## Sorting

#### TABLE OF CONTENTS

- 1. Understand sorting
- 2. Few problems on sorting
- 3. 2 sorting algorithms
  - 3.1 Selection Sort
  - 3.2 Insertion Sort





### **Question** (Elements Removal)

Given N elements, at every step remove an array element.

Cost to remove an element = Sum of array of elements present in an array

Find minimum cost to remove all elements.

NOTE: First add the cost of removal and then remove it.

| 0 1 2<br>arr - [2 1 4] | irdex to remove | cost    | orlay |
|------------------------|-----------------|---------|-------|
|                        | 0               | 2+1+4=7 | [1 4] |
|                        | 1               | 1+4=5   | [4]   |
|                        | 2               | 4 = 4   | ×     |

| 0 1 2<br>arr - [2 1 4] | irdex to remove | cost         | ortau |
|------------------------|-----------------|--------------|-------|
|                        | 2               | 2+1+4=7      | [2 1] |
|                        | 0               | 2+1=3        | 117   |
|                        | 1               | ı = <u>ı</u> | X     |
|                        |                 | 11 /         |       |

$$A = \begin{bmatrix} 4 & 6 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 4 & 6 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 4 & 6 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 6 & 1 \end{bmatrix}$$



| 0 1 2 3<br>A = [3 5 1 -3] | irdese | cost      | rem array |
|---------------------------|--------|-----------|-----------|
|                           | 1      | 3+5+1-3=6 | [3   -3]  |
|                           | 0      | 3+1-3 = 1 | [1 -3]    |
|                           | 2      | 1-3 = -2  | [-3]      |
|                           | 3      | <u>-3</u> | X         |

Observation - Remove large values.

| la       | Ь | c | a ]     | Remove | Lost          |
|----------|---|---|---------|--------|---------------|
| 0        | 1 | 2 | 3       | a      | a + b + c + d |
| <b>→</b> | 2 | 3 | 4 (i+1) | Ь      | b + c + d     |
|          |   |   |         | C      | c + d         |
|          |   |   |         | d      | 1.            |

// Sort AI] ir descerding 
$$\rightarrow$$
 TC =  $O(N \log_2(N))$   
 $cost = 0$   $SC = O(N) / O(I)$   
for  $i \rightarrow 0$  to  $(N-I)$  &  $cost + = A[i] * (i+I)$   
}

$$TC = O(N \log (N) + N) = O(N \log (N))$$
  $SC = O(N)/O(1)$ 



Question (Noble Integers ) { Distinct data }

Given N array elements, calculate number of noble integers.

An element ele in arr [] is said to be noble if { count of smaller elements = ele itself }

$$arr - [1, -5, 3, 5, -10, 4]$$
# ele < A[i] \rightarrow 2 | 3 | 5 | 0 | 4 | Ars = 3

$$TC = O(N^2) \qquad SC = O(1)$$

ans = 0

for 
$$i \rightarrow 0$$
 to  $(N-1)$  if

 $crt = 0$ 

for  $j \rightarrow 0$  to  $(N-1)$  if

 $if (Aij] < Aii])$  crt++

 $if (crt = Aii])$  ans ++

return are

```
Question (Noble Integers) : { Data can repeat }
```

for 
$$i \rightarrow 0$$
 to  $(N-1)$  &

$$TC = O(N \log_{10}(N) + N) = O(N \log_{10}(N))$$

$$SC = O(N) / O(1)$$



### **Selection Sort**

idea: Select the minimum element and send that elements to correct position by swapping.

Find mox element in A/J 
$$\rightarrow$$
 TC= $O(N)$  SC= $O(I)$ 

First second mox element 
$$\rightarrow$$
 TC = O(2N) = O(N)

$$5c = 0(2) = 0(1)$$

$$SC = O(3) = O(1)$$

$$SC = O(3) = O(1)$$
Find K th largest element  $\rightarrow$  TC = O(K  $\neq$  N)

$$SC = O(K)$$

$$A = \begin{bmatrix} 3 & 8 & 2 & 3 & 4 & 5 \\ -1 & -3 & 2 & 3 & 5 & 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 8 & 2 & 3 & 4 & 5 \\ 2 & -1 & 3 & 5 & 8 \end{bmatrix}$$



$$TC = O(N^2)$$

$$SC = O(1)$$

Max → first \_\_ Descending

Mir → last \_\_\_\_ Ascerding

Mir → first \_\_\_\_ Ascerding

H. W → Study <u>Bubble Sort</u>.



# **Insertion Sort** (Arrangement of playing cards)



Why used - It can sort running stream of data.

$$\dot{1}/\rho \rightarrow 7 9 12 10 8$$

for Vinputs, x f i = n - 1 f(0) = i(current array)while (i > = 0) f f(A[i] > x) f(A[i] > xelse

| <br>$\int_{\mathcal{S}} A[i+1] = x$ |               |                 |
|-------------------------------------|---------------|-----------------|
| } A[i+1] = x<br>} return A          | $TC = O(N^2)$ | sc= <u>o(1)</u> |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |
|                                     |               |                 |





