Business Intelligence

TICS-423 Universidad Adolfo Ibáñez

Week 05: 30 August - 02 September, 2016

Claudio Diaz Sebastián Moreno Gonzalo Ruz

Overview

Task Specifications:

Exploratory Data Analysis

Predictive Modeling

Descriptive Modeling Pattern Discovery

- Data Representation:
- Knowledge representation
- Learning technique
 - Search + Scoring
- Prediction and/or interpretation

- Task Specification: Predictive Modeling
- Data Representation: Homogeneous IID data
- Knowledge representation
- Learning technique
 - Search + Scoring
- Prediction and/or interpretation

- Predictive models predict the value of one variable of interest given known values of other variables
- Focus on modeling the conditional distribution P(Y | X) or on modeling the decision boundary for Y

- Predictive models predict the value of one variable of interest given known values of other variables
- Focus on modeling the conditional distribution P(Y | X) or on modeling the decision boundary for Y
- Task: estimate a predictive function $f(x;\theta)=y$
 - Assume that there is a function y=f(x) that maps data instances (x) to class labels (y)
 - Construct a model that approximates the mapping Classification: if y is categorical Regression: if y is real-valued

- **Task:** estimate a predictive function $f(x;\theta)=y$
- Data representation: Training set: Paired attribute vectors and class labels
 <y(i), x(i)> or n×p tabular data with class label (y) and p-1 attributes (x)
- Knowledge representation: Underlying structure of the model or patterns that we seek from the data (naive bayes, decision tree, regression).
- Learning: Defines a space of possible models M

Scoring function: Evaluate possible models to determine the model which best fits the data

Search: Search the space of models.

Predictive modelling Modeling approach

- Classification: In its simplest form, a classification model defines a decision boundary (h) and labels for each side of the boundary.
- Input: x={x₁,x₂,...,x_n} is a set of attributes, function f assigns a label y to input x, where y is a discrete variable with a finite number of values.

Data: decision-making process to go outside for recess to play.

Day	outlook	Temp	Humidity	Windy	Play
1	sunny	85	85	no	NO
2	sunny	80	90	yes	NO
3	overcast	83	86	no	YES
4	rainy	70	96	no	YES
5	rainy	68	80	no	YES
6	rainy	65	70	yes	NO
7	overcast	64	65	yes	YES
8	sunny	72	95	no	NO

- Classification output: Different classification tasks can require different kinds of output.
 - Class labels: Each instance is assigned a single label.
 Model only need to decide on crisp class boundaries

Day	outlook	Temp	Humidity	Windy	Play	class label	ranking	probability
1	sunny	85	85	no	NO	NO		
2	sunny	80	90	yes	NO	YES		
3	overcast	83	86	no	YES	YES		
4	rainy	70	96	no	YES	YES		
5	rainy	68	80	no	YES	NO		
6	rainy	65	70	yes	NO	YES		
7	overcast	64	65	yes	YES	YES		
8	sunny	72	95	no	NO	NO		

- Classification output: Different classification tasks can require different kinds of output.
 - Ranking: Instances are ranked according to their likelihood of belonging to a particular class
 Model implicitly explores many potential class boundaries

Day	outlook	Temp	Humidity	Windy	Play	class label	ranking	probability
5	rainy	68	80	no	YES	NO	2,74	
7	overcast	64	65	yes	YES	YES	2,39	
3	overcast	83	86	no	YES	YES	2,07	
6	rainy	65	70	yes	NO	YES	1,82	
4	rainy	70	96	no	YES	YES	0,95	
1	sunny	85	85	no	NO	NO	-0,08	
8	sunny	72	95	no	NO	NO	-1,20	
2	sunny	80	90	yes	NO	YES	-2,68	

- Classification output: Different classification tasks can require different kinds of output.
 - Probabilities: Instances are assigned class probabilities p(y|x)
 Allows for more refined reasoning about sets of instances

Day	outlook	Temp	Humidity	Windy	Play	class label	ranking	probability
1	sunny	85	85	no	NO	NO	-0,08	0,13
2	sunny	80	90	yes	NO	YES	-2,68	0,05
3	overcast	83	86	no	YES	YES	2,07	0,96
4	rainy	70	96	no	YES	YES	0,95	0,45
5	rainy	68	80	no	YES	NO	2,74	0,87
6	rainy	65	70	yes	NO	YES	1,82	0,77
7	overcast	64	65	yes	YES	YES	2,39	0,68
8	sunny	72	95	no	NO	NO	-1,20	0,16

PM: Modeling approaches: Discriminative classification

Discriminative classification:

- Model the decision boundary directly
- Direct mapping from inputs x to class label y
- No attempt to model probability distributions
- May seek a discriminant function $f(\mathbf{x};\theta)$ that maximizes measure of separation between classes.
- Examples: Perceptrons, nearest neighbor classifiers, support vector machines, decision trees.

