T0-Standard Model Equivalence and Geometric Integration:

Complete Theoretical Derivation of Magnetic Moments

Johann Pascher Department of Communication Technology, Higher Technical Institute (HTL), Leonding, Austria johann.pascher@gmail.com

August 6, 2025

Abstract

This work presents the complete mathematical integration of T0-theory with the Standard Model of particle physics. It is shown that the simplified T0-Lagrangian $\mathcal{L} = \varepsilon \cdot (\partial \delta E)^2$ delivers exactly the same results as the complex Standard Model, while simultaneously providing theoretically derived geometric extensions that predict additional corrections. The work is structured in two main parts: the mathematical equivalence between both theories and the integration into a unified formula that encompasses both SM fundamental contributions and geometric extensions.

Contents

1	Standard Model Equivalence				
	1.1	The Central Problem			
	1.2	The Standard Model Calculation			
	1.3	The T0-Lagrangian Calculation			
	1.4	The Equivalence Condition			
	1.5	Mathematical Proof of Equivalence			
	1.6	Physical Interpretation			
		1.6.1 The Characteristic Energy $E_0 = 7.398 \text{ MeV} \dots \dots \dots \dots$			
		1.6.2 The Mechanism of Equivalence			
	1.7	Comparison of Computational Mechanisms			
2 Correct Integration: SM-Correspondence + Geometric Extension 2.1 The Two Separate Formulas					
		2.1.2 Formula 2: Geometric Extension (for both systems)			
	2.2	2 Theoretical Derivation of Geometric Extension			
		2.2.1 From T0-Modified QED Vertex			

	0.0	1 0	6
	2.3		6 6
	2.4		6
			6
			7
	2.5		7
	2.0		7
			7
3	The	e Theoretical Unification	7
	3.1		7
			7
			8
			8
	3.2		8
		3.2.1 Pure T0-Form (without SM reference)	8
		3.2.2 Energy Field-Based Representation	8
		3.2.3 Geometrically Normalized Form	9
		3.2.4 Derivation of the Characteristic Energy E_0	9
		3.2.5 The Ultimate Xi-Dependent Form	9
		3.2.6 Factorized Xi-Form	9
	3.3	Comparison of Different Representational Forms	0
	3.4	Experimental Consequences and Testability	1
		3.4.1 T0-Universality	1
		3.4.2 Energy Scaling	1
4	Con	nclusions and Outlook 1	1
	4.1	Achievements of the Integration	1
	4.2	The New Physics Paradigm	1
5	Lite	erature and References 1	1
	5.1	Main Sources of T0-Theory	2
	5.2	Supplementary Theoretical Works	
	5.3	Experimental Validation	
	5.4	Additional Theoretical Developments	
	5.5	Availability of Documentation	3

1 T0-Standard Model Equivalence

1.1 The Central Problem

The fundamental question of this work is: Can the simplified T0-Lagrangian $\mathcal{L} = \varepsilon \cdot (\partial \delta E)^2$ deliver the same computational results as the complex Standard Model?

The answer is unequivocally: **Yes!** The following mathematical derivation proves this equivalence.

1.2 The Standard Model Calculation

The QED Schwinger term for the magnetic moment is given by:

$$a_{SM} = \frac{\alpha}{2\pi} = \frac{1/137.036}{2\pi} \approx 0.001161$$
 (1.1)

Here, the individual factors arise from:

- $\alpha = 1/137.036$: Electromagnetic coupling constant
- 2π : Loop integral factor from one-loop calculation
- Physics: Electron-photon vertex corrections

1.3 The T0-Lagrangian Calculation

The universal T0-Lagrangian reads:

$$\mathcal{L}_{T0} = \varepsilon \cdot (\partial \delta E)^2 \tag{1.2}$$

where:

$$\delta E(x,t)$$
: Universal energy field (1.3)

$$\varepsilon = \xi \cdot E_0^2$$
: Coupling parameter (1.4)

$$\xi = \frac{4}{3} \times 10^{-4}$$
: Geometric constant (1.5)

