Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

October 4, 2021

More motivation and a little recap...

- Cartesian (or rectangular) coordinates are the simplest type of coordinate system, where the reference axes are orthogonal (at right angles) to each other. In most everyday applications, such as drawing a graph or reading a map, you would use the principles of Cartesian coordinate systems. In these situations, the exact, unique position of each data point or map reference is defined by a pair of (x,y) coordinates (or (x,y,z) in three dimensions). The coordinates are the point's 'address', its location relative to a known position called the origin, within a two- or three-dimensional grid on a flat surface or rectangular 3D space.
- However, some applications involve curved lines, surfaces and spaces.
 Here, rectangular coordinates are difficult to use and it is convenient to use a system derived from circular shapes, such as polar, spherical or cylindrical coordinate systems.

The cylindrical coordinate system

In order to have a valid coordinate system in the 3-dimensional case, each point of the space must be associated to a unique triple of real numbers (the coordinates of the point) and each triple of real numbers must determine a unique point.

Let P(x, y, z) be a point in a rectangular system of coordinates Oxyz and P' be the orthogonal projection of P on xOy. One can associate to the point P the triple (r, θ, z) , where (r, θ) are the polar coordinates of P'.

The triple (r, θ, z) gives the *cylindrical coordinates* of the point P. There is the bijection

$$h_1: \mathcal{E}_3 \setminus \{O\} \to \mathbb{R}_+ \times [0, 2\pi) \times \mathbb{R}, \ P \to (r, \theta, z)$$

and one obtains a new coordinate system, named the *cylindrical* coordinate system (CS) in \mathcal{E}_3 .

In the following table, the conversion formulas relative to the cylindrical coordinate system (CS) and the rectangular coordinate system (RS) are presented.

C	[Farmer: Jan
Conversion	Formulas
CS→RS	$x = r \cos \theta$, $y = r \sin \theta$, $z = z$
$(r,\theta,z)\to(x,y,z)$	
RS→CS	$r = \sqrt{x^2 + y^2}$, $z = z$ and θ is given as follows: Case 1. If $x \neq 0$, then
$(x,y,z) \rightarrow (r,\theta,z)$	Case 1. If $x \neq 0$, then
	$\theta = \arctan \frac{y}{x} + k\pi,$ where $k = \begin{cases} 0, & \text{if } P \in I \cup (Ox \\ 1, & \text{if } P \in II \cup III \cup (Ox' \\ 2, & \text{if } P \in IV \end{cases}$ Case 2. If $x = 0$ and $y \neq 0$, then
	$ heta = \left\{ egin{array}{l} rac{\pi}{2} ext{ when } P \in (\mathit{Oy} \ rac{3\pi}{2} ext{ when } P \in (\mathit{Oy}' \end{array} ight.$
	Case 3. If $x = 0$ and $y = 0$, then $\theta = 0$.

• In the cylindrical coordinate system, the equation $r = r_0$ represents a right circular cylinder of radius r_0 , centered on the z-axis.

- In the cylindrical coordinate system, the equation $r = r_0$ represents a right circular cylinder of radius r_0 , centered on the z-axis.
- 2 The equation $\theta=\theta_0$ describes a half-plane attached along the z-axis and making an angle θ_0 with the positive x-axis.

- **1** In the cylindrical coordinate system, the equation $r = r_0$ represents a right circular cylinder of radius r_0 , centered on the z-axis.
- 2 The equation $\theta=\theta_0$ describes a half-plane attached along the z-axis and making an angle θ_0 with the positive x-axis.
- **3** The equation $z = z_0$ defines a plane which is parallel to the coordinate plane xOy.

The Spherical Coordinate system

Another way to associate to each point P in \mathcal{E}_3 a triple of real numbers is illustrated below. If P(x,y,z) is a point in a rectangular system of coordinates Oxyz and P' its orthogonal projection on Oxy, let ρ be the length of the segment [OP], θ be the oriented angle determined by [Ox] and [OP'] and φ be the oriented angle between [Oz] and [OP].

The triple (ρ, θ, φ) gives the *spherical coordinates* of the point P. This way, one obtains the bijection

$$h_2:\mathcal{E}_3\setminus\{O\} o \mathbb{R}_+ imes [0,2\pi) imes [0,\pi], P o (
ho, heta,arphi),$$
 which defines a new coordinate system in \mathcal{E}_3 , called the spherical

coordinate system (SS).

