泸县五中高 2021 级高三上学期开学考试

文科数学

第1卷 选择题(60分)

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

D. 1

1. 已知集合 $A = \{-1,0,1,2\}$, 集合 $B = \{x | x > 1\}$, 则 $A \cap (C_R B) =$

2. 已知 $z = \frac{1-i}{2+2i}$,则 $z-\bar{z} =$

A. -i B. i

A. $\{-1,0,1\}$ B. $\{-1,0\}$ C. $\{0,1\}$ D. $(-\infty,1]$

3. 从1, 2, 3, 8, 9中任取两个不同的数, 记为(a,b), 则 $\log_a b > 1$ 成立的概率为

4. 函数 f(x)的图象向右平移一个单位长度,所得图象与 $y=e^x$ 关于 y 轴对称,则 f(x)=

A. $\frac{1}{20}$ B. $\frac{1}{10}$ C. $\frac{1}{5}$ D. $\frac{3}{10}$

A. e^{x+1} B. e^{x-1} C. e^{-x+1} D. e^{-x-1}

C. 0

									-		-
核指标对抽到的企业进行考核	,并将各企业考核	得分整理成如下的	的茎叶图. E	由茎	叶图	所绍	信.	息,	可	判断	以下结
论中正确的是											
A. 若 $a=2$,则甲地区考核得	地区考核得分的极差大于乙地区考核得分的极差				甲地区			乙地区			
B.	分的平均数小于乙	地区考核得分的平	z均数			5 8			4		
C.	分的方差小于乙地	区考核得分的方差		5		1 4 4 2		1	4 a		3
D. 若 $a=6$,则甲地区考核得	分的中位数小于乙	地区考核得分的中	口位数						-		
6. 己知 a,b 为两条不同的直线	, α , <i>β</i> 为两个不	下同的平面,则下3	列命题中正	确的	り是						
A. 若a//b,b//α,则a//α	В.	若 $a//b$, $a \perp \alpha$, $b//p$	β,则α丄,	В							
C. 若 $a//\alpha$, $b//\beta$, $\alpha//\beta$,则 a	u//b D.	若 $a//\alpha$, $b//\beta$, α 上	β ,则 a ⊥	b							
7. 下列物体中,能够被整体放	文 入棱长为1(单位	Z: m)的正方体容	F器(容器 <u></u>	達厚	度忽	な略れ	计) þ	的的?	有	
A. 直径为1.01m的球体		B. 所有棱长均为	ョ1. 42m 的D	山面	i体						
C. 底面直径为1.01m, 高为1.	8m 的圆柱体	D. 底面直径为1.2	2m,高为(0.01	m的	圆柱	体				
8. 已知实数 x,y 满足 $\begin{cases} x+y-1\\ x-y+1\\ y \ge -1 \end{cases}$	≤ 0 $\geq 0 , \text{If } z = \frac{y-3}{x-3} \not = 0$	的最大值为									
A. $\frac{3}{2}$ B. 2	C.	3	D. 4								

5. 某市质量检测部门从辖区内甲、乙两个地区的食品生产企业中分别随机抽取 9 家企业,根据食品安全管理考

9.	在棱长为 2 的正方体 $ABCD - A_lB_lC_lD_l$ 中,	分别取棱 AA ₁ ,	A_1D_1 的中点 E , F ,	点 G 为 EF 上一个动点,	则点
G	到平面 <i>ACD</i> ₁ 的距离为				

- A. $\frac{\sqrt{3}}{2}$ B. $\sqrt{3}$ C. 1 D. $\frac{\sqrt{3}}{3}$

- 10. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 点P在椭圆 C上,且 $PF_2 \perp F_1F_2$,过P作 F_1P 的垂线交 x 轴于点 A,若 $\left|AF_2\right| = \frac{1}{2}c$,记椭圆的离心率为 e,则 $e^2 =$
 - A. $\frac{3-\sqrt{5}}{2}$ B. $3-\sqrt{5}$ C. $\sqrt{2}-1$ D. $\frac{1}{2}$

- 11. 己知 $a = \sin \frac{\sqrt{3}}{2}$, $b = \frac{2\sqrt{5}}{5}$, $c = \cos \frac{1}{2}$, 则
 - A. a < b < c B. a < c < b C. b < a < c D. c < b < a

- 12. 若 $x \in (1,+\infty)$ 时,关于x的不等式 $ax^{a-1} \ln x e^x \le 0$ 恒成立,则a的取值范围为
 - $A. \ \left(-\infty,\frac{1}{e}\right] \qquad B. \ \left(-\infty,e\right] \qquad \qquad C. \ \left(0,\frac{1}{e}\right] \qquad \qquad D. \ \left(\frac{1}{e},e\right]$

- 二、填空题: 本题共 4 小题,每小题 5 分,共 20 分.
- 13. 写出" $x + \frac{1}{r} \le -2$ "的一个充分不必要条件_____.
- 14. 牛膝是苋科多年生药用草本植物,具有活血通经、补肝肾、强筋骨等功效,可用于治疗腰膝酸痛等症状. 某 农户种植牛膝的时间x(单位:天)和牛膝的根部直径y(单位:mm)的统计表如下:

x	20	30	40	50	60		
у	0.8	1.3	2.2	3.3	4.5		

由上表可得经验回归方程为 $\hat{y}=0.094x+\hat{a}$,若此农户准备在y=9mm 时采收牛膝,据此模型预测,此批牛滕采 收时间预计是第 天.

- 15. 椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 过点 (2,0) 且上顶点到 x 轴的距离为 1,直线 m 过点 $\left(1, \frac{1}{2}\right)$ 与椭圆 E 交于 A,B 两 点且AB中点在坐标轴上,则直线m的方程为
- 16. 已知抛物线 $C: y^2 = 4x$ 的焦点为 F, 过点 F 作斜率大于 0 的直线 l 与 C 交于 A, B 两点, O 为坐标原点, $\overrightarrow{AF} = 2\overrightarrow{FB}$, 则 *△AOB* 的面积为_____

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.

(一) 必考题: 共60分。

17. (12 分)某中学组织学生进行地理知识竞赛,随机抽取 500 名学生的成绩进行统计,将这 500 名学生成绩 分成 5 组: [50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图,若 *a*,*b*,*c* 成等差数列,且成绩在区间[80,90)内的人数为 120.

(1)求 a, b, c 的值;

(2)估计这 500 名学生成绩的中位数和平均数 (同一组中的数据用该组区间的中点值代替);

(3)由成绩在区间[90,100]内的甲、乙等 5 名学生组成帮助小组,帮助成绩在区间[50,60) 内的学生 A,B,其中 3 人帮助 A,余下的 2 人帮助 B,求甲、乙都帮助 A 的概率.

18. (12 分) 如图, 在直角梯形 ABCD中, AB//DC, $\angle ABC = 90^{\circ}$, AB = 2DC = 2BC, E 为 AB 的中点, 沿 DE 将 ΔADE 折起, 使得点 A 到点 P 位置, 且 $PE \perp EB$, M 为 PB 的中点, N 是 BC 上的动点(与点 B, C 不重合). (1) 证明: 平面 $EMN \perp$ 平面 PBC;

(2) 设三棱锥 B-EMN 和四棱锥 P-EBCD 的体积分别为 V_1 和 V_2 , 当 N 为 BC 中点时,求 $\frac{V_1}{V}$ 的值

19. (12 分) 已知函数 $f(x) = \cos^2 \omega x + \sqrt{3} \sin \omega x \cos \omega x + a$, 其中 $0 < \omega < 2$,再从条件①、条件②、条件③这三个条件中选择两个作为已知. 条件①: $f(0) = \frac{1}{2}$; 条件②: f(x)的最小正周期为 π ; 条件③: f(x)的图象经过点 $\left(\frac{\pi}{6},1\right)$.

(1)求 f(x) 的解析式; (2)求 f(x) 的单调递增区间.

- 20. (12 分) 已知函数 $f(x) = ae^x x a$.
- (1)若 $f(x) \ge 0$, 求a的值;
- (2)证明: 当 $a \ge 1$ 时, $f(x) > x \ln x \sin x$ 成立.

21. (12 分) 在圆 $x^2 + y^2 = 2$ 上任取一点D, 过点D作x轴的垂线段DH,H为垂足,线段DH上一点E满足

$$\frac{|DH|}{|EH|} = \sqrt{2}$$
.记动点 E 的轨迹为曲线 C

- (1)求曲线C的方程;
- (2)设O为原点,曲线C与Y轴正半轴交于点A,直线AP与曲线C交于点P,与x轴交于点M,直线AQ与曲线C交于点Q,与x轴交于点N,若 $\overrightarrow{OM} \cdot \overrightarrow{ON} = -2$,求证:直线PQ经过定点.
- (二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.
- 22. (选修 4-4 极坐标与参数方程)

半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 $\rho^2 = \frac{4}{1+3\sin^2\theta}$.

- (1)求直线l的普通方程与曲线C的直角坐标方程:
- (2)若P是曲线C上一点,Q是直线l上一点,求|PQ|的最小值.
- 23. (选修 4-5 不等式选讲)

已知函数f(x) = |x-3| + |x-2|.

- (1) 求不等式 f(x) < 3 的解集 M;
- (2) 证明: 当 $a,b \in M$ 时, |a+b| < |1+ab|.