Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 45.00

Figure 1: Outline of path 1

2.1.1 Suzuki coupling of alkyl-9-BBNs with vinyl bromides

Substrates:

- 1. 1,2-Dibromoethylene available at Sigma-Aldrich
- $2. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 no nane$

Products:

$1. \ \mathrm{Br/C}{=}\mathrm{C/CC}{=}\mathrm{C1CCCCC1}$

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/ja00183a048 and 10.1039/b707338k and 10.1016/j.tet.2015.05.039 and 10.1021/jo991064z and 10.1021/ol060290+ and 10.1246/bcsj.65.2863

Retrosynthesis ID: 25174

2.1.2 Suzuki coupling of arylboronic acids with vinyl Bromides

Substrates:

- 1. 3-Hydroxyphenylboronic acid available at Sigma-Aldrich
- $2.\ Br/C{=}C/CC{=}C1CCCCC1$

Products:

1. Oc1cccc(/C=C/CC=C2CCCC2)c1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and 10.1007/3418_2012_32 and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 24862

2.2 Path 2

Score: 45.00

Figure 2: Outline of path 2

2.2.1 Takai olefination

Substrates:

1. Iodoform - available at Sigma-Aldrich

2. 3-oxo-propionsaeure-methylester

Products:

1. methyl 4-iodo-3(e)-butenoate

Typical conditions: CrCl2.THF

Protections: none

Reference: 10.1021/ja00283a046 and 10.1021/ja00237a081

Retrosynthesis ID: 10497

2.2.2 Esters reduction with LAH

Substrates:

1. methyl 4-iodo-3(e)-butenoate

Products:

1. (e)-4-iodo-3-buten-1-ol

Typical conditions: LiAlH4.THF.0-20 $\rm C$

Protections: none

Reference: 10.1016/j.ejmech.2019.112011 p. 5, 10 and

10.1016/j.ejmech.2020.112910~p.~3,~7

Retrosynthesis ID: 9910006

2.2.3 Appel Reaction

Substrates:

1. (e)-4-iodo-3-buten-1-ol

Products:

1. C4H6BrI

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

${\bf 2.2.4}\quad {\bf HWE/Wittig\ Olefination}$

Substrates:

1. Cyclohexanone - available at Sigma-Aldrich

2. C4H6BrI

Products:

1. I/C=C/CC=C1CCCCC1

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde

Protections: none

Reference: 10.1002/anie.200705005 and 10.1021/ol052106a and

10.1021/jo00075a064 and 10.1021/ol3027297

Retrosynthesis ID: 24425

2.2.5 Suzuki coupling of arylboronic pinacol esters with vinyl iodides

Substrates:

1. Pinacol cyclic ester - available at Sigma-Aldrich

 $2. \ I/C{=}C/CC{=}C1CCCCC1$

Products:

 $1. \ \, \text{Oc1cccc}(/\text{C=C/CC=C2CCCC2})\text{c1}$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 5045

2.3 Path 3

Score: 51.25

Figure 3: Outline of path 3

2.3.1 Esters reduction with LAH

Substrates:

1. C8H16O2Si

Products:

1. (e)-4-trimethylsilyl-3-buten-1-ol

Typical conditions: LiAlH4.THF.0-20 C

Protections: none

Reference: 10.1016/j.ejmech.2019.112011 p. 5, 10 and

10.1016/j.ejmech.2020.112910 p. 3, 7

Retrosynthesis ID: 9910006

2.3.2 Appel Reaction

Substrates:

1. (e)-4-trimethylsilyl-3-buten-1-ol

Products:

1. (4-bromo-but-1-enyl)-trimethyl-silane

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

${\bf 2.3.3}\quad {\bf HWE/Wittig\ Olefination}$

Substrates:

1. Cyclohexanone - available at Sigma-Aldrich

 $2. \ \ (\text{4-bromo-but-1-enyl})\text{-trimethyl-silane}$

Products:

1. C[Si](C)(C)/C=C/CC=C1CCCCC1

 ${\bf Typical\ conditions:}\ 1. PPh3\ or\ trialkylphosphite. 2. base. aldehyde$

Protections: none

Reference: 10.1002/anie.200705005 and 10.1021/ol052106a and

10.1021/jo00075a064 and 10.1021/ol3027297

2.3.4 Iodination of Silyl Derivatives

Substrates:

- 1. C[Si](C)(C)/C=C/CC=C1CCCCC1
- 2. N-Iodosuccinimide available at Sigma-Aldrich

Products:

1. I/C=C/CC=C1CCCCC1

Typical conditions: NIS. 50C. MeCN

Protections: none

Reference: DOI: 10.1016/j.tetlet.2011.02.057 or DOI: 10.1016/S0040-

4039(96)02000-X or DOI: 10.1016/S0040-4020(02)00334-4

Retrosynthesis ID: 9211

2.3.5 Suzuki coupling of arylboronic acids with vinyl iodides

Substrates:

1. 3-Hydroxyphenylboronic acid - available at Sigma-Aldrich

 $2.\ I/C{=}C/CC{=}C1CCCCC1$

Products:

 $1. \ \, \text{Oc1cccc}(/\text{C=C/CC=C2CCCC2})\text{c1}$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 11208

2.4 Path 4

Score: 51.25

Figure 4: Outline of path 4

2.4.1 Shapiro reaction followed by alkyl bromide addition

Substrates:

1. Hexahydrobenzaldehyde - available at Sigma-Aldrich

2. 1,3-Dibromo-1-propene - available at Sigma-Aldrich

Products:

 $1. \ \mathrm{Br/C}{=}\mathrm{C/CC}{=}\mathrm{C1CCCCC1}$

Typical conditions: 1.TsNH2NH2.2.Mes2Mg.LiCl.THF.heating then alkyl bromide.cooling

Protections: none

Reference: 10.1016/S0040-4039(00)75263-4 and 10.1021/ol300652k and 10.1021/jo015699l

Retrosynthesis ID: 9990458

2.4.2 Synthesis of boronic acid esters

Substrates:

1. Methoxyboronic acid pinacol ester - available at Sigma-Aldrich

 $2.\ Br/C{=}C/CC{=}C1CCCCC1$

Products:

1. CC1(C)OB(/C=C/CC=C2CCCC2)OC1(C)C

Typical conditions: Mg.THF.-78 C

Protections: none

Reference: 10.1039/B507900D p. 3167, 3170 and 10.1021/acs.orglett.5b01434 SI

p. S6

Retrosynthesis ID: 245548

2.4.3 Suzuki coupling of aryl bromides with alkenyl boronic acids pinacol esters

${\bf Substrates:}$

1. 3-Bromophenol - available at Sigma-Aldrich

 $2. \ CC1(C)OB(/C=C/CC=C2CCCC2)OC1(C)C\\$

Products:

1. Oc1cccc(/C=C/CC=C2CCCC2)c1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

Retrosynthesis ID: 11057

2.5 Path 5

Score: 56.25

Figure 5: Outline of path 5

2.5.1 Suzuki coupling of vinyl bromides with alkenyl boronic acids pinacol esters

Substrates:

- $2. \ 1, 2- Dibromoethylene \\ available \ at \ Sigma-Aldrich$

Products:

1. O=C1C=C(/C=C/Br)CCC1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

2.5.2 Suzuki coupling of alkyl-9-BBNs with vinyl bromides

Substrates:

- 1. O=C1C=C(/C=C/Br)CCC1
- $2. \ 9\hbox{-}(3,3\hbox{-pentamethyleneallyl})\hbox{-}9\hbox{-borabicyclo} 3.3.1 nonane$

Products:

1. O=C1C=C(/C=C/CC=C2CCCC2)CCC1

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/ja00183a048 and 10.1039/b707338k and 10.1016/j.tet.2015.05.039 and 10.1021/jo991064z and 10.1021/ol060290+ and 10.1246/bcsj.65.2863

Retrosynthesis ID: 25174

2.5.3 DDQ mediated aromatization

Substrates:

1. O=C1C=C(/C=C/CC=C2CCCC2)CCC1

Products:

 $1. \ \, \text{Oc1cccc}(/\text{C=C/CC=C2CCCC2})\text{c1}$

Typical conditions: DDQ

Protections: none

Reference: 10.1021/ja054872i and 10.1021/ja00311a085 and

10.1021/ja00122a011