NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93940

RESIDENCE REPORTS DIVINOUS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA 93943

NPS68-84-002

NAVAL POSTGRADUATE SCHOOL,

Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM OPTOMA2, LEGS I AND II 31 JULY - 14 AUGUST, 1982.

bу

Michele M. Rienecker Christopher N.K. Mooers Marie C. Colton Paul A. Wittmann

March 1984

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research Environmental Sciences Directorate (Code 420) Arlington, VA 22217. D 208-14/2 NFS-68-84-002

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY 53343-5101

Commodore R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was prepared by:

ma.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
NPS68-84-002		
4. TITLE (and Subtitle)	DDOCDAM	5. TYPE OF REPORT & PERIOD COVERED
HYDROGRAPHIC DATA FROM THE OPTOMA OPTOMA2, LEGS I AND II, 31 JULY -		Report for October 1982 to
OPTOMAZ, LEGS I AND II, 31 JULI -	14 AUGUSI, 1982	Harch 1704.
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(8)
Michele M. Rienecker, Christopher Marie C. Colton, Paul A. Wittmann		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School		AREA & WORK ON!! NUMBERS
Monterey, CA 93943.		61153N NOO01484WR24051
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office of Naval Research (Code 42	20)	March 1984.
Arlington VA 22217.		13. NUMBER OF PAGES 65
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; dis	stribution unlim	ited.
17. DISTRIBUTION STATEMENT (of the ebetrect entered in	n Block 20, If different fro	n Report)
18. SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse elde !! necessary and California Current System	identify by block number)	
Physical oceanography		
Dynamic oceanography		

20. ABSTRACT (Continue on reverse elde if necessary and identify by block number)

The cruise OPTOMA2 was undertaken in August, 1982 to sample a subdomain of the California Current System. This report presents the hydrographic data, acquired by XBT and CTD casts, from the cruise.

Hydrographic Data from the OPTOMA Program: OPTOMA2, Legs I and II 31 July - 14 August, 1982

by

Michele M. Rienecker Christopher N. K. Mooers Marie C. Colton Paul A. Wittmann

Chief Scientists: C. N. K. Mooers and A. R. Robinson

The **OPTOMA** Program is a joint program of

Department of Oceanography Center for Earth and Planetary Physics

Naval Postgraduate School Harvard University

Monterey, CA 93943. Cambridge, MA 02138.

TABLE OF CONTENTS

	PAGE
LIST OF FIGURES	ii
INTRODUCTION	2
DATA ACQUISITION	2
DATA PROCESSING	3
DATA PRESENTATION	4
SECTION 1: LEG I	6
SECTION 2: LEG II	32
ACKNOWLEDGEMENTS	63
REFERENCES	63
INITIAL DISTRIBUTION LIST	64

LIST OF FIGURES

Figure No.	Caption	Page
1.	The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.	Cruise track for OPTOMA2, Leg I with transect extremes identified by letter.	7
3.	XBT and CTD locations for OPTOMA2, Leg I.	8
4.	Station numbers for OPTOMA2, Leg I.	9
5 (a)-(f).	Staggered temperature profiles from the XBT's. Profiles are staggered by a multiple of 5C. (OPTOMA2, Leg I).	13
6 (a)-(c).	Temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt. (OPTOMA2, Leg I).	19
7 (a)-(d).	Isotherms from XPT's and CTD's. Tick marks along the horizontal axis show station positions. Some station numbers are shown. Arrows indicate the positions where the cruise track changed direction. (OPTOMA2, Leg I).	22
8 (a)-(b).	Isopleths of temperature, salinity and sigma-t from the CTD's. (OPTOMA2, Leg I).	26
9.	T-S pairs from the CTD casts for OPTOMA2, Leg I.	28
10.	Profiles of $\overline{T(z)}$ with + and - the standard deviation from (a) XBT's and CTD's and (b) CTD's only. (OPTOMA2, Leg I).	29
11.	Profiles of (a) mean salinity and (b) mean sigma-t, with + and - the standard deviations, from the CTD's. (OPTOMA2, Leg I).	30
12.	Profiles of $N^2(z)$ (——), with + and - the standard deviation () and the profile of N^2 from $\overline{T(z)}$ and $\overline{S(z)}$ (). (OPTOMA2, Leg I).	31
13.	Cruise track for OPTOMA?, Leg II with transect extremes identified by letter.	33

