

(a)
$$f(x) = \begin{cases} \frac{g(x)}{x}, x \neq 0 \\ 0, x \neq 0 \end{cases}$$

(b) $f(x) = \begin{cases} \frac{g(x)}{x}, x \neq 0 \end{cases}$

(c) $f(x) = \frac{g(x)}{x}, x \neq 0 \end{cases}$

(d) $f(x) = \frac{g(x)}{x}, x \neq 0 \end{cases}$

(e) $f(x) = \frac{g(x)}{x}, x \neq 0 \end{cases}$

(f) $f(x) = \frac{g(x)}{x}, x \neq 0 \end{cases}$

(g) $f(x) = \frac{g(x)}{x},$

(3)
$$e^{x} + y^{e} = e^{y} + x^{e}$$
 for $e^{x} + y^{e} = e^{y} + x^{e}$ for $e^{y} + y^{e} = e^{y} +$

(a)
$$f(x) = \frac{1}{\sqrt{|x|-x}} + \ln\left(\frac{g-x^2}{x^2+x}\right)$$
 to median times; ?

(a) $(-\infty,0)$ (b) $(0,3)$ (c) $(-3,-1) \cup (0,3)$ (d) $(-3,-1)$

(a) $f(x) = \ln(\ln(\ln x)) + \sqrt{g-x^2} = 1$ to median times; ?

(b) $f(x) = \ln(\ln(\ln x)) + \sqrt{g-x^2} = 1$ to median times; ?

(c) $f(x) = \frac{\pi}{2}$, $f(x) = 1$

(23)
$$g(1) = h'(1) = g'(1) = h(1) = 2$$
 , $f(x) = (g(x^2))^{h(x)} = 1 f'(1) = ?$

(a) $2 \ln 2 + 4$ b) $8 \ln 2 + 16$ c) $2 \ln 2 + 2$ d) 2 e) $2 + \ln 2$

(b) $f(1) = \infty$, $|1| \rightarrow |2|$, $f(x) = \frac{1+x}{\sqrt{1+x^2}} = 1 (f')'(0) = ?$

(a) (2 b) $f(1) = \frac{1}{\sqrt{2}}$ d) -1 e) 0

(5)
$$f(x)=1+x+\ln(1+x^2)$$
, $f(x)=0$ $f(x)=1+x+\ln(1+x^2)$, $f(x)=0$ $f(x)=1+x+\ln(1+x^2)$, $f(x)=0$ $f(x)=1+x+\ln(1+x^2)$, $f(x)=0$

(2)
$$g(1) = t^3 + 7t + 21$$
 ve $g(-2) = -1$ olson, $g'(t)$ fontsing and $g(t) = t^3 + 7t + 21$ ve $g(-2) = -1$ olson, $g'(t)$ fontsing and $g(t) = -1$ deti, teget dogrusu?

a) $y = -2 + \frac{1}{19}(x+1)$ b) $y = -2 - \frac{1}{19}(x+1)$ c) $y = -2 + \frac{1}{19}(x-1)$

d) $y = -2 - \frac{1}{19}(x-1)$ e) $y = -2 + 19(x+1)$

