

Geometric Intersection

BO Algorithm: Analysis

- Complexity of Event Queue

Junhui DENG

deng@tsinghua.edu.cn

Single Operation

❖ The time cost of the algorithm is dominated by those spent on updating the data structures

- \diamondsuit What's the maximum size of \mathcal{E}/\mathcal{Z} ?

Size of $\mathcal E$

- \diamond As we have seen, ε consists of events to be processed
- ❖ All events are classified into 3 types:
 - n |left | endpoints (blue)

12324561747635

- n |right| endpoints (yellow)
- I intersection points (red)

- $\Leftrightarrow \mathcal{E}$ would contain no more than |2n + I| events at any time
- ❖ So the time for each operation is

$$\mathcal{O}(\log(2n + I)) = \mathcal{O}(\log(2n + n^2)) = \mathcal{O}(\log n)$$

Maximum Size of $\boldsymbol{\mathcal{E}}$

- \clubsuit Is it possible for $\mathcal E$ to have a size up to $\Omega(2n + I) = \Omega(n^2)$ at a time?
- \Leftrightarrow By how many will $|\mathcal{E}|$ increase after each event?

No more than 1!

- left-endpoint:

$$\leq$$
 - 1 + 2 = 1

$$\leq$$
 - 1 + 1 = 0

- intersection:

$$\leq$$
 - 1 + 2 = 1

Besides the updating operations,

how much time is required to initialize \mathcal{E}?

