

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No....... JTT20150500105

FCC ID...... 2AEP7N401

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... May 18, 2015

Representative Laboratory Name.: SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

kevim Lin kevim Lin Evic Wang

District, Shenzhen, P.R.China

Testing Laboratory Name Shenzhen Academy of Metrology and Quality Inspection

Address No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China

Applicant's name...... Noblex Argentina S.A.

Address Jaramillo 3670 – CIUDAD AUTONOMA DE BUENOS AIRES –

ARGENTINA

Test specification:

Standard FCC Part 15.247: Operation within the bands 902-928 MHz.

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD as copyright owner and source of the material. SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTDtakess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Smart Phone

Trade Mark NOBLEX

Manufacturer...... AMER MOBILE CO., LIMITED

Model/Type reference...... N401

Listed Models N/A

Modulation Type DSSS(CCK,DQPSK,DBPSK),OFDM(64QAM,16QAM,QPSK,

BPSK)

Operation Frequency...... From 2412MHz to 2462MHz

Rating: DC 3.70V

Hardware version TMBIc

Result..... PASS

Page 2 of 88 Report No.: JTT20150500105

TEST REPORT

Test Report No. :	JTT20150500105	May 18, 2015
	31120130300103	Date of issue

Equipment under Test : Smart Phone

Model /Type : N401

Listed Models : N/A

Applicant : Noblex Argentina S.A.

Address : Jaramillo 3670 – CIUDAD AUTONOMA DE BUENOS

AIRES – ARGENTINA

Manufacturer AMER MOBILE CO.,LIMITED

Address : Room A30, 9th floor, Silvercorp International Tower No

707-713, Nathan Road, mongkok, Kowloon, Hong Kong

Test Result	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	TEST STANDARDS	<u>4</u>
<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Product Description	5
2.3.	Equipment Under Test	6
2.4.	Description of the test mode	6
2.5.	Short description of the Equipment under Test (EUT)	6
2.6.	EUT operation mode	7
2.7.	EUT configuration	8
2.8.	Internal Identification of AE used during the test	8
2.9.	Related Submittal(s) / Grant (s)	8
2.10.	Modifications	8
2.11.	Test Environments	8
2.12.	NOTE	8
<u>3.</u>	TEST ENVIRONMENT	10
3.1.	Address of the test laboratory	10
3.2.	Test Facility	10
3.3.	Environmental conditions	10
3.4.	Test Description	10
3.5.	Summary of measurement results	11
3.6.	Equipments Used during the Test	12
4.	TEST CONDITIONS AND RESULTS	
4.1.	AC Power Conducted Emission	13
4.2.	Radiated Emission	15
4.3.	Maximum Peak Output Power	24
4.4.	Power Spectral Density	26
4.5.	Band Edge Compliance of RF Emission	35
4.6.	Spurious RF Conducted Emission	57
4.7.	6dB Bandwidth	78
4.8.	Antenna Requirement	87
5	TEST SETUP PHOTOS OF THE FUT	0.0

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2009: American National Standard for Testing Unlicensed Wireless Devices

<u>KDB558074 D01 V03:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Apr 20, 2015
Testing commenced on	:	Apr 21, 2015
Testing concluded on	:	May 20, 2015

2.2. Product Description

The **Noblex Argentina S.A.**'s Model: N401 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Smart Phone		
Model Number	N401		
Modilation Type	GMSK for GSM/GPRS/EDGE, 8-PSK for EDGE only		
Modilation Type	Downlink,QPSK for UMTS		
Antenna Type	Internal		
UMTS Operation Frequency Band	Device supported UMTS FDD Band II and FDD Band V		
	IEEE 802.11b:2412-2462MHz		
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz		
WEAN FCC Operation frequency	IEEE 802.11n HT20:2412-2462MHz		
	IEEE 802.11n HT40:2422-2452MHz		
BT FCC Operation frequency	2402MHz-2480MHz		
HSDPA Release Version	Release 10		
HSUPA Release Version	Release 6		
DC-HSUPA Release Version	Not Supported		
WCDMA Release Version	R99		
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)		
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)		
WEAR FCC Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)		
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)		
BT Modulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)		
Hardware version	TMBIc		
Software version	Newsan_NOBLEX_AR_SW_V1.0_HW_V1.0_20150417		
Android version	Android 4.4.2		
GPS function	Supported		
WLAN	Supported 802.11b/802.11g/802.11n		
Bluetooth	Supported BT 4.0/BT 3.0+EDR		
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE		
GSM/EDGE/GPRS Power Class	GSM900:Power Class 4/DCS1800:Power Class 1		
GSM/EDGE/GPRS Operation Frequency	GSM900 :880MHz-915MHz/DCS1800:1710MHz-1785MHz		
GSM/EDGE/GPRS Operation Frequency	GSM900/DCS1800/GPRS900/ GPRS		
Band	1800/EDGE900/EDGE1800		
GSM Release Version	R99		
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12		
Extreme temp. Tolerance	-30°C to +50°C		
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)		
GPRS operation mode	Class B		

