Chapter 8: Basic Cryptography

- Classical Cryptography
- Public Key Cryptography
- Cryptographic Checksums

What is a Recommended Public Key Encryption Algorithm?

- A. SHA-1
- B. RSA
- C. AES
- D. MD5
- E. None of the above

10/4/2017 Slide #8-2

Overview

- Cryptosystem
- Classical (symmetric) Cryptography
 - Rail-Fence Cipher
 - Cæsar cipher
 - DES
 - AES
- Public Key (asymmetric) Cryptography
 - RSA
- Cryptographic Checksums

General Cipher Model

10/4/2017 Slide #8-4

Cryptosystem

- Quintuple $(\mathcal{E}, \mathcal{D}, \mathcal{M}, \mathcal{K}, C)$
 - \mathcal{M} set of plaintexts
 - \mathcal{K} set of keys
 - C set of ciphertexts
 - \mathcal{E} set of encryption functions $e: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$
 - \mathcal{D} set of decryption functions $d: C \times \mathcal{K} \to \mathcal{M}$

Comparison of Symmetric and Asymmetric Encryption

Example: Cæsar Cipher

Key: 3

Encryption function E_3 :

in: ABCDEFGHI J KLMNOPQRSTUVWXYZ
out: DEFGHI J KLMNOPQRSTUVWXYZABC

Decryption function D_3 :

in: ABCDEFGHI J KLMNOPQRSTUVWXYZ out: XYZABCDEFGHI J KLMNOPQRSTUVW

Plaintext: HELLO WORLD

Ciphertext: KHOOR ZRUOG

10/4/2017 Slide #8-7

Example: Cæsar Cipher

```
\mathcal{M} = \{ \text{ sequences of letters, represented as } 0..25 \}
\mathcal{K} = \{ i \mid i \text{ is an integer and } 0 \leq i \leq 25 \}
\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m,
E_k(m) = (m+k) \text{ mod } 26 \}
\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c,
D_k(c) = (26 + c - k) \text{ mod } 26 \}
C = \mathcal{M}
```

Attacks

- Opponent whose goal is to break cryptosystem is the *adversary*
 - Assume adversary knows algorithm used, but not key
- Three types of attacks:
 - ciphertext only: adversary has only ciphertext; goal is to find plaintext, possibly key
 - known plaintext: adversary has ciphertext,
 corresponding plaintext; goal is to find key
 - chosen plaintext: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 - Called models of the language
 - Examine ciphertext, correlate properties with the assumptions.

Classical Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called symmetric cryptography
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called product ciphers

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

- Ciphertext is HLOOL ELWRD

Attacking the Cipher

- Basic idea: permutation does not change the frequency of plaintext characters
- Anagramming
 - If 1-gram frequencies in the ciphertext match
 English frequencies, but other *n*-gram
 frequencies do not, probably transposition
 - Rearrange letters to form *n*-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H in English
 - HE 0.0305
 - HO 0.0043
 - HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
 - WH 0.0026
 - EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Example

• Arrange so the H and E are adjacent

 $\begin{array}{ccc} & & \text{HE} \\ & & \text{LL} \\ \\ \text{HLOOLELWRD} & \rightarrow & \text{OW} \\ & & \text{OR} \\ & & \text{LD} \\ \end{array}$

• Read off across, then down, to get original plaintext

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Cæsar cipher)
 - Plaintext is HELLO WORLD
 - Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Attacking the Cipher

- Exhaustive search
 - If the key space is small enough, try all possible keys until you find the right one
 - Cæsar cipher has 26 possible keys
- Statistical analysis
 - Compare to 1-gram model of English

Statistical Attack

• Compute frequency of each letter in ciphertext:

```
G 0.1 H 0.1 K 0.1 O 0.3
R 0.2 U 0.1 Z 0.1
```

- Apply 1-gram model of English
 - Frequency of characters (1-grams) in English is on next slide

Character Frequencies

-	1		1				_
a	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	O	0.080	u	0.030
c	0.030	j	0.005	p	0.020	V	0.010
d	0.040	k	0.005	q	0.002	W	0.015
e	0.130	1	0.035	r	0.065	X	0.005
f	0.020	m	0.030	S	0.060	У	0.020
g	0.015					Z	0.002

