10.01: End-to-End Machine Learning

이번 DataCamp 강의를 수강하면서 배운점
- 특히 docker의 개념을 아예 몰라서 애를 먹었던 경험이 있었는데, 이번 기회에 어떠한 느낌으로 작용하는지 알 수 있었다.
강의 내용중 궁금했던점
- 사실 EDA나 data전처리 부분은 예전의 기초수업에서도 들어본 적 있을 정도로 기초적인 내용인 것 같은데, 이정도의 기술만으로도 노하우를 발휘하면 충분히 business에서 정말 통하는지 궁금하다.
함께 이야기 나누며 얻은 것
-

The model's role

· Models can inform, but should not make decisions

The machine learning lifecycle

The machine learning lifecycle

Case study: CardioCare clinic

- End user: CardioCare clinic.
- **Requirement:** A machine learning model that accurately and reliably predicts heart disease risk using patient health data.
- Performance: Must match or exceed a human cardiologist's expertise and generalize well to unseen data, providing timely predictions, even without engineer oversight.
- **Security**: The model design must ensure sensitive data is handled securely and privately.
- Monitoring & Retraining: Continuous monitoring with retraining as needed.
- **Interpretability**: The model should be interpretable, allowing cardiologists to understand and potentially override its predictions.

Data collection

- **Data collection**: Gather relevant patient health data (e.g., age, cholesterol, blood pressure).
- Data sources: Could include electronic health records or public health databases.
- Understanding the data: It's crucial to grasp the context and potential biases.

- Bias considerations: Look for issues like error-prone self-reported measurements.
- These steps are key to ensuring the success of the machine learning project.

Exploratory Data Analysis

- Exploratory Data Analysis (EDA): A process to examine and analyze the dataset for insights, patterns, and data characteristics.
- Dataset focus: Heart disease data from CardioCare.
- **Visualization**: Key aspects, such as the proportion of missing values, will be visualized.
- **Importance of EDA**: Critical for identifying issues and ensuring model performance isn't affected downstream(후속단계).

Missing values

- Can lead to errors
- Unrepresentative, biased results

Use df.isnull()

- Checks for null/empty/missing values
- Applied to column or collection of columns

Usaae

check whether all values in a column are null
print(heart_disease_df['oldpeak'].isnull().all())

Outliers

- Anomalous values
- Measurement errors
- Data entry errors
- Rare events
- · Can skew model performance
- o Model learns based on extreme values
- Doesn't capture general data trend
- Sometimes can be useful:
- Rare values
- o Detection: use boxplot, or IQR

Goals of EDA

- Understand the data and uncover patterns (e.g., do men have higher heart disease rates than women?).
- Outlier detection: Identify data points that fall outside acceptable ranges.
- **Hypothesis design**: Validate and check assumptions (e.g., does reality match expectations?).
- **Influence on ML**: EDA informs the choice of ML algorithms, feature selection, and the need for feature engineering, which are critical for project success.

Data preparation

Identifying and carrying out the data-cleaning steps derived from EDA.

Data preparation steps

Dataset has:

- Missing value
- Outlie
- Imbalances
- Empty columns
- Duplicates

Data preparation:

- Based on insights from EDA
- Critical for model performance downstream

Null / empty values

• Drop missing or sparse rows/columns

• Use df.dropna(how='all') for rows

- Null values can break model
- Use df.drop() for columns

```
# count missing values
print(df['oldpeak'].isnull().sum())

# Drop empty column(s) and row(s)
columns_dropped = heart_disease_df.drop(['oldpeak'], axis='columns')
rows_and_columns_dropped = columns_dropped.dropna(how='all')
```

Dealing with null / empty values

- Data cleaning / dropping values depends on EDA findings
- If given column has too many missing values:
 - o Drop column
- If target column has missing values:
 - o Drop rows with missing targets
 - o Or treat as separate category

Imputation

What to do when there are only a few missing values?

