

Learning Shortcuts in the Chemical Space

James O'Reilly

Supervised by Alessandro Lunghi SS TP Capstone Presentation 2024

Objective?

To leverage **reinforcement learning** methods to screen a large number of molecules at low computational cost for promising high temperature **single-molecule magnet** candidates.

Single-molecule magnets (SMMs)

- Molecules that show a magnetic memory effect, i.e. they retain their magnetisation at low temperatures.
- Why? Magnetic anisotropy

$$E = M_S^2 \cdot D$$

 \Rightarrow Maximal $|M_S|$ in ground state for D < 0

Magnetic Field

Relaxation rate:

$$\tau^{-1} = \tau_0^{-1} \exp[\frac{-U}{k_B T}]$$

$$U \propto |D|$$

We want highly negative *D*!

Single-molecule magnets (SMMs)

Applications of room temperature single-molecule magnets:

- Data storage:
 - Current HDDs ~ 200GB in⁻²
 - $SMMs \sim 20,000GB in^{-2}$

Data centres 100 times smaller/more efficient

- Quantum computing
- Spintronics

Reinforcement Learning (RL)

- Learn through trial and error by interacting with environment and receiving rewards or penalties based on actions.
- Feedback is delayed.
- Importance of balancing exploration vs exploitation.
- Extremely versatile and has had many successes to date:
 - **Robotics**
 - > Autonomous vehicles
 - Finance/trading
 - > AlphaGo

Markov Decision Processes (MDPs)

• MDPs provide a mathematical framework for RL problems.

Components of an RL agent

• A policy π maps states to actions: $\pi(a|s) = \mathbb{P}[A_t = a \mid S_t = s]$

A value function gives a prediction of future reward while following a certain policy.

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s, A_t = a] \ , \ \gamma \in [0,1]$$

• How do we find the *optimal* policy π_* of our agent?

$$\pi_*(a \mid s) = \begin{cases} 1 & if \quad a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \, q_*(s, a) \\ 0 & otherwise \end{cases}$$

Q-Learning

- Tabular Method.
- Epsilon greedy behaviour policy.

actions

states	a_0	a_1	a_2	• • •
S_0	$Q(s_0,a_0)$	$Q(s_0,a_1)$	$Q(s_0,a_2)$	• • •
S_1	$Q(s_1,a_0)$	$Q(s_1,a_1)$	$Q(s_1,a_2)$	• • •
S_2	$Q(s_2,a_0)$	$Q(s_2,a_1)$	$Q(s_2,a_2)$	• • •
•	•	•	•	:

TD error

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right)$$
TD target

$$Q(s,a) \longrightarrow q_*(s,a)$$

Our Problem

 Construct molecules by adding ligands to a central metal atom.

- Very challenging MDP!
- Very few no. steps
- ➤ No new info until end of episode

Data

water_2_carbonyl_2 -15.047209
water_2_ome2_2 19.672844
water_2_phosphine_2 9.707102
ammonia_1_acetonitrile_1_carbonyl_1_ome2_1 14.23534
ammonia_1_acetonitrile_1_carbonyl_1_phosphine_1 7.843228
ammonia_1_acetonitrile_1_ome2_1_phosphine_1 -8.935483

Synthetic Data

$$n_{states}(N, M) = 1 + \sum_{m=1, \dots, M} {m+N-1 \choose N-1}$$

N = no. ligands to choose from

M = no. ligands in molecule

$$L_{i} \in [-10, 10]$$

$$R_{final} = \sum_{i=1,...,M} L_{i} \longrightarrow \begin{bmatrix} A, A, ..., A \end{bmatrix} \text{ best}$$

$$M \text{ times}$$

$$Performance\ Ratio = \frac{Total\ no.\ Terminal\ States\ Reached}{Terminal\ State\ Space\ Size}$$

$$Cost Ratio = \frac{Unique \ no. \ Terminal \ States \ Reached}{Terminal \ State \ Space \ Size}$$

MN	10	20	30
4	1,001	10,626	46,376
6	8,008	230,230	1,947,792
8	43,758	3,108,105	48,903,492

Synthetic Data

Algorithmic improvements

Order-invariance when adding ligands \implies Multiple Q updates per step

Algorithmic improvements

Full backup updates

Physical data

Dataset 1:

$$N = 13$$

$$M = 4$$

$$n_{molecules} = 766$$

Dataset 2:

$$N = 206$$

$$M = 2$$

$$n_{molecules} = 21,321$$

Next Steps

- Return to synthetic data with more complexity/correlation between ligands in the reward function
- ➤ Too little of no. steps?
- Pattern too complicated?
- Introduce featurisation and use deep Q-Learning:
- > SMILES
- Coordinates
- Bispectrum Components

Thank you!

References:

- 1. R. S. Sutton and A. G. Barto, <u>Reinforcement Learning:</u> <u>An Introduction</u>, 2nd ed. (The MIT Press, 2018).
- 2. D. Silver, Lectures on reinforcement learning, URL: https://www.davidsilver.uk/teaching/ (2015)
- 3. A. Zabala-Lekuona, J. M. Seco, and E. Colacio, Coordination Chemistry Reviews 441, 213984 (2021).
- 4. D. Gatteschi, R. Sessoli, and J. Villain, *Molecular Nanomagnets* (Oxford University Press, 2006).
- 5. G. Rajaraman, Computational Modelling of Molecular Nanomagnets (Springer Cham, 2023)
- N. Chilton, Single-molecule magnets: design, measurement and theory, The University of Manchester (2020), available <u>here</u>.

Trinity College Dublin

Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin