PHYS 2211 Test 2 Fall 2014

Name(print) Lab Section

Schatz(N), Bongiorno(M)						
Day	12-3pm	2-5pm	3-6pm	5-8pm	6-9pm	
Monday		M01				
Tuesday	M03 N01		M06 N02		N03	
Wednesday		M02 N07		M07		
Thursday	M04 N04		M05 N05		N06	

Instructions

- Read all problems carefully before attempting to solve them.
- Your work must be legible, and the organization must be clear.
- You must show all work, including correct vector notation.
- Correct answers without adequate explanation will be counted wrong.
- Incorrect work or explanations mixed in with correct work will be counted wrong. Cross out anything you do not want us to grade
- Make explanations correct but brief. You do not need to write a lot of prose.
- Include diagrams!
- Show what goes into a calculation, not just the final number, e.g.: $\frac{a \cdot b}{c \cdot d} = \frac{(8 \times 10^{-3})(5 \times 10^6)}{(2 \times 10^{-5})(4 \times 10^4)} = 5 \times 10^4$
- Give standard SI units with your results.

Unless specifically asked to derive a result, you may start from the formulas given on the formula sheet, including equations corresponding to the fundamental concepts. If a formula you need is not given, you must derive it.

If you cannot do some portion of a problem, invent a symbol for the quantity you can not calculate (explain that you are doing this), and use it to do the rest of the problem.

Honor Pledge

"In accordance with the Georgia Tech Honor Code, I have neither given nor received unauthorized aid on this test."

Sign your name on the line above

PHYS 2211

Do not write on this page!

Problem	Score	Grader
Problem 1 (25 pts)		
Problem 2 (25 pts)		
Problem 3 (25 pts)		
Problem 4 (25 pts)		

Problem 1 (25 Points) In an earlier lab you studied the motion of a fan cart, and you wrote a computer

model (VPython script) to predict a fancart's motion. The script given below, which is nearly identical to your computer model from lab, is missing a few lines of code. In the space provided in the body of the script, add the statements necessary to complete the code.

```
#********************************
from __future__ import division
from visual import *
cart = box(pos=vector(0.081,0,0), size=(.1,.04,.06), color=color.green)
mcart = .2395
vcart = vector(.375, 0, 0)
pcart = mcart*vcart
deltat = 0.01
t = 0
Fair = vector(-0.062, 0, 0)
while t < 5.01:
    rate(100)</pre>
```

(a 15pts) Add statements here to update the momentum and the position of the fancart.

t = t + deltat

#****** END COMPUTER MODEL OF FANCART************

Refer to the code above to answer the following four questions:
(b 2pts) What is the initial position of the fancart?
(c 2pts) What is the initial momentum of the fancart?
(d 3pts) What is the net force on the fancart?
(d 4pts) If you were to run this code, would you observe the virtual fancart speeding up, slowing down or
traveling at a constant velocity? Briefly state how you know this.

Problem 2 (25 Points)

In the following problems you will be asked to calculate the net gravitational force acting on the Moon. To do so, please use the following variables:

Mass	Initial Position
m_{sun} Mass of the Sun	$\vec{r}_{Sun} = <0,0,0>$ position of the Sun
m_{Earth} Mass of the Earth	$\vec{r}_{Earth} = \langle L, 0, 0 \rangle$ position of the Earth
m_{Moon} Mass of the Moon	$\vec{r}_{Moon} = \langle L, h, 0 \rangle$ position of the Moon

(a 10pts) Calculate the gravitational force on the Moon due to the Earth.

(b 10pts) C	alculate the gra	vitational force	on the Moon	due to the Sur	n.	
(c 5pts) Det	termine the net	gravitational fo	orce on the Mo	oon		
(c opis) Dei	ormine the net	Stavioanonal K	nee on the me	ю.		

Problem 3 (25 Points)

A wire made of an unknown alloy hangs from a support in the ceiling. You measure the relaxed length of the wire to be 1.6 m long, and the radius of the wire to be 0.00035 m. When you hang a 5 kg mass from the wire, you measure that it stretches a distance of 4×10^{-3} m. The average bond length between atoms is 2.3×10^{-10} m for this alloy.

(a 5pts) If you treat the wire as a macroscopic spring, what is the overall spring stiffness of the wire? Circle your answer below.

- A. 30.6 N/m
- B. 11.7 N/m
- C. $1.2 \times 10^4 \text{ N/m}$
- D. $5.1 \times 10^{10} \text{ N/m}$
- E. $2.1 \times 10^{11} \text{ N/m}$

(b 5pts) What is the value of Young's modulus for this alloy? Circle your answer below.

- A. $5.6 \times 10^7 \text{ N/m}^2$
- B. 11.7 N/m^2
- C. $1.2 \times 10^4 \text{ N/m}^2$
- D. $5.1 \times 10^{10} \text{ N/m}^2$
- E. $2.0 \times 10^{11} \text{ N/m}^2$

(c 5pts) What is the stiffness of a typical interatomic bond in the alloy?

- A. 23.4 N/m
- B. 11.7 N/m
- C. 3.4 N/m
- D. 5.9 N/m
- E. $1.2 \times 10^4 \text{ N/m}$

(d 5pts) You cut the wire into four pieces of equal length and hang a 5 kg mass from one of the wires. How much does this wire stretch? Circle your answer below.

- A. $4 \times 10^{-3} \text{ m}$ B. $2 \times 10^{-3} \text{ m}$ C. $1 \times 10^{-3} \text{ m}$

- D. $8 \times 10^{-3} \text{ m}$
- E. $1.6 \times 10^2 \text{ N/m}$

(e 5pts) You bundle (side by side) each of the four pieces of wire together and hang a 5 kg mass from the bundle. How much does this bundle of wires stretch? Circle your answer below.

- A. $4 \times 10^{-3} \text{ m}$
- B. $2.5 \times 10^{-4} \text{ m}$
- C. 4×10^{-6} m
- D. 2.5×10^{-5} m
- E. $1.6 \times 10^{-5} \text{ N/m}$

Two tugboats are pulling a salvaged ship off the beach at high tide. The first tugboat pulls with a constant force of \vec{F}_{tug} at an angle θ with the shoreline. The second tugboat pulls with an unknown constant force at an angle ϕ with the shoreline as indicated in the figure. Once both tugboats are pulling, the salvaged ship slowly slide off of the beach at a constant velocity. The beach sand, however, exerts a force on the salvaged ship as it is dragged off the beach. The magnitude of this force is unknown but by examining marks in the sand, you determine that the direction of this force is perpendicular to the shore line as seen in the figure. Determine the magnitude of \vec{F}_{sand} , the force of sand on the salvaged ship.

This page is for extra work, if needed.

Things you must have memorized

The Momentum Principle	The Energy Principle	The Angular Momentum Principle			
Definition of Momentum	Definition of Velocity	Definition of Angular Momentum			
Definitions of angular velocity, particle energy, kinetic energy, and work					

Other potentially useful relationships and quantities

$$\begin{split} \gamma &\equiv \frac{1}{\sqrt{1-\left(\frac{|\vec{v}|}{c}\right)^2}} \\ \frac{d\vec{p}}{dt} &= \frac{d|\vec{p}|}{dt} \hat{p} + |\vec{p}| \frac{d\hat{p}}{dt} \\ \vec{F}_{grav} &= -G \frac{m_1 m_2}{|\vec{r}|^2} \hat{r} \\ |\vec{F}_{grav}| &\approx mg \text{ near Earth's surface} \\ \vec{F}_{elec} &= \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}|^2} \hat{r} \\ |\vec{F}_{spring}| &= k_s s \\ U_i &\approx \frac{1}{2} k_{si} s^2 - E_M \\ K_{tot} &= K_{trans} + K_{rel} \\ K_{rot} &= \frac{L^2_{rot}}{2I} \\ \vec{F}_{man} &= \frac{L^2_{rot}}{2I} \\ \vec{F}_{rot} &= \frac{L^2_{rot}}{2I} \\ \vec{F}_{spring} &= \frac{L^2_$$

$$E_N = N\hbar\omega_0 + E_0$$
 where $N = 0, 1, 2...$ and $\omega_0 = \sqrt{\frac{k_{si}}{m_o}}$ (Quantized oscillator energy levels)

Moment of intertia for rotation about indicated axis

Constant	Symbol	Approximate Value
Speed of light	c	$3 \times 10^8 \text{ m/s}$
Gravitational constant	G	$6.7 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Approx. grav field near Earth's surface	g	$9.8 \mathrm{\ N/kg}$
Electron mass	m_e	$9 \times 10^{-31} \text{ kg}$
Proton mass	m_p	$1.7 \times 10^{-27} \text{ kg}$
Neutron mass	m_n	$1.7 \times 10^{-27} \text{ kg}$
Electric constant	$\frac{1}{4\pi\epsilon_0}$	$9\times 10^9~{\rm N}\cdot {\rm m}^2/{\rm C}^2$
Proton charge	e	$1.6 \times 10^{-19} \text{ C}$
Electron volt	1 eV	$1.6 \times 10^{-19} \text{ J}$
Avogadro's number	N_A	$6.02 \times 10^{23} \text{ atoms/mol}$
Plank's constant	h	6.6×10^{-34} joule · second
$hbar = \frac{h}{2\pi}$	\hbar	1.05×10^{-34} joule · second
specific heat capacity of water	C	$4.2 \mathrm{~J/g/K}$
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ J/K}$
milli m 1×10^{-3} micro μ 1×10^{-6} nano n 1×10^{-9} pico p 1×10^{-12}	$_{ m gi}$	lo K 1×10^3 lega M 1×10^6 ga G 1×10^9 era T 1×10^{12}