POMDP Formulation Approximations

POMDP Computational Complexity

Sad facts 😭

- Infinite horizon POMDPs are undecidable
- Finite horizon POMDPs are *PSPACE Complete*
 - Among the hardest problems that can be solved using a polynomial amount of space
 - Any algorithm that can solve a general POMDP will have exponential complexity (we think)

Approximate POMDP Solutions

Numerical Approximations

(approximately solve original problem)

Offline

Last week

Online

Thursday

Formulation Approximations

(solve a slightly different problem)

Today!

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

Certainty Equivalent

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b'= au(b,a,o)$$

$$\pi_{ ext{CE}}(b) \ = \pi_s(ext{E}[s]) \ _{s \sim b}$$

$$b'= au(b,a,o)$$

Certainty Equivalent

Optimal for LQG

$$T(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) = \mathcal{N}(\mathbf{s}' \mid \mathbf{T}_s \mathbf{s} + \mathbf{T}_a \mathbf{a}, \mathbf{\Sigma}_s)$$

 $O(\mathbf{o} \mid \mathbf{s}') = \mathcal{N}(\mathbf{o} \mid \mathbf{O}_s \mathbf{s}', \mathbf{\Sigma}_o)$

$$egin{aligned} b(\mathbf{s}) &= \mathcal{N}(\mathbf{s} \mid \mathbf{\mu}_b, \mathbf{\Sigma}_b) \ & \mathbf{\mu}_p \leftarrow \mathbf{T}_s \mathbf{\mu}_b + \mathbf{T}_a \mathbf{a} \ & \mathbf{\Sigma}_p \leftarrow \mathbf{T}_s \mathbf{\Sigma}_b \mathbf{T}_s^ op + \mathbf{\Sigma}_s \end{aligned}$$

$$\mathbf{K} \leftarrow \mathbf{\Sigma}_{p} \mathbf{O}_{s}^{ op} \left(\mathbf{O}_{s} \mathbf{\Sigma}_{p} \mathbf{O}_{s}^{ op} + \mathbf{\Sigma}_{o} \right)^{-1} \ \mu_{b} \leftarrow \mu_{p} + \mathbf{K} \left(\mathbf{o} - \mathbf{O}_{s} \mu_{p} \right) \ \mathbf{\Sigma}_{b} \leftarrow (\mathbf{I} - \mathbf{K} \mathbf{O}_{s}) \mathbf{\Sigma}_{p}$$

QMDP

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

$$\pi_{\mathrm{QMDP}}(b) \ = rgmax_{a \in A} \ \mathop{\mathrm{E}}_{s \sim b} \left[Q_{\mathrm{MDP}}(s, a)
ight]$$

$$b' = au(b, a, o)$$

Example: Tiger POMDP with Waiting

POMDP Example: Light-Dark

Accurate Observations

$$\mathcal{S} = \mathbb{Z}$$
 $\mathcal{O} = \mathbb{R}$ $s' = s + a$ $o \sim \mathcal{N}(s, s - 10)$ $\mathcal{A} = \{-10, -1, 0, 1, 10\}$ $R(s, a) = egin{cases} 100 & ext{if } a = 0, s = 0 \ -100 & ext{if } a = 0, s
eq 0 \ -1 & ext{otherwise} \end{cases}$

Goal: a=0 at s=0

POMDP Solution

QMDP

Same as **full observability** on the next step

Information Gathering

QMDP

Full POMDP

QMDP

INDUSTRIAL GRADE

QMDP

ACAS X [Kochenderfer, 2011]

Hindsight Optimization

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

FIB

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b,a,o)$$

k-Markov

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$

Open Loop

$$\pi^* = rgmax_{\pi:B o A} \; \mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t,\pi(b_t))
ight]$$

$$b' = au(b, a, o)$$