Reading the data

dtype: int64

First things first... Let's read the parquet file and take a look at what's inside

```
In [ ]: # reading the CSVs
         import pandas as pd
         import numpy as np
         df = pd.read_parquet('../data/dataset.gz.parquet')
         policy_data = df.copy() # to keep raw data untouched
In [ ]: policy_data.head()
                                       policy_id policy_start_date policy_exposure_days policy_claims_num_reported policy_claims_num_paid
           policy_holder_zipcode
Out[]:
         0
                        1000.0
                                22036576975396
                                                      20171229
                                                                               58
                                                                                                        0.0
                                                                                                                              0.0
         1
                         1001.0
                                   01472343000
                                                      20180530
                                                                               214
                                                                                                        0.0
                                                                                                                              0.0
         2
                         1001.0
                                   08024270000
                                                      20180307
                                                                              298
                                                                                                        0.0
                                                                                                                              0.0
         3
                         1003.0 166871902448270
                                                      20180428
                                                                              246
                                                                                                        0.0
                                                                                                                              0.0
         4
                         1004.0
                                   13975805000
                                                      20170918
                                                                              259
                                                                                                        0.0
                                                                                                                              0.0
In [ ]: policy_data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3024172 entries, 0 to 3024171
        Data columns (total 20 columns):
             Column
                                                    Dtype
         0
             policy_holder_zipcode
                                                    float64
         1
             policy_id
                                                    object
             policy_start_date
                                                    object
             policy_exposure_days
                                                    int32
             policy_claims_num_reported
                                                    float64
             policy_claims_num_paid
                                                    float64
             policy_claims_total_amount_paid_brl float64
             policy_premium_received_brl
                                                    float64
             policy_holder_birth_date
         8
                                                    int32
             policy_holder_gender
                                                    object
         10 policy_holder_bonus_clas
                                                    float64
         11 policy_holder_residence_latitude
                                                    float64
         12 policy_holder_residence_longitude
                                                    float64
         13 vehicle_brand
                                                    object
         14 vehicle_model
                                                    object
         15 vehicle_make_year
                                                    float64
         16 vehicle_tarif_class
                                                    object
         17 vehicle_value_brl
                                                    float64
         18 policy_holder_residence_region
                                                    object
         19 policy_holder_residence_city
                                                    object
        dtypes: float64(10), int32(2), object(8)
        memory usage: 438.4+ MB
        Not sure why, but the df.info() command didn't show me the count of NULL values. So here it is:
In [ ]: policy_data.isnull().sum()
```

```
Out[]: policy_holder_zipcode
        policy_id
                                                      0
        policy_start_date
                                                      0
        policy_exposure_days
                                                      0
                                                      0
        policy_claims_num_reported
        policy_claims_num_paid
                                                      0
                                                      0
        policy_claims_total_amount_paid_brl
        policy_premium_received_brl
                                                      0
                                                      0
        policy_holder_birth_date
                                                      0
        policy_holder_gender
        policy_holder_bonus_clas
                                                 277313
        policy_holder_residence_latitude
                                                      0
        policy_holder_residence_longitude
                                                      0
        vehicle_brand
        vehicle_model
        vehicle_make_year
        vehicle_tarif_class
        vehicle_value_brl
                                                      0
        policy_holder_residence_region
                                                      0
        policy_holder_residence_city
                                                      0
```

