0.1 整函数与亚纯函数

定理 0.1

如果整函数 f 在无穷远处全纯或无穷远点是 f 的可去奇点, 那么 f 一定是常数.

证明 由于 f 在整个复平面 \mathbb{C} 上全纯, 即 f 为整函数, 则 f 在 \mathbb{C} 上有 Taylor 展开式

$$f(z) = \sum_{n=0}^{\infty} a_n z^n. \tag{1}$$

它当然在 $R < |z| < \infty$ 中也成立, 因此也可把它看成是无穷远点邻域中的 Laurent 展开式.

如果整函数 f 在 ∞ 处全纯或无穷远点为 f 的可去奇点, 那么根据(??), 它在 ∞ 处邻域中的 Laurent 展开式除去常数项外只有负次幂的项, 因此在展开式 (1) 中必须有

$$a_1 = a_2 = \cdots = 0,$$

所以 f 是一常数.

定理 0.2

如果无穷远点是整函数 f 的一个 m 阶极点, 那么 f 是一个 m 次多项式.

证明 如果无穷远点是整函数 f 的一个 m 阶极点,那么根据(??),它在无穷远点邻域中的 Laurent 展开式除去一个 m 次多项式外只有负次幂的项,因此在展开式 (1) 中必须有

$$a_{m+1}=a_{m+2}=\cdots=0,$$

所以 f 是一个 m 次多项式.

定义 0.1

不是常数和多项式的整函数称为超越整函数.

注 如 e^z , $\sin z$, $\cos z$ 等, 都是超越整函数.

命题 0.1

无穷远点一定是超越整函数的本性奇点.

证明 反证,设 f 是超越整函数,若无穷远点不是 f 的本性奇点,则当 f 在无穷远点全纯或无穷远点是 f 的可去奇点时,由定理 0.1可知 f 为一个常数. 当无穷远点是 f 的 m 阶极点时,由定理 0.2可知 f 是一个 m 次多项式. 这与 f 是超越整函数矛盾!

定义 0.2

如果 f 在整个复平面 \mathbb{C} 上除去极点外没有其他的奇点, 就称 f 是一个**亚纯函数**.

命题 0.2

- (1) 整函数是亚纯函数.
- (2) 有理函数

$$f(z) = \frac{P_n(z)}{Q_m(z)}$$

也是亚纯函数,这里, P_n 和 Q_m 是两个既约的多项式.

证明

命题 0.3

无穷远点或是有理函数的可去奇点,或是有理函数的极点.

证明 若记

$$P_n(z) = a_0 + a_1 z + \dots + a_n z^n, \ a_n \neq 0,$$

$$Q_m(z) = b_0 + b_1 z + \dots + b_m z^m, \ b_m \neq 0,$$

那么

$$f(z) = \frac{P_n(z)}{Q_m(z)} = \frac{1}{z^{m-n}} \frac{a_n + a_{n-1} \frac{1}{z} + \dots + a_0 \frac{1}{z^n}}{b_m + b_{m-1} \frac{1}{z} + \dots + b_0 \frac{1}{z^m}},$$

所以

$$\lim_{z \to \infty} f(z) = \begin{cases} \frac{a_n}{b_m}, & n = m; \\ \infty, & n > m; \\ 0, & n < m. \end{cases}$$

这说明 $z = \infty$ 或是f的可去奇点,或是f的极点.

定理 0.3

证明 因 $z = \infty$ 是 f 的可去奇点或极点, 故必存在 R > 0, 使得 f 在 $R < |z| < \infty$ 中全纯. 在 $|z| \le R$ 中,f 最多只能有有限个极点. 因若有无穷多个极点 z_j , $j = 1, 2, \cdots$,则 $\{z_j\}$ 必有收敛的子列 $\{z_{k_j}\}$,设其极限为 a,则 $|a| \le R$,显然若 a 是极点,则 a 不是孤立奇点,矛盾! 若 a 不是极点,则由 f 是亚纯函数可知 f 在 a 处全纯,但 f 在 a 的任意邻域内必有极点,矛盾! 今设 z_1, \cdots, z_n 为 f 在 $|z| \le R$ 中的有限个极点,它们的阶分别为 m_1, \cdots, m_n . 由定理??可知 f 在 z_j $(j = 1, \cdots, n)$ 附近的 Laurent 展开的主要部分为

$$h_j(z) = \frac{c_{-1}^{(j)}}{z - z_j} + \frac{c_{-2}^{(j)}}{(z - z_j)^2} + \dots + \frac{c_{-m_j}^{(j)}}{(z - z_j)^{m_j}}$$

设 f 在 ∞ 的邻域内的 Laurent 展开的主要部分为 g, 由命题??可知, 当 $z = \infty$ 是 f 的极点时,g 是一个多项式; 当 $z = \infty$ 是 f 的可去奇点时, $g \equiv 0$. 令

$$F(z) = f(z) - h_1(z) - \cdots - h_n(z) - g(z),$$

显然,F 在 \mathbb{C}_{∞} 中除 z_1, \dots, z_n 和 ∞ 外是全纯的,而在 z_1, \dots, z_n 和 ∞ 这些点上,f 的主要部分都已经被消去,因而也是全纯的. 所以,F 是 \mathbb{C}_{∞} 上的全纯函数,因而由定理 0.1,F 是一个常数 c. 于是

$$f(z) = c + g(z) + \sum_{j=1}^{n} h_j(z),$$

所以 f 是有理函数.

注 这里, 我们顺便得到了这样一个结论: **任何有理函数一定能分解成部分分式之和, 而且这种分解是唯一的.** 这个结论在计算有理函数的不定积分时已经被多次用过.

定理 0.4

 $Aut(\mathbb{C})$ 由所有的一次多项式组成.

在 \mathbb{C} 上是单叶的,所以f只能是一次多项式.

定理 0.5

 $\operatorname{Aut}(\mathbb{C}_{\infty})$ 由所有的分式线性变换组成.

证明 因为是在 \mathbb{C}_{∞} 上讨论, $\mathrm{Aut}(\mathbb{C}_{\infty})$ 中的元素不再是全纯函数,而是亚纯函数. 由分式线性变换的讨论知道,任何分式线性变换都是 $\mathrm{Aut}(\mathbb{C}_{\infty})$ 中的元素. 现设 $f \in \mathrm{Aut}(\mathbb{C}_{\infty})$,则 f 必为亚纯函数,而且 ∞ 必是 f 的可去奇点或极点. 由定理 0.3,f 必为有理函数,再由它的单叶性,它只能是分式线性变换.