Guided Image Filter for Detail Transfer

110062171 陳彥成

Problem Description

Develop a solution using the Guided Image Filter to enhance image details while preserving natural illumination, particularly in flash and no-flash image pairs.

Background

ow-light photography limitations impact image quality, necessitating techniques for balanced detail and illumination. Enhance low-light photography by leveraging the strengths of both flash and ambient lighting through guided filtering for detail transfer.

Methods

Guided filtering technology is used to adjust the local mean and covariance by guiding the image to preserve and enhance image details.

引導濾波器的特點與我的其他嘗試

首先,它可以有效地平滑訊號並減少雜訊幹擾,同時保留訊號的邊緣資訊。 其次,引導濾波器平滑度可調,適合不同的應用場景。 其非線性特性使其能夠出色地處理訊號中的梯度反轉等情況(雙邊濾波器可能會出現此問題)。 此外,引導濾波器在去雜訊方面表現良好,有助於提取訊號的本質特徵,我也從一些論文看到有使用 PCA 方法做資料預處理,再套用引導濾波器,但我最終沒有實現成功,只得到一張色彩斑雜的影像。引導過濾器可以在大數據集上實現高效計算。 他的演算法複雜度僅為 O(n)。

在一些論文中,我發現透過採樣的方法,時間複雜度甚至可以降低到 **O(N/s^2)**。 但在實施過程中我遇到了一些困難,我的盒子濾波器無法運算,所以最後也失

```
Input: filtering input image p, guidance image I, radius r,
          regularization \epsilon
Output: filtering output q.
 1: mean_I = f_{mean}(I)
     mean_p = f_{mean}(p)
      corr_I = f_{mean}(I. * I)
     \operatorname{corr}_{Ip} = f_{\operatorname{mean}}(I. * p)
 2: var_I = corr_I - mean_I \cdot * mean_I
      cov_{Ip} = corr_{Ip} - mean_I \cdot * mean_p
 3: a = \text{cov}_{Ip}./(\text{var}_I + \epsilon)
      b = \text{mean}_p - a. * \text{mean}_I
 4: \operatorname{mean}_a = f_{\operatorname{mean}}(a)
     mean_b = f_{mean}(b)
 5: q = \text{mean}_a \cdot *I + \text{mean}_b
/* f_{\text{mean}} is a mean filter with a wide variety of O(N) time
methods. */
```

引導濾波器基本上就是一種取得最佳參數的算法,主要由 a 和 b 組成。在實作中我發現均值濾波器的差異並不高,真正影響引導濾波器功能的還是半徑和誤差兩個參數。主要影響模糊程度。

Implementation:

```
function q = guidedfilter(I, p, r, eps)
   % 獲取輸入国像的大小
   [hei, wid] = size(I);
  % 計算區域框濾波器的規模 N
   N = boxfilter(ones(hei, wid), r);
   % 計算均值
   mean_I = boxfilter(I, r) ./ N;
   mean_p = boxfilter(p, r) ./ N;
   mean_Ip = boxfilter(I.*p, r) ./ N;
  % 計算協方差
   cov_Ip = mean_Ip - mean_I .* mean_p;
   % 計算方差
   mean_II = boxfilter(I.*I, r) ./ N;
   var_I = mean_II - mean_I .* mean_I;
   % 計算本地權重和係置
   a = cov_Ip ./ (var_I + eps);
   b = mean_p - a .* mean_I;
   % 計算最終結果
   mean_a = boxfilter(a, r) ./ N;
   mean_b = boxfilter(b, r) ./ N;
   q = mean_a .* I + mean_b;
end
```

```
function imDst = boxfilter(imSrc, r)
   % 獲取輸入國像的大小
   [hei, wid] = size(imSrc);
   % 初始化輸出國像
   imDst = zeros(size(imSrc));
   % 計算沿垂直方向的累辖和
   imCum = cumsum(imSrc, 1);
   % 更新輸出圖像的頂部部分
   imDst(1:r+1, :) = imCum(1+r:2*r+1, :);
   % 更新輸出國像的中間部分
   imDst(r+2:hei-r, :) = imCum(2*r+2:hei, :) - imCum(1:hei-2*r-1, :);
   % 更新輸出國像的應部部分
   imDst(hei-r+1:hei, :) = repmat(imCum(hei, :), [r, 1]) - imCum(hei-2*r:hei-r-1, :);
   % 計算沿水平方向的累辖和
   imCum = cumsum(imDst, 2);
   % 更新輸出圖像的左側部分
   imDst(:, 1:r+1) = imCum(:, 1+r:2*r+1);
   % 更新輸出国像的中間部分
   imDst(:, r+2:wid-r) = imCum(:, 2*r+2:wid) - imCum(:, 1:wid-2*r-1);
   % 更新輸出團像的右側部分
   imDst(:, wid-r+1:wid) = repmat(imCum(:, wid), [1, r]) - imCum(:, wid-2*r:wid-r-1);
end
```

Experimentation

1) enhancement

我在報告中首先嘗試使用引導濾波器進行細節增強。發現圖片銳化效果明顯,且色彩更加飽和。演算法發揮功能,保留了邊緣的細節。結果非常成功。

2) flashlight

接著我嘗試將兩張圖片,一張有閃光燈,另一張則無,進行引導濾波。期望的結果是從沒有閃光的照片中提取細節,補足因閃光缺失的部分,再套上原來的顏色和亮度。變成一張較溫和且明亮的照片。

實驗結果:因為引導濾波器中實現了均值濾波器(盒子濾波器),所以有模糊化的效果。結果成功的還原了去閃光的照片,但變得模糊。

因此我直接套上先前實現的細節增強的方法,讓照片再次變得清晰。結果也非常成功。

3) Fusion

使用一張曝光時間較長,和另一張曝光時間較短的照片,希望做出一張沒有過曝和過暗造成細節丟失的照片。然而到了嘗試 HDR 的影像融合,沒有辦法像先前去 閃光燈的方法直接處理,因此我尋找其他的方式。

因為兩張照片都各自有細節丟失的部分,也有細節保留的部分。過曝的照片,窗戶的地方輪廓幾乎因為強光而消失。另一張則是窗框外的地方都過暗而漆黑。所以窗戶的細節需要從暗照片保留,而窗框外的細節則要從過曝的照片中保留。所以需要重新組合影像,利用權重圖,重新得到兩張含有各自細節資訊的影像,然後各自去做引導濾波,之後重新歸一化,重新組合成高頻和低頻的影像。

```
function output = wmap(i1,i2)
  [w,h,d]=size(i1);
  output = zeros(w,h,d);
  for i=1:d
     maxmap = max(i1(:,:,i),i2(:,:,i));
     temp = double(maxmap==i1(:,:,i));
     output(:,:,i) = temp;
  end
end
```

```
H1 = boxfilter(sourceImage, 31);
H2 = boxfilter(guideImage, 31);
D1 = sourceImage - H1;
D2 = guideImage - H2;
P1 = wmap(H1, H2);
P2 - wmap(H2, H1);
eps1 = 0.3^2;
eps2 = 0.03^2;
Wb1 = zeros(size(sourceImage));
Wb2 = zeros(size(sourceImage));
Wd1 = zeros(size(sourceImage));
Wd2 = zeros(size(sourceImage));
for i = 1:3
    Wb1(:,:,i) = guidedfilter(sourceImage(:,:,i), P1(:,:,i), 8, eps1);
    Wb2(:,:,i) = guidedfilter(sourceImage(:,:,i), P1(:,:,i), 8, eps1);
    Wd1(:,:,i) = guidedfilter(sourceImage(:,:,i), P1(:,:,i), 4, eps2);
    Wd2(:,:,i) = guidedfilter(sourceImage(:,:,i), P1(:,:,i), 4, eps2);
end
Wbmax = Wb1 + Wb2;
Wdmax - Wd1 + Wd2;
Wb1 - Wb1 ./ Wbmax;
Wb2 = Wb2 ./ Wbmax;
Wd1 = Wd1 ./ Wdmax;
Wd2 = Wd2 ./ Wdmax;
B = H1 .* Wb1 + H2 .* Wb2;
D = D1 .* Wd1 + D2 .* Wd2;
filteredImage = B + D;
```

以上的代碼在前後加上不同的均值濾波器,最後的結果似乎都沒有可見的差異。 所以我再次使用之前實現的盒子濾波器。

接著再將結果增強一次。

結果非常漂亮,不論是窗內的玻璃還是窗框外的建築輪廓都非常清楚,細節完全 被保留。

Possible results

 $\label{lem:consistency:edge} \mbox{Enhanced Detail $`$ Structural Preservation $`$ Color Consistency $`$ Edge Sharpness$

References

G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama, "Digital photography with flash and no-flash image pairs," in ACM SIGGRAPH, 2004.

Digital Image Processing, 4th edition ISBN number 9780133356724.

Publisher: **Pearson**

導向濾波的原理以及其應用

(https://medium.com/@gary1346aa/%E5%B0%8E%E5%90%91%E6%BF%BE%E6%B3%A2%E7%9A%84%E 5%8E%9F%E7%90%86%E4%BB%A5%E5%8F%8A%E5%85%B6%E6%87%89%E7%94%A8-78fdf562e749)

S. Li, X. Kang and J. Hu, "Image Fusion With Guided Filtering," in IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2864-2875, July 2013, doi: 10.1109/TIP.2013.2244222.