Preparing the data

There are a few fields that I want to convert to better data types.

```
In [ ]: # weird way to check if I can safely convert to int the fields I want
        # extracting the decimal places and validating if they're all 0s
        print(policy_data["policy_holder_zipcode"].apply(lambda x: abs(x % 1)).sum())
        print(policy_data["policy_claims_num_reported"].apply(lambda x: abs(x % 1)).sum())
        print(policy_data["policy_claims_num_paid"].apply(lambda x: abs(x % 1)).sum())
        print(policy_data["policy_holder_bonus_clas"].apply(lambda x: abs(x % 1)).sum())
        print(policy_data["vehicle_make_year"].apply(lambda x: abs(x % 1)).sum())
        0.0
        0.0
        0.0
        0.0
In [ ]: # converting to timestamps
        policy_data["policy_start_date"] = pd.to_datetime(policy_data["policy_start_date"])
        policy_data["policy_holder_birth_date"] = pd.to_datetime(policy_data["policy_holder_birth_date"].astype(str))
        policy_data["vehicle_make_year"] = pd.to_datetime(policy_data["vehicle_make_year"].astype(int), format='%Y')
        # converting to string
        policy_data["policy_holder_zipcode"] = policy_data["policy_holder_zipcode"].astype(int).astype(str)
        policy_data["policy_holder_bonus_clas"] = policy_data["policy_holder_bonus_clas"].astype('Int64').astype(str) # using
        # converting to int
        policy_data["policy_claims_num_reported"] = policy_data["policy_claims_num_reported"].astype(int)
        policy_data["policy_claims_num_paid"] = policy_data["policy_claims_num_paid"].astype(int)
        # reordering columns
        policy_data = policy_data[["policy_id",
                                     "policy_start_date",
                                    "policy_exposure_days",
                                    "policy_premium_received_brl",
                                    "policy_claims_num_reported",
                                    "policy_claims_num_paid",
                                     "policy_claims_total_amount_paid_brl",
                                    "policy_holder_birth_date",
                                    "policy_holder_gender",
                                    "policy_holder_residence_city",
                                    "policy_holder_residence_region",
                                    "policy_holder_zipcode",
                                    "policy_holder_residence_latitude",
                                    "policy_holder_residence_longitude",
                                     "policy_holder_bonus_clas",
                                    "vehicle_brand",
                                    "vehicle_model",
                                    "vehicle_make_year",
                                    "vehicle_tarif_class",
                                    "vehicle_value_brl"
        policy_data.head()
Out[]:
                  policy_id policy_start_date policy_exposure_days policy_premium_received_brl policy_claims_num_reported policy_claims_num_page.
           22036576975396
                                 2017-12-29
                                                          58
                                                                             777.432433
               01472343000
                                                          214
                                2018-05-30
                                                                             619.134247
               08024270000
                                2018-03-07
                                                         298
                                                                            1295.687671
                                                                                                              0
        3 166871902448270
                                2018-04-28
                                                                            2971.898688
```

Final adjustments

2017-09-18

13975805000

Much better... Not even sure if all those transformation were actually necessary, but it is always better to tell python the correct data types. That might be helpful later when creating the graphs. Also, reordering the columns helps me to think when looking at a data sample.

259

1847.060274

Now I feel ready for the analysis itself.

After reading the loss ratio concept and the proposed excercise, it is really important to notice that the average of individual loss ratios is different than the total loss ratio for a specific group.

```
In [ ]: # individual loss_ratio calculation
    policy_data["policy_loss_ratio"] = policy_data["policy_claims_total_amount_paid_brl"]/policy_data["policy_premium_rece
```

Descriptive statistics

Out[]:

Running some basic descriptive statistics on all columns to better understand the data:

In []: # Dates
 policy_data.describe(include=[np.datetime64], datetime_is_numeric=True)

	policy_start_date	policy_holder_birth_date	vehicle_make_year
count	3024172	3024172	3024172
mean	2018-01-13 20:11:56.892557568	1969-12-21 10:53:28.684162140	2012-04-02 04:38:36.534905600
min	2017-01-02 00:00:00	1900-01-01 00:00:00	1985-01-01 00:00:00
25%	2017-08-12 00:00:00	1960-01-13 00:00:00	2010-01-01 00:00:00
50%	2018-01-19 00:00:00	1972-01-12 00:00:00	2013-01-01 00:00:00
75%	2018-06-15 00:00:00	1981-10-31 00:00:00	2015-01-01 00:00:00
max	2018-12-30 00:00:00	2009-03-09 00:00:00	2018-01-01 00:00:00

In []: # Possible dimensions for the market analysis
 policy_data.describe(include=[object])

Out[]:		policy_id	policy_holder_gender	policy_holder_residence_city	policy_holder_residence_region	policy_holder_zipcode	policy_hol
	count	3024172	3024172	3024172	3024172	3024172	
	unique	3024172	2	831	52	7544	
	top	22036576975396	М	SÃO PAULO	METROPOLITANA DE SÃO PAULO	15104	
	freq	1	1514773	830938	1171145	12012	

In []: # Numerical values
 policy_data.describe(include=[np.number])

Out[]:		policy_exposure_days	policy_premium_received_brl	policy_claims_num_reported	policy_claims_num_paid	policy_claims_total_amount_p
	count	3.024172e+06	3.024172e+06	3.024172e+06	3.024172e+06	3.0241
	mean	1.393440e+02	4.956020e+02	2.545788e-02	1.379816e-02	1.70369
	std	9.240343e+01	5.129012e+02	1.667383e-01	1.195834e-01	2.3283
	min	1.000000e+00	1.598174e-03	0.000000e+00	0.000000e+00	0.0000
	25%	6.100000e+01	1.670872e+02	0.000000e+00	0.000000e+00	0.0000
	50%	1.350000e+02	3.730192e+02	0.000000e+00	0.000000e+00	0.0000
	75%	1.830000e+02	6.603041e+02	0.000000e+00	0.000000e+00	0.0000
	max	3.640000e+02	4.726853e+04	5.000000e+00	5.000000e+00	4.73080

Data accuracy check

I noticed that there are some birth dates dated 1900 (a bit odd). Let me double check that:

```
In [ ]: | policy_data["policy_holder_birth_year"] = pd.DatetimeIndex(policy_data["policy_holder_birth_date"]).year
        elderly_sample = policy_data[policy_data["policy_holder_birth_year"] < 1930] # older than ~90</pre>
        elderly_sample["policy_holder_birth_year"].value_counts()
                 36748
Out[]:
        1929
                   860
        1928
                   618
        1927
                   440
        1926
                   314
        1925
                   215
        1924
                   168
        1923
                    59
        1922
                    42
        1920
                    31
        1921
                    17
        1919
        1918
        1909
        1917
        1916
                     1
        Name: policy_holder_birth_year, dtype: int64
```

Indeed a significant number of policies is being assigned (very likely incorrectly) birth dates on 1900. To be considered in case we do anything using birth dates.