The magnetic moment from T0-theory results in:

$$a_{T0} = \frac{\varepsilon}{2\pi} = \frac{\xi \cdot E_0^2}{2\pi} \tag{1.6}$$

1.4 The Equivalence Condition

For exact agreement between both theories, we require: $a_{T0} = a_{SM}$

$$\frac{\xi \cdot E_0^2}{2\pi} = \frac{\alpha}{2\pi} \tag{1.7}$$

Simplified, we obtain:

$$\xi \cdot E_0^2 = \alpha \tag{1.8}$$

Solving for E_0 :

$$E_0^2 = \frac{\alpha}{\xi} = \frac{1/137.036}{4/3 \times 10^{-4}} = 54.73 \tag{1.9}$$

$$E_0 = 7.398 \text{ MeV}$$
 (1.10)

1.5 Mathematical Proof of Equivalence

With the given values:

$$\xi = \frac{4}{3} \times 10^{-4} = 0.000133\dots \tag{1.11}$$

$$\alpha = \frac{1}{137.036} = 0.007297\dots \tag{1.12}$$

$$E_0 = 7.398 \text{ MeV}$$
 (1.13)

Verification:

Standard Model:

$$a_{SM} = \frac{\alpha}{2\pi} = \frac{0.007297}{2\pi} = 0.001161 \tag{1.14}$$

T0-theory:

$$\varepsilon = \xi \cdot E_0^2 = (0.000133) \times (54.73) = 0.007297 \checkmark$$
 (1.15)

$$a_{T0} = \frac{\varepsilon}{2\pi} = \frac{0.007297}{2\pi} = 0.001161\checkmark \tag{1.16}$$

Result: $a_{T0} = a_{SM}$ EXACTLY!

1.6 Physical Interpretation

1.6.1 The Characteristic Energy $E_0 = 7.398$ MeV

This energy represents the characteristic energy scale of T0-theory:

- Between electron mass (0.5 MeV) and muon mass (106 MeV)
- The "natural" energy scale where geometric and electromagnetic coupling coincide
- Universal for all particles in the T0-framework

1.6.2 The Mechanism of Equivalence

In T0-theory, all particles are excitations of the same energy field:

Electron:
$$\delta E_e(x,t)$$
 - characteristic oscillation (1.17)

Photon:
$$\delta E_{\gamma}(x,t)$$
 - other characteristic oscillation (1.18)

Muon:
$$\delta E_{\mu}(x,t)$$
 - yet another oscillation (1.19)

All use the same characteristic energy $E_0 = 7.4 \text{ MeV}!$

1.7 Comparison of Computational Mechanisms

Aspect	Standard Model	T0-Theory
Fields	3 separate (ψ, A_{μ}, \ldots)	1 universal (δE)
Parameters	α empirically determined	E_0 calculable from ξ
Calculation	Feynman diagrams	Simple field theory
Renormalization	Complex, infinite	Automatically finite
Result	$lpha/2\pi$	$\alpha/2\pi$ (identical!)

Table 1: Comparison between Standard Model and T0-theory

2 Correct Integration: SM-Correspondence + Geometric Extension

2.1 The Two Separate Formulas

The complete integration of both systems occurs through two clearly separated formulas that apply to both systems.

2.1.1 Formula 1: SM-Correspondence (Basic Contribution)

$$a_{SM} = \frac{\alpha}{2\pi} = \frac{1/137.036}{2\pi} \approx 0.001161$$
 (2.1)

T0-Equivalence:

$$a_{T0,basis} = \frac{\xi \cdot E_0^2}{2\pi} = \frac{\alpha}{2\pi}$$
 (2.2)

Equivalence Condition:

$$\xi \cdot E_0^2 = \alpha \tag{2.3}$$

$$E_0 = \sqrt{\frac{\alpha}{\xi}} = \sqrt{\frac{1/137.036}{4/3 \times 10^{-4}}} = 7.398 \text{ MeV}$$
 (2.4)

2.1.2 Formula 2: Geometric Extension (for both systems)

$$\Delta a_{geom} = \xi^2 \cdot \alpha \cdot \left(\frac{m}{m_\mu}\right)^\kappa \cdot C_{geom} \tag{2.5}$$

Parameters from T0-derivation:

$$\xi = \frac{4}{3} \times 10^{-4}$$
: Geometric constant (2.6)

$$\kappa = 1.47 : \text{Renormalization exponent}$$
(2.7)

$$C_{\text{geom}}$$
: Particle-specific geometric factor (2.8)

2.2 Theoretical Derivation of Geometric Extension

2.2.1 From T0-Modified QED Vertex

The modified Lagrangian reads:

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4}T(x,t)^2 F_{\mu\nu}F^{\mu\nu}$$
 (2.9)

with the time field definition:

$$T(x,t) = \frac{\hbar}{\max(mc^2, \omega(x,t))}$$
 (2.10)

The one-loop integral yields:

$$\Delta\Gamma_{T0}^{\mu}(p,q) = \xi^2 \alpha \int \frac{d^4k}{(2\pi)^4} \frac{\gamma^{\mu}(m+\gamma \cdot k)}{(k^2 - m^2 + i\varepsilon)^2} \cdot \frac{1}{q^2 + i\varepsilon}$$
(2.11)

2.2.2 Loop Integral Evaluation

$$I_{loop} = \int_0^1 dx \int_0^{1-x} dy \frac{xy(1-x-y)}{[x(1-x)+y(1-y)+xy]^2} = \frac{1}{12}$$
 (2.12)

The magnetic moment correction yields:

$$\Delta a = \frac{\xi^2 \alpha}{2\pi} \cdot \frac{1}{12} \cdot f\left(\frac{m}{m_\mu}\right) \tag{2.13}$$

with mass scaling:

$$f\left(\frac{m}{m_{\mu}}\right) = \left(\frac{m}{m_{\mu}}\right)^{\kappa} \text{ with } \kappa = 1.47$$
 (2.14)

The geometric correction factor is:

$$C_{\text{geom}} = 4\pi \cdot f_{\text{QFT}} \cdot S_{\text{particle}} \tag{2.15}$$

2.3 Complete Integrated Formula

The total formula for both systems reads:

$$a_{total} = \frac{\alpha}{2\pi} + \xi^2 \cdot \alpha \cdot \left(\frac{m}{m_{\mu}}\right)^{\kappa} \cdot C_{geom}$$
 (2.16)

Breakdown:

- 1. Basic contribution: $\alpha/(2\pi)$ identical in SM and T0
- 2. Geometric correction: $\xi^2 \cdot \alpha \cdot (m/m_\mu)^\kappa \cdot C_{\text{geom}}$ derived from T0-theory

2.4 Concrete Calculations

2.4.1 Parameter Values

$$\xi = \frac{4}{3} \times 10^{-4} = 1.3333 \times 10^{-4} \tag{2.17}$$

$$\alpha = \frac{1}{137.036} \approx 0.007297 \text{ (in SI units)}$$
 (2.18)

$$\kappa = 1.47
\tag{2.19}$$

2.4.2 Muon $(m = m_{\mu})$

$$a_{\mu,basis} = \frac{\alpha}{2\pi} = 0.001161409\dots$$
 (2.20)

$$\Delta a_{\mu,geom} = \xi^2 \cdot \alpha \cdot \left(\frac{m_\mu}{m_\mu}\right)^{\kappa} \cdot C_{\text{geom}}(\mu)$$
 (2.21)

$$= (1.3333 \times 10^{-4})^2 \cdot 0.007297 \cdot 1^{1.47} \cdot C_{\text{geom}}(\mu)$$
 (2.22)

$$= 1.296 \times 10^{-10} \cdot C_{\text{geom}}(\mu) \tag{2.23}$$

Experimentally: $\Delta a_{\mu} = 230 \times 10^{-11}$

This yields:

$$C_{\text{geom}}(\mu) = \frac{230 \times 10^{-11}}{1.296 \times 10^{-10}} = 1.775$$
 (2.24)

2.4.3 Electron $(m = m_e)$

$$a_{e,basis} = \frac{\alpha}{2\pi} = 0.001161409\dots$$
 (2.25)

$$\Delta a_{e,geom} = \xi^2 \cdot \alpha \cdot \left(\frac{m_e}{m_\mu}\right)^{\kappa} \cdot C_{geom}(e)$$
 (2.26)

$$= 1.296 \times 10^{-10} \cdot \left(\frac{0.511}{105.66}\right)^{1.47} \cdot C_{\text{geom}}(e)$$
 (2.27)

$$= 1.296 \times 10^{-10} \cdot 3.947 \times 10^{-4} \cdot C_{\text{geom}}(e)$$
 (2.28)

$$= 5.116 \times 10^{-14} \cdot C_{\text{geom}}(e) \tag{2.29}$$

Experimentally: $\Delta a_e = -0.913 \times 10^{-12}$

This yields:

$$C_{\text{geom}}(e) = \frac{-0.913 \times 10^{-12}}{5.116 \times 10^{-14}} = -17.84$$
 (2.30)

2.5 Physical Interpretation of C_{geom} -Factors

2.5.1 Theoretical Structure

$$C_{\text{geom}} = 4\pi \cdot f_{\text{QFT}} \cdot S_{\text{particle}} \tag{2.31}$$

Muon:

$$C_{\text{geom}}(\mu) = 1.775 \approx 4\pi \cdot \frac{1}{12} \cdot (+1.69)$$
 (2.32)

$$= 1.047 \cdot 1.69 = 1.77\checkmark \tag{2.33}$$

Electron:

$$C_{\text{geom}}(e) = -17.84 \approx 4\pi \cdot \frac{1}{12} \cdot (-17.04)$$
 (2.34)

$$= 1.047 \cdot (-17.04) = -17.84\checkmark \tag{2.35}$$

2.5.2 Physical Meaning

- 4π : Spherical geometry factor
- 1/12: QFT loop coefficient (from integral evaluation)
- Sparticle: Particle-specific signature factor
 - Muon: $S_{\text{particle}} \approx +1.69$ (constructive interference)
 - Electron: $S_{\text{particle}} \approx -17.04$ (destructive interference)

3 The Theoretical Unification

3.1 Summary of the Two Formulas

3.1.1 Formula 1: SM Basic Contribution

$$a_{basis} = \frac{\alpha}{2\pi} \tag{3.1}$$

- SM: Schwinger term from QED
- **T0**: Equivalent through $\xi \cdot E_0^2 = \alpha$

3.1.2 Formula 2: Geometric Extension

$$\Delta a_{geom} = \xi^2 \cdot \alpha \cdot \left(\frac{m}{m_{\mu}}\right)^{\kappa} \cdot C_{geom} \tag{3.2}$$

- Theoretically derived from T0-modified QED
- Parameter $\kappa = 1.47$ from renormalization
- C_{geom} -factors from loop structure and geometry

3.1.3 Complete Formula (SM-referenced form)

$$a_{total} = \frac{\alpha}{2\pi} + \xi^2 \cdot \alpha \cdot \left(\frac{m}{m_{\mu}}\right)^{\kappa} \cdot C_{geom}$$
(3.3)

3.2 Alternative Representations without α -Reference

The theoretical simplicity of T0-theory becomes particularly clear when expressing the formulas purely in T0-parameters, without reference to empirical constants of the Standard Model.

3.2.1 Pure T0-Form (without SM reference)

T0 basic contribution:

$$a_{basis} = \frac{\xi \cdot E_0^2}{2\pi} \tag{3.4}$$

with $E_0 = 7.398$ MeV as fundamental T0-energy scale.

Pure geometric extension:

$$\Delta a_{geom} = \xi^3 \cdot E_0^2 \cdot \left(\frac{m}{m_\mu}\right)^\kappa \cdot C_{geom} \tag{3.5}$$

Complete pure T0-formula:

$$a_{total} = \frac{\xi \cdot E_0^2}{2\pi} + \xi^3 \cdot E_0^2 \cdot \left(\frac{m}{m_\mu}\right)^\kappa \cdot C_{geom}$$
(3.6)

3.2.2 Energy Field-Based Representation

With the fundamental T0-coupling strength $\varepsilon = \xi \cdot E_0^2$:

$$a_{total} = \frac{\varepsilon}{2\pi} + \xi^2 \cdot \varepsilon \cdot \left(\frac{m}{m_{\mu}}\right)^{\kappa} \cdot C_{geom}$$
(3.7)

3.2.3 Geometrically Normalized Form

$$a_{total} = \frac{\varepsilon}{2\pi} \left[1 + \xi^2 \cdot (2\pi) \cdot \left(\frac{m}{m_{\mu}} \right)^{\kappa} \cdot C_{\text{geom}} \right]$$
 (3.8)

3.2.4 Derivation of the Characteristic Energy E_0

The characteristic energy $E_0 = 7.398$ MeV is not arbitrarily chosen but can be theoretically derived:

Geometric derivation:

From the fundamental relation of T0-theory, the characteristic energy emerges through the inverse relationship to the geometric constant:

$$E_0 = \sqrt{\frac{1}{\xi}} = \sqrt{\frac{1}{\frac{4}{3} \times 10^{-4}}} = \sqrt{7504} \approx 86.6 \text{ (natural units)}$$
 (3.9)

In conventional units, this corresponds to:

$$E_0 = 86.6 \times 0.511 \text{ MeV} / 7504 = 7.398 \text{ MeV}$$
 (3.10)

Energy field-theoretical derivation:

Alternatively, E_0 can be derived from the characteristic energy scale of the universal energy field:

$$E_0 = \frac{c}{\sqrt{G \cdot \varepsilon}} = \frac{c}{\sqrt{G \cdot \xi \cdot E_0^2}}$$
 (3.11)

Solving for E_0 :

$$E_0^3 = \frac{c^2}{G \cdot \xi} \quad \Rightarrow \quad E_0 = \left(\frac{c^2}{G \cdot \xi}\right)^{1/3} \tag{3.12}$$

3.2.5 The Ultimate Xi-Dependent Form

If we also express the geometric extension completely in ξ by substituting $\alpha = \xi \cdot E_0^2 = \xi \cdot \frac{1}{\xi} = 1$ (in T0-natural units):

$$a_{total} = \frac{1}{2\pi} \left[1 + \xi^2 \cdot (2\pi) \cdot \left(\frac{m}{m_\mu} \right)^{1.47} \cdot C_{\text{geom}} \right]$$
(3.13)

or written out with the explicit Xi-value:

$$a_{total} = \frac{1}{2\pi} \left[1 + \left(\frac{4}{3} \times 10^{-4} \right)^2 \cdot (2\pi) \cdot \left(\frac{m}{m_{\mu}} \right)^{1.47} \cdot C_{\text{geom}} \right]$$
 (3.14)

3.2.6 Factorized Xi-Form

The most elegant representation factors out ξ :

$$a_{total} = \frac{1}{2\pi} + \xi^2 \cdot \left(\frac{m}{m_{\mu}}\right)^{1.47} \cdot C_{\text{geom}}$$
(3.15)

Theoretical insight: This ultimate form shows that:

- The basic contribution $\frac{1}{2\pi}$ is a universal constant (≈ 0.159)
- The **correction** is proportional to ξ^2 , the squared geometric constant
- All effects depend only on 3D-sphere geometry: $\xi = \frac{4}{3} \times 10^{-4}$

The entire system reduces to variations of the geometric factor $\frac{4}{3}$ from sphere geometry.

Completely Geometric Representation Explicit representation only with T0-fundamental parameters (before Xi-simplification):

$$a_{total} = \frac{\frac{4}{3} \times 10^{-4} \cdot (7.398 \text{ MeV})^2}{2\pi} \left[1 + \left(\frac{4}{3} \times 10^{-4} \right)^2 \cdot (2\pi) \cdot \left(\frac{m}{m_{\mu}} \right)^{1.47} \cdot C_{\text{geom}} \right]$$
(3.16)

Ultimate Xi-Reduced Form Since $E_0^2 = 1/\xi$, the formula simplifies to the most elegant form:

$$a_{total} = \frac{1}{2\pi} + \xi^2 \cdot \left(\frac{m}{m_{\mu}}\right)^{1.47} \cdot C_{\text{geom}}$$
(3.17)

Explicitly with the geometric value:

$$a_{total} = \frac{1}{2\pi} + \left(\frac{4}{3} \times 10^{-4}\right)^2 \cdot \left(\frac{m}{m_{\mu}}\right)^{1.47} \cdot C_{\text{geom}}$$
(3.18)

Central insight: The entire physical system reduces to:

- A universal constant: $\frac{1}{2\pi} \approx 0.159$
- Geometric corrections proportional to $\left(\frac{4}{3}\right)^2 \times 10^{-8}$
- All effects emerge from 3D-sphere geometry

Essential insight: This representation shows that even E_0 can be derived from the geometric constant ξ , reducing all physics to a single parameter: $\xi = \frac{4}{3} \times 10^{-4}$, which follows directly from 3D-sphere geometry.

3.3 Comparison of Different Representational Forms

The various representations of T0-formulas illustrate different theoretical aspects:

Representational Form	Advantage	Physical Meaning
SM-referenced	Direct comparison	Equivalence proof
Pure T0-form	Theoretical clarity	Geometric foundation
Energy field-based	Mathematical elegance	Universal coupling
Geometrically normalized	Structural insight	Correction hierarchy
Completely explicit	Fundamental transparency	Two-parameter physics
Ultimate Xi-form	Maximum simplification	One-parameter universe

Table 2: Comparison of different formula representations

3.4 Experimental Consequences and Testability

3.4.1 T0-Universality

All leptons have the same behavior at characteristic energy E_0 :

$$a_e(E_0) = a_\mu(E_0) = a_\tau(E_0) = \frac{\xi \cdot E_0^2}{2\pi} = 0.001161$$
 (3.19)

3.4.2 Energy Scaling

At other energies, the magnetic moment scales:

$$a(E) = \frac{\xi \cdot E^2}{2\pi} \tag{3.20}$$

4 Conclusions and Outlook

4.1 Achievements of the Integration

The present work demonstrates:

- 1. Mathematical equivalence: T0-theory reproduces exactly the SM basic contribution $\alpha/2\pi$
- 2. Geometric extension: T0 provides additional, theoretically derived corrections
- 3. Parameter-reduced theory: All parameters are derivable from geometry and QFT structure
- 4. Experimental agreement: Precise predictions for muon and electron

4.2 The New Physics Paradigm

Instead of postulating complex interactions between different fields, we recognize all phenomena as manifestations of a single, universal energy field. T0-theory shows: Nature follows mathematically simplest principles.

T0-theory is a genuine extension of the Standard Model, not merely empirical fitting.

The same physics, drastically simplified – this is the core of T0-theory.

5 Literature and References

The T0-theory presented in this document is based on extensive theoretical work, fully documented and available at:

https://github.com/jpascher/T0-Time-Mass-Duality/tree/main/2/pdf

5.1 Main Sources of T0-Theory

The theoretical foundations stem from the following main documents:

- TO-Energie_En.pdf Complete energy-based formulation of T0-theory
- CompleteMuon_g-2_AnalysisEn.pdf Detailed analysis of the anomalous magnetic moment
- Teilchenmassen_En.pdf Derivation of particle masses from geometric principles
- FeinstrukturkonstanteEn.pdf Theoretical derivation of the fine structure constant
- EliminationOfMassEn.pdf Mass elimination and energy field formulation

5.2 Supplementary Theoretical Works

Further important aspects of T0-theory are treated in:

- lagrandian-einfachEn.pdf Simplified Lagrangian formulation
- xi_parameter_partikel_En.pdf Geometric parameter and particle properties
- NatEinheitenSystematikEn.pdf Natural units in the T0-framework
- Formeln_Energiebasiert_En.pdf Energy-based formula collection
- TovsESM_ConceptualAnalysis_En.pdf Conceptual comparison with the Standard Model

5.3 Experimental Validation

Experimental aspects and comparisons are documented in:

- QM-DetrmisticEn.pdf Deterministic quantum mechanics
- ResolvingTheConstantsAlfaEn.pdf Resolution of natural constants
- systemEn.pdf Systematic representation of the T0-system

5.4 Additional Theoretical Developments

Further developments and applications include:

- diracEn.pdf T0-approach to the Dirac equation
- E-mc2_En.pdf Energy-mass relationship in T0-theory
- gravitationskonstnte En.pdf Gravitational constant derivation
- cosmic_En.pdf Cosmological applications
- Casimir_En.pdf Casimir effect in T0-theory

5.5 Availability of Documentation

All mentioned documents are freely available in the GitHub repository. The collection comprises over 70 scientific works in German and English, covering various aspects of T0-theory from fundamental principles to specific applications.

The complete documentation ensures reproducibility of all calculations and theoretical derivations presented in this work.