



### **NEW PARADIGM**

- Digital information and technology have changed the way we live and understand the world
- Jim Gray, researcher at Microsoft and pioneer in database coined the term The Fourth Paradigm
- Experimental age, Theoretical, Computational and lately Data-driven age



#### **DATA IN ASTRONOMY**

- Raw data is collected by instruments at telescopes, stored in data servers, processed and published
- Big data in Astronomy: SDSS (1998)
- Filled 8GB HDD every 25 minutes





**Time span**: 15 years

**Area**: 14,555 deg<sup>2</sup>

# sources: 469,053,874



Data Analytics

# **PROCESSING AND ANALYTICS**



### **IMPORTANCE OF PROCESSING**

- Telescopes in Chile produce 1.5 PB/year
- By 2023 telescopes will produce 17 PB/year (EY 2018)



#### **DATA PREPARATION**

### Preprocessing

- Preparation of data directly after accessing it from a data source
- Initial transformations, aggregations and data cleansing

# Wrangling

- Preparation of data during the interactive data analysis and model building
- Cleaning, structuring and enriching dataset until it works well for finding insights



### **DATA ANALYTICS**

- Analytics is the process of examining datasets in order to draw conclusions about the information they contain
- Data-intensive, statistics, quantitative, descriptive and predictive analysis
- Decision making, competitive advantage, generate value



### **ANALYTICAL PIPELINE**

- Data Access
- Data Preprocessing
- Exploratory Data Analysis
- Model building
- Model validation
- Model execution
- Deployment



DS

# **DATA SCIENCE**



#### WHAT IS DATA SCIENCE?

- Data Science is an interdisciplinary field that use processes and systems to extract information and knowledge from data.
- It requires knowledge from multiple fields: Computer Science, Programming, Mathematics and Statistics.





### **INTERDISCIPLINARY**



Venn diagram for Data Science Drew Conway (2010)



#### **PROGRAMMING LANGUAGES**

- The most used languages in Data Science are Python and R. Python has more than 30 million (M) users and R more than 16M.
- Julia has emerged as an all-around and efficient language. Around 2M users.









ML

# **MACHINE LEARNING**



### **USUAL TASKS**

#### Regression

"The company Entel wants to learn how many GB their clients will consume next month"

#### Classification

"Falabella wants to promote a new product. What gender and age they should focus their ads?"

#### Association

"User 1 from Netflix has watched movies A and B, while user 2 has watched movies B and C. Next time Netflix will offer movie C to user 1"



#### **MACHINE LEARNING**

- Machine learning is a subfield from Computer Science. Heavily based in Statistics
- The goal is to develop techniques that allow to computers to learn or imitate human cognitive skills





### TYPES OF ML

### Supervised learning

The system learns using previously classified data. The data can be structured or unstructured.

Algorithm generates a model that establish the correspondence between the input data and expected output of the system.



### TYPES OF ML

### Unsupervised learning

The data has not been classified previously.

The system should be able to recognize patterns and generate their own labels. Model should classify new input data.





#### **CLASSIFICATION ALGORITHM**

- The most used methods to solve Classification problems using ML are
  - Support Vector Machine (SVM)
  - Decision trees
  - Random forest
  - Deep Neural Networks







#### **CONFUSION MATRIX**

|           |          | Actual         |                |
|-----------|----------|----------------|----------------|
|           |          | Positive       | Negative       |
| Predicted | Positive | True Positive  | False Positive |
|           | Negative | False Negative | True Negative  |

$$recall = \frac{true \; positives}{true \; positives \; + \; false \; negatives}$$

$$precision = \frac{true\ positives}{true\ positives + false\ positives}$$

$$true \; positive \; rate = \frac{true \; positives}{true \; positives + false \; negatives}$$

$$false\ positive\ rate = \frac{false\ positives}{false\ positives + true\ negatives}$$





#### **DEEP LEARNING**

- Deep learning is a collection of machine learning methods based in feature or representation learning.
- The most famous are Deep Neural Networks (DNN).
  They are based on Artificial Neural Networks and multiple layer architectures.





# **HOW MUCH DATA?**

### **BIG DATA & DEEP LEARNING**



# Visit the website

http://playground.tensorflow.org





Trends

# TRENDS IN MACHINE LEARNING



## **CPU VS GPU**









#### **AUTOMATED MACHINE LEARNING**

 Automatically search for algorithms, architectures and hyperparameters to find best scoring machine learning model







#### **SOFTWARE 2.0**



**Software 1.0** is what we're all familiar with — it is written in languages such as Python, C++, etc. It consists of explicit instructions to the computer written by a programmer

Software 2.0 can be written in much more abstract, human unfriendly language, such as the weights of a neural network. No human is involved in writing this code because there are a lot of weights and coding directly in weights is kind of hard

#### **Andrej Karpathy**

Director of AI at Tesla



Azure

# **AZURE MACHINE LEARNING**



# Advanced analytics pattern in Azure

Data collection and understanding, modeling, and deployment



# Leverage out-of-the-box AI tools and services



Cognitive services



Use pre-built AI services to solve business problems

#### 01010 01010 01010

Map complex information and data



Allow your apps to process natural language



Azure search



Get up and running quickly



Reduce complexity with a fully-managed service



Use artificial intelligence to extract insights



Bot services



Speed development with a purpose-built environment for bot creation



Infuse intelligence into your bot using cognitive services



Integrate across multiple channels to reach more customers



Create a seamless developer experience across desktop, cloud, or at the edge using Visual Studio AI Tools

# Azure Databricks for deep learning modeling

Fast, easy, and collaborative Apache Spark-based analytics platform





#### **Tools**

Use HorovodEstimator via a native runtime to enable build deep learning models with a few lines of code

Load images natively in Spark DataFrames to automatically decode them for manipulation at scale

Simultaneously collaborate within notebooks environments to streamline model development



#### Frameworks

Full Python and Scala support for transfer learning on images

Seamlessly use TensorFlow, Microsoft Cognitive Toolkit, Caffe2, Keras, and more

Use built-in hyperparameter tuning via Spark MLLib to quickly drive model progress



#### Infrastructure

Leverage powerful GPU-enabled VMs pre-configured for deep neural network training

Automatically store metadata in Azure Database with georeplication for fault tolerance

Improve performance 10x-100x over traditional Spark deployments with an optimized environment

# **H2O.ai** in Microsoft Azure Cloud for the Enterprise

- Enterprise customers chose Azure for security, ease of deployment, enterprise ready capabilities
- H2O Driverless AI is available on the Marketplace
- H2O Core and Sparkling Water open source - also available in Azure
  - Integrated with HDInsights, Batch, Databricks





Azure

# **TUTORIALS USING AZURE**



## **AZURE NOTEBOOKS**

# Visit the website and Sign in

https://notebooks.azure.com/

# Clone the Github repo

https://github.com/rpmunoz/workshop\_eso\_2019





