REFORZAMIENTO III

- TEOREMAS EN LA CIRCUNFERENCIA.
- POSICIONES RELATIVAS DE DOS CIRCUNFERENCIAS.
- CUADRILATRO INSCRITO E INSCRIPTIBLE.
- PUNTOS NOTABLES I.

CIRCUNFERENCIA I

TEOREMAS:

SEMI CIRCUNFERENCIA

• CUADRANTE:

Del gráfico. Calcule la m∢COD.

RESOLUCIÓN:

Nos piden $m \not < COD = X$

- Se observa que \overline{AB} es diámetro: m∢AOB=90°
- Si m∢AOC=a y m∢BOD=b: X=90° - (a + b)
- Además AOB es un cuadrante:

$$m\widehat{AC}=2a$$

 $m\widehat{BD}=2b$

• Por ∢ interior:

$$45^{\circ} = \frac{2a + 2b}{2}$$

$$a + b = 45^{\circ}$$

Reemplazando en X:

$$X=90^{\circ} - (a + b)=90^{\circ} - 45^{\circ}$$

 $\therefore X = 45^{\circ}$

TEOREMAS:

• Si T es punto de tangencia $y \overleftrightarrow{DC} \parallel \overleftrightarrow{L_T}$:

$$m\widehat{DT}=m\widehat{TC}=\omega$$

CIRCUNFERENCIA II

Del gráfico, si CD=2AB, calcule θ .

RESOLUCIÓN:

Nos piden θ

Datos: CD=2ABAB=a

CD=2*a*

Ubicamos P y Q en el arco CD, tal que

$$m\widehat{CP} = m\widehat{PQ} = m\widehat{QD} = \theta$$

• Por teoremas:

$$CP=PQ=QC=a$$
 y $\overline{PQ}//\overline{CD}$
Entonces $CPQD$ es un trapecio θ isósceles.

• Trazamos \overline{PH} y \overline{QE} perpendicular \overline{CD} :

El ⊿QED es notable de 30° y 60°:

Por ∢inscrito: 2θ=120°

CIRCUNFERENCIA II

Si A y B son puntos de tangencia:

Si T es punto de tangencia:

Del gráfico ABCD es un cuadrado, si T es un punto de tangencia calcule $\frac{QT}{TC}$

RESOLUCIÓN:

Nos piden
$$\frac{QT}{TC} = \frac{X}{Y}$$

Si el radio es r:

$$OD=r$$
 $CD=2r$

• El △ODC es notable de 53°/2:

$$m \lessdot OCD = \frac{53^{\circ}}{2}$$
$$m \lessdot TCD = 53^{\circ}$$

• El △CBQ es notable de 37° y 53°:

• Como T es punto de tangencia:

$$X=1$$

$$Y=4$$

$$\therefore \frac{X}{Y} = \frac{1}{2}$$

CIRCUNFERENCIA III

TEOREMAS:

Si T es un punto de tangencia:

$$\theta = \alpha$$

 $\overline{BD} \parallel \overline{AC}$

Si T y Q son puntos de tangencia:

$$\theta = \alpha$$

En consecuencia como B P es punto medio del arco AB:

T, Q y P son colineales

Del gráfico, SI QO=AQ+1 y QB=17. Calcule R.

RESOLUCIÓN:

Nos piden R

Dato: QO=AQ+1

AQ=a

QO=a+1

Entonces: R = 2a + 1

Prolongamos \overline{AO} *hasta C:*

AC: Diámetro

Por teorema como P y Q son tangentes:

$$m\widehat{AB} = m\widehat{BC} = 90^{\circ}$$

• El ∆QOB rectángulo, por teorema de Pitágoras:

$$(a + 1)^2 + (2a + 1)^2 = 17^2$$

• Reemplazando en R:

$$R = 2(7) + 1$$

:: $R = 15$

INSCRITO E INSCRIPTIBLE

CUADRILÁTERO INSCRITO.

CUADRILÁTERO INSCRIPTIBLE.

CASO USUAL

B

ABCD es

inscriptible

Del gráfico ABCD es un cuadrado de centro O, si 4BP = 3PC. Calcule X

RESOLUCIÓN:

Nos piden X

Dato: 4BP = 3PC

Si BP=3, entonces

PC=4

- El ⊿BPC es notable de 37° y 53°: m∢BCP=37°
- Del cuadrado ABCD trazamos las diagonales:

• El OBPC es inscriptible:

• En el ΔQOD por ∢ exterior:

$$X = 45^{\circ} + 37^{\circ}$$
$$\therefore X = 82^{\circ}$$

INCENTRO:

 $X = 90^{\circ} + \frac{\theta}{1}$

EXCENTRO:

Si E es excentro:

PUNTOS NOTABLES I

- Como I y E son incentro y excentro: A, I y E son colineales.
- Además trazamos \overline{CI} y \overline{CE} :

m∢*ICE*=90° *m*∢*AEC*=45° (por excentro) El ⊿ICE notable de 45°:

$$CH=3$$

 Entonces el △AHC es notables de 37° y *53*°:

$$m$$

✓ HAC=37°

 $X = 37° + 37°$

∴ $X = 74°$