

Security Issues in SCADA Networks

by V. M. Igure, S. A. Laughter, and R. D. Williams Computers & Security, 25(7): 498-506, 2006

presented by

Ruilong Deng

Postdoctoral Research Fellow School of Electrical and Electronic Engineering

1. Introduction

Evolution of control networks

- simple point-to-point networks
 - monitoring/command device
 - remote sensor/actuator
- complex networks with field bus communication (SCADA)
 - central control unit
 - remote terminal unit (RTU)

Why face security issues

- increasing interconnectivity of SCADA networks
- connect to outside corporate network/Internet via gateways

2. SCADA Network Architecture

- SCADA network
 - interconnection for field devices on plant floor
 - PC/PLC (programmable logic controller)
 - remote sensor/actuator
 - field bus protocol-based network
 - mater-slave/client-server communication
 - peer-to-peer communication
- Corporate network/Internet
 - IP-based network
- Gateway
 - interface between field bus protocol/IP-based networks

2. SCADA Network Architecture (cont'd)

3. Security Threats & Vulnerabilities

- Why face security issues
 - connectivity between plant floor and corporate network
 - simple, isolated control network → complex inter-network
 - increased interconnectivity of SCADA networks
 - multiple access points → physical isolation does not guarantee security
 - phone line/intranet → connection from local to outside network
- Attacker aim to compromise SCADA security
 - integrity
 - confidentiality
 - authentication
 - availability
 - privacy of data

3. Security Threats (cont'd)

- Security threats and vulnerabilities
 - sniff communication traffic
 - gain unauthenticated access to confidential information
 - tamper with data transmitted/stored
 - compromise data integrity
 - change control signal: cause device malfunction
 - change set point: device fail at very low threshold or alarm not go off when it should
 - change operator display value: when alarm actually go off, human operator is unware of it
 - DoS (denial-of-service) attack
 - block/reroute communication traffic
 - plant malicious code
 - obtain greater network access/cause other damage

4. SCADA Security Research Challenges

Overview

- improve access control
- improve security inside SCADA network/develop efficient security-monitoring tool
 - detect intrusion and/or other suspicious activities
- improve security management

Constraint

- limitation of field bus network
 - slow communication rate (3125 Kbps)
 - small message packet (a few octets)
 - real-time operating requirement

4.1 Access Control

- difficulty in defining perimeter to SCADA network
 - · gateways are not the only means of connection to outside
 - other unexpected links: phone line/intranet
 - apart from technical access control, clearly define security policy
- gateway authentication
 - provide protocol compatibility between local and outside networks
 - assign login account to authorized user
 - password-based authentication
 - smart card-based authentication
 -

4.2 Firewalls and IDSs

- block unauthorized access
 - recognize/allow specific traffic
 - control/monitor activity of authorized access (permission)
- 3-zone architecture for firewalls
 - SCADA or process control network, demilitarized zone (buffer), corporate network
- micro-firewalls
 - embedded within each field device
 - many field devices do not have enough computational capability
- few commercial firewalls/IDSs (intrusion detection systems)
 capable of monitoring SCADA protocol traffic
 - structure of SCADA protocol
 - vulnerability assessment of SCADA protocol

4.3 Protocol Vulnerability Assessment

- two categories of SCADA protocol vulnerabilities
 - inherent in protocol specification itself
 - result of improper implementation of protocol
 - the latter is easier
- taxonomy of SCADA protocol vulnerabilities
 - require database of vulnerabilities
 - no public database of SCADA protocol vulnerabilities

4.4 Cryptography and Key Management

- SCADA protocols do not support complex cryptography implementation
 - limited computational capability of field device
 - low rate data transmission on SCADA network
 - real-time response requirement on device
- WSNs (wireless sensor networks) have similar operating constraints
- techniques to implement cryptography in WSNs could possibly be applied to SCADA network

4.5 Device and OS Security

- security of end devices on SCADA network
 - embedded computing device (printer, router)
 - real-time operating system (RTOS)
 - other real-time control software
 - more susceptible to DoS attack
- vulnerability assessment of end device and their embedded operating system
- not practical to provide physical protection to every node
 - OS equipped with tamper-resistant feature
 - existing ones can be prohibitively expensive for SCADA network
 - low-cost alternative with almost same level of security
 - network survive from compromise of a few devices

4.6 Security Management

- security policy tailored to specific company
 - not possible to develop common security policy meet all companies goal/requirement/need/objective
- provide guideline for critical administration issues
 - data security policy
 - communication security policy
 - audit security policy
 - physical security policy
- continuous process
 - constantly monitor SCADA network for security vulnerabilities
 - regularly update/secure with latest patches on SCADA network software/hardware
 - regular maintenance on system

5. Conclusion

- Security issues in SCADA networks
 - introduction
 - SCADA network architecture
 - security threats and vulnerabilities
 - SCADA security research challenges
 - · access control
 - firewalls and intrusion detection systems
 - protocol vulnerability assessment
 - cryptography and key management
 - device and OS security
 - security management

Any comments to share with us? ©

