# Uma Demonstração Alternativa para Representação de Preferências sobre Menus com Contingências Imprecisas

João Vítor Rego Costa Orientador: Prof. Dr. Gil Riella

30 de março de 2015



# Motivação

#### Axiomas da Preferência l

Seja B um conjunto finito de alternativas e  $\Delta(B)$  o conjunto das medidas de probabilidade sobre B.  $\mathbb X$  é a coleção de subconjuntos fechados de  $\Delta(B)$ , os menus, e  $\succsim$  denotará a preferência sobre  $\mathbb X$ .

*Order* ≿ é completa e transitiva

Continuity  $\forall x \in \mathbb{X}, \{y \in \mathbb{X} : y \succsim x\} \in \{y \in \mathbb{X} : x \succsim y\}$  são fechados

Monotonicity Para quaisquer  $x, x' \in \mathbb{X}$  com  $x \supseteq x'$ , temos  $x \succsim x'$ Indifference to Randomization (IR)  $x \sim co(x)$ 

Nondegeneracy Existem menus  $x, x' \in \mathbb{X}$  tais que  $x \succ x'$ Preference Convexity  $x \succsim x' \Rightarrow \lambda x + (1 - \lambda)x' \succsim x'$ .



#### Axiomas da Preferência II

Para qualquer estado,  $\{b_*\}$  e  $\Delta(B)$  proporcionam o menor e maior payoffs, respectivamente.

Seja, então, o menu certo 
$$x_p := p\Delta(B) + (1-p)\{b_*\}$$

Certainty Independence Para  $\lambda \in (0,1)$  e  $x_p$ , temos

$$x \succsim x' \Leftrightarrow \lambda x + (1 - \lambda)x_p \succsim \lambda x' + (1 - \lambda)x_p$$

#### Axiomas da Preferência II

Para qualquer estado,  $\{b_*\}$  e  $\Delta(B)$  proporcionam o menor e maior payoffs, respectivamente.

Seja, então, o menu certo  $x_p := p\Delta(B) + (1-p)\{b_*\}$ 

Certainty Independence Para  $\lambda \in (0,1)$  e  $x_p$ , temos

$$x \succsim x' \Leftrightarrow \lambda x + (1-\lambda)x_p \succsim \lambda x' + (1-\lambda)x_p$$

Finiteness Para todo x, existe um menu finito  $x^f \subseteq x$  tal que, para todo  $\lambda \in (0,1]$  e qualquer menu x',  $\lambda x + (1-\lambda)x' \sim \lambda x^f + (1-\lambda)x'$ .

Worst Para a pior alternativa  $b_*$ , temos  $\lambda (x \cup \{b_*\}) + (1 - \lambda)y \sim \lambda x + (1 - \lambda)y$  para quaisquer menus  $x, y \in \mathbb{X}$  e  $\lambda \in (0, 1)$ .



### Resultado pricipal

# Dois approaches

### Representação para preferências incompletas

# Negative Certainty Independence (NCI)

# Aplicações

#### Aplicações II