Lenguajes y Compiladores. Práctico 7 del 12/05/2021

Objetivos: Familiarizarse con la sintaxis del cálculo lambda. Comprender el mecanismo de cómputo (reducción) del cálculo lambda. Distinguir los órdenes de evaluación y la noción de forma canónica de la de forma normal. Utilizar diferentes estrategias de evaluación. Conocer y poder aplicar el teorema de Church-Rosser.

Aviso: En este práctico las variables f, x, y, z (y las demás que aparecen) son concretas.

- (1) Considerar las siguientes expresiones lambda:
 - (a) $(\lambda f.\lambda x. f(fx))(\lambda z.\lambda x.\lambda y. zyx)(\lambda z.\lambda w. z)$.
 - (b) $(\lambda z.zz)(\lambda f.\lambda x.f(fx))$.

Para cada expresión e, reducir a su forma normal e_0 . Indicar la 1er forma canónica e_1 .

(2) Considerar las expresiones lambda:

$$TRUE = \lambda x. \lambda y. x$$
 $NOT = \lambda b. \lambda x. \lambda y. by x$ $FALSE = \lambda x. \lambda y. y$ $AND = \lambda b. \lambda c. \lambda x. \lambda y. b(cxy) y$ $IF = \lambda b. \lambda x. \lambda y. bx y$

Demostrar:

- (a) NOT TRUE \rightarrow^* FALSE,
- (b) IF TRUE $e_0 e_1 \rightarrow^* e_0$,
- (c) AND TRUE TRUE \rightarrow^* TRUE,
- (d) AND FALSE $e \rightarrow^* FALSE$,
- (3) ¿Cuáles afirmaciones son verdaderas y cuáles falsas? Justificar.
 - (a) Toda expresión lambda cerrada tiene forma normal.
 - (b) Toda expresión lambda cerrada tiene forma canónica.
 - (c) Toda forma canónica cerrada es forma normal.
 - (d) Toda forma normal cerrada es forma canónica.
- (4) Demostrar que una aplicación cerrada no puede ser una forma normal.
- (5) Para cada expresión del ejercicio 1, evaluar en orden normal $e \Rightarrow_N e_1$, e eager $e \Rightarrow_E e_1$.
- (6) (a) Para ambos órdenes, pruebe que $e \Rightarrow e'$ implica $e \rightarrow^* e'$.
 - (b) Decida si la siguiente afirmación es cierta y justifique su respuesta: si $e \Rightarrow_N e_1$ y $e \Rightarrow e_2$, entonces existe e' tal que $e_1 \rightarrow^* e'$ y $e_2 \rightarrow^* e'$.
- (7) Explique por qué no es cierto que $NOT\ TRUE \Rightarrow FALSE$ en ambos órdenes.
- (8) Sean e_0 y e_1 formas canónicas, construya los árboles para
 - (a) NOT TRUE $e_0 e_1 \Rightarrow_E e_1$,
 - (b) AND FALSE $(\Delta \Delta) e_0 e_1 \Rightarrow_N e_1$.
- (9) Explique por qué $AND\ FALSE\ (\Delta\ \Delta)\ e_0\ e_1$ no tiene una forma canónica bajo el orden eager. ¿La tiene $AND\ FALSE\ (\lambda w. \Delta\ \Delta)\ e_0\ e_1$?
- (10) ¿Qué debe cumplir b para que $IF b \rightarrow_{\eta}^{*} b$? ¿Cumplen TRUE y FALSE esas condiciones?