

KARATINA UNIVERSITY UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

FOURTH YEAR **FIRST** SEMESTER SUPPLEMENTARY/SPECIAL EXAMINATION

FOR THE DEGREE OF:

BACHELOR OF EDUCATION (E101)

BACHELOR OF SCIENCE (P102 & P106)

COURSE CODE: MAT 412

COURSE TITLE: MEASURE THEORY

DATE: 16TH JULY, 2024 TIME: 3:00PM-5:00PM

INSTRUCTIONS TO CANDIDATES

• SEE INSIDE

<u>INSTRUCTIONS:</u> Answer <u>all</u> questions in SECTION A and any other <u>TWO</u> in SECTION B

SECTION A (30 MARKS)

QUESTION ONE (30 MARKS)

- a) Define the Lebesque measure m and the Borel measure m_{β} on the real line. What are the relations between m^* , m and m_{β} . (4 marks)
- b) Show that the Borel measure m_{β} is not complete (4 marks)
- c) Let $A \subseteq B \subseteq \mathbb{R}$, show that $m^*(A) \le m^*(B)$ (3 marks)
- d) When do we say a function is measurable? Give an example of a measurable function. (3 marks)
- e) Explain the "almost everywhere" concept on measure space (X, S, μ) . (2 marks)
- f) If $E \in m$ and $F \subseteq \mathbb{R}'$, show that $m^*(E \cap F) + m^*(E \cup F) = m^*(E) + m^*(F)$ (5 marks)
- g) Let (X, S) be a measurable space and u_1, u_2, \dots, u_k be a measure on (X, S), where a_1, a_2, \dots, a_k are non-negative reals. Show that the set function $\lambda: S \to \mathbb{R}'_e$, defined by $\lambda = a_1u_1 + a_2u_2 + \dots + a_ku_k$ is a measure on (X, S). (4 marks)
- h) Show that if (X, S, μ) is a measure space and f_n a sequence of elements in $m^+(X, S)$ then $\int (\lim_{n \to \infty} f_n) d\mu \le \lim_{n \to \infty} \int f_n d\mu$. (5 marks)

SECTION B (40 MARKS)

QUESTION TWO (20 MARKS)

- a) Show that outer lebesque measure is countably sub additive (9 marks)
- b) Let (X, S) be a measurable space and $f: X \to \mathbb{R}'$ be a function, show that the following statements are equivalent.
 - (i) $f^{-1}(B) \in S$ for each $B \in B(\mathbb{R}')$ (2 marks)
 - (ii) $f^{-1}((a, \infty)) \in S$ for each $a \in \mathbb{R}'$ (3 marks)
 - (iii) $f^{-1}([a, \infty)) \in S$ for each $a \in \mathbb{R}'$ (2 marks)

(iv) $f^{-1}((\infty, a)) \in S$ for each $a \in \mathbb{R}'$ (2 marks)

(v) $f^{-1}((\infty, a]) \in S$ for each $a \in \mathbb{R}'$ (2 marks)

QUESTION THREE (20 MARKS)

a) Let (X, S) be a measurable space and $f: X \to \mathbb{R}'$ be S measurable, show that the functions c + f, c. f, |f|, and f^2 are all S measurable. Here c is a real number.

(8 marks)

b) Suppose A and B are subsets \mathbb{R} with $m^*(A) = 0$, show that $m^*(A \cup B) = m^*(B)$

(6 marks)

c) Let (X, S, μ) be a measure space, show that μ is countably sub additive (6 marks)

QUESTION FOUR (20 MARKS)

- a) Define a simple function. Write down the canonical representation of the function $S = 2\chi_{[0,2]} + 3\chi_{[1,3]}$. (5 marks)
- b) Let (X, S, μ) be a measure space and A a fixed member of S. Define a set function $\lambda: S \to \mathbb{R}'_e$ by $\lambda(E) = \mu(E \cap A)$ for each $E \in S$.
 - (i) Show that λ is a measure. (8 marks)
 - (ii) If μ is δ finite what can we say about λ . (5 marks)
- c) Show that $m^*(\emptyset) = 0$ (2 marks)

QUESTION FIVE (20 MARKS)

- a) Show that if $f \in m(X,S)$ then f is integrable iff |f| is integrable (5 marks)
- b) If A and B are subsets of \mathbb{R} with finite outer measure show that $|m^*(A) m^*(B)| \le m^*(A \Delta B). \tag{7 marks}$
- c) Show that $f(x) = \begin{cases} 1 & \text{if } x \text{ irrational} \\ 0 & \text{if } x \text{ rational} \end{cases}$ is lebesque integrable but not Riemann integrable. (5 marks)
- d) Consider the measure space $(\mathbb{R}, B(\mathbb{R}), m)$ and a function f defined by
- $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R} \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{Q} \end{cases} \text{ Does } f(x) \text{ hold } m-almost everywhere on } \mathbb{R} \text{ .} \quad (3 \text{ marks})$