

# SIM900D\_Hardware Design\_V1.04





| <b>Document Title:</b>      | SIM900D Hardware Design       |
|-----------------------------|-------------------------------|
| Version:                    | 1.04                          |
| Date:                       | 2010-10-09                    |
| Status:                     | Released                      |
| <b>Document Control ID:</b> | SIM900D_Hardware Design_V1.04 |

#### **General Notes**

SIMCom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by SIMCom. The information provided is based upon requirements specifically provided to SIMCom by the customers. SIMCom has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by SIMCom within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

#### Copyright

This document contains proprietary technical information which is the property of SIMCom Limited, copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of a patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time.

Copyright © Shanghai SIMCom Wireless Solutions Ltd. 2010



# **Contents**

| Contents                                              | 3           |
|-------------------------------------------------------|-------------|
| Version history                                       | 7           |
| 1 Introduction                                        | 8           |
| 1.1 Related Documents                                 | 8           |
| 1.2 Terms and Abbreviations                           | 8           |
| 1.3 Safety Precautions                                | <u>,</u> 11 |
| 2 SIM900D Overview                                    |             |
| 2.1 SIM900D Key Features                              | 13          |
| 2.2 SIM900D Functional Diagram                        | 15          |
| 2.3 SIM900D Evaluation Board                          | 16          |
| 3 Application Interface                               | 18          |
| 3.1 SIM900D Pin Description                           | 18          |
| 3.2 Operating Modes                                   | 21          |
| 3.3 Power Supply                                      | 22          |
| 3.3.1 Power Supply Pins.                              | 23          |
| 3.3.2 Minimizing Power Losses                         |             |
| 3.3.3 Monitoring Power Supply                         | 24          |
| 3.4 Power Up and Power Down Scenarios                 |             |
| 3.4.1 Turn on SIM900D                                 | 24          |
| 3.4.2 Turn Off SIM900D                                | 26          |
| 3.4.3 Restart SIM900D Using the PWRKEY Pin            |             |
| 3.5 Charging interface                                | 28          |
| 3.5.1 Battery pack characteristics                    |             |
| 3.5.2 Recommended battery pack                        | 29          |
| 3.5.3 Implemented charging technique                  | 30          |
| 3.5.4 Operating modes during charging                 | 31          |
| 3.5.5 Charger requirements                            | 32          |
| 3.6 Summary of State Transitions (except SLEEP mode)  | 32          |
| 3.7 Power Saving                                      | 33          |
| 3.7.1 Minimum Functionality Mode                      | 33          |
| 3.7.2 Sleep Mode I (CSCLK=1)                          | 33          |
| 3.7.3 Wake Up SIM900D from SLEEP Mode (CSCLK=1)       | 34          |
| 3.7.4 Sleep Mode II (CSCLK=2)                         | 34          |
| 3.7.5 Wake Up SIM900D from SLEEP Mode (CSCLK=2)       | 34          |
| 3.8 RTC Backup                                        | 34          |
| 3.9 Serial Interfaces                                 | 36          |
| 3.9.1 Function of serial port & debug port supporting | 37          |
| 3.9.2 Software Upgrade and Software Debug             | 38          |
| 3.10 Audio Interfaces                                 | 40          |



| 3.10.1 Speaker Interface Configuration               | 41 |
|------------------------------------------------------|----|
| 3.10.2 Microphone Interfaces Configuration           | 42 |
| 3.10.3 Earphone Interface Configuration              | 42 |
| 3.10.4 Referenced Electronic Characteristics         | 43 |
| 3.11 SIM Card Interface                              | 44 |
| 3.11.1 SIM Card Application                          | 44 |
| 3.11.2 Design Considerations for SIM Card Holder     | 45 |
| 3.12 LCD Display Interface                           | 48 |
| 3.13 ADC                                             |    |
| 3.14 Behaviors of the RI                             | 49 |
| 3.15 Network Status Indication                       | 50 |
| 3.16 General Purpose Input Output (GPIO)             | 51 |
| 3.17 PWM                                             | 51 |
| 4 Antenna Interface                                  | 53 |
| 4.1 Module RF Output Power                           |    |
| 4.2 Module RF Receive Sensitivity                    | 53 |
| 4.3 Module Operating Frequencies                     |    |
| 5 Electrical, Reliability and Radio Characteristics. |    |
| 5.1 Absolute Maximum Ratings                         | 54 |
| 5.2 Operating Temperatures                           | 54 |
| 5.3 Power Supply Ratings                             | 54 |
| 5.4 Current Consumption                              | 56 |
| 5.5 Electro-Static Discharge                         | 56 |
| 6 Mechanics                                          |    |
| 6.1 Mechanical Dimensions of SIM900D                 | 58 |
| 6.2 Top and Bottom View of the SIM900D               | 60 |
| 6.3 PIN Assignment of SIM900D                        | 60 |
| 6.4 The Ramp-Soak-Spike Reflow Profile of SIM900D.   | 62 |
| 6.4 The Ramp-Soak-Spike Reflow Profile of SIM900D    |    |



# **Table Index**

| TABLE1: RELATED DOCUMENTS                                                       | 8  |
|---------------------------------------------------------------------------------|----|
| TABLE2: TERMS AND ABBREVIATIONS                                                 | 8  |
| TABLE3: SIM900D KEY FEATURES                                                    | 13 |
| TABLE4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTERFACE            | 15 |
| TABLE5: PIN DESCRIPTION                                                         | 18 |
| TABLE6: OVERVIEW OF OPERATING MODES                                             | 21 |
| TABLE7: SPECIFICATION OF RECOMMENDED BATTERY PACK                               | 30 |
| TABLE8: CHARGE OPERATING MODES                                                  | 31 |
| TABLE9: AT COMMAND USUALLY USED IN CHARGE-ONLY MODE                             |    |
| TABLE10: THE CURRENT CONSUMPTION OF DIFFERENT CONFIGURATION OF AT+CFUN          | 33 |
| TABLE11: PIN DEFINITION OF THE SERIAL INTERFACES                                | 36 |
| TABLE12: LOGIC LEVELS OF THE SERIAL PORT AND DEBUG PORT                         | 37 |
| TABLE13: PIN DEFINITION OF THE AUDIO INTERFACES                                 | 40 |
| TABLE14: MIC INPUT CHARACTERISTICS                                              | 43 |
| TABLE15: AUDIO OUTPUT CHARACTERISTICS                                           | 43 |
| TABLE16: PIN DEFINITION OF THE SIM INTERFACE                                    | 44 |
| TABLE17: PIN DESCRIPTION (AMPHENOL SIM CARD HOLDER)                             | 46 |
| TABLE18: PIN DESCRIPTION (MOLEX SIM CARD HOLDER)                                | 47 |
| TABLE19: PIN DEFINITION OF THE LCD INTERFACE                                    |    |
| TABLE20: ADC SPECIFICATION                                                      |    |
| TABLE21: BEHAVIOURS OF THE RI                                                   | 49 |
| TABLE22: WORKING STATE OF THE NETLIGHT                                          | 50 |
| TABLE23: PIN DEFINITION OF THE GPIO INTERFACE                                   | 51 |
| TABLE24: PIN DEFINITION OF THE PWM                                              | 52 |
| TABLE25: SIM900D CONDUCTED RF OUTPUT POWER                                      | 53 |
| TABLE26: SIM900D CONDUCTED RF RECEIVE SENSITIVITY                               | 53 |
| TABLE27: SIM900D OPERATING FREQUENCIES                                          | 53 |
| TABLE28: ABSOLUTE MAXIMUM RATINGS                                               | 54 |
| TABLE29: SIM900D OPERATING TEMPERATURE                                          | 54 |
| TABLE30: SIM900D POWER SUPPLY RATINGS                                           | 55 |
| TABLE31: SIM900D CURRENT CONSUMPTION (VBAT=3.8V)                                | 56 |
| TABLE32: THE ESD ENDURE STATUE MEASURED TABLE (TEMPERATURE: 25°C, HUMIDITY:45%) | 57 |
| TABLE33: PIN ASSIGNMENT                                                         | 61 |
|                                                                                 |    |



# **Figure Index**

| FIGURE1: SIM900D FUNCTIONAL DIAGRAM                         | 16 |
|-------------------------------------------------------------|----|
| FIGURE2: TOP VIEW OF SIM900D EVB                            | 17 |
| FIGURE3: REFERENCE CIRCUIT OF THE VBAT INPUT                | 22 |
| FIGURE4: REFERENCE CIRCUIT OF THE SOURCE POWER SUPPLY INPUT | 23 |
| FIGURE5: VBAT VOLTAGE DROP DURING TRANSMIT BURST            | 23 |
| FIGURE6: THE MINIMAL VBAT VOLTAGE AT VBAT DROP              |    |
| FIGURE7: TURN ON SIM900D USING DRIVING CIRCUIT              | 25 |
| FIGURE8: TURN ON SIM900D USING BUTTON                       | 25 |
| FIGURE9: TIMING OF TURN ON SYSTEM USING PWRKEY              | 25 |
| FIGURE10: TIMING OF TURN OFF SYSTEM USING PWRKEY            | 27 |
| FIGURE11: TIMING OF RESTART SIM900D                         | 28 |
| FIGURE12: SIM900D WITH BATTERY CHARGER AND PACK CONNECTION  | 29 |
| FIGURE13: CHARGE STATE TRANSITION                           |    |
| FIGURE14: RTC SUPPLY FROM NON-CHARGEABLE BATTERY            |    |
| FIGURE15: RTC SUPPLY FROM RECHARGEABLE BATTERY              | 35 |
| FIGURE16: RTC SUPPLY FROM CAPACITOR                         |    |
| FIGURE17: SEIKO XH414H-IV01E CHARGE CHARACTERISTICS         | 36 |
| FIGURE18: CONNECTION OF THE SERIAL INTERFACES               | 37 |
| FIGURE19: CONNECTION OF SOFTWARE UPGRADE AND SOFTWARE DEBUG | 39 |
| FIGURE20: RS232 LEVEL CONVERTER CIRCUIT                     | 39 |
| FIGURE21: SPEAKER INTERFACE CONFIGURATION                   | 41 |
| FIGURE22: SPEAKER INTERFACE WITH AMPLIFIER CONFIGURATION    | 41 |
| FIGURE23: MICROPHONE INTERFACE CONFIGURATION                |    |
| FIGURE24: EARPHONE INTERFACE CONFIGURATION.                 | 42 |
| FIGURE25: REFERENCE CIRCUIT OF THE 8-PIN SIM CARD HOLDER    | 45 |
| FIGURE26: REFERENCE CIRCUIT OF THE 6-PIN SIM CARD HOLDER    | 45 |
| FIGURE27: AMPHENOL C707 10M006 512 2 SIM CARD HOLDER        | 46 |
| FIGURE28: MOLEX 91228 SIM CARD HOLDER                       | 47 |
| FIGURE29: RI BEHAVIOUR OF VOICE CALLING AS A RECEIVER       | 49 |
| FIGURE30: RI BEHAVIOUR OF DATA CALLING AS A RECEIVER        | 49 |
| FIGURE31: RI BEHAVIOUR OF URC OR RECEIVE SMS                | 50 |
| FIGURE32: RI BEHAVIOUR AS A CALLER                          | 50 |
| FIGURE33: REFERENCE CIRCUIT OF NETLIGHT                     | 51 |
| FIGURE34: SIM900D TOP MECHANICAL DIMENSIONS.                | 58 |
| FIGURE35: SIM900D BOTTOM MECHANICAL DIMENSIONS              | 58 |
| FIGURE36: SIM900D SIDE MECHANICAL DIMENSIONS                | 59 |
| FIGURE37: RECOMMENDED PCB DECAL (UNIT: MM)                  | 59 |
| FIGURE38: TOP AND BOTTOM VIEW OF THE SIM900D                |    |
| FIGURE39: SIM900D PIN OUT DIAGRAM (TOP VIEW)                | 60 |
| FIGURE40: THE RAMP-SOAK-SPIKE REFLOW PROFILE OF SIM900D.    | 62 |