- Imputation:
- Fill missing values with substitutes
- Strategies
- o Fill with mean or median
- Use constant or previous value

```
# Calculate the mean cholestrol value
mean_value = heart_disease_df['chol'].mean()

# Fill missing cholestrol values with the mean
heart_disease_df['chol'].fillna(mean_value, inplace=True)
```

Advanced imputation

Advanced techniques:

- K-nearest neighbor
- SMOTE (synthetic minority oversampling technique)

```
from sklearn.impute import KNNImputer

# Initialize KNNImputer
imputer = KNNImputer(n_neighbors=2, weights="uniform")

# Perform the imputation on your DataFrame
df_imputed['oldpeak'] = imputer.fit_transform(df['oldpeak'])
```

Dropping duplicates

- Data must be clean, concise, and rich
- Redundancies are unhelpful
- Duplicates can bias or confuse model
- Look at unique identifiers as a criteria for dropping records / rows.

```
# Drop duplicate rows
heart_disease_duplicates_dropped = heart_disease_column_dropped.drop_duplicates()
```

Feature engineering and selection

Feature engineering

Creating features

- · Simplifies problem
- · Improves model efficiency

Techniques

- · Modify pre-existing features
- Design new features

Benefits

- · Easier deployment, maintenance, training
- Interpretability gain

One of common technique is Normalization, Standaraization

Normalization

- Scales numeric features to [0,1]
- · Helpful when features have different scales/ranges.

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import Normalizer

# Split the data
X_train, X_test = train_test_split(df, test_size=0.2, random_state=42)
# Createnormalizer object, fit on training data, normalize, and transform test set
norm = Normalizer()
X_train_norm = norm.fit_transform(X_train)
X_test_norm = norm.transform(X_test)
```

Standardization

- Scales data to have mean = 0, variance = 1
- · Beneficial for algorithms that assume similar mean and variance

```
# Split the data
X_train, X_test = train_test_split(df, test_size=0.2, random_state=42)
# Create a scaler object and fit training data to standardize it
sc = StandardScaler()
X_train_stzd = sc.fit_transform(X_train)
# Only standardize the test data
X_test_stzd = sc.transform(X_test)
```

What constitutes a good feature?

- · Use relevant features
- Weather on the day of patient appointment Two features of age in months and age in should have no bearing on diagnosis
- · Use dissimilar (orthogonal) features
 - years would not be helpful

sklearn.feature_selection

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.model_selection import train_test_split
# Splitting data into train and test subsets first to avoid data leakage
X_train, X_test, y_train, y_test = train_test_split(
   heart_disease_df_X, heart_disease_df_y, test_size=0.2, random_state=42)
```

sklearn.feature_selection (cont.)

```
# Define and fit the random forest model
\verb|rf = RandomForestClassifier(n_jobs=-1, class_weight='balanced', max_depth=5)| \\
rf.fit(X_train, y_train)
# Define and run feature selection
model = SelectFromModel(rf, prefit=True)
features_bool = model.get_support()
features = heart_disease_df.columns[features_bool]
```

- SelectFromModel: A method in sklearn.feature_selection for feature selection.
- Random Forest classifier: Used to estimate feature importance by eliminating irrelevant features.
- **Prefit=True**: Indicates that the model has already been trained.
- Random Forest parameters:
 - n_jobs=-1: Utilizes all available processors.

- class_weight='balanced': Balances class frequencies.
- max_depth=5: Limits the depth of the trees.
- Dot-fit function: Used to fit the model and identify critical features based on feature x predicting target y.
- Model.get_support(): Returns a Boolean array indicating which features are important (True) or not (False).

Modeling options

Modeling options

Logistic Regression

- Finds decision boundary between classes
- sklearn.linear_model.LogisticRegression sklearn.svm.SVC

Support Vector Classifier

- · Finds plane to separate classes

Decision Tree

- Finds simple 'rules' to classify data
- sklearn.tree.DecisionTreeClassifier

Random Forest

- · Combines multiple decision trees
- sklearn.ensemble.RandomForestClassifier

Other models

Deep learning models

- Neural Networks
- · Convolutional Neural Networks
- Generative Pretrained Transformer (GPT)

K-Nearest Neighbors (KNN)

• Supervised learning algorithm

- · Gradient boosted model
- https://xgboost.readthedocs.io/en/stable/

Training a model

```
# Importing necessary libraries
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# Split the data into training and testing sets (80:20)
X_train, X_test, y_train, y_test = train_test_split(features, heart_disease_y, test_size=0.2, random_state=42)

# Define the models
logistic_model = LogisticRegression(max_iter=200)

# Train the model
logistic_model.fit(X_train, y_train)
```

