sivann

SVB2640 BLE Wireless Module User Guide

Rev. 1.1

Aug. 2018

目錄

	、介紹	2
	1.1 工具及開發環境	
_	1.2 硬體規格	
	、硬體配置	
三、	、接腳圖	3
四、	、接腳描述	4
五、	、開發環境下載與安裝	5
	5.1 安裝 Code Composer Studio	
	5.2 搜索 CCS 產品	
	5.3 匯入 CCS 專案	7
六、	、硬體設置	9
七、	、程式碼編譯與燒錄	10
八、	、腳位操作說明	12
т ,	、版木縣中	13

一、介紹

Sivann SVB2640 BLE Wireless Module (低功耗藍牙無線模組)採用佐臻 (Jorjin) 所生產之 ZB7412 模組。它是一款基於德州儀器 (Texas Instruments) CC2640R2F 藍牙單晶片之系統級封裝模組,內有 32 位元的 ARM Cortex-M3 微控制器,並提供豐富的周邊 I/O。適用於 Bluetooth 4.2 和 Bluetooth 5 之低功耗應用,且通過 FCC、ETSI、NCC 等多國射頻法規認證。其韌體能透過 CCS 或 IAR 等集成開發環境進行開發,可依據需求實現藍牙的物聯網應用。

1.1 工具及開發環境

- Full-Feature and Low-Cost Development Kits
- Packet Sniffer PC Software
- Sensor Controller Studio
- SmartRF Studio
- SmartRF Flash Programmer 2
- IAR Embedded Workbench for ARM
- Code Composer Studio

1.2 硬體規格

SVB2640 BLE Wireless Module						
無線模組		Jorjin ZB7412-00 (TI CC2640R2F 5x5mm, 15 GPIOs)				
藍牙標準		Bluetooth 5				
電	源	5 V (Micro USB)				
周	邊	GPIO · UART · I2C · I2S · SPI · PWM · Timer · ADC · RTC				
燒錄介面		2-Pin cJTAG				
尺	寸	42 x 26 mm				
重	量	5.3 g				
產	地	台灣				

二、硬體配置

三、接腳圖

四、接腳描述

Pin No.	Pin Name	Туре	Description				
		J1					
1	DIO 0	Digital I/O	GPIO, Sensor Controller				
2	DIO 1	Digital I/O	GPIO, Sensor Controller				
3	DIO 2	Digital I/O	GPIO, Sensor Controller, High drive capability				
4	DIO 3	Digital I/O	GPIO, Sensor Controller, High drive capability				
5	DIO 4	Digital I/O	GPIO, Sensor Controller, High drive capability				
6	GND	GND	Ground				
7	3V3	Power	3V3				
8	NC	NC	No Connection				
9	5V	Power	5V				
10	RST	Digital Input	Reset, Active-low				
	J2						
1	DIO 14	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
2	DIO 13	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
3	DIO 12	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
4	DIO 11	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
5	DIO 10	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
6	DIO 9	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
7	DIO 8	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
8	DIO 7	Digital/Analog I/O	GPIO, Sensor Controller, Analog				
9	DIO 6	Digital I/O	GPIO, High drive capability, JTAG_TDI				
10	DIO 5	Digital I/O	GPIO, High drive capability, JTAG_TDO				
		J3 De	bug				
1	3V3	Power	3V3				
2	JTAG_TMSC	Digital I/O	JTAG_TMSC, High drive capability				
3	GND	GND	Ground				
4	JTAG_TCKC	Digital I/O	JTAG_TCKC				
5	GND	GND	Ground				
6	JTAG_TDO	Digital I/O	JTAG_TDO, High drive capability, DIO 5				
7	NC	NC	No Connection				
8	JTAG_TDI	Digital I/O	JTAG_TDI, High drive capability, DIO 6				
9	GND	GND	Ground				
10	RST	Digital Input	Reset, Active-low				

