Mühendislik ve Teknoloji Fakülteleri İçin Lineer Cebir Ders Notu

Mihriban Alyamaç Külahcı and Muhittin Evren Aydın23.01.2018

İçindekiler

Preface								
1	Line	eer De	nklem Sistemleri	1				
	1.1	Matris	sler	1				
		1.1.1	Tanımlar ve gösterimler	1				
		1.1.2	Matrislerde toplama ve skalerle çarpma işlemi	3				
		1.1.3	Matrislerde çarpma işlemi	6				
		1.1.4	Bir matrisin transpozu	8				
		1.1.5	Kare matrisler	10				
		1.1.6	Bir matrisin çarpma işlemine göre tersi	12				
		1.1.7	Bölüm sonu alıştırmaları	15				
	1.2	Bir ma	atrisin eşolon formu	17				
		1.2.1	Elemanter operasyonlar	20				
		1.2.2	Elemanter operasyonların uygulamaları	22				
		1.2.3	Bölüm sonu alıştırmaları	24				
	1.3	Deterr	minantlar	27				
		1.3.1	Determinant fonksiyonu ve özellikleri	27				
		1.3.2	Determinant açılımları	30				
		1.3.3	Bir matrisin adjointi (eki)	32				
		1.3.4	Bir matrisin determinant rankı	34				
		1.3.5	Bölüm sonu alıştırmaları	36				
	1.4	Lineer	denklem sistemleri	39				
		1.4.1	Cramer denklem sistemleri	43				
		1.4.2	Katsayılar matrisinin tersi yardımıyla lineer denklem					
			sisteminin çözümü	45				
		1.4.3	Gauss ve Gauss-Jordan yoketme metotları	47				
		1.4.4	Homojen lineer denklem sistemi	51				
		1.4.5	Bölüm sonu alıştırmaları	53				

2	Vek	tör Uz	zayları	57
	2.1	Reel v	ektör uzayları	57
		2.1.1	Altuzaylar	59
		2.1.2	Lineer bağımlılık-bağımsızlık	62
		2.1.3	Baz ve boyut	66
		2.1.4	Skaler (İç) çarpım	68
		2.1.5	Bölüm sonu alıştırmaları	72
	2.2	Öz değ	ğerler ve öz vektörler	76
		2.2.1	Bölüm sonu alıstırmaları	86

Preface

Bölüm 1

Lineer Denklem Sistemleri

1.1 Matrisler

1.1.1 Tanımlar ve gösterimler

Tanım 1.1.1 $X = \{1, 2, ..., m\}$ ve $Y = \{1, 2, ..., n\}$ olsun. $X \times Y$ kartezyen kümesinden reel sayılar kümesine tanımlı bir fonksiyona $m \times n$ tipinde $(m \times n$ biçiminde) bir **matris** denir. $m \times n$ ye de matrisin **mertebesi** adı verilir.

Gösterim 1.1.2 $A: X \times Y \longrightarrow \mathbb{R}$ fonksiyonunun verilmesi demek her $(i,j) \in X \times Y$ için A(i,j) elemanlarının verilmesi demektir. $A(i,j) = a_{ij}$ diyelim. Bundan sonra A fonksiyonu

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

$$(1.1)$$

şeklinde veya kısaca $A = [a_{ij}]_{m \times n}$ ile gösterilecektir.

Tanım 1.1.3 a_{ij} sayılarının her birine A matrisinin bir **elemanı** denir. Ayrıca

$$a_{i1}, a_{i2}, ..., a_{in}$$

elemanlarının oluşturduğu yatay sıraya A matrisinin i. **satırı** ve

$$a_{1j}, a_{2j}, ..., a_{mj}$$

elemanlarının oluşturduğu dikey sıraya da A matrisinin j. **sütunu** veya **kolonu** denir.

Uyarı 1.1.4 Elemanları reel sayılar olan $m \times n$ tipinde bir matris denildiğinde akla (1.1) şeklinde bir tablo gelir. Ayrıca A matrisinin i. satırı ve j. sütunundaki elemanı a_{ij} ile gösterilir.

Örnek 1.1.5

$$A = \begin{bmatrix} -1 & 3 & 3 & 0 & 7 & 0 \\ 1 & -3 & 0 & 4 & 3 & 0 \\ 0 & -1 & -2 & 5 & 2 & 0 \\ -7 & 6 & 3 & 0 & -1 & 0 \end{bmatrix}$$

şeklinde verilen A matrisi için:

- 1. Mertebesi 4×6 dir;
- **2**. $a_{14} = a_{16} = a_{23} = a_{26} = a_{31} = a_{36} = a_{44} = a_{46} = 0$ dir;
- 3. 6. sütunu sıfırlardan ibarettir;
- 4. $a_{11} = -a_{21} = a_{32} = a_{45} = -1$ dir.

Gösterim 1.1.6 Elemanları reel sayılar olan $m \times n$ tipindeki tüm matrislerin cümlesi \mathbb{R}_n^m ile gösterilir.

Tanım 1.1.7 Yalnız bir sütundan oluşan

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}_{m \times 1}$$

matrisine sütun matrisi; yalnız bir satırdan oluşan

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \end{bmatrix}_{1 \times n}$$

matrisine ise satır matrisi adı verilir.

1.1 MATRISLER

3

Örnek 1.1.8 Aşağıda satır ve sütun matrislerine örnekler verilmiştir:

$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}_{4 \times 1}$$

ve

$$B = \begin{bmatrix} 0 & 1 & 1 & 0 & 2 \end{bmatrix}_{1 \times 5}.$$

Tanım 1.1.9 $A = [a_{ij}]_{m \times n}$ ve $B = [b_{ij}]_{m \times n}$ matrisleri için eğer her i, j için $a_{ij} = b_{ij}$

ise A ve B matrislerine **eşittir** denir ve A = B ile gösterilir.

İki matrisin eşit olması için mertebelerinin aynı olması gerektiğine dikkat edilmelidir.

1.1.2 Matrislerde toplama ve skalerle çarpma işlemi

Tanım 1.1.10 $A = [a_{ij}]_{m \times n}$ ve $B = [b_{ij}]_{m \times n}$ matrislerinin **toplamı** bu matrislerin karşılıklı bileşenleri toplanarak elde edilen yeni bir matristir. Yani,

$$A + B = [a_{ij} + b_{ij}]_{m \times n}$$

dir.

Mertebeleri farklı olan matrislerin toplamı tanımlı değildir.

Tanım 1.1.11 Bir $A = [a_{ij}]_{m \times n} \in \mathbb{R}_n^m$ ve $c \in \mathbb{R}$ olmak üzere $[ca_{ij}]_{m \times n} \in \mathbb{R}_n^m$ matrisine A matrisinin c skaleri ile **çarpımı** denir ve c.A ile gösterilir. Böylece

$$c. \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n} = \begin{bmatrix} ca_{11} & ca_{12} & \dots & ca_{1n} \\ ca_{21} & ca_{22} & \dots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \dots & ca_{mn} \end{bmatrix}_{m \times n}$$

olur.

Tanım 1.1.12 Bir $A = [a_{ij}]_{m \times n} \in \mathbb{R}_n^m$ matrisi verilsin. $-A = [-a_{ij}]_{m \times n} \in \mathbb{R}_n^m$ matrisine A nın **toplamsal tersi** denir.

Uyarı 1.1.13 A + (-B) yerine kısaca A - B yazılır.

Matris toplamının ve skalar çarpımının bazı özellikleri aşağıdaki teoremlerle ispatsız bir şekilde verilebilir.

Teorem 1.1.14 Her $A, B, C \in \mathbb{R}_n^m$ matrisleri için aşağıdakiler sağlanır:

- 1. (A+B)+C=A+(B+C);
- **2**. A + 0 = A = 0 + A;
- **3**. A + (-A) = 0 = (-A) + A;
- **4**. A + B = B + A:
- **5.** $A+C=B+C \Rightarrow A=B$ ve $A+B=A+C \Rightarrow B=C$ dir.

Teorem 1.1.15 Her $A, B \in \mathbb{R}_n^m$ matrisleri ve her $c, d \in \mathbb{R}$ skalerleri için aşağıdakiler sağlanır:

- 1. c.(A+B) = c.A + c.B;
- **2**. (c+d).A = c.A + d.A;
- **3**. (cd) . A = c. (d.A);
- **4.** 1, \mathbb{R} nin çarpma işlemine göre birim elemanı olmak üzere 1.A = A dir.

Uyarı 1.1.16 \mathbb{R}_n^m kümesinin bu işlemler ve sağladığı özellikler sayesinde ileride bir cebirsel yapı (yani bir vektör uzayı) olduğu gösterilecektir.

Tanım 1.1.17 i ve j doğal sayılar olmak üzere

$$i = j \text{ ise } \delta_{ij} = 1$$

 $i \neq j \text{ ise } \delta_{ij} = 0$

şeklinde tanımlanan δ_{ij} sayısına Kronocker Deltası adı verilir.

1.1 MATRISLER

5

Örnek 1.1.18 $i \in \{1, 2, ..., m\}$ olmak üzere

$$E_i = \begin{bmatrix} \delta_{1i} \\ \delta_{2i} \\ \vdots \\ \delta_{mi} \end{bmatrix}_{m \times 1}$$

şeklinde verilen $E_1, E_2, ..., E_m$ sütun matrislerini açık olarak yazalım: δ_{ij} Kronocker Deltası yardımıyla

$$E_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{m \times 1}, E_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}_{m \times 1}, \dots, E_m = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}_{m \times 1}$$

elde edilir.

Örnek 1.1.19 \mathbb{R}^4_1 matrisler kümesinde

$$A = \begin{bmatrix} 3 \\ -7 \\ 1 \\ 6 \end{bmatrix}$$

 $matrisini\ E_1, E_2, E_3, E_4$ sütun matrisleri cinsinden ifade edelim: Bunun için ilk olarak

$$\begin{bmatrix} 3 \\ -7 \\ 1 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -7 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 6 \end{bmatrix}$$

ve daha sonra

$$= (3) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} - 7 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

olur ki bu

$$A = 3E_1 - 7E_2 + E_3 + 6E_4$$

demektir.

1.1.3 Matrislerde çarpma işlemi

Matrislerde toplama işlemi fonksiyonların toplama işlemlerinden yararlanarak Tanım 1.1.10 ile ifade edildi. Ancak matrislerde çarpma işlemi böyle değildir.

Tanım 1.1.20 A matrisi $m \times n$ tipinde ve B matrisi $n \times p$ tipinde olsun. $A = [a_{ij}]_{m \times n}$ ve $B = [b_{ij}]_{n \times p}$ olduğunu varsayalım. (i, k) ıncı bileşeni

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

eşitliğiyle tanımlı olan $[c_{ij}]_{m \times p}$ matrisine A ile B matrisinin **çarpımı** denir ve AB ile gösterilir.

Uyarı 1.1.21 Herhangi A ve B matrisleri için çarpım tanımlı değildir. Bu matrislerin çarpılabilir olması için A nın sütun sayısı B nin satır sayısına eşit olmalıdır.

Bu tanım kısaca

$$[a_{ij}]_{m \times n} [b_{ij}]_{n \times p} = \left[\sum_{j=1}^{n} a_{ij} b_{jk} \right]_{m \times p}$$

eşitliği ile verilebilir.

1.1 MATRISLER

7

Örnek 1.1.22 Aşağıda verilen matrisler çarpılabilir ise AB matrisini bulalım.

$$A = \begin{bmatrix} 3 & 1 \\ 0 & -2 \\ 4 & 3 \end{bmatrix}_{3 \times 2} \quad ve \ B = \begin{bmatrix} 5 & -2 \\ -1 & 0 \end{bmatrix}_{2 \times 2}$$

için A nın sütun sayısı B nin satır sayısına eşit olduğundan bu matrisler çarpılabilirdir ve

$$AB = \begin{bmatrix} 3.5 + 1.(-1) & 3.(-2) + 1.0 \\ 0.(5) + (-2).(-1) & 0.(-2) + (-2).0 \\ 4.5 + 3.(-1) & 4.(-2) + 3.0 \end{bmatrix}_{3 \times 2} = \begin{bmatrix} 14 & -6 \\ 2 & 0 \\ 17 & -8 \end{bmatrix}_{3 \times 2}$$

dir.

Örnek 1.1.23 A ve B matrisleri çarpılabilir olsun ve AB = C verilsin öyle ki

$$A = \begin{bmatrix} 1 & 0 & 3 \\ -1 & -1 & m \end{bmatrix}_{2 \times 3}, \ B = \begin{bmatrix} -7 \\ 2 \\ 5 \end{bmatrix}_{3 \times 1}, \ C = \begin{bmatrix} 4n \\ 10 \end{bmatrix}_{2 \times 1}.$$

Buna göre m ve n değerlerini bulalım. O halde

$$C = \begin{bmatrix} 4n \\ 10 \end{bmatrix}_{2\times1} = \begin{bmatrix} 1.(-7) + 0.2 + 3.5 \\ (-1).(-7) + (-1).2 + m.5 \end{bmatrix}_{2\times1} = \begin{bmatrix} 8 \\ 5 + 5m \end{bmatrix}_{2\times1}$$

yani m = 1 ve n = 2 olur.

Teorem 1.1.24 Matrislerde çarpma işleminin aşağıdaki özellikleri vardır:

1. A matrisi $m \times n$ tipinde, B matrisi $n \times p$ tipinde ve C matrisi $p \times r$ tipinde olmak üzere

$$A(BC) = (AB)C$$

dir.

2. A matrisi $m \times n$ tipinde, B matrisi $n \times p$ tipinde ve C matrisi $n \times p$ tipinde olmak üzere

$$A\left(B+C\right) = AB + AC$$

dir.

3. A matrisi $m \times n$ tipinde, B matrisi $p \times m$ tipinde ve C matrisi $p \times m$ tipinde olmak üzere

$$(B+C)A = BA + CA$$

dir.

4. c bir skaler ve A matrisi $m \times n$ tipinde, B matrisi $p \times m$ tipinde olmak üzere

$$(c.A) B = c. (AB) \ ve \ A (c.B) = c. (AB)$$

dir.

Uyarı 1.1.25 İleride vektör uzayları konusu anlatılırken \mathbb{R}_n^n karesel matrislerin kümesi, matris çarpımının özelliklerinin yanı sıra matris toplamı ve skalerle çarpımın sahip olduğu özellikler sayesinde **cebir** adını alacaktır.

1.1.4 Bir matrisin transpozu

Tanım 1.1.26 A matrisi $m \times n$ tipinde olsun. A nın satırları sütun yapılarak elde edilen yeni matrise A nın **transpozu** (ya da **devriği**) denir ve A^T ile gösterilir.

Bu tanıma göre

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$
 ise
$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}_{n \times m}$$

dir.

1.1 MATRISLER

9

Uyarı 1.1.27 1. A matrisi $m \times n$ tipinde ise A^T $n \times m$ tipindedir;

2.
$$A = [a_{ij}]_{m \times n}$$
 ve $A^T = [b_{ij}]_{n \times m}$ ise $b_{ji} = a_{ij}$ dir;

3.
$$(A^T)^T = A \ dir.$$

Örnek 1.1.28 Aşağıda verilen matrislerin transpozlarını bulalım:

$$A = \begin{bmatrix} 3 & 1 \\ 0 & -2 \\ 4 & 3 \end{bmatrix}_{3 \times 2}, \ B = \begin{bmatrix} 5 & -2 \\ -1 & 0 \end{bmatrix}_{2 \times 2} \ ve \ C = \begin{bmatrix} 3 & -2 & 4 \end{bmatrix}_{1 \times 3}.$$

Buna göre

$$A^{T} = \begin{bmatrix} 3 & 0 & 4 \\ 1 & -2 & 3 \end{bmatrix}_{2 \times 3}, B^{T} = \begin{bmatrix} 5 & -1 \\ -2 & 0 \end{bmatrix}_{2 \times 2} ve C^{T} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}_{3 \times 1}$$

olur.

Teorem 1.1.29 1. A ve B matrisleri $m \times n$ tipinde ve c bir skaler ise

$$(A + B)^{T} = A^{T} + B^{T} ve (c.A^{T}) = c.A^{T}$$

dir.

2. A matrisi $m \times n$ tipinde, B matrisi $n \times p$ tipinde ise B^TA^T tanımlı olup

$$(AB)^T = B^T A^T$$

dir.

Tanım 1.1.30 Bir A matrisi için; eğer $A^T = A$ ise A ya simetrik matris, $A^T = -A$ ise antisimetrik (veya ters simetrik) matris adı verilir.

Örnek 1.1.31 $\theta \in (-\infty, \infty)$ olmak üzere aşağıdaki matris simetrik matrislere bir örnektir:

$$A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3}$$

1.1.5 Kare matrisler

Tanım 1.1.32 Satır sayısı sütun sayısına eşit olan matrislere kare (ya da karesel) matris adı verilir. $n \times n$ tipinde bir kare matrise n inci mertebeden kare matris denir.

Örnek 1.1.33 Aşağıdakiler kare matrislere birer örnekdir:

$$A = \begin{bmatrix} -5 \end{bmatrix}_{1 \times 1} , B = \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}_{2 \times 2}, C = \begin{bmatrix} -3 & 2 & 5 & 0 \\ 0 & 1 & -1 & 3 \\ 1 & -2 & 3 & -2 \\ 3 & 0 & 4 & 4 \end{bmatrix}_{4 \times 4}.$$

Tanım 1.1.34 n-inci mertebeden bir kare matriste $a_{11}, a_{22}, ..., a_{nn}$ sayılarının oluşturduğu

$$(a_{11}, a_{22}, ..., a_{nn})$$

sıralı sayı n-lisine kare matrisin **köşegeni** denir.

Örnek 1.1.35 Aşağıda verilen A matrisinin köşegenindeki elemanlar sarı renkle gösterilmiştir.

$$\begin{bmatrix} 1 & 0 & 1 & -1 & 3 \\ 5 & 0 & -2 & 3 & -2 \\ -1 & 3 & 5 & 0 & -1 \\ 3 & -2 & 5 & 1 & 1 \\ 4 & 4 & -1 & 0 & -7 \end{bmatrix}_{5 \times 5}$$

Tanım 1.1.36 n-inci mertebeden bir kare matrisin köşegenindeki elemanlarının tümü 1, köşegen dışındaki elemanlarının tümü 0 ise, bu matrise n-inci mertebeden birim matris denir ve I_n ile gösterilir.

Örnek 1.1.37 Aşağıda farklı mertebelerden birim matris örnekleri verilmiştir:

$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}_{1 \times 1}, B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2 \times 2}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4 \times 4}$$

ve

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}_{n \times n}$$

Uyarı 1.1.38 n-inci mertebeden her A kare matrisi için

$$AI_n = I_n A = A$$

olduğu kolayca görülebilir. Ayrıca A matrisi $m \times n$ tipinde ise

$$AI_n = A \ ve \ I_m A = A$$

olduğunu bir alıştırma olarak çözebilirsiniz.

