Accellera Standard OVL V2 Library Reference Manual

Software Version 2.0rc June 2007

© 2005-2007 Accellera Organization, Inc. All rights reserved.

STATEMENT OF USE OF ACCELLERA STANDARDS

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera Organization, Inc. Accellera develops its standards through a consensus development process, approved by its members and board of directors, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of Accellera and serve without compensation. While Accellera administers the process and establishes rules to promote fairness in the consensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera Standard document. By using an Accellera standard, you agree to defend, indemnify and hold harmless Accellera and their directors, officers, employees and agents from and against all claims and expenses, including attorneys' fees, arising out of your use of an Accellera Standard.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or suitability for a specific purpose, or that the use of the material contained herein is free from patent infringement. Accellera Standards documents are supplied ?AS IS.?

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change due to developments in the state of the art and comments received from users of the standard. Every Accellera Standard is subjected to review periodically for revision and update. Users are cautioned to check to determine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Accellera may change the terms and conditions of this Statement of Use from time to time as we see fit and in our sole discretion. Such changes will be effective immediately upon posting, and you agree to the posted changes by continuing your access to or use of an Accellera Standard or any of its content in whatever form.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of Accellera, Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of membership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Accellera Organization, 1370 Trancas Street #163, Napa, CA 94558 USA E-mail: interpret-request@lists.accellera.org

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. Accellera shall not be responsible for identifying patents for which a license may be required by an Accellera standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trademarks to indicate compliance with the materials set forth herein.

Authorization to photocopy, redistribute, publish, create derivative works from, sub-license or charge others to access or use, participate in the transfer or sale of, or directly or indirectly commercially exploit in whole or part of any Accellera standard for internal or personal use must be granted by Accellera Organization, Inc., provided that permission is obtained from and any required fee is paid to Accellera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163, Napa, CA 94558, phone (707) 251-9977, e-mail lynnh@accellera.org. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained from Accellera.

Overview of this standard

This section describes the purpose and organization of this standard, the Accellera Standard V1 Open Verification Library (Std. OVL) libraries implemented in IEEE Std. 1364-1995 Verilog and SystemVerilog 3.1a, Accellera's extensions to IEEE Std. 1364-2001 Verilog Hardware Description Language and Library Reference Manual (LRM)

Intent and scope of this document

The intent of this standard is to define Std. OVL accurately. Its primary audience is designers, integrators and verification engineers to check for good/bad behavior, and provides a single and vendor-independent interface for design validation using simulation, semiformal and formal verification techniques. By using a single well-defined interface, the OVL bridges the gap between the different types of verification, making more advanced verification tools and techniques available for non-expert users.

From time to time, it may become necessary to correct and/or clarify portions of this standard. Such corrections and clarifications may be published in separate documents. Such documents modify this standard at the time of their publication and remain in effect until superseded by subsequent documents or until the standard is officially revised.

ACKNOWLEDGEMENTS

These Accellera Standard OVL Libraries and Library Reference Manual (LRM) were specified and developed by experts from many different fields, including design and verification engineers, Electronic Design Automation companies and members of the OVL VSVA technical committee.

The following contributors were involved in the creation of previous versions of the OVL: Shalom Bresticker, Bryan Bullis, Ben Cohen, Harry Foster, Himanshu Goel, Vijay Gupta, Brent Hayhoe, Richard Ho, Narayanan Krishnamurthy, David Lacey, Jim Lewis, Andrew MacCormack, Erich Marschner, Paul Menchini, Torkil Oelgaard, Joseph Richards, Vinaya Singh, Sean Smith, Andy Tsay and others.

The OVL VSVA technical committee and chair reports to Accellera TCC Chairman:

TCC Chairman Johny Srouji / IBM

The following individuals contributed to the creation, editing and review of the Accellera Standard OVL V1 Libraries and LRM

Eduard Cerny/Synopsys

Harry Foster/Jasper Design Automation

Dmitry Korchemny/Intel

Kenneth Elmkjær Larsen/Mentor Graphics (OVL-VSVA Chair)

David Lacey/Hewlett Packard

Uma Polisetti/Agilent

Ramesh Sathianathan/Mentor Graphics

Chris Shaw/Mentor Graphics

Sundaram Subramanian/Mentor Graphics

Bipul Talukdar/Mentor Graphics

Manoj Kumar Thottasseri/Synopsys

Mike Turpin/ARM

Major version 2.0 released April 2007

Table of Contents

Chapter 1	
Introduction	6
About this Manual	6
Notational Conventions	7
Assertion Syntax Format	7
References	8
Chapter 2	
OVL Basics	9
OVL Assertion Checker Implementation	10
OVL Assertion Checker Characteristics	11
Checker Class	11
Checker Parameters	11
Checker Ports	14
Assertion Checks	17
Cover Points	18
OVL Use Model	19
Setting the Implementation Language	19
Generating Synthesizable Logic	20
Enabling Assertion and Coverage Logic	20
Setting Checker Parameter Defaults	21
Disabling Clock/Reset Gating	21
Using a Global Reset	22
Checking of X and Z Values	22
Reporting Assertion Information	22
Fatal Error Processing	23
OVL Library	24
Library Characteristics	24
Library Layout	25
Header Files	25
Chapter 3	
OVL Checker Data Sheets	36
ovl_always	37
ovl_always_on_edge	40
ovl_arbiter	44
ovl_bits	49
ovl_change	52
ovl_code_distance	58
ovl_cycle_sequence	61
ovl_decrement	67

Table of Contents

ovl_delta	70
ovl_even_parity	73
ovl_fifo	76
ovl_fifo_index	82
ovl_frame	87
ovl_handshake	93
ovl_hold_value	100
ovl_implication	104
ovl_increment	107
ovl_memory_async	110
ovl_memory_sync	
	122
	131
	133
ovl_never_unknown	
ovl_next	
ovl_next_state	147
ovl no contention	151
ovl_no_overflow	
ovl_no_transition	
ovl_odd_parity	
	168
	172
ovl_proposition	175
ovl_quiescent_state	
= 0	
ovl_req_ack_unique	189
ovl_req_ack_uniqueovl_req_requires	192
ovl_req_requires	196
ovl_time	
ovl_transition	
ovl_unchange	
ovl_unchangeovl_valid_id	
ovl_value	
ovl_width	
ovl_win_change	
ovl_win_unchange	
ovl_window	
ovl_zero_one_hot	238
Chapter 4	
OVL Defines	241
Global Defines	
Defines Common to All Assertions	
Defines for Specific Assertions	245

Chapter 1 Introduction

Welcome to the Accellera standard Open Verification Library V2 (OVL). The OVL is composed of a set of assertion checkers that verify specific properties of a design. These assertion checkers are instantiated in the design establishing a single interface for design validation.

OVL V2 is an extension of OVL V1. The OVL V2 augments the structure of the V1 original checkers by adding parameters, ports and control logic. These new checker versions are similar, but not completely identical to their V1 counterparts. The V1 checker types were named with an "assert_" prefix and their V2 counterparts are named with an "ovl_" prefix, with the same base names. For backward compatibility, all OVL V1 checkers (assert_* checkers) are available and supported in OVL V2. So, all existing code utilizing OVL V1 will function the same with OVL V2 (except for bug fixes and enhancements).

The OVL provides designers, integrators and verification engineers with a single, vendor-independent interface for design validation using simulation, hardware acceleration or emulation, formal verification and semi-/hybrid-/dynamic-formal verification tools. By using a single, well defined, interface, the OVL bridges the gap between different types of verification, making more advanced verification tools and techniques available for non-expert users.

This document provides the reader with a set of data sheets that describe the functionality of each assertion checker in the OVL V2, as well as examples that show how to embed these assertion checkers into a design.

About this Manual

It is assumed the reader is familiar with hardware description languages and conventional simulation environments. This document targets designers, integrators and verification engineers who intend to use the OVL in their verification flow and to tool developers interested in integrating the OVL in their products. This document has the following chapters:

OVL Basics

Fundamental information about the OVL library, including usage and examples.

• OVL Assertion Data Sheets

Data sheet for each type of OVL assertion checker.

OVL Defines

Information about the define values used in general and for configuring the checkers.

Notational Conventions

The following textual conventions are used in this manual:

emphasis Italics in plain text are used for two purposes: (1) titles of manual chapters and appendixes, and (2) terminology used inside defining sentences.

Variable Italics in courier text indicate a meta-variable. You must replace the meta-variable with a literal value when you use the associated statement.

literal Regular courier text indicates literal words used in syntax statements or in output.

Syntax statements appear in sans-serif typeface as shown here. In syntax statements, words in italics are meta-variables. You must replace them with relevant literal values. Words in regular (non-italic) sans-serif type are literals. Type them as they appear. Except for the following meta-characters, regular characters in syntax statements are literals. The following meta-characters have the given syntactical meanings. **You do not type these characters.**

[] Square brackets indicate an optional entry.

Assertion Syntax Format

All Verilog assertion checkers defined by the Open Verification Library initiative observe the following BNF format, defined in compliance with Verilog Module instantiation of the IEEE Standard 1364-1995 *Verilog Hardware Description Language*.

```
assertion_instantiation ::= ovl_identifier
  [ parameter_value_assignment ] module_instance ;

parameter_value_assignment ::= #(severity_level
  [,other parameter expressions ], property_type, msg, coverage_level )

module_instance ::= name_of_instance ([list_of_module_connections])

name_of_instance ::= module_instance_identifier

list_of_module_connections ::= ordered_port_connection ]
  | named_port_connection [, ordered_port_connection ]
  | ordered_port_connection ::= [expression ]

named_port_connection ::= .port_identifier ([ expression ])

ovl_identifier ::= ovl_type_identifier

type identifier ::= identifier
```

References

The following is a list of resources related to design verification and assertion checkers.

- Bening, L. and Foster, H., *Principles of Verifiable RTL Design, a Functional Coding Style Supporting Verification Processes in Verilog*, 2nd Ed., Kluwer Academic Publishers, 2001.
- Bergeron, J., Writing Testbenches: Functional Verification of HDL Models, Kluwer Academic Publishers, 2000.
- *CheckerWare Data Book*, Release 2.4, 0-In Functional Verification Group, Mentor Graphics, 2006.
- Assertions in Simulation User Guide, Release 2.4, 0-In Functional Verification Group, Mentor Graphics, 2006.
- Formal Verification User Guide, Release 2.4, 0-In Functional Verification Group, Mentor Graphics, 2006.

Chapter 2 OVL Basics

The OVL is composed of a set of assertion checkers that verify specific properties of a design. These assertion checkers are instantiated in the design establishing a single interface for design validation.

OVL assertion checkers are instances of modules whose purpose in the design is to guarantee that some conditions hold true. Assertion checkers are composed of one or more properties, a message, a severity and coverage.

- Properties are design attributes that are being verified by an assertion. A property can be classified as a combinational or temporal property.
 - A combinational property defines relations between signals during the same clock cycle while a temporal property describes the relation between the signals over several (possibly infinitely many) cycles.
- Message is a string that is displayed in the case of an assertion failure.
- Severity represents whether the error captured by the assertion library is a major or minor problem.
- Coverage consists of flags that indicate whether or not specific corner-case events occur and counts that tote up the occurrences of specific common events.

Assertion checkers benefit users by:

- Testing internal points of the design, thus increasing observability of the design.
- Simplifying the diagnosis and detection of bugs by constraining the occurrence of a bug to the assertion checker being checked.
- Allowing designers to use the same assertions for both simulation and formal verification.

OVL Assertion Checker Implementation

Assertion checkers address design verification concerns and can be used as follows to increase design confidence:

- Combine assertion checkers to increase the coverage of the design (for example, in interface circuits and corner cases).
- Include assertion checkers when a module has an external interface. In this case, assumptions on the correct input and output behavior should be guarded and verified.
- Include assertion checkers when interfacing with third party modules, since the designer may not be familiar with the module description (as in the case of IP cores), or may not completely understand the module. In these cases, guarding the module with assertion checkers may prevent incorrect use of the module.

Usually there is a specific assertion checker suited to cover a potential problem. In other cases, even though a specific assertion checker might not exist, a combination of two or three assertion checkers can provide the desired coverage. The number of actual assertions that must be added to a specific design may vary from a few to thousands, depending on the complexity of the design and the complexity of the properties that must be checked.

Writing assertion checkers for a given design requires careful analysis and planning for maximum efficiency. While writing too few assertions might not increase the coverage on a design, writing too many assertions may increase verification time, sometimes without increasing the coverage. In most cases, however, the runtime penalty incurred by adding assertion checkers is relatively small.

OVL Assertion Checker Characteristics

Checker Class

OVL assertion checkers are partitioned into the following checker classes:

- Combinational assertions behavior checked with combinational logic.
- 1-cycle assertions behavior checked in the current cycle.
- 2-cycle assertions behavior checked for transitions from the current cycle to the next.
- *n*-cycle assertions behavior checked for transitions over a fixed number of cycles.
- Event-bounded assertions behavior is checked between two events.

Checker Parameters

Each OVL assertion checker has its own set of parameters as described in its corresponding data sheet. The following parameters are (typically) common to all checkers: <code>severity_level</code>, <code>property_type</code>, <code>msg</code>, <code>coverage_level</code>, <code>clock_edge</code>, <code>reset_polarity</code> and <code>gating_type</code>. Each of these types of parameters has a default value used when the corresponding checker parameter is unspecified in the checker instance specification. These defaults are set by the following global defines (which can be modified): 'OVL_SEVERITY_DEFAULT, 'OVL_PROPERTY_DEFAULT, 'OVL_MSG_DEFAULT, 'OVL_COVER_DEFAULT, 'OVL_CLOCK_EDGE_DEFAULT, OVL_RESET_POLARITY_DEFAULT and 'OVL_GATING_TYPE_DEFAULT (see "Setting Checker Parameter Defaults" on page 21).

severity_level

A checker's "severity level" determines how to handle an assertion violation. The *severity_level* parameter sets the checker's severity level and can have one of the following values:

`OVL_FATAL Runtime fatal error.

'OVL_ERROR'OVL_WARNINGRuntime warning.

'OVL_INFO No improper design functionality.

If *severity_level* is not one of these values, the checker issues the following message:

Illegal option used in parameter 'severity_level'

property_type

A checker's "property type" determines whether to use the assertion as an assert property or an assume property (for example, a property that a formal tool uses to determine legal stimulii). The property type also selects whether to assert/assume X/Z value checks or not. The *property_type* parameter sets the checker's property type and can have one of the following values:

'OVL_ASSERT	Assert assertion check and X/Z check properties.
'OVL_ASSUME	Assume assertion check and X/Z check properties.
'OVL_ASSERT_2STATE	Assert assertion check properties. Ignore X/Z check properties.
'OVL_ASSUME_2STATE	Assume assertion check properties. Ignore X/Z check properties.
'OVL_IGNORE	Ignore assertion check and X/Z check properties.

If *property_type* is not one of these values, an assertion violation occurs and the checker issues the following message:

```
Illegal option used in parameter 'property_type'
```

msg

The default value of 'OVL_MSG_DEFAULT is "VIOLATION". Changing this define provides a default message printed when a checker assertion is violated. To override this default message for an individual checker, set the checker's *msg* parameter.

coverage_level

A checker's "coverage level" determines the cover point information reported by the individual checker. The *coverage_level* parameter sets the checker's coverage level. This parameter can be any logical bitwise-OR of the defined cover point type values ("Cover Points" on page 18 and "Monitoring Coverage" on page 20):

'OVL_COVER_SANITY	Report SANITY cover points.
'OVL_COVER_BASIC	Report BASIC cover points.
'OVL_COVER_CORNER	Report CORNER cover points.
'OVL_COVER_STATISTIC	Report STATISTIC cover points.

For example, if the *coverage_level* parameter for an instance of the assert_range checker is:

```
'OVL_COVER_BASIC | 'OVL_COVER_CORNER
```

then the checker reports all three assert_range cover points (*cover_cover_test_expr_change*, *cover_test_expr_at_min* and *cover_test_expr_at_max*). To simplify instance specifications, two additional cover point values are defined:

'OVL_COVER_NONE Disable coverage reporting.

'OVL_COVER_ALL Report information for all cover points.

clock_edge

A checker's "clock edge" selects the active edges for the *clock* input to the checker. Edge-triggered checkers perform their analyses—which include evaluating inputs, checking assertions and updating counters—at the active edges of their clocks. The elapsed time from one active clock edge to the next is referred to as a *clock cycle* (or simply *cycle*). The *clock_edge* parameter specifies the checker's active clock edges and can have one of the following values:

`OVL_POSEDGE Rising edges are active clock edges.

OVL_NEGEDGE Falling edges are active clock edges.

reset_polarity

A checker's "reset polarity" selects the *active level* of the checker *reset* input. When reset becomes active, the checker clears pending properties and internal values (coverage point values remain unchanged). A subsequent edge of the *reset* signal makes *reset* inactive, which initializes and activates the checker. The *reset_polarity* parameter sets the checker's reset polarity and can have one of the following values:

YOVL_ACTIVE_LOW Reset is active when FALSE.

Reset is active when TRUE.

gating_type

A checker's "gating type" selects the signal gated by the *enable* input. The *gating_type* parameter can be set to one of the following values:

`OVL_GATE_NONE Checker ignores the *enable* input.

`OVL_GATE_CLOCK Checker pauses when *enable* is FALSE. The checker treats the

current cycle as a NOP. Checks, counters and internal values

remain unchanged.

'OVL_GATE_RESET Checker resets (as if the *reset* input became active) when *enable*

is FALSE.

Checker Ports

Each OVL assertion checker has its own set of ports as described in its corresponding data sheet. The following ports are (typically) common to all checkers.

clock

Each "edge-triggered" assertion checker has a clocking input port named *clock*. All of the checker's sampling, assertion checking and coverage collection tasks are performed at "active" edges of the checker's *clock* input. The active clock edges are set by the checker's *clock_edge* parameter (page 13): 'OVL_POSEDGE (rising edges) or 'OVL_NEGEDGE (falling edges). The default *clock_edge* parameter is set by the following global variable:

```
'OVL_CLOCK_EDGE_
DEFAULT
Sets the default clock_edge parameter value for checkers.
Default: 'OVL POSEDGE.
```

Gating clock

If a checker's *gating_type* parameter (page 13) is set to 'OVL_GATE_CLOCK, the checker's *enable* signal 'gates' the *clock* input to the checker. Here the actual clock signal used internally by the checker is the gated clock formed combinationally from *clock* and *enable*. Deasserting *enable* in effect pauses the checker at the current state. No data ports are sampled; no checking is performed; no counters are incremented; and no coverage data are collected. When *enable* asserts again, the checker continues from the state it was "paused" by *enable*.

The internal clock for a checker (called *clk*) is formed combinationally from *clock* and possibly *enable* (based on the gating type and active clock edge for the checker) using the following logic:

Note that setting the 'OVL_GATING_OFF define disables clock (and reset) gating for all checkers.

reset

Each assertion checker has a reset input port named *reset*. Associated with the *reset* port is the checker's *reset_polarity* parameter: 'OVL_ACTIVE_LOW (*reset* active when FALSE) or 'OVL_ACTIVE_HIGH (*reset* active when TRUE). The default *reset_polarity* parameter is set by the following global variable:

```
'OVL_RESET_POLARITY_
DEFAULT

Sets the default reset_polarity parameter value for checkers.
Default: 'OVL_ACTIVE_LOW.
```

When a checker that is not in reset mode samples an active *reset*, the checker enters reset mode. The checker cancels pending assertion checks and freezes coverage data at their current values. At the next active clock edge that *reset* is not active, the checker exits reset mode. The checker initializes assertion properties and the checker behaves as it started from its initialized state—except coverage data continues from the values frozen during the reset interval.

Gating reset

If a checker's *gating_type* parameter is set to 'OVL_GATE_RESET, its *enable* signal 'gates' the *reset* input to the checker. Here the reset signal used internally by the checker is the gated input formed combinationally from *reset* and *enable* (and inverted if *reset* is active high). The *enable* input acts as a second, active-low reset.

The internal reset for a checker (called *reset_n*) is formed combinationally from *reset* and possibly *enable* using the following logic:

Global Reset

The *reset* port assignments of all assertion checkers can be overridden and controlled by the following global variable:

```
'OVL_GLOBAL_RESET= reset signal
```

Overrides the *reset* port assignments of all assertion checkers with the specified global *reset_signal*. Checkers ignore their *reset_polarity* parameters and treat the global reset as an active-low reset. Default: each checker's reset is specified by the *reset* port and *reset_polarity* parameters.

Internally, each checker uses the reset signal defined by 'OVL_RESET_SIGNAL:

```
// Selecting global reset or local reset for the checker reset signal
'ifdef OVL_GLOBAL_RESET
   'define OVL_RESET_SIGNAL 'OVL_GLOBAL_RESET
'else
   'define OVL_RESET_SIGNAL reset_n
'endif
```

enable

Each assertion checker has an enabling input port named *enable*. This input is used to gate either the *clock* or *reset* signals for the checker (effectively pausing or resetting the checker). The effect of the enable port on the checker is determined by the checker's *gating_type* parameter (page 13):

- 'OVL GATE NONE (no effect),
- 'OVL_GATE_CLOCK (gate *clock*, see "Gating clock" on page 14) or
- 'OVL_GATE_RESET (gate *reset*, see "Gating reset" on page 15).

The default *gating_type* parameter is set by the following global variable: 'OVL_GATING_TYPE_DEFAULT (default: 'OVL_GATE_CLOCK).

fire

Each assertion checker has a fire signal output port named *fire*. Future OVL releases might extend this output, so extra bits are reserved for future use. For the V2.0 release of OVL, this is a 3-bit port:

```
'define OVL FIRE WIDTH 3
```

The *fire* output port has the following bits:

fire[0]	Assertion fired in 2-state mode (an assertion check violation).
fire[1]	X/Z check fired in non-2-state mode.
fire[2]	Coverage fired.

Each *fire* output bit is a registered output (i.e., it is implemented in a clocked process) that goes TRUE for one 'cycle' after the event and then resets to FALSE. If clock-gating is enabled (i.e., the default case) and *enable* deasserts at a clock edge where a *fire* bit asserts, then the *fire* bit remains TRUE while the checker is paused (i.e., until *enable* asserts again).

Assertion Checks

Each assertion checker verifies that its parameter values are legal. If an illegal option is specified, the assertion fails. The assertion checker also checks at least one assertion. Violation of any of these assertions is an *assertion failure*. The data sheet for the assertion shows the various failure types for the assertion checker (except for incorrect option values for *severity_level*, *property_type*, *coverage_level*, *clock_edge*, *reset_polarity* and *gating_type*).

For example, the ovl_frame checker data sheet shows the following types of assertion failures:

FRAME	Value of <i>test_expr</i> was TRUE before <i>min_cks</i> cycles after <i>start_event</i> was sampled TRUE or its value was not TRUE before <i>max_cks</i> cycles transpired after the rising edge of <i>start_event</i> .
illegal start event	The action_on_new_start parameter is set to 'OVL_ERROR_ON_NEW_START and start_event expression evaluated to TRUE while the checker was monitoring test_expr.
min_cks > max_cks	The min_cks parameter is greater than the max_cks parameter (and $max_cks > 0$). Unless the violation is fatal, either the minimum or maximum check will fail.

X/Z Checks

Assertion checkers can produce indeterminate results if a checker port value contains an X or Z bit when the checker samples the port. (Note that a checker does not necessarily sample every port at every active clock edge.) To assure determinate results, assertion checkers have special assertions for X/Z checks. These assertions fall into two groups: explicit X/Z checks and implicit X/Z checks (see "Using a Global Reset" on page 22).

Explicit X/Z Checks

Two assertion checker types are specifically designed to verify that their associated expressions have known and driven values: ovl_never_unknown and ovl_never_unknown_async. Each has a single assertion check:

```
\begin{array}{ll} \text{test\_expr contains X/Z} & \text{Expression evaluated to a value with an X or Z bit, and} \\ \text{value} & \text{`OVL\_XCHECK\_OFF is not set.} \end{array}
```

Explicit X/Z checking is implemented when instances of these checkers are added explicitly to verify relevant expressions. Setting 'OVL_XCHECK_OFF turns off all X/Z checks, both explicit and implicit (in particular, all ovl_never_unknown and ovl_never_unknown_async checkers are excluded).

Implicit X/Z Checks

All assertion checker types — except ovl_never_unknown and ovl_never_unknown_async — have implicit X/Z checks. These are assertions that ensure specific checker ports have known and driven values when the checker samples the ports. For example, the ovl_frame checker type as the following implicit X/Z checks:

```
\begin{array}{ll} \text{test\_expr contains X} & \text{Expression value was $X$ or $Z$.} \\ \text{or $Z$} & \text{Start\_event contains X} & \text{Start event value was $X$ or $Z$.} \\ \text{or $Z$} & \text{Start event value was $X$ or $Z$.} \\ \end{array}
```

Implicit checking is implemented inside the checker logic itself. Setting 'OVL_IMPLICIT_XCHECK_OFF turns off the implicit X/Z checks, but not the explicit X/Z checks.

Cover Points

Each assertion type (typically) has a set of cover points and each cover point is categorized by its cover point type. For example, the ovl_range assertion type has the following cover points:

The various cover point types are:

SANITY	Event that indicates that the logic monitored by the assertion checker was activated at least at a minimal level.
BASIC	Event that indicates that the logic monitored by the assertion checker assumed a state requisite for relevant assertion checking to occur.
CORNER	Event that indicates that the logic monitored by the assertion checker assumed a state that represents a corner-case behavior.
STATISTIC	Counts of relevant states assumed by the logic monitored by the assertion checker.

OVL Use Model

An Accellera Standard OVL library user specifies preferred control settings with standard global variables defined in the following:

- A Verilog file loaded in before the libraries.
- Specifies settings using the standard +define options in Verilog verification engines (via a setup file or at the command line).

Setting the Implementation Language

The Accellera Standard OVL is implemented in the following HDL languages: Verilog 95, SVA 3.1a and PSL 1.1. The following global variables select the implementation language:

'OVL_VERILOG (default) Creates assertion checkers defined in Verilog.

'OVL_SVA Creates assertion checkers defined in System Verilog.

'OVL_PSL Creates assertion checkers defined in PSL (Verilog flavor).

In the case a user of the library does not specify a language, by default the library is automatically set to 'OVL_VERILOG.

Note

Only one library can be selected. If the user specifies both 'OVL_VERILOG and 'OVL_SVA (or 'OVL_PSL), the 'OVL_VERILOG is undefined in the header file. Editing the header file to disable this behavior will result in compile errors.

Instantiation in an SVA Interface Construct

If an OVL checker is instantiated in a System Verilog interface construct, the user should define the following global variable:

'OVL_SVA_INTERFACE Ensures

Ensures OVL assertion checkers can be instantiated in a System Verilog interface construct. Default: not defined.

Limitations for PSL

The PSL implementation does not support modifying the *severity_level* and *msg* parameters. These parameters are ignored and the default values are used:

severity_level 'OVL_ERROR

msg "VIOLATION"

Generating Synthesizable Logic

The following global variable ensures all generated OVL logic is synthesizable:

'OVL_SYNTHESIS Ensures OVL logic is synthesizable. Default: not defined.

Enabling Assertion and Coverage Logic

The Accellera Standard OVL consists of two types of logic: assertion logic and coverage logic. These capabilities are controlled via the following standard global variables:

'OVL_ASSERT_ON Activates assertion logic. Default: not defined.

'OVL_COVER_ON Activates coverage logic. Default: not defined.

If both of these variables are undefined, the assertion checkers are not activated. The instantiations of these checkers will have no influence on the verification performed.

Asserting, Assuming and Ignoring Properties

The OVL checkers' assertion logic—if activated (by the 'OVL_ASSERT_ON global variable)—identifies a design's legal properties. Each particular checker instance can verify one or more assertion checks (depending on the checker type and the checker's configuration).

Whether a checker's properties are asserts (i.e., checks) or assumes (i.e., constraints) is controlled by the checker's *property_type* parameter. In addition, property_type can turn on and off X/Z checks:

OVL_ASSERT Assertion checks and X/Z checks are asserts.

Assertion checks and X/Z checks are assumes.

Assertion checks are asserts. X/Z checks are excluded.

Assertion checks are assumes. X/Z checks are excluded.

Assertion checks are assumes. X/Z checks are excluded.

Ignore (exclude) assertion checks and X/Z check properties.

A single assertion checker cannot have some checks asserts and other checks assumes. However, you often can implement this behavior by specifying two checkers.

Monitoring Coverage

The 'OVL_COVER_ON define activates coverage logic in the checkers. This is a global switch that turns coverage monitoring on.

Setting Checker Parameter Defaults

All common parameters for checkers and some parameters common to specific checker types have default parameter values. These are the parameter values assumed by the checker when the parameter is not specified. The std_ovl_defines.h sets the values of these defaults (i.e., to default values), but the default values can be overridden by redefining them. The following Verilog defines set the values of these default parameter values for the common checker parameters:

`OVL_SEVERITY_DEFAULT	Value of <i>severity_level</i> to use when it is not specified. The value defined in std_ovl_defines.h is 'OVL_ERROR.
'OVL_PROPERTY_DEFAULT	Value of <i>property_type</i> to use when it is not specified. The value defined in std_ovl_defines.h is 'OVL_ASSERT.
'OVL_MSG_DEFAULT	Value of <i>msg</i> to use when it is not specified. The value defined in std_ovl_defines.h is "VIOLATION".
'OVL_COVER_DEFAULT	Value of <i>coverage_level</i> to use when it is not specified. The value defined in std_ovl_defines.h is 'OVL_COVER_BASIC.
'OVL_CLOCK_EDGE_ DEFAULT	Value of <i>clock_edge</i> to use when it is not specified. The value defined in std_ovl_defines.h is 'OVL_POSEDGE.
'OVL_RESET_POLARITY_ DEFAULT	Value of <i>reset_polarity</i> to use when it is not specified. The value defined in std_ovl_defines.h is 'OVL_ACTIVE_LOW.
'OVL_GATING_TYPE_ DEFAULT	Value of <i>gating_type</i> to use when it is not specified. The value defined in std_ovl_defines.h is 'OVL_GATE_CLOCK.

Disabling Clock/Reset Gating

By default, if a checker's *gating_type* parameter is 'OVL_GATE_CLOCK, the checker's internal clock logic is gated by the checker's *enable* input. Similarly, by default, if a checker's *gating_type* parameter is 'OVL_GATE_RESET, the checker's internal reset logic is gated by the checker *enable* input. Setting the following define, overrides this behavior:

'OVL_GATING_OFF Turns off clock/reset gating, effectively setting all gating_type parameters to 'OVL_GATE_NONE, so checkers ignore their enable inputs. Default: gating type specified by each checker's

gating_type parameter.

Using a Global Reset

The *reset* port assignments of all assertion checkers can be overridden and controlled by the following global variable:

'OVL_GLOBAL_RESET= reset signal

Overrides the *reset* port assignments of all assertion checkers with the specified global *reset_signal*. Checkers ignore their *reset_polarity* parameters and treat the global reset as an active-low reset. Default: each checker's reset is specified by the *reset* port and *reset_polarity* parameters.

Checking of X and Z Values

By default, OVL assertion checker logic includes logic implementing assertion checks for X and Z bits in the values of checker ports when they are sampled. To exclude part or all of this X/Z checking logic, specify one of the following global variables:

```
`OVL_IMPLICIT_XCHECK_ Turns off implicit X/Z checks.

OFF

OVL_XCHECK_OFF Turns off all X/Z checks (implicit and explicit).
```

Reporting Assertion Information

By default, (if the assertion logic is active) every assertion violation is reported and (if the coverage logic is active) every captured coverage point is reported. The user can limit this reporting and can also initiate special reporting at the start and end of simulation.

Limiting a Checker's Reporting

Limits on the number of times assertion violations and captured coverage points are reported are controlled by the following global variables:

`OVL_MAX_REPORT_ERROR	Discontinues reporting a checker's assertion violations if the number of times the checker has reported one or more violations reaches this limit. Default: unlimited reporting.
'OVL_MAX_REPORT_COVER_ POINT	Discontinues reporting a checker's cover points if the number of times the checker has reported one or more cover points reaches this limit. Default: unlimited reporting.

These maximum limits are for the number of times a checker instance issues a message. If a checker issues multiple violation messages in a cycle, each message is counted as a single error report. Similarly, if a checker issues multiple coverage messages in a cycle, each message is counted as a single cover report.

Reporting Initialization Messages

The checkers' configuration information is reported at initialization time if the following global variable is defined:

'OVL INIT MSG

Reports configuration information for each checker when it is instantiated at the start of simulation. Default: no initialization messages reported.

For each assertion checker instance, the following message is reported:

```
OVL_NOTE: V2.0: instance_name initialized @ hierarchy Severity: severity_level, Message: msg
```

End-of-simulation Signal to ovl_quiescent_state Checkers

The ovl_quiescent_state assertion checker checks that the value of a state expression equals a check value when a sample event occurs. These checkers also can perform this check at the end of simulation by setting the following global variable:

'OVL_END_OF_SIMULATION = eos_signal

Performs quiescent state checking at end of simulation when the *eos_signal* asserts. Default: not defined.

