DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY, UTTAR PRADESH, LUCKNOW

EVALUATION SCHEME & SYLLABUS

FOR

MASTER OF COMPUTER APPLICATION (MCA)

(Two Year Course)

AS PER
AICTE MODEL CURRICULUM

[Effective from the Session: 2021-22]

MASTER OF COMPUTER APPLICATION (MCA) MCA SECOND YEAR, 2021-22

SEMESTER-III

S. No.	Subject	Subject Name	Periods		Sessional		ESE	Total	Credit		
	Code		L	Т	P	CT	TA	Total			
1.	KCA301	Artificial Intelligence	3	0	0	30	20	50	100	150	3
2.	KCA302	Software Engineering	4	0	0	30	20	50	100	150	4
3.	KCA303	Computer Network	3	1	0	30	20	50	100	150	4
4.		Elective – 1	3	0	0	30	20	50	100	150	3
5.		Elective – 2	3	1	0	30	20	50	100	150	3
6.	KCA351	Artificial Intelligence Lab	0	0	3	30	20	50	50	100	2
7.	KCA352	Software Engineering Lab	0	0	3	30	20	50	50	100	2
8.	KCA353	Mini Project**	0	0	4	30	20	50	50	100	2
		Total								1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

SEMESTER-IV

S. No.	Subject	Subject Name		Periods		Sessional			ESE	Total	Credit
	Code		L	Т	P	CT	TA	Total			
1.		Elective – 3	3	0	0	30	20	50	100	150	3
2.		Elective – 4	3	0	0	30	20	50	100	150	3
3.		Elective – 5	3	0	0	30	20	50	100	150	3
4.	KCA451	Project	-	-	-	-	200	200	500	700	14
		Total								1050	23

CT: Class Test TA: Teacher Assessment

L/T/P: Lecture/ Tutorial/ Practical

^{**} The Mini Project (6 weeks) conducted during summer break after II semester and will be assessed during III semester. The Course will be carried out at the Institute under the guidance of a Faculty Members.

Elective-1 KCA011		Cryptography & Network Security
KCA012 Data Wareh		Data Warehousing & Data Mining
KCA013 Software Project Man		Software Project Management
KCA014		Cloud Computing
	KCA015	Compiler Design

Elective-2	KCA021	Web Technology		
	KCA022	Big Data		
	KCA023	Simulation & Modeling		
	KCA024	Software Testing & Quality Assurance		
	KCA025	Digital Image Processing		

Elective-3	KCA031	Privacy & Security in Online Social Media
	KCA032	Soft Computing
	KCA033	Pattern Recognition
	KCA034	Data Analytics
	KCA035	Software Quality Engineering

Elective-4	KCA041	Blockchain Architecture
KCA042 Neural Network		Neural Network
KCA043 Internet of Things		Internet of Things
KCA044		Modern Application Development
	KCA045	Distributed Database Systems

Elective-5	KCA051	Mobile Computing		
KCA052 Computer Graphics and Animation		Computer Graphics and Animation		
KCA053		Natural Language Processing		
KCA054 M		Machine Learning		
	KCA055	Quantum Computing		

	KCA035: Software Quality Engineering					
	Course Outcome (CO) Bloom's Knowledge L					
At the	end of course, the student will be able to:					
CO 1	Understand basic concepts of Software Quality along with its documents and process	K2				
CO 2	Apply knowledge of Software Quality in various types of software	К3				
CO 3	Compare the various reliability models for different scenarios	K4				
CO 4	Illustrate the software Quality Planning and Assurance	K2				
CO 5	Make use of various testing techniques in software implementation	К3				
	DETAILED SYLLABUS	3-1-0				
Unit	Торіс	Proposed Lecture				
I	Software Quality : Definition, Software Quality Attributes and Specification, Cost of Quality, Defects, Faults, Failures, Defect Rate and Reliability, Defect Prevention, Reduction, and Containment, Overview of Different Types of Software Review, Introduction to Measurement and Inspection Process, Documents and Metrics.					
II	Software Quality Metrics Product Quality Metrics: Defect Density, Customer Problems Metric, Customer Satisfaction Metrics, Function Points, In-Process Quality Metrics: Defect Arrival Pattern, Phase-Based Defect Removal Pattern, Defect Removal Effectiveness, Metrics for Software Maintenance: Backlog Management Index, Fix Response Time, Fix Quality, Software Quality Indicators.	08				
III	Software Quality Management and Models: Modeling Process, Software Reliability Models: The Rayleigh Model, Exponential Distribution and Software Reliability Growth Models, Software Reliability Allocation Models, Criteria for Model Evaluation, Software Quality Assessment Models: Hierarchical Model of Software Quality Assessment.					
IV	Software Quality Assurance: Quality Planning and Control, Quality Improvement Process, Evolution of Software Quality Assurance (SQA), Major SQA Activities, Major SQA Issues, Zero Defect Software, SQA Techniques, Statistical Quality Assurance, Total Quality Management, Quality Standards and Processes.					
V	Assurance, Total Quality Management, Quality Standards and Processes. Software Verification, Validation & Testing: Verification and Validation, Evolutionary Nature of Verification and Validation, Impracticality of Testing all Data and Paths, Proof of Correctness, Software Testing, Functional, Structural and Error-Oriented Analysis & Testing, Static and Dynamic Testing Tools, Characteristics of Modern Testing Tools.					

Text books:

- 1. Jeff Tian, Software Quality Engineering (SQE), Wiley-Interscience, 2005; ISBN 0-471-71345-7
- 2. Metrics and Models in Software Quality Engineering, Stephen H. Kan, AddisonWesley (2002), ISBN: 0201729156
- 3. Norman E. Fenton and Shari Lawrence Pfleeger, "Software Metrics" Thomson, 2003
- 4. Mordechai Ben Menachem and Garry S.Marliss, "Software Quality", Thomson Asia Pte Ltd, 2003.

	KCA043: Internet of Things					
	Course Outcome (CO) Bloom's Knowledge I	Level (KL)				
	At the end of course, the student will be able to understand CO 1 Demonstrate basic concepts, principles and challenges in IoT. K1,K2					
CO 1	CO 1 Demonstrate basic concepts, principles and challenges in IoT.					
CO 2	CO 2 Illustrate functioning of hardware devices and sensors used for IoT.					
CO 3	Analyze network communication aspects and protocols used in IoT.	K4				
CO 4	Apply IoT for developing real life applications using Ardunio programming.	К3				
CP 5	To develop IoT infrastructure for popular applications	K ₂ , K ₃				
	DETAILED SYLLABUS	3-1-0				
Unit	Торіс	Proposed Lecture				
I	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability	08				
II	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.	08				
III	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination	08				
IV	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.	08				
V	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles, tablets, Designing of smart street lights in smart city.	08				

Text books:

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi "The Internet of Things key applications and protocols", willey
- 2. Jeeva Jose, Internet of Things, Khanna Publishing House
- 3. Michael Miller "The Internet of Things" by Pearson
- 4. Raj Kamal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016
- 5. ArshdeepBahga, Vijay Madisetti "Internet of Things (A hands on approach)" 1ST edition, VPI publications, 2014
- 6. Adrian McEwen, Hakin Cassimally "Designing the Internet of Things" Wiley India

	KCA054: Machine Learning Techniques			
	· · ·	nowledge Level KL)		
At the	end of course , the student will be able:)		
CO 1	To understand the need for machine learning for various problem solving	K_1, K_2		
CO 2	CO 2 To understand a wide variety of learning algorithms and how to evaluate models generated from data			
CO 3		K_2 , K_3		
CO 4	To design appropriate machine learning algorithms and apply the algorithms to a real-world problems	K ₄ , K ₆		
CO 5	To antimize the models learned and report on the expected accuracy that can	K ₄ , K ₅		
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Proposed Lecture		
I	INTRODUCTION – Learning, Types of Learning, Well defined learning problems, Designing a Learning System, History of ML, Introduction of Machine Learning Approaches – (Artificial Neural Network, Clustering, Reinforcement Learning, Decision Tree Learning, Bayesian networks, Support Vector Machine, Genetic Algorithm), Issues in Machine Learning and Data Science Vs Machine Learning;			
П	08			
III	08			
IV	08			
V	REINFORCEMENT LEARNING —Introduction to Reinforcement Learning, Learning Task, Example of Reinforcement Learning in Practice, Learning Models for Reinforcement — (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning, Introduction to Deep Q Learning.			

GENETIC ALGORITHMS: Introduction, Components, GA cycle of reproduction, Crossover, Mutation, Genetic Programming, Models of Evolution and Learning, Applications.

Text books:

- 1. Tom M. Mitchell, —Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
- 2. Ethem Alpaydin, —Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press 2004.
- 3. Stephen Marsland, —Machine Learning: An Algorithmic Perspective, CRC Press, 2009.
- 4. Bishop, C., Pattern Recognition and Machine Learning. Berlin: Springer-Verlag.
- 5. M. Gopal, "Applied Machine Learning", McGraw Hill Education