Tanım 1.1.39 1. A, n-inci mertebeden bir kare matris olmak üzere $i \neq j$ için $a_{ij} = 0$ ise A matrisine **köşegen matris** denir.

- 2. Bir köşegen matrisin köşegenindeki elemanları eşit ise bu matrise **skaler** matris denir.
- **3.** $A = [a_{ij}]_{n \times n}$ olmak üzere i > j için $a_{ij} = 0$ ise A matrisine **üst üçgen** ve i < j için $a_{ij} = 0$ ise A matrisine **alt üçgen** matris adı verilir.

Daha açık olarak ifade edilirse,

$$K\"{o}\colongraphise gen matris: \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}_{n\times n}.$$

$$Skaler \ matris: \begin{bmatrix} c \ 0 \ 0 \ \dots \ 0 \\ 0 \ c \ 0 \ \dots \ 0 \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ \dots \ c \end{bmatrix}_{n \times n}$$

$$\ddot{U}st \ \ddot{u} cgen \ matris: \begin{bmatrix} a_{11} \ a_{12} \ a_{13} \ \dots \ a_{1n} \\ 0 \ a_{22} \ a_{23} \ \dots \ a_{2n} \\ 0 \ 0 \ a_{33} \ \dots \ a_{3n} \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ \dots \ a_{nn} \end{bmatrix}_{n \times n}$$

$$Alt \ \ddot{u} cgen \ matris: \begin{bmatrix} a_{11} \ 0 \ 0 \ \dots \ 0 \\ a_{21} \ a_{22} \ 0 \ \dots \ 0 \\ a_{31} \ a_{32} \ a_{33} \ \dots \ 0 \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ a_{n1} \ a_{n2} \ a_{n3} \ \dots \ a_{nn} \end{bmatrix}_{n \times n}$$

Uyarı 1.1.40 Birim matris köşegenindeki elemanları 1 olan bir skaler matristir. Ayrıca hem üst hem de alt üçgen matristir.

1.1.6 Bir matrisin çarpma işlemine göre tersi

Tanım 1.1.41 A n – inci mertebeden bir kare matris olsun. $BA = I_n$ ve $AB = I_n$ olacak şekilde bir B matrisi varsa bu B matrisine A nın **çarpmaya** göre tersi denir ve A^{-1} ile gösterilir.

Uyarı 1.1.42 Yukarıdaki tanım sadece kare matrislerin çarpmaya göre terslerinin olabileceğini ifade eder.

Tanım 1.1.43 Bir A kare matrisinin çarpma işlemine göre tersi yoksa bu matrise singüler (ya da tekil) matris denir. A matrisinin çarpmaya göre tersi varsa bu durumda A matrisine regüler (ya da tersinir) matris denir.

Örnek 1.1.44

$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}_{2 \times 2}$$

matrisinin regüler bir matris olduğunu ve tersinin

$$A^{-1} = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}_{2 \times 2}$$

olduğunu gösterelim. Bunun için AA^{-1} ve $A^{-1}A$ çarpımlarının I_2 matrisine eşit olduğunu göstermeliyiz, yani

$$\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

ve

$$\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

olduğundan A matrisinin çarpmaya göre tersi vardır ve

$$A^{-1} = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}_{2 \times 2}$$

dir.

Teorem 1.1.45 1. A kare matrisinin çarpmaya göre tersi varsa A^T matrisinin de çarpmaya göre tersi vardır ve

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}$$

dir.

 ${f 2}.\ A,\ n-inci\ mertebeden\ regüler\ bir\ matris\ ise\ A^{-1}\ de\ regülerdir\ ve$

$$\left(A^{-1}\right)^{-1} = A$$

dir.

3. n – inci mertebeden A ve B regüler kare matrisleri için AB matrisinin de çarpmaya göre tersi vardır ve

$$(AB)^{-1} = B^{-1}A^{-1}$$

dir.

Tanım 1.1.46 $A \in \mathbb{R}_n^n$ regüler matrisi verilsin. Eğer $A^{-1} = A^T$ oluyorsa A ya **ortogonal matris** denir.

Uyarı 1.1.47 Yukarıdaki tanıma göre A ortogonal ise $A^TA = AA^T = I_n$ dir ve bunun tersi de doğrudur.

Örnek 1.1.48 $\theta \in [0, 2\pi]$ olmak üzere

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

matrisinin bir ortogonal matris olduğunu gösterelim. Buna göre

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

olmak üzere

$$AA^{-1} = \begin{bmatrix} \cos \theta.a - \sin \theta.c & \cos \theta.b - \sin \theta.d \\ \sin \theta.a + \cos \theta.c & \sin \theta.b + \cos \theta.d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

ve

$$A^{-1}A = \begin{bmatrix} a \cdot \cos \theta + b \cdot \sin \theta & -a \cdot \sin \theta + b \cdot \cos \theta \\ c \cdot \cos \theta + d \cdot \sin \theta & -c \cdot \sin \theta + d \cdot \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

için matris eşitliği kullanılarak kolayca

$$A^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

olduğu görülebilir. Bu ise $A^{-1}=A^T$ olduğundan A nın ortogonal olması anlamına qelir.

Tanım 1.1.49 Bir $A = [a_{ij}]_{n \times n} \in \mathbb{R}_n^n$ kare matrisi için

$$\sum_{i=1}^{n} a_{ii}$$

sayısına A nın **izi** denir ve İzA şeklinde gösterilir.

Uyarı 1.1.50 Bir kare matrisin izi, bu matrisin köşegenindeki elemanların toplamıdır. Kare olmayan matrislerin izi tanımlı değildir.

Örnek 1.1.51

$$A = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 2 & 3 \\ 0 & 3 & -1 \end{bmatrix}$$

matrisi için $\dot{I}zA = 3 + 2 + (-1) = 4 \ t\ddot{u}r$.

Teorem 1.1.52 $A, B \in \mathbb{R}_n^m$ matrisleri ve $c \in \mathbb{R}$ skaleri için aşağıdaki ifadeler sağlanır:

- $\mathbf{1.} \ \dot{I}z\left(A+B\right) = \dot{I}zA + \dot{I}zB;$
- **2**. $\dot{I}z(c.A) = c.\dot{I}zA$;
- 3. $\dot{I}z(BA) = \dot{I}z(AB)$.

1.1.7 Bölüm sonu alıştırmaları

1.

$$A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \text{ ve } B = \begin{bmatrix} 0 & 1 \\ 5 & 3 \end{bmatrix}$$

matrisleri için $A+B,\ A-B,\ A+B^T,\ AB,\ AB^T,\ A^TB$ matrislerini bulunuz.

2.

$$A = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix} \text{ ve } B = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$$

olmak üzere A^TB ve AB^T matrislerini bulunuz.

- 3. $A \neq 0$ ve $B \neq 0$ ve AB = 0 olmak üzere A ve B matrislerini bulunuz.
- **4**. $\theta \in \mathbb{R}$ ve $p \in \mathbb{Z}^+$ olmak üzere

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^p = \begin{bmatrix} \cos p\theta & -\sin p\theta \\ \sin p\theta & \cos p\theta \end{bmatrix}$$

olduğunu gösteriniz.

- **5**. $A, m \times n$ tipinde bir matris olmak üzere $(-A)^T = -A^T$ olduğunu gösteriniz.
- **6**. $m \times n$ tipinde her A matrisi için AA^T ve A^TA matrislerinin simetrik olduğunu gösteriniz.
- 7. Simetrik bir A matrisinin transpozunun da simetrik olduğunu gösteriniz.
- 8. A matrisi simetrik olsun. A nın çarpmaya göre tersi varsa A^{-1} matrisinin de simetrik olduğunu gösteriniz.
- 9. A ortogonal bir matris ise A^T matrisinin de ortogonal olduğunu gösteriniz.
- 10. n. mertebeden birim matris I_n ile gösterildiğine göre $I_n = [\delta_{ij}]_{n \times n}$ olduğunu gösteriniz.
- 11. A ve B, n. mertebeden üst üçgen matrisler ise A+B ve AB matrislerinin de üst üçgen matris olduğunu gösteriniz.
- 12. Aşağıdaki matrislerin çarpmaya göre terslerinin bulunup bulunmadığını gösteriniz. Varsa bulunuz.

$$\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix},$$

$$\begin{bmatrix} 2 & 3 \\ 4 & -5 \end{bmatrix},$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$

(d)
$$\begin{bmatrix} 3 & -1 & 0 \\ 0 & 1 & 2 \\ 1 & 3 & 2 \end{bmatrix} .$$

1.2 Bir matrisin eşolon formu

Tanım 1.2.1 $A = [a_{ij}]_{m \times n}$ $m \times n$ tipinde bir matris olsun. Aşağıdaki özellikler sağlanıyor ise A ya **satırca indirgenmiş eşolon formda** bir matris denir:

- 1. A nın sıfır satırları (bütün elemanları sıfır olan satırları) varsa bunlar matrisin en alt satırlarıdır.
- 2. Sıfırdan farklı bir satırın soldan itibaren sıfırdan farklı ilk elemanı 1 dir. Bu elemana ilgili satırın ilk 1 i denir.
- 3. Sıfırdan farklı her bir satır için, ilk 1 bir önceki satırların herhangi ilk 1 lerinin sağında ve altında yer alır.
- 4. Bir sütun bir ilk 1 içeriyorsa bu sütundaki diğer bütün elemanlar sıfırdır.

Satırca indirgenmiş eşolon formundaki bir matris, bu matrisin üst sol köşesinden azalan ilk 1 lerin bir merdiven (eşolon) örneği olarak oluşur.

- **Uyarı 1.2.2** 1. Yukarıdaki tanımda 1,2,3 özelliklerini sağlayan $m \times n$ tipindeki bir matrise **satırca eşolon formdadır** denir.
 - 2. Bu tanımlarda hiç sıfır satırı olmayabilir.
 - **3**. Benzer tanım sütunca indirgenmiş eşolon form ve sütunca eşolon form için de yapılabilir.

Örnek 1.2.3

$$\begin{bmatrix} \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 & \mathbf{1} \end{bmatrix}$$

matrisi satırca indirgenmiş eşolon formdadır.

Örnek 1.2.4

$$\begin{bmatrix} \mathbf{1} & 3 & 0 \\ 0 & 0 & \mathbf{1} \end{bmatrix}$$

 $matrisi\ satırca\ indirgenmi \ensuremath{\mathsf{g}}\ e \ensuremath{\mathsf{g}}\ olon\ form dadır.$

Örnek 1.2.5

$$\begin{bmatrix} \mathbf{1} & 2 & 0 & 0 & 1 \\ 0 & 0 & \mathbf{1} & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

matrisi satırca indirgenmiş eşolon formdadır.

Örnek 1.2.6

şeklinde verilen matrisin 2. ve 3. sütunun ilk 1 i dışında sıfırdan farklı elemanları vardır ve dolayısıyla satırca eşolon formdadır. (Yukarıda verilen tanımın 4 numaralı özelliği sağlanmamaktadır.)

Örnek 1.2.7

$$\begin{bmatrix} 0 & 0 & \mathbf{1} & 3 & 5 & 7 & 9 \\ 0 & 0 & 0 & 0 & \mathbf{1} & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 & \mathbf{1} & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

şeklinde verilen matrisin 5. 6. ve 7. sütunları ilk 1 dışında sıfırdan farklı elemanlara sahiptir ve dolayısıyla satırca eşolon formdadır. (Yukarıda verilen tanımın 4 numaralı özelliği sağlanmamaktadır.)

Örnek 1.2.8

$$\begin{bmatrix} 0 & 5 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

şeklinde verilen matrisin 1. satır 2. sütundaki eleman 5 olduğundan ne satırca indirgenmiş eşolon ne de satırca eşolon formdadır. (Yukarıda verilen tanıma göre 1. satır bir ilk 1 e sahip değildir.)

Örnek 1.2.9

$$\begin{bmatrix}
3 & 2 & 4 & 0 & 1 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

şeklinde verilen matrisin 1. satır 1. sütundaki eleman 3 olduğundan ne satırca indirgenmiş eşolon ne de satırca eşolon formdadır. (Yukarıda verilen tanıma göre 1. satır bir ilk 1 e sahip değildir.)

Örnek 1.2.10

$$\begin{bmatrix} \mathbf{1} & 0 & 4 & 1 & -3 & 6 \\ 0 & \mathbf{1} & 7 & 0 & 2 & 9 \\ 0 & 3 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 \end{bmatrix}$$

şeklinde verilen matrisin 3. satır 2. sütunundaki eleman 3 olduğundan ne satırca indirgenmiş eşolon ne de satırca eşolon formdadır. (Yukarıda verilen tanıma göre 3. satır bir ilk 1 e sahip değildir.)

1.2.1 Elemanter operasyonlar

Bir $A \in \mathbb{R}_n^m$ matrisinin satırlarını $\alpha_1, \alpha_2, \alpha_3, \dots$ ve sütunlarını $\beta_1, \beta_2, \beta_3, \dots$ ile gösterelim. Buna göre aşağıdaki tanım verilebilir:

Tanım 1.2.11 Bir $A \in \mathbb{R}_n^m$ matrisi üzerinde tanımlanan aşağıdaki işlemlere matrisler için **elemanter satır** (sütun) operasyonu denir ve ε ile gösterilir:

- **1.** $A \in \mathbb{R}_n^m$ matrisinin herhangi iki satırını (veya sütununu) kendi aralarında yer değiştirmek, $\varepsilon : \alpha_i \leftrightarrow \alpha_j$;
- **2.** $A \in \mathbb{R}_n^m$ matrisinin herhangi iki satırını (veya sütununu) sıfırdan farklı bir sayı ile çarpmak, $\varepsilon : \alpha_i \to c.\alpha_i$;
- **3.** $A \in \mathbb{R}_n^m$ matrisinin herhangi bir satırını (veya sütununu) bir sayı ile çarpıp diğer bir satırına (veya sütununa) eklemek, $\varepsilon : \alpha_i \to \alpha_i + c.\alpha_j$.

Tanım 1.2.12 Bir A matrisine sonlu sayıda satır (sütun) elemanter operasyonu uygulanarak bir B matrisi elde ediliyorsa A ve B matrislerine **satırca** (sütunca) denk matrisler adı verilir ve $A \approx B$ ile gösterilir.

Örnek 1.2.13

$$A = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 1 & 3 & 2 \\ 1 & -1 & 2 & 3 \end{bmatrix} \quad ve \ B = \begin{bmatrix} 2 & 4 & 8 & 6 \\ 1 & -1 & 2 & 3 \\ 5 & -2 & 9 & 11 \end{bmatrix}$$

matrisleri satırca denktir. Gerçekten de, sırasıyla,

$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 2 & 1 & 3 & 2 \\ 1 & -1 & 2 & 3 \end{bmatrix} \stackrel{\varepsilon_1:\alpha_1 \to 2.\alpha_1}{\approx} \begin{bmatrix} 2 & 4 & 8 & 6 \\ 2 & 1 & 3 & 2 \\ 1 & -1 & 2 & 3 \end{bmatrix} \stackrel{\varepsilon_2:\alpha_2 \leftrightarrow \alpha_3}{\approx} \begin{bmatrix} 2 & 4 & 8 & 6 \\ 1 & -1 & 2 & 3 \\ 2 & 1 & 3 & 2 \end{bmatrix}$$

$$\stackrel{\varepsilon_3:\alpha_3+3.\alpha_2}{\approx} \begin{bmatrix} 2 & 4 & 8 & 6 \\ 1 & -1 & 2 & 3 \\ 5 & -2 & 9 & 11 \end{bmatrix}$$

elemanter satır operasyonları uygulanmıştır.

Örnek 1.2.14

$$A = \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ 2 & 2 & -5 & 2 & 4 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix}$$

matrisinin satırca indirgenmiş eşolon formunu elemanter operasyonlar yardımıyla bulalım.

$$\stackrel{\varepsilon_{1}:\alpha_{3} \to \frac{1}{2}\alpha_{3}}{\approx} \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ \mathbf{1} & 1 & \frac{-5}{2} & 1 & 2 \\ 2 & 0 & -6 & 9 & 7 \end{bmatrix} \stackrel{\varepsilon_{2}:\alpha_{4} \to \alpha_{4} - 2\alpha_{3}}{\approx} \begin{bmatrix} 0 & 2 & 3 & -4 & 1 \\ 0 & 0 & 2 & 3 & 4 \\ \mathbf{1} & 1 & \frac{-5}{2} & 1 & 2 \\ 0 & -2 & -1 & 7 & 3 \end{bmatrix}$$

Uyarı 1.2.15 1. Her matris kendisine denktir.

- 2. Eğer B, A ya satırca denk ise A da B ye satırca denktir.
- **3**. Eğer C, B ye satırca denk; B de A ya satırca denk ise C de A ya satırca denktir.

Teorem 1.2.16 Her sıfırdan farklı $m \times n$ tipindeki $A = [a_{ij}]$ matrisi, satırca (sütunca) eşolon formdaki bir matrise satırca (sütunca) denktir.

Teorem 1.2.17 Her sıfırdan farklı $m \times n$ tipindeki $A = [a_{ij}]$ matrisi, satırca (sütunca) indirgenmiş eşolon formdaki bir tek matrise satırca (sütunca) denktir.

Uyarı 1.2.18 Bir matrisin satırca eşolon formunun tek olmadığına dikkat ediniz.

1.2.2 Elemanter operasyonların uygulamaları

Bir matrisin tersinin bulunması

 $A, n \times n$ matrisi I_n matirisine satırca denk olsun. Yani

$$\varepsilon_k \left(... \varepsilon_2 \left(\varepsilon_1 \left(A \right) \right) \right) = I_n$$

olsun. Şimdi $\varepsilon_k,...,\varepsilon_1$ elemanter operasyonları $[A:I_n]$ matrisine uygulayalım. Bu durumda

$$\varepsilon_k \left(... \varepsilon_2 \left(\varepsilon_1 \left[A : I_n \right] \right) \right) = \left[\varepsilon_k \left(... \varepsilon_2 \left(\varepsilon_1 A \right) \right) : \varepsilon_k \left(... \varepsilon_2 \left(\varepsilon_1 I_n \right) \right) \right]$$
 (1.2)

yazılabilir. (1.2) ve (1.3) eşitliklerinden

$$\left[A \vdots I_n\right] \approx \left[I_n \vdots A^{-1}\right]$$

elde edilir.

Örnek 1.2.19

$$A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \\ 3 & 1 & 3 \end{bmatrix}$$

matrisinin tersini bulalım. Bunun için

$$[A:I_3] \approx \begin{bmatrix} 2 & -1 & 0 & \vdots & 1 & 0 & 0 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 3 & 1 & 3 & \vdots & 0 & 0 & 1 \end{bmatrix}$$

$$\stackrel{\varepsilon_{1}:\alpha_{1}\to\alpha_{1}-\alpha_{3}}{\approx} \begin{bmatrix} -1 & -2 & -3 & \vdots & 1 & 0 & -1 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 3 & 1 & 3 & \vdots & 0 & 0 & 1 \end{bmatrix} \stackrel{\varepsilon_{2}:\alpha_{1}\to-\alpha_{1}}{\approx} \begin{bmatrix} \mathbf{1} & 2 & 3 & \vdots & -1 & 0 & 1 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 3 & 1 & 3 & \vdots & 0 & 0 & 1 \end{bmatrix}$$

$$\stackrel{\varepsilon_{3}:\alpha_{1}\to\alpha_{3}-3\alpha_{1}}{\approx} \begin{bmatrix} \mathbf{1} & 2 & 3 & \vdots & -1 & 0 & 1 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 0 & -5 & -6 & \vdots & 3 & 0 & -2 \end{bmatrix} \stackrel{\varepsilon_{4}:\alpha_{1}\to\alpha_{1}-2\alpha_{2}}{\approx} \begin{bmatrix} \mathbf{1} & 0 & -1 & \vdots & -1 & -2 & 1 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 0 & -5 & -6 & \vdots & 3 & 0 & -2 \end{bmatrix}$$

$$\stackrel{\varepsilon_{5}:\alpha_{3}\to\alpha_{3}+5\alpha_{2}}{\approx} \begin{bmatrix} \mathbf{1} & 0 & -1 & \vdots & -1 & -2 & 1 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 0 & 0 & 4 & \vdots & 3 & 5 & -2 \end{bmatrix} \stackrel{\varepsilon_{6}:\alpha_{3}\to\frac{1}{4}\alpha_{3}}{\approx} \begin{bmatrix} \mathbf{1} & 0 & -1 & \vdots & -1 & -2 & 1 \\ 0 & \mathbf{1} & 2 & \vdots & 0 & 1 & 0 \\ 0 & 0 & \mathbf{1} & \vdots & \frac{3}{4} & \frac{5}{4} & \frac{-1}{2} \end{bmatrix}$$

$$\stackrel{\varepsilon_7:\alpha_2\to\alpha_2-2\alpha_3}{\approx} \begin{bmatrix} \mathbf{1} & 0 & -1 & \vdots & -1 & -2 & 1 \\ 0 & \mathbf{1} & 0 & \vdots & \frac{-3}{2} & \frac{-3}{2} & 1 \\ 0 & 0 & \mathbf{1} & \vdots & \frac{3}{4} & \frac{5}{4} & \frac{-1}{2} \end{bmatrix} \stackrel{\varepsilon_8:\alpha_1\to\alpha_1+\alpha_3}{\approx} \begin{bmatrix} \mathbf{1} & 0 & 0 & \vdots & \frac{-1}{4} & \frac{-3}{4} & \frac{1}{2} \\ 0 & \mathbf{1} & 0 & \vdots & \frac{-3}{2} & \frac{-3}{2} & 1 \\ 0 & 0 & \mathbf{1} & \vdots & \frac{3}{4} & \frac{5}{4} & \frac{-1}{2} \end{bmatrix}$$

bulunur. O halde

$$A^{-1} = \begin{bmatrix} \frac{-1}{4} & \frac{-3}{4} & \frac{1}{2} \\ \frac{-3}{2} & \frac{-3}{2} & 1 \\ \frac{3}{4} & \frac{5}{4} & \frac{-1}{2} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -1 & -3 & 2 \\ -6 & -6 & 4 \\ 3 & 5 & -2 \end{bmatrix}.$$

Örnek 1.2.20

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 7 & 4 \\ 2 & -1 & 3 \end{bmatrix}$$

matrisinin tersini bulalım. Bunun için

$$[A:I_3] \approx \begin{bmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 3 & 7 & 4 & \vdots & 0 & 1 & 0 \\ 2 & -1 & 3 & \vdots & 0 & 0 & 1 \end{bmatrix}$$

$$\stackrel{\varepsilon_{5}:\alpha_{3}\to\frac{1}{6}\alpha_{3}}{\approx} \begin{bmatrix} \mathbf{1} & 0 & -1 & \vdots & 7 & -2 & 0 \\ 0 & \mathbf{1} & 1 & \vdots & -3 & 1 & 0 \\ 0 & 0 & \mathbf{1} & \vdots & \frac{-17}{6} & \frac{5}{6} & \frac{1}{6} \end{bmatrix} \stackrel{\varepsilon_{6}:\alpha_{2}\to\alpha_{2}-\alpha_{3}}{\approx} \begin{bmatrix} \mathbf{1} & 0 & 0 & \vdots & \frac{25}{6} & \frac{-7}{6} & \frac{1}{6} \\ 0 & \mathbf{1} & 0 & \vdots & \frac{-1}{6} & \frac{1}{6} & \frac{-1}{6} \\ 0 & 0 & \mathbf{1} & \vdots & \frac{-17}{6} & \frac{5}{6} & \frac{1}{6} \end{bmatrix}$$

bulunur. O halde

$$A^{-1} = \begin{bmatrix} \frac{25}{6} & \frac{-7}{6} & \frac{1}{6} \\ \frac{-1}{6} & \frac{1}{6} & \frac{-1}{6} \\ \frac{-17}{6} & \frac{5}{6} & \frac{1}{6} \end{bmatrix}.$$

1.2.3 Bölüm sonu alıştırmaları

1.

$$A = \begin{bmatrix} -3 & 1 & 2 \\ 4 & 0 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$

olduğuna göre A^{-1} varsa bu matrisi elementer satır işlemlerinden yararlanarak bulunuz.

2.

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 2 & 1 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$

olduğuna göre A^{-1} varsa bu matrisi elementer satır işlemlerinden yararlanarak bulunuz.

3.

$$A = \begin{bmatrix} 3 & -1 & 1 & -1 \\ 1 & -1 & 5 & 0 \\ 0 & 1 & 3 & 0 \\ 3 & 0 & 3 & -1 \end{bmatrix}$$

olduğuna göre A^{-1} varsa bu matrisi elementer satır işlemlerinden yararlanarak bulunuz.

4. $c \neq 0$ ve $c \in \mathbb{R}$ olmak üzere aşağıda verilen matrislerin her birinin bir elementer matris olduğunu gösteriniz. Bu elementer matrisleri elde etmek için kullanılan elementer operasyonları belirtiniz. Her birinin çarpmaya göre tersini bulunuz.

 (\mathbf{a})

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

(b)

$$\begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix},$$

 (\mathbf{c})

$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix},$$

 (\mathbf{d})

$$\begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix},$$

 (\mathbf{e})

$$\begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix}.$$

5.

$$\begin{bmatrix} -2 & 0 & 4 & -6 & 1 & -5 \\ 2 & 1 & -3 & 8 & 0 & 1 \\ -3 & 0 & 6 & -9 & 1 & -7 \\ 2 & 0 & -4 & 6 & 0 & 4 \end{bmatrix}$$

olsun. A matrisine satırca denk olan, satırca indirgenmiş eşolon matrisini bulunuz.

6.

$$\begin{bmatrix} 3 & 6 & 2 & -1 & 4 \\ -1 & -2 & 1 & 7 & -3 \\ 1 & 2 & 1 & 1 & 1 \\ 4 & 8 & 5 & 8 & 3 \end{bmatrix}$$

olsun. A matrisine satırca denk olan, satırca indirgenmiş eşolon matrisini bulunuz.

1.3 Determinantlar

1.3.1 Determinant fonksiyonu ve özellikleri

Tanım 1.3.1 Her $A = [a_{ij}]_{n \times n} \in \mathbb{R}_n^n$ kare matrisine bir reel skaler karşılık getiren ve det A, |A| ya da

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

sembollerinden biri ile gösterilen **determinant fonksiyonu** aşağıdaki özellikleri sağlar:

- 1. A nin determinanti ile A^T nin determinanti aynıdır.
- 2. Bir determinantta herhangi iki satır veya sütun yer değiştirirse determinantın işareti değişir.
- 3. Bir determinantta herhangi iki satır (veya sütun) aynı ise determinantın değeri sıfırdır.
- 4. Bir determinantta herhangi iki satırı (veya sütunu) belli bir sayı ile çarpmak demek determinantı o sayı ile çarpmak demektir. Bunun bir sonucu olarak

$$|c.A| = c^n |A|$$

dir.

- 5. Bir determinantta herhangi iki satır (veya sütun) orantılı ise determinant değeri sıfırdır.
- 6. Bir matriste bir satırın (veya sütunun) elemanlarından her biri iki elemanın toplamına esitse matrisin determinantı aynı cinsten iki matrisin

determinantının toplamına eşittir. Yani,

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} + b_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} + b_{2i} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{ni} + b_{ni} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{ni} & \dots & a_{nn} \end{vmatrix}$$

$$+ \begin{vmatrix} a_{11} & a_{12} & \dots & b_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_{2i} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{ni} & \dots & a_{nn} \end{vmatrix}.$$

- 7. Bir matrisin herhangi bir satırının (veya sütununun) belli bir katının diğer bir satıra (veya sütuna) eklenmesiyle elde edilen matrisin determinantı ilk matrisin determinantına eşittir.
- **8.** $A, B \in \mathbb{R}_n^n$ için $\det(AB) = (\det A) (\det B)$ dir.

Uyarı 1.3.2 $A \in \mathbb{R}_n^n$ ortogonal bir matris ise $\det A = \pm 1$ dir (gösteriniz). Eğer $\det A = 1$ ise A ya **pozitif ortogonal** ve $\det A = -1$ ise A ya **negatif** ortogonal matris denir.

Determinant hesaplamaları için başlıca metotlar şunlardır:

- **1.** 1×1 tipindeki $A = [a_{11}]$ matrisinin determinanti det $A = a_{11}$ dir.
- **2**. 2×2 tipindeki $A = [a_{ij}]_{2 \times 2}$ matrisinin determinantı

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

dir.

3. Sarrus Kuralı: Sadece 3×3 tipindeki matrisin determinantının hesaplanmasında kullanılan bir metottur:

veya

şeklinde düzenlenerek

$$\det A = [a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13}] - [a_{13}a_{22}a_{31} + a_{12}a_{21}a_{33} + a_{23}a_{32}a_{11}]$$

formülü ile hesaplanır.

Örnek 1.3.3

$$\det A = \begin{vmatrix} 1 & 0 & 3 \\ 4 & -2 & 1 \\ -3 & 0 & 2 \end{vmatrix}$$

determinantını Sarrus kuralı ile hesaplayalım. Buna göre ilk iki satır determinantın altına eklenirse

$$\det A = (1. (-2).2 + 4.0.3 + (-3).0.1) - (3. (-2). (-3) + 1.0.1 + 2.0.4) = -22$$

elde edilir. Determinantın ilk iki sütunu, determinantın sağına eklenerek de hesaplanabilir.

Örnek 1.3.4

$$\begin{vmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{vmatrix}$$

determinantını hesaplayalım: Bu determinantı hesaplarken yukarıda verilen 7 numaralı özellik kullanılırsa, yani ilk sütuna diğer sütunlar eklenirse determinantın değeri değişmeyeceğinden

$$\begin{vmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & -4 & 1 & 1 & 1 \\ 0 & 1 & -4 & 1 & 1 \\ 0 & 1 & 1 & -4 & 1 \\ 0 & 1 & 1 & 1 & -4 \end{vmatrix} = 0$$

elde edilir.

1.3.2 Determinant açılımları

Tanım 1.3.5 $A = [a_{ij}]_{n \times n}$ kare matrisi verilsin. M_{ij} ile A nın i. satır ve j. sütunun silinmesiyle elde edilen $(n-1) \times (n-1)$ mertebeden bir matris gösterilsin. M_{ij} matrisinin determinantına A nın a_{ij} elemanının **minörü** ve $A_{ij} = (-1)^{i+j} \det M_{ij}$ değerine de a_{ij} elemanının **kofaktörü** (işaretli minörü ya da eşçarpanı) denir.

Örnek 1.3.6

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 0 \\ -2 & 1 & 3 \end{bmatrix}$$

matrisinin kofaktörlerini hesaplayalım:

$$A_{11} = (-1)^{1+1} \det M_{11} = \begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix} = -3,$$

$$A_{12} = (-1)^{1+2} \det M_{12} = \begin{vmatrix} 0 & 0 \\ -2 & 3 \end{vmatrix} = 0,$$

$$A_{13} = (-1)^{1+3} \det M_{13} = \begin{vmatrix} 0 & -1 \\ -2 & 1 \end{vmatrix} = -2$$

ve benzer şekilde $A_{21}, A_{22}, ..., A_{33}$ de hesaplanabilir.

Teorem 1.3.7 (Laplace Açılımı) $A = [a_{ij}]_{n \times n}$ $(n \ge 2)$ kare matrisi verilsin. A nın herhangi bir i. satıra göre Laplace determinant açılımı

$$\det A = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{j=1}^{n} a_{ij}A_{ij}$$

veya j. sütuna göre açılımı

$$\det A = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{j=1}^{n} a_{ij}A_{ij}$$

şeklindedir.

Örnek 1.3.8

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 2 \\ 3 & 1 & -1 \end{bmatrix}$$

için det A değerini hesaplayalım: 2. satıra göre Laplace açılımı yapılırsa

$$\det A = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$$
$$= 0.A_{21} + 1.A_{22} + 2A_{23}$$

olur. Burada

$$A_{22} = (-1)^{2+2} \det M_{22} = \begin{vmatrix} 2 & -1 \\ 3 & -1 \end{vmatrix} = 1$$
$$A_{23} = (-1)^{2+3} \det M_{22} = -\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = 1$$

olup $\det A = 3$ bulunur.

1.3.3 Bir matrisin adjointi (eki)

Tanım 1.3.9 $A = [a_{ij}]_{n \times n}$ kare matrisi verilsin. A nın her bir a_{ij} elemanının yerine bu elemana karşılık gelen A_{ij} kofaktörü yazılmasıyla elde edilen matrisin transpozuna A matrisinin **adjointi** (**eki**) denir ve adj A ile gösterilir. Açık bir şekilde

$$adjA = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix}_{n \times n}^{T} = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}_{n \times n}$$

dir.

Teorem 1.3.10 $A = [a_{ij}]_{n \times n}$ kare matrisi verilsin.

- 1. $A(adjA) = (adjA) A = (\det A) I_n$.
- **2**. det $A \neq 0$ olmak üzere

$$A^{-1} = \frac{1}{\det A} adj A$$

dir.

Uyarı 1.3.11 Bir A kare matrisin tersinin olması için $\det A \neq 0$ olması gerek ve yeterdir. Ayrıca, regülerlik tanımı hatırlanacak olursa bu tanım aşağıdaki şekilde yeniden ifade edilebilir: Eğer $\det A \neq 0$ ise A matrisine **regülerdir** denir.

Örnek 1.3.12

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$

matrisinin regüler olduğunu gösterip adjoint matris yardımıyla tersini bulalım. Bunun için $\det A=-2$ olduğu kolayca görülür. Ayrıca ilgili kofaktörler

$$A_{11} = (-1)^{1+1} 5$$
, $A_{12} = (-1)^{1+2} 4$, $A_{21} = (-1)^{2+1} 3$, $A_{22} = (-1)^{2+2} 2$,

olup adjoint matris

$$adjA = \begin{bmatrix} 5 & -4 \\ -3 & 2 \end{bmatrix}^T = \begin{bmatrix} 5 & -3 \\ -4 & 2 \end{bmatrix}$$

ve dolayısıyla

$$A^{-1} = \frac{-1}{2} \begin{bmatrix} 5 & -3 \\ -4 & 2 \end{bmatrix}$$

elde edilir.

Örnek 1.3.13

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

matrisinin regüler olduğunu gösterip adjoint matris yardımıyla tersini bulalım. Bunun için Laplace açılımı yardımıyla (birinci satıra göre)

$$\det A = 1. \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix} - 0. \begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} - 1 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$

A matrisi regüler olur. A nın adjoint matrisi için

$$A_{11} = (-1)^{1+1} \det M_{11} = \begin{vmatrix} 1 & 0 \\ 1 & 3 \end{vmatrix} = 3$$

ve benzer şekilde

$$A_{12} = -\begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix} = -6, \ A_{13} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2, \ A_{21} = -\begin{vmatrix} 0 & -1 \\ 1 & 3 \end{vmatrix} = -1,$$

$$A_{22} = \begin{vmatrix} 1 & -1 \\ 0 & 3 \end{vmatrix} = 3, \ A_{23} = -\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = -1, \ A_{31} = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} = 1,$$

$$A_{32} = -\begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} = -2, \ A_{33} = -\begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1$$

bulunur. Dolayisiyla

$$adjA = \begin{bmatrix} 3 & -6 & 2 \\ -1 & 3 & -1 \\ 1 & -2 & 1 \end{bmatrix}$$

olup

$$A^{-1} = \frac{1}{1} \begin{bmatrix} 3 & -6 & 2 \\ -1 & 3 & -1 \\ 1 & -2 & 1 \end{bmatrix}$$

elde edilir.

1.3.4 Bir matrisin determinant rankı

Tanım 1.3.14 Bir $A \in \mathbb{R}_n^m$ matrisinin bazı satır veya sütunları silinerek elde edilen yeni matrise A nın bir **altmatrisi** denir.

Tanım 1.3.15 Bir $A = [a_{ij}]_{m \times n}$ matrisin determinantı sıfırdan farklı en yüksek mertebeli kare altmatrisin mertebesi r olsun. Bu $r \in \mathbb{N}$ doğal sayısına A nın **determinant rankı** ya da kısaca **rankı** denir ve rankA ile gösterilir.

Uyarı 1.3.16 1. n. mertebeden bir kare matrisin rankı en fazla n olabilir.

2. Bir regüler kare matrisin rankı kendi mertebesine eşittir.

- **3**. Bir $A = [a_{ij}]_{m \times n}$, $m \neq n$, matrisi için $rankA \leq \min\{m, n\}$ dir.
- 4. Sıfırdan farklı her reel skaler 1×1 tipinde bir kare matris olduğundan rankı sıfır olamaz ve dolayısıyla böyle bir matrisin rankı en az 1 dir.

Örnek 1.3.17

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$

 $matrisi\ için\ \det A=0\ olduğundan\ rankA,\ 3\ ten\ küçük\ olmalıdır.\ A\ nın\ regüler\ bir\ kare\ altmatrisi$

$$A_1 = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$

 $seklinde\ bulunabildiğinden\ rank A=2\ dir.$

Örnek 1.3.18

$$B = \begin{bmatrix} -1 & 2 & 0 \\ 1 & 1 & 1 \\ 3 & -1 & 0 \end{bmatrix}$$

 $matrisi\ için\ det\ B=5\ olduğundan\ rank B=3\ olur.$

Örnek 1.3.19

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 1 \\ 2 & 4 & 6 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $matrisi\ için\ \det A=0\ olduğundan\ rank A<4\ olur.\ Ayrıca\ 3.\ satır\ ilk\ satırla\ orantılı\ olduğundan\ rank A<3\ dir.\ Ancak\ A\ nın$

$$A_1 = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$$

şeklinde regüler bir kare altmatrisi bulunabileceğinden rankA = 2 olur.

