

第11章 差错控制编码

- > 纠错编码的基本原理
- ▶ 常用简单编码
- > 线性分组码
- ▶ 循环码
- ▶ 卷积码*

数字通信系统的模型

信源编码与信道编码的基本概念

- •在数字通信系统中,为了提高数字信号传输的 <u>有效性</u>而采取的编码称为信源编码;
- •为了提高数字通信的<u>可靠性</u>而采取的编码称为信道编码。

纠错编码的基本原理

八种天气: 000 001 010 011 100 101 110 111 发生错误时无

晴 云 阴 雨 雪 霜 雾 雹 法发现错误

四种天气: 001 010 100 111

晴 云 阴 雨

可以发现1个错误,

但不能纠正错误

两种天气: 000 111

可以发现2个以下错误,

晴雨

且能纠正1个错误

利用信道多余度,减小差错概率

信道编码的基本原理

- 根据一定的规律,在待发送的信息码元中加入 一些冗余的码元,以换取信息码元在传输中的 可靠性。
 - > 称信源待发送的码元为信息码元;
 - > 称加入的冗余码元为监督(校验)码元。
- 信道编码的目的是以加入最少的冗余码元为代价,换取可靠性的最大提高。

与信道编码有关的基本概念:

码长:码字中码元的数目;

码重:码字中非0数字的数目;

<u>码距</u>:两个等长码字之间对应位不同的数目,有时 也称作这两个码字的汉明距离。

<u>最小码距</u>:在码字集合中全体码字之间距离的最小数值。

检纠错能力与最小汉明距离的关系

- 分组码的最小汉明距离 d_0 与检错和纠错能力之间满足下列关系:

 - ightharpoonup 当码字用于纠正错误时,如果要纠正t个错误,则 $d_0 \ge 2t+1$;
 - ▶若码字用于纠t个错误,同时检e个错误时(e>t),则 $d_0 \ge t + e + 1$ 。

11.2.2 纠错编码的分类

- (1) 按照信道编码的不同功能,可以将它分为<u>检</u>错码和纠错码。
- (2)按照信息码元和监督码元之间的检验关系,可以将它分为<u>线性码</u>和<u>非线性码</u>。
- (3)按照信息码元和监督码元之间的约束方式不同,可以将它分为<u>分组码和卷积码</u>。
- (4)按照信息码元在编码后是否保持原来的形式,可以将它分为系统码和非系统码。

- (5) 按照纠正错误的类型不同,可以将它分为<u>纠</u> 正随机错误码和纠正突发错误码。
- (6) 按照信道编码所采用的数学方法不同,可以 将它分为<u>代数码、几何码和算术码</u>。

随着数字通信系统的发展,可以将信道编码器和调制器统一起来综合设计,这就是所谓的网络编码调制。

信道编码的几种类型

• 线性分组码

- ▶ 监督位与信息位间满足线性关系,可记为 (n, k);
- ▶ 包括汉明码、BCH码、Fire码和RS码。

卷积码

- ▶ 一种非分组的有记忆编码,记为(n, k, N);
- > 采用代数译码或概率译码(Viterbi译码)。

• 级联码

- > 两个以上单一结构的短码复合级联而成;
- ▶ 一般内码为卷积码,外码为RS码;
- > 性能优于单一结构码,复杂度比单一结构码构造长码简单;
- > 分为串行级联码和并行级联码,最典型的并行级联码是Turbo码。

循环冗余监督码CRC(检错码)

- 能发现长度小于n-k+1的突发错误和大部分 大于此长度的突发错误。
- 常用的国际标准CRC码:

$$ho$$
 CRC-12 $g(x) = 1 + x + x^2 + x^3 + x^{11} + x^{12}$

$$ightharpoonup CRC-16$$
 $g(x) = 1 + x^2 + x^{15} + x^{16}$

$$ightharpoonup CRC-CCITT \ g(x) = 1 + x^5 + x^{12} + x^{16}$$

> CRC-32
$$g(x) = 1 + x + x^2 + x^4 + x^5 + x^7 + x^8 + x^{10}$$

 $+ x^{11} + x^{12} + x^{16} + x^{22} + x^{23} + x^{26} + x^{32}$

例如: 卷积码的n=2, k=1, N=2

Viterbi译码

(1)
$$j = 1, R = (10)$$

(3)
$$j = 3$$
, $R = (10, 10, 00)$

(2)
$$j = 2, R = (10, 10)$$

- d; M' 智选路径
- 2 (000) 00 00 00
- 1 (101) 11 10 00
- 3 (010) 00 11 10
- 3 (011) 00 11 01 通信原理

