

Description

Image

Caption

1. Close-up of the material. © John Fernandez 2. Granite Butts Mehre Heritage Hall, University of Georgia. © John Fernandez

The material

Granite is one of the most durable of materials. The pyramid of Giza (2980 BC) was built of limestone cased in granite. It is a coarse grained igneous rock, very hard and compact. It takes a fine polish, showing the beauty of its crystals. It is the most important stone in building - whole cities are built of it (Edinburgh, in Scotland UK, is an example). It is used for work-surfaces because of its durability, resistance to acids and alkalis, and its decorative appearance. Granites, because of the lack of porosity, do not weather or crack as more porous stones do.

Composition (summary)

Granite is made up of quartz (SiO2) and feldspars and micas (both complex alumino-silicates).

General properties

Density	2.63e3	-	3.2e3	kg/m^3
Price	* 1.04	-	6.22	USD/kg
Date first used	-10000			

Mechanical properties

Young's modulus	50	-	70	GPa
Shear modulus	21	-	29	GPa
Bulk modulus	* 30	-	45	GPa
Poisson's ratio	0.15	-	0.26	
Yield strength (elastic limit)	8	-	23	MPa
Tensile strength	8	-	23	MPa
Compressive strength	110	-	255	MPa
Elongation	0			% strain
Hardness - Vickers	27	-	45	HV
Fatigue strength at 10^7 cycles	* 4	-	16	MPa

Fracture toughness	0.9	-	2.2	MPa.m^0.5
Mechanical loss coefficient (tan delta)	* 0.01	-	0.03	

Thermal properties

Melting point	* 1.2e3	-	1.6e3	C
Maximum service temperature	* 600	-	700	$\mathcal C$
Minimum service temperature	-273	-	-272	C
Thermal conductor or insulator?	Poor ins	ulat	or	
Thermal conductivity	2.5	-	2.8	W/m.℃
Specific heat capacity	775	-	840	J/kg.℃
Thermal expansion coefficient	10	-	12	µstrain/℃

Electrical properties

• •				
Electrical conductor or insulator?	Good in	sula	tor	
Electrical resistivity	* 1e13	-	1e14	μohm.cm
Dielectric constant (relative permittivity)	14	-	18	
Dissipation factor (dielectric loss tangent)	* 0.001	-	0.01	
Dielectric strength (dielectric breakdown)	* 5	-	12	1000000 V/m

Optical properties

Transparency

Critical Materials Risk

High critical material risk?	No

Processability

Machinability	2	- 3		
---------------	---	-----	--	--

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

Acetic acid (10%)	Excellent
Acetic acid (glacial)	Excellent
Citric acid (10%)	Excellent
Hydrochloric acid (10%)	Excellent
Hydrochloric acid (36%)	Excellent
Hydrofluoric acid (40%)	Unacceptable

Excellent
Excellent

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Excellent

Durability: fuels, oils and solvents

cellent
kcellent
cellent
ccellent
cellent
ccellent
< < < < < < < <

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
Fluorine (gas)	Excellent
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Excellent

Durability	v: built	environments	ŝ
Duidaille	y. Duiit		,

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability	Non-flammable
--------------	---------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Excellent
Tolerance up to 850 C (1562 F)	Acceptable
Tolerance above 850 C (1562 F)	Unacceptable

Primary material production: energy, CO2 and water

Embodied energy, primary production	5.5	-	6.4	MJ/kg
CO2 footprint, primary production	0.303	-	0.335	kg/kg
Water usage	* 3.23	-	3.57	l/kg

Material processing: energy

Grinding energy (per unit wt removed)	* 11.4	-	12.6	MJ/kg
---------------------------------------	--------	---	------	-------

Material processing: CO2 footprint

Material recycling: energy, CO2 and recycle fraction

Recycle	×
Recycle fraction in current supply	1 - 2 %
Downcycle	✓
Combust for energy recovery	×
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Supporting information

Design guidelines

Granite is exceptionally hard, making it expensive to quarry and work, but it is exceptionally durable and wear resistant, and can be polished to a mirror-like finish. Its great chemical stability gives resistance to aqueous and organic fluids, acids and alkalis. Granite is used in optical tables; streets paved with granite cobbles looked today as they did when they were laid. Stone weathers in a benign attractive way, unlike concrete; and its association with the great structures of the past makes it attractive for imposing buildings of today.

Technical notes

Granites are made up of crystals of feldspar, dull white to deep red in color, with small grains of gray quartz and crystals of mica that give the stone its sparkle.

Typical uses

Granites are used for building and facing, floors and work surfaces, stable supports for machine tools, optical tables and supports for other precision instruments. Much is now used in ornamental ways.

Links	
Reference	
ProcessUniverse	
Producers	