Lab 4. Reactancia Capacitiva

Lab 4. Reactancia Capacitiva.

Jose Alberto canario 2021-2220

Objetivo

En este ejercicio se examinará la reactancia capacitiva. En particular, se investigará su relación con la capacitancia y la frecuencia, incluido un gráfico de la reactancia capacitiva frente a la frecuencia.

Descripción general de la teoría

La característica voltaje-corriente de un capacitor es diferente a la de las resistencias típicas. Mientras que los resistores muestran un valor de resistencia constante en una amplia gama de frecuencias, el valor óhmico equivalente de un capacitor, conocido como *reactancia capacitiva*, es inversamente proporcional a la frecuencia. La reactancia capacitiva se puede calcular mediante la fórmula:

$$XX_{CC} = -jj\underline{\qquad}$$
$$2\pi\pi\pi\pi\pi\pi$$

La magnitud de la reactancia capacitiva se puede determinar experimentalmente alimentando un capacitor con una corriente conocida, midiendo el voltaje resultante y dividiendo los dos, siguiendo la Ley de Ohm. Este proceso se puede repetir en un rango de frecuencias para obtener un gráfico de la reactancia capacitiva frente a la frecuencia.

Se puede aproximar una fuente de corriente AC colocando una gran resistencia en serie con un voltaje AC, siendo la resistencia considerablemente mayor que la máxima reactancia esperada. **Equipos necesitados:**

- Generador de funciones de AC
- Osciloscopio GW Instek GDS-820C
- Laptop con Software FreeView

Componentes necesarios:

- Resistencias de $10~kk\Omega$
- Capacitores de $1 \mu\mu\mu\mu yy 2.2 \mu\mu\mu\mu$.

Esquemas y Diagramas

Figura 4.1

Procedimiento

Fuente de corriente

1. Usando la figura 4.1 con $VV_{iiii}=10\ VV_{pp-pp}\$ y $RR=10\ kk\Omega$, y suponiendo que la reactancia del capacitor es mucho menor que 10kk y puede ignorarse, determine la corriente circulante usando los valores de los componentes medidos y regístrelos en la Tabla 4.1.

Medición de la reactancia

- 2. Construya el circuito de la figura 4.1 usando $RR=10~kk\Omega$ y $\pi\pi=1~\mu\mu\mu\mu$. Coloque una sonda en el generador y otra en el condensador. Ajuste el generador a una onda sinusoidal de 200~HHHH y $10~VV_{pp-pp}$. Asegúrese de que el límite de ancho de banda del osciloscopio esté activado para ambos canales. Esto reducirá el ruido de la señal y hará que las lecturas sean más precisas.
- 3. Calcule el valor teórico de XX_{CC} usando el valor del capacitor medido y regístrelo en la Tabla 4.2.

4. Registre el voltaje pico a pico del capacitor y regístrelo en la Tabla 4.2.

- 5. Usando la fuente de corriente de la Tabla 4.1 y el voltaje del capacitor medido, determine la reactancia experimental y regístrela en la Tabla 4.2. También calcule y registre la desviación.
- 6. Repita los pasos del tres al cinco para las frecuencias restantes de la Tabla 4.2.
- 7. Reemplace el capacitor de 1 $\mu\mu\mu\mu$ con la unidad de 2.2 $\mu\mu\mu\mu$ y repita los pasos del dos al seis, registrando los resultados en la Tabla 4.3.
- 8. Con los datos de las tablas 4.2 y 4.3, crear una gráfica de la reactancia capacitiva versus la frecuencia.

Tabla de datos

Tabla 4.1

(pp-pp) 996.8uA

Tabla 4.2

Frecuencia Teorica	(VVcc)	XX _{CC}	% Desviacion
--------------------	---------	------------------	--------------

200	-795.7	559mV	560.79	-29.52
400	-397.8	280mV	280.89	-29.38
600	-265.25	187mV	187.60	-29.27
800	-198.94	140mV	140.44	-29.40
1.0 k	-159.1	112mV	112.35	-29.38
1.2 k	-132.6	93.7mV	94.5	-29.11
1.6 k	-99.47	70.3mV	70.52	-29.10
2.0 k	-79.5	56.2mV	56.38	-29.08

Count of Teorica

Count of Teorica by XXCC

Tabla 4.3

Frecuencia	XXcc TEORICA	(V _{CC pp-pp})	XX	% Desviación
200	-361.72	255mV	255.81	-29.27
400	-180.86	127mV	122.40	-29.32
600	-120.57	85.2mV	85.47	-29.11
800	-90.43	63.9mV	64.70	-29.45
1.0 k	-72.34	51.1mV	51.26	-29.14
1.2 k	-60.29	42.6mV	42.73	-29.12
1.6 k	-45.21	31.9mV	32.5	-29.21
2.0 k	-36.17	25.5mV	25.58	-29.27

Preguntas

1. ¿Cuál es la relación entre la reactancia capacitiva y la frecuencia?

Un capacitor almacena energía en forma de campo eléctrico. Cuando se aplica una señal de corriente alterna (CA) a un capacitor, este campo eléctrico se carga y descarga continuamente a medida que la corriente oscila. La facilidad con la que el capacitor puede cargarse y descargarse determina su reactancia capacitiva.

A mayor frecuencia, los cambios de dirección de la corriente son más rápidos, lo que significa que el capacitor tiene menos tiempo para cargarse y descargarse completamente. Esto dificulta que el capacitor almacene energía, lo que reduce su reactancia capacitiva.

Por el contrario, a menor frecuencia, los cambios de dirección de la corriente son más lentos, lo que da al capacitor más tiempo para cargarse y descargarse completamente. Esto facilita que el capacitor almacene energía, lo que aumenta su reactancia capacitiva.

2. ¿Cuál es la relación entre la reactancia capacitiva y la capacitancia?

La reactancia capacitiva (XC) y la capacitancia (C) tienen una relación inversamente proporcional.

Un condensador almacena energía en forma de campo eléctrico cuando se carga. Cuando se aplica una señal de CA a un condensador, este se carga y descarga continuamente a medida que la señal cambia de dirección. La facilidad con la que el condensador puede cargarse y descargarse determina su reactancia capacitiva.

Un condensador con mayor capacitancia puede almacenar más carga, lo que significa que le toma más tiempo cargarse y descargarse. Esto resulta en una mayor reactancia capacitiva, ya que el condensador se opone a los cambios rápidos de voltaje.

Por el contrario, un condensador con menor capacitancia almacena menos carga y puede cargarse y descargarse más rápido. Esto produce una menor reactancia capacitiva, ya que el condensador ofrece menos oposición a los cambios rápidos de voltaje.

