Задача А. Проверка

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дано некоторое семейтво множеств $S \in 2^X$. Требуется проверить, может ли S быть семейством независимых множеств некоторого матроида.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — мощность множеств X и S соответственно ($1 \le n \le 10, 0 \le m \le 2^n$). Каждая из следующих m строк содержит описание элемента множества S. Формат описания: количество элементов в подмножестве, затем через пробел номера этих элементов. Элементы множества X занумерованы начиная с единицы.

Формат выходных данных

Выведите «YES», если S может быть семейством независимых множеств некоторого матроида и «NO» иначе.

стандартный ввод	стандартный вывод
2 4	YES
0	
1 1	
1 2	
2 1 2	
2 3	NO
0	
1 1	
2 1 2	

Задача В. Циклы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дано некоторое семейство множеств $S \in 2^X$. Известно, что это множество циклов некоторого матроида. Кроме того, у каждого элемента множества X есть свой вес. Вес подможества X есть сумма весов элементов, принадлежащих ему. Требуется найти базу максимального веса.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — мощность множеств X и S соответственно ($1 \le n \le 20$). Вторая строка входного файла содержит n чисел w_1, w_2, \ldots, w_n ($1 \le w_i \le 1000$). Здесь элементы множества X занумерованы начиная с единицы и w_i — вес i-го элемета множества X. Каждая из следующих m строк содержит описание элемента множества S. Формат описания: количество элементов в подмножестве, затем через пробел номера этих элементов.

Формат выходных данных

Выведите одно число — вес максимальной базы.

стандартный ввод	стандартный вывод
3 1	50
10 20 30	
3 1 3 2	

Задача С. Паросочетание максимального веса

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан двудольный граф. Количество вершин в левой и правой доле совпадает и равно n. У каждой вершины левой доли есть вес, i-й вершине соответствует вес w_i . Вес просочетания, ребрам которого инцидентны вершины левой доли a_1, a_2, \ldots, a_k есть $\sqrt{\sum_{i=1}^k w_{a_i}^2}$. Требуется найти паросочетание максимального веса.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество вершин в обеих долях ($1 \le n \le 1000$). Вторая строка входного файла содержит n целых чисел w_1, w_2, \ldots, w_n ($1 \le wi \le 1000$). Следующие n строк содержат описания ребер, инцидентных соответствующей вершине левой доли. Формат описания: количество ребер, затем номера вершин правой доли, разделенные пробелом. Суммарное количество ребер не превосходит 200000.

Формат выходных данных

Выведите n чисел — для каждой вершины левой доли выведите номер вершины правой доли, с которой ее надо взять в паросочетание. Если вершина не входит в паросочетание, выведите 0.

стандартный ввод	стандартный вывод
4	2 1 0 4
1 3 2 4	
4 1 2 3 4	
2 1 4	
2 1 4	
2 1 4	

Задача D. Планироване заданий

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Имеется некоторое множество заданий и один исполнитель. На выполнение одного задания уходит единица времени. Задания можно выполнять начиная с момента времени 0. У каждого задания есть две характеристики: d_i и w_i . Если задание не было выполнено к моменту времени d_i , взимается штраф в размере w_i . Требуется минимизировать суммарный штраф.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество заданий ($1 \le n \le 100000$). Следующие n строк содержат по два натуральных числа, разделенных пробелом — d_i и w_i ($0 \le d_i, w_i \le 10^9$).

Формат выходных данных

Выведите одно число — минимальный суммарный штраф.

стандартный ввод	стандартный вывод
2	1
1 1	
1 2	