Администрирование информационных систем

Объекты администрирования ИС

- администрирование кабельной системы;
- поддержка и сопровождение аппаратной части системы;
- администрирование сетевой системы;
- администрирование операционной системы;
- администрирование прикладной системы;
- администрирование СУБД.
- управление информационными службами;
- Web-администрирование;

Администрирование сетевой системы

Задачи администрирования разбиваются на две группы:

- Контроль за работой сетевого оборудования,
- Управление функционированием сети в целом.

Цели и задачи администратора

Цели администрирования сети:

- Установка и настройка сети.
- Поддержка её дальнейшей работоспособности.
- Установка базового программного обеспечения.
- Мониторинг сети, оптимизация, сопровождение.

Администратор сети должен выполнять следующие задачи:

- Планирование системы.
- Установка и конфигурация аппаратных устройств.
- Установка и настройка сетевых протоколов, служб.
- Мониторинг производительности (узлов, трафика, др), оптимизация.
- Поиск и устранение неисправностей.
- Обеспечение защиты данных (резервное копирование и восстановление, управление доступом, создание ролей и политик).

Администрирование сетевой системы

- Хаб устройство, предназначенное для усиления сигнала и восстановления его формы (усилитель, рипитер).
- Мост устройство, разделяющее сети на сегменты (коммуникатор); здесь сегмент сети это часть сети, которая не содержит соединяющих устройств.
- Коммутатор (switch) это мультипортовый мост; он обеспечивает передачу фреймов от станции к станции в режиме точка-точка (point to point). Пары могут работать параллельно.
- Маршрутизатор устройство, которое пересылает пакеты между различными сегментами сети на основе правил и таблиц маршрутизации, топологии сети и ограничений, заданных администратором.
- Шлюз (Gateway) это устройство или ПО для соединения подсетей по протоколам выше 3-го уровня OSI, обычно осуществляет функции соответствия различных протоколов друг другу.

Определения

- Сеть набор устройств, объединенных в одну систему для обеспечения обмена данными.
- Клиент приложение, посылающее запрос к серверу.
- Сервер персональная или виртуальная ЭВМ, выполняющая функции обслуживания клиента и распределяющая ресурсы системы.
- Маршрутизация это процесс поддержания таблицы маршрутизации и обмена информацией об изменениях в топологии сети с другими маршрутизаторами.
- Сетевой протокол набор правил и действий (очерёдности действий), позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть устройствами.

Типы сетей

Одноранговая сеть

Двухзвенная сеть

- Централизованная обработка данных;
- Схема «файл-сервер»
- Схема «клиент-сервер»

Трехуровневая сеть

//терминал+логика+ОБД+файлы

IPv4

192.168.25.235/18

ір-адрес

маска подсети

Адрес: <u>11000000.10101000.00</u>011001.11101011

подсеть

ID узла/хоста

Маска: 111111111111111111111000000.00000000

IPv6

Интерфейс – это средство подключения узла к каналу.

Типы адресов:

- <u>unicast</u>: идентификатор одиночного интерфейса;
- <u>anycast</u>: идентификатор набора интерфейсов, получатель — «ближайший» по пути;
- <u>multicast</u>: идентификатор набора интерфейсов, сообщение – всем.

IPv6

Пример: ffbc:dbc4:8649:0:0:0:C0A8:19EB

Сокращение: ffbc:dbc4:8649::C0A8:19EB

Совместимость: ffbc:dbc4:8649:0:0:0:192.168.25.235

Особенности:

- длина адреса 128 бит (примерно 10³⁹ адресов);
- встроенные средства автоматической конфигурации;
- встроенная безопасность (IPsec).

TCP/IP

Модель OSI					
Уровень (layer)		Тип данных (PDU ^[1])	Функции	Примеры	
Host layers	7. Прикладной (application)	Данные	Доступ к сетевым службам	HTTP, FTP, POP3, WebSocket	
	6. Представления (presentation)		Представление и шифрование данных	ASCII, EBCDIC	
	5. Сеансовый (session)		Управление сеансом связи	RPC, PAP, L2TP	
	4. Транспортный (transport)	Сегменты (segment) /Дейтаграммы (datagram)	Прямая связь между конечными пунктами и надёжность	TCP, UDP, SCTP, PORTS	
Media ^[2] layers	3. Сетевой (network)	Пакеты (packet)	Определение маршрута и логическая адресация	IPv4, IPv6, IPsec, AppleTalk	
	2. Канальный (data link)	Биты (bit)/ Кадры (frame)	Физическая адресация	PPP, IEEE 802.22, Ethernet, DSL, ARP, сетевая карта.	
	1. Физический (physical)	Биты (bit)	Работа со средой передачи, сигналами и двоичными данными	USB, кабель («витая пара», коаксиальный, оптоволоконный), радиоканал	

TCP/IP

Прикладной уровень

Транспортный уровень

Межсетевой уровень

Канальный уровень

DHCP

Dynamic Host Configuration Protocol (протокол динамической конфигурации хоста) — позволяет автоматизировать процесс назначения сетевых параметров.

Свойства стандартной области:

- 1) диапазон IP-адресов;
- 2) маска подсети;
- 3) срок аренды адреса.

DNS

DNS (Domain Name System) – система доменных имён.

DNS

DNS (Domain Name System) – система доменных имён.

RFC

Документ, который содержит технические спецификации и стандарты, широко применяемые во всемирной сети.

- появился в 1969 году (Стив Крокер и Джон Постел);
- содежит стандарты, концепции, введения в новые направления в исследованиях, исторические справки, результаты экспериментов, руководства по внедрению технологий, предложения и рекомендации по развитию существующих Стандартов и другие новые идеи в информационных технологиях.

RFC

Номер RFC	Тема	
RFC 768	<u>UDP</u>	
RFC 791	<u>IP</u>	
RFC 792	<u>ICMP</u>	
RFC 793	<u>TCP</u>	
DEC 051	Протокол начальной загрузки	
RFC 951	(BOOTP)	
RFC 959	<u>FTP</u>	
RFC 1034	<u>DNS</u> — концепция	
RFC 1035	<u>DNS</u> — внедрение	
RFC 1122	Требования к <u>хосту</u> 1	
RFC 1123	Требования к хосту 2	
RFC 1256	Обнаружение маршрутизатора в	
KFC 1230	сети	
RFC 1403	Взаимодействие <u>BGP</u> и <u>OSPF</u>	
RFC 1498	Архитектурная дискуссия	