Scilab Textbook Companion for Higher Engineering Mathematics by B. S. Grewal¹

Created by
Karan Arora and Kush Garg
B.Tech. (pursuing)
Civil Engineering
Indian Institute of Technology Roorkee
College Teacher
Self
Cross-Checked by
Santosh Kumar, IIT Bombay

May 19, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Higher Engineering Mathematics

Author: B. S. Grewal

Publisher: Khanna Publishers, New Delhi

Edition: 40

Year: 2007

ISBN: 8174091955

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Solution of equation and curve fitting	6
2	Determinants and Matrices	16
4	Differentiation and Applications	31
5	Partial Differentiation And Its Applications	48
6	Integration and its Applications	52
9	Infinite Series	60
10	Fourier Series	65
13	Linear Differential Equations	7 6
21	Laplace Transform	85
22	Integral Transform	99
23	Statistical Methods	102
24	Numerical Methods	115
26	Difference Equations and Z Transform	125
27	Numerical Solution of Ordinary Differential Equations	133

28 Numerical Solution of Partial Differential Equations	152
34 Probability and Distributions	162
35 Sampling and Inference	180

List of Scilab Codes

Exa 1.1	finding the roots of quadratic equations	6
Exa 1.2	finding the roots of equation containing one variable .	6
Exa 1.3	finding the roots of equation containing one variable .	7
Exa 1.6	finding the roots of equation containing one variable .	7
Exa 1.7	finding the roots of equation containing one variable .	7
Exa 1.11	forming an equation with known roots	8
Exa 1.12	forming an equation under restricted conditions	8
Exa 1.13	finding the roots of equation containing one variable .	9
Exa 1.14	finding the roots of equation containing one variable .	9
Exa 1.15	finding the roots of equation containing one variable .	10
Exa 1.16	finding the roots of equation containing one variable .	10
Exa 1.17	finding the roots of equation containing one variable .	10
Exa 1.18	Finding the roots of equation containing one variable .	11
Exa 1.19	Finding the roots of equation containing one variable .	11
Exa 1.20	Finding the roots of equation containing one variable .	11
Exa 1.21	Finding the roots of equation containing one variable .	12
Exa 1.22	Finding the roots of equation containing one variable .	12
Exa 1.23	Finding the solution of equation by drawing graphs	12
Exa 1.24	Finding the solution of equation by drawing graphs	13
Exa 1.25	Finding the solution of equation by drawing graphs	14
Exa 2.1	Calculating Determinant	16
Exa 2.2	Calculating Determinant	16
Exa 2.3	Calculating Determinant	17
Exa 2.4	Calculating Determinant	17
Exa 5.8	Partial derivative of given function	17
Exa 2.16	product of two matrices	18
Exa 2.17	Product of two matrices	18
Exa 2.18	Product and inverse of matrices	18

Exa	2.19	Solving equation of matrices
Exa	2.20	Nth power of a given matrix
Exa	2.23	Inverse of matrix
Exa	2.24.1	Rank of a matrix
Exa	2.24.2	Rank of a matrix
	2.25	Inverse of matrix
Exa	2.26	eigen values vectors rank of matrix
Exa	2.28	Inverse of a matrix
Exa	2.31	Solving equation using matrices
Exa	2.32	Solving equation using matrices
Exa	2.34.1	predicting nature of equation using rank of matrix 22
Exa	2.34.2	predicting nature of equation using rank of matrix 22
Exa	2.38	Inverse of a matrix
Exa	2.39	Transpose and product of matrices
Exa	2.42	eigen values and vectors of given matrix
Exa	2.43	eigen values and vectors of given matrix
Exa	2.44	eigen values and vectors of given matrix
Exa	2.45	eigen values and characteristic equation 25
Exa	2.46	eigen values and characteristic equation 26
Exa	2.47	eigen values and characteristic equation 26
Exa	2.48	eigen values and vectors of given matrix
Exa	2.49	eigen values and vectors of given matrix
Exa	2.50	eigen values and vectors of given matrix
Exa	2.51	eigen values and vectors of given matrix
Exa	2.52	Hermitian matrix
Exa	2.53	tranpose and inverse of complex matrix
Exa	2.54	Unitary matrix
Exa	4.4.1	finding nth derivative
Exa	4.5	finding nth derivative
Exa	4.6	finding nth derivative
Exa	4.7	finding nth derivative
Exa	4.8	proving the given differential equation
Exa	4.9	proving the given differential equation
Exa	4.10	proving the given differential equation
	4.11	verify roles theorem
	4.16	expansion using maclaurins series
Exa	4.17	expanding function as fourier series of sine term 37
Exa	4.18	expansion using maclaurins series
		6

Exa	4.19	expansion using maclaurins series
Exa	4.20	expansion using taylors series
Exa	4.21	taylor series
Exa	4.22	evaluating limit
Exa	4.32	tangent to curve
Exa	4.34	finding equation of normal
Exa	4.35	finding angle of intersection of curve
Exa	4.37	prove given tangent statement
Exa	4.39	finding angle of intersection of curve
Exa	4.41	finding pedal equation of parabola
Exa	4.43	finding radius of curvature of cycloid 4
Exa	4.46	radius of curvature of cardoid
Exa	4.47	coordinates of centre of curvature
Exa	4.48	proof statement cycloid
Exa	4.52	maxima and minima
Exa	4.61	finding the asymptotes of curve
Exa	5.5	Partial derivative of given function
Exa	5.14	Partial derivative of given function
Exa	5.25.1	Partial derivative of given function
		Partial derivative of given function
		Partial derivative of given function
Exa	5.26	Partial derivative of given function
Exa	5.30	Partial derivative of given function
Exa	6.1.1	indefinite integral
Exa	6.1.2	indefinite integral
Exa	6.2.1	definite integral
Exa	6.2.2	Definite Integration of a function
Exa	4.2.3	definite integral
Exa	6.2.3	definite integral
Exa	6.4.1	definite integral
Exa	4.4.2	definite integral
Exa	6.5	definite integral
Exa	6.6.1	reducing indefinite integral to simpler form 55
Exa	6.7.1	Indefinite Integration of a function
Exa	6.8	Getting the manual input of a variable and integration 50
Exa	6.9.1	Definite Integration of a function
Exa	6.9.2	Definite Integration of a function
Exa	6.10	definite integral 56

Exa	6.12	Definite Integration of a function	57
Exa	6.13	sum of infinite series	57
Exa	6.14	finding the limit of the function	57
Exa	6.15	Definite Integration of a function	58
Exa	6.16	Definite Integration of a function	58
Exa	6.24	Calculating the area under two curves	58
Exa	9.1	to find the limit at infinity	60
Exa	9.1.3	to find the limit at infinity	60
Exa	9.2.1	to find the sum of series upto infinity	60
Exa	9.2.2	to check for the type of series	61
Exa	9.5.1	to check the type of infinite series	61
Exa	9.5.2	to check the type of infinite series	61
Exa	9.7.1	to check the type of infinite series	62
Exa	9.7.3	to check the type of infinite series	62
Exa	9.8.1	to find the sum of series upto infinity	62
Exa	9.8.2	to find the limit at infinity	63
Exa	9.10.1	to find the limit at infinity	63
Exa	9.10.2	to find the limit at infinity	63
Exa	9.11.1	to find the limit at infinity	63
Exa	9.11.2	to find the limit at infinity	64
Exa	10.1	finding fourier series of given function	65
Exa	10.2	finding fourier series of given function	65
Exa	10.3	finding fourier series of given function	66
Exa	10.4	finding fourier series of given function	66
Exa	10.5	finding fourier series of given function in interval minus	
		pi to pi	67
Exa	10.6	finding fourier series of given function in interval minus	
		1 to 1	68
Exa	10.7	finding fourier series of given function in interval minus	
		pi to pi	68
Exa	10.8	finding fourier series of given function in interval minus	
		pi to pi	69
	10.9	finding half range sine series of given function	69
Exa	10.10	finding half range cosine series of given function	70
Exa	10.11	expanding function as fourier series of sine term	71
Exa	10.12	finding fourier series of given function	71
Exa	10.13	finding complex form of fourier series	72
		practical harmonic analysis	72

Exa 10).15 pra	actica	al harm	onic a	nalysi	S .							73
Exa 10).16 pra	actica	al harm	onic a	nalysi	s .							73
Exa 10).17 pra	actica	al harm	onic a	nalysi	s .							74
Exa 13	$8.1 ext{ sol}$	vinf l	linear d	iffere	ntial e	quat	ion						76
Exa 13	3.2 sol	ving	linear o	liffere	ntial e	equa	tion	ι.					76
Exa 13	$3.3 ext{ sol}$	ving	linear o	liffere	ntial e	equa	tion	ι.					77
Exa 13	8.4 sol	ving	linear o	liffere	ntial e	equa	tion	ι.					77
Exa 13	6.5 fin	ding	particu	lar in	tegral								78
Exa 13			particu										78
Exa 13	3.7 fin	ding	particu	lar in	tegral								79
Exa 13	8.8 fin	ding	particu	lar in	tegral								79
Exa 13	3.9 fin	ding	particu	lar in	tegral								80
Exa 13	3.10 fin	ding	particu	lar in	tegral								80
Exa 13			the give										81
Exa 13	3.12 sol	ving	the give	en lin	ear eq	uati	on						81
Exa 13	8.13 sol	ving	the give	en lin	ear eq	uati	on						82
Exa 13	8.14 sol	ving	the give	en lin	ear eq	uati	on						83
Exa 21	.1.1 fin	ding	laplace	trans	form								85
Exa 21	.1.2 fin	ding	laplace	trans	form								85
Exa 21	.1.3 fin	ding	laplace	trans	form								85
Exa 21	.2.1 fin	ding	laplace	trans	form								86
Exa 21	.2.2 fin	ding	laplace	trans	form								86
Exa 21	.2.3 fin	ding	laplace	trans	form								86
Exa 21	.4.1 fin	ding	laplace	trans	form								87
Exa 21	.4.2 fin	ding	laplace	trans	form								87
Exa 21	.5 fin	ding	laplace	trans	form								87
Exa 21	.7 fin	ding	laplace	trans	form								88
Exa 21	.8.1 fin	ding	laplace	trans	form								88
Exa 21	.8.2 fin	ding	laplace	trans	form								88
Exa 21	.8.3 fin	ding	laplace	trans	form								89
Exa 21	.8.4 fin	ding	laplace	trans	form								89
Exa 21	.9.1 fin	ding	laplace	trans	form								89
Exa 21	.9.2 fin	ding	laplace	trans	form								90
	.10.1fin		_										90
	.10.3fin												90
	.11.1fin					nsfo	rm						91
	.11.2fin												91
	12.1fin												91

Exa 21.12.3	3 finding inverse laplace transform
Exa 21.13.1	1 finding inverse laplace transform
Exa 21.13.5	2 finding inverse laplace transform
Exa 21.14.1	1 finding inverse laplace transform
Exa 21.14.5	2finding inverse laplace transform
	1 finding inverse laplace transform
Exa 21.15.5	2 finding inverse laplace transform
Exa 21.16.1	1 finding inverse laplace transform
Exa 21.16.2	2 finding inverse laplace transform
Exa 21.16.3	3 finding inverse laplace transform
Exa 21.17.1	1 finding inverse laplace transform
Exa 21.17.5	2 finding inverse laplace transform
Exa 21.19.1	1 finding inverse laplace transform
Exa 21.19.5	2 finding inverse laplace transform
Exa 21.28.	1finding laplace transform
Exa 21.28.2	2finding laplace transform
Exa 21.34	finding laplace transform
Exa 22.1	finding fourier sine integral
Exa 22.2	finding fourier transform
Exa 22.3	finding fourier transform
Exa 22.4	finding fourier sine transform
Exa 22.5	finding fourier cosine transform
Exa 22.6	finding fourier sine transform
Exa 23.1	Calculating cumulative frequencies of given using itera-
	tions on matrices
Exa 23.2	Calculating mean of of statistical data performing iter-
	ations matrices
Exa 23.3	Analysis of statistical data performing iterations on ma-
	trices
Exa 23.4	Analysis of statistical data 105
Exa 23.5	Finding the missing frequency of given statistical data
	using given constants
Exa 23.6	Calculating average speed
Exa 23.7	Calculating mean and standard deviation performing it-
	erations on matrices
Exa 23.8	Calculating mean and standard deviation performing it-
	erations on matrices

Exa 23.9	Analysis of statistical data performing iterations on ma-	100
Exa 23.10	Colculation mean and standard deviation of different	109
Exa 25.10	Calculating mean and standard deviation of different statistical data when put together	111
Exa 23.12		111
Exa 25.12	performing iterations on matrices	111
Exa 23.13	Calculating coefficient of correlation	$111 \\ 112$
Exa 24.1	finding the roots of equation	$112 \\ 115$
Exa 24.1 Exa 24.3	finding the roots of equation by the method of false	110
Exa 24.0	statement	116
Exa 24.4	finding rea roots of equation by regula falsi method	116
Exa 24.5	real roots of equation by newtons method	117
Exa 24.6	real roots of equation by newtons method	118
Exa 24.7	evaluating square root by newtons iterative method	119
Exa 24.10	solving equations by guass elimination method	119
Exa 24.12	solving equations by guass elimination method	121
Exa 24.13	solving equations by guass elimination method	123
Exa 26.2	finding difference equation	125
Exa 26.3	solving difference equation	126
Exa 26.4	solving difference equation	126
Exa 26.6	firming fibonacci difference equation	127
Exa 26.7	solving difference equation	127
Exa 26.8	solving difference equation	128
Exa 26.10	solving difference equation	129
Exa 26.11	solving difference equation	129
Exa 26.12	solving simultanious difference equation	130
Exa 26.15.	2Z transform	131
$\rm Exa~26.16$	evaluating u2 and u3	131
Exa 27.1	solving ODE with picards method	133
Exa 27.2	solving ODE with picards method	133
Exa 27.5	solving ODE using Eulers method	134
Exa 27.6	solving ODE using Eulers method	135
Exa 27.7	solving ODE using Modified Eulers method	135
Exa 27.8	solving ODE using Modified Eulers method	136
Exa 27.9	solving ODE using Modified Eulers method	137
Exa 27.10	solving ODE using runge method	138
Exa 27.11	solving ODE using runge kutta method	139
Exa 27 12	solving ODE using runge kutta method	139

Exa	27.13	solving ODE using runge kutta method 1
Exa	27.14	solving ODE using milnes method
Exa	27.15	solving ODE using runge kutta and milnes method 1
Exa	27.16	solving ODE using adamsbashforth method 1
Exa	27.17	solving ODE using runge kutta and adams method 1
Exa	27.18	solving simultanious ODE using picards method 1
Exa	27.19	solving ssecond ODE using runge kutta method 1
Exa	27.20	solving ODE using milnes method
Exa	28.1	classification of partial differential equation
Exa	28.2	solving elliptical equation
Exa	28.3	evaluating function satisfying laplace equation 1
Exa	28.4	solution of poissons equation
Exa	28.5	solving parabolic equation
Exa	28.6	solving heat equation
Exa	28.7	solving wave equation
Exa	28.8	solving wave equation
Exa	34.1	Calculating probability
Exa	34.2.1	Calculating the number of permutations
Exa	34.2.2	Number of permutations
		Calculating the number of committees 1
Exa	34.3.2	Finding the number of committees
Exa	34.3.3	Finding the number of committees
Exa	34.4.1	Finding the probability of getting a four in a single
		throw of a die
Exa	34.4.2	Finding the probability of getting an even number in a
		single throw of a die
Exa	34.5	Finding the probability of 53 sundays in a leap year . 1
Exa	34.6	probability of getting a number divisible by 4 under
		given conditions
Exa	34.7	Finding the probability
Exa	34.8	Finding the probability
Exa	34.9.1	Finding the probability
		Finding the probability
		Finding the probability
		probability of drawing an ace or spade from pack of 52
		cards
Exa	34.14.1	Finding the probability
		Finding the probability

Exa 34.15.2	2Finding the probability 169
Exa 34.15.3	BFinding the probability
Exa 34.16	Finding the probability
Exa 34.17	Finding the probability
	Finding the probability
Exa 34.19.1	1Finding the probability 170
Exa 34.19.2	2Finding the probability 171
Exa 34.19.3	3Finding the probability 171
Exa 34.20	Finding the probability
Exa 34.22	Finding the probability
Exa 34.23	Finding the probability
Exa 34.25	finding the probability
Exa 34.26	finding the probability
Exa 34.27	finding the probability
Exa 34.28	finding the probability
Exa 34.29	finding the probability
Exa 34.30	finding the probability
Exa 34.31	finding the probability
Exa 34.33	finding the probability
Exa 34.34	finding the probability
Exa 34.35	finding the probability
Exa 34.38	finding the probability
Exa 34.39	finding the probability
Exa 34.40	finding the probability
Exa 35.1	calculating the SD of given sample
Exa 35.2	Calculating SD of sample
Exa 35.3	Analysis of sample
Exa 35.4	Analysis of sample
Exa 35.5	Checking whether real difference will be hidden 182
Exa 35.6	Checking whether given sample can be regarded as a
	random sample
Exa 35.9	Checking whethet samples can be regarded as taken
	from the same population
Exa 35.10	calculating SE of difference of mean hieghts 184
Exa 35.12	Mean and standard deviation of a given sample 184
Exa 35.13	Mean and standard deviation of a given sample 185
Exa 34.15	Standard deviation of a sample

List of Figures

1.1	Finding the solution of equation by drawing graphs .			13
1.2	Finding the solution of equation by drawing graphs .			14
1.3	Finding the solution of equation by drawing graphs .			15
6.1	Calculating the area under two curves			59

Chapter 1

Solution of equation and curve fitting

Scilab code Exa 1.1 finding the roots of quadratic equations

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=2*(x^3)+x^2-13*x+6
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.2 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0],'x');
4 p=3*(x^3)-4*(x^2)+x+88
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.3 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^3-7*(x^2)+36
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.6 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^4-2*(x^3)-21*(x^2)+22*x+40
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.7 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=2*(x^4)-15*(x^3)+35*(x^2)-30*x+8
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.11 forming an equation with known roots

```
1 clear
2 clc
3 x = poly([0], 'x');
4 x1 = poly([0], 'x1');
5 x2 = poly([0], 'x2');
6 x3 = poly([0], 'x3');
7 p=x^3-3*(x^2)+1
8 disp("the roots of above equation are ")
9 roots(p)
10 disp("let ")
11 \times 1 = 0.6527036
12 \quad x2 = -0.5320889
13 x3=2.8793852
14 disp("so the equation whose roots are cube of the
      roots of above equation is (x-x1^3)*(x-x2^3)*(x-x2^3)
      x3^3 = 0 = "
15 p1=(x-x1^3)*(x-x2^3)*(x-x3^3)
```

Scilab code Exa 1.12 forming an equation under restricted conditions

```
1 clear
2 clc
3 x=poly([0],'x');
4 x1=poly([0],'x1');
5 x2=poly([0],'x2');
6 x3=poly([0],'x3');
7 x4=poly([0],'x4');
8 x5=poly([0],'x5');
9 x6=poly([0],'x6');
10 p=x^3-6*(x^2)+5*x+8
11 disp("the roots of above equation are ")
12 roots(p)
13 disp("let ")
```

Scilab code Exa 1.13 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=6*(x^5)-41*(x^4)+97*(x^3)-97*(x^2)+41*x-6
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.14 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=6*(x^6)-25*(x^5)+31*(x^4)-31*(x^2)+25*x-6
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.15 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^3-3*(x^2)+12*x+16
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.16 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=28*(x^3)-9*(x^2)+1
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.17 finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^3+x^2-16*x+20
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.18 Finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0],'x');
4 p=x^3-3*(x^2)+3
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.19 Finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^4-12*(x^3)+41*(x^2)-18*x-72
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.20 Finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0],'x');
4 p=x^4-2*(x^3)-5*(x^2)+10*x-3
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.21 Finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^4-8*(x^2)-24*x+7
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.22 Finding the roots of equation containing one variable

```
1 clear
2 clc
3 x=poly([0], 'x');
4 p=x^4-6*(x^3)-3*(x^2)+22*x-6
5 disp("the roots of above equation are ")
6 roots(p)
```

Scilab code Exa 1.23 Finding the solution of equation by drawing graphs

```
1 clear
2 clc
3 xset('window',1)
4 xtitle("My Graph","X axis","Y axis")
5 x=linspace(1,3,30)
6 y1=3-x
7 y2=%e^(x-1)
8 plot(x,y1,"o-")
9 plot(x,y2,"+-")
10 legend("3-x","%e^(x-1)")
```


Figure 1.1: Finding the solution of equation by drawing graphs

11 disp("from the graph, it is clear that the point of intersection is nearly x=1.43")

Scilab code Exa 1.24 Finding the solution of equation by drawing graphs

```
1 clear
2 clc
3 xset('window',2)
4 xtitle("My Graph","X axis","Y axis")
5 x=linspace(1,3,30)
6 y1=x
7 y2=sin(x)+%pi/2
8 plot(x,y1,"o-")
9 plot(x,y2,"+-")
10 legend("x","sin(x)+%pi/2")
11 disp("from the graph, it is clear that the point of intersection is nearly x=2.3")
```


Figure 1.2: Finding the solution of equation by drawing graphs

Scilab code Exa 1.25 Finding the solution of equation by drawing graphs

```
1 clear
2 clc
3 xset('window',3)
4 xtitle("My Graph","X axis","Y axis")
5 x=linspace(0,3,30)
6 y1=-sec(x)
7 y2=cosh(x)
8 plot(x,y1,"o-")
9 plot(x,y2,"+-")
10 legend("-sec(x)","cosh(x)")
11 disp("from the graph, it is clear that the point of intersection is nearly x=2.3")
```


Figure 1.3: Finding the solution of equation by drawing graphs

Chapter 2

Determinants and Matrices

Scilab code Exa 2.1 Calculating Determinant

```
1 clc
2 syms a;
3 syms h;
4 syms g;
5 syms b;
6 syms f;
7 syms c;
8 A=[a h g;h b f;g f c]
9 det(A)
```

Scilab code Exa 2.2 Calculating Determinant

```
1 clear
2 clc
3 a=[0 1 2 3;1 0 3 0;2 3 0 1;3 0 1 2]
4 disp("determinant of a is ")
5 det(a)
```

Scilab code Exa 2.3 Calculating Determinant

```
1 clc
2 syms a;
3 syms b;
4 syms c;
5 A=[a a^2 a^3-1;b b^2 b^3-1;c c^2 c^3-1]
6 det(A)
```

Scilab code Exa 2.4 Calculating Determinant

```
1 clear
2 clc
3 a=[21 17 7 10;24 22 6 10;6 8 2 3;6 7 1 2]
4 disp("determinant of a is ")
5 det(a)
```

Scilab code Exa 5.8 Partial derivative of given function

```
1 clc
2 syms x y
3 u=x^y
4 a=diff(u,y)
5 b=diff(a,x)
6 c=diff(b,x)
7 d=diff(u,x)
8 e=diff(d,y)
9 f=diff(e,x)
10 disp('clearly,c=f')
```

Scilab code Exa 2.16 product of two matrices

```
1 clear
2 clc
3 A=[0 1 2;1 2 3;2 3 4]
4 B=[1 -2;-1 0;2 -1]
5 disp("AB= ")
6 A*B
7 disp("BA= ")
8 B*A
```

Scilab code Exa 2.17 Product of two matrices

```
1 clear
2 clc
3 A=[1 3 0;-1 2 1;0 0 2]
4 B=[2 3 4;1 2 3;-1 1 2]
5 disp("AB= ")
6 A*B
7 disp("BA= ")
8 B*A
9 disp("clearly AB is not equal to BA")
```

Scilab code Exa 2.18 Product and inverse of matrices

```
1 clear
2 clc
3 A=[3 2 2;1 3 1;5 3 4]
4 C=[3 4 2;1 6 1;5 6 4]
```

```
5 disp("AB=C -->B=inv(A)*C")
6 B=inv(A)*C
```

Scilab code Exa 2.19 Solving equation of matrices

```
1 clear
2 clc
3 A=[1 3 2;2 0 -1;1 2 3]
4 I=eye(3,3)
5 disp("A^3-4*A^2-3A+11I=")
6 A^3-4*A*A-3*A+11*I
```

Scilab code Exa 2.20 Nth power of a given matrix

```
1 clc
2 A=[11 -25;4 -9]
3 n=input('Enter the value of n ");
4 disp('calculating A^n ');
5 A^n
```

Scilab code Exa 2.23 Inverse of matrix

```
1 clear
2 clc
3 A=[1 1 3;1 3 -3;-2 -4 -4]
4 disp("inverse of A is ")
5 inv(A)
```

Scilab code Exa 2.24.1 Rank of a matrix

```
1 clear
2 clc
3 A=[1 2 3;1 4 2;2 6 5]
4 disp("Rank of A is ")
5 rank(A)
```

Scilab code Exa 2.24.2 Rank of a matrix

```
1 clear
2 clc
3 A=[0 1 -3 -1;1 0 1 1;3 1 0 2;1 1 -2 0]
4 disp("Rank of A is ")
5 rank(A)
```

Scilab code Exa 2.25 Inverse of matrix

```
1 clear
2 clc
3 A=[1 1 3;1 3 -3;-2 -4 -4]
4 disp("inverse of A is ")
5 inv(A)
```

Scilab code Exa 2.26 eigen values vectors rank of matrix

```
1 clear
2 clc
3 A=[2 3 -1 -1;1 -1 -2 -4;3 1 3 -2;6 3 0 -7]
4 [R P]=spec(A)
```

```
5 disp("rank of A")
6 rank(A)
```

Scilab code Exa 2.28 Inverse of a matrix

```
1 clear
2 clc
3 A=[1 1 1;4 3 -1;3 5 3]
4 disp("inverse of A =")
5 inv(A)
```

Scilab code Exa 2.31 Solving equation using matrices

Scilab code Exa 2.32 Solving equation using matrices

```
1 clear
2 clc
```

```
disp("the equations can be re written as AX=B where
    X=[x;y;z] and ")

4 A=[5 3 7;3 26 2;7 2 10]

5 B=[4;9;5]
6 disp("determinant of A=")
7 det(A)
8 disp("Since det(A)=0,hence,this system of equation
    will have infinite solutions..hence,the system is
    consistent")
```

Scilab code Exa 2.34.1 predicting nature of equation using rank of matrix

```
1 clc
2 A=[1 2 3;3 4 4;7 10 12]
3 disp('rank of A is')
4 p=rank(A)
5 if p==3 then
6 disp('equations have only a trivial solution:x=y=z =0')
7 else
8 disp('equations have infinite no. of solutions.')
9 end
```

Scilab code Exa 2.34.2 predicting nature of equation using rank of matrix

```
1 clc
2 A=[4 2 1 3;6 3 4 7;2 1 0 1]
3 disp('rank of A is')
4 p=rank(A)
5 if p==4 then
6 disp('equations have only a trivial solution:x=y=z =0')
7 else
```

```
8 disp('equations have infinite no. of solutions.')
9 end
```

Scilab code Exa 2.38 Inverse of a matrix

Scilab code Exa 2.39 Transpose and product of matrices

```
1 clear
2 clc
3 A=[-2/3 1/3 2/3;2/3 2/3 1/3;1/3 -2/3 2/3]
4 disp("A transpose is equal to ")
5 A'
6 disp("A*(transpose of A)=")
7 A*A'
8 disp("hence, A is orthogonal")
```

Scilab code Exa 2.42 eigen values and vectors of given matrix

```
clear
clc
A=[5 4;1 2]
disp("let R represents the matrix of transformation and P represents a diagonal matrix whose values are the eigen values of A.then")
[R P]=spec(A)
disp("R is normalised.let U represents unnormalised version of r")
U(:,1)=R(:,1)*sqrt(17);
U(:,2)=R(:,2)*sqrt(2)
disp("two eigen vectors are the two columns of U")
```

Scilab code Exa 2.43 eigen values and vectors of given matrix

```
clear
clc
A=[1 1 3;1 5 1;3 1 1]
disp("let R represents the matrix of transformation and P represents a diagonal matrix whose values are the eigen values of A.then")
[R P]=spec(A)
disp("R is normalised.let U represents unnormalised version of r")
U(:,1)=R(:,1)*sqrt(2);
U(:,2)=R(:,2)*sqrt(3);
U(:,3)=R(:,3)*sqrt(6)
disp("three eigen vectors are the three columns of U")
```

Scilab code Exa 2.44 eigen values and vectors of given matrix

```
1 clear
```

Scilab code Exa 2.45 eigen values and characteristic equation

```
1 clear
2 clc
3 x = poly([0], 'x')
4 A = [1 4; 2 3]
5 I = eye(2,2)
6 disp("eigen values of A are ")
7 spec(A)
8 disp("let ")
9 a = -1;
10 b=5;
11 disp("hence, the characteristic equation is (x-a)(x-b)
12 p=(x-a)*(x-b)
13 disp("A^2-4*A-5*I=")
14 \quad A^2 - 4 * A - 5 * I
15 disp("inverse of A= ")
16 inv(A)
```

Scilab code Exa 2.46 eigen values and characteristic equation

```
1 clear
2 clc
3 x=poly([0], 'x')
4 A=[1 1 3;1 3 -3;-2 -4 -4]
5 disp("eigen values of A are ")
6 spec(A)
7 disp("let ")
8 a=4.2568381;
9 b=0.4032794;
10 c=-4.6601175;
11 disp("hence, the characteristic equation is (x-a)(x-b)(x-c)")
12 p=(x-a)*(x-b)*(x-c)
13 disp("inverse of A= ")
14 inv(A)
```

Scilab code Exa 2.47 eigen values and characteristic equation

```
1 clear
2 clc
3 x=poly([0], 'x')
4 A=[2 1 1;0 1 0;1 1 2]
5 I=eye(3,3)
6 disp("eigen values of A are ")
7 spec(A)
8 disp("let ")
9 a=1;
10 b=1;
11 c=3;
```

```
12 disp("hence, the characteristic equation is (x-a)(x-b) ((x-c))")
13 p=(x-a)*(x-b)*(x-c)
14 disp("A^8-5*A^7+7*A^6-3*A^5+A^4-5*A^3+8*A^2-2*A+I =")
15 A^8-5*A^7+7*A^6-3*A^5+A^4-5*A^3+8*A^2-2*A+I
```

Scilab code Exa 2.48 eigen values and vectors of given matrix

```
1 clear
2 clc
3 A=[-1 2 -2;1 2 1;-1 -1 0]
4 disp("R is matrix of transformation and D is a diagonal matrix")
5 [R D]=spec(A)
```

Scilab code Exa 2.49 eigen values and vectors of given matrix

```
1 clear
2 clc
3 A=[1 1 3;1 5 1;3 1 1]
4 disp("R is matrix of transformation and D is a diagonal matrix ")
5 [R D]=spec(A)
6 disp("R is normalised, let P denotes unnormalised version of R. Then ")
7 P(:,1)=R(:,1)*sqrt(2);
8 P(:,2)=R(:,2)*sqrt(3);
9 P(:,3)=R(:,3)*sqrt(6)
10 disp("A^4=")
11 A^4
```

Scilab code Exa 2.50 eigen values and vectors of given matrix

```
clear
clc
disp("3*x^2+5*y^2+3*z^2-2*y*z+2*z*x-2*x*y")
disp("The matrix of the given quadratic form is ")
A=[3 -1 1;-1 5 -1;1 -1 3]
disp("let R represents the matrix of transformation and P represents a diagonal matrix whose values are the eigen values of A.then")
[R P]=spec(A)
disp("so, canonical form is 2*x^2+3*y^2+6*z^2")
```

Scilab code Exa 2.51 eigen values and vectors of given matrix

```
clear
clc
disp("2*x1*x2+2*x1*x3-2*x2*x3")
disp("The matrix of the given quadratic form is ")
A=[0 1 1;1 0 -1;1 -1 0]
disp("let R represents the matrix of transformation and P represents a diagonal matrix whose values are the eigen values of A.then")
[R P]=spec(A)
disp("so, canonical form is -2*x^2+y^2+z^2")
```

Scilab code Exa 2.52 Hermitian matrix

1 clear

```
2 clc
3 A=[2+%i 3 -1+3*%i;-5 %i 4-2*%i]
4 disp("A*=")
5 A'
6 disp("AA*=")
7 A*A'
8 disp("clearly, AA* is hermitian matrix")
```

Scilab code Exa 2.53 transpose and inverse of complex matrix

```
1 clear
2 clc
3 A=[(1/2)*(1+%i) (1/2)*(-1+%i);(1/2)*(1+%i) (1/2)*(1-%i)]
4 disp("A*=")
5 A'
6 disp("AA*=")
7 A*A'
8 disp("A*A=")
9 A'*A
10 disp("inverse of A is ")
11 inv(A)
```

Scilab code Exa 2.54 Unitary matrix

```
1 clear
2 clc
3 A=[0 1+2*%i;-1+2*%i 0]
4 I=eye(2,2)
5 disp("I-A= ")
6 I-A
7 disp("inverse of (I+A)= ")
8 inv(I+A)
```

Chapter 4

Differentiation and Applications

Scilab code Exa 4.4.1 finding nth derivative

```
1  //ques4.1
2  //clear
3  //cd SCI
4  //cd ("..")
5  //cd ("..")
6  //exec symbolic.sce
7  clc
8  disp(' we have to find yn for F=cosxcos2xcos3x ');
9  syms x
10  F=cos(x)*cos(2*x)*cos(3*x);
11  n=input('Enter the order of differentiation ");
12  disp('calculating yn ');
13  yn=diff(F,x,n)
14  disp('the expression for yn is ');
15  disp(yn);
```

Scilab code Exa 4.5 finding nth derivative

```
1 //ques4.1
2 //clear
3 //cd SCI
4 //cd ("..")
5 //cd ("..")
6 //exec symbolic.sce
7 clc
8 disp(' we have to find yn for F=cosxcos2xcos3x ');
9 syms x
10 F=x/((x-1)*(2*x+3));
11 n=input('Enter the order of differentiation : ");
12 disp('calculating yn ');
13 yn=diff(F,x,n)
14 disp('the expression for yn is ');
15 disp(yn);
```

Scilab code Exa 4.6 finding nth derivative

```
1 //ques4.1
2 //clear
3 //cd SCI
4 //cd ("..")
5 //cd ("..")
6 //exec symbolic.sce
7 clc
8 disp(' we have to find yn for F=cosxcos2xcos3x ');
9 syms x a
10 F=x/(x^2+a^2);
11 n=input('Enter the order of differentiation : ");
12 disp('calculating yn ');
13 yn=diff(F,x,n)
14 disp('the expression for yn is ');
15 disp(yn);
```

Scilab code Exa 4.7 finding nth derivative

```
//ques4.1
//clear
//cd SCI
//cd ("..")
//cd ("..")
//exec symbolic.sce
clc
disp(' we have to find yn for F=cosxcos2xcos3x ');
syms x a
F=%e^(x)*(2*x+3)^3;
//n=input('Enter the order of differentiation : ");
disp('calculating yn ');
yn=diff(F,x,n)
disp('the expression for yn is ');
disp(yn);
```

Scilab code Exa 4.8 proving the given differential equation

```
1 //ques4.1
2 //clear
3 //cd SCI
4 //cd ("..")
5 //cd ("..")
6 //exec symbolic.sce
7 clc
8 disp('y=(sin^-1)x) --sign inverse x ');
9 syms x
10 y=(asin(x))^2;
11 disp('we have to prove (1-x^2)y(n+2)-(2n+1)xy(n+1)-n^2yn ');
```

```
12 //n=input('Enter the order of differentiation ");
13 disp('calculating yn for various values of n');
14 for n=1:4
15
16
     F = (1-x^2)*diff(y,x,n+2)-(2*n+1)*x*diff(y,x,n+1)-(n
        ^2+a^2)*diff(y,x,n);
     disp(n);
17
     disp('the expression for yn is ');
18
19
     disp(F);
     disp('Which is equal to 0');
20
21
22 end
23 disp('Hence proved');
```

Scilab code Exa 4.9 proving the given differential equation

```
1 //ques4.1
2 // clear
3 / cd SCI
4 //cd ("...")
5 //cd ("..")
6 //exec symbolic.sce
7 clc
8 disp('y=e^(a(\sin^-1)x)) --sign inverse x ');
9 syms x a
10 y = %e^(a*(asin(x)));
11 disp('we have to prove (1-x^2)y(n+2)-(2n+1)xy(n+1)-(2n+1)xy(n+1)
     n^2+a^2)yn;
12 //n=input ('Enter the order of differentiation ");
13 disp('calculating yn for various values of n');
14 for n=1:4
15
     //yn = diff(F, x, n)
16
17
     F = (1-x^2)*diff(y,x,n+2)-(2*n+1)*x*diff(y,x,n+1)-(n
        ^2+a^2)*diff(y,x,n);
```

```
disp(n);
disp('the expression for yn is ');
disp(F);
disp('Which is equal to 0 ');
end
disp('Hence proved');
```

Scilab code Exa 4.10 proving the given differential equation

```
1 clc
  2 disp('y^(1/m)+y^-(1/m)=2x');
   3 disp('OR y^(2/m)-2xy^(1/m)+1');
  4 disp('OR y=[x+(x^2-1)]'m and y=[x-(x^2-1)]'m ');
   6 syms x m
   7 disp('For y=[x+(x^2-1)]^m');
             y = (x + (x^2 - 1))^m
  9 disp('we have to prove (x^2-1)y(n+2)+(2n+1)xy(n+1)+(
                       n^2-m^2) yn ');
10 //n=input('Enter the order of differentiation');
11 disp('calculating yn for various values of n');
12 for n=1:4
13
                     //yn = diff(F, x, n)
14
                    F = (x^2-1)*diff(y,x,n+2)+(2*n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*diff(y,x,n+1)+(n+1)*x*di
15
                                 ^2-m^2)*diff(y,x,n);
16
                     disp(n);
17
                     disp('the expression for yn is ');
                     disp(F);
18
                     disp('Which is equal to 0');
19
20
21 end
22 disp('For y=[x-(x^2-1)]^m');
23
               y = (x - (x^2 - 1))^m
```

```
24 disp('we have to prove (x^2-1)y(n+2)+(2n+1)xy(n+1)+(2n+1)xy(n+1)
      n^2-m^2) yn ');
25 //n=input('Enter the order of differentiation');
26 disp('calculating yn for various values of n');
27 \text{ for } n=1:4
28
29
     //yn = diff(F, x, n)
     F = (x^2-1)*diff(y,x,n+2)+(2*n+1)*x*diff(y,x,n+1)+(n
30
        ^2-m^2)*diff(y,x,n);
     disp(n);
31
32
     disp('the expression for yn is ');
33
     disp(F);
34
     disp('Which is equal to 0');
35
36 \, \text{end}
37 disp('Hence proved');
```

Scilab code Exa 4.11 verify roles theorem

Scilab code Exa 4.16 expansion using maclaurins series

```
1 //ques16
2 disp('Maclaurins series');
3 disp('f(x)=f(0)+xf1(0)+x^2/2!*f2(0)+x^3/3!*f3(0)
      + . . . . . , );
4 syms x a
5 //function y=f(a)
     y=tan(a);
7 //endfunction
8 n=input('enter the number of expression in series :
      <sup>'</sup>);
9 a=1;
10 t = eval(y);
11 a=0;
12 for i=2:n
     y1 = diff(y, 'a', i-1);
13
14
     t=t+x^{(i-1)}*eval(y1)/factorial(i-1);
15 end
16 disp(t)
```

Scilab code Exa 4.17 expanding function as fourier series of sine term

```
8   a=0;
9   t=eval(y);
10   a=0;
11   for i=2:n
12     y1=diff(y, 'a',i-1);
13     t=t+x^(i-1)*eval(y1)/factorial(i-1);
14   end
15   disp(t)
```

Scilab code Exa 4.18 expansion using maclaurins series

```
1 //ques18
2 disp('Maclaurins series');
3 disp('f(x)=f(0)+xf1(0)+x^2/2!*f2(0)+x^3/3!*f3(0)
      + . . . . . ');
4 syms x a
     y = log(1 + (sin(a))^2);
     n=input('enter the number of differentiation
        involved in maclaurins series: ');
     a=0;
9 t = eval(y);
10 a=0;
11 for i=2:n
     y1 = diff(y, 'a', i-1);
      t=t+x^(i-1)*eval(y1)/factorial(i-1);
13
14 end
15 disp(t)
```

Scilab code Exa 4.19 expansion using maclaurins series

```
1 //ques19
2 disp('Maclaurins series');
```

```
3 disp('f(x)=f(0)+xf1(0)+x^2/2!*f2(0)+x^3/3!*f3(0)
      + . . . . . , );
4 \text{ syms x a b}
5
     y = %e^(a*asin(b));
     n=input('enter the number of expression in seris :
          ');
8
     b=0;
9 t = eval(y);
10
11 for i=2:n
12
     y1 = diff(y, b', i-1);
      t=t+x^(i-1)*eval(y1)/factorial(i-1);
13
14 end
15 disp(t)
```

Scilab code Exa 4.20 expansion using taylors series

```
1 //ques20
2 disp('Advantage of scilab is that we can calculate log1.1 directly without using Taylor series');
3 disp('Use of taylor series are given in subsequent examples');
4 y=log(1.1);
5 disp('log(1.1)= ');
6 disp(log(1.1));
```

Scilab code Exa 4.21 taylor series

```
1 //ques21
2 disp('Taylor series');
3 disp('f(x+h)=f(x)+hf1(x)+h^2/2!*f2(x)+h^3/3!*f3(x)
+.....');
```

```
4 disp('To finf the taylor expansion of \tan -1(x+h)')
5 syms x h
6
7
     y = atan(x);
     n=input('enter the number of expression in seris :
         ');
9
10 t=y;
11
12 for i=2:n
     y1 = diff(y, 'x', i-1);
13
      t=t+h^(i-1)*(y1)/factorial(i-1);
14
15 end
16 disp(t)
```

Scilab code Exa 4.22 evaluating limit

```
1 //ques22
2 disp('Here we need to find find the limit of f(x) at
       x=0,)
3 syms x
4 y=(x*\%e^x-\log(1+x))/x^2;
\frac{5}{\text{disp}} ('The limit at x=0 is : ');
6 //l = limit(y, x, 0);
7 // disp(1)
8 	 f = 1;
9 while f == 1
10 yn=x*\%e^x-\log(1+x);
11 yd=x^2;
12 yn1=diff(yn, 'x',1);
13 yd1=diff(yd, 'x',1);
14 x = 0;
15 a=eval(yn1);
16 b=eval(yd1);
17 if a==b then
```

```
18     yn=yn1;
19     yd=yd1;
20     else
21     f=0;
22
23     end
24     end
25     h=a/b;
26     disp(h);
```

Scilab code Exa 4.32 tangent to curve

```
1 //ques 32
2 disp('Equation of tangent');
3 syms x a y;
4 f=(a^(2/3)-x^(2/3))^(3/2);
5 s=diff(f,x);
6
7 Y1=s*(-x)+y;
8 X1=-y/s*x;
9 g=x-(Y1-s*(X1-x));
10 disp('Equation is g=0 where g is');
11 disp(g);
```

Scilab code Exa 4.34 finding equation of normal

```
1 //ques34
2 disp('Equation of tangent');
3 syms x a t y
4 xo=a*(cos(t)+t*sin(t));
5 yo=a*(sin(t)-t*cos(t));
6 s=diff(xo,t)/diff(yo,t);
7 y=yo+s*(x-xo);
```

```
8 disp('y=');
9 disp(y);
```

