The Sperner Property and Representation of $\mathfrak{sl}(2,\mathbb{C})$

September 27, 2020

Contents

- 1 The Sperner property
- **2** Representation of $\mathfrak{sl}(2,\mathbb{C})$
- 3 An action of $\mathfrak{sl}(2,\mathbb{C})$ on posets
- Further directions

In 1927, Emanuel Sperner proved that if S_1,\ldots,S_m are distinct subsets of an n-element set such that we never have $S_i\subset S_j$, then $m\leq {n\choose \lfloor\frac{n}{2}\rfloor}$. Moreover, the equality is achieved by taking all subsets of S with $\lfloor\frac{n}{2}\rfloor$ elements. This result spawned a host of generalizations, most conveniently stated in the language of partially ordered poset.

A finite poset P is ranked (graded) if for every $x \in P$ every maximal chain with x as top element has the same length. We say that P is graded of rank n if every maximal chain of P has length n. Thus P has a unique rank function $\rho: P \to \{0, 1, 2, \ldots, n\}$ such that

- $\rho(x) = 0$ if x is a minimal element of P;
- $\rho(y) = \rho(x) + 1$ if y covers x in P, denoted by x < y.

Define $P_i := \{x \in P : \rho(x) = i\}$ and set $p_i = p_i(P) = Card P_i$. The rank-generating function of P:

$$F(P,q) = p_0 + p_1 q + p_2 q^2 + \cdots + p_n q^n.$$

The sequence $\{p_0, p_1, p_2, \ldots, p_n\}$ is called the sequence of Whitney numbers of P. Let M_i denote the (i+1)st largest Whitney number in P. So the sequence $\{M_0, M_1, \ldots, M_n\}$ is the sequence of Whitney numbers arranged in nonincreasing order.

We say that P is rank-symmetric if $p_i = p_{n-i}$ for all i. P is rank-unimodal if

$$p_0 \leq p_1 \leq \cdots \leq p_i \geq p_{i+1} \geq \cdots \geq p_n$$

for some *i*.

An antichain (Sperner family) is a subset A of P such that no two distinct elements of A are comparable. The poset P is said to have the Sperner property (property S_1) if the largest size of an antichain is equal to $\max\{p_i: 0 \le i \le n\}$. More generally, if k is a positive integer then P is said to have the k-Sperner property (property S_k) if the largest subset of P containing no (k+1)-element chain has cardinality $\max\{p_{i_1}+\cdots+p_{i_k}: 0 \le i_1 < \cdots < i_k \le n\}$. If P has property S_k for all $k \le n$, we say that P has property S_k (strongly Sperner).

Suppose that P is graded of rank n and is rank-symmetric. We say that P has property T if for all $0 \le i \le \left[\frac{n}{2}\right]$ there exists p_i pairwise disjoint saturated chains $x_i < x_{i+1} < \cdots < x_{n-i}$ where $x_j \in P_j$.

A ranked poset P satisfies condition T'_k , $1 \le k \le n$, if there exists M_k disjoint chains in P which each intersect each of the k+1 largest ranks. P satisfies condition T' if it satisfies condition T'_k for all k. Thus the condition T' means that for all k there are disjoint chains which cover the (k+1)st largest rank and intersect every larger rank.

In fact, property T is a special case of condition T'.

Theorem

Let P be a finite graded rank-symmetric poset of rank n. The following three conditions are equivalent:

- P is rank-unimodal and has property S;
- P has property T;
- Let V_i be the complex vector space with basis P_i . Then for $0 \le i < n$, there exists linear transformations $\varphi_i : V_i \to V_{i+1}$ satisfying the following two properties:
 - If $0 \le i \le \left[\frac{n}{2}\right]$, then the composite transformation $\varphi_{n-i-1}\varphi_{n-i-2}\cdots\varphi_i:V_i\to V_{n-i}$ is invertible.
 - 2 Let $x \in P_i$ and $\varphi_i(x) = \sum_{y \in P_{i+1}} c_y y$. Then $c_y = 0$ unless x < y.

J. R. Griggs, On chains and Sperner *k*-families in ranked posets, J. Combinatorial Theory.

Let X be a complex projective variety of complex dimension n. Suppose that there are finitely many pairwise disjoint subsets C_i of X, each isomorphic as an algebraic variety to complex affine space of some dimension n_i such that

- the union of C_i 's is X,
- ② $\overline{C}_i C_i$ is a union of some of the C_j 's (\overline{C}_i denotes the closure of C_i either in Hausdorff or Zariski topology).

We then say C_i 's form a cellular decomposition of X.

Given a cellular decomposition $\{C_i\}$ of X, define a partial ordering $Q^X = Q^X(C_1, C_2...)$ on the C_i 's by setting $C_i \geq C_j$ in Q^X if $C_i \subset \overline{C}_j$. If X is irreducible of dimension n, it can be shown that Q^X is graded of rank n, with the rank function given by $\rho(C) = n - dimC$. If X is nonsingular, then $Poincar\acute{e}$ duality implies that Q^X is rank-symmetric.

9 / 29

Theorem

Let X be a nonsingular irreducible complex projective variety of complex dimension n with a cellular decomposition $\{C_i\}$. Then Q^X is graded of rank n, rank symmetric, rank unimodal and has property S.

A ranked poset is Peck if it is rank symmetric, rank unimodal and strongly Sperner.

Contents

- 1 The Sperner property
- **2** Representation of $\mathfrak{sl}(2,\mathbb{C})$
- 3 An action of $\mathfrak{sl}(2,\mathbb{C})$ on posets
- Further directions

Recall that the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ is

$$\mathfrak{sl}(2,\mathbb{C}) = \{A \in Mat_2(\mathbb{C}) : tr(A) = 0\}.$$

It has basis
$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and we have $[e, f] = h$, $[h, e] = 2e$ and $[h, f] = -2f$.

By a representation V of a Lie algebra $\mathfrak g$ we mean a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(V)$, the Lie algebra of all linear transformations of some complex vector space V. A subspace of V that is stable under the action of \mathfrak{g} is called a subrepresentation of V. A representation V is irreducible if its only subrepresentations are either 0 or V and is called completely irreducible if it is the direct sum of irreducible representations.

Definition

Let V be a representation of $\mathfrak{sl}(2,\mathbb{C})$. A vector $v \in V$ is called vector of weight λ , $\lambda \in \mathbb{C}$, if it is an eigenvector for h with eigenvalue λ :

$$hv = \lambda v$$
.

We denote by $V[\lambda] \subset V$ the subspace of vectors of weight λ .

Let λ be a weight of $V(i.e.\ V[\lambda] \neq 0)$ which is maximal in the following sense:

$$Re \lambda \ge Re \lambda'$$
 for every weight λ' of V .

Such a weight will be called a "highest weight of V", and vectors $v \in V[\lambda]$ will be called highest weight vectors.

Lemma

The actions of e and f on $V[\lambda]$ is given by

$$eV[\lambda] \subset V[\lambda+2]$$

$$fV[\lambda] \subset V[\lambda-2].$$

Proof. Let $v \in V[\lambda]$. Then

$$hev = [h, e]v + ehv = 2ev + e \cdot \lambda v = (\lambda + 2)ev,$$

so $ev \in V[\lambda + 2]$. The proof of f is similar.

Lemma

Let V be a representation of $\mathfrak{sl}(2,\mathbb{C})$ with highest weight λ and $v_0 \in V[\lambda]$ a highest weight vector. Define

$$v_k=f^kv_0,\ k\geq 0.$$

Then

- $ev_k = k(\lambda k + 1)v_{k-1}$ for k > 0 and $ev_0 = 0$;
- $bv_k = (\lambda 2k)v_k.$

Theorem

• For any $n \ge 0$, let V_n be the finite-dimensional vector space with basis v_0, v_1, \ldots, v_n . Define the action of $\mathfrak{sl}(2, \mathbb{C})$ by

$$hv_k = (n-2k)v_k, \quad 0 \le k \le n;$$

 $fv_k = v_{k+1}, \quad 0 \le k \le n, \ fv_n = 0;$
 $ev_k = k(n+1-k)v_{k-1}, \quad 0 \le k \le n, \ ev_0 = 0.$

Then V_n is an irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$; we will call the irreducible representation with highest weight n.

- 2 For $n \neq m$, representation V_n, V_m are non-isomorphic.
- **3** Every finite-dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ is isomorphic to one of representations V_n .

Theorem

Any finite dimensional representation of $\mathfrak{sl}(2,\mathbb{C})$ is completely reducible.

Theorem

Every finite-dimensional representation V of $\mathfrak{sl}(2,\mathbb{C})$ can be written in the form

$$V=\bigoplus_{n\in\mathbb{Z}}V[n],$$

This decomposition is called the weight decomposition of V.

Contents

- 1 The Sperner property
- **2** Representation of $\mathfrak{sl}(2,\mathbb{C})$
- 3 An action of $\mathfrak{sl}(2,\mathbb{C})$ on posets
- Further directions

Associate to any ranked poset

$$P = \bigcup_{i=0}^{n} P_i$$

a graded complex vector space

$$\tilde{P} = \bigoplus_{i=0}^{n} \tilde{P}_{i},$$

where \tilde{P}_i is the complex vector space freely generated by vectors \tilde{a} corresponding to elements of P_i .

A linear operator X on \tilde{P}_i is a lowering operator if $X\tilde{P}_i \subset \tilde{P}_{i-1}$. It is a raising operator if $X\tilde{P}_i \subset \tilde{P}_{i+1}$. A raising operator defined by

$$X\tilde{a} = \sum \theta(a,b)\tilde{b}$$

is an order raising operator if $\theta(a,b) \neq 0$ implies b covers a. For any poset P of length n, define a linear operator H on \tilde{P} by

$$H\tilde{a} = (2i - n)\tilde{a}$$

when $a \in P_i$.

A representation of $\mathfrak{sl}(2,\mathbb{C})$ on a complex vector space V can be thought of as a choice of three linear operators X, Y and H such that XY-YX=H, HX-XH=2X and HY-YH=-2Y.

An eigenvector for H with eigenvalue λ is referred to as a "weight vector" of the representation of "weight" λ .

Any (d+1)-dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$ has as a basis a "string" of vectors v_0, v_1, \ldots, v_d with

$$Hv_j = (2j - d)v_j;$$

 $Xv_j = v_{j+1};$
 $Yv_j = j(d - j + 1)v_{j-1}.$

Definition

Let P be a ranked poset of length n. The poset P carries a representation of $\mathfrak{sl}(2,\mathbb{C})$ if there exists a lowering operator Y and an order raising operator X on \tilde{P} such that XY-YX=H.

If P carries a representation of $\mathfrak{sl}(2,\mathbb{C})$, then the rank subspace \tilde{P}_i is the weight space of weight (2i-n) for the representation.

Lemma

A ranked poset P of length n is Peck if and only if there exists an order raising operator X on \tilde{P} such that

$$X^{n-2i}|_{\tilde{P}_i}:\tilde{P}_i\to\tilde{P}_{n-i}$$

is an isomorphism for every $0 \le i < \frac{n}{2}$.

Theorem

A ranked poset is Peck if and only if it carries a representation of $\mathfrak{sl}(2,\mathbb{C})$.

R. A. Proctor, Representations of $\mathfrak{sl}(2,\mathbb{C})$ on posets and the Sperner property, SIAM J. Algebraic Discrete Methods, 3.2 (1980), pp. 275-280.

Proof. (\Leftarrow) Let P be a ranked poset carrying a representation of $\mathfrak{sl}(2,\mathbb{C})$ with order raising operator X. Since the completely reducibility, the representation can be expressed as a direct sum of irreducible representations, $V \cong \bigoplus_i V_i$.

If one of the irreducible representations has dimension d+1, then exactly one of its d+1 basis vectors falls in each of the middle d+1 consecutive rank subspaces $\tilde{P}_{\frac{n-d}{2}}, \tilde{P}_{\frac{n-d}{2}+1}, \dots, \tilde{P}_{\frac{n+d}{2}}$.

Then the given string of the set has a member falling in \tilde{P}_{n-i} if and only if it also has a member falling in \tilde{P}_i . Since X^{d-2j} is an isomorphism from jth to (d-j)th weight space in any irreducible (d+1) dimensional representation where $0 \le j < \frac{d}{2}$. By the lemma above, P is Peck.

Let S_n denote the symmetric group of permutations of n elements, viewed as a Coxeter group with respect to the simple transpositions $s_i = (i \ i + 1)$ for $i = 1, \ldots, n-1$. The weak order $W_n = (S_n, \leq)$ is the poset structure on S_n whose cover relations are defined as follows: $u \lessdot w$ if and only if $w = us_i$ for some i and $\ell(w) = \ell(u) + 1$, where ℓ denotes Coxeter length.

This definition is in contrast to the strong order on S_n which has cover relations corresponding to the right multiplication by any $t_{ij} = (ij)$, rather than just the simple transpositions s_i .

Theorem

For all $n \ge 1$ the weak order W_n is strongly Sperner, and therefore Peck.

Christian Gaetz and Yibo Gao, A combinatorial $\mathfrak{sl}(2,\mathbb{C})$ -action and the Sperner property for the weak order. 2018. arXiv: 1811.05501 [math.CO].

Proof. Define the operators $U, D, H : CW_n \to CW_n$,

$$U \cdot w = \sum_{i:\ell(ws_i)=\ell(w+1)} i \cdot ws_i,$$

$$D \cdot w = \sum_{\substack{1 \leq i < j \leq n \\ \ell(wt_{ij}) = \ell(w) - 1}} (2(w_i - w_j - a(w, wt_{ij})) - 1) \cdot wt_{ij},$$

$$H(w) = \left(2\ell - \binom{n}{2}\right) \cdot w.$$

where $a(w, wt_{ij}) := \#\{k < i : w_j < w_k < w_i\}.$

$$UD - DU = H$$
.

Contents

- 1 The Sperner property
- **2** Representation of $\mathfrak{sl}(2,\mathbb{C})$
- 3 An action of $\mathfrak{sl}(2,\mathbb{C})$ on posets
- Further directions

Further directions

The weak and strong Bruhat orders generalize naturally to any finite Coxeter group C with the role of the simple transpositions $(i\,i+1)$ replaced by any choice of simple reflections, and the set of all transpositions $(i\,j)$ replaced by the set of all reflections in C.

Problem 1. Is the weak order on any finite Coxeter group strongly Sperner?

A ranked poset P has a symmetric chain decomposition if P can be decomposed into a disjoint union of saturated chains, each of which occupies a set of ranks which is symmetric about the middle rank of P. For example, a symmetric chain decomposition of the posets W_3 and S_3 is given by $\{123, 213, 231, 321\}$ and $\{132, 312\}$.

Problem 2. Which Coxeter group weak orders admit a symmetric chain decomposition? Do all Coxeter group strong orders admit one?