Algebraic Topology Notes

Alex Goodlad

November 16, 2020

Contents

1	Singular Homology Review	2
	The Eilenberg-Steenrod Axioms	
	CW Complexes and Simplicial Complexes	
	Chain Complexes, Tensor, and Hom	3
	Chain Complexes Associated to Spaces: Singular Theory	5
	Chain Complexes Associated to Spaces: Simplicial and Cellular Theory	5
2	Homological Algebra	6
	Derived Functors, Tor, and Ext	6
	Projective and Injective Modules	8
	The Fundamantal Lemma of Homological Algebra	G
	Existence of Derived Functors	
	Universal Coefficients Theorems	
3	Topological Products	12
	Tensor Product and Hom of Chain Complexes	12
	The Kunneth Theorem	
	The Eilenberg-Zilber Theorem	
	The Alexander-Whitney and Shuffle Maps	
	Products and Pairings	
	Acyclic Models and the Eilenberg-Zilber Theorem	
4	Fibre Bundles	13
	Group Actions	13
	Fiber Bundles	
	Examples of Fiber Bundles	
	Principal Bundles	
	Maps of Fiber Bundles	
	Reduction of Structure Group	
5	Homology with Local Coefficients	1 4
	Homology with Twisted Coefficients	14
	Examples and Basic Properties of Homology with Twisted Coefficients	
	Homology with Local Coefficients	
	Functoriality of Homology with Local Coefficients	

1 Singular Homology Review

§ The Eilenberg-Steenrod Axioms

§ CW Complexes and Simplicial Complexes

Definition 1.1. A relative CW complex is a map $A \to X$ together with a filtration $X^{-1} \subset X^0 \subset X^1 \subset \cdots \subset X$ (called the *skiletal filtration*) such that

- $X^{-1} = A$.
- ullet Each X^n is formed from X^{n-1} by attaching n-cells.
- ullet X has the topology of the union: A set closed in X if and only if the restriction to each X^n is closed.

A CW complex is a relative CW complex with $X^{-1} = \emptyset$.

Definition 1.2. Let X be a CW complex and let A be a subset of X. A is a *subcomplex* of X means that it is a union of closed cells in X with the property that if an n-cell of A intersects the relative interior of a lower dimensional closed cell of X, then it contains the entire closed lower dimensional cell. Equivalently, A is a CW complex with its set of cells a subset of the cells of X.

Definition 1.3. Let X and Y be CW complexes. A cellular map $f: X \to Y$ is a continuous map that preserves the skeletal filtration: $f(X^n) \subset Y^n$.

Definition 1.4. An abstract simplicial complex consists of a set V and a set S of non-empty finite subsets of V, containing all singleton subsets and satisfying the condition that if $\sigma \in S$ then all non-empty subsets of σ are in S.

- \bullet The elements of V are called vertices.
- \bullet The elements of S are called simplices.
- $\sigma \in S$ is an *n*-simplex means that it is an n+1 element subset of V.
- An ordered abstract simplicial complex is an abstract simplicial complex (V, S) together with a total ordering of V.
- A map of abstract simplical complexes $(V, S) \to (V', S')$ is a map of sets $V \to V'$ such that S loands in S' under the induced map of power sets.

Example 1.5. The standard n-Simplex is defined as follows:

$$\begin{split} &\Delta[n]: V_{\Delta[n]} = \{0,\dots,n\},\, S_{\Delta[n]} = \text{all finite subsets.} \\ &\text{Face maps } \partial_i \colon \Delta[n-1] \to \Delta[n] \end{split}$$

$$0,\ldots,n-1\mapsto 0,\ldots,\widehat{i},\ldots,n$$

 $\Delta[n] \subset \mathbb{R}^{n+1}$, standard basis e_0, \dots, e_n , Barycentric coordinate $t_0 e_0 + \dots + t_n e_n$, $t_0, \dots, t_n \geq 0$, $t_0 + \dots + t_n = 1$.