# **Version history**

| Date       | Version | <b>Description of change</b>                                                                     | Author        |
|------------|---------|--------------------------------------------------------------------------------------------------|---------------|
| 2010-03-31 | 1.01    | Origin                                                                                           | Jing.zhou     |
| 2010-04-09 | 1.02    | Changed GHOST mode to Charge-only mode                                                           |               |
|            |         | §3.4.1.1Update the Figure8: Timing of turn on system using PWRKEY                                |               |
|            |         | §3.4.2.1Update the Figure9: Timing of turn off system using PWRKEY                               | Jing.zhou     |
|            |         | §4.2Update the Table25: SIM900D conducted RF receive sensitivity                                 |               |
| 2010-06-24 | 1.03    | §3.8, Modify the VRTC pin connection when backup is not needed.                                  |               |
|            |         | $\$2.1,\ \$3.3.\ \$3.4$ Modify the power supply range from $3.4V{\sim}4.5V$ to $3.1V{\sim}4.8V.$ | Jing.zhou     |
|            |         | §3.4.1.1Update the Figure8: Timing of turn on system using PWRKEY                                |               |
| 2010-10-09 | 1.04    | Modify the power supply range to 3.2V~4.8V.                                                      |               |
|            |         | §3.3.2 Add Figure6: The minimal VBAT voltage at VBAT drop                                        |               |
|            |         | §3.4 Modified figure7,figure8,figure11.                                                          | Jing.zhou     |
|            |         | §3.6 Add 3.6.4 and 3.6.5 description.                                                            | v.ii.g.z.iiou |
|            |         | §3.11.1 Update the Figure25                                                                      |               |
|            |         | §3.7 Update the Figure 13                                                                        |               |



#### 1 Introduction

This document describes the hardware interface of the SIMCom SIM900D module that connects to the specific application and the air interface. As SIM900D can be integrated into a wide range of applications, all functional components of SIM900D are described in great detail.

This document can help usres quickly understand SIM900D interface specifications, electrical and mechanical details. With the help of this document and other SIM900D application notes, user guide, users can use SIM900D module to design and set-up mobile applications quickly.

#### **1.1 Related Documents**

**Table1: Related documents** 

| SN   | Document name                           | Remark                                                                                                                                                                                                     |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1]  | SIM900_ATC                              | SIM900_ATC                                                                                                                                                                                                 |
| [2]  | ITU-T Draft new recommendation V.25ter: | Serial asynchronous automatic dialing and control                                                                                                                                                          |
| [3]  | GSM 07.07:                              | Digital cellular telecommunications (Phase 2+); AT command set for GSM Mobile Equipment (ME)                                                                                                               |
| [4]  | GSM 07.10:                              | Support GSM 07.10 multiplexing protocol                                                                                                                                                                    |
| [5]  | GSM 07.05:                              | Digital cellular telecommunications (Phase 2+); Use of Data Terminal Equipment – Data Circuit terminating Equipment (DTE – DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS) |
| [6]  | GSM 11.14:                              | Digital cellular telecommunications system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface                             |
| [7]  | GSM 11.11:                              | Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module – Mobile Equipment (SIM – ME) interface                                                             |
| [8]  | GSM 03.38:                              | Digital cellular telecommunications system (Phase 2+); Alphabets and language-specific information                                                                                                         |
| [9]  | GSM 11.10                               | Digital cellular telecommunications system (Phase 2); Mobile Station (MS) conformance specification; Part 1: Conformance specification                                                                     |
| [10] | AN_Serial Port                          | AN_Serial Port                                                                                                                                                                                             |

8

#### 1.2 Terms and Abbreviations



| ADC Analog-to-Digital Converter  AMR Adaptive Multi-Rate ARP Antenna Reference Point ASIC Application Specific Integrated Circuit BER Bit Error Rate BTS Base Transceiver Station CIIAP Challenge Handshake Authentication Protocol CS Coding Scheme CSD Circuit Switched Data CTS Clear to Send DAC Digital-to-Analog Converter DRX Discontinuous Reception DSP Digital Signal Processor DTE Data Terminal Equipment (typically computer, terminal, printer) DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Enhanced GSM EMC Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications IIR Half Rate I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second                               | Abbreviation | Description                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------|
| ARP Antenna Reference Point  ASIC Application Specific Integrated Circuit  BER Bit Error Rate  BTS Base Transceiver Station  CHAP Challenge Handshake Authentication Protocol  CS Coding Scheme  CSD Circuit Switched Data  CTS Clear to Send  DAC Digital-to-Analog Converter  DRX Discontinuous Reception  DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode | ADC          | Analog-to-Digital Converter                                     |
| ASIC Application Specific Integrated Circuit BER Bit Error Rate BTS Base Transceiver Station CHAP Challenge Handshake Authentication Protocol CS Coding Scheme CSD Circuit Switched Data CTS Clear to Send DAC Digital-to-Analog Converter DRX Discontinuous Reception DSP Digital Signal Processor DTE Data Terminal Equipment (typically computer, terminal, printer) DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Enhanced Full Rate EGSM Enhanced Foundament Compatibility ESD Electromagnetic Compatibility ESD Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HR Half Rate L/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode              | AMR          | Adaptive Multi-Rate                                             |
| BER Bit Error Rate BTS Base Transceiver Station CHAP Challenge Handshake Authentication Protocol CS Coding Scheme CSD Circuit Switched Data CTS Clear to Send DAC Digital-to-Analog Converter DRX Discontinuous Reception DSP Digital Signal Processor DTE Data Terminal Equipment (typically computer, terminal, printer) DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Enhanced GSM EMC Electromagnetic Compatibility ESD Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HR Half Rate I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                        | ARP          | Antenna Reference Point                                         |
| BTS Base Transceiver Station CHAP Challenge Handshake Authentication Protocol CS Coding Scheme CSD Circuit Switched Data CTS Clear to Send DAC Digital-to-Analog Converter DRX Discontinuous Reception DSP Digital Signal Processor DTE Data Terminal Equipment (typically computer, terminal, printer) DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Enhanced GSM EMC Electromagnetic Compatibility ESD Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HR Half Rate L/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                                           | ASIC         | Application Specific Integrated Circuit                         |
| CHAP Challenge Handshake Authentication Protocol CS Coding Scheme CSD Circuit Switched Data CTS Clear to Send DAC Digital-to-Analog Converter DRX Discontinuous Reception DSP Digital Signal Processor DTE Data Terminal Equipment (typically computer, terminal, printer) DTR Data Terminal Ready DTX Discontinuous Transmission EFR Enhanced Full Rate EGSM Enhanced GSM EMC Electromagnetic Compatibility ESD Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HR Half Rate I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                                                                        | BER          | Bit Error Rate                                                  |
| CS Coding Scheme  CSD Circuit Switched Data  CTS Clear to Send  DAC Digital-to-Analog Converter  DRX Discontinuous Reception  DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                | BTS          | Base Transceiver Station                                        |
| CISD Circuit Switched Data  CTS Clear to Send  DAC Digital-to-Analog Converter  DRX Discontinuous Reception  DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                 | СНАР         | Challenge Handshake Authentication Protocol                     |
| CTS Clear to Send  DAC Digital-to-Analog Converter  DRX Discontinuous Reception  DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                             | CS           | Coding Scheme                                                   |
| DAC Digital-to-Analog Converter  DRX Discontinuous Reception  DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  L/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                | CSD          | Circuit Switched Data                                           |
| DRX Discontinuous Reception  DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                 | CTS          | Clear to Send                                                   |
| DSP Digital Signal Processor  DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                              | DAC          | Digital-to-Analog Converter                                     |
| DTE Data Terminal Equipment (typically computer, terminal, printer)  DTR Data Terminal Ready  DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                            | DRX          | Discontinuous Reception                                         |
| DTR Data Terminal Ready DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                  | DSP          | Digital Signal Processor                                        |
| DTX Discontinuous Transmission  EFR Enhanced Full Rate  EGSM Enhanced GSM EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate I/O Input/Output  IC Integrated Circuit IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                             | DTE          | Data Terminal Equipment (typically computer, terminal, printer) |
| EFR Enhanced Full Rate  EGSM Enhanced GSM  EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DTR          | Data Terminal Ready                                             |
| EGSM Enhanced GSM EMC Electromagnetic Compatibility ESD Electrostatic Discharge ETS European Telecommunication Standard FCC Federal Communications Commission (U.S.) FDMA Frequency Division Multiple Access FR Full Rate GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HR Half Rate I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DTX          | Discontinuous Transmission                                      |
| EMC Electromagnetic Compatibility  ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EFR          | Enhanced Full Rate                                              |
| ESD Electrostatic Discharge  ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EGSM         | Enhanced GSM                                                    |
| ETS European Telecommunication Standard  FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMC          | Electromagnetic Compatibility                                   |
| FCC Federal Communications Commission (U.S.)  FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESD          | Electrostatic Discharge                                         |
| FDMA Frequency Division Multiple Access  FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ETS          | European Telecommunication Standard                             |
| FR Full Rate  GMSK Gaussian Minimum Shift Keying  GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FCC          | Federal Communications Commission (U.S.)                        |
| GMSK Gaussian Minimum Shift Keying GPRS General Packet Radio Service GSM Global Standard for Mobile Communications HR Half Rate I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FDMA         | Frequency Division Multiple Access                              |
| GPRS General Packet Radio Service  GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FR           | Full Rate                                                       |
| GSM Global Standard for Mobile Communications  HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GMSK         | Gaussian Minimum Shift Keying                                   |
| HR Half Rate  I/O Input/Output  IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GPRS         | General Packet Radio Service                                    |
| I/O Input/Output IC Integrated Circuit IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GSM          | Global Standard for Mobile Communications                       |
| IC Integrated Circuit  IMEI International Mobile Equipment Identity  kbps Kilo bits per second  LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HR           | Half Rate                                                       |
| IMEI International Mobile Equipment Identity kbps Kilo bits per second LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I/O          | Input/Output                                                    |
| kbps Kilo bits per second LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IC           | Integrated Circuit                                              |
| LED Light Emitting Diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IMEI         | International Mobile Equipment Identity                         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kbps         | Kilo bits per second                                            |
| DDLO Deen Discharge Lock Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LED          | Light Emitting Diode                                            |
| Deep bisenarge book out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DDLO         | Deep Discharge Lock Out                                         |
| Li-Ion Lithium-Ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Li-Ion       | Lithium-Ion                                                     |
| MO Mobile Originated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MO           | Mobile Originated                                               |
| MS Mobile Station (GSM engine), also referred to as TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS           | Mobile Station (GSM engine), also referred to as TE             |



| Abbreviation | Description                                                 |
|--------------|-------------------------------------------------------------|
| MT           | Mobile Terminated                                           |
| PAP          | Password Authentication Protocol                            |
| PBCCH        | Packet Switched Broadcast Control Channel                   |
| PCB          | Printed Circuit Board                                       |
| PCS          | Personal Communication System, also referred to as GSM 1900 |
| PDU          | Protocol Data Unit                                          |
| PPP          | Point-to-point protocol                                     |
| RF           | Radio Frequency                                             |
| RMS          | Root Mean Square (value)                                    |
| RTC          | Real Time Clock                                             |
| RX           | Receive Direction                                           |
| SIM          | Subscriber Identification Module                            |
| SMS          | Short Message Service                                       |
| TDMA         | Time Division Multiple Access                               |
| TE           | Terminal Equipment, also referred to as DTE                 |
| THD          | Total Harmonic Distortion                                   |
| TX           | Transmit Direction                                          |
| UART         | Universal Asynchronous Receiver & Transmitter               |
| URC          | Unsolicited Result Code                                     |
| USSD         | Unstructured Supplementary Service Data                     |
| UVLO         | Under Voltage Lock Out                                      |
| VSWR         | Voltage Standing Wave Ratio                                 |
| Vmax         | Maximum Voltage Value                                       |
| Vnorm        | Normal Voltage Value                                        |
| Vmin         | Minimum Voltage Value                                       |
| VIHmax       | Maximum Input High Level Voltage Value                      |
| VIHmin       | Minimum Input High Level Voltage Value                      |
| VILmax       | Maximum Input Low Level Voltage Value                       |
| VILmin       | Minimum Input Low Level Voltage Value                       |
| VImax        | Absolute Maximum Input Voltage Value                        |
| VImin        | Absolute Minimum Input Voltage Value                        |
| VOHmax       | Maximum Output High Level Voltage Value                     |
| VOHmin       | Minimum Output High Level Voltage Value                     |
| VOLmax       | Maximum Output Low Level Voltage Value                      |
| VOLmin       | Minimum Output Low Level Voltage Value                      |
| Inorm        | Normal Current                                              |



| BIND OOD HAI AWAI'C DESIGN |                                                                   |
|----------------------------|-------------------------------------------------------------------|
| Abbreviation               | Description                                                       |
| Imax                       | Maximum Load Current                                              |
| Phonebook abbreviations    |                                                                   |
| FD                         | SIM fix dialing phonebook                                         |
| LD                         | SIM last dialing phonebook (list of numbers most recently dialed) |
| MC                         | Mobile Equipment list of unanswered MT calls (missed calls)       |
| ON                         | SIM (or ME) own numbers (MSISDNs) list                            |
| RC                         | Mobile Equipment list of received calls                           |
| SM                         | SIM phonebook                                                     |
| NC                         | Not connect                                                       |

