Introdução à Inteligência Artificial

João Paulo Aires

Índice

01 → Regressão Linear

02 --- Regressão Logística

01 →

Treinamento

Preços de Casas (Portland)

Tamanho em feet² (x)	Preço (\$) em milhares (f(x))
2104	460
1416	232
1534	315
852	178

Regressão Linear Univariada

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

$$\hat{f}(x) = 1.5 + 0x$$

Algoritmo Gradiente Descendente

Como minimizar $J(\theta_{o'}, \theta_{1})$?

Dada uma função de custo $J(\theta_0, \theta_1)$

Objetivo $\min_{\theta_0,\theta_1} J(\theta_0, \theta_1)$

Algoritmo do Gradiente Descendente:

- Inicialize com algum valor para θ_0 , θ_1
- Modifique incrementalmente θ_0 , θ_1 para reduzir $J(\theta_0, \theta_1)$ até que possivelmente $J(\theta_0, \theta_1)$ tenha sido minimizada.

repetir até convergir {

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

}

repetir até convergir {

$$\theta_0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

}

Atenção!
Atualização Simultânea!!

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

$$\theta := \theta - \alpha \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha$$
 (num positivo)

$$\theta := \theta - \alpha \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha$$
 (num positivo)

$$\theta := \theta - \alpha \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha$$
 (num positivo)

$$\theta := \theta - \alpha \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha$$
 (num positivo)

$$\theta := \theta - \alpha \frac{d}{d\theta} J(\theta)$$

$$\theta := \theta - \alpha$$
 (num negativo)

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

$$\hat{f}(x) = 1.5 + 0x$$

$$\hat{f}(x) = 0 + 0.5x$$

$$\hat{f}(x) = 0 + 0.5x$$
 $\hat{f}(x) = 1 + 0.5x$

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Ideia: Escolher Θ_0 e Θ_1 de forma que f'(x) esteja próximo de f(x) para as instâncias de treinamento (x, f(x))

$$\hat{f}(x^{(i)}) - f(x^{(i)})$$

$$\frac{1}{N} \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}) - f(x^{(i)}) \right)^{2}$$

$$\frac{1}{N} \sum_{i=1}^{N} \left((\theta_{o} + \theta_{1} x^{(i)}) - f(x^{(i)}) \right)^{2}$$

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Ideia: Escolher Θ_0 e Θ_1 de forma que f'(x) esteja próximo de f(x) para as instâncias de treinamento (x, f(x))

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

$$\hat{f}(x^{(i)}) - f(x^{(i)})$$

$$\frac{1}{N} \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}) - f(x^{(i)}) \right)^{2}$$

$$\frac{1}{N} \sum_{i=1}^{N} \left((\theta_{o} + \theta_{1}x^{(i)}) - f(x^{(i)}) \right)^{2}$$

$$J(\theta_{0}, \theta_{1}) = \frac{1}{2N} \sum_{i=1}^{N} \left((\theta_{o} + \theta_{1}x^{(i)}) - f(x^{(i)}) \right)^{2}$$

Ideia: Escolher
$$\Theta_0$$
 e Θ_1 de forma que $f'(x)$ esteja próximo de $f(x)$ para as instâncias de treinamento $(x, f(x))$

$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

$$\hat{f}(x^{(i)}) - f(x^{(i)})$$

$$\frac{1}{N} \sum_{i=1}^{N} (\hat{f}(x^{(i)}) - f(x^{(i)}))^{2}$$

$$\frac{1}{N} \sum_{i=1}^{N} ((\theta_{o} + \theta_{1}x^{(i)}) - f(x^{(i)}))^{2}$$

$$\frac{1}{\min_{\theta_o, \theta_1} J(\theta_0, \theta_1)} J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left((\theta_o + \theta_1 x^{(i)}) - f(x^{(i)}) \right)^2$$

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Ideia: Escolher Θ_0 e Θ_1 de forma que f'(x) esteja próximo de f(x) para as instâncias de treinamento (x, f(x))

Modelo:
$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Parâmetros: θ_0, θ_1

Função de Custo:
$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} (\hat{f}(x^{(i)}) - f(x^{(i)}))^2$$

Objetivo: $\min_{\theta_o,\theta_1} J(\theta_0,\theta_1)$

Função de Custo J

f'(x) (Para valores fixos de θ_0 e θ_1 , é uma função de x)

 $J(\theta_{0},\theta_{0})$ (Função dos parâmetros θ_{0},θ_{1})

f'(x) (Para valores fixos de θ_0 e θ_1 , é uma função de x)

 $J(\theta_{0},\theta_{0})$ (Função dos parâmetros θ_{0},θ_{1})

$$\theta_0 = 800$$

 $\theta_1 = -0.15$

f'(x) (Para valores fixos de θ_0 e θ_1 , é uma função de x)

 $J(\theta_{0},\theta_{1})$ (Função dos parâmetros θ_{0},θ_{1})

$$\theta_0 = 360$$

$$\theta_1 = 0$$

f'(x) (Para valores fixos de θ_0 e θ_1 , é uma função de x)

 $J(\theta_{0},\theta_{1})$ (Função dos parâmetros θ_{0},θ_{1})

$$\theta_0 = 500$$
 $\theta_1 = -0.025$

f'(x) (Para valores fixos de θ_0 e θ_1 , é uma função de x)

 $J(\theta_{0},\theta_{1})$ (Função dos parâmetros θ_{0},θ_{1})

$$\theta_0 = 230$$

 $\theta_1 = 0.13$

Tamanho do passo α (taxa de aprendizado)

Calculando as derivadas parciais

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}) - f(x^{(i)}) \right)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(x^{(i)}) - f(x^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} \left(\theta_0 + \theta_1 x^{(i)} \right) - f(x^{(i)})$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{N} \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}) - f(x^{(i)}) \right) x^{(i)} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(\theta_0 + \theta_1 x^{(i)} \right) - f(x^{(i)}) \right) x^{(i)}$$

repetir até convergir {

$$\begin{aligned} &\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left[\left(\theta_0 + \theta_1 x^{(i)} \right) - f(x^{(i)}) \right] \\ &\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left[\left(\left(\theta_0 + \theta_1 x^{(i)} \right) - f(x^{(i)}) \right) x^{(i)} \right] \end{aligned}$$
Atualização Simultânea

Função de Custo: Erro Quadrático Médio

Regressão Linear Univariada

Preços de Casas (Portland)

Tamanho em feet² (x)	Preço (\$) em milhares (f(x))		
2104	460		
1416	232		
1534	315		
852	178		

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Conjunto de Treinamento

Regressão Linear Multivariada

Mas e se tivermos...

Tamanho em feet ² (x)	# Quartos	# Andares	Anos	Preço (\$) em milhares (f(x))
2104	5	1	45	460
1416	3	2	40	232
1534	3	4	30	315
852	2	1	36	178
			S	

Regressão Linear Multivariada

Notação

$$m = \text{número de atributos}$$
 $\mathbf{x}^{(i)} = \text{i-ésima instância} \rightarrow \text{ex: } \mathbf{x}^{(3)} = \begin{bmatrix} 1534 \\ 3 \\ 4 \\ 30 \\ 315 \end{bmatrix}$

 $x_i^{(i)} = \text{valor do j-\'esimo atributo da i-\'esima instância} \rightarrow \text{ex: } x_3^{(2)} = 4$

Tam	# Q	# A	Anos	Preç
2104	5	1	45	460
1416	3	2	40	232
1534	3	4	30	315
852	2	1	36	178
1.12		7		

Regressão Univariada

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Regressão Multi-variada

$$\hat{f}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m$$

$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^m \theta_i x_i$$

$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^m \theta_i x_i$$

$$x_0 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \quad N \times 1$$

$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^m \theta_i x_i$$

$$x_0 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \quad N \times 1$$

$$\text{Logo, } \mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \quad (m+1) \times 1$$

