Algoritmi e Strutture Dati

Esercizio 1.[12 punti]

Scrivere (usando lo pseudocodice) una funzione ricorsiva di tipo Divide et Impera per risolvere il seguente problema.

Input: (a, n), con $a \le n$.

Output: a^n .

Calcolare in ordine di grandezza il costo computazionale nel caso peggiore dell'algoritmo proposto.

ATTENZIONE:

- il costo computazionale si esprime in funzione della lunghezza dell'input.
- la lunghezza L di un numero n scritto in base b soddisfa la seguente relazione:

$$L - 1 \le \log_b(n) \le L$$

- Assumeremo che le moltiplicazioni costino $\Theta(1)$ indipendentemente dalla lunghezza dei fattori.

Esercizio 2.[10 punti]

Sia e l'arco di peso minimo in un grafo G. Dimostrare formalmente che esiste almeno un MST (albero minimo di copertura) per G che contiene e. Fornire tutti i passaggi della dimostrazione.

Esercizio 3.[11 punti]

Scrivere in pseudocodice tre procedure ricorsive F_1 , F_2 e F_3 che prendono in input il puntatore a una lista (ogni elemento della lista ha due campi: val e next) e che eseguano i seguenti compiti.

- 1. F_1 stampa il contenuto della lista
- 2. F_2 stampa il contenuto della lista in ordine inverso
- 3. F_3 stampa il contenuto della lista e poi stampa il contenuto della lista in ordine inverso. Stampare significa stampare il contenuto del campo val. Esempio: data la lista con elementi $\{a,b,c,d\}$, F_1 stamperà a,b,c,d, F_2 stamperà d,c,b, a e F_3 stamperà a,b,c,d, d,c,b, a. Dimostrare la correttezza degli algoritmi forniti e calcolare il loro costo computazionale. Vietato usare cicli di qualsiasi tipo o istruzioni di salto. Fornire il codice più semplice possibile.