

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 DIGITAL ELECTRONICS AND INTEGRATED CIRCUIT SEMESTER - 4

The state of the s			 ,
Time: 3 Hours]			[Full Marks : 70
inne . S nouis j			[run mains . /u

1.	Choo	Exc a) c)	ne correct alternatives for any sess-3 coded representation of 10011 01001100 edecimal equivalent of the bir	f (19) ₁₀ b) d)	00011001 11000100.
		a) c) The	10011 01001100 decimal equivalent of the bir	b) d)	00011001 11000100.
	il)	c) The	01001100 decimal equivalent of the bir	d)	11000100.
	ti)	The	decimal equivalent of the bir		
	H)		provide the second	ary nun	
		a)	(40 0105)	•	nber (101111.1101) ₂ is
			(46.8125) ₁₀	b)	(47.8125) ₁₀
		c)	(47.8155) ₁₀	d)	(47.8145) ₁₀ .
	ш)		O MHz signal is applied to a output frequency will be	MOD 5	counter followed by a MOD 8 counter.
		a)	10 kHz	b)	2.5 kHz
		c)	5 kHz	d)	25 kHz.
	iv)	A 4	-stage ripple counter counts u	ipto .	
		a)	12	b)	15
		c)	. 11	d)	4.
	v)	Wh	ich family has the better noise	e margin	3
		a)	ECL	b)	DTL
		c)	MOS	d)	
	vi)	On	a Karnaugh map, grouping of	OS proc	iuces
		a)	a PVS expression	b)	an SOP expression
	•	c)	a don't care condition	d)	none of these.
	vii)	The	number of flip-flops required	l for a M	OD-10 ring counter is
	. , -	a)	10	b)	5
		c)	4	d)	12.

S S S S S S S S S S S S S S S S S S S	tech) }
<u>E</u>	June	7

viii)	Circ	cuit hazards are present in	
grant.	a)	combination circuits only	
	b)	combination and sequential circuit only	
	c)	sequential circuits only	
	d)	none of these.	
ix)	Whe	en two n-bit binary numbers are added, the sum will contain at the mos	st
	a)	n bits b) $n+1 bits$	
	c)	n+2 bits d) $n+n$ bits.	
x)	In a	a binary R-Z-R ladder DAC, the input resistance of each input is	
	a)	R b) 2R	
	c)	3R d) 4R.	
xi)	The	e number of control lines for a 8 to 1 multiplexer is	
	a)	b) 3	
	c) ·	4 d) 5.	
xii)	The	e simplification of the Boolean expression $(A + \overline{A} + B + C)$ is	
	a)	o b) 1	
	c)	A d) BC.	
•	•		
•		GROUP – B	
		(Short Answer Type Questions)	
•		Answer any <i>three</i> of the following. $3 \times$	5 = 15

- Explain race around condition of J-K flip-flop. Show how this condition can be 2. avoided.
- Simplify the Boolean function using K-map: 3.

$$F(A, B, C, D) = \sum m(0, 1, 2, 8, 10, 11, 14, 15).$$

- Design a full subtractor using (i) NAND gates, (ii) NOR gates. 4.
- Simplify algebraically, $Y = AB + A\overline{B} \left(\overline{A} \overline{C} \right)$. 5.

- 6. Define the following terms as applied to digital circuits:
 - a) Set-up time
 - b) Hold time
 - c) Maximum clock frequency
 - d) Fin in
 - e) Power dissipation.

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

- 7. a) What is the difference between a latch and a edge triggered flip-flop?
 - b) Design a clocked R-S fip-flop using NAND gates. Explain its principle of operation.
 - c) Design a MOD 10 synchronous binary UP conter using J-K flip-flop and necessary logic gates.
- 8. a) Describe the operation of successive approximation type ADC. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type ADC?
 - b) Draw a neat diagram of a R-2R ladder type DAC.
 - Design a sequential circuit that implements the following state diagram. Use all
 D-type flip-flops for the design.

3

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2007 DIGITAL ELECTRONICS AND INTEGRATED CIRCUIT SEMESTER - 4

· · · · · · · · · · · · · · · · · · ·			14	, ,	
Time: 3 Hours]		•		F	ull Marks: 70

GROUP - A

			(Multiple Choi	се Туре	Questions)
1.	Cho	ose ti	he correct alternatives for any	y ten of tl	the following: $10 \times 1 = 10$
	i)	Exc	cess-3 coded representation of	of (19) ₁₀) is
* .		a)	10011	b)	00011001
		c)	01001100	d)	11000100.
	ii)	The	decimal equivalent of the bir	nary num	nber (101111.1101) ₂ is
		a)	(46.8125) ₁₀	b)	(47.8125) ₁₀
		c)	(47.8155) ₁₀	d)	(47.8145) ₁₀ .
	iii)		0 MHz signal is applied to a output frequency will be	MOD 5	counter followed by a MOD 8 counter.
		a)	10 kHz	b)	2.5 kHz
		c)	5 kHz	d)	25 kHz.
	iv)	A 4	-stage ripple counter counts u	ipto .	
		a)	12	b)	15
		c)	. 11	d)	4.
	v)	Whi	ich family has the better noise	e margin	
		a)	ECL	b)	DTL
		c)	MOS	d)	TIL DE RESERVA
	vi)	On	a Karnaugh map, grouping of	OS prod	uces
		a)	a PVS expression	b)	an SOP expression
	• •	c)	a don't care condition	d)	none of these.
	vii)	The	number of flip-flops required	for a MC	DD-10 ring counter is
	,	a)	10	b)	5
		c)	.4	d)	12.