Objective:

Develop and implement an automated power source switching system utilizing Programmable Logic Controllers (PLCs) to efficiently manage the transition between the national power supply, Generator 1, and Generator 2, ensuring a stable power supply.

Interface:

The interface consists of:

Physical inputs

No	Symbol	Function	Lock	Parameters	Location of (L/C)	Comment
11	I	Discrete inputs	-	No parameters	(37/1)	NP_Supply
12	<u></u>	Discrete inputs	-	No parameters	(1/3) (2/3) (7/1) (14/3) (15/2) (20/3) (23/3) (26/1)	G1_Available
13	<u>_</u> I	Discrete inputs		No parameters	(1/4) (9/1) (16/2) (23/4) (32/1)	G2_Available
17	<u></u> I	Discrete inputs	-	No parameters	(2/1) (5/1) (8/1) (11/1)	Circuit_Breaker

Module keys

No	Symbol	Function	Location of (L/C)	Comment
Z1	Z	Zx keys	(13/1)	Initiate

Physical outputs

No	Symbol	Function	Latching	Location of (L/C)	Comment
Q1	ٰ	Discrete outputs	No	(34/6)	Electricity
Q2	ٰ	Discrete outputs	No	(10/3) (22/3) (29/6)	G1_ON
Q3	φo	Discrete outputs	No	(27/6)	G2_ON
Q9	ٰ	Discrete outputs	No	(6/2) (18/3) (31/6)	G1_Min_DONE
QA	ٰ	Discrete outputs	No	(10/1) (19/3) (22/4) (33/6)	G2_Min_DONE

Configurable functions

No	Symbol	Function	Lock	Latching	Parameters	Location of (L/C)	Comment
М1	₽W	Auxiliary relays		No	No parameters	(1/6) (13/6) (17/1) (20/1) (23/1)	FSM_1
M2	₽₩	Auxiliary relays		No	No parameters	(4/6) (14/1) (17/6) (21/1) (24/1) (34/1)	FSM_2
МЗ	₽M	Auxiliary relays		No	No parameters	(6/6) (15/1) (18/1) (20/6) (25/1) (26/2) (30/1)	FSM_3
M4	₽M	Auxiliary relays		No	No parameters	(9/6) (16/1) (19/1) (22/1) (23/6) (27/2) (32/2)	FSM_4
T1	Ö	Timers	No	No	See details below	(26/6) (29/1) (30/2) (35/1)	G1_ON
T2	Ö [™]	Timers	No	No	See details below	(30/6) (31/1)	G1_Current
T4	Ö	Timers	No	No	See details below	(1/1) (3/1) (4/1) (6/1) (14/2) (17/2) (18/2) (19/2) (20/2) (22/2) (23/2) (37/6)	NP_Debounce
TF	Ö	Timers	No	No	See details below	(28/1) (32/6) (36/1)	G2_ON
TG	Ö [™]	Timers	No	No	See details below	(28/6) (33/1)	G2_Current

TG Timers G2_Current
Function A: Active, control held down

Time: 010.0s

In the simulation, every input is depicted as a switch, and each output is symbolized by a light bulb. The push button is characterized as Zx Keys. Similarly, counter values and coil states are illustrated below.

Here, each Coil represents a state in the finite state machine; M1 represents state 1 and so on...

No	Function	Label	Type	Preset	Current	Lock	Comment
001	Timer	T1	A: Active,	T1 = 010.0 S	T1 = 000.0 S	No	G1_ON
002	Timer	T2	A: Active,	T2 = 010.0 S	T2 = 000.0 S	No	G1 Current
003	Timer	T4	A: Active,	T4 = 002.0 S	T4 = 000.0 S	No	NP Debounce
004	Timer	TF	A: Active,	TF = 010.0 S	TF = 000.0 S	No	G2 ON
005	Timer	TG	A: Active.	TG = 010.0 S	TG = 000.0 S	No	G2 Current

Key Map:

The lamps (outputs) are controlled by the following switches:

Controlled Switches:

• National Power Supply: I1

• Generator 1 Available: 12

• Generator 2 Available: 13

Controlled Lamps:

• Electricity: Q1

• Generator 1: Q2

• Generator 2: Q3

• Indicator for Generator 1 supply: Q9

• Indicator for Generator 2 supply: QA

Generator States:

State 1: NOP: No Power

State 2: NPS: National Power

• State 3: G1: Generator 1 Supply

• State 4: G2: Generator 2 Supply

The System:

Below is the system design that fulfills the objective and focuses on all the scenarios listed.

Program diagram

Continuation:

Estimated Price Breakdown:

• Programmable Logic Controller (PLC): \$250 - \$350

Sensors and Switches: \$75 - \$125

Relay Modules: \$50 - \$75

User Interface (HMI) or Display: \$75 - \$125

• Wiring and Connectors: \$25 - \$50

• Labor Costs (if applicable): \$150 - \$250

• Estimated Total Cost: \$650 - \$1,000

Additional Suggestions:

- Remote Monitoring: Implement a remote monitoring system that allows
 users to check the status of power sources and generators via a mobile
 app or web interface, providing real-time updates and alerts.
- Load Management: Incorporate load management features to prioritize essential circuits during power outages, ensuring that critical systems remain operational while non-essential loads are temporarily disconnected.
- User Alerts: Develop an alert system that notifies users via SMS or email about power source changes, generator status, or maintenance requirements, keeping them informed and proactive.

Conclusion:

The system is designed to be simple and efficient, with a straightforward sequence of states that minimizes complexity and reduces the risk of errors, making it easier to implement and maintain.