Figure No.	Caption	Page
14.	XBT and CTD locations for OPTOMA2, Leg II.	34
15.	Station numbers for OPTOMA2, Leg II.	35
16 (a)-(g).	Staggered temperature profiles from the XBT's. Profiles are staggered by a multiple of 5C. (OPTOMA2, Leg II).	40
17 (a)-(e).	Temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt. (OPTOMA2, Leg II).	47
18 (a)-(d).	Isotherms from XBT's and CTD's. Tick marks along the horizontal axis show station positions. Some station numbers are shown. Arrows indicate the positions where the cruise track changed direction. (OPTOMA2, Leg II).	52
19 (a)-(c).	Isopleths of temperature, salinity and sigma-t from the CTD's. (OPTOMA2, Leg II).	56
20.	T-S pairs from the CTD casts for OPTOMA2, Leg II.	59
21.	Profiles of $\overline{T(z)}$ with + and - the standard deviation from (a) XBT's and CTD's and (b) CTD's only. (OPTOMA2, Leg II).	60
22.	Profiles of (a) mean salinity and (b) mean sigma-t, with + and - the standard deviations, from the CTD's. (OPTOMA2, Leg II).	61
23.	Profiles of $N^2(z)$ (), with + and - the standard deviation (), and the profile of N^2 from $T(z)$ and $S(z)$ (). (OPTOMA2, Leg II).	62

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis) Program a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The cruise OPTOMA2 was undertaken, in the R/V ACANIA, for two weeks in August, 1982 and covered part of the NOCAL domain which is roughly 200 km square centered 150 km off the California coast.

Hydrographic data were acquired during two legs: Leg I was carried out during the period 31 July to 5 August and sampled an area 130 km cross-shore by 190 km alongshore with additional transects to and from the domain as shown in Figure 2. The transect extremes are identified by letter to aid in the cross-referencing of data presented in subsequent figures. Leg II was carried out during the period 8 to 14 August and sampled an area roughly 150 km cross-shore by 100 km alongshore as shown in Figure 13. Each leg consisted of a series of parallel transects directed alongshore, separated by roughly 45 km and along which hydrographic stations were occupied every 8.8 km. In addition, there were diagonal transects and tracks to and from the domain. DATA ACQUISITION

Data acquired during OPTOMA2 include XBT and CTD profiles and continuous 2 m thermalsalinograph measurements. Bucket surface temperature and water samples for salinity were taken at every CTD station. These surface values and those at 2 m were used for calibration purposes as well as contributions to the data base. Continuous meteorological data such as atmospheric pressure at a height of 2 m and wind speed and direction at a height of 20 m were also recorded. The XBT, CTD and continuous "underway" data were digitized using an

HP 5328 frequency counter and a 40 channel digital voltmeter. The continuous data were averaged over one-minute intervals. All data were recorded, using an HP 9835 computer, on data cassettes and transferred ashore to the IBM 3033 mainframe computer for editing and processing.

Station positions were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. The probe on the Sippican Expendable Bathythermograph (XBT) has an accuracy of ± 0.2 C in temperature and $\pm 2\%$ or 4.6 m (whichever is greater) in depth. The Neil Brown Instrument Mark IIIb conductivity - temperature - depth (CTD) sensors have an accuracy of ± 0.005 mmho, ± 0.005 C, and ± 1.6 db, respectively. The 2 m underway sensors are from SEA-BIRD Electronics. The temperature sensor, a glass coated thermistor bead, has an accuracy of ± 0.003 C; the conductivity sensor, a two-terminal flow-through electrode cell, has an accuracy of of ± 0.003 mmho/cm. The bottle surface salinity samples were determined ashore by a Guildline Model 8400 "Autosal" salinometer with an accuracy of ± 0.003 ppt. The Table on page 6 summarizes the various sensors available on the R/V ACANIA and their accuracy.

DATA PROCESSING

Data processing, such as estimating depth profiles for the XBT temperature profiles based on the XBT's descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033 at the Naval Postgraduate School. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 91% of casts were retained in the data set. The CTD salinity profiles were corrected by reference to the 2 m salinity and surface salinity measurements. The surface salinities from the CTD casts up to Station 110 were too high on average by 0.17 ppt; hence they were adjusted accordingly. Thereafter, the offset was random and the average difference between sensors was only 0.02 ppt; hence, no correction was made. The CTD data were interpolated to 5 m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations (with XBT's and CTD's identified) and station numbers are shown in the first three figures of each of the next two sections, which present the data from Leg I and Leg II, respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise track. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow. Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed by isopleths of temperature, salinity and sigma-t from the CTD's. Based on instrument accuracy and the vertical temperature gradient, it is estimated that the depth of isotherms in the main thermocline are uncertain to ± 20 m. The tick marks identify station positions and, again, the transect extremes are shown on these plots. In each section, the data presentation concludes with a scatter diagram of T-S pairs, plots of mean and \pm standard deviation on profiles of temperature from XBT's and CTD's and temperature, salinity and sigma-t from the CTD's, and a plot of the mean and \pm standard deviation profiles of N2 (Brunt-Vaisala frequency squared). On the sigma-t and N2 plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown, but these are barely distinguishable from the mean profiles themselves.

