(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 5. Juli 2001 (05.07.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/47929 A1

(51) Internationale Patentklassifikation7: C07D 487/04, A61P 9/10

13, 42327 Wuppertal (DE). SCHLEMMER, Karl-Heinz [DE/DE]; Wildsteig 22a, 42113 Wuppertal (DE).

(21) Internationales Aktenzeichen:

PCT/EP00/12592

(22) Internationales Anmeldedatum:

12. Dezember 2000 (12.12.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 62 927.7 100 03 296.6 24. Dezember 1999 (24.12.1999) DE

27. Januar 2000 (27.01.2000) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): NIEWÖHNER, Ulrich [DE/DE]; Gartenstr. 3, 42929 Wermelskirchen (DE). HANING, Helmut [DE/DE]; Claudiusweg 3, 42115 Wuppertal (DE). LAMPE, Thomas [DE/DE]; Briller Str. 46, 42105 Wuppertal (DE). ES-SAYED, Mazen [DE/DE]; Ricarda-Huch-Str. 36, 40764 Langenfeld (DE). SCHMIDT, Gunter [DE/DE]; Pahlkestr. 63, 42115 Wuppertal (DE). BISCHOFF, Erwin [DE/DE]; Pahlkestr. 73, 42115 Wuppertal (DE). DEMBOWSKY, Klaus [DE/US]; 289 Shawmut Avenue, Boston, MA 02116 (US). PERZBORN, Elisabeth [DE/DE]; Am Tescher Busch

BAYER AKTIENGE-(74) Gemeinsamer Vertreter: SELLSCHAFT; 51368 Leverkusen (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintressen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: TRIAZOLOTRIAZINONES AND THE USE THEREOF

(54) Bezeichnung: TRIAZOLOTRIAZINONE UND IHRE VERWENDUNG

- (57) Abstract: The invention relates to novel triazolotriazinones of the general formula (I), to a method for their production and to the pharmaceutical use thereof.
- (57) Zusammenfassung: Es werden neue Triazolotriazinone der allgemeinen Formel (I), ein Verfahren zu ihrer Herstellung sowie ihre pharmazeutische Verwendung beschrieben.

WO 01/47929 PCT/EP00/12592

TRIAZOLOTRIAZINONE UND IHRE VERWENDUNG

Die vorliegende Erfindung betrifft neue Triazolotriazinone, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel, insbesondere als Inhibitoren cGMP-metabolisierender Phosphodiesterasen.

In J. Heterocycl. Chem. (1993), 30(5), 1341-9, sowie in J. Heterocycl. Chem. (1984), 21(3), 697 -9 und in Nucleosides Nucleotides (1995), 14(7), 1601-12 werden 6-Amino-triazolotriazinone mit antiviraler Wirkung beschrieben.

In J. Med. Chem. (1986), 29(11), 2231-5 werden ebenfalls 6-Amino-triazolo-triazinone als Nucleosidanaloga mit Antitumorwirkung beschrieben. Triazolo-triazinone mit den in der vorliegenden Erfindung beschriebenen Substituenten und mit inhibitorischer Wirkung gegen cGMP-metabolisierende Phosphodiesterasen sind nicht bekannt.

Die erfindungsgemäßen Verbindungen sind potente Inhibitoren der cyclischen Guanosin 3',5'-monophophat metabolisierenden Phosphodiesterasen (cGMP -PDE's). Entsprechend der Nomenklatur von Beavo und Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) handelt es sich um die Phosphodiesterase Isoenzyme PDE-I, PDE-II und PDE-V.

Ein Anstieg der cGMP-Konzentration kann zu heilsamen, antiaggregatorischen, antithrombotischen, antiproliferativen, antivasospastischen, vasodilatierenden, natriuretischen und diuretischen Effekten führen. Es kann die Kurz- oder Langzeitmodulation der vaskulären und kardialen Inotropie, den Herzrhythmus und die kardiale Erregungsleitung beeinflussen (J. C. Stoclet, T. Keravis, N. Komas and C. Kugnier, Exp. Opin. Invest. Drugs (1995), 4 (11), 1081-1100). Die Inhibition der cGMP-PDE's kann auch eine Verstärkung der Erektion bewirken. Daher sind solche Verbindungen zur Behandlung von erektilen Dysfunktionen geeignet.

5

10

15

20

25

Die vorliegende Erfindung betrifft nun Triazolotriazinone der allgemeinen Formel (I),

5

in welcher

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder für (C₃-C₈)-Cycloalkyl steht,

10

R² für Wasserstoff oder für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, (C₁-C₆)-Alkoxy oder für (C₁-C₆)-Alkyl stehen, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Hydroxy, (C₁-C₅)-Alkoxy, Phenoxy oder durch Reste der Formeln

$$-$$
0-C0-NR⁵R⁶ , $-$ NR⁷R⁸ oder

substituiert ist,

20

worin

R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder Phenyl bedeuten,

oder

R⁷ und R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen, gesättigten Heterocyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S und O enthalten kann,

und/oder seinerseits (C₁-C₆)-Alkyl gegebenenfalls durch Phenyl substituiert ist, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, (C₁-C₆)-Alkoxy, Halogen oder durch (C₁-C₆)-Alkyl substituiert ist, das seinerseits wiederum durch Hydroxy oder (C₁-C₆)-Alkoxy substituiert ist, oder Phenyl gegebenenfalls durch Reste der Formeln -SO₂-NR⁹R¹⁰ oder -NR¹¹R¹² substituiert ist,

worin

15

10

5

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder Phenyl bedeuten,

oder

20

R¹¹ und R¹² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen, gesättigten Heterocyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S und O enthalten kann,

25 oder

 R^3 für Wasserstoff oder (C_1 - C_6)-Alkyl steht,

und

30

R⁴ für Reste der Formel

- 4 -

steht,

oder

5

für Phenyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Halogen, (C₁-C₆)-Alkoxy, Hydroxy, durch einen Rest der Formel

10

oder durch (C_1-C_6) -Alkyl substituiert ist, das seinerseits durch Hydroxy oder (C_1-C_6) -Alkoxy substituiert sein kann,

oder

15

R³ und R⁴ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Rest der Formel

$$-N$$
 $N-R^{13}$ $-N$ R^{14} R^{15} $-N$ R^{15}

oder

bilden,

20

worin

WO 01/47929 PCT/EP00/12592

- 5 -

 R^{13} Wasserstoff, (C₁-C₆)-Alkoxycarbonyl, (C₃-C₆)-Cycloalkyl, Pyridyl, Pyrimidyl oder (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

5

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff, Hydroxy oder (C1-C6)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formel -P(O)(OR¹⁸)(OR¹⁹) substituiert ist,

10

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder (C_1-C_6) -Alkyl bedeuten,

15

oder

R¹⁴ und R¹⁵ gemeinsam einen Rest der Formel =N-OH bilden,

20

R¹⁶ und R¹⁷ gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze, N-Oxide und isomere Formen.

25

Die erfindungsgemäßen Verbindungen können in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere), oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfindung betrifft sowohl die Enantiomeren oder Diastereomeren oder deren jeweiligen Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

WO 01/47929

PCT/EP00/12592

Die erfindungsgemäßen Stoffe können auch als Salze vorliegen. Im Rahmen der Erfindung sind physiologisch unbedenkliche Salze bevorzugt.

-6-

Physiologisch unbedenkliche Salze können Salze der erfindungsgemäßen Verbindungen mit anorganischen oder organischen Säuren sein. Bevorzugt werden Salze mit anorganischen Säuren wie beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure oder Schwefelsäure, oder Salze mit organischen Carbon- oder Sulfonsäuren wie beispielsweise Essigsäure, Maleinsäure, Fumarsäure, Äpfelsäure, Zitronensäure, Weinsäure, Milchsäure, Benzoesäure, oder Methansulfonsäure, Ethansulfonsäure, Phenylsulfonsäure, Toluolsulfonsäure oder Naphthalindisulfonsäure.

Physiologisch unbedenkliche Salze können ebenso Metall- oder Ammoniumsalze der erfindungsgemäßen Verbindungen sein. Besonders bevorzugt sind z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze, sowie Ammoniumsalze, die abgeleitet sind von Ammoniak, oder organischen Aminen, wie beispielsweise Ethylamin, Di-bzw. Triethylamin, Di-bzw. Triethylamin, Di-bzw. Triethylamin, Di-bzw. Triethylamin, Di-bzw. Triethylamin, Di-bzw. Triethylamin, Di-bzw. Triethylamin

- 20 (C₃-C₈)-Cycloalkyl bzw. (C₃-C₆)-Cycloalkyl steht für Cyclopropyl, Cyclopentyl, Cyclobetyl, Cycloheptyl oder Cyclooctyl. Bevorzugt seien genannt: Cyclopropyl, Cyclopentyl und Cyclohexyl.
- (C₁-C₆)-Alkyl steht für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6
 Kohlenstoffatomen. Beispielsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl,
 n-Butyl, Isobutyl, tert.-Butyl, n-Pentyl und n-Hexyl. Bevorzugt ist ein geradkettiger
 oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein
 geradkettiger oder verzweigter Alkylrest mit 1 bis 3 Kohlenstoffatomen.
- 30 (C₁-C₆)-Alkoxy steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxy, Ethoxy, n-Propoxy,

5

10

Isopropoxy, n-Butoxy, Isobutoxy, tert.-Butoxy, n-Pentoxy und n-Hexoxy. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxyrest mit 1 bis 3 Kohlenstoffatomen.

5

10

(C₁-C₆)-Alkoxycarbonyl steht im Rahmen der Erfindung für einen geradkettigen oder verzweigten Alkoxycarbonylrest mit 1 bis 6 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl und tert.Butoxycarbonyl. Bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 4 Kohlenstoffatomen. Besonders bevorzugt ist ein geradkettiger oder verzweigter Alkoxycarbonylrest mit 1 bis 3 Kohlenstoffatomen.

<u>Halogen</u> steht im allgemeinen für Fluor, Chlor, Brom und Jod. Bevorzugt sind Fluor, Chlor und Brom. Besonders bevorzugt sind Fluor und Chlor.

15

<u>Ein 5- bis 6-gliedriger aromatischer Heterocyclus</u> mit bis zu 3 Heteroatomen aus der Reihe S, O und/oder N steht beispielsweise für Pyridyl, Pyrimidyl, Pyridazinyl, Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl oder Imidazolyl. Bevorzugt sind Pyridyl, Pyrimidyl, Pyridazinyl, Furyl und Thienyl.

20

Bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

in welcher

25

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen steht, oder
für Cyclopropyl, Cyclopentyl oder Cyclohexyl steht,

R² für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, Methoxy oder für (C₁-C₅)-Alkyl stehen, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Hydroxy, (C₁-C₄)-Alkoxy, Phenoxy oder durch Gruppen der Formeln

$$-\text{O-CO-NR}^5\text{R}^6$$
, $-\text{NR}^7\text{R}^8$ oder

substituiert ist,

worin

10

5

R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder Phenyl bedeuten,

oder

15

R⁷ und R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

20

und/oder seinerseits (C₁-C₅)-Alkyl gegebenenfalls durch Phenyl substituiert ist, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, (C₁-C₄)-Alkoxy oder durch (C₁-C₄)-Alkyl substituiert sein kann, das seinerseits wiederum durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert ist, oder Phenyl gegebenenfalls durch Reste der Formeln -SO₂-NR⁹R¹⁰ oder -NR¹¹R¹² substituiert ist,

25

worin

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder Phenyl bedeuten,

oder

R¹¹ und R¹² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

5

oder

 R^3 für Wasserstoff oder (C₁-C₄)-Alkyl steht,

10 und

R⁴ für Reste der Formel

15

steht,

oder

20

für Phenyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Fluor, (C_1-C_4) -Alkoxy, Hydroxy, durch einen Rest der Formel

25

oder durch (C_1-C_4) -Alkyl substituiert ist, das seinerseits durch Hydroxy oder (C_1-C_3) -Alkoxy substituiert sein kann,

oder

R³ und R⁴ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Rest der Formel

$$-N$$
 $N-R^{13}$ $-N$ R^{14} R^{15} , $-N$

oder -N-CH₃

worin

5

10

15

20

R¹³ Wasserstoff, (C₁-C₄)-Alkoxycarbonyl, Cyclopentyl, Cyclohexyl, Pyridyl, Pyrimidyl oder (C₁-C₅)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder (C₁-C₅)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formel –P(O)(OR¹⁸)(OR¹⁹) substituiert ist,

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

oder

R¹⁴ und R¹⁵ gemeinsam einen Rest der Formel =N-OH bilden,

R¹⁶ und R¹⁷ gleich oder verschieden sind und Wasserstoff, Hydroxy oder (C₁-C₃)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

5 und deren Salze, N-Oxide und isomere Formen.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I),

in welcher

10

- R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht oder für Cyclopentyl steht,
- R² für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen 15 steht,
 - R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, Methoxy oder für (C₁-C₄)-Alkyl stehen, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Hydroxy, (C₁-C₄)-Alkoxy, Phenoxy oder durch Gruppen der Formeln

$$-$$
O-CO-NR⁵R⁶ , $-$ NR⁷R⁸ oder

substituiert ist,

25

20

worin

R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₃)-Alkyl oder Phenyl bedeuten,

oder

R⁷ und R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

5

und/oder seinerseits (C₁-C₄)-Alkyl gegebenenfalls durch Phenyl substituiert ist, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, (C₁-C₃)-Alkoxy, Fluor oder durch (C₁-C₃)-Alkyl substituiert ist, das seinerseits wiederum durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert ist, oder Phenyl gegebenenfalls durch Reste der Formeln -SO₂-NR⁹R¹⁰ oder -NR¹¹R¹² substituiert ist,

10

worin

15

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, (C₁-C₃)-Alkyl oder Phenyl bedeuten,

oder

20

R¹¹ und R¹² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

oder

 R^3

für Wasserstoff oder Methyl steht,

und

 R^4

für Reste der Formel

steht,

oder

5

für Phenyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Fluor, Methoxy, Hydroxy, durch einen Rest der Formel

10

oder durch (C₁-C₄)-Alkyl substituiert ist, das seinerseits durch Hydroxy oder Methoxy oder Ethoxy substituiert sein kann,

oder

15

R³ und R⁴ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Rest der Formel

$$-N$$
 $N-R^{13}$ $-N$ R^{14} R^{15} , $-N$,

oder

bilden,

20

worin

R¹³ Wasserstoff, (C₁-C₄)-Alkoxycarbonyl, Cyclopentyl, Pyrimidyl oder (C₁-C₃)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

5

R¹⁴ und R¹⁵ gleich oder verschieden sind und (C₁-C₃)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formel -P(O)(OR¹⁸)(OR¹⁹) substituiert ist,

• 10

worin

R¹⁸ und R¹⁹ Ethyl bedeuten,

oder

15

R¹⁴ und R¹⁵ gemeinsam einen Rest der Formel =N-OH bilden,

R¹⁶ und R¹⁷ gleich oder verschieden sind und Wasserstoff oder (C₁-C₃)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

20

und deren Salze, N-Oxide und isomere Formen.

Ganz besonders bevorzugt sind die in der folgenden Tabelle aufgeführten Verbindungen:

Außerdem wurde ein Verfahren zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) gefunden, dadurch gekennzeichnet, dass man

5 Verbindungen der allgemeinen Formel (II)

$$\mathbb{R}^2$$
 \mathbb{N} \mathbb{N}

in welcher

WO 01/47929 PCT/EP00/12592

R1 und R2 die oben angegebene Bedeutung haben,

mit Chlorsulfonsäure (ClSO₃H) gegebenenfalls in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base zu den Verbindungen der allgemeinen Formel (III)

in welcher

10

5

R1 und R2 die oben angegebene Bedeutung haben,

umsetzt und abschließend mit Aminen der allgemeinen Formel (IV)

15

 HNR^3R^4 (IV),

in welcher

R³ und R⁴ die oben angegebene Bedeutung haben,

20

umsetzt.

Das erfindungsgemäße Verfahren kann durch folgendes Formelschema beispielhaft erläutert werden:

Als Lösemittel für die einzelnen Schritte eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfrakionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethan, Trichlorethylen oder Chlorbenzol, oder Essigester, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton, Dimethoxyethan oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden.

5

10

20

Die Reaktionstemperaturen können im allgemeinen in einem größeren Bereich variieren. Im allgemeinen arbeitet man in einem Bereich von –20 °C bis 200 °C, bevorzugt von 0 °C bis 70 °C.

Die erfindungsgemäßen Verfahrensschritte werden im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Überdruck oder bei Unterdruck durchzuführen (z. B. in einem Bereich von 0,5 bis 5 bar).

Die Umsetzungen können beispielsweise in einem Temperaturbereich von 0°C bis Raumtemperatur und bei Normaldruck erfolgen.

Die Verbindungen der allgemeinen Formel (II) sind neu und können hergestellt werden, indem man durch Umsetzung der Verbindungen der allgemeinen Formel (V)

 R^1 -CO₂H (V),

in welcher

R¹ die oben angegebene Bedeutung hat,

mit Thiocarbohydrazid

25 die Verbindungen der allgemeinen Formel (VI)

$$HS$$
 N
 H_2N
 R^1
 (VI)

in welcher

- R¹ die oben angegebene Bedeutung hat,
- herstellt, diese durch Umsetzung mit H₂O₂ / CH₃CO₂H in die Verbindungen der allgemeinen Formel (VII)

$$H_2N$$
 N
 R^1
(VII),

- 10 in welcher
 - R¹ die oben angegebene Bedeutung hat,
- überführt, in einem weiteren Schritt durch Umsetzung mit Verbindungen der 15 allgemeinen Formel (VIII)

in welcher

20

R² die oben angegebene Bedeutung hat,

die Verbindungen der allgemeinen Formel (IX)

- 22 -

$$R^{2}O$$
 NH_{2} N N R^{1} $(IX),$

in welcher

5 R¹ und R² die oben angegebene Bedeutung haben,

herstellt, diese anschließend mit Diethylcarbonat in Verbindungen der allgemeinen Formel (X)

$$C_2H_5$$
 R^2O
 HN
 O
 N
 N
 R^1
 (X)

10

20

in welcher

R1 und R2 die oben angegebene Bedeutung haben,

15 überführt und abschließend durch Erhitzen zu den Verbindungen der allgemeinen Formel (II) cyclisiert.

Als Lösemittel für die einzelnen Schritte eignen sich die üblichen organischen Lösemittel, die sich unter den Reaktionsbedingungen nicht verändern. Hierzu gehören bevorzugt Ether wie Diethylether, Dioxan, Tetrahydrofuran, Glykoldimethylether, oder Kohlenwasserstoffe wie Benzol, Toluol, Xylol, Hexan, Cyclohexan oder Erdölfrakionen, oder Halogenkohlenwasserstoffe wie Dichlormethan, Trichlormethan, Tetrachlormethan, Dichlorethan, Trichlorethylen oder Chlorbenzol, oder Essigester, Dimethylformamid, Hexamethylphosphorsäuretriamid, Acetonitril, Aceton, Dimethoxyethan

PCT/EP00/12592

oder Pyridin. Ebenso ist es möglich, Gemische der genannten Lösemittel zu verwenden.

Die Reaktionstemperaturen können im allgemeinen in einem größeren Bereich variieren. Im allgemeinen arbeitet man in einem Bereich von –20 °C bis 200 °C, bevorzugt von 0 °C bis 70 °C.

Die erfindungsgemäßen Verfahrensschritte werden im allgemeinen bei Normaldruck durchgeführt. Es ist aber auch möglich, bei Überdruck oder bei Unterdruck durchzuführen (z. B. in einem Bereich von 0,5 bis 5 bar).

Die Umsetzungen können beispielsweise in einem Temperaturbereich von 0°C bis Raumtemperatur und bei Normaldruck erfolgen.

Die Verbindungen der allgemeinen Formeln (III), (IX) und (X) sind neu und können beispielsweise wie oben beschrieben hergestellt werden.

Die Verbindungen der allgemeinen Formeln (IV), (V), (VI), (VII) und (VIII) sind bekannt oder können nach üblichen Methoden hergestellt werden.

20

5

10

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zeigen ein nicht vorhersehbares, wertvolles pharmakologisches Wirkspektrum.

Sie inhibieren entweder eine oder mehrere der c-GMP metabolisierenden Phosphodiesterasen (PDE I, PDE II und PDE V). Dies führt zu einem Anstieg von c-GMP. Die differenzierte Expression der Phosphodiesterasen in verschiedenen Zellen, Geweben und Organen, ebenso wie die differenzierte subzelluläre Lokalisation dieser Enzyme, ermöglichen in Verbindung mit den erfindungsgemäßen selektiven Inhibitoren, eine selektive Adressierung der verschiedenen von cGMP regulierten Vorgänge.

Außerdem verstärken die erfindungsgemäßen Verbindungen die Wirkung von Substanzen, wie beispielsweise EDRF (Endothelium derived relaxing factor), ANP (atrial natriuretic peptide), von Nitrovasodilatoren und allen anderen Substanzen, die auf eine andere Art als Phosphodiesterase-Inhibitoren die cGMP-Konzentration erhöhen.

5

10

Daher sind die erfindungsgemäßen Verbindungen der allgemeine Formel (I) geeignet zur Prophylaxe und/oder Behandlung von Erkrankungen, bei denen ein Anstieg der cGMP-Konzentration heilsam ist, d.h. Erkrankungen, die im Zusammenhang mit cGMP-regulierten Vorgängen stehen (im Englischen meist einfach als 'cGMP-related diseases' bezeichnet). Hierzu zählen kardiovaskuläre Erkrankungen, Erkrankungen des Urogenitalsystems sowie cerebrovaskuläre Erkrankungen.

15

Unter dem Begriff "kardiovaskulären Erkrankungen" im Sinne der vorliegenden Erfindung fallen Erkrankungen wie beispielsweise Bluthochdruck, neuronale Hypertonie, stabile und instabile Angina, periphere und kardiale Gefäßerkrankungen, Arrhythmien, thromboembolische Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorische und ischämische Attacken, Angina pectoris, periphere Durchblutungsstörungen, Verhinderung von Restenosen nach Thrombolysetherapie, percutaner transluminaler Angioplastie (PTA), percutan transluminaler Koronarangioplastien (PTCA) und Bypass.

20

Weiterhin können die erfindungsgemäßen Verbindungen der allgemeine Formel (I) auch Bedeutung für cerebrovaskuläre Erkrankungen haben. Hierzu zählen beispielsweise cerebrale Ischämie, Hirnschlag, Reperfusionsschäden, Hirntrauma, Ödeme, cerebrale Thrombose, Demenz und Alzheimer'sche Erkrankung

25

30

Die relaxierende Wirkung auf glatte Muskulatur macht sie geeignet für die Behandlung von Erkrankungen des Urogenitalsystems wie Prostatahypertrophie, Inkontinenz sowie insbesondere zur Behandlung der erektilen Dysfunktion und der weiblichen sexuellen Dysfunktion.

WO 01/47929 PCT/EP00/12592

Aktivität der Phosphordiesterasen (PDE's)

Die cGMP-stimulierbare PDE II, die cGMP-hemmbare PDE III und die cAMP-spezifische PDE IV wurden entweder aus Schweine- oder Rinderherzmyokard isoliert. Die Ca²⁺-Calmodulin stimulierbare PDE I wurde aus Schweineaorta, Schweinehirn oder bevorzugt aus Rinderaorta isoliert. Die c-GMP spezifische PDE V wurde aus Schweinedünndarm, Schweineaorta, humanen Blutplättchen und bevorzugt aus Rinderaorta gewonnen. Die Reinigung erfolgte durch Anionenaustauschchromatographie an MonoQ^R Pharmacia im wesentlichen nach der Methode von M. Hoey and Miles D. Houslay, Biochemical Pharmacology, Vol. 40, 193-202 (1990) und C. Lugman et al. Biochemical Pharmacology Vol. 35 1743-1751 (1986).

Die Bestimmung der Enzymaktivität erfolgt in einem Testansatz von 100 µl in 20 mM Tris/HCl-Puffer pH 7,5 der 5 mM MgCl₂, 0,1 mg/ml Rinderserumalbumin und entweder 800 Bg 3HcAMP oder 3HcGMP enthält. Die Endkonzentration der entsprechenden Nucleotide ist 10⁻⁶ mol/l. Die Reaktion wird durch Zugabe des Enzyms gestartet, die Enzymmenge ist so bemessen, dass während der Inkubationszeit von 30 min ca. 50% des Substrates umgesetzt werden. Um die cGMP stimulierbare PDE II zu testen, wird als Substrat ³HcAMP verwendet und dem Ansatz 10⁻⁶ mol/l nicht markiertes cGMP zugesetzt. Um die Ca2+-Calmodulinabhängige PDE I zu testen, werden dem Reaktionsansatz noch 1 µM CaCl2 und 0,1 µM Calmodulin zugesetzt. Die Reaktion wird durch Zugabe von 100 µl Acetonitril, das 1 mM cAMP und 1 mM AMP enthält, gestoppt. 100 µl des Reaktionsansatzes werden mittels HPLC getrennt und die Spaltprodukte "Online" mit einem Durchflußscintillationszähler quantitativ bestimmt. Es wird die Substanzkonzentration gemessen, bei der die Reaktionsgeschwindigkeit um 50 % vermindert ist. Zusätzlich wurde zur Testung der "Phosphodiesterase [3H] cAMP-SPA enzyme assay" und der "Phosphodiesterase [3H] cGMP-SPA enzyme assay" der Firma Amersham Life Science verwendet. Der Test wurde nach dem vom Hersteller angegebenen Versuchsprotokoll durchgeführt. Für die Aktivitätsbestimmung der PDE II wurde der [3H] cAMP SPA assay verwendet, wobei dem Reaktionsansatz 10⁻⁶ M cGMP zur Aktivierung des Enzyms zugegeben wurde. Für die Messung der

5

10

15

20

25

WO 01/47929 PCT/EP00/12592

PDE I wurden 10⁻⁷ M Calmodulin und 1 µM CaCl₂ zum Reaktionsansatz zugegeben. Die PDE V wurde mit dem [³H] cGMP SPA assay gemessen.

Grundsätzlich führt die Inhibition einer oder mehrerer Phosphodiesterasen dieses Typs zu einer Erhöhung der cGMP-Konzentration. Dadurch sind die Verbindungen interessant für alle Therapien, in denen eine Erhöhung der cGMP-Konzentration als heilsam angenommen werden kann.

Die Untersuchung der kardiovaskulären Wirkungen wurden an normotonen und an SH-Ratten und an Hunden durchgeführt. Die Substanzen wurden intravenös oder oral appliziert.

Die Untersuchung auf erektionsauslösende Wirkung wurde am wachen Kaninchen durchgeführt [H. Naganuma, T. Egashira, J. Fuji, Clinical and Experimental Pharmacology and Physiology 20, 177-183 (1993)]. Die Substanzen wurden oral oder parenteral appliziert.

Die neuen Wirkstoffe sowie ihre physiologisch unbedenklichen Salze (z. B. Hydrochloride, Maleinate oder Lactate) können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole, Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90 Gew.-% der Gesamtmischung vorhanden sein, d. h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z. B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

5

10

15

20

25

WO 01/47929

- 27 -

PCT/EP00/12592

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal oder parenteral, z. B. perlingual, buccal, intravenös, nasal, rektal oder inhalativ.

Für die Anwendung beim Menschen werden bei oraler Administration im allgemeinen Dosierungen von 0,001 bis 50 mg/kg vorzugsweise 0,01 mg/kg - 20 mg/kg verabreicht. Bei parenteraler Administration, wie z. B. über Schleimhäute nasal, buccal, inhalativ, ist eine Dosierung von 0,001 mg/kg - 0,5 mg/kg sinnvoll.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der oben genannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die erfindungsgemäßen Verbindungen sind auch zur Anwendung in der Tiermedizin geeignet. Für Anwendungen in der Tiermedizin können die Verbindungen oder ihre nicht toxischen Salze in einer geeigneten Formulierung in Übereinstimmung mit den allgemeinen tiermedizinischen Praxen verabreicht werden. Der Tierarzt kann die Art der Anwendung und die Dosierung nach Art des zu behandelnden Tieres festlegen.

In den folgenden Herstellungsbeispielen der Vorstufen und Endprodukte ist in Strukturformeln mit einer oder mehreren ungesättigten Valenzen am Stickstoff- oder Sauerstoffatom stets ein Wasserstoff zu ergänzen.

D. h. Strukturen z. B. mit einem Strukturelement "-N-" meint eigentlich "-NH-" und Strukturen z. B. mit einem Strukturelement mit "-O" meint eigentlich "-OH".

Herstellung der Vorstufen

10 Beispiel I

4-Amino-5-cyclopentyl-4H-1,2,4-triazol-3-thiol

34.29 g (323 mmol) feingemörsertes Thiocarbohydrazid werden in 38.5 ml (355.3 mmol) Cyclopentancarbonsäure suspendiert und 20 min auf 165°C erhitzt. Bis zum Auftreten eines gelblichen Kondensates wird dabei entstehendes Reaktionswasser abdestilliert. Nach Erkalten wird die Suspension mit 250 ml Dichlormethan/Methanol 95:5 versetzt und es wird vom Niederschlag abfiltriert. Das Filtrat wird konzentriert und an Silicagel säulenfiltriert (Dichlormethan/Methanol 98:2). Nach Trocknen im Hochvakuum wird das Produkt als farbloser Feststoff erhalten.

Ausbeute: 34.37 g, 75 % Reinheit (43.3 % der Theorie)

MS (ESI-pos.): m/z (%) = 185 (M+H) (53), 184 (M⁺) (100), 143 (85)

¹H-NMR (200 MHz, CDCl₃): $\delta = 1.58-2.17$ (m, 8 H); 2.70-2.82 (m, 1 H); 3.20-3.35

25 (m, 1 H); 4.51 (s, 2 H).

WO 01/47929 PCT/EP00/12592

Beispiel II

3-Cyclopentyl-4H-1,2,4-triazol-4-amin

5

34.4 g (75 % Reinheit, 140 mmol) der Verbindung aus Beispiel I werden in 250 ml Essigsäure vorgelegt und unter Rückfluß mit 66 ml 30 %iger Wasserstoffperoxid-Lösung portionsweise versetzt. Nach Ende der Zugabe wird 30 min bei Rückfluß gerührt, nach Abkühlen wird konzentriert und mit 3 N Natriumhydroxidlösung basisch gestellt. Die wässrige Phase wird sechsmal mit Dichlormethan extrahiert. Nach Vereinigung der organischen Phasen wird mit wenig gesättigter Natrium-chloridlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert. Der anfallende leicht gelbliche Feststoff wird aus Dichlormethan/Ether kristallisiert.

Ausbeute: 3.99 g (15.4 % der Theorie)

15

10

MS (DCI, NH₃): m/z (%) = 153 (M+H) (100)

¹H-NMR (400 MHz, CDCl₃): $\delta = 1.65$ -1.98 (m, 7 H); 2.03-2.12 (m, 2 H); 3.27 (qui, 1 H); 4.86 (s, 2 H); 8.10 (s, 1 H).

Beispiel III

20 N-(3-Cyclopentyl-4H-1,2,4-triazol-4-yl)-2-ethoxybenzolcarboximid-amid

Zu einer Suspension von 0.34 g (60 %, 8.42 mmol) NaH in 24 ml trockenem 1,4-Dioxan (ausgeheizter Kolben, unter Argon) wird die Verbindung aus Beispiel II als 5

Feststoff (1.22 g, 8.02 mmol) gegeben. Die Suspension wird 30 min bei 90°C gerührt, bevor 1.30 g (8.82 mmol) 2-Ethoxybenzonitril hinzugefügt werden. Die resultierende Suspension wird über Nacht bei 90°C gerührt. Nach Zugabe von Wasser wird mit Dichlormethan extrahiert (viermal). Die vereinigten organischen Phasen werden mit wenig gesättigter Natriumchloridlösung gewaschen und über Magnesiumsulfat getrocknet. Nach Einengen auf circa 20 ml wird Cyclohexan zugesetzt und der ausgefallene Feststoff durch Abfiltrieren isoliert.

Ausbeute: 1.58 g (65.8 % der Theorie)

MS (DCI, NH₃): m/z (%) = 300 (M+H) (100)

¹H-NMR (200 MHz, CDCl₃): δ = 1.51 (t, 3 H); 1.56-2.12 (m, 8 H); 3.14 (qui, 1 H); 4.22 (q, 2 H); 6.49 (bs, 2 H); 7.02-7.15 (m, 2 H); 7.49 (dt, 1 H); 8.04 (s, 1 H); 8.18 (dd, 1 H).

Beispiel IV

Ethyl-[(3-cyclopentyl-4H-1,2,4-triazol-4-yl)-imido]-(2-ethoxyphenyl)-methylcarbamat

Zu einer Suspension von 0.23 g (60 %, 5.8 mmol) Natriumhydrid in 26 ml trockenem
1,4-Dioxan (ausgeheizter Kolben, Argon) werden 1.58 g (5.28 mmol) der
Verbindung aus Beispiel III als Feststoff gegeben und 1.02 ml (8.4 mmol)
Diethylcarbonat zugetropft. Die Suspension wird bei 90°C über Nacht gerührt. Nach
Abkühlen werden weitere 120 mg Natriumhydrid und 1.02 ml Diethylcarbonat
zugefügt und die Mischung wird zusätzliche 4 h bei 90°C gerührt, bevor nach
Abkühlen mit 1 N Salzsäurelösung neutralisiert und anschließend im Vakuum
konzentriert wird. Der Rückstand wird mit wenig Wasser behandelt und mit

Dichlormethan extrahiert (viermal). Die vereinigten organischen Phasen werden mit wenig gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet, eingeengt und am Hochvakuum getrocknet.

Ausbeute: 2.14 g, 90 % Reinheit (98.2 % der Theorie)

MS (DCI, NH₃): m/z (%) = 372 (M+H) (100)

Beispiel V

3-Cyclopentyl-6-(2-ethoxyphenyl)[1,2,4]triazolo[3,4-f][1,2,4]triazin-8(7H)-on

10

15

5

Eine Lösung aus 2.14 g (90 %, 5.19 mmol) der Verbindung aus Beispiel IV in 20 ml 2-Ethoxyethanol wird über Nacht unter Rückfluß erhitzt. Nach Abkühlen wird die Mischung am Hochvakuum einrotiert und an der Ölpumpe getrocknet. Der feste Rückstand wird mit heißem Ether behandelt, der ausgefallene Feststoff wird abfiltriert und am Hochvakuum getrocknet.

Ausbeute: 1.367 g (81 % der Theorie)

MS (DCI, NH₃): m/z (%) = 326 (M+H) (100)

¹H-NMR (200 MHz, CDCl₃): $\delta = 1.62$ (t, 3 H); 1.72-2.30 (m, 8 H); 3.68 (qui, 1 H); 4.34 (q, 2 H); 7.08-7.21 (m, 2 H); 7.04 (dt, 1 H); 8.25 (dd, 1 H); 10.85 (bs, 1 H).

WO 01/47929 PCT/EP00/12592

Beispiel VI

3-(3-Cyclopentyl-8-oxo-7,8-dihydro[1,2,4]triazolo[3,4-f][1,2,4]triazin-6-yl)-4-ethoxybenzolsulfonylchlorid

5

10

In 1.68 ml (25.2 mmol) eisgekühlte Chlorsulfonsäure werden 683 mg (2.1 mmol) der Verbindung aus Beispiel V portionsweise eingetragen. Die Mischung wird nach Erwärmen auf Raumtemperatur über Nacht nachgerührt. Nach Abkühlen auf 0°C wird mit Dichlormethan verdünnt und auf Eiswasser gegossen. Die organische Phase wird abgetrennt. Man extrahiert die wässrige Phase nochmals mit Dichlormethan, vereinigt die organischen Phasen, wäscht mit wenig gesättigter Natriumchloridlösung, trocknet über Magnesiumsulfat und dampft ein.

Ausbeute: 801 mg (90 % der Theorie)

MS (DCI, NH₃): m/z (%) = 424 (M+H) (100)

¹H-NMR (200 MHz, CDCl₃): δ = 1.65 (t, 3 H); 1.72-2.32 (m, 8 H); 3.71 (qui, 1 H); 4.47 (q, 2 H); 7.30 (d, 1 H); 8.22 (dd, 1 H); 8.77 (d, 1 H); 10.76 (bs, 1 H).

Herstellung der Wirkstoffe

Beispiel 1

 $3-Cyclopentyl-6-(2-ethoxy-5-\{[4-(2-hydroxyethyl)piperazino] sulfonyl\} phenyl)-10-(2-ethoxy-5-\{[4-(2-hydroxyethyl)piperazino] sulfonyl\} phenyl)-10-(2-ethoxy-5-(2-$

5 [1,2,4]triazolo[3,4-f][1,2,4]triazin-8-(7H)-on

Zu einer Suspension aus 395 mg (0.92 mmol) des Sulfonsäurechlorids aus Beispiel VI in 3 ml Dichlormethan werden 394 mg (2.8 mmol) N-Hydroxyethylpiperazin und eine kleine Spatelspitze 4-N-Dimethylaminopyridin (DMAP) gegeben, die resultierende klare Lösung wird bei Raumtemperatur gerührt, bevor nach 7 Stunden mit Dichlormethan verdünnt wird, mit wenig Wasser sowie gesättigter Natriumchlorid gewaschen, über Magnesiumchlorid getrocknet und im Vakuum konzentriert wird. Der Rückstand wird aus wenig Dichlormethan/Ether kristallisiert.

Ausbeute: 368 mg (72.5 % der Theorie)

15 MS (DCI, NH₃): m/z (%) = 518 (M+H) (100) ¹H-NMR (200 MHz, CDCl₃): δ = 1.62 (t, 3 H); 1.68-2.30 (m, 8 H); 2.52-2.70 (m, 6 H); 3.05-3.17 (m, 4 H); 3.52-3.71 (m, 3 H); 4.49 (q, 2 H); 7.22 (d, 1 H); 7.91 (dd, 1 H); 8.43 (bs, 1 H); 10.64 (bs, 1 H).

Beispiel 2

3-(3-Cyclopentyl-8-oxo-7,8-dihydro[1,2,4]triazolo[3,4-f][1,2,4]triazin-6-yl)-N-(3,4-dimethoxyphenethyl)-4-ethoxy-N-methylbenzolsulfonamid

Zu einer Suspension aus 395 mg (0.93 mmol) des Sulfonsäurechlorids aus Beispiel VI in 3 ml Dichlormethan werden 546 mg (2.8 mmol) N-Methylhomoveratrylamin und eine kleine Spatelspitze 4-DMAP gegeben. Die resultierende klare Lösung wird bei Raumtemperatur gerührt, bevor nach 7 h mit Dichlormethan verdünnt wird, mit 1 N Salzsäurelösung (zweimal) sowie gesättigter Natriumchlorid gewaschen, über Magnesiumchlorid getrocknet und im Vakuum konzentriert wird. Der Rückstand wird aus wenig Dichlormethan/Ether kristallisiert.

Ausbeute: 299 mg (55.1 % der Theorie)

MS (DCI, NH₃): m/z (%) = 583 (M+H) (100)

¹H-NMR (200 MHz, CDCl₃): δ = 1.63 (t, 3 H); 1.68-2.23 (m, 8 H); 2.78-2.90 (m, 2 H); 2.82 (s, 3 H); 3.32 (t, 2 H); 3.63 (qui, 1 H); 3.84 (s, 6 H); 4.39 (q, 2 H); 6.68-6.80 (m, 3 H); 7.17 (d, 1 H); 7.89 (dd, 1 H); 8.49 (d, 1 H); 10.66 (bs, 1 H).

Die in den folgenden Tabellen aufgeführten Sulfonamide wurden mittels automatisierter Parallelsynthese aus dem entsprechenden Sulfonsäurechlorid (Beispiel VI) und den entsprechenden Aminen nach einer der drei folgenden Standardvorschriften hergestellt.

15

WO 01/47929

- 35 -

Die Reinheit der Endprodukte wurde mittels HPLC bestimmt, ihre Charakterisierungen durch LC-MS Messung vorgenommen. Der in der Spalte % (HPLC) angegebene Zahlenwert gibt den Gehalt des durch den Molpeak charakterisierten Endprodukts an. Standardvorschrift A wurde angewendet bei Aminen mit aciden Funktionalitäten, Standardvorschrift B bei Aminen mit neutralen Funktionalitäten, Standardvorschrift C bei Aminen mit zusätzlichen basischen Funktionalitäten.

PCT/EP00/12592

Bei Verbindungen, die in den folgenden Tabellen aufgeführt sind und die optisch eine freie Stickstoffvalenz aufzeigen, sind diese grundsätzlich als -NH-Rest zu verstehen.

Standardvorschrift A: Umsetzung von Aminen mit aciden Funktionalitäten Zunächst werden 0,05 mmol Amin, 0,042 mmol Sulfonsäurechlorid und 0,10 mmol Na₂CO₃ vorgelegt und 0,5 ml eines Gemisches aus THF/H₂O von Hand zupipettiert. Nach 24 h bei RT wird mit 0,5 ml 1 M H₂SO₄-Lösung versetzt und über eine zweiphasige Kartusche filtriert (500 mg Extrelut (Oberphase) und 500 mg SiO₂, Laufmittel Essigester). Nach dem Einengen des Filtrates im Vakuum erhält man das Produkt.

20 <u>Standardvorschrift B:</u> Umsetzung von Aminen mit neutralen Funktionalitäten Zunächst werden 0,125 mmol Amin vorgelegt und vom Synthesizer 0,03 mmol Sulfonsäurechlorid als Lösung in 1,2-Dichlorethan zupipettiert. Nach 24 h wird das Gemisch mit 0,5 ml 1 M H₂SO₄ versetzt und über eine zweiphasige Kartusche (500 mg Extrelut (Oberphase) und 500 mg SiO₂, Laufmittel: Essigester) filtriert. Das Filtrat wird im Vakuum eingeengt.

Standardvorschrift C: Umsetzung von Aminen mit basischen Funktionalitäten Zunächst werden 0,05 mmol Amin vorgelegt und vom Synthesizer 0,038 mmol Sulfonsäurechlorid als Lösung in 1,2-Dichlorethan und 0,05 mmol Triethylamin als Lösung in 1,2-Dichlorethan zupipettiert. Nach 24 h wird zunächst mit 3 ml gesättigter NaHCO₃-Lösung versetzt und das Reaktionsgemisch über eine zweiphasige

30

5

10

WO 01/47929 PCT/EP00/12592

- 36 -

Kartusche filtriert. Nach dem Einengen des Filtrates im Vakuum erhält man das Produkt.

Alle Reaktionen werden dünnschichtchromatographisch verfolgt. Für den Fall das nach 24 Stunden bei RT keine vollständige Umsetzung erfolgt ist, wird für weitere 12 Stunden auf 60°C erhitzt und im Anschluß der Versuch beendet.

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
3	CH ₃ O N N CH ₃ O H H O	490,59	80	49 1
4	CH ₃ O CH ₃ H O CH ₃	490,59	. 94	491
5	To the second se	490,59	97	491

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
6	CH ₃ O N N N N N N N N N N N N N N N N N N	538,63	78	539
7	CH ₃ OH H ₃ CC	476,56	95	477
8	CH ₃ CH ₃ OH	538,63	81	539

PCT/EP00/12592

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
9	CH ₃ OH OH	476,56	88	477
10		462,53	91	463
11	CH ₃ O OH H	504,61	85	505

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
12		510,58	87	511
13		524,60	82	525
14	CH ₃ N N N N N N N N N N N N N N N N N N N	587,68	80	588

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
15	CH ₃ O H	522,61	97	523
16	CH ₃ O N N CH ₃ O CH ₃	524,60	. 78	525
17	CH ₃ O N N CH ₃ O CH ₃	594,69	77	595

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
18	CH ₃ O CH ₃ O CH ₃	510,58	92	511
19		540,60	92	541
20	CH ₃	524,60	82	525

PCT/EP00/12592

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
21		510,58	85	511
22	CH ₃ O CH ₃ O CH ₃ O CH ₃	528,57	95	529
23	CH ₃ O N N N CH ₃ O CH ₃ O CH ₃	570,63	89	571

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
24		524,60	82	525
25	Hong State of the	462,53	98	463
26		434,48	82	435
27	CH ₃ O H	515,60	86	516

WO 01/47929 PCT/EP00/12592

- 45 -

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
28	CH ₃ OH ₃	490,59	96	491
29	CH ₃ OH OH	580,71	74	581
30	CH ₃ OH H ₃ CH ₃ OH	490,59	97	491

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
31	CH ₃ O CH ₃	533,61	88	534
32	CH ₃ O N N N N CH ₃	537,65	86	538
33	CH ₃ 0 N N N N N N N N N N N N N N N N N N N	559,69	75	560

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
34	CH ₃ O CH ₃ CH ₃	504,61	99	505
35		524,60	85	525
36		579,68	70	580

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
37	CH ₃ O T T T T T T T T T T T T T T T T T T	517,61	72	518
38	CH ₃ O HO	538,61	67	539
39	CH ₃ O N N N N N N N N N N N N N N N N N N N	501,57	50	502

Bsp Nr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
40	CH ₃ OH CH ₃ OH CH ₃	462,53	97	463
41		478,53	74	479
42	CH ₃	488,57	96	489

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
43	CH ₃ O N N N N N N N N N N N N N N N N N N	492,56	60	493
44	CH ₃ OH	490,59	40	491
45	CH ₃ O N N N N N N N N CH ₃	476,56	60	477
46	CH ₃ O N N O O O O O O O O O O O O O O O O	524,60	83	525

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
47		552,66	70	553
48		538,63	69	539
49	CH ₃ OH	504,61	75	505
50		487,58	83	488

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
51	CH. S Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	541,68	84	542
52		501,57	79	502
53	CH ₃ C N N N N N N N N N N N N N N N N N N N	622,69	80	623

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
54	HO O S S O CH ₃	612,71	70	613
55	CH ₃ O N N N N N N N N N N N N N N N N N N	460,56	40	461
56		551,63	75	552

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
57	CH ₃ O N N N N N N N N N N N N N N N N N N	545,62	79	546
58	CH C	517,61	55	518
59	CH ₃ O N N N N N N N N N N N N N N N N N N	573,68	75	574

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
60	CH ₃ O N CH ₃ O N CH ₃	490,59	61	491
61	CH ₃ O CH ₄ O C C C C C C C C C C C C C C C C C C	501,61	86	502
62	CH ₃	474,54	75	475
63	CH ₃ O N N N N N N N N N N N N N N N N N N N	488,57	77	489

BspNr.	Struktur	MG [g/mol]	HPLC Area % bei 210 nm	Mz + H
64	CH3	474,54	70	475
65		501,61	64	502

Patentansprüche

1. Neue Triazolotriazinone der allgemeinen Formel (I)

5

in welcher

für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen oder für (C₃-C₈)-Cycloalkyl steht,

R² für Wasserstoff oder für geradkettiges oder verzweigtes Alkyl mit bis zu 6 Kohlenstoffatomen steht,

15 R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, (C₁-C6)-Alkoxy oder für (C₁-C6)-Alkyl stehen, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Hydroxy, (C₁-C5)-Alkoxy, Phenoxy oder durch Reste der Formeln

$$--0$$
-CO-NR⁵R⁶ , $--$ NR⁷R⁸ oder

20

substituiert ist,

worin

R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder Phenyl bedeuten,

oder

5

R⁷ und R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen, gesättigten Heterocyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S und O enthalten kann,

10

und/oder seinerseits (C₁-C₆)-Alkyl gegebenenfalls durch Phenyl substituiert ist, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, (C₁-C₆)-Alkoxy, Halogen oder durch (C₁-C₆)-Alkyl substituiert ist, das seinerseits wiederum durch Hydroxy oder (C₁-C₆)-Alkoxy substituiert ist, oder Phenyl gegebenenfalls durch Reste der Formeln –SO₂-NR⁹R¹⁰ oder -NR¹¹R¹² substituiert ist,

15

worin

20

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder Phenyl bedeuten,

oder

25

R¹¹ und R¹² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen, gesättigten Heterocyclus bilden, der noch ein weiteres Heteroatom aus der Reihe S und O enthalten kann.

30

oder

- 59 -

 R^3 für Wasserstoff oder (C₁-C₆)-Alkyl steht,

und

5 R⁴ für Reste der Formel

steht,

10 oder

für Phenyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Halogen, (C₁-C₆)-Alkoxy, Hydroxy, durch einen Rest der Formel

oder durch (C_1-C_6) -Alkyl substituiert ist, das seinerseits durch Hydroxy oder (C_1-C_6) -Alkoxy substituiert sein kann,

20 oder

15

R³ und R⁴ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Rest der Formel

bilden,

$$-N$$
 $N-R^{13}$ $-N$ R^{14} R^{15} $-N$ $-N$

worin

R¹³ Wasserstoff, (C₁-C₆)-Alkoxycarbonyl, (C₃-C₆)-Cycloalkyl, Pyridyl, Pyrimidyl oder (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff, Hydroxy oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formel –P(O)(OR¹⁸)(OR¹⁹) substituiert ist,

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten,

oder

R¹⁴ und R¹⁵ gemeinsam einen Rest der Formel =N-OH bilden,

 R^{16} und R^{17} gleich oder verschieden sind und Wasserstoff oder (C_1 - C_6)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

5

10

15

20

und deren Salze, N-Oxide und isomere Formen.

2. Neue Triazolotriazinone der allgemeinen Formel (I) gemäß Anspruch 1,

⁻5

in welcher

10

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 5 Kohlenstoffatomen steht, oder für Cyclopropyl, Cyclopentyl oder Cyclohexyl steht,

10

R² für geradkettiges oder verzweigtes Alkyl mit bis zu 4 Kohlenstoffatomen steht,

15

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, Methoxy oder für (C₁-C₅)-Alkyl stehen, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Hydroxy, (C₁-C₄)-Alkoxy, Phenoxy oder durch Gruppen der Formeln

20

$$-\text{O-CO-NR}^5\text{R}^6$$
, $-\text{NR}^7\text{R}^8$ oder

ćU

substituiert ist,

worin

25

R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder Phenyl bedeuten,

oder

R⁷ und R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

5

und/oder seinerseits (C₁-C₅)-Alkyl gegebenenfalls durch Phenyl substituiert ist, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, (C₁-C₄)-Alkoxy oder durch (C₁-C₄)-Alkyl substituiert sein kann, das seinerseits wiederum durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert ist, oder Phenyl gegebenenfalls durch Reste der Formeln -SO₂-NR⁹R¹⁰ oder -NR¹¹R¹² substituiert ist,

10

worin

R⁹, R¹⁰, R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder Phenyl bedeuten,

15

oder

R¹¹ und R¹² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

20

oder

R³ für Wasserstoff oder (C₁-C₄)-Alkyl steht,

25 und

R⁴ für Reste der Formel

steht,

oder

5

für Phenyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Fluor, (C₁-C₄)-Alkoxy, Hydroxy, durch einen Rest der Formel

10

oder durch (C_1 - C_4)-Alkyl substituiert ist, das seinerseits durch Hydroxy oder (C_1 - C_3)-Alkoxy substituiert sein kann,

oder

15

R³ und R⁴ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Rest der Formel

$$-N-R^{13}$$
 $-N$ R^{16} R^{15} , $-N$

bilden,

20

worin

R^{13}	Wasserstoff,	(C ₁ -C ₄)-Alkoxycarbonyl,	Cyclopentyl,	Cyclo-
	hexyl, Pyridy	vl, Pyrimidyl oder (C ₁ -C ₅)-Alkyl bedeu	tet, das
	gegebenenfal	ls durch Hydroxy substituie	rt ist,	

5

R¹⁴ und R¹⁵ gleich oder verschieden sind und Wasserstoff oder (C₁-C₅)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formel -P(O)(OR¹⁸)(OR¹⁹) substituiert ist,

10

worin

R¹⁸ und R¹⁹ gleich oder verschieden sind und Wasserstoff, Methyl oder Ethyl bedeuten,

15

oder

R¹⁴ und R¹⁵ gemeinsam einen Rest der Formel =N-OH bilden,

20

R¹⁶ und R¹⁷ gleich oder verschieden sind und Wasserstoff, Hydroxy oder (C₁-C₃)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze, N-Oxide und isomere Formen.

Neue Triazolotriazinone der allgemeinen Formel (I) gemäß Anspruch 1,

in welcher

R¹ für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht oder für Cyclopentyl steht, R² für geradkettiges oder verzweigtes Alkyl mit bis zu 3 Kohlenstoffatomen steht,

5

R³ und R⁴ gleich oder verschieden sind und für Wasserstoff, Methoxy oder für (C₁-C₄)-Alkyl stehen, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Hydroxy, (C₁-C₄)-Alkoxy, Phenoxy oder durch Gruppen der Formeln

oder

10

substituiert ist,

worin

15

R⁵, R⁶, R⁷ und R⁸ gleich oder verschieden sind und Wasserstoff, (C₁-C₃)-Alkyl oder Phenyl bedeuten,

oder

20

R⁷ und R⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

25

und/oder seinerseits (C₁-C₄)-Alkyl gegebenenfalls durch Phenyl substituiert ist, das gegebenenfalls bis zu 3-fach gleich oder verschieden durch Hydroxy, (C₁-C₃)-Alkoxy, Fluor oder durch (C₁-C₃)-Alkyl substituiert ist, das seinerseits wiederum durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert ist, oder Phenyl gegebenenfalls durch Reste der Formeln -SO₂-NR⁹R¹⁰ oder -NR¹¹R¹² substituiert ist,

worin

 R^9 , R^{10} , R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff, (C₁-C₃)-Alkyl oder Phenyl bedeuten,

oder

5

R¹¹ und R¹² gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Morpholin-, Piperidin- oder Pyrrolidinring bilden,

oder

10

R³ für Wasserstoff oder Methyl steht,

und

15

R⁴ für Reste der Formel

oder

steht,

20

oder

für Phenyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden durch Fluor, Methoxy, Hydroxy, durch einen Rest der Formel

oder durch (C₁-C₄)-Alkyl substituiert ist, das seinerseits durch Hydroxy oder Methoxy oder Ethoxy substituiert sein kann,

oder

5

R³ und R⁴ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen Rest der Formel

10

worin

 R^{13} Wasserstoff, (C₁-C₄)-Alkoxycarbonyl, Cyclopentyl, Pyrimidyl oder (C₁-C₃)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

15

R¹⁴ und R¹⁵ gleich oder verschieden sind und (C₁-C₃)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formel -P(O)(OR¹⁸)(OR¹⁹) substituiert ist,

20

worin

R¹⁸ und R¹⁹ Ethyl bedeuten,

oder

5

10

R¹⁴ und R¹⁵ gemeinsam einen Rest der Formel =N-OH bilden,

R¹⁶ und R¹⁷ gleich oder verschieden sind und Wasserstoff oder (C₁-C₃)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

und deren Salze, N-Oxide und isomere Formen.

4. Neue Triazolotriazinone der allgemeinen Formel (I), gemäß Anspruch 1 bis 3 mit folgenden Strukturen:

5. Verfahren zur Herstellung von Triazolotriazinonen gemäß Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man Verbindungen der allgemeinen Formel (II)

$$R^2O$$
 HN N N R^1 (II),

in welcher

5

10

R1 und R2 die oben angegebene Bedeutung haben,

mit Chlorsulfonsäure (CISO₃H) gegebenenfalls in inerten Lösemitteln, gegebenenfalls in Anwesenheit einer Base zu den Verbindungen der allgemeinen Formel (III)

in welcher

15

R¹ und R² die oben angegebene Bedeutung haben,

umsetzt und abschließend mit Aminen der allgemeinen Formel (IV)

20

 HNR^3R^4 (IV),

in welcher

10

15

20

25

30

R³ und R⁴ die oben angegebene Bedeutung haben,

umsetzt.

- 5 6. Verbindungen der allgemeinen Formel (I) gemäß Ansprüchen 1 bis 4 zur Prophylaxe und/oder Behandlung von Erkrankungen.
 - 7. Arzneimittel oder pharmazeutische Zusammensetzung, enthaltend mindestens eine Verbindung der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 4 sowie einen oder mehrere pharmakologisch unbedenkliche Hilfs- und Trägerstoffe.
 - 8. Arzneimittel oder pharmazeutische Zusammensetzung gemäß Anspruch 7 zur Prophylaxe und/oder Behandlung von Erkrankungen, die im Zusammenhang mit cGMP-regulierten Vorgängen stehen ('cGMP-related diseases').
 - 9. Arzneimittel oder pharmazeutische Zusammensetzung gemäß Anspruch 7 oder 8 zur Prophylaxe und/oder Behandlung von kardiovaskulären Erkrankungen, Erkrankungen des Urogenitalsystems sowie cerebrovaskulären Erkrankungen.
 - 10. Arzneimittel oder pharmazeutische Zusammensetzung gemäß einem der Ansprüche 7 bis 9 zur Prophylaxe und/oder Behandlung von kardiovaskulären Erkrankungen wie Bluthochdruck, neuronale Hypertonie, stabile und instabile Angina, periphere und kardiale Gefäßerkrankungen, Arrhythmien, thromboembolische Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorische und ischämische Attacken, Angina pectoris, periphere Durchblutungsstörungen, Verhinderung von Restenosen nach Thrombolysetherapie, percutaner transluminaler Angioplastie (PTA), percutan transluminaler Koronarangioplastien (PTCA) und Bypass.

