

183. The maximum value of the determinant among all 2 × 2 real symmetric matrices with trace 14 is

(GATE-14-EC-SET2)

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

$$trace(A) = a+c = 14$$

$$(A) = ac - b^2$$

A= $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ max $\underbrace{ac-b^2}$ such that a+c=14 a+c=14 = 0 $a(14-a) = 14a-a^2$ a=7 a=

$$f'(a) = \frac{1}{2}$$

 $f''(1) < 0$
... max value
occurs when
 $a = 7$
 $= 14(9) - 7$
 $= 49$

Inverse of a Matrix

- Only non-singular matrices are invertible.
- **B** is called as Inverse of matrix **A** if

$$\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I} \implies \mathbf{B} = \mathbf{A}^{-1}$$
 $\mathbf{A}^{-1} = \frac{Adj(\mathbf{A})}{\det(\mathbf{A})}$

where Adj(A) is the cofactor matrix transpose.

$$Adj(\mathbf{A}) = (cofactor matrix)^T$$

$$A^{-1} = Adj(A)$$

$$1AI$$

$$Adj(A) = \begin{pmatrix} cofactor & matrix \\ of & A \end{pmatrix}$$

$$AA^{-1} = A^{-1}A = I$$

Find the inverse of the following matrix

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} \qquad \begin{array}{c} \text{Cofactor} \\ \text{watrix} \\ \text{of } \mathbf{A} \end{array} = \begin{bmatrix} -3 & -6 & -6 \\ 6 & 3 & -6 \\ 6 & -6 & 3 \\ 6 & -6 & 3 \\ 6 & -6 & 3 \\ 6 & 3 & 3 \\ 6 &$$

$$Adj(A) = \begin{cases} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{cases}, A^{-1} = AdjA = \frac{1}{27} \begin{pmatrix} -3 & 6 & 6 \\ -6 & 3 & -6 \\ -6 & -6 & 3 \end{pmatrix}$$

AAT = I

IAA" | - III

IAI IA-11 = 1 [AB] = 1A[1B]

C = x Anxn 10 (= x) | A1

 $A^{-1} = Adj A$ $|Adj(A)| = |A| A^{-1}$ |Adj(A)| = |A| A'|

$$[Adj(A)] = \left(|A| |A'| \right)$$

$$= |A|^{n} |A''|$$

$$= |A|^{n} \frac{1}{|A|} = |A|$$

If $\mathbf{A}_{n\times n}$ is a non-singular then

$$|\mathbf{A}^{-1}| = \frac{|\mathbf{A}^{-1}|}{|\mathbf{A}^{-1}|}$$

$$|Adj(\mathbf{A})| = \underline{\qquad}$$

$$Adj(Adj(\mathbf{A})) = \underline{\hspace{1cm}}$$

$$Adj(Adj(\mathbf{A})) = \underline{\qquad}$$

 $|Adj(Adj(\mathbf{A}))| = \underline{\qquad}$

HIM

03. If
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = A^{-1}$, then the

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = A^{-1}$, then the

element in the second row and third column

of
$$B = \underline{\hspace{1cm}}$$
.

(b)
$$\frac{1}{2}$$

(c)
$$-\frac{1}{2}$$

03. If
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $B = A^{-1}$, then the walkix = $\begin{bmatrix} - & - & - \\ - & - & - \\ 0 & 0 & 1 \end{bmatrix}$

$$Adj A = \begin{bmatrix} - & - & - \\ - & - & - \\ - & - & - \end{bmatrix} 3X3 \qquad A' - \underbrace{Adj(A)}_{|A|}$$

(ofactor
of a32 =
$$(-1)^{3+2} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = -1$$

 $1A1 = 0() + 0() + 1(-1) \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$
Ans: $b_{23} = -1$

291. Consider a 2 \times 2 matrix M = [v_1 , v_2], where, v_1 and v_2 are the column vectors.

Suppose
$$M^{-1} = \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \end{bmatrix}$$
, where \mathbf{u}_1^T and \mathbf{u}_2^T are

the row vectors.

Consider the following statements:

Statement 1:
$$\mathbf{u}_1^\mathsf{T} \mathbf{v}_1 = 1$$
 and $\mathbf{u}_2^\mathsf{T} \mathbf{v}_2 = 1$

Statement 2:
$$\mathbf{u}_1^T \mathbf{v}_2 = 0$$
 and $\mathbf{u}_2^T \mathbf{v}_1 = 0$

Which of the following options is correct?

