머신러닝 배우기

2025.05.15

조 상 구 ancestor9@kbu.ac.kr

3. Supervised Learning

- Bayesian algorithm
- Support Vector Machine

Gaussian Naïve Bayes Sun Rising Problem

■ 누군가 당신에게 '내일 해가 뜰 확률을 묻는다면?

The **sunrise problem** can be expressed as follows: "What is the probability that the sun will rise tomorrow?" The sunrise problem illustrates the difficulty of using <u>probability theory</u> when evaluating the plausibility of statements or beliefs.

https://en.wikipedia.org/wiki/Sunrise problem

Usually inferred from repeated observations: "The sun always rises in the east".

Frequentist vs. Bayseian

Are you Bayesian or Frequentist?

137K views • 1 year ago

Cassie Kozyrkov

What if I told you I can show you the difference bet SUMMARY ...

CC

https://www.youtube.com/watch?v=GEFxFVESQXc&t=60s

Frequentist vs. Bayseian

■ 만약 어떤 사람이 5회 연속으로 카드의 색깔을 맞추었다면 그 사람이 초능력자라고 얼마나 믿는가? 3명의 친구 (Stub, Freq, Bays) 들의 관점을 비교

Mr. Stub

Mr. Freq

- 초능력자라면 무조건 맞추었으니 100%
- 초능력자가 아닌 일반 사람이라면 3.1%의 확률로 5회 연속으로 맞춘 것임
 - ▶ 초능력자가 아닌지는 확률로 나타내지 못함(Maximum likelihood Estimation은 제공하지 않음)

Frequentist vs. Bayseian

■ Stub는 너무 고집스럽고 Freq는 data를 너무 신봉하는 경향이 있지만 Bays는

- 5회 연속으로 맞춘 걸 보니 초능력자일 가능성(믿음)이 96.9%, 일반인일 가능성(믿음)은 3.1%
- Bays의 관점은 Freq의 likelihood와 Stub의 믿음(Prior)을 곱한 값으로 확률이라가보다는 Credibility

Missing from data-survivorship bias

비행기	손상부위	결과
1)혤캣아끄네스	동체	귀환
2) 브룽크스파머	?	격추
3) 피스톨패킹파 파	엔진	귀환
375) 홈시크엔젤	?	격추
376) 컬래미티제 인	없음 -	귀환
	—	

손상부위	귀환(총 316기)	격추 (총 60기)	
엔진	29	?	
조종석	36	?	
동체	50	?	
앞날개	55	?	
없음	146	0	

P(동체손상/귀환) = 50/316 = 15.8%

P(귀환/동체손상) = 50/(50+?) = ?%

https://en.wikipedia.org/wiki/Survivorship_bias#In_the_military

Missing from data-survivorship bias

• 원래 데이터를 가공, 조합, 정제 등의 처리 작업뿐만 아니라 존재하지 않는 자료를 만들 경우 예측 성능을 혁신적으로 높일 수 있음 (derivative features)

손상부위	귀환(총 316기)	격추 (총 60기)		
엔진	29	31		
조종석	36	21		
동체	50	4		
앞날개	55	4		
없음	146	0		

B-17이 적과 조우하는 전형적인 양상을 공군조종사와 엔지니어가 재현하여 가상 의 데이터 생성

Gaussian Naïve Bayes 사례

■ 매일 아침 출근시간에 지하철을 타는 남자가 금융 및 보험업에 종사할 확률은?

사전확률(Prior probability)

= 3369 / 66759 = 0.050 (5.0%)

산업별(1)	산업별(2)	2018		
^ ~	^ ~ -	A 🗸 –		
합계	사업체수 (개)	14,648		
		5,733		
	종사자수 (명)	66,759		
정보통신업	사업체수 (개)	50		
	종사자수 (명)	573		
금융 및 보험업	사업체수 (개)	185		
	종사자수 (명)	3,369		
부동산업	사업체수 (개)	592		

■ 새로운 정보: 넥타이 착용률

■ 금융/보험업: 90%

■ 기타업종 평균: 15%

■ 예상 넥타이 착용자수

■ 금융/보험업: 3032 (=3369 x 90%)

■ 기타업종 평균: 10014 (=66759 x 15%)

https://kosis.kr/statHtml/statHtml.do?orgId=622&tblId=DT_62201_D000003

사후확률 (Posterior probability) = 3032 / (3032 + 10014) = 0.232 (23.2%)

Gaussian Naïve Bayes 사후확률은 신념(Credibility)

■ 미지의 세계에 대한 구체적인 사실 확인, 관측치 발견, 경험을 통해 나의 신념은 변한다.

