FINM 34000, Autumn 2023

Lecture 7

Reading: Notes, rest of Section 5

Exercise 1 Let X_1, X_2, \ldots be independent, identically distributed random variables with

$$\mathbb{P}{X_j = 2} = \frac{1}{3}, \quad \mathbb{P}{X_j = \frac{1}{2}} = \frac{2}{3}.$$

Let $M_0 = 1$ and for $n \ge 1$, $M_n = X_1 X_2 \cdots X_n$.

- 1. Show that M_n is a martingale.
- 2. Explain why M_n satisfies the conditions of the martingale convergence theorem.
- 3. Let $M_{\infty} = \lim_{n \to \infty} M_n$. Explain why $M_{\infty} = 0$. (Hint: there are at least two ways to show this. One is to consider $\log M_n$ and use the law of large numbers. Another is to note that with probability one M_{n+1}/M_n does not converge.)
- 4. Use the optional sampling theorem to determine the probability that M_n ever attains a value as large as 64.
- 5. Does there exist a $C < \infty$ such that $\mathbb{E}[M_n^2] \leq C$ for all n?

Exercise 2 Consider the martingale betting strategy as discussed in Section 5. Let W_n be the "winnings" at time n, which for positive n equals either 1 or $1-2^n$.

- 1. Is W_n a square integrable martingale?
- 2. If $\Delta_n = W_n W_{n-1}$ what is $\mathbb{E}[\Delta_n^2]$?
- 3. What is $\mathbb{E}[W_n^2]$?
- 4. What is $E(\Delta_n^2 \mid \mathcal{F}_{n-1})$?

Exercise 3 Here are some statements about martingales. Say whether they are always true. If always true give reason (citing a fact from the lecture or notes is fine). If it is not always true give an example to show this. Let M_n , n = 0, 1, 2, ... be a martingale with respect to $\{\mathcal{F}_n\}$ with $M_0 = 1$.

1. For all positive integers n, $\mathbb{E}[M_n] = 1$.

2. With probability one, the limit

$$M_{\infty} := \lim_{n \to \infty} M_n \tag{1}$$

exists and is finite.

- 3. Suppose the limit M_{∞} exists as in (1) and is finite. Then $\mathbb{E}[M_{\infty}] = 1$.
- 4. Suppose we assume know that with probability one $M_n \ge 0$ for all n? Does this imply that the limit in (1) exists with probability one?
- 5. If we assume that $M_n \ge 0$ for all n does the answer to part 3 change?