Mykhaylo M. Malakhov

Division of Biostatistics, School of Public Health, University of Minnesota Minneapolis, MN 55455

■ (530) 840-6245 • ■ malak039@umn.edu • ⊕ mykmal.xyz ■ MykMal • ■ mykmal • ♀ MykMal • ● 0000-0002-6856-3913

Education

University of Minnesota

Minneapolis, MN

2020-2025

PhD in Biostatistics

Advised by Wei Pan

• Member of the Interdisciplinary Biostatistics Training in Genetics and Genomics program

Andrews University

Berrien Springs, MI

2016-2020

BS in MathematicsMinor in Computing

Summa Cum Laude

J. N. Andrews Honors Scholar

Budapest Semesters in Mathematics

Budapest, Hungary

Fall 2019

Study Abroad

Research Positions

University of Minnesota School of Public Health

Minneapolis, MN

Predoctoral Trainee

2020-present

- Funded by a T32 Training Grant from the National Institutes of Health
- Helped develop a nonlinear extension of transcriptome-wide association studies (TWAS) and showed that it identifies genes missed by standard TWAS
- Currently working on a method that will identify genes with tissue-specific patterns of genetic regulation
- Currently working on leveraging proteomics data to boost the power of genome-wide association studies (GWAS)
- Methods used: linear and generalized linear models, elastic net regularization, whole-genome sequencing and RNA-Seq data processing
- Mentor: Wei Pan (University of Minnesota)

Institute for Pure and Applied Mathematics

Los Angeles, CA

Researcher and Project Manager

Summer 2019

Air Force Research Laboratory team, Research in Industrial Projects for Students program.

- Proposed novel attractor reconstruction and model calibration methods
- Showcased these methods by inferring reaction rate coefficients for hydrogen-oxygen combustion from a time series of one observable
- Methods used: optimal transport, information theory, dynamical systems
- Mentors: Robert Martin and Daniel Eckhardt (Air Force Research Laboratory)

Williams College Williamstown, MA

Research Intern

Summer 2018

Mathematical Ecology group, SMALL REU program.

- Project 1: demonstrated how to improve management outcomes for white-nose syndrome in bats by considering metapopulation dynamics
- Project 2: established guidelines for transboundary infectious disease management when multiple administrative jurisdictions set different objectives
- Methods used: differential equation models, high performance computing, public policy analysis
- Mentors: Julie C. Blackwood (Williams College) and Katriona Shea (Pennsylvania State University)

Andrews University

Berrien Springs, MI

Undergraduate Research Fellow

Summer 2017

Mathematical modeling group, Seabird Ecology Team.

- Modeled the effects of climate change on seabird behavior and population dynamics
- Proved that egg cannibalism and egg-laying synchrony can yield strong Allee effects, which allow gull colonies
 to survive at higher sea surface temperatures than otherwise possible
- Methods used: periodic matrix models, bifurcation theory, stability analysis
- Mentors: Shandelle M. Henson (Andrews University) and J. M. Cushing (University of Arizona)

Honors and Awards

National	
American Mathematical Society Travel Grant	2020
Barry M. Goldwater Scholarship	2018
University of Minnesota	
SPH Current Student Scholarship	2022
1st place, People's Choice Award at the SPH Research Day conference	2022
2nd place, Best Poster Award at the SPH Research Day conference	2022
3rd place in the Interdisciplinary Health Data Competition	2022
Dean's PhD Scholars Award	2020
Jean Roberts Biostatistics Fellowship	2020
Andrews University	
Dean's List (every semester)	2016 – 2020

Awards for Excellence in:

- Linear Algebra (2020)
- Complex Analysis (2019)
- Probability Theory with Statistical Applications (2019)
- Applied Mathematics (2019)
- Abstract Algebra (2019)
- Geometry (2019)
- Differential Equations (2018)
- Mathematical Modeling in Biology (2018)
- Calculus III (2018)
- Foundations of Advanced Mathematics (2017)
- Calculus II (2017)
- Calculus I (2017)

Putnam Competition team member (2017, 2018, 2019) and highest scorer (2018, 2019) at AU

Harold T. Jones Scholarship for highest mathematical excellence	2018
Louis Ulloth Scholarship for most significant leadership	2018
Full tuition ACT/SAT Scholarship	2016

Peer-reviewed Papers

- 1. Lin Z, Xue H, **Malakhov MM**, Knutson KA, and Pan W. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Human Molecular Genetics 2022;31:2462–70.
- 2. Blackwood JC, **Malakhov MM**, Duan J, et al. Governance structure affects transboundary disease management under alternative objectives. BMC Public Health 2021;21.
- 3. Duan J, **Malakhov MM**, Pellett JJ, Phadke IS, Barber J, and Blackwood JC. Management efficacy in a metapopulation model of white-nose syndrome. Natural Resource Modeling 2021;34:e12304.

Other Publications

- 4. **Malakhov MM**, Fitzpatrick BR, Lopez RA, and Shivkumar A. Attractor Reconstruction and Empirical Parameter Inference for Hydrogen-Oxygen Chemistry. Technical Report AD1098889. Air Force Research Laboratory, 2019. URL: https://apps.dtic.mil/sti/citations/AD1098889.
- 5. **Malakhov MM**. Managing White-nose Syndrome in Bats: A Spatially Dynamic Modelling Approach. https://doi.org/10.32597/honors/216. Honors Thesis. Andrews University, 2019.

