22

23

Contents

1	1 Basic	1
	1.1 Shell script	1
	1.2 Default code	
	1.3 vimrc	1
	1.4 read	
	1.5 Black Magic	1
_		_
2	2 Graph	2
	2.1 BCC Vertex*	
	2.2 Bridge*	
	2.3 2SAT (SCC)*	2
	2.4 MinimumMeanCycle*	
	2.5 Virtual Tree"	
	2.6 Maximum Clique Dyn*	
	2.7 Minimum Steiner Tree*	4
	2.9 Minimum Arborescence*	
	2.5 Millimum Arborescence	
	2.10Vizing's theorem	5
	2.12NumberofMaximalClique*	5
	2.13Dijkstra	5
	2.14Theory	
	2.14 meory	
3	3 Data Structure	6
	3.1 Leftist Tree	6
	3.2 Heavy light Decomposition	6
	3.3 Centroid Decomposition*	6
	3.4 Treap	
	·	
4		7
	4.1 Kuhn Munkres	
	4.2 MincostMaxflow	7
	4.3 Maximum Simple Graph Matching*	8
	4.4 Minimum Weight Matching (Clique version	1)* 8
	4.5 SW-mincut	8
	4.6 BoundedFlow(Dinic*)	
	4.7 Gomory Hu tree	9
_	e etata-	
5		9
	5.1 KMP	
	5.2 Z-value	10
	5.3 Manacher*	10
	5.4 Suffix Array	10
	5.5 SAIS*	10
	5.6 Aho-Corasick Automatan	
	5.7 Smallest Rotation	
	5.8 De Bruijn sequence*	
	5.9 SAM	
	5.10PalTree	
	5.11cyclicLCS	12
6	6 Math	12
٠	6.1 ax+by=gcd*	
	6.2 floor and ceil	
	6.3 floor sum*	
	6.4 Miller Rahin*	
	6.5 Big number	
	6.6 Fraction	14
	6.7 Simultaneous Equations	14
	6.8 Pollard Rho	14
	6.9 Simplex Algorithm	14
	6.9 Simplex Algorithm 6.10Schreier-Sims Algorithm*	15
	6.11chineseRemainder	15
	6.12QuadraticResidue	15
	6.13PiCount	15
	6.14Primes	
	6.15Theorem	16
	6.15.1Kirchhoff's Theorem	
	6.15.2Tutte's Matrix	
	6.15.3Cayley's Formula	16
7	7 Polynomial	16
,		
	7.1 Fast Fourier Transform	16
	7.3 Fast Walsh Transform*	
	7.4 Polynomial Operation	
	7.4 Folynomial operation	
8	8 Geometry	18
	8.1 Default Code	
	8.2 Convex hull*	
	8.3 External bisector	
	8.4 Heart	18
	8.5 Minimum Circle Cover*	19
	8.6 Polar Angle Sort*	19
	8.7 Intersection of two circles*	19
	8.8 Intersection of polygon and circle	19
	8.9 Intersection of line and circle	19
	8.10 point in circle	
	8.11Half plane intersection	19
	8.12CircleCover*	20
	8.133Dpoint*	20
	8.14Convexhull3D*	20
	8.15DelaunayTriangulation*	21

8.16Triangulation Vonoroi*

```
23
23
24
24
```

8.17Tangent line of two circles

1 Basic

1.1 Shell script

```
g++ -O2 -std=c++17 -Dbbq -Wall -Wextra -Wshadow -o $1
    $1.cpp
chmod +x compile.sh
```

1.2 Default code

```
#pragma GCC (2)
#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define sz(i) ((int)i.size())
#define all(i) i.begin(),i.end()
#define pb push_back
#define endl '\n
int main(){
   ios:sync_with_stdio(false),cin.tie(0),cout.tie(0);
```

1.3 vimrc

```
| "This file should be placed at ~/.vimrc"
se nu ai hls et ru ic is sc cul
se re=1 ts=4 sts=4 sw=4 ls=2 mouse=a
syntax on
hi cursorline cterm=none ctermbg=89
set bg=dark
inoremap {<ENTER> {}<LEFT><ENTER><UP><TAB>
//inoremap {<ENTER> {<CR>}<Esc>ko<TAB>
```

1.4 read

```
inline char readchar() {
  static const size_t bufsize = 65536;
   static char buf[bufsize];
   static char *p = buf, *end = buf;
   if (p == end) end = buf + fread_unlocked(buf, 1,
       bufsize, stdin), p = buf;
   return *p++;
inline int readint(){
   int f=1,x=0;char ch;
   do{ch=getchar();if(ch=='-')f=-1;}while(ch<'0'||ch>'9'
       );
   do{x=x*10+ch-'0';ch=getchar();}while(ch>='0'&&ch<='9'</pre>
       );
   return f*x;
}
```

1.5 Black Magic

```
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/assoc_container.hpp> //rb_tree
using namespace __gnu_pbds;
         _gnu_pbds::priority_queue<int> heap;
typedef
int main() {
  heap h1, h2;
  h1.push(1), h1.push(3);
h2.push(2), h2.push(4);
  h1.join(h2);
  cout << h1.size() << h2.size() << h1.top() << endl;</pre>
  tree<11, null_type, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> st;
  tree<11, 11, less<11>, rb_tree_tag,
      tree_order_statistics_node_update> mp;
  for (int x : {0, 2, 3, 4}) st.insert(x);
  \verb|cout| << *st.find_by_order(2)| << st.order_of_key(1)| <<
       endl; //31
//__int128_t,__float128_t
```

2 Graph

2.1 BCC Vertex*

```
vector<int> G[N]; // 1-base
vector<int> nG[N], bcc[N];
int low[N], dfn[N], Time;
int bcc_id[N], bcc_cnt; // 1-base
bool is_cut[N]; // whether is av
bool cir[N];
int st[N], top;
void dfs(int u, int pa = -1) {
  int child = 0;
  low[u] = dfn[u] = ++Time;
  st[top++] = u;
  for (int v : G[u])
     if (!dfn[v]) {
       dfs(v, u), ++child;
       low[u] = min(low[u], low[v]);
       if (dfn[u] <= low[v]) {</pre>
         is_cut[u] = 1;
         bcc[++bcc_cnt].clear();
         int t;
         do {
           bcc_id[t = st[--top]] = bcc_cnt;
           bcc[bcc_cnt].push_back(t);
         } while (t != v);
         bcc_id[u] = bcc_cnt;
         bcc[bcc_cnt].pb(u);
     } else if (dfn[v] < dfn[u] && v != pa)</pre>
       low[u] = min(low[u], dfn[v]);
  if (pa == -1 && child < 2) is_cut[u] = 0;</pre>
}
void bcc_init(int n) {
  Time = bcc_cnt = top = 0;
  for (int i = 1; i <= n; ++i)
    G[i].clear(), dfn[i] = bcc_id[i] = is_cut[i] = 0;
void bcc_solve(int n) {
  for (int i = 1; i <= n; ++i)</pre>
     if (!dfn[i]) dfs(i);
  // circle-square tree
  for (int i = 1; i <= n; ++i)</pre>
     if (is_cut[i])
  bcc_id[i] = ++bcc_cnt, cir[bcc_cnt] = 1;
for (int i = 1; i <= bcc_cnt && !cir[i]; ++i)</pre>
     for (int j : bcc[i])
       if (is_cut[j])
         nG[i].pb(bcc_id[j]), nG[bcc_id[j]].pb(i);
| }
```

2.2 Bridge*

```
int low[N], dfn[N], Time; // 1-base
vector<pii> G[N], edge;
vector<bool> is_bridge;
void init(int n) {
  for (int i = 1; i <= n; ++i)</pre>
    G[i].clear(), low[i] = dfn[i] = 0;
void add_edge(int a, int b) {
  G[a].pb(pii(b, SZ(edge))), G[b].pb(pii(a, SZ(edge)));
  edge.pb(pii(a, b));
void dfs(int u, int f) {
  dfn[u] = low[u] = ++Time;
  for (auto i : G[u])
    if (!dfn[i.X])
    dfs(i.X, i.Y), low[u] = min(low[u], low[i.X]);
else if (i.Y != f) low[u] = min(low[u], dfn[i.X]);
  if (low[u] == dfn[u] && f != -1) is_bridge[f] = 1;
void solve(int n) {
  is_bridge.resize(SZ(edge));
  for (int i = 1; i <= n; ++i)</pre>
    if (!dfn[i]) dfs(i, -1);
```

2.3 2SAT (SCC)*

```
struct SAT { // 0-base
  int low[N], dfn[N], bln[N], n, Time, nScc;
  bool instack[N], istrue[N];
  stack<int> st;
  vector<int> G[N], SCC[N];
  void init(int _n) {
    n = _n; // assert(n * 2 <= N);</pre>
    for (int i = 0; i < n + n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b) { G[a].pb(b); }
  int rv(int a) {
    if (a > n) return a - n;
    return a + n;
  void add_clause(int a, int b) {
    add_edge(rv(a), b), add_edge(rv(b), a);
  void dfs(int u) {
    dfn[u] = low[u] = ++Time;
    instack[u] = 1, st.push(u);
    for (int i : G[u])
      if (!dfn[i])
        dfs(i), low[u] = min(low[i], low[u]);
      else if (instack[i] && dfn[i] < dfn[u])</pre>
    low[u] = min(low[u], dfn[i]);
if (low[u] == dfn[u]) {
      int tmp;
      do {
        tmp = st.top(), st.pop();
        instack[tmp] = 0, bln[tmp] = nScc;
      } while (tmp != u);
      ++nScc;
    }
  }
  bool solve() {
    Time = nScc = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      SCC[i].clear(), low[i] = dfn[i] = bln[i] = 0;
    for (int i = 0; i < n + n; ++i)</pre>
      if (!dfn[i]) dfs(i);
    for (int i = 0; i < n + n; ++i) SCC[bln[i]].pb(i);</pre>
    for (int i = 0; i < n; ++i) {</pre>
      if (bln[i] == bln[i + n]) return false;
      istrue[i] = bln[i] < bln[i + n];</pre>
      istrue[i + n] = !istrue[i];
```

```
}
    return true;
}
};
```

2.4 MinimumMeanCycle*

```
11 road[N][N]; // input here
struct MinimumMeanCycle {
  11 dp[N + 5][N], n;
  pll solve() {
     ll a = -1, b = -1, L = n + 1;
     for (int i = 2; i <= L; ++i)</pre>
       for (int k = 0; k < n; ++k)
         for (int j = 0; j < n; ++j)
           dp[i][j] =
              min(dp[i - 1][k] + road[k][j], dp[i][j]);
    for (int i = 0; i < n; ++i) {</pre>
       if (dp[L][i] >= INF) continue;
       11 ta = 0, tb = 1;
       for (int j = 1; j < n; ++j)
         \quad \textbf{if} \ (\texttt{dp[j][i]} \ < \ \texttt{INF} \ \&\& \\
           ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
           ta = dp[L][i] - dp[j][i], tb = L - j;
       if (ta == 0) continue;
       if (a == -1 || a * tb > ta * b) a = ta, b = tb;
     if (a != -1) {
       ll g = \_gcd(a, b);
       return pll(a / g, b / g);
     return pll(-1LL, -1LL);
  void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i)</pre>
       for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;
∣}:
```

2.5 Virtual Tree*

```
vector<int> vG[N]:
int top, st[N];
void insert(int u) {
 if (top == -1) return st[++top] = u, void();
 int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
 while (top >= 1 && dep[st[top - 1]] >= dep[p])
   vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
   vG[p].pb(st[top]), --top, st[++top] = p;
 st[++top] = u;
}
void reset(int u) {
 for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
 top = -1;
 sort(ALL(v),
    [&](int a, int b) { return dfn[a] < dfn[b]; });
  for (int i : v) insert(i);
 while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
 reset(v[0]);
```

2.6 Maximum Clique Dyn*

```
const int N = 150;
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
```

```
int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
     for (int i = 0; i < n; i++) a[i].reset();</pre>
  void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0,
         m = r.size();
     cs[1].reset(), cs[2].reset();
     for (int i = 0; i < m; i++) {</pre>
       int p = r[i], k = 1;
       while ((cs[k] & a[p]).count()) k++;
       if (k > mx) mx++, cs[mx + 1].reset();
       cs[k][p] = 1;
       if (k < km) r[t++] = p;
     c.resize(m);
     if (t) c[t - 1] = 0;
     for (int k = km; k \le mx; k++)
       for (int p = cs[k]._Find_first(); p < N;</pre>
           p = cs[k]._Find_next(p))
         r[t] = p, c[t] = k, t++;
  void dfs(vector<int> &r, vector<int> &c, int 1,
    bitset<N> mask) {
     while (!r.empty()) {
       int p = r.back();
       r.pop_back(), mask[p] = 0;
       if (q + c.back() <= ans) return;</pre>
       cur[q++] = p;
       vector<int> nr, nc;
       bitset<N> nmask = mask & a[p];
       for (int i : r)
         if (a[p][i]) nr.push_back(i);
       if (!nr.empty()) {
         if (1 < 4) {
           for (int i : nr)
             d[i] = (a[i] \& nmask).count();
           sort(nr.begin(), nr.end(),
             [&](int x, int y) { return d[x] > d[y]; });
         csort(nr, nc), dfs(nr, nc, l + 1, nmask);
       } else if (q > ans) ans = q, copy_n(cur, q, sol);
       c.pop_back(), q--;
  int solve(bitset<N> mask = bitset<N>(
               string(N, '1'))) { // vertex mask
     vector<int> r, c;
     ans = q = 0;
     for (int i = 0; i < n; i++)</pre>
      if (mask[i]) r.push_back(i);
     for (int i = 0; i < n; i++)</pre>
       d[i] = (a[i] \& mask).count();
     sort(r.begin(), r.end(),
       [&](int i, int j) { return d[i] > d[j]; });
     csort(r, c), dfs(r, c, 1, mask);
     return ans; // sol[0 ~ ans-1]
} graph;
```

2.7 Minimum Steiner Tree*

```
void shortest_path() {
    for (int k = 0; k < n; ++k)
      for (int i = 0; i < n; ++i)</pre>
        for (int j = 0; j < n; ++j)</pre>
           dst[i][j] =
             min(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int> &ter) {
    shortest_path();
    int t = SZ(ter);
    for (int i = 0; i < (1 << t); ++i)</pre>
      for (int j = 0; j < n; ++j) dp[i][j] = INF;</pre>
    for (int i = 0; i < n; ++i) dp[0][i] = vcost[i];</pre>
    for (int msk = 1; msk < (1 << t); ++msk) {</pre>
      if (!(msk & (msk - 1))) {
        int who = __lg(msk);
         for (int i = 0; i < n; ++i)</pre>
           dp[msk][i] =
             vcost[ter[who]] + dst[ter[who]][i];
      for (int i = 0; i < n; ++i)</pre>
        for (int submsk = (msk - 1) & msk; submsk;
              submsk = (submsk - 1) & msk)
           dp[msk][i] = min(dp[msk][i],
             dp[submsk][i] + dp[msk ^ submsk][i] -
               vcost[i]);
      for (int i = 0; i < n; ++i) {</pre>
        tdst[i] = INF;
        for (int j = 0; j < n; ++j)
           tdst[i] =
             min(tdst[i], dp[msk][j] + dst[j][i]);
      for (int i = 0; i < n; ++i) dp[msk][i] = tdst[i];</pre>
    int ans = INF;
    for (int i = 0; i < n; ++i)</pre>
      ans = min(ans, dp[(1 << t) - 1][i]);
    return ans;
  }
};
```

2.8 Dominator Tree*

```
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
 int n, pa[N], dfn[N], id[N], Time;
int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
  void init(int _n) {
   n = _n;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = 0;
    for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
```

```
find(v, i);
    semi[i] = min(semi[i], semi[best[v]]);
}
tree[semi[i]].pb(i);
for (auto v : tree[pa[i]]) {
    find(v, pa[i]);
    idom[v] =
        semi[best[v]] == pa[i] ? pa[i] : best[v];
}
tree[pa[i]].clear();
}
for (int i = 2; i <= Time; ++i) {
    if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
    tree[id[idom[i]]].pb(id[i]);
}
}
}</pre>
```

2.9 Minimum Arborescence*

```
struct zhu_liu { // O(VE)
  struct edge {
     int u, v;
    11 w;
  };
  vector<edge> E; // 0-base
  int pe[N], id[N], vis[N];
  11 in[N];
  void init() { E.clear(); }
  void add_edge(int u, int v, ll w) {
    if (u != v) E.pb(edge{u, v, w});
  11 build(int root, int n) {
     11 ans = 0;
     for (;;) {
       fill_n(in, n, INF);
       for (int i = 0; i < SZ(E); ++i)</pre>
         if (E[i].u != E[i].v && E[i].w < in[E[i].v])</pre>
           pe[E[i].v] = i, in[E[i].v] = E[i].w;
       for (int u = 0; u < n; ++u) // no solution</pre>
         if (u != root && in[u] == INF) return -INF;
       int cntnode = 0;
       fill_n(id, n, -1), fill_n(vis, n, -1);
       for (int u = 0; u < n; ++u) {
         if (u != root) ans += in[u];
         int v = u;
         while (vis[v] != u && !~id[v] && v != root)
           vis[v] = u, v = E[pe[v]].u;
         if (v != root && !~id[v]) {
           for (int x = E[pe[v]].u; x != v;
                x = E[pe[x]].u)
             id[x] = cntnode;
           id[v] = cntnode++;
       if (!cntnode) break; // no cycle
       for (int u = 0; u < n; ++u)
        if (!~id[u]) id[u] = cntnode++;
       for (int i = 0; i < SZ(E); ++i) {</pre>
         int v = E[i].v;
         E[i].u = id[E[i].u], E[i].v = id[E[i].v];
         if (E[i].u != E[i].v) E[i].w -= in[v];
       n = cntnode, root = id[root];
    }
     return ans:
};
```

2.10 Vizing's theorem

```
void solve(vector<pair<int, int>> &E, int N, int M) {
 int X[kN] = {}, a;
  auto update = [&](int u) {
    for (X[u] = 1; C[u][X[u]]; X[u]++)
  auto color = [&](int u, int v, int c) {
    int p = G[u][v];
    G[u][v] = G[v][u] = c;
    C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
  auto flip = [&](int u, int c1, int c2) {
  int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  for (int i = 1; i <= N; i++) X[i] = 1;</pre>
  for (int t = 0; t < E.size(); t++) {</pre>
    int u = E[t].first, v0 = E[t].second, v = v0,
        c0 = X[u], c = c0, d;
    vector<pair<int, int>> L;
    int vst[kN] = {};
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
      if (!C[v][c])
        for (a = (int)L.size() - 1; a >= 0; a--)
          c = color(u, L[a].first, c);
      else if (!C[u][d])
        for (a = (int)L.size() - 1; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      else if (vst[d]) break;
      else vst[d] = 1, v = C[u][d];
    if (!G[u][v0]) {
      for (; v; v = flip(v, c, d), swap(c, d))
      if (C[u][c0]) {
        for (a = (int)L.size() - 2;
             a >= 0 && L[a].second != c; a--)
        for (; a >= 0; a--)
          color(u, L[a].first, L[a].second);
      } else t--;
    }
 }
} // namespace vizing
```

2.11 Minimum Clique Cover*

```
struct Clique_Cover { // 0-base, 0(n2^n)
  int co[1 << N], n, E[N];</pre>
  int dp[1 << N];</pre>
  void init(int _n) {
    n = _n, fill_n(dp, 1 << n, 0);
    fill_n(E, n, 0), fill_n(co, 1 << n, 0);
  void add_edge(int u, int v) {
    E[u] |= 1 << v, E[v] |= 1 << u;
  int solve() {
    for (int i = 0; i < n; ++i)</pre>
      co[1 << i] = E[i] | (1 << i);
    co[0] = (1 << n) - 1;

dp[0] = (n & 1) * 2 - 1;
    for (int i = 1; i < (1 << n); ++i) {</pre>
      int t = i & -i;
      dp[i] = -dp[i ^ t];
      co[i] = co[i ^ t] & co[t];
    for (int i = 0; i < (1 << n); ++i)</pre>
      co[i] = (co[i] \& i) == i;
```

```
fwt(co, 1 << n);
for (int ans = 1; ans < n; ++ans) {
   int sum = 0;
   for (int i = 0; i < (1 << n); ++i)
      sum += (dp[i] *= co[i]);
   if (sum) return ans;
   }
  return n;
}
</pre>
```

2.12 NumberofMaximalClique*

```
struct BronKerbosch { // 1-base
  int n, a[N], g[N][N];
  int S, all[N][N], some[N][N], none[N][N];
  void init(int _n) {
    n = n;
     for (int i = 1; i <= n; ++i)</pre>
       for (int j = 1; j <= n; ++j) g[i][j] = 0;</pre>
  void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
  void dfs(int d, int an, int sn, int nn) {
     if (S > 1000) return; // pruning
     if (sn == 0 && nn == 0) ++S;
     int u = some[d][0];
     for (int i = 0; i < sn; ++i) {</pre>
       int v = some[d][i];
       if (g[u][v]) continue;
       int tsn = 0, tnn = 0;
       copy_n(all[d], an, all[d + 1]);
       all[d + 1][an] = v;
       for (int j = 0; j < sn; ++j)
         if (g[v][some[d][j]])
           some[d + 1][tsn++] = some[d][j];
       for (int j = 0; j < nn; ++j)</pre>
         if (g[v][none[d][j]])
          none[d + 1][tnn++] = none[d][j];
       dfs(d + 1, an + 1, tsn, tnn);
       some[d][i] = 0, none[d][nn++] = v;
  int solve() {
    iota(some[0], some[0] + n, 1);
     S = 0, dfs(0, 0, n, 0);
    return S:
};
```

2.13 Dijkstra

```
vector<pii>edge[mxn];
int dis[mxn], vis[mxn];
void dijkstra(int s)
{
  memset(dis,0x7f,sizeof(dis));
  dis[s]=0;
  priority_queue<pii,vector<pii>,greater<pii>>pq;
  pq.emplace(0,s);
  while(pq.size()){
    int now=pq.top().Y;
    pq.pop();
    if(vis[now])continue;
    vis[now]=1;
    for(pii e:edge[now]){
      if(!vis[e.X]&&dis[e.X]>dis[now]+e.Y){
        dis[e.X]=dis[now]+e.Y;
        pq.emplace(dis[e.X],e.X);
      }
    }
  }
}
```

2.14 Theory

```
\label{eq:maximum} \begin{array}{l} |\mathsf{Maximum} \text{ independent edge set}| = |V| - |\mathsf{Minimum} \text{ edge cover}| \\ |\mathsf{Maximum} \text{ independent set}| = |V| - |\mathsf{Minimum} \text{ vertex cover}| \\ |\mathsf{A} \text{ sequence of non-negative integers } d_1 \geq \cdots \geq d_n \text{ can be represented as the degree sequence of a finite simple graph on } n \text{ vertices if and only if } d_1 + \cdots + d_n \text{ is even and } \\ \sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k) \text{ holds for every } k \text{ in } 1 \leq k \leq n. \end{array}
```

3.3 Centroid Decomposition*

if (pl[a] > pl[b]) swap(a, b);

if (a == b) return re;

/*query*/
return re;

};

};

else /*query*/, ta = ulink[a = pa[ta]];

3.1 Leftist Tree

Data Structure

```
struct node {
  11 v, data, sz, sum;
node *1, *r;
  node(ll k)
    : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
11 sz(node *p) { return p ? p->sz : 0; }
11 V(node *p) { return p ? p->v : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (V(a->r) > V(a->1)) swap(a->r, a->1);
  a - > v = V(a - > r) + 1, a - > sz = sz(a - > 1) + sz(a - > r) + 1;
  a\rightarrow sum = sum(a\rightarrow 1) + sum(a\rightarrow r) + a\rightarrow data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
```

3.2 Heavy light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[10005], deep[10005], mxson[10005],
    w[10005], pa[10005];
  int t, pl[10005], data[10005], dt[10005], bln[10005],
    edge[10005], et;
  vector<pii> G[10005];
  void init(int _n) {
    n = _n, t = 0, et = 1;
for (int i = 1; i <= n; ++i)
      G[i].clear(), mxson[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].pb(pii(b, et)), G[b].pb(pii(a, et)),
      edge[et++] = w;
 void dfs(int u, int f, int d) {
  w[u] = 1, pa[u] = f, deep[u] = d++;
  for (auto &i : G[u])
      if (i.X != f) {
        dfs(i.X, u, d), w[u] += w[i.X];
        if (w[mxson[u]] < w[i.X]) mxson[u] = i.X;</pre>
      } else bln[i.Y] = u, dt[u] = edge[i.Y];
  void cut(int u, int link) {
    data[pl[u] = t++] = dt[u], ulink[u] = link;
    if (!mxson[u]) return;
    cut(mxson[u], link);
    for (auto i : G[u])
      if (i.X != pa[u] && i.X != mxson[u])
        cut(i.X, i.X);
  void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
  int query(int a, int b) {
    int ta = ulink[a], tb = ulink[b], re = 0;
    while (ta != tb)
      if (deep[ta] < deep[tb])</pre>
        /*query*/, tb = ulink[b = pa[tb]];
```

```
struct Cent_Dec { // 1-base
  vector<pll> G[N];
  pll info[N]; // store info. of itself
  pll upinfo[N]; // store info. of climbing up
  int n, pa[N], layer[N], sz[N], done[N];
  ll \ dis[__lg(N) + 1][N];
  void init(int _n) {
    n = _n, layer[0] = -1;
    fill_n(pa + 1, n, 0), fill_n(done + 1, n, 0);
    for (int i = 1; i <= n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b, int w) {
    G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
  void get_cent(
    int u, int f, int &mx, int &c, int num) {
    int mxsz = 0;
    sz[u] = 1;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f) {
        get_cent(e.X, u, mx, c, num);
        sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
    if (mx > max(mxsz, num - sz[u]))
      mx = max(mxsz, num - sz[u]), c = u;
  void dfs(int u, int f, ll d, int org) {
    // if required, add self info or climbing info
    dis[layer[org]][u] = d;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f)
        dfs(e.X, u, d + e.Y, org);
  int cut(int u, int f, int num) {
    int mx = 1e9, c = 0, lc;
    get_cent(u, f, mx, c, num);
    done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
for (pll e : G[c])
      if (!done[e.X]) {
        if (sz[e.X] > sz[c])
          lc = cut(e.X, c, num - sz[c]);
        else lc = cut(e.X, c, sz[e.X]);
        upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
    return done[c] = 0, c;
  void build() { cut(1, 0, n); }
  void modify(int u) {
    for (int a = u, ly = layer[a]; a;
         a = pa[a], --ly) {
      info[a].X += dis[ly][u], ++info[a].Y;
        upinfo[a].X += dis[ly - 1][u], ++upinfo[a].Y;
  11 query(int u) {
    11 \text{ rt} = 0;
    for (int a = u, ly = layer[a]; a;
         a = pa[a], --ly) {
      rt += info[a].X + info[a].Y * dis[ly][u];
      if (pa[a])
        rt -:
          upinfo[a].X + upinfo[a].Y * dis[ly - 1][u];
    }
    return rt;
```

3.4 Treap

```
struct node {
 int data, sz;
node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
 void up() {
    if (1) sz += 1->sz;
   if (r) sz += r->sz;
  void down() {}
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() \% (sz(a) + sz(b)) < sz(a))
    return a->down(), a->r = merge(a->r, b), a->up(),
 return b \rightarrow down(), b \rightarrow l = merge(a, b \rightarrow l), b \rightarrow up(), b;
void split(node *o, node *&a, node *&b, int k) {
 if (!o) return a = b = 0, void();
  o->down();
 if (o->data <= k)
    a = o, split(o->r, a->r, b, k), a->up();
  else b = o, split(o->1, a, b->1, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
 if (sz(o) <= k) return a = o, b = 0, void();</pre>
 o->down();
  if (sz(o->1) + 1 <= k)
    a = o, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o \rightarrow 1, a, b \rightarrow 1, k);
node *kth(node *o, int k) {
 if (k <= sz(o->1)) return kth(o->1, k);
 if (k == sz(o\rightarrow 1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow l) - 1);
int Rank(node *o, int key) {
 if (o->data < key)</pre>
    return sz(o\rightarrow 1) + 1 + Rank(o\rightarrow r, key);
  else return Rank(o->1, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o->data == k) {
    node *t = o;
    o->down(), o = merge(o->1, o->r);
    delete t;
    return 1;
 node *\&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
 node *a, *b;
  split(o, a, b, k),
    o = merge(a, merge(new node(k), b));
void interval(node *&o, int 1, int r) {
 node *a, *b, *c;
  split2(o, a, b, l - 1), split2(b, b, c, r);
 // operate
  o = merge(a, merge(b, c));
```

4 Flow/Matching

4.1 Kuhn Munkres

```
struct KM { // O-base
  int w[MAXN][MAXN], h1[MAXN], hr[MAXN], s1k[MAXN], n;
  int f1[MAXN], fr[MAXN], pre[MAXN], qu[MAXN], q1, qr;
  bool v1[MAXN], vr[MAXN];
  void init(int _n) {
```

```
n = _n;
for (int i = 0; i < n; ++i)</pre>
       for (int j = 0; j < n; ++j) w[i][j] = -INF;</pre>
   void add_edge(int a, int b, int wei) {
     w[a][b] = wei;
   bool Check(int x) {
     if (vl[x] = 1, ~fl[x])
       return vr[qu[qr++] = fl[x]] = 1;
     while (\sim x) swap(x, fr[fl[x] = pre[x]]);
     return 0;
   void Bfs(int s) {
     fill(slk, slk + n, INF);
     fill(vl, vl + n, 0), fill(vr, vr + n, 0);
     ql = qr = 0, qu[qr++] = s, vr[s] = 1;
     while (1) {
       int d;
       while (ql < qr)</pre>
         for (int x = 0, y = qu[ql++]; x < n; ++x)
           if (!v1[x] &&
             slk[x] >= (d = hl[x] + hr[y] - w[x][y]))
             if (pre[x] = y, d) slk[x] = d;
             else if (!Check(x)) return;
       d = INF;
       for (int x = 0; x < n; ++x)
        if (!vl[x] && d > slk[x]) d = slk[x];
       for (int x = 0; x < n; ++x) {
         if (v1[x]) h1[x] += d;
         else slk[x] -= d;
         if (vr[x]) hr[x] -= d;
       for (int x = 0; x < n; ++x)
         if (!v1[x] && !slk[x] && !Check(x)) return;
     }
  int Solve() {
     fill(fl, fl + n, -1), fill(fr, fr + n, -1),
       fill(hr, hr + n, 0);
     for (int i = 0; i < n; ++i)</pre>
      hl[i] = *max_element(w[i], w[i] + n);
     for (int i = 0; i < n; ++i) Bfs(i);</pre>
     int res = 0;
     for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
     return res;
};
```

4.2 MincostMaxflow

```
struct MCMF { // 0-base
  struct edge {
    ll from, to, cap, flow, cost, rev;
  } * past[MAXN];
  vector<edge> G[MAXN];
  bitset<MAXN> inq;
  11 dis[MAXN], up[MAXN], s, t, mx, n;
  bool BellmanFord(11 &flow, 11 &cost) {
    fill(dis, dis + n, INF);
    queue<11> q;
    q.push(s), inq.reset(), inq[s] = 1;
    up[s] = mx - flow, past[s] = 0, dis[s] = 0;
    while (!q.empty()) {
      11 u = q.front();
      q.pop(), inq[u] = 0;
      if (!up[u]) continue;
      for (auto &e : G[u])
        if (e.flow != e.cap &&
          dis[e.to] > dis[u] + e.cost) {
          dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
          up[e.to] = min(up[u], e.cap - e.flow);
          if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
    if (dis[t] == INF) return 0;
    flow += up[t], cost += up[t] * dis[t];
    for (ll i = t; past[i]; i = past[i]->from) {
      auto &e = *past[i];
      e.flow += up[t], G[e.to][e.rev].flow -= up[t];
```

```
    return 1;
}

Il MinCostMaxFlow(ll _s, ll _t, ll &cost) {
    s = _s, t = _t, cost = 0;
    ll flow = 0;
    while (BellmanFord(flow, cost))
        ;
    return flow;
}

void init(ll _n, ll _mx) {
    n = _n, mx = _mx;
    for (int i = 0; i < n; ++i) G[i].clear();
}

void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
    G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
}
};
</pre>
```

Maximum Simple Graph Matching*

struct GenMatch { // 1-base

4.4 Minimum Weight Matching (Clique version)*

if (st = u, flow(), ed > 0) aug(), ++ans;

if (!inq[pr[v]]) qe.push(pr[v]);

} else return ed = v, void();

v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,

for (int u = ed, v, w; u > 0;)

 $fill_n(pr, V + 1, 0), ans = 0;$

for (int u = 1; u <= V; ++u)</pre>

}

void aug() {

int solve() {

return ans:

if (!pr[u])

}

};

```
int V, pr[N];
bool el[N][N], inq[N], inp[N], inb[N];
int st, ed, nb, bk[N], djs[N], ans;
void init(int _V) {
 V = _V;
for (int i = 0; i <= V; ++i) {
    for (int j = 0; j <= V; ++j) el[i][j] = 0;</pre>
    pr[i] = bk[i] = djs[i] = 0;
    inq[i] = inp[i] = inb[i] = 0;
 }
void add_edge(int u, int v) {
 el[u][v] = el[v][u] = 1;
int lca(int u, int v) {
 fill_n(inp, V + 1, 0);
  while (1)
    if (u = djs[u], inp[u] = true, u == st) break;
    else u = bk[pr[u]];
  while (1)
    if (v = djs[v], inp[v]) return v;
    else v = bk[pr[v]];
  return v;
}
void upd(int u) {
  for (int v; djs[u] != nb;) {
   v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
    u = bk[v];
    if (djs[u] != nb) bk[u] = v;
 }
void blo(int u, int v, queue<int> &qe) {
 nb = lca(u, v), fill_n(inb, V + 1, 0);
  upd(u), upd(v);
  if (djs[u] != nb) bk[u] = v;
  if (djs[v] != nb) bk[v] = u;
  for (int tu = 1; tu <= V; ++tu)</pre>
    if (inb[djs[tu]])
      if (djs[tu] = nb, !inq[tu])
        qe.push(tu), inq[tu] = 1;
void flow() {
  fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
  iota(djs + 1, djs + V + 1, 1);
  queue<int> qe;
  qe.push(st), inq[st] = 1, ed = 0;
  while (!qe.empty()) {
    int u = qe.front();
    qe.pop();
    for (int v = 1; v <= V; ++v)</pre>
      if (el[u][v] && djs[u] != djs[v] &&
        pr[u] != v) {
        if ((v == st) ||
          (pr[v] > 0 \&\& bk[pr[v]] > 0))
          blo(u, v, qe);
        else if (!bk[v]) {
```

if $(bk[v] = u, pr[v] > 0) {$

```
struct Graph { // 0-base (Perfect Match), n is even
   int n, match[N], onstk[N], stk[N], tp;
   11 edge[N][N], dis[N];
   void init(int _n) {
     n = _n, tp = 0;
for (int i = 0; i < n; ++i) fill_n(edge[i], n, 0);</pre>
   void add_edge(int u, int v, ll w) {
     edge[u][v] = edge[v][u] = w;
   bool SPFA(int u) {
     stk[tp++] = u, onstk[u] = 1;
     for (int v = 0; v < n; ++v)
       if (!onstk[v] && match[u] != v) {
         int m = match[v];
         if (dis[m] >
            dis[u] - edge[v][m] + edge[u][v]) {
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1, stk[tp++] = v;
if (onstk[m] || SPFA(m)) return 1;
            --tp, onstk[v] = 0;
       }
     onstk[u] = 0, --tp;
     return 0;
   11 solve() { // find a match
     for (int i = 0; i < n; ++i) match[i] = i ^ 1;</pre>
     while (1) {
       int found = 0;
       fill_n(dis, n, 0);
       fill_n(onstk, n, 0);
       for (int i = 0; i < n; ++i)</pre>
         if (tp = 0, !onstk[i] \&\& SPFA(i))
            for (found = 1; tp >= 2;) {
              int u = stk[--tp];
              int v = stk[--tp];
              match[u] = v, match[v] = u;
       if (!found) break;
     11 \text{ ret} = 0;
     for (int i = 0; i < n; ++i)</pre>
       ret += edge[i][match[i]];
     return ret >> 1;
};
```

4.5 SW-mincut

```
// global min cut
struct SW { // O(V^3)
    static const int MXN = 514;
    int n, vst[MXN], del[MXN];
```

```
int edge[MXN][MXN], wei[MXN];
  void init(int _n) {
    n = _n, MEM(edge, 0), MEM(del, 0);
  void addEdge(int u, int v, int w) {
    edge[u][v] += w, edge[v][u] += w;
  void search(int &s, int &t) {
    MEM(vst, 0), MEM(wei, 0), s = t = -1;
    while (1) {
      int mx = -1, cur = 0;
      for (int i = 0; i < n; ++i)</pre>
        if (!del[i] && !vst[i] && mx < wei[i])</pre>
          cur = i, mx = wei[i];
      if (mx == -1) break;
      vst[cur] = 1, s = t, t = cur;
      for (int i = 0; i < n; ++i)</pre>
        if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
  }
  int solve() {
    int res = INF;
    for (int i = 0, x, y; i < n - 1; ++i) {
      search(x, y), res = min(res, wei[y]), del[y] = 1;
      for (int j = 0; j < n; ++j)</pre>
        edge[x][j] = (edge[j][x] += edge[y][j]);
    return res;
  }
};
```

4.6 BoundedFlow(Dinic*)

return dis[t] != -1;

```
struct BoundedFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> G[N];
  int n, s, t, dis[N], cur[N], cnt[N];
  void init(int _n) {
   n = _n;
for (int i = 0; i < n + 2; ++i)</pre>
      G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;
    G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df, G[e.to][e.rev].flow -= df;
          return df;
        }
      }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n + 3, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (edge &e : G[u])
        if (!~dis[e.to] && e.flow != e.cap)
          q.push(e.to), dis[e.to] = dis[u] + 1;
```

```
int maxflow(int _s, int _t) {
    s = _s, t = _t;
     int flow = 0, df;
     while (bfs()) {
       fill_n(cur, n + 3, 0);
       while ((df = dfs(s, INF))) flow += df;
    return flow:
  bool solve() {
    int sum = 0;
     for (int i = 0; i < n; ++i)</pre>
       if (cnt[i] > 0)
         add_edge(n + 1, i, cnt[i]), sum += cnt[i];
       else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);</pre>
     if (sum != maxflow(n + 1, n + 2)) sum = -1;
     for (int i = 0; i < n; ++i)</pre>
       if (cnt[i] > 0)
        G[n + 1].pop_back(), G[i].pop_back();
       else if (cnt[i] < 0)</pre>
         G[i].pop_back(), G[n + 2].pop_back();
     return sum != -1;
  int solve(int _s, int _t) {
     add_edge(_t, _s, INF);
     if (!solve()) return -1; // invalid flow
     int x = G[_t].back().flow;
     return G[_t].pop_back(), G[_s].pop_back(), x;
};
```

4.7 Gomory Hu tree

```
struct Gomory_Hu_tree { // 0-base
  MaxFlow Dinic;
  int n;
  vector<pii> G[MAXN];
  void init(int _n) {
    n = n;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void solve(vector<int> &v) {
    if (v.size() <= 1) return;</pre>
    int s = rand() % SZ(v);
    swap(v.back(), v[s]), s = v.back();
    int t = v[rand() % (SZ(v) - 1)];
    vector<int> L, R;
    int x = (Dinic.reset(), Dinic.maxflow(s, t));
    G[s].pb(pii(t, x)), G[t].pb(pii(s, x));
    for (int i : v)
      if (~Dinic.dis[i]) L.pb(i);
      else R.pb(i);
    solve(L), solve(R);
  void build() {
    vector<int> v(n);
    for (int i = 0; i < n; ++i) v[i] = i;</pre>
    solve(v);
} ght; // test by BZOJ 4519
MaxFlow &Dinic = ght.Dinic;
```

5 String

5.1 KMP

```
int F[MAXN];
vector<int> match(string A, string B) {
  vector<int> ans;
  F[0] = -1, F[1] = 0;
  for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
    if (B[i] == B[j]) F[i] = F[j]; // optimize
    while (j != -1 && B[i] != B[j]) j = F[j];
  }
  for (int i = 0, j = 0; i < SZ(A); ++i) {</pre>
```

```
while (j != -1 && A[i] != B[j]) j = F[j];
  if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
}
return ans;
}
```

5.2 Z-value

```
const int MAXn = 1e5 + 5;
int z[MAXn];
void make_z(string s) {
  int l = 0, r = 0;
  for (int i = 1; i < s.size(); i++) {
    for (z[i] = max(0, min(r - i + 1, z[i - 1]));
        i + z[i] < s.size() && s[i + z[i]] == s[z[i]];
        z[i]++)
    ;
  if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
  }
}
```

5.3 Manacher*

```
int z[MAXN];
int Manacher(string tmp) {
  string s = "\&";
  int 1 = 0, r = 0, x, ans;
   for (char c : tmp) s.pb(c), s.pb('%');
  ans = 0, x = 0;
  for (int i = 1; i < SZ(s); ++i) {</pre>
    z[i] = r > i ? min(z[2 * 1 - i], r - i) : 1;
     while (s[i + z[i]] == s[i - z[i]]) ++z[i];
     if (z[i] + i > r) r = z[i] + i, l = i;
  for (int i = 1; i < SZ(s); ++i)
  if (s[i] == '%') x = max(x, z[i]);</pre>
  ans = x / 2 * 2, x = 0;
  for (int i = 1; i < SZ(s); ++i)</pre>
    if (s[i] != '%') x = max(x, z[i]);
  return max(ans, (x - 1) / 2 * 2 + 1);
| }
```

5.4 Suffix Array

