TP1 - Exploration et transformation des données

Alain Nyeck - Folly Tata Ayeboua

Étape 1 : On considère le fichier train_users_2.csv

- Indiquer les points marquants l'exploration.
- Pour chaque observation, indiquer l'opération à effectuer qui serait la plus appropriée.

```
In [2]: df = pd.read_csv('train_users_2.csv', index_col=0)
In [3]: print('\nAffichage du dataset\n')
display(df.head(10))
```

Affichage du dataset

		date_account_created	timestamp_first_active	date_first_booking	gender	age	signup_method	signup_f
-	id							
	gxn3p5htnn	2010-06-28	20090319043255	NaN	- unknown-	NaN	facebook	
	820tgsjxq7	2011-05-25	20090523174809	NaN	MALE	38.0	facebook	
	4ft3gnwmtx	2010-09-28	20090609231247	2010-08-02	FEMALE	56.0	basic	
	bjjt8pjhuk	2011-12-05	20091031060129	2012-09-08	FEMALE	42.0	facebook	
	87mebub9p4	2010-09-14	20091208061105	2010-02-18	- unknown-	41.0	basic	
	osr2jwljor	2010-01-01	20100101215619	2010-01-02	- unknown-	NaN	basic	
	lsw9q7uk0j	2010-01-02	20100102012558	2010-01-05	FEMALE	46.0	basic	
	0d01nltbrs	2010-01-03	20100103191905	2010-01-13	FEMALE	47.0	basic	
	a1vcnhxeij	2010-01-04	20100104004211	2010-07-29	FEMALE	50.0	basic	
	6uh8zyj2gn	2010-01-04	20100104023758	2010-01-04	- unknown-	46.0	basic	
In [4]:	<pre># from yda: # profile =</pre>	all pandas_profiling ta_profiling import P = ProfileReport(df) to_file(output_file="						
In [5]:	<pre># import no # if not ha #</pre>	asattr(np, 'VisibleDe	rning = DeprecationWa	rning				

1.1. Quels sont les descripteurs (colonnes) du dataset?

```
In [6]: print("Les descripteurs du dataset:")
    print(df.columns.tolist())

Les descripteurs du dataset:
    ['date_account_created', 'timestamp_first_active', 'date_first_booking', 'gender', 'age', 'signup_method',
    'signup_flow', 'language', 'affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'signup_ap
    p', 'first_device_type', 'first_browser', 'country_destination']
```

1.2. Combien d'enregistrements (lignes) ont été fournis?

```
In [7]: nombre_enregistrements = df.shape[0]
    print("Le nombre d'enregistrements:", nombre_enregistrements)
```

Le nombre d'enregistrements: 213451

1.3. Quel est le format des données. Par exemple, dans quel format les dates sont fournies, existe-t-il des valeurs numériques, à quoi ressemblent les différentes valeurs catégorielles ?

```
In [8]: print(df.info())
```

<class 'pandas.core.frame.DataFrame'>
Index: 213451 entries, gxn3p5htnn to nw9fwlyb5f
Data columns (total 15 columns):

pata #	Column	Non-Null Count	Dtype		
#	Cocumin	Non-Nuce Count	ртуре		
0	date_account_created	213451 non-null	object		
1	timestamp_first_active	213451 non-null	int64		
2	date_first_booking	88908 non-null	object		
3	gender	213451 non-null	object		
4	age	125461 non-null	float64		
5	signup_method	213451 non-null	object		
6	signup_flow	213451 non-null	int64		
7	language	213451 non-null	object		
8	affiliate_channel	213451 non-null	object		
9	affiliate_provider	213451 non-null	object		
10	first_affiliate_tracked	207386 non-null	object		
11	signup_app	213451 non-null	object		
12	first_device_type	213451 non-null	object		
13	first_browser	213451 non-null	object		
14	country_destination	213451 non-null	object		
dtype	es: float64(1), int64(2),	object(12)			
memoi	ry usage: 26.1+ MB				
None					

Les données de types date: 'date_account_created', 'timestamp_first_active', 'date_first_booking' Les données numériques: 'age', 'signup_flow' Les données categorielles: 'gender', 'signup_method', 'language', 'affiliate_channel', 'affiliate_provider', 'first_affiliate_tracked', 'signup_app', 'first_device_type', 'first_browser', 'country_destination'

Les dates sont de types objet et int. elles seront converties en type datetime (format ci-dessous) pour en extraire proprement les champs 'date_account_created' utilise le format 'YYYY-MM-DD' 'timestamp_first_active' utilise le format 'YYYYMMDDhhmmss' 'date_first_booking' utilise le format 'YYYY-MM-DD'

```
In [9]: cols = ['gender', 'signup_method', 'signup_flow', 'language', 'affiliate_channel', 'affiliate_provider', '
    print('Ci-dessous les valeurs catégorielles:\n')
    for col in cols:
        print(col,':', df[col].unique(), '\n')
```

Ci-dessous les valeurs catégorielles: gender : ['-unknown-' 'MALE' 'FEMALE' 'OTHER'] signup_method : ['facebook' 'basic' 'google'] signup flow: [0 3 2 1 24 8 6 5 10 25 12 4 16 15 20 21 23] language: ['en' 'fr' 'de' 'es' 'it' 'pt' 'zh' 'ko' 'ia' 'ru' 'pl' 'el' 'sv' 'nl' 'hu' 'da' 'id' 'fi' 'no' 'tr' 'th' 'cs' 'hr' 'ca' 'is'l affiliate channel : ['direct' 'seo' 'other' 'sem-non-brand' 'content' 'sem-brand' 'remarketing' 'api'] affiliate provider : ['direct' 'google' 'other' 'craigslist' 'facebook' 'vast' 'bing' 'meetup' 'facebook-open-graph' 'email-marketing' 'yahoo' 'padmapper' 'gsp' 'wayn' 'naver' 'baidu' 'vandex' 'daum'] first_affiliate_tracked : ['untracked' 'omg' nan 'linked' 'tracked-other' 'product' 'marketing' 'local ops'l signup app : ['Web' 'Moweb' 'iOS' 'Android'] first device type : ['Mac Desktop' 'Windows Desktop' 'iPhone' 'Other/Unknown' 'Desktop (Other)' 'Android Tablet' 'iPad' 'Android Phone' 'SmartPhone (Other)'l first_browser : ['Chrome' 'IE' 'Firefox' 'Safari' '-unknown-' 'Mobile Safari' 'Chrome Mobile' 'RockMelt' 'Chromium' 'Android Browser' 'AOL Explorer' 'Palm Pre web browser' 'Mobile Firefox' 'Opera' 'TenFourFox' 'IE Mobile' 'Apple Mail' 'Silk' 'Camino' 'Arora' 'BlackBerry Browser' 'SeaMonkey' 'Iron' 'Sogou Explorer' 'IceWeasel' 'Opera Mini' 'SiteKiosk' 'Maxthon' 'Kindle Browser' 'CoolNovo' 'Conkeror' 'wOSBrowser' 'Google Earth' 'Crazy Browser' 'Mozilla' 'OmniWeb' 'PS Vita browser' 'NetNewsWire' 'CometBird' 'Comodo Dragon' 'Flock' 'Pale Moon' 'Avant Browser' 'Opera Mobile' 'Yandex.Browser' 'TheWorld Browser' 'SlimBrowser' 'Epic' 'Stainless' 'Googlebot' 'Outlook 2007' 'IceDragon'] country_destination : ['NDF' 'US' 'other' 'FR' 'CA' 'GB' 'ES' 'IT' 'PT' 'NL' 'DE' 'AU']

