On an Inversion Point for Liquid Carbon Dioxide in Regard to the Joule-Thomson Effect.

By Alfred W. Porter, F.R.S.

(Received October 6,—Read November 13, 1913.)

In a paper published recently in the 'Philosophical Transactions' "On the Thermal Properties of Carbonic Acid at Low Temperatures,"* Prof. C. Frewen Jenkin and Mr. D. R. Pye give, amongst other results, those obtained from a series of measurements of the Joule-Thomson effect for liquid CO₂ at various temperatures. These results are tabulated in Table V of their paper. They are of particular interest because, within the range of temperatures to which they correspond, they find an inversion point for the Joule-Thomson effect, i.e., a temperature at which the effect changes over from being a cooling (at higher temperatures) to being a heating. As they themselves say: "No experiments on the Joule-Thomson effect for liquid CO₂ appear to have been published" previously; and as they admit that it is not easy to say what effect the presence of a trace of air (which was there) may have on their results, any method of testing them should prove of value. Such a test can be made by utilising the values of the specific volumes of liquid CO₂ which they give in a diagram on p. 78 of their paper.

Method of Test.

If the drop of pressure employed may be treated as a differential the Joule-Thomson effect is given by the equation

$$\mathrm{C}_p \Big(\frac{\partial \mathrm{T}}{\partial p} \Big)_{\mathrm{E} + pv} = \mathrm{T} \Big(\frac{\partial v}{\partial \mathrm{T}} \Big)_p - v = \mathrm{T}^2 \frac{\partial}{\partial \mathrm{T}} \cdot \Big(\frac{v}{\mathrm{T}} \Big)_p.$$

The inversion point must therefore correspond to a minimum (or maximum) value of v/T.

Application of Test.

I have read off from the diagram of specific volumes the values at various pressures and temperatures and calculated the ratios v/T. These are tabulated below:—

^{* &#}x27;Phil. Trans.,' 1913, A, No. 499.

p = 400 lb./sq. in.

t.	T.	v.	$\frac{v}{\mathrm{T}} \times 10^5$.
° C. -16 ·5 -27 -36	Abs. 256 · 5 246 237	0 ·974 0 ·933 0 ·900	380 379 · 3 379 · 7
1			

$$p = 500 \text{ lb./sq. in.}$$

t.	T.	v.	$\frac{v}{\mathrm{T}} \times 10^5$.
° C. -4 ·6 -16 ·5 -27 -36	Abs. 268 · 4 256 · 5 246 237	1 ·042 0 ·970 0 ·929 0 ·897	380 378 · 2 377 · 6 378 · 5

$$p = 600 \text{ lb./sq. in.}$$

t.	т.	v.	$\frac{v}{\mathrm{T}} \times 10^5.$
° C. +5.7 -4.6 -16.5 -27 -36	Abs. 278 · 7 268 · 4 256 · 5 246 237	1·119 1·031 0·967 0·926 0·895	401 ·5 384 ·1 377 ·1 376 ·4 377 ·6

All these three sets concur in giving a minimum value of v/T at a temperature not much removed from -24° C. The inversion point actually found experimentally lies between $-20^{\circ}7^{\circ}$ and -31° , and by plotting their cooling effects one finds it to be at -28° C, the high pressure being between 668 and 664 lbs./sq. in., and the low pressure between 433 and 360. The mean pressure is therefore about 500 lb./sq. in. Thus, the rather remarkable result that an inversion point exists near the point found is confirmed. The result is remarkable, because it implies that liquid CO_2 is in this region behaving very nearly like a perfect gas, its volume being nearly proportional to the absolute temperature.

It may be added that 500 lb./sq. in, is about 0.46 times the critical pressure, and -28° C. is about 0.81 times the critical temperature; and that these are approximately co-ordinates of an inversion point for any van der Waals liquid.