```
struct suffix_array {
  int box[MAXN], tp[MAXN], m;
  bool not_equ(int a, int b, int k, int n) {
  return ra[a] != ra[b] || a + k >= n ||
      b + k >= n \mid \mid ra[a + k] != ra[b + k];
  void radix(int *key, int *it, int *ot, int n) {
    fill_n(box, m, 0);
    for (int i = 0; i < n; ++i) ++box[key[i]];</pre>
    partial_sum(box, box + m, box);
    for (int i = n - 1; i >= 0; --i)
      ot[--box[key[it[i]]]] = it[i];
  void make_sa(string s, int n) {
    int k = 1;
    for (int i = 0; i < n; ++i) ra[i] = s[i];</pre>
    do {
      iota(tp, tp + k, n - k), iota(sa + k, sa + n, 0);
      radix(ra + k, sa + k, tp + k, n - k);
      radix(ra, tp, sa, n);
      tp[sa[0]] = 0, m = 1;
      for (int i = 1; i < n; ++i) {</pre>
        m += not_equ(sa[i], sa[i - 1], k, n);
        tp[sa[i]] = m - 1;
      copy_n(tp, n, ra);
      k *= 2;
    } while (k < n && m != n);</pre>
  }
  void make_he(string s, int n) {
    for (int j = 0, k = 0; j < n; ++j) {
      if (ra[j])
```

```
for (; s[j + k] == s[sa[ra[j] - 1] + k]; ++k)
       he[ra[j]] = k, k = max(0, k - 1);
   void make_fa(int n){
     for(int i=1;i<=n;++i) fa[0][i] = he[i-1];</pre>
     for(int j=1;j<20;++j)</pre>
       for(int i=1;i+(1<<j)-1<=n;++i)</pre>
         fa[j][i] = min(fa[j-1][i], fa[j-1][i+(1<<(j-1))]
   inline int ask(int x,int y){
     int k = Log[y-x+1];
     return min(fa[k][x],fa[k][y-(1<<k)+1]);</pre>
   inline int lcp(int x,int y){
     if(x>y) swap(x,y);
     return ask(x+2,y+1);
   int sa[MAXN], ra[MAXN], he[MAXN],fa[20][MAXN],Log[
       MAXN];
   void build(const string &s) {
     int n = sz(s);
     fill_n(sa, n, 0), fill_n(ra, n, 0), fill_n(he, n, 0)
         0);
     fill_n(box, n, 0), fill_n(tp, n, 0), m = 256;
     Log[0] = Log[1] = 0;
     for(int i=2;i<=n;++i) Log[i] = Log[i>>1]+1;
     make_sa(s, sz(s));
     make_he(s, sz(s));
     make_fa(sz(s));
};
```

5.5 SAIS*

```
class SAIS {
public:
  int *SA, *H;
  // zero based, string content MUST > 0
  // result height H[i] is LCP(SA[i - 1], SA[i])
  // string, Length, |sigma|
  void build(int *s, int n, int m = 128) {
    copy_n(s, n, _s);
    h[0] = s[n++] = 0;
    sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
    SA = _sa + 1;
    H = _h + 1;
private:
  bool _t[N * 2];
int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2],
   r[N], _sa[N * 2], _h[N];
  void mkhei(int n) {
    for (int i = 0; i < n; i++) r[_sa[i]] = i;</pre>
    for (int i = 0; i < n; i++)</pre>
      if (r[i]) {
        int ans = i > 0 ? max([r[i - 1]] - 1, 0) : 0;
         while (_s[i + ans] == _s[_sa[r[i] - 1] + ans])
          ans++;
         h[r[i]] = ans;
  void sais(int *s, int *sa, int *p, int *q, bool *t,
    int *c, int n, int z) {
    bool uniq = t[n - 1] = 1, neq;
    int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
        lst = -1;
#define MAGIC(XD)
  fill_n(sa, n, 0);
  copy_n(c, z, x);
  XD:
  copy_n(c, z - 1, x + 1);
  for (int i = 0; i < n; i++)</pre>
    if (sa[i] && !t[sa[i] - 1])
      sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
```

```
copy_n(c, z, x);
for (int i = n - 1; i >= 0; i--)
    if (sa[i] && t[sa[i] - 1])
      sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
    fill_n(c, z, 0);
    for (int i = 0; i < n; i++) uniq &= ++c[s[i]] < 2;</pre>
    partial_sum(c, c + z, c);
    if (uniq) {
      for (int i = 0; i < n; i++) sa[--c[s[i]]] = i;</pre>
    for (int i = n - 2; i >= 0; i--)
      t[i] = (s[i] == s[i + 1] ? t[i + 1]
                                 : s[i] < s[i + 1]);
    MAGIC(for (int i = 1; i <= n - 1;
                i++) if (t[i] && !t[i - 1])
            sa[--x[s[i]]] = p[q[i] = nn++] = i);
    for (int i = 0; i < n; i++)</pre>
      if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
        neq = (1st < 0) ||
          !equal(s + lst,
            s + lst + p[q[sa[i]] + 1] - sa[i],
            s + sa[i]);
        ns[q[1st = sa[i]]] = nmxz += neq;
    sais(ns, nsa, p + nn, q + n, t + n, c + z, nn,
      nmxz + 1);
    MAGIC(for (int i = nn - 1; i >= 0; i--)
            sa[--x[s[p[nsa[i]]]]] = p[nsa[i]]);
  }
} sa;
```

5.6 Aho-Corasick Automatan

```
const int len = 400000, sigma = 26;
struct AC_Automatan {
  int nx[len][sigma], fl[len], cnt[len], pri[len], top;
  int newnode() {
    fill(nx[top], nx[top] + sigma, -1);
    return top++;
  void init() { top = 1, newnode(); }
  int input(
    string &s) { // return the end_node of string
    int X = 1;
    for (char c : s) {
   if (!~nx[X][c - 'a']) nx[X][c - 'a'] = newnode();
   X = nx[X][c - 'a'];
    }
    return X;
  void make_fl() {
    queue<int> q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty();) {
      int R = q.front();
      q.pop(), pri[t++] = R;
      for (int i = 0; i < sigma; ++i)</pre>
        if (~nx[R][i]) {
          int X = nx[R][i], Z = f1[R];
           for (; Z && !~nx[Z][i];) Z = fl[Z];
           fl[X] = Z ? nx[Z][i] : 1, q.push(X);
    }
  }
  void get_v(string &s) {
    int X = 1;
    fill(cnt, cnt + top, 0);
    for (char c : s) {
      while (X && !\sim nx[X][c - 'a']) X = fl[X];
      X = X ? nx[X][c - 'a'] : 1, ++cnt[X];
    for (int i = top - 2; i > 0; --i)
      cnt[fl[pri[i]]] += cnt[pri[i]];
};
```

5.7 Smallest Rotation

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

5.8 De Bruijn sequence*

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L, buf[MAXC * MAXN]; // K \leftarrow C^N
  void dfs(int *out, int t, int p, int &ptr) {
     if (ptr >= L) return;
     if (t > N) {
       if (N % p) return;
       for (int i = 1; i <= p && ptr < L; ++i)</pre>
          out[ptr++] = buf[i];
     } else {
       buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
for (int j = buf[t - p] + 1; j < C; ++j)</pre>
          buf[t] = j, dfs(out, t + 1, t, ptr);
  void solve(int _c, int _n, int _k, int *out) {
     int p = 0;
     C = _{c}, N = _{n}, K = _{k}, L = N + K - 1;
dfs(out, 1, 1, p);
     if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
```

5.9 SAM

```
const int MAXM = 1000010;
struct SAM {
  int tot, root, lst, mom[MAXM], mx[MAXM];
  int acc[MAXM], nxt[MAXM][33];
  int newNode() {
    int res = ++tot;
    fill(nxt[res], nxt[res] + 33, 0);
    mom[res] = mx[res] = acc[res] = 0;
    return res;
 void init() {
   tot = 0;
    root = newNode();
    mom[root] = 0, mx[root] = 0;
    lst = root;
  void push(int c) {
    int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = mom[p])
      nxt[p][c] = np;
    if (p == 0) mom[np] = root;
    else {
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) mom[np] = q;
      else {
       int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)</pre>
         nxt[nq][i] = nxt[q][i];
        mom[nq] = mom[q];
        mom[q] = nq;
        mom[np] = nq;
```

5.10 PalTree

```
struct palindromic_tree { // Check by APIO 2014
                           // palindrome
  struct node {
    int next[26], fail, len;
    int cnt, num; // cnt: appear times, num: number of
                  // pal. suf.
    node(int 1 = 0) : fail(0), len(1), cnt(0), num(0) {
      for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
    }
  };
  vector<node> St;
  vector<char> s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
    St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
    while (s[n - St[x].len - 1] != s[n])
      x = St[x].fail;
    return x;
  inline void add(int c) {
  s.push_back(c -= 'a'), ++n;
    int cur = get_fail(last);
    if (!St[cur].next[c]) {
      int now = SZ(St);
      St.pb(St[cur].len + 2);
      St[now].fail =
        St[get_fail(St[cur].fail)].next[c];
      St[cur].next[c] = now;
      St[now].num = St[St[now].fail].num + 1;
    last = St[cur].next[c], ++St[last].cnt;
  inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
      St[i->fail].cnt += i->cnt;
  inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
};
```

5.11 cyclicLCS

```
#define L 0
#define LU 1
#define U 2
const int mov[3][2] = {0, -1, -1, -1, -1, 0};
int al, bl;
char a[MAXL * 2], b[MAXL * 2]; // 0-indexed
int dp[MAXL * 2][MAXL];
char pred[MAXL * 2][MAXL];
inline int lcs_length(int r) {
  int i = r + al, j = bl, l = 0;
  while (i > r) {
    char dir = pred[i][j];
```

```
if (dir == LU) 1++:
    i += mov[dir][0]:
    j += mov[dir][1];
  }
  return 1;
inline void reroot(int r) { // r = new base row
  int i = r, j = 1;
  while (j <= bl && pred[i][j] != LU) j++;</pre>
  if (j > bl) return;
  pred[i][j] = L;
while (i < 2 * al && j <= bl) {</pre>
     if (pred[i + 1][j] == U) {
       pred[i][j] = L;
     else\ if\ (j < bl\ \&\&\ pred[i + 1][j + 1] == LU) {
       i++:
       j++;
       pred[i][j] = L;
    } else {
       j++;
  }
int cyclic_lcs() {
  // a, b, al, bl should be properly filled
  // note: a WILL be altered in process
  //
              -- concatenated after itself
  char tmp[MAXL];
  if (al > bl) {
    swap(al, bl);
     strcpy(tmp, a);
    strcpy(a, b);
    strcpy(b, tmp);
  strcpy(tmp, a);
  strcat(a, tmp);
  // basic lcs
  for (int i = 0; i <= 2 * al; i++) {</pre>
    dp[i][0] = 0;
    pred[i][0] = U;
  for (int j = 0; j <= bl; j++) {</pre>
    dp[0][j] = 0;
    pred[0][j] = L;
  for (int i = 1; i <= 2 * al; i++) {
    for (int j = 1; j <= bl; j++) {</pre>
      if (a[i - 1] == b[j - 1])
  dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
       if (dp[i][j - 1] == dp[i][j]) pred[i][j] = L;
else if (a[i - 1] == b[j - 1]) pred[i][j] = LU;
       else pred[i][j] = U;
    }
  }
  // do cyclic lcs
  int clcs = 0;
  for (int i = 0; i < al; i++) {</pre>
    clcs = max(clcs, lcs_length(i));
    reroot(i + 1);
  // recover a
  a[al] = ' \backslash \theta';
  return clcs;
```

6 Math

6.1 ax+by=gcd*

```
pll exgcd(ll a, ll b) {
  if(b == 0) return pll(1, 0);
  else {
    ll p = a / b;
    pll q = exgcd(b, a % b);
    return pll(q.Y, q.X - q.Y * p);
  }
}
```

6.2 floor and ceil

```
int floor(int a,int b){
  return a/b-(a%b&&a<0^b<0);
}
int ceil(int a,int b){
  return a/b+(a%b&&a<0^b>0);
}
```

6.3 floor sum*

```
11 floor_sum(11 n, 11 m, 11 a, 11 b) {
    11 ans = 0;
    if (a >= m)
        ans += (n - 1) * n * (a / m) / 2, a %= m;
    if (b >= m)
        ans += n * (b / m), b %= m;
    11 y_max = (a * n + b) / m, x_max = (y_max * m - b)
    ;
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}// sum^{n-1}_0 floor((a * i + b) / m) in log(n + m + a + b)
```

6.4 Miller Rabin*

```
// n < 4,759,123,141
                            3 : 2, 7, 61
// n < 1,122,004,669,633 4 : 2, 13, 23, 1662803
// n < 3,474,749,660,383 6 : pirmes <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504, 1795265022
bool Miller_Rabin(ll a, ll n) {
  if((a = a % n) == 0) return 1;
  if((n & 1) ^ 1) return n == 2;
  11 \text{ tmp} = (n - 1) / ((n - 1) & (1 - n));
  ll t = __lg(((n - 1) & (1 - n))), x = 1;
  for(; tmp; tmp >>= 1, a = mul(a, a, n))
    if(tmp & 1) x = mul(x, a, n);
  if(x == 1 || x == n - 1) return 1;
  while(--t)
    if((x = mul(x, x, n)) == n - 1) return 1;
  return 0;
}
```

6.5 Big number

```
template<typename T>
inline string to_string(const T& x){
  stringstream ss;
  return ss<<x,ss.str();</pre>
struct bigN:vector<ll>{
  const static int base=1000000000, width=log10(base);
  bool negative;
  bigN(const_iterator a,const_iterator b):vector<ll>(a,
      b){}
  bigN(string s){
    if(s.empty())return;
if(s[0]=='-')negative=1,s=s.substr(1);
    else negative=0;
    for(int i=int(s.size())-1;i>=0;i-=width){
      11 t=0;
      for(int j=max(0,i-width+1);j<=i;++j)</pre>
        t=t*10+s[j]-'0';
      push_back(t);
    trim();
  template<typename T>
    bigN(const T &x):bigN(to_string(x)){}
  bigN():negative(0){}
  void trim(){
    while(size()&&!back())pop_back();
```

```
if(empty())negative=0;
void carry(int _base=base){
  for(size_t i=0;i<size();++i){</pre>
    if(at(i)>=0&&at(i)<_base)continue;</pre>
    if(i+1u==size())push_back(0);
    int r=at(i)%_base;
    if(r<0)r+=_base;</pre>
    at(i+1)+=(at(i)-r)/_base,at(i)=r;
int abscmp(const bigN &b)const{
  if(size()>b.size())return 1;
  if(size()<b.size())return -1;</pre>
  for(int i=int(size())-1;i>=0;--i){
    if(at(i)>b[i])return 1;
    if(at(i)<b[i])return -1;</pre>
  return 0:
int cmp(const bigN &b)const{
  if(negative!=b.negative)return negative?-1:1;
  return negative?-abscmp(b):abscmp(b);
bool operator<(const bigN&b)const{return cmp(b)<0;}</pre>
bool operator>(const bigN&b)const{return cmp(b)>0;}
bool operator<=(const bigN&b)const{return cmp(b)<=0;}</pre>
bool operator>=(const bigN&b)const{return cmp(b)>=0;}
bool operator==(const bigN&b)const{return !cmp(b);}
bool operator!=(const bigN&b)const{return cmp(b)!=0;}
bigN abs()const{
  bigN res=*this;
  return res.negative=0, res;
bigN operator-()const{
  bigN res=*this;
  return res.negative=!negative,res.trim(),res;
bigN operator+(const bigN &b)const{
  if(negative)return -(-(*this)+(-b));
  if(b.negative)return *this-(-b);
  bigN res=*this;
  if(b.size()>size())res.resize(b.size());
  for(size_t i=0;i<b.size();++i)res[i]+=b[i];</pre>
  return res.carry(),res.trim(),res;
bigN operator-(const bigN &b)const{
  if(negative)return -(-(*this)-(-b));
  if(b.negative)return *this+(-b);
  if(abscmp(b)<0)return -(b-(*this));</pre>
  bigN res=*this;
  if(b.size()>size())res.resize(b.size());
  for(size_t i=0;i<b.size();++i)res[i]-=b[i];</pre>
  return res.carry(),res.trim(),res;
bigN operator*(const bigN &b)const{
  bigN res;
  res.negative=negative!=b.negative;
  res.resize(size()+b.size());
  for(size_t i=0;i<size();++i)</pre>
    for(size_t j=0;j<b.size();++j)</pre>
      if((res[i+j]+=at(i)*b[j])>=base){
        res[i+j+1]+=res[i+j]/base;
        res[i+j]%=base;
      }//¼ºk¥@carry·|·,¦@
  return res.trim(),res;
bigN operator/(const bigN &b)const{
  int norm=base/(b.back()+1);
  bigN x=abs()*norm;
  bigN y=b.abs()*norm;
  bigN q,r;
  q.resize(x.size());
  for(int i=int(x.size())-1;i>=0;--i){
    r=r*base+x[i];
    int s1=r.size()<=y.size()?0:r[y.size()];</pre>
    int s2=r.size()<y.size()?0:r[y.size()-1];</pre>
    int d=(ll(base)*s1+s2)/y.back();
    r=r-v*d;
    while(r.negative)r=r+y,--d;
    q[i]=d;
```

```
q.negative=negative!=b.negative;
    return q.trim(),q;
  bigN operator%(const bigN &b)const{
    return *this-(*this/b)*b;
  friend istream& operator>>(istream &ss,bigN &b){
    string s;
    return ss>>s, b=s, ss;
  friend ostream& operator<<(ostream &ss,const bigN &b)</pre>
    if(b.negative)ss<<'-';</pre>
    ss<<(b.empty()?0:b.back());</pre>
    for(int i=int(b.size())-2;i>=0;--i)
      ss<<setw(width)<<setfill('0')<<b[i];</pre>
    return ss:
  template<typename T>
    operator T(){
      stringstream ss;
      ss<<*this;</pre>
      T res;
      return ss>>res,res;
};
```

6.6 Fraction

```
struct fraction{
  11 n.d:
  fraction(const 11 &_n=0,const 11 &_d=1):n(_n),d(_d){
    11 t=__gcd(n,d);
    n/=t, \overline{d/=t};
    if(d<0) n=-n,d=-d;
  fraction operator-()const{
    return fraction(-n,d);
  fraction operator+(const fraction &b)const{
    return fraction(n*b.d+b.n*d,d*b.d);
  fraction operator-(const fraction &b)const{
    return fraction(n*b.d-b.n*d,d*b.d);
  fraction operator*(const fraction &b)const{
    return fraction(n*b.n,d*b.d);
  fraction operator/(const fraction &b)const{
    return fraction(n*b.d,d*b.n);
  void print(){
    cout << n;
    if(d!=1) cout << "/" << d;
  }
};
```

6.7 Simultaneous Equations

```
struct matrix { //m variables, n equations
  int n, m;
  fraction M[MAXN][MAXN + 1], sol[MAXN];
  int solve() { //-1: inconsistent, >= 0: rank
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
      if (piv == m) continue;
      for (int j = 0; j < n; ++j) {</pre>
        if (i == j) continue;
        fraction tmp = -M[j][piv] / M[i][piv];
        for (int k = 0; k <= m; ++k) M[j][k] = tmp * M[</pre>
             i][k] + M[j][k];
      }
    int rank = 0;
    for (int i = 0; i < n; ++i) {</pre>
      int piv = 0;
      while (piv < m && !M[i][piv].n) ++piv;</pre>
```

6.8 Pollard Rho

```
// does not work when n is prime
ll f(ll x,ll mod){ return add(mul(x,x,mod),1,mod); }
ll pollard_rho(ll n){
   if(!(n&1)) return 2;
   while(1){
      ll y=2,x=rand()%(n-1)+1,res=1;
      for(int sz=2;res==1;y=x,sz*=2)
      for(int i=0;i<sz&&res<=1;++i)
            x=f(x,n),res=__gcd(abs(x-y),n);
   if(res!=0&&res!=n) return res;
}
}</pre>
```

6.9 Simplex Algorithm

```
const int MAXN = 111;
const int MAXM = 111;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM], d[MAXN][MAXM];
double x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// \max\{cx\}  subject to \{Ax <= b, x >= 0\}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(double a[MAXN][MAXM], double b[MAXN],
    double c[MAXM], int n, int m){
  ++m;
  int r = n, s = m - 1;
  memset(d, 0, sizeof(d));
  for (int i = 0; i < n + m; ++i) ix[i] = i;</pre>
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];</pre>
    d[i][m - 1] = 1;
    d[i][m] = b[i];
    if (d[r][m] > d[i][m]) r = i;
  for (int j = 0; j < m - 1; ++j) d[n][j] = c[j];</pre>
  d[n + 1][m - 1] = -1;
  for (double dd;; ) {
    if (r < n) {
      int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
      d[r][s] = 1.0 / d[r][s];
      for (int j = 0; j <= m; ++j)</pre>
        if (j != s) d[r][j] *= -d[r][s];
      for (int i = 0; i <= n + 1; ++i) if (i != r) {
        for (int j = 0; j <= m; ++j) if (j != s)
  d[i][j] += d[r][j] * d[i][s];</pre>
         d[i][s] *= d[r][s];
      }
    }
    r = -1; s = -1;
    for (int j = 0; j < m; ++j)</pre>
      if (s < 0 || ix[s] > ix[j]) {
        if (d[n + 1][j] > eps ||
             (d[n + 1][j] > -eps && d[n][j] > eps))
    if (s < 0) break;</pre>
    for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {</pre>
      if (r < 0 ||
           (dd = d[r][m] / d[r][s] - d[i][m] / d[i][s])
               < -eps ||
           (dd < eps && ix[r + m] > ix[i + m]))
         r = i;
    if (r < 0) return -1; // not bounded</pre>
```

6.10 Schreier-Sims Algorithm*

namespace schreier {

if (i <= res) upd.emplace(pii(i, j), pr</pre>

if (res <= i) upd.emplace(pr, pii(i, j)</pre>

for (int i = 0; i < n; ++i) res = res * SZ(bkts[i])</pre>

6.11 chineseRemainder

}

}}

long long size() {

return res;

long long res = 1;

```
int n;
vector<vector<int>>> bkts, binv;
vector<vector<int>> lk;
vector<int> operator*(const vector<int> &a, const
    vector<int> &b) {
    vector<int> res(SZ(a));
    for (int i = 0; i < SZ(a); ++i) res[i] = b[a[i]];</pre>
    return res;
vector<int> inv(const vector<int> &a) {
    vector<int> res(SZ(a));
    for (int i = 0; i < SZ(a); ++i) res[a[i]] = i;</pre>
    return res;
int filter(const vector<int> &g, bool add = true) {
    n = SZ(bkts);
    vector<int> p = g;
    for (int i = 0; i < n; ++i) {</pre>
        assert(p[i] >= 0 && p[i] < SZ(lk[i]));
        if (lk[i][p[i]] == -1) {
             if (add) {
                 bkts[i].pb(p);
                 binv[i].pb(inv(p));
                 lk[i][p[i]] = SZ(bkts[i]) - 1;
             return i;
        p = p * binv[i][lk[i][p[i]]];
    return -1:
bool inside(const vector<int> &g) { return filter(g,
    false) == -1; }
void solve(const vector<vector<int>> &gen, int _n) {
    bkts.clear(), bkts.resize(n);
    binv.clear(), binv.resize(n);
    lk.clear(), lk.resize(n);
    vector<int> iden(n);
    iota(iden.begin(), iden.end(), 0);
for (int i = 0; i < n; ++i) {</pre>
        lk[i].resize(n, -1);
        bkts[i].pb(iden);
        binv[i].pb(iden);
        lk[i][i] = 0;
    for (int i = 0; i < SZ(gen); ++i) filter(gen[i]);</pre>
    queue<pair<pii, pii>> upd;
    for (int i = 0; i < n; ++i)</pre>
         for (int j = i; j < n; ++j)</pre>
```

for (int k = 0; k < SZ(bkts[i]); ++k)</pre>

int res = filter(bkts[a.X][a.Y] * bkts[b.X][b.Y

for (int j = 0; j < SZ(bkts[i]); ++j) {</pre>

pii pr = pii(res, SZ(bkts[res]) - 1);

while (!upd.empty()) {

upd.pop();

1);

auto a = upd.front().X; auto b = upd.front().Y;

if (res == -1) continue;

for (int i = 0; i < n; ++i)</pre>

for (int 1 = 0; 1 < SZ(bkts[j]); ++1)</pre>

upd.emplace(pii(i, k), pii(j, l));

```
LL solve(LL x1, LL m1, LL x2, LL m2) {
    LL g = __gcd(m1, m2);
    if((x2 - x1) % g) return -1;// no sol
    m1 /= g; m2 /= g;
    pair<LL,LL> p = gcd(m1, m2);
    LL lcm = m1 * m2 * g;
    LL res = p.first * (x2 - x1) * m1 + x1;
    return (res % lcm + lcm) % lcm;
}
```

);

6.12 QuadraticResidue

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
    if ((r \& 1) \&\& ((m + 2) \& 4)) s = -s;
    if (a \& m \& 2) s = -s;
    swap(a, m);
  return s;
}
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (;;) {
    b = rand() % p;
d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 % 
      p)) % p;
g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p
       )) % p;
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  return g0;
```

6.13 PiCount

```
int64_t PrimeCount(int64_t n) {
  if (n <= 1) return 0;
  const int v = sqrt(n);
  vector<int> smalls(v + 1);
  for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;</pre>
```

```
int s = (v + 1) / 2
vector<int> roughs(s);
for (int i = 0; i < s; ++i) roughs[i] = 2 * i + 1;</pre>
vector<int64_t> larges(s);
for (int i = 0; i < s; ++i) larges[i] = (n / (2 * i +</pre>
     1) + 1) / 2;
vector<bool> skip(v + 1);
int pc = 0;
for (int p = 3; p <= v; ++p) {</pre>
  if (smalls[p] > smalls[p - 1]) {
    int q = p * p;
    pc++;
    if (1LL * q * q > n) break;
    skip[p] = true;
    for (int i = q; i <= v; i += 2 * p) skip[i] =</pre>
        true;
    int ns = 0;
    for (int k = 0; k < s; ++k) {
      int i = roughs[k];
      if (skip[i]) continue;
      int64_t d = 1LL * i * p;
      larges[ns] = larges[k] - (d <= v ? larges[</pre>
          smalls[d] - pc] : smalls[n / d]) + pc;
      roughs[ns++] = i;
    s = ns;
    for (int j = v / p; j >= p; --j) {
      int c = smalls[j] - pc;
      for (int i = j * p, e = min(i + p, v + 1); i <</pre>
          e; ++i) smalls[i] -= c;
    }
 }
for (int k = 1; k < s; ++k) {
  const int64_t m = n / roughs[k];
  int64_t = larges[k] - (pc + k - 1);
  for (int 1 = 1; 1 < k; ++1) {</pre>
    int p = roughs[1];
    if (1LL * p * p > m) break;
    s -= smalls[m / p] - (pc + l - 1);
  larges[0] -= s;
return larges[0];
```

6.14 Primes

```
12721 13331 14341 75577 123457 222557 556679 999983
  1097774749 1076767633 100102021 999997771 1001010013
  1000512343 987654361 999991231 999888733 98789101
  987777733 999991921 1010101333 1010102101
  100000000039 100000000000037 2305843009213693951
  4611686018427387847 9223372036854775783
  18446744073709551557
bool sieve[mxn];
vector<int> prime
void linear_sieve(){
  for(int i=2;i<mxn;++i){</pre>
    if(!sieve[i]) prime.pb(i);
    for(int p:prime){
      if(i*p>=mxn) break;
      sieve[i*p]=1;
      if(i%p==0) break;
  }
}
```

6.15 Theorem

6.15.1 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G , where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G .

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

6.15.2 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ $(x_{ij}$ is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

6.15.3 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

7 Polynomial

7.1 Fast Fourier Transform

