Exemplos MEF2Dframe

1) Exemplo1: Análise estática de treliça

$$E = 2 \times 10^8 \text{ kN/m}^2$$

$$A = 3 \times 10^{-5} \text{ m}^2$$

Resultados Ftool:

Arquivo Exemplo1.mef:

Arquivo de entrada de geometria

Nodes

0 0

30

60

1.5 2

4.52

end

Elements

001

012

003

031

014

042

034

end

Arquivo Exemplo1.loa:

Arquivo de entrada de carregamento

Dados Analise truss estatica

Material

0 3e-5 2.e8 0

end

C Contorno

000.

010.

210.

end

F nodais

3 10. -5. 0.

40.-20.0.

end

F elementares

end

Apoios elasticos

end

```
Deslocamentos: [ 0.
                                         0.00703125 -0.01891927 0.014375
                             0.
                                                                             0.
  0.01359664 -0.01372396 0.00640914 -0.01872396]
Reacoes de apoio: [-10.
                                 5.41666667 19.58333333]
Esforços internos nodais: [Ni, Nj]
Elemento 0: [14.0625 14.0625]
                                         1.5
Elemento 1: [14.6875 14.6875]
Elemento 2: [-6.77083333 -6.77083333]
Elemento 3: [0.52083333 0.52083333]
Elemento 4: [-0.52083333 -0.52083333]
                                         0.5
Elemento 5: [-24.47916667 -24.47916667]
Elemento 6: [-14.375 -14.375]
```

2) Exemplo2: Análise estática de treliça com recalque de apoio

Mesma geometria e carregamento do Exemplo1, mas com o apoio da direita transformado em articulado fixo com 2 recalques.

Resultados Ftool:

Arquivo Exemplo2.mef:

Idêntico ao Exemplo1.mef

Arquivo Exemplo2.loa:

Arquivo de entrada de carregamento

Dados Analise truss estatica

Material 0 3e-5 2.e8 0 end

C Contorno

000.

010.

202e-2

21-5e-2

end

Fnodais

3 10. -5. 0.

40.-20.0.

end

F elementares

end

Apoios elasticos

end

```
Deslocamentos: [ 0.
                                    0.00984375 -0.04602865 0.02
                                                                   -0.05
                         0.
 Reacoes de apoio: [-15.625
                              5.41666667 5.625
                                                    19.58333333]
Esforços internos nodais: [Ni, Nj]
Elemento 0: [19.6875 19.6875]
Elemento 1: [20.3125 20.3125]
Elemento 2: [-6.77083333 -6.77083333]
Elemento 3: [0.52083333 0.52083333]
Elemento 4: [-0.52083333 -0.52083333]
Elemento 5: [-24.47916667 -24.47916667]
Elemento 6: [-14.375 -14.375]
```

3) Exemplo3: Análise estática de pórtico

Resultados Ftool:

Arquivo Exemplo3.mef:

Arquivo de entrada de geometria

Nodes

00

34

94

end

Elements

001

012

end

Arquivo Exemplo3.loa:

Arquivo de entrada de carregamento

Dados Analise frame estatica

Material 1 1.2e-2 1.2e7 1.2e-3 end

C Contorno

000.

010.

020.

200.

210.

220.

220

end

F nodais end

F elementares 1 0 -5. -5. end

Apoios elasticos end

4) Exemplo4: Análise estática de pórtico com apoio elástico

Mesma geometria e carregamento do Exemplo3, mas com o apoio da direita transformado em apoio elástico.

Resultados Ftool:

Arquivo Exemplo4.mef:

Idêntico ao Exemplo3.mef

Arquivo Exemplo4.loa:

Arquivo de entrada de carregamento

Dados Analise frame estatica

Material 1 1.2e-2 1.2e7 1.2e-3 end

C Contorno

000.

010.

020.

end

F nodais end

F elementares 1 0 -5. -5. end

Apoios elasticos 2 32000 15000 23000 end

5) Exemplo5: Análise modal de treliça

Área da seção transversal A = 0,001 m², massa específica ρ = 8000 kg/m³ e módulo de elasticidade E = 2,1 x 10¹¹ N/m²

Resultados Arndt (2009):

