Hp-error estimates of fractional collocation methods for weakly singular Volterra integro-differential equations

Zheng Ma¹ Joint work with Prof. Chengming Huang²

¹Applied and Computational Mathematics Division, Beijing Computational Science Research Center

²School of Mathematics and Statistics, Huazhong University of Science and Technology

August 8, 2023

Contents

- Introduction
- Numerical scheme
- Convergence analysis
- 4 Numerical experiments
- Concluding remarks

Contents

- Introduction
- 2 Numerical scheme
- 3 Convergence analysis
- 4 Numerical experiments
- Concluding remarks

Volterra integro-differential equations (VIDEs) with weakly singular kernels

$$\begin{cases} u'(t) = g(t) + a(t)u(t) + \int_0^t (t-s)^{\mu-1} K(t,s)u(s)ds, \ t \in I := [0,T] \\ u(0) = u_0, \ \mu \in (0,1). \end{cases}$$
(1)

Proposition 1.1 (Brunner, 2004)

Assume that $a,g \in C^m(I)$ and $K \in C^m(D)$, $D = \{(t,s) : 0 \le s \le t \le T\}$, $(m \ge 1)$, with $K(t,t) \ne 0$ on I. $\mu \in (0,1)$. Then the unique solution u of equation (1) lies in $C^1(I) \cap C^{m+1}(0,T]$. The solution can be written in the form

$$u(t) = \sum_{(j,k)_{\mu,m}} \alpha_{j,k}(\mu) t^{j+k(1+\mu)} + Y_{m+1}(t,\mu) \text{ for } t \in I,$$

where $(j,k)_{\mu,m} := \{(j,k) : j,k \in \mathbb{N}_0, \ j+k(1+\mu) < m+1\}$, the constants $\alpha_{j,k}(\mu)$ depend on μ , and $Y_{m+1} \in C^{m+1}(I)$.

h-version numerical methods: convergence is achieved on successively refined time steps

- Collocation methods on uniform mesh: $m(\geq 2)$ points
 - Global order: $1 + \mu$
- Collocation on graded meshes
 - H. Brunner, IMAJNA 1986: $r = m/\mu$
 - T. Tang, IMAJNA 1993: $r = m/(1 + \mu)$
 - T. Tang, Numer Math 1992: Superconvergence
- Geometric meshes: Q. Hu, IMAJNA, 1998
- Nonpolynomial collocation
 - H, Brunner, SINUM 1983
 - Q. Hu, SINUM 1996
- Smoothing transformation: T. Diogo et al, 2017
- DG: J. Ma 2009; Mustapha, Math Comp, 2013
- RK, LMM, BVM: Lubich, Math Comp, 1983; D. Xu SINUM 2007; C. Zhang ···

p-version numerical methods: convergence is achieved by successively increasing the approximation order

- Spectral method for VIEs: T. Tang, X. Xu, J. Cheng, 2008
- Spectral Petrov-Galerkin methods for VIDEs (smooth kernel): Z. Xie,
 X. Tao et al, 2011
- Spectral collocation methods for VIDEs (several classes): Y. Huang,
 Y. Chen, Y. Yang et al, 2012-2020
- Spectral Galerkin method based on nonpolynomial (λ -polynomials) basis functions: D. Hou, C. Xu, 2017
-

hp-version numerical methods: flexible choice of locally varying time-steps and approximation orders

- Discontinuous Galerkin method: H. Brunner, D. Schotzau, SINUM 2006
- Petrov-Galerkin method: L. Yi, B. Guo, SINUM 2015
- Collocation method: Z. Wang, Y. Guo et al, Math Comp 2017, JSC 2017, NMTMA 2019
- All these methods are based on piecewise polynomial approximation.
 The start singularity are resolved by using graded meshes or geometric meshes.

Aim of our work

- Multi-domain fractional spectral collocation method
 - exponential convergence over arbitrary meshes
 - high order convergence (h-version) on uniform mesh
- Error analysis of hp-version

Contents

- Introduction
- Numerical scheme
- Convergence analysis
- 4 Numerical experiments
- Concluding remarks

Consider nonlinear Volterra integro-differential equations (VIDEs)

$$u'(t) = f(t, u(t)) + \int_0^t (t - s)^{\mu - 1} K(t, s, u(s)) ds,$$
 (2)

with $u(0) = u_0$, $\mu \in (0,1)$.

