

planetmath.org

Math for the people, by the people.

truth table

Canonical name TruthTable

Date of creation 2013-03-22 11:54:35 Last modified on 2013-03-22 11:54:35

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 16

Author rspuzio (6075)
Entry type Definition
Classification msc 03-00
Classification msc 34C29

Related topic ZerothOrderLogic Related topic PropositionalCalculus A truth table is a tabular listing of all possible input value combinations for a logical function and their corresponding output values. Similarly, the truth table of a logical proposition is the truth table of the corresponding logical function.

For instance, the truth table of the connective "or" is as follows:

a	b	$a \vee b$
\overline{F}	F	F
\mathbf{F}	Τ	${ m T}$
Τ	\mathbf{F}	${\rm T}$
Τ	T	${ m T}$

For *n* input variables, there will always be 2^n rows in the truth table. A sample truth table for " $(a \wedge b) \rightarrow c$ " would be

a	b	c	$(a \wedge b) \to c$
F	F	F	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
F	Τ	F	${ m T}$
F	Τ	Τ	\mathbf{F}
\mathbf{T}	F	F	${ m T}$
\mathbf{T}	\mathbf{F}	Τ	\mathbf{F}
\mathbf{T}	\mathbf{T}	F	${ m T}$
T	Τ	Τ	${ m T}$

(Note that \land represents logical and, while \rightarrow represents the conditional truth function).

To compute truth tables of expressions, one often proceeds in steps. for instance, to compute a truth table for " $\neg p \lor (p \land q)$, one might proceed as follows:

p	q	$\neg p$	$(p \wedge q)$	$\neg p \lor (p \land q)$
F	F	Τ	F	Τ
\mathbf{F}	T	T	\mathbf{F}	${ m T}$
T	F	F	\mathbf{F}	\mathbf{F}
${\rm T}$	Τ	F	Τ	${ m T}$

For reference, here is a truth table of some popular connectives:

p	q	$p \vee q$	$p \wedge q$	$p \vee q$	$p \to q$	$p \leftrightarrow q$
F	F	\mathbf{F}	\mathbf{F}	\mathbf{F}	Τ	Τ
\mathbf{F}	\mathbf{T}	Τ	\mathbf{F}	${\rm T}$	${ m T}$	\mathbf{F}
\mathbf{T}	F	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}
T	Τ	${ m T}$	${ m T}$	\mathbf{F}	Τ	Τ

For completeness, here are the remaining connectives, excluding trivial connectives which depend on only one or none of their arguments:

p	q	$p \not \! \! / q$	$p \not \! / q$	$p \leftarrow q$	$p \not\to q$	$p \not\leftarrow q$
F	F	Τ	Τ	Τ	\mathbf{F}	F
\mathbf{F}	Τ	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{T}	F	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$	\mathbf{F}
Τ	T	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}