Fatal Error Processing

When a checker reports a runtime fatal error (*severity_level* is 'OVL_FATAL), simulation typically continues for a certain amount of time and then the simulation ends. However, the OVL logic can be configured so that runtime fatal errors do not end simulation. These behaviors are controlled by the following global variables:

'OVL_RUNTIME_AFTER_ FATAL=time Number of time units from a fatal error to end of simulation. Default: 100.

'OVL FINISH OFF

Fatal errors do not stop simulation. Default: fatal error ends simulation after 'OVL_RUNTIME_AFTER_FATAL time units.

OVL Library

Library Characteristics

The OVL library has the following characteristics:

- All Verilog assertion checkers conform to Verilog IEEE Standard 1364-1995.
- All System Verilog assertion checkers conform to Accellera SVA 3.1a.
- Header files use file extension .h.
- Verilog files with assertion module/interfaces use extension .vlib and include assertion logic files in the language specified by the user.
- Verilog files with assertion logic use file extension _logic.v.
- System Verilog files with assertion logic use file extension _logic.sv.
- The name of an OVL assertion checker is assert_name, where the name is a descriptive identifier.
- Parameter settings are passed via literals to make configuration of assertion checkers consistent and simple to use by end users.
- Parameters passed to assertion checkers are checked for legal values
- Each assertion checker includes std_ovl_defines.h defining all global variables and std_ovl_task.h defining all OVL system tasks.
- Global variables are named OVL_name.
- System tasks are named ovl_taskname_t.
- Assertion checkers are initialized explicitly so that they work in a deterministic way without reset.
- Assertion checkers are backward compatible in behavior with existing OVL Verilog libraries (to the extent it is possible).

Library Layout

The Accellera OVL standard library has the following structure:

\$STD_OVL_DIR	Installation directory of Accellera OVL library.
\$STD_OVL_DIR/vlog95	Directory with assertion logic described in Verilog 95.
\$STD_OVL_DIR/sva31a	Directory with assertion logic described in SVA 3.1a.
\$STD_OVL_DIR/ps111	Directory with assertion logic described in PSL 1.1.
\$STD_OVL_DIR/psl11/vunits	Directory with PSL1.1 vunits for binding with the assertion logic.

For example:

```
shell prompt> ls -1 $STD OVL DIR
std ovl/assert always.vlib
std_ovl/assert_always_on_edge.vlib
std_ovl/std_ovl_defines.h
std_ovl/std_ovl_task.h
std ovl/psl11:
std_ovl/psl11/assert_always_logic.vlib
std_ovl/psl11/assert_always_on_edge_logic.vlib
std_ovl/psl11/vunits:
std_ovl/psl11/vunits/assert_always.psl
std_ovl/psl11/vunits/assert_always_on_edge.psl
std_ovl/sva31a:
std_ovl/sva31a/assert_always_logic.vlib
std_ovl/sva31a/assert_always_on_edge_logic.vlib
std ovl/vlog95:
std_ovl/vlog95/assert_always_logic.v
std_ovl/vlog95/assert_always_on_edge_logic.v
```

Header Files

std_ovl_defines.h

```
// Accellera Standard V2.0 Open Verification Library (OVL).
// Accellera Copyright (c) 2005-2007. All rights reserved.

`ifdef OVL_STD_DEFINES_H
// do nothing
`else
`define OVL_STD_DEFINES_H
```

```
`define OVL_VERSION "V2.0"
`ifdef OVL_ASSERT_ON
  `ifdef OVL_PSL
     `ifdef OVL_VERILOG
        `undef OVL PSL
     `endif
     `ifdef OVL_SVA
        `ifdef OVL PSL
          `undef OVL_PSL
        `endif
     `endif
  `else
    `ifdef OVL_VERILOG
    `else
      `define OVL_VERILOG
    `endif
    `ifdef OVL_SVA
       `undef OVL_VERILOG
    `endif
  `endif
`endif
`ifdef OVL_COVER_ON
  `ifdef OVL PSL
     `ifdef OVL_VERILOG
        `undef OVL PSL
     `endif
     `ifdef OVL_SVA
         `ifdef OVL PSL
          `undef OVL_PSL
        `endif
     `endif
  `else
    `ifdef OVL_VERILOG
    `else
      `define OVL_VERILOG
    `endif
    `ifdef OVL SVA
       `undef OVL_VERILOG
    `endif
  `endif
`endif
`ifdef OVL_ASSERT_ON
  `ifdef OVL_SHARED_CODE
  `else
    `define OVL SHARED CODE
  `endif
`else
  ifdef OVL_COVER_ON
    `ifdef OVL_SHARED_CODE
      `define OVL SHARED CODE
    `endif
  `endif
`endif
```

```
// specifying interface for System Verilog
`ifdef OVL_SVA_INTERFACE
  `define module interface
  `define endmodule endinterface
`else
  `define module module
  `define endmodule endmodule
`endif
// Selecting global reset or local reset for the checker reset signal
`ifdef OVL_GLOBAL_RESET
  `define OVL RESET SIGNAL `OVL GLOBAL RESET
  `define OVL_RESET_SIGNAL reset_n
`endif
// active edges
`define OVL NOEDGE 0
`define OVL_POSEDGE 1
`define OVL NEGEDGE 2
`define OVL ANYEDGE 3
// default edge_type (ovl_always_on_edge)
`ifdef OVL EDGE TYPE DEFAULT
 // do nothing
`else
  `define OVL EDGE TYPE DEFAULT `OVL NOEDGE
`endif
// severity levels
`define OVL FATAL
`define OVL_ERROR
`define OVL_WARNING 2
`define OVL_INFO
// default severity level
`ifdef OVL_SEVERITY_DEFAULT
 // do nothing
`else
  `define OVL_SEVERITY_DEFAULT `OVL_ERROR
`endif
// coverage levels (note that 3 would set both SANITY & BASIC)
`define OVL COVER NONE
`define OVL_COVER_SANITY
`define OVL_COVER_BASIC
`define OVL_COVER_CORNER
`define OVL COVER STATISTIC 8
`define OVL_COVER_ALL
// default coverage level
`ifdef OVL_COVER_DEFAULT
 // do nothing
  `define OVL_COVER_DEFAULT `OVL_COVER_BASIC
`endif
```

```
// property type
`define OVL_ASSERT
                          0
`define OVL_ASSUME
                          1
`define OVL_IGNORE
                          2
`define OVL_ASSERT_2STATE 3
`define OVL ASSUME 2STATE 4
// fire bit positions (first two also used for xcheck input to error_t)
`define OVL FIRE 2STATE 0
`define OVL_FIRE_XCHECK 1
`define OVL_FIRE_COVER 2
// default property type
`ifdef OVL_PROPERTY_DEFAULT
 // do nothing
`else
  `define OVL_PROPERTY_DEFAULT `OVL_ASSERT
`endif
// default message
`ifdef OVL MSG DEFAULT
 // do nothing
`else
  `define OVL MSG DEFAULT "VIOLATION"
`endif
// necessary condition
`define OVL_TRIGGER_ON_MOST_PIPE
`define OVL_TRIGGER_ON_FIRST_PIPE
`define OVL TRIGGER ON FIRST NOPIPE 2
// default necessary_condition (ovl_cycle_sequence)
`ifdef OVL NECESSARY CONDITION DEFAULT
 // do nothing
`else
  define OVL NECESSARY CONDITION DEFAULT OVL TRIGGER ON MOST PIPE
`endif
// action on new start
`define OVL_IGNORE_NEW_START
`define OVL_RESET_ON_NEW_START 1
`define OVL ERROR ON NEW START 2
// default action_on_new_start (e.g. ovl_change)
`ifdef OVL ACTION ON NEW START DEFAULT
 // do nothing
`else
  `define OVL ACTION ON NEW START DEFAULT `OVL IGNORE NEW START
`endif
// inactive levels
`define OVL_ALL_ZEROS 0
`define OVL_ALL_ONES 1
`define OVL ONE COLD 2
```

```
// default inactive (ovl_one_cold)
`ifdef OVL_INACTIVE_DEFAULT
  // do nothing
`else
  `define OVL_INACTIVE_DEFAULT `OVL_ONE_COLD
`endif
// ovl 2.0 new interface
`define OVL ACTIVE LOW 0
`define OVL_ACTIVE_HIGH 1
`define OVL_GATE_NONE 0
`define OVL_GATE_CLOCK 1
`define OVL_GATE_RESET 2
`define OVL_FIRE_WIDTH
`ifdef OVL CLOCK EDGE DEFAULT
 // do nothing
`else
  `define OVL CLOCK EDGE DEFAULT `OVL POSEDGE
`endif
`ifdef OVL RESET POLARITY DEFAULT
 // do nothing
`else
`define OVL_RESET_POLARITY_DEFAULT `OVL_ACTIVE_LOW
`endif
`ifdef OVL GATING TYPE DEFAULT
 // do nothing
`else
`define OVL GATING TYPE DEFAULT `OVL GATE CLOCK
`endif
// ovl runtime after fatal error
`define OVL RUNTIME AFTER FATAL 100
// Covergroup define
`ifdef OVL_COVER_ON
  `ifdef OVL_COVERGROUP_OFF
  `else
    `define OVL COVERGROUP ON
  `endif // OVL COVERGROUP OFF
`endif // OVL COVER ON
// Ensure x-checking logic disabled if ASSERTs are off
`ifdef OVL_ASSERT_ON
`else
  `define OVL_XCHECK_OFF
  `define OVL_IMPLICIT_XCHECK_OFF
`endif
`endif // OVL STD DEFINES H
```

std ovl init.h

```
// Accellera Standard V2.0 Open Verification Library (OVL).
    // Accellera Copyright (c) 2005-2007. All rights reserved.
    `ifdef OVL_SHARED_CODE
       `ifdef OVL_SYNTHESIS
       `else
         `ifdef OVL_INIT_MSG
          initial
            ovl_init_msg_t; // Call the User Defined Init Message Routine
        `endif // OVL_INIT_MSG
      `endif // OVL_SYNTHESIS
     `endif // OVL SHARED CODE
std ovl clock.h
    // Accellera Standard V2.0 Open Verification Library (OVL).
    // Accellera Copyright (c) 2005-2007. All rights reserved.
    `ifdef OVL_SHARED_CODE
      wire gclk, clk;
      `ifdef OVL_GATING_OFF
        assign gclk = clock; // Globally disabled gating
      `else
        // LATCH based gated clock
        reg clken;
        always @ (clock or enable) begin
          if (clock == 1'b0)
            clken <= enable;</pre>
        end
        assign gclk = (gating_type == `OVL_GATE_CLOCK) ? clock & clken
                                : clock; // Locally disabled gating
      `endif // OVL GATING OFF
      // clk (programmable edge & optional gating)
      assign clk = (clock_edge == `OVL_POSEDGE) ? gclk : ~gclk;
    `endif // OVL SHARED CODE
std ovl reset.h
    // Accellera Standard V2.0 Open Verification Library (OVL).
    // Accellera Copyright (c) 2005-2007. All rights reserved.
    `ifdef OVL_SHARED_CODE
      wire greset, reset_n;
       `ifdef OVL GATING OFF
        assign greset = reset; // Globally disabled gating
       `else
        assign greset = (gating_type == `OVL_GATE_RESET) ? reset & enable
                                : reset; // Locally disabled gating
      `endif // OVL_GATING_OFF
      // reset_n (programmable polarity & optional gating)
```

assign reset_n = (reset_polarity == `OVL_ACTIVE_LOW) ? greset : ~greset;

`endif // OVL SHARED CODE

std ovl count.h

```
// Accellera Standard V2.0 Open Verification Library (OVL).
    // Accellera Copyright (c) 2005-2007. All rights reserved.
    // Support for printing of count of OVL assertions
     `ifdef OVL_INIT_MSG
    `ifdef OVL INIT COUNT
      integer ovl_init_count;
      initial begin
        // Reset, prior to counting
        ovl_init_count = 0;
        // Display total number of OVL instances, just after initialization
        monitor(\normalfont{"}\novL_METRICS: %d OVL assertions initialized\n"\
                                   ,ovl_init_count);
      end
     `endif
     `endif
std ovl cover.h
    // Accellera Standard V2.0 Open Verification Library (OVL).
    // Accellera Copyright (c) 2005-2007. All rights reserved.
    // Parameters that should not be edited
      parameter OVL_COVER_SANITY_ON
                                       = (coverage_level & `OVL_COVER_SANITY);
      parameter OVL_COVER_BASIC_ON
                                        = (coverage_level & `OVL_COVER_BASIC);
                                        = (coverage_level & `OVL_COVER_CORNER);
      parameter OVL_COVER_CORNER_ON
      parameter OVL_COVER_STATISTIC_ON =
                                   (coverage_level & `OVL_COVER_STATISTIC);
std_ovl_task.h
    // Accellera Standard V2.0 Open Verification Library (OVL).
    // Accellera Copyright (c) 2005-2007. All rights reserved.
    `ifdef OVL_SYNTHESIS
     `else
      integer error_count;
      integer cover_count;
      initial error_count = 0;
      initial cover count = 0;
     `endif // OVL SYNTHESIS
```

```
task ovl_error_t;
    input
                     xcheck;
    input [8*128-1:0] err_msg;
   reg [8*16-1:0] err_typ;
  begin
  `ifdef OVL SYNTHESIS
  `else
    case (severity_level)
      `OVL_FATAL : err_typ = "OVL_FATAL";
      `OVL_ERROR : err_typ = "OVL_ERROR";
      `OVL_WARNING : err_typ = "OVL_WARNING";
      `OVL_INFO : err_typ = "OVL_INFO";
     default
       begin
          err_typ = "OVL_ERROR";
          $display("OVL_ERROR: Illegal option used in parameter
severity_level, setting message type to OVL_ERROR : time %0t : %m",
        end
    endcase
    error_count = error_count + 1;
    `ifdef OVL_MAX_REPORT_ERROR
     if (error count <= `OVL MAX REPORT ERROR) begin
    `endif
        case (property_type)
          `OVL_ASSERT,
                              : begin
          `OVL_ASSUME
           $display("%s: %s: %s: %0s: severity %0d: time %0t: %m",
err_typ, assert_name, msg, err_msg, severity_level, $time);
          end
          `OVL ASSERT 2STATE,
          `OVL ASSUME 2STATE : begin
            if (xcheck == `OVL_FIRE_2STATE) begin
            $display("%s: %s: %s: %0s: severity %0d: time %0t: %m",
err_typ, assert_name, msg, err_msg, severity_level, $time);
            end
          end
          OVL IGNORE
                              : begin end
         default
                              : begin end
        endcase
    `ifdef OVL_MAX_REPORT_ERROR
    `endif
    `ifdef OVL_FINISH_OFF
    `else
     if (severity level == `OVL FATAL) ovl finish t;
    `endif // OVL_FINISH_OFF
  `endif // OVL_SYNTHESIS
  end
  endtask // ovl_error_t
```

```
task ovl_finish_t;
begin
  `ifdef OVL_SYNTHESIS
  `else
    #`OVL_RUNTIME_AFTER_FATAL $finish;
  `endif // OVL_SYNTHESIS
endtask // ovl_finish_t
task ovl_init_msg_t;
begin
  `ifdef OVL SYNTHESIS
  `else
    case (property_type)
      `OVL_ASSERT,
      `OVL_ASSUME,
      `OVL ASSERT 2STATE,
      `OVL_ASSUME_2STATE : begin
        `ifdef OVL_SYNTHESIS
        `else
          `ifdef OVL_INIT_COUNT
            #0.1 `OVL_INIT_COUNT = `OVL_INIT_COUNT + 1;
            $display("OVL_NOTE: %s: %s initialized @ %m Severity: %0d,
                Message: %s", `OVL_VERSION, assert_name, severity_level,
                msg);
          `endif
        `endif // OVL_SYNTHESIS
       `OVL IGNORE : begin
          // do nothing
       end
     default : $display("OVL_ERROR: Illegal option used in parameter
                property_type : %m");
    endcase
  `endif // OVL_SYNTHESIS
end
endtask // ovl_init_msg_t
```

```
task ovl_cover_t;
   input [8*64-1:0] cvr_msg;
 begin
  `ifdef OVL_SYNTHESIS
  `else
    cover count = cover count + 1;
    `ifdef OVL MAX REPORT COVER POINT
      if (cover_count <= `OVL_MAX_REPORT_COVER_POINT) begin</pre>
    `endif
       if (coverage_level > `OVL_COVER_ALL)
         $display("OVL_ERROR: Illegal option used in parameter
                 coverage_level : time %0t : %m", $time);
         $display("OVL_COVER_POINT : %s : %0s : time %0t : %m",
                 assert_name, cvr_msg, $time);
    `ifdef OVL_MAX_REPORT_COVER_POINT
      end
    `endif
  `endif // OVL_SYNTHESIS
 endtask // ovl_cover_t
`ifdef OVL_SYNTHESIS
`else
 // FUNCTION THAT CALCULATES THE LOG BASE 2 OF A NUMBER
 // NOTE: only used in sva31a
 function integer log2;
   input integer x;
   integer i;
   integer result;
 begin
   result = 1;
   if (x \le 0) result = -1;
     for (i = 0; (1 << i) <= x; i=i+1) result = i+1;
   log2 = result;
 end
 endfunction
`endif // OVL_SYNTHESIS
 function ovl_fire_2state_f;
   input
          property_type;
   integer property_type;
 begin
   case (property type)
     `OVL_ASSERT,
     `OVL_ASSUME
                      : ovl_fire_2state_f = 1'b1;
     `OVL_ASSERT_2STATE,
     `OVL_ASSUME_2STATE : ovl_fire_2state_f = 1'b1;
     `OVL_IGNORE
                   : ovl_fire_2state_f = 1'b0;
     default
                       : ovl fire 2state f = 1'b0;
   endcase
 end
 endfunction // ovl_fire_2state_f
```

```
function ovl_fire_xcheck_f;
  input
        property_type;
  integer property_type;
begin
`ifdef OVL SYNTHESIS
  // fire_xcheck is not synthesizable
  ovl_fire_xcheck_f = 1'b0;
`else
  case (property_type)
    `OVL_ASSERT,
    `OVL_ASSUME
                       : ovl_fire_xcheck_f = 1'b1;
    `OVL_ASSERT_2STATE,
    `OVL_ASSUME_2STATE : ovl_fire_xcheck_f = 1'b0;
    `OVL_IGNORE : ovl_fire_xcheck_f = 1'b0;
    default
                       : ovl_fire_xcheck_f = 1'b0;
  endcase
`endif // OVL_SYNTHESIS
endfunction // ovl_fire_xcheck_f
```

Chapter 3 OVL Checker Data Sheets

Each OVL assertion checker type has a data sheet that provides the specification for checkers of that type. This chapter lists the checker data sheets in alphabetical order by checker type. Data sheets contain the following information:

• Syntax

Syntax statement for specifying a checker of the type, with:

- Parameters parameters that configure the checker.
- Ports checker ports.

• Description

Description of the functionality and usage of checkers of the type, with:

- Assertion Checks violation types (or messages) with descriptions of failures.
- Cover Points cover messages with descriptions.
- Errors* possible errors that are not assertion failures.

• Notes*

Notes describing any special features or requirements.

See also

List of other similar checker types.

Examples

Examples of directives and checker applications.

^{*} not applicable to all checker types.

ovl_always

Ensures that the value of an expression is TRUE.

Syntax

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clockClock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

Expression that should evaluate to TRUE on the rising clock test_expr

edge.

fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_always assertion checker checks the single-bit expression *test_expr* at each active edge of *clock*. If *test expr* is not TRUE, an always check violation occurs.

Assertion Checks

Expression did not evaluate to TRUE. ALWAYS

Implicit X/Z Checks

test_expr contains X Expression value was X or Z. or Z

Cover Points

none

See also

ovl_always_on_edge ovl never ovl_implication ovl_proposition

Example

```
ovl_always #(
   'OVL_ERROR,
                                                      // severity_level
   'OVL_ASSERT,
                                                      // property_type
                                                      // msg
   "Error: reg_a < reg_b is not TRUE",
   'OVL COVER NONE,
                                                      // coverage level
   'OVL_POSEDGE,
                                                      // clock_edge
   'OVL_ACTIVE_LOW,
                                                      // reset_polarity
   'OVL_GATE_CLOCK)
                                                      // gating_type
   reg_a_lt_reg_b (
      clock,
                                                      // clock
                                                      // reset
      reset,
      enable,
                                                      // enable
      reg_a < reg_b,
                                                      // test_expr
      fire);
                                                      // fire
Ensures that (reg\_a < reg\_b) is TRUE at each rising edge of clock.
                      clock
                      reset
                reg_a < reg_b
                               ALWAYS Error: reg_a < reg_b is not TRUE
```

ovl_always_on_edge

Ensures that the value of an expression is TRUE when a sampling event undergoes a specified transition.

Syntax

```
ovl_always_on_edge
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
edge_type	Transition type for sampling event: 'OVL_NOEDGE, 'OVL_POSEDGE, 'OVL_NEGEDGE or 'OVL_ANYEDGE. Default: 'OVL_NOEDGE.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
sampling_event	Expression that (along with <i>edge_type</i>) identifies when to evaluate and test <i>test_expr</i> .
test_expr	Expression that should evaluate to TRUE on the rising clock edge.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_always_on_edge assertion checker checks the single-bit expression *sampling_event* for a particular type of transition. If the specified transition of the sampling event occurs, the single-bit expression *test_expr* is evaluated at the active edge of *clock* to verify the expression does not evaluate to FALSE.

The *edge_type* parameter determines which type of transition of *sampling_event* initiates the check:

- 'OVL_POSEDGE performs the check if *sampling_event* transitions from FALSE to TRUE.
- 'OVL_NEGEDGE performs the check if *sampling_event* transitions from TRUE to FALSE.
- 'OVL_ANYEDGE performs the check if *sampling_event* transitions from TRUE to FALSE or from FALSE to TRUE.
- 'OVL_NOEDGE always initiates the check. This is the default value of *edge_type*. In this case, *sampling_event* is never sampled and the checker has the same functionality as ovl_always.

The checker is a variant of ovl_always, with the added capability of qualifying the assertion with a sampling event transition. This checker is useful when events are identified by their transition in addition to their logical state.

Assertion Checks

ALWAYS_ON_EDGE Expression evaluated to FALSE when the sampling event

transitioned as specified by edge_type.

Implicit X/Z Checks

```
\begin{array}{ll} \text{test\_expr contains } x & \text{Expression value was } X \text{ or } Z. \\ \text{or } z & \\ \text{sampling\_event} & \text{Sampling event value was } X \text{ or } Z. \\ \text{contains } x \text{ or } z & \\ \end{array}
```

Cover Points

none

See also

```
ovl_alwaysovl_neverovl_implicationovl_proposition
```

Examples

```
ovl_always_on_edge #(
   'OVL_ERROR,
                                                   // severity_level
   'OVL_POSEDGE,
                                                   // edge_type
   'OVL ASSERT,
                                                   // property_type
   "Error: new req when FSM not ready",
                                                   // msg
   'OVL_COVER_NONE,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK )
                                                   // gating_type
   request_when_FSM_idle (
                                                   // clock
      clock,
                                                   // reset
      reset,
      enable,
                                                   // enable
                                                   // sampling_event
      req,
      state == 'IDLE,
                                                   // test expr
      fire_request_when_FSM_idle);
                                                   // fire
```

Ensures that (state == 'IDLE) is TRUE at each rising edge of clock when req transitions from FALSE to TRUE.

ALWAYS_ON_EDGE Error: new req when FSM not ready

```
ovl_always_on_edge #(
   'OVL_ERROR,
                                                   // severity_level
   'OVL_ANYEDGE,
                                                   // edge_type
                                                  // property_type
   'OVL_ASSERT,
                                                  // msg
   "Error: req transition when FSM not idle",
   'OVL_COVER_NONE,
                                                  // coverage_level
   'OVL_POSEDGE,
                                                  // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK )
                                                   // gating_type
   req_transition_when_FSM_idle (
      clock,
                                                   // clock
                                                   // reset
      reset,
                                                   // enable
      enable,
                                                   // sampling_event
      req,
      state == 'IDLE,
                                                  // test expr
      fire_req_transition_when_FSM_idle);
                                                  // fire
```

Ensures that (*state* == '*IDLE*) is TRUE at each rising edge of *clock* when *req* transitions from TRUE to FALSE or from FALSE to TRUE.

ALWAYS_ON_EDGE Error: req transition when FSM not idle

```
ovl_always_on_edge #(
   'OVL_ERROR,
                                                   // severity_level
   'OVL NOEDGE,
                                                   // edge_type
   'OVL ASSERT,
                                                   // property_type
   "Error: req when FSM not idle",
                                                   // msg
                                                   // coverage_level
   'OVL_COVER_NONE,
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK )
                                                   // gating_type
   req when FSM idle (
      clock,
                                                   // clock
                                                   // reset
      reset,
      enable,
                                                   // enable
      1'b0,
                                                   // sampling_event
      !req || (state == 'IDLE),
                                                   // test_expr
      fire_req_when_FSM_idle);
                                                   // fire
```

Ensures that (!req || (state == 'IDLE)) is TRUE at each rising edge of clock.

ALWAYS_ON_EDGE Error: req when FSM not idle

ovl_arbiter

Ensures that a resource arbiter provides grants to corresponding requests according to a specified arbitration scheme and within a specified time window.

Class: event-bounded assertion

Syntax

```
ovl_arbiter
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of reqs and gnts ports (number of channels). Default: 2.
priority_width	Number of bits to encode a priority value in <i>priorities</i> . Default: 1.
min_cks	Minimum number of clock cycles after a request that its grant can be issued. If <i>min_cks</i> is 0, a grant can be issued in the same cycle the request is made. Default: 1
max_cks	Maximum number of clock cycles after a request that its grant can be issued. A value of 0 indicates no upper bound for grants. Default: 0.
arbitration_rule	Arbitration scheme used by the arbiter. This parameter turns on the corresponding check for the arbitration scheme. arbitration_rule = 0 (Default) no scheme arbitration_rule = 1 fair (round robin) arbitration_rule = 2 FIFO arbitration_rule = 3 least-recently used

priority_check Whether or not to perform priority checks.

priority_check = 0 (Default)
Turns off the priority check.

 $priority_check = 1$

Turns on the priority check. The *min_cks* parameter must be 0

or 1.

single_gnt_check Whether or not to perform grant_one checks.

 $single_gnt_check = 0$

Turns off the grant_one check.

single_gnt_check = 1 (Default)

Turns on the grant_one check.

property_type Property type. Default: 'OVL_PROPERTY_DEFAULT

('OVL_ASSERT).

msg Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL_COVER_DEFAULT

('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL RESET POLARITY DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

reqs[width-1:0] Concatenation of request signals to the arbiter. Each bit in the

vector is a request from the corresponding channel.

gnts[width-1:0] Concatenation of grant signals from the arbiter. Each bit in the

vector is a grant to the corresponding channel.

priorities [priority_width*width -1:0]	Concatenation of non-negative integer values corresponding to the request priorities of the corresponding <i>req</i> channels (0 is the lowest priority). If the priority check is on, <i>priorities</i> must not change while any channel is waiting for a grant (otherwise certain checks might produce incorrect results). If the priority check is off, this port is ignored (however, the port must be configured with the specified width).	
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.	

Description

The ovl_arbiter checker ensures an arbiter follows a specified arbitration process. The checker checks *reqs* and *gnts* at each active edge of *clock*. These are two bit vectors representing respectively requests from the channels and grants from the arbiter. Both vectors have the same size (width), which is the same as the number of channels.

A request from a channel is signaled by asserting its corresponding *reqs* bit, which should be followed (according to the configured arbitration rules) by a responding assertion of the same bit in *gnts*. If a request deasserts before the arbiter issues the corresponding grant, all checks for that request are cancelled. If a request remains asserted in the cycle its grant is issued, a new request is assumed.

The ovl_arbiter checker checks the following rules:

- A grant should not be issued to a channel without a request.
- A grant asserts for one cycle (unless the grant is for consecutive requests).
- A grant should be issued in the time window specified by [min_cks:max_cks] after its request.

The ovl_arbiter checker can be configured to check that at most one grant is issued each cycle (i.e., a single grant at a time).

The ovl_arbiter checker also can be configured to check a specific arbitration scheme by turning the priority check on or off and selecting a value for *arbitration_rule*. The combination of the two selections determines the expected arbitration scheme.

• Primary rule.

If the priority check is on, priority arbitration is the primary rule. When a request is made, the values in *priorities* are the priorities of the corresponding channels in ascending priority order (a value of 0 is the lowest priority). If multiple requests are pending, the grant should be issued to the channel with the highest priority. If more than one channel has the highest priority, the grant is made according to the secondary rule (applied to the channels with that priority).

If the priority check is off, only the secondary rule is used to arbitrate the grant.

• Secondary rule.

The secondary rule is determined by the *arbitration_rule* parameter. This rule applies to the channels with the highest priority if the priority check is on and to all channels if the priority check is off. If *arbitration_rule* is 0, no secondary rule is assumed (if the priority check is on and multiple channels have the highest priority, any of them can receive the grant). If the priority check is off, no arbitration scheme checks are performed.

If *arbitration_rule* is not 0, the secondary rule is one of the following:

• Fairness or round-robin rule (*arbitration_rule* is 1).

Grant is not issued to a (high-priority) channel that has received a grant while another channel's request is pending.

• First-in first-out (FIFO) rule (*arbitration_rule* is 2).

Grant is issued to a (high-priority) channel with the longest pending request.

• Least-recently used (LRU) rule (arbitration_rule is 3).

Grant is issued to a (high-priority) channel whose previous grant was issued the longest time before the current cycle.

Assertion Checks

GNT_ONLY_IF_REQ	Grant was issued without a request. Gnt bit was TRUE, but the corresponding req bit was not TRUE or transitioning from TRUE.
ONE_CYCLE_GNT	Grant was asserted for longer than 1 cycle. Grant was TRUE for 2 cycles in response to only one request.
GNT_IN_WINDOW	Grant was not issued within the specified time window. Grant was issued before <i>min_cks</i> cycles or no grant was issued by <i>max_cks</i> cycles.
HIGHEST_PRIORITY	Grant was issued for a request other than the highest priority request. priority_check = 1 Grant was issued, but another pending request had higher priority than all the requests that received grants.
FAIRNESS	Two grants were issued to the same channel while another channel's request was pending. arbitration_rule = 1 Two grants were issued to a channel while a request from another channel was pending (violating the fairness rule).

Grant was issued for a request that was not the FIFO

longest pending request. arbitration rule = 2

> Grant was issued, but one or more other (high priority) requests were pending longer than the granted request

(violating the FIFO rule).

LRU Grant was issued to a channel that was more-recently

used than another channel with a pending request.

arbitration_rule = 3

Grant was issued, but another channel with a pending (high priority) request received its previous grant before the granted channel received its previous grant (violating the fairness

rule).

Multiple grants were issued in the same clock cycle. SINGLE_GRANT

 $single_gnt_check = 1$

More than one *gnts* bit was TRUE in the same clock cycle.

Implicit X/Z Checks

regs contains X or Z Requests contained X or Z bits.

grants contains X or Z Grants contained X or Z bits.

Priorities contained X or Z bits. priorities contains X

or Z

Cover Points

BASIC — Number of granted requests for each channel. cover_req_granted

BASIC — Number of aborted requests for each channel. cover_req_aborted

CORNER — Number of times grant was issued *min_cks* cycles cover_req_granted_at_ min cks

after its request was asserted.

cover_req_granted_at_ CORNER — Number of times grant was issued *max_cks* cycles max cks

after its request was asserted.

time_to_grant STATISTIC — Reports the number of requests granted at each

cycle in the time window.

concurrent_requests STATISTIC — Reports for each channel, the number of times

each other channel had requests concurrent with that channel.

See also

ovl_bits

Ensures that the number of asserted (or deasserted) bits of the value of an expression is within a specified range.

Syntax

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
asserted	Whether to count asserted or deasserted bits. asserted = 0 Counts FALSE (deasserted) bits. asserted = 1 (Default) Counts TRUE (asserted) bits.
min	Whether or not to perform min checks. Default: 1. min = 0 Turns off the min check. min ≥ 1 Minimum number of bits in test_expr that should be asserted (or deasserted).
max	Whether or not to perform max checks. Default: 1. $max = 0$ Turns off the max check. $max \ge 1$ Maximum number of bits in $test_expr$ that should be asserted (or deasserted). Max must be $\ge min$.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).

Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL COVER DEFAULT

('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

test_expr[width-1:0] Variable or expression to check.

fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check

failure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

Description

The ovl_bits checker checks the multiple-bit expression $test_expr$ at each active edge of clock and counts the number of TRUE bits (if assert is 1) or FALSE bits (if assert is 0). If the count is < min a min violation occurs and if the count is > max, a max violation occurs.

