2. For n items, each item I; has a value v_i and size s_i . The capacity is s_i . First, we can re-index them such that $\frac{v_i}{s_i} > \frac{v_i}{s_i} > \cdots > \frac{v_n}{s_n}$

We can write the greedy solution as $G = (x_1, x_2, x_3, \dots, x_n)$, where x_i indicates fraction of item I_i taken.

We can write any optimal solution as $O = (y_1, y_2, y_3, ..., y_n)$, where y_i indicates fraction of item l_i taken.

We can get $\sum_{i=1}^{n} x_i S_i = \sum_{i=1}^{n} y_i S_i = B$

For the first item Ia where the two solutions differ from each other, we can have $X_a > y_a$ since greedy alway takes as much as it can.

Then we consider a new solution $O'=(y'_1, y'_2, y'_3, ..., y'_n)$.

For j < a, we let $y'_j = y_j$.

For j=a, we let $y_j'=x_j$.

For j>a, we remove items of total size (x_i-y_i) Si and reset y_j' .

The total value of solution O' is no less than O.

Therefore, O' is also an optimal solution.

If we continue this process, we can finally convert 0 into G without changing the total value.

Therefore, G is an optimal solution.