(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-67817 (P2004-67817A)

最終頁に続く

(43) 公開日 平成16年3月4日 (2004.3.4)

(51) Int.C1. ⁷	FI	テーマコード (参考)
CO8G 65/48	COSG 65/48	2HO25
CO8F 20/26		
CO8F 290/06	,	-
GO3F 7/027	GO3F 7/027 5O2	
CO8F 290/06	CO8F 20/26 CO8F 290/06	4J005 4J027 4J100

		審査請求	未請求 請求	求項の数 4	OL	(全 16 頁)
(21) 出願番号 (22) 出願日	特顏2002-227622 (P2002-227622) 平成14年8月5日 (2002.8.5)	(71) 出願人	000004466 三菱瓦斯化学株式会社			
			東京都千代			5番2号
		(74) 代理人	100117891			
			弁理士 永	井 隆		
		(72) 発明者	石井 賢治			
			東京都葛飾	区新宿6丁	11番	1号 三菱瓦
			斯化学株式	会社東京研	究所内	
		(72) 発明者	則末 泰正			
			東京都葛飾	区新宿6丁	1日1番	1号 三菱瓦
			斯化学株式:	会社東京研	究所内	
		(72) 発明者	大野 大典			
			東京都葛飾			1号 三菱瓦
			地门口子作不	云红米尔切	オルバリ	

(54) 【発明の名称】多官館(メタ)アクリレート化合物およびその硬化物

(57)【要約】

【課題】耐熱性、電気特性の優れた多官能(メタ)アクリレート樹脂を得る。

【解決手段】2官能PPEオリゴマーに多官能の(メタ)アクリレート基を導入した化合物は反応性に富み、その硬化物はガラス転移点が高く、低誘電率、低誘電正接でありPPEの優れた性質を受け継いだバランスのとれた特性を有していた。

【特許請求の範囲】

【請求項1】

一般式(1)で示される(メタ)アクリレート化合物 【化1】

【化2】

$$(Y-O)$$
 = (3) R_{16} R_{14} R_{15}

(式中、R1, R2, R3, R4, R5は水素原子またはメチル基を示す。- (O-X-O) - は構造式(2)で示され、R6, R7, R12, R13は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R8, R9, R10, R11は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。Aは、炭素数20以下の直鎖状あるいは、分岐状あるいは、環状の炭化水素である。- (Y-O) - は構造式(3)で定義される1種類の構造、または構造式(3)で定義される2種類以上の構造がランダムに配列したものである。R14, R15は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R16, R17は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。Zは、炭素数1以上の有機基であり、酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともある。a, bは、少なくともいずれか一方が0でない、0~300の整数を示す。c, dは、0または1の整数を示す。nは0か510の整数を示す。) 【請求項2】

【化3】

10

- (O-X-O) - の構造式(2) において、R 6, R 7, R 1 2, R 1 3 がメチル基であり、- (Y-O) - が構造式(4) あるいは、構造式(5) あるいは、構造式(4) と構造式(5) がランダムに配列した構造を有することを特徴とする請求項 1 記載の(メタ) アクリレート化合物

【請求項3】

請求項1または2に記載の(メタ)アクリレート化合物を含有する硬化性樹脂組成物

【請求項4】

請求項3記載の硬化性樹脂組成物を硬化してなる硬化物

【発明の詳細な説明】

[0001]

20

【発明の属する技術分野】

本発明は、PPE骨格を有する新規な(メタ)アクリレート化合物およびその硬化物に関し、さらに該化合物を含有する硬化性樹脂組成物ならびにそれらの硬化物に関する。本発明の(メタ)アクリレート化合物は、それ自体を重合させることによってまたは他の不得的和化合物と共重合させることによって、耐熱性および誘電特性に優れた高分子材料を得ることができるものである。また、本発明の(メタ)アクリレート化合物は、光重合開始を出み合わせることによって、感光性樹脂組成物とすることもでき、かかる感光性樹脂組成物は、レジスト用樹脂、ビルドアップ配線板用樹脂、液晶表示パネルの封止用樹脂、液物は、レジスト用樹脂、ビルドアップ配線板用樹脂、液晶表示パネルの封止用樹脂、ガラーフィルター用樹脂、UV塗料、各種コーティング剤、接着剤等の広範な用途に用いることができる。

30

[0002]

【従来の技術】

従来、(メタ)アクリレート化合物は、感光材料、光学材料、歯科材料、電子材料、各種高分子の架橋剤など、種々の機能性高分子材料の原料として幅広く用いられている。しかしながら、近年これらの応用分野における要求性能の高度化に伴い、機能性高分子材料として求められる物性はますます厳しくなってきている。かかる物性として、例えば、耐熱性、耐候性、低吸水性、高屈折率、高破壊靭性、低誘電率、低誘電正接等が求められているが、これまでのところ、これらの要求物性は必ずしも満足されてきたわけではない。