1.4. Y a-t-il des valeurs manquantes?

```
In [10]: print("Valeurs manquantes par colonne:\n")
   print(df.isnull().sum())
```

Valeurs manquantes par colonne:

date_account_created	0
timestamp_first_active	0
date_first_booking	124543
gender	0
age	87990
signup_method	0
signup_flow	0
language	0
affiliate_channel	0
affiliate_provider	0
first_affiliate_tracked	6065
signup_app	0
first_device_type	0
first_browser	0
country_destination	0
dtype: int64	

1.5. Est-ce qu'il y'a des dépendances évidentes au niveau des descripteurs?

Oui, il peut exister des dépendances entre certains descripteurs. Par exemple, entre:

- ('language', 'country_destination'): Un utilisateur qui s'inscrit avec la langue française a plus de chances de reserver en France
- ('date_account_created', 'timestamp_first_active', 'date_first_booking'): 'date_account_created' est toujours antérieure à 'timestamp_first_active' et 'date_first_booking' est toujours postérieure aux deux premières dates.
- ('first_device_type', 'first_browser'): certains types d'appareils influencent fortement le navigateur utilisé
- ('affiliate_provider', 'affiliate_channel'): certains providers peuvent privilégier certains canaux.

 Nous allons validé ces dépendances à l'aide ds matrices de corrélations ci-dessous

Corrélations entre variables qualitatives

```
In [11]: categorical_columns = [
              'gender', 'signup_method', 'language', 'affiliate_channel', 'affiliate_provider', 'first_affiliate_trac|
         # Fonction pour calculer le coefficient de Cramér
         def cramers_v(x, y):
             confusion matrix = pd.crosstab(x, y)
             chi2 = chi2 contingency(confusion matrix)[0]
             n = confusion matrix.sum().sum()
             phi2 = chi2 / n
             r, k = confusion_matrix.shape
             phi2corr = \max(0, \text{ phi2} - ((k-1)*(r-1))/(n-1))
             rcorr = r - ((r-1)**2)/(n-1)
             kcorr = k - ((k-1)**2)/(n-1)
             return np.sqrt(phi2corr / min((kcorr-1), (rcorr-1)))
         # Créer une matrice de corrélation
         correlation_matrix = pd.DataFrame(index=categorical_columns, columns=categorical_columns)
         # Remplir la matrice avec les coefficients de Cramér
         for col1 in categorical columns:
             for col2 in categorical_columns:
                 correlation matrix.loc[col1, col2] = cramers v(df[col1], df[col2])
         # Convertir la matrice en valeurs numériques
         correlation matrix = correlation matrix.astype(float)
         # Afficher la matrice de corrélation avec une heatmap
         plt.figure(figsize=(12, 8))
         sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", vmin=0, vmax=1)
         plt.title("Matrice de corrélation (Cramér's V) entre variables catégorielles")
         plt.show()
```


La matrice de corrélation met en lumière les dépendances mentionnées précédemment

Corrélations entre variables numériques

```
In [12]: df original = df.copy()
         # Vérifier les dépendances temporelles
         # Vérifier que les timestamps sont bien ordonnés
         df["date_account_created"] = pd.to_datetime(df["date_account_created"]) #Convesion de la colonne "date_account_created"]
         # Conversion de la colonne 'date_account_created' en datetime si ce n'est pas déjà fait
         df["timestamp first active"] = pd.to datetime(df["timestamp first active"], format='%Y%m%d%H%M%S')
         df["date first booking"] = pd.to datetime(df["date first booking"])
         # Vérifier si `timestamp first active` est toujours avant ou égal à `date account created`
         df["timestamp issue"] = df["timestamp first active"] > df["date account created"]
         print("Nombre de cas où `timestamp first active` est postérieur à `date account created` :", df["timestamp
         # Visualiser l'écart entre `date account created` et `date first booking`
         df["booking delay"] = (df["date first booking"] - df["date account created"]).dt.days
         sns.histplot(df["booking delay"].dropna(), bins=50, kde=True)
         plt.title("Délai entre la création du compte et la première réservation")
         plt.xlabel("Jours")
         plt.show()
         print('Dataset avec dates converties:\n')
         display(df)
```

Nombre de cas où `timestamp_first_active` est postérieur à `date_account_created` : 213273

Dataset avec dates converties:

gender age signup_method signup_f

date_account_created timestamp_first_active date_first_booking

	aate_account_createa	timestamp_mst_dotive	date_inist_booking	gender age		signap_memoa	Signap_i
id							
gxn3p5htnn	2010-06-28	2009-03-19 04:32:55	NaT	- unknown-	NaN	facebook	
820tgsjxq7	2011-05-25	2009-05-23 17:48:09	NaT	MALE	38.0	facebook	
4ft3gnwmtx	2010-09-28	2009-06-09 23:12:47	2010-08-02	FEMALE	56.0	basic	
bjjt8pjhuk	2011-12-05	2009-10-31 06:01:29	2012-09-08	FEMALE	42.0	facebook	
87mebub9p4	2010-09-14	2009-12-08 06:11:05	2010-02-18	- unknown-	41.0	basic	
•••							
zxodksqpep	2014-06-30	2014-06-30 23:56:36	NaT	MALE	32.0	basic	
mhewnxesx9	2014-06-30	2014-06-30 23:57:19	NaT	- unknown-	NaN	basic	
6o3arsjbb4	2014-06-30	2014-06-30 23:57:54	NaT	- unknown-	32.0	basic	
jh95kwisub	2014-06-30	2014-06-30 23:58:22	NaT	- unknown-	NaN	basic	
nw9fwlyb5f	2014-06-30	2014-06-30 23:58:24	NaT	- unknown-	NaN	basic	

213451 rows × 17 columns

Si timestamp_first_active est après date_account_created, il y a un problème dans les données. La distribution des délais de réservation permet de voir combien de temps les utilisateurs attendent avant leur première réservation.

```
In [13]: # Convertir l'âge en numérique et traiter les valeurs aberrantes
    df["age"] = pd.to_numeric(df["age"], errors="coerce")
    df_FilteredAge = df[(df["age"] > 17) & (df["age"] <= 120)] # Filtrer des âges aberrants
    display(df_FilteredAge['age'])

# Matrice de corrélation</pre>
```

```
num_vars = ["age", "signup_flow", "booking_delay"]
 corr_matrix = df_FilteredAge[num_vars].corr()
 # Affichage
 plt.figure(figsize=(6, 4))
 sns.heatmap(corr_matrix, annot=True, cmap="coolwarm", fmt=".2f")
 plt.title("Corrélation entre variables numériques")
 plt.show()
id
820tgsjxq7
              38.0
4ft3gnwmtx
              56.0
bjjt8pjhuk
              42.0
87mebub9p4
              41.0
lsw9q7uk0j
              46.0
              . . .
omlc9iku7t
              34.0
0k26r3mir0
              36.0
qbxza0xojf
              23.0
zxodksqpep
              32.0
6o3arsjbb4
              32.0
Name: age, Length: 124522, dtype: float64
```


La matrice de corrélation montre qu'il n'y a pas de dépendances entre les variables quantitatives

1.6. D'autres observations sur le dataset qui pourraient être pertinentes ?

Boxplot de l'âge en fonction du pays de destination

```
In [14]: #L'âge semble être la seule variable continue intéressante pour un boxplot.
plt.figure(figsize=(12, 6))
sns.boxplot(x="country_destination", y="age", data=df_FilteredAge)
plt.xticks(rotation=45)
plt.title("Distribution de l'âge par destination")
plt.show()
```

Distribution de l'âge par destination

Boxplot de l'âge selon le sexe :

```
In [15]: plt.figure(figsize=(8, 6))
    sns.boxplot(x="gender", y="age", data=df_FilteredAge)
    plt.title("Distribution de l'âge par genre")
    plt.show()
```

Distribution de l'âge par genre

Boxplot de l'âge selon le canal d'affiliation :

```
In [16]: plt.figure(figsize=(12, 6))
    sns.boxplot(x="affiliate_channel", y="age", data=df_FilteredAge)
    plt.xticks(rotation=45)
    plt.title("Distribution de l'âge par canal d'affiliation")
    plt.show()
```

Distribution de l'âge par canal d'affiliation

Détection des valeurs aberrantes de l'âge (outliers)

```
In [17]: Q1 = df['age'].quantile(0.25)
Q3 = df['age'].quantile(0.75)
IQR = Q3 - Q1

outliers = df[(df['age'] < (Q1 - 1.5 * IQR)) | (df['age'] > (Q3 + 1.5 * IQR))]
display(outliers[['age']]) # Liste des outliers
```

	age
id	
dgatsm5ocq	69.0
3qsa4lo7eg	5.0
47wdhtdini	72.0
uhbkw5exeg	70.0
kw7qyvlhsq	70.0
•••	
pw9nfo1ulb	95.0
y37l7vzjpa	66.0
jl5f10hu4t	69.0
gfend4omwv	105.0
l8tltghomx	69.0

5594 rows × 1 columns

```
print(df['age'].describe())
In [18]:
        count
                 125461.000000
                     49.668335
        mean
                    155.666612
        std
                      1.000000
        min
        25%
                     28.000000
        50%
                     34.000000
        75%
                     43.000000
                   2014.000000
        max
        Name: age, dtype: float64
```

On constate que la colonne 'age' contient des données abbérantes. Nous ferons un filtrage á l'étape 2.

Relations entre variables catégorielles

```
In [19]: #Impact de signup_method sur country_destination
   plt.figure(figsize=(10, 5))
   sns.countplot(data=df, x="signup_method", hue="country_destination")
   plt.title("Méthode d'inscription vs Destination")
   plt.xticks(rotation=45)
   plt.show()
```

Méthode d'inscription vs Destination

Certains modes d'inscription sont peut-être plus populaires pour certaines destinations. Par exemple, les utilisateurs inscrits via Google ou Facebook peuvent être différents de ceux inscrits par email.

```
In [20]: #Influence de first_device_type sur country_destination
   plt.figure(figsize=(12, 5))
   sns.countplot(data=df, y="first_device_type", hue="country_destination")
   plt.title("Premier appareil utilisé vs Destination")
   plt.show()
```


On constate que les utilisateurs mobiles (iPhone, Android) réservent plus rapidement que ceux sur ordinateur

```
In [21]: #Langue (language) et destination
  plt.figure(figsize=(10, 5))
  sns.countplot(data=df, x="language", hue="country_destination", order=df["language"].value_counts().index[
    plt.title("Langue choisie à l'inscription vs Destination")
  plt.xticks(rotation=45)
  plt.show()
```

Langue choisie à l'inscription vs Destination

On confirme que La langue d'inscription influence la destination finale

```
In [22]: # Vérifier les relations entre affiliés
  plt.figure(figsize=(12, 5))
  sns.countplot(data=df, x="affiliate_channel", hue="affiliate_provider")
  plt.title("Canal vs Fournisseur affilié")
  plt.xticks(rotation=45)
  plt.show()
```


Le diagramme ci-dessus confirme que certains fournisseurs affiliés sont spécialisés dans certains canaux de conversion

Étape 2 : On considère le fichier train_users_2.csv et test_users.csv

• Implémenter les correctifs soulignés dans l'étape 1.

```
In [23]: #!pip install scikit-learn
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
```

```
df_train = df_original.copy()

df_test = pd.read_csv('test_users.csv', index_col=0)

print("Données de Train:")
display(df_train)

print("Données de Test:")
display(df_test)
```

Données de Train:

	date_account_created	timestamp_first_active	date_first_booking	gender	age	signup_method	signup_f
id							
gxn3p5htnn	2010-06-28	20090319043255	NaN	- unknown-	NaN	facebook	
820tgsjxq7	2011-05-25	20090523174809	NaN	MALE	38.0	facebook	
4ft3gnwmtx	2010-09-28	20090609231247	2010-08-02	FEMALE	56.0	basic	
bjjt8pjhuk	2011-12-05	20091031060129	2012-09-08	FEMALE	42.0	facebook	
87mebub9p4	2010-09-14	20091208061105	2010-02-18	- unknown-	41.0	basic	
zxodksqpep	2014-06-30	20140630235636	NaN	MALE	32.0	basic	
mhewnxesx9	2014-06-30	20140630235719	NaN	- unknown-	NaN	basic	
6o3arsjbb4	2014-06-30	20140630235754	NaN	- unknown-	32.0	basic	
jh95kwisub	2014-06-30	20140630235822	NaN	- unknown-	NaN	basic	
nw9fwlyb5f	2014-06-30	20140630235824	NaN	- unknown-	NaN	basic	

213451 rows × 15 columns

Données de Test:

	date_account_created	timestamp_first_active	date_first_booking	gender	age	signup_method	signup_fl
id							
5uwns89zht	2014-07-01	20140701000006	NaN	FEMALE	35.0	facebook	
jtl0dijy2j	2014-07-01	20140701000051	NaN	- unknown-	NaN	basic	
xx0ulgorjt	2014-07-01	20140701000148	NaN	- unknown-	NaN	basic	
6c6puo6ix0	2014-07-01	20140701000215	NaN	- unknown-	NaN	basic	
czqhjk3yfe	2014-07-01	20140701000305	NaN	- unknown-	NaN	basic	
•••					•••		
cv0na2lf5a	2014-09-30	20140930235232	NaN	- unknown-	31.0	basic	
zp8xfonng8	2014-09-30	20140930235306	NaN	- unknown-	NaN	basic	
fa6260ziny	2014-09-30	20140930235408	NaN	- unknown-	NaN	basic	
87k0fy4ugm	2014-09-30	20140930235430	NaN	- unknown-	NaN	basic	
9uqfg8txu3	2014-09-30	20140930235901	NaN	FEMALE	49.0	basic	

62096 rows × 14 columns

```
| [ 0%] 00:00 -> (? left)
```

Report comparison_report.html was generated! NOTEBOOK/COLAB USERS: the web browser MAY not pop up, regardle ss, the report IS saved in your notebook/colab files.

* Existance les doublons

```
In [25]: print("Doublons dans les doneées de train:", df_train.duplicated().unique())
print("Doublons dans les doneées de test:", df_test.duplicated().unique())
```

Doublons dans les doneées de train: [False] Doublons dans les doneées de test: [False]

2.1. Conversion de type/format (les dates)

* Dataset de Training

```
In [26]: df_train['date_account_created'] = pd.to_datetime(df_train['date_account_created'])
    df_train.drop(['date_first_booking'], axis=1, inplace=True) # Supprimer la colonne 'date_first_booking' cal
    #df_train.drop(['timestamp_first_active'], axis=1, inplace=True)

#df['timestamp_first_active'] = pd.to_datetime(df['timestamp_first_active'], format='%Y%m%d%H%M%S')

#df_train.drop(['signup_flow'], axis=1, inplace=True)

display(df_train)
```

	date_account_created	timestamp_first_active	gender	age	signup_method	signup_flow	language	affili
id								
gxn3p5htnn	2010-06-28	20090319043255	- unknown-	NaN	facebook	0	en	
820tgsjxq7	2011-05-25	20090523174809	MALE	38.0	facebook	0	en	
4ft3gnwmtx	2010-09-28	20090609231247	FEMALE	56.0	basic	3	en	
bjjt8pjhuk	2011-12-05	20091031060129	FEMALE	42.0	facebook	0	en	
87mebub9p4	2010-09-14	20091208061105	- unknown-	41.0	basic	0	en	
•••				•••				
zxodksqpep	2014-06-30	20140630235636	MALE	32.0	basic	0	en	
mhewnxesx9	2014-06-30	20140630235719	- unknown-	NaN	basic	0	en	
6o3arsjbb4	2014-06-30	20140630235754	- unknown-	32.0	basic	0	en	
jh95kwisub	2014-06-30	20140630235822	- unknown-	NaN	basic	25	en	
nw9fwlyb5f	2014-06-30	20140630235824	- unknown-	NaN	basic	25	en	

213451 rows × 14 columns

* Dataset de Test

	date_account_created	timestamp_first_active	gender	age	signup_method	signup_flow	language	affilia
id								
5uwns89zht	2014-07-01	20140701000006	FEMALE	35.0	facebook	0	en	
jtl0dijy2j	2014-07-01	20140701000051	- unknown-	NaN	basic	0	en	
xx0ulgorjt	2014-07-01	20140701000148	- unknown-	NaN	basic	0	en	
6c6puo6ix0	2014-07-01	20140701000215	- unknown-	NaN	basic	0	en	
czqhjk3yfe	2014-07-01	20140701000305	- unknown-	NaN	basic	0	en	
•••								
cv0na2lf5a	2014-09-30	20140930235232	- unknown-	31.0	basic	0	en	
zp8xfonng8	2014-09-30	20140930235306	- unknown-	NaN	basic	23	ko	
fa6260ziny	2014-09-30	20140930235408	- unknown-	NaN	basic	0	de	
87k0fy4ugm	2014-09-30	20140930235430	- unknown-	NaN	basic	0	en	
9uqfg8txu3	2014-09-30	20140930235901	FEMALE	49.0	basic	0	en	

62096 rows × 13 columns

2.2. Remplacement de valeurs manquantes

* Dataset de Train

La colonne 'age', présentant un nombre considérable (87990) de valeurs manquantes, nous utiliser une méthode de prédiction (RandomForest) au lieu d'un Immputer pour remplacer les données manquantes et évite d'aplatir la distribution des

âges. C'est une méthode plus réaliste, surtout si l'âge a un impact sur la destination

```
In [28]: age_data = df_train[df_train['age'].notnull()]
    age_target = age_data['age']
    age_features = age_data.drop(['age'], axis=1).select_dtypes(include=[np.number])

age_model = RandomForestRegressor()
    age_model.fit(age_features, age_target)

# Prédire les valeurs manquantes dans 'age'
    missing_age_data = df_train[df_train['age'].isnull()]
    predicted_ages = age_model.predict(missing_age_data.drop(['age'], axis=1).select_dtypes(include=[np.number]
    df_train.loc[df_train['age'].isnull(), 'age'] = predicted_ages

display(df_train)
```

	date_account_created	timestamp_first_active	gender	age	signup_method	signup_flow	language
id							
gxn3p5htnn	2010-06-28	20090319043255	- unknown-	39.884667	facebook	0	en
820tgsjxq7	2011-05-25	20090523174809	MALE	38.000000	facebook	0	en
4ft3gnwmtx	2010-09-28	20090609231247	FEMALE	56.000000	basic	3	en
bjjt8pjhuk	2011-12-05	20091031060129	FEMALE	42.000000	facebook	0	en
87mebub9p4	2010-09-14	20091208061105	- unknown-	41.000000	basic	0	en
zxodksqpep	2014-06-30	20140630235636	MALE	32.000000	basic	0	en
mhewnxesx9	2014-06-30	20140630235719	- unknown-	35.648634	basic	0	en
6o3arsjbb4	2014-06-30	20140630235754	- unknown-	32.000000	basic	0	en
jh95kwisub	2014-06-30	20140630235822	- unknown-	33.810489	basic	25	en
nw9fwlyb5f	2014-06-30	20140630235824	- unknown-	33.810489	basic	25	en

213451 rows × 14 columns

Remplacement des valeurs manquantes de 'first_affiliate_tracked' par sa valeur médiane

```
In [29]: # c. Remplacement de first_affiliate_tracked avec la médiane
df_train['first_affiliate_tracked'].fillna(df_train['first_affiliate_tracked'].mode()[0], inplace=True)
```

/var/folders/dz/dt7pkrls1kxg9y931v65tmz40000gn/T/ipykernel_99402/3441638130.py:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df_train['first_affiliate_tracked'].fillna(df_train['first_affiliate_tracked'].mode()[0], inplace=True)

```
In [30]: # Afficher la distribution des valeurs de la colonne 'age'
    plt.figure(figsize=(10, 5))
    sns.histplot(df_train["age"].dropna(), bins=50, kde=True)
    plt.hist(df_train['age'].dropna(), bins=30, edgecolor='black', alpha=0.7)
    plt.xlabel('Âge')
    plt.ylabel('Fréquence')
    plt.title('Distribution des valeurs de la colonne Âge')
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.show()
```

Distribution des valeurs de la colonne Âge

On constate la présence de valeurs aberrantes dans la colonne 'age'. Pour y remédier, nous supprimons les enregistrements où l'âge est inférieur à 15 ou supérieur à 120.

```
In [31]: # 3. Correction/Suppression de valeurs aberrantes/erronées
    df_train = df_train[(df_train['age'] >= 15) & (df_train['age'] <= 120)] # Suppression des âges aberrants
    df_train['age'] = df_train['age'].astype(int)

In [32]: # Afficher la distribution des valeurs de la colonne 'age'
    plt.figure(figsize=(10, 5))
    plt.hist(df_train['age'].dropna(), bins=30, edgecolor='black', alpha=0.7)
    plt.xlabel('Âge')
    plt.ylabel('Fréquence')
    plt.title('Distribution des valeurs de la colonne Âge')</pre>
```

```
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```



```
In [33]: from scipy import stats

# Effectuer le test de D'Agostino and Pearson
stat, p_value = stats.normaltest(df_train['age'].dropna())

# Afficher le résultat du test
print(f"Statistique de D'Agostino : {stat}")
print(f"Valeur p : {p_value}")

# Interprétation du test
if p_value > 0.05:
```

```
print("La distribution de l'âge suit une loi normale (pas de rejet de l'hypothèse nulle).")
else:
   print("La distribution de l'âge ne suit pas une loi normale (hypothèse nulle rejetée).")
```

Statistique de D'Agostino : 71670.15874238352 Valeur p : 0.0 La distribution de l'âge ne suit pas une loi normale (hypothèse nulle rejetée).

Ayant eliminé les outliers, la plage des âges se situe entre 15 et 120. Nous allons appliquer le MinMaxScaler pour la standardisation de la colonne Age.

Distribution des valeurs de la colonne Âge

In [36]: display(df_train)

	date_account_created	timestamp_first_active	gender	age	signup_method	signup_flow	language
id							
gxn3p5htnn	2010-06-28	20090319043255	- unknown-	0.233010	facebook	0	en
820tgsjxq7	2011-05-25	20090523174809	MALE	0.223301	facebook	0	en
4ft3gnwmtx	2010-09-28	20090609231247	FEMALE	0.398058	basic	3	en
bjjt8pjhuk	2011-12-05	20091031060129	FEMALE	0.262136	facebook	0	en
87mebub9p4	2010-09-14	20091208061105	- unknown-	0.252427	basic	0	en
•••							
zxodksqpep	2014-06-30	20140630235636	MALE	0.165049	basic	0	en
mhewnxesx9	2014-06-30	20140630235719	- unknown-	0.194175	basic	0	en
6o3arsjbb4	2014-06-30	20140630235754	- unknown-	0.165049	basic	0	en
jh95kwisub	2014-06-30	20140630235822	- unknown-	0.174757	basic	25	en
nw9fwlyb5f	2014-06-30	20140630235824	- unknown-	0.174757	basic	25	en

211405 rows × 14 columns

* Dataset de Test

Les commentaires du dataset de train s'appliquent aussi pour le test.

```
In [37]: print(df_test.describe())
    print("Valeurs manquantes par colonne:\n")
    print(df_test.isnull().sum()) # Compte les valeurs manquantes par colonne
```

```
date_account_created timestamp_first_active
                                                                                 age \
                                        62096
                                                         6.209600e+04 33220.000000
        count
               2014-08-14 19:24:31.631022848
        mean
                                                         2.014081e+13
                                                                           37,616677
                         2014-07-01 00:00:00
        min
                                                         2.014070e+13
                                                                           1.000000
        25%
                         2014-07-24 00:00:00
                                                         2.014072e+13
                                                                           26.000000
                         2014-08-14 00:00:00
                                                         2.014081e+13
                                                                           31.000000
        50%
        75%
                         2014-09-05 00:00:00
                                                         2.014091e+13
                                                                          40.000000
                         2014-09-30 00:00:00
        max
                                                         2.014093e+13
                                                                        2002,000000
        std
                                          NaN
                                                         8.024585e+07
                                                                           74,440647
                signup flow
               62096,000000
        count
                   7.813885
        mean
                   0.000000
        min
        25%
                   0.000000
        50%
                   0.000000
        75%
                  23,000000
        max
                  25,000000
        std
                  11.254291
        Valeurs manguantes par colonne:
                                        0
        date account created
        timestamp first active
                                        0
        gender
                                        0
        age
                                    28876
        signup method
                                        0
        signup flow
                                        0
                                        0
        language
        affiliate channel
                                        0
        affiliate provider
                                        0
        first_affiliate_tracked
                                       20
                                        0
        signup app
        first_device_type
                                        0
        first browser
                                        0
        dtype: int64
In [38]:
         age data = df test[df test['age'].notnull()]
         age target = age data['age']
         age features = age data.drop(['age'], axis=1).select dtypes(include=[np.number])
         age model = RandomForestRegressor()
         age_model.fit(age_features, age_target)
```

```
# Prédire les valeurs manquantes dans 'age'
missing_age_data = df_test[df_test['age'].isnull()]
predicted_ages = age_model.predict(missing_age_data.drop(['age'], axis=1).select_dtypes(include=[np.number df_test.loc[df_test['age'].isnull(), 'age'] = predicted_ages
```

In [39]: # c. Remplacement de first_affiliate_tracked avec la médiane

df_test['first_affiliate_tracked'].fillna(df_test['first_affiliate_tracked'].mode()[0], inplace=True)

/var/folders/dz/dt7pkrls1kxg9y931v65tmz40000gn/T/ipykernel_99402/961816202.py:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method. The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df_test['first_affiliate_tracked'].fillna(df_test['first_affiliate_tracked'].mode()[0], inplace=True)

```
In [40]: # Afficher la distribution des valeurs de la colonne 'age'
   plt.figure(figsize=(10, 5))
   plt.hist(df_test['age'].dropna(), bins=30, edgecolor='black', alpha=0.7)
   plt.xlabel('Âge')
   plt.ylabel('Fréquence')
   plt.title('Distribution des valeurs de la colonne Âge')
   plt.grid(axis='y', linestyle='--', alpha=0.7)
   plt.show()
```

Distribution des valeurs de la colonne Âge


```
In [41]: # 3. Correction/Suppression de valeurs aberrantes/erronées
df_test = df_test[(df_test['age'] >= 15) & (df_test['age'] <= 120)] # Suppression des âges aberrants
df_test['age'] = df_test['age'].astype(int)</pre>
```

```
In [42]: # Afficher la distribution des valeurs de la colonne 'age'
plt.figure(figsize=(10, 5))
plt.hist(df_test['age'].dropna(), bins=30, edgecolor='black', alpha=0.7)
plt.xlabel('Âge')
plt.ylabel('Fréquence')
plt.title('Distribution des valeurs de la colonne Âge')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
```

Distribution des valeurs de la colonne Âge


```
In [43]: from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler()

# Appliquer le scaler sur les données numériques
    df_test['age'] = scaler.fit_transform(df_test[['age']])
```

In [44]: display(df_test)

	date_account_created	timestamp_first_active	gender	age	signup_method	signup_flow	language	affilia
id								
5uwns89zht	2014-07-01	20140701000006	FEMALE	0.20	facebook	0	en	
jtl0dijy2j	2014-07-01	20140701000051	- unknown-	0.20	basic	0	en	
xx0ulgorjt	2014-07-01	20140701000148	- unknown-	0.20	basic	0	en	
6c6puo6ix0	2014-07-01	20140701000215	- unknown-	0.20	basic	0	en	
czqhjk3yfe	2014-07-01	20140701000305	- unknown-	0.20	basic	0	en	
•••								
cv0na2lf5a	2014-09-30	20140930235232	- unknown-	0.16	basic	0	en	
zp8xfonng8	2014-09-30	20140930235306	- unknown-	0.20	basic	23	ko	
fa6260ziny	2014-09-30	20140930235408	- unknown-	0.20	basic	0	de	
87k0fy4ugm	2014-09-30	20140930235430	- unknown-	0.20	basic	0	en	
9uqfg8txu3	2014-09-30	20140930235901	FEMALE	0.34	basic	0	en	

61581 rows × 13 columns

2.3. Standardisation de la dataset train

```
In [45]: import pandas as pd

df_qualitatives = df_train.select_dtypes(include=['object'])
    df_quantitatives = df_train.select_dtypes(include=[np.number])
    df_dates = df_train.select_dtypes(include=['datetime64'])
```

gender signup_method language affiliate_channel affiliate_provider first_affiliate_tracked signup_app

```
target = df_train['country_destination']

display(df_qualitatives)
display(df_quantitatives)
display(df_dates)
display(target)
```

id	_			_	_ -		
gxn3p5htnn	- unknown-	facebook	en	direct	direct	untracked	Web
820tgsjxq7	MALE	facebook	en	seo	google	untracked	Web
4ft3gnwmtx	FEMALE	basic	en	direct	direct	untracked	Web
bjjt8pjhuk	FEMALE	facebook	en	direct	direct	untracked	Web
87mebub9p4	- unknown-	basic	en	direct	direct	untracked	Web
•••							
zxodksqpep	MALE	basic	en	sem-brand	google	omg	Web
mhewnxesx9	- unknown-	basic	en	direct	direct	linked	Web
6o3arsjbb4	- unknown-	basic	en	direct	direct	untracked	Web
jh95kwisub	- unknown-	basic	en	other	other	tracked-other	iOS
nw9fwlyb5f	- unknown-	basic	en	direct	direct	untracked	iOS

211405 rows × 10 columns

	timestamp_first_active	age	signup_flow
id			
gxn3p5htnn	20090319043255	0.233010	0
820tgsjxq7	20090523174809	0.223301	0
4ft3gnwmtx	20090609231247	0.398058	3
bjjt8pjhuk	20091031060129	0.262136	0
87mebub9p4	20091208061105	0.252427	0
•••			•••
zxodksqpep	20140630235636	0.165049	0
mhewnxesx9	20140630235719	0.194175	0
6o3arsjbb4	20140630235754	0.165049	0
jh95kwisub	20140630235822	0.174757	25
nw9fwlyb5f	20140630235824	0.174757	25

211405 rows × 3 columns

date_account_created

id	
gxn3p5htnn	2010-06-28
820tgsjxq7	2011-05-25
4ft3gnwmtx	2010-09-28
bjjt8pjhuk	2011-12-05
87mebub9p4	2010-09-14
•••	
zxodksqpep	2014-06-30
mhewnxesx9	2014-06-30
6o3arsjbb4	2014-06-30
jh95kwisub	2014-06-30
nw9fwlyb5f	2014-06-30

211405 rows × 1 columns

id	
gxn3p5htnn	NDF
820tgsjxq7	NDF
4ft3gnwmtx	US
bjjt8pjhuk	other
87mebub9p4	US
zxodksqpep	NDF
zxodksqpep mhewnxesx9	NDF NDF
mhewnxesx9	NDF
mhewnxesx9 6o3arsjbb4	NDF NDF

Name: country_destination, Length: 211405, dtype: object

Encodage des variables catégorielles de la dataset train

Dans cette étape, nous appliquons le Frequency Encoding afin de convertir les données catégorielles en format numérique et normalisées. Cette transformation crée des indicateurs binaires pour chaque modalité. Notre choix s'est porté sur le Frequency Encoding pour sa simplicité, son efficacité et les modalités de notre dataset ne sont pas des variables ordinales et leur frequence est unique.

```
In [46]: df_qualitatives = df_qualitatives.drop(['country_destination'], axis=1)
    colonnes_qualitatives = df_qualitatives.select_dtypes(include=['object']).columns

In [47]: df_encoded = pd.DataFrame()
    for col in colonnes_qualitatives:
        frequency_map = df_train[col].value_counts(normalize=True).to_dict()
        df_encoded[col] = df_train[col].map(frequency_map)

display(df_encoded)
```

	gender	signup_method	language	affiliate_channel	affiliate_provider	first_affiliate_tracked	signup_app
id							
gxn3p5htnn	0.447444	0.282666	0.966477	0.645042	0.643712	0.539065	0.857510
820tgsjxq7	0.255855	0.282666	0.966477	0.040642	0.242700	0.539065	0.857510
4ft3gnwmtx	0.295390	0.714751	0.966477	0.645042	0.643712	0.539065	0.857510
bjjt8pjhuk	0.295390	0.282666	0.966477	0.645042	0.643712	0.539065	0.857510
87mebub9p4	0.447444	0.714751	0.966477	0.645042	0.643712	0.539065	0.857510
•••			•••				
zxodksqpep	0.255855	0.714751	0.966477	0.122485	0.242700	0.206906	0.857510
mhewnxesx9	0.447444	0.714751	0.966477	0.645042	0.643712	0.217105	0.857510
6o3arsjbb4	0.447444	0.714751	0.966477	0.645042	0.643712	0.539065	0.857510
jh95kwisub	0.447444	0.714751	0.966477	0.041683	0.058603	0.028812	0.088716
nw9fwlyb5f	0.447444	0.714751	0.966477	0.645042	0.643712	0.539065	0.088716

211405 rows × 9 columns

```
In [48]: train = pd.concat([df_dates, df_quantitatives, df_encoded], axis=1)

display(df_dates)
display(df_quantitatives)
display(df_encoded)
```

date_account_created

id	
gxn3p5htnn	2010-06-28
820tgsjxq7	2011-05-25
4ft3gnwmtx	2010-09-28
bjjt8pjhuk	2011-12-05
87mebub9p4	2010-09-14
•••	
zxodksqpep	2014-06-30
mhewnxesx9	2014-06-30
6o3arsjbb4	2014-06-30
jh95kwisub	2014-06-30
nw9fwlyb5f	2014-06-30

211405 rows × 1 columns

	timestamp_first_active	age	signup_flow
id			
gxn3p5htnn	20090319043255	0.233010	0
820tgsjxq7	20090523174809	0.223301	0
4ft3gnwmtx	20090609231247	0.398058	3
bjjt8pjhuk	20091031060129	0.262136	0
87mebub9p4	20091208061105	0.252427	0
zxodksqpep	20140630235636	0.165049	0
mhewnxesx9	20140630235719	0.194175	0
6o3arsjbb4	20140630235754	0.165049	0
jh95kwisub	20140630235822	0.174757	25
nw9fwlyb5f	20140630235824	0.174757	25

211405 rows × 3 columns

	gender	signup_method	language	affiliate_channel	affiliate_provider	first_affiliate_tracked	signup_app
id							
gxn3p5htnn	0.447444	0.282666	0.966477	0.645042	0.643712	0.539065	0.857510
820tgsjxq7	0.255855	0.282666	0.966477	0.040642	0.242700	0.539065	0.857510
4ft3gnwmtx	0.295390	0.714751	0.966477	0.645042	0.643712	0.539065	0.857510
bjjt8pjhuk	0.295390	0.282666	0.966477	0.645042	0.643712	0.539065	0.857510
87mebub9p4	0.447444	0.714751	0.966477	0.645042	0.643712	0.539065	0.857510
•••							
zxodksqpep	0.255855	0.714751	0.966477	0.122485	0.242700	0.206906	0.857510
mhewnxesx9	0.447444	0.714751	0.966477	0.645042	0.643712	0.217105	0.857510
6o3arsjbb4	0.447444	0.714751	0.966477	0.645042	0.643712	0.539065	0.857510
jh95kwisub	0.447444	0.714751	0.966477	0.041683	0.058603	0.028812	0.088716
nw9fwlyb5f	0.447444	0.714751	0.966477	0.645042	0.643712	0.539065	0.088716

211405 rows × 9 columns

```
In [49]: train.drop(['timestamp_first_active'], axis=1, inplace=True)
    train.drop(['signup_flow'], axis=1, inplace=True)
    display(train)
```

	date_account_created	age	gender	signup_method	language	affiliate_channel	affiliate_provider	f
id								
gxn3p5htnn	2010-06-28	0.233010	0.447444	0.282666	0.966477	0.645042	0.643712	
820tgsjxq7	2011-05-25	0.223301	0.255855	0.282666	0.966477	0.040642	0.242700	
4ft3gnwmtx	2010-09-28	0.398058	0.295390	0.714751	0.966477	0.645042	0.643712	
bjjt8pjhuk	2011-12-05	0.262136	0.295390	0.282666	0.966477	0.645042	0.643712	
87mebub9p4	2010-09-14	0.252427	0.447444	0.714751	0.966477	0.645042	0.643712	
zxodksqpep	2014-06-30	0.165049	0.255855	0.714751	0.966477	0.122485	0.242700	
mhewnxesx9	2014-06-30	0.194175	0.447444	0.714751	0.966477	0.645042	0.643712	
6o3arsjbb4	2014-06-30	0.165049	0.447444	0.714751	0.966477	0.645042	0.643712	
jh95kwisub	2014-06-30	0.174757	0.447444	0.714751	0.966477	0.041683	0.058603	
nw9fwlyb5f	2014-06-30	0.174757	0.447444	0.714751	0.966477	0.645042	0.643712	

211405 rows × 11 columns

Standardisation de la dataset Test

```
In [50]: df_qualitatives = df_test.select_dtypes(include=['object'])
    df_quantitatives = df_test.select_dtypes(include=[np.number])
    df_dates = df_test.select_dtypes(include=['datetime64'])

    display(df_qualitatives)
    display(df_quantitatives)
    display(df_dates)
```

	gender	signup_method	language	affiliate_channel	affiliate_provider	first_affiliate_tracked	signup_app
id							
5uwns89zht	FEMALE	facebook	en	direct	direct	untracked	Moweb
jtl0dijy2j	- unknown-	basic	en	direct	direct	untracked	Moweb
xx0ulgorjt	- unknown-	basic	en	direct	direct	linked	Web
6c6puo6ix0	- unknown-	basic	en	direct	direct	linked	Web
czqhjk3yfe	- unknown-	basic	en	direct	direct	untracked	Web
•••							
cv0na2lf5a	- unknown-	basic	en	direct	direct	untracked	Web
zp8xfonng8	- unknown-	basic	ko	direct	direct	untracked	Android
fa6260ziny	- unknown-	basic	de	direct	direct	linked	Web
87k0fy4ugm	- unknown-	basic	en	sem-brand	google	omg	Web
9uqfg8txu3	FEMALE	basic	en	other	other	tracked-other	Web

61581 rows × 9 columns

	timestamp_first_active	age	signup_flow
id			
5uwns89zht	20140701000006	0.20	0
jtl0dijy2j	20140701000051	0.20	0
xx0ulgorjt	20140701000148	0.20	0
6c6puo6ix0	20140701000215	0.20	0
czqhjk3yfe	20140701000305	0.20	0
cv0na2lf5a	20140930235232	0.16	0
zp8xfonng8	20140930235306	0.20	23
fa6260ziny	20140930235408	0.20	0
87k0fy4ugm	20140930235430	0.20	0
9uqfg8txu3	20140930235901	0.34	0

61581 rows × 3 columns

date_account_created

id	
5uwns89zht	2014-07-01
jtl0dijy2j	2014-07-01
xx0ulgorjt	2014-07-01
6c6puo6ix0	2014-07-01
czqhjk3yfe	2014-07-01
•••	
cv0na2lf5a	2014-09-30
zp8xfonng8	2014-09-30
fa6260ziny	2014-09-30
87k0fy4ugm	2014-09-30
9uqfg8txu3	2014-09-30

61581 rows × 1 columns

Encodage des variables catégorielles de la dataset test

Dans cette étape, nous appliquons le Frequency Encoding afin de convertir les données catégorielles en format numérique et normalisées. Cette transformation crée des indicateurs binaires pour chaque modalité. Notre choix s'est porté sur le Frequency Encoding pour sa simplicité, son efficacité et les modalités de notre dataset ne sont pas des variables ordinales et leur frequence est unique.

```
In [51]: df_encoded = pd.DataFrame()

for col in colonnes_qualitatives:
    frequency_map = df_test[col].value_counts(normalize=True).to_dict()
    df_encoded[col] = df_test[col].map(frequency_map)
```

display(df_encoded)

	gender	signup_method	language	affiliate_channel	affiliate_provider	first_affiliate_tracked	signup_app
id							
5uwns89zht	0.234796	0.241227	0.953947	0.703837	0.703837	0.543496	0.069112
jtl0dijy2j	0.541190	0.734301	0.953947	0.703837	0.703837	0.543496	0.069112
xx0ulgorjt	0.541190	0.734301	0.953947	0.703837	0.703837	0.256085	0.603936
6c6puo6ix0	0.541190	0.734301	0.953947	0.703837	0.703837	0.256085	0.603936
czqhjk3yfe	0.541190	0.734301	0.953947	0.703837	0.703837	0.543496	0.603936
•••	•••		•••				•••
cv0na2lf5a	0.541190	0.734301	0.953947	0.703837	0.703837	0.543496	0.603936
zp8xfonng8	0.541190	0.734301	0.005862	0.703837	0.703837	0.543496	0.075202
fa6260ziny	0.541190	0.734301	0.003914	0.703837	0.703837	0.256085	0.603936
87k0fy4ugm	0.541190	0.734301	0.953947	0.168672	0.231451	0.176515	0.603936
9uqfg8txu3	0.234796	0.734301	0.953947	0.009467	0.007876	0.008087	0.603936

61581 rows × 9 columns

```
In [52]: test = pd.concat([df_dates, df_quantitatives, df_encoded], axis=1)
In [53]: test.drop(['timestamp_first_active'], axis=1, inplace=True)
test.drop(['signup_flow'], axis=1, inplace=True)
In [54]: print("Data de training:") display(train)
```

Data de training:

	date_account_created	age	gender	signup_method	language	affiliate_channel	affiliate_provider	f
id								
gxn3p5htnn	2010-06-28	0.233010	0.447444	0.282666	0.966477	0.645042	0.643712	
820tgsjxq7	2011-05-25	0.223301	0.255855	0.282666	0.966477	0.040642	0.242700	
4ft3gnwmtx	2010-09-28	0.398058	0.295390	0.714751	0.966477	0.645042	0.643712	
bjjt8pjhuk	2011-12-05	0.262136	0.295390	0.282666	0.966477	0.645042	0.643712	
87mebub9p4	2010-09-14	0.252427	0.447444	0.714751	0.966477	0.645042	0.643712	
zxodksqpep	2014-06-30	0.165049	0.255855	0.714751	0.966477	0.122485	0.242700	
mhewnxesx9	2014-06-30	0.194175	0.447444	0.714751	0.966477	0.645042	0.643712	
6o3arsjbb4	2014-06-30	0.165049	0.447444	0.714751	0.966477	0.645042	0.643712	
jh95kwisub	2014-06-30	0.174757	0.447444	0.714751	0.966477	0.041683	0.058603	
nw9fwlyb5f	2014-06-30	0.174757	0.447444	0.714751	0.966477	0.645042	0.643712	

211405 rows × 11 columns

```
In [55]: print("Dataset Target:")
    display(target)
    target.unique()
```

Dataset Target:

```
id
        gxn3p5htnn
                        NDF
        820tgsjxq7
                        NDF
        4ft3gnwmtx
                         US
        bjjt8pjhuk
                      other
        87mebub9p4
                         US
        zxodksqpep
                        NDF
        mhewnxesx9
                        NDF
                        NDF
        6o3arsjbb4
        jh95kwisub
                        NDF
        nw9fwlyb5f
                        NDF
        Name: country_destination, Length: 211405, dtype: object
Out[55]: array(['NDF', 'US', 'other', 'FR', 'CA', 'GB', 'ES', 'IT', 'PT', 'NL',
                 'DE', 'AU'], dtype=object)
In [56]: print("Dataset de test:")
         display(test)
```

Dataset de test:

	date_account_created	age	gender	signup_method	language	affiliate_channel	affiliate_provider	first_a
id								
5uwns89zht	2014-07-01	0.20	0.234796	0.241227	0.953947	0.703837	0.703837	
jtl0dijy2j	2014-07-01	0.20	0.541190	0.734301	0.953947	0.703837	0.703837	
xx0ulgorjt	2014-07-01	0.20	0.541190	0.734301	0.953947	0.703837	0.703837	
6c6puo6ix0	2014-07-01	0.20	0.541190	0.734301	0.953947	0.703837	0.703837	
czqhjk3yfe	2014-07-01	0.20	0.541190	0.734301	0.953947	0.703837	0.703837	
cv0na2lf5a	2014-09-30	0.16	0.541190	0.734301	0.953947	0.703837	0.703837	
zp8xfonng8	2014-09-30	0.20	0.541190	0.734301	0.005862	0.703837	0.703837	
fa6260ziny	2014-09-30	0.20	0.541190	0.734301	0.003914	0.703837	0.703837	
87k0fy4ugm	2014-09-30	0.20	0.541190	0.734301	0.953947	0.168672	0.231451	
9uqfg8txu3	2014-09-30	0.34	0.234796	0.734301	0.953947	0.009467	0.007876	

61581 rows × 11 columns

