Universidade do Minho

2º Teste de

Lógica EI

Lic. Eng. Informática

20 de Junho de 2014

2º Teste de

Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

- 1. (a) Construa uma derivação em DNP que prove que $(p_1 \to p_2) \to \neg (p_1 \land \neg p_2)$ é um teorema.
 - (b) Mostre que $(p_1 \to p_2) \to (\neg p_1 \land p_2)$ não é um teorema.
 - (c) Seja $\Gamma \subseteq \mathcal{F}^{CP}$. Prove que: se $\Gamma, p_1 \vdash \neg p_1 \land p_2$ então, para qualquer $\varphi \in \mathcal{F}^{CP}$, $\Gamma, p_1 \vdash \varphi$.
- 2. Considere o tipo de linguagem $L=(\{c,f,g\},\{Q,R\},\mathcal{N})$ em que $\mathcal{N}(c)=0,\,\mathcal{N}(f)=1,\,\mathcal{N}(g)=2$ $\mathcal{N}(Q)=1$ e $\mathcal{N}(R)=2$.
 - (a) Dê exemplo de um L-termo t cujas sequências de formação têm pelo menos 4 elementos.
 - (b) Dê exemplo de uma L-fórmula φ tal que $LIV(\varphi) = \emptyset$, explicitando o conjunto $subf(\varphi)$ das subfórmulas de φ .
 - (c) Considere a L-fórmula $\psi = (\forall x_0 Q(f(x_0)) \land R(x_1, c)) \rightarrow \exists x_2 \neg Q(g(x_1, x_2))$. Dê exemplo de uma variável x e de um L-termo t tais que x não é substituível por t em ψ .
 - (d) Defina por recursão estrutural a função $u: \mathcal{T}_L \longrightarrow \mathbb{N}_0$ que a cada L-termo t faz corresponder o número de ocorrências dos símbolos de aridade maior que 0 em t.
- 3. Considere o tipo de linguagem $L = (\{c, f\}, \{R, =\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 1$, $\mathcal{N}(R) = 2$ e $\mathcal{N}(=) = 2$. Seja $E = (\mathbb{Z}, \overline{\ })$ a L-estrutura tal que:

$$\overline{\mathsf{c}} = 0$$
 $\overline{\mathsf{R}} = \{(x, y) \in \mathbb{Z}^2 : x < y\}$ $\overline{\mathsf{f}} : \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{\mathsf{f}}(x) = |x|$ $\overline{\overline{\mathsf{g}}} = \{(x, y) \in \mathbb{Z}^2 : x = y\}$

- (a) Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = 1 i$. Calcule:
 - (i) $f(f(x_2))[a];$
 - (ii) $\exists x_1(R(x_2, x_1) \land f(x_2) = x_1)[a].$
- (b) Seja φ a L-fórmula $\forall x_1(R(x_1,c) \to (\neg(f(x_1)=x_1) \land f(f(x_1))=f(x_1)))$. Prove que:
 - (i) φ é válida em E;
 - (ii) φ não é universalmente válida.
- (c) Indique (sem justificar) uma L-fórmula válida em E que represente a afirmação: Para cada inteiro positivo, existe um inteiro negativo cujo valor em módulo é maior que esse inteiro positivo.
- 4. Sejam L um tipo de linguagem, $\varphi, \psi \in \mathcal{F}_L$ e x arbitrários. Mostre que: $\forall x (\varphi \lor \psi), \exists x \neg \psi \vDash \exists x \varphi$.

Cotações	1.	2.	3.	4.
	2+1,5+2	1,5+1,5+1,5+1,5	3+3+1	1,5