43. K-Nearest Neighbors (Regression)

No description has been provided for this image

Step 1: Split the data into dependent and independent variables

```
In [9]: x = dataset.drop(columns='Salary')
y = dataset['Salary']
In [10]: x
```

ıt[10]:		Age	Experience
	0	53	21
	1	39	19
	2	32	19
	3	45	29
	4	43	18
	•••		
	995	31	32
	996	34	1
	997	31	23
	998	57	8
	999	47	13

1000 rows × 2 columns

```
In [11]: y
Out[11]: 0
                 274930.68590
                 217753.69630
          2
                 166660.97740
                 281857.67490
                 221357.62130
          995
                 246721.16790
          996
                 98140.45687
          997
                 207088.25770
          998
                 231458.17290
          999
                 213710.38920
         Name: Salary, Length: 1000, dtype: float64
```

Step 2: Split the data into train and test variables

```
In [12]: from sklearn.model_selection import train_test_split
In [16]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_st
```

Step 3: Apply KNN Regression Model

```
In [17]: from sklearn.neighbors import KNeighborsRegressor
In [22]: knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(x_train, y_train)
```

```
Out[22]: • KNeighborsRegressor

KNeighborsRegressor()
```

Step 4: Check Accuracy of Model

```
In [23]: knn.score(x_test, y_test)*100
Out[23]: 96.56477286387577
In []:
```