

Heuristické optimalizačné procesy

Lokálne prehľadávanie, iteračné vylepšovanie

prednáška 4 Ing. Ján Magyar, PhD. ak. rok. 2024/2025 ZS

Lokálne prehľadávanie

ciel'om je hl'adat' riešenie v rámci celého priestoru kandidátov globálne riešenie

- optimalizácia: $x \in S \mid f(x) < f(y)$, kde $y \in S \land x \neq y$
- rozhodovanie: $x \in S \mid valid(x)$

sústreďuje sa iba na malý podpriestor

Lokálne riešenie s ohľadom na okolie

optimalizácia: $lok(x) \neq glob(x)$

rozhodovanie: lok(x) = glob(x)

Okolie

okolie N je časť priestoru kandidátov S ($N \subseteq S$)

- zahŕňa validných aj nevalidných kandidátov
- podmnožina kandidátov "blízkych" istému kandidátovi: N(s), $s \in S$

definovanie okolia

- na základe vzdialenosti
- na základe vymenovania
 - explicitné (pre diskrétny priestor)
 - pomocou mapovania (procedúrou alebo vlastnosťou)

Okolie - vzdialenosť

existencia funkcie vzdialenosti dist: $S \times S \rightarrow R$

okolie je dané ako
$$N(x) = \{y \in S \mid dist(x, y) \le \varepsilon\}$$
 pre $0 \le \varepsilon$, $x \in S$

štandardné okolia: $dist(x, y) = (\Sigma(|x_i - y_i|)^n)^{1/n}$

- Euklidova vzdialenosť (n = 2)
- Hammingova vzdialenosť (n = 1)

Okolie - mapovanie

existencia mapovej funkcie map: $S \rightarrow 2^S$

okolie N(x) je dané ako zoznam tých kandidátov, ktorí sú mapovaní ako súčasť okolia kandidáta x

štandardné okolia: k-exchange okolie

- 1-flip (SAT)
- 2-swap (TSP)

Graf okolia

relácia okolia indukuje orientovaný graf na priestore kandidátov vlastnosti

- ak relácia okolia je symetrická, tak graf je neorientovaný
- stupeň vrcholu = veľkosť okolia
- regulárnosť grafu
- dostupnosť grafu
- priemer grafu

Komponenty lokálneho prehľadávania

algoritmus lokálneho prehľadávania pre inštanciu π vyžaduje komponenty:

- $S(\pi)$, $N(\pi)$, $M(\pi)$
- inicializačná funkcia $init(\pi)$ $\longrightarrow D(S(\pi) \times M(\pi))$
- kroková funkcia $step(\pi): S(\pi) \times M(\pi) \rightarrow D(S(\pi) \times M(\pi))$
- ukončovací predikát $term(\pi): S(\pi) \times M(\pi) \to D(\{\top, \bot\})$

Štruktúra LS - rozhodovací problém

```
input: \pi
output: s \in S
(s, m) = init(\pi)
while( not term( s, m ) )
    (s, m) = step(s, m)
endwhile
if(valid(s)) then
    return s
else
    return
endif
```

Štruktúra LS - optimalizačný problém

```
input: \pi
output: r \in S
(s, m) = init(\pi)
r = s
while( not term( s, m ) )
     (s, m) = step(s, m)
     if(f(s) < f(r)) then
          r = s
     endif
endwhile
if( valid(r) ) then
     return r
else
     return
endif
```

Prehľadávacia trajektória

závisí od použitých funkcií init() a step()

krok hľadania:
$$(s_1, s_2) \in S \times S$$
, kde $s_2 = step(s_1)$

trajektória:
$$(s_0, s_1, ..., s_n) \mid s_0 \in S, (s_i, s_{i+1}) \in S \times S$$
, teda $step(...(step(init())))$

príklady

- URP (uninformed random picking)
- URW (uninformed random walk)

Iteračné vylepšovanie

Informovaná stratégia

neinformovanou stratégiou nedokážeme budovať na predchádzajúcich skúsenostiach a tak smerovať k riešeniu

ohodnocovacia funkcia $g: S \rightarrow R$

- ohodnocuje kvalitu kandidátov v aktuálnom okolí
- jej globálne minimum súhlasí s optimom úlohy

rozhodovací a optimalizačný problém možno riešiť rovnakým spôsobom

Výber ohodnocovacej funkcie

problémovo závislý ale aj nezávislý

rozhodovací problém

- optimalizačná podoba úlohy
- štandardná podoba

optimalizačný problém

- použitie cieľovej funkcie
- použitie inej funkcie so zhodnou polohou globálneho optima

Príklad: SAT, MAXSAT

Delta (inkrementálna) evaluácia

Iteračné vylepšovanie

```
Funkcia step
```

$$I(s) = \{ x \in N(s) \mid g(x) > g(s) \}$$

 $step: p(x) = 1 / \#I(s) \quad ak \ x \in I(s)$
 $p(x) = 0 \quad inak$
maximalizácia (existuje aj minimalizačná podoba)

Funkcia init (URP)

init:
$$p(x) = 1 / \#S$$
 pre všetky $x \in S$

Predikát *term*

$$\#I(s) = 0$$
 dosiahnutie lokálneho optima

Algoritmus

```
input: \pi
output: s \in S
s = urp()
while (\#I(s) > 0)
    s = select(I(s))
endwhile
if(valid(s)) then
    return s
else
    return
endif
```

Uviaznutie v lokálnom optime

lokálne optimum - algoritmus nevie urobiť žiadny krok ak lokálne optimum = globálne optimum, tak našli sme optimálne riešenie

ak lokálne optimum ≠ globálne optimum, tak

- našli sme suboptimálne riešenie
- jeho kvalita sa nedá teoreticky vopred odhadnúť
- algoritmus uviazol v lokálnom optime

otázky?