

What are we doing? Catching Fraudulent vehicle **claims** through machine learning predictions

How does it relate to Fintech? delivering better financial services through new technology

Why? Predicting fraud could help save the company money that could be used to provide better services

Objective

Predict Fraudulent claims
Through Machine
Learning

Selected Models

Supervised: Logistic Regression, KNN, SVM Dimensionality
Reduction:
Principal
Component
Analysis

Deep neural network

```
[25]: # Seperate the numerical columns and concat with encoded features
numerical_variables = oracle_data[['Deductible', 'AgeOfVehicle', 'DriverRating', 'FraudFound_P']]
encoded_oracle = pd.concat([encoded_variables, numerical_variables], axis=1)
encoded_oracle.dropna(inplace=True)
encoded_oracle.info()
```

Data Preparation & Model Training Process

Data Sources: www.kaggle.com

Dimensionality reduction: day of week, Age.

Training process: **over sampling**, **under sampling**

Performance Evaluation Technique

Demonstration of Machine Learning Model

Unanticipated Insights and adjustment

Our Approach

Classifiction Report - Original Data				
	precision	recall	f1-score	support
0.0	0.94	1.00	0.97	3640
1.0	1.00	0.00	0.01	215
accuracy			0.94	3855
macro avg	0.97	0.50	0.49	3855
weighted avg	0.95	0.94	0.92	3855
Classifiction	n Report - l	Jndersample	d Data	
	precision	recall	f1-score	support
0.0	0.95	0.54	0.69	3640
1.0	0.07	0.54	0.12	215
accuracy			0.54	3855
macro avg	0.51	0.54	0.40	3855
weighted avg	0.90	0.54	0.66	3855
Classifiction	n Report - 0	Oversample	Data	
	precision	recall	f1-score	support
0.0	0.95	0.60	0.74	3640
1.0	0.07	0.49	0.12	215
accuracy			0.59	3855
macro avg	0.51	0.54	0.43	3855
weighted avg	0.90	0.59	0.70	3855

Model Results: Logistic Regression

Recall on under sample was the highest to be achieved

Models Evaluation Visuals: KNN & SVM

Model Evaluation: Neural Network

```
#evaluating model
nn.evaluate(X_test_scaled, y_test, verbose=2)

121/121 - 1s - loss: 0.0564 - accuracy: 0.9351 - 617ms/epoch - 5ms/step
[0.0563712939620018, 0.9351491332054138]
```

Model Potential:

what we could have done with more time

Get more data to improve model's performance

Perform a more complete features engineering

Evaluate and compare all models