Definition 1.6. Let $X = (V_X, S_X)$ be an abstract simplicial complex. Let $\mathbb{R}(V_X)$ denote the real vector space with basis V_X . For $\sigma = \{v_0, \dots, v_n\}$ an n-simplex of X, let $|\sigma|$ be the subspace of $\mathbb{R}(\sigma) \subset \mathbb{R}(V_X)$ (with its topology) of elements of the form $t_0v_0 + \dots + t_nv_n$ with $t_i \geq 0$ for all i, and $t_0 + \dots + t_n = 1$. We call $|\sigma|$ the geometric n-simplex of X.

Let |X| be the subset of $\mathbb{R}(V_X)$ consisting of the union of the geometric *n*-simplices, with the union topology: A subset of |X| is closed if and only if its restriction to each geometric *n*-simplex is closed.

\S Chain Complexes, Tensor, and Hom

Chain Complexes:

Z-graded (homological grading)

$$\cdots \xrightarrow{d} A_{n+1} \xrightarrow{d} A_n \xrightarrow{d} A_{n-1} \xrightarrow{d} \cdots d \circ d = 0$$

(cohomological grading)

$$\cdots \xrightarrow{d} B^{n-1} \xrightarrow{d} B^n \xrightarrow{B} \xrightarrow{n} \xrightarrow{d} B^{n+1} \xrightarrow{d} \cdots \qquad d \circ d = 0$$

Switch: Set $B^n = A_{-n}$ or $A_n = B^{-n}$.

Homology of Chain Complex:

$$H_n(A_*) = \frac{\text{Ker}(d: A_n \to A_{n-1})}{\text{Img}(d: A_{n+1} \to A_n)} \text{ or } H^n(B^*) = \frac{\text{Ker}(d: B^n \to B^{n+1})}{\text{Img}(d: B^{n-1} \to B^n)}$$

If $B^* = A_{-*}$, then $H^*(B^*) = H_{-*}(A_*)$

Map of Chain Complexes

A map of a chain complexes $A_* \to A'_n$ consists of maps of abelian groups $A_n \to A'_n$ for all n that commute with d.

Tensor Product:

Context: R is a commutative ring, M, N are R-modules

Construction:

$$M \otimes_R N = \frac{F(M \times N)}{R(M, N)},$$

where $F(M \times N)$ is the free R-module on the set $M \times N$ and R(M, N) is the submodule of $F(M \times N)$ generated by

- $(a_1 + a_2, b) (a_1, b) (a_2, b)$ for all $a_1, a_2 \in M, b \in N$
- $(a, b_1 + b_2) (a, b_1) (a, b_2)$ for all $a \in M, b_1, b_2 \in N$
- r(a,b) (ra,b) for all $a \in M$, $b \in N$, $r \in R$
- r(a,b) (a,rb) for all $a \in M, b \in N, r \in R$

Canonical map of sets $M \times N \to M \otimes_R N$. Image of (a,b) in $M \otimes_R N$ denoted $a \otimes b$.

Bilinear Map

Let P be an R-module. A bilinear map $\phi: M \times N \to P$ is a map of sets such that

- $\phi(a_1 + a_2, b) = \phi(a_1, b) + \phi(a_1, b) + \phi(a_2, b)$ for all $a_1, a_2 \in M, b \in N$
- $\phi(a, b_1 + b_2) = \phi(a, b_1) + \phi(a, b_2)$ for all $a \in M, b_1, b_2 \in N$
- $\phi(ra,b) = r\phi(a,b) = \phi(a,rb)$ for all $a \in M, b \in N, r \in R$.

Proposition 1.7. Let $\phi: M \times N \to P$ be a bilinear map. Then there is a unique R-module map $\widetilde{\phi}: M \otimes_R N \to P$ such that ϕ is the composite $M \times N \to M \otimes_R N \to P$.

Some Basic Properties:

- $\bullet \ M \otimes_R N \cong N \otimes_R M$
- $R \otimes_R M \cong M$
- $\bullet (\bigoplus M_{\alpha}) \otimes_R N \cong \bigoplus (M_{\alpha} \otimes_R N)$
- $\bullet (M \otimes_R N) \otimes_R P \cong M \otimes_R (N \otimes_R P)$
- \otimes_R is a functor $R\text{-Mod} \times R\text{-Mod} \to R\text{-Mod}$
- For fixed N, the functor $(-) \otimes N$ is right exact.

