© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°03

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

Partie I – Étude d'une application

- 1. Il s'agit de déterminer les solutions éventuelles de l'équation f(z) = i d'inconnue $z \in \mathbb{C}^*$. Cette équation équivaut à $z^2 iz + 1 = 0$ qui est une équation du second degré dont le discriminant est égal à $-5 = (i\sqrt{5})^2$. Les solutions de cette équation sont donc $\frac{i(1+\sqrt{5})}{2}$ et $\frac{i(1-\sqrt{5})}{2}$ qui sont donc également les antécédents de i par f.
- 2. On vient de voir que i admettait deux antécédents par f:f n'est donc pas injective.
- 3. Soit Z ∈ C. On s'intéresse à l'équation (E) : f(z) = Z d'inconnue z ∈ C. Celle-ci équivaut à z² zZ + 1 = 0. Il s'agit d'une équation du second degré dont 0 n'est manifestement pas solution. Cette dernière équation admet donc toujours au moins une solution non nulle donc Z admet au moins un antécédent par f. L'application f est donc surjective.
- **4.** Puisque $\mathbb{U} = \{e^{i\theta}, \ \theta \in \mathbb{R}\},\$

$$f(\mathbb{U}) = \left\{ f\left(e^{i\theta}\right), \ \theta \in \mathbb{R} \right\} = \left\{ e^{i\theta} + e^{-i\theta}, \ \theta \in \mathbb{R} \right\} = \left\{ 2\cos\theta, \ \theta \in \mathbb{R} \right\}$$

Puisque Im(cos) = [-1, 1], f(U) = [-2, 2].

5. Soit $z \in \mathbb{C}^*$. Alors

$$z \in f^{-1}(\mathbb{R}) \iff f(z) \in \mathbb{R}$$

$$\iff f(z) = \overline{f(z)}$$

$$\iff z + \frac{1}{z} = \overline{z} + \frac{1}{\overline{z}}$$

$$\iff z - \overline{z} - \frac{z - \overline{z}}{z\overline{z}} = 0$$

$$\iff (z - \overline{z}) \left(1 - \frac{1}{|z|^2}\right) = 0$$

$$\iff \overline{z} = z \text{ ou } |z| = 1$$

$$\iff z \in \mathbb{R}^* \text{ ou } z \in \mathbb{U}$$

Ainsi $f^{-1}(\mathbb{R}) = \mathbb{R}^* \cup \mathbb{U}$.

6. On étudie pour cela l'application φ : $\begin{cases} \mathbb{R}^* & \longrightarrow \mathbb{R} \\ x & \longmapsto x + \frac{1}{x} \end{cases}$. φ est clairement dérivable sur \mathbb{R}^* et pour tout $x \in \mathbb{R}^*$, $\varphi'(x) = 1 - \frac{1}{x^2}$. On en déduit le tableau de variations suivant.

1

x	-∞	-1	()	1	+∞
Signe de $\varphi'(x)$		+ 0	-	_	0	+
Variations de φ			-80	+∞	2	+∞

Les variations de φ montrent que $\operatorname{Im}(\varphi) \subset]-\infty, -2] \cup [2, +\infty[$. Mais la continuité de φ montre via le théorème des valeurs intermédiaires que φ prend toutes les valeurs dans $]-\infty, -2] \cup [2, +\infty[$. Il en résulte que $f(\mathbb{R}^*) = \operatorname{Im}(\varphi) =]-\infty, -2] \cup [2, +\infty[$.

- 7. Soit $Z \in f(D)$. Il existe donc $z \in D$ tel que Z = f(z). Il s'agit maintenant de montrer que $f(z) \notin [-2, 2]$. On peut raisonner par l'absurde. Supposons que $f(z) \in [-2, 2]$. A fortiori, $f(z) \in \mathbb{R}$ i.e. $z \in f^{-1}(\mathbb{R})$. D'après la question $\mathbf{5}, z \in \mathbb{R}$ ou $z \in \mathbb{U}$. Or on ne peut avoir $z \in \mathbb{U}$ puisque $z \in D$. C'est donc que $z \in \mathbb{R}$. Mais alors $f(z) \in f(\mathbb{R}) =]-\infty, -2] \cup [2, +\infty[$. Or $f(z) \in [-2, 2]$ donc f(z) = -2 ou f(z) = 2. Les variations de φ nous disent alors que z = -1 ou z = 1, ce qui est à nouveau impossible puisque $z \in D$. On en conclut par l'absurde que $f(z) \notin [-2, 2]$. Ainsi on a bien $f(D) \subset \mathbb{C} \setminus [-2, 2]$.
- 8. Soit $Z \in \mathbb{C} \setminus [-2, 2]$. On rappelle que les antécédents de Z par f sont les solutions de l'équation $z^2 Zz + 1 = 0$. Cette équation du second degré admet pour discriminant $Z^2 4$ qui est non nul puisque $Z \notin \{-2, 2\}$. Elle admet donc deux solutions. Ainsi Z admet exactement deux antécédents par f dans \mathbb{C}^* . Notons α et β les deux antécédents de Z par f. Puisqu'ils sont solutions de l'équation $z^2 Zz + 1 = 0$, $\alpha\beta = 1$.
- 9. On reprend les notations de la question précédente. Il s'agit maintenant de voir qu'un seul des deux antécédents de Z par f appartient à D. Puisque $\alpha\beta = 1$, on a également $|\alpha||\beta| = 1$. On ne peut avoir $|\alpha| = 1$ ou $|\beta| = 1$ puisqu'alors $Z = f(\alpha) = f(\beta)$ appartiendrait à $f(\mathbb{U}) = [-2, 2]$. Ainsi α et β sont de module distincts de 1. Puisque $|\alpha||\beta| = 1$, l'un de ces deux modules est strictement inférieur à 1 et l'autre est strictement supérieur à 1. Un seul de ces deux complexes appartient donc à D (ils sont évidemment tous deux de module non nul puisqu'ils appartiennent à \mathbb{C}^*). Ainsi Z admet un unique antécédent dans D par f. Ceci prouve que f induit une bijection de D sur $\mathbb{C} \setminus [-2, 2]$.