Assertion Checks

MIN Fewer than 'min' bits were asserted.

min > 0 and asserted = 1

The number of TRUE bits in the value of *test_expr* was less

than the minimum specified by min.

Fewer than 'min' bits were deasserted.

min > 0 and asserted = 0

The number of FALSE bits in the value of *test_expr* was less

than the minimum specified by *min*.

More than 'max' bits were asserted. max > 0 and asserted = 1MAX

The number of TRUE bits in the value of test expr was more than the maximum specified by max.

More than 'max' bits were deasserted.

max > 0 and asserted = 0

The number of FALSE bits in the value of test expr was more than the maximum specified by max.

Implicit X/Z Checks

test_expr contains X or Z

Expression contained X or Z bits.

Cover Points

cover_values_checked SANITY — Number of cycles *test_expr* changed value.

cover_bits_within_ BASIC — Number of cycles the number of counted *test_expr*

limit bits was in range.

cover_bits_at_min CORNER — Number of cycles the number of counted test_expr

bits was min.

CORNER — Number of cycles the number of counted *test_expr* cover_bits_at_max

bits was max.

ovl_change

Ensures that the value of an expression changes within a specified number of cycles after a start event initiates checking.

Syntax

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
num_cks	Number of cycles to check for a change in the value of <i>test_expr</i> . Default: 1.
action_on_new_start	Method for handling a new start event that occurs before <i>test_expr</i> changes value or <i>num_cks</i> clock cycles transpire without a change. Values are: 'OVL_IGNORE_NEW_START, 'OVL_RESET_ON_NEW_START and 'OVL_ERROR_ON_NEW_START. Default: 'OVL_IGNORE_NEW_START.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the *reset* input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

Expression that (along with action on new start) identifies start_event

when to start checking test expr.

test_expr[width-1:0] Expression that should change value within *num cks* cycles from

the start event unless the check is interrupted by a valid new start

event.

fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl change assertion checker checks the expression start event at each active edge of clock to determine if it should check for a change in the value of test_expr. If start_event is sampled TRUE, the checker evaluates test expr and re-evaluates test expr at each of the subsequent num_cks active edges of clock. If the value of test_expr has not changed from its start value by the last of the *num cks* cycles, the assertion fails.

The method used to determine how to handle a new start event, when the checker is in the state of checking for a change in *test_expr*, is controlled by the *action_on_new_start* parameter. The checker has the following actions:

'OVL_IGNORE_NEW_START

The checker does not sample *start_event* for the next *num_cks* cycles after a start event.

'OVL_RESET_ON_NEW_START

The checker samples *start_event* every cycle. If a check is pending and the value of start event is TRUE, the checker terminates the check and initiates a new check with the current value of *test expr* (even on the last cycle of a check).

'OVL_ERROR_ON_NEW_START

The checker samples *start_event* every cycle. If a check is pending and the value of *start_event* is TRUE, the assertion fails with an illegal start event violation. In this case, the checker does not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events, such as verifying synchronization circuits respond after initial stimuli. For example, it can be used to check the protocol that an "acknowledge" occurs within a certain number of cycles after a "request". It also can be used to check that a finite-state machine changes state after an initial stimulus.

Assertion Checks

CHANGE The test expr expression did not change value for num cks

cycles after *start_event* was sampled TRUE.

illegal start event The action_on_new_start parameter is set to

'OVL_ERROR_ON_NEW_START and *start_event* expression evaluated to TRUE while the checker was in the state of checking

for a change in the value of test expr.

Implicit X/Z Checks

 $\begin{array}{ll} \text{test_expr contains X} & \text{Expression value contained X or Z bits.} \\ \text{or z} \end{array}$

start_event contains X Start event value was X or Z.

or Z

Cover Points

cover_window_open BASIC — A change check was initiated.

cover_window_close BASIC — A change check lasted the full *num cks* cycles. If no

assertion failure occurred, the value of test_expr changed in the

last cycle.

'OVL_RESET_ON_NEW_START, and start_event was

sampled TRUE while the checker was monitoring test expr, but

it had not changed value.

See also

ovl_timeovl_win_unchangeovl_unchangeovl_window

ovl_win_change

Examples

```
ovl_change #(
                                                    // severity_level
   'OVL_ERROR,
   1,
                                                    // width
   3,
                                                    // num cks
   'OVL IGNORE NEW START,
                                                    // action on new start
   'OVL_ASSERT,
                                                    // property_type
   "Error: invalid synchronization",
                                                    // msg
                                                    // coverage_level
   'OVL_COVER_DEFAULT,
                                                    // clock_edge
// reset_polarity
   'OVL_POSEDGE,
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                    // gating_type
   valid_sync_out (
      clock,
                                                    // clock
      reset,
                                                    // reset
                                                    // enable
      enable,
      sync == 1,
                                                    // start_event
                                                    // test_expr
      out,
      fire_valid_sync_out);
                                                    // fire
```

Ensures that *out* changes within 3 cycles after *sync* asserts. New starts are ignored.


```
ovl_change #(
   'OVL_ERROR,
                                                   // severity_level
                                                   // width
   1,
   3,
                                                   // num_cks
                                                   // action_on_new_start
   `OVL_RESET_ON_NEW_START,
   'OVL ASSERT,
                                                   // property_type
   "Error: invalid synchronization",
                                                   // msg
// coverage_level
   'OVL_COVER_DEFAULT,
                                                   // clock_edge
   'OVL_POSEDGE,
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK )
                                                   // gating_type
   valid_sync_out (
                                                   // clock
      clock,
      reset,
                                                   // reset
                                                   // enable
      enable,
      sync == 1,
                                                   // start_event
      out,
                                                   // test_expr
                                                   // fire
      fire_valid_sync_out);
```

Ensures that *out* changes within 3 cycles after *sync* asserts. A new start terminates the pending check and initiates a new check.


```
ovl_change #(
   'OVL_ERROR,
                                                   // severity_level
                                                   // width
   1,
   3,
                                                   // num_cks
   'OVL_ERROR_ON_NEW_START,
                                                   // action_on_new_start
                                                   // property_type
   'OVL ASSERT,
   "Error: invalid synchronization",
                                                   // msg
// coverage_level
   'OVL_COVER_DEFAULT,
                                                   // clock_edge
   'OVL POSEDGE,
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK )
                                                   // gating_type
   valid_sync_out (
                                                   // clock
      clock,
      reset,
                                                   // reset
      enable,
                                                   // enable
      sync == 1,
                                                   // start_event
      out,
                                                   // test_expr
                                                   // fire
      fire_valid_sync_out );
```

Ensures that *out* changes within 3 cycles after *sync* asserts. A new start reports an *illegal start event* violation (without initiating a new check) but any pending check is retained (even on the last check cycle).

ovl_code_distance

Ensures that when an expression changes value, the number of bits in the new value that are different from the bits in the value of a second expression is within a specified range.

Syntax

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of test_expr and test_expr2. Default: 1.
min	Minimum code distance. Default: 1.
max	Maximum code distance. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr1[width-1:0]	Variable or expression to check when its value changes.
test_expr2[width-1:0]	Variable or expression from which the code distance from <i>test_expr1</i> is calculated.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_code_distance assertion checker checks the expression $test_expr1$ at each active edge of clock to determine if $test_expr$ has changed value. If so, the checker evaluates a second expression $test_expr2$ and calculates the absolute value of the difference between the two values (called the $code\ distance$). If the code distance is $< min\ or > max$, the assertion fails and a code_distance violation occurs.

Assertion Checks

CODE_DISTANCE	Code distance was not within specified limits.
	Code distance from test_expr1 to test_expr2 is less than min
	or greater than max.

Implicit X/Z Checks

test_exprl contains X or Z	Expression contained X or Z bits.
test_expr2 contains X or Z	Second expression contained X or Z bits.

Cover Points

<pre>cover_test_expr_ changes</pre>	SANITY — Number of cycles <i>test_expr1</i> changed value.
<pre>cover_code_distance_ within_limit</pre>	BASIC — Number of cycles <i>test_expr1</i> changed to a value whose code distance from <i>test_expr2</i> was in the range from <i>min</i> to <i>max</i> .
observed_code_ distance	BASIC — Reports the code distances that occurred at least once.

cover_code_distance_
at_min

CORNER — Number of cycles *test_expr1* changed to a value whose code distance from *test_expr2* was *min*.

cover_code_distance_
at_max

CORNER — Number of cycles *test_expr1* changed to a value whose code distance from *test_expr2* was *max*.

ovl_cycle_sequence

Ensures that if a specified necessary condition occurs, it is followed by a specified sequence of events.

Syntax

ovl_cycle_sequence

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
num_cks	Width of the <i>event_sequence</i> argument. This parameter must not be less than 2. Default: 2.
necessary_condition	Method for determining the necessary condition that initiates the sequence check and whether or not to pipeline checking. Values are: 'OVL_TRIGGER_ON_MOST_PIPE (default), 'OVL_TRIGGER_ON_FIRST_PIPE and 'OVL_TRIGGER_ON_FIRST_NOPIPE.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).

gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default:
	'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
<pre>event_sequence [num_cks-1:0]</pre>	Expression that is a concatenation where each bit represents an event.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_cycle_sequence assertion checker checks the expression *event_sequence* at the active edge of *clock* to identify whether or not the bits in *event_sequence* assert sequentially on successive active edges of *clock*. For example, the following series of 4-bit values (where *b* is any bit value) is a valid sequence:

```
1bbb -> b1bb -> bb1b -> bbb1
```

This series corresponds to the following series of events on successive active edges of *clock*:

```
cycle 1    event_sequence[3] == 1
cycle 2    event_sequence[2] == 1
cycle 3    event_sequence[1] == 1
cycle 4    event_sequence[0] == 1
```

The checker also has the ability to pipeline its analysis. Here, one or more new sequences can be initiated and recognized while a sequence is in progress. For example, the following series of 4-bit values (where b is any bit value) constitutes two overlapping valid sequences:

```
1bbb -> b1bb -> 1b1b -> b1b1 -> bb1b -> bbb1
```

This series corresponds to the following sequences of events on successive active edges of *clock*:

When the checker determines that a specified necessary condition has occurred, it subsequently verifies that a specified event or event sequence occurs and if not, the assertion fails.

The method used to determine what constitutes the necessary condition and the resulting trigger event or event sequence is controlled by the *necessary_condition* parameter. The checker has the following actions:

'OVL_TRIGGER_ON_MOST_PIPE

The necessary condition is that the bits:

```
event_sequence [num_cks -1], . . . ,event_sequence [1]
```

are sampled equal to 1 sequentially on successive active edges of *clock*. When this condition occurs, the checker verifies that the value of *event_sequence*[0] is 1 at the next active edge of *clock*. If not, the assertion fails.

The checking is pipelined, which means that if <code>event_sequence[num_cks-1]</code> is sampled equal to 1 while a sequence (including <code>event_sequence[0]</code>) is in progress and subsequently the necessary condition is satisfied, the check of <code>event_sequence[0]</code> is performed.

'OVL TRIGGER ON FIRST PIPE

The necessary condition is that the *event_sequence* [num_cks -1] bit is sampled equal to 1 on an active edge of *clock*. When this condition occurs, the checker verifies that the bits:

```
event_sequence [num_cks -2], . . . ,event_sequence [0]
```

are sampled equal to 1 sequentially on successive active edges of *clock*. If not, the assertion fails and the checker cancels the current check of subsequent events in the sequence.

The checking is pipelined, which means that if *event_sequence*[num_cks -1] is sampled equal to 1 while a check is in progress, an additional check is initiated.

• 'OVL_TRIGGER_ON_FIRST_NOPIPE

The necessary condition is that the *event_sequence* [num_cks -1] bit is sampled equal to 1 on an active edge of *clock*. When this condition occurs, the checker verifies that the bits:

```
event_sequence [num_cks -2], . . . ,event_sequence [0]
```

are sampled equal to 1 sequentially on successive active edges of *clock*. If not, the assertion fails and the checker cancels the current check of subsequent events in the sequence.

The checking is not pipelined, which means that if *event_sequence*[num_cks -1] is sampled equal to 1 while a check is in progress, it is ignored, even if the check is verifying the last bit of the sequence (*event_sequence* [0]).

Assertion Checks

CYCLE_SEQUENCE	The necessary condition occurred, but it was not followed by the event or event sequence.
illegal num_cks parameter	The <i>num_cks</i> parameter is less than 2.

Implicit X/Z Checks

First event in the sequence contains X or Z	Value of the first event in the sequence was X or Z.
Subsequent events in the sequence contain X or Z	Value of a subsequent event in the sequence was X or Z.
First num_cks-1 events in the sequence contain X or Z	Values of the events in the sequence (except the last event) were X or Z.
Last event in the sequence contains X or Z	Value of the last event in the sequence was X or Z.

Cover Points

cover_sequence_trigger BASIC — The trigger sequence occurred.

See also

ovl_change ovl_unchange

Examples

```
ovl_cycle_sequence #(
   'OVL_ERROR,
                                                   // severity_level
                                                   // num_cks
                                                  // necessary_condition
   'OVL_TRIGGER_ON_MOST_PIPE,
   'OVL_ASSERT,
                                                  // property_type
                                                  // msq
   "Error: invalid WR sequence",
   'OVL_COVER_DEFAULT,
                                                  // coverage_level
   'OVL_POSEDGE,
                                                  // clock_edge
   'OVL_ACTIVE_LOW,
                                                  // reset_polarity
   'OVL_GATE_CLOCK )
                                                  // gating_type
   valid_write_sequence (
      clock,
                                                   // clock
                                                   // reset
      reset,
                                                   // enable
      enable,
      \{ r_{opcode} == WR,
                                                   // event_sequence
      r_opcode == 'WAIT,
      (r_opcode == 'WR)
      (r_opcode == 'DONE) } ,
      fire_valid_write_sequence );
                                                  // fire
```

Ensures that a 'WR, 'WAIT sequence in consecutive cycles is followed by a 'DONE or 'WR.

The sequence checking is pipelined.


```
ovl_cycle_sequence #(
   'OVL_ERROR,
                                                  // severity_level
   3,
                                                  // num_cks
   'OVL TRIGGER ON FIRST PIPE,
                                                  // necessary_condition
   'OVL ASSERT,
                                                  // property_type
                                                  // msg
   "Error: invalid WR sequence",
   'OVL COVER DEFAULT,
                                                  // coverage level
   'OVL_POSEDGE,
                                                  // clock_edge
   'OVL_ACTIVE_LOW,
                                                  // reset_polarity
   'OVL GATE CLOCK )
                                                  // gating_type
   valid_write_sequence (
                                                  // clock
      clock,
      reset,
                                                  // reset
                                                  // enable
      enable,
      { r opcode == 'WR,
                                                  // event sequence
      (r_opcode == 'WAIT) ||
      (r_opcode == 'WR),
      (r_opcode == 'WAIT) ||
      (r_opcode == 'DONE)},
      fire_valid_write_sequence );
                                                  // fire
```

Ensures that a 'WR is followed by a 'WAIT or another 'WR, which is then followed by a 'WAIT or a 'DONE (in consecutive cycles). The sequence checking is pipelined: a new 'WR during a sequence check initiates an additional check.


```
ovl_cycle_sequence #(
   'OVL_ERROR,
                                                   // severity_level
   3,
                                                   // num cks
                                                   // necessary_condition
   'OVL_TRIGGER_ON_FIRST_NOPIPE,
   'OVL ASSERT,
                                                     property_type
   "Error: invalid WR sequence",
                                                   // msg
   'OVL_COVER_DEFAULT,
                                                     coverage_level
   'OVL POSEDGE,
                                                   // clock edge
                                                   // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_write_sequence (
      clock,
                                                   // clock
      reset,
                                                   // reset
      enable,
                                                   // enable
                                                   // event_sequence
      { r_opcode == 'WR,
      (r_opcode == 'WAIT) ||
      (r_opcode == 'WR),
      (r_opcode == 'DONE)},
      fire_valid_write_sequence );
                                                  // fire
```

Ensures that a 'WR is followed by a 'WAIT or another 'WR, which is then followed by a 'DONE (in consecutive cycles). The sequence checking is not pipelined: a new 'WR during a sequence check does not initiate an additional check.

ovl_decrement

Ensures that the value of an expression changes only by the specified decrement value.

Syntax

ovl_decrement

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
value	Decrement value for test_expr. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should decrement by <i>value</i> whenever its value changes from the active edge of <i>clock</i> to the next active edge of clock.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_decrement assertion checker checks the expression *test_expr* at each active edge of *clock* to determine if its value has changed from its value at the previous active edge of *clock*. If so, the checker verifies that the new value equals the previous value decremented by *value*. The checker allows the value of *test_expr* to wrap, if the total change equals the decrement *value*. For example, if width is 5 and value is 4, then the following change in *test_expr* is valid:

```
5'b00010 -> 5'b11110
```

The checker is useful for ensuring proper changes in structures such as counters and finite-state machines. For example, the checker is useful for circular queue structures with address counters that can wrap. Do not use this checker for variables or expressions that can increment. Instead consider using the ovl_delta checker.

Assertion Checks

DECREMENT	Expression evaluated to a value that is not its previous value
	decremented by <i>value</i> .

Implicit X/Z Checks

test_expr contains X Expression value contained X or Z bits. or Z

Cover Points

cover_test_expr_change BASIC — Expression changed value.

Notes

1. The assertion check compares the current value of *test_expr* with its previous value. Therefore, checking does not start until the second rising clock edge of *clock* after *reset* deasserts.

See also

```
ovl_delta ovl_no_underflow ovl increment
```

Example

```
ovl_decrement #(
                                                   // severity level
   'OVL ERROR,
   4,
                                                   // width
   1,
                                                   // value
   'OVL_ASSERT,
                                                   // property_type
   "Error: invalid binary decrement",
                                                   // msg
                                                   // coverage_level
   'OVL COVER DEFAULT,
                                                   // clock_edge
   'OVL_POSEDGE,
                                                   // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL GATE CLOCK)
                                                   // gating_type
   valid_count (
      clock,
                                                   // clock
                                                   // reset
      reset,
      enable,
                                                   // enable
      count,
                                                   // test_expr
      fire_valid_count );
                                                   // fire
```

Ensures that the programmable counter's *count* variable only decrements by 1. If *count* wraps, the assertion fails, because the change is not a binary decrement.

ovl_delta

Ensures that the value of an expression changes only by a value in the specified range.

Syntax

instance_name (clock, reset, enable, test_expr, fire);

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
min	Minimum delta value allowed for test_expr. Default: 1.
max	Maximum delta value allowed for test_expr. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should only change by a delta value in the range min to max.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_delta assertion checker checks the expression *test_expr* at each active edge of *clock* to determine if its value has changed from its value at the previous active edge of *clock*. If so, the checker verifies that the difference between the new value and the previous value (i.e., the delta value) is in the range from *min* to *max*, inclusive. If the delta value is less than *min* or greater than *max*, the assertion fails.

The checker is useful for ensuring proper changes in control structures such as up-down counters. For these structures, ovl_delta can check for underflow and overflow. In datapath and arithmetic circuits, ovl_delta can check for "smooth" transitions of the values of various variables (for example, for a variable that controls a physical variable that cannot detect a severe change from its previous value).

Assertion Checks

DELTA	Expression changed value by a delta value not in the range <i>min</i>
	to max.

Implicit X/Z Checks

test_expr contains X	Expression value contained X or Z bits.
or Z	1

Cover Points

```
cover_test_expr_change BASIC — Expression changed value.

cover_test_expr_delta_ CORNER — Expression changed value by a delta equal to min.

cover_test_expr_delta_ CORNER — Expression changed value by a delta equal to max.

at_max
```

Errors

The parameters *min* and *max* must be specified such that *min* is less than or equal to *max*. Otherwise, the assertion fails on each tested clock cycle.

Notes

- 1. The assertion check compares the current value of <code>test_expr</code> with its previous value. Therefore, checking does not start until the second rising clock edge of <code>clock</code> after <code>reset</code> deasserts.
- 2. The assertion check allows the value of *test_expr* to wrap. The overflow or underflow amount is included in the delta value calculation.

See also

```
ovl_decrementovl_no_underflowovl_incrementovl_rangeovl no overflow
```

Example

```
ovl_delta #(
   'OVL ERROR,
                                                   // severity level
                                                   // width
   16,
                                                   // min
   Ο,
   8,
                                                   // max
   'OVL_ASSERT,
                                                   // property_type
   "Error: y values not smooth",
                                                   // msg
   'OVL COVER DEFAULT,
                                                   // coverage level
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL GATE CLOCK)
                                                   // gating_type
   valid_smooth (
      clock,
                                                   // clock
      reset,
                                                   // reset
      enable,
                                                      enable
                                                   // test expr
      fire_valid_smooth );
                                                   // fire
```

Ensures that the y output only changes by a maximum of 8 units each cycle (min is 0).

ovl_even_parity

Ensures that the value of an expression has even parity.

Syntax

ovl_even_parity

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should evaluate to a value with even parity on the rising clock edge.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_even_parity assertion checker checks the expression *test_expr* at each active edge of *clock* to verify the expression evaluates to a value that has even parity. A value has even parity if it is 0 or if the number of bits set to 1 is even.

The checker is useful for verifying control circuits, for example, it can be used to verify a finite-state machine with error detection. In a datapath circuit the checker can perform parity error checking of address and data buses.

Assertion Checks

EVEN_PARITY	Expression eval	luated to a valı	ue whose pari	tv is not even.

Implicit X/Z Checks

```
\begin{array}{ll} \text{test\_expr contains } \textbf{X} & \text{Expression value contained } \textbf{X} \text{ or } \textbf{Z} \text{ bits.} \\ \text{or } \textbf{Z} \end{array}
```

Cover Points

```
cover_test_expr_change SANITY — Expression has changed value.
```

See also

```
ovl_odd_parity
```

Example

```
ovl_even_parity #(
   'OVL_ERROR,
                                                     // severity_level
   8,
                                                     // width
   'OVL ASSERT,
                                                     // property_type
   "Error: data has odd parity",
                                                     // msq
   'OVL_COVER_DEFAULT,
                                                     // coverage_level
   'OVL_POSEDGE,
                                                     // clock_edge
   'OVL_ACTIVE_LOW,
                                                     // reset_polarity
   'OVL_GATE_CLOCK)
                                                     // gating_type
   valid_data_even_parity (
      clock,
                                                     // clock
      reset,
                                                     // reset
      enable,
                                                     // enable
      data,
                                                     // test_expr
      fire_valid_data_even_parity );
                                                     // fire
Ensures that data has even parity at each rising edge of clock.
     reset
      data
                                                  EVEN PARITY
                                                  Error: data has odd parity
```

ovl_fifo

Ensures the data integrity of a FIFO and ensures that the FIFO does not overflow or underflow.

_

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of a data item. Default: 1.
depth	FIFO depth. The <i>depth</i> must be > 0 . Default: 2.
pass_thru	How the FIFO handles a dequeue and enqueue in the same cycle if the FIFO is empty. pass_thru = 0 (Default) No pass-through mode. Simultaneous dequeue/enqueue of an empty FIFO is an dequeue violation. pass_thru = 1 Pass-through mode. Enqueue happens before the dequeue. Simultaneous enqueue/dequeue of an empty FIFO is not a dequeue violation.

How the FIFO handles an enqueue and dequeue in the same cycle registered if the FIFO is full. registered = 0 (Default) No registered mode. Simultaneous enqueue/dequeue of a full FIFO is an enqueue violation. registered = 1Registered mode. Dequeue happens before the enqueue. Simultaneous enqueue/dequeue of a full FIFO is not an enqueue violation. eng_latency Latency for enqueue data. eng latency = 0 (Default) Checks and coverage assume *enq_data* is valid and the enqueue operation is performed in the same cycle *enq* asserts. enq_latency > 0 Checks and coverage assume enq data is valid and the enqueue operation is performed *enq_latency* cycles after *enq* asserts. deq_latency Latency for dequeued data. deg latency = 0 (Default) Checks and coverage assume deq data is valid and the dequeue operation is performed in the same cycle deq asserts. deg latency > 0 Checks and coverage assume *deq_data* is valid and the dequeue operation is performed deg_latency cycles after deg asserts. preload_count Number of items to preload the FIFO on reset. The preload port is a concatenated list of items to be preloaded into the FIFO. Default: 0 (FIFO empty on reset). high water mark FIFO high-water mark. Must be < depth. A value of 0 disables the high-water mark cover point. Default: 0. value check Whether or not to perform value checks. value check = 0 (Default) Turns off the value check. $value\ check = 1$ Turns on the value check. property_type Property type. Default: 'OVL PROPERTY DEFAULT ('OVL ASSERT). msq Error message printed when assertion fails. Default: 'OVL MSG DEFAULT ("VIOLATION"). coverage_level Coverage level. Default: 'OVL COVER DEFAULT ('OVL BASIC). clock edge Active edge of the *clock* input. Default: 'OVL CLOCK EDGE DEFAULT ('OVL POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating type = 'OVL GATE CLOCK

(the default gating type) or reset (if gating_type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

enq FIFO enqueue input. When enq asserts, the FIFO performs an

enqueue operation. A data item is enqueued onto the FIFO and the FIFO counter increments by 1. If *enq_latency* is 0, the enqueue is performed in the same cycle *enq* asserts. Otherwise, the enqueue and counter increment occur *enq_latency* cycles

later.

deq FIFO dequeue input. When deg asserts, the FIFO performs a

dequeue operation. A data item is dequeued from the FIFO and the FIFO counter decrements by 1. If *deq_latency* is 0, the dequeue is performed in the same cycle *deq* asserts. Otherwise, the dequeue and counter decrement occur *deq_latency* cycles

later.

full Output status flag from the FIFO.

full = 0 FIFO not full. full = 1 FIFO full.

empty Output status flag from the FIFO.

empty = 0

FIFO not empty.

empty = 1 FIFO empty.

enq_data[width-1:0] Enqueue data input to the FIFO. Contains the data item to

enqueue in that cycle (if $enq_latency = 0$) or to enqueue in the

cycle *eng_latency* cycles later (if *eng_latency* > 0).

deq_data[width-1:0] Dequeue data output from the FIFO. Contains the dequeued data

item in that cycle (if $deg_latency = 0$) or in the cycle $eng_latency$

cycles later (if $enq_latency > 0$).

```
preload
[preload_count*width-1
:0]
```

Concatenated preload data to enqueue on reset.

preload count = 0

No preload of the FIFO is assumed. The width of preload should be *width*, however no values from *preload* are used. The FIFO is assumed to be empty on reset.

preload_count > 0

Checker assumes the value of *preload* is a concatenated list of items that were all enqueued on the FIFO on reset (or simulation start). The width of preload should be *preload_count * width* (preload items are the same width). Preload values are enqueued from the low order item to the high order item.

```
fire
['OVL_FIRE_WIDTH-1:0]
```

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_fifo assertion checker ensures a FIFO functions legally. A FIFO is a memory structure that stores and retrieves data items based on a first-in first-out queueing protocol. The FIFO has configured properties specified as parameters to the ovl_fifo checker: width of the data items (width), capacity of the FIFO (depth), and the high-water mark that identifies the point at which the FIFO is almost full (high_water_mark). Control and data signals to and from the FIFO are connected to the ovl_fifo checker.

The checker checks *enq* and *deq* at the active edge of *clock* each cycle the checker is active. If *enq* is TRUE, the FIFO is enqueuing a data item onto the FIFO. If *deq* is TRUE, the FIFO is in the process of dequeuing a data item. Both enqueue and dequeue operations can each take more than one cycle. If the *enq_latency* parameter is defined > 0, then *enq_data* is ready *enq_latency* clock cycles after the *enq* signal asserts. Similarly, if the *deq_latency* parameter is defined > 0, then *deq_data* is ready *deq_latency* clock cycles after the *deq* signal asserts. All assertion checks and coverage are based on enqueue/dequeue data after the latency periods.

The checker ensures the FIFO does not enqueue an item when it is supposed to be full (enqueue check) and the FIFO does not dequeue an item when it is supposed to be empty (dequeue check). The checker also ensures that the FIFO's *full* and *empty* status flags operate correctly (full and empty checks). The checker also can verify the data integrity of dequeued FIFO data (value check).

The checker also can be configured to handle other FIFO characteristics such as preloading items on reset and allowing pass-through operations and registered enqueue/dequeues.

Assertion Checks

ENQUEUE Enqueue occurred that would overflow the FIFO. registered = 0Enq was TRUE, but enq_latency cycles later, FIFO contained depth items. registered = 1Eng was TRUE, but eng latency cycles later, FIFO contained depth items and no item was to be dequeued that cycle. Dequeue occurred that would underflow the FIFO. DEQUEUE pass thru = 0Deg was TRUE, but deg_latency cycles later, FIFO contained no items. pass thru = 1 Deg was TRUE, but eng_latency cycles later, FIFO contained no items and no item was to be enqueued that cycle. FULL FIFO 'full' signal asserted or deasserted in the wrong cycle. FIFO contained fewer than *depth* items but *full* was TRUE or FIFO contained *depth* items but *full* was FALSE. **EMPTY** FIFO 'empty' signal asserted or deasserted in the wrong cycle. FIFO contained one or more items but *empty* was TRUE or FIFO contained no items but *empty* was FALSE. VALUE Dequeued FIFO value did not equal the corresponding enqueued value. $deq_latency = 0$ Deg was TRUE, but deg_data did not equal the

corresponding enqueued item.

deq_latency > 0

Deq was TRUE, but deq_latency cycles later deq_data did

not equal the corresponding enqueued item.

This check automatically turns off if an enqueue or dequeue check violation occurs since it is no longer possible to correspond enqueued with dequeued values. The check turns back on when the checker resets.

Implicit X/Z Checks

enq contains X or Z	Enqueue signal was X or Z.
deq contains X or Z	Dequeue signal was X or Z.
full contains X or Z	FIFO full signal was X or Z.
empty contains X or Z	FIFO empty signal was X or Z.
enq_data contains X or Z	Enqueue data expression contained X or Z bits.

 $\begin{array}{ll} \texttt{deq_data contains } \ \texttt{X} \ \texttt{or} & \textbf{Dequeue data expression contained } X \ \texttt{or} \ Z \ \texttt{bits}. \end{array}$

Cover Points

cover_enqueues	SANITY — Number of data items enqueued on the FIFO.
cover_dequeues	SANITY — Number of data items dequeued from the FIFO.
cover_simultaneous_ enq_deq	BASIC — Number of cycles enq and deq asserted together.
<pre>cover_enq_followed_by_ deq</pre>	BASIC — Number of times <i>enq</i> asserted, then deasserted in the next cycle and stayed deasserted until eventually <i>deq</i> asserted.
cover_high_water_mark	CORNER — Number of times the FIFO count transitioned from $< high_water_mark$ to $\ge high_water_mark$. Not reported if $high_water_mark$ is 0.
cover_simultaneous_ deq_enq_when_empty	CORNER — Number of cycles the FIFO was enqueued and dequeued simultaneously when it was empty.
cover_simultaneous_deq_enq_when_full	CORNER — Number of cycles the FIFO was enqueued and dequeued simultaneously when it was full.
cover_fifo_empty	CORNER —Number of cycles FIFO was empty after processing enqueues and dequeues for the cycle.
cover_fifo_full	CORNER — Number of cycles FIFO was full after processing enqueues and dequeues for the cycle.
cover_observed_counts	STATISTIC — Reports the FIFO counts that occurred at least once.

ovl_fifo_index

Ensures that a FIFO-type structure never overflows or underflows. This checker can be configured to support multiple pushes (FIFO writes) and pops (FIFO reads) during the same clock cycle.

Syntax

```
ovl_fifo_index
```

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
depth	Maximum number of elements in the FIFO or queue structure. This parameter must be > 0 . Default: 1.
push_width	Width of the <i>push</i> argument. Default: 1.
pop_width	Width of the <i>pop</i> argument. Default: 1.
simultaneous_push_pop	Whether or not to allow simultaneous push/pop operations in the same clock cycle. When set to 0, if push and pop operations occur in the same cycle, the assertion fails. Default: 1 (simultaneous push/pop operations are allowed).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset polarity Polarity (active level) of the *reset* input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

push[push_width-1:0] Expression that indicates the number of push operations that will

occur during the current cycle.

pop[pop_width-1:0] Expression that indicates the number of pop operations that will

occur during the current cycle.

fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_fifo_index assertion checker tracks the numbers of pushes (writes) and pops (reads) that occur for a FIFO or queue memory structure. This checker does permit simultaneous pushes/pops on the queue within the same clock cycle. It ensures the FIFO never overflows (i.e., too many pushes occur without enough pops) and never underflows (i.e., too many pops occur without enough pushes). This checker is more complex than the ovl_no_overflow and ovl no underflow checkers, which check only the boundary conditions (overflow and underflow respectively).

