CONTENTS

Final Secondary Analysis

Tianshu Liu, Lincole Jiang, Jiong Ma

Contents

1 Model Training		del Tra	uining	2
	1.1	Second	lary Analysis	2
		1.1.1	Logistic Regression	2
		1.1.2	Penalized Logistic Regression	3
		1.1.3	Generalized Additive Model (GAM) for classification	5
		1.1.4	Multivariate Adaptive Regression Splines (MARS) for classification	7
		1.1.5	Linear Discriminant Analysis (LDA)	10
		1.1.6	Quadratic Discriminant Analysis (QDA)	10
		1.1.7	Naive Bayes (NB)	10
		1.1.8	Bagging	11
		1.1.9	Random Forest	13
		1.1.10	Boosting	15
		1.1.11	Classification Trees	17
		1.1.12	Support Vector Machine (SVM)	19
	1.2		Selection	
	1.3	Trainii	ng / Testing Error	23

```
library(tidyverse)
library(summarytools)
library(corrplot)
library(caret)
library(vip)
library(rpart.plot)
library(ranger)
```

1 Model Training

1.1 Secondary Analysis

```
ctrl1 <- trainControl(method = "cv", number = 10)</pre>
```

1.1.1 Logistic Regression

```
set.seed(2023)
glm.fit \leftarrow train(x = train.x,
             y = train.bin.y,
             method = 'glm',
             trControl = ctrl1)
coef(glm.fit$finalModel)
    (Intercept)
                     age
                            gender1
                                         race2
                                                    race3
height
##
        race4
                 smoking1
                           smoking2
                                                   weight
```

0.502637208 -0.545510559 ## bmi hypertension1 diabetes1 SBP ## ## vaccine1 severity1 studyB studyC ## -0.600151829 0.761039467 -1.066825060 -0.031460504

vip(glm.fit\$finalModel) + theme_bw()

1.1.2 Penalized Logistic Regression

```
glmnGrid <- expand.grid(.alpha = seq(0, 1, length = 21),</pre>
                         .lambda = exp(seq(-10, -5, length = 15)))
set.seed(2023)
glmn.fit <- train(train.x,</pre>
                   train.bin.y,
                   method = 'glmnet',
                   tuneGrid = glmnGrid,
                   trControl = ctrl1)
glmn.fit$bestTune
       alpha
                    lambda
## 292 0.95 0.0003869779
myCol<- rainbow(25)</pre>
myPar <- list(superpose.symbol = list(col = myCol),</pre>
              superpose.line = list(col = myCol))
ggplot(glmn.fit, highlight = TRUE) +
  labs(title="Penalized Logistic Regression CV Result") +
  theme_bw()
```

Penalized Logistic Regression CV Result

ggsave("./figure/penal_logi_cv.jpeg", dpi = 500)

#coef(glmn.fit\$finalModel)

vip(glmn.fit\$finalModel) + theme_bw()

1.1.3 Generalized Additive Model (GAM) for classification

GAM Classification CV Result


```
ggsave("./figure/gam_binned_cv.jpeg", dpi = 500)
gam.bin.fit$bestTune
```

```
## select method
## 2 TRUE GCV.Cp
par(mfrow=c(2, 3))
plot(gam.bin.fit$finalModel)
```


1.1.4 Multivariate Adaptive Regression Splines (MARS) for classification

ggsave("./figure/mars_binned_cv.jpeg", dpi = 500)

mars.bin.fit\$bestTune

nprune degree ## 10 11 1

coef(mars.bin.fit\$finalModel) %>%

broom::tidy() %>%
knitr::kable()

names	X
(Intercept)	1.1011705
studyB	-1.0779091
h(bmi-26.9)	0.2900212
h(26.9-bmi)	0.2935615
vaccine1	-0.6217928
severity1	0.7969230
gender1	-0.3261333
hypertension1	0.3099788
smoking1	0.3912885
smoking2	0.5358382
h(LDL-157)	-0.1512777

summary(mars.bin.fit\$finalModel)

