Ejercicios de Topología Algoritmica

Ortiz Ortiz Bosco

Instituto Politecnico Nacional Escuela Superior de Física y Matemáticas Ciudad de México

26 de junio de 2024

1. En \mathbb{R}^2 sea

$$S := \left(\left\{ \frac{1}{n} \right\} \times [0, 1] \right) \cup (0, 1] \times \{0\}$$

(a) $\pounds S$ es conexo por caminos?

Demostración:

Sea $x, y \in S$. Queremos demostrar que existe un camino continuo en S que une a x e y. Existen dos casos a considerar:

- i. x e y están en la misma línea vertical (ambos en una de las líneas $\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}\times[0,1]$ o en $(0,1]\times 0$. En este caso, el segmento rectilíneo que une a x e y es completamente contenido en S y es continuo.
- ii. x está en una línea vertical $\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}\times[0,1]$ e y está en $(0,1]\times 0$. Se puede definir un camino continuo a trozos de la siguiente manera:
 - Un segmento rectilíneo de x a $(\frac{1}{n}, 0)$.
 - Un segmento horizontal de $(\frac{1}{n},0)$ a (1,0).
 - Un segmento vertical de (1,0) a y.

Todos estos segmentos están contenidos en S y la unión de estos segmentos define un camino continuo que une a x e y.

Conclusión: En ambos casos, hemos demostrado la existencia de un camino continuo en S que une a x e y. Por lo tanto, S es conexo por caminos.

(b) $\pounds \bar{S}$ es conexo por caminos?

Demostración: Notar que \bar{S} es el siguiente conjunto:

$$S := \left(\left\{ \frac{1}{n} \right\} \times [0, 1] \right) \cup \{ (0, 1] \times \{0\} \} \cup \{ \{0\} \times [0, 1] \}$$

Es decir se le añade el segmento de recta que consta de:

$$(0,0) - - - (0,1)$$

Entonces por la demostración anterior bastaria con extender la demostración análogamente añadiendo la recta ya mencionada

(c) Demostrar que S es conexo $\rightarrow \bar{S}$ es conexo

Demostracón:

Para demostrar la implicación anterior basta con demostrar que que \bar{S} no es conexo, S conexo, se sigue:

Podemos reescribir \bar{S} como la unión de dos conjuntos cerrados disjuntos:

- Un segmento vertical: $0 \times (0,1]$
- Un conjunto de puntos con coordenadas x que se acercan a 0 desde el lado positivo: $\frac{1}{n} \times [0,1] \forall n \in \mathbb{N}$ (incluyendo el punto límite (0,0))

Como estos dos conjuntos cerrados son disjuntos (no tienen puntos en común) y su unión forma \bar{S} , cualquier separación de \bar{S} en dos conjuntos abiertos tendría necesariamente un conjunto que contiene el segmento vertical y el otro que contiene los puntos con coordenadas x que se acercan a 0. Esto desconectaría a \bar{S} .

2. Lema de Pegado: Sean X,Y dos espacios topológicos, $A,B\subset X$ sub-espacios cerrados tales que $X=A\cup B$ una función $f:A\to Y$ y una función $g:B\to Y$ ambas continuas con f(x)=g(x) si $x\in A\cap B\to h:X\to Y$ dado por una función:

$$h(x) = \begin{cases} f(x) & \text{si } x \in A \\ g(x) & \text{si } x \in B \end{cases}$$

Demostración:

(a) Definimos la función $h: X \to Y$ como:

$$h(x) = \begin{cases} f(x) & \text{si } x \in A \\ g(x) & \text{si } x \in B \end{cases}$$

- (c) Continuidad en B: La demostración es análoga a la de la continuidad en A, reemplazando f por g y A por B
- (d) Conclusión:

Hemos demostrado que h es continua en cada punto de X, lo que significa que es una función continua.

3. $\forall q \in \mathbb{N}_0$ tal que $H_q \in Scomp \to Ab$ K pertenece a los complejos simpliciales tal que:

$$\begin{split} H_q(K) &= \frac{Z_q(K)}{B_q(K)} \in Ab \\ Z_q(K) &= Ker(\delta_q) < C_q(K) < (s_0, \dots, s_q) \\ B_q(K) &= Im(\delta_{q+1}) < Ker(\delta_q) \\ \delta_q(\delta_{q+1}(x)) &= 0 \forall x \in K \end{split}$$

Sea φ transformación afin tal que:

$$\varphi: K \to L$$

$$\varphi: vert(K) \to vert(L)$$

$$\varphi([s_0, \dots, s_q]) = [\varphi(s_0), \dots, \varphi(s_q)]$$

$$H(\varphi) = \tilde{\varphi}: H_q(K) \to H_q(L)$$

$$a \in Z_q(K) \to \tilde{\varphi}(a + B_q(K)) = \varphi_q(a) + B_q(L)$$

Demostrar que $\tilde{\varphi}$ esta bien definido.

Demostración:

Sea $\tilde{\varphi}$ functor que está definido entre dos objetos este caso $H_q(K), H_q(L)$ la transformación afín definida φ ya es un homomorfismo de grupos, entre K y L entonces tomando en cuenta que estan definidos sobre la misma dimensión q es decir que al menos continenen un simplice de tamaño q entonces:

$$\exists s \in K : \varphi(s) = t \in L$$

Por las definiciones de los operadores frontera y los conjuntos Z_q, B_q respectivos de cada complejo simplicial entonces:

$$s \in K$$

$$s \in Z_q(K)$$

$$\varphi(s) \in L$$

$$\varphi(s) \in Z_q(L)$$

Analogamente con B_q , entonces:

$$\tilde{\varphi}(s) = \varphi(s) + B_a(L)$$