一、 选择题

4_13. (A) 下列关	于平均能流密	度矢量 <i>\$</i>	业的公式,	不正确的	是。	Ď.
A.	$\vec{S}_{av} = \vec{S}_{av}$	$ec{E}\! imes\!ec{H}$		B. $\vec{S}_{av} =$	$= \frac{1}{T} \int_0^T \vec{E} \times \vec{H}$	$\hat{d}dt$		
C.	$\vec{S}_{av} = \frac{1}{2}$	$\frac{1}{2}\operatorname{Re}(\vec{E}\times\vec{E})$	$\hat{I}^*ig)$	D. \vec{S}_{av}	$= \frac{1}{2} \operatorname{Re} \left(\vec{E}^* \right)$	$\langle ec{H} ig)$		
4_14. (C)已知磁	放介质的磁导	率为 μ=	μ' – j μ ",	该磁介质	的损耗角	正切
为_		0						
A.	$\frac{\mu'}{\mu''}$	В	$. \tan \frac{\mu'}{\mu''}$	C.	$\frac{\mu"}{\mu'}$	D. ta	$n\frac{\mu''}{\mu'}$	
6_13.(В)平行极位	化入射波是指	入射波的	电场强度	矢量与入界	計面	_ 0
A.	无确定	已关系	B. 平行		C. 垂直	D.	不共面	
6_14. (D) 平面电	磁波在媒质分	界面发生	上反射与透	射时,下	列叙述正	确的
_								
		系数一定大			透射系数			
		《数一定小			透射系数			
4_11. (В)在一定的	的频率范围内	,下列	为弱与	寻电媒 质。	•	
A.	$\sigma >> 0$	$\omega\varepsilon$ B.	$\sigma << \omega \varepsilon$	C. σ<<	< ωμ D	$\sigma >> \omega$	μ	
4_12. (D)在时变印	电磁场中,电	场强度 <i>Ē</i>	与电位 φ 自	的关系为_		
A.	$\vec{E} = \frac{\partial z}{\partial z}$	$\frac{\vec{A}}{t} + \nabla \varphi$	B. $\vec{E} = \nabla \varphi$	C. <i>Î</i>	$\vec{E} = -\nabla \varphi$	D. $\vec{E} =$	$= -\frac{\partial \vec{A}}{\partial t} - \nabla \varphi$)
6_11.(C)波长为。	λ = 0.2μm 的 [±]	均匀平面	波从自由空	Z间垂直 <i>)</i>	、射到理想	导体
的	分界面	ī上, 经导	异体反射后,	第一个	电场 $ \vec{E}(z) $	波腹点	到导体的	距离
为 <u></u>	o							
A.	0.1μm	l	Β. 0.2μm	C.	0.05µm	D	. 0.15μm	
6_12.(В)现有两种	中本征阻抗分	别为 $\eta_{_1}$ 和	η_2 的理想 2	介质(媒质	质1和媒质	į́2),
假	设平面	电磁波从	媒质 1 垂直入	射到媒质	[2表面上,	则反射	系数为	o
A.	$\Gamma = -\frac{1}{\eta}$	$\frac{2\eta_2}{\eta_2 + \eta_1}$	B. $\Gamma = \frac{\eta_2 - \eta_2}{\eta_2 + \eta_2}$	$\frac{\eta_1}{\eta_1}$ C.	$\Gamma = \frac{2\eta_1}{\eta_1 + \eta_2}$	${\partial_2}$ D.	$\Gamma = \frac{\eta_1 - \eta_2}{\eta_1 + \eta_2}$	$\frac{\eta_2}{\eta_2}$

4_7.	(В)	下面关	于坡	印廷结	天量 <i>Š</i>	的正	确表	达式	为	o			
	A.	$\vec{S} =$	\vec{H} >	$\prec ec{E}$	В	$\vec{S} =$	$\vec{E} \times \vec{H}$	Ť	C.	\vec{S} =	$= \vec{E} \cdot \vec{H}$		D. \vec{S}	$=\vec{H}$	$\cdot ar{E}$
4_8.	(C) i	已知海	水的	电导率	$oxed{\mathbb{Z}}$ 为 σ	=4S	/m,	相对	讨介电'	常数为	$\varepsilon_r = 81$	l,那	3么海
	水石	生频:	率]	f = 1 kH	Iz时是	Ē	0								
6_7.	(В)	均匀平								本表面			
		是 左羽		_。 导体表	洒亼	出出 1	ZITV 다	沙山 胎	í						
		-		サやへ 介质-					-	昌 至	2年 0				
		•		カ灰 导体表						里刁	F 1 0				
		•								量不	等于(0			
6_8.	(D)	雷达天	线罩	采用_		_的结	构来	消防	余天线 罩	罩对电荷	磁波的	反射	
	A.	1/4 ∛	皮长	匹配尼	昱			В.	半反射	射匹	配层				
	C.	全反	射	匹配层	!			D.	半波	长介	质窗				
4_15	5. (A)	对电码	兹波而	i言,	媒质も	身电性	上的强	弱日	$ \pm \frac{\sigma}{\omega \varepsilon} $	快定。当	$\frac{\sigma}{\omega \varepsilon}$	<1时	寸,该
				 媒质		В.	半导位	'本		C.	良导位	<u></u> ‡	D.	绝缘	象体
4_10). (C)	电场	强度 Ē	$\hat{c} = -\vec{e}$	$_{x}$ j $E_{0}e^{-}$	·jkz 的	瞬时值	直形	式为_	o			
	A.	\vec{E} =	$\vec{e}_{x}E$	$E_0 \cos \left(-\frac{1}{2} \cos ($	ωt − k	$z+\frac{\pi}{2}$			В.	\vec{E} =	$=\vec{e}_x jE_0$	$\cos(\omega t)$	-kz)		
	C.	$\vec{E} =$	$\vec{e}_x E$	$Z_0 \cos \left(\frac{1}{2} \right)$	ωt − k.	$z-\frac{\pi}{2}$			D.	. $ec{E}$	$=-\vec{e}_x$ j I	$E_0 \cos(a$	$\omega t - kz$)	
6_15	长的	的媒	质后	言,若[能消除		1表	面上的	的反射	寸,	则称这	一层厚。			
				匹配层	•						媒质窗				
	C.	1/4 ৠ	支长	:匹配层	를			D). 半力	又射	匹配层	7			
6_16	5. (A	.)	现有问	两种才	下征阻	抗分	别为1	η_1 和 η	的2的	理想介	质(媒	质 1 禾	口媒质	5 2),
	假i	分平	面申	直磁波	从媒质	長1垂	直入	射到如	媒质 2	2表	面上,	则透射	系数	内	o
	A.	Γ=	$=\frac{2}{\eta_2}$	$\frac{2\eta_2}{+\eta_1}$	В.	Γ=	$\frac{\eta_2 - \eta}{\eta_2 + \eta}$	<u>1</u> 1	C	Γ=	$\frac{2\eta_1}{\eta_1 + \eta_2}$	D). Γ=	$\frac{\eta_1 - 1}{\eta_1 + 1}$	$rac{oldsymbol{\eta}_2}{oldsymbol{\eta}_2}$

