

Adaptive Neural Consensus Tracking Control for Multi-agent Systems with Unknown State and Input Hysteresis

Zhuangbi Lin

Guangdong University of Technology

Zhi Liu (Iz@gdut.edu.cn)

Guangdong University of Technology https://orcid.org/0000-0001-6300-578X

Yun Zhang

Guangdong University of Technology

C.L.Philip Chen

South China University of Technology

Research Article

Keywords: Adaptive neural control, Input and states hysteresis, Inverse compensation, Consensus control

Posted Date: March 13th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-296699/v1

License: © 1 This work is licensed under a Creative Commons Attribution 4.0 International License.

Read Full License

Version of Record: A version of this preprint was published at Nonlinear Dynamics on July 12th, 2021. See the published version at https://doi.org/10.1007/s11071-021-06652-4.

Abstract

An indirect adaptive consensus control method is presented for MASs with Unknown Bouc-Wen hysteresis states and input. All states of MASs are measured by sensors subjected to hysteresis. In order to reduce the effect of hysteresis with multi-value and rate-dependent characteristics, an adaptive compensated scheme is proposed. NNs are introduced to approximate the time-varying control gain which is coupled by input hysteresis and states hysteresis. The parameters of inverse compensation model are approximated by adaptive laws. The proposed control scheme can guarantee that the consensus errors of followers converge to a predefined interval of zero asymptotically. In addition, the transient performance of MASs can be further ensured. A simulation example is included to verify the effectiveness of the presented control approach.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures

(a) Hysteresis

(b) Hysteresis variable ξ

Figure 1Bouc-Wen model

Figure 2

Directed graph of the MASs.

Figure 3

The outputs measured by sensors and the leader's output

Figure 4

The genuine outputs of agents

Figure 5Consensus tracking errors

Figure 6Adaptive parameters

Figure 7 States of MASs x1;2 and \bar{x} 1;2

Figure 8

Designed control signal and actual control signal