Problem Set 13, Tips

Vikram Damani Analysis I

13. Dezember 2024

Aufgaben in rot markiert, Tipps & Tricks in blau.

Tipps & Tricks zu 1.

(Definitionen und Sätze aus den Tipps & Tricks für Serie 5:)

Definition [Extremalstellen]. Eine Funktion f(x) hat eine Extremalstelle an der Stelle x_0 , falls $f'(x_0) = 0$.

Definition [Höhere Ableitungen]. Sei $f : \mathcal{D}(f) \to \mathbb{R}$ diff'bar. Dann ist

$$\frac{d}{dx}f = f': \mathcal{D}(f) \to \mathbb{R} \tag{1}$$

die erste Ableitung. Falls f' diff'bar, ist die zweite Ableitung:

$$\frac{d^2}{dx^2}f = (f')' : \mathcal{D}(f') \to \mathbb{R}$$
 (2)

Allgemein, ist die n-te Ableitung von f(x) ist definiert als:

$$f^{(n)}(x) = \frac{d^n}{dx^n} f(x) = \underbrace{\frac{d}{dx} (\frac{d}{dx} (\dots \frac{d}{dx} f(x)))}_{\text{n mal}}, \quad x \in \mathcal{D}(f^{(n)})$$

wobei $f^{(0)} = f$.

Definition [Maxima und Minima mit höheren Ableitungen]. Sei f(x) eine Funktion, die in x_0 mindestens zweimal differenzierbar ist. Falls $f'(x_0) = 0$ und $f''(x_0) > 0$, dann hat f(x) in x_0 ein lokales Minimum. Falls $f'(x_0) = 0$ und $f''(x_0) < 0$, dann hat f(x) in x_0 ein lokales Maximum.

Achtung: Am Rand des Definitionsbereiches sind Ableitungen nicht definiert. Es kann dort dennoch lokale Maximal- oder Minimalstellen geben!

Definition [Konkavität und Konvexität]. Eine Funktion ist in eimem Intervall I konvex, falls sie oberhalb ihrer Tangente liegt. Anders gesagt, eine Funktion ist in einem Intervall I konvex, falls für alle $x_1, x_2 \in I$, die Gerade durch $(x_1, f(x_1))$ und $(x_2, f(x_2))$ oberhalb der Funktion liegt.

Wir nennen eine Funktion konvex, falls sie im ganzen Definitionsbereich konvex ist.

Die Funktion $f(x) = x^2$ ist ein Beispiel für eine konvexe Funktion.

(A) Ein Beispiel für eine konvexe Funktion.

(B) Ein Beispiel für eine konkave Funktion.

Abbildung 1: Beispiele.

Eine Funktion ist in einem Intervall I konkav, falls sie unterhalb ihrer Tangente liegt, oder äquivalent, falls für alle $x_1, x_2 \in I$, die Gerade durch $(x_1, f(x_1))$ und $(x_2, f(x_2))$ unterhalb der Funktion liegt.

Wir nennen eine Funktion konkav, falls sie im ganzen Definitionsbereich konkav ist.

Die Funktion $f(x) = -x^2$ ist ein Beispiel für eine konkave Funktion. Die Funktion f(x) = -x + 1 ist ein Beispiel für eine konvexe Funktion.

Wir können auch die zweite Ableitung verwenden, um Konvexität und Konkavität zu bestimmen.

$$f''(x) > 0 \Rightarrow f(x)$$
 ist konvex in I
 $f''(x) < 0 \Rightarrow f(x)$ ist konkav in I

Eine Funktion ist in einem Intervall I konvex, falls f''(x) > 0 für alle $x \in I$. Eine Funktion ist in einem Intervall I konkav, falls f''(x) < 0 für alle $x \in I$.

Etwas mathematischer: Eine Funktion f(x) ist in einem Intervall I konvex, falls für alle $x_1, x_2 \in I$ und $0 \le \lambda \le 1$ gilt:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{3}$$

Eine Funktion f(x) ist in einem Intervall I konkav, falls für alle $x_1, x_2 \in I$ und $0 \le \lambda \le 1$ gilt:

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{4}$$

Die funktionen $l(\lambda) = \lambda x_1 + (1 - \lambda)x_2$ sind lineare Interpolationen (also Geraden) durch x_1 und x_2 .

Definition [Wendepunkte]. Eine Funktion f(x) hat einen Wendepunkt an der Stelle x_0 , falls $f''(x_0) = 0$ und f''(x) das Vorzeichen wechselt.

Bemerkung [Wendepunkte und Sattelpunkte]. Bei einem Sattelpunkt gilt zusatzlich $f'(x_0) = 0$.

Theorie zu 2 & 3.

Definition [Ebene Kurven]. Ebene Kurven sind "eindimensionale" Teilmengen des \mathbb{R}^2 .

Eine Kurve C ist eine Menge von Punkten (x, y), die auf verschiedene Weisen beschrieben werden können:

- 1. Parametrisierung: $C = \{(x(t), y(t)) \mid t \in I \subseteq \mathbb{R}\}$, wobei x(t) und y(t) Funktionen sind, die t auf x und y abbilden.
- 2. Implizite Darstellung: $C = \{(x, y) \mid F(x, y) = 0\}$, wobei F(x, y) eine Funktion von x und y ist.
- 3. Explizite Darstellung: $C=\{(x,y)\subset\mathbb{R}^2\}$. y lässt sich dann anhand (mehrerer) Funktionen von x ausdrücken.

Zum Beispiel:

$$C = \{(x, y) \mid y = \pm \sqrt{1 - x^2}\},$$
 ein Kreis mit Radius 1.

Bemerkung [Von Parametrisierung zu impliziten Darstellung]. Um von einer Parametrisierung zu einer impliziten Darstellung zu kommen, muss man in den Parametrisierungen x(t) und y(t) t eliminieren. Dazu kann man z.B. die Umkehrfunktion t(x) bestimmen und in y(t) einsetzen.