			-		-	
	MEF (7e)	MC ^(b) (7e 1c)	MC ^(b) (7e 2c)	MC (7e 5c)	MEFG (7e)	MEFG Adap. (c)
	ngl ^(a) = 6	ngl = 13	ngl = 20	ngl = 41	$n_I = 1$, $\beta_1 = \pi$	(7e 3i)
					ngl = 34	1x 6gl + 2x 34gl
i	ω_i (rad/s)	ω_i (rad/s)	ω_i (rad/s)	ω_i (rad/s)	ω_i (rad/s)	ω_i (rad/s)
1	1683,521413	1648,516148	1648,258910	1647,811939	1647,785439	1647,784428
2	1776,278483	1741,661466	1741,319206	1740,868779	1740,840343	1740,839797
3	3341,375203	3119,123132	3113,835167	3111,525066	3111,326191	3111,322715
4	5174,353866	4600,595156	4567,688849	4562,562379	4561,819768	4561,817307
5	5678,184561	4870,575795	4829,702095	4824,125665	4823,253509	4823,248678
6	8315,400602	7380,832845	7379,960217	7379,515018	7379,482416	7379,482322

Arquivo Exemplo5.mef:

Arquivo de entrada de geometria

Nodes

00

12

20

32

40

end

Elements

001

002

012

013

023

0 2 3

0 2 4 0 3 4

end

Arquivo Exemplo5.loa:

Arquivo de entrada de carregamento

Dados Analise truss modal Material 8000 0.001 2.1e11 0 end

C Contorno

000.

010.

400.

410.

end

F nodais end

F elementares

end

Apoios elasticos end

```
Frequências: [1683.52141299 1776.27848685 3341.37520503 5174.35386537 5678.18455758
8315.40059884]
Modo 0: [-3.47926351e-02 1.31716901e-01 -1.49978055e-16 1.98195515e-01
  3.47926351e-02 1.31716901e-01]
Modo 1: [ 2.12054834e-01 -1.69384176e-02 4.92478553e-02 7.31958426e-16
  2.12054834e-01 1.69384176e-02]
Modo 2: [ 4.79451551e-02 1.71813628e-01 -1.47719353e-01 1.03224906e-16
  4.79451551e-02 -1.71813628e-01]
Modo 3: [-3.37582124e-02 1.54378632e-01 2.33635895e-01 1.12608989e-16
 -3.37582124e-02 -1.54378632e-01]
Modo 4: [-1.62374038e-01 -1.74791659e-01 -2.15774879e-16 1.80893949e-01
  1.62374038e-01 -1.74791659e-01]
Modo 5: [-2.80280410e-01 1.11958504e-01 3.09632113e-17 -2.37590380e-01
  2.80280410e-01 1.11958504e-01]
                                                 2.00
 2.0
 1.5
                                                 1.00
 1.0
                                                 0.75
 0.5
                                                 0.50
                                                 0.25
 0.0
                                                 0.00
                                      4.0
        0.5
            1.0
                1.5
                    2.0
                         2.5
                             3.0
                                 3.5
                                                                 1.5
                                                                     2.0
                                                                             Modo 1
      Modo 0
                           2.0
                           1.5
                           1.0
                                                                   Modo 2
                                      1.0
                                          1.5
                                              2.0
                                                  2.5
```

6) Exemplo6: Análise modal de pórtico

Área da seção transversal A = 0,1 m^2 , momento de inércia I = 1 x 10^{-2} m^4 , massa específica ρ = 7800 kg/ m^3 e módulo de elasticidade E = 1 x 10^8 N/ m^2 .

Resultados Arndt (2009):

	MEF (4e)	MEF (40e)	MC (4e 14c)	MC (4e 30c)	MEFG Adap.
	ngl = 6	ngl = 114	ngl = 62	ngl = 126	(4e 3i)
					1x 6gl + 2x 54gl
i	ω_i (rad/s)				
1	12,412232	11,792155	11,791295	11,791255	11,791251
2	14,304731	12,299299	12,298978	12,298965	12,298964
3	19,197774	15,837412	15,836681	15,836628	15,836624
4	26,070176	20,123625	20,121807	20,121732	20,121724
5	31,037720	21,703787	21,700282	21,700112	21,700096
6	41,495314	25,290751	25,282759	25,282180	25,282132

Arquivo Exemplo6.mef:

Arquivo de entrada de geometria

Nodes

00

60

120

6 - 6

12 -6

end

Elements

001

012

013

024

end

Arquivo Exemplo6.loa:

Arquivo de entrada de carregamento

Dados Analise frame modal

Material 7800 0.1 1.e8 1.e-2 end

C Contorno

000.

010.

020.

300.

310.

320.

400.

410.

420.

end

F nodais end

F elementares end

Apoios elasticos end

```
Frequências: [12.41223173 14.30473147 19.19777373 26.07017564 31.03771979 41.49531415]
Modo 0: [-8.17443685e-03 3.21436798e-04 5.59639853e-05 -1.20812269e-02
1.03481221e-04 -1.02033466e-03]
Modo 1: [-0.00143897 -0.00491385 -0.00645132 -0.00141246 -0.00405732 0.0085526 ]
Modo 2: [ 8.11942092e-05 1.22773771e-02 -6.85434032e-03 1.38324991e-03
-9.38322751e-04 1.44402715e-03]
Modo 3: [-0.00176596 -0.0034228 -0.00627562 0.00230978 0.0173688 0.00321678]
Modo 4: [ 0.00772969 -0.00460966 -0.01154718 0.0018427 -0.00470845 -0.0170942 ]
Modo 5: [-0.01031815 -0.00224206 0.0004401 0.01671454 -0.00843288 -0.01482881]
```


7) Exemplo7: Análise transiente de barra

Área da seção transversal A = 1, massa específica ρ = 0,00073 e módulo de elasticidade E = 3 x 10⁷. Força constante (patamar) de 10000. Sem amortecimento.

Resultados de Kwon, Bathe, Noh (2020):

Referência: KWON, Sun-Beom; BATHE, Klaus-Jürgen; NOH, Gunwoo. An analysis of implicit time integration schemes for wave propagations. **Computers & Structures**, v. 230, 2020, p. 106188.

Resultados para o nó central (x = 100) utilizando 1000 elementos finitos de 2 nós e matrizes de massa agrupada e consistente.

Fig. 13. Time history of displacements at the center of the bar using various Bathe time integration schemes and trapezoidal rule.

Fig. 12. A clamped bar excited by a step load, and the exact velocity at the center, x = 100. Young's modulus $E = 3 \times 10^7$, mass density $\rho = 0.00073$, cross-sectional area A = 1, length L = 200 [36]. The receiver is located at the center.

Arquivo Exemplo7.mef: (malha com 20 elementos)

Arquivo de entrada de geometria (linha livre para acrescentar comentários)

Nodes

0 0

100

200

70 0

. . . .

end

Elements

0 10 11

0 11 12

0 12 13

0 13 14

0 14 15

0 15 16

0 16 17

0 17 18

0 18 19

0 19 20

end

Arquivo Exemplo7.loa: (Método de Newton Aceleração Linear com $\Delta t = 9,88~10^{-7}~{\rm e}~T = 0,015)$

Arquivo de entrada de carregamento (linha livre para comentários)

Dados Analise

truss transiente NAL 0 hav 0 9.88e-7 0.015

Material

0.00073 1. 30.e6 0.

end

C Contorno

- 000.
- 010.
- 110.
- 210.
- 310.
- 410.
- 510.
- 610.
- _ . _ .
- 710.
- 8 1 0.
- 910.
- 1010.
- 1110.
- 1210.
- 13 1 0.
- 1410.
- 15 1 0.
- 1610.
- 1710.
- 18 1 0. 19 1 0.
- 20 1 0.

end

Fnodais

20 10000.0.0.

end

F elementares

end

Apoios elasticos

end

os blocos abaixo só precisam estar presente na análise transiente

C inicial desloc

- 00.0.0.
- 10.0.0.
- 20.0.0.

- 30.0.0.
- 40.0.0.
- 50.0.0.
- 60.0.0.
- 70.0.0.
- 80.0.0.
- 90.0.0.
- 100.0.0.
- 11 0. 0. 0.
- 120.0.0.
- 13 0. 0. 0.
- 140.0.0.
- 15 0. 0. 0.
- 16 0. 0. 0.
- 17 0. 0. 0.
- 18 0. 0. 0.
- 190.0.0.
- 20 0. 0. 0.
- end

C inicial vel

- 00.0.0.
- 10.0.0.
- 20.0.0.
- 30.0.0.
- 40.0.0.
- 50.0.0.
- 60.0.0.
- 70.0.0.
- 8 0. 0. 0.
- 90.0.0.
- 100.0.0.
- 11 0. 0. 0.
- 120.0.0.
- 13 0. 0. 0.
- 140.0.0.
- 15 0. 0. 0.
- 16 0. 0. 0.
- 170.0.0.
- 18 0. 0. 0.
- 190.0.0.
- 20 0. 0. 0.
- end

Resultados MEF2Dframe:

Resultados obtidos para o nó central, Método de Newmark Aceleração Linear, com 20 elementos de 2 nós e matriz de massa consistente:

Resultados obtidos para o nó central, Método de Newmark Aceleração Constante, com 1000 elementos de 2 nós e matriz de massa consistente:

