Thermodynamic and transport properties

Annex 1: Thermodynamic and transport properties (liquids and gases)

Annex 2: Thermodynamic and transport properties of gases (JANAF)

ANNEX 1. Thermodynamic and transport properties¹

Some gases and liquids fuels²:

- Isobutene, $C_4H_{10}(g)$, $\hat{h}_f^o = -126150\,kJ/kmol$, $\hat{c}_p(kJ/kmolK) = 35.6 + 0.2077 \cdot T(K)$, $LHV = 45.55\,MJ/kg$
- **n-Octane**, $C_8H_{18}(l)$, $\hat{h}_f^o = -249950 \, kJ/kmole$, $\hat{c}_p = 254 \, kJ/kmolK$, $LHV = 44.35 \, MJ/kg$
- **n-Decane** (similar characteristics of kerosene), $C_{10}H_{22}(l)$, $\hat{h}_f^o = -294366 \, kJ/kmol$, $\hat{c}_p = 296 \, kJ/kmolK$, $LHV = 44.17 \, MJ/kg$
- Propane, $C_3H_8(g)$, $\hat{c}_p(kJ/kmolK) = -4.04 + 30.48 \times 10^{-2}T 15.72 \times 10^{-5}T^2 + 31.74 \times 10^{-9}T^3$, T(K) range: 273 1500K; $\hat{h}_f^o = -103850\,kJ/kmol$.

Table 1. Thermochemical properties of selected substances at $298\,K$ and $1\,atm$

¹ Note: Tables A25 and A-21 from M.J.Moran and H.N.Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, Inc.

² R.D.Flack, Fundamentals of jet propulsion with applications, Cambridge Aerospace Series, 2005.

		Molar	Enthalpy	Gibbs	Absolute	Heating Values		
Substance	Formula	mass, W	of formation,	function of formation,	entropy, \hat{S}^{o} (kJ/kmol	Higher, HHV (kJ/kg)	Lower, LHV (kJ/kg)	
Carbon Hydrogen Nitrogen Oxygen	$\begin{array}{c} C(s) \\ H_2(g) \\ N_2(g) \\ O_2(g) \end{array}$	12.01 2.016 28.01 32.00	0 0 0	0 0 0 0	5.74 130.57 191.50 205.03	32,770 141,780 —	32,770 119,950 —	
Carbon monoxide Carbon dioxide Water Water	$CO(g)$ $CO_2(g)$ $H_2O(g)$ $H_2O(l)$	28.01 44.01 18.02 18.02	-110,530 -393,520 -241,820 -285,830	-137,150 -394,380 -228,590 -237,180	197.54 213.69 188.72 69.95		_	
Hydrogen peroxide Ammonia Oxygen Hydrogen	H ₂ O ₂ (g) NH ₃ (g) O(g) H(g)	34.02 17.03 16.00 1.008	-136,310 -46,190 249,170 218,000	-105,600 -16,590 231,770 203,290	232.63 192.33 160.95 114.61	_ _ _	=	
Nitrogen Hydroxyl Methane Acetylene	$\begin{aligned} &N(g)\\ &OH(g)\\ &CH_4(g)\\ &C_2H_2(g) \end{aligned}$	14.01 17.01 16.04 26.04	472,680 39,460 -74,850 226,730	455,510 34,280 -50,790 209,170	153.19 183.75 186.16 200.85	55,510 49,910	50,020 48,220	
Ethylene $C_2H_{4(g)}$ Ethane Propylene Propane	C ₂ H ₂ (g) C ₂ H ₆ (g) C ₃ H ₆ (g) C ₃ H ₈ (g)	28.05 30.07 42.08 44.09	52,280 -84,680 20,410 -103,850	68,120 -32,890 62,720 -23,490	219.83 229.49 266.94 269.91	50,300 51,870 48,920 50,350	47,160 47,480 45,780 46,360	
Pentane	C ₅ H ₁₂ (g)	72.15	-146,440	-8,200	348.40	49,010	45,350	
Octane Octane Benzene	$C_8H_{18}(g)$ $C_8H_{18}(l)$ $C_6H_6(g)$	114.22 114.22 78.11	-208,450 -249,910 82,930	17,320 6,610 129,660	463.67 360.79 269.20	48,260 47,900 42,270	44,790 44,430 40,580	
Methyl alcohol Methyl alcohol Ethyl alcohol Ethyl alcohol	CH ₃ OH(g) CH ₃ OH(l) C ₂ H ₅ OH(g) C ₂ H ₅ OH(l)	32.04 32.04 46.07 46.07	-200,890 -238,810 -235,310 -277,690	-162,140 -166,290 -168,570 174,890	239.70 126.80 282.59 160.70	23,850 22,670 30,590 29,670	21,110 19,920 27,720 26,800	

Source: Based on JANAF Thermochemical Tables, NSRDS-NBS-37, 1971; Selected Values of Chemical Thermodynamic Properties, NBS Tech. Note 270-3, 1968; and API Research Project 44, Carnegie Press, 1953. Heating values calculated.

Table 2. Specific heat for selected ideal gases (T in K; range: 300 < T < 1000 K)

 $\hat{c}/\hat{R} = c/R = \alpha + RT + vT^2 + \delta T^3 + \varepsilon T^4$

Gas	α	$\beta \times 10^3$	$\gamma \times 10^6$	$\delta \times 10^9$	$\varepsilon \times 10^{12}$		
СО	3.710	-1.619	3.692	-2.032	0.240		
CO ₂	2.401	8.735	-6.607	2.002	0		
H_2	3.057	2.677	-5.810	5.521	-1.812		
H ₂ O	4.070	-1.108	4.152	-2.964	0.807		
O_2	3.626	-1.878	7.055	-6.764	2.156		
N_2	3.675	-1.208	2.324	-0.632	-0.226		
Air	3.653	-1.337	3.294	-1.913	0.2763		
SO ₂	3.267	5.324	0.684	-5.281	2.559		
CH ₄	3.826	-3.979	24.558	-22.733	6.963		
C_2H_2	1.410	19.057	-24.501	16.391	-4.135		
C_2H_4	1.426	11.383	7.989	-16.254	6.749		
Monatomic							
gases ^a	2.5	0	0	0	0		

^a For monatomic gases, such as He, Ne, and Ar, \overline{c}_p is constant over a wide temperature range and is very nearly equal to 5/2 \overline{R} .

Source: Adapted from K. Wark, Thermodynamics, 4th ed., McGraw-Hill, New York, 1983, as based on NASA SP-273, U.S. Government Printing Office, Washington, DC, 1971.

Table 3. Flammability limits and ignition temperatures of common

Tuels in fuel/air Substance	Molécular Formula	Lower Flammability Limit, %	Upper Flammability Limit, %	Ignition Temperature, °C	References		
Carbon	С	_	_	660	Hartman (1958)		
Carbon monoxide	CO	12.5	74	609	Scott et al. (1948)		
Hydrogen	H_2	4.0	75.0	520	Zabetakis (1956)		
Methane	CH_4	5.0	15.0	705	Gas Engineers Handbook		
Ethane	C_2H_6	3.0	12.5	520 to 630	Trinks (1947)		
Propane	C_3H_8	2.1	10.1	466	NFPA (1962)		
<i>n</i> -Butane	$C_{4}H_{10}$	1.86	8.41	405	NFPA (1962)		
Ethylene	C_2H_4	2.75	28.6	490	Scott et al. (1948)		
Propylene	C_3H_6	2.00	11.1	450	Scott et al. (1948)		
Acetylene	C_2H_2	2.50	81	406 to 440	Trinks (1947)		
Sulfur	S	_	_	190	Hartman (1958)		
Hydrogen sulfide	H_2S	4.3	45.50	292	Scott et al. (1948)		

Flammability limits adapted from Coward and Jones (1952). All values corrected to 16°C, 104 kPa, dry. (% by volume of air)

ASHRAE Fundamentals

Table 4. Equilibrium constant $K_{\it p}$

	_			-					
				le	$\log_{10} K$				
Temp.	$H_2 \leftrightharpoons 2H$	O ₂	$N_2 \leftrightharpoons 2N$	$ \frac{\frac{1}{2}O_2 + \frac{1}{2}N_2}{\rightleftharpoons NO} $	$ \begin{array}{c} H_2O \leftrightarrows \\ H_2 + \frac{1}{2}O_2 \end{array} $	$H_2O \leftrightharpoons$ $OH + \frac{1}{2}H_2$	$CO_2 \leftrightharpoons$ $CO + \frac{1}{2}O_2$	$CO_2 + H_2 \leftrightharpoons$ $CO + H_2O$	Temp. °R
298	-71.224	-81.208	-159.600	-15.171	-40.048	-46.054	-45.066	-5.018	537
500	-40.316	-45.880	-92.672	-8.783	-22.886	-26.130	-25.025	-2.139	900
1000	-17.292	-19.614	-43.056	-4.062	-10.062	-11.280	-10.221	-0.159	1800
1200	-13.414	-15.208	-34.754	-3.275	-7.899	-8.811	-7.764	+0.135	2160
1400	-10.630	-12.054	-28.812	-2.712	-6.347	-7.021	-6.014	+0.333	2520
1600	-8.532	-9.684	-24.350	-2.290	-5.180	-5.677	-4.706	+0.474	2880
1700	-7.666	-8.706	-22.512	-2.116	-4.699	-5.124	-4.169	+0.530	3060
1800	-6.896	-7.836	-20.874	-1.962	-4.270	-4.613	-3.693	+0.577	3240
1900	-6.204	-7.058	-19.410	-1.823	-3.886	-4.190	-3.267	+0.619	3420
2000	-5.580	-6.356	-18.092	-1.699	-3.540	-3.776	-2.884	+0.656	3600
2100	-5.016	-5.720	-16.898	-1.586	-3.227	-3.434	-2.539	+0.688	3780
2200	-4.502	-5.142	-15.810	-1.484	-2.942	-3.091	-2.226	+0.716	3960
2300	-4.032	-4.614	-14.818	-1.391	-2.682	-2.809	-1.940	+0.742	4140
2400	-3.600	-4.130	-13.908	-1.305	-2.443	-2.520	-1.679	+0.764	4320
2500	-3.202	-3.684	-13.070	-1.227	-2.224	-2.270	-1.440	+0.784	4500
2600	-2.836	-3.272	-12.298	-1.154	-2.021	-2.038	-1.219	+0.802	4680
2700	-2.494	-2.892	-11.580	-1.087	-1.833	-1.823	-1.015	+0.818	4860
2800	-2.178	-2.536	-10.914	-1.025	-1.658	-1.624	-0.825	+0.833	5040
2900	-1.882	-2.206	-10.294	-0.967	-1.495	-1.438	-0.649	+0.846	5220
3000	-1.606	-1.898	-9.716	-0.913	-1.343	-1.265	-0.485	+0.858	5400
3100	-1.348	-1.610	-9.174	-0.863	-1.201	-1.103	-0.332 -0.189 -0.054 $+0.071$ $+0.190$	+0.869	5580
3200	-1.106	-1.340	-8.664	-0.815	-1.067	-0.951		+0.878	5760
3300	-0.878	-1.086	-8.186	-0.771	-0.942	-0.809		+0.888	5940
3400	-0.664	-0.846	-7.736	-0.729	-0.824	-0.674		+0.895	6120
3500	-0.462	-0.620	-7.312	-0.690	-0.712	-0.547		+0.902	6300

Source: Based on data from the JANAF Thermochemical Tables, NSRDS-NBS-37, 1971.

(Table from M.J.Moran and H.N.Shapiro, Fundamentals of Engineering Thermodynamics, John Wiley & Sons, Inc, 5th ed., 2006)

Annex 2. Thermodynamic and transport properties of gases

Thermodynamic and transport properties of different gases are given below. Specifically: Argon (Ar), Carbon (C), Methane (CH₄), Carbon monoxide (CO), Carbon dioxide (CO₂), Hydrogen atom (H), Hydrogen (H₂), Water (H₂O), Peroxide (H₂O₂), Hydroperoxyl (HO₂), Nitrogen atom (N), Nitrogen (N₂), Nitrogen monoxide (NO), Nitrogen dioxide (NO₂), Oxygen atom (O), Oxygen (O₂), Hydroxyl (OH), Acetylene (C₂H₂), n-decane (C₁₀H₂₂).

General equations are given in terms of different coefficients. In all these equations, temperature is given in K. The universal gas constant ($\hat{R} = 8.31447 \, kJ/kmolK$) and the gas constant ($R = \hat{R}/W$) are used in the thermodynamic properties.

Specific heat at constant pressure:

$$\frac{c_p}{R} = \frac{\hat{c}_p}{\hat{R}} = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4$$

Absolute enthalpy (formation enthalpy is included) at $p = p^{\circ} = 1$ atm:

$$\frac{h^{o}(T)}{RT} = \frac{\hat{h}^{o}(T)}{\hat{R}T} = a_0 + \frac{a_1}{2}T + \frac{a_2}{3}T^2 + \frac{a_3}{4}T^3 + \frac{a_4}{5}T^4 + \frac{a_5}{T}$$

Absolute entropy at $p = p^{\circ} = 1$ atm:

$$\frac{s^{o}(T)}{R} = \frac{\hat{s}^{o}(T)}{\hat{R}} = a_0 \ln(T) + a_1 T + \frac{a_2}{2} T^2 + \frac{a_3}{3} T^3 + \frac{a_4}{4} T^4 + a_5$$

Dynamic viscosity and thermal conductivity:

$$\mu\left(\frac{kg}{ms}\right) = e^{b_o + b_1 \ln T + b_2 (\ln T)^2 + b_3 i \delta}$$

.

Coefficients for different gases of the polynomial expressions given below for. The coefficients corresponding to the thermodynamic properties ($^{c}_{p}$, h^{o} and s^{o}) have been obtained from JANAF³. Transport properties (μ and λ) from CHEMKIN⁴.

List of gases considered: Argon (Ar), Carbon (C), Methane (CH4), Carbon monoxide (CO), Carbon dioxide (CO2), Hydrogen atom (H), Hydrogen (H2), Water (H2O), Peroxide (H2O2), Hydroperoxyl (HO₂), Nitrogen atom (N), Nitrogen (N2), Nitrogen wonoxide (NO2), Nitrogen atom (O), Oxygen atom (O), Oxygen (O2), Hydroxyl (OH), Acetylene (C2H2), n-decane (C10H22).

```
AR
            Argon
JANAF-CHEMKIN
MW 0.3994800186e+02 (molecular mass in kg/kmol)
  200.0 1000.0 (temperature range from 200 to 1000 K)
                                                                        b_0, b_1, b_2, b_3
                                                                                                C_0, C_1, C_2, C_3
                                                                                                                                 a_0, a_1, a_2, \dots
      RO
           GASIDEAL
                                                          -0.3746257298e+00
                                                                              0.1658331947e-01
            EPOLI3
                     -0.2133949627e+02
                                        0.3467381630e+01
      LAMBDA EPOLI3
                         -0.1467956128e+02
                                            0.3467381630e+01 -0.3746257298e+00
                                                                                 0.1658331947e-01
           JANAF_CP 0.2500000000e+01
                                          0.0000000000e+00
                                                            0.0000000000e+00
                                                                               0.0000000000e+00
                                                                                                 0.000000000e+00
           JANAF H 0.2500000000e+01
                                        0.0000000000e+00
                                                           0.0000000000e+00
                                                                              0.0000000000e+00
                                                                                                0.000000000e+00
                                                                                                                    -0.7453750000e+03
      Η
           JANAF S 0.2500000000e+01
                                        0.0000000000e+00
                                                                                                                    0.4366000000e+01
                                                           0.0000000000e+00
                                                                             0.0000000000e+00
                                                                                                0.000000000e+00
  1000.0 5000.0 (temperature range from 1000 to 5000 K)
      RO
           GASIDEAL
           EPOLI3
                     -0.2133949627e+02
                                        0.3467381630e+01 -0.3746257298e+00
                                                                              0.1658331947e-01
      LAMBDA EPOLI3
                         -0.1467956128e+02
                                            0.3467381630e+01 -0.3746257298e+00
                                                                                 0.1658331947e-01
                                          0.0000000000e+00
           JANAF CP 0.2500000000e+01
                                                            0.0000000000e+00
                                                                               0.0000000000e+00
                                                                                                 0.0000000000e+00
           JANAF H 0.2500000000e+01
                                        0.0000000000e+00
                                                           0.0000000000e+00
                                                                              0.000000000e+00
                                                                                                0.000000000e+00
                                                                                                                    -0.7453750000e+03
           JANAF S 0.2500000000e+01
                                        0.0000000000e+00
                                                          0.0000000000e+00
                                                                             0.0000000000e+00
                                                                                               0.0000000000e+00
                                                                                                                    0.4366000000e+01
          Carbon
\mathbf{C}
JANAF-CHEMKIN
```

MW 0.1201115036e+02

200.0 1000.0

2

See website: http://www.sandia.gov/HiTempThermo/chemkin.html. Note, similar correlations (but not the same) can be seen on the NIST website: http://webbook.nist.gov/chemistry/