Posterior Distribution (Credibility)

 $p(h|\mathcal{D}) = \frac{p(\mathcal{D}|h)p(h)}{\sum_{h'\in\mathcal{H}}p(\mathcal{D},h')}$

- This distribution is comprised of the prior distribution (previous data) and likelihood function (probabilities inferred through Bayesian statistics).
- COVID-19 has demonstrated the need to account for uncertainty when making forecasts.

10

Gaussian Naïve Bayes 구글 예제

$$egin{aligned} p(C_k,x_1,\ldots,x_n) &= p(x_1,\ldots,x_n,C_k) \ &= p(x_1\mid x_2,\ldots,x_n,C_k) \ p(x_2,\ldots,x_n,C_k) \ &= p(x_1\mid x_2,\ldots,x_n,C_k) \ p(x_2\mid x_3,\ldots,x_n,C_k) \ p(x_3,\ldots,x_n,C_k) \ &= \cdots \ &= p(x_1\mid x_2,\ldots,x_n,C_k) \ p(x_2\mid x_3,\ldots,x_n,C_k) \cdots p(x_{n-1}\mid x_n,C_k) \ p(x_n\mid C_k) \ p(C_k) \end{aligned}$$

https://en.wikipedia.org/wiki/Naive Bayes classifier

	성별	신장	무게	발의크기	(신장, mean)	(신장, var)	(무게, mean)	(무게, var)	(발의크기, mean)	(발의크기, var)
0	남성	6.00	180.0	12.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
1	남성	5.92	190.0	11.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
2	남성	5.58	170.0	12.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
3	남성	5.92	165.0	10.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
4	여성	5.00	100.0	6.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
5	여성	5.50	150.0	8.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
6	여성	5.42	130.0	7.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
7	여성	5.75	150.0	9.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
8	NaN	6.00	130.0	8.0	NaN	NaN	NaN	NaN	NaN	NaN

Gaussian Naïve Bayes Discriminant or Generative ?

	Discriminative model	Generative model		
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$		
What's learned	Decision boundary	Probability distributions of the data		
Illustration				
Examples	Regressions, SVMs	GDA, Naive Bayes		

- 데이터로부터 직접 조건부 확률을 계산
- 확률모형에는 관심이 없고 X와 y의 패턴을 파악하여 건부확률인 사후 확률 생성 직접 분류를 하기에 y가 반드시 필요
- 선형회귀분석, SVM, 의사결정나무와 같이 확률적 모 습에도 적용 가능 후확률을 직접 예측
- 두 개의 확률 모형 사전 확률과 우도를 정의하여 조
 - 가우시안 믹스처 모델, 토픽 모델과 같은 비지도학
 - 델을 가정하지 않고 간단하게 직선, 커브 등으로 사 특성 변수간 독립이라는 확률적 모형을 가정하기 때 문에 예측 성능이 차별모형보다 낮지만, 데이터의 크기가 충분히 크면 성능은 비슷
 - 가우시안 믹스처, 나이브 베이지안, GAN, 딥러닝

Gaussian Naïve Bayes Discriminant or Generative?

- 단어 시퀀스에 조건부 확률을 할당하여 가장 자연스러운 단어 시퀀스를 찾는 RNN, CBOW
- 기계번역, 오타교정, 음성인식, 세익스피어 문체 글쓰기, 바하 스타일의 작곡

Generative Model

기계번역:

P(탔다/버스를) > P(태웠다/버스를)이 되도록 조건부 확률이 할당되어 학습하면, 'I took a bus' 는 '나는 버스를 태웠다'가 아니라 나는 버스를 탔다'로 번역된다.

Discriminative Model

