离散数学第2次作业

林陈冉

2017年3月10日

- **2.1.13** 证明过程中, 假设 $S = \{a, b, c, d, \dots\}$, 即至少有4条直线, 这暗含着要求在 n = 3 的情况下 命题成立, 证明过程只说明了 n = 1, 2 时命题成立, 且事实上 n = 3 时确实不成立.
- **2.5.4** (a) $n^2 1 = (n+1)(n-1)$, 当 n 是奇数, 则 n+1, n-1 都是偶数, 故 $n^2 1$ 是 $2 \times 2 = 4$ 的倍数.
- (b) $n^3 n = n(n+1)(n-1)$, 对 $\forall n$, n, n+1 中至少有一个偶数, n, n+1, n-1 中有一个是3的倍数, 故 $n^3 n$ 是6的倍数.
- $\textbf{2.5.5} \quad \ \, \exists C = \{girlswholiketopalychess\} \,, \\ S = \{girlswholiketoplaysoccer\} \,, \\ B = \{girlswholikebiking\} \,, \\ S = \{$

$$|S \cup B \cup c| = |S| + |B| + |C| - |S \cap B| - |A \cap C| - |B \cap C| + |S \cap B \cap C|$$
$$= |B| + 23 + 18 - 9 - 7 - 12 + 4 = |B| + 17 = 40$$

则容易求得喜欢骑行的有23人

补充1 正向直接求解即可,实际上, $\xi \ge 1$, $\eta \ge 2$, $\zeta \ge 3$,故有1+2+3=6组解.

补充2 设 $A = \{n = 0 \mod 5\}$, $B = \{n = 0 \mod 6\}$, $C = \{n = 0 \mod 8\}$, 能被5或6或8整除的数构成集合 $A \cup B \cup C$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap B| - |B \cap C| + |A \cap B \cap C|$$

= 200 + 166 + 125 - 33 - 25 - 20 + 4 = 412 (0.1)

故1到1000间不能被5和6和8整除的数共588个.

- **补充3** (1) 两个z相邻有 $\frac{5!}{2!} = 60$ 种排列, 两个g相邻也有 $\frac{5!}{2!} = 60$ 种排列, 两个z和两个g同时相邻有 4! = 24 种排列, 故两个z和两个g同时不相邻有 $\frac{6!}{2!2!} 60 60 + 24 = 84$ 种排列.
- (2) 考虑先排列好i, a, g, g, 有 $\frac{4!}{2!}$ = 12 种排列. 再插入z, z, 故有 $6 \times 3 + 4 \times 1 + 2 \times 1 = 24$ 种排列

补充4 设 $A = \{n$ 是平方数, $1 \le n \le 10000\}$, $B = \{n$ 是立方数, $1 \le n \le 10000\}$. $|A| = \lfloor 10000^{\frac{1}{2}} \rfloor = 100$, $|B| = \lfloor 10000^{\frac{1}{3}} \rfloor = 21$, $|A \cap B| = \lfloor 10000^{\frac{1}{6}} \rfloor = 4$, 故是平方数或者立方数的数构成集合 $A \cup B$

$$|A \cup B| = |A| + |B| - |A \cap B| = 117$$

故1到10000间的平方数或立方数共117个.

补充1 假设命题不成立,存在子集使任意两数的差大于等于 3 ,则最小数和最大数的差大于等于 3n ,由于最小数至少是 1 ,则最大数至少是 3n+1 ,但原集合最大数是 3n ,产生矛盾.故原命题成立.

补充2 可以更小, 只需要6个人, 直接证明这一点, 即可以证明原题. 转化考虑下面的问题: 房间中已 经有 k 个人, 再进入一个人, 使任意两组人年龄都不相等, 最多可以加到多少人?

记第 i 个进入房间的人年龄为 a_i , 则至少 a_k 不等于 $\{a_1, \cdots, a_{k-1}\}$ 的任意子集的和. 不妨认为大家按年龄顺序进入, 即 $i < j \Leftrightarrow a_i < a_j$. 已知 $a_1 \ge 1$, 那么容易知道 $a_2 \ge 2$.

来考虑所有人年龄都取到最小的情况,即所有 a_k 都取到等号, $a_1=1$, $a_2=2$.那么当 $a_k=p$,说明 $\{a_1,\cdots,a_{k-1}\}$ 的子集可以组合出任意小于等于 p-1 的整数,那么 $\{a_1,\cdots,a_{k-1},a_k\}$ 的子集可以组合出任意小于等于 2p-1 的整数,故 $a_{k+1}=2p$.由 $a_1=1$,则 $a_k=2^{k-1}$, $\sum_{k=1}^n a_k=2^n-1$, $2^5-1<60<2^6-1$,即最多房间中可以有5人, $\{1,2,4,8,16\}$ 是满足题意的年龄集合.那么当有6人时,房间中必有两组人的年龄之和相等,原题得证.

补充3 考虑这个子集集合中元素最少的子集 A. 显然 $|A| \ge 1$,若 $A = \{a\}$,则由题意, 所有子集都必须含有元素 a,那么这样的子集集合共有子集 2^{n-1} 个. 若 |A| > 1,则显然子集集合中的集合个数更少了, 故命题成立.

补充4 假设任意两点距离大于等于1, 考虑10个任意两点间距离大于等于1的点组成的最小面积, 这等价于10个半径为 \{\} 的互不相交的圆的圆心组成的最小面积.

为了面积更小, 我们让圆尽可能相切, 容易证明一个圆最多和6个圆相切, 此时圆心之间连线也构成等边三角形.10个点最少构成9个边长为1的等边三角形, 面积为 $\frac{9\sqrt{3}}{2}$, 但这刚好是边长为3的等边三角形的面积, 与点在三角形内矛盾, 故三角形内不可能有10个任意两点间距离大于等于1的点.

补充5 记这任意取的两个数为 a, b, 不妨认为 a > b, $a = a' \mod 100$, $b = b' \mod 100$

$$a+b=0 \mod 100 \Leftrightarrow a'+b'=100 \quad a-b=0 \mod 100 \Leftrightarrow a'=b'$$

则原题等价于: 在 [0,99] 中可以重复地取52个整数, 至少有2个整数和为100或相等.

上述命题的否定形式为: 在 [0,99] 中不重复地取52个整数, 任意2个整数的和都不等于100. 这显然不成立, 故原命题成立.

补充6 类似补充5, 记这任意取的三个数为 a , b , c 不妨认为 a > b > c , $a = a' \, mod \, 3$, $b = b' \, mod \, 3$, $c = c' \, mod \, 3$.

$$a+b+c=0\,mod\,3 \Leftrightarrow a'+b'+c'=0,3,6$$

则原题等价于: 在 [0,2] 中可以重复的取5个整数, 任意3个整数的和被3整除. 其否定形式等价于: 在 [0,2] 中可以重复的取5个整数构成集合S, $\{0,0,0\}$, $\{0,1,2\}$, $\{2,2,2\}$ 不是集合S的子集.