[0003]

【本発明が解決しようとする課題】

40

本発明は、優れた耐熱性を有し、低誘電率、低誘電正接である新規な (メタ) アクリレート化合物および硬化性樹脂組成物を提供することにある。

[0004]

【課題を解決するための手段】

本発明者等は、PPEの優れた誘電特性・耐熱性を引継いだラジカル重合型2官能性PPEオリゴマー体としてエポキシ(メタ)アクリレート体(特願2002-038156)、(メタ)アクリレート体(特願2002-055765)を合成した。さらなる高耐熱化を目指して鋭意検討を重ねた結果、2官能PPEのオリゴマー体(-(〇-X-〇)-が構造式(2)であり、-(Y-〇)-が構造式(3)で定義される1種類の構造、または2種類以上の構造がランダムに配列したもの)にラジカル重合可能な(メタ)アクリレ

ート基を 4 官能以上にすることにより、目的を満たすことを見出し、本発明を完成するに至った。すなわち、本発明は、一般式 (1) に表される (メタ) アクリレート化合物に関する。

【0005】 【化4】

【化5】

$$(Y-O)$$
 = $\begin{pmatrix} R_{16} & R_{14} \\ R_{17} & R_{15} \end{pmatrix}$ (3)

[0006]

(式中、R1,R2,R3,R4,R5は水素原子またはメチル基を示す。- (O-X-O)-は構造式(2)で示され、R6,R7,R12,R13は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R8,R9,R10,R11は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニルを変素数20以下の直鎖状あるされる以下のアルキル基またはフェニル基である。Aは、炭素数20以下の直鎖状あるされる2種類以上の構造がランダムに配列まなは、分岐状あるいは、環状の炭化水素である2種類以上の構造がランダムに配炭素は1種類の構造、または構造式(3)で定義される2種類以上の構造がランダムに配炭素なものである。R14,R15は、同一または異なってもよく、ハロゲン原子または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R16,R17は、同一または異なっあるよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基原子、企業数1以上の有機基であり、酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともある。a,bは、少なくともいずれか一方が0でない、0~300の整数を示す。c,dは、0または1の整数を示す。nは0か510の整数を示す。)

[0007]

10

40

50

さらに本発明は前記(メタ)アクリレート化合物を含有する硬化性樹脂組成物に関し、さらには組成物を硬化してなる硬化物に関する。

[0008]

【発明実施の形態】

以下、本発明を詳細に説明する。一般式(1)で表される化合物において、R1, R2, R3, R4, R5は水素原子またはメチル基である。- (O-X-O) - は構造式 (2) で示され、R6、R7、R12、R13は、同一または異なってもよく、ハロゲン原子ま たは炭素数6以下のアルキル基またはフェニル基である。R8,R9,R10,R11は 、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基 またはフェニル基である。Aは、炭素数20以下の直鎖状あるいは、分岐状あるいは、環 状の炭化水素である。- (Y-O) - は構造式(3) で定義される1種類の構造、または 構造式(3)で定義される2種類以上の構造がランダムに配列したものである。R14. R15は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基ま たはフェニル基である。R16, R17は、同一または異なってもよく、水素原子、ハロ ゲン原子または炭素数 6 以下のアルキル基またはフェニル基である。 Z は、炭素数 1 以上 の有機基であり、酸素原子、窒素原子、硫黄原子、ハロゲン原子を含むこともある。 a, bは、少なくともいずれか一方が0でない、0~300の整数を示す。c,dは、0また は1の整数を示す。nは0~10の整数を示す。これらのなかでも好ましくは、R6, R R 1 2, R 1 3 は炭素数 3 以下のアルキル基、R 8, R 9, R 1 0, R 1 1 は水素 原子または炭素数3以下のアルキル基、R14,R15は炭素数3以下のアルキル基、R 16, R17は水素原子または炭素数3以下のアルキル基であり、これらのなかでも、好 ましくは、- (0-X-0) - の構造式 (2) において、R 6, R 7, R 1 2, R 1 3 が メチル基であり、一(Y-〇) - が構造式(4)あるいは、構造式(5)で示されるもの である。

[0009]

【化6】

[0010]

等の溶剤類の存在下に、好ましくは $70\%\sim150\%$ の温度で反応させることにより、あるいはその酸ハロゲン化物を例えば有機アミン、水酸化ナトリウムまたは炭酸ナトリウムの存在下に、好ましくはトルエン、キシレン、シクロヘキサン、n-ヘキサン、n-ヘプタン、塩化メチレン、クロロホルムまたはこれらの混合物等の溶剤類の存在下に、 $-20\%\sim50\%$ の温度で反応させることにより目的の化合物を得ることができる。

[0011]