Call: earth(x=matrix[2900,18], y=factor.object, keepxy=TRUE,

```
glm=list(family=function.object, maxit=100), degree=1, nprune=11)
##
##
## GLM coefficients
##
                       gt30
## (Intercept)
                  1.1011705
## gender1
                 -0.3261333
## smoking1
                  0.3912885
## smoking2
                  0.5358382
## hypertension1 0.3099788
## vaccine1
                 -0.6217928
## severity1
                  0.7969230
## studyB
                 -1.0779090
## h(26.9-bmi)
                  0.2935615
## h(bmi-26.9)
                  0.2900212
## h(LDL-157)
                 -0.1512777
##
## GLM (family binomial, link logit):
  nulldev
             df
                       dev
                             df
                                  devratio
                                               AIC iters converged
  3571.35 2899
##
                   3204.42 2889
                                     0.103
                                               3226
                                                        4
##
## Earth selected 11 of 14 terms, and 9 of 18 predictors (nprune=11)
## Termination condition: RSq changed by less than 0.001 at 14 terms
## Importance: studyB, bmi, vaccine1, severity1, gender1, smoking1, smoking2, ...
## Number of terms at each degree of interaction: 1 10 (additive model)
## Earth GCV 0.1906834
                          RSS 545.0022
                                          GRSq 0.1024844
                                                             RSq 0.1148255
```


1.1.5 Linear Discriminant Analysis (LDA)

1.1.6 Quadratic Discriminant Analysis (QDA)

1.1.7 Naive Bayes (NB)

```
## fL usekernel adjust
## 12 1  TRUE  0.2

ggplot(nb.fit, highlight = TRUE) +
  labs(title = "Naive Bayes Classification CV Result") +
  theme_bw()
```

Naive Bayes Classification CV Result

ggsave("./figure/nb_cv.jpeg", dpi = 500)

1.1.8 Bagging

```
bag.grid2 <- expand.grid(mtry = ncol(train.x),</pre>
                        splitrule = "gini",
                        min.node.size = seq(1, 19, by = 2))
set.seed(2023)
bag.fit2 <- train(train.x,</pre>
                 train.bin.y,
                 method = "ranger",
                 tuneGrid = bag.grid2,
                  trControl = ctrl1)
bag.fit2$bestTune
     mtry splitrule min.node.size
      18
               gini
ggplot(bag.fit2, highlight = TRUE) +
  labs(title = "Bagging Classification CV Result") +
  theme_bw()
```

Bagging Classification CV Result

1.1.9 Random Forest

```
rf.grid2 <- expand.grid(mtry = 1:ncol(train.x),</pre>
                       splitrule = "gini",
                       min.node.size = seq(10, 18, by = 2))
set.seed(2023)
rf.fit2 <- train(train.x,</pre>
                train.bin.y,
                method = "ranger",
                tuneGrid = rf.grid2,
                trControl = ctrl1)
rf.fit2$bestTune
      mtry splitrule min.node.size
##
## 19
       4
                gini
ggplot(rf.fit2, highlight = TRUE) +
  labs(title = "Random Forest Classification CV Result") +
 theme_bw()
```

Random Forest Classification CV Result

1.1.10 Boosting

```
set.seed(2023)
bst.grid2 <- expand.grid(n.trees = c(6000, 7000, 8000),
                        interaction.depth = 1:3,
                        shrinkage = c(0.0025, 0.005, 0.01),
                        n.minobsinnode = c(1)
bst.fit2 <- train(train.x,</pre>
                 train.bin.y,
                 method = "gbm",
                 tuneGrid = bst.grid2,
                 trControl = ctrl1,
                 verbose = FALSE)
bst.fit2$bestTune
##
    n.trees interaction.depth shrinkage n.minobsinnode
## 5
        7000
                                  0.0025
ggplot(bst.fit2, highlight = TRUE) +
  labs(title = "Boosting Classification CV Result") +
  theme_bw()
```


ggsave("./figure/boosting_classification_cv.jpeg", dpi = 500)

