

Задача А. Ділення націло на 5

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

На столі лежить n камінців. За 1 монету ви можете зробити одну з наступних операцій:

- Забрати зі столу один камінець. **Ви не можете виконати цю операцію, якщо на столі** нема жодного камінця.
- Покласти на стіл ще один камінець.

Яку найменшу кількість монет треба витратити, щоб число камінців на столі почало ділитись націло на 5?

Зверніть увагу, що 0 ділиться на будь-яке число, а отже, якщо на столі лишається 0 камінців, то умова задачі виконана.

Формат вхідних даних

Єдиний рядок містить єдине ціле число $n \ (0 \le n \le 10^9)$ — початкова кількість камінців на столі.

Формат вихідних даних

Виведіть єдине число — мінімальну кількість монет яку треба витратити, щоб число камінців на столі почало ділитись націло на 5.

Приклади

standard input	standard output
0	0
1	1
3	2
228	2
300	0
2021	1

Зауваження

В першому прикладі на столі спочатку лежить 0 камінців. 0 ділиться на 5, тому не потрібно витрачати жодної монети.

В другому прикладі можна заплатити одну монету і забрати один камінець зі столу. Тоді на столі опиниться 0 камінців, а 0 ділиться на 5.

В третьому прикладі можна заплатити одну монету і покласти ще один камінець на стіл (таким чином, на столі буде 4 камінці), а потім заплатити ще одну монету і покласти ще один камінець на стіл, отримуючи таким чином 5 камінців, що ділиться на 5.

Задача В. Медіанне божевілля

Ліміт часу: 3 seconds

Ліміт використання пам'яті: 256 megabytes

Це інтерактивна задача.

Загадана деяка перестановка p чисел від 1 до n, де n **парне**. Ви можете задавати запити наступного вигляду:

• Для даного набору різних індексів непарної довжини a_1, a_2, \ldots, a_l , ви можете дізнатись таке число x, що p_x є медіаною елементів $p_{a_1}, p_{a_2}, \ldots, p_{a_l}$.

Відомо, що $p_1 < p_n$. Вгадайте перестановку p за не більше ніж $\frac{3n}{2}$ запитів.

Гарантується, що перестановка зафіксована перед початком взаємодії. Іншими словами, **інтерактор не адаптивний**.

Нагадаємо, що медіана непарної кількості чисел визначається наступним чином:

Нехай $b_1, b_2, \ldots, b_{2k+1}$ — це ці числа в порядку зростання (де 2k+1 — кількість чисел). Тоді медіаною є число b_{k+1} .

Протокол взаємодії

Почніть взаємодію, зчитавши одне ціле число n ($2 \le n \le 1000$, n парне) — довжину перестановки. Щоб задати питання, необхідно вивести в одному рядку спочатку символ «?», потім ціле число l, а потім l цілих чисел a_i ($1 \le l \le n$, $1 \le a_i \le n$, l непарне, всі a_i попарно різні) — індекси, для яких необхідно знайти медіану.

У відповідь програма журі виведе таке число x, що p_x є медіаною елементів $p_{a_1}, p_{a_2}, \ldots, p_{a_l}$.

Коли ви визначили перестановку, то виведіть спочатку символ «?», а потім n чисел p_1, p_2, \ldots, p_n . Після цього ваша програма має завершити роботу.

Після кожного запиту і виводу відповіді не забудьте вивести перехід рядка і скинути буфер виводу. Для скидання буферу використовуйте:

- fflush(stdout) чи cout.flush() в C++;
- System.out.flush() B Java;
- flush(output) B Pascal;
- stdout.flush() B Python;

Приклад

standard input	standard output
4	? 3 2 3 4
2	? 3 1 3 4
3	? 3 1 2 4
2	? 3 1 2 3
3	! 1 3 2 4

Зауваження

В прикладі загадана перестановка p = (1, 3, 2, 4).

Перший запит в прикладі — хочемо дізнатись медіану елементів p_2, p_3, p_4 , що дорівнюють 3, 2, 4 відповідно. Медіана цих чисел — 3, тобто p_2 , тому інтерактор відповідає числом 2.

Другий запит в прикладі — хочемо дізнатись медіану елементів p_1, p_3, p_4 , що дорівнюють 1, 2, 4 відповідно. Медіана цих чисел — 2, тобто p_3 , тому інтерактор відповідає числом 3.

Третій запит в прикладі — хочемо дізнатись медіану елементів p_1, p_2, p_4 , що дорівнюють 1, 3, 4 відповідно. Медіана цих чисел — 3, тобто p_2 , тому інтерактор відповідає числом 2.

Четвертий запит в прикладі — хочемо дізнатись медіану елементів p_1, p_2, p_3 , що дорівнюють 1, 3, 2 відповідно. Медіана цих чисел — 2, тобто p_3 , тому інтерактор відповідає числом 3.

Задача С. Абсолютно неадекватні операції

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Дано масив з n цілих чисел $[a_1, a_2, \ldots, a_n]$. За одну операцію можна зробити наступне:

- Вибрати деяке i, для якого $2 \le i \le n-1$.
- Нехай $a_i = x$. Тоді ми додаємо x до a_{i-1} та a_{i+1} , а a_i замінюємо на -x.

Наприклад, якщо масив мав вигляд [1,2,-1,3], то ми можемо обрати i=3, виконати операцію, і отримати масив [1,1,1,2].

Ви можете застосовувати дану операцію до масиву довільну кількість разів. Скільки різних масивів ви можете отримати? Якщо ви можете отримати нескінченну кількість масивів, виведіть -1, інакше виведіть число цих масивів за модулем $10^9 + 7$.

Формат вхідних даних

Перший рядок вхідних даних містить єдине ціле число n ($3 \le n \le 10^5$) — довжину масиву. Другий рядок містить n цілих чисел a_1, a_2, \ldots, a_n ($-10^9 \le a_i \le 10^9$) — елементи масиву.

Формат вихідних даних

Якщо ви можете отримати нескінченну кількість масивів, виведіть -1, інакше виведіть число цих масивів за модулем $10^9 + 7$.

Приклади

standard input	standard output
3	2
18 9 2021	
5	1
0 0 0 0 0	
6	10
1 -1 1 -1 1 -1	

Зауваження

В першому прикладі, ми можемо застосувати операцію лише для i=2, що дає два різні масиви: [18,9,2021] та [27,-9,2030].

В другому прикладі, яку б операцію ми не застосували, масив лишатиметься рівним [0,0,0,0,0].

Задача D. Паліндромна лихоманка

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Вам дано рядок s з латинських маленьких літер. Знайдіть довільний рядок t з латинських маленьких літер довжини не більше $2 \cdot 10^5$, для якого:

- Рядок s+t є паліндромом.
- Рядок t + s є паліндромом.

Можна показати, що при обмеженнях даної задачі такий рядок завжди знайдеться.

Нагадаємо, що паліндром— це рядок, що зліва направо читається так само як справа наліво. Наприклад, abcba є паліндромом, а oppagangnamstyle ні.

Нагадаємо, що позначення s+t позначає конкатенацію рядків s та t. Наприклад, energynot + over = energynotover.

Формат вхідних даних

Єдиний рядок вхідних даних містить рядок s з латинських маленьких літер довжини не більше 10^5 .

Формат вихідних даних

Виведіть довільний **непустий** рядок t з латинських маленьких літер довжини не більше $2\cdot 10^5$, що задовольняє умовам задачі.

Зверніть увагу, що t не може бути пустим, навіть якщо пустий рядок задовольняє умові задачі.

Приклади

standard input	standard output
abbaabba	abba
zyzz	zzyz

Зауваження

В першому прикладі, s+t=t+s= abbaabbaabba, що є паліндромом.

В другому прикладі, s+t= **z**уzzzzyz, а t+s= **z**zyzzyzz. Обидва слова є паліндромами.

Задача Е. Шлях додому

Ліміт часу: 8 seconds

Ліміт використання пам'яті: 256 megabytes

n міст розташовані на прямій в порядку $1,2,\ldots,n$, відстань між містами i та i+1 рівна D_i для кожного i від 1 до n-1.

Вам потрібно порахувати кількість маршрутів, для яких виконуються наступні умови:

- \bullet В маршруті рівно k міст
- Всі міста в маршруті попарно різні
- \bullet Сумарна довжина маршруту ділиться на m.

Сумарна довжина маршруту дорівнює сумі відстаней між містами, що йдуть в маршруті підряд. Відстань між містами i,j визначається за такою формулою:

- $D_i + \ldots + D_{j-1}$, якщо i < j.
- $D_j + \ldots + D_{i-1}$, якщо j < i.

