

Randomized Benchmarking

Nathaniel Tornow

Seminar: Advanced Topics of Quantum Computing School of Computation, Information and Technology Technical University of Munich

December 15th, 2023

Remarkable progress in quantum processing unit (QPU) manufacturing

Remarkable progress in quantum processing unit (QPU) manufacturing

Challenge: Heterogeneity on two levels:

Remarkable progress in quantum processing unit (QPU) manufacturing

Challenge: Heterogeneity on two levels:

- 1. Gate-level heterogeneity
 - Significant **noise variance** of individual physical gubits

Remarkable progress in quantum processing unit (QPU) manufacturing

Challenge: Heterogeneity on two levels:

- 1. Gate-level heterogeneity
 - Significant **noise variance** of individual physical gubits
- 2. QPU-level heterogeneity
 - Vastly different properties of QPU technologies

Challenge #1: Gate-Level Heterogeneity

Gate noise differs significantly between qubits

Gate errors on IBM Perth

Challenge #1: Gate-Level Heterogeneity

Gate noise differs significantly between qubits

Gate errors on IBM Perth

How can we characterize the errors of gates on individual qubits?

Property	IBM Kolkata [1]	IonQ Aria [2]	IBM vs. IonQ
----------	-----------------	---------------	--------------

Property	IBM Kolkata [1]	lonQ Aria [2]	IBM vs. lonQ
Physical qubits	27 qubits	21 qubits	~ 1.3

Property	IBM Kolkata [1]	lonQ Aria [2]	IBM vs. IonQ
Physical qubits	27 qubits	21 qubits	~ 1.3
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-4} / \sim 9 \cdot 10^{-3}$	$\sim 5 \cdot 10^{-4} / \sim 4 \cdot 10^{-3}$	~ 1

Property	IBM Kolkata [1]	lonQ Aria [2]	IBM vs. lonQ
Physical qubits	27 qubits	21 qubits	~ 1.3
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-4} / \sim 9 \cdot 10^{-3}$	$\sim 5 \cdot 10^{-4} / \sim 4 \cdot 10^{-3}$	~ 1
Duration (1Q / 2Q)	$35\mathrm{ns}$ / $300\mathrm{ns}$	$135\mu s$ / $600\mu s$	$\sim 0.01\%$

Property	IBM Kolkata [1]	lonQ Aria [2]	IBM vs. IonQ
Physical qubits	27 qubits	21 qubits	~ 1.3
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-4} / \sim 9 \cdot 10^{-3}$	$\sim 5 \cdot 10^{-4} / \sim 4 \cdot 10^{-3}$	~ 1
Duration (1Q / 2Q)	$35\mathrm{ns}$ / $300\mathrm{ns}$	$135\mu s$ / $600\mu s$	$\sim 0.01\%$
T1 / T2	100 μs / 600 μs	$10-100\mathrm{s}/\sim 1\mathrm{s}$	$\sim 10000 \times$

Property	IBM Kolkata [1]	lonQ Aria [2]	IBM vs. IonQ
Physical qubits	27 qubits	21 qubits	~ 1.3
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-4} / \sim 9 \cdot 10^{-3}$	$\sim 5 \cdot 10^{-4} / \sim 4 \cdot 10^{-3}$	~ 1
Duration (1Q / 2Q)	$35\mathrm{ns}$ / $300\mathrm{ns}$	$135\mu s$ / $600\mu s$	$\sim 0.01\%$
T1 / T2	100 μs / 600 μs	$10-100\mathrm{s}/\sim 1\mathrm{s}$	$\sim 10000 \times$
Qubit connectivity			Full

Property	IBM Kolkata [1]	lonQ Aria [2]	IBM vs. IonQ
Physical qubits	27 qubits	21 qubits	~ 1.3
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-4} / \sim 9 \cdot 10^{-3}$	$\sim 5 \cdot 10^{-4} / \sim 4 \cdot 10^{-3}$	~ 1
Duration (1Q / 2Q)	$35\mathrm{ns}$ / $300\mathrm{ns}$	135μ s / 600μ s	$\sim 0.01\%$
T1 / T2	100 µs / 600 µs	$10-100\mathrm{s}/\sim 1\mathrm{s}$	$\sim 10000 \times$
Qubit connectivity			Full

How can we compare different QPU technologies?

Randomized Benchmarking

- 1. Determine the gate errors of individual qubits or qubit connections?
 - $\rightarrow \textbf{Randomized Benchmarking}$

Randomized Benchmarking

- 1. Determine the gate errors of individual qubits or qubit connections?
 - → Randomized Benchmarking
- 2. Measure and compare the performance of entire QPU systems?
 - → Quantum Volume Protocol

Outline

- Gate-Level Characterization (Randomized Benchmarking)
 - Standard Randomized Benchmarking
 - Interleaved Randomized Benchmarking
- QPU-level Randomized Benchmarks

Randomized Benchmarking Idea

Goal: Measure the error of gates on specific physical qubits/ qubit connections

Randomized Benchmarking Idea

Goal: Measure the error of gates on specific physical qubits/ qubit connections **Idea**:

- lacktriangle Run sequences of m random gates on n qubits, that overall compose the identity gate ${f I}$
- Without errors, the probability of measuring $p(|0\rangle)$ should be 1.0 (success)
- However, more gates add more noise, decaying $p(|0\rangle)$ to $\frac{1}{2^n}$

Randomized Benchmarking Idea

Goal: Measure the error of gates on specific physical qubits/ qubit connections **Idea**:

- lacksquare Run sequences of m random gates on n qubits, that overall compose the identity gate ${f I}$
- Without errors, the probability of measuring $p(|0\rangle)$ should be 1.0 (success)
- However, more gates add more noise, decaying $p(|0\rangle)$ to $\frac{1}{2^n}$

Random Clifford Sequences

Problem: Efficiently create gate-sequences that compose to the ${\bf I}$ gate

Random Clifford Sequences

Problem: Efficiently create gate-sequences that compose to the I gate

- Construct sequences of m random Clifford gates C_i [3]
- Efficient computation of the inverse of large sequences
- Append the inverse C_{m+1} to get the identity in total

Running Random Clifford Sequences

Random Clifford Sequences qubits [4, 5] of IBM Nairobi (7-qubit device)

Running Random Clifford Sequences

Random Clifford Sequences qubits [4, 5] of IBM Nairobi (7-qubit device)

How can we determine the error per Clifford (EPC)?

Depolarizing quantum channel:

$$\rho_f = \alpha \rho_i + \frac{1 - \alpha}{2^n} \mathbf{I}$$

Depolarizing quantum channel:

$$\rho_f = \alpha \rho_i + \frac{1 - \alpha}{2^n} \mathbf{I}$$

If we run m random Clifford gates, the channel can be described as

$$\rho_f^m = \alpha^m \rho_i + \frac{1 - \alpha^m}{2^n} \mathbf{I}$$

Depolarizing quantum channel:

$$\rho_f = \alpha \rho_i + \frac{1 - \alpha}{2^n} \mathbf{I}$$

 \blacksquare If we run m random Clifford gates, the channel can be described as

$$\rho_f^m = \alpha^m \rho_i + \frac{1 - \alpha^m}{2^n} \mathbf{I}$$

We can derive the probability of success after the Clifford sequence:

$$p(|0\rangle) = \alpha^m + \frac{1 - \alpha^m}{2^n} = \frac{2^n - 1}{2^n} \alpha^m + \frac{1}{2^n} = A_0 \alpha^m + B_0$$

Depolarizing quantum channel:

$$\rho_f = \alpha \rho_i + \frac{1 - \alpha}{2^n} \mathbf{I}$$

If we run m random Clifford gates, the channel can be described as

$$\rho_f^m = \alpha^m \rho_i + \frac{1 - \alpha^m}{2^n} \mathbf{I}$$

We can derive the probability of success after the Clifford sequence:

$$p(|0\rangle) = \alpha^m + \frac{1 - \alpha^m}{2^n} = \frac{2^n - 1}{2^n} \alpha^m + \frac{1}{2^n} = A_0 \alpha^m + B_0$$

■ Therefore, the error-rate per Clifford (EPC) is:

$$r = 1 - \left(\alpha + \frac{1 - \alpha}{2^n}\right)$$

Depolarizing quantum channel:

$$\rho_f = \alpha \rho_i + \frac{1 - \alpha}{2^n} \mathbf{I}$$

If we run m random Clifford gates, the channel can be described as

$$\rho_f^m = \alpha^m \rho_i + \frac{1 - \alpha^m}{2^n} \mathbf{I}$$

We can derive the probability of success after the Clifford sequence:

$$p(|0\rangle) = \alpha^m + \frac{1 - \alpha^m}{2^n} = \frac{2^n - 1}{2^n} \alpha^m + \frac{1}{2^n} = A_0 \alpha^m + B_0$$

■ Therefore, the error-rate per Clifford (EPC) is:

$$r = 1 - \left(\alpha + \frac{1 - \alpha}{2^n}\right)$$

 \blacksquare Use curve-fitting to find α

Curve-fit to find the Error per Clifford

$$p(|0\rangle) = A_0 \alpha^m + B_0 \implies \alpha = 0.973 \implies r = 1 - \left(\alpha + \frac{1-\alpha}{2^n}\right) = 0.019$$

Randomized Benchmarking on IBM Nairobi

IBM Nairobi

Interleaved Randomized Benchmarking [4]

Problem: How can we determine the error of specific QPU-native gates (e.g., CNOT gate)?

Interleaved Randomized Benchmarking [4]

Problem: How can we determine the error of specific QPU-native gates (e.g., CNOT gate)? **Idea**:

- Interleave a specific gate between the Clifford gates
- Measure the relative error to the standard EPC

Interleaved Randomized Benchmarking Curve-Fitting

Error per Gate

■ With the interleaved RB, we get α_{std} and α_{inter} from fitting both to $p(|0\rangle) = A_0\alpha^m + B_0$

Error per Gate

- With the interleaved RB, we get α_{std} and α_{inter} from fitting both to $p(|0\rangle) = A_0\alpha^m + B_0$
- Define the relative decay rate as $\alpha_{rel} = \alpha_{std}/\alpha_{inter}$

Error per Gate

- With the interleaved RB, we get α_{std} and α_{inter} from fitting both to $p(|0\rangle) = A_0\alpha^m + B_0$
- Define the relative decay rate as $\alpha_{rel} = \alpha_{std}/\alpha_{inter}$
- lacksquare The error per gate is then defined as $r_{gate}=1-\left(lpha_{rel}+rac{1-lpha_{rel}}{2^n}
 ight)pprox0.008$

Error per gate on IBM Perth

IBM Nairobi

Outline

- Gate-Level Characterization (Randomized Benchmarking)
- QPU-level Randomized Benchmarks
 - Quantum Volume

Performance of QPU-systems

Challenge:

- Measure and compare the performance of QPUs
- Gate-level RB insufficient: no measure of qubit-connectivity, crosstalk, etc.

Performance of QPU-systems

Challenge:

- Measure and compare the performance of QPUs
- Gate-level RB insufficient: no measure of qubit-connectivity, crosstalk, etc.

Goal:

General benchmark to measure the performance of an entire QPU

Performance of QPU-systems

Challenge:

- Measure and compare the performance of QPUs
- Gate-level RB insufficient: no measure of qubit-connectivity, crosstalk, etc.

Goal:

General benchmark to measure the performance of an entire QPU

Quantum Volume (QV) [5]: A single-number metric with a standardized protocol

Determines the largest random square circuit a QPU can successfully run

Nathaniel Tornow | Randomized Benchmarking | 15.12.2023

The Quantum Volume (QV) model circuit

Model circuit: d layers of random permutations π and random SU(4) gates

- Random circuit, represents a general circuit used in algorithms
- Highly connected, required high-fidelity two-qubit gates

lacksquare A QPU has a $QV=2^d$ if it successfully implements a QV circuit of depth d.

lacksquare A QPU has a $QV=2^d$ if it successfully implements a QV circuit of depth d.

■ A QPU has a $QV = 2^d$ if it successfully implements a QV circuit of depth d.

- lacksquare QPU can successfully implement QV-circuits up to d=3
- Therefore, $QV = 2^d = 8$
- Corresponds to the classical simulation-cost

lacksquare A QPU has a $QV=2^d$ if it successfully implements a QV circuit of depth d.

- lacksquare QPU can successfully implement QV-circuits up to d=3
- $\blacksquare \quad \text{Therefore, } QV = 2^d = 8$
- Corresponds to the classical simulation-cost
- What is a successful circuit implementation?

Successful Circuit Implementation

Derived from the heavy output generation problem

Successful Circuit Implementation

- Derived from the heavy output generation problem
- Successful circuit implementation: If the QPU produces a set of outputs x, such that the heavy output probability (HOP) is at least 2/3

Successful Circuit Implementation

- Derived from the heavy output generation problem
- Successful circuit implementation: If the QPU produces a set of outputs x, such that the heavy output probability (HOP) is at least 2/3
- Example:
 - \square QV circuit U

$$P_U = \{\text{``00"}: 0.3, \text{``01"}: 0.2, \text{``10"}: 0.0, \text{``11"}: 0.5\}, \ p_{med} = 0.25$$

$$H_U = \{\text{``00"}, \text{``11"}\}$$

- Noisy circuit U' on QPU.
- Successful, if $HOP = p_{U'}("00") + p_{U'}("11") \ge 2/3$

Successful Circuit Implementation (2)

- \blacksquare We want to be **confident** that the QPU is successful for a given depth d
- lacktriangle Run n trials and get heavy output probability p_{mean}
- 97.5% confidence if $p_{mean} \ge 2/3 + 2\sigma$

QV experiment with d=3 on IBM Kolkata (simulated)

Property	IBM Kolkata	IonQ Aria
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-3} / \sim 9 \cdot 10^{-4}$	$\sim 5 \cdot 10^{-3} / \sim 4 \cdot 10^{-4}$
T1 / T2	$100\mu s$ / $70\mu s$	$10 - 100s / \sim 1000ms$
Qubit connectivity	•••••	

Property	IBM Kolkata	IonQ Aria
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-3} / \sim 9 \cdot 10^{-4}$	$\sim 5 \cdot 10^{-3} / \sim 4 \cdot 10^{-4}$
T1 / T2	$100\mu s$ / $70\mu s$	$10 - 100s / \sim 1000ms$
Qubit connectivity	••••••••••••	
Quantum Volume	2^4	2^4

Property	IBM Kolkata	IonQ Aria
Errors (1Q / 2Q)	$\sim 2 \cdot 10^{-3} / \sim 9 \cdot 10^{-4}$	$\sim 5 \cdot 10^{-3} / \sim 4 \cdot 10^{-4}$
T1 / T2	$100\mu s$ / $70\mu s$	$10 - 100s / \sim 1000ms$
Qubit connectivity	•••••	
Quantum Volume	2^4	2^4

Current QV record: 2¹⁹ on the 20-qubit H1 QPU (Quantinuum)

Quantum Volume: Outlook

- Quantum Volume protocol has limitations
 - Requires classical simulation to generate heavy output set

 - Does not measure the execution time
 - ☐ Only measures the "best" qubits of a system

Quantum Volume: Outlook

- Quantum Volume protocol has limitations
 - Requires classical simulation to generate heavy output set
 - \square 2^x-valued (e.g., no values between QV=64 and QV=128 possible)
 - Does not measure the execution time
 - Only measures the "best" qubits of a system
- Circuit Layer Operations per Second (CLOPS) [6]
 - Addition to Quantum Volume
 - Factors in the time to (iteratively) execute circuits

Quantum Volume: Outlook

- Quantum Volume protocol has limitations
 - Requires classical simulation to generate heavy output set
 - \square 2^x-valued (e.g., no values between QV=64 and QV=128 possible)
 - Does not measure the execution time
 - Only measures the "best" qubits of a system
- Circuit Layer Operations per Second (CLOPS) [6]
 - Addition to Quantum Volume
 - □ Factors in the time to (iteratively) execute circuits
- Layer Fidelity [7]
 - lacksquare Fine-grained fidelity metric $\in [0,1]$
 - Benchmarks every qubit of a QPU
 - Builds on the RB protocol

Conclusion

Challenge: Heterogeneity on the gate-level and QPU-level

- 1. How to characterize gate-errors?
- 2. How to compare and measure the performance of different QPUs?

Solution: Randomized Benchmarking (RB)

- (Interleaved) RB to characterize gate-errors on individual qubits
- Quantum Volume (QV) to benchmark the performance of entire QPUs

Check out my implementation: github.com/nathanieltornow/rand_bench

Ibmq resources.

https://quantum.ibm.com/services/resources, 2023. Accessed: December 13, 2023.

long aria: Practical performance.

https://ionq.com/resources/ionq-aria-practical-performance, 2023. Accessed: December 13, 2023.

Easwar Magesan, Jay M Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking of quantum processes. Physical review letters, 106(18):180504, 2011.

Easwar Magesan, Jay M Gambetta, Blake R Johnson, Colm A Ryan, Jerry M Chow, Seth T Merkel, Marcus P Da Silva, George A Keefe, Mary B Rothwell, Thomas A Ohki, et al.

Efficient measurement of quantum gate error by interleaved randomized benchmarking. *Physical review letters*, 109(8):080505, 2012.

Andrew Wack, Hanhee Paik, Ali Javadi-Abhari, Petar Jurcevic, Ismael Faro, Jay M Gambetta, and Blake R Johnson.

Quality, speed, and scale: three key attributes to measure the performance of near-term quantum computers.

arXiv preprint arXiv:2110.14108, 2021.

Physical Review A, 100(3):032328, 2019.

David C McKay, Ian Hincks, Emily J Pritchett, Malcolm Carroll, Luke CG Govia, and Seth T Merkel.

Benchmarking quantum processor performance at scale.

arXiv preprint arXiv:2311.05933, 2023.