

1.0 4 23 25 1.1 32 2.2 1.1 1.8 1.25 1.4 1.6

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

1.0 M 22 125 1.1 1.25 1.4 1.6

MICROCOPY RESOLUTION TEST CHART HATIONAL BUREAU OF STANDARDS-1963-A

1.0 1.25 1.4 1.6

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

1.0 4 28 25 22 122 1.1 1.8 1.6

IMCROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1985-A

THE PROPERTY WAS

1.0 m 22 22 122 1.1 20 1.8 1.25 1.4 1.6

MICROCOPY RESOLUTION PEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

12

(ESTABLISHED 1952)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410 TWX: 710-581-6132

MA120833

DL-6010

EVALUATION OF

WATER-BORNE

LEAD AND CHROMIUM FREE

ANTI-CORROSIVE PRIMERS

Contract No. DAAK70-81-0100

Prepared for US ARMY MERADCOM

Social Marie Contract of the C

Jerry H. Willner Chief Chemist

Saul Spra

Saul Spindel Technical Director

Sidney By Levinson

Sidney & Levinson

President

THE FILE COPY

July 30, 1982

Approved for public releases
Distribution Unlimited

82

10 14 03

MARKET RESEARCH & DEVELOPMENT, TESTING & EVALUATION, FORMULATION, PREPARATION OF SPECIFICATIONS & MANUALS, INSPECTION & CERTIFICATION, PERSONNEL TRAINING & LEGAL ASSISTANCE FOR THE PROTECTIVE COATINGS & ALLIED INDUSTRIES

UNCLASSIFIED

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DAAK70-81-0100	AD-A120833	
TITLE (and Subtitio)	•	5. TYPE OF REPORT & PERIOD COVERED
. Evaluation of Water-Borne Lead and	Chromium Free	Final
Anti-Corrosive Primers		<u>26 Jun 1981 to 30 Jul 1982</u>
		6. PERFORMING ORG. REPORT NUMBER
- AUTHOR(4)	· · · · · · · · · · · · · · · · · · ·	8. CONTRACT OR GRANT NUMBGR(s)
· Šidney B. Levinson	٠	
Saul Spindel		DAAK70-81-0100
Jerry H. Willner		
PERFORMING ORGANIZATION NAME AND ADDRESS	•	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
D/L Laboratories	·	
116 East 16th Street New York, N.Y. 10003		AK11/E34/81
1. CONTROLLING OFFICE NAME AND ADDRESS		July 30, 1982
US Army MERADCOM		J3. NUMBER OF PAGES
Ft. Belvoir, VA 22060		76
4. MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS, (of this report)
MONITORING ROCKET RAME & ROCKETSIN WINNER		
	•	Unclassified
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
•		- OUTEDULE

Reproduction of this report in whole or in part is permitted for any purpose of the United States Government.

DISTRIBUTION STATEMENT A Approved for rublic religase: Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY HOTES

19. KEY WORDS (Continue on severae side if necessary and identify by block number)

Air quality regulation

Lead Primer Survey

Aluminum

VOC

Chromium VI

Proprietary

Water-borne

Corrosion resistance

Steel

ABSTRACT (Continue on severse side if necessary and identify by block number)

US AMERADCOM is striving to replace primers used on Army Equipment with low VOC coatings in order to meet air quality regulations and to eliminate lead and Chromium, VI. 35 water-borne, lead and chromium-free formulations and proprietary primers were evaluated. One formulation and one proprietary primer are almost equal to TY-P-1757 in corrosion resistance. Another formulation and two proprietary primers are acceptable with minor modifications. Six other formulations and one proprietary primer are acceptable for use on aluminum but not on steel.

DD 1 JAN 73 1473

EDITION OF 1 HOV 65 IS OBSOLETE

UNCLASSIFIED

FOREWARD

US AMERADCOM is striving to replace the metal primers presently used on Army equipment in order to meet present or anticipated air regulations issued to reduce air pollution from volatile organic compounds, and to eliminate toxic corrosion-inhibiting pigments. Therefore, this program was instituted to locate and evaluate water-borne metal primers free of toxic pigments.

A survey of the industry resulted in the submission of 35 candidate formulations and/or primers. The result of the evaluation conducted demonstrated that none of the products prepared and tested are exactly equal to TT-P-1757 "Primer Coating, Zinc Chromate, Low Moisture-Sensitivity" in corrosion resistance. However, one formulation and one proprietary primer are almost equal to TT-P-1757 in performance. In addition, one formulation and two proprietary primers exhibit acceptable performance but require some modification to improve storage stability. On the other hand, six formulations and one proprietary primer are acceptable for use on aluminum but not on steel.

TABLE OF CONTENTS

Chap	ter		Page
	FOF	REWARD	i
	TAE	BLE OF CONTENTS	ii
	LIS	ST OF TABLES	iv
1	INT	TRODUCTION	I-1 to I-2
		Background Objective Requirements	I-1 I-1 I-2
II	TEC	CHNICAL APPROACH	II-1 to II-5
	C. D.	Survey Literature Search Proprietary Primers Products Tested Test Program	II-1 II-1 II-1 II-1 II-2
III	TES	ST RESULTS AND DISCUSSION	III-1 to III-8
		Test Results VOC Salt Fog Exposure Discussion of Results	III-1 III-1 III-1 III-1
ΙŸ	CO	NCLUSIONS	IV-1 to IV-3
V	REC	COMMENDATIONS	V-1
VI.	DIS	394 Stribution list	VI-1

TABLE OF CONTENTS (Cont)

Appen	<u>lix</u>	1	Page
Α.	Publicity	Al	to A8
	A-1 Letter to Publications		A1
	A-2 Publicity Releases		A2
	A-3 Letter to Polymer Manufacturers		A3
	A-4 Letter to Pigment Manufacturers		A4
	A-5 Letter to Additive Manufacturers		A5
	A-6 Display at Paint Show		A6
,	A-7 Letter to Proprietary Primer Manufacturers		A7.
В.	Test Data	81	to B10
	B-l Formulated Primers		B1
	B-2 Submitted by Raw Material Suppliers		B5
	B-3 Proprietary Primers		B7
C.	Formulations	C1	to C25
	C-1 F Series Formulated Primers		C1
	C-2 S Series Submitted by Raw		
	Material Suppliers		C16
	C-3 Sources of Raw Materials	•	C24
D.	Sources of Formulations or Primers	D1	to D3
E.	Test Procedure	E1	to E2
F.	Code and Abbreviations		Fl

LIST OF TABLES

Table		Page
11-1	Primers Tested	II-4
III-1	Criteria	III-2
111-2	Data Analysis - Formulated Primers	III-4
111-3	Data Analysis - Submitted by RM Suppliers	III-6
111-4	Data Analysis - Proprietary Primers	111-7

INTRODUCTION

A. BACKGROUND

I

The paints and coatings used on steel and aluminum Army equipusually consist of two essential types of products: an anti-corresive primer applied directly on the metal substrate and a topcoat. The primer is used to assure adhesion to the substrate and to prevent corrosion. The topcoat is used to provide the desired appearance, e.g. camouflage, and to protect the primer from the weather, fuel spills, abrasion, etc.

The primers presently used contain volatile organic solvents, including aliphatic or aromatic hydrocarbons, which serve a number of important functions. They reduce viscosity to enable proper and rapid application, e.g., by spray, to improve wetting and thus assure ultimate adhesion to the substrate, and to improve leveling thus producing a smooth paint film free of defects such as orange peel, runs, etc.

These primers develop their corrosion resistance from the use of corrosion-inhibiting pigments. The most effective anti-corrosive pigments presently used are based either on lead or Chromium VI, both of which are toxic.

Because of the increased concern regarding health and safety, as well as both current and anticipated governmental regulations to control pollution of the environment by volatile organic compounds, there is a need for the development of water-borne corrosion-inhibiting primers that are also free of toxic pigments, such as those containing lead and Chromium VI. However, neither the desired formulations nor the data required to confirm their utility for Army equipment are readily available.

Consequently, it was necessary to determine the latest technology on this subject, locate candidate formulations and raw materials, prepare these formulations and evaluate their performance vs the important properties desired for this end use.

B. OBJECTIVE

The purpose of this program was to formulate and evaluate lead and Chromium VI-free, water-borne corrosion-inhibiting primers that can be applied on both ferrous and aluminum substrates. These primers should be as corrosion resistant as the organic solvent-thinned primers presently used, in order to have the potential of replacing the latter for use on Army mobility equipment.

C. REQUIREMENTS

The primers to be formulated should meet the following requirements:

- 1. They should contain no lead or Chromium VI.
- 2. They should contain a maximum of 3.5 lbs/gal (420 gms/liter) of volatile organic compounds (VOC) as applied.
- 3. The solvents in the primers should be exempt, i.e., they should conform to Rule 66 or Rule 102 of the Southern California Air Pollution Control District (SCAPCD).
- 4. The polymers in the primers may be either water emulsifiable or water soluble. They should be based on acrylic, alkyd, epoxy, urethane or butadiene-styrene polymers or modified polymers.

These primers should also meet the following physical and performance requirements:

- 1. Acceptable package stability after accelerated storage of four weeks at 125°F.
- 2. Good freeze-thaw stability.
- 3. A flash point of at least 100°F.
- 4. Thinnable with water to both brush and spray viscosities.
- 5. Applicable by conventional equipment.
- 6. Air dry tack-free within 6 hours.
- 7. Show no flash rusting when applied.
- 8. Pass a 144 hour exposure to salt fog.

TECHNICAL APPROACH

A. SURVEY

II

The first step was to publicize the interest of US AMERADCOM and thus encourage submission of recommended formulations and raw materials. This was done by distributing a Publicity Release to all of the major Paint and Coaings publications as well as Chemical Week and Chemical and Engineering News. See Appendix Al and A2.

The second step was to write directly to the major suppliers of polymers, non-toxic corrosion-inhibiting pigments and additives, e.g. adhesion promotors and rust-preventive compounds. See Appendix A3 thru A5.

A third step was to publicize the program by a display at the D/L Laboratories booth in the Paint Industries Show at the Annual Paint And Coatings Convention in Detroit, Michigan, October 28 - 30, 1981. See Appendix A-6.

B. <u>LITERATURE SEARCH</u>

All major paint and coatings publications for the past five years were reviewed to obtain recommendations on formulating primers to meet the above criteria.

C. PROPRIETARY PRIMERS

One result of the survey was the offer by many paint and coating manufacturers to submit proprietary primers for the test program.

This was discussed with the CTR and it was decided to modify the program to allow the inclusion of proprietary, as well as formulated primers, and thus improve the potential for obtaining acceptable products which would meet the criteria. All suppliers were advised that they would have to submit an analysis if their products were accepted as candidates and were assured that such information would be kept strictly confidential. See Appendix A-7. A-7.