Assertion Checks

OVERLOW Push operation overflowed the FIFO.

Pop operation underflowed the FIFO. UNDERFLOW

ILLEGAL PUSH AND POP Push and pop operations performed in the same clock cycle, but

the simultaneous_push_pop parameter is set to 0.

Implicit X/Z Checks

push contains X or Z

Push expression value contained X or Z bits.

pop contains X or Z

Pop expression value contained X or Z bits.

Cover Points

cover_fifo_push BASIC — Push operation occurred.

cover_fifo_pop BASIC — Pop operation occurred.

cover_fifo_full CORNER — FIFO was full.

cover_fifo_empty CORNER — FIFO was empty.

cover_fifo_ cover_fifo_ CORNER — Push and pop operations occurred in the same clock cycle.

Errors

Depth parameter value $\begin{array}{c} \text{Depth parameter is set to 0.} \\ \text{must be > 0} \end{array}$

Notes

1. The checker checks the values of the *push* and *pop* expressions. By default, (i.e., simultaneous_push_pop is 1), "simultaneous" push/pop operations are allowed. In this case, the checker assumes the design properly handles simultaneous push/pop operations, so it only ensures that the FIFO buffer index at the *end of the cycle* has not overflowed or underflowed. The assertion cannot ensure the FIFO buffer index does not overflow between a push and pop performed in the same cycle. Similarly, the assertion cannot ensure the FIFO buffer index does not underflow between a pop and push performed in the same cycle.

See also

ovl no overflow ovl no underflow

Examples

```
ovl_fifo_index #(
   'OVL_ERROR,
                                                    // severity_level
                                                    // depth
   8,
   1,
                                                    // push_width
   1,
                                                    // pop width
   1,
                                                    // simultaneous_push_pop
   'OVL_ASSERT,
                                                    // property_type
   "Error",
                                                    // msg
   'OVL_COVER_DEFAULT,
                                                       coverage_level
   'OVL_POSEDGE,
                                                    // clock_edge
   'OVL_ACTIVE_LOW,
                                                    // reset_polarity
   'OVL_GATE_CLOCK)
                                                    // gating_type
                                                    // simultaneous_push_pop
   no_over_underflow (
      clock,
                                                    // clock
                                                    // reset
      reset,
      enable,
                                                    // enable
      push,
                                                    // push
                                                   // pop
// fire
      fire_fifo_no_over_underflow );
```

Ensures that an 8-element FIFO never overflows or underflows. Only single pushes and pops can occur in a clock cycle (*push_width* and *pop_width* values are 1). A push and pop operation in the same clock cycle is allowed (value of *simultaneous push pop* is 1).


```
ovl_fifo_index #(
   'OVL_ERROR,
                                                     // severity_level
   8,
                                                     // depth
   1,
                                                     // push_width
   1,
                                                     // pop_width
   0,
                                                     // simultaneous_push_pop
                                                     // property_type
// msg
   'OVL_ASSERT,
   "violation",
   `OVL_COVER_DEFAULT,
                                                     // coverage_level
   'OVL_POSEDGE,
                                                     // clock_edge
   'OVL_ACTIVE_LOW,
                                                     // reset_polarity
   'OVL_GATE_CLOCK)
                                                     // gating_type
   no_over_underflow (
                                                     // clock
      clock,
      reset,
                                                     // reset
                                                    // enable
// push
      enable,
      push,
                                                     // pop
      pop,
      fire_fifo_no_over_underflow );
                                                    // fire
```

Ensures that an 8-element FIFO never overflows or underflows and that in no cycle do both push and pop operations occur.

ovl_frame

Ensures that when a specified start event is TRUE, then an expression must not evaluate TRUE before a minimum number of clock cycles and must transition to TRUE no later than a maximum number of clock cycles.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
min_cks	Number of cycles after the start event that <i>test_expr</i> must not evaluate to TRUE. The special case where <i>min_cks</i> is 0 turns off minimum checking (i.e., <i>test_expr</i> can be TRUE in the same clock cycle as the start event). Default: 0.
max_cks	Number of cycles after the start event that during which <i>test_expr</i> must transition to TRUE. The special case where <i>max_cks</i> is 0 turns off maximum checking (i.e., <i>test_expr</i> does not need to transition to TRUE). Default: 0.
action_on_new_start	Method for handling a new start event that occurs while a check is pending. Values are: 'OVL_IGNORE_NEW_START, 'OVL_RESET_ON_NEW_START and 'OVL_ERROR_ON_NEW_START. Default: 'OVL_IGNORE_NEW_START.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").

Coverage level. Default: 'OVL COVER DEFAULT coverage level

('OVL_BASIC).

Active edge of the *clock* input. Default: clock_edge

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

Polarity (active level) of the *reset* input. Default: reset polarity

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK enable

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

Expression that (along with action on new start) identifies start_event

when to initiate checking of test expr.

test_expr Expression that should not evaluate to TRUE for min cks -1

> cycles after start event initiates a check (unless min cks is 0) and that should evaluate to TRUE before *max_cks* cycles transpire

(unless max_cks is 0).

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check fire ['OVL FIRE WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_frame assertion checker checks for a start event at each active edge of *clock*. A start event occurs if start event has transitioned to TRUE, either at the clock edge or in the previous cycle. A start event also occurs if start event is TRUE at the rising clock edge after a checker reset.

When a start event occurs, the checker performs the following steps:

- 1. Unless it is disabled by setting min cks to 0, a minimum check is initiated. The check evaluates test expr at each subsequent active edge of clock for the next min cks cycles. However, if a sampled value of test_expr is TRUE, the minimum check fails and the checker returns to the state of waiting for a start event.
- 2. Unless it is disabled by setting max cks to 0 (or a minimum violation has occurred), a maximum check is initiated. The check evaluates test_expr at each subsequent active edge of clock for the next (max_cks - min_cks) cycles. However, if a sampled value of

test_expr is TRUE, the checker returns to the state of waiting for a start event. If its value does not transition to TRUE by the time max_cks cycles transpire (from the start of checking), the maximum check fails at cycle max_cks.

3. The checker returns to the state of waiting for a start event.

The method used to determine how to handle *start_event* when the checker is in the state of checking *test_expr* is controlled by the *action_on_new_start* parameter. The checker has the following actions:

• 'OVL_IGNORE_NEW_START

The checker does not sample *start_event* until it returns to the state of waiting for a start event.

'OVL_RESET_ON_NEW_START

Each time the checker samples *test_expr*, it also samples *start_event*. If *start_event* is TRUE, the checker first checks whether a pending minimum check is just failing. If so, the assertion failed. Then—unless the assertion failed and it was fatal—the checker terminates the current checks and initiates a new pair of checks.

• 'OVL_ERROR_ON_NEW_START

Each time the checker samples *test_expr*, it also samples *start_event*. If *start_event* is TRUE, the assertion fails with an illegal start event error. If the error is not fatal, the checker returns to the state of waiting for a start event at the next rising clock edge.

Assertion Checks

FRAME	Value of <i>test_expr</i> was TRUE before <i>min_cks</i> cycles after <i>start_event</i> was sampled TRUE or its value was not TRUE before <i>max_cks</i> cycles transpired after the active edge of <i>start_event</i> .
illegal start event	The <i>action_on_new_start</i> parameter is set to 'OVL_ERROR_ON_NEW_START and <i>start_event</i> expression evaluated to TRUE while the checker was monitoring <i>test_expr</i> .
min_cks > max_cks	The <i>min_cks</i> parameter is greater than the <i>max_cks</i> parameter (and <i>max_cks</i> >0). Unless the violation is fatal, either the minimum or maximum check will fail.

Implicit X/Z Checks

```
\begin{array}{ll} \text{test\_expr contains X} & \text{Expression value was X or Z.} \\ \text{or Z} & \text{Start\_event contains X} & \text{Start event value was X or Z.} \\ \text{or Z} & \end{array}
```

Cover Points

BASIC — The value of *start_event* was TRUE on an active edge of *clock*.

Notes

1. The special case where *min_cks* and *max_cks* are both 0 is the default. Here, *test_expr* must be TRUE every cycle there is a start event.

See also

```
ovl_changeovl_unchangeovl_nextovl_widthovl time
```

Examples

```
ovl frame #(
   'OVL ERROR,
                                                   // severity_level
                                                   // min_cks
// max_cks
   2,
   4,
                                                   // action_on_new_start
   'OVL_IGNORE_NEW_START,
   'OVL_ASSERT,
                                                   // property_type
                                                   // msg
   "Error: invalid transaction",
   'OVL_COVER_DEFAULT,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL GATE CLOCK)
                                                   // gating_type
   valid transaction (
      clock,
                                                   // clock
                                                   // reset
      reset,
                                                   // enable
      enable,
      req,
                                                   // start event
                                                   // test_expr
      fire_valid_transaction );
                                                   // fire
```

Ensures that after a rising edge of *req*, *ack* goes high between 2 and 4 cycles later. New start events during transactions are not considered to be new transactions and are ignored.


```
ovl_frame #(
   'OVL_ERROR,
                                                  // severity_level
   2,
                                                  // min_cks
   4,
                                                  // max cks
   'OVL RESET ON NEW START,
                                                  // action on new start
   'OVL_ASSERT,
                                                   // property_type
   "Error: invalid transaction",
                                                   // msg
   'OVL_COVER_DEFAULT,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL ACTIVE LOW,
                                                  // reset_polarity
   'OVL_GATE_CLOCK )
                                                  // gating_type
   valid_transaction (
      clock,
                                                   // clock
      reset,
                                                   // reset
      enable,
                                                   // enable
                                                   // start_event
      req,
      ack,
                                                   // test_expr
      fire_valid_transaction );
                                                  // fire
```

Ensures that after a rising edge of *req*, *ack* goes high between 2 and 4 cycles later. A new start event during a transaction restarts the transaction.


```
ovl_frame #(
   'OVL_ERROR,
                                                   // severity_level
   2,
                                                   // min_cks
   4,
                                                   // max_cks
   'OVL_ERROR_ON_NEW_START,
                                                   // action_on_new_start
                                                   // property_type
   'OVL ASSERT,
                                                   // msg
// coverage_level
   "Error: invalid transaction",
   'OVL_COVER_DEFAULT,
   'OVL POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_transaction (
                                                   // clock
      clock,
      reset,
                                                   // reset
      enable,
                                                   // enable
      req,
                                                   // start_event
      ack,
                                                   // test_expr
      fire_valid_transaction );
                                                   // fire
```

Ensures that after a rising edge of *req*, *ack* goes high between 2 and 4 cycles later. Also ensures that a new transaction does not start before the previous transaction is acknowledged. If a start event occurs during a transaction, the checker does does not initiate a new check.

ovl_handshake

Ensures that specified request and acknowledge signals follow a specified handshake protocol.

Syntax

ovl handshake

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
min_ack_cycle	Minimum number of clock cycles before acknowledge. A value of 0 turns off the ack min cycle check. Default: 0.
max_ack_cycle	Maximum number of clock cycles before acknowledge. A value of 0 turns off the ack max cycle check. Default: 0.
req_drop	If greater than 0, value of <i>req</i> must remain TRUE until acknowledge. A value of 0 turns off the req drop check. Default: 0.
deassert_count	Maximum number of clock cycles after acknowledge that <i>req</i> can remain TRUE (i.e., <i>req</i> must not be stuck active). A value of 0 turns off the req deassert check. Default: 0.
max_ack_length	Maximum number of clock cycles that <i>ack</i> can be TRUE. A value of 0 turns off the max ack length check. Default: 0.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

req Expression that starts a transaction.

Expression that indicates the transaction is complete.

fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_handshake assertion checker checks the single-bit expressions req and ack at each active edge of clock to verify their values conform to the request-acknowledge handshake protocol specified by the checker parameters. A request event (where req transitions to TRUE) initiates a transaction on the active edge of clock and an acknowledge event (where ack transitions to TRUE) signals the transaction is complete on the active edge of clock. The transaction must not include multiple request events and every acknowledge must have a pending request. Other checks—to ensure the acknowledge is received in a specified window, the request is held active until the acknowledge, the requests and acknowledges are not stuck active and the pulse length is not too long—are enabled and controlled by the checker's parameters.

When a violation occurs, the checker discards any pending request. Checking is restarted the next cycle that *ack* is sampled FALSE.

Assertion Checks

MULTIPLE_REQ_VIOLATION The value of req transitioned to TRUE while waiting for an

acknowledge or while acknowledge was asserted. Extra requests

do not initiate new transactions.

ACK_WITHOUT_REQ_ The value of ack transitioned to TRUE without a pending

VIOLATION request.

ACK_MIN_CYCLE_ The value of ack transitioned to TRUE before min_ack_cycle

VIOLATION clock cycles transpired after the request.

ACK_MAX_CYCLE_ The value of ack did not transition to TRUE before

VIOLATION max_ack_cycle clock cycles transpired after the request.

REQ_DROP_VIOLATION The value of req transitioned from TRUE before an

acknowledge.

REQ_DEASSERT_VIOLATION The value of req did not transition from TRUE before

deassert_count clock cycles transpired after an acknowledge.

ACK_MAX_LENGTH_ The value of ack did not transition from TRUE before VIOLATION The value of ack did not transition from TRUE before violation and length clock evalue transpired after an acknowledge.

max_ack_length clock cycles transpired after an acknowledge.

Implicit X/Z Checks

req contains X or Z Req expression value was X or Z.

ack contains X or Z Ack expression value was X or Z.

Cover Points

cover_req_asserted BASIC — A transaction initiated.

cover_ack_asserted BASIC — A transaction completed.

See also

ovl_win_change ovl_window ovl_win_unchange

Examples

```
ovl_handshake #(
   'OVL_ERROR,
                                                   // severity_level
   0,
                                                   // min_ack_cycle
   0,
                                                   // max_ack_cycle
   0,
                                                   // reg drop
   0,
                                                   // deassert_count
   0,
                                                   // max_ack_length
   'OVL_ASSERT,
                                                   // property_type
                                                      msg
   "hold-holda handshake error",
                                                   // coverage_level
   'OVL_COVER_DEFAULT,
                                                   // clock_edge
   'OVL_POSEDGE,
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_hold_holda (
                                                   // clock
      clock,
                                                   // reset
      reset,
      enable,
                                                      enable
      hold,
                                                   // req
      holda,
                                                   // ack
      fire_valid_hold_holda );
                                                   // fire
```

Ensures that multiple *hold* requests are not made while waiting for a *holda* acknowledge and that every *holda* acknowledge is in response to a unique *hold* request.


```
ovl_handshake #(
   'OVL_ERROR,
                                                   // severity_level
   2,
                                                   // min_ack_cycle
                                                   // max_ack_cycle
   3,
   0,
                                                   // req_drop
   0,
                                                   // deassert_count
   0,
                                                   // max_ack_length
   'OVL_ASSERT,
                                                   // property_type
   "hold-holda handshake error",
                                                   // msg
                                                   // coverage_level
   'OVL_COVER_DEFAULT,
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_hold_holda (
      clock,
                                                   // clock
      reset,
                                                   // reset
      enable,
                                                   // enable
      hold,
                                                   // req
      holda,
                                                   // ack
      fire_valid_hold_holda );
                                                   // fire
```

Ensures that multiple *hold* requests are not made while waiting for a *holda* acknowledge and that every *holda* acknowledge is in response to a unique *hold* request. Ensures *holda* acknowledge asserts 2 to 3 cycles after each hold request.


```
ovl_handshake #(
   'OVL_ERROR,
                                                   // severity_level
   0,
                                                   // min_ack_cycle
   0,
                                                   // max_ack_cycle
   0,
                                                   // req_drop
   0,
                                                   // deassert_count
   2,
                                                   // max_ack_length
   'OVL_ASSERT,
                                                   // property_type
   "hold-holda handshake error",
                                                   // msg
                                                   // coverage_level
   'OVL_COVER_DEFAULT,
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_hold_holda (
      clock,
                                                   // clock
      reset,
                                                   // reset
      enable,
                                                   // enable
      hold,
                                                   // req
      holda,
                                                   // ack
      fire_valid_hold_holda );
                                                   // fire
```

Ensures that multiple *hold* requests are not made while waiting for a *holda* acknowledge and that every *holda* acknowledge is in response to a unique *hold* request. Ensures *holda* acknowledge asserts for 2 cycles.


```
ovl_handshake #(
   'OVL_ERROR,
                                                   // severity_level
   0,
                                                   // min_ack_cycle
   0,
                                                   // max_ack_cycle
   1,
                                                   // req_drop
   1,
                                                   // deassert_count
   0,
                                                   // max_ack_length
   'OVL_ASSERT,
                                                   // property_type
   "hold-holda handshake error",
                                                   // msg
   'OVL_COVER_DEFAULT,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_hold_holda (
      clock,
                                                   // clock
      reset,
                                                   // reset
      enable,
                                                   // enable
      hold,
                                                   // req
      holda,
                                                   // ack
      fire_valid_hold_holda );
                                                   // fire
```

Ensures that multiple *hold* requests are not made while waiting for a *holda* acknowledge and that every *holda* acknowledge is in response to a unique *hold* request. Ensures *hold* request remains asserted until its *holda* acknowledge and then deasserts in the next cycle.

ovl_hold_value

Ensures that once an expression matches the value of a second expression, the first expression does not change value until a specified event window arrives and then changes value some time in that window.

Syntax

```
ovl_hold_value
      [#(severity_level, width, min, max, property_type, msg,
         coverage_level, clock_edge, reset_polarity, gating_type)]
   instance_name (clock, reset, enable, test_expr, value, fire);
```

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of test_expr and value. Default: 2.
min	Number of cycles after the value match that the event window opens. Default: 0 (test_expr can change value in any cycle).
max	Number of cycles after the value match that the event window closes. But if $max = 0$, no event window opens and there are the following special cases: min = 0 and max = 0 When test_expr and value match, test_expr must change value in the next cycle. min > 0 and max = 0 When test_expr and value match, test_expr must not change value in the next min-1 cycles. Default: 0.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).

Active edge of the *clock* input. Default: clock edge

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the *reset* input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating type* = 'OVL GATE CLOCK

(the default gating type) or reset (if gating type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

test_expr[width-1:0] Variable or expression to check.

value[width-1:0] Value to match with test expr.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl hold value assertion checker checks test expr and value at the active edge of clock. If test expr has changed value and the values of test expr and value match, the checker verifies that the value of *test expr* holds as follows:

• 0 = min = max (default)

If the value of *test_expr* does not change in the next cycle, a hold_value violation occurs.

0 = min < max

If the value of test_expr has not changed within the next max cycles, a hold_value violation occurs.

 $0 < min \le max$

If the value of test_expr changes before an event window opens min cycles later, a hold value violation occurs. Then, if the value of test expr changes, the event window closes. However if test_expr still has not changed value max cycles after the value match, the event window closes and a hold value violation occurs.

• 0 = max < min

If the value of *test_expr* changes within the next *min*-1 cycles a hold_value violation occurs.

The checker returns to the state of checking *test_expr* and *value* in the next cycle.

Assertion Checks

HOLD_VALUE

A match occurred and the expression had the same value in the next cycle.

0 = min = max

After matching *value*, *test_expr* held the same value in the next cycle.

A match occurred and the expression held the same value for the next 'max' cycles.

0 = min < max

After matching *value*, *test_expr* held the same value for the next *max* cycles.

A match occurred and the expression changed value before the event window or held the same value through the event window.

 $0 < min \le max$

After matching *value*, *test_expr* did not hold the same value for the next *min*-1 cycles or *test_expr* held the same value for the next *max* cycles.

A match occurred and the expression changed value before the event window opened.

0 = max < min

After matching *value*, *test_expr* did not hold the same value for the next *min*-1 cycles.

Implicit X/Z Checks

test_expr contains X
or Z

Expression contained X or Z bits.

value contains X or Z

Value contained X or Z bits.

Cover Points

cover_test_expr_
changes

SANITY — Number of cycles *test_expr* changed value.

cover_hold_value_for_
min cks

CORNER — Number of times *test_expr* held value for exactly *min* cycles.

cover_hold_value_for_
max_cks

CORNER — Number of times *test_expr* held value for exactly *max*+1 cycles.

cover_hold_value_for_
max_cks CORNER — indicates that the test_expr was held exactly equal

to value for specified max clocks. Not reported if max = 0 and

min > 0.

STATISTIC — Reports the hold times (in cycles) that occurred observed_hold_time

at least once.

ovl_implication

Ensures that a specified consequent expression is TRUE if the specified antecedent expression is TRUE.

Syntax

ovl_implication

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
antecedent_expr	Antecedent expression that is tested at the clock event.
consequent_expr	Consequent expression that should evaluate to TRUE if <i>antecedent_expr</i> evaluates to TRUE when tested.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_implication assertion checker checks the single-bit expression *antecedent_expr* at each active edge of *clock*. If *antecedent_expr* is TRUE, then the checker verifies that the value of *consequent_expr* is also TRUE. If *antecedent_expr* is not TRUE, then the assertion is valid regardless of the value of *consequent_expr*.

Assertion Checks

Implicit X/Z Checks

antecedent_expr contains X or Z	Antecedent expression value was X or Z.
consequent_expr contains X or Z	Consequent expression value was X or Z.

Cover Points

```
cover_antecedent BASIC — The antecedent_expr evaluated to TRUE.
```

Notes

1. This assertion checker is equivalent to:

See also

```
ovl_always ovl_never
ovl_always_on_edge ovl_proposition
```

Example

```
ovl_implication #(
   'OVL_ERROR,
                                                  // severity_level
   'OVL_ASSERT,
                                                   // property_type
                                                  // msg
   "Error: q valid but q full",
   'OVL COVER DEFAULT,
                                                  // coverage level
   'OVL_POSEDGE,
                                                   // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                  // gating_type
   not_full (
      clock,
                                                   // clock
                                                   // reset
      reset,
                                                   // enable
      enable,
      q_valid,
                                                   // antecedent_expr
      q_not_full,
                                                   // consequent_expr
      fire_not_full );
                                                   // fire
```

Ensures that q_not_full is TRUE at each rising edge of clock for which q_valid is TRUE.

ovl_increment

Ensures that the value of an expression changes only by the specified increment value.

Syntax

ovl_increment

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
value	Increment value for test_expr. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should increment by <i>value</i> whenever its value changes from the active edge of <i>clock</i> to the next active edge of <i>clock</i> .
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_increment assertion checker checks the expression *test_expr* at each active edge of *clock* to determine if its value has changed from its value at the previous active edge of *clock*. If so, the checker verifies that the new value equals the previous value incremented by *value*. The checker allows the value of *test_expr* to wrap, if the total change equals the increment *value*. For example, if *width* is 5 and *value* is 4, then the following change in *test_expr* is valid:

```
5'b11110 -> 5'b00010
```

The checker is useful for ensuring proper changes in structures such as counters and finite-state machines. For example, the checker is useful for circular queue structures with address counters that can wrap. Do not use this checker for variables or expressions that can decrement. Instead consider using the ovl_delta checker.

Assertion Checks

INCREMENT	Expression evaluated to a value that is not its previous value
	incremented by <i>value</i> .

Implicit X/Z Checks

```
test_expr contains X Expression value contained X or Z bits. or Z
```

Cover Points

```
cover_test_expr_change BASIC — Expression changed value.
```

Notes

1. The assertion check compares the current value of <code>test_expr</code> with its previous value. Therefore, checking does not start until the second rising clock edge of <code>clock</code> after <code>reset</code> deasserts.

See also

```
ovl_decrement ovl_no_overflow ovl delta
```

Example

```
ovl_increment #(
                                                   // severity_level
   'OVL ERROR,
   4,
                                                   // width
   1,
                                                   // value
   'OVL_ASSERT,
                                                   // property_type
   "Error: invalid binary increment",
                                                   // msg
                                                   // coverage_level
   'OVL COVER DEFAULT,
                                                   // clock_edge
   'OVL_POSEDGE,
                                                   // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_count (
      clock,
                                                   // clock
                                                   // reset
      reset,
      enable,
                                                   // enable
      count,
                                                   // test_expr
      fire_valid_count );
                                                   // fire
```

Ensures that the programmable counter's *count* variable only increments by 1. If *count* wraps, the assertion fails, because the change is not a binary increment.

ovl_memory_async

Ensures the integrity of accesses to an asynchronous memory.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
data_width	Number of bits in a data item. Default: 1
addr_width	Number of bits in an address. Default: 1
mem_size	Number of data items in the memory. Default: 2
addr_check	Whether or not to perform address checks. addr_check = 0 Turns off the address check. addr_check = 1 (Default) Turns on the address check.
init_check	Whether or not to perform initialization checks. init_check = 0 Turns off the initialization check. init_check = 1 (Default) Turns on the initialization check.

one_read_check Whether or not to perform one_read checks.

one_read_check = 0 (Default)
Turns off the one read check

one_read_check = 1

Turns on the one_read check.

one_write_check Whether or not to perform one_write checks.

one_write_check = 0 (Default)
Turns off the one_write check.

 $one_write_check = 1$

Turns on the one_write check.

value_check Whether or not to perform value checks.

value_check = 0 (Default)
Turns off the value check.

 $value_check = 1$

Turns on the value check.

property_type Property type. Default: 'OVL_PROPERTY_DEFAULT

('OVL_ASSERT).

msg Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL_COVER_DEFAULT

('OVL_BASIC).

ren_edge Active edge of the ren input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

wen_edge Active edge of the wen input. Default:

'OVL CLOCK EDGE DEFAULT ('OVL POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for ren and wen, if gating_type =

'OVL_GATE_CLOCK (the default gating type) or *reset* (if *gating_type* = 'OVL_GATE_RESET). Ignored if *gating_type* is

'OVL_NONE.

start_addr First address of the memory.

end_addr Last address of the memory.

Read enable input, whose active edge initiates a read operation ren from the memory location specified by raddr. Read address input. raddr rdata Read data input that holds the data item read from memory. Write enable input, whose active edge initiates a write operation wen of the data item in wdata to the memory location specified by waddr. waddr Write address input. wdata Write data input. fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

['OVL_FIRE_WIDTH-1:0]

The ovl_memory_async checker checks the two memory access enable signals wen and ren combinationally. The active edges of these signals are specified the wen_edge and ren_edge parameters (and by enable if gating_type is 'OVL_GATE_CLOCK). At the active edge of wen, the values of waddr, start_addr and end_addr are checked. If waddr is not in the range [start_addr:end_addr], an address check violation occurs. Otherwise, a write operation to the location specified by waddr is assumed. Similarly, at the active edge of ren, the values of raddr, start_addr and end_addr are checked. If raddr is not in the range [start_addr:end_addr], an address check violation occurs. Otherwise, a read operation from the location specified by raddr is assumed. Also, if raddr is uninitialized (i.e., has not been written to previously or at the current time), then an initialization check violation occurs.

By default, the address and init checks are on, but can be turned off by setting the *addr_check* and *init_check* parameters to 0. Note that other checks are valid only if the addresses are valid, so it is recommended that *addr_check* be left at 1. The checker can be configured to perform the following additional checks:

• one_write_check = 1

At the active edge of *wen*, if the previous access to the data at the address specified by *waddr* was a write or a simultaneous read/write to that address, a one_write check violation occurs, unless the current operation is a simultaneous read/write to that location.

• one_read_check = 1

At the active edge of *ren*, if the previous access to the data at the address specified by *raddr* was a read (but not a simultaneous read/write to that address), a one_read check violation occurs.

• value_check = 1

At the active edge of *wen*, the current value of *wdata* is the value assumed to be written to the memory location specified by *waddr*. At the active edge of *ren*, if the value of *rdata* does not match the expected value last written to the address specified by *raddr*, a value check violation occurs.

Note that when active edges of wen and ren occur together, a simultaneous read/write operation is assumed. Here, the read is performed first (for example, if raddr = waddr).

Assertion Checks

ADDRESS Write address was out of range.

At an active edge of wen, waddr < start_addr or waddr >

end_addr.

Read address was out of range.

At an active edge of ren, raddr < start_addr or raddr >

end_addr.

INITIALIZATION Read location was not initialized.

At an active edge of *ren*, the memory location pointed to by

raddr had not had data written to it since the last reset.

ONE_READ Memory location had two read accesses without an

intervening write access.
 one_read_check = 1

At an active edge of *ren*, the previous access to the memory

location pointed to by raddr was another read.

ONE_WRITE Memory location had two write accesses without an

intervening read access.

one_read_check = 1
At an active edge of wen, the previous access to the memory location pointed to by waddr was another write (and the

current memory access is not a simultaneous read/write to

that location).

VALUE Data item read from a location did not match the data

last written to that location.

 $value_check = 1$

At an active edge of *ren*, the value of *rdata* did not equal the expected value, which was the value of *wdata* when a write access to the memory location pointed to by the current value

of raddr last occurred.

Implicit X/Z Checks

start_addr contains X or Z	Start address contained X or Z bits.
end_addr contains X or Z	End address contained X or Z bits.
raddr contains X or Z	Read address contained X or Z bits.
rdata contains X or Z	Read data contained X or Z bits.
waddr contains X or Z	Write address contained X or Z bits.
wdata contains X or Z	Write data contained X or Z bits.

Cover Points

cover_reads	SANITY — Number of read accesses.
cover_writes	SANITY — Number of write accesses.
<pre>cover_write_then_read_ from_same_addr</pre>	BASIC — Number of times a write access was followed by a read from the same address.
cover_read_addr	STATISTIC — Reports which addresses were read at least once.
cover_write_addr	STATISTIC — Reports which addresses were written at least once.
<pre>cover_two_writes_ without_read</pre>	STATISTIC — Number of times a memory location had two write accesses but no read access of the data item stored by the first write.
<pre>cover_two_reads_ without_write</pre>	STATISTIC — Number of times a memory location had two read accesses but no write access overwriting the data item read by the first read.
<pre>cover_read_from_start_ addr</pre>	CORNER — Number of read accesses to the location specified by <i>start_addr</i> .
<pre>cover_write_to_start_ addr</pre>	CORNER — Number of write accesses to the location specified by <i>start_addr</i> .
<pre>cover_read_from_end_ addr</pre>	CORNER — Number of read accesses to the location specified by <i>end_addr</i> .
<pre>cover_write_to_end_ addr</pre>	CORNER — Number of write accesses to the location specified by <i>end_addr</i> .
<pre>cover_write_then_read_ from_start_addr</pre>	CORNER — Number of times a write access to <i>start_addr</i> was followed by a read from <i>start_addr</i> .
<pre>cover_write_then_read_ from_end_addr</pre>	CORNER — Number of times a write access to <i>end_addr</i> was followed by a read from <i>end_addr</i> .

ovl_memory_sync

Ensures the integrity of accesses to a synchronous memory.

Class: event-bounded assertion

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
data_width	Number of bits in a data item. Default: 1
addr_width	Number of bits in an address. Default: 1
mem_size	Number of data items in the memory. Default: 2
pass_thru	How the memory handles a simultaneous read and write access to the same address. This parameter applies to the initialization and value checks. <code>pass_thru = 0 (Default)</code> No pass-through mode (i.e., read before write). Simultaneous read/write access to the same location should return the current data item as the read data.
	$pass_thru = 1$ Pass-through mode (i.e., write before read). Simultaneous read/write access to the same location should return the new data item as the read data. Only specify pass-through mode if $r_clock === w_clock$ and $conflict_check = 0$.

addr_check Whether or not to perform address checks.

 $addr\ check = 0$

Turns off the address check.

addr_check = 1 (Default)

Turns on the address check.

init_check Whether or not to perform initialization checks.

init check = 0

Turns off the initialization check.

init_check = 1 (Default)

Turns on the initialization check.

conflict_check Whether or not to perform conflict checks.

conflict_check = 0 (Default)
Turns off the conflict check.

 $conflict_check = 1$

Turns on the conflict check. Only select the conflict check if

 $r_clock === w_clock.$

one_read_check Whether or not to perform one_read checks.

one_read_check = 0 (Default)
Turns off the one_read check.

one_read_check = 1

Turns on the one_read check.

one_write_check Whether or not to perform one_write checks.

one_write_check = 0 (Default)
Turns off the one_write check.

one write check = 1

Turns on the one_write check.

value_check Whether or not to perform value checks.

value_check = 0 (Default)
Turns off the value check.

 $value_check = 1$

Turns on the value check.

property_type Property type. Default: 'OVL_PROPERTY_DEFAULT

('OVL_ASSERT).

msg Error message printed when assertion fails. Default:

'OVL MSG DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL_COVER_DEFAULT

('OVL BASIC).

 r_clock_edge Active edge of the r_clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

w_clock_edge Active edge of the *w_clock* input. Default:

'OVL CLOCK EDGE DEFAULT ('OVL POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

property_type Property type. Default: 'OVL_PROPERTY_DEFAULT

('OVL ASSERT).

