Kinematics of Robot Manipulators

Class at Randolph College

Yue Cao

Purdue University, ECE yuecao@purdue.edu

Terminology – Manipulator

Terminology - Manipulator

A variety of end-effectors

Definition – Kinematics & Dynamics

Kinematics

The study of motion without regard for the force

Dynamics

The study of how force affects the motion

Definition – Kinematics & Dynamics

Kinematics

The study of motion without regard for the force.

For manipulators:

Joint angles ← End-effector position & orientation

Dynamics

The study of how force affects the motion.

For manipulators:

Joint torques ← End-effector position, velocity, acceleration

Problem Formulation – Kinematics

Two sub-topics in kinematics:

1. Forward Kinematics

Joint angles → End-effector position & orientation

Given: joint angle θ_0 , θ_1 , θ_2 , ..., link length

 l_0, l_1, l_2, \dots

Aim for: end-effector [$x y z \alpha \beta \gamma$]

x y z: position in the Cartesian coordinate.

 $\alpha \beta \gamma$: orientation in Euler angles (roll, pitch, yaw).

Base is the reference.

Problem Formulation – Kinematics

Two sub-topics in kinematics:

2. Backward Kinematics

Joint angles ← End-effector position & orientation

Given: end-effector [$x y z \alpha \beta \gamma$], link length

 l_0, l_1, l_2, \dots

Aim for: joint angle θ_0 , θ_1 , θ_2 , ...

x y z: position in the Cartesian coordinate.

 $\alpha \beta \gamma$: orientation in Euler angles (roll, pitch, yaw).

Base is the reference.

Start with 2D Plane

Forward Kinematics

3D Space

Given: joint angle θ_0 , θ_1 , θ_2 , ..., link length

 l_0, l_1, l_2, \dots

Aim for: end-effector [$x y z \alpha \beta \gamma$]

2D Plane

Given: joint angle θ_0 , θ_1 , θ_2 , ..., link length

 l_0, l_1, l_2, \dots

Aim for: end-effector [$x y \alpha$]

How to obtain $[x \ y \ \alpha]$?

Approach 1: Directly analyze the Euclidean geometry

How to obtain $[x \ y \ \alpha]$?

Approach 1: Directly analyze the Euclidean geometry

Link 1 angle w.r.t to the base: $\theta_0 - \theta_1$

Link 2 angle w.r.t to the base: $\theta_2 - (\theta_0 - \theta_1)$

We now have, $\alpha = \theta_2 - (\theta_0 - \theta_1)$

How to obtain $[x \ y \ \alpha]$?

Approach 1: Directly analyze the Euclidean geometry

Link 1 left-end position:

$$x_1 = l_0 C(\theta_0), y_1 = l_0 S(\theta_0)$$

How to obtain $[x \ y \ \alpha]$?

Approach 1: Directly analyze the Euclidean geometry

Link 1 left-end position:

$$x_1 = l_0 C(\theta_0), y_1 = l_0 S(\theta_0)$$

Link 2 left-end position:

$$x_2 = l_0 C(\theta_0) + l_1 C(\theta_0 - \theta_1),$$

$$y_1 = l_0 S(\theta_0) + l_1 S(\theta_0 - \theta_1)$$

How to obtain $[x \ y \ \alpha]$?

Approach 1: Directly analyze the Euclidean geometry

Link 1 left-end position:

$$x_1 = l_0 C(\theta_0), y_1 = l_0 S(\theta_0)$$

Link 2 left-end position:

$$x_2 = l_0 C(\theta_0) + l_1 C(\theta_0 - \theta_1),$$

$$y_1 = l_0 S(\theta_0) + l_1 S(\theta_0 - \theta_1)$$

We now have,

$$x = l_0 C(\theta_0) + l_1 C(\theta_0 - \theta_1) + l_2 C(\theta_2 - \theta_0 + \theta_1),$$

$$y = l_0 S(\theta_0) + l_1 S(\theta_0 - \theta_1) - l_2 S(\theta_2 - \theta_0 + \theta_1)$$

How to obtain $[x \ y \ \alpha]$?

But robots cannot analyze the Euclidean geometry. Robots are essentially programmed by code.

Can we make something like this code?

```
link_length_0 = float()
link_length_1 = float()
...

vdef my_kinematics(joint_angle_0, joint_angle_1, ...):
    .......
end_effector_pos=...
end_effector_ori=...
```


How to obtain $[x \ y \ \alpha]$?

Approach 2: Transformation Matrix

Set a coordinate frame { } for each joint, then build transformation between two frames.

Here, we eventually want to obtain ${}_3^0T$, that is, how to describe the end-effector frame w.r.t the base frame.

How to obtain $[x \ y \ \alpha]$?

Approach 2: Transformation Matrix

How to describe the transformation between 2 frames?

- 1. Translation transform
- 2. Rotation transform

Translation transform

What will be ${}_{2}^{1}T$?

Translation transform

What will be $\frac{1}{2}T$?

Consider an arbitrary point P, its position at $\{1\}$ is (x_1, y_1) its position at $\{2\}$ is (x_2, y_2) Then,

$$x_1 = x_2 + a$$
, $y_1 = y_2 + b$

Write in vector,

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

Translation transform

Example

Given P at $\{2\}$ is (1, 2.5), a = b = 2

Then,

$$x_1 = 1 + a, y_1 = 2.5 + b$$

Write in vector,

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2.5 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 2.5 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4.5 \end{bmatrix}$$

Rotation transform

What will be ${}_{2}^{1}T$?

Rotation transform

What will be ${}_{2}^{1}T$?

Consider an arbitrary point P, its position at $\{1\}$ is (x_1, y_1) its position at $\{2\}$ is (x_2, y_2)

Rotation transform

What will be ${}_{2}^{1}T$?

Consider an arbitrary point P, its position at $\{1\}$ is (x_1, y_1) its position at $\{2\}$ is (x_2, y_2)

$$x_1 = x_2 C(\theta) - y_2 S(\theta), \ y_1 = x_2 S(\theta) + y_2 C(\theta)$$
Write in vector,
$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) \\ S(\theta) & C(\theta) \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$

Rotation transform

Example

Given P at $\{2\}$ is (3,2), θ =30°

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) \\ S(\theta) & C(\theta) \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$
$$= \begin{bmatrix} C(30^\circ) & -S(30^\circ) \\ S(30^\circ) & C(30^\circ) \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.60 \\ 3.23 \end{bmatrix}$$

Unified Expression for ${}_{2}^{1}T!$

Name: Homogeneous Transformation Matrix

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \frac{1}{2}T \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) & a \\ S(\theta) & C(\theta) & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Translation transform

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix}$$

Unified Expression for $\frac{1}{2}T!$

Name: Homogeneous Transformation Matrix

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = {}_2^1 T \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) & a \\ S(\theta) & C(\theta) & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Imagine a case with translation only, $\theta=0$,

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_2 + a \\ y_2 + b \\ 1 \end{bmatrix}$$

Unified Expression for $\frac{1}{2}T!$

Name: Homogeneous Transformation Matrix

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \frac{1}{2}T \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) & a \\ S(\theta) & C(\theta) & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Imagine a case with rotation only, a = b = 0,

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) & 0 \\ S(\theta) & C(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Unified Expression for ${}_{2}^{1}T!$

Name: Homogeneous Transformation Matrix

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = \frac{1}{2}T \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} C(\theta) & -S(\theta) & a \\ S(\theta) & C(\theta) & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Infer the frame relationship just from the matrix?

Frame $\{2\}$ orientation rotates θ w.r.t $\{1\}$, Also, the origin of $\{2\}$ is $[a\ b]$ far way from $\{1\}$.

Back to our problem: How to obtain $[x \ y \ \alpha]$?

Approach 2: Transformation Matrix

If we can get
$${}_{3}^{0}T = \begin{bmatrix} C(\theta) & -S(\theta) & a \\ S(\theta) & C(\theta) & b \\ 0 & 0 & 1 \end{bmatrix}$$
,

then $[x \ y \ \alpha] = [a \ b \ \theta]$ in this transformation matrix

Then, how to get ${}_{3}^{0}T$?

Frame by frame transform: ${}_{3}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T$

Example: obtain ${}_1^0T$, $\{1\}$ w.r.t $\{0\}$

 $\{0\}$ first rotates θ_0 to $\{0'\}$, then $\{0'\}$ translates $[l_0, 0]$ to $\{1\}$

$${}_{1}^{0}T = {}_{0'}^{0}T_{1}^{0'}T = \begin{bmatrix} C(\theta_{0}) & -S(\theta_{0}) & 0 \\ S(\theta_{0}) & C(\theta_{0}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & l_{0} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} C(\theta_{0}) & -S(\theta_{0}) & l_{0}C(\theta_{0}) \\ S(\theta_{0}) & C(\theta_{0}) & l_{0}S(\theta_{0}) \\ 0 & 0 & 1 \end{bmatrix}$$

Example: obtain ${}_1^0T$, $\{1\}$ w.r.t $\{0\}$

 $\{0\}$ first rotates θ_0 to $\{0'\}$, then $\{0'\}$ translates $[l_0,0]$ to $\{1\}$

$${}_{1}^{0}T = {}_{0'}^{0}T {}_{1}^{0'}T = \begin{bmatrix} C(\theta_{0}) & -S(\theta_{0}) & 0 \\ S(\theta_{0}) & C(\theta_{0}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & l_{0} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} C(\theta_{0}) & -S(\theta_{0}) & l_{0}C(\theta_{0}) \\ S(\theta_{0}) & C(\theta_{0}) & l_{0}S(\theta_{0}) \\ 0 & 0 & 1 \end{bmatrix}$$

Infer the frame relationship just from the matrix?

Frame {1} orientation rotates θ w.r.t {0}, Also, the origin of {2} is $[l_0C(\theta_0)\ l_0S(\theta_0)]$ far way from {1}.

Example: obtain ${}_1^0T$, $\{1\}$ w.r.t $\{0\}$

 $\{0\}$ first rotates θ_0 to $\{0'\}$, then $\{0'\}$ translates $[l_0, 0]$ to $\{1\}$

$${}_{1}^{0}T = {}_{0'}^{0}T_{1}^{0'}T = \begin{bmatrix} C(\theta_{0}) & -S(\theta_{0}) & 0 \\ S(\theta_{0}) & C(\theta_{0}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & l_{0} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} C(\theta_{0}) & -S(\theta_{0}) & l_{0}C(\theta_{0}) \\ S(\theta_{0}) & C(\theta_{0}) & l_{0}S(\theta_{0}) \\ 0 & 0 & 1 \end{bmatrix}$$

Infer the frame relationship just from the matrix?

Frame {1} orientation rotates θ w.r.t {0}, Also, the origin of {2} is $[l_0C(\theta_0)\ l_0S(\theta_0)]$ far way from {1}.

Now, can we build a function for kinematics?

Wrap up

- Kinematics Definition
- 2D Kinematics
 - Geometry based approach (naïve way)
 - Transformation matrix based approach (standard way)