Analyze Complete Cases Models

Martin Skarzynski 2018-04-19

```
library(readr)
library(here)
## here() starts at /Users/marskar/gdrive/nhanes
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(purrr)
#define function needed to calculate median model stats
get_median <- function(x, model_type, model_stat){</pre>
    model_type <- deparse(substitute(model_type))</pre>
    model_stat <- enquo(model_stat)</pre>
    x %>%
        select(type, !!model_stat) %>%
        group_by(type) %>%
        summarise(model_median =
                  median(!!model_stat)) %>%
        filter(type == model_type) %>%
        select(model median) %>%
        as.numeric
}
#read in dataset created by script 4
dat_quad <- read_rds(here("dat/6-model-diff-sizes.rds")) %>%
    rename(con = concordance) %>%
    mutate(quad =
           as.factor(
               case_when(con > median(con) &
                         aic <= median(aic) ~ 1,
                         con > median(con) &
                         aic > median(aic) ~ 2,
                          con <= median(con) &
                         aic <= median(aic) ~ 3,
                          con <= median(con) &</pre>
                          aic > median(aic) ~ 4
```

```
)
table(dat_quad$quad)
##
## 1 2 3 4
## 111 349 369 131
table(dat_quad$type)
##
## coxph ridge
   480
         480
dat_quad %>% group_by(type, quad) %>% summarise(n=n())
## # A tibble: 8 x 3
## # Groups: type [?]
## type quad
## <chr> <fct> <int>
## 1 coxph 1
                  21
## 2 coxph 2
## 3 coxph 3
                 118
## 4 coxph 4
                 109
## 5 ridge 1
                  90
## 6 ridge 2
                  117
                  251
## 7 ridge 3
## 8 ridge 4
                  22
# Figure 1
dat_quad %>%
   ggplot(aes(x = aic,
              y = con,
              size = size,
              colour = quad)) +
geom_point(aes(shape = factor(type)),
          #size = 3,
          stroke = 1) +
scale_shape(solid = FALSE) +
          theme_minimal() +
          labs(
               x = 'Akaike Information Criterion',
               y = 'Concordance',
               size = "Model Size",
               shape = "Model Type",
               colour = "Quadrant")
```



```
ggsave(here("img/1-quad.pdf"))
```

```
## Saving 6.5 x 4.5 in image
ggsave(here("img/1-quad.png"))
```

Saving 6.5×4.5 in image

```
#define function to flatten dat_quad
dfs <- function(quadrant) {</pre>
dat <- dat_quad %>%
        filter(quad == quadrant) %>%
            select(starts_with('h'),
                   coef_pvalue)
data frame(name = names(flatten(dat[[1]])),
           HR = flatten_dbl(dat[[1]]),
           HR_CI_lower = flatten_dbl(dat[[2]]),
           HR_CI_upper = flatten_dbl(dat[[3]]),
           coef_pvalue = flatten_dbl(dat[[4]]),
           quad = rep(quadrant,
                       length(flatten(dat[[1]])))
           )
}
#flatten dat_quad
df_coef <- map_dfr(seq(4), dfs)</pre>
#remove ridge from name
```

```
df_coef$name <- gsub("ridge\\(|\\)", "", df_coef$name)</pre>
# Figure 2
df_coef %>%
    select(-starts_with("HR_CI")) %>%
    filter(!between(HR, .99, 1.01)) %>%
    mutate(coef_pvalue = if_else(near(coef_pvalue, 0),
                                 coef_pvalue+0.1^17,
                                  coef_pvalue)) %>%
    ggplot(aes(x = log2(HR)),
               y = -log10(coef_pvalue),
               colour = as.factor(quad))) +
           labs(colour = "Quadrant",
                x = 'log2 Hazard Ratio',
                y = '-log10 p-value') +
           geom_point(alpha = 0.75,
                      size = 1,
                      stroke = 1) +
           guides(colour = guide_legend(override.aes = list(alpha = 1))) +
           geom_text(aes(label=name),
                     alpha = 0.75,
                     vjust = 1.2,
                     show.legend = FALSE,
                     check_overlap = TRUE) +
           theme minimal() +
           theme(plot.margin = margin(t = -15))
```



```
ggsave(here("img/2-volcano.pdf"))
```

```
## Saving 6.5 x 4.5 in image
ggsave(here("img/2-volcano.png"))
```

```
## Saving 6.5 \times 4.5 in image
```

```
#filter out p-values greater than .1~10
df_sig <- df_coef %>%
    select(-starts_with("HR_CI")) %>%
    filter(coef_pvalue<.1^10)</pre>
#obtain the order by count for name
ord <- df_sig %>%
    count(name) %>%
    arrange(n) %>%
    select(name)
#create name factor variable with levels ordered by count
df_sig$ord_name <- factor(df_sig$name, levels=ord$name)</pre>
# Figure 3
df_sig %>%
    mutate_if(is.integer, as.factor) %>%
    ggplot(aes(ord_name,fill=quad)) +
    geom_bar(position = position_stack(reverse = TRUE)) +
```



```
ggsave(here("img/3-varbar.pdf"))
```

```
## Saving 6.5 \times 4.5 in image
```

```
ggsave(here("img/3-varbar.png"))
```

Saving 6.5×4.5 in image

```
# Table 1
df_sig %>%
    group_by(quad) %>%
    rename(Name = name) %>%
    summarise(n = n()) %>%
    arrange(desc(n)) %>%
    knitr::kable()
```

quad	n
2	579
3	367
1	288

```
\frac{\overline{\text{quad}} \quad n}{4 \quad 97}
```

Name	${\it medianHR}$	n
DMAETHNR	1.1566884	149
HAT16	1.7560810	135
HAK9	1.2189889	133
HAN9	1.7947078	118
HSAITMOR	1.0004575	111
HAQ7	0.3036946	100
HAQ1	1.0664794	86
HAR1	0.6274918	73
HFA13	0.6099651	58
HAT2	1.6533201	50
HAJ0	1.9863574	42
HAT29	2.0971949	40
WTPXRP2	0.9999864	40
HAB1	1.2485765	34
HAT18	1.5324396	34
HAV7R	1.0002031	34
HAC1A	0.6096885	21
HAN5JS	0.9980961	18
WTPQRP21	0.9999893	13
HAS1	1.3772235	10
HAT10	1.3949075	9
HSFSIZER	0.9185453	8
WTPQRP43	0.9999858	8
	1.0260494	4
WTPQRP27	0.9999872	3