【化7】

$$\frac{H_{2}C - CH_{2} - \left[Z \right]_{c} \left[OY \right]_{a} \left(OXO \right) \left[YO \right]_{b} \left[Z \right]_{d}}{\left[CH_{2}C + CH_{2} - \left[Z \right]_{c} \left[OY \right]_{a} \left(OXO \right) \left[YO \right]_{b} \left[Z \right]_{d} \right]_{d} CH_{2}C + CH_{2}} \qquad (6)$$

[化8]

$$-(Y-O-)$$
 = $-(3)$ (3)

[0012]

(式中、-(O-X-O) - は構造式 (2) で示され、R 6, R 7, R 1 2, R 1 3 は、同一または異なってもよく、ハロゲン原子または炭素数 6 以下のアルキル基またはフェニル基である。R 8, R 9, R 1 0, R 1 1 は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数 6 以下のアルキル基またはフェニル基である。A は、炭素数 2 0 以下の直鎖状あるいは、分岐状あるいは、環状の炭化水素である。-(Y-O) - は構造式 (3) で定義される 1 種類の構造、または構造式 (3) で定義される 2 種類以上の構造がランダムに配列したものである。R 1 4, R 1 5 は、同一または異なってもよく、ハロゲン原子または炭素数 6 以下のアルキル基またはフェニル基である。R 1 6, R 1 7 は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数 6 以下のアルキル基またはフェニル基である。 R 1 6, R 1 7 は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数 6 以下のアルキル基またはフェニル基である。C は、炭素数 1 以上の有機基であり、酸素原子、窒素原子、硫サンエニル基である。C は、炭素数 1 以上の有機基であり、酸素原子、窒素原子、硫分、0~3 0 0 の整数を示す。c, dは、0 または 1 の整数を示す。n は 0 か 5 1 0 の整数を示す。)

[0013]

一般式(6)で示される化合物は、例えば、特願2002-018508に記載の2価フ エノールと1個フェノールを酸化重合する方法で得た2官能PPEオリゴマーに対し、エ ピクロロヒドリンを反応させることで得ることができる。

[0014]

次に、本発明の硬化性樹脂組成物について説明する。該硬化性樹脂組成物は、上述した本 発明の(メタ)アクリレート化合物を含有することを特徴とするものであり、公知のエポ キシ樹脂、オキセタン樹脂、重合可能な不飽和基を有する化合物、光および/または熱重 合開始剤、光増感剤等を添加することも可能である。

[0015]

エポキシ樹脂としては、一般に公知のものが使用できる。例えば、ビスフェノールA型エ ポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノール ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック 型エポキシ樹脂、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、ジシクロペン タジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、特願200 1-353194、特願2002-018508に示されるPPE骨格を有するエポキシ 樹脂等が挙げられる。これらのエポキシ樹脂は1種あるいは2種以上混合して用いられる

[0016]

オキセタン樹脂としては、一般に公知のものが使用できる。例えば、オキセタン、2-メ チルオキセタン、2,2ージメチルオキセタン、3ーメチルオキセタン、3,3ージメチ ルオキセタン、等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、 3,3'-ジ(トリフルオロメチル)パーフルオキセタン、2-クロロメチルオキセタン 、3,3-ビス(クロロメチル)オキセタン、ОХТ-101(東亞合成製商品名)、О XT-121 (東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は1種ある いは2種以上混合して用いられる。

[0017]

本発明の硬化性樹脂組成物にエポキシ樹脂および/またはオキセタン樹脂を使用する場合 にはエポキシ樹脂硬化剤および/またはオキセタン樹脂硬化剤を使用することができる。 該エポキシ樹脂硬化剤としては、一般に公知のものが使用でき、例えば、2-メチルイミ ダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シア ノエチルー2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミ ダゾール、2-フェニルー4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4 - メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体、ジシアンジアミ ド、ベンジルジメチルアミン、4-メチル-N, N-ジメチルベンジルアミン、ジアミノ ジフェニルメタン、ジアミノジフェニルスルフォン等のアミン化合物、ホスフィン系はホ スホニウム系のリン化合物を挙げることができる。該オキセタン樹脂硬化剤としては公知 のカチオン重合開始剤が使用できる。例えば、市販のものではサンエードSI-60L、 サンエードSI-80L、サンエードSI-100L(三新化学工業製)、СІ-206 4 (日本曹達製)、イルガキュア261 (チバスペシャリティーケミカル製)、アデカオ プトマーSP-170、アデカオプトマーSP-150(旭電化製)、サイラキュアーU VIー6990(UCC製)等が挙げられる。カチオン重合開始剤はエポキシ樹脂硬化剤 としても使用できる。これらの硬化剤は1種あるいは2種以上組み合わせて使用される。

[0018]

