

Scale-adaptive Low-resolution Person Re-identification

Experiments and Analysis

Research Background

2012/01=06 09: 49:50

HITH

SARK OF ACTA

1500 Investigators, one month

329 video clips

Research Background

Challenge

Routine

Our Previous Research

Extract feature

Construct discriminative visual descriptions that are robust and stable among different cameras.

- IJCAI 2018: Cascaded SR-GAN for Scale-Adaptive Low Resolution Person Re-identification
- IJCAI 2016: Scale-adaptive Low-resolution Person Reidentification via Learning A Discriminating Surface
- TCYB 2017: Person Reidentification via Discrepancy Matrix and Matrix Metric
- ACM MM 2015 : Multi-Level Fusion for Person Reidentification with Incomplete Marks
- ICMR 2015: Specific Person Retrieval via Incomplete Text Description

Our Previous Research

Measure distance

Utilize abundant training samples to learn a proper distance metric

- ACM MM 2017: Statistical Inference of Gaussian-Laplace Distribution for Person Verification
- **TMM 2016:** Zero-Shot Person Re-identification via Cross-View Consistency
- ► ICASSP 2017:TAICHI Distance for Person Reidentification
- TCSVT 2017: DeepList: Learning Deep Features with Adaptive Listwise Constraint for Person Re-identification

Our Previous Research

Re-rank the initial results automatically or with human feedback

Region-based Interactive Re-ranking

- PCM 2014: Region-based Interactive Ranking Optimization For Person Re-identification (Best paper award)
- ACM MM 2015: Ranking Optimization for Person Re-identification via Similarity and Dissimilarity
- TMM 2016: Person Re-identification via Ranking Aggregation of Similarity Pulling and Dissimilarity Pushing

State-of-the-art

大学共同利用機関法人 情報・システム研究機構 国立情報学研究所 National Institute of Informatics

https://wangzwhu.github.io/home/re id resources.html

Re-id Resources

Re-id surveys

Person Re-identification Book, by Shaogang Gong
Person Re-identification: Past, Present and Future, by Liang Zheng
A Comprehensive Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets, by Srikrishna Karanam
People Reidentification in Surveillance and Forensics: A survey, by Roberto Vezzani

Researchers

Affiliation	Person	Works
Queen Mary, University of London	Shaogang Gong	Attribute, Human-In-The-Loop, L1 Graph, Null Space, Unsupervised Transfer, Video Ranking,
		SVM
Sun Yat-sen University	Weishi Zheng	PRDC, Open-world RE-ID, Partial RE-ID, Low resolution RE-ID, Depth RE-ID, Cross-Scenario RE-ID,
		<u>Top-push</u>
Singapore University of Technology and Design	<u>Liang Zheng</u>	Market-1501, MARS, Query-Adaptive, K-reciprocal encoding, PRW, CamStyle, SPGAN, GAN,
		SVDNet
Graz University of Technology	Horst Bischof	KISSME, PRID 2011, PRID 450S, Relaxed Pairwise Metric
University of Udine	Niki Martinel	DCIA, Feature Warps, KEPLER
Institute of Automation, Chinese Academy of	Shengcai Liao	LOMO+XQDA, MLAPG
Sciences		
Amazon, Germany	Loris Bazzani	SDALF, CAVIAR4REID, PTZ, RGB-D, HPE
Chinese University of Hong Kong	Rui Zhao	SDC, DeepReid, Mid-level Filters, Salience Matching, Transferred Metric
Chinese University of Hong Kong	Chen Change Loy	Feature Importance, Manifold Ranking, POP, PETA, Color Naming
Chinese University of Hong Kong	Ying-Cong Chen	CRAFT, Mirror, CVDCA
Kyushu University	<u>Tetsu Matsukawa</u>	GOG, FTCNN, DALF
Hong Kong Baptist University	Andy Jinhua Ma	Domain Adaptation, QARR
Sun Yat-sen University	<u>Liang Lin</u>	JLSCR, Graph Matching, Deep Feature+RDC, End-to-End, DARI
Huazhong University of Science and Technology	<u>Le An</u>	Reference Descriptor, Common Space, Multi-hypergraph Fusion
Huazhong University of Science and Technology	<u>Xiang Bai</u>	Smoothed Manifold
Technion, Israel	<u>Igor Kviatkovsky</u>	Color Invariants
University of Maryland	<u>Ejaz Ahmed</u>	Improved Deep
Karlsruhe Institute of Technology	Martin Bauml	CAVIAR, Probabilistic, Semi-supervised
Institute of Automation, Chinese Academy of	Yang Yang	Deep Metric, MED_VL, Multi-Level Descriptors, LSSL, SCNCD
Sciences		
University of East Anglia	<u>Ling Shao</u>	Dense Invariant, Fast
Rensselaer Polytechnic Institute	<u>Ziyan Wu</u>	Real World, Pose Priors
Wuhan University	Xiaoyuan Jing	Intra-Inter-Video-Metric, Super-resolution
Northeastern University	Fei Xiong	Kernel-based Metric
University of Florence	<u>Giusppe Lisanti</u>	ISR, MCK-CCA
Disney Research Pittsburgh	Slawomir Bak	One-Shot Metric, COSMATI
Xi'an Jiaotong University	<u>DaPeng Chen</u>	SLSC, EPKFM, Exampled-guided
Hong Kong Baptist University	Mang Ye	DGM, HCML, BDTR
Peking University	Shiliang Zhang	MSMT17, MTL-LORAE, PDC, DeepAttribute

Re-id Framework

- 1. Deep-person-reid implemented with PyTorch by Kaiyang Zhou.
- 2. Open-ReID implemented by Tong Xiao.
- Person-reid-benchmark, implemented by <u>Srikrishna Karanam</u>.