Exploratory data analysis

First I'll create a separated dataframe with only the relevant columns. I could run the analysis with more than just the columns defined here, but for the sake of time I won't. We could for example create age groups and use that for the investigation.

```
In [ ]: loss_ratio_analysis = policy_data[["policy_premium_received_brl",
                                             "policy_claims_total_amount_paid_brl",
                                            # "policy_loss_ratio",
                                            # "policy_holder_birth_year",
                                            "policy_holder_gender",
                                             "policy_holder_residence_city",
                                             "policy_holder_residence_region",
                                             # "policy_holder_zipcode",
                                             # "policy_holder_residence_latitude",
                                             # "policy_holder_residence_longitude",
                                             "policy_holder_bonus_clas",
                                             "vehicle_brand",
                                             # "vehicle_model",
                                            # "vehicle_make_year",
                                            # "vehicle_tarif_class",
                                           ]]
In [ ]: # overall loss_ratio
        print(loss_ratio_analysis["policy_claims_total_amount_paid_brl"].sum()/loss_ratio_analysis["policy_premium_received_br
         # loss_ratio by gender
        grouped = loss_ratio_analysis.groupby(by=["policy_holder_gender"])
        claims_paid = grouped["policy_claims_total_amount_paid_brl"].agg(["sum","count"])
        premium_received = grouped["policy_premium_received_brl"].agg(["sum","count"])
        gender_loss_ratio = pd.DataFrame({"loss_ratio": claims_paid["sum"]/premium_received["sum"], "policy_count": premium_re
        gender_loss_ratio.sort_values(by="loss_ratio")
        0.343762287767103
Out[]:
                           loss_ratio policy_count
        policy_holder_gender
                                        1509399
                         F 0.335485
                            0.351023
                                         1514773
In [ ]: # loss_ratio by region
        grouped = loss_ratio_analysis.groupby(by=["policy_holder_residence_region"])
        claims_paid = grouped["policy_claims_total_amount_paid_brl"].agg(["sum","count"])
        premium_received = grouped["policy_premium_received_brl"].agg(["sum","count"])
        region_loss_ratio = pd.DataFrame({"loss_ratio": claims_paid["sum"]/premium_received["sum"], "policy_count": premium_re
        region_loss_ratio[region_loss_ratio["policy_count"]>200].sort_values(by="loss_ratio")
Out[]:
                                                              loss_ratio policy_count
                                   policy_holder_residence_region
        ABCD, SANTO ANDRÉ, SÃO BERNARDO, SÃO CAETANO, DIADEMA
                                                               0.271126
                                                                             175391
                                               VALE DO RIBEIRA
                                                               0.294500
                                                                             22223
                                  METROPOLITANA DE SÃO PAULO
                                                               0.298284
                                                                            1171145
                                             BAIXADA SANTISTA
                                                               0.301878
                                                                             32972
                                              VALE DO PARAÍBA
                                                              0.339484
                                                                             146224
                                    LITORAL NORTE DE SÃO PAULO
                                                               0.355432
                                                                              19618
                                            CAMPINAS - CIDADE 0.364066
                                                                             111630
                                          SOROCABA - REGIÃO 2 0.388032
                                                                             286221
                       SÃO JOSÉ DOS CAMPOS, JACAREÍ E CAÇAPAVA
                                                               0.390653
                                                                             78354
                                                               0.395878
                                    SOROCABA - CIDADE E REGIÃO
                                                                             206973
                                            DEMAIS CAMPINAS 1
                                                                             122634
                                                              0.399128
                                  DEMAIS INTERIOR DE SÃO PAULO
                                                              0.440934
                                                                            466646
                                                               0.443516
                                            DEMAIS CAMPINAS 2
                                                                             49010
                                        RIBEIRÃO PRETO E BAURU
                                                               0.513604
                                                                              79474
                                            TRIÂNGULO MINEIRO
                                                              0.537145
                                                                              55145
In [ ]: # loss ratio by city
        grouped = loss_ratio_analysis.groupby(by=["policy_holder_residence_region", "policy_holder_residence_city"])
        claims_paid = grouped["policy_claims_total_amount_paid_brl"].agg(["sum","count"])
        premium_received = grouped["policy_premium_received_brl"].agg(["sum","count"])
        city_loss_ratio = pd.DataFrame({"loss_ratio": claims_paid["sum"]/premium_received["sum"], "policy_count": premium_rece
        city_loss_ratio[city_loss_ratio["policy_count"]>20000].sort_values(by="loss_ratio")
```