Getting model predictions

```
# Jane Doe's health data, for example: [age, cholesterol level, blood pressure, etc.]
jane_doe_data = [45, 230, 120, ...]

# Reshape the data to 2D, because scikit-learn expects a 2D array-like input
jane_doe_data = jane_doe_data.reshape(1, -1)

# Use the model to predict Jane's heart disease diagnosis probabilities
jane_doe_probabilities = logistic_model.predict_proba(jane_doe_data)
jane_doe_prediction = logistic_model.predict(jane_doe_data)
```

Getting model predictions (cont.)

```
# Print the probabilities
print(f"Jane Doe's predicted probabilities: {jane_doe_probabilities[0]}")
print(f"Jane Doe's predicted health condition: {jane_doe_prediction[0]}")

Jane Doe's predicted health condition probabilities: [0.2 0.8]
```

Logging experiments on MLFlow

- **Experiments**: Common practice in ML to test and validate hypotheses, involving tweaking parameters, feature selection, or algorithms.
- Challenge: Keeping track of experiments can become disorganized and unreproducible, especially in clinical settings where reproducibility is crucial.
- MLflow: An open-source platform that manages the ML lifecycle, helping track and compare experiment results, package code for reproducibility, and share and deploy models.

MLFlow

Without MLflow...

- Many untracked, disorganized experiment runs
- Dissimilar, or incomparable runs
- Unreproducible, lost runs

With MLflow...

- · Tracked, organized experiment runs
- · Comparison between standardized runs
- · Reproducible runs
- · Share, deploy models

Creating experiments

mlflow.set_experiment()

- · Sets experiment name
- Provides workspace for experiment runs

Usage:

```
import mlflow

# Set an experiment name, which is a workspace for your runs
mlflow.set_experiment("Heart Disease Classification")
```

Running experiments

```
# Start a new run in this experiment
with mlflow.start_run():
    # Train a model, get the prediction accuracy
    logistic_model = LogisticRegression()
    # Log parameters, eg:
    mlflow.log_param("n_estimators", logistic_model.n_estimators)
    # Log metrics (accuracy in this case)
    mlflow.log_metric("accuracy", logistic_model.accuracy)
# Print out metrics
print("Model accuracy: %.3f" % accuracy)
```

Model accuracy: 0.96

Retrieving experiments

mlflow.get_run(run_id)

Metadata for specific run

mlflow.search_runs()

Returns DataFrame of metrics for multiple runs

Usage:

```
# Fetch the run data and print params
run_data = mlflow.get_run(run_id)
print(run_data.data.params)
print(run_data.data.metrics)

# Search all runs in experiment
exp_id = run_data.info.experiment_id
runs_df = mlflow.search_runs(exp_id)
```

{'epochs': '20', 'accuracy': 0.95}

MLFlow UI

- MLflow's power: Acts as a central hub for managing ML experiments.
- Workflow benefits: Organizes and streamlines the ML workflow, making it more manageable and effective.
- **Tracking experiments**: Helps identify successful model configurations, making it easier to build on them and improve.

Model evaluation and visualization

Accuracy

- · Correct accuracy metrics are vital to robust model evaluation
- Easy to misinterpret or obscure results

Standard accuracy:

- Standard accuracy = num correct answers / num answers
- · Standard accuracy can be unhelpful

Example:

```
# achieves ~99% accuracy for imbalanced dataset of 99 positive and 1 negative
for patient_datapoint in heart_disease_dataset:
    model.prediction(patient_datapoint) = 'positive'
```

Confusion matrix

True positives (TP)

- Model prediction = actual classification = positive
- The model predicted heart disease, the patient had heart disease

False negatives (FN)

- Model prediction = negative, actual classification = positive
- The model predicted no heart disease, the patient had heart disease

False positives (FP)

- Model prediction = positive, actual classification = negative
- The model predicted heart disease, the patient did not have heart disease

True negatives (TN)

- Model prediction = actual classification = negative
- The model predicted no heart disease, the patient did not have heart disease

Balanced accuracy

- · Better metric than plain accuracy for most binary classification models
- · Provides weighted average across both classes
- Balanced accuracy = (TP + TN) / 2

```
from sklearn.metrics import balanced_accuracy_score

# Assume y_test is the true labels and y_pred are the predicted labels
y_pred = model.predict(X_test)
bal_accuracy = balanced_accuracy_score(y_test, y_pred)
print(f"Balanced Accuracy: {bal_accuracy:.2f}")
```

Cross validation

Cross-validation

- Resampling procedure
- · Ensures robustness of results

k-fold cross-validation

- Param 'k' = number of splits for dataset
- Resample new train/test split for each modeling run

- Cross-validation: A method to estimate model performance by averaging scores across different dataset splits, preventing dependency on a single split.
- k-fold cross-validation: A resampling procedure that splits data into k groups.
- Parameter k: Refers to the number of groups the data will be divided into.
- **Small dataset**: k-fold cross-validation is ideal for smaller datasets, like the heart disease dataset.
- **k=5 example**: The data is split into five equal parts, with four parts used for training and one part for testing in each iteration.

Cross validation usage

- Straightforward implementation of k-fold cross validation using sklearn
- Model-agnostic scoring

Usage:

```
from sklearn.model_selection import cross_val_score, KFold

# split the data into 10 equal parts
kfold = KFold(n_splits=5, shuffle=True, random_state=42)

# get the cross validation accuracy for a given model
cv_results = cross_val_score(model, heart_disease_X,
heart_disease_y, cv=kfold, scoring='balanced_accuracy')
```

Hyperparameter tuning

Hyperparameter:

- Global model parameter (doesn't change during training)
- Adjust to improve model performance

```
# Hyperparameters to test
C_values = [0.001, 0.01, 0.1, 1, 10, 100, 1000]

# Manually iterate over the hyperparameters
for C in C_values:
    model = LogisticRegression(max_iter=200, C=C)
    model.fit(X_train, y_train)
    accuracy = cross_val_score(model, X, y, cv=kfold, scoring='balanced_accuracy')
    print(f"C = {C}: Ral_Acc: {accuracy_mean(): 4f} (+/- {accuracy_std(): 4f})")
```

Hyperparameter tuning example

Example output for hyperparameter tuning:

```
C = 0.001: Bal Acc: 0.6200 (+/- 0.0215)

C = 0.01: Bal Acc: 0.7325 (+/- 0.0234)

C = 0.1: Bal Acc: 0.7923 (+/- 0.0202)

C = 1: Bal Acc: 0.8050 (+/- 0.0191)

C = 10: Bal Acc: 0.8034 (+/- 0.0185)

C = 100: Bal Acc: 0.8021 (+/- 0.0187)

C = 1000: Bal Acc: 0.8017 (+/- 0.0188)
```

Testing a model

Testing

- · Testing:
- Model does not crash
- Returning reasonable outputs at inference time.

- **Pre-deployment testing:** Write tests to flag anomalous or unexpected events, ensuring the model performs as expected before clinical use.
- Automation: These tests can run automatically during deployment.
- **Unittest library**: Python's built-in <u>unittest</u> library is used to write unit tests for the system and model.
- **Test cases**: Define specific types of tests (e.g., inference tests).
- Test methods: Include tests for scenarios like model failures.

Unittest usage

```
import unittest

class TestModeLInference(unittest.TestCase):
    def setUp(self):
        self.model = fitted_model
        self.X_test = X_test
    def test_prediction_output_shape(self):
        y_pred = self.model.predict(self.X_test)
        self.assertEqual(y_pred.shape[0], self.X_test.shape[0])

if __name__ == '__main__':
    unittest.main()
```

Unittest usage (cont.)

```
def test_input_values(self):
    print("Running test_input_values test case")

# Get inputs (each row in testing set)
for input in X_test:
    for value in input:
        # if value is cholestrol, for example:
        self.assertIn(value, [0, 500])
```

Testing do's and dont's

Best-practices

- DON'T...
 - Write too many tests
 - Write redundant tests
 - Write tests for highly reliable components.
- DO...
 - · Write tests to increase reliability.
 - Write tests to check/manage expectations.
 - Write tests for new functionality.

