Ingegneria Elettronica per l'Automazione e le Telecomunicazioni MATEMATICA 2 A.A. 2021/2022 ESAME 24 Gennaio 2022

Nome e Cognome	N. Matricola

Problema	Punti
1	
2	
3	
4	
5	
Totale	

Note: Non si possono utilizzare calcolatori o appunti. Il valore in punti (su 100) di ogni esercizio è indicato sul margine sinistro.

Formule per la trasformata di Laplace

y = f(t)	$Y(p) = \mathcal{L}(y) = F(p)$	
1	$\frac{1}{p}$	Re $p > 0$
e^{at}	$\frac{1}{p-a}$	Re (p+a) > 0
$\sin at$	$\frac{a}{p^2 + a^2}$	Re $p > \text{Im } a $
$\cos at$	$\frac{p}{p^2 + a^2}$	Re $p > \text{Im } a $
$\sinh at$	$\frac{a}{p^2 - a^2}$	$\operatorname{Re} p > \operatorname{Re} a $
$\cosh at$	$\frac{p}{p^2-a^2}$	$\operatorname{Re} p > \operatorname{Re} a $
t^n	$rac{n!}{p^{n+1}}$	Re $p > 0$, $n \ge 0$
te^{at}	$\frac{1}{(p-a)^2}$	Re (p+a) > 0
$e^{-at}(1-at)$	$\frac{p}{(p+a)^2}$	Re (p+a) > 0
$e^{at}\sin\omega t$	$\frac{\omega}{(p-a)^2 + \omega^2}$	Re $(p-a) > \text{Im } \omega $
$e^{at}\cos\omega t$	$\frac{p-a}{(p-a)^2 + \omega^2}$	Re $(p-a) > \text{Im } \omega $
$t\sin\omega t$	$\frac{2\omega p}{(p^2+\omega^2)^2}$	Re $p > \mathrm{Im}\ \omega $
$t\cos\omega t$	$\frac{p^2 - \omega^2}{(p^2 + \omega^2)^2}$	Re $p > \text{Im } \omega $
$\frac{\sin \omega t}{t}$	$rctan rac{\omega}{p}$	Re $p > \mathrm{Im}\ \omega $

Operazioni di trasformazione di Laplace

Operazioni	
1. Trasformata di Laplace	$\mathcal{L}\{f(t)\} = F(p)$
2. Trasformata di una derivata	$\mathcal{L}\{f'(t)\} = pF(p) - f(0)$
3. Sostituzione	$\mathcal{L}\{f(t)e^{at}\} = F(p-a)$
4. Traslazione	$\mathcal{L}\{f(t-b)\} = F(p)e^{-bp}$

(8) 1.a (MB 1.13.33, p.32) Trovare la serie di Maclaurin, fino al sesto ordine incluso, della funzione

$$f(x) = \frac{1 - \sin x}{1 - x}$$

- (4) $\mathbf{1.b}$ Determinare per quali valori di x essa converge.
- (8) 1.c (MB 2.10.28, p. 67) Usando la formula di Eulero e il fatto che una equazione complessa rappresenta in realtà due equazioni reali trovare le formule per $\sin 3\theta$ e $\cos 3\theta$

ANNO ACCADEMICO 2021-2022

(14) 2.a (MB 14.4.3) Trovare i primi termini di ciascuna delle serie di Laurent attorno all'origine, cioè una serie per ogni regione anulare tra i punti singolari, della seguente funzione

$$f(z) = \frac{1}{z(z-1)(z-2)}$$

(6) 2.b Trovare il residuo in ognuno dei poli della funzione data in 2.a.

- (4) 2.a (MB 14.3.3, p. 676) Trovare la parte reale e la parte immaginaria u(x,y) e v(x,y) della funzione z^2
- (4) 2.b Stabilire se la funzione è analitica
- (8) 2.c Calcolare $\oint_C z^2 dz$ lungo il solo percorso (b) indicato in figura per integrazione diretta nel piano complesso, cioè, come un integrale di linea in uno spazio a due dimensioni, senza usare teoremi sull'integrazione di funzioni complesse di variabili complesse.

(4) 2.d Commentare il risultato ottenuto con l'aiuto del teorema di Cauchy

(MB 7.8.12a, p. 363) È data la funzione, periodica di periodo 2π e definita per $x\in(-\pi,\pi)$ da:

$$f(x) = e^x$$

(6) 3.a Disegnare schematicamente diversi periodi della funzione.

(14) 3.b Sviluppare nella appropriata serie di Fourier

(8) 4.a (MB, 8.4.5, p. 406) Trovare la soluzione generale della seguente equazione differenziale

$$(x-y)dy + (y+x+1)dx = 0$$

- (4) 4.b Siete in grado di riconoscere la curva soluzione?
- (8) 4.c (MB, 8.8.10, p. 439) Trovare la funzione y(t) la cui trasformata di Laplace è la seguente funzione

$$Y(p) = \frac{2p - 1}{p^2 - 2p + 10}e^{-\pi p}$$

(MB, 8.10.14, p. 448) Risolvere il seguente problema di Cauchy

$$y'' + 5y' + 6y = e^{-2t}, y(0) = y'(0) = 0$$

(10) 5a. Trovando l'integrale generale e quindi applicando le condizioni iniziali

(10) 5b. Usando l'integrale di convoluzione