D. PRODUCTS TESTED

A total of 35 apparently acceptable formulations or primers were selected for test. They are as follows:

- 15 Formulations
 - 9* Primers submitted (with formulations)
 by raw material suppliers
- 11 . Proprietary primers

The products tested are listed in Table II-1. The formulations are shown in Appendix C and the complete names, addresses and contacts for the suppliers are listed in Appendix D.

One primer (5-9) was rejected because of an excess concentration of VOC.

E. TEST PROGRAM

1. Data Review and Product Selection

A considerable amount of data, as well as formulations, were received from raw meterial suppliers, both those surveyed and in answer to the publicity and display at the D/L Laboratories booth in the Paint Industries Show. In addition, many paint manufacturers offered to submit proprietary primers which had not been considered originally.

These were reviewed carefully in order to choose formulations which met the analytical criteria, primarily for the absence of lead and Chromium VI compounds, VOC concentrations below 3.5 lbs per gal. of paint and the potential of meeting the physical and performance criteria.

Incomuch so the paint manufacturers could not be expected to divulge the formulations of their primers, they were asked to confirm that their products met the criteria, with the understanding that the VOC would be determined by the D/L Laboratories and that the analyses of their products would be divulged to AMERADCOM under a confidentiality agreement.

2. Paint Preparation

Samples of the saw materials required to prepare the acceptable formulations were obtained and these formulations were prepared. However, nine raw material suppliers offered to prepare their formulations and submit the finished primers. Their offers were accepted as a means of increasing the total number of formulations which could be evaluated within the financial limitations of the contract.

3. Test Procedure

The following properties were tested. The test methods used are described in Appendix E.

1. VOC ASTM D-3960

t. Weight per Gallon ASTM D-1475

3. Total Solids ASTM D-2832

4. Flesh Point ASTM D-93

5. **Viscosity** ASTM D-562 Initial 4 weeks at 125°F ASTM D-1849 Freeze-thaw ASTM D-2243 ASTM D-1849 Storage Stability 6. Liquid separation Skinning Pigment settling Ease of remixing 7. Speed of Dry ASTM D-1640 Set to touch Dry tack free Dry hard Dry thru 8. Sprayability Federal 141B. Method 4331 9. Brushability Federal 141B, Method 4321 10. Adhesion To -Federal TT-P-141B -Bonderized steel -Aluminum Method 6304 11. Salt Fog Exposure - 144 hours **ASTM B-117** a) Applied on Bonderized steel at 1.0 mil dft Ditto at 1.5 mils dft **b**) c) Applied on aluminum at 1.0 mil dft Ditto at 1.5 mils dft d) Record -(1) Blistering at X score (2) overall (3) Corrosion at X score

overall

dft - dry film thickness

(4)

TABLE II-1 PRIMERS TESTED

Code	Number	Supplier
Prepared	<u>Formulations</u>	
F-1	FX-8	Buckman Laboratories
F-2	P-1686-116-3	Cargill
F-3	5727 C	Halox Pigments
F-4	7585 D	Halox Pigments
F-5	None	Mineral Pigments
F-7	137-68	PVO International
F-8	PWB-76	Reichard Coulston
F-9	KK-1006-7A	Reichard Coulston
F-10	1855-32A	Spencer Kellogg
F-11	2007-10-1	Spencer Kellogg
F-12	RM-3	Wet Ground Mica Association
F-13	RN-3	Wet Ground Mica Association
F-14	30708-2	Celanese
F-15	30708-3	Celanese
F-16	30708-4	Celanese
Submitted	Formulations	
S-1	CAS 1795	Rohm and Haas
S - 2	ESA 1136	Rohm and Haas
S-3	ESA 1252-3	Rohm and Haas
S-4	ESA 1255-1	Rohm and Haas
S-5	FL 2915	Rohm and Haas
S-6	Haloflex 202 Primer	ICI Americas
S-7	191	Polyvinyl Chemical
5-8	14JG-74A	Union Carbide

TABLE II-1 PRIMERS TESTED (Cont)

Code	Number	Supplier
Proprieta	ary Primers	
M-1	931-R-4901	Fuller O'Brien
M-2	Quick Dry Latex Primer	DeVoe Marine
M-3	White Latex Primer	DeVoe Marine
M-4	DeV-258 Red	DeVoe Marine
M-5	DeV-259 White	DeVoe Marine
M-6	SA7981-G73	Sherwin-Williams
M-7	SA8367-G73	Sherwin-Williams
M-8	C-1501	General Electric
M-9	Rustex	Advanced Paint
M-10	Primer W	Advanced Paint
M-11	99X-0106 Gray	Stanchem

The full names and addresses of the suppliers are shown in Appendix D.

A. TEST RESULTS

The test data are shown in the following Appendices:

- B-1 Formulated Primers
- B-2 Primers Submitted by Raw Material Suppliers
- B-3 Proprietary Primers

B. VOC

The first test conducted was for volatile organic compounds (VOC). Only one product failed - No. S-9, Formulation D-30901 of Lorcon Chemical. It had a VOC of 440 gms/liter (3.7 lbs/gal).

C. SALT FOG EXPOSURE

Inasmuch as salt fog (corrosion) resistance is of paramount importance, the evaluation program was modified, at the request of the CTR, to not only test all formulations and proprietary primers submitted but to also do so on panels prepared at two film thicknesses (1.0 and 1.5 mils dry film thickness) and on two substrates (Bonderized steel and aluminum). TT-P-1757 "Primer Coating, Zinc Chromate, Low-Moisture-Sensitivity" was used as the control.

Additionally, the original scope of the contract was further modified to include painted panels of <u>all</u> coatings applied on <u>both</u> metals and at <u>both</u> film thicknesses to be submitted to the <u>CTR</u> for test at the <u>AMERADCOM</u> laboratories.

All exposure tests were conducted in duplicate. All panels were scored with an "X" covering the bottom half of each panel.

D. DISCUSSION OF RESULTS

The primers tested can be rated for acceptibility by rating their performance using the criteria listed in the introduction. However, because of the problem inherent in this new technology, namely to readily match the performance of conventional metal primers, a marginal category has been added, in which the performance of the primer is just below the desired level.

The criteria used in rating the primers are shown in Table III-1 and the ratings, both Acceptable and Marginal, are shown in the following tables:

- III-2 Data Analysis Formulated Primers
- III-3 Data Analysis Primers Submitted by RM Suppliers
- III-4 Data Analysis Proprietary Primers

TABLE III-I CRITERIA

	Property	Acceptable	Marginal
1	VOC	Below 420 gm/liter or 3.5 lbs/gal	-
2	Flash Point	100°F+	
3	Viscosity	60-100 KU	Below 60, 100-130 KU
4	Viscosity Stability (Heat or Freeze Test)	Maximum change - below 40 KU	Max. ≈ Above 40 KU but no solidification or coagulation
5	Storage Stability	Score of 6+ for all observations	Score of 4 for all observations
6	Speed of Dry	6 hours max. for all tests	Tack free - - 6 hours max. Dry hard - O/N Dry thru - O/N
7	Sprayability	Score of 6+	Score of 4
8	Brushalility	Score of 6+	Score of 4
9	Adhesion	Score of 10	Score of 8
10	Salt Fog Resistance Blistering Corrosion	Max 8F or 9M Score of 8+	Max 6F or 8M Score of 6+

10 = Perfect

O/N - Overnight

8 = Very good 6 = Good

THE REPORT OF THE PROPERTY OF

4 = Fair

Weight per Gallon and Total Solids have not been included as criteria since they are production control tests and therefore of no significance in rating the performance of these products.

The following information is not shown in these tables:

- Lead and Chromium VI Compounds Any formulation found to contain either was rejected immediately and not tested. All proprietary primers tested are claimed to have neither.
- Weight per Gallon This is used primarily as a production control check and should have no effect on performance.
- 3. Total Solids The same applies to this determination.

The following properties are of relatively minor importance and are so noted in the tables:

- Viscosity This of relatively minor importance provided that other properties are not adversely affected, e.g., excessive pigment settling, if viscosity is to low, or hard brushing, if viscosity is too high.
- 2. Accelerated viscosity and storage stability The test is considered to be equivalent to at least six months of storage. Normally, industrial coatings are used essentially as soon as received so that long term storage is not a serious problem.
- Freeze-thaw Stability Water thinned coatings should be shipped and stored in controlled environments to prevent the possibility of freezing.
- 4. Brushability These coatings are normally sprayed so that brushability is not critical.

TABLE III-2 DATA ANALYSIS-FORMULATED PRIMERS

PROTECT STANDARD SOSTING RECEDEN STREETING STREETINGS

SECTION OF THE SECTIO

sh Point cosity Stability-Heat test " Freeze tham	[4 4 EF4	T A A EAG	4 A E & &	T	T	1 K K K K K	Min XXXX
ı	L	L	< <	< <	< <		Σ.	×
	⋖	⋖	⋖	«	¥	Ŀ	ď	
	⋖	⋖	¥	∢	×	4	⋖	
	⋖	Σ	LE.	ď	ď	⋖	⋖	×
	«	~	44	« «	××	« «	4 4	
Resistance mil dft mil dft	لد لد	ΣΣ	ΣΣ	⋖ ⋖	××	L E	ايد اند	
	≪ ≪	44	Σ<	« «	××	∢ ∢	« «	

A - Acceptable M - Marginal F - Failed

X - Not tested due to flash rusting on steel xx - Property of relatively minor importance dft - Dry film thickness

ABLE III-2 DATA ANALYSIS-FORMULATED PRIMERS

	6-1	F-10		F-12	F-13	F-14	F-15	F-16	Minor
VOC	<	• <	⋖ .	⋖	•	⋖	⋖	K	
Flash Point	~	~	≪	⋖	4	4	⋖		٠
Viscosity Stability-Heat test " -Freeze thaw	« L«	E L «	« և«	∢∑ ∢	«Σ «	« u«	444	je je ≪	* * *
Storage Stability	(la.	i.	الم	Ø	I L.	æ	i.	×
Speed of Dry	⋖	*	اد.	⋖	⋖	Σ	Σ	Σ	
Sprayability	⋖	⋖	≪	«	Ä	⋖	⋖	4	
Brushability	⋖	⋖	⋖	<	∢	A	⋖ .	∢	××
Adhesion To - - Steel - Aluminum	4 4	< <	⋖ ≪	≪≪	« «	44	≪ ≪	≪ ≪	
Salt Fog Resistance Steel 1.0 mil dft 1.5 mil dft	لد لد	\$ L.	Σ«	L. S	£ i	Σ<	< ≪	Σ«	
Aluminum 1.0 mil dft 1.5 mil dft	≪ ≪	لد لد	« «	« «	44	4 4	44	≪≪	

