

## 'Coffee in Cape Town'

## IBM Data Science Professional Certificate Capstone Project

(a.k.a. 'Battle of the Neighborhoods')

### **Table of Contents**

|                         | page |
|-------------------------|------|
| Introduction            | 3    |
| Data description        | 4    |
| Methodology             | 5    |
| Results                 | 10   |
| Conclusion & Discussion | 11   |

#### Introduction

A client wants to explore the possibilities of opening a Coffee Shop in Cape Town.

Cape Town has many suburbs, spread around the central area within a distance of approximately 50-60 kilometers. Like many other cities in the world, Cape Town's suburbs are becoming more and more attractive to South Africans and tourists, and a lot of development projects are taking place. The client wants to open the Coffee Shop in an area where citizens and tourists are mingling, away from but within a reasonable distance of the busy city centre.

#### **Target Audience**

Apart from this specific client, the studied factors and collected information can serve as a starting point to make recommendations to other clients who want to start a business in Cape Town.

#### **Task Description**

A Coffee Shop is a business that sells coffee, tea, and some food items to customers. A business like a Coffee Shop normally has to have fast and efficient operations in place since part of the customers will order on the go. On the other hand, a Coffee Shop needs to be a place where people can sit for a moment, meet up with friends or read a book and escape the daily stresses of life. Looking at the suburbs of Cape Town, what is a recommendable location to open such a Coffee Shop?

The location of a Coffee Shop is an important part of its success, therefore various factors need to be studied before a recommendation can be done. These factors can include:

- location of competitors
- surrounding venues
- surrounding businesses
- surrounding attractions
- distance to the city centre
- accessibility to and from the city centre
- population and demographics
- tourism
- rental and/or m<sup>2</sup> prices for commercial property

#### **Data Description**

#### **Data sources**

The following data will be used to address the task description:

Website on South Africa's postal codes (www.postoffice.co.za/Tools/postalcodes.html)

Geographical coordinates from Google Maps

Geolocator geographical coordinates

Foursquare API with data on Venue names, locations, id's and categories

Wikipedia

Websites on Cape Town's suburbs (SA-venues.com, blog.rawson.co.za/spotlight-on-maitland-capetown)

#### The data will be used to

- 1. Divide the broad area of Cape Town's suburbs into reasonably sized areas based on Street Codes (equal to Postal Codes)
- 2. Retrieve information on venues (category, location, total number, etc) in each Street Code area
- 3. Cluster the Street Codes based on the occurrence of Coffee Shops
- 4. Analyze the venues, clusters, Street Codes and suburbs to be able to make a recommendation

#### **Methodology**

#### **Research Methods**

- Visualization with maps, WordClouds and bar charts
- One-hot encoding
- K-means clustering
- Webscraping

#### Part 1 – Data collection and visualization

I start by searching the web on information about Cape Town and its suburbs. I use the information on the website of the Postal services in South Africa since the suburbs are provided with Street Codes, which have the same function as Post Codes. This way, I can merge the suburbs into borough-like areas.

I download the information on suburbs and Street Codes and put them in a dataframe. I have to clean the dataframe since it contains all Street Codes in South Africa and NaN values.

After selecting the Street Codes of Cape Town only, I get the geographical coordinates of every Street Code with the help of Google Maps and Geolocator.

I combine all the information and end up with a dataframe with information on Street Codes, suburbs in these Street Codes and the geographical coordinates of the Street Codes:

|   | STR-CODE | SUBURB                                                 | Latitude   | Longitude |
|---|----------|--------------------------------------------------------|------------|-----------|
| 0 | 7100     | EERSTE RIVER, EERSTERIVIER                             | -33.987809 | 18.667149 |
| 1 | 7405     | MAITLAND, PAARDEN ISLAND, PAARDENEILAND, PINEL         | -33.926604 | 18.498313 |
| 2 | 7441     | ${\tt BOTHASIG, EDGEMEAD, MELKBOS, MELKBOSSTRAND, MI}$ | -33.844994 | 18.522595 |
| 3 | 7455     | LANGA, LANGA ZONE 1, LANGA SONE 1, LANGA ZONE          | -33.944727 | 18.532317 |
| 4 | 7460     | MONTE VISTA                                            | -33.908873 | 18.550382 |
| 5 | 7490     | MATROOSFONTEIN                                         | -33.955570 | 18.587988 |
|   |          |                                                        |            |           |

For visualization of the dataset, I use Folium to superimpose markers with the Street Codes on StreetMaps:



#### Part 2 – using Foursquare API to retrieve venue information

In this part of the project, I use Foursquare API to gain access to information on venues in the different Street Code areas. Through Foursquare I retrieve information on the venues like geographical coordinates, category, name and id.

