2. Noções elementares de conjuntos (continuação)

Seja $f: A \longrightarrow B$ uma função e seja C um conjunto qualquer. A *imagem de* C *por* f é o conjunto

$$f(C) = \{y : \exists x \in A : f(x) = y\}.$$

A imagem recíproca de C por f é o conjunto

$$f^{\leftarrow}(C) = \{x \in A : f(x) \in C\}.$$

Dados dois números inteiros n e k, chamamos combinações de n k a k ao número

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

convencionando que $\binom{n}{k}=0$ caso algum dos números n,k, ou n-k seja negativo.

Exercícios e problemas

- 1. Considere as funções $f,g,h:\mathbb{R}\longrightarrow\mathbb{R}$ definidas por $f(x)=x^3-4x$, $g(x)=\frac{1}{x}$ e h(x)=x-2. Calcule as expressões de
 - (a) $f \circ g$;
 - (b) $f \circ g \circ h$;
 - (c) $f \circ h \circ g$;
 - (d) $h \circ g \circ f$;
 - (e) $g \circ g$;
 - (f) $h \circ h$;
 - (g) $h \circ g$;
 - (h) $g \circ h$.
- 2. Calcule a função inversa de cada uma das seguintes funções reais de variável real.
 - (a) k(x) = 2x + 3;
 - (b) $l(x) = x^3 2$;
 - (c) $m(x) = (x-2)^3$;
 - (d) $n(x) = \sqrt[3]{x} + 7$.
- 3. Considere a função $p: \mathbb{R} \longrightarrow \mathbb{R}$ defimida por $p(x) = (x-3)^2 1$. Calcule os seguintes conjuntos (faça um esboço do gráfico se ajudar):

- (a) $p({2,3,4,5});$
- (b) p([5,7]);
- (c) p([-1,4]);
- (d) $p^{\leftarrow}(\{3,15\});$
- (e) $p^{\leftarrow}(\{-2, -1, 0\});$
- (f) $p^{\leftarrow}([0,8[);$
- (g) $p^{\leftarrow}([-5,3[);$
- (h) $p^{\leftarrow}([-7, -2])$.
- 4. Seja $f: S \longrightarrow T$.
 - (a) Mostre que $f(f^{\leftarrow}(B)) \subseteq B$, para qualquer $B \subseteq T$.
 - (b) Mostre que $A \subseteq f^{\leftarrow}(f(A))$, para qualquer $A \subseteq S$.
 - (c) Mostre que

$$f^{\leftarrow}(B_1 \cap B_2) = f^{\leftarrow}(B_1) \cap f^{\leftarrow}(B_2),$$

para quaisquer $B_1, B_2 \subseteq T$.

- (d) Em que condições se dá a igualdade na alínea (4a)?
- 5. Seja $f: S \longrightarrow T$. Das seguintes afirmações, diga quais são verdadeiras. Para estas, apresente uma demonstração. Para as falsas, apresente um contraexemplo.
 - (a) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$, para quaisquer $A_1, A_2 \subseteq S$.
 - (b) $f(A_1 \setminus A_2) = f(A_1) \setminus f(A_2)$, para quaisquer $A_1, A_2 \subseteq S$.
 - (c) Se $f(A_1) = f(A_2)$, então $A_1 = A_2$.
- 6. Considere a sucessão $(a_n)_{n\in\mathbb{N}}$ definida por $a_n=\frac{n-1}{n+1}.$
 - (a) Calcule os seis primeiros termos da sucessão.
 - (b) Calcule $a_{n+1} a_n$, para $0 \le n \le 4$.
 - (c) Mostre que $a_{n+1} a_n = \frac{2}{(n+1)(n+2)}$, para cada $n \in \mathbb{N}$.

- 7. Construa as primeiras 11 linhas do triâmngulo de Pascal e assinale os números ímpares. Construíndo mais linhas se necessário, tente encontrar um padrão conhecido.
- 8. Calcule:
 - (a) $\frac{7!}{5!}$;
 - (b) $\frac{10!}{6!4!}$;
 - (c) $\frac{9!}{9!0!}$;
 - (d) $\frac{8!}{4!}$;

 - (e) $\frac{1111!}{1110!}$; (f) $\sum_{s=0}^{5} s!$; (g) $\sum_{i=1}^{10} (-1)^{i}$; (h) $\sum_{i=7}^{101} (-1)^{i}$;

 - (i) $\sum_{l=0}^{3} (l^2 + 1);$
 - (j) $\left(\sum_{l=0}^{3} l^2\right) + 1;$
 - (k) $\prod_{r=1}^{n} (r-3)$, para n=2, n=3, n=4 e n=77;
 - (l) $\prod_{m=1}^n \frac{m+1}{m}$, para $n=2,\ n=3,\ n=4$ e n=77;
 - (m) $\prod_{t=6}^{6} t$.
 - (n) $\binom{7}{6}$.
 - (o) $\binom{7}{1}$.
 - (p) $\binom{444}{443}$.
 - (q) $\binom{444}{120} \binom{444}{324}$.
- 9. Simplifique:
 - (a) $\frac{n!}{(n-1)!}$;
- 10. Mostre que para quaisquer naturais a, b,

$$\binom{a}{b} + \binom{a}{b+1} = \binom{a+1}{b+1}.$$