Variable Importance
summary(bst.fit2\$finalModel, las = 2, cBars = ncol(train.x), cex.names = 0.6)

var rel.inf

```
## bmi
                         bmi 21.3771761
## studyB
                      studyB 14.6951389
## height
                      height 11.6710328
## weight
                      weight 9.3956406
                         LDL 8.8668553
## LDL
## SBP
                         SBP 8.3449683
## age
                         age 7.0495783
                 vaccine1 6.1085301
## vaccine1
## severity1
                 severity1 3.4158576
## gender1
                   gender1 2.9981363
## smoking1
                   smoking1 2.2884025
## smoking2
                    smoking2 1.9870804
## hypertension1 hypertension1 0.6262043
## race2
                       race2 0.2943443
## race3
                       race3 0.2793109
                       race4 0.2588588
## race4
## diabetes1
                   diabetes1 0.2245058
## studyC
                      studyC 0.1183788
```

1.1.11 Classification Trees

ggsave("./figure/rpart2_cv.jpeg", dpi = 500)
rpart.plot(rpart.fit2\$finalModel)


```
jpeg("./figure/rpart2.jpeg", width = 8, height = 6, units="in", res=500)
rpart.plot(rpart.fit2$finalModel)
dev.off()

## pdf
## 2
```

1.1.12 Support Vector Machine (SVM)

SVM Linear CV result

SVM Radial Kernal CV result


```
ggsave("./figure/svmr_cv.jpeg", dpi = 500)
confusionMatrix(svmr.fit)
```

```
## Cross-Validated (10 fold) Confusion Matrix
##
## (entries are percentual average cell counts across resamples)
##
## Reference
## Prediction 1t30 gt30
## 1t30 7.2 5.6
## gt30 23.3 63.8
```

Model Selection 21

```
##
   Accuracy (average): 0.7107
```

Model Selection

nb

```
set.seed(2023)
resamp <- resamples(list(glm = glm.fit,</pre>
                          glmnet = glmn.fit,
                          gam = gam.bin.fit,
                          mars = mars.bin.fit,
                          lda = lda.fit,
                          qda = qda.fit,
                          nb = nb.fit,
                          bagging = bag.fit2,
                          rf = rf.fit2,
                          boosting = bst.fit2,
                          tree = rpart.fit2,
                          svml <- svml.fit,</pre>
                          svmr = svmr.fit))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
## Models: glm, glmnet, gam, mars, lda, qda, nb, bagging, rf, boosting, tree, Model12, svmr
## Number of resamples: 10
##
## Accuracy
##
                         1st Qu.
                                    Median
                                                         3rd Qu.
                                                                       Max. NA's
                  Min.
                                                 Mean
            0.6747405 0.7008621 0.7068966 0.7062019 0.7157661 0.7241379
## glm
            0.6816609 0.7071484 0.7103448 0.7082733 0.7156455 0.7206897
## glmnet
## gam
            0.6989619 0.7075081 0.7160031 0.7179273 0.7301724 0.7413793
            0.6989619\ 0.7085140\ 0.7177272\ 0.7193030\ 0.7293103\ 0.7448276
## mars
            0.6851211 0.7016353 0.7051724 0.7041377 0.7100943 0.7172414
## lda
            0.6137931\ 0.6456300\ 0.6574831\ 0.6617249\ 0.6830401\ 0.7068966
## qda
            0.6851211 \ 0.6948276 \ 0.7005155 \ 0.69999997 \ 0.7052738 \ 0.7103448
## nb
## bagging 0.6678201 0.6868005 0.6936308 0.6958570 0.7060345 0.7275862
            0.6907216 0.7025862 0.7137931 0.7117251 0.7214095 0.7310345
## boosting 0.6920415 0.7153928 0.7189681 0.7161996 0.7206897 0.7413793
                                                                               0
            0.6851211 \ 0.6939655 \ 0.7120715 \ 0.7051615 \ 0.7137931 \ 0.7182131
                                                                               0
## tree
## Model12 0.6931034 0.6931034 0.6936308 0.6941389 0.6951658 0.6965517
                                                                               0
            0.6724138 0.7000835 0.7189655 0.7106728 0.7235158 0.7250859
## symr
##
## Kappa
##
                     Min.
                             1st Qu.
                                          Median
                                                        Mean
             0.099807807\ 0.13883240\ 0.18339368\ 0.17256251\ 0.20348169\ 0.23291936
## glm
             0.112313034 \ 0.13880153 \ 0.17136252 \ 0.16787994 \ 0.19888520 \ 0.21200875
## glmnet
## gam
             0.161494386 0.19398754 0.21887062 0.21564943 0.24436296 0.26005307
             0.180770377 0.19596335 0.21778595 0.22123773 0.25078783 0.25846579
## mars
             0.115743112 \ 0.12766456 \ 0.15822405 \ 0.15973057 \ 0.19212331 \ 0.20459740
## lda
## qda
             0.160506591 0.18959640 0.23375702 0.23794797 0.28596378 0.32268598
            -0.002898219\ 0.02675247\ 0.05118034\ 0.04369503\ 0.06220707\ 0.09165486
```