⁴ See the same website: http://www.sandia.gov/HiTempThermo/chemkin.html.

```
RO GASIDEAL
     MU EPOLI3 -0.1733304620e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     LAMBDA EPOLI3 -0.9471367964e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
          JANAF CP 0.2554239550e+01 -0.3215377240e-03 0.7337922450e-06 -0.7322348890e-09 0.2665214460e-12
          JANAF H 0.2554239550e+01 -0.3215377240e-03 0.7337922450e-06 -0.7322348890e-09 0.2665214460e-12
                                                                                                          0.8544388320e+05
          JANAF S 0.2554239550e+01 -0.3215377240e-03 0.7337922450e-06 -0.7322348890e-09 0.2665214460e-12
                                                                                                          0.4531308480e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1733304620e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     LAMBDA EPOLI3 -0.9471367964e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
     CP JANAF CP 0.2492668880e+01 0.4798892840e-04 -0.7243350200e-07 0.3742910290e-10 -0.4872778930e-14
          JANAF H 0.2492668880e+01 0.4798892840e-04 -0.7243350200e-07 0.3742910290e-10 -0.4872778930e-14
                                                                                                          0.8545129530e+05
      S JANAF S 0.2492668880e+01 0.4798892840e-04 -0.7243350200e-07 0.3742910290e-10 -0.4872778930e-14
                                                                                                          0.4801503730e+01
CH4
            Methane
JANAF-CHEMKIN
MW 0.1604303026e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.2230715913e+02 0.3569542093e+01 -0.3874920393e+00 0.1712461411e-01
     LAMBDA EPOLI3 0.1793259165e+01 -0.4960294457e+01 0.1032808843e+01 -0.5633567903e-01
          JANAF CP 0.5149876130e+01 -0.1367097880e-01 0.4918005990e-04 -0.4847430260e-07 0.1666939560e-10
          JANAF H 0.5149876130e+01 -0.1367097880e-01 0.4918005990e-04 -0.4847430260e-07 0.1666939560e-10
                                                                                                          -0.1024664760e+05
          JANAF S 0.5149876130e+01 -0.1367097880e-01 0.4918005990e-04 -0.4847430260e-07 0.1666939560e-10
                                                                                                         -0.4641303760e+01
  1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.2230715913e+02 0.3569542093e+01 -0.3874920393e+00 0.1712461411e-01
     LAMBDA EPOLI3 0.1793259165e+01 -0.4960294457e+01 0.1032808843e+01 -0.5633567903e-01
     CP JANAF CP 0.7485149500e-01 0.1339094670e-01 -0.5732858090e-05 0.1222925350e-08 -0.1018152300e-12
      H JANAF H 0.7485149500e-01 0.1339094670e-01 -0.5732858090e-05 0.1222925350e-08 -0.1018152300e-12
                                                                                                         -0.9468344590e+04
          JANAF S 0.7485149500e-01 0.1339094670e-01 -0.5732858090e-05 0.1222925350e-08 -0.1018152300e-12
                                                                                                         0.1843731800e+02
```