The conversion formulas involving the spherical coordinate system (SS) and the rectangular coordinate system (RS) are presented in the following table.

Conversion	Formulas
SS→RS	$x = \rho \cos \theta \sin \varphi$, $y = \rho \sin \theta \sin \varphi$, $z = \rho \cos \varphi$
$(\rho,\theta,\varphi)\to(x,y,z)$	
RS→SS	$\rho = \sqrt{x^2 + y^2 + z^2}, \ \varphi = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}$
$(x,y,z) \rightarrow (\rho,\theta,\varphi)$	heta is given as follows:
	Case 1. If $x \neq 0$, then
	$\theta = \arctan \frac{y}{x} + k\pi$
	$\theta = \arctan \frac{y}{x} + k\pi,$ where $k = \begin{cases} 0, P' \in I \cup (Ox \\ 1, P' \in II \cup III \cup (Ox' \\ 2, P' \in IV \end{cases}$
	Case 2. If $x = 0$ and $y \neq 0$, then
	$ heta = \left\{ egin{array}{l} rac{\pi}{2}, P' \in (\mathit{Oy} \ rac{3\pi}{2}, P' \in (\mathit{Oy}' \ \end{array} ight.$
	Case 3. If $x = 0$ and $y = 0$, then $\theta = 0$

1 In the spherical coordinate system, the equation $\rho = \rho_0$ represents the set of all points in \mathcal{E}_3 whose distance ρ to the origin is ρ_0 . This is a sphere of radius ρ_0 , centered at the origin.

- **1** In the spherical coordinate system, the equation $\rho = \rho_0$ represents the set of all points in \mathcal{E}_3 whose distance ρ to the origin is ρ_0 . This is a sphere of radius ρ_0 , centered at the origin.
- ② As in the cylindrical coordinates, the equation $\theta=\theta_0$ defines a half-plane attached along the z-axis, making an angle θ_0 with the positive x-axis.

- **1** In the spherical coordinate system, the equation $\rho = \rho_0$ represents the set of all points in \mathcal{E}_3 whose distance ρ to the origin is ρ_0 . This is a sphere of radius ρ_0 , centered at the origin.
- ② As in the cylindrical coordinates, the equation $\theta=\theta_0$ defines a half-plane attached along the z-axis, making an angle θ_0 with the positive x-axis.
- The equation $\varphi=\varphi_0$ describes the points P for which the angle determined by [OP] and [Oz] is φ_0 . If $\varphi_0\neq\frac{\pi}{2}$ and $\varphi_0\neq\pi$, this is a right circular cone, having the vertex at the origin and centered on the z-axis. The equation $\varphi=\frac{\pi}{2}$ defines the coordinate plane xOy. The equation $\varphi=\pi$ describes the negative axis (Oz').

Vectors: an introduction

Both knew their vectors pretty well...

1. Han

Hamilton October 4, 2021 11/26

Lecture 2 October 4, 2021

- Let \mathcal{E} denote the Euclidean plane \mathcal{E}_2 or the Euclidean 3-space \mathcal{E}_3 . A pair $(A,B) \in \mathcal{E} \times \mathcal{E}$ is called an *ordered pair* of points or a *vector at the point A*. Such a pair is, shortly, denoted by \overrightarrow{AB} . The point A is the *original point*, while B is the *terminal point* and the line AB (if $A \neq B$) gives the direction of \overrightarrow{AB} . A vector \overrightarrow{AB} at A has the *orientation* from A to B, i.e. from its original to its terminal point.
- The length of the segment [AB] represents the length of the vector \overrightarrow{AB} and is denoted by $||\overrightarrow{AB}||$ or by $|\overrightarrow{AB}|$. Usually, the vector \overrightarrow{AB} at A is represented as

An equivalence relation on pairs of points...

• Let consider the relation $\mathcal{E} \times \mathcal{E}$: $(A, B) \sim (C, D)$ if and only if the segments [AD] and [BC] have the same midpoint.

An equivalence relation on pairs of points...