5

10

15

- 11. Arzneimittel oder pharmazeutische Zusammensetzung gemäß einem der Ansprüche 7 bis 9 zur Prophylaxe und/oder Behandlung von cerebrovaskulären Erkrankungen wie cerebrale Ischämie, Hirnschlag, Reperfusionsschäden, Hirntrauma, Ödeme, cerebrale Thrombose, Demenz und Alzheimer'sche Erkrankung.
- 12. Arzneimittel oder pharmazeutische Zusammensetzung gemäß einem der Ansprüche 7 bis 9 zur Prophylaxe und/oder Behandlung von Erkrankungen des Urogenitalsystems wie Prostatahypertrophie, Inkontinenz sowie insbesondere erektile Dysfunktion und weibliche sexuelle Dysfunktion.
 - 13. Arzneimittel oder pharmazeutische Zusammensetzung gemäß einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass das Arzneimittel oder die pharmazeutische Zusammensetzung intravenös oder oral appliziert wird.
- 14. Verwendung der Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1 bis 4 zur Herstellung von Arzneimitteln oder pharmazeutischen Zusammensetzungen zur Prophylaxe und/oder Behandlung von Krankheiten.
- 20 15. Verwendung gemäß Anspruch 14 zur Herstellung eines Arzneimittels oder einer pharmazeutischen Zusammensetzung zur Prophylaxe und/oder Behandlung von Erkrankungen, die im Zusammenhang mit cGMP-regulierten Vorgängen stehen ('cGMP-related diseases').
- 25 16. Verwendung gemäß Anspruch 14 oder 15 zur Herstellung eines Arzneimittels oder einer pharmazeutischen Zusammensetzung zur Prophylaxe und/oder Behandlung von kardiovaskulären Erkrankungen, Erkrankungen des Urogenitalsystems sowie cerebrovaskulären Erkrankungen.
- 30 17. Verwendung gemäß einem der Ansprüche 14 bis 16 zur Herstellung eines Arzneimittels oder einer pharmazeutischen Zusammensetzung zur Prophylaxe

WO 01/47929 PCT/EP00/12592

und/oder Behandlung von kardiovaskulären Erkrankungen wie Bluthochdruck, neuronale Hypertonie, stabile und instabile Angina, periphere und kardiale Gefäßerkrankungen, Arrhythmien, thromboembolische Erkrankungen und Ischämien wie Myokardinfarkt, Hirnschlag, transistorische und ischämische Attacken, Angina pectoris, periphere Durchblutungsstörungen, Verhinderung von Restenosen nach Thrombolysetherapie, percutaner transluminaler Angioplastie (PTA), percutan transluminaler Koronarangioplastien (PTCA) und Bypass.

10

5

18. Verwendung gemäß einem der Ansprüche 14 bis 16 zur Herstellung eines Arzneimittels oder einer pharmazeutischen Zusammensetzung zur Prophylaxe und/oder Behandlung von cerebrovaskulären Erkrankungen wie cerebrale Ischämie, Hirnschlag, Reperfusionsschäden, Hirntrauma, Ödeme, cerebrale Thrombose, Demenz und Alzheimer'sche Erkrankung.

15

19. Verwendung gemäß einem der Ansprüche 14 bis 16 zur Herstellung eines Arzneimittels oder einer pharmazeutischen Zusammensetzung zur Prophylaxe und/oder Behandlung von Erkrankungen des Urogenitalsystems wie Prostatahypertrophie, Inkontinenz sowie insbesondere erektile Dysfunktion und weibliche sexuelle Dysfunktion.

20

20. Verwendung gemäß einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass die Arzneimittel oder Zusammensetzungen intravenös oder oral appliziert werden.

Inter al Application No PCT/EP 00/12592

		PC	T/EP 00/12592
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C07D487/04 A61P9/10	<u> </u>	
According to	o International Patent Classification (IPC) or to both national class	sification and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 7	ocumentation searched (classification system followed by classifi ${\tt C07D}$	cation symbols)	
Documentat	tion searched other than minimum documentation to the extent th	at such documents are included	in the fields searched
	lata base consulted during the international search (name of data ternal, WPI Data, CHEM ABS Data	a base and, where practical, sea	rch terms used)
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to daim No.
Y	DE 198 12 462 A (BAYER AG) 30 September 1999 (1999-09-30) the whole document		1-20
Υ	WO 99 24433 A (NIEWOEHNER ULRICHELMUT (DE); SERNO PETER (DE); 20 May 1999 (1999-05-20) the whole document		1–20
Υ	WO 98 49166 A (BUNNAGE MARK EDW ;MATHIAS JOHN PAUL (GB); STREET DEREK) 5 November 1998 (1998-11 the whole document	T STEPHEN	1-20
Y	EP 0 463 756 A (PFIZER LTD ;PFI 2 January 1992 (1992-01-02) the whole document	IZER (US))	1-20
		-/	
X Furt	ther documents are listed in the continuation of box C.	X Patent family men	nbers are listed in annex.
"A" docume consider earlier filling of the docume which citation other	ategories of cited documents: sent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) sent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but	or priority date and not clied to understand the invention "X" document of particular cannot be considered involve an inventive st "Y" document of particular cannot be considered document is combined	d after the international filing date in conflict with the application but a principle or theory underlying the relevance; the claimed invention novel or cannot be considered to ap when the document is taken alone relevance; the claimed invention to involve an inventive step when the livith one or more other such doculon being obvious to a person skilled
later t	than the priority date claimed	*&* document member of the	
	actual completion of the international search	Date of mailing of the i	nternational search report $oldsymbol{1}$
	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Grassi, D	

Form PCT/ISA/210 (second sheet) (July 1992)

Inte nal Application No PCT/EP 00/12592

		PCT/EP 00/12592
C.(Continua	Ition) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	US 5 346 901 A (BELL ANDREW S ET AL) 13 September 1994 (1994-09-13) the whole document	1-20
Y	WO 93 06104 A (PFIZER LTD ;PFIZER (US)) 1 April 1993 (1993-04-01) the whole document	1–20
Y	WO 94 00453 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); TERRETT NICHOLAS K) 6 January 1994 (1994-01-06) the whole document	1-20
	•	

Form PCT/ISA/210 (continuation of second sheet) (July 1892)

information on patent family members

Intel nal Application No PCT/EP 00/12592

			PCT/EP (00/12592
Patent document cited in search report		Publication date	Patent family member(s)	Publication date
DE 19812462	A	30-09-1999	AU 1558799 A BR 9812785 A CN 1278822 T DE 19881732 D DK 20000766 A WO 9924433 A EP 1049695 A FI 20001086 A GB 2346877 A LU 90561 A NO 20002444 A PL 340400 A SE 0001745 A	31-05-1999 10-10-2000 03-01-2001 24-08-2000 09-05-2000 20-05-1999 08-11-2000 09-05-2000 23-08-2000 01-12-2000 11-05-2000 29-01-2001 11-05-2000
WO 9924433	A	20-05-1999	DE 19750085 A DE 19812462 A DE 19840289 A AU 1558799 A BR 9812785 A CN 1278822 T DE 19881732 D DK 200000766 A EP 1049695 A FI 20001086 A GB 2346877 A LU 90561 A NO 20002444 A PL 340400 A SE 0001745 A ZA 9810297 A	20-05-1999 30-09-1999 09-03-2000 31-05-1999 10-10-2000 03-01-2001 24-08-2000 09-05-2000 08-11-2000 09-05-2000 23-08-2000 01-12-2000 11-05-2000 29-01-2001 11-05-2000 20-05-1999
WO 9849166	Α	05-11-1998	AU 7644598 A BG 103828 A BR 9810233 A CN 1253561 T EP 0977756 A HR 980222 A JP 2000510485 T NO 995211 A PL 336586 A HU 0001389 A	24-11-1998 30-06-2000 17-10-2000 17-05-2000 09-02-2000 28-02-1999 15-08-2000 25-10-1999 03-07-2000 28-09-2000
EP 0463756	A	02-01-1992	AT 121403 T AU 626757 B AU 7915591 A BR 9102560 A CA 2044748 A,C CN 1057464 A,B CS 9101876 A CY 1971 A DE 69108991 D DE 69108991 T DK 463756 T EG 19651 A ES 2071919 T FI 913017 A,B, HK 219496 A HU 61312 A	15-05-1995 06-08-1992 19-03-1992 21-01-1992 21-12-1991 01-01-1992 15-04-1992 05-09-1997 24-05-1995 31-08-1995 25-09-1995 31-10-1995 01-07-1995 21-12-1991 03-01-1997 28-12-1992

Form PCT/ISA/210 (patent family annex) (July 1992)

information on patent family members

Inte nai Application No
PCT/EP 00/12592

Patent document cited in search report		Publication date		atent family member(s)	Publication date
EP 0463756	A		IE IL JP JP KR LU NO NZ PL RU RU US US US ZA	912094 A 98482 A 2087736 C 6041133 A 7121945 B 9406628 B 90360 A 178029 B 238586 A 166490 B 98011 A,B 2047617 C 2114114 C 5346901 A 5719283 A 5250534 A 9104707 A	01-01-1992 27-11-1995 02-09-1996 15-02-1994 25-12-1995 23-07-1994 03-05-1999 02-10-1995 26-08-1993 31-05-1995 31-03-1992 10-11-1995 27-06-1998 13-09-1994 17-02-1998 05-10-1993 24-02-1993
US 5346901	A	13-09-1994	US US AUU BRACOSY DE EST HKU ELL JP PRUU AU NOZ PT RU AUU	5250534 A 5719283 A 121403 T 626757 B 7915591 A 9102560 A 2044748 A,C 1057464 A,B 9101876 A 1971 A 69108991 D 69108991 T 463756 T 19651 A 0463756 A 2071919 T 913017 A,B, 219496 A 61312 A 912094 A 98482 A 2087736 C 6041133 A 7121945 B 9406628 B 90360 A 178029 B 238586 A 166490 B 98011 A,B 2047617 C 2114114 C 9104707 A 9500148 A	05-10-1993 17-02-1998 15-05-1995 06-08-1992 19-03-1992 21-01-1992 21-12-1991 01-01-1992 05-09-1997 24-05-1995 31-08-1995 31-10-1995 02-01-1995 21-12-1991 03-01-1997 28-12-1992 01-07-1995 21-12-1991 03-01-1997 28-12-1992 01-01-1992 27-11-1995 02-09-1996 15-02-1994 25-12-1995 23-07-1994 03-05-1999 02-10-1995 26-08-1993 31-05-1995 31-03-1992 10-11-1995 27-06-1998 24-02-1993 28-07-1995
WO 9306104	A	01-04-1993	PT	100862 A	30-11-1993
WO 9400453	Α	06-01-1994	AT CA DE	143961 T 2139109 A,C 69305344 D	15-10-1996 06-01-1994 14-11-1996

