A meta-analysis of mispronunciation sensitivity in infancy

Katie Von Holzen^{1,2} & Christina Bergmann^{3,4}

1. University of Maryland, USA

- 2. Université Paris Rene Descartes, Laboratoire de Psychologie de la Perception CNRS, France 3. Max Planck Institute for Psycholinguistics, The Netherlands
 - 4. LSCP, Département d'Etudes Cognitives, ENS, EHESS, CNRS, PSL Research University

Mispronunciation Sensitivity

Infants' sensitivity to changes in the phonological form of familiar words

Database Information

- 32 papers (27 journal articles)
- 249 unique experimental conditions
- 2252 infants
- 6 to 31 months-of-age

Participants	Stimuli	Procedure	Results
Age in days	# features	# trials	DV type
Sample size (n)	Change position		vocabulary
Native Language	Consonant/vowel	familiarity/ overlap	misp sensitivity

How does mispronunciation sensitivity change as infants develop?

- 1) More sensitive with development¹
- 2)
- 3) development

Does the number of phonological features changed modulate mispronunciation sensitivity? **Features**

Number: g = -0.31, SE = 0.03, p < .0001Interactions with Age No significant interactions with Age

Focus on ages 18 to 30 months where feature is manipulated

Does familiarity with the distractor image modulate mispronunciation sensitivity?

Distractor Familiarity Sensitivity: g = 0.19, SE = 0.09, p < .05

Interactions with Age No significant interactions with age

*Focus on ages 18 to 25 months where familiar & unfamiliar distractors used

Correct

Recognition: g = 0.91, SE = 0.12, p < .0001

Mispronunciation

Recognition: g = 0.25, SE = 0.06, p < .0001

Correct vs. Mispronunciation

Sensitivity: g = .5, SE = .03, p < .0001

Interactions with Age

No significant interactions with Age

MetaLab

Conclusions

- Sensitivity to mispronunciations stays consistent as infants age (Theory 3)
- Sensitivity to mispronunciations increases as the number of features changed increases; consistent as infants age
 - Infants are sensitive to size of mispronunciation^{3,4}
- Mispronunciation sensitivity greater with unfamiliar distractor; consistent as infants age
 - Unfamiliar object is a more viable option for mispronunciation than known familiar object⁵

What's in your File Drawer?

Do you have a mispronunciation study that is unpublished?

Contact us and add it to our meta-analysis!

- 1. Werker & Curtin (2005). PRIMIR: A Developmental Framework of Infant Speech Processing, Lang Learn and Dev
- Best (1994). The emergence of native-language phonological influences in infants: A perceptual assimilation model. Haskins Laboratories Status Report on Speech Research
- 3. White & Morgan (2008). Sub-segmental detail in early lexical representations. Journal of Memory and Cognition
- 4. Mani & Plunkett (2011). Does size matter? Subsegmental cues to vowel mispronunciation detection. J of Child Lang
- 5. Halberda (2003). The development of a word-learning strategy. Cognition