1. Exponential and Logarithm funtions

<u>Definition 1:</u> A function of the form $f(x) = ab^x$ where $a \ne 0$, b > 0 and $b \ne 1$ is an **exponential function** with base b.

<u>Definition 2:</u> A **logarithms function** with base b is the inverse of an exponential function of the form $y = b^x$ where x and b are positive numbers and $b \ne 1$, $y = \log_b x$ if and only if $b^y = x$.

2. Propierties of Logarithms

Basic Properties of logarithms: If x and b are positives numbers and $b \neq 0$.

1.
$$\log_b 1 = 0$$
 since $b^0 = 1$

$$3. \log_b b^x = x$$

2.
$$\log_b b = 1$$
 since $b^1 = b$

$$4. b^{\log_b x} = x$$

3. Properties of exponential and logarithms

Property	of Logarithms (*)	of Exponents
Equality	$\log_b m = \log_b n \iff m = n$	$b^m = b^n \iff m = n$
Product	$\log_b mn = \log_b m + \log_b n$	$b^m \cdot b^n = b^{m+n}$
Quotient	$\log_b \frac{m}{n} = \log_b m - \log_b n$	$\frac{b^m}{b^n} = b^{m-n}$
Power	$\log_b m^p = p \log_b m$	$(b^m)^p = b^{mp}$

(*) where m > 0 and n > 0

Natural logarithm: Is defined by $\log_e(x) = \ln(x)$. Where e = 2.71828182846...

References in the book: From pages 127 to 148.

4. Analysis of exponential functions

$$f(x) = ab^x$$
 with $a > 0$ and $b > 1$
Exponential
Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Asymptote: The line x
Increasing

$$f(x) = ab^x$$
 with $a > 1$ and $0 < b < 1$

Exponential

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Asymptote: The line x

Decreasing

$$f(x) = -ab^x$$
 with $b > 1$
Exponential
Domain: $(-\infty, \infty)$
Range: $(-\infty, 0)$
Asymptote: The line x
Decreasing

$$f(x) = -ab^x$$
 with $0 < b < 1$
Exponential
Domain: $(-\infty, \infty)$
Range: $(-\infty, 0)$
Asymptote: The line x
Increasing

$$f(x) = ad^{x-b}$$
 with $a > 0$
Exponential
Domain: $(-\infty, \infty)$
Range: $(0, \infty)$
Asymptote: The line x
Increasing

 $g(x) = ad^{x+b} + c$ with a > 0Exponential Domain: $(-\infty, \infty)$ Range: $(0, \infty)$ Asymptote: The line cIncreasing

5. Analysis of logarithms functions

 $f(x) = a \log_b(x)$ with b > 0Logarithmic Domain: $(0, \infty)$ Range: $(-\infty, \infty)$ Asymptote: The line xIncreasing

 $f(x) = a \log_b(x)$ with 0 < b < 1Logarithmic
Domain: $(-\infty, \infty)$ Range: $(0, \infty)$ Asymptote: The line xDecreasing

$$f(x) = a \log_b(-x)$$
 with $0 < b < 1$
Logarithmic
Domain: $(-\infty, 0)$
Range: $(-\infty, +\infty)$
Asymptote: The line x
Increasing

$$f(x) = a \log_b(x - c)$$
 with $b > 1$
Logarithmic
Domain: (c, ∞)
Range: $(-\infty, \infty)$
Asymptote: The line c
Increasing

$$f(x) = a \log_b(x) - d \text{ with } b > 1$$

$$\text{Logarithmic}$$

$$\text{Domain: } (0, \infty)$$

$$\text{Range: } (-\infty, \infty)$$

$$\text{Asymptote: The line } x$$

$$\text{Increasing}$$

Comparison of exponential (a^x) and logarithmic $(a \log_b(x))$ functions

Asymptote: The line g(x) = x