BLE III-3 DATA ANALYSIS SUBMITTED BY RM SUPPLIERS

VOC Flash Point Viscosity Viscosity Stability-Heat test Storage Stability Speed of Dry Sprayability Brushability Adhesion To Steel - Aluminum Salt Fog Resistance Steel 1.0 mil dft 1.5 mil dft 1.5 mil dft 1.5 mil dft 1.5 mil dft	S A S A A A A A A A A A A A A A A A A A	W A EAA A A A A FE A	N	S A A E A A A A A A A A A A A A A A A A	S	N A A EAF FA A A A A EE E	8)	E X X X X X X X X X X X X X X X X X X X
---	---	----------------------	---	---	---	---------------------------	----	---

ILE III-4 DATA ANALYSIS - PROPRIETARY PRIMERS

	1	M-2	M-3	M-4	M-5	Minor
201	⋖	∢	⋖	∢	¥	
Flash Point	⋖	4	4	⋖	l L	•
Viscosity Stability - Heat test " - Freeze thaw	Σ∢և	44 L	44 E	4Σ 4	ΣΣ<	× × × × × ×
lity	L	Σ	L	⋖	4	×
Speed of Dry	⋖	⋖	4	×	Ŀ	
Sprayability	4	•	•	< <	⋖	
Brushability	⋖	⋖	4	⋖	«	××
Adhesion To - - Steel - Aluminum	44	44	4 4	4 4	⋖ ⋖	
Salt Fog Resistance Steel 1.0 mil dft 1.5 mil dft	ΣΣ	لما لم	LL. LL.	××	ls. 1s.	·
Aluminum 1.0 mil dft 1.5 mil dft	< <	* *	⋖ ⋖	××	≪ ≪	

(- Not tested due to extreme grit - Panels pitted due to low pH

ABLE III-4 DATA ANALYSIS - PROPRIETARY PRIMERS

	M-6	M-7	Ε Ε		M-10	M-11	Minor
VOC	<	⋖	⋖		4	. «	
Flash Point	⋖	⋖	⋖		∢	Ø	
Viscosity Stability - Heat test " - Freeze thaw	« L «	≪iu ≪	Σ < ∢		44	44	×××
Storage Stability	Ŀ	i.	⋖		⋖	⋖	×
Speed of Dry	«	<	⋖		«	<	
Sprayability	⋖	K	⋖		<	ď	
Brushability	⋖	. ◀	. «		L	Ø	×
Adhesion To - - Steel - Aluminum	44	4 4	« «		< <	4 4	
Salt Fog Resistance Steel 1.0 mil dft 1.5 mil dft	⋖ ∢	⋖ ∢	⋖ ⋖	1 ≪	. 44-14-	L. L.	
Aluminum 1.0 1.5 mil dft	< <	≪ ≪	<<		L X	4 4	

- Not applicable, solvent-thinned

CONCLUSIONS

The following conclusions may be drawn from the results of the evaluation. Note that the deficiencies observed for each primer tested are also included. They are listed by group, in order of corrosion resistance, and numerically within groups:

1. The following primers are the best of all tested and essentially meet the corrosion resistance requirements of TT-P-1757:

F-4, No. 7585D

Haolx Pigments

Slightly high viscosity

F-15, No. 30708-3

Celanese Chemicals

Slightly slow drying speed

M-6. No. SA7981-G73

Sherwin-Williams

Fails accelerated heat storage test - a minor deficiency.

M-7, No. SA8367-G73

Sherwin-Williams

Same as M-6

M-8, No. C-1501

General Electric Co.

Slightly low viscosity

2. The following primers exhibit acceptable corrosion resistance when used on aluminum and marginal corrosion resistance when used on steel:

F-2, No. P-1686-116-3

Cargill

Slightly high viscosity, fails heat storage and brushing tests, both of which are minor deficiencies.

F-14, No. 30708-2

Celanese Chemicals

Fails heat storage test, a minor deficiency, and slightly slow dry.

F-16, No. 30708-4

Celanese Chemicals

High viscosity and fails heat storage tests, both minor deficiencies, slightly slow dry.

S-4. No. ESA 1255-1

Rohm and Haas

High viscosity and fails storage stability test, both minor deficiencies.

M-1, No. 931-R-4901 Fuller O'Brien

Slightly low viscosity, fails freeze-thaw and storage stability tests, all minor deficiencies.

- 3. The following primers exhibit acceptable corrosion resistance when used on aluminum but fail when used on steel:
 - F-1, No. FX-8

 Buckman Laboratories

 Fails accelerated heat storage and freeze-thaw
 tests, both minor deficiencies.
 - F-8, No. PWB-76 Reichard Coulston Marginal storage stability, a minor deficiency.
 - F-9, No. KK-1006-7A Reichard Coulston Fails accelerated heat storage test, a minor deficiency.
 - F-12, No. RM-3 Wet Ground Mica Assoc.

 Same as F-9 above.
 - F-13, No. RN-3 Wet Ground Mica Assoc.

 Marginal heat storage stability, a minor deficiency.
 - S-1, No. CAS 1795 Rohm and Haas Fails accelerated heat storage and freeze-thaw tests, both minor deficiencies.
 - S-2, No. ESA 1136 Rohm and Haas

 Slightly high viscosity and fails storage stability test, both minor deficiencies.
 - S-3, No. ESA 1252-3 Rohm and Haas Slightly high viscosity, a minor deficiency.
 - S-5, No. FL 2915 Rohm and Haas Same as S-3 above.
 - S-6, Haloflex 202 Primer ICI Americas
 Fails freeze-thaw, a minor deficiency.
 - S-8, No. 14JG-74A Union Carbide
 No other defects.

M-3. White Latex Primer

DeVoe Marine

Marginal freeze-thaw resistance and fails storage stability test, both minor deficiencies.

M-11, No 99X-0106 Gray

Stanchem

Fails freeze-thaw, a minor deficiency.

- 4. The following primers exhibit marginal corrosion resistance when applied on either steel or aluminum:
 - F-3. No. 5727c

Halox Pigments

Slightly high viscosity and hard brushing, both minor deficiencies.

S-7, No. 191

Polyvinyl Chemical

Slightly high viscosity and fails freezethaw and storage stability tests, all minor deficiencies.

- 5. The following primers are not acceptable because of serious deficiencies:
 - F-5, No number

Mineral Pigments

Excessive flash rusting

F-7. No. 137-68

PVO International

Very slow drying

F-10, No. 1855-32A

Spencer Kellogg

Poor corrosion resistance when applied on either steel or aluminum.

F-11, No. 2007-10-1

Spencer Kellogg

Very slow drying

M-2, Quick Dry Latex Primer

DeVoe Marine

Poor corrosion resistance when applied on either steel or aluminum.

M-4. DeV-258 Red

DeVoe Marine

Extremely gritty

M-5. DeV-259 White

DeVoe Marine

Low flash point, very slow drying

M-9, Rustex

Advanced Paint

Low flash point, very slow drying.

M-10, Primer W

Advanced Paint

Poor corrosion resistance when applied on either steel or aluminum.

6. The major problem, overall, is adequate corrosion resistance when applied on steel. The second major problem is excessive change in viscosity or coagulation during the accelerated storage test, either hot or cold. All other deficiencies are relatively minor or scattered.

RECOMMENDATIONS

V

The following recommendations are offered to exploit the favorable results of this investigation and to continue efforts where there is a potential of improving the results obtained:

 Conduct field tests on the following 5 primers applied on both steel and aluminum:

F-4,	No. 7585D	Halox Pigments
F-15,	No. 30708-3	Celanese Chemicals
M-6,	No. SA7981-G73	Sherwin-Williams Co.
M-7,	Na. SA8367-G73	Sherwin-Williams Co.
M-8,	No. C-1501	General Electric Co.

2. Conduct field tests on the following 18 primers for use on aluminum substrates only:

F-1	No. FX-8	Buckman Laboratories
F-2	No. P-1686-116-3	Cargill
F-8	No. PWP-76	Reichard Coulston
F-9	No. KK-1006-7A	Reichard Coulston
F-12	No. RM-3	Wet Ground Mica Assoc.
F-13	No. RN-3	Wet Ground Mica Assoc.
F-14	No. 30708-2	Celanese Chemicals
F-16	No. 30708-4	Celanese Chemicals
S-1	No. CAS 1795	Rohm and Haas
S-2	No. ESA 1136	Rohm and Haas
S-3	No. ESA 1252-3	Rohm and Haas
5-4	No. ESA 1255-1	Rohm and Haas
S-5	No. FL 2915	Rohm and Haas
5-6	Haloflex 202 Primer	ICI Americas
S-8	No. 14JG-74A	Union Carbide
M-1	No. 931-R-4901	Fuller O'Brien
M-3	White Latex Primer	DeVoe Marine
M-11	No. 99X-0106 Gray	Stanchem

3. Conduct reformulation studies on the following formulations in order to improve the deficiencies observed (see Conclusion No. 1 above) without adversely affecting corrosion resistance:

F-4, No. 7585D

F-15. No. 30708-3

Halox Pigments Celanese Chemicals

4. Request the suppliers to modify the following formulations in order to overcome the deficiencies observed (see Conclusion No. 1 above) without adversely affecting corrosion resistance:

M-6, No. SA7981-G73

M-7. No. SA8367-G73

M-8, No. C-1501

Sherwin-Williams

Sherwin-Williams

General Electric Co.

5. Modify the following formulations to both improve their marginal corrosion resistance and other defects as well. See Conclusions Nos. 2 and 4 above.

F-2, No. P-1686-116-3

F-3, No. 5727C

F-14, No. 30708-2

F-16. No. 39708-4

S-4, No. ESA 1255-1

S-7. No. 191

Cargill

Halox Pigments

Celanese Chemicals

Celanese Chemicals

Rohm and Haas

Polyvinyl Chemical

6. Request the supplier to modify the following formulation to improve its marginal corrosion resistance as well as other defects. See Conclusion No. 2 above.

M-1, No. 931-R-4901

Fuller O'Brien

7. Reformulate the following low VOC primers recommended for use on aluminum only in order to improve their other defects. See Conclusion No. 3 above.

F-1, No. FX-8

F-8. No. PWB-76

F-9, No. KK-1006-7A

F-12, No. RM-3

F-13. No. RN-3

S-1, No. CAS 1795

S-2. No. ESA 1136

S-3. No. ESA 1252-3

S-5, No. FL 2915

Buckman Laboratories

Reichard Coulston

Reichard Coulston

Wet Ground Mica Assoc.

Wet Ground Mica Assoc.

Rohm and Haas

Rohm and Haas

Rohm and Haas

Rohm and Haas

S-6, Haloflex 202 Primer

ICI Americas Union Carbide

5-8, No. 14JG-74A

8.

Request the suppliers of the following low VOC primers, recommended for use on aluminum only, to modify their products in order to improve their other defects. See Conclusion No. 3

M-3, White Latex Primer

DeVoe Marine

M-11, No. 99X-0106 Gray

Stanchem

DISTRIBUTION LIST

<u>Recepient</u>	No. of Copies
DRDME-VO	3
DRDME-TQ	1
DDC	12
DRDME-WC	2

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Letter to Publications

Re: PUBLICITY RELEASE

As you probably know, government regulations are severly controlling the content of our paints and coatings, especially with respect to air polluting solvents and toxic pigments.

