PRODUCTION METHOD FOR THERMOPLASTIC RESIN COMPOSITION AND THERMOPLASTIC RESIN COMPOSITION

Patent number:

JP2002194093

Publication date:

2002-07-10

Inventor:

SANADA TAKASHI; SHIMANO KOKICHI

Applicant:

SUMITOMO CHEM CO LTD

Classification:

- international:

C08J3/20; C08K5/00; C08L53/00; C08L71/12;

C08L77/00; C08L101/00

- european:

Application number: JP20000395712 20001226

Priority number(s):

Report a data error here

Abstract of JP2002194093

PROBLEM TO BE SOLVED: To provide a production method for a thermoplastic resin composition, composed of a polyphenylene ether and a polyamide, having an electric conductivity, and excellent in balance of fluidity and impact strength, by producing with a specific process, and to provide the thermoplastic resin composition obtained thereby.

SOLUTION: The thermoplastic resin composition is composed of the following component (A)-(E), wherein a weight ratio of (A)/(B) is 5/95-70/30, an amount of (C) is effective to phase-solvate (A) and (B), the amount of (D) is 0.8-10 pts.wt. per the total 100 pts.wt. of (A) and (B), and the amount of component (E) is 5-40 pts.wt. per the total 100 pts.wt. of (A) and (B). The production method for the thermoplastic resin composition is provided. (A): a polyphenylene ether, (B): a polyamide. (C): a phase-solvating agent, (D): an electrically conductive carbon black and/or a fine fibrous carbon, and (E) an improving agent for shock resistance.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-194093 (P2002-194093A)

(43)公開日 平成14年7月10日(2002.7.10)

(51) Int.Cl. ⁷	饑別記号	F I デーマコート*(参考)
CO8J 3/2	O CEZ	C08J 3/20 CEZZ 4F070
	CFG	CFGB 4J002
C08K 5/0)	C 0 8 K 5/00
C08L 33/0)	C 0 8 L 53/00
71/1	2	71/12
	審査請求	未請求 請求項の数8 OL (全 9 頁) 最終頁に続く
(21)出顧番号	特願2000-395712(P2000-395712)	(71) 出願人 000002093
		住友化学工業株式会社
(22) 出顧日	平成12年12月26日 (2000, 12, 26)	大阪府大阪市中央区北浜4丁目5番33号
•		(72) 発明者 眞田 隆
		千葉県市原市姉崎海岸5の1 住友化学工
		業株式会社内
		(72)発明者 嶌野 光吉
		千葉県市原市姉崎海岸5の1 住友化学工
		業株式会社内
		(74)代理人 100093285
		弁理士 久保山 隆 (外2名)
		PRI ANTES LAND A
		最終頁に続く

(54) 【発明の名称】 熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物

(57)【要約】 (修正有)

【課題】 ポリフェニレンエーテルとポリアミドを含有 する熱可塑性樹脂組成物の製造方法であって、特定の手 順で製造することにより、熱可塑性樹脂組成物の導電性 を有し、流動性、衝撃強度のバランスの優れた熱可塑性 樹脂組成物が得られる製造方法並びに該製造方法により 得られる熱可塑性樹脂組成物を提供する。

【解決手段】 下記の成分(A)~(E)をからなり、 (A)/(B)の重量比が5/95~70/30であ り、(C)の量は(A)及び(B)を相容化するのに有 効な量であり、(D)の量は(A)及び(B)の合計量 100重量部あたり0.8~10重量部であり、成分 (E)の量は(A)及び(B)の合計量100重量部あ たり5~40重量部である熱可塑性樹脂組成物の製造方 法。

(A):ポリフェニレンエーテル

(B):ポリアミド (C):相容化剤

(D): 導電性カーボンブラックおよび/または微細な 繊維状カーボン

(E):耐衝擊改良材。

【特許請求の範囲】

【請求項1】 下記の成分(A)~(E)をからなり、(A)/(B)の重量比が5/95~70/30であり、(C)の量は(A)及び(B)を相容化するのに有効な量であり、(D)の量は(A)及び(B)の合計量100重量部あたり0.8~10重量部であり、成分(E)の量は(A)及び(B)の合計量100重量部あたり5~40重量部である熱可塑性樹脂組成物の製造方法であって、下記の第一工程及び第二工程(下記の[ケース2]の場合の一部)又は第一工程~第三工程(下記の[ケース1]若しくは[ケース2]の場合の一部)を含む熱可塑性樹脂組成物の製造方法。

(A):ポリフェニレンエーテル

(B):ポリアミド

(C):相容化剤

(D): 導電性カーボンブラックおよび/または微細な 繊維状カーボン

(E):耐衝擊改良材

第一工程: (A)、(C)及び(E)を溶融混練することにより溶融混練物を得る工程

第二工程:第一工程で得た溶融混練物に、

[ケース1]:(B)を添加して溶融混練することにより溶融混練物を得る工程、又は

[ケース2]:(B)及び(D)を添加して溶融混練することにより溶融混練物を得る工程もしくは熱可塑性樹脂組成物を得る工程

第三工程: 第二工程によって得られた溶融混練物に

(D)及び/または(B)の残部を添加して溶融混練することにより熱可塑性樹脂組成物を得る工程

【請求項2】 (C)が下記の(C1)~(C3)から 選ばれる少なくとも一種である請求項1記載の製造方法。

(C1): エチレン性不飽和結合及びアセチレン性不飽和結合のいずれも持たないエポキシ化合物

(C2):同一分子内に、①少なくとも一種の不飽和基、すなわち炭素-炭素二重結合又は炭素-炭素三重結合と②少なくとも一種の極性基を併せ持つ化合物

(C3):同一分子内に⑤(OR)(ここでRは水素又はアルキル、アリール、アシル又はカルボニルジオキシ基である。)及び⑥カルボン酸、酸ハライド、酸無水物、酸ハライド無水物、酸エステル、酸アミド、イミド、イミド、アミノ及びこれらの塩から選ばれた少なくとも二つの同一又は相異なる官能基を併せ持つ化合物【請求項3】 成分(C)が、無水マレイン酸、フマル酸、マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、アコニット酸、カエン酸及びリンゴ酸から選ばれる少なくとも一種である請求項1記載の製造方法。