```
template<int MAXN>
struct FFT {
   using val_t = complex<double>;
   const double PI = acos(-1);
   val_t w[MAXN];
   FFT() {
     for (int i = 0; i < MAXN; ++i) {
        double arg = 2 * PI * i / MAXN;
        w[i] = val_t(cos(arg), sin(arg));
   }
   void bitrev(val_t *a, int n); // see NTT
   void trans(val_t *a, int n, bool inv = false); // see
        NTT;
   // remember to replace LL with val_t
};</pre>
```

7.2 Number Theory Transform

```
//(2^16)+1, 65537, 3
//7*(2<sup>2</sup>6)+1, 469762049, 3
//7*17*(2^23)+1, 998244353, 3
//619*202879*(2^3)+1, 1004656809, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template<int MAXN, LL P, LL RT> //MAXN must be 2^k
struct NTT {
  LL w[MAXN];
  LL mpow(LL a, LL n);
  LL minv(LL a) { return mpow(a, P - 2); }
  NTT() {
    LL dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw
          % P;
  void bitrev(LL *a, int n) {
    int i = 0;
    for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
    }
  }
  void operator()(LL *a, int n, bool inv = false) { //0
        \langle = a[i] \langle P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
       for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx
           LL tmp = a[j + dl] * w[x] % P;
           if ((a[j + d1] = a[j] - tmp) < 0) a[j + d1]
                += P
           if ((a[j] += tmp) >= P) a[j] -= P;
        }
      }
    if (inv) {
```

7.3 Fast Walsh Transform*

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
   for (int L = 2; L <= n; L <<= 1)</pre>
         for (int i = 0; i < n; i += L)</pre>
              for (int j = i; j < i + (L >> 1); ++j)
                   a[j + (L >> 1)] += a[j] * op;
const int N = 21;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N</pre>
     1;
void subset_convolution(int *a, int *b, int *c, int L)
     `// c_k = \sum_{i | j = k, i & j = 0} a_i * b_j
     int n = 1 << L;</pre>
     for (int i = 1; i < n; ++i)</pre>
         ct[i] = ct[i & (i - 1)] + 1;
     for (int i = 0; i < n; ++i)</pre>
     f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
for (int i = 0; i <= L; ++i)</pre>
          fwt(f[i], n, 1), fwt(g[i], n, 1);
     for (int i = 0; i <= L; ++i)</pre>
          for (int j = 0; j <= i; ++j)</pre>
              for (int x = 0; x < n; ++x)
                  h[i][x] += f[j][x] * g[i - j][x];
     for (int i = 0; i <= L; ++i)</pre>
         fwt(h[i], n, -1);
     for (int i = 0; i < n; ++i)</pre>
         c[i] = h[ct[i]][i];
}
```

7.4 Polynomial Operation

```
#define fi(s, n) for (int i = (int)(s); i < (int)(n);
template<int MAXN, LL P, LL RT> // MAXN = 2^k
struct Poly : vector<LL> { // coefficients in [0, P)
 using vector<LL>::vector;
  static NTT<MAXN, P, RT> ntt;
  int n() const { return (int)size(); } // n() >= 1
Poly(const Poly &p, int _n) : vector<LL>(_n) {
    copy_n(p.data(), min(p.n(), _n), data());
  Poly& irev() { return reverse(data(), data() + n()),
       *this; }
  Poly& isz(int _n) { return resize(_n), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)
    [i] -= P;
return *this;
  Poly& imul(LL k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this;
  Poly Mul(const Poly &rhs) const {
    int _n = 1;
    while (_n < n() + rhs.n() - 1) _n <<= 1;</pre>
    Poly X(*this, _n), Y(rhs, _n);
ntt(X.data(), _n), ntt(Y.data(), _n);
fi(0, _n) X[i] = X[i] * Y[i] % P;
    ntt(X.data(), _n, true);
return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0
    if (n() == 1) return {ntt.minv((*this)[0])};
```

```
int _n = 1;
  while (_n < n() * 2) _n <<= 1;</pre>
  Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(_n);
  Poly Y(*this, _n);
  ntt(Xi.data(), _n), ntt(Y.data(), _n);
  fi(0, _n) {
    Xi[i] *= (2 - Xi[i] * Y[i]) % P;
    if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
  ntt(Xi.data(), _n, true);
  return Xi.isz(n());
Poly Sqrt() const { // Jacobi((*this)[0], P) = 1}
  if (n() == 1) return {QuadraticResidue((*this)[0],
      P)};
  Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n())
  return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 +
      1):
}
pair<Poly, Poly> DivMod(const Poly &rhs) const { // (
    rhs.)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int _n = n() - rhs.n() + 1;
  Poly X(rhs); X.irev().isz(_n);
  Poly Y(*this); Y.irev().isz(_n);
  Poly Q = Y.Mul(X.Inv()).isz(_n).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
  return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
  Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] %
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i
      1 % P;
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
  Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<LL> _eval(const vector<LL> &x, const vector<
    Poly> &up) const {
  const int _n = (int)x.size();
  if (!_n) return {};
  vector<Poly> down(_n * 2);
  \begin{split} & down[1] = DivMod(up[1]).second; \\ & fi(2, \_n * 2) \ down[i] = down[i / 2].DivMod(up[i]). \end{split}
      second;
  /* down[1] = Poly(up[1]).irev().isz(n()).Inv().irev
      ()._tmul(_n, *this);
  fi(2, _n * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
       1, down[i / 2]); */
  vector<LL> y(_n);
  fi(0, _n) y[i] = down[_n + i][0];
  return y;
static vector<Poly> _tree1(const vector<LL> &x) {
  const int _n = (int)x.size();
  vector<Poly> up(_n * 2);
  fi(0, _n) up[_n + i] = {(x[i] ? P - x[i] : 0), 1};
  for (int i = _n - 1; i > 0; --i) up[i] = up[i * 2].
    Mul(up[i * 2 + 1]);
  return up;
vector<LL> Eval(const vector<LL> &x) const {
  auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector<LL> &x, const
    vector<LL> &y) {
  const int _n = (int)x.size();
  vector<Poly> up = _tree1(x), down(_n * 2);
  vector<LL> z = up[1].Dx()._eval(x, up);
fi(0, _n) z[i] = y[i] * ntt.minv(z[i]) % P;
  fi(0, _n) down[_n + i] = {z[i]};
```

```
for (int i = _n - 1; i > 0; --i) down[i] = down[i *
         2].Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul
        (up[i * 2]));
    return down[1];
  Poly Ln() const { // (*this)[0] == 1
    return Dx().Mul(Inv()).Sx().isz(n());
  Poly Exp() const { // (*this)[0] == 0
    if (n() == 1) return {1};
    Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
    fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i]
    return X.Mul(Y).isz(n());
  Poly Pow(const string &K) const {
    int nz = 0;
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    LL nk = 0, nk2 = 0;
    for (char c : K) {
      nk = (nk * 10 + c - '0') \% P;
      nk2 = nk2 * 10 + c - '0';
if (nk2 * nz >= n()) return Poly(n());
      nk2 %= P - 1;
    if (!nk && !nk2) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * nk2);
    LL x0 = X[0];
    return X.imul(ntt.minv(x0)).Ln().imul(nk).Exp()
      .imul(ntt.mpow(x0, nk2)).irev().isz(n()).irev();
  static LL LinearRecursion(const vector<LL> &a, const
      vector<LL> &coef, LL n) { // a_n = \sum_{j=0}^{n} a_{j} a_{j}
      i)
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    LL ret = 0;
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret;
 }
}:
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

8 Geometry

8.1 Default Code

```
typedef pair<double,double> pdd;
typedef pair<pdd,pdd> Line;
struct Cir{pdd 0; double R;};
const double eps=1e-8;
pdd operator+(const pdd &a, const pdd &b)
{ return pdd(a.X + b.X, a.Y + b.Y);}
pdd operator-(const pdd &a, const pdd &b)
{ return pdd(a.X - b.X, a.Y - b.Y);}
pdd operator*(const pdd &a, const double &b)
{ return pdd(a.X * b, a.Y * b);}
pdd operator/(const pdd &a, const double &b)
{ return pdd(a.X / b, a.Y / b);}
double dot(const pdd &a,const pdd &b)
{ return a.X * b.X + a.Y * b.Y;}
double cross(const pdd &a,const pdd &b)
{ return a.X * b.Y - a.Y * b.X;}
double abs2(const pdd &a)
{ return dot(a, a);}
double abs(const pdd &a)
{ return sqrt(dot(a, a));}
int sign(const double &a)
```

```
{ return fabs(a) < eps ? 0 : a > 0 ? 1 : -1:}
int ori(const pdd &a,const pdd &b,const pdd &c)
{ return sign(cross(b - a, c - a));}
bool collinearity(const pdd &p1, const pdd &p2, const
    pdd &p3)
{ return fabs(cross(p1 - p3, p2 - p3)) < eps;}
bool btw(const pdd &p1,const pdd &p2,const pdd &p3) {
  if(!collinearity(p1, p2, p3)) return 0;
  return dot(p1 - p3, p2 - p3) < eps;</pre>
bool seg_intersect(const pdd &p1,const pdd &p2,const
    pdd &p3, const pdd &p4) {
  int a123 = ori(p1, p2, p3);
  int a124 = ori(p1, p2, p4);
  int a341 = ori(p3, p4, p1);
  int a342 = ori(p3, p4, p2);
  if(a123 == 0 && a124 == 0)
    return btw(p1, p2, p3) || btw(p1, p2, p4) ||
      btw(p3, p4, p1) || btw(p3, p4, p2);
  return a123 * a124 <= 0 && a341 * a342 <= 0;
pdd intersect(const pdd &p1, const pdd &p2, const pdd &
    p3, const pdd &p4) {
  double a123 = cross(p2 - p1, p3 - p1);
  double a124 = cross(p2 - p1, p4 - p1);
  return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(const pdd &p1)
{ return pdd(-p1.Y, p1.X);}
pdd foot(const pdd &p1, const pdd &p2, const pdd &p3)
{ return intersect(p1, p2, p3, p3 + perp(p2 - p1));}
```

8.2 Convex hull*

8.3 External bisector

```
pdd external_bisector(pdd p1,pdd p2,pdd p3){//213
  pdd L1=p2-p1,L2=p3-p1;
  L2=L2*abs(L1)/abs(L2);
  return L1+L2;
}
```

8.4 Heart

```
pdd excenter(pdd p0,pdd p1,pdd p2,double &radius){
  p1=p1-p0,p2=p2-p0;
  double x1=p1.X,y1=p1.Y,x2=p2.X,y2=p2.Y;
  double m=2.*(x1*y2-y1*x2);
  center.X=(x1*x1*y2-x2*x2*y1+y1*y2*(y1-y2))/m;
  center.Y=(x1*x2*(x2-x1)-y1*y1*x2+x1*y2*y2)/m;
  return radius=abs(center),center+p0;
pdd incenter(pdd p1,pdd p2,pdd p3,double &radius){
  double a=abs(p2-p1),b=abs(p3-p1),c=abs(p3-p2);
  double s=(a+b+c)/2, area=sqrt(s*(s-a)*(s-b)*(s-c));
  pdd L1=external_bisector(p1,p2,p3),L2=
      external_bisector(p2,p1,p3);
  return radius=area/s,intersect(p1,p1+L1,p2,p2+L2),
}
pdd escenter(pdd p1,pdd p2,pdd p3){//213
  pdd L1=external_bisector(p1,p2,p3),L2=
      external_bisector(p2,p2+p2-p1,p3);
```

```
return intersect(p1,p1+L1,p2,p2+L2);
}

pdd barycenter(pdd p1,pdd p2,pdd p3){
   return (p1+p2+p3)/3;
}

pdd orthocenter(pdd p1,pdd p2,pdd p3){
   pdd L1=p3-p2,L2=p3-p1;
   swap(L1.X,L1.Y),L1.X*=-1;
   swap(L2,X,L2.Y),L2.X*=-1;
   return intersect(p1,p1+L1,p2,p2+L2);
}
```

8.5 Minimum Circle Cover*

```
pdd Minimum_Circle_Cover(vector<pdd> dots, double &r) {
  pdd cent;
  random_shuffle(ALL(dots));
  cent = dots[0], r = 0;
for (int i = 1; i < SZ(dots); ++i)</pre>
    if (abs(dots[i] - cent) > r) {
      cent = dots[i], r = 0;
       for (int j = 0; j < i; ++j)</pre>
         if (abs(dots[j] - cent) > r) {
           cent = (dots[i] + dots[j]) / 2;
           r = abs(dots[i] - cent);
           for(int k = 0; k < j; ++k)
             if(abs(dots[k] - cent) > r)
               cent = excenter(dots[i], dots[j], dots[k
                    ], r);
        }
  return cent;
}
```

8.6 Polar Angle Sort*

```
pdd center;//sort base
int Quadrant(pdd a) {
  if(a.X > 0 && a.Y >= 0) return 1;
  if(a.X <= 0 && a.Y > 0) return 2;
  if(a.X < 0 && a.Y <= 0) return 3;</pre>
  if(a.X >= 0 && a.Y < 0) return 4;
bool cmp(pll a, pll b) {
  a = a - center, b = b - center;
  if (Quadrant(a) != Quadrant(b))
    return Quadrant(a) < Quadrant(b);</pre>
  if (cross(b, a) == 0) return abs2(a) < abs2(b);</pre>
  return cross(a, b) > 0;
bool cmp(pdd a, pdd b) {
  a = a - center, b = b - center;
  if(fabs(atan2(a.Y, a.X) - atan2(b.Y, b.X)) > eps)
return atan2(a.Y, a.X) < atan2(b.Y, b.X);</pre>
  return abs(a) < abs(b);</pre>
}
```

8.7 Intersection of two circles*

8.8 Intersection of polygon and circle

```
// Divides into multiple triangle, and sum up
// test by HDU2892
const double PI=acos(-1);
double _area(pdd pa, pdd pb, double r){
  if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
  if(abs(pb)<eps) return 0;</pre>
  double S, h, theta;
  double a=abs(pb),b=abs(pa),c=abs(pb-pa);
  double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
  double cosC = dot(pa,pb) / a / b, C = acos(cosC);
  if(a > r){
    S = (C/2)*r*r;
    h = a*b*sin(C)/c;
    if (h < r \&\& B < PI/2) S -= (acos(h/r)*r*r - h*sqrt
         (r*r-h*h));
  else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
    S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
  return S;
double area_poly_circle(const vector<pdd> poly,const
    pdd &0, const double r){
  double S=0;
  for(int i=0;i<SZ(poly);++i)</pre>
    S+=\_area(poly[i]-0,poly[(i+1)\%SZ(poly)]-0,r)*ori(0,
        poly[i],poly[(i+1)%SZ(poly)]);
  return fabs(S);
}
```

8.9 Intersection of line and circle

8.10 point in circle