4_17. (C) 电场强度 $\dot{\bar{E}} = \bar{e}_z E_0 \sin(k_x$	x)e ^{-jk-z} 的瞬时值形式为。
A. $\vec{E} = \vec{e}_z E_0 \sin(k_x x) \sin(\omega t - k_z z)$	B. $\vec{E} = \vec{e}_z E_0 \sin(\omega t + k_x x - k_z z)$
C. $\vec{E} = \vec{e}_z E_0 \sin(k_x x) \cos(\omega t - k_z z)$	D. $\vec{E} = \vec{e}_z E_0 \cos(\omega t + k_x x - k_z z)$
4_18. (B)已知某种媒质的复电容	率为 $\varepsilon = (5 - \mathrm{j}0.2)\varepsilon_0$, 该媒质的损耗角正
切为。	
A0.04 B. 0.04 C	. tan(0.04) D. 25
6_17.(C)波长为λ=0.1μm 的均匀	7平面波从空气垂直入射到理想导体上,
经导体反射后,第一个电场 $\left \bar{E}(z) \right $	皮节点到第一个磁场 $\left \bar{H}(z) \right $ 波节点的距离
为。	
Α. 0.1μm Β. 0.05μm	C. 0.025μm D. 0.2μm
6_18.(D)均匀平面电磁波从空气	垂直入射到理想导体表面,不可能发生的
现象是。	
A. 入射电场与反射电场相位差π	B. 反射系数为-1
C. 电磁波在空气一侧形成驻波	D. 电磁波相位沿传播方向不断变化
4_19.($$ A $$)已知海水的电导率为 σ	$=4\mathrm{S/m}$,相对介电常数为 $\varepsilon_{r}=81$,那么
海水在频率 $f = 1$ GHz 时是。	
A. 导电媒质 B. 绝缘体	C. 良导体 D. 半导体
4_20. (D) 电场强度 $\vec{E} = \vec{e}_y 2E_0 \sin(\epsilon)$	ot - kz) 的复数形式为。
A. $\dot{\vec{E}} = \vec{e}_y j 2E_0 e^{-jkz}$	3. $\dot{\vec{E}} = \vec{e}_y \mathbf{j} 2E_0 e^{\mathbf{j}kz}$
$C. \dot{\vec{E}} = \vec{e}_y 2E_0 e^{-jkz} $	D. $\dot{\vec{E}} = -\vec{e}_y \mathbf{j} 2E_0 e^{-\mathbf{j}kz}$
6_19. (A) 在媒质 1 和媒质 2 两种木	目同媒质之间插入一层厚度为二分之一波
	上的反射,则称这种媒质为
A. 半波长媒质窗	B. 全反射匹配层
C. 1/4 波长匹配层	D. 半反射匹配层
	想介质垂直入射到理想导体上,在理想介
A. 行波 B. 驻波 (C. 反射波 D. 入射波
4_9.(A)已知时变电磁场中矢量	$\frac{1}{2}$ 位 $\vec{A} = \vec{e}_x A_m \sin(\omega t - kz)$,则磁场强度为

	切为。	
	A. 0.05 B0.05	
6_3.	(D) 一均匀平面电磁波由理	是想介质垂直入射到理想导体上,分界面为
	z=0的平面,入射波电场为	$\int \vec{E}_i = \vec{e}_y E_0 \cos(\omega t - \beta z)$, 反射波电场为
	$\vec{E}_r = \underline{\hspace{1cm}}_{\circ}$	
	A. $\vec{e}_y E_0 \cos(\omega t - \beta z)$	B. $\vec{e}_y E_0 \cos(\omega t + \beta z)$
	C. $-\vec{e}_y E_0 \cos(\omega t - \beta z)$	D. $-\vec{e}_y E_0 \cos(\omega t + \beta z)$
6_4.	(C) 平面电磁波从介电常数	$\Sigma \mapsto arepsilon_1$ 的媒质 1 入射到介电常数为 $arepsilon_2$ 的媒质
	2 中($\varepsilon_1 > \varepsilon_2$),当发生全反射时,	,入射角应该。
	A. 小于临界角	B. 等于布儒斯特角
	C. 大于等于临界角	D. 大于布儒斯特角
4.1	(C) 坡印廷定理 $-\oint_s (\vec{E} \times \vec{H}) \cdot d$	$d\vec{S} = \frac{d}{dt} \int_{V} \left(\frac{1}{2} \vec{H} \cdot \vec{B} + \frac{1}{2} \vec{E} \cdot \vec{D} \right) dV + \int_{V} \vec{E} \cdot \vec{J} dV +$
	与损耗功率相关的是。	
	A. $-\nabla \cdot (\vec{E} \times \vec{H})$	B. $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2} \vec{E} \cdot \vec{D} + \frac{1}{2} \vec{H} \cdot \vec{B} \right)$
	C. $\vec{E} \cdot \vec{J}$	D. $\nabla \cdot (\vec{E} \times \vec{H})$
4_2.	(C)已知电介质的介电常	数为 $\varepsilon = \varepsilon' - j\varepsilon''$,该电介质的损耗角正切
	为。	
	A. $\frac{\varepsilon'}{\varepsilon''}$ B. $\tan \frac{\varepsilon'}{\varepsilon''}$	C. $\frac{\varepsilon''}{\varepsilon'}$ D. $\tan \frac{\varepsilon''}{\varepsilon'}$
6_1.	(B) 平行极化波在不同媒质	分界面上无反射的条件是。
	A. 入射角大于布儒斯特角	B. 入射角等于布儒斯特角
	C. 入射角等于布儒斯特角	D. 无法确定
6_2.	(B) 反射系数 Γ 与透射系数	[au之间的关系为。
	A. $\Gamma + \tau = 1$ B. $1 + \Gamma = \tau$	C. $\Gamma \cdot \tau = 1$ D. $\tau / \Gamma = 1$
=,	计算题	
6_1. 形式		z=0的理想导体板上,其电场强度的复数

$$\vec{E}_i(z) = (\vec{e}_x - j\vec{e}_y)E_m e^{-j\beta z}$$

(1) 确定反射波的极化; (2) 写出总电场强度的瞬时表达式; (3)求板上的感应面电流密度。

解: (1) 设反射波电场的复数形式为

$$\vec{E}_r(z) = (\vec{e}_x E_{rx} + \vec{e}_y E_{ry}) e^{j\beta z}$$

由理想导体表面电场所满足的边界条件,即在z=0时有

$$\left[\vec{E}_i(z) + \vec{E}_r(z)\right]_{z=0} = 0 \tag{1 }$$

得
$$\vec{E}_r(z) = (-\vec{e}_x + j\vec{e}_y)E_m e^{j\beta z}$$
 (1分)