An additive functor $F(A) \oplus F(B) \cong F(A \oplus B)$ preserve split exact sequences.

The Functor Hom:

Context: R is a commutative ring, M, N are R-modules $\operatorname{Hom}_R(M,N)$ has the canonical structure of an R-module:

- $\bullet (f+g)(m) := f(m) + g(m)$
- $\bullet (rf)(m) = rf(m) = f(rm)$

Properties of Hom

- $\operatorname{Hom}_R(R,M) \cong M$
- $\operatorname{Hom}_R(\bigoplus M_\alpha, N) \cong \prod \operatorname{Hom}_R(M_\alpha, N)$
- $\operatorname{Hom}_R(M, \prod N_\alpha) \cong \prod \operatorname{Hom}_R(M, N_\alpha)$
- Hom_R is a functor R-Mod^o $p \times R$ Mod $\rightarrow R$ Mod.

For fixed N, the functor $\operatorname{Hom}_R(-,N)$ is left exact

For fixed M, the functor $\operatorname{Hom}_R(M,-)$ is left exact

The Tensor-Hom Adjunction

$$\operatorname{Hom}_R(M \otimes_R N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$$

Let $F(-) = (-) \otimes_R N, G = \operatorname{Hom}_R(N, -),$

$$\operatorname{Hom}_R(F(M), P) \cong \operatorname{Hom}_R(M, G(P))$$

Tensor and Hom on Chain Complexes

Let C_* be a chain complex of R-modules

Construction:

 $C_* \otimes_R M$ is the chain complex with abelian groups (or R-modules)

$$(C_* \otimes_R M)_n = C_n \otimes_R M$$

and differential $d(c \otimes m) := d(c) \otimes m$

 $\operatorname{Hom}_R(C_*, M)$ is the chain complex with abelian groups (or R-modules)

$$\operatorname{Hom}_R(C_*, M)^n = \operatorname{Hom}(C_n, M)$$

and differential $df = -(-1)^n f \circ d$ in dimension n (to dimension n+1)

We can check and see these differentials have our desired properties.

§ Chain Complexes Associated to Spaces: Singular Theory

§ Chain Complexes Associated to Spaces: Simplicial and Cellular Theory

2 Homological Algebra

§ Derived Functors, Tor, and Ext

Definition 2.1.

1. A functor F between module categories is a *right exact functor*. Then for every short exact sequence

$$0 \to A \to B \to C \to 0$$

we get an exact sequence

$$F(A) \to F(B) \to F(C) \to 0.$$

2. A contravariant functor G between module categories. We say that F is a left exact functor if for every SES $0 \to A \to B \to C \to 0$, we get an exact sequence

$$0 \to F(C) \to F(B) \to F(A)$$
.

Proposition 2.2. Let F be a right exact functor from a module category to a module category. F is a *left derived functor* if there exist functors L^nF , $n=0,1,2,\ldots$ and natural transformations $L^nF(C) \to L^{n-1}F(A)$ associated to a SES satisfying

- $L^0F = F$ (or at least naturally isomorphic)
- For $0 \to A \to B \to C \to 0$ SES, the sequence

$$\cdots \to L^n F(A) \to L^n F(B) \to L^n F(C) \to L^{n-1} F(A) \to \cdots \to L^1 F(C) \to L^0 F(A) \to L^0 F(B) \to L^0 F(C) \to 0$$

is long exact.

• If M is free then $L^n F(M) = 0$ for n > 0.

Moreover, the system of functors and natural transformation satisfying the four conditions is unique up to unique compatible isomorphism.

Moreover, the system is natural in maps (= natural transformations) of right exact functors F.

Definition 2.3. Define
$$\operatorname{Tor}_n^R(-,M) := L^n((-) \otimes_R M)$$
 or $\operatorname{Tor}_n^R(M,-) := L^n(M \otimes_R (-))$

Bifunctor: R-Mod \times R-Mod \to R-Mod

Note:

For $R = \mathbb{Z}$, $\operatorname{Tor}_n^{\mathbb{Z}}(M, N) = 0$, for n > 1 and we write $\operatorname{Tor}(M, N)$ for $\operatorname{Tor}_1^{\mathbb{Z}}(M, N)$

More generally, if R is a PID, then $\operatorname{Tor}_n^R(M,N)=0$ for n>1 and if R is a field, then $\operatorname{Tor}_n^R(M,N)=0$ for n>0.

Let's compute $\operatorname{Tor}_n^R(R/a, -)$,

$$0 \to {}_a R \xrightarrow{\subset} R \xrightarrow{\cdot a} R \xrightarrow{R} /a \to 0$$

Notation $_aM=\{m\in M|am=0\}.$ Assume $_aR=0.$

$$\cdots \to \operatorname{Tor}_{2}^{R}(R,M) \to \operatorname{Tor}_{2}^{R}(R,M) \to \operatorname{Tor}_{2}^{R}(R/a,M) \to$$

$$\operatorname{Tor}_{1}^{R}(R,M) \to \operatorname{Tor}_{1}^{R}(R,M) \to \operatorname{Tor}_{1}^{R}(R/a,M) \to R \otimes_{R} M \to R \otimes_{R} M \to R/a \otimes_{R} M \to 0$$

$$R/a \otimes_{R} M \cong M/a, \quad \operatorname{Tor}_{1}^{R}(R/a,M) \cong {}_{a}M, \quad \operatorname{Tor}_{n}^{R}(R/a,M) = 0 \text{ for } n > 1$$

Let F be a contravariant left exact functor from a module category to a module category. For a SES $0 \to A \to B \to C \to 0$, we get an exact sequence

$$0 \to F(C) \to F(B) \to F(A)$$

Can we continue it to the right?

Proposition 2.4. We say that F is a contravariant right derived functor if there exist functors R^nF , $n=0,1,2,\ldots$ and natural transformations $R^{n-1}F(A) \to R^nF(C)$ associated to a SES satisfying

- $R^0F = F$ (or naturally isomorphic)
- For $0 \to A \to B \to C \to 0$ SES, the sequence

$$0 \to R^0F(C) \to R^0F(B) \to R^0F(a) \to R^1F(C) \to \cdots \to R^{n-1}F(A) \to R^nF(C) \to R^nF(B) \to R^nF(A) \to \cdots$$

is long exact

• If M is free then $R^n F(M) = 0$ for n > 0.

Moreover, the system of functors and natural transformations satisfying the above properties is unique up to unique isomorphism. Moreover, the system is natural in maps (= natural transformations) of contravariant left exact functors F.

Definition 2.5. Define $\operatorname{Ext}_R^n(-,N) := R^n(\operatorname{Hom}_R(-,N))$ Bifunctor: $R\operatorname{-Mod}^{op} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$.

Note:

For $R = \mathbb{Z}$, $\operatorname{Ext}_{\mathbb{Z}}^n(M, N) = 0$ for n > 1 and we write $\operatorname{Ext}(M, N)$ for $\operatorname{Ext}_{\mathbb{Z}}^1(M, N)$

More generally, if R is a PID, then $\operatorname{Ext}_R^n(M,N)=0$ for n>1 and if R is a field, then $\operatorname{Ext}_R^n(M,N)=0$ for n>0.

Let's compute $\operatorname{Ext}_R^n(R/a, -)$ in case when ${}_aR = 0$,

$$0 \to R \xrightarrow{\times a} R \to R/a \to 0.$$

We have

$$0 \to \operatorname{Hom}_R(R/a, M) \to \operatorname{Hom}_R(R, M) \to \operatorname{Hom}_R(R, M) \to \operatorname{Ext}_R^1(R/a, M) \to \operatorname{Ext}_R^1(R/a, M) \to \operatorname{Ext}_R^1(R, M) \to \operatorname{Ext}_R^2(R, M) \to \operatorname{Ext}_R^2(R/a, M) \to \operatorname{Ext}$$

§ Projective and Injective Modules

We left off with the questions: What about the derived functors of $\operatorname{Hom}_R(M,-)$?