重合可能な不飽和基を有する化合物としては、一般に公知のものが使用できる。例えば、 2ーヒドロキシエチル(メタ)アクリレート、2ーヒドロキシプロピル(メタ)アクリレ ート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ) アクリレート、トリメチロールプロパントリ(メタ) アクリレート、ペンタエリス リトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレ ート等の1 価または多価アルコールの (メタ) アクリレート類、ビスフェノール A 型エポ 10

キシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、特願2001-387968、特願2002-038156に示されるPPE骨格を有するエポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、特願2002-053653、特願2002-055765に示されるPPE骨格を有する(メタ)アクリレート、ベンゾシクロブテン樹脂等が挙げられる。これらのエチレン性不飽和基を有する化合物は1種あるいは2種以上混合して用いられる。

[0019]

光重合開始剤としては、一般に公知のものが使用できる。例えば、ベンジル、ジアセチル等の α ージケトン類、ベンゾイルエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル類、チオキサントン、2、4ージエチルチオキサントン、2ーイソプロピルチオキサントンなどのチオキサントン類、ベンゾフェノン、4、4'ービス(ジメチルアミノ)ベンゾフェノン等のベンゾフェノン類、アセトフェノン、2、2'ージメトキシー2ーフェニルアセトフェノン、 β ーメトキシアセトフェノン等のアセトフェノン類、2ーメチルー1ー [4ー(メチルチオ)フェニル]ー2ーモルフォリノプロパンー1ーオン、2ーベンジルー2ージメチルアミノー1ー(一4ーモルフォリノフェニル)ープタノンー1等のアミノアセトフェノン類が挙げられる。これらの光重合開始剤は1種あるいは2種以上組み合わせて使用される。

[0020]

さらに、これらの光重合開始剤と公知の光増感剤の 1 種または 2 種以上を組み合わせて使用できる。該光増感剤としては、例えば、N, N-ジメチルアミノ安息香酸エチルエステル、N, N-ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等を挙げることができる。

[0021]

熱重合開始剤としては、一般に公知のものが使用できる。例えば、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジーt-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジー2-エチルヘキシルパーオキシカーボネート等の過酸化物、およびアゾビスイソブチロニトリル等のアゾ化合等が挙げられる。

[0022]

さらに本発明の硬化性樹脂組成物を製造する際には、必要に応じて、無機充填剤、着色顔料、消泡剤、表面調整剤、難燃剤、紫外線吸収剤、酸化防止剤、重合禁止剤、流動調整剤等の公知の添加剤を添加することができる。無機充填剤としては、例えば、天然シリカ、溶融シリカ、アモルファスシリカ等のシリカ類、ホワイトカーボン、チタンホワイト、アエロジル、アルミナ、タルク、天然マイカ、合成マイカ、カオリン、クレー、水酸化アルミニウム、硫酸バリウム、Eーガラス、Aーガラス、Cーガラス、Lーガラス、Dーガラス、Sーガラス、MーガラスG20等が挙げられる。このようにして得られた硬化性樹脂組成物は、ソルダーレジスト組成物、ビルドアップ配線板材料、絶縁塗料、接着剤、印刷インキ、コーティング剤等の各種用途に有用である。

[0023]

本発明の硬化物は、前述の方法で得られた本発明の硬化性樹脂組成物を、公知の方法、例えば、電子線、紫外線および熱による硬化方法に従って硬化することにより得られる。紫外線を用いて硬化を行う場合、紫外線の光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプあるいはメタルハライドランプ等が使用できる。

[0024]

【実施例】

以下、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。なお、数平均分子量および重量平均分子量の測定にゲル・パーミエーション・クロマトグラフィー(GPC)法により求めた。

[0025]

実施例1

(2官能PPEオリゴマー体の合成)

50

20

30

10

撹拌装置、温度計、空気導入管、じゃま板のついた 2 L の縦長反応器に C u C l 1 l 3 g (0.012 mol)、ジーnーブチルアミン 7 0.7 g (0.55 mol) 、メチルエチルケトン 400 g を仕込み、反応温度 40 % にて撹拌を行い、あらかじめ 80 0 g のメチルエチルケトンに溶解させた 2 価のフェノール 4 , 4 , - (1 - メチルエチリデン)ビス (2,6 - ジメチルフェノール) 45 . 4 g (0.16 mol) と 2 , 6 - ジメチルフェノール 5 8 . 6 g (0.48 mol) を 2 L/minの空気のバブリングを行いながら 1 2 0 分かけて滴下し、さらに滴下終了後 6 0 分間、 2 L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1 Mの塩酸水溶液で 3 回洗浄を行った後、イン交換水で洗浄を行った。得られた溶液をエバポレイターで濃縮し、さらに減圧乾燥を行い、樹脂イを 9 8 . 8 g 4 5 1 であった。

[0026]

(エポキシ体の合成)