$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^m \theta_i x_i$$

$$x_0 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \quad N \times 1$$

$$\log_0, \ \mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \quad (m+1) \times 1$$

$$\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{\theta}_0 \\ \boldsymbol{\theta}_1 \\ \vdots \\ \boldsymbol{\theta}_m \end{bmatrix}$$

Podemos reescrever
$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^{m} \theta_i x_i$$

como $\hat{f}(\mathbf{x}) = \Theta^T \mathbf{x}$

Podemos reescrever
$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^{m} \theta_i x_i$$

como $\hat{f}(\mathbf{x}) = \Theta^T \mathbf{x}$

$$\mathbf{\Theta}^{T} = \begin{bmatrix} \theta_{0} & \theta_{1} & \cdots & \theta_{m} \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{m} \end{bmatrix}$$

Modelo:
$$\hat{f}(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x}$$

Parâmetros: (

Função de Custo:
$$J(\Theta) = \frac{1}{2N} \sum_{i=1}^{N} \left(\Theta^{T} \mathbf{x}^{(i)} - f(\mathbf{x}^{(i)}) \right)^{2}$$

Anteriormente (m = 1)

repetir até convergir {

$$\theta_0 := \theta_0 - \alpha \frac{1}{N} \sum_{i=1}^{N} \left[\left(\theta_0 + \theta_1 x^{(i)} \right) - f(x^{(i)}) \right]$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{N} \sum_{i=1}^{N} \left[\left(\left(\theta_0 + \theta_1 x^{(i)} \right) - f(x^{(i)}) \right) x^{(i)} \right]$$

Novo Algoritmo ($m \ge 1$)

repetir até convergir {

$$\theta_j := \theta_j - \alpha \frac{1}{N} \sum_{i=1}^N \left[\left(\boldsymbol{\Theta}^T \mathbf{x}^{(i)} - f(\mathbf{x}^{(i)}) \right) x_j^{(i)} \right]$$

para
$$(j = 0,1,...,m)$$

Dicas:

- Normalizar os atributos para acelerar convergência
 - Utilizar estratégias já vistas como padronização ou transformação para intervalos [0, 1] ou [-1, 1]
 - Garantir que o gradiente descendente esteja funcionando
 - Plotar função de custo x iteração do gradiente descendente

Debugando o Gradiente Descendente

Heurística para escolha de α :

- Começar com valores pequenos (ex: 0.001)
- Incrementar o valor por algum fator (ex: 3, 10, etc.) para agilizar convergência, mas sempre conferindo se os valores estão decrescendo após cada iteração

02 →

Apesar do nome, é um algoritmo de classificação!

- Apesar do nome, é um algoritmo de classificação!
- Utilizado para discriminar entre duas classes
 - o $f(x) = \{0, 1\}$

- Apesar do nome, é um algoritmo de classificação!
- Utilizado para discriminar entre duas classes
 - o $f(x) = \{0, 1\}$
 - Geralmente, 0 indica ausência (classe negativa) e 1 indica presença (classe positiva) do que se deseja classificar

- Apesar do nome, é um algoritmo de classificação!
- Utilizado para discriminar entre duas classes
 - o $f(x) = \{0, 1\}$
 - Geralmente, 0 indica ausência (classe negativa) e 1 indica presença (classe positiva) do que se deseja classificar
 - Ex: diagnóstico de HIV
 - 0 = sem HIV (classe negativa)
 - 1 = com HIV (classe positiva)

- Gera função 0 <= f'(x) <= 1
- Em regressão linear, $f'(x) = \Theta^T \mathbf{x}$
- Qual o modelo para regressão logística?

