TABLE OF CONTENT

CHAPTER NO	TITLE	PAGE NO	
1	INTRODUCTION	5	
	1.1 Project Overview	5	
	1.2 Purpose	5	
2	LITERATURE SURVEY	7	
	2.1 Existing problem	7	
	2.2 References	8	
	2.3 Problem Statement Definition	11	
3	IDEATION & PROPOSED SOLUTION	13	
	3.1 Empathy Map Canvas	13	
	3.2 Ideation & Brainstorming	14	
	3.3 Proposed Solution	16	
	3.4 Problem Solution fit	17	
4	REQUIREMENTS ANALYSIS	18	
	4.1 Functional requirement	18	
	4.2 Non- Functional requirement	18	
5	PROJECT DESIGN	19	
	5.1 Data Flow Diagrams	19	

	5.2 Solution & Technical Architecture	20
	5.3 User Stories	22
6	PROJECT PLANNING & SCHEDULING	23
	6.1 Sprint Planning & Estimation	23
	6.2 Sprint delivery schedule	26
	6.2 Reports from JIRA	34
7	CODING & SOLUTIONING	35
	7.1 Feature 1	35
	7.2 Feature 2	37
8	TESTING	38
	8.1 Test Cases	38
	8.2 User Acceptance Testing	40
9	RESULTS	41
	9.1 Performance Metrics	41
10	ADVANTAGES & DISADVANTANGES	45
11	CONCLUSION	46
12	FUTURE SCOPE	46
13	APPENDIX	47
	13.1 Source Code	47
	13.2 Github & Project Demo Link	55
14	REFERENCES	56

S NO.	LIST OF FIGURE	PAGE NO.
1	3.1 Empathy Map Canvas	13
2	3.2.1 Ideation & Brainstorming	14
3	3.2.2 Idea Prioritization	15
5	3.4 Problem Solution Fit	17
6	5.1 Data Flow Diagram	19
7	5.2 Solution & Technical Architecture	20
8	6.1.2 Burndown Chart	26
9	6.2 Reports from JIRA	34
10	9.1.1 Temperature sensor Reading	41
11	9.1.2 Alarm indication	41
12	9.1.3 Cloud Readings	42
13	9.2.1 Output for Flame and Gas sensor	42
14	9.2.2 Cloud Readings	43
15	9.3.3 Node Red	44

S NO.	LIST OF TABLES	PAGE NO.
1	3.3 Proposed Solution	14
2	4.1 Functional Requirements	18
3	4.2 Non Functional Requirements	19
4	5.2.1 Components & Technologies	20
5	5.2.2 Applications Characteristics	21
6	6.1.1 Sprint Planning & Estimation	23
7	6.1.2 Project Tracker & Burndown Chart	25
8	8.1.1 Test Case	38
9	8.1.2 Test Report	39

1.INTRODUCTION

1.1 Project Overview

Fire Management System is designed to alert us to an emergency so that we can take action to protect ourselves, staff and the general public, Fire management system are found in Offices, Factories, and public buildings, they are a part of our everyday routine but are often overlooked until there is an emergency at which point, they might just save our lives. Whatever the method of detection is, if the alarm is triggered, sounders will operate to warn people in the building that there may be a fire and to evacuate.

The fire alarm system may also incorporate a remote signal system which could then alert the fire brigade via a central station. The smart fire management system includes a Gas sensor, Flame sensor and temperature sensors to detect any changes in the environment. Based on the temperature readings and if any Gases are present the exhaust fans are powered ON. If any flame is detected the sprinklers will be switched on automatically .Emergency alerts are notified to the authorities and Fire station.

1.2 Purpose

#1 Detect Fire

The fire alarm system is designed to detect fire in two main ways: smoke and heat. It should also have the capability of manual pull, in case a fire is observed before smoke or heat reaches the sensors of the system. Other systems are activated when movement in the sprinkler system is detected, indicating that the sprinklers are responding to a fire.

#2 Alert Occupants

When the fire management system detects smoke, heat, or gas, it alerts occupants of the building using both audible and visible alarms. These alarms will be bright, loud, obnoxious, and impossible to ignore, which help mobilize individuals to follow your evacuation plan. Using both types of alarms ensure that every person in the building is alerted.

#3 Manage Risks

The building's fire alarm system works in a third way to protect you: by reacting to potential risks using control measures. When the alarm is activated, some systems perform a set of tasks that help prevent fire and smoke from spreading as well as protect occupants, such as: automatically shutting doors in different zones, powering off ventilation and air conditioning, or redirecting elevators to bring cars to a designated level.

