import all packages and set plots to be embedded inline

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load DataSet

```
df=pd.read_csv("BankNote_Authentication.csv")
df.head()
```

	variance	skewness	curtosis	entropy	class	
0	3.62160	8.6661	-2.8073	-0.44699	0	
1	4.54590	8.1674	-2.4586	-1.46210	0	
2	3.86600	-2.6383	1.9242	0.10645	0	
3	3.45660	9.5228	-4.0112	-3.59440	0	
4	0.32924	-4.4552	4.5718	-0.98880	0	

Data Assessing

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1372 entries, 0 to 1371
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- 0 variance 1372 non-null float64
1 skewness 1372 non-null float64
2 curtosis 1372 non-null float64
3 entropy 1372 non-null float64
4 class 1372 non-null int64
dtypes: float64(4), int64(1)
memory usage: 53.7 KB
```

df.describe()

Data Visualization

corrmat=df.corr()
f,ax=plt.subplots(figsize=(10,10))
sns.heatmap(corrmat,vmax=0.8 ,square=True ,annot=True,fmt='.2f'
plt.show()

sns.pairplot(df ,hue='class')

Train Test Split Using Sklearn

x=df.iloc[:,:-1]
y=df.iloc[:,-1]

-8

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.

-10

10

-10

DecisionTreeClassifications

from sklearn.tree import DecisionTreeClassifier
DTC=DecisionTreeClassifier()
DTC

DecisionTreeClassifier()

```
DTC.fit(x_train,y_train)
```

DecisionTreeClassifier()

```
y_predict=DTC.predict(x_test)
y_predict
```

Evaluate the Clustering Model

from sklearn.metrics import classification_report,confusion_mat
print(classification report(y test,y predict))

	precision	recall	f1-score	support
0	0.99	0.98	0.98	155
1	0.98	0.98	0.98	120
accuracy			0.98	275
macro avg	0.98	0.98	0.98	275
weighted avg	0.98	0.98	0.98	275

```
CM=(confusion_matrix(y_test,y_predict))
print(pd.DataFrame(CM))
```

```
0 1
0 152 3
1 2 118
```

```
print(accuracy_score(y_test,y_predict))
```

0.98181818181818

** Decision Tree **

DTC.feature_importances_

array([0.5739719 , 0.21955518, 0.17395853, 0.03251438])

DTC.feature_importances_

array([0.5739719, 0.21955518, 0.17395853, 0.03251438])

```
from sklearn import tree
plt.figure(figsize=(15,15))
print(tree.plot_tree(DTC ,filled=True))
```


✓ 3s completed at 11:04 PM

X