Asymmetric cryptography

© André Zúquete / João Paulo Barraca

Security

1

Asymmetric (block) ciphers

- - One private key (personal, not transmittable)
 - One public key
- ⊳ Allow
 - Confidentiality without any previous exchange of secrets
 - Authentication
 - Of contents (data integrity)
 - · Of origin (source authentication, or digital signature)
- Disadvantages
 - Performance (usually very inefficient and memory consuming)
- Advantages
 - N peers requiring pairwise, secret interaction ⇒ N key pairs
- ▶ Problems
 - Distribution of public keys
 - Lifetime of key pairs

Security

Asymmetric (block) ciphers

- > Approaches: complex mathematic problems
 - Discrete logarithms of large numbers
 - · Integer factorization of large numbers
 - Knapsack problems
- Most common algorithms
 - RSA
 - ElGamal
 - Elliptic curves (ECC)
- > Other techniques with asymmetric key pairs
 - Diffie-Hellman (key agreement)

Security

RSA: example

ElGamal

- Published by El Gamal in 1984
- - · But using only the discrete logarithm complexity
- A variant is used for digital signatures
 - DSA (Digital Signature Algorithm)
 - US Digital Signature Standard (DSS)
- Operations and keys (for signature handling)
 - $\beta = \alpha^x \mod p$ $K = (\beta, \alpha, p)$ $K^{-1} = (x, \alpha, p)$
 - k random, $k \cdot k^{-1} \equiv 1 \mod (p-1)$
 - Signature of M: (y,δ) $y = \alpha^k \mod p$ $\delta = k^{-1} (M xy) \mod (p-1)$
 - Validation of signature over M: $\beta^{\gamma} \gamma^{\delta} \equiv \alpha^{M} \pmod{p}$
- ▶ Problem
 - Knowing k reveals x out of δ
 - k must be randomly generated and remain secret

Security

Elliptic curve

$$\triangleright$$
 A curve described by an equation $y^2 + axy + by = x^3 + cx^2 + dx + e$

- > Curves of this kind are symmetric to the X axis
 - And don't have solution for all x values

Security

EC over finite fields

> A set of points satisfying the equation

$$y^2 = x^3 + ax + b \pmod{q}$$

- The curve also includes a point O at infinity
- \triangleright All x and y values must belong to [0, q-1]
- - p^k , for a prime p (prime finite field \mathbb{F}_{p^k})
 - 2^m , for a prime m (binary finite field \mathbb{F}_{2^m})
- \triangleright The elliptic curve is denominated $E(\mathbb{F}_q)$

EC over finite fields: example

$$y^2 = x^3 - x \pmod{71}$$

EC discrete logarithm problem

 \triangleright Given an elliptic curve $E(\mathbb{F}_p)$,

a point G on that curve,

a point P which is an integer multiple of G,

find the integer x such that xG = P

For cryptographic operations, x will be the <u>private key</u> and P the <u>public key</u>

João Paulo Barraca

Security

16

EC cryptography (ECC): curves' definition

- \triangleright Prime p \rightarrow (p, a, b, G, n, h)
 - Constants a and b of the EC equation
 - A generator point (or base point) G
 - The order n of G
 - · Normally prime
 - A (small) co-factor h
 - Given by $\frac{1}{n} \# E(\mathbb{F}_p)$

Security

17

EC Diffie-Hellman (ECDH)

- - (p, a, b, G, n, h)
- > Alice chooses a random α
 - And publishes $A = \alpha G$
- \triangleright Bob chooses a random β
 - And publishes $B = \beta G$
- ▶ Both Alice and Bob compute K
 - $K = \alpha B$ $K = \beta A$ $K = \alpha \beta G$

Security

Public key encryption with EC

- > DH-based, not like RSA
 - Different from RSA
- - Target public DH value: T
- $T = \tau G$
- Source new private DH value: σ
- $S = \sigma G$

- $K = \sigma T$
- Encrypt message with K (symmetric encryption)
- Send source public DH value S along w/ message
- Target computes K as K = τS

19

Recommended curves

Length of n (bits)	p (bits)	m (bits)
161 - 223	192	163
224 - 255	224	233
256 - 383	256	283
384 - 511	384	409
≥ 512	521	571

- NIST, 1999
 - 5 P curves over prime fields \mathbb{F}_n

$$y^2 = x^3 - 3x + b$$

• 5 B curves over binary fields \mathbb{F}_{2}^{m}

$$y^2 + xy = x^3 + x^2 + b$$

- b randomly generated
 - · SHA-1 hash of a seed
- 5 K (Koblitz) curves over binary fields \mathbb{F}_{2^m}

$$y^2 + xy = x^3 + ax^2 + 1$$

Security

Recommended curves

⊳ IETF

- Daniel Bernstein's Curve25519
 - $v^2 = x^3 + 486662 x^2 + x \pmod{q}$
 - $q = 2^{255} 19$
- Curve448
 - $y^2 = x^3 + 15632 x^2 + x \pmod{q}$
 - $q = 2^{448} 2^{224} 1$

Inão Paulo Barraca

Security

21

Randomization of asymmetric encryptions

- ▷ Non-deterministic (unpredictable) result of asymmetric encryptions
 - N encryptions of the same value, with the same key, should yield N different results
 - Goal: prevent trial & error discovery of encrypted values
- ▶ Technics
 - Concatenation of values to encrypt with two values
 - · A fixed one (for integrity control)
 - · A random one (for randomization)
 - PKCS #1
 - OAEP (Optimal Asymmetric Encryption Padding)

Security

Blind signatures

- ▷ Signatures made by a "blinded" signer
 - Signer cannot observe the contents it signs
 - Similar to a handwritten signature on an envelope containing a document and a carbon-copy sheet
- Useful for ensuring anonymity of the signed information holder, while the signed information provides some extra functionality
 - Signer X knows who requires a signature (Y)
 - X signs T₁, but Y afterwards transforms it into a signature over T₂
 - Not any T₂, a specific one linked to T₁
 - Requester Y can present T₂ signed by X
 - But it cannot change T₂
 - X cannot link T₂ to the T₁ that it observed when signing

Security

27

Chaum Blind Signatures

- - Blinding
 - Random blinding factor K
 - $\mathbf{k} \times \mathbf{k}^{-1} \equiv 1 \pmod{N}$
 - $m' = k^e \times m \mod N$
 - Ordinary signature (encryption w/ private key)
 - A_x (m') = (m')^d mod N
 - Unblinding
 - $\cdot A_x (m) = k^{-1} \times A_x (m') \mod$

Security