I retrieve the venue information from every Street Code within a 2km radius and put that in a dataframe:



It can be interesting to have a look at the top 10 venue categories around the Cape Town and its suburbs:



... it shows Coffee Shops are the most common venues.

Next, I explore the number of venues in each Street Code and visualize the result with a bar chart:



#### Part 3 - Clustering

To be able to use a model on the data, one-hot encoding is necessary to transform the categorical variables into numerical variables.

After the one-hot encoding, the dataframe shows a '1' if a venue category is present in a Street Code and a '0' it a venue category is not present. After grouping by Street Code and taking the

mean of the venue occurence I have a new dataframe showing the mean frequency occurence for every venue category in each Street Code.

Now I am ready to compile a new dataframe on the mean frequency occurence of Coffee Shops in every Street Code and use that for clustering:

|   | Street Code | Coffee Shop |
|---|-------------|-------------|
| 0 | 7100        | 0.000000    |
| 1 | 7405        | 0.000000    |
| 2 | 7441        | 0.000000    |
| 3 | 7455        | 0.000000    |
| 4 | 7460        | 0.000000    |
| 5 | 7490        | 0.083333    |
| 6 | 7500        | 0.000000    |
| 7 | 7530        | 0.074074    |

I cluster the Street Codes using K-means. The objective of K-means is to group similar data points based on similarities and discover underlying patterns. To achieve this objective, K-means looks for a fixed number (k) of clusters in a dataset and then allocates every data point to the nearest cluster, while keeping the centroids as small as possible.

To determine the fixed number of clusters, I use the 'elbow method' which will give an optimal k in its output.

After each Street Code is allocated to a cluster I create a new dataframe and add the geographical coordinates columns. Now I can visualize the clusters:



pink = cluster 0 red = cluster 1 green = cluster 2

#### Part 4 - Recommendation

With the clusters in place, I can determine which Street Codes are suitable for recommendation (target Street Codes) within a radius of 15km from Cape Town's city centre.

Cluster 0 contains the Street Codes with no existence of Coffee Shops so I focus on those Street Codes:

|   | Street Code | Cluster Labels | Coffee Shop | Latitude   | Longitude | Distance(km) |
|---|-------------|----------------|-------------|------------|-----------|--------------|
| 0 | 7405        | 0              | 0.0         | -33.926604 | 18.498313 | 7.542683     |
| 1 | 7441        | 0              | 0.0         | -33.844994 | 18.522595 | 13.030715    |
| 2 | 7455        | 0              | 0.0         | -33.944727 | 18.532317 | 10.949512    |
| 3 | 7460        | 0              | 0.0         | -33.908873 | 18.550382 | 12.427999    |
| 4 | 7764        | 0              | 0.0         | -33.968128 | 18.533450 | 11.906517    |
| 5 | 7800        | 0              | 0.0         | -34.019579 | 18.474911 | 12.060983    |
| 6 | 7806        | 0              | 0.0         | -34.012013 | 18.400462 | 10.072664    |
|   |             |                |             |            |           |              |

To get an idea of the target Street Code areas I merge the target Street Codes with their 10 most common venues:

| THE FINAL DATAFRAME WITH STREET CODES THAT ARE SUITABLE FOR RECOMMENDATION (TARGET STREET CODES): |                |            |           |                           |                          |                          |                          |                          |                          |                          |                          |                          |                           |
|---------------------------------------------------------------------------------------------------|----------------|------------|-----------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
|                                                                                                   | Street<br>Code | Latitude   | Longitude | 1st Most Common<br>Venue  | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue | 4th Most Common<br>Venue | 5th Most<br>Common Venue | 6th Most<br>Common Venue | 7th Most<br>Common Venue | 8th Most<br>Common Venue | 9th Most<br>Common Venue | 10th Most<br>Common Venue |
| 0                                                                                                 | 7405           | -33.926604 | 18.498313 | Furniture / Home<br>Store | Grocery Store            | Gym                      | Train Station            | Burger Joint             | Café                     | Fast Food<br>Restaurant  | Seafood<br>Restaurant    | Pharmacy                 | Playground                |
| 1                                                                                                 | 7441           | -33.844994 | 18.522595 | Pizza Place               | Gay Bar                  | Shopping Mall            | Convenience Store        | Stadium                  | Garden Center            | Chinese<br>Restaurant    | Fast Food<br>Restaurant  | Dance Studio             | Warehouse Store           |
| 2                                                                                                 | 7455           | -33.944727 | 18.532317 | Convenience Store         | Gas Station              | Seafood<br>Restaurant    | Fast Food<br>Restaurant  | Farmers Market           | Steakhouse               | Business Service         | Shopping Mall            | Pizza Place              | Design Studio             |
| 3                                                                                                 | 7460           | -33.908873 | 18.550382 | Fast Food<br>Restaurant   | Portuguese<br>Restaurant | Gas Station              | Steakhouse               | Casino                   | Bowling Alley            | Diner                    | Hotel                    | Seafood<br>Restaurant    | Skating Rink              |
| 4                                                                                                 | 7764           | -33.968128 | 18.533450 | Fast Food<br>Restaurant   | Pizza Place              | Nightclub                | Convenience Store        | Burger Joint             | Bakery                   | Stadium                  | Steakhouse               | Indian Restaurant        | Seafood<br>Restaurant     |
| 5                                                                                                 | 7800           | -34.019579 | 18.474911 | Grocery Store             | Fast Food<br>Restaurant  | Golf Course              | Pharmacy                 | Pizza Place              | Café                     | Thai Restaurant          | Bakery                   | Performing Arts<br>Venue | Portuguese<br>Restaurant  |
| 6                                                                                                 | 7806           | -34.012013 | 18.400462 | Vineyard                  | Café                     | Flower Shop              | Playground               | Trail                    | Restaurant               | French<br>Restaurant     | Tapas Restaurant         | Wine Bar                 | Event Space               |

Finally, to expand my knowledge on the target Street Codes I explore every *first* suburb in these Street Codes using webscraping with BeautifulSoup and visualize the results through WordClouds:

# TOTAL SEED TO THE SEED TO THE







#### 



#### 



#### 



#### **Results**

Clustering the Street Codes using the mean frequency occurence of Coffee Shops gives me the following result:

- Cluster 0: Street Codes with few, or no presence of Coffee Shops
- Cluster 1: Street Codes with a high number of Coffee Shops
- Cluster 2: Street Codes with a moderate number of Coffee Shops

I select the Street Codes of Cluster 0, with few or no presence of Coffee Shops, so there will be as little competition as possible. Furthermore, these Street Codes must be within a radius of 15km from the city centre to satisfy the desire of the client that the target location must lie within a reasonable distance from the city centre.

These criteria filter out the following target Street Codes:

|   | Street Code | Cluster Labels | Coffee Shop | Latitude   | Longitude | Distance(km) |
|---|-------------|----------------|-------------|------------|-----------|--------------|
| 0 | 7405        | 0              | 0.0         | -33.926604 | 18.498313 | 7.542683     |
| 1 | 7441        | 0              | 0.0         | -33.844994 | 18.522595 | 13.030715    |
| 2 | 7455        | 0              | 0.0         | -33.944727 | 18.532317 | 10.949512    |
| 3 | 7460        | 0              | 0.0         | -33.908873 | 18.550382 | 12.427999    |
| 4 | 7764        | 0              | 0.0         | -33.968128 | 18.533450 | 11.906517    |
| 5 | 7800        | 0              | 0.0         | -34.019579 | 18.474911 | 12.060983    |
| 6 | 7806        | 0              | 0.0         | -34.012013 | 18.400462 | 10.072664    |
|   |             |                |             |            |           |              |

#### Locations



The WordClouds on every first suburb in the target Street Codes reveal that these areas all have a different atmosphere and characteristics. Together with the information on the 10 most common venues in the target Street Codes, this forms a good foundation for further exploration.

#### **Conclusion & Discussion**

Most of the target Street Codes seem to have good opportunities to start a business like a Coffee Shop since there are no or very few competitors. I would state that especially Street Codes 7441, 7800 and 7806 are showing potential in terms of characteristics and types of venues that can be found there. On the other hand, Street Code 7455 is a township which might not be recommendable.

Further research is essential be able to recommend more specific locations.

Furthermore, it might be interesting to see if the outcome returns even better options if the Street Codes in Cluster 1 (with moderate competition) are included in the research.

Up to this point I didn't include factors like rental or m<sup>2</sup> prices for commercial properties, accessibility to and from the city centre and demographic structures, so these might be knowledge gaps that need to be filled since they can influence the location decision as well.

Examples of limitations of this project are the limited availability of open data sources and outdated data sources. For more in depth research one might need to invest in paid services to obtain more, and more up to date, data.

All of the above needs to be explored and researched in a next phase to work towards a final recommendation.