Наприклад, якщо n=4 і D=[3,5,7], то довжина маршруту [3,1,4] дорівнює 8+15=23. Виведіть кількість маршрутів за модулем 10^9+7 .

Формат вхідних даних

У першому рядку містяться три цілі числа $n, m, k(2 \leqslant n \leqslant 80, 1 \leqslant m \leqslant 80, 2 \leqslant k \leqslant n)$ — кількість міст на прямій, число, на яке повинна ділитися сумарна довжина маршруту, і кількість міст в маршруті.

У наступному рядку містяться n-1 цілих чисел $D_1, D_2, \ldots, D_{n-1}$ $(1 \leqslant D_i \leqslant m)$ — відстані між сусідніми містами.

Формат вихідних даних

Виведіть кількість маршрутів за модулем $10^9 + 7$.

Приклади

standard input	standard output
4 5 3	4
1 2 3	
15 17 6	210690
1 2 3 4 5 6 7 8 9 10 11 12 13 14	

Зауваження

В першому прикладі існує 4 такі маршрути:

- $2 \to 3 \to 4$: довжина рівна 2 + 3 = 5.
- $4 \to 3 \to 2$: довжина рівна 3 + 2 = 5.
- $1 \to 3 \to 2$: довжина рівна (1+2)+2=5.
- $2 \to 3 \to 1$: довжина рівна 2 + (1+2) = 5.

Задача F. ПерестановочкА

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Для перестановки p чисел від 1 до n, визначимо f(p) наступним чином: для кожної пари чисел (i,j) з $1\leqslant i\leqslant j\leqslant n$, порахуємо пару (min,max), де min— найменше число серед чисел a_i,a_{i+1},\ldots,a_j , а max— найбільше з них. Тоді f(p) рівна кількості різних пар серед всіх $\frac{n(n+1)}{2}$ пар. Наприклад розглянемо перестановку (1,3,2).

- Для пари (1,1), (min, max) = (1,1)
- Для пари (1,2), (min, max) = (1,3)
- Для пари (1,3), (min, max) = (1,3)
- Для пари (2,2), (min, max) = (3,3)
- Для пари (2,3), (min, max) = (2,3)
- Для пари (3,3), (min, max) = (2,2)

Всього 5 різних пар, тому f((1,3,2)) = 5. Знайдіть f(p) для даної вам перестановки (p_1, p_2, \dots, p_n) .

Формат вхідних даних

Перший рядок вхідних даних містить єдине число $n \ (1 \le n \le 2 \cdot 10^5)$.

Другий рядок вхідних даних містить n цілих чисел p_1, p_2, \ldots, p_n $(1 \leqslant p_i \leqslant n, p_i$ попарно різні) — перестановку довжини n.

Формат вихідних даних

Виведіть f(p).

Приклади

standard input	standard output
3	5
1 3 2	
8	36
1 2 3 4 5 6 7 8	
8	15
1 8 2 7 3 6 4 5	

Зауваження

Перший приклад розібрано в умові.

Задача G. ПерестановочкИ

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Для перестановки p чисел від 1 до n, визначимо f(p) наступним чином: для кожної пари чисел (i,j) з $1\leqslant i\leqslant j\leqslant n$, порахуємо пару (min,max), де min— найменше число серед чисел a_i,a_{i+1},\ldots,a_j , а max— найбільше з них. Тоді f(p) рівна кількості різних пар серед всіх $\frac{n(n+1)}{2}$ пар. Наприклад розглянемо перестановку (1,3,2).

- Для пари (1,1), (min, max) = (1,1)
- Для пари (1,2), (min, max) = (1,3)
- Для пари (1,3), (min, max) = (1,3)
- Для пари (2,2), (min, max) = (3,3)
- Для пари (2,3), (min, max) = (2,3)
- Для пари (3,3), (min, max) = (2,2)

Всього 5 різних пар, тому f((1,3,2)) = 5.

Знайдіть суму f(p) по всім перестановкам p довжини n, за модулем $10^9 + 7$.

Формат вхідних даних

Єдиний рядок вхідних даних містить єдине число $n \ (1 \le n \le 2 \cdot 10^5)$.

Формат вихідних даних

Виведіть суму f(p) по всім перестановкам p довжини n, за модулем $10^9 + 7$.

Приклади

standard input	standard output
1	1
2	6
3	32
228	384127128

Задача Н. Вишуканий максимум

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Дано n попарно різних чисел a_1, a_2, \ldots, a_n . Знайдіть максимальне можливе значення виразу $\frac{a_i a_j}{|a_i - a_j|}$ по $1 \leqslant i < j \leqslant n$.

