Počítačové a komunikačné siete

Sieťová vrstva / Subnetting

Prednáška 6

Obsah

- » IP protokol
- » Transformácia adries IP adresa <-> MAC adresa, meno <-> IP adresa
- » Protokol DHCP
- » Protokoly ICMP, IGMP
- » IP adresovanie
- » Smerovanie

Opakovanie minulej prednášky

» Dokončenie TCP

» Úvod do IP

Data

Čo nás čaká na prednáške

- » IP
 - Typy IP adries
 - Pridel'ovanie IP adries

TCP/IP protokolový zásobník

vrstva Ping DNS SNMP BOOTP **DHCP** Telnet FTP **SMTP** Traceroute transportná **TCP UDP** vrstva sieťová **ICMP IGMP** vrstva **ARP RARP** vrstva lokálne ovládače, sieť ového sieťové karty rozhrania prenosové médium

aplikačná

<u>Štruktúra IP adresy</u>

štruktúra IP adresy ⇒ **siet'/host'** (NET/HOST)

Štruktúra IP adresy

Trieda D – rezervované pre Multicast

rozsah adries: 224.0.0.0 – 239.255.255.255

rezervované: 224.0.0.0 – 224.0.0.255

- □ 224.0.0.1 skupina všetkých počítačov v danom sieťovom segmente
- □ 224.0.0.2 skupina všetkých smerovačov v danom sieťovom segmente
- ☐ 224.0.0.5 všetky OSPF smerovače
- □ 224.0.0.9 všetky RIPv2 smerovače
- □ 224.0.0.10 všetky EIGRP smerovače

RFC 5735: Special Use IPv4 Addresses

Address Block	Present Use Reference		
0.0.0.0/8	"This" Network	RFC 1122	
10.0.0.0/8	Private-Use Networks	RFC 1918	
127.0.0.0/8	Loopback	RFC 1122	
169.254.0.0/16	Link Local	RFC 3927	
172.16.0.0/12	Private-Use Networks	RFC 1918	
192.0.0.0/24	IETF Protocol Assignments	RFC 5736	
192.0.2.0/24	TEST-NET-1	RFC 5737	
192.88.99.0/24	6to4 Relay Anycast	RFC 3068	
192.168.0.0/16	Private-Use Networks	RFC 1918	
198.18.0.0/15	Network Interconnect Device		
	Benchmark Testing	RFC 2544	
198.51.100.0/24	TEST-NET-2	RFC 5737	
203.0.113.0/24	TEST-NET-3	RFC 5737	
224.0.0.0/4	Multicast	RFC 3171	
240.0.0.0/4	Reserved for Future Use	RFC 1112	
255.255.255/32 Limited Broadcast RFC 919, RFC 922			

RFC 5735: Special Use IPv4 Addresses

Address Block	Present Use Reference			
0.0.0.0/8	"This" Network	RFC 1122		
10.0.0.0/8	Private-Use Networks	RFC 1918		
127.0.0.0/8	Loopback	RFC 1122		
169.254.0.0/16	Link Local	RFC 3927		
172.16.0.0/12	Private-Use Networks	RFC 1918		
192.0.0.0/24	IETF Protocol Assignments	RFC 5736		
192.0.2.0/24	TEST-NET-1	RFC 5737		
192.88.99.0/24	6to4 Relay Anycast	RFC 3068		
192.168.0.0/16	Private-Use Networks	RFC 1918		
198.18.0.0/15	Network Interconnect Device			
	Benchmark Testing	RFC 2544		
198.51.100.0/24	TEST-NET-2	RFC 5737		
203.0.113.0/24	TEST-NET-3	RFC 5737		
224.0.0.0/4	Multicast	RFC 3171		
240.0.0.0/4	Reserved for Future Use	RFC 1112		
255.255.255/32 Limited Broadcast RFC 919, RFC 922				

Špeciálne IP adresy

(netid, hostid) = (0, 0)(netid, hostid) = (0, adr h)(netid, hostid) = (127, l'ubovol'ná)(netid, hostid) = (11...1, 11...1)(netid, hostid) = (adr n, 11...1)(netid, subnetid, hostid) = (adr n, adr s, 11...1)(netid, subnetid, hostid) = (adr n, 11...1, 11...1)

Maska siete

maska siete => určenie adresy siete

=> určuje, ktoré bity v IP adrese tvoria adresu siete

 \Rightarrow 32 bitov, bity siete = 1

adresa siete = (IP adresa) AND (maska siete)

štandardné sieťové masky - masky tried A,B,C

trieda A: 255.0.0.0

trieda B: 255.255.0.0 trieda C: 255.255.255.0

Podsiete

Subsiete (subnets) štruktúra IP adresy

adresa siete/adresa subsiete/adresa uzla v sieti

adresa subsiete = (IP adresa) AND (maska subsiete)

Konštantné sieťové masky

·Varjabilné sieť ové masky

Problémy IPv4

nedostatočný adresovací priestor zväčšenie smerovacích tabuliek Internetových smerovačov

Možné riešenia

Privátne IP adresy a NAT

Nečíslované rozhrania (unnumbered interfaces)

CIDR (prefix routing) a VLSM

IPv6

Privátne IP adresy

	siet'	rozsah adries
trieda A	10 .0.0.0 /8	10.0.0.0 - 10.255.255.255
trieda B	172.16 .0.0 /12	172.16.0.0 - 172.31.255.255
trieda C	192.168. 0.0 /16	192.168.0.0 - 192.168.255.255

- > privátne IP adresy => viacnásobné využívanie adries; nie sú jedinečné
 - šetrenie IP adries
- transformácia privátnych adries na jedinečné IP adresy > NAT prístup (Network Address Translator)
 - problém je získať dostatočný rozsah IP adries riešenie je v pridelení privátnych IP adries a potom ich "zamaskovať" s NAT
 - ak sa použijú privátne adresy a NAT, treba sa uistiť, že sa neposielajú von žiadne informácie o vnútornej sieti

Podsiete

Subsiete

Konštantné sieťové masky

- > rozdelenie na subsiete rovnakej veľkosti
- rovnaká maska subsietí v rámci jednej siete

```
Sieťová adresa napr. 192.168.10.0

Maska subsiete napr. 255.255.255.224 (/27)

Tvorba subsietí z adresy triedy C

- počet subsietí 2<sup>m</sup>

- počet hosťov 2<sup>n</sup> - 2

- adresy subsietí príkl. 256-224=32, (0, 32, 64, 96, 128, 160, 192, 224)

-broadcast adresa každej subsiete - 1 (11...1)
```

- rozsah platných (použiteľných) IP adries <adresa siete+1, broadcast-1>

» RFC 950:

"It is useful to preserve and extend the interpretation of these special addresses in subnetted networks. This means the values of all zeros and all ones in the subnet field should not be assigned to actual (physical) subnets."

» RFC 1878

"This practice is obsolete! Modern software will be able to utilize all definable networks."

Konštantné sieťové masky

Príklad

```
sieťová adresa: 192.135.120.0, štandardná maska 255.255.255.0
```

```
požiadavka: vytvoriť 30 subsietí
         (každá má 8 adries (použiteľných je 6??))
```

```
maska subsiete: 255.255.255.248
```

```
subsiet': 256-248=8, 0, 8, 16, 24, 32, 64,...., 240, 248
```

rozsah adries hosťov:

```
192.135.120.00001000 - 00001111
                                       192.135.120.9 - 192.135.120.14
192.135.120.00010000 - 00010111
                                       192.135.120.17- 192.135.120.22
192.135.120.00011000 - 00011111
192.135.120.00100000 - 00100111
```

atd'.

```
192. 13 5 12 0.11110000 − 11110111 192.135.120.241 − 192.135.120.246
```

Príklad logického návrhu siete

Ukážka smerovacej tabuľky

	Adresa ciel'. siete	Maska siete	Nasledujúci skok	Roz- hranie	Metrika
	192.168.10.32	255.255.255.224	192.168.10.161	serial	1
	192.168.10.64	255.255.255.224	192.168.10.161	serial	1
•	0.0.0.0	0.0.0.0	a.b.c.d	xxx	1

Smerovanie

statické (static) dynamické (dynamic) preddefinované (default)

Ukážka smerovacej tabuľky

Adresa ciel'. siete	Maska siete	Nasledujúci skok	Roz- hranie	Metrika
192.168.10.32	255.255.255.224	192.168.10.161	serial	1
192.168.10.64	255.255.255.224	192.168.10.161	serial	1
0.0.0.0	0.0.0.0	a.b.c.d	xxx	1