SCIENTIFIC INSTRUMENTS ABOARD THE R/V ACANIA

Instrument	Variable	Sensor	Accuracy	Resolution
Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gage thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmho
Sippican BT	temperature depth	thermistor descent speed	0.2 C max. of 4.6 and 2% of de	
Guildline Autosal	conductivity	electrode cell	0.003 ppt	0.0002 ppt
*Amatek Straza ADVP	velocity profiles to 100m	4 beam sonar	3 cm/sec relative to ship speed	3 cm/sec
*Rosemount Sensor	sea surface temperature	platinum thermometer	0.05 C	0.005 C
Sea-Bird Sensors	temperature conductivity at 2 meters	thermistor electrode cell	0.003 C 0.003 mmho	0.0005 C 0.0005 mmho
Rosemount Sensor	air temperature	thermometer	0.01 C	
Kavolico Barometer	atmospheric pressure	pressure transducer	1.5 mb	0.1 mb
*1200 EPS Hygrometer	dew point	condensation temp. sensor	0.2 C	0.02 C
Meteorology Res. Inc.	wind speed	anemometer	0.15 mph or 1%	
Meteorology Res. Inc.	direction	vane	2.5 degrees	
Internav LC408 LORAN C	position	two chain LORAN receiver	100 meters	
Motorola	position	microwave transponders	4 meters	

^{*} Not operating on the OPTOMA2 cruise.

SECTION 1

OPTOMA2 - LEG I
31 JULY to 5 AUGUST 1982

Figure 2: Cruise track for OPTOMA2, Leg I with transect extremes identified by letter.

Figure 3: XBT and CTD locations for OPTOMA2, Leg I.

Figure 4: Station numbers for OPTOMA2, Leg I.

XBT - CTD STATION LISTING

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	SALINIT	Y TEMP	F BOTTLE SALINTIY C) (PPT)
1 2 3 4 5	XBT XBT XBT XBT XBT	82212 82212 82212 82212 82212	1526 1733 1844 2016 2132	37.00 37.05 37.08 37.12 37.16	124.01 124.05 124.07 124.13 124.16	13.9 15.0 15.1 15.1 14.8			
6 7 8 9	XBT XBT XBT XBT	82212 82213 82213 82213	2314 19 140 242	37.20 37.24 37.28 37.31	124.22 124.24 124.29 124.33	14.0 13.6 13.3 13.0			
10 11 12 13 14	XBT XBT XBT XBT XBT	82213 82213 82213 82213 82213	402 515 625 746 910	37.38 37.42 37.45 37.49	124.40 124.44 124.44 124.51	13.2 13.3 13.6 14.2 14.1			
16 17 18 19 20	XBT CTD XBT XBT XBT	82213 82213 82213 82213 82213	1154 1252 1609 1649 1726	37.56 38.00 38.04 38.08 38.12	124.60 125.03 125.07 125.09 125.11	15.4 15.1 14.4 14.6 14.9	33.06	15.2	33.15
21 22 23 24	CTD XBT XBT XBT	82213 82213 82213 82213	1828 1919 1958 2035	38.17 38.22 38.26 38.31	125.14 125.16 125.17 125.20	14.1 12.9 13.5 14.2	33.14	15.0	33.11
26 27 28 29 30	XBT XBT XBT CTD XBT	82213 82213 82213 82214 82214	2231 2306 2346 44 134	38.40 38.45 38.49 38.54 38.58	125.25 125.27 125.30 125.32 125.34	15.1 15.5 15.4 15.2 15.6	32.75	15.2	32.84
31 32 33 34	XBT XBT CTD XBT	82214 82214 82214 82214	217 318 432 555	39.02 39.07 39.11 39.15	125.36 125.38 125.40 125.43	15.6 15.4 15.3 15.2	32.70	15.3	32.65
35 36 37 38 40	XBT XBT CTD XBT XBT	82214 82214 82214 82214 82214	647 743 857 1014 1150	39.19 39.23 39.28 39.32 39.34	125.45 125.47 125.48 125.52 125.59	15.4 15.7 15.3 15.6 15.7	32.62	15.5	32.68
41 42 43 44	CTD XBT XBT CTD	82214 82214 82214 82214	1303 1422 1453 1550	39.33 39.32 39.29 39.27	126.04 126.09 126.14 126.20	15.6 15.7 16.1 15.6	32.48	15.7 15.8	32.58
45 46 47 48 49	XBT XBT XBT CTD XBT	82214 82214 82214 82214 82214	1628 1709 1730 1813 1850	39.23 39.17 39.14 39.11 39.07	126.18 126.16 126.14 126.11 126.10	15.4 15.5 15.8 15.2 16.1	32.69	15.4	32.62
50 51	XBT XBT	82214 82214	1934 2001	39.01 38.57	126.07 126.06	15.7 15.5			