Формат вхідних даних

Перший рядок містить єдине ціле число n $(1 \le n \le 2 \cdot 10^5)$ — кількість чисел. Другий рядок містить n попарно різних цілих чисел a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$.

Формат вихідних даних

Виведіть єдине число — максимальне можливе значення виразу $\frac{a_i a_j}{|a_i - a_j|}$ по $1 \leqslant i < j \leqslant n$.

Ваш відповідь буде вважатися правильною, якщо її абсолютна або відносна помилка не перевищує 10^{-6} .

Формально, нехай ваш відповідь дорівнює a, а відповідь журі дорівнює b. Ваша відповідь буде зарахована, якщо і тільки якщо $\frac{|a-b|}{\max{(1,|b|)}} \leqslant 10^{-6}$.

Приклад

standard output
23.333333333

Зауваження

В прикладі, $\frac{3\cdot7}{4} = 5.25$, $\frac{3\cdot10}{7} = 4.2857\dots$, $\frac{7\cdot10}{3} = 23.3333\dots$

Задача І. Надзвичайно оригінальна задача про кістякове дерево

Ліміт часу: 3 seconds Ліміт використання пам'яті: 256 megabytes

В Україні n міст і 0 доріг. До 30-ої річниці незалежності пора б це виправити.

Ви хочете побудувати n-1 дорогу між містами таким чином, щоб ними з кожного міста можна було дістатись до будь-якого іншого. Вартість прокладання дороги між містами i та j рівна (a_i+a_j) mod M мільйонів гривень з бюджетних коштів, де M — улюблене число чинного Президента України.

Яку найменшу кількість мільйонів гривень з бюджетних коштів потрібно витратити для виконання цього плану?

Формат вхідних даних

Перший рядок містить два цілих числа $n, M \ (1 \le n \le 200000, 1 \le M \le 10^9)$ — число міст та улюблене число чинного Президента України відповідно.

Другий рядок містить n цілих чисел $a_1, a_2, \ldots, a_n \ (0 \leqslant a_i < M)$.

Формат вихідних даних

Виведіть найменшу кількість мільйонів гривень з бюджетних коштів, які потрібно витратити, щоб побудувати n-1 дорогу, щоб ними з кожного міста можна було дістатись до будь-якого іншого.

Приклади

standard input	standard output
3 350	130
42 69 300	
12 12	14
3 7 5 2 9 7 6 7 8 7 2 1	
6 11	17
3 2 2 2 2 8	
1 998244353	0
7788	

Зауваження

В першому прикладі ми можемо прокласти 3 дороги з наступними вартостями:

- Між містами 1, 2: $(42+69) \mod 350 = 111$
- Між містами 1, 3: $(42 + 300) \mod 350 = 342$
- Між містами 2, 3: $(69 + 300) \mod 350 = 19$

Найвигідніше обрати дороги (1,2) та (2,3), з сумарною вартістю 111+19=130.

Задача Ј. Коли немає чим зайнятись, а вдома лише перестановка

Ліміт часу: 2 seconds

Ліміт використання пам'яті: 256 megabytes

Дана перестановка (p_1, p_2, \ldots, p_n) чисел від 1 до n.

З нею ви можете робити наступну операцію:

• Ви можете переставити місцями два **сусідні** елементи *p*. Ця операція займає рівно одну секунду.

За одну ітерацію ви робите наступне:

- Розглянемо перестановку (q_1, q_2, \ldots, q_n) , що знаходиться **прямо перед** (p_1, p_2, \ldots, p_n) в лексикографічному порядку, тобто q лексикографічно менша за p і не існує жодної перестановки "між ними". Наприклад, для p = (2, 3, 1) q = (2, 1, 3), для p = (3, 1, 2, 4) q = (2, 4, 3, 1), а для p = (1, 4, 2, 3) q = (1, 3, 4, 2).
- Перетворимо перестановку p в перестановку q, за мінімально можливу кількість операції. Наприклад, щоб перетворити (1,4,2,3) в (1,3,4,2), потрібно мінімум 2 операції: $(1,4,2,3) \to (1,4,3,2) \to (1,3,4,2)$.

