Logică și structuri discrete Relatii. Functii partiale

Casandra Holotescu casandra@cs.upt.ro

https://tinyurl.com/lecturesLSD

Relații – aspecte teoretice

Relații în lumea reală și informatică

O relație (matematică) modelează legătura dintre două entități (posibil de tip diferit)

relații subiect-obiect: un om a citit o carte relații umane: copil , părinte , prieten relații cantitative : egal, mai mic

Relații în lumea reală și informatică

O relație (matematică) modelează *legătura* dintre două entități (posibil de *tip* diferit)

relații subiect-obiect: un om a citit o carte relații umane: copil , părinte , prieten relații cantitative : egal, mai mic

Transpuse în informatică: retele sociale : "prieten", "follow", "în cercuri", etc.

O relație între elementele *aceleiași* mulțimi definește un *graf* (elementele sunt noduri, relația e reprezentată prin muchii)

 \Rightarrow relațiile sunt o noțiune cheie în teoria grafurilor

O relație e o mulțime de perechi

O relație binară R între două mulțimi A și B e o mulțime de perechi: o submulțime a produsului cartezian $A \times B$: $R \subseteq A \times B$

O relație e o multime de perechi

O relație binară R între două mulțimi A și B e o mulțime de perechi: o submultime a produsului cartezian $A \times B$: $R \subseteq A \times B$

Notăm $(x,y) \in R$ sau x R y sau R(x,y) x e *în relație* cu y

$$A = \{1, 2, 3, 4\}, \quad B = \{a, b, c\}$$
$$R = \{(1, a), (1, c), (2, c), (4, c)\}$$

O relație e o mulțime de perechi

O relație binară R între două mulțimi A și B e o mulțime de perechi: o submulțime a produsului cartezian $A \times B$: $R \subseteq A \times B$

Notăm $(x,y) \in R$ sau x R y sau R(x,y) x e *în relație* cu y

$$A = \{1, 2, 3, 4\}, B = \{a, b, c\}$$

 $R = \{(1, a), (1, c), (2, c), (4, c)\}$

O relație e o noțiune *mai generală* decât o funcție: o funcție asociază *fiecărui* $x \in A$ *un singur* $y \in B$

Într-o relație putem avea (vezi figura):

1: are asociate *mai multe* elemente: a, c

2: are asociat un singur element: c

3: nu are asociat *niciun* element din B

Relații: generalități

În general, o relație nu e o noțiune simetrică: produsul cartezian/perechea sunt noțiuni ordonate, $(x,y) \neq (y,x)$

Există, desigur, relații simetrice (în lumea reală și în matematică)

Relații: generalități

În general, o relație nu e o noțiune simetrică: produsul cartezian/perechea sunt noțiuni ordonate, $(x,y) \neq (y,x)$

Există, desigur, relații simetrice (în lumea reală și în matematică)

Generalizat, putem avea o *relație n-ară* care e o mulțime de n-tupluri (din produsul cartezian a n mulțimi).

Exemplu: $R \subseteq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ R(x, y, m) dacă m e un multiplu comun pentru x și y: R(2, 9, 18), R(6, 9, 18), R(2, 9, 36), etc.

Reprezentarea unei relații

Explicit, prin *mulțimea perechilor* (dacă e finită) $R \subseteq \{1, 2, 3, 4\} \times \{a, b, c\}$ $R = \{(1, a), (1, c), (2, c), (4, c)\}$

Reprezentarea unei relații

Explicit, prin mulțimea perechilor (dacă e finită) $R \subset \{1, 2, 3, 4\} \times \{a, b, c\}$

$$R \subseteq \{1, 2, 3, 4\} \times \{a, b, c\}$$

$$R = \{(1, a), (1, c), (2, c), (4, c)\}$$

Printr-o *regulă* care leagă elementele:

$$R = \{(x, x^2 + 1) \mid x \in \mathbb{Z}\}$$

Reprezentarea unei relații

Explicit, prin *mulțimea perechilor* (dacă e finită)

$$R \subseteq \{1, 2, 3, 4\} \times \{a, b, c\}$$

$$R = \{(1, a), (1, c), (2, c), (4, c)\}$$

Printr-o regulă care leagă elementele:

$$R = \{(x, x^2 + 1) \mid x \in \mathbb{Z}\}$$

Ca *matrice* booleană/binară, dacă A, B finite, linii indexate după A, și coloanele după B $m_{xy} = 1$ dacă $(x, y) \in R$, $m_{xy} = 0$ dacă $(x, y) \notin R$ în practică: dacă A și B nu sunt foarte mari