Scilab code Exa 4.35 finding angle of intersection of curve

```
1 //ques35
2 disp("The two given curves are x^{=4y} and y^{2}=4x
      which intersects at (0,0) and (4,4);
3 disp('for (4,4)');
4 x = 4;
5 syms x
6 y1=x^2/4;
7 y2=2*x^(1/2);
8 m1=diff(y1,x,1);
9 m2=diff (y2, x, 1);
10 x=4;
11 m1 = e val(m1);
12 \text{ m}2 = \text{eval}(\text{m}2);
13
14 disp('Angle between them is(radians):-');
15 t=atan((m1-m2)/(1+m1*m2));
16 disp(t);
```

Scilab code Exa 4.37 prove given tangent statement

```
1 //ques37
2 syms a t
3 x=a*(cos(t)+log(tan(t/2)));
4 y=a*sin(t);
5 s=diff(x,t,1)/diff(y,t,1);
6 disp('length of tangent ');
7 l=y*(1+s)^(0.5);
8 disp(1);
```

```
9 disp('checking for its dependency on t')
10
11 f=1
12 t=0;
13 k=eval(1);
14 \text{ for } i=1:10
15
     t=i;
     if(eval(1)~=k)
16
17
        f = 0;
18
     end
19 end
20 \text{ if } (f == 1)
21
     disp("verified and equal to a");
22
     disp('subtangent');
23
     m=y/s;
24
     disp(m);
```

Scilab code Exa 4.39 finding angle of intersection of curve

```
1 //ques39
2 clc
3 disp('Angle of intersection');
4 disp('point of intersection of r=sint+cost and r=2 sint is t=pi/4');
5 disp('tanu=dQ/dr*r');
6 syms Q;
7
8 r1=2*sin(Q);
9 r2=sin(Q)+cos(Q);
10 u=atan(r1*diff(r2,Q,1));
11 Q=%pi/4;
12 u=eval(u);
13 disp('The angle at point of intersection in radians is:');
14 disp(u);
```

Scilab code Exa 4.41 finding pedal equation of parabola

```
1 //ques41
2 clc
3 disp('tanu=dQ/dr*r');
4 syms Q a;
5
6 r=2*a/(1-cos(Q));
7
8 u=atan(r/diff(r2,Q,1));
9 u=eval(u);
10 p=r*sin(u);
11 syms r;
12 Q=acos(1-2*a/r);
13
14 //cos(Q)=1-2*a/r;
15 p=eval(p);
16 disp(p);
```

Scilab code Exa 4.43 finding radius of curvature of cycloid

```
1 //ques43
2 syms a t
3 x=a*(t+sin(t));
4 y=a*(1-cos(t));
5 s2=diff(y,t,2)/diff(x,t,2);
6 s1=diff(y,t,1)/diff(x,t,1);
7
8 r=(1+s1^2)^(3/2)/s2;
9 disp('The radius of curvature is:');
10 disp(r);
```

Scilab code Exa 4.46 radius of curvature of cardoid

```
1 //ques46
2 disp('radius of curvature');
3 syms a t
4 r=a*(1-cos(t));
5 r1=diff(r,t,1);
6 l=(r^2+r1^2)^(3/2)/(r^2+2*r1^2-r*r1);
7 syms r;
8 t=acos(1-r/a);
9 l=eval(l);
10 disp(l);
11 disp('Which is proportional to r^0.5');
```

Scilab code Exa 4.47 coordinates of centre of curvature

```
1 //qus47
2 disp('The centre of curvature');
3 syms x a y
4 y=2*(a*x)^0.5;
5 y1=diff(y,x,1);
6 y2=diff(y,x,2);
7 xx=x-y1*(1+y1)^2/y2;
8 yy=y+(1+y1^2)/y2;
9 disp('the coordinates x,y are resp :');
10
11 disp(xx);
12 disp(yy);
```

Scilab code Exa 4.48 proof statement cycloid

```
1 //ques48
2 disp('centre of curvature of given cycloid ');
3 syms a t
4 x=a*(t-sin(t));
5 y=a*(1-cos(t));
6 y1=diff(y,t,1);
7 y2=diff(y,t,2);
8 xx=x-y1*(1+y1)^2/y2;
9 yy=y+(1+y1^2)/y2;
10
11 disp('the coordinates x,y are resp :');
12 disp(xx);
13 disp(yy);
14 disp('which another parametric equation of cycloid ');
```

Scilab code Exa 4.52 maxima and minima

```
1 //error
2 //ques52
3 disp('To find the maxima and minima of given function put f1(x)=0');
4 syms x
5 //x=poly(0,'x');
6 f=3*x^4-2*x^3-6*x^2+6*x+1;
7 k=diff(f,x);
8 x=poly(0,'x');
9 k=eval(k);
```

Scilab code Exa 4.61 finding the asymptotes of curve

```
//ques 61
clc
disp('to find the assymptote of given curve ');
syms x y
f=x^2*y^2-x^2*y-x*y^2+x+y+1;
//a=degrees(f,x);
f1=coeffs(f,x,2);
disp('assymptotes parallel to x-xis is given by f1=0 where f1 is:');
disp(factor(f1));
f2=coeffs(f,y,2);
disp('assymptotes parallel to y-axis is given by f2 =0 and f2 is:');
disp(factor(f2));
```

Chapter 5

Partial Differentiation And Its Applications

Scilab code Exa 5.5 Partial derivative of given function

```
1 clc
2 syms x y z
3 v=(x^2+y^2+z^2)^(-1/2)
4 a=diff(v,x,2)
5 b=diff(v,y,2)
6 c=diff(v,z,2)
7 a+b+c
```

Scilab code Exa 5.14 Partial derivative of given function

```
1 clc
2 syms x y
3 u=asin((x+y)/(x^0.5+y^0.5))
4 a=diff(u,x)
5 b=diff(u,y)
6 c=diff(a,x)
```

```
7 d=diff(b,y)

8 e=diff(b,x)

9 x*a+y*b

10 (1/2)*tan(u)

11 (x^2)*c+2*x*y*e+(y^2)*d

12 (-sin(u)*cos(2*u))/(4*(cos(u))^3)
```

Scilab code Exa 5.25.1 Partial derivative of given function

```
1 clc
2 syms r l
3 x=r*cos(1)
4 y=r*sin(1)
5 a=diff(x,r)
6 b=diff(x,l)
7 c=diff(y,r)
8 d=diff(y,l)
9 A=[a b;c d]
10 det(A)
```

Scilab code Exa 5.25.2 Partial derivative of given function

```
1 clc
2 syms r l z
3 x=r*cos(1)
4 y=r*sin(1)
5 m=z
6 a=diff(x,r)
7 b=diff(x,l)
8 c=diff(x,z)
9 d=diff(y,r)
10 e=diff(y,z)
11 f=diff(y,z)
```

```
12 g=diff(m,r)
13 h=diff(m,l)
14 i=diff(m,z)
15 A=[a b c;d e f;g h i]
16 det(A)
```

Scilab code Exa 5.25.3 Partial derivative of given function

```
1 clc
2 \text{ syms r l m}
3 \text{ x=r*cos}(1)*sin(m)
4 \text{ y=r*sin}(1)*sin(m)
5 z=r*cos(m)
6 \text{ a=diff}(x,r)
7 b = diff(x,m)
8 c = diff(x,1)
9 d=diff(y,r)
10 e = diff(y,m)
11 f = diff(y,1)
12 g = diff(z,r)
13 h = diff(z,m)
14 i = diff(z, 1)
15 A = [a b c; d e f; g h i]
16 det(A)
```

Scilab code Exa 5.26 Partial derivative of given function

```
1 clc

2 syms x1 x2 x3

3 y1=(x2*x3)/x1

4 y2=(x3*x1)/x2

5 y3=(x1*x2)/x3

6 a=diff(y1,x1)
```

```
7 b=diff(y1,x2)
8 c=diff(y1,x3)
9 d=diff(y2,x1)
10 e=diff(y2,x2)
11 f=diff(y2,x3)
12 g=diff(y3,x1)
13 h=diff(y3,x2)
14 i=diff(y3,x3)
15 A=[a b c;d e f;g h i]
16 det(A)
```

Scilab code Exa 5.30 Partial derivative of given function

```
1 clc
2 syms x y
3 u=x*(1-y^2)^0.5+y*(1-x^2)^0.5
4 v=asin(x)+asin(y)
5 a=diff(u,x)
6 b=diff(u,y)
7 c=diff(v,x)
8 d=diff(v,y)
9 A=[a b; c d]
10 det(A)
```

Chapter 6

Integration and its Applications

Scilab code Exa 6.1.1 indefinite integral

```
1 //ques1
2 disp('Indefinite integral');
3 syms x
4 f=integ((sin(x))^4,x);
5 disp(f);
```

Scilab code Exa 6.1.2 indefinite integral

```
1 //ques1
2 disp('Indefinite integral');
3 syms x
4 f=integ((cos(x))^7,x);
5 disp(f);
```

Scilab code Exa 6.2.1 definite integral

```
1 //ques1
2 disp('definite integral');
3 syms x
4 f=integ((cos(x))^6,x,0,%pi/2);
5 disp(float(f));
```

Scilab code Exa 6.2.2 Definite Integration of a function

```
//no output
//ques1
clc
disp('definite integral');
syms x a
g=x^7/(a^2-x^2)^1/2
f=integ(g,x,0,a);
disp(float(f));
```

Scilab code Exa 4.2.3 definite integral

```
1 //error no output
2 //ques4
3 clc
4 disp('definite integral');
5 syms x a
6 g=x^3*(2*a*x-x^2)^(1/2);
7 f=integ(g,x,0,2*a);
8 disp(f);
```

Scilab code Exa 6.2.3 definite integral

```
//no output
//ques1
clc
disp('definite integral');
syms x a n
g=1/(a^2+x^2)^n;
f=integ(g,x,0,%inf);
disp(f);
```

Scilab code Exa 6.4.1 definite integral

```
1 //ques4
2 clc
3 disp('definite integral');
4 syms x
5 g=(sin(6*x))^3*(cos(3*x))^7;
6 f=integ(g,x,0,%pi/6);
7 disp(float(f));
```

Scilab code Exa 4.4.2 definite integral

```
1 //ques4
2 clc
3 disp('definite integral');
4 syms x
5 g=x^4*(1-x^2)^(3/2);
6 f=integ(g,x,0,1);
7 disp(float(f));
```

Scilab code Exa 6.5 definite integral

```
//error no internal error
//ques5
clc
disp('definite integral');
syms x m n
n=input('Enter n :');
m=input('Enter m : ');
g=(cos(x))^m*cos(n*x);
f=integ(g,x,0,%pi/2);
disp(float(f));
g2=(cos(x))^(m-1)*cos((n-1)*x);
f2=m/(m+n)*integ(g2,x,0,%pi/2);
disp(float(f2));
disp(float(f2));
disp('Equal');
```

Scilab code Exa 6.6.1 reducing indefinite integral to simpler form

```
1 //ques6
2 clc
3 disp('definite integral');
4 syms x a
5 n=input('Enter n :');
6 g=exp(a*x)*(sin(x))^n;
7
8 f=integ(g,x);
9 disp(f);
```

Scilab code Exa 6.7.1 Indefinite Integration of a function

```
1 clc
2 syms x
3 disp(integ(tan(x)^5,x))
```

Scilab code Exa 6.8 Getting the manual input of a variable and integration

```
1 clc
2 n=input('Enter the value of n ");
3 p=integrate('(tan(x))^(n-1)', 'x',0,%pi/4);
4 q=integrate('(tan(x))^(n+1)', 'x',0,%pi/4);
5 disp('n(p+q)=');
6 disp(n*(p+q))
```

Scilab code Exa 6.9.1 Definite Integration of a function

```
1 clear
2 clc
3 integrate('sec(x)^4', 'x',0,%pi/4)
```

Scilab code Exa 6.9.2 Definite Integration of a function

```
1 clear
2 clc
3 integrate('1/sin(x)^3', 'x', %pi/3, %pi/2)
```

Scilab code Exa 6.10 definite integral

```
1
2 //ques8
3 clc
```

```
4 syms x
5 g=x*sin(x)^6*cos(x)^4;
6 f=integ(g,x,0,%pi);
7 disp(float(f));
```

Scilab code Exa 6.12 Definite Integration of a function

```
1 clear 2 clc 3 integrate('\sin(x)^0.5/(\sin(x)^0.5+\cos(x)^0.5)','x',0,%pi/2)
```

Scilab code Exa 6.13 sum of infinite series

Scilab code Exa 6.14 finding the limit of the function

```
1 //ques14
2 clc
3 syms x
```

```
4 disp('The summation is equivalent to integration of
    log(1+x) from 0 to 1 ');
5 g=log(1+x);
6 f=integ(g,x,0,1);
7 disp(float(f));
```

Scilab code Exa 6.15 Definite Integration of a function

```
1 clear
2 clc
3 integrate('x*sin(x)^8*cos(x)^4', 'x',0,%pi)
```

Scilab code Exa 6.16 Definite Integration of a function

```
1 clear
2 clc
3 integrate('log(sin(x))','x',0,%pi/2)
```

Scilab code Exa 6.24 Calculating the area under two curves

```
1 clear
2 clc
3 xset('window',1)
4 xtitle("My Graph","X axis","Y axis")
5 x=linspace(-5,10,70)
6 y1=(x+8)/2
7 y2=x^2/8
8 plot(x,y1,"o-")
9 plot(x,y2,"+-")
10 legend("(x+8)/2","x^2/8")
```


Figure 6.1: Calculating the area under two curves

- 11 disp("from the graph, it is clear that the points of intersection are x=-4 and x=8.")
- 12 disp("So, our region of integration is from x=-4 to x = 8")
- 13 integrate (' $(x+8)/2-x^2/8$ ', 'x',-4,8)

Chapter 9

Infinite Series

Scilab code Exa 9.1 to find the limit at infinity

```
1 clc
2 syms n;
3 f=((1/n)^2-2*(1/n))/(3*(1/n)^2+(1/n))
4 disp(limit(f,n,0));
```

Scilab code Exa 9.1.3 to find the limit at infinity

```
1 clc
2 syms n;
3 f=3+(-1)^n
4 limit(f,n,%inf)
```

Scilab code Exa 9.2.1 to find the sum of series upto infinity

```
1 clc
2 syms n
```

```
3 disp('1+2+3+4+5+6+7+....+n+....=')
4 p=1/n*(1/n+1)/2
5 disp(limit(p,n,0));
```

Scilab code Exa 9.2.2 to check for the type of series

```
1 clc
2 disp('5-4-1+5-4-1+5-4-1+5-4-1+.....=0,5,1
    according to the no. of terms.')
3 disp('clearly, in this case sum doesnt tend to a unique limit.hence, series is oscillatory.')
```

Scilab code Exa 9.5.1 to check the type of infinite series

```
1 clc
2 syms n;
3 v=1/((1/n)^2)
4 u=(2/n-1)/(1/n*(1/n+1)*(1/n+2))
5 disp(limit(u/v,n,0));
6 disp('both u and v converge and diverge together, hence u is convergent')
```

Scilab code Exa 9.5.2 to check the type of infinite series

```
1 clc
2 syms n;
3 v=n
4 u=((1/n)^2)/((3/n+1)*(3/n+4)*(3/n+7))
5 disp(limit(u/v,n,0));
6 disp('both u and v converge and diverge together, hence u is divergent')
```

Scilab code Exa 9.7.1 to check the type of infinite series

```
1 clc
2 syms n
3 disp('u=((n+1)^0.5-1)/((n+2)^3-1)=>')
4 //put n=1/n
5 u=((1+1/(1/n))-(1/n)^(-0.5))/(((1/n)^5/2)*((1+2/(1/n)^3-(1/n)^(-3)))
6 v=(1/n)^(-5/2)
7 disp(limit(u/v,n,0));
8 //disp('=1')
9 disp('since , v is convergent, so u is also conzavergent.')
```

Scilab code Exa 9.7.3 to check the type of infinite series

```
1 clc
2 syms n
3 disp(integ(1/(n*log(n)),n,2,%inf));
```

Scilab code Exa 9.8.1 to find the sum of series upto infinity

```
1 clc
2 syms x n;
3 //put n=1/n
4 u=(x^(2*(1/n)-2))/(((1/n)+1)*(1/n)^0.5)
5 v=(x^(2*(1/n)))/((1/n+2)*(1/n+1)^0.5)
6 disp(limit(u/v,n,0));
```

Scilab code Exa 9.8.2 to find the limit at infinity

```
1 clc
2 syms x n;
3 //put n=1/n
4 u=((2^(1/n)-2)*(x^(1/n-1)))/(2^(1/n)+1)
5 v=((2^((1/n)+1)-2)*(x^(1/n)))/(2^(1/n+1)+1)
6 disp(limit(u/v,n,0));
```

Scilab code Exa 9.10.1 to find the limit at infinity

```
1 clc
2 syms x n;
3 u=1/(1+x^(-n));
4 v=1/(1+x^(-n-1));
5 disp(limit(u/v,n,0));
```

Scilab code Exa 9.10.2 to find the limit at infinity

```
1 clc
2 syms a b n;
3 l=(b+1/n)/(a+1/n)
4 disp(limit(l,n,0));
```

Scilab code Exa 9.11.1 to find the limit at infinity

```
1 clc
2 syms x n;
3 disp('u = ((4.7....(3n+1))*x^n)/(1.2....n)')
4 disp('v = ((4.7....(3n+4)*x^(n+1))/(1.2....(n+1))')
5 disp('l=u/v=>')
6 l=(1+n)/((3+4*n)*x)
7 disp(limit(1,n,0))
```

Scilab code Exa 9.11.2 to find the limit at infinity

```
1 clc
2 syms x n;
3 u=(((factorial(n))^2)*x^(2*n))/factorial(2*n)
4 v=(((factorial(n+1))^2)*x^(2*(n+1)))/factorial(2*(n+1))
5 limit(u/v,n,%inf)
```

Chapter 10

Fourier Series

Scilab code Exa 10.1 finding fourier series of given function

```
1 //ques1
2 clc
3 disp('finding the fourier series of given function')
4 \text{ syms}
5 ao=1/\%pi*integ(\exp(-1*x),x,0,2*\%pi);
6 \text{ s=ao/2};
7 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
8 for i=1:n
     ai=1/\%pi*integ(exp(-x)*cos(i*x),x,0,2*\%pi);
     bi=1/\%pi*integ(exp(-x)*sin(i*x),x,0,2*\%pi);
10
     s=s+float(ai)*cos(i*x)+float(bi)*sin(i*x);
11
12 end
13 disp(float(s));
```

Scilab code Exa 10.2 finding fourier series of given function

```
1 //error
2 //ques2
3 disp('To find the fourier transform of given function ');
4 syms x s
5 F=integ(exp(%i*s*x),x,-1,1);
6 disp(F);
7 //produces error->
8 F1=integ(sin(x)/x,x,0,%inf);
```

Scilab code Exa 10.3 finding fourier series of given function

```
1 //ques3
2 clc
3 disp('finding the fourier series of given function')
4 syms
5 ao=1/%pi*(integ(-1*%pi*x^0,x,-%pi,0)+integ(x,x,0,%pi
6 \text{ s=ao/2};
7 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
8 for i=1:n
     ai=1/%pi*(integ(-1*%pi*cos(i*x),x,-1*%pi,0)+integ(
       x*cos(i*x),x,0,%pi));
    bi=1/\%pi*(integ(-1*\%pi*x^0*sin(i*x),x,-1*\%pi,0)+
10
        integ(x*sin(i*x),x,0,%pi));
11
     s=s+float(ai)*cos(i*x)+float(bi)*sin(i*x);
12 end
13 disp(float(s));
```

Scilab code Exa 10.4 finding fourier series of given function

```
1 // ques4
2 clc
3 disp('finding the fourier series of given function')
4 \text{ syms} \text{ x } 1
5 ao=1/1*integ(exp(-1*x),x,-1,1);
6 \text{ s=ao/2}
7 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
  for i = 1 : n
     ai = 1/1 * integ(exp(-x) * cos(i * %pi * x/1), x, -1, 1);
     bi=1/l*integ(exp(-x)*sin(i*%pi*x/l),x,-l,l);
11
     s=s+float(ai)*cos(i*%pi*x/l)+float(bi)*sin(i*%pi*x
        /1);
12 end
13 disp(float(s));
```

Scilab code Exa 10.5 finding fourier series of given function in interval minus pi to pi

```
1 // ques5
2 clc
3 disp('finding the fourier series of given function')
4 syms
         x 1
5 s = 0;
6 n=input('enter the no of terms upto each of sin
     terms in the expansion: ');
  for i=1:n
8
9
      bi=2/\%pi*integ(x*sin(i*x),x,0,\%pi);
     s=s+float(bi)*sin(i*x);
10
11 end
12 disp(float(s));
```

Scilab code Exa 10.6 finding fourier series of given function in interval minus l to l

```
1 //error no output
2 // ques6
3 clc
4 disp('finding the fourier series of given function')
5 syms
        x 1
6 ao=2/1*integ(x^2,x,0,1);
7 s=float(ao)/2;
8 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
9 \quad for \quad i=1:n
     ai=2/1*integ(x^2*cos(i*\%pi*x/1),x,0,1);
10
     // bi = 1/1 * integ(exp(-x) * sin(i*x), x, -1, 1);
11
     s=s+float(ai)*cos(i*%pi*x/l);
12
13
     end
14 disp(float(s));
```

Scilab code Exa 10.7 finding fourier series of given function in interval minus pi to pi

```
1 //ques1
2 clc
3 disp('finding the fourier series of given function');
4 syms x
5 ao=2/%pi*(integ(cos(x),x,0,%pi/2)+integ(-cos(x),x,%pi/2,%pi));
6 s=ao/2;
```

Scilab code Exa 10.8 finding fourier series of given function in interval minus pi to pi

```
1 //ques8
2 clc
3 disp('finding the fourier series of given function')
4 syms
5 ao=2/\%pi*(integ((1-2*x/\%pi),x,0,\%pi));
6 \text{ s=ao/2};
7 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
  for i=1:n
     ai = 2/\%pi * (integ((1-2*x/\%pi)*cos(i*x),x,0,\%pi));
     //bi=1/\%pi*(integ(-1*\%pi*x^0*sin(i*x),x,-1*\%pi,0)+
10
        integ(x*sin(i*x),x,0,\%pi));
11
     s=s+float(ai)*cos(i*x);
12 end
13 disp(float(s));
```

Scilab code Exa 10.9 finding half range sine series of given function

```
1 //ques9
2 clc
3 disp('finding the fourier series of given function')
   ;
4 syms x l
5
6 s=0;
7 n=input('enter the no of terms upto each of sin or cos terms in the expansion : ');
8 for i=1:n
9 // ai=1/l*integ(exp(-x)*cos(i*%pi*x/l),x,-l,l);
10 bi=integ(x*sin(i*%pi*x/2),x,0,2);
11 s=s+float(bi)*sin(i*%pi*x/2);
12 end
13 disp(float(s));
```

Scilab code Exa 10.10 finding half range cosine series of given function

```
1 // ques 10
2 clc
3 disp('finding the fourier series of given function')
4 syms
5 ao=2/2*(integ(x,x,0,2));
6 \text{ s=ao/2};
7 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
8 for i=1:n
     ai = 2/2*(integ(x*cos(i*\%pi*x/2),x,0,2));
     //bi=1/\%pi*(integ(-1*\%pi*x^0*sin(i*x),x,-1*\%pi,0)+
        integ(x*sin(i*x),x,0,\%pi));
11
     s=s+float(ai)*cos(i*%pi*x/2);
12 end
13 disp(float(s));
```

Scilab code Exa 10.11 expanding function as fourier series of sine term

```
1 //ques3
2 clc
3 disp('finding the fourier series of given function')
4 syms
         Х
5 ao = 0;
6 \text{ s=ao};
7 n=input('enter the no of terms upto each of sin or
      cos terms in the expansion: ');
8 for i=1:n
       bi=2/1*(integ((1/4-x)*sin(i*\%pi*x),x,0,1/2)+
          integ((x-3/4)*sin(i*%pi*x),x,1/2,1));
     s=s+float(bi)*sin(i*%pi*x);
10
11 end
12 disp(float(s));
```

Scilab code Exa 10.12 finding fourier series of given function

```
1 //ques1
2 clc
3 disp('finding the fourier series of given function');
4 syms x
5 ao=1/%pi*integ(x^2,x,-%pi,%pi);
6 s=ao/2;
7 n=input('enter the no of terms upto each of sin or cos terms in the expansion : ');
8 for i=1:n
9 ai=1/%pi*integ((x^2)*cos(i*x),x,-%pi,%pi);
10 bi=1/%pi*integ((x^2)*sin(i*x),x,-%pi,%pi);
```

```
11    s=s+float(ai)*cos(i*x)+float(bi)*sin(i*x);
12 end
13 disp(float(s));
```

Scilab code Exa 10.13 finding complex form of fourier series

```
//ques13
clc
disp('The complex form of series is summation of f(n,x) where n varies from -%inf to %inf and f(n,x) is given by:');
syms n x
cn=1/2*integ(exp(-x)*exp(-%i*%pi*n*x),x,-1,1);
fnx=float(cn)*exp(%i*n*%pi*x);
disp(float(fnx));
```

Scilab code Exa 10.14 practical harmonic analysis

```
13     bn=2*sum(yo.*sin(i*xo))/length(yo);
14     s=s+float(an)*cos(i*x)+float(bn)*sin(i*x);
15
16     end
17     disp(s);
```

Scilab code Exa 10.15 practical harmonic analysis

```
1 //error
2 //ques15,16,17
3 //yo = [1.98 \ 1.30 \ 1.05 \ 1.30 \ -0.88 \ -.25 \ 1.98]
4 //x0=[0 \ 1/6 \ 1/3 \ 1/2 \ 2/3 \ 5/6 \ 1]
5 disp('Practical harmonic analysis');
6 \text{ syms x T}
7 xo=input('Input xo matrix (in factor of T): ');
8 yo=input('Input yo matrix: ');
9 ao=2*sum(yo)/length(xo);
10 s=ao/2;
11 n=input('No of sin or cos term in expansion : ');
12
    i = 1
13
     an=2*(yo.*cos(i*xo*2*%pi))/length(yo);
     bn=2*(yo.*sin(i*xo*2*%pi))/length(yo);
14
15
     s=s+float(an)*cos(i*x*2*%pi/T)+float(bn)*sin(i*x
        *2*%pi/T);
16
17
     disp(s);
     disp('Direct current :');
18
19
    i=sqrt(an^2+bn^2);
```

Scilab code Exa 10.16 practical harmonic analysis

```
1 //error
2 //ques15,16,17
```

```
3 //yo = [1.98 \ 1.30 \ 1.05 \ 1.30 \ -0.88 \ -.25 \ 1.98]
4 //x0 = [0 \ 1/6 \ 1/3 \ 1/2 \ 2/3 \ 5/6 \ 1]
5 disp('Practical harmonic analysis');
6 \text{ syms x T}
7 xo=input('Input xo matrix (in factor of T): ');
8 yo=input('Input yo matrix : ');
9 ao=2*sum(yo)/length(xo);
10 s=ao/2;
11 n=input('No of sin or cos term in expansion : ');
12
13
     an=2*(yo.*cos(i*xo*2*\%pi))/length(yo);
     bn=2*(yo.*sin(i*xo*2*%pi))/length(yo);
14
15
     s=s+float(an)*cos(i*x*2*%pi/T)+float(bn)*sin(i*x
        *2*%pi/T);
16
17
     disp(s);
     disp('Direct current :');
18
19
    i=sqrt(an^2+bn^2);
```

Scilab code Exa 10.17 practical harmonic analysis

```
1 //error
2 //ques15,16,17
3 //yo = [1.98 \ 1.30 \ 1.05 \ 1.30 \ -0.88 \ -.25 \ 1.98]
4 //x0=[0 \ 1/6 \ 1/3 \ 1/2 \ 2/3 \ 5/6 \ 1]
5 disp('Practical harmonic analysis');
6 \text{ syms x T}
7 xo=input('Input xo matrix (in factor of T): ');
8 yo=input('Input yo matrix: ');
9 ao=2*sum(yo)/length(xo);
10 s=ao/2;
11 n=input('No of sin or cos term in expansion : ');
12
   i = 1
13
     an=2*(yo.*cos(i*xo*2*%pi))/length(yo);
     bn=2*(yo.*sin(i*xo*2*%pi))/length(yo);
14
```

Chapter 13

Linear Differential Equations

Scilab code Exa 13.1 solvinf linear differential equation

```
1 //ques1
2 clc
3 disp('solution of the given linear differential
      equation is given by: ');
4 syms c1 c2 x
5 m=poly(0, 'm');
6 f=m^2+m-2;
7 r=roots(f);
8 disp(r);
9 y = 0;
10 // for i = 1: length (r)
11
    //\text{syms} c(i)
12
     //y=y+c(i)*exp(r(i)*x);
13
     //end
     y=c1*exp(r(1)*x)+c2*exp(r(2)*x);
14
     disp('y=');
15
16
     disp(y);
```

Scilab code Exa 13.2 solving linear differential equation

```
1 //ques2
2 clc
3 disp('solution of the given linear differential
        equation is given by : ');
4 syms c1 c2 x;
5 m=poly(0, 'm');
6 f=m^2+6*m+9;
7 r=roots(f);
8 disp(r);
9 disp('roots are equal so solution is given by :');
10 disp('y=');
11 y=(c1+x*c2)*exp(r(1)*x);
12 disp(y);
```

Scilab code Exa 13.3 solving linear differential equation

```
1 //ques4
2 clc
3 disp('solution of the given linear differential equation is given by : ');
4 syms c1 c2 c3 x
5 m=poly(0, 'm');
6 f=m^3+m^2+4*m+4;
7 r=roots(f);
8 disp(r);
9 y=c1*exp(r(1)*x)+c2*exp(r(2)*x)+c3*exp(r(3)*x);
10 disp('y=');
11 disp(real(y));
```

Scilab code Exa 13.4 solving linear differential equation

```
1 //ques4
2 clc
```

Scilab code Exa 13.5 finding particular integral

```
1 //ques5
2 clc
3 disp('solution of the given linear differential equation is given by : ');
4 m=poly(0, 'm');
5 f=m^2+5*m+6;
6 //for particular solution a=1
7 y=exp(x)/horner(f,1);
8 disp('y-');
9 disp(y);
```

Scilab code Exa 13.6 finding particular integral

```
1 //ques6
2 clc
3 disp('solution of the given linear differential
        equation is given by : ');
4 m=poly(0, 'm');
5 f=(m+2)*(m-1)^2;
```

```
6 r=roots(f);
7 disp(r);
8 disp('y=1/f(D)*[exp(-2x)+exp(x)-exp(-x)');
9 disp('using 1/f(D)exp(ax)=x/f1(D)*exp(ax) if f(m)=0');
10 y1=x*exp(-2*x)/9;
11 y2=exp(-x)/4;
12 y3=x^2*exp(x)/6;
13 y=y1+y2+y3;
14 disp('y=');
15 disp(y);
```

Scilab code Exa 13.7 finding particular integral

```
1 //ques7
2 clc
3 disp('solution of the given linear differential equation is given by : ');
4 m=poly(0, 'm');
5 f=m^3+1;
6 disp('Using the identity 1/f(D^2)*sin(ax+b)[or cos(ax+b)]=1/f(-a^2)*sin(ax+b)[or cos(ax+b)] this equation can be reduced to ');
7 disp('y=(4D+1)/65*cos(2x-1)');
8 y=(cos(2*x-1)+4*diff(cos(2*x-1),x))/65;
9 disp('y=');
10 disp(y);
```

Scilab code Exa 13.8 finding particular integral

```
1 //ques8
2 clc
```

Scilab code Exa 13.9 finding particular integral

```
//ques9
clc
disp('solution of the given linear differential equation is given by : ');
m=poly(0, 'm');
disp('y=1/(D(D+1))[x^2+2x+4] can be written as (1-D+D^2)/D[x^2+2x+4] which is combination of differentiation and integration ');
g=x^2+2*x+4;
f=g-diff(g,x)+diff(g,x,2);
y=integ(f,x);
disp('y=');
disp(y);
```

Scilab code Exa 13.10 finding particular integral

Scilab code Exa 13.11 solving the given linear equation

```
1 //ques11
2 clc
3 disp('solution of the given linear differential
      equation is given by: ');
4 disp('CF + PI');
5 syms c1 c2 x
6 m=poly(0, 'm');
7 f = (m-2)^2;
8 r=roots(f);
9 disp(r);
10 disp('CF is given by ');
11 cf = (c1+c2*x)*exp(r(1)*x);
12 disp(cf);
13 disp('----
14 disp('PI =8*\{1/(D-2)^2[\exp(2x)]+\{1/(D-2)^2[\sin(2x)]\}
     +\{1/(D-2)^2[x^2]\};
15 disp('using identities it reduces to : ');
16 pi=4*x^2*exp(2*x)+cos(2*x)+4*x+3;
17 disp(pi);
18 \text{ y=cf+pi};
19 disp('The solution is : y=');
20 disp(y);
```

Scilab code Exa 13.12 solving the given linear equation

```
1 //ques12
```

```
2 clc
4 disp('solution of the given linear differential
      equation is given by: ');
5 disp('CF + PI');
6 \text{ syms c1 c2 x}
7 \text{ m=poly}(0, 'm');
8 f = (m^2-4);
9 r = roots(f);
10 disp(r);
11 disp('CF is given by ');
12 cf = c1 * exp(r(1) * x) + c2 * exp(r(2) * x);
13 disp(cf);
14 disp('----
15 disp('PI = 8*{1/(D^2-4)[x*sinh(x)]'});
16 disp('using identities it reduces to : ');
17 pi=-x/6*(exp(x)-exp(-x))-2/18*(exp(x)+exp(-x));
18 disp(pi);
19 y=cf+pi;
20 disp('The solution is : y=');
21 disp(y);
```

Scilab code Exa 13.13 solving the given linear equation

```
1 //ques12
2 clc
3
4 disp('solution of the given linear differential equation is given by : ');
5 disp('CF + PI');
6 syms c1 c2 x
7 m=poly(0, 'm');
8 f=(m^2-1);
9 r=roots(f);
10 disp(r);
```

Scilab code Exa 13.14 solving the given linear equation

```
1 //ques14
2 clc
3
4 disp('solution of the given linear differential
      equation is given by: ');
5 disp('CF + PI');
6 syms c1 c2 c3 c4 x
7 m = poly(0, 'm');
8 f = (m^4 + 2*m^2 + 1);
9 r = roots(f);
10 disp(r);
11 disp('CF is given by ');
12 cf=real((c1+c2*x)*exp(r(1)*x)+(c3+c4*x)*exp(r(3)*x))
13 disp(cf);
14 disp('----
15 disp('PI =*\{1/(D^4+2*D+1)[x^2*\cos(x)]'\};
16 disp('using identities it reduces to : ');
17 pi = -1/48*((x^4-9*x^2)*\cos(x)-4*x^3*\sin(x));
18 disp(pi);
19 y=cf+pi;
```

```
20 disp('The solution is : y=');
21 disp(y);
```

Chapter 21

Laplace Transform

Scilab code Exa 21.1.1 finding laplace transform

```
1 //ques1(i)
2 disp('To find the laplace of given function in t ');
3 syms t s
4 disp(laplace(sin(2*t)*sin(3*t),t,s));
```

Scilab code Exa 21.1.2 finding laplace transform

```
1 //ques1(ii)
2 disp('To find the laplace of given function in t ');
3 syms t s
4 disp(laplace((cos(t))^2,t,s));
```

Scilab code Exa 21.1.3 finding laplace transform

```
1 //ques1(ii)
2 disp('To find the laplace of given function in t ');
```

```
3 syms t s
4 disp(laplace((sin(t))^3,t,s));
```

Scilab code Exa 21.2.1 finding laplace transform

```
1 //ques1(ii)
2 disp('To find the laplace of given function in t ');
3 syms t s
4 f=exp(-3*t)*(2*cos(5*t)-3*sin(5*t));
5 disp(laplace(f,t,s));
```

Scilab code Exa 21.2.2 finding laplace transform

```
1 //ques1(ii)
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s
5 f=exp(3*t)*(sin(t))^2;
6 disp(laplace(f,t,s));
```

Scilab code Exa 21.2.3 finding laplace transform

```
1 //ques1(ii)
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s
5 f=exp(4*t)*(cos(t)*sin(2*t));
6 disp(laplace(f,t,s));
```

Scilab code Exa 21.4.1 finding laplace transform

```
1 //ques1(ii)
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=t*sin(a*t);
6 disp(laplace(f,t,s));
```

Scilab code Exa 21.4.2 finding laplace transform

```
1 //ques4(ii)
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=t*cos(a*t);
6 l=laplace(f,t,s);
7 disp(l);
```

Scilab code Exa 21.5 finding laplace transform

```
1 //error
2 //ques5
3 clc
4 syms t s u
5 f=integ(exp(-s*t)*t/u,t,0,u)+integ(exp(-s*t),t,u,%inf);
6 disp(f);
```

Scilab code Exa 21.7 finding laplace transform

```
1 //ques7
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=sin(a*t)/t;
6 disp(laplace(f,t,s));
```

Scilab code Exa 21.8.1 finding laplace transform

```
1 //ques7
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=t*cos(a*t);
6 disp(laplace(f,t,s));
```

Scilab code Exa 21.8.2 finding laplace transform

```
1 //ques7
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=t^2*sin(a*t);
6 disp(laplace(f,t,s));
```

Scilab code Exa 21.8.3 finding laplace transform

```
1 //ques7
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=exp(-3*t)*t^3;
6 l=laplace(f,t,s)
7 disp(l);
```

Scilab code Exa 21.8.4 finding laplace transform

```
1 //ques7
2 clc
3 disp('To find the laplace of given function in t ');
4 syms t s a
5 f=exp(-t)*t*sin(3*t);
6 l=laplace(f,t,s)
7 disp(l);
```

Scilab code Exa 21.9.1 finding laplace transform

```
1 //error
2 //ques7
3 clc
4 disp('To find the laplace of given function in t ');
5 syms t s a
6 f=(1-exp(t))/t;
7
8 l=laplace(f,t,s)
9 disp(l);
```

Scilab code Exa 21.9.2 finding laplace transform

```
//ques9
clc
disp('To find the laplace of given function in t ');
syms t s a b
f=(cos(a*t)-cos(b*t))/t;

l=laplace(f,t,s)
disp(1);
```

Scilab code Exa 21.10.1 finding laplace transform

```
1 //ques10(i)
2 clc
3 disp('To find the the given integral find the laplace of tsin(t) and put s=2 ');
4 syms t s m
5 f=sin(t)*t;
6
7 l=laplace(f,t,s)
8 s=2
9
10 disp(eval(1));
```

Scilab code Exa 21.10.3 finding laplace transform

```
1 //error
2 //ques10
```

```
3 clc
4 disp('To find the laplace of given function in t ');
5 syms t s a b
6 f=integ(exp(t)*sin(t)/t,t,0,t);
7
8 l=laplace(f,t,s)
disp(1);
```

Scilab code Exa 21.11.1 finding inverse laplace transform

```
1 //ques11
2 disp('To find the inverse laplace transform of the function');
3 syms s t
4 f=(s^2-3*s+4)/s^3;
5 il=ilaplace(f,s,t);
6 disp(il);
```

Scilab code Exa 21.11.2 finding inverse laplace transform

```
1 //ques11
2 disp('To find the inverse laplace transform of the function');
3 syms s t
4 f=(s+2)/(2*s^2-4*s+13));
5 il=ilaplace(f,s,t);
6 disp(il);
```

Scilab code Exa 21.12.1 finding inverse laplace transform

```
1 //ques11
2 disp('To find the inverse laplace transform of the function');
3 syms s t
4 f=((2*s^2-6*s+5)/(s^3-6*s^2+11*s-6);
5 il=ilaplace(f,s,t);
6 disp(il);
```

Scilab code Exa 21.12.3 finding inverse laplace transform

```
1 //ques11
2 disp('To find the inverse laplace transform of the function');
3 syms s t
4 f=(4*s+5)/((s-1)^2*(s+2));
5 il=ilaplace(f,s,t);
6 disp(il);
```

Scilab code Exa 21.13.1 finding inverse laplace transform

```
1 //ques11
2 disp('To find the inverse laplace transform of the function');
3 syms s t
4 f=(5*s+3)/((s-1)*(s^2+2*s+5));
5 il=ilaplace(f,s,t);
6 disp(il);
```

Scilab code Exa 21.13.2 finding inverse laplace transform

```
//error no output
//ques11

disp('To find the inverse laplace transform of the function');
syms s t a
f=s/(s^4+4*a^4);
il=ilaplace(f,s,t);
disp(il);
```

Scilab code Exa 21.14.1 finding inverse laplace transform

```
1
2 //ques14
3 disp('To find the inverse laplace transform of the function');
4 syms s t a
5 f=s^2/(s-2)^3;
6 il=ilaplace(f,s,t);
7 disp(il);
```

Scilab code Exa 21.14.2 finding inverse laplace transform

```
1
2 //ques14
3 disp('To find the inverse laplace transform of the function');
4 syms s t a
5 f=(s+3)/((s^2-4*s+13));
6 il=ilaplace(f,s,t);
7 disp(il);
```

Scilab code Exa 21.15.1 finding inverse laplace transform

```
//no outp
//ques15
disp('To find the inverse laplace transform of the function');
syms s t a
f=1/(s*(s^2+a^2));
il=ilaplace(f,s,t);
disp(il);
```

Scilab code Exa 21.15.2 finding inverse laplace transform

```
1
2 //ques15
3 disp('To find the inverse laplace transform of the function');
4 syms s t a
5 f=1/(s*(s+a)^3);
6 il=ilaplace(f,s,t);
7 disp(il);
```

Scilab code Exa 21.16.1 finding inverse laplace transform

```
1 //no outp
2 //ques15
3 disp('To find the inverse laplace transform of the function');
4 syms s t a
```

```
5 f=s/((s^2+a^2)^2);
6 il=ilaplace(f,s,t);
7 disp(il);
```

Scilab code Exa 21.16.2 finding inverse laplace transform

```
//no output
//ques15
disp('To find the inverse laplace transform of the function');
syms s t a
f=s^2/((s^2+a^2)^2);
il=ilaplace(f,s,t);
disp(il);
```

Scilab code Exa 21.16.3 finding inverse laplace transform

Scilab code Exa 21.17.1 finding inverse laplace transform

```
1 //no output
```

```
2 //ques15
3 disp('To find the inverse laplace transform of the function');
4 syms s t a
5 
6 f=(s+2)/(s^2*(s+1)*(s-2));
7 il=ilaplace(f,s,t);
8 disp(il);
```

Scilab code Exa 21.17.2 finding inverse laplace transform

```
//no output
//ques15
disp('To find the inverse laplace transform of the function');
syms s t a
f=(s+2)/(s^2+4*s+5)^2;
il=ilaplace(f,s,t);
disp(il);
```

Scilab code Exa 21.19.1 finding inverse laplace transform

```
// error no output
// ques18
disp('To find the inverse laplace transform of the function');
syms s t a
f=s/(s^2+a^2)^2;
il=ilaplace(f,s,t);
disp(il);
```