Conference Presentations

Accounting for nonlinear effects of gene expression in transcriptome-wide association studies. Environmental Science Section; Andrews Research Conference (ARC); Andrews University; Berrien Springs, MI. (May 2022)

Modeling the impact of bat dispersal on white-nose syndrome control strategies. Mathematics Section; Michigan Academy of Science, Arts, and Letters (MASAL); Alma College; Alma, MI. (March 2019)

Federalism in Epidemic Modeling: Multi-objective Management of Interconnected Populations. AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates and Students in Post-Baccalaureate Programs; Joint Mathematics Meetings (JMM); Baltimore, MD. Jointly with Ishan Phadke. (January 2019)

Cannibalism and synchrony in a periodic matrix seabird population model. Mathematics Section; Michigan Academy of Science, Arts, and Letters (MASAL); Central Michigan University; Mount Pleasant, MI. (March 2018)

Backward Bifurcations in a Periodic Matrix Model of Seabird Population Dynamics. MAA General Contributed Paper Session on Modeling and Applications; Joint Mathematics Meetings (JMM); San Diego, CA. (January 2018)

Other Oral Presentations

Attractor Reconstruction and Empirical Parameter Inference for Hydrogen-Oxygen Chemistry. Institute for Pure and Applied Mathematics Projects Day; University of California, Los Angeles; Los Angeles, CA. Jointly with Brianna Fitzpatrick, Rebecca Lopez, and Abhishek Shivkumar. (August 2019)

Application of Convergent Cross Mapping to Chemical Reactions. Air Force Research Laboratory invited guest lecture; Edwards Air Force Base; Boron, CA. Jointly with Brianna Fitzpatrick, Rebecca Lopez, and Abhishek Shivkumar. (August 2019)

Managing White-nose Syndrome in Bats: A Spatially Dynamic Modelling Approach. Honors Thesis Symposium; Andrews University; Berrien Springs, MI. (April 2019)

SMALL Projects for a Big World: Spatial Models of Infectious Disease. eigen*Talk (undergraduate math/physics colloquium); Andrews University; Berrien Springs, MI. (November 2018)

Effects of Sea Surface Temperature on Seabird Behavior in the Pacific Northwest. eigen*Talk (undergraduate math/physics colloquium); Andrews University; Berrien Springs, MI. (September 2017)

Uncertainty in Mathematics: A Historical Analysis of the Validity and Rigor of Mathematical Statements. eigen*Talk (undergraduate math/physics colloquium); Andrews University; Berrien Springs, MI. Jointly with Robert C. Moore and Lukasz Krzywon. (April 2017)

Poster Presentations

Governance structure affects transboundary disease management under alternative objectives. School of Public Health Research Day; University of Minnesota, Twin Cities; Minneapolis, MN. (April 2022)

Data-driven Attractor Reconstruction and Parameter Inference for Hydrogen-Oxygen Chemistry. MAA Student Poster Session; Joint Mathematics Meetings (JMM); Denver, CO. (January 2020)

Managing White-nose Syndrome in Bats: A Spatially Dynamic Modeling Approach. 2019 Honors Scholars and Undergraduate Research Poster Symposium; Andrews University; Berrien Springs, MI. (March 2019)

Efficacy of Control in a Spatially Dynamic Model of White-nose Syndrome. Summer Science Poster Session; Williams College; Williamstown, MA. Jointly with Ishan Phadke. (August 2018)

A Periodic Matrix Model of Seabird Behavior and Population Dynamics. Honors Scholars and Undergraduate Research Poster Symposium; Andrews University; Berrien Springs, MI. (March 2018)

Service and Outreach

Pi Mu Epsilon: The National Mathematics Honor Society

President, Michigan Gamma Chapter

2018 - 2020

I organized π Day festivities, game nights, and our chapter's induction ceremonies. After one year as President I was reelected for a second term.

Engineers Without Borders USA

Vice President, Andrews University Chapter

2018 - 2019

I coordinated outreach activities, assisted with engineering design, and planned travel itineraries for a solar energy project at a remote school in Madagascar. The summer of 2018 I traveled to Madagascar to help conduct the assessment phase of our project.

eigen* (Andrews University math/physics club)

Mathematics President

2017 - 2018

I planned colloquia, vespers, and other events for the math/physics community. I also helped organize the first-ever Putnam Competition preparation course and team at AU.

Engineers Without Borders USA

Treasurer, Andrews University Chapter

2017 - 2018

I oversaw chapter and project finances, wrote grant applications, and organized fundraising efforts. During my time as Treasurer we raised about \$20,000.

Teaching Experience

Andrews University

Berrien Springs, MI

Teaching Assistant

2017-2020

- Mathematics Center tutor
 - Tutored undergraduates for math classes of all levels (arithmetic review through abstract algebra).
- LATEX workshop leader
 - Co-organized and co-taught a short course on LATEX.
- Grader for Foundations of Advanced Mathematics
 - Wrote solution keys and graded assignments.
- Substitute teacher for calculus sequence
 - Prepared and presented lectures for Calculus I and II several times per semester.

Graduate Courses

Theory:

- Honors Real Analysis I & II
- Theory of Statistics I & II
- Biostatistics: Regression
- Advanced Regression and Design
- Linear Models
- Probability Models for Biostatistics
- Advanced Statistical Inference
- Bayesian Decision Theory and Data Analysis

Electives:

- Statistics for Human Genetics and Molecular Biology
- Advanced Statistical Genetics and Genomics
- GIS and Spatial Analysis for Public Health
- Seminar: Transethnic Association Studies
- Seminar: Imaging Genetics

Other:

- Research Skills in Biostatistics
- Foundations of Public Health
- Biomedical Ethics

Relevant Skills

Technical:

- Languages: R, Python, shell scripting, LATEX
- Tools: Unix/Linux, plink, PrediXcan, git/GitHub

Human Languages:

- English (bilingual proficiency)
- Ukrainian (working proficiency)
- Russian (bilingual proficiency)