【請求項4】 第三工程まで経る請求項1記載の製造方法。

【請求項5】 成分(D)が N_2 吸着による BET式比表面積が $1000m^2/g$ 以上のカーボンブラックである請求項 1記載の製造方法。

【請求項6】 成分(D)が微細な繊維状カーボンである請求項1記載の製造方法。

【請求項7】 成分(E)がイソプレン部やブタジエン部の不飽和部分が選択的に水素添加されたスチレン系のブロック共重合体である請求項1記載の製造方法。

【請求項8】 請求項1~7のうちの一の請求項に記載の製造方法により得られる熱可塑性樹脂組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物に関するものである。更に詳しくは、本発明は、ポリフェニレンエーテルとポリアミドを含有し、導電性と優れた衝撃強度を有する熱可塑性樹脂組成物の製造方法であって、さらに流動性、耐熱性のバランスをも優れた熱可塑性樹脂組成物の製造方法並びに該製造方法により得られる熱可塑性樹脂組成物に関するものである。

[0002]

【従来の技術】ポリフェニレンエーテル樹脂は機械的性質、耐熱性、寸法安定性などの諸特性に優れた熱可塑性 樹脂であるが、一方では成形加工時の流動性が悪いといった欠点を持つ。

【0003】一方、ポリアミド樹脂は、流動性は優れているが、耐熱性や吸水による寸法変化等の欠点があるこれらのポリフェニレンエーテル樹脂とポリアミド樹脂の欠点を互いにおぎなうため、この二つを混ぜ合わせたボリマーアロイが開発されてきた本来この二つは単純に混ぜ合わせただけでは十分な機械的強度が得られないため、特許第1344351号公報のように相容化剤を入れる試みがなされている

【0004】また、ポリフェニレンエーテルとポリアミ ドを上記のような相容化剤を加えてアロイ化しただけで は、衝撃強度は低く、一般に衝撃強度改良材を添加し て、衝撃強度を向上する試みがなされている。このよう に衝撃強度と耐熱性の優れた材料は、たとえば自動車用 途では金属の代替にも使用可能である。しかしながら、 一般に熱可塑性樹脂は導電性を示さないため、金属で は、極めて経済的に有利である静電塗装を用いて塗装す ることができない。このため、導電性を有するプライマ 一塗料をあらかじめ塗布する場合もあるが、経済的に不 利である。また、樹脂に導電性を付与するために、導電 性のフィラーを添加する試みもなされてきたが、カーボ ンファイバーを添加した場合は、塗装後の外観が悪く、 外観の要求される用途には不適である。カーボンブラッ クを添加すると、著しく流動性が低下したり、衝撃強度 が低下してしまう欠点を有していた。

[0005]

【発明が解決しようとする課題】かかる状況の下、本発明が解決しようとする課題は、ポリフェニレンエーテルとポリアミドを含有する熱可塑性樹脂組成物の製造方法であって、導電性を有し、流動性、衝撃強度のバランスの優れた熱可塑性樹脂組成物の製造方法並びに該製造方法により得られる熱可塑性樹脂組成物を提供する点に存する。

[0006]

【課題を解決するための手段】本発明者らは、上記課題 に鑑み鋭意検討した結果、ポリフェニレンエーテル樹脂 とポリアミド樹脂をアロイ化する際に、特定の手順で、 耐衝撃改良材、導電性付与材(カーボンブラックや微細 な繊維状のカーボン)をする際に特定の手順で添加する ことにより、優れた導電性と流動性、衝撃強度のバラン スの優れた熱可塑性樹脂組成物が得られることをみいだ し本発明を完成するに至った。すなわち、本発明のうち 第一の発明は、下記の成分(A)~(E)をからなり、 (A)/(B)の重量比が5/95~70/30であ り、(C)の量は(A)及び(B)を相容化するのに有 効な量であり、(D)の量は(A)及び(B)の合計量 100重量部あたり0.8~10重量部であり、成分 (E)の量は(A)及び(B)の合計量100重量部あ たり5~40重量部である熱可塑性樹脂組成物の製造方 法であって、下記の第一工程及び第二工程(下記の[ケ ース2]の場合の一部)又は第一工程~第三工程(下記 の [ケース1] 若しくは [ケース2] の場合の一部) を 含む熱可塑性樹脂組成物の製造方法に係るものである。

(A):ポリフェニレンエーテル

(B):ポリアミド

(C):相容化剤

(D): 導電性カーボンブラックおよび/または微細な 繊維状カーボン

(E):耐衝擊改良材

第一工程: (A)、(C)及び(E)を溶融混練することにより溶融混練物を得る工程

第二工程:第一工程で得た溶融混練物に、

[ケース1]:(B)を添加して溶融混練することにより溶融混練物を得る工程、又は

[ケース2]: (B)及び(D)を添加して溶融混練することにより溶融混練物を得る工程もしくは熱可塑性樹脂組成物を得る工程

第三工程:第二工程によって得られた溶融混練物に(D)及び/または(B)の残部を添加して溶融混練することにより熱可塑性樹脂組成物を得る工程【0007】

【発明の実施の形態】本発明の熱可塑性樹脂組成物を構成する成分の(A)は、ポリフェニレンエーテルである。ポリフェニレンエーテルは、下記の一般式(1)で示されるフェノール化合物の一種又は二種以上を酸化カップリング触媒を用い、酸素又は酸素含有ガスで酸化重

合せしめて得られる重合体である。

$$R_{5}$$
 R_{1}
 R_{2}
 R_{3}

(式中、 R_1 , R_2 , R_3 , R_4 及び R_5 は水素、ハロゲン原子、炭化水素基もしくは置換炭化水素基から選ばれたものであり、そのうち、必ず1個は水素原子である。)【0008】上記一般式に於ける R_1 , R_2 , R_3 , R_4 及び R_5 の具体例としては、水素、塩素、臭素、フッ素、ヨウ素、メチル、エチル、n-Xはiso-プロピル、pri-、sec-Xはt-ブチル、クロロエチル、ヒドロキシエチル、フェニルエチル、ベンジル、ヒドロキシメチル、カルボキシエチル、メトキシカルボニルエチル、シアノエチル、フェニル、クロロフェニル、メチルフェニル、ジメチルフェニル、エチルフェニル、アリルなどがあげられる。

【0009】上記一般式の具体例としては、フェノール、oー, mー, 又はpークレゾール、2, 6ー、2, 5ー、2, 4ー又は3, 5ージメチルフェノール、2ーメチルー6ーフェニルフェノール、2, 6ージフェニルフェノール、2, 6ージエチルフェノール、2, 6ージエチルフェノール、2, 3, 5ー、2, 3, 6ー又は2, 4, 6ートリメチルフェノール、3ーメチルー6ーセーブチルフェノール、チモール、2ーメチルー6ーアリルフェノールなどがあげられる。

【0010】上記一般式のフェノール化合物は、上記一般式以外のフェノール化合物、たとえば、ビスフェノールーA、テトラブロモビスフェノールーA、レゾルシン、ハイドロキノン、ノボラック樹脂のような多価ヒドロキシ芳香族化合物と共重合することもできる。

【0011】ポリフェニレンエーテルとして好ましいものとしては、2,6ージメチルフェノール又は2,6ージフェニルフェノールの単独重合体、及び大量部の2,6ージメチルフェノールと少量部の3ーメチルー6ーセーブチルフェノール又は2,3,6ートリメチルフェノールの共重合体があげられる。

【0012】フェノール化合物を酸化重合せしめる際に 用いられる酸化カップリング触媒は、特に限定されるも のではなく、重合能を有する如何なる触媒でも使用し得 る。

【0013】本発明の熱可塑性樹脂組成物を構成する成分の(B)は、ポリアミドである。本発明に用いられるポリアミドとは、ラクタムあるいはアミノカルボン酸の重合及び等モル量の炭素原子4~12個を含む飽和脂肪族ジカルボン酸と炭素原子2~12個を含む脂肪族ジアミンとの結合により製造することができるホモポリアミド及びコポリアミド等から選ばれた1種又は2種以上の

ポリアミド樹脂である。重合の際に所望に応じてジアミンを過剰に用いてポリアミド中のカルボキシル末端基よりアミン末端基を過剰に与えることができる。逆に、過剰の二塩基性酸を用いてポリアミドのカルボキシル基末端基がアミン末端基より過剰になるよう調整することもできる。同様に、これらのポリアミドを該酸及びアミンの酸生成及びアミン生成誘導体、たとえばエステル、酸塩化物、アミン塩などからも良好に製造することができる。このポリアミドを製造するために用いる代表的な脂肪族ジカルボン酸にはアジピン酸、ピメリン酸、アゼライン酸、スベリン酸、セバシン酸及びドデカンジオン酸が含まれ、一方代表的な脂肪族ジアミンにはヘキサメチレンジアミン及びオクタメチレンジアミンが含まれる。加えて、これらのポリアミドはラクタムの自己縮合により製造することができる。

【0014】脂肪族ポリアミドの例には、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンアゼラミド(ナイロン69)、ポリヘキサメチレンドデカノアミド(ナイロン610)、及びポリヘキサメチレンドデカノアミド(ナイロン612)、ポリービスー(pーアミノシクロヘキシル)メタンドデカノアミド、ポリテトラメチレンアジパミド(ナイロン46)、ナイロン6、ナイロン10、ナイロン11、ナイロン12、ナイロン6/66共重合体等が、またこれらのナイロンを2種以上任意の割合で使用してもよい。

【0015】これらのポリアミドにあって好ましくはナイロン46、ナイロン6、ナイロン66、ナイロン11、ナイロン12などが用いられる。より好ましくは、ナイロン6、ナイロン66あるいはナイロン6とナイロン66との任意の比率の混合物が用いられる。またこれらポリアミドの末端官能基はアミン末端の多いもの、カルボキシ末端の多いもの、両者がバランスしたもの、あるいはこれらの任意の比率の混合物が好適に用いられる。

【0016】更に芳香族ポリアミドも含む。たとえばポリヘキサメチレンイソフタルアミド(ナイロン6 I)の如き芳香族成分を含有するコポリアミドである。かかる芳香族成分を含有する熱可塑性コポリアミドは芳香族アミノ酸及び/又は芳香族ジカルボン酸たとえば、パラアミノメチル安息香酸、パラアミノエチル安息香酸、テレフタル酸、イソフタル酸などを主要構成成分とする溶融重合が可能なポリアミドを意味する。

【0017】ポリアミドの他の構成成分となるジアミンはヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、ビス(p-アミノシクロヘキシル)メタン、ビス(3-メチル、4-アミノシクロヘキシル)メタン、1,3-ビス(アミノメチル)シ