The Armed Forces are not exempt from these regulations and therefore are attempting to meet them without degrading the performance of the paints and coatings they use. One of the steps being undertaken by the U.S. Army Mobility Equipment Research & Development Command is to develop new metal primer specifications to replace the conventional coatings presently used. In order to do so within a reasonable time, it is necessary to alert raw material suppliers to the proposed plan so that their products can be submitted as soon as possible.

We would therefore, appreciate your inserting the enclosed Publicity Release in an early issue of your publication. Please send us two copies of the printed release.

Thank you for your cooperation.

Sincerely,

Sidney B. Levinson President

SBL/df cc: S. Spindel

enc.

(ESTABLISHED 1952)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410 TWX: 710-581-6132

Publicity Release

Re: U.S. ARMY SEEKING WATER-BORNE PRIMERS

The U.S. Army Mobility Equipment Research & Development Command is responsible for the development of paints and coatings for all Army equipment. At present, conventional coatings are in use but the Command is under pressure to meet current and anticipated restrictions on the content of volatile organic materials, as well as toxic inhibiting pigments, in these primers.

Therefore, a contract has been awarded to the D/L Laboratories to investigate, formulate and evaluate water borne metal primers which contain no lead or Chromium VI.

The following parameters have been specified:

- 1. Contain no lead or Chromium VI.
- Contain a maximum of 3.5 lbs/gal of volatile organic compounds (VOC) when applied.
- 3. Solvents present shall meet Rule 66 or Rule 102 of SCAPCD.
- 4. Shall be capable of conventional application.
- 5. Shall be air drying.

The polymers used in these primers may be either water emulsifiable or water soluble provided that they meet these requirements.

The cooperation of the industry is solicited. Representatives of companies wishing to have their anti-corrosive pigment(s) or water borne polymer(s) included in this program, should call or write: Sidney B. Levinson, President, D/L Laboratories, 116 East 16th Struet, New York, N.Y. 10003; (212) 777-4410.

Sincerely,

SBL/df cc: S. Spindel

Sidney B. Levinson President

(ESTABLISHED 1952)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410 TWX: 710-581-6132

Letter to Polymer Manufacturers

Re: LEAD AND CHROME FREE WATER BORNE PRIMERS

The U.S. Army Mooility Equipment Research & Development Command is responsible for the development of paints and coatings for all Army equipment. At present, conventional coatings are in use but the Command is under pressure to meet current and anticipated restrictions on the content of volatile organic materials, as well as toxic inhibiting pigments, in these primers. Therefore, a contract has been awarded to the D/L Laboratories to investigate, formulate and evaluate water borne metal primers which contain no lead or Chromium VI.

The following parameters have been specified:

- 1. Contain no lead or Chromium VI.
- 2. Contain a maximum of 3.5 lbs/gal of volatile organic compounds (VOC) when applied.
- 3. Solvents present shall meet Rule 66 or Rule 102 of SCAPCD.
- 4. Shall be capable of conventional application.
- 5. Shall be air drying.

If you have any water borne polymers you wish to have included in this program, will you please submit (a) gallon sample (s). Also please send us your data and recommended metal primer formulations, if available.

Thank you for your cooperation.

Sincerely,

SBL/df cc: S. Spindel

Sidney B. Levinson President

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Letter to Pigment Manufacturers

Re: LEAD AND CHROME FREE WATER BORNE PRIMERS

The U.S. Army Mobility Equipment Research & Development Command is responsible for the development of paints and coatings for all Army equipment. At present, conventional coatings are in use but the Command is under pressure to meet current and anticipated restrictions on the content of volatile organic materials, as well as toxic inhibiting pigments, in these primers. Therefore, a contract has been awarded to the D/L Laboratories to investigate, formulate and evaluate water borne metal primers which contain no lead or Chromium VI.

The following parameters have been specified:

- 1. Contain no lead or Chromium VI.
- 2. Contain a maximum of 3.5 lbs/gal of volatile organic compounds (VOC) when applied.
- 3. Solvents present shall meet Rule 66 or Rule 102 of SCAPCD.
- 4. Shall be capable of conventional application.
- 5. Shall be air drying.

If you have any anti-corrosive pigments you wish to have included in this program, will you please sumit (a) 10 lb. sample(s). Also please send us your data and recommended metal primer formulations, if available.

Thank you for your cooperation.

Sincerely,

SBL/df cc: S. Spindel

Sidney B. Levinson President

(FORMERLY DAVID LITTER LABORATORIES)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Letter to Additive Manufacturers

Re: LEAD AND CHROME FREE WATER BORNE PRIMERS

The U.S. Army Mobility Equipment Research & Development Command is responsible for the development of paints and coatings for all Army equipment. At present, conventional coatings are in use but the Command is under pressure to meet current and anticipated restrictions on the content of volatile organic materials, as well as toxic inhibiting pigments, in these primers. Therefore, a contract has been awarded to the D/L Laboratories to investigate, formulate and evaluate water borne metal primers which contain no lead or Chromium VI.

The following parameters have been specified:

- 1. Contain no lead or Chromium VI
- 2. Contain a maximum of 3.5 lbs/gal of volatile organic compounds (VOC) when applied.
- 3. Solvents present shall meet Rule 66 or Rule 102 of SCAPCD.
- 4. Shall be capable of conventional application.
- 5. Shall be air drying.,

If you have any corrosion inhibitors or adhesion promoters you wish to have included in this program, will you please submit (a) one pound sample (s). Also please send us your data and recommended metal primer formulations, if available.

Thank you for your cooperation.

Sincerely,

SBL/df cc: S. Spindel Sidney B. Levinson President

Display at Paint Show

LABORATORES

Appendix A-7

(ESTABLISHED 1952)

116 East 16th Street, New York, N.Y. 10003 Telephone: 212-777-4410

Letter to Metal Primer Manufacturers

Re: LEAD AND CHROME FREE WATER BORNE PRIMERS

The U.S. Army Mobility Equipment Research & Development Command is responsible for the development of paints and coatings for all Army Equipment. At present, conventional coatings are in use but the Command is under pressure to meet current and anticipated restrictions on the content of volatile organic materials, as well as toxic inhibiting pigments, in these primers. Therefore, a contract has been awarded to the D/L Laboratories to investigate, formulate and evaluate water borne metal primers which contain no lead or Chromiumm VI.

The following parameters have been specified:

- 1. Contain no lead or Chromium VI.
- 2. Contain a maximum of 3.5 lbs/gal of volatile organic compounds (VOC) when applied.
- 3. Shall be capable of conventional application.
- 4. Shall be air drying.

The formulations developed should conform to the corrosion inhibiting requirements of the following organic solvent primers or rustinhibiting coatings:

TT-E-485	Enamel,	Semigloss,	Rust-Inhibiting.	

TT-P-636 Primer Coating, Alkyd, Wood & Ferrous Metal.

TT-P-664 Primer Coating, Synthetic, Rust-Inhibiting, Lacquer Resisting.

TT-P-1757 Primer Coating, Zinc Chromate, Low Moisture-Sensitivity.

MIL-P-23377 Primer Coating, Epoxy-Polyamide, Chemical and Solvent Resistant.

They should also meet the following specific requirements:

- a. A projected package stability of at least one year.
- b. Good freeze-thaw stability.
- c. A flash point above 100°F.
- d. Thinnable with water to both brushing and spray viscosities.
- e. Air dry tack free within 6 hours.
- f. Show no flash rusting when applied on steeel substrates.
- g. Compatability with both conventional organic solvent and water borne topcoats.
- h. Pass a 144 hour exposure to 5% salt fog.
- Pass water and hydrocarbon immersion resistance tests without a top coat.

Although our contract calls for the <u>formulation</u> of the primers, we have been given approval to evaluate proprietary products provided that their formulations are divulged to US AMERADCOM under a confidentiality agreement.

If this is acceptable to you, please forward at least two quarts of each product with the following information:

- VOC concentration in g/l or lbs/gal, less water.
- 2. Flash point
- 3. Instructions for use.

Thank you for your interest.

Sincerely,

긺	
ğ	

TEST DATA		• •	Formulated Primers	Primers				
		F-1	F-2	F-3	F-4	F-5	F-7	F1-8
VXC (as applied)	gm/l lbs/gal	101	324 2.7	348 2.9	216 1.8	216 1.8	0.1	159 1.3
Weight per Gallon	lbs	10.47	10.86	10.26	9.70	10.67	10.44	11.19
Total Solids	dР	51.6	52.4	47.9	43.3	43.3	6.09	58.3
Flash Point	Ą	150+	150+	139	150+	150+	150+	150+
Viscosity Initial 4 weeks at 125°F Freeze—thaw	KU	61 Sol Coag	102 Coag 110	122 119 116	115 141+ 141	64 74	61 54 Coag	78 68 75
Storage Stability Liquid separation Skinning Pigment settling Ease of remixing	Score	9 N 9 0	6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ထမမထ	အ ဝါ ၈ စ	ထဝ္ပရ	10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 01 0 4
Speed of Dry Set to touch Dry tack free Dry hard Dry thru	Hrs	0.0 0.0 0.0	0 1.1 4.9 8.	0 7. 9.4 6.0.0	044w 57000	0 1 1 1 4 4 4 8	0.0 0.5 24+	0.2 2.1 3.1
Sprayability	Score	10	10	10	10	*	10	10
Brushability	Score	10	4	8	9	10	10	∞
Adhesion To - Bonderized steel Aluminum	Score	10	10	10 10	8 10	* *	01	10

* Flash rust - sample rejected

Coag - Coagulated

- Solidified

Sol

Ó	7

~
Sol
7
ix B
penc
Z

TREST DATE			Formula	Formulated Primers	ωl				
		F-9	F-10	F-11	F-12	F-13	F-14	F-15	F-16
VOC (as applied)	gm/l lbs/gal	324 2.7	258	252 2.1	85 0.7	80	300	300	300
Weight per Gallon	lbs	10.03	10.35	10.52	12.11	11.58	10.63	10.60	10,63
Total Solids	dР	51.7	48.1	50.0	57.3	53.6	69.7	69.5	59.7
Flash Point	F.	131	115	150+	150+	150+	107	100	117
Viscosity Initial 4 weeks at 125°F Freeze—thaw	, 22	80 Sol 82	132 Coag 141+	65 Coag 60	70 141+ 72	72 123 80	95 Coag 88	95 106 88	141+ Coag 141+
Storage Stability Liquid separation Skinning Pigment settling Ease of remixing	Score	0000	0000	7 Ø O O	യ വ യ യ	യഗത	0 10 0	8 10 9	1000
Speed of Dry Set to touch Dry tack free Dry hard Dry thru	Hrs	0.2	01.22 4.00.8	0 0 0 0 4. V	0000 4 7 0 8	4.4.0.0	*	0.5 0/N 0/N	*
Sprayability	Score	10	10	10	10	10	10	10	10
Brushability	Score	6	co	œ	10	10	ω	10	œ
Adhesion To – Bonderized steel Aluminum	Score	10	10	10	100	100	99	100	100