- Gera função 0 <= f'(x) <= 1
- Em regressão linear, $f'(x) = \Theta^T \mathbf{x}$
- Qual o modelo para regressão logística?
 - $\circ f'(x) = sigmoide(\Theta^{\mathsf{T}}\mathbf{x})$

- Gera função 0 <= f'(x) <= 1
- Em regressão linear, $f'(x) = \Theta^T \mathbf{x}$
- Qual o modelo para regressão logística?

$$\circ f'(x) = sigmoide(\Theta^{\mathsf{T}}\mathbf{x})$$

$$sigmoide(a) = \frac{1}{1 + e^{-a}}$$

- Gera função 0 <= f'(x) <= 1
- Em regressão linear, $f'(x) = \Theta^T \mathbf{x}$
- Qual o modelo para regressão logística?
 - $\circ f'(x) = sigmoide(\Theta^{\mathsf{T}}\mathbf{x})$

$$sigmoide(a) = \frac{1}{1 + e^{-a}}$$

- Gera função 0 <= f'(x) <= 1
- Em regressão linear, $f'(x) = \Theta^T \mathbf{x}$
- Qual o modelo para regressão logística?

o
$$f'(x) = sigmoide(\Theta^T \mathbf{x})$$

$$\hat{f}(\mathbf{x}) = \frac{1}{1 + e^{-(\Theta^T \mathbf{x})}}$$

- Interpretação probabilística
 - Probabilidade estimada da classe positiva

- Interpretação probabilística
 - Probabilidade estimada da classe positiva
 - Ex: classificação de tumor: f(x) = {benigno, maligno}
 - Para paciente com $f'(\mathbf{x}) = 0.7$
 - Paciente tem 70% de chance de ter tumor maligno

- Interpretação probabilística
 - Probabilidade estimada da classe positiva
 - Ex: classificação de tumor: f(x) = {benigno, maligno}
 - Para paciente com $f'(\mathbf{x}) = 0.7$
 - Paciente tem 70% de chance de ter tumor maligno

$$\hat{f}(\mathbf{x}) = p(f(\mathbf{x}) = 1 \mid \mathbf{x}; \boldsymbol{\Theta})$$

"Probabilidade que $f(\mathbf{x}) = 1$, dado \mathbf{x} parametrizado por Θ "

- Interpretação probabilística
 - Probabilidade estimada da classe positiva
 - **Ex:** classificação de tumor: $f(x) = \{benigno, maligno\}$
 - Para paciente com $f'(\mathbf{x}) = 0.7$
 - Paciente tem 70% de chance de ter tumor maligno

$$\hat{f}(\mathbf{x}) = p(f(\mathbf{x}) = 1 \mid \mathbf{x}; \boldsymbol{\Theta})$$

"Probabilidade que $f(\mathbf{x}) = 1$, dado \mathbf{x} parametrizado por Θ "

$$p(f(\mathbf{x}) = 0 \mid \mathbf{x}; \Theta) = 1 - p(f(\mathbf{x}) = 1 \mid \mathbf{x}; \Theta)$$

- Dada a interpretação probabilística da função logística, o que realmente estamos fazendo é:
 - o se sigmoide($\Theta^T \mathbf{x}$) >= 0.5
 - então **x** é da classe positiva
 - senão **x** é da classe negativa

 $\Theta^T \mathbf{x}$

- Dada a interpretação probabilística da função logística, o que realmente estamos fazendo é:
 - \circ se sigmoide(Θ^T **x**) >= 0.5
 - então **x** é da classe positiva
 - senão **x** é da classe negativa
- O que isso nos diz a respeito de Θ^T **x**?
 - \circ se $\Theta^T \mathbf{x} >= 0$
 - então **x** é da classe positiva
 - senão x é da classe negativa

$$\hat{f}(\mathbf{x}) = sigmoide(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\hat{f}(\mathbf{x}) = sigmoide(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\Theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

$$\hat{f}(\mathbf{x}) = sigmoide(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\Theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

classe positiva:
$$-3+1x_1+1x_2 \ge 0$$

 $x_1+x_2 \ge 3$

$$\hat{f}(\mathbf{x}) = sigmoide(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

$$\Theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

classe positiva:
$$-3+1x_1+1x_2 \ge 0$$

 $x_1+x_2 \ge 3$

$$x_1 + x_2 = 3$$

- O problema de otimização novamente se resume a minimizar uma função de custo
- Função de custo quadrática da regressão linear pode ser usada para regressão logística?

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}) - f(x^{(i)}) \right)^2$$

- O problema de otimização novamente se resume a minimizar uma função de custo
- Função de custo quadrática da regressão linear pode ser usada para regressão logística?

$$J(\theta_0, \theta_1) = \frac{1}{2N} \sum_{i=1}^{N} \left(\hat{f}(x^{(i)}) - f(x^{(i)}) \right)^2$$

Não! Pois $J(\Theta)$ vira uma função não-convexa!! Logo possui vários ótimos locais!

• Função de custo a ser minimizada:

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} custo(\hat{f}(\mathbf{x}^{(i)}), f(\mathbf{x}^{(i)}))$$

$$custo(\hat{f}(\mathbf{x}), f(\mathbf{x})) = \begin{cases} -\log(\hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 1\\ -\log(1 - \hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 0 \end{cases}$$

• Função de custo a ser minimizada:

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} custo(\hat{f}(\mathbf{x}^{(i)}), f(\mathbf{x}^{(i)}))$$

$$custo(\hat{f}(\mathbf{x}), f(\mathbf{x})) = \begin{cases} -\log(\hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 1\\ -\log(1 - \hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 0 \end{cases}$$

• Função de custo a ser minimizada:

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} custo(\hat{f}(\mathbf{x}^{(i)}), f(\mathbf{x}^{(i)}))$$

$$custo(\hat{f}(\mathbf{x}), f(\mathbf{x})) = \begin{cases} -\log(\hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 1\\ -\log(1 - \hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 0 \end{cases}$$

• Reescrevendo a função de custo:

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} custo(\hat{f}(\mathbf{x}^{(i)}), f(\mathbf{x}^{(i)}))$$

$$custo(\hat{f}(\mathbf{x}), f(\mathbf{x})) = \begin{cases} -\log(\hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 1 \\ -\log(1 - \hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 0 \end{cases}$$

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} -f(\mathbf{x}^{(i)}) \log(\hat{f}(\mathbf{x}^{(i)})) - (1 - f(\mathbf{x}^{(i)})) \log(1 - \hat{f}(\mathbf{x}^{(i)}))$$

Reescrevendo a função de custo:

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} custo(\hat{f}(\mathbf{x}^{(i)}), f(\mathbf{x}^{(i)}))$$

$$custo(\hat{f}(\mathbf{x}), f(\mathbf{x})) = \begin{cases} -\log(\hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 1 \\ -\log(1 - \hat{f}(\mathbf{x})) & se \ f(\mathbf{x}) = 0 \end{cases}$$

$$J(\Theta) = \frac{1}{N} \sum_{i=1}^{N} -f(\mathbf{x}^{(i)}) \log(\hat{f}(\mathbf{x}^{(i)})) - (1 - f(\mathbf{x}^{(i)})) \log(1 - \hat{f}(\mathbf{x}^{(i)}))$$

$$J(\Theta) = -\frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}^{(i)}) \log(\hat{f}(\mathbf{x}^{(i)})) + (1 - f(\mathbf{x}^{(i)})) \log(1 - \hat{f}(\mathbf{x}^{(i)}))$$

- Sabendo que a nova função de custo é convexa, como minimizá-la?
 - Gradiente Descendente!

$$J(\Theta) = -\frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}^{(i)}) \log(\hat{f}(\mathbf{x}^{(i)})) + (1 - f(\mathbf{x}^{(i)})) \log(1 - \hat{f}(\mathbf{x}^{(i)}))$$

- Sabendo que a nova função de custo é convexa, como minimizá-la?
 - Gradiente Descendente!

$$J(\Theta) = -\frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}^{(i)}) \log(\hat{f}(\mathbf{x}^{(i)})) + (1 - f(\mathbf{x}^{(i)})) \log(1 - \hat{f}(\mathbf{x}^{(i)}))$$

repetir até convergir {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\Theta)$$

$$para (j = 0,1,...,m)$$

repetir até convergir {

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{N} \sum_{i=1}^{N} \left[\left(\hat{f}(\mathbf{x}^{(i)}) - f(\mathbf{x}^{(i)}) \right) x_{j}^{(i)} \right]$$

$$para \ (j = 0, 1, ..., m)$$

Classe 3: X