• The partition \mathcal{T}_M of the interval I:

$$\mathscr{T}_M := \{t_i : 0 = t_0 < t_1 < \dots < t_M = T\},\$$

Define $\sigma_i = (t_{i-1}, t_i]$, $h_i = t_i - t_{i-1}$. Let $\lambda \in (0, 1]$. Define $\sigma_{i,\lambda} = (t_{i-1}^{\lambda}, t_i^{\lambda}]$, $h_{i,\lambda} = t_i^{\lambda} - t_{i-1}^{\lambda}$.

The approximate space:

$$S_{\lambda}(\mathscr{T}_{M}) := \{ v : v |_{\sigma_{i}} \in P_{N_{i}}^{\lambda}, i = 1, \cdots, M \}, \tag{3}$$

where $P_{N_i}^{\lambda} := span\{1, t^{\lambda}, \dots, t^{N_i \lambda}\}$ with $\{N_i\}$ being given sequence of natural number.

• Müntz theorem shows that P_{∞}^{λ} is a dense subset of C(I).

Zheng Ma (CSRC) Fractional collocation method August 8, 2023 7 / 31

Notation

• Let $\rho(s) := s^{1/\lambda}$. Collocation points $\{t_{i,k}^C\}_{k=0}^{N_i} \in \sigma_i = (t_{i-1},t_i]$

$$X_i := \{t_{i,k}^C : t_{i,k}^C = \rho(\xi_{i,k}^C), \quad k = 0, \dots N_i\},$$

where $\xi_{i,k}^C$ are the shifted Chebyshev-Gauss points on the interval $\sigma_{i,\lambda}=(t_{i-1}^\lambda,t_i^\lambda].$

• The interpolation basis functions on σ_i :

$$L_{i,k}^{\lambda,C}(t) = \prod_{j=0,j\neq k}^{N_i} \frac{t^{\lambda} - (t_{i,j}^C)^{\lambda}}{(t_{i,k}^C)^{\lambda} - (t_{i,j}^C)^{\lambda}}.$$

• The interpolation operator $I_{N_i,i}^{\lambda,\mathcal{C}}:\mathcal{C}(\sigma_i) o P_{N_i}^{\lambda}(\sigma_i)$

$$(I_{N_i,i}^{\lambda,\mathcal{C}}v)(t):=\sum_{k=0}^{N_i}L_{i,k}^{\lambda,\mathcal{C}}(t)v(t_{i,k}^{\mathcal{C}}),\quad t\in\sigma_i,\quad i=1,\cdots,M.$$

Notation

- Let $\{\xi_{i,k}^L\}_{k=1}^{N_i+1}$ be the shifted Legendre-Gauss-Lobatto points on the interval $[t_{i-1}^{\lambda}, t_i^{\lambda}]$.
- Let $t_{i,k}^L = \rho(\xi_{i,k}^L) = (\xi_{i,k}^L)^{1/\lambda} \in [t_{i-1},t_i]$. The interpolation basis functions on $[t_{i-1},t_i]$:

$$L_{i,k}^{\lambda,L}(t) = \prod_{j=0, j\neq k}^{N_i+1} \frac{t^{\lambda} - (t_{i,j}^L)^{\lambda}}{(t_{i,k}^L)^{\lambda} - (t_{i,j}^L)^{\lambda}}.$$

ullet The interpolation operator $I_{N_i+1,i}^{\lambda,L}:C([t_{i-1},t_i]) o P_{N_i+1}^{\lambda}([t_{i-1},t_i])$

$$(I_{N_i+1,i}^{\lambda,L}v)(t) := \sum_{k=0}^{N_i+1} L_{i,k}^{\lambda,L}(t)v(t_{i,k}^L), \quad t \in [t_{i-1},t_i], \quad i=1,\cdots,M.$$

Numerical scheme

Fractional collocation method for (2): find a function $V \in S_{\lambda}(\mathscr{T}_{M})$ and U such that for $i = 1, 2, \dots, M$,

$$V(t_{i,k}^{C}) = f(t_{i,k}^{C}, U_{i}(t_{i,k}^{C})) + \sum_{j=1}^{i-1} \int_{t_{j-1}}^{t_{j}} (t_{i,k}^{C} - s)^{\mu - 1} I_{N_{j}+1,j}^{\lambda, L} K(t_{i,k}^{C}, s, U_{j}(s)) ds$$

$$+ \int_{t_{i-1}}^{t_{i,k}^{C}} (t_{i,k}^{C} - s)^{\mu - 1} I_{N_{i}+1,i}^{\lambda, L} K(t_{i,k}^{C}, s, U_{i}(s)) ds, \quad k = 0, \dots, N_{i}, \quad (4)$$

$$U_{i}(t) = U_{i-1}(t_{i-1}) + \int_{t}^{t} V_{i}(s) ds, \quad t \in [t_{i-1}, t_{i}], \quad (5)$$

 $U_{i}(t) = U_{i-1}(t_{i-1}) + \int_{t_{i-1}} V_{i}(s)ds, \quad t \in [t_{i-1}, t_{i}], \tag{5}$

with $U_0(t_0) = u_0$, and the numerical solution is given by the continuous function U(t) which is piecewise defined by (5).

Numerical scheme

ullet Let $Y_{i,l}=V_i(t_{i,l}^{\mathcal{C}})$ and $eta_{i,l}(t)=\int_{t_{i-1}}^t L_{i,l}^{\lambda,\mathcal{C}}(s)ds$, then

$$V_i(t) = \sum_{l=0}^{N_i} L_{i,l}^{\lambda,C}(t) Y_{i,l}, \quad U_i(t) = U_{i-1}(t_{i-1}) + \sum_{l=0}^{N_i} \beta_{i,l}(t) Y_{i,l}.$$

Let

$$\phi_{k,p}^{i,j} = \begin{cases} \int_{t_{j-1}}^{t_j} (t_{i,k}^C - s)^{\mu - 1} L_{j,p}^{\lambda,L}(s) ds, & 1 \leq j \leq i - 1, \\ \int_{t_{i-1}}^{t_{i,k}^C} (t_{i,k}^C - s)^{\mu - 1} L_{i,p}^{\lambda,L}(s) ds, & j = i. \end{cases}$$

Rewritten the numerical scheme: for $k = 0, \dots, N_i$,

$$\begin{split} \mathbf{Y}_{i,k} &= f\left(t_{i,k}^{C}, U_{i-1}(t_{i-1}) + \sum_{l=0}^{N_{i}} \beta_{i,l}(t_{i,k}^{C}) \mathbf{Y}_{i,l}\right) \\ &+ \sum_{j=1}^{i-1} \sum_{p=0}^{N_{j}+1} K\left(t_{i,k}^{C}, t_{j,p}^{L}, U_{j}(t_{j,p}^{L})\right) \phi_{k,p}^{i,j} \\ &+ \sum_{p=0}^{N_{i}+1} K\left(t_{i,k}^{C}, t_{i,p}^{L}, U_{i-1}(t_{i-1}) + \sum_{l=0}^{N_{i}} \beta_{i,l}(t_{i,p}^{L}) \mathbf{Y}_{i,l}\right) \phi_{k,p}^{i,i}, \\ U_{i}(t_{i}) &= U_{i-1}(t_{i-1}) + \sum_{l=0}^{N_{i}} \beta_{i,l}(t_{i}) \mathbf{Y}_{i,l}, \end{split}$$

which is a nonlinear system about $\{Y_{i,k}\}_{k=0}^{N_i}$ and can be solved by an iterative process.

