CHEMISTRY Chapter 3

VERANO SAN MARCOS

UNIDADES QUIMICAS DE MASA

Masa atómica(MA) o peso atómico(PA)

Relaciona la masa de un átomo con la uma (unidad de masa atómica)

átomo	MA o PA
0	16 uma
CI	35,5 uma
С	12 uma

Definiciones Masa molecular(MM) básicas

1 uma

o peso molecular(PM)

Relaciona la masa de una molécula con la uma (unidad de masa atómica)

molécula	MM o PM
O ₂	32 uma
Cl ₂ O	87 uma
CCI ₄	154 uma

Masa molar (M)

Es la masa, en gramos, de 1 mol de cualquier sustancia

MASA MOLAR DE ÁTOMOS = (PA)

g/mol

MC = 12 g/mol

 \overline{M} O = 16 g/mol

 \overline{M} Cl = 35,5 g/mol

MASA MOLAR DE MOLÉCULAS = (PM)

<u>g/m</u>ol

 $M O_2 = 32 g/mol$

 \overline{M} CO₂ = 44 g/mol

 \overline{M} Cl₂O = 87 g/mol

Número de Avogadro (N_o)

Es el número de átomos o moléculas en 1 mol de cualquier sustancia

1 mol DE ÁTOMOS = 6,02.10²³ átomos/mol

1 mol de átomos de

C 6,02.10²³ átomos/mol 1 mol de átomos de

O 6,02.10²³ átomos/mol

1 mol DE MOLÉCULAS = 6,02.10²³ moléculas/mol

1 mol de moléculas de

O₂ 6,02.10²³ moléculas/mol de moléculas de

Cl₂O 6,02.10²³ moléculas/mol

cantidad de sustancia (n); Unidad de medida = mol

$$\mathbf{n} = \frac{\text{masa(g)}}{\overline{M(g/mol)}} = \frac{\text{# de partículas}}{\text{# de Avogadro}}$$

$$n_{\text{moles de } A_a B_b} = n_{\text{amoles de } A} + n_{\text{bmoles de } B}$$

PRÁCTICA DE CLASE

```
Cuantos protones existen en 32
gramos de metano(CH<sub>4</sub>). Datos
Carbono: PA=12uma Z=6
Hidrógeno: PA=1uma Z=1
```

12,04.10²⁴ B)6,02.10²³

CALCULANDO EL #MOLÉCULAS DE CH4
masa(g) # de partículas

M(g/mol) # de Avogadro

32 g # de partículas

16 g/mg/l 6,02.10²³moléculas/mg/l

#partículas = 12,04.10²³moléculas de CH4

CALCULANDO EL #PROTONES DE CH4

1 molécula de CH4 contiene: 6 + I(4) = 10 protones

Por lo tanto

12,04.10²³moléculas de CH4 contiene :

 $12,04.10^{23}$ (10) = $12,04.10^{24}$ protones

PREGUNTA: 2

Determine el peso molecular del ácido ortoantimónico(H₃SbO₄). Datos PA H=1uma PA Sb=122uma PA O=16uma

A)190uma (J)189uma (C)179uma

D)180uma

CALCULANDO EL PESO MOLECULAR (PM)

$$H_3$$

Sb

04

3(luma) + 1(l22uma) + 4(l6uma)

PM = 3uma + 122uma + 64uma = 189uma

Determine el peso atómico de M en el compuesto M_2O_3 , si 3 mol de dicho compuesto pesa 306 g. Dato: PA

A) 20 (ma (ma) 27 (ma) C) 54 (ma) D)

CALCULANDO LA MASA MOLAR DE M_2O_3

$$n = \frac{m}{M}$$

$$3\text{mol} = \frac{306g}{M}$$

$$\overline{M}$$
= 102 g/mol

CALCULANDO EL PESO MOLECULAR DE M₂O₃

$$\overline{M}$$
= PM g/mol

$$\overline{M}$$
= 102 g/mol

$$PM = 102 uma$$

CALCULANDO EL PESO ATÓMICO DE M

$$M_2O_3$$

102uma = 2(PA) + 3(16uma)

$$PA = \frac{102-48}{2}$$

$$PA de M = 27 uma$$

Cuantos gramos hay en 100 milimoles de azúcar(C₁₂H₂₂O₁₁). Dato: PA O=16uma PA H=1uma PA AFIRADO B) 3,42 g C) 3 g D) 34,2 g

CALCULANDO LAS MOLES DE AZUCAR

$$n = \frac{100X1}{1000}$$

$$n = 0,1 mol$$

CALCULANDO LA MASA DE AZUCAR .

$$n = 0,1 mol$$

$$\overline{M}$$
= 342 g/mol

$$masa = ?$$

$$masa = 34,2 g$$

Cuantos gramos hay en 2,75 moles de Fe₂(SO₄)₃
Datos: PA O=16uma PA S=32uma PA Fe=56uma
A) 100 g B) 1000
g C) 110 D)

CALCULANDO LA MASA

$$n = 2,75 \text{ mol}$$

 $\overline{M} = 400 \text{ g/mol}$
 $masa = ?$

$$n = \frac{m}{M}$$

$$masa = 1100 g$$

Cuantos neutrones existen en 135 gramos de aluminio(Z**ELB)**o número de masa es 27. Dato PA Al =27uma

4,2.10²⁵ B) 3,01.10²⁴ C) 1,6.10¹³ D)

CALCULANDO EL #ÁTOMOS DE AI

masa(g) # de partículas

M(g/mol) # de Avogadro

de partículas

de partículas

27 g/m/ol 6,02.10²³ átomos/m/ol

#partículas = 30,1.10²³ átomos de Al

CALCULANDO EL #NEUTRONES DE AI

1 átomo de Al contiene:

A-Z = neutrones

27-13 = 14 neutrones

Por lo tanto

 $30,1.10^{23}$ átomos de Al contiene : $30,1.10^{23}$ (14) = 421,4.10²³ neutrones

respuesta = 4,214.10²⁵ neutrones

Cuantos átomos existen en 80 gramos de calcio Dato PA Ca =40 uma 12,046.10²⁴ B)12,046.10²³ C)6,023.10²³ D)6023.10¹²

CALCULANDO EL #ÁTOMOS DE Ca

#partículas = 12,04.10²³ átomos de Ca

Cuantos moles de carbono existen en 220 gramos de propano(C₃H₈). Datos: PA H=1 uma P(=12 uma C)18mol D)20mol

CALCULANDO LAS MOLES DE PROPANO C₃H₈ M= 44 g/mol

$$n = \frac{m}{M}$$

$$n = 5 \text{ mol de } C_3H_8$$

CALCULANDO LAS MOLES DE CARBONO EN EL PROPANO

$$5 \, \mathsf{moles} \, \mathsf{de} \, C_3 H_8 = 15 \, \mathsf{moles} \, \mathsf{de} \, C \, + 40 \, \mathsf{moles} \, \mathsf{de} \, H$$

Por lo tanto:

Existen 15 moles de carbono

Cuantos gramos de azufre contiene 1 kilogramo de FeS₃. Datos: PA Fe=56 uma PA S=32 uma

- A) 125g B) 148g 533g D) 384g

CALCULANDO LA MASA DE AZUFRE EN EL FeS2

$$\overline{MFeS}_2$$
= 120 g/mol

$$masa = \frac{1000 \times 64}{120}$$

masa = 533 g de azufre

0 1

Cuantos moléculas de ácido sulfúrico(H₂SO₄)puro existen 100mililitros de solución al 90% en peso y densidad **ታ**89/ጣዛ₂SO₄ = 98 g/mol

- A) $1,65N_{\Delta}$ B) $1,68N_{\Delta}$
- C) 1,70N_A () 165N_A

CALCULANDO LA MASA DE H₂SO₄ PURO

masa = densidad x volumen

 $masa = 1.8g/ml \times 100ml$

masa =
$$180gx \frac{90}{100}$$

masa = 162q

CALCULANDO EL NÚMERO DE **MOLÉCULAS**

#partículas = 1,65 N_△ moléculas