#### 1.3 Safety Precautions

The following safety precautions must be observed during all phases of the operation. Usage, service or repair of any cellular terminal or mobile incorporating SIM900D modules, manufactures of the cellular terminal should send words of the following safety information to users and operating personnels and to incorporate these guidelines into all manuals supplied with the product. If not so, SIMCom does not take any liability for customer failure to comply with these precautions.



Observe the restrictions of the usage of mobiles in a hospital or other health care facility. Switch the cellular terminal or mobile off, since medical equipment may be sensitive not to operate normally for RF energy interference.



Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forget to think of these instructions may lead to the flight safety or offending local legal action, or both.



Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.



Cellular terminal or mobile handset receives and transmits radio frequency energy while they are switched on. RF interference can occur if it is used near TV sets, radios, computers or other electric equipment.





Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.



GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, for example no mobile fee available or with an invalid SIM card. While users are in this kind of condition and need emergent help, please remember using emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). User may have to deactivate those features before user can make an emergency call.

Also, some networks require a valid SIM card to be properly inserted into the cellular terminal or mobile.



### 2 SIM900D Overview

Designed for global market, SIM900D is a quad-band GSM/GPRS engine that works on frequencies GSM 850MHz, EGSM 900MHz, DCS 1800MHz and PCS 1900MHz. SIM900D features GPRS multi-slot class 10/ class 8 (optional) and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4.

With a tiny configuration of 33mm x 3mm, SIM900D can meet almost all the space requirements in your applications, such as M2M, smart phone, PDA, FWP, and other mobile devices.

The physical interface to the mobile application is a 48-pin SMT pad, which provides all hardware interfaces between the module and customers' boards.

- Serial port and Debug port can help user easily develop user's applications.
- The charge interface is very suitable for the battery power application.
- Two audio channels including two microphone inputs and two speakers' outputs can be easily built into handset, headset and handfree channel.
- The SPI display interface and two Programmable General Purpose Input & Output will give users the flexibility to develop customized applications.

SIM900D is designed with power saving technique so that the current consumption is as low as 1.2mA in SLEEP mode.

SIM900D is integrated with the TCP/IP protocol. Extended TCP/IP AT commands are developed for customers to use TCP/IP protocol easily, which is very useful for data transfer applications.

The modules complied with RoHS directive 2002/95/EC

#### 2.1 SIM900D Key Features

Table3: SIM900D key features

| Feature            | Implementation                                                                                                                                                                                                                    |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power supply       | Single supply voltage 3.2V – 4.8V                                                                                                                                                                                                 |  |
| Power saving       | Typical power consumption in SLEEP mode is 1.5mA (BS-PA-MFRMS=2)                                                                                                                                                                  |  |
| Frequency Bands    | <ul> <li>SIM900D Quad-band: GSM 850, EGSM 900, DCS 1800, PCS 1900. The SIM900D can search the 4 frequency bands automatically. The frequency bands also can be set by AT command.</li> <li>Compliant to GSM Phase 2/2+</li> </ul> |  |
| GSM class          | Small MS                                                                                                                                                                                                                          |  |
| Transmitting power | • Class 4 (2W) at GSM 850 and EGSM 900                                                                                                                                                                                            |  |



| SIM900D Hardware Design | A company of SIM Tech                                                         |  |
|-------------------------|-------------------------------------------------------------------------------|--|
|                         | • Class 1 (1W) at DCS 1800 and PCS 1900                                       |  |
| GPRS connectivity       | • GPRS multi-slot class 10 (default)                                          |  |
|                         | • GPRS multi-slot class 8 (option)                                            |  |
|                         | GPRS mobile station class B                                                   |  |
| Temperature range       | • Normal operation: -30°C to +80°C                                            |  |
|                         | • Restricted operation: -40°C to -30°C and +80 °C to +85°C <sup>(1)</sup>     |  |
|                         | • Storage temperature -45°C to +90°C                                          |  |
| DATA GPRS:              | GPRS data downlink transfer: max. 85.6 kbps                                   |  |
|                         | • GPRS data uplink transfer: max. 42.8 kbps                                   |  |
|                         | • Coding scheme: CS-1, CS-2, CS-3 and CS-4                                    |  |
|                         | • Supports the protocols PAP (Password Authentication Protocol) usually used  |  |
|                         | for PPP connections.                                                          |  |
|                         | • Integrates the TCP/IP protocol.                                             |  |
|                         | <ul> <li>Support Packet Switched Broadcast Control Channel (PBCCH)</li> </ul> |  |
| CSD:                    | • CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps, non-transparent           |  |
|                         | Unstructured Supplementary Services Data (USSD) support                       |  |
| SMS                     | • MT, MO, CB, Text and PDU mode                                               |  |
|                         | SMS storage: SIM card                                                         |  |
| FAX                     | Group 3 Class 1                                                               |  |
| SIM interface           | Support SIM card: 1.8V, 3V                                                    |  |
| External antenna        | Antenna pad                                                                   |  |
| Audio features          | Speech codec modes:                                                           |  |
|                         | • Half Rate (ETS 06.20)                                                       |  |
|                         | • Full Rate (ETS 06.10)                                                       |  |
|                         | • Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)                              |  |
|                         | • Adaptive multi rate (AMR)                                                   |  |
|                         | Echo Cancellation                                                             |  |
|                         | Noise Suppression                                                             |  |
| Serial port and         | Serial Port:                                                                  |  |
| Debug port              | • 7-wire modem interface with status and control lines, unbalanced,           |  |
|                         | asynchronous.                                                                 |  |
|                         | • 1.2kbps to 115.2kbps.                                                       |  |
|                         | <ul> <li>Serial Port can be used for AT commands or data stream.</li> </ul>   |  |
|                         | • Supports RTS/CTS hardware handshake and software ON/OFF flow control.       |  |
|                         | Multiplex ability according to GSM 07.10 Multiplexer Protocol.                |  |
|                         | Autobauding supports baud rate from 1200 bps to 57600bps.                     |  |
|                         | Debug port:                                                                   |  |
|                         | • 2-wire null modem interface DBG_TXD and DBG_RXD.                            |  |
|                         | • Can be used for debugging and upgrading firmware.                           |  |
| Phonebook management    | Support phonebook types: SM, FD, LD, RC, ON, MC.                              |  |
| SIM Application Toolkit | Support SAT class 3, GSM 11.14 Release 99                                     |  |
| Real time clock         | Implemented                                                                   |  |



| Timer function           | Programmable via AT command         |
|--------------------------|-------------------------------------|
| Physical characteristics | Size: 33x 33 x 3 mm                 |
|                          | Weight: 6.2g                        |
| Firmware upgrade         | Firmware upgradeable by debug port. |

(1) SIM900D does work, but deviations from the GSM specification may occur.

Table4: Coding schemes and maximum net data rates over air interface

| <b>Coding scheme</b> | 1 Timeslot | 2 Timeslot | 4 Timeslot |
|----------------------|------------|------------|------------|
| CS-1:                | 9.05kbps   | 18.1kbps   | 36.2kbps   |
| CS-2:                | 13.4kbps   | 26.8kbps   | 53.6kbps   |
| CS-3:                | 15.6kbps   | 31.2kbps   | 62.4kbps   |
| CS-4:                | 21.4kbps   | 42.8kbps   | 85.6kbps   |

## 2.2 SIM900D Functional Diagram

The following figure shows a functional diagram of the SIM900D and illustrates the mainly functional part:

- The GSM baseband engine
- Flash and SRAM
- The GSM radio frequency part
- The antenna interface
- The Other interfaces





Figure1: SIM900D functional diagram

#### 2.3 SIM900D Evaluation Board

In order to help users with the application of SIM900D, SIMCom can supply an Evaluation Board (EVB) that interfaces SIM900D directly with appropriate power supply, SIM card holder, RS232 serial port, handset port, earphone port, antenna and all GPIO of the SIM900D.





Figure2: Top view of SIM900D EVB

For details please refer to the SIM900D-EVB\_UGD document.



# **3 Application Interface**

SIM900D is equipped with a 48-pin SMT pad that connects to the cellular application platform. Sub-interfaces included in these SMT pads are described in detail in following chapters:

- Power supply and charging control (please refer to Chapter 3.3 and 3.5)
- Serial interface and Debug interface (please refer to chapter 3.9)
- Two analog audio interfaces (*please refer to Chapter 3.10*)
- SIM interface (*please refer to Chapter 3.11*)

Electrical and mechanical characteristics of the SMT pad are specified in *Chapter 5*.

## 3.1 SIM900D Pin Description

**Table5: Pin description** 

| Power Suppl           | Power Supply |                                                                                                                                                                                                                                         |                                                                       |                                                                           |  |
|-----------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| PIN NAME              | I/O          | DESCRIPTION                                                                                                                                                                                                                             | DC CHARACTERISTICS                                                    | COMMENT                                                                   |  |
| VBAT                  | I            | 2 VBAT pins are dedicated to connect the supply voltage. The power supply of SIM900D has to be a single voltage source of VBAT= 3.2V4.8V. It must be able to provide sufficient current in a transmit burst which typically rises to 2A | Vmax= 4.8V<br>Vmin=3.2V<br>Vnorm=4.0V                                 |                                                                           |  |
| VRTC                  | I/O          | Current input for RTC when the battery is not supplied for the system. Current output for backup battery when the main battery is present and the backup battery is in low voltage state.                                               | Vmax=3.15V<br>Vmin=2.0V<br>Vnorm=3.0V<br>Iout(max)= 200uA<br>Iin= 3uA | Do not keep pin open, it should be connected to a battery or a capacitor. |  |
| VCHG                  | I            | Voltage input for the charge circuit, as the signal to detect the charger insertion.                                                                                                                                                    | Vmax=7.5V<br>Vmin=4.5V<br>Vnorm=5.0V                                  | If unused keep open.                                                      |  |
| GND                   |              | Ground                                                                                                                                                                                                                                  |                                                                       |                                                                           |  |
| Power on or nower off |              |                                                                                                                                                                                                                                         |                                                                       |                                                                           |  |