Sol - Solidified Coag - Coagulated

O/N - Overnight (8-16 hrs) * - Not tested due to very poor storage stability

	• •	F-1	Hrs 72	6F	9 9	Hrs 72	10 4F	8 8 8 8	Hrs 144	10	10	ASTM 144	10	10
Append		F-2	144	10 8F	ထယ္	144	10 6F	ഗ യ	144	10	10	144	10	919
Appendix B-1 (Cont)	FOIRMLATEG Primers	F-1	144	8 8	8	144	88 8W	8 10	144	& &	10	144	10 8F	0101
(if)	•	F-4	144	98 FF	ထထ	144	8F 8F	ထတ	144	100	10	144	10	99
		F-5	NO	test										B LA
	;	F-7	22	88 FF	44	72	88 FF	ဖဖ	144	10	10	144	010	919
		년 8년	144	æ æ	ဖဖ	144	6F	& &	144	010	100	144	10	010
		TT-P-1757	144	100	9	144	100	10 10	144	10	10	144	10	95

		F-16		144	88 FF	ဖထ	144	99	ထ တ		144	22	10	144	99	010
		7-15		144	0101	901	144	010	6 01		144	99	10	144	99	10
		F-14		144	10	ထတ	144	10	ထတ		144	10	00 10	144	99	99
		F-13		72	₩	• • •	144	4M 4M	ဖစ		144	10	10	144	100	99
	स्री हा	F-12		72	₩ ₩ ₩	ਰ ਚ	22	88 88 84	ယ ထ	٠.	144	910	100	144	10	10
Ø,	Appendix B-1 (Cont) Formulated Primers	F-11		144	88 6F	ωσ	144	10	90		144	10	010	144	22	100
	Append	F-10		144	10 84	დ თ	144	10 M	, 10		144	10 00 00	100	144	51 6 8	100
		F-9		97	Q X	40	144	S	w w		144	999	22	144	10	10
·				Hrs	al Co		Hrs ASTM				Hrs ASTM	e COS		Hrs ASTM	Score	
• 🔊	TEST DATA	SALT FOG EXPOSURE	Bonderized Steel	DFT - 1.0 mil Blistering	At X Overall Corrosion	At X Overall	DFT - 1.5 mils Blistering	At X Overall	At X Overall	Aluminum	DFT - 1.0 mil Blistering	At X Overall Corrosion	At X Overall	<pre>DFT - 1.5 mils Blistering</pre>	At X Overall Corrosion	At X Overall

Technology | Northern Property | Contract |

Ş	ı
T	ı
щ	ı
	ı
.2	
שׁ	
G	
w	
Ω	
Ω	
æ	1
•	•

TEST DATA		Submit	ted by Raw	Submitted by Raw Materials Suppliers	Suppliers	m.i			
		<u>-</u>	S-2	8-3	S-4	8-5	8-8	S-7	8 - 8
VCC (as applied)	gn/l lbs/gal	284	131	308 2.6	2.5	326	127	264	56
Weight per Gallon	SQT	10.96	10.28	11.26	10.19	10.17	11.94	10.83	10.48
Total Solids	æ	50.6	50.3	50.3	52.3	52.0	9.09	52.1	41.8
Flash Point	E4 O	150+	150+	150+	150+	150+	150+	150+	120
Viscosity Initial 4 weeks at 125°F Freeze-thaw	N.	75 141+ Coag	136 141+ 139	118 141+ 124	141+ 141+ 141+	121 141+ 134	72 85 Coag	54 55 Coag	67 17 68
Storage Stability Liquid separation Skinning Pigment settling Ease of remixing	9 9 9 9	8 7 0 8 8	∞ <i>∨</i> 1 ∞	യതതത	6 6000	യയതത	ဖတ္ ထ ထ	∞ o ∨ ∨	ଡ ଉ ଉ ଉ
Speed of Dry Set to touch Dry tack free Dry hard Dry thru	Hrs	0000	0.2	0.1 1.9 0.4	0.1 3.1 3.6	3.12.1	0000	0000	
Sprayability	Score	10	10	10	10	10	10	70	10
Brushability	Score	10	o	co '	φ	ω	10	10	o
Adhesion To – Bonderized Steel Alumimum	Score "	10	10	10	10	10	10	10	10

	φ. Φ.		24	. 69 G	6 6	144	¥ ¥	9 &	144	100	10	144	10	10
	2-7		144	88 88 W M	ဖဖ	144	% &	10	144	88 87	6 6	144	10	99
	8-e		97		& \omega	144	88	ထထ	144	10	99	144	10 8F	തെ
8 01	8-5		144	88 88	ဖဖ	144	8F 4F	ω ω	144	99	10	144	10	100
Submitted by Raw Material Suppliers	S-4		144	88 8F	ဖထ	144	88 F	ထတ	144	10	10	144	100	10
Appendix B-2 (Cont) ad by Raw Material s	S-3		144	88	ဖ ထ	144	6F	0 01	144	10	99	144	22	10
Appenditted by R	8-2		144	Q Q	ΦΦ	144	88	10	144	99	10	144	20	99
Subm	긺		71	44	∞ ∞	144	01 %	ထ ထ	144	10 10	010	144	22	100
			Hrs ASTM	Score		Hrs ASTM	Score		Hrs ASIM	Score		Hrs ASTM	Score	
TEST DATA	SALT FOG EXPOSURE	Bonderized Steel	DFT - 1.0 mil Blistering	At X Overall Corrosion	At X Overall	Blistering	Overall Corrosion	At X Overall Alumirum	DFT - 1.0 mil Blistering	At X Overall Corrosion	At X Overall	DFT - 1.5 mils Blistering	Overall Corrosion	overall

T

Appendix

		ᆈ	Proprietary Primers	ners		
HEST LWIN		₩-1	M-2	₩-3	M-4	₩-5*
VCc (as applied)	gm/l lbs/gal	128	41	217	72	364 3.0
Weight per Gallon	1bs	10.81	12.04	10.75	11.48	10.23
Total Solids	æ	54.9	62.4	51.1	72.6	52.7
Flash Point	E4 O	150+	150+	150+	140	90/150
Viscosity Initial 4 weeks at 125°F Freeze-thaw	K	55 86 Coag	83 74 Coag	92 74 141+	91 141+ 92	91/141+ 141/141+ 92/***
Storage Stability Liquid separation Skinning Pigment settling Ease of remixing	Score	7 O C C C C C C C C C C C C C C C C C C	4 0 9 9	8 9 N N	യതത	8/8 8/8 8/8
Speed of Dry Set to touch Dry tack free Dry hard Dry thru	Hrs	0000	0000	0000	* *	0.2 24+ 24+ 24+
Sprayability	Score	10	10	10	10	10
Brushability	Score	10	10	œ	9	10
Adhesion To – Bonderized steel Aluminum	Score	10 10	10	10	10	10

*** Insufficient to test

* Two component (Pot life = 24 + hrs)
** Very gritty - dropped

Coag - Coagulated

_		-	
4	5	Г	٦
7	2		

Appendix B-3 (Cont)

Anata assum		티	Proprietary Primers	mers			
vivo toni		9-W	M-7	¥-8	₩-9	M-10	¥.11
VOC (as applied)	gm/l lbs/gal	277	254	333 2.8	360	28	146
Weight per Gallon	lbs	10.70	10.63	10.01	11.02	10.34	9.97
Total Solids	dР	50.2	47.1	45.7	60.5	55.1	38.5
Flash Point	E.	120	150	130	76	150+	150+
Viscosity Initial 4 weeks at 125°F Freeze—thaw	B	98 Coag 102	82 Coag 74	8 5 28 3 5 8	103 X	72 49 64	92 92 83
Storage Stability Liquid separation Skinning Pigment settling Ease of remixing	Score	4 10 0 0	10 10 0	10 10 8	თ 4 თ თ	· യതതത	∞ თ თ თ
Speed of Dry Set to touch Dry tack free Dry hard Dry thro	Hrs	0.00	0000	00.11 00.11	0.0 0/N 0/N	0.22	0000 6440
Sprayability	Score	10	10	10	10	10	10
Brushability	Score	01	10	10	œ	8	10
Adhesion To - Bonderized steel Aluminum	Soore	10	10	10	10	10	99

X - Not applicable - solvent thinned

O/N - Overnight (8-16 hrs)

Coag - Coagulated

	TT-P-1757	144 10 10 10	10 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	140 10 10 10 10 10
	1	220 220 6 6 8	120 24D 4MD 6	10 10 10 10 10
	M-4	No test		
Appendix B-3 (Cont) Proprietary Primers	<u>F</u>	25 PR 8 8 4	24 10 88 89	144 10 10 10 10 10 10 10 10 10 10 10 10 10 1
Appendix Proprieta	₩ -2	29 8 8 8 6 8 6	144 9D 10	*
	4 1	144 6F 6	144 88 88 8	144 10 10 10 10 10
		Hrs ASTM Score	Hrs ASTM Score	Hrs ASTM Score Brs ASTM ASTM
TEST DATA	SALT FOG EXPOSURE Bonderized Steel	DFT - 1.0 mil Blistering At X Overall Corrosion At X Overall	DFT - 1.5 mils Blistering At X Overall Corrosion At X Overall	DFT - 1.0 mil Hrs Blistering ASTM At X Overall Corrosion Score At X Overall DFT - 1.5 mils Hrs Blistering ASTM At X Overall Corrosion Score At X Overall Corrosion Score At X Overall Corrosion Score At X Overall

		14- 11		2	88	বা ব	* 86	- G&	<i>0</i> 0	. 144	10 %	100	144	10	22
		1 10		78	១ភ	ν α	788	98 12	ဖ ထ	144	8F F	10	144	88 68	10
		호 6		144	4 6	ထတ	144	10	9 10	144	000	99	144	10	10
	(Cant)	9		144	88 FF	ထထ	144	10 8F	ထတ	144	10	10	14	10	10
Ž.	Appendix B-3 (Cont) Proprietary Primers	¥7		144	88 BB	10	144	95	10	144	000	10 10	144	10	00
	N A	9 		144	88 FF	10	144	10 9F	9 01	144	99	99	144	29 ;	01 10
				Hrs ASIM	Score		ASTM	Score		Hrs ASTM	Score		Hrs ASTM	Score	
P)	TEST DATA	SALT FOG EXPOSURE	Bonderized Steel	DFT - 1.0 mil Blistering	Overall Corrosion	Overall	DrT - 1.5 mils Blistering	Corrosion	Overall Aluminum	DFT - 1.0 mil Blistering	Overall Corresion	Overall	Blistering At X	Overall Corrosion At X	Overal.

