EA721 - Princípios de Controle e Servomecanismos

20. Semestre de 2003 - 2a. Prova - Prof. Paulo Valente

RA: Nome: Ass.:

- 1. A Tabela 1 apresenta a resposta em freqüência de um certo sistema em malha aberta $G_1(s)$. Ao recorrer à Tabela para resolver os itens a seguir, utilize sempre os valores que mais próximos (em termos absolutos) dos valores teoricamente procurados.
- a) Determine as margens de ganho e de fase aproximadas do sistema. Indique o procedimento utilizado. O sistema realimentado é estável ? Justifique;
- b) Dado que o sistema é do Tipo 1, obtenha uma estimativa para a constante de velocidade k_v . Use o fato de que $k_v \simeq j\omega G_1(j\omega)$ em baixas freqüências;
- c) Projete um compensador avanço de tal maneira que a margem de fase do sistema compensado seja igual a 45° , com margem adicional de 5° .
- 2. Um sistema de controle com realimentação unitária tem como planta um duplo integrador:

$$P(s) = \frac{1}{s^2}.$$

Projete um compensador avanço de tal forma que a margem de fase do sistema compensado seja de 45° , com margem adicional de 5° .

3. Considere um sistema de controle com realimentação unitária e funções de malha aberta do compensador e da planta dadas por

$$C(s) = k\left(1 + \frac{a}{s}\right)$$
 e $P(s) = \frac{1}{(s+5)(s-4)}$,

respectivamente. A partir das propriedades do Lugar das Raízes, determine a faixa de variação de a para que o sistema em malha fechada seja estável quando $k \to \infty$. Assuma inicialmente que a < 5. Construa o Lugar das Raízes do sistema compensado e interprete o resultado.

4. Considere um sistema de controle com realimentação unitária e funções de malha aberta do compensador e da planta dadas por

$$C(s) = k_P + k_D s$$
 e $P(s) = \frac{100}{s(s+1)(s+100)}$,

respectivamente. Através do Lugar das Raízes, projete C(s) (isto é, determine k_P e k_D) de tal forma que o sistema em malha fechada apresente um pólo real dominante em s=-2.

Tabela 1: Resposta em freqüência de $G_1(s)$ (Questão 1)

ω (rad/s)	$ G_1(j\omega) _{\hbox{dB}}$	$\angle G_1(j\omega)$ graus
0.10	25.96	-98.57
0.20	19.78	-107.02
0.30	16.00	-115.23
0.40	13.16	-123.11
0.50	10.80	-130.60
0.60	8.74	-137.66
0.70	6.88	-144.28
0.80	5.16	-150.46
0.90	3.55	-156.21
1.00	2.04	-161.56
1.14	0.00	-168.57
1.41	-3.51	-180.00
2.00	-10.00	-198.43
3.00	-18.64	-217.87
4.00	-25.31	-229.39
5.00	-30.71	-236.88
6.00	-35.22	-242.10
7.00	-39.09	-245.92
8.00	-42.47	-248.83
9.00	-45.47	-251.13
10.00	-48.17	-252.97

5. Obtenha o Diagrama de Nyquist referente à função de malha aberta

$$G(s) = \frac{5}{(s+1)^3},$$

Esboce as curvas C_s e C_G nos planos s e Re $G(s) \times \operatorname{Im} G(s)$, respectivamente, indicando os mapeamentos de C_s em C_G . Com base no Critério de Nyquist, o sistema é estável em malha fechada? Justifique.

6. A função de transferência de malha aberta

$$P(s) = \frac{\Theta(s)}{V(s)} = \frac{0.15}{s(s+1)(s+5)}$$

representa o deslocamento angular θ da junta de um robô devido a uma tensão de entrada v.

 a) Esboce o Lugar das Raízes do sistema com compensação proporcional apenas. Indique possíveis pontos de entrada, saída e cruzamento com o eixo imaginário;

- b) Qual a quantidade de fase que deve ser adicionada por um compensador avanço para que o sistema em malha fechada (realimentação unitária) apresente pólos em $-1 \pm j$? Indique como ficaria (qualitativamente) o Lugar das Raízes do sistema compensado após a introdução do compensador avanço.
- 7. O compensador

$$C(s) = \frac{1.45s + 0.35}{s + 0.07}$$

é do tipo avanço ou do tipo atraso ? Justifique. Determine os ganhos de C(s) quando $\omega \to 0$ (DC) e $\omega \to \infty$.

Lugar das Raízes. Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 0$$

- 1. Magnitude e fase: |kG(s)| = 1, $\angle G(s) = 180^{\circ} \times r$, $r = \pm 1, \pm 3, \ldots$
- 2. Assíntotas: $\theta = \frac{180^o \times r}{n-m}, \ r = \pm 1, \pm 3, \dots$
- 3. Interseção:

$$\sigma_a = \frac{\displaystyle\sum_{i=1}^n p_i - \displaystyle\sum_{i=1}^n z_i}{n-m} \qquad \text{(p\'olos e zeros de } G(s)\text{)}$$

4. Pontos de entrada e saída: entre as raízes de

$$D'(s)N(s) - D(s)N'(s) = 0$$

Compensador Avanço

$$C(s) = k_c \alpha \frac{Ts + 1}{\alpha Ts + 1}$$

$$\operatorname{sen} \phi_m = \frac{1-\alpha}{1+\alpha}, \quad \omega_m = \frac{1}{T\sqrt{\alpha}}, \quad \left|\frac{jT\omega+1}{j\alpha T\omega+1}\right|_{\omega=\omega_m} = 20\log\,\frac{1}{\sqrt{\alpha}}$$

Respostas

- **1.** a) MG=3.51 dB, MF=11.4°, estável; b) $k_v=1.98~{\rm s}^{-1}$; c) C(s)=4.31(s+0.67)/(s+2.92);
- **2.** C(s) = 7.54(s + 0.60)/(s + 4.55);
- **3.** 0 < a < 1;
- **4.** C(s) = 1.96(s+1);
- **5.** (Ver Aula 10) N = Z = 0, estável;
- **6.** a) Ponto de saída: s=-0.47; cruzamento com o eixo imaginário: $s=\pm j\sqrt{5}$; b) O compensador avanço deve adicionar 59^o ;
- 7. Atraso; C(j0) = 5, $C(j\infty) = 1.45$.