(GATE-19-EE)

- (a) Statement 2 is true and statement 1 is false
- (b) Both the statements are false
- (c) Statement 1 is true and statement 2 is false
- (d) Both the statements are true

$$M = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} u_1 & 1 \\ u_2 & 1 \end{bmatrix} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2 \end{bmatrix}$$

$$M^{-1} = \begin{bmatrix} mm' = 1 \\ 1 & 2$$

297. The inverse of the matrix
$$\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$
 is

(GATE-19-CE-SET2

(a)
$$\begin{bmatrix} -10 & 4 & 9 \\ 15 & -4 & -14 \\ -5 & 1 & 6 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & -\frac{4}{5} & -\frac{9}{5} \\ -3 & \frac{4}{5} & \frac{14}{5} \\ 1 & -\frac{1}{5} & -\frac{6}{5} \end{bmatrix}$$

(c)
$$\begin{bmatrix} -2 & \frac{4}{5} & \frac{9}{5} \\ 3 & -\frac{4}{5} & -\frac{14}{5} \\ -1 & \frac{1}{5} & \frac{6}{5} \end{bmatrix}$$

(d)
$$\begin{bmatrix} 10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6 \end{bmatrix}$$

Rank of a matrix

For a matrix $A_{m \times n}$

- rank(A) denotes the number of nonzero rows in any row echelon form that is row equivalent to A.
- rank(A) denotes the number of pivots obtained in reducing A to a row echelon form with row operations.
- rank(A) denotes the size of the largest nonzero minor of A.
- rank(A) denotes the number of linearly independent rows or columns of A

Use determinants to compute the rank of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix}_{3 \times 4}$$

$$\frac{1}{2}$$
 $\frac{3}{4}$ $\frac{5}{6}$ $\frac{5}{7}$ $\frac{6}{9}$ $\frac{7}{9}$

$$\begin{vmatrix} 1 & 3 & 1 \\ 4 & 6 & 1 \\ 7 & 9 & 1 \end{vmatrix} = 0$$

=) Rank(A) =
$$\frac{2}{-}$$

$$A_{3x4}$$
 $R(A_{3x4}) \leq m_{1}(3,4)$
=> $R(A_{3x4}) \leq 3$

Let **A** be
$$m \times n$$
 matrix

- rank(\mathbf{A}) \leq min(m,n).
- $ightharpoonup rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B}).$
- ▶ If **A** is $m \times n$ and **B** is $n \times p$, then rank(**AB**) \leq min $\{\text{rank}(\mathbf{A}), \text{rank}(\mathbf{B})\}$
- ▶ The rank of a non-zero matrix is non-zero.
- The rank of a null matrix is zero.
- ▶ The rank of non-singular matrix is its order.
- ► The rank of singular matrix is less than its order.

$$|A_{4x4}| \neq 0$$

$$R(A) = 4$$

$$|A_{nxn}| \neq 0 \quad R(A) = 0$$

01. Let
$$A = \begin{bmatrix} 3 & P & P \\ P & 3 & P \\ P & P & 3 \end{bmatrix}$$
. If rank of A is 1, then $P = 3$

$$P = \underline{\hspace{1cm}}$$

$$\begin{pmatrix} -3 & -3 \\ 3 & -3 \end{pmatrix} \qquad 9 + 9 = \frac{18}{2}$$

04. Suppose that $A_{n\times n}$ is upper triangular matrix

such that
$$a_{ii} = 0$$
, $i = 1, 2, \dots, n$.
Then rank of $A^n = \underline{\hspace{1cm}}$.

Then rank of
$$A^n =$$

(b)
$$n - 1$$

(b)
$$n-1$$
 $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
(d) n

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

10. Let
$$A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$$
 0 0 0 0 0

where a, b, c are non-zero real numbers.

Then Rank of A =

$$(d)$$
 3

$$R(A) \angle \frac{3}{2}$$

$$\begin{vmatrix} 0 & \alpha \\ -\alpha & 0 \end{vmatrix} = \alpha^{2} \neq 0$$

$$R(A) = \frac{2}{2}$$

The rank of the matrix

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$
 is ____.

(GATE - 17-EC)

Hint: Reduce the matrix to row echelon form

277. Consider matrix $A = \begin{bmatrix} k & 2k \\ k^2 - k & k^2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \end{bmatrix}$

vector $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$. The number of distinct real

values of k for which the equation Ax = 0 has infinitely many solutions is _____.

