# **ISE-529 Predictive Analytics**

Module 1: Introduction

## Module Overview/Agenda

- Introductions and Course Objectives
- Introduction to Predictive Analytics
- Course Approach and Grading
- Getting Started with Python and Jupyter Notebook

# **Introductions and Course Objectives**

## **Course Objectives**

- Develop an advanced level or proficiency with the primary classes of predictive modeling used by data scientists.
- Develop skills in using the Python programming environment and the primary packages and tools currently used by data scientists.
- Understand key concepts for measuring the performance of analytical models and key techniques for enhancing their performance.

## **Further Objectives**

- In addition to the formal course objectives, another goal is to prepare students for success in their careers in the analytics field. This includes:
  - Preparing for the job search that many will be undertaking as the program draws towards completion
  - Learning about the tools that are commonly used in corporate settings
  - Getting experience in preparing and presenting reports in a manner that is transferrable to corporate settings
  - Developing a literacy in the classic papers and concepts in the field

# **Introduction to Predictive Analytics**

## What is Predictive Analytics?

- Predictive analytics is the process of using known results to create, process, and validate a model that can be used to forecast future outcomes.
- Generally, we are trying to develop models for the relationships between one or more "inputs" ("independent" or "predictor" or "explanatory" variables) to one "output" attribute ("dependent" or "response" variable) in the data

## **Drew Conway's Data Science Venn Diagram**



"It seems we have more terms than concepts here"

Data Science

Analytics

**Predictive Modeling** 

Data Mining

Business Analytics

Big Data

Artificial Intelligence

Supervised Analytics

Deep Learning

Online Analytical Processing (OLAP)

Business Intelligence

Prescriptive Analytics

Machine Learning

Predictive Analytics

Unsupervised Analytics

Statistical Learning

Descriptive Analytics

#### Data Science vs Analytics

Both are "umbrella terms" that are largely synonymous in general usage, but ...

#### Analytics

- Focus on inference (getting insights from data)
- Emphasis on statistical techniques
- Primary tools: R, SQL, SAS, Tableau

#### Data Science

- Focus on prediction (predicting the future, or characteristics of previously unseen observations)
- Emphasis on computational techniques
- Primary tools: Python, Java

#### Descriptive/Predictive/Prescriptive Analytics

#### Different objectives for the analytics work:

#### Descriptive Analytics

- Focused on understanding what happened or what is happening
- Uses both statistical and computational techniques
- Often involves visualization

#### Predictive Analytics

- Focused on predicting what will happen.
- Model assessment and validation are important topics
  - Model bias/variance tradeoff
  - Underfitting/overfitting tradeoff

#### Prescriptive Analytics

- Focused on recommending (or making) the business decisions based on data
- Primary techniques include optimization and simulation

#### Supervised vs Unsupervised Analytics

One fundamental division of analytical techniques:

#### Supervised Learning

- The training data includes the response variable (the "answer") that we are trying to model
- Predictive modeling falls into this category

#### Unsupervised Learning

- The training data does not include a response variable
- Unsupervised learning is focused on understanding patterns in the data
- Key unsupervised techniques include:
  - Clustering
  - Association Rule Mining/Collaborative Filtering
  - Outlier detection

#### Statistical Learning vs Machine Learning

- Machine Learning arose as a subfield of artificial intelligence
- Statistical Learning arose as a subfield of statistics
- There is now significant overlap in the terms
  - Machine learning emphasizes large scale applications and prediction accuracy
  - Statistical learning emphasizes models, their interpretability, and precision and uncertainty

#### Regression vs Classification

Predictive modeling divides into two basic types:

#### Regression

- Response variable (that we are trying to model and predict) is continuous
- Regression models are assessed and selected based on some metric of the average "error" – difference between the value predicted by the model and the actual value (usually on separate "training data")

#### Classification

- Response variable (that we are trying to model and predict) is a category (discrete)
  - Binary classification (two possible classes) is the most common form
- Classification models are assessed and selected based on some "misclassification rate" metric – percentage of time the value predicted by the model is wrong (usually on separate "training data")

#### Regression vs Classification

Note: the term "regression" is overloaded (has two different meanings)

- Definition on previous slide (continuous response variable) is now standard
- "Regression models" also have a historical definition tied to the linear regression equation  $(Y = \beta_0 + \beta_1 X)$ 
  - So, we have the situation where a "logistic regression" model is NOT a regression model – it is a classification model.

#### Other Confusing Terms

Artificial Intelligence – analytics which attempts to carry out tasks that are traditionally performed by humans

- Chatbots
- Healthcare diagnoses

Neural Networks – A specific machine learning algorithm that attempts to replicate the structure of human cognitive processes

"Deep Learning" – the new name for neural networks





Data Preparation and Understanding













# **Course Approach and Grading**

## **Course Approach**

#### Structure

- The course will be organized into eleven primary modules. Each module will be covered in 1-2 weeks and will include in-class exercises and one graded homework assignment.
  - For each module, I will identify textbook(s) chapters that I have used as primary resources. Students are encouraged to review these chapters prior to the corresponding lectures.

## **Course Approach**

#### Modules

#### First half – "the linear model"

- 1. Introduction to Predictive Analytics and Python
- Data Preparation and Modeling Introduction
- 3. Linear Regression Model Definition and Assessment
- Linear Model Diagnostics and Validation
- Linear Model Selection and Regularization

#### Second half – "extensions and ML models"

- 6. Classification Models
- 7. Generalized Linear Models and Poisson Regression
- 8. Moving Beyond Linearity
- Tree-Based Models and Ensemble Models
- 10. Support Vector Machines
- 11. Introduction to Neural Networks

## **Course Logistics**

#### Homework

- All materials will be uploaded to Blackboard. Assignments will be posted on Blackboard but will be submitted using GradeScope.
- Submission process is straightforward:
  - Only PDF files can be submitted
  - To prepare your solution for submission:
    - In Jupyter notebook, File -> Download as -> HTML
    - Open HTML in browser and "print to PDF"
  - After uploading your solutions PDF file to GradeScope, you will be prompted to map each rubric grading item to a page or pages in your file
  - A file with instructions is uploaded to Blackboard under this module

## **Course Logistics**

#### Homework

- The homework due date is generally the day of the next class after it is assigned.
  - See GradeScope for the official due date
- I will set GradeScope to accept late submissions for two days after the due date
  - After the late due date, submissions will not be accepted
  - Students are allowed one "free" late submission. After that late submissions will be penalized 10 points (out of 100) unless approved by me <u>in advance</u>
  - No submissions will be accepted after the late submission due date
- The lowest homework grade will be dropped

## **Course Logistics**

#### Communications

We will use Piazza as our primary communications channel

https://piazza.com/class/l4yk8f5xgy66v5?cid=4#

- Please post any questions you have there instead of sending me an email
  - If your message is only for me, send it as a private message on Piazza
- Students are strongly encouraged to answer each other's questions and to help clarify existing questions
  - This is one way to earn "class engagement" extra credit

## **Grading**

- Grading will be based on the following components.
  - Homework assignments that primarily consist of Python programming assignments (50%)
  - In-class mid-term (20%) and final exams (30%) on theory

| Α 9  | 95-100 | B- | 80-82 | D+ | 67-69        |
|------|--------|----|-------|----|--------------|
| A- 9 | 90-94  | C+ | 77-79 | D  | 63-66        |
| B+ 8 | 87-89  | С  | 73-76 | D- | 60-62        |
| В 8  | 83-86  | C- | 70-72 | F  | 59 and below |

 In addition, up to 2 points may be added to the overall grade based on "class engagement"

## **Grading**

- Class engagement extra credit will be awarded at the discretion of the instructor based on:
  - Active participation during the lectures (can be done in class or online)
  - Active online participation in discussions and answering questions on Piazza
- The mid-term and final exam will be during class time (see detailed class schedule in the syllabus)
  - The exams are open book and may be taken remotely, but you may not collaborate with other students
- As noted earlier, the lowest homework grade will be dropped

#### Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

# An Introduction to Statistical Learning

with Applications in R

Second Edition



#### **Texts**

#### The "Core" Text

- We will cover Chapter 1-10 of this text
- The authors have made the book available for free on their website: https://www.statlearning.com/
- The book uses R for some exercises. We will be doing similar exercises but using Python.
- Additional texts are listed in the syllabus and will be referenced when I use materials from them

#### **Office Hours**

#### Instructor

- In person: Monday/Thursday 3:00PM 4:00PM (OHE 310u)
  - If you would like to join by Zoom, please let me know in advance. I will do my best to connect with you and answer your questions, but I will give priority to students who are in the office
  - I am open to scheduling Zoom office hour times by appointment

#### TAs

To be announced

Please check Piazza for any changes to these times!