- Let consider the relation $\mathcal{E} \times \mathcal{E}$: $(A, B) \sim (C, D)$ if and only if the segments [AD] and [BC] have the same midpoint.
- When the points A, B, C and D are not collinear, this means that $(A,B) \sim (C,D)$ if and only if ABCD is a parallelogram.
- ullet It is not difficult to check that " \sim " is an equivalence relation.

An equivalence relation on pairs of points...

- Let consider the relation $\mathcal{E} \times \mathcal{E}$: $(A, B) \sim (C, D)$ if and only if the segments [AD] and [BC] have the same midpoint.
- When the points A, B, C and D are not collinear, this means that $(A,B) \sim (C,D)$ if and only if ABCD is a parallelogram.
- It is not difficult to check that " \sim " is an equivalence relation.
- Let us denote by V_3 the set $(\mathcal{E}_3 \times \mathcal{E}_3)/_{\sim}$ of equivalence classes and by V_2 the set $(\mathcal{E}_2 \times \mathcal{E}_2)/_{\sim}$.

- If $\overrightarrow{AB} \in \mathcal{E} \times \mathcal{E}$, its equivalence class is denoted by \overline{AB} and is called a vector in \mathcal{E} (\mathcal{E}_2 or \mathcal{E}_3). In this case, \overrightarrow{AB} is a representative of \overline{AB} .
- Suppose that $A \neq B$. The line AB defines the *direction* of the vector \overline{AB} . The *length* of \overline{AB} is given by

$$||\overline{AB}|| = ||\overrightarrow{AB}|| = AB,$$

the length of the segment [AB]. The *orientation* of \overline{AB} , from A to B, is given by the orientation of \overline{AB} .

We shall denote the vectors in V_2 or V_3 by small letters: \overline{a} , \overline{b} ,... \overline{u} , \overline{v} , \overline{w} .

Proposition

Given a vector \overline{a} in V_2 (or V_3) and a fixed point A, there exists a unique representative of \overline{a} , having the original point at A.

There is a unique point B

such that ACDB is a wordblog ram.

This point B hier on d, the unique

porallel to CD which varses through A.

Moreover AB = CD and AB, CD have

the some direction.

Vector operations

Let \overline{a} and \overline{b} be two vectors in V_3 (or V_2). The sum of \overline{a} and \overline{b} is the vector denoted by $\overline{a} + \overline{b}$, so that, if $\overrightarrow{AB} \in \overline{a}$ and $\overrightarrow{BC} \in \overline{b}$, then \overrightarrow{AC} is the representative of $\overline{a} + \overline{b}$.

- ! seed belone ell.
- f \overline{v} is a vector in V_3 (or V_2), then the *opposite vector* of \overline{v} is denoted by $-\overline{v}$, so that, if \overrightarrow{AB} is a representative of \overline{v} , then \overrightarrow{BA} is a representative of $-\overline{v}$.
- The sum $\overline{a} + (-\overline{b})$ will be, shortly, denoted by $\overline{a} \overline{b}$ and it will be called the *difference* of the vectors \overline{a} and \overline{b} .
- Let \overline{a} be a vector in V_3 (or V_2) and k be a real number. The *product* $k \cdot \overline{a}$ is the vector defined as follows:
 - $\overline{0}$ if $\overline{a} = \overline{0}$ or k = 0:
 - ② if k > 0, then $k \cdot \overline{a}$ has the same direction and orientation as \overline{a} and $||k \cdot \overline{a}|| = |k \cdot ||\overline{a}||$;
 - ③ if k < 0, then $k \cdot \overline{a}$ has the same direction as \overline{a} , opposite orientation to \overline{a} and $||k \cdot \overline{a}|| = -k \cdot ||\overline{a}||$.

The components of a vector

• Let \overline{a} be a vector in V_2 and xOy be a rectangular coordinates system in \mathcal{E}_2 . There is a unique point $A \in \mathcal{E}_2$, such that $\overrightarrow{OA} \in \overline{a}$. The coordinates of the point A are called the *components* of the vector \overline{a} and write $\overline{a}(a_1, a_2)$.

