Home ► Electrical Engineering ► Engr17-2016F-Tatro ► Homework ► Homework 9 - Chap 4 and 5

Started on Wednesday, 26 October 2016, 12:13 PM

State Finished

Completed on Sunday, 30 October 2016, 4:32 PM

Time taken 4 days 4 hours

Grade 94.50 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

AP4.19_9ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown

$$V_{Th} = 8$$

$$R_{Th} = \boxed{1}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$V_{Th} = 8 V$$

$$R_{Th}^{III} = 1 \Omega$$

Correct

Correct

Mark 10.00 out of 10.00

AP4.20_9ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown.

Hint: Define the voltage at the left-most node as v, and write two nodal equations with V_{Th} as the right node voltage.

$$R_{Th} = \boxed{10}$$
 $\checkmark \Omega \text{ (Ohm)}$

Numeric Answer

$$V_{TL} = 30 \text{ V}$$

$$V_{Th} = 30 \text{ V}$$

 $R_{Th} = 10 \text{ }\Omega$

Correct

Correct

Mark 10.00 out of 10.00

P4.80_10ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown.

Hint: Note that there are no independent sources in this circuit! You will have to provide an excitation to get a response.

$$V_{Th} = \boxed{0}$$
 \checkmark V $V_{Th} = \boxed{40}$ \checkmark Ω (Ohm)

Numeric Answer

$$V_{Th} = 0 V$$

 $R_{Th} = 40 \Omega$

$$R_{TL} = 40 \, \Omega$$

Correct

Partially correct

Mark 5.00 out of 10.00

P4.79_10ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown.

Hint: Note that there are no independent sources in this circuit! You will have to provide an excitation to get a response.

$$V_{Th} = \boxed{0}$$

$$R_{Th} = \begin{bmatrix} 0 \\ \end{pmatrix} \times \Omega$$
 (Ohm)

Numeric Answer

$$V_{Th} = 0 V$$

$$V_{Th} = 0 V$$

 $R_{Th} = 150.0 \Omega$

Partially correct

${\tt Question}\, {\bf 5}$

Correct

Mark 10.00 out of 10.00

AP4.21_9ed

a) Find the value of R that enable the circuit to deliver maximum power to the terminals a,b

$$R = 3$$
 $\checkmark \Omega \text{ (Ohm)}$

b) Find the maximum power delivered to R

$$P_R = 1200$$
 \checkmark W

Numeric Answer

$$R=3\;\Omega$$

Correct

Correct

Mark 9.50 out of 10.00

P4.79_9ed

The variable resistor in the circuit is adjusted for maximum power transfer to R_n.

a) Find the value of R₀.

$$R_0 = \{4.90|5.10 | 5$$
 $\kappa\Omega$ (kilo Ohm)

b) Find the maximum power that can be delivered to R_0 .

$$P_{\text{max}} = 957$$
 $\checkmark \mu W \text{ (micro W)}$

Numeric Answer

R = 5kW (kilo Ohm)

 $P_{Ro,max} = 957.03 \,\mu W \, \text{ (microwatt)}$

Correct

Marks for this submission: 10.00/10.00. Accounting for previous tries, this gives 9.50/10.00.

Correct

Mark 10.00 out of 10.00

P5.01_9ed

Assume the op amp is ideal.

- a) What is the value of the current i_n ? $i_n = \begin{bmatrix} 0 \\ \end{bmatrix}$ A
- b) What is the value of v_n ? $v_n = 0$
- c) Calculate v_0 in this circuit. $v_0 = 9$

Numeric Answer

a)
$$i_n = 0$$
 (zero)

b)
$$v_n = 0$$
 (zero) Volts

c)
$$v_0 = 9V$$

Correct

Correct

Mark 10.00 out of 10.00

P5.06_9ed

Assume the op amp is ideal.

Calculate
$$v_1, v_0, i_2$$
, and i_0 .

$$v_1 = \begin{bmatrix} -3 \\ \end{bmatrix} \bigvee V$$

$$v_{\rm O} = \begin{bmatrix} -14.25 \\ \checkmark \end{bmatrix}$$

$$i_2 = \sqrt{75}$$
 μ A (micro Amp)

$$i_{\rm O} = \begin{bmatrix} 795 \\ \checkmark \\ \mu A \text{ (micro Amp)} \end{bmatrix}$$

Numeric Answer

$$v_1 = -3 \text{ V}$$
 $v_0 = -14.25 \text{ V}$
 $i_2 = 75 \text{ } \mu\text{A}$ $i_0 = 795 \text{ } \mu\text{A}$

Correct

Correct

Mark 10.00 out of 10.00

P5.03 9ed

Assume the op amp is ideal.

a) Calculate
$$v_0$$
 if $v_a = 4$ V and $v_b = 0$ V. $v_0 = \begin{bmatrix} -15 \end{bmatrix} \checkmark V$

b) Calculate
$$v_0$$
 if $v_a = 2$ V and $v_b = 0$ V. $v_0 = \begin{bmatrix} -10 & \sqrt{V} \end{bmatrix}$

c) Calculate
$$v_0$$
 if $v_a = 2$ V and $v_b = 1$ V. $v_0 = \begin{bmatrix} -4 & 1 \\ -4 & 1 \end{bmatrix}$ V

d) Calculate
$$v_0$$
 if $v_a = 1$ V and $v_b = 2$ V. $v_0 = \boxed{7}$ V

e) Calculate
$$v_0$$
 if $v_a = 1.5$ V and $v_b = 4$ V. $v_0 = 15$

f) If $v_b = 1.6$ V, specify the range of v_a such that the amplifier does not saturate.

$$\boxed{-1.08}$$
 $\checkmark \le v_a \le \boxed{4.92}$ \checkmark V

Numeric Answer

a) If
$$v_a = 4$$
 V and $v_b = 0$ V then $v_O = -15.0$ V op amp in saturation

b) If
$$v_a = 2 \text{ V}$$
 and $v_b = 0 \text{ V}$ then $v_O = -10.0 \text{ V}$

c) If
$$v_a = 2 \text{ V}$$
 and $v_b = 1 \text{ V}$ then $v_O = -4 \text{ V}$

d) If
$$v_a = 1 \text{ V}$$
 and $v_b = 2 \text{ V}$ then $v_O = 7 \text{ V}$

e) If
$$v_a = 1.5 \text{ V}$$
 and $v_b = 4 \text{ V}$ then $v_O = 15 \text{ V}$ op amp in saturation

f) Specify the range of
$$v_S$$
 required to avoid amplifier saturation.
-1.08 $\leq v_a \leq$ 4.92 V

Correct

Correct

Mark 10.00 out of 10.00

P5.01_6ed

Assume the op amp is ideal.

A voltmeter capable of a full-scale reading of 10 V is used to measure the output voltage of this circuit.

What is the reading of the voltmeter?

$$V_{\rm m} = \boxed{8.25}$$

Numeric Answer

$$V_{\rm m} = 8.25 \text{ V}$$

Correct