1.3.5 Bölüm sonu alıştırmaları

1.

$$\begin{vmatrix} 3 & 1 \\ 2 & 0 \end{vmatrix}, \begin{vmatrix} 1 & -2 \\ 7 & 4 \end{vmatrix}, \begin{vmatrix} 3 & 4 & -2 \\ 1 & 0 & -7 \\ 2 & 6 & 5 \end{vmatrix}$$

determinantlarını, Laplace açılım metodunu kullanarak önce 1. sütuna sonra da 2. satıra göre hesaplayınız.

2. Aşağıdaki determinantları hesaplayınız:

 (\mathbf{a})

$$\begin{vmatrix} 3 & 4 & -2 \\ 1 & 0 & -2 \\ 1 & 5 & 5 \end{vmatrix},$$

(b)

$$\begin{vmatrix} 2 & 0 & 3 & 0 \\ 0 & 2 & 3 & 1 \\ 5 & 0 & 1 & -1 \\ 2 & 1 & 4 & 5 \end{vmatrix},$$

 (\mathbf{c})

$$\begin{vmatrix} 1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 \\ -2 & 0 & 1 & -1 \\ 2 & 0 & 4 & 5 \end{vmatrix},$$

1.3 DETERMINANTLAR

37

 (\mathbf{d})

$$\begin{vmatrix} 6 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ -2 & 2 & 1 & -1 \\ 0 & 1 & 2 & 5 \end{vmatrix}.$$

3.

$$\det \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = (\det A) (\det C)$$

eşitliğinden yaralanarak

$$\begin{bmatrix} 3 & -1 & 1 & -2 & 0 \\ 2 & 1 & 3 & 4 & 3 \\ 0 & 0 & 1 & 6 & -1 \\ 0 & 0 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 & 5 \end{bmatrix}$$

matrisinin determinantını hesaplayınız.

4. $a, b, c \in \mathbb{R}$ için

$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = abc (a - b) (b - c) (c - a)$$

olduğunu gösteriniz.

5.

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

için A^{-1} matrisinin varlığını gösterip, daha sonra adjoint matris yardımıyla

$$A^{-1} = \begin{bmatrix} 1 & -2 & -2 \\ 1 & -3 & -2 \\ -1 & 3 & 3 \end{bmatrix}$$

olduğunu gösteriniz.

6.

$$A = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 6 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

için A^{-1} matrisinin varlığını gösterip, daha sonra adjoint matris yardımıyla

$$A^{-1} = \frac{1}{12} \begin{bmatrix} 6 & -3 & 0 \\ 0 & 2 & 0 \\ -6 & 5 & 12 \end{bmatrix}$$

olduğunu gösteriniz.

7. $a, b, c, d \in \mathbb{R}$ olmak üzere

$$A = \begin{bmatrix} 1+a & a & a & a \\ b & 1+b & b & b \\ c & c & 1+c & c \\ d & d & d & 1+d \end{bmatrix}$$

eşitliğiyle verilen matrisin determinantını hesaplayınız.

8. $A \in \mathbb{R}^3_3$ ve det A=2 olduğuna göre det (AdjA) değerini bulunuz.

1.4 Lineer denklem sistemleri

Tanım 1.4.1 $a_1, a_2, ..., a_n, b \in \mathbb{R}$ $(n \ge 1)$ ve $x_1, x_2, ..., x_n$ bilinmeyenler olmak üzere

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

ifadesine n bilinmeyenli lineer (doğrusal) bir denklem denir.

Örnek 1.4.2

$$ax = b$$

1 bilinmeyenli lineer bir denklemdir ve a $\neq 0$ olduğunda bu denklemin çözümü $x=-\frac{b}{a}$ dır.

Örnek 1.4.3

$$x - 3y + 2z = 4$$

eşitliği, 3 bilinmeyenli bir lineer denklemdir. Bu denklemin çözümü

$$x = t$$
, $y = k$ ve $z = 4 - t + 3k$

dir, burada t, k parametrelerdir.

Tanım 1.4.4 $x_1, x_2, ..., x_n \ (n \ge 2)$ ler bilinmeyenler ve $a_{ij}, b_i \in \mathbb{R}$ reel skalerler olmak üzere

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$(1.3)$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n = b_m$$

şeklinde bir sisteme n-bilinmeyenli m tane denklemden oluşan **lineer denklem sistemi** denir. Bu lineer denklem sistem kısaca

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ 1 \le i \le m$$

şeklinde de ifade edilir. Eğer b_i değerlerinin hepsi sıfır ise sisteme **homojen**; en az bir b_i değeri sıfırdan farklı ise sisteme **homojen olmayan lineer** denklem sistemi adı verilir.

Gösterim 1.4.5 (2.4) ile verilen lineer denklem sistemi matrisler yardımıyla

$$AX = B \tag{1.4}$$

şeklinde de ifade edilebilir, burada

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1}, B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}_{m \times 1}$$

dir. Ayrıca A ya (2.4) lineer denklem sisteminin **katsayılar matrisi** denir. (2.5) ifadesi açık bir şekilde

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}_{m \times 1}$$

şeklinde gösterilir.

Tanım 1.4.6

$$\begin{bmatrix} A \vdots B \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & \vdots & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & \vdots & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & \vdots & b_m \end{bmatrix}_{m \times (n+1)}$$

matrisine (2.4) lineer denklem sisteminin ilaveli katsayılar matrisi adı verilir.

Örnek 1.4.7

$$2x_1 + 3x_2 - 4x_3 + x_4 = 5$$
$$-2x_1 + x_3 = 7$$
$$3x_1 + 2x_2 - 4x_4 = 3$$

lineer denklem sistemi verilsin. Bunu matris formunda ifade edip ilaveli katsayılar matrisini bulalım:

$$\underbrace{\begin{bmatrix} 2 & 3 & -4 & 1 \\ -2 & 0 & 1 & 0 \\ 3 & 2 & 0 & -4 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}}_{3 \times 4} = \underbrace{\begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}}_{3 \times 1}$$

olduğundan ilaveli katsayılar matrisi

$$\begin{bmatrix} 2 & 3 & -4 & 1 & \vdots & 5 \\ -2 & 0 & 1 & 0 & \vdots & 7 \\ 3 & 2 & 0 & -4 & \vdots & 3 \end{bmatrix}_{3 \times 5}$$

dir.

Uyarı 1.4.8 Yukarıda ifade edilen bir denklem sistemi için eğer,

- 1. $rankA \neq rank \begin{bmatrix} A:B \end{bmatrix}$ ise sistemin çözümü yoktur ve bu denklem sistemine tutarsız denklem sistemi denir.
- 2. $rankA = rank \begin{bmatrix} A:B \end{bmatrix}$ ise sistemin çözümü vardır bu denklem sistemine tutarlı denklem sistemi denir. Bu durumda rankA = r için
 - (a) r = n ise tek çözüm, ve
 - (b) r < n ise sonsuz çözüm vardır. Bu çözümler n r parametreye bağlı olarak bulunur. Burada n bilinmeyen sayısıdır.

Örnek 1.4.9

$$x + y = 3$$

$$2x + 2y = 1$$

lineer denklem sistemi için

$$rank \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} = 1 \ ve \ rank \begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 1 \end{bmatrix} = 2$$

olduğundan sistemin çözümü yoktur.

Örnek 1.4.10

$$-x + 3y = 2$$

$$2x - 6y = c$$

lineer denklem sistemi verilsin. Aşağıdaki soruları cevaplayalım:

1. c sayısının hangi değerleri için verilen denklem sistemi tutarsız olur?

Cevap

$$A = \begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix} \quad ve \quad \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} -1 & 3 & 2 \\ 2 & -6 & c \end{bmatrix}$$

 $i \c c in \c rank A = 1 \c dir.$ Denklem sisteminin tutarlı olması yani $\c rank \left[A \c B\right] = 1 \c olması i \c c = -4 \c olmalıdır.$ O halde her $c \in \mathbb{R} - \{-4\}$ i $\c c in \c c i$

2. c sayısının hangi değerleri için verilen denklem sisteminin sonsuz sayıda çözümü vardır?

Cevap c=-4 için $rank\left[A:B\right]=1$ olur ve denklem sistemi n-r=2-1=1 parametreye bağlı sonsuz çözüme sahiptir.

3. c sayısının hangi değerleri için verilen denklem sisteminin bir tek çözümü vardır?

Cevap c nin hiç bir değeri için denklem sistemi tek çözüme sahip değildir.

1.4.1 Cramer denklem sistemleri

Tanım 1.4.11 A, $m \times n$ tipinde bir matris olmak üzere AX = B lineer denklem sistemi verilsin. Eğer m = n ve $\det A \neq 0$ ise AX = B lineer denklem sistemine **Cramer denklem sistemi** adı verilir.

Örnek 1.4.12

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 4 & 0 & 1 \\ 7 & 5 & 6 & 1 \\ -3 & -3 & 3 & 3 \end{bmatrix}, A_{3} = \begin{bmatrix} 1 & 3 & 0 & 1 \\ 1 & 3 & 7 & 5 \\ -4 & -4 & 2 & 0 \end{bmatrix}$$

matrisleri için $A_1X = B$ sistemi Cramer denklem sistemi iken, $A_2X = B$ ve $A_3X = B$ Cramer olmayan denklem sistemleridir.

Teorem 1.4.13 (Cramer Yöntemi) AX = B veya daha açık şekilde

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

denklem sistemi verilsin. det $A \neq 0$ ise AX = B lineer denklem sisteminin bir tek $X = (x_1, x_2, ..., x_n)$ çözümü vardır ve bu çözüm

$$\triangle_{1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix}, \triangle_{2} = \begin{vmatrix} a_{11} & b_{1} & \dots & a_{1n} \\ a_{21} & b_{2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{n} & \dots & a_{nn} \end{vmatrix}, \dots, \triangle_{n} = \begin{vmatrix} a_{11} & a_{12} & \dots & b_{1} \\ a_{21} & a_{22} & \dots & b_{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_{n} \end{vmatrix}$$

olmak üzere

$$x_1 = \frac{\triangle_1}{\det A}, x_2 = \frac{\triangle_2}{\det A}, ..., x_n = \frac{\triangle_n}{\det A}$$

dir.

$$2x + y = 5$$
$$-x + 3y = 1$$

lineer denklem sisteminin çözümünü bulalım. Sistemin katsayılar matrisi

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}, \det A = 7 \neq 0$$

olduğundan Cramer yöntemi ile denklem sisteminin tek bir çözümü vardır:

$$x = \frac{\begin{vmatrix} 5 & 1 \\ 1 & 3 \end{vmatrix}}{\det A} = 2, \ y = \frac{\begin{vmatrix} 2 & 5 \\ -1 & 1 \end{vmatrix}}{\det A} = 1$$

elde edilir.

Örnek 1.4.15

$$-2x + 3y - z = 1$$
$$x + 2y - z = 4$$
$$-2x - y + z = -3$$

lineer denklem sisteminin çözümünü bulalım. Sistemin katsayılar matrisi

$$A = \begin{bmatrix} -2 & 3 & -1 \\ 1 & 2 & -1 \\ -2 & -1 & 1 \end{bmatrix}$$

olmak üzere $\det A = -2 \neq 0$ olduğundan Cramer yöntemi ile denklem sisteminin tek bir çözümü vardır:

$$x = \frac{\begin{vmatrix} 1 & 3 & -1 \\ 4 & 2 & -1 \\ -3 & -1 & 1 \end{vmatrix}}{\det A} = 2, \ y = \frac{\begin{vmatrix} -2 & 1 & -1 \\ 1 & 4 & -1 \\ -2 & -3 & 1 \end{vmatrix}}{\det A} = 3, \ z = \frac{\begin{vmatrix} -2 & 3 & 1 \\ 1 & 2 & 4 \\ -2 & -1 & -3 \end{vmatrix}}{\det A} = 4$$

bulunur.

$$x - 3y + 4z = -4$$
$$2x + y = 7$$
$$3x - y + z = 7$$

lineer denklem sisteminin çözümünü bulalım. Sistemin katsayılar matrisi

$$A = \begin{bmatrix} 1 & -3 & 4 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$

olmak üzere $\det A = -13 \neq 0$ olduğundan Cramer yöntemi ile denklem sisteminin tek bir çözümü vardır:

$$x = \frac{\begin{bmatrix} -4 & -3 & 4 \\ 7 & 1 & 0 \\ 7 & -1 & 1 \end{bmatrix}}{\det A} = 3, \ y = \frac{\begin{bmatrix} 1 & -4 & 4 \\ 2 & 7 & 0 \\ 3 & 7 & 1 \end{bmatrix}}{\det A} = 1, \ z = \frac{\begin{bmatrix} 1 & -3 & -4 \\ 2 & 1 & 7 \\ 3 & -1 & 7 \end{bmatrix}}{\det A} = -1$$

bulunur.

1.4.2 Katsayılar matrisinin tersi yardımıyla lineer denklem sisteminin çözümü

AX = B lineer denklem sistemi verilsin. A regüler ise, yani A^{-1} mevcut ise

$$A^{-1}\left(AX\right) = A^{-1}B$$

olmak üzere

$$X = A^{-1}B$$

çözümü mevcuttur.

Uyarı 1.4.17 Bu metot katsayılar matrisinin regülerliği sayesinde uygulandığından, A matrisi kare ve determinantı sıfırdan farklı olmak zorundadır.

$$x - 2y + 3z = 4$$
$$2x + y - z = -1$$
$$x + y + z = 3$$

lineer denklem sistemini çözelim. Öncelikle AX = B şeklinde matris formunda yazılacak olursa

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}, \ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \ B = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}$$

olur. A matrisinin regülerliğini kontrol edebilmek için A nın determinantını hesaplayalım. Bunun için birinci satıra Laplace açılımı uygulanırsa:

$$\det A = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 11 \neq 0$$

bulunur. Ayrıca A nın tersi için

$$adjA = \begin{bmatrix} 2 & 5 & -1 \\ -3 & -2 & 7 \\ 1 & -3 & 5 \end{bmatrix}$$

olduğundan

$$A^{-1} = \frac{adjA}{\det A} = \frac{1}{11} \begin{bmatrix} 2 & 5 & -1 \\ -3 & -2 & 7 \\ 1 & -3 & 5 \end{bmatrix}$$

bulunur. Buna göre

$$X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 2 & 5 & -1 \\ -3 & -2 & 7 \\ 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

elde edilir, yani x = 0, y = 1, z = 2 dir.

$$x + 2y + 3z = 2$$
$$2x + 3y + 4z = -2$$
$$x + 5y + 7z = 4$$

lineer denklem sistemini çözelim. Bir önceki örnekte olduğu gibi AX=B ve

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{bmatrix}, \ X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \ B = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$$

 $\operatorname{dir.}\, \det A = 2 \neq 0 \ \operatorname{olduğundan}\, A^{-1} \ \operatorname{mevcuttur}\, \operatorname{ve}$

$$adjA = \begin{bmatrix} 1 & 1 & -1 \\ -10 & 4 & 2 \\ 7 & -3 & -1 \end{bmatrix}$$

olur. Böylece

$$A^{-1} = \frac{adjA}{\det A} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ -10 & 4 & 2 \\ 7 & -3 & -1 \end{bmatrix}$$

olup

$$X = A^{-1}B = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ -10 & 4 & 2 \\ 7 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ -10 \\ 8 \end{bmatrix}$$

elde edilir, yani x = -2, y = -10, z = 8 dir.

1.4.3 Gauss ve Gauss-Jordan yoketme metotları

Bir AX = B lineer denklem sistemi ve bu lineer denklem sisteminin ilaveli katsayılar matrisi AB verilsin. Bahsi edilen metot aşağıdaki adımlar takip edilerek uygulanabilir:

- 1. $\begin{bmatrix} A \\ : B \end{bmatrix}$ matrisine elemanter satır operasyonları uygulamak suretiyle elde edilen matris $\begin{bmatrix} C \\ : D \end{bmatrix}$ olsun.
- 2. $\begin{bmatrix} A \\ : B \end{bmatrix}$ ve $\begin{bmatrix} C \\ : D \end{bmatrix}$ matrisleri denk olduğundan bunlara karşılık gelen AX = B ve CX = D lineer denklem sistemleri de birbirine denk olur.
- 3. Bu lineer denklem sistemleri aynı çözüme sahiptir.

Tanım 1.4.20 $\begin{bmatrix} A:B \end{bmatrix}$ matrisinden $\begin{bmatrix} C:D \end{bmatrix}$ matrisini satırca eşolon formunda veren metoda Gauss yoketme; $\begin{bmatrix} C:D \end{bmatrix}$ matrisini satırca indirgenmiş eşolon formunda veren metoda ise Gauss-Jordan yoketme metodu denir.

Örnek 1.4.21

$$x + 2y - z = -6$$
$$3x - y + 2z = 11$$
$$2x + 5y - 4z = -20$$

lineer denklem sistemini Gauss-Jordan yoketme metodu ile inceleyelim. Bunun için

$$\begin{bmatrix} A \\ \vdots B \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 2 & -1 \\ 3 & -1 & 2 & \vdots & 11 \\ 2 & 5 & -4 & \vdots & -20 \end{bmatrix} \xrightarrow{\substack{\varepsilon_1 : \alpha_2 \to \alpha_2 - 3\alpha_1 \\ \varepsilon_2 : \alpha_3 \to \alpha_3 - 2\alpha_1}} \begin{bmatrix} \mathbf{1} & 2 & -1 & \vdots & -6 \\ 0 & -7 & 5 & \vdots & 29 \\ 0 & \mathbf{1} & -2 & \vdots & -8 \end{bmatrix}$$

$$\xrightarrow{\substack{\varepsilon_3 : \alpha_2 \to \alpha_2 + 7\alpha_3 \\ \varepsilon_4 : \alpha_1 \to \alpha_1 - 2\alpha_3}} \begin{bmatrix} \mathbf{1} & 0 & 3 & \vdots & 10 \\ 0 & 0 & -9 & \vdots & -27 \\ 0 & \mathbf{1} & -2 & \vdots & -8 \end{bmatrix} \xrightarrow{\substack{\varepsilon_5 : \alpha_2 \to \frac{-1}{9}\alpha_2 \\ \varepsilon_6 : \alpha_3 \leftrightarrow \alpha_2}} \begin{bmatrix} \mathbf{1} & 0 & 3 & \vdots & 10 \\ 0 & \mathbf{1} & -2 & \vdots & -8 \\ 0 & 0 & \mathbf{1} & \vdots & 3 \end{bmatrix}$$

$$\xrightarrow{\substack{\varepsilon_7 : \alpha_2 \to \alpha_2 + 2\alpha_3 \\ \varepsilon_8 : \alpha_1 \leftrightarrow \alpha_1 - 3\alpha_3}} \begin{bmatrix} \mathbf{1} & 0 & 0 & \vdots & 1 \\ 0 & \mathbf{1} & 0 & \vdots & -2 \\ 0 & 0 & \mathbf{1} & \vdots & 3 \end{bmatrix}$$

elde edilir ki verilen lineer denklem sisteme denk olan lineer denklem sistemi

$$x = 1$$
$$y = -2$$
$$z = 3$$

şeklindedir. Bu ise sistemin çözümünü temsil eder.