#### **Detailed Class Schedule**

| Class | Date | Topics/Daily Activities                                                                                                                              | Assignments                                    | References                |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|
| 1     | 6/30 | Module 1: Introduction to Predictive Analytics and<br>Python/Pandas<br>Introduction to Python, Jupyter Notebook<br>Tools: NumPy, Pandas              | Module 1 HW Assigned                           | Course Notes              |
| 2     | 7/7  | Module 2: Modeling Introduction. Statistical learning, modeling types, model assessment and selection                                                | Module 1 HW Due<br>Module 2 HW Assigned        | ISLR, Chapters 1-2        |
| 3     | 7/11 | Module 3: Linear Regression, Part 1 Model definition and model assessment Tools: scikit-learn, statsmodels                                           | Module 2 HW Due<br>Module 3 HW Assigned        | ISLR, Chapter 3           |
| 4     | 7/14 | Module 4: Linear Regression, Part 2<br>Model diagnosis and validation<br>Resampling methods and model variance                                       | Module 3 HW Due<br>Module 4 HW Assigned        | ISLR 3.3.3 & 5.1          |
| 5     | 7/18 | Module 5: Linear Model Selection and<br>Regularization<br>Subset selection, shrinkage methods, dimension<br>reduction methods, high-dimensional data | Module 4 HW Due<br>Module 5 HW Assigned        | ISLR, Chapter 6 & 5.2     |
| 6     | 7/21 | Linear Models Review<br>Mid-Term (90 Minutes)                                                                                                        | Module 5 HW due                                |                           |
| 7     | 7/25 | Module 6: Classification Logistic regression, linear discriminant analysis, and generalized linear models                                            | Module 6 HW Assigned                           | ISLR, Chapter 4.1-<br>4.5 |
| 8     | 7/28 | Module 7: Generalized Linear Models and Poisson<br>Regression                                                                                        | Module 6 HW Due<br>Module 7 HW Assigned        | ISLR, Chapter 4.6         |
| 9     | 8/1  | Module 8: Moving Beyond Linearity Basis functions, splines, and generalized additive models                                                          | Module 7 HW Due<br>Module 8 HW Assigned        | ISLR, Chapter 7           |
| 10    | 8/4  | Module 9: Tree-Based Methods and Ensemble<br>Models<br>Decision trees, forests, gradient boosting                                                    | Module 8 HW Due<br>Module 9 HW Assigned        | ISLR, Chapter 8           |
| 11    | 8/8  | Module 10: Support Vector Machines<br>Module 11: Introduction to Neural Networks                                                                     | Module 9 HW Due<br>Module 10/11 HW<br>Assigned | ISLR Chapter 9 & 10       |
| 12    | 8/11 | Course Review<br>Final Exam (120 minutes)                                                                                                            | Module 10/11 HW Due                            |                           |

#### Notes:

- This schedule will almost certainly have to get adjusted as we move through the course. A current version of it will always be posted on Piazza
- The schedule in the syllabus will not be updated throughout the semester
- The assignment due dates here are not official. The official due dates will always be viewable on GradeScope

# **Introduction to Python**

#### **Core Tools of a Data Scientist**

#### Mandatory:

- SQL (ISE-559)
- Python/Pandas (ISE-529)
- R/Tidyverse (ISE-535)
- Data modeling (ISE-559)
- Excel

#### BI/Dashboarding

- Tableau
- PowerBI
- SAS Visual Analytics (ISE-543)

#### Other analytical tools:

- SAS
- Matlab

#### Integrated data science platforms

- SAS Viya (ISE-543)
- IBM Watson Studio
- Databricks
- Tibco
- Dataiku

#### **Introduction to Python**

#### Outline

- Introduction to Python and Jupyter Notebook
- Python basics
  - Control flow
  - Data structures and sequences
  - Functions
  - Libraries
- NumPy
- Pandas
- Reading data from files
- Plotting with Matplolib and Seaborn

# **Python Tutorials**

Optional Learning Material

First, sign up for your free account:

Datacamp signup link

Once you have done that, I would recommend that you consider the following tutorials (depending on your skill levels):

Introduction to Python

<u>Introduction to Data Science in Python</u> - Parts 1 and 2

<u>Data Manipulation with Pandas</u>

# Introduction to Python and Jupyter Notebook

#### **Outline**

- Overview of Python, Jupyter Notebook, and the core data science libraries
- Language Basics
  - Python
  - NumPy
  - Pandas
  - MatplotLib
- Loading Data

#### **Python**

- Open-source programming language developed by Guido van Rossum in the early 1990s
- Named after Monty Python
- Interpreted language (as opposed to compiled)

# R or Python?

- Both languages are used extensively by data scientists
- Both include a large number of libraries for data analytics, data
  visualization, machine learning, web scraping, text analytics, and deep
  learning
- R is focused heavily on statistical learning/data analysis.
- Python is a more general-purpose language

We will focus on using Python as data science tool

# The Python Ecosystem

#### A collection of

- Python language (currently version 3.9)
- Integrated development environments (IDEs we will use Jupyter Notebook)
- Libraries

The Anaconda distribution bundle contains everything needed for typical data science uses.

# Why Jupyter Notebook?

#### Data Science IDEs vs Developer IDEs

#### Data Science IDE

- Data-centric
- Interactivity, visualizations, variable explorer
- Less code complexity, scripts
- Integration with data sources
- Models and narratives/storytelling

#### Developer IDE

- Code-centric
- Classes, debugging, profiling
- More complex code, programs
- Integration with git, build tools, compilers
- Tools and libraries/functionality

# **Major IDEs**

#### Data Science IDEs

- Jupyter
- Spyder
- RStudio

#### **Developer IDEs**

- PyCharm
- Pydev
- Wing IDE
- Sublime text
- Visual studio

# **Installing Python and Jupyter Notebook Using Anaconda**

- Go to www.anaconda.com
  - "Get Started"
  - "Download Anaconda Installers"
  - Select the appropriate operating system for your use
- Executing the Jupyter Notebook program opens the IDE in a browser

# **Getting Started With Jupyter Notebook**

#### Dashboard



# **Getting Started With Jupyter Notebook**



#### Jupyter Notebook Markdown Guides:

https://medium.com/analytics-vidhya/the-ultimate-markdown-guide-for-jupyter-notebook-d5e5abf728fd https://www.ibm.com/docs/en/watson-studio-local/1.2.3?topic=notebooks-markdown-jupyter-cheatsheet

Python is an "interpreted" language, meaning that you can type a Python command (or string of commands) and get an immediate result:

# **Basic Datatypes**

- Integers (default for numbers)
- Floats
- Strings
  - Specified with "" or ": "abc" = 'abc'
  - Unmatched can occur within string: "matt's"

- Whitespace is meaningful in Python!
  - Especially indentations and placement of newlines
- Use a newline to end a line of code
  - Use \ when you want to continue a Python commandment onto a new line.
- No braces {} to mark blocks of code in Python
  - Use consistent indentation instead
  - First line with more indentation starts a nested block
  - First line with less indentation is outside of the block
- Often a colon appears at the start of a new block (e.g., for function definitions)

#### **Comments**

- Start comments with # the rest of the line is ignored
- Can optionally include a "documentation string" as the first line of any new function you define (recommended):

```
def my_function (x,y):
    """Docuentation string goes here"""
# Code goes here
```

- Comment text preceded by a # is ignored
- The first assignment to a variable creates it
- Assignment uses =, comparison uses ==
- Indentation and white space matter to the meaning of the code!
- For numbers + \* / % are as expected
- Logical operators are words (and, or, not) and not symbols
- Simple printing can be done with print()

# **Built-In Python Scalar Data Types**

| Туре  | Description                                                                             |
|-------|-----------------------------------------------------------------------------------------|
| None  | The Python "null" value (only one instance of the None object exists)                   |
| str   | String type; holds Unicode (UTF-8 encoded) strings                                      |
| bytes | Raw ASCII bytes (or Unicode encoded as bytes)                                           |
| float | Double-precision (64-bit) floating-point number (note there is no separate double type) |
| bool  | A True or False value                                                                   |
| int   | Arbitrary precision signed integer                                                      |

Note: using Python modules can add additional data types. For example, the datetime module provides datetime, date, and time types

#### **Assignment**

- "Binding a variable" in Python means setting a "name" to hold a "reference" to some "object"
  - Assignment creates references, not copies!
- A name is created the first time it appears on the left side of an assignment expression:

$$x = 3$$

#### **Accessing Non-Existent Names**

 If you try to access a name before it's been created, you'll get an error:

# **Multiple Assignment**

You can also assign multiple names at the same time:

```
In [21]: x,y = 2,3
x
Out[21]: 2
In [22]: y
Out[22]: 3
```

# **Naming Rules**

- Names are case sensitive and cannot begin with a number
- They can contain letters, numbers, and underscores

```
bob Bob bob 2 bob Bob (all different)
```

Python has "reserved words" that cannot be used:

and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while

#### **Python Reference Semantics**

- Assignment (x=y) makes x reference the object y references
- Assignment does not make a copy of the object y references!

```
In [23]: a = [1,2,3]
b = a
a.append(4)
print(a)
print(b)
[1, 2, 3, 4]
[1, 2, 3, 4]
```

#### Objects and Functions

- Everything in Python is an object
  - Each object has an associated type, data, attributes, and methods
  - Attributes are characteristics of the object
  - Methods are basically pre-defined functions that are called by appending to a variable a "." followed by the method name:
    - Function call: result = some\_function(x,y,x) Assigns the result to the variable result
    - Object method: obj.some\_method(x,y,z) Performs an action using internal data in the object

#### Numeric Functions

```
Python Numeric Functions
In [81]: x = 123
         abs(x)
Out[81]: 123
In [82]: bin(x)
Out[82]: '0b1111011'
In [83]: complex(x)
Out[83]: (123+0j)
In [84]: float(x)
Out[84]: 123.0
```

#### Numeric Methods

# String Methods

```
Python String Methods
In [46]: str1 = "Hello World"
         str1.lower()
Out[46]: 'hello world'
In [47]: str1.upper()
Out[47]: 'HELLO WORLD'
In [48]: str1
Out[48]: 'Hello World'
In [42]: str1.count("1")
Out[42]: 3
In [44]: str1.endswith("d")
Out[44]: True
```

Python string methods documentation: https://docs.python.org/3/library/stdtypes.html#string-methods

#### String Functions

# Python functions that operate on strings In [62]: str1 = "Hello World" len(str1) Out[62]: 11 In [69]: type(str1) Out[69]: str

#### **Methods vs Functions**

What's the Difference? Why Both??

- Generally, methods and functions are very similar and you will often see the terms used interchangeably (but don't you do that!)
- Methods are specific to object types (more on that later) while functions can apply to multiple object types
- Another confusion is whether or not the calling object is modified
  - Functions never change the calling object
  - Methods sometimes do and sometimes don't (caution is needed)

#### **Binary Math Operations**

Most binary math operations and comparisons operate as expected:

```
Binary Math Operations

In [28]: 5-7

Out[28]: -2

In [29]: 12 + 21.5

Out[29]: 33.5

In [30]: 5 <= 2

Out[30]: False
```

# **Binary Operators**

| Operation | Description                                                                                     |
|-----------|-------------------------------------------------------------------------------------------------|
| a + b     | Add a and b                                                                                     |
| a - b     | Subtract b from a                                                                               |
| a * b     | Multiply a by b                                                                                 |
| a / b     | Divide a by b                                                                                   |
| a // b    | Floor-divide a by b, dropping any fractional remainder                                          |
| a ** b    | Raise a to the b power                                                                          |
| a & b     | True if both a and b are True; for integers, take the bitwise AND                               |
| a   b     | True if either a or b is True; for integers, take the bitwise OR                                |
| a ^ b     | For booleans, True if a or b is True, but not both; for integers, take the bitwise EXCLUSIVE-OR |

# **Binary Boolean Operators**

| Operation     | Description                                            |
|---------------|--------------------------------------------------------|
| a == b        | True if a equals b                                     |
| a != b        | True if a is not equal to b                            |
| a <= b, a < b | True if a is less than (less than or equal) to b       |
| a > b, a >= b | True if a is greater than (greater than or equal) to b |
| a is b        | True if a and b reference the same Python object       |
| a is not b    | True if a and b reference different Python objects     |

# **Python Language Basics**

Control Flow

# **Language Basics**

#### Flow Control

#### **Flow Control**

#### If-Then-Else

# **Language Basics**

## Flow Control

# **Language Basics**

#### Flow Control

# **Python Language Basics**

Data Structures and Sequences

### **Basic Python**

#### Data Structures

#### Ordered Data Structures (Sequences)

- List: Mutable (changeable) ordered sequence of items of mixed types
- Tuple: An immutable (unchangeable) ordered sequence of items of mixed types

#### Unordered Data Structures

- Set: Unordered and unindexed collection of unique elements
- Dictionary: Ordered collection of key-value pairs
  - Also referred to as a hash map or an associative array

Lists: The "Workhorse" of Vanilla Python

# Lists Lists use the square bracket notation and can be modified. **Creating Lists** In [8]: Dikes = ["trek", "redline", "giant"] bikes Out[8]: ['trek', 'redline', 'giant'] In [13]: | first 10 = list(range(10)) first 10 Out[13]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] In [14]: | mixed list = ["trek", 500, "redline", 600, "giant", 750] mixed list Out[14]: ['trek', 500, 'redline', 600, 'giant', 750]

#### **Accessing List Elements**

```
Accessing list elements
         Get the first item in a list
In [81]: | bikes[0]
   Out[81]: 'trek'
In [82]: # Get the first item in a list
            print(bikes[0])
             # Get the last item in a list
            print(first 10[-1])
             trek
In [83]: b = [1,2,3]
            print(b)
            print(b[0])
            print("Zeroth value: " + str(b[0]))
            print("list Length: " + str(len(b)))
             for value in b:
                 print(value)
             [1, 2, 3]
             Zeroth value: 1
             list Length: 3
```

"Slicing" a List

|                                                      | x = [1,3,5,8,2,4]       | x[1:3]          | show<br>values with                    |
|------------------------------------------------------|-------------------------|-----------------|----------------------------------------|
| show<br>first 4<br>show all<br>beyond<br>the first 4 | x<br>[1, 3, 5, 8, 2, 4] | [3, 5]          | index 1<br>and 2<br>show last<br>value |
|                                                      |                         | x[-1] 4         |                                        |
|                                                      | x[:4]                   |                 |                                        |
|                                                      | [1, 3, 5, 8]            |                 |                                        |
|                                                      |                         | x[:-1]          | show all excluding                     |
|                                                      | x[4:]                   | [1, 3, 5, 8, 2] | la atroalica                           |
|                                                      | [2, 4]                  |                 |                                        |

#### Functions for Lists

```
append(x) adds x to the end of the list
count(x) counts how many times x appears in the list
extend(L) adds the elements in list L to the end of the original list
index(x) returns the index of the first element of the list to match x
insert(i, x) inserts element x at location i in the list, moving everything else along
pop(i) removes the item at index i
remove(x) deletes the first element that matches x
reverse() reverses the order of the list
sort() we've already seen
```

#### Methods That Operate on Lists

```
In [68]: \mathbf{N} \times = [1,3,5,8,2,4]
   Out[68]: [1, 3, 5, 8, 2, 4]
In [69]: X.append(9) # Add 9 to the end of the list
   Out[69]: [1, 3, 5, 8, 2, 4, 9]
In [70]: \mathbf{H} L = [0,5,8]
            x.extend(L)
   Out[70]: [1, 3, 5, 8, 2, 4, 9, 0, 5, 8]
In [71]: N x.count(5) # Number of times 5 appears in the list
   Out[71]: 2
In [42]: M x.index(8) # Position where 8 first occurs
   Out[42]: 3
```

#### Methods That Operate on Lists

```
In [72]: N x.insert(3,6) # Insert 6 in position 3
   Out[72]: [1, 3, 5, 6, 8, 2, 4, 9, 0, 5, 8]
In [73]: X.pop(3) # Deletes item from position 3
   Out[73]: [1, 3, 5, 8, 2, 4, 9, 0, 5, 8]
In [74]: x.remove(8) # Remove the first 8 in the list
   Out[74]: [1, 3, 5, 2, 4, 9, 0, 5, 8]
In [75]: x.reverse() # Reverse the list
   Out[75]: [8, 5, 0, 9, 4, 2, 5, 3, 1]
In [76]: Ŋ y = x.copy() # Make a copy of the list x
 Out[76]: [8, 5, 0, 9, 4, 2, 5, 3, 1]
In [77]: x.sort() # Sort the list
 Out[77]: [0, 1, 2, 3, 4, 5, 5, 8, 9]
```

#### **Base Python Data Structures: Tuples**

#### Tuples

- Tuples are similar to lists, but the items in a tuple can't be modified
- Uses () notation instead of [] used by lists

#### Tuples

## **Base Python Data Structures: Tuples**

#### Methods That Operate on Tuples

```
Python has two built-in methods that operate on tuples

In [102]: 
a = (1,2,3,2,1) 
a.count(2) # Returns the number of times a specified value occurs in a tuple

Out[102]: 2

In [104]: 
a.index(3) # Searches the tuple for a specified value and returns the position of where it was found

Out[104]: 2
```

### Why Does Python Have Tuples?

- Efficiency. Tuples are much quicker for Python to process than lists.
- Protection. Sometimes you want to make sure that a tuple never gets modified, particularly when each element has semantic value

```
time.localtime()
(2008, 2, 5, 11, 55, 34, 1, 36, 0)
# Each element of the tuple has a specific meaning (year, month, day, etc.) and you wouldn't want any individual item deleted

range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# We may care about the order, but individual values are functionally equivalent
```

#### Sets

- Unordered, immutable sequences with no duplicate values.
- Highly efficient data structure for search, add, and delete opeations
  - Implemented with a hash table, not a linked list

#### Sets

#### Sets

Sets are unordered, immutable sequences with no duplicate values

A set can be created in two ways: via the set function or via a set literal with curly braces:

```
In [107]: Set1 = set([2,2,2,1,3,3])
Out[107]: {1, 2, 3}
In [111]: Set2 = {2,2,2,1,3,3}
Set2
Out[111]: {1, 2, 3}
```

#### Sets

Sets support mathematical set operations:

```
In [116]: a = {1,2,3,4,5}
b = {3,4,5,6,7,8}
print(a.union(b))
print(a|b)
print(a.intersection(b))
print(a&b)

{1, 2, 3, 4, 5, 6, 7, 8}
{1, 2, 3, 4, 5, 6, 7, 8}
{3, 4, 5}
{3, 4, 5}
```

# Commonly Used Set Methods

| Function                 | Alternate<br>Syntax | Description                                                                      |
|--------------------------|---------------------|----------------------------------------------------------------------------------|
| a.add(x)                 | N/A                 | Add element x to the set a                                                       |
| a.clear()                | N/A                 | Reset the set a to an empty state, discarding all of its elements                |
| a.remove(x)              | N/A                 | Remove element x from the set a                                                  |
| a.pop()                  | N/A                 | Remove an arbitrary element from the set a, raising KeyError if the set is empty |
| a.union(b)               | a   b               | All of the unique elements in a and b                                            |
| a.update(b)              | a  = b              | Set the contents of a to be the union of the elements in a and b                 |
| a.intersection(b)        | a & b               | All of the elements in <i>both</i> a and b                                       |
| a.intersection_update(b) | a &= b              | Set the contents of a to be the intersection of the elements in a and b          |

#### **Dictionaries**

- A mapping between a set of indices (keys) and a set of values
  - Each item in a dictionary is a key-value pair
- Keys can be any Python data type, but because they are used for indexing, they should be immutable
- Values can be any Python data type
  - Values can be mutable or immutable

# **Base Python Data Structures: Dictionaries**

#### Dictionaries

#### **Dictionaries**

Dictionaries are mappings of names to values, like key-value pairs that are defined using the curly bracket and colon notations.

### Comprehensions

 Comprehensions provide a short and concise way to construct new sequences (such as lists, sets, dictionaries, etc.) using sequences that have already been defined

### Comprehensions

### List Comprehnsions

```
Basic format:
    output_list = [output_exp for var in input_list if (var satisfies this condition)]
Equivalent for-loop:
    result = []
   for val in collection:
      if condition:
        result.append(expr)
```

### Comprehensions

#### List Comprehension Example

#### Comprenensions

List comprehensions

# **Functions**

### **Language Basics**

#### **Functions**

First line with less indentation is considered to be outside of the function devinition

#### **Functions Without Returns**

- All functions in Python have a return value
  - Even if no return line inside the code
- Functions without a return return the special value None
  - None is a special constant
  - None is also logically equivalent to False

#### **Functions Are Objects**

- Functions can be used like any other data
  - Assigned to variables
  - Parts of tuples, lists, etc
  - Arguments to other functions
  - Return values of functions

#### **Default Values for Arguments**

- You can provide default values for a function's arguments
- These arguments are optional when the function is called

```
In [122]: 1    def mysum(b, c=3, d = 'hello'):
        return b+c
3        print(mysum(5,3,"hello"))
5        print(mysum(5,3))
6        print(mysum(5))
8
8
8
8
```

### **Keyword Arguments**

Functions can be called with arguments out of order:

```
In [124]: 1     def mysum(a,b,c):
          return a-b

4     print(mysum(2,1,43))
5     print(mysum(c=43, b=1, a=2))
6     print(mysum(2, c=43, b=1))
1
1
1
1
```

# Iterables and the Map Function

- An iterable is a Python object that can be used as a sequence (list, tuple, etc.)
- map() function returns a map object (which is an iterator) of the results after applying the given function to each item of a given iterable.
- Syntax: map(fun, iter)
  - fun: Function to which map passes each element of a given iterable
  - iter: Iterable which is to be mapped

### **Iterables and the Map Function**

```
In [128]:

1    def double_value(n):
        return 2*n

4    numbers = (1,2,3,4) # tuple to be used as an interable
        result= map(double_value, numbers)
        list(result) # Map returns another iterable. Converting the iterable to a list.

Out[128]: [2, 4, 6, 8]
```

#### **Lambda Functions**

- Python Lambda Functions are "anonymous" functions
  - Syntax: lambda arguments: expression
- Often handy to use a lambda function in a map function:

```
In [131]:    1    f = lambda x:2*x
    2    f(2.5)
Out[131]: 5.0
In [134]:    1    list(map(lambda x:2*x, range(10)))
Out[134]: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
```

# **Python Libraries**

### **Python Libraries**

- Python is implemented and distributed via libraries
- The Python Standard Library represents "base Python" and, together with the Python Language Reference, fully describes the basic Python language

### **Python Standard Library**

Contains an extensive collection of components, for example:

- math: Mathematical functions
- cmath: Mathematical functions for complex numbers
- decimal: Decimal fixed point and floating point arithmetic
- fractions: Rational numbers
- random: Generate pseudo-random numbers
- statistics: Mathematical statistics functions

# **Using Standard Library Functions**



We want to use the exp() function which is part of the Python math library.

- We have to tell lpython what library it belongs to
- However, even though it's part of a standard library, we must first import it into our notebook file

#### **Third-Party Libraries**

- In addition to standard libraries, the Python ecosystem has a large number of third-party libraries
- Several of these third-party libraries have become standard to use in data science applications:
  - NumPy (numerical Python): Adds high performance numeric arrays
  - Pandas (Python Data Analysis): Adds heterogeneous array types
  - Matplotlib: Basic plotting functions (from Matlab)
  - Seaborn: Ggplot-like plotting functions
  - Statsmodels: Statistical modeling (similar syntax to R)
  - Scikit-Learn: Implementation of many standard machine learning algorithms
  - TensorFlow: More complex library for distributed numerical computation

### **Revisiting Python Objects**

- Python is an object-oriented language
- In Python, everything that can be named (variable, function, etc.) is an object
  - Every object has attributes
  - Methods can be applied to an object via the dot syntax
- Objects have types (also referred to as classes)
- Libraries often define new types/classes (which have associated attributes and methods)

## **Python Libraries**

- A library is a collection of high-level functions
  - Allow users to develop applications without having to code low-level details
- In Python:
  - A library is a collection of one or more modules (Python files)
  - Modules are made of one or more classes
  - Classes include methods and attributes

## **Importing Third-Party Libraries**

There are several options for importing a library or part of a library:



Import the entire library

Import a specific module from a library

Import a specific class (with associated methods/attributes) from a module in a library

## **Python Libraries**

#### Generic Library Structure and Notation



- library
- library.module
- library.module.class
- library.module.class.method()

## **Example of Importing and Using a Library Function**

```
In [1]: import numpy as np
In [2]: import statsmodels.api as sg
In [3]: import statsmodels formula api as smf
# Load data
In [4]: dat = sm.datasets.get_rdataset("Guerry", "HistData").data
# Fit regression model Lusing the natural log of one of the regressors)
In [5]: results = smf (ols) 'Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit()
                              method
# Inspect the results
In [6]: print(results.summary())
                           OLS Regression Results
Dep. Variable:
                           Lottery R-squared:
                                                                       0.348
Model:
                                 OLS Adj. R-squared:
                                                                       0.333
Method:
                   Least Squares F-statistic:
                                                                       22.20
               Fri, 21 Feb 2020 Prob (F-statistic):
Date:
                                                                    1.90e-08
                            13:59:15 Log-Likelihood:
                                                                     -379.82
Time:
No. Observations:
                                       AIC:
                                                                       765.6
```

# NumPy

## Data in the Python Data Science Ecosystem

#### Reminders

- Basic Python provides three basic data types (numeric, string, Boolean) which can be structured in four basic structures:
  - List: Changeable (mutable) ordered sequence of mixed types
  - Tuple: Unchangeable (unmutable) ordered sequence of mixed types
  - Set: Unordered and unindexed collection of unique elements of mixed types
  - Dictionary: Ordered collection of key-value pairs of mixed types

## Data Structures: Basic Python

In order to provide the flexibility to handle mixed types, Python implements its data structures as linked lists:



## A Partial Solution: NumPy ("Numerical Python")

- Python was not originally designed for numerical computing, but its other features quickly attracted the scientific and engineering community
- NumPy provides a new core data type for large, homogenous, multidimensional arrays and matrices ("ndarrays") along with a large collection of high-level mathematical functions to operate on these arrays.
- Very similar to Matlab functionality
- Most more modern data science packages, including Pandas,
   SciKitLearn, and TensorFlow are built on top of NumPy

## Libraries

## NumPy and Pandas



### NumPy

#### Library contents:

- ndarray: an efficient multidimensional array type
- Mathematical functions for fast operations on arrays without having to write loops
- Linear algebra, random number generation, and other transforms

## **NumPy**

#### Basic Functionality

- Fast vectorized array operations for data manipulation and cleaning, subsetting and filtering, transformation, and many other kinds of computations
- Common array algorithms like sorting, unique, and set operations
- Efficient descriptive statistics and aggregating/summarizing data
- Relational data manipulations for merging and joining heterogeneous datasets
- Expressing conditional logic as array expressions instea of lloops
- Group-wise data manipulations (aggregation, transformation, function application)

#### Outline

- Creating NumPy arrays
- Arithmetic with NumPy arrays
- Accessing NumPy array data
- Universal Functions (ufuncs)

## The NumPy ndarray ("NumPy Array")

#### Creating a NumPy Array

 The np.array function converts any sequence-like object to a NumPy array containing the passed data:

## The NumPy ndarray ("NumPy Array")

#### Creating a NumPy Array

Alternately, there are a number of numpy functions for creating new arrays:

```
Create arrays from scratch
          1 # Create an Length-10 integer array filled with zeros
In [24]:
          2 myarray = np.zeros(10, dtype=int)
          3 print(type(myarray))
          4 print(myarray.shape)
          5 myarray
         <class 'numpy.ndarray'>
         (10,)
Out[24]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
In [25]:
          1 # Create a 3x5 floating-point array filled with 1s
          2 mymatrix = np.ones((3,5), dtype=float)
          3 print(type(mymatrix))
          4 print(mymatrix.shape)
          5 mymatrix
         <class 'numpy.ndarray'>
         (3, 5)
Out[25]: array([[1., 1., 1., 1., 1.],
                [1., 1., 1., 1., 1.],
                [1., 1., 1., 1., 1.]]
```

## **NumPy Array Attributes**

| Function         | Description                                       |
|------------------|---------------------------------------------------|
| ndarray.shape    | Tuple of array dimensions.                        |
| ndarray.ndim     | Number of array dimensions.                       |
| ndarray.itemsize | Length of one array element in bytes.             |
| ndarray.size     | Number of elements in the array.                  |
| ndarray.dtype    | Data-type of the array's elements.                |
| ndarray.T        | The transposed array.                             |
| ndarray.real     | The real part of the array.                       |
| ndarray.imag     | The imaginary part of the array.                  |
| ndarray.flags    | Information about the memory layout of the array. |

## The NumPy ndarray ("NumPy Array")

Data Types

 The .dtype attribute returns the datatype of the elements in the NumPy array:

#### Arithmetic with NumPy Arrays

#### Arithmetic with NumPy arrays

#### Arithmetic with NumPy Arrays

```
Scalars are extended in NumPy arrays

In [44]: 1  1/myarray1

Out[44]: array([1. , 0.5 , 0.3333333])

In [45]: 1  myarray2 ** 2

Out[45]: array([16, 25, 36], dtype=int32)
```

#### Arithmetic with NumPy Arrays

#### Accessing NumPy Array Data

#### **Accessing NumPy Array Data**

One-dimensional arrays act very similar to Python lists:

```
In [54]:
          1 arr = np.arange(10)
          2 arr
Out[54]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [55]:
         1 arr[5]
Out[55]: 5
In [56]:
          1 arr[5:8]
Out[56]: array([5, 6, 7])
         1 | arr[5:8] = 12
In [57]:
          2 arr
Out[57]: array([0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
```

#### Accessing NumPy Array Data

```
NumPy array slices are views on the original data, not copies:
In [60]:
           1 array_slice = arr[5:8]
           2 array slice
Out[60]: array([12, 12, 12])
           1 array_slice[1] = 12345
In [62]:
           2 arr
Out[62]: array([
                            1,
                                   2,
                                          3,
                                                 4,
                                                       12, 12345,
                                                                    12,
                                                                              8,
                     9])
```

#### Accessing NumPy Array Data

```
Higher dimensional arrays are more complicated
           • In a two-dimensional array, the elements at each index are one-dimensional arrays:
In [70]:
           1 arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
           2 print(arr2d.shape)
           3 arr2d
         (3, 3)
Out[70]: array([[1, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])
In [64]:
           1 arr2d[2]
Out[64]: array([7, 8, 9])
In [65]:
           1 arr2d[0][2]
Out[65]: 3
          1 arr2d[0,2] # Equivalent to arr2d[0][2]
In [67]:
Out[67]: 3
```

#### Accessing NumPy Array Data

 In multidimensional arrays, if you omit later indices, the returned object will be a lower dimensional ndarray consisting of all the data along the higher dimensions:

```
In [74]:
          1 arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
           2 print(arr3d.shape)
             arr3d
         (2, 2, 3)
Out[74]: array([[[ 1, 2, 3],
                 [4, 5, 6]],
               [[7, 8, 9],
                 [10, 11, 12]]])
           1 # arr3d[0] is a 2x3 array
In [76]:
          2 arr3d[0]
Out[76]: array([[1, 2, 3],
                [4, 5, 6]])
In [79]:
           1 # arr3d[1,0] is a one-dimensional array
          2 arr3d[1,0]
Out[79]: array([7, 8, 9])
```

#### Accessing NumPy Array Data

#### **Indexing With Slicing**

Line one-dimensional objets such as Python lists, ndarrays can be sliced with the familiar syntax:

#### Accessing NumPy Array Data

#### Accessing NumPy Array Data

```
Boolean Indexing
           1 Suppose we have a 7x4 array of numbers and 7-item array of names where each data row corresponds to one of the names:
          names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
           2 print(names)
           3 data = np.random.randn(7, 4)
           4 data
         ['Bob' 'Joe' 'Will' 'Bob' 'Will' 'Joe' 'Joe']
Out[94]: array([[-6.54134621e-01, -1.08030049e+00, 1.55292805e+00,
                 -6.27196559e-01],
                [ 6.51766070e-01, 1.06891461e+00, 3.72774427e-01,
                  2.40737263e-031,
                [ 4.96049869e-01, 6.77194860e-01, 2.45571971e-01,
                  5.74721359e-021.
                [-1.79142071e-01, -1.32380290e+00, 1.01670969e+00,
                  1.64646942e+00],
                [ 7.28499563e-04, 1.13817708e+00, 6.30855573e-01,
                 -1.48660171e+00],
                [ 6.84287038e-01, -1.40920969e+00, 2.71532915e-01,
                  1.05548597e+00],
                [-8.24158232e-01, -2.20244395e+00, 1.34045174e+00,
                 -1.66697121e+00]])
         Now, suppose we want to return the rows that correspond to "Bob":
In [95]:
          1 names == "Bob"
Out[95]: array([ True, False, False, True, False, False, False])
          1 data[names == 'Bob']
Out[96]: array([[-0.65413462, -1.08030049, 1.55292805, -0.62719656],
                [-0.17914207, -1.3238029, 1.01670969, 1.64646942]])
```

#### Accessing NumPy Array Data

#### "Fancy Indexing"

#### Accessing NumPy Array Data

#### Unary Universal Functions (ufuncs)

#### Universal Functions (ufunc)

NumPy universal functions perform element-wise opearations on data in ndarrays

Unary ufunce operate on a single array and return a single array

#### Unary Universal Functions (ufuncs)

# Unary ufuncs (1 of 2)

| Function                      | Description                                                                                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------|
| abs, fabs                     | Compute the absolute value element-wise for integer, floating-point, or complex values                |
| sqrt                          | Compute the square root of each element (equivalent to arr ** 0.5)                                    |
| square                        | Compute the square of each element (equivalent to arr ** 2)                                           |
| ехр                           | Compute the exponent e <sup>x</sup> of each element                                                   |
| log, log10,<br>log2,<br>log1p | Natural logarithm (base $e$ ), log base 10, log base 2, and log(1 + x), respectively                  |
| sign                          | Compute the sign of each element: 1 (positive), 0 (zero), or -1 (negative)                            |
| ceil                          | Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that number) |
| floor                         | Compute the floor of each element (i.e., the largest integer less than or equal to each element)      |

# Unary ufuncs (3 of 2)

| Function                                                         | Description                                                                                                 |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| rint                                                             | Round elements to the nearest integer, preserving the dtype                                                 |
| modf                                                             | Return fractional and integral parts of array as a separate array                                           |
| isnan                                                            | Return boolean array indicating whether each value is NaN (Not a Number)                                    |
| isfinite, isinf                                                  | Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite, respectively |
| cos, cosh, sin,<br>sinh, tan, tanh                               | Regular and hyperbolic trigonometric functions                                                              |
| arccos,<br>arccosh,<br>arcsin,<br>arcsinh,<br>arctan,<br>arctanh | Inverse trigonometric functions                                                                             |
| logical_not                                                      | Compute truth value of not x element-wise (equivalent to ~arr).                                             |

#### Binary Universal Functions (ufuncs)

# Binary ufuncs (1 of 2)

| Function                | Description                                                       |
|-------------------------|-------------------------------------------------------------------|
| add                     | Add corresponding elements in arrays                              |
| subtract                | Subtract elements in second array from first array                |
| multiply                | Multiply array elements                                           |
| divide,<br>floor_divide | Divide or floor divide (truncating the remainder)                 |
| power                   | Raise elements in first array to powers indicated in second array |
| maximum,<br>fmax        | Element-wise maximum; fmax ignores NaN                            |
| minimum,<br>fmin        | Element-wise minimum; fmin ignores NaN                            |

# Binary ufuncs (2 of 2)

| Function                                                                  | Description                                                                                                  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| mod                                                                       | Element-wise modulus (remainder of division)                                                                 |
| copysign                                                                  | Copy sign of values in second argument to values in first argument                                           |
| greater,<br>greater_equal,<br>less,<br>less_equal,<br>equal,<br>not_equal | Perform element-wise comparison, yielding boolean array (equivalent to infix operators >, >=, <, <=, ==, !=) |
| logical_and,<br>logical_or,<br>logical_xor                                | Compute element-wise truth value of logical operation (equivalent to infix operators &  , ^)                 |

#### NumPy where() method

#### NumPy where method

numpy.where is a vectorized version of the ifelse function

# Pandas

#### The Rest of the Solution: Pandas

"Python Data Analysis Library"

Most data science datasets are heterogeneous (contain columns with different datatypes)

**Pandas** provides heterogeneous array types with naming for rows and columns:

Series: One-dimensional array

Dataframes: Multi-dimensional array

It also contains a third data structure known as an *Index Object* 

Series Objects

- A Series is a one-dimensional array-like object containing:
  - A sequence of values (similar to NumPy arrays)
  - An associated array of data labels called its index

Series Objects (Default Index Values)

Index Values

Series Objects: User-Specified Index

Index Values

Using Index Labels to Select Values or Sets of Values

Note notation. Series takes a list of index values as a single parameter.

#### Series Arithmetic Examples

```
my_series_2[my_series_2 > 0]
In [139]:
Out[139]:
          dtype: int64
               my_series_2 * 2
In [141]:
Out[141]:
               14
               -10
          dtype: int64
```

Returns an array of Booleans

#### Series Arithmetic Examples

### **Dictionary Functions**

```
Dictionary Functions

In [144]: 1 'b' in my_series_2

Out[144]: True

In [145]: 1 'e' in my_series_2

Out[145]: False
```

### Creating Series From Python Dictionary

### Specifying the Index Order

No value for "California" was found, so NaN (not a number) was returned

#### Testing for NaNs

```
In [151]:
               pd.isnull(my_series_4)
Out[151]: California
                         True
          Ohio
                        False
          Oregon
                        False
                        False
          Texas
          dtype: bool
              my_series_4.isnull()
In [152]:
Out[152]: California
                         True
          Ohio
                        False
          Oregon
                        False
          Texas
                        False
          dtype: bool
```

Available in Pandas as a function or a method (equivalent)

#### Automatic Alignment by Index Label

```
my_series_3
In [153]:
Out[153]:
          Ohio
                    35000
          Texas
                    71000
                    16000
          Oregon
          Utah
                     5000
          dtype: int64
               my_series_4
In [154]:
Out[154]: California
                             NaN
          Ohio
                         35000.0
          Oregon
                         16000.0
          Texas
                        71000.0
          dtype: float64
In [155]:
              my_series_3 + my_series_4
Out[155]: California
                             NaN
          Ohio
                          70000.0
          Oregon
                          32000.0
                         142000.0
          Texas
                              NaN
          Utah
          dtype: float64
```

#### Both Series and its Index Have Names

- The primary data structure used in data science
- Designed for working with tabular, heterogeneous data
- Consists of a number of Pandas series "glued together" with a common index
  - Every column (series) must be of the same length



#### Creating Dataframe From Python Dictionary

```
Creating dataframes
In [168]:
           1 # Creating a dataframe from a Python dictionary
              data = {'state': ['Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
                      'year': [2000, 2001, 2002, 2001, 2002, 2003],
                      'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
           6 type(data)
Out[168]: dict
In [171]:
            1 import pandas as pd
           2 dataframe_2 = pd.DataFrame(data)
           3 dataframe 2
Out[171]:
              state year pop
               Ohio 2000 1.5
               Ohio
                   2001
               Ohio 2002 3.6
          3 Nevada 2001
           4 Nevada 2002
           5 Nevada 2003 3.2
```

#### Retrieving Pandas Series From Dataframe Columns

```
Retrievine Pandas Series objects from dataframe columns
               dataframe_2['state']
In [172]:
Out[172]:
                  Ohio
                  Ohio
                  Ohio
                Nevada
                Nevada
                Nevada
           Name: state, dtype: object
In [173]:
               dataframe_2.state
Out[173]:
                  Ohio
                  Ohio
                  Ohio
                Nevada
                Nevada
                Nevada
          Name: state, dtype: object
```

#### Retrieve Rows by Row Number

```
Retrieve rows by row number
               dataframe_2.iloc[3]
In [199]:
Out[199]:
           state
                    Nevada
           year
                       2001
                       2.4
           pop
           Name: 3, dtype: object
               dataframe_2.iloc[0:4]
In [200]:
Out[200]:
               state year pop
                Ohio 2000
                Ohio
                     2001
                Ohio 2002
                           3.6
            3 Nevada 2001
                           2.4
```

Retrieve Rows by Content

#### Modifying or Creating Columns by Assignment

```
Modifying or creating columns by assignment
In [206]:
               dataframe_2['debt'] = 16.5
            2 dataframe_2
Out[206]:
               state year pop debt
                Ohio 2000
                         1.5 16.5
                           1.7 16.5
                Ohio 2002
                          3.6 16.5
           3 Nevada 2001 2.4 16.5
           4 Nevada 2002
                          2.9 16.5
           5 Nevada 2003 3.2 16.5
In [207]:
             1 dataframe_2['debt'] = np.arange(6)
            2 dataframe_2
Out[207]:
               state year pop debt
                Ohio 2000
                Ohio 2001
                          1.7
                Ohio 2002
                          3.6
           3 Nevada 2001
           4 Nevada 2002
           5 Nevada 2003 3.2
```

Adding a New Column of Booleans Based on Conditional Test

|           | Add | ding a Ne | ew Col | umn o | of Bool | eans Bas |
|-----------|-----|-----------|--------|-------|---------|----------|
| In [208]: | 1 2 |           | _      | -     | asterr  | n'] = da |
| Out[208]: |     | state     | year   | рор   | debt    | eastern  |
|           | 0   | Ohio      | 2000   | 1.5   | 0       | True     |
|           | 1   | Ohio      | 2001   | 1.7   | 1       | True     |
|           | 2   | Ohio      | 2002   | 3.6   | 2       | True     |
|           | 3   | Nevada    | 2001   | 2.4   | 3       | False    |
|           | 4   | Nevada    | 2002   | 2.9   | 4       | False    |
|           | 5   | Nevada    | 2003   | 3.2   | 5       | False    |

#### Deleting a Column

```
Deleting a Column
In [209]:
               del dataframe_2['eastern']
               dataframe_2
Out[209]:
                state year pop debt
                Ohio 2000
                Ohio 2001
                Ohio 2002
            3 Nevada 2001
            4 Nevada 2002
             Nevada 2003
```

#### Values Attribute

As with Series, the values attribute returns the data contained in a DataFrame as a two-dimensional ndarray:

# Transforming a Dataframe

|           | Transforming a dataframe |      |      |      |        |        |        |  |  |  |  |  |
|-----------|--------------------------|------|------|------|--------|--------|--------|--|--|--|--|--|
| In [210]: | 1 dataframe_2.T          |      |      |      |        |        |        |  |  |  |  |  |
| Out[210]: |                          | 0    | 1    | 2    | 3      | 4      | 5      |  |  |  |  |  |
|           | state                    | Ohio | Ohio | Ohio | Nevada | Nevada | Nevada |  |  |  |  |  |
|           | year                     | 2000 | 2001 | 2002 | 2001   | 2002   | 2003   |  |  |  |  |  |
|           | pop                      | 1.5  | 1.7  | 3.6  | 2.4    | 2.9    | 3.2    |  |  |  |  |  |
|           | debt                     | 0    | 1    | 2    | 3      | 4      | 5      |  |  |  |  |  |

#### Creating a Dataframe From NumPy Arrays and Python Lists

```
Creating a dataframe from NumPy arrays and Python lists

In [204]:

1  myarray = np.array([[1, 2, 3], [4, 5, 6]])
2  rownames = ['a', 'b']
3  colnames = ['one', 'two', 'three']
4  dataframe_3 = pd.DataFrame(myarray, index=rownames, columns=colnames)
5  dataframe_3

Out[204]:

one two three

a  1  2  3
b  4  5  6
```

# **Pandas Index Objects**

- Pandas index objects hold the axis labels and other meta-data (like the axis name or names)
- Any array or sequence used when constructing a Series of a DataFrame is automatically converted to an an Index:

# **Pandas Index Objects**

# **Pandas Index Objects**

#### Index Objects are Immutable

```
Index objects are immutable
            1 series_2_index[1] = 'd'
In [229]:
          TypeError
                                                    Traceback (most recent call last)
          <ipvthon-input-229-944413992c45> in <module>
          ----> 1 series_2_index[1] = 'd'
          ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in __setitem__(self, key, value)
             4275
                      @final
             4276
                      def __setitem__(self, key, value):
          -> 4277
                           raise TypeError("Index does not support mutable operations")
             4278
             4279
                      def __getitem__(self, key):
          TypeError: Index does not support mutable operations
```

#### Reindexing

```
Reindexing
           Create a new Pandas object with the data conformed to a new index
             1 | Series_3 = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
In [231]:
            2 Series_3
Out[231]: d
                4.5
              7.2
               -5.3
                3.6
           dtype: float64
             1 Series_4 = Series_3.reindex(['a', 'b', 'c', 'd', 'e'])
In [234]:
            2 | Series 4
Out[234]: a
               -5.3
              7.2
                3.6
                4.5
                NaN
           dtype: float64
```

#### Dropping Entities from an Axis - Series

```
In [236]:
               obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
               obj
Out[236]:
                0.0
               1.0
               2.0
                3.0
                4.0
          dtype: float64
In [238]:
               new_obj = obj.drop('c')
            2 new_obj
Out[238]: a
               0.0
               1.0
                3.0
               4.0
          dtype: float64
In [240]:
               new_obj = obj.drop(['d','c'])
               new_obj
Out[240]:
               0.0
               1.0
                4.0
           dtype: float64
```

#### Dropping Entities from an Axis - DataFrame

Dropping Entities from an Axis - DataFrame

```
In [247]:
                 Drop rows
               dataframe_3.drop(['Colorado', 'Ohio'])
Out[247]:
                     one two three four
               Utah
           New York
                                      15
In [249]:
               # Drop columns
               dataframe_3.drop('two', axis=1)
Out[249]:
                         three four
               Ohio
            Colorado
               Utah
                       8
           New York
                      12
                                 15
```

Indexing, Selection, and Filtering - Series

 Series indexing works similar to NumPy arrays except that you can use the Series's index values instead of only integers:

#### Indexing, Selection, and Filtering - Series

```
In [251]: 1 obj['b']
Out[251]: 1.0
          1 obj[1]
In [252]:
Out[252]: 1.0
           1 obj[2:4]
Out[253]: c
               3.0
          dtype: float64
           1 obj[['b','a','d']]
Out[2541: b
               3.0
          dtype: float64
           1 obj[[1,3]]
Out[255]: b
              3.0
          dtype: float64
           1 obj[obj<2]
In [256]:
Out[256]: a
          dtype: float64
```

Indexing, Selection, and Filtering - Series



| In [272]: | 1 data[  | [:2]  |       |       |      |
|-----------|----------|-------|-------|-------|------|
| Out[272]: |          | one   | two   | three | four |
|           | Ohio     | 0     | 1     | 2     | 3    |
|           | Colorado | 4     | 5     | 6     | 7    |
| In [270]: | 1 data[  | [data | ['thr | ree'] | > 5] |
| Out[270]: |          | one   | two   | three | four |
|           | Colorado | 4     | 5     | 6     | 7    |
|           | Utah     | 8     | 9     | 10    | 11   |
|           | New York | 12    | 13    | 14    | 15   |
|           |          |       |       |       |      |

```
In [273]:
               # Indexing with a Boolean dataframe
            2 data < 5
Out[273]:
                           two three
                                      four
                     True
                           True
                                True
                                      True
                     True False False False
            Colorado
               Utah False False False
            New York False False False
In [276]:
               data[data< 5] = 0
               data
Out[276]:
                    one two three four
               Ohio
            Colorado
               Utah
                       8
                                10
                                    11
            New York
```

Indexing, Selection, and Filtering - Dataframe

Selection with loc (using axis labels) and iloc (using integers):

```
In [277]: 1 # Selection using loc
2 data.loc['Colorado', ['two', 'three']]
Out[277]: two 5
    three 6
    Name: Colorado, dtype: int32

In [278]: 1 # selection using iloc
    2 data.iloc[2, [3, 0, 1]]
Out[278]: four 11
    one 8
    two 9
    Name: Utah, dtype: int32
```

Indexing, Selection, and Filtering - Dataframe

Selection with loc (using axis labels) and iloc (using integers):

```
In [279]:
               data.iloc[2]
Out[279]:
          three
                    11
           four
          Name: Utah, dtype: int32
In [280]:
               data.iloc[[1, 2], [3, 0, 1]]
Out[280]:
                     four one two
           Colorado
               Utah
```

Indexing, Selection, and Filtering - Dataframe

Indexing functions with slices

```
In [281]:
            1 # Indexing functions with slicing
               data.loc[:'Utah', 'two']
Out[281]:
          Ohio
          Colorado
          Utah
          Name: two, dtype: int32
In [282]:
               data.iloc[:, :3][data.three > 5]
Out[282]:
                        two three
           Colorado
               Utah
           New York
                                14
```

## Indexing Options with DataFrames

| Туре               | Notes                                                                                                                                                                                                 |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| df[val]            | Select single column or sequence of columns from the DataFrame; special case conveniences: boolean array (filter rows), slice (slice rows), or boolean DataFrame (set values based on some criterion) |
| df.loc[val]        | Selects single row or subset of rows from the DataFrame by label                                                                                                                                      |
| df.loc[:, val]     | Selects single column or subset of columns by label                                                                                                                                                   |
| df.loc[val1, val2] | Select both rows and columns by label                                                                                                                                                                 |
| df.iloc[where]     | Selects single row or subset of rows from the DataFrame by integer position                                                                                                                           |
| df.iloc[:, where]  | Selects single column or subset of columns by                                                                                                                                                         |

#### Indexing Options with DataFrames

| Туре                               | Notes                                                              |
|------------------------------------|--------------------------------------------------------------------|
| df.iloc[:, where]                  | Selects single column or subset of columns by integer position     |
| df.iloc[where_i,<br>where_j]       | Select both rows and columns by integer position                   |
| df.at[label_i,<br>label_j]         | Select a single scalar value by row and column label               |
| df.iat[i, j]                       | Select a single scalar value by row and column position (integers) |
| reindex method                     | Select either rows or columns by labels                            |
| get_value,<br>set_value<br>methods | Select single value by row and column label                        |

Arithmetic and Data Alignment

Arithmetic operations between Series or Dataframes with different indexes requires special handling:

```
1 s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
In [284]:
            2 | s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'
            3 print(s1)
            4 print(s2)
               7.3
              -2.5
               3.4
               1.5
          dtvpe: float64
               -2.1
                3.6
               -1.5
               4.0
                3.1
          dtvpe: float64
              s1+s2
In [285]:
Out[285]: a
               5.2
               1.1
               NaN
                0.0
                NaN
                NaN
          dtype: float64
```

