

**Amendments to the Specification:**

Please replace the entire BRIEF DESCRIPTION OF THE DRAWINGS with the following rewritten "BRIEF DESCRIPTION OF THE DRAWINGS":

**BRIEF DESCRIPTION OF THE DRAWINGS**

In order that the invention may be more fully understood, the following Examples are provided by way of illustration only and with reference to the accompanying drawings, in which:

Figure 1 is a graph comparing %NO<sub>x</sub> conversion between steady state and transient modes for Comparative Example 1 as a function of temperature;

Figure 2 is a graph showing %NO<sub>x</sub> conversion over the Catalyst of Example 1 compared with the Catalyst of Comparative Example 2 in the steady state mode as a function of temperature;

Figure 3 is a graph showing the outlet NO<sub>x</sub> concentration as a function of time at 200°C, 250°C and 300°C over 2%Ag/Al<sub>2</sub>O<sub>3</sub> and the 2Ag/Al<sub>2</sub>O<sub>3</sub>-CeO<sub>2</sub> mixture in the steady mode;

Figure 4 is a graph showing the effect of ramp down (steady state 15 minutes) and ramp up (steady state 15 minutes) on NO<sub>x</sub> conversion of 2Ag/Al<sub>2</sub>O<sub>3</sub>-CeO<sub>2</sub> (4:1);

Figure 5 is a graph shown the effect of ramp down (steady state 15 minutes) and ramp up (steady state 15 minutes) on HC conversion of 2Ag/Al<sub>2</sub>O<sub>3</sub>-CeO<sub>2</sub> (4:1);

Figure 6 is a graph comparing the effect of ageing on Comparative Example 1 and Example 1 catalysts on NO<sub>x</sub> conversion;

Figure 7 is a graph showing %NO<sub>x</sub> conversion as a function of temperature for 5Cu/ZSM5 catalyst structures compared with 5Cu/ZSM5 catalyst *per se*;

Figure 8 is a graph shown %NO<sub>x</sub> conversion as a function of temperature for 2Ag/Al<sub>2</sub>O<sub>3</sub> catalyst structures compared with 2Ag/Al<sub>2</sub>O<sub>3</sub> catalyst *per se*;

Figure 9 is a graph shown %NO<sub>x</sub> conversion as a function of temperature for a catalyst according to JP 2002370031 compared with 2Ag/Al<sub>2</sub>O<sub>3</sub> and 5Cu/ZSM5 catalyst structures according to the invention; and

~~Figure 10A-F includes a series of schematic arrangements of catalyst structures according to the present invention.~~

Figure 10A is a schematic diagram of an exhaust system comprising a catalyst structure according to the present invention wherein a ceramic flow-through substrate monolith comprises an upstream end zone including an upper layer of POC and an under layer of LNC and a downstream end zone including an LNC;

Figure 10B is a schematic diagram of an exhaust system comprising a catalyst structure according to the present invention wherein a ceramic flow-through substrate monolith comprises an upstream end zone including an upper layer of LNC and an under layer of POC and a downstream end zone including an LNC;

Figure 10C is a schematic diagram of an exhaust system comprising a catalyst structure according to the present invention wherein a first ceramic flow-through substrate monolith comprises an upper layer of LNC and an under layer of POC and a second substrate monolith located downstream comprises an LNC;

Figure 10D is a schematic diagram of an exhaust system comprising a catalyst structure according to the present invention wherein a ceramic flow-through substrate monolith comprises an upstream end zone including an LNC and a downstream end zone including an upper layer of POC and an under layer of LNC;

Figure 10E is a schematic diagram of an exhaust system comprising a catalyst structure according to the present invention wherein a ceramic flow-through substrate monolith comprises an upstream end zone including a short zone of POC and a downstream end zone including an LNC; and

Figure 10F is a schematic diagram of an exhaust system comprising a catalyst structure according to the present invention wherein a ceramic flow-through substrate monolith comprises LNC and POC coated on the catalyst substrate as a physical mixture or the entire length of the substrate monolith includes an upper layer of POC and an under layer of LNC or vice versa.