Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра автоматизованих систем управління

Звіт до лабораторної роботи № 2 з дисципліни Моделювання процесів і смарт-систем на тему:

«Моделювання динамічних систем.»

Виконала: студентка OI-32

Горяча I. B.

Прийняв: асистент каф. АСУ

Мельник Р. В.

Мета: Оволодіння методами комп'ютерного моделювання динамічних систем, що описуються системами звичайних диференціальних рівнянь (ЗДР). Набути навички застосування чисельних методів Рунге-Кутта для розв'язування систем ЗДР.

Завдання 1. Моделювання екологічної системи.

- а) змоделювати екосистему в якій територіальні ресурси розподілені між жертвами та хижаками за наступних вихідних даних
- коефіцієнти взаємодії між видами: $a11 = 0.01 \cdot N$, $a12 = 0.0001 \cdot N$, $a21 = 0.0001 \cdot N$, $a22 = 0.04 \cdot N$ (де N номер варіанту, який є порядковим номером студента у списку його групи);
- вектор початкових умов з початковими значеннями кількості жертв х = $1000 10 \cdot N$ та хижаків у = $700 10 \cdot N$;
- час початку спостереження за системою t0 = 0, крок інтегрування h = 0.1 дня, тривалість спостереження в днях T = 150;
- b) методом чисельного інтегрування Рунге-Кутта четвертого порядку розв'язати, отриману у попередньому пункті (а) систему рівнянь Лотки- Вольтери із вказаними початковими умовами та побудувати графіки залежностей x(t), y(t) і y(x). Для цього написати код відповідної комп'ютерної програми на мові програмування Руthon.

Згідно з умовою:

$$- N = 4$$

$$- a_{11} = 0.01 \cdot 4 = 0.04$$

$$- a_{12} = 0.0001 \cdot 4 = 0.0004$$

$$- \quad a_{21} = 0.0001 \, \cdot \, 4 = 0.0004$$

$$- a_{22} = 0.04 \cdot 4 = 0.16$$

Початкові значення:

$$- x_0 = 1000 - 10 \cdot 4 = 960$$

$$- y_0 = 700 - 10 \cdot 4 = 660$$

Крок інтегрування: h = 0.1

$$\begin{cases} x' = a_{11}x - a_{12}xy, \\ y' = a_{22}y - a_{21}xy. \end{cases}$$

Система рівнянь:

$$x' = 0.04x - 0.0004xy$$

$$y' = 0.16y - 0.0004xy$$

Результати:

t	Х	У	3.00	577.82	440.44	6.40	378.47	400.95	11.80	179.44	527.96
			3.10	570.04	437.39	6.50	373.94	401.33	11.90	176.38	532.67
0.00	960.00	660.00	3.20	562.43	434.49	6.60	369.46	401.78	12.00	173.33	537.48
0.10	939.01	645.65	3.30	554.99	431.74	6.70	365.02	402.31	12.10	170.31	542.41
0.20	918.99	632.14	3.40	547.70	429.14	6.80	360.63	402.91	12.20	167.31	547.45
0.30	899.86	619.39	3.50	540.56	426.67	6.90	356.28	403.58	12.30	164.32	552.60
0.40	881.57	607.35	3.60	533.57	424.34	7.00	351.98	404.32	12.40	161.36	557.87
0.50	864.06	595.97	3.70	526.72	422.13	7.10	347.71	405.13	12.50	158.41	563.26
0.60	847.27	585.21	3.80	519.99	420.06	7.20	343.49	406.02	12.60	155.49	568.76
0.70	831.16	575.02	3.90	513.40	418.10	7.30	339.30	406.97	12.70	152.58	574.38
0.80	815.67	565.36	4.00	506.93	416.26	7.40	335.15	407.99	12.80	149.70	580.13
0.90	800.78	556.21	4.10	500.57	414.54	7.50	331.04	409.09	12.90	146.83	586.00
1.00	786.44	547.52	4.20	494.33	412.92	7.60	326.97	410.25	13.00	143.99	592.00
1.10	772.61	539.27	4.30	488.20	411.42	7.70	322.93	411.48	13.10	141.16	598.13
1.20	759.28	531.44	4.50	482.17	410.02 408.72	7.80	318.92	412.79	13.20	138.36	604.38
1.30	746.40	523.99	4.60	476.24 470.40	408.72	7.90	314.95	414.16	13.30	135.58	610.78
1.40	733.95	516.91	4.70	464.66	406.43	8.00	311.01	415.60	13.40	132.82	617.30
1.50	721.91	510.17	4.80	459.01	405.43	8.10	307.09	417.12	13.50	130.08	623.97
1.60	710.25	503.77	4.90	453.45	404.51	8.20	303.21	418.70	13.60	127.37	630.78
1.70	698.96	497.66	5.00	447.96	403.69	8.30	299.36	420.36	13.70	124.68	637.73
1.80	688.01	491.86	5.10	442.56	402.96	8.40	295.54	422.09	13.80	122.01	644.83
1.90	677.39	486.33	5.20	437.24	402.32	8.50	291.75	423.89	13.90	119.36	652.07
2.00	667.07	481.06	5.30	431.99	401.76	8.60	287.98	425.76	14.00	116.73	659.47
2.10	657.05	476.04	5.40	426.81	401.29	8.70	284.24	427.70	14.10	114.13	667.02
2.20	647.30	471.27	5.50	421.70	400.90	8.80	280.53	429.72	14.20	111.56	674.72
2.30	637.82	466.72	5.60	416.65	400.60	8.90	276.84	431.81	14.30	109.00	682.59
2.40	628.58	462.38	5.70	411.68	400.37	9.00	273.18	433.98	14.40	106.48	690.61
2.50	619.59	458.26	5.80	406.76	400.22	9.10	269.54	436.21	14.50	103.97	698.81
2.60	610.82	454.33	5.90	401.91	400.15	9.20	265.93	438.53	14.60	101.50	707.16
2.70	602.27	450.59	6.00	397.11	400.16	9.30	262.34	440.92	14.70	99.04	715.69
2.80	593.93	447.04	6.10	392.37	400.24	9.40	258.78	443.38	14.80	96.62	724.40
2.90	585.78	443.66	6.20	387.69	400.40	9.50	255.23	445.93	14.90	94.22	733.28
3.00	577.82	440.44	6.30	383.05	400.64	9.60	251.71	448.55	15.00	91.84	742.34