Turbo 码

• 编码器原理框图:

Turbo码译码器原理

信道分类

- 随机信道
- 突发信道
- 混合信道

差错控制方式

常用的差错控制技术(一)

• ARQ (Automatic-Repeat-Request)

停止等待型ARQ

移动通信

Go-Back-N型ARQ

移动通信

选择重传型ARQ

移动通信

检错重发(ARQ)的优点主要表现在:

- (1) 只需要少量的冗余码,就可以得到极低的输出误码率;
- (2) 有一定的自适应能力;

某些不足主要表现在:

- (1) 需要反向信道,故不能用于单向传输系统, 并且实现重发控制比较复杂;
- (2)通信效率低,不适合严格实时传输系统。 混合纠错方式是前向纠错方式和检错重发方式的结合。

常用的差错控制技术(二)

• FEC (Forward Error Correcting)

常用的差错控制技术(三)

HARQ

- ▶ 先加CRC校验,再纠错编码,检错主要靠CRC 完成。
- ▶直接进行纠错编码,由纠错码完成纠错、检错功能。

常用的差错控制技术(四)

- 反馈校验
 - ▶直接把接收到的码元转发回发送端,在发送端与原发送码元逐一比较,有错就重发。
 - >原理和设备简单,基本不需要检错纠错功能。
 - ➤需要双向信道,传输效率低,发回过程容易再次出错。

常用的差错控制技术(五)

- 检错删除
 - >在接收端发现错误后,直接删除,不需要重发。
 - ▶适用于少数特定系统,发送码元存在大量冗余的情况,删除不影响信息接收。
 - >实时性强, 只需要检错, 不需要纠错。

11.4 常用简单分组码

1 奇偶监督码 (n, n-1)

$$a_{n-1} + a_{n-2} + \dots + a_1 + a_0 = 0/1$$

特点: 1. 结构简单, 易于实现, 编码效率高;

- 2. 只能检出奇数个错误,不能检偶数个错误;
- 3. 不能纠错。

奇偶监督码的编码可以用软件实现,也可用硬件电路实现。

如果码组B无错,B=A,则M=0;

如果码组B有单个(或奇数个)错误,则M=1。

2 行列监督码 (二维奇偶监督码/矩阵码)。

1	1	0	0	1	0	1	0	0	0	0
0	1	0	0	0	0	1	1	0	1	0
0	1	1	1	1	0	0	0	0	1	1
1	0	0	1	1	1	0	0	0	0	0
1	0	1	0	1	0	1	0	1	0	1
1	1	0	0	0	1	1	1	1	0	0

- 二维奇偶监督码适于检测突发错码;
- 二维奇偶监督码不仅可用来检错,还可用来纠正一些错码;对构成矩形四角的错码无法检测。

3 恒比码 (等重码)

该码的码字中1和0的位数保 持恒定的比例。

特点:

能够检测所有奇数个错误及 部分偶数个错误,适用于电 传机等产生的固定符号传输。

数字		码	\rightarrow			
0	0	1	1	0	1	
1	0	1	0	1	1	
2	1	1	0	0	1	
3	1	0	1	1	0	
4	1	1	0	1	0	
5	0	0	1	1	1	
6	1	0	1	0	1	
7	1	1	1	0	0	
8	0	1	1	1	0	
9	1	0	0	1	1	

4. 正反码 (n, n/2)

编码原理:编码的监督位数目与信息位数目相同

- >信息码中"1"的个数为奇数时,监督码与信息码相同
- >信息码中"1"的个数为偶数时,监督码是信息码的反码

解码原理:将信息位与监督位模2相加为合成码组

- 若接收码组信息位有奇数个"1",合成码组即为校验码组;
- ▶ 若接收码组信息位有偶数个"1",合成码组的反码为校验码组。

校验码组的组成	错码情况					
全为"0"	无错码					
有4个"1"1个"0"	信息码中有一位错,为校验码组中"0"的位置					
有4个"0"1个"1"	监督码中有一位错,为校验码组中"1" 的位置					
其他组成	错码多于1个					

例:信息位出错 监督位出错

11101

1 1 0 0 1 + 1 1 1 0 1

特点: 能纠正一位错码,并能检测全部两位以下 的错码和大部分两位以上的错码。

1 0 1 0 1 1 0 1 1 1 . 不能检错

11.5 线性分组码

分组码: (n, k) = 信息码(k) + 监督码(r=n-k)