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)			Y TEMP	BOTTLE SALINITY) (PPT)
52 53 54 55	CTD XBT XBT XBT	82214 82214 82214 82214	2046 2135 2206 2301	38.53 38.48 38.44 38.40	126.04 126.01 125.59 125.57	14.9 15.2 14.6 14.7	32.70	14.9	32.64
56 57 58 59	CTD XBT XBT XBT	82214 82215 82215 82215	2349 32 108 145	38.36 38.32 38.27 38.23	125.55 125.54 125.51 125.49	14.1 14.2 14.0 16.2	32.70	14.3	32.79
60 61 62 63	CTD XBT XBT XBT	82215 82215 82215 82215	238 315 348 416	38.18 38.14 38.10 38.06	125.47 125.46 125.42 125.39	16.5 16.9 16.4 15.9	32.82	16.5	32.76
64 65 66 67	CTD XBT XBT XBT	82215 82215 82215 82215 82215	503 557 637 711	38.00 37.57 37.52 37.49	125.39 125.36 125.33 125.38	15.7 15.8 15.6 15.8	32.99	15.9	32.82
68 69	CTD XBT	82215	757 836	37.50 37.46	125.43 125.44	15.4 15.5	32.87	15.9	32.96
71 72 73 74	CTD XBT XBT XBT	82215 82215 82215 82215 82215	1000 1126 1205 1231	37.42 37.46 37.52 37.55	126.00 126.01 126.04 126.05	15.5 15.7 15.7 15.7	32.86	15.7	32.87
75 76	CTD XBT	82215 82215	1316 1402	37.59 38.04	126.03 126.08 126.10	15.7 15.6 15.8	32.86	15.7	32.87
79 80 81 82	CTD XBT XBT XBT	82215 82215 82215 82215 82215	1612 1658 1733 1803	38.17 38.20 38.25 38.30	126.10 126.16 126.19 126.21 126.22	15.8 15.8 15.6 15.5	32.85	16.5	32.87
83 84 85 86	CTD XBT XBT XBT	82215 82215 82215 82215 82215	1907 2014 2047 2119	38.34 38.38 38.43 38.47	126.25 126.28 126.30 126.32	15.2 15.7 14.7 14.8	32.97	15.4	32.92
87 88 89	CTD XBT XBT XBT	82215 82215 82215 82215 82215	2200 2249 2317 2351	38.51 38.57 39.00 39.05	126.34 126.36 126.39 126.41	15.5 16.0 16.3 16.4	32.60	15.5	
91 92 93	CTD XBT XBT XBT	82216 82216 82216 82216	36 124 156 235	39.09 39.14 39.18 39.16	126.44 126.46 126.48 126.55	16.1 16.2 16.8 16.6	32.76	16.3	
95 96	CTD	82216	317	39.15	126.59	16.3 17.0	32.73	16.3	32.65
98 99 100 101	XBT CTD XBT XBT	82216 82216 82216 82216	405 539 649 722 754	39.13 39.10 39.03 39.01 38.57	127.06 127.16 127.14 127.12 127.10	17.0 16.9 16.7 16.6 16.3	32.72	17.0	32.64
102 103 104	XBT CTD XBT XBT	82216 82216 82216 82216	839 927 958	38.53 38.48 38.44	127.07 127.05 127.03	15.6 15.6 15.7	32.69	15.7	32.82
105 106	XBT CTD	82216 82216	1026 1108	38.40 38.35	127.01 126.58	15.3 15.2	32.72	15.3	32.84

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	SALINIT	Y TEMP	F BOTTLE SALINITY C) (PPT)
107 109 110 111 112	XBT XBT CTD XBT XBT	82216 82216 82216 82216 82216	1151 1243 1321 1403 1432	38.30 38.22 38.18 38.13 38.09	126.55 126.50 126.49 126.46 126.44	15.3 15.4 15.7 15.7	33.00	15.7	32.91
113 114 115 116 117 118	XBT CTD XBT XBT XBT XBT	82216 82216 82216 82216 82216 82216	1503 1550 1637 1709 1744 1818	38.05 38.01 37.56 37.52 37.47 37.43	126.41 126.39 126.37 126.35 126.33 126.30	16.0 16.6 16.2 16.4 16.2 16.4	32.95	16.7	33.00
119 120 122 124 125	XBT XBT XBT XBT XBT	82216 82216 82216 82216 82216	1852 2023 2138 2248 2323	37.43 37.38 37.33 37.43 37.53	126.28 126.25 126.24 126.21 126.19	16.4 16.8 16.6 16.4 16.5			
130 135 137 138 141	XBT XBT XBT XBT XBT	82217 82217 82217 82217 82217	158 435 540 609 745	38.22 38.45 38.55 38.59 39.13	126.13 126.07 126.04 126.03 125.60	16.9 15.7 15.5 16.0 16.7			
142 144 145 146 148	XBT XBT XBT XBT XBT	82217 82217	819 924 953 1031 1135	39.18 39.28 39.32 39.35 39.42	125.58 125.55 125.54 125.54 125.45	16.7 16.8 16.9 16.9			
149 150 151 152 153 154	XBT XBT XBT XBT XBT XBT	82217 82217 82217 82217 82217 82217	1205 1238 1311 1343 1415 1446	39.46 39.49 39.52 39.56 39.59 40.02	125.41 125.36 125.32 125.26 125.23 125.18	16.8 16.4 16.2 15.8 15.6			
155 156 157 158 160	XBT CTD XBT XBT XBT	82217 82217 82217 82217 82217 82217	1515 1600 1642 1707 1806	40.02 40.06 40.09 40.12 40.15 40.22	125.16 125.14 125.09 125.05 125.01 124.52	14.9 15.2 14.9 14.0 12.8	32.87	15.3	33.00
161 162	XBT XBT	82217 82217	1840 1909	40.25 40.28	124.47 124.43	12.1 12.1			