Örnek 1.4.22

$$2x + 5y - z = 1$$
$$x + 3y + 3z = 0$$
$$4x + 11y + 5z = 1$$

lineer denklem sistemini Gauss yoketme metodu ile inceleyelim. Bunun için

$$\begin{bmatrix} A \vdots B \end{bmatrix} = \begin{bmatrix} 2 & 5 & -1 & \vdots & 1 \\ \mathbf{1} & 3 & 3 & \vdots & 0 \\ 4 & 11 & 5 & \vdots & 1 \end{bmatrix} \stackrel{\varepsilon_1 : \alpha_1 \to \alpha_2}{\approx} \begin{bmatrix} \mathbf{1} & 3 & 3 & \vdots & 0 \\ 2 & 5 & -1 & \vdots & 1 \\ 4 & 11 & 5 & \vdots & 1 \end{bmatrix}$$

olup verilen lineer denklem sistemine denk olan sistem

$$x + 3y + 3z = 0$$
$$0x + y + 7z = -1$$
$$0x + 0y + 0z = 0$$

şeklindedir. Son sistemde ilk iki denklemin çözümlerinin son denklemi sağladığı açıktır. Ayrıca z=t denirse istenilen çözümler

$$x = 3 + 18t, \ y = -1 - 7t, \ z = t$$

şeklinde olur.

$$2x_1 + x_2 + 6x_3 + 2x_4 = 1$$
$$x_1 + 3x_3 = 0$$
$$7x_1 + x_2 + 21x_3 + 2x_4 = 1$$
$$2x_1 + 3x_2 + 6x_3 + 6x_4 = 2$$

lineer denklem sistemini Gauss-Jordan yoketme metodu ile inceleyelim. Bunun için

$$\begin{bmatrix} A:B \end{bmatrix} = \begin{bmatrix} 2 & 1 & 6 & 2 & \vdots & 1 \\ \mathbf{1} & 0 & 3 & 0 & \vdots & 0 \\ 7 & 1 & 21 & 2 & \vdots & 1 \\ 2 & 3 & 6 & 6 & \vdots & 2 \end{bmatrix} \xrightarrow{\varepsilon_1:\alpha_1 \to \alpha_2} \begin{bmatrix} \mathbf{1} & 0 & 3 & 0 & \vdots & 0 \\ 2 & 1 & 6 & 2 & \vdots & 1 \\ 7 & 1 & 21 & 2 & \vdots & 1 \\ 2 & 3 & 6 & 6 & \vdots & 2 \end{bmatrix}$$

$$\xrightarrow{\varepsilon_2:\alpha_2 \to \alpha_2 - 2\alpha_1} \begin{bmatrix} \mathbf{1} & 0 & 3 & 0 & \vdots & 0 \\ 0 & \mathbf{1} & 0 & 2 & \vdots & 1 \\ 0 & 1 & 0 & 2 & \vdots & 1 \\ 0 & 3 & 0 & 6 & \vdots & 2 \end{bmatrix} \xrightarrow{\varepsilon_5:\alpha_3 \to \alpha_3 - \alpha_2} \begin{bmatrix} \mathbf{1} & 0 & 3 & 0 & \vdots & 0 \\ 0 & \mathbf{1} & 0 & 2 & \vdots & 1 \\ 0 & 0 & 0 & 0 & \vdots & 0 \\ 0 & 3 & 0 & 6 & \vdots & 2 \end{bmatrix}$$

$$\xrightarrow{\varepsilon_6:\alpha_4 \to \alpha_4 - 3\alpha_2} \begin{bmatrix} \mathbf{1} & 0 & 3 & 0 & \vdots & 0 \\ 0 & \mathbf{1} & 0 & 2 & \vdots & 1 \\ 0 & 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$

olduğundan verilen denklem sistemi,

$$x_1 + 0x_2 + 3x_3 + 0x_4 = 0$$
$$0x_1 + x_2 + 0x_3 + 2x_4 = 1$$

denklem sistemine denktir. $x_3 = k$, $x_4 = t$ denirse x_1 ve x_2 bilinmeyenleri $x_1 = -3k$ ve $x_2 = 1 - 2t$ olur ki çözümler

$$x_1 = -3k$$
, $x_2 = 1 - 2t$, $x_3 = k$, $x_4 = t$

şeklinde elde edilir.

$$x + y - z = 5$$
$$2x + 3y + 2z = -2$$
$$3x + 4y + z = 2$$

lineer denklem sistemini Gauss yoketme motodu ile inceleyelim. Bunun için

$$\begin{bmatrix} A \vdots B \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 1 & -1 & \vdots & 5 \\ 2 & 3 & 2 & \vdots & -2 \\ 3 & 4 & 1 & \vdots & 2 \end{bmatrix} \xrightarrow{\epsilon_1 : \alpha_2 \to \alpha_2 - 2\alpha_1} \begin{bmatrix} \mathbf{1} & 1 & -1 & \vdots & 5 \\ 0 & \mathbf{1} & 4 & \vdots & -12 \\ 0 & 1 & 4 & \vdots & -13 \end{bmatrix}$$

$$\begin{array}{c}
\varepsilon_3:\alpha_1 \to \alpha_1 - \alpha_2 \\
\approx \\
\varepsilon_4:\alpha_3 \to \alpha_3 - \alpha_2
\end{array}
\begin{bmatrix}
\mathbf{1} & 0 & -5 & \vdots & 17 \\
0 & \mathbf{1} & 4 & \vdots & -12 \\
0 & 0 & 0 & \vdots & -1
\end{bmatrix}$$

olur. O halde verilen lineer denklem sistemine denk olan lineer denklem sistem

$$x - 5z = 17$$
$$x + 4z = -12$$
$$0x + 0y + 0z = -1$$

şeklindedir. $0x + 0y + 0z \neq -1$ olduğundan bu lineer denklem sistemi tutarsızdır ve çözümü yoktur.

1.4.4 Homojen lineer denklem sistemi

Tanım 1.4.25 A, $m \times n$ tipinde bir matris olmak üzere AX = 0 şeklinde verilen bir homojen denklem sistemi daima X = 0 için sağlanır. X = 0 çözümüne sistemin **aşikar çözümü** ve $X \neq 0$ çözümlerine de sistemin **aşikar olmayan çözümü** denir.

Uyarı 1.4.26 Daima $rankA = rank \left[A:0\right] = r$ olduğundan homojen lineer denklem sisteminin her zaman çözümü vardır. Eğer r=n ise sistemin tek çözümü (aşikar çözümü) ve r< n ise sistemin n-r parametreye bağlı sonsuz çözümü vardır.

$$2x - y + 3z = 0$$
$$3x + 4y + z = 0$$
$$-x + 2y + 4z = 0$$

homojen lineer denklem sistemi verilsin. Bu lineer denklem sisteminin katsayılar matrisi

$$A = \begin{bmatrix} 2 & -1 & 3 \\ 3 & 4 & 1 \\ -1 & 2 & 4 \end{bmatrix}$$

şeklindedir. Bu matris için n=3 ve $\det A=71\neq 0$ olduğundan r=3 olur. Dolayısıyla yalnız aşiklar çözümlere sahiptir.

Teorem 1.4.28 A, $m \times n$ tipinde bir matris ve m < n olsun. Bu taktirde AX = 0 homojen sisteminin aşikar olmayan bir çözümü vardır.

Örnek 1.4.29

$$x_1 + x_2 + x_3 + x_4 = 0$$
$$x_1 + x_4 = 0$$
$$x_1 + 2x_2 + x_3 = 0$$

homojen lineer denklem sistemi verilsin. Bu lineer denklem sisteminin katsayılar matrisi

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{bmatrix}$$

şeklinde olup satır sayısı sütun sayısından küçük olduğundan aşikar olmayan bir çözüme sahiptir. Gerçekten de katsayılar matrisinin rankı 3 olduğundan n-r=4-3=1 parametereye bağlı bir çözüm olacaktır. Çözüm için Gauss-Jordan metodu kullanılırsa

$$\begin{bmatrix} A \vdots 0 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 1 & 1 & 1 & \vdots & 0 \\ 1 & 0 & 0 & 1 & \vdots & 0 \\ 1 & 2 & 1 & 0 & \vdots & 0 \end{bmatrix} \overset{\varepsilon_1 : \alpha_1 \leftrightarrow \alpha_2}{\underset{\varepsilon_2 : \alpha_2 \to \alpha_2 - \alpha_3}{\approx}} \begin{bmatrix} \mathbf{1} & 0 & 0 & 1 & \vdots & 0 \\ 0 & -1 & 0 & 1 & \vdots & 0 \\ 1 & 2 & 1 & 0 & \vdots & 0 \end{bmatrix}$$

1.4 LINEER DENKLEM SISTEMLERI

53

olmak üzere verilen sisteme denk olan sistem

$$1x_1 + 0x_2 + 0x_3 + 1x_4 = 0$$
$$1x_2 + (-1)x_4 = 0$$
$$1x_3 + 1x_4 = 0$$

olur ki çözümler $x_1 = r$, $x_2 = -r$, $x_3 = r$, $x_4 = -r$ şeklinde elde edilir.

1.4.5 Bölüm sonu alıştırmaları

1. Aşağıdaki denklemlerin çözümlerini belirtiniz:

(a)
$$3x + 4y = 2$$
,

(b)
$$2x + y + 4z = 8$$
,

(c)
$$-2x_1 + 3x_2 + x_3 - 2x_4 = 0$$
.

2. Aşağıdaki denklem sistemlerini Gauss yoketme yöntemiyle çözünüz:

 (\mathbf{a})

$$3x + 4y = 2$$
$$2x - y = 5$$

 (\mathbf{b})

$$5x + 15y = 2$$
$$7x + 21y = 1$$

 (\mathbf{c})

$$-4x + 12y = -8$$
$$6x - 18y = 12$$

$$(\mathbf{d})$$

$$2x + 5y - 4z = 0$$
$$-x - 3y + z = 6$$

$$(\mathbf{e})$$

$$2x + 3y - 5z = 2$$
$$-4x - 6y + 10z = -4$$

3. Aşağıdaki denklem sistemlerini Gauss yoketme yöntemiyle çözünüz:

$$(\mathbf{a})$$

$$x - 2y + z = 3$$
$$-x + 2z = 1,$$
$$3x + y + 2z = 14$$

$$2x + 3y - 5z = -8$$
$$x - 4y + 3z = 7$$
$$3x + y + z = 0$$

4. Aşağıdaki denklem sistemlerini Gauss-Jordan yoketme yöntemiyle çözünüz:

$$(\mathbf{a})$$

$$2x + 3y + 5z = 7$$
$$-2x - 5y - 11z = 9 ,$$
$$x + 2y + 4z = -4$$

$$x - 2y + z = -7$$
$$-x + y - 3z = 4$$
,
$$2x - y + 8z = -5$$

(c)
$$3x_1 + x_2 + 2x_3 = -1$$

$$x_1 + 2x_3 + x_4 = 4$$

$$-3x_1 + x_2 + x_3 + 2x_4 = 8$$

 $4x_2 - x_3 + x_4 = 1$

(d)
$$-x_1 + 2x_2 + x_3 + 5x_4 = -1$$

$$x_1 + x_2 + 2x_3 + 7x_4 = 4$$

$$3x_1 + x_3 + 7x_4 = 5$$

$$2x_1 + x_2 + 7x_4 = 1$$

5. $x_1 - 3x_2 + x_3 - x_4 = -6$ $2x_1 + x_2 - x_3 + 5x_4 = 9$ $x_1 + x_2 + x_3 + x_4 = 2$ $3x_1 + 2x_2 + x_3 - x_4 = -3$

denklem sistemini çözünüz.

6. $a, b \in \mathbb{R}$ olmak üzere

$$2x + ay = 1$$
$$4x + by = 0$$

lineer denklem sistemi veriliyor. Bu lineer denklem sisteminin çözümünüa ve b sayılarının durumuna göre irdeleyiniz.

7.

$$x + cy = 1$$

$$x + y + dz = c + d ,$$

$$2x + 2cy + z = 3$$

lineer denklem sistemi veriliyor.

- (a) c ve d sayılarının hangi değerleri için verilen denklem sisteminin bir tek çözümü vardır?
- (b) c ve d sayılarının hangi değerleri için verilen denklem sisteminin sonsuz sayıda çözümü vardır?
- (c) c ve d sayılarının hangi değerleri için verilen denklem sistemi tutarsız olur?

Bölüm 2

Vektör Uzayları

2.1 Reel vektör uzayları

Tanım 2.1.1 $\mathbb{V} \neq \emptyset$ boştan farklı bir küme olsun. Eğer \mathbb{V} üzerinde

$$+: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{V}, \ .: \mathbb{R} \times \mathbb{V} \longrightarrow \mathbb{V}$$

toplama ve skalerle çarpma işlemleri aşağıdaki V1-V8 özelliklerini sağlarsa, \mathbb{V} kümesine bir **reel vektör uzayı** (kısaca **vektör uzayı**) ve \mathbb{V} nin her bir elemanına da **vektör** adı verilir: Her $\alpha, \beta, \gamma \in \mathbb{V}$ için

V1 Değişme özelliği: $\alpha + \beta = \beta + \alpha$;

V2 Birleşme özelliği: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$;

V3 Birim eleman: $\alpha + 0 = 0 + \alpha = \alpha, 0 \in \mathbb{V}$;

V4 Ters eleman: $\alpha + (-\alpha) = (-\alpha) + \alpha = 0$;

V5 Dağılma özelliği: $c.(\alpha + \beta) = c.\alpha + c.\beta, c \in \mathbb{R}$;

V6 Dağılma özelliği: $(c+d) \cdot \alpha = c \cdot \alpha + d \cdot \alpha, c, d \in \mathbb{R}$;

V7 Birleşme özelliği: $c.(d.\alpha) = cd.\alpha;$

V8 Birim eleman: $1.\alpha = \alpha$.

Uyarı 2.1.2 Bir \mathbb{V} vektör uzayı ve üzerinde tanımlı olan işlemler kısaca $(\mathbb{V},+,.)$ üçlüsü ile gösterilecektir.

Örnek 2.1.3 \mathbb{R} reel sayılar kümesi üzerinde bilinen toplama + ve çarpma . işlemleri ile birlikte $(\mathbb{R},+,.)$ üçlüsü bir reel vektör uzayıdır. Gerçekten de bu işlemlerin V1-V8 özelliklerini sağladığı açıktır.

Örnek 2.1.4 $\mathbb{R}^n = \underbrace{\mathbb{R} \times ... \times \mathbb{R}}_{n-tane} = \{(x_1,...,x_n) : x_1,...,x_n \in \mathbb{R}\}$ kümesi üz-

erinde aşağıdaki gibi tanımlanan toplama + ve çarpma . işlemleri ile birlikte $(\mathbb{R},+,.)$ üçlüsü bir reel vektör uzayıdır. Bu vektör uzayına **standart reel vektör uzayı** denir. $\alpha=(a_1,...,a_n)$, $\beta=(\beta_1,...,\beta_n)\in\mathbb{R}^n$, $c\in\mathbb{R}$ için

$$\alpha + \beta = (a_1 + a_2, ..., \alpha_n + \beta_n), \ c.\alpha = (c\alpha_1, ..., c\alpha_n).$$

Örnek 2.1.5 $\mathbb{P}_n = \{derecesi \leq n \ olan \ polinomlar\} \ kümesi üzerinde aşağıda gibi tanımlanan polinomların toplamı + ve skalerle çarpımı . işlemleri birlikte <math>(\mathbb{P}_n, +, .)$ üçlüsü bir reel vektör uzayıdır: $\mathbb{P}_n \ de \ p(x) = a_0 + a_1x + ... + a_nx^n, q(x) = b_0 + b_1x + ... + b_nx^n \ ve \ c \in \mathbb{R} \ için$

$$\begin{cases} p(x) + q(x) = a_0 + b_0 + (a_1 + b_1)x + \dots + (a_n + b_n)x^n, \\ c.p(x) = ca_0 + ca_1x + \dots + ca_nx^n. \end{cases}$$

Örnek 2.1.6 $\mathbb{S} = \left\{ f | f : \mathbb{R}^n \xrightarrow{s \ddot{u} rekli} \mathbb{R} \right\}$ reel değerli sürekli fonksiyonların kümesi üzerinde aşağıdaki gibi verilen fonksiyonların toplamı + ve skalerle çarpımı . işlemleri ile birlikte $(\mathbb{S}, +, .)$ üçlüsü bir vektör uzayıdır:

$$\begin{cases} (f+g)(x_1,...,x_n) = f(x_1,...,x_n) + g(x_1,...,x_n), \\ (c.f)(x_1,...,x_n) = cf(x_1,...,x_n), \end{cases}$$

Örnek 2.1.7 \mathbb{R}_n^m , $m \times n$ tipindeki matrislerin kümesi üzerinde aşağıdaki gibi verilen matrislerin toplamı + ve skalerle çarpımı . işlemleri ile birlikte $(\mathbb{R}_n^m, +, .)$ üçlüsü bir reel vektör uzayıdır: $A = (a_{ij}), B = (b_{ij}) \in \mathbb{R}_n^m, c \in \mathbb{R}$,

$$A + B = (a_{ij} + b_{ij}), c.A = (ca_{ij}).$$

Örnek 2.1.8 \mathbb{Z} tam sayılar kümesi bir reel vektör uzayı değildir. Çünkü her $\alpha \in \mathbb{Z}$ ve $\sqrt{2} \in \mathbb{R}$ için $\sqrt{2}.\alpha \notin \mathbb{Z}$ olduğundan skalerle çarpım işlemi tanımlı değildir.

Uyarı 2.1.9 \mathbb{R}^n uzayında vektörler $\alpha = (a_1, ..., a_n)$ gösteriminin yanı sıra

$$\alpha = (a_1, ..., a_n)^T = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

şeklinde bir sütun matrisi olarak da ifade edilir.

Tanım 2.1.10 V vektör uzayı ve üzerinde aşağıdaki işlem tanımlansın:

$$\odot: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{V}, \ \alpha \odot \beta.$$

Eğer her $\alpha, \beta, \gamma \in \mathbb{V}$ ve $c, d \in \mathbb{R}$ için

- 1. $(c.\alpha + d.\beta) \odot \gamma = c.\alpha \odot \gamma + d.\beta \odot \gamma$
- **2.** $\alpha \odot (c.\beta + d.\gamma) = c.\alpha \odot \beta + d.\alpha \odot \gamma$ özellikleri sağlanırsa \mathbb{V} vektör uzayına bir **cebir** adı verilir.

Örnek 2.1.11 $n \times n$ tipinde karesel matrislerin kümesi matris toplamı ve skalerle çarpımı işlemlerinin yanı sıra **matris çarpımı** ile birlikte bir **ce-birdir**. Gerçekten de matris çarpımı işlemi yukarıdaki 1 ve 2 nolu özellikleri sağlar. (Bakınız Teorem 1.1.24, (2) ve (3).)