线性分组码: 监督位和信息位之间满足线性关系

的分组码。

11.5.1 汉明码
$$(n,k)=(2^r-1, 2^r-1-r)$$

汉明码是一种能够<u>纠正单个错误</u>且<u>编码效率较高</u>的线性分组码。

- 1. 最小码距 $d_{\min}=3$,可纠正一位错误;
- 2. 码长n与监督元个数r之间满足关系式:

$$n \leq 2^r - 1$$

如果希望用r个监督位构造出r个监督关系式来指示一位错码的n种可能,则要求:

$$2^{r}-1 \ge n$$
 或 $2^{r} \ge k+r+1$

$S_{1}S_{2}S_{3}$	错码位置	$S_{1}S_{2}S_{3}$	错码位置
001	$egin{array}{c} a_0 \\ a_1 \\ a_2 \\ a_3 \end{array}$	101	a ₄
010		110	a ₅
100		111	a ₆
011		000	无错

(7, 4)

偶数校验时的监督关系:

$$S = b_{n-1} + b_{n-2} + \dots + b_1 + b_0$$

若S=0,则无错;若S=1就认为有错。

$$S_1 = a_6 + a_5 + a_4 + a_2$$
, $S_2 = a_6 + a_5 + a_3 + a_1$, $S_3 = a_6 + a_4 + a_3 + a_0$

$$\begin{cases} a_6 + a_5 + a_4 + a_2 = 0 \\ a_6 + a_5 + a_3 + a_1 = 0 \end{cases} \qquad \begin{cases} a_6 + a_5 + a_4 = a_2 \\ a_6 + a_5 + a_3 = a_1 \\ a_6 + a_4 + a_3 + a_0 = 0 \end{cases}$$

11.5.2 监督矩阵H和生成矩阵G

监督方程

$$\begin{cases} 1 \cdot a_6 + 1 \cdot a_5 + 1 \cdot a_4 + 0 \cdot a_3 + 1 \cdot a_2 + 0 \cdot a_1 + 0 \cdot a_0 = 0 \\ 1 \cdot a_6 + 1 \cdot a_5 + 0 \cdot a_4 + 1 \cdot a_3 + 0 \cdot a_2 + 1 \cdot a_1 + 0 \cdot a_0 = 0 \\ 1 \cdot a_6 + 0 \cdot a_5 + 1 \cdot a_4 + 1 \cdot a_3 + 0 \cdot a_2 + 0 \cdot a_1 + 1 \cdot a_0 = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_6 & a_5 & a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

上式可以记作: $HA^{T}=0^{T}$ 或 $AH^{T}=0$, 其中

监督矩阵

$$\mathbf{H}_{r\times n} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{r\times k} & \mathbf{I}_r \end{bmatrix}$$

$$AH^{T}=0$$

也可以用矩阵形式来表示:
$$\begin{bmatrix} a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_6 \\ a_5 \\ a_4 \\ a_3 \end{bmatrix}$$
或表示成为:

$$\begin{bmatrix} a_2 & a_1 & a_0 \end{bmatrix} = \begin{bmatrix} a_6 & a_5 & a_4 & a_3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} a_6 & a_5 & a_4 & a_3 \end{bmatrix} \cdot \mathbf{Q}$$

$$\begin{bmatrix} a_6 & a_5 & a_4 & a_3 & a_2 & a_1 & a_0 \end{bmatrix} = \begin{bmatrix} a_6 & a_5 & a_4 & a_3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$G_{k\times n} = \begin{bmatrix} I_k & Q_{k\times r} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

这里G称为生成矩阵,利用它可以产生整个码组:

$$\boldsymbol{A} = \boldsymbol{M} \cdot \boldsymbol{G} = \begin{bmatrix} a_6 & a_5 & a_4 & a_3 \end{bmatrix} \cdot \boldsymbol{G}$$

得到的汉明码如下所示:

信息位	监督位	信息位	监督位
$a_6 a_5 a_4 a_3$	$a_{2}a_{1}a_{0}$	$a_6 a_5 a_4 a_3$	$a_{2}a_{1}a_{0}$
0000	000	1000	111
0001	011	1001	100
0010	101	1010	010
0011	110	1010	001
0100	110	1100	001
0101	101	1101	010
0110	011	1110	100
0111	000	1111	111

11.5.3 校验子S

发送码组
$$A = \begin{bmatrix} a_{n-1} & a_{n-2} & \cdots & a_0 \end{bmatrix}$$

接收码组
$$\mathbf{B} = \begin{bmatrix} b_{n-1} & b_{n-2} & \cdots & b_0 \end{bmatrix}$$

接收码组
$$B = \begin{bmatrix} b_{n-1} & b_{n-2} & \cdots & b_0 \end{bmatrix}$$
 错误图样 $E = \begin{bmatrix} e_{n-1} & e_{n-2} & \cdots & e_0 \end{bmatrix}$ $e_i = \begin{cases} 0 & b_i = a_i \\ 1 & b_i \neq a_i \end{cases}$

校正子
$$S=BH^{T}=(A+E)H^{T}=AH^{T}+EH^{T}=EH^{T}$$

S与H矩阵的第几列相同,则第几位码出错。

线性分组码的主要性质如下:

(1)任意两许用码之和仍为一许用码,也就是说,线性分组码具有封闭性;

$$A_1 \cdot H^T = 0, \quad A_2 \cdot H^T = 0$$

 $(A_1 + A_2) \cdot H^T = A_1 \cdot H^T + A_2 \cdot H^T = 0$

(2) 码组间的最小码距等于非零码的最小码重。

(7,4)系统汉明码的编码器和译码器电路:

第11章 差错控制编码

$$H = \begin{bmatrix} 11101010 \\ 1101010 \\ 1011001 \end{bmatrix} \qquad G = \begin{bmatrix} 1000111 \\ 0100110 \\ 0010101 \\ 0001011 \end{bmatrix}$$

求生成矩阵,并列出所有许用码组。

若一接收码组为1010001,请判断是否为错码,错在哪位?

$0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$S = BH^T = [011]$
0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1	1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0	所以正确的码组为1011001
0 1 1 1 0 0 0	111111	

11.6 循环码

- > 循环码的特点
 - 封闭性
 - 循环性

表 11-5

码组编号	信息位	监督位	码组编号	信息位	监督位
	$a_{6}a_{5}a_{4}$	$a_3 a_2 a_1 a_0$		$a_6 a_5 a_4$	$a_3 a_2 a_1 a_0$
1	000	0000	5	100	1011
2	001	0111	6	101	1100
3	010	1110	7	110	0101
4	011	1001	8	111	0010

- > 构造原理: 基于严密的代数学理论
- > 码多项式

对于循环码 $A=(a_{n-1}a_{n-2}...a_1a_0)$,

可以将它的码多项式表示为:

$$A(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

例: 1 1 0 0 1 0 1
$$\implies$$
 $A_7(x) = x^6 + x^5 + x^2 + 1$

> 码多项式的按模运算

若一个整数m可以表示为:

$$\frac{m}{n} = Q + \frac{p}{n}$$
 $p < n$ Q是整数

则在模n运算下,有m = p(模n)。

同样对于多项式而言:

降幂运算

$$\frac{F(x)}{N(x)} = Q(x) + \frac{R(x)}{N(x)}$$
 其中R(x)系数低于N(x)!

则可以写为: $F(x) \equiv R(x)$ (模N(x))。

> 循环码码多项式的性质

在循环码中,若A(x)是一个长为n的许用码组,

则在按模 x^n+1 运算下, $x^i\cdot A(x)$ 亦是一个许用码组。

例如,
$$x^3 \cdot A_7(x) = x^3 \cdot (x^6 + x^5 + x^2 + 1) = (x^9 + x^8 + x^5 + x^3)$$

$$= (x^5 + x^3 + x^2 + x) \quad (模x^7 + 1)$$

其对应的码组为0101110, 为A₃(x)。

▶ 例:参照11-5表

$$0010111 \Rightarrow x^4 + x^2 + x + 1$$

$$0101110 \Rightarrow x(x^4 + x^2 + x + 1)$$

$$1011100 \Rightarrow x^2(x^4 + x^2 + x + 1)$$

$$0111001 \Rightarrow x^3(x^4 + x^2 + x + 1) \equiv x^5 + x^4 + x^3 + 1(模x^7 + 1)$$

$$1110010 \Rightarrow x^4(x^4 + x^2 + x + 1) \equiv x^6 + x^5 + x^4 + x(模x^7 + 1)$$

$$1100101 \Rightarrow x^5(x^4 + x^2 + x + 1) \equiv x^6 + x^5 + x^2 + 1(校x^7 + 1)$$

$$1001011 \Rightarrow x^6(x^4 + x^2 + x + 1) \equiv x^6 + x^3 + x + 1(校x^7 + 1)$$

结论: 一个长为n的循环码码多项式必为按模xn+1运算的一个余式。

> 循环码的生成多项式

循环码中<u>次数最低的码多项式</u>称为生成多项式,用g(x)表示。可以证明生成多项式g(x)具有以下特性:

- (1) 该循环码中其它码多项式都是g(x)的倍式;
- (2) g(x)是一个常数项为1的r = n k次多项式;
- (3) g(x)是 $x^{n}+1$ 的一个因式。