Ports

r_clock Clock event for read operations.

w_clock Clock event for write operations.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for r_clock and w_clock , if $gating_type =$

'OVL_GATE_CLOCK (the default gating type) or reset (if gating_type = 'OVL_GATE_RESET). Ignored if gating_type is

'OVL_NONE.

start_addr First address of the memory.

end_addr Last address of the memory.

ren Read enable input that initiates a read operation from the memory

location specified by raddr.

raddr Read address input.

rdata Read data input that holds the data item read from memory.

wen Write enable input that initiates a write operation of the data item

in *wdata* to the memory location specified by *waddr*.

waddr Write address input.

wdata Write data input.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_memory_async checker checks wen at the active edge of w_clock. If wen is TRUE, the checker checks the values of waddr, start_addr and end_addr. If waddr is not in the range [start_addr:end_addr], an address check violation occurs. Otherwise, a write operation to the location specified by waddr is assumed. Similarly, the checker checks ren at the active edge of r_clock. If ren is TRUE, the checker checks the values of raddr, start_addr and end_addr. If raddr is not in the range [start_addr:end_addr], an address check violation occurs. Otherwise, a read operation from the location specified by raddr is assumed. Also, if raddr is uninitialized

(i.e., has not been written to previously or at the current time), then an initialization check violation occurs.

By default, the address and init checks are on, but can be turned off by setting the *addr_check* and *init_check* parameters to 0. Note that other checks are valid only if the addresses are valid, so it is recommended that *addr_check* be left at 1.

The checker can be configured to perform the following additional checks:

• conflict_check = 1

At the active edges of w_clock/r_clock , if wen = ren = TRUE and waddr = raddr, then a conflict check violation occurs (w_clock and r_clock must be the same signal).

one_write_check = 1
pass_thru = 0

At the active edge of w_clock , if wen is TRUE and the previous access to the data at the address specified by waddr was a write or a simultaneous read/write to that address, a one_write check violation occurs, unless the current operation is a simultaneous read/write to that location.

```
pass_thru = 1
```

At the active edge of w_clock , if wen is TRUE and the previous access to the data at the address specified by waddr was a write (but not a simultaneous read/write to that address), a one_write check violation occurs.

• one_read_check = 1 pass thru = 0

At the active edge of r_clock , if ren is TRUE and the previous access to the data at the address specified by raddr was a read (but not a simultaneous read/write to that address), a one_read check violation occurs.

```
pass\_thru = 1
```

At the active edge of r_clock , if ren is TRUE and the previous access to the data at the address specified by raddr was a read or a simultaneous read/write to that address, a one_read check violation occurs, unless the current operation is a simultaneous read/write to that location.

• $value_check = 1$

At the active edge of w_clock , if wen is TRUE, the current value of wdata is the value assumed to be written to the memory location specified by waddr. At the active edge of r_clock , if ren is TRUE and the value of rdata does not match the expected value last written to the address specified by raddr, a value check violation occurs.

Assertion Checks

ADDRESS Write address was out of range.

At an active edge of w_clock, wen was TRUE but waddr <

 $start_addr$ or $waddr > end_addr$.

Read address was out of range.

At an active edge of *r_clock*, *ren* was TRUE but *raddr* <

 $start_addr$ or $raddr > end_addr$.

INITIALIZATION Read location was not initialized.

At an active edge of r_clock , ren was TRUE but the memory

location pointed to by raddr had not had data written to it

since the last reset.

CONFLICT Simultaneous read/write accesses to same address.

conflict_check = 1

At an active edge of r_clock , ren was TRUE but wen was also TRUE and raddr = waddr. This check assumes r_clock and

w_clock are the same signal.

ONE_READ Memory location had two read accesses without an

intervening write access.
 one_read_check = 1

At an active edge of r_clock , ren was TRUE but the previous

access to the memory location pointed to by raddr was

another read.

ONE_WRITE Memory location had two write accesses without an

intervening read access.

one_read_check = 1
At an active edge of w_clock, wen was TRUE but the

previous access to the memory location pointed to by waddr

was another write.

VALUE Data item read from a location did not match the data

last written to that location.

 $value_check = 1$

At an active edge of r_clock , ren was TRUE but the value of rdata did not equal the expected value, which was the value of wdata when a write access to the memory location pointed

to by the current value of *raddr* last occurred.

Implicit X/Z Checks

start addr contains X Start address contained X or Z bits. or Z End address contained X or Z bits. end_addr contains X or Read enable was X or Z. ren contains X or Z raddr contains X or Z Read address contained X or Z bits. Read data contained X or Z bits. rdata contains X or Z Write enable was X or Z. wen contains X or Z waddr contains X or Z Write address contained X or Z bits. wdata contains X or Z Write data contained X or Z bits.

Cover Points

SANITY — Number of read accesses. cover_reads SANITY — Number of write accesses. cover_writes cover write then read BASIC — Number of times a write access was followed by a from same addr read from the same address. cover_same_addr_ CORNER — Number of times a simultaneous read/write access simultaneous_ to the same address occurred. Not meaningful unless *pass_thru* is read_write 1. cover_different_addr_ CORNER — Number of times a simultaneous read/write access simultaneous_ to different addresses occurred. Not meaningful unless pass_thru read_write is 1. CORNER — Number of read accesses to the location specified cover_read_from_start_ addr by start addr. cover_write_to_start_ CORNER — Number of write accesses to the location specified addr by *start_addr*. cover_read_from_end_ CORNER — Number of read accesses to the location specified addr by end_addr. cover_write_to_end_ CORNER — Number of write accesses to the location specified addr by *end_addr*. CORNER — Number of times a write access to start_addr was cover_write_then_read_ from_start_addr followed by a read from start addr.

CORNER — Number of times a write access to end addr was cover_write_then_read_ from_end_addr followed by a read from *end_addr*. STATISTIC — Reports which addresses were read at least once. cover_read_addr cover write addr STATISTIC — Reports which addresses were written at least once. cover_read_to_write_ STATISTIC — Reports which delays (in numbers of active delays w clock edges) from a read to the next write (to any address) occurred at least once. STATISTIC — Reports which delays (in numbers of active cover write to read delays r_clock edges) from a write to the next read (to any address) occurred at least once. cover_two_writes_ STATISTIC — Number of times a memory location had two without read write accesses but no read access of the data item stored by the first write. STATISTIC — Number of times a memory location had two cover_two_reads_ without_write read accesses but no write access overwriting the data item read by the first read.

ovl_multiport_fifo

Ensures the data integrity of a FIFO with multiple enqueue and dequeue ports, and ensures that the FIFO does not overflow or underflow.

Class: *n*-cycle assertion

Syntax

ovl_multiport_fifo

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of a data item in the FIFO. Default: 1.
depth	FIFO depth. The $depth$ must be > 0 . Default: 2.
enq_count	Number of FIFO enqueue ports. Must be $\leq depth$. Default: 2.
deq_count	Number of FIFO dequeue ports. Must be $\leq depth$. Default: 2.

pass_thru

How the FIFO handles dequeues and enqueues in the same cycle if the FIFO count is such that a dequeue violation might occur.

pass_thru = 0 (Default)

No pass-through mode means dequeue before enqueue. A dequeue violation occurs if the number of scheduled dequeues > the current FIFO count.

pass = 1

Pass-through mode means enqueue before dequeue. A dequeue violation occurs if the number of scheduled dequeues – the number of scheduled enqueues > the current FIFO count.

registered

How the FIFO handles dequeues and enqueues in the same cycle if the FIFO count is such that an enqueue violation might occur. registered = 0 (Default)

No registered mode means enqueue before dequeue. An enqueue violation occurs if the current FIFO count + the number of scheduled enqueues > *depth*.

registered = 1

Registered mode means dequeue before enqueue. An enqueue violation occurs if the current FIFO count + the number of scheduled enqueues – the number scheduled dequeues > *depth*.

enq_latency

Latency for enqueue data.

enq_latency = 0 (Default)

Checks and coverage assume *enq_data* is valid and the enqueue operation is performed in the same cycle *enq* asserts.

eng_latency > 0

Checks and coverage assume *enq_data* is valid and the enqueue operation is performed *enq_latency* cycles after *enq* asserts.

deq_latency

Latency for dequeued data. It is used for the value check.

deq_latency = 0 (Default)

Checks and coverage assume *deq_data* is valid and the dequeue operation is performed in the same cycle *deq* asserts.

deq_latency > 0

Checks and coverage assume *deq_data* is valid and the dequeue operation is performed *deq_latency* cycles after *deq* asserts.

preload_count

Number of items to preload the FIFO on reset. The preload port is a concatenated list of items to be preloaded into the FIFO. Default: 0 (FIFO empty on reset).

high_water_mark

FIFO high-water mark. Must be < *depth*. A value of 0 disables the high_water_mark cover point. Default: 0.

Accellera Standard OVL V2, Library Reference Manual © 2005-2007 Accellera Organization, Inc. All Rights Reserved

full_check Whether or not to perform full checks.

full_check = 0 (Default)
Turns off the full check.

 $full_check = 1$

Turns on the full check.

empty_check Whether or not to perform empty checks.

empty_check = 0 (Default)
Turns off the empty check.

 $empty_check = 1$

Turns on the empty check.

value_check Whether or not to perform value checks.

value_check = 0 (Default)
Turns off the value check.

 $value_check = 1$

Turns on the value check.

property_type Property type. Default: 'OVL_PROPERTY_DEFAULT

('OVL_ASSERT).

msg Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL_COVER_DEFAULT

('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL CLOCK EDGE DEFAULT ('OVL POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL RESET POLARITY DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

eng[eng_count-1:0] Concatenation of FIFO enqueue inputs. When one or more enq

bits are sampled TRUE, the FIFO performs an enqueue operation

from the asserted bits' corresponding enqueue data ports

(eng_latency cycles later). Data items are enqueued in order from

the least to most-significant bits and the FIFO counter is

incremented by the number of TRUE enq bits

deq[deq_count-1:0]

Concatenation of FIFO dequeue inputs. When one or more *deq* bits are sampled TRUE, the FIFO performs a dequeue operation from the asserted bits' corresponding dequeue data ports (*deq_latency* cycles later). Data items are dequeued in order from the least to most-significant bits and the FIFO counter is decremented by the number of TRUE *deq* bits

full

Output status flag from the FIFO.

full = 0 FIFO not full. full = 1 FIFO full.

empty

Output status flag from the FIFO.

empty = 0
 FIFO not empty.
empty = 1
 FIFO empty.

enq_data
[eng count*width-1:0]

Concatenation of enqueue data inputs. If the value check is on, this port contains the data items to enqueue *enq_latency* cycles after the *enq* bits assert.

deq_data [deq_count*width-1:0] Concatenation of dequeue data inputs. If the value check is on, this port contains the dequeued data items *deq_latency* cycles after the *deq* bits assert.

preload
[preload_count*width-1
:0]

Concatenated preload data to enqueue on reset.

preload_count = 0

No preload of the FIFO is assumed. The width of preload should be *width*, however no values from *preload* are used. The FIFO is assumed to be empty on reset.

preload_count > 0

Checker assumes the value of *preload* is a concatenated list of items that were all enqueued on the FIFO on reset (or simulation start). The width of preload should be *preload_count* * *width* (preload items are the same width). Preload values are enqueued from the low order item to the high order item.

fire
['OVL FIRE WIDTH-1:0]

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_multiport_fifo assertion checker ensures a multiport FIFO functions legally. A multiport FIFO is a memory structure that stores and retrieves data items based on a first-in first-out queueing protocol. The FIFO can have multiple enqueue data ports and multiple dequeue data ports (the number of each does need to match). Each enqueue data port has a corresponding enqueue signal that indicates the data port's value should be enqueued. Similarly, each dequeue data port has a corresponding dequeue signal that indicates a data item from the FIFO should be dequeued to that port.

A FIFO with multiple enqueue ports can signal an enqueue from any combination of the ports each enqueue clock cycle. Similarly, a FIFO with multiple dequeue ports can signal a dequeue to any combination of the ports each dequeue clock cycle. When multiple ports are enqueued (dequeued) in a cycle, the order their contents are enqueued (dequeued) is always the same. A FIFO can also have enqueue and dequeue latency constants. Enqueue latency is the number of clock cycles after an enqueue signal asserts that the corresponding enqueue data value is valid at the corresponding enqueue data port. Dequeue latency is the number of clock cycles it takes for a dequeue to produce a data value at its corresponding dequeue port.

To connect the ovl_multiport_fifo checker to the FIFO logic:

- Concatenate the enqueue signals—arranged in order from first-in (least-significant bit) to last-in (most-significant bit)—and connect to the *enq* port. Concatenate the dequeue signals—arranged in order from first-out (least-significant bit) to last-out (most-significant bit)—and connect to the *deq* port.
- If the checker will perform value checks, concatenate the enqueue data ports in the same order as the *enq* bits and connect to the *enq_data* port. Concatenate the dequeue data ports in the same order as the *deq* bits and connect to the *deq_data* port. Otherwise, connect *enq_data* and *deq_data* to 0.
- If the checker will perform full checks, connect the FIFO-full status flag to the *full* port. Otherwise, connect *full* to 1'b0. If the checker will perform empty checks, connect the FIFO-full status flag to the *empty* port. Otherwise, connect *empty* to 1'b0.

The checker checks *enq* and *deq* at the active edge of *clock*. If an *enq* bit is TRUE, an enqueue operation is scheduled for the corresponding enqueue data port *enq_latency* cycles later (or in the current cycle if *enq_latency* is 0). Similarly, if a *deq* bit is TRUE, a dequeue operation is scheduled to the corresponding dequeue data port *deq_latency* cycles later (or in the current cycle if *deq_latency* is 0).

At each active edge of *clock*, the checker does the following:

- 1. Updates its FIFO counter with the results of enqueues and dequeues from the previous cycle.
- 2. Checks the *full* flag if *full_check* is 1. If *full* is FALSE and the FIF0 count = *depth* or if *full* is TRUE and the FIFO count < *depth*, a full check violation occurs.

- 3. Checks the *empty* flag if *empty_check* is 1. If *empty* is FALSE and the FIF0 count = 0 or if *empty* is TRUE and the FIFO count > 0, an empty check violation occurs.
- 4. Checks for a potential overflow. If the number of enqueues scheduled for the current cycle exceeds the current number of unused FIFO locations, an enqueue check violation occurs. In this case, since the FIFO state is unknown, value checks are turned off until the next checker reset.
- 5. Checks for a potential underflow. If the number of dequeues scheduled for the current cycle exceeds the current number of FIFO entries, a dequeue check violation occurs. In this case, since the FIFO state is unknown, value checks are turned off until the next checker reset.
- 6. If *value_check* is 1 (and no enqueue or dequeue violations have occurred), the checker maintains an internal copy of what it expects the FIFO entries to be. The checker issues a value check violation for each internal dequeued data item that does not match the corresponding value of *deq_data*.

A corner-case situation occurs when both enqueues and dequeues are scheduled simultaneously in the same cycle. By default, the checker enforces the best-case (i.e., most restrictive) scenarios. For the enqueue check, enqueues are "performed" before dequeues. For the dequeue check, dequeues are "performed" before enqueues. However, the checker can be configured to allow worse-case (i.e., less restrictive) scenarios by setting the *registered* and *pass_thru* parameters:

- In registered mode, the enqueue check calculates the FIFO count by subtracting the number of dequeues before adding the number of enqueues, resulting in a less restrictive check.
- In pass-through mode, the dequeue check calculates the FIFO count by adding the number of enqueues before subtracting the number of dequeues, resulting in a less restrictive check.

By default, the FIFO is empty at the start of the first cycle after a reset (or the start of simulation). However, the checker can be configured to match a FIFO that contains data items at these initial points. To do this, the checker "preloads" these data items. The *preload_count* parameter specifies the number of data items to preload.

If *value_check* is 1, at the start of any cycle in which reset has transitioned from active to inactive, the checker reads the *preload* port. This is a port containing a concatenated value equal to *preload_count* data items. The checker enqueues these data items onto the internal FIFO in order from the low-order item to the high-order item.

Uses: FIFO, queue, buffer, ring buffer, elasticity buffer.

Assertion Checks

ENQUEUE

Enqueue occurred that would overflow the FIFO.
registered = 0

One or more *enq* bits were TRUE, but *enq_latency* cycles later, FIFO count + number of enqueued items > *depth*.

registered = 1

One or more *enq* bits were TRUE, but *enq_latency* cycles later, FIFO count + number of enqueued items – number of dequeued items.

DEQUEUE

Dequeue occurred that would underflow the FIFO. $pass_thru = 0$

One or more *deq* bits were TRUE, but *deq_latency* cycles later, FIFO count < number of dequeued items.

 $pass_thru = 1$

One or more *deq* bits were TRUE, but *deq_latency* cycles later, FIFO count < number of dequeued items – number of enqueued items.

FULL

The FIFO was not full when the full signal was asserted.

Full was TRUE, but the FIFO contained fewer than *depth* items.

The full signal was not asserted when the FIFO was full.

Full was FALSE, but the FIFO \contained *depth* items.

FULL

FIFO 'full' signal was asserted, but the FIFO was not full.

FIFO contained fewer than *depth* items but *full* was TRUE.

FIFO 'full' signal was not asserted, but the FIFO was full.

FIFO contained *depth* items and *full* was FALSE.

EMPTY

FIFO 'empty' signal was asserted, but the FIFO was not empty. $\ensuremath{\mathsf{I}}$

FIFO contained one or more items but *empty* was TRUE.

FIFO 'empty' signal was not asserted, but the FIFO was empty.

FIFO contained no items but *empty* was FALSE.

Dequeued FIFO value did not equal the corresponding VALUE enqueued value.

 $deq_{latency} = 0$

A deq bit was TRUE, but the corresponding data item in *deq_data* did not equal the item originally enqueued.

deg latency > 0

A deq bit was TRUE, but deq_latency cycles later the corresponding data item in *deq_data* did not equal the item originally enqueued.

This check automatically turns off if an enqueue or dequeue check violation occurs since it is no longer possible to correspond enqueued with dequeued values. The check turns back on when the checker resets.

Implicit X/Z Checks

enq contains X or Z Enqueue contained X or Z bits. deg contains X or Z Dequeue contained X or Z bits.

full contains X or Z FIFO full signal was X or Z. Check is off if *full_check* is 0.

FIFO empty signal was X or Z. Check is off if *empty_check* is 0. empty contains X or Z

eng data contains X or Enqueue data item in the *enq data* expression contained X or Z bits when it was scheduled to be enqueued onto the FIFO.

deg data contains X or Dequeue data item in the *deq_data* expression contained X or Z bits when it was scheduled to be dequeued from the FIFO.

Cover Points

SANITY — Number of data items enqueued on the FIFO. cover_enqueues

SANITY — Number of data items dequeued from the FIFO. cover_dequeues

cover simultaneous BASIC — Number of cycles both an enqueue and a dequeue enq_deq

(to/from the same port??) were scheduled to occur.

cover_high_water_mark CORNER — Number of times the FIFO count transitioned from

 $< high_water_mark$ to $\ge high_water_mark$. Not reported if

high_water_mark is 0.

cover_simultaneous_ CORNER — Number of cycles the FIFO was enqueued and deq_enq_when_empty

dequeued simultaneously when it was empty.

CORNER — Number of cycles the FIFO was enqueued and cover_simultaneous_ deq_enq_when_full

dequeued simultaneously when it was full.

CORNER — Number of cycles FIFO was empty after processing cover_fifo_empty

enqueues and dequeues for the cycle.

cover_fifo_full CORNER — Number of cycles FIFO was full after processing

enqueues and dequeues for the cycle.

ovl_mutex

Ensures that the bits of an expression are mutually exclusive.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of test_expr. Default: 2.
invert_mode	Sense of the active bits for the mutex check. invert_mode = 0 (Default) Expression value must not have more than one TRUE bit. invert_mode = 1 Expression value must not have more than one FALSE bit.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

Clock event for the assertion.

reset

Synchronous reset signal indicating completed initialization.

enable

Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK (the default gating type) or reset (if gating_type = 'OVL_GATE_RESET). Ignored if gating_type is 'OVL_NONE.

test_expr[width-1:0]

Variable or expression to check.

fire

Fire output. Assertion failure when fire[0] is TRUE. X/Z check

Description

['OVL FIRE WIDTH-1:0]

The ovl_mutex assertion checker checks *test_expr* at each active edge of *clock*. By default, if more than one bit of *test_expr* is TRUE, a mutex violation occurs. Setting *invert_mode* to 1 reverses the sense of the bits. A mutex violation occurs if more than one bit of *test_expr* is FALSE.

Assertion Checks

MUTEX Expression's bits are not mutually exclusive.

 $invert_mode = 0$

Expression had more than one TRUE bit.

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

 $invert_mode = 1$

Expression had more than one FALSE bit.

Implicit X/Z Checks

 $\begin{array}{ll} \text{test_expr contains X} & \text{Expression contained X or Z bits.} \\ \text{or Z} \end{array}$

Cover Points

cover_values_checked SANITY — Number of cycles test_expr loaded a new value.

and *invert_mode* = 0 or all bits in *test_expr* were FALSE and

 $invert_mode = 1.$

cover_mutex_bitmap STATISTIC — Reports which of test_expr bits were TRUE

 $(invert_mode = 0)$ or FALSE $(invert_mode = 1)$ at least once.

ovl_never

Ensures that the value of an expression is not TRUE.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

test_expr Expression that should not evaluate to TRUE on the active clock

edge.

Description

The ovl_never assertion checker checks the single-bit expression *test_expr* at each active edge of *clock* to verify the expression does not evaluate to TRUE.

Assertion Checks

NEVER Expression evaluated to TRUE.

Implicit X/Z Checks

 $\begin{array}{ll} \text{test_expr contains } x & \text{Expression value contained } X \text{ or } Z \text{ bits.} \\ \text{or } z & \end{array}$

Cover Points

none

Notes

1. By default, the ovl_never assertion is pessimistic and the assertion fails if test_expr is not 0 (i.e.equals 1, X, Z, etc.). However, if 'OVL_XCHECK_OFF is set, the assertion fails if and only if test_expr is 1.

See also

ovl_alwaysovl_implicationovl_always_on_edgeovl_proposition

Example

```
ovl_never #(
   'OVL_ERROR,
                                                       // severity_level
   'OVL_ASSERT,
                                                       // property_type
                                                       // msg
   'OVL COVER DEFAULT,
                                                       // coverage level
   'OVL_POSEDGE,
                                                       // clock_edge
   'OVL_ACTIVE_LOW,
                                                       // reset_polarity
   'OVL_GATE_CLOCK)
                                                       // gating_type
   valid_count (
       clock,
                                                       // clock
                                                       // reset
       reset,
                                                       // enable
      enable,
      reg_a < reg_b,</pre>
                                                       // test_expr
       fire_valid_count );
                                                       // fire
Ensures that (reg\_a < reg\_b) is FALSE at each rising edge of clock.
       clock
        reset
 reg_a < reg_b
                Х
                       ➤ test_expr contains X/Z value
                                                    ➤ NEVER
```

ovl_never_unknown

Ensures that the value of an expression contains only 0 and 1 bits when a qualifying expression is TRUE.

Syntax

ovl_never_unknown

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the test_expr argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

Clock event for the assertion. clock reset Synchronous reset signal indicating completed initialization. enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK (the default gating type) or reset (if gating_type = 'OVL GATE RESET). Ignored if gating type is 'OVL NONE. qualifier Expression that indicates whether or not to check *test_expr* . test expr[width-1:0] Expression that should contain only 0 or 1 bits when qualifier is TRUE. fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL FIRE WIDTH-1:0] failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_never_unknown assertion checker checks the expression *qualifier* at each active edge of *clock* to determine if it should check *test_expr*. If *qualifier* is sampled TRUE, the checker evaluates *test_expr* and if the value of *test_expr* contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset sequence. It also can be used to verify tristate input ports are driven and tristate output ports drive known values when necessary.

Assertion Checks

test_expr contains X/Z
value

The test_expr expression contained at least one bit that was not 0
or 1; qualifier was sampled TRUE; and 'OVL_XCHECK_OFF
is not set.

Cover Points

cover_qualifier BASIC — A never_unknown check was initiated.

cover_test_expr_change SANITY — Expression changed value.

Notes

1. If 'OVL_XCHECK_OFF is set, all ovl_never_unknown checkers are turned off.

See also

```
ovl_neverovl_one_hotovl_never_unknown_asyncovl_zero_one_hotovl one cold
```

Example

```
ovl_never_unknown #(
  'OVL_ERROR,
                                                  // severity_level
  8,
                                                  // width
  'OVL ASSERT,
                                                  // property_type
  "Error: data unknown or undriven",
                                                  // msg
  'OVL_COVER_DEFAULT,
                                                  // coverage_level
  'OVL_POSEDGE,
                                                  // clock_edge
                                                  // reset_polarity
  'OVL_ACTIVE_LOW,
  'OVL_GATE_CLOCK)
                                                  // gating_type
  valid_data (
     clock,
                                                  // clock
     reset,
                                                  // reset
     enable,
                                                  // enable
                                                  // qualifier
     rd_data,
     data,
                                                  // test_expr
     fire_valid_data );
                                                  // fire
```

Ensures that values of *data* are known and driven when *rd_data* is TRUE.

ovl_never_unknown_async

Ensures that the value of an expression combinationally contains only 0 and 1 bits.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Ignored parameter.
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should contain only 0 or 1 bits when qualifier is TRUE.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_never_unknown_async assertion checker combinationally evaluates *test_expr* and if the value of *test_expr* contains a bit that is not 0 or 1, the assertion fails.

The checker is useful for ensuring certain data have only known values following a reset sequence. It also can be used to verify tristate input ports are driven and tristate output ports drive known values when necessary.

Assertion Checks

	The <i>test_expr</i> expression contained at least one bit that was not 0
value	or 1 and 'OVL_XCHECK_OFF is not set.

Cover Points

```
cover_test_expr_change SANITY — Expression changed value.
```

Notes

1. If 'OVL_XCHECK_OFF is set, all ovl_never_unknown_async checkers are turned off.

See also

ovl never

Example

data

XXXX

```
ovl_never_unknown_async #(
   'OVL_ERROR,
                                                   // severity_level
   8,
                                                    // width
                                                   // property_type
   'OVL ASSERT,
   "Error: data unknown or undriven",
                                                   // msq
   'OVL_COVER_DEFAULT,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                    // clock_edge
   'OVL_ACTIVE_LOW,
                                                   // reset_polarity
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_data (
      bus_gnt,
                                                    // reset
      enable,
                                                    // enable
      data,
                                                   // test_expr
      fire_valid_data );
                                                   // fire
Ensures that values of data are known and driven while bus_gnt is TRUE.
    bus_gnt
```

XXXX 00X

0011

XXXX

1X10

NEVER_UNKNOWN_ASYNC Error: data unknown or undriven

ovl_next

Ensures that the value of an expression is TRUE a specified number of cycles after a start event.

Syntax

Parameters

num_cks

severity_level Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT

('OVL_ERROR).

Number of cycles after *start_event* is TRUE to wait to check that the value of *test_expr* is TRUE. Default: 1.

check overlapping

Whether or not to perform overlap checking. Default: 1 (overlap checking off).

- If set to 0, overlap checking is performed. From the active edge of *clock* after *start_event* is sampled TRUE to the active edge of *clock* of the cycle before *test_expr* is sampled for the current next check, the checker performs an overlap check. During this interval, if *start_event* is TRUE at an active edge of *clock*, then the overlap check fails (illegal overlapping condition). The current next check continues but a new next check is not initiated.
- If set to 1, overlap checking is not performed. A separate next check is initiated each time *start_event* is sampled TRUE (overlapping start events are allowed).

whether or not to perform missing-start checking. Default: 0 (missing-start checking off).

• If set to 0, missing start checks are not performed.

• If set to 1, missing start checks are performed. The checker samples *test_expr* every active edge of *clock*. If the value of *test_expr* is TRUE, then *num_cks* active edges of *clock* prior to the current time, *start_event* must have been TRUE (initiating a next check). If not, the missing-start check fails (*start_event* without *test_expr*).

property_type Property type. Default: 'OVL_PROPERTY_DEFAULT

('OVL_ASSERT).

msg Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL_COVER_DEFAULT

('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

start_event Expression that (along with num_cks) identifies when to check

test_expr.

test_expr Expression that should evaluate to TRUE num_cks cycles after

start_event initiates a next check.

fire output. Assertion failure when fire[0] is TRUE. X/Z check

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_next assertion checker checks the expression *start_event* at each active edge of *clock*. If *start_event* is TRUE, a check is initiated. The check waits for *num_cks* cycles (i.e., for *num_cks* additional active edges of *clock*) and evaluates *test_expr*. If *test_expr* is not TRUE, the assertion fails.

If overlap checking is off (*check_overlapping* is 1), additional checks can start while a current check is pending. If overlap checking is on, the assertion fails if *start_event* is sampled TRUE while a check is pending (except on the last clock).

If missing-start checking is off (*check_missing_start* is 0), *test_expr* can be TRUE any time. If missing-start checking is on, the assertion fails if *test_expr* is TRUE without a corresponding start event (*num_cks* cycles previously). However, if *test_expr* is TRUE in the interval of *num_cks* - 1 cycles after a reset and has no corresponding start event, the result is indeterminate (i.e., the missing-start check might or might not fail).

Assertion Checks

start_event without test_expr	The value of <i>start_event</i> was TRUE on an active edge of <i>clock</i> , but <i>num_cks</i> cycles later the value of <i>test_expr</i> was not TRUE.
illegal overlapping condition detected	The <i>check_overlapping</i> parameter is set to 0 and <i>start_event</i> was TRUE on the active edge of <i>clock</i> , but a previous check was pending.
test_expr without start_event	The <i>check_missing_start</i> parameter is set to 1 and <i>start_event</i> was not TRUE on the active edge of <i>clock</i> , but <i>num_cks</i> cycles later <i>test_expr</i> was TRUE.
num_cks parameter<=0	The <i>num_cks</i> parameter is less than 2.

Implicit X/Z Checks

test_expr contains X or Z	Expression value was X or Z.
start_event contains X or Z	Start event value was X or Z.

Cover Points

cover_start_event	BASIC — The value of <i>start_event</i> was TRUE on an active edge of <i>clock</i> .
<pre>cover_overlapping_ start_events</pre>	CORNER — The <i>check_overlapping</i> parameter is TRUE and the value of <i>start_event</i> was TRUE on an active edge of <i>clock</i> while a check was pending.

See also

```
ovl_changeovl_timeovl_frameovl_unchange
```

Examples

```
ovl_next #(
   'OVL_ERROR,
                                                    // severity_level
   4,
                                                    // num_cks
   1,
                                                    // check_overlapping (off)
                                                    // check_missing_start (off)
   'OVL_ASSERT,
                                                    // property_type
   "error:",
                                                    // msg
   'OVL_COVER_DEFAULT,
                                                    // coverage_level
   'OVL_POSEDGE,
                                                    // clock_edge
   'OVL_ACTIVE_LOW,
                                                    // reset_polarity
                                                    // gating_type
   'OVL_GATE_CLOCK)
   valid_next_a_b (
      clock,
                                                    // clock
      reset,
                                                    // reset
      enable,
                                                    // enable
                                                    // start_event
      a,
      b,
                                                    // test_expr
      fire_valid_next_a_b );
                                                    // fire
Ensures that b is TRUE 4 cycles after a is TRUE.
      clock
```



```
ovl_next #(
   'OVL ERROR,
                                                     // severity_level
   4,
                                                     // num cks
   0,
                                                     // check_overlapping (on)
   0,
                                                     // check_missing_start (off)
   'OVL_ASSERT,
                                                     // property_type
                                                     // msg
   "error:",
                                                     // coverage_level
// clock_edge
   'OVL COVER DEFAULT,
   'OVL_POSEDGE,
                                                     // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                     // gating_type
   valid_next_a_b (
```

```
clock,
                                                        // clock
                                                        // reset
      reset,
      enable,
                                                        // enable
                                                        // start_event
      a,
                                                           test_expr
      b,
      fire valid next a b );
                                                        // fire
Ensures that b is TRUE 4 cycles after a is TRUE. Overlaps are not allowed
      clock
      reset
                                    not an overlap
                                      on last cycle
         а
         b
                                illegal overlapping condition detected error
ovl_next #(
                                                        // severity_level
   'OVL_ERROR,
                                                        // num_cks
   4,
   1,
                                                        // check_overlapping (off)
   1,
                                                        // check_missing_start (on)
   'OVL ASSERT,
                                                        // property_type
   "error:",
                                                        // msg
   'OVL_COVER_DEFAULT,
                                                        // coverage_level
   'OVL_POSEDGE,
                                                        // clock_edge
                                                        // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                        // gating_type
   valid_next_a_b (
      clock,
                                                        // clock
      reset,
                                                        // reset
      enable,
                                                        // enable
                                                        // start_event
      a,
      b,
                                                        // test_expr
      fire_valid_next_a_b );
                                                        // fire
Ensures that b is TRUE 4 cycles after a is TRUE. Missing-start check is on.
       clock
       reset
         а
```

test_expr without start_event error

missing-start check indeterminate

for 3 cycles after reset

ovl_next_state

Ensures that an expression transitions only to specified values.