#4 Notify Authorities

The fourth purpose of your fire alarm system is to notify authorities. This ensures the fire department is en route as quickly as possible, so they can respond and extinguish the fire before it becomes an even bigger threat.

2.LITERATURE SURVEY

2.1 Existing problem

The primary purpose of fire alarm system is to provide an early warning of fire so that people can be evacuated & immediate action can be taken to stop or eliminate of the fire effect as soon as possible. Alarm can be triggered by using detectors or by manual call point (Remotely). To alert/evacuate the occupants siren are used. With the Intelligent Building of the rapid development of technology applications, commercial fire alarm market demand growth, the key is to use the bus system intelligent distributed computer system fire alarm system, althoughinstallation in the system much easier than in the past, but still cannot meet the modern needs, the installation costs of equipment costs about 33% ~ 70.

The suggested technique in Fire management system used the addressable detectors units besides using the wireless connection between the detector in zones as a slave units and the main control unit as the master unit. The system shall include a control panel, alarm initiating devices, notification appliances, and the accessory equipment necessary for a complete functioning fire management system. In the wireless fire alarm, individual units are powered by primary & secondary batteries for the communication.

2.2 References

Paper 1: A smart fire detection system using IoT technology

Author: Abdulsahib

Publication: International Journal of Electrical and Computer Engineering (IJECE).

Published Year: 2019

The fire detection systems proposed in the literature served fire stopping with no care of the responsiveness. Thus, this study considers the existing issues and build an efficient and effective

fire detection system based on IoT technology, gas, temperature, and smoke sensors to collect the

data accurately and rapidly. The continuous readings sent over WIFI modules to the central unit to

analyze the data and trigger the water sprinkle. This system structure enhances the efficiency and

effectiveness of fire detection. Moreover, using the Ubidots platform in this system made thedata

exchange faster and reliable. However, this study's proposed approach obtained an average

response of 5 seconds to detect the fire and alert the property owner.

Meanwhile, the water pump activated to suck water from the tank and release it into the water

sprinkler to minimize the fire until the property owners and emergency services reached. Hence,

the proposed system overcame the challenges of the issues of affordability, effectiveness, and

responsiveness. The proposed system still needs further enhancements. Thus, one of the

enhancement directions is integrating machine learning with the system to predict the potentiality

of fire based on the collected data from different sources. Machine learning may help the

operators find and overcome the vulnerabilities in their building to prevent fire instead of

detection only.

8

PNT2022TMID30309

Paper 2: IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention

and Safety

Author: Rehman and Saeed F

Publication: Journal of Sensor and Actuator Networks

Published Year: 2018

The primary objective of the proposed work was to design an intelligent analysis of smart home

for fire prevention. Two major flaws of the currently used systems are: (a) the fire prevention

systems mostly use a single sensor for event detection but problems arise if the target sensor does

not detect the event; (b) false alarms can be generated. Overall our proposed method provides a

solution to these problems. We introduced an efficient technique to overcome these problems.

We used multi-sensors for each region in smart homes. To reduce the false alarms, we used the

GSM communication system. The purpose of GSM communication was to alert the user at the

very initial time of the fire. Fire detection decisions were made by the main home sink connected

with all the sensors wirelessly. The decision was made on the basis of the sensor's values or the

user's response. We simulated fire in FDS that was designed by NIST, and the generated results

of the simulation were analyzed by our proposed algorithm that we implemented in Visual Studio

using C++ libraries programming language.

The simulators were installed on a machine with the following specification: Intel(R) Core(TM)

i5-3570 CPU @ 3.40 GHz 3.80 GHz, and RAM 16 GB. The energy consumption of thedeployed

sensors was also computed, and we noticed that it was within an acceptable limit. The results and

other evaluations showed that our proposed work fulfills all the desired requirements.

9

PNT2022TMID30309

Paper 3: Evaluation of a wireless sensor network with low cost and low energy consumption

for fire detection and monitoring

Author: Morandini, F. & Innocenti

Publication: Engineering Sciences [physics]/Reactive fluid environment.

Published Year: 2015

Wireless sensor networks (WSNs) may offer the opportunity to eliminate most of the extension

cables and wires in digital systems, allowing operation far from any infrastructure. This

opportunity coincides with a great increase in cost-effectiveness in an overall fire detection and

monitoring system for vegetation or industrial configurations. Our purpose is to evaluate this

opportunity. After presenting the three main technologies for wireless communications to non

experts, we retained the ZigBee protocol for this study.