Contents

- Introduction
- 2 Numerical scheme
- 3 Convergence analysis
- 4 Numerical experiments
- Concluding remarks

Some Lemmas

Lemma 3.1 (Wang et al, Math Comp, 2017)

Let $\hat{I}_{N_i+1,i}^L$ be the shifted Legendre-Gauss-Lobatto interpolation operator. For $f \in H^m(\hat{\sigma}_i)$ with $1 \le m \le N_i + 2$,

$$\|f - \hat{I}_{N_i+1,i}^L f\|_{H^k(\hat{\sigma}_i)} \le c h_{i,\lambda}^{m-k} (N_i+1)^{k-m} \|\partial_t^m f\|_{L^2(\hat{\sigma}_i)}, \quad k = 0, 1.$$

Lemma 3.2

Let $\hat{I}_{N_{i+1,i}}^{C}$ be the shifted Chebyshev-Gauss interpolation operator. For $f \in H^{m}(\hat{\sigma}_{i})$ with $1 \leq m \leq N_{i} + 1$,

$$||f-\hat{I}_{N_i,i}^C f||_{L^2(\hat{\sigma}_i)} \leq c h_{i,\lambda}^m N_i^{-m} ||\partial_t^m f||_{L^2(\hat{\sigma}_i)}.$$

Some Lemmas

Lemma 3.3

Let 0 < v < 1 and $\kappa \ge t_{i,k}^C$ be any given constants. For any $u \in H^1(0, \xi_{i,k}^C)$ with u(0) = 0, we have

$$\int_0^{\xi_{i,k}^C} u^2(y) (\kappa - y^{1/\lambda})^{-\nu} y^{1/\lambda - 1} dy \leq \frac{2\lambda \, \kappa^{1-\nu}}{1 - \nu} \|u\|_{L^2(0,\xi_{i,k}^C)} \|u'\|_{L^2(0,\xi_{i,k}^C)}.$$

Assumptions

• Assume that there exist non-negative constants L_i , i = 1,...,5, such that for all $s, t \in [0, T]$, $w_1, w_2 \in \mathbb{R}$,

$$|f(t, w_1) - f(t, w_2)| \le L_1 |w_1 - w_2|,$$
 (6a)

$$|K(t,s,w_1) - K(t,s,w_2)| \le L_2|w_1 - w_2|,$$
 (6b)

$$|K_2(t,s,w_1) - K_2(t,s,w_2)| \le L_3|w_1 - w_2|,$$
 (6c)

$$|K_3(t,s,w_1) - K_3(t,s,w_2)| \le L_4|w_1 - w_2|,$$
 (6d)

$$|\mathcal{K}_3(t,s,w_1)| \le L_5,\tag{6e}$$

where $K_2(t,s,w) = \partial_s K(t,s,w)$ and $K_3(t,s,w) = \partial_w K(t,s,w)$.

- Example 1: K(t,s,w) = k(t,s)w
- Example 2: $K(t, s, w) = k(t, s) \sin w$

Convergence results

- Define $\mathbb{K}(\hat{w})(s) := \hat{K}(t, s, \hat{w}(s)) = K(t, \rho(s), w(\rho(s))).$
- Let e(t) = u(t) U(t), e'(t) = u'(t) V(t).

Theorem 3.1

Let u be the exact solution of equation (2) and U be the solution of numerical scheme (4)-(5). Assume that f and K are continuous and satisfy the conditions in (6), $u \in H^1_{0,\lambda-1}(I)$, $u(t^{1/\lambda})|_{\sigma_{i,\lambda}} \in H^{m_i+1}(\sigma_{i,\lambda})$, $u'(t^{1/\lambda})|_{\sigma_{i,\lambda}} \in H^{m_i}(\sigma_{i,\lambda})$ and $\mathbb{K}: H^{m_i+1}(\sigma_{i,\lambda}) \to H^{m_i+1}(\sigma_{i,\lambda})$ with $1 \leq m_i \leq N_i + 1$. Then we have

$$\|e\|_{H_{0,\lambda-1}^{1}(I)}^{2} \leq \exp\left(cT^{2-\lambda+2\mu}\right) \sum_{i=1}^{M} h_{i,\lambda}^{2m_{i}} N_{i}^{-2m_{i}} \cdot \left(|u'(t^{1/\lambda})|_{H^{m_{i}}(\sigma_{i,\lambda})}^{2} + \left\|\partial_{s}^{m_{i}+1} K\left(t, s^{1/\lambda}, u_{i}(s^{1/\lambda})\right)\right\|_{L^{\infty}(I; L^{2}(\sigma_{i,\lambda}))}^{2}\right)$$

$$(7)$$

Convergence results

Special case: $N_i = N$,

$$\mathscr{T}_{M} = \left\{ t_{i} = \left(\frac{i}{M} \right)^{q} T, \quad i = 0, 1, \cdots, M \right\}, \quad q \ge 1.$$
 (8)