Syntax

ovl next state

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of test_expr. Default: 1
next_count	Number of next state values. The <i>next_state</i> port is a concatenated list of next state values. Default: 1.
min_hold	Minimum number of cycles $test_expr$ must not change value when it matches the value of $curr_state$. Must be > 0 . Default: 1
max_hold	Maximum number of cycles <i>test_expr</i> can remain unchanged when it matches the value of <i>curr_state</i> . A value of 0 turns off checking for a maximum hold time. Must be 0 or > <i>min_hold</i> . Default: 1
disallow	Sense of the comparison of test_expr with next_state. disallow = 0 (Default) Next value of test_expr should match one of the values in next_state. disallow = 1 Next value of test_expr should not match one of the values in next_state.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).

Error message printed when assertion fails. Default: msq

'OVL_MSG_DEFAULT ("VIOLATION").

Coverage level. Default: 'OVL COVER DEFAULT coverage_level

('OVL_BASIC).

clock edge Active edge of the *clock* input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the *reset* input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating type* = 'OVL GATE CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

test_expr[width-1:0] State variable or expression to check.

curr_state[width-1:0] Value to compare with test expr. If no event window is open and

the value of test expr matches the value curr state, an event

window opens.

next_state Concatenated list of next values.

[next_count*width-1:0] disallow = 0

Next values are valid values for test expr when an event

window closes.

disallow = 1

Next values are not valid values for *test_expr* when an event

window closes.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_next_state assertion checker evaluates test_expr and curr_state at each active edge of clock. If the value of test expr matches the value of curr state, the checker verifies that the value of *test expr* behaves as follows:

• If min_hold > 0 and test_expr changes value before min_hold cycles (including the match cycle) transpire, a next_state violation occurs.

- Otherwise, when *test_expr* transitions, the checker evaluates *next_state*. If the new value of *test_expr* is not a value in *next_state*, a next_state violation occurs.
- However, if $max_hold > 0$ and $test_expr$ does not change value before max_hold cycles (including the match cycle) transpire, a next_state violation occurs.

A next_state check is initiated each cycle *test_expr* and *curr_state* match.

Setting the *disallow* parameter to 1, changes the sense of the matching of *test_expr* and *next_state* values. A next_state violation occurs if *test_expr* transitions to a value *in* next_state.

Uses: FSM, state machine, controller, coverage, line coverage, path coverage, branch coverage, state coverage, arc coverage.

Assertion Checks

NEXT_STATE

Match occurred but expression value was not a next value, or expression changed too soon.

disallow = 0 and $max_hold = 0$

After matching *curr_state*, *test_expr* changed value before *min_hold* cycles (including the match cycle) or transitioned to a value not in *next_state* when it transitioned.

Match occurred but expression value was not a next value, or expression did not change in event window.

disallow = 0 and max hold > 0

After matching *curr_state*, *test_expr* changed value before *min_hold* cycles (including the match cycle), transitioned to a value not in *next_state* when it transitioned, or did not change value for *max_hold* cycles (including the match cycle).

Match occurred but expression value was a next value, or expression changed too soon.

disallow = 1 and max_hold = 0

After matching *curr_state*, *test_expr* changed value before *min_hold* cycles (including the match cycle) or transitioned to a value in *next_state* when it transitioned.

Match occurred but expression value was a next value, or expression did not change in event window.

disallow = 1 and max_hold > 0

After matching *curr_state*, *test_expr* changed value before *min_hold* cycles (including the match cycle), transitioned to a value in *next_state* when it transitioned, or did not change value for *max_hold* cycles (including the match cycle).

Implicit X/Z Checks

 $\begin{array}{ll} \text{test_expr contains X} & \text{Expression contained X or Z bits.} \\ \text{or Z} \\ \text{curr_state contains X} & \text{Current state expression contained X or Z bits.} \\ \text{or Z} \\ \text{next_state contains X} & \text{Next state expression contained X or Z bits.} \\ \text{or Z} \\ \end{array}$

Cover Points

SANITY — Number of times test_expr matched curr_state and then transitions then transitioned correctly to a value in next_state (disallow=0) or not in next_state (disallow=1).

CORNER — Non-zero if test_expr transitioned to every next value found in the sampled next_state. Not meaningful if disallow is 1.

COVER_CYCLES_Checked STATISTIC — Number of cycles test_expr matched curr_state.

STATISTIC — Reports which values in next_state that test_expr transitioned to at least once. Not meaningful if disallow is 1.

ovl_no_contention

Ensures that a bus is driven according to specified contention rules.

Syntax

```
ovl no contention
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of <i>test_expr</i> . Default: 2.
num_drivers	Width of driver_enables. Default: 2.
min_quiet	Minimum number of cycles the bus must be quiet (i.e., when all <i>driver_enables</i> bits are 0) between transactions. Default: 0 (quiet periods between transactions are not necessary).
max_quiet	Maximum number of cycles the bus can be quiet (i.e., when all $driver_enables$ bits are 0). The min_quiet parameter must be $\leq max_quiet$. Default: 0 (quiet periods between transactions should not occur).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

test_expr[width-1:0] Bus to be checked.

driver_enables
[num_drivers-1:0]

Enable bits for the drivers of *test_expr*.

fire
['OVL FIRE WIDTH-1:0]

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_no_contention assertion checker checks the bus (*test_expr*) and the driver enable signals (*driver_enables*) at each active edge of *clock*. An implicit X/Z check violation occurs if any *driver_enables* bit is X or Z.. Otherwise:

• Number of TRUE *driver enables* bits is > 1:

A single_driver violation occurs and if *test_expr* contains an X or Z bit, a no_xz violation occurs.

• Number of TRUE *driver enables* bits is 1:

If *test_expr* contains an X or Z bit, a no_xz violation occurs.

In addition, the checker performs quiet-time checks. Quiet times consecutive cycles or bus inactivity where no bus transactions are occurring (i.e., *driver_enables* = 0). The checker verifies the specified configuration as follows:

• 0 = min_quiet = max_quiet (default)

A quiet violation occurs each cycle *driver_enables* = 0.

• 0 = min_quiet < max_quiet

A quiet violation occurs if $driver_enables = 0$ for $max_quiet+1$ consecutive cycles.

• 0 < min_quiet ≤ max_quiet

A quiet violation occurs if either of the following occur:

- The *driver_enables* expression transitions to 0 and then transitions from 0 less than *min_quiet* cycles later.
- The *driver_enables* expression = 0 for *max_quiet*+1 cycles.
- 0 = max_quiet < min_quiet

A quiet violation occurs if *driver_enables* transitions to 0 and then transitions from 0 less than *min_quiet* cycles later.

Assertion Checks

SINGLE_DRIVER Bus has multiple drivers. Number of TRUE bits in *driver_enables* is > 1. NO_XZ Bus is driven, but has X or Z bits. Number of TRUE bits in *driver_enables* is > 0, but *test_expr* has one or more X or Z bits. Bus was quiet. OUIET 0 = min_quiet = max_quiet Driver enables was 0. Bus was quiet for too many cycles. 0 = min_quiet < max_quiet</pre> *Driver_enables* was 0 for more than *max_quiet* consecutive cycles. Bus was quiet for too few or too many cycles. 0 < min_quiet ≤ max_quiet Driver_enables was not held 0 for at least min_quiet consecutive cycles or was 0 for more than *max_quiet* cycles. Bus was quiet for too few cycles. 0 = max_quiet < min_quiet</pre> Driver_enables was not held 0 for at least min_quiet consecutive cycles.

Implicit X/Z Checks

driver_enables contains X or Z

Drivers enabled expression contained X or Z bits.

Cover Points

cover_driver_bitmap	BASIC — Bit map of the <i>driver_enables</i> signals that have been TRUE at least once.
<pre>cover_quiet_equals_ min_quiet</pre>	CORNER — Number of quiet periods that were exactly min_quiet cycles long $(min_quiet > 0)$ or number of times bus control transferred from one driver to another $(min_quiet = 0)$.
<pre>cover_quiet_equals_ max_quiet</pre>	CORNER — Number of quiet periods that were exactly max_quiet cycles long. Not meaningful if $max_quiet = 0$.
observed_quiet_cycles	STATISTIC — Reports the quiet periods (in cycles) that have occurred at least once.

ovl_no_overflow

Ensures that the value of an expression does not overflow.

Syntax

ovl_no_overflow

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Width must be less than or equal to 32. Default: 1.
min	Minimum value in the test range of test_expr. Default: 0.
max	Maximum value in the test range of <i>test_expr</i> . Default: 2**width - 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should not change from a value of <i>max</i> to a value out of the test range or to a value equal to <i>min</i> .
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_no_overflow assertion checker checks the expression *test_expr* at each active edge of *clock* to determine if its value has changed from a value (at the previous active edge of *clock*) that was equal to *max*. If so, the checker verifies that the new value has not overflowed *max*. That is, it verifies the value of *test_expr* is not greater than *max* or less than or equal to *min* (in which case, the assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap from the highest value to the lowest value in a specified range. For example, it can be used to check that memory structure pointers do not wrap around. For a more general test for overflow, use ovl_delta or ovl_fifo_index.

Assertion Checks

NO_OVERFLOW	Expression changed value from max to a value not in the range
	min + 1 to $max - 1$.

Implicit X/Z Checks

```
test_expr contains X Expression value contained X or Z bits.
```

Cover Points

```
cover_test_expr_at_min CORNER — Expression evaluated to min.

cover_test_expr_at_max BASIC — Expression evaluated to max.
```

Errors

The parameters *min* and *max* must be specified such that *min* is less than or equal to *max*. Otherwise, the assertion fails on each tested clock cycle for which *test_expr* changed from *max*.

Notes

1. The assertion check compares the current value of <code>test_expr</code> with its previous value. Therefore, checking does not start until the second rising clock edge of <code>clock</code> after <code>reset</code> deasserts.

See also

```
ovl_deltaovl_incrementovl_fifo_indexovl_no_overflow
```

Example

```
ovl_no_overflow #(
                                                   // severity level
   'OVL ERROR,
                                                   // width
   3,
   0,
                                                   // min
   4,
                                                   // max
   'OVL_ASSERT,
                                                      property_type
   "Error: addr overflow",
                                                   //msq
   'OVL_COVER_DEFAULT,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                   // clock_edge
                                                   // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                   // gating_type
   addr_with_overflow (
                                                   // clock
      clock,
      reset,
                                                   // reset
      enable,
                                                   // enable
      addr,
                                                   // test expr
      fire_addr_with_overflow );
                                                   // fire
```

Ensures that *addr* does not overflow (i.e., change from a value of 4 at the rising edge of *clock* to a value of 0 or a value greater than 4 at the next rising edge of *clock*).

ovl_no_transition

Ensures that the value of an expression does not transition from a start state to the specified next state.

Syntax

```
ovl_no_transition
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should not transition to <i>next_state</i> on the active edge of <i>clock</i> if its value at the previous active edge of <i>clock</i> is the same as the current value of <i>start_state</i> .
start_state[width-1:0]	Expression that indicates the start state for the assertion check. If the start state matches the value of <i>test_expr</i> on the previous active edge of <i>clock</i> , the check is performed.
<pre>next_state[width-1:0]</pre>	Expression that indicates the invalid next state for the assertion check. If the value of <i>test_expr</i> was <i>start_state</i> at the previous active edge of <i>clock</i> , then the value of <i>test_expr</i> should not equal <i>next_state</i> on the current active edge of <i>clock</i> .
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_no_transition assertion checker checks the expression *test_expr* and *start_state* at each active edge of *clock* to see if they are the same. If so, the checker evaluates and stores the current value of *next state*. At the next active edge of *clock*, the checker re-evaluates *test expr* to see if its value equals the stored value of *next_state*. If so, the assertion fails. The checker returns to checking *start_state* in the current cycle (unless a fatal failure occurred)

The *start_state* and *next_state* expressions are verification events that can change. In particular, the same assertion checker can be coded to verify multiple types of transitions of test_expr.

The checker is useful for ensuring certain control structure values (such as counters and finitestate machine values) do not transition to invalid values.

Assertion Checks

NO_TRANSITION Expression transitioned from *start_state* to a value equal to

next state.

Implicit X/Z Checks

```
test_expr contains X or Z bits.

start_state contains X or Z

next_state contains X or Z

Next state value contained X or Z bits.

Next state value contained X or Z bits.
```

Cover Points

```
cover_start_state BASIC — Expression assumed a start state value.
```

Notes

1. The assertion check compares the current value of <code>test_expr</code> with its previous value. Therefore, checking does not start until the second rising clock edge of <code>clock</code> after <code>reset</code> deasserts.

See also

ovl_transition

Example

```
ovl_no_transition #(
   'OVL ERROR,
                                                   // severity_level
                                                   // width
   'OVL_ASSERT,
                                                   // property_type
   "Error: bad state transition",
                                                   // msg
                                                   // coverage_level
   'OVL_COVER_DEFAULT,
                                                   // clock_edge
// reset_polarity
   'OVL_POSEDGE,
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_transition (
      clock.
                                                   // clock
                                                   // reset
      reset,
      enable,
                                                   // enable
                                                   // test_expr
      current_state,
      requests > 2 ? `FULL : `ONE_IN_Q,
                                                   // start_state
                                                   // next_state
      fire valid transition);
                                                   // fire
```

Ensures that *current_state* does not transition to 'EMPTY improperly. If *requests* is greater than 2 and the current_state is 'FULL, *current_state* should not transition to 'EMPTY in the next

cycle. If *requests* is not greater than 2 and *current_state* is 'ONE_IN_Q, *current_state* should not transition to 'EMPTY in the next cycle.

ovl_no_underflow

Ensures that the value of an expression does not underflow.

Syntax

ovl_no_underflow

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Width must be less than or equal to 32. Default: 1.
min	Minimum value in the test range of test_expr. Default: 0.
max	Maximum value in the test range of <i>test_expr</i> . Default: 2**width - 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should not change from a value of <i>min</i> to a value out of range or to a value equal to <i>max</i> .
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_no_underflow assertion checker checks the expression *test_expr* at each active edge of *clock* to determine if its value has changed from a value (at the previous active edge of *clock*) that was equal to *min*. If so, the checker verifies that the new value has not underflowed *min*. That is, it verifies the value of *test_expr* is not less than *min* or greater than or equal to *max* (in which case, the assertion fails).

The checker is useful for verifying counters, where it can ensure the counter does not wrap from the lowest value to the highest value in a specified range. For example, it can be used to check that memory structure pointers do not wrap around. For a more general test for underflow, use ovl_delta or ovl_fifo_index.

Assertion Checks

NO_UNDERFLOW	Expression changed value from <i>min</i> to a value not in the range
	min + 1 to $max - 1$.

Implicit X/Z Checks

```
\begin{array}{ll} \text{test\_expr contains } X & \text{Expression value contained } X \text{ or } Z \text{ bits.} \\ \text{or } Z \end{array}
```

Cover Points

```
cover_test_expr_at_min BASIC — Expression evaluated to min.

cover_test_expr_at_max CORNER — Expression evaluated to max.
```

Errors

The parameters *min* and *max* must be specified such that *min* is less than or equal to *max*. Otherwise, the assertion fails on each tested clock cycle for which *test_expr* changed from *max*.

Notes

1. The assertion check compares the current value of <code>test_expr</code> with its previous value. Therefore, checking does not start until the second rising clock edge of <code>clock</code> after <code>reset</code> deasserts.

See also

```
ovl_deltaovl_fifo_indexovl_decrementovl_no_overflow
```

Example

```
ovl_no_underflow #(
                                                   // severity level
   'OVL ERROR,
   3,
                                                   // width
   3,
                                                   // min
   7,
                                                   // max
   'OVL_ASSERT,
                                                      property_type
   "Error: addr underflow",
                                                   //msq
   'OVL_COVER_DEFAULT,
                                                   // coverage_level
   'OVL_POSEDGE,
                                                   // clock_edge
                                                   // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                   // gating_type
   addr_with_underflow (
                                                   // clock
      clock,
      reset,
                                                   // reset
      enable,
                                                   // enable
      addr,
                                                   // test_expr
      fire_addr_with_underflow );
                                                   // fire
```

Ensures that *addr* does not underflow (i.e., change from a value of 3 at the rising edge of *clock* to a value of 7 or a value less than 3 at the next rising edge of *clock*).

ovl_odd_parity

Ensures that the value of an expression has odd parity.

Syntax

ovl_odd_parity

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should evaluate to a value with odd parity on the rising clock edge.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_odd_parity assertion checker checks the expression *test_expr* at each active edge of *clock* to verify the expression evaluates to a value that has odd parity. A value has odd parity if the number of bits set to 1 is odd.

The checker is useful for verifying control circuits, for example, it can be used to verify a finite-state machine with error detection. In a datapath circuit the checker can perform parity error checking of address and data buses.

Assertion Checks

ODD_PARITY	Expression	evaluated 1	to a value	whose	parity is	not odd.

Implicit X/Z Checks

```
 \begin{array}{ll} \text{test\_expr contains X} & \text{Expression value contained X or Z bits.} \\ \text{or Z} \\ \end{array}
```

Cover Points

```
cover_test_expr_change SANITY — Expression has changed value.
```

See also

ovl_even_parity

Example

```
ovl_odd_parity #(
   'OVL_ERROR,
                                                     // severity_level
   8,
                                                     // width
   'OVL ASSERT,
                                                     // property_type
   "Error: data has even parity",
                                                     // msq
   'OVL_COVER_DEFAULT,
                                                     // coverage_level
   'OVL_POSEDGE,
                                                     // clock_edge
   'OVL_ACTIVE_LOW,
                                                     // reset_polarity
   'OVL_GATE_CLOCK)
                                                     // gating_type
   valid_data_odd_parity (
      clock,
                                                     // clock
      reset,
                                                     // reset
      enable,
                                                     // enable
      data,
                                                     // test_expr
      fire_valid_data_odd_parity );
                                                     // fire
Ensures that data has odd parity at each rising edge of clock.
     reset
      data
                                               В
                                                  ODD PARITY
                                                  Error: data has even parity
```

ovl_one_cold

Ensures that the value of an expression is one-cold (or equals an inactive state value, if specified).

Syntax

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 32.
inactive	Inactive state of <i>test_expr</i> : 'OVL_ALL_ZEROS, 'OVL_ALL_ONES or 'OVL_ONE_COLD. Default: 'OVL_ONE_COLD.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should evaluate to a one-cold or inactive value on the rising clock edge.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_one_cold assertion checker checks the expression *test_expr* at each active edge of *clock* to verify the expression evaluates to a one-cold or inactive state value. A one-cold value has exactly one bit set to 0. The inactive state value for the checker is set by the *inactive* parameter. Choices are: 'OVL_ALL_ZEROS (e.g., 4'b0000), 'OVL_ALL_ONES (e.g., 4'b1111) or 'OVL_ONE_COLD. The default *inactive* parameter value is 'OVL_ONE_COLD, which indicates *test_expr* has no inactive state (so only a one-cold value is valid for each check).

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state machine with one-cold encoding operates properly and has exactly one bit asserted low. In a datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus contention.

Assertion Checks

ONTE COTE	-	1 .•	1,1 1,1 1	1 '
ONE COLD	Expression assumed	l an active state v	with multinly	a hite cat to ()
0111_00115	Labicssion assumed	i an active state	will munibr	onis sei io o.

Implicit X/Z Checks

test_expr contains X	Expression value contained X or Z bits.
or Z	

Cover Points

cover_test_expr_change	SANITY — Expression has changed value.
cover_all_one_colds_ checked	CORNER — Expression evaluated to all possible combinations of one-cold values.
<pre>cover_test_expr_all_ zeros</pre>	CORNER — Expression evaluated to the inactive state and the <i>inactive</i> parameter was set to 'OVL_ALL_ZEROS.
<pre>cover_test_expr_all_ ones</pre>	CORNER — Expression evaluated to the inactive state and the <i>inactive</i> parameter was set to 'OVL_ALL_ONES.

Notes

1. By default, the ovl_one_cold assertion is pessimistic and the assertion fails if test_expr is active and multiple bits are not 1 (i.e. equals 0, X, Z, etc.). However, if 'OVL_XCHECK_OFF is set, the assertion fails if and only if test_expr is active and multiple bits are 0.

See also

ovl one hot ovl zero one hot

Examples

```
ovl_one_cold #(
                                               // severity_level
   'OVL_ERROR,
                                               // width
   4,
   'OVL_ONE_COLD,
                                               // inactive (no inactive state)
   'OVL_ASSERT,
                                               // property_type
   "Error: sel_n not one-cold",
                                               // msg
   `OVL_COVER_DEFAULT,
                                               // coverage_level
   'OVL_POSEDGE,
                                               // clock_edge
                                               // reset polarity
   'OVL ACTIVE LOW,
   'OVL_GATE_CLOCK)
                                               // gating_type
   valid_sel_n_one_cold (
      clock,
                                               // clock
      reset,
                                               // reset
      enable,
                                               // enable
      sel_n,
                                               // test_expr
      fire_valid_sel_n_one_cold );
                                               // fire
Ensures that sel_n is one-cold at each rising edge of clock.
```



```
ovl_one_cold #(
   'OVL_ERROR,
                                                      // severity_level
   4,
                                                      // width
   'OVL ALL ONES,
                                                      // inactive
   'OVL ASSERT,
                                                      // property_type
                                                      // msg
   "Error: sel_n not one-cold or inactive",
   'OVL_COVER_DEFAULT,
                                                      // coverage_level
   'OVL_POSEDGE,
                                                      // clock_edge
   'OVL_ACTIVE_LOW,
                                                      // reset_polarity
   'OVL_GATE_CLOCK)
                                                      // gating_type
   valid sel n one cold (
                                                      // clock
      clock,
                                                      // reset
      reset,
      enable,
                                                      // enable
      sel n.
                                                      // test expr
      fire valid sel n one cold );
                                                     // fire
Ensures that sel n is one-cold or inactive (4'b1111) at each rising edge of clock.
     reset
     sel n
          XXXX
                1111
                          1011
                                 | 1101 | 1100 | 1110 |
                                                         1111
                                                                    0111

→ test_expr contains X/Z value

                                                  ONE_COLD
                                                  Error: sel_n not one-cold or inactive
ovl_one_cold #(
                                                      // severity_level
   'OVL_ERROR,
                                                      // width
   'OVL_ALL_ZEROS,
                                                      // inactive
                                                      // property_type
   'OVL_ASSERT,
   "Error: sel_n not one-cold",
                                                     // msg
   'OVL_COVER_DEFAULT,
                                                      // coverage_level
   'OVL_POSEDGE,
                                                      // clock_edge
   'OVL_ACTIVE_LOW,
                                                      // reset_polarity
   'OVL GATE CLOCK)
                                                      // gating_type
   valid sel n one cold (
                                                      // clock
      clock,
                                                      // reset
      reset,
      enable,
                                                      // enable
      sel n,
                                                      // test expr
      fire_valid_sel_n_one_cold );
                                                      // fire
Ensures that sel_n is one-cold or inactive (4'b0000) at each rising edge of clock.
     reset
     sel_n XXXX 0000
                          1011
                                 1101 | 0111 | 1110
                                                         1111
                                                                   0111 1011
                    ONE_COLD Error: sel_n not one-cold or inactive
```

ovl_one_hot

Ensures that the value of an expression is one-hot.

Syntax

```
ovl_one_hot
```

Parameters

severity_level Severity of ('OVL_ER	f the failure. Default: 'OVL_SEVERITY_DEFAULT RROR).
width Width of the	he test_expr argument. Default: 32.
property_type Property ty ('OVL_AS	ype. Default: 'OVL_PROPERTY_DEFAULT SSERT).
	sage printed when assertion fails. Default: G_DEFAULT ("VIOLATION").
coverage_level Coverage ('OVL_BA	level. Default: 'OVL_COVER_DEFAULT ASIC).
	ge of the <i>clock</i> input. Default: OCK_EDGE_DEFAULT ('OVL_POSEDGE).
'OVL_RE	ctive level) of the <i>reset</i> input. Default: SET_POLARITY_DEFAULT CTIVE_LOW).
	navior of the checker when <i>enable</i> is FALSE. Default: TING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should evaluate to a one-hot value on the rising clock edge.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_one_hot assertion checker checks the expression *test_expr* at each active edge of *clock* to verify the expression evaluates to a one-hot value. A one-hot value has exactly one bit set to 1.

The checker is useful for verifying control circuits, for example, it can ensure that a finite-state machine with one-hot encoding operates properly and has exactly one bit asserted high. In a datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus contention.

Assertion Checks

ONE_HOT	Expression evaluated to zero or to a value with multiple bits set
	to 1

Implicit X/Z Checks

```
\begin{array}{ll} \text{test\_expr contains X} & \text{Expression value contained X or Z bits.} \\ \text{or Z} \end{array}
```

Cover Points

```
cover_test_expr_change SANITY — Expression has changed value.

cover_all_one_hots_
    checked CORNER — Expression evaluated to all possible combinations of one-hot values.
```

Notes

1. By default, the ovl_one_hot assertion is optimistic and the assertion fails if <code>test_expr</code> is zero or has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if 'OVL_XCHECK_OFF is set, the ONE_HOT assertion fails if and only if <code>test_expr</code> is zero or has multiple bits that are 1.

See also

ovl_one_cold ovl_zero_one_hot

Example

```
ovl_one_hot #(
   'OVL_ERROR,
                                                       // severity_level
   4,
                                                       // width
   'OVL ASSERT,
                                                       // property_type
   "Error: sel not one-hot",
                                                       //msq
   'OVL_COVER_DEFAULT,
                                                       // coverage_level
   'OVL_POSEDGE,
                                                       // clock_edge
   'OVL_ACTIVE_LOW,
                                                       // reset_polarity
   'OVL_GATE_CLOCK)
                                                       // gating_type
   valid_sel_one_hot (
                                                       // clock
       clock,
      reset,
                                                       // reset
       enable,
                                                       // enable
       sel,
                                                       // test_expr
       fire_valid_sel_one_hot );
                                                       // fire
Ensures that sel is one-hot at each rising edge of clock.
     reset
          -xxxx
                 1000
                           0100
                                  | 0010 | 0011 | 0001
                                                                      0000
                                                                            0100
       sel

→ test expr contains X/Z value

                                                   ONE HOT
                                                   Error: sel not one-hot
```

ovl_proposition

Ensures that the value of an expression is always combinationally TRUE.

Syntax

```
ovl_proposition
```

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Ignored parameter.
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr	Expression that should always evaluate to TRUE.

```
fire
['OVL_FIRE_WIDTH-1:0]
```

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_proposition assertion checker checks the single-bit expression *test_expr* when it changes value to verify the expression evaluates to TRUE.

Assertion Checks

PROPOSITION

Expression evaluated to FALSE.

Implicit X/Z Checks

```
test_expr contains X or Z
```

Expression value was X or Z.

Cover Points

none

Notes

1. Formal verification tools and hardware emulation/acceleration systems might ignore this checker. To verify propositional properties with these tools, consider using ovl_always.

See also

```
ovl_alwaysovl_implicationovl_always_on_edgeovl_never
```

Example

```
ovl proposition #(
                                                    // severity level
   'OVL ERROR,
   'OVL_ASSERT,
                                                   // property_type
                                                   // msg
   "Error: current_addr changed while bus
   granted",
                                                    // coverage_level
                                                   // clock_edge
// reset_polarity
   'OVL_COVER_DEFAULT,
   'OVL_POSEDGE,
   'OVL_ACTIVE_LOW,
                                                    // gating_type
   'OVL_GATE_CLOCK)
   valid_current_addr (
      bus ant,
                                                    // reset
      enable,
                                                   // enable
      current_addr == addr,
                                                   // test_expr
      fire_valid_current_addr );
                                                   // fire
```


ovl_quiescent_state

Ensures that the value of a specified state expression equals a corresponding check value if a specified sample event has transitioned to TRUE.

Syntax

```
ovl_quiescent_state
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>state_expr</i> and <i>check_value</i> arguments. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
state_expr[width-1:0]	Expression that should have the same value as <i>check_value</i> on the rising edge of <i>clock</i> if <i>sample_event</i> has just transitioned to TRUE (rising edge).
check_value[width-1:0]	Expression that indicates the value <i>state_expr</i> should have on the active edge of <i>clock</i> if <i>sample_event</i> has just transitioned to TRUE (rising edge).
sample_event	Expression that initiates the quiescent state check when its value transitions to TRUE.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_quiescent_state assertion checker checks the expression *sample_event* at each active edge of *clock* to see if its value has transitioned to TRUE (i.e., its current value is TRUE and its value on the previous active edge of *clock* is not TRUE). If so, the checker verifies that the current value of *state_expr* equals the current value of *check_value*. The assertion fails if *state_expr* is not equal to *check_value*.

The *state_expr* and *check_value* expressions are verification events that can change. In particular, the same assertion checker can be coded to compare different check values (if they are checked in different cycles).

The checker is useful for verifying the states of state machines when transactions complete.

Assertion Checks

QUIESCENT_STATE The sample_event expression transitioned to TRUE, but the values of state_expr and check_value were not the same.

Implicit X/Z Checks

state_expr contains X or Z	State expression value contained X or Z bits.
<pre>check_value contains X or Z</pre>	Check vale expression value contained X or Z bits.
sample_event contains X or Z	Sample event value was X or Z.
'OVL_END_OF_SIMULATION contains X or Z	State expression value contained X or Z bits at the end of simulation ('OVL_END_OF_SIMULATION asserted).

Cover Points

none

Notes

- 1. The assertion check compares the current value of *sample_event* with its previous value. Therefore, checking does not start until the second rising clock edge of *clock* after *reset* deasserts.
- 2. The checker recognizes the Verilog macro 'OVL_END_OF_SIMULATION=eos_signal. If set, the quiescent state check is also performed at the end of simulation, when eos_signal asserts (regardless of the value of sample_event).
- 3. Formal verification tools and hardware emulation/acceleration systems might ignore this checker.

See also

ovl_no_transition

ovl transition

Example

```
ovl_quiescent_state #(
   'OVL_ERROR,
                                                  // severity_level
   4,
                                                  // width
   'OVL ASSERT,
                                                  // property_type
   "Error: illegal end of transaction",
                                                  // msq
   'OVL_COVER_DEFAULT,
                                                  // coverage_level
   'OVL_POSEDGE,
                                                  // clock_edge
   'OVL_ACTIVE_LOW,
                                                  // reset_polarity
   'OVL_GATE_CLOCK)
                                                  // gating_type
   valid_end_of_transaction_state (
      clock,
                                                  // clock
      reset,
                                                  // reset
      enable,
                                                  // enable
      transaction_state,
                                                  // state expr
      prev_tr == 'TR_READ ? 'TR_IDLE : 'TR_WAIT
                                                  // check_value
                                                  // sample_event
      end_of_transaction,
      fire_valid_end_of_transaction_state );
                                                  // fire
```

Ensures that whenever *end_of_transaction* asserts at the completion of each transaction, the value of *transaction_state* is 'TR_IDLE (if prev_tr is 'TR_READ) or 'TR_WAIT (otherwise).

ovl_range

Ensures that the value of an expression is in a specified range.

Syntax

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
min	Minimum value allowed for test_expr. Default: 0.
max	Maximum value allowed for test_expr. Default: 2**width - 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should evaluate to a value in the range from <i>min</i> to <i>max</i> (inclusive) on the rising clock edge.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_range assertion checker checks the expression *test_expr* at each active edge of *clock* to verify the expression falls in the range from *min* to *max*, inclusive. The assertion fails if *test_expr* < *min* or *max* < *test_expr*.

The checker is useful for ensuring certain control structure values (such as counters and finite-state machine values) are within their proper ranges. The checker is also useful for ensuring datapath variables and expressions are in legal ranges.

Assertion Checks

DANCE	Erranassian arrabratad		
RANGE	Expression evaluated	courside ine	e range <i>min</i> to max.

Implicit X/Z Checks

```
 \begin{array}{ll} \text{test\_expr contains } \textbf{X} & \text{ } \textbf{Expression value contained } \textbf{X} \text{ or } \textbf{Z} \text{ bits.} \\ \text{or } \textbf{Z} \\ \end{array}
```

Cover Points

Errors

The parameters *min* and *max* must be specified such that *min* is less than or equal to *max*. Otherwise, the assertion fails on each tested clock cycle.

See also

