\|)$ and any continuous linear functional F on E,

$$|F(x)| \le ||F||_* ||x||.$$

Proof. If x=0, then ||x||=0 and F(x)=0 (F is linear). Otherwise, x/||x|| is a unit vector and so

$$||F||_* \ge |F(x/||x||)| = \frac{|F(x)|}{||x||}.$$

¹Future editions will include an account.

where the inequality is from the definition of $\|\cdot\|_*$ (as a supremum) and the equality follows from the linearity of F.