	а	b	С
1	1	0	1
2	0	0	1
3	0	0	0
4	0	0	1

Relația văzută ca funcție

O relație $R \subseteq A \times B$ poate fi văzută ca o funcție $f_R : A \to \mathcal{P}(B)$ de la A la mulțimea părților lui B:

$$f_R(x) = \{ y \in B \mid (x, y) \in R \}$$

Relația văzută ca funcție

O relație $R \subseteq A \times B$ poate fi văzută ca o funcție $f_R : A \to \mathcal{P}(B)$ de la A la mulțimea părților lui B:

$$f_R(x) = \{ y \in B \mid (x, y) \in R \}$$

Asociază fiecărui x mulțimea elementelor lui B cu care x e în relație (posibil vidă):

$$f_R(1) = \{a, c\}, f_R(3) = \emptyset$$

Un vector de biți/booleni poate reprezenta o mulțime:

$$\frac{\mathsf{a} \ \mathsf{b} \ \mathsf{c}}{1 \ \mathsf{0} \ \mathsf{1}}$$
 reprezintă $\{a,c\}$ (prin funcția caracteristică)

Numărul de relații între două mulțimi

Între A și B (finite) există $2^{|A|\cdot|B|}$ relații $R\subseteq A\times B$

Rezultă direct din definiție: o relație e o submultime $R \subseteq A \times B$. Deci, $R \in \mathcal{P}(A \times B)$. Dar $|\mathcal{P}(A \times B)| = 2^{|A \times B|} = 2^{|A| \cdot |B|}$.

Sau, folosind reprezentarea ca matrice, care are $|A| \cdot |B|$ elemente. fiecare: ales independent în 2 feluri: 0 sau 1, deci $2^{|A| \cdot |B|}$ variante.

Sau, considerând funcția corespunzătoare, $f:A\to \mathcal{P}(B)$. Numărul de funcții e $|\mathcal{P}(B)|^{|A|}=(2^{|B|})^{|A|}=2^{|B|\cdot|A|}$

Funcții parțiale

O funcție parțială $f:A \rightarrow B$ e un caz particular de relație: asociază câte un singur element din B (ca funcția) dar nu neapărat fiecărui element din A (cum e obligată funcția)

Funcții parțiale

O funcție parțială $f: A \rightarrow B$ e un caz particular de relație: asociază câte un singur element din B (ca funcția) dar nu neapărat fiecărui element din A (cum e obligată funcția)

Funcții parțiale sunt utile

- când domeniul <code>exact</code> al funcției <code>nu</code> e cunoscut (funcții care nu sunt neapărat calculabile în orice punct). în conjectura Collatz $(3 \cdot n + 1)$, pentru anumiți n numărul de pași până la 1 ar putea să nu existe (infinit)
- când domeniul de definiție al funcției e foarte mare sau nelimitat,
 dar reprezentăm funcția explicit doar pentru valorile de interes
 Exemplu: populația unei localități
 posibil să nu știm populația pentru toate localitățile
 dacă argumentul e un sir, nu orice sir e nume de localitate

Relații binare. Proprietăți

Următoarele proprietăți sunt definite pentru relații binare pe o (aceeași) mulțime X: $R \subseteq X \times X$

Următoarele proprietăți sunt definite pentru relații binare pe o (aceeași) mulțime $X\colon R\subseteq X\times X$

reflexivă: pentru orice $x \in X$ avem $(x,x) \in R$

ireflexivă: pentru orice $x \in X$ avem $(x,x) \notin R$

```
Următoarele proprietăți sunt definite pentru relații binare pe o (aceeași) mulțime X: R \subseteq X \times X reflexivă: pentru orice x \in X avem (x,x) \in R ireflexivă: pentru orice x \in X avem (x,x) \notin R simetrică: pentru orice x,y \in X, dacă (x,y) \in R atunci și (y,x) \in R antisimetrică: pentru orice x,y \in X, dacă (x,y) \in R și (y,x) \in R, atunci x = y
```

```
Următoarele proprietăți sunt definite pentru relații binare
pe o (aceeași) multime X: R \subseteq X \times X
reflexivă: pentru orice x \in X avem (x, x) \in R
ireflexivă: pentru orice x \in X avem (x,x) \notin R
simetrică: pentru orice x, y \in X,
  dacă (x, y) \in R atunci si (y, x) \in R
antisimetrică: pentru orice x, y \in X,
  dacă (x, y) \in R și (y, x) \in R, atunci x = y
tranzitivă: pentru orice x, y, z \in X,
  dacă (x, y) \in R si (y, z) \in R, atunci (x, z) \in R
```

Relatii binare si grafuri

O relație binară pe o multime X poate fi reprezentată ca un graf cu X ca multime de noduri:

graf orientat: relatie oarecare

$$R = \{(a,b), (a,c), (c,d), (d,a)\}$$

graf neorientat: relatie simetrică

$$R = \{(a,b), (a,c), (c,d), (d,a)\} \qquad R = \{(a,b), (a,c), (a,d), (b,a), (c,a), (c,d), (d,a), (d,c)\}$$

Relații de echivalență

O relație e de echivalență dacă e reflexivă, simetrică și tranzitivă

Relația de egalitate e (evident) o relație de echivalență.

Relația de congruență modulo un număr:

 $a \equiv b \pmod{n}$ dacă $n \mid a - b \pmod{divide diferența}$

Relații de echivalență

O relație e de echivalență dacă e reflexivă, simetrică și tranzitivă

Relația de egalitate e (evident) o relație de echivalență.

Relația de congruență modulo un număr:

$$a \equiv b \pmod{n}$$
 dacă $n \mid a - b \pmod{divide diferența}$

Clasa de echivalență a lui x

e mulțimea elementelor aflate în relație cu x

$$\{y \mid (y,x) \in R\}$$
 notată \hat{x} sau $[x]$

O relație de echivalență pe X definește o partiție a lui X (două clase de echivalență sunt fie identice, fie disjuncte)

Relații de ordine. Latice. Punct fix

Relații de ordine stricte și totale

```
O relație \prec e o ordine strictă dacă e ireflexivă și tranzitivă nu există x cu x \prec x dacă x \prec y și y \prec z atunci x \prec z
```

Exemple: relațiile < și > între numere (întregi, reale, etc.) Relația "descendent" între persoane

Relații de ordine stricte și totale

```
O relație \prec e o ordine strictă dacă e ireflexivă și tranzitivă nu există x cu x \prec x dacă x \prec y și y \prec z atunci x \prec z Exemple: relațiile < și > între numere (întregi, reale, etc.) Relația "descendent" între persoane
```

```
O relație \leq e o ordine totală dacă e reflexivă, antisimetrică (dacă x \leq y și y \leq x atunci x = y), tranzitivă, și în plus oricare două elemente sunt comparabile, adică pentru orice x, y avem x \leq y sau y \leq x
```

Exemple: relațiile \leq și \geq între numere (întregi, reale, etc.)

Relații de ordine parțială

În practică apar adesea relații de ordine care nu sunt totale: clasament pe grupe, dar nu și între grupe diferite știm ordinea sosirii mesajelor, dar nu și ordinea trimiterii lor în expresia f(x)+g(x), f și g se apelează *înainte* de adunare, dar nu știm dacă se evaluează întâi f sau g

O relație e o *ordine parțială* (non-strictă), dacă e *reflexivă*, *antisimetrică* și *tranzitivă*

relația de divizibilitate între întregi relația de incluziune \subseteq pe mulțimea părților

Orice ordine totală e și o ordine parțială (dar nu și reciproc).

Orice ordine parțială induce o ordine strictă, și reciproc:

Definim: $a \prec b$ dacă $a \leq b$ și $a \neq b$ Invers, definim $a \leq b$ dacă $a \prec b$ sau a = b

Noțiunea de punct fix

 $x \in X$ e *punct fix* pentru funcția $f: X \to X$ dacă f(x) = x. (privind f ca o transformare, ea nu îl modifică pe x)

Noțiunea de punct fix

 $x \in X$ e punct fix pentru funcția $f: X \to X$ dacă f(x) = x. (privind f ca o transformare, ea nu îl modifică pe x)

Exemplu: fie un graf G = (V, E), și pentru $X \subseteq V$ funcția $f(X) = X \cup \bigcup vecini(v)$ (adăugăm la X toți vecinii)

 $f(U) = U \Rightarrow$ din nodurile U, urmărind vecinii nu găsim noduri noi

Noțiunea de punct fix

 $x \in X$ e *punct fix* pentru funcția $f: X \to X$ dacă f(x) = x. (privind f ca o transformare, ea nu îl modifică pe x)

Exemplu: fie un graf
$$G = (V, E)$$
, și pentru $X \subseteq V$ funcția $f(X) = X \cup \bigcup_{v \in X} vecini(v)$ (adăugăm la X toți vecinii)

 $f(U) = U \Rightarrow \text{din nodurile } U$, urmărind vecinii nu găsim noduri noi

Pornind de la $S_0 = \{6\}$ calculăm $S_1 = f(S_0) = \{6,4\}$, $S_2 = \{6,4,3,5\}$, $S_3 = \{6,4,3,5,1,2\}$, $S_4 = S_3$. Am atins un punct fix: avem toate nodurile care pot fi atinse din 6.

Multe prelucrări repetitive pot fi definite ca transformări care se opresc când atingem un *punct fix*

care sunt toate configurațiile posibile într-un joc? care sunt toate variabilele de care depinde o variabilă dată? etc. Existența unui punct fix e legată de *ordini parțiale* și *latice*.

Latice

O *latice* e o mulțime *parțial ordonată*, în care orice două elemente au un *minorant* și un *majorant*.

(elemente mai mici, respectiv mai mari în ordine decât cele două).

Latice

O *latice* e o mulțime *parțial ordonată*, în care orice două elemente au un *minorant* și un *majorant*.

(elemente mai mici, respectiv mai mari în ordine decât cele două).

Ex: mulțimea părților unei mulțimi (ordine: \subseteq ; minor./maj.: \cap , \cup)

Ex: mult. diviz. unui nr (ordine: :, minor./maj.: cmmdc, cmmmc)

Aceste exemple sunt chiar *latice complete*.

Imagine: http://en.wikipedia.org/wiki/File:Hasse_diagram_of_powerset_of_3.svg

Latice complete și puncte fixe

O latice L e *completă* dacă *orice* mulțime $S \subseteq L$ are un cel mai mic majorant (*supremum*) și un cel mai mare minorant (*infimum*).

Latice complete și puncte fixe

O latice L e completă dacă orice mulțime $S \subseteq L$ are un cel mai mic majorant (supremum) și un cel mai mare minorant (infimum).

Sunt condiții mai puternice: pentru orice *submulțime* (și infinită); avem o *ordine* între majoranți/minoranți, și un *cel mai mic/mare*.

 \Rightarrow Luând S = L, rezultă că L are un element minim și unul maxim

Latice complete și puncte fixe

Teorema de punct fix (Knaster-Tarski):

Fie f o funcție monotonă pe o latice completă.

Atunci multimea punctelor fixe a lui f e tot o latice completă.

Latice complete și puncte fixe

Teorema de punct fix (Knaster-Tarski):

Fie f o funcție monotonă pe o latice completă. Atunci mulțimea punctelor fixe a lui f e tot o latice completă.

Corolar.

O funcție monotonă pe o latice completă are un *punct fix minimal* și un *punct fix maximal*.

se obțin pornind de la 0, f(0), f(f(0)), ... resp. M, f(M), f(f(M)), ... unde 0 și M sunt elementul cel mai mic respectiv cel mai mare

Pentru orice x, şirul x, f(x), f(f(x)), ... ajunge la un punct fix.

Compunerea de relatii. Închiderea tranzitivă

Inversa unei relații

Inversa unei relații
$$R\subseteq A\times B$$
 e relația $R^{-1}\subseteq B\times A$, cu $(y,x)\in R^{-1}$ dacă și numai dacă $(x,y)\in R$
$$R^{-1}=\{(y,x)\mid (x,y)\in R\}$$

Compunerea de relații

Fie două relații $R_1 \subseteq A \times B$ și $R_2 \subseteq B \times C$.

Compunerea $R_2 \circ R_1 \subseteq A \times C$ e relația

$$R_2 \circ R_1 = \{(x, z) \mid \text{ există } y \in B \mid (x, y) \in R_1 \text{ și } (y, z) \in R_2\}$$

Compunerea de relații

Fie două relații $R_1 \subseteq A \times B$ și $R_2 \subseteq B \times C$.

Compunerea
$$R_2 \circ R_1 \subseteq A \times C$$
 e relația $R_2 \circ R_1 = \{(x, z) \mid \text{ există } y \in B \mid (x, y) \in R_1 \text{ si } (y, z) \in R_2\}$

La fel ca la funcții, scriem
$$R_2 \circ R_1$$
 și vedem că pentru $x \in A$ găsim întâi $y \in B$ și apoi $z \in C$.

Se poate vedea simplu că $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Compunerea de relații

Fie două relații $R_1 \subseteq A \times B$ și $R_2 \subseteq B \times C$.

Compunerea
$$R_2 \circ R_1 \subseteq A \times C$$
 e relația $R_2 \circ R_1 = \{(x, z) \mid \text{ există } y \in B \mid (x, y) \in R_1 \text{ si } (y, z) \in R_2\}$

La fel ca la funcții, scriem $R_2 \circ R_1$ și vedem că pentru $x \in A$ găsim întâi $y \in B$ și apoi $z \in C$.

Se poate vedea simplu că $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Pentru o relație de echivalență R, $R=R^{-1}$

R e tranzitivă dacă și numai dacă $R \circ R \subseteq R$

Pentru o relație binară $R \subseteq A \times A$, se notează $R^2 = R \circ R$, etc.

Închiderea tranzitivă a unei relații

Dintr-o relație R, putem defini o nouă relație, prin "intermediari", ca în condiția de tranzitivitate.

Ex.: într-un graf, avem *muchii* și *drumuri* (relații între noduri):

Un drum e format din una sau mai multe muchii: drum(X,Y) dacă muchie(X,Y) sau dacă muchie(X,Z) și muchie(Z,Y) sau dacă muchie(X,Z) și muchie(Z,U) și muchie(U,Y) ...

Relația drum include relația muchie și e tranzitivă.

Închiderea tranzitivă a unei relații

Dintr-o relație R, putem defini o nouă relație, prin "intermediari", ca în condiția de tranzitivitate.

Ex.: într-un graf, avem *muchii* și *drumuri* (relații între noduri):

Un drum e format din una sau mai multe muchii:

drum(X, Y) dacă muchie(X, Y)

sau dacă muchie(X, Z) și muchie(Z, Y)

sau dacă muchie(X, Z) și muchie(Z, U) și muchie(U, Y) ...

Relația drum include relația muchie și e tranzitivă.

Sau, fie relația copil(X, Y) (X e copilul lui Y):

Definim relația desc(X, Y) dacă copil(X, Y) (1)

descendent: desc(X, Z) dacă desc(X, Y) și desc(Y, Z) (2)

Relația desc include relația copil (1) și e tranzitivă (2).

Închiderea tranzitivă a unei relații

Închiderea tranzitivă a unei relații $R \subseteq A \times A$ e relația *tranzitivă minimală* R^+ astfel ca $R \subseteq R^+$

Putem calcula
$$R^+ = \bigcup_{k=1}^{\infty} R^k = R \cup R^2 \cup \dots$$
 $R^2 = R \circ R$ $R^3 = R \circ R \circ R$

Închiderea tranzitivă (cont.)

```
Un exemplu (fără cicluri): copil(ana, ion), copil(lia, ion), copil(ion, mara), copil(mara, eva). copil^2: desc(ana, mara), desc(lia, mara), desc(ion, eva) copil^3: desc(ana, eva), desc(lia, eva). Nu sunt descendenți de ordin > 3. Deci, relația desc = copil \cup copil^2 \cup copil^3
```

Închiderea tranzitivă (cont.)

```
Un exemplu (fără cicluri): copil(ana, ion), copil(lia, ion), copil(ion, mara), copil(mara, eva). copil^2: desc(ana, mara), desc(lia, mara), desc(ion, eva) copil^3: desc(ana, eva), desc(lia, eva). Nu sunt descendenți de ordin > 3. descendenți <math>desc = copil \cup copil^2 \cup copil^3
```

Putem defini
$$f(X) = R \cup (X \circ R)$$
.

Atunci
$$f(R) = R \cup R^2$$
 și prin inducție, $f^n(R) = \bigcup_{k=1}^{n+1} R^k$.

f e monotonă: dacă $X \subseteq Y$, $X \circ R \subseteq Y \circ R$ și $f(X) \subseteq f(Y)$. Deci f are un punct fix minimal, tocmai închiderea tranzitivă R^+ , iar pentru o mulțime finită calculul are un număr finit de pași.

Relații și dicționare în ML

Dicționare: funcții parțiale în ML

Un dicționar (asociere) memorează perechi care asociază o cheie (primul element) cu o valoare (al doilea element)

Dicționare: funcții parțiale în ML

Un dicționar (asociere) memorează perechi care asociază o cheie (primul element) cu o valoare (al doilea element)

ML: modulul Map e *parametrizat* (ca la mulțimi) cu un modul care definește tipul (ordonat) al *cheilor*. *Nu* precizează tipul *valorilor*.

Not.: key: tipul cheilor

'a t: tipul dicționar cu valori de tip 'a

```
M.empty dictionarul vid (nicio asociere)
M.add: key -> 'a-> 'a t -> 'a t
let m1 = M.add "x" 5 M.empty
    ia o cheie, valoare și dicționar
    creează un dicționar care are în plus noua asociere
         (suprascrie eventuala veche asociere pentru cheie)
M.remove : key -> 'a t -> 'a t
let m2 = M.remove "y" m1
    creează un nou dicționar fără cheia dată (fie că există sau nu)
```

```
M.fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
Ca la multimi, dar elementul curent parcurs e dat de doi parametri:
    cheia (key)
    valoarea ('a).
Produce o valoare arbitrară (tipul 'b).
Exemplu:
    let m3 = M.singleton "x" 5 |> M.add "y" 3
    M.fold (fun k v acc \rightarrow (k, v)::acc) m3 []
dă lista de perechi din dictionar: [("x",5);("y",3)]
```

```
M.fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
Ca la multimi, dar elementul curent parcurs e dat de doi parametri:
    cheia (key)
    valoarea ('a).
Produce o valoare arbitrară (tipul 'b).
Exemplu:
    let m3 = M.singleton "x" 5 |> M.add "y" 3
    M.fold (fun k v acc \rightarrow (k, v)::acc) m3 []
dă lista de perechi din dictionar: [("x",5);("y",3)]
Există predefinită: M.bindings m3 (* [("x",5);("y",3)] *)
M.bindings: 'a t -> (key * 'a) list
```

Lucrul cu excepții

```
Căutăm valoarea asociată unei chei în dicționar:
```

```
M.find "x" m returnează întregul 5
M.find "y" m generează excepția Not_found
```

O excepție este o condiție specială care întrerupe calculul normal

Lucrul cu excepții

```
Căutăm valoarea asociată unei chei în dicționar:
    M.find "x" m returnează întregul 5
    M.find "y" m generează excepția Not_found
```

O excepție este o condiție specială care întrerupe calculul normal

Funcția semnalează că nu poate returna un rezultat dacă nu e *tratată*, se abandonează execuția programului altfel, codul de *tratare a excepției* stabilește ce se face

Lucrul cu excepții

Unele funcții standard generează excepții:

```
List.hd [] produce Exception: Failure "hd" char_of_int 300 dă Invalid_argument "char_of_int"
```

Operații matematice pot genera excepții:

```
1 / 0 produce Exception: Division_by_zero
```

Aceste excepții (primele 2 cu parametru șir, ultima fără parametru) și altele sunt *predefinite* în modulul Pervasives *deschis implicit*

Generarea de excepții

```
Putem genera excepții cu funcția raise (parametru: excepție):
   raise Not_found sau raise (Failure "gresit") etc.

failwith "mesaj" e echivalent cu raise (Failure "mesaj")
invalid_arg "msg" e la fel cu raise (Invalid_argument "msg")
```

Tratarea excepțiilor

Trebuie să știm *ce excepții* pot genera funcțiile pe care le folosim și să le *tratăm* corespunzător

```
Sintaxa: try expresie e tot o formă de expresie
with tipar
unde tipar tratează una sau mai multe excepții și are forma
| excepție-1 -> expresie-1 (valoarea în acest caz)
| excepție-2 -> expresie-2 (valoarea în cazul 2)
...
```

Dacă *expresie* se evaluează normal, ea dă rezultatul; altfel, dacă apare *excepție-k* se evaluează *expresie-k*

Pe toate ramurile, expresiile au același tip cu cea din try expresie

Tratarea excepțiilor

Dacă *expresie* se evaluează normal, ea dă rezultatul; altfel, dacă apare *excepție-k* se evaluează *expresie-k*

Pe toate ramurile, expresiile au același tip cu cea din try expresie

Excepțiile se *propagă*, *terminând* fiecare funcție, până când sunt "*prinse*" de un bloc de tratare – altfel, programul e *abandonat*.

De la liste de asocieri la dictionare

E natural să construim un dicționar de la o listă de perechi. Ea ar putea conține duplicate pentru primul element:

```
let lst = [("x", 5); ("y", 3); ("x", 2); ("a", 2)]
```

De la liste de asocieri la dicționare

E natural să construim un dicționar de la o listă de perechi. Ea ar putea conține duplicate pentru primul element:

```
let lst = [("x", 5); ("y", 3); ("x", 2); ("a", 2)]
```

Putem să considerăm:

• ultima valoare (adăugăm necondiționat)

```
List.fold_left
  (fun dct (k,v) -> M.add k v dct) M.empty lst
```

De la liste de asocieri la dicționare

E natural să construim un dicționar de la o listă de perechi. Ea ar putea conține duplicate pentru primul element:

```
let lst = [("x", 5); ("y", 3); ("x", 2); ("a", 2)]
```

Putem să considerăm:

ultima valoare (adăugăm necondiționat)

```
List.fold_left
  (fun dct (k,v) -> M.add k v dct) M.empty lst
```

prima valoare (adăugăm doar dacă nu există)

```
List.fold_left (fun dct (k,v) ->
  if M.mem k dct then dct
    else M.add k v dct) M.empty lst
```

De la liste de asocieri la dicționare

Dicționar de la o listă de perechi care poate conține chei duplicate:

```
let lst = [("x", 5); ("y", 3); ("x", 2); ("a", 2)]
```

• toate valorile: o listă sau mulțime

List.fold_left addnew M.empty 1st

Relații cu ajutorul dicționarelor

Am văzut că o *relație* $R \subseteq A \times B$ poate fi privită ca o *funcție* $f_R: A \to \mathcal{P}(B)$ de la A la *mulțimea părților* lui B: $f_R(x) = \{ y \in B \mid (x,y) \in R \}$

Dictionarul va fi atunci de la A la multimi de elemente din B

Relații cu ajutorul dicționarelor

```
Am văzut că o relație R \subseteq A \times B poate fi privită ca o funcție
f_R: A \to \mathcal{P}(B) de la A la multimea părților lui B:
                 f_R(x) = \{ y \in B \mid (x, y) \in R \}
Dictionarul va fi atunci de la A la multimi de elemente din B
module M = Map.Make(String) (* dictionar pe siruri *)
module S = Set.Make(String) (* multimea de valori *)
let addpair m (x, y) =
  let oldset = try M.find x m (* multimea asociata cu x *)
  with Not found -> S.empty (* nu e, deci multimea vida *)
  in M.add x (S.add y oldset) m
(* creeaza dictionar din lista *)
let setmap of pairs = List.fold left addpair M.empty
setmap of pairs [("tms", "arad");("tms", "lugoj")];;
asociază "tms" cu multimea {"arad", "lugoj"}
```

Punctul fix în ML

Dacă șirul x, f(x), f(f(x)), ... atinge un punct fix, putem scrie:

```
let rec fix f x =
  let nxt = f x in
  if nxt = x then x else fix f nxt
```

fix f x compară f(x) cu x. Dacă sunt egale, x e punct fix, și e returnat. Dacă nu, reapelăm recursiv cu valoarea f(x).

Apelul al *n*-lea va avea argumentul $f^{n-1}(x)$ și îl compară cu $f^n(x)$. Dacă există n cu $f^{n-1}(x) = f^n(x)$, va fi găsit, $f^{n-1}(x)$ e punct fix.

Punctul fix în ML

Dacă șirul x, f(x), f(f(x)), ... atinge un punct fix, putem scrie:

```
let rec fix f x =
  let nxt = f x in
  if nxt = x then x else fix f nxt
fix f x compară f(x) cu x. Dacă sunt egale, x e punct fix,
și e returnat. Dacă nu, reapelăm recursiv cu valoarea f(x).
```

Apelul al *n*-lea va avea argumentul $f^{n-1}(x)$ și îl compară cu $f^n(x)$. Dacă există n cu $f^{n-1}(x) = f^n(x)$, va fi găsit, $f^{n-1}(x)$ e punct fix.

Putem rescrie, folosind o funcție ajutătoare cu doar un parametru (nu mai trebuie repetat la apel parametrul f):

```
let fix f =
  let rec fix1 x =
   let nxt = f x in
   if nxt = x then x else fix1 nxt
in fix1
```