4. Differential calculus of functions of one real variable

4.3. Power series

Derivatives

Content:

- Linearization
- Notion of a power series
- Convergence of power series
- Radius and interval of convergence
- Operations on power series

 $y = x^2$ and its tangent y = 2x - 1 at (1, 1).

Tangent and curve very close throughout entire *x*-interval shown.

Tangent and curve very close near (1, 1).

Tangent and curve closer still. Computer screen cannot distinguish tangent from

DEFINITIONS If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the **linearization** of f at a. The approximation

$$f(x) \approx L(x)$$

of f by L is the **standard linear approximation** of f at a. The point x = a is the **center** of the approximation.

EXAMPLE

Find the linearization of
$$f(x) = \sqrt{1 + x}$$
 at $x = 0$

Solution Since $f'(x) = \frac{1}{2}(1+x)^{-1/2}$,

we have f(0) = 1 and f'(0) = 1/2, giving the linearization

$$L(x) = f(a) + f'(a)(x - a) = 1 + \frac{1}{2}(x - 0) = 1 + \frac{x}{2}.$$

Approximation	True value	True value - approximation
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	$0.004555 < 10^{-2}$
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	$0.000305 < 10^{-3}$
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	$0.000003 < 10^{-5}$

EXAMPLE Find the linearization of $f(x) = \sqrt{1 + x}$ at x = 3.

Solution We evaluate the equation defining L(x) at a = 3. With

$$f(3) = 2,$$
 $f'(3) = \frac{1}{2}(1+x)^{-1/2}\Big|_{x=3} = \frac{1}{4},$

we have

$$L(x) = 2 + \frac{1}{4}(x - 3) = \frac{5}{4} + \frac{x}{4}.$$

At x = 3.2,

$$\sqrt{1+x} = \sqrt{1+3.2} \approx \frac{5}{4} + \frac{3.2}{4} = 1.250 + 0.800 = 2.050,$$

which differs from the true value $\sqrt{4.2} \approx 2.04939$ by less than one one-thousandth. The linearization in Example 1 gives

$$\sqrt{1+x} = \sqrt{1+3.2} \approx 1 + \frac{3.2}{2} = 1 + 1.6 = 2.6,$$

a result that is off by more than 25%.

EXAMPLE

Find the linearization of $f(x) = \cos x$ at $x = \pi/2$

Solution Since $f(\pi/2) = \cos(\pi/2) = 0$, $f'(x) = -\sin x$, and $f'(\pi/2) = -\sin(\pi/2) = -1$, we find the linearization at $a = \pi/2$ to be

An important linear approximation for roots and powers is

$$(1 + x)^k \approx 1 + kx$$
 (x near 0; any number k)

This approximation, good for values of x sufficiently close to zero, has broad application. For example, when x is small,

$$\sqrt{1+x} \approx 1 + \frac{1}{2}x$$

$$\frac{1}{1-x} = (1-x)^{-1} \approx 1 + (-1)(-x) = 1 + x$$

$$k = -1; \text{ replace } x \text{ by } -x.$$

$$\sqrt[3]{1+5x^4} = (1+5x^4)^{1/3} \approx 1 + \frac{1}{3}(5x^4) = 1 + \frac{5}{3}x^4$$

$$k = 1/3; \text{ replace } x \text{ by } 5x^4.$$

$$\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-1/2} \approx 1 + \left(-\frac{1}{2}\right)(-x^2) = 1 + \frac{1}{2}x^2$$

$$k = -1/2; \text{ replace } x \text{ by } -x^2.$$
(from Thomas' Calculus)

DEFINITIONS A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$
 (2)

in which the **center** a and the **coefficients** $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

EXAMPLE Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$$

This is the geometric series with first term 1 and ratio x. It converges to 1/(1-x) for |x|<1. We express this fact by writing

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots, \quad -1 < x < 1.$$

Two ways of interpreting formula $\frac{1}{1-x} = \sum_{j=1}^{\infty} x^j$, |x| < 1:

- 1) formula for the sum of the series on the right;
- 2) approximation of the function $f(x) = \frac{1}{1-x}$ by polynomials $P_n(x) = \sum_{i=1}^n x^i$.

