2.1 最小全域木

を加える.

驚くべきことに、シンプルなアルゴリズムによって最小全域木を発見できる。ここでは貪欲法(greedy algorithm)に基づいた、各ステップで最もコストの低い選択をするアルゴリズムを2つ紹介する。

Kruskal 法の概要

G の全域森 H=(V,F) を,最初は $F=\emptyset$ として保存する. 各ステップにおいて,森であることを保つようなコスト最小の枝 $e \notin F$

H が全域木となったら止める.

この方法は 1956 年に Kruskal によって述べられた. 次のアルゴリズムは Prim 法として知られている.

Prim 法の概要

木 H = (V(H), T) を、最初は V の元として何らかの頂点 r を取って $V(H) = \{r\}, T = \emptyset$ として保存する.

各ステップにおいて、H が木であることを保つようなコスト最小の枝 $e \notin T$ を T へ加える.

H が全域木となったら止める.

まずはこれらのアルゴリズムが最小全域木を見つけることを示す. その後に、これらを効率化できることについて書く.

MST アルゴリズムの正当性

正当性を示す前に、いくつかの準備をする.

定義 2.1 連結性に関する基本的な記号

G = (V, E) とし、A を V の部分集合とする。 $\delta(A), \gamma(A)$ を

$$\delta(A) := \{vw \in E | v \in A, w \notin A\}$$
$$\gamma(A) := \{vw \in E | v, w \in A\}$$

と定義する. $\delta(A)$ を G のカット (cut) という

定理 2.3

グラフG = (V, E)について、次が成立する.

G が連結である \Leftrightarrow $\emptyset \neq A \neq V$ かつ $\delta(A) = \emptyset$ となるような V の部分集合 A が存在しない

証明

(⇒) について

対偶を示す. 仮に $\emptyset \subsetneq A \subsetneq V$ かつ $\delta(A) = \emptyset$ となるような A が存在したとすると, $v \in A$ から $w \notin A$ への路が存在せず, G が連結でないとわかる.

(**⇐**) について

対偶を示す. G は非連結なので $u,v \in V$ を u から v への路が存在しないように取れる. $A := \{w \in V | u$ から w への路が存在する $\}$ とすると、 $u \in A, v \notin A$ より $\emptyset \subsetneq A \subsetneq V$ である. さらに $\delta(A) \neq \emptyset$ と仮定すると、 $pq \in E$ を $p \in A, q \notin A$ となるように取れるが、p への路に pq を追加することで u から q への路が作れてしまい $q \in A$ となり矛盾する. よって $\delta(A) = \emptyset$ とわかる. 以上より条件をみたす A が存在する.

定義 2.2

G = (V, E), $A \subseteq E$ とする. A が G のある最小全域木の枝集合の部分集合であるとき, A を最小全域木へ拡張できる(extendible)という.

定義 2.3 連結成分 (component)

グラフ G=(V,E) と $v\in V$ について, $C_v:=\{w\in V|w$ から v への路が存在する $\}$ と定義する.また,G の部分グラフ H がある $v\in V$ を使って $H=G[C_v]$ と表せるとき,H を G の連結成分という.

補題 2.7

H=(V,T) を G の全域木とし, $e=vw\in G\setminus H$ とする.また, $f\in T$ を T 上の v から w への初等的な路 P に現れる枝とする.このとき, $H'=(V,(T\cup\{e\})\setminus\{f\})$ は G の全域木.

証明

 $P=v,...,v_f,f,w_f,...,w$ とする. 任意に $a,b\in V$ を取ると, T 上の a から b への路 W が存在する. ここで, W に現れた v_f,f,w_f の部分を $v_f,...,v,e,w,...,w_f$ に置き換えることで H' 上の路へと変形できる. よって, H' は連結であり, 補題 2.2 より G の全域木とわかる.

定理 2.4

 $B\subseteq E$ は G=(V,E) の最小全域木へ拡張できるとする.また,D を G のあるカットで $B\cap D=\emptyset$ をみたすものとし,e を D のコスト最小の枝とする.このとき, $B\cup\{e\}$ は最小全域木へ拡張できる.

証明

H=(V,T) を $B\subseteq T$ をみたす G の最小全域木とする. $e\in T$ のときは明らかなので, $e\notin T$ のときを考える. $e=vw,(v,w\in V)$ とし,P を H 上の v から w への初等的な路とする. D がカットであることから $G\setminus D$ に含まれるような v から w への路は存在しないので,P はある $f\in D$ を含

む. $c_f \geq c_e$ と補題 2.7 より、 $(V,(T \cup \{e\}) \setminus \{f\})$ もまた最小全域木である. $D \cap B = \emptyset$ から $f \notin B$ であり, $B \cup \{e\}$ は最小全域木へ拡張できるとわかる.

定理 2.5

任意の連結グラフGと枝のコストcに対して,Prim法は最小全域木を見つける.

証明

まず,各ステップで $\delta(V(H))=\{f\in E\mid f\in H \ \text{に追加したときに木であることを保つ}\}$ が成立する.これは,補題 2.1 より H へ追加して閉路ができる枝は両方の端点が H に含まれる枝であり,さらに定理 2.3 から,H へ追加して非連結となる枝は両方の端点が H に含まれない枝であることから従う.よって,各ステップでは $\delta(V(H))$ の中でコスト最小の枝が選ばれる.そして G が連結であることと定理 2.3 より $\delta(V(H))$ は H が G の全域木となるまで空集合にならないので,H は全域木となってこのアルゴリズムが停止するとわかる.さらに,空集合は最小全域木へと拡張できることと,各ステップにおいて $B=T,D=\delta(V(H))$ として定理 2.4 を適用した結果から,数学的帰納法により E(H) が常に最小全域木へ拡張できるとわかる.よって,Prim 法は最小全域木を見つける.

定理 2.6

任意の連結グラフGと枝のコストcに対して,Kruskal法は最小全域木を見つける.

証明

まず, $S_1,...,S_k$ をあるステップでの H の各連結成分の頂点集合とする. 補題 2.1 より,追加される枝としては $\bigcup_{i=1}^k \delta(S_i)$ の中でコストが最小の枝 MINIMUM SPANNING TREES

が選ばれると分かる。H が全域木でなくて,なおかつ $\bigcup_{i=1}^{n} \delta(S_i) = \emptyset$ となると仮定すると, $\delta(S_i) = \emptyset$, $\emptyset \subsetneq S_i \subsetneq V$ となり,定理 2.3 より G が連結であることに矛盾する。よって,H は全域木となってこのアルゴリズムは停止する。また,空集合は最小全域木へ拡張できる。そして,あるステップで E(H) に追加される枝 e の端点が $\delta(S_i)$ に含まれているとすると,B = E(H) , $D = \delta(S_i)$ として定理 2.5 を適用できて, $E(H) \cup \{e\}$ も最小全域木へ拡張できるとわかる。以上から,数学的帰納法より Kruskal 法は最小全域木を見つける。

MST アルゴリズムの効率性