Завдання 2. Моделювання процесу розповсюдження епідемії.

- а) змоделювати процес розповсюдження епідемії за наступних вихідних даних
- кількість людей в населеному пункті H = 1000 N, інтенсивність розповсюдження епідемії 1-а людина за день передає інфекцію N здоровим людям $\beta = 25 N$, кількість днів, необхідних на одужання $\gamma = N$ (де N номер варіанту, який є порядковим номером студента у списку його групи);

- вектор початкових умов, елементи якого: x = 900 N кількість здорових людей, y=90–N кількість хворих, z=H–x–y кількість людей, які одужали;
- час початку спостереження за системою t0 = 0, крок інтегрування h = 0.1 дня, тривалість спостереження в днях T = 40;
- b) методом чисельного інтегрування Рунге-Кутта четвертого порядку розв'язати, отриману у попередньому пункті (а) систему рівнянь типу (7) із вказаними початковими умовами та побудувати графіки залежностей x(t), y(t) і z(t). Для цього написати код відповідної комп'ютерної програми на мові програмування Руthon.

Згідно з умовою:

$$-H = 1000 - 4 = 996$$

$$- \beta = 21$$

$$- \gamma = 4$$

Початкові значення:

$$- x_0 = 900 - 4 = 896$$

$$- y_0 = 90 - 4 = 86$$

$$- z_0 = 996 - 896 - 86 = 14$$

Крок інтегрування: h = 0.1

$$\begin{cases} x' = -\beta/H \cdot xy, \\ y' = \beta/H \cdot xy - 1/\gamma \cdot y, \\ z' = 1/\gamma \cdot y. \end{cases}$$

Система рівнянь:

$$x' = -21/996 \cdot xy$$

 $y' = 21/996 \cdot xy - 1/4 \cdot y$
 $z' = 1/4 \cdot y$

Результати:

t	Х	у	z
0.00	896.00	86.00	14.00
0.10	570.85	405.68	19.47
0.20	155.30	805.49	35.22
0.30	45.96	892.72	57.33
0.40	14.50	901.42	80.08
0.50	4.44	888.99	102.57
0.60	1.31	870.10	124.59
0.70	0.38	849.53	146.09
0.80	0.11	828.82	167.07
0.90	0.03	808.44	187.53
1.00	0.01	788.50	207.50
1.10	0.00	769.03	226.96
1.20	0.00	750.05	245.95
1.30	0.00	731.53	264.47
1.40	0.00	713.47	282.53
1.50	0.00	695.85	300.15
1.60	0.00	678.67	317.33
1.70	0.00	661.92	334.08
1.80	0.00	645.57	350.43
1.90	0.00	629.63	366.37
2.00	0.00	614.09	381.91
2.10	0.00	598.93	397.07
2.20	0.00	584.14	411.86
2.30	0.00	569.72	426.28
2.40	0.00	555.65	440.35
2.50	0.00	541.93	454.07
2.60	0.00	528.55	467.45
2.70	0.00	515.50	480.50
2.80	0.00	502.77	493.23
2.90	0.00	490.36	505.64
3.00	0.00	478.25	517.75

Код програми - репозиторій github: https://github.com/ira-horiacha/mpss

Висновок: Отже, в результаті виконання цієї лабораторної роботи, я закріпила на практиці метод Рунге-Кутта 4-порядку для розв'язання системи диференціальних рівнянь. Зокрема, в першому завданні для системи хижаків-жертв я отримала результати у вигляді графіків, які наглядно показують що при приблизно однаковій кількості жертв-хижаків, хижаки поїдають жертв і таким чином кількість жертв зменшується.

В другому завданні, де потрібно змоделювати процес розповсюдження епідемії з отриманих графіків видно, що спершу кількість здорових людей

зменшується, таким чином збільшується кількість хворих, але з часом ті, що захворіли, одужують і таким чином збільшується z (кількість тих що перехворіли).