Test Case 1

Author A. Kontou (ICCS), A. Paspatis (ICCS), M. Syed (UoS), Z. Feng (UoS, T. The Hoang (CEA), G. Lauss (AIT), E. Rodriguez (TEC)

Version 0.1

Project ERIGrid 2.0 Date 17.02.2023

Name of the Test Case	Virtual Shifting Impedance with Delay Compensation & Sensitivity Framework
Narrative	An advanced method for improving stability and accuracy of PHIL experiments is considered. It was developed based on existing proven ones, namely the shifting impedance and the time delay compensation, aiming to combine and take advantage of their properties. At the same time, the method expanded to overcome some limitations, like the need for availability of actual hardware impedance. This method while increasing stability of the PHIL setup, also improves the accuracy. This TC aims to verify and validate the properties of VSIDC interface algorithm in simple and more complex scenarios. Moreover, the sensitivity framework will be employed to precisely estimate the PHIL system properties prior to experimental testing.
Function(s) under Investigation (Ful) "the referenced specification of a function realized (operationalized) by the object under investigation"	Applicability of VSIDC interface algorithm Accuracy and stability assessment of VSIDC
Object under Investigation (Oul) "the component(s) (1n) that are to be qualified by the test"	VSIDC interface algorithm The tested HUT
Domain under Investigation (<i>Dul</i>): "the relevant domains or sub-domains of test parameters and connectivity."	Electrical Domain
Purpose of Investigation (Pol) The test purpose in terms of Characterization, Verification, or Validation	Characterization and validation of the System under Test (SuT) Verification and validation of the Oul Verification and validation of the Ful
System under Test (<i>SuT</i>): Systems, subsystems, components included in the test case or test setup.	PHIL setup with passive or active load.
Functions under Test (FuT) Functions relevant to the operation of the system under test, including Ful and relevant interactions btw. Oul and SuT.	Applicability of VSIDC interface algorithm Accuracy and stability assessment of VSIDC

Test criteria: Formulation of criteria for each Pol based on properties of SuT; encompasses properties of test signals and output measures.		Evaluation of the stability and accuracy of the setups realized through the incorporation of the VSIDC
	target metrics Measures required to quantify each identified test criteria	 Current and voltage measurements Error in active and reactive power exchange at point of common coupling. Time delay Sensitivity functions
	variability attributes controllable or uncontrollable factors and the required variability; ref. to Pol.	Variability factors include: • Varying cut-off frequency of feedback filter • Varying ratio of software and hardware impedance
	quality attributes threshold levels for test result quality as well as pass/fail criteria.	Proper stability margins and accuracy metrics (e.g. Phw=Psw, etc)

Qualification Strategy

i.e. how are the Pol to be met by the different tests and how will the test results be combined to yield the desired Pol outcomes (see guideline)

Test Specification D1.1

Reference to Test Case	TC D1	
Title of Test	Validation of Virtual Shifting Impedance with Delay (sation (VSIDC)	Compen-
Test Rationale	This test aims to validate the developed VSIDC method in	a PHIL
	setup with passive/active HUT.	
Specific Test System	Simple voltage divider circuit.	
(graphical)	DRTS HUT	
	Interface Algorithm (1-a)R1 (1-a)X1 Interface Algorithm & Passive load be simulated power network Interface Algorithm & Passive load be simulated power network	er
Target measures	Stability assessment Active power and reactive power at the point of common pling and accuracy assessment Sonsitivity functions	non cou-
	 Sensitivity functions Signal to Noise Ratio (SNR) and Total Harmonic L (THD) measurements 	Distortion
Input and output parameters	Input:	

	Load/Hardware device
	Grid condition
	Output:
	Voltage, current and power measurements, during steady and
	transient states
Test Design	The simulation at DRTS starts first
	The voltage is applied to the amplifier and measured
	The voltage of the amplifier is output to the HUT and current
	and voltage measurements are taken
	Finally, the loop closes, and the accuracy of the system is
	estimated
Initial system state	The system is initialised and synchronized at nominal values of
	voltage (230 V) and frequency (50 Hz).
Evolution of system state and	Use of different sets of Zs, Zh and LPF (feedback filters) to com-
test signals	pare experimental results with theoretical stability margins.
Other parameters	n/a
Temporal resolution	16 kHz, 50 μs.
Source of uncertainty	Amplifier's response (delay, amplification), sensors imperfections,
_	HUT's behavior in case of active component, etc.
Suspension criteria / Stopping	Suspension – Instability
criteria	Stopping: Successful evolution of system states and recording of
	target measures.

Test Specification D1.2

Reference to Test Case	TC D1
Title of Test	PHIL setup for testing the compliance with FRT requirements
	and other ancillary services provided by DERs
Test Rationale	A microgrid application is considered, in which DERs feed the load and achieve power sharing. At the same time, the voltage and frequency of the microgrid are regulated close to their nominal values (droop control operation). Furthermore, when a fault occurs, the inverters inject power according to international standards to provide grid support. Advanced interface algorithms, like delay compensation and VSIDC which was developed in the frame of ERIGrid 2.0, will be utilized to make the PHIL setup stable and to
Charific Tool Creaters	provide more accurate results of testing.
Specific Test System (graphical)	DRTS Simulated Network CHIL RIT TCP/P Central Controller Controller Power Extra proper Load #3 PV #1 Load #4 Load #4 Load #4 Load #4 PV #3 PV #3 PV #3
Target measures	Inverter power injection, load voltage and frequency, inverter
	currents

	,
	Active power and reactive power at the point of common cou-
	pling
	and accuracy assessment
	Stability assessment
	Sensitivity functions
	SNR and THD measurements
Input and output parameters	Input:
	• Load
	Inverter power injection set-points
	Grid condition
	Output:
	Voltage, current and power measurements, during steady and
	transient states
Test Design	Operate a set of inverters in parallel
	Perform a network fault when the microgrid operates either
	in islanded (non-interconnected) mode or in grid-connected mode
	Save the experimental results
Initial system state	The system is initialised and synchronized at nominal values of
	voltage (230 V) and frequency (50 Hz).
Evolution of system state and	The system goes from normal operation (operation close to nomi-
test signals	nal voltage and frequency) to operation under fault, to test the in-
3	verter behavior
Other parameters	n/a
Temporal resolution	16 kHz (in case a switched-type amplifier is used), 50 μs.
Source of uncertainty	Hardware inverter's response, amplifier's response (delay, amplifi-
	cation), sensors imperfections, etc.
Suspension criteria / Stopping	Suspension: Abnormal current, Instability
criteria	Stopping: Successful evolution of system states and recording of
	target measures.
1	9

Mapping to Research Infrastructure

i.e. how is it planned to distribute (map) and execute the specified test system in a given research infrastructure (free text); this section can be used to list the intended Experiment specifications.

Experiment Specification ES.D1.1

Reference to Test Specification	TS D2.1
	1 2 2 2 2 2
Title of Experiment	Validation of VSIDC method in PHIL setup with passive load
Research Infrastructure	EESL (ICCS-NTUA) and DPSL (Strathclyde)
Experiment Realisation	Designing the interface topology in the real-time simulator,
	and the proposed interface algorithm
	Designing of the appropriate software protection
	Hardware interfaces
Experiment Setup	Real-Time Digital Simulator (RTDS)
(concrete lab equipment)	Interfacing I/O cards
	PC for RSCAD (UI of RTDS)
	Switching Amplifier (Triphase)
	Hardware passive load
	Metering devices
Experimental Design and	In RSCAD the simulated part will be designed based on
Justification	known interface topologies (Voltage-Type Ideal Transformer
	Model (V-ITM), etc). Then the VSIDC will be designed in the
	controller of the power amplifier and finally, the HUT will be
	interfaced to RTDS through the amplifier.
Precision of equipment and	• 50 µs time step
measurement uncertainty	precision of the used ammeter
	Delay introduced for the D/A and A/D conversions
	Delay introduced and non-ideal output response of the amplifier
Storage of experiment data	RTDS – Various formats (excel, dat, cfg, etc).

Experiment Specification ES.D1.2

Reference to Test Specification	TS D1.1
Title of Experiment	PHIL for analysing inverter's response in real condition
Research Infrastructure	DPSL (Strathclyde) or EESL (ICCS-NTUA)
Experiment Realisation	Microgrid design in RSCAD
	Designing of the appropriate software protection
	Hardware interfaces
Experiment Setup	Real Time Digital Simulator (RTDS)
(concrete lab equipment)	Interfacing I/O cards
	PC for RSCAD (UI of RTDS)
	Switching Amplifier (Triphase)
	Hardware solar inverter
	Metering devices
Experimental Design and	 In RSCAD an inverter-based microgrid will be designed.
Justification	The inverters will be simulated as controlled voltage sources
	to facilitate testing under various grid conditions.
	 FRT curve according to Grid Codes, will be used.
	A hardware inverter will be connected to RTDS to perform
	PHIL experiments and validate the performance under real
	conditions.
Precision of equipment and	• 50 µs time step
measurement uncertainty	precision of the used ammeter
	Delay introduced for the D/A and A/D conversions
	Delay introduced and non-ideal output response of the amplifier
Storage of experiment data	RTDS – Various formats (excel, dat, cfg, etc).