Out[]: loss_ratio policy_count

policy_holder_residence_region policy_holder_residence_city

		policy_	_noider_residence_regio	ii policy_noider_residence_city			
	ABCD, SANTO ANDRÉ, SÃO	BERNARDO,	SÃO CAETANO, DIADEM	A SANTO ANDRÉ	0.248020	58222	
				SÃO CAETANO DO SUL	0.254973	32920	
		METRO	POLITANA DE SÃO PAUL	FRANCISCO MORATO	0.264812	62674	
				GUARULHOS	0.285109	69050	
				SÃO PAULO	0.291184	830938	
				OSASCO	0.296750	37616	
			SOROCABA - REGIÃO	2 RIO CLARO	0.317469	20372	
	ABCD, SANTO ANDRÉ, SÃO	BERNARDO,	SÃO CAETANO, DIADEM	A SÃO BERNARDO DO CAMPO	0.324643	47434	
		METRO	POLITANA DE SÃO PAUL	SANTOS	0.327721	35384	
			VALE DO PARAÍB	MOGI DAS CRUZES	0.346613	34474	
		METRO	POLITANA DE SÃO PAUL	COTIA	0.351926	20833	
			VALE DO PARAÍB	A TAUBATÉ	0.358231	21143	
			SOROCABA - REGIÃO	2 LIMEIRA	0.358909	22973	
			CAMPINAS - CIDAD	E CAMPINAS	0.364066	111630	
		SORO	CABA - CIDADE E REGIÃ	SOROCABA	0.379884	48183	
				PIRACICABA	0.388847	33779	
				SANTA BARBARA D'OESTE	0.391652	27106	
	SÃO JOS	É DOS CAMP	OS, JACAREÍ E CAÇAPAV	A SÃO JOSÉ DOS CAMPOS	0.396622	54399	
		DEMAIS	INTERIOR DE SÃO PAUL	SÃO CARLOS	0.416696	27947	
			DEMAIS CAMPINAS	1 JUNDIAÍ	0.423737	64086	
		METRO	POLITANA DE SÃO PAUL	D BARUERI	0.433111	20493	
		SORO	CABA - CIDADE E REGIÃ	O AMERICANA	0.434413	34531	
		DEMAIS	INTERIOR DE SÃO PAUL	O ARARAQUARA	0.445116	38005	
		F	RIBEIRÃO PRETO E BAUR	J RIBEIRÃO PRETO	0.505484	43890	
				BAURU	0.527669	35584	
			TRIÂNGULO MINEIR	SÃO JOSÉ DO RIO PRETO	0.539188	54967	
		DEMAIS	INTERIOR DE SÃO PAUL	D FRANCA	0.603913	20892	
In []:	<pre>[]: # loss_ratio by bonus_clas grouped = loss_ratio_analysis.groupby(by=["policy_holder_bonus_clas"]) claims_paid = grouped["policy_claims_total_amount_paid_brl"].agg(["sum","count"]) premium_received = grouped["policy_premium_received_brl"].agg(["sum","count"]) bonus_clas_loss_ratio = pd.DataFrame({"loss_ratio": claims_paid["sum"]/premium_received["sum"], "policy_count": premium_bonus_clas_loss_ratio.sort_values(by="loss_ratio")</pre>						
Out[]:		loss_ratio	policy_count				
	policy_holder_bonus_clas						
	4	0.316034	309238				
	8	0.317195	246696				
	5	0.320635	301888				
	6	0.324383	274402				
	3	0.324830	317333				
	1	0.348932	343213				
	2	0.351345	318956				
	<na></na>	0.356339	277313				
	0	0.384800	569156				

```
In []: # loss_ratio by vehicle_brand
grouped = loss_ratio_analysis.groupby(by=["vehicle_brand"])
    claims_paid = grouped["policy_claims_total_amount_paid_brl"].agg(["sum","count"])
    premium_received = grouped["policy_premium_received_brl"].agg(["sum","count"])
    vehicle_brand_loss_ratio = pd.DataFrame({"loss_ratio": claims_paid["sum"]/premium_received["sum"], "policy_count": pre
    vehicle_brand_loss_ratio[vehicle_brand_loss_ratio["policy_count"]>500].sort_values(by="loss_ratio")
```

9 0.422604

65977

Out[]:		loss_ratio	policy_count
	vehicle_brand		
	LIFAN	0.156527	1790
	Porsche	0.200447	967
	Volvo	0.230154	2428
	Fiat	0.279694	374685
	VW - VolksWagen	0.298954	459760
	MINI	0.305272	5470
	Subaru	0.310842	1824
	Ford	0.315429	345901
	Hyundai	0.320025	186434
	Renault	0.331389	173196
	GM - Chevrolet	0.338579	702968
	Toyota	0.359907	152122
	Kia Motors	0.360137	15555
	Nissan	0.363973	78293
	CHERY	0.367081	6322
	Peugeot	0.386987	60134
	Citroën	0.392443	90122
	Honda	0.392901	274628
	Jeep	0.398356	15645
	smart	0.415184	1380
	JAC	0.445067	5188
	Suzuki	0.468758	2426
	Mitsubishi	0.487905	10740
	Chrysler	0.505601	930
	BMW	0.509360	19367
	Audi	0.554111	14084
	Mercedes-Benz	0.579760	19598
	Jaguar	0.595251	813

Potential segment opportunities

be reindexed to match DataFrame index.

These give us some indication of market groups that we could investigate further. I'd need to refresh my memory and python skills, but I'm sure there are robust statistical techniques (ANOVA, K-Means clustering, etc) that could be used to better analyse the data.

