0.1 开集、闭集和紧集

定义 0.1

设E是一平面点集. \mathbb{C} 中的点对E而言可以分为三类:

- (i) 如果存在 r > 0, 使得 $B(a,r) \subset E$, 就称 $a \to E$ 的**内点**;
- (ii) 如果存在 r > 0, 使得 $B(a,r) \subset E^c$, 就称 $a \to E$ 的外点, 这里, E^c 是由所有不属于 E 的点构成的集, 称为 E 的**余集**或**补集**;
- (iii) 如果对任意 r > 0.B(a,r) 中既有 E 的点, 也有 E^c 的点, 就称 a 为 E 的**边界点**.

定义 0.2

E 的内点的全体称为 E 的**内部**, 记为 E° ;

E 的外点的全体称为 E 的**外部**, 它就是 E 的余集 E^c 的内部, 即 $(E^c)^\circ$;

E 的边界点的全体称为 E 的**边界**, 记为 ∂E .

 $\widehat{\mathbb{S}}$ 笔记 由上面的定义可知, 集 E 把复平面分成三个互不相交的部分: $\mathbb{C}=E^{\circ}\cup(E^{c})^{\circ}\cup\partial E$, 即

$$(\partial E)^c = E^\circ \cup (E^c)^\circ. \tag{1}$$

例题 **0.1** 邻域的内部和边界 B(a,r) 中的所有点都是它的内点, 即 $B(a,r) = (B(a,r))^{\circ}, B(a,r)$ 的边界 $\partial B = \{z : |z-a|=r\}$, 即是圆周, 满足条件 |z-a|>r 的点 z 都是 B(a,r) 的外点.

定义 0.3

如果 E 的所有点都是它的内点, 即 $E = E^{\circ}$, 就称 E 为开集.

如果 E^c 是开集, 就称 E 为**闭集**.

例题 $0.2\ B(a,r)$ 是开集, 闭圆盘 $\{z: |z-a| \le r\}$ 是闭集,B(a,r) 和它的上半圆周的并集既不是开集也不是闭集.

定义 0.4

点 a 称为集 E 的极限点或聚点, 如果对任意 r > 0, B(a,r) 中除 a 外总有 E 中的点.

集E的所有极限点构成的集称为E的**导集**,记为E'.

E 中不属于 E' 的点称为 E 的**孤立点**.

E 和它的导集 E' 的并称为 E 的**闭包**, 记为 \bar{E} , 即 $\bar{E} = E \cup E'$.

命题 0.1

对于任意集E,有

(i) $a \in \bar{E}$ 的充要条件是对任意 $\varepsilon > 0$. 有

$$B(a,r) \cap E \neq \emptyset, \forall r > 0.$$
 (2)

这里,Ø表示空集;

(ii) $(\overline{E})^c = (E^c)^{\circ}, \overline{E^c} = (E^{\circ})^c$.

证明 (i) 若 $a \in \overline{E}$, 则 $a \in E$ 或 $a \in E'$, 不论何者发生, 总有 $B(a,r) \cap E \neq \emptyset$. 反之, 若等式(2)成立, 这说明 a 或是 E 的极限点, 或是 E 的孤立点, 因而 $a \in \overline{E}$.

(ii) 由 (i) 知, $a \in (\bar{E})^c$ 当且仅当存在 $\varepsilon > 0$,使得 $B(a,r) \cap E = \varnothing$,这说明 $a \notin E^c$ 的内点,即 $a \in (E^c)^\circ$,因而 $(\bar{E})^c = (E^c)^\circ$. 再看第二个等式, $a \in (E^\circ)^c$ 意味着 a 不是 E 的内点,即 $a \notin E$ 的外点或边界点,因而对任意 $\varepsilon > 0$,总有 $B(a,r) \cap E^c \neq \varnothing$,由 (i) 知 $a \in \overline{E^c}$. 因而 $\overline{E^c} = (E^\circ)^c$.

命题 0.2

- (i) E° 是开集, ∂E 和 \bar{E} 是闭集:
- (ii) E 是闭集的充要条件是 $E = \bar{E}$;
- (iii) E 是闭集的充要条件是 E' ⊂ E.

证明 (i) 任取 $a \in E^\circ$, 则由定义知道, 存在 $\varepsilon > 0$, 使得 $B(a,\varepsilon) \subset E$. 显然, $B(a,\varepsilon)$ 中的每一点都是 E 的内点, 因而 $B(a,\varepsilon) \subset E^\circ$, 即 $a \not\in E^\circ$ 的内点. 由于 a 是任意取的, 所以 E° 是开集. 由刚才所证, E° 和 $(E^c)^\circ$ 都是开集, 两个开集的并当然也是开集, 由等式(1)知 $(\partial E)^c$ 是开集, 因而 ∂E 是闭集. 由于 $(E^c)^\circ$ 是开集, 由命题 0.1(ii)知, $(\bar{E})^c$ 是开集, 所以 \bar{E} 是闭集.

(ii) 如果 $E = \bar{E}$, 则由 (i) 知 \bar{E} 是闭集, 所以 E 是闭集. 反之, 如果 E 是闭集, 那么 E^c 是开集, 因而 $E^c = (E^c)^\circ$. 另外, 由命题 0.1(ii) 得 $(\bar{E})^c = (E^c)^\circ$, 因而 $E^c = (\bar{E})^c$, 即 $E = \bar{E}$.

(iii) 从 (ii) 立刻可得.

定义 0.5

点集 E 的**直径**定义为 E 中任意两点间距离的上确界, 记为 diamE, 即

 $diam E = \sup\{|z_1 - z_2| : z_1, z_2 \in E\}.$

定理 0.1 (Cantor 闭集套定理)

若非空闭集序列 {Fn} 满足

(i) $F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$;

(ii) $diam F_n \to 0$ (当 $n \to \infty$ 时),

那么 $\bigcap_{n=1}^{\infty} F_n$ 是一个独点集.

 \Diamond

🕏 笔记 这个定理是实数域中的区间套定理在复数域中的推广.

证明 在每一个 F_n 中任取一点 z_n , 我们证明 $\{z_n\}$ 是一个 Cauchy 点列. 由于 $\lim_{n\to\infty}$ diam $F_n=0$, 所以对任意 $\varepsilon>0$, 可取充分大的 N, 使得 diam $F_N<\varepsilon$. 今取 m,n>N, 由条件 (i), $z_m,z_n\in F_N$, 所以 $|z_n-z_m|\leqslant \text{diam}F_N<\varepsilon$. 因而 $\{z_n\}$ 是一 Cauchy 序列, 设其收敛于 z_0 . 我们证明 $z_0\in\bigcap_{n=1}^\infty F_n$. 事实上, 任取 F_k , 则当 n>k 时, z_n 便全部落入 F_k 中, 因

为 F_k 是闭的, 由命题 0.2(iii), $\{z_n\}$ 的极限 $z_0 \in F_k$, 所以 $z_0 \in \bigcap_{n=1}^\infty F_n$. 如果还有另一点 z_1 也属于 $\bigcap_{n=1}^\infty F_n$, 那么必有 $|z_0-z_1| \leq \operatorname{diam} F_n \to 0 (n \to \infty)$, 因而 $z_1=z_0$.

定义 0.6

设 E 是一个集, $\mathscr{F} = \{G\}$ 是一个**开集族**, 即 \mathscr{F} 中的每一个元素都是开集. 如果 E 中每一点至少属于 \mathscr{F} 中的一个开集, 就说 \mathscr{F} 是 E 的一个**开覆盖**.

例题 0.3 E 是任一点集, ε 是一个给定的正数,那么

$$\mathscr{F} = \{B(a, \varepsilon) : a \in E\}$$

便是 E 的一个开覆盖.

定义 0.7

我们说点集 E 具有**有限覆盖性质**, 是指从 E 的任一个开覆盖中必能选出有限个开集 G_1, \cdots, G_n , 使得这有限个开集的并就能覆盖 E, 即

$$E\subset\bigcup_{j=1}^nG_j$$
.

具有有限覆盖性质的集称为紧集.

例题 0.4 空集和有限集都是紧集,但单位圆盘 $B(0,1) = \{z \in \mathbb{C} : |z| < 1\}$ 却不是紧集,因为 $G_n = \left\{z : |z| < 1 - \frac{1}{n}\right\}, n = 2, 3, \cdots$,这一串同心圆构成 B(0,1) 的一个开覆盖,但从中找不出有限个集覆盖 B(0,1).

定义 0.8

集 E 称为是**有界的**, 如果存在 R > 0, 使得 $E \subset B(0, R)$.

定理 0.2 (Heine-Borel 定理)

在 \mathbb{C} 中,E是紧集的充要条件为E是有界闭集;在 \mathbb{C}_{∞} 中,E是紧集的充要条件为E是闭集.

证明 我们先证明,如果 $E \not\in \mathbb{C}_{\infty}$ 中的闭集或 \mathbb{C} 中的有界闭集,那么 $E \not\in \mathbb{E}$ 集,即从 E 的任一开覆盖 \mathscr{P} 中,可以选出有限个开集覆盖 E. 先设 $E \not\in \mathbb{C}_{\infty}$ 中的闭集,如果 $z = \infty \not\in E$,则因 $E \not\in \mathbb{E}$,用 $E \not\in E$,即 $E \not\in E$,即 $E \not\in E$,由命题 $E \not\in E$,即 $E \not\in E$,如果 $E \not\in E$,如 $E \not\in E$,如果 $E \not\in E$,如果 $E \not\in E$

现设 E 是有界闭集, 如果它不是紧集, 那么从 E 的开覆盖 $\mathscr P$ 中不能取出有限个开集来覆盖 E. 因为 E 是有界的, 它一定包含在一个充分大的闭正方形 Q 中:

$$Q = \{(x, y) : |x| \le M, |y| \le M\}.$$

把这个正方形分成相等的四个小正方形,则其中必有一个小正方形 Q_1 ,使得 $Q_1 \cap E$ 是有界闭集且不具有有限覆盖性质.再把 Q_1 分成四个相等的小正方形,其中必有一个小正方形 Q_2 具有上述同样的性质.这个过程可以无限地进行下去,得到一列闭正方形 $\{Q_n\}$.如果记 $F_n = Q_n \cap E$,那么 F_n 满足下列条件:

- (i) F_n 是有界闭集;
- (ii) $F_n \supset F_{n+1}, n = 1, 2, \cdots;$
- (iii) 不能从 \mathscr{F} 中取出有限个开集来覆盖 F_n ;
- (iv) $\stackrel{.}{=}$ $n \to \infty$ $\stackrel{.}{=}$ $n \to \infty$

由 (i),(ii),(iv) 知道 $\{F_n\}$ 满足 Cantor 闭集套定理的条件, 因而存在复数 z_0 , 使得 $\bigcap_{n=1}^{\infty} F_n = \{z_0\}$. 由于 $z_0 \in F_n \subset E$, 故在 $\mathscr P$ 中必有一个开集 G_0 , 使得 $z_0 \in G_0$. 由于 z_0 是 G_0 的内点, 故有 z_0 的邻域 $B(z_0, \varepsilon) \subset G_0$. 由于 $\operatorname{diam} F_n \to 0$, 故当 n 充分大时 $F_n \subset B(z_0, \varepsilon) \subset G_0$, 这就是说 G_0 覆盖了 F_n , 这与 (iii) 矛盾. 因而 E 是紧集.

现在证明必要性. 只要对扩充平面的情形来证明就够了, 因为如果一个集对扩充平面是闭的, 它又不包含无穷远点, 那么它必然是有界的. 设 E 是一个紧集, 我们要证明它是闭集, 只要证明 E^c 是开集即可. 为此, 任取 $a \in E^c$, 只要证明 a 是 E^c 的内点就行了. 取这样的开集族 \mathscr{S} : 凡是闭包不包含 a 点的开集都属于 \mathscr{S} . 因为 $a \in E^c$, 因此对 E 中每一点 z, 都能找到它的邻域 $B(z,\varepsilon)$, 使得 $a \notin \overline{B(z,\varepsilon)}$, 所以 $B(z,\varepsilon) \in \mathscr{S}$. 这就是说, \mathscr{S} 是 E 的一个开覆盖. 由于 E 是紧集, 故能从 \mathscr{S} 中取出有限个开集 G_1, \cdots, G_n , 使得 $E \subset \bigcup_{j=1}^n G_j$. 但 $a \notin \overline{G_j}$, $j=1, \cdots, n$, 所以 $a \in \bigcap_{j=1}^n (\overline{G_j})^c$. 显

然, $\bigcap_{j=1}^{n} (\overline{G_j})^c$ 是一个开集, 于是由开集和内点的定义可知, 存在 r>0, 使得 $B(a,r)\subset \bigcap_{j=1}^{n} (\overline{G_j})^c$. 而且从命题 0.1(ii)得

$$B(a,r)\subset\bigcap_{j=1}^n(\overline{G_j})^c=\bigcap_{j=1}^n(G_j^c)^\circ\subset\bigcap_{j=1}^nG_j^c=\left(\bigcup_{j=1}^nG_j\right)^c\subset E^c,$$

这就证明了 $a \in E^c$ 的内点, 即 E^c 是开集.

