目 录

— ,	实验要求:	.2
	实验步骤:	.2
	1.ROM 介绍	.2
	2 生成波形数据文件	
	3.QuartusII 配置 ROM 核	
	4.项层设计文件框图	
三、	DE0 外接引脚说明	.8

FPGA的 ROM(IP核)使用

一、实验要求:

调用 Quartus II 自带的 IP 核,生成 ROM,并设置 ROM 存储的数值,配置数据位宽为 8 位的 ROM,并在 ROM 中存储 256 个地址的正弦波数据,利用计数器(如 74161 等)或硬件描述语言生成的计数模块的输出依次扫描 ROM 的地址端,将 ROM 中保存的数据按照 1HZ 的频率输出,通过 DE0 开发板上的 8 位 LED 灯查看结果并验证。

二、实验步骤:

1. ROM 介绍

ROM(Read Only Memory)只读存储器,这种存储器(Memory)的内容任何情况下都不会改变,电脑与用户只能读取保存在这里的指令,和使用存储在 ROM 的资料,但不能变更或存入资料。ROM 被存储在一个非易失性芯片上,也就是说,即使在关机之后记忆的内容仍可以被保存,所以这种存储器多用来存储特定功能的程序。

2 生成波形数据文件

生成 MIF 文件的方法有三种:

2.1 利用 Quartus II 自带的 mif 编辑器

A)新建MIF文件,MIF文件是在编译和仿真过程中作为存储器(ROM或RAM)初始化输入的文件。

B) 选择数据字数和位宽

P Number of Words & Word Size	X
Number of words:	256
Word size:	8
OK Cancel	Help

C) 编辑每个地址上要存储的数据

Addr	+0	+1	+2	+3	+4	+5	+6	+7	ASCII
0	1	2	3	4	0	0	0	0	
8	0	0	0	0	5	0	0	0	
16	0	0	0	0	7	0	0	0	
24	0	0	0	0	0	0	0	0	

- 2.2 利用 MIF 软件(WaveToMif_V1.0.exe) 来生成
- A) 选择数据位宽、深度、倍频和波形类型

B) 单击生成文件框中的一键生成, 保存 MIF 文件

2.3 利用 Matlab 高级语言生成

```
width=8; %宽度:
depth=256; %深度:
index = linspace(0,2*pi,depth);
sin_value = sin(index);
sin_value = sin_value * (2^(width-1) -1 )+2^(width-1);
sin_value = fix(sin_value);
sin_value =abs(sin_value);
```

Matlab 生成 MIF 文件

- 3. QUARTUSII 配置 ROM 核
- 3.1 找到 ROM-1PORT, 并创建 rom 文件:

3.2 配置 ROM 空间的位宽和字长:

3.3 找到 mif 波形文件路径:

4. 顶层设计文件框图

4.1 原理框图

4.2 顶层电路原理图

4.3 波形仿真结果

三、DEO 外接引脚说明

按钮开关与 Cyclone III FPGA 的连接按钮开关的引脚分配

信号名	FPGA 引脚号	说明
BUTTON [0]	PIN_ H2	Pushbutton[0]
BUTTON [1]	PIN_ G3	Pushbutton[1]
BUTTON [2]	PIN_ F1	Pushbutton[2]

拨动开关与 CycloneIII FPGA 的连接 拨动开关的引脚分配

信号名	FPGA 引脚号.	说明
SW[0]	PIN_J6	Slide Switch[0]
SW[1]	PIN_H5	Slide Switch[1]
SW[2]	PIN_H6	Slide Switch[2]
SW[3]	PIN_G4	Slide Switch[3]
SW[4]	PIN_G5	Slide Switch[4]

SW[5]	PIN_J7	Slide Switch[5]
SW[6]	PIN_H7	Slide Switch[6]
SW[7]	PIN_E3	Slide Switch[7]
SW[8]	PIN_E4	Slide Switch[8]
SW[9]	PIN_D2	Slide Switch[9]

LED 灯与 Cyclone III FPGA 的连接

LED 灯的引脚分配

信号名	FPGA 引脚 号	说明
LEDG[0]	PIN_J1	LED Green[0]

LEDG[1]	PIN_J2	LED Green[1]
LEDG[2]	PIN_J3	LED Green[2]
LEDG[3]	PIN_H1	LED Green[3]
LEDG[4]	PIN_F2	LED Green[4]
LEDG[5]	PIN_E1	LED Green[5]
LEDG[6]	PIN_C1	LED Green[6]
LEDG[7]	PIN_C2	LED Green[7]
LEDG[8]	PIN_B2	LED Green[8]
LEDG[9]	PIN_B1	LED Green[9]

时钟分配电路的方块图

时钟输入的引脚分配

信号名	FPGA 引脚 号 .	说明
CLOCK_50	PIN_G21	50 MHz clock input