10/4/2017

Statistical Analysis

- f(c) frequency of character c in ciphertext
- $\varphi(i)$ correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key

$$-\varphi(i) = \sum_{0 \le c \le 25} f(c)p(c-i) \text{ so here,}$$

$$\varphi(i) = 0.1p(6-i) + 0.1p(7-i) + 0.1p(10-i) + 0.3p(14-i) + 0.2p(17-i) + 0.1p(20-i) + 0.1p(25-i)$$

- p(x) is frequency of character x in English
- The correlation $\varphi(i)$ should be a maximum when the key i translates the ciphertext into English

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	$\varphi(i)$	i	$\varphi(i)$	i	$\varphi(i)$	i	φ(i)
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

The Result

- Most probable keys, based on φ:
 - $-i=6, \varphi(i)=0.0660$
 - plaintext EBIIL TLOLA
 - $-i = 10, \varphi(i) = 0.0635$
 - plaintext AXEEH PHKEW
 - $-i=3, \varphi(i)=0.0575$
 - plaintext HELLO WORLD
 - $-i = 14, \varphi(i) = 0.0535$
 - plaintext WTAAD LDGAS
- Only English phrase is for i = 3
 - That's the key (3 or 'D')

DES: History

- The Data Encryption Standard (DES) was developed in the 1970s by the **National Bureau of Standards** (NBS)with the help of the **National Security Agency** (NSA).
- Its purpose is to provide a standard method for protecting *sensitive* commercial and unclassified data.
- IBM created the first draft of the algorithm, calling it LUCIFER with a 128-bit key.
- DES officially became a federal standard in November of 1976.
- Has been widely adopted.

10/4/2017 Slide #8-23

Overview of the DES

- A block cipher:
 - encrypts blocks of 64 bits using a 56 bit key
 - outputs 64 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a round key generated from the user-supplied key

DES Encipherment

- A basic process in enciphering a 64-bit data block and a 56-bit key using the DES consists of:
 - An initial permutation (IP)
 - 16 rounds of a complex key dependent calculation f
 - A final permutation, being the inverse of IP

The f Function

Controversy

- Considered too weak
 - Key length of 56 bits is too short
 - Diffie, Hellman said in a few years technology would allow DES to be broken in days
 - Design using 1999 technology published
 - Design decisions not public
 - S-boxes may have backdoors, or inherent weaknesses?

Differential Cryptanalysis Attacks against DES

- A chosen ciphertext attack
 - Requires 2⁴⁷ plaintext, ciphertext pairs
- Revealed several properties
 - Small changes in S-boxes reduce the number of pairs needed
 - Making every bit of the round keys independent does not impede attack
- Linear cryptanalysis improves result
 - Requires 2⁴³ plaintext, ciphertext pairs

The Advanced Encryption Standard (AES)

- In 1997, the U.S. National Institute for Standards and Technology (NIST) put out a public call for a replacement to DES.
- It narrowed down the list of submissions to five finalists, and ultimately chose an algorithm that is now known as the **Advanced Encryption Standard (AES)**.
- AES is a block cipher that operates on 128-bit blocks. It is designed to be used with keys that are 128, 192, or 256 bits long, yielding ciphers known as AES-128, AES-192, and AES-256.

Slide #8-29

10/4/2017

AES Round Structure

- The 128-bit version of the AES encryption algorithm proceeds in ten rounds.
- Each round performs an invertible transformation on a 128-bit array, called **state**.
- The initial state X_0 is the XOR of the plaintext P with the key K:
- $X_0 = P XOR K.$
- Round i (i = 1, ..., 10) receives state X_{i-1} as input and produces state X_i .
- The ciphertext C is the output of the final round: $C = X_{10}$.

10/4/2017

AES Rounds

- Each round is built from four basic steps:
- 1. SubBytes step: an S-box substitution step
- 2. ShiftRows step: a permutation step
- 3. MixColumns step: a matrix multiplication step
- 4. AddRoundKey step: an XOR step with a round key derived from the 128-bit encryption key

10/4/2017 Slide #8-31

AES/DES Usage Modes

- Electronic Code Book Mode (ECB)
 - Encipher each block independently
 - The vanilla AES/DES
- Cipher Block Chaining Mode (CBC)
 - XOR each block with previous ciphertext block
 - Requires an initialization vector for the first one

CBC Mode Encryption

CBC Mode Decryption

Other AES/DES Usage Modes

- Encrypt-Decrypt-Encrypt Mode (2 keys: *k*, *k* ')
 - $-c = AES_k(AES_k^{-1}(AES_k(m))), or$
 - $-c = DES_k(DES_k^{-1}(DES_k(m)))$
- Encrypt-Encrypt Mode (3 keys: k, k', k'')
 - $-c = AES_k(AES_{k'}(AES_{k'}(m))), or$
 - $-c = DES_k(DES_{k'}(DES_{k'}(m)))$

Public Key Cryptography

- Two keys
 - Private key known only to individual
 - Public key available to anyone
 - Public key, private key inverses

Requirements

- 1. It must be computationally easy to encipher or decipher a message given the appropriate key
- 2. It must be computationally infeasible to derive the private key from the public key
- 3. It must be computationally infeasible to determine the private key from a chosen plaintext attack

RSA

- Exponentiation cipher
- Relies on the difficulty of determining the number of numbers relatively prime to a large integer *n*

Facts About Numbers

- Prime number *p*:
 - p is an integer
 - $p \ge 2$
 - The only divisors of p are 1 and p
- Examples
 - 2, 7, 19 are primes
 - -3, 0, 1, 6 are not primes
- Prime decomposition of a positive integer *n*:

$$n = p_1^e_1 \times \ldots \times p_k^e_k$$

- Example:
 - $-200 = 2^3 \times 5^2$

Fundamental Theorem of Arithmetic

The prime decomposition of a positive integer is unique

Greatest Common Divisor

- The greatest common divisor (GCD) of two positive integers a and b, denoted gcd(a, b), is the largest positive integer that divides both a and b
- The above definition is extended to arbitrary integers
- Examples:

$$gcd(18, 30) = 6$$
 $gcd(0, 20) = 20$ $gcd(-21, 49) = 7$

• Two integers a and b are said to be relatively prime if

$$gcd(\boldsymbol{a}, \boldsymbol{b}) = 1$$

- Example:
 - Integers 15 and 28 are relatively prime

Modular Arithmetic

• Modulo operator for a positive integer *n*

$$r = a \mod n$$

equivalent to

$$a = r + kn$$

and

$$r = a - \lfloor a/n \rfloor n$$

• Example:

$$29 \mod 13 = 3$$
 $13 \mod 13 = 0$ $-1 \mod 13 = 12$ $29 = 3 + 2 \times 13$ $13 = 0 + 1 \times 13$ $12 = -1 + 1 \times 13$

Modulo and GCD:

$$gcd(a, b) = gcd(b, a \mod b)$$

• Example:

$$gcd(21, 12) = 3$$
 $gcd(12, 21 \mod 12) = gcd(12, 9) = 3$

Euclid's GCD Algorithm

Euclid's algorithm for computing the GCD repeatedly applies the formula
 gcd(a, b) = gcd(b, a mod b)

```
gcd(a, b) = gcd(b, a \mod b)
```

Example

```
-\gcd(412, 260) = 4
```

```
Algorithm EuclidGCD(a, b)
Input integers a and b
Output gcd(a, b)

if b = 0
return a
else
return EuclidGCD(b, a mod b)
```

a	412	260	152	108	44	20	4
b	260	152	108	44	20	4	0

Multiplicative Inverses (1)

• The residues modulo a positive integer *n* are the set

$$Z_n = \{0, 1, 2, ..., (n-1)\}$$

• Let x and y be two elements of Z_n such that

$$x*y \mod n = 1$$

We say that y is the multiplicative inverse of x in Z_n and we write $y = x^{-1}$

- Example:
 - Multiplicative inverses of the residues modulo 11

										10
x^{-1}	1	6	4	3	9	2	8	7	5	10

Multiplicative Inverses (2)

Theorem

An element x of Z_n has a multiplicative inverse if and only if x and n are relatively prime

- Example
 - The elements of Z_{10} with a multiplicative inverse are 1, 3, 7, 9

Corollary

If p is prime, every nonzero residue in Z_p has a multiplicative inverse Theorem

A variation of Euclid's GCD algorithm computes the multiplicative inverse of an element x of Z_n or determines that it does not exist

x	0	1	2	3	4	5	6	7	8	9
x^{-1}		1		7				3		9

Modular Inverse by Extended Euclid's Algorithm

- To test the existence of and compute the inverse of $x \in \mathbb{Z}_n$, we execute the extended Euclid's algorithm on the input pair (n, x)
- Let (d, i, j) = GCD (n, x) be the triplet returned

 d = i*n + j*x

 Case 1: d = 1

 j is the inverse of x in Z_n

Case 2: d > 1

x has no inverse in Z_n

Extended Euclid's Algorithm

```
Algorithm GCD(a, b):

if b = 0, then /*we assume a > b */

return (a, 1, 0)

Let q = \lfloor a/b \rfloor

The floor operator.

E.g., \lfloor 10/4 \rfloor = 2

Let (d, k, m) = GCD(b, a mod b)

return (d, m, k-m*q)
```

Example: the Inverse of 5 in \mathbb{Z}_{96}

Let (d, i, j) = GCD (96, 5) be the triplet returned

 d = i*96 + j*5

 Case 1: d = 1
 j is the inverse of 5 in Z_n

 Case 2: d > 1
 5 has no inverse in Z_n

• What is GCD(96, 5)?

10/4/2017 Slide #8-47

GCD (96, 5)

```
a=96, b=5

q=96/5=19

GCD(5, 96 mod 5) = GCD(5, 1)

q'=5/1=5

GCD(1, 5 mod 1) = GCD(1, 0)

base case: GCD(1,0) = (1,1,0) = (d',k',m')

return (d',m',k'-m'*q')= (1,0,1-0*5)=(1,0,1)

GCD(5, 1)=(1, 0, 1)=(d, k, m)

return (d, m, k-m*q) = (1, 1, 0-1*19)=(1, 1, -19)
```

Example: the Inverse of 5 in \mathbb{Z}_{96}

- To test the existence of and compute the inverse of $x \in \mathbb{Z}_n$, we execute the extended Euclid's algorithm on the input pair (n, x)
- Let (d, i, j) = GCD (96, 5) be the triplet returned

$$- d = i*96 + j*5$$

Case 1: d = 1

j is the inverse of 5 in Z_n

Case 2: d > 1

5 has no inverse in Z_n

- Therefore, GCD(96,5)=(1, 1, -19), so d = 1, i = 1, j = -19
- Because d = 1, inverse exists and it is j or -19.
- $-19 \mod 96 = 77 \text{ because}$

$$-19 = 77 - 96 = 77 + (-1)*96$$

RSA Cryptosystem

- Setup:
 - -n = pq, with p and q primes
 - -e relatively prime to

$$\phi(n) = (\boldsymbol{p} - 1) (\boldsymbol{q} - 1)$$

- -d inverse of e in $\mathbf{Z}_{\phi(n)}$
- Keys:
 - Public key: $K_E = (n, e)$
 - Private key: $K_D = d$
- Encryption:
 - Plaintext M in Z_n
 - $-C = M^e \mod n$
- Decryption:
 - $-M = C^d \mod n$

Example

- Setup:
 - p = 7, q = 17
 - n = 7.17 = 119
 - $\phi(n) = 6.16 = 96$
 - e = 5
 - d = 77
- Keys:
 - public key: (119, 5)
 - private key: 77
- Encryption:
 - **◆** *M* = 19
 - $C = 19^5 \mod 119 = 66$
- Decryption:
 - $C = 66^{77} \mod 119 = 19$

Attacking RSA

Given a public key (119, 5) and incepted message 66, which of the following is (are) useful step(s) for an attacker who wants to decrypt the message?

- A. Compute 66⁵ mod 119
- B. Factor 119 to get two prime numbers p and q
- C. Compute 11966 mod 5
- D. Compute $\phi(119) = (p + 1)(q 1)$
- E. Compute the inverse of 5 in Z_{ϕ} for some ϕ

Complete RSA Example

• Setup:

$$-p = 5, q = 11$$

 $-n = 5.11 = 55$
 $-\phi(n) = 4.10 = 40$
 $-e = 3$
 $-d = 27 (3.27 = 81 = 2.40 + 1)$

- Encryption
 - $C = M^3 \mod 55$
- Decryption
 - $M = C^{27} \mod 55$

M	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{C}	1	8	27	9	15	51	13	17	14	10	11	23	52	49	20	26	18	2
M	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
C	39	25	21	33	12	19	5	31	48	7	24	50	36	43	22	34	30	16
M	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
C	53	37	29	35	6	3	32	44	45	41	38	42	4	40	46	28	47	54

Security

- Security of RSA based on difficulty of factoring
 - Widely believed
 - Best known algorithm takes exponential time
- RSA Security factoring challenge (discontinued)
- In 1999, 512-bit challenge factored in 4 months using 35.7 CPU-years
 - 160 175-400 MHz SGI and Sun
 - 8 250 MHz SGI Origin
 - 120 300-450 MHz Pentium II
 - 4 500 MHz Digital/Compaq

- In 2005, a team of researchers factored the RSA-640 challenge number using 30 2.2GHz CPU years
- In 2004, the prize for factoring RSA-2048 was \$200,000
- Current practice is 2,048-bit keys
- Estimated resources needed to factor a number within one year

Length (bits)	PCs	Memory
430	1	128MB
760	215,000	4GB
1,020	342×10^6	170GB
1,620	1.6×10^{15}	120TB

Correctness

- We show the correctness of the RSA cryptosystem for the case when the plaintext *M* does not divide *n*
- Namely, we show that $(M^e)^d \mod n = M$
- Since $ed \mod \phi(n) = 1$, there is an integer k such that

$$ed = k\phi(n) + 1$$

• Since *M* does not divide *n*, by Euler's theorem we have

```
M^{\phi(n)} \mod n = 1
```

- Thus, we obtain $(M^e)^d \mod n =$ $M^{ed} \mod n =$ $M^{k\phi(n)+1} \mod n =$ $MM^{k\phi(n)} \mod n =$ $M (M^{\phi(n)})^k \mod n =$ $M (M^{\phi(n)})^k \mod n =$ $M (1)^k \mod n =$ $M \mod n =$ $M \mod n =$ $M \mod n =$
- Proof of correctness can be extended to the case when the plaintext *M* divides *n*

Example: Confidentiality

- Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- Alice chooses e = 17, making d = 53
- Bob wants to send Alice secret message HELLO (07 04 11 11 14)
 - $-07^{17} \mod 77 = 28$
 - $-04^{17} \mod 77 = 16$
 - $-11^{17} \mod 77 = 44$
 - $-11^{17} \mod 77 = 44$
 - $-14^{17} \mod 77 = 42$
- Bob sends 28 16 44 44 42

Example

- Alice receives 28 16 44 44 42
- Alice uses private key, d = 53, to decrypt message:
 - $-28^{53} \mod 77 = 07$
 - $-16^{53} \mod 77 = 04$
 - $-44^{53} \mod 77 = 11$
 - $-44^{53} \mod 77 = 11$
 - $-42^{53} \mod 77 = 14$
- Alice translates message to letters to read HELLO
 - No one else could read it, as only Alice knows her private key and that is needed for decryption

Security Services

Confidentiality

- Use public key to encipher, private key to decipher
- Only the owner of the private key knows it, so text enciphered with public key can be read only by the owner of the private key

Authentication

- Use private key to encipher, public key to decipher
- Only the owner of the private key knows it, so text enciphered with private key must have been generated by the owner

More Security Services

- Integrity
 - Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Warnings

- Encipher message in blocks considerably larger than the examples here
 - If 1 character per block, RSA can be broken using statistical attacks (just like classical cryptosystems)
 - Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

Cryptographic Checksums (Hash Functions)

- Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$).
 - -k is smaller than n except in unusual circumstances
- Can be used for checking integrity
- Example: ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Example Use

- Bob receives "10111101" as bits.
 - Sender is using even parity; 6 1 bits, so character was received correctly
 - Note: could be garbled, but 2 bits would need to have been changed to preserve parity
 - Sender is using odd parity; even number of 1
 bits, so character was not received correctly

Definition

- Cryptographic checksum (Hash function, message digest function) $h: A \rightarrow B$:
 - 1. For any $x \in A$, h(x) is easy to compute
 - 2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y
 - 3. It is computationally infeasible to find two inputs x, $x' \in A$ such that $x \neq x'$ and h(x) = h(x')
 - Alternate form (stronger): Given any $x \in A$, it is computationally infeasible to find a different $x' \in A$ such that h(x) = h(x').

Collisions

- If $x \neq x'$ and h(x) = h(x'), x and x' are a collision
 - Pigeonhole principle: if there are n containers for n+1 objects, then at least one container will have 2 objects in it.
 - Application: if there are 32 files ar cryptographic checksum values, at value corresponds to at least 4 file

Keys and Hash Functions

- Keyed hash function: requires cryptographic key as part of the computation
 - DES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.
- Keyless hash function: requires no cryptographic key
 - MD5 and SHA-1 are best known; others include MD4, HAVAL, and Snefru

Key Points

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
 - Or one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
 - Computationally infeasible to derive one from the other
- Cryptographic checksums provide a check on integrity

Chapter 9: Key Management

- Session and Interchange Keys
- Key Exchange
- Cryptographic Key Infrastructure
- Revoking Keys
- Digital Signatures

Notation

- $X \rightarrow Y : \{ Z \parallel W \} k_{X,Y}$
 - X sends Y the message produced by concatenating Z and W enciphered by key $k_{X,Y}$, which is shared by users X and Y
- $A \to T : \{Z\} k_A \| \{W\} k_{A,T}$
 - A sends T a message consisting of the concatenation of Z enciphered using k_A , A's key, and W enciphered using $k_{A,T}$, the key shared by A and T
- r_1 , r_2 nonces (nonrepeating random numbers)

Session, Interchange Keys

- Alice wants to send a message m to Bob
 - Assume public key encryption
 - Alice generates a random cryptographic key k_s and uses it to encipher m
 - To be used for this message *only*
 - Called a *session key*
 - She enciphers k_s with Bob's public key k_B
 - k_B enciphers all session keys Alice uses to communicate with Bob
 - Called an interchange *key*
 - Alice sends $\{m\} k_s \{k_s\} k_B$

Benefits of Session Keys

- Limits amount of traffic enciphered with single key
 - Standard practice, to decrease the amount of information an attacker can obtain from the traffic
- Prevents some attacks (e.g., forward search)
 - Example: Alice will send Bob message that is either "BUY" or "SELL". Eve computes possible ciphertexts { "BUY" } k_B and { "SELL" } k_B . Eve intercepts enciphered message, compares, and gets plaintext at once

Classical (Symmetric) Key Exchange

- Bootstrap problem: how do Alice, Bob begin?
 - Alice can't send it to Bob in the clear!
- Assume trusted third party, Cathy
 - Alice and Cathy share secret key k_A
 - Bob and Cathy share secret key k_B
- Use this to exchange shared key k_s

Simple Protocol

Alice
$$\xrightarrow{\{\text{ request for session key to Bob }\}}{k_A}$$
 Cathy

Alice $\xrightarrow{\{k_s\}}{k_A} \parallel \{k_s\} k_B$ Cathy

Alice $\xrightarrow{\{k_s\}}{k_B}$ Bob

Alice $\xrightarrow{\{\text{"Pay $500 to Dan"}\}}{k_s}$ Bob

Problems

- How does Bob know he is talking to Alice?
 - Replay attack: Eve records message from Alice to Bob, later replays it; Bob may think he's talking to Alice, but he isn't

Replay Attack

10/4/2017

Acknowledgement: Matt Bishop

Slide #9-73

Problems

- How does Bob know he is talking to Alice?
 - Replay attack: Eve records message from Alice to Bob, later replays it; Bob may think he's talking to Alice, but he isn't
 - Session key reuse: Eve replays message from Alice to Bob, so Bob re-uses session key
- Protocols must provide authentication and defense against replay

Needham-Schroeder

Alice -	Alice Bob r_1	Cathy
Alice	$\{ \text{Alice} \parallel \text{Bob} \parallel r_1 \parallel k_s \parallel \{ \text{Alice} \parallel k_s \} k_B \} k_A$	Cathy
Alice		Bob
Alice	$\{ r_2 \} k_s$	Bob
Alice	$\{r_2-1\}k_s$	Bob

10/4/2017

Acknowledgement: Matt Bishop

Slide #9-75

Argument: Alice talking to Bob

- Second message { Alice \parallel Bob $\parallel r_1 \parallel k_s \parallel$ { Alice $\parallel k_s \} k_B \} k_A$
 - Enciphered using key (k_A) only she and Cathy knows
 - So Cathy enciphered it
 - Response to first message Alice \parallel Bob $\parallel r_1$
 - As r_1 in it matches r_1 in first message
- Third message { Alice $|| k_s | k_B$
 - Alice knows only Bob can read it
 - As only Bob can derive session key from message
 - Any messages enciphered with that key are from Bob

Argument: Bob talking to Alice

- Third message { Alice $|| k_s | k_B$
 - Enciphered using key only he and Cathy know
 - So Cathy enciphered it
 - Names Alice, session key
 - Cathy provided session key, says Alice is other party
- Fourth message $\{r_2\} k_s$
 - Uses session key to determine if it is replay from Eve
 - If not, Alice will respond correctly in fifth message $\{r_2 1\} k_s$
 - If so, Eve can't decipher r_2 and so can't respond, or responds incorrectly

Public Key Key Exchange

- Here interchange keys known
 - $-e_A$, e_B Alice and Bob's public keys known to all
 - $-d_A$, d_B Alice and Bob's private keys known only to owner
- Simple protocol
 - $-k_s$ is desired session key

Alice
$$\underbrace{\{k_s\}e_B}$$
 Bob

Problem and Solution

- Vulnerable to forgery or replay
 - Because e_B known to anyone, Bob has no assurance that Alice sent message
- Simple fix uses Alice's private key
 - $-k_s$ is desired session key

Notes

- Can include message enciphered with k_s
- Assumes Bob has Alice's public key, and vice versa
 - If not, each must get it from public server
 - If keys not bound to identity of owner, attacker Eve can launch a man-in-the-middle attack (next slide; Cathy is public server providing public keys)

Man-in-the-Middle Attack

Cryptographic Key Infrastructure

- Goal: bind identity to key
- Classical: not possible, as all keys are shared
 - Use protocols to agree on a shared key (see earlier)
- Public key: bind identity to public key
 - Crucial as people will use key to communicate with principal whose identity is bound to key
 - Erroneous binding means no secrecy between principals
 - Assume principal identified by an acceptable name

Certificates

- Create token (message) containing
 - Identity of principal (here, Alice)
 - Corresponding public key
 - Timestamp (when issued)
 - Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)

$$C_A = \{ e_A \parallel Alice \parallel T \} d_C$$

Use

- Bob gets Alice's certificate
 - If he knows Cathy's public key, he can decipher the certificate
 - When was certificate issued?
 - Is the principal Alice?
 - Now Bob has Alice's public key
- Problem: Bob needs Cathy's public key to validate certificate
 - Problem pushed "up" a level
 - One approach: signature chains

X.509 Chains

- Some certificate components in X.509v3:
 - Version
 - Serial number
 - Signature algorithm identifier: hash algorithm
 - Issuer's name; uniquely identifies issuer
 - Interval of validity
 - Subject's name; uniquely identifies subject
 - Subject's public key
 - Signature: enciphered hash

X.509 Certificate Validation

- Obtain issuer's public key
 - The one for the particular signature algorithm
- Decipher signature
 - Gives hash of certificate
- Recompute hash from certificate and compare
 - If they differ, there's a problem
- Check interval of validity
 - This confirms that certificate is current

Issuers

- Certification Authority (CA): entity that issues certificates
 - Multiple issuers pose validation problem
 - Alice's CA is Cathy; Bob's CA is Don; how can Alice validate Bob's certificate?
 - Have Cathy and Don cross-certify
 - Each issues certificate for the other

Validation and Cross-Certifying

• Certificates:

- Cathy<<Alice>>
- Dan<<Bob>
- Cathy<<Dan>>>
- Dan<<Cathy>>

- Alice validates Bob's certificate
 - Alice obtains Cathy<<Dan>>
 - Alice uses (known) public key of Cathy to validate Cathy<<Dan>>
 - Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

Key Revocation

- Certificates invalidated before expiration
 - Usually due to compromised key
 - May be due to change in circumstance (e.g., someone leaving company)
- Problems
 - Entity revoking certificate authorized to do so
 - Revocation information circulates to everyone fast enough
 - Network delays, infrastructure problems may delay information

CRLs

- Certificate revocation list lists certificates that are revoked
- X.509: only certificate issuer can revoke certificate
 - Added to CRL

PGP Chains

- OpenPGP certificates structured into packets
 - One public key packet
 - Zero or more signature packets
- Public key packet:
 - Version (3 or 4; 3 compatible with all versions of PGP,
 4 not compatible with older versions of PGP)
 - Creation time
 - Validity period (not present in version 3)
 - Public key algorithm, associated parameters
 - Public key

OpenPGP Signature Packet

- Version 3 signature packet
 - Version (3)
 - Signature type (level of trust)
 - Creation time (when next fields hashed)
 - Signer's key identifier (identifies key to encipher hash)
 - Public key algorithm (used to encipher hash)
 - Hash algorithm
 - Part of signed hash (used for quick check)
 - Signature (enciphered hash)
- Version 4 packet more complex

Signing

- Single certificate may have multiple signatures
- Notion of "trust" embedded in each signature
 - Range from "untrusted" to "ultimate trust"
 - Signer defines meaning of trust level (no standards!)
- All version 4 keys signed by subject
 - Called "self-signing"

Validating Certificates

- Alice needs to validate Bob's OpenPGP cert
 - Alice does not know any of the signers: Fred, Giselle, or Ellen

Arrows show signatures Self signatures not shown

Validating Certificates

- Alice needs to validate Bob's OpenPGP cert
 - Alice does not know any of the signers: Fred, Giselle, or Ellen
- Alice gets Giselle's cert
 - Alice knows Henry slightly,
 but his signature is at
 "casual" level of trust

Arrows show signatures Self signatures not shown

Validating Certificates

- Alice needs to validate Bob's OpenPGP cert
 - Alice does not know any of the signers: Fred, Giselle, or Ellen
- Alice gets Giselle's cert
 - Alice knows Henry slightly,
 but his signature is at
 "casual" level of trust
- Alice gets Ellen's cert
 - Alice knows Jack, so uses his cert to validate Ellen's, then hers to validate Bob's

Arrows show signatures Self signatures not shown

Digital Signature

- Construct that authenticated origin, contents of message in a manner provable to a disinterested third party ("judge")
- Sender cannot deny having sent message (service is "non-repudiation")
 - Limited to technical proofs
 - Inability to deny one's cryptographic key was used to sign
 - One could claim the cryptographic key was stolen or compromised
 - Legal proofs, etc., probably required; not dealt with here

Classical Digital Signatures

- Require trusted third party
 - Alice, Bob each share keys with trusted party Cathy
- To resolve dispute, judge gets $\{m\}$ k_{Alice} , $\{m\}$ k_{Bob} , and has Cathy decipher them; if messages matched, contract was signed

Alice —	$\{m\}k_{Alice}$	→ Bob
Cathy •	$\{m\}k_{Alice}$	Bob
Cathy —	$\{m\}k_{Bob}$	Bob

Public Key Digital Signatures

- Alice's keys are d_{Alice} , e_{Alice}
- Alice sends Bob

$$m \parallel \{ m \} d_{Alice}$$

• In case of dispute, judge computes

$$\{ \{ m \} d_{Alice} \} e_{Alice}$$

- and if it is m, Alice signed message
 - She's the only one who knows $d_{Alice}!$

RSA Digital Signatures

- Use private key to encipher message
 - Protocol for use is critical
- Key points:
 - Never sign random documents, and when signing, always sign hash and never document
 - Mathematical properties can be turned against signer

Attack if Random Documents Are Signed

• Example: Alice, Bob communicating

$$-n_A = 95, e_A = 59, d_A = 11$$

 $-n_B = 77, e_B = 53, d_B = 17$

- 26 contracts, numbered 00 to 25
 - Alice has Bob sign 05 and 17:
 - $c = m^{d_B} \mod n_B = 05^{17} \mod 77 = 3$
 - $c = m^{d_B} \mod n_B = 17^{17} \mod 77 = 19$
 - Alice computes $05 \times 17 \mod 77 = 08$; corresponding signature is $03 \times 19 \mod 77 = 57$; claims Bob signed 08
 - Judge computes $c^{e_B} \mod n_B = 57^{53} \mod 77 = 08$
 - Signature validated; Bob is toast

RSA Digital Signatures

- Use private key to encipher message
 - Protocol for use is critical
- Key points:
 - Never sign random documents, and when signing, always sign hash and never document
 - Mathematical properties can be turned against signer
 - Sign message first, then encipher
 - Otherwise, the recipient can change public keys to forge signatures on a different message
 - Example in the textbook

Key Points

- Key management critical to effective use of cryptosystems
 - Different levels of keys (session vs. interchange)
- Keys need infrastructure to identify holders, allow revoking
- Digital signatures provide integrity of origin and content
 - Much easier with public key cryptosystems than with classical cryptosystems