Scilab code Exa 21.19.2 finding inverse laplace transform

```
//error no output
//ques18
disp('To find the inverse laplace transform of the function');
syms s t a b
f=s^2/((s^2+a^2)*(s^2+b^2));
il=ilaplace(f,s,t);
disp(il);
```

Scilab code Exa 21.28.1 finding laplace transform

```
1 //ques28
2 syms s t
3 f=integ(exp(-s*t)*(t-1),t,1,2)+integ(exp(-s*t)*(3-t),t,2,3);
4 disp('Laplace of given function is');
5 disp(f);
```

Scilab code Exa 21.28.2 finding laplace transform

```
1 //ques28
2 syms s t
3 f=integ(exp(-s*t)*exp(-t),t,0,2);
4 disp('Laplace of given function is');
5 disp(f);
```

Scilab code Exa 21.34 finding laplace transform

```
// error no output
// ques34
disp('to find the laplace transform of periodic function ');
syms w t s
f=1/(1-exp(-2*%pi*s/w))*integ(exp(-1*s*t)*sin(w*t),t,0,%pi/w);
disp(f)
```

Chapter 22

Integral Transform

Scilab code Exa 22.1 finding fourier sine integral

```
1 //error
2 //ques1
3 disp('To find the fourier sine integral');
4 syms x t u
5 fs=2/%pi*integ(sin(u*x),u,0,%inf)*(integ(x^0*sin(u*t),t,0,%inf));
6 disp(fs);
```

Scilab code Exa 22.2 finding fourier transform

```
1 //error
2 //ques2
3 disp('To find the fourier transform of given function ');
4 syms x s
5 F=integ(exp(%i*s*x),x,-1,1);
6 disp(F);
7 //produces error->
8 F1=integ(sin(x)/x,x,0,%inf);
```

Scilab code Exa 22.3 finding fourier transform

```
// error
// ques3
disp('To find the fourier transform of given function ');
syms x s
F=integ(exp(%i*s*x)*(1-x^2),x,-1,1);
disp(F);
// produces error ->
F1=integ((x*cos(x)-sin(x))/x^3*cos(x/2),x,0,%inf);
```

Scilab code Exa 22.4 finding fourier sine transform

```
//error
//ques1
disp('To find the fourier sine transform');
syms x s m
//functtion fs=f(x)
fs=integ(sin(s*x)*exp(-x),x,0,%inf);
disp(fs);
//integ produces error
f=integ(x*sin(m*x)/(1+x^2),x,0,%inf);
disp(f);
```

Scilab code Exa 22.5 finding fourier cosine transform

```
1 // ques5
2 syms x s
```

```
3 disp('Fourier cosine transform');
4 f=integ(x*cos(s*x),x,0,1)+integ((2-x)*cos(s*x),x,1,2);
5 disp(f)
```

Scilab code Exa 22.6 finding fourier sine transform

```
1 //ques6
2 syms x s a
3 disp('Fourier cosine transform');
4 f=integ(exp(-a*x)/x*sin(s*x),x,0,%inf);
5 disp(f)
```

Chapter 23

Statistical Methods

Scilab code Exa 23.1 Calculating cumulative frequencies of given using iterations on matrices

```
1 clear
2 clc
3 disp('the first row of A denotes the no. of students
       falling in the marks group starting from (5-10)
      ... till (40-45)')
4 A(1,:) = [5 6 15 10 5 4 2 2];
5 disp('the second row denotes cumulative frequency (
      less than)')
6 \quad A(2,1)=5;
7 for i=2:8
     A(2,i) = A(2,i-1) + A(1,i);
9 end
10 disp('the third row denotes cumulative frequency (
     more than)')
11 A(3,1)=49;
12 for i=2:8
13
     A(3,i)=A(3,i-1)-A(1,i-1);
14 end
15 \text{ disp}(A)
```

Scilab code Exa 23.2 Calculating mean of of statistical data performing iterations matrices

```
1 clc
2 disp('the first row of A represents the mid values
       of weekly earnings having interval of 2 in each
        class=x')
3 \quad A(1,:) = [11 \quad 13 \quad 15 \quad 17 \quad 19 \quad 21 \quad 23 \quad 25 \quad 27 \quad 29 \quad 31 \quad 33 \quad 35 \quad 37 \quad 39
         41]
4 disp('the second row denotes the no. of employees or
        in other words frequency=f')
5 \quad A(2,:) = [3 \quad 6 \quad 10 \quad 15 \quad 24 \quad 42 \quad 75 \quad 90 \quad 79 \quad 55 \quad 36 \quad 26 \quad 19 \quad 13 \quad 9 \quad 7]
6 disp('third row denotes f*x')
7 \text{ for } i=1:16
8
      A(3,i)=A(1,i)*A(2,i);
10 disp('fourth row denotes u=(x-25)/2')
11 for i=1:16
12
      A(4,i) = (A(1,i)-25)/2
13 end
14 disp('fifth row denotes f*x')
15 for i=1:16
16
      A(5,i) = A(4,i) * A(2,i);
17 end
18 A
19 b = 0;
20 disp('sum of all elements of third row=')
21 for i=1:16
22
      b += A(3,i)
23 end
24 disp(b)
25 	 f = 0;
26 disp('sum of all elements of second row=')
27 \text{ for } i=1:16
```

```
28    f += A(2,i)
29    end
30    disp(f)
31    disp('mean=')
32    b/f
33    d=0;
34    disp('sum of all elements of fifth row=')
35    for i=1:16
36     d+= A(5,i)
37    end
38    disp('mean by step deviation method=')
39    25+(2*d/f)
```

Scilab code Exa 23.3 Analysis of statistical data performing iterations on matrices

```
1 clear
2 clc
3 disp('the first row of A denotes the no. of students
       falling in the marks group starting from (5-10)
      ... till (40-45)')
4 A(1,:) = [5 6 15 10 5 4 2 2];
5 disp('the second row denotes cumulative frequency (
      less than)')
6 \quad A(2,:) = [5 \quad 11 \quad 26 \quad 36 \quad 41 \quad 45 \quad 47 \quad 49]
7 disp('the third row denotes cumulative frequency (
      more than)')
8 A(3,:) = [49 44 38 23 13 8 4 2]
9 disp('median falls in the class (15-20) = 1 + ((n/2-c))
      *h)/f=')
10 15+((49/2-11)*5)/15
11 disp('lower quartile also falls in the class (15-20)
      = ')
12 \quad Q1 = 15 + ((49/4 - 11) * 5) / 15
13 disp('upper quartile also falls in the class (25-30)
```

```
=')
14 Q3=25+((3*49/4-36)*5)/5
15 disp('semi interquartile range=')
16 (Q3-Q1)/2
```

Scilab code Exa 23.4 Analysis of statistical data

```
1 clear
2 clc
3 disp('the first row of A denotes the roll no. of
      students form 1 to 10 and that of B denotes form
       11 to 20')
4 A(1,:) = [1 2 3 4 5 6 7 8 9 10];
5 B(1,:) = [11 12 13 14 15 16 17 18 19 20];
6 disp('the second row of A annd B denotes the
      corresponding marks in physics ')
7 A(2,:) = [53 \ 54 \ 52 \ 32 \ 30 \ 60 \ 47 \ 46 \ 35 \ 28];
8 B(2,:) = [25 42 33 48 72 51 45 33 65 29];
9 disp ('the third row denotes the corresponding marks
      in chemistry ')
10 A(3,:) = [58 55 25 32 26 85 44 80 33 72];
11 B(3,:)=[10\ 42\ 15\ 46\ 50\ 64\ 39\ 38\ 30\ 36];
12 disp('median marks in physics = arithmetic mean of 10
       thand 11 th student =')
13 (28+25)/2
14 disp('median marks in chemistry = arithmetic mean of
      10 thand 11 th student =')
15 (72+10)/2
```

Scilab code Exa 23.5 Finding the missing frequency of given statistical data using given constants

```
1 clear
```

```
2 clc
3 disp('let the misssing frequencies be fland f2')
4 disp('sum of given frequencies=12+30+65+25+18=')
5 c=12+30+65+25+18
6 disp('so,f1+f2=229-c=')
7 229-c
8 disp('median=46=40+(114.5-(12+30+f1))*10/65)')
9 disp('f1=33.5=34')
10 f1=34
11 f2=45
```

Scilab code Exa 23.6 Calculating average speed

```
1 clear
2 clc
3 syms s;
4 disp('let the eqidistance be s,then')
5 t1=s/30
6 t2=s/40
7 t3=s/50
8 disp('average speed=total distance/total time taken'
)
9 3*s/(t1+t2+t3)
```

Scilab code Exa 23.7 Calculating mean and standard deviation performing iterations on matrices

```
1 clear
2 clc
3 disp('the first row denotes the size of item')
4 A(1,:)=[6 7 8 9 10 11 12];
5 disp('the second row denotes the corresponding frequency (f)')
```

```
6 \quad A(2,:) = [3 \quad 6 \quad 9 \quad 13 \quad 8 \quad 5 \quad 4];
7 disp('the third row denotes the corresponding
      deviation (d)')
8 A(3,:) = [-3 -2 -1 0 1 2 3];
9 disp('the fourth row denotes the corresponding f*d'
10 for i=1:7
11
     A(4,i) = A(2,i) * A(3,i);
12 end
13 disp('the fifth row denotes the corresponding f*d^2'
      )
14 \text{ for } i=1:7
15
     A(5,i)=A(2,i)*(A(3,i)^2);
16 end
17 A
18 b=0;
19 disp('sum of fourth row elements=')
20 \text{ for } i=1:7
     b=b+A(4,i);
21
22 \text{ end}
23 disp(b)
24 c = 0
25 disp('sum of fifth row elements=')
26 \text{ for } i=1:7
27
     c=c+A(5,i);
28 end
29 disp(c)
30 d=0;
31 disp('sum of all frequencies=')
32 \text{ for } i=1:7
33
     d=d+A(2,i);
34 end
35 disp(d)
36 disp('mean=9+b/d=')
37 9 + b/d
38 disp('standard deviation=(c/d)^0.5')
39 (c/d)^0.5
```

Scilab code Exa 23.8 Calculating mean and standard deviation performing iterations on matrices

```
1 clc
2 disp('the first row of A represents the mid values
      of wage classes having interval of 8 in each
      class=x')
3 A(1,:) = [8.5 16.5 24.5 32.5 40.5 48.5 56.5 64.5 72.5]
4 disp('the second row denotes the no. of men or in
      other words frequency=f')
5 A(2,:) = [2 24 21 18 5 3 5 8 2]
6 disp('third row denotes f*x')
7 \text{ for } i=1:9
     A(3,i)=A(1,i)*A(2,i);
9 end
10 disp('fourth row denotes d=(x-32.5)/8')
11 for i=1:9
12
     A(4,i) = (A(1,i) - 32.5)/8
13 end
14 disp('fifth row denotes f*d')
15 \text{ for } i=1:9
     A(5,i) = A(4,i) * A(2,i);
16
17 \text{ end}
18 disp('sixth row denotes f*(d^2))
19 for i=1:9
20
     A(6,i)=A(4,i)^2*A(2,i);
21 end
22 A
23 b = 0;
24 disp('sum of all elements of sixth row=')
25 \text{ for } i=1:9
     b += A(6, i)
26
27 end
28 disp(b)
```

```
29 f = 0;
30 disp('sum of all elements of second row=')
31 for i=1:9
32
     f += A(2,i)
33 end
34 disp(f)
35 disp('mean=')
36 b/f
37 d=0;
38 disp('sum of all elements of fifth row=')
39 \text{ for } i=1:9
     d += A(5, i)
40
41 end
42 disp('mean wage=')
43 32.5+(8*d/f)
44 disp('standard deviation=')
45 \ 8*(b/f-(d/f)^2)
```

Scilab code Exa 23.9 Analysis of statistical data performing iterations on matrices

```
clear
clc
disp('the first row of A denotes the scores of A and that of B denotes that of B')
A(1,:)=[12 115 6 73 7 19 119 36 84 29];
B(1,:)=[47 12 16 42 4 51 37 48 13 0];
disp('the second row of A annd B denotes the corresponding deviation ')
for i=1:10
A(2,i)=A(1,i)-51;
B(2,i)=B(1,i)-51;
end
disp('the third row of A and B denotes the corresponding deviation square')
```

```
12 for i=1:10
13
     A(3,i) = A(2,i)^2;
     B(3,i)=B(2,i)^2;
14
15 end
16 A
17 B
18 b=0;
19 disp('sum of second row elements of A=b=')
20 \quad for \quad i=1:10
     b=b+A(2,i);
21
22
     end
23
     disp(b)
24
     c=0;
25 disp('sum of second row elements of B=c=')
26 \quad for \quad i=1:10
27
     c=c+B(2,i);
28
     end
29
     disp(c)
     d=0;
30
31 disp('sum of third row elements of A=d=')
32 \text{ for } i=1:10
     d=d+A(3,i);
33
34
     end
     disp(d)
35
36
     e=0;
37 disp('sum of second row elements of B=e=')
38 \text{ for } i=1:10
39
     e=e+B(3,i);
40
     end
41
     disp(e)
     disp('arithmetic mean of A=')
42
     f = 51 + b/10
43
44
     disp('standard deviation of A=')
     g=(d/10-(b/10)^2)^0.5
45
     disp('arithmetic mean of B=')
46
47
     h=51+c/10
     disp('standard deviation of A=')
48
     i = (e/10 - (c/10)^2)^0.5
49
```

```
50     disp('coefficient of variation of A=')
51     (g/f)*100
52     disp('coefficient of variation of B=')
53     (i/h)*100
```

Scilab code Exa 23.10 Calculating mean and standard deviation of different statistical data when put together

```
1 clear
2 clc
3 disp('if m is the mean of entire data, then ')
4 m=(50*113+60*120+90*115)/(50+60+90)
5 disp('if s is the standard deviation of entire data, then ')
6 s=(((50*6^2)+(60*7^2)+(90*8^2)+(50*3^2)+(60*4^2)+(90*1^2))/200)^0.5
```

Scilab code Exa 23.12 Calculating median and quartiles of given statistical data performing iterations on matrices

Scilab code Exa 23.13 Calculating coefficient of correlation

```
1 clear
2 clc
3 disp('the first row of A denotes the corresponding I
      .R. of students ')
4 A(1,:) = [105 104 102 101 100 99 98 96 93 92];
5 disp('the second row denotes the corresponding
      deviation of I.R.')
6 \text{ for } i=1:10
     A(2,i)=A(1,i)-99;
9 disp('the third row denotes the square of
      corresponding deviation of I.R. ')
10 \text{ for } i=1:10
11
     A(3,i)=A(2,i)^2;
12 end
13 disp('the fourth row denotes the corresponding
       of students ')
     A(4,:) = [101 \ 103 \ 100 \ 98 \ 95 \ 96 \ 104 \ 92 \ 97 \ 94];
14
15 disp('the fifth row denotes the corresponding
      deviation of E.R. ')
16 for i=1:10
17
     A(5,i) = A(4,i) - 98;
18 end
```

```
19 disp('the sixth row denotes the square of
      corresponding deviation of E.R. ')
20 \text{ for } i=1:10
21
    A(6,i)=A(5,i)^2;
22 \text{ end}
23 disp('the seventh row denotes the product of the two
       corresponding deviations ')
24 \text{ for } i=1:10
25
     A(7,i)=A(2,i)*A(5,i);
26 \text{ end}
27 A
28 a=0;
29 disp('the sum of elements of first row=a')
30 \text{ for } i=1:10
31
     a=a+A(1,i);
32 end
33 a
34 b = 0;
35 disp('the sum of elements of second row=b')
36 \text{ for } i=1:10
37
     b=b+A(2,i);
38 end
39 b
40 c = 0;
41 disp('the sum of elements of third row=c')
42 for i=1:10
     c=c+A(3,i);
43
44 end
45 c
46 d = 0;
47 disp('the sum of elements of fourth row=d')
48 \quad for \quad i=1:10
     d=d+A(4,i);
49
50 end
51 d
52 e = 0;
53 disp('the sum of elements of fifth row=e')
54 \text{ for } i=1:10
```

```
e=e+A(5,i);
55
56 end
57 e
58 f = 0;
59 disp('the sum of elements of sixth row=d')
60 \text{ for } i=1:10
     f=f+A(6,i);
61
62 end
63 f
64 g = 0;
65 disp('the sum of elements of seventh row=d')
66 \text{ for } i=1:10
67 g=g+A(7,i);
68 end
69 g
70 disp('coefficient of correlation=')
71 g/(c*f)^0.5
```

Chapter 24

Numerical Methods

Scilab code Exa 24.1 finding the roots of equation

```
1 clc
2 clear
3 x = poly(0, 'x');
4 p=x^3-4*x-9
5 disp ("Finding roots of this equation by bisection
      method");
6 disp('f(2)) is -ve and f(3) is +ve so a root lies
      between 2 and 3');
71=2;
8 \text{ m=3};
9 function y=f(x)
10
     y=x^3-4*x-9;
11 endfunction
12 for i=1:4
       k=1/2*(1+m);
13
14 if(f(k)<0)
15
       l=k;
16 else
17
     m=k;
18
     end
19 end
```

Scilab code Exa 24.3 finding the roots of equation by the method of false statement

```
1 //ques 2
2 disp('f(x)=xe^x-cos(x)');
3 function y=f(x)
     y=x*\%e^(x)-\cos(x);
5 endfunction
7 disp('we are required to find the roots of f(x) by
      the method of false position');
8 disp('f(0)=-ve and f(1)=+ve so s root lie between 0
     and 1');
  disp('finding the roots by false position method');
10
11 \quad 1=0;
12 m=1;
13 for i=1:10
14
      k=1-(m-1)*f(1)/(f(m)-f(1));
15
     if(f(k)<0)
16
       l=k;
17
     else
18
       m=k;
19
     end
20 end
21 //fprintf('The roots of the equation is %g',k)
22 disp('The root of the equation is:');
23 disp(k);
```

Scilab code Exa 24.4 finding rea roots of equation by regula falsi method

```
1 //ques 2
2 disp('f(x)=x*log(x)-1.2');
3 function y=f(x)
     y=x*log10(x)-1.2;
4
5 endfunction
7 disp('we are required to find the roots of f(x) by
      the method of false position');
  disp('f(2))=-ve and f(3)=+ve so s root lie between 2
      and 3');
9 disp('finding the roots by false position method');
10
11 1=2;
12 \text{ m=3};
13 for i=1:3
      k=1-(m-1)*f(1)/(f(m)-f(1));
14
15
     if(f(k)<0)
16
       l=k;
17
     else
18
       m = k;
19
     end
20 \text{ end}
21 //fprintf('The roots of the equation is %g',k)
22 disp('The root of the equation is:');
23 disp(k);
```

Scilab code Exa 24.5 real roots of equation by newtons method

```
1 //ques 5
2 disp(' To find the roots of f(x)=3x-cos(x)-1 by newtons method ');
3 disp('f(0)=-ve and f(1) is +ve so a root lies between 0 and 1');
4 l=0;
5 m=1;
```

```
6 function y=f(x)
7     y=3*x-cos(x)-1;
8 endfunction
9 x0=0.6;
10 disp('let us take x0=0.6 as the root is closer to 1'
    );
11 disp("Root is given by r=x0-f(xn)/der(f(xn))");
12 disp('approximated root in each steps are');
13 for i=1:3
14     k=x0-f(x0)/derivative(f,x0);
15     disp(k);
16     x0=k;
17 end
```

Scilab code Exa 24.6 real roots of equation by newtons method

```
1 // ques 7
      2 clear
      3 clc
      4 disp('To find squareroot of 28 by newtons method let
                                                           x = sqrt(28) ie x^2-28=0;
      5 function y=f(x)
                                           y=x^2-28;
      6
      7 endfunction
      8 disp(' To find the roots by newtons method');
     9 \operatorname{disp}(f(5))=-\operatorname{ve} and \operatorname{disp}(f(5))=-\operatorname{
                                                   between 5 and 6');
10 1=5;
11 m=6;
12 disp('let us take x0=5.5');
13 disp("Root is given by rn=xn-f(xn)/der(f(xn))");
14 disp('approximated root in each steps are');
15 \times 0 = 5.5;
16 for i=1:4
17
                                          k=x0-f(x0)/derivative(f,x0);
```

```
18 disp(k);
19 x0=k;
20 end
```

Scilab code Exa 24.7 evaluating square root by newtons iterative method

```
1 //ques 7
2 clear
3 clc
4 disp('To find squareroot of 28 by newtons method let
       x = sqrt(28) ie x^2-28=0;
5 function y=f(x)
6
     y=x^2-28;
7 endfunction
8 disp(' To find the roots by newtons method');
9 \operatorname{disp}('f(5))=-\operatorname{ve} and f(6) is +ve so a root lies
      between 5 and 6');
10 \quad 1=5;
11 m=6;
12 disp('let us take x0=5.5');
13 disp("Root is given by rn=xn-f(xn)/der(f(xn))");
14 disp('approximated root in each steps are');
15 \times 0 = 5.5;
16 for i=1:4
     k=x0-f(x0)/derivative(f,x0);
17
18
     disp(k);
19
     x0=k;
20 \, \text{end}
```