AlignedReID: Surpassing Human-level Performance in Person Re-identification

Figure 6. Interface of our human performance evaluation system for CUHK03. The left side shows a query image and the right side shows 10 images sampled using our deep model.

Table 7. Results of human performance evaluation. We show the accuracies of the five annotators who did best in the evaluation. We also show our AlignedReID results with re-ranking.

	Market1501	CUHK03
Annotator Rank 1	93.5	95.7
Annotator Rank 2	91.1	91.9
Annotator Rank 3	90.6	91.2
Annotator Rank 4	90.0	91.1
Annotator Rank 5	88.3	90.0
AlignedReID (RK)	94.0	96.1

Research Background

Motivation and Method

Experiments and Analysis

Low resolution Person Re-identification

[1] Xiao-Yuan Jing et al. Super-resolution person reidentification with semi-coupled low-rank discriminant dictionary learning. In CVPR, 2015.

[2] Xiang Li et al. Multi-scale learning for low-resolution person re-identification. In ICCV, 2015.

Based on the relatively ideal assumption that scales of LR are the same, the above two approaches show their effectiveness, through introducing relationship between HR and LR into traditional re-identification models.

[2]

Scale-adaptive Low-resolution

Scale-adaptive Low-resolution Person Re-identification

not only LR, but also holding different scales

Given a LR probe image, the algorithm is expected to match against normal or even HR gallery images.

- In CVPR2015, the probe images are uniformly 1/8 down-sampled from the original HR images.
- In ICCV2015, the resized scale is 1/4 of the original HR scale in common.

If there were 100 different scales in the dataset, the methods need to construct 100 different relationships, and it cannot be guaranteed that the 100 relationships work perfectly matching.

The practical task is that given a HR probe image, the algorithm is expected to match against LR gallery images with different scales.

$$d' = exp(d * k)$$

scale-distance function

feasible and infeasible scale-distance functions, respectively for same persons and different persons, can be **discriminative** and used for re-identification.

learn a discriminating surface separating these two sets of functions in SDFS, and then classify a test function as feasible or infeasible.

$$\mathbf{x}_{j}^{1}, \mathbf{x}_{j}^{0.99}, \mathbf{x}_{j}^{0.98}, ..., \mathbf{x}_{j}^{0.06}, \mathbf{x}_{j}^{0.05}$$

$$d_{i,j}(\mathbf{x}_{i}^{1}, \mathbf{x}_{j}^{k}), k \in [0.05, 1]$$

$$d'_{i,j}(\mathbf{x}_{i}^{1}, \mathbf{x}_{j}^{k}) = \exp(d_{i,j}(\mathbf{x}_{i}^{1}, \mathbf{x}_{j}^{k}) * k)$$

$$d'_{i,i}(k) = f(k, \mathbf{w}), k \in [0.05, 1]$$

$$\mathbf{w}_{i,j} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{K} \sum_{k \in [0.05, 1]} |d'_{i,j}(k) - f(k, \mathbf{w})|^2 + \lambda \sum_{n=0}^{N-1} |w_n|$$

Super Resolution GAN

Pixel-wise MSE loss Feature map VGG loss

not for re-identification

To promote the ability of discriminative person representation extracting, it requires plugging in the re-identification network, so that identity appearance information can be supplemented during SR.

fixed

To promote the ability of scalable upscaling, it requires combining multiple SR-GANs, so that scalable LR images can be enlarged to a uniform HR.

Method 2 – CSR-GAN

$$l_{Adv}^{SR_k} = -\log D_{\theta_{D_k}}(G_{\theta_{G_k}}(I^k))$$

$$l_{Gen}^{SR} = \sum_{k=0}^{2} l_{MSE}^{SR_k} + \alpha \sum_{k=0}^{2} l_{VGG}^{SR_k} + \beta \sum_{k=0}^{2} l_{Adv}^{SR_k}$$

$$l_{total} = l_{Gen}^{SR} + l_{Dis}^{SR} + l_{Com} + l_{Uni}$$

Experiments and Analysis

The traditional feature distance model will gradually lose its effectiveness, as the resolution of images transforms from HR to LR with the same scale, then to LR with different scales.

(a) SALR-VIPeR

(b) SALR-PRID

(c) CAVIAR

Evaluation on Scale-Adaptive SR

Table 1: The MOS test results on the testing images of three different datasets. We compared the proposed CSR-GAN method with the nearest and the bicubic methods.

Dataset	r	nearest	bicubic	CSR-GAN
SALR-VIPeR	$[0, \frac{1}{8}]$	1.05	1.12	1.98
	$(\frac{1}{8}, \frac{1}{4}]$	2.14	2.25	3.78
SALR-PRID	$(0, \frac{1}{8}]$	1.05	1.20	2.05
	$(\frac{1}{8}, \frac{1}{4}]$	2.30	2.55	3.83
CAVIAR	$\left(\frac{1}{4}, \ \frac{1}{2}\right]$	3.10	3.25	4.20

Comparison with State-of-the-art LR Methods

Table 2: Comparing with state-of-the-art LR person re-identification methods on MLR-VIPER. The $1^{st}/2^{nd}$ best results are indicated in red/blue.

	rank@1	rank@5	rank@10	rank@20
JUDEA	26.0	55.1	69.2	82.3
SLD^2L	20.3	44.0	62.0	78.2
SDF	9.52	38.1	52.4	68.0
SING	33.5	57.0	66.5	76.6
CSR-GAN	37.2	62.3	71.6	83.7

Raise a new issue

Propose two method

Thank You!