Graph Coloring

- Problem Definition: Given a graph G = (V, E), find the smallest number of different colors to assign for each node G so that no two nodes of the same color share an edge.
- \circ Decision Version: Given a graph G and a bound k, does G have a k-coloring? Why this problem is useful:

An application of this problem is when allocating resources in the presence of conflict. For example, given a set of variables and k registers. You need to map variables to registers. If two variables are use at a common point in time, they cannot be assigned to the same register. We build a graph G on the set of variables, joining two variables by an edge if they are both in use at the same time.

2-Coloring Problem: when k=2, the graph coloring problem is straightforward to solve. We need to check whether a graph is bipartite.

Lemma: A graph *G* is colorable if and only if it is bipartite.

3-Coloring Problem: is a very difficult problem.

- Need to show the 3-coloring problem is \mathcal{NP} -Complete
 - Show 3-Coloring $\in \mathcal{NP}$
 - Show 3-SAT \leq_P 3-Coloring
- Use the simplest version of 3-SAT i.e. 1 clause
 - $\circ \quad F = (x_1 \lor x_2' \lor x_3')$
 - First, we need to find a way to turn this problem into a graph
 - For each variable x_i , create 2 nodes in G, one for v_i and one for v_i' and connect these two nodes by an edge.
 - Define 3 "special" nodes, T, F, and B, joined in a triangle (you can think of T as the color True, F as the color False, and B as the color Base.
 - Connect every variable to B. (see graph below)

- Note that this graph implicitly determines a truth assignment for the variables in the 3-SAT problem.
- The graph above has some useful properties
 - Each v_i and v'_i must get different colors

- Each v_i and v'_i must get a different color from B
- *T*, *F*, and *B* must get different colors
- if x_i is set to 1 is the 3-SAT formula, the node v_i will get the T color.
- Hence, any 3-Coloring of the nodes of *G* implicitly defines a a valid truth assignment for the 3-SAT instance
- We need to grow *G* so that only satisfying assignments can be extended to the 3-coloring of the full graph.
- Consider the following clause: $x_1 \vee x_2' \vee x_3$, in the language of 3-coloring of G, it says that:

"At least one of the nodes v_1, v_2', v_3 should get the T color."

- We need to construct a graph with this property
 - Need to modify our graph G with a "gadget" to form G'. (See Next Page).

- Note: line color does not denote coloring of vertices; it is simply there for readability.
- The six-node "gadget" attaches to the rest of G at five existing nodes: True, False, v_1 , v_2' , and v_3 .
 - This ensures that in the event that neither x_1, x_2' , or x_3' are assigned true, that the lowest two shaded nodes in the subgraph MUST receive the B color, the three shaded nodes above them must receive, respectively, the F, B, and T colors, and hence there's no color that can be assigned to the topmost shaded node.

 \circ Meaning, that if no valid assignment is possible, then there will be no valid 3-Coloring for G'.

• Proof:

- Show 3-Coloring $\in \mathcal{NP}$
 - If we are given 3 subsets and told that no edges exist between the 3 this is easy to check.
 - For every node simply check all neighbors and ensure that no neighbor exists in the same subset to which it itself is a member.
 - It takes $O(n^2)$ to verify a graph of n nodes in this fashion
- Show 3-SAT \leq_P 3-Coloring
 - For a larger problem, start with the graph *G* such that there is a pair of nodes *x_i*, *x'_i* for each *x_i* ∈ *X* connected by edges to a base node *B*.
 Then, for each clause in the 3-SAT problem attach a six-node gadget to *G* to form *G'*
 - Claim: The given 3-SAT instance is satisfiable if and only if G' has a 3-coloring.
 - Suppose there is a satisfying assignment for the 3-SAT instance. We define a coloring of G' by first coloring the B, T, and F nodes arbitrarily with the 3 given colors. Next, for each i assign v_i the color of T if $x_i = 1$ and assign v_i the color of F if $x_i = 0$. Next assign each v_i' the only remaining color such that no conflict exists. This assignment should be able to be extended into G' by the reasoning mentioned in the setup.

Conversely, suppose G' has a 3-coloring. In this coloring each node v_i is assigned either the true color or the false color; and we set the literal in F correspondingly. We now claim that in each clause of the 3-SAT instance, at least one of the terms in the clause has a truth value of one; otherwise then all 3 of the nodes in the clause would have to have the false coloring. However, as explained in the setup this would result in a graph G' which was NOT 3-Colorable which is a contradiction to our original claim. \blacksquare

Approximation Algorithms

- ullet Given an \mathcal{NP} -Complete problem to solve, no polynomial time algorithm exists to provide an optimal solution
 - An algorithm must be:
 - Deterministic
 - Always correct
 - Bounded by a poly. time function of its input size.
- Can we develop a polynomial time algorithm that is guaranteed to provide a close to optimal solution?
- <u>Challenge</u>: Need to prove a solution's value is close to optimal without knowing the optimum value.