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	 0	120V / 60 Hz	0	115V / 60Hz
	0	12 V DC	0	24 V DC
	•	Other (specified in blank below)		

DC 3.70V

2.4. Description of the test mode

IEEE 802.11b/g/n: The product support Third channels but only use Eleventh channels in USA.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

2.5. Short description of the Equipment under Test (EUT)

2.5.1 General Description

N401 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band II, Band V; The GSM/GPRS/EDGE (EDGE downlink only) frequency and includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Smart Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5.2 Test Modes

Test Case	Test Conditions			
Test Case	Configuration	Description		
DTS (6 dB) Bandwidth	Measurement Method	FCC KDB 558074 §8.2 Option 2		
, ,	Test Environment	NTNV		
	EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H 11n HT40_L, 11n HT40_M, 11n HT40_H		
	Measurement Method	FCC KDB 558074§9.1.2		
	Test Environment	NTNV		
Maximum Peak Conducted Output	Test Setup	Test Setup 1		
Power Peak Conducted Output	EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H 11n HT40_L, 11n HT40_M, 11n HT40_H		
	Measurement Method	FCC KDB 558074 §10.2 (peak PSD).		
	Test Environment	NTNV		
Maximum Power Spectral Density Level	EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H 11n HT40_L, 11n HT40_M, 11n HT40_H		
Unwanted Emissions into Non-	Measurement Method	FCC KDB 558074§11.0.		
Restricted Frequency Bands	Test Environment	NTNV		

Page 7 of 88 Report No.: JTT20150500105

	Test Setup	Test Setup 1
	EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H 11n HT40_L, 11n HT40_M, 11n HT40_H
	Measurement Method	FCC KDB 558074§12.2, Conducted (antenna-port).
Unwanted Emissions into Restricted	Test Environment	NTNV
Frequency Bands (Conducted)	EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H 11n HT40_L, 11n HT40_M, 11n HT40_H
Unwanted Emissions into Restricted	Measurement Method	FCC KDB 558074§12.1,Radiated(cabinet/case emissions with Impedance matching for antenna-port).
	Test Environment	NTNV
	EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H 11n HT40_L, 11n HT40_M, 11n HT40_H

Test Case	Test Conditions		
Test Case	Configuration	Description	
AC Power Line Conducted	Measurement Method	AC mains conducted.	
Emissions	Test Environment	NTNV	
	EUT Configuration	11g_M (Worst Conf.).	

Note: 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

2. Typical working modes for each IEEE 802.11mode are selected to perform tests. The manufacturer provide special test software to control TX duty cycle >98% for TX test; recorded worst case at difference data rate as follows:

Test Mode	Test Modes Description
11b	IEEE 802.11b with data rate of 1 Mbps using SISO mode.
11g	IEEE 802.11g with data rate of 6 Mbps using SISO mode.
11n HT20	IEEE 802.11n with data date of MCS0 and bandwidth of 20MHz using SISO mode.
11n HT40	IEEE 802.11n with data date of MCS7 and bandwidth of 40MHz using SISO mode.

2.6. EUT operation mode

Test Mode	RF Ch.	BG Port	TX Freq. [MHz]	RX Freq. [MHz]	Ch. BW [MHz]
		BG 1	Ch No. 1 /		20
	L	BG2	2412MHz		20
11b	М	BG 1	Ch No. 6 / 2437		20
110	IVI	BG2	MHz		20
	Н	BG 1	Ch No. 11/		20
	П	BG2	2462MHz		20
	L	BG 1	Ch No. 1 /		20
		BG2	2412MHz		20
44	M H	BG 1	Ch No. 6 / 2437		20
11g		BG2	MHz		20
		BG 1	Ch No. 11/		20
	П	BG2	2462MHz		20
	L	BG 1	Ch No. 1 /		20
		BG2	2412MHz		20
115 UT00	N/I	BG 1	Ch No. 6 / 2437		20
11n HT20	M	BG2	MHz		20
	н —	BG 1	Ch No. 11/		20
		BG2	2462MHz		20

Page 8 of 88 Report No.: JTT20150500105

11n HT40	ı	BG 1	Ch No. 3/	 40
	L	BG2	2422MHz	 40
	M H	BG 1	Ch No. 6 / 2437	 40
		BG2	MHz	 40
		BG 1	Ch No. 9/ 2452	 40
		BG2	MHz	 40

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer:	/
		Model No.:	/

2.8. Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1

Model: S005UA0500100

INPUT: 100-240V 50/60Hz 0.15A OUTPUT: DC 5.0V,1000mAh

2.9. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AEP7N401** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.10. Modifications

No modifications were implemented to meet testing criteria.

2.11. Test Environments

NOTE: The values used in the test report maybe stringent than the declared.

Environment Parameter	Selected Values During Tests					
NTNV	Temperature	Voltage	Relative Humidity			
	Ambient	3.7VDC	Ambient			

2.12. NOTE

1. The EUT is a Mobile Phone with WCDMA/GSM/GPRS/EDGE, WiFi and Bluetooth function, The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24	JTT20150500101
WCDMA	FCC Part 22/FCC Part 24	JTT20150500102
Bluetooth	FCC Part 15 C 15.247	JTT20150500103
BLE	FCC Part 15 C 15.247	JTT20150500104
WiFi	FCC Part 15 C 15.247	JTT20150500105
USB Port	FCC Part 15 B	JTT20150500106
SAR	FCC Part 2 §2.1093	JTT20150500107

^{*}AE ID: is used to identify the test sample in the lab internally.

Page 9 of 88 Report No.: JTT20150500105

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850				
802.11b	\checkmark	_	_	_				
802.11g	√	_	_	_				
802.11n HT20	√	_	_	_				
802.11n HT40	\checkmark	_	_	_				

3. The EUT incorporates a SISO function, Physically, the EUT provides one completed transmitter and one completed receiver.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n HT20	1TX
802.11n HT40	1TX

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Academy of Metrology and Quality Inspection

No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration information:

Shenzhen Academy of Metrology and Quality Inspection No.4 TongFa Road, Xili TownNanshan District, Shenzhen, China Test Firm FCC Registration number: 806614

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Test Description

Test Item	FCC Part No.	Requirements	Verdict
DTS (6 dB) Bandwidth	15.247(a)(2)	≥ 500 kHz.	PASS
Maximum Peak Conducted Output Power	15.247(b)(3)	For directional gain:< 30dBm – (G[dBi] –6 [dB]),peak; Otherwise :< 30dBm, peak.	PASS
Maximum Power Spectral Density Level	15.247(e)	For directional gain :< 8dBm/3 kHz – (G[dBi] –6[dB]), peak. Otherwise :< 8dBm/3 kHz, peak.	PASS
Band Edges Compliance	15.247(d)	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Unwanted Emissions into Non- Restricted Frequency Bands	15.247(d)	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Unwanted Emissions into Restricted Frequency Bands (Conducted)	15.247(d) 15.209	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Unwanted Emissions into Restricted Frequency Bands (Radiated)	15.247(d) 15.209	FCC Part 15.209 field strength limit;	PASS
AC Power Line Conducted Emissions	15.207	FCC Part 15.207 conducted limit;	PASS

Remark: The measurement uncertainty is not included in the test result.

3.5. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Record In Rep		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	802.11b	✓ Lowest✓ Middle✓ Highest	802.11b	 Lowest Middle Highest	\boxtimes				complies
§15.247(e)	Power spectral density	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth – 6 dB bandwidth	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(b)(1)	Maximum output power	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(d)	Band edge compliance conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	⊠ Lowest ⊠ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40		\boxtimes				complies
§15.205	Band edge compliance radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	⊠ Lowest ⊠ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions conducted	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	802.11b 802.11g 802.11n HT20 802.11n HT40	☑ Lowest☑ Middle☑ Highest	802.11b	☑ Lowest☑ Middle☑ Highest	\boxtimes				complies
§15.109	RX spurious emissions radiated	-/-	-/-	-/-	-/-	\boxtimes				complies
§15.209(a)	TX spurious Emissions radiated < 30 MHz	802.11b	-/-	802.11b	-/-					complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	802.11b	-/-	802.11b	-/-	\boxtimes				complies

Remark:

- The measurement uncertainty is not included in the test result.
 NA = Not Applicable; NP = Not Performed

