

TOPST VCP-G Hardware User Guide

Rev. 1.1 [G] 2025-01-20

** The information in this document is subject to change without notice and should not be construed as a commitment by Telechips, Inc.

Kindly visit www.telechips.com for more information.

© 2024. Telechips, Inc. All rights reserved.

TABLE OF CONTENTS

Contents

2
3
3
4
4
5
5
7
7
7
8
9
9
9
10
10
10
11
16
17
17
17
4 5
6
7
7
8
9
9
10
10
11
15
3
3
5
6
8
8
11
12
12
12
13
13
13
13
14 14
14

1 Introduction

This document is a hardware user guide for TOPST_VCP based on the TCT7045 application processors. This document describes system installation, debugging, and detailed information on overall design and TOPST_VCP usage.

Table 1.1 describes the features of the TCT7045.

Table 1.1 Features of TCT7045

	Part Na		TCT7045	
Package			Pin to Pin Compatible FBGA-196pin (12BD)	
CPU Frequency			200MHz	
Program Flash		ogram Flash	4 MB	
On-chip		SRAM	512 KB (Including Retention RAM 16 KB)	
Memory		Data Flash	256 KB	
	D	MA Channel	16-channel	
		Ethernet	1 Gbps with AVB	
	CAN/CANFD		3-channel	
	Dedicated LIN/UART		3-channel (Maximum 6-channel)	
	Dedicated I2C		3-channel (Maximum 6-channel)	
	Dedicated GPSB (SPI)		2-channel (Maximum 5-channel)	
	MFIO		3-channel	
Peripheral	(Allocated UART, I2C, GPSB)		J-Criainici	
		Resolution	12-bit SAR type	
	ADC	Channels	12-channel x 2 groups	
	ADC	Input Range	3.3V	
		Sample Rate	Over 1.0 MSPs	
	I2S		1-channel	
	Serial Flash Interface		Quad SPI	
	Power S	ystem	3.3V single	
Temperature		ature	-40 ~ 105°C	

1.1 Terminology

Table 1.2 Terminology

Terminology	Definition
ADC	Analog to Digital Converter
EVB	Evaluation Board
FWDN	Firmware Download
GPIO	General Purpose Input Output
MCU	Micro-Controller Unit
TOPST	Total Open-Platform for System development and Training
VCP	Vehicle Control Processor

2 BLOCK DIAGRAM

2.1 System Block Diagram

Figure 2.1 shows the system block diagram of TOPST VCP-G board.

Figure 2.1 System Block Diagram

3 TOPST VCP-G OVERVIEW

The TOPST VCP-G board can used for the following purposes:

- System development
- Training

Table 3.1 describes the default configuration of the TOPST VCP-G board.

Table 3.1 Default Configuration of TOPST VCP-G Board

Board Name	Description
TOPST_VCP_V2.1.1	TCT7045 MCU board for TOPST

3.1 TOPST VCP-G

Figure 3.1 shows the top view of TOPST VCP-G board.

Figure 3.1 TOPST VCP-G Board (Top View)

Table 3.2 describes connectors of TOPST VCP-G board (top view).

Table 3.2 Description of TOPST VCP-G Board (Top View)

Number	Reference Number	Name	Description	
1	J18D100	36-Pin Header Female	Header for GPIO & ADC	
2	J5D100	10-Pin Header Male	Header for CAN	
3	J3D100	6-Pin Header Male	Header for SPI	
4	J8D104	8-Pin Header Female	Header for GPIO & ADC	
5	J8D102	8-Pin Header Female	Header for GPIO	
6	J10D100	10-Pin Header Female	Header for GPIO & ADC	
7	J100	10-Pin Header Male	Header for JTAG	
8	SW100	Tact Switch	PORN: Initializes the system and the power management of TCT7045	
9	JC100	USB Type-C Connector	UART for debugging or FWDN port	

Number	Reference Number	Name	Description	
10	SW101	Tact Switch	FWDN: Enter the Firmware down mode of TCT7045	
11	J101	DC Jack	DC Jack DC Power Input Jack	
12	J8D100	8-Pin Header Female	Header for Power & Reset	
13	J8D101	8-Pin Header Female	Header for GPIO & ADC	
14	J8D103	8-Pin Header Female	Header for GPIO & ADC	

Figure 3.2 shows the bottom view of the TOPST VCP-G board.