Ви застосовуєте до отриманої перестановки p дану ітерацію, поки вона не стане тотожною перестановкою (тобто рівною $(1,2,3,\ldots,n)$). Скільки часу це займе? Оскільки це число може бути дуже великим, виведіть його за модулем 10^9+7 .

Перестановка p вважається лексикографічно меншою за перестановку q, якщо існує такий індекс i, що $p_j = q_j$ для всіх j < i, а також $p_i < q_i$.

Формат вхідних даних

Перший рядок містить єдине число $n\ (1\leqslant n\leqslant 2\cdot 10^5)$ — довжину перестановки.

Другий рядок містить n цілих чисел p_1, p_2, \ldots, p_n ($1 \leqslant p_i \leqslant n$, всі числа попарно різні) — елементи перестановки.

Формат вихідних даних

Виведіть кількість секунд, яка пройде, поки процес не завершиться, за модулем $10^9 + 7$.

Приклади

standard input	standard output
4	6
1 4 2 3	
6	1423
6 5 4 3 2 1	

Зауваження

В першому прикладі маємо:

 $(1,4,2,3) \to (1,4,3,2) \to (1,3,4,2)$: 2 секунди.

 $(1,3,4,2) \rightarrow (1,3,2,4)$: 1 секунда.

 $(1,3,2,4) \to (1,2,3,4) \to (1,2,4,3)$: 2 секунди.

 $(1,2,4,3) \rightarrow (1,2,3,4)$: 1 секунда.

Всього 6 секунд.

Задача К. Чергове розчарування: задача на парування

Ліміт часу: 1 second

Ліміт використання пам'яті: 256 megabytes

Дано непарне число n. Для масиву з n чисел $[a_1, a_2, \ldots, a_n]$, будемо визначати його **вартість**, як максимальну вагу досконалого парування в графі на n+1 вершинах, в якому вага ребра (i,j) для i < j визначається як $max(a_i, a_{i+1}, \ldots, a_{j-1})$.

Наприклад, для масиву [1,30,15], ми маємо граф на 4 вершинах з наступними відстанями між ними:

- d(1,2) = 1
- d(1,3) = d(1,4) = d(2,3) = d(2,4) = 30
- d(3,4) = 15

Тут парування ((1,2),(3,4)) має 16, а ((1,3),(2,4)) і ((1,4),(2,3)) мають ваги 60, тому вартість всього масиву рівна 60.

Вам дано масив b довжини n з **попарно різних** елементів. Знайдіть суму вартостей всіх перестановок цього масиву, за модулем $10^9 + 7$.

Формат вхідних даних

Перший рядок містить єдине ціле число n ($1 \le n \le 99\,999, n$ непарне) — довжину масиву. Другий рядок містить n попарно різних цілих чисел b_1, b_2, \ldots, b_n ($1 \le a_i \le 10^8$) — елементи масиву.

Формат вихідних даних

Виведіть суму вартостей всіх перестановок цього масиву, за модулем $10^9 + 7$.

Приклади

standard input	standard output
1	300
300	
3	300
1 30 15	
5	605448
42 69 228 1488 2021	

Зауваження

В прикладі:

- Вартості масивів [1, 30, 15] та [15, 30, 1] рівні 60.
- Вартості масивів [1, 15, 30], [30, 15, 1], [15, 1, 30], [30, 1, 15] рівні 45.

Сума по всім перестановкам рівна $60 \cdot 2 + 45 \cdot 4 = 300$.

Задача L. Задача на кореневу декомпозицію з великими обмеженнями

Ліміт часу: 4 seconds

Ліміт використання пам'яті: 1024 megabytes

Дано натуральне число n. Знайдіть, скільки серед чисел $n \mod 1, n \mod 2, \ldots, n \mod n$ різних чисел.

Формат вхідних даних

Перший і єдиний рядок містить одне ціле число n ($1 \le n \le 10^{12}$).

Формат вихідних даних

Виведіть єдине число — кількість різних чисел серед $n \mod 1$, $n \mod 2$, ..., $n \mod n$.

Приклади

standard input	standard output
1	1
2	1
3	2

Зауваження

В першому прикладі, ми розглядаємо всього одне число: $1 \mod 1 = 0$, тому відповідь 0.

В другому прикладі, маємо $2 \mod 1 = 2 \mod 2 = 0$, тому відповідь знову 1.

В третьому прикладі, маємо $3 \mod 1 = 3 \mod 3 = 0$, а також $3 \mod 2 = 1$, всього два різні числа.