2.1.1 Altuzaylar

Tanım 2.1.12 \mathbb{V} bir vektör uzayı ve $\mathbb{W} \subseteq \mathbb{V}$ olsun. Eğer \mathbb{W} , \mathbb{V} de tanımlanan işlemlere göre (V1)-(V8) özelliklerini sağlarsa \mathbb{W} ya \mathbb{V} nin bir **alt vektör** uzayı ya da kısaca **altuzayı** denir.

Örnek 2.1.13 Her vektör uzayının en az iki altuzayı vardır; kendisi ve {0} (Toplama işleminin birimi). Bu uzaylara **aşikar altuzaylar** denir.

Örnek 2.1.14 \mathbb{P} ile bütün polinomların kümesi gösterilsin. Buna göre

$$\mathbb{P}_2 = \{derecesi \le 2 \ olan \ polinomlar\}$$

 $k\ddot{u}mesi \mathbb{P} nin bir altuzayı olur.$

Örnek 2.1.15 $n \ge 1$ olmak üzere \mathbb{R}^{n-1} uzayı \mathbb{R}^n nin bir altuzayıdır.

Teorem 2.1.16 \mathbb{V} bir vektör uzayı ve $\mathbb{W} \neq \emptyset$, $\mathbb{W} \subset \mathbb{V}$ olsun. \mathbb{W} nın \mathbb{V} nin bir altuzayı olması için aşağıdaki şartların sağlanması gerek ve yeterdir:

- 1. $\alpha, \beta \in \mathbb{W} \Longrightarrow \alpha + \beta \in \mathbb{W}$
- **2**. $c \in \mathbb{R}$, $\alpha \in \mathbb{W} \Longrightarrow c.\alpha \in \mathbb{W}$.

Örnek 2.1.17 Aşağıda verilen kümenin \mathbb{R}^3 ün bir altuzayı olduğunu gösterelim:

$$\mathbb{W} = \{(a_1, a_2, a_1 + a_2) : a_1, a_2 \in \mathbb{R}\}.$$

 $\alpha = (a_1, a_2, a_1 + a_2), \beta = (b_1, b_2, b_1 + b_2)$ olmak üzere

$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, (a_1 + b_1) + (a_2 + b_2))$$

olup $\alpha + \beta \in \mathbb{W}$ dir. Ayrıca her $c \in \mathbb{R}$ için

$$c.\alpha = (ca_1, ca_2, ca_1 + ca_2)$$

 $c.\alpha \in \mathbb{W}$ olur ki bu \mathbb{W} nın \mathbb{R}^3 nın bir altuzayı olduğunu gösterir.

Örnek 2.1.18 A, $m \times n$ tipinde bir matris olsun. AX = 0 homojen sisteminin bütün çözümlerinin bir altuzay olduğunu gösterelim: Bütün çözümler

$$(x_1, ..., x_n)^T = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

şeklinde olup \mathbb{R}^n de bir vektör ile temsil edilirler. O halde bu çözümlerin kümesi \mathbb{R}^n nın bir altkümesidir. Eğer X_1 ve X_2 iki çözümse

$$A(X_1 + X_2) = AX_1 + AX_2 = 0 + 0 = 0$$

olup $X_1 + X_2$ de bir çözüm olur. Ayrıca

$$A(cX_1) = c(AX_1) = c.0 = 0$$

olduğundan çözümler kümesi \mathbb{R}^n nın bir altuzayıdır. Bu uzaya homojen sistemin **çözüm uzayı** denir.

61

Örnek 2.1.19 AX = B, $B \neq 0$, sisteminin çözümlerinin \mathbb{R}^n nin bir altuzayı olmadığını bir alıştırma olarak gösteriniz.

Örnek 2.1.20 \mathbb{R}^3 uzayında $x_1 = 0$ düzleminin bir altuzay olduğunu gösterelim:

Şekil-5: $x_1 = 0$ altuzayı.

 $x_1=0$ düzlemi $\{(0,y,z):y,z\in\mathbb{R}\}$ şeklinde ifade edilebilir. Bu düzlemde bulunan her α,β vektörleri için

$$\alpha = (0, y_1, z_1), \beta = (0, y_2, z_2) \Longrightarrow \alpha + \beta = (0, y_1 + z_1, y_2 + z_2)$$

ve ayrıca $c \in \mathbb{R}$ için

$$c.\alpha = (0, cy_1, cz_1)$$

olduğundan $x_1 = 0$ düzlemi \mathbb{R}^3 nın bir altuzayıdır.

Örnek 2.1.21 $\mathbb V$ bir reel vektör uzayı olsun. $\mathbb V$ içinde sabit α_1,α_2 vektörleri için

$$\mathbb{S} = \{c_1\alpha_1 + c_2\alpha_2 : c_1, c_2 \in \mathbb{R}\}\$$

kümesinin \mathbb{V} nin bir altuzayı olduğunu gösterelim. Her $\beta_1=c_1\alpha_1+c_2\alpha_2$ ve $\beta_2=d_1\alpha_1+d_2\alpha_2$ için

$$\beta_1 + \beta_2 = (c_1 + d_1) \alpha_1 + (c_2 + d_2) \alpha_2 \in \mathbb{S}$$

 $ve\ d.\beta_1 = (dc_1)\ \alpha_1 + (dc_2)\ \alpha_2 \in \mathbb{S}\ olup\ \mathbb{S}\ k\"{u}mesi\ \mathbb{V}\ nin\ altuzayı\ olur.$

Bu kavram aşağıdaki gibi genelleştirilebilir:

Tanım 2.1.22 \mathbb{V} bir reel vektör uzayı ve $\mathbb{S} = \{\alpha_1, ..., \alpha_n\} \subset V$ ise

$$Span(S) = \{c_1.\alpha_1 + ... + c_k.\alpha_k : c_1, ..., c_k \in \mathbb{R}\}\$$

kümesi V nin bir altuzayıdır (gösteriniz). Bu uzaya S nın **ürettiği (gerdiği)** uzay adı verilir.

2.1.2 Lineer bağımlılık-bağımsızlık

Tanım 2.1.23 \mathbb{V} bir vektör uzayı ve $\mathbb{S} = \{\alpha_1, ..., \alpha_k\} \subset \mathbb{V}$ olsun. Eğer bir $\alpha \in \mathbb{V}$ vektörü $c_1, ..., c_k \in \mathbb{R}$ için

$$\alpha = c_1 \cdot \alpha_1 + \dots + c_k \cdot \alpha_k$$

şeklinde yazılabiliyorsa, α ya $\mathbb S$ deki vektörlerin bir **lineer kombinasyonu** (**doğrusal birleşimi**) denir.

Örnek 2.1.24 \mathbb{R}^3 de $\alpha = (2,1,5)$ vektörü $\alpha_1 = (1,2,1)$, $\alpha_2 = (1,0,2)$ ve $\alpha_3 = (1,1,0)$ vektörlerinin bir lineer kombinasyonudur. Gerçekten

$$\alpha = c_1 \alpha_1 + c_2 \alpha_2 + c_3 \alpha_3, \ c_1, c_2, c_3 \in \mathbb{R},$$

denirse

$$c_1 + c_2 + c_3 = 2$$
, $2c_1 + c_3 = 1$, $c_1 + 2c_2 = 5$

sistemi çözüldükten sonra $c_1 = 1$, $c_2 = 2$, $c_3 = -1$ bulunur ki bu

$$\alpha = \alpha_1 + 2\alpha_2 - \alpha_3$$

olması demektir.

Örnek 2.1.25 \mathbb{R}^3 de $\alpha_1 = (2,1,2)$, $\alpha_2 = (1,0,1)$, $\alpha_3 = (2,1,0)$ ve $\alpha_4 = (1,0,-1)$ verilsin. $\alpha = (0,-2,4)$ vektörünün Span $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ kümesinde olup olmadığını inceleyelim: eğer

$$\alpha = c_1 \alpha_1 + c_2 \alpha_2 + c_3 \alpha_3 + c_4 \alpha_4, \ c_1, ..., c_4 \in \mathbb{R},$$

yazılırsa, aşağıdaki sistem elde edilir:

$$2c_1 + c_2 + 2c_3 + c_4 = 0$$
, $c_1 + c_3 = -2$, $2c_1 + c_2 - c_4 = 4$.

Buradan $c_1 = c_4$, $c_2 = 4 - c_4$, $c_3 = -2 - c_4$, olup sonsuz miktarda $c_1, ..., c_4$ bulunur ki $\alpha \in Span\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ olması demektir.

63

Tanım 2.1.26 \mathbb{V} bir reel vektör uzayı ve $\mathbb{S} = \{\alpha_1, ..., \alpha_k\} \subset V$ olsun. Eğer \mathbb{V} deki her bir vektör \mathbb{S} nin elemanlarının bir lineer kombinasyonu ise \mathbb{S} kümesi \mathbb{V} yi **üretir (gerer)** ya da \mathbb{V} uzayı \mathbb{S} tarafından **üretilir (gerilir)** denir.

Örnek 2.1.27 \mathbb{R}^3 uzayında $\alpha_1 = (1,2,1)$, $\alpha_2 = (1,0,2)$, $\alpha_3 = (1,1,0)$ verilsin. $\mathbb{S} = \{\alpha_1, \alpha_2, \alpha_3\}$ kümesinin \mathbb{R}^3 uzayını ürettiğini gösterelim: $\alpha = (x,y,z)$ ve $\alpha = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3$ olsun. Her x,y,z için c_1,c_2,c_3 sabitlerinin bulunabileceğini göstereceğiz. Bunun için

$$c_1 = \frac{-2x + 2y + z}{3}, \ c_1 = \frac{x - y + z}{3}, \ c_1 = \frac{4x - y - 2z}{3}$$

bulunur ki Span $\{S\} = \mathbb{R}^3$ olması demektir.

Örnek 2.1.28 \mathbb{P}_2 uzayında $\alpha_1 = t^2 + 2t + 1$ ve $\alpha_2 = t^2 + 2$ ise $Span \{\alpha_1, \alpha_2\} = \mathbb{P}_2$ olduğunu gösterelim, yani $\alpha = c_1\alpha_1 + c_2\alpha_2$ olacak şekilde c_1, c_2 sabitlerini bulmalıyız. Bunun için

$$at^{2} + bt + c = c_{1}(t^{2} + 2t + 1) + c_{2}(t^{2} + 2)$$

eşitliğinden

$$c_1 + c_2 = a$$
, $2c_1 = b$, $c_1 + 2c_2 = c$

sistemi bulunur. İlaveli katsayılar matrisi yazıp indirgenmiş forma getirilirse

$$\begin{bmatrix} \mathbf{1} & 0 & \vdots & 2a - c \\ 0 & \mathbf{1} & \vdots & c - a \\ 0 & 0 & \vdots & b - 4a + 2c \end{bmatrix}$$

olur. Eğer $b-4a+2c\neq 0$ ise çözüm yoktur. Bu eşitsizliği sağlayan a,b,c sayıları bulunabileceğinden $\{\alpha_1,\alpha_2\}$ kümesi V yi geremez.

Tanım 2.1.29 \mathbb{V} bir vektör uzayı ve $\mathbb{S} = \{\alpha_1, ..., \alpha_k\} \subset \mathbb{V}$ olsun. Eğer

$$c_1\alpha_1 + \ldots + c_k\alpha_k = 0$$

iken $c_1 = ... = c_k = 0$ oluyorsa $\mathbb S$ kümesine **lineer bağımsız**; aksi halde,yani yukarıdaki eşitlik sağlanırken $c_1, ..., c_k$ lerden en az biri sıfırdan farklı ise $\mathbb S$ kümesine **lineer bağımlı** adı verilir.

Örnek 2.1.30 \mathbb{R}^4 uzayında $\alpha_1 = (1,0,1,2)$, $\alpha_2 = (0,1,1,2)$, $\alpha_3 = (1,1,1,3)$ verilsin. $\mathbb{S} = \{\alpha_1,\alpha_2,\alpha_3\}$ kümesinin lineer bağımsız olduğunu gösterelim. Buna göre

$$c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = 0$$

olmak üzere

$$c_1 + c_3 = 0$$
, $c_2 + c_3 = 0$, $c_1 + c_2 + c_3 = 0$, $2c_1 + 2c_2 + 3c_3 = 0$

sistemin çözümünden $c_1=c_2=c_3=0$ elde edilir ki $\mathbb S$ lineer bağımsız olur.

Örnek 2.1.31 \mathbb{R}^3 de $\alpha_1 = (1, 2, -1)$, $\alpha_2 = (1, -2, 1)$, $\alpha_3 = (-3, 2, 1)$ ve $\alpha_4 = (2, 0, 0)$ verilsin. $\mathbb{S} = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ kümesi lineer bağımlıdır. Gerçekten,

$$c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 = 0$$

iken

$$c_1 + c_2 - 3c_3 + 2c_4 = 0$$
$$2c_1 - 2c_2 + 2c_3 = 0$$
$$-c_1 + c_2 - c_3 = 0$$

denklem sisteminin aşikar olmayan bir çözümü vardır. Örneğin $c_1 = 1$, $c_2 = 2$, $c_3 = 1$ ve $c_4 = 0$ bir çözüm olup \mathbb{S} nin lineer bağımlı olması için yeterlidir.

Uyarı 2.1.32 \mathbb{R}^n de verilen $\alpha_1, ..., \alpha_n$ vektörlerin lineer bağımlı olup olmadığı determinant fonksiyonu yardımıyla kolayca incelenebilir. Eğer

$$\det\left(\alpha_{1},...,\alpha_{n}\right)=0$$

ise bunlar lineer bağımlı, aksi durumda ise lineer bağımsızdır.

Uyarı 2.1.33 Bir reel vektör uzayında $\mathbb{S} = \{0\}$ kümesi lineer bağımldır. Çünkü sıfırdan farklı her c skaleri için c.0 = 0 dir.

Teorem 2.1.34 \mathbb{S}_1 ve \mathbb{S}_2 bir reel vektör uzayının sonlu altkümeleri ve $\mathbb{S}_1 \subseteq \mathbb{S}_2$ olsun. O zaman aşağıdaki önermeler doğrudur:

- **1**. \mathbb{S}_1 lineer bağımlı ise \mathbb{S}_2 de lineer bağımlıdır.
- **2**. \mathbb{S}_2 lineer bağımsız ise \mathbb{S}_1 de lineer bağımsızdır.

Uyarı 2.1.35 Yukarıdaki uyarı ve teorem bize 0 (sıfır) ı içeren her kümenin lineer bağımlı olduğunu ifade eder.

Uyarı 2.1.36 \mathbb{R}^2 de lineer bağımlılık aşağıdaki gibi yorumlanabilir: $\{\alpha_1, \alpha_2\}$ \mathbb{R}^2 de lineer bağımlı ise $c_1\alpha_1 + c_2\alpha_2 = 0$ dir ve c_1, c_2 den en az biri sıfırdan farklıdır. Genelliği bozmadan $c_1 \neq 0$ kabul edilirse

$$\alpha_1 = -\frac{c_2}{c_1}\alpha_2$$

olur. Bu birinin diğerinin bir katı olması anlamına gelir. Yani

 $\{\alpha_1, \alpha_2\}$ lineer bağımlıdır \Leftrightarrow Biri diğerinin bir katıdır \Leftrightarrow \Leftrightarrow Merkezden geçen aynı doğru üzerindedir.

Şekil-6: Lineer bağımlı ve lineer bağımsız vektörler

Uyarı 2.1.37 Benzer bir sonuç \mathbb{R}^3 için de geçerlidir: \mathbb{R}^3 uzayında

 $\{\alpha_1, \alpha_2, \alpha_3\}$ lineer bağımlıdır \Leftrightarrow Bu üç vektör merkezden geçen aynı düzlem içindedir.

(Gösteriniz.)

2.1.3 Baz ve boyut

Tanım 2.1.38 \mathbb{V} bir vektör uzayı ve $\mathbb{S} = \{\alpha_1, ..., \alpha_n\} \subset \mathbb{V}$ olsun. Eğer \mathbb{S} lineer bağımsız ve $Span(\mathbb{S}) = \mathbb{V}$ ise \mathbb{S} ye \mathbb{V} nin bir **bazı** denir.

Örnek 2.1.39 \mathbb{R}^3 uzayında $\mathbb{S} = \{(1,0,0),(0,1,0),(0,0,1)\}$ verilsin. \mathbb{S} kümesi \mathbb{R}^3 ün bir bazıdır (gösteriniz) ve bu baza \mathbb{R}^3 ün **standart bazı** denir. Daha genel olarak \mathbb{R}^n uzayının standart bazı

$$\xi_1 = (1, ..., 0), ..., \xi_n = (0, ..., 1)$$

şeklindedir. \mathbb{R}^3 nın standart baz elemanları $\xi_1=(1,0,0)$, $\xi_2=(0,1,0)$, $\xi_3=(0,0,1)$ ile gösterilir ve \mathbb{R}^3 deki her bir $\alpha=(a,b,c)$ vektörü

$$\alpha = a.\xi_1 + b.\xi_2 + c.\xi_3$$

şeklinde yazılır.

Örnek 2.1.40 $\mathbb{S} = \{t^2 + 1, t - 1, 2t + 2\}$ kümesinin \mathbb{P}_2 nin bir bazı olduğunu gösterelim. \mathbb{S} nin lineer bağımsız ve $Span(\mathbb{S}) = \mathbb{P}_2$ olduğunu göstermeliyiz. Bunun için $c_1, c_2, c_3 \in \mathbb{R}$ olmak üzere

$$c_1(t^2+1) + c_2(t-1) + c_3(2t+2) = 0$$

 $c_1=0,\ c_2+2c_3=0\ ve\ -c_2+2c_3=0\ olup\ c_1=c_2=c_3=0\ ve\ \mathbb{S}\ lineer$ bağımsızdır. Ayrıca Span $(\mathbb{S})=\mathbb{P}_2$ için

$$at^{2} + bt + c = c_{1}(t^{2} + 1) + c_{2}(t - 1) + c_{3}(2t + 2)$$

olacak şekilde her a, b, c için c_1, c_2, c_3 skalerlerinin bulunabileceğini göstermeliyiz. Yukarıdaki eşitlikten

$$c_1 = a, \ c_2 = \frac{a+b-c}{2}, \ c_3 = \frac{c+b-a}{2}$$

olur ki bu $Span(\mathbb{S}) = \mathbb{P}_2$ olduğunu gösterir.

Örnek 2.1.41 \mathbb{R}^4 de

$$\mathbb{S} = \{\alpha_1 = (1, 0, 1, 0), \alpha_2 = (0, 1, -1, 2), \alpha_3 = (0, 2, 2, 1), \alpha_4 = (1, 0, 0, 1)\}$$

nin bir baz olduğunu bir alıştırma olarak gösteriniz.

