CT3531

Packet Filtering and Firewalls

What is a packet filter

- A piece of software which looks at the header of packets as they pass through and decides its fate
 - DROP
 - ACCEPT
 - Or something more complicated.
- Under Linux, packet filtering is built into the kernel.

Functions of Packet Filter

Control

 Allow only those packets that you are interested to pass through.

Security

- Reject packets from malicious outsiders
 - Ping of death
 - telnet from outside

Watchfulness

Log packets to/from outside world

Packet Filter under Linux

- 1st generation
 - ipfw (from BSD)
- 2nd generation
 - ipfwadm (Linux 2.0)
- 3rd generation
 - ipchains (Linux 2.2)
- 4th generation
 - iptables (Linux 2.4)
 - In this lecture, we will concentrate on iptables

iptables

- Kernel starts with three lists of rules called (firewall) chains.
 - INPUT
 - OUTPUT
 - FORWARD
- Each rule say "if the packet header looks like this, then here's what to do".
- If the rule doesn't match the packet, then the next packet will be consulted.

- 1. When a packet comes in, the kernel first looks at the destination of the packet: this is called routing.
- 2. If it's destined for this box
 - Passes downwards in the diagram
 - To INPUT chain
 - If it passes, any processes waiting for that packet will receive it.

Otherwise go to step 3

- 3. If forwarding is not enabled
 - The packet will be dropped If forwarding is enable and the packet is destined for another network interface.

Forward

Output

Input

- The packet goes rightwards on our diagram to the FORWARD chain.
 - If it is accepted, it will be sent out.
- 4. Packets generated from local process pass to the OUPUT chain immediately.
 - If its says accept, the packet will be sent out.

Usage

SYNOPSIS

```
iptables -[ADC] chain rule-specification [options]
iptables -[RI] chain rulenum rule-specification [options]
iptables -D chain rulenum [options]
iptables -[LFZ] [chain] [options]
iptables -[NX] chain
iptables -P chain target [options]
iptables -E old-chain-name new-chain-name
```

- -N Create a new chain
- -X Delete an empty chain
- -P Change the policy for a built-in chain
- -L List the rules in a chain
- -F Flush the rules out of a chain
- -Z Zero the packet and byte counters on all rules in a chain

Operations to manage whole chains

- -A Append a new rule to a chain
- -I Insert a new rule at some position in a chain

ŧ

- -R Replace a rule at some position in a chain
- -D Delete a rule at some position in a chain
- -D Delete the first rule that matches in a chain

Manipulate rules inside a chain

• A simple experiment

 Drop all ICMP packets coming from the IP address 127.0.0.1

```
# ping -c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.2 ms
--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0.2/0.2/0.2 ms
# iptables -A INPUT -s 127.0.0.1 -p icmp -j DROP
# ping -c 1 127.0.0.1
PING 127.0.0.1 (127.0.0.1): 56 data bytes
--- 127.0.0.1 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss
```

Filtering Specifications

- Specifying Source and Destination IP address
 - Source
 - -s, --source or -src
 - Destination
 - -d, --destination or -dst
 - IP address can be specified in four ways.
 - Full name (e.g. www.cse.cuhk.edu.hk)
 - IP address (e.g. 127.0.0.1)

- Group specification (e.g. 199.95.207.0/24)
- Group specification
 (e.g. 199.95.207.0/255.255.255.0)

Specifying Inversion

- Many flags, including the '-s' and '-d' flags
 can have their arguments preceded by '!' (not).
- Match address NOT equal to the ones given.
- E.g. '-s! localhost' matches any packet not coming from localhost.

• Specifying an Interface

- Physical device for packets to come in
 - -i, --in-interface
- Physical device for packets to go out
 - -o, --out-interface
- Packets traversing the INPUT chain don't have an output interface
 - Rule using '-o' in this chain will never match.
- Packets traversing the OUPUT chain don't have an input interface
 - Rule using '-i' in this chain will never match.

Specifying Protocol

- The protocol can be specified with the '-p' flag.
- Protocol can be a number if you know the numeric protocol values for IP.
- Protocol can be a name for special cases of
 - TCP
 - UDP
 - ICMP
- Case insensitive (e.g. tcp works as well as TCP)
- Can be prefixed by a '!', e.g. '-p! TCP'

- Specifying Fragments
 - Sometimes a packet is too large
 - Divided into fragments
 - Sent as multiple packets.
 - IP header contains in the first segment only.
 - Impossible to look inside the packet for protocol headers such as TCP, UDP, ICMP.
 - This means that the first fragment is treated like any other packet. Second and further fragments won't be.

