AVS.01.01.01: Análisis Metrológico de un Vehículo Eléctrico Compacto

Asignatura: Metrología

Unidad I: - Introducción a la Metrología

Introducción

En el contexto del **desarrollo de vehículos eléctricos**, la **metrología** juega un papel fundamental en el aseguramiento de la **calidad**, **precisión y seguridad** de todos los componentes y sistemas. La correcta aplicación de **sistemas de unidades**, **conversiones de magnitudes** y el uso de **múltiplos y submúltiplos** es esencial para garantizar que las especificaciones técnicas cumplan con los **estándares internacionales** de la industria automotriz.

El presente caso de estudio permite al estudiante aplicar los conceptos fundamentales de metrología en un escenario real de la industria automotriz, donde deberá resolver problemas prácticos relacionados con conversiones de unidades, análisis de especificaciones técnicas y toma de decisiones basadas en mediciones precisas para el desarrollo de un vehículo eléctrico compacto.

Objetivo General

Aplicar los conceptos fundamentales de metrología incluyendo sistemas de unidades, múltiplos, submúltiplos y conversiones en el análisis de especificaciones técnicas de un vehículo eléctrico compacto, para garantizar la precisión y calidad en los procesos de diseño y fabricación, cumpliendo con los estándares de la industria automotriz.

Actividad Previa al Desarrollo del Caso

Antes de desarrollar el caso de estudio, revisa el **material teórico** proporcionado y contesta el siguiente **cuestionario**. Esto te ayudará a contextualizar los conceptos y a aprovechar mejor el análisis del caso.

- 1. ¿Qué es la metrología y por qué es fundamental en la industria automotriz?
- 2. Menciona las 7 magnitudes fundamentales del Sistema Internacional de Unidades (SI) y su aplicación en vehículos eléctricos.
- 3. Explique la diferencia entre precisión y exactitud en las mediciones, dando un ejemplo automotriz.
- 4. ¿Por qué es importante el uso correcto de múltiplos y submúltiplos en las especificaciones técnicas automotrices?
- 5. Mencione tres errores comunes en conversiones de unidades que podrían afectar la seguridad de un vehículo.

Descripción del Caso de Estudio

Escenario

Tu equipo de ingeniería ha sido contratado por "**EcoMotion México**", una startup mexicana especializada en el desarrollo de vehículos eléctricos urbanos. La empresa está desarrollando su primer modelo: el "**UrbanE**", un vehículo eléctrico compacto diseñado para la movilidad urbana sostenible en ciudades mexicanas.

Situación Problemática

Durante la fase de diseño y especificación técnica del UrbanE, el equipo de ingeniería ha recibido información técnica de múltiples proveedores internacionales que utilizan diferentes sistemas de unidades. Además, se han detectado inconsistencias en las especificaciones que podrían comprometer la seguridad, eficiencia y cumplimiento normativo del vehículo.

Información Técnica Disponible

Especificaciones del Motor Eléctrico (Proveedor Alemán)

Característica	Valor
Potencia máxima	75 kW
Torque máximo	200 N ⋅ m
Velocidad máxima	$8,500{\rm rpm}$
Eficiencia	94%
Peso	45 kg

Especificaciones de la Batería (Proveedor Chino)

Característica	Valor
Capacidad	40 kWh
Voltaje nominal	400 V
Corriente máxima	150 A
Peso	280 kg
Dimensiones	$1,200\mathrm{mm} \times 800\mathrm{mm} \times 150\mathrm{mm}$

Especificaciones del Chasis (Proveedor Estadounidense)

Característica	Valor
Longitud total	12,5 ft
Ancho	5,8 ft
Altura	5,2 ft
Distancia entre ejes	8,2 ft
Peso estructura	1,200 lbs
Capacidad de carga	800 lbs

Especificaciones de Neumáticos (Proveedor Europeo)

Característica	Valor
Medida	185/65 R15
Presión recomendada	2,2 bar
Carga máxima por neumático	475 kg
Velocidad máxima	180 km/h

Requerimientos del Cliente

Requerimiento	Valor
Velocidad máxima del vehículo	120 km/h
Autonomía mínima	300 km
Capacidad de pasajeros	4 personas (70 kg promedio c/u)
Tiempo de carga	máximo 6 horas (carga estándar)
Cumplimiento normativo	NOM-194-SCFI

Desarrollo del Caso de Estudio

Fase 1: Análisis y Conversión de Unidades (40 puntos)

1.1 Conversión de Especificaciones del Chasis

Convierte todas las medidas del chasis del sistema imperial al Sistema Internacional (SI):

- 1. **Dimensiones principales** (longitud, ancho, altura, distancia entre ejes) en metros (m).
- 2. **Pesos** (estructura y capacidad de carga) en kilogramos (kg).
- 3. Crea una tabla comparativa con las medidas originales y convertidas.

1.2 Análisis de Compatibilidad de Neumáticos

Analiza la compatibilidad de los neumáticos con las especificaciones del vehículo:

- 1. Convierte la **presión recomendada** de bar a Pascales (Pa) y libras por pulgada cuadrada (psi).
- 2. Verifica si la carga máxima por neumático es suficiente para el peso total del vehículo.
- 3. Compara la velocidad máxima del neumático con los requerimientos del cliente.

Fase 2: Cálculos de Rendimiento y Eficiencia (40 puntos)

2.1 Análisis Energético

Realiza los siguientes cálculos energéticos:

- 1. Densidad energética de la batería (Wh/kg).
- 2. Consumo energético estimado por kilómetro (kWh/100km).
- 3. Autonomía teórica basada en la capacidad de la batería.
- 4. **Tiempo de carga** a diferentes potencias: 3,3 kW, 7,4 kW, 22 kW.

2.2 Análisis de Potencia y Torque

Calcula y analiza:

- 1. Potencia específica del motor (kW/kg).
- 2. Relación potencia/masa del vehículo completo.
- 3. Torque en las ruedas considerando una reducción típica de 9:1.
- 4. **Análisis de Desempeño Teórico:** Con base en la relación potencia/masa calculada, investigue si el valor se encuentra dentro del rango típico para vehículos eléctricos compactos de uso urbano. Justifique su respuesta.

Fase 3: Identificación y Resolución de Problemas (10 puntos)

3.1 Detección de Inconsistencias

Identifica y analiza posibles problemas:

- 1. **Incompatibilidades** entre especificaciones de diferentes proveedores.
- 2. Errores potenciales en conversiones de unidades.
- 3. Riesgos de seguridad derivados de especificaciones incorrectas.

3.2 Propuestas de Solución

Desarrolla soluciones técnicas:

- 1. **Recomendaciones** para resolver inconsistencias encontradas.
- 2. Especificaciones corregidas para proveedores.
- 3. Protocolo de verificación metrológica para futuros proyectos.

Fase 4: Síntesis y Recomendaciones (10 puntos)

4.1 Informe Ejecutivo

Elabora un resumen ejecutivo que incluya:

- 1. Viabilidad técnica del proyecto UrbanE.
- 2. Principales hallazgos del análisis metrológico.
- 3. Recomendaciones estratégicas para la empresa EcoMotion México.

Hoja de Trabajo (Sugerida)

A continuación, se presenta una tabla sugerida para organizar los resultados obtenidos en cada fase del caso de estudio. Utilizarla facilitará la estructuración de su reporte.

Fase 1: Análisis y Conversión de Unidades

Concepto	Valor Original	Resultado (SI)	Unidades
Longitud total del chasis	12,5 ft		m
Ancho del chasis	5,8 ft		m
Altura del chasis	5,2 ft		m
Distancia entre ejes	8,2 ft		m
Peso de la estructura	1,200 lbs		kg
Capacidad de carga	800 lbs		kg
Presión de neumáticos	2,2 bar		Pa
Presión de neumáticos	$2,2\mathrm{bar}$		psi

Análisis de Compatibilidad de Neumáticos:

¿La carga máxima por neumático es suficiente? (Sí/No y justificación)

¿La velocidad máxima del neumático es adecuada? (Sí/No y justificación)

Fase 2: Cálculos de Rendimiento y Eficiencia

Cálculo Realizado	Resultado	Unidades
Densidad energética de la batería		Wh/kg
Consumo energético estimado		kWh/100km
Autonomía teórica		km
Tiempo de carga (3.3 kW)		horas
Tiempo de carga (7.4 kW)		horas
Tiempo de carga (22 kW)		horas
Potencia específica del motor		kW/kg
Relación potencia/masa		W/kg
Torque en las ruedas		N m

Análisis de Desempeño Teórico:

Con base en la relación potencia/masa, ¿el valor es típico para un vehículo urbano? Justifique.

Fase 3 y 4: Análisis y Recomendaciones

3.1 Incompatibilidades y Riesgos Detectados

Enumere y describa las incompatibilidades o riesgos encontrados.

3.2 Propuestas de Solución

Describa las recomendaciones técnicas para resolver las inconsistencias.

4.1 Informe Ejecutivo

Redacte aquí el resumen ejecutivo con la viabilidad, hallazgos y recomendaciones.

Forma de Entrega del Trabajo

El estudiante deberá entregar un único archivo en formato PDF ('.pdf') que corresponde al reporte técnico del caso de estudio. El documento debe ser claro, ordenado y contener los siguientes elementos:

1. Datos Generales (Portada)

- Nombre completo del estudiante y matrícula.
- Asignatura: Metrología.
- Nombre de la actividad: 'AVS.01.01.01: Análisis Metrológico de un Vehículo Eléctrico Compacto'.
- Nombre del docente.
- Fecha de elaboración.

2. Cuestionario Previo

Respuestas claras y bien fundamentadas a las 5 preguntas de la sección "ACTIVIDAD PREVIA AL DESARROLLO DEL CASO".

3. Desarrollo del Caso de Estudio

- Fase 1: Análisis y Conversión de Unidades.
- Fase 2: Cálculos de Rendimiento y Eficiencia.
- Fase 3: Identificación y Resolución de Problemas.
- Fase 4: Síntesis y Recomendaciones.

4. Conclusiones y Bibliografía

- Conclusiones: Reflexión personal y técnica sobre la importancia de la metrología en el proyecto (mínimo 5 renglones).
- Bibliografía: Incluir al menos dos fuentes de consulta en formato APA.

Recursos de Apoyo

Tablas de Conversión Requeridas

- Sistema Imperial a Sistema Internacional
- Múltiplos y submúltiplos del SI
- Conversiones energéticas (kWh, J, cal)
- Conversiones de presión (bar, Pa, psi)

Fórmulas Básicas

■ Densidad energética: *E/m* (Wh/kg)

■ Potencia específica: P/m (kW/kg)

 \blacksquare Eficiencia: (Energía útil/Energía total) $\times\,100\,\%$

Autonomía teórica: Capacidad batería / Consumo promedio

Referencias Técnicas Sugeridas

- Normas mexicanas NOM aplicables a vehículos eléctricos
- Estándares internacionales ISO para metrología automotriz
- Especificaciones técnicas de vehículos eléctricos comerciales