2.2. ПОТРЕБНОСТЬ РЕБЕНКА В ПИЩЕВЫХ И БИОЛОГИЧЕСКИ ЦЕННЫХ ВЕЩЕСТВАХ

Под правильно организованным питанием следует понимать питание, отвечающее возрастным физиологическим особенностям и потребностям детского организма в основных пищевых веществах и энергии.

Интенсивный рост и развитие детей раннего и дошкольного возраста обусловливают их относительно большую, по сравнению со взрослым человеком, потребность во всех пищевых веществах. При этом, чем меньше ребенок, тем выше его потребность в пищевых веществах на 1 кг массы тела: для детей от 1 г. до 2-х лет - 59,5 ккал на 1 кг массы тела; от 2-х до 3-х лет - 56,1 ккал на 1 кг массы тела; от 3-х до 4-х лет - 54,1 ккал на 1 кг массы тела; от 4-х до 5-ти лет - 51,9 ккал на 1 кг массы тела; от 5-ти до 6-ти лет - 49,1 ккал на 1 кг массы тела; от 6-ти до 7-ми лет - 46,4 ккал на 1 кг массы тела.

Для хорошего самочувствия ребенку необходимо ежедневно употреблять такое количество пищи, которое бы в процессе метаболизма давало ему необходимое количество энергии, покрывающее энерготраты на выполняемую двигательную активность в течение дня, основной обмен (энергия, обеспечивающая работу органов и систем организма, находящегося в покое) и специфически динамическое действие пищи (энергия, которую расходует организм на переваривание пищи).

Суммарные энерготраты ребенка (суточная потребность в энергии) в зависимости от возраста ребенка и массы ребенка составляет в среднем для детей 1-2-х лет — 1155 ккал/сутки, от 2-х до 3-х лет — 1200 ккал/сутки; от 3-х до 4-х лет — 1400 ккал/сутки; от 4-х до 5-ти лет — 1700 ккал/сутки; от 5-ти до 6-ти лет — 1800 ккал/сутки; от 6-ти до 7-ми лет — 1900 ккал/сутки (рис.1).

Рисунок 1. — Показатели среднесуточных значений энерготрат детей в возрасте от 1 года до 7-ми лет.

Показателями, характеризующими пищевую ценность продуктов, являются биологическая, энергетическая ценность и биологическая эффективность.

Биологическая ценность пищевых продуктов и готовых блюд характеризуется качеством пищевого белка, отражающего степень соответствия его аминокислотного состава потребностям организма в аминокислотах для синтеза белка.

Энергетическая ценность - количество энергии (ккал, кДж), высвобождаемой в организме из пищевых веществ продуктов для обеспечения его физиологических функций. Так, при сгорании 1 г углеводов выделяется в среднем 4,3 ккал энергии, 1 г жиров - 9,45 ккал, 1 г белков - 5,65 ккал. Поскольку, пищевые вещества усваиваются организмом не в полном объеме, то принято считать с учетом потерь, что 1 г белков пищи дает 4 ккал энергии, 1 г жиров - 9 ккал, а углеводов - 4 ккал. Таким образом, зная химический состав пищи, можно рассчитать, сколько энергии получит ребенок, оценить соответствует ли она суточным энерготратам (рис.1).

Биологическая эффективность показатель качества жировых пищевых продуктов, отражающий содержание полиненасыщенных жирных кислот. Биологическую эффективность жировых коэффициенту компонентов пищи оценивают ПО биологической эффективности. Его расчет основан на определении количества всех жирных кислот, входящих в состав жира. При этом, полученные данные сопоставляют с «идеальным» жиром.

Безопасность пищевых продуктов определяется отсутствием токсического, канцерогенного, мутагенного или иного неблагоприятного действия продуктов на организм ребенка при употреблении их в общепринятых количествах.

Большое значение обеспечении биологической ценности И ПИЩИ принадлежит макромикронутриентам. И макронутриентам относят углеводы, липиды, белки, некоторые минеральные вещества, а к микронутриентам — витамины и ряд минеральных соединений. В состав пищи входят также неалиментарные компоненты, которые не являются источниками энергии для организма и не используются в качестве строительного материала, но выполняют важное значение для процессов пищеварения, обеспечивая в первую очередь моторную функцию кишечника, это так называемые балластные соединения (клетчатка, лигнин, пектиновые вешества).

Из 92 встречающихся в природе химических элементов 81 обнаруживается в организме человека. 12 химических элементов (C, O, H, N, P, Ca, Mg, K, S, F, CI) называют структурными, поскольку они составляют 99% элементного состава человеческого организма и входят в состав клеток и тканей организма, их также называют макроэлементами; потребность в них составляет от 10 мг до нескольких граммов в день. Микроэлементами называют элементы, присутствующие в организме человека в очень малых

следовых количествах, но выполняющих значимые для организма функции, известно 17 эссенциальных, т.е. жизненно необходимых микроэлементов - Fe, J, Cu, Zn, Co, Cr, Mo, Ni, V, Se, Mn, As, F, Si, Li, B, Br. Суточная потребность в них составляет от нескольких микрограммов до мг; они входят в состав ферментов, гормонов, витаминов, входят в состав клеточных структур. Болезни, связанные с нарушением минерального состава, возникают при недостаточном поступлении эссенциальных микроэлементов избыточном поступлении организм токсических В микроэлементов. Микроэлементы влияют на рост и развитие ребенка, на процессы дыхания, кроветворения, иммуногенеза, поведенческие реакции, морфофункциональную деятельность и другие функции всех органов и тканей. Благодаря водно-солевому обмену в организме поддерживаются на относительно стабильном уровне осмотическое давление, осуществляются физиологические функции и биохимические реакции.

Критерием оценки качества пищевой ценности пищевых продуктов является содержание в 100 г съедобной части продукта белков, жиров, углеводов (в г), некоторых витаминов, макро- и микроэлементов (в мг), энергетическая ценность (в ккал или кДж). В связи с чем, именно эта информация наносится на этикетке (маркировочном ярлыке) всех реализуемых в торговой сети продуктов.

Ребенок получает энергию, употребляя пищу, содержащую углеводы, жиры и белки. Потенциальная энергия, заключенная в химических связях этих соединений, высвобождается в результате анаэробного (без участия кислорода) или аэробного (с участием кислорода) обмена.

Белок является пластическим материалом, входит в состав всех органов и тканей, поддерживает нормальное состояние иммунитета, играет исключительно важную роль в функциональных процессах организма. Белки содержатся как в животных, так и растительных продуктах (крупе, муке, хлебе, картофеле). Наиболее полноценны белки животного происхождения, содержащиеся в мясе, рыбе, яйце, твороге, молоке, сыре, так как они содержат жизненно необходимые аминокислоты. Недостаток белка в питании ведет к задержке роста и развития ребенка, снижению сопротивляемости к различным внешним воздействиям.

Жиры также входят в состав органов и тканей человека, они необходимы для покрытия энерготрат, участвуют в теплорегуляции, обеспечивают нормальное состояние иммунитета. Наличие жира в рационе делает пищу вкуснее и дает более длительное чувство насыщения.

Наиболее ценны молочные жиры (масло сливочное, жир молока), которые содержат витамины А и Д. В питании детей должно также содержаться и растительное масло - источник биологически важных ненасыщенных жирных кислот. Жир говяжий, особенно бараний, имеют высокую точку плавления, поэтому трудно перевариваются.

Углеводы - главный источник энергии в организме. Они участвуют в обмене веществ, способствуют правильному использованию белка и жира.

Углеводы содержатся в хлебе, крупах, картофеле, овощах, ягодах, фруктах, сахаре, сладостях. Избыток в питании хлеба, мучных и крупяных изделий, сладостей приводит к повышенному содержанию в рационе углеводов, что нарушает правильное соотношение между белками, жирами и углеводами.

Минеральные вещества принимают участие во всех обменных процессах организма (кровотворении, пищеварении и т.д.). Минеральные соли содержатся во всех продуктах (мясе, рыбе, молоке, яйце, картофеле, овощах и др.). Особенно важно обеспечить растущий организм солями кальция и фосфора, которые входят в состав костной ткани. Соли кальция необходимы для работы сердца и мускулатуры. Некоторые фосфорные соединения входят в состав нервной ткани. Основным полноценным источником кальция является молоко. Много кальция в овощах и корнеплодах, но кальций, содержащийся в растительных продуктах, хуже усваивается. Фосфор широко распространен в природе, содержится в муке, крупах, картофеле, яйце, мясе.

Железо входит в состав гемоглобина, способствует переносу кислорода в ткани, оно содержится в говядине, печени, желтке яйца, зелени (шпинат, салат, петрушка и др.), помидорах, ягодах, яблоках.

Соли натрия и калия служат регуляторами воды в тканях. Калий регулирует выделение ее через почки. Калий содержится в картофеле, капусте, моркови, черносливе и др. продуктах.

Некоторые минеральные вещества необходимы организму в очень малых количествах (кобальт, медь, йод, марганец, фтор), их называют микроэлементами. Они также необходимы для правильной жизнедеятельности организма. Медь, кобальт стимулируют кровотворение. Фтор, марганец входят в состав костной ткани, в частности, зубов. Магний имеет большое значение для мышечной системы, особенно мышцы сердца. Йод регулирует функцию щитовидной железы.

Очень большое значение имеет содержание в питании ребенка необходимого количества витаминов. Они способствуют правильному росту и развитию ребенка, участвуют во всех обменных процессах и должны входить в рацион в определенных количествах.

Витамин А имеет большое значение для растущего организма. Он повышает сопротивляемость организма к инфекционным заболеваниям, необходим для нормальной функции органов зрения, для роста и размножения клеток организма. При его отсутствии замедляется рост, нарушается острота зрения, повышается заболеваемость особенно верхних дыхательных путей, кожа лица и рук теряет эластичность, становится шершавой, легко подвергается воспалительным процессам. Витамин А в чистом виде содержится в сливочном масле, сливках, молоке, икре, рыбьем жире, сельди, яичном желтке, печени. Он может также образовываться в организме из провитамина-каротина, который содержится в растительных продуктах (моркови - красной, томате, шпинате, щавеле, зеленом луке, салате, шиповнике, хурме, абрикосах и др.).

Витамин Д участвует в минеральном обмене, способствует правильному отложению солей кальция и фосфора в костях, тесно связан с иммунореактивным состоянием организма. Содержится в печени рыб и животных, сельди, желтке яйца, сливочном масле, рыбьем жире.

Витамины группы В. Витамин В1 - тиамин принимает участие в белковом и углеводном обмене. При недостатке его в питании наблюдаются нарушения со стороны нервной системы (повышенная возбудимость, раздражительность, быстрая утомляемость). Витамин В1 содержится в хлебе грубого помола (ржаном, пшеничном), горохе, фасоли, овсяной и гречневой крупах, в мясе, яйце, молоке.

Витамин В2 - рибофлавин связан с белковым и жировым обменом, имеет большое значение для нормальной функции нервной системы, желудочно-кишечного тракта. При недостатке его в рационе нарушается всасывание жировых веществ, возникают кожные заболевания, появляются стоматиты, трещины в углах рта, нарушается деятельность центральной нервной системы (быстрая утомляемость). Витамин В2 содержится в молоке, яйце, печени, мясе, овощах.

Витамин РР - никотиновая кислота участвует в обменных процессах. Этот витамин содержится во многих продуктах, поэтому при разнообразном ассортименте продуктов рацион содержит достаточное количество витамина РР. Основным источником данного витамина являются ржаной и пшеничный хлеб, томат, картофель, морковь, капуста. Он содержится в мясе, рыбе, молоке, яйце.

Витамин С - аскорбиновая кислота предохраняет от заболеваний и повышает сопротивляемость детей к инфекционным заболеваниям, участвует во всех обменных процессах. При недостатке витамина С повышается восприимчивость к различным заболеваниям, падает работоспособность. Витамин С широко распространен в природе. Он содержится в зелени, овощах, ягодах, фруктах. Хорошим источником этого витамина является картофель, капуста. Но так как витамин С разрушается кислородом воздуха, особенно при нагревании, легко растворяется в воде, то для сохранения витамина С в пище очень большое значение имеет кулинарная обработка.

Микроэлементы являются катализаторами многих биохимических реакций, проходящих в организме. Они поддерживают гидроэлектролитический баланс организма, нормализуя кислотно-щелочное равновесие в жидкостных средах организма.

Кальций - составляет основу костной ткани. Повышает защитные функции организма, способствует выведению стронция и свинца из костей, обладает антистрессовым, антиаллергическим действием.

Фосфор - основная часть его сосредоточена в костях, зубных тканях, в коже, важен для поддержания рН-баланса. Фосфору принадлежит ведущая роль в деятельности центральной нервной системы.

