Observación. En la sección 5.7 se definieron el rango, la imagen, el espacio nulo y la nulidad de una matriz. Según el ejemplo 7.1.7, toda matriz A de $m \times n$ da lugar a una transformación lineal T: $\mathbb{R}^n \to \mathbb{R}^m$ definida por $T\mathbf{x} = A\mathbf{x}$. Es evidente que nu $T = N_A$, im $T = \operatorname{im} A = C_A$, $\nu(T) = \nu(A)$ y $\rho(T) = \rho(A)$. Entonces se ve que las definiciones de núcleo, imagen, nulidad y rango de una transformación lineal son extensiones del espacio nulo, la imagen, la nulidad y el rango de una matriz.

EJEMPLO 7.2.6 Núcleo y nulidad de un operador de proyección

Sea H un subespacio de \mathbb{R}^n y sea $T\mathbf{v} = \operatorname{proy}_H \mathbf{v}$. Es obvio que la im T = H. Del teorema 6.1.7, se tiene que toda $\mathbf{v} \in V$ si $\mathbf{v} = \mathbf{h} + \mathbf{p} = \operatorname{proy}_H \mathbf{v} + \operatorname{proy}_{H^{\perp}} \mathbf{v}$. Si $T\mathbf{v} = \mathbf{0}$, entonces $\mathbf{h} = \mathbf{0}$, lo que significa que $\mathbf{v} = \mathbf{p} \in H^{\perp}$. Así nu $T = H^{\perp}$, $\rho(T) = \dim H$, y $\nu(T) = \dim H^{\perp} = n - \rho(T)$.

EJEMPLO 7.2.7 Núcleo e imagen de un operador transpuesto

Sea $V = \mathbb{M}_{mn}$ y defina $T: \mathbb{M}_{mn} \to \mathbb{M}_{nm}$ por $T(A) = A^{\top}$ (vea el ejemplo 7.1.11). Si $TA = A^{\top} = 0$, entonces A^{\top} es la matriz cero de $n \times m$, por lo que A es la matriz cero de $m \times n$. Así, nu $T = \{0\}$ y es claro que im $T = \mathbb{M}_{nm}$. Esto significa que $\nu(T) = 0$ y $\rho(T) = nm$.

EJEMPLO 7.2.8 Núcleo e imagen de una transformación de P_3 en P_2

Defina $T: \mathbb{P}_3 \to \mathbb{P}_2$ por $T(p) = T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 + a_1x + a_2x^2$. Entonces si T(p) = 0, $a_0 + a_1x + a_2x^2 = 0$ para toda x, lo que implica que $a_0 = a_1 = ca_2 = 0$. Así nu $T = \{p \in \mathbb{P}_3: p(x) = a_3x^3\}$ e im $T = \mathbb{P}_2, \nu(T) = 1$ y $\rho(T) = 3$.

EJEMPLO 7.2.9 Núcleo e imagen de un operador integral

Sea V = C[0, 1] y defina $J: C[0, 1] \to \mathbb{R}$ por $Jf = \int_0^1 f(x) dx$ (vea el ejemplo 7.1.12).

Entonces nu $J = \{f \in C[0, 1]: \int_0^1 f(x) \, dx = 0\}$. Sea α un número real. Entonces la función constante $f(x) = \alpha$ para $x \in [0, 1]$: está en C[0, 1] y $\int_0^1 \alpha \, dx = \alpha$. Como esto se cumple para todo número real α , se tiene que im $J = \mathbb{R}$.

En la siguiente sección se verá que toda transformación lineal de un espacio vectorial real de dimensión finita en otro se puede representar por una matriz, lo que permitirá calcular el núcleo y la imagen de cualquier transformación lineal entre espacios vectoriales de dimensión finita encontrando el espacio nulo y la imagen de la matriz correspondiente.

RESUMEN 7.2

• Propiedades básicas de las transformaciones lineales

Sea $T: V \to W$ una transformación lineal. Entonces, para todo vector $\mathbf{u}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ en V y todo escalar $\alpha_1, \alpha_2, \dots, \alpha_n$

- i) T(0) = 0
- ii) $T(\mathbf{u} \mathbf{v}) = T\mathbf{u} T\mathbf{v}$
- iii) $T(\alpha_1 \mathbf{v}_1, \alpha_2 \mathbf{v}_2, \dots, \alpha_n \mathbf{v}_n) = \alpha_1 T \mathbf{v}_1, \alpha_2 T \mathbf{v}_2, \dots, \alpha_n T \mathbf{v}_n$