We then investigated whether the use of a WSN with this protocol is valuable for measuring heat

quantities during a fire spreading over vegetation fuel beds. Experiments are performed under both

lab scale indoor and real outdoor conditions. The method consists of comparing temperatures and

radiant heat fluxes gained simultaneously by the wireless technology and a wired data acquisition

system (WDAS). Delays due to the wireless radio communications are identified and explained.

We also observe information loss for measurements performed in the fire front. Finally, we

highlight that fires can be detected satisfactorily by WSN equipment in indoor and outdoor

conditions. However, we also show that the measurement accuracy of the wired systems cannot be

achieved by the present wireless technology, and we do not recommend, at the present time, its use

for fire monitoring and mitigation.

10

PNT2022TMID30309

Paper 4:Fire Alarm System with location using IoT

Author: M. Venkatesh and M. Hemanth

Publication: International Journal of Scientific Research in Computer Science, Engineering

and Information Technology.

Published Year: 2019

Fire management systems have become increasingly sophisticated and functionally more capable and reliable in recent years. They are designed to fulfil two general requirements: protection of property and assets and protection of life As a result of state and local codes, the life-safety aspect of fire protection has become a major factor in the last two decades. To solve the problems caused by the fires, several safety measures have been put in to place to reduce the number of fatalities

and losses. So our idea is to develop a fire management system.

The primary purpose of fire alarm system is to provide an early warning of fire so that people can be evacuated from the fire-affected place and immediate action could be taken to control the fire. The system will have a GPS module, Flame sensor to detect the flame, Smoke sensor to detect the smoke, Buzzers and led to alert the environment and GSM or wifi to send the notification to authorities. In addition this system reduces the occurrence of false positives with time delay.

2.3 Problem Statement Definition

Reference: https://miro.com/templates/customer-problem-statement/

Creating a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love. As it can be understood the frequency of tests plays an important role on the building fire safety assurance. It is expected that the higher the frequency, the sooner hidden failures are revealed. Thus, the solution relies on establishing a maintenance and test planning and to assure its accomplishment. All critical items of the fire safety systems

11

should be analyzed from the probability of failure and failure consequences point of view and must be tested and inspected to assure system's availability and successfully operation (reliability).

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Figure.3.1 Empathy Map Canvas

Empathy map explains the how the implementation of the system is occurs and how effectively it identifies the Fire management system.

It explains the steps and procedures of the process and also about the benefits ans limitations of the system.

3.2 Ideation & Brainstorming

Figure.3.2.1 Ideation & Brainstroming

Idea Prioritization

Figure.3.2.2 Idea Prioritization

Ideation and Brainstorm explains the step by step procedures of the system and overview of the entire process.

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement	The existing fire alarm system on market nowadays is too
	(Problem to be solved)	complex in terms of its design and structure. Since the system is too
	(======================================	complex, it needs regular maintenance to be carried out to make sure
		the system operates well.
2.	Idea / Solution description	To avoid the impact of fire.We as a team proposing a
		solution as fire management system. After installation of a system. The
		customer will safe from fire, if fire is exist. By the alarm, sprinklers and
		the alart messages end to the user by the fast
		sms or email.
3.	Novelty / Uniqueness	Effective fire detection system eliminates damage by
		ensuring that a fire can be prevented before it even starts. A fire
		detector may also have a direct connection to an alarm monitoring
		center.
4.	Social Impact /	They help warn and keep customer safe and reduce the
	Customer Satisfaction	amount of destruction to a building.
5.	Business Model	The main drawback of the fire management system, to save
	(Revenue Model)	customer from fire moreover prevented by method.
6.	Scalability of the Solution	Fire detection systems increase response times ,as they are
0.	Sourcement of the Sourcement	able to alert the correct people in order to extinguish the fire. This thus
		reduces the amount of damage to the property. Fire detection systems
		can be connected to sprinklers that will automatically respond when a
		fire is detected.
		ine is detected.

Table.3.3 Proposed Solution

3.4 Problem Solution fit

Figure.3.4 Problem Solution fit

Problem solution fit explains the problems and issues faced by the customers, issues may be happened due to some reasons like irregular maintanance and lack of awareness and etc.

It provides the possible way to minimize the issues and also provides the solutions for those problems. It also conveys the emotions of the customers before they using this system and after they using this system.

4.REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are thefunctional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story/ Sub-Task)		
FR-1	User Visibility	Emergency alerts through Fast SMS.		
FR-2	User Reception	The data like amount of temperature, smoke		
		contentand gas levels are received via SMS.		
FR-3	Prediction Understanding	Based on the data, the user understands that if		
		any of the data is above the threshold value, then		
		there is a fire burst.		
FR-4	User Action	In case of fire bursts, the user needs to take		
		actions like find the escape route, evacuate the		
		workers and take necessary actions to control the		
		fire.		

Table.4.1Functional requirements

4.2 Non-Functional requirements

Following are thenon-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
		It ought to have the option to caution
NFR-1	Usability	inhabitants of the structure the utilization of
		every perceptible and apparent alert.
		It ought to be utilized to guarantee the
NFR-2	Security	insurance of both important properties, as well
		as human existence.
		It might have a capacity to recognize the
NFR-3	Reliability	smoke accurately and doesn't give a false
		caution or signal.

NFR-4	Performance	It ought to have Programmed fit sprinklers combined with identification which		
		distinguishes the flames, yet in addition		
		smother the flames in the underlying stage		
		itself.		
		It could be accessible for day in and day		
NFR-5	Availability	out hours so it tends to be useful for		
		individuals.		
		The sensors and boards utilized in this		
NFR-6	Scalability	framework ought to have the option to		
		effortlessly change overhaul concurring to		
		change and need in requirements		

Table.4.2 Non-Functional requirements

5.PROJECT DESIGN

5.1 Data Flow Diagrams

Figure.5.1 Data Flow Diagrams

Data Flow Daigrams are the diagramatical representation of the Fire management system process.It contains the entire process from intial part to final part.

5.2 Solution & Technical Architecture

Figure.5.2 Solution & Technical Architecture

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User	Web UI, Node-RED, MIT app Inventor	IBM IoT Platform, IBM Node
	Interface		RED, IBM Cloud
2.	Application	Create IBM Watson IoT Platform and	IBM Watson,IBM Node-RED,
	Logic-1	create NodeRED service	IBM Cloud ant service
3.	Application	Describe logic for a process in the	IBM Node-red
	Logic-2	application and build a web application	
		using node-red service	
4.	Application	Develop python script to subscribe	Python
	Logic-3	publish and to IBM IoT Platform	
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL
6.	Cloud	Database Service on Cloud	IBM DB2, IBM Cloudant
	Database		
7.	File Storage	Mobile application is developed for	Web UI
		storing and receiving the sensor	
		information	

8.	External	IBM sensors are used to detect the fire,	IBM Sensors
	API-1	temperature, smoke in the	
		environment and provides the	
		activation of water sprinklers in web ui	
9.	External	IBM Fire management API is used to	IBM fire management system
	API-2	detect the fire in one place	API
10.	Machine	Using this model we can be able to	Object Recognition Model
	Learning	recognize objects	
	Model		
11.	Infrastructure	Cloud Server Configuration	IBM Cloudant, IBM IoT
	(Server /		Platform
	Cloud)		

Table.5.2.1 Components & Technologies

Table-2: Application Characteristics:

S.No	Characteristi	Description	Technology
	cs		
1.	Open-Source	MIT App Inventor	MIT license.
	Frameworks		
2.	Security	IBM Services	Encryptions, IBM Controls.
	Implementation		
3.	Scalable	Sensor-IoT Cloud based Architecture	AI and Cloud computing.
	Architecture		
4.	Availability	Mobile phones, Desktop and Laptop	MIT App Inventor.
5.	Performance	Design consideration for the	Sensor.
		performance of the application	
		(number of requests per sec,	
		use Cache, use of CDN's) etc.	

Table.5.2.2 Application Characteristics

Solution and Technical architecture includes the requirements of the system and components like software, tools, algorithms used in this system.

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story/ Task	Acceptance criteria	Priority	Release
Customer (Mobileuser)	Registration	USN-1	As a user,I can download the application	I can view the complete data sent by the hardware	High	Sprint-1
Customer (Mobileuser)	Registration	USN-2	As a user, I can register for the application by entering my mobile number, email, password.	I can access my profile	High	Sprint-1
Customer (Mobileuser)	Registration	USN-3	As a user,I will receive confirmation email or otp to sms once I have registered for the application	I can receive confirmation email or otp click confirm	High	Sprint-1
Customer (Mobileuser)	Login	USN-4	As a user,I can login to the application by enetering email and password	I can access my profile and dashboard	High	Sprint-2
Customer (webuser)	Actions	USN-5	As a user,I can View Temperature Readings	I can view the data by hardware	Medi um	Sprint-2
Customer (webuser)	Actions	USN-6	As a user,I can view any flameis detected in the place	I can view the data by hardware	High	Sprint-2

Customer (webuser)	Actions	USN-7	As a user,I will have on and off button or operates prinklers	The actions are taken by the user based on flame detected data	Medi um	Sprint-3
Customer (webuser)	Actions		As a user,I will have on and off button for operate exhaust fan.	The actions are taken by the user based on temperature and	Medi um	Sprint-3
	Storage	USN-9	As a Administrator I	level of gas content data The entire data's	High	Sprint-4
Administrator	Ü		can store the data in cloud database.	are stored in cloud database		

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement(Epi	Story		Points		
	c)	Number				
			As a user, I can	5	High	
Sprint-1	Registration	USN-1	download the			Vignesh V
			application			
Sprint-1	Registration		As a user, I can	5	High	
			register for the			
		USN-2	application by			Vignesh V
			entering my			
			mobile number,			
			email, password.			

Sprint-1	Registration	USN-3	As a user, I will receive confirmation email or otp to sms once I have registered for the application		High	Vignesh V
Sprint-2	Login	USN-4	As a user, I can log into the application by entering email and password.	5	High	Sri Vijay Kumar R M
Sprint-2	View	USN-5	As a user, I can View Temperature Readings.	2	Medium	Sri Vijay Kumar R M
Sprint-2	View	USN-6	As a user, I can view any flame is detected in the place.	4	High	Lokesh S
Sprint-3	Actions	USN-7	As a user, I will have on and off button for operate sprinklers.	1	Medium	Keerthivasan R
Sprint-3	Actions	USN-8	As a user, I will have on and off button for operate exhaust fan.	2	Medium	Keerthivasan R
Sprint-3	Management	USN-9	As a Administrator I can store the data in cloud database.	5	High	Keerthivasan R

Sprint-4	Testing	USN-10	As a tester, I can check whether the	5		Sri Vijay Kumar R M
			sensors are			111
			working			
			properly.			
			As a tester I can			
Sprint 1	Testing	USN-11	check whether	5	High	Lokesh S
Sprint-4			the sprinklers are			
			working well.			
			As a tester I can			
Sprint-4	Testing	USN-12	get the	5	High	Lokesh S
			appropriate			
			readings of the			
			Temperature.			

Table.6.1.1 Sprint Planning & Estimation

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points	Sprint
	Points		Date	(Planned)	Completed (as	Release
					on Planned End	Date
					Date)	(Actual)
Sprint-1	14	6 Days	24 Oct 2022	29 Oct 2022		
Sprint-2	11	6 Days	31 Oct 2022	05 Nov 2022		
Sprint-3	08	6 Days	07 Nov 2022	12 Nov 2022		
Sprint-4	15	6 Days	14 Nov 2022	19 Nov 2022		

Table.6.1.2 Project Tracker, Velocity & Burndown Chart

Velocity:

Average Velocity (AV)=8/4=2

Burndown Chart:

Figure.6.1.2 Burndown Chart

6.2 SPRINT DELIVERY SCHEDULE

SPRINT 1:

TASKS: UI Login page

SPRINT 2:

TASKS: Temperature Sensor Readings.

SPRINT 3:

TASKS: Cloudantdb, Buttons & Node Red.

Cloudantdb:

Buttons:

- 1.Sprinklerson
- 2.Sprinklersoff
- 3.Exhaustfanon
- 4.Exhaustfanoff

Node Red:

SPRINT 4:

TESTING

Temperature sensor:

IBM Cloud:

Flame and Gas Sensor:

IBM Cloud:

The Alarm, sprinkler and exhaust fan working as per the instruction.

Node Red:

Email Alert:

6.3 Reports from JIRA

Figure.6.3 Reports from JIRA

7. CODING & SOLUTIONING

7.1 Feature 1

```
import React, { Component } from 'react'
export default class Login extends Component {
constructor(props) {
  super(props);
  this.state = { password: ", email: ", isButton: true };
 handleChangePassword = (event) => {
  this.setState({ password: event.target.value });
 handleChangeEmail = (event) => {
  this.setState({ email: event.target.value });
 onClickEvent = () => {
  if(this.state.email !== "ibmiot015@gmail.com" || this.state.password !==
"iotibm"){
   alert("Email id or password is incorrect")
  }}
 render() {
  return (
   <form>
     <h3>Sign In</h3>
     <div className="mb-3">
      <label>Email address</label>
      <input
       type="email"
       className="form-control"
```

```
placeholder="Enter email"
       value={this.state.email}
       onChange={this.handleChangeEmail}
     />
     </div>
    <div className="mb-3">
      <label>Password</label>
      <input
      type="password"
      className="form-control"
      placeholder="Enter password"
      value={this.state.password}
      onChange={this.handleChangePassword}
     />
    </div>
    <div className="d-grid">{
       (this.state.email === "<u>ibmiot015@gmail.com</u>" && this.state.password ===
"iotibm")?
        <a
         className="btn btn-primary"
         href="https://node-red-ocnwt-2022-11-07.eu-gb.mybluemix.net/ui"
         target="_self"
         rel="noopener noreferrer"
         onClick={this.onClickEvent}
        >
         submit
        </a>
        <button type="submit" className="btn btn-primary"
onClick={this.onClickEvent}>
        Submit
```

7.2 Feature 2:

```
msg.payload1=msg.payload.Temperature
msg.payload2=msg.payload.Flame
msg.payload3=msg.payload.Gas
if((msg.payload1>=70) | (msg.payload2>=156) | (msg.payload3>=251)){
    msg.payload=1;
    return msg;
}
else {
    msg.payload=0;
    return msg;
}
```

8.TESTING

8.1 Test Cases

Test case ID	Feature Type	Component	Test Scenario
Frontend_TC_OO1	Dashboard UI	Home page	User login
Backend_TC_OO2	UI Configuration	Node Red Editor	UI should get the details from the userto storein database
Readings_TC_OO3	Sensors	Wokwi, Python 3.7.3	Find readings to generate the alert messages
Datebase_TC_OO4	Cloudant Database	IBM Cloudant DB	Verifying the details

Figure 8.1.1 Test case

Steps To Execute	Test Data	Expected Result	Stat us	Executed by
1.Login using Industry mail and password	https://fire-management-system.netlify.app/?	User account homepage	Pass	Sri Vijay Kumar R M
1.Web UI Configuration 2.to turn ON the sprinkles And exhaust fan	https://fire-management-system.netlify.app/?	Process the information which shown in the readings.	Pass	Lokesh S
1.To check whether the abnormal Temperatre ,flame and gas levels.	https://wokwi.com/projects/34784293927727 9827	Accurate Readings	Pass	Vignesh V
1.Alert messages. 2.Go to Cloudant dashboard	https://0a0d9576-bd85-4c88-9a94- 8ed218e657ff-bluemix.cloudant.com	Sensor Readings should store in database document	Pass	Keerthivasan R

Table.8.1.2 Test Report

8.2 User Acceptance Testing

The purpose of this document is to briefly explain the test coverage and open issues of the wokwi,Node-Red,python 3.7.3, UI Dashboard of project at the time of the release to User Acceptance Testing (UAT).

Data Analysis:

Resoluti on	Severi ty 1	Severi ty 2	Severi ty 3	Severi ty 4	Subtotal
By Design	4	3	2	1	10
Duplicate	0	0	1	1	2
External	4	3	0	1	8
Fixed	7	3	3	12	25
Not Reproduced	0	0	1	0	1
Skipped	0	0	0	1	1
Won't Fix	0	0	0	1	1
Totals	15	9	7	17	48

This report shows the number of test cases that have passed, failed, and untested

Test case Analysis:

Section	Total Cases	Not Tested	Fa il	Pass
Login	4	0	0	4
Wokwi	13	0	0	13
Python 3.7.3	8	0	0	8
Node-Red	5	0	0	5
UI Dashboard	3	0	0	3
Final Report Output	7	0	0	7

9. RESULT

9.1 Performance Metrics

Temperature Sensor:

Figure.9.1.1 Temperature sensor Reading

Figure.9.1.2 Alarm indication

IBM Cloud:

Figure.9.1.3 Cloud Readings

Figure.9.2.1 Output for Flame and Gas sensor

IBM Cloud:

Figure.9.2.2 Cloud Readings

The Alarm, sprinkler and exhaust fan working as per the instruction.

Node Red:

Figure 9.2.3 Node Red

10. ADVANTAGES & DISADVANTAGES

Advantages:

- 1. The main advantage and function of a fire alarm system is to ensure ultimate safety.
- 2. They help warn and keep people safe and reduce the amount of destruction to a building.
- 3. This is probably the major reason as to why a business will install a fire detection system.

Disadvantages:

- 1. Temperature sensor-Nonlinearity, limited support for temperature range, current source needed, fragile, self heating etc
- 2. Maintenance. Systems need to be tested annually and parts replaced as they break or age.
- 3. Insurance companies often give significant discounts for fire insurance when a monitored, maintained alarm is present and operational.
- 4. However, they can be costly to install and maintain, because they need more maintenance and testing.
- 5. False Alarms. Many municipalities charge a fee for responding to a false alarm when it was preventable (like when servicing the system).