Partie II - Un petit peu d'exponentielle complexe

1. On a déjà vu que les antécédents de i par f étaient $\frac{i(1+\sqrt{5})}{2}$ et $\frac{i(1-\sqrt{5})}{2}$. Les antécédents de i par g sont donc les antécédents de ces deux nombres par la fonction exponentielle. Les formes exponentielles de ces deux nombres sont

$$\frac{i(1+\sqrt{5})}{2} = \frac{1+\sqrt{5}}{2} \cdot e^{\frac{i\pi}{2}} \qquad \qquad \frac{i(1-\sqrt{5})}{2} = \frac{\sqrt{5}-1}{2} \cdot e^{\frac{-i\pi}{2}}$$

On en déduit que leurs antécédents par l'exponentielle sont les complexes

$$\ln\left(\frac{1+\sqrt{5}}{2}\right) + i\left(\frac{\pi}{2} + 2k\pi\right) \text{ et } \ln\left(\frac{\sqrt{5}-1}{2}\right) + i\left(-\frac{\pi}{2} + 2k\pi\right)$$

où $k \in \mathbb{Z}$. Il s'agit donc également des antécédents de i par g.

2.

$$g(i\mathbb{R}) = \{g(i\theta), \ \theta \in \mathbb{R}\} = \{2\cos\theta, \ \theta \in \mathbb{R}\} = [-2, 2]$$

3. On sait que $\exp(\mathbb{R}) = \mathbb{R}_+^*$. Ainsi $g(\mathbb{R}) = f(\mathbb{R}_+^*)$. Les variations de la fonction φ étudiées à la question 6 montrent que $f(\mathbb{R}_+^*) = [2, +\infty[$.

Partie III - Une suite d'applications

© Laurent Garcin MP Dumont d'Urville

1. Pour tout $z \in \mathbb{C}$,

$$\phi_2(z) = z\phi_1(z) - \phi_0(z) = z^2 - 2$$

$$\phi_3(z) = z\phi_2(z) - \phi_1(z) = z^3 - 3z$$

$$\phi_4(z) = z\phi_3(z) - \phi_2(z) = z^4 - 4z^2 + 2$$

2. Les solutions de l'équation $\varphi_2(z) = 0$ sont clairement $-\sqrt{2}$ et $\sqrt{2}$.

De même, les solutions de l'équation $\varphi_3(z) = 0$ sont $0, -\sqrt{3}$ et $\sqrt{3}$.

L'équation $\varphi_4(z) = 0$ est une équation bicarrée. On la résout classiquement en effectuant le changement de variable $Z = z^2$. Les solutions de l'équation $Z^2 - 4Z + 2 = 0$ sont $2 + \sqrt{2}$ et $2 - \sqrt{2}$. On en déduit que les solutions de l'équation $\varphi_4(z) = 0$ sont

$$\sqrt{2+\sqrt{2}}$$
, $-\sqrt{2+\sqrt{2}}$, $\sqrt{2-\sqrt{2}}$, $-\sqrt{2-\sqrt{2}}$

3. On note P_n l'assertion

$$\forall z \in \mathbb{C}^*, \ \varphi_n(f(z)) = f(z^n)$$

Puisque pour tout $z \in \mathbb{C}^*$, $\varphi_0(z) = 2$ et $f(z^0) = f(1) = 2$, P_0 est vraie. De même, pour tout $z \in \mathbb{C}^*$, $\varphi_1(f(z)) = z + \frac{1}{z}$ et $f(z^1) = z + \frac{1}{z}$ donc P_1 est vraie.

