PATENT ABSTRACTS OF JAPAN

(11) Publication number: 59087004 A(43) Date of publication of application: 19.05.1984

(51) Int. Cl **B01D 13/00** B01D 53/22

(21) Application number: **57196404**

(22) Date of filing: **08.11.1982**

: **08.11.1982** (72) Inventor: **ABE MASAO**

ICHINOSE TAKASHI

(54) GAS SEPARATION MEMBRANE

(57) Abstract:

PURPOSE: To obtain a gas separation membrane excellent in oxygen permeability, chemical resistance and mechanical strength, by forming the same from a polyurea/silicone copolymer having a polysiloxane structure into the main chain of the polyurea thereof.

CONSTITUTION: A gas separation membrane has a structural unit shown by a formula and, for example, prepared as mentioned hereinbelow. That is, in a solution of bis(γ -aminopropyl)tetramethyldisloxane in N-methyl-2-pyrrolidone, a solution of diphenylmethane diisocyanate in a solvent mixture consisting of N-methyl-2-pyrrolidone and methyl isobutyl ketone is dripped in a small increment and the resulting mixture is reacted under heating. The reaction mixture is thrown into a large amount of water to precipitate a copolymer. After a 5wt% solution of this copolymer in N-methyl-2-pyrrolidone is cast on a tin plated plate, the formed film is heated at 20 °C for 4hr and further heated at 150 °C for 1hr to evaporate the solvent and

a homegeneous copolymer membrane is obtained. This membrane has coefficient of O_2 -permeation of $3.1\times10^{-10} \text{cm}^2$. cm/cm².sec cm Hg and coefficient of N_2 -permeation of $7.7\times10^{-11} \text{cm}^2$.cm/cm²sec cm Hg.

NITTO ELECTRIC IND CO LTD

COPYRIGHT: (C)1984,JPO&Japio

(71) Applicant:

$${
m R}^2$$
 ${
m R}^2$ ${
m R}^2$ ${
m R}^2$ ${
m L}^2$ — NHCONH(CH $_2$) ${
m M}_2$ — Si — (OSi) ${
m B}_2$ — (CH $_2$) ${
m M}_2$ — ${
m R}_2$ —