| PIN NAME       | I/O  | DESCRIPTION                                                                                                                                                                                                                                                                  | DC CHARACTERISTICS                                      |                                                                               |
|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| PWRKEY         | I    | Voltage input for PWRKEY. PWRKEY should be pulled low to power on or power off the system. The user should drive the PWRKEY to low level voltage for a short time when power on or power off the system because the system need margin time in order to assert the software. | VILmax=1.2V<br>VIHmin=2.6V<br>VIHmax=3.3V<br>VILmin= 0V | It is already pulled up                                                       |
| Audio interfac | es   |                                                                                                                                                                                                                                                                              |                                                         |                                                                               |
| PIN NAME       | I/O  | DESCRIPTION                                                                                                                                                                                                                                                                  | DC CHARACTERISTICS                                      | COMMENT                                                                       |
| MIC1P<br>MIC1N | I    | Positive and negative voice band input                                                                                                                                                                                                                                       | Audio DC Characteristics refer to chapter 3.10          | If unused keep open.                                                          |
| MIC2P<br>MIC2N | I    | Auxiliary positive and negative voice band input                                                                                                                                                                                                                             |                                                         | If unused keep open.                                                          |
| SPK1P<br>SPK1N | О    | Positive and negative voice band output                                                                                                                                                                                                                                      |                                                         | If unused keep open.                                                          |
| SPK2P<br>SPK2N | О    | Auxiliary positive and negative voice band output                                                                                                                                                                                                                            |                                                         | If unused keep open.                                                          |
| AGND           |      | Analog ground                                                                                                                                                                                                                                                                |                                                         | Separate ground connection for external audio circuits.  If unused keep open. |
| GERNERAL I     | PURP | OSE input/output                                                                                                                                                                                                                                                             |                                                         |                                                                               |
| PIN NAME       | I/O  | DESCRIPTION                                                                                                                                                                                                                                                                  | DC CHARACTERISTICS                                      | COMMENT                                                                       |
| STATUS         | O    | Indicate status of module 's working                                                                                                                                                                                                                                         | VILmax=0.4V<br>VIHmin=2.4V                              | If unused keep open                                                           |
| NETLIGHT       | О    | Indicate status of module's network                                                                                                                                                                                                                                          | VILmin= 0V<br>VIHmax= 2.95                              | If unused keep open                                                           |
| DISP_DATA      | I/O  |                                                                                                                                                                                                                                                                              | VOHmin= 2.7V                                            |                                                                               |
| DISP_CLK       | О    | Display interface                                                                                                                                                                                                                                                            | VOLmax=0.1V                                             | If unused keep                                                                |
| DISP_CS        | O    | Display interface                                                                                                                                                                                                                                                            | VOHmax= 2.95V<br>VOLmin= 0V                             | open                                                                          |
| DISP_D/C       | O    |                                                                                                                                                                                                                                                                              | , ODIMI V                                               |                                                                               |
| GPO1           | O    | Normal Output Port                                                                                                                                                                                                                                                           |                                                         | If unused keep open                                                           |
| KBR0           | I/O  | Normal Output/Input Port                                                                                                                                                                                                                                                     |                                                         | KBR0 pin can be configured as                                                 |



| SIM900D Hardwa | re Desi | gn                          |                                                                       | A company of SIM Tech                                                        |
|----------------|---------|-----------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|
|                |         |                             |                                                                       | sim card present<br>detection pin,by<br>"AT+CSDT", If<br>unused keep<br>open |
| Serial port    |         |                             |                                                                       |                                                                              |
| PIN NAME       | I/O     | DESCRIPTION                 | DC CHARACTERISTICS                                                    | COMMENT                                                                      |
| RXD            | I       | Receive data                | VILmax=0.4V                                                           | 1. DTR Pin has                                                               |
| TXD            | О       | Transmit data               | VIHmin=2.4V                                                           | been pulled up.                                                              |
| RTS            | I       | Request to send             | VILmin= 0V                                                            | 2. If RXD pin                                                                |
| CTS            | О       | Clear to send               | VIHmax= 3V                                                            | not used, it                                                                 |
| RI             | О       | Ring indicator              | VOHmin= 2.7V                                                          | should be pulled                                                             |
| DCD            | О       | Data carry detect           | VOLmax=0.1V<br>VOHmax= 3V                                             | up to 3V                                                                     |
| DTR            | Ī       | Data terminal Ready         | VOLmin= 0V                                                            | through a 10k resistor.                                                      |
|                |         |                             | VOLIMII OV                                                            | 3. Other unused                                                              |
|                |         |                             |                                                                       | pins keep open.                                                              |
| Debug interfac | ce      |                             |                                                                       |                                                                              |
| PIN NAME       | I/O     | DESCRIPTION                 | DC CHARACTERISTICS                                                    | COMMENT                                                                      |
| DBG_TXD        | О       | Serial interface for        | VILmax=0.4V                                                           | If unused keep                                                               |
|                |         | debugging and firmware      | VIHmin=2.4V                                                           | open.                                                                        |
|                |         | upgrade                     | VILmin= 0V                                                            |                                                                              |
|                | -       |                             | VIHmax= 3V                                                            |                                                                              |
| DBG_RXD        | Ι       |                             | VOHmin= 2.7V                                                          |                                                                              |
|                |         |                             | VOLmax=0.1V                                                           |                                                                              |
|                |         |                             | VOHmax= 3V<br>VOLmin= 0V                                              |                                                                              |
| CTM * . 4 C    |         |                             | VOLIIIII– UV                                                          |                                                                              |
| SIM interface  | 1/0     | DEGGDIDETON                 | D.C. CHARACTERISTICS                                                  | COLO GENE                                                                    |
| PIN NAME       | I/O     | DESCRIPTION                 | DC CHARACTERISTICS                                                    | COMMENT                                                                      |
| SIM_VDD        | O       | Voltage supply for SIM card | The voltage can be select by software automatically either 1.8V or 3V |                                                                              |
| SIM_DATA       | I/O     | SIM data input/output       | VILmax=0.15 *SIM_VDD                                                  | All signals of                                                               |
| SIM_CLK        | O       | SIM clock                   | VIHmin=0.85*SIM_VDD                                                   | SIM interface                                                                |
| SIM_RST        | O       | SIM reset                   | VILmin= 0V                                                            | are protected                                                                |
|                |         |                             | VIHmax= SIM_VDD                                                       | against ESD                                                                  |
|                |         |                             | VOHmin= SIM_VDD-0.1V<br>VOLmax=0.1V                                   | with a TVS diode array.                                                      |
|                |         |                             | VOHmax= SIM VDD                                                       | diode array.                                                                 |
|                |         |                             | VOLmin= 0V                                                            |                                                                              |
| ADC            |         |                             |                                                                       |                                                                              |
| PIN NAME       | I/O     | DESCRIPTION                 | DC CHARACTERISTICS                                                    | COMMENT                                                                      |
| ADC0           | I       | General purpose analog to   | Input voltage range: 0V ~ 2.8V                                        | If unused keep                                                               |
|                |         |                             |                                                                       |                                                                              |



|                        |     | digital converter.      |                    | open           |
|------------------------|-----|-------------------------|--------------------|----------------|
| TEMP_BAT               | I   | For measure the battery |                    | If unused keep |
|                        |     | temperature             |                    | open.          |
| Pulse Width Modulation |     |                         |                    |                |
| PIN NAME               | I/O | DESCRIPTION             | DC CHARACTERISTICS | COMMENT        |
| PWM                    | O   | PWM Output              | VOHmin= 2.7V       | If unused keep |
|                        |     |                         | VOLmax=0.1V        | open           |
|                        |     |                         | VOHmax= 3V         |                |
|                        |     |                         | VOLmin= 0V         |                |

# **3.2 Operating Modes**

The table below briefly summarizes the various operating modes referred in the following chapters.

**Table6: Overview of operating modes** 

| Mode             | Function                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Normal operation | GSM/GPRS<br>SLEEP                                                                                                                                                                                                                                                                                                                          | Module will automatically go into SLEEP mode if DTR is set to high level and there is no on air and no hardware interrupt (such as GPIO interrupt or data on serial port).                                                                     |  |
|                  |                                                                                                                                                                                                                                                                                                                                            | In this case, the current consumption of module will reduce to the minimal level.  In SLEEP mode, the module can still receive paging message and SMS from the system normally.                                                                |  |
|                  | GSM IDLE                                                                                                                                                                                                                                                                                                                                   | Software is active. Module has registered to the GSM network, and the module is ready to send and receive.                                                                                                                                     |  |
|                  | GSM TALK                                                                                                                                                                                                                                                                                                                                   | Connection between two subscribers is in progress. In this case, the power consumption depends on network settings such as DTX off/on, FR/EFR/HR, hopping sequences, antenna.                                                                  |  |
|                  | GPRS<br>STANDBY                                                                                                                                                                                                                                                                                                                            | Module is ready for GPRS data transfer, but no data is currently sent or received. In this case, power consumption depends on network settings and GPRS configuration.                                                                         |  |
|                  | GPRS DATA                                                                                                                                                                                                                                                                                                                                  | There is GPRS data transfer (PPP or TCP or UDP) in progress. In this case, power consumption is related with network settings (e.g. power control level), uplink / downlink data rates and GPRS configuration (e.g. used multi-slot settings). |  |
| Power down       | Normal shutdown by sending the "AT+CPOWD=1" command or using the PWRKEY. The power management ASIC disconnects the power supply from the baseband part of the module, and only the power supply for the RTC is remained. Software is not active. The serial port is not accessible. Operating voltage (connected to VBAT) remains applied. |                                                                                                                                                                                                                                                |  |
| Minimum          | Use the "AT+CFUN" command can set the module to a minimum functionality mode                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                |  |



| functionality | without removing the power supply. In this case, the RF part of the module will not work or |
|---------------|---------------------------------------------------------------------------------------------|
| mode (without | the SIM card will not be accessible, or both RF part and SIM card will be closed, and the   |
| remove power  | serial port is still accessible. The power consumption in this case is very low.            |
| supply)       |                                                                                             |
| Charge-only   | The module will systematically enter Charge-only mode when a charger and battery are        |
| mode          | connected to a switched-off SIM900D. In the mode, the module does not search for network    |
|               | and has limited AT commands available. The module also can enter Charge-only mode from      |
|               | Charge mode during normal operation by normally shutdown the module.                        |
| Charge mode   | The module will automatically go to this mode when a charger is connected to a Normal       |
| during normal | operation mode module of which battery voltage is not lower than 3.2V. Normal operation     |
| operation     | mode includes: SLEEP, IDLE, TALK, GPRS IDLE and GPRS DATA.                                  |

#### 3.3 Power Supply

The power supply of SIM900D is from a single voltage source of VBAT= 3.2V...4.8V. In some case, the ripple in a transmitting burst may cause voltage drops when current consumption rises to typical peaks of 2A. So the power supply must be able to provide sufficient current up to 2A.

For the VBAT input, a local bypass capacitor (about  $100~\mu F$ , low ESR) is recommended. Multi-layer ceramic chip (MLCC) capacitors can provide the best combination of low ESR and small size but may not be cost effective. A lower cost choice may be a  $100~\mu F$  tantalum capacitor (low ESR) with a small ( $0.1\mu F$  to  $1\mu F$ ) ceramic in parallel, which is illustrated as following figure. The capacitors should be placed as close as possible to the SIM900D VBAT pins. The following figure is the recommended circuit.



Figure 3: Reference circuit of the VBAT input

The circuit design of the power supply depends strongly upon the power source where this power is drained. The following figure is the reference design of +5V input source power supply. The designed output for the power supply is 4.1V, thus a linear regulator can be used. If there is a big difference between the input source and the desired output (VBAT), a switching converter power supply will be preferable because of its better efficiency especially with the 2A peak current in burst mode of the module.

The single 3.6V Li-Ion cell battery type can be connected to the power supply of the SIM900D VBAT directly.

But the Ni\_Cd or Ni\_MH battery types must be used carefully, since their maximum voltage can rise over the absolute maximum voltage for the module and damage it.



Figure 4: Reference circuit of the source power supply input

The following figure is the VBAT voltage ripple wave at the maximum power transmit phase, the test condition is VBAT=4.0V, VBAT maximum output current =2A,  $C_A=100\mu F$  tantalum capacitor (ESR=0.7 $\Omega$ ) and  $C_B=1\mu F$ .