Maska siete

maska siete => určenie adresy siete

=> určuje, ktoré bity v IP adrese tvoria adresu siete

 \Rightarrow 32 bitov, bity siete = 1

adresa siete = (IP adresa) AND (maska siete)

štandardné sieťové masky - masky tried A,B,C

trieda A: 255.0.0.0

/16

trieda B: 255.255.0.0 trieda C: 255.255.255.0

22

Subsiete

Subsiete (subnets) štruktúra IP adresy

adresa siete/adresa subsiete/adresa uzla v sieti

adresa subsiete = (IP adresa) AND (maska subsiete)

Konštantné sieť ové masky

Varjabilné sieť ové masky

Konštantné sieťové masky

- > rozdelenie na subsiete rovnakej veľkosti
- rovnaká maska subsietí v rámci jednej siete

```
Sieťová adresa napr. 192.168.10.0

Maska subsiete napr. 255.255.255.224 (/27)

Tvorba subsietí z adresy triedy C

- počet subsietí 2<sup>m</sup> (-2)

- počet hosťov 2<sup>n</sup> - 2

- adresy subsietí

napr. m=3 256-224=32, (0, 32, 64, 96, 128, 160, 192, 224)

- broadcast adresa každej subsiete - 1 (11...1)

- rozsah platných (použiteľných) IP adries <adresa siete+1, broadcast-1>
```

RFC 950: "It is useful to preserve and extend the interpretation of these special addresses in subnetted networks. This means the values of all zeros and all ones in the subnet field should not be assigned to actual (physical) subnets."

Príklad logického návrhu siete – konštantné masky

Príklad logického návrhu siete – konštantné masky

Príklad logického návrhu siete – konštantné masky

Určte adresu subsiete, broadcast adresu a platný (použiteľný) rozsah IP adries v subsieťach:

<u>IP adresa / maska – adresa uzla</u>

192.168.100.25/30 (255.255.255.252)

192.168.100.37/28

192.168.100.66/27

192.168.100.17/29

192.168.100.99/26

192.168.100.99/25

IP adresa uzla (rozhrania)	Trieda	Počet bitov pre subsiete a uzlov (rozhraní)	Počet subsietí	Počet platných IP adries
10.25.66.154/23				
192.168.20.123/28				
172.31.254.12/24				

IP adresa uzla (rozhrania)	Trieda	Počet bitov pre subsiete a uzly (rozhrania)	Počet subsietí	Počet platných IP adries
10.25.66.154/23	A			
192.168.20.123/28	С			
172.31.254.12/24	В			

IP adresa uzla (rozhrania)	Trieda	Počet bitov pre subsiete a uzly (rozhrania)	Počet subsietí	Počet platných IP adries
10.25.66.154/23	A	15 / 9		
192.168.20.123/28	С	4 / 4		
172.31.254.12/24	В	8 / 8		

IP adresa uzla (rozhrania)	Trieda	Počet bitov pre subsiete a uzlov (rozhraní)	Počet subsietí	Počet platných IP adries
10.25.66.154/23	A	15 / 9	215	
192.168.20.123/28	С	4 / 4	16	
172.31.254.12/24	В	8 / 8	256	

IP adresa uzla (rozhrania)	Trieda	Počet bitov pre subsiete a uzlov (rozhraní)	Počet subsietí	Počet platných IP adries
10.25.66.154/23	A	15 / 9	215	510
192.168.20.123/28	С	4 / 4	16	14
172.31.254.12/24	В	8 / 8	256	254

CIDR a VLSM

CIDR (Classless InterDomain Routing)

zrušenie rozdeľovania IP adries do tried A, B, C

(Vyčerpanie adries tried A a B a následné obavy pred enormným nárastom smerovacích tabuliek Internetových smerovačov záplavou adries triedy C)

sumarizácia (aggregation) IP adries

zrušením tried sa mohla zaviesť sumarizácia (aggregation) IP adries a následné zmenšenie obsahu smerovacích tabuliek

uplatnenie CIDR a VLSM v praxi - je potrebné, aby smerovacie protokoly spolu s adresami sietí posielali informáciu aj o dĺžke masky podsiete (Classful a Classless smerovanie)

Supersiete

agregácia IP adries - spojenie súvislých intervalov IP adries na jednu adresu supersiete

Príklad

adresy triedy C, štandardná maska 255.255.255.0

intervaly: 192.135.8.0 až 192.135.15.0

supersiet': 192.135.8.0 s maskou 255.255.248.0

(192.135.8.0/21)

intervaly: 192.135.8.0 až 192.135.15.0

osem sietí triedy C: 192.135.8.0 - 192.135.8.255

192.135.9.0 - 192.135.9.255

192.135.10.0 - 192.135.10.255

192.135.15.0 - 192.135.15.255

192 135 11000000 10000111 00001000 00000000

192 135 15

11000000 10000111 00001111 00000000 8x256

adresa siete: 192.135.8.0/21

2048 adries

Subsiete vs. Supersiete

subsiete

počet jednotiek v maske > počet jednotiek v štandardnej maske

supersiete

počet jednotiek v maske < počet jednotiek v štandardnej maske

Príklad - zadanie

VLSM v supersieti

Navrhnite IP adresy pre nasledujúcu topológiu.

Adresa supersiete je 192.168.96.0/21

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

od: 192.168.96.0 11000000.10100000.01100|000.00000000

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

od: 192.168.96.0 11000000.10100000.01100|00**0.000000**

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete:

.01100 000.00000000

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

od: 192.168.96.0 11000000.10100000.01100|00**0.0000000**

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23 .01100 $\boxed{00}0.00000000$

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23 . $01100|\overline{00}0.0000000$

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: . 01100 000.0000000

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: $192.168.96.0/23 - 192.168.97.255/23 .01100 | \overline{00}0.00000000$

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25 . 01100 010.00000000

1) Zistíme rozsah supersiete:

 $192.168.96.0 \\ 11000000.10100000.01100|000.00000000$

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

 $. \ 01100| \ \boxed{00} \ 0.00000000$

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

.01100 010.0000000

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: .01100| 000.0000000

1) Zistíme rozsah supersiete:

 $192.168.96.0 \\ 11000000.10100000.01100|000.00000000$

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

. 01100| 000.00000000

.01100 010.0000000

.01100 010.10000000

1) Zistíme rozsah supersiete:

11000000.10100000.01100 | 000.00000000192.168.96.0

maska /21 11111111.111111111.111111|000.00000000

rozsah IP adries:

192.168.96.0 od:

11000000.10100000.01100 | 111.11111111192.168.103.255 do:

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

- treba 9 bitov => subnet maska bude: 32-9=23 400 adries

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

- treba 7 bitov => subnet maska bude: 32-7=25 75 adries

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

- treba 7 bitov => subnet maska bude: 32-7=25 80 adries

Rozsah podsiete:

. 01100| 000.00000000

.01100 010.1 0000000

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

. 01100| 000.00000000

.01100|010.0000000

.01100 010.10000000

.01100 011.0 0000000

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000

rozsah IP adries:

90 adries

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

- treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

40 adries - treba 6 bitov => subnet maska bude: 32-6=26

Rozsah podsiete:

S T U

. 01100| 000.00000000

.01100|010.0000000

.01100|010.1000000

.01100|011.0000000

. 01100| 000.00 000000

1) Zistíme rozsah supersiete:

192.168.96.0 11000000.10100000.01100|000.00000000 maska /21 11111111.111111111.111111|000.00000000

rozsah IP adries:

192.168.96.0 od:

11000000.10100000.01100 | 111.11111111192.168.103.255 do:

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

- treba 9 bitov => subnet maska bude: 32-9=23 400 adries

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

40 adries - treba 6 bitov => subnet maska bude: 32-6=26

Rozsah podsiete: 192.168.99.128/26 - 192.168.99.191/26 .01100|011.1000000

.01100 010.0 0000000

.01100 010.1 0000000

.01100 011.0 0000000

1) Zistíme rozsah supersiete:

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

40 adries - treba 6 bitov => subnet maska bude: 32-6=26

Rozsah podsiete: 192.168.99.128/26 - 192.168.99.191/26

110 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete:

. 01100 000.00000000

.01100|010.00000000

 $.01100| \boxed{010.1}0000000$

.01100|011.00000000

.01100|011.1000000

.01100|000.0000000

1) Zistíme rozsah supersiete:

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

40 adries - treba 6 bitov => subnet maska bude: 32-6=26

Rozsah podsiete: 192.168.99.128/26 - 192.168.99.191/26

110 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.100.0/25 - 192.168.100.127/25

STU FILT . 01100 000.00000000

.01100| 010.0000000

.01100| 010.10000000

.01100| 011.0000000

.01100| 011.10 000000

. 01100| 100.0000000

1) Zistíme rozsah supersiete:

rozsah IP adries:

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

40 adries - treba 6 bitov => subnet maska bude: 32-6=26

Rozsah podsiete: 192.168.99.128/26 - 192.168.99.191/26

110 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.100.0/25 - 192.168.100.127/25

Point-to-Point spojenie medzi smerovačmi:

Rozsah podsiete:

. 01100| 000.00000000

 $.01100|\overline{010.0}0000000$

. 01100| 010.1 0000000

. 01100| 011.0 0000000

.01100| 011.10 000000

.01100| 100.00000000

. 01100| 000.000000000

1) Zistíme rozsah supersiete:

rozsah IP adries:

od: 192.168.96.0 11000000.10100000.01100|000.0000000<mark>00</mark>

do: 192.168.103.255 11000000.10100000.01100|111.11111111

2) Zistíme, akú subnet masku potrebujeme pre každú sieť:

400 adries - treba 9 bitov => subnet maska bude: 32-9=23

Rozsah podsiete: 192.168.96.0/23 - 192.168.97.255/23

90 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.0/25 - 192.168.98.127/25

75 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.98.128/25 - 192.168.98.255/25

80 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.99.0/25 - 192.168.99.127/25

40 adries - treba 6 bitov => subnet maska bude: 32-6=26

Rozsah podsiete: 192.168.99.128/26 - 192.168.99.191/26

110 adries - treba 7 bitov => subnet maska bude: 32-7=25

Rozsah podsiete: 192.168.100.0/25 - 192.168.100.127/25

Point-to-Point spojenie medzi smerovačmi:

• Rozsah podsiete: 192.168.103.252/30 - 192.168.103.255/30

.01100| 010.0000000

.01100 010.1 0000000

.01100|011.00000000

.01100|011.1000000

. 01100| 100.0 0000000

.01100 111.11111100

Logický návrh pre zadanú topológiu:

CIDR, VLSM

Ak chceme aplikovať CIDR a VLSM:

✓ Dôkladne navrhnúť IP adresáciu pre danú sieť

✓ Použiť "classless" smerovací protokol napr. RIPv2, EIGRP, OSPF, IS-IS

Navrhnite adresovaciu schému siete podľa obrázka. Adresa siete je 150.110.0.0/16.

Vytvorte podsiete tak, aby bolo možné definovať aspoň 300 počítačov v každej podsieti pri dosiahnutí maximálneho počtu podsietí.

Navrhnite adresovaciu schému siete podľa obrázka. Adresa siete je 131.0.0.0/8.

Vytvorte podsiete tak, aby bolo možné definovať aspoň 210 podsietí pri dosiahnutí maximálneho počtu počítačov v každej podsieti. Podsiete zero a all-ones <u>sú</u> povolené.

NAT

(Network Address Translator)

- » transformácie adries v smerovači oddeľujúcom vnútornú sieť od vonkajšej (prístupový smerovač)
 - zdrojové alebo/a cieľové adresy

» transparentnosť pre koncové uzly

smerovanie -> NAT

smerovanie <- NAT

Smerovače s filtrovaním paketov

Vytvorenie filtra

- definovanie pravidiel (access-list)
- aktivovanie filtra na konkrétnom rozhraní smerovača a určenie smeru filtrácie

Smerovače s NAT a filtrovaním

Smerovače s filtrovaním paketov

Vytvorenie filtra

- definovanie pravidiel (access-list)
- aktivovanie filtra na konkrétnom rozhraní smerovača a určenie smeru filtrácie

Niektoré typy NAT

- » jednosmerný NAT (jednoduchý, tradičný unidirectional, traditional, outbound)
 - komunikácia z vnútornej siete
 - preklad zdrojových adries
 - d'alšie zmeny v IP pakete
- » rozšírený NAT (overloaded, port-based, PAT, NAPT)
- » rozloženie výkonu (TCP load distribution)

