Solution & Scenario Analysis

1 Introduction

This project focuses on predicting climate change trends using machine learning and analyzing different scenarios based on CO₂ emissions and engagement levels. The model is designed to simulate various future scenarios and provide insights into climate change discussions and engagement levels.

2 Data Exploration & Preprocessing

1.1 2.1 Data Sources

- → The dataset contains features related to climate discussions, engagement levels, and other relevant factors.
- ★ Features include likesCount, commentsCount, text-based features, and more.

2.2 Preprocessing Steps

- ✓ Flattening Data: If input data is 3D, it is reshaped into a 2D format.
- ✓ Feature Consistency: Ensuring the training and test sets have the same number of features.
- Handling Missing Values: Any missing values are handled during preprocessing.

3 Feature Engineering

- Extracting key features from the dataset.
- Creating new features for scenario-based modeling.

Model Training & Evaluation

4.1 Model Used

- 🖈 A Random Forest Regressor was trained using the preprocessed dataset.
- ★ The model was evaluated using test data to ensure accuracy and reliability.

4.2 Training Steps

- 1 Preprocess the training data.
- 2 Train the Random Forest model on the dataset.
- 3 Save the trained model using joblib.

4.3 Model Performance

✓ The model was tested on unseen data, and predictions aligned with expected climate change trends.

5 Scenario-Based Predictions

Three scenarios were simulated to predict different future trends:

- **Baseline Scenario:** Assumes current CO₂ trends remain unchanged.
- **High Emission Scenario: ** CO₂ increases significantly, engagement increases.
- **Low Emission Scenario:** CO₂ is reduced through mitigation efforts.
- ***** For each scenario:
- Feature values were adjusted according to scenario parameters.
- ✓ Predictions were generated using the trained model.

6 Results & Insights

- The high CO₂ emission scenario showed a significant increase in climate discussions and engagement.
- \searrow The low CO_2 emission scenario showed a reduction in climate-related conversations.
- The baseline scenario followed the expected current trend.

W Visualization of Results

★ A line graph was generated to compare actual vs. predicted trends under different scenarios.