Nematohydrodynamics, Quasi-2D and Linear Approximations

Lucas Myers

June 19, 2020

Assumptions

We will consider a coupled nematic liquid crystal and hydrodynamic system on a flat substrate. We assume the fluid velocity and Q-tensor magnitude are small so we neglect terms higher than order-1 in Q_{ij} and v_i . Additionally, we assume no acceleration so that $\partial v_i/\partial t = 0$ always. We give an initial director field configuration of $\mathbf{n} = (\cos \phi, \sin \phi, 0)$ for some φ (to be specified) so that the Q-tensor, given by $Q_{ij} = S/2(3n_in_j - \delta_{ij})$ takes the form:

$$Q_{ij} = \frac{S}{2} \begin{bmatrix} 3\cos^2 \varphi - 1 & 3\cos \varphi \sin \varphi & 0\\ 3\cos \varphi \sin \varphi & 3\sin^2 \varphi - 1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$
 (1)

$$= \frac{S}{2} \begin{bmatrix} 3\cos^2\varphi - 1 & \frac{3}{2}\sin 2\varphi & 0\\ \frac{3}{2}\sin 2\varphi & 3\sin^2\varphi - 1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$
 (2)

Computing homoegenous and elastic generalized force

From Svensek and Zumer, the free energy density is given by

$$f = \phi(Q) + \frac{1}{2}L\partial_i Q_{jk}\partial_i Q_{jk} \tag{3}$$

so that the homogeneous elastic part of the generalized force is given by:

$$h_{ij}^{he} = L\partial_k^2 Q_{ij} - \frac{\partial \phi}{\partial Q_{ij}} + \lambda \delta_{ij} + \lambda_k \epsilon_{kij}$$
(4)

where ϕ is the Landau de Gennes bulk free energy:

$$\phi(Q) = \frac{1}{2} A Q_{ij} Q_{ji} + \frac{1}{3} B Q_{ij} Q_{jk} Q_{ki} + \frac{1}{4} C (Q_{ij} Q_{ji})^2$$
 (5)

We begin by explicitly calculating the second term in terms of Q_{ij} , one term at a time in ϕ :

$$\frac{\partial}{\partial Q_{mn}} \left(\frac{1}{2} A Q_{ij} Q_{ji} \right) = \frac{1}{2} A \left(\delta_{im} \delta_{jn} Q_{ji} + Q_{ij} \delta_{jm} \delta_{in} \right)
= \frac{1}{2} A (Q_{nm} + Q_{nm})
= A Q_{mn}$$
(6)

where in the last step we've used symmetry of Q_{ij} .

$$\frac{\partial}{\partial Q_{mn}} \left(\frac{1}{3} B Q_{ij} Q_{jk} Q_{ki} \right) = \frac{1}{3} B \left(\delta_{im} \delta_{jn} Q_{jk} Q_{ki} + Q_{ij} \delta_{jm} \delta_{kn} Q_{ki} + Q_{ij} Q_{jk} \delta_{mk} \delta_{ni} \right)
= \frac{1}{3} B \left(Q_{nk} Q_{km} + Q_{im} Q_{ni} + Q_{nj} Q_{jm} \right)
= B Q_{ni} Q_{im}$$
(7)

And the final term gives:

$$\frac{\partial}{\partial Q_{mn}} \left(\frac{1}{4} C (Q_{ij} Q_{ji})^2 \right) = \frac{1}{4} C \cdot 2 (Q_{ij} Q_{ji}) \frac{\partial (Q_{kl} Q_{lk})}{\partial Q_{mn}}$$

$$= \frac{1}{4} C \cdot 2 (Q_{ij} Q_{ji}) \cdot (\delta_{mk} \delta_{nl} Q_{lk} + Q_{kl} \delta_{lm} \delta_{kn})$$

$$= \frac{1}{4} C \cdot 2 (Q_{ij} Q_{ji}) \cdot (Q_{nm} + Q_{nm})$$

$$= C Q_{mn} (Q_{ij} Q_{ji})$$
(8)

Thus, the total homogeneous and elastic force reads:

$$h_{ij}^{he} = L\partial^2 Q_{ij} - AQ_{mn} - BQ_{ni}Q_{im} - CQ_{mn}(Q_{ij}Q_{ji}) + \lambda \delta_{ij} + \lambda_k \epsilon_{kij}$$
(9)

Computing viscous force explicitly

Alrighty then, now we need the viscous force on the liquid crystals. From Svensek and Zumer, the viscous force is given by:

$$-h_{ij}^{v} = \frac{1}{2}\mu_2 A_{ij} + \mu_1 N_{ij} \tag{10}$$

with

$$N_{ij} = \frac{dQ_{ij}}{dt} + W_{ik}Q_{kj} - Q_{ik}W_{kj} \tag{11}$$

and

$$\frac{dQ_{ij}}{dt} = \frac{\partial Q_{ij}}{\partial t} + (v \cdot \nabla)Q_{ij} \tag{12}$$