撹拌装置、温度計、滴下漏斗のついた反応器を100℃まで加熱し、樹脂イ49.6g(水酸基0.11mol)とエピクロロヒドリン292gを仕込んだ。その後、あらかじめエタノール30gにナトリウムエトキシド8.6g(0.13mol)を溶解した溶液を滴下漏斗から、60分かけて滴下し、さらに滴下終了後 5 時間の撹拌を行った。その後、0.1Nの塩酸水溶液で3回洗浄とイオン交換水での水洗さらには3過を行い、生成塩と不純物を除去した。得られた溶液から過剰のエピクロロヒドリンを留去し、さらに減圧乾燥を行い、上記一般式(6)で示される樹脂ロを53.6g得た。樹脂ロは、1Rの分析によりフェノール性水酸基の吸収ピーク(3600cm-1)の消滅と、さらにNMRの分析によりグリシジルエーテル由来のピークの発現から、100%の官能基変換を確認した。樹脂ロの数平均分子量は998、重量平均分子量は1277、エポキシ当量は565であった。

[0027]

(エポキシアクリレート体の合成)

攪拌装置、温度計、還流管のついた反応器に樹脂ロ26g、アクリル酸3.3g、トルエン20g、トリフェニルホスフィン0.13g、ハイドロキノンメチルエーテル13mgを仕込んだ。これを120℃に加熱、攪拌しながら反応させた。反応中、酸価測定を行い、酸価2mg КОН/gとなるまで反応を行った。120℃での攪拌時間は5時間であった。反応液をトルエン40gで希釈し、メタノール中に滴下して再沈殿を行い、ろ過して固体を回収、減圧乾燥して樹脂ハを26.4g得た。樹脂ハの数平均分子量は1388、重量平均分子量は1679であった。

[0028]

(多官能アクリレート体の合成)

攪拌装置、温度計、滴下ロートのついた反応器に樹脂ハ25g、トリエチルアミン5.2g、塩化メチレン400gを反応器に、アクリル酸クロライド4.6g、塩化メチレン100gを商下ロートに仕込んだ。これを窒素下で0℃に冷却、攪拌状態で1時間かけてアクリル酸クロライドを滴下した後、室温に戻して攪拌を続けた。反応液をサンプリングしてNMR測定を行い反応を追跡した。2時間攪拌したところで反応が終了したため、0.1NHCIagおよび純水で分液洗浄を行った。有機層を濃縮し、メタノール中に滴下して再沈殿を行い、濾過して固体を回収、減圧乾燥して上記一般式(1)で示した樹脂ニを17.6g得た。樹脂ニの数平均分子量は1664、重量平均分子量は2205であった

[0029]

樹脂ニ10gを150℃で溶融、脱気、成形し、200℃ 6 時間硬化を行い、硬化物ホを得た。

[0030]

樹脂ニ6gをカルビトールアセテート4gに溶解し、ダロキュア1173 (チバスペシャ 50

リティケミカルズ製、光重合開始剤) 0.6g を添加した樹脂組成物へをスクリーン印刷機で銅張積層板上に塗布し、送風乾燥機で 80 \mathbb{C} 3 0 分乾燥した後、パターンフィルムを当て、 \mathbf{U} \mathbf{V} 照射装置(アイグラフィックス製: \mathbf{U} \mathbf{B} $\mathbf{0}$ $\mathbf{1}$ $\mathbf{5}$ $\mathbf{1}$ 、光源:メタルハライドランプ)を用いて $\mathbf{2}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ \mathbf{m} \mathbf{J} 露光した。露光後、メチルエチルケトンで現像したところ、未露光部のみがメチルエチルケトンに溶解し樹脂硬化物トの現像パターンが得られた。樹脂硬化物への鉛筆引っかき値(\mathbf{J} \mathbf{I} \mathbf{S} \mathbf{K} $\mathbf{5}$ $\mathbf{4}$ $\mathbf{0}$ $\mathbf{0}$) は \mathbf{H} であった。

[0031]

実施例2

(2官能PPEオリゴマー体の合成)

[0032]

(エポキシ体の合成)

撹拌装置、温度計、滴下漏斗のついた反応器を100 ℃まで加熱し、樹脂チ52.5g (水酸基0.11mo1) とエピクロロヒドリン292g を仕込んだ。その後、あらか溶を活タノール30gにナトリウムエトキシド8.6g (0.13mo1) を溶解した溶液を滴下漏斗から、60分かけて滴下し、さらに滴下終了後 5 時間の撹拌を行った。その後、の流下漏斗から、60分かけて滴下し、さらに滴水での水洗さらにはろ過を行い、生成塩と不純物を除去した。得られた溶液から過剰のエピクロロヒドリンを留去し、さらに減圧を保を行い、上記一般式(6) で示される樹脂リを54.1g 得た。樹脂リは、IRの分析によりフェノール性水酸基の吸収ピーク(3600cm-1)の消滅と、さらにNMRの分析によりグリシジルエーテル由来のピークの発現から、100%の官能基変換を確認した。樹脂リの数平均分子量は1029、重量平均分子量は1301、エポキシ当量は576であった。

[0033]

(エポキシアクリレート体の合成)

攪拌装置、温度計、還流管のついた反応器に樹脂リ26.5g、アクリル酸3.3g、トルエン20g、トリフェニルホスフィン0.13g、ハイドロキノンメチルエーテル13mgを仕込んだ。これを120℃に加熱、攪拌しながら反応させた。反応中、酸価測定を行い、酸価2mgKOH/gとなるまで反応を行った。120℃での攪拌時間は5時間であった。反応液をトルエン40gで希釈し、メタノール中に滴下して再沈殿を行い、ろ過して固体を回収、滅圧乾燥して樹脂ヌを26.5g得た。樹脂ヌの数平均分子量は1411、重量平均分子量は1721であった。

[0034]

(多官能アクリレート体の合成)

攪拌装置、温度計、滴下ロートのついた反応器に樹脂ハ25g、トリエチルアミン5.1g、塩化メチレン400gを反応器に、アクリル酸クロライド4.5g、塩化メチレン100gを滴下ロートに仕込んだ。これを窒素下で0℃に冷却、攪拌状態で1時間かけてアクリル酸クロライドを滴下した後、室温に戻して攪拌を続けた。反応液をサンプリングしてNMR測定を行い反応を追跡した。2時間攪拌したところで反応が終了したため、0.

0

20

20

ΛΩ

1 N H C I a q および純水で分液洗浄を行った。有機層を濃縮し、メタノール中に滴下して再沈殿を行い、濾過して固体を回収、減圧乾燥して上記一般式(1)で示される樹脂ルを18.3 g 得た。樹脂ルの数平均分子量は1710、重量平均分子量は2341であった。

[0035]

樹脂ル10gを150℃で溶融、脱気、成形し、200℃6時間硬化を行い、硬化物ヲを得た。

[0036]

樹脂ル6gをカルビトールアセテート4gに溶解し、ダロキュア1173(チバスペシャリティケミカルズ製、光重合開始剤)0.6gを添加した樹脂組成物ワをスクリーン印刷機で銅張積層板上に塗布し、送風乾燥機で80℃30分乾燥した後、パターンフィルムを当て、UV照射装置(アイグラフィックス製:UB0151、光源:メタルハライドランプ)を用いて2000mJ露光した。露光後、メチルエチルケトンで現像したところ、未露光部のみがメチルエチルケトンに溶解し樹脂硬化物カの現像パターンが得られた。樹脂硬化物ワの鉛筆引っかき値(JIS K5400)はHであった。

[0037]

実施例3

(2官能PPEオリゴマー体の合成)

[0038]

(エポキシ体の合成)

撹拌装置、温度計、滴下漏斗のついた反応器を100 ℃まで加熱し、樹脂 350.6g (水酸基0.11mol) とエピクロロヒドリン292g を仕込んだ。その後、あらかじめエタノール30g にナトリウムエトキシド8.6g (0.13mol) を溶解した溶液を滴下漏斗から、60分かけて滴下し、さらに滴下終了後5 時間の撹拌を行った。その後、0.1Nの塩酸水溶液で3 回洗浄とイオン交換水での水洗さらにはろ過を行い、生成温圧不純物を除去した。得られた溶液から過剰のエピクロロヒドリンを留去し、さらに水圧を行い、上記一般式(6) で示される樹脂タを53.8g 得た。樹脂タは、1Rの分析によりフェノール性水酸基の吸収ピーク(3600cm-1)の消滅と、さらにNMRの分析によりグリシジルエーテル由来のピークの発現から、100%の官能基変換を確認した。樹脂タの数平均分子量は1005、重量平均分子量は1275、エポキシ当量は5600cm

[0039]

(エポキシアクリレート体の合成)

攪拌装置、温度計、還流管のついた反応器に樹脂タ26g、アクリル酸3.3g、トルエン20g、トリフェニルホスフィン0.13g、ハイドロキノンメチルエーテル13mgを仕込んだ。これを120℃に加熱、攪拌しながら反応させた。反応中、酸価測定を行い、酸価2mgKOH/gとなるまで反応を行った。120℃での攪拌時間は5時間であった。反応液をトルエン40gで希釈し、メタノール中に滴下して再沈殿を行い、ろ過して

20

10

固体を回収、減圧乾燥して樹脂レを26.7g得た。樹脂レの数平均分子量は1395、 重量平均分子量は1687であった。

[0040]

(多官能アクリレート体の合成)

