Week 2

In [3]: plt.scatter(x_train, y_train)

Out[3]: <matplotlib.collections.PathCollection at 0x7f863c6ee910>

In [4]: plt.plot(x_test, y_test, '-')

Out[4]: [<matplotlib.lines.Line2D at 0x7f863c698f10>]

1.5) Test the model

```
In [9]: def test_all(start_M, end_M, x_train, y_train, x_test, y_test):
             results train = []
             results_test = []
             all weights = []
             for M in range(start_M, end_M + 1):
                  weights = optimial_weights(x_train, y_train, M)
                  all weights.append(weights)
                  error train = erms(weights, x train, y train)
                  error_test = erms(weights, x_test, y_test)
                  results train.append(error train)
                  results_test.append(error_test)
             return results_train, results_test, all_weights
         r_tr, r_tt, all_weights = test_all(0, 9, x_train, y_train, x_test, y_test)
         plt.plot(list(range(0, 10)), r_tr, '-o', label='train')
plt.plot(list(range(0, 10)), r_tt, '-o', label='test')
         plt.xlabel('M')
         plt.ylabel('ERMS')
         plt.legend()
         plt.yscale('log')
```


Weights table for different M

In [10]: print(pd.DataFrame(all_weights))

p. 1(para				//					
	0	1		2		3		4	\
0.06744	4	NaN		NaN		NaN		NaN	
1 0.67490	6 -1	.403250		NaN		NaN		NaN	
2 0.87060	1 -2	.937208	1.	521622		NaN		NaN	
3 -0.34853	3 11	.654727	-33.	094539	22.0	88529		NaN	
4 -0.27493	1 10	.447965	-27.	877273	14.1	L61034	3.8	897826	
5 0.05231	.3 2	.957062	24.	077616	-126.3	364847	164.	358999	
5 1.34370	4 -29	.263446	282.	780632	-1019.1	L09579	1661.	058635	
7 1.66003	5 -39	.467094	401.	667411	-1667.8	334803	3460.	305311	
8 -2.48275	4 104	.700486	-1467.	099640	10140.6	518109	-36828.	570753	
9 -1.49088	8 61	.009355	-711.	028213	3455.1	126278	-3628.4	441682	
	5		6		7		8		9
9	NaN		NaN		NaN		NaN		NaN
1	NaN		NaN		NaN		NaN		NaN
2	NaN		NaN		NaN		NaN		NaN
3	NaN		NaN		NaN		NaN		NaN
4	NaN		NaN		NaN		NaN		NaN
5 -65.1	-65.103637		NaN		NaN		NaN		NaN
5 -1272 . 4	05596	376.0	39116		NaN		NaN		NaN
7 -3885.7	75599	2271.5	34475	-541	.872761		NaN		NaN
8 74281. 9	56331	-84068.9	960375	50041	.296017	-12202	.871583		NaN
9 -22214.0	99542	82834.6	590416	-118767	.661098	79903	.514042	-20934	.53309

Estimated curve for M=9 (same as the amount of data points)

In [11]: plt.plot(x_test, list(map(lambda x: linear(x, optimia
 plt.plot(x_train, y_train, 'og')

Out[11]: [<matplotlib.lines.Line2D at 0x7f863c45e310>]

2.3) Test with regularization

```
In [15]: def test_all_regularization(ls, M, x_train, y_train, x_
             results_train = []
             results test = []
             all weights = []
             for l in ls:
                 weights = optimial weights regularization(x tra
                 all weights.append(weights)
                 error train = erms regularization(weights, x tr
                 error_test = erms_regularization(weights, x_tes
                 results_train.append(error_train)
                 results test.append(error test)
             return results_train, results_test, all_weights
         ls = [0, exp(-18), exp(-5), exp(0)]
         r_tr_r, r_tt_r, all_weights_r = test_all_regularization
         plt.plot(ls, r_tr_r, '-o', label='train')
         plt.plot(ls, r_tt_r, '-o', label='test')
         plt.xlabel('ln Lambda')
         plt.ylabel('ERMS REGULARIZATION')
         plt.legend()
         plt.yscale('log')
         plt.xscale('log')
```


Week 2 5

Weights for M=9 with regularization terms 0, exp(-18), exp(-5), exp(0)

In [16]: print(pd.DataFrame(np.transpose(all_weights_r)))

In [18]: plot_by_lambda(exp(0))

In [19]: plot_by_lambda(exp(-5))

In [21]: plot_by_lambda(0)

In [23]: def best_model(start_M, end_M, ls, sets):

M = 3 lambda = 0 erms = 0.13287880898345142

Out[23]: [<matplotlib.lines.Line2D at 0x7f863c239ed0>]

4.1) Display results

```
In [28]: alpha = 0.05
beta = 1.1
M = 9

means = np.array(list(map(lambda x: mean(alpha, beta, variances = np.array(list(map(lambda x: variance(alpha plt.plot(x_train, y_train, 'og') plt.plot(x_test, y_test, '-m') plt.plot(x_test, means, '-b') plt.fill_between(x_test, means + variances, means - va
```

Out[28]: <matplotlib.collections.PolyCollection at 0x7f863c16d7

Week 2 10