67

Tanım 2.1.42 Bir \mathbb{V} reel vektör uzayının bazındaki eleman sayısına (eğer sonlu ise) \mathbb{V} nin **boyutu** denir boy(\mathbb{V}) ile gösterilir. Eğer $\mathbb{V} = \{0\}$ ise boy(\mathbb{V}) = 0 olarak kabul edilir.

Örnek 2.1.43 $\mathbb{S} = \{t^2, t, 1\}$ kümesi \mathbb{P}_2 için bir baz olup boy $(\mathbb{P}_2) = 3$ dir.

Örnek 2.1.44 $\mathbb{S} = \{(1,0,0), (0,1,0), (0,0,1)\}$ kümesi \mathbb{R}^3 için bir baz olup boy $(\mathbb{R}^3) = 3$.

Tanım 2.1.45 Bazı sonlu sayıda elemandan oluşan vektör uzaylarına sonluboyutlu vektör uzayı; aksi durumda ise, sonsuz-boyutlu vektör uzayı adı verilir.

Uyarı 2.1.46 Aşağıdakiler baz ve boyut kavramları için önemlidir:

- **1**. Eleman sayısı sonlu tek reel vektör uzay $\{0\}$ dir, çünkü her c skaleri için $c.0 \in \{0\}$ dir.
- 2. V nin herhangi iki bazının eleman sayısı eşittir.
- **3.** \mathbb{V} , n-boyutlu bir uzay ve $\mathbb{S} = \{\alpha_1, ..., \alpha_k\} \subset \mathbb{V}$ kümesi lineer bağımsız ise $k \leq n$ dir.
- **4.** \mathbb{V} , n-boyutlu bir uzay olsun. \mathbb{V} deki lineer bağımsız ve eleman sayısı en fazla olan küme n elemanlıdır ve \mathbb{V} nin bazıdır.
- **5**. $boy(\mathbb{V}) = n$ ise m > n elemanlı bir küme lineer bağımlıdır.
- **6**. boy $(\mathbb{V}) = n$ ise p < n elemanlı bir küme \mathbb{V} yi üretemez.

Aşağıdaki şekilde lineer bağımsız kümeler, baz ve üreten kümeler arasındaki ilişki verilmektedir.

Sekil-7: Baz, lineer bağımsızlık, üreten kümeler

2.1.4 Skaler (İç) çarpım

Aşağıda standart reel vektör uzayında skaler çarpım, norm ve açı gibi kavramlar ifade edilecektir.

Tanım 2.1.47 \mathbb{R}^n de $\alpha = (a_1, ..., a_n)$ ve $\beta = (b_1, ..., b_n)$ vektörleri verilsin. Buna göre

$$\alpha \cdot \beta = a_1 b_1 + \dots + a_n b_n$$

değerine α ile β nın **skaler çarpımı** (ya da **iç çarpım**) denir.

Örnek 2.1.48 \mathbb{R}^4 de $\alpha=(1,2,-1,3)$ ve $\beta=(2,-1,1,k)$ vektörleri için $\alpha \cdot \beta=0$ ise k değerini bulalım. Çözüm $k=\frac{1}{3}$ olarak kolayca elde edilebilir.

Teorem 2.1.49 \mathbb{R}^n de α, β, γ vektörleri ve $c, d \in \mathbb{R}$ için aşağıdaki özellikler sağlanır:

- 1. $(c \cdot \alpha + d \cdot \beta) \cdot \gamma = c \cdot \alpha \cdot \gamma + d \cdot \beta \cdot \gamma$, $\alpha \cdot (c \cdot \beta + d \cdot \gamma) = c \cdot \alpha \cdot \beta + d \cdot \alpha \cdot \gamma$;
- **2**. $\alpha \cdot \beta = \beta \cdot \alpha$;
- **3**. $\alpha \cdot \alpha \ge 0$; $\alpha \cdot \alpha = 0 \iff \alpha = 0$.

Tanım 2.1.50 Üzerinde skaler çarpım tanımlı \mathbb{R}^n uzayına n-boyutlu Öklit uzayı adı verilir.

Tanım 2.1.51 \mathbb{R}^n uzayında bir $\alpha = (a_1, ..., a_n)$ vektörünün **normu**

$$\|\alpha\| = \sqrt{\alpha \cdot \alpha} = \sqrt{a_1^2 + \dots + a_n^2}$$

şeklinde tanımlanır. Eğer $\|\alpha\| = 1$ ise α ya **birim vektör** adı verilir.

Uyarı 2.1.52 Bir $\alpha \neq 0$, $\alpha \in \mathbb{R}^n$ vektörü yünündeki tek birim vektör $\frac{\alpha}{\|\alpha\|}$ dir. Bu aynı zamanda bir vektörü birim vektör yapmak için bir metottur.

Örnek 2.1.53 \mathbb{R}^n de $\alpha = (1, -3, 4, 2)$ vektörünü birim uzunluklu olarak yeniden ifade edelim. Bunun için

$$\tilde{\alpha} = \frac{\alpha}{\|\alpha\|} = \left(\frac{1}{\sqrt{30}}, \frac{-3}{\sqrt{30}}, \frac{4}{\sqrt{30}}, \frac{2}{\sqrt{30}}\right)$$

olur.

Tanım 2.1.54 \mathbb{R}^n deki her $\alpha = (a_1, ..., a_n)$ ve $\beta = (b_1, ..., b_n)$ vektörleri için α ile β arasındaki **uzaklık**

$$d(\alpha, \beta) = \|\alpha - \beta\| = \sqrt{(a_1 - b_1)^2 + \dots + (a_n - b_n)^2}$$

şeklinde tanımlanır. Ayrıca bu vektörler arasındaki $açi \theta$ ise

$$\cos \theta = \frac{\alpha \cdot \beta}{\|\alpha\| \|\beta\|}$$

bağıntısı mevcuttur.

Tanım 2.1.55 \mathbb{R}^n de bir α vektörünün sıfırdan farklı bir β vektörü üzerine izdüşümü

$$izd(\alpha, \beta) = \frac{\alpha \cdot \beta}{\|\beta\|^2} \beta$$

şeklinde tanımlanır.

Burada $\alpha^* = izd(\alpha, \beta)$ denirse, $\alpha^* = \cos \theta.\alpha$ ve her iki tarafın normu alınıp $\cos \theta$ yerine değeri yazılırsa

$$\|\alpha^*\| = \|\alpha\| \frac{\alpha \cdot \beta}{\|\alpha\| \|\beta\|} = \frac{\alpha \cdot \beta}{\|\beta\|}$$

olur. α^* vektörü normu ile aynı yöndeki birim vektörün çarpımı olarak yazılabileceğinden

$$\alpha^* = \frac{\alpha \cdot \beta}{\|\beta\|^2} \beta$$

olur.

Şekil-8: Vektörlerde izdüşüm

Örnek 2.1.56 \mathbb{R}^3 de $\alpha = (1, -2, 1)$ ve $\beta = (2, 3, 1)$ vektörleri arasındaki açıyı ve α nın β üzerindeki izdüşümünü bulalım. Bu açı θ ise

$$\cos \theta = \frac{-3}{2\sqrt{27}}, \ izd(\alpha, \beta) = \left(\frac{-3}{7}, \frac{-9}{14}, \frac{-3}{14}\right).$$

Tanım 2.1.57 \mathbb{R}^n de $\alpha_1, ..., \alpha_n$ vektörleri verilsin. Eğer bu vektörlerden herhangi ikisi için

$$\alpha_i \cdot \alpha_j = 0, \ 1 \le i, j \le n$$

ise α_i ve α_j vektörlerine **ortogonal** (**dik**) dir denir. Ayrıca bu vektörler

$$\alpha_i.\alpha_i = 1, \ 1 \le i \le n$$

şartını sağlarsa o zaman α_i vektörlerine **ortonormal** adı verilir.

Aşağıdaki metot lineer bağımsız vektörlerin bir kümesinden ortonormal bir vektör sistemi elde etmek için kullanılır ve Gram-Schmidt metodu olarak bilinir:

 \mathbb{R}^n de lineer bağımsız $\alpha_1, ..., \alpha_n$ vektörlerini ele alalım. Buna göre

$$\beta_1 = \alpha_1,$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2 \cdot \beta_1}{\beta_1 \cdot \beta_1} \beta_1$$
...
$$\beta_n = \alpha_n - \sum_{i=1}^n \frac{\alpha_n \cdot \beta_i}{\beta_i \cdot \beta_i} \beta_i$$

ile verilen $\beta_1,...,\beta_n$ vektörleri ortogonaldir. Ayrıca

$$\gamma_1 = \frac{\beta_1}{\|\beta_1\|}, ..., \gamma_n = \frac{\beta_n}{\|\beta_n\|}$$

yazılırsa, $\gamma_1,...,\gamma_n$ ortonormal vektörleri elde edilir. Buna göre

$$\gamma_i \cdot \gamma_j = \delta_{ij} = \left\{ \begin{array}{l} 1, \ i=j \ \text{için}, \\ 0, \ i \neq j \ \text{için}, \end{array} \right.$$

burada δ_{ij} ile Kronocker deltası gösterilmektedir. n=3 özel durumunda Gram-Schmidt metodu

$$\begin{split} \beta_1 &= \alpha_1, \ \beta_2 = \alpha_2 - \frac{\alpha_2 \cdot \beta_1}{\beta_1 \cdot \beta_1} \beta_1 \\ \beta_3 &= \alpha_3 - \frac{\alpha_3 \cdot \beta_2}{\beta_2 \cdot \beta_2} \beta_2 - \frac{\alpha_3 \cdot \beta_1}{\beta_1 \cdot \beta_1} \beta_1, \\ \gamma_1 &= \frac{\beta_1}{\|\beta_1\|}, \gamma_2 = \frac{\beta_2}{\|\beta_2\|}, \gamma_3 = \frac{\beta_3}{\|\beta_3\|} \end{split}$$

haline dönüşür.

Örnek 2.1.58 \mathbb{R}^2 de $\alpha_1 = (2,0)$ ve $\alpha_2 = (1,-1)$ vektörleri verilsin. det $(\alpha_1,\alpha_2) = -1 \neq 0$ olduğundan vektörler lineer bağımsızdır ve Gram-Schmidt metodu uygulanabilir. Buna göre

$$\beta_1 = \alpha_1 = (2,0),$$

$$\beta_2 = (1,-1) - \frac{(1,-1) \cdot (2,0)}{(2,0) \cdot (2,0)} (2,0) = (0,-1)$$

vektörleri ortogonal olurlar. Bununla birlikte

$$\gamma_1 = \frac{\beta_1}{\|\beta_1\|} = (1,0), \ \gamma_2 = \frac{\beta_2}{\|\beta_2\|} = (0,-1)$$

ortonormal vektörler elde edilir.

Örnek 2.1.59 \mathbb{R}^3 de $\alpha_1 = (1,1,1)$, $\alpha_2 = (-1,0,-1)$, $\alpha_3 = (-1,2,3)$ vektörleri verilsin. det $(\alpha_1,\alpha_2,\alpha_3) = 2 \neq 0$ olduğundan vektörler lineer bağımsızdır ve Gram-Schmidt metodu uygulanabilir. Buna göre

$$\beta_1 = \alpha_1 = (1, 1, 1),$$

$$\beta_2 = (-1, 0, -1) - \frac{(-1, 0, -1) \cdot (1, 1, 1)}{(1, 1, 1) \cdot (1, 1, 1)} (1, 1, 1) = \left(\frac{-1}{3}, \frac{2}{3}, \frac{-1}{3}\right)$$

ve

$$\beta_3 = \left(-1,2,3\right) - \frac{\left(-1,2,3\right)\cdot\left(\frac{-1}{3},\frac{2}{3},\frac{-1}{3}\right)}{\left(\frac{-1}{3},\frac{2}{3},\frac{-1}{3}\right)\cdot\left(\frac{-1}{3},\frac{2}{3},\frac{-1}{3}\right)}\left(\frac{-1}{3},\frac{2}{3},\frac{-1}{3}\right) - \frac{\left(-1,2,3\right)\cdot\left(1,1,1\right)}{\left(1,1,1\right)\cdot\left(1,1,1\right)}\left(1,1,1\right) = \left(-2,0,2\right)$$

vektörleri ortogonal olurlar. Bununla birlikte

$$\begin{split} \gamma_1 \; &= \; \frac{\beta_1}{\|\beta_1\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \gamma_2 = \frac{\beta_2}{\|\beta_2\|} = \left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right), \\ \gamma_3 \; &= \; \frac{\beta_3}{\|\beta_3\|} = \left(\frac{-1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \end{split}$$

ortonormal vektörler elde edilir.

2.1.5 Bölüm sonu alıştırmaları

- 1. $\alpha = (2, -6, -1), \beta = (-1, 0, -3)$ ve $\gamma = (-3, 1, 1)$ vektörleri için aşağıdakileri hesaplayınız:
 - (a) $3.\alpha 4.\beta$,
 - **(b)** $\alpha \beta + \gamma$.
- **2**. $\alpha = (1, m, -1), \beta = (n, 0, p)$ ve $\alpha = \beta$ is mnp çarpımı kaçtır?
- 3. Örnek 2.2.2-Örnek 2.2.6 da verilen kümelerin birer reel vektör uzayı olduklarını gösteriniz.

- **4**. $\mathbb{R}^{\infty} = \{(x_0, x_1, x_2, ...) : x_i \in \mathbb{R}, i \in \mathbb{N}\}$ sonsuz diziler kümesinin bir reel vektör uzayı olduğunu gösteriniz.
- 5. $\mathbb{V} = \{(x,y) : x,y \in \mathbb{R}\}$ kümesi üzerinde tanımlı olan aşağıdaki işlemleri ele alalım:

Vektör Toplamı:
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1)$$

Skalerle çarpım: $c.(x_1, y_1) = (cx_1 + c - 1, cy_1 + c - 1)$.

Bu işlemlerle birlikte V kümesinin bir reel vektör uzayı olduğunu gösteriniz. Ayrıca toplama işleminin birim elemanını elde ediniz.

6. \mathbb{R}^5 de aşağıda verilen kümenin bir altuzay olduğunu gösteriniz:

$$\mathbb{V} = \{ (0, x, 0, y, 0) : x, y \in \mathbb{R} \}.$$

- 7. $\mathbb{R}^{m \times n}$ üzerinde tüm diagonal matrislerin kümesi bir altuzay oluşturur mu?
- 8. $\mathbb{R}^{n\times n}$ üzerinde izleri toplamı sıfır olan tüm matrislerin kümesi bir altuzay oluşturur mu?
- 9. $\mathbb{R}^{m \times n}$ üzerinde elemanları pozitif olan tüm matrislerin kümesi bir altuzay oluşturur mu?
- 10. Aşağıdaki ifadelerden doğru ve yanlış olanları tespit ediniz:
 - (a) Eleman sayısı sonlu tek reel vektör uzay {0} dir.
 - (b) $\mathbb V$ bir reel vektör uzayı ve $\mathbb W$ da $\mathbb V$ nin bir reel vektör uzayı olan altkümesi olsun. $\mathbb W$ aynı zamanda $\mathbb V$ nin bir altuzayıdır.
 - (c) Boş küme her reel vektör uzayın bir altuzayıdır.
 - (d) V nin herhangi iki altuzayının arakesiti bir altuzaydır.
- 11. \mathbb{P}_1 , 1. dereceden polinomların kümesi üzerinde $\{t+4, 3t+c^2+4\}$ altkümesinin lineer bağımlı olması için c nin alabileceği değerler çarpımı kaçtır?
- 12. $\mathbb{S} = \left\{ f | f : \mathbb{R} \xrightarrow{\text{sürekli}} \mathbb{R} \right\}$ reel değerli sürekli fonksiyonların kümesi üzerinde $f(x) = 3^x$ ve $g(x) = 3^{2x}$ fonksiyonları için $\{f, g\}$ altkümesi lineer bağımsız mıdır?

13. \mathbb{R}^2 de

$$S = \{(1,0), (0,4), (0,0), (2,0), (2,2)\}$$

kümesinin tüm lineer bağımsız altkümelerini bulunuz.

14. V reel vektör uzayında α, β, γ vektörleri için

$$\mathbb{S} = \{c_2.\gamma - c_3.\beta, c_1.\beta - c_2.\alpha, c_3.\alpha - c_1.\gamma\}, c_1, c_2, c_3 \in \mathbb{R}$$

kümesi lineer bağımsız mıdır?

15. \mathbb{R}^4 de $\{\alpha, \beta, \gamma, \zeta\}$ altkümesi lineer bağımsız olarak verilsin.

$$\{3.\alpha + 2.\beta + \gamma + \zeta, 2.\alpha + 5.\beta, 3.\gamma + 2.\zeta, 3.\alpha + 4.\beta + 2.\gamma + 3.\zeta\}$$

kümesi de lineer bağımsız mıdır?

- 16. \mathbb{R}^3 de $\alpha=(1,0,1)$ vektörünü içeren bir baz bulunuz.
- 17. \mathbb{V} , 3—boyutlu bir reel vektör uzayı ve bazı $\{\alpha,\beta,\gamma\}$ olsun.

$$\{\alpha + \beta, \beta + \gamma, \alpha - \gamma\}$$

kümesi de V için bir baz olur mu?

- 18. $\mathbb{V} = \{(0, y, z) : y, z \in \mathbb{R}\} \subset \mathbb{R}^2$ altuzayının bir bazını bulunuz.
- 19. Aşağıdakilerden hangisi \mathbb{R}^3 için bir bazdır:
 - (a) $\{(1,0,-1),(2,5,1),(0,-4,3)\};$
 - **(b)** $\{(2, -4, 1), (0, 3, -1), (6, 0, -1)\}$;
 - (c) $\{(1,2,-1),(1,0,2),(2,1,1)\};$
 - (d) $\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$.
- 20. Aşağıdaki ifadelerden doğru ve yanlış olanları tespit ediniz:
 - (a) {0} uzayı bir baza sahip değildir.
 - (b) Sonlu bir küme ile oluşturulan her vektör uzayı bir baza sahiptir.
 - (c) Her vektör uzayı sonlu bir baza sahiptir.
 - (d) Bir vektör uzayı birden fazla baza sahip olamaz.

2.1 REEL VEKTÖR UZAYLARı

- 75
- (e) Eğer bir vektör uzayı sonlu bir baza sahipse, her bazındaki eleman sayısı aynıdır.
- (f) \mathbb{P}_n , n. dereceden polinomların kümesinin boyutu n dir.
- (g) $\mathbb{R}^{m \times n}$ kümesinin boyutu m + n dir.
- (h) Eğer \mathbb{V} , n-boyutlu bir vektör uzayı ise, boyutu 0 olan yalnız bir ve boyutu n olan yalnız bir altuzayı vardır.
- **21**. \mathbb{R}^2 nin bir bazı $\{\alpha, \beta\}$ olsun. $c, d \in \mathbb{R}$ için $\{\alpha + \beta, c.\alpha\}$ ve $\{c.\alpha, d.\beta\}$ kümelerinin de \mathbb{R}^2 için bir baz olduğunu gösteriniz.
- 22. Aşağıdaki homojen lineer denklem sistemini ele alalım:

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_1 - 3x_2 + x_3 = 0. \end{cases}$$

Bu sistemin çözümler kümesi \mathbb{R}^3 için bir altuzaydır. Bu altuzay için bir baz elde ediniz.

