

Research: You Might Get STD Through Swimming in the Arctic Ocean, Here's How

9 March 2020, 3:24 am EDT By Jamie P. Tech Times

Sexually-transmitted diseases or STDs can now be transferred to a person even without having sexual intercourse. Worse, the research found out that it can also be acquired through simply swimming in an ocean. How can this be possible?

How do you get STD? By swimming in the Arctic ocean, apparently

MOST POPULAR

British Skiers with 'Most Aggressive COVID-19 Strain Are No Longer Welcome in Saalbach

Fighting! Zuckerberg to Quadruple Bay Area's Testing and Partnered with Gates to Back Disease Tracker

Coronavirus Update: COVID-19 is Now Mutating Into Another Virus in Brazil

Collapsed Coronavirus Quarantined Hotel: Social Media Asks "Could this be China's Way of Trying to Bury Failed Recovery Patients?"

The Point

Use the relationships among one or (ideally) many **homologous characters** to reconstruct an evolutionary tree

Often means aligned sequences (with homologous residues in columns)

Haeckel, 1874 "Pedigree of Man"

Phylogenetic Tree of Life

Eme et al (2017) Nat Rev Microbiol

The tree of life is a network Doolittle (1999) *Sci Am*

Bacterial evolution is a mess of a network Dagan et al.(2008) *PNAS*

The problem

- How to build trees properly is not necessarily obvious, and depends on a large number of factors
- Modeling sequence similarity is challenging evolution deals us a confusing hand
- **Searching** tree space can be a nightmare (again, exact vs. heuristic approaches)
- Many problems in evolution cannot be effectively represented using trees

Phylogenetics is multidisciplinary

- First tree Chemist (Linus Pauling)
- 1950s Physicist (Margaret Dayhoff)
- 1960s Statisticians
- 1970s Computer Scientists
- Throughout Biologists

Lots of redundant terminology!

Tree Anatomy

Trees can be described using the same terminology as graphs

Tree Anatomy

We distinguish between **internal** and **terminal** features

Tree Anatomy

Some terms are used interchangeably

Rooted vs Unrooted Trees

Most methods (including parsimony) generate **unrooted** trees

Tree splits (bipartitions)

(ABC | DEF)

Splits are *compatible* if they can appear in the same tree

Multifurcating Nodes

We may *collapse* a node in the tree for one of two reasons:

- 'Hard' polytomy (really a 3-way split)
- -Lack of statistical support for any pairwise grouping

Branch lengths

What (if anything) do branch lengths represent?

- Time?
- Sequence change?

Some methods (notably parsimony) do not produce meaningful branch lengths

Tree Shape

In general (and for the purposes of this course), the *shape* of a tree refers to its branching order, **not** to branch lengths

So the two trees on the left have the same shape

Shape can be described completely using a **split decomposition** of the tree

Nextstrain Intermission

But nucleotides and amino acids are not the only type of character that can be compared!

Words as homologous characters

Language trees support the express-train sequence of Austronesian expansion

Nature, 2000

Russell D. Gray & Fiona M. Jordan

Department of Psychology, University of Auckland, Auckland 92019, New Zealand

Meaning	Tonga	Niue	Samoa	E. Uvea	E. Futuna	Mangareva	Marquesas	Hawaii	Tahiti	Tuamotu	Rarotonga
Canoe	vaka	vaka	va'a	vaka	vaka	vaka	vaka	wa'a	va'a	vaka	vaka
Two	ua	ua	lua	lua	lua	rua	'ua	lua	rua	rua	rua
Five	nima	lima	lima	nima	lima	rima	ʻima	lima	rima	rima	rima
Woman	fefine	fifine	fafine	fafine	fafine	ahine	vehine	wahine	vahine	vahiine	va'ine
Rainbow	'umata	tangaloa	nuanua	nuanua	nuanua	anuanua	aanuanua	aanuenue	aanuanua	anuanua	aanuanua

No collinearity constraint (but who cares?)

