

CLAIMS

1 1-32. (canceled)

1 33. (currently amended) A network device for a communication network, the network device
2 comprising:

3 (a) a database table adapted to store one or more sets of one or more parameters, each set
4 corresponding to a different identifier; and

5 (b) a receiver adapted to:

6 (1) receive a first data packet from a first transmitter, the first data packet
7 comprising a training preamble, a header and a payload;

8 (2) receive a first auxiliary coding corresponding to the first data packet, wherein:

9 the first auxiliary coding identifies a first identifier;

10 the first auxiliary coding is different from the training preamble; and

11 the first identifier is different from the training preamble;

12 (3) recover the first identifier from the first auxiliary coding;

13 (4) retrieve a first set of one or more parameters from the database table based on
14 the first identifier; and

15 (5) process at least a portion of the first data packet based on the first set of one or
16 more parameters.

1 34. (previously presented) The network device of claim 33, wherein the communication network
2 is a HomePNA network.

1 35. (currently amended) The network device of claim 33, wherein[:]

2 ~~the first data packet further comprises a training preamble~~;

3 the first auxiliary coding is inserted within the training preamble of the first data packet.

1 36. (currently amended) The network device of claim 33, wherein:

2 ~~the first data packet further comprises a training preamble~~;

3 the first auxiliary coding is encoded using frequency shift keying (FSK) modulation by
4 frequency division;

5 the first auxiliary coding is encoded at a frequency different from a frequency for the first
6 data packet;

7 receipt of the first auxiliary coding overlaps in time with receipt of the training preamble
8 of the first data packet.

1 37. (previously presented) The network device of claim 33, wherein the first auxiliary coding is
2 received before the first data packet is received.

1 38. (currently amended) The network device of claim 33, further comprising a second transmitter
2 adapted to:

3 (1) generate a second auxiliary coding for transmittal with a second data packet, wherein:

4 the second data packet comprises a second training preamble, a second header,
5 and a second payload;

6 the second auxiliary coding is different from the second training preamble;

7 the second auxiliary coding identifies a second identifier;

8 the second identifier is different from the second training preamble;

9 the second identifier identifies the second transmitter; and

10 the second auxiliary coding is different from the second data packet;

11 (2) transmit the second auxiliary coding and the second data packet to a second network
12 device.

1 39. (previously presented) The network device of claim 38, wherein:

2 the second transmitter comprises a first RF front end; and

3 the second transmitter is adapted to transmit both the second auxiliary coding and the
4 second data packet using the first RF front end.

1 40. (previously presented) The network device of claim 38, wherein:

2 the second transmitter comprises a first RF front end and a second RF front end;

3 the second transmitter is adapted to transmit the second auxiliary coding using the first
4 RF front end; and

5 the second transmitter is adapted to transmit the second data packet using the second RF
6 front end.

1 41. (previously presented) The network device of claim 33, wherein the first auxiliary coding
2 comprises five or fewer symbols.

1 42. (previously presented) The network device of claim 33, wherein the first auxiliary coding
2 comprises five or fewer bits.

1 43. (currently amended) The network device of claim 33, wherein the first identifier is a station
2 identifier ~~for that uniquely identifies~~ the first transmitter within the communication network.

1 44. (currently amended) The network device of claim [[33]]43, wherein:
2 the first data packet header includes a source address for the first transmitter; and
3 the first identifier is not the same as the source address for the first transmitter.

1 45. (previously presented) The network device of claim 33, wherein the first set of one or more
2 parameters comprises at least one of a receiving-equalizer start value, a timing-recovery start
3 value, an automatic-gain-controller start value, and an echo-canceller start value.

1 46. (currently amended) The network device of claim 33, wherein [[the]] the first set of one or
2 more parameters is based on moving averages, from past data packets received from the first
3 transmitter, of one or more of a receiving-equalizer value, a timing-recovery value, an automatic-
4 gain-controller value, and an echo-canceller value.

1 47. (currently amended) The network device of claim 33, wherein:
2 the first auxiliary coding is received as a first set of pulses received substantially
3 immediately before the first data packet; and
4 the first identifier is encoded in the first set of pulses by ~~variable~~ varying timing intervals
5 between adjacent pulses in the first set of pulses.

1 48. (previously presented) The network device of claim 33, wherein the database table is further
2 adapted to store each different identifier corresponding to each set of one or more parameters.