The components of a vector

- Let \overline{a} be a vector in V_2 and xOy be a rectangular coordinates system in \mathcal{E}_2 . There is a unique point $A \in \mathcal{E}_2$, such that $\overrightarrow{OA} \in \overline{a}$. The coordinates of the point A are called the *components* of the vector \overline{a} and write $\overline{a}(a_1, a_2)$.
- Similarly, \overline{a} a vector in V_3 and a rectangular coordinate system Oxyz in \mathcal{E}_3 , there exists a unique point $A(a_1,a_2,a_3)$, such that $\overrightarrow{OA} \in \overline{a}$. The triple (a_1,a_2,a_3) gives the *components* of \overline{a} and we denote it by $\overline{a}(a_1,a_2,a_3)$.
- Since $\overline{0}(0,0)$ in V_2 and $\overline{0}(0,0,0)$ in V_3 , then two vectors are equal if and only if they have the same components.

Theorem

Let $\overline{a}(a_1, a_2)$ and $\overline{b}(b_1, b_2)$ be two vectors in V_2 and $k \in \mathbb{R}$. Then:

- (1) the components of $\overline{a} + \overline{b}$ are $(a_1 + b_1, a_2 + b_2)$;
- (2) the components of $k \cdot \overline{a}$ are (ka_1, ka_2) .

Proof.

An analogous theorem for 3D

Theorem

Let $\overline{a}(a_1, a_2, a_3)$ and $\overline{b}(b_1, b_2, b_3)$ be two vectors in V_3 and $k \in \mathbb{R}$. Then:

- (1) the components of $\overline{a} + \overline{b}$ are $(a_1 + b_1, a_2 + b_2, a_3 + b_3)$;
- (2) the components of $k \cdot \overline{a}$ are (ka_1, ka_2, ka_3) .

Theorem

(1) If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are two points in \mathcal{E}_2 , then

$$\overline{P_1P_2}(x_2-x_1,y_2-y_1).$$

(2) If $Q_1(x_1, y_1, z_1)$ and $Q_2(x_2, y_2, z_2)$ are two points in \mathcal{E}_3 , then

$$\overline{Q_1Q_2}(x_2-x_1,y_2-y_2,z_2-z_1).$$

Proof.

The set of vectors is a very structured one

Theorem (Prop. of the summation)

Let \overline{a} , \overline{b} and \overline{c} be vectors in V_3 (or V_2) and $\alpha, \beta \in \mathbb{R}$. Then:

- 1) $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ (commutativity);
- 2) $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$ (associativity);
- 3) $\overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$ ($\overline{0}$ is the neutral element for summation);
- **4)** $\overline{a} + (-\overline{a}) = (-\overline{a}) + \overline{a} = \overline{0}$ $(-\overline{a})$ is the inverse of \overline{a} ;
- **5)** $\alpha(\beta \overline{a}) = (\alpha \beta) \overline{a};$
- **6)** $\alpha \cdot (\overline{a} + \overline{b}) = \alpha \cdot \overline{a} + \beta \cdot \overline{b}$ (multiplication by real scalars is distributive with respect to the summation of vectors);
- 7) $(\alpha + \beta) \cdot \overline{a} = \alpha \cdot \overline{a} + \beta \cdot \overline{a}$ (multiplication by real scalars is distributive with respect to the summation of scalars);
- 8) $1 \cdot \overline{a} = \overline{a}$.

Proof.

Proposition

(1) Let $\overline{a}(a_1, a_2)$ be a vector in V_2 . The length of \overline{a} is given by

$$||\overline{a}|| = \sqrt{a_1^2 + a_2^2}.$$

(2) Let $\overline{a}(a_1, a_2, a_3)$ be a vector in V_3 . The length of \overline{a} is given by

$$||\overline{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^3}.$$

Proof.

- The vectors $\overline{i}(1,0)$ and $\overline{j}(0,1)$ in V_2 are called the *unit vectors* (or *versors*) of the coordinate axes Ox and Oy.
- The vectors $\overline{i}(1,0,0)$, $\overline{j}(0,1,0)$ and $\overline{k}(0,0,1)$ are called the *unit* vectors (or versors) of the coordinate axes Ox, Oy and Oz.
- It is clear that

$$||\overline{i}||=||\overline{j}||=||\overline{k}||=1.$$

The problem set for this week will be posted soon. Ideally you would think about it before the seminar on Friday.

Thank you very much for your attention!