(GATE-18-EC)

AX=0

$$R(A) < \Omega$$
 $R(A) < \Omega$
 $R(A) < \Omega$

when $R(A \cap x \cap x) < \Omega \Rightarrow |x \cap x| < 0$
 $|x \cap x| < 0$

Linearly Independent and Dependent vectors

Ex1 consider the vectors
$$v_1 = \binom{1}{0}$$

method! independent

$$V_2 = 2V_1$$
 $V_1 = 2V_1$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_1$
 $V_1 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_1$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 = 2V_2 = 0$
 $V_1 = 2V_2 = 0$
 $V_2 =$

$$d_1 = 4$$
 $d_2 = -2$
 $d_1 = 6$ $d_3 = -3$

Ex 2 consider the vectors
$$V_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
 $V_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Are the vectors Linearly independent? method 2

$$V_{3} = V_{1} + V_{2}$$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{1} = V_{3} + V_{3} = 0$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{1} = V_{3} + V_{3} = 0$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{1} = V_{3} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{1} + V_{2} + V_{3} = 0$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{2} = V_{3} + V_{3} = 0$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{2} = V_{3} + V_{3} = 0$
 $V_{3} = V_{3} + V_{3} = 0$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{2} = V_{3} + V_{3} = 0$
 $V_{3} = V_{3} + V_{3} = 0$
 $V_{1} = V_{2} + V_{3} = 0$
 $V_{2} = V_{3} + V_{3} = 0$
 $V_{3} = V_{3} + V_{3} = 0$

$$\frac{|V_1 V_2 V_3|}{|V_1 V_2 V_3|} = \frac{|V_1 V_2 V_3|}{|V_1 V_2 V_3|} = \frac{|V_1 V_2 V_3|}{|V_2 V_3|} = 0$$

Ex3 consider the vectors $v_1 = (b)$

12 = (0). Are the rectors Linearly ACE

indépendent?

$$\angle_1 V_1 + \angle_2 V_2 = 0$$

$$\sqrt{\lambda_1 = \lambda_2 = 0}$$

method 2 $|V_1V_2| = |V_0| = |V_0|$ V, 4 V2 are

Linearly independent

Ex4 consider the vectors $V_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $V_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $V_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Are the vectors Linearly independent?

$$|V_1 V_2 V_3| = | 0 0 0 | = 1 + 0$$

V1, 12 4 V3 are L.I.

Ex 5 consider the vectors
$$V_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $V_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$V_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $V_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Are the vectors Linearly independent?

independent?

$$\begin{bmatrix}
 v_1 & v_2 + v_3 = v_4 \\
 v_1 + v_2 + v_3 = v_4 = 0
 \end{bmatrix}$$

Rank = 3

 $\begin{bmatrix}
 v_1 + v_2 + v_3 = v_4 \\
 v_1 + v_2 + v_3 - v_4 = 0
 \end{bmatrix}$

Rank = 3

 $\begin{bmatrix}
 v_1 + v_2 + v_3 = v_4 \\
 v_1 + v_2 + v_3 - v_4 = 0
 \end{bmatrix}$

The given set is L.D

 $\begin{bmatrix}
 v_1 & v_2 + v_3 = v_4 \\
 v_1 + v_2 + v_3 - v_4 = 0
 \end{bmatrix}$

The given set is L.D

$$V_1 + V_2 + V_3 = V_4$$
 $V_1 + V_2 + V_3 - V_4 = 0$
 $C_1 V_1 + C_2 V_2 + C_3 V_3 + C_4 V_4 = 0$
 $C_1 = C_2 = C_3 = 1$, $C_4 = -1$
 $C_1 = C_2 = C_3 = 2$, $C_4 = -2$

- Linear Independence: A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is said to be a linearly independent set whenever the only solution for the scalars α_i in the homogeneous equation $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0}$ is the trivial solution $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \mathbf{0}$.
- Nhenever there is a nontrivial solution for the α (i.e., at least one $\alpha_i \neq 0$), the set \mathcal{S} is said to be a linearly dependent set.

If the vectors (1.0, -1.0, 2.0), (7.0, 3.0, x) and (2.0, 3.0, 1.0) in \mathbb{R}^3 are linearly dependent, the value of x is ______

$$\begin{vmatrix} 1 & -1 & 2 \\ 7 & 3 & 1 \end{vmatrix} = 0$$

15. Consider the following statements:

S1: If{X₁, X₂, X₃, X₄} is a linearly independent set of vectors, then the set {X₁, X₂, X₃} is linearly independent.

S2: If {X₁, X₂, X₃, X₄} is a linearly dependent set of vectors, then the set {X₁, X₂, X₃} is linearly dependent.

Which of the following is true?

- (a) Only S1
- (b) Only S2
- (c) Both S1 and S2
- (d) Neither S1 nor S2

when
$$\theta = Hs^{\circ}$$

$$A \times = \begin{pmatrix} 1|\sqrt{2} & -1|\sqrt{2} \\ 1|\sqrt{2} & 1|\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{2}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix}$$

when
$$\theta = 90^{\circ}$$

$$AX = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

XX

1 x indicates stretch or shrink of vector in the direction of X (170)

If I is negative, there would be change in orientation

Zigen value and Eigen vector problem: Ax=XX Anxn = natrix Anxn Xnxl Xnx1 to (Non gero > Scalar BX=0 $R(A-\lambda T) \angle O$