Solutions Manual to Pattern Recognition and Machine Learning

Hiromichi Inawashiro June 6, 2024

1 Introduction

1.1

To minimise

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2,$$
(1.1)

setting its derivative as zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} \left(y(x_n, \mathbf{w}) - t_n \right). \tag{1.2}$$

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.3}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right).$$
 (1.4)

Therefore,

$$\sum_{i=0}^{M} A_{ij} w_j = T_i \tag{1.5}$$

where

$$A_{ij} = \sum_{n=1}^{N} x_n^{i+j},$$

$$T_i = \sum_{n=1}^{N} x_n^{i} t_n.$$
(1.6)

1.2

To minimise

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2,$$
(1.7)

setting its derivative as zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n) + \lambda \mathbf{w}.$$
 (1.8)

Substituting

$$y(x_n, \mathbf{w}) = \sum_{j=0}^{M} w_j x_n^j \tag{1.9}$$

gives

$$0 = \sum_{n=1}^{N} x_n^i \left(\sum_{j=0}^{M} w_j x_n^j - t_n \right) + \lambda w_i.$$
 (1.10)

Therefore,

$$\sum_{j=0}^{M} \tilde{A}_{ij} w_j = T_i \tag{1.11}$$

where

$$\tilde{A}_{ij} = \sum_{n=1}^{N} x_n^{i+j} + \lambda \delta_{ij},$$

$$T_i = \sum_{n=1}^{N} x_n^i t_n.$$
(1.12)

1.3

Let a, o and l be the events where an apple, orange and lime are selected respectively. The probability that an apple is selected is given by

$$p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g).$$
(1.13)

Substituting $p(a|r) = \frac{3}{10}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{1}{2}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives

$$p(a) = \frac{17}{50}. (1.14)$$

If an orange is selected, the probability that it came from the geen box is given by

$$p(g|o) = \frac{p(g,o)}{p(o)}.$$
 (1.15)

Here,

$$p(g,o) = p(o|g)p(g), p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|g)p(g).$$
(1.16)

Substituting $p(o|r) = \frac{2}{5}$, $p(r) = \frac{1}{5}$, $p(o|b) = \frac{1}{2}$, $p(b) = \frac{1}{5}$, $p(o|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives $p(g, o) = \frac{9}{50}$ and $p(o) = \frac{9}{25}$. Therefore,

$$p(g|o) = \frac{1}{2}. (1.17)$$

1.5

By the definition,

$$var f(x) = E(f(x) - Ef(x))^{2}.$$

$$(1.18)$$

The right hand side can be written as

$$E((f(x))^{2} - 2f(x)Ef(x) + (Ef(x))^{2}) = E(f(x))^{2} - (Ef(x))^{2}.$$
 (1.19)

Therefore,

$$\operatorname{var} f(x) = \operatorname{E} (f(x))^2 - (\operatorname{E} f(x))^2.$$
 (1.20)

1.6

By the definition,

$$cov(x,y) = Exy - ExEy, (1.21)$$

where the right hand side can be written as

$$\int xyf(x,y)dxdy - \int xf(x)dx \int yf(y)dy.$$
 (1.22)

If x and y are independent, by the definition

$$f(x,y) = f(x)f(y), \tag{1.23}$$

then

$$\int xyf(x,y)dxdy = \int f(x)dx \int f(y)dy.$$
 (1.24)

Therefore,

$$cov(x,y) = 0. (1.25)$$

1.7

Let

$$I = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}x^2\right) dx. \tag{1.26}$$

Then

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}} \left(x^{2} + y^{2}\right)\right) dx dy. \tag{1.27}$$

By the transformation from Cartesian coordinates (x, y) to polar coordinates (r, θ) , the right hand side can be written as

$$\int_0^\infty \int_0^{2\pi} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} dr d\theta = 2\pi \int_0^\infty \exp\left(-\frac{1}{2\sigma^2}r^2\right) r dr. \tag{1.28}$$

By the transformation $s = \frac{r}{\sigma}$, the right hand side can be written as

$$2\pi\sigma^2 \int_0^\infty \exp\left(-\frac{1}{2}s^2\right) s ds = 2\pi\sigma^2 \left[-\exp\left(-\frac{1}{2}s^2\right)\right]_0^\infty. \tag{1.29}$$

Therefore,

$$I = \left(2\pi\sigma^2\right)^{\frac{1}{2}}.\tag{1.30}$$

By the definition,

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.31}$$

Then

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.32}$$

By the transformation $t = x - \mu$, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}t^2\right) dt = (2\pi\sigma^2)^{-\frac{1}{2}} I.$$
 (1.33)

Therefore,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1. \tag{1.34}$$

1.8

If x is under the Gaussian distribution, then

$$Ex = \int_{-\infty}^{\infty} x \mathcal{N}\left(x|\mu, \sigma^2\right) dx. \tag{1.35}$$

By the definition, the right hand side can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.36}$$

By the transformation $y = x - \mu$, it can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} (y+\mu) \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy. \tag{1.37}$$

Since

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} y \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = 0, \tag{1.38}$$

and

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mu \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = \mu \int_{-\infty}^{\infty} \mathcal{N}\left(y|\mu,\sigma^2\right) dy, \tag{1.39}$$

we have

$$\mathbf{E}x = \mu. \tag{1.40}$$

By the definition,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1 \tag{1.41}$$

can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = 1.$$
 (1.42)

Differentiating both sides with respect to σ^2 gives

$$(2\pi)^{-\frac{1}{2}} \left(-\frac{1}{2}\right) (\sigma^2)^{-\frac{3}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx + (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{2} (\sigma^2)^{-2} (x-\mu)^2 \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx = 0.$$
(1.43)

The left hand side can be written as

$$-\frac{1}{2} (\sigma^{2})^{-1} \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^{2}) dx + \frac{1}{2} (\sigma^{2})^{-2} \int_{-\infty}^{\infty} (x-\mu)^{2} \mathcal{N}(x|\mu, \sigma^{2}) dx$$

$$= -\frac{1}{2} (\sigma^{2})^{-1} + \frac{1}{2} (\sigma^{2})^{-2} \text{var} x.$$
(1.44)

Therefore,

$$var x = \sigma^2. (1.45)$$

1.9

To minimise

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right),\tag{1.46}$$

setting its derivative as zero gives

$$0 = (2\pi\sigma^2)^{-\frac{1}{2}} \left(-\frac{1}{\sigma^2} (x - \mu) \right) \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2 \right). \tag{1.47}$$

Therefore, the mode is given by μ .

Similarly, to minimise

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right), \qquad (1.48)$$

setting its derivative as zero gives

$$\mathbf{0} = (2\pi)^{-\frac{D}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right). \tag{1.49}$$

Therefore, the mode is given by μ .