INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 4.1-4.3] STATISTICS - BASIC CONCEPTS

Compiled by Christos Nikolaidis

Ο. **Practice questions**

1. [without GDC] [Maximum mark: 6] Indicate by the words "discrete" or "continuous" the type of data below:

continuous	Number of children in a family in Rome	discrete
Lota allows	Height of Greek men	Continues
f = intinitely	Time spent in a supermarket Final grade in IB exams	discrete continuous
Cat ling in the	Final grade in IB exams	Continuous discrete
Small in Gather	00m sprint time	discrete continuous
while discret	100m sprint time to the nearest second	Continuous discrete
data deeshit	ximum mark: 4] <i>[without GDC]</i>	

A population of 20 000 people consists of 15 000 men and 5 000 women. We need a sample of 100 people. Match the following:

	METHOD		EXAMPLE		
1	random sampling		Α/	Select 75 men and 25 women.	
2	Systematic sampling	\bigvee	В	Consider two groups: smokers and non-smokers. Select 50 from each group.	
3	Stratified sampling	X	С	Select 100 people out of a hat	
4	Quota sampling		D	Arrange names in a row. Pick every 200 th person	

	measures of	central	tendency	/		measures o	of sprea	d	
	mean	(range			<u></u>	
	median		•		IQR			<u>В</u>	
	mode)		standard	deviation	2	<u>, 05.</u>	
(b)	Find the varia	1.23	L						
			464-0						
Max	ximum mark: 10)] [WI	tnout Gi	DC]					
_	ximum mark: 10 sider the set of			_	5, 5, 7, 6, 2.				
Con		data	6, 2,	_	6, 5, 7, 6, 2.				
Con By s	sider the set of	data	6, 2,	_	5, 5, 7, 6, 2.				
Con By s (a)	sider the set of showing your wo	data	6, 2,	_	5, 5, 7, 6, 2.				
Con By s (a) (b)	sider the set of showing your wo the mean	data	6, 2,	_	5, 5, 7, 6, 2.				
Con By s (a) (b) (c)	sider the set of showing your we the mean the median	data orking, f	6, 2, ind	3, 8, 6		quartile \emph{Q}_{3} .			
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode	data orking, f	6, 2, ind	3, 8, 6		quartile <i>Q</i> ₃.			
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode	data orking, f	6, 2, ind	3, 8, 6		quartile <i>Q</i> ₃.			
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode	data orking, f	6, 2, ind <i>Q</i> 1,	(ii)	The upper				
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode (i) the lower	data orking, f	6, 2, ind	(ii)	The upper				
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode (i) the lower	data orking, f	6, 2, ind	(ii)	The upper				
Con	sider the set of showing your we the mean the median the mode (i) the lower	data orking, f	6, 2, ind	(ii)	The upper				
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode (i) the lower	data orking, f	6, 2, ind	(ii)	The upper				
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode (i) the lower	data orking, f	6, 2, ind	(ii)	The upper				
Con By s (a) (b) (c)	sider the set of showing your we the mean the median the mode (i) the lower	data orking, f	6, 2, ind	(ii)	The upper				

5.	[Maximum mark: 17]	[with GDC]
----	--------------------	------------

Consider the following frequency table for 200 entries of *x*:

x	f
4	20
5	34
6	60
7	16
8	20
9	30
10	20

(a) Complete the following tables

measures of central tendency		
mean		
median		
mode		

measures of spread			
range			
IQR			
standard deviation			

[6] [2]

b)	Find the variance.

6. [Maximum mark: 4] **[without GDC]**

Consider the following frequency table for 100 entries of x:

x	f
4	10
5	30
6	60

By showing your working, find the mean.

 	•••••	

7. [Maximum mark: 16] [without GDC]

Consider the following frequency table for 200 entries of x:

x	f	
4	20	
5	34	54
6	60	114
7	16	130
8	20	130 150
9	30	
10	20	

By showing your working, find

- (a) the **median** [2]
- (b) the **mode** [1]
- (c) (i) the lower quartile Q_1 , (ii) The upper quartile Q_3 . [4]
- (d) Find the percentage of data that are less than or equal to 5. [2]
- (e) Find (i) the 20th percentile. (ii) the 65th percentile. [4]

[3]

(f) Draw a box and whiskers plot.

$$f(100) + f(101) = 6$$

(a)
$$\frac{2}{4}(800) = 150 \text{ i} \Omega_3 = 1600) = 8$$

Page 4

8.	[Maximum mark: 7]	[with / without GDC]
----	-------------------	----------------------

Consider the data presented in the **stem and leaf** diagram below:

Stem	Leaf	Key	5 1	represents 51.
5	1, 3, 7, 0, 5, 8, 7, 9, 2, 4, 4, 7, 5, 9		ļ	
6	0, 5, 8,			
7	7, 9,			
8	2, 4, 4, 7,			
9	5, 9			

	·	
a)	Write down the first four entries (i.e. the smallest ones)	[1]
b)	Find the measures of central tendency: mode and median,	[2]
c)	Find the measures of spread: range and interquartile range	[4]

9. [Maximum mark: 4] [without GDC]

The following results give the heights of sunflowers in centimetres.

180 184 195 177 175 173 169 167 197 173 166 183 161 195 177 192 161 165

Represent the data by a stem and leaf diagram.

 •••••

10. [Maximum mark: 12] [without GDC]

Consider the data 10, 20, 30, 40 with

mean = 25 standard deviation = $5\sqrt{5}$ variance = 125

Find the new mean, standard deviation and variance in the following cases

	mean	standard deviation	variance
if each number is increased by 2	27	5/5	125
if each number is multiplied by 2	5 0	125	500
if each number is increased by a	25+0	55	12-5
if each number is multiplied by a	2Sa	Savs	125a2

11. [Maximum mark: 6] [with GDC]

Consider the following data

	Class interval (number of words)	Frequency f
3	1–5	16
8	6–10	28
13	11–15	26
18	16–20	14

- (a) Find the mean. [2]
- (b) Write down the modal group [1]
- (c) Find the standard deviation and the variance [3]

(a)	×10	<u>.3</u>		 	
(0)) 	4.910	-2=24		

Α.	Exam	n style questions (SHORT)	
12.	[Max	kimum mark: 6] [with GDC]	
	A sa	mple of discrete data is drawn from a population and given as	
		66, 72, 65 ,70, 69 ,73, 65, 71, 75.	
	Find		
	(a)	the interquartile range;	[2]
	(b)	the mean of the population;	[1]
	(c)	the variance of the population.	[3]
13.	-	kimum mark: 8] [with GDC]	
	A ra	ndom sample drawn from a large population contains the following data	
	(2)	6.2, 7.8, 12.1, 9.7, 5.2, 14.8, 16.2, 3.7 . Write down	
	(a)	(i) the mean; (ii) the median	[2]
	(b)	Find the variance.	[2]
	(c)	Find	[-]
	(-)	(i) the interquartile range (ii) any outliers	[4]
	(C)	$ Q_1 = 5.7, Q_2 = 3.45 \times 3.5$	
		(i) + = 12 US-57 - 775	
		(°) (°) - 5 + 1 (°) (°) 00 c	
		(ii) LO = 5.9-1.5(7.75) = -5.935	
		(10=25.075	
		No Values 4-5.228 or > 25.035/hence n	0
		antliers.	
		en Ificas	

14.	[Maximum	mark: 61	[without	GDC1
17.	IIVIANIIIIUIII	man. O	IVVILITOUL	

Three positive integers a, b, and c, where a < b < c, are such that their median is 11, their mean is 9 and their range is 10. Find the value of a.

$$b=11$$
 $C-\alpha=10, c=10+\alpha$
 $\frac{\alpha+b+c=9}{3}$
 $CL+11+10+\alpha=27, 2\alpha=6, \alpha=3$

15. [Maximum mark: 6] [without GDC]

Let a, b, c and d be integers such that a < b, b < c and c = d.

The mode of these four numbers is 11. The range is 8. The mean is 8.

Calculate the value of each of the integers a, b, c, d.

$$C = d = 11$$
 $C = d = 11$
 $C =$

16. [Maximum mark: 6] **[without GDC]**

Consider the four numbers a, b, c, d with $a \le b \le c \le d$, where $a, b, c, d \in \mathbb{Z}$.

The mean of the four numbers is 4. The mode is 3. The median is 3. The range is 6. Find the value of a, of b, of c and of d.

17.	[Maximum	mark: 6	١.	Swith	GDC]
17.	liviaxiiiiuiii	IIIaik. O		LANICII	$\mathbf{G} \mathbf{D} \mathbf{C} \mathbf{J}$

The population below is listed in ascending order.

The median of the population is 9.5. The upper quartile Q_3 is 13.