We'd need to check the data's variance and distribution to actually identify what a "small loss_ratio" would be, but for now I could list the groups we identified (using arbritary min sample sizes) with loss_ratio less than 30%:

```
In [ ]: #region
         small_region_loss_ratio = region_loss_ratio[region_loss_ratio["policy_count"]>200].sort_values(by="loss_ratio")
         small region loss ratio = small region loss ratio[region loss ratio["loss ratio"]<0.3]</pre>
         small_region_loss_ratio
         /var/folders/wf/z578m42550bgsqj4zdbtlxjw0000gn/T/ipykernel_17576/593868242.py:3: UserWarning: Boolean Series key will
        be reindexed to match DataFrame index.
          small_region_loss_ratio = small_region_loss_ratio[region_loss_ratio["loss_ratio"]<0.3]</pre>
Out[]:
                                                               loss_ratio policy_count
                                    policy_holder_residence_region
         ABCD, SANTO ANDRÉ, SÃO BERNARDO, SÃO CAETANO, DIADEMA
                                                                0.271126
                                                                              175391
                                               VALE DO RIBEIRA
                                                                              22223
                                                               0.294500
                                   METROPOLITANA DE SÃO PAULO 0.298284
                                                                             1171145
In [ ]: #city
         small_city_loss_ratio = city_loss_ratio[city_loss_ratio["policy_count"]>10000].sort_values(by="loss_ratio")
         small_city_loss_ratio = small_city_loss_ratio[city_loss_ratio["loss_ratio"]<0.3]</pre>
         small_city_loss_ratio
         /var/folders/wf/z578m42550bgsqj4zdbtlxjw0000gn/T/ipykernel_17576/356288018.py:3: UserWarning: Boolean Series key will
```

small_city_loss_ratio = small_city_loss_ratio[city_loss_ratio["loss_ratio"]<0.3]</pre>

		policy_holder_residence_city	policy_holder_residence_region	
15726	0.218144	DIADEMA	ABCD, SANTO ANDRÉ, SÃO BERNARDO, SÃO CAETANO, DIADEMA	
12435	0.241926	PRAIA GRANDE	BAIXADA SANTISTA	
58222	0.248020	SANTO ANDRÉ	ABCD, SANTO ANDRÉ, SÃO BERNARDO, SÃO CAETANO, DIADEMA	
32920	0.254973	SÃO CAETANO DO SUL		
62674	0.264812	FRANCISCO MORATO	METROPOLITANA DE SÃO PAULO	
16741	0.265059	SUZANO	VALE DO PARAÍBA	
13939	0.265470	MAUÁ	ABCD, SANTO ANDRÉ, SÃO BERNARDO, SÃO CAETANO, DIADEMA	
10699	0.268131	SALTO	SOROCABA - REGIÃO 2	
14757	0.275971	CARAPICUÍBA	METROPOLITANA DE SÃO PAULO	
69050	0.285109	GUARULHOS		
13652	0.290910	SUMARÉ	DEMAIS CAMPINAS 1	
830938	0.291184	SÃO PAULO	METROPOLITANA DE SÃO PAULO	
37616	0.296750	OSASCO		

In []: #vehicle_brand
small_vehicle_brand_loss_ratio = vehicle_brand_loss_ratio[vehicle_brand_loss_ratio["pol

small_vehicle_brand_loss_ratio = vehicle_brand_loss_ratio[vehicle_brand_loss_ratio["policy_count"]>500].sort_values(by
small_vehicle_brand_loss_ratio = small_vehicle_brand_loss_ratio[vehicle_brand_loss_ratio["loss_ratio"]<0.3]
small_vehicle_brand_loss_ratio</pre>

/var/folders/wf/z578m42550bgsqj4zdbtlxjw0000gn/T/ipykernel_17576/3055018983.py:3: UserWarning: Boolean Series key will be reindexed to match DataFrame index.

small_vehicle_brand_loss_ratio = small_vehicle_brand_loss_ratio[vehicle_brand_loss_ratio["loss_ratio"]<0.3]</pre>

Out []: loss_ratio policy_count

vehicle_brand		
LIFAN	0.156527	1790
Porsche	0.200447	967
Volvo	0.230154	2428
Fiat	0.279694	374685
VW - VolksWagen	0.298954	459760