Concepts Mathématiques en Finance Quantitative

Alexis Fabre

July 20, 2025

1. Mouvement Brownien

Formule:

$$B(t + \Delta t) = B(t) + \epsilon \cdot \sqrt{\Delta t}$$

Définitions :

- \bullet B(t): valeur du processus à l'instant t
- ϵ : bruit aléatoire standard normal (i.e., $\epsilon \sim \mathcal{N}(0,1)$)
- Δt : petit incrément de temps

Utilité : Ce processus sert de fondation pour modéliser les mouvements aléatoires dans le temps, comme ceux d'un actif financier.

Code Python:

```
B = np.zeros(T)
for t in range(1, T):
    B[t] = B[t-1] + np.random.normal(0, np.sqrt(dt))
```

2. Mouvement Brownien Géométrique (GBM)

Formule:

$$S_{t+1} = S_t \cdot \exp\left[\left(\mu - \frac{\sigma^2}{2}\right) \cdot dt + \sigma \cdot \sqrt{dt} \cdot Z\right]$$

Définitions:

- S_t : prix de l'actif à l'instant t
- μ : rendement moyen
- $\bullet \ \sigma$: volatilité
- \bullet dt: incrément de temps
- Z: variable aléatoire gaussienne standard ($\sim \mathcal{N}(0,1)$)

Utilité: Utilisé pour simuler les trajectoires de prix d'un actif financier.

Code Python:

```
S[t] = S[t-1] * np.exp((mu - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * np.random.normal())
```

3. Simulation de Monte Carlo

Concept : On répète la simulation d'un processus aléatoire (comme un GBM) de nombreuses fois pour approximer la distribution future d'un actif.

Code Python:

```
for i in range(num_simulations):
    for t in range(1, num_days):
        Z = np.random.standard_normal()
        simulations[t, i] = simulations[t-1, i] * np.exp((mu - 0.5 * sigma**2) *
        dt + sigma * np.sqrt(dt) * Z)
```

4. Processus d'Ornstein-Uhlenbeck

Formule:

$$dX_t = \theta(\mu - X_t)dt + \sigma dW_t$$

Définitions:

• X_t : valeur du processus à l'instant t

 $\bullet~\mu$: valeur moyenne autour de laquelle le processus revient

 $\bullet \ \theta$: vitesse de réversion

 \bullet σ : volatilité

 \bullet dW_t : incrément d'un mouvement brownien

Utilité : Modélise des variables qui reviennent vers une moyenne (ex: taux d'intérêt). Code Python :

X[t] = X[t-1] + theta * (mu - X[t-1]) * dt + sigma * np.sqrt(dt) * np.random.normal()

5. Vraisemblance (Likelihood)

Formule:

$$L(\theta) = \prod_{i=1}^{n} P(x_i \mid \theta)$$
 ou en log: $\log L(\theta) = \sum_{i=1}^{n} \log P(x_i \mid \theta)$

Définitions:

• x_i : observations

 $\bullet \ \theta$: paramètre du modèle

• $P(x_i \mid \theta)$: probabilité de x_i donnée θ

Utilité : Permet de déterminer le paramètre le plus probable ayant généré les données observées. Code Python :

def log_likelihood(theta, data):
 mu, sigma = theta
 return np.sum(norm.logpdf(data, mu, sigma))