クロヘキサン、1, 4-ビス(アミノメチル)シクロヘキサンなどを使用することができる。またジアミンの代わりにイソシアネート類を用いることができる。たとえば4,4'ジフェニルメタンジイソシアネート、トリレンジイソシアネートなどである。

【0018】必要に応じて用いられる共重合成分は特に限定なく、ラクタムもしくは炭素原子4~12個の ω -アミノ酸の単位、又は炭素原子4~12個の脂肪族ジカルボン酸、及び炭素原子2~12個の脂肪族ジアミンから誘導される化合物、たとえば、 ε -カプロラクタム、 ω -ラウロラクタム、11-アミノウンデカン酸、12-アミノドデカン酸などのラクタム、又はアミノ酸、前記した各種ジアミンとアジピン酸、アゼライン酸、セバシン酸などとのモル塩などが利用できる。

【0019】またこれらのポリアミドは結晶性であっても非晶性であっても良い。更にこれらのポリアミドを任意の割合で混合してもよい。

【0020】本発明の熱可塑性樹脂組成物を構成する成分の(C)は、相容化剤である。相容化剤の好ましい具体例としては、下記の(C1)~(C3)をあげることができる。これこれらは、その一種を単独で用いてもよく、二種以上を併用してもよい。

(C1):エチレン性不飽和結合及びアセチレン性不飽和結合のいずれも持たないエポキシ化合物

(C2):同一分子内に、①少なくとも一種の不飽和基、すなわち炭素-炭素二重結合又は炭素-炭素三重結合と②少なくとも一種の極性基を併せ持つ化合物

(C3):同一分子内に⑤(OR)(ここでRは水素又はアルキル、アリール、アシル又はカルボニルジオキシ基である。)及び⑥カルボン酸、酸ハライド、酸無水物、酸ハライド無水物、酸エステル、酸アミド、イミド、イミド、アミノ及びこれらの塩から選ばれた少なくとも二つの同一又は相異なる官能基を併せ持つ化合物【0021】本発明に用いられる(C1)グループの相容化剤はポリヒドリックフェノール(たとえばビスフェノールA、テトラブロモビスフェノールA、レゾルシンなど)とエピクロルヒドリンの縮合体、及びコール、プロピレングリコール、ポリエチレングリコールなど)とエピクドルヒドリンの縮合体があげられる。

【0022】本発明に用いられる(C2)グループの相容化剤は、①不飽和基すなわち炭素-炭素三重結合又は炭素-炭素三重結合と、②極性基すなはちポリアミド樹脂中に含まれるアミド結合、連鎖末端に存在するカルボキシル基、アミノ基と親和性や、化学反応性を示す官能基を同一分子内に併せ持つ化合物である。かかる官能基としては、カルボン酸基、カルボン酸より誘導される基すなわちカルボキシル基の水素原子あるいは水酸基が置換した各種の塩やエステル、酸アミド、酸無水物、イミド、酸アジド、酸ハロゲン化物、あるいはオキサゾリン、ニトリルなどの官能基、エポキシ基、アミノ基、水

酸基、又は、イソシアン酸エステル基などがあげられ、 不飽和基と極性基を併せ持つ化合物すなわち、不飽和カ ルボン酸、不飽和カルボン酸誘導体、不飽和エポキシ化 合物、不飽和アルコール、不飽和アミン、不飽和イソシ アン酸エステルが用いられる。

(ただしRは脂肪族、芳香族基を示す。) などで示され る構造を有するもの、無水メチルナジック酸、無水ジク ロロマレイン酸、マレイン酸アミド、イタコン酸、無水 イタコン酸、シトラコン酸、無水シトラコン酸、アコニ ット酸、無水アコニット酸、大豆油、キリ油、ヒマシ 油、アマニ油、麻実油、綿実油、ゴマ油、菜種油、落花 生油、椿油、オリーブ油、ヤシ油、イワシ油などの天 然油脂類、エポキシ化天然油脂類、アクリル酸、ブテン 酸、クロトン酸、ビニル酢酸、メタクリル酸、ペンテン 酸、アンゲリカ酸、チグリン酸、2-ペンテン酸、3-ペンテン酸、 α - エチルアクリル酸、 β - メチルクロト ン酸、4-ペンテン酸、2-ヘキセン、2-メチル-2 -ペンテン酸、3-メチル-2-ペンテン酸、 $\alpha-$ エチ ルクロトン酸、2,2-ジメチル-3-ブテン酸、2-ヘプテン酸、2-オクテン酸、4-デセン酸、9-ウン デセン酸、10-ウンデセン酸、4-ドデセン酸、5-ドデセン酸、4-テトラデセン酸、9-テトラデセン 酸、9-ヘキサデセン酸、2-オクタデセン酸、9-オ クタデセン酸、アイコセン酸、ドコセン酸、エルカ酸、 テトラコセン酸、ミコリペン酸、2・4-ヘキサジエン 酸、ジアリル酢酸、ゲラニウム酸、2,4-デカジエン 酸、2,4ードデカジエン酸、9,12-ヘキサデカジ エン酸、9,12-オクタデカジエン酸、ヘキサデカト リエン酸、アイコサジエン酸、アイコサトリエン酸、ア イコサテトラエン酸、リシノール酸、エレオステアリン 酸、オレイン酸、アイコサペンタエン酸、エルシン酸、 ドコサジエン酸、ドコサトリエン酸、ドコサテトラエン 酸、ドコサペンタエン酸、テトラコセン酸、ヘキサコセ ン酸、ヘキサコジエン酸、オクタコセン酸、トラアコン テン酸などの不飽和カルボン酸、あるいはこれらの不飽 和カルボン酸のエステル、酸アミド、無水物、あるいは アリルアルコール、クロチルアルコール、メチルビニル カルビノール、アリルカルビノール、メチルプロピペニ ルカルビノール、4-ペンテン-1-オール、10-ウ ンデセン-1-オール、プロパルギルアルコール、1, 4-ペンタジエン-3-オール、1,4-ヘキサジエン -3-オール、3,5-ヘキサジエン-2-オール、 2, 4-ヘキサジエン-1-オール、一般式 C_nH_{2n-5} OH、 $C_nH_{2n-7}OH$ 、 $C_nH_{2n-9}OH$ (ただし、nは正

