# OmniLedger Whitepaper Sharing

Tianyu Chen 09/21/2018







# **Review: background**





# Are you kidding me?

Omniledger can Omniledger up, no can no bb :-P



# Bitcoin vs OmniLedger

|                             | Bitcoin                | OmniLedger*                      |  |
|-----------------------------|------------------------|----------------------------------|--|
| Throughput                  | ~4 TPS                 | ~20.000 TPS                      |  |
| 1-st Confirmation           | ~10 minutes            | ~1 second                        |  |
| Full Security               | ~60 minutes ~42 second |                                  |  |
| More Available<br>Resources | No performance<br>Gain | Linear Increase in<br>Throughput |  |

<sup>\*</sup> Configuration with 1120 validators against a 12.5% adversary



#### **Omniledger System Goals**

- Full decentralization
- Shard robustness
- Secure transactions
- Scale-out
- Low storage overhead
- Low latency



#### **Review: Non-sharded Blockchain**





#### **Review: Sharded Blockchain**









#### **Omniledger**



Fig. 2: OmniLedger architecture overview: At the beginning of an epoch e, validators (1) use RandHound to randomly remove old validators from shards and assign new validators who registered to the identity blockchain in epoch e-1. Afterwards, validators ensure (2) consistency of the shards' ledgers via Omnicon while clients ensure (3) consistency of their cross-shard transactions via Atomix (here the client spends inputs from shards 1 and 2 and outputs to shard 3).

## How are validator assigned to different shards?

- Randomly!
- But hmm... purely random?
- Randomness on 1 machine is based on seed, which is risky
- Can we leverage the whole network?





#### **Omniledger**





#### **Shard Validator Assignment**

1. Temp. leader election (Can be biased)



2. Randomness generation (Output is unbiasable)

Temp. leader

Verifiable randomness rnde

Validators



(sharded)

#### How about cross-shards transactions?





#### Review

# Two-Phase Commit





#### **Cross-shards transactions**



Fig. 3: Atomix protocol in OmniLedger.



## Latency vs. Throughput trade-off

- Larger block size -> more throughput, but more latency too! :-(
- Smaller block size -> less latency, but less throughput as well! X-(



### Introducing the HACK:

# **Trust-but-Verify Transaction Validation**





#### **Trust-but-Verify Transaction Validation**



Fig. 4: Trust-but-Verify Validation Architecture



#### **Trust-but-Verify Transaction Validation**



Fig. 4: Trust-but-Verify Validation Architecture



#### Consensus 101: PBFT

- Practical Byzantine Fault Tolerance
- Voting-based consensus: consensus reached with 2/3 majority votes
- Instant Finality (vs. probabilistic finality in POW)
- Assumes < 1/3 of malicious nodes (vs. < 1/2 in POW)</li>
- Requires a leader to initiate the consensus process (similar to block proposer in POW)
- O(n<sup>2</sup>) Network Complexity
- Only scale to 10-20 nodes







#### Consensus 101: Scalable BFT

- Rely on Schnorr Multi-Signature
- Aggregate O(n) votes (signatures) into a O(1)-sized multi-signature proof
- Miners check the multi-signature proof instead of directly receiving votes from each other
- Scales to hundreds of nodes:
- O(n) complexity instead of O(n^2) in traditional PBFT







#### Consensus

- ByzCoin -> ByzCoinX
- Demo



# Evaluation: **Throughput**



Results for 1800 validators



# Evaluation: Latency

Transaction confirmation latency in seconds for regular and mutli-level validation

| #shards, adversary  | 4, 1% | 25, 5% | 70, 12.5% | 600, 25% |               |
|---------------------|-------|--------|-----------|----------|---------------|
| regular validation  | 1.38  | 5.99   | 8.04      | 14.52    | 1 MB blocks   |
| 1st lvl. validation | 1.38  | 1.38   | 1.38      | 4.48     | 500 KB blocks |
| 2nd Ivl. validation | 1.38  | 55.89  | 41.89     | 62.96    | 16 MB blocks  |
| Bitcoin             | 600   | 600    | 600       | 600      |               |

latency increase since optimistically validated blocks are batched into larger blocks for final validation to get better throughput



#### **Omniledger Limitations**

- The cost of epoch bootstrap is significant
  - Extra overhead
- The actual throughput is dependent on the workload.
  - E.g. If all transactions touch all the shards before committing, then the system is better off with only one shard.



#### References

OmniLedger: a secure, scale-out decentralized ledger via sharding

OmniLedger's talk on 2018 IEEE Symposium on Security & Privacy

Philipp Jovanovich introduces OmniLedger

Thanks to Rongjian's sharding talk



#### **Q&A**