- (a) Write down the value of (i) r (ii) s [4]
- (b) The mean of the population is 10. Find the value of t. [2]

18. [Maximum mark: 6] [without GDC]

A set of data is

The box and whisker plot for this data is shown below.

- (a) Write down the values of A, B, C, D, E [5]
- (b) Find the interquartile range. [1]

19. [Maximum mark: 6] *[without GDC]*

The box and whisker diagram shown below represents the marks received by 32 students.

- (a) Write down the value of the median mark. [1]
- (b) Write down the value of the upper quartile. [2]
- (c) Estimate the number of students who received a mark greater than 6. [3]

20. [Maximum mark: 5] [without GDC]

The following diagram is a box and whisker plot for a set of data.

The interquartile range is 20 and the range is 40.

(a) Write down the median value.

[1]

- (b) Find the value of
- (i) a
- (ii) b.

[4]

21. [Maximum mark: 5] [without GDC]

A scientist has 100 female fish and 100 male fish. She measures their lengths to the nearest cm. These are shown in the following box and whisker diagrams.

Female fish

Male fish

(a) Find the range of the lengths of **all** 200 fish.

[3]

(b) Four cumulative frequency graphs are shown below.

Which graph is the best representation of the lengths of the female fish?

[2]

	[Max	kimum mark: 6] <i>[with GDC]</i>	
	The	45 students in a class each recorded the number of whole minutes, x , spent doing	
	expe	eriments on Monday. The results are $\Sigma x = 2230$.	
	(a)	Find the mean number of min the students spent doing experiments on Monday.	[2]
		new students joined the class and reported that they spent 37 minutes and 30	
	(b)	utes respectively. Calculate the new mean including these two students.	[4]
	(D)	Calculate the new mean including these two students.	ניין
23.	[Max	kimum mark: 4] <i>[without GDC]</i>	
	_	mean of the population $x_1, x_2,, x_{25}$ is m	
	(a)		
	()	Given that $\sum_{i=1}^{25} x_i = 300$, find the value of m .	[2]
	(b)	Given that $\sum_{i=1}^{25} x_i = 300$, find the value of m . Given that $m = 10$, find the value of $\sum_{i=1}^{25} x_i$.	[2] [2]
		25	
		25	
		25	
		Given that $m=10$, find the value of $\sum_{i=1}^{25} x_i$.	
		Given that $m=10$, find the value of $\sum_{i=1}^{25} x_i$.	
		Given that $m=10$, find the value of $\sum_{i=1}^{25} x_i$.	
		Given that $m=10$, find the value of $\sum_{i=1}^{25} x_i$.	
		Given that $m=10$, find the value of $\sum_{i=1}^{25} x_i$.	
		Given that $m=10$, find the value of $\sum_{i=1}^{25} x_i$.	

[Max	kimum mark: 5] <i>[without GDC]</i>	
Con	sider the data set $\{k-2,k,k+1,k+4\}$, where $k\in\mathbb{R}$.	
(a)	Find the mean of this data set in terms of k .	
Eacl	n number in the above data set is now decreased by 3.	
(b)	Find the mean of this \mathbf{new} data set in terms of k .	
have	conference of 100 mathematicians there are 72 men and 28 women. The men a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians.	
At a	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the	
At a	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the	
At a	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the	
At a	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the	
At a	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the	
At a have	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. Simum mark: 6] [with GDC]	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. kimum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. Eximum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630. In October to December, the mean was 810 accidents per month.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men e a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. kimum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. Eximum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630. In October to December, the mean was 810 accidents per month.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. Eximum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630. In October to December, the mean was 810 accidents per month.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. Eximum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630. In October to December, the mean was 810 accidents per month.	
At a have mea	conference of 100 mathematicians there are 72 men and 28 women. The men a mean height of 1.79 m and the women have a mean height of 1.62 m. Find the in height of the 100 mathematicians. Eximum mark: 6] [with GDC] In January to September, the mean number of car accidents per month was 630. In October to December, the mean was 810 accidents per month.	

27. [Maximum mark: 4] [with Gl	JCI
--	-----

28.

A machine produces packets of sugar. The weights in grams of thirty packets chosen at random are shown below.

Weight (g)	29.6	29.7	29.8	29.9	30.0	30.1	30.2	30.3
Frequency	2	3	4	5	7	5	3	1

<u> </u>	uency	2	3	4	5	7	5	3	· '	!					
ind															
a) the me	ean of th	nis sar	nple;												
b) the va	riance o	f this	sampl	e.											
															•
			•••••								• • • • • •				
										•••••					•
	. 01	_	,	• • •											
Maximum n	nark: 6]	[N	vith / \	witho	ut GD	C]									
n a sample	of 50 bo	oxes o	f light	bulbs	, the r	numbe	er of d	lefec	tive I	ight	bul	bs pe	er box	k is	
hown belov	٧.														
Number	of dafaa	tiva li	aht hi	Ilbe n	ar box		n	1	2	2	Т	4	5	6	٦
Number			ght bu	ılbs pe	er box	$\overline{}$	0 7	1 3	2	3	-	4	5	6	-
Number Number			ght bu	ılbs pe	er box	$\overline{}$	7	1 3	2	3	-	10.2	5	6	
Number		S					7		15	1	1	10.2	-	1	
Number a) Calcul	of boxes	s media	n num	nber o	f defe	ctive I	7 ight b	ulbs	per l	oox.	1	10.2	-	1]
Number a) Calcul	of boxes	s media	n num	nber o	f defe	ctive I	7 ight b	ulbs	per l	oox.	1	10.2	-	1	
Number a) Calcul	of boxes	s media	n num	nber o	f defe	ctive I	7 ight b	ulbs	per l	oox.	1	10.2	-	1	
Number a) Calcul	of boxes	s media	n num	nber o	f defe	ctive I	7 ight b	ulbs	per l	oox.	1	10.2	-	1	
Number a) Calcul	of boxes	s media	n num	nber o	f defe	ctive I	7 ight b	ulbs	per l	oox.	1	10.2	-	1	
Number a) Calcul b) Calcul	ate the	media mean	n num	nber o	f defe	ctive I	ight b	ulbs bs p	per bo))))))		6	5	3	
Number a) Calcul b) Calcul	of boxes	media mean	n num	nber o	f defe	ctive I	ight b	ulbs bs p	per bo))))))		6	5	3	
Number a) Calcul b) Calcul	ate the	media mean	n num	nber o	f defe	ctive I	ight b	ulbs bs p	per bo))))))		6	5	3	
Number a) Calcul b) Calcul	ate the	media mean	n num	nber o	f defe	ctive I	ight b	ulbs bs p	per bo))))))		6	5	3	
Number (a) Calcul (b) Calcul	ate the	media mean	n num	nber o	f defe	ctive I	ight b	ulbs bs p	per bo))))))		6	5	3	

	Number	1	;	2	3	3	4		5	6
	Frequency	26		10	2		k		29	11
(a)	Calculate the va	alue of k								
(b)	Find									
	(i) the median;	(ii)	the ir	nterqu	artile ı	range.				
May	vimum mark: 41	[with	/with	out Gl	ואמ					
	kimum mark: 4] en the following fr	_	/ witho distrib		_					
	_	_			_	4	5	6		
	n the following fr	equency	distrib	ution,	1	4 18	5 20	6 7		
	n the following fr	equency	distrib	ution,	3					
Give	n the following from Number (x) Frequency (for the median;	equency	distrib	ution,	3					
Give	Number (x) Frequency (f	equency	distrib	ution,	3					
Give find (a)	n the following from Number (x) Frequency (for the median;	equency	distrib	ution,	3					
Give find (a)	n the following from Number (x) Frequency (for the median;	equency	distrib	eution,	3 16	18	20	7		
Give find (a)	n the following from Number (x) Frequency (for the median; the mean.	equency	distrib	oution,	3 16	18	20	7		
Give find (a)	n the following from Number (x) Frequency (for the median; the mean.	equency	distrib	oution,	3 16	18	20	7		
Give find (a)	n the following from Number (x) Frequency (for the median; the mean.	equency	distrib	pution,	3 16	18	20	7		
Give find (a)	rn the following from Number (x) Frequency (for the median; the mean.	equency	distrib	pution,	3 16	18	20	7		
Give find (a)	n the following from Number (x) Frequency (for the median; the mean.	equency	distrib	pution,	3 16	18	20	7		

11. [Maximu	ım mark: 6]	[with GDC]
--------------------	-------------	------------

A standard die is rolled 36 times. The results are shown in the following table.

Score	1	2	3	4	5	6
Frequency	3	5	4	6	10	8

(a)	write down the standard deviation.	[2.
(b)	Write down the median score.	[1]
(c)	Find the interquartile range.	[3]

32. [Maximum mark: 6] [with / without GDC]

The number of hours of sleep of 21 students are shown in the frequency table below.

Hours of sleep	Number of students
4	2
5	5
6	4
7	3
8	4
10	2
12	1

Find

ı ıııu		
(a)	the median;	[2]
(b)	the lower quartile;	[2]
(c)	the interquartile range.	[2]

1.

33. [Maximum mark: 6]] [without GDC]

The table below shows the marks gained in a test by a group of students.

Mark	1	2	3	4	5
Number of students	5	10	p	6	2

The median is 3 and the mode is 2. Find the **two** possible values of p.

34. [Maximum mark: 7] **[with GDC]**

The following table gives the examination grades for 120 students.

Grade	Number of students	Cumulative frequency
1	9	9
2	25	34
3	35	p
4	q	109
5	11	120

(a)	F	ind	tl	ne	va	lue	of

(i)
$$p$$
; (ii) q . [4]

(b) Find the mean grade. [2]

(c) Write down the standard deviation. [1]

35.	[Maximum	mark: 7	[with	GDC]
-----	----------	---------	-------	------

In a school with 125 girls, each student is tested to see how many sit-up exercises (situps) she can do in one minute. The results are given in the table below.

Number of sit-ups	Number of students	Cumulative number of students
15	11	11
16	21	32
17	33	p
18	q	99
19	18	117
20	8	125

(a)	(i) Write down the value of p (ii) Find the value of q .	[3]
(b)	Find the median number of sit-ups.	[2]
(c)	Find the mean number of sit-ups.	[2]

36. [Maximum mark: 6] *[with GDC]*

The following table shows the mathematics marks scored by students.

Mark	1	2	3	4	5	6	7
Frequency	0	4	6	k	8	6	6

[5]

[1]

The mean mark is 4.6.

(a) (b)

Find the value of k .	
Write down the mode.	

37. [Maximum mark: 4] [with GDC]

The table shows the scores of competitors in a competition.

Score	10	20	30	40	50
Number of competitors with this score	1	2	5	k	3

The mean score is 34. Find the value of k.

38. [Maximum mark: 6] *[without GDC]*

The following stem and leaf diagram gives the heights in cm of 39 schoolchildren.

Stem	Leaf	Key 13 2	represents 132 cm.
13	2, 3, 3, 5, 8,		
14	2, 3, 3, 5, 8, 1, 1, 1, 4, 5, 5, 9,		
15	3, 4, 4, 6, 6, 7, 7, 7, 8, 9, 9,		
16	1, 2, 2, 5, 6, 6, 7, 8, 8,		
17	4, 4, 4, 5, 6, 6,		
18	0,		

- (a) State for the height
 - (i) the lower quartile, (ii) the median (iii) the upper quartile. [3]
- (b) Draw a box-and-whisker plot of the data on the diagram below.

height in cm

[3]

.....

39. [Maximum mark: 4] [with GDC]

A sample of 70 batteries was tested to see how long they last. The results were:

Time (hours)	Number of batteries (frequency)
$0 \le t \le 10$	2
$10 \le t \le 20$	4
$20 \le t \le 30$	8
$30 \le t \le 40$	9
$40 \le / \le 50$	12
$50 \le t \le 60$	13
$60 \le t \le 70$	8
$70 \le t \le 80$	7
$80 \le t \le 90$	6
$90 \le t \le 100$	1
Total	70

Find ((i)	the mean;	(ii)	the standard deviation.

40. [Maximum mark: 5] [without GDC]

The 80 applicants for a Sports Science course were required to run 800 metres and their times were recorded. The results were used to produce the following cumulative frequency graph.

[2]

(b) Estimate the interquartile range.

[3]

41. [Maximum mark: 6] [with / without GDC]

The cumulative frequency curve below indicates the amount of time 250 students spend eating lunch.

(a) Estimate the number of students who spend between 20 and 40 minutes eating lunch.

[2]

(b) Estimate the 20th percentile.

[2]

(c) If 20 % of the students spend more than x minutes eating lunch, estimate the value of x.

[2]

•••••	 	 	

42. [Maximum mark: 6] [with GDC]

The histogram below represents the ages of 270 people in a village.

(a) Use the histogram to complete the table below.

100			_							
80	Н				_					
Frequency 40		\exists								
њ <u>40</u>		\exists								
20										
0		20	4 A o	0 e in	6 ve	0 ars	8	0	10	00

Age range	Frequency	Mid-interval value
0 < age < 20	40	10
20 ≤ age < 40		
40 ≤ age < 60		
60 ≤ age < 80		
80 ≤ age ≤100		

(b) Hence, calculate an estimate of the mean age.

[4]

[2]

43. [Maximum mark: 4] *[without GDC]*

A student measured the diameters of 80 snail shells. His results are shown in the following cumulative frequency graph. The lower quartile (LQ) is 14 mm and is marked clearly on the graph.

- (a) On the graph, mark clearly in the same way and write down the value of
 - (i) the median; (ii) the upper quartile.

[2]

(b) Write down the interquartile range.

[2]

.....

44. [Maximum mark: 6] *[without GDC]*

The cumulative frequency curve below shows the heights of 120 basketball players in centimetres.

Use the curve to estimate

(a) the median height; [2]

(b) the interquartile range. [4]

Page 22

45. [Maximum mark: 6] [without GDC]

A test marked out of 100 is written by 800 students. The cumulative frequency graph for the marks is given below.

- (a) Write down the number of students who scored 40 marks or less on the test. [2]
- (b) The middle 50 % of test results lie between marks a and b, (a < b). Find a and b. [4]

46. [Maximum mark: 6] **[without GDC]**

The following is a cumulative frequency diagram for the time t, in minutes, taken by 80 students to complete a task.

Time (minutes)	Number of students
$0 \le t < 10$	5
$10 \le t < 20$	11
$20 \le t < 30$	20
$30 \le t < 40$	24
$40 \le t < 50$	14
$50 \le t < 60$	6

- (a) Write down the median. [1]
- (b) Find the interquartile range. [3]

(t)

(c) Complete the frequency table next to the diagram. [2]

47. [Maximum mark: 6] [with GDC]

The cumulative frequency graph below shows the heights of 120 girls in a school.

(a)	Find (i) the median;	(ii) the interquartile range.	[4]
(b)	Given that 60% of the g	irls are taller than a cm, find the value of a .	[2]

48. [Maximum mark: 6] **[without GDC]**

The cumulative frequency curve below shows the marks obtained in an examination by a group of 200 students.

(a) Use the cumulative frequency curve to complete the frequency table below.

Mark (x)	$0 \le x < 20$	$20 \le x < 40$	$40 \le x < 60$	$60 \le x < 80$	$80 \le x < 100$
Number of students	22				20

(b) Forty percent of the students fail. Find the pass mark.	
---	--

Pass Mari	<=42	

[3]

[3]

.....

49. [Maximum mark: 9] [with GDC]

In the research department of a university, 300 mice were timed as they each ran through a maze. The results are shown in the cumulative frequency diagram below.

- (a) How many mice complete the maze
 - (i) in less than 10 seconds?
 - (ii) In more than 12 seconds?

[2]

- (b) Estimate
 - (i) the median time.
 - (ii) the 20th percentile.

[3]

(c) Another way of showing the results is the frequency table below.

Time t	Number
(seconds)	of mice
t < 7	0
$7 \le t < 8$	16
$8 \le t < 9$	22
$9 \le t < 10$	р
$10 \le t < 11$	q
$11 \le t < 12$	70
$12 \le t < 13$	44
$13 \le t < 14$	31
$14 \le t \le 15$	23

Find the value of p and the value of q . Calculate an estimate of the mean time.	[4]

50. [Maximum mark: 5] *[without GDC]*

A recruitment company tests the aptitude of 100 applicants applying for jobs in engineering. Each applicant does a puzzle and the time taken, t, is recorded. The cumulative frequency curve for these data is shown below.

Using the cumulative frequency curve,

(a) write down the value of the median;

[1] [2]

- (b) determine the interquartile range;
- (c) complete the frequency table below.

Time to complete puzzle in seconds	Number of applicants
$20 < t \le 30$	
$30 < t \le 35$	
$35 < t \le 40$	
40 < <i>t</i> ≤ 45	
$45 < t \le 50$	
$50 < t \le 60$	
60 < t < 80	

51. [Maximum mark: 5] [with GDC]

The following is the cumulative frequency diagram for the heights of 30 plants given in centimetres.

[2]

[2]

(a) Use the diagram to estimate the median height.

(b) Complete the following frequency table.

Height (h)	Frequency
0≤h<5	4
5≤h<10	9
10≤h<15	
15≤h<20	
20≤h<25	

c)	Hence estimate the mean height.	[2]
. ,	5	

Page 29

52. [Maximum mark: 6] [without GDC]

The four populations A, B, C and D are the same size and have the same range. Frequency histograms for the four populations are given below.