Магний - «антистрессовый материал», антиоксидантный минерал, входит в состав более чем 200 ферментов, при его участии осуществляется синтез

ДНК, РНК, а это профилактика новообразований; улучшает обмен веществ в сосудистой стенке, нормализует артериальное давление. При достаточном количестве в организме магния хорошо усваивается кальций, фосфор, калий, витамины группы В, С, Е. Магний выполняет важную функцию в профилактике заболеваний почек и сердца.

Калий - «энергетический минерал», стимулирующий передачу нервных импульсов, необходимых для нормального сокращения мышц, в том числе и мышцы сердца, регулирует сердечный ритм, поддерживает нормальную функцию почек и гормональный баланс надпочечников, обмен веществ в коже.

Соединения калия оказывают целебное физиологическое воздействие на все обменные процессы в клетках и тканях, способствуют усилению тканевого дыхания в митохондриях клеток. Калий является основным энергетическим минералом для нормальной работы мышц, в том числе и мышцы сердца.

Натрий - регулирует осмотическое давление в клетке, повышает тонус сосудистой стенки. Выполняет важную роль в процессе детоксикации кожи, очищения пор, усиления дыхательной функции кожи.

Цинк - является основным минералом для создания аминокислот, участвует всех клеток способствует В построении организма, пролонгированному действию инсулина, что снижает повышенный сахар крови. Вместе с хромом повышает эффективность инсулина, способствует отложению гликогена в печени, что важно при сахарном диабете. Усиливает противовоспалительные функции крови, обладает антиаллергическим действием на кожу. Широко применяется в дерматологии и косметике.

Железо - антианемический минерал, входит в молекулу гемоглобина, участвует в оксигенации клеток, усваивается организмом только при наличии витаминов С и Е; достаточное количество в организме придает коже розовый цвет (исчезает бледность кожных покровов).

Марганец - «антиоксидантный минерал», участвует в стимуляции гипофизарно-надпочечниковой системы, в синтезе ферментов, усиливает поглощение глюкозы клеткой, регулирует функции ЦНС, репродуктивных органов. Ионы Мп легко проникают в кровь через кожу, усиливая продукцию естественных гормонов, что способствует омоложению организма, кожи.

Кремний - выполняет важную роль в профилактике развития склеротических процессов и заболеваний опорно-двигательного аппарата, улучшает функцию структурных элементов кожи, волос, ногтей, задерживая процессы увядания кожи.

Медь - повышает умственную активность, мышечный тонус, регулирует пигментный обмен, повышает усвояемость железа за счет улучшения кровообращения в слоях кожи, восстанавливает нормальный цвет кожных покровов.

Селен - снижает риск сосудистых болезней, повышает сопротивляемость к онкологическим заболеваниям, улучшает кровоснабжение кожи.

Йод – входит в состав гормона щитовидной железы тироксина. Обеспечивает устойчивость организма к повреждающим факторам внешней среды, увеличивает способность лейкоцитов разрушать болезнетворные микроорганизмы, определяет во многом умственные способности. Одним из основных источников йода в питании является пищевая йодированная соль. В 2019 г. была внесена поправка в действующие санитарные нормы и правила, обязательность использования образовательных определившая организациях при приготовлении блюд йодированной соли. Для обоснования значимости данных мер в ФБУН «Новосибирский НИИ гигиены» Роспотребнадзора были проведены исследования свойств йодата калия в пищевой йодированной соли, его устойчивости при хранении, в условиях доступа воздуха, кипячении в нейтральной и подкисленной среде в модельных условиях (270 образцов). В ходе исследования было установлено, что содержание йода в пищевой поваренной соли, при хранении в сухих условиях, при термической обработке солевого раствора, подкисленного солевого раствора (рН = 5) не приводит к статистически значимым изменениям концентрации йода. Следовательно, технологические карты, имеющиеся в образовательных организациях для детей, не требуют технологической корректировки в целях сохранения йода в готовых блюдах. Это позволяет сделать вывод об ожидаемом профилактическом эффекте перехода на йодированную соль при приготовлении блюд в детских организованных коллективах.

Бром - ионы брома оказывают антисептическое воздействие на кожу, снимают возбуждение в коре головного мозга, регулируя нервные процессы, отличаются быстрым проникновением в кровь через неповрежденную кожу, особенно из водных растворов.

Фтор - ионы фтора «зубной минерал», но также усиливают плотность всего костного аппарата. Ионы попадают в организм и усиливают всасывание кальция.

