MS BGD: MDI720 Intervalles de confiance

François Portier, Anne Sabourin Telecom ParisTech

Septembre 2018

Définition Théorèmes limites IC pour le modèle linaire

Définition

Théorèmes limites IC pour le modèle linaire

- Contexte : on a une estimation $\widehat{g}(y_1, \ldots, y_n)$ d'une grandeur g. On veut un intervalle \widehat{I} autour de \widehat{g} qui contient g avec une grande probabilité.
- On construit $\widehat{I} = [\underline{C}, \overline{C}]$ à partir des observations (y_1, \dots, y_n) : l'intervalle est une variable aléatoire

$$\mathbb{P}(\widehat{I} \text{ contient } g) = \mathbb{P}(\underline{C} \le g \text{ et } \overline{C} \ge g) = 95\%$$

Intervalle de confiance de niveau α

Intervalle de confiance

Un intervalle de confiance de niveau α pour la grandeur g est une fonction de l'échantillon

$$\widehat{I}:(y_1,\ldots,y_n)\mapsto \widehat{I}=\left[\underline{C}(y_1,\ldots,y_n),\overline{C}(y_1,\ldots,y_n)\right]$$

telle que

$$\mathbb{P}\left[g\in\widehat{I}(y_1,\ldots,y_n)\right]\geq 1-\alpha$$

Rem:choix classiques $\alpha=5\%,1\%,0.1\%,$ etc. Résultant souvent d'un arbitrage complexité des données / nombre d'échantillons

Rem:Dans la suite on notera IC pour Intervalle de Confiance

Exemple: sondage

- Sondage d'une élection à deux candidats : A et B. Le choix du i^e sondé suit une loi de Bernoulli de paramètre p, avec $y_i = 1$ s'il vote A, 0 sinon.
- But : estimer p.
- \bullet échantillon de taille n: un estimateur raisonnable est alors

$$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}_n$$

intervalle de confiance pour p?

Sondage: intervalle de confiance

- Chercher un intervalle $\hat{I} = [\hat{p} \delta, \hat{p} + \delta]$ tel que $\mathbb{P}(p \in \hat{I}) \geq 0.95 \Leftrightarrow$ chercher δ tel que $\mathbb{P}[|\hat{p} p| > \delta] \leq 0.05$
- Ingrédient : inégalité de Tchebyschev

$$\boxed{ \forall \delta > 0, \quad \mathbb{P}(|X - \mathbb{E}(X)| > \delta) \leq \frac{\mathbb{V}ar(X)}{\delta^2} }$$

Pour
$$X = \widehat{p} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 on a $\mathbb{E}(\widehat{p}) = p$ et $\mathbb{V}ar(\widehat{p}) = \frac{p(1-p)}{n}$:

$$\forall p \in (0,1), \forall \delta > 0, \quad \mathbb{P}(|\widehat{p} - p| > \delta) \leq \frac{p(1-p)}{n\delta^2} \leq \frac{1}{4n\delta^2}$$

Application numérique: pour un IC à 95%, choisir δ tel que $\frac{1}{4n\delta^2} = 0.05$, i.e. $\delta = (0.2n)^{-1/2}$. Si n = 1000, $\hat{p} = 55\%$:

$$\delta = 0.07$$
; $\hat{I} = [0.48, 0.62]$

Définition

Théorèmes limites

IC pour le modèle linaire

Théorème central limite

- y_1, y_2, \ldots , des variables aléatoires *i.i.d.* de carré intégrable.
- μ et σ leur espérance et écart-type théoriques.

