Pattern Recognition

http://github.com/yungbyun/pr

Yungcheol BYUN

ycb@jejunu.ac.kr

Pattern is every where.

- Image
- Voice (speech)
- Text
- in various data

Pattern Recognition

a branch of machine learning that focuses on the recognition of patterns in the data

in Wikipidia

Pattern Recognition

- is a mature but exciting and fast developing field
- such as computer vision, image processing, text and document analysis and neural networks.
- It is closely akin to machine learning, and also finds applications in biometrics, bioinformatics, multimedia data analysis and most recently data science.

Approaches for PR

- Structural approaches
- Statistical methods
- Machine Learning with SVM, XGBoost, and others
- Deep Learning with Neural Networks,
 CNN

Trainable NN

- Back-propagation problem in 2006,
- initialize weights carefully, next, do back-propagation, then it works.
- call it deep learning (by Geoffrey Hinton & Ruslan Salakhutdinov).
- however, still not better than other methods

Big results using NN

- In 2010,
- in speech recognition

Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition George Dahl, Dong Yu, Li Deng, Alex Acero, 2010

 better than other methods including kernels or SVM's

Huge improvements

- CNN in 2012
- it played out even more dramatically in the domain of visual recognition.
- AlexNet, ImageNet classification
- The first time neural networks really gave huge improvements
- So big attention in deep neural networks

CNN, Convolutional Neural Networks

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

How this class goes...

Self-driven research and presentation using the **open sources** in

kaggle.com

github.com

Keywords for code retrieval

- CNN, AlexNet, ResNet, DenSeNet, LeNet, VGG
- Image classification
- Linear Regression
- Voice recognition
- Cancer detection
- Disease Classification
- others

Presentation Schedule

Week	Presenter(s)
1	
2	Introduction (Y. Byun)
	Holiday(Chuseok)
3	Convolutional Neural Networks
4	Presentation1 {리즈완 아티프, 장림초}
5	Presentation2 {콰윰 파이자, 차트라지 수바지, 칸 아남 나와즈}
6	Presentation3 {자밀 하룬, 김용준}
7	Mid-term Evaluation

Presentation Schedule

Week	Presenter
8	Presentation4 {자파리 사디카, 허윤경,사르워 수레만}
9	Presentation5 {장철희, 김재민}
10	Presentation6 {임규영, 오지훈, 김동현}
11	Presentation7 TBA
12	Presentation8 TBA
13	Presentation9 TBA
14	Presentation10 TBA
15	Presentation11 TBA

From now on, you can find open source and take it in advance.

See you on September 28th at 7pm online!