11.CONCLUSION

In conclusion it is important to have a fire protection system in place as a part of abuilding's safety plan. Without a fire protection system, the lives of those who are inside thebuilding are placed at a high risk in the event an emergency. The systems recommended for uselike the fire alarm systems, sprinkler systems, fire pumps, and smoke control systems use someamount of actions to notify of the fire and smoke conditions, help slow the growth of the fire orto help put out the fire altogether. The plan that is recommended follows the guidelines provided by NFPA and if they are put into use the City of Washington Distribution Warehouse will be asafe place to work and in case of a fire the building will include protections that will result inminimum loss.

12.FUTURE SCOPE

In future this project can be implemented in various places like buildings, schools, colleges, hospitals, etc... Fire detection technologies have been slow to evolve compared to rapidly advancing smart devices. Understandably, global companies focus their efforts on developing high-return products, especially ones that connect consumers with popular trends. While fire alarms aren't exactly at the forefront of social advancement, innovative companies are developing new methods of approaching fire and gas-related threats.

13.APPENDIX

13.1 Source Code

TEMPERATURE SENSOR CODE:

```
#include <WiFi.h>//library for wifi+++-
#include < PubSubClient.h > //library for MQtt
#include "DHT.h"// Library for dht11
#define DHTPIN 15
                    // what pin we're connected to
#define DHTTYPE DHT22 // define type of sensor DHT 22
#define LED 2
DHT dht (DHTPIN, DHTTYPE);// creating the instance by passing pin and typr of
dht connected
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength);
//----credentials of IBM Accounts-----
#define ORG "x6rbso"//IBM ORGANITION ID
#define DEVICE_TYPE "project"//Device type mentioned in ibm watson IOT
Platform
#define DEVICE ID "projectid"//Device ID mentioned in ibm watson IOT
Platform
#define TOKEN "Q&hrS52r0@Qs5)xh@+" //Token
String data3;
float h, t;
//---- Customise the above values -----
char server[] = ORG ".
messaging.internetofthings.ibmcloud.com";// Server Name
char publishTopic[] = "iot-2/evt/Data/fmt/json";// topic name and type of event
perform and format in which data to be send
char subscribetopic[] = "iot-2/cmd/command/fmt/String";// cmd REPRESENT
command type AND COMMAND IS TEST OF FORMAT STRING
```

```
char authMethod[] = "use-token-auth";// authentication method
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//client id
WiFiClient wifiClient; // creating the instance for wificlient
PubSubClient client(server, 1883, callback, wifiClient); //calling the predefined
client id by passing parameter like server id, portand wificredential
void setup()// configureing the ESP32
 Serial.begin(115200);
 dht.begin();
 pinMode(LED,OUTPUT);
 delay(10);
 Serial.println();
 wificonnect();
 mqttconnect();
void loop()// Recursive Function
 t = dht.readTemperature();
Serial.print("Temperature:");
Serial.println(t);
PublishData(t);
 delay(1000);
 if (!client.loop()) {
  mqttconnect();
/.....retrieving to Cloud ....../
void PublishData(float temp) {
```

```
mqttconnect();//function call for connecting to ibm
   creating the String in in form JSon to update the data to ibm cloud
*/
 String payload = "{\"Temperature\":";
 payload += temp;
 payload += "}";
 Serial.print("Sending payload: ");
 Serial.println(payload);
 if (client.publish(publishTopic, (char*) payload.c_str())) {
  Serial.println("Publish ok");// if it sucessfully upload data on the cloud then it
will print publish ok in Serial monitor or else it will print publish failed
 } else {
  Serial.println("Publish failed");
void mqttconnect() {
 if (!client.connected()) {
  Serial.print("Reconnecting client to ");
  Serial.println(server);
  while (!!!client.connect(clientId, authMethod, token)) {
   Serial.print(".");
   delay(1000);
   initManagedDevice();
   Serial.println();
void wificonnect() //function defination for wificonnect
 Serial.println();
```

```
Serial.print("Connecting to ");
 WiFi.begin("Wokwi-GUEST", "", 6);//passing the wifi credentials to establish the
connection
 while (WiFi.status() != WL_CONNECTED) {
  delay(1000);
  Serial.print(".");
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
void initManagedDevice() {
 if (client.subscribe(subscribetopic)) {
  Serial.println((subscribetopic));
  Serial.println("subscribe to cmd OK");
 } else {
  Serial.println("subscribe to cmd FAILED");
 }
void callback(char* subscribetopic, byte* payload, unsigned int payloadLength)
 Serial.print("callback invoked for topic: ");
 Serial.println(subscribetopic);
for (int i = 0; i < payloadLength; i++) {
  //Serial.print((char)payload[i]);
  data3 += (char)payload[i];
 Serial.println("data: "+ data3);
 if(data3=="ALERT!!! Your industry got fired")
```

```
Serial.println(data3);
pinMode(LED,HIGH);
tone(LED,67);
delay(20000);
}
else
{
Serial.println(data3);
pinMode(LED,LOW);
noTone(LED);
}
data3="";
}
```

