An Image Fusion Framework for Deep Learning in Traffic Forecasting

Xiahan LI

(Simplify Version)

Objectives and Background

• Predict Travel Time Index (TTI) after 10 minutes in 10 individual roads and an specific area in Chengdu City, China during one day (from 00:10:00 November 1st, 2018 to 00:10:00 November 2nd, 2018).

TTI is an evaluation index of urban congestion degree. For one link, TTI = (Free Flow

Speed) / (Actual Speed). For roads, use weight average to calculate.

Output TTI Prediction Area

Position and shape of roads in Chinese Gaode Map

Comparision between Input Data Area and TTI prediction Area

Data Structure

TTI & Average Speed Data Obtained from DIDI GAIA Dataset

• Object ID is the identification data of the road. Which is corresponding to the Object ID in Network Data.

Example: 281931.

• Datetime is the date and time when the travel time index and average speed are recorded.

Example: 2018/10/19 20:00:00.

- Travel Time Index(TTI) Example: 2.45013.
- Average Speed is the average speed of all the vehicles in the specific road at the specific time.

Example: 14.7419

• 10 minutes time gap for data recording.

	F6		@	fx		
À	А	В		C	D	
1	Object ID	Datetime		TTI	Avg Speed	
2	283404	2018/1/1	0:00	1.39778	39. 389	
3	283442	2018/1/1	0:00	1.07396	82. 3449	
4	283002	2018/1/1	0:00	1.09723	27. 7525	
5	282048	2018/1/1	0:00	1.74019	15. 2246	
6	283424	2018/1/1	0:00	1. 32598	35. 5202	
7	282590	2018/1/1	0:00	1. 23341	33. 1325	
8	283204	2018/1/1	0:00	1. 10675	37. 9812	
9	283406	2018/1/1	0:00	1.73706	26. 4112	
10	283444	2018/1/1	0:00	1.11582	43.8828	
11	283225	2018/1/1	0:00	1.30119	49. 2513	
12	283388	2018/1/1	0:00	1.10798	50. 8591	
13	283426	2018/1/1	0:00	1. 1995	46. 929	
14	282070	2018/1/1	0:00	1. 19949	47.0863	
15	283408	2018/1/1	0:00	1. 27594	36. 8665	
16	283446	2018/1/1	0:00	1. 21089	32. 9539	
17	282230	2018/1/1	0:00	1. 17645	32. 1658	
18	283390	2018/1/1	0:00	1. 11703	55. 4279	
19	282440	2018/1/1	0:00	1. 20862	36. 5327	
20	283169	2018/1/1	0:00	1.08221	56. 8259	
21	283428	2018/1/1	0:00	1. 12467	40. 2594	
22	282791	2018/1/1	0:00	1.83667	13.8564	
23	283228	2018/1/1	0:00	1.07945	46. 6949	
24	283410	2018/1/1	0:00	1. 24032	42.3101	
25	283448	2018/1/1	0:00	1.34308	33. 7196	
26	283209	2018/1/1	0:00	1.08677	43. 3801	
27	283392	2018/1/1	0:00	1. 1171	40.6179	
28	283430	2018/1/1	0:00	1. 16427	82, 5896	
29	282291	2018/1/1	0:00	1. 27808	26. 4998	
30	283412	2018/1/1	0:00	1. 18142	42, 8327	

Statistical Data Description

- Analyze data from 00:00:00 October 1st, 2018 to 23:50:00 November 30nd 2018 (61 days).
- Considering the range is too large, only plot 1% to 99%.
- TTI vs time on road No.283509 from Oct. 1st 2018 to Oct. 3rd 2018.(Quasi Preiodic Pattern)

	Travel Time Index		
Minimum	0.131779		
Maximum	507.394		
Range	507.262221		
Mean	1.4474		
Median	1.3152		
25 percentile	1.15855		
75 percentile	1.53686		
Variance	0.7944		
Skewness	2.10522		
Kurtosis	6.49817		

Pure LSTM Network

• Long Short Term Memory (LSTM) is an artificial recurrent neural network that is capable to learn more than 1000 discrete-time steps.

• In this task, the training and validation data is from October 8th to November 1st (24 days). The test data is from November 1st to 2nd (1 day).

• In LSTM, the inputs are 144 successive historical TTI values (Example: from 00:00:00 to 23:50:00 in October 8th), and the output is the stepped 145th TTI value(Example, 00:00:00 in October 9th).

Results of Pure LSTM

• Take historical average as a baseline, the pure LSTM made excellent prediction on some roads but bad prediction on the other, which is unstable.

Problem of Pure LSTM

- 1. Performance of LSTM is unstable:
- Inputs of historical TTI values assume that the future is highly related to the history.
- However, alternative situation may affect the future.

Improvement: Expand the inputs, but Pure LSTM with multiple inputs get worse performance

- 2. Use test data to predict the test data:
- When predicting the last TTI value in the test dataset, the inputs should be the previous 144 TTI values from the last 24 hours, while 143 of them are in the test dataset.
- Cannot use any part of the test dataset to do the prediction of the test dataset.

Improvement: Use the first prediction result as the input of second prediction, but it get worse prediction because of error amplification.

Data Augmentation: Routing Data

- Routing Data Obtained from DIDI GAIA Dataset.
- Driver ID are the desensitization of drivers' personal information.

Example: 4ecea6b8473789e1fdbfea71adfb2451.

Trajectory is consist of 3 parts: longitude, latitude and timestamp in order.

Example: 104.12226 30.67012 1539952150, 104.12226 30.67012 1539952160.

Problem: No connection to any information in TTI & Average Speed Dataset.

Data Augmentation: Network Data

Network data is consist of Object ID, Object Name, and WKT Geometry.

- Object ID is the identification data of the road.
 Example: 281931. Corresponding to the Object ID in TTI & Average Speed Data.
- Object Name is the Chinese name of the road, whose detailed information can be further investigated on Maps.
- WKT Geometry can be used to coordinates to represent various geometric objects like points, linestrings, polygons, networks and geometry collections, etc.

Example: LINESTRING(104.10583 30.67989, 104.10649 30.67871)

Problem: Difficult to mapping positional relationship

Data Structure after Augmentation

Innovative Image Fusion Framework

Geographical Image

- The geographical 2D CAD picture of Chengdu City is downloaded from a free opensource website called Cadmapper.
- The geographical image mainly categorizes transport network by different colors.
- During data fusion, the colored image will be transformed to gray image.

CAD picture of the input data area

Labels of the CAD graph

Roadmap Image

- Use the longitude and latitude values of roads in Network Data to plot the network.
- Use the Average Speed of roads in TTI & Average Speed data to decide the pixel. Value of pixel = 255 integer of speed.

Roadmap image of November 8th, 2018 at 03:00:00

Roadmap image of November 8th, 2018 at 09:00:00

Trajectory Image

- Use the longitude and latitude values of roads in Routing Data to plot the network.
- Compute the speed of roads by timestamp, longitude and latitude values. Value of pixel = 255 integer of speed.

Trajectory image of November 8th, 2018 at 03:00:00, v

Trajectory image of November 8th, 2018 at 09:00:00, 1

Image Fusion

- Classify the three kinds of images according to the same time.
- Fuse the 3 phases using the image fusion framework.

Full 3 RGB image of November 8th, 2018 at 03:00:00 Full 3 RGB image of November 8th, 2018 at 09:00:00

CNN and Resnet

- Convolutional neural networks (CNN) are used in pattern recognition.
- Deep Residual Neural Networks (Resnet) is a kind of CNN that are created to against degradation of training accuracy.
- Considering both the computation cost and model accuracy, we use Resnet34.

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
conv2_x	56×56	3×3 max pool, stride 2						
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	3×3, 128 3×3, 128 ×4	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 4	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \] \times 4	\[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 8		
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6 \]	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 36		
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \] \times 3		
	1×1	average pool, 1000-d fc, softmax						
FLO	OPs	1.8×10 ⁹	3.6×10 ⁹	3.8×10 ⁹	7.6×10 ⁹	11.3×10^9		

Result of Resnet with Image Fusion

• Take historical average as a baseline, and compare to the LSTM model, Resnet with image fusion have a stable results. Besides, Resnet with image fusion can solve all the problems of LSTM model that mentioned before.

Results in Detail

- Set the loss of historical average model as 100%
- Resnet34: 91.1%.
- LSTM model 102.8%.

Resnet with Image fusion can improve the accuracy by 9%.

Single LSTM reaches nearly similar accuracy with baseline and encounter a series of problems.

Road ID	Historical Resnet34		LSTM	LSTM	LSTM
	Average		(Single Input)	(Multiple Input)	
281870	0.13751	0.11284	0.23952	0.69540	0.02241
281874	0.07473	0.06299	0.22158	0.58185	0.04958
281876	0.08684	0.04913	0.18057	0.48999	0.03003
281885	0.06096	0.06370	0.37082	0.60964	0.03108
281896	0.10174	0.09482	0.28598	0.61231	0.24025
282014	0.06234	0.05960	0.40116	0.53485	0.11554
282228	0.17517	0.17066	0.51937	0.80210	0.42007
282242	0.11649	0.11439	0.48036	0.72747	0.14938
282252	0.10599	0.10186	0.15552	0.75103	0.06292
282272	0.19019	0.19143	0.38607	0.73633	0.05428
Area	0.04659	0.03400	0.16136	0.25482	0.15864
Total	0.10532	0.09595	0.30930	0.61780	0.1083

Table 5.1.: Average Loss Comparison of Different Models

Thanks!

Q & A