S-IP	D-IP	S-IP	D-IP
10.0.10.2	147.175.98.5	130.30.30.2	147.175.98.5

Smerovače s NAT

Jednosmerný statický NAT

Konfigurovanie

NAT tabuľka

ip nat inside source static 10.0.0.2 130.30.30.2

ip nat inside source static 10.0.0.3 130.30.30.3

rozhranie

interface ethernet 0

ip nat inside

interface serial 1

ip nat outside

Jednosmerný dynamický NAT

Konfigurovanie

- určiť rozsah IP adries, ktoré sa budú alokovať
 - ip nat pool <meno> <zač. IP> <kon. IP> network <siet'. maska>
- určiť s ACL vnútorné IP adresy, ktoré sa budú transformovať
 - access-list <No.> permit <IP adresa> <maska>
- prepojiť ACL s rozsahom adries
 - ip nat inside source list <No.> pool <meno>
- určiť rozhranie "inside" a "outside"
 - **interface** ethernet 0
- STU^{ip} nat inside F1| Tinterface serial 1
 - ip nat outside

Smerovače s NAT

Rozšírený NAT

(overloaded, port-based, PAT, NAPT)

- transformácia portov
- menší počet (aj jedna) verejných IP adries

Vnútorná IP adresa : port	Preklad vnútornej IP adresy : port	Vonkajšia IP adresa : port
10.2.5.3:1750	168.20.2.8 : 1750	147.175.98.30 : 53
10.2.5.4:1750	168.20.2.8 : 1486	147.175.98.30 : 53
10.2.5.2 : 1650	168.20.2.8 : 1650	147.175.98.30 : 53

Nečíslované sieťové rozhranie

Nečíslované sieťové rozhranie (unnumbered interface)

dvojbodové spojenia nemusia mať IP adresy

Variabilné sieťové masky

VLSM (Variable Length Subnet Masks)

- rozdelenie na subsiete rôznej veľkosti
- > viaceré masky subsietí v rámci jednej siete
- ➤ zápis: a.b.c.d/x

<u>Príklad</u>

sieťová adresa: 192.135.120.0, štandardná maska 255.255.255.0

subsiete:

rozsah adries	maska	adresa subsiete	max. počet IP adries v subsieti
192.135.120.00000100 - 00000111	255.255.255.252	192.135.120.4/ 30	2
192.135.120.00001000 - 00001111	255.255.255.248	192.135.120.8/ 29	6
192 135 120 00010000 - 00011111	255.255.255.240	192.135.120.16/ 28	14
192 135 120 00010000 - 00011111 192 135 H20.T 1000000 - 11011111	255.255.255.224	192.135.120.192/27	30

Príkad logického návrhu siete – variabilné masky

siet': 192.168.10.0

Siet' A:
$$6 + 1 + 2 = 9$$
 host: 4 bity 192.168.10.xx /28 siet' 0,16,32,48,64,80,96,112,128,...

Siet' B: $10 + 1 + 2 = 13$ 4 bity 192.168.10.xx /28

Siet' C: $25 + 1 + 2 = 28$ 5 bitov 192.168.10.xx /27 siet' 0,32,64,96,128,160, 192,224...

Siet' E: $2 + 2 = 4$ 2 bity 192.168.10.xx /30 siet' 0,4,8,12,16,20,24...

Siet' A:
$$6 + 1 + 2 = 9$$
 host: 4 bity 192.168.10.xx /28 siet' 0,16,32,48,64,80,96,112,128,...

Siet' B: $10 + 1 + 2 = 13$ 4 bity 192.168.10.xx /28

Siet' C: $25 + 1 + 2 = 28$ 5 bitov 192.168.10.xx /27 siet' 0,32,64,96,128,160, 192,224...

Siet' E: $2 + 2 = 4$ 2 bity 192.168.10.xx /30 siet' 0,4,8,12,16,20,24...