攪拌装置、温度計、滴下ロートのついた反応器に樹脂レ25g、トリエチルアミン5.2g、塩化メチレン400gを反応器に、アクリル酸クロライド4.6g、塩化メチレン100gを滴下ロートに仕込んだ。これを窒素下で0℃に冷却、攪拌状態で1時間かけてアクリル酸クロライドを滴下した後、室温に戻して攪拌を続けた。反応液をサンプリングしてNMR測定を行い反応を追跡した。2時間攪拌したところで反応が終了したため、0.1NHC1agおよび純水で分液洗浄を行った。有機層を濃縮し、メタノール中に滴下して再沈殿を行い、濾過して固体を回収、減圧乾燥して上記一般式(1)で示される樹脂ソを16.5g得た。樹脂ソの数平均分子量は1705、重量平均分子量は2298であった。

[0041]

樹脂ソ10gを150℃で溶融、脱気、成形し、200℃ 6 時間硬化を行い、硬化物ツを得た。

[0042]

樹脂ソ6gをカルビトールアセテート4gに溶解し、ダロキュア1173(チバスペシャリティケミカルズ製、光重合開始剤)0.6gを添加した樹脂組成物ネをスクリーン印刷機で銅張積層板上に塗布し、送風乾燥機で80℃30分乾燥した後、パターンフィルムを当て、UV照射装置(アイグラフィックス製:UB0151、光源:メタルハライドランプ)を用いて2000mJ露光した。露光後、メチルエチルケトンで現像したところ、未露光部のみがメチルエチルケトンに溶解し樹脂硬化物ナの現像パターンが得られた。樹脂硬化物ナの鉛筆引っかき値(JIS K5400)はHであった。

[0043]

実施例 4

(2官能PPEオリゴマー体の合成)

[0044]

(エポキシ体の合成)

撹拌装置、温度計、滴下漏斗のついた反応器を100℃まで加熱し、樹脂ラ54.6g(水酸基0.11mo1)とエピクロロヒドリン292gを仕込んだ。その後、あらかじめエタノール30gにナトリウムエトキシド8.6g(0.13mo1)を溶解した溶液を滴下漏斗から、60分かけて滴下し、さらに滴下終了後 5 時間の撹拌を行った。その後、0.1Nの塩酸水溶液で3回洗浄とイオン交換水での水洗さらにはろ過を行い、生成塩と不純物を除去した。得られた溶液から過剰のエピクロロヒドリンを留去し、さらに減圧乾燥を行い、上記一般式(6)で示される樹脂ムを56.9g得た。樹脂ムは、IRの分析によりフェノール性水酸基の吸収ピーク(3600cm-1)の消滅と、さらにNMRの分析によりグリシジルエーテル由来のピークの発現から、100%の官能基変換を確認し

10

30

た。樹脂ムの数平均分子量は1092、重量平均分子量は1408、エポキシ当量は61 2であった。

[0045]

(エポキシアクリレート体の合成)

[0046]

(多官能アクリレート体の合成)

攪拌装置、温度計、滴下ロートのついた反応器に樹脂ウ25g、トリエチルアミン4.8g、塩化メチレン400gを反応器に、アクリル酸クロライド4.3g、塩化メチレン100gを滴下ロートに仕込んだ。これを窒素下で0℃に冷却、攪拌状態で1時間かけてアクリル酸クロライドを滴下した後、室温に戻して攪拌を続けた。反応液をサンプリングしてNMR測定を行い反応を追跡した。2時間攪拌したところで反応が終了したため、0.1NHC1agおよび純水で分液洗浄を行った。有機層を濃縮し、メタノール中に滴下して再沈殿を行い、濾過して固体を回収、減圧乾燥して上記一般式(1)で示される樹脂ノを17.6g得た。樹脂ノの数平均分子量は1788、重量平均分子量は2407であった。

[0047]

樹脂ノ10gを150℃で溶融、脱気、成形し、200℃6時間硬化を行い、硬化物オを得た。

[0048]

樹脂ノ6gをカルビトールアセテート4gに溶解し、ダロキュア1173(チバスペシャリティケミカルズ製、光重合開始剤)0.6gを添加した樹脂組成物クをスクリーン印刷機で銅張積層板上に塗布し、送風乾燥機で80℃30分乾燥した後、パターンフィルムを当て、UV照射装置(アイグラフィックス製:UB0151、光源:メタルハライドランプ)を用いて2000mJ露光した。露光後、メチルエチルケトンで現像したところ、未露光部のみがメチルエチルケトンに溶解し樹脂硬化物ヤの現像パターンが得られた。樹脂硬化物ヤの鉛筆引っかき値(JIS K5400)はHであった。

[0049]

実施例5

(2官能 P P E オリゴマー体の合成)

援押装置、温度計、空気導入管、じゃま板のついた 2 Lの縦長反応器に C u C l 1 . 3 g (0.012 mol)、 \mathcal{Y} - \mathcal{Y}

[005.0]

(エポキシ体の合成)