Хлориды - выполняют роль регуляторов водно-солевого обмена в клетке, поддерживая нормальное осмотическое давление; необходимы для продукции желудочного сока.

Вода также имеет в структуре питания ребенка большое значение, поскольку, входит в состав всех органов и тканей, составляет главную массу крови, лимфы, пищеварительных соков.

Говоря о здоровом питании, большое внимание должно уделяться сокращению потребления соли, сахара, жиров животного происхождения, в том числе продуктов их содержащих. Нутриенты, оказывающие негативное воздействие на здоровье и требующие регламентации предельных значений получили название критически значимых нутриентов. При этом необходимо четко понимать, какие продуты несут в себе скрытую угрозу — это продукты, характеризующиеся высоким содержанием соли, сахара и насыщенных жиров, включая транс- жиры.

Соль является основным источником натрия, при этом установлена связь между повышенным потреблением натрия и заболеваниями сердечнососудистой системы, болезнями мочевыводящей системы, обмена веществ. Большая роль поступления скрытой соли в организм принадлежит переработанным пищевым продуктам (мясопродукты, сыры, снековая продукция, хлебобулочные изделия). Соль также добавляется в пищу во время приготовления. ВОЗ рекомендует взрослым потреблять менее 5 г. соли в день (чуть меньше одной чайной ложки). Для детей ВОЗ рекомендует корректировать рекомендованное максимальное потребление соли в сторону уменьшения исходя из их потребностей в энергии по сравнению со взрослыми, что соответственно составляет 2,5-5 г/сутки. Для решения задачи по сокращению употребления соли необходимо минимизировать количество потребляемой продукции, содержащей скрытую соль, приготовлении блюд уменьшить количество вносимой в блюда соли, убрать с обеденного стола солонку. Следует отметить, что вкусовые рецепторы человека к пониженному потреблению соли адаптируются постепенно, приоткрывая более широкий диапазон вкусов.

Основными источниками добавленных сахаров являются мучные кондитерские изделия, торты и пирожные, конфеты, сладкие кисломолочные продукты и творожные изделия, сладкие безалкогольные напитки, нектары и сокосодержащие напитки, т.е. все, что очень любят дети. Следует понимать, что в составе печенья может содержаться от 20 до 45 г/100 г сахара, в конфетах 65-75 г/100 г, в пирожных и тортах от 30 до 65 г/100 г. Кисломолочные продукты, такие как сырки творожные глазированные содержат 22- 30 г/100 г сахара, йогурты фруктовые от 6 до $14 \, \Gamma/100 \, \Gamma$, йогурты питьевые $7-15 \, \Gamma/100 \, \Gamma$. Существенный вклад в потребление сахара вносят безалкогольные напитки, которые содержат 5-12 г/100 г сахара, а также соковая продукция и нектары от 10 до 35 г/100 г. Употребление сахара (в чистом виде и в составе продуктов и блюд) в количествах более 40 г/сутки существенно повышает риски формирования кариеса, избыточной массы тела, болезней кровообращения, нарушений восприимчивости к инсулину и лептину, ухудшения памяти. ВОЗ рекомендует ограничить потребление сахара в 20 г/сут. (2 столовые ложки). Для решения глобальной задачи по сокращению количества потребляемого сахара необходима реализация комплекса мер по повышению осведомленности детей и их родителей о влиянии сахара на здоровье, в т.ч. о быстрых и отсроченных эффектах; сокращение количества вносимого сахара при приготовлении блюд, использование некалорийных сахарозаменителей.

Основными источниками жира, насыщенных жирных кислот и трансизомеров жирных кислот являются продукты, произведенные с использованием мясного и молочного сырья, кондитерские изделия, некоторые виды масложировой продукции и соусы. Избыточное потребление жирной пищи также во многом определяет риски формирования повышенной массы тела, заболеваний системы кровообращения (атеросклероза),

обмена, функции Отдельно жирового печени. следует нарушения образующихся при остановиться на трансизомерах жирных кислот, растительных Именно гидрогенезации жидких масел. оказывают существенное влияние на риски развития сердечно-сосудистых заболеваний, транс-изомеры приводят к снижению чувствительности клеток поджелудочной железы к инсулину – развивается диабет 2-го типа, воспалительные процессы, ожирение. Таким образом, необходимо исключить из питания ребенка продукты источники транс-жиров, сократить потребление продуктов с повышенным содержанием насыщенных жиров (жиров животного происхождения).