PM: Modeling approaches: Probabilistic classification

Probabilistic classification:

- Model the underlying probability distributions
- Posterior class probabilities: p(y|x)
- Class-conditional and class prior: p(x|y) and p(y)
- Maps from inputs x to class label y indirectly through posterior class distribution $p(y|\mathbf{x})$
- Examples: Naive Bayes classifier, logistic regression, probability estimation trees.

Predictive modelling Knowledge representation

- Underlying structure of the model or patterns that we seek from the data
 - Defines space of possible models for algorithm to search over
- Model: high-level global description of dataset
 - "All models are wrong, some models are useful"
 G. Box and N. Draper (1987)
 - Choice of model family determines space of parameters and structure
 - Estimate model parameters and possibly model structure from training data

Model: decision tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: decision tree

Model space: All possible decision trees

- Model: decision tree
- Model space: All possible decision trees
- To learn the model (search the best model over the model space), we need to define the scoring function and the search procedure.

- Model: decision rule
- Model space: all possible rules formed from conjunctions of features

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

- Model: perceptron
- Model space: weights w, for each of j attributes

inputs weights

$$f(x) = \begin{cases} 1 & \sum_{j=1}^{\infty} w_j x_j > 0 \\ 0 & \sum_{j=1}^{\infty} w_j x_j \le 0 \end{cases}$$

- Model: naive bayes
- Model space: parameters in conditional distributions p(xi|y) parameters in prior distribution p(y)

Likelihood
$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$
Posterior Probability

Predictor Prior Probability

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

- Parametric vs. non-parametric models
- Parametric:

Particular functional form is assumed

Number of parameters is fixed in advance

Examples: Naive Bayes, perceptron

- Parametric vs. non-parametric models
- Non-parametric:

Few assumptions are made about the functional form

Model structure is determined from data

Examples: classification tree, nearest neighbor

Predictive modelling Learning

- Learning predictive models:
 - Choose a data representation
 - Select a knowledge representation (a "model")
 - Defines a space of possible models $M=\{M_1, M_2, ..., M_k\}$

- Learning predictive models:
 - Choose a data representation
 - Select a knowledge representation (a "model")
 - Defines a space of possible models M={M₁, M₂, ..., M_k}

- Learning predictive models:
 - Choose a data representation
 - Select a knowledge representation (a "model")
 - Defines a space of possible models M={M₁, M₂, ..., M_k}

- Learning predictive models:
 - Choose a data representation
 - Select a knowledge representation (a "model")
 - Defines a space of possible models **M**={M₁, M₂, ..., M_k}
 - Use search to identify "best" model(s)
 - Search the space of models (i.e., with alternative structures and/or parameters)
 - Evaluate possible models with scoring function to determine the model which best fits the data

- Learning predictive models:
 - Choose a data representation
 - Select a knowledge representation (a "model")
 - Defines a space of possible models M={M₁, M₂, ..., M_k}
 - Use search to identify "best" model(s)
 - Search the space of models (i.e., with alternative structures and/or parameters)
 - Evaluate possible models with scoring function to determine the model which best fits the data

$$score(M_1) = 3.67$$
 $score(M_k) = 2.49$

PM: Learning, scoring function

- Given a model M and dataset D, we would like to "score" model M with respect to D
 - Assess the quality of predictions for a set of instances: Measures
 difference between the prediction M makes for an instance i and
 the true class label value of i
 - Goal is to rank the models in terms of their utility (for capturing D) and choose the "best" model
 - Score function can be used to search over parameters and/or model structure

PM: Learning, scoring function

General scoring function:

PM: Learning, scoring function

Common score functions:

• Zero-one loss:
$$S_{0/1}(M)=\frac{1}{N_{test}}\sum_{i=1}^{N_{test}}I[f(x(i);M),y(i)]$$
 where
$$I(a,b)=\left\{\begin{array}{ll}1&a\neq b\\0&\text{otherwise}\end{array}\right.$$

• Squared loss: $S_{sq}(M) = \frac{1}{N_{test}} \sum_{i=1}^{N_{test}} [f(x(i);M) - y(i)]^2$

PM: Learning, search

- Consider a space of possible models M={M₁, M₂, ..., M_K} with parameters θ
- Search could be over model structures or parameters, example:
 - Parameters: In a linear regression model, find the regression coefficients (β) that minimize squared loss on the training data.
 - Model structure: In a decision trees, find the tree structure that maximizes accuracy on the training data.