FIGURE The graphs of f(x) = 1/(1-x) and four of its polynomial approximations.

EXAMPLE The power series
$$1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 + \dots + \left(-\frac{1}{2}\right)^n (x - 2)^n + \dots$$

is a geometric series with first term 1 and ratio $r = -\frac{x-2}{2}$. The series converges

for
$$\left| \frac{x-2}{2} \right| < 1$$
 or $0 < x < 4$. The sum is

$$\frac{1}{1-r} = \frac{1}{1+\frac{x-2}{2}} = \frac{2}{x},$$

so
$$\frac{2}{x} = 1 - \frac{(x-2)}{2} + \frac{(x-2)^2}{4} - \dots + \left(-\frac{1}{2}\right)^n (x-2)^n + \dots$$
, $0 < x < 4$.

Series generates useful polynomial approximations of f(x) = 2/x for values of x near 2:

$$P_0(x) = 1$$

$$P_1(x) = 1 - \frac{1}{2}(x - 2) = 2 - \frac{x}{2}$$

$$P_2(x) = 1 - \frac{1}{2}(x - 2) + \frac{1}{4}(x - 2)^2 = 3 - \frac{3x}{2} + \frac{x^2}{4}$$
, and so on

EXAMPLE For what values of x do the following power series converge?

(a)
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 (c) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

(b)
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$
 (d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \dots$$

d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \cdots$$

Solution Apply the Ratio Test to the series $\sum |u_n|$, where u_n is the *n*th term of the power series in question.

(a)
$$\left|\frac{u_{n+1}}{u_n}\right| = \left|\frac{x^{n+1}}{n+1} \cdot \frac{n}{x}\right| = \frac{n}{n+1} |x| \to |x|.$$

The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the *n*th term does not converge to zero. At x = 1, we get the alternating harmonic series $1 - 1/2 + 1/3 - 1/4 + \cdots$, which converges. At x = -1, we get $-1 - 1/2 - 1/2 + 1/3 - 1/4 + \cdots$ $1/3 - 1/4 - \cdots$, the negative of the harmonic series; it diverges. Series (a) converges for $-1 < x \le 1$ and diverges elsewhere.

EXAMPLE For what values of x do the following power series converge?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 (c) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$
 (d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \dots$$

Solution Apply the Ratio Test to the series $\sum |u_n|$, where u_n is the *n*th term of the power series in question.

(b)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{2n+1}}{2n+1} \cdot \frac{2n-1}{x^{2n-1}} \right| = \frac{2n-1}{2n+1} x^2 \to x^2.$$
 $2(n+1)-1=2n+1$

The series converges absolutely for $x^2 < 1$. It diverges for $x^2 > 1$ because the *n*th term does not converge to zero. At x = 1 the series becomes $1 - 1/3 + 1/5 - 1/7 + \cdots$, which converges by the Alternating Series Theorem. It also converges at x = -1 because it is again an alternating series that satisfies the conditions for convergence. The value at x = -1 is the negative of the value at x = 1. Series (b) converges for $-1 \le x \le 1$ and diverges elsewhere.

EXAMPLE For what values of x do the following power series converge?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 (c) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

(b)
$$\sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$$

(b)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$
 (d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \dots$$

Solution Apply the Ratio Test to the series $\sum |u_n|$, where u_n is the *n*th term of the power series in question.

(c)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0$$
 for every x . $\frac{n!}{(n+1)!} = \frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 2 \cdot 3 \cdots n \cdot (n+1)}$

$$\frac{n!}{(n+1)!} = \frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 2 \cdot 3 \cdots n \cdot (n+1)}$$

The series converges absolutely for all x.

(d)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = (n+1) |x| \to \infty \text{ unless } x = 0.$$

The series diverges for all values of x except x = 0.

Convergence of power series

THEOREM —The Convergence Theorem for Power Series If the power series

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$
 converges at $x = c \neq 0$, then it converges

absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

COROLLARY TO THEOREM The convergence of the series $\sum c_n(x-a)^n$ is described by one of the following three cases:

- 1. There is a positive number R such that the series diverges for x with |x-a| > R but converges absolutely for x with |x-a| < R. The series may or may not converge at either of the endpoints x = a R and x = a + R.
- **2.** The series converges absolutely for every x ($R = \infty$).
- **3.** The series converges at x = a and diverges elsewhere (R = 0).

(from Thomas' Calculus)

Definition

The value R from the above theorem is called the **radius of** convergence of the series $\sum_{n=0}^{\infty} c_n(x-a)^n$, and (a-R,a+R) is its interval of convergence.

Remarks

- The interval of convergence may be open, closed, or half-open, depending on the particular series.
- At points x with |x a| < R, the series converges absolutely.
- If the series converges for all values of x, we say its radius of convergence is infinite. If it converges only at x = a, we say its radius of convergence is zero.

How to Test a Power Series for Convergence

Use the Ratio Test (or Root Test) to find the interval where the series converges absolutely. Ordinarily, this is an open interval

$$|x-a| < R$$
 or $a-R < x < a+R$.

- If the interval of absolute convergence is finite, test for convergence or divergence at each endpoint.
- 3. If the interval of absolute convergence is a R < x < a + R, the series diverges for |x a| > R (it does not even converge conditionally) because the *n*th term does not approach zero for those values of x.

(from Thomas' Calculus)

Let $\sum_{n=0}^{\infty} c_n(x-a)^n$ has the radius of convergence R and

$$\lim_{n\to\infty} \sqrt[n]{|c_n|} = c \text{ or } \lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| = c.$$

- If c = 0 then $R = +\infty$.
- If $c = +\infty$ then R = 0.
- If $c \in (0, \infty)$ then $R = \frac{1}{c}$.

Examples:

1)
$$\sum_{j=1}^{\infty} \frac{(x-1)^j}{j2^j}$$
, $a=1$, $c_j=\frac{1}{j2^j}$.

$$\lim_{n\to\infty} \sqrt[n]{|c_n|} = \lim_{n\to\infty} \frac{1}{2\sqrt[d]{j}} = \frac{1}{2} = c$$
. Therefore, the radius of convergence is

$$R = \frac{1}{c} = 2$$
 and the series converges absolutely for $x \in (-1,3)$, diverges

for
$$x \in (-\infty, -1) \cup (3, +\infty)$$
.

$$x = -1: \sum_{j=1}^{\infty} \frac{(x-1)^j}{j2^j} = \sum_{j=1}^{\infty} \frac{(-2)^j}{j2^j} = \sum_{j=1}^{\infty} \frac{(-1)^j}{j}$$
 – converges conditionally.

$$x = 3 : \sum_{j=1}^{\infty} \frac{(x-1)^j}{j2^j} = \sum_{j=1}^{\infty} \frac{(2)^j}{j2^j} = \sum_{j=1}^{\infty} \frac{1}{j}$$
 - harmonic series, diverges.

Examples:

2)
$$\sum_{j=1}^{\infty} \frac{(j+1)^5 x^{2j}}{2j+1}$$
, $a=0$, $c_j=\frac{(j+1)^5}{2j+1}$.

Denote $y_j = x^2$ and consider the series $\sum_{i=1}^{\infty} \frac{(j+1)^5 y^j}{2i+1}$, a=0.

$$\lim_{n\to\infty} \sqrt[n]{|c_n|} = \lim_{n\to\infty} \sqrt[j]{\frac{(j+1)^5}{2j+1}} = 1.$$

Therefore, the radius of convergence is $R = \frac{1}{2} = 1$ and the series converges absolutely for |y| < 1, diverges for |y| > 1.

