MATH 416H HW 3

James Liu

Due: Sep 18 Edit: September 18, 2024

1. $\forall W \subseteq V$ that W is a subspace containing $S, S \subseteq \bigcap_i W_i$ as Ws are vector spaces, thus they are closed on the 2 operations, thus, linear combinations of S are also in any W containing S. Thus, $(\operatorname{span} S) \subseteq \bigcap_i W_i$.

Suppose that $\bigcap_i W_i \not\subseteq \operatorname{span} S$, then it exisist such $v \in V$, that $v \notin \operatorname{span} S$, while $v \in \bigcap_i W_i$. Consider a special subspace (span S) $\subseteq V$, $S \subseteq \operatorname{span} S$, thus $\operatorname{span} S \in \{W_i\}$ while span $S \subseteq \operatorname{span} S$. Therefore, any $v \notin \operatorname{span} S, v \notin \bigcap_i W_i$. Thus, by definition of intersections, such vector does not exist, thus, $\bigcap_i W_i \subseteq \operatorname{span} S$

Thus, the span of S equals the intersection of all the subspaces of V containing S.

2. For the 2 vectors to be linear independent, the only solution to $\begin{cases} \lambda_1 + \lambda_2 = 0 \\ x\lambda_1 + y\lambda_2 = 0 \end{cases}$ should be $\begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$ for $\lambda_1 + \lambda_2 = 0$, there could be $\lambda_1 = \lambda_2 = 0$ or $\lambda_1 = -\lambda_2$ As the vectors should be linear independent, then, $-\lambda_1 x + \lambda_2 y \neq 0$, thus $x \neq y$.

For vectors with $x \neq y$, there is $\begin{cases} \lambda_1 + \lambda_2 = 0 \\ x\lambda_1 + y\lambda_2 = 0 \end{cases}$ with only one set of solution of $\lambda_1 = \lambda_2 = 0$, Thus they are linearly independent with condition $x \neq y$.

3. i: $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ is one of the vectors that can form a basis. suppose they are linear dependent, then exisist $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$,

that
$$\lambda_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

while $\exists \lambda_i \neq 0$ however $\begin{cases} \lambda_2 + 2 \times \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$ Showing that $\lambda_2 = \lambda_3 = 0$ and thus, as $\lambda_1 + 0 + 0 = 0$ $\lambda_1 = 0$, Thus they are linear independent,

as there are 3 elements while the dimension of \mathbb{R}^3 is also 3, it is a basis.

ii: $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ is one of the vectors that can form a basis. suppose they are

linear dependent, then exisist $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$,

that
$$\lambda_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \lambda_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

while $\exists \lambda_i \neq 0$ however $\begin{cases} \lambda_2 + \lambda_3 = 0 \\ \lambda_2 = 0 \end{cases}$ Showing that $\lambda_2 = \lambda_3 = 0$ and thus, as $\lambda_1 + 0 + 0 = 0$ $\lambda_1 = 0$, Thus they are linear independent, as there are 3 elements while the dimension of \mathbb{R}^3 is also 3, it is a basis.

- 4. As $x+y+z=\overrightarrow{0}$, thus, z=-x-y. In $\forall v\in \operatorname{span}\ \{y,z\}\ \exists \lambda_1,\lambda_2\in F$ that $v=\lambda_1y+\lambda_2z=\lambda_1y+\lambda_2(-x-y)=(\lambda_1-\lambda_2)y-\lambda_2x,\ (\lambda_1-\lambda_2\in F),$ Thus v is also in span $\{x,y\}$. Thus, span $\{x,y\}=\operatorname{span}\ \{y,z\}$
- 5. $N(T) = \{x | T(x) = \overrightarrow{0}\}, \text{ for } \mathcal{P}_n, \ N(T) = \{x | \frac{d}{dx}x = 0\} = k + 0x + 0x^2 + \cdots + 0x^n, \text{ for some } k \in \mathbb{R}$ $R(T) = \{x | T(v) = x, v \in V\}, \text{ for } \mathcal{P}_n, \ R(T) = \{x | \frac{d}{dx}v = x, \ v \in V\} = k_0 + k_1x + k_2x^2 + \cdots + k_{n-1}x^{n-1} + 0x^n \text{ for some } k_i \in \mathbb{R}$ For example, take $v_1 = 1$ and $v_2 = x, v_1 \in R(T)$ and $T(v_2) = v_1 \in N(T)$. Thus, the intersection is not empty.
- 6. $\forall w \in R(T), \ \exists \lambda_i \in F \ \text{that} \ w = T(\sum_i^n \lambda_i v_i)$. As the map is linear, there is $T(\sum_i^n \lambda_i v_i) = \sum_i^n \lambda_i (T(v_i))$, Thus, $w \in \text{span } T(v_i)$, thus $T(v_i)$ spans R(T), Also, as profed in class, $T(\overrightarrow{0}) = \overrightarrow{0}$ for linear transformations, and as T(v) is , then $T(\sum_i^n \lambda_i v_i) = \overrightarrow{0}$ only when $\sum_i^n \lambda_i v_i = \overrightarrow{0}$ which is that all $\lambda_i = 0$. Therefore, $\sum_i^n \lambda_i (T(v_i)) = \overrightarrow{0}$ only when all $\lambda_i = 0$. Thus, $T(v_i)$ is linear independent. Thus it is one of the basis of R(T).

If the mapping not injective, meaning that $T(v_i)$ is not nessesarily linear independent as there might be some other vectors in the null space of T, leading to a set of λ_i not all equal to 0 that gives $\sum_{i=1}^{n} \lambda_i(T(v_i)) = \overrightarrow{0}$.

- 7. a) these two operations are closed under the set of all maps between X and W.
 - i. (f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x) addition is communitivitive.
 - ii. (f + (g + h))(x) = f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x) = ((f + g) + h)(x) addition is associative.
 - iii. Consider f(x) = 0, (f + g)(x) = f(x) + g(x) = 0 + g(x) = g(x) zero vector do exisist.
 - iv. $\forall f \in MAP(X, W), -f(x) + f(x) = \overrightarrow{0}$ for all vector do exist a negative vector.

- v. Consider $\lambda = 1$ 1f(x) = f(x), multiplicative identity exists.
- vi. $\lambda, \mu \in \mathbb{R}, \lambda(\mu f(x)) = (\mu \lambda) f(x)$
- vii. $\lambda \in \mathbb{R}$, $\lambda(f+g)(x) = \lambda(f(x)+g(x)) = \lambda f(x) + \lambda g(x) = (\lambda f + \lambda g)(x)$
- viii. $\lambda, \mu \in \mathbb{R}, (\lambda + \mu)f(x) = \lambda f(x) + \mu f(x) = (\lambda f + \mu f)(x)$

Thus it is a vector space.

- b) \forall linear maps $f(x), g(x), (f+g)(\lambda x) = f(\lambda x) + g(\lambda x) = \lambda f(x) + \lambda g(x) = \lambda (f+g)(x)$, thus, addition is closed. Consider $\lambda, \mu \in \mathbb{R}$, $(\lambda f)(\mu x) = \lambda f(\mu x) = \mu \lambda f(x)$. Thus scaler multiplication is also closed. The other eight properties were checked in part a), thus, it is subspace.
- 8. $\forall w \in \mathbb{R}^3$, $w = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$ where e_i are basis in \mathbb{R}^3 . Thus $\forall v \in \text{Hom}(\mathbb{R}^3, \mathbb{R}), \ v = f(w) = f(\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3)$ Since f(x) is linear, then $f(\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3) = \lambda_1 f(e_1) + \lambda_2 f(e_2) + \lambda_3 f(e_3)$. Consider 3 linear maps l_1, l_2, l_3 in the prompt. For standard basis, $e_1, e_2, e_3, w = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$. $l_1(w) = \lambda_1, \ l_2(w) = \lambda_2, \ l_3(w) = \lambda_3$, Thus, $f(w) = l_1(w) f(e_1) + l_2(w) f(e_2) + l_3(w) f(e_3)$. Thus, as $f(e_i) \in \mathbb{R}, \ l_1, l_2, l_3$ do span $\text{Hom}(\mathbb{R}^3, \mathbb{R})$.

Next, prof that the set is linearly independent. Suppose they are not, then exists $\lambda_1, \lambda_2, \lambda_3 \in F$ not all zero, while $\lambda_1 l_1 + \lambda_2 l_2 + \lambda_3 l_3 = \overrightarrow{0}$ as $\overrightarrow{0} = (f(w) = 0), \ \forall w \in \mathbb{R}^3$. As w is a random vector is $\mathbb{R}^3, \ \lambda_1 l_1 + \lambda_2 l_2 + \lambda_3 l_3 = \lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$. However, does not exist such combinations of set of λ_i Therefore, they are linear independent.

Thus, the set of maps is a set of basis for $\text{Hom}(\mathbb{R}^3,\mathbb{R})$