定义 0.9

设 E.F 是任意两个集.E.F 间的距离定义为

$$d(E, F) = \inf\{|z_1 - z_2| : z_1 \in E, z_2 \in F\}.$$

如果 $E = \{a\}$ 是由一个点所构成的集,那么a和F间的距离为

$$d(a, F) = \inf\{|a - z| : z \in F\}.$$

命题 0.3

- (1) 如果 F 是闭集, $a \notin F$, 那么 d(a, F) > 0.
- (2) 如果 E 是有限点集, 且 $E \cap F = \emptyset$, 当然也有 d(E,F) > 0.

证明

- (1) 此时必有 $\varepsilon > 0$, 使得 $B(a,\varepsilon) \cap F = \emptyset$, 因而 $d(a,F) \geqslant \varepsilon > 0$.
- (2)

定理 0.3

设 E 是紧集,F 是闭集, 且 $E \cap F = \emptyset$, 则 d(E,F) > 0.

注 若 E 是无穷闭集,F 也是闭集, 但 E 不是紧集, 且 $E \cap F = \emptyset$, 这时 d(E,F) > 0 未必成立.

例如,E 是整个实轴, $F = \{z = x + ie^x : -\infty < x < \infty\}$, 则 E 和 F 都是 \mathbb{C} 中的闭集, 而且 $E \cap F = \emptyset$, 但 d(E,F) = 0.

笔记 从这个定理可以看出,紧集之所以重要,在于它保留了大部分有限集的性质.

证明 任取 $a \in E$, 则 $a \notin F$, 所以 d(a,F) > 0. 今以 a 为中心、 $\frac{1}{2}d(a,F)$ 为半径作一圆盘, 当 a 跑遍集 E 时, 这些圆盘所组成的开集族就是 E 的一个开覆盖. 因为 E 是紧的, 故从这个开覆盖中能选出有限个开集 G_1, \dots, G_n 来覆盖 E, 其中, $G_j = B\left(a_j, \frac{1}{2}d(a_j,F)\right)$, $j = 1, \dots, n$. 记

$$\delta = \min \left\{ \frac{1}{2} d(a_1, F), \cdots, \frac{1}{2} d(a_n, F) \right\}.$$

今任取 $z_1 \in E$, 则必有某个 G_i , 使得 $z_1 \in G_i$, 因而

$$|z_1 - a_j| < \frac{1}{2}d(a_j, F).$$

任取 $z_2 \in F$, 当然 $|z_2 - a_i| \ge d(a_i, F)$, 于是

$$|z_1 - z_2| \geqslant |z_2 - a_j| - |z_1 - a_j| \geqslant d(a_j, F) - \frac{1}{2}d(a_j, F) = \frac{1}{2}d(a_j, F) \geqslant \delta.$$

所以

$$d(E, F) = \inf\{|z_1 - z_2| : z_1 \in E, z_2 \in F\} \ge \delta > 0.$$

定理 0.4 (Bolzano-Weierstrass 定理)

任一无穷点集至少有一个极限点.

注 这个定理也可以用证明Cantor 闭集套定理的方法给出另一个证明.

证明 设 E 是一个无穷点集, 如果 E 是无界集, 那么无穷远点便是它的极限点. 今设 E 是有界集, 如果它没有极限点, 那么它是一个闭集. 任取 $z \in E$, 由于它不是 E 的极限点, 故必存在 $\varepsilon > 0$, 使得 $B(z,\varepsilon)$ 中除 z 外不再有 E 中的点. z 取遍整个 E, 由这种 $B(z,\varepsilon)$ 构成的开集族便是 E 的一个开覆盖, 由Heine-Borel 定理, 能从中选出有限个来覆盖 E. 因为每个开集只包含 E 的一个点, 这说明 E 是一个有限集, 与 E 是无穷点集的假定矛盾, 因而 E 必有极限

Ω^{-1}	1 耳	_ 隹	147	住 4	一収	• 隹
υ	レカ	集、	141	集和	中於	木

点.