Assignment-14

Pooja H AI20MTECH14003

Abstract—In this document, we find the matrix of T in the ordered basis \mathbf{B}

Download all latex-tikz codes from

https://github.com/poojah15/ EE5609_AI20MTECH14003/tree/ master/Assignment_14

1 Problem Statement

Let T be the linear operator on \mathbb{R}^2 defined by

$$T(x_1, x_2) = (-x_2, x_1)$$
 (1.0.1)

What is the matrix of T in the ordered basis $\mathbf{B} = \{\alpha_1, \alpha_2\}$, where $\alpha_1 = (1, 2)$ and $\alpha_2 = (1, -1)$?

2 Solution

Applying the transformations on α_1 and α_2 we get,

$$T(\alpha_1) = (-2, 1)$$
 (2.0.1)

$$T(\alpha_2) = (1, 1)$$
 (2.0.2)

In order to write $T(\alpha_1)$ and $T(\alpha_2)$ in terms of α_1 and α_2 , we row reduce the augmented matrix

$$\begin{pmatrix} 1 & 1 & -2 & 1 \\ 2 & -1 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{pmatrix} 1 & 1 & -2 & 1 \\ 0 & 1 & -\frac{5}{3} & \frac{1}{3} \end{pmatrix} (2.0.3)$$

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & \frac{2}{3} \\ 0 & 1 & -\frac{5}{3} & \frac{1}{3} \end{pmatrix} (2.0.4)$$

Hence, the matrix T in ordered basis **B** is

$$[T]_{\mathbf{B}} = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ -\frac{5}{3} & \frac{1}{3} \end{pmatrix}$$
 (2.0.5)