证明:
$$\frac{x^k g(x)}{x^n + 1} = Q(x) + \frac{T(x)}{x^n + 1}$$

$$T(x) = h(x) \cdot g(x)$$

$$\therefore Q(x) = 1 \quad \therefore x^n + 1 = g(x)[x^k + h(x)]$$

所以g(x)为 x^n+1 的一个因式。

▶ 寻找生成多项式g(x)

- 1. 将 $x^n + 1$ 分解为几个不能再分解的因式;
- 2. 从中找一个次数为(n-k)次的因子作为g(x)。

例:
$$x^7 + 1 = (x+1)(x^3 + x^2 + 1)(x^3 + x + 1)$$

次数为4的因子有两个:

$$(x+1)(x^3+x^2+1) = x^4+x^2+x+1$$

$$(x+1)(x^3+x+1) = x^4+x^3+x^2+1$$

表11-5的循环码

构造一个新的 (7,3)循环码

\rightarrow 循环码的生成矩阵G

循环码的生成矩
$$G$$

$$G(x) = \begin{bmatrix} x^{k-1} \cdot g(x) \\ x^{k-2} \cdot g(x) \\ \vdots \\ x \cdot g(x) \\ g(x) \end{bmatrix} \qquad g(x) = x^r + a_{r-1}x^{r-1} + \dots + a_1x + 1$$
因此,一旦生成多项式 $g(x)$ 确定 以后,该循环码的生成矩阵就可以确定。

不符合 $G = [I_k \ Q]$

\rightarrow 循环码的监督矩阵H

由生成矩阵G化为典型阵,然后根据二者的关系写出H矩阵。

例: 表11-5
$$g(x) = x^4 + x^2 + x + 1$$

$$G(x) = \begin{bmatrix} x^2 g(x) \\ xg(x) \\ g(x) \end{bmatrix} = \begin{bmatrix} x^6 + x^4 + x^3 + x^2 \\ x^5 + x^3 + x^2 + x \\ x^4 + x^2 + x + 1 \end{bmatrix}$$

$$G = \begin{bmatrix} 10111100 \\ 01011110 \\ 00101111 \end{bmatrix} \Rightarrow \begin{bmatrix} 1001011 \\ 0101110 \\ 0010111 \end{bmatrix} \qquad H = \begin{bmatrix} 0110100 \\ 11110010 \\ 1010001 \end{bmatrix}$$

$$H = \begin{bmatrix} 1101000 \\ 0110100 \\ 1110010 \\ 1010001 \end{bmatrix}$$

11.6.3 循环码的编、译码方法

1、编码过程

(1) 用 x^{n-k} 乘信息码多项式m(x)。这一运算实际

上是把信息码后附加上(n-k)个"0"。

(2)
$$\frac{x^{n-k}m(x)}{g(x)} = Q(x) + \frac{r(x)}{g(x)}$$
, 即为监督码多项式。

(3)
$$T(x) = m(x)x^{n-k} + r(x)$$
, 即为生成循环码。

在硬件实现时,可以利用除法电路来实现。

$$g(x) = x^4 + x^2 + x + 1$$

2、译码过程

- \rightarrow 由接收到的码多项式B(x)计算校正子多项式S(x);
- \rightarrow 由校正子S(x)确定错误图样E(x);
- \rightarrow 将错误图样E(x)与B(x)相加,纠正错误。

11.7 卷积码

卷积码中编码后的n个码元不仅与当前段的k个信息有关,而且也与前面(N-1)段的信息有关,编码过程中相互关联的码元为nN个。因此,这N段时间内的码元数目nN通常被称为这种码的约束长度。

由于与前面m段规定时间内的信息位有关,这里的m=N-1通常用(n, k, N)表示卷积码。

例如: 卷积码的n=2, k=1, N=2

假如输入的信息为**D** = [11010],为了使信息**D**全部通过移位寄存器,还必须在信息位后面加**3**个零。

描述卷积码的方法: 图解表示和解析表示。

卷积码的译码方法可分为代数译码和概率译码 (维特比译码,几何译码)两大类。

第十一章 小结

- 纠错编码的基本原理(检纠错能力与最小汉明距离的关系)
- 几种常用的简单编码
 - > 奇偶监督码
 - >二维奇偶监督码
 - >恒比码(等重码)
 - > 正反码
- 线性分组码
 - ➤ 汉明码(特性、监督矩阵H、生成矩阵G、校正子S)
 - ➤ 循环码(特性、码多项式、生成多项式、H、G矩阵、编码电路)

通信原理

基本编解码原理与检纠错性能

第十一章 作业

• 11-1, 11-2, 11-5, 11-6, 11-7, 11-8, 11-9_o