50

40

10

提拌装置、温度計、滴下漏斗のついた反応器を100 ℃まで加熱し、樹脂マ50.1g (水酸基0.11mol) とエピクロロヒドリン292gを仕込んだ。その後、あらかじめエタノール30gにナトリウムエトキシド8.6g (0.13mol) を溶解した溶液を滴下漏斗から、60分かけて滴下し、さらに滴下終了後5時間の撹拌を行った。その後、の流汗漏斗から、60分かけて滴下し、さらに滴下終了後5時間の撹拌を行った。その後、50. 100 塩酸水溶液で3回洗浄とイオン交換水での水洗さらには3過を行い、生成塩を不純物を除去した。得られた溶液から過剰のエピクロロヒドリンを留去し、さらに水が上記一般式(6) で示される樹脂ケを50.2g 得た。樹脂フは、1Rの分析によりフェノール性水酸基の吸収ピーク(3600cm-1)の消滅と、さらにNMRの分析によりグリシジルエーテル由来のピークの発現から、100%の官能基変換を確認した。樹脂ケの数平均分子量は956、重量平均分子量は1204、エポキシ当量は545であった。

10

[0051]

(エポキシアクリレート体の合成)

20

[0052]

(多官能アクリレート体の合成)

攪拌装置、温度計、滴下ロートのついた反応器に樹脂フ25g、トリエチルアミン5.3g、塩化メチレン400gを反応器に、アクリル酸クロライド4.8g、塩化メチレン100gを滴下ロートに仕込んだ。これを窒素下で0℃に冷却、攪拌状態で1時間かけてアクリル酸クロライドを滴下した後、室温に戻して攪拌を続けた。反応液をサンプリングしてNMR測定を行い反応を追跡した。2時間攪拌したところで反応が終了したため、0.1NHC1agおよび純水で分液洗浄を行った。有機層を濃縮し、メタノール中に滴下して再沈殿を行い、濾過して固体を回収、減圧乾燥して上記一般式(1)で示される樹脂コを16.6g得た。樹脂コの数平均分子量は1623、重量平均分子量は2278であった。

30

[0053]

樹脂コ10gを150℃で溶融、脱気、成形し、200℃ 6 時間硬化を行い、硬化物工を得た。

[0054]

樹脂コ6gをカルビトールアセテート4gに溶解し、ダロキュア1173(チバスペシャリティケミカルズ製、光重合開始剤)0.6gを添加した樹脂組成物テをスクリーン印刷機で銅張積層板上に塗布し、送風乾燥機で80℃30分乾燥した後、パダーンフィルムを当て、UV照射装置(アイグラフィックス製:UB0151、光源:メタルハライドランプ)を用いて2000mJ露光した。露光後、メチルエチルケトンで現像したところ、未露光部のみがメチルエチルケトンに溶解し樹脂硬化物アの現像パターンが得られた。樹脂硬化物アの鉛筆引っかき値(JIS K5400)はHであった。

40

[0055]

比較例1

実施例 1 で得られた樹脂ハ 1 0 g を 1 5 0 $\mathbb C$ で脱気、成形し、 2 0 0 $\mathbb C$ 6 時間熱硬化を行い、硬化物サを得た。

[0056]

実施例1、2、3、4、5、比較例1で得られた硬化物の特性を以下の方法により評価した。

ガラス転移温度(Tg):動的粘弾性測定(DMA)により求めた。振動周波数10Hz

で測定を行った。

誘電率、誘電正接:空洞共振摂動法により求めた。

[0057]

以上の物性の評価結果を表1に示す。

【表1】

	実施例1	実施例2	実施例3	実施例4	実施例5	比較例1
	硬化物ホ	硬化物ヲ	硬化物ツ	硬化物才	硬化物工	硬化物サ
Tg(℃)	224	225	223	230	235	182
誘電率	2. 74	2. 77	2. 76	2. 74	2. 71	2. 81
(1GHz)						
誘電正接	0.013	0. 012	0. 011	0. 012	0. 011	0. 025
(1GHz)						

10

20

[0058]

【発明の効果】

本発明の多官能(メタ)アクリレート化合物は、高いガラス転移温度を有し、低誘電率、低誘電正接であることから高機能性高分子材料として極めて有用であり、熱的、電気的に優れた材料として各種コーティング剤、UV塗料、接着剤、レジスト、ビルドアップ配線板材料などの幅広い用途に使用することができる。

フロントページの続き

(72)発明者 宮本 真

東京都葛飾区新宿6丁目1番1号 三菱瓦斯化学株式会社東京研究所内

Fターム(参考) 2H025 AA10 AA20 AB13 AB14 AB15 AB16 AB17 AD01 BC14 BC42

BC65 BC83

4J005 AA26 BD02

4J027 AC01 AC06 AE01 AE02 BA01 BA08 BA19 BA23 BA26 BA27

CDO6 CDO8 CDO9 CD10

4J100 AL67P BA07P BC43P JA01 JA03 JA32 JA37 JA38