Laboratório de ECAi05

Universidade Federal de Itajubá - Campus Avançado de Itabira

Disciplina: ECAi05 - Laboratório de Sistemas de Controle I

Objetivo

Este laboratório tem como finalidade mostrar o cálculo de compensação PD para uma malha de controle de posicionamento angular através do método do Lugar das Raízes. Determinar os ganhos de um controlador PID a partir da técnica Ziegler-Nichols em malha fechada a partir de simulação computacional. Realizar a compensação atraso de fase de um sistema térmico pelo método do Lugar das Raízes.

Compensação PD por Lugar das Raízes

1. Seja um sistema de posicionamento angular modelado pela função de transferência

$$G(s) = \frac{40}{s(s^2 + 15s + 56)}$$

(a) Inspecionando a função do processo é possível dizer se o mesmo é estável ou instável em malha aberta? Justificar.

É possivel inspecionar que há um polo em zero, logo o sistema é

marginalmente estável.		

(b) Malhas de controle são utilizadas mesmo em processos estáveis com a finalidade de modificar características de respostas dinâmicas e/ou atenuar eventuais distúrbios. Admitindo inicialmente um controlador proporcional $C(s)=k_p$, traçar o Lugar das Raízes (LR) da malha de controle resultante por meio dos comandos abaixo.

Universidade Federal de Itajubá - Campus Avançado de Itabira

(c) Quais são os pontos no gráfico que definem os limites de estabilidade da malha? Usar o comando [k,polos] = rlocfind(ng,dg) para obter os ganhos destes limites.

```
Os pontos são: (0 + 7,48i)
e (0 - 7,48i).
Onde o ganho é igual a 21.
```

(d) Seja as seguintes especificações em malha fechada: erro em regime permanente nulo para entrada em degrau; fator de amortecimento $\zeta=0,4$; frequência natural de oscilação do sistema, $\omega_n=7,16\ [rad/s]$. Com estas características, quais os valores esperados para o Máximo pico (M_p) e o tempo de acomodação (t_a) ?

$$M_p = e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}} \qquad t_a = \frac{4}{\zeta\omega_n}$$

$$\frac{Mp = 0.2538}{ta = 1.3966 s}$$

(e) Qual é o polo dominante especificado para o sistema?

$$s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2}$$

(f) Esta especificação é obtida por um controlador puramente proporcional? Justificar?

Um controlador puramente proporcional não atende a especificação, pois não há valor de ganho que produza os polos especificados.

- (g) Com os comandos a seguir determinar e anotar os módulos e os ângulos de s_1 e $G(s_1)$:
 - >> s1= -0.4*7.16 + i*7.16*sqrt(1-0.4^2);
 >> mod_s1=abs(s1)
 >> ang_s1=angle(s1)
 >> G_s1=40/(s1*(0.25*s1^2+3.75*s1+14));
 >> mod_G_s1=abs(G_s1)
 >> ang_G_s1=angle(G_s1)

(h) Com as informações do item anterior e com as expressões abaixo, calcular os ganhos k_p e k_d para um controlador PD (neste caso o valor de k_i pode ser nulo).

$$k_p = \frac{-\sin(\angle s_1 + \angle G(s_1))}{|G(s_1)|\sin(\angle s_1)} - \frac{2k_i\cos(\angle s_1)}{|s_1|}$$

$$k_d = \frac{\sin(\angle G(s_1))}{|s_1||G(s_1)|\sin(\angle s_1)} + \frac{k_i}{|s_1|^2}$$

$$kp = 5,445$$

 $kd = -0,873$

(i) Traçar o lugar das raízes do sistema compensado usando os comandos abaixo. Antes de digitar os comandos, defina o valor de k_p e k_d calculados.

```
>> nk = [kd kp 0]; dk = [0 1 0];
>> [no,do] = series(nk,dk,ng,dg);
>> rlocus(no,do)
```

(j) Observando o lugar das raízes obtido, responder se a especificação do polo dominante foi alcançada? Justificar. Usar o comando [x,y] = ginput(1) para facilitar a leitura de pontos.

A especificação do polo foi devidamente alcançada. Os polos agora podem ser encontrados.

(I) O Máximo pico e o tempo de acomodação atendem as especificações?

O <u>máximo pico e o tempo de acomodação atendem devidamente as especificações,</u> pois o pico está dentro do valor calculado, e o tempo de alcomadação é de 1,4s, próximo do calculado.

Técnica Ziegler-Nichols para a sintonia de malhas de controle

- 2. Os ganhos k_p , k_i e k_d de um controlador PID podem ser determinados de forma empírica quando não se conhece a função de transferência do sistema real. No exemplo, será utilizada uma técnica conhecida como método de Ziegler-Nichols em malha fechada.
 - (a) A função de transferência utilizada, G(s), exemplifica uma malha de controle de um dispositivo de posicionamento angular. O algoritmo de Routh-Hurwitz foi aplicado para determinar qual a faixa de valores de ganho do controlador proporcional que resultará em um sistema de controle estável. Aplicando-se a técnica tem-se que $0 < K_p < 21$.

A técnica Ziegler-Nichols em malha fechada baseia-se em determinar os ganhos do controlador PID baseado em se determinar inicialmente somente um ganho proporcional que instabilize o sistema. A partir da oscilação do sistema determina-se o período de oscilação t_c e o ganho crítico k_c que instabiliza o sistema. A formulação a seguir representa os cálculos necessários para se determinar os ganhos do controlador PID.

$$k_p = 0, 6k_c$$

$$t_i = 0, 5t_c \qquad k_i = \frac{k_p}{t_i}$$

$$t_d = 0, 125t_c \qquad k_d = k_p t_d$$

Abrir o programa:

No bloco PID faça $k_i=0$, $k_d=0$ e $k_p=21$. Dessa forma pode-se ver que o ganho $k_p=21$ instabiliza o sistema e consequentemente pode-se determinar o valor de t_c uma vez que o ganho $k_p=21$ é o ganho crítico k_c . Qual o valor de t_c ?

- (b) De posse dos valores de k_c e t_c calcule os ganhos k_i , k_d e k_p . Quais foram os valores encontrados?
- (c) Atualize os ganhos k_p , k_i e k_d no programa de controle para os valores obtidos no item (b). Execute o programa. Anote o Máximo pico e o tempo de acomodação.

5

Compensação de atraso de fase por Lugar das Raízes

3. Seja a função de transferência de uma planta de aquecimento dada por

$$G(s) = \frac{\Theta(s)}{V(s)} = \frac{20}{150s + 1}$$

- (a) Considere que a malha de controle de temperatura deva ter os seus polos em $-0.15\pm j0.07$ (impondo um $\zeta=0.91$ e um $w_n=0.17$ [rad/s]) e um erro em regime permanente menor do que 1% à entrada degrau. Essas especificações podem ser atingidas com um controlador somente proporcional? Justifique-se.
- (b) De acordo com as especificações, calcule os parâmetros para um controlador de atraso de fase conforme os comandos e a formulação apresentada abaixo. O ganho a_0 será adotado igual a 10 para se cumprir a especificação de erro em regime.

$$a_1 = \frac{a_0|G(s_1)|\sin(\angle s_1 - \angle G(s_1)) + \sin(\angle s_1)}{|G(s_1)||s_1|\sin(\angle G(s_1))}$$

$$b_1 = -\frac{a_0|G(s_1)|\sin(\angle s_1) + \sin(\angle s_1 + \angle G(s_1))}{|s_1|\sin(\angle G(s_1))}$$

```
>> sd=-0.15+j*0.07;
>> md_sd=abs(sd); ag_sd=angle(sd);
>> gs_sd=20/(150*sd+1);
>> md_gs=abs(gs_sd); ag_gs=angle(gs_sd);
>> a0=10;
>> a1=(a0*md_gs*sin(ag_sd-ag_gs)+sin(ag_sd))/(md_gs*md_sd*sin(ag_gs))
>> b1=-(a0*md_gs*sin(ag_sd)+sin(ag_sd+ag_gs))/(md_sd*sin(ag_gs))
```

(c) Trace o lugar das raízes da malha para o controlador de atraso de fase digitando:

```
>> ns=20; ds=[150 1];
>> nk=[a1 a0]; dk=[b1 1];
```

>> [no,do]=series(nk,dk,ns,ds);
>> rlocus(no,do);
A especificação para a malha foi alcançada? Utilize o comando [x,y]=ginput(1) para ler os pontos.
Obtenha a resposta da saída $\theta(t)$ para a entrada degrau unitário tendo como controlador os parâmetros a_0 , a_1 e b_1 calculados anteriormente.
>> G = tf(no,do)
>> sys = feedback(G,1);
>> step(sys)
Anote o Máximo pico e o tempo de acomodação do sistema compensado.

Atividades Complementares

O relatório deve ser entregue APENAS em formato PDF até **7 dias** após a aula prática conforme tarefa cadastrada no SIGAA. O guia deve ser entregue com os itens preenchidos. As atividades complementares devem ter o <u>enunciado</u>, <u>desenvolvimento</u> e <u>conclusões</u> também anexados ao guia. Não há necessidade de capa e afins, apenas identificação de nome e número de matrícula da dupla.

- 1. Comparando as duas técnicas de controle de posição apresentadas, qual controlador é melhor? Justifique.
- 2. Utilizando o método do Lugar das Raízes para o controle de posição apresentado, qual o seu erro em regime permanente para uma entrada degrau? E para uma entrada rampa? Justifique.
- 3. Para esse sistema de posicionamento angular, é necessário utilizar um PID para obter erro nulo em regime permanente? Justifique.
- 4. Faça um programa que simule a malha de controle de temperatura apresentada pela função de transferência abaixo para uma entrada degrau unitário. Utilize o método do Lugar das Raízes ou de Ziegler-Nichols para obter o controlador PID.

$$G(s) = \frac{\Theta(s)}{V(s)} = \frac{2}{300s+1}e^{-60s}$$
 $e^{-60s} = \frac{1-30s}{1+30s}$