Greedy Algorithms and Bounds on the Optimum: A Load Balancing Problem

- Problem: Given M machines $m_1, m_2, ... m_M$ and n jobs where each job j has a processing time t_j .
 - Need to assign each job to a machine
 - Need to balance the loads across all machines
- Formulation
 - Let A(i) be the set of jobs assigned to M_i .
 - The total load on $M_i: T_i = \sum_{j \in A(i)} t_j$ where t_j = the processing time for a job
 - We want to minimize the *makespan* (the maximum load on any machine) $T = \max_{i} T_{i}$
- Example 1:
 - o $n = \{2, 3, 4, 6, 2, 2\}$
 - o $M = \{m_1, m_2, m_3\}$
 - o Greedy Algorithm: Always place the job on the least loaded machine
 - However, this does NOT provide the optimal solution in this case

- The greedy algorithm
 - o Start with no jobs assigned
 - Set $T_i = 0$ and $A(i) = \emptyset$ for all m_i
 - o For j = 1, ..., n
 - Let m_i be a machine that achieves the minimum min_kT_k
 - Assign job j to machine m_i
 - Set $A(i) \leftarrow A(i) \cup \{j\}$
 - Set $T_i \leftarrow T_i + T_i$
 - o EndFOR

Proving the Greedy Algorithm is a Correct Approximation

- Need to show the greedy solution is no more than a factor of 2 from the optimal solution
- Therefore...
 - \circ Let T = The makespan of our greedy solution
 - Let T^* = The makespan of the optimal solution
 - We know that the optimal makespan must be at least:

$$T^* \ge \frac{1}{m} \sum_{i} t_i$$

Since the value of the makespan equals the max value over all machines.

- However, this formula is not very useful if you have one extremely long job in relation to all the shorter jobs.
 - In this case the greedy solution actually provides the optimal solution
 - Need a different lower bound for T^* to reflect this however
 - o In this case the optimal makespan is at least

$$T^* \ge \max_j t_j$$

o Note: We need the two formulas mentioned above for our proof

- Claim: Our greedy algorithm produces an assignment of n jobs to M machines within a factor of 2 of the optimal solution; i.e. $T \le 2T^*$
 - Proof:
 - Consider M_i attains the max load T in the assignment
 - Consider the last job j that was placed on M_i .

Figure 11.2 Accounting for the load on machine M_i in two parts: the last job to be added, and all the others.

- When we assign job j to M_i , M_i had the smallest load of all machines $T_i t_j$ before adding j.
- \circ Every machine had a load at least $T_i t_j$
- O Add up the load on all machines and we obtain $\sum_k t_k \ge m \big(T_i t_j \big) \equiv \frac{1}{m} \sum_k t_k \ge T_i t_j$
- Now apply the <u>two formulas above</u> to form a sequence of equations

$$T_i - t_j \le \frac{1}{m} \sum_k t_k \le T^*$$
 (when t_j is **not an** extremely long job)

$$T_i - t_j \le T^* (1)$$

 $t_j \le T^*$ (2) (when t_j is an extremely long job) By adding (1) and (2), we get the following. $T_i \le 2T^*$

Therefore,

 $T_i \le 2T^* \Rightarrow T \le 2T^*$ by our assumption for the proof that T_i is the machine with the maximum makespan

- We can optimize the algorithm by sorting jobs in decreasing order first
 - Optimized greedy algorithm
 - Start with no jobs assigned
 - Set $T_i = 0$ and $A(i) = \emptyset$ for all machines m_i
 - Sort jobs in decreasing order of processing time t_i
 - Assume that $t_1 \ge t_2 \ge \cdots \ge t_n$
 - For j = 1, ..., n
 - Let m_i be a machine that achieves the minimum min_kT_k
 - Assign job j to machine m_i
 - Set $A(i) \leftarrow A(i) \cup \{j\}$
 - Set $T_i \leftarrow T_i + T_i$
 - EndFOR
- However, just saying this is better is not enough, we need to prove it
 - More specifically, we need to prove that $T \leq \frac{3}{2}T^*$
- First however, we need to prove that doing this will produce an optimal solution
 - <u>Lemma</u>: If there are more than *M* jobs, then $T^* \ge 2t_{M+1}$
 - Consider the first M + 1 jobs in decreasing order
 - Each job MUST need at least t_{M+1} time to process
 - There are M + 1 jobs but only M machines
 - : it must be the case that one machine has at least two jobs
 - \cdot it must be the case that the processing time of the machine will be at least $2t_{m+1}$
- Proving $T \leq \frac{3}{2}T^*$
 - o Consider M_i attains the max load T in the assignment
 - o If M_i only holds a single job, then the schedule is optimal. Otherwise, assume machine M_i has at least two jobs, and let t_j be the last job assigned to the machine
 - It must be the case that $j \ge M + 1$ since the algorithm assignes the first M jobs to M distinct machines
 - Thus $t_i \le t_{m+1}$ (jobs are sorted in decreasing order)
 - Therefore, $t_j \le t_{m+1} \le \frac{1}{2}T^* \leftarrow$ occurs because of what we proved above $(T^* \ge 2t_{m+1} \equiv \frac{1}{2}T^* \ge t_{m+1})$
 - Therefore, repeating the inequalities from the first proof we now have

$$T_{i} - t_{j} \le \frac{1}{m} \sum_{k=1}^{\infty} t_{k} \le T^{*}$$
 $T_{i} - t_{j} \le T^{*}$ (1)
 $t_{j} \le \frac{1}{2} T^{*}$ (2)

Adding (1) and (2), we get the following.

$$T_i \leq \frac{3}{2}T^* \Rightarrow T \leq \frac{3}{2}T^* \blacksquare$$