store the alphanumerical data correspondingly in the corresponding organized data structure of the first memory of the second controller.

- 7. (Amended) An automation system according to claim 1, wherein the first memory of the first controller comprises a routing table indicating, for each device, other devices which can receive and process a signal transmitted by said device, and wherein the one or more signals generated by the first controller further comprises the routing table of the first controller, and wherein the processor of the second controller is further adapted to store said routing table in the first memory and wherein the processor of the second controller comprises means for identifying device identifiers in the routing table of devices for repeating a transmitted signal having a predetermined destination identifier and to include said device identifiers as repeater identifiers in the transmitted signal.
- (Amended) An automation system according to claim 1, wherein said one or more signals comprises a frame comprising a command in relation to each device identifier instructing the processor of the second controller as to where in the organized data structure of its first memory to store the device identifier.

9. (Amended) An automation system according to claim 1, wherein the processor of the first or the second controller further comprises means for, before storing said device identifiers in the first memory of the second controller, erasing all information related to device identifiers in the first memory of the second controller.



- 10. (Amended) An automation system according to claim 1, wherein the processor of the second controller is adapted to, when storing said device identifiers correspondingly in the organized data structure of the first memory of the second controller, overwrite all information related to device identifiers in the first memory.
- 11. (Amended) An automation system according to claim 1, wherein the processors of the first and second controllers further comprise means for dynamically assigning controller identifiers to a controller upon introduction of the controller in the system, said means assigning controller identifiers using a predetermined sequence of controller identifiers.



13. (Amended) An automation system according to claim 1, wherein the processors of the first and second controllers further comprise means for dynamically assigning device identifiers to a device upon introduction of the device in the system, said means assigning device identifiers using a predetermined sequence of device identifiers.

- 17. (Amended) A method according to claim 15, wherein the step of storing said device identifiers correspondingly in the organized data structure of the memory of the second controller comprises the step of overwriting corresponding device identifiers already stored in the memory of the second controller.
- 18. (Amended) A method according to claim 15, characterized in that it makes the second controller a replication of the first controller in terms of controlling the devices of the system, the method further comprising the step of, before storing said device identifiers in the memory of the second controller, erasing all information related to device identifiers in the memory of the second controller.

19. (Amended) A method according to claim 15, characterized in that it makes the second controller a replication of the first controller in terms of controlling the devices of the system and in terms of set-up and learning of the system, wherein the signal further comprises instructions related to the set-up and learning of the system.