CO Carbon monoxide

JANAF-CHEMKIN

```
MW 0.2801055050e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1891819775e+02 0.2400975158e+01 -0.2357717790e+00 0.1054820948e-01
     LAMBDA EPOLI3 0.3641755785e+00 -0.3154801253e+01 0.6020483455e+00 -0.3032714733e-01
          JANAF CP 0.3579533470e+01 -0.6103536800e-03 0.1016814330e-05 0.9070058840e-09 -0.9044244990e-12
          JANAF H 0.3579533470e+01 -0.6103536800e-03 0.1016814330e-05 0.9070058840e-09 -0.9044244990e-12
                                                                                                          -0.1434408600e+05
          JANAF S 0.3579533470e+01 -0.6103536800e-03 0.1016814330e-05 0.9070058840e-09 -0.9044244990e-12
                                                                                                          0.3508409280e+01
  1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.1891819775e+02 0.2400975158e+01 -0.2357717790e+00 0.1054820948e-01
     LAMBDA EPOLI3 0.3641755785e+00 -0.3154801253e+01 0.6020483455e+00 -0.3032714733e-01
     CP JANAF CP 0.2715185610e+01 0.2062527430e-02 -0.9988257710e-06 0.2300530080e-09 -0.2036477160e-13
          JANAF H 0.2715185610e+01 0.2062527430e-02 -0.9988257710e-06 0.2300530080e-09 -0.2036477160e-13
                                                                                                          -0.1415187240e+05
      S JANAF S 0.2715185610e+01 0.2062527430e-02 -0.9988257710e-06 0.2300530080e-09 -0.2036477160e-13
                                                                                                          0.7818687720e+01
#-----
CO<sub>2</sub>
            Carbon dioxide
JANAF-CHEMKIN
MW 0.4400995064e+02
2
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.2627315808e+02 0.5130426196e+01 -0.5724284704e+00 0.2440888722e-01
     LAMBDA EPOLI3 -0.2286363338e+02 0.5875667874e+01 -0.5677982250e+00 0.2031670239e-01
          JANAF CP 0.2356773520e+01 0.8984596770e-02 -0.7123562690e-05 0.2459190220e-08 -0.1436995480e-12
          JANAF H 0.2356773520e+01 0.8984596770e-02 -0.7123562690e-05 0.2459190220e-08 -0.1436995480e-12
                                                                                                          -0.4837196970e+05
          JANAF S 0.2356773520e+01 0.8984596770e-02 -0.7123562690e-05 0.2459190220e-08 -0.1436995480e-12
                                                                                                          0.9901052220e+01
  1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.2627315808e+02 0.5130426196e+01 -0.5724284704e+00 0.2440888722e-01
     LAMBDA EPOLI3 -0.2286363338e+02 0.5875667874e+01 -0.5677982250e+00 0.2031670239e-01
     CP JANAF CP 0.3857460290e+01 0.4414370260e-02 -0.2214814040e-05 0.5234901880e-09 -0.4720841640e-13
          JANAF H 0.3857460290e+01 0.4414370260e-02 -0.2214814040e-05 0.5234901880e-09 -0.4720841640e-13 -0.4875916600e+05
```

```
S JANAF S 0.3857460290e+01 0.4414370260e-02 -0.2214814040e-05 0.5234901880e-09 -0.4720841640e-13
                                                                                                         0.2271638060e+01
Η
          Hydrogen atom
JANAF-CHEMKIN
MW 0.1007969975e+01
2
  200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.2270792854e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
     LAMBDA EPOLI3 -0.1236835327e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
          JANAF CP 0.2500000000e+01 0.7053328190e-12 -0.1995919640e-14 0.2300816320e-17 -0.9277323320e-21
          JANAF H 0.2500000000e+01 0.7053328190e-12 -0.1995919640e-14 0.2300816320e-17 -0.9277323320e-21
                                                                                                          0.2547365990e+05
          JANAF S 0.2500000000e+01 0.7053328190e-12 -0.1995919640e-14 0.2300816320e-17 -0.9277323320e-21 -0.4466828530e+00
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.2270792854e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
     LAMBDA EPOLI3 -0.1236835327e+02 0.3652691486e+01 -0.3980303021e+00 0.1757072886e-01
     CP JANAF CP 0.2500000010e+01 -0.2308429730e-10 0.1615619480e-13 -0.4735152350e-17 0.4981973570e-21
          JANAF H 0.2500000010e+01 -0.2308429730e-10 0.1615619480e-13 -0.4735152350e-17 0.4981973570e-21
                                                                                                          0.2547365990e+05
      S JANAF S 0.2500000010e+01 -0.2308429730e-10 0.1615619480e-13 -0.4735152350e-17 0.4981973570e-21
                                                                                                         -0.4466829140e+00
#-----
H2
          Hydrogen
JANAF-CHEMKIN
MW 0.2015939951e+01
2
  200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1614293964e+02 0.1003491326e+01 -0.5016044555e-01 0.2330995224e-02
     LAMBDA EPOLI3 -0.2277096638e+01 -0.4674267764e+00 0.1156734789e+00 -0.2596025563e-02
          JANAF CP 0.2344331120e+01 0.7980520750e-02 -0.1947815100e-04 0.2015720940e-07 -0.7376117610e-11
          JANAF H 0.2344331120e+01 0.7980520750e-02 -0.1947815100e-04 0.2015720940e-07 -0.7376117610e-11 -0.9179351730e+03
          JANAF S 0.2344331120e+01 0.7980520750e-02 -0.1947815100e-04 0.2015720940e-07 -0.7376117610e-11
                                                                                                         0.6830102380e+00
  1000.0 5000.0
      RO GASIDEAL
```

```
MU EPOLI3 -0.1614293964e+02 0.1003491326e+01 -0.5016044555e-01 0.2330995224e-02
     LAMBDA EPOLI3 -0.2277096638e+01 -0.4674267764e+00 0.1156734789e+00 -0.2596025563e-02
          JANAF CP 0.3337279200e+01 -0.4940247310e-04 0.4994567780e-06 -0.1795663940e-09
                                                                                         0.2002553760e-13
          JANAF H 0.3337279200e+01 -0.4940247310e-04 0.4994567780e-06 -0.1795663940e-09 0.2002553760e-13
                                                                                                           -0.9501589220e+03
          JANAF S 0.3337279200e+01 -0.4940247310e-04 0.4994567780e-06 -0.1795663940e-09 0.2002553760e-13
                                                                                                          -0.3205023310e+01
H<sub>2</sub>O
            Water
JANAF-CHEMKIN
MW 0.1801534009e+02
  200.0 1000.0
     RO GASIDEAL
     MU EPOLI3 -0.1286013492e+02 -0.1377850379e+01 0.4213981638e+00 -0.2414423056e-01
     LAMBDA EPOLI3 0.1185254026e+02 -0.8965822807e+01 0.1528828068e+01 -0.7590175979e-01
          JANAF CP 0.4198640560e+01 -0.2036434100e-02 0.6520402110e-05 -0.5487970620e-08 0.1771978170e-11
          JANAF H 0.4198640560e+01 -0.2036434100e-02 0.6520402110e-05 -0.5487970620e-08 0.1771978170e-11
                                                                                                           -0.3029372670e+05
          JANAF S 0.4198640560e+01 -0.2036434100e-02 0.6520402110e-05 -0.5487970620e-08 0.1771978170e-11
                                                                                                          -0.8490322080e+00
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1286013492e+02 -0.1377850379e+01 0.4213981638e+00 -0.2414423056e-01
     LAMBDA EPOLI3 0.1185254026e+02 -0.8965822807e+01 0.1528828068e+01 -0.7590175979e-01
          JANAF CP 0.3033992490e+01 0.2176918040e-02 -0.1640725180e-06 -0.9704198700e-10 0.1682009920e-13
          JANAF H 0.3033992490e+01 0.2176918040e-02 -0.1640725180e-06 -0.9704198700e-10 0.1682009920e-13
                                                                                                           -0.3000429710e+05
      S JANAF S 0.3033992490e+01 0.2176918040e-02 -0.1640725180e-06 -0.9704198700e-10 0.1682009920e-13
                                                                                                           0.4966770100e+01
H2O2
            Peroxide
JANAF-CHEMKIN
MW 0.3401474023e+02
2
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1943012788e+02 0.2678088349e+01 -0.2721592408e+00
                                                                        0.1214173233e-01
     LAMBDA EPOLI3 -0.1063014819e+02 0.1315528335e+01 0.1916184484e-01 -0.4416817199e-02
          JANAF CP 0.4276112690e+01 -0.5428224170e-03 0.1673357010e-04 -0.2157708130e-07 0.8624543630e-11
      Η
          JANAF H 0.4276112690e+01 -0.5428224170e-03 0.1673357010e-04 -0.2157708130e-07 0.8624543630e-11
                                                                                                           -0.1770258210e+05
          JANAF S 0.4276112690e+01 -0.5428224170e-03 0.1673357010e-04 -0.2157708130e-07 0.8624543630e-11
                                                                                                           0.3435050740e+01
```