PM: Learning, search

• Example: Search for the set of parameters **θ** that maximize the model score.

Predictive modelling Naive Bayes

- Naive bayes learns a conditional probability distribution.
- Given a data point x, the output of the model is the probability of x belonging to a specific class.

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

How likely is to buy a computer
a 23 years old student with a fair
credit and medium income?
 x={<=30,medium,yes,fair}

 Naive bayes uses 3 key aspects: conditional probability, bayesian theorem, and conditional independence.

• Conditional probability
$$P(\mathbf{X}|C) = \frac{P(\mathbf{X},C)}{P(C)}$$
 $P(C|\mathbf{X}) = \frac{P(\mathbf{X},C)}{P(\mathbf{X})}$

• Bayesian theorem:
$$P(C|\mathbf{X}) = \frac{P(\mathbf{X}|C)P(C)}{P(\mathbf{X})}$$

Conditional independence: If X₁, X₂, ..., X_k are independent given C then

$$P(X_1, X_2, \dots, X_k | C) = \prod_{i=1}^k P(X_i | C)$$

Bayesian theorem example

Given that:

meningitis produces torticollis 50% of the times => P(T|M)=0.5The probability of meningitis is 1/50,000 => P(M)=1/50000The probability of torticollis is 1/20 => P(T)=1/20

If a patient has torticollis, what is probability of meningitis?

$$P(M|T) = \frac{P(T|M)P(M)}{P(T)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

- Assume each attribute and class as variables
- Given a dataset with attributes (X₁, X₂,...,X_k)
- The objective is to predict the class C
- Specifically, we want to find the model that maximize $P(C|X_1, X_2,...,X_k)$ given all the points of the dataset (training)
- However, can we estimate $P(C|X_1, X_2,...,X_k)$ from the data?

$$P(C|X_1, X_2, \dots, X_k) = \frac{P(X_1, X_2, \dots, X_k|C)P(C)}{P(X_1, X_2, \dots, X_k)}$$

$$P(C|X_1, X_2, \dots, X_k) = \frac{P(X_1, X_2, \dots, X_k | C)P(C)}{P(X_1, X_2, \dots, X_k)}$$

- Given the data **D**, P(C) is easy to calculate. This distribution is the number of elements of each class over the total number of data points.
- How can we compute $P(X_1, X_2,...,X_k)$? It is **complicate** and **unnecessary**, because $P(X_1, X_2,...,X_k)$ is a normalizing factor to make probabilities sum to 1.
- Example, to compare $P(C=c_1|X_1=x_1,...,X_k=x_k)$ and $P(C=c_2|X_1=x_1,...,X_k=x_k)$

$$\frac{P(x_1, x_2, \dots, x_k | c_1) P(c_1)}{P(x_1, x_2, \dots, x_k)} \frac{P(x_1, x_2, \dots, x_k | c_2) P(c_2)}{P(x_1, x_2, \dots, x_k)}$$

$$P(C|X_1, X_2, \dots, X_k) \propto P(X_1, X_2, \dots, X_k|C)P(C)$$

- How can we compute $P(X_1, X_2,...,X_k|C)$? It is **complicate** and **necessary**.
- Trick: NAIVELY ASSUME conditional independence of X₁, X₂,...,X_k given C (even though this is not necessarily true).

$$P(C|X_1, X_2, \dots, X_k) \propto \prod_{i=1}^k P(X_i|C)P(C)$$

- Now we need to compute each P(X_i|C) from the data.
- A new point is classified as C_i if $P(C_i|\mathbf{X})$ is the maximum among all $P(C_i|\mathbf{X})$

Predictive modeling, naive bayes, learning

$$\begin{split} P(BC|A,I,S,CR) &= \frac{P(A,I,S,CR|BC)P(BC)}{P(A,I,S,CR)} \\ &= \frac{P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC)}{P(A,I,S,CR)} \\ &\propto P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC) \end{split}$$

credit rating buys computer income student age <=30 high fair no no <=30 high excellent no no 31...40 high fair no yes >40 medium no fair yes >40 low yes fair yes >40 excellent low yes no 31...40 low excellent yes yes <=30 medium fair no no <=30 fair low yes yes >40 fair medium yes yes <=30 medium yes excellent yes 31...40 medium excellent no yes 31...40 high yes fair yes medium no excellent no