(2) z<0 区域的总电场强度为

$$\begin{split} \vec{E}_{1}(z,t) &= \operatorname{Re}\left\{\left[\vec{E}_{i}(z) + \vec{E}_{r}(z)\right]e^{j\omega t}\right\} \\ &= \operatorname{Re}\left\{\left[(\vec{e}_{x} - j\vec{e}_{y})e^{-j\beta z} + (-\vec{e}_{x} + j\vec{e}_{y})e^{j\beta z}\right]E_{m}e^{j\omega t}\right\} \\ &= \operatorname{Re}\left\{\left[-(\vec{e}_{x} - j\vec{e}_{y})j2\sin(\beta z)\right]E_{m}e^{j\omega t}\right\} \\ &= 2E_{m}\sin(\beta z)[\vec{e}_{x}\sin(\omega t) - \vec{e}_{y}\cos(\omega t)] \end{split} \tag{2.77}$$

(3) 由理想导体表面磁场所满足的边界条件: $\vec{e}_n \times \vec{H}_1 = \vec{J}_s$, 这里 $\vec{e}_n = -\vec{e}_z$, 则

$$\vec{J}_S = -\vec{e}_z \times \left[\vec{H}_i(z) + \vec{H}_r(z) \right]_{z=0} \tag{1 $\%$}$$

而

$$\vec{H}_{i}(z) = \frac{1}{\eta_{0}} \vec{e}_{z} \times \vec{E}_{i}(z) = (j\vec{e}_{x} + \vec{e}_{y}) \frac{E_{m}}{\eta_{0}} e^{-j\beta z}$$
(1 \(\frac{1}{2}\))

$$\vec{H}_r(z) = \frac{1}{n_0} (-\vec{e}_z) \times \vec{E}_r(z) = (j\vec{e}_x + \vec{e}_y) \frac{E_m}{n_0} e^{j\beta z}$$
 (1 $\%$)

故

$$\vec{J}_{S} = -\vec{e}_{z} \times \left[(j\vec{e}_{x} + \vec{e}_{y}) \frac{E_{m}}{\eta_{0}} + (j\vec{e}_{x} + \vec{e}_{y}) \frac{E_{m}}{\eta_{0}} \right] = (\vec{e}_{x} - j\vec{e}_{y}) \frac{2E_{m}}{\eta_{0}}$$
(2 \(\frac{\frac{1}}{2}\))

4_1. 已知自由空间中时变电磁场的矢量位为

$$\vec{A} = \vec{e}_{x} A_{xx} \sin(\omega t - kz)$$

其中 A_m 、 k 是常数, 求: (1) 电场强度 \bar{E} ; (2) 磁场强度 \bar{H} ; (3) 坡印廷矢量 \bar{S} 。

解: (1) 由洛仑兹条件 $\nabla \cdot \vec{A} = -\mu \varepsilon \frac{\partial \varphi}{\partial t}$, 可知:

$$\mu \varepsilon \frac{\partial \varphi}{\partial t} = -\nabla \cdot \vec{A} = 0 \Rightarrow \varphi = C \tag{2 \%}$$

如果假设过去某一时刻,场还没有建立,那么C=0

$$\vec{E} = -\nabla \varphi - \frac{\partial \vec{A}}{\partial t} = -\vec{e}_x \omega A_m \cos(\omega t - kz)$$
 (2 \(\frac{\frac{1}}{2}\))

故
$$\vec{H} = -\vec{e}_y \frac{k}{\mu} A_m \cos(\omega t - kz)$$
 (1分)

(3) 坡印廷矢量的瞬时值为

$$\vec{S} = \vec{E} \times \vec{H}$$
 (1 β)

$$= [-\vec{e}_x \omega A_m \cos(\omega t - kz)] \times \left[-\vec{e}_y \frac{k}{\mu} A_m \cos(\omega t - kz) \right]$$

$$= \vec{e}_z \frac{\omega k}{\mu} A_m^2 \cos^2(\omega t - kz)$$
(2 \(\frac{\psi}{\psi}\))

4_2. 在无源(ρ =0, \bar{J} =0)的自由空间中,已知时变电磁场的电场强度复矢量:

$$\vec{E}(z) = \vec{e}_{v} E_0 e^{-jkz}$$
 V/m

式中k、 E_0 为常数。求: (1) 磁场强度复矢量 $\vec{H}(z)$; (2) 瞬时坡印廷矢量 \vec{S} ; (3) 平均坡印廷矢量 \vec{S}_{av} 。

$$\mathbf{H}$$
: (1) 由 $\nabla \times \vec{E} = -\mathbf{j}\omega \mu_0 \vec{H}$, 得

$$\vec{H}(z) = -\frac{1}{\mathrm{j}\omega\mu_0} \nabla \times \vec{E}(z) = \vec{e}_x \frac{1}{\mathrm{j}\omega\mu_0} \frac{\partial}{\partial z} (E_0 e^{-\mathrm{j}kz}) = -\vec{e}_x \frac{kE_0}{\omega\mu_0} e^{-\mathrm{j}kz}$$
(2 \(\frac{\frac{1}{2}}{2}\))

(2) 电场、磁场的瞬时值分别为

$$\vec{E}(z,t) = \text{Re}[\vec{E}(z)e^{j\omega t}] = \vec{e}_{v}E_{0}\cos(\omega t - kz)$$
(1 \(\frac{1}{2}\))

$$\vec{H}(z,t) = \text{Re}[\vec{H}(z)e^{j\omega t}] = -\vec{e}_x \frac{kE_0}{\omega\mu_0}\cos(\omega t - kz)$$
 (1 $\%$)

所以,瞬时坡印廷矢量 \bar{S} 为

$$\vec{S}(z,t) = \vec{E}(z,t) \times \vec{H}(z,t) = \vec{e}_z \frac{kE_0^2}{\omega\mu_0} \cos^2(\omega t - kz)$$
 (2 \(\frac{\gamma}{t}\))

(3) 平均坡印廷矢量为

$$\vec{S}_{av} = \frac{1}{2} \operatorname{Re}[\vec{E}(z) \times \vec{H}^*(z)] \tag{1 }$$

$$=\frac{1}{2}\operatorname{Re}\left[\vec{e}_{y}E_{0}e^{-jkz}\times\left(-\vec{e}_{x}\frac{kE_{0}}{\omega\mu_{0}}e^{-jkz}\right)^{*}\right]=\frac{1}{2}\operatorname{Re}\left[\vec{e}_{z}\frac{kE_{0}^{2}}{\omega\mu_{0}}\right]=\vec{e}_{z}\frac{kE_{0}^{2}}{2\omega\mu_{0}}\tag{2\%}$$

$$\vec{S}_{av} = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \vec{S}(z,t) dt$$

$$= \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \vec{e}_z \frac{kE_0^2}{\omega \mu_0} \cos^2(\omega t - kz) dt = \vec{e}_z \frac{kE_0^2}{2\omega \mu_0}$$

 6_{-2} . 一右旋圆极化波由空气向一理想介质平面(z=0)垂直入射,其中媒质的电磁参数分别为 $\varepsilon_1=\varepsilon_0$, $\varepsilon_2=9\varepsilon_0$, $\mu_1=\mu_2=\mu_0$ 。假设入射波的电场强度

$$\vec{E}_i = \frac{\vec{e}_x - j\vec{e}_y}{\sqrt{2}} E_0 e^{-j\beta_1 z}$$

其中, $\beta_1 = \omega \sqrt{\mu_0 \varepsilon_0}$, ω 为电磁波的角频率。求: (1) 反射波和透射波的电场强度,它们分别是何种极化波; (2) 反射波和透射波的相对平均功率密度。

解: (1) 由入射波的电场强度矢量 $\bar{E}_i = \frac{\bar{e}_x - j\bar{e}_y}{\sqrt{2}} E_0 e^{-j\beta_i z}$,可知反射波和透射波的电

场强度矢量可表示为

$$\vec{E}_r = \frac{\Gamma}{\sqrt{2}} (\vec{e}_x - \mathbf{j}\vec{e}_y) E_0 e^{\mathbf{j}\beta_1 z}$$

$$\vec{E}_t = \frac{\tau}{\sqrt{2}} (\vec{e}_x - j\vec{e}_y) E_0 e^{-j\beta_2 z}$$

其中, $\beta_2 = \omega \sqrt{\mu_2 \varepsilon_2} = 3\omega \sqrt{\mu_0 \varepsilon_0}$ 。可知,反射波和透射波分别为左旋圆极化波和右旋圆极化波。 (2分)

由媒质的本征阻抗: $\eta_1 = \sqrt{\frac{\mu_1}{\varepsilon_1}} = \sqrt{\frac{\mu_0}{\varepsilon_0}}$, $\eta_2 = \sqrt{\frac{\mu_2}{\varepsilon_2}} = \frac{1}{3}\sqrt{\frac{\mu_0}{\varepsilon_0}}$, 可得上式中反射

系数和透射系数分别为

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = -0.5 \tag{1 \(\frac{1}{12}\)}$$

$$\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = 0.5 \tag{1 \(\frac{1}{2}\)}$$

故

$$\vec{E}_r = -\frac{1}{2\sqrt{2}} (\vec{e}_x - \mathbf{j}\vec{e}_y) E_0 e^{\mathbf{j}\beta_1 z} \tag{1 \(\frac{1}{2}\frac{1}{2}\)}$$

$$\vec{E}_{t} = \frac{1}{2\sqrt{2}} (\vec{e}_{x} - j\vec{e}_{y}) E_{0} e^{-j\beta_{2}z}$$
 (1 分)

(2) 相对平均功率密度为

$$\left| \frac{\vec{S}_{av,r}}{\vec{S}_{av,i}} \right| = \left| \Gamma \right|^2 = 0.5^2 = 25\% \tag{2 \(\frac{1}{12}\)}$$

$$\left| \frac{\vec{S}_{av,t}}{\vec{S}_{av,i}} \right| = \frac{\eta_1}{\eta_2} |\tau|^2 = 1 - |\Gamma|^2 = 1 - 0.25 = 75\%$$
 (2 $\frac{1}{2}$)

4_3. 自由空间中的电磁场为

$$\vec{E}(z,t) = \vec{e}_x 1000 \cos(\omega t - kz)$$
 V/m

$$\vec{H}(z,t) = \vec{e}_{v} 2.65 \cos(\omega t - kz)$$
 A/m

式中 $k = \omega \sqrt{\mu_0 \varepsilon_0} = 0.42$ rad/m。求: (1) 瞬时坡印廷矢量 \bar{S} ; (2) 平均坡印廷矢量 \bar{S}_{av} ; (3) 任一时刻流入如图所示的平行六面体(长 1m、横截面积 0.25m^2)中的净功率。

解: (1) 瞬时坡印廷矢量为

$$\vec{S}(z,t) = \vec{E}(z,t) \times \vec{H}(z,t)$$
 (1 $\%$)

$$= \vec{e}_z 2650 \cos^2(\omega t - kz) \quad \text{W/m}^2 \tag{2 \%}$$

(2) 平均坡印廷矢量为

$$\vec{S}_{av} = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \vec{S}(z, t) dt$$
 (1 $\%$)

$$= \vec{e}_z \frac{\omega}{2\pi} \int_0^{2\pi/\omega} 2650 \cos^2(\omega t - kz) dt = \vec{e}_z 1325 \text{ W/m}^2$$
 (2 \(\frac{\psi}{2}\))

或 由 $\vec{E}(z) = \vec{e}_x 1000 e^{-jkz}$ V/m 和 $\vec{H}(z) = \vec{e}_y 2.65 e^{-jkz}$ A/m,则

$$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left[\vec{E}(z) \times \vec{H}^*(z) \right]$$
$$= \frac{1}{2} \vec{e}_z 2650 = \vec{e}_z 1325 \text{ W/m}^2$$

(3) 任一时刻流入如图所示的平行六面体中的净功率为

$$P = -\oint_{S} \left[\vec{E}(z,t) \times \vec{H}(z,t) \right] \cdot d\vec{S} = -\oint_{S} \vec{S}(z,t) \cdot \vec{e}_{n} dS$$
 (2 \(\frac{1}{2}\))

$$= -\left[\left.\vec{S}(z,t)\cdot(-\vec{e}_z)\right|_{z=0} + \left.\vec{S}(z,t)\cdot\vec{e}_z\right|_{z=1}\right] \times 0.25$$

$$= -270.2\sin(2\omega t - 0.42) \text{ W}$$

$$(2 \%)$$

6_4. 均匀平面波从空气中垂直入射到厚度 $d_2 = \frac{\lambda_2}{8}$ m 的聚丙烯($\varepsilon_{r2} = 2.25$ 、 $\mu_{r2} = 1$ 、 $\sigma_2 = 0$)平板上。求: (1) 入射波能量被反射的百分比; (2) 空气中的驻波比。

解: (1) 本题讨论的是均匀平面波对三层不同媒质的垂直入射,其中上、下的媒质 1 和媒质 3 为空气,中间的媒质 2 为聚丙烯。可知: $\eta_1 = \eta_3 = \eta_0$,

$$\eta_{2} = \frac{\eta_{0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}} = \frac{2}{3}\eta_{0}, \ \overrightarrow{\Pi}\beta_{2}d_{2} = \frac{2\pi}{\lambda_{2}}\frac{\lambda_{2}}{8} = \frac{\pi}{4}$$
 (2 \(\frac{\frac{1}{2}}{3}\))

那么在反射面(空气与聚丙烯的分界面)处的等效波阻抗为

$$\eta_{ef} = \eta_2 \frac{\eta_3 + j \eta_2 \tan(\beta_2 d_2)}{\eta_2 + j \eta_3 \tan(\beta_2 d_2)} = \eta_2 \frac{\eta_3 + j \eta_2}{\eta_2 + j \eta_3} = \eta_0 \frac{6 + j4}{6 + j9}$$
(2 \(\frac{\gamma}{1}\))

而反射系数为

$$\Gamma = \frac{\eta_{ef} - \eta_1}{\eta_{ef} + \eta_1} = \frac{-j5}{12 + j13} \tag{2 \%}$$

故入射波能量被反射的百分比为

$$\frac{S_{rav}}{S_{iav}} = \left| \Gamma \right|^2 = \left| \frac{-j5}{12 + j13} \right|^2 \approx 7.99\%$$
 (2 \(\frac{1}{2}\))

(2) 空气中的驻波比为

$$S = \frac{1+|\Gamma|}{1-|\Gamma|} = \frac{|12+j13|+5}{|12+j13|-5} \approx 1.79 \tag{2}$$

6_5. 有一频率为 100MHz、沿 y 方向极化的均匀平面波从空气(x<0 区域)中垂直入射到位于 x=0 的理想导体板上。设入射波电场 \bar{E}_i 的振幅为 10V/m,求:(1) 入射波电场 \bar{E}_i 和磁场 \bar{H}_i 的复矢量;(2) 反射波电场 \bar{E}_r 和磁场 \bar{H}_r 的复矢量;(3) 合成波电场 \bar{E}_i 和磁场 \bar{H}_i 的复矢量。

解: (1) 已知入射波频率为 f=100 MHz,则 $\omega=2\pi f=2\pi\times10^8$ rad/s,

 $\beta = \frac{\omega}{c} = \frac{2\pi \times 10^8}{3 \times 10^8} = \frac{2\pi}{3} \text{ rad/m}, \quad \eta_1 = \eta_0 = 120\pi\Omega. \quad \text{那么入射波电场和磁场的复 }$ 矢量为

$$\vec{E}_i(x) = \vec{e}_v 10e^{-j\frac{2\pi}{3}x} \text{ V/m}$$
 (2 $\frac{1}{2}$)

$$\vec{H}_{i}(x) = \frac{1}{n_{i}}\vec{e}_{x} \times \vec{E}_{i}(x) = \vec{e}_{z}\frac{1}{12\pi}e^{-j\frac{2\pi}{3}x}$$
 A/m (2 $\%$)

(2) 由于此时的反射系数 $\Gamma = -1$,则反射波电场和磁场的复矢量为

$$\vec{E}_r(x) = -\vec{e}_y 10e^{j\frac{2\pi}{3}x} \text{ V/m}$$
 (2 \(\frac{1}{2}\))

$$\vec{H}_r(x) = \frac{1}{\eta_1} (-\vec{e}_x) \times \vec{E}_r(x) = \vec{e}_z \frac{1}{12\pi} e^{j\frac{2\pi}{3}x}$$
 A/m (2 $\%$)

(3) 合成波电场和磁场的复矢量为

$$\vec{E}_{1}(x) = \vec{E}_{i}(x) + \vec{E}_{r}(x) = -\vec{e}_{y} j20 \sin\left(\frac{2\pi}{3}x\right) \text{ V/m}$$
 (1 \(\frac{\psi}{2}\))

$$\vec{H}_1(x) = \vec{H}_i(x) + \vec{H}_r(x) = \vec{e}_z \frac{1}{6\pi} \cos\left(\frac{2\pi}{3}x\right) \text{ A/m}$$
 (1 $\%$)

 6_3 . 频率为 $f = 300 \,\mathrm{MHz}$ 的线极化均匀平面波,其电场强度的振幅为 $2\mathrm{V/m}$,从

空气垂直入射到 $\varepsilon_r = 4$ 、 $\mu_r = 1$ 的理想介质平面上,如图所示。求: (1) 反射系数、透射系数和驻波比; (2) 入射波、反射波和透射波的电场和磁场。

解: (1) 由波阻抗 $\eta_1 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi$ 和 $\eta_2 = \sqrt{\frac{\mu_0}{\varepsilon}} = \sqrt{\frac{\mu_0}{4\varepsilon_0}} = 60\pi$,则反射系数、透射

系数和驻波比分别为

$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1} = -\frac{1}{3} \tag{1 \(\frac{1}{2}\)}$$

$$\tau = \frac{2\eta_2}{\eta_2 + \eta_1} = \frac{2}{3} \tag{1 \(\frac{1}{12}\)}$$

$$S = \frac{1+|\Gamma|}{1-|\Gamma|} = 2 \tag{2}$$

(2) 根据已知参数,可知:波长 $\lambda_1 = \frac{c}{f} = 1$ m, $\lambda_2 = \frac{v_2}{f} = \frac{c}{\sqrt{\mu_r \varepsilon_r} f} = 0.5$ m,而波

数 $k_1 = \frac{2\pi}{\lambda_1} = 2\pi$ rad/m, $k_2 = \frac{2\pi}{\lambda_2} = 4\pi$ rad/m。那么入射波、反射波和透射波

的电场和磁场分别为

$$\vec{E}_i = \vec{e}_x 2e^{-j2\pi z} \tag{1 \(\frac{1}{2}\)}$$

$$\vec{H}_{i} = \vec{e}_{y} \frac{2}{\eta_{1}} e^{-j2\pi z} = \vec{e}_{y} \frac{1}{60\pi} e^{-j2\pi z}$$
 (1 \(\frac{1}{2}\))

$$\vec{E}_r = \vec{e}_x 2\Gamma e^{j2\pi z} = -\vec{e}_x \frac{2}{3} e^{j2\pi z}$$
 (1 $\frac{1}{1}$)

$$\vec{H}_r = \vec{e}_y \frac{2}{3\eta_1} e^{j2\pi z} = \vec{e}_y \frac{1}{180\pi} e^{j2\pi z}$$
 (1 $\%$)

$$\vec{E}_{t} = \vec{e}_{x} 2\tau e^{-j4\pi z} = \vec{e}_{x} \frac{4}{3} e^{-j4\pi z}$$
 (1 $\%$)

$$\vec{H}_{t} = \vec{e}_{y} \frac{4}{3\eta_{2}} e^{-j4\pi z} = \vec{e}_{y} \frac{1}{45\pi} e^{-j4\pi z} \tag{1 \%}$$

6_6. 一均匀平面波自空气中垂直入射到半无限大的无耗介质表面上,已知空气中合成波的驻波比为 3,介质内透射波的波长是空气中波长的 1/6,且介质表面上为合成波电场的最小点。求: (1) 介质的相对介电常数 ε_r ; (2) 介质的相对磁导率 μ_r 。

解: 因为驻波比为

$$S = \frac{1+|\Gamma|}{1-|\Gamma|} = 3 \tag{1 \%}$$

所以可以解出 $|\Gamma| = \frac{1}{2}$

由于介质表面上是合成波电场的最小点,故
$$\Gamma = -\frac{1}{2}$$
 (1分)

而反射系数为 $\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$,式中 $\eta_1 = \eta_0 = 120\pi$,于是有

$$\eta_2 = \frac{1}{3}\eta_0 \tag{2 \%}$$

又因为

$$\eta_2 = \sqrt{\frac{\mu_2}{\varepsilon_2}} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \eta_0$$

所以得到
$$\frac{\mu_r}{\varepsilon_s} = \frac{1}{9}$$
 (2分)

已知介质中的波长为

$$\lambda_2 = \frac{\lambda_0}{\sqrt{\mu_r \varepsilon_r}} = \frac{\lambda_0}{6}$$

可得
$$\mu_r \varepsilon_r = 36$$
 (2分)

联立
$$\begin{cases} \frac{\mu_r}{\varepsilon_r} = \frac{1}{9} & \text{, } \text{ 解得 } \varepsilon_r = 18 \text{, } \mu_r = 2\\ \mu_r \varepsilon_r = 36 \end{cases}$$
 (2 分)

4.4 在横截面为 $a \times b$ 的矩形金属波导中,电磁场的复矢量为

$$\vec{E} = -\vec{e}_y j\omega\mu \frac{a}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) e^{-j\beta z} \qquad V/m$$

$$\vec{H} = \left[\vec{e}_x j\beta \frac{a}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) + \vec{e}_z H_0 \cos\left(\frac{\pi x}{a}\right)\right] e^{-j\beta z} \qquad A/m$$

式中 H_0 、 ω 、 μ 和 β 都是实常数。求: (1) 瞬时坡印廷矢量 \bar{S} ; (2) 平均坡印廷矢量 \bar{S}_m 。

解: (1) 电场强度 E 和磁场强度 H 的瞬时矢量分别为

$$\begin{split} \vec{E}(x,z,t) &= \text{Re} \left[-\vec{e}_y j \omega \mu \frac{a}{\pi} H_0 \sin \left(\frac{\pi x}{a} \right) e^{-j\beta z} e^{j\omega t} \right] \\ &= \vec{e}_y \omega \mu \frac{a}{\pi} H_0 \sin \left(\frac{\pi x}{a} \right) \sin(\omega t - \beta z) \text{ V/m} \end{split}$$
(2 \(\frac{\gamma}{g}\))

$$\begin{split} \vec{H}(x,z,t) &= \text{Re}\left\{ \left[\vec{e}_x j \beta \frac{a}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) + \vec{e}_z H_0 \cos\left(\frac{\pi x}{a}\right) \right] e^{-j\beta z} e^{j\omega t} \right\} \\ &= -\vec{e}_x \beta \frac{a}{\pi} H_0 \sin\left(\frac{\pi x}{a}\right) \sin(\omega t - \beta z) \\ &+ \vec{e}_z H_0 \cos\left(\frac{\pi x}{a}\right) \cos(\omega t - \beta z) \text{ A/m} \end{split}$$
 (2 \(\frac{\pi}{a}\))

故瞬时坡印廷矢量为

$$\vec{S}(x,z,t) = \vec{E}(x,z,t) \times \vec{H}(x,z,t) \tag{1 \(\frac{1}{2}\)}$$

$$= \vec{e}_z \omega \mu \beta \left(\frac{a}{\pi} H_0\right)^2 \sin^2 \left(\frac{\pi x}{a}\right) \sin^2 (\omega t - \beta z)$$

$$+ \vec{e}_x \frac{a\omega \mu}{4\pi} H_0^2 \sin \left(\frac{2\pi x}{a}\right) \sin(2\omega t - 2\beta z) \text{ W/m}^2$$
(2 \(\frac{\psi}{a}\))

(2) 平均坡印廷矢量为

$$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left[\vec{E}(x, z) \times \vec{H}^{*}(x, z) \right]$$

$$= \frac{1}{2} \operatorname{Re} \left\{ -\vec{e}_{y} j \omega \mu \frac{a}{\pi} H_{0} \sin \left(\frac{\pi x}{a} \right) e^{-j\beta z} \times \left[-\vec{e}_{x} j \beta \frac{a}{\pi} H_{0} \sin \left(\frac{\pi x}{a} \right) + \vec{e}_{z} H_{0} \cos \left(\frac{\pi x}{a} \right) \right] e^{j\beta z} \right\}$$

$$= \vec{e}_{z} \frac{\omega \mu \beta}{2\pi^{2}} a^{2} H_{0}^{2} \sin^{2} \left(\frac{\pi x}{a} \right) \quad \text{W/m}^{2}$$

$$(2 \%)$$

三、 证明题

 6_2 . 如图所示,z>0区域的媒质的介电常数为 ε_2 ,在此媒质前置有厚底为d、介电常数为 ε_1 的介质板。对于一个从左侧垂直入射来的 TEM 波,证明: 当 $\varepsilon_{r1} = \sqrt{\varepsilon_{r2}} \, , \, \, d = \frac{\lambda}{4\sqrt{\varepsilon_{r1}}} \, \mathrm{tr} \, \, (\lambda \, \lambda) \, \mathrm{fland} \, \mathrm{dr} \, \mathrm$

证: 媒质 1 中的波阻抗为

$$\eta_1 = \sqrt{\frac{\mu_0}{\varepsilon_0 \varepsilon_{r1}}} = \frac{\eta_0}{\sqrt{\varepsilon_{r1}}} \tag{1 \(\frac{h}{D}\)}$$

而媒质2中的波阻抗为

$$\eta_{1} = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}\varepsilon_{r1}}} = \frac{\eta_{0}}{\sqrt{\varepsilon_{r1}}} \tag{1 \(\frac{1}{12}\)}$$

$$\stackrel{\underline{\omega}}{=} \varepsilon_{r_1} = \sqrt{\varepsilon_{r_2}} \text{ ft}, \quad \eta_1^2 = \frac{\eta_0^2}{\varepsilon_{r_1}} = \eta_0 \frac{\eta_0}{\sqrt{\varepsilon_{r_2}}} = \eta_0 \eta_2 \qquad (2 \text{ }\%)$$

在分界面 z = -d 处的等效波阻抗为

$$\eta_{ef} = \eta_1 \frac{\eta_2 + j \eta_1 \tan(\beta_1 d)}{\eta_1 + j \eta_2 \tan(\beta_1 d)}$$

$$(1 \%)$$

当
$$d = \frac{\lambda}{4\sqrt{\varepsilon_{r1}}}$$
,即 $d = \frac{c}{4f\sqrt{\varepsilon_{r1}}} = \frac{1}{4f\sqrt{\mu_0\varepsilon_0\varepsilon_{r1}}} = \frac{v_1}{4f} = \frac{\lambda_1}{4}$ (λ_1 为媒质 1 中的波长)

时,
$$\tan(\beta_1 d) = \tan\left(\frac{2\pi}{\lambda_1} \frac{\lambda_1}{4}\right) = \tan\left(\frac{\pi}{2}\right) \to \infty$$
 (1分)

则有
$$\eta_{ef} = \frac{\eta_1^2}{\eta_2}$$
 (2分)

而在分界面 z = -d 处的反射系数为

$$\Gamma = \frac{\eta_{ef} - \eta_0}{\eta_{ef} + \eta_0} = 0 \tag{2 \%}$$

故当 $\varepsilon_{r_1} = \sqrt{\varepsilon_{r_2}}$ 、 $d = \frac{\lambda}{4\sqrt{\varepsilon_{r_1}}}$ 时,分界面z = -d处没有反射。

6_1. 证明:均匀平面波从一种本征阻抗为 η_1 的无耗媒质垂直入射至另一种本征阻抗为 η_2 的无耗媒质的平面上,两种媒质中功率密度的时间平均值相等。

证:设平面波的传播方向为 \bar{e}_z ,则媒质 1 中功率密度平均值为

$$\vec{S}_{1av} = \vec{S}_{iav} + \vec{S}_{rav} \tag{1 }$$

$$= \vec{e}_z \frac{1}{2\eta_1} \left| \vec{E}_i \right|^2 - \vec{e}_z \frac{1}{2\eta_1} \left| \vec{E}_r \right|^2 = \vec{e}_z \frac{1}{2\eta_1} \left| \vec{E}_i \right|^2 (1 - \Gamma^2)$$
 (2 \(\frac{1}{2}\))

而媒质2中功率密度平均值为

$$\vec{S}_{2av} = \vec{S}_{tav} \tag{1 \(\frac{1}{12}\)}$$

$$= \vec{e}_z \frac{1}{2\eta_2} |\vec{E}_t|^2 = \vec{e}_z \frac{1}{2\eta_2} |\vec{E}_t|^2 \tau^2 = \vec{e}_z \frac{1}{2\eta_2} |\vec{E}_t|^2 (1 + \Gamma)^2$$
 (2 \(\frac{\psi}{2}\))

可得
$$\left| \frac{\vec{S}_{1av}}{\vec{S}_{2av}} \right| = \frac{\eta_2 (1 - \Gamma^2)}{\eta_1 (1 + \Gamma)^2} = \frac{\eta_2 (1 - \Gamma)}{\eta_1 (1 + \Gamma)}$$
 (2 分)

将
$$\Gamma = \frac{\eta_2 - \eta_1}{\eta_2 + \eta_1}$$
代入上式,可得 $\left| \frac{\vec{S}_{1av}}{\vec{S}_{2av}} \right| = 1$ (1分)

故
$$\vec{S}_{lav} = \vec{S}_{2av}$$
 (1分)

4_1. 证明: 矢量函数 $\bar{E} = \bar{e}_x E_0 \cos \left(\omega t - \frac{\omega}{c} x \right)$ 满足真空中的无源波动方程

$$\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

其中 $c^2 = \frac{1}{\mu_0 \varepsilon_0}$, E_0 为常数, 但不满足麦克斯韦方程。

证: 因为

$$\nabla^{2}\vec{E} = \vec{e}_{x}E_{0}\frac{\partial^{2}}{\partial x^{2}}\left[\cos\left(\omega t - \frac{\omega}{c}x\right)\right] = -\vec{e}_{x}E_{0}\left(\frac{\omega}{c}\right)^{2}\cos\left(\omega t - \frac{\omega}{c}x\right)$$
(2 \(\frac{\psi}{c}\))

$$\frac{\partial^{2} \vec{E}}{\partial t^{2}} = \vec{e}_{x} E_{0} \frac{\partial^{2}}{\partial t^{2}} \left[\cos \left(\omega t - \frac{\omega}{c} x \right) \right] = -\vec{e}_{x} E_{0} \omega^{2} \cos \left(\omega t - \frac{\omega}{c} x \right)$$

$$(2 \%)$$

所以

$$\nabla^{2}\vec{E} - \frac{1}{c^{2}}\frac{\partial^{2}\vec{E}}{\partial t^{2}} = -\vec{e}_{x}E_{0}\left(\frac{\omega}{c}\right)^{2}\cos\left(\omega t - \frac{\omega}{c}x\right) + \frac{1}{c^{2}}\vec{e}_{x}E_{0}\omega^{2}\cos\left(\omega t - \frac{\omega}{c}x\right) = 0 (2 \%)$$

即矢量函数
$$\vec{E} = \vec{e}_x E_0 \cos\left(\omega t - \frac{\omega}{c}x\right)$$
满足波动方程 $\nabla^2 \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$ 。 (1分)

另外,
$$\nabla \cdot \vec{E} = \frac{\partial}{\partial x} \left[E_0 \cos \left(\omega t - \frac{\omega}{c} x \right) \right] = E_0 \frac{\omega}{c} \sin \left(\omega t - \frac{\omega}{c} x \right) \neq 0$$
 (2分)

而无源的真空中 \vec{E} 应满足的 Maxwell 方程为 $\nabla \cdot \vec{E} = 0$, 故矢量函数

$$\vec{E} = \vec{e}_x E_0 \cos\left(\omega t - \frac{\omega}{c}x\right)$$
 不满足麦克斯韦方程。 (1分)

4 3. 已知真空中两个沿 z 方向传播的电磁波的电场为

$$\vec{E}_1 = \vec{e}_x E_{1m} e^{-jkz}$$

$$\vec{E}_2 = \vec{e}_{v} E_{2m} e^{-j(kz - \phi)}$$

其中 ϕ 为常数, $k = \omega \sqrt{\mu_0 \varepsilon_0}$ 。证明: 总的平均坡印廷矢量等于两个波的平均坡印廷矢量之和。

证: $\text{由} \nabla \times \vec{E} = -j\omega\mu_0\vec{H}$, 可得这两个波的磁场复矢量为

$$\vec{H}_{1} = \frac{\dot{\mathbf{j}}}{\omega\mu_{0}} \nabla \times \vec{E}_{1} = \frac{\dot{\mathbf{j}}}{\omega\mu_{0}} \vec{e}_{z} \frac{\partial}{\partial z} \times \vec{e}_{x} E_{1m} e^{-jkz} = \vec{e}_{y} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E_{1m} e^{-jkz}$$

$$(1 \%)$$

$$\vec{H}_{2} = \frac{\dot{\mathbf{j}}}{\omega \mu_{0}} \nabla \times \vec{E}_{2} = \frac{\dot{\mathbf{j}}}{\omega \mu_{0}} \vec{e}_{z} \frac{\partial}{\partial z} \times \vec{e}_{y} E_{2m} e^{-\mathbf{j}(kz-\phi)} = -\vec{e}_{x} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E_{2m} e^{-\mathbf{j}(kz-\phi)}$$
(1 \(\frac{\frac{1}}{2}\))

所以这两个波的平均坡印廷矢量为

$$\vec{S}_{1av} = \frac{1}{2} \operatorname{Re} \left(\vec{E}_{1} \times \vec{H}_{1}^{*} \right) = \frac{1}{2} \operatorname{Re} \left(\vec{e}_{x} E_{1m} e^{-jkz} \times \vec{e}_{y} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E_{1m} e^{jkz} \right) = \vec{e}_{z} \frac{1}{2} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} E_{1m}^{2} \qquad (2 \%)$$

$$\begin{split} \vec{S}_{2av} &= \frac{1}{2} \operatorname{Re} \left(\vec{E}_2 \times \vec{H}_2^* \right) = \frac{1}{2} \operatorname{Re} \left(-\vec{e}_y E_{2m} \mathrm{e}^{-\mathrm{j}(kz - \phi)} \times \vec{e}_x \sqrt{\frac{\mathcal{E}_0}{\mu_0}} E_{2m} \mathrm{e}^{\mathrm{j}(kz - \phi)} \right) \\ &= \vec{e}_z \frac{1}{2} \sqrt{\frac{\mathcal{E}_0}{\mu_0}} E_{2m}^2 \end{split} \tag{2 \%}$$

合成波电场和磁场复矢量为

$$\vec{E} = \vec{e}_x E_{1m} e^{-jkz} + \vec{e}_y E_{2m} e^{-j(kz-\phi)}$$
 (1 \(\frac{\psi}{2}\))

$$\vec{H} = \vec{e}_y \sqrt{\frac{\varepsilon_0}{\mu_0}} E_{1m} e^{-jkz} - \vec{e}_x \sqrt{\frac{\varepsilon_0}{\mu_0}} E_{2m} e^{-j(kz-\phi)}$$
 (1 $\%$)

所以总的平均坡印廷矢量为

$$\begin{split} \vec{S}_{av} &= \frac{1}{2} \operatorname{Re} \left(\vec{E} \times \vec{H}^* \right) \\ &= \frac{1}{2} \operatorname{Re} \left\{ \left[\vec{e}_x E_{1m} e^{-jkz} + \vec{e}_y E_{2m} e^{-j(kz-\phi)} \right] \times \sqrt{\frac{\varepsilon_0}{\mu_0}} \left[\vec{e}_y E_{1m} e^{jkz} - \vec{e}_x E_{2m} e^{j(kz-\phi)} \right] \right\} \\ &= \vec{e}_z \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \left(E_{1m}^2 + E_{2m}^2 \right) \end{split} \tag{2.7}$$

由此可见 $\vec{S}_{av} = \vec{S}_{1av} + \vec{S}_{2av}$

4 2. 已知无源的真空中电磁波的电场

$$\vec{E} = \vec{e}_x E_0 \cos\left(\omega t - \frac{\omega}{c}z\right) \qquad V/m$$

证明: $\vec{S}_{av} = \vec{e}_z w_{av} c$, 其中 w_{av} 是电磁场能量密度的时间平均值, $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ 为电磁

波在真空中的传播常数。

证: 电场强度复矢量为
$$\vec{E} = \vec{e}_x E_0 e^{-j\frac{\omega}{c}z}$$
 (2分)

由
$$\nabla \times \vec{E} = -j\omega \mu_0 \vec{H}$$
,可得磁场强度复矢量为 (1分)

$$\vec{H} = \frac{\nabla \times \vec{E}}{-j\omega\mu_0} = \frac{j}{\omega\mu_0} \vec{e}_z \frac{\partial}{\partial z} \times \vec{e}_x E_0 e^{-j\frac{\omega}{c}z} = \vec{e}_y \frac{1}{\mu_0 c} E_0 e^{-j\frac{\omega}{c}z} = \vec{e}_y \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0 e^{-j\frac{\omega}{c}z}$$
(2 \(\frac{\gamma}{c}\))

所以

$$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left(\vec{E} \times \vec{H}^* \right) = \vec{e}_z \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0^2 \tag{2 \%}$$

而电磁场能量密度的时间平均值为

$$\begin{split} w_{av} &= \frac{1}{T} \int_{0}^{T} (w_{e} + w_{m}) dt = \frac{1}{4} (\varepsilon_{0} \vec{E} \cdot \vec{E}^{*} + \mu_{0} \vec{H} \cdot \vec{H}^{*}) \\ &= \frac{1}{4} (\varepsilon_{0} E_{0}^{2} + \mu_{0} \frac{\varepsilon_{0}}{\mu_{0}} E_{0}^{2}) = \frac{\varepsilon_{0} E_{0}^{2}}{2} \end{split}$$
(2 \(\frac{\frac{1}{2}}{2}\)

由于
$$\sqrt{\frac{\varepsilon_0}{\mu_0}} = \varepsilon_0 c$$
,故有

$$\vec{S}_{av} = \vec{e}_z \frac{\mathcal{E}_0 c}{2} E_0^2 = \vec{e}_z w_{av} c \tag{1 \(\frac{1}{12} \)}$$