1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.1943012788e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01 LAMBDA EPOLI3 -0.1063014819e+02 0.1315528335e+01 0.1916184484e-01 -0.4416817199e-02 CP JANAF CP 0.4165002850e+01 0.4908316940e-02 -0.1901392250e-05 0.3711859860e-09 -0.2879083050e-13 H JANAF H 0.4165002850e+01 0.4908316940e-02 -0.1901392250e-05 0.3711859860e-09 -0.2879083050e-13 -0.1786178770e+05 JANAF S 0.4165002850e+01 0.4908316940e-02 -0.1901392250e-05 0.3711859860e-09 -0.2879083050e-13 0.2916156620e+01 #-----HO₂ **Hydroperoxyl** JANAF-CHEMKIN MW 0.3300677025e+02 200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.1944516852e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01 LAMBDA EPOLI3 -0.1264302144e+02 0.2340066563e+01 -0.1632055933e+00 0.5799980518e-02 CP JANAF CP 0.4301798010e+01 -0.4749120510e-02 0.2115828910e-04 -0.2427638940e-07 0.9292251240e-11 JANAF H 0.4301798010e+01 -0.4749120510e-02 0.2115828910e-04 -0.2427638940e-07 0.9292251240e-11 0.2948080400e+03 JANAF S 0.4301798010e+01 -0.4749120510e-02 0.2115828910e-04 -0.2427638940e-07 0.9292251240e-11 0.3716662450e+01 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.1944516852e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01 LAMBDA EPOLI3 -0.1264302144e+02 0.2340066563e+01 -0.1632055933e+00 0.5799980518e-02 CP JANAF CP 0.4017210900e+01 0.2239820130e-02 -0.6336581500e-06 0.1142463700e-09 -0.1079085350e-13 JANAF H 0.4017210900e+01 0.2239820130e-02 -0.6336581500e-06 0.1142463700e-09 -0.1079085350e-13 0.1118567130e+03 S JANAF S 0.4017210900e+01 0.2239820130e-02 -0.6336581500e-06 0.1142463700e-09 -0.1079085350e-13 0.3785102150e+01 Nitrogen atom JANAF-CHEMKIN MW 0.1400669956e+02 2 200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.1725619603e+02 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02

```
LAMBDA EPOLI3 -0.9548218134e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
          JANAF CP 0.2500000000e+01 0.000000000e+00 0.000000000e+00 0.000000000e+00 0.000000000e+00
          JANAF H 0.2500000000e+01 0.000000000e+00 0.000000000e+00
                                                                        0.0000000000e+00
                                                                                         0.0000000000e+00
                                                                                                            0.5610463700e+05
          JANAF S 0.2500000000e+01 0.000000000e+00
                                                      0.000000000e+00
                                                                        0.0000000000e+00
                                                                                         0.0000000000e+00
                                                                                                            0.4193908700e+01
  1000.0 5000.0
          GASIDEAL
      RO
     MU EPOLI3 -0.1725619603e+02 0.1706343689e+01 -0.1443632622e+00
                                                                        0.6539115412e-02
     LAMBDA EPOLI3 -0.9548218134e+01 0.1706343689e+01 -0.1443632622e+00 0.6539115412e-02
          JANAF CP 0.2415942900e+01 0.1748906500e-03 -0.1190236900e-06 0.3022624500e-10 -0.2036098200e-14
          JANAF H 0.2415942900e+01 0.1748906500e-03 -0.1190236900e-06 0.3022624500e-10 -0.2036098200e-14
                                                                                                           0.5613377300e+05
          JANAF S 0.2415942900e+01 0.1748906500e-03 -0.1190236900e-06 0.3022624500e-10 -0.2036098200e-14
                                                                                                          0.4649609600e+01
N2
          Nitrogen
JANAF-CHEMKIN
MW 0.2801339912e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1886822179e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01
     LAMBDA EPOLI3 0.1417117599e+01 -0.3528374680e+01 0.6455829015e+00 -0.3194413600e-01
          JANAF CP 0.3298677000e+01 0.1408240400e-02 -0.3963222000e-05 0.5641515000e-08 -0.2444854000e-11
          JANAF H 0.3298677000e+01 0.1408240400e-02 -0.3963222000e-05 0.5641515000e-08 -0.2444854000e-11
                                                                                                          -0.1020899900e+04
          JANAF S 0.3298677000e+01 0.1408240400e-02 -0.3963222000e-05 0.5641515000e-08 -0.2444854000e-11
                                                                                                          0.3950372000e+01
 1000.0 5000.0
      RO GASIDEAL
     MU EPOLI3 -0.1886822179e+02 0.2388167036e+01 -0.2341208183e+00
                                                                        0.1047727173e-01
     LAMBDA EPOLI3 0.1417117599e+01 -0.3528374680e+01 0.6455829015e+00 -0.3194413600e-01
          JANAF_CP 0.2926640000e+01 0.1487976800e-02 -0.5684760000e-06
                                                                       0.1009703800e-09 -0.6753351000e-14
          JANAF H 0.2926640000e+01 0.1487976800e-02 -0.5684760000e-06 0.1009703800e-09 -0.6753351000e-14
                                                                                                          -0.9227977000e+03
          JANAF S 0.2926640000e+01 0.1487976800e-02 -0.5684760000e-06 0.1009703800e-09 -0.6753351000e-14
                                                                                                          0.5980528000e+01
#-----
N<sub>2</sub>O
JANAF-CHEMKIN
MW 0.4401279926e+02
2
```

200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.2607150910e+02 0.5067455296e+01 -0.5674645603e+00 0.2432611681e-01 LAMBDA EPOLI3 -0.2297207455e+02 0.6034436002e+01 -0.6061276742e+00 0.2281390045e-01 JANAF CP 0.2257150200e+01 0.1130472800e-01 -0.1367131900e-04 0.9681980600e-08 -0.2930718200e-11 JANAF H 0.2257150200e+01 0.1130472800e-01 -0.1367131900e-04 0.9681980600e-08 -0.2930718200e-11 0.8741774400e+04 JANAF S 0.2257150200e+01 0.1130472800e-01 -0.1367131900e-04 0.9681980600e-08 -0.2930718200e-11 0.1075799200e+02 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.2607150910e+02 0.5067455296e+01 -0.5674645603e+00 0.2432611681e-01 LAMBDA EPOLI3 -0.2297207455e+02 0.6034436002e+01 -0.6061276742e+00 0.2281390045e-01 CP JANAF CP 0.4823072900e+01 0.2627025100e-02 -0.9585087400e-06 0.1600071200e-09 -0.9775230300e-14 JANAF H 0.4823072900e+01 0.2627025100e-02 -0.9585087400e-06 0.1600071200e-09 -0.9775230300e-14 0.8073404800e+04 S JANAF S 0.4823072900e+01 0.2627025100e-02 -0.9585087400e-06 0.1600071200e-09 -0.9775230300e-14 -0.2201720700e+01 NO Nitrogen monoxide JANAF-CHEMKIN MW 0.3000609970e+02 200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.1883386291e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01 LAMBDA EPOLI3 -0.1947028576e+01 -0.2131168801e+01 0.4544282044e+00 -0.2335117715e-01 CP JANAF CP 0.4218476300e+01 -0.4638976000e-02 0.1104102200e-04 -0.9336135400e-08 0.2803577000e-11 JANAF H 0.4218476300e+01 -0.4638976000e-02 0.1104102200e-04 -0.9336135400e-08 0.2803577000e-11 0.9844623000e+04 JANAF S 0.4218476300e+01 -0.4638976000e-02 0.1104102200e-04 -0.9336135400e-08 0.2803577000e-11 0.2280846400e+01 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.1883386291e+02 0.2388167036e+01 -0.2341208183e+00 0.1047727173e-01 LAMBDA EPOLI3 -0.1947028576e+01 -0.2131168801e+01 0.4544282044e+00 -0.2335117715e-01 CP JANAF CP 0.3260605600e+01 0.1191104300e-02 -0.4291704800e-06 0.6945766900e-10 -0.4033609900e-14 H JANAF H 0.3260605600e+01 0.1191104300e-02 -0.4291704800e-06 0.6945766900e-10 -0.4033609900e-14 0.9920974600e+04 JANAF S 0.3260605600e+01 0.1191104300e-02 -0.4291704800e-06 0.6945766900e-10 -0.4033609900e-14 0.6369302700e+01

NO₂ Nitrogen dioxide JANAF-CHEMKIN MW 0.4600549984e+02 2 200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.2468321217e+02 0.4668511699e+01 -0.5223152219e+00 0.2264144496e-01 LAMBDA EPOLI3 -0.2541446897e+02 0.7263546623e+01 -0.7968863012e+00 0.3249189251e-01 CP JANAF CP 0.3944031200e+01 -0.1585429000e-02 0.1665781200e-04 -0.2047542600e-07 0.7835056400e-11 JANAF H 0.3944031200e+01 -0.1585429000e-02 0.1665781200e-04 -0.2047542600e-07 0.7835056400e-11 0.2896617900e+04 JANAF S 0.3944031200e+01 -0.1585429000e-02 0.1665781200e-04 -0.2047542600e-07 0.7835056400e-11 0.6311991700e+01 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.2468321217e+02 0.4668511699e+01 -0.5223152219e+00 0.2264144496e-01 LAMBDA EPOLI3 -0.2541446897e+02 0.7263546623e+01 -0.7968863012e+00 0.3249189251e-01 CP JANAF CP 0.4884754200e+01 0.2172395600e-02 -0.8280690600e-06 0.1574751000e-09 -0.1051089500e-13 H JANAF H 0.4884754200e+01 0.2172395600e-02 -0.8280690600e-06 0.1574751000e-09 -0.1051089500e-13 0.2316498300e+04 S JANAF S 0.4884754200e+01 0.2172395600e-02 -0.8280690600e-06 0.1574751000e-09 -0.1051089500e-13 -0.1174169500e+00 O Oxygen atom JANAF-CHEMKIN MW 0.1599940014e+02 200.0 1000.0 RO GASIDEAL MU EPOLI3 -0.1740286218e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02 LAMBDA EPOLI3 -0.9827899765e+01 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02 CP JANAF CP 0.3168267100e+01 -0.3279318840e-02 0.6643063960e-05 -0.6128066240e-08 0.2112659710e-11 JANAF H 0.3168267100e+01 -0.3279318840e-02 0.6643063960e-05 -0.6128066240e-08 0.2112659710e-11 Η 0.2912225920e+05 JANAF S 0.3168267100e+01 -0.3279318840e-02 0.6643063960e-05 -0.6128066240e-08 0.2112659710e-11 0.2051933460e+01 1000.0 5000.0 RO GASIDEAL MU EPOLI3 -0.1740286218e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02 LAMBDA EPOLI3 -0.9827899765e+01 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02

1000.0 5000.0

```
CP JANAF CP 0.2569420780e+01 -0.8597411370e-04 0.4194845890e-07 -0.1001777990e-10 0.1228336910e-14
          JANAF H 0.2569420780e+01 -0.8597411370e-04 0.4194845890e-07 -0.1001777990e-10 0.1228336910e-14
                                                                                                           0.2921757910e+05
          JANAF S 0.2569420780e+01 -0.8597411370e-04 0.4194845890e-07 -0.1001777990e-10 0.1228336910e-14
                                                                                                          0.4784338640e+01
O_2
          Oxygen
JANAF-CHEMKIN
MW 0.3199880028e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1946067566e+02 0.2678088349e+01 -0.2721592408e+00 0.1214173233e-01
     LAMBDA EPOLI3 -0.1344962361e+02 0.2890477542e+01 -0.2709591162e+00 0.1152570281e-01
          JANAF CP 0.3782456360e+01 -0.2996734160e-02 0.9847302010e-05 -0.9681295090e-08 0.3243728370e-11
          JANAF H 0.3782456360e+01 -0.2996734160e-02 0.9847302010e-05 -0.9681295090e-08 0.3243728370e-11
                                                                                                           -0.1063943560e+04
          JANAF S 0.3782456360e+01 -0.2996734160e-02 0.9847302010e-05 -0.9681295090e-08 0.3243728370e-11
                                                                                                          0.3657675730e+01
 1000.0 5000.0
     RO GASIDEAL
     MU EPOLI3 -0.1946067566e+02 0.2678088349e+01 -0.2721592408e+00
                                                                        0.1214173233e-01
     LAMBDA EPOLI3 -0.1344962361e+02 0.2890477542e+01 -0.2709591162e+00 0.1152570281e-01
          JANAF_CP 0.3282537840e+01 0.1483087540e-02 -0.7579666690e-06 0.2094705550e-09 -0.2167177940e-13
          JANAF H 0.3282537840e+01 0.1483087540e-02 -0.7579666690e-06 0.2094705550e-09 -0.2167177940e-13
                                                                                                           -0.1088457720e+04
          JANAF S 0.3282537840e+01 0.1483087540e-02 -0.7579666690e-06 0.2094705550e-09 -0.2167177940e-13
                                                                                                          0.5453231290e+01
OH
           Hydroxil
JANAF-CHEMKIN
MW 0.1700737011e+02
  200.0 1000.0
      RO GASIDEAL
     MU EPOLI3 -0.1737231441e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
     LAMBDA EPOLI3 0.2649305782e+01 -0.3244626711e+01 0.5336588173e+00 -0.2328116832e-01
          JANAF CP 0.3992015430e+01 -0.2401317520e-02 0.4617938410e-05 -0.3881133330e-08 0.1364114700e-11
          JANAF H 0.3992015430e+01 -0.2401317520e-02 0.4617938410e-05 -0.3881133330e-08 0.1364114700e-11
                                                                                                           0.3615080560e+04
          JANAF S 0.3992015430e+01 -0.2401317520e-02 0.4617938410e-05 -0.3881133330e-08 0.1364114700e-11
                                                                                                          -0.1039254580e+00
```

```
GASIDEAL
      MU EPOLI3 -0.1737231441e+02 0.1929024678e+01 -0.1738657445e+00 0.7841476915e-02
                       0.2649305782e+01 -0.3244626711e+01 0.5336588173e+00 -0.2328116832e-01
      CP JANAF CP 0.3092887670e+01 0.5484297160e-03 0.1265052280e-06 -0.8794615560e-10
                                                                                           0.1174123760e-13
          JANAF H 0.3092887670e+01 0.5484297160e-03 0.1265052280e-06 -0.8794615560e-10 0.1174123760e-13
                                                                                                             0.3858657000e+04
          JANAF S 0.3092887670e+01 0.5484297160e-03 0.1265052280e-06 -0.8794615560e-10 0.1174123760e-13
                                                                                                            0.4476696100e+01
C2H2
             Acetylene
JANAF-CHEMKIN
MW 0.2603824067e+02
  200.0 1000.0
      RO GASIDEAL
      MU EPOLI3 -0.2563911990e+02 0.4790351552e+01 -0.5364560276e+00
                                                                          0.2318560947e-01
      LAMBDA EPOLI3 -0.1920397367e+02 0.4564166690e+01 -0.4040787948e+00 0.1405248078e-01
          JANAF CP 0.8086810940e+00 0.2336156290e-01 -0.3551718150e-04
                                                                         0.2801524370e-07 -0.8500729740e-11
          JANAF H 0.8086810940e+00 0.2336156290e-01 -0.3551718150e-04 0.2801524370e-07 -0.8500729740e-11
                                                                                                             0.2642898070e+05
          JANAF S 0.8086810940e+00 0.2336156290e-01 -0.3551718150e-04
                                                                        0.2801524370e-07 -0.8500729740e-11
                                                                                                            0.1393970510e+02
  1000.0 5000.0
          GASIDEAL
      RO
      MU EPOLI3 -0.2563911990e+02 0.4790351552e+01 -0.5364560276e+00
                                                                          0.2318560947e-01
      LAMBDA EPOLI3 -0.1920397367e+02 0.4564166690e+01 -0.4040787948e+00 0.1405248078e-01
          JANAF CP 0.4147569640e+01 0.5961666640e-02 -0.2372948520e-05 0.4674121710e-09 -0.3612352130e-13
          JANAF H 0.4147569640e+01 0.5961666640e-02 -0.2372948520e-05 0.4674121710e-09 -0.3612352130e-13
                                                                                                             0.2593599920e+05
          JANAF S 0.4147569640e+01 0.5961666640e-02 -0.2372948520e-05 0.4674121710e-09 -0.3612352130e-13
                                                                                                            -0.1230281210e+01
C10H22 (n-decane) (gas) (ref. http://webbook.nist.gov/chemistry/)
h_f^o = -249.7 \pm 1.1 \, kJ/mol
s^{\circ}(298.15K) = 545.8 \pm 1.1 J/mol * K
```

Temperature	200	273.15	298.15	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500
-------------	-----	--------	--------	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------

Annex 2. Thermodynamic and transport properties of gases (pàg. 19)

(K)																
c _p ,gas (J/mol*K)	179.08	217.9	233.1	234.18	297.98	356.43	405.85	446.43	479.9	508.36	531.79	551.87	569.44	585.76	598.31	610.86