FICHE DE COURS 7

Circuits électriques du 2^{ème} ordre en régime transitoire

Ce que je dois être capable de faire après avoir appris mon cours

Établir l'équation différentielle associée à une grandeur électrique d'un circuit LC série.
Mettre l'équation différentielle sous forme canonique et identifier la pulsation propre du circuit.
Déterminer les solutions de l'équation différentielle de l'oscillateur harmonique grâce aux conditions initiales.
Passer d'une forme de solution à l'autre grâce aux relations de passage.
$ Extraire \ du \ chronogramme \ d'un \ oscillateur \ harmonique \ la \ période \ propre, \ la \ pulsation \ propre, \ l'amplitude \ et \ la \ phase \ initiale \ de \ l'oscillateur. $
Définir et calculer la valeur moyenne d'un signal sinusoïdal.
Effectuer un bilan de puissance électrique sur l'ensemble du circuit.
Vérifier l'équipartition de l'énergie dans le circuit LC en régime libre.
Tracer et interpréter le portrait de phase d'un oscillateur harmonique.
Établir l'équation différentielle associée à une grandeur électrique d'un circuit RLC série.
$Mettre \ l'équation \ différentielle \ sous \ forme \ canonique \ et \ identifier \ la \ pulsation \ propre \ et \ le \ facteur \ de \ qualit\'e \ du \ circuit.$
Connaître les conditions sur Q correspondant aux trois types de régime transitoire possibles.
Déterminer les solutions de l'oscillateur harmonique amorti en fonction des valeurs de Q .
Établir les expressions du temps d'amortissement et de la pseudo-pulsation dans le cas du régime pseudo-périodique
Définir et utiliser le décrément logarithmique pour analyser le chronogramme d'un oscillateur harmonique amorti en régime pseudo-périodique.
Effectuer un bilan de puissance sur le circuit RLC série.

Les relations sur lesquelles je m'appuie pour développer mes calculs

☐ Équation différentielle homogène canonique (EDHC) vérifiée par un oscillateur harmonique (OH) :

$$\ddot{X} + \omega_0^2 X = 0$$

☐ Solutions de l'EDHC d'un OH :

$$X_h(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
 ou $X_h(t) = X_m\cos(\omega_0 t + \varphi)$

 \square Relations de passage (1):

$$X_m = \sqrt{A^2 + B^2}$$
 et $\tan \varphi = -\frac{B}{A}$

 \square Relations de passage (2):

$$A = X_m \cos \varphi$$
 et $B = -X_m \sin \varphi$

 \square Valeur moyenne d'un signal s(t) T-périodique :

$$\langle s \rangle_T = \frac{1}{T} \int_t^{t+T} s(t) dt$$

□ EDHC vérifiée par un oscillateur harmonique amorti (OHA) :

$$\ddot{X} + \frac{\omega_0}{Q}\dot{X} + \omega_0^2 X = 0$$

 \square Solutions de l'EDHC d'un OHA en *régime apériodique* : $\Delta > 0 \Leftrightarrow Q < \frac{1}{2}$

$$X_h(t) = K_+ e^{r_+ t} + K_- e^{r_- t}$$
 avec $r_{\pm} = -\frac{\omega_0}{2Q} \left(1 \mp \sqrt{1 - 4Q^2} \right)$

 \square Solutions de l'EDHC d'un OHA en *régime critique* : $\Delta = 0 \Leftrightarrow Q = \frac{1}{2}$

$$X_h(t) = (At + B)e^{rt}$$
 avec $r = -\frac{\omega_0}{2Q}$

 \square Solutions de l'EDHC d'un OHA en *régime pseudo-périodique* : $\Delta < 0 \Leftrightarrow Q > \frac{1}{2}$

$$X_h(t) = e^{-t/\tau} \left[A \cos\left(\Omega t\right) + B \sin\left(\Omega t\right) \right] \quad \text{avec} \quad \tau = \frac{2Q}{\omega_0} \quad \text{et} \quad \Omega = \frac{2\pi}{T} = \omega_0 \sqrt{1 - \frac{1}{4Q^2}}$$

☐ Décrément logarithmique :

$$\delta = \ln\left(\frac{X(t) - X(t \to \infty)}{X(t+T) - X(t \to \infty)}\right) = \frac{T}{\tau} \quad \text{ou encore} \quad \boxed{Q = \sqrt{\frac{1}{4} + \frac{\pi^2}{\delta^2}}}$$