- **23**. \mathbb{R}^n de α ve β vektörleri için aşağıda verilen eşitliklerin sağlandığını gösteriniz:
 - (a) Eğer α ve β ortogonal ise

$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$$
.

Bu eşitliğin n=2 durumunda Klasik Geometrideki hangi ünlü teoreme karşılık geldiğini bulunuz.

(b) Aşağıdaki eşitliğe paralelkenar kuralı (yasası) denir.

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2$$
.

Bu kuralın \mathbb{R}^2 de paralelkenarlarla ilişkisini ifade ediniz.

(c) Aşağıdaki eşitliğe polar eşitliği denir.

$$\alpha \cdot \beta = \frac{1}{4} \|\alpha + \beta\|^2 - \frac{1}{4} \|\alpha - \beta\|^2.$$

Bu eşitliği gerçekleyiniz.

- 24. Bir reel vektör uzayında; eğer herhangi iki vektör Cauchy-Schwarz eşitsizliğinin eşitlik durumunu sağlarsa, bu vektörlerle ilgili ne söyleyebilirsiniz?
- 25. Bir reel vektör uzayında; eğer herhangi iki vektör Minkowski eşitsizliğinin eşitlik durumunu sağlarsa, bu vektörlerle ilgili ne söyleyebilirsiniz?
- **26**. \mathbb{R}^2 de $\left\{\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right), \left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)\right\}$ kümesinin bir ortonormal baz olduğunu gösteriniz.
- **27**. \mathbb{R}^3 de $\{(1,0,-1),(2,-1,1),(-1,-1,4)\}$ kümesine Gram-Schmidt metodu uygulanabilir mi?
- **28**. \mathbb{R}^3 de $\{(1,1,0),(2,0,1),(2,2,1)\}$ vektörlerinin lineer bağımlı-bağımsız olduklarını kontrol ettikten sonra (eğer lineer bağımsız ise) Gram-Schmidt metodunu uygulayınız.
- **29**. \mathbb{R}^n de ortogonal vektörlerin birbirine göre izdüşümleri hakkında ne söyleyebilirsiniz. Geometrik olarak yorumlayınız.

2.2 Öz değerler ve öz vektörler

Tanım 2.2.1 $A \in \mathbb{R}_n^n$, $n \times n$ tipinde bir matris olsun.

$$A\alpha = t.\alpha$$

olacak şekilde sıfırdan farklı en az bir $\alpha \in \mathbb{R}^n$ vektörü varsa $t \in \mathbb{R}$ sayısına A matrisinin bir öz (karakteristik ya da aygen) değeri denir. t sayısı A matrisinin bir öz değeri olmak üzere

$$A\alpha = t.\alpha$$

eşitliğini sağlayan α vektörüne ise A matrisinin t öz değerine karşılık gelen bir öz (karakteristik ya da aygen) vektörü denir.

Uyarı 2.2.2 Aşağıda bir matrisin öz değerleri ve öz vektörlerini bulmak için bir metot ifade edilmiştir:

$$A\alpha = t.\alpha$$

eşitliği aynı zamanda

$$(A - t.I_n) \alpha = 0 (2.1)$$

şeklinde de yazılabileceğinden (2.1) denkleminin aşikar olmayan bir çözümü olabilmesi için

$$\det\left(A - t.I_n\right) = 0\tag{2.2}$$

olması gerek ve yeterdir. Dolayısıyla A matrisinin öz değerleri (2.2) denklemini sağlayan t sayılarıdır. Her bir t öz değeri için (2.1) denkleminin aşikar olmayan çözümleri bulunur. Bunlar A nın t ye karşılık gelen öz vektörleridir.

Örnek 2.2.3

$$A = \begin{bmatrix} 5 & -\sqrt{3} \\ -\sqrt{3} & 7 \end{bmatrix}$$

olmak üzere A matrisinin öz değerlerini bulalım. Bunun için

$$\det\left(A - t.I_2\right) = 0$$

denklemini inceleyelim, yani

$$A - t \cdot I_2 = \begin{bmatrix} 5 - t & -\sqrt{3} \\ -\sqrt{3} & 7 - t \end{bmatrix}$$

ve dolayısıyla

$$\begin{vmatrix} 5 - t & -\sqrt{3} \\ -\sqrt{3} & 7 - t \end{vmatrix} = 0 \Rightarrow t^2 - 12t + 32 = (t - 4)(t - 8) = 0$$

olduğundan A matrisinin $t_1=4$ ve $t_2=8$ olacak şekilde iki tane öz değeri vardır.

Örnek 2.2.4

$$A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$$

olmak üzere A matrisinin öz değerlerini ve öz vektörlerini bulalım. Bunun için

$$\det\left(A - t.I_2\right) = 0$$

denklemini inceleyelim, yani

$$A - t \cdot I_2 = \begin{bmatrix} -4 - t & -6 \\ 3 & 5 - t \end{bmatrix}$$

ve dolayısıyla

$$\begin{vmatrix} -4 - t & -6 \\ 3 & 5 - t \end{vmatrix} = 0 \Rightarrow t^2 - t - 2 = (t+1)(t-2) = 0$$

olduğundan A matrisinin $t_1 = -1$ ve $t_2 = 2$ olacak şekilde iki tane öz değeri vardır. A matrisinin her bir öz değerine karşılık gelen öz vektörler

$$A\alpha = t_i \alpha, i = 1, 2,$$

ya da

$$(A - t_i I_2) \alpha = 0$$

denklemi ile bulunur. Buna göre

• $t_1 = -1$ için, $\alpha = (x, y)$ olmak üzere

$$\left(\begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} - (-1) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

veya

$$\begin{bmatrix} -3 & -6 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

homojen lineer denklem sistemi bulunur. Bu sistemin ilaveli katsayılar matrisi ve ona denk olan matris

$$\begin{bmatrix} -3 & -6 & \vdots & 0 \\ 3 & 6 & \vdots & 0 \end{bmatrix} \approx \begin{bmatrix} \mathbf{1} & 2 & \vdots & 0 \\ 0 & 0 & \vdots & 0 \end{bmatrix}$$

bulunur. Buna göre y=s denirse x=-2s olur. Buna göre

$$\alpha = \begin{bmatrix} -2s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

O halde c_1 öz değerine karşılık gelen öz vektörlerin kümesi

$$\left\{ s \begin{bmatrix} -2\\1 \end{bmatrix} : s \in \mathbb{R} \right\} = Sp \left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$$

olur.

• $t_2 = 2$ için, $\beta = (z, w)$ olmak üzere

$$\left(\begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

veya

$$\begin{bmatrix} -6 & -6 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

homojen lineer denklem sistemi bulunur. Bu sistemin ilaveli katsayılar matrisi ve ona denk olan matris

$$\begin{bmatrix} -6 & -6 & \vdots & 0 \\ 3 & 3 & \vdots & 0 \end{bmatrix} \approx \begin{bmatrix} \mathbf{1} & 1 & \vdots & 0 \\ 0 & 0 & \vdots & 0 \end{bmatrix}$$

bulunur. Buna göre w = s denirse z = -s olur. Buna göre

$$\beta = \begin{bmatrix} -s \\ s \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

O halde t_2 öz değerine karşılık gelen öz vektörlerin kümesi

$$\left\{ s \begin{bmatrix} -1 \\ 1 \end{bmatrix} : s \in \mathbb{R} \right\} = Sp \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$$

olur.

Örnek 2.2.5

$$A = \begin{bmatrix} 4 & 1 & 0 \\ 1 & 1 & 1 \\ 7 & 2 & 2 \end{bmatrix}$$

matrisinin öz değerlerini bulalım. Bunun için

$$\det\left(A - t.I_3\right) = 0$$

denklemini inceleyelim, yani

$$A - t \cdot I_3 = \begin{bmatrix} 4 - t & 1 & 0 \\ 1 & 1 - t & 1 \\ 7 & 2 & 2 - t \end{bmatrix}$$

ve dolayısıyla

$$\begin{vmatrix} 4-t & 1 & 0 \\ 1 & 1-t & 1 \\ 7 & 2 & 2-t \end{vmatrix} = 0 \Rightarrow t^3 - 7t^2 + 11t - 5 = 0$$

olduğundan $t_1 = 1$, $t_2 = 1$ ve $t_3 = 5$ elde edilir.

Örnek 2.2.6

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

olmak üzere A matrisinin öz değerlerini ve öz vektörlerini bulalım. Bunun için

$$\det\left(A - t.I_3\right) = 0$$

ve dolayısıyla

$$\begin{vmatrix} 1-t & 0 & -1 \\ 1 & 2-t & 1 \\ 2 & 2 & 3-t \end{vmatrix} = 0 \Rightarrow t^3 - 6t^2 + 11t - 6 = 0$$

olduğundan A matrisinin $t_1 = 1$, $t_2 = 2$ ve $t_3 = 3$ şeklinde öz değerleri elde edilir. A matrisinin her bir öz değerine karşılık gelen öz vektörler

$$A\alpha = t_i \alpha, \ i = 1, 2, 3,$$

ya da

$$(A - t_i I_3) \alpha = 0$$

denklemi ile bulunur. Buna göre

• $t_1 = 1$ için, $\alpha = (x, y, z)$ olmak üzere

$$\left(\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

veya

$$\begin{bmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

homojen lineer denklem sistemi bulunur. Bu sistemin ilaveli katsayılar matrisi ve ona denk olan matris

$$\begin{bmatrix} 0 & 0 & -1 & \vdots & 0 \\ 1 & 1 & 1 & \vdots & 0 \\ 2 & 2 & 2 & \vdots & 0 \end{bmatrix} \overset{\varepsilon_{1}:\alpha_{1} \leftrightarrow \alpha_{3}}{\underset{\varepsilon_{2}:\alpha_{3} \to -1\alpha_{3}}{\approx}} \begin{bmatrix} \mathbf{1} & 1 & 1 & \vdots & 0 \\ 1 & 1 & 1 & \vdots & 0 \\ 0 & 0 & \mathbf{1} & \vdots & 0 \end{bmatrix} \overset{\varepsilon_{4}:\alpha_{2} \to \alpha_{2} - \alpha_{1}}{\underset{\varepsilon_{5}:\alpha_{1} \to \alpha_{1} - \alpha_{3}}{\approx}} \begin{bmatrix} \mathbf{1} & 0 & 1 & \vdots & 0 \\ 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & \mathbf{1} & \vdots & 0 \end{bmatrix}$$

bulunur. Buna göre z = 0 ve y = s denirse x = -s olur. Buna göre

$$\alpha = \begin{bmatrix} -s \\ s \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

O halde c_1 öz değerine karşılık gelen öz vektörlerin kümesi

$$\left\{ s \begin{bmatrix} -1\\1\\0 \end{bmatrix} : s \in \mathbb{R} \right\} = Sp \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix} \right\}$$

olur.

• $t_2 = 2 i \sin \beta = (u, v, w) olmak "uzere"$

$$\left(\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

veya

$$\begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

homojen lineer denklem sistemi bulunur. Bu sistemin ilaveli katsayılar matrisi ve ona denk olan matris

$$\begin{bmatrix} -1 & 0 & -1 & \vdots & 0 \\ 1 & 0 & 1 & \vdots & 0 \\ 2 & 2 & 1 & \vdots & 0 \end{bmatrix} \xrightarrow{\substack{\varepsilon_1:\alpha_1 \to -1\alpha_1 \\ \varepsilon_2:\alpha_2 \to \alpha_2 + \alpha_1 \\ \varepsilon_3:\alpha_3 \to \alpha_3 + 2\alpha_1}} \begin{bmatrix} \mathbf{1} & 0 & 1 & \vdots & 0 \\ 0 & 0 & 0 & \vdots & 0 \\ 0 & 2 & 1 & \vdots & 0 \end{bmatrix} \xrightarrow{\substack{\varepsilon_4:\alpha_2 \to \alpha_3 \\ \varepsilon_5:\alpha_2 \to \frac{1}{2}\alpha_2 \\ \varepsilon_5:\alpha_2 \to \frac{1}{2}\alpha_2}} \begin{bmatrix} \mathbf{1} & 0 & 1 & \vdots & 0 \\ 0 & \mathbf{1} & \frac{1}{2} & \vdots & 0 \\ 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$

bulunur. Buna göre w=2s denirse v=-s ve u=-2s olur. Buna göre

$$\beta = \begin{bmatrix} -2s \\ -s \\ 2s \end{bmatrix} = s \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$$

O halde t₂ öz değerine karşılık gelen öz vektörlerin kümesi

$$\left\{ s \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} : s \in \mathbb{R} \right\} = Sp \left\{ \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} \right\}$$

olur.

• $t_3 = 3$ için $\gamma = (p, q, r)$ olmak üzere

$$\left(\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

veya

$$\begin{bmatrix} -2 & 0 & -1 \\ 1 & -1 & 1 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

homojen lineer denklem sistemi bulunur. Bu sistemin ilaveli katsayılar matrisi ve ona denk olan matris

$$\begin{bmatrix} -2 & 0 & -1 & \vdots & 0 \\ 1 & -1 & 1 & \vdots & 0 \\ 2 & 2 & 0 & \vdots & 0 \end{bmatrix} \xrightarrow{\substack{\varepsilon_1:\alpha_1 \leftrightarrow \alpha_2 \\ \varepsilon_2:\alpha_2 \to \alpha_2 + 2\alpha_1 \\ \varepsilon_3:\alpha_3 \to \alpha_3 + \alpha_2}} \begin{bmatrix} \mathbf{1} & -1 & 1 & \vdots & 0 \\ 0 & -2 & 1 & \vdots & 0 \\ 2 & 0 & 1 & \vdots & 0 \end{bmatrix} \xrightarrow{\substack{\varepsilon_4:\alpha_2 \to \frac{-1}{2}\alpha_2 \\ \varepsilon_5:\alpha_3 \to \alpha_3 - 2\alpha_1 \\ \varepsilon_5:\alpha_3 \to \alpha_3 - 2\alpha_1}} \begin{bmatrix} \mathbf{1} & -1 & 1 & \vdots & 0 \\ 0 & \mathbf{1} & \frac{-1}{2} & \vdots & 0 \\ 0 & 2 & -1 & \vdots & 0 \end{bmatrix}$$

$$\begin{array}{c}
\varepsilon_4:\alpha_1 \to \alpha_1 + \alpha_2 \\
\approx \\
\varepsilon_5:\alpha_3 \to \alpha_3 - 2\alpha_3
\end{array}
\begin{bmatrix}
\mathbf{1} & 0 & \frac{1}{2} & \vdots & 0 \\
0 & \mathbf{1} & \frac{-1}{2} & \vdots & 0 \\
0 & 0 & 0 & \vdots & 0
\end{bmatrix}$$

bulunur. Buna göre r=2s denirse q=s ve p=-s olur. Buna göre

$$\beta = \begin{bmatrix} -s \\ s \\ 2s \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$$

O halde c_2 öz değerine karşılık gelen öz vektörlerin kümesi

$$\left\{ s \begin{bmatrix} -1\\1\\2 \end{bmatrix} : s \in \mathbb{R} \right\} = Sp \left\{ \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right\}$$

olur.

Tanım 2.2.7 Bir $n \times n$ tipinde A matrisi için $\det (A - t.I_n)$ determinantına A nın **karakteristik polinom**u (t cinsinden), $\det (A - t.I_n) = 0$ denklemine ise A nın **karakteristik denklemi** adı verilir.

Örnek 2.2.8

$$A = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}$$

verilsin. O zaman A nın karakteristik polinomu

$$\det(A - tI_2) = \begin{vmatrix} 2 - t & -1 \\ 0 & 1 - t \end{vmatrix} = t^2 - 3t + 2$$

ve karakteristik denklemi

$$t^2 - 3t + 2 = 0$$

şeklindedir.

Örnek 2.2.9

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$$

verilsin. O zaman A nın karakteristik polinomu

$$\det(A - tI_3) = \begin{vmatrix} 1 - t & 2 & -1 \\ 1 & -t & 1 \\ 4 & -4 & 5 - t \end{vmatrix} = t^3 - 6t^2 + 11t - 6$$

ve karakteristik denklemi

$$t^3 - 6t^2 + 11t - 6 = 0$$

şeklindedir.

Teorem 2.2.10 A, $n \times n$ tipinde bir matris olsun. A nın öz değerleri A nın karakteristik polinomunun reel kökleridir.

Teorem 2.2.11 (Cayley-Hamilton) Her matris kendi karakteristik polinomunun bir köküdür. Açık bir ifadeyle bir A kare matrisinin karakteristik polinomu

$$p_A(t) = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$$

 $ise p_A(A) = 0 dir, yani$

$$p_A(A) = A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0I_n = 0_n$$

dir.

Uyarı 2.2.12 Genel olarak

$$p_A(t) = t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$$

n. mertebeden bir A kare matrisinin karakteristik polinomu ise

$$A^{-1} = \frac{-1}{a_0} \left(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_2A + a_1I_n \right)$$

formülü ile A^{-1} bulunabilir.

Örnek 2.2.13

$$A = \begin{bmatrix} 3 & 5 \\ 2 & 7 \end{bmatrix}$$

matrisinin tersini Cayley-Hamilton teoremini kullanarak bulalım. Buna göre karakteristik polinom

$$\det(A - tI_2) = \begin{vmatrix} 3 - t & 5 \\ 2 & 7 - t \end{vmatrix} = t^2 - 10t + 11$$

şeklindedir. Dolayısıyla A matrisi bu polinomun bir köküdür

$$A^2 - 10A + 11I_2 = 0_2$$

ve

$$A^{-1} = \frac{-1}{11} (A - 10I_2) = \frac{-1}{11} \begin{bmatrix} 3 - 10 & 5 \\ 2 & 7 - 10 \end{bmatrix}$$

olduğundan

$$A^{-1} = \begin{bmatrix} \frac{7}{11} & \frac{-5}{11} \\ \frac{-2}{11} & \frac{3}{11} \end{bmatrix}$$

elde edilir.

2.2.1 Bölüm sonu alıştırmaları

1.

$$A = \begin{bmatrix} -10 & 14 \\ -7 & 11 \end{bmatrix}$$

matrisinin öz değerlerini ve öz vektörlerini hesaplayınız.

2.

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

matrisinin öz değerlerini ve öz vektörlerini hesaplayınız.

3. A, 2×2 tipinde bir matris olsun. A nın karakteristik polinomu p_A olmak üzere

$$p_A(t) = t^2 - \dot{I}z(A)t + \det A$$

olduğunu gösteriniz.

4. $A,\,3\times3$ tipinde bir matris olsun. Anın karakteristik polinomu p_A olmak üzere

$$p_A(t) = t^3 - \dot{I}z(A)t^2 + \dot{I}z(adjA)t + \det A$$

olduğunu gösteriniz.