Théorème central limite (TCL)

La loi de la moyenne empirique re-normalisée $\sqrt{n}\left(\frac{\bar{y}_n-\mu}{\sigma}\right)$ converge vers une loi normale centrée réduite $\mathcal{N}(0,1)$

• σ est connu

Lemme de Slutsky

La loi de la moyenne empirique "studentizée" $\sqrt{n}\left(\frac{\bar{y}_n-\mu}{\widehat{\sigma}}\right)$ converge vers une loi normale centrée réduite $\mathcal{N}(0,1)$ quand $\widehat{\sigma}\to\sigma$

Reformulation : $\bar{y}_n \simeq \mathcal{N}(\mu, \hat{\sigma}^2/n)$

Illustration

Intervalles de confiance asymptotiques

• Exemple du sondage : $y_i \in \{0, 1\}, n = 1000,$

$$\hat{p} = n^{-1} \sum_{i=1}^{n} y_i = 0.55$$

 \bullet On suppose que n est suffisamment grand pour que

$$\sqrt{n} \left(\frac{\widehat{p} - p}{\widehat{\sigma}} \right) \sim \mathcal{N}(0, 1)$$

$$\widehat{\sigma}^2 = n^{-1} \sum_{i=1}^n (y_i - \widehat{p})^2 = \widehat{p} - \widehat{p}^2$$

- On connaît les quantiles de la loi normale (numériquement) $q(1-0.05/2) \simeq 1.96$
- D'après le TCL, et l'approximation des quantiles gaussiens

$$\mathbb{P}\left[-1.96 < \sqrt{n} \, \frac{0.55 - p}{\widehat{\sigma}} < 1.96\right] \approx 0.95$$

nouvel IC : $\hat{I} = [0.52, 0.58]$: meilleur! (plus optimiste)

En Python

Génération des données

```
import numpy as np
from scipy.stats import norm

n = 1000
x = np.random.binomial(1, .5, n)
```

Calcul de l'IC

Définition

Théorèmes limites

IC pour le modèle linaire

IC pour les moindres carrés (I)

Rappel: prenons $X \in \mathbb{R}^{n \times p}$, alors $\widehat{\sigma}^2 = \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2/(n - \text{rang}(X))$, estimateur sans biais de la variance. De plus (cf. Poly):

$$\operatorname{Si} \epsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n), \text{ alors}$$

$$\operatorname{Si} \epsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n), \text{ alors } \boxed{T_j = \frac{\widehat{\theta_j} - \theta_j^*}{\widehat{\sigma} \sqrt{[(X^\top X)^{-1}]_{j,j}}} \sim \mathcal{T}_{n-\operatorname{rang}(X)}}$$

où $\mathcal{T}_{n-\text{rang}(X)}$ est une loi dite de Student (de degré n-rang(X)). Sa densité, ses quantiles, etc. sont calculables numériquement.

IC pour les moindres carrés (II)

Sous l'hypothèse gaussienne, comme

$$\mathcal{T}_j = rac{\widehat{ heta}_j - heta_j^*}{\widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\mathsf{rang}(X)}$$

et en notant $t_{1-\alpha/2}$ un quantile d'ordre $1-\alpha/2$ de la loi $\mathcal{T}_{n-\mathsf{rang}(X)}$, alors l'intervalle de confiance suivant est de niveau α

$$\left[\widehat{\theta}_j - t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}, \widehat{\theta}_j + t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}\right]$$

pour la quantité θ_j^* .

Rem: $\mathbb{P}(|T_j| < t_{1-\alpha/2}) = 1 - \alpha$ car la loi de Student est symétrique

Limites des IC précédents

Dans la partie précédente, l'intégralité des raisonnement repose sur le modèle gaussien ou **l'approximation asymptotique**.

<u>Attention</u> : si le modèle est (trop) faux ou l'échantillon trop petit alors les IC obtenus ne seront pas forcément pertinents.

Alternative possible : bootstrap, une méthode non-paramétrique reposant sur le ré-échantillonnage, bien fondée (théoriquement) pour des statistiques régulières telle que la moyenne, les quantiles, etc., (mais pas pour le max ou le min!)

Pour aller plus loin: Efron et Tibshirani (1994)

Références I

[ET94] B. Efron and R. Tibshirani. An introduction to the bootstrap. CRC press, 1994.