

The SQL project

"Let's Blink it"

TEAM MEMBERS

Nikita Tripathi 24109

Bhavyanshu Jain 24108 Akul Garg 24095

Bharti Gaur 24097 Muskan Chouhan 24071

Agenda

Topics Covered

- Introduction
- What is SQL
- SQI queries

INTRODUCTION

This SQL serves as a powerful tool for analyzing and optimizing sales strategies, identifying trends, and making data-driven decisions. Each section provides actionable insights that contribute to a comprehensive understanding of sales performance across different dimensions.

What is SQL

SQL, or Structured Query Language, is specifically designed for managing and manipulating relational databases. It enables users to perform a variety of operations on the data stored within a database, facilitating the storage, retrieval, and manipulation of data in a structured manner.

1. List the Months with the total sales.

Select Month, SUM(Sales) AS total_sale

From blinkit

Group by Month

Order by Month;

	Month	total_sales
•	Apr	101719.5999999998
	Aug	101372.79999999997
	Dec	98961.10000000008
	Feb	98575.49999999993
	Jan	99714
	Jul	100830.60000000008
	Jun	99344.8
	Mar	101705.80000000003
	May	97959.7000000016
	Nov	103084.19999999981
	Oct	101270.7999999999
	Sep	97147.50000000003

2. Which Item Type has the highest average sales?

SELECT category, AVG(sales) AS avg_sales FROM blinkit GROUP BY category ORDER BY avg_sales DESC LIMIT 1;

category		avg_sales
•	Starchy Foods	261.4

3. How does the Item Fat Content affect the sales comparison on monthly basis?

Select Month, Item_Fat_Content,
SUM(Sales) AS Total_Sales
From blinkit
Group by Month, Item_Fat_Content
Order by Month, Item_Fat_Content;

	Month	Item_Fat_Content	Total_Sales
•	Apr	Low Fat	65492.69999999999
	Apr	Regular	36226.9
	Aug	Low Fat	65743.1
	Aug	Regular	35629.7
	Dec	Low Fat	65073.70000000002
	Dec	Regular	33887.40000000001
	Feb	Low Fat	64254.40000000001
	Feb	Regular	34321.1
	Jan	Low Fat	63630.30000000004
	Jan	Regular	36083.700000000004
	Jul	Low Fat	66074.20000000001
	Jul	Regular	34756.399999999994
	Jun	Low Fat	63588.50000000002
	Jun	Regular	35756.3

4. Is there a correlation between Outlet Size and average Sales?

SELECT Outlet_Size, AVG(sales) AS avg_sales FROM blinkit GROUP BY Outlet_Size;

	Outlet_Size	avg_sales
>	Small	144.82857142857145
	Medium	132.92028985507247
	High	138.78108108108108

5.ls there a correlation between Outlet Size and average Sales?

Select

Item_Fat_Content, Avg(Rating) AS Avg_Rating

From blinkit

Group by Item_Fat_Content

Order by Avg_Rating Desc;

	Outlet_Type	Total_Sales
١	Supermarket Type 1	787552.1000000006
	Grocery Store	151941.4999999997
	Supermarket Type 2	131477.79999999996
	Supermarket Type3	130715.00000000001

6. What is the top-selling Item Type for each Outlet Type?

```
SELECT Outlet_Type, Category, MAX(Sales) AS max_sales
                     FROM blinkit
           GROUP BY outlet_type, Category;
```

SELECT Outlet_Type, Category, SUM(Sales) AS total_sales

FROM blinkit

```
-- 6.
GROUP BY outlet_Type, Category; SELECT Outlet_Type, Category, MAX(Sales) AS max_sales
                                               FROM blinkit
                                               GROUP BY outlet_type, Category;
```

```
SELECT Outlet Type, Category, SUM(Sales) AS total sales
FROM blinkit
GROUP BY outlet Type, Category;
```

7. Is there a relationship between Item Fat Content and average Rating?

Select Item_Fat_Content, Avg(Rating) AS Avg_Rating From blinkit
Group by Item_Fat_Content
Order by Avg_Rating Desc;

	Item_Fat_Content	Avg_Rating
>	Low Fat	3.9599
	Regular	3.9504

8. How does the average Rating differ across Outlet Location Types?

```
SELECT
Outlet_Location_Type,
AVG(Rating) AS avg_rating
FROM
blinkit
GROUP BY
Outlet_Location_Type
ORDER BY
avg_rating DESC;
```

	Outlet_Location_Type	avg_rating
•	Tier 3	4.5917

9. What is the sales distribution across different Item Fat Content categories for each Outlet Size?

```
SELECT
  outlet_size,
  item_fat_content,
  Round(SUM(sales),2) AS total_sales
FROM
  blinkit
GROUP BY
  outlet_size, item_fat_content
ORDER BY
  outlet_size, item_fat_content
```

	outlet_size	item_fat_content	total_sales
•	High	Low Fat	2497.3
	High	Regularular	2637.6
	Medium	Low Fi Regularular	3740.8
	Medium	Regularular	430.7
	Small	Low Fat	1007.9
	Small	Regular	166.9
	Cmall	Dogularular	057 0

10. Which Items have above-average Sales but below-average Ratings?

Select category, sales, rating

From blinkit

Where sales > (SELECT AVG(sales) FROM blinkit)

AND rating < (SELECT AVG(rating) FROM blinkit);

	category	sales	rating
•	Meat	163.9	4
	Soft Drinks	153.6	4
	Canned	147.1	4
	Dairy	170.4	4
	Health and Hygiene	262.7	4
	Health and Hygiene	141.1	4
	Health and Hygiene	226.5	4

11. Calculate the total sales contributed by each Outlet Type.

Select Month, Outlet_Location_Type, SUM(Sales) AS Total_Sales
From blinkit
Group by Month, Outlet_Location_Type
Order by Outlet_Location_Type;

	Outlet_Type	Total_Sales
>	Supermarket Type 1	787552.1000000006
	Grocery Store	151941.4999999997
	Supermarket Type2	131477.79999999996
	Supermarket Type3	130715.00000000001

12. Identify the top 5 Items Sales based on total Sales and average Rating

Select category,
Sum(sales) AS total_sales,
Avg(rating) AS avg_rating
From blinkit
Group by category
Order by
total_sales DESC, avg_rating DESC
LIMIT 5;

	category	total <u>•</u> sales	avg_rating
•	Snack Foods	2302.799999999997	4.8667
	Household	2208.99999999995	4.2941
	Fruits and Vegetables	1882.9	4.3846
	Frozen Foods	1698.7000000000003	4.7333
	Health and Hygiene	1601.099999999997	4.6364

13. How does the sales performance of Low Fat items compare to Regular items across different Outlet Types?

Select

Outlet_Type, Item_Fat_Content, SUM(Sales) AS Total_Sales

From blinkit

Where Item_Fat_Content IN ('Low Fat', 'Regular')

Group by Outlet_Type, Item_Fat_Content

Order by Outlet_Type, Item_Fat_Content;

	Outlet_Type	Item_Fat_Content	Total_Sales
•	Grocery Store	Low Fat	99815.49999999994
	Grocery Store	Regular	52126.000000000015
	Supermarket Type 1	Low Fat	507885.00000000035
	Supermarket Type 1	Regular	279667.1000000004
	Supermarket Type2	Low Fat	84844.39999999994
	Supermarket Type2	Regular	46633.399999999994
	Supermarket Type3	Low Fat	83774.00000000001
	Supermarket Type3	Regular	46940.99999999985

14. What is the Sales for items with Ratings above 4.0?

```
Sum(sales) As total_sales_above_4_rating
From
blinkit
Where

total_sales_
```

rating > 4.0;

Select

```
total_sales_above_4_rating

9851.90000000001
```


Conclusion

SQL has significantly improved Blinkit's data management, optimizing delivery, inventory, and customer insights. It enhances decision—making and operational efficiency, ensuring scalability as the business grows.

THANK YOU!!

