Lösungen Übung 5

Aufgabe 1 (1 Punkt pro Teilaufgabe). Entscheiden Sie jeweils, ob die folgenden Abbildungen linear sind und begründen Sie Ihre Antworten. Dabei bezeichnet $V_{\mathbb{R}}$ den Vektorraum aller Funktionen von \mathbb{R} nach \mathbb{R} .

1) $F_1: \mathbb{R} \to \mathbb{R}^2$ mit

$$F_1(x) = \begin{pmatrix} 2 \\ x \end{pmatrix}$$
.

2) $F_2: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$F_2\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}x-2y\\3y\end{array}\right).$$

3) $F_3: \mathbb{R}^3 \to \mathbb{R}$ mit

$$F_3\left(\left(\begin{array}{c} x\\y\\z\end{array}\right)\right) = 5x - 2y + z.$$

4) $F_4: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$F_4\left(\left(\begin{array}{c}x\\y\end{array}\right)\right) = \left(\begin{array}{c}0\\xy\end{array}\right).$$

5) $F_5: V_{\mathbb{R}} \to V_{\mathbb{R}}$ mit

$$F_5(f)(t) = f(t^3).$$

 $L\ddot{o}sung$:

1) F_1 ist nicht linear, denn z.B. ist $F_1(0) \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

2) Für
$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$ und $\lambda \in \mathbb{R}$ gilt

$$F_{2}\left(\left(\begin{array}{c}x_{1}\\y_{1}\end{array}\right)+\left(\begin{array}{c}x_{2}\\y_{2}\end{array}\right)\right)=\left(\begin{array}{c}x_{1}+x_{2}-2y_{1}-2y_{2}\\3y_{1}+3y_{2}\end{array}\right)$$

$$=\left(\begin{array}{c}x_{1}-2y_{1}\\3y_{1}\end{array}\right)+\left(\begin{array}{c}x_{2}-2y_{2}\\3y_{2}\end{array}\right)=F_{2}\left(\left(\begin{array}{c}x_{1}\\y_{1}\end{array}\right)\right)+F_{2}\left(\left(\begin{array}{c}x_{2}\\y_{2}\end{array}\right)\right),$$

$$F_{2}\left(\lambda\left(\begin{array}{c}x_{1}\\y_{1}\end{array}\right)\right)=\left(\begin{array}{c}\lambda x_{1}-2\lambda y_{1}\\3\lambda y_{1}\end{array}\right)=\lambda F_{2}\left(\left(\begin{array}{c}x_{1}\\y_{1}\end{array}\right)\right).$$

Daher ist F_2 linear.

3) Für
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
, $\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \in \mathbb{R}^3$ und $\lambda \in \mathbb{R}$ gilt
$$F_3 \left(\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \right) = 5(x_1 + x_2) - 2(y_1 + y_2) + z_1 + z_2$$

$$= 5x_1 - 2y_1 + z_1 + 5x_2 - 2y_2 + z_2 = F_3 \left(\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \right) + F_3 \left(\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \right),$$

$$F_3 \left(\lambda \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \right) = 5\lambda x_1 - 2\lambda y_1 + \lambda z_1 = \lambda F_3 \left(\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \right).$$

Daher ist F_3 linear.

4) F_4 ist nicht linear, denn z.B. ist

$$F_4\left(\left(\begin{array}{c}2\\2\end{array}\right)\right)=\left(\begin{array}{c}0\\4\end{array}\right)
eq \left(\begin{array}{c}0\\2\end{array}\right)=2F_4\left(\left(\begin{array}{c}1\\1\end{array}\right)\right).$$

5) Für alle $f, g \in V_{\mathbb{R}}$, alle $\lambda \in \mathbb{R}$ und alle $t \in \mathbb{R}$ gilt

$$F_5(f+g)(t) = (f+g)(t^3) = f(t^3) + g(t^3) = F_5(f)(t) + F_5(g)(t),$$

$$F_5(\lambda f)(t) = (\lambda f)(t^3) = \lambda f(t^3) = \lambda F_5(f)(t).$$

Also ist $F_5(f+g) = F_5(f) + F_5(g)$ und $F_5(\lambda f) = \lambda F_5(f)$. Somit ist F_5 linear.

Aufgabe 2 (3 Punkte). Sei K ein Körper und seien V und W Vektorräume über K. Sei $F:V\to W$ eine lineare Abbildung und sei U ein Unterraum von W. Zeigen Sie, dass das Urbild $F^{-1}[U]$ ein Unterraum von V ist.

Lösung: Wegen $F(0) = 0 \in U$ ist $0 \in F^{-1}[U]$.

Seien nun $v_1, v_2 \in F^{-1}[U]$ beliebig. Dann gilt $F(v_1), F(v_2) \in U$. Weil U ein Unterraum ist, folgt $F(v_1) + F(v_2) \in U$. Wegen der Linearität von F ist aber $F(v_1) + F(v_2) = F(v_1 + v_2)$. Also ist $F(v_1 + v_2) \in U$ und somit $v_1 + v_2 \in F^{-1}[U]$.

Ist ferner $\lambda \in K$, so gilt (weil U ein Unterraum und F linear ist) auch $F(\lambda v_1) = \lambda F(v_1) \in U$, also auch $\lambda v_1 \in F^{-1}[U]$.

Somit ist $F^{-1}[U]$ ein Unterraum von V.

Aufgabe 3 (2 Punkte). Sei K ein Körper und sei V ein Vektorraum über K. Ferner seien $F,G:V\to V$ zwei lineare Abbildungen. Zeigen Sie:

$$G \circ F = F \circ G \implies G[\ker(F)] \subseteq \ker(F) \text{ und } G[\operatorname{Im}(F)] \subseteq \operatorname{Im}(F)$$

Lösung: Es gelte $G \circ F = F \circ G$.

- (a) Es sei $v \in G[\ker(F)]$, also v = G(w) für ein $w \in V$ mit F(w) = 0. Wegen $G \circ F = F \circ G$ folgt F(v) = F(G(w)) = G(F(w)) = G(0) = 0, also $v \in \ker(F)$.
- (b) Nun sei $v \in G[\operatorname{Im}(F)]$. Dann ist v = G(F(w)) für ein $w \in V$. Wegen $G \circ F = F \circ G$ folgt $v = F(G(w)) \in \operatorname{Im}(F)$.