实验二 模型机中组合部件的实现(一)

一、实验目的

- 1. 了解简易模型机的内部结构和工作原理。
- 2. 熟悉译码器、运算器的工作原理。
- 3. 分析模型机的功能,设计指令译码器。
- 4. 分析模型机的功能,设计 AU 算术单元。

二、实验背景

1. 指令译码器

指令译码器是根据指令系统表中的指令编码,对指令的操作码进行解析,判 定是哪条指令,该指令对应的输出为1,否则输出为0。

汇编符号	功能	机器码	备注
MOVA Rd, Rs	$(Rs) \longrightarrow Rd$	0100 Rd Rs	
MOVB M, Rs	$(Rs) \longrightarrow (R0)$	0101 00 Rs	
MOVC Rd, M	((R0))→ Rd	0110 Rd 00	
MOVD R3, PC	(PC) → R3	0111 11 XX	
ADD Rd, Rs	$(Rd)+(Rs) \longrightarrow Rd$	1000 Rd Rs	
SUB Rd, Rs	(Rd) - $(Rs) \longrightarrow Rd$	1001 Rd Rs	
	IF(Rd>Rs), THEN G=1, ELSE G=0		
JMP	(R3) → PC	1010 XX 11	
JG	IF G=1, THEN (R3) \rightarrow PC	1011 XX 11	
IN Rd	外设输入 → Rd	1100 Rd XX	
OUT Rs	(Rs) → 外设	1101 XX Rs	
MOVI IMM	立即数 IMM → R0	1110 00 XX IMM	双字节
HALT	停机	1111 00 00	

表 1 指令系统表

指令译码器的输入输出引脚如上图所示。en 为使能信号, ir[3..0]是指令的 4 位操作码, 输出是对应的 12 条指令。引脚之间的相互关系如下表所示:

表 2 指令译码器引脚关系

en	ir[30]	12 个输出信号
1	指令操作码(高4位)	操作码对应的指令输出为1,其它输出为0
0	指令操作码(高4位)	不管 ir 为何值, 12 个输出全为 0

2. AU 算术单元

算术逻辑运算类指令:

ADD Rd, Rs

SUB Rd, Rs

这类指令的执行过程为:

控制信号 SR1、SR0 选择源寄存器 Rs 的数据从 S 口输出,控制信号 DR1、DR0 选择目的寄存器 Rd 的数据从 D 口输出;在 AC3~AC0 和 AU_EN 的控制下,在 AU 中进行加法(减法)运算后将相加的和(相减的差)送入总线 BUS; S0 为 1,BUS 上的数据传送至通用寄存器的输入端;在 WE 和 DR1、DR0 的控制下,时钟下降沿将输入端的数据写入目的寄存器 Rd。其中 SUB 指令影响状态位G,如果 Rd>Rs,则 G=1,否则 G=0。

指令具体功能如下:

汇编符号	功能	编码
ADD Rd, Rs	$(Rd)+(Rs) \longrightarrow Rd$	1000 Rd Rs
SUB Rd, Rs	(Rd)-(Rs) → Rd	1001 Rd Rs
	IF(Rd>Rs), THEN G=1, ELSE G=0	

AU 算术单元除了要完成 ADD、SUB 运算外,还需在 MOVA、MOVB 和 OUT 三条指令执行时,提供将数据传送至总线的数据通路。ALU 模块的输入输出引脚如下图所示:

其中au en和ac[3..0]是控制信号,控制a[7..0]和b[7..0]输入的数据进行什么操

作,并将产生的结果输出到t[7..0]和gf。各引脚间的相互关系如下表所示:

ac[3..0] t[7..0] au_en gf 不影响 1 1000 t=a+b1 1001 IF(b>a), THEN G=1, ELSE G=0 t=b-a 0100、0101 不影响 1 t=a 或 1101 其它 不影响 1 t=8'hZZ 不影响

t=8'hZZ

表 3 AU 引脚关系

三、实验内容

0

- 1. 用 VERILOG 语言设计指令译码器:
- 2. 用 VERILOG 语言设计 AU 算术单元。

四、实验要求

1. 完成学习通平台的实验作业。

XXXX

- 2. 采用VERILOG语言设计逻辑电路, 再利用波形编辑区进行仿真验证, 以 此验证电路的正确性。
 - 3. 在Tool下用netlist viewer查看RTL viewer, 了解语句描述对应的RTL视图。
 - 4. 实验结束前,由指导老师检查了仿真波形后方可离开。
- 5. 最后撰写实验报告, 提交至学习通平台, 做得好的同学将在学习通平台 分享设计。

五、思考题

- 1. 指令译码器必须要 12 个输出吗?可否将一些输出合并,哪些可以合并, 为什么?
 - 2. AU 中的 S[3..0]控制信号是来自哪里或者说与什么信息相同?
- 3、为何 AU 算术单元不执行加、减运算和 MOVA、MOVB 和 OUT 指令的 数据传送功能时,输出为高阻态?