11) Veröffentlichungsnummer:

0 039 788

A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81102722.6

(22) Anmeldetag: 10.04.81

(51) Int. Cl.³: A 01 N 37/02

A 01 N 37/04, A 01 N 37/06 C 07 C 53/126, C 07 C 55/02 C 07 C 57/12, C 08 F 8/44

30 Priorität: 03.05.80 DE 3017123 14.06.80 DE 3022432 18.10.80 DE 3039409

(43) Veröffentlichungstag der Anmeldung: 18.11.81 Patentblatt 81/46

84 Benannte Vertragsstaaten: AT BE CH DE FR IT LI NL SE 71 Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

72 Erfinder: Kraft, Helmut Hirtenweg 131 D-6719 Wattenheim(DE)

72 Erfinder: Schumacher, Heinz Karlsruher Strasse 19 D-6940 Weinheim(DE)

Pommer, Ernst-Heinrich, Dr. Berliner Platz 7
D-6703 Limburgerhof(DE)

72 Erfinder: Schlotterbeck, Dietrich, Dr. Mainzer Strasse 38 D-6703 Limburgerhof(DE)

72 Erfinder: Ley, Gregor, Dr. In den Trankstuecken D-6719 Wattenheim(DE)

(54) Kupferkomplexe, ihre Herstellung, ihre Verwendung zur Bekämpfung von Pflanzenschädlingen und Mittel dafür.

Die vorliegende Erfindung betrifft pflanzenverträgliche Kupferamminsalze organischer Säuren sowie deren Herstellung und Verwendung als Pflanzenschutzmittel.

Kupferkomplexe, ihre Herstellung, ihre Verwendung zur Bekämpfung von Pflanzenschädlingen und Mittel dafür

Kupfersalze werden bereits seit langem in der Landwirtschaft zur Bekämpfung von Pilzkrankheiten an Kulturpflanzen eingesetzt. Um die Wirksamkeit der Kupferbehandlung von Kulturen über einen längeren Zeitraum zu garantieren, werden meist in Wasser schwer oder unlösliche anorganische Kupfersalze verwendet, z.B. Kupferoxichlorid. In letzter Zeit sind auch ölige Formulierungen von Kupfersalzen auf der Basis niedermolekularer organischer Carbonsäuren bekannt geworden (vgl. Technisches Bulletin der Firma Complex Quimica S.A. über Complex-200), die bei gleicher Wirksamkeit einen erheblich niedrigeren Kupfergehalt als die herkömmlichen Produkte haben.

Weiter sind bereits in der GB-PS 1 394 990 wasserlösliche Copolymere angegeben, die durch Polymerisation von 20 bis 60 Teilen Acrylsäure oder Methacrylsäure, 20 bis 70 Teilen Alkylacrylat oder -methacrylat und 5 bis 20 Teilen eines weichmachenden Monomeren entstehen sollen und in die Pflanzenschutzmittel eingelagert werden sollen. Die sauren Copolymere sollen dabei auch in Form ihrer Kupfersalze mit dem Pflanzenschutzmittel kombiniert werden können. Bei eigenen Versuchen, diese GB-PS nachzuarbeiten, wurden jedoch keine brauchbaren Produkte erhalten.

Schließlich sind aus der DE-OS 2 807 293 und der US-PS 3 900 504 Kupferamminkomplexe mit fungizider Wirkung bekannt, die sich jedoch nicht zum Besprühen von Pflanzen eignen, da sie nicht auf diesen haften.

Es wurden nun einfache kupferhaltige Komplexe mit guten 35 Eigenschaften, vorzugsweise für den Pflanzenschutz, gefunden.

Gegenstand der Erfindung ist ein Pflanzenschutzmittel enthaltend ein pflanzenverträgliches Kupferamminsalz einer organischen Monocarbonsäure mit 4 oder mehr Kohlenstoffatomen, einer Dicarbonsäure oder einer Polycarbonsäure.

5

10

Das Kupfer liegt insbesondere als Amminkomplex vor, wobei das Ammoniak in dem Komplex zum Teil auch durch niedermolekulare, leicht flüchtige Amine, wie Methylamin, ersetzt sein kann. Als Anionen eignen sich z.B. solche von Fettsäuren mit 4 bis 20, vorzugsweise 5 bis 12 Kohlenstoffatomen oder mehrbasische Carbonsäuren mit bis zu 12 Kohlenstoffatomen, vorzugsweise Dicarbonsäuren mit bis zu 6 Kohlenstoffatomen.

- Interessante Beispiele für solche Säuren sind: Ethylhexansäure, Fettsäuren - wie Laurinsäure oder Ölsäure -, Benzoesäure, Bernsteinsäure, Glutarsäure, Adipinsäure sowie Gemische einbasischer und/oder mehrbasischer Carbonsäuren.
- Als besonders gut brauchbar haben sich als Anionen die von polymeren Carbonsäuren, wie z.B. aus Acrylsäure, Methacrylsäure, Maleinsäure und ihren Copolymeren mit Acrylsäureestern, Methacrylsäureestern und/oder Vinylverbindungen wie Vinylacetat, Styrol oder Vinylchlorid oder
 Mischungen daraus oder mit den im vorhergehenden Absatz genannten Säuren erwiesen.

Außerdem können noch Anteile anderer Comonomeren einpolymerisiert sein, z.B. komplexbildende Monomere wie

Acrolein, Hydroxipropylacrylat, Butandiolmonoacrylat-acetylacetat, Vinylimidazol und/oder neutrale Monomere, wie
Acrylamid, Methacrylamid, N-Methylolmethacrylamid und/oder
andere anionische Monomere, wie Acrylamidomethylpropansulfonsäure bzw. ihre Salze, und/oder kationische Monomere,

wie Dimethylaminoethylmethacrylat, Diethylaminoethylacrylamid bzw. ihre quaternierten kationischen Formen.

- Als besonders günstig haben sich Mischungen aus wäßrigen Lösungen eines Kupferammin-Salzes und des Ammoniumsalzes eines Polymeren erwiesen, welches aus 60 bis 100 % Acrylsäure oder Methacrylsäure und 0 bis 40 % Acrylsäure- oder Methacrylsäureester besteht.
- Es ist nicht erforderlich, die Kupferamminsalze in reiner Form als Pflanzenschutzmittel zu verwenden.

Das erfindungsgemäße Pflanzenschutzmittel enthält das Kupfer vorzugsweise in einer Menge von 0,01 bis 10 %.

Die Herstellung der erfindungsgemäßen Kupfersalze erfolgt am einfachsten durch Zugabe von Ammoniak oder Amin zu einem leicht löslichen Kupfersalz, wie Kupfer(II)-sulfat, und anschließenden Zusatz der Carbonsäure. Sie kann auch durch Umsetzung von Kupfersalzen schwachen oder leicht

- durch Umsetzung von Kupfersalzen schwacher oder leicht flüchtiger Säuren mit den Carbonsäuren bzw. Polycarbonsäuren, die gegebenenfalls teilweise mit Ammoniak neutralisiert sein können, und anschließende Umsetzung mit Ammoniak bzw.
- Ammoniakwasser erfolgen. Die Konzentrationen der Reaktionspartner wird dabei in annähernd molarem Verhältnis eingestellt. Ein größerer Überschuß an Säure ist ungünstig; ein
 Überschuß an Ammoniak oder Amin stört nicht, ein Unterschuß
 führt jedoch zu Fällungen, insbesondere beim Verdünnen mit
 Wasser auf anwendungsgerechte Konzentrationen.

Die Polymeren können nach den üblichen Verfahren der Substanz-, Lösungs-, Fällungs-, Emulsions- oder Suspensionspolymerisation erhalten werden.

35

30

15

So kann man beispielsweise die Monomeren unter Ausschluß von Sauerstoff in Isopropanol/Wasser 1:1 lösen, so daß eine 10 bis 50 %ige Lösung entsteht. Hierzu gibt man etwa 0,5 bis 5 % (bezogen auf die Menge der Monomeren) Polymerisationsinitiator, z.B. Azobisisobutyronitril, und erwärmt die Mischung 5 Stunden auf 80°C. Die so erhaltenen Polymeren werden direkt oder nach Isolierung zur Herstellung des erfindungsgemäßen Pflanzenschutzmittels verwendet. Die folgenden Beispiele sollen die Erfindung erläutern. Alle Mengen- und Prozentangaben beziehen sich auf Gewichte.