The second two terms in the expression for N_{ij} are quadratic in v_i and Q_{ij} so we may drop them, and $(v \cdot \nabla)Q_{ij}$ is clearly quadratic. Hence, we make the approximation

$$N_{ij} \approx \frac{\partial Q_{ij}}{\partial t} \tag{13}$$

We also have the definition

$$A_{ij} = (\partial_i v_j + \partial_j v_i) \tag{14}$$

Note that we want to restrict our analysis to an incompressible fluid, so we must have a further restriction that:

$$\partial_i v_i = 0 \tag{15}$$

Then the expression for the complete viscous force is

$$-h_{ij}^{v} = \frac{1}{2}\mu_2(\partial_i v_j + \partial_j v_i) + \mu_1 \frac{\partial Q_{ij}}{\partial t}$$
(16)

One equation of motion is then given by

$$h_{ij}^{he} + h_{ij}^{v} = 0 (17)$$

or explicitly

$$\mu_1 \frac{\partial Q_{ij}}{\partial t} = L \partial^2 Q_{ij} - AQ_{mn} - BQ_{ni}Q_{im} - CQ_{mn}(Q_{ij}Q_{ji}) + \lambda \delta_{ij} + \lambda_k \epsilon_{kij} - \frac{1}{2}\mu_2(\partial_i v_j + \partial_j v_i)$$
 (18)

Using this, we may update Q_{ij} in time by solving for $\partial Q_{ij}/\partial t$ in terms of Q_{ij} and v_i from the previous iteration.

Computing the elastic stress tensor explicitly

The elastic stress tensor is obtained via

$$\sigma_{ij}^e = -\frac{\partial f}{\partial(\partial_i Q_{kl})} \partial_j Q_{kl} \tag{19}$$

Note that only the elastic part of the free energy make references to derivatives:

$$\frac{\partial f}{\partial(\partial_{i}Q_{kl})} = \frac{\partial}{\partial(\partial_{i}Q_{kl})} \frac{1}{2} L \partial_{j} Q_{mn} \partial_{j} Q_{mn}
= \frac{1}{2} L (\delta_{ij}\delta_{km}\delta_{ln}\partial_{j}Q_{mn} + \partial_{j}Q_{mn}\delta_{ij}\delta_{km}\delta_{ln})
= \frac{1}{2} L (\partial_{i}Q_{kl} + \partial_{i}Q_{kl})
= L \partial_{i}Q_{kl}$$
(20)

Then the elastic stress tensor is given by

$$\sigma_{ij}^e = -L\partial_i Q_{kl} \partial_j Q_{kl} \tag{21}$$

Computing viscous stress tensor explicitly

The viscous stress tensor is given by

$$\sigma_{ij}^{v} = \beta_1 Q_{ij} Q_{kl} A_{kl} + \beta_4 A_{ij} + \beta_5 Q_{ik} A_{ki} + \frac{1}{2} \mu_2 N_{ij} - \mu_1 Q_{ik} N_{kj} + \mu_1 Q_{jk} N_{ki}$$
 (22)

However, only the β_4 and μ_2 are linear in Q_{ij} and v_i . Hence, this simplifies to

$$\sigma_{ij}^v \approx \beta_4 A_{ij} + \frac{1}{2} \mu_2 N_{ij} \tag{23}$$

Again, plugging in for A_{ij} and N_{ij} as we did for the viscous force, we get

$$\sigma_{ij}^{v} \approx \beta_4 (\partial_i v_j + \partial_j v_i) + \frac{1}{2} \mu_2 \frac{\partial Q_{ij}}{\partial t}$$
 (24)

Computing the fluid equation of motion

The equation of motion for the fluid is given by

$$\rho \frac{\partial v_i}{\partial t} = -\partial_i p + \partial_j (\sigma^v_{ji} + \sigma^e_{ji}) \tag{25}$$

We've made the assumption that $\partial v_i/\partial t \approx 0$. Plugging in for σ^v_{ji} and σ^e_{ji} yields

$$0 = -\partial_{i}p + \partial_{j} \left(-L\partial_{j}Q_{kl}\partial_{i}Q_{kl} + \beta_{4}(\partial_{j}v_{i} + \partial_{i}v_{j}) + \frac{1}{2}\mu_{2}\frac{\partial Q_{ji}}{\partial t} \right)$$

$$= -\partial_{i}p - L\left[(\partial^{2}Q_{kl})\partial_{i}Q_{kl} + (\partial_{j}Q_{kl})\partial_{j}\partial_{i}Q_{kl} \right] + \beta_{4}(\partial^{2}v_{i} + \partial_{j}\partial_{i}v_{j}) + \frac{1}{2}\mu_{2}\partial_{j}\frac{\partial Q_{ji}}{\partial t}$$

$$= -\partial_{i}p - L\left[(\partial^{2}Q_{kl})\partial_{i}Q_{kl} + (\partial_{j}Q_{kl})\partial_{j}\partial_{i}Q_{kl} \right] + \beta_{4}\partial^{2}v_{i} + \frac{1}{2}\mu_{2}\partial_{j}\frac{\partial Q_{ji}}{\partial t}$$

$$(26)$$

where in the last step we have used the condition that $\partial_i v_i = 0$.