【0023】具体的には、マレイン酸、無水マレイン酸、フマル酸、マレイミド、マレイン酸ヒドラジド、無水マレイン酸とジアミンの反応物たとえば、下記化学式(2)、(3)で表される。

(3)

の整数)で示されるアルコール、3-ブテン-1, 2-ジオール、2, 5-ジメチル-3-ヘキセン-2, 5-ジオール、1, 5-ヘキサジエン-3, 4-ジオール、2, 6-オクタジエン-4, 5-ジオールなどの不飽和アルコール、あるいはこのような不飽和アルコールのOH基が、 $-NH_2$ 基に置き換わった不飽和アミン、あるいはグリシジル(メタ)アクリレート、アリルグリシジルエーテルなどがあげられる。

【0024】また、ブタジエン、イソプレンなどの低重合(たとえば平均分子量が500から10000ぐらいのもの)あるいは高分子量体(たとえば平均分子量が10000以上のもの)に無水マレイン酸、フェノール類を付加したもの、あるいはアミノ基、カルボン酸基、水酸基、エポキシ基などを導入したもの、イソシアン酸アリルなどがあげられる。

【0025】本発明における同一分子内に不飽和基と極性基を併せ持つ化合物の定義には、不飽和基を2個以上、極性基を2個以上(同種又は異種)含んだ化合物も含まれる個とは、いうまでもなく、また、2種以上の特定化合物を使うことも可能である。

【0026】これらの内で、好ましくは無水マレイン酸、マレイン酸、フマル酸、無水イタコン酸、イタコン酸、シトラコン酸、無水シトラコン酸、アコニット酸、無水アコニット酸、グリシジル(メタ)アクリレートが、より好ましくは無水マレイン酸、フマル酸が用いられる。

【0027】本発明に用いられる(C3)グループの相容化剤はアリファティックポリカルボン酸、酸エステル又は酸アミドであり、一般式(R_7 O) $_{1}$ R $_{6}$ (COO R_{8}) $_{1}$ (CON R_{9} R $_{10}$) $_{1}$ (ここで、 R_{6} は線状又は分岐状飽和アリファティック炭化水素であって $2\sim20$ 個、好ましくは $2\sim10$ 個の炭素原子を有するものであり、 R_{7} は水素、アルキル基、アリール基、アシル基、又はカルボニルジオキシ基で特に好ましくは水素であり、 R_{8} は水素、アルキル基、又はアリール基で炭素数 $1\sim20$ 、好ましくは $1\sim10$ であり、 R_{9} 及び R_{10} は水素、アルキル基、又はアリール基で炭素数 $1\sim10$ 、好ましくは $1\sim6$ 、更に好ましくは $1\sim4$ であり、 $1\sim10$ 0、好ましくは $1\sim10$ 0、如果 $1\sim10$ 0、和来 $1\sim10$ 0、和来 1

であり、nは0以上の整数であり、1は0以上の整数であり、 (R_7O) はカルボニル基の α 位又は β 位に位置し、少なくとも2つのカルボニル基の間には、 $2\sim6$ 個の炭素が存在するものである。)によってあらわされる飽和脂肪族ポリカルボン酸及びその誘導体化合物。(具体的には、飽和脂肪族ポリカルボン酸のエステル化合物、アミド化合物、無水物、水加物及び塩などを示す。飽和脂肪族ポリカルボン酸として、クエン酸、リンゴ酸、アガリシン酸などである。これらの化合物の詳細は、公表特許公報昭和61年第502195号公報に開示されている。)

【0028】しかし、本発明における相容性改良剤は、ここに例示した化合物に限定されず、PPEとポリアミドの相容性を改良する目的で使用される化合物であればどれでもよく、単独又は複数の相容化剤を同時に使用してもよい。また、この相容性改良剤を配合するとき、ラジカル開始剤を併用してもよい。

【0029】(C)としては、ポリフェニレンエーテルおよびポリアミドとの反応効率や経済的観点から、無水マレイン酸、フマル酸、マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、アコニット酸、無水アコニット酸、グエン酸及びリンゴ酸から選ばれる少なくとも一種が好ましい。

【0030】本発明の熱可塑性樹脂組成物を構成する成 分(D) 導電性カーボンブラックおよび/または微細な 繊維状カーボンを用いることができる。導電性カーボン ブラックとしてはアセチレンブラックやファーネストブ ラックなどが挙げられる。このカーボンブラックは、少 量の添加量で組成物に必要な導電性を付与できるものが 望ましいことから、アセチレンブラック及びオイルファ ーネスブラック、特に不純物が少なく、また導電性が優 れているオイルファーネスブラックが好ましいが、その 中で、特に XCF(Extra Conductive Black)、 SCF(Super Conductive Furnace Black), CF(Conductive Furnace Black)及び SAF(Super Abrasion Furnace Black)が好適 に使用できる。中でもN2吸着による BET式比表面積が75 Om²/g以上、特に1000m²/g 以上のものが好ましい。XCF としてはケッチェンブラックインターナショナル社の 「ケッチェンブラックEC」(商標名)、キャボット社の 「バルカン XC-72」(商標名)等があり、SCF としては キャボット社の「バルカンSC」(商標名)、「バルカン P」(商標名)やデグッサ社「コーラックス L」(商標 名)等があり、CFとしてはキャボット社の「バルカン C」(商標名)、コロンビア社の「コンダクテックスS C」(商標名)等があり、また、SAF としては旭カーボ ン社の「旭#9」(商標名)、三菱化成社の「ダイヤブラ ック A」(商標名)、キャボット社の「バルカン 9」 (商標名)等がある。これらは併用してもよい。 【0031】本発明に用いるカーボンブラックは、DB

