CSCI203

Week 5 – Lecture B

Faster Searching

- Say we have a set of data consisting of pairs:
 - ▶ E.g. Name and Telephone Number.
- ▶ How do we find the number associated with a given name?
 - ▶ What is the best data structure to use?
 - Assume that there are n pairs of data.
- Linear list:
 - Look at every entry.
 - $\triangleright \Theta(n)$.
- BST:
 - ▶ Traverse the tree from the root.
 - ▶ $\Theta(\log n)$.
 - ➤ O(n) worst case...
 - ...so use a balanced tree.

Even Faster

- ► Can we do better than $\Theta(\log n)$?
- \triangleright How about $\Theta(1)$?
 - Constant time searching.
- ▶ To do this we use a dictionary:
 - ► Map;
 - Hash table.
- ▶ This is a data structure that allows you to determine:
 - ➤ Whether a key is present;
 - ▶ If a key is present what its associated data is.

Operations on Dictionaries

- ► Given a dictionary **D**, with contents consisting of pairs of the form **<key: value>**, we require the following operations to be defined.
 - Insert:
 - ▶ D[key]=value
 - Delete:
 - delete(D[key])
 - > Search:
 - value=D[key], value == nil if key has not been stored.
 - Note that the dictionary behaves like an array with non-integer index.

Ubiquity

Dictionaries form a part of every modern computer language:

```
C++:
    Std::map<key_type, value_type> dictionary_name;

Jqvq:
    Map dictionary_name = new Hashtable();
    Map dictionary_name = new HashMap();

    Map dictionary_name = new LinkedHashMap();

Python:
    Dictionary data type - created by reference.
    E.g. en_fr = {"red" : "rouge", "green" : "vert", "blue" : "bleu", "yellow":"jaune"}
```

Motivation

- Dictionaries are used in many applications:
 - Databases;
 - ▶ Fast access to record given key
 - Compilers;
 - ▶ Maintenance of symbol table
 - Network routers;
 - ► Looking up IP address
 - String matching
 - ➤ Genetic analysis.
 - Security
 - ▶ Password checking.

Implementation

- ► There are several ways to implement the dictionary data type:
- Let us start with the simplest (and, in most cases, worst) approach:
 - ➤ The Direct Access Table:

Implementation 0: The Direct Access Table

- ▶ This is simply a big array where the index of the array is the key and the contents of the array is the value.
- Only works if keys are integers
 - E.g. key = phone number, value = name.
- ▶ So, should we use it in this case?
 - Typical phone number:
 - **+61 2 4221 5576**
 - ▶ 11 digits one hundred billion possible entries
 - ▶ 20 characters per name
 - ➤ Two terabytes of storage
 - For 100,000,000,000 numbers
 - For 100 numbers!
 - If \mathfrak{U} is the universe of keys $n = |\mathfrak{U}|$.

0 $value_0$ 1 $value_1$ 2 - 3 - 4 $value_4$... n $value_n$ n+1 -

Fixing the Problems

- > Problem 1: Keys must be (non-negative) integers.
- Solution: define a function prehash(key): integer
 - This function, when given a key of whatever type we need to store returns a non-negative integer value.
 - So D[key]=value becomes T[prehash(key)]=value.
 - \triangleright **T** is the direct access table we are using to implement the dictionary, **D**.
- ► Hold on!
 - ► That was too easy!
 - ▶ What exactly does **prehash()** do?

Implementing prehash()

- ► In theory:
 - Every piece of data in a computer is a sequence of bits
 - Every sequence of bits can be interpreted as a non-negative integer.
 - ► Problem solved!
 - ► Really?
 - ➤ Consider 8-character keys:
 - ▶ 8 characters = 64 bits
 - ▶ Does this mean we need an array with 2⁶⁴ entries?

Implementing prehash()

- ► In Practice:
 - ▶ There are many different possible prehash functions.
 - > Ideally:
 - ▶ $prehash(x) = prehash(y) \Leftrightarrow x = y$
 - ▶ This is not usually always true, sometimes two different kays may have the same prehash value.
 - ▶ For the sake of simplicity we will assume that the above relationship holds.

Fixing the Problems

- ▶ Problem 2:
 - Direct access tables are huge!
 - ▶ Phone numbers:- 2¹¹ records
 - ▶ 8-letter words:- 2⁶⁴ records
 - ► Clearly this is a BAD THINGTM
 - lacktriangle The problem here is the size of the universe of possible keys $|\mathfrak{U}|$.
- ▶ Solution: Hashing.
 - Reduce the (huge) universe of all possible keys down to a manageable size, m.
 - Our table will be of size m.
 - ▶ We have a hash function h so that $0 \le h(key) < m$ for all valid keys.

Hashing

- ldeally, if we have n keys with associated values, we would like $m \in \Theta(n)$.
 - \rightarrow m = 2n, m = 3n.
- ▶ This presents a problem:
 - Although m > n, the number of keys we are storing, it is far smaller that the number of possible keys.
 - ▶ There will always be circumstances where $key_1 \neq key_2$ but $h(key_1) = h(key_2)$.
 - ▶ This leads to a collision:
 - ▶ Two different keys with the same hash value;
 - ▶ Two different keys with the same location in the table.
 - ► How do we fix this?

Chaining

- ▶ One simple solution to the collision problem is *chaining*.
- If two keys hash to the same value store both the records in the same location:
 - As a list!
 - ➤ Yes, I really said, as a list.
 - A linked list.
 - A dynamic data structure.

An Example: Hashing With Chaining

- ➤ Consider the following data:
 - <key₁:value₁, key₂:value₂, key₃:value₃, key₄:value₄, key₅:value₅)
- ▶ With hash values:
 - $h(\text{key}_1) = 3$, $h(\text{key}_2) = 5$, $h(\text{key}_3) = 0$, $h(\text{key}_4) = 5$, $h(\text{key}_5) = 7$, m=9.
- ▶ Our hash table looks like this.

Worst Case

- ► What if h(key) has the same value for all the keys in our set?
- Our hash table has just become a complicated way of storing a single linked list!
- \blacktriangleright Access to a given key:value pair is no $\Theta(n)$.
- ▶ So should we give up on hashing?
 - No!
 - In practice this does not happen.

Hash Functions

- We still have not looked at possible hash functions.
- The following are simple approaches which often work reasonably well:
- 1. The Division method:
 - \blacktriangleright h(k) = k mod m
 - \blacktriangleright Good if m is prime and is not close to a power of 2 or a power of 10.
- 2. The Multiplication method:
 - $h(k) = a \times k \mod 2^w >> (w-r)$
 - Here:
 - a is an arbitrary w-bit integer; (a should be odd and not close to a power of 2)
 - w is the word length of the machine you are using;
 - >> is the right-shift operator;
 - \rightarrow $m=2^r$.

Hash Functions continued

- 3. Universal Hashing:
 - $h(k) = (a \times k + b \mod p) \mod m$
 - Here:
 - \triangleright p is a prime number, bigger than $|\mathfrak{U}|$, the number of all possible keys.
 - Yes, p is BIG!
 - \blacktriangleright a and b are random integers between 0 and p-1.
- This is an excellent hash function.
- \triangleright The worst case probability of two keys colliding is 1/m.
- This means that, even if a and b are poorly chosen, this hash function will always work well.
- The problems of finding a large prime and performing arithmetic on big integers will be left for now.