Билет 1-4. Теорема о полноте метода резолюций: из невыполнимой КН Φ всегда можно вывести \bot .

Метод резолюций всегда заканчивает свою работу, причём для невыполнимых КНФ выводится \bot (полнота), а для выполнимых не выводится (корректность).

Для полноты мы докажем обратное свойство: если \bot не выводится, то КНФ выполнима. Будем строить выполняющий набор рекурсивно, поддерживая следующий инвариант: после i-го шага значения $x_1=a_1,\ldots,x_i=a_i$ выбраны так, что истинны все дизъюнкты, содержащие только переменные x_1,\ldots,x_i . Отсутствие \bot даёт нам базу индукции: выполнены все дизъюнкты, не зависящие ни от каких переменных (т.к. таких дизъюнктов нет). Переход: пусть уже заданы значения $x_1=a_1,\ldots,x_i=a_i$. Рассмотрим все дизъюнкты, зависящие от x_{i+1} и, возможно, каких-то из переменных x_1,\ldots,x_i , но

не переменных x_{i+2},\ldots,x_n . Некоторые из них уже истинны благодаря выбору предыдущих значений. Исключим их из рассмотрения. Если в оставшиеся входит только литерал x_{i+1} , то положим $x_{i+1}=1$, инвариант будет соблюдён. Если в оставшиеся входит только литерал $\neg x_{i+1}$, то положим $x_{i+1}=0$, и инвариант тоже будет соблюдён. Осталось исключить случай, когда в какой-то дизъюнкт входит x_{i+1} , а в какой-то другой $\neg x_{i+1}$. Действительно, пусть такие дизъюнкты нашлись: $D_1=(x_{i+1}\vee D_1')$ и $D_0=(\neg x_{i+1}\vee D_0')$, где D_1' и D_0' зависят только от x_1,\ldots,x_i . По предположению D_0' и D_1' должны быть ложны на значениях $x_1=a_1,\ldots,x_i=a_i$, иначе мы бы исключили D_0 или D_1 . Но резольвентой D_0 и D_1 будет дизъюнкт $(D_0'\vee D_1')$, который тоже должен быть ложен при $x_1=a_1,\ldots,x_i=a_i$. Но тогда предположение индукции нарушено. Значит, последний случай невозможен, и потому исходная формула выполнима.