Form PCT/ISA/210 (patent family annex) (July 1992)

	Inte al Application No
Information on patent family members	PCT/EP 00/12592

cited in search report	date		Patent family member(s)	date
WO 9400453 A		DE	69305344 T	20-02-1997
		DK	647227 T	18-11-1996
		EP	0647227 A	12-04-1995
		ES	2092316 T	16-11-1996
		FI	946083 A	23-12-1994
		GR	3021878 T	31-03-1997
		JР	2544903 B	16-10-1996
		JP	7504681 T	25-05-1995
		US	5734053 A	31-03-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

Inte: nales Aktenzeichen PCT/EP 00/12592

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D487/04 A61P9/10

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchilerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 CO7D

Recherchlerte aber nicht zum Mindestprüßtoff gehörende Veröffentlichungen, sowelt diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, CHEM ABS Data

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle	Betr. Anspruch Nr.
Y	DE 198 12 462 A (BAYER AG) 30. September 1999 (1999-09-30) das ganze Dokument	1-20
Y	WO 99 24433 A (NIEWOEHNER ULRICH ;HANING HELMUT (DE); SERNO PETER (DE); BAYER AG) 20. Mai 1999 (1999-05-20) das ganze Dokument	1-20
Υ	WO 98 49166 A (BUNNAGE MARK EDWARD ;MATHIAS JOHN PAUL (GB); STREET STEPHEN DEREK) 5. November 1998 (1998-11-05) das ganze Dokument	1-20
Y	EP 0 463 756 A (PFIZER LTD ;PFIZER (US)) 2. Januar 1992 (1992-01-02) das ganze Dokument/	1-20

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Slehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen: 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) 'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht 'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist 	 *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
10. April 2001	25/04/2001
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bediensteter
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Grassi, D

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

Int males Aktenzeichen
PCT/EP 00/12592

C (Easter)	ume). Al CHIECCHIE IOU AND DESCRIPTION ACCES	FCI/EF 00	
C.(Fortsetz Kategorie°	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	nenden Teile	Betr. Anspruch Nr.
	SOCIONATING GOL ACIONELIMICHINI PALES CHOLOCHINI GHIGH WHÎGHA GOL AL DENGOLI VOLIN		Don. Alapidor M.
Y	US 5 346 901 A (BELL ANDREW S ET AL) 13. September 1994 (1994-09-13) das ganze Dokument		1-20
Y	WO 93 06104 A (PFIZER LTD ;PFIZER (US)) 1. April 1993 (1993-04-01) das ganze Dokument		1-20
Y	WO 94 00453 A (PFIZER LTD ;PFIZER (US); PFIZER RES & DEV (IE); TERRETT NICHOLAS K) 6. Januar 1994 (1994-01-06) das ganze Dokument		1-20
	·		

Angaben zu Veröttentlichungen, die zur selben Patentfamilie gehören

Inte ales Aktenzeichen
PCT/EP 00/12592

Im Recherchenberich angeführtes Patentdokur		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 19812462	A	30-09-1999	AU 1558799 A BR 9812785 A CN 1278822 T DE 19881732 D DK 200000766 A WO 9924433 A EP 1049695 A FI 20001086 A GB 2346877 A LU 90561 A NO 20002444 A PL 340400 A SE 0001745 A	31-05-1999 10-10-2000 03-01-2001 24-08-2000 09-05-2000 20-05-1999 08-11-2000 09-05-2000 23-08-2000 01-12-2000 11-05-2000 29-01-2001 11-05-2000
WO 9924433	Α .	20-05-1999	DE 19750085 A DE 19812462 A DE 19840289 A AU 1558799 A BR 9812785 A CN 1278822 T DE 19881732 D DK 200000766 A EP 1049695 A FI 20001086 A GB 2346877 A LU 90561 A NO 20002444 A PL 340400 A SE 0001745 A ZA 9810297 A	20-05-1999 30-09-1999 09-03-2000 31-05-1999 10-10-2000 03-01-2001 24-08-2000 09-05-2000 08-11-2000 09-05-2000 23-08-2000 01-12-2000 11-05-2000 29-01-2001 11-05-2000 20-05-1999
WO 9849166	A	05-11-1998	AU 7644598 A BG 103828 A BR 9810233 A CN 1253561 T EP 0977756 A HR 980222 A JP 2000510485 T NO 995211 A PL 336586 A HU 0001389 A	24-11-1998 30-06-2000 17-10-2000 17-05-2000 09-02-2000 28-02-1999 15-08-2000 25-10-1999 03-07-2000 28-09-2000
EP 0463756	A	02-01-1992	AT 121403 T AU 626757 B AU 7915591 A BR 9102560 A CA 2044748 A,C CN 1057464 A,B CS 9101876 A CY 1971 A DE 69108991 D DE 69108991 T DK 463756 T EG 19651 A ES 2071919 T FI 913017 A,B, HK 219496 A HU 61312 A	15-05-1995 06-08-1992 19-03-1992 21-01-1992 21-12-1991 01-01-1992 15-04-1992 05-09-1997 24-05-1995 31-08-1995 25-09-1995 31-10-1995 01-07-1995 21-12-1991 03-01-1997 28-12-1992

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inte ales Aktenzeichen
PCT/EP 00/12592

Im Recherchenberich	t	Datum der	M	Italied(er) der	Datum der
angeführtes Patentdokur		Veröffentlichung		Patentfamilie	Veröffentlichung
EP 0463756	Α		ΙE	912094 A	01-01-1992
			IL	98482 A	27-11-1995
			JP	2087736 C	02-09-1996
			JP	6041133 A	15-02-1994
			JP	7121945 B	25-12-1995
			KR LU	9406628 B 90360 A	23-07-1994 03-05-1999
			NO	178029 B	02-10-1995
			NZ	238586 A	26-08-1993
			PL	166490 B	31-05-1995
			PT	98011 A,B	31-03-1992
			ŔÙ	2047617 C	10-11-1995
			RU	2114114 C	27-06-1998
			ÜS	5346901 A	13-09-1994
			US	5719283 A	17-02-1998
			US	5250534 A	05-10-1993
			ZA	9104707 A	24-02-1993
US 5346901	Α	13-09-1994	US	5250534 A	05-10-1993
			US	5719283 A	17-02-1998
			AT	121403 T	15-05-1995
			AU	626757 B	06-08-1992
			AU	7915591 A	19-03-1992
			BR	9102560 A	21-01-1992
			CA	2044748 A,C	21-12-1991
			CN	1057464 A,B	01-01-1992
			CS CY	9101876 A 1971 A	15-04-1992
			DE	69108991 D	05-09-1997 24-05-1995
			DE	69108991 T	31-08-1995
			DK	463756 T	25-09-1995
			EG	19651 A	31-10-1995
			EP	0463756 A	02-01-1992
			ES	2071919 T	01-07-1995
			FI	913017 A,B,	21-12-1991
			HK	219496 A	03-01-1997
			HU	61312 A	28-12-1992
			ΙE	912094 A	01-01-1992
			IL	98482 A	27-11-1995
			JP	2087736 C	02-09-1996
			JP	6041133 A	15-02-1994
			JP	7121945 B	25-12-1995
			KR LU	9406628 B 90360 A	23-07-1994 03-05-1999
			NO	178029 B	03-05-1999
			NZ	238586 A	26-08-1993
			PL	166490 B	31-05-1995
			PT	98011 A,B	31-03-1992
			RU	2047617 C	10-11-1995
			RU	2114114 C	27-06-1998
			ZA	9104707 A	24-02-1993
			HU	9500148 A	28-07-1995
WO 9306104	A	01-04-1993	PT	100862 A	30-11-1993
	^	06-01-1994	AT	143961 T	15-10-1996
WO 9400453	Α	00 01 1554			
WO 9400453	А	00 01 1334	CA DE	2139109 A,C 69305344 D	06-01-1994 14-11-1996

Angaben zu Veröttentlichungen, die zur selben Patenttamilie gehören

Inte ales Aktenzeichen
PCT/EP 00/12592

DE DK EP ES	69305344 T 647227 T 0647227 A 2092316 T	20-02-1997 18-11-1996 12-04-1995 16-11-1996
EP	0647227 A	12-04-1995
ES	2092316 T	16-11-1006
		10 11 1330
FI	946083 A	23-12-1994
GR	3021878 T	31-03-1997
	2544903 B	16-10-1996
	7504681 T	25-05-1995
ÜS	5734053 A	31-03-1998
	GR JP JP	GR 3021878 T JP 2544903 B JP 7504681 T

Formblatt PCT/ISA/210 (Anhang Patentiamilia)(Juli 1992)

THIS PAGE BLANK (USPTO)