Let F be a contravariant left-exact functor. F takes SES $0 \to A \to B \to C \to 0$ to exact sequence

$$0 \to F(A) \to F(B) \to F(C)$$

Natural continuation to the right? Not necessarily exact on free modultes: $\operatorname{Ext}(\mathbb{Z}/p,\mathbb{Z}) \cong \mathbb{Z}/p$. $\operatorname{Hom}(\mathbb{Z}/p,-)$ applied to $0 \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to \mathbb{Z}/p \to 0$

$$0 \to \operatorname{Hom}(\mathbb{Z}/p,\mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}/p,\mathbb{Z}) \to \operatorname{Hom}(\mathbb{Z}/p,\mathbb{Z}/p) \to \operatorname{Ext}(\mathbb{Z}/p,\mathbb{Z}) \to \operatorname{Ext}(\mathbb{Z}/p,\mathbb{Z}) \to \operatorname{Ext}(\mathbb{Z}/p,\mathbb{Z}/p) \to 0.$$

What plays the rules of free modules?

SES $0 \to A \to B \to C \to 0$, if C is free, then sequence splits; more generally, given P free and $f: P \to C$, then f lifts a map $P \to B$.

Definition 2.6. A module F is *projective* if given any epimorphism $\alpha \colon A \to B$ and any map $\beta \colon P \to B$, there exists a map $\gamma \colon P \to A$ such that $\beta = \alpha \circ \gamma$

"The problem F has a solution." $A \xrightarrow{\beta} B \longrightarrow 0$

Observations:

• A direct summand of a projective module is projective, i.e. $P \oplus Q$ projective $\implies P$ and Q projective.

- A module P is projective if and only if it is the direct summand of a free module, i.e., if and only if there exists Q such that $P \oplus Q$ is free.
- A projective module is finitely generated if and only if it is the direct summand of a free module.
- A module P is projective if and only if $\operatorname{Hom}_R(P, -)$ is exact.

Definition 2.6. A module Q is *injective* if given any monomorphism $\alpha: A \to B$ and any map $f: A \to Q$, there exists a map $g: B \to I$ such that $f = g \circ \alpha$.

Equivalently: A module Q is injective if and only if $\operatorname{Hom}_R(-,Q)$ is exact.

Examples:

- In \mathbb{Z} -modules, \mathbb{Q} is injective
- In \mathbb{Z} -modules, \mathbb{Q}/\mathbb{Z} , any injective, any "divisible" abelian group is injective (if and only if)
- In R-modules, $\operatorname{Hom}_{\mathbb{Z}}(R,\mathbb{Q})$ and $\operatorname{Hom}_{\mathbb{Z}}(R,\mathbb{Q}/\mathbb{Z})$ are injective
- A product of injective *R*-modules is injective

Theorem 2.7. A R-module M is injective if and only if for any ideal I of R, any map of R-modules $I \to M$ extends to a map of R-modules $R \to M$.

Definition 2.8. A projective resolution of M consists of a chain complex P, and a map $\epsilon \colon P_0 \to M$ such that

- P_n is projective for all n and $P_n = 0$ for n < 0
- $H_n(P_*) = 0$ for n > 0
- The map ϵ induces an isomorphism $H_0(P_*) \to M$

Definition 2.9. An injective resolution of M consists of a chain complex Q^* and a map $\eta: M \to Q^0$ such that

- Q^n is injective for all n and $Q^n = 0$ for n < 0 (cohomological degree)
- $H^n(Q_*) = 0$ for n > 0
- The map η induces a morphism $M \cong H^0(Q^*)$.

§ The Fundamantal Lemma of Homological Algebra

Theorem 2.10. Let P_* be a complex of projectives that is zero below (homological) degree zero, let C_* be an almost acyclic complex, and let $\phi: H_0(P_*) \to H_0(C_*)$ be a homomorphism. Then there exists a map of complex $\Phi: P_* \to C_*$ that induces ϕ on H_0 ; moreover, ϕ is unique up to chain homotopy.

