Application of C.V:

$$C.V = \frac{\sigma}{\bar{x}}.100;$$

 $\sigma = standard\ deviation;\ \bar{x} = mean$

Calculating C.V for company A:

Xi	d_i	d_i^2		
	$=\frac{x_i-A}{A}$	·		
	С			
315	-50	2500		
320	-45	2025		
350	-15	225		
340	-25	625		
360	-5	25		
365(A)	0	0		
355	-10	100		
370	5	25		
372	7	49		
378	13	169		
410	45	2025		
390	25	625		
	$\sum_{i=1}^{n} d_i$	$\sum_{i=8393} d_i^2$		
	$ \begin{array}{c} $			

$$\bar{x} = A + \frac{\sum_{i=1}^{n} d_i}{N} \cdot c$$

$$= 365 + \frac{-55}{12} \cdot 1 = 360.41$$

A = approximate mean

$$\sigma = \sqrt{\left[\frac{\sum d_i^2}{n} - \left(\frac{\sum_{i=1}^n d_i}{N}\right)^2\right] \cdot c}$$

$$= \sqrt{\left[\frac{8393}{12} - \left(\frac{-55}{12}\right)^2\right] \cdot 1}$$

$$= 26.038$$

$$C. V = \frac{\sigma}{\bar{x}} \cdot 100 = \frac{26.038}{360.41} \cdot 100 = 7.22\%$$

Mean deviation:

The average of absolute deviation of each observation from their mean is called mean deviation

Absolute deviation =
$$|x_i - \bar{x}|$$
; $\bar{x} = mean$

$$M.D = \frac{\sum_{i=1}^{n} f_i |x_i - \bar{x}|}{N}$$

Problem: Calculate mean deviation from the following frequency distribution:

Marks	No. of students(fi)	xi	fixi	$ x_i - \bar{x} $	$f_i x_i-\bar{x} $
0-10	5	5	25	22.6	113
10-20	12	15	180	12.6	151.2
20-30	8	25	200	2.6	20.8
30-40	15	35	525	7.4	111
40-50	10	45	450	17.4	174
Total	N=50		$\sum f_i x_i$		$ f_i x_i-\bar{x} $
					$ \begin{vmatrix} f_i x_i - \bar{x} \\ = 570 \end{vmatrix} $
			= 1380		- 370

$$M.D = \frac{\sum_{i=1}^{n} f_i |x_i - \bar{x}|}{N} = \frac{570}{50} = 11.4;$$
$$\bar{x} = \frac{\sum f_i x_i}{N} = \frac{1380}{50} = 27.6$$

Next: Calculating missing frequency, quartile deviation