Architectural components in end-to-end machine learning frameworks

Feature stores Features Feature selection Feature engineering Feature store Central repository for features Ensures consistency, reduces duplication Enables sharing, discovery Standardizes feature transformations and calculations

Feast

Feast

- · Popular tool for implementation of feature stores
- · Provides unified management, storage, serving, and discovery for ML features

Principles

- · Define, register features with feature sets
- · Feature sets: grouping of related features + metadata

Example: heart disease features

- Patient entity
- Associated features (cholesterol, age, sex)
- Feast platform: An open-source tool for implementing feature stores, developed by Gojek.
- **Purpose**: Provides a unified way to manage and store ML features.
- Feature set: A grouping of related features and their metadata.
- **Example**: In the heart disease dataset, a **patient entity** could have related features such as cholesterol, age, and sex.
- Patient entity: Represents a patient in the CardioCare clinic with various attributes or features.

Feast feature stores part 1

```
from feast import Field, Entity, ValueType, FeatureStore
from feast.data_source import FileSource

# Define the entity, which in this case is a patient, and features
patient = Entity(name="patient", join_keys=["patient_id"])
chol = Field(name="chol", dtype=Float32)
age = Field(name="age", dtype=Int32)
...

# Define the data source
data_source = FileSource(
    path="/path_to_heart_disease_dataset.csv",
    event_timestamp_column="event_timestamp",
    created_timestamp_column="created")
```

Model registries

Model registries

Model registry

- · Version control systems
- · Keep track of different versions of model
- · Annotate models
- · Track performance over time

Benefits

- · Organization
- Transparency
- Reproducibility

- Model outputs: Just as managing features is important, managing and storing model outputs is critical for timely, accurate, and persistent patient diagnoses.
- **Model registries**: Act as version control systems for ML models, helping track and manage different model versions.
- Features of model registries:
 - Annotate models with metadata.
 - Compare different models and track performance over time.
- Benefits: Improves organization, transparency, and reproducibility in ML workflows.
- **MLflow**: A model registry example that tracks ML experiments, logs performance metrics, and stores trained model artifacts for comparison.

Packaging and containerization

- **Deployment phase**: Involves packaging the model and its dependencies into a standalone unit for easy execution in various environments.
- Containerization: This practice allows the model to run consistently across different setups.
- Docker: A platform that simplifies creating and deploying applications using containers.
- **Containers**: Package an application along with its libraries and dependencies into one unit.
- **Platform-agnostic**: Containers run consistently on any machine, regardless of its settings or environment.

Docker usage

Docker usage part 1

Dockerfile: instructions for building container

```
# Use an official Python runtime as a parent image
FROM Python:3.7

# Set the working directory in the container to /app
WORKDIR /ML_pipeline

# Copy the current directory contents into the container at /app
ADD . /ML_pipeline

# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
```

```
# ... continued
# Make port 80 available to the world outside this container
EXPOSE 80

# Define environment variable
ENV NAME World

# Run app.py when the container launches
CMD ["Python", "ML_pipeline.py"]
```

Build the defined image:

```
docker build -t heart_disease_model .
```

- **Dockerfile**: A text document containing commands to create a Docker image, like a recipe for the application.
- **Docker build**: A command that automates the process of building an image by running the commands in the Dockerfile.
- **Base image**: The starting point, a read-only template, for creating the container. Example: Python 3.7 base image for Python applications.
- Steps in Dockerfile:
 - Specify the base image.
 - Copy necessary files (e.g., Python script, requirements.txt) into the Docker image.

- Install dependencies by running pip install for the listed packages in requirements.txt.
- **Port specification**: Define the port the container will run on.
- Environment variables: Set any necessary or sensitive information (e.g., API keys, database credentials).
- **Run command**: Specify the command to be executed when the container is launched from the Docker image.
- Building the Docker image:
 - Run docker build -t heart_disease_model . in the command line.
 - heart_disease_model is the image name.
 - The dot () tells Docker to search the current directory for the Dockerfile.
- Make sure to run the command in the root directory containing the ML_pipeline.py script and Dockerfile.

Tagging containers

Tagging:

docker tag heart_disease_model:latest heart_disease_model:1.0

- Makes images / containers easier to identify and manage.
- · Helps in maintaining a detailed and robust model registry.
- · After tagging, we are ready to deploy!

Best practices

While Docker makes packaging models easy...

