

Circuitos eléctricos DC.

1. Um condutor é atravessado por uma corrente eléctrica cuja intensidade varia no tempo como se mostra no gráfico seguinte:

Qual é a carga eléctrica que atravessa o condutor no intervalo de tempo de 0 a 10s? (R: 25 C)

- **2.** Um fusível é um dispositivo utilizado para limitar a intensidade da corrente eléctrica em circuitos. O fusível é constituído por um fio projetado para fundir (e desse modo abrir o circuito) se a corrente exceder um determinado valor. Suponha que o material que compõe o fusível funde quando a densidade de corrente atinge 440A/cm². Qual deve ser o diâmetro do fio de um fusível deste material para ser usado como limitador de correntes superiores a 0.5 A? (R: 0.38mm)
- **3.** Um fio de cobre com 15 m de comprimento e 2 mm de diâmetro é percorrido por uma corrente de 20 A.

Dados: $\sigma(Cu) = 5.8 \times 10^7 \ \Omega^{\text{-1}} \text{m}^{\text{-1}}; \ \mu_e(Cu) = 0.0032 \ \text{m}^2 \ \text{V}^{\text{-1}} \text{s}^{\text{-1}}; \ densidade(Cu) = 8.93 \ g/cm^3; \ M(Cu) = 63.5 \ g/mol$

- a) Calcule a velocidade média de arrastamento dos electrões; (R: $v = 4.7 \times 10^{-4}$ m/s)
- b) A resistência do fio. (R: $R = 8.2 \times 10^{-2} \Omega$)
- c) A ddp aos terminais do fio. (R: V = 1.6 V)
- **4.** Um fio condutor cilíndrico tem diâmetro de 1.0 mm, comprimento de 2.0 m e resistência de $50 \text{ m}\Omega$. Calcule a resistividade e a condutividade do material de que é constituído o fio.

(R:
$$\rho = 1.96 \times 10^{-8} \ \Omega \text{m}; \ \sigma = 5.09 \times 10^{7} \ \Omega^{-1} \text{m}^{-1}$$
)

2013/2014

- **5.** Uma barra de alumínio (ρ_{Al} =2.8×10⁻⁸ Ω m);com uma secção recta de 0.01 por 0.07 m e 3 m de comprimento é percorrido por uma corrente de 300 A. Determine:
 - a) A densidade de corrente; (R: j=4.28×10⁵ A/m)
 - b) O módulo do campo eléctrico; (R: E=1.12×10⁻² V/m)
 - c) A velocidade dos electrões de condução. (R: v= 4.45×10⁻⁶ m/s)
- 6. As quatro resistências $R_1=8~\Omega,~R_2=4~\Omega,~R_3=6~\Omega$ e $R_4=3~\Omega$ estão ligadas como se mostra na figura.

- a) Determine a resistência equivalente entre a e b. (R: $R_{eq} = 14 \Omega$)
- b) Calcule a intensidade de corrente que percorre cada resistência se a ddp entre a e b for 42 V. $(I_1 = I_2 = 3 \text{ A}; I_3 = 1 \text{ A}; I_4 = 2 \text{ A})$
- 7. Uma bateria de FEM 12 V e resistência interna 0.05 Ω está ligada a uma resistência com 3Ω .
 - a) Determine a corrente no circuito e a ddp entre os terminais da bateria.

$$(R. I = 3.93 A; V = 11.8 V)$$

- b) Calcule as potências dissipadas na resistência e na resistência interna da bateria e a potência fornecida pela bateria. (R. $P_R = 46.3 \text{ W}$; $P_r = 0.771 \text{ W}$; $P_{Bat} = 47.1 \text{ W}$)
- **8.** Considere o circuito esquematizado na figura seguinte. Calcule os valores do potencial nos pontos A, B, C e D relativamente à terra.

$$(R: V_A = +60 \text{ V}; V_B = +50 \text{ V}; V_C = +30 \text{ V}; V_D = 0 \text{ V})$$

2013/2014

9. Para o circuito esquematizado na figura, calcule:

- a) A resistência equivalente do circuito. (6 Ω)
- b) A intensidade de corrente I, I₁ e I₂. (3 A, 2 A, 1 A)
- c) A queda de tensão em cada resistência. (6 V, 12 V, 12 V)
- d) Calcule a potência dissipada em cada resistência. (18 W, 24 W, 12 W)
- **10.** Três resistências ($R_1 = 3 \Omega$, $R_2 = 6 \Omega$, $R_3 = 9 \Omega$) estão ligadas em paralelo e a uma fonte de alimentação de 18 V, como se mostra abaixo. Calcule:

- a) A resistência equivalente das três resistências. (Sol: $R_{eq} = 1.6 \Omega$)
- b) A intensidade de corrente eléctrica em cada resistência e a potência dissipada em cada uma das 3 resistências. (R: I₁=6A; I₂=3A; I₃=2A; P₁=108W; P₂=54W; P₃=36W)
- 11. Um circuito com uma única malha é constituído por duas resistências ($R_1 = 8 \Omega$, $R_2 = 10 \Omega$) e por duas baterias (com FEM $\epsilon_1 = 6 V$ e $\epsilon_2 = 12 V$, com resistências internas desprezáveis) ligadas como se mostra na figura. Calcule a intensidade de corrente eléctrica no circuito. (R: I = 0.33 A no sentido direto)

2013/2014

12. Considere o circuito representado na figura, onde ε_1 = 14 V e ε_2 = 10 V, R_1 = 4 Ω , R_2 = 6 Ω , R_3 = 2 Ω . Determine a intensidade das correntes I_1 , I_2 e I_3 (representadas na figura) e a ddp entre os pontos a e b. (R: I_1 =3A; I_2 =2A; I_3 =1A; V_{ab} =2V)

13. Considere o seguinte circuito:

- a) Determine a intensidade de corrente nos vários ramos do circuito e indique os seus sentidos. (R: 1A; 2 A; 1 A; 2,5 A; 3,5 A)
 - b) Determine a diferença de potencial entre os pontos A e B. (R: -5V)
- **14.** Para o circuito da figura determine R_1 sabendo que a corrente que a atravessa é de 0,3 A. $(R_1 = 7,6 \ \Omega)$

- 15. Quando o interruptor está aberto, o valor no amperímetro é 2A.
- a) Quando se fecha o interruptor o valor no amperímetro mantém-se, aumenta ou diminui? Justifique.
- b) Calcule a diferença de potencial aos terminais da fonte, admitindo que a resistência interna do amperímetro é 2Ω .

16. Considere o circuito esquematizado abaixo com 3 fontes de tensão: ε_1 = 12 V, ε_2 = 24 V, ε_3 = 36 V e 5 resistências: (R_1 = 10 Ω , R_2 =30 Ω , R_3 = 50 Ω , R_4 = 70 Ω , R_5 = 100 Ω).

Calcule a intensidade e sentido da corrente eléctrica que percorre cada uma das resistências.

17. O amperímetro e o voltímetro do circuito representado na figura seguinte indicam os valores 2 A e 180 V, respectivamente. R = 350

Determine:

- a) Os valores que esperaria ler nos aparelhos de medida se estes fossem ideais;
- b) A resistência interna de cada aparelho.

(R: a) I = 2,07A; V = 207V; b)
$$R_A = 15\Omega$$
; $R_V = 900\Omega$)

18. Considere o circuito representado na figura abaixo ($\varepsilon_1 = 4 \text{ V}$; $\varepsilon_2 = 8 \text{ V}$; $\varepsilon_3 = 3 \text{ V}$; $R_1 = 5 \Omega$, $R_2 = 3 \Omega$, $R_3 = 5 \Omega$ e $C = 6 \mu\text{F}$), no regime estacionário.

a) Determine a intensidade de corrente nos diversos ramos do circuito.

(R:
$$I_1 = 1.38 \text{ A}$$
; $I_2 = 0.36 \text{ A}$; $I_3 = 1.02 \text{ A}$; $I_1 = I_2 + I_3$)

b) Qual é a carga do condensador? (R: $Q = 66.0 \mu C$)

- **19.** Num aquecedor pretende-se aumentar para o triplo a dissipação de energia na resistência. Para isso devemos triplicar: (escolha a(s) hipótese(s) certas e justifique)
 - a) a diferença de potencial, mantendo constante a resistência.
 - b) a corrente, mantendo constante a resistência.
 - c) a resistência, mantendo constante a diferença de potencial
 - d) a resistência, mantendo constante a corrente.
 - e) a diferença de potencial e a corrente.
- **20.** Montaram-se quatro circuitos RC, em série, com diferentes condensadores e resistências. Em qual dos circuitos o condensador atinge a carga máxima em menos tempo? Justifique. Os valores da resistência e capacidade do condensador nos quatro circuitos são os seguintes:

circuito 1:
$$R=3\Omega$$
, $C=1\mu F$; circuito 2: $R=6\Omega$, $C=9\mu F$; circuito 3: $R=1\Omega$, $C=7\mu F$; circuito 4: $R=5\Omega$, $C=7\mu F$;

- 21. Considere um circuito constituído por uma bateria ($\varepsilon_1 = 30 \text{ V}$), uma resistência ($R = 1 \text{ M}\Omega$) e um condensador ($C = 5 \mu\text{F}$), ligados em série. Determine:
 - a) a constante de tempo do circuito. (R: 5 s)
 - b) a carga máxima do condensador. (R: 150 μC)
- 22. A figura abaixo representa um circuito RC, com uma fonte (ϵ = 12 V), com uma resistência (R = 12 Ω) e com dois condensadores (C₁ = 12 μ F e C₂ = 24 μ F).

- a) Calcule a capacidade equivalente da associação de condensadores.
- b) Após fechar o interruptor S, esboce os gráficos da variação da carga dos condensadores e da intensidade da corrente eléctrica no circuito com o tempo.
 - c) Calcule o valor da carga máxima de cada condensador.

- 23. Considere um circuito formado pela associação em série de um condensador de capacidade 0.5 F, uma resistência de 2 Ω e uma fonte de tensão de 12 V com resistência interna desprezável. Inicialmente, este circuito encontra-se desligado.
- a) Descreva a variação da carga do condensador ao longo do tempo, nas duas situações seguintes:
 - a_1) O interruptor é ligado no instante t = 0 s.
- a₂) Depois de passado muito tempo em relação ao descrito em A1), retira-se a bateria do circuito e fecha-se o circuito.
 - b) Calcule a constante de tempo do circuito (R: 1 s)
 - c) Calcule a carga máxima do condensador e a corrente máxima no circuito. (R: 6C,6A)
- d) Calcule a carga do condensador e a corrente no circuito ao fim de 1 s e 2 s depois de ter iniciado o processo de carga. (R: 3.79 C, 5.18 C, 2.21 A, 0.81 A)
- e) Calcule a carga do condensador e a corrente no circuito ao fim de 1 s e 2 s depois de se ter iniciado o processo de descarga. (R: 2.21 C, 0.82 C, 2.21 A, 0.81 A)
- **24.** Considere um circuito formado por uma bateria de força electromotriz ε = 12,0 V, uma resistência de valor R = 20,0 Ω , e dois condensadores, 1 e 2, de capacidades C_1 =1,0 μ F e C_2 = 1,2 μ F, respectivamente. Os condensadores estão ligados em série no circuito.

- a) Qual é a capacidade equivalente deste circuito?
- s) Escreva a relação (equação do circuito) que existe, em qualquer instante, entre as capacidades de cada um dos condensadores, as suas cargas (Q_1 e Q_2), a intensidade da corrente (I) que atravessa a resistência, o valor da resistência e o valor da força electromotriz.
- d) Sabendo que quando se ligou o circuito os condensadores estavam completamente descarregados, qual é a carga de cada um deles quando se atinge o regime estacionário?