Question: 1

For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group G/H.

a.
$$G = S_4$$
 and $H = A_4$

b.
$$G = A_5$$
 and $H = \{(1), (1\,2\,3), (1\,3\,2)\}$

c.
$$G = S_4$$
 and $H = D_4$

d.
$$G = Q_8$$
 and $H = \{1, -1, I, -I\}$

e.
$$G = \mathbb{Z}$$
 and $H = 5\mathbb{Z}$

Solution:

a. D

b. D

c. D

d. D

e. H is normal in G because $G = \mathbb{Z}$ is abelian and all subgroups of abelian groups are normal.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	$\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	4	0	1	2
4	4	0	1	2	3

Question: 4

Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R} ; that is, in the form

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
,

where $a, b, c \in \mathbb{R}$ and $ac \neq 0$. Let U consist of matrices of the form

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
,

where $x \in \mathbb{R}$.

- a. Show that U is a subgroup of T.
- b. Prove that U is abelian.
- c. Prove that U is normal in T.

- d. Show that T/U is abelian.
- e. Is T normal in $GL_2(\mathbb{R})$?

Solution:

Question: 5

Show that the intersection of two normal subgroups is a normal subgroup.

Solution:

Question: 11

If a group G has exactly one subgroup H of order k, prove that H is normal in G.

Solution:

Question: 13

Recall that the **center** of a group G is the set

$$Z(G) = \{x \in G : xg = gx \text{ for all } g \in G\}.$$

- a. Calculate the center of S_3 .
- b. Calculate the center of $GL_2(\mathbb{R})$.
- c. Show that the center of any group G is a normal subgroup of G.
- d. If G/Z(G) is cyclic, show that G is abelian.

Solution:

a.
$$Z(S_3) = \{(e)\}\$$

b. If we have $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$, we can multiply out AB and BA to see the following equality:

$$ae + bg = ae + cf \Rightarrow bg = cf$$

However, this equality needs to hold true for all choices of g, f because our B was arbitrary and not related to A. This means that b = c = 0. This means that the equation

$$af + bh = be + df$$

reduces to af = df or a = d. This means that we can say

$$Z(GL_2(\mathbb{R})) = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \right\}.$$

c. By definition, for any $z \in Z(G)$, the following equation will hold true, zG = Gz. By the definition of a normal subgroup, Z(G) is normal in G.

d.

Question: 14

Let G be a group and let $G' = \langle aba^{-1}b^{-1}\rangle$; that is, G' is the subgroup of all finite products of elements in G of the form $aba^{-1}b^{-1}$. The subgroup G' is called the **commutator subgroup** of G.

- a. Show that G' is a normal subgroup of G.
- b. Let N be a normal subgroup of G. Prove that G/N is abelian iff N contains the commutator subgroup of G.

Solution:

a.