- · Be security-minded
- · Don't include sensitive data
- Use trusted images (from verified developers)

If you application does have sensitive information...

- Use environment variables
- · Eg: for connection strings/passwords

- **Security considerations**: Crucial when using Docker, especially in healthcare settings.
- **Avoid sensitive data**: Do not include sensitive data, such as patient information, in Docker images.
- **Use trusted base images:** Only rely on verified and secure base images to prevent vulnerabilities.
- **Environment variables**: Define sensitive information like connection strings or passwords via environment variables in the Dockerfile to keep them secure.

Continuous integration and continuous deployment (CI/CD)

CI/CD in the ML lifecycle

CI/CD principles

Continuous Integration(CI)

- · Regularly merging to central repository
- Often involves automatic testing for identifying bugs

Continuous Deployment (CD)

- Automatically deploying updates in codebase to production
- · Often combined with CI
- **Continuous Integration (CI)**: Regularly merges code changes into a central repository, often paired with automated testing to catch bugs early.
- DevOps: Streamlines the production process and integrates with CI for efficiency.
- Continuous Deployment (CD): Automatically deploys updates or changes to production following CI.
- **Combined benefits:** CI/CD practices accelerate development, reduce production risk, and ensure smoother workflows.

CI/CD in machine learning

CI/CD is critical for production / iteration

- · E.g.: automate including new patient data
- · Helps to avoid data drift

CI/CD in ML:

- · Regularly retrain models
- · Testing performance
- · Automated, rule-based deployment

CI/CD with AWS Elastic Beanstalk

AWS Elastic Beanstalk (EB):

- · Fully managed service for deployment and scaling of applications + services
- Install EB

```
eb init

eb create heart_disease_env

eb deploy

eb open
```

- Alternatives to AWS Elastic Beanstalk:
 - Azure Machine Learning: Offers tools for real-time model scoring, managing compute resources, and monitoring model performance.
 - Google Cloud App Engine: A similar solution for deploying ML models on Google Cloud.
 - Kubernetes: An open-source container orchestration system that automates deployment, scaling, and management of containerized applications. Works across multiple cloud platforms (GCP, Azure, AWS) and provides flexibility, though it has a steeper learning curve.

• **Key takeaway**: There are many CI/CD solutions beyond AWS, each suited to different cloud environments and needs. Explore alternatives for flexibility and control in your deployments.

Monitoring and visualization

- Monitoring and Visualization Overview (00:00 00:10):
 - Introduces the importance of monitoring and visualization for maintaining and improving machine learning models after deployment.
- What's Next? (00:10 00:46):

What's next?

- Trained, optimized, deployed, predicted... what next?
- Monitoring
 - Logging results
 - Visualizing performance

- After deploying and making predictions, **monitoring** is crucial to ensure that the model's performance doesn't degrade over time.
- Logging and visualizing performance metrics at inference and beyond helps identify issues.
- Monitoring sets up a **feedback loop**, which will be covered in future videos.
- **Logging with Python** (00:46 01:10):

Logging with python

```
import logging
import matplotlib.pyplot as plt

# Setting up basic logging configuration
logging.basicConfig(filename='predictions.log', level=logging.INFO)

# Make predictions on the test set and log the results
for i in range(X_test.shape[0]):
    instance = X_test[i,:].reshape(1, -1)
    prediction = model.predict(instance)
    logging.info(f'Inst. {i} - PredClass: {prediction[0]}, RealClass: {y_test[i]}')
```

Logging with python (cont.)

```
# Function to visualize the predictions from log
with open(logfile, 'r') as f:
    lines = f.readlines()
    predicted_classes = [int(line.split("Predicted Class: ")[1].split(",")[0]) \
          for line in lines]

# Perform data analysis, visualization, etc.
...
```

- Use Python logging to trace model performance
- **Logging** is vital in ML workflows, not just for debugging but for tracking model predictions and performance over time.
- Python's built-in logging library helps log events like model predictions, enabling the identification of trends and anomalies.
- Logs are processed and visualized later to ensure the model functions as expected.
- Continuous monitoring of these logs helps address potential issues.
- Visualization (01:22 01:49):

