The Generalized Gibbs Ensemble in the Heisenberg spin chain: A Hilbert space Monte Carlo approach

Vincenzo Alba¹ and Maurizio Fagotti²

¹International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy, INFN, Sezione di Trieste ²Département de Physique, Ecole normale superieure, CNRS, 24 rue Lhomond, 75005 Paris, France (Dated: June 12, 2015)

I. INTRODUCTION

FIG. 1. The Generalized Gibbs Ensenble (GGE) in the Hisenberg spin chain of length L=16. The GGE is obtained including the first three non-trivial conserved quantity I_2, I_3, I_4 . Here I_2 is the Hamiltonian. The corresponding Lagrange multipliers are denoted as $\lambda_2, \lambda_3, \lambda_4$, with λ_2 being the inverse temperature $\lambda_2=\beta$. In all the panels circles, squares, and rhombi correspond to the the situations with $\lambda_3=\lambda_4=0$ (i.e., the Gibbs ensenble), $\lambda_3=1, \lambda_4=0$, and $\lambda_3=\lambda_4=1$. (a)(b) The GGE expectation value of I_2/L using the GGE ensenble and the corresponding fluctuations $\sigma^2(I_2)/L$, plotted as function of $0 \le \lambda_2 \le 1.5$. (c)(d) and (e)(f): Same as in (a)(b) for I_3 and I_4 , respectively. The continuous lines are the analytical results in the thermodynamic limit using the Generalized Thermodynamic Bethe Ansatz (GTBA) approach (to be provided by Maurizio).

FIG. 2. The Generalized Gibbs Ensenble (GGE) in the Hisenberg spin chain of length L=16. The GGE is obtained including the first three non-trivial conserved quantity I_2,I_3,I_4 . Here I_2 is the Hamiltonian. The corresponding Lagrange multipliers are denoted as $\lambda_2,\lambda_3,\lambda_4$, with λ_2 being the inverse temperature $\lambda_2=\beta$. In all the panels circles, squares, and rhombi correspond to the the situations with $\lambda_3=\lambda_4=0$ (i.e., the Gibbs ensenble), $\lambda_3=1,\lambda_4=0$, and $\lambda_3=\lambda_4=1$. The GGE expectation value for the fluctuations of the total magnetization M, plotted as a function of λ_2 .

FIG. 3. The Generalized Gibbs Ensenble (GGE) in the Hisenberg spin chain of length L=16. The GGE is obtained including the first three non-trivial conserved quantity I_2,I_3,I_4 . Here I_2 is the Hamiltonian. The corresponding Lagrange multipliers are denoted as $\lambda_2,\lambda_3,\lambda_4$, with λ_2 being the inverse temperature $\lambda_2=\beta$. In all the panels circles, squares, and rhombi correspond to the the situations with $\lambda_3=\lambda_4=0$ (i.e., the Gibbs ensenble), $\lambda_3=1,\lambda_4=0$, and $\lambda_3=\lambda_4=1$. The GGE expectation value for the fluctuations of the total magnetization M, plotted as a function of λ_2 .