(a) Each of the three box and whisker plots below corresponds to one of the four populations. Write the letter of the correct population under each plot.

(b) Each of the three cumulative frequency diagrams below corresponds to one of the four populations. Write the letter of the correct population under each diagram.

[3]

53. [Maximum mark: 4] *[without GDC]*

The box-and-whisker plots shown represent the heights of female students and the heights of male students at a certain school.

- (a) What percentage of female students are shorter than any male students? [2]
- (b) What percentage of male students are shorter than some female students? [2]

54. [Maximum mark: 10] [with GDC]

The following diagram represents the lengths, in cm, of 80 plants grown in a laboratory.

- (a) How many plants have lengths in cm between
 - (i) 50 and 60?
- (ii) 70 and 90?

[2]

[4]

- (b) Calculate estimates for the mean and the st.deviation of the lengths of the plants.
- (c) Explain what feature suggests that the median is different than the mean. [1]

.....

B. Exam style questions (LONG)

55. [Maximum mark: 14] *[with GDC]*

The following is the cumulative frequency curve for the time, t minutes, spent by 150 people in a store on a particular day.

- (a) (i) How many people spent less than 5 minutes in the store?
 - (ii) Find the number of people who spent between 5 and 7 minutes in the store.
 - (iii) Find the median time spent in the store.

[6]

[3]

- (b) Given that 40% of the people spent longer than k minutes, find the value of k.
- (c) (i) Complete the following frequency table.

t (minutes)	$0 \le t \le 2$	$2 < t \le 4$	$4 < t \le 6$	6 < <i>t</i> ≤ 8	$8 < t \le 10$	$10 < t \le 12$
Frequency	10	23				15

(ii) Hence, calculate an estimate for the mean time spent in the store.

[MAA 4.1-4.3] STATISTICS - BASIC CONCEPTS

56. [Maximum mark: 11] [with GDC]

The speeds in ${\rm km}\,{\rm h}^{-1}$ of cars passing a point on a highway are recorded in the first table below.

Speed v	Number of cars
v ≤ 60	0
$60 < v \le 70$	7
$70 < v \le 80$	25
$80 < v \le 90$	63
$90 < v \le 100$	70
$100 < v \le 110$	71
$110 < v \le 120$	39
$120 < v \le 130$	20
$130 < v \le 140$	5
v > 140	0

Speed v	Cumulative frequency
v ≤ 60	0
$v \le 70$	7
$v \le 80$	32
$v \le 90$	95
$v \le 100$	а
$v \le 110$	236
$v \le 120$	b
$v \le 130$	295
<i>v</i> ≤ 140	300

[2]

[5]

[4]

- (a) Calculate an estimate of the mean speed of the cars.
- (b) The second table gives some of the cumulative frequencies.
 - (i) Write down the values of a and b.
 - (ii) On graph paper, construct a cumulative frequency **curve** to represent this information. Use a scale of 1 cm for 10 km h^{-1} on the horizontal axis and a scale of 1 cm for 20 cars on the vertical axis.

(c) Use your graph to determine

(ii)

(i) the percentage of cars travelling at a speed in excess of 105 km h⁻¹;

the speed which is exceeded by 15% of the cars.

.....

57. [Maximum mark: 10] *[without GDC]*

A survey is carried out to find the waiting times for 100 customers at a supermarket.

waiting time (seconds)	number of customers
0–30	5
30–60	15
60–90	33
90 –120	21
120-150	11
150-180	7
180-210	5
210–240	3

(a)	Calculate an estimate for the mean of the waiting times, by using an appropriate	
	approximation to represent each interval.	[2
(b)	Construct a cumulative frequency table for these data	[1
(c)	Use the cumulative frequency table to draw, on graph paper, a cumulative	
	frequency graph, using a scale of 1 cm per 20 seconds waiting time for the	
	horizontal axis and 1 cm per 10 customers for the vertical axis.	[4]
(d)	Use the cumulative frequency graph to find estimates for the median and the	
	lower and upper quartiles.	[3]

58. [Maximum mark: 15] [with GDC]

In a suburb of a large city, 100 houses were sold in a three-month period. The following **cumulative frequency table** shows the distribution of selling prices (in thousands of dollars).

Selling price <i>P</i> (\$1000)	<i>P</i> ≤ 100	<i>P</i> ≤ 200	<i>P</i> ≤ 300	P ≤ 400	P ≤ 500
Total number of houses	12	58	87	94	100

(a)	Represent this information on a cumulative frequency curve , using a scale of 1
	cm to represent \$50000 on the horizontal axis, 1 cm to represent 5 houses on the
	vertical axis.

(b) Use your curve to find the interquartile range.

[4] [3]

The information above is represented in the following frequency distribution.

Selling price <i>P</i> (\$1000)	$0 < P \le 100$	$100 < P \le 200$	$200 < P \le 300$	$300 < P \le 400$	$400 < P \le 500$
Number of houses	12	46	29	а	b

(c) Find the value of a and of b.

[2]

(d) Use mid-interval values to calculate an estimate for the mean selling price.

[2]

[4]

- (e) Houses which sell for more than \$350000 are described as De Luxe.
 - (i) Use your graph to estimate the number of *De Luxe* houses sold.Give your answer to the nearest integer.

(ii)	Two De Luxe houses are selected at random. Find the probability that both
	have a selling price of more than \$400000.

.....

59. [Maximum mark: 16] [with GDC]

One thousand candidates sit an examination. The distribution of marks is shown in the following grouped frequency table.

Marks	1-10	11–20	21–30	31–40	41–50	51–60	61–70	71–80	81–90	91–100
Number of candidates	15	50	100	170	260	220	90	45	30	20

[3]

(a) Complete the following table, which presents the above data as a cumulative frequency distribution.

viark			≥10	<u>≤</u> 20	≥30	≥40	≥30	≥60	≥/0	_≤80	≥90	≥100		
Num	ber of	candidates	15	65					905					
b)	Draw a cumulative frequency graph of the distribution, using a scale of 1 cm for 100 candidates on the vertical axis and 1 cm for 10 marks on the horizontal axis.												[5]	
c)	Use	your graph	to ans	wer p	arts (i)	–(iii) k	elow,							
	(i) (ii)	Find an es						re req	uired 1	to reta	ke the	•		[2]
		examination	on. Ho	w mai	ny car	didate	es had	to ret	ake?					[3]
	(iii)	The highe	st-sco	ring 1	5% of	candid	dates	were a	awarde	ed a d	istincti	on. Fi	nd	
		the mark a	above	which	a dist	inctior	n was	award	ed.					[3]

60*. [Maximum mark: 15] *[with GDC]*

A supermarket records the amount of money *d* spent by customers in their store during a busy period. The results are as follows:

Money in \$ (<i>d</i>)	0–20	20–40	40–60	60–80	80–100	100–120	120–140
Number of customers (n)	24	16	22	40	18	10	4

[2]

[5]

[3]

- (a) Find an estimate for the mean amount of money spent by the customers, giving your answer to the nearest dollar (\$).
- (b) Complete the following cumulative frequency table and use it to draw a cumulative frequency graph. Use a scale of 2 cm to represent \$20 on the horizontal axis, and 2 cm to represent 20 customers on the vertical axis.

 Money in \$ (d)
 <20</th>
 <40</th>
 <60</th>
 <80</th>
 < 100</th>
 < 120</th>
 < 140</th>

 Number of customers (n)
 24
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 40
 <t

- (c) The time t (minutes), spent by customers in the store may be represented by the equation $t = 2d^{\frac{2}{3}} + 3$.
 - (i) Use this equation and your answer to part (a) to estimate the mean time in minutes spent by customers in the store.
 - (ii) Use the equation and the cumulative frequency graph to estimate the number of customers who spent more than 37 minutes in the store. [5]

61*. [Maximum mark: 12] [with GDC]

There are 50 boxes in a factory. Their weights, w kg, are divided into 5 classes, as shown in the following table.

	Class	Weight (kg)	Number of boxes
14	A	$9.5 \le w \le 18.5$	7
23	В	$18.5 \le w \le 27.5$	12
32	С	$27.5 \le w \le 36.5$	13
41	D	$36.5 \le w \le 45.5$	10
50	Е	$45.5 \le w \le 54.5$	8

- (a) Show that the estimated mean weight of the boxes is 32 kg. [3]
- (b) There are x boxes in the factory marked "Fragile". They are all in class E. The estimated mean weight of all the other boxes in the factory is 30 kg. Calculate the value of x.[4]
- (c) An additional y boxes, all with a weight in class D, are delivered to the factory.
 The total estimated mean weight of all of the boxes in the factory is less than 33 kg. Find the largest possible value of y.

(w) 4(7)+23(12)+23(13)+4((15)+50(8) = 60 (b)