EE 112 (MBP): HW 2 (January 2017)

1. Sketch Q_A , Q_B , Q_C for 8 clock pulses, assuming $Q_A = Q_B = Q_C = 0$ in the beginning.

- 2. Simplify the Boolean expression, $Y = \overline{A}\,\overline{B}\,C + \overline{A}\,B\,C + A\,\overline{B}\,\overline{C} + A\,\overline{B}\,C$
- 3. Obtain a minimal sum-of-products form for

(a)
$$Y = \overline{A} B \overline{C} \overline{D} + A B \overline{C} \overline{D} + \overline{A} B \overline{C} D + A B \overline{C} D + A \overline{B} C D + A \overline{B} C \overline{D}$$

(b)
$$Y = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} B \overline{C} \overline{D} + \overline{A} B \overline{C} D + A B C D + A B C \overline{D}$$

4. Sketch Q_2 , Q_1 , Q_0 for 10 clock pulses, assuming $Q_2 = Q_1 = Q_0 = 1$ in the beginning.

- 5. Design decoding logic in order to get a square wave output with frequency $f_c/8$ (where f_c is the clock frequency) and a duty cycle of $\frac{3}{8}$ (37.5%) for the counter of Q1.
- 6. Design decoding logic in order to get a square wave output with frequency $f_c/4$ (where f_c is the clock frequency) and a duty cycle of $\frac{1}{4}$ (25%) for the counter of Q1.