Statement:

Please add this sta	atement to the pdf you	ı are subm	itting, with your for	ull name, ID n	umber and signature:	
	at the work for the following taken by myself and the	01.	, 11			
Name:	Rotem Nizhar and Batel Mankovsky	, ID:	208646984 and 313564494	, Date:	31.7.22	
Signature: _	17510 AN					

Exploratory Data Analysis

Imports & Settings (hidden)

Load & Prepare Data (hidden) ¶

Introduction

Welcome!

In this notebook we'll walk through our data exploration process and through our findings. First, we start by looking at the main and most important dataset, which is of course food_train.csv. Let's have a look:

In [9]:	9]: food.head(2)				
Out[9]:					
	idx	brand	description	ingredients serving_size serving_size_unit household_serving_fulltext ca	tegory

_		ax	brand	description	ingredients	serving_size	serving_size_unit	nousenoia_serving_fulltext	category
	0	1	brix chocolate	milk chocolate	sugar, cocoa butter, whole milk, chocolate liq	28.0	g	1 onz	chocolate
	1	2	target stores	frosted sugar cookies	sugar, enriched bleached wheat flour (flour, n	38.0	g	1 cookie	cookies_biscuits

Precentages of null values:

n [10]: food.isna().sum()/len(food)	*100
ut[10]: idx	0.000000
brand	0.000000
description	0.000000
ingredients	0.125980
serving_size	0.000000
serving_size_unit	0.000000
household serving fulltext	0.034645
category	0.000000
dtype: float64	

Only 2 features with missing data, but in very very small percentages, so no reason to worry about missing values!

So, we can see that out of 6 features in this dataset, 4 (brand, description, ingredients and household_servring_fulltext) are textual features. The only numeric feature is serving_size, and the last one - serving_size_unit - is categorical.

Serving size unit

Let's start with the most simple one - serving_size_unit

```
In [11]: food[["serving_size_unit", "category"]].groupby(["serving_size_unit", "category"]).size()
Out[11]: serving_size_unit category
                                                                     3785
                            cakes_cupcakes_snack_cakes
                            candy
                                                                     7577
                            chips_pretzels_snacks
                                                                     3680
                            chocolate
                                                                     3772
                            cookies_biscuits
                                                                     5284
                            popcorn_peanuts_seeds_related_snacks
                                                                      7645
         ml
                            cakes_cupcakes_snack_cakes
                                                                        1
                                                                        7
                            candy
         dtype: int64
```

Only 8 products with ml, the rest in grams. So doesn't look interesting:(

Serving size

We'll continue with serving_size, and see its distribution by category: (code hidden)

We see that for the cakes_cupcakes_snack_cakes category, and serving_size values are significantly higher than for the other categories, but for all other categories the distribution of values is similar, more or less (candy is also a bit different than the others categories, but not by much). We can conclude from this that this feature might be useful for prediction, ecpesially for the cakes_cupcakes_snack_cakes category.

Brands

Let's move on to Brands!

How many brands are there?

```
In [13]: len(food.brand.unique())
Out[13]: 4783
```

That's quite a lot, considering the size of the dataset.

How are they distributed? Do all brands have a similar amount of products? or do some have a lot and others only a few?

```
In [14]: v = food.brand.value_counts()
    print(np.mean(v))
    print(np.median(v))

6.638302320719214
```

In [15]: _ = v.plot(kind='hist', bins=100)

Well, there are some brands with almost 600 different products (so few we can't see it in the graph), but obviously most of them have just a few products in this dataset (Average is 6.64). Let's look only at brands with less than 20 products, so we can actually see the distribution better:

So yeah, most brands have only a few products.

Now, we thought it will be interesting to see if there are "expert brands", meaning brands that specialize in only 1 category. This might help us better understand how useful the brand feature is, because if many brands only specialize in little categories than it is a strong indicator of the category, and vice versa.

The following code (hidden) returns all brands that only appear in 1 category, and have more than 30 products each.

Out[17]:

category	num_of_foods	brand	
popcorn_peanuts_seeds_related_snacks	118	nabisco food company	5
popcorn_peanuts_seeds_related_snacks	104	john b. sanfilippo & son, inc.	4
popcorn_peanuts_seeds_related_snacks	71	star snacks co., inc.	9
popcorn_peanuts_seeds_related_snacks	41	hines nut company	3
cookies_biscuits	36	abimar foods, inc.	0
candy	95	sunmark	10
candy	80	wm. wrigley jr. company	11
candy	52	perfetti van melle usa inc.	6
candy	42	charms company	2
candy	35	american licorice company	1
candy	33	spangler candy company	8
cakes_cupcakes_snack_cakes	31	rocky mountain pies	7

So, these brands will likely be very indicative of their cagetories.

Let's see the whole histogram of number of products per brand, for only those "expert brands":

So, like we've seen for all brands in general - most of these brands have only very few products, so we can't count on them being very useful for prediction, as it might be the case that they have also other categories which we've just not seen yet. But for those few expert brands with high number of products - the brand feature will probably be very useful

Does the number of "expert brands" and the number of products they have vary between the categories? Let's have a look at all "expert brands" with 20 or more products, per category:

In [19]: plot expert brands(20)

Cool, so we see that 'candy' and 'popcorn_peanuts_seeds_related_snacks' categories have more expert brands, while 'chocolate', 'chips_pretzels_snacks' and 'cakes_cupcakes_snack_cakes' have only 3-4 brands like this, so there is some difference in that sense, so probably it will be easier to predict for 'candy' and 'popcorn_peanuts_seeds_related_snacks' categories using the brand data than for the rest.

Ingredients

Let's move on to...Ingredients!

First, let's look just at the number of different ingredients by category: (code hidden)

we see that 'cakes_cupcakes_snack_cakes' category has more ingredients than all others categories, and it seems pretty significant difference. Might be useful to add number of ingredients as a new feature!

Let's check the same again without to see the other differences better: (code hidden)

Yes, 'cookies_biscuits' have a bit more ingredients than other categories...

Let's have a look at the 5 most common ingredients for each category, and see if knowing these ingredients helps us predict the category. In the following 6 graphs (1 for each category), we see the percentage of products in each category out of all products that contain the 5 most common ingredients (for the specific category we're looking at).

cookies_biscuits with 5 most common ing [' salt', ' sugar', ' folic acid', ' niacin', ' soy lecithin']

chocolate with 5 most common ing [' cocoa butter', ' salt', ' sugar', ' soy lecithin', 'sugar']

chips_pretzels_snacks with 5 most common joe [' salt', 'potatoes', ' citric acid', ' sea salt', ' sugar']

candy with 5 most common ing [' yellow ', ' citric acid', ' red ', ' corn syrup', ' sugar']

80

80

80

80

80

10.7

10.7

19.8

33.3

Agran Taganta Sanda Sanda

category

cakes_cupcakes_snack_cakes with 5 most common ing [' salt', ' water', ' soy lecithin', ' folic acid', ' sugar']

What can we learn from this?

- 'popcorn_peanuts_seeds_related_snacks': not only that the 5 most common ingredients do not predict this category, but they are actually more common in many other categories.
- 'cookies_biscuits': half of these products are actually from this category, but we also see they are common in 'cakes_cupcakes_snack_cakes'.
- 'chocolate': common in 'chocolate' but also common in all other categories, except 'chips_pretzels_snacks'.
- 'chips_pretzels_snacks': This one is nice these 5 ingredients only appear in the 'chips_pretzels_snacks' category, so yeah, as one could expect potatos are a strong indicator for chips category:)
- 'candy': same as 'popcorn_peanuts_seeds_related_snacks' not very indicative.
- 'cakes_cupcakes_snack_cakes': quite indicative! 70% of products that have these ingredients are from this category. Also popular in 'cookies_biscuits'.

And to conclude: seems that some ingredients that are also very popular, will be good indicators for category, but not always.

Household serving fulltext

Let's look a bit into the **household_serving_fulltext** feature now:

What are the most common words in this feature? how many times they appear? (code hidden)

In [24]: df_common_household_serving_words.head(5)
Out[24]:

	Name	Value
0	onz	15540
3	pieces	11238
12	cup	6944
2	cookies	4036
1	cookie	2298

Ok, but are these common words interesting? do they tell us something about the category? Let's see: (code hidden)

To get a better understanding, we'll want a tabular format where we can both see how much a word is **popular** in the category (2nd column), and also the percentage of this category out of all the appreances of this word (3rd column). We'll look at the 3 most popular words in each sense, for each category: (code hidden)

	word	prods with word in category / all prods in category	prods with word in category / all prods with word	category
18	danish	1.45	100.00	cakes_cupcakes_snack_cakes
19	donuts	2.17	100.00	cakes_cupcakes_snack_cakes
20	donut	4.99	100.00	cakes_cupcakes_snack_cakes
30	wafers	2.50	99.25	cookies_biscuits
0	cake	29.50	98.94	cakes_cupcakes_snack_cakes
7	chips	9.46	98.86	chips_pretzels_snacks
31	cookies	38.25	98.54	cookies_biscuits
21	cane	0.79	98.36	candy
32	cookie	59.39	97.97	cookies_biscuits
22	lollipop	1.03	95.12	candy
23	pops	1.21	94.85	candy
33	1/4	5.13	94.69	popcorn_peanuts_seeds_related_snacks
27	squares	4.59	94.02	chocolate
34	cups	0.92	90.91	popcorn_peanuts_seeds_related_snacks
28	balls	1.86	89.74	chocolate
35	tbsp	6.98	89.45	popcorn_peanuts_seeds_related_snacks
29	square	5.91	89.20	chocolate
15	cup	41.70	82.51	popcorn_peanuts_seeds_related_snacks
25	pretzels	4.18	66.96	chips_pretzels_snacks
5	pieces	45.49	60.83	candy
4	piece	51.98	60.42	candy
3	pie	52.04	57.62	candy
26	bag	3.26	37.97	chips_pretzels_snacks
6	onz	71.41	33.82	chips_pretzels_snacks
16	onz	32.58	32.06	popcorn_peanuts_seeds_related_snacks
8	about	6.11	27.41	chips_pretzels_snacks
10	piece	38.63	22.33	chocolate
11	pieces	33.19	22.07	chocolate
9	pie	38.68	21.30	chocolate
1	onz	21.90	10.67	cakes_cupcakes_snack_cakes
14	onz	12.68	8.62	cookies_biscuits
2	pie	13.15	7.27	cakes_cupcakes_snack_cakes

We can also plot this with the x-axis being the 2nd column and y-axis the 3rd column: (code hidden)

Well, here we can see better that there are some words (like cookies, cookie, cup, pieces) that have high precentages in both categories, which means they're pretty interesting for prediction. But we also see some words (like onz, grm), while having the highest precetage of appearances in the category, are still not indicative and also don't appear that much in the category.

We can assume that most other words, that do not appear here because their percentages are even lower, will not be very useful for prediction.

Description

Yalla, let's move on to description:

What are the most common words in this feature? (individually) (code hidden)

Out[27]:

	Name	Value
1	chocolate	6849
4	cookies	3226
193	candy	3097
18	chips	2671
0	milk	1988
115	dark	1857
100	with	1580
103	potato	1412
57	roasted	1399
28	cake	1310

Similarly to 'household_serving_fulltext', let's look at a table containing both "prods with word / all prods in category" and "prods with word in category / all prods with word": (code hidden)

In [29]: mixed_table_desc.sort_values(mixed_table_desc.columns[2], ascending=False).drop_duplicates()

Out[29]:

	word	prods with word in category / all prods in category	prods with word in category / all prods with word	category
24	tortilla	18.40	99.71	chips_pretzels_snacks
33	trail	9.60	99.59	popcorn_peanuts_seeds_related_snacks
34	cashews	8.67	98.66	popcorn_peanuts_seeds_related_snacks
25	potato	37.61	98.16	chips_pretzels_snacks
30	cookies	58.59	97.79	cookies_biscuits
35	popcorn	12.01	97.35	popcorn_peanuts_seeds_related_snacks
12	cookie	68.15	95.85	cookies_biscuits
0	cake	55.60	94.18	cakes_cupcakes_snack_cakes
26	chips	67.39	94.12	chips_pretzels_snacks
21	candy	36.17	90.65	candy
16	nuts	21.10	79.73	popcorn_peanuts_seeds_related_snacks
22	candies	5.30	79.60	candy
6	chip	68.59	78.73	chips_pretzels_snacks
23	fruit	9.76	74.75	candy
3	and	43.43	67.68	candy
17	salt	18.38	63.75	popcorn_peanuts_seeds_related_snacks
27	dark	29.64	63.02	chocolate
32	sugar	7.08	62.96	cookies_biscuits
10	milk	30.81	59.96	chocolate
15	nut	29.08	56.81	popcorn_peanuts_seeds_related_snacks
19	pie	14.95	56.66	cakes_cupcakes_snack_cakes
29	chocolate	82.10	46.77	chocolate
20	creme	6.18	32.41	cakes_cupcakes_snack_cakes
14	chocolate	23.16	18.48	cookies_biscuits
5	chocolate	10.15	11.63	candy
1	chocolate	14.95	8.55	cakes_cupcakes_snack_cakes

And we can plot is similarly, as well: (code hidden)

Here we see, compared to 'household_full_text', more words that have a high score in both categories, and we can assume that this feature will be more helpful in the prediction process.

Nutrients

And the last feature: Nutrients! For this, we'll first combine the 2 dataset that contain information about nutrients with the main one:

Is there a difference in the number of different nutrients in each category? (code hidden)

Out[31]:

	category	name
0	cakes_cupcakes_snack_cakes	37
1	candy	36
2	chips_pretzels_snacks	40
3	chocolate	38
4	cookies_biscuits	40
5	popcorn peanuts seeds related snacks	41

Nope, seems like they're more or less the same...

Maybe let's look at the average number of nutrients per product, for each category? (code hidden)

Pretty similar as well...maybe the 'candy' distribution looks a little bit different, but nothing major.

Are there nutrients that exist not in all categories, but only in a few? Are there nutrients that exist only in ONE category?

Here we can see a graph for each category. In each graph, we see the nutrients that exist in this category, and are absent in at least one other category. So, value of 1 will meant that this nutrient is exclusive for this category, and a value of 5 will mean that this nutrient exists in 4 other categories as well. (code hidden)

We see that some categories, like choclate, popcorn_peanuts_seeds_related_snacks and cookies_biscuits have more exclusive nutrients than others, but not by much, so maybe it's not very interesting.

We can of course perform the same exploration as we've done on ingridients and description (does not appear here because it will be quite repetative and we have to stop somewhere). By doing this we'll be able to see which nutrients are more indicative than others, althought we already see part of the picture from the graphs above.

Images

let's look on the images dimensions:

We can see that width distribution tends to get higher values than height distribution, and the maximum value of both distributions is not bigger than 160-170. Therefore, when we will extract our images to our CNN we will resampe them to be at size of 160*160.

let's also compare image^T dimensions of the train group to images dimensions of the test group:

In [9]: compre_train_test_img('height')

In [10]: compre_train_test_img('width')

We see that both distributions are similar so at least according to images dimensions, it seems we can use images to predict food labels.

Conclusions

Obviously, there are more connections and relations to explore here, but we think it's comprehansive enough for the task at hand, and if we feel that we lack some understanding of the data for better prediction, we'll come back here.

Overall, our main impressions from the data explorations are:

- 1) Almost no missing data, horray!
- 2) We strongly believe that the most meaningful features are going to be the textual ones-brand, description, etc.
- 3) Serving size is interesing for 1 category but not very much so for the rest.
- 4) Might be worth adding "number of ingredients" as a new feature.
- 5) Maybe we just lack the expertise, but plotting only categorical data is slightly less fun and nice than numeric data :)

Let's do some NN! And a meme for dessert:

