PDMPs with ODE Dynamics