Visualization

- Inspect performance over time
- · Transform raw data of inputs / predictions into insights

```
import matplotlib.pyplot as plt

# Sample data: Random accuracy values for 12 months
months = ["Jan", "Feb", "Mar", ...]
accuracies = [0.86, 0.91, 0.74, ...]
plt.plot(months, accuracies, '-o')
plt.title("Model Accuracy Over Months")
plt.xlabel("Months")
plt.ylabel("Accuracy")
plt.show()
```

- **Visualization** transforms raw data into intuitive insights by graphically representing model inputs and outputs.
- Common visualization methods include line plots to show accuracy over time, using libraries like matplotlib.
- Importance of Logging (02:01 02:34):

Logging

- Recording of events
 - o Tracking variable values, Function calls
 - Information that informs execution + performance
- Monitoring helps track:
 - Usage, Performance, Errors/anomalies

```
2023-08-04 09:15:20 [INFO] Model version 1.2.7 started
2023-08-04 09:15:45 [INFO] Preprocessing input data for prediction
2023-08-04 09:15:47 [DEBUG] Input data shape: (1, 12)
2023-08-04 09:15:48 [INFO] Making prediction
2023-08-04 09:15:50 [DEBUG] Output prediction: [0.78]
...
```

- Logging records events in the program, such as tracking variable values and function calls, which helps understand execution flow and system performance.
- Logs help track model usage, performance, and identify anomalies or errors, especially for deployed models in production.
- Visualization Examples (02:34 03:24):

Visualization examples

- Helpful metric for our model: balanced accuracy over time
- Spot trends, see if performance degrades
- · See if retraining is necessary
- · Choose helpful metrics for our use-case

Example:

- Balanced accuracy changes relative to expected, real-world rate
- · Potentially indicative of problem
- · Choose and evaluate

- For the **heart disease binary classification model**, balanced accuracy is visualized over time.
- Visualizing performance helps detect trends, patterns, and anomalies, such as **model drift** or when **retraining** is necessary.
- Collaborating with domain experts (e.g., cardiologists) ensures that monitored metrics align with real-world clinical performance.

Data drift

The Need for Data Drift Detection

00:17 - 01:10

The need for data drift detection

- Data drift occurs when the statistical properties of the model's input features change over time due to shifts in the population or data collection process.
- Example: Heart disease rates have changed over time, affecting the accuracy of models trained on older data.
- While data drift doesn't always degrade performance, ensuring models are trained on recent, relevant data is crucial for accuracy.

The Kolmogorov-Smirnov Test

01:10 - 01:41

- **Kolmogorov-Smirnov test** (KS test) is a statistical method to detect data drift by comparing distributions of two datasets.
- It highlights significant differences that may indicate drift.

Using the ks_2samp() Function

Using the ks_2samp() function

- ks_2samp() function returns two values: test statistic, p-value.
- Use p-value to accept/reject the null hypothesis of distributional similarity.

```
# load the 1D data distribution samples for comparison
sample_1, sample_2 = training_dataset_sample, current_inference_sample

# perform the KS-test - ensure input samples are numpy arrays
test_statistic, p_value = ks_2samp(sample_1, sample_2)

if p_value < 0.05:
    print("Reject null hypothesis - data drift might be occuring")
else:
    print("Samples are likely to be from the same dataset")</pre>
```

01:41 - 02:18

- The scipy ks_2samp function performs the KS test.
- Outputs include a test statistic (showing distribution difference) and a p-value (assessing the likelihood of such differences under the assumption of same distribution).
- If the p-value is less than 0.05, data drift is suspected.

Correcting Data Drift

Correcting data drift

Update model to account for new data

- · Retrain model
- Re-adjust / update model parameters

Not enough new/inference data?

- · Re-train model on mixed dataset
- · Increase amounts of new data

02:18 - 02:51

- Correcting data drift involves retraining models to reflect the new data properties.
- If new data is insufficient for training, models can be periodically retrained on a mixed dataset of old and new data, gradually increasing the amount of new data.

Further Resources for Detecting and Rectifying Data Drift

02:51 - 03:37

Further resources for detecting and rectifying data drift

- Population Stability Index (PSI)
 - o Compares single categorical variables / columns
- Evidently
 - Open-source Python library
 - Robustly test and correct for data drift
- NannyML
 - · Monitor deployed model performance
- Population Stability Index (PSI) is another method for detecting drift in categorical variables.
- Tools like Evidently and NannyML help monitor and correct data drift, providing solutions from validation to post-deployment.