Theorem 3.2

Let $N_i=N$ and \mathscr{T}_M be the graded mesh defined by (8). Let u be the exact solution of equation (2) and U be the solution of numerical scheme (4)-(5). Assume that f and K are continuous and satisfy the conditions in (6), $u\in H^1_{0,\lambda-1}(I)$, $u(t^{1/\lambda})\in H^{m+1}(I)$, $u'(t^{1/\lambda})|\in H^m(I)$ and $\mathbb{K}: H^{m+1}(\hat{\sigma}_i)\to H^{m+1}(\hat{\sigma}_i)$ with $1\leq m\leq N+1$. Then we have

$$\|e\|_{H_{0,\lambda-1}^{1}(I)}^{2} \leq \exp\left(cT^{2-\lambda+2\mu}\right) M^{-2\min\{q\lambda m,m\}} N^{-2m} \cdot \left(|u'(t^{1/\lambda})|_{H^{m}(I)}^{2} + \sum_{i=1}^{M} \left\|\partial_{s}^{m+1} K\left(t, s^{1/\lambda}, u_{i}(s^{1/\lambda})\right)\right\|_{L^{\infty}(I; L^{2}(\hat{\sigma}_{i}))}^{2}\right)$$
(9)

Contents

- Introduction
- 2 Numerical scheme
- Convergence analysis
- 4 Numerical experiments
- Concluding remarks

Example 1

Consider the linear VIDE

$$\begin{cases} u'(t) = f(t) - u(t) - \int_0^t (t-s)^{\mu-1} e^{s^{\mu}} u(s) ds, & t \in [0,1], \\ u(0) = 0. \end{cases}$$
 (10)

where $f(t) = (1 - \mu t^{\mu} + t)e^{-t^{\mu}} + B(\mu, 2)t^{1+\mu}$. The exact solution is $u(t) = te^{-t^{\mu}}$.

- The exact solution u has a weak singularity at t=0 for $\mu\in(0,1)$. Set $\mu=1/2$ in this example.
- $u(t^{1/\lambda})$ and $u'(t^{1/\lambda})$ are analytic if $\lambda = 1/2$.

Figure 1: The *p*-version convergence in the $H_{0,\lambda-1}^1$ norm for Example 1

Table 1: The *h*-version convergence in the $H^1_{0,\lambda-1}$ -norm for Example 1.

	2	q=1)	$\lambda=1/2(q=2)$						
M	N=2	2	N=3	3	N=2	2	N = 3		
	error	rate	error	rate	error	rate	error	rate	
64	1.18E-03	1.00	5.00E-04	1.00	3.00E-08	3.00	3.58E-11	4.00	
128	5.91E-04	1.00	2.50E-04	1.00	3.75E-09	3.00	2.24E-12	4.00	
256	2.96E-04	1.00	1.25E-04	1.00	4.69E-10	3.00	1.40E-13	4.00	
	$\lambda = 1/2(q=1)$								
М	N = 1	1	N = 2		N = 3		N = 4		
	error	rate	error	rate	error	rate	error	rate	
64	6.10E-04	1.20	8.06E-06	1.70	7.73E-08	2.20	5.64E-10	2.71	
128	2.63E-04	1.21	2.45E-06	1.72	1.67E-08	2.21	8.56E-11	2.72	
256	1.13E-04	1.22	7.40E-07	1.73	3.57E-09	2.22	1.29E-11	2.73	

Example 2

Consider the linear VIDE

$$\begin{cases} u'(t) = f(t) - u(t) - \int_0^t (t - s)^{\mu - 1} e^s u(s) ds, & t \in [0, 1], \\ u(0) = 0. \end{cases}$$
 (11)

with exact solution $u(t) = (t^{1+v_1} + t^{1+v_2})e^{-t}$.

- $u(t^{1/\lambda})$ has only finite regularity for general v_1 and v_2 .
- Set $\mu=1/3$, $v_1=1/3$ and $v_2=\sqrt{2}$. Take $\lambda=1$ and 1/3, respectively.

