Cálculo de Probabilidades A

Lista de Exercícios

2020-03-12

- 1. Para cada um dos eventos abaixo, escreva o espaço amostral correspondente e conte seus elementos:
 - (a) Uma moeda é lançada duas vezes e observam-se as faces obtidas.

$$\Omega = \{CC, CR, RC, RR\} \quad n(\Omega) = 4$$

(b) Um dado é lançado duas vezes e a ocorrência de face par ou ímpar é observada.

$$\Omega = \{PP, PI, IP, II\} \quad n(\Omega) = 4$$

(c) Uma urna contém 10 bolas azuis e 10 vermelhas. Três bolas são selecionadas ao acaso, com reposição, e as cores são anotadas.

$$\Omega = \{AA, AV, VA, VV\} \quad n(\Omega) = 4$$

(d) Dois dados são lançados simultaneamente e estamos interessados na soma das faces observadas.

$$\Omega = \{2, 3, 4, \dots, 12\}$$
 $n(\Omega) = 11$

(e) Em uma cidade famílias com 3 crianças são selecionadas ao acaso, anotando-se o sexo de cada uma, de acordo com a idade.

$$\Omega = \{MMM, MMF, MFM, FMM, FFM, FMF, MFF, FFF\} \quad n(\Omega) = 8$$

(f) Uma máquina produz 20 peças por hora, escolhe-se um instante qualquer e observa-se o número de defeituosas na próxima hora.

$$\Omega = \{\omega : 0 \le \omega \le 20\} \quad n(\Omega) = 21$$

(g) Uma moeda é lançada consecutivamente até o aparecimento da primeira cara.

$$\Omega = \{C, RC, RRC, RRRC, RRRRC, \ldots\}$$
 $n(\Omega) = \infty$

(h) Mede-se a duração de lâmpadas, deixando-as acesas até que se queimem.

$$\Omega = \{\omega : \omega > 0\} = \mathbb{R}^+ \quad n(\Omega) = \infty$$

(i) Um fichário com 10 nomes contém 3 nomes de mulheres. Seleciona-se ficha após ficha, até o último nome de mulher ser selecionado, e anota-se o número de fichas selecionadas.

$$\Omega = \{3, 4, 5, \dots, 10\}$$
 $n(\Omega) = 8$

(j) Uma moeda é lançada consecutivamente até o aparecimento da primeira cara e anota-se o número de lançamentos.

$$\Omega = \{1, 2, 3, \ldots\} \quad n(\Omega) = \infty$$

(k) De um grupo de 5 pessoas $\{A,B,C,D,E\}$, soteiam-se duas, uma após a outra, com reposição, e anota-se a configuração obtida.

1

$$\Omega = \{AA, AB, AC, AD, AE, BA, BB, BC, BD, BE, CA, CB, CC, CD, CE, DA, DB, DC, DD, DE, EA, EB, EC, ED, EE\} \quad n(\Omega) = 25$$

(1) Mesmo enunciado anterior, mas sem reposição.

$$\Omega = \{AB, AC, AD, AE, BA, BC, BD, BE, CA, CB, CD, CE, DA, DB, DC, DE, EA, EB, EC, ED\} \quad n(\Omega) = 20$$

(m) Mesmo enunciado anterior, mas as duas selecionadas simultaneamente.

- (n) $\Omega = \{AB, AC, AD, AE, BC, BD, BE, CD, CE, DE\}$ $n(\Omega) = 10$
- 2. Considere $\Omega = \{1, 2, 3\}$ e as seguintes coleções de subconjuntos.

$$\mathcal{F}_1 = \{\emptyset, \Omega, \{1\}, \{2,3\}\};$$

$$\mathcal{F}_2 = \{\emptyset, \Omega, \{1\}, \{2\}, \{1,3\}, \{2,3\}\}.$$

Seriam ambos σ -álgebra?

Apenas \mathcal{F}_1 satisfaz todas as propriedades. A coleção \mathcal{F}_2 não satisfaz a terceira propriedade da σ -álgebra.

- 3. Sendo $\Omega = \{1,2,3\},$ mostre que o conjunto das partes Ω_p é a $\sigma\text{-\'algebra}.$
- 4. Sendo $\Omega = \{a, b, c\}$, liste todas as σ -álgebras de subconjuntos de Ω .
- 5. Dado os eventos A e B. Construa o diagrama de Venn para os seguintes eventos:
 - (a) ∅.
 - (b) A.
 - (c) B.
 - (d) $A \cap B$.
 - (e) Ω .
 - (f) A^c .
 - (g) B^c .
 - (h) $A \cup B$.
 - (i) $A \cap B^c$.
 - (j) $A^c \cap B$.
 - (k) $A \cup B^c$.
 - (1) $A^c \cup B$.
 - (m) $A^c \cap B^c$.
 - (n) $A^c \cup B^c$.
 - (o) $(A \cap B) \cup (A^c \cap B^c)$.
 - (p) $(A \cap B^c) \cup (A^c \cap B)$.
- 6. Sendo A, B e C subconjuntos quaisquer, expresse em notação matemática os conjuntos cujos elementos:
 - (a) Estão em A e B, mas não em C.

 ABC^c

(b) Não estão em nenhum deles.

$$A^c B^c C^c = (A \cup B \cup C)^c$$

(c) Estão, no máximo, em dois deles.

 $(ABC)^c$

(d) Estão em A, mas no máximo em um dos outros.

 $A(BC)^c$

(e) Estão na intersecção dos três conjuntos e no complementar de A.

 \emptyset

- 7. Uma balança digital é usada para fornecer pesos em gramas. Seja A o evento em que um peso excede 11 gramas. Seja B o evento em que um peso é menor que ou igual a 15 gramas, e seja C o evento em que um peso é maior ou igual a 8 gramas e menor que 12 gramas. Descreva os seguintes eventos:
 - (a) Ω .

$$\Omega = \{x : x > 0\}$$

(b) $A \cup B$.

$$A \cup B = \{x : x > 11\}$$

(c) $A \cap B$.

$$A \cap B = \{x : 11 < x \le 15\}$$

(d) A^c .

$$A^c = \{x : x \le 11\}$$

(e) $A \cup B \cup C$.

$$A \cup B \cup C = \{x : x \ge 8\}$$

(f) $(A \cup C)^c$.

$$(A \cup C)^c = \{x : x < 8\}$$

(g) $A \cap B \cap C$.

$$A \cap B \cap C = \emptyset$$

(h) $B^c \cap C$.

$$B^c\cap C=\varnothing$$

(i) $A \cup (B \cap C)$.

$$A \cup (B \cap C) = \{x : x \ge 8\}$$

- 8. Suponha que A e B sejam eventos mutuamente exclusivos (ou disjuntos) para os quais P(A) = 0, 3 e P(B) = 0, 5. Qual é a probabilidade de que:
 - (a) A ou B ocorra?

0, 8

(b) A ocorra mas B não ocorra?

0, 3

(c) $A \in B$ ocorram?

0

9. Sejam A e B dois eventos em um espaço amostral, tais que P(A)=0,2, P(B)=p, $P(A\cup B)=0,5,$ e $P(A\cap B)=0,1.$ Determine o valor de p.

p = 0, 4