Scilab code Exa 24.10 solving equations by guass elimination method

```
1 // ques 10 , ques 11
```

```
2 //Linear equation system 'Ax=r' by Gauss elimination
       method.
3 clc
4 clear
6 disp('Solution of N-equation [A][X]=[r]')
7 n=input ('Enter number of Equations:');
8 A=input ('Enter Matrix [A]:');
9 r=input ('Enter Matrix [r]:');
10 D=A; d=r;
11
12 //create upper triangular matrix
13 \text{ s=0};
14 for j=1:n-1
15
       if A(j,j) == 0
16
            k = j;
17
            for k=k+1:n
                if A(k,j) == 0
18
                     continue
19
20
                end
21
                break
22
            end
            B=A(j,:); C=r(j);
23
            A(j,:)=A(k,:); r(j)=r(k);
24
            A(k,:)=B; r(k)=C;
25
26
       end
27
       for i=1+s:n-1
28
            L=A(i+1,j)/A(j,j);
29
            A(i+1,:)=A(i+1,:)-L*A(j,:);
            r(i+1)=r(i+1)-L*r(j);
30
31
       end
32
       s=s+1;
33 end
34 //Solution of equations
35 \times (n) = r(n) / A(n,n);
36 for i=n-1:-1:1
37
       sum = 0;
       for j=i+1:n
38
```

```
39
           sum = sum + A(i,j) *x(j);
40
       end
       x(i) = (1/A(i,i))*(r(i)-sum);
41
42 end
43
44 //hecking with scilab functions
45 p = inv(D) *d;
46 // Output
47 disp('@
     @')
48 disp('Output [B][x]=[b]')
49 disp('Upper riangular Matrix [B] ='); disp(A)
50 disp('Matrix [b] ='); disp(r)
51 disp('solution of linear equations:'); disp(x')
52 disp('solve with matlab functions(for checking):');
      disp(p)
```

Scilab code Exa 24.12 solving equations by guass elimination method

```
//ques 10 , ques 11
//Linear equation system 'Ax=r' by Gauss elimination method.

clc
clear

disp('Solution of N-equation [A][X]=[r]')
n=input ('Enter number of Equations :');
A=input ('Enter Matrix [A]:');
r=input ('Enter Matrix [r]:');
D=A;d=r;
//create upper triangular matrix
s=0;
for j=1:n-1
```

```
15
        if A(j,j) == 0
16
            k = j;
17
            for k=k+1:n
                 if A(k,j) == 0
18
19
                      continue
20
                 end
21
                 break
22
            end
            B=A(j,:); C=r(j);
23
            A(j,:)=A(k,:); r(j)=r(k);
24
25
            A(k,:)=B; r(k)=C;
26
        end
27
        for i=1+s:n-1
            L=A(i+1,j)/A(j,j);
28
            A(i+1,:) = A(i+1,:) - L * A(i,:);
29
            r(i+1)=r(i+1)-L*r(j);
30
31
        end
32
        s=s+1;
33 end
34 //Solution of equations
35 \times (n) = r(n) / A(n,n);
36 for i=n-1:-1:1
37
        sum = 0;
        for j=i+1:n
38
            sum = sum + A(i,j) *x(j);
39
40
        end
41
        x(i) = (1/A(i,i))*(r(i)-sum);
42 end
43
44 //hecking with scilab functions
45 p = inv(D) *d;
46 // Output
47 disp('@
      @ ' )
48 disp('Output [B][x]=[b]')
49 disp('Upper riangular Matrix [B] ='); disp(A)
50 disp('Matrix [b] ='); disp(r)
```

Scilab code Exa 24.13 solving equations by guass elimination method

```
1 //ques 10 , ques 11
2 // Linear equation system 'Ax=r' by Gauss elimination
       method.
3 clc
4 clear
6 disp('Solution of N-equation [A][X]=[r]')
7 n=input ('Enter number of Equations:');
8 A=input ('Enter Matrix [A]:');
9 r=input ('Enter Matrix [r]:');
10 D=A; d=r;
11
12 //create upper triangular matrix
13 \text{ s=0};
14 for j=1:n-1
15
       if A(j,j) == 0
16
            k = j;
17
            for k=k+1:n
                if A(k,j) == 0
18
19
                     continue
20
                end
21
                break
22
            end
            B=A(j,:); C=r(j);
23
24
            A(j,:)=A(k,:); r(j)=r(k);
25
            A(k,:)=B; r(k)=C;
26
       end
27
       for i=1+s:n-1
28
            L=A(i+1,j)/A(j,j);
```

```
29
            A(i+1,:)=A(i+1,:)-L*A(j,:);
            r(i+1)=r(i+1)-L*r(j);
30
31
       end
32
       s=s+1;
33 end
34 //Solution of equations
35 \times (n) = r(n) / A(n,n);
36 for i=n-1:-1:1
37
       sum = 0;
       for j=i+1:n
38
            sum = sum + A(i, j) * x(j);
39
40
41
       x(i) = (1/A(i,i))*(r(i)-sum);
42 end
43
44 //hecking with scilab functions
45 p = inv(D) *d;
46 //Output
47 disp('@
      @')
48 disp('Output [B][x]=[b]')
49 disp('Upper riangular Matrix [B] ='); disp(A)
50 disp('Matrix [b] ='); disp(r)
51 disp('solution of linear equations :'); disp(x')
52 disp('solve with matlab functions(for checking):');
      disp(p)
```

Chapter 26

Difference Equations and Z Transform

Scilab code Exa 26.2 finding difference equation

```
1 // ques2
2 syms n a b yn0 yn1 yn2
3 yn=a*2^n+b*(-2)^n;
4 disp('yn=');
5 disp(yn);
6 n=n+1;
7 yn = eval(yn);
8 disp('y(n+1)=yn1=');
9 disp(yn);
10 n=n+1;
11 yn=eval(yn);
12 disp('y(n+2)=yn2=');
13 disp(yn);
14 disp('Eliminating a b fropm these equations we get :
15 A=[yn0 1 1;yn1 2 -2;yn2 4 4]
16 y = det(A);
17 disp('The required difference equation:');
18 disp(y);
```

```
19 disp('=0');
```

Scilab code Exa 26.3 solving difference equation

Scilab code Exa 26.4 solving difference equation

Scilab code Exa 26.6 firming fibonacci difference equation

```
1 //ques6
2 \text{ syms} c1 c2 c3 n
3 disp('For Fibonacci Series yn2=yn1+yn0');
4 disp('so Cumulative function is given by E^2-E-1
     =0 ');
5 E = poly(0, 'E');
6 f=E^2-E-1;
7 r=roots(f);
8 disp(r);
9 disp('There for the complete solution is:');
10 un=(c1)*(r(1))^n+c2*(r(2))^n;
11 disp('un=');
12 disp(un);
13 disp('Now puttting n=1, y=0 and n=2, y=1 we get');
14 disp('c1=(5-sqrt(5))/10 c2=(5+sqrt(5))/10');
15 c1 = (5 - sqrt(5))/10;
16 c2 = (5 + sqrt(5))/10;
17 un=eval(un);
18 disp(un);
```

Scilab code Exa 26.7 solving difference equation

```
8 disp('There for the complete solution is = cf + pi')
;
9 cf=c1*(r(1))^n+c2*r(2)^n;
10 disp('CF=');
11 disp(cf);
12 disp('PI = 1/(E^2-4E+3)[5^n]');
13 disp('put E=5');
14 disp('We get PI=5^n/8');
15 pi=5^n/8;
16 un=cf+pi;
17 disp('un=');
18 disp(un);
```

Scilab code Exa 26.8 solving difference equation

```
1 //ques4
2 \text{ syms} c1 c2 c3 n
3 disp ('Cumulative function is given by E^2-4*E+4
      =0 ');
4 E = poly(0, 'E');
5 f = E^2 - 4 * E + 4;
6 r=roots(f);
7 \text{ disp}(r);
8 disp('There for the complete solution is = cf + pi')
9 cf = (c1+c2*n)*r(1)^n;
10 disp('CF=');
11 disp(cf);
12 disp('PI = 1/(E^2-4E+4)[2^n]');
13 disp('We get PI=n*(n-1)/2*2^(n-2)');
14 pi=n*(n-1)/factorial(2)*2^(n-2);
15 \text{ un=cf+pi};
16 disp('un=');
17 disp(un);
```

Scilab code Exa 26.10 solving difference equation

```
1 //ques10
2 clc
        c1 c2 c3 n
3 syms
4 disp('Cumulative function is given by E^2-4 = 0')
5 E = poly(0, 'E');
6 \text{ f=E}^2-4;
7 r = roots(f);
8 disp(r);
9 disp('There for the complete solution is = cf + pi')
10 cf = (c1+c2*n)*r(1)^n;
11 disp('CF=');
12 disp(cf);
13 // particular integral calulation manually
14 disp('PI = 1/(E^2-4)[n^2+n-1]');
15 disp('We get PI=-n^2/3-7/9*n-17/27');
16 pi=-n^2/3-7/9*n-17/27;
17 \text{ un=cf+pi};
18 disp('un=');
19 disp(un);
```

Scilab code Exa 26.11 solving difference equation

```
6  f=E^2+2*E-1;
7  r=roots(f);
8  disp(r);
9  disp('There for the complete solution is = cf + pi')
    ;
10  cf=(c1+c2*n)*r(1)^n;
11  disp('CF=');
12  disp(cf);
13  // particular integral calculation manually
14  disp('PI = 1/(E-1)^2[n^2*2^n]');
15  disp('We get PI=2^n*(n^2-8*n+20');
16  pi=2^n*(n^2-8*n+20);
17  un=cf+pi;
18  disp('un=');
19  disp(un);
```

Scilab code Exa 26.12 solving simultanious difference equation

```
1 //ques12
2 clc
3 disp('simplified equations are:');
4 disp('(E-3)ux+vx=x....(i) 3ux+(E-5)*vx=4^x....(ii
      ) ');
5 disp('Simplifying we get (E^2-8E+12)ux=1-4x-4x');
6 \text{ syms} c1 c2 c3 x
7 disp ('Cumulative function is given by E<sup>2</sup>-8*E+12
     =0 ');
8 E = poly(0, 'E');
9 f=E^2-8*E+12;
10 r = roots(f);
11 disp(r);
12 disp('There for the complete solution is = cf + pi')
13 cf = c1 * r(1) ^x + c2 * r(2) ^x;
14 disp('CF=');
```

```
disp(cf);
// particular integral calulation manually
disp('solving for PI ');
disp('We get PI=');
pi=-4/5*x-19/25+4^x/4;
ux=cf+pi;
disp('ux=');
disp(ux);
vx=c1*2^x-3*c2*6^x-3/5*x-34/25-4^x/4;
disp(vx);
```

Scilab code Exa 26.15.2 Z transform

```
1 //ques15(ii)
2 syms n z
3 y=z^(-n);
4 f=symsum(y,n,0,%inf);
5 disp(f);
```

Scilab code Exa 26.16 evaluating u2 and u3

```
1 //ques16
2 syms z
3 //f=(2/z^2+5/z^3+14/z^4)/(1-1/z)^4
4 f=(2/z^2+5/z+14)/(1/z-1)^4
5 u0=limit(f,z,0);
6 u1=limit(1/z*(f-u0),z,0);
7 u2=limit(1/z^2*(f-u0-u1*z),z,0);
8 disp('u2=');
9 disp(u2);
10 u3=limit(1/z^3*(f-u0-u1*z-u2*z^2),z,0);
11 disp('u3=');
```

12 disp(u3);

Chapter 27

Numerical Solution of Ordinary Differential Equations

Scilab code Exa 27.1 solving ODE with picards method

```
//ques1
syms x
disp('solution through picards method');
n=input('The no of iterations required');
disp('y(0)=1 and y(x)=x+y');
yo=1;
yn=1;
for i = 1:n
yn=yo+integ(yn+x,x,0,x);
end
disp('y=');
disp(yn);
```

Scilab code Exa 27.2 solving ODE with picards method

```
1 //error
```

```
2 //ques2
3 syms x
4 disp('solution through picards method');
5 n=input('The no of iterations required');
6 disp('y(0)=1 \text{ and } y(x)=x+y');
7 yo = 1;
8 y = 1;
9 \text{ for } i = 1:n
10
     f = (y-x)/(y+x);
11
     y=yo+integ(f,x,0,x);
12
13 end
14 disp('y=');
15 \quad x = 0.1;
16 disp(eval(y));
```

Scilab code Exa 27.5 solving ODE using Eulers method

```
1 //ques5
2 clc
3 disp('Solution using Eulers Method ');
4 disp x y;
5 n=input('Input the number of iteration :-');
6 x=0;
7 y=1;
8 for i=1:n
9
10 y1=x+y;
11 y=y+0.1*y1;
12 x=x+0.1;
13 end
14 disp('The value of y is :-');
15 disp(y);
```

Scilab code Exa 27.6 solving ODE using Eulers method

```
1 //ques5
2 clc
3 disp('Solution using Eulers Method ');
4 disp x y;
5 n=input('Input the number of iteration :-');
6 x=0;
7 y=1;
8 for i=1:n
9
10 y1=(y-x)/(y+x);
11 y=y+0.02*y1;
12 x=x+0.1;
13 disp(y);
14 end
15 disp('The value of y is :-');
16 disp(y);
```

Scilab code Exa 27.7 solving ODE using Modified Eulers method

```
1 //ques7
2 clc
3 disp('Solution using Eulers Method ');
4 disp x y;
5 n=input('Input the number of iteration :-');
6 x=0.1;
7 m=1;
8 y=1;
9 yn=1;
10 y1=1;
11 k=1;
```

```
12 \quad for \quad i=1:n
13
14 yn=y;
15
16
17
    for i=1:4
18 m = (k+y1)/2;
      yn = y + 0.1 * m;
19
20
      y1 = (yn + x);
21
      disp(yn);
22 \text{ end}
23 disp('----
24 \text{ y=yn};
25 \text{ m=y1};
26
     yn = yn + 0.1 * m;
27
     disp(yn);
28 \quad x = x + 0.1;
29
      yn = y;
30
      k=m;
31 end
32 disp('The value of y is :-');
33 disp(y);
```

Scilab code Exa 27.8 solving ODE using Modified Eulers method

```
1 //ques7
2 clc
3 disp('Solution using Eulers Method ');
4 disp x y;
5 n=input('Input the number of iteration :-');
6 x=0.2;
7 m=0.301;
8 y=2;
9 yn=2;
10 y1=log10(2);
```

```
11 k=0.301;
12 for i=1:n
13
14 yn = y;
15
16
    for i=1:4
17
18
    m = (k+y1)/2;
19
     yn = y + 0.2 * m;
     y1 = log10 (yn+x);
20
21
      disp(yn);
22 \text{ end}
23 disp('---
                              -----·;);
24 y = yn;
25 \text{ m} = y1;
26
     yn = yn + 0.2*m;
27
     disp(yn);
28
     x = x + 0.2;
29
      yn = y;
30
     k=m;
31 end
32 disp('The value of y is :-');
33 disp(y);
```

Scilab code Exa 27.9 solving ODE using Modified Eulers method

```
1 //ques7
2 clc
3 disp('Solution using Eulers Method ');
4 disp x y;
5 n=input('Input the number of iteration :-');
6 x=0.2;
7 m=1;
8 y=1;
9 yn=1;
```

```
10 y1=1;
11 k=1;
12 for i=1:n
13
14 yn=y;
15
16
17
    for i=1:4
   m = (k + y1)/2;
18
    yn = y + 0.2 * m;
19
     y1=(sqrt(yn)+x);
20
21
     disp(yn);
22 \text{ end}
                       -----·');
23 disp('----
24 \text{ y=yn};
25 \text{ m=y1};
26 \quad yn = yn + 0.2 * m;
27
     disp(yn);
28
     x = x + 0.2;
29
     yn = y;
30
     k=m;
31 end
32 disp('The value of y is :-');
33 disp(y);
```

Scilab code Exa 27.10 solving ODE using runge method

```
1 //ques10
2 disp('Runges method');
3 function y=f(x,y)
4  y=x+y;
5 endfunction
6
7 x=0;
8 y=1;
```

```
9 h=0.2;
10 k1=h*f(x,y);
11 k2=h*f(x+1/2*h,y+1/2*k1);
12 kk=h*f(x+h,y+k1);
13 k3=h*f(x+h,y+kk);
14 k=1/6*(k1+4*k2+k3);
15 disp('the required approximate value is :-');
16 y=y+k;
17 disp(y);
```

Scilab code Exa 27.11 solving ODE using runge kutta method

```
1 //ques11
2 disp('Runga kutta method');
3 function y=f(x,y)
4
     y = x + y;
5 endfunction
7 x = 0;
8 y = 1;
9 h = 0.2;
10 k1=h*f(x,y);
11 k2=h*f(x+1/2*h,y+1/2*k1);
12 k3=h*f(x+1/2*h,y+1/2*k2);
13 k4=h*f(x+h,y+k3);
14 k=1/6*(k1+2*k2+2*k3+k4);
15 disp('the required approximate value is :-');
16 y = y + k;
17 disp(y);
```

Scilab code Exa 27.12 solving ODE using runge kutta method

```
1 //ques12
```

```
2 clc
3 disp('Runga kutta method');
4 function y=f(x,y)
     y = (y^2 - x^2) / (x^2 + y^2);
5
6 endfunction
8 x = 0;
9 y = 1;
10 h=0.2;
11 k1=h*f(x,y);
12 k2=h*f(x+1/2*h,y+1/2*k1);
13 k3=h*f(x+1/2*h,y+1/2*k2);
14 k4=h*f(x+h,y+k3);
15 k=1/6*(k1+2*k2+2*k3+k4);
16 disp('the required approximate value is :-');
17 y=y+k;
18 disp(y);
19 disp('to find y(0.4) put x=0.2 y=above value ie
      1.196 h=0.2 ');
20 x = 0.2;
21 h = 0.2;
22 k1=h*f(x,y);
23 k2=h*f(x+1/2*h,y+1/2*k1);
24 k3=h*f(x+1/2*h,y+1/2*k2);
25 \text{ k4=h*f(x+h,y+k3)};
26 k=1/6*(k1+2*k2+2*k3+k4);
27 disp('the required approximate value is :-');
28 y = y + k;
29 disp(y);
```

Scilab code Exa 27.13 solving ODE using runge kutta method

```
1 //ques12
2 clc
3 disp('Runga kutta method');
```

```
4 function yy=f(x,y)
     yy=x+y^2;
6 endfunction
8 x = 0;
9 y = 1;
10 h = 0.1;
11 k1=h*f(x,y);
12 k2=h*f(x+1/2*h,y+1/2*k1);
13 k3=h*f(x+1/2*h,y+1/2*k2);
14 k4=h*f(x+h,y+k3);
15 k=1/6*(k1+2*k2+2*k3+k4);
16 disp('the required approximate value is :-');
17 y = y + k;
18 disp(y);
19 disp('to find y(0.4)) put x=0.2 y=above value ie
      1.196 h=0.2;
20 x = 0.1;
21 h = 0.1;
22 k1=h*f(x,y);
23 k2=h*f(x+1/2*h,y+1/2*k1);
24 k3=h*f(x+1/2*h,y+1/2*k2);
25 \text{ k4=h*f(x+h,y+k3)};
26 k=1/6*(k1+2*k2+2*k3+k4);
27 disp('the required approximate value is :-');
28 y = y + k;
29 disp(y);
```

Scilab code Exa 27.14 solving ODE using milnes method

```
1 //ques14
2 clc
3 syms x
4 yo=0;
5 y=0;
```

```
6 h = 0.2;
7 f = x - y^2;
8 \text{ y=integ}(f,x,0,x);
9 y1 = eval(yo + y);
10 disp('y1=');
11 disp(float(y1));
12 f = x - y^2;
13 y=integ(f,x,0,x);
14 y2 = yo + y;
15 disp('y2=');
16 disp(float(y2));
17 //function y=f(x,y)
18
    y=x-y^2;
19 //endfunction
20
21 y=integ(f,x,0,x);
22 y3 = yo + y;
23 \text{ disp}('y3=');
24 disp(float(y3));
25 disp ('determining the initial values for milnes
      method using y3 ');
26 disp('x=0.0 y0=0.0 f0=0');
27 disp('x=0.2 y1=');
28 x = 0.2;
29 disp(eval(y1));
30 y1 = eval(y1);
31 disp('f1=');
32 f1=float(eval(x-y1^2));
33 disp(f1);
34 disp('x=0.4 y2=');
35 x = 0.4;
36 disp(float(eval(y2)));
37 \text{ disp}('f2=');
38 \text{ f2=float}(\text{eval}(x-y2^2));
39 disp(f2);
40
41 disp('x=0.6 y3=');
42 x = 0.6;
```

```
43 disp(eval(y3));
44 disp('f3=');
45 f3=float(eval(x-y3^2));
46 disp(f3);
47 //—
48 disp('Using predictor method to find y4');
49 x = 0.8;
50 \text{ y4} = \text{eval}(\text{yo} + 4/3 * \text{h} * (2 * \text{f1} - \text{f2} + 2 * \text{f3}));
51 disp('y4=');
52 disp(float(y4));
53 	ext{ f4=float(eval(x-y^2));}
54 disp('f4=');
55 disp(f4);
56 disp('Using predictor method to find y5');
57 x = 1.0;
58 \text{ y5} = \text{eval}(y1+4/3*h*(2*f2-f3+2*f4));
59 disp(float(y5));
60 	ext{ f5=float(eval(x-y^2));}
61 disp('f5=');
62 disp(f5);
63 disp('Hence y(1)=');
64 disp(float(y5));
```