Hence, the series converges absolutely for |x| < 1, diverges for |x| > 1.

$$|x| = 1$$
: $\sum_{j=1}^{\infty} \frac{(j+1)^5 x^{2j}}{2j+1} = \sum_{j=1}^{\infty} \frac{(j+1)^5}{2j+1}$ – diverges because $c_n \nrightarrow 0$.

Operations on power series

THEOREM —The Series Multiplication Theorem for Power Series If

$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$
 and $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for $|x| < R$, and

$$c_n = a_0b_n + a_1b_{n-1} + a_2b_{n-2} + \cdots + a_{n-1}b_1 + a_nb_0 = \sum_{k=0}^n a_kb_{n-k},$$

then $\sum_{n=0}^{\infty} c_n x^n$ converges absolutely to A(x)B(x) for |x| < R:

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n.$$

$$\left(\sum_{n=0}^{\infty} x^{n}\right) \cdot \left(\sum_{n=0}^{\infty} (-1)^{n} \frac{x^{n+1}}{n+1}\right)$$

$$= (1 + x + x^{2} + \cdots) \left(x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \cdots\right) \qquad \text{Multiply second series } \cdots$$

$$= \left(x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \cdots\right) + \left(x^{2} - \frac{x^{3}}{2} + \frac{x^{4}}{3} - \cdots\right) + \left(x^{3} - \frac{x^{4}}{2} + \frac{x^{5}}{3} - \cdots\right) + \cdots$$
by 1
by x
by x

Operations on power series

THEOREM If
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges absolutely for $|x| < R$, then $\sum_{n=0}^{\infty} a_n (f(x))^n$ converges absolutely for any continuous function f on $|f(x)| < R$.

Since
$$1/(1-x) = \sum_{n=0}^{\infty} x^n$$
 converges absolutely for $|x| < 1$, it follows from Theorem that $1/(1-4x^2) = \sum_{n=0}^{\infty} (4x^2)^n$ converges absolutely for $|4x^2| < 1$ or $|x| < 1/2$.

Differentiation of power series

THEOREM —The Term-by-Term Differentiation Theorem If $\sum c_n(x-a)^n$ has radius of convergence R>0, it defines a function

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$
 on the interval $a - R < x < a + R$.

This function f has derivatives of all orders inside the interval, and we obtain the derivatives by differentiating the original series term by term:

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x - a)^{n-1},$$

$$f''(x) = \sum_{n=2}^{\infty} n(n - 1)c_n (x - a)^{n-2},$$

and so on. Each of these derived series converges at every point of the interval a - R < x < a + R.

Differentiation of power series

EXAMPLE Find series for f'(x) and f''(x) if

$$f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots$$
$$= \sum_{n=0}^{\infty} x^n, \quad -1 < x < 1.$$

Solution We differentiate the power series on the right term by term:

$$f'(x) = \frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1} + \dots$$

$$= \sum_{n=1}^{\infty} nx^{n-1}, \quad -1 < x < 1;$$

$$f''(x) = \frac{2}{(1-x)^3} = 2 + 6x + 12x^2 + \dots + n(n-1)x^{n-2} + \dots$$

$$= \sum_{n=2}^{\infty} n(n-1)x^{n-2}, \quad -1 < x < 1.$$

Differentiation of power series

Caution Term-by-term differentiation might not work for other kinds of series. For example, the trigonometric series

$$\sum_{n=1}^{\infty} \frac{\sin(n!x)}{n^2}$$

converges for all x. But if we differentiate term by term we get the series

$$\sum_{n=1}^{\infty} \frac{n! \cos(n!x)}{n^2},$$

which diverges for all x. This is not a power series since it is not a sum of positive integer powers of x.