Predicting asymmetrical, aperiodic sequences (ML)

https://github.com/mtswenivh/Pseudo-random-prediction

Aim

- Propose model for predicting future outcome of asymmetric, pseudo-random generated number sequences.
 - 1) Pseudo random generated number analysis
 - 2) Stock market analysis

Content

Background

- Periodic square tiling geometry
- Periodic square tiling sequence
- Aperiodic tridecagon tiling geometry
- Aperiodic trigecagon tiling sequence
- Generated Data

Pseudo random generated number analysis

- Pseudo random generated vs Template sequence
- Preprocessed data-Model variables

Stock market analysis (Nvidia)

- Stock market analysis graph
- Preprocessed data-Model variables

· Interim results

- Pseudo random number generation
- Stock market

Background

- Model based on tiling of different shapes in 2D.
 - Some shapes produce Symmetric & Periodic (e.g. squares)
 - Some shapes produce Asymmetric & Aperiodic (e.g. pentagon)
- By creating template of the tiling shape corresponding to tiling sequence of the shape predicting model is generated.

Periodic square tiling sequence

Periodic squares template

- Predictable pattern recognition
- Consistent template (1-4) matched with consistent and recurring sequence.

Aperiodic tridecagon tiling geometry

- Irregular tiling of tridecagons
- Asymmetrical, Aperiodic
- Each side of tridecagon is assigned a number (template 1-13)
- Starting from the middle square each number on the side referenced with adjacent tridecagons

Aperiodic trigecagon tiling sequence

- Asymmetric tridecagon shaped to tile without living voids
- Consistent Template (1-13) sequence, matched with inconsistent but predictable sequence

Generated data

Square data												
St	art		1		2	,	3	4				
	Generated Sequence		Generated Sequence		Generated Sequence		Generated Sequence		Generated Sequence			
1	3	1	3	1	3	1	3	1	3			
2	4	2	4	2	4	2	4	2	4			
3	1	3	1	3	1	3	1	3	1			
4	2	4	2	4	2	4	2	4	2			

I								Trigeca	gon data							
	St	art		1		2	;	3		4		5		6		7
		Generated		Generated		Generated		Generated		Generated		Generated		Generated		Generated
	Template -	Sequence	Template	Sequence												
- 1	1	13	1	13	1	13	1	13	1	5	1	6	1	9	1	13
	2	12	2	12	2	12	2	12	2	4	2	7	2	8	2	12
	3	3	3	3	3	3	3	3	3	3	3	7,5	3	7,5	3	3
	4	11	4	3	4	3	4	3	4	11	4	8	4	7	4	11
- 1	5	10	5	9	5	9	5	13	5	10	5	13	5	13	5	10
- 1	6	9	6	10	6	10	6	1	6	9	6	1	6	1	6	9
- 1	7	3	7	11	7	11	7	2	7	12	7	2	7	2	7	3
- 1	8	4	8	12	8	12	8	3	8	11	8	3	8	3	8	4
- 1	9	6	9	6	9	6	9	6	9	10	9	5	9	6	9	6
- 1	10	5	10	5	10	5	10	5	10	13	10	6	10	5	10	5
- 1	11	4	11	4	11	4	11	4	11	12	11	7	11	4	11	4
- 1	12	2	12	2	12	2	12	2	12	3	12	8	12	2	12	2
	13	1	13	1	13	1	13	1	13	6	13	5	13	1	13	1

Pseudo random generated number analysis

- Numbers generated in a controlled system with equal chance of selecting each number.
- Outcome Range 1-3, Template 1,2,3

Pseudo random generated vs Template sequence

Processed data-model variables

Out[131]:

	Target	Current code	Position code	Prev position code	D	Ε	Position number	Temp pos	Prev pos	Temp	Class1	Class 2	Class 3
0	1	16	16	13	10	100	3	1	1	6	500	100	25
1	2	12	19	16	10	100	1	1	1	9	500	100	25
2	2	15	13	19	100	10	2	1	1	3	75	50	75
3	2	18	16	13	100	100	1	1	1	6	500	25	100
4	3	11	16	13	10	100	3	1	1	6	100	100	25
5	3	11	16	13	10	100	1	1	1	6	50	75	50
6	3	14	19	16	100	100	1	1	1	9	500	25	100
7	3	14	19	16	100	100	3	1	1	9	50	100	25
8	1	19	19	15	100	100	4	1	2	9	500	25	100
9	2	12	19	15	10	100	5	1	2	9	200	75	50

- **Current code**-current position in spectrum of probabilities
- Position code-Template position
- Previous position code-previous position in spectrum of probabilities
- **D &E** lower and upper limit on scale 0-100
- **Position number**-position on spectrum of Template-Target combinations (1-9)

- Temp position-Template outcome
- Prev pos- Previous actual outcome
- Class 1-magnitude of difference between estimated previous & current values
- Class 2-magnitude of difference between actual previous & estimated current values
- Class 3-magnitude of difference between lower and upper limit values

Stock market analysis (Nvidia)

- Stock price tracking
- Three movements negative(1), lateral(2), positive(3) range, Template 1-3

Stock market analysis (Nvidia)

• Stock price movement: 1=negative movement(<2%), 2=neutral movement(>2%), 3=positive movement((<2%))

Processed data-model variables

[1]:

	Target	Template	Price	Position code	Prev position code	Position number	Temp pos	Prev pos	Class 1	Class 2	Class 3	Lo-Hi limit	Trend_limit	Trend direction	Template_limit
0	2	6	85.96	22	33	9	2	3	200	200	200	10	1000	1	0
1	1	3	88.70	11	22	6	1	1	30	30	200	0	-1000	-1	1
2	3	9	92.67	33	31	1	3	2	30	30	30	100	1000	1	1
3	1	6	87.53	22	33	8	2	3	200	200	30	10	1000	1	1
4	3	3	85.77	13	11	3	3	1	30	30	200	100	1000	-1	0
5	2	9	91.91	32	13	7	2	3	200	200	30	30	5000	1	1
6	1	6	90.89	22	32	6	2	2	200	45	200	100	3000	2	0
7	3	3	87.94	13	11	2	3	1	30	30	45	50	1000	-1	0
8	1	9	87.84	32	13	7	2	3	200	200	30	10	1000	1	1
9	2	6	88.46	22	21	3	2	1	45	30	200	100	3000	2	0

- Template
- Price-stock
- Position code-Template position
- Previous position code-previous position in spectrum of probabilities
- Position number-position on spectrum of Template/Target combinations (1-9)

- Temp position-Template outcome
- Prev pos- Previous actual outcome
- Class 1-magnitude of difference between estimated previous & current values
- · Class 2-actual previous
- Class 3-prior to actual previous
- Lo-Hi limit- magnitude lower and upper limit scaled
- Trend_limit-Class sequence compared to lower-upper limit
- Trend direction- positive vs negative trend
- Template limit: compare lower-upper limt vs template

Interim Results (Pseudo random number generation)

Hypertuned parameters Accuracy

- Logistic regression Accuracy 47%
- **SVM** Accuracy 57%
- **Decision tree** Accuracy 98%
- Knn Accuracy 59%
 - Future improvement
 - Decision tree yields high accuracy
 - · Test repeatability of results with other datasets
 - Explore/Create more tailored models

Interim results (Stock market) Hypertuned parameters Accuracy

- **Logistic regression** Accuracy 53%
- **SVM**-Accuracy 60%
- **Decision tree-**Accuracy 63%
- Knn-Accuracy 59%

Future improvement

- Weighted variable importance
- More distinct values for different variable
- Explore/Create more tailored models