Scilab code Exa 27.15 solving ODE using runge kutta and milnes method

```
1 //ques15
2 clc
3 disp('Runga kutta method');
4
5 function yy=f(x,y)
6  yy=x*y+y^2;
7 endfunction
8 y0=1;
9 x=0;
10 y=1;
```

```
11 h=0.1;
12 k1=h*f(x,y);
13 k2=h*f(x+1/2*h,y+1/2*k1);
14 k3=h*f(x+1/2*h,y+1/2*k2);
15 k4=h*f(x+h,y+k3);
16 \text{ ka}=1/6*(k1+2*k2+2*k3+k4);
17 disp('the required approximate value is :-');
18 y1=y+ka;
19 y=y+ka;
20 disp(y);
21 / x = 0.1;
22 //y1 = float(eval(y));
23
24 disp('to find y(0.4) put x=0.2 y=above value ie
      1.196 h=0.2;
25 x = 0.1;
26 h=0.1;
27 k1=h*f(x,y);
28 k2=h*f(x+1/2*h,y+1/2*k1);
29 k3=h*f(x+1/2*h,y+1/2*k2);
30 k4=h*f(x+h,y+k3);
31 kb=1/6*(k1+2*k2+2*k3+k4);
32 disp('the required approximate value is :-');
33 \quad y2 = y + kb;
34 y = y + kb;
35 disp(y);
36 / x = 0.2;
37 //y2 = float(eval(y));
38
39 disp('to find y(0.4) put x=0.2 y=above value ie
      1.196 h=0.2;
40 x = 0.2;
41 h=0.1;
42 k1=h*f(x,y);
43 k2=h*f(x+1/2*h,y+1/2*k1);
44 k3=h*f(x+1/2*h,y+1/2*k2);
45 \text{ k4=h*f(x+h,y+k3)};
46 kc=1/6*(k1+2*k2+2*k3+k4);
```

```
47 disp('the required approximate value is :-');
48 y3 = y + kc;
49 y=y+kc;
50 disp(y);
51 / x = 0.3;
52 //y3 = float(eval(y));
53 f0=f(0,y0);
54 f1=f(0.1,y1);
55 f2=f(0.2,y2);
56 f3=f(0.3,y3);
57 \operatorname{disp}('y0 \ y1 \ y2 \ y3 \ are \ respectively : ');
58 disp(y3,y2,y1,y0);
59 disp('f0 f1 f2 f3 are respectively: ');
60 disp(f3 ,f2, f1 ,f0 );
61 disp('finding y4 using predictors milne method x=0.4
      ');
62 h = 0.1;
63 y4=y0+4*h/3*(2*f1-f2+2*f3);
64 disp('y4=');
65 disp(y4);
66 disp('f4=');
67 	 f4=f(0.4,y4);
68
69 disp('using corrector method:');
70 y4=y2+h/3*(f2+4*f3+f4);
71 disp('y4=');
72 disp(y4);
73 disp('f4=');
74 	 f4=f(0.4,y4);
75 disp(f4);
```

Scilab code Exa 27.16 solving ODE using adamsbashforth method

```
1 //ques16
2 clc
```

```
3 function yy=f(x,y)
     yy=x^2*(1+y);
5 endfunction
7 y3 = 1
8 y2=1.233
9 y1=1.548
10 \quad y0=1.979
11
12 f3=f(1,y3)
13 f2=f(1.1,y2)
14 f1=f(1.2,y1)
15 f0=f(1.3,y0)
16 disp('using predictor method');
17 h = 0.1
18 y11=y0+h/24*(55*f0-59*f1+37*f2-9*f3)
19 disp('y11=');
20 disp(y11);
21 x = 1.4;
22 f11=f(1.4,y11);
23 disp('using corrector method');
24 y11=y0+h/24*(9*f11+19*f0-5*f1+f2);
25 disp('y11=');
26 disp(y11);
27 f11=f(1.4,y11);
28 disp('f11=');
29 disp(f11);
```

Scilab code Exa 27.17 solving ODE using runge kutta and adams method

```
1 //ques17
2 clc
3 disp('Runga kutta method');
4
5 function yy=f(x,y)
```

```
yy=x-y^2;
7 endfunction
8 \text{ y0}=1;
9 x = 0;
10 y = 1;
11 h=0.1;
12 k1=h*f(x,y);
13 k2=h*f(x+1/2*h,y+1/2*k1);
14 k3=h*f(x+1/2*h,y+1/2*k2);
15 k4=h*f(x+h,y+k3);
16 \text{ ka}=1/6*(k1+2*k2+2*k3+k4);
17 disp('the required approximate value is :-');
18 y1=y+ka;
19 y=y+ka;
20 disp(y);
21 / x = 0.1;
22 //y1 = float(eval(y));
23
24 disp('to find y(0.4) put x=0.2 y=above value ie
      1.196 h=0.2;
25 x = 0.1;
26 h=0.1;
27 k1=h*f(x,y);
28 k2=h*f(x+1/2*h,y+1/2*k1);
29 k3=h*f(x+1/2*h,y+1/2*k2);
30 k4=h*f(x+h,y+k3);
31 kb=1/6*(k1+2*k2+2*k3+k4);
32 disp('the required approximate value is :-');
33 y2 = y + kb;
34 y = y + kb;
35 disp(y);
36 / x = 0.2;
37 //y2 = float(eval(y));
38
39 disp('to find y(0.4) put x=0.2 y=above value ie
      1.196 h=0.2;
40 x = 0.2;
41 h=0.1;
```

```
42 k1=h*f(x,y);
43 k2=h*f(x+1/2*h,y+1/2*k1);
44 k3=h*f(x+1/2*h,y+1/2*k2);
45 \text{ k4=h*f(x+h,y+k3)};
46 kc=1/6*(k1+2*k2+2*k3+k4);
47 disp('the required approximate value is :-');
48 \text{ y3=y+kc};
49 y=y+kc;
50 disp(y);
51 / x = 0.3;
52 //y3 = float(eval(y));
53 f0=f(0,y0);
54 f1=f(0.1,y1);
55 f2=f(0.2,y2);
56 f3=f(0.3,y3);
57 \operatorname{disp}('y0 \ y1 \ y2 \ y3 \ are \ respectively : ');
58 disp(y3,y2,y1,y0);
59 disp('f0 f1 f2 f3 are respectively: ');
60 disp(f3 ,f2, f1 ,f0 );
61 disp('Using adams method');
62 disp('Using the predictor');
63 h = 0.1;
64 \quad y4=y3+h/24*(55*f3-59*f2+37*f1-9*f0);
65 \quad x = 0.4;
66 	 f4=f(0.4,y4);
67 disp('y4=');
68 disp(y4);
69 disp('using corrector method');
70 y4=y3+h/24*(9*f4+19*f3-5*f2+f1);
71 disp('y4=');
72 disp(y4);
73 f4=f(0.4,y4);
74 disp('f4=');
75 disp(f4);
```

Scilab code Exa 27.18 solving simultanious ODE using picards method

```
1 //ques18
2 clc
3 disp('Picards method');
4 \times 0 = 0;
5 \text{ y0=2};
6 z0=1;
7 syms x
8 function yy=f(x,y,z)
9
     yy = x + z;
10 endfunction
11
12 function yy=g(x,y,z)
     yy=x-y^2;
13
14 endfunction
15 disp('first approximation');
16 y1=y0+integ(f(x,y0,z0),x,x0,x);
17 disp('y1=');
18 disp(y1);
19 z1=z0+integ(g(x,y0,z0),x,x0,x);
20 disp('z1=');
21 disp(z1);
22
23 disp('second approximation');
24 y2=y0+integ(f(x,y1,z1),x,x0,x);
25 \text{ disp}('y2=');
26 disp(y2);
27 z2=z0+integ(g(x,y1,z1),x,x0,x);
28 \text{ disp}('z2=');
29 disp(z2);
30
31 disp('third approximation');
32 \text{ y3=y0+integ}(f(x,y2,z2),x,x0,x);
33 disp('y3=');
34 disp(y3);
35 z3=z0+integ(g(x,y2,z2),x,x0,x);
36 \text{ disp}('z3=');
```

```
37 disp(z3);
38 x=0.1;
39 disp('y(0.1)=');
40 disp(float(eval(y3)));
41 disp('z(0.1)=');
42 disp(float(eval(z3)));
```

Scilab code Exa 27.19 solving ssecond ODE using runge kutta method

```
1 //ques19
2 clc
3 syms x
4 function yy=f(x,y,z)
     yy=z;
5
6 endfunction
7 function yy=g(x,y,z)
     yy = x * y^2 - y^2;
9 endfunction
10 \times 0 = 0;
11 y0=1;
12 z0=0;
13 h=0.2;
14 disp('using k1 k2.. for f and l1 l2...for g runga
      kutta formulae becomes ');
15 h=0.2;
16 k1=h*f(x0,y0,z0);
17 11=h*g(x0,y0,z0);
18 k2=h*f(x0+1/2*h,y0+1/2*k1,z0+1/2*11);
19 12=h*g(x0+1/2*h,y0+1/2*k1,z0+1/2*l1);
20 k3=h*f(x0+1/2*h,y0+1/2*k2,z0+1/2*12);
21 13=h*g(x0+1/2*h,y0+1/2*k2,z0+1/2*12);
22 k4=h*f(x0+h,y0+k3,z0+13);
23 14=h*g(x0+h,y0+k3,z0+13);
24 k=1/6*(k1+2*k2+2*k3+k4);
25 \quad 1=1/6*(11+2*12+2*13+2*14);
```

```
26 //at x=0.2

27 x=0.2;

28 y=y0+k;

29 y1=z0+1;

30 disp('y=');

31 disp(float(y));

32 disp('y1=');

33 disp(float(y1));

34

35 y
```

Scilab code Exa 27.20 solving ODE using milnes method

```
\begin{array}{cc} 1 & //\operatorname{ques}20 \\ 2 & \operatorname{clc} \end{array}
```

Chapter 28

Numerical Solution of Partial Differential Equations

Scilab code Exa 28.1 classification of partial differential equation

```
1 //ques 28.1
2 clear
3 clc
4 disp('D=B^2-4AC');
5 disp('if D<0 then elliptic
                                   if D=0 then parabolic
         if D>0 then hyperboic');
6 disp('(i) A=x^2,B1-y^2
                              D=4^2-4*1*4=0
                                                    so The
      equation is PARABOLIC');
7 disp('(ii) D=4x^2(y^2-1)');
8 \operatorname{disp}(' \text{for } -\inf < x < \inf \text{ and } -1 < y < 1 \text{ D} < 0');
9 disp('So the equation is ELLIPTIC');
10 disp('(iii) A=1+x^2,B=5+2x^2,C=4+x^2');
11 disp('D=9>0');
12 disp('So the equation is HYPERBOLIC');
```

Scilab code Exa 28.2 solving elliptical equation

```
1 //ques 28.2
2 disp('See figure in question');
3 disp('From symmetry u7=u1 , u8=u2 , u9=u3 , u3=u1 ,
      u6=u4, u9=u7');
4 disp('u5=1/4*(2000+2000+1000+1000)=1500');
5 u5 = 1500;
6 disp('u1=1/4(0=1500+1000+2000)=1125');
7 u1=1125;
8 disp('u2=1/4*(1125+1125+1000+1500)=1188');
9 u2=1188;
10 disp('u4=1/4(2000+1500+1125+1125)=1438');
11 u4 = 1438;
12 disp(u1,u2,u4,u5)
13 disp('Iterations : ');
14 //n=input ('Input the number of iterations required :
       ');
15 for i=1:6
16 \quad u11=1/4*(1000+u2+500+u4);
17 u22=1/4*(u11+u1+1000+u5);
18 \quad u44=1/4*(2000+u5+u11+u1);
19 u55=1/4*(u44+u4+u22+u2);
20 disp(' ');
21 disp(u55,u44,u22,u11);
22 u1=u11;
23 u2=u22;
24 u4 = u44;
25 u5=u55;
26 \, \text{end}
```

Scilab code Exa 28.3 evaluating function satisfying laplace equation

```
1 //ques3
2 clear
3 clc
4 disp('See figure in question');
```

```
5 disp('To find the initial values of u1 u2 u3 u4 we
      assume u4=0');
6 disp('u1=1/4*(1000+0+1000+2000)=1000');
7 u1 = 1000;
8 disp('u2=1/4(1000+500+1000+500)=625');
9 u2 = 625;
10 disp('u3=1/4*(2000+0+1000+500)=875');
11 u3=875;
12 disp('u4=1/4(875+0+625+0)=375');
13 u4=375;
14 disp(u1,u2,u3,u4)
15 disp('Iterations : ');
16 //n=input ('Input the number of iterations required :
       <sup>'</sup>);
17 for i=1:6
18 u11=1/4*(2000+u2+1000+u3);
19 u22=1/4*(u11+500+1000+u4);
20 u33=1/4*(2000+u4+u11+500);
21 \quad u44=1/4*(u33+0+u22+0);
22 disp(', ');
23 disp(u44,u33,u22,u11);
24 u1=u11;
25 u2=u22;
26 u4 = u44;
27 u3=u33;
28 end
```

Scilab code Exa 28.4 solution of poissons equation

```
1 //ques4
2 clear
3 clc
4 disp('See figure in question');
5 disp('using numerical poissons equation u(i-1)(j)+u(i+1)(j)+u(i)(j-1)+u(i)(j+1)=h^2f(ih,jh)');
```

```
6 disp('Here f(x,y) = -10(x^2+y^2+10');
7 disp('Here for u1 i=1, j=2 putting in equation this
      gives : ');
8 disp('u1=1/4(u2+u3+150');
9 disp('similarly');
10 disp('u2=1/4(u1+u4+180');
11 disp('u3=1/4(u1+u4+120'));
12 disp('u4=1/4(u2+u3+150');
13 disp('reducing therse equations since u4=u1');
14 disp('4u1-u2-u3-150=0');
15 disp('u1-2u2+90=0');
16 disp('u1-2u3+60=0');
17 disp ('Solving these equations by Gauss jordon method
      ');
18 A = [4 -1 -1; 1 -2 0; 1 0 -2];
19 r = [150; -90; -60];
20 D=A; d=r;
21 n=3;
22
23 //create upper triangular matrix
24 s = 0;
25 \text{ for } j=1:n-1
26
       if A(j,j) == 0
27
           k=j;
28
            for k=k+1:n
29
                if A(k,j) == 0
30
                     continue
31
                end
32
                break
33
            end
            B=A(j,:); C=r(j);
34
35
            A(j,:)=A(k,:); r(j)=r(k);
36
            A(k,:)=B; r(k)=C;
37
       end
38
       for i=1+s:n-1
           L=A(i+1,j)/A(j,j);
39
            A(i+1,:)=A(i+1,:)-L*A(j,:);
40
            r(i+1)=r(i+1)-L*r(j);
41
```

```
42
        end
43
        s=s+1;
44 end
45 //Solution of equations
46 x(n)=r(n)/A(n,n);
47 \quad for \quad i=n-1:-1:1
48
        sum = 0:
        for j=i+1:n
49
             sum = sum + A(i,j) *x(j);
50
51
        end
52
        x(i) = (1/A(i,i))*(r(i)-sum);
53 end
54
55 //hecking with scilab functions
56 p = inv(D) *d;
57 // Output
58 disp('@
      @ ')
59 \operatorname{disp}(\operatorname{Output}[B][x]=[b])
60 disp('Upper riangular Matrix [B] ='); disp(A)
61 disp('Matrix [b] ='); disp(r)
62 disp('solution of linear equations:'); disp(x')
```

Scilab code Exa 28.5 solving parabolic equation

```
and u(8,j)=0 and u(x,0)=4x-1/2x^2;
7 c=2;
8 h = 1;
9 k=1/8;
10 t=(c^2)*k/(h^2);
11 A = ones(9,9);
12
13 for i=1:9
14 for j=1:9
     A(1,i)=0;
15
    A(9,i)=0;
16
     A(i,1)=4*(i-1)-1/2*(i-1)^2;
17
18
19 end
20 \text{ end}
21 // i = 2;
22 //j = 2;
23 for i=2:8
24
    for j=2:7
    // A(i,j) = 1/2*(A(i-1,j-1)+A(i+1,j-1));
25
    A(i,j)=t*A(i-1,j-1)+t*A(i+1,j-1)+(1-2*t)*A(i-1,j-1)
27
    end
28 end
29 \text{ for } i=2:8
30
      j=2;
     disp(A(i,j));
31
32
33 end
```

Scilab code Exa 28.6 solving heat equation

```
1 //ques5
2 clear
3 clc
```

```
4 disp('Here c^2=1, h=1/3, k=1/36, therefore t=(c
      ^{2})*k/(h^{2})=1/4;
5 disp('So bendre-schmidits recurrence relation ie u(i
      (j+1)=1/4(u(i-1)(j)+u(i+1)(j)+2u(i,j));
6 disp('Now since u(0,t)=0=u(1,t) therefore u(0,i)=0
      and u(1,j)=0 and u(x,0)=\sin(\%pi)x';
7 c=1;
8 h=1/3;
9 k=1/36;
10 t=(c^2)*k/(h^2);
11 A = ones(9,9);
12
13 for i=1:9
     for j = 1:9
14
15
     A(1,i)=0;
     A(2,i)=0;
16
     A(i,1) = \sin(\%pi/3*(i-1));
17
18
19 end
20 end
21 / A(2,1) = 0.866;
22 / A(3,1) = 0.866;
23 for i=2:8
     for j=2:8
24
       // A(i, j) = 1/4*(A(i-1, j-1)+A(i+1, j-1)+2*A(i-1, j-1)
25
        A(i,j)=t*A(i-1,j-1)+t*A(i+1,j-1)+(1-2*t)*A(i-1,j-1)
26
           j-1);
27 end
28 end
29 \quad for \quad i = 2:8
30
      j=2;
31
     disp(A(i,j));
32
33 end
```

Scilab code Exa 28.7 solving wave equation

```
1 // ques7
2 clear
3 clc
4 disp('Here c^2=16', taking h=1', finding k such that
       c^2 t^2 = 1;
5 disp('So bendre-schmidits recurrence relation ie u(i
      (j+1)=(16 t^2(u(i-1)(j)+u(i+1)(j))+2(1-16*t^2u(i, j))
      j)-u(i)(j-1)');
6 disp('Now since u(0,t)=0=u(5,t) therefore
                                                 u(0, i) = 0
      and u(5,j)=0 and u(x,0)=x^2(5-x);
7 c = 4;
8 h = 1;
9 k = (h/c);
10 \text{ t=k/h};
11 A = zeros(6,6);
12 disp('Also from 1st derivative (u(i)(j+1)-u(i,j-1))
      /2k=g(x) and g(x)=0 in this case');
13 disp('So if j=0 this gives u(i)(1)=1/2*(u(i-1)(0)+u(i-1)(0))
      i+1)(0)
14 for i=0:5
     for j=2:9
15
     A(1,i+1)=0;
16
17
     A(6, i+1) = 0;
     A(i+1,1)=(i)^2*(5-i);
18
19
20
21 end
22 end
23 \text{ for } i=1:4
       A(i+1,2)=1/2*(A(i,1)+A(i+2,1));
24
25
26
     end
```

```
27
     for i=3:5
28
     for j=3:5
29
        A(i-1,j)=(c*t)^2*(A(i-2,j-1)+A(i,j-1))+2*(1-(c*t)^2
30
           )^2)*A(i-1,j-1)-A(i-1,j-2);
31 end
32 end
33
34 \text{ for } i=1:5
35 \text{ for } j=1:5
     disp(A(i,j));
36
37 end
38 end
```

Scilab code Exa 28.8 solving wave equation

```
1 //ques8
2 clear
3 clc
4 disp('Here c^2=4), taking h=1, finding k such that
     c^2 t^2 = 1;
5 disp('So bendre-schmidits recurrence relation ie u(i
     (j+1)=(16 t^2(u(i-1)(j)+u(i+1)(j))+2(1-16*t^2u(i, j))
     j)-u(i)(j-1)');
6 disp('Now since u(0,t)=0=u(4,t) therefore
                                                u(0, i) = 0
     and u(4,j)=0 and u(x,0)=x(4-x);
7 c=2;
8 h=1;
9 k = (h/c);
10 \text{ t=k/h};
11 A = zeros(6,6);
12 disp('Also from 1st derivative (u(i)(j+1)-u(i,j-1))
     /2k=g(x) and g(x)=0 in this case');
13 disp('So if j=0 this gives u(i)(1)=1/2*(u(i-1)(0)+u(i-1)(0)
      i+1)(0);
```

```
14 for i=0:5
     for j=2:9
15
      A(1,i+1)=0;
16
     A(5,i+1)=0;
17
      A(i+1,1)=(i)*(4-i);
18
19
20
21 end
22 \text{ end}
23 \text{ for } i=1:4
        A(i+1,2)=1/2*(A(i,1)+A(i+2,1));
24
25
26
      end
      for i=3:5
27
      for j=3:5
28
29
        A(i-1,j)=(c*t)^2*(A(i-2,j-1)+A(i,j-1))+2*(1-(c*t))
30
            )^2)*A(i-1,j-1)-A(i-1,j-2);
31 \, \text{end}
32 end
33
34 \text{ for } i=1:5
35 \text{ for } j=1:5
      disp(A(i,j));
36
37 \text{ end}
38 \quad \texttt{end}
```

Chapter 34

Probability and Distributions

Scilab code Exa 34.1 Calculating probability

Scilab code Exa 34.2.1 Calculating the number of permutations

Scilab code Exa 34.2.2 Number of permutations

Scilab code Exa 34.3.1 Calculating the number of committees

```
1 clear

2 clc

3 function [x]=C(a,b)

4 x=factorial(a)/(factorial(b)*factorial(a-b))

5 endfunction

6 disp('no. of committees=C(6,3)*C(5,2)=')

7 C(6,3)*C(5,2)
```

Scilab code Exa 34.3.2 Finding the number of committees

```
1 clear

2 clc

3 function [x]=C(a,b)

4 x=factorial(a)/(factorial(b)*factorial(a-b))

5 endfunction

6 disp('no. of committees=C(4,1)*C(5,2)=')

7 C(4,1)*C(5,2)
```

Scilab code Exa 34.3.3 Finding the number of committees

```
1 clear 2 clc
```

```
3 function [x]=C(a,b)

4 x=factorial(a)/(factorial(b)*factorial(a-b))

5 endfunction

6 disp('no. of committees=C(6,3)*C(4,2)=')

7 C(6,3)*C(4,2)
```

Scilab code Exa 34.4.1 Finding the probability of getting a four in a single throw of a die

```
1 clear
2 clc
3 disp('the probability of getting a four is 1/6=')
4 1/6
```

Scilab code Exa 34.4.2 Finding the probability of getting an even number in a single throw of a die

```
1 clear 2 clc 3 disp('the probability of getting an even no. 1/2=') 4 1/2
```

Scilab code Exa 34.5 Finding the probability of 53 sundays in a leap year

```
1 clear 2 clc 3 disp('the probability of 53 sundays is 2/7=') 4 2/7
```

Scilab code Exa 34.6 probability of getting a number divisible by 4 under given conditions

```
1 clear
2 clc
3 disp('the five digits can be arranged in 5! ways =')
4 factorial(5)
5 disp('of which 4! will begin with 0=')
6 factorial(4)
7 disp('so, total no. of five digit numbers=5!-4!=')
8 factorial(5)-factorial(4)
9 disp ('the numbers ending in 04,12,20,24,32,40 will
     be divisible by 4')
10 disp('numbers ending in 04=3!')
11 factorial(3)
12 disp('numbers ending in 12=3!-2!')
13 factorial(3)-factorial(2)
14 disp('numbers ending in 20=3!')
15 factorial(3)
16 disp ('numbers ending in 24=3!-2!')
17 factorial(3)-factorial(2)
18 disp('numbers ending in 32=3!-2!')
19 factorial(3)-factorial(2)
20 disp('numbers ending in 40=3!')
21 factorial(3)
22 disp('so, total no. of favourable ways=6+4+6+4+4+6=')
23 6+4+6+4+4+6
24 disp('probability=30/96=')
25 30/96
```

Scilab code Exa 34.7 Finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
5 endfunction
6 disp('total no. of possible cases=C(40,4)')
7 C(40,4)
8 disp('favourable outcomes=C(24,2)*C(15,1)=')
9 C(24,2)*C(15,1)
10 disp('probability=')
11 (C(24,2)*C(15,1))/C(40,4)
```

Scilab code Exa 34.8 Finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
5 endfunction
6 disp('total no.of possible cases=C(40,4)')
7 C(15,8)
8 disp('favourable outcomes=C(24,2)*C(15,1)=')
9 C(5,2)*C(10,6)
10 disp('probability=')
11 (C(5,2)*C(10,6))/C(15,8)
```

Scilab code Exa 34.9.1 Finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
5 endfunction
```

```
6 disp('total no. of possible cases=C(9,3)')
7 C(9,3)
8 disp('favourable outcomes=C(2,1)*C(3,1)*C(4,1)=')
9 C(2,1)*C(3,1)*C(4,1)
10 disp('probability=')
11 (C(2,1)*C(3,1)*C(4,1))/C(9,3)
```

Scilab code Exa 34.9.2 Finding the probability

Scilab code Exa 34.9.3 Finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
5 endfunction
6 disp('total no.of possible cases=C(9,3)')
7 C(9,3)
8 disp('favourable outcomes=C(3,3)+C(4,3)=')
9 C(3,3)+C(4,3)
```

```
10 disp('probability=')
11 5/84
```

Scilab code Exa 34.13 probability of drawing an ace or spade from pack of 52 cards

Scilab code Exa 34.14.1 Finding the probability

```
clear
clc
disp('probability of first card being a king=4/52')
4 4/52
disp('probability of second card being a queen=4/52')
6 4/52
disp('probability of drawing both cards in succession=4/52*4/52=')
8 4/52*4/52
```

Scilab code Exa 34.15.1 Finding the probability

```
1 clear
2 clc
```

Scilab code Exa 34.15.2 Finding the probability

```
1 clear
2 clc
3 disp('probability of not getting 7 in either toss =5/6*5/6')
4 5/6*5/6
5 disp('probability of getting 7 at least once =1-5/6*5/6')
6 1-5/6*5/6
```

Scilab code Exa 34.15.3 Finding the probability

```
1 clear
2 clc
3 disp('probability of getting 7 twice=1/6*1/6')
4 1/6*1/6
```

Scilab code Exa 34.16 Finding the probability

1 clear

Scilab code Exa 34.17 Finding the probability

```
1 clear

2 clc

3 disp('probability of white ball being choosen =2/6*6/13+4/6*5/13=')

4 2/6*6/13+4/6*5/13
```

Scilab code Exa 34.18 Finding the probability

```
1 clear 2 clc  
3 disp("chances of winning of A=1/2+(1/2)^2*(1/2) + (1/2)^4*(1/2)+(1/2)^6*(1/2)+..=')  
4 (1/2)/(1-(1/2)^2)  
5 disp('chances of winning of B=1-chances of winning of A')  
6 1-2/3
```

Scilab code Exa 34.19.1 Finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
```

```
5 endfunction
6 disp('total no. of possible outcomes=C(10,2)=')
7 C(10,2)
8 disp('no. of favourable outcomes=5*5=')
9 5*5
10 disp('p=')
11 25/49
```

Scilab code Exa 34.19.2 Finding the probability

```
1 clear
2 clc
3 disp('total no. of possible outcomes=10*9=')
4 10*9
5 disp('no. of favourable outcomes=5*5+5*5=')
6 5*5+5*5
7 disp('p=')
8 50/90
```

Scilab code Exa 34.19.3 Finding the probability

```
1 clear
2 clc
3 disp('total no.of possible outcomes=10*9=')
4 10*10
5 disp('no. of favourable outcomes=5*5+5*5=')
6 5*5+5*5
7 disp('p=')
8 50/100
```

Scilab code Exa 34.20 Finding the probability

```
1 clear
2 clc
3 A=1/4
4 B=1/3
5 AorB=1/2
6 AandB=A+B-AorB
7 disp('probability of A/B=AandB/B=')
8 AandB/B
9 disp('probability of B/A=AandB/A=')
10 AandB/A
11 disp('probability of AandBnot=A-AandB=')
12 A-AandB
13 disp('probability of A/Bnot=AandBnot/Bnot=')
14 (1/6)/(1-1/3)
```

Scilab code Exa 34.22 Finding the probability

```
1 clear
2 clc
3 disp('probability of A hitting target=3/5')
4 disp('probability of B hitting target=2/5')
5 disp('probability of C hitting target=3/4')
6 disp('probability that two shots hit=3/5*2/5*(1-3/4) +2/5*3/4*(1-3/5)+3/4*3/5*(1-2/5)')
7 3/5*2/5*(1-3/4)+2/5*3/4*(1-3/5)+3/4*3/5*(1-2/5)
```

Scilab code Exa 34.23 Finding the probability

```
1 clear
2 clc
```

Scilab code Exa 34.25 finding the probability

```
1 clc
2 disp('total frequency= integrate (f,x,0,2)=')
3 n=integrate ('x^3', 'x',0,1)+integrate ('(2-x)^3', 'x'
      ,1,2)
4 disp('u1 about origin=')
5 u1=(1/n)*(integrate ('(x)*(x^3)', 'x', 0, 1)+integrate
      ('(x)*((2-x)^3)', 'x', 1, 2))
6 disp('u2 about origin=')
7 u2=(1/n)*(integrate ('(x^2)*(x^3)', 'x', 0, 1)+
     integrate('(x^2)*((2-x)^3)', 'x',1,2))
8 disp('standard deviation=(u2-u1^2)^0.5=')
9 (u2-u1^2)^0.5
10 disp('mean deviation about the mean=(1/n)*(integrate)
       (|x-1|*(x^3),x,0,1)+integrate(|x-1|*((2-x)^3),x)
      ,1,2')'
11 (1/n)*(integrate ('(1-x)*(x^3)', 'x', 0, 1)+integrate('
     (x-1)*((2-x)^3)', x',1,2)
```

Scilab code Exa 34.26 finding the probability

```
1 clear
2 clc
3 disp('probability = (0.45*0.03)
/(0.45*0.03+0.25*0.05+0.3*0.04=')
```

```
4 \quad (0.45*0.03) / (0.45*0.03+0.25*0.05+0.3*0.04)
```

Scilab code Exa 34.27 finding the probability

```
1 clear

2 clc

3 disp('probability=(1/3*2/6*3/5)

/(1/3*2/6*3/5+1/3*1/6*2/5+1/3*3/6*1/5')

4 (1/3*2/6*3/5)/(1/3*2/6*3/5+1/3*1/6*2/5+1/3*3/6*1/5)
```

Scilab code Exa 34.28 finding the probability

```
1 clc
2 disp('probability of no success = 8/27')
3 disp('probability of a success=1/3')
4 \operatorname{disp}('\operatorname{probability} \text{ of one } \operatorname{success} = 4/9')
5 disp('probability of two successes =2/9')
6 disp('probability of three successes =2/9')
7 A = [0 1 2 3; 8/27 4/9 2/9 1/27]
8 disp('mean=sum of i*pi=')
9 A(1,1)*A(2,1)+A(1,2)*A(2,2)+A(1,4)*A(2,4)+A(1,3)*A
      (2,3)
10 disp('sum of i*pi^2=')
11 A(1,1)^2*A(2,1)+A(1,2)^2*A(2,2)+A(1,4)^2*A(2,4)+A
      (1,3)^2*A(2,3)
12 disp('variance=(sum of i*pi^2)-1=')
13 A(1,1)^2*A(2,1)+A(1,2)^2*A(2,2)+A(1,4)^2*A(2,4)+A
      (1,3)^2*A(2,3)-1
```

Scilab code Exa 34.29 finding the probability

```
1 clc
2 syms k
3 A = [0 1 2 3 4 5 6; k 3*k 5*k 7*k 9*k 11*k 13*k]
4 disp('sumof all pi=1')
5 / A(2,1) + A(2,2) + A(2,3) + (A(2,4) + A(2,5) + A(2,6) + A(2,7)
6 disp('hence, ')
7 k=1/49
8 disp('p(x < 4)=')
9 a=A(2,1)+A(2,2)+A(2,4)+A(2,3)
10 eval(a)
11 disp(eval(a))
12 disp('p(x>=5)=')
13 b=A(2,6)+A(2,7)
14 eval(b)
15 disp(eval(b))
16 disp('p(3<x<=6)=')
17 c=A(2,5)+A(2,6)+A(2,7)
18 eval(c)
19 disp(eval(c))
20 disp('p(x<=2)=')
21 c=A(2,1)+A(2,2)+A(2,3)
```

Scilab code Exa 34.30 finding the probability

```
11 disp(eval(a))

12 disp('p(x>=6)=')

13 b=A(2,7)+A(2,8)

14 eval(b)

15 disp(eval(b))

16 disp('p(3<x<5)=')

17 c=A(2,2)+A(2,3)+A(2,4)+A(2,5)

18 eval(c)

19 disp(eval(c))
```

Scilab code Exa 34.31 finding the probability

Scilab code Exa 34.33 finding the probability

```
1 clc
2 syms k;
3 disp('total probability= integrate (f,x,0,6)=')
4 p=integrate ('k*x','x',0,2)
5 q=integrate ('2*k','x',2,4)
6 r=integrate ('-k*x+6*k','x',4,6)
```

Scilab code Exa 34.34 finding the probability

```
1 clc
2 A=[-3 6 9;1/6 1/2 1/3]
3 disp('first row of A displays the value of x')
4 disp('the second row of x displays the probability of corresponding to x')
5 disp('E(x)=')
6 c=A(1,1)*A(2,1)+A(1,2)*(2,2)+A(1,3)*A(2,3)
7 disp('E(x)^2=')
8 b=A(1,1)^2*A(2,1)+A(1,2)^2*(2,2)+A(1,3)^2*A(2,3)
9 disp('E(2*x+1)^2=E(4*x^2+4*x+1)')
10 4*b+4*c+1
```

Scilab code Exa 34.35 finding the probability

```
1 clc
2 disp('total frequency= integrate (f,x,0,2)=')
3 n=integrate ('x^3', 'x',0,1)+integrate ('(2-x)^3', 'x',1,2)
4 disp('u1 about origin=')
5 u1=(1/n)*(integrate ('(x)*(x^3)', 'x',0,1)+integrate ('(x)*((2-x)^3)', 'x',1,2))
6 disp('u2 about origin=')
7 u2=(1/n)*(integrate ('(x^2)*(x^3)', 'x',0,1)+integrate ('(x^2)*((2-x)^3)', 'x',1,2))
8 disp('standard deviation=(u2-u1^2)^0.5=')
9 (u2-u1^2)^0.5
10 disp('mean deviation about the mean=(1/n)*(integrate (|x-1|*(x^3),x,0,1)+integrate (|x-1|*((2-x)^3),x,1,2')')
```

```
11 (1/n)*(integrate ('(1-x)*(x^3)','x',0,1)+integrate('(x-1)*((2-x)^3)','x',1,2))
```

Scilab code Exa 34.38 finding the probability

```
1   clear
2   clc
3   function [x]=C(a,b)
4   x=factorial(a)/(factorial(b)*factorial(a-b))
5   endfunction
6   disp('probability that exactly two will be defective =C(12,2)*(0.1)^2*(0.9)^10=')
7   C(12,2)*(0.1)^2*(0.9)^10
8   disp('probability that at least two will be defective=1-(C(12,0)*(0.9)^12+C(12,1)*(0.1)*(0.9)^11)=')
9   1-(C(12,0)*(0.9)^12+C(12,1)*(0.1)*(0.9)^11)
10   disp('the probability that none will be defective =C (12,12)*(0.9)^12=')
11   C(12,12)*(0.9)^12
```

Scilab code Exa 34.39 finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
5 endfunction
6 disp('probability of 8 heads and 4 tails in 12
        trials=p(8)=C(12,8)*(1/2)^8*(1/2)^4=')
7 C(12,8)*(1/2)^8*(1/2)^4
8 disp('the expected no. of such cases in 256 sets
        =256*p(8) =')
```

Scilab code Exa 34.40 finding the probability

```
1 clear
2 clc
3 function [x]=C(a,b)
4 x=factorial(a)/(factorial(b)*factorial(a-b))
5 endfunction
6 disp('probability of a defective part=2/20=0.1')
7 disp('probability of a non defective part=0.9')
8 disp('probabaility of at least three defectives ina sample =')
9 1-(C(20,0)*(0.9)^20+C(20,1)*(0.1)*(0.9)^19+C(20,2)
     *(0.1)^2*(0.9)^18')
10 disp('no. of samples having three defective parts
     =1000*0.323=')
11 1000*0.323
```

Chapter 35

Sampling and Inference

Scilab code Exa 35.1 calculating the SD of given sample

```
1 clc
2 disp('suppose the coin is unbiased')
3 disp('then probability of getting the head in a toss
     =1/2;
4 disp('then, expected no. of successes=a=1/2*400')
5 a=1/2*400
6 disp('observed no. of successes =216')
8 disp('the excess of observed value over expected
     value=')
9 b-a
10 disp('S.D. of simple sampling = (n*p*q)^0.5=c')
11 c = (400*0.5*0.5)^0.5
12 disp('hence, z=(b-a)/c=')
13 (b-a)/c
14 disp('as z < 1.96, the hypothesis is accepted at
                                                   5\%
     level of significance')
```

Scilab code Exa 35.2 Calculating SD of sample

```
1 clc
2 disp('suppose the die is unbiased')
3 disp('then probability of getting 5 or 6 with one
      die = 1/3')
4 disp('then, expected no. of successes=a=1/3*9000')
5 a=1/3*9000
6 disp('observed no. of successes =3240')
7 b = 3240
8 disp('the excess of observed value over expected
     value=')
9 b-a
10 disp('S.D. of simple sampling = (n*p*q)^0.5=c')
11 c = (9000*(1/3)*(2/3))^0.5
12 disp('hence, z=(b-a)/c=')
13 (b-a)/c
14 disp('as z>2.58, the hypothesis has to be rejected
         1% level of significance')
```

Scilab code Exa 35.3 Analysis of sample

```
1 clc
2 p=206/840
3 disp('q=1-p')
4 q=1-p
5 n=840
6 disp('standard error of the population of families having a monthly income of rs. 250 or less=(p*q/n)^0.5=')
7 (p*q/n)^0.5
8 disp('hence taking 103/420 to be the estimate of families having a monthly income of rs. 250 or less, the limits are 20% and 29% approximately')
```

Scilab code Exa 35.4 Analysis of sample

```
1 clear
2 clc
3 n1=900
4 n2=1600
5 p1=20/100
6 p2=18.5/100
7 disp('p=(n1*p1+n2*p2)/(n1+n2) ')
8 p=(n1*p1+n2*p2)/(n1+n2)
9 disp('q=1-p')
10 q=1-p
11 disp('e=(p*q*(1/n1+1/n2))^0.5 ')
12 e=(p*q*((1/n1)+(1/n2)))^0.5
13 z=(p1-p2)/e
14 disp('as z<1,the difference between the proportions is not significant.')</pre>
```

Scilab code Exa 35.5 Checking whether real difference will be hidden

```
1 clear
2 clc
3 p1=0.3
4 p2=0.25
5 disp('q1=1-p1')
6 q1=1-p1
7 disp('q2=1-p2')
8 q2=1-p2
9 n1=1200
10 n2=900
11 disp('e=((p1*q1/n1)+(p2*q2/n2))^0.5')
12 e=((p1*q1/n1)+(p2*q2/n2))^0.5
13 z=(p1-p2)/e
14 disp('hence, it is likely that real difference will be hidden.')
```

Scilab code Exa 35.6 Checking whether given sample can be regarded as a random sample

```
1 clear
2 clc
3 disp('m and n represents mean and number of objects
        in sample respectively')
4 m=3.4
5 n=900
6 M=3.25
7 d=1.61
8 disp('z=(m-M)/(d/(n^0.5)')
9 z=(m-M)/(d/(n^0.5))
10 disp('as z>1.96, it cannot be regarded as a random sample ")
```

Scilab code Exa 35.9 Checking whethet samples can be regarded as taken from the same population

```
1 clc
2 disp('m1 and n1 represents mean and no. of objects
    in sample 1')
3 disp('m2 and n2 represents mean and no. of objects
    in sample 2')
4 m1=67.5
5 m2=68
6 n1=1000
7 n2=2000
8 d=2.5
9 disp('on the hypothesis that the samples are drawn
    from the same population of d=2.5, we get ')
```

```
10 z=(m1-m2)/(d*((1/n1)+(1/n2))^0.5)
11 disp('since |z| > 1.96, thus samples cannot be regarded as drawn from the same population ')
```

Scilab code Exa 35.10 calculating SE of difference of mean hieghts

```
1 clc
2 disp('m1, d1 and n1 denotes mean, deviation and no. of
       objects in first sample')
3 m1 = 67.85
4 d1=2.56
5 n1=6400
6 disp('m2, d2 and n2 denotes mean, deviation and no. of
       objects in second sample')
7 m2 = 68.55
8 d2=2.52
9 n2 = 1600
10 disp('S.E. of the difference of the mean heights is
11 e=((d1^2/n1)+(d2^2/n2))^0.5
12 m1-m2
13 disp('|m1-m2| > 10e, this is highly significant.hence
      , the data indicates that the sailors are on the
      average taller than the soldiers.')
```

Scilab code Exa 35.12 Mean and standard deviation of a given sample

```
1 clear
2 clc
3 n=9
4 disp('first of row denotes the different values of sample ')
5 A(1,:)=[45 47 50 52 48 47 49 53 51];
```

```
6 disp('the second row denotes the corresponding
      deviation ')
7 for i=1:9
  A(2,i)=A(1,i)-48;
9 end
10 disp('the third row denotes the corresponding square
       of deviation')
11 for i=1:9
12
     A(3,i)=A(2,i)^2;
13 end
14 disp('the sum of second row elements =')
15 \ a=0;
16 for i=1:9
17
     a=a+A(2,i);
18 end
19 a
20 disp('the sum of third row elements")
21 b=0;
22 for i = 1:9
23
     b=b+A(3,i);
24 end
25 b
26 disp('let m be the mean')
27 \text{ m}=48+a/n
28 disp('let d be the standard deviation')
29 d = ((b/n) - (a/n)^2)^0.5
30 t = (m-47.5) * (n-1) ^0.5 / d
```

Scilab code Exa 35.13 Mean and standard deviation of a given sample

```
1 clc
2 disp('d and n represents the deviation and no. of
     objects in given sample')
3 n=10
4 d=0.04
```

```
5 m=0.742
6 M=0.700
7 disp('taking the hypothesis that the product is not inferior i.e. there is no significant differene between m and M')
8 t=(m-M)*(n-1)^0.5/d
9 disp('degrees of freedom=')
10 f=n-1
```

Scilab code Exa 34.15 Standard deviation of a sample

```
1 clear
2 clc
3 n = 11
4 disp('the first row denotes the boy no.')
5 A(1,:) = [1 2 3 4 5 6 7 8 9 10 11];
6 disp ('the second row denotes the marks in test I (x1
      ) ')
7 \quad A(2,:) = [23 \quad 20 \quad 19 \quad 21 \quad 18 \quad 20 \quad 18 \quad 17 \quad 23 \quad 16 \quad 19];
8 disp('the third row denotes the marks in test I (x2)
9 A(3,:) = [24 19 22 18 20 22 20 20 23 20 17];
10 disp('the fourth row denotes the difference of marks
       in two tests (d)')
11 for i=1:11
12
     A(4,i) = A(3,i) - A(2,i);
13 end
14 disp('the fifth row denotes the (d-1)')
15 for i=1:11
     A(5,i)=A(4,i)-1;
16
17 \text{ end}
18 disp('the sixth row denotes the square of elements
      of fourth row')
19 for i=1:11
20
    A(6,i)=A(4,i)^2;
```

```
21 end
22 A
23 a=0;
24 disp('the sum of elements of fourth row= ')
25 \text{ for } i=1:11
     a=a+A(4,i);
26
27 \text{ end}
28 a
29 \ b=0;
30 disp('the sum of elements of sixth row=')
31 for i=1:11
     b=b+A(6,i);
32
33 end
34 b
35 disp('standard deviation')
36 d = (b/(n-1))^0.5
37 t = (1-0)*(n)^0.5/2.24
```