Figure5: VBAT voltage drop during transmit burst

#### 3.3.1 Power Supply Pins

Two VBAT pins are dedicated to connect the supply voltage and nine GND pins are dedicated to connect ground. VRTC pin can be used to back up the RTC.

#### 3.3.2 Minimizing Power Losses

When users design the power supply for their application, specific attention need to be paid to power losses. Ensure that the input voltage VBAT never drops below 3.1V even in a transmit burst where current consumption can rise to typical peaks of 2A. If the power voltage drops below 3.1V, the module may be shut down automatically. The PCB traces from the VBAT pins to the power source must be wide enough to decrease heat energy in the transmitting burst mode.





Figure6: The minimal VBAT voltage at VBAT drop

#### 3.3.3 Monitoring Power Supply

To monitor the supply voltage, user can use the "AT+CBC" command. It returns charging state, 1-100 percent of remaining battery capacity and voltage value measured at VBAT pin.

The voltage is continuously measured at intervals depending on the operating mode. The displayed voltage (in mV) is averaged over the last measuring period before the AT command "AT+CBC" is executed. For detail information about "AT+CBC", please refer to *related document* [1]

#### 3.4 Power Up and Power Down Scenarios

In general, be sure not to turn on SIM900D while it is beyond the safety limits of voltage and temperature stated in Chapter 3.4.2. SIM900D would immediately power down as soon as the module detects these inappropriate conditions. In extreme cases this can cause permanent damage to the module.

#### **3.4.1 Turn on SIM900D**

SIM900D can be turned on by two ways, which are described in the following chapters:

- Via PWRKEY pin: starts normal operating mode (please refer to chapter 3.4.1.1);
- Via VCHG Pin: starts Charge-only mode (please refer to chapter 3.4.1.2);

Note: The "AT" command must be set after the SIM900D is powered on and Unsolicited Result Code "RDY" is received from the serial port. However if the SIM900D is set to autobauding, the serial port will receive nothing. The AT commands can be set after the SIM900D is powered on. Use AT+IPR=x to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration is saved as fixed baud rate, the Code "RDY" should be received from the serial port all the time that the SIM900D is powered on. Please refer to the chapter AT+IPR in related document [1].

#### 3.4.1.1 Turn on SIM900D Using the PWRKEY Pin (Power on)

User can turn on the SIM900D by driving the PWRKEY to a low level voltage for a short time, then release. This pin has pulled up to 3V in the module. The simple circuit illustrates as the following figures.





Figure7: Turn on SIM900D using driving circuit



Figure8: Turn on SIM900D using button

The power on scenarios illustrates as following figure.



Figure9: Timing of turn on system using PWRKEY

When power on procedure completes, the SIM900D will send out following result code to indicate the module is ready to operate when set as fixed baud rate.

RDY

This result code does not appear when autobauding is active.

#### 3.4.1.2 Turn on the SIM900D using the VCHG signal

The SIM900D will be automatically turned on when a charger is connected to the switched-off SIM900D of which VBAT pin voltage is greater than 3.3V. SIM900D will go into the Charge-only Mode. In this mode, the module does not register to the network, and has only a few AT commands available. For detailed information please refer to chapter 3.5.

When module is powered on using the VCHG signal, SIM900D sends out result code as following when fixed baud rate set:

#### RDY

#### **CHARGE-ONLY MODE**

When user drives the PWRKEY of Charge-only mode SIM900D to a low level voltage for a period of time (please refer to *Figure 9 Timing of turn on system using PWRKEY*), the SIM900D will power up and go into Charge mode during normal operation. In this case, SIM900D sends out result code as following:

#### From CHARGE-ONLY MODE to NORMAL MODE

In Charge mode during normal operation, all operations and AT commands are available.

#### 3.4.2 Turn Off SIM900D

Following ways can be used to turn off the SIM900D:

- Normal power down procedure: Turn off SIM900D using the PWRKEY pin
- Normal power down procedure: Turn off SIM900D using AT command
- Over-voltage or under-voltage automatic shutdown: Take effect if over-voltage or under-voltage is detected
- Over-temperature or under-temperature automatic shutdown: Take effect if over-temperature or under-temperature is detected.

#### 3.4.2.1 Turn Off SIM900D Using the PWRKEY Pin (Power down)

User can turn off the SIM900D by driving the PWRKEY to a low level voltage for a short time and then release (Please refer to the turn on circuit).

This procedure lets the module log off from the network and allows the software to enter into a secure state and save data before completely disconnecting the power supply.

Before the completion of the switching off procedure the module will send out result code:

#### NORMAL POWER DOWN

After this moment, the AT commands can not be executed. The module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode

The power down scenario illustrates as following figure.





Figure 10: Timing of turn off system using PWRKEY

#### 3.4.2.2 Turn Off SIM900D Using AT Command

User can use the AT command "AT+CPOWD=1" to turn off the module. This command lets the module log off from the network and allows the module to enter into a secure state and save data before completely disconnecting the power supply.

Before the completion of the switching off procedure the module will send out result code:

#### NORMAL POWER DOWN

After this moment, the AT commands can not be executed. The module enters the POWER DOWN mode, only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

Please refer to *related document* [1] for detail about the AT command of "AT+CPOWD".

#### 3.4.2.3 Over-voltage or Under-voltage Automatic Shutdown

The module will constantly monitor the voltage applied on the VBAT. If the voltage  $\leq$  3.3V, the following URC will be presented:

#### UNDER-VOLTAGE WARNNING

If the voltage  $\geq$  4.7V, the following URC will be presented:

#### **OVER-VOLTAGE WARNNING**

The uncritical voltage range is 3.2V to 4.8V. If the voltage > 4.8V or < 3.2V, the module will be automatic shut down soon.

If the voltage < 3.2V, the following URC will be presented:

#### **UNDER-VOLTAGE POWER DOWN**

If the voltage > 4.8V, the following URC will be presented:

#### **OVER-VOLTAGE POWER DOWN**

AT commands can not be executed. The module logs off from network and enters POWER DOWN mode, and only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

#### 3.4.2.4 Over-temperature or Under-temperature Automatic Shutdown

The module will constantly monitor the temperature of the module, if the temperature  $> +80^{\circ}$ C, the following

URC will be presented:

#### +CMTE:1

If the temperature  $< -30^{\circ}$ C, the following URC will be presented:

#### +CMTE:-1

The uncritical temperature range is -40°C to +85°C. If the temperature >+ 85°C or < -40°C, the module will be automatic shutdown soon.

If the temperature  $> +85^{\circ}$ C, the following URC will be presented:

#### +CMTE:2

If the temperature  $\leq$  -40°C, the following URC will be presented:

#### +*CMTE:-2*

After this moment, the AT commands can not be executed. The module logs off from network and enters POWER DOWN mode, and only the RTC is still active. POWER DOWN can also be indicated by STATUS pin, which is a low level voltage in this mode.

To monitor the temperature, you can used the "AT+CMTE" command to read the temperature when the module is power on.

For details please refer to related document [1]

#### 3.4.3 Restart SIM900D Using the PWRKEY Pin

User can restart SIM900D by driving the PWRKEY to a low level voltage for a short time and then release, the same as turning on SIM900D using the PWRKEY pin. Before restarting the SIM900D, user need delay at least 800ms from detecting the STATUS low level on. The restarting scenario illustrates as the following figure.



Figure 11: Timing of restart SIM900D

#### 3.5 Charging interface

SIM900D has integrated a charging circuit inside the module for Li-Ion batteries charging control, which make it very convenient for applications which support battery charging. A common connection is shown in the following figure:





Figure 12: SIM 900D with battery charger and pack connection

Battery temperature measurement is a customization function which is supported by the software in the module. In above figure, the  $R_{TEMP}$  is a NTC thermistor, MURATA NCP15XH103F03RC is recommended to use. Its impedance is 10Kohm at 25  $^{\circ}$ C. Please refer to the above figure for the reference circuit.

#### 3.5.1 Battery pack characteristics

SIM900D has optimized the charging algorithm for the Li-Ion battery that meets the characteristics listed below.

- The maximum charging voltage of the Li-Ion battery pack is 4.2V and the recommended capacity is 1100mAh. The Battery packs with more than 1100 mAh capacity will cost more time for charging.
- The pack should have a protection circuit to avoid overcharging, deep discharging and over-current, and the circuit should be insensitive to pulsed current.
- The internal resistance of the battery pack including protection circuit should be as low as possible. Its recommended value does not exceed  $150 \text{m}\Omega$ .
- The battery pack must be protected from reverse pole connection.

It is recommended that the battery pack user integrated into the application is compliant with these specifications. The battery pack compliant with these specifications is also important for the AT command "AT+CBC", 1-100 percent of remaining battery capacity returned by "AT+CBC" is related to battery capacity.

On the SIM900D, the build-in circuit of the power management chipset monitors the supply voltage constantly. Once the Under-voltage is detected, the SIM900D will be powered down automatically.

#### 3.5.2 Recommended battery pack

Following is the specification of recommended battery pack:



#### Table7: Specification of recommended battery pack

| Items                     | Description                                   |
|---------------------------|-----------------------------------------------|
| Battery type              | Li-ion                                        |
| Manufacturer              | Jiade Energy Technology                       |
| Normal voltage            | 3.7V                                          |
| Capacity                  | NORMAL 1100mAh                                |
| Charge Voltage            | 4.200±0.050V                                  |
| Max Charge Current        | 1.0C                                          |
| Charge Method             | CC / CV (Constant Current / Constant Voltage) |
| Max Discharge Current     | 1.0C (for continuous discharging mode)        |
| Discharge Cut-off Voltage | 3.0V/ cell                                    |
| Internal resistance       | Initial≤130mΩ                                 |

#### 3.5.3 Implemented charging technique

SIM900D has battery charging function. There are three pins related to the battery charging function: VCHG, VBAT and TEMP\_BAT/ADC0 pins. The VCHG Pin is driven by an external voltage, system can use this Pin to detect a charger supply and provide most charging current through SIM900D module to battery when charging is in fast charge state. The VBAT gives out charging current from SIM900D module to external battery. TEMP\_BAT Pin is for user to measure the battery temperature. Just let this Pin open if battery temperature measurement is not your concern.

So it is very simple to implement charging technique, user just needs to connect the charger to the VCHG Pin and connect the battery to the VBAT Pin.

SIM900D battery charging happens after detecting charger supply and the battery present. If there is no charger supply or no battery present, charging will not be enabled.

Normally, there are three main states in whole charging procedure.

- DDLO charge (Pull-up mode) and UVLO charge (Pre-charge mode);
- Fast charge;

#### DDLO charge and UVLO charge:

DDLO is the state of battery when its voltage is under 1.5V. And UVLO means the battery voltage less than 3.3V and more than 1.5V. The battery is not suitable for fast charging when its condition is DDLO or UVLO. The SIM900D provides a small constant current to the battery when the battery is between DDLO and UVLO. In DDLO charging, SIM900D gives out 1mA current to the battery. And in UVLO charging, SIM900D provides about less than 200mA current to the battery.

DDLO charging terminates when the battery voltage reaches 1.5V. UVLO charging terminates when the battery voltage is up to 3.3V. Both DDLO and UVLO charge are controlled by the SIM900D hardware only.

#### **Fast charge:**

If there is a charger supply and battery present and the battery is not in DDLO and UVLO, SIM900D will enter fast charge state. Fast charge is controlled by the software to make the current/voltage regulation. The charging scheme for the Li-Ion battery is constant current (about 550mA) first, followed by constant voltage charging once 4.2V is reached. Charging is stopped when the charging current at constant voltage has decreased down to the pre-set current.

#### 3.5.4 Operating modes during charging

The battery can be charged during various operating mode. That means that charging can be in progress while SIM900D is in Normal mode (SLEEP, IDLE, TALK, GPRS IDLE or GPRS DATA mode). In this case the voltage supply should be sufficient. Here Charging in Normal mode is named as Charge mode.

If the charger is connects to the module's VCHG Pin and the battery is connected to the VBAT Pin while SIM900D is in POWER DOWN mode, SIM900D will go into the Charge-only Mode.

The following table gives the difference between Charge mode and Charge-only mode:

**Table8: Charge operating modes** 

|                  | How to activate mode                                                                                                                                                                       | Features                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Charge Mode      | Connect charger to module's VCHG Pin and connect battery to VBAT Pin of module while SIM900D is in Normal operating mode, including: IDLE, TALK mode; SLEEP mode etc;                      | <ul> <li>GSM remains operational and registers         GSM network while charging is in         progress;</li> <li>The serial interfaces are available in         IDLE, TALK mode, the AT command         set can be used fully in this case;</li> <li>In SLEEP mode, the serial interfaces are         not available. Once the serial port is         connected and there is data in transfer.         SIM900D will exit the SLEEP mode.</li> </ul> |
| Charge-only Mode | Connect charger to module's VCHG Pin while SIM900D is in POWER DOWN mode.  IMPORTANT: Here Charge-only mode is charging when power down, it means that not all software tasks are running. | <ul> <li>Battery can be charged when GSM engine is not registered to GSM network;</li> <li>Only a few AT commands is available, as listed below.</li> </ul>                                                                                                                                                                                                                                                                                          |

Note: VBAT can not provide more than 5mA current while SIM900D module is during the DDLO charge state. In other words it is strongly recommended that VBAT should not be the main power supply in the application subsystem if SIM900D DDLO charging state occurs.



#### Table9: AT Command usually used in Charge-only mode

| AT command | Function                                    |  |
|------------|---------------------------------------------|--|
| AT+CCLK    | Set data and time of RTC                    |  |
| AT+CPOWD   | Power down                                  |  |
| AT+CBC     | Indicated charge state and voltage          |  |
| AT+CFUN    | Start or close the protocol                 |  |
|            | Set AT command "AT+CFUN =1", module         |  |
|            | can be transferred from Charge-only mode to |  |
|            | Charging in normal mode. In Charge-only     |  |
|            | mode, the default value is 0.               |  |

#### 3.5.5 Charger requirements

Following is the requirements of charger for SIM900D.

- Simple transformer power plug
- Output voltage: 5.0V-6V
- Minimum supply current: 750mA
- A 10V peak voltage is allowed for maximum 1ms when charging current is switched off.
- A 1.6A peak current is allowed for maximum 1ms when charging current is switched on

## 3.6 Summary of State Transitions (except SLEEP mode)

The following figure shows how module enters one mode from another mode.



**Figure 13: Charge State Transition** 



#### 3.7 Power Saving

There are two methods for the module to enter into low current consumption status. "AT+CFUN" is used to set module into minimum functionality mode and DTR hardware interface signal can be used to lead system to be in SLEEP mode (or slow clocking mode).

#### 3.7.1 Minimum Functionality Mode

Minimum functionality mode reduces the functionality of the module to a minimum and, thus, minimizes the current consumption to the lowest level. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0, 1, 4

- 0: minimum functionality;
- 1: full functionality (default);
- 4: disable phone both transmit and receive RF circuits;

Table 10: The Current consumption of different configuration of AT+CFUN

| MODE                | SLEEP   |         |         |  |
|---------------------|---------|---------|---------|--|
| AT+CFUN             | 1       | 4       | 0       |  |
| Current Consumption | 1.306mA | 0.967mA | 0.897mA |  |

If SIM900D has been set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function will be closed. In this case, the serial port is still accessible, but all AT commands correlative with RF function or SIM card function will not be accessible.

If SIM900D has been set by "AT+CFUN=4", the RF function will be closed, the serial port is still active. In this case all AT commands correlative with RF function will not be accessible.

After SIM900D has been set by "AT+CFUN=0" or "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

For detailed information about "AT+CFUN", please refer to related document [1].

#### 3.7.2 Sleep Mode I (CSCLK=1)

User can control SIM900D module to enter or exit the SLEEP mode (CSCLK=1) in customer applications through DTR signal.

When DTR is in high level, and there is no data on air and hardware interrupt (such as GPIO interrupt or data in serial port), SIM900D will enter SLEEP mode automatically. In this mode, SIM900D can still receive paging or SMS from network but the serial port is not accessible.

Note: For SIM900D, it requests to set AT command "AT+CSCLK=1" to enable the sleep mode. The default value is 0, which can not make the module enter SLEEP mode. For more details please refer to related document [1].



#### 3.7.3 Wake Up SIM900D from SLEEP Mode (CSCLK=1)

When SIM900D is in SLEEP mode, the following methods can wake up the module.

- Enable DTR pin to wake up SIM900D.
   If DTR pin is pulled down to a low level, this signal will wake up SIM900D from power saving mode. The serial port will be active after DTR changed to low level for about 50ms.
- Receiving a voice or data call from network to wake up SIM900D.
- Receiving a SMS from network to wake up SIM900D.

#### 3.7.4 Sleep Mode II (CSCLK=2)

In this mode, the SIM900D will continuously monitor the main serial port data signal. When there is no data transferred exceed 5 seconds on the RXD signal and there is no data on air and hardware interrupt (such as GPIO interrupt or data in serial port), SIM900 will enter SLEEP mode automatically. In this mode, SIM900D can still receive paging or SMS from network but the serial port is not accessible.

Note: For SIM900, it requests to set AT command "AT+CSCLK=2" to enable the SLEEP mode. The default value is 0, which can not make the module enter SLEEP mode. For more details please refer to related document [1].

#### 3.7.5 Wake Up SIM900D from SLEEP Mode (CSCLK=2)

When SIM900D is in SLEEP mode (CSCLK=2), the following methods can wake up the module.

- User can send data to SIM900D using main serial port, when SIM900D detects the change on the RXD. The
  first byte data of user will not be sent via module.
- Receiving a voice or data call from network to wake up SIM900D.
- Receiving a SMS from network to wake up SIM900D.

#### 3.8 RTC Backup

The RTC power supply of module can be provided by an external capacitor or a battery (rechargeable or non-chargeable) through the VRTC.

Note: The VRTC could not be designed to a NC pin in user's circuit. User should connect the VRTC pin to a battery or a capacitor.

The following figures show various sample circuits for RTC backup.





Figure 14: RTC supply from non-chargeable battery



Figure 15: RTC supply from rechargeable battery



Figure 16: RTC supply from capacitor

#### • Li-battery backup

Coin-type Rechargeable Capacitor such as XH414H-IV01E form Seiko can be used.

Typical charge curves for each cell type are shown in following figures. Note that the rechargeable Lithium type coin cells generally come pre-charged from the vendor.





Figure 17: Seiko XH414H-IV01E Charge Characteristics

#### 3.9 Serial Interfaces

Table 11: Pin definition of the serial interfaces

|             | Name    | Pin | Function               |
|-------------|---------|-----|------------------------|
| Serial port | DTR     | 43  | Data terminal ready    |
|             | RI      | 11  | Ring indicator         |
|             | DCD     | 42  | Data carrier detection |
|             | CTS     | 45  | Clear to send          |
|             | RTS     | 44  | Request to send        |
|             | TXD     | 4   | Transmit data          |
|             | RXD     | 3   | Receive data           |
| Debug port  | DBG_RXD | 1   | Receive data           |
|             | DBG_TXD | 2   | Transmit data          |

SIM900D provides two unbalanced asynchronous serial ports. One is the serial port and the other is the debug port. The GSM module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. The module and the client (DTE) are connected through the following signal (as following figure shows). Autobauding supports baud rate from 1200bps to 57600bps. When the RXD, TXD, DBG\_RXD, DBU\_TXD are used, it should be pull up 10k to 3V. Serial port

- TXD: Send data to the RXD signal line of the DTE
- RXD: Receive data from the TXD signal line of the DTE Debug port
- DBG\_TXD: Send data to the RXD signal line of the DTE



• DBG\_RXD: Receive data from the TXD signal line of the DTE The logic levels are described in following table.

Table12: Logic levels of the serial port and debug port

| Parameter    | Min | Max | Unit |
|--------------|-----|-----|------|
| $V_{\rm IL}$ | 0   | 0.4 | V    |
| $V_{ m IH}$  | 2.4 | 3   | V    |
| $V_{OL}$     | 0   | 0.1 | V    |
| $V_{OH}$     | 2.7 | 3   | V    |



Figure 18: Connection of the serial interfaces

#### 3.9.1 Function of serial port & debug port supporting

#### Serial port

- Modem device.
- Contains data lines TXD and RXD, State lines RTS and CTS, Control lines DTR, DCD and RI.
- Serial port can be used for CSD FAX, GPRS service and send AT command of controlling module. Also serial port can be used for multiplexing function. SIM900D supports only basic mode of multiplexing so far.
- Serial port supports the communication rates as following:
   1200,2400, 4800, 9600, 19200, 38400, 57600, 115200bps
- Autobauding supports baud rates as following:
   1200, 2400, 4800, 9600, 19200, 38400, and 57600bps, the default setting is autobauding.

Autobauding allows the GSM engine to automatically detect the baud rate configured in the host application. The serial port of the GSM engine supports autobauding for the following baud rates: 1200, 2400, 4800, 9600, 19200,



#### SIM900D Hardware Design

38400, 57600bps. Factory setting is autobauding enabled. This gives you the flexibility to put the GSM engine into operation no matter what baud rate user host application is configured to. To take advantage of autobauding mode, specific attention should be paid to the following requirements:

#### **Synchronization between DTE and DCE:**

When DCE powers on with the autobauding enabled, user must first send "AT" to synchronize the baud rate. It is recommended to wait 2 to 3 seconds before sending "AT" character. After receiving the "OK" response, DTE and DCE are correctly synchronized. The more information please refer to the AT command "AT+IPR".

#### **Restrictions on autobauding operation**

- The serial port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" are not indicated when user starts up the ME while autobauding is enabled. This is due to the fact that the new baud rate is not detected unless DTE and DCE are correctly synchronized as described above.

Note: User can use "AT+IPR=x" to set a fixed baud rate and save the configuration to non-volatile flash memory. After the configuration is saved as fixed baud rate, the Unsolicited Result Codes like "RDY" should be received from the serial port all the time that the SIM900D is power on.

#### Debug port

- Only contain Data lines TXD and RXD
- Debug Port used for debugging and upgrading firmware. It cannot be used for CSD call, FAX call. And the Debug port can not use multiplexing function. It does not support autobauding function.
- The communication rate of debug port is 115200bps

#### 3.9.2 Software Upgrade and Software Debug

The DBG\_TXD, DBG\_RXD and GND must be connected to the IO connector when user needs to upgrade software and debug software, the DBG\_TXD, DBG\_RXD should be used for software upgrade and for software debugging. The TXD and RXD also should be connected to the IO connector, if user wants to send AT command or data stream to SIM900D. The PWRKEY pin is recommended to connect to the IO connector. The user also can add a switch between the PWRKEY and the GND. The PWRKEY should be connected to the GND when SIM900D is upgrading software. Please refer to the following figure.





Figure 19: Connection of software upgrade and software debug

The serial port and the debug port do not support the RS\_232 level and it only supports the CMOS level. Please refer to the table 12 for details about the voltage level. User should add the level converter IC between the DCE and DTE, if user uses it with the computer. Please refer to the following figure.



Figure 20: RS 232 level converter circuit



#### 3.10 Audio Interfaces

**Table13: Pin definition of the Audio interfaces** 

|              | Pin Name | Pin Number | Function            |
|--------------|----------|------------|---------------------|
| (AIN1/AOUT1) | MIC1P    | 21         | Microphone1 input + |
|              | MIC1N    | 20         | Microphone1 input - |
|              | SPK1P    | 23         | Audio1 output+      |
|              | SPK1N    | 24         | Audio1 output-      |
| (AIN2/AOUT2) | MIC2P    | 18         | Microphone2 input + |
|              | MIC2N    | 19         | Microphone2 input - |
|              | SPK2P    | 26         | Audio2 output+      |
|              | SPK2N    | 25         | Audio2 output-      |

The module provides two analog input channels, AIN1 and AIN2, which may be used for both microphone and line inputs. The AIN1 and AIN2 channels are identical. One of the two channels is typically used with a microphone built into a handset. The other channel is typically used with an external microphone built into a handfree MIC or headset.

For each channels, user can use "AT+CMIC" to adjust the input gain level of microphone, use "AT+SIDET" to set the side-tone level. In addition, user can also use "AT+CLVL" to adjust the output gain level <u>and</u> use "AT+CHFA" to swap the audio channels among different channels. For more details, please refer to *related document* [1].

It is suggested that user should adopt one of the following two matching circuits in order to improve audio performance. The difference audio signals have to be layout according to different signal layout rules. As shown in the following figures (*Note: all components package are 0603.*) If user wants to adopt an amplifier circuit for audio, SIMCom recommends National Company's LM4890. Of course users can select it according to their own requirement.



### 3.10.1 Speaker Interface Configuration



Figure 21: Speaker interface configuration



Figure 22: Speaker interface with amplifier configuration



### 3.10.2 Microphone Interfaces Configuration



Figure 23: Microphone interface configuration

# **3.10.3** Earphone Interface Configuration



Figure 24: Earphone interface configuration



### 3.10.4 Referenced Electronic Characteristics

**Table14: MIC Input Characteristics** 

| Parameter            |                                     | Min | Тур  | Max | Unit   |
|----------------------|-------------------------------------|-----|------|-----|--------|
| Working Voltage      |                                     | 1.2 | 1.5  | 2.0 | V      |
| Working Current      |                                     | 200 |      | 500 | uA     |
| External Microphon   | e Load Resistance                   | 1.2 | 2.2  |     | k Ohms |
| Internal biasing DC  | Internal biasing DC Characteristics |     |      | 2.5 | V      |
| Differential input   | THD <1% at F=1KHz;                  |     | 15.9 |     | mVrms  |
| voltage              | pre-amp gain = 20 dB;               |     |      |     |        |
| PGA gain = 14 dB     |                                     |     |      |     |        |
| THD <5% at F=1KHz;   |                                     |     | 740  |     | mVrms  |
| pre-amp gain = 0 dB; |                                     |     |      |     |        |
|                      | PGA gain = 0 dB                     |     |      |     |        |

**Table15: Audio Output Characteristics** 

| Parameter                | Conditions                         | Min | Тур | Max  | Unit |
|--------------------------|------------------------------------|-----|-----|------|------|
|                          | load Resistance                    | 27  | 32  | -    | Ohm  |
|                          | Biasing voltage                    |     | 1.4 |      | V    |
| Normal                   | Output swing Voltage(single)       |     |     | 1.1V | Vpp  |
| Output(SPK1P/1N )        | Output swing Voltage(differential) |     |     | 2.2  | Vpp  |
|                          | RL=32 Ohm<br>THD=0.1%              | -   | 91  | -    | mW   |
|                          | RL=32 Ohm<br>THD=1%                | -   | 96  | -    | mW   |
|                          | load Resistance                    | 27  | 32  |      | Ohm  |
|                          | Biasing voltage                    |     | 1.4 |      | V    |
| Normal Output(SPK2P/2N ) | Output swing Voltage(single)       |     |     | 1.1V | V    |
|                          | Output swing Voltage(differential) |     |     | 2.2  | V    |
|                          | RL=32 Ohm<br>THD=0.1%              | -   | 91  | -    | mW   |
|                          | RL=32 Ohm<br>THD=1%                | -   | 96  |      | mW   |



#### 3.11 SIM Card Interface

#### 3.11.1 SIM Card Application

User can use AT Command to get information in SIM card. For more information, please refer to *related document* [1]

The SIM interface complies to the GSM Phase 1 specification and the new GSM Phase 2+ specification for FAST 64 kbps SIM (intended for use with a SIM application Tool-kit). Both 1.8V and 3.0V SIM Cards are supported. The SIM interface is powered from an internal regulator in the module. All pins are described in the following table.

Table 16: Pin definition of the SIM interface

| Pin Name | Pin Number | Function                                                   |
|----------|------------|------------------------------------------------------------|
| SIM_VDD  | 9          | SIM Card Power output automatic output on SIM mode, one is |
|          |            | 3.0V±10%, another is 1.8V±10%. Current is about 10mA.      |
| SIM_DATA | 6          | SIM Card data I/O                                          |
| SIM_CLK  | 7          | SIM Card Clock                                             |
| SIM_RST  | 8          | SIM Card Reset                                             |

Following figure is the reference circuit about SIM interface. SIMCom recommends an Electro-Static discharge device ST (www.st.com) ESDA6V1W5 or ON SEMI (www.onsemi.com) SMF05C for "ESD ANTI". The  $22\Omega$  resistors showed in the following figure should be added in series on the IO line between the module and the SIM card for protecting the SIM I/O port. The pull-up resistor (about  $15K\Omega$ ) on the SIM\_DATA line is already added in the module. Note that the SIM peripheral circuit should be close to the SIM card socket.

The KBR0 pin is used for detecting the SIM card insert or removal. User can use the AT command "AT+CSDT" to switching on or off SIM card detection function. For details of this AT command, please refer to *related document* [1] • User can select the 8-pin SIM card holder to implement SIM card detection function. The reference circuit of the 8-pin SIM card holder is illustrated as following figure.





Figure 25: Reference circuit of the 8-pin SIM card holder

If user don not use the SIM card detection function, user can leave the KBR0 pin open. The reference circuit about 6-pin SIM card holder is illustrated as following figure.



Figure 26: Reference circuit of the 6-pin SIM card holder

#### 3.11.2 Design Considerations for SIM Card Holder

For 6-pin SIM card holder, SIMCom recommends to use Amphenol C707 10M006 512 2 .User can visit <a href="http://www.amphenol.com">http://www.amphenol.com</a> for more information about the holder.





Figure 27: Amphenol C707 10M006 512 2 SIM card holder

Table17: Pin description (Amphenol SIM card holder)

| Pin Name  | Signal   | Description                                                             |
|-----------|----------|-------------------------------------------------------------------------|
| <b>C1</b> | SIM_VDD  | SIM Card Power supply, it can identify automatically the SIM Card power |
|           |          | mode, one is 3.0V±10%, another is 1.8V±10%. Current is about 10mA.      |
| C2        | SIM_RST  | SIM Card Reset.                                                         |
| C3        | SIM_CLK  | SIM Card Clock.                                                         |
| C5        | GND      | Connect to GND.                                                         |
| C6        | VPP      | Not connect.                                                            |
| C7        | SIM_DATA | SIM Card data I/O.                                                      |

For 8 pins SIM card holder, SIMCom recommends users to use Molex 91228.Users can visit <a href="http://www.molex.com">http://www.molex.com</a> for more information about the holder.





Figure 28: Molex 91228 SIM card holder

Table 18: Pin description (Molex SIM card holder)

| Pin Name  | Signal       | Description                                                             |
|-----------|--------------|-------------------------------------------------------------------------|
| <b>C1</b> | SIM_VDD      | SIM Card Power supply, it can identify automatically the SIM Card power |
|           |              | mode, one is 3.0V±10%, another is 1.8V±10%. Current is about 10mA.      |
| C2        | SIM_RST      | SIM Card Reset                                                          |
| C3        | SIM_CLK      | SIM Card Clock                                                          |
| C4        | GND          | Connect to GND                                                          |
| C5        | GND          | Connect to GND                                                          |
| <b>C6</b> | VPP          | Not connect                                                             |
| C7        | SIM_DATA     | SIM Card data I/O                                                       |
| <b>C8</b> | SIM_PRESENCE | Detect SIM Card Presence                                                |



#### 3.12 LCD Display Interface

SIM900D provides a serial LCD display interface that supports serial communication with LCD device. When used as LCD interface, the following table is the pin definition. LCD interface timing should be united with the LCD device.

Table19: Pin Definition of the LCD interface

| Pin Name  | Pin Number | Function                       |
|-----------|------------|--------------------------------|
| DISP_CLK  | 13         | Display clock for LCD          |
| DISP_DATA | 14         | Display data output            |
| DISP_D/C  | 16         | Display data or command select |
| DISP_CS   | 46         | Display enable                 |

<sup>\*</sup>Note: This function is not supported in the default firmware. There must be some customized firmware if user wants. Please contact SIMCom for more details.

The DISP\_RST can select the KBR0 or GPO0, when KBR0 or GPO0 is not used for another function.

#### 3.13 ADC

SIM900D provides one auxiliary ADC0 (General purpose analog to digital converter) as voltage input pin, which can be used to detect the values of some external items such as voltage, temperature etc. User can use AT command "AT+CADC" to read the voltage value on ADC. For details of this AT command, please refer to *related document* [1].

**Table 20: ADC specification** 

|                | MIN | Type | MAX  | Units |
|----------------|-----|------|------|-------|
| Voltage range  | 0   | -    | 2.8  | V     |
| ADC Resolution | -   | 10   | -    | bits  |
| Sampling rate  | -   | -    | 200K | Hz    |



### 3.14 Behaviors of the RI

Table21: Behaviours of the RI

| State         | RI respond                                                                                                                                                                              |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standby       | HIGH                                                                                                                                                                                    |
| Voice calling | Change LOW, then:  (1) Change to HIGH when the call is established.  (2) Use AT command ATH, the RI pin will be changed to HIGH.  (3) When sender hangs up, it will be changed to HIGH. |
| Data calling  | Change LOW, then:  (1) Change to HIGH when the call is established.  (2) Use AT command ATH, the RI will be changed to HIGH.                                                            |
| SMS           | Change to low and hold low level for about 120 ms when the module receive a SMS, and then it is changed to HIGH.                                                                        |
| URC           | Some URCs triggers 120ms low level on RI. For more details, please refer to related document [10]                                                                                       |

If the module is used as caller, the RI will maintain high. However, when it is used as receiver, following is timing of the ring.



Figure 29: RI behaviour of voice calling as a receiver



Figure 30: RI behaviour of data calling as a receiver





Figure 31: RI behaviour of URC or receive SMS



Figure 32: RI behaviour as a caller

# 3.15 Network Status Indication

The NETLIGHT can be used to drive a network status indication LED lamp. The working state of this pin is listed in following table:

**Table22: Working state of the NETLIGHT** 

| State               | SIM900D function                  |
|---------------------|-----------------------------------|
| Off                 | SIM900D is not running            |
| 64ms On/ 800ms Off  | SIM900D does not find the network |
| 64ms On/ 3000ms Off | SIM900D find the network          |
| 64ms On/ 300ms Off  | GPRS communication                |

Provide a reference circuit for user, shown as following figure:





Figure 33: Reference circuit of NETLIGHT

### 3.16 General Purpose Input Output (GPIO)

SIM900D provides a limited number of General Purpose Input/Output signal pin. The output and input voltage level of the GPIO can be set by AT command. For more details, please refer to *related document* [1]

Table23: Pin definition of the GPIO interface

| Pin Name | Pin Number | <b>Default Function</b> | <b>Second Function</b> | <b>Default State</b> |
|----------|------------|-------------------------|------------------------|----------------------|
| KBR0     | 10         | GPIO8                   | SIM card detection     | Output Pull down     |
| GPO1     | 40         | GPIO1                   |                        | Output Pull down     |

The SIM card detection function can be implemented, please refer to 3.11 SIM interface for more details.

### **3.17 PWM**

SIM900D contains one Pulse-Width Modulators (PWM) which can be used for controlling a buzzer.

#### Features of buzzer PWM:

10-bit resolution for buzzer tone frequency generation from 200 Hz to 5 kHz Tone frequency error < 1 % for all standard piano notes from 200 Hz to 5 kHz Tone level control from 0 dB down to -24 dB in +4 dB steps Audio mute

The PWM for the buzzer outputs a square wave at the desired tone frequency. The tone frequencies are programmable from 200 Hz to 5 kHz and can be re-programmed on-the-fly to generate monophonic audio



ringtones or alert tones. The tone level can be adjusted over a 24 dB range in 4 dB steps, or it can be muted.

Table24: Pin definition of the PWM

| Pin Name | Pin Number |                              |
|----------|------------|------------------------------|
| PWM      | 47         | Pulse-Width Modulator Signal |





### **4 Antenna Interface**

SIM900D provides RF antenna interface. And customer's antenna should be located in the customer's main board and connect to module's antenna pad through microstrip line or other type RF trace which impendence must be controlled in  $50\Omega$ . The Pin 33 is the RF antenna pad.

SIM900D material properties: SIM900D PCB Material: FR4 Antenna pad: Gold plated pad

### 4.1 Module RF Output Power

Table25: SIM900D conducted RF output power

| Frequency | Max        | Min      |
|-----------|------------|----------|
| GSM850    | 33dBm ±2db | 5dBm±5db |
| EGSM900   | 33dBm ±2db | 5dBm±5db |
| DCS1800   | 30dBm ±2db | 0dBm±5db |
| PCS1900   | 30dBm ±2db | 0dBm±5db |

# 4.2 Module RF Receive Sensitivity

Table26: SIM900D conducted RF receive sensitivity

| Frequency | Receive sensitivity (Typical) | Receive sensitivity(MAX) |
|-----------|-------------------------------|--------------------------|
| GSM850    | -109dBm                       | -107dBm                  |
| EGSM900   | -109dBm                       | -107dBm                  |
| DCS1800   | -109dBm                       | -107dBm                  |
| PCS1900   | -109dBm                       | -107dBm                  |

# **4.3 Module Operating Frequencies**

Table27: SIM900D operating frequencies

| Frequency | Receive                       | Transmit                   |
|-----------|-------------------------------|----------------------------|
| GSM850    | 869 ~ 894MHz                  | 824 ~ 849 MHz              |
| EGSM900   | 925 ~ 960MHz                  | 880 ~ 915MHz               |
| DCS1800   | $1805 \sim 1880 \mathrm{MHz}$ | 1710 ∼ 1785MHz             |
| PCS1900   | 1930 ∼ 1990MHz                | $1850 \sim 1910 {\rm MHz}$ |



# 5 Electrical, Reliability and Radio Characteristics

## **5.1 Absolute Maximum Ratings**

The absolute maximum ratings stated in Table 28 are stress ratings under non-operating conditions. Stresses beyond any of these limits will cause permanent damage to SIM900D.

Table 28: Absolute maximum ratings

| Parameter                    | Min  | Max | Unit |
|------------------------------|------|-----|------|
| VBAT                         | -    | 5.5 | V    |
| Peak current of power supply | 0    | 3.0 | A    |
| Voltage at digit pins*       | -0.3 | 3.1 | V    |
| $I_I^*$                      | -    | 10  | mA   |
| I <sub>O</sub> *             | -    | 10  | mA   |

<sup>\*</sup>For digital interface pins, such as GPIO, UART, LCD and PWM.

# **5.2 Operating Temperatures**

The operating temperature is listed in following table:

Table29: SIM900D operating temperature

| Parameter             | Min        | Тур | Max       | Unit          |
|-----------------------|------------|-----|-----------|---------------|
| Ambient temperature   | -30        | +25 | +80       | ${\mathbb C}$ |
| Restricted operation* | -40 to -30 |     | +80 to+85 | ${\mathbb C}$ |
| Storage temperature   | -45        |     | +90       | $^{\circ}$ C  |

<sup>\*</sup> The SIM900D does work, but deviations from the GSM specification may occur.

# **5.3 Power Supply Ratings**



# Table 30: SIM 900D power supply ratings

| Parameter  | Description                                 | Conditions                                                                               | Min | Тур                        | Max               | Unit           |
|------------|---------------------------------------------|------------------------------------------------------------------------------------------|-----|----------------------------|-------------------|----------------|
| VBAT       | Supply voltage                              | Voltage must stay within the min/max values, including voltage drop, ripple, and spikes. | 3.2 | 4.0                        | 4.8               | V              |
|            | Voltage drop<br>during transmit<br>burst    | Normal condition, power control level for Pout max                                       |     |                            | 300               | mV             |
|            | Voltage ripple                              | Normal condition, power control level for Pout max                                       |     |                            |                   |                |
|            |                                             | @ f<200kHz<br>@ f>200kHz                                                                 |     |                            | 50 2              | mV             |
| $I_{VBAT}$ | Average supply current                      | POWER DOWN mode<br>SLEEP mode(BS-PA-MFRMS=2)<br>(BS-PA-MFRMS=5)<br>(BS-PA-MFRMS=9)       |     | 30                         | 1.5<br>1.2<br>1.0 | uA<br>mA<br>mA |
|            |                                             | IDLE mode GSM 850 EGSM 900 DCS1800 PCS1900                                               |     | 22<br>22<br>22<br>22<br>22 | 1.0               | mA<br>mA       |
|            |                                             | TALK mode GSM 850 EGSM 900 DCS1800 PCS1900                                               |     | 235<br>252<br>176<br>176   |                   | mA             |
|            |                                             | DATA mode, GPRS (3 Rx,2Tx) GSM 850 EGSM 900 DCS1800 PCS1900                              |     | 425<br>454<br>307<br>309   |                   | mA             |
|            |                                             | DATA mode, GPRS (4 Rx,1Tx) GSM 850 EGSM 900 DCS1800 PCS1900                              |     | 262<br>280<br>208<br>205   |                   | mA             |
|            | Peak supply<br>current (during<br>Tx burst) | Power control level for Pout max.                                                        |     | 2.0                        |                   | A              |



#### **5.4 Current Consumption**

Please refer to the following table for the values of current consumption.

Table31: SIM900D current consumption (VBAT=3.8V)

| Voice Call                              |                                      |
|-----------------------------------------|--------------------------------------|
| GSM 850/EGSM 900                        | @power level #5 <300mA,Typical 250mA |
|                                         | @power level #10,Typical 110mA       |
|                                         | @power level #19,Typical 80mA        |
| DCS 1800/PCS 1900                       | @power level #0 <200mA,Typical 175mA |
|                                         | @power level #10,Typical 95mA        |
|                                         | @power level #15,Typical 75mA        |
| GPRS Data                               |                                      |
| DATA mode, GPRS (1 Rx,1 Tx) CLASS 8     |                                      |
| GSM 850/EGSM 900                        | @power level #5 <300mA,Typical 240mA |
|                                         | @power level #10,Typical 117mA       |
|                                         | @power level #19,Typical 88mA        |
| DCS 1800/PCS 1900                       | @power level #0 <200mA,Typical 170mA |
|                                         | @power level #10,Typical 88mA        |
|                                         | @power level #15, Typical 80mA       |
| DATA mode, GPRS ( 3 Rx, 2 Tx ) CLASS 10 |                                      |
| GSM 850/EGSM 900                        | @power level #5 <450mA,Typical 440mA |
|                                         | @power level #10,Typical 202mA       |
|                                         | @power level #19,Typical 143mA       |
| DCS 1800/PCS 1900                       | @power level #0 <350mA,Typical 300mA |
|                                         | @power level #10,Typical 139mA       |
|                                         | @power level #15,Typical 126mA       |
| DATA mode, GPRS ( 4 Rx,1 Tx ) CLASS 8   |                                      |
| GSM 850/EGSM 900                        | @power level #5 <300mA,Typical 270mA |
|                                         | @power level #10,Typical 155mA       |
|                                         | @power level #19,Typical 125mA       |
| DCS 1800/PCS 1900                       | @power level #0 <300mA,Typical 205mA |
| Cy                                      | @power level #10,Typical 126mA       |
|                                         | @power level #15,Typical 119mA       |

Class 10 is default set when the module works at data translation mode, the module can also work at class 8 set by AT command.

### **5.5** Electro-Static Discharge

The GSM engine is not protected against Electrostatic Discharge (ESD) in general. Therefore, it is subject to ESD handing precautions that typically apply to ESD sensitive components. Proper ESD handing and packaging procedures must be applied throughout the processing, handing and operation of any application using a SIM900D\_Hardware Design\_V1.04 56 2010.10.09



SIM900D module.

The measured values of SIM900D are shown as the following table:

Table 32: The ESD endure statue measured table (Temperature: 25°C, Humidity: 45%)

| Part       | Contact discharge | Air discharge |
|------------|-------------------|---------------|
| VBAT       | ±5KV              | ±10KV         |
| GND        | ±5KV              | ±10KV         |
| RXD, TXD   | ±2KV              | ±8KV          |
| ANT        | ±5KV              | ±10KV         |
| SPK1P/1N   |                   |               |
| SPK2P/2N   | ±3KV              | ±8KV          |
| MIC1P/1N   | ±3KV              | ±8K V         |
| MIC2P/2N   |                   |               |
| PWRKEY     | ±2KV              | ±8KV          |
| Other port | TBD               | TBD           |

<sup>\*</sup>Note: The PWRKEY is recommended to use the ESD protection component.



### **6 Mechanics**

This chapter describes the mechanical dimensions of SIM900D.

# 6.1 Mechanical Dimensions of SIM900D

Following shows the Mechanical dimensions of SIM900D (top view, side view and bottom view).

### **Dimensions shown in millimeters**



Figure 34: SIM 900D top mechanical dimensions



Figure 35: SIM 900D bottom mechanical dimensions





Figure 36: SIM 900D side mechanical dimensions

### FOOT PRINT RECOMMENDATION:



Figure 37: Recommended PCB decal (Unit: mm)



### 6.2 Top and Bottom View of the SIM900D





Figure 38: Top and Bottom view of the SIM900D

### 6.3 PIN Assignment of SIM900D



Figure 39: SIM 900D pin out diagram (Top View)



**Table33: PIN Assignment** 

| Pin NUM | NAME     | Pin NUM | NAME      |
|---------|----------|---------|-----------|
| 1       | DBG_RXD  | 2       | DBG_TXD   |
| 3       | RXD      | 4       | TXD       |
| 5       | STATUS   | 6       | SIM_DATA  |
| 7       | SIM_CLK  | 8       | SIM_RST   |
| 9       | SIM_VDD  | 10      | KBR0      |
| 11      | RI       | 12      | PWRKEY    |
| 13      | DISP_CLK | 14      | DISP_DATA |
| 15      | VRTC     | 16      | DISP_D/C  |
| 17      | GND      | 18      | MIC2P     |
| 19      | MIC2N    | 20      | MIC1N     |
| 21      | MIC1P    | 22      | AGND      |
| 23      | SPK1P    | 24      | SPK1N     |
| 25      | SPK2N    | 26      | SPK2P     |
| 27      | TEMP_BAT | 28      | VCHG      |
| 29      | ADC0     | 30      | GND       |
| 31      | GND      | 32      | GND       |
| 33      | ANT      | 34      | GND       |
| 35      | GND      | 36      | GND       |
| 37      | GND      | 38      | VBAT      |
| 39      | VBAT     | 40      | GPO1      |
| 41      | NETLIGHT | 42      | DCD       |
| 43      | DTR      | 44      | RTS       |
| 45      | CTS      | 46      | DISP_CS   |
| 47      | PWM      | 48      | GND       |



### 6.4 The Ramp-Soak-Spike Reflow Profile of SIM900D



Figure 40: The ramp-soak-spike reflow profile of SIM900D



#### **Contact us:**

# Shanghai SIMCom Wireless Solutions Ltd

Add: SIM Technology Building A,

No. 633, Jinzhong Road, Shanghai, P. R. China 200335

Tel: +86 21 3252 3300 Fax: +86 21 3252 3020 URL: <u>www.sim.com</u>