

Overview Boolean network models Sample applications Kaufmann's theory of evolution Learning (reverse engineering) Boolean nets

Intro To Boolean Networks

Kauffman's Model

Kauffman's Model [60's, 93] Study Boolean networks to describe evolution ■BN: a graph of "genes" each with a random Boolean function • N=# of nodes; k=connectivity ■BN traverses trajectories over the hypercube [0,1]ⁿ Converges to best fit response to random inputs Trajectories: series of state transitions Attractors: repeating trajectories Basin of Attraction: all states leading to an attractor One attractor basin for a BN n=13, k=3. The cycle is of size 7

Learning Boolean Nets

("Reverse Engineering" "Identification")

Akutsu Algorithm (99) ■Brute force search for f Fix k, and consider networks of max degree k • For each gene i, and for each subset of k ingress genes find all functions f, that are compatible over this ingress set for all {S(r)} • i.e., $S'_{i}(r)=f_{i}(S'(r-1))$ where S' is the restriction of S to the ingress set • For k fixed: O(k22knk+1m); if k is not fixed, learning is NP complete. ■ Notes Works for small k...does not handle noise... Later improvements handle noise S(t)1 001 2 101 3 110 4 100

REVEAL (98 Liang)

- Compute network graph from mutual information measure
- ■Base theory:
 - Let <X,Y> be an <input,output> stream
 - Consider H(Y), the entropy of Y, and M(X,Y), the mutual information of X and Y
 - If M(Y,X)=H(Y) then X determines Y uniquely
- $\blacksquare H(X) = -\sum p_i \log(p_i)$
 - p_i is the probability that a random element of data stream X is i
- $\blacksquare M(X, Y) = H(X) + H(Y) H(X,Y)$

2

REVEAL Algorithm

■Step 1: compute state transition <input,output> table

Input stream A _{i-1} B _{i-1} C _{i-1} A _i B _i C _i 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0
0 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0
0 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0
0 1 1 1 0 1 1 0 0 1 0 0 1 0 1 1 0
1 0 0 1 0 0 1 0 1 1 0
1 0 1 0
1 1 0 1 0 0
1 1 1 1 0

Research Questions

- Extend the intuitive algorithm to handle partial noisy maps
- Extend REVEAL to handle partial noisy maps
- ?Probabilistic Boolean net models?
 - ?Max likelihood training...EM...?
- ?SVM based models... Boolean kernel machines...?

Final Notes

How Good Are Boolean Models?

Advantages

- Provide good <u>qualitative</u> interpretation of regulation
- Particularly important for switching behaviors
 - Phage lysis...sporulation...Drosophila patterns...
 - Such systems are "robust" wrt exact expression values
- Useful connection with evolutionary behaviors

Disadvantages

- Boolean abstraction is poor fit to real expression data
- Cannot model important features:
 - Amplification of a signal; subtraction and addition of signals
 - Handling smoothly varying environmental parameter (e.g. temperature, nutrients)
 - Temporal performance behavior (e.g. cell cycle period)
 - Negative feedback control (Boolean model oscillates vs. stabilize)

A Variety of Regulatory Network Models

- Finite-field models: X(t+1)=p(X)
 - p is a polynomial over finite field
 - Generalizes the Boolean model
- Differential equations models: describe dX/dt=f(X)
 - f describes non-linear control of change by neighbors
- Linear model: X(t+1)=W X+ B
 - W is a weight matrix; linear approximation near steady state
- Neural network models: $x_i(t) = \sigma(WX_{Neighbors(i)} + B)$
 - Sigmoid non-linearity can be trained through gradient algorithm
 - Comes with a learning algorithm
- Bayesian network models...