#### Arithmetic and Data Alignment - Dataframes

```
In [287]:
            1 # Dataframes
            2 df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'), index=['Ohio', 'Texas', 'Colorado'])
            3 df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])
            4 print(df1)
            5 print(df2)
          Ohio 
          Texas
          Colorado 6.0 7.0 8.0
          Utah
                        1.0
                             2.0
          Ohio 
                  3.0
                        4.0
                             5.0
          Texas
                  6.0
                       7.0
                             8.0
          Oregon 9.0 10.0 11.0
```

Arithmetic and Data Alignment - Dataframes



#### Function Application and Mapping

#### NumPy ufuncs also work with Pandas objects:

```
In [289]:
               # NumPy ufuncs also work with Pandas objects:
               frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'),
                                      index=['Utah', 'Ohio', 'Texas', 'Oregon'])
                frame
Out[289]:
                    1.531637 -0.685977 0.041550
                    -0.609879 -0.731267
                                       0.281189
                    0.744102 -0.163679 0.817626
            Oregon 1.733892 -1.285659 -0.137677
              np.abs(frame)
In [290]:
Out[290]:
              Utah 1.531637 0.685977 0.041550
              Ohio 0.609879 0.731267 0.281189
             Texas 0.744102 0.163679 0.817626
            Oregon 1.733892 1.285659 0.137677
```

#### Function Application and Mapping

In addition, the datagrame .apply method applys a function on one-dimensional arrays to each column or row:

```
Pandas apply method
In [291]:
               f = lambda x: x.max() - x.min()
               frame.apply(f)
Out[291]: b
                2.343770
                1.121980
                0.955303
           dtype: float64
              frame.apply(f, axis = "columns")
In [292]:
Out[292]: Utah
                     2.217614
          Ohio
                     1.012456
                     0.981305
          Texas
          Oregon
                     3.019551
          dtype: float64
```

#### Sorting Series by Index

#### Sorting Dataframes by Index

```
# Dataframes can be worted by either axis:
In [295]:
              frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
                                   index=['three', 'one'],
                                   columns=['d', 'a', 'b', 'c'])
              frame
Out[295]:
                 d a b c
            one 4 5 6 7
            frame.sort_index() # sort by row index
In [297]:
Out[297]:
                 d a b c
           three 0 1 2 3
            1 frame.sort_index(axis=1) # sort by column index
In [298]:
Out[298]:
                 a b c d
          three 1 2 3 0
```

Sorting Series by Values

#### Sorting Dataframe by Values in Single Column

```
In [300]:
            1 # Sort a dataframe by values of one column
            2 frame = pd.DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})
              frame
Out[300]:
In [302]:
             frame.sort_values(by="b")
Out[302]:
```

Sorting Dataframe by Values in Multiple Columns

- Pandas objects include a set of common mathematical and statistical methods
  - Most are summary statistics which extract a single value (like a mean) from a Series or from rows or columns of dataframes.
  - Methods include built-in handling for missing data

#### Summarizing and Computing Descriptive Statistics

```
In [304]:
            1 df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5],
                                  [np.nan, np.nan], [0.75, -1.3]],
                                 index=['a', 'b', 'c', 'd'],
                                 columns=['one', 'two'])
Out[304]:
              one two
           a 1.40 NaN
           b 7.10 -4.5
           c NaN NaN
           d 0.75 -1.3
In [308]:
            1 # sum method returns a series containing column sums
            2 df.sum()
Out[308]: one
                 9.25
                -5.80
          dtype: float64
```

```
In [312]:
               # idxmin and idxmax return "indirect statistics" like the index of the minimum or maximum values
               df.idxmax()
Out[312]:
          one
          two
          dtype: object
In [313]:
               # Other methods are accumulations:
            2 df.cumsum()
Out[313]:
              one two
           a 1.40 NaN
           b 8.50 -4.5
           c NaN NaN
           d 9.25 -5.8
```

```
In [314]:
                # describe produces multiple summary satistics in one call:
                df.describe()
Out[314]:
                       one
                                two
            count 3.000000
                            2.000000
            mean 3.083333 -2.900000
               std 3.493685 2.262742
              min 0.750000 -4.500000
              25% 1.075000 -3.700000
                   1.400000 -2.900000
              75% 4.250000 -2.100000
             max 7.100000 -1.300000
```

| Method         | Description                                                                                 |
|----------------|---------------------------------------------------------------------------------------------|
| count          | Number of non-NA values                                                                     |
| describe       | Compute set of summary statistics for Series or each DataFrame column                       |
| min, max       | Compute minimum and maximum values                                                          |
| argmin, argmax | Compute index locations (integers) at which minimum or maximum value obtained, respectively |
| idxmin, idxmax | Compute index labels at which minimum or maximum value obtained, respectively               |
| quantile       | Compute sample quantile ranging from 0 to 1                                                 |
| sum            | Sum of values                                                                               |
| mean           | Mean of values                                                                              |
| median         | Arithmetic median (50% quantile) of values                                                  |

| Method         | Description                                                  |
|----------------|--------------------------------------------------------------|
| mad            | Mean absolute deviation from mean value                      |
| prod           | Product of all values                                        |
| var            | Sample variance of values                                    |
| std            | Sample standard deviation of values                          |
| skew           | Sample skewness (third moment) of values                     |
| kurt           | Sample kurtosis (fourth moment) of values                    |
| cumsum         | Cumulative sum of values                                     |
| cummin, cummax | Cumulative minimum or maximum of values, respectively        |
| cumprod        | Cumulative product of values                                 |
| diff           | Compute first arithmetic difference (useful for time series) |
| pct_change     | Compute percent changes                                      |

#### Unique Values, Value Counts, and Membership

Unique Values, Value Counts, and Membership

Unique Values, Value Counts, and Membership

#### Unique Values, Value Counts, and Membership Methods

| Method       | Description                                                                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| isin         | Compute boolean array indicating whether each Series value is contained in the passed sequence of values                                      |
| get_indexer  | Compute integer indices for each value in an array into another array of distinct values; helpful for data alignment and join-type operations |
| unique       | Compute array of unique values in a Series, returned in the order observed                                                                    |
| value_counts | Return a Series containing unique values as its index and frequencies as its values, ordered count in descending order                        |

# **Reading Data From Files**

#### **Python Basics**

#### Loading CSV Files Using Pandas

#### **Loading Data From CSV Files**

There are mechanisms to read CSV files in standard Python, NumPy, and Pandas. Generally, in data science usage, the Pandas read\_csv function is preferred due to its flexibility and the fact that we almost always want to end up in a dataframe.

#### **Considerations When Loading CSV Data**

- 1. Does the file have a header? If so, it can be used to automatically assign names to each column
- 2. Does the file have comments indicated by a hash (#)?
- 3. What is the field delimiter (if not a comma)?
- 4. Field values with spaces are often in quotes. The default quote character is the double quotation mark. If your file uses something else, you must specify it

## **Python Basics**

#### Loading CSV Files Using Pandas

#### **Loading Diabetes Dataset with Pandas**

Full documentation is here: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read\_csv.html

#### Out[107]:

|   | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | вмі  | DiabetesPedigreeFunction | Age | Outcome |
|---|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 0 | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | 1       |
| 1 | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2 | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3 | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4 | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
| 5 | 5           | 116     | 74            | 0             | 0       | 25.6 | 0.201                    | 30  | 0       |
| 6 | 3           | 78      | 50            | 32            | 88      | 31.0 | 0.248                    | 26  | 1       |
| 7 | 10          | 115     | 0             | 0             | 0       | 35.3 | 0.134                    | 29  | 0       |
| 8 | 2           | 197     | 70            | 45            | 543     | 30.5 | 0.158                    | 53  | 1       |
| 9 | 8           | 125     | 96            | 0             | 0       | 0.0  | 0.232                    | 54  | 1       |

# **DataFrame Objects**

#### Cars Dataset

|                                          | File: Cars Data |            |            |         |        |           |            |          |          |             |            |           |          |           |          |        |
|------------------------------------------|-----------------|------------|------------|---------|--------|-----------|------------|----------|----------|-------------|------------|-----------|----------|-----------|----------|--------|
| Description: Basic data on cars produced |                 |            |            | in 2018 |        |           |            |          |          |             |            |           |          |           |          |        |
|                                          |                 |            |            |         |        |           |            |          |          |             |            |           |          |           |          |        |
|                                          | Make            | Model      | DriveTrair | Origin  | Туре   | Cylinders | Engine Siz | Horsepow | Invoice  | Length (IN) | MPG (City) | MPG (High | MSRP     | Weight (L | Wheelbas | e (IN) |
|                                          | Acura           | 3.5 RL 4dr | Front      | Asia    | Sedan  | 6         | 3.5        | 225      | \$39,014 | 197         | 18         | 24        | \$43,755 | 3880      | 115      |        |
|                                          | Acura           | 3.5 RL w/N | Front      | Asia    | Sedan  | 6         | 3.5        | 225      | \$41,100 | 197         | 18         | 24        | \$46,100 | 3893      | 115      |        |
|                                          | Acura           | MDX        | All        | Asia    | SUV    | 6         | 3.5        | 265      | \$33,337 | 189         | 17         | 23        | \$36,945 | 4451      | 106      |        |
|                                          | Acura           | NSX coupe  | Rear       | Asia    | Sports | 6         | 3.2        | 290      | \$79,978 | 174         | 17         | 24        | \$89,765 | 3153      | 100      |        |
|                                          | Acura           | RSX Type ! | Front      | Asia    | Sedan  | 4         | 2          | 200      | \$21,761 | 172         | 24         | 31        | \$23,820 | 2778      | 101      |        |
| 0                                        | Acura           | TL 4dr     | Front      | Asia    | Sedan  | 6         | 3.2        | 270      | \$30,299 | 186         | 20         | 28        | \$33,195 | 3575      | 108      |        |
| 1                                        | Acura           | TSX 4dr    | Front      | Asia    | Sedan  | 4         | 2.4        | 200      | \$24,647 | 183         | 22         | 29        | \$26,990 | 3230      | 105      |        |
| 2                                        | Audi            | A4 1.8T 4d | Front      | Europe  | Sedan  | 4         | 1.8        | 170      | \$23,508 | 179         | 22         | 31        | \$25,940 | 3252      | 104      |        |
| 3                                        | Audi            | A4 3.0 4dr | Front      | Europe  | Sedan  | 6         | 3          | 220      | \$28,846 | 179         | 20         | 28        | \$31,840 | 3462      | 104      |        |
| 4                                        | Audi            | A4 3.0 con | Front      | Europe  | Sedan  | 6         | 3          | 220      | \$38,325 | 180         | 20         | 27        | \$42,490 | 3814      | 105      |        |
| 5                                        | Audi            | A4 3.0 Qua | All        | Europe  | Sedan  | 6         | 3          | 220      | \$31,388 | 179         | 18         | 25        | \$34,480 | 3627      | 104      |        |
| 5                                        | Audi            | A4 3.0 Qua | All        | Europe  | Sedan  | 6         | 3          | 220      | \$30,366 | 179         | 17         | 26        | \$33,430 | 3583      | 104      |        |
| 7                                        | Audi            | A4 3.0 Qua | All        | Europe  | Sedan  | 6         | 3          | 220      | \$40,075 | 180         | 18         | 25        | \$44,240 | 4013      | 105      |        |
| В.                                       | Audi            | A41.8T cor | Front      | Europe  | Sedan  | 4         | 1.8        | 170      | \$32,506 | 180         | 23         | 30        | \$35,940 | 3638      | 105      |        |

