612 Example Sheet 1

Paul Hacking

30 January 2011

Notation: For K/F a field extension and $\alpha \in K$ an element that is algebraic over F, the degree of α over F is the degree of the minimal polynomial of α over F, or, equivalently, the degree $[\mathbb{Q}(\alpha):\mathbb{Q}]$ of the field extension $\mathbb{Q}(\alpha)/\mathbb{Q}$.

- (1) Let K be a subfield of \mathbb{C} which is not contained in \mathbb{R} . Prove that K is a dense subset of \mathbb{C} .
- (2) Let R be an integral domain containing a field F such that R is a finite dimensional when viewed as a vector space over F. Show that R is a field.
- (3) Let F be a field with 27 elements. What is the characteristic of F? Justify your answer.
- (4) Let α be the real cube root of 2. Compute the minimal polynomial for $1 + \alpha^2$ over \mathbb{Q} .
- (5) Determine the minimal polynomial of $\alpha = \sqrt{3} + \sqrt{5}$ over each of the following fields:(a) \mathbb{Q} , (b) $\mathbb{Q}(\sqrt{5})$, (c) $\mathbb{Q}(\sqrt{10})$, (d) $\mathbb{Q}(\sqrt{15})$.
- (6) Let $\alpha \in \mathbb{C}$ be a root of the irreducible polynomial $x^3 3x + 4$. Express the inverse of $\alpha^2 + \alpha + 1$ in $\mathbb{Q}(\alpha)$ in the form $a + b\alpha + c\alpha^2$, $a, b, c \in \mathbb{Q}$.
- (7) Let K/F be a field extension and $\alpha \in K$ an element of degree 5 over F. Show that $F(\alpha^2) = F(\alpha)$.
- (8) Let a be a positive rational number such that a is not a square in \mathbb{Q} . Prove that $a^{1/4}$ has degree 4 over \mathbb{Q} .
- (9) Determine whether i is in the following fields (a) $\mathbb{Q}(\sqrt{-2})$, (b) $\mathbb{Q}((-2)^{1/4})$, (c) $\mathbb{Q}(\alpha)$, where $\alpha^3 + \alpha + 1 = 0$.

- (10) Let α , β be complex numbers of degree 3 over \mathbb{Q} . Determine the possibilities for the degree $[F(\alpha, \beta) : F]$. (You should show by example that each case occurs.)
- (11) Let $\alpha, \beta \in \mathbb{C}$ be roots of irreducible polynomials $f(x), g(x) \in \mathbb{Q}[x]$. Show that f is irreducible in $\mathbb{Q}(\beta)$ iff g is irreducible in $\mathbb{Q}(\alpha)$.

Hints: In some of the problems you need to show that a polynomial $f(x) \in F[x]$ is irreducible, where F is some field. Here are some ways to do this:

- (1) If f has degree 2 or 3 then f is irreducible over F iff f does not have a root in F.
- (2) Suppose $f \in \mathbb{Z}[x]$ and the highest common factor of all the coefficients of f equals 1. Then f is irreducible in $\mathbb{Q}[x]$ iff f is irreducible in $\mathbb{Z}[x]$ (Gauss' lemma, DF p. 303).
- (3) Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$. Let p be a prime such that p does not divide a_n . Let $\bar{f} \in \mathbb{F}_p[x]$ denote the reduction of f modulo p. If \bar{f} is irreducible over \mathbb{F}_p then f is irreducible over \mathbb{Q} .
- (4) This is an application of (3) above. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$. Suppose p is a prime such that p does not divide a_n , p divides a_{n-1}, \ldots, a_1 and p^2 does not divide a_0 . Then f is irreducible (Eisenstein's Criterion, DF p. 309).