3.6. Equipments Used during the Test

No.	Equipment	Manufacturer	Model No.	Last Cal.
SB2603	EMI Test Receiver	Rohde & Schwarz	ESCS30	Dec.19, 2014
SB3321	AMN	Rohde & Schwarz	ESH2-Z5	Jan.18, 2015
SB2604	AMN	Rohde & Schwarz	ESH3-Z5	Nov.18, 2014
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	Mar.19, 2015
SB8501/04	Bilog Antenna	Schwarzbeck	VULB9163	Mar.19, 2015
SB3435	Horn Antenna	Rohde & Schwarz	HF906	Jan.19, 2015
SB3435/01	Amplifier(1-18GHz)	Rohde & Schwarz		Jan.19, 2015
SB3435/02	Amplifier(18-40GHz)	Rohde & Schwarz		Jan.19, 2015
SB5392/02	Horn Antenna	Amplifier Research	AT4560	Jan.19, 2015
SB3450/01	3m Semi-anechoic chamber	Albatross Projects	9X6X6	Oct.09, 2014
SB3345	Loop Antenna	Schwarzbeck	FMZB1516	Jan.20,2015
SB3437	Power meter	Rohde & Schwarz	NRVD	Jul.03,2014
SB3437/01	Power sensor	Rohde & Schwarz	URV5-Z2	Jul.03,2014
SB9721/02	Signal Analyzer	Agilent	N9020A	Jan.05,2014
N/A	EMI TEST Software	Rohde&Schwarz	ESK1	N/A
N/A	EMI TEST Software	Rohde&Schwarz	EMC32	N/A

The Cal.Interval was one year

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2. Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguanav	Maximum RF Line Voltage (dBμV)						
Frequency (MHz)	CLA	SS A	CLASS B				
(IVITIZ)	Q.P. Ave.		Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

The AC Power Conducted Emission measurement is performed the each test mode (b/g/n) and channel (low/mid/high), the datum recorded below (802.11b mode, the middle channel) is the worst case for all the test modes and channels.

Fraguenay	QP	QP	AV	AV	QP	AV	Factor	QP	AV	Dhasa
Frequency	level	Limit	level	Limit	read	read	racioi	margin	margin	Phase
0.162	39.5	65.4	26.3	55.4	29.8	16.6	9.7	25.9	29.1	NEUTRAL
0.39	38.6	58.1	28.3	48.1	28.9	18.6	9.7	19.5	19.8	NEUTRAL
1.718	40.9	56.0	30.5	46.0	31.1	20.7	9.8	15.1	15.5	NEUTRAL
2.358	39.1	56.0	28.5	46.0	29.2	18.6	9.9	16.9	17.5	NEUTRAL
2.518	38.6	56.0	27.8	46.0	28.7	17.9	9.9	17.4	18.2	NEUTRAL
19.596	36.6	60.0	26.11	50.0	26.7	16.21	9.9	23.4	23.89	NEUTRAL

Fraguency	QP	QP	AV	AV	QP	AV	Factor	QP	AV	Phase
Frequency	level	Limit	level	Limit	read	read		margin	margin	riiase
0.358	36.1	58.8	26.4	48.8	26.4	16.7	9.7	29.3	29.0	LINE
0.722	30.7	56.0	21.8	46.0	20.9	12.0	9.8	27.4	26.3	LINE
1.626	35.8	56.0	23.8	46.0	26.0	14.0	9.8	20.2	22.2	LINE
2.382	31.6	56.0	19.9	46.0	21.7	10	9.9	24.4	26.1	LINE
2.594	33.1	56.0	20.3	46.0	23.2	10.4	9.9	22.9	25.7	LINE
15.011	31.8	60.0	20	50.0	21.9	10.1	9.9	28.2	30.0	LINE

4.2. Radiated Emission

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768 KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
1047 40047	Sweep time=Auto	(Receiver)
1GHz-40GHz	Average Value: RBW=1MHz/VBW=3MHz,	
	Sweep time=Auto	(Receiver)

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. The radiated measurement are performed the each test mode (b/g/n) and channel (low/mid/high), the datum recorded below (802.11b mode, the middle channel) is the worst case for all the test mode and channel.
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.
- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. We tested both battery powered and powered by adapter charging mode at three orientate ons, recorded worst case at powered by adapter charging mode.
- 5. "---" means not recorded as emission levels lower than limit.
- 6. Margin= Limit Level

For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
12.00	43.31	69.54	26.23	QP	PASS
24.00	46.08	69.54	23.46	QP	PASS

For 30MHz to 1000MHz

Frequency	Polarity	cable loss	Antenna factor	Readings	Level	Limit	Margin
(MHz)	1 Glarity	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
30	Vertical	0.6	12.3	40.2	28.5	43.5	15
55.27	Vertical	0.8	13.0	32.8	20.6	43.5	22.9
74.709	Vertical	1.0	8.7	31.5	23.8	43.5	19.7
84.428	Vertical	0.9	8.5	33.2	25.6	43.5	17.9
267.154	Vertical	1.9	12.1	30.6	20.4	46.0	25.6
284.649	Vertical	2.0	12.7	33.1	22.4	46.0	23.6
74.709	Horizontal	1.0	8.7	29.8	22.1	43.5	21.4
80.541	Horizontal	0.9	8.5	32.1	24.5	43.5	19
84.428	Horizontal	0.9	8.5	31.3	23.7	43.5	19.8
175.791	Horizontal	1.5	9.0	25	17.5	46.0	28.5
274.929	Horizontal	1.9	12.1	35.9	25.7	46.0	20.3
282.705	Horizontal	2.0	12.7	39.5	28.8	46.0	17.2

For 1GHz to 25GHz

Note:We tested 11b,11g,11n HT20,11n HT40 and rcorded the worst case at the 11b Mode.

Frequency in GHz

Frequency in GHz

Frequency in GHz

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. For Wireless 802.11b mode at 1Mbps.

Page 24 of 88 Report No.: JTT20150500105

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to KDB558074 D01 DTS Meas Guidance v03:

PKPM1 Peak power meter method: The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Maximum conducted (average) output power: As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

- 1. The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
- 2. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 3. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.

Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

Remark: We measured output power at difference data rate for each mode and recorded worst case for each mode.

4.3.1 802.11b Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
1	2412	13.44	30	PASS
6	2437	13.52	30	PASS
11	2462	13.59	30	PASS

Note:

- 1. For 802.11b mode at finial test to get the worst-case emission at 1Mbps.
- 2. The test results including the cable lose.

4.3.2 802.11g Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
1	2412	13.88	30	PASS
6	2437	14.57	30	PASS
11	2462	14.20	30	PASS

- 1. For 802.11g mode at finial test to get the worst-case emission at 6Mbps.
- 2. The test results including the cable lose.

4.3.3 802.11n HT20 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
1	2412	13.70	30	PASS
6	2437	14.61	30	PASS
11	2462	14.05	30	PASS

Note:

- 1. For 802.11n HT20 mode at finial test to get the worst-case emission at 6.5Mbps.
- 2. The test results including the cable lose.

4.3.4 802.11n HT40 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
3	2422	11.72	30	PASS
6	2437	13.93	30	PASS
9	2452	11.97	30	PASS

- 1. For 802.11n HT40 mode at finial test to get the worst-case emission at 13.5Mbps.
- 2. The test results including the cable lose.

4.4. Power Spectral Density

TEST CONFIGURATION

TEST PROCEDURE

According to KDB 558074 D01 V03 Method PKPSD (peak PSD) this procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW ≥ 3 RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

4.4.1 802.11b Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2412	4.353	Plot 4.4.1 A	8	PASS
6	2437	3.680	Plot 4.4.1 B	8	PASS
11	2462	3.759	Plot 4.4.1 C	8	PASS

- 1. For 802.11b mode at finial test to get the worst-case emission at 1Mbps.
- 2. The test results including the cable lose.
- B. Test Plots

(Plot 4.4.1 A: Channel 1: 2412MHz @ 802.11b)

(Plot 4.4.1 B: Channel 6: 2437MHz @ 802.11b)

(Plot 4.4.1 C: Channel 11: 2462MHz @ 802.11b)

4.4.2 802.11g Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2412	-1.299	Plot 4.4.2 A	8	PASS
6	2437	-0.332	Plot 4.4.2 B	8	PASS
11	2462	-1.141	Plot 4.4.2 C	8	PASS

- 1. For 802.11g mode at finial test to get the worst-case emission at 6Mbps.
- 2. The test results including the cable lose.
- B. Test Plots

(Plot 4.4.2 A: Channel 1: 2412MHz @ 802.11g)

(Plot 4.4.2 B: Channel 6: 2437MHz @ 802.11g)

(Plot 4.4.2 C: Channel 11: 2462MHz @ 802.11g)

4.4.3 802.11n HT20 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100KHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
1	2412	-1.983	Plot 4.4.3 A	8	PASS
6	2437	-0.461	Plot 4.4.3 B	8	PASS
11	2462	-1.269	Plot 4.4.3 C	8	PASS

- 1. For 802.11n HT20 mode at finial test to get the worst-case emission at 6.5Mbps.
- 2. The test results including the cable lose.
- B. Test Plot

(Plot 4.4.3 A: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.4.3 B: Channel 6: 2437MHz @ 802.11n HT20)

(Plot 4.4.3 C: Channel 11: 2462MHz @ 802.11n HT20)

4.4.4 802.11n HT40 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Report PSD (dBm/100kHz)	Refer to Plot	Limits (dBm/3KHz)	Verdict
3	2422	-6.973	Plot 4.4.4 A	8	PASS
6	2437	-4.938	Plot 4.4.4 B	8	PASS
9	2452	-6.810	Plot 4.4.4 C	8	PASS

Note

- 1. For 802.11n HT40 mode at finial test to get the worst-case emission at 13.5Mbps.
- 2. The test results including the cable lose.
- B. Test Plots

(Plot 4.4.4 A: Channel 3: 2422MHz @ 802.11n HT40))

(Plot 4.4.4 B: Channel 6: 2437MHz @ 802.11n HT40)

(Plot 4.4.4 C: Channel 6: 2452MHz @ 802.11n HT40)

#VBW 300 kHz

Span 53.04 MHz Sweep 5.13 ms (1001 pts)

1 of 2

Center 2.45200 GHz #Res BW 100 kHz

4.5. Band Edge Compliance of RF Emission

TEST REQUIREMENT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a
 EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low
 Channel and High Channel within its operating range, and make sure the instrument is operated in its
 linear range.
- Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360° C to acquire the highest emissions from EUT.

- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed..
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

Test Frequency range	uency range Test Receiver/Spectrum Setting	
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
IGHZ-40GHZ	Sweep time=Auto	(Receiver)
1GHz-40GHz	Average Value: RBW=1MHz/VBW=3MHz,	Average
IGHZ-40GHZ	Sweep time=Auto	(Receiver)

LIMIT

Below -20dB of the highest emission level in operating band. Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

TEST RESULTS

4.5.1 For Radiated Bandedge Measurement

Remark:

1. The Bandedge was measured at difference data rate for each mode and recorded worst case for each mode.

802.11b:

Frequency in MHz

Report No.: JTT20150500105 Test mode: High Channel (Peak) Polarization Horizontal FCC Electric Field Strength 2.4GHz Bandedge-PK

Test mode: High Channel (Peak) Polarization Vertical

FCC Electric Field Strength 2.4GHz Bandedge-PK

Frequency in MHz

2380

2400

2415

2310 2320

2340

2360

Frequency in MHz

FCC Electric Field Strength 2.4GHz Bandedge-AV

802.11n HT20

Low Channel (AV)

Test mode:

Test mode: Polarization Vertical Low Channel (AV)

FCC Electric Field Strength 2.4GHz Bandedge-AV

50-

2458

2470

2480

2490

Frequency in MHz

2500

2510

802.11n HT40

FCC Electric Field Strength 2.4GHz Bandedge-AV

4.5.2 For Conducted Bandedge Measurement

802.11b

(Plot 4.5.2.1 A: Channel 01: 2412MHz @ 802.11 b)

(Plot 4.5.2.1 B: Channel 11: 2462MHz @ 802.11 b)

802.11g

(Plot 4.5.2.2 A: Channel 01: 2412MHz @ 802.11 g)

(Plot 4.5.2.2 B: Channel 11: 2462MHz @ 802.11 g)

802.11n HT20

Plot 4.5.2.3 A: Channel 01: 2412MHz @ 802.11n HT20)

(Plot 4.5.2.3 B: Channel 11: 2412MHz @ 802.11n HT20)

802.11n HT40

(Plot 4.5.2.4 A: Channel 3: 2422MHz@ 802.11n HT40)

(Plot 4.5.2.4 B: Channel 9: 2452MHz @ 802.11n HT40)

4.6. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100 kHz and VBW= 300 KHz to measure the peak field strength, and measure frequency range from 9 KHz to 26.5GHz.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

TEST RESULTS

Remark: The measurement frequency range is from 9 KHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

4.6.1 802.11b Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
1	2412	2.412 GHz	Plot 4.6.1 A1		PASS
		30MHz -3GHz	Plot 4.6.1 A2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.1 A23	-20	PASS
6	2437	2.437 GHz	Plot 4.6.1 B1		PASS
		30MHz -26GHz	Plot 4.6.1 B2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.1 B3	-20	PASS
11	2462	2.462 GHz	Plot 4.6.1 C1		PASS
		30MHz -26GHz	Plot 4.6.1 C2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.1 C3	-20	PASS

Note:

- 1. For 802.11b mode at finial test to get the worst-case emission at 1Mbps.
- 2. The test results including the cable lose.
- 3. For 9KHz -30MHz, Because there was only background, So We did not recorded data.

(Plot 4.6.1 A1: Channel 1: 2412MHz @ 802.11b)

(Plot 4.6.1 A2: Channel 1: 2412MHz @ 802.11b)

Date: 11.MAY.2015 10:30:35

(Plot 4.6.1 A3: Channel 1: 2412MHz @ 802.11b)

(Plot 4.6.1 B1: Channel 6: 2437MHz @ 802.11b)

(Plot 4.6.1 B2: Channel 6: 2437MHz @ 802.11b)

(Plot 4.6.1 C1: Channel 11: 2462MHz @ 802.11b)

(Plot 4.6.1 C2: Channel 11: 2462MHz @ 802.11b)

Date: 11.MAY.2015 10:32:11

(Plot 4.6.1 C3: Channel 11: 2462MHz @ 802.11b)

4.6.2 802.11g Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
1	2412	2.412 GHz	Plot 4.6.2 A1		PASS
		30MHz -3GHz	Plot 4.6.2 A2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.2 A3	-20	PASS
6	2437	2.412 GHz	Plot 4.6.2 B1		PASS
		30MHz -3GHz	Plot 4.6.2 B2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.2 B3	-20	PASS
11	2462	2.412 GHz	Plot 4.6.2 C1		PASS
		30MHz -3GHz	Plot 4.6.2 C2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.2 C3	-20	PASS

Note:

- 1. For 802.11g mode at finial test to get the worst-case emission at 6Mbps.
- 2. The test results including the cable lose.
- 3. For 9KHz -30MHz, Because there was only background, So We did not recorded data.
- B. Test Plots

(Plot 4.6.2 A1: Channel 1: 2412MHz @ 802.11g)

(Plot 4.6.2 A2: Channel 1: 2412MHz @ 802.11g)

Date: 11.MAY.2015 10:35:17

(Plot 4.6.2 A3: Channel 1: 2412MHz @ 802.11g)

(Plot 4.6.2 B2: Channel 6: 2437MHz @ 802.11g)

(Plot 4.6.2 C1: Channel 11: 2462MHz @ 802.11g)

(Plot 4.6.2 C2: Channel 11: 2462MHz @ 802.11g)

Date: 11.MAY.2015 10:37:39

(Plot 4.6.2 C3: Channel 11: 2462MHz @ 802.11g)

4.6.3 802.11n HT20MHz Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
1	2412	2.412 GHz	Plot 4.6.3 A1		PASS
		30MHz -3GHz	Plot 4.6.3 A2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.3 A3	-20	PASS
6	2437	2.412 GHz	Plot 4.6.3 A1		PASS
		30MHz -3GHz	Plot 4.6.3 A2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.3 A3	-20	PASS
11	2462	2.412 GHz	Plot 4.6.3 A1		PASS
		30MHz -3GHz	Plot 4.6.3 A2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.3 A3	-20	PASS

Note:

- 1. For 802.11n HT20MHz mode at finial test to get the worst-case emission at 6.5Mbps.
- 2. The test results including the cable lose.
- 3. For 9KHz -30MHz,Because there was only background, So We did not recorded data.
- B. Test Plots

(Plot 4.6.3 A1: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.6.3 A2: Channel 1: 2412MHz @ 802.11n HT20)

Date: 11.MAY.2015 10:38:17

(Plot 4.6.3 A3: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.6.3 B1: Channel 6: 2437MHz @ 802.11n HT20)

(Plot 4.6.3 B2: Channel 6: 2437MHz @ 802.11n HT20)

(Plot 4.6.3 C1: Channel 11: 2462MHz @ 802.11n HT20)

(Plot 4.6.3 C2: Channel 11: 2462MHz @ 802.11n HT20)

Date: 11.MAY.2015 10:39:29

(Plot 4.6.3 C2: Channel 11: 2462MHz @ 802.11n HT20)

4.6.4 802.11n HT40MHz Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
3	2422	2.412 GHz	Plot 4.6.4 A1		PASS
		30MHz -3GHz	Plot 4.6.4 A2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.4 A3	-20	PASS
6	2437	2.412 GHz	Plot 4.6.4 B1		PASS
		30MHz -3GHz	Plot 4.6.4 B2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.4 B3	-20	PASS
9	2452	2.412 GHz	Plot 4.6.4 C1		PASS
		30MHz -3GHz	Plot 4.6.3 C2	-20	PASS
		3GHz-26.5 GHz	Plot 4.6.3 C3	-20	PASS

Note:

- 1. For 802.11n HT40MHz mode at finial test to get the worst-case emission at 13.5Mbps.
- 2. The test results including the cable lose.
- 3. For 9KHz -30MHz, Because there was only background, So We did not recorded data.
- B. Test Plots

(Plot 4.6.4 A1: Channel 3: 2422MHz @ 802.11n HT40)

