DST - Final Project

Ziqiu Zhou (**YOUR MATRIKELNUMBER**), Christoph Bender (**4012810**)
February 26, 2022

1 Summary LSTM [2]

The invention of LSTM was motivated by the regularization of recurrent neural networks (RNNs). In addition to inputs $i_t \in \mathbb{R}^{d_i}$, RNNs use also loops in order to include informations from previous hidden states $h_{t'}$ (where t' < t) in the calculation of the current state $h_t \in \mathbb{R}^{d_h}$ at time t. The Elman network [1] is for example defined by ¹: However

RNNs struggle to recognize long-term dependencies and furthermore the gradient can vanish or explode, which also leads to problems. Because of this one uses gates. The corresponding model is called LSTM (Long Short-Term Memory). This is characterised by the following formula:

$$g^{f} = \sigma_{f}(\boldsymbol{W}_{f} \cdot [\boldsymbol{h}_{t-1}, \boldsymbol{i}_{t}] + \boldsymbol{b}_{f}) \qquad g^{i}_{t} = \sigma_{i}(\boldsymbol{W}_{i} \cdot [\boldsymbol{h}_{t-1}, \boldsymbol{i}_{t}] + \boldsymbol{b}_{i})$$

$$\tilde{\boldsymbol{C}}_{t} = \tanh(\boldsymbol{W}_{C} \cdot [\boldsymbol{h}_{t-1}, \boldsymbol{i}_{t}] + \boldsymbol{b}_{C}) \qquad \boldsymbol{C}_{t} = \boldsymbol{g}^{f}_{t} \cdot \boldsymbol{C}_{t-1} + \boldsymbol{g}^{i}_{t} \cdot \tilde{\boldsymbol{C}}_{t}$$

$$g^{o}_{t} = \sigma_{h}(\boldsymbol{W}_{h} \cdot [\boldsymbol{h}_{t-1}, \boldsymbol{i}_{t}] + \boldsymbol{b}_{h}) \qquad \boldsymbol{h}_{t} = \boldsymbol{g}^{o}_{t} \cdot \tanh(\boldsymbol{C}_{t})$$
(3)

Whereby $g_{\bullet} \in \mathbb{R}^{d_h \times (d_h + d_i)}$ represents the gate signal and $C_t \in \mathbb{R}^{d_h}$ the so-called cell state, which is jointly with the hidden state referred as "LSTM states". To map the hidden state to the wanted output space one also uses an additional fully connected layer W_{oh} :

$$o_t = W_{oh} \cdot h_t = f^w(z_t, h_{t-1}, C_{t-1}) \approx F^w(z_t, z_{t-1}, \dots, z_{t-d+1})^{-3}$$
 (4)

The so-called LSTM cell-function f^w can be rewritten by iterative repition as F^w , where w includes all trainable parameters. In the last step one uses the assumption that d-time steps are sufficient to compute the current output and thus h_{t-d} , C_{t-d} can be omitted. Goal of the LSTM is to predict the state derivative \dot{z}_t using a short time memory of the d previous states $z_{t:t-d+1}$. Therefore, the loss \mathcal{L} shall be minimized by searching for the best parameters w^* :

$$w^* = \arg\min_{w} \mathcal{L}(\{\boldsymbol{z}_{1:T}, \dot{\boldsymbol{z}}_{1:T}\}, w) = \arg\min_{w} \frac{1}{T - d + 1} \sum_{t=d}^{T} ||F^w(\boldsymbol{z}_{t:t-d+1}) - \dot{\boldsymbol{z}}_t||^2$$
 (5)

¹see also https://en.wikipedia.org/wiki/Recurrent_neural_network#Elman_networks_and_ Jordan_networks

²where σ_{\bullet} are activation functions, $W_{*\bullet}$ weight matrices and b_{\bullet} bias summands.

³where in the following z_t is used as the input and describes the system time series.

2 Results

What do you think about the idea to shortly present the results of task 3 here, i.e. saying the sigma and the cutoff frequency and maybe some training graphics ...

2.1 Lorenz63

2.2 Lorenz96

References

- [1] Jeffrey L. Elman. "Finding Structure in Time". In: Cognitive Science 14.2 (1990), pp. 179-211. DOI: https://doi.org/10.1207/s15516709cog1402_1. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1. URL: https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1.
- [2] Pantelis R. Vlachas et al. "Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks". In: *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 474.2213 (2018), p. 20170844. DOI: 10.1098/rspa.2017.0844. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0844. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0844.