Profiles are staggered by a multiple of 5C. Staggered temperature profiles from the XBT's. Figure 5(a):

Figure 5(c).

Figure 6(a): Temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt.

Figure 6(b).

Figure 6(c).

Figure 7(a): Isotherms from XBT's and CTD's. Tick marks along the horizontal axis show station positions. Some station numbers are shown. Arrows indicate the positions where the cruise track changed direction.

Figure 7(b).

Figure 8(a): Isopleths of temperature, salinity and sigma-t, from the CTD's.

Figure 9: T-S pairs from the CTD casts for OPTOMA2, Leg I.

Profiles of $\overline{\Gamma(z)}$ with + and - the standard deviation from (a) XBT's and CTD's and (b) CTD's Figure 10: only.

Figure 11: Profiles of (a) mean salinity and (b) mean sigma-t, with + and - the standard deviations, from the CTD's.

Figure 12: Profiles of $N^2(z)$ (——), with + and - the standard deviation (----), and the profile of N^2 from $\overline{T(z)}$ and $\overline{S(z)}$ (....).

SECTION 2

OPTOMA2 - LEG II

8 AUGUST to 14 AUGUST 1982

Figure 13: Cruise track for OPTOMA2, Leg II with transect extremes identified by letter.

Figure 14: XBT and CTD locations for OPTOMA2, Leg II.

Figure 15: Station numbers for OPTOMA2, Leg II.

XBT - CTD STATION LISTING

C TM	TYPE	YR/DAY	GMT	LAT	LONG	CHIDEACE	SURFACE	BUCKET	B∪ጥጥ፣ ሮ
SIN	III	IK/DAI	GIII	(NORTH)	(WEST)	TEMP (DEG C)	SALINITY	TEMP	SALINITY) (PPT)
164	XBT	82220	1958	40.29	124.41	10.0			
165	XBT	82220	2043	40.24	124.47	11.8			
166	XBT	82220	2116	40.21	124.52	13.9			
167	XBT	82220	2143	40.18	124.56	14.2			
168	XBT	82220	2213	40.15	125.00	14.6			
169	XBT	82220	2242	40.11	125.05	14.4	20 70		
171	CTD	82220	2354	40.05	125.13	15.1	32.79		
172 173	XBT XBT	82221 82221	37 105	40.02 39.59	125.18 125.22	14.3 14.3			
174	XBT	82221	140	39.56	125.26	15.5			
175	XBT	82221	215	39.52	125.20	14.8			
175	CTD	82221	216	39.52	125.31	15.3	32.00		
176	XBT	82221	314	39.49	125.35	15.8			
177	XBT	82221	344	39.46	125.40	16.0			
178	CTD	82221	447	39.43	125.44	16.3	32.76	16.3	32.67
179	XBT	82221	529	39.39	125.48	16.5			
180	CTD	82221	638	39.35	125.53	16.6	32.77	16.6	32.70
181	XBT	82221	744	39.31	125.56	16.6			
182	XBT	82221	823	39.27	125.58	16.4	22 06	16 /	20 66
183 184	CTD XBT	82221 82221	905 947	39.23 39.18	126.01 126.02	16.3 16.1	32.86	16.4	32.66
186	CTD	82221	1127	39.10	126.07	15.8	32.87	15.8	32.81
187	XBT	82221	1226	39.06	126.09	15.7	32.07	13.0	32.01
189	CTD	82221	1342	38.58	126.14	15.6	32.77	15.7	32.94
190	XBT	82221	1432	38.53	126.16	15.2			32.7.
191	XBT	82221	1507	38.49	126.18	16.2			
192	CTD	82221	1608	38.45	126.19	16.5	33.03		32.98
194	XBT	82221	1832	38.36	126.24	16.8			
194	CTD	82221	1808	38.36	126.25	16.6	33.04		32.99
195	XBT	82221	1906	38.32	126.27	16.8			
196 197	XBT	82221	1939	38.27 38.23	126.29	16.7			
198	XBT CTD	82221 82221	2015 2116	38.19	126.31 126.34	16.8 25.6	0 0	16 6	22 00
199	XBT	82221	2217	38.15	126.36	16.7	0.0	16.6	32.98
200	XBT	82221	2252	38.10	126.38	16.7			
201	CTD	82221	2342	38.14	126.41	16.9	33.07	17.0	33.01
202	XBT	82222	30	38.19	126.43	16.8		27.0	33.01
203	XBT	82222	101	38.23	126.46	16.7			
204	CTD	82222	134	38.27	126.48	16.2	33.23	16.5	33.07
205	XBT	82222	239	38.32	126.51	16.8			
206	XBT	82222	314	38.36	126.53	16.9			
207	XBT	82222	349	38.40	126.55	16.2	22.1/	100	0.0 7.
207	CTD	82222	404	38.40	126.55	16.3	33.14	16.4	33.12
208 209	XBT XBT	82222 82222	457 533	38.45 38.49	126.57 126.60	16.6 16.8			
210	CTD	82222	618	38.50	127.08	16.8	33.18	16 5	22 10
211	XBT	82222	707	38.58	127.04	16.8	55.10	16.5	33.19
212	XBT	82222	737	39.02	127.07	16.8			
				_	-				

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)		Y TEMP	BOTTLE SALINITY) (PPT)
213 214 215 216	CTD XBT XBT XBT	82222 82222 82222 82222	823 910 942 1016	39.07 39.11 39.13 39.15	127.09 127.11 127.06 127.00	16.0 15.9 14.9 16.2	32.83	16.1	32.61
216 217	CTD XBT	82222 82222	1018 1204	39.11 39.16	127.06 126.54	15.5 15.8	32.84	15.6	
218 219 220 221 222	XBT CTD XBT XBT XBT	82222 82222 82222 82222 82222	1237 1322 1408 1443 1515	39.18 39.14 39.10 39.05 39.01	126.49 126.46 126.43 126.41 126.40	15.7 15.6 16.4 16.7 16.7	32.78	16.6	32.80
222 223	CTD XBT	82222 82222	1530 1615	39.01 38.57	126.40 126.37	16.5 16.4	33.04	16.5	32.98
224 225 226	XBT CTD XBT	82222 82222 82222	1652 1740 1829	38.52 38.48 38.43	126.35 126.32 126.30	16.9 16.7 16.6	33.02	16.8	33.00
227 228 229 230	XBT CTD XBT XBT	82222 82222 82222 82222	1859 1941 2023 2054	38.39 38.35 38.30 38.26	126.27 126.25 126.24 126.21	15.8 15.5 16.1 16.0	32.75	15.8	32.71
231 231 232	XBT CTD XBT	82222 82222 82222	2123 2137 2220	38.21 38.21 38.17	126.19 126.19 126.16	16.0 15.7 16.4	32.77	15.7	32.79
233	XBT	82222	2251 2340	38.19 38.21	126.11 126.05 125.53	16.0	32.81	15.9	32.78
236 237 238 239	XBT CTD XBT XBT	82223 82223 82223 82223	100 145 230 300	38.24 38.29 38.33 38.37	125.56 125.58 126.00	16.0 16.3 16.4 16.5	32.73	16.4	32.71
240 240 242	XBT CTD XBT	82223 82223 82223	333 348 504	38.42 38.42 38.51	126.02 126.02 126.07	16.2 16.2 16.7	32.77	16.7	32.73
243 244 245	CTD XBT XBT	82223	549	38.55 38.59		16.5 16.6 16.2	32.62	16.4	32.75
246 247 248	CTD XBT	82223 82223	753 834 906		126.17 126.19 126.21		32.67	16.3	
249 250 251	XBT CTD XBT XBT		952 1031 1104	39.21 39.26 39.27	126.24 126.26 126.19	16.1 16.3 16.5	32.72	16.2	32.68
252 252 253	XBT CTD XBT	82223 82223 82223	1137 1149 1232	39.29	126.15 126.08 126.09	16.5 16.4 16.5	32.84	16.4	32.80
255 256	CTD XBT	82223 82223	1347 1428	39.28 39.24	126.01 125.58	16.5 16.5	32.82	16.5	32.78
258 259 260	CTD XBT XBT	82223 82223 82223	1538 1622 1652	39.16 39.11 39.07	125.54 125.52 125.49	16.2 16.3 16.3	32.64	16.2	

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)		Y TEMP	BOTTLE SALINITY
261 262 263	CTD XBT XBT	82223 82223 82223	1731 1820 1848	39.03 38.58 38.54	125.47 125.45 125.43	16.2 16.9 16.7	32.79	16.3	32.76
264 265 266 267	CTD XBT XBT XBT	82223 82223 82223 82223	1929 2012 2042 2117	38.50 38.46 38.42 38.37	125.43 125.41 125.38 125.36 125.34	16.7 16.2 16.5 16.9 16.8	32.87	16.4	32.87
267 268 269	CTD XBT XBT	82223 82223 82223	2146 2308 2339	38.37 38.32 38.33	125.34 125.30 125.26	16.7 16.2 16.9	32.79	16.8	32.88
270 271	CTD XBT	82224 82224	26 117	38.35	125.20 125.15	16.8 16.8	32.76	16.9	32.71
273 275 276 277 278 280 282 283	CTD XBT XBT XBT XBT XBT XBT XBT XBT	82224 82224 82224 82224 82224 82224 82224 82224	252 505 558 708 815 1101 1428 1601	38.42 38.51 38.55 38.59 39.03 39.12 39.21	125.13 125.17 125.19 125.21 125.23 125.28 125.32 125.30	16.7 16.2 16.2 16.9 16.6 16.9	32.85	16.8	32.78
283 286 287 288	CTD XBT XBT XBT	82224 82224 82224 82224	1805 1839 1909 1941	39.28 39.24 39.19 39.15	125.22 125.23 125.20 125.17	16.8 16.8 16.7 17.0	32.84		
289 290 291 292	CTD XBT XBT XBT	82224 82224 82224 82224	2023 2101 2128 2155	39.11 39.06 39.02 38.58	125.15 125.13 125.11 125.08	16.5 16.5 16.6 16.6	32.86	16.6	32.82
293 294 295 296 297 300 301 302 303 304 305 306 307 308 310 311 312 313 314 315	CTD XBT	82224 82225	2244 2328 5 40 111 322 400 459 533 606 659 742 822 908 1004 1109 1204 1251 1336 1419 1501	38.54 38.50 38.45 38.40 38.35 38.21 38.16 38.01 38.03 38.05 38.05 38.11 38.16 38.11 38.21 38.25 38.20 38.12 38.30	125.06 125.06 125.05 125.05 125.04 125.04 125.03 125.03 125.10 125.15 125.21 125.21 125.21 125.21 125.21 125.21	16.7 16.6 16.8 16.6 16.4 16.3 13.9 14.1 15.5 15.5 15.0 14.9 14.9 14.5 16.2 16.3 16.0 14.8 14.0 14.5	32.84	16.8	32.77

STN	TYPE	YR/DAY	GMT	LAT (NORTH)	LONG (WEST)	SURFACE TEMP (DEG C)	SURFACE BUCKET BOTTLE SALINITY TEMP SALINITY (PPT) (DEG C) (PPT)
316 317 318 320 321 322 323 324 325 327 328 331 332 333 333 333 334 345 345 345 345 345 345	XBT	82225 82225 82225 82225 82225 82225 82225 82225 82225 82225 82225 82225 82225 82225 82226	1531 1601 1624 1658 1728 1758 1827 1928 2000 2034 2106 2205 2239 2313 26 59 131 200 227 258 332 402 431 503 534 638 711 813 846 916 948	38.04 37.60 37.57 37.53 37.49 37.42 37.38 37.34 37.20 37.16 37.23 37.20 37.16 37.13 37.09 36.59 36.59 36.59 36.59 36.55 36.55 36.55 36.55 36.55 36.55 36.55 36.48 36.45 36	125.04 125.01 124.58 124.54 124.50 124.46 124.42 124.35 124.35 124.27 124.23 124.19 124.16 124.13 124.09 124.05 124.00 123.54 123.48 123.43 123.37 123.31 123.24 123.18 123.13 123.24 123.13 123.13 123.13 123.13 123.13 123.13 123.13 123.13	14.8 15.8 16.4 16.1 15.4 14.7 13.9 15.4 16.4 15.8 15.9 16.0 15.0 15.0 15.0 15.1 15.5 15.1 15.5 15.1 15.4 15.4 15.4	
352 353	XBT XBT	82226 82226	1019 1104	36.41 36.40	122.09 122.01	13.9 12.9	

Figure 16(a): Staggered temperature profiles from the XBT's.

Figure 16(e).

Figure 16(f).

Figure 16(g).

Figure 17(a): Temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4 ppt.

Figure 17(b).

Figure 17(c).

Figure 18(a): Isotherms from XBT's and CTD's. Tick marks along the horizontal axis show station positions. Some station numbers are shown. Arrows indicate the positions changed direction. where the cruise track

Figure 18(b).

Figure 18(c).

Figure 18(d).

Figure 19(a): Isopleths of temperature, salinity and sigma-t from the CTD's.

Figure 19(c).

Figure 20: T-S pairs from the CTD casts for OPTOMA2, Leg II.

Figure 21: Profiles of $\overline{T(z)}$ with + and - the standard deviation from (a) XBI's and CTD's and (b) CTD's only.

Figure 22: Profiles of (a) mean salinity and (b) mean signa-t, with + and - the standard deviations, from the CTD's.

Figure 23: Profiles of $N^2(z)$ (——), with + and - the standard deviation (----), and the profile of N^2 from $\overline{T(z)}$ and $\overline{S(z)}$ (....).

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of CAPT Woodrow Reynolds, Chief Engineer Bobby Winton, and other crew members of the R/V ACANIA. Members of the scientific cruise party were:

Leg I - Prof. Christopher N.K. Mooers, NPS, Chief Scientist Dr. Jerome A. Smith, NPS, Party Chief Dr. Robert Miller, Harvard Mr. Everett (Skip) Carter, Harvard Ms. Nadia Pinardi, Harvard AG3 Beverly Carnes, FNOC DS3 Steve Lewis, FNOC

Leg II - Prof. Allan R. Robinson, Harvard, Chief Scientist
Dr. Jerome A. Smith, NPS, Party Chief
Ms. Arlene Bird, NPS
Ms. Denise Hagan, JPL
ENS Diane Durban, USN, NPS
Mr. Everett (Skip) Carter, Harvard
Ms. Nadia Pinardi, Harvard
AG3 Bill Sparkman, FNOC
Mr. M. Kirk Fleming, Humboldt State

The help of Mr. Stephan Lamont, from the W.R. Chruch Computer Center at the Naval Postgraduate School, in producing some of this report and comments from Dr. Adriana Huyer, Oregon State University, are also gratefully acknowledged.

REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
2.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2
3.	Prof. C.N.K. Mooers, Code 68Mr Naval Postgraduate School Monterey, CA 93943	3
4.	Prof. Allan R. Robinson Division of Applied Sciences Pierce Hall, Room 100D Harvard University Cambridge, MA 02139	8
5.	Dr. Thomas W. Spence Office of Naval Research 800 N. Quincy St. Arlington, VA 22217	1
6.	Naval Postgraduate School Department of Oceanography, Code 68 ATTN: Dr. Michele M. Rienecker, Code 68Rr ATTN: Dr. Jerome A. Smith, Code 68So ATTN: Dr. Laurence C. Breaker ATTN: Ms. Marie C. Colton ATTN: Mr. Paul A. Wittmann ATTN: LCDR Brian J. Brady, RN	1 1 1 1 1
7.	Prof. R.L. Smith College of Oceanography Oregon State University Corvallis, OR 97331	1
8.	Dr. Denise E. Hagan Jet Propulsion Laboratory, Code 183-501 4800 Oak Grove Road Pasadena, CA 91109	1
9.	Commanding Officer ATTN: CDR John F. Pfeiffer, USN ATTN: LCDR Michael R. Frost, RN ATTN: Mr. R. Michael Clancy ATTN: Mr. Ken Pollack ATTN: Ms. Evelyn Hesse Fleet Numerical Oceanography Center Monterey, CA 93943	1 1 1 1

10.	SANDIA National Laboratories ATTN: Dr. Mel Marietta ATTN: Dr. Eugene S. Hertel Div. 6334 Albuquerque, NM 87185	1
11.	LCDR Craig S. Nelson, NOAA Corps Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, DC 20233	1
12.	Commanding Officer ATTN: Dr. Steve A. Piacsek ATTN: Dr. Dana A. Thompson ATTN: Dr. Harley C. Hurlburt ATTN: Dr. Alexander Warn-Varnas Naval Ocean Research and Development Activity NSTL Station, Bay St. Louis, MS 39525	1 1 1 1
13.	Dr. Dale B. Haidvogel National Center for Atmospheric Research P.O. Box 3000 Boulder, CO 80307	1
14.	Scripps Institution of Oceanography ATTN: Ms. C. Paden ATTN: Prof. R.E. Davis University of California, San Diego La Jolla, CA 92093	1
15.	Prof. George L. Mellor Geophysical Fluid Dynamics Program Princeton University P.O. Box 308 Princeton, NJ 08540	1
16.	Dr. Robert N. Miller Department of Mathematics Tulane University 6823 St. Charles New Orleans, LA 70118	1
17.	Mr. Phillip Bodgen Woods Hole Oceanographic Institution Dept. of Physical Oceanography Woods Hole, MA 02543	1
18.	LTJG Diane C. Durban, USN NAVOCEANCOMFAC Keflavik Iceland FPO NY 09571	1