五、開發環境下載與安裝

CC2640R2F 支援 IAR Embedded Workbench for ARM、Code Composer Studio™ (CCS) 和CCS Cloud™ 三種 IDE,此處將以 Code Composer Studio (CCS) 做介紹。

Code Composer Studio 是一個整合式的開發環境,支援 TI 的微控制器和嵌入式處理器產品。它提供了一系列工具來為嵌入式應用開發與除錯,包含經過優化的 C/C++編譯器、原始碼編輯器、原始碼環境整合、調試器、分析器和許多其他功能。CCS 提供直觀的 IDE 使用者介面,能夠引導使用者完成應用程式開發流程的每一步。

以下過程介紹了如何安裝和配置 CCS 的正確版本和必要的工具:

5.1 安裝 Code Composer Studio

- 1. 安裝 Code Composer Studio
 - 下載 Code Composer Studio
 - 開始安裝程序並接受授權協議,建議將 CCS 安裝在預設路徑

- 在 Processor Support 清單,選擇 SimpleLink CC13xx and CC26xx Wireless MCUs

- 在 Debug Probes 部分,CCS 會安裝對 TI XDS Debug Probe Support 的支援。該選項支援 XDS110 除錯器
- 選擇 Finish 開始安裝程序

5.2 搜索 CCS 產品

如果將 Code Composer Studio 安裝在預設目錄之下 (c:/ti),它會自動搜索 SimpleLink CC2640R2 SDK。一旦 SDK 被 CCS 發現,它會定義一個名為 COM_TI_SIMPLELINK_CC2640R2 _SDK_INSTALL_DIR 的建構環境變數給 BLE-Stack 專案使用。

如果 BLE-Stack 專案是由其他地方匯入,而不是 SimpleLink CC2640R2 SDK 在安裝期間所指定的路徑,就必須在匯入程序完成後重新定義 COM_TI_SIMPLELINK_CC2640R2_SDK_INSTALL DIR 變數。重新定義該變數步驟如下所示:

- 1. 開啟 CCS 專案屬性 (Project → Properties)
- 2. 點選 Resource → Linked Resources 並編輯 COM_TI_SIMPLELINK_CC2640R2_SDK_INSTALL DIR,讓該變數指向匯入的根目錄位置

5.3 **匯入 CCS** 專案

本節將引用 multi-role 專案說明如何匯入並編譯一個已存在的專案,開發套件中所有的 BLE-Stack 專案都具有相似的結構。

- 1. 從開始選單中開啟 CCS IDE
- 2. 建立一個 workspace (請確認 CCS workspace 的路徑名稱不包含空格)
- - (1) 開啟 Resource Explorer
 - 點選 View → Resource Explorer,在選擇的範例專案中選取 CCS 資料夾 Software→SimpleLink CC2640R2 SDK → Examples → CC2640R2 Launchpad → blestack → multi_role → TI-RTOS → CCS Compiler → multi_role app
 - 選取 CCS Logo 按鈕匯入專案到 Project Explorer 若是 SimpleLink CC2640R2 SDK 本地版本不存在, 匯入過程中將會一併安裝, 必須接受使用者授權協議才能繼續

(2) 選擇範例專案

- 點選 Import: File → Import

- 選擇 CCS Projects: Code Composer Studio → CCS Project
- 瀏覽 multi_role 檔案位置 C:\ti\simplelink_cc2640r2_sdk_1_40_00_45\examples\rtos\CC2640R2_LAUNCHXL\blest ack\multi role
- Select All 選擇搜索到的專案
- 點選 Finish 開始匯入程序

4. 若匯入成功,Project Explorer 將會出現兩個專案,分別為 app、stack 之程式碼

六、硬體設置

燒錄流程中需要使用 TI 開發的 MSP-EXP432P401R 開發套件作為 SVB2640 之燒錄板,請遵循以下流程連接無線模組與燒錄板:

1. 請先確認移除下圖中標示區域的 jumpers,目的是為了將開發板上燒錄器 XDS110 與微控制器 MSP-EXP432P401R 斷開。另外,需確認 XDS110 電源 jumper (JP102) 被連接,以提供電源至 SVB2640。

2. 準備 10-pin 之 JTAG 連接線,將其連接至 SVB2640 的 Debug Port (J3),並將另一端連接至 MSP-EXP432P401R 上的 XDS110 Out Port (J102),接著插上 Micro USB 連接至電腦。

七、程式碼編譯與燒錄

注意:由於 SVB2640 使用之晶片型號為 CC2640R2DK_5XD,因此需移除專案預編譯旗標 CC2640R2 LAUNCHXL,並新增預編譯旗標 CC2640R2DK 5XD。

下列過程將描述如何存取並修改預編譯旗標:

- 1. 開啟 Project Properties
- 2. 選取到 Build → ARM Complier → Predefined Symbols
- 3. 點選下圖標註的按鈕,刪除預編譯旗標 CC2640R2_LAUNCHXL

4. 點選下圖標註的按鈕,新增預編譯旗標 CC2640R2DK 5XD

SVB2640
BLE Wireless Module

程式碼開發完畢後,可依照下列流程編譯程式碼,並燒錄至開發板中:

- 1. 編譯 stack library 專案
 - 將 stack 專案設置為 active
 - 點選 Project → Build All 編譯 stack 專案
- 2. 編譯 app 專案
 - 將 app 專案設置為 active
 - 點選 Project → Build All 編譯 app 專案
- 3. 載入整個應用程式
 - Run \rightarrow Debug

11 / 13

八、腳位操作說明

SVB2640 開發板分別提供了紅色、綠色兩顆 LED 燈及一顆按鈕供使用者測試或開發應用時使用,紅色、綠色 LED 分別連接至晶片的 DIO6、DIO7,按鈕則是連接至 DIO14,詳細腳位請參考第三章接腳圖說明。為了讓開發者在韌體中存取 LED 與按鈕做應用開發,另外提供修改後的開發板層級的接腳定義檔 board.h 與 CC2640R2DK_5XD.h,並以使用範例簡單的說明如何操作 LED 接腳。

下列為接腳的使用範例,此應用範例將每隔五秒輪流切換紅色、綠色 LED 的亮滅:

- 1. 修改 SDK 接腳定義檔
 - 下載修改後的 board.h 與 CC2640R2DK 5XD.h (<u>SVB2640 接腳定義</u>)
 - 取代下列 SDK 目錄兩個資料夾中兩支同名檔案

 C:\ti\simplelink_cc2640r2_sdk_1_40_00_45\source\ti\blestack\boards\CC2640R2DK_5XD

 C:\ti\simplelink cc2640r2 sdk 1 40 00 45\source\ti\ble5stack\boards\CC2640R2DK 5XD
 - 修改接腳定義檔後,在應用程式中可透過 Board_GLED、Board_RLED 和 Board_BUTTON 操作 LED 跟按鈕
- 2. LED 範例應用程式,此處主要說明如何在韌體中操作 LED 接腳,詳細應用程式實作請參考 simple peripheral.c
 - 宣告接腳相關變數,並配置 LED 接腳

- 設置一週期性 clock,並於 clock 到期時切換 LED 亮滅

```
static void SimpleBLEPeripheral_performPeriodicTask(void)
{
   if (PIN_getOutputValue(Board_GLED) == 0) {
      PIN_setOutputValue(hPins, Board_GLED, Board_LED_ON);
      PIN_setOutputValue(hPins, Board_RLED, Board_LED_OFF);
   } else {
      PIN_setOutputValue(hPins, Board_GLED, Board_LED_OFF);
      PIN_setOutputValue(hPins, Board_RLED, Board_LED_ON);
   }
}
```

Rev. 1.1

SVB2640 BLE Wireless Module

九、版本歷史

Revision	Date	Description
1.0	2018/08/01	Initial release
1.1	2018/08/08	新增腳位操作說明章節