

The Kernel

The Kernel

Scheduler: Round-Robin, Priority Queues, Tree Flavours

Scheduler Actors: Features, Timers, Async I/O

Streams Backends: Zero-copy, Message Passing

Linear Backends: Async I/O Disk Streams, Network Streams

Indexed Backends: Timers, Actors

Backpressured Message Bus/Buffers: Arc/Vec prealloc

Class: Low Latency, Real Time

Linear: MQ, EXT, DISK, NET

Trees: TIMERS

Priority Queues: TASKS, IRQ

CPU #1

CPU #1

SPU #1

MQ

TIMERS

CLUSTER

reactors

system streams

app streams

TASKS

DISK

NET

MIO compatible polling loop based on Readiness Queue

READINESS NODES POLL SERVER SELECTOR OS: EPOLL WAIT CONN #1 **EVENTS EVENT** TOKEN READY CONN #2

Queue Types

SPSC/LINK

4-10ns Lowest Latency Possible

MPSC/SUB

10-40ns Reducer or Subscribe Polling

SPMC/PUB

10-40ns Publisher Multicursor

FAST DELIVERY CASE

Single Threaded Task Configuration to be compared as reference

You can use inplace message modifying and reduce copies to unpack and pack.

LOAD BALANCING CASE

Load Balancing of Priority Streams per Core Buckets

PUBLISHER CASE

PUB Implementation for Zero-Copy Multiple Consumer Publishing (SPMC)

SUBSCRIBER CASE

Multicursor Implementation of SUB (MPSC) for InterCore Queue Migrations and Cache Locality

TIMERS

Scheduler Reactors can communicate throught InterCore transport for Timers.

Timer uses Linear Firing Round Robin.

Tasks

Cursors/Counters

TASK

CUR #1 R/W

O-OxFFFF

STATE VEC

DATA

CUR #2 R

OxFFFF—OxFFF0000

FSM

CODE

CUR #3 W

OxFFFF0000—OxFFFFFFF

CNT #1

00120090912090

ITERATORS

.LBB0 7: testq %r8, %r8 je .LBB0 9 movdqu 16(%rdx,%rax,4), %xmm2 movdqu 16(%rdi,%rax,4), %xmm3 pshufd \$245, %xmm2, %xmm4 pmuludq %xmm3, %xmm2 pshufd \$232, %xmm2, %xmm2 pshufd \$245, %xmm3, %xmm3 pmuludq %xmm4, %xmm3 pshufd \$232, %xmm3, %xmm3 punpckldq %xmm3, %xmm2 paddd %xmm2, %xmm1 movdqu (%rdx,%rax,4), %xmm2 movdqu (%rdi,%rax,4), %xmm3 pshufd \$245, %xmm2, %xmm4 pmuludq %xmm3, %xmm2 pshufd \$232, %xmm2, %xmm2 pshufd \$245, %xmm3, %xmm3 pmuludq %xmm4, %xmm3 pshufd \$232, %xmm3, %xmm3 punpckldq %xmm3, %xmm2 paddd %xmm2, %xmm0

Capacity: 239 Time: 20

Workload: 48 Total: 400

Avg Task Consumtion Accumulated in the Task Stream

Σ AvgTime * Tasks * Polls = Capacity

prios: [10,6,3,1]

12x CPU Cores: In: [1] Order Books: [2,3,4,5,6,7] Traders: [8] Out: [9]

8x32K MEM Regions: Input Queue: [1] Reducing Queues: [2,3,4,5,6,7]

```
Console is listening...
>
ring[reader; mem[0;16]];
ring[writer; mem[0;16]];
cursor[1;writer;1];
split[1;2;50];
split[2;3;50];
split[1;4;50];
cursor[5;reader;1];
split[5;6;50];
split[5;7;overlapped];
reactor[aux;0;mod[console;network]];
reactor[timercore;1;mod[timer]];
reactor[core1;2;mod[task]];
reactor[core2;3;mod[task]];
spawn[1;80;AAPL;trader1;core1];
spawn[2;80;EEM-SPY-GDX;trader1;core1];
spawn[3;20;AMI;trader1;core1];
spawn[5;80;GOOG;trader2;core2];
spawn[4;80;FB-NFLX-AMZN;trader2;core2];
timer[timer1;core1;SPY;rule1;t1;notify];
list[reactors];
list[rings];
list[cursors;writer];
list[core1];
list[timercore];
send[1;message1];
send[1;message2];
dump[1;mem[0;100]];
show[recv;1];
```

```
io
                               ring
               seq
register
                              join
               spawn
                              split
send
               cursor
                              timer
               reactor
sync
```