

AMENDMENTS**In the Claims**

Please amend the claims of the present application as set forth below. A detailed listing of all claims has been provided. A status identifier is provided for each claim in a parenthetical expression following each claim number. Changes to the claims are shown by strikethrough (for deleted matter) or underlining (for added matter).

Applicant appreciates the Office pointing out the prior incorrect numbering of claims that is not in compliance with rule 126. The claims are correctly renumbered herein below in the detailed list of claims. References to claims in this section and in the Remarks section below are made with respect to the new, corrected numbers. Some claim references include a parenthetical reference to the previous claim numbers to enable the Office to more easily review this Response.

Please note that because withdrawn claims 21-30 were previously numbered incorrectly, and because their numbering is now being corrected in the following complete list of claims, dependent claims 22, 24, 26, 27, 29, and 30 do not now refer to the correct claim numbers for their respective dependencies. However, Applicant is not amending claims 22, 24, 26, 27, 29, and 30 to refer to the correct claim numbers, as these claims were previously withdrawn by a prior Response to Restriction Requirement.

Claim 1 was canceled by Supplemental Preliminary Amendment filed 1/16/02.

Claims 2-20 were canceled by Preliminary Amendment filed 3/15/2000.

1 Claims 21-30 (previously 2-11) were withdrawn by Response to Restriction
2 Requirement filed 9/4/03.

3 Claims 31-60 (previously 12-41) were therefore pending at the time of the
4 Office Action.

5 Claims 31-60 (previously 12-41) are rejected.

6 No claims are canceled by the current response.

7 Please add new claims 61-64.

8 Accordingly, claims 31-64 are now pending.

9 Please amend claims 31-60 (previously 12-41) as shown in the following
10 detailed list of claims:

11
12 Claims 1-20. (Canceled)

13
14
15 21. (Withdrawn) A method for employing a Hypertext Transfer Protocol
16 (HTTP protocol) for transmitting streamed digital media data from a server, the
17 server being configured for coupling to a client computer via a computer network,
18 comprising:

19 receiving at the server from the client an HTTP POST request, the POST request
20 requesting a first portion of the digital media data and comprising a request header
21 and a request entity-body, the request entity body comprising a media command
22 for causing the first portion of the digital media data to be sent from the server to
23 the client; and

24 sending an HTTP response to the client from the server, the HTTP response
25 comprising a response header and a response entity body, the response entity body

1 comprising at least a portion of the first portion of the digital media data, wherein
2 the digital media data comprises multimedia data.

3
4 22. (Withdrawn) A method as recited in claim 2, wherein the digital
5 media data comprises video data.

6
7 23. (Withdrawn) A computer-readable medium having computer-
8 executable instructions that, when executed by a computer, performs a method for
9 transmitting streamed media data employing a Hypertext Transfer Protocol (HTTP
10 protocol) for transmitting streamed digital media data from a server, the server
11 being configured for coupling to a client computer via a computer network, the
12 method comprising:

13 receiving at the server from the client an HTTP POST request, the POST request
14 requesting a first portion of the digital media data and comprising a request header
15 and a request entity-body, the request entity body comprising a media command
16 for causing the first portion of the digital media data to be sent from the server to
17 the client; and

18 sending an HTTP response to the client from the server, the HTTP response
19 comprising a response header and a response entity body, the response entity body
20 comprising at least a portion of the first portion of the digital media data, wherein
21 the digital media data comprises multimedia data.

22
23 24. (Withdrawn) A medium as recited in claim 4, wherein the digital
24 media data comprises video data.
25

25. (Withdrawn) A client system comprising:

a sender configured to send a Hypertext Transfer Protocol (HTTP protocol) POST request requesting a first portion of the digital media data and comprising a media command for causing the first portion of the digital media data to be sent from a server system to the client system; and

a receiver configured to receive an HTTP response to the client system from the server system, the HTTP comprising at least a portion of the first portion of the digital media data, wherein the digital media data comprises multimedia data.

26. (Withdrawn) A system as recited in claim 6, wherein the digital media data comprises audio data.

27. (Withdrawn) A system as recited in claim 6, wherein the digital media data comprises video data.

28. (Withdrawn) A server system comprising:

a receiver configured to receive a Hypertext Transfer Protocol (HTTP protocol) POST request requesting a first portion of the digital media data and comprising a media command for causing the first portion of the digital media data to be sent from the server system to a client system; and

a sender configured to send an HTTP response to the client system from the server system, the HTTP comprising at least a portion of the first portion of the digital media data, wherein the digital media data comprises multimedia data.

1 29. (Withdrawn) A system as recited in claim 9, wherein the digital
2 media data comprises audio data.

3
4 30. (Withdrawn) A system as recited in claim 9, wherein the digital
5 media data comprises video data.

6
7 31. (Currently amended) A method facilitating the transmission of
8 streamed digital media data from a server, the server being configured for
9 coupling to a client via a computer network, the method comprising:

10 receiving multiple communications requests from a client, each such
11 requests employing a different differing network protocols and each request
12 requesting that a server respond to such request using the same network protocol
13 employed by that request;

14 responding to one of the requests using the same network protocol
15 employed by that request.

16
17 32. (Currently amended) A method as recited in claim 31 12
18 further comprising responding to each request using the network protocol
19 associated with each request.

20
21 33. (Currently amended) A method as recited in claim 31 12,
22 wherein the multiple communications requests are received substantially
23 concurrently.

1 34. (Currently amended) A method as recited in claim 31 ~~12~~,
2 wherein the network protocols employed are selected from a group consisting of
3 TCP, UDP, HTTP, HTTP proxy, HTTP through port (multiplex) 80, and HTTP
4 through port (multiplex) 8080.

5
6 35. (Currently amended) A method as recited in claim 31 ~~12~~,
7 wherein the digital media data comprises multimedia data.

8
9 36. (Currently amended) A method as recited in claim 31 ~~12~~,
10 wherein the digital media data is selected from a group consisting of video and
11 audio data.

12
13 37. (Currently amended) A method facilitating the transmission of
14 streamed digital media data from a server, the server being configured for
15 coupling to a client via a computer network, the method comprising:

16 sending multiple communications requests to a server from a client, each
17 such requests employing a different differing network protocols and each such
18 requests requesting request that the server respond to such each request using the
19 same network protocol employed by that requests; and

20 receiving monitoring reception of one or more responses from the server,
21 wherein each of such responses corresponds to one of the multiple requests and
22 each of such responses employs the same network protocol employed by its
23 corresponding request.

24
25

1 38. (Currently amended) A method as recited in claim 37 ~~18~~
2 further comprising determining selecting a "most advantageous" protocol amongst
3 network protocols employed by the responses from the server.

4

5 39. (Currently amended) A method as recited in claim 37 ~~18~~
6 further comprising determining selecting a "most advantageous" protocol amongst
7 network protocols employed by the responses from the server, wherein the "most
8 advantageous" protocol has been predefined as such and has an associated "most
9 advantageous" priority, and wherein the determining comprises selecting a
10 network protocol having the "most advantageous" priority wherein the differing
11 network protocols have an associated "most advantageous" priority associated
12 therewith.

13

14 40. (Currently amended) A method as recited in claim 37 ~~18~~,
15 wherein the multiple communications requests are sent substantially in parallel.

16

17 41. (Currently amended) A method as recited in claim 37 ~~18~~,
18 wherein the multiple communications requests are sent substantially concurrently.

19

20 42. (Currently amended) A method as recited in claim 37 ~~18~~,
21 wherein the multiple communications requests are sent within a bounded time
22 frame.

23

24 43. (Currently amended) A method as recited in claim 37 ~~18~~,
25 wherein the network protocols employed are selected from a group consisting of

1 TCP, UDP, HTTP, HTTP proxy, HTTP through port (multiplex) 80, and HTTP
2 through port (multiplex) 8080.

3
4 44. (Currently amended) A method as recited in claim 37 ~~18~~,
5 wherein the digital media data comprises multimedia data.

6
7 45. (Currently amended) A method as recited in claim 37 ~~18~~,
8 wherein the digital media data is selected from a group consisting of video and
9 audio data.

10
11 46. (Currently amended) A server system facilitating the
12 transmission of streamed digital media data via a computer network, the system
13 comprising:

14 a receiver configured to receive multiple communications requests from a
15 client, such requests employing differing network protocols; and

16 a responder configured to respond to one of the requests using the same
17 network protocol employed by that request.

18
19 47. (Currently amended) A system as recited in claim 46 ~~27~~,
20 wherein the responder is further configured to respond to each request using the
21 network protocol associated with each request.

22
23 48. (Currently amended) A system as recited in claim 46 ~~27~~,
24 wherein the multiple communications requests are received substantially
25 concurrently.

1
2 49. (Currently amended) A system as recited in claim 46 27,
3 wherein the network protocols employed are selected from a group consisting of
4 TCP, UDP, HTTP, HTTP proxy, HTTP through port (multiplex) 80, and HTTP
5 through port (multiplex) 8080.
D. Compt

6
7 50. (Currently amended) A system as recited in claim 46 27,
8 wherein the digital media data comprises multimedia data.

9
10 51. (Currently amended) A system as recited in claim 46 27,
11 wherein the digital media data is selected from a group consisting of video and
12 audio data.

13
14 52. (Currently amended) A client system facilitating the
15 transmission of streamed digital media data via a computer network, the system
16 comprising:
17

18 a transmitter configured to send multiple communications requests to a
19 server, each such request employing a different differing network protocols and
requesting that the server respond using the same network protocol employed by
that request; and

20
21 a monitor configured to receive one or more responses from the server,
22 wherein each of-such responses corresponds to one or more of the multiple
23 requests and each of-such responses employs the same network protocol employed
24 by its corresponding request.

1 53. (Currently amended) A system as recited in claim 52 ~~33~~
2 further comprising a protocol selector configured to select a "most advantageous"
3 protocol amongst network protocols employed by the responses from the server.

4
5 54. (Currently amended) A system as recited in claim 52 ~~33~~
6 wherein the "most advantageous" protocol has been predefined as such and has an
7 associated "most advantageous" priority, the protocol selector configured to select
8 the "most advantageous" protocol based on the "most advantageous" priority
9 further comprising a protocol selector configured to select a "most advantageous"
10 protocol amongst network protocols employed by the responses from the server,
11 wherein the differing network protocols have an associated "most advantageous"
12 priority associated therewith.

13
14 55. (Currently amended) A system as recited in claim 52 ~~33~~,
15 wherein the transmitter is further configured to send multiple communications
16 requests substantially in parallel.

17
18 56. (Currently amended) A system as recited in claim 52 ~~33~~,
19 wherein the transmitter is further configured to send multiple communications
20 requests substantially concurrently.

21
22 57. (Currently amended) A system as recited in claim 52 ~~33~~,
23 wherein the transmitter is further configured to send multiple communications
24 requests within a bounded time frame.

1 58. (Currently amended) A system as recited in claim 52 33,
2 wherein the network protocols employed are selected from a group consisting of
3 TCP, UDP, HTTP, HTTP proxy, HTTP through port (multiplex) 80, and HTTP
4 through port (multiplex) 8080.

5
6 59. (Currently amended) A system as recited in claim 52 33,
7 wherein the digital media data comprises multimedia data.

8
9 60. (Currently amended) A system as recited in claim 52 33,
10 wherein the digital media data is selected from a group consisting of video and
11 audio data.

12
13 61. (New) A method comprising:
14 sending multiple requests to a server from a client, each request employing
15 a different network protocol and requesting that the server respond using the same
16 network protocol employed by that request;
17 receiving one or more responses from the server, wherein each response
18 corresponds to one of the multiple requests and each response employs the same
19 network protocol employed by its corresponding request;
20 determining if a predefined "best" network protocol is employed by a
21 response from the server; and
22 if the predefined "best" network protocol is employed by a response from
23 the server, saving parameters pertaining to the predefined "best" network protocol
24 to enable the client to communicate with the server in future communications
25 using the predefined "best" network protocol.

1
2 62. (New) A method as recited in claim 61, further comprising:

3 if the predefined "best" network protocol is not employed by a response
4 from the server, selecting a "most advantageous" network protocol employed by a
5 response from the server; and

6 conducting future communications between the client and the server using
7 the "most advantageous" network protocol.

8
9 63. (New) A method as recited in claim 62, further comprising:

10 determining that the "most advantageous" network protocol is no longer
11 appropriate;

12 ascertaining a new "most advantageous" network protocol employed by a
13 response from the server; and

14 conducting future communications between the client and the server using
15 the new "most advantageous" network protocol.

16
17 64. (New) A method as recited in claim 62, wherein the client and
18 the server comprise a computer network that employs a network topology, and
19 wherein the determining comprises discovering that the network topology has
20 changed.