Feedback loop, re-training, labeling

Feedback Loop

Feedback loop

- · Model output considered as system input:
 - Using metrics/predictions to inform system evolution
 - o Can use model monitoring
- · Integral part of ML:
 - · Allows for rapid learning and adjustment
 - o Better adapt to change

00:16 - 01:01

- A feedback loop feeds model outputs or performance data back into the system to adjust its future behavior.
- Outputs are continuously used to help the model adapt to changes, trends, or user behaviors.
- The **feedback loop** allows for rapid learning and adjustment, making the model more responsive to changing conditions.

Feedback Loop Implementation

Feedback loop implementation

Data drift detection

- Input data distribution changes over time
- Feedback loop: retrain on newer data

Online learning

- · Periodically retrain based on changing data
- Beyond data drift: adapts to changes in data structure

01:01 - 02:07

- A feedback loop can be manual, semi-automated, or fully automated.
- **Data drift detection** can be part of a feedback loop, where the model is retrained on newer labeled data to stay current.
- New labels can be obtained via manual labeling by experts, crowdsourcing, or supervised learning.
- Online learning allows for periodic retraining based on changing data trends, not limited to data drift but also new data categories or variable relationships.
- Feedback loops can be implemented in different ways based on the specific use case.

Dangers of Feedback Loops

02:07 - 02:49

Dangers of feedback loops

Dangers...

- Model's outputs affect inputs
- Eg: social media recommendation:
 - o Maximize user engagement
 - · Learns to serve certain type of content
 - o Causes user to view more of this content
 - o etc
- · Develops undesired behavioral patterns
- · More dangerous when automated

- Feedback loops can be harmful if model outputs influence the inputs, creating a negative feedback loop.
- Example: Social media recommendation systems, where repeated recommendations lead to echo chambers or misinformation.
- ML engineers must be cautious when automating feedback loops to avoid unintended consequences.

Better Usage of Feedback Loop

02:49 - 03:20

Better usage of feedback loop

- · Reactive:
 - · Human in the loop
 - Model's predictions don't change input data
- · Caution and oversight are key!

- For the **heart disease model**, the feedback loop is **reactive**, and model predictions are unlikely to affect the input data.
- A heart disease diagnosis might encourage healthier behavior in patients, which could be seen as a positive effect.
- It's important to be cautious when setting up feedback loops and ensure they align with **human values**.

Serving the model

Model-as-a-Service (00:07 - 00:56)

- Model-as-a-service architecture assumes stakeholders will access the model over the internet through a secure portal.
- Users submit queries and data to receive predictions online.
- However, internet access may not always be available, especially in rural or highly secure environments where sensitive data, like patient information, cannot be passed online.

On-Device Serving (00:56 - 01:20)

On-device serving

Integrated serving architectures

- · Edge-computing
- · Helpful for unreliable internet cases

- In certain cases, **on-device serving** is more suitable, where the model is integrated into the application or device itself.
- Common in edge computing, where devices may lack a reliable network connection.

Pros and Cons of On-Device Serving (01:20 - 02:47)

Pros and cons of on-device serving

Pros:

- Lower latency
- Security
- Applications for remote / disconnected areas

Cons:

- · Resource constraints
- Model updates
- Monitoring

Benefits:

- Faster response times since it doesn't rely on external servers, ideal for real-time predictions.
- No need for internet access, reducing the risk of data breaches and enabling offline functionality.
- Useful in **remote areas** or disconnected environments.

Challenges:

 Limited memory and processing power of edge devices require model optimization, potentially compromising accuracy for speed.

- Lacks cloud scalability, leading to issues with diverse devices and OS versions.
- Updating models becomes harder without a central server, and usage statistics and performance metrics are harder to collect.

Implementation Strategies (02:47 - 03:25)

- Techniques for **on-device serving** include:
 - Pruning models to make them lighter and faster.
 - **Transfer learning**, where pre-trained models are fine-tuned for specific tasks.
 - Specialized ML frameworks for edge deployment like TensorFlow Lite,
 Core ML (Apple), and ONNX Runtime.
- Research these techniques further as needed.