Mastère Professionnel : Business Intelligence

Apprentissage automatique

Généralités

Hind Elouedi

- Définir la notion d'apprentissage automatique (Machine Learning).
- Enumérer les différents domaines d'application.
- Connaître les différents types d'apprentissage automatique.
- Comprendre la notion de classification.
- Comprendre la notion d'évaluation

Points abordés

- Introduction
- Définitions
- Domaines d'application
- Types d'apprentissage
- Classification
- Evaluation

Introduction

Sources de données :

- Données financières : Bourse, Banque, etc.
- Données scientifiques : données géologiques, biologiques, images satellite, etc.
- Business transactions : code à barre, e-commerce, etc.
- Données personnelles / statistiques : recensement, dossier médical, profil client, données démographiques, etc.
- World Wide Web et répertoires Online : BD Online, emails, news, images, vidéos, Web documents, librairies digitales, user registrations, etc.

Introduction (2)

Données coûteuses en stockage et inexplorées

Introduction (3)

Ère du Big Data

Différentes sources de données

Nécessité de méthodes automatisées d'analyse et de traitements des données

Apprentissage Automatique (Machine Learning)

Informatique décisionnelle

Apprentissage

Apprentissage automatique

Définitions (2)

 Objectifs: Utilisation efficace des données (souvent hétérogènes) en un temps raisonnable pour des prises de décision compétitives.

Analytiques

(on sait ce qu'on cherche) = un questionnement particulier

Exploratoires

(on ne sait pas exactement ce qu'on cherche) = on recherche de nouveaux liens cachés = nouvelles connaissances

Définitions (3)

Informatique décisionnelle

Business intelligence

Exploitation des données dans le but de faciliter la prise de décision par les décideurs, c'est-à-dire la compréhension du fonctionnement actuel et l'anticipation des actions pour un pilotage éclairé.

Définitions (4)

Apprentissage

- Acquérir de nouvelles connaissances.
- Contracter de nouvelles habitudes.
- Avoir une connaissance extraite à partir d'un ensemble d'exemples ou d'expériences antérieures.

C'est la capacité d'améliorer l'accomplissement d'une tâche en interagissant avec un environnement.

Définitions (5)

Apprentissage automatique

- Simuler la cognition humaine.
- Doter la machine d'un mécanisme d'apprentissage.
- Machine learning = Intersection de l'informatique, statistiques et domaines particuliers.

Domaines d'application

- Data mining : Fouille de données
 - Exploitation des données historiques pour améliorer les décisions.
 - Ensemble de techniques d'exploration de données afin d'en tirer des connaissances (la signification profonde).
- Domaine des banques: Attribution de crédits
 - Utiliser un historique de crédits accordés et non accordés avec la situation personnelle du client.

Domaines d'application (2)

- Domaine de la médecine: Aide au diagnostic
 - Caractériser les symptômes des anciens patients et de leurs maladies.
- Marketing: Élaboration d'un profil client
 - Faire une segmentation automatique des clients.
- Analyse financière: Prévision d'évolution des marchés.
- Assurance: Analyse des risques.
- Télécoms: Détection des fraudes.
- Sécurité: Détection des intrusions.

Types d'apprentissage

- Apprentissage supervisé
- Apprentissage non supervisé
- Apprentissage semi-supervisé
- Apprentissage par renforcement

Types d'apprentissage (2)

Apprentissage supervisé

- C'est une technique d'apprentissage automatique où l'on cherche à produire automatiquement des règles à partir d'une base de données d'apprentissage contenant des « exemples ».
- On dispose d'un ensemble de paires d'E/S de la forme: (x_i, y_i)
 - x_i: entrée(s) possible(s)
 Descriptions ou situations
 - y_i: sortie(s) associée(s) à x_i

 Actions ou prédictions
- Les paires d'E/S sont appelées les exemples qui proviennent d'une fonction inconnue.
- Il s'agit de trouver une bonne approximation d'une fonction f dont on ne connaît le résultat que pour un certain nombre d'exemples.

On demande au système de généraliser

Apprentissage supervisé (2)

Exemples

Une fonction h aussi proche que possible de f où f(x_i) = y_i

$$\begin{array}{c|cccc}
0 & \longrightarrow & 0 \\
1 & \longrightarrow & 1 \\
4 & \longrightarrow & 64 \\
5 & \longrightarrow & 125
\end{array}$$

$$h(x) = x^3$$

Une distribution de probabilité P(x_i, y_i)

Quelle est la probabilité qu'un client achète un tel produit?

- Dans un jeu de carte:
 - Les cartes gagnantes sont: 9♥, Roi ♥ et 7♦.
 - Les cartes perdantes sont: 3♠, 4♠ et 6♠.

Les cartes rouges sont gagantes et les cartes noires numériques sont perdantes.

Apprentissage supervisé (3)

Apprentissage supervisé avec variable réponse continue

Régression, Estimation de densité

Apprentissage avec variable réponse discrète

Classification ou analyse discriminante

Apprentissage avec variable réponse booléenne

Apprentissage de concept

Apprentissage non supervisé

- On dispose uniquement d'un ensemble d'entrées.
- Regrouper les entrées en un ensemble fixe de groupes: Clustering.
 - Les entrées de chaque groupe sont proches les uns des autres.
 - On utilise une certaine métrique dans l'espace des entrées.
- Découvrir de nouvelles relations au niveau des données: Ex. Réseaux bayésiens.

Apprentissage non supervisé (2)

Exemples

Segmentation du marché:

Quelles sont les catégories principales des clients typiques dans le domaine vestimentaire?

- Enfants, adolescent, adultes, etc.
- Habillé, sport, classique, etc.

Apprentissage semi-supervisé

 L'apprentissage semi-supervisé utilise un ensemble de données étiquetées et non-étiqutées.

Apprentissage semi-supervisé peut améliorer les performances en combinant les données avec labels et sans labels

Apprentissage par renforcement

 L'algorithme d'apprentissage <u>doit</u> trouver une stratégie d'actions pour obtenir éventuellement une récompense (ou pénalité).

La récompense ou la pénalité arrive (généralement) suite à un ensemble d'actions.

Maximiser le gain (ou inversement) à long terme (apprentissage de réflexes, apprentissage de planification,...)

Apprentissage par renforcement (2)

Exemple

- Jeu d'échec :
 - On joue contre un adversaire.
 - Il y a une stratégie d'actions (en fonction du jeu).
 - C'est en fin de la partie qu'on va avoir le résultat de nos actions :
 - Victoire.
 - Nul.
 - Défaite.

Classification

- Notion de classification
- Apprentissage par l'exemple
- Approche paramétrique
- Approche non paramétrique
- Types de classification

Notion de classification

L'une des tâches de l'apprentissage est la Classification

Apprentissage par l'exemple

- On dispose d'un grand ensemble d'exemples (objets).
- On cherche à trouver une structure relative à ces exemples pour obtenir un modèle.
- Ce modèle permet de:
 - Extraire une procédure de classification à partir d'exemples.
 - Classer un nouvel exemple.

- Prévoir une valeur numérique.
- Comprendre la structure des exemples.

Apprentissage par l'exemple (2)

Ensemble d'apprentissage

Attributs

ts
ibu
ıttı
S
des
ls.
<u>e</u> n
/a

Revenu	Propriété	Crédit non remboursé	Classe
Elevé	Supérieur	Non	C_1
Elevé	Supérieur	Oui	C_2
Elevé	Supérieur	Non	C_1
Elevé	Inférieur	Oui	C_2
Moyen	Supérieur	Non	C_1
Moyen	Supérieur	Oui	C_2
Moyen	Inférieur	Non	C_2
Moyen	Inférieur	Oui	C_2
Faible	Inférieur	Non	C_3
Faible	Inférieur	Oui	C_3

C₁: Attribuer tout le crédit - C₂: Attribuer une partie crédit - C₃: Ne pas attribuer le crédit.

Apprentissage par l'exemple (3)

Ensemble test

Revenu	Propriété	Crédit non remboursé	Classes
Elevé	Supérieur	Oui	?
Moyen	Inférieur	Non	?
Elevé	Supérieur	Oui	?
Moyen	Supérieur	Oui	?
Faible	Inférieur	Oui	?
Nul	Inférieur	Oui	?
Elevé	Supérieur	Non	?
Moyen	Inférieur	Oui	?

Approche paramétrique

- Proposition d'un modèle dont on estime ses paramètres à partir des exemples (<u>phase d'apprentissage</u>).
- Les hypothéses que l'on fait sur les lois de probabilité font partie d'une famille de distributions.
 - Si on sait que P est une distribution normale, il suffit d'estimer ses deux paramètres:
 - Sa moyenne.
 - Son écart type.
 - Avoir une bonne approximation de la distribution P.
 - Déterminer une procédure de classification.

Approche non paramétrique

- Pas d'hypothèses sur le modèle que suivent les données.
- Les problèmes à résoudre sont plus complexes que ceux traités par les méthodes paramétriques.
 - Méthodes statistiques.
 - Méthodes issues de l'intelligence artificielle.

Types de classification

Classification supervisée

- Les classes sont définies a priori (à l'avance).
- Découverte de règles ou formules pour ranger les données dans des classes prédéfinies.
 - Construction d'un modèle sur les données dont la classe est connue (ensemble d'apprentissage).
 - Utilisation des nouveaux objets pour classification.

Exemples

- Arbres de décision.
- Méthode K plus proches voisins.
- Réseaux de neurones.
- Machines à vecteurs supports (SVM).

Types de classification (2)

Classification non supervisée

- Les instances d'apprentissage ne sont pas fournies avec des classes.
- L'ensemble d'apprentissage n'est pas étiqueté (on ne connaît pas les classes a priori).
- Intuitevement les objets de même classe sont "proches" les uns des autres.

Mesure de similarité ou de distance

Regrouper les exemples similaires: Segmentation et cluster

Exemples

- Clustering (Centres mobiles, hiérarchique).
- Réseaux de Kohonen.

- Utilisation d'un ensemble test.
- Pourcentage de Classification Correcte (PCC).
- Taux d'erreur de la classification (déduit du PCC).
- Utilisation de la validation croisée.

Evaluation (2)

PCC = Nombre d'objets correctement classés

Nombre total des objets tests

Ensemble test

Revenu	Propriété	Crédit non remboursé	Classes prédites	Vraies classes
Elevé	Supérieur	Oui	C_1	C_1
Moyen	Inférieur	Non	C_2	C_2
Elevé	Supérieur	Oui	C_1	C_1
Moyen	Supérieur	Oui	C ₃	C_2
Faible	Inférieur	Oui	C_1	C_3
Nul	Inférieur	Oui	C_3	C_3
Elevé	Supérieur	Non	C_1	C_1
Moyen	Inférieur	Oui	C_2	C_2

$$PCC = \frac{6}{8} = 75\%$$

Taux d'erreur = 25%

Evaluation (3)

Matrice de confusion

Classifieur					
Prédites	C ₁ (4)	C ₂ (2)	C ₃ (2)		
Vraies					
$C_1(3)$	3	0	0		
C ₂ (3)	0	2	1		
C ₃ (2)	1	0	1		

- Bon classifieur sur la diagonale.
- Identifier les classes mal comprises (apprises).

Evaluation (4)

Validation croisée

- Partition de l'ensemble d'apprentissage T en n ensembles disjoints (T₁, T₂,..., T_n) de même taille |T_i|
- Pour chaque i = 1, 2, ..., n
 - On fait l'apprentissage sur T {T_i}
 - On teste sur T_i
 - On calcule le PCC sur T_i
- On fait la moyenne des PCC.

Arbres de décision

