Examen final

Département de génie électrique et de génie informatique GEL-3000 – Électronique des composants intégrés

Le 29 avril 2015

Documentation permise : 2 feuilles de notes recto verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (9h30 – 11h20).

- 1. (20 points) Questions à courts développements
- a) Expliquez le mécanisme de compensation utilisé dans cet amplificateur.
- b) Proposez <u>un ajout</u> afin d'augmenter la marge de phase. Expliquez votre solution.
- c) Quelle modification faudrait-il apporter à cet amplificateur pour conduire une petite charge résistive?
- d) Que faire pour augmenter le taux de rejet du mode commun de ce circuit sans changer son point de polarisation?
- e) Cet ampli-op est utilisé pour réaliser un trigger de Schmitt (bistable à hystérésis) dans une application de communications numériques haut-débit. Lequel des paramètres suivants doit-on optimiser afin que ce bistable puisse commuter très rapidement: bande passante, slew rate, marge de phase, ou gain? Expliquez votre raisonnement et indiquez comment atteindre cet objectif lors de la conception de l'ampli-op.

Figure 1.

2. (30 points) Analyse de circuits

Soit le circuit suivant :

Figure 2.

Répondez aux questions suivantes en expliquant bien votre raisonnement.

- (a) Dessinez le modèle petit signal de ce circuit.
- (b) Donnez l'impédance d'entrée et l'impédance de sortie du circuit.
- (c) Donnez l'expression du gain v_o/v_i en fonction des paramètres petit signal du circuit.
- (d) Déterminez la plage de tensions d'entrée $v_{sig_min} < v_{sig_max}$. Note : considérez une chute de tension minimum V_S dans les source de courant idéale.
- (e) Déterminez la plage de tensions de sortie $v_{o_min} < v_o < v_{o_max}$. Note : considérez une chute de tension minimum V_S dans les source de courant idéale.
- (f) Remplacer les deux sources de courant idéales par des sources de courant que vous réaliserez à l'aide de MOSFET (types n et types p). Note : dérivez le courant de chaque source à partir d'un courant de référence unique. Quelle est la conséquence de cet ajout sur la résistance de sortie du circuit?
- (g) Ajoutez un transistor NMOS cascode au drain de Q₂ dans le circuit de la Figure 2 et donnez la nouvelle expression du gain v_o/v_i.

3. (50 points) *Conception d'un amplificateur opérationnel CMOS* Soit le circuit suivant :

Figure 3.

L'ampli-op montré ci-dessus possède les caractéristiques suivantes : $V_{tn}=|V_{tp}|=0.75~V$, $\mu_n C_{ox}=100~\mu\text{A/V}^2$ et $\mu_p C_{ox}=50~\mu\text{A/V}^2$ et V_A ' = $10~V/\mu\text{m}$. Utilisez $L=1~\mu\text{m}$ pour tous les MOSFET et $V_{OV}=0.25~V$ pour tous les MOSFET **sauf Q**₅. **Notez que W**₅ = **500~\mu\text{m}** et que $I_{D7}=100~\mu\text{A}$ et $I_{D8}=250~\mu\text{A}$.

- a) Calculez les I_D et les W/L de tous les transistors.
- b) Calculez les g_m et les r_o de tous les transistors?
- c) Calculez le gain en boucle ouverte total (A_v) et la résistance de sortie R_o de cet ampli-op.
- d) Déterminez sa plage de tension d'entrée en mode commun v_{icm min}<v_{icm}<v_{icm max}.
- e) Déterminez sa plage de tension de sortie v_{o min}<v_o<v_{o max}.
- f) À quel type d'étage de sortie a-t-on affaire et quelle est son efficacité maximum?
- g) Proposez une façon d'augmenter le gain de cet amplificateur sans changer le point de polarisation des MOSFET.

Bonne chance!

Benoit Gosselin

Aide mémoire

Courant de drain et paramètres petit signal du MOSFET

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$r_o = \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$

$$g_{m} = \frac{2I_{D}}{V_{OV}},$$
 $g_{m} = \frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{t}),$ $g_{m} = \sqrt{2\mu_{n}C_{ox}(W/L)I_{D}}$

$$g_m = \sqrt{2\mu_n C_{ox}(W/L)I_D}$$

$$V_{GS} = V_{tn} + \sqrt{\frac{2I_D}{\mu_n C_{ox}(W/L)}}$$

Paire différentielle

$$-\sqrt{2}V_{_{OV}}\leq v_{_{id}}\leq \sqrt{2}V_{_{OV}}$$

$$A_{cm} = \frac{v_o}{v_{icm}} = \frac{r_{o4}}{2R_{ss}} \frac{1}{1 + g_{m3}r_{o3}}$$

Étages de sortie

$$\eta = \frac{P_{L}}{P_{S}} = \frac{V_{O_{-RMS}}^{2} / R_{L}}{(V_{CC} + V_{SS})I}$$

Modèle petit signal de l'ampli-op à 2 étages

$$f_{t} \cong |A_{v}| f_{P1} = \frac{G_{m1}}{2\pi C_{C}}$$

$$f_{p_1} \cong \frac{1}{2\pi R_1(G_{m_2}R_2C_C)}$$

$$f_{P2} \cong \frac{G_{m2}}{2\pi C_2}$$

$$f_Z \cong \frac{G_{m2}}{2\pi C_C}$$

$$f_t \cong |A_v| f_{P1} = \frac{G_{m1}}{2\pi C_C}$$

Marge de phase = 90° – $\tan^{-1}(f_t / f_{P2})$ – $\tan^{-1}(f_t / f_Z)$

$$SR = 2\pi f_t V_{oV1}$$