LIBRARIES:

```
{
    "version": 1,
    "author": "SRI VIJAY KUMAR R M",
    "editor": "wokwi",
    "parts": [
        { "type": "wokwi-esp32-devkit-v1", "id": "esp", "top": -11.62, "left": -130.71,
    "attrs": {} },
        {
            "type": "wokwi-dht22",
            "id": "dht1",
            "top": -7.14,
            "left": 141.83,
```

```
"attrs": { "temperature": "73.5", "humidity": "43" }
  },
   "type": "wokwi-buzzer",
   "id": "bz1",
   "top": -27.23,
   "left": 23.94,
   "attrs": { "volume": "0.1" }
],
 "connections": [
  ["esp:TX0", "$serialMonitor:RX", "", []],
  [ "esp:RX0", "$serialMonitor:TX", "", []],
  ["dht1:VCC", "esp:3V3", "red", ["v0"]],
  ["dht1:SDA", "esp:D15", "green", ["v0"]],
  ["dht1:GND", "esp:GND.1", "black", ["v0"]],
 ["bz1:2", "esp:D2", "green", ["v0"]],
 ["bz1:1", "esp:GND.1", "green", ["v0"]]
]
}
```

GAS AND FLAME SENSOR:

```
import time
import sys
import ibmiotf.application
import ibmiotf.device

#Provide your IBM Watson Device Credentials
organization = "x6rbso" # repalce it with organization ID
```

```
deviceType = "project" #replace it with device type
deviceId = "projectid" #repalce with device id
authMethod = "token"
authToken = "Q&hrS52r0@Qs5)xh@+"#repalce with token
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data)
    if cmd.data['command']=='Sprinkler On':
         print("sprinkler On")
    elif cmd.data['command'] == 'Sprinkler Off':
      print("sprinkler Off")
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data)
    if cmd.data['command']=='ExhaustFan On':
         print("ExhaustFan On")
try:
     deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
     deviceCli = ibmiotf.device.Client(deviceOptions)
     #.....
except Exception as e:
     print("Caught exception connecting device: %s" % str(e))
     sys.exit()
deviceCli.connect()
while True:
```

```
F=80;
G=78;

#Send Temperature & Humidity to IBM Watson
data = { 'Flame' : F,'Gas': G }

#print data
def myOnPublishCallback():
    print ("Published Flame = %s C" % F, "Gas = %s %%" % G, "to IBM
Watson")
    success = deviceCli.publishEvent("event", "json", data, qos=0,
on_publish=myOnPublishCallback)
    if not success:
        print("Not connected to IoTF")
        time.sleep(60)
        deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
```

Wokwi:

Temperature sensor:

https://wokwi.com/projects/347842939277279827

Python 3.7.3:

Gas and flame sensor:

https://drive.google.com/file/d/1UsonBmemG663_Rs00Z8zd4c6OuM9NYDk/v iew?usp=share_link

NODE RED:

https://node-red-ocnwt-2022-11-07.eugb.mybluemix.net/red/#flow/8e2d11613fa49915

13.2 GitHub & Project Demo Link

GitHub:

https://github.com/IBM-EPBL/IBM-Project-41334-1660641326

Project Demonstration Video:

https://youtu.be/iZQyFWfr8Q8

14.REFERENCE

- [1] Abdulsahib, A smart fire detection system using IoT technology. "International Journal of Electrical and Computer Engineering (IJECE)", 2019.
- [2] Rehman and Saeed F,IoT-Based Intelligent Modeling of Smart Home Environment for Fire Prevention and Safety "Journal of Sensor and Actuator Networks",2018.
- [3] Morandini, F. & Innocenti, Evaluation of a wireless sensor network with low cost and low energy consumption for fire detection and monitoring "Engineering Sciences [physics]/Reactive fluid environment", 2015.
- [4] M. Venkatesh and M. Hemanth Fire Alarm System with location using IoT, "International Journal of Scientific Research in Computer Science, Engineering and Information Technology",2019.