Figure 2: The *p*-version convergence in the $H^1_{0,\lambda-1}$ norm of Example 2

Table 2: The *h*-version convergence in the $H_{0,\lambda-1}^1$ -norm of Example 2.

	2	l = 1((q=1)	$\lambda = 1/3(q=3)$				
M	N=2	2	N=3	3	N = 2		N = 3	
	error	rate error		rate	error	rate	error	rate
64	1.21E-03	0.83	7.38E-04	0.83	3.14E-07	3.00	2.66E-09	4.00
128	6.77E-04	0.83	4.14E-04	0.83	3.92E-08	3.00	1.66E-10	4.00
256	3.80E-04	0.83	2.32E-04	0.83	4.91E-09	3.00	1.04E-11	4.00

Example 3

Consider the nonlinear VIDE

$$\begin{cases} u'(t) = 1 - u(t) + \int_0^t (t - s)^{\mu - 1} (1 + \sin(u)) ds, & t \in [0, 1], \\ u(0) = 0, \end{cases}$$
 (12)

with $\mu = 1/2$.

- Nonlinear equation which satisfies the conditions in (6).
- The exact solution is unknown. Take a very fine collocation solution $(M=1,\ N=33,\ \lambda=1/2)$ as 'exact' solution.

Figure 3: The *p*-version convergence in the $H^1_{0,\lambda-1}$ norm of Example 3

Table 3: The *h*-version convergence in the $H^1_{0,\lambda-1}$ -norm for Example 3.

	$\lambda = 1(q = 1)$						$\lambda = 1/2(q=2)$					
M	N = 2		2	N = 3			N=2			N = 3		3
		error	rate	error		rate	error		rate	error		rate
64	6.68E-04 1.00 3.70E-		-04	1.00	8.91E-07		3.00	6.79E-09		4.00		
128	3.34E-04 1.00		1.85E-04		1.00	1.11E-07		3.00	4.25E-10		4.00	
256	1.	67E-04	1.00 9.24E-05		-05	1.00	1.39E-08		3.00	2.66E-11		4.00
	$\lambda = 1/2(q=1)$											
M		1	N			=3	3		<i>N</i> = 5			
		error		rate	error			rate	6	error		rate
64		6.23E-04		1.17	1.	1.23E-0		2.17	3.2	3.23E-10		3.19
128	3	2.70E-04		1.21	2.	2.68E-0		2.20	3.6	3.66E-11		3.14
256	ĵ	1.15E-04 1.23 5.77E		.77E-0	8(2.22	4.2	24E-12	3	3.11		

Example 4

Consider the nonlinear VIDE

$$\begin{cases} u'(t) = f(t) - u(t) + \int_0^t (t - s)^{-\frac{1}{2}} u^2(s) ds, & t \in [0, 1], \\ u(0) = 0, \end{cases}$$
 (13)

with exact solution $u(t) = t^{\frac{1}{2}} \sin(bt)$.

- Nonlinear equation which does not satisfy the conditions in (6).
- The exact solution has not only weak singularity at t=0, but also highly oscillatory behaviour for large b. Take b=35 in this example.
- $u(t^{1/\lambda})$ and $u'(t^{1/\lambda})$ are analytic if $\lambda = 1/2$.

Figure 4: The errors of the fractional collocation method with different M and N for Example 4

Table 4: The errors of the fractional collocation method with q=2 and different M and N for Example 4.

М	512	128	32	13	8	1
N	4	6	8	14	19	73
error	5.31E-09	2.20E-09	6.23E-09	3.43E-09	1.21E-09	2.06E-09
time (in seconds)	199	36	9.6	8.9	10.7	69

Contents

- Introduction
- 2 Numerical scheme
- Convergence analysis
- 4 Numerical experiments
- Concluding remarks

Concluding remarks

- A fractional collocation method for solving second kind VIDEs with weakly singular kernels.
- A rigorous error analysis of hp-version.
- The p- and hp-versions can attain exponential convergence rates if $u(t^{1/\lambda})$ and $u'(t^{1/\lambda})$ are sufficiently smooth, even though u(t) has low regularity.
- The h-version has no order barrier for uniform meshes, and optimal algebraic convergence rates of the h-version can be achieved by using graded meshes.

Thanks for your attention!