- E.g '-p TCP -sport www' (specifying a source port of 'www'), will never match a fragment other than the first fragment.
- You can specify a rule specifically for second and further fragments, using the '-f'
 (or –fragment) flag.
- E.g. The following rule will drop any fragments going to 192.168.1.1
- # iptables -A OUTPUT -f -d 192.168.1.1 -j DROP

TCP extensions

- Automatically loaded if '--protocol tcp' is specified.
- ---tcp-flags
 - Allows you to filter on specific TCP flags.
 - The first string of flags is the mask
 - The second string of flags tells which one(s) should be set.
 - E.g.

iptables -A INPUT -protocol tcp -tcp-flags ALL SYN, ACK -j DROP

- Indicates that all flags should be examined
- ALL is synonymous with 'SYN,ACK,FIN,RST,URG,PSH'
- But only SYN and ACK should be set.
- There is also an argument 'NONE' meaning no flags.

- **--**syn

- Optionally preceded by a '!'.
- Shorthand for --tcp-flags SYN,RST,ACK SYN'.

--source-port

- Single port or range of ports
- Can be specified by names listed in /etc/services

- --sport
 - Synonymous with '--source-port'.
- --destination-port or --dport
 - Specify the destination port.
- ---tcp-option
 - Followed by an optional '!' and a number.
 - Matches a packet with a TCP option equaling that number.
- -E.g.
 - -p TCP -s 192.168.1.1 --syn
- Specify TCP connection attempts from 192.168.1.1

UDP Extensions

- Loaded if '--protocol udp' is specified.
- Provides the following options
 - --source-port
 - --sport
 - --destination-port
 - --dport

ICMP Extensions

- Loaded if '--protocol icmp' is specified.
- --icmp-type
 - Specify ICMP type (numeric type or name)

Other Match Extension

- Invoked with the '-m' option.

- Mac

- Specified with '-m mac' or -match mac'
- Used for matching incoming packet's source Ethernet address. (MAC).
- Only one option '--mac-source'
- E.g. –mac-source 00:60:08:91:CC:B7

- Limit

- Specified with '-m limit' or --match limit'.
- Restrict the rate of matches, such as for suppressing log messages.

Two options

• --limit

- Followed by a number
- Specifies the maximum average number of matches to allow per second.
- Can specify other unit such as '/second', '/minute', '/hour', or '/day'.
- − E.g. --limit 5/second or --limit 5/s

• --limit-burst

- Followed by a number.
- The maximum initial number of packets to match.
- This number gets recharged by one every time the limit specified above is not reached.
- Often used with the LOG target.
- Default 3 matches per hour, with a burst of 5
- E.g. iptables –A FORWARD –m limit –j LOG

State Match

Specifying '-m state' allows an additional '--state' option.

- NEW

• A packet which creates a new connection.

– ESTABLISHED

A packet which belongs to an existing connection

- RELATED

• A packet which is related to, but not part of, an existing connection such as ICMP error.

- INVALID

 A packet which could not be identified for some reasons.

Target Specifications

- Two built-in targets
 - DROP
 - ACCEPT
- Extensions
 - LOG
 - --log-level
 - » Specify the level of log 0 to 7.
 - --log-prefix
 - » Followed by a string up to 14 chars
 - » Sent at the start of the log
 - REJECT
 - DROP + send an ICMP port unreachable error message

User-defined chains

- User can create new chains.
- By convention, user-defined chains are lowercase.
- Packet matches rule whose target is a userdefined chain, the packet begins traversing the rules in that user-defined chain.
- If that chain doesn't decide the fate of the packet, then once traversal of that chain has finished, traversal resumes on the next rule on the current chain.

User-defined chains can jump to other user-defined chains. Your packets will be dropped if they are found to be in a Loop.

Network Address Translation

- We are not going to cover NAT in detail
- Here's an example here for redirecting ICMP echo request.

```
iptables -A PREROUTING -t nat -p icmp -d 137.189.89.176 \
-j DNAT --to 137.189.89.178
```

• Iptables can also achieve masquerading for internet sharing, port forwarding etc.

Firewall

- A firewall is a computer system dedicated to 'isolate' a LAN from the Internet.
- It is at the entry point of the LAN it protects.
- It inspects and makes decisions about all incoming packets before it reaches other parts of the system.
- Outgoing traffic may also be inspected and or blocked.

- A firewall can be a simple packet filter.
- It can also be an enormously complex computer system with
 - extensive logging systems,
 - intrusion detection systems.
- Nowadays, it is easy to download a free firewall that can be run on your Linux or Unix system.

- These firewalls usually provide a user interface to specify rules to
 - Block particular incoming connections from systems outside your LAN.
 - Block all connections to or from certain systems you distrust.
 - Allow email and ftp services, but block dangerous services like TFTP, RPC, rlogin etc.
 - Block certain type of packets.