Семинар 13.

Семинары: Погорелова П.В.

Выбор функциональной зависимости.

1. Пусть X — цена мороженого, а Y — дневная выручка от продаж мороженого. Оценивание регрессии вида

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$$

дало следующий результат:

Dependent Variable: Y					
Method: Least Squares					
Sample: 1 50					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	100.2079	1.967171	50.94010	0.0000	
X	10.03677	0.903745	11.10576	0.0000	
X2	-0.817382	0.084591	-9.662803	0.0000	
R-squared	0.765563	Mean deper	ndent var	123.4150	
Adjusted R-squared	0.755587	S.D. dependent var		8.089480	
S.E. of regression	3.999287	Akaike info criterion		5.668234	
Sum squared resid	751.7320	Schwarz criterion		5.782955	
Log likelihood	-138.7058	Hannan-Qu	inn criter.	5.711920	
F-statistic	76.74024	Durbin-Wa	tson stat	1.738403	
Prob(F-statistic)	0.000000				

	Coefficients covariance matrix				
	С	X	X2		
C.	3.869764	-1.598561	0.134292		
X	-1.598561	0.816755	-0.074654		
X2	0.134292	-0.074654	0.007156		

Найдите 95%-ый доверительный интервал для значения цены $X=X_0$, при котором выручка максимальна.

- 2. Для 400 голландских магазинов модной одежды с помощью трёх моделей оценили зависимость продаж в расчете на квадратный метр в гульденах, Sales, от:
 - общей площади магазина, Size, в м²;
 - ullet количества сотрудников, работающих целый день, Nfull;
 - количества временных рабочих, *Ntemp*;
 - дамми-переменной Owner, равной единице, если собственник один, и нулю иначе.

$$\widehat{Sales}_{i} = \underbrace{6083 - 15.25Size_{i} + 1452.8Nfull_{i} + 420.15Ntemp_{i} - 1464.1Owner_{i}}_{(718)} - \underbrace{15.25Size_{i} + 1452.8Nfull_{i} + 420.15Ntemp_{i} - 1464.1Owner_{i}}_{(361)} - \underbrace{10.5ales_{i}}_{(0.11)} = \underbrace{8.59 - 0.0024Size_{i} + 0.183Nfull_{i} + 0.102Ntemp_{i} - 0.209Owner_{i}}_{(0.056)} - \underbrace{10.5ales_{i}}_{(0.011)} = \underbrace{10.08 - 0.31 \ln Size_{i} + 0.32 \ln Nfull_{i} + 0.066 \ln Ntemp_{i} - 0.10 \ln Owner_{i}}_{(0.056)}$$

 $\ln \widehat{Sales}_i = \underset{(0.21)}{10.08} - \underset{(0.043)}{0.31} \ln Size_i + \underset{(0.061)}{0.22} \ln Nfull_i + \underset{(0.118)}{0.066} \ln Ntemp_i - \underset{(0.059)}{0.19} \ln Owner_i$

В скобках приведены стандартные ошибки.

- (a) Дайте интерпретацию коэффициента при переменной Size в каждой из трёх моделей;
- (б) Подробно опишите, как выбрать наилучшую из этих моделей.
- 3. По данным для 23 демократических стран оценили зависимость индекса Джини от ВВП на душу населения с учетом ППС (паритета покупательной способности). Затем провели тест Рамсея.
 - (а) Сформулируйте нулевую и альтернативную гипотезу теста Рамсея.
 - (б) Опишите пошагово, как проводится тест Рамсея.
 - (в) Прокомментируйте результаты теста Рамсея.

	reg gini go	dp if democ==	1						
	Source	SS	df		MS		Number of obs		23 13.05
_	Model Residual	506.853501 815.572523	1 21		.853501 8367868		Prob > F R-squared	= = = =	0.0016 0.3833 0.3539
	Total	1322.42602	22	60.	1102738			=	6.2319
	gini	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
_	gdp _cons	0006307 44.30983	.0003 3.572		-3.61 12.40	0.002 0.000	0009937 36.87993		0002676 1.73974

. ovtest

Ramsey RESET test using powers of the fitted values of gini Ho: model has no omitted variables $F(3,\ 18) = 5.16 \\ Prob > F = 0.0095$

4. С помощью теста Бокса-Кокса оценили зависимость веса индивида (в килограммах) от его роста (в сантиметрах):

Number of obs 540 LR chi2(2) Prob > chi2 230.68 Log likelihood = -2659.5656[95% Conf. Interval] W coef. Std. Err. P>|z| 1.055498 -.0263371 1.892654 .1471576 0.577 0.858 -2.654035 -.3147607 4.76503 /lambda

Estimates of scale-variant parameters

	Coef.
Notrans _cons	2.936809
Trans H	.0237224
/sigma	.1660251

Test HO:	Restricted log likelihood	chi2	Prob > chi2
theta=lambda = -1	-2680.8693	42.61	0.000
theta=lambda = 0	-2659.7618	0.39	0.531
theta=lambda = 1	-2685.5201	51.91	0.000

Какую спецификацию модели (линейную, линейную в логарифмах, полулогарифмическую) следует предпочесть и почему?

5. Для выбора между линейной и полулогарифмической моделями (где EARNINGS — почасовая заработная плата в S, S — длительность обучения, SASVABC — результаты тестов, характеризующие успеваемость) был проведен тест Дэвидсона, Уайта и МакКиннона и получены следующие результаты:

	Зависимая: Y	Зависимая: $\ln Y$
(Intercept)	-26.148	-1.941
	(4.17)	(3.2499)
S	2.008	0.087
	(0.276)	(0.035)
ASVABC	0.393	0.017
	(0.079)	(0.007)
lin_add	-15.373	
	(5.984)	
semilog_add		-0.029
		(0.065)
R^2	0.2071	0.2212
F	46.59	50.74
$\operatorname{Adj} olimits_1 R^2$	0.2027	0.2168
Num. obs.	540	540
RSS	90975.57	148.1
$\hat{\sigma}$	13.04	0.5256

Здесь $\lim_{a} dd = \ln Y - \ln Y$, semilog_add = $Y - \exp(\ln Y)$ и в скобках указаны стандартные ошибки. С помощью PE—теста на уровне значимости 5% сделайте выбор между двумя оцененными моделями.