Beispiel 1

10

Zu einer Lösung von 20 Teilen CuSO4 . 5 H2O in 50 Teilen

Wasser und 30 Teilen konzentriertem Ammoniak gibt man
unter Rühren eine Lösung von 28 Teilen Ethylhexansäure in
25 Teilen Ethanol, 50 Teilen Wasser und 50 Teilen konzentriertem Ammoniak. Es entsteht eine tiefblaue, klare
Lösung, die mit Wasser in jedem Verhältnis mischbar ist.

Beim Auftrocknen der (verdünnten) Lösung bei Raumtemperatur
entsteht eine in Wasser schwer lösliche Kupferverbindung.

Beispiel 2

- Zu einer Lösung von 20 Teilen CuSO₄ . 5 H₂O in 50 Teilen Wasser und 30 Teilen konzentriertem Ammoniak gibt man unter Rühren eine Lösung von 50 Teilen Ölsäure in 25 Teilen Ethanol, 75 Teilen Wasser und 50 Teilen konzentriertem Ammoniak. Die entstandene tiefblaue Lösung geht beim
 Verdünnen mit Wasser im Verhältnis 5 Teile Lösung + 95 Teile Wasser in eine milchigblaue Emulsion über, die in 24 Stunden nur wenig aufrahmt.
- Das beim Auftrocknen entstehende unlösliche Kupfersalz wird von Wasser nur schwer benetzt.

Beispiel 3

Zu einer Lösung von 38 Teilen CuSO4 . 5 H2O in 75 Teilen Wasser und 45 Teilen konzentriertem Ammoniak gibt man unter Rühren eine Lösung von 20 Teilen eines Dicarbonsäuregemischs aus ca. 30 Gew.% Bernsteinsäure, 40 Gew.% Glutarsäure und 30 Gew.% Adipinsäure in 40 Teilen Wasser und 20 Teilen konzentriertem Ammoniak.

Die entstandene tiefblaue Lösung ist mit Wasser in jedem Verhältnis klar mischbar. Beim Auftrocknen entsteht ein wasserunlöslicher Kupferrückstand.

Beispiel 4

15

Zu einer Lösung eines Lösungscopolymeren mit einem K-Wert von K = 46 aus 6,7 Teilen Methylacrylat und 13,3 Teilen Acrylsäure in 96,25 Teilen Wasser und 3,75 Teilen konzentriertem Ammoniak wird unter Rühren eine Lösung

von 30 Teilen CuSO4 . 5 H2O in 75 Teilen Wasser und 45 Teilen konzentriertem Ammoniak gegeben. Die erhaltene tiefblaue, klare Lösung ist lagerstabil und mit Wasser in jedem Verhältnis mischbar. Der Kupfergehalt der Lösung beträgt 2,87 %.

25

Beispiel 5

Es wird wie in Beispiel 4 verfahren, jedoch wird ein Lösungscopolymerisat mit einem K-Wert von 42 aus 6,7 Teilen Ethylacrylat und 13,3 Teilen Acrylsäure verwendet.

Beispiel 6

Es wird wie in Beispiel 4 verfahren, jedoch wird ein

Lösungscopolymerisat vom K-Wert 41 aus 6,7 Teilen n-Butylacrylat und 13,3 Teilen Acrylsäure verwendet.

Beispiel 7

5

10

15

Zu einer 50 %igen Lösung eines Copolymeren des K-Werts K = 48 aus 25,1 Teilen Acrylsäure und 12,4 Teilen n-Butylacrylat in Isopropanol/Wasser (1:1) werden 37,5 Teile Wasser und 7,5 Teile konzentriertes Ammoniak gegeben. Dann werden 60 Teile CuSO4 . 5 H20 in 50 Teilen Wasser in der Hitze gelöst und zu dieser Lösung nach Abkühlen 120 Teile konzentriertes Ammoniak gegeben. Die erhaltenen Lösungen werden vereinigt. Es entsteht eine tiefblaue, klare Lösung, die lagerstabil und mit Wasser in jedem Verhältnis mischbar ist. Der Kupfergehalt der Lösung beträgt 4,36 %.

Beispiel 8

Zu einer 25%igen Lösung eines Copolymeren des K-Werts K = 43 aus 12,5 Teilen Acrylsäure und 6,2 Teilen n-Butylacrylat in Isopropanol/Wasser (1:1) werden 37,5 Teile Wasser und 3,75 Teile konzentriertes Ammoniak gegeben. 20 Teile CuSO4 . 5 H2O werden in 75 Teilen Wasser heiß gelöst. Die Lösung wird abgekühlt und mit 35 Teilen konzentriertem Ammoniak versetzt. Die erhaltenen Lösungen werden vereinigt. Der Kupfergehalt der Lösung beträgt 2,11 %.

30 Beispiel 9

35

Zu der Lösung eines Lösungspolymerisats mit einem K-Wert von K = 20 aus 4,5 Teilen Acrylsäure in 33 Teilen Wasser und 10 Teilen konzentriertem Ammoniak wird eine Lösung aus 30 Teilen CuSO $_4$. 5 $\rm H_2O$ in 60 Teilen konzentriertem

'Ammoniak gegeben. Die erhaltene tiefblaue Lösung ist lagerstabil und mit Wasser in jedem Verhältnis mischbar. Der Kupfergehalt der Lösung beträgt 5,53 %.

5 Beispiel 10

Zu einer Lösung von 45 Teilen CuSO₄ . 5 H₂O in 90 Teilen konzentriertem Ammoniak wird die Lösung eines Lösungs-polymerisats mit einem K-Wert von etwa K = 20 aus 4,5 Teilen Acrylsäure in 49 Teilen Wasser und 10 Teilen konzentriertem Ammoniak zugetropft. Der Kupfergehalt der Lösung beträgt 5,78 %.

Beispiel 11

15

20

10

Zu einer Lösung von 15 Teilen CuSO₄. H₂O in 10 Teilen Wasser und 40 Teilen konzentriertem Ammoniakwasser wurde langsam unter Rühren eine Mischung von 10 Teilen einer 25%igen Lösung von Polymethacrylsäure mit einem K-Wert von 60 in Propylenglykol und 10 Teilen Wasser zugetropft. Es entstand eine tiefblaue klare Lösung, die mit Wasser in jedem Verhältnis mischbar ist. Beim Auftrocknen der (verdünnten) Lösung bei Raumtemperatur entsteht eine in Wasser schwer lösliche Kupferverbindung.

25

Beispiel 12

Zu einer Lösung aus 11 Teilen CuSO₄ . 5 H₂O in 15 Teilen Wasser und 25 Teilen konzentriertem Ammoniakwasser wurde eine Mischung von 38 Teilen einer 40%igen Dispersion auf Basis von 90 Gew.% n-Butylacrylat und 10 Gew.% Acrylsäure, hergestellt durch Emulsionspolymerisation, 40 Teilen Wasser und 3 Teilen konzentriertem Ammoniakwasser langsam zugetropft. Es entsteht eine blaue, milchig-trübe Dispersion,

die mit Wasser in jedem Verhältnis mischbar ist und beim Auftrocknen bei Raumtemperatur einen wasserfesten Film ergibt.

5 Beispiel 13

Zu einer Lösung von 45 Teilen CuSO₄ . 5 H₂O in 90 Teilen konzentriertem Ammoniakwasser wird eine Mischung aus 10 Teilen einer 50%igen Lösung einer Polyacrylsäure vom 10 K-Wert 25, 10 Teilen konzentriertem Ammoniakwasser und 43 Teilen Wasser langsam zugetropft. Die entstandene tiefblaue, klare Lösung wird im Verhältnis 1 : 1 mit der Kunststoffdispersion Acronal 567 D abgemischt. Die entstandene blaugefärbte, milchig-trübe Dispersionsmischung ist mit Wasser in jedem Verhältnis mischbar und gibt beim Auftrocknen einen wasserfesten Film.

Beispiel 14

Zu einer Lösung aus 60 Teilen CuSO4 . 5 H2O in 50 Teilen Wasser und 120 Teilen konzentriertem Ammoniakwasser wird eine Lösung aus 75 Teilen einer 50%igen Lösung eines Copolymeren aus 33 Gew.% n-Butylacrylat, 65 Gew.% Acrylsäure und 2 Gew.% Dimethylaminoethylmethacrylat, das mit Methylchlorid quaterniert wurde, vom K-Wert 48, 37,5 Teilen Wasser und 7,5 Teilen konzentriertem Ammoniakwasser unter Rühren zugegeben. Es entsteht eine tiefblaue lagerstabile, mit Wasser in allen Verhältnissen mischbare Lösung, die beim Auftrocknen einen wasserfesten Trockenrückstand ergibt.

Beispiel 15

30

35

Zu einer Lösung aus 30 Teilen CuSO₄ . 5 H₂O in 75 Teilen Wasser und 45 Teilen konzentriertem Ammoniakwasser wurde eine Mischung aus 75 Teilen einer 25%igen Lösung eines

Copolymeren aus 33 Gew.% tert.-Butylacrylat und 67 Gewichtsteilen Acrylsäure vom K-Wert 45, 37,5 Gewichtsteilen Wasser
und 3,75 Gewichtsteilen konzentriertem Ammoniakwasser unter
Rühren zugegeben. Die entstandene tiefblaue Lösung ist lagerstabil, mit Wasser in jedem Verhältnis mischbar und ergibt
beim Auftrocknen einen spröden, wasserfesten Trockenrückstand.

Beispiel 16

10

Zu einer Lösung aus 40 Teilen CuSO₄ . 5 H₂O in 75 Teilen Wasser und 50 Teilen konzentriertem Ammoniakwasser wurde die klare Lösung aus 75 Teilen einer 25%igen Lösung eines Copolymeren aus 33 Gew.% n-Butylacrylat und 67 Gew.% Acrylsäure vom K-Wert 40, 10 Teilen Ölsäure, 37,5 Teilen Wasser und 25 Teilen konzentriertem Ammoniakwasser unter Rühren zugegeben. Die entstandene klare, tiefblaue Lösung ergibt beim Verdünnen mit Wasser eine ausreichend stabile trübe Spritzbrühe, die beim Auftrocknen einen kupferhaltigen Trockenrückstand ergibt, der mit Wasser zwar quillt, aber sich nicht auflöst.

Beispiel 17

Zu einer Lösung aus 30 Teilen CuSO4 . 5 H2O in 75 Teilen Wasser und 45 Teilen Ammoniakwasser wurde unter Rühren eine Lösung aus 75 Teilen einer 25%igen Lösung eines Copolymeren aus 33 Gewichtsteilen Styrol und 67 Gewichtsteilen Acrylsäure vom K-Wert 36, 37,5 Teilen Wasser und 3,75 Teilen konzentriertem Ammoniakwasser zugegeben. Die tiefblaue Lösung ist lagerstabil und mit Wasser in jedem Verhältnis mischbar; nach dem Auftrocknen entsteht ein wassersester Rückstand.

Beispiel 18

Zu 225 Teilen einer Lösung aus 150 Teilen CuSO₄ . 5 H₂O in 200 Teilen Wasser und 200 Teilen konzentriertem Ammoniak-wasser wurden 150 Teile einer 25%igen wäßrigen Lösung eines Copolymeren aus 48 Gew.% Vinylimidazol und 52 Gew.% Acrylsäure vom K-Wert 32 unter Rühren zugegeben. Die entstandene dunkelblaue Lösung ist lagerstabil und mit Wasser in jedem Verhältnis mischbar.

10

Beispiel 19

Zu 175 Teilen einer Lösung aus 150 Teilen CuSO₄ · 5 H₂O in 400 Teilen halbkonzentriertem Ammoniakwasser wurde eine Lösung aus 50 Teilen einer 25%igen Lösung eines Copolymeren aus 66 Gewichtsteilen Acrylsäure und 34 Gewichtsteilen Acrolein vom K-Wert 32 und 6 Teilen konzentriertem Ammoniakwasser unter Rühren zugegeben. Die entstandene Lösung ist lagerstabil, mit Wasser in jedem Verhältnis mischbar und gibt beim Auftrocknen einen wasserfesten fungiziden Trockenrückstand.

Beispiel 20

25 Zu 180 Gewichtsteilen einer Lösung aus 150 Teilen CuSO4 . 5 H2O in 400 Teilen halbkonzentriertem Ammoniakwasser wurde unter Rühren eine Mischung aus 100 Teilen einer 25%igen Lösung eines Copolymeren vom K-Wert 31 aus 1/3 Acrylsäure, 1/3 Maleinsäureanhydrid und 1/3 Acrylamidodimethylpropansulfonsäure, 60 Teilen Wasser und 20 Teilen konzentriertem Ammoniakwasser zugegeben. Die entstandene Lösung ist lagerstabil, mit Wasser in jedem Verhältnis mischbar und gibt beim Auftrocknen einen wasserbeständigen Trockenrückstand.

O. Z. _{0050/034430/}
034504/034723

Beispiel 21

Zu 110 Teilen einer 27%igen Lösung von CuSO4 . 5 H2O in halbkonzentriertem Ammoniakwasser wurde eine Mischung aus 50 Teilen einer 25%igen Lösung eines Copolymeren aus 50 Gew.% Acrylsäure, 16 Gew.% Acrolein, 17 Gew.% n-Butylacrylat und 17 Gew.% Methylmethacrylat vom K-Wert 15,5, 100 Teilen Wasser und 50 Teilen konzentriertem Ammoniakwasser zugegeben. Die entstandene Lösung ist lagerstabil, mit Wasser in jedem Verhältnis mischbar und gibt beim Auftrocknen einen wasserbeständigen kupferhaltigen Überzug.

Beispiel 22

20 Teilen der 27%igen Lösung von CuSO4 . 5 H2O in halbkonzentriertem Ammoniak wurde eine Mischung aus 100 Teilen einer 25%igen Lösung eines Copolymeren aus 90 Gew.% Acrylsäure und 10 Gew.% N-Methylolmethacrylamid vom K-Wert 48, 100 Teilen Wasser und 20 Teilen konzentriertem Ammoniakwasser zugegeben. Die entstandene Lösung ist lagerstabil, mit Wasser in jedem Verhältnis mischbar und gibt beim Auftrocknen einen wasserbeständigen überzug.

Beispiel 23

25

30

35

10

Zu einer Lösung aus 30 Teilen CuSO₄ . 5 H₂O in 75 Teilen Wasser und 45 Teilen konzentriertem Ammoniakwasser wurde eine Mischung aus 75 Teilen einer 25%igen Lösung eines Copolymeren aus 80 Gew.% Acrylsäure und 20 Gew.% eines Umsetzungsproduktes aus molaren Mengen von Hydroxipropylacrylat und Keten, 37,5 Gew.% Wasser und 3,75 Gewichtsteilen konzentriertem Ammoniakwasser unter Rühren zugetropft. Die entstandene Lösung ist lagerstabil, mit Wasser in jedem Verhältnis mischbar und ergibt beim Auftrocknen einen wasserbeständigen Trockenrückstand.

Beispiel 24

Man verfährt wie im Beispiel 23, verwendet jedoch statt des Copolymeren aus Acrylsäure und Hydroxipropylacrylat-acetylacetat ein Terpolymeres aus 40 Gew.% Acrylsäure, 40 Gew.% Methacrylsäure und 20 Gew.% eines Umsetzungs-produktes aus molaren Mengen von Hydroxipropylacrylat und Keten.

Trägt man das erfindungsgemäße auf Anwendungskonzentrationen verdünnte Pflanzenschutzmittel auf zu behandelnde Gegenstände, Pflanzen oder Pflanzenteile auf, so entsteht beim Auftrocknen der Lösung ein in Wasser schwer oder nicht lösliches Metallpolysalz, welches fest auf dem Gegenstand oder der Pflanze haftet und seine fungizide bzw. bakterizide Wirkung über einen langen Zeitraum behält.

Die neuen Komplexe besitzen beispielsweise eine ausgezeichnete fungizide Wirkung, welche die von bislang bekannten

20 kupferhaltigen Fungiziden übertrifft. Sie sind daher überall dort einsetzbar, wo unerwünschter Bewuchs oder Befall durch Organismen auftritt. Beispiele hierfür sind die Hemmung von Bakterien-, Algen-, Pilz-, Flechten- und Moosbefall von Pflanzen sowie von Bauteilen wie Natur- und Kunststein,

25 Pflaster und Fassaden, Putzen, Anstrichen, und dem Wasser ausgesetzten Holzteilen. Insbesondere eignen sich die neuen Komplexe zur Bekämpfung von Phytophthora infestans an Tomaten und Kartoffeln, Plasmopara viticola an Reben,

Pseudoperonospora humuli an Hopfen, Cercospora beticola an Rüben, Cercospora musae an Bananen, Venturia inaequalis an Apfeln, Exobasidium vexans an Tee, Hemileia vastatrix an Kaffee.

Überraschenderweise eignen sich die neuen Pflanzenschutzmittel auch vorzüglich als Bakterizide zur Bekämpfung

von Pflanzenbakteriosen. Folgende Bakteriosen lassen sich beispielsweise mit den neuen Mitteln bekämpfen:

5 an Birnen und Äpfeln, Erwinia carotovora an Kartoffeln, Pseudomonas lachrymans an Gurken, Pseudomonas phaseolicola an Bohnen, Pseudomonas syringae an Flieder, Pseudomonas solanacearum an Bananen, Xanthomonas campestris an Kohl, Xanthomonas malvacearum an Baumwolle und Xanthomonas oryzae an Reis.

Die Wirkstoffe und die damit zubereiteten Mittel zeichnen sich im Gegensatz zu den besten hochwirksamen Kupferverbindungen durch eine sehr gute Pflanzenverträglichkeit aus, auch in empfindlichen Kulturen, wie Birnen und Äpfel.

Weiter besitzen die neuen Pflanzenschutzmittel den Vorteil, daß sie aus rein wäßriger Lösung angewendet werden können. Es treten daher bei ihrer Anwendung geringere Umwelt-belastungen auf als bei der Behandlung mit bekannten Kupfer-Verbindungen.

In der Regel bilden die neuen Pflanzenschutzmittel nach dem Versprühen auf den überzogenen Gegenständen bzw.

25 Pflanzen guthaftende Überzüge. Falls jedoch Schwierigkeiten hinsichtlich der Haftung auftreten, kann diese durch Zugabe eines Haftmittels ("sticker") verbessert werden.

Als Haftmittel eignet sich beispielsweise eine Styrol/n-Butylacrylat-Dispersion, die unter der Bezeichnung Acronal 567 D erhältlich ist.

Die neuen Mittel können in ihren Anwendungsformen auch zusammen mit anderen Wirkstoffen vorliegen, wie Herbiziden, Insektiziden, Wachstumsregulatoren oder Fungiziden.

Die folgenden Beispiele zeigen die biologische Wirkung.

Beispiel A

Fungizide Wirksamkeit der Wirkstoffe gemäß Beispielen 4 - 10 gegen Phytophthora infestans an Tomaten.

Blätter von Tomatenpflanzen der Sorte "Professor Rudloff"
werden mit wäßrigen Lösungen, die 0,024, 0,012, 006 und
0,003 % Kupfer (bezogen auf metallisches Kupfer) enthalten, besprüht. Nach dem Antrocknen des Spritzbelags werden
die Blätter mit einer Zoosporenaufschwemmung des Pilzes
Phytophthora infestans infiziert. Die Pflanzen werden dann
in einer wasserdampfgesättigten Kammer bei Temperaturen
zwischen 16 und 18°C aufgestellt. Nach 5 Tagen hat sich
die Krankheit auf den unbehandelten, jedoch infizierten
Kontrollpflanzen so stark entwickelt, daß die fungizide
Wirksamkeit der Substanzen beurteilt werden kann.

Der Versuch ergab, daß Lösungen mit einem Kupfergehalt von etwa 0,01 % die Infektion sehr gut hemmen. Als besonders günstig haben sich die Fungizide der Beispiele 3, 6, 7 und 8 erwiesen.

25 Beispiel B

Bakterizide Wirkung gegen Erwinia amylovora an Birnen.

Birnenbäume der Worte "Conference" wurden in einem
Gebiet, in welchem die durch das Bakterium Erwinia
amylovora verursachte Feuerbrandkrankheit stark
auftritt, in einwöchigen Abständen mit 0,25% igen
Lösungen des Wirkstoffes gemäß Beispiel 4 insgesamt
zehnmal behandelt. Von 40 behandelten Bäumen wies
nur einer eine Infektionsstelle auf; bei der gleichen

- Anzahl unbehandelter Bäume wurden 37 Infektionsstellen festgestellt.
- b) In gleicher Weise wie unter a) beschrieben wurden Birnenbäume mit 0,25%igen Lösungen des Wirkstoffes gemäß Beispiel 5 gespritzt. Nur an 3 von 40 Bäumen wurden Infektionsstellen ermittelt.
- Pflanzenschäden waren an den Bäumen nach der Behandlung nicht sichtbar.

Beispiel C

Pflanzenverträglichkeit.

Apfelsämlinge der Sorte "Golden Delicious" wurden im 9-Blatt-Stadium mit wäßrigen Lösungen, die 0,04 % Kupfer (bezogen auf metallisches Kupfer) enthielten, tropfnaß gespritzt. Die Versuchspflanzen wurden bei 18°C in einer Klimakammer mit Zusatzbeleuchtung aufgestellt. 14 Tage nach der Spritzung wurde das Ausmaß der Pflanzenschäden beurteilt.

In diesem Versuch zeigte das Präparat "Complex 200" in Konzentrationen Blattschäden (Nekrosen), bei denen z.B. die Substanz des Beispiels 5 einwandfrei vertragen wurde.

30

Patentansprüche

- 1. Pflanzenverträgliches Kupferamminsalz einer organischen Monocarbonsäure mit 4 oder mehr Kohlenstoffatomen, einer Dicarbonsäure oder einer Polycarbonsäure.
- Kupferamminsalz gemäß Anspruch 1, dadurch gekennzeichnet, daß die organische Säure eine Fettsäure mit
 4 20, vorzugsweise 5 12 Kohlenstoffatomen ist.
- 3. Kupferamminsalz gemäß Anspruch 1, <u>dadurch gekenn-</u>
 <u>zeichnet</u>, daß die organische Säure eine mehrbasische
 Carbonsäure, vorzugsweise eine Dicarbonsäure, mit bis
 zu 12, vorzugsweise bis zu 6 Kohlenstoffatomen ist.
- 4. Kupferamminsalz gemäß Anspruch 1, <u>dadurch gekenn-zeichnet</u>, daß die organische Säure eine polymere Säure ist.
- 20 5. Kupferamminsalz gemäß Anspruch 4, dadurch gekennzeichnet, daß die polymere Säure Polyacrylsäure und/oder Polymethacrylsäure ist.
- 6. Kupferamminsalz gemäß Anspruch 4 und/oder 5,
 dadurch gekennzeichnet, daß es zusätzlich entsprechende
 Ester enthält.
- 7. Kupferamminsalz gemäß Anspruch 6, dadurch gekennzeichnet, daß es als Säurebestandteil 60 100 %
 Acrylsäure und/oder Methacrylsäure und 0 40 %
 Acrylsäure- oder Methacrylsäureester enthält.
 - 8. Wäßrige Lösung enthaltend ein Kupferamminsalz gemäß Anspruch 1 7.

0. Z₀₀₅₀/034430/ 034504/034723

- 79. Pestizid enthaltend das pflanzenverträgliche Kupferamminsalz einer organischen Säure gemäß Ansprüchen 1 - 7.
- 5 10. Verfahren zur Bekämpfung von Pflanzenschädlingen, dadurch gekennzeichnet, daß man die Pflanzen mit einem Pestizid gemäß Anspruch 8 behandelt.
- 11. Verfahren zur Herstellung pflanzenverträglicher Kupfer10 amminsalze organischer Säuren gemäß Ansprüchen 1 7,
 dadurch gekennzeichnet, daß man
 - a) das Kupfersalz einer anorganischen Säure mit
 Ammoniak oder einem niedermolekularen Amin
 umsetzt und anschließend zu dem so erhaltenen
 Umsetzungsprodukt das Ammoniumsalz der organischen
 Säure in wäßriger Lösung zugibt oder
- b) das Kupfersalz der organischen Säure mit Ammoniak 20 umsetzt.
 - 12. Kupferamminsalz gemäß Anspruch 1 hergestellt nach Anspruch 11 oder einem Äquivalent davon.
- 25 13. Verfahren zum Überziehen von Pflanzen zwecks Schutz der Pflanzen bzw. Teilen davon vor Schädlingen oder Pflanzenteilen mit einem in Wasser schwer oder nicht löslichen Metallpolysalz, dadurch gekennzeichnet, daß man die Pflanzen oder deren Teile mit einer wäßrigen Lösung eines Kupfertetramminsalzes gemäß Anspruch 1 besprüht und die aufgesprühte Lösung trocknen läßt.