Công thức về Hệ trục tọa độ lớp 10 chi tiết nhất

A. Lí thuyết tóm tắt.

- Tọa độ của điểm trên trục: Có: $\overrightarrow{OM} = k\vec{e}$. Khi đó số k là tọa độ của điểm M trên trục $(\vec{O};\vec{e})$.
- Tọa độ của điểm trong mặt phẳng Oxy: Có $M(x;y) \Leftrightarrow \overrightarrow{OM} = x\vec{i} + y\vec{j}$.
- Tọa độ của vectơ trên trục: Trên trục $(O; \vec{e})$, hai điểm A và B trên trục $(O; \vec{e})$ có tọa độ lần lượt là a và b thì $\overline{AB} = b a$. Trong đó, \overline{AB} là độ dài đại số của vectơ \overline{AB} đối với trục $(O; \vec{e})$.
- Tọa độ của vectơ trong mặt phẳng Oxy: Với $\vec{u} = (x;y) \Leftrightarrow \vec{u} = x\vec{i} + y\vec{j}$. Với $A(x_A;y_A)$ và $B(x_B;y_B)$ ta có: $\overrightarrow{AB} = (x_B x_A;y_B y_A)$.
- Tọa độ trung điểm
- +) Trên trục (O; i), I là trung điểm của đoạn thẳng AB thì:

$$X_{I} = \frac{X_{A} + X_{B}}{2}$$

+) Trong mặt phẳng Oxy, $I(x_1; y_1)$ là trung điểm của đoạn thẳng AB thì:

$$X_{I} = \frac{X_{A} + X_{B}}{2}; y_{I} = \frac{y_{A} + y_{B}}{2}.$$

- Tọa độ của trọng tâm $G(x_{_{\rm G}};y_{_{\rm G}})$ của tam giác ABC là:

$$x_G = \frac{x_A + x_B + x_C}{3}; y_G = \frac{y_A + y_B + y_C}{3}$$

- Điều kiện để hai vectơ cùng phương: Hai vectơ $\vec{u} = (u_1; u_2)$ và $\vec{v} = (v_1; v_2)$ với $\vec{v} \neq \vec{0}$ cùng phương khi và chỉ khi có số k sao cho $u_1 = kv_1$ và $u_2 = kv_2$.
- Hai vectơ bằng nhau khi chúng có hoành độ bằng nhau và tung độ bằng nhau.
- Phép toán về tọa độ của vecto:

Cho
$$\vec{u} = (u_1; u_2) \ v \ \vec{v} = (v_1; v_2)$$
, khi đó:

$$\vec{u} + \vec{v} = (u_1 + v_1; u_2 + v_2)$$

$$\vec{u} - \vec{v} = (u_1 - v_1; u_2 - v_2)$$

$$\vec{k.u} = (ku_1; ku_2)$$
, $k \in \mathbb{R}$.

B. Các công thức.

- Độ dài đại số của vector \overrightarrow{AB} trên trục: $\overrightarrow{AB} = b a$. (a, b là tọa độ của A và B trên trục)
- Trong mặt phẳng Oxy:
- +) Tọa độ của điểm: $M(x;y) \Leftrightarrow \overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j}$
- +) Tọa độ của vecto:

$$\vec{u} = (x; y) \Leftrightarrow \vec{u} = x\vec{i} + y\vec{j}$$

$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$$
 trong đó $A(x_A; y_A)$ và $B(x_B; y_B)$

- Tọa độ trung điểm I của đoạn thẳng AB
- +) Trên trục (O; \vec{i}): $x_I = \frac{x_A + x_B}{2}$
- +) Trong mặt phẳng Oxy: $x_{I} = \frac{x_{A} + x_{B}}{2}$; $y_{I} = \frac{y_{A} + y_{B}}{2}$
- Tọa độ trọng tâm G của tam giác ABC: $x_G = \frac{x_A + x_B + x_C}{3}$; $y_G = \frac{y_A + y_B + y_C}{3}$
- Điều kiện hai vector $\vec{u} = (u_1; u_2)$ và $\vec{v} = (v_1; v_2)$ cùng phương: $\frac{u_1}{v_1} = \frac{u_2}{v_2} = k$
- Hai vecto bằng nhau: Cho $\vec{u} = (u_1; u_2)$ và $\vec{v} = (v_1; v_2)$ ta có: $\vec{u} = \vec{v} \Leftrightarrow \begin{cases} u_1 = v_1 \\ u_2 = v_2 \end{cases}$
- Phép toán về tọa độ của vecto: Cho $\vec{u} = (u_1; u_2)$ và $\vec{v} = (v_1; v_2)$