Island	Canoe		
Tonga	Vaka		
Niue	Vaka		
Rarotonga	Vaka		
Marquesas	Vaka		
Hawai'i	Wa'a		
Tahiti	Va'a		
Samoa	Va'a		
NZ	Waka		

Character Convexity

Choose a tree at random (for now)

A character is *convex* on that tree if all states of that character can be partitioned to a separate 'region' of the tree

Think of it as a coloring problem!

What does convexity mean?

If we have n states (waka, vaka, etc.) for a given character, then we only need the minimum possible n – 1 state changes within the tree

• The is the *most parsimonious* (simplest) situation

Character Compatibility

Island	Canoe	Two	
Tonga	Vaka	Ua	
Niue	Vaka	Ua	
Rarotonga	Vaka	Rua	
Marquesas	Vaka	'ua	
Hawai'i	Wa'a	Lua	
Tahiti	Va'a	Rua	
Samoa	Va'a	Lua	
NZ	Waka	Rua	

Two characters (words, alignment columns, etc.) are *compatible* if there exists at least one tree where both characters are convex

What is the "best" tree?

 Is it the maximum compatibility tree that maximizes the number of convex characters from the set C of characters?

maybe...but usually not

 What we typically want is the tree that minimizes the number of substitutions over all characters – this is the maximum parsimony tree

Parsimony Score

 The parsimony score (p) for a given character on a given tree T is the minimum number of changes needed to map character states onto leaves of the tree

 How do we find this minimum for a single character?

Fitch-Hartigan algorithm

One character, three states

Introduce an arbitrary root to the tree if unrooted

Mapping to internal vertices V:

f(V) is the maximum number of immediate children that contain any **particular** character state

 \rightarrow best guess for internal states

 ψ is the character or characters that cover f(V) children

 \rightarrow equally good internal state guesses

p is equal to (p of all children) + (number of children) – f(V)

→ number of required changes so far

Total Parsimony Score

(for a given tree)

$$p_T = \sum_{c \in C} p_T(c)$$

$$c \in C \text{ (for all character columns)}$$

The maximum parsimony tree is the tree that minimizes p_{τ}

How well do the characters fit the tree?

We can use the consistency index

$$Cl_{character} = m / s$$

Where m is the minimum number of steps

(= number of character states - 1)

And s is the **actual** number of steps (≥ m), from the F-H algorithm

$$0.0 < CI \le 1.0$$

Maximum Parsimony

• There is no closed-form solution to find T such that p_{τ} is minimal

- We must carry out a search through tree space
 - typically use a random starting tree T_0 and explore by permuting this tree

Search strategies coming up next class!

Tree Searching

- 1. Choose a random starting tree T_0
- 2. $n \leftarrow 0$ (this is the iteration number)
- 3. Compute $p_{\tau 0}$
- 4. While (patience remains)
 - 1. Permute T_n
 - 2. $T_{n+1} = \operatorname{argmin}_{p}(T_{n}, \operatorname{permuted} T_{n})$
 - 3. $n \leftarrow n+1$
- 5. Output T_n

Problem

There are a lot of trees!

• For *n* leaves, there are

1 x 3 x 5 x ... x (2n - 3) rooted, bifurcating trees

$$n_T = \frac{(2n-3)!}{2^{n-2}(n-2)!}$$

20 leaves \rightarrow 8,200,794,532,637,891,559,375 trees

Branch-and-Bound

One way to restrict the search space is to explore it systematically, but identify and stop unproductive search paths

Species	Character					
	1	2	3	4	5	6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
С	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Tree building procedure

Number of substitutions required

Back to Polynesia

Hypotheses about Polynesian expansion

What are the predictions of these two models?

Predictions

 Express train: strong tree-like signal, congruent with geography. High CI (assuming enough time for language to evolve)

 Entangled bank: weaker signals, lots of sharing (travel / cultural exchange). Low CI

Analysis

- 77 Austronesian languages
- 5185 terms (no equivalent to NCBI!)

Express train model – 77 languages grouped into 10 categories (archaeological 'stations')

Mininum number of transitions: 9 (= 10 - 1)

A total of 13 steps is needed to reconcile the 10 character states with the recovered tree (close to optimal)

$$CI = 9/13 = 0.69$$

What does a CI of 0.69 mean?

We can compare it to the CI of **random** trees to see whether the fit is better than expected

Randomized trees: Average of 49 steps (CI = 9/49 = 0.053)

So there is **significant** tree-like signal, and the *shape* of the tree is consistent with express-train predictions

West Polynesia

East Polynesia

Untangling Oceanic settlement: the edge of the knowable

Matthew E. Hurles¹, Elizabeth Matisoo-Smith^{2,3}, Russell D. Gray⁴ and David Penny^{3,5}

Splits graph

Significant signals that conflict with the canonical tree

Not all alignment sites are informative

 Unless it can assign different scores to different trees, a given alignment column is not parsimoniously informative

1 ACGTA2 AGTGA3 AGCCG4 AGCAG

Favours ((1,2),(3,4)) over ((1,3),(2,4)) and ((1,4),(2,3))

Other sites say nothing!

Parsimony treats all changes equally

 Parsimony is "model-free", so there is no distinction between frequent and infrequent changes

Long Branch Attraction

 Branches that accumulate many changes (e.g. parasites, mice) will share many homoplasies, and appear to be more similar than they really are

Parsimony: Summary

- Relatively easy (though potentially time-consuming) to use and understand
- The basic principle (the simplest explanation is the best) is attractive but not necessarily correct
- The lack of an explicit model can be an advantage or a serious disadvantage
- Throwing away uninformative alignment columns is not necessarily ideal

Overview

Construct distance matrix

Build tree

1: Sequences to Distances

Can use a model (e.g., PAM) to compute evolutionary distances

Distances to Trees

Many different approaches:

Iterative/greedy (UPGMA, neighbour-joining)

Optimization (Fitch, minimum evolution)

UPGMA again

Unweighted Pair Grouping with Arithmetic Mean

Assumes a molecular clock (distances from the root to all leaves will be EQUAL)

Neighbor-joining (Saitou and Nei 1987)

Start with a 'star' tree

At each iteration, split off the pair of taxa that minimizes the total sum of branch lengths in the tree

Choose groups x and y to minimize the **Q-criterion**:

This splitting creates a new internal node, v, and assigns x and y as sisters in the growing tree

REDUCTION STEP: Recompute distances from all leaves to node v to allow subsequent computations of the Q criterion

$$\delta'(u, v_{xy}) = \frac{1}{2}(\delta(u, x) + \delta(u, y) - \delta(x, y))$$

And assign branch lengths x-v and y-v

$$b_x = \frac{1}{n-2} \sum_{z \neq x,y} (\delta(x,z) + \delta(x,y) - \delta(y,z))$$

Continue until binary tree is obtained

Figures from Saitou and Nei (1987) Formulas from Bryant, *J Classific* (2005)

Neighbor-joining vs. UPGMA

 Neighbor-joining uses a somewhat less intuitive optimality criterion Q

However, it is still iterative and still fast

 Another advantage is that it does not assume a molecular clock – branch lengths are assigned based on all distances in the matrix

Advantages of Distance Methods

Explicit modelling of residue changes

 Can be very FAST – neighbour-joining can build trees with thousands of leaves

Disadvantages of Distance Methods

 A considerable amount of information is lost when sequence pairs are replaced with a single distance

 Greedy methods may perform poorly for some problems

Conclusion

- Parsimony: Character-based, model-free
 - tree search required
- Distance: Pairwise distances, can use a model
 - Greedy approaches or iterative searches
- Is there a way to use models without collapsing each pair of sequences to a single distance value? yes