```
// return p4 is strictly in circumcircle of tri(p1,p2,
long long sqr(long long x) { return x * x; }
bool in_cc(const pl1& p1, const pl1& p2, const pl1& p3,
      const pll& p4) {
    long long u11 = p1.X - p4.X; long long u12 = p1.Y -
          p4.Y;
    long long u21 = p2.X - p4.X; long long u22 = p2.Y -
          p4.Y:
    long long u31 = p3.X - p4.X; long long u32 = p3.Y -
          p4.Y;
    long long u13 = sqr(p1.X) - sqr(p4.X) + sqr(p1.Y) -
          sqr(p4.Y);
    long long u23 = sqr(p2.X) - sqr(p4.X) + sqr(p2.Y) -
          sqr(p4.Y);
    long long u33 = sqr(p3.X) - sqr(p4.X) + sqr(p3.Y) -
          sqr(p4.Y);
                       _int128)-u13 * u22 * u31 + (
    __int128 det = (_
         __int128)u12 * u23 * u31 + (__int128)u13 * u21
         * u32 - (__int128)u11 * u23 * u32 - (__int128)
u12 * u21 * u33 + (__int128)u11 * u22 * u33;
    return det > eps;
```

8.11 Half plane intersection

```
bool isin( Line 10, Line 11, Line 12 ){
   // Check inter(L1, L2) in L0
  pdd p = intersect(l1.X,l1.Y,l2.X,l2.Y);
  return cross(10.Y - 10.X,p - 10.X) > eps;
/* If no solution, check: 1. ret.size() < 3</pre>
 * Or more precisely, 2. interPnt(ret[0], ret[1])
 * in all the lines. (use (l.Y - l.X) ^{\wedge} (p - l.X) > 0
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> lines){
  int sz = lines.size();
  vector<double> ata(sz),ord(sz);
  for(int i=0; i<sz; ++i) {</pre>
    ord[i] = i;
     pdd d = lines[i].Y - lines[i].X;
    ata[i] = atan2(d.Y, d.X);
  sort(ord.begin(), ord.end(), [&](int i,int j){
       if( fabs(ata[i] - ata[j]) < eps )</pre>
       return (cross(lines[i].Y-lines[i].X,
             lines[j].Y-lines[i].X))<0;</pre>
       return ata[i] < ata[j];</pre>
       });
  vector<Line> fin;
  for (int i=0; i<sz; ++i)</pre>
     if (!i || fabs(ata[ord[i]] - ata[ord[i-1]]) > eps)
       fin.pb(lines[ord[i]]);
  deque<Line> dq;
  for (int i=0; i<SZ(fin); i++){</pre>
    while(SZ(dq)>=2&&!isin(fin[i],dq[SZ(dq)-2],dq.back
         ()))
       dq.pop_back();
     while(SZ(dq)>=2&&!isin(fin[i],dq[0],dq[1]))
       dq.pop_front();
     dq.push_back(fin[i]);
  while (SZ(dq) >= 3\&! isin(dq[0], dq[SZ(dq)-2], dq.back()))
    dq.pop_back();
  while(SZ(dq)>=3&&!isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  vector<Line> res(ALL(dq));
  return res;
| }
```

8.12 CircleCover*

```
const int N = 1021;
struct CircleCover {
  int C;
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  double Area[ N ];
  void init(int _C){ C = _C;}
  struct Teve {
    pdd p; double ang; int add;
    Teve() {}
    Teve(pdd _a, double _b, int _c):p(_a), ang(_b), add
        (_c){}
    bool operator<(const Teve &a)const</pre>
    {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
  bool disjuct(Cir &a, Cir &b, int x)
  {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
    return (sign(c[i].R - c[j].R) > 0 || (sign(c[i].R -
         c[j].R) == 0 && i < j)) && contain(c[i], c[j],
  void solve(){
    fill_n(Area, C + 2, 0);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)</pre>
```

```
for(int j = 0; j < C; ++j)</pre>
         g[i][j] = !(overlap[i][j] || overlap[j][i] ||
             disjuct(c[i], c[j], -1));
    for(int i = 0; i < C; ++i){</pre>
      int E = 0, cnt = 1;
      for(int j = 0; j < C; ++j)</pre>
        if(j != i && overlap[j][i])
           ++cnt;
      for(int j = 0; j < C; ++j)</pre>
        if(i != j && g[i][j]) {
           pdd aa, bb;
           CCinter(c[i], c[j], aa, bb);
           double A = atan2(aa.Y - c[i].0.Y, aa.X - c[i
               ].0.X);
           double B = atan2(bb.Y - c[i].O.Y, bb.X - c[i
               ].0.X);
           eve[E++] = Teve(bb, B, 1), eve[E++] = Teve(aa
               , A, -1);
          if(B > A) ++cnt;
      if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
      else{
        sort(eve, eve + E);
         eve[E] = eve[0];
        for(int j = 0; j < E; ++j){}
           cnt += eve[j].add;
           Area[cnt] += cross(eve[j].p, eve[j + 1].p) *
           double theta = eve[j + 1].ang - eve[j].ang;
           if (theta < 0) theta += 2. * pi;</pre>
           Area[cnt] += (theta - sin(theta)) * c[i].R *
    c[i].R * .5;
        }
      }
    }
  }
};
```

8.13 3Dpoint*

```
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x
      (_x), y(_y), z(_z){}
  Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);}
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x -
     p1.x * p2.z, p1.x * p2.y - p1.y * p2.x);}
double dot(const Point &p1, const Point &p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z;}
double abs(const Point &a)
{ return sqrt(dot(a, a));}
Point cross3(const Point &a, const Point &b, const
    Point &c)
{ return cross(b - a, c - a);}
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c));}
double volume(Point a, Point b, Point c, Point d)
{return dot(cross3(a, b, c), d - a);}
```

8.14 Convexhull3D*

```
struct CH3D {
    struct face{int a, b, c; bool ok;} F[8 * N];
    double dblcmp(Point &p,face &f)
    {return dot(cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a ]);}
    int g[N][N], num, n;
    Point P[N];
    void deal(int p,int a,int b) {
        int f = g[a][b];
        face add;
        if (F[f].ok) {
            if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
            else
```

```
add.a = b, add.b = a, add.c = p, add.ok = 1, g[
           p][b] = g[a][p] = g[b][a] = num, F[num++]=
  }
void dfs(int p, int now) {
  F[now].ok = 0;
  deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[
      now].b), deal(p, F[now].a, F[now].c);
bool same(int s,int t){
  Point &a = P[F[s].a];
  Point \&b = P[F[s].b];
  Point &c = P[F[s].c];
  return fabs(volume(a, b, c, P[F[t].a])) < eps &&</pre>
      fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(
      volume(a, b, c, P[F[t].c])) < eps;</pre>
void init(int _n){n = _n, num = 0;}
void solve() {
  face add;
  num = 0;
  if(n < 4) return;</pre>
  if([&](){
      for (int i = 1; i < n; ++i)
      if (abs(P[0] - P[i]) > eps)
      return swap(P[1], P[i]), 0;
      return 1;
      }()[&]|| (){
      for (int i = 2; i < n; ++i)</pre>
      if (abs(cross3(P[i], P[0], P[1])) > eps)
      return swap(P[2], P[i]), 0;
      return 1:
      }() || [&](){
      for (int i = 3; i < n; ++i)</pre>
      if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]), P
           [0] - P[i])) > eps)
      return swap(P[3], P[i]), 0;
      return 1;
      }())return;
  for (int i = 0; i < 4; ++i) {</pre>
    add.a = (i + 1) \% 4, add.b = (i + 2) \% 4, add.c =
          (i + 3) \% 4, add.ok = true;
    if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
    g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.
        a] = num;
    F[num++] = add;
  for (int i = 4; i < n; ++i)</pre>
    for (int j = 0; j < num; ++j)</pre>
      if (F[j].ok && dblcmp(P[i],F[j]) > eps) {
        dfs(i, j);
        break;
  for (int tmp = num, i = (num = 0); i < tmp; ++i)</pre>
    if (F[i].ok) F[num++] = F[i];
double get_area() {
  double res = 0.0;
  if (n == 3)
    return abs(cross3(P[0], P[1], P[2])) / 2.0;
  for (int i = 0; i < num; ++i)</pre>
   res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
  return res / 2.0;
double get_volume() {
  double res = 0.0;
  for (int i = 0; i < num; ++i)</pre>
    res += volume(Point(0, 0, 0), P[F[i].a], P[F[i].b
        ], P[F[i].c]);
  return fabs(res / 6.0);
int triangle() {return num;}
int polygon() {
  for (int i = 0, flag = 1; i < num; ++i, res += flag</pre>
      , flag = 1)
    for (int j = 0; j < i && flag; ++j)
  flag &= !same(i,j);</pre>
  return res;
Point getcent(){
```

```
Point ans(0, 0, 0), temp = P[F[0].a];
     double v = 0.0, t2;
     for (int i = 0; i < num; ++i)</pre>
       if (F[i].ok == true) {
         Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].b]
             i].c];
         t2 = volume(temp, p1, p2, p3) / 6.0;
         if (t2>0)
           ans.x += (p1.x + p2.x + p3.x + temp.x) * t2,
               ans.y += (p1.y + p2.y + p3.y + temp.y) *
               t2, ans.z += (p1.z + p2.z + p3.z + temp.z
               ) * t2, v += t2;
     ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v)
         );
     return ans;
  double pointmindis(Point p) {
     double rt = 99999999;
     for(int i = 0; i < num; ++i)</pre>
       if(F[i].ok == true) {
         Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].b]
             i].c];
         double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.
             z - p1.z) * (p3.y - p1.y);
         double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.
             x - p1.x) * (p3.z - p1.z);
         double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.
             y - p1.y) * (p3.x - p1.x);
         double d = 0 - (a * p1.x + b * p1.y + c * p1.z)
         double temp = fabs(a * p.x + b * p.y + c * p.z
             + d) / sqrt(a * a + b * b + c * c);
         rt = min(rt, temp);
    return rt;
  }
};
```

8.15 DelaunayTriangulation*

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const ll inf = MAXC * MAXC * 100; // Lower_bound
    unknown
struct Tri;
struct Edge {
    Tri* tri; int side;
    Edge(): tri(0), side(0){}
Edge(Tri* _tri, int _side): tri(_tri), side(_side)
        {}
};
struct Tri {
    pll p[3];
    Edge edge[3];
Tri* chd[3];
    Tri() {}
    Tri(const pll& p0, const pll& p1, const pll& p2) {
        p[0] = p0; p[1] = p1; p[2] = p2;
        chd[0] = chd[1] = chd[2] = 0;
    bool has_chd() const { return chd[0] != 0; }
    int num_chd() const {
        return !!chd[0] + !!chd[1] + !!chd[2];
    bool contains(pll const& q) const {
        for (int i = 0; i < 3; ++i)</pre>
             if (ori(p[i], p[(i + 1) % 3], q) < 0)</pre>
                 return 0;
```

```
return 1:
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
    if(a.tri) a.tri -> edge[a.side] = b;
    if(b.tri) b.tri -> edge[b.side] = a;
struct Trig { // Triangulation
    Trig() {
        the_root = // Tri should at least contain all
             new(tris++) Tri(pll(-inf, -inf), pll(inf +
                  inf, -inf), pll(-inf, inf + inf));
    Tri* find(pll p) { return find(the_root, p); }
    void add_point(const pll &p) { add_point(find(
         the_root, p), p); }
    Tri* the_root;
    static Tri* find(Tri* root, const pll &p) {
        while (1) {
             if (!root -> has_chd())
                 return root;
             for (int i = 0; i < 3 && root -> chd[i]; ++
                  i)
                  if (root -> chd[i] -> contains(p)) {
                      root = root -> chd[i];
                      break;
        assert(0); // "point not found"
    void add_point(Tri* root, pll const& p) {
        Tri* t[3];
         /* split it into three triangles */
        for (int i = 0; i < 3; ++i)</pre>
             t[i] = new(tris++) Tri(root -> p[i], root
                  -> p[(i + 1) % 3], p);
         for (int i = 0; i < 3; ++i)</pre>
             edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1)
        for (int i = 0; i < 3; ++i)
             \texttt{edge}(\texttt{Edge}(\texttt{t[i], 2), root -> edge}[(\texttt{i + 2}) \ \%
                  3]);
        for (int i = 0; i < 3; ++i)
             root -> chd[i] = t[i];
        for (int i = 0; i < 3; ++i)
    flip(t[i], 2);</pre>
    void flip(Tri* tri, int pi) {
    Tri* trj = tri -> edge[pi].tri;
        int pj = tri -> edge[pi].side;
        if (!trj) return;
        if (!in_cc(tri -> p[0], tri -> p[1], tri -> p
             [2], trj -> p[pj])) return;
         /* flip edge between tri,trj *,
        Tri* trk = new(tris++) Tri(tri -> p[(pi + 1) %
             3], trj -> p[pj], tri -> p[pi]);
        Tri* trl = new(tris++) Tri(trj -> p[(pj + 1) %]
             3], tri -> p[pi], trj -> p[pj]);
         edge(Edge(trk, 0), Edge(trl, 0));
        edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
         edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
        tri -> chd[0] = trk; tri -> chd[1] = trl; tri
              -> chd[2] = 0;
         trj -> chd[0] = trk; trj -> chd[1] = trl; trj
        -> chd[2] = 0;
flip(trk, 1); flip(trk, 2);
        flip(trl, 1); flip(trl, 2);
    }
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
    if (vst.find(now) != vst.end())
        return;
    vst.insert(now);
    if (!now -> has_chd())
         return triang.push_back(now);
    for (int i = 0; i < now->num_chd(); ++i)
        go(now -> chd[i]);
```

8.16 Triangulation Vonoroi*

```
vector<Line> ls[N];
pll arr[N];
Line make_line(pdd p, Line 1) {
    pdd d = 1.Y - 1.X; d = perp(d);
    pdd m = (1.X + 1.Y) / 2;
    l = Line(m, m + d);
    if (ori(1.X, 1.Y, p) < 0)
        l = Line(m + d, m);
    return 1;
double calc_area(int id) {
    // use to calculate the area of point "strictly in
         the convex hull"
    vector<Line> hpi = halfPlaneInter(ls[id]);
    vector<pdd> ps;
    for (int i = 0; i < SZ(hpi); ++i)</pre>
         ps.pb(intersect(hpi[i].X, hpi[i].Y, hpi[(i + 1)
              % SZ(hpi)].X, hpi[(i + 1) % SZ(hpi)].Y));
    double rt = 0;
    for (int i = 0; i < SZ(ps); ++i)</pre>
         rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
    return fabs(rt) / 2;
void solve(int n, pii *oarr) {
    map<pll, int> mp;
    for (int i = 0; i < n; ++i)</pre>
        arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]]
             = i;
    build(n, arr); // Triangulation
for (auto *t : triang) {
         vector<int> p;
         for (int i = 0; i < 3; ++i)
             if (mp.find(t -> p[i]) != mp.end())
                 p.pb(mp[t -> p[i]]);
         for (int i = 0; i < SZ(p); ++i)
  for (int j = i + 1; j < SZ(p); ++j) {</pre>
                  Line l(oarr[p[i]], oarr[p[j]]);
                  ls[p[i]].pb(make_line(oarr[p[i]], 1));
                  ls[p[j]].pb(make_line(oarr[p[j]], 1));
```

8.17 Tangent line of two circles

```
vector<Line> go( const Cir& c1 , const Cir& c2 , int
    sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_sq = norm2( c1.0 - c2.0 );
  if( d_sq < eps ) return ret;</pre>
  double d = sqrt( d_sq );
  Pt v = (c2.0 - c1.0) / d;
  double c = ( c1.R - sign1 * c2.R ) / d;
  if( c * c > 1 ) return ret;
  double h = sqrt( max( 0.0 , 1.0 - c * c ) );
for( int sign2 = 1 ; sign2 >= -1 ; sign2 -= 2 ){
    Pt n = { v.X * c - sign2 * h * v.Y,
      v.Y * c + sign2 * h * v.X };
    Pt p1 = c1.0 + n * c1.R;
    Pt p2 = c2.0 + n * (c2.R * sign1);
    if( fabs( p1.X - p2.X ) < eps and</pre>
        fabs( p1.Y - p2.Y ) < eps )
      p2 = p1 + perp(c2.0 - c1.0);
    ret.push_back( { p1 , p2 } );
```

8.18 minMaxEnclosingRectangle

```
pdd solve(vector<pll> &dots){
  vector<pll> hull:
  const double INF=1e18,qi=acos(-1)/2*3;
  cv.dots=dots;
  hull=cv.hull():
  double Max=0,Min=INF,deg;
  11 n=hull.size();
  hull.pb(hull[0]);
  for(int i=0,u=1,r=1,l;i<n;++i){</pre>
    pll nw=hull[i+1]-hull[i];
    while(cross(nw,hull[u+1]-hull[i])>cross(nw,hull[u]-
        hull[i]))
      u=(u+1)%n;
    while(dot(nw,hull[r+1]-hull[i])>dot(nw,hull[r]-hull
        [i]))
      r=(r+1)%n;
    if(!i) l=(r+1)%n;
    while(dot(nw,hull[l+1]-hull[i])<dot(nw,hull[l]-hull</pre>
        [i]))
      1=(1+1)%n;
    Min=min(Min,(double)(dot(nw,hull[r]-hull[i])-dot(nw
        , hull[1]-hull[i]))*cross(nw, hull[u]-hull[i])/
        abs2(nw));
    deg=acos((double)dot(hull[r]-hull[1],hull[u]-hull[i
        ])/abs(hull[r]-hull[1])/abs(hull[u]-hull[i]));
    deg=(qi-deg)/2;
    {\sf Max=max(Max,(double)abs(hull[r]-hull[l])*abs(hull[u))}
        ]-hull[i])*sin(deg)*sin(deg));
  }
  return pdd(Min,Max);
}
```

8.19 minDistOfTwoConvex

```
// p, q is convex
double TwoConvexHullMinDist(Point P[], Point Q[], int n
      int m) {
  int YMinP = 0, YMaxQ = 0;
  double tmp, ans = 999999999;
  for (i = 0; i < n; ++i) if(P[i].y < P[YMinP].y) YMinP</pre>
       = i;
  for (i = 0; i < m; ++i) if(Q[i].y > Q[YMaxQ].y) YMaxQ
       = i:
  P[n] = P[0], Q[m] = Q[0];
  for (int i = 0; i < n; ++i) {</pre>
    while (tmp = Cross(Q[YMaxQ + 1] - P[YMinP + 1], P[
        YMinP] - P[YMinP + 1]) > Cross(Q[YMaxQ] - P[
        YMinP + 1, P[YMinP] - P[YMinP + 1])) <math>YMaxQ = (
        YMaxQ + 1) % m;
    if (tmp < 0) ans = min(ans, PointToSegDist(P[YMinP</pre>
        ], P[YMinP + 1], Q[YMaxQ]));
    else ans = min(ans, TwoSegMinDist(P[YMinP], P[YMinP
         + 1], Q[YMaxQ], Q[YMaxQ + 1]));
    YMinP = (YMinP + 1) % n;
  return ans;
}
```

8.20 Minkowski Sum*

```
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
  hull(A), hull(B);
  vector<pll> C(1, A[0] + B[0]), s1, s2;
  for(int i = 0; i < SZ(A); ++i)
    s1.pb(A[(i + 1) % SZ(A)] - A[i]);
  for(int i = 0; i < SZ(B); i++)
    s2.pb(B[(i + 1) % SZ(B)] - B[i]);
  for(int p1 = 0, p2 = 0; p1 < SZ(A) || p2 < SZ(B);)
  if (p2 >= SZ(B) || (p1 < SZ(A) && cross(s1[p1], s2[
       p2]) >= 0))
    C.pb(C.back() + s1[p1++]);
```

8.21 RotatingSweepLine

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps);
  vector<int> id(n), pos(n);
  vector<pii> line(n * (n - 1) / 2);
  int m = 0;
  for (int i = 0; i < n; ++i)</pre>
    for (int j = i + 1; j < n; ++j)
      line[m++] = pii(i,j);
    sort(ALL(line), [&](const pii &a, const pii &b)->
         bool {
      if (ps[a.X].X == ps[a.Y].X)
        return 0;
      if (ps[b.X].X == ps[b.Y].X)
        return 1;
      return (double)(ps[a.X].Y - ps[a.Y].Y) / (ps[a.X
           ].X - ps[a.Y].X) < (double)(ps[b.X].Y - ps[b.
Y].Y) / (ps[b.X].X - ps[b.Y].X);
  iota(id, id + n, 0);
  sort(ALL(id), [&](const int &a,const int &b){ return
      ps[a] < ps[b]; });
  for (int i = 0; i < n; ++i) pos[id[i]] = i;</pre>
    for (int i = 0; i < m; ++i) {</pre>
      auto l = line[i];
       // meow
      tie(pos[1.X], pos[1.Y], id[pos[1.X]], id[pos[1.Y]
           ]]) = make_tuple(pos[1.Y], pos[1.X], 1.Y, 1.X
  }
}
```

8.22 Simpson

```
const double eps = 1e-9;
double F(double x){
double Simpson(double ,1,double r){
  return (r-1)*(F(r)+F(1)+4.0*F(r+1)*0.5)/6.0;
double simpson(double 1,double r,double cur){
  double mid = (1+r)*0.5;
  double L = Simpson(l,mid), R = Simpson(mid,r);
  if(fabs(cur-L-R)<=eps)</pre>
    return L+R;
  else
    return simpson(l,mid,L)+simpson(mid,r,R);
double simpson_ada(double 1,double r,double cur,double
    e){
  double mid = (1+r)*0.5;
  double L = Simpson(1,mid), R = Simpson(mid,r);
  if(fabs(cur-L-R)<=e)</pre>
    return simpson(l,mid,L,e*0.5)+simpson(mid,r,R,e
         *0.5);
}
```

9 Else

9.1 Mo's Alogrithm(With modification)

```
struct QUERY{//BLOCK=N^{2/3}
int L,R,id,LBid,RBid,T;
QUERY(int l,int r,int id,int lb,int rb,int t):
L(l),R(r),id(id),LBid(lb),RBid(rb),T(t){}
```

```
bool operator<(const QUERY &b)const{</pre>
    if(LBid!=b.LBid) return LBid<b.LBid;</pre>
     if(RBid!=b.RBid) return RBid<b.RBid;</pre>
    return T<b.T:
};
vector<QUERY> query;
int cur_ans,arr[MAXN],ans[MAXN];
void addTime(int L,int R,int T){}
void subTime(int L,int R,int T){}
void add(int x){}
void sub(int x){}
void solve(){
  sort(ALL(query));
  int L=0,R=0,T=-1;
  for(auto q:query){
    while(T<q.T) addTime(L,R,++T);
while(T>q.T) subTime(L,R,T--);
    while(R<q.R) add(arr[++R]);</pre>
    while(L>q.L) add(arr[--L]);
    while(R>q.R) sub(arr[R--]);
    while(L<q.L) sub(arr[L++]);</pre>
    ans[q.id]=cur_ans;
}
```

9.2 Mo's Alogrithm On Tree

```
const int MAXN=40005;
vector<int> G[MAXN];//1-base
int n,B,arr[MAXN],ans[100005],cur_ans;
int in[MAXN],out[MAXN],dfn[MAXN*2],dft;
int deep[MAXN],sp[__lg(MAXN*2)+1][MAXN*2],bln[MAXN],spt
bitset<MAXN> inset;
struct QUERY{
  int L,R,Lid,id,lca;
  QUERY(int 1, int r, int _id):L(1),R(r),lca(0),id(_id){}
  bool operator<(const OUERY &b){</pre>
    if(Lid!=b.Lid) return Lid<b.Lid;</pre>
    return R<b.R;</pre>
  }
vector<QUERY> query;
void dfs(int u,int f,int d){
  deep[u]=d,sp[0][spt]=u,bln[u]=spt++;
  dfn[dft]=u,in[u]=dft++;
  for(int v:G[u])
    if(v!=f)
      dfs(v,u,d+1),sp[0][spt]=u,bln[u]=spt++;
  dfn[dft]=u,out[u]=dft++;
int lca(int u,int v){
  if(bln[u]>bln[v]) swap(u,v);
  int t=_lg(bln[v]-bln[u]+1);
  int a=sp[t][bln[u]],b=sp[t][bln[v]-(1<<t)+1];</pre>
  if(deep[a] < deep[b]) return a;</pre>
  return b;
void sub(int x){}
void add(int x){}
void flip(int x){
  if(inset[x]) sub(arr[x]);
  else add(arr[x]);
  inset[x]=~inset[x];
void solve(){
  B=sqrt(2*n),dft=spt=cur_ans=0,dfs(1,1,0);
  for(int i=1,x=2;x<2*n;++i,x<<=1)</pre>
    for(int j=0;j+x<=2*n;++j)</pre>
      if(deep[sp[i-1][j]]<deep[sp[i-1][j+x/2]])</pre>
        sp[i][j]=sp[i-1][j];
      else sp[i][j]=sp[i-1][j+x/2];
  for(auto &q:query){
    int c=lca(q.L,q.R);
    if(c==q.L||c==q.R)
      q.L=out[c==q.L?q.R:q.L],q.R=out[c];
    else if(out[q.L]<in[q.R])</pre>
      q.lca=c,q.L=out[q.L],q.R=in[q.R];
    else q.lca=c,c=in[q.L],q.L=out[q.R],q.R=c;
```

```
q.Lid=q.L/B;
}
sort(ALL(query));
int L=0,R=-1;
for(auto q:query){
    while(R<q.R) flip(dfn[++R]);
    while(L>q.L) flip(dfn[--L]);
    while(R>q.R) flip(dfn[R--]);
    while(L<q.L) flip(dfn[L++]);
    if(q.lca) add(arr[q.lca]);
    ans[q.id]=cur_ans;
    if(q.lca) sub(arr[q.lca]);
}
</pre>
```

9.3 DynamicConvexTrick*

```
// only works for integer coordinates!!
struct Line {
    mutable ll a, b, p;
    bool operator<(const Line &rhs) const { return a <</pre>
         rhs.a; }
    bool operator<(11 x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>>> {
     static const ll kInf = 1e18;
    11 Div(ll a, ll b) { return a / b - ((a ^ b) < 0 &&</pre>
          a % b); }
     bool isect(iterator x, iterator y) {
         if (y == end()) \{ x \rightarrow p = kInf; return 0; \}
         if (x -> a == y -> a) x -> p = x -> b > y -> b
             ? kInf : -kInf;
         else x \to p = Div(y \to b - x \to b, x \to a - y)
             -> a);
         return x \rightarrow p >= y \rightarrow p;
     void addline(ll a, ll b) {
         auto z = insert({a, b, 0}), y = z++, x = y;
         while (isect(y, z)) z = erase(z);
         if (x != begin() \&\& isect(--x, y)) isect(x, y =
              erase(y));
         while ((y = x) != begin() && (--x) -> p >= y ->
              p) isect(x, erase(y));
    11 query(11 x) {
         auto l = *lower_bound(x);
         return 1.a * x + 1.b;
    }
};
```

9.4 Matroid Intersection

Start from $S=\emptyset$. In each iteration, let

```
• Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}
• Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}
```

If there exists $x \in Y_1 \cap Y_2$, insert x into S. Otherwise for each $x \in S, y \not\in S$, create edges

```
• x \to y if S - \{x\} \cup \{y\} \in I_1.
• y \to x if S - \{x\} \cup \{y\} \in I_2.
```

Find a shortest path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \notin S$. Find the path with the minimum number of edges among all minimum length paths and alternate it.