1 49. (currently amended) A method ~~for implemented by~~ a network device for a communication
2 network, wherein the network device comprises a database table and a receiver, the method
3 comprising:

4 (1) storing a first set of one or more parameters in the database table, the first set
5 corresponding a first identifier;

6 (2) receiving a first data packet comprising a training preamble, a header and a payload
7 from a first transmitter;

8 (3) receiving a first auxiliary coding corresponding to the first data packet, wherein:
9 the first auxiliary coding identifies the first identifier;
10 the first auxiliary coding is different from the training preamble; and
11 the first identifier is different from the training preamble;

12 (4) recovering the first identifier from the first auxiliary coding;

13 (5) retrieving the first set of one or more parameters from the database table based on the
14 first identifier; and

15 (6) processing at least a portion of the first data packet based on the first set of one or
16 more parameters.

1 50. (previously presented) The method of claim 49, wherein the communication network is a
2 HomePNA network.

1 51. (currently amended) The method of claim 49, wherein[:]
2 ~~the first data packet further comprises a training preamble;~~
3 the first auxiliary coding is inserted within the training preamble of the first data packet.

1 52. (currently amended) The method of claim 49, wherein:
2 ~~the first data packet further comprises a training preamble;~~
3 the first auxiliary coding is encoded using frequency shift keying (FSK) modulation by
4 frequency division;

5 the first auxiliary coding is encoded at a frequency different from a frequency for the first
6 data packet;

7 receipt of the first auxiliary coding overlaps in time with receipt of the training preamble
8 of the first data packet.

1 53. (previously presented) The method of claim 49, wherein the first auxiliary coding is received
2 before the first data packet is received.

1 54. (currently amended) The method of claim 49, where the network device further comprises a
2 second transmitter, the method further comprising:

3 (1) generating a second auxiliary coding for transmittal with a second data packet,
4 wherein:

5 the second data packet comprises a second training preamble, a second header,
6 and a second payload;

7 the second auxiliary coding is different from the second training preamble;

8 the second auxiliary coding identifies a second identifier;

9 the second identifier is different from the second training preamble;

10 the second identifier identifies the second transmitter; and

11 the second auxiliary coding is different from the second data packet;

12 (2) transmitting the second auxiliary coding and the second data packet to a second
13 network device.

1 55. (previously presented) The method of claim 54, wherein:

2 the second transmitter comprises a first RF front end; and

3 the method comprises transmitting both the second auxiliary coding and the second data
4 packet using the first RF front end.

1 56. (previously presented) The method of claim 54, wherein:
2 the second transmitter comprises a first RF front end and a second RF front end; and
3 the method comprises:
4 transmitting the second auxiliary coding using the first RF front end; and
5 transmitting the second data packet using the second RF front end.

1 57. (previously presented) The method of claim 49, wherein the first auxiliary coding comprises
2 five or fewer symbols.

1 58. (previously presented) The method of claim 49, wherein the first auxiliary coding comprises
2 five or fewer bits.

1 59. (currently amended) The method of claim 49, wherein the first identifier is a station identifier
2 for that uniquely identifies the first transmitter within the communication network.

1 60. (currently amended) The method of claim [[49]]59, wherein:
2 the first data packet header includes a source address for the first transmitter; and
3 the first identifier is not the same as the source address for the first transmitter.

1 61. (previously presented) The method of claim 49, wherein the first set of one or more
2 parameters comprises at least one of a receiving-equalizer start value, a timing-recovery start
3 value, an automatic-gain-controller start value, and an echo-canceller start value.

1 62. (currently amended) The method of claim 49, wherein [[the]] the first set of one or more
2 parameters is based on moving averages, from past data packets received from the first
3 transmitter, of one or more of a receiving-equalizer value, a timing-recovery value, an automatic-
4 gain-controller value, and an echo-canceller value.

1 63. (currently amended) The method of claim 49, wherein:
2 the first auxiliary coding is received as a first set of pulses received substantially
3 immediately before the first data packet; and
4 the first identifier is encoded in the first set of pulses by ~~variable~~ varying timing intervals
5 between adjacent pulses in the first set of pulses.

1 64. (previously presented) The method of claim 49, further comprising storing the first identifier
2 in the database table.

1 65. (previously presented) The network device of claim 33, wherein the first set of one or more
2 parameters is based on previously performed training results from a previous packet received
3 from the first transmitter.

1 66. (previously presented) The method of claim 49, wherein the first set of one or more
2 parameters is based on previously performed training results from a previous packet received
3 from the first transmitter.

1 67. (new) The network device of claim 33, wherein:
2 the training preamble is independent of the first auxiliary coding; and
3 the training preamble is independent of the first identifier.

1 68. (new) A network device for a communication network, wherein the communication network
2 is a HomePNA network, the network device comprising:
3 (a) a database table adapted to store one or more sets of one or more parameters, each set
4 corresponding to a different identifier; and
5 (b) a receiver adapted to:
6 (1) receive a first data packet from a first transmitter, the first data packet
7 comprising a header and a payload;
8 (2) receive a first auxiliary coding corresponding to the first data packet, wherein:
9 the first auxiliary coding identifies a first identifier;