Figure 3.2 TOPST VCP-G Board (Bottom View)

4 SPECIFICATIONS

4.1 Quad SPI Flash Memory (U101)

The information on the Quad SPI flash memory is as follows:

■ Density : 64 Mb

Note: SNOR is not mounted on the TOPST VCP-G board as default.

4.2 Power In Connector (J101)

DC 12V is supplied to the TOPST VCP-G through the DC jack of J101 from a 12V adaptor. Figure 4.1 shows the location of J101.

Figure 4.1 Power In Connector (J101)

4.3 Connector for JTAG (J100)

A JTAG emulator can be connected to the TOPST VCP-G through J100 for debugging. Figure 4.2 shows the location of J100.

Figure 4.2 Connector for JTAG (J100)

Basically, JTAG is disabled. To enable JTAG, you must change the connections of R178 and R179. If TRSRn is set to high by R178, the MCU enters JTAG mode.

Table 4.1 describes the pins of J100.

Table 4.1 J100 Pin Description

Disc Normals and	Schematic Net Name	DIR	Description.
Pin Number		MCU ∢ ▶ J100	Description
1	SW_VDD_3P3	ı	Power 3.3V
2	TMS	•	Test Mode State
3	DGND	ı	Ground
4	TCK	•	Test Clock
5	DGND	ı	Ground
6	TDO	•	Test Data Output
7	NC	-	Not Connected
8	TDI	◀	Test Data In
9	DGND	ı	Ground
10	JTAG_RESETn	◀	System Reset

Table 4.2 describes the setting of JTAG Disable/Enable.

Table 4.2 Setting of JTAG Disable/Enable

Mode	TRSTn Value	R178	R179
JTAG Disable (Default)	Low (1)	N.C	1K
JTAG Enable (Option)	High (1)	1K	N.C

4.4 FWDN Switch (SW101)

The TOPST VCP-G board has one pin for boot configuration using Boot Mode (BM) and supports 2 modes: UART FWDN mode and normal mode.

Figure 4.3 shows the location of FWDN tact switch (SW101) and is used to select the boot modes of the TOPST VCP-G board.

Figure 4.3 FWDN Tact Switch (SW101)

Table 4.3 describes the boot mode selection using the FWDN tact switch (SW101).

Table 4.3 Description of Tact Switch (SW101) for Boot Mode

10000 110 2 0		
Mode	BM00 Value	SW101 Status
Normal (Default)	Low (1)	Default
FWDN (Option)	High (1)	Pushed and Power

4.4.1 FWDN Mode Method

There are two methods to enter FWDN mode.

4.4.1.1 Method 1

While pressing the FWDN switch (SW101), connect the 12V power supply to turn on the TOPST VCP-G board. The FWDN red state light is turned on when power is applied while the FWDN switch is pressed. After releasing FWDN switch (SW101), MCU enters FWDN mode.

Figure 4.4 shows how to enter FWDN mode by using method 1.

Figure 4.4 Entering FWDN Mode by Using Method 1

4.4.1.2 Method 2

While connecting the 12V power supply, press the FWDN switch (SW101) and then press the RESET switch (SW100). The FWDN red state light turns on when the power is applied while the FWDN switch is pressed. The 3.3V green light turns off while the RESET switch is pressed. After releasing the FWDN switch (SW101), MCU enters FWDN mode.

Figure 4.5 shows the FWDN mode by using method 2.

Figure 4.5 Entering FWDN Mode by Using Method 2

4.5 RESET Switch (SW100)

The TOPST VCP-G board has one RESET switch for power of RESET using PORN pin. Figure 4.6 shows the RESET tact switch (SW100).

Figure 4.6 RESET Tact Switch (SW100)

4.5.1 RESET Tact Switch (SW100) Function

SW100 is a tact switch to reset the power block and system block in TCT7045. The function of this button is as follows:

■ Pressing the tack switch (SW100) while the power is on forces the power block to reset and the system of the TCT7045.

Note: Be careful when pressing the tack switch as the power may suddenly turn off and data may be corrupted.

4.6 Connector for Debugging and FWDN (JC100)

The JC100 is a standard USB Type-C connector. On the TOPST VCP-G board, JC100 is used for debugging or FWDN via UART. Figure 4.7 shows the location of JC100.

Figure 4.7 USB Type-C Connector (JC100)

You can perform FWDN or check debugging message of the TCT7045 through JC100. JC100 on the TOPST VCP-G board includes a built-in USB-to-UART bridge controller, so you can directly connect JC100 to PC by using the USB Type-C cable.

4.7 Pin Headers for GPIO, ADC, Power, CAN, SPI

The TOPST VCP-G board have nine 2.54mm pin headers for power, GPIO, ADC, CAN, and SPI to connect others. Table 4.3 describes purpose of nine pin headers on the TOPST VCP-G board.

Table 4 4	l Din	Headers	on TODST	VCP-G Board
Table 4.4	PIII	neauers	UII IUPSI	VCP-G DUALU

Number	Reference Number	Name	Description
1	J18D100	36-Pin Header Female	Header for GPIO & ADC
2	J5D100	10-Pin Header Male	Header for CAN
3	J3D100	6-Pin Header Male	Header for SPI
4	J8D104	8-Pin Header Female	Header for GPIO & ADC
5	J8D102	8-Pin Header Female	Header for GPIO
6	J10D100	10-Pin Header Female	Header for GPIO & ADC
7	J8D100	8-Pin Header Female	Header for Power & Reset
8	J8D101	8-Pin Header Female	Header for GPIO & ADC
9	J8D103	8-Pin Header Female	Header for GPIO & ADC

Figure 4.8 shows the location of pin headers on the TOPST VCP-G board.

Figure 4.8 Pin Headers on TOPST VCP-G Board

Table 4.4 shows the pin description of J10D100.

Table 4.6 J10D100 Pin Description

Di-			J10D100	
Pin Number	Port Name	Signal Name DIR MCU ◀▶ J10D1	DIR	Description
Number	Port Name		MCU ∢ ▶ J10D100	Description
1	SCL	GPIO_AC07	◆▶	GPIO or ADC signal
2	SDA	GPIO_AC06	◆▶	GPIO or ADC signal
3	AREF	ADC06	◀	ADC signal
4	GND	DGND	-	Ground
5	13	GPIO_C12	◆▶	GPIO signal
6	12	GPIO_C15	∢ ▶	GPIO signal
7	11	GPIO_C14	∢ ▶	GPIO signal
8	10	GPIO_C13	∢ ▶	GPIO signal
9	9	GPIO_A12	◆▶	GPIO signal
10	8	GPIO_B00	∢ ▶	GPIO signal

Table 4.5 shows the pin description of J8D100.

Table 4.7 J8D100 Pin Description

Pin	J8D100				
	David Marris	Signal Name	DIR	Description	
Number	Port Name		MCU ∢ ▶ J8D100		
1	-	-	-		
2	IOREF	VCP_3P3	-	Power 3.3V	
3	RST	RESET	◀	Reset signal	
4	3.3V	VCP_3P3	-	Power 3.3V	
5	5V	VCP_5P0	-	Power 5.0V	
6	GND	DGND	-	Ground	
7	GND	DGND	-	Ground	
8	VIN	VIN	-	Voltage input for TOPST VCP-G	

Table 4.6 shows the pin description of J8D101.

Table 4.8 J8D101 Pin Description

Table 410 30D 202 1 III Description					
Pin	J8D101				
Number	Port Name	Signal Name	DIR MCU ∢▶ J8D101	Description	
Number					
1	A0	ADC03	◀	ADC signal	
2	A1	ADC04	◀	ADC signal	
3	A2	GPIO_AC02	∢ ▶	GPIO signal	
4	A3	GPIO_AC03	∢ ▶	GPIO signal	
5	A4	GPIO_AC05	∢ ▶	GPIO signal	
6	A5	GPIO_AC04	∢ ▶	GPIO signal	
7	A6	ADC05	◀	ADC signal	
8	A7	ADC01	-	ADC signal	

Table 4.7 shows the pin description of J8D102.

Table 4.9 J8D102 Pin Description

14410 110 000 110 110 110 110 110 110 11					
D:-	J8D102				
Pin	Port Name	Signal Name	DIR	Description	
Number			MCU ◄► J8D102	Description	
1	7	GPIO_B01	∢ ▶	GPIO signal	
2	6	GPIO_A13	∢ ►	GPIO signal	
3	5	GPIO_B10	◆ ►	GPIO signal	
4	4	GPIO_B27	∢ ▶	GPIO signal	
5	3	GPIO_B11	∢ ▶	GPIO signal	
6	2	GPIO_B28	◆ ►	GPIO signal	
7	1	GPIO_B25	←	GPIO signal	
8	0	GPIO_B26	◆ ►	GPIO signal	

Table 4.8 shows the pin description of J8D103.

Table 4.10 J8D103 Pin Description

D:	J8D103				
Pin Number	David Name	Signal Name	DIR	Description	
Number	Port Name		MCU ∢ ▶ J8D103	Description	
1	A8	GPIO_AC08	∢ ▶	GPIO or ADC signal	
2	A9	GPIO_AC09	∢ ▶	GPIO or ADC signal	
3	A10	GPIO_AC10	∢ ►	GPIO or ADC signal	
4	A11	ADC02	◀	ADC signal	
5	54	GPIO_K14	∢ ▶	GPIO signal	
6	55	GPIO_K15	∢ ►	GPIO signal	
7	56	GPIO_K01	◀	GPIO signal	
8	57	GPIO_K08	∢ ▶	GPIO signal	

Table 4.9 shows the pin description of J8D104.

Table 4.11 J8D104 Pin Description

Dim	J8D104				
Pin Number	Port Name	Signal Name	DIR	Description	
Number			MCU ◄► J8D104	Description	
1	14	GPIO_AC00	∢ ►	GPIO or ADC signal	
2	15	GPIO_AC01	∢ ▶	GPIO or ADC signal	
3	16	GPIO_A06	∢ ▶	GPIO signal	
4	17	GPIO_A07	∢ ▶	GPIO signal	
5	18	GPIO_A28	∢ ▶	GPIO signal	
6	19	GPIO_A29	∢ ▶	GPIO signal	
7	20	GPIO_B03	∢ ▶	GPIO signal	
8	21	GPIO_B02	∢ ▶	GPIO signal	

Table 4.10 shows the pin description of J3D100.

Table 4.12 J3D100 Pin Description

Dim	J3D100				
Pin Number	Port Name	Signal Name	DIR	Description	
Number			MCU ◄► J3D100	Description	
1	MISO	GPIO_B07	*	GPIO signal	
2	5V	VCP_5P0		Power 5.0V	
3	SCK	GPIO_B04	◆ ▶	GPIO signal	
4	MOSI	GPIO_B06	◆ ▶	GPIO signal	
5	CMD	GPIO_B05	◆ ▶	GPIO signal	
6	GND	DGND	-	Ground	

Table 4.12 shows the pin description of J18D100.

Table 4.13 J18D100 Pin Description

_ .	Table 4.13 J18D100 Pin Description J18D100					
Pin Number		6. 11	DIR			
	Port Name	Signal Name	MCU ∢ ▶ J18D100	Description		
1	5V	VCP_5P0	-	Power 5.0V		
2	5V	VCP_5P0	-	Power 5.0V		
3	22	GPIO_B24	∢ ►	GPIO signal		
4	23	GPIO_B23	∢ ▶	GPIO signal		
5	24	GPIO_B22	∢ ►	GPIO signal		
6	25	GPIO_B21	∢ ►	GPIO signal		
7	26	GPIO_B20	∢ ►	GPIO signal		
8	27	GPIO_B19	∢ ►	GPIO signal		
9	28	GPIO_A30	∢ ►	GPIO signal		
10	29	GPIO_A27	∢ ►	GPIO signal		
11	30	GPIO_A26	∢ ►	GPIO signal		
12	31	GPIO_A24	∢ ►	GPIO signal		
13	32	GPIO_A25	∢ ►	GPIO signal		
14	33	GPIO_A23	∢ ►	GPIO signal		
15	34	GPIO_A22	∢ ►	GPIO signal		
16	35	GPIO_A21	∢ ►	GPIO signal		
17	36	GPIO_A20	∢ ►	GPIO signal		
18	37	GPIO_A19	∢ ►	GPIO signal		
19	38	GPIO_K13	∢ ►	GPIO signal		
20	39	GPIO_K12	∢ ►	GPIO signal		
21	40	GPIO_K11	∢ ▶	GPIO signal		
22	41	GPIO_A18	∢ ►	GPIO signal		
23	42	GPIO_A17	∢ ►	GPIO signal		
24	43	GPIO_A16	∢ ►	GPIO signal		
25	44	GPIO_A11	∢ ►	GPIO signal		
26	45	GPIO_A10	∢ ▶	GPIO signal		
27	46	GPIO_A09	∢ ►	GPIO signal		
28	47	GPIO_A08	∢ ▶	GPIO signal		
29	48	GPIO_A05	∢ ►	GPIO signal		
30	49	GPIO_A04	∢ ►	GPIO signal		
31	50	GPIO_A03	∢ ▶	GPIO signal		
32	51	GPIO_A02	∢ ▶	GPIO signal		
33	52	GPIO_A01	∢ ▶	GPIO signal		
34	53	GPIO_A00	∢ ▶	GPIO signal		
35	GND	DGND	-	Ground		
36	GND	DGND	-	Ground		

Table 4.13 shows the pin description of J5D100.

Table 4.14 J5D100 Pin Description

Dim	J5D100				
Pin Number	Port Name	Signal Name	DIR	Description	
Number			MCU ◄► J5D100	Description	
1	3.3V	VCP_3P3	ı	Power 3.3V	
2	3.3V	VCP_3P3	ı	Power 3.3V	
3	TX0	GPIO_K08	*	GPIO signal	
4	RX0	GPIO_K01	•	GPIO signal	
5	TX1	GPIO_K09	*	GPIO signal	
6	RX1	GPIO_K02	•	GPIO signal	
7	TX2	GPIO_K10	◆ ▶	GPIO signal	
8	RX2	GPIO_K03	•	GPIO signal	
9	GND	DGND	•	DGND	
10	GND	DGND	-	DGND	

Figure 4.9 shows the total pin assignment of ten pin headers on the TOPST VCP-G.

Figure 4.9 Total Pin Assignment of Pin Headers on TOPST VCP-G Board

5 REFERENCES

[1] Contact TOPST for more details: topst@topst.ai

Note: Reference documents can be provided whenever available, depending on the terms of a contract. If the reference documents are unavailable, the contents directly related to your development can be guided.

6 REVISION HISTORY

Rev. 1.00: 2025-01-13

■ First version release

DISCLAIMER

This material is being made available solely for your internal use with its products and service offerings of Telechips, Inc ("Telechips"). and/or licensors and shall not be used for any other purposes. This material may not be altered, edited, or modified in any way without Telechips' prior written approval. Unauthorized use or disclosure of this material or the information contained herein is strictly prohibited, and you agree to indemnify Telechips and licensors for any damages or losses suffered by Telechips and/or licensors for any unauthorized uses or disclosures of this material, in whole or part. Further, Telechips, Inc. reserves the right to revise this material and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

THIS MATERIAL IS BEING PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED BY LAW, TELECHIPS AND/OR LICENSORS SPECIFICALLY DISCLAIM ALL WARRANTIES OF TITLE, MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, SATISFACTORY QUALITY, COMPLETENESS OR ACCURACY, AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MOREOVER, NEITHER TELECHIPS, INC. NOR LICENSORS, SHALL BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY EXPENSES, LOSSES, USE, OR ACTIONS HOWSOEVER INCURRED OR UNDERTAKEN BY YOU IN RELIANCE ON THIS MATERIAL.

THIS MATERIAL IS DESIGNED FOR GENERAL PURPOSE, AND ACCORDINGLY YOU ARE RESPONSIBLE FOR ALL OR ANY OF INTELLECTUAL PROPERTY LICENSES REQUIRED FOR ACTUAL APPLICATION. TELECHIPS, INC. DOES NOT PROVIDE ANY INDEMNIFICATION FOR ANY INTELLECTUAL PROPERTIES OWNED BY THIRD PARTY.

COPYRIGHT STATEMENT

Copyright in this material provided by Telechips, Inc. is owned by Telechips unless otherwise noted. For reproduction or use of Telechips' copyright material, prior written consent should be obtained from Telechips. That prior written consent, if given, will be subject to conditions that Telechips' name should be included and interest in the material should be acknowledged when the material is reproduced or quoted, either in whole or in part. You must not copy, adapt, publish, distribute, or commercialize any contents contained in the material in any manner without the written permission of Telechips. Trademarks used in Telechips' copyright material are the property of Telechips.

For customers who use Google technology:

"Copyright © 2013 Google Inc. All rights reserved."