GATE 2023 EC

EE23BTECH11023-ABHIGNYA GOGULA

Question28:

The Fourier transform $X(\omega)$ of $x(t) = e^{-t^2}$ is Note: $\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$

Note:
$$\int_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$$

A)
$$\sqrt{\pi}e^{\frac{\omega^2}{2}}$$

A)
$$\sqrt{\pi}e^{\frac{\omega^2}{2}}$$
B) $\frac{e^{\frac{-\omega^2}{4}}}{2\sqrt{\pi}}$

C)
$$\sqrt{\pi}e^{\frac{-\omega^2}{4}}$$

D)
$$\sqrt{\pi}e^{\frac{-\omega^2}{2}}$$

Gate 2023 EC Question 28

Solution

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$
 (1)

$$X(\omega) = \int_{-\infty}^{\infty} e^{-t^2} e^{-j\omega t} dt$$
 (2)

$$t^2 + j\omega t = \langle t + \frac{j\omega}{2} \rangle^2 + \frac{\omega^2}{4}$$
 (3)

$$X(\omega) = \int_{-\infty}^{\infty} e^{-\langle t + \frac{j\omega}{2} \rangle^2 - \frac{\omega^2}{4}} dt$$
 (4)

$$u = t + \frac{j\omega}{2} \tag{5}$$

$$X(\omega) = \int_{-\infty}^{\infty} e^{-u^2} e^{\frac{-\omega^2}{4}} du \tag{6}$$

$$X(\omega) = e^{-\frac{\omega^2}{4}} \int_{-\infty}^{\infty} e^{-u^2} du$$
 (7)

$$X(\omega) = \sqrt{\pi}e^{\frac{-\omega^2}{4}} \tag{8}$$