(Plot 4.6.4 A2: Channel 3: 2422MHz @ 802.11n HT40)

Date: 11.MAY.2015 10:41:29

(Plot 4.6.4 A3: Channel 3: 2422MHz @ 802.11n HT40)

(Plot 4.6.4 B1: Channel 6: 2437MHz @ 802.11n HT40)

(Plot 4.6.4 B2: Channel 6: 2437MHz @ 802.11n HT40)

(Plot 4.6.4 C1: Channel 9: 2452MHz @ 802.11n HT40)

Sweep 5.13 ms (1001 pts)

#VBW 300 kHz

(Plot 4.6.4 C2: Channel 9: 2452MHz @ 802.11n HT40)

Date: 11.MAY.2015 11:45:06

(Plot 4.6.4 C2: Channel 9: 2452MHz @ 802.11n HT40)

4.7. 6dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 V03 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST RESULTS

4.7.1 801.11b Test Mode

A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
1	2412	10.03	Plot 4.7.1 A	≥500	PASS
6	2437	10.03	Plot 4.7.1 B	≥500	PASS
11	2462	10.03	Plot 4.7.1 C	≥500	PASS

Note

- 1. For 802.11b mode at finial test to get the worst-case emission at 1Mbps.
- 2. The test results including the cable lose.

B. Test Plots

(Plot 4.7.1 A: Channel 1: 2412MHz @ 802.11b)

(Plot 4.7.1 B: Channel 6: 2437MHz @ 802.11b)

Report No.: JTT20150500105

(Plot 4.7.1 C: Channel 11: 2462MHz @ 802.11b)

4.7.2 801.11g Test Mode

A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
1	2412	15.31	Plot 4.7.2 A	≥500	PASS
6	2437	15.45	Plot 4.7.2 B	≥500	PASS
11	2462	15.66	Plot 4.7.2 C	≥500	PASS

Note:

- 1. For 802.11g mode at finial test to get the worst-case emission at 6Mbps.
- 2. The test results including the cable lose.
- B. Test Plots

(Plot 4.7.2 A: Channel 1: 2412MHz @ 802.11g)

(Plot 4.7.2 B: Channel 6: 2437MHz @ 802.11g)

Report No.: JTT20150500105

(Plot 4.7.2 C: Channel 11: 2462MHz @ 802.11g)

4.7.3 801.11n HT20 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
1	2412	15.70	Plot 4.7.3 A	≥500	PASS
6	2437	16.13	Plot 4.7.3 B	≥500	PASS
11	2462	16.26	Plot 4.7.3 C	≥500	PASS

Note:

- 1. For 802.11n HT20 mode at finial test to get the worst-case emission at 6.5Mbps.
- 2. The test results including the cable lose.
- B. Test Plots

(Plot 4.7.3 A: Channel 1: 2412MHz @ 802.11n HT20)

(Plot 4.7.3 B: Channel 6: 2437MHz @ 802.11n HT20)

(Plot 4.7.3 C: Channel 11: 2462MHz @ 802.11n HT20)

4.7.4 801.11n HT40 Test Mode

A. Test Verdict

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Verdict
3	2422	35.17	Plot 4.7.4 A	≥500	PASS
6	2437	35.44	Plot 4.7.4 B	≥500	PASS
9	2452	35.36	Plot 4.7.4 C	≥500	PASS

Note:

- 1. For 802.11n HT40 mode at finial test to get the worst-case emission at 13.5Mbps.
- 2. The test results including the cable lose.
- B. Test Plots

(Plot 4.7.4 A: Channel 3: 2422MHz @ 802.11n HT40)

(Plot 4.7.3 B: Channel 6: 2437MHz @ 802.11n HT40

gilent Spectrum Analyzer - Occupied BW

(Plot 4.7.4 C: Channel 9: 2452MHz @ 802.11n HT40)

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Measurement

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.For normal WLAN devices, the DSSS mode is used.

Measurement parameters

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1MHz	
Video bandwidth:	3MHz	
Trace-Mode:	Max hold	

Limits

FCC	IC			
Antenna Gain				
6 dBi				

Results

T _{nom}	V _{nom}	Lowest Channel 2412 MHz	Middle Channel 2437 MHz	Highest Channel 2462 MHz	
Conducted power [dBm] Measured with DSSS modulation		6.44	5.89	5.93	
Conducted power [dBm] Measured with DSSS modulation		5.87	6.22	6.15	
Gain [dBi] Calculated		-0.57	0.33	0.22	
Measurement uncertainty		\pm 0.6 dB (cond.) / \pm 2.56 dB (rad.)			

5. Test Setup Photos of the EUT

.....End of Report.....