FORMULATIONS

No. F-1	Formulation FX-8		Buckman Laboratories
1105 1 - 1	Lbs	Gals	Supplier
Arolon 585	128.9	14.48	45
Butyl Cellosolve	19.9	2.65	52
Triton X-405	5.7	0.62	42
Water	49.3	5.91	-
Busperse 53	1.0	0.11	3
Ti-Pure R-900	165.9	4.85	15
Busan 11-Ml	47.4	1.73	3
Attagel 50	9.5	0.48	17
		on Cowles Down With	to 4-5 Heg.
Arolon 585	543.1	61.02	45
Water	21.8	2.62	-
Cobalt - 6%	1.9	0.26	48
Zirconium - 6%	5.6	0.80	48
Total	1000.0	95.53	

Weight per Gallon = 10.47 lbs

VOC = 101 gms/liter

0.8 lbs/gal

FORMULATIONS

No. F-2	Formulation	P-1686-116-3	Cargill, Inc.
	Lbs	Gals	Supplier
Alkyd 741B	176.1	20.47	5
Ethylene Glycol Monobutyl Ether	70.4	9.37	52
Ammonium Hydroxide - 28%	12.5	1.66	•
Water	229.3	27.53	-
Atomite	87.6	3.88	49
Mistron Talc	58.5	2.54	9
1475 Red Oxide	92.9	2.32	40
Zinc Phosphate #317	77.8	2.87	40
Imsil A-10	19.5	0.88	26
Aerosil R-972	7.5	0.41	11
Ben-a-gel EW	2.2	0.11	34
Byk 301	0.9	0.11	4
	Disperse	on Pebble Mill	
	Let	Down With	
Alkyd 7418	44.2	5.14	5
Ammonium Hydroxide - 28%	1.9	0.25	· —
Ethyl Glycol			
Monobutyl Ether	17.8	2.37	52
6% Cobalt Intercar	1.8	0.25	28
6% Zirconium Intercar	0.9	0.13	28
Activ - 8	0.9	0,11	53
Water	97.3	11.68	-
Total	1000.0	92.08	

Weight per Gallon = 10.86 lbs

VOC = 324 gms/liter

2.7 lbs/gal

FORMULATIONS

No. F-3	Formulat	ion 5727C	<u> Halox Pigments</u>
	Lbs	Gals	Supplier
Water)	90.7	10.89	· •
	105.8	12.24	45
Kelsol 3921) Triethylamine) FA 1075	5.6	0.60	52
EA-1075	21.6	3.13	34
Cobalt Hydrocure - 6%	1.9	0.25	33
Manganese Hydrocure - 6%	1.9	0.25	33
Halox BW-191	92.6	3.90	24
R-900	164.5	4.94	15
Lampblack #101	6.9	0.47	37
	Disperse	and Let Down	n With
Vater	112.2	13.48	_
Butyl Cellosolve	25.9	3.47	52
Kelsol 3921)	181.3	20.99	45
Water) Premix	95.0	11.41	-
Triethylamine)	8.6	0.92	52
Water	60.4	7.25	-
Butyl Cellosolve	17.3	2.31	52
	Adjust p	H to 8.3 - 8.	,5 With
Water & Ammonium Hydroxide	7.8	0.98	-
Total	1000.0	97.48	

Weight per Gallon = 10.26 lbs

VOC = 348 gms/liter

2.9 lbs/gal

No. F-4	Formulat	ion 7585D	Halox Pigments
	Lbs	Gals	Supplier
Water	83.7	10.04	-
Natrosol 250 MHR	0.8	0.07	25
Ammonium Hydroxide - 28%	1.1	0.14	_
Methyl Carbitol	54.3	7.23	52
QR-681M	21.0	2.33	42
CO-630	2.9	0.34	20
Surfynol 104E	4.5	1.05	1
R-900	54.3	1.63	15
Atomite	54.3	2.41	49
Halox BW-191	62,5	2.63	24
Kadox 515	5.4	0.12	23
	Disperse	and Let Down	With
Rhoplex MV-23	540.5	61.42	42
Texanol	5.8	0.73	16
Aroplaz 1271	55.7	6.66	45
Zirconium - 6%	3.4	0.47	48
Cobalt - 6%	0.3	0.04	48
Manganese – 6%	0.3	0.04	48
Foamaster VL	1.1	0.14	12
Skane M-8	2.2	0.25	42
Water	29.6	3.55	-
QR-708	16.3	1.82	42
Total	1000.0	103.11	

Weight per Gallon = 9.70 lbs

VOC = 216 gms/liter

1.8 lbs/gal

No. F-5			Mineral Pigments
	<u>Lbs</u>	Gals	Supplier
Water	233.4	28.01	
QP~1500	3.3	0.28	52
KTPP	0.9	0.09	46
Tamol 850	5.6	0.65	42
Ethylene Glycol	28.0	2.99	52
Dalpad A	11.2	1.21	. 22
Dibutyl Phthalate	7.5	0.84	52
Igepal 630	2.8	0.28	20
Nopco NXZ	1.9	0.28	12
Dowcil 75	1.4	0.09	13
R-900	140.1	4.20	15
Phos-Plus	93.4	3.55	10
Atomite	46.7	1.87	49
	Disperse	and Let Dow	n With
UCAR 4358	329.5	38.10	52
Nopco NXZ	0.9	0.09	12
Water	93.4	11.20	_
Total	1000.0	93.73	

Weight per Gallon = 10.67

VOC = 216 gms/liter.

1.8 lbs/gal

FORMULATIONS

No. F-7	<u>Formulation</u>	on 137-68	PVO International
	Lbs	Gals	Supplier
Water	218.4	26.21	. -
Igepal CO-630	4.7	0.38	20
KTPP	2.8	0.19	46
Natrosol 250 HR	2.8	0.19	25
J1310 Zinc Chromate	142.5	4.37	32
1400 Red Iron Oxide	23.8	0.57	37
Gold Bond R	189.9	8.64	47
Drew L-475	1.9	0.28	14
		on Pebble M. Down With	i11
CEE E Emulaian	437.0	54 00	~-
CEE-5 Emulsion	413.2	<u>54.89</u>	39
Total	1000.0	95.72	

Weight per Gallon = 10.44 lbs

VOC = 6.2 gms/liter

0.1 lb/gal

Appendix C-1 FORMULATIONS

No. F-8	Formulati	ion PWB-76	Reichard-Coulston
	Lbs	<u>Gals</u>	Supplier
Water	112.0	13.44	
Tamol 731	15.2	1.66	42
Triton CF-10	2.7	0.30	42
Foamaster G	1.8	0.23	12
Ethylene Glycol	25.1	2.68	52
Dowcil 75	0.5	0.04	13
551 Lecithin	1.8	0.20	43
Cellosize QP-4400	1.3	0.12	52
3097 Red Oxide	89.6	2.19	37
317 Zinc Phosphate	31.3	1.16	40
325 Mesh W.G. Mica	29.6	1.26	18
Atomite	179.1	7.93	49
J1310 Zinc Yellow	4.5	0.15	32
	Dispers	e and Let Down	n With
Arolon X820	433.4	49.26	45
Foamaster G	0.9	0.12	12
Butyl Carbitol	5.4	0.68	52
Butyl Carbitol Acetate	5.4	0.66	52
Aroplaz 1271	22.4	2.68	45
Triton CF-10	1.3	0.14	42
Water	31.3	3.76	-
Ammonium Hydroxide - 28%	5.4	0.72	-
Total	1000.0	89.38	

Weight per Gallon = 11.19 1bs

VOC = 159 gms/liter

1.3 lbs/gal

No. F-9	<u>Formulation</u>	KK-1006-7A	Reichard-Coulston
	<u>l.bs</u>	Gals	Supplier
Titanox 2020	84.1	2.47	. 34
Mapico Black	2.5	0.06	8
ASP-100	59.3	2.77	17
Atomite	59.3	2.64	49
Moly White 212	49.4	1.98	44
38-690 Epotuf	168.1	19.98	41
	Disperse	and Let Down	With
38-690 Epotuf	192.8	22.94	41
Triethylamine	16.8	2.76	52
6% Cobalt Napthenate	1.7	0.21	48
4% Calcium Napthenate	9.9	1.32	48
Troykyd LLBA	19.8	2.23	50
		and Add	
Water	336.3	40.37	-
Total	1000.0	99.73	

Weight per Gallon = 10.03 lbs

VOC = 324 gms/liter

2.7 lbs/gal

Appendix C-1

FORMULATIONS

No. F-10	Formulation	n 1855-32A	Spencer Kellogg
	Lbs	Gals	Supplier
Water	202.9	24.35	•
Ammonium Hydroxide - 28%	8.2	1.08	_
Kelsol 3906	101.3	11.78	45
Butyl Cellosolve	10.1	1.35	52
Cobalt Nuocure - 6%	4.1	0.52	33
Manganese Nuocure - 6%	4.1	0.54	33
Activ - 8	1.5	0.19	- 53
Sparmite Barytes	76.0	2.05	37
Halox SW-111	71.1	2.99	24
Mapico 297	50.8	1.18	8
Atomite	45.7	2.03	49
399 Talc	25.4	1.13	54
	Disperse	on Pebble Mi	11
	Let D	own With	
Water	202.9	24.36	-
Ammonium Hydroxide - 28%	8.2	1.08	•••
Kelsol 3906	177.6	20.65	45
Butyl Cellosolve	10.1	1.35	52
Total	1000.0	96.63	

Weight per Gallon = 10.35 lbs

VOC = 258 gms/liter

2.2 lbs/gal

No. F-11	Formulatio	n 2007-10-1	Spencer Kellogg
•	Lbs	Gals	Supplier
Water	135.4	16.19	
Triethylamine	5.4	0.89	5 <u>-</u>
Kelsol 3920	71.9	8.36	45
R-902	71.9	2.10	15
Raven Black 1020	0.9	0.06	. 17
Barytes W-1430F	89.9	2.44	37
Talc 399	80.9	3.60	54
Zinc Phosphate 317	44.9	1.72	40
Butyl Cellosolve	15.3	2.03	52
Butyl Carbitol	9.9	1.25	52
Patcote 531	0.4	0.06	36
	Disperse Let	on Pebble Mil Down With	1 to 6 Heg.
Kelsol 3920	170.7	19.86	45
Aroplaz 1272	19.8	2.36	45
Ammonium Hydroxide - 28%	9.0	1.20	_
Cobalt Hydrocure - 6%	1.8	0.23	33 .
Manganese Hydrocure - 6%	1.8	0.23	33
Exkin #2	0.4	0.06	48
Water	269.7	32.37	-
Total	1000.0	95.01	

Weight per Gallon = 10.52 lbs

VOC = 252 gms/liter

2.1 lbs/gal

Appendix C-1
FORMULATIONS

<u>Gals</u> 8.52	Supplier
	· · ·
1.90 0.87 0.20 0.27 5.13 3.63 1.84 1.72	52 52 42 42 12 15 49 44
nd Let Dow	23 n With
7.51 50.02 0.49 0.27 0.14	42 52 12 31
	5.13 3.63 1.84 1.72 0.10 nd Let Dow 7.51 50.02 0.49 0.27

Weight per Gallon = 12.11 lbs

VOC = 85 gms/liter

0.7 lb/gal

No. F-13	Formulat	ion RN-3	Wet Ground Mica Ass.	
	Lbs	Gals	Supplier	
Bentone LT - 2.5%	146.1	17,14	34	
Ethylene Glycol	20.1	2.15	52	
Tamol 850	4.6	0.47	42	
Triton X-100	2.3	0.26	42	
Nopco NXZ	0.9	0.14	12	
TiPure R-900	91.3	2.74	15	
Gold Bond R	91.3	4.14	47	
325 Mesh W.G. Mica	45.6	1.94	18	
Nalzin SC-1	41.1	1.21	34	
Atomite	27.4	1.21	49	
	Disperse	and Let Do	own With	
Water	16.4	1.97	_	
Rhoplex MV-23	502.1	51.76	42	
Tamol 850	4.5	0.47	42	
Tributyl Phosphate	4.5	0.56	52	
Nopco NXZ	0.9	0.13	12	
Merbac 35	0.9	0.07	31	
Total	1000.0	86.36		

Weight per Gallon = 11.58 lbs

()

VOC = 80 gms/liter

0.7 lb/gal

No. F-14	Formulation 30708-2		Celanese Chemical
	Lbs	Gals	Supplier
Celanese 30708-2 Triton X-405 Water Ammonium Hydroxide - 28% Busperse 53 R-900 Busan 11 M-1 Attagel 50	99.7 7.7 85.2 6.6 1.3 223.6 63.9 12.8	11.85 0.83 10.22 0.89 0.16 6.54 2.33 0.65	6 42 - 3 15 3
	Disperse Let Do	to 4-5 Heg.	
Celanese 30708 Butyl Cellosolve NuXtra Manganese - 6% NuXtra Cobalt - 6% NuXtra Zirconium - 6% Ammonium Hydroxide - 28% Total	419.8 26.8 12.8 12.8 12.8 14.2	49.92 3.57 1.71 1.74 1.78 1.89	6 52 48 48 48

Weight per Gallon = 10.63 lbs

VOC = 300 gms/liter

FORMULATIONS

No. F-15	Formulation	n 30708-3	Celanese Chemical
	Lbs	Gals	Supplier
Celanese 30708-3 Triton X-405 Water Ammonium Hydroxide - 28% Busperse 53 R-900 Busan 11 M-1 Attagel 50	99.0 7.6 84.6 8.5 1.3 222.2 63.5 12.7	11.77 0.83 10.16 1.13 0.16 6.50 2.31 0.64	6 42 - 3 15 3 17
		to 4-5 Heg. wn With	
Celanese 30708 Butyl Cellosolve NuXtra Manganese - 6% NuXtra Cobalt - 6% NuXtra Zirconium - 6% Ammonium Hydroxide - 28%	417.1 26.7 12.7 12.7 12.7 18.7	49.60 3.55 1.70 1.73 1.77 2.51	6 52 48 48 48
Total	1000.0	74.70	•

Weight per Gallon = 10.60 lbs

VOC = 300 gms/liter

FORMULATIONS

No. F-16	<u>Formulation</u>	on 30708-4	<u>Celanese Chemical</u>
	Lbs	Gals	Supplier
Celanese 30708-4	99.8	11.86	6
Triton X-405	7.7	0.84	42
Water	85.3	10.23	. 🛥
Ammonium Hydroxide - 28%	16.1	2.15	· -
Busperse 53	1.3	0.16	3
R-900	223.8	6.55	15
Busan 11 M-1	64.0	2.33	3
Attagel 50	12.8	0.65	17
		to 4-5 Heg. own With	
Celanese 30708	420.1	49.97	6
Butyl Cellosolve	26.9	3.57	-52
NuXtra Manganese - 6%	12.8	1.71	48
NuXtra Cobalt - 6%	12.8	1.74	. 48
NuXtra Zirconium ~ 6%	12.8	1.78	48
Ammonium Hydroxide - 28%	3.8	0.51	· •
Total	1000.0	94.05	

Weight per Gallon = 10.63 lbs

VOC = 300 gms/liter

No. S-1	Formulation	on CAS 1795 Rohm & Ha	
	Lbs	Gals	Supplier
Butul Collegelys	41.8	5.49	52
Butyl Cellosolve	124.6	14.93	- ,
Water	1.0	0.13	51
Dee Fo 806-102	3.1	0.38	20
Igepal CTA-639	13.5	1.69	42
Tamol 165	75.0	1.77	37
Red Iron Oxide RO-8097	62.2	2.26	3
Busan 11 M-1	77.1	3.43	29
499 Talc 290 Barytes Lo-Micron	108.2	2.88	54
•	Disperse to	7 Heg.	•
	Let Down	n With	
Dhanlay UI 91	381.9	44.43	42
Rhoplex WL-91	9.0	1.01	42
Triton X-405	23.8	2.99	52
Butyl Carbitol	15.8	1.80	52
Dibutyl Phthalate	37.8	5.03	52
Butyl Cellosolve Ammonium Hydroxide - 14%	6.2	0.75	•
Ammonium Benzoate - 10%	19.0	2.29	
Total	1000.0	91.20	

Weight per Gallon = 10.96 lbs

VOC = 284 gms/liter

2.4 lbs/gal

No. 5-2	Formulation	ESA-1136	Rohm & Haas Co.
	Lbs	Gals	Supplier
Water	54.5	6.54	_
Methyl Carbitol	54.5	6.32	52
QR-681M	19.5	2.13	42
Amp-95	2.9	0.35	2
Triton CF-10	2.9	0.33	42
Drew L-405	2.7	0.39	14
Kadox 515	6.8	0.15	· 23
Red Oxide RO-8097	53.5	1.31	37
Atomite	81.1	3.58	49
Nalzin SC-1	77.8	2.31	34
	Disperse	e and Let Do	wn With
Rhoplex MV-23	576.0	65.65	42
Texanol	6.2	0.79	16
Aroplaz 1271 & Driers*	29.2	3.49	-
Sodium Nitrite - 13.8%	7.8	0.93	_
Skane M-8	2.0	0.22	42
Drew L-493	3.3	0.48	14
QR-708	6.8	0.76	42
Water	12.5	1.51	
Total	1000.0	97.25	·
* Aroplaz 1271	93.4%)		45
6% Cobalt Napthenate	0.5%)_		48
6% Manganese Napthenate	0.5%) 0.5%)	RAIX	48
6% Zirconium Napthenate	5.6%)		48

Weight per Gallon = 10.28 lbs

VOC = 131 gms/liter

1.1 lbs/gal

No. S-3	Formulation	ESA-1252-3	Rohm & Haas Co.	
	Lbs	Gals	Supplier	
Water	37.9	4.54	-	
Methyl Carbitol	55.2	6.40	52	
QR-681M	24.5	2.68	42	
Amp-95	3.0	0.35	2	
Triton CF-10	3.0	0.34	42	
Dreg L-405	2.8	0.39	14	
Kadox 515	6.7	0.15	23	
Red Oxide RO-8097	54.2	1.33	37	
Atomite	74.3	3.29	49	
Halox BW-191	78.8	3.32	24	
	Diapers	e and Let Dow	n With	
Water	17.0	2.05		
Rhoplex MV-23	551.0	52.98	42	
Texanol	5.9	0.75	16	
Aroplaz 1271 + Driers*	60.1	7.19	-	
Sodium Nitrite - 13.8%	7.9	0.95	-	
Drew L-493	3.3	0.48	14	
QR-708	14.4	1.61	42	
Total	1000.0	88.8		
* Aroplaz 1271	93.4%)	•	45	
6% Cobalt Napthenate	0.5%)_		48	
6% Manganese Napthenate	0.5%) 0.5%)	remix	48	
6% Zirconium Napthenate	5.6%)		48	

Weight per Gallon = 11.26 lbs

VOC = 308 gms/liter

2.6 lbs/gal

FORMULATIONS

No. 5-4	<u>Formulation</u>	ESA-1255-1	Rohm & Haas Co.
	Lbs	Gals	Supplier
Water	37.5	4.51	, ***
Methyl Carbitol	54.8	6.35	52
QR-681M	24.3	2.67	42
Amp-95	2.9	0.35	2
Triton CF-10	2.9	0.33	42
Drew L-405	2.7	0.39	14
Kadox 515	6.7	0.15	23
Red Oxide RO-8097	53.8	1.32	37
Atomite	81.0	3.59	49
Zinc Phosphate #317	78.2	2.88	40
	Dispers	e and Let Dow	n With
Water	16.9	2.42	-
Rhoplex MV-23	547.0	62.32	42
Texanol	5.9	0.74	16
Aroplaz 1271 + Driers*	60.0	7.14	<u>-</u>
Sodium Nitrite - 13.8%	7.8	0.94	.
Drew L-493	3.3	0.48	14
QR-708	14.3	1.58	42
Total	1000.0	98.16	
* Aroplaz 1271	93.4%)		45
6% Cobalt Napthenate	0.5%) _P		48
6% Manganese Napthenate	0.5%)P	remix	48
6% Zirconium Napthenate	5.6%)		48

Weight per Gallon = 10.19 lbs

VOC = 294 gms/liter

Appendix C-2 FORMULATIONS

No. S-5	Formulation	FL-2915	Rohm & Haas Co.
	Lbs	Gals	Supplier
Water	37.9	4.54	
Methyl Carbitol	55.2	6.40	52
QR-681M	24.5	2.69	42
Amp-95	3.0	0.35	2
Triton CF-10	3.0	0.34	42
Drew L-405	2.7	0.39	14
Kadox 515	6.7	0.15	23
Red Oxide RO-8097	54.2	1.33	37
Atomite	76.5	3.39	49
MolyWhite 212	78.8	3.13	44
	Disperse	and Let Dow	n With
Water	17.0	2.05	-
Rhoplex MV-23	551.1	62.83	42
Texanol	5.9	0.75	16
Aroplaz 1271 + Driers*	60.1	7.20	_
Sodium Nitrite - 13.8%	7.9	0.95	-
Drew L-493	3.4	0.48	14
QR-708	12.1	1.35	42
Total	1000.0	98.32	
* Aroplaz 1271	93.4%)		45
6% Cobalt Napthenate	// ተለ/ በ 5%ነ		48
6% Manganese Napthenate	0.5%) _P	remix	48
6% 7irconium Naothenate	5.6%)		48

Weight per Gallon = 10.17 lbs

SOCIAL PROGRAM DESCRIPTION

VOC = 326 gms/liter

2.7 lbs/gal

No. 5-6	Formulation	No. P-21	ICI Americas		
10. 5-0	Lbs	Gals	Supplier		
Water)	39.0	4.68	_		
Colloids 642	1.0	0.14	7		
Methocel J12-MS-2.5%)	× 80.0	9.60	13		
Pluronic F-87-30%)	7.0	0.83	30		
Zinc Phosphate 317	57.0	2.10	40		
Barytes No. 1	163.0	4.45	37		
Red Oxide RC 1475	26.0	0.65	40		
Colloids 642	1.0	0.14	7		
Disperse to 4-5 Heg. Let Down With					
Haloflex 202	592.0	55.33	35		
Ammonia (28%) – to pH4	-	-	•		
Then add					
Pluronic F-87-30%	24.0	2.85	30		
Texanol	10.0	1.27	16		
Total	1000.0	82.04			
Weight per Gallon = 12.19 lbs					

gms/liter lbs/gal

VOC

No. S-7	Formulation	191	Polyvinyl Chemical
	Lbs	Gals	Supplier
NeoCryl A-622	334.5	39.21	38
Tamol SG-1	10.5	1.10	42
Triton CF-10	3.7	0.42	42
Colloid 643	2.2	0.31	7
Zopaque RCL-9	70.6	2.07	21
Yellow Iron Oxide 22880	47.0	1.40	37
Zinc Phosphate #317	45.2	1.73	40
Nytal 400	89.2	3.75	53
Atomite	64.8	2.88	49
	Disperse	and Let Down	n With
NeoCryl A-622	147.5	17.30	38
Water	115.8	13.88	
	Premix a	nd Add	
Epotuf 38~690	55.5	6.60	41
Ammonium Hydroxide - 28%	6.9		` -
	Add		
Ammonium Benzoate - 10%	6.6	0.78	-
Total	1000.0	92.35	

Weight per Gallon = 10.83 lbs

VOC = 264 gms/liter

2.2 lbs/gal

FORMULATIONS

No. S-8	Formulation	14JG-74A	Union Carbide
	Lbs	Gals	Supplier
Water	242.1	29.07	•
Cellosize QP-15000	3.9	0.34	· 52
KTPP	1.0	0.10	46
Tamol 850	5.9	0.68	42
Ethylene Glycol	29.3	3.12	52
Dalpad A	11.7	1.27	22
Dibutyl Phthalate	7.8	0.88	52
Igepal CO-630	2.9	0.29	20
Drew XPD-11-043-2	9.7	0.98	14
Balab 748	2.0	0.26	55
Dowcil 75	1.5	0.10	13
TiPure R-960	146.4	4.39	15
Nalzin SC-l	97.6	2.93	34
	Disperse	and Let Dow	n With
UCAR 4358	344.5	39.75	52
Balab 748	1.0	0.13	55
Water	92.7	11.14	-
Intel	1000 n	95.43	

Weight per Gallon = 10.48 lbs

VOC = 56 gms/liter

FORMULATIONS

Sources of Raw Materials

- Air Products & Chemicals 1.
- 2. Angus Chemical Corp.
- **Buckman Laboratories** 3.
- Byk Mallinkrodt 4.
- 5. Cargill, Inc.
- 6. Celanese Polymer Specialities Co.
- 7.
- Colloids, Inc. Columbian Chemical Co. 8.
- 9. Cyprus Industrial Minerals
- 10. Frank D. Davis Co.
- 11. Degussa Corp.
- Diamond Shamrock Corp. 12.
- 13. Dow Chemical Corp.
- 14. Drew Chemical Corp.
- 15. E.I. duPont de Nemours & Co.
- Eastman Chemical Products 16.
- 17. Engelhard Minerals & Chemicals Corp.
- English Mica Co. 18.
- 19. Exxon, USA
- 20. GAF Corporation
- 21. Glidden & Durkee Division of SCM Corp.
- 22. W.R. Grace & Co.
- 23. G&W Natural Resources Group
- Hammond Lead Products 24.
- 25.
- Hercules, Inc. Illinois Minerals Co. 26.
- 27. International Minerals & Chemical Corp.
- 28. Interstab Chemicals, Inc.
- 29. Johns-Mansville Sales Corp.
- 30. BASF Wyandotte Corp.
- Merck & Co. 31.
- 32. Mineral Pigments Corp.
- Mooney Chemicals, Inc. 33.
- 34. NL Industries
- **35.** ICI Americas, Inc.
- C.J. Patterson Co. **36.**
- 37. Pfizer Corp.
- 38. Polyvinyl Chemical Industries
- 39. PVO International, Inc.

FORMULATIONS

Sources of Raw Materials

Witco Chemical Corp.

54. 55.

40. Reichard Coulston, Inc. 41. Reichhold Chemicals, Inc. 42. Rohm & Haas Co. Ross & Rowe, Inc. 43. The Sherwin-Williams Co. 44. 45. Spencer Kellogg, Division of Textron, Inc. Stauffer Chemical Co. Tammsco, Inc. Tenneco Chemicals, Inc. 46. 47. 48. 49. Thompson, Weinman & Co. Troy Chemicals, Inc. 50. 51. Ultra Adhesives, Inc. 52. Union Carbide Corporation 53. R.T. Vanderbilt Co. Whittaker, Clark & Daniels, Inc.

Appendix D

Sources of Formulations or Primers

Company	Contact	Sample No.
Advanced Coatings & Chemicals 4343 Temple City Blvd Temple City, CA 91780	•	M-9 M-10
Buckman Laboratories, Inc. 1256 North McClean Blvd. Memphis, TN 38108	K.A. Haagenson Industry Specialist - Paint & Plastics	F-1
Cargill Research Dept. P.O. Box 9300 Minneapolis, MN 55440	A. Heitkamp Coatings Technology Service Laboratory	F-2
Celanese Chemicals & Specialties Co. 1065 West Hill Street P.O. Box 8248 Louisville, KY 40208	C.F. Dukes Business Manager – Coatings	F-14 F-15 F-16
DeVoe Marine Coatings Co. P.O. Box 7600 Louisville, KY 40207	V.J. Datta Product Line Manager	M-2 M-3 M-4 M-5
Fuller-O'Brien Division The O'Brien Corporation 450 East Grand Avenue South San Francisco, CA 94080	J. Lansingh Product Manager Metal Finishes	M-1
General Electric Co. Engineered Materials Group 305 Eastern Avenue Chelsea, MA 02150	J.M. Kelley Technical Service Specialist	M-8
Halox Pigments 1910 Cochran Road Pittsburgh, PA 15220	W.C. Spangenberg Vice President and General Manager	F-3 F-4

Appendix D (Cont)

Sources of Formulations or Primers

Company	Contact	Sample No.
ICI Americas Specialty Chemicals Div. P.O. Box 751 New Murphy Rd & Concord Pike Wilmington, DE 19897	W.P. Long Development Manager Product Development Dept.	S-6
Mineral Pigments Corp. 7011 Muirkirk Road Beltsville, MD 20705	M. Kaplan Technical Director	F-5
PVO International, Inc. 1145 South Tenth Street Richmond, CA 94804		F-7
Polyvinyl Chemical Industries 730 Main Street Wilmington, MA 01887	J.E. Fitzwater Technical Service Supervis Coatings Products	S-7 or (
Reichard-Coulston, Inc. 15 East 26th Street New York, NY 10010	C.W. Fuller	F-8 F-9
Rohm and Haas Co. Independence Mall West Philadelphia, PA 19105	D.M. Watson Market Manager Maintenance & Marine Coatings Polymers, Resins and Monomers	S-1 S-2 S-3 S-4 S-5
Sherwin Williams Co. A.W. Steudel Technical Center 549 East 115th Street Chicago, IL 60628	B. Delventhal Paint Chemist	M-6 M-7
Spencer Kellogg Div. of Textron, Inc. P.O. Box 210 4201 Genesee Street	Dr. A. Ross Vice President, Research	F-10 F-11

Appendix D (Cont)

Sources of Formulations or Primers

Company	Contact	Sample No
Stanchem, Inc. 401 Berlin Street East Berlin, CT 06023	F.E. Flood Technical Director	M-11
Union Carbide Corp. Performance Chemicals & Polymers Division Garland, TX 75041	R.C. Pierrehumbert Senior Technical Specialist	S-8
Wet Ground Mica Association 60 Rock Harbor Road Orleans. MA 02653	Arnold J. Eickhoff Consultant	F-12 F-13

Appendix E

TEST PROCEDURE

Test methods developed by the American Society for Testing and Materials (ASTM) were used where possible.

1. Volatile Organic Compounds (VOC)

Unit-gms/liter or lbs/gal.

ASTM D-3960 "VOC of Paints and Related Coatings"

2. Weight per Gallon

Unit - 1bs

ASTM D-1475 "Density of Paint, Varnish, Lacquer and Related Products

3. Total Solids

Unit - %

ASTM D-2832 "Nonvolatile Content of Paint and Paint Materials"

4. Flash Point

Unit - °F

ASTM D-93 "Flash Point by Pensky-Martens Closed Tester"

5. Viscosity

Unit - KU

ASTM D-562 "Consistency of Paints Using the Stormer Viscometer"

- a) Heat Storage 4 weeks at 125°F
 ASTM D-1849 "Package Stability of Paint"
- b) Freeze-thaw
 ASTM D-2243 "Freeze-Thaw Resistance of Latex and
 Emulsion Paints"
- 6. Storage Stability

Unit - Score

ASTM D-1849 "Package Stability of Paint"

7. Drying Time

Unit - Hrs

ASTM D-1640 "Drying, Curing or Film Formation of Organic Coatings at Room Temperature"

8. Sprayability

Unit - Score*

Federal Standard TT-P-141B, Method 2141 "Application of Brushed Films"

9. Brushability

Unit - Score*

Federal Standard TT-P-141B, Method 2141 "Application of Brushed Films"

10. Adhesion

 $\langle \cdot \cdot \rangle$

Unit - Score*

Federal Standard TT-P-1418, Method 6304 "Knife Test (Brittleness)"

11. Salt Fog Exposure

ASTM B-117 "Salt Spray (Fog) Testing"

a) Blistering

Unit - See below

ASTM D-714 "Evaluating Degree of Blistering of Paints"

Size			Concentration			
9 8 6 4 2	- - - -	Very Small Small Medium Large Very large		F M D	-	Few Medium Dense
b)	Cor	rosion	•	•	•	Unit - Score*

* Use ASTM Scoring Scheme as follows:

Score	Performance	or	Effect
10	Perfect		None
9	Excellent		Trace
8	Very good		Very slight
6	Good		Slight
4	Fair		Moderate
2	Poor		Considerable
ī	Very poor		Severe
0 .	No value		Failed

Appendix F

CODE AND ABBREVIATIONS

A - Acceptable

ASTM - American Society for Testing and Materials test method

At X - At score mark cut thru the coating to expose the metal substrate

Dft - Dry film thickness

F - Failed

Gals - Gallons

gms/1 - Grams per liter

hrs - Hours

KU - Krebs units

lbs/gal - Pounds per gallon

M - Marginal

Max. - Maximum

VOC - Volatile organic compounds

X - Not tested

xx - Minor property

% - Percent

•F - Degrees fahrenheit