$$\vec{u} + \vec{v} = (u_1 + v_1; u_2 + v_2)$$

$$\vec{u} - \vec{v} = (u_1 - v_1; u_2 - v_2)$$

$$\vec{k.u} = (ku_1; ku_2)$$
, $k \in \mathbb{R}$.

C. Ví dụ minh họa.

Bài 1: Cho tam giác ABC có A (-1;3), B (2;5), C(1;4). Tìm tọa độ trung điểm I của đoạn thẳng AB, trọng tâm G của tam giác ABC và tọa độ của vecto \overrightarrow{AB} .

Giải:

Áp dụng công thức tọa độ trung điểm ta có:

Gọi
$$I = (x_1; y_1)$$
.

$$x_{I} = \frac{x_{A} + x_{B}}{2} = \frac{-1 + 2}{2} = \frac{1}{2}$$

$$y_I = \frac{y_A + y_B}{2} = \frac{3+5}{2} = 4$$

$$\Rightarrow$$
 I = $\left(\frac{1}{2};4\right)$

Gọi
$$G = (x_G; y_G)$$

Áp dụng công thức tọa độ trọng tâm tam giác ta có:

$$x_G = \frac{x_A + x_B + x_C}{3} = \frac{-1 + 2 + 1}{3} = \frac{2}{3}$$

$$y_G = \frac{y_A + y_B + y_C}{3} = \frac{3 + 5 + 4}{3} = 4$$

$$\Rightarrow$$
 G = $\left(\frac{2}{3};4\right)$

Ta có:
$$\overrightarrow{AB} = (2 - (-1); 5 - 3) = (3; 2) \implies \overrightarrow{AB} = (3; 2)$$

Bài 2: Cho hai vecto $\vec{a} = (3;4)$ và $\vec{b} = (6;8)$. Chứng minh rằng \vec{a} và \vec{b} cùng phương và tính tọa độ các vecto $\vec{a} + \vec{b}$, $\vec{a} - \vec{b}$.

Giải:

Ta có:

$$\frac{3}{6} = \frac{4}{8} = \frac{1}{2} \Rightarrow \vec{a} \text{ và } \vec{b} \text{ cùng phương}$$

$$\vec{a} + \vec{b} = (3+6;4+8) = (9;12)$$

$$\vec{a} - \vec{b} = (3 - 6; 4 - 8) = (-3; -4)$$

D. Bài tập tự luyện.

Bài 1: Trên trục tọa độ $(O; \vec{i})$ cho ba điểm A, B, C có tọa độ lần lượt là -2; 1 và 4. Xác định tọa độ các vecto \overrightarrow{AB} , \overrightarrow{AC} .

Bài 2: Cho ba điểm A (-2; 0), B (0;3) và C (1;2). Tìm tọa độ vector $\vec{u} = 2\overrightarrow{AB} - \overrightarrow{BC}$.

Bài 3: Cho hai vecto $\vec{u} = (2;3)$ và $\vec{v} = (4;x)$. Tìm x để hai vecto \vec{u} và \vec{v} cùng hướng.

Bài 4: Cho ba điểm A (1;4), B (3;5), C(5;m). Tìm m để $\overrightarrow{AB} = \overrightarrow{BC}$.

Bài 5: Cho tam giác ABC có A (2;1), B (-1;-2), C (-3;2). Tìm tọa độ điểm M sao cho C là trung điểm của đoạn MB và tìm tọa độ trọng tâm tam giác ABC.