# read\_csv example

#### Cars Dataset

#### Reading cars dataset and skipping header lines ¶

In [329]:

1 cars = pd.read\_csv('cars.csv', skiprows = 3)
2 cars

Out[329]:

|   |     | Make  | Model                         | DriveTrain | Origin | Туре   | Cylinders | Engine<br>Size (L) | Horsepower | Invoice  | Length<br>(IN) | MPG<br>(City) | MPG<br>(Highway) | MSRP     | Weight<br>(LBS) | Wheelbase<br>(IN) |
|---|-----|-------|-------------------------------|------------|--------|--------|-----------|--------------------|------------|----------|----------------|---------------|------------------|----------|-----------------|-------------------|
|   | 0   | Acura | 3.5 RL 4dr                    | Front      | Asia   | Sedan  | 6.0       | 3.5                | 225        | \$39,014 | 197            | 18            | 24               | \$43,755 | 3880            | 115               |
|   | 1   | Acura | 3.5 RL<br>w/Navigation<br>4dr | Front      | Asia   | Sedan  | 6.0       | 3.5                | 225        | \$41,100 | 197            | 18            | 24               | \$46,100 | 3893            | 115               |
|   | 2   | Acura | MDX                           | All        | Asia   | SUV    | 6.0       | 3.5                | 265        | \$33,337 | 189            | 17            | 23               | \$36,945 | 4451            | 106               |
|   | 3   | Acura | NSX coupe 2dr<br>manual S     | Rear       | Asia   | Sports | 6.0       | 3.2                | 290        | \$79,978 | 174            | 17            | 24               | \$89,765 | 3153            | 100               |
|   | 4   | Acura | RSX Type S 2dr                | Front      | Asia   | Sedan  | 4.0       | 2.0                | 200        | \$21,761 | 172            | 24            | 31               | \$23,820 | 2778            | 101               |
|   |     |       |                               |            |        |        |           |                    |            |          |                |               |                  |          |                 |                   |
| 4 | 123 | Volvo | S80 2.9 4dr                   | Front      | Europe | Sedan  | 6.0       | 2.9                | 208        | \$35,542 | 190            | 20            | 28               | \$37,730 | 3576            | 110               |
| 4 | 124 | Volvo | S80 T6 4dr                    | Front      | Europe | Sedan  | 6.0       | 2.9                | 268        | \$42,573 | 190            | 19            | 26               | \$45,210 | 3653            | 110               |
| 4 | 125 | Volvo | V40                           | Front      | Europe | Wagon  | 4.0       | 1.9                | 170        | \$24,641 | 180            | 22            | 29               | \$26,135 | 2822            | 101               |
| 4 | 126 | Volvo | XC70                          | All        | Europe | Wagon  | 5.0       | 2.5                | 208        | \$33,112 | 186            | 20            | 27               | \$35,145 | 3823            | 109               |
| 4 | 127 | Volvo | XC90 T6                       | All        | Europe | SUV    | 6.0       | 2.9                | 268        | \$38,851 | 189            | 15            | 20               | \$41,250 | 4638            | 113               |
|   |     |       |                               |            |        |        |           |                    |            |          |                |               |                  |          |                 |                   |

428 rows × 15 columns

Skip the first 3 rows

# Plotting with Matplotlib and Seaborn

#### **Data Visualization**

#### Matplotlib Package

- Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- A set of functionalities similar to those of MATLAB
- Line plots, scatter plots, barcharts, histograms, pie charts etc.
- Relatively low-level; some effort needed to create advanced visualization

https://matplotlib.org/

#### **Data Visualization**

Seaborn Package

- Based on Matplotlib
- Provides high-level interface for drawing attractive statistical graphs
- Similar (in style) to the popular ggplot2 library in R

https://seaborn.pydata.org/

#### **Matplotlib Basics**

- General usage
  - Call a plotting function with some data for example, plot()
  - Call multiple functions to configure various properties of the plot (color, labels, etc.)
  - Make the plot visible show()
- For this lecture, I use the following "standards":
  - Use the classic Matplotlib style: plt.style.use('classic')
  - Use the "inline" mode (not the "notebook") mode:
    - %matplotlib inline
- Figures can be saved to files using the savefig() method:
  - fig.savefig('my\_figure.png')

# **Basic Matplotlib Visualizations**

- Univariate
  - Histograms
  - Density Plots
  - Box and Whisker Plots

- Multivariate
  - Scatter Plots
  - Correlation matrices

#### Introductory Example In [119]: import pandas as pd import numpy as np from pandas import read\_csv from matplotlib import pyplot as plt %matplotlib inline plt.style.use('classic') x = pd.Series(np.linspace(0,10,100)) Out[119]: 0 0.00000 0.10101 0.20202 0.30303 0.40404 9.59596 9.69697 9.79798

98 9.89899 99 10.00000 Length: 100, dtype: float64

```
fig = plt.figure()
plt.plot(x, np.sin(x), '-')
plt.plot(x, np.cos(x), '--')
plt.show
fig.savefig('test_matplotlib_figure.png')
```



```
# Create a two-panel plot
# First of two sub-plots and set current axis
plt.subplot(2,1,1) # (rows, columns, number)
plt.plot(x, np.sin(x))
# Second sub-plot
plt.subplot(2,1,2) # (rows, columns, number)
plt.plot(x, np.cos(x))
plt.show()
  0.5
 -0.5
 -1.0
  0.5
 -0.5
 -1.0
```

Out[122]:

|     | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI  | DiabetesPedigreeFunction | Age | Outcome |
|-----|-------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| 0   | 6           | 148     | 72            | 35            | 0       | 33.6 | 0.627                    | 50  | 1       |
| 1   | 1           | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2   | 8           | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3   | 1           | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4   | 0           | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
|     |             |         |               |               |         |      |                          |     |         |
| 763 | 10          | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 63  | 0       |
| 764 | 2           | 122     | 70            | 27            | 0       | 36.8 | 0.340                    | 27  | 0       |
| 765 | 5           | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 30  | 0       |
| 766 | 1           | 126     | 60            | 0             | 0       | 30.1 | 0.349                    | 47  | 1       |
| 767 | 1           | 93      | 70            | 31            | 0       | 30.4 | 0.315                    | 23  | 0       |

768 rows × 9 columns

Convert Outcome to be a category

```
In [123]: diabetes['Outcome'] = diabetes['Outcome'].astype("category")
```

#### **Histograms**

```
diabetes.hist()
plt.show()
```



#### **Density Plots**

```
diabetes['Insulin'].plot(kind='density', subplots=True, sharex=False)
plt.show()
```



#### **Box and Whisker Plots**

diabetes.plot(kind='box', subplots=True, layout=(3,3), sharex=False, sharey=False)
pyplot.show()



#### **Correlation Matrix Plot**

```
In [127]: corr = diabetes.corr()
corr
```

Out[127]:

|                          | Pregnancies | Glucose  | BloodPressure | SkinThickness | Insulin   | BMI      | DiabetesPedigreeFunction | Age       |
|--------------------------|-------------|----------|---------------|---------------|-----------|----------|--------------------------|-----------|
| Pregnancies              | 1.000000    | 0.129459 | 0.141282      | -0.081672     | -0.073535 | 0.017683 | -0.033523                | 0.544341  |
| Glucose                  | 0.129459    | 1.000000 | 0.152590      | 0.057328      | 0.331357  | 0.221071 | 0.137337                 | 0.263514  |
| BloodPressure            | 0.141282    | 0.152590 | 1.000000      | 0.207371      | 0.088933  | 0.281805 | 0.041265                 | 0.239528  |
| SkinThickness            | -0.081672   | 0.057328 | 0.207371      | 1.000000      | 0.436783  | 0.392573 | 0.183928                 | -0.113970 |
| Insulin                  | -0.073535   | 0.331357 | 0.088933      | 0.436783      | 1.000000  | 0.197859 | 0.185071                 | -0.042163 |
| ВМІ                      | 0.017683    | 0.221071 | 0.281805      | 0.392573      | 0.197859  | 1.000000 | 0.140647                 | 0.036242  |
| DiabetesPedigreeFunction | -0.033523   | 0.137337 | 0.041265      | 0.183928      | 0.185071  | 0.140647 | 1.000000                 | 0.033561  |
| Age                      | 0.544341    | 0.263514 | 0.239528      | -0.113970     | -0.042163 | 0.036242 | 0.033561                 | 1.000000  |

```
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
cax = ax.matshow(corr, vmin = -1, vmax = 1)
fig.colorbar(cax)
pyplot.show()
```



# Seaborn Version



#### **Scatter Plot** In [130]: plt.scatter(x = diabetes['Glucose'], y = diabetes['Insulin']) plt.title('Glucose / Insulin Scatterplot') plt.xlabel('Glucose') plt.ylabel('Insulin') Out[130]: Text(0, 0.5, 'Insulin') Glucose / Insulin Scatterplot 1000 600 200 -200 -50 200 100 150 250 Glucose