RFC 3021: siet' E: 2 bity 192.168.10.xx/31

Metóda

»Sekvenčná (postupne od najväčšej podsiete, prideľuje sa najmenšia možná adresa)

```
Siet' A: 6 + 1 + 2 = 9 host: 4 bity 192.168.10.xx /28 siet' 0,16,32,48,64,80,96,112,128,...

Siet' B: 10 + 1 + 2 = 13 4 bity 192.168.10.xx /28

Siet' C: 25 + 1 + 2 = 28 5 bitov 192.168.10.xx /27 siet' 0,32,64,96,128,160, 192,224...

Siet' E: 2 + 2 = 4 2 bity 192.168.10.xx /30 siet' 0,4,8,12,16,20,24...
```

C, **D**, **B**, **A**, **E**

Subnet zero - ÁNO

Siet' C: 192.168.10. 000 | 00000 /27 Siet' D: 192.168.10. 0000 | 0000 /28 Siet' B: 192.168.10. 0000 | 0000 /28 Siet' A: 192.168.10. 0000 | 0000 /28 Siet' E: 192.168.10. 000000 | 00 /30

Subnet zero - NIE

Siet' C: 192.168.10. 000 | 00000 /27 Siet' D: 192.168.10. 0000 | 0000 /28 Siet' B: 192.168.10. 0000 | 0000 /28 Siet' A: 192.168.10. 0000 | 0000 /28 Siet' E: 192.168.10. 000000 | 00 /30

Metóda

>Sekvenčná (postupne od najväčšej podsiete, prideľuje sa najmenšia možná adresa)

```
Shet' A: 6 + 1 + 2 = 9 host: 4 bity 192.168.10.xx /28 siet' 0,16,32,48,64,80,96,112,128,...

Siet' B: 10 + 1 + 2 = 13 4 bity 192.168.10.xx /28

Siet' C: 25 + 1 + 2 = 28 5 bitov 192.168.10.xx /27 siet' 0,32,64,96,128,160, 192,224...

Siet' E: 2 + 2 = 4 2 bity 192.168.10.xx /30 siet' 0,4,8,12,16,20,24...
```

C, D, B, A, E

Subnet zero - ÁNO

Siet C:	192.168.10. 000 00000 /27	192.168.10.0/27
Siet' D:	192.168.10. 0010 0000 /28	192.168.10.32/28
Siet' B:	192.168.10. 0011 0000 /28	192.168.10.48/28
Siet' A:	192.168.10. 0100 0000 /28	192.168.10.64/28
Siet' E:	192.168.10. 010100 00 /30	192.168.10.80/30

Subnet zero - NIE

Siet' C:	192.168.10. 001 00000 /27	192.168.10.32/27
Siet' D:	192.168.10. 0001 0000 /28	192.168.10.16/28
Siet' B:	192.168.10. 0100 0000 /28	192.168.10.64/28
Siet' A:	192.168.10. 0101 0000 /28	192.168.10.80/28
Siet' F.	192 188 10 000001 100 /30	192 168 10 4/30

Metóda

»Reverzná binárna

```
Siet' A: 6 + 1 + 2 = 9 host: 4 bity 192.168.10.xx /28 siet' 0,16,32,48,64,80,96,112,128,...

Siet' B: 10 + 1 + 2 = 13 4 bity 192.168.10.xx /28

Siet' C: 25 + 1 + 2 = 28 5 bitov 192.168.10.xx /27 siet' 0,32,64,96,128,160, 192,224...

Siet' E: 2 + 2 = 4 2 bity 192.168.10.xx /30 siet' 0,4,8,12,16,20,24...
```

C, D, B, A, E alokácia podsietí: (0, 128, 64, 192, 32, 160, 96, 224, 16)

Subnet zero - ÁNO

Siet' C:	192.168.10. 000 00000 /27	192.168.10.0/27
Siet' D:	192.168.10. 1000 0000 /28	192.168.10.128/28
Siet' B:	192.168.10. 0100 0000 /28	192.168.10.64/28
Siet' A:	192.168.10. 1100 0000 /28	192.168.10.192/28
Siet' E:	192.168.10. 001000 00 /30	192.168.10.32/30

Subnet zero - NIE

Siet' C:	192.168.10. 100 00000 /27	192.168.10.128/27
Siet' D:	192.168.10. 0100 0000 /28	192.168.10.64/28
Siet' B:	192.168.10. 1100 0000 /28	192.168.10.192/28
Siet' A:	192.168.10. 0010 0000 /28	192.168.10.32/28
Siet' E:	192.168.10. 0010 0000 /28 192.168.10. 101000 00 /30	192.168.10.160/30

Príkad logického návrhu siete – variabilné masky