```
ovl_alwaysovl_neverovl_implicationovl_proposition
```

Example

```
ovl_range #(
   'OVL_ERROR,
                                                      // severity_level
                                                      // width
   3,
   2,
                                                      // min
                                                      // max
   'OVL_ASSERT,
                                                      // property_type
   "Error: sel_high - sel_low not within 2 to 5",
                                                      // msg
   'OVL_COVER_DEFAULT,
                                                      // coverage_level
   'OVL_POSEDGE,
                                                      // clock_edge
                                                      // reset_polarity
   'OVL_ACTIVE_LOW,
                                                      // gating_type
   'OVL_GATE_CLOCK)
   valid_sel (
      clock,
                                                      // clock
      reset,
                                                      // reset
      enable,
                                                      // enable
      sel_high - sel_low,
                                                      // test_expr
      fire_valid_sel );
                                                      // fire
```

Ensures that (*sel_high - sel_low*) is in the range 2 to 5 at each rising edge of *clock*.

RANGE Error: sel_high - sel_low not within 2 to 5

ovl_reg_loaded

Ensures that a register is loaded with source data within a specified time window.

Syntax

ovl_reg_loaded

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the src_expr and dest_expr registers. Default: 4.
start_count	Number of cycles after <i>start_event</i> asserts that the time window opens. Default: 1.
end_count	Number of cycles after <i>start_event</i> asserts that the time window closes (if it is still open). If <i>end_count</i> is 0, only the <i>end_event</i> signal is used to define the time windows. Default: 10.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
start_event	Start event signal for the reg_loaded check. If the time window is closed (or closing), the rising edge of <i>start_event</i> initiates a new check. The time window opens <i>start_count</i> cycles later.
end_event	End event signal for the reg_loaded check. If the time window is open (or opening), the rising edge of <i>end_event</i> terminates the current check, closes the window and issues a reg_loaded violation (if <i>dest_expr</i> loaded the value of <i>src_expr</i> in that cycle, the time window would be closing).
<pre>src_expr[width-1:0]</pre>	Source register containing the values that load the <i>dest_expr</i> register. For each reg_loaded check, the source value in <i>src_expr</i> is sampled in the same cycle that <i>start_event</i> asserts.
<pre>dest_expr[width-1:0]</pre>	Destination register for the values in src_expr.
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_reg_loaded assertion checker checks *start_event* at each active edge of *clock*. If *start_event* has just transitioned to TRUE, the checker evaluates the source register (*src_expr*) and initiates a reg_loaded check to verify that this value gets loaded into the destination register (*dest_expr*) in the specified time window.

If *start_count* is 0, the time window opens immediately. Otherwise, the time window opens *start_count* cycles after the current cycle. The values of *dest_expr* in the cycles between the start of the reg_loaded check and the time window opening are not relevant. When the time window opens, the checker evaluates *dest_expr* and re-evaluates *dest_expr* each subsequent cycle. Once the value of *dest_expr* equals the captured value of *src_expr*, the current reg_loaded check terminates successfully. The time window closes when one of the following occur:

- The current cycle is *end_count* cycles after *start_event* asserted (*end_count* > 0).
- The *end_event* signal is TRUE.

If *dest_expr* has not loaded the *src_expr* value by the cycle the time window closes, a reg_loaded violation occurs.

Assertion Checks

REG_LOADED

Destination register did not equal the value of the source register in the specified time window.

end_count > 0

Either *end_event* became TRUE or *end_count* cycles passed after the rising edge of *start_event* and *dest_expr* was still not equal to the captured value of *src_expr* (ignoring values of *dest_expr* in the *start_count* cycles after *start_event* asserted).

Destination expression did not equal the value of the source expression in the time window that ended when 'end_event' asserted.

 $end_count = 0$

End_event became TRUE after the rising edge of start_event and dest_expr was still not equal to the captured value of src_expr (ignoring values of dest_expr in the start_count cycles after start_event asserted).

Implicit X/Z Checks

start_event contains X Start event signal was X or Z.
or Z

end_event contains X End event signal was X or Z.
or Z

 $\operatorname{\mathtt{src_expr}}$ contains X or Source expression contained X or Z bits.

 $\begin{array}{ll} \texttt{dest_expr} & \texttt{contains} \ \texttt{X} & \quad \textbf{Destination expression contained } X \ \texttt{or} \ Z \ \texttt{bits}. \\ \texttt{or} \ \texttt{Z} & \quad \end{array}$

Cover Points

cover_values_checked SANITY — Number of times a reg_loaded check was initiated (i.e., number of cycles *start_event* transitioned to TRUE).

BASIC — Number of times a reg_loaded check was terminated successfully (i.e, dest_expr was loaded with src_expr in the time

window).

cover_end_in_window BASIC — Number of time windows in which end_event asserted

(whether or not *dest_expr* loaded *src_expr* in the window). Not

meaningful if $end_count = 0$.

cover_no_end_in_

BASIC — Number of time windows in which end_event did not window

window

assert (whether or not dest event leaded are event in the window)

assert (whether or not *dest_expr* loaded *src_expr* in the window).

Not meaningful if $end_count = 0$.

start_count cycles after start_event asserted.

ovl_req_ack_unique

Ensures every request receives a corresponding acknowledge in a specified time window.

Syntax

ovl_req_ack_unique

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
min_cks	Minimum number of clock cycles after <i>req</i> asserts that its corresponding acknowledge can occur. Default: 1
max_cks	Maximum number of clock cycles after <i>req</i> asserts that its corresponding acknowledge can occur. Default: 15.
method	 Method used to track and correlate request/acknowledge pairs. method = 0 (Default) Method suitable for a short time window (max_cks ≤ 15). Uses internal IDs for requests. For each request, generates max_cks properties. method = 1 Method suitable for a long time window (max_cks > 15). Uses time stamps (computed mod 2 max_cks) to identify requests. To process an acknowledge, the time stamp for the request at the front of the queue is used to verify that the acknowledge meets timing requirements.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

req Request signal.

ack Acknowledgment signal.

fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_req_ack_unique assertion checker checks *req* and *ack* at each active edge of *clock*. If *req* is TRUE, a request becomes outstanding immediately. The checker tracks outstanding requests on a first-in first-out basis to verify the specified request/acknowledge handshake protocol is obeyed.

The protocol ensures each request has an acknowledgement that occurs in the time window that opens min_cks after the request (i.e., when the request becomes outstanding) and closes max_cks after the request. When ack is TRUE, the oldest outstanding request is checked. If this request has not been outstanding for at least min_cks cycles, the ack is ignored. Otherwise, the request is removed from the outstanding requests FIFO and "matched" with the current acknowledge. The checker detects the following violations:

- If ack is TRUE and no requests are outstanding, a no_extraneous_ack violation occurs.
- If a request is not acknowledged in its time window, an ack_timeout violation occurs.
- If max_cks requests are outstanding, additional requests cannot become outstanding. If a request occurs (without a simultaneous acknowledge), a max_outstanding_req violation occurs and the request is ignored.

To help collect coverage data, the checker tracks individual requests and their acknowledgements (up to the maximum outstanding requests limit, which is *max_cks* requests).

But the larger *max_cks* is, the greater the decrease in performance. To resolve this problem, the checker can be configured to a second method of tracking request/acknowledge pairs by setting the *method* parameter to 1. However with this method, the checker does not collect some coverage data.

Assertion Checks

NO_EXTRANEOUS_ACK Acknowledge received when no requests were

outstanding.

No requests were outstanding and ack was TRUE (and if

 $min \ cks = 0$, $reg \ was \ FALSE$).

ACK_TIMEOUT Acknowledge not received in time window.

A request was pending for *max_cks* cycles and did not receive

its acknowledge in the last cycle of its time window.

MAX_OUTSTANDING_REQ Maximum number of requests were outstanding when an

additional request was issued.

Req was TRUE and ack was FALSE, but max_cks requests

were outstanding.

Implicit X/Z Checks

req contains X or Z Request signal was X or Z.

ack contains X or Z Acknowledge signal was X or Z.

Cover Points

cover_requests SANITY — Number of cycles *reg* asserted.

cover_acknowledgements SANITY — Number of cycles ack asserted.

min_cks cycles after its request was issued. Not meaningful if

method = 1.

max cks cycles after its request was issued. Not meaningful if

method = 1.

observed_ack_times STATISTIC — Reports the request-to-acknowledge times (in

cycles) that occurred at least once. Not meaningful if method = 1.

observed_outstanding_

requests

STATISTIC — Reports the number of cycles in which exactly *index* requests become outstanding, for each *index* in the range [0: *max_cks*] (except for index = 0, which counts all cycles that

no request was outstanding). Not meaningful if method = 1.

ovl_req_requires

Ensures that every request event initiates a valid request-response event sequence that finishes within a specified time window.

Syntax

```
ovl_req_requires
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
min_cks	Minimum number of clock cycles after $req_trigger$ is TRUE that the event sequence can finish. Value of min_cks must be > 0 . Default: 1.
max_cks	Maximum number of clock cycles after $req_trigger$ is TRUE that the event sequence should finish. The special value 0 selects no upper bound. If $max_cks \neq 0$, then max_cks must be min_cks . Default: 0.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).

gating_type	Gating behavior of the checker when enable is FALSE. Default:
	'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock	Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable. Enable signal for *clock*, if *gating type* = 'OVL GATE CLOCK

(the default gating type) or reset (if gating type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

req_trigger Request trigger signal. If req_trigger is TRUE, the checker

initiates a new check and its corresponding time window opens

min cks cycles later.

req_follower Request follower signal. A request event finishes at the first

rising edge of req follower after req trigger was TRUE.

resp_leader Response leader signal. The first rising edge of resp leader in a

cycle after the request event initiates the response event.

resp_trigger Response trigger signal. The response event finishes at the first

> rising edge of resp trigger in the same or subsequent cycle as the rising edge of *resp_leader*. This event must be in the time window from min_cks to max_cks cycles after req_trigger was

TRUE.

fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL FIRE WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_req_requires assertion checker checks req_trigger at each active edge of clock. If req_trigger is TRUE, a req_requires check is initiated. The checker verifies that a semaphore request-response event sequence transpires with the last event occurring within the time window specified by [max cks:min cks]. The event sequence must have the following characteristics:

- When req_trigger is TRUE: req_follower, resp_leader, resp_trigger are TRUE in sequence.
- Each event happens at the active clock edge at which the first occurrence of its signal is TRUE following the previous event in the sequence.
- The sequence has the following timing relations:

t_{req_trigger} ≤ t_{req_follower} < t_{resp_leader} ≤ t_{resp_trigger}

That is, the req_trigger and req_follower events can occur in the same cycle and the resp_leader and resp_trigger events can occur in the same cycle, but the resp_leader event must be after the req_follower event.

A req requires check violation occurs if one of the following cases arises:

- The semaphore event sequence finishes before the [min_cks:max_cks] time window opens.
- A cycle is reached at which the checker determines the semaphore event sequence cannot finish within the [min_cks:max_cks] time window.
- The [min_cks:max_cks] time window closes, but the semaphore event sequence did not finish.

The default value of max_cks is 0, which sets no upper bound for the time windows. In this case, a req_requires violation occurs only when a sequence finishes before min_cks cycles after the $req_trigger$ event. The default value of min_cks is 1, so if both min_cks and max_cks are left set to their defaults, the req_requires check cannot be violated.

Assertion Checks

REQ_REQUIRES

A request-response event sequence started, but did not finish when the specified time window was open. $max_cks > 0$

Req_trigger was TRUE, so a request-response event sequence started. But, either the sequence finished before min_cks cycles, or it could not finish by max_cks cycles.

A request-response event sequence started, but it finished before the specified time window opened.

max cks = 0

Req_trigger was TRUE, so a request-response event sequence started, but the sequence finished before *min_cks* cycles.

Implicit X/Z Checks

<pre>req_trigger contains X or Z</pre>	Request trigger was X or Z.
<pre>req_follower contains X or Z</pre>	Request follower was X or Z.
resp_leader contains X or Z	Response leader was X or Z.
resp_trigger contains X or Z	Response trigger was X or Z.

Cover Points

If overlapping request-response sequences are triggered, the coverage data might be inaccurate because the cover group vectors do not reflect which responses belong to which requests.

cover_requests	SANITY — Number of cycles <i>req_trigger</i> was TRUE.
<pre>cover_request_ followers</pre>	BASIC — Number of times <i>req_trigger</i> was TRUE and <i>req_follower</i> was TRUE in the same or subsequent cycle.
cover_response_leaders	BASIC — Number of times $req_trigger$ was TRUE; $req_follower$ was TRUE in the same or subsequent cycle; and then $resp_leader$ was TRUE in a subsequent cycle.
cover_req_requires	BASIC — Number of valid request-response event sequences.
<pre>cover_resp_trigger_at_ min_cks</pre>	CORNER — Number of valid request-response event sequences that finished in <i>min_cks</i> cycles.
<pre>cover_resp_trigger_at_ max_cks</pre>	CORNER — Number of valid request-response event sequences that finished in <i>max_cks</i> cycles.
<pre>cover_req_trigger_to_ resp_trigger</pre>	STATISTIC — Reports the request-trigger to response-trigger times (in cycles) that occurred at least once.
<pre>cover_req_trigger_to_ req_follower</pre>	STATISTIC — Reports the request-trigger to request-follower times (in cycles) that occurred at least once.
<pre>cover_req_follower_to_ resp_leader</pre>	STATISTIC — Reports the request-follower to response-leader times (in cycles) that occurred at least once.
<pre>cover_resp_leader_to_ resp_trigger</pre>	STATISTIC — Reports the response-leader to response-trigger times (in cycles) that occurred at least once.

ovl stack

Ensures the data integrity of a stack and ensures that the stack does not overflow or underflow.

[#(severity_level, width, depth, push_latency, pop_latency,

instance_name (clock, reset, enable, push, pop, full, empty, push_data,

high_water_mark, property_type, msg, coverage_level, clock_edge,

reset_polarity, gating_type)]

pop data, fire);

Class: *n*-cycle assertion

Syntax

ovl stack

```
Parameters
 severity level
                             Severity of the failure. Default: 'OVL SEVERITY DEFAULT
                             ('OVL ERROR).
 width
                             Width of a data item. Default: 1.
 depth
                             Stack depth. The depth must be > 0. Default: 2.
 push_latency
                             Latency for push operation.
                             push_latency = 0 (Default)
                                 Value of push data is valid and the push operation is
                                 performed in the same cycle push asserts.
                             push_latency > 0
                                 Value of push data is valid and the push operation is
                                 performed push_latency cycles after push asserts.
 pop_latency
                             Latency for pop operation.
                             pop_latency = 0 (Default)
                                 Value of pop data is valid and the pop operation is
                                 performed in the same cycle pop asserts.
                             pop_latency > 0
                                 Value of pop_data is valid and the pop operation is
                                 performed pop latency cycles after pop asserts.
 high_water_mark
                             Stack high-water mark. Must be < depth. A value of 0 disables
                              the cover high water mark cover point. Default: 0.
```

property_type Property type. Default: 'OVL PROPERTY DEFAULT

('OVL ASSERT).

Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL COVER DEFAULT

('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

Stack push input. When *push* asserts, the stack performs a push

operation. A data item is pushed onto the stack and the stack counter increments by 1. If *push_latency* is 0, the push is performed in the same cycle *push* asserts. Otherwise *push_latency* cycles later, *push_data* is latched, the push operation occurs, and the stack counter increments.

Stack pop input. When pop asserts, the stack performs a pop

operation. A data item is popped from the stack and the stack

counter decrements by 1. If *deq_latency* is 0, the pop is

performed in the same cycle *pop* asserts. Otherwise *enq_latency*

cycles later, the pop operation occurs, the stack counter

decrements, and *pop_data* is valid.

full Output status flag from the stack.

full = 0

Stack not full.

full = 1

Stack full.

empty Output status flag from the stack.

empty = 0

Stack not empty.

empty = 1

Stack empty.

push_data[width-1:0]	Push data input to the stack. Contains the data item to push onto the stack.
<pre>pop_data[width-1:0]</pre>	Pop data output from the stack. Contains the data item popped from the stack.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_stack checker checks *push* and *pop* at the active edge of *clock*. If *push* is TRUE, the checker assumes a push operation occurs *push_latency* cycles later (or in the same cycle if *push_latency* is 0). *In that cycle*, the checker does the following:

- If a pop operation is scheduled for this cycle, a simultaneous_push_pop check violation occurs.
- Otherwise, if the stack is already full, an overflow check violation occurs. The checker assumes the data item in *push_data* was latched in the current cycle and replaced the top entry.
- Otherwise, the checker assumes the data item in *push_data* was latched in the current cycle and pushed on the top of the stack. The checker increments the stack counter by 1 in the next cycle.

Similarly, if *pop* is TRUE, the checker assumes a pop operation occurs *pop_latency* cycles later (or in the same cycle if *pop_latency* is 0). *In that cycle*, unless a simultaneous_push_pop violation has occurred, the checker does the following:

- If the stack is already empty, an underflow check violation occurs.
- Otherwise, the checker assumes the data item on the top of the stack was popped and compares the value of *pop_data* with the expected value of the popped data item. If they do not match, a value check violation occurs. The checker decrements the stack counter by 1 in the next cycle.

The ovl_stack checker also checks *full* and *empty* at the active edge of *clock*. After the stack pointer is adjusted to reflect a push or pop performed in the previous cycle:

- If the stack is full and *full* is FALSE or if the stack is not full and *full* is TRUE, a full check violation occurs.
- If the stack is empty and *empty* is FALSE or if the stack is not empty and *empty* is TRUE, an empty check violation occurs.

Assertion Checks

OVERFLOW Data pushed onto stack when the stack was full.

Stack had *depth* data items *push_latency* cycles after *push*

was sampled TRUE.

UNDERFLOW Data popped from stack when the stack was empty.

Stack was empty *pop_latency* cycles after *pop* was sampled

TRUE.

SIMULTANEOUS_PUSH_POP Push and pop operations occurred together.

A push operation and a pop operation were both scheduled

for the same cycle.

VALUE Data value popped from the stack did not match the

corresponding data value pushed onto the stack.

Pop was sampled TRUE, but pop_latency cycles later the value of pop_data did not equal the expected value pushed

onto the stack in a previous cycle.

FULL Stack was empty, but 'empty' was deasserted.

Empty was sampled FALSE when the stack was empty. Stack was not empty, but 'empty' was asserted.

Empty was sampled TRUE when the stack was not empty.

EMPTY Stack was full, but 'full' was deasserted.

Full was sampled FALSE when the stack was full.

Stack was not full, but 'full' was asserted.

Full was sampled TRUE when the stack was not full.

Implicit X/Z Checks

push contains X or Z Push signal was X or Z.

pop contains X or Z Pop signal was X or Z.

 $\begin{array}{ll} {\tt push_data~contains~X} & & {\tt Push~data~contained~X~or~Z~bits.} \\ {\tt or~Z} & & \\ \end{array}$

 $\begin{array}{ll} \text{pop_data contains } X & \quad \text{Pop data contained } X \text{ or } Z \text{ bits.} \\ \text{or } Z \end{array}$

full contains X or Z Full signal was X or Z.

empty contains X or Z Empty signal was X or Z.

Cover Points

cover_pushes SANITY — Number of cycles *push* was asserted.

cover_pops SANITY — Number of cycles *pop* was asserted.

cover_max_entries BASIC — Number of cycles for which the number of data items

in the stack was the same as the maximum number of data items

the stack had held up to and including that cycle.

cover_push_then_pop BASIC — Number of times a *push* was followed by a *pop*

without an intervening *push* (or *pop*).

cover_full CORNER — Number of times a push incremented the stack

pointer to depth data items.

cover_empty CORNER — Number of times a pop decremented the stack

pointer to 0 data items.

than the specified *high_water_mark*. Not meaningful if

high_water_mark is 0.

ovl_time

Ensures that the value of an expression remains TRUE for a specified number of cycles after a start event.

Syntax

ovl_time

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
num_cks	Number of cycles after <i>start_event</i> is TRUE that <i>test_expr</i> must be held TRUE. Default: 1.
action_on_new_start	Method for handling a new start event that occurs while a check is pending. Values are: 'OVL_IGNORE_NEW_START, 'OVL_RESET_ON_NEW_START and 'OVL_ERROR_ON_NEW_START. Default: 'OVL_IGNORE_NEW_START.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).

gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default:
	'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion. reset Synchronous reset signal indicating completed initialization. enable Enable signal for *clock*, if *gating type* = 'OVL GATE CLOCK (the default gating type) or reset (if gating type = 'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE. start_event Expression that (along with *num_cks*) identifies when to check test_expr. Expression that should evaluate to TRUE for *num_cks* cycles test_expr after start event initiates a check. fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

Description

The ovl_time assertion checker checks the expression *start_event* at each active edge of *clock* to determine whether or not to initiate a check. Once initiated, the check evaluates test_expr each active edge of *clock* for *num cks* cycles to verify that its value is TRUE. During that time, the assertion fails each cycle a sampled value of test_expr is not TRUE.

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

The method used to determine what constitutes a start event for initiating a check is controlled by the action on new start parameter. If no check is in progress when start event is sampled TRUE, a new check is initiated. But, if a check is in progress when start_event is sampled TRUE, the checker has the following actions:

'OVL IGNORE NEW START

The checker does not sample *start event* for the next *num cks* cycles after a start event.

'OVL_RESET_ON_NEW_START

The checker samples *start* event every cycle. If a check is pending and the value of start_event is TRUE, the checker terminates the check and initiates a new check without sampling test expr.

'OVL_ERROR_ON_NEW_START

The checker samples *start* event every cycle. If a check is pending and the value of start_event is TRUE, the assertion fails with an illegal start event violation. In this case, the checker does not initiate a new check, does not terminate a pending check and reports an additional assertion violation if *test_expr* is FALSE.

Assertion Checks

TIME The value of *test_expr* was not TRUE within *num_cks* cycles

after start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to

'OVL_ERROR_ON_NEW_START and *start_event* expression evaluated to TRUE while the checker was monitoring *test_expr*.

Implicit X/Z Checks

test_expr contains X Expression value was X or Z.

or Z

start_event contains X Start event value was X or Z.

or Z

Cover Points

cover_window_open BASIC — A time check was initiated.

cover_window_close BASIC — A time check lasted the full *num_cks* cycles.

'OVL_RESET_ON_NEW_START, and *start_event* was sampled TRUE while the checker was monitoring *test_expr*.

See also

ovl_changeovl_win_changeovl_nextovl_win_unchangeovl_frameovl_window

ovl_unchange

Examples

```
ovl_time #(
   'OVL_ERROR,
                                                  // severity_level
   3,
                                                  // num_cks
   'OVL IGNORE NEW START,
                                                  // action on new start
   'OVL ASSERT,
                                                  // property_type
   "Error: invalid transaction",
                                                  // msg
   'OVL_COVER_DEFAULT,
                                                  // coverage_level
   'OVL POSEDGE,
                                                  // clock_edge
   'OVL_ACTIVE_LOW,
                                                  // reset_polarity
   'OVL_GATE_CLOCK)
                                                  // gating_type
   valid_transaction (
      clock,
                                                  // clock
                                                  // reset
      reset,
      enable,
                                                  // enable
      req == 1,
                                                  // start_event
      ptr >= 1 && ptr <= 3,
                                                  // test_expr
      fire_valid_transaction );
                                                  // fire
```

Ensures that *ptr* is sampled in the range 1 to 3 for three cycles after *req* is sampled equal to 1 at the rising edge of *clock*. If *req* is sampled equal to 1 when the checker samples *ptr*, a new check is not initiated (i.e., the new start is ignored).


```
ovl_time #(
   'OVL_ERROR,
                                                    // severity_level
                                                    // num_cks
   'OVL_RESET_ON_NEW_START,
                                                    // action_on_new_start
                                                    // property_type
   'OVL_ASSERT,
   "Error: invalid transaction",
                                                    // msg
                                                    // coverage_level
// clock_edge
   'OVL_COVER_DEFAULT,
   'OVL_POSEDGE,
                                                    // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                    // gating_type
   valid transaction (
      clock,
                                                    // clock
      reset,
                                                    // reset
      enable,
                                                    // enable
      req == 1,
                                                    // start_event
      ptr >= 1 \&\& ptr <= 3,
                                                    // test_expr
      fire_valid_transaction );
                                                    // fire
```

Ensures that *ptr* is sampled in the range 1 to 3 for three cycles after *req* is sampled equal to 1 at the rising edge of *clock*. If *req* is sampled equal to 1 when the checker samples *ptr*, a new check is initiated (i.e., the new start restarts a check).


```
ovl_time #(
   'OVL_ERROR,
                                                    // severity_level
                                                    // num_cks
   'OVL_ERROR_ON_NEW_START,
                                                    // action_on_new_start
                                                    // property_type
   'OVL_ASSERT,
   "Error: invalid transaction",
                                                    // msg
                                                    // coverage_level
// clock_edge
   'OVL_COVER_DEFAULT,
   'OVL_POSEDGE,
                                                    // reset_polarity
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                    // gating_type
   valid transaction (
      clock,
                                                    // clock
      reset,
                                                    // reset
                                                    // enable
      enable,
      req == 1,
                                                    // start_event
      ptr >= 1 \&\& ptr <= 3,
                                                    // test_expr
      fire_valid_transaction );
                                                    // fire
```

Ensures that *ptr* is sampled in the range 1 to 3 for three cycles after *req* is sampled equal to 1 at the rising edge of *clock*. If *req* is sampled equal to 1 when the checker samples *ptr*, the checker issues an *illegal start event* violation and does not start a new check.

ovl_transition

Ensures that the value of an expression transitions properly from a start state to the specified next state.

Syntax

ovl_transition

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock	Clock event for the assertion.
reset	Synchronous reset signal indicating completed initialization.
enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should transition to <i>next_state</i> on the active edge of <i>clock</i> if its value at the previous active edge of <i>clock</i> is the same as the current value of <i>start_state</i> .
start_state[width-1:0]	Expression that indicates the start state for the assertion check. If the start state matches the value of <i>test_expr</i> on the previous active edge of <i>clock</i> , the check is performed.
next_state[width-1:0]	Expression that indicates the only valid next state for the assertion check. If the value of <i>test_expr</i> was <i>start_state</i> at the previous active edge of <i>clock</i> , then the value of <i>test_expr</i> should equal <i>next_state</i> on the current active edge of <i>clock</i> .
<pre>fire ['OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_transition assertion checker checks the expression <code>test_expr</code> and <code>start_state</code> at each active edge of <code>clock</code> to see if they are the same. If so, the checker evaluates and stores the current value of <code>next_state</code>. At the next active edge of <code>clock</code>, the checker re-evaluates <code>test_expr</code> to see if its value equals the stored value of <code>next_state</code>. If not, the assertion fails. The checker returns to checking <code>start_state</code> in the current cycle (unless a fatal failure occurred)

The *start_state* and *next_state* expressions are verification events that can change. In particular, the same assertion checker can be coded to verify multiple types of transitions of *test_expr*.

The checker is useful for ensuring certain control structure values (such as counters and finite-state machine values) transition properly.

Assertion Checks

TRANSITION Expression transitioned from *start_state* to a value different from *next state*.

Implicit X/Z Checks

```
test_expr contains X or Z bits.

start_state contains X or Z

next_state contains X or Z

Next state value contained X or Z bits.

Next state value contained X or Z bits.
```

Cover Points

```
cover_start_state BASIC — Expression assumed a start state value.
```

Notes

The assertion check compares the current value of test_expr with its previous value.
 Therefore, checking does not start until the second rising clock edge of clock after reset deasserts.

See also

ovl_no_transition

Example

```
ovl_transition #(
   'OVL ERROR,
                                                   // severity_level
                                                   // width
   'OVL_ASSERT,
                                                   // property_type
   "Error: bad count transition",
                                                   // msg
                                                   // coverage_level
   'OVL_COVER_DEFAULT,
                                                   // clock_edge
// reset_polarity
   'OVL_POSEDGE,
   'OVL_ACTIVE_LOW,
   'OVL_GATE_CLOCK)
                                                   // gating_type
   valid_count (
      clock.
                                                    // clock
      reset,
                                                    // reset
      enable,
                                                    // enable
                                                    // test_expr
      count,
      3'd3,
                                                    // start_state
      (sel 8 == 1'b0) ? 3'd0 : 3'd4,
                                                   // next_state
      fire_valid_count );
                                                    // fire
```

Ensures that *count* transitions from 3'd3 properly. If *sel_8* is 0, *count* should have transitioned to 3'd0. Otherwise, *count* should have transitioned to 3'd4.

ovl_unchange

Ensures that the value of an expression does not change for a specified number of cycles after a start event initiates checking.

Syntax

```
ovl_unchange
```

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
num_cks	Number of cycles <i>test_expr</i> should remain unchanged after a start event. Default: 1.
action_on_new_start	Method for handling a new start event that occurs before <i>num_cks</i> clock cycles transpire without a change in the value of <i>test_expr</i> . Values are: 'OVL_IGNORE_NEW_START, 'OVL_RESET_ON_NEW_START and 'OVL_ERROR_ON_NEW_START. Default: 'OVL_IGNORE_NEW_START.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset polarity Polarity (active level) of the *reset* input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL ACTIVE LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

Expression that (along with action on new start) identifies start_event

when to start checking test expr.

test_expr[width-1:0] Expression that should not change value for *num cks* cycles from

the start event unless the check is interrupted by a valid new start

event.

fire Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check ['OVL_FIRE_WIDTH-1:0]

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl unchange assertion checker checks the expression *start event* at each active edge of *clock* to determine if it should check for a change in the value of *test_expr*. If *start_event* is sampled TRUE, the checker evaluates test expr and re-evaluates test expr at each of the subsequent *num_cks* active edges of *clock*. Each time the checker re-evaluates *test_expr*, if its value has changed from its value in the previous cycle, the assertion fails.

The method used to determine how to handle a new start event, when the checker is in the state of checking for a change in *test_expr*, is controlled by the *action_on_new_start* parameter. The checker has the following actions:

'OVL_IGNORE_NEW_START

The checker does not sample *start_event* for the next *num_cks* cycles after a start event.

'OVL_RESET_ON_NEW_START

The checker samples *start_event* every cycle. If a check is pending and the value of start event is TRUE, the checker terminates the check and initiates a new check.

'OVL_ERROR_ON_NEW_START

The checker samples *start_event* every cycle. If a check is pending and the value of *start_event* is TRUE, the assertion fails with an illegal start event violation. In this case, the checker does not initiate a new check and does not terminate a pending check.

The checker is useful for ensuring proper changes in structures after various events. For example, it can be used to check that multiple-cycle operations with enabling conditions function properly with the same data. It can be used to check that single-cycle operations function correctly with data loaded at different cycles. It also can be used to verify synchronizing conditions that require date to be stable after an initial triggering event.

Assertion Checks

UNCHANGE The test expr expression changed value within num cks cycles

after start_event was sampled TRUE.

illegal start event The action_on_new_start parameter is set to

'OVL_ERROR_ON_NEW_START and *start_event* expression evaluated to TRUE while the checker was in the state of checking

for a change in the value of test expr.

Implicit X/Z Checks

 $\begin{array}{ll} \text{test_expr contains X} & \text{Expression value contained X or Z bits.} \\ \text{or z} \end{array}$

start_event contains X Start event value was X or Z.

or Z

Cover Points

cover_window_open BASIC — A change check was initiated.

cover_window_close BASIC — A change check lasted the full *num cks* cycles.

'OVL_RESET_ON_NEW_START, and *start_event* was sampled TRUE while the checker was monitoring *test_expr*

without detecting a changed value.

See also

ovl_changeovl_win_unchangeovl_timeovl_window

ovl_win_change

Examples

```
ovl_unchange #(
  'OVL ERROR,
                                                    // severity_level
                                                    // width
  8,
  8,
                                                    // num cks
  'OVL IGNORE NEW START,
                                                    // action on new start
  'OVL_ASSERT,
                                                    // property_type
  "Error: a changed during divide",
                                                    //\ \mathrm{msg}
  'OVL_COVER_DEFAULT,
                                                    // coverage_level
  'OVL_POSEDGE,
                                                    // clock_edge
// reset_polarity
  'OVL_ACTIVE_LOW,
  'OVL_GATE_CLOCK)
                                                    // gating_type
  valid div unchange a (
     clock,
                                                    // clock
     reset,
                                                    // reset
     enable,
                                                    // enable
     start == 1,
                                                    // start_event
                                                    // test_expr
                                                    // fire
     fire_);
```

Ensures that *a* remains unchanged while a divide operation is performed (8 cycles). Restarts during divide operations are ignored.


```
ovl unchange #(
  'OVL ERROR,
                                                   // severity level
  8,
                                                   // width
  8,
                                                   // num_cks
  'OVL RESET ON NEW START,
                                                   // action_on_new_start
  'OVL ASSERT,
                                                   // property_type
                                                  // msg
// coverage_level
  "Error: a changed during divide",
  'OVL_COVER_DEFAULT,
                                                   // clock_edge
  'OVL_POSEDGE,
  'OVL ACTIVE LOW,
                                                   // reset_polarity
  'OVL GATE CLOCK)
                                                   // gating type
  valid div unchange a (
                                                   // clock
     clock,
     reset,
                                                   // reset
                                                   // enable
     enable,
     start == 1,
                                                   // start_event
                                                   // test_expr
// fire
     fire_valid_div_unchange_a );
```

Ensures that *a* remains unchanged while a divide operation is performed (8 cycles). A restart during a divide operation starts the check over.


```
ovl_unchange #(
  'OVL ERROR,
                                                 // severity_level
  8,
                                                 // width
                                                 // num_cks
  8,
  'OVL_ERROR_ON_NEW_START,
                                                 // action_on_new_start
  'OVL_ASSERT,
                                                 // property_type
  "Error: a changed during divide",
                                                 // msg
                                                 // coverage_level
  'OVL_COVER_DEFAULT,
  'OVL_POSEDGE,
                                                 // clock_edge
  'OVL_ACTIVE_LOW,
                                                 // reset_polarity
  'OVL GATE CLOCK)
                                                 // gating_type
  valid_div_unchange_a (
                                                 // clock
     clock,
     reset,
                                                 // reset
     enable,
                                                 // enable
     start == 1,
                                                 // start_event
     a,
                                                 // test_expr
     fire_valid_div_unchange_a );
                                                 // fire
```

Ensures that *a* remains unchanged while a divide operation is performed (8 cycles). A restart during a divide operation is a violation.

ovl_valid_id

Ensures that each issued ID is returned within a specified time window; that returned IDs match issued IDs; and that the issued and outstanding IDs do not exceed specified limits.