1.2 Model Selection 22

```
0.135151078 0.15295507 0.18580343 0.19152328 0.21778297 0.29572702
## bagging
            0.116038882\ 0.16147317\ 0.19942793\ 0.19013744\ 0.21328968\ 0.24484209
## rf
## boosting
            0.160322728 0.19228241 0.21278228 0.20874763 0.22299842 0.27659150
            0.115434149 0.15719160 0.19478063 0.18525932 0.20594295 0.23344205
## tree
            ## Model12
## svmr
            0.083682565 0.17761275 0.20175711 0.18642362 0.21956318 0.22606383
##
            NA's
              0
## glm
##
  glmnet
              0
              0
## gam
## mars
              0
              0
## lda
              0
## qda
              0
## nb
              0
## bagging
## rf
              0
              0
## boosting
              0
## tree
## Model12
              0
              0
## svmr
p1=bwplot(resamp, metric = "Accuracy")
p2=bwplot(resamp, metric = "Kappa")
grid.arrange(p1, p2 ,ncol=2)
boosting
                                                qda
                                                                  ---
   svmr
                                               gam
   mars
                                               mars
                                            boosting
   gam
      rf
                                               svmr
   tree
                                                  rf
 glmnet
                                                tree
    glm
                                            bagging
    lda
                                                glm
     nb
                                             glmnet
                      - -
Model12
                                                lda
                                                       - - :
bagging
                                                 nb
    qda
                                            Model12
              0.65
                       0.70
                                0.75
                                                     0.0
                                                            0.1
                                                                   0.2
                                                                          0.3
                 Accuracy
                                                              Kappa
jpeg("./figure/resample2.jpeg", width = 8, height=6, units="in", res=500)
p1=bwplot(resamp, metric = "Accuracy")
p2=bwplot(resamp, metric = "Kappa")
grid.arrange(p1, p2, ncol=2)
dev.off()
```

```
## pdf
## 2
```

1.3 Training / Testing Error

```
pred.svmr <- predict(svmr.fit, newdata = test.x)</pre>
confusionMatrix(data = pred.svmr, reference = test.bin.y)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1t30 gt30
##
         1t30
                62
##
         gt30 153 469
##
##
                  Accuracy : 0.7344
##
                    95% CI: (0.7006, 0.7663)
       No Information Rate : 0.7026
##
##
       P-Value [Acc > NIR] : 0.03255
##
##
                     Kappa: 0.2498
##
##
    Mcnemar's Test P-Value: 3.49e-16
##
##
               Sensitivity: 0.28837
##
               Specificity: 0.92323
            Pos Pred Value: 0.61386
##
            Neg Pred Value: 0.75402
##
                Prevalence: 0.29737
##
##
            Detection Rate: 0.08575
##
      Detection Prevalence: 0.13970
         Balanced Accuracy: 0.60580
##
##
          'Positive' Class : 1t30
##
##
```