Theorem 2.11. Let Q^* be a complex of injectives that is zero below (cohomological) degree zero, let C^* be an almost acyclic complex, and let $\phi \colon H^0(C^*) \to H^0(Q^*)$ be a homomorphism. Then there exists a map of complexes $\phi \colon C^* \to Q^*$ that induces ϕ on H^0 ; moreover, ϕ is unique up to chain homotopy.

Review of Chain Homotopies:

Given a chain complex C_* , define $C_* \otimes I = C_* \otimes \Delta_*(\Delta[1])$ to be the chain complex

$$(C_* \otimes I)_n = C_n \oplus C_n \oplus C_{n-1}$$
 write (x, y, z) as $x \otimes [0] + y \otimes [1] + z \otimes [I]$

$$d(x \otimes [0]) = (dx) \otimes [0], \quad d(y \otimes [1]) = (dy) \otimes [1],$$

$$d(z \otimes [I])(dx) \otimes [I] - (-1)^{|z|} z \otimes [0] + (-1)^{|z|} z \otimes [0] + (-1)^{|z|} z \otimes [1].$$

A map of chain complexes $\Phi_*: C_* \otimes I \to D_*$ consists of maps of modules

$$f_n \colon C_n \to D_n$$
 $f_n(x) := \phi_n(x \otimes [1])$
 $g_n \colon C_n \to D_n$ $g_n(x) := \phi_n(x \otimes [0])$
 $h_n \colon C_n \to D_{n+1}$ $h_n(z) := \phi_{n+1}(z \otimes [I])$

such that f_* and g_* are chain maps and h_* satisfies

$$d(h_n(z)) = h_{n-1}(dz) + (-1)^n (f_n(z) - g_n(z)).$$

(if and only if) Let $S_n := (-1)^n h_n$. Then the last equation is equivalent to

$$d \circ S_n + S_{n-1} \circ d = f_n - g_n.$$

So a map $C_* \otimes I \to D$ contains exactly the data of two chain maps $f, g: C_* \to D_*$ and a chain homotopy between them.

 $C_* \otimes I$ comes with maps $C_* \oplus C_* \to C_* \otimes I$ and $C_* \otimes I \to C_*$.

The Fundamental Lemma of Homological Algebra after Quillen

Theorem 2.12. given a commutative (solid arrow) diagram of chain complexes

$$A_* \longrightarrow X_*$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_* \longrightarrow Y_*$$

such that

- $A_* \to B_*$ is a monomorphism with cokernel projective and bounded below, and
- $X_* \to Y_*$ an epimorphism and quasi-isomorphism; Then there exists a map $B_* \to X_*$ making the diagram commute.

Bounded below: C_* is bounded below means there exists N such that $C_n = 0$ for n < N.

Application to the Original Fundamental Lemma

Let $A_* = 0$, $B_* = P_*$ projective in all degrees and zero in negative degrees.

Let $X_* = C_*$ be almost acyclic. WLOG X_* is zero in negative degrees..

Let $Y_* = H_0(C_*)$ concentrated in degree zero, with zero differentials.

NOTE: There is a "reverse arrow" way to write this by refersing the arrows and replacing "projective" with "injective".

§ Existence of Derived Functors

§ Universal Coefficients Theorems

3 Topological Products

- § Tensor Product and Hom of Chain Complexes
- § The Kunneth Theorem
- § The Eilenberg-Zilber Theorem
- § The Alexander-Whitney and Shuffle Maps
- § Products and Pairings
- § Acyclic Models and the Eilenberg-Zilber Theorem

4 Fibre Bundles

- § Group Actions
- § Fiber Bundles
- § Examples of Fiber Bundles
- § Principal Bundles
- § Maps of Fiber Bundles
- § Reduction of Structure Group

5 Homology with Local Coefficients

- § Homology with Twisted Coefficients
- § Examples and Basic Properties of Homology with Twisted Coefficients
- § Homology with Local Coefficients
- § Functoriality of Homology with Local Coefficients