Syntax

ovl valid id

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>issued_id</i> , <i>returned_id</i> and flush_id. Default: 2.
min_cks	Minimum number of clock cycles an ID instance must be outstanding. Must be > 0 . Default: 1
max_cks	Maximum number of clock cycles an ID instance can be outstanding. Must be $\geq min_cks$. Default: 1.
max_instances	Maximum number of ID instances that can be outstanding at any time. Default: 2.
max_ids	Maximum number of different IDs that can be outstanding at any time. Default: 1.
max_instances_per_id	Maximum number of instances of a single ID that can be outstanding at any time. Default: 1.
instance_count_width	Width of issued_count. Default: 2.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).

msg Error message printed when assertion fails. Default:

'OVL_MSG_DEFAULT ("VIOLATION").

coverage_level Coverage level. Default: 'OVL COVER DEFAULT

('OVL_BASIC).

clock_edge Active edge of the clock input. Default:

'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when *enable* is FALSE. Default:

'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL GATE RESET). Ignored if gating type is 'OVL NONE.

issued IDs signal indicating the ID in issued_id is added to the

outstanding IDs list. The *issued_count* port specifies the number

of instances of the ID to make outstanding.

issued count

[instance_count_width-

1:0]

Number of instances of the issued ID to make outstanding when

issued asserts.

returned Returned ID signal indicating an instance of the ID in

returned id is removed from the outstanding IDs list.

Flush ID signal indicating all instances of the ID in *flush_id* are

removed from the outstanding IDs list.

issued_id[width-1:0] Expression or variable containing the ID to add to the

outstanding IDs list if *issued* is TRUE.

returned_id[width-1:0] Expression or variable containing the ID of an instance returned

and removed from the outstanding IDs list if returned is TRUE.

flush_id[width-1:0] Expression or variable containing the ID to flush if flush is

TRUE. All instances of the ID are removed from the outstanding

IDs list.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_valid_id assertion checker checks *flush*, *returned* and *issued* at each active edge of *clock* and performs the following sequence of operations using an internal scratch pad of outstanding IDs:

- 1. If *flush* is TRUE, the ID specified in *flush_id* is compared to the outstanding IDs. All instances (if any) of the flush ID are removed from the list of outstanding IDs. If *returned* is TRUE and *flush_id = returned_id*, the returned instance is ignored (even if it was not previously outstanding or was outstanding longer that *max_cks*). If *issued* is TRUE and *flush_id = issued_id*, the issued ID instances are flushed as well (even if one of the outstanding IDs, instances or instances-per-ID limits for the issued ID instance were reached).
- 2. If *returned* is TRUE and the ID in *returned_ID* is not being flushed:
 - a. If an instance of the returned ID is outstanding, the longest-outstanding instance of the returned ID is removed from the list of outstanding ID instances. If that ID instance was outstanding for fewer than *min_cks* cycles, a min_cks violation occurs.
 - b. If no instance of the returned ID is outstanding, a returned_id violation occurs. Even if an instance of the returned ID were issued in the same cycle, all ID instances must be outstanding for *min_cks* cycles (and *min_cks* must be 1). In particular, the same ID instance cannot be issued and returned in the same cycle.
- 3. If issued is TRUE and issued count is 0, an issued count violation occurs.
- 4. If *issued* is TRUE and *issued_count* > 0, then:
 - a. If the current number of unique outstanding IDs is *max_ids* and issued_id is not one of them, a max_instances violation occurs.
 - b. If the current number of outstanding ID instances plus *issued_count* exceeds *max_instances*, a max_ids violation occurs.
 - c. If the current number of outstanding instances of the issued ID plus *issued_count* exceeds *max_instances_per_id*, a max_instances_per_id violation occurs.
 - d. If the none of these violations occur, *issued_count* instances of the ID in *issued_id* are added to the list of outstanding ID instances.
- 5. After flushing and returning IDs, if any IDs have been outstanding for *max_cks* cycles, a max_cks violation occurs in the next cycle.

Assertion Checks

RETURNED ID

Returned ID not outstanding.

Returned is TRUE, but the list of outstanding ID instances does not contain an instance of returned ID.

ID instance outstanding for too many cycles. MAX CKS An ID instance was outstanding longer than *max_cks* cycles. MIN_CKS ID instance returned in too few cycles. *Returned* is TRUE and an instance of the ID in *returned_id* is outstanding, but the longest-outstanding instance of the ID has been outstanding for fewer than min cks cycles. Maximum number of outstanding IDs or ID instances MAX IDS exceeded. *Issued* is TRUE, but the number of outstanding instances plus issued count (minus 1 if an instance of issued id is returned without error) exceeds max instances or the number of unique outstanding IDs plus issued_count (minus 1 if an instance of *issued id* is returned without error) exceeds max_ids. Maximum number of outstanding ID instances for the MAX_INSTANCES_PER_ID issued ID exceeded. *Issued* is TRUE, but the number of outstanding instances of issued_id plus issued_count (minus 1 if an instance of issued id is returned without error) exceeds max_instances_per_id. ID issued with count 0. ISSUED_COUNT *Issued* is TRUE, but *issued_count* is 0.

Implicit X/Z Checks

asserted

issued contains X or Z Issued signal was X or Z. returned contains X or Returned signal was X or Z. flush contains X or Z Flush signal was X or Z. issued_id contains X Issued ID contained X or Z bits. or Z when issued is asserted Returned ID contained X or Z bits. ret_id contains X or Z when returned is asserted flush id contains X Flush ID contained X or Z bits. or Z when flush is

Cover Points

SANITY — Number of cycles *issued* was TRUE. cover_issued_asserted cover_returned_ SANITY — Number of cycles returned was TRUE. asserted cover_flush_asserted SANITY — Number of cycles *flush* was TRUE. turnaround times BASIC — Reports the turnaround times (i.e., number of cycles after an ID instance is issued that the instance is returned) that occurred at least once. outstanding_ids BASIC — Reports the numbers of outstanding ID instances that occurred at least once. CORNER — Number of times the returned ID instance was cover_returned_at_min_ cks outstanding for min_cks cycles. CORNER — Number of times the returned ID instance was cover_returned_at_max_ outstanding for *max_cks* cycles. cover_max_ids CORNER — Number of cycles the outstanding IDs reached the *max_ids* limit or the *max_instances* limit. cover_max_instances_ CORNER — Number of cycles the outstanding instances of an per_id ID reached the *max_instances_per_id* limit.

ovl_value

Ensures that the value of an expression either matches a value in a specified list or does not match any value in the list (as determined by a mode signal).

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of test_expr. Default: 1.
num_values	Number of values in <i>vals</i> . Must be ≥ 1 . Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

test_expr[width-1:0] Variable or expression to check.

vais [num values*width-1:0] Concatenated list of values for *test_expr*.

disallow Sense of the comparison of test expr with vals.

disallow = 0

Value of *test_expr* should match one of the values in *vals*.

disallow = 1

Value of *test_expr* should not match one of the values in *vals*.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_value assertion checker checks $test_expr$, vals and disallow at each active edge of clock (except for the first cycle after a checker reset). The value of $test_expr$ is compared with the list of values in vals. If disallow is FALSE and the value of $test_expr$ is not a value in vals, a value check violation occurs. Similarly, if disallow is TRUE and the value of $test_expr$ is one of the values in vals, an is not check violation occurs. The check occurs at the active clock edge, .

Assertion Checks

VALUE Expression value did not equal one of the specified

values.

Value of the test expr did not match a value in vals, but

disallow was FALSE.

IS_NOT Expression value was equal to one of the specified

values.

Value of the *test_expr* matched one of the values in *vals*, but

disallow was TRUE.

Implicit X/Z Checks

 $\begin{array}{lll} \text{test_expr contains X} & \text{Expression contained X or Z bits.} \\ \text{vals contains X or Z} & \text{Values contained X or Z bits.} \\ \text{disallow contains X or} & \text{Disallow signal was X or Z.} \end{array}$

Cover Points

SANITY — Number of cycles test_expr loaded a new value.

COVET_in_vals

BASIC — Number of cycles disallow was FALSE and the value of test_expr matched a value in vals.

COVET_not_in_vals

BASIC — Number of cycles disallow was TRUE and the value of test_expr did not match a value in vals.

COVET_values_covered

BASIC — Reports the values in vals that were covered at least

once. Not applicable for cycles where disallow = 1.

ovl_width

Ensures that when value of an expression is TRUE, it remains TRUE for a minimum number of clock cycles and transitions from TRUE no later than a maximum number of clock cycles.

Syntax

```
ovl_width
```

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
min_cks	Minimum number of clock edges <i>test_expr</i> must remain TRUE once it is sampled TRUE. The special case where <i>min_cks</i> is 0 turns off minimum checking (i.e., <i>test_expr</i> can transition from TRUE in the next clock cycle). Default: 1 (i.e., same as 0).
max_cks	Maximum number of clock edges <i>test_expr</i> can remain TRUE once it is sampled TRUE. The special case where <i>max_cks</i> is 0 turns off maximum checking (i.e., <i>test_expr</i> can remain TRUE for any number of cycles). Default: 1 (i.e., <i>test_expr</i> must transition from TRUE in the next clock cycle).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).

reset_polarity Polarity (active level) of the reset input. Default:

'OVL_RESET_POLARITY_DEFAULT

('OVL_ACTIVE_LOW).

gating_type Gating behavior of the checker when enable is FALSE. Default:

'OVL GATING TYPE DEFAULT ('OVL GATE CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

test_expr Expression that should evaluate to TRUE for at least min cks

cycles and at most *max_cks* cycles after it is sampled TRUE.

fire output. Assertion failure when fire[0] is TRUE. X/Z check foilure when fire[1] is TRUE. Cover event when fire[2] is TRUE.

failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_width assertion checker checks the single-bit expression *test_expr* at each active edge of *clock*. If the value of *test_expr* is TRUE, the checker performs the following steps:

- 1. Unless it is disabled by setting *min_cks* to 0, a minimum check is initiated. The check evaluates *test_expr* at each subsequent active edge of *clock*. If its value is not TRUE, the minimum check fails. Otherwise, after *min_cks* -1 cycles transpire, the minimum check terminates.
- 2. Unless it is disabled by setting max_cks to 0, a maximum check is initiated. The check evaluates $test_expr$ at each subsequent active edge of clock. If its value does not transition from TRUE by the time max_cks cycles transpire (from the start of checking), the maximum check fails.
- 3. The checker returns to checking *test_expr* in the next cycle. In particular if *test_expr* is TRUE, a new set of checks is initiated.

Assertion Checks

MIN_CHECK The value of test expr was held TRUE for less than min cks

cycles.

MAX_CHECK The value of test expr was held TRUE for more than max cks

cycles.

min cks > max cks

The *min_cks* parameter is greater than the *max_cks* parameter (and $max_cks > 0$). Unless the violation is fatal, either the minimum or maximum check will fail.

Implicit X/Z Checks

```
test_expr contains X
```

Expression value was X or Z.

Cover Points

```
cover_test_expr_
                           BASIC — A check was initiated (i.e., test_expr was sampled
asserts
                           TRUE).
cover_test_expr_
                           CORNER — The expression test_expr was held TRUE for
asserted_for_min_cks
                           exactly min\_cks cycles (min\_cks > 0).
                           CORNER — The expression test_expr was held TRUE for
cover_test_expr_
asserted_for_max_cks
                           exactly max \ cks \ cycles \ (max \ cks > 0).
```

See also

ovl change ovl_time

ovl_unchange

Example

```
ovl_width #(
   'OVL ERROR,
                                                    // severity level
   2,
                                                    // min_cks
   3,
                                                    // max_cks
   'OVL ASSERT,
                                                    // property_type
   "Error: invalid request",
                                                    // msg
   'OVL_COVER_DEFAULT,
                                                    // coverage_level
   'OVL POSEDGE,
                                                    // clock_edge
   'OVL_ACTIVE_LOW,
                                                    // reset_polarity
   'OVL_GATE_CLOCK)
                                                    // gating_type
   valid_request (
      clock,
                                                    // clock
                                                    // reset
      reset,
      enable,
                                                    // enable
      req == 1,
                                                    // test_expr
      fire_valid_request );
                                                    // fire
Ensures req asserts for 2 or 3 cycles.
```


ovl_win_change

Ensures that the value of an expression changes in a specified window between a start event and an end event.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for *clock*, if *gating_type* = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

start_event Expression that opens an event window.

test_expr[width-1:0] Expression that should change value in the event window

end_event Expression that closes an event window.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_win_change assertion checker checks the expression *start_event* at each active edge of *clock* to determine if it should open an event window at the start of the next cycle. If *start_event* is sampled TRUE, the checker evaluates *test_expr*. At each subsequent active edge of *clock*, the checker evaluates *end_event* and re-evaluates *test_expr*. If *end_event* is TRUE, the checker closes the event window and if all sampled values of *test_expr* equal its value at the start of the window, then the assertion fails. The checker returns to the state of monitoring *start_event* at the next active edge of *clock* after the event window is closed.

The checker is useful for ensuring proper changes in structures in various event windows. A typical use is to verify that synchronization logic responds after a stimulus (for example, bus transactions occurs without interrupts or write commands are not issued during read cycles). Another typical use is verifying a finite-state machine responds correctly in event windows.

Assertion Checks

WIN_CHANGE The test_expr expression did not change value during an open

event window.

Implicit X/Z Checks

```
\begin{array}{ll} \text{test\_expr contains X} & \text{Expression value contained X or Z bits.} \\ \text{start\_event contains X} & \text{Start event value was X or Z.} \\ \text{end\_event contains X} & \text{End event value was X or Z.} \\ \text{or Z} & \text{End event value was X or Z.} \\ \end{array}
```

Cover Points

```
cover_window_open BASIC — An event window opened (start_event was TRUE).

cover_window_close BASIC — An event window closed (end_event was TRUE in an open event window).
```

See also

```
ovl_changeovl_win_unchangeovl_timeovl_windowovl_unchange
```

Example

```
ovl_win_change #(
   'OVL ERROR,
                                                     // severity_level
                                                     // width
// property_type
// msg
   'OVL_ASSERT,
   "Error: read not synchronized",
   'OVL_COVER_DEFAULT,
                                                     // coverage_level
   'OVL_POSEDGE,
                                                     // clock_edge
   'OVL_ACTIVE_LOW,
                                                     // reset_polarity
   'OVL_GATE_CLOCK)
                                                     // gating_type
   valid_sync_data_bus_rd (
      clock,
                                                     // clock
                                                     // reset
// enable
      reset,
      enable,
                                                     // start_event
      rd,
                                                     // test_expr
      data,
                                                     // end event
      rd ack,
      fire_valid_sync_data_bus_rd );
                                                     // fire
```

Ensures that *data* changes value in every data read window.

ovl_win_unchange

Ensures that the value of an expression does not change in a specified window between a start event and an end event.

Syntax

```
ovl_win_unchange
```

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 1.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable Enable signal for clock, if gating_type = 'OVL_GATE_CLOCK

(the default gating type) or reset (if gating_type =

'OVL_GATE_RESET). Ignored if *gating_type* is 'OVL_NONE.

start_event Expression that opens an event window.

test_expr[width-1:0] Expression that should not change value in the event window

end_event Expression that closes an event window.

Fire output. Assertion failure when *fire*[0] is TRUE. X/Z check failure when *fire*[1] is TRUE. Cover event when *fire*[2] is TRUE.

Description

The ovl_win_unchange assertion checker checks the expression *start_event* at each active edge of *clock* to determine if it should open an event window at the start of the next cycle. If *start_event* is sampled TRUE, the checker evaluates *test_expr*. At each subsequent active edge of *clock*, the checker evaluates end_event and re-evaluates *test_expr*. If a sampled value of *test_expr* is changed from its value in the previous cycle, then the assertion fails. If *end_event* is TRUE, the checker closes the event window and returns to the state of monitoring *start_event* at the next active edge of *clock*.

The checker is useful for ensuring certain variables and expressions do not change in various event windows. A typical use is to verify that synchronization logic responds after a stimulus (for example, bus transactions occurs without interrupts or write commands are not issued during read cycles). Another typical use is to verify that non-deterministic multiple-cycle operations with enabling conditions function properly with the same data.

Assertion Checks

WIN_UNCHANGE The test_expr expression changed value during an open event

window.

Implicit X/Z Checks

```
test_expr contains X Expression value contained X or Z bits.

start_event contains X Start event value was X or Z.

end_event contains X End event value was X or Z.

or Z
```

Cover Points

```
cover_window_open BASIC — An event window opened (start_event was TRUE).

cover_window_close BASIC — An event window closed (end_event was TRUE in an open event window).
```

See also

```
ovl_changeovl_win_changeovl_timeovl_windowovl_unchangeovl_window
```

Example

```
ovl win unchange #(
   'OVL_ERROR,
                                                     // severity_level
                                                    // width
// property_type
// msg
   'OVL_ASSERT,
   "Error: a changed during divide",
   'OVL_COVER_DEFAULT,
                                                     // coverage_level
   'OVL_POSEDGE,
                                                     // clock_edge
   'OVL_ACTIVE_LOW,
                                                     // reset_polarity
   'OVL_GATE_CLOCK)
                                                     // gating_type
   valid_div_win_unchange_a (
      clock,
                                                     // clock
                                                     // reset
// enable
      reset,
      enable,
                                                     // start_event
      start,
                                                     // test_expr
                                                     // end event
      fire_valid_div_win_unchange_a );
                                                     // fire
```

Ensures that the *a* input to the divider remains unchanged while a divide operation is performed (i.e., in the window from *start* to *done*).

ovl_window

Ensures that the value of an expression is TRUE in a specified window between a start event and an end event.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

Description

The ovl_window assertion checker checks the expression *start_event* at each active edge of *clock* to determine if it should open an event window at the start of the next cycle. If *start_event* is sampled TRUE, at each subsequent active edge of *clock*, the checker evaluates *end_event* and *test_expr*. If a sampled value of *test_expr* is not TRUE, then the assertion fails. If *end_event* is TRUE, the checker closes the event window and returns to the state of monitoring *start_event* at the next active edge of *clock*.

The checker is useful for ensuring proper changes in structures after various events. For example, it can be used to check that multiple-cycle operations with enabling conditions function properly with the same data. It can be used to check that single-cycle operations function correctly with data loaded at different cycles. It also can be used to verify synchronizing conditions that require date to be stable after an initial triggering event.

Assertion Checks

The *test_expr* expression changed value during an open event window.

Implicit X/Z Checks

 $\begin{array}{ll} \text{test_expr contains X} & \text{Expression value was X or Z.} \\ \text{start_event contains X} & \text{Start event value was X or Z.} \\ \text{end_event contains X} & \text{End event value was X or Z.} \\ \text{or Z} & \text{End event value was X or Z.} \\ \end{array}$

Cover Points

cover_window_open BASIC — A change check was initiated.

cover_window_close BASIC — A change check lasted the full num_cks cycles.

See also

```
ovl_changeovl_win_changeovl_timeovl_win_unchangeovl_unchangeovl_win_unchange
```

Example

```
ovl window #(
    'OVL_ERROR,
                                                            // severity_level
    'OVL_ASSERT,
                                                             // property_type
                                                            // property_eype
// msg
// coverage_level
// clock_edge
// reset_polarity
    "Error: write without grant",
    'OVL_COVER_DEFAULT,
    'OVL_POSEDGE,
    'OVL_ACTIVE_LOW,
    'OVL_GATE_CLOCK)
                                                            // gating_type
   valid_sync_data_bus_write (
       clock,
                                                             // clock
       reset,
                                                             // reset
       enable,
                                                             // enable
       write,
                                                             // start_event
                                                            // test_expr
// end_event
// fire
       bus ant,
       write_ack,
       fire_valid_sync_data_bus_write );
```

Ensures that the bus grant is not deasserted during a write cycle.

ovl_zero_one_hot

Ensures that the value of an expression is zero or one-hot.

Syntax

Parameters

severity_level	Severity of the failure. Default: 'OVL_SEVERITY_DEFAULT ('OVL_ERROR).
width	Width of the <i>test_expr</i> argument. Default: 32.
property_type	Property type. Default: 'OVL_PROPERTY_DEFAULT ('OVL_ASSERT).
msg	Error message printed when assertion fails. Default: 'OVL_MSG_DEFAULT ("VIOLATION").
coverage_level	Coverage level. Default: 'OVL_COVER_DEFAULT ('OVL_BASIC).
clock_edge	Active edge of the <i>clock</i> input. Default: 'OVL_CLOCK_EDGE_DEFAULT ('OVL_POSEDGE).
reset_polarity	Polarity (active level) of the <i>reset</i> input. Default: 'OVL_RESET_POLARITY_DEFAULT ('OVL_ACTIVE_LOW).
gating_type	Gating behavior of the checker when <i>enable</i> is FALSE. Default: 'OVL_GATING_TYPE_DEFAULT ('OVL_GATE_CLOCK).

Ports

clock Clock event for the assertion.

reset Synchronous reset signal indicating completed initialization.

enable	Enable signal for <i>clock</i> , if <i>gating_type</i> = 'OVL_GATE_CLOCK (the default gating type) or <i>reset</i> (if <i>gating_type</i> = 'OVL_GATE_RESET). Ignored if <i>gating_type</i> is 'OVL_NONE.
test_expr[width-1:0]	Expression that should evaluate to either 0 or a one-hot value on the rising clock edge.
<pre>fire [`OVL_FIRE_WIDTH-1:0]</pre>	Fire output. Assertion failure when <i>fire</i> [0] is TRUE. X/Z check failure when <i>fire</i> [1] is TRUE. Cover event when <i>fire</i> [2] is TRUE.

Description

The ovl_zero_one_hot assertion checker checks the expression *test_expr* at each active edge of *clock* to verify the expression evaluates to a one-hot value or is zero. A one-hot value has exactly one bit set to 1.

The checker is useful for verifying control circuits, circuit enabling logic and arbitration logic. For example, it can ensure that a finite-state machine with zero-one-cold encoding operates properly and has exactly one bit asserted high—or else is zero. In a datapath circuit the checker can ensure that the enabling conditions for a bus do not result in bus contention.

Assertion Checks

ZERO_ONE_HOT	Expression evaluated to a value	with multiple bits set to 1.
--------------	---------------------------------	------------------------------

Implicit X/Z Checks

```
test_expr contains X Expression value contained X or Z bits. or Z
```

Cover Points

Notes

1. By default, the ovl_zero_one_hot assertion is optimistic and the assertion fails if <code>test_expr</code> has multiple bits not set to 0 (i.e.equals 1, X, Z, etc.). However, if 'OVL_XCHECK_OFF is set, the assertion fails if and only if <code>test_expr</code> has multiple bits that are 1.

See also

ovl_one_cold ovl_one_hot

Example

```
ovl_zero_one_hot #(
                                                    // severity_level
   'OVL_ERROR,
   4,
                                                    // width
   'OVL_ASSERT,
                                                    // property_type
                                                    // msg
   "Error: sel not zero or one-hot",
   'OVL_COVER_DEFAULT,
                                                    // coverage_level
   'OVL_POSEDGE,
                                                    // clock_edge
   'OVL_ACTIVE_LOW,
                                                    // reset_polarity
   'OVL_GATE_CLOCK)
                                                    // gating_type
   valid_sel_zero_one_hot (
      clock,
                                                    // clock
                                                    // reset
      reset,
      enable,
                                                    // enable
      sel
                                                    // test_expr
      fire valid sel zero one hot);
                                                    // fire
Ensures that sel is zero or one-hot at each rising edge of clock.
```


Global Defines

Туре	DEFINE	Description
Language	'OVL_VERILOG	(default) Creates assertion checkers defined in Verilog.
	`OVL_SVA	Creates assertion checkers defined in System Verilog.
	`OVL_SVA_INTERFACE	Ensures OVL assertion checkers can be instantiated in an SVA interface construct. Default: not defined.
	'OVL_PSL	Creates assertion checkers defined in PSL. Default: not defined.
Synthesizable Logic	`OVL_SYNTHESIS	Ensures OVL logic is synthesizable. Default: not defined.
Function	'OVL_ASSERT_ON	Activates assertion logic. Default: not defined.
	'OVL_COVER_ON	Activates coverage logic. Default: not defined.
Default Parameter Values	`OVL_SEVERITY_DEFAULT	Value of <i>severity_level</i> to use when the parameter is unspecified. Default: 'OVL_ERROR.
	`OVL_PROPERTY_DEFAULT	Value of <i>property_type</i> to use when the parameter is unspecified. Default: 'OVL_ASSERT.
	`OVL_MSG_DEFAULT	Value of <i>msg</i> to use when the parameter is unspecified. Default: "VIOLATION".
	OVL_COVER_DEFAULT	Value of <i>coverage_level</i> to use when the parameter is unspecified. Default: 'OVL_COVER_BASIC.
	`OVL_CLOCK_EDGE_ DEFAULT	Value of <i>clock_edge</i> to use when the parameter is unspecified. Default: 'OVL_POSEDGE.

Type	DEFINE	Description
	`OVL_RESET_POLARITY_ DEFAULT	Value of <i>reset_polarity</i> to use when the parameter is unspecified. Default: 'OVL_ACTIVE_LOW.
	'OVL_GATING_TYPE_ DEFAULT	Value of <i>gating_type</i> to use when the parameter is unspecified. Default: 'OVL_GATE_CLOCK.
Clock/Reset Gating	'OVL_GATING_OFF	Removes all gating logic and creates checkers with <i>gating_type</i> 'OVL_GATE_NONE. Default: each checker gated according to its <i>gating_type</i> parameter value
Global Reset	`OVL_GLOBAL_RESET= reset_signal	Overrides the <i>reset</i> port assignments of all assertion checkers with the specified active low global reset signal. Default: each checker's reset is specified by the <i>reset</i> port.
Reporting	`OVL_MAX_REPORT_ERROR	Discontinues reporting a checker's assertion violations if the number of times the checker has reported one or more violations reaches this limit. Default: unlimited reporting.
	'OVL_MAX_REPORT_COVER_ POINT	Discontinues reporting a checker's cover points if the number of times the checker has reported one or more cover points reaches this limit. Default: unlimited reporting.
	`OVL_INIT_MSG	Reports configuration information for each checker when it is instantiated at the start of simulation. Default: no initialization messages reported.
	'OVL_END_OF_SIMULATION =eos_signal	Performs quiescent state checking at end of simulation when the <i>eos_signal</i> asserts. Default: not defined.
Fatal Error Runtime	`OVL_RUNTIME_AFTER_ FATAL	Number of time units from a fatal error to end of simulation. Default: 100.
X/Z Values	`OVL_IMPLICIT_XCHECK_ OFF	Turns off implicit X/Z checks. Default: not defined.

Type	DEFINE	Description
	'OVL XCHECK OFF	Turns off all X/Z checks. Default: not defined.

Internal Global Defines

The following global variables are for internal use and the user should not redefine them:

'endmodule
'module
'OVL_FIRE_WIDTH
'OVL_RESET_SIGNAL
'OVL_SHARED_CODE
'OVL_STD_DEFINES_H
'OVL_VERSION

Defines Common to All Assertions

Parameter	DEFINE	Description
severity_ level	`OVL_FATAL	Runtime fatal error.
	'OVL_ERROR	Runtime error.
	'OVL_WARNING	Runtime Warning.
	'OVL_INFO	Assertion failure has no specific severity.
property_type	`OVL_ASSERT	Assertion checks and X/Z checks are asserts.
	'OVL_ASSUME	Assertion checks and X/Z checks are assumes.
	'OVL_ASSERT_2STATE	Assertion checks are asserts. X/Z checks are disabled.
	'OVL_ASSUME_2STATE	Assertion checks are assumes. X/Z checks are disabled.
	'OVL_IGNORE	Assertion checks and X/Z checks are disabled.
coverage_ level	'OVL_COVER_ALL	(default) Includes coverage logic for all of the checker's cover points if 'OVL_COVER_ON is defined.
	OVL_COVER_NONE	Excludes coverage logic for all of the checker's cover points.

Parameter	DEFINE	Description
	`OVL_COVER_SANITY	Includes coverage logic for the checker's SANITY cover points if 'OVL_COVER_ON is defined. Can be bitwise-ORed with 'OVL_COVER_BASIC, 'OVL_COVER_CORNER and 'OVL_COVER_STATISTIC.
	`OVL_COVER_BASIC	Includes coverage logic for the checker's BASIC cover points if 'OVL_COVER_ON is defined. Can be bitwise-ORed with 'OVL_COVER_SANITY, 'OVL_COVER_CORNER and 'OVL_COVER_STATISTIC.
	OVL_COVER_CORNER	Includes coverage logic for the checker's CORNER cover points if 'OVL_COVER_ON is defined. Can be bitwise-ORed with 'OVL_COVER_SANITY, 'OVL_COVER_BASIC and 'OVL_COVER_STATISTIC.
	`OVL_COVER_STATISTIC	Includes coverage logic for the checker's STATISTIC cover points if 'OVL_COVER_ON is defined. Can be bitwise-ORed with 'OVL_COVER_SANITY, 'OVL_COVER_BASIC and 'OVL_COVER_CORNER.
clock_edge	`OVL_POSEDGE	Rising edges are active clock edges.
	`OVL_NEGEDGE	Falling edges are active clock edges.
reset_ polarity	'OVL_ACTIVE_LOW	Reset is active when FALSE.
	`OVL_ACTIVE_HIGH	Reset is active when TRUE.
gating_type	'OVL_GATE_NONE	Checker ignores the <i>enable</i> input.
	`OVL_GATE_CLOCK	Checker pauses when <i>enable</i> is FALSE. The checker treats the current cycle as a NOP. Checks, counters and internal values remain unchanged.
	`OVL_GATE_RESET	Checker resets (as if the <i>reset</i> input became active) when <i>enable</i> is FALSE.

Defines for Specific Assertions

Parameter	Checkers	DEFINE	Description
action_on_ new_start	ovl_change ovl_frame ovl_time ovl_unchange	'OVL_IGNORE_NEW_START	Ignore new start events.
		`OVL_RESET_ON_NEW_ START	Restart check on new start events.
		'OVL_ERROR_ON_NEW_ START	Assert fail on new start events.
		`OVL_ACTION_ON_NEW_ START_DEFAULT	Value of action_on_new_ start to use when the parameter is unspecified. Default: 'OVL_ IGNORE_NEW_START.
edge_type	ovl_always_ on_edge	'OVL_NOEDGE	Always initiate check.
		'OVL_POSEDGE	Initiate check on rising edge of sampling event.
		`OVL_NEGEDGE	Initiate check on falling edge of sampling event.
		`OVL_ANYEDGE	Initiate check on both edges of sampling event.
		`OVL_EDGE_TYPE_DEFAULT	Value of <i>edge_type</i> to use when the parameter is unspecified. Default: 'OVL_NOEDGE.
necessary_ condition	ovl_cycle_ sequence	`OVL_TRIGGER_ON_MOST_ PIPE	Necessary condition is full sequence. Pipelining enabled.
		'OVL_TRIGGER_ON_FIRST_ PIPE	Necessary condition is first in sequence. Pipelining enabled.
		'OVL_TRIGGER_ON_FIRST_ NOPIPE	Necessary condition is first in sequence. Pipelining disabled.

Parameter	Checkers	DEFINE	Description
		`OVL_NECESSARY_ CONDITION_DEFAULT	Value of necessary_condition to use when the parameter is unspecified. Default: 'OVL_TRIGGER_ON_MOST_PIPE.
inactive	ovl_one_cold	'OVL_ALL_ZEROS	Inactive state is all 0's.
		'OVL_ALL_ONES	Inactive state is all 1's.
		'OVL_ONE_COLD	(default) No inactive state.
		'OVL_INACTIVE_DEFAULT	Value of <i>inactive</i> to use when the parameter is unspecified. Default: 'OVL_ONE_COLD.