NBC parameters = CPDs+prior

```
CPDs: P(A BC)
P(I BC)
P(S BC)
P(CR BC)
Prior: P(BC)
```

Predictive modeling, naive bayes, learning

- The **scoring** function is the likelihood function $L(\theta|X)=P(X|\theta)$, where θ are the probability distributions. The **searching procedure** is the maximum likelihood estimation, which analytically estimates the best parameters for θ
- Let **D** a dataset with n points, k attributes, and class labels 1 to m
 Let |C_i| be the number of elements belonging to class i
 Let |X_{jk}| be the number of elements from attribute j with value k

• Prior:
$$P(C=i) = \frac{|C_i|}{n}$$

- Discrete attributes: $P(X_j = k | C = i) = \frac{|X_{jk}|}{|C_i|}$
- Continuous attributes:
 option 1) Discretization of the attributes in the desired number of ranges.
 option 2) Assume a continuous distribution for the data (usually normal).

age	income	student	credit	buys
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

age	income	student	credit	buys	
<=30	high	no	fair	no	1
<=30	high	no	excellent	no	2
3140	high	no	fair	yes	3
>40	medium	no	fair	yes	4
>40	low	yes	fair	yes	5
>40	low	yes	excellent	no	6
3140	low	yes	excellent	yes	7
<=30	medium	no	fair	no	8
<=30	low	yes	fair	yes	9
>40	medium	yes	fair	yes	10
<=30	medium	yes	excellent	yes	11
3140	medium	no	excellent	yes	12
3140	high	yes	fair	yes	13
>40	medium	no	excellent	no	14

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

n=14

P(BC)

age	income	student	credit	buys	
<=30	high	no	fair	no	
<=30	high	no	excellent	no	
3140	high	no	fair	yes	1
>40	medium	no	fair	yes	2
>40	low	yes	fair	yes	3
>40	low	yes	excellent	no	
3140	low	yes	excellent	yes	4
<=30	medium	no	fair	no	
<=30	low	yes	fair	yes	5
>40	medium	yes	fair	yes	6
<=30	medium	yes	excellent	yes	7
3140	medium	no	excellent	yes	8
3140	high	yes	fair	yes	9
>40	medium	no	excellent	no	

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

age	income	student	credit	buys	
<=30	high	no	fair	no	1
<=30	high	no	excellent	no	2
3140	high	no	fair	yes	
>40	medium	no	fair	yes	
>40	low	yes	fair	yes	
>40	low	yes	excellent	no	3
3140	low	yes	excellent	yes	
<=30	medium	no	fair	no	4
<=30	low	yes	fair	yes	
>40	medium	yes	fair	yes	
<=30	medium	yes	excellent	yes	
3140	medium	no	excellent	yes	
3140	high	yes	fair	yes	
>40	medium	no	excellent	no	5

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

ВС	
YES	9/14
NO	5/14

age	income	student	credit	buys
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(A|BC)

ВС	Α	
YES	<=30	2/9
	3140	4/9
	>40	3/9
	<=30	
NO	3140	
	>40	

		I	1	,
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(A BC)				
ВС	A			
	<=30	2/9		
YES	3140	4/9		
	>40	3/9		
NO	<=30	3/5		
	3140	0/5		
	>40	2/5		

P(S BC)					
ВС	S				
VEC	yes	6/9			
YES	no	3/9			
NO	yes	1/5			
	no	4/5			

P(CR BC)				
ВС	CR			
VEC	exc	3/9		
YES	fair	6/9		
NO	exc	4/5		
	fair	2/5		

P(BC	;)	
ВС		
YES	9/14	
NO	5/14	

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

• **PREDICTION**: How likely is to buy a computer a 23 years old student with a fair credit and medium income?

P(BC=yes|A<=30; I=med; S=yes; CR=fair)

$$\propto$$
 P(A<=30|BC=y)P(I=med|BC=y)
P(S=y|BC=y)P(CR=fair|BC=y)P(BC=y)
= 2/9 * 4/9 * 6/9 * 6/9 * 9/14 \approx 0.028

P(A BC)		
ВС	Α	
	<=30	2/9
YES	3140	4/9
	>40	3/9
	<=30	3/5
NO	3140	0/5
	>40	2/5

P	$(I \mid BC)$)
ВС	_	
	high	2/9
YES	med	4/9
	low	3/9
	high	2/5
NO	med	2/5
	low	1/5

P	(S B	C)
ВС	S	
VEC	yes	6/9
YES	no	3/9
NO	yes	1/5
NO	no	4/5

P(CR BC)		
ВС	CR	
YES	exc	3/9
ILS	fair	6/9
NO	exc	4/5
NO	fair	2/5

P(BC	;)	
ВС		
YES	9/14	
NO	5/14	

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

• **PREDICTION**: How likely is to NOT buy a computer a 23 years old student with a fair credit and medium income?

P(BC=no|A<=30; I=med; S=yes; CR=fair)

$$\propto$$
 P(A<=30|BC=n)P(I=med|BC=n)
P(S=y|BC=n)P(CR=fair|BC=n)P(BC=n)
= 3/5 * 2/5 * 1/5 * 2/5 * 5/14 \approx 0.007

P(A BC)		
ВС	A	
	<=30	2/9
YES	3140	4/9
	>40	3/9
	<=30	3/5
NO	3140	0/5
	>40	2/5

P	(S B	C)
ВС	S	
YES	yes	6/9
TE3	no	3/9
NO	yes	1/5
NO	no	4/5

P(CR BC)		
ВС	CR	
YES	exc	3/9
I ES	fair	6/9
NO	exc	4/5
NO	fair	2/5

P(BC	;)	
ВС		
YES	9/14	
NO	5/14	

refund	status	income	affair
yes	single	125K	no
no	married	100K	no
no	single	70K	no
yes	married	120K	no
no	Divorced	95K	yes
no	married	60K	no
yes	Divorced	220K	no
no	single	85K	yes
no	married	75K	no
no	single	90K	yes

- To calculate P(income|affair) we have two options
 - Discretize the income and treated like a discrete parameter
 - Estimate a number of normal distributions equal to the number of classes
- Example: P(income|affair=no), we obtain a normal distribution with mean 110K, and standard deviation 55.

$$P(\text{income} = 120K | \text{affair} = no) = \frac{1}{\sqrt{2\pi}55} \exp\left(-\frac{(120 - 110)^2}{2 * 55^2}\right) \approx 0.0072$$

Predictive modeling, naive bayes, smoothing

- Zero counts are a problem
- If an attribute value does not occur in training example, we assign zero probability to that value
- How does that affect the conditional probability P[f(x) | x] ? It equals 0!!!

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 How likely is to NOT buy a computer a 31 to 40 years old person with a fair credit and medium income?

P(BC=no|A<=31..40; I=med; S=no; CR=fair) = 0.

P(A|BC)

ВС	A	
	<=30	2/9
YES	3140	4/9
	>40	3/9
NO	<=30	3/5
	3140	0/5
	>40	2/5

Predictive modeling, naive bayes, smoothing

Zero counts are a problem

- To avoid the zero probabilities, we smooth the probability estimation by adding values in the numerator and denominator of the estimation.
- Laplace correction: Add 1 numerator and add |C| (the number of classes) to the denominator. $|X_{ik}| + 1$

ninator. $P(X_j = k | C = i) = \frac{|X_{jk}| + 1}{|C_i| + |C|}$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

P(A|BC)

ВС	Α	
YES	<=30	2/9
	3140	4/9
	>40	3/9
NO	<=30	3/5
	3140	0/5
	>40	2/5

P(A|BC)

ВС	A	
YES	<=30	3/12
	3140	5/12
	>40	4/12
NO	<=30	4/8
	3140	1/8
	>40	3/8

Predictive modeling, naive bayes, summary

Strengths:

- Easy to implement and can be learned incrementally
- Often performs well even when assumption is violated
- Can be learned incrementally
- Missing values are ignored in the learning process
- Robust model with respect to outliers and irrelevant data

Weaknesses:

- Class conditional assumption produces skewed probability estimates
- Dependencies among variables cannot be modeled

Predictive modeling, naive bayes, summary

- Task Specification: Predictive Modeling
- Data Representation: Homogeneous IID data
- Knowledge representation: Naive Bayes
 Model space: Parametric model with specific form which vary based on parameter estimates in CPDs
- Learning
 - Search algorithm: Maximum Likelihood Estimation optimization of parameters (convex optimization results in exact solution)
 - Scoring function: Likelihood of data given NBC model form
- Prediction: A proportional probability of the class given the data.