Конспект лекцій з теорії ймовірностей

Каніовська І.Ю.

14 липня 2020 р.

Зміст

1	Випадкові події		
	1.1	Основні поняття теорії ймовірностей	2

Розділ 1

Випадкові події

1.1 Основні поняття теорії ймовірностей

Стохастичний експеримент (СЕ)

Означення 1.1.1. *Стохастичним експериментом (випробуванням)* називається експеримент, який можна повторювати неодноразово зберігаючи певні умови і результат цього експерименту заздалегідь передбачити неможливо.

Означення 1.1.2. Будь-який результат СЕ називається подією.

Приклад 1.1.1.

- 1. СЕ кидання кубика один раз, подія випало 6 очок.
- 2. CE кидання кубика двічі, подія сума очок, що випала, дорівнює 6.

Події бувають:

- 1. Випадкові можуть відбутися чи не відбутися при проведенні СЕ.
- 2. Неможливі ніколи не відбуваються в даному СЕ.
- 3. Вірогідні завжди відбуваються в даному СЕ.

Теоретико-множинний підхід до основних понять ТЙ

Будемо вважати, що кожному СЕ можна поставити у відповідність деяку множину, що називається простором елементарних подій Ω . Під елементарними подіями ω будемо розуміти єдині логічно можливі події СЕ, що виключають одна одну.

Приклад 1.1.2.

- 1. СЕ кидання кубика один раз. $\Omega = \{\omega_1, \omega_2, ..., \omega_6\}$, де $\omega_k = \{$ випало k очок $\}$, k = 1, ..., 6.
- 2. СЕ кидання монетки до першої появи герба. $\Omega = \{\omega_1, \omega_2, ..., \omega_k, ...\},$ де $\omega_i = \{$ герб випав на i-тому киданні $\}$, $i \in \mathbb{N}$.
- 3. СЕ зустріч двох осіб, що домовилися зустрітися протягом години. x час приходу першої особи, y час приходу другої, $0 \le x, y \le 1$. $\Omega = \{(x,y) : 0 \le x, y \le 1\} \subset \mathbb{R}^2$.

В подальшому випадкові події позначатимемо A,B,C,... Випадкова подія — підмножина Ω . У прикладі з киданням кубика один раз $A=\{$ випало 6 очок $\}=\{\omega_6\}$. В загальному випадку маємо $A=\{\omega_{k1},\omega_{k2},...,\omega_{kn},...\}\subset\Omega$. Неможлива подія — \varnothing , вірогідна — Ω .

Основні операції над подіями

Зауваження. Розглядаємо події в межах фіксованих СЕ та простору елементарних подій.

1. Включення $A \subset B$ означає, що якщо відбулася подія A, то обов'язково відбудеться подія B. Наприклад, $A = \{$ витягнуто даму пік $\}$, $B = \{$ витягнуто карту чорної масті $\}$. Очевидно, $A \subset B$.

Рівність подій: $(A \subset B, B \subset A) \iff (A = B)$.

2. O6'єднання nodiй $A \cup B$ — це подія, яка відбувається тоді, коли відбувається принаймні одна з подій A чи B.

Властивості: $A \cup A = A, \ A \cup B = B \cup A, \ (A \subset B) \Rightarrow (A \cup B = B), \ A \cup \Omega = \Omega, \ A \cup \varnothing = A, \ (A \cup B) \cup C = A \cup (B \cup C).$

Операція узагальнюється на скінченну або зліченну кількість подій: $A = \bigcup_{i=1}^{n(\infty)} A_i$.

3. Перетин подій $A \cap B$ — це подія, яка відбувається тоді, коли A і B відбуваються одночасно.

Властивості: $A \cap A = A$, $A \cap B = B \cap A$, $(A \subset B) \Rightarrow (A \cap B = A)$, $A \cap \Omega = A$, $A \cap \varnothing = \varnothing$, $(A \cap B) \cap C = A \cap (B \cap C)$, $A \cap B \subset A$, $A \cap B \subset B$, $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

Операція узагальнюється на скінченну або зліченну кількість подій: $A = \bigcap_{i=1}^{n(\infty)} A_i$.

Означення 1.1.3. Події A та B називається necymichumu, якщо вони не відбуваються одночасно: $A \cap B = \emptyset$. Узагальнення: події $A_1, A_2, ..., A_n, ...$ називаються nonapho necymichumu, якщо $A_i \cap A_j = \emptyset$ для $i \neq j$.

Означення 1.1.4. Події $A_1,A_2,...,A_n,...$ утворюють *повну групу подій*, якщо вони попарно несумісні та $\bigcup_{i=1}^{n(\infty)}A_i=\Omega.$

- 4. Протилежна подія \overline{A} це подія, яка відбувається тоді, коли A не відбувається. Властивості: $A \cup \overline{A} = \Omega, \ A \cap \overline{A} = \varnothing, \ \overline{(A \cup B)} = \overline{A} \cap \overline{B}, \ \overline{(A \cap B)} = \overline{A} \cup \overline{B}.$
- 5. Pізниця nodій $A \backslash B$ це подія $A \cap \overline{B}$. Для протилежної події маємо $\overline{A} = \Omega \backslash A$.

${f A}$ лгебра та σ -алгебра подій

Означення 1.1.5. Непорожня система підмножин \mathcal{F} простору елементарних подій Ω утворює *алгебру подій*, якщо:

- 1. $\Omega \in \mathcal{F}$;
- 2. $(A, B \in \mathcal{F}) \Rightarrow (A \cup B \in \mathcal{F});$
- 3. $(A \in \mathcal{F}) \Rightarrow (\overline{A} \in \mathcal{F})$.

Узагальнення: якщо Ω містить зліченну кількість подій, то означення σ -алгебра отримаємо заміною умови 2 на $(\forall n \in \mathbb{N} : A_n \in \mathcal{F}) \Rightarrow (\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}).$

Пара $\{\Omega, \mathcal{F}\}$ називається вимірним простором стохастичного експерименту.

Міра вірогідності появи випадкової події

Дослідника завжди цікавить кількісна характеристика появи тієї чи іншої події.

Нехай Ω — скінченний чи зліченний. Поставимо у відповідність кожній елементарній події ω_k число $p_k \geq 0$ так, що $\sum_{k=0}^{n(\infty)} p_k = 1$. Тоді $P(A) = \sum_{\omega_k \in A} p_k$ — кількісна характеристика, ймовірність події A.

Приклад 1.1.3. *Класична модель ймовірності*. Якщо простір елементарних подій Ω СЕ скінченний та всі ω_k рівноможливі, то такий СЕ називається *класичним*. В такому випадку $p_1 = p_2 = ... = p_n = \frac{1}{n}$, де $n = \operatorname{card}(\Omega)$.

$$P(A) = \sum_{\omega_k \in A} p_k = \frac{m}{n} = \frac{\text{кількість елементарних подій в } A}{\text{загальна кількість елементарних подій}} \tag{1.1}$$

Ймовірності, що розраховуються за формулою (1.1), називаються класичними.

- **Приклад 1.1.4.** 1. «Задачі про вибір» коли з великої кількості чогось вибирають певну кількість. Наприклад, з урни з 10 кульками, 3 чорними та 7 білими, навмання витягають 5 кульок. Обчислимо ймовірність події $A=\{$ серед них 2 чорних кульки $\}$: $P(A)=\frac{C_3^2\cdot C_7^3}{C_{10}^5}=\frac{3\cdot35}{252}=\frac{5}{12}$
 - 2. «Задачі про ліфт». 5 осіб одночасно зайшли в ліфт 11-поверхового будинку. Яка ймовірність того, що вони всі вийдуть на різних поверхах, починаючи з другого?

$$P(A)=rac{A_{10}^5}{\widetilde{A}_{10}^5}=rac{10\cdot 9\cdot 8\cdot 7\cdot 6}{10^5}=0.3024$$
. Тут A_n^k та \widetilde{A}_n^k — кількості розміщень без повторень та з повтореннями відповідно.

Властивості класичної ймовірності:

- 1. $\forall A \in \mathcal{F} : 0 \le P(A) \le 1$.
- 2. $P(\Omega) = 1$.
- 3. $P(\overline{A}) = 1 P(A)$.
- 4. $P(\emptyset) = 0$.
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$, для несумісних A і B $P(A \cup B) = P(A) + P(B)$.
- 6. $(A \subset B) \Rightarrow (P(A) \leq P(B))$.
- 7. Якщо $A_1,A_2,...,A_n$ повна група подій СЕ, то $P(\bigcup_{i=1}^n A_i)=1.$