Supposons P_n et P_{n+1} vraies pour un certain $n \in \mathbb{N}$. Alors pour tout $z \in \mathbb{C}^*$,

$$\begin{split} \varphi_{n+2}(f(z)) &= f(z)\varphi_{n+1}(f(z)) - \varphi_n(f(z)) \\ &= f(z)f(z^{n+1}) - f(z^n) \\ &= \left(z + \frac{1}{z}\right)\left(z^{n+1} + \frac{1}{z^{n+1}}\right) - \left(z^n + \frac{1}{z^n}\right) \\ &= z^{n+2} + \frac{1}{z^{n+2}} = f(z^{n+2}) \end{split}$$

Ainsi P_{n+2} est vraie.

Par récurrence double, P_n est vraie pour tout $n \in \mathbb{N}$.

4. L'équation $f(z^n) = 0$ équivaut à $z^{2n} = -1$. L'ensemble des solutions de cette équation est donc l'ensemble des racines $2n^{\text{èmes}}$ de -1, c'est-à-dire

$$A_n = \left\{ e^{\frac{(2k+1)i\pi}{2n}}, \ k \in [0, 2n-1] \right\}$$

5. Remarquons que pour $\omega \in A_n$,

$$\varphi_n(f(\omega)) = f(\omega^n) = 0$$

Donc les $f(\omega)$ pour $\omega \in A_n$ sont des solutions de l'équation $\varphi_n(z) = 0$. Via une formule d'Euler, ceci signifie que

les réels $2\cos\left(\frac{(2k+1)\pi}{2n}\right)$ pour $k\in[0,2n-1]$ sont des solutions de l'équation $\varphi_n(z)=0$. Réciproquement, soit $\alpha\in\mathbb{C}$ une solution de l'équation $\varphi_n(z)=0$. Puisque f est surjective, il existe donc $\omega\in\mathbb{C}^*$ tel que $\alpha=f(\omega)$. Alors $f(\omega^n)=\varphi_n(f(\omega))=f(\omega^n)=0$ de sorte que ω est solution de l'équation $f(z^n)=0$. Il existe donc $k \in [0, 2n-1]$ tel que $\alpha = e^{\frac{(2k+1)i\pi}{2n}}$. Mais alors $\alpha = f(\omega) = 2\cos\left(\frac{(2k+1)\pi}{2n}\right)$.

Finalement l'ensemble des solutions de l'équations $\varphi_n(z) = 0$ est

$$B_n = \left\{ 2\cos\left(\frac{(2k+1)\pi}{2n}\right), \ k \in [0, 2n-1] \right\}$$

On peut remarquer que certains éléments de B_n figurent en double dans la description précédente. En effet,

$$\mathbf{B}_n = \left\{ 2\cos\left(\frac{(2k+1)\pi}{2n}\right), \ k \in [0,n-1] \right\} \cup \left\{ 2\cos\left(\frac{(2k+1)\pi}{2n}\right), \ k \in [n,2n-1] \right\}$$

© Laurent Garcin MP Dumont d'Urville

On montre alors que les deux ensembles de cette union sont égaux.

$$\left\{2\cos\left(\frac{(2k+1)\pi}{2n}\right),\ k\in\llbracket n,2n-1\rrbracket\right\} = \left\{2\cos\left(\frac{(2(k+n)+1)\pi}{2n}\right),\ k\in\llbracket 0,n-1\rrbracket\right\}$$
via le "changement d'indice" $k\to k+n$

$$= \left\{2\cos\left(\pi+\frac{(2k+1)\pi}{2n}\right),\ k\in\llbracket 0,n-1\rrbracket\right\}$$

$$= \left\{-2\cos\left(\frac{(2k+1)\pi}{2n}\right),\ k\in\llbracket 0,n-1\rrbracket\right\}$$

$$= \left\{-2\cos\left(\frac{(2(n-1-k)+1)\pi}{2n}\right),\ k\in\llbracket 0,n-1\rrbracket\right\}$$
via le "changement d'indice" $k\to n-1-k$

$$= \left\{-2\cos\left(\pi-\frac{(2k+1)\pi}{2n}\right),\ k\in\llbracket 0,n-1\rrbracket\right\}$$

$$= \left\{2\cos\left(\frac{(2k+1)\pi}{2n}\right),\ k\in\llbracket 0,n-1\rrbracket\right\}$$

Finalement, on peut affirmer que

$$B_n = \left\{ 2\cos\left(\frac{(2k+1)\pi}{2n}\right), \ k \in [0, n-1] \right\}$$

Pour tout $k \in [0, n-1]$, $\frac{(2k+1)\pi}{2n} \in [0, \pi]$ et cos est injective sur $[0, \pi]$ puisqu'elle y est strictement décroissante. Les réels $2\cos\left(\frac{(2k+1)\pi}{2n}\right)$ pour $k \in [0, n-1]$ sont donc deux à deux distincts. Le nombre de solutions de l'équation $\varphi_n(z) = 0$ est donc n.

Remarque. Le lecteur cultivé aura remarqué que les fonctions φ_n sont reliées aux *polynômes de Tchebychev*.