

Molecular Docking in the Cloud: Introduction to Molecular Docking

PhD. Pablo Ricardo Arantes PhD. Conrado Pedebos

Porto Alegre, July 14th 2025

Drug Discovery Cycle

Drug candidate

Schaduangrat et al. (2020) J. Cheminform. 12, 9

Drug Discovery Cycle

Drug Discovery Cycle - Virtual Screening

- Rapidly screen large libraries of small molecules (e.g., millions of compounds) to identify "hits" that bind to a target protein (e.g., an enzyme or receptor involved in a disease).
- Cost-effective alternative to High-Throughput Screening (HTS)
- Part of iterative Design-Make-Test-Analyze loop
- Main types: Structure-Based (SBVS) and Ligand-Based (LBVS)
- Advantage: Reduces wet-lab screening costs by focusing on computationally selected candidates.

Virtual Screening

Virtual Screening

Requires 3D structure of the target **Steps**:

- Receptor & ligand preparation
- Docking using a scoring function
- Post-processing & hit selection

Used when target structure is unknown. Relies on known actives to find similar compounds

Methods:

- 2D/3D similarity searches
- Pharmacophore modeling
- Machine learning classifiers

Virtual Screening - Ligand-Based

Pharmacophore-based VS

Pharmacophore = a set of steric and electronic characteristics required to ensure better interactions with a particular biological target

Virtual Screening - Ligand-Based

Machine Learning approaches

Virtual Screening - Ligand-Based

Fingerprints:

- Mathematical or vectorial representations = chemical and structural representations of a molecule
- Similarity between molecules (Tanimoto more common)
- Scalable, fast to calculate and compare, dimensionality reduction

Neighbor Analysis X

Protein and ligand selection

Protein ligand preparation Binding site definition

Structural water

Molecular docking

Evaluation

- Structure of the protein target (3D coordinates)
- 3D coordinates of ligand(s)
- · Add hydrogens
- Check protonation state(s)
- Select proper tautomer/protomer /stereoisomer
- Experimentally (3D structure of protein-ligand complex is available)
- · Cavity detection
- Waters that coordinate H-bonds between protein and ligand
- Exploring the conformational space (searching algorithm)
- Ranking candidate solutions (scoring function)
- Are all the Hbond donors and acceptors in the ligand satisfied?
- If the complex is known, is the binding mode of a ligand to protein reproduced?

- Structure of the protein target (3D coordinates)
- 3D coordinates of ligand(s)

Receptor Structure

Accelerating breakthroughs in biology with Al

Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints

Compound Library

Compound Library (Natural Products)

SuperNatural 3.0

Latin American Natural Product Database (LANaPDB)

Ligand preparation

Protein preparation

PDBFixer

https://github.com/openmm/pdbfixer

Protein ligand preparation

- Add hydrogens
- Check protonation state(s)
- Select proper tautomer/protomer /stereoisomer
- Experimentally (3D structure of protein-ligand complex is

site

definition

· Cavity detection

available)

Ligand-binding site prediction based on machine learning.

Virtual Screening - Compound Filtering

 Property-based filtering - A set of conditions that must be met by a compound to be used in the screening

	MW (Da)	PSA (A ²)	НВА	HBD	cLogP/cLogD	RTB	NAR	Formal charge	References
			72 72						723 17277777 22227
Lipinski's rule (RO5)	≤500	_	0–10	0–5	≤5	_	-		Lipinski et al., 1997
Ghose's rule	160-480	_	_	_	-0.4 to $+5.6$	_	20-70	<u> </u>	Ghose et al., 1999
Oprea's drug-like rule	-	-	2-9	0-2	-	2-8	- 1	-	Oprea, 2000
Walters	200-500	≤120	0-10	0–5	-	0-8	-	-	Walters and Murcko, 2002
Veber's rule	_	≤140	-	_	-	0-10	_	_	Veber et al., 2002
REOS	200-500	-		0–5	-5.0 to 5.0	0–8		-2 to +2	Walters and Namchuk, 2003
Beyond rule of five (bRO5)	≤1,000	<250	<15	≤6	-2 to 10	≤20	-		Doak et al., 2014
Congreve's rule (RO3)	<300	_	≤ 6	≤3	≤3	-	_	_	Congreve et al., 2003
Herbicide-likeness	150-500	_	2-12	< 3	≤3.5	<12	-	-	Tice, 2001
Insecticide-likeness	150-500		1–18	≤ 2	0–5	<12	70.7	-	Tice, 2001
Hao's rule (pesticide-likeness)	≤435		≤6	≤ 2	≤6	≤9	≤17		Hao et al., 2011

MW, molecular weight; PSA, polar surface area; HBD, hydrogen bond donor; HBA, hydrogen bond acceptor; RTB, rotatable bonds; NAR, number of aromatic rings.

GNINA Docking

https://github.com/gnina/gnina

https://github.com/dptech-corp/Uni-Dock

Molecular docking

Evaluation

- Exploring the conformational space (searching algorithm)
- Ranking candidate solutions (scoring function)
- Are all the Hbond donors and acceptors in the ligand satisfied?
- If the complex is known, is the binding mode of a ligand to protein reproduced?

GNINA Docking

https://github.com/gnina/gnina

https://github.com/dptech-corp/Uni-Dock

Molecular docking

Evaluation

- Exploring the conformational space (searching algorithm)
- Ranking candidate solutions (scoring function)
- Are all the Hbond donors and acceptors in the ligand satisfied?
- If the complex is known, is the binding mode of a ligand to protein reproduced?

GNINA Docking

https://github.com/gnina/gnina

https://github.com/dptech-corp/Uni-Dock

https://github.com/gnina/gnina

https://github.com/dptech-corp/Uni-Dock

GNINA Docking

https://github.com/gnina/gnina

https://github.com/dptech-corp/Uni-Dock

10.000 molecules in less than 1.5 hour 1.000.000 molecules in less than 6 days!!!

ESCOLA GAÚCHA DE BIOINFORMÁTICA

Evaluation

- Clusters
- Molecule ranking (scoring methods)

Product of pose classification and predicted binding affinity

	Molecule_Solution	minimizedAffinity	CNNscore	CNNaffinity	CNN_VS
0	mol_6087_1	-7.93925	0.911983	6.780704	6.183887
1	mol_5986_1	-8.11932	0.915682	6.498751	5.950791
2	mol_1600_1	-7.45823	0.881309	6.533484	5.758017
3	mol_3631_1	-7.96031	0.909520	6.195273	5.634723
4	mol_193_1	-8.73742	0.917535	6.130170	5.624646
62675	mol_1514_8	-6.83488	0.110981	3.370108	0.374019
62676	mol_2437_9	-6.42252	0.100460	3.688916	0.370587
62677	mol_771_9	-5.51312	0.130097	2.767925	0.360099
62678	mol_771_10	-5.47916	0.121043	2.877078	0.348249
62679	mol_2437_10	-6.92232	0.100410	3.424139	0.343818

- What's next?
 - Redo the VS using different conformations of the same receptor
 - Copies of the same receptor from the RCSB PDB
 - Ensemble obtained from Molecular Dynamics simulations
 - Molecular Dynamics to refine the top poses
 - Other binding energy predictors
 - MM-PBSA (frames from the MD simulations) shown to greatly reduce the rate of false positives
 - AEV-PLIG
 - PLACER
 - Visual Inspection by a medicinal chemist
 - Reliable interactions?
 - Synthetic feasibility
 - Intellectual Property?
 - Predictions of ADMETox properties

Arom.: if high, might be less

Fraction Csp3: sp3 carbons; values > 0.3 indicate more complex structures (higher drug likeness); low values ->

planar structures.

Rot. bonds: ideal < 10 (Veber), if >, less oral

bioavail.

soluble

HBA: ideal <10; HBD: <5 Molar Refrac.: 40-130 (Ghose); too low = low affinity; too high = low solub.

TPSA: ideal < 140 for oral absorp.; < 90 cross BBB

Ideally: -0.5 a 5.0 (**Lipinski**). < -1: too hydrophilic; > 5: risk having low solubility and high toxicity.

Water solub: ideal > -4.0 and < 0.5 for oral absorp.

Pharmacok:

GI abs. = oral absorp.
BBB = good for SNC drugs,
bad for side-effects
P-gp = if Yes, might have less
bioavail. and tissue accum.
CYP inh. = relevant for
drug-drug interact.
Log Kp = -4 to -8 typically
(more -, more perm.)