P吸油量が70~600m1/100gであり、好まし

 $< \frac{1}{2} \frac{$

【0032】カーボンブラックの添加量は添加するカーボンブラックの種類により異なるが、0.8~10重量%、好ましくは1~5重量%、さらに好ましくは、1.5~3重量%である。0.8重量%未満では導電性付与が不充分であり又10重量%を越えると流動性及び耐衝撃強度の著しい低下を招く。これらのカーボンブラックは、1種類又は2種類以上混合して用いてもよい。

【0033】微細な繊維状カーボンたとえばグラファイトフィブリルは、"Plastics world"(1993年11月)10頁以降に記載されている。これは結晶黒鉛からなる極めて小さい繊維である。現在市販で入手できる材料では、その平均直径はほぼ0.01μm及びL/D比は約500:1~1000:1である。またグラファイトフィブリルも本発明の目的に原理的に適する。これらは例えばそれは国際特許出願明細書第86/03455号、第87/07559号、第89/07163号、第90/07023号および第90/14221号ならびに特開平3-287821号公報に記載されている。

【0034】本発明の熱可塑性樹脂組成物を構成する成 分の(E)は、耐衝撃改良材としては、飽和ゴム系のエ ラストマーもしくは非共役ジエンを用いて得られた一部 不飽和ゴム系のエラストマーが用いられる。ここで、こ れらのエラストマーは、スチレンもしくはスチレンと他 の共重合成分からなる分子量5000以上のセグメント を持っているのが好ましい。具体的にはポリスチレン及 びポリブタジエンセグメントをそれぞれ1以上有するス チレンーブタジエンブロック共重合体、ポリスチレン及 びポリイソプレンセグメントをそれぞれ1以上有するス チレン-イソプレン共重合体、ポリスチレン及びイソプ レン-ブタジエンの共重合体をそれぞれ1つずつ以上有 するブロック共重合体のイソプレン部やブタジエン部の 不飽和部分を選択的に水素添加したブロック共重合体 や、エチレン、プロピレン、ブテン、非共役ジエン成分 を共重合したポリオレフィンエラストマーにスチレンも しくはスチレンと他の共重合成分をグラフト重合したも のである。

【0035】これらエラストマー中のポリスチレンセグメントもしくはスチレンと他の共重合成分からなるセグメントの分子鎖の長さは重量平均分子量で5000以上が好ましい。ポリスチレンセグメントもしくはスチレンと他の共重合成分からなるセグメントが短過ぎると、エラストマーがPPE中に留まりにくくなり、外観不良等を生じる場合があり好ましくない。このなかで好ましい耐衝撃改良材はイソプレン部やブタジエン部の不飽和部分が選択的に水素添加されたスチレン系のブロック共重合体である。

【 0 0 3 6 】本発明の熱可塑性樹脂組成物における各成分の含有量は、(A)/(B)の重量比が5/95~70/30であり、(C)の量は(A)及び(B)を相容

化するのに有効な量であり、(D)の量は(A)及び(B)の合計量100重量部あたり0.8~10重量部であり、成分(E)の量は(A)及び(B)の合計量100重量部あたり5~40重量部である。

【0037】熱可塑性樹脂組成物における(A)/(B)の重量比は5/95~70/30であり、好ましくは10/90~60/40である。(A)が過少((B)が過多)あると耐熱性が低くなり、一方(A)が過多((B)が過少)であると流動性が低くなる。

【0038】(C)の量は(A)及び(B)を相容化するのに有効な量であり、通常は(A)及び(B)の合計量100重量部あたり0.01~2重量部である。

【0039】(D)の量は(A)及び(B)の合計量100重量部あたり0.8~10重量部であり、好ましくは1~4重量部である。(D)が過少であると導電性が発現せず、一方(D)が過多であると衝撃強度や流動性の低下が著しい場合がある。

【0040】(E)の量は(A)及び(B)の合計量1 00重量部あたり5~40重量部であり、好ましくは8 ~30重量部である。(E)が過少であると衝撃強度向 上の効果が発現せず、一方(D)が過多であると耐熱性 や剛性が低下しの低下が著しい場合がある。

【0041】本発明の製造方法は、下記の第一工程及び 第二工程(下記の[ケース2]の場合の一部)又は第一 工程〜第三工程(下記の[ケース1]若しくは[ケース 2]の場合の一部)を含むものである。

第一工程: (A)、(C)及び(E)を溶融混練することにより溶融混練物を得る工程

第二工程:第一工程で得た溶融混練物に、

[ケース1]: (B)を添加して溶融混練することにより溶融混練物を得る工程、又は

[ケース2]:(B)及び(D)を添加して溶融混練することにより溶融混練物を得る工程もしくは熱可塑性樹脂組成物を得る工程

第三工程:第二工程によって得られた溶融混練物に

(D)及び/または(B)の残部を添加して溶融混練することにより熱可塑性樹脂組成物を得る工程

【0042】第一工程は、(A)、(C)及び(E)を溶融混練することにより溶融混練物を得る工程である。具体的には、溶融混練は単軸、二軸、多軸の連続混練機もしくはバッチ式混練機を用いて行うのが好ましい。経済的には二軸の連続混練機が好ましいが特に限定されない。この時の温度は樹脂の温度で240~370℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮して260~300℃程度に設定する場合が多い。樹脂温度が240℃以下では成分(A)と成分(C)の反応が十分に起こらず、また370℃以上では樹脂の劣化が著しく好ましくない。

【0043】第二工程は、[ケース1]~[ケース2]

に分けられる。

工程が必要である。

の劣化が著しく好ましくない。

【0044】 [ケース1] の場合の第二工程は、第一工程で得た溶融混練物に、(B) を添加して溶融混練することにより熱可塑性樹脂組成物を得る工程である。具体的には、溶融混練は単軸、二軸、多軸の連続混練機もしくはバッチ式混練機を用いて行うのが好ましい。経済的には二軸の連続混練機が好ましいが特に限定されない。この時第一の工程で得られた反応生成物は溶融したままででも良く、一旦冷却して固化してもよい。溶融したまま連続工程で行うほうが経済的には有利である。第二の工程の樹脂の温度は230~360℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮して200~290℃程度に設定する場合が多い。樹脂温度が230℃以下では成分(B)溶融が十分でなく、また360℃以上では樹脂の劣化が著しく好ましくない。またこの場合引き続き第三

【0045】 [ケース2] の場合の第二工程は、第一工程で得た溶融混練物に、(B) 及び(D) を添加して溶融混練することにより溶融混練物を得る工程である。具体的には、溶融混練は単軸、二軸、多軸の連続混練機もしくはバッチ式混練機を用いて行うのが好ましい。経済的には二軸の連続混練機が好ましいが特に限定されない。この時第一の工程で得られた反応生成物は溶融したままででも良く、一旦冷却して固化してもよい。溶融したまま連続工程で行うほうが経済的には有利である。第二の工程の樹脂の温度は230~360℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮して200~290℃程度に設定する場合が多い。樹脂温度が230℃以下では成分(B)溶融が十分でなく、また360℃以上では樹脂

【0046】第三工程は、第二工程が [ケース1] 又は [ケース2] の一部の場合に用いられる工程であって、第二工程で得た溶融混練物に(B) 及び/または(D) の残部を添加して溶融混練することにより熱可塑性樹脂組成物を得る工程である。具体的には、溶融混練は単軸、二軸、多軸の連続混練機もしくはバッチ式混練機を用いて行うのが好ましい。経済的には二軸の連続混練機が好ましいが特に限定されない。第三の工程の樹脂の温度は230~360℃である。実際の混練機のシリンダー温度の設定は樹脂の溶融に要する吸熱と剪断による発熱を考慮して200~290℃程度に設定する場合が多い。樹脂温度が230℃以下では成分(B)溶融が十分でなく、また360℃以上では樹脂の劣化が著しく好ましくない。

【 0 0 4 7 】一方、第一の工程のみに成分(D)を加える方法は、熱可塑性樹脂組成物の衝撃強度が低下したり、導電性が発現しにくく好ましくない。

【0048】また以上の第一工程から第三工程は工程間

で一旦冷却固化してもよいが、経済的観点からは、溶融したまま連続工程が好ましい。この時、シリンダーに沿って3つのフィード口を持ち、その各々のフィード口の後に(次のフィード口との間、第三フィード口の後はダイとの間)混練部を持つ二軸混練機を用いる方法が経済的に有利な方法である

【0049】本発明においては、熱可塑性樹脂組成物の加工時の安定性に加え、実使用時の熱安定性を向上するという効果を発現するために、上記の特徴的な工程を用いる必要がある。本発明によることなく、たとえば第一の工程で成分(D)を加えた場合には、優れたバランスを有する熱可塑性樹脂組成物が得られない

【0050】なお、最も熱可塑性樹脂組成物の流動性、衝撃強度の物性のバランスの優れた熱可塑性樹脂組成物を得るには、第二工程が[ケース1]である製造方法(すなわち、成分(D)を第三工程のみで添加する方法)が好ましい。

【0051】本発明の熱可塑性樹脂組成物は、前記の(A)~(D)を必須の成分とし、衝撃強度の要求特性に応じて成分(E)を用いるが、該成分に加えて、該成分以外の成分を用いてもよい。

【0052】本発明の熱可塑性樹脂組成物は、流動性の改良や剛性の改良等の目的でアルケニル芳香族樹脂を配合することができる。アルケニル芳香族樹脂としてはスチレンもしくはその誘導体たとえばp-メチルスチレン、 $\alpha-$ メチルスチレン、 $\alpha-$ メチルスチレン、ブロモスチレン等の単独重合体及び共重合体があげられる。また、上記した芳香族ビニル系化合物を $70\sim99$ 重量%とジエンゴム $1\sim30$ 重量%とからなるゴム変性された高衝撃性ポリスチレン (HIPS)を使用することができる。

【0053】本発明の製造法および組成物において、そ の他の成分として、必要に応じて適当な充填剤、安定剤 を用いることができる、充填材としては、炭酸カルシウ ム、炭酸マグネシウム、水酸化アルミニウム、水酸化マ グネシウム、酸化亜鉛、酸化チタン、酸化マグネシウ ム、硫酸マグネシウム、ケイ酸アルミニウム、ケイ酸マ グネシウム、ケイ酸カルシウム、ケイ酸、含水ケイ酸カ ルシウム、含水ケイ酸アルミニウム、マイカ、マグネシ ウムオキシサルフェート、ガラスバルン、ガラス繊維、 ガラスビーズ、カーボン繊維、ステンレス繊維、アラミ ド繊維等があるが、これらの充填剤を一種以上配合する ことが可能である。また、配合する充填剤は、これらに 限定されない。安定剤として通常、ポリフェニレンエー テル、ポリアミド、耐衝撃改良材に用いられる酸化防止 剤(リン系酸化防止剤、フェノール系酸化防止剤、イオ ウ系酸化防止剤、銅系酸化防止剤、ヒンダードアミン系 酸化防止剤(光安定剤)、UV吸収材等を用いることが できる。

【0054】本発明の熱可塑性樹脂組成物は、射出成

形、ブロー成形、シート成形、真空成形など幅広い成形が可能であり、特に射出成形用途が最適である。また得られた成形品は家電製品、自動車用外板部品や内装材として幅広く使用できる。

[0055]

【実施例】以下に実施例をあげて本発明を詳しく説明するが、これは単なる例示であり、本発明はこれに限定されるものではない。

【0056】[各組成物及び試験片の作成] 各実施例及び比較例を各表に示すような組成で混合し、12のバレルからなるシリンダーにおいてバレル1に第一のフィードロ、バレル6に第二のフィードロ、バレル9に第三のフィードロを持つの二軸混練機(東芝機械製 TEM-50A)にて、シリンダー温度260℃で押し出し、水槽にて冷却後ストランドカッターによりペレット化して組成物を得た。こうして得られたペレットを130℃2時間真空乾燥した後、射出成形機(東芝機械製 IS220EN)によりシリンダー温度290℃、射出圧力1200kg/cm²、金型温度80℃の条件で各テストピース及び平板(150mm*150mm 厚み 3mm)を成形した。こうして得たペレット及びテストピースを下記の方法によって試験してデータを得た。

【0057】[メルトフローレイト(MRF)の測定] 二軸混練機よって得られたペレットを140℃で5時間 真空乾燥した後 ASTM D-1238に準拠して測定 した 但し、荷重は5kg、設定温度は280℃で行っ

【0058】[アイゾッド衝撃強度の測定]前述の射出成形によって得た3.2mmアイゾット用試験片を、ASTM D256に準拠してノッチを入れ23°C雰囲気下で衝撃テストを実施した。

【0059】[表面抵抗の測定]前述の射出成形によって得た3.0mmの平板を高抵抗抵抗計(Hiresta IPM CP-HT260)を用い、23℃、印加電圧 500Vで測定した

【0060】実施例及び比較例の各組成物を得るに当たり次に示す原料を準備した。

[ポリフェニレンエーテル]

PPE-1: 2, 6-ジメチルフェノールを単独重合することによって得られたクロロホルム溶液(濃度: 0.50g/dl), 30度摂氏での対数粘度が0.40のポリフェニレンエーテル

[ポリアミド樹脂]

PA6-A:A1030BRL(ユニチカ製)

PA6-B:T-840(東洋紡製)

PA6 I/6T: G21 (EMS製)

[カーボンブラック]

MB-1:ケッチェンブラックEC600JD (ライオン ・アクゾ製)を11重量%含むPA6-Bのマスターバ ッチ MB-2: グラファイトフィブリル (ハイペリオン社製) を20重量%含むPA6のマスターバッチ 「耐衝撃材]

SEBS-1: クレイトンG1650 (クレイトンポリマー製)

[相容化剤]

MAH:相容化剤 無水マレイン酸

[無機充填材]

タルク:エンスタル56(林化成製)

[添加剤]

SAH:無水コハク酸

添加剤 1: アデカスタブ PEP-36 (旭電化

(株)製)

添加剤2:ジンクステアリレート

[その他]

ADD1:テルペン樹脂YP902(ヤスハラケミカル

製)

PO: パーオキサイド パーカドックス14/40C (化薬アクゾ製)

【0061】実施例1及び比較例1

表1に各実施例及び比較例の組成と得られた組成物のMRF、アイゾット衝撃強度、表面抵抗を示した。比較例1は成分(E)(耐衝撃改良材)を半分2ndフィードに変更した以外は、実施例1と同じである。実施例1と比較例1を比較すると、比較例1はMFRが顕著に低下し、アイゾット衝撃強度も若干低下していることがわかる。

【0062】 【表1】

	火施例	比較例
	1	1
lst		
PPE-1	22	22
SEBS-1	16	8
MAH	0.23	0.23
920	10	10
PO	0.001	0.001
2nd	 	
PA6·A	26	26
MB-2	4	4
SEBS-1		8
3rd		
PA6·B	5	5
PA6I/6T	1.	1
MB-1	12	12
93.0	10	10
添加剂 1	0.15	0.15
添加剤 2	0.5	0.5
ADD-1	1.5	1.5
SAH	0.2	0.2
評価結果		
MFR (dg/min)	25	16
アイソーナト衝撃強度		
kgcm²/cm²	7.9	7.6
表面抵抗 Q/l]	1.2×10 ⁸	5.4×10*

[0063]

FΙ

COSL 77/00

101/00

【発明の効果】以上説明したとおり、本発明により、ポリフェニレンエーテルとポリアミドを含有する熱可塑性 樹脂組成物の製造方法であって、特定の手順で製造する ことにより、熱可塑性樹脂組成物の導電性を有し、流動 性、衝撃強度のバランスの優れた熱可塑性樹脂組成物が 得られる製造方法並びに該製造方法により得られる熱可 塑性樹脂組成物を提供することができた。

フロントページの続き

(51) Int. C1.7

識別記号

CO8L 77/00 101/00

AA63

(参考)

Fターム(参考) 4F070 AA37 AA46 AA52 AA54 AA63 AB01 AB08 AB18 AC04 AC40 AD02 AE06 FA03 FB07 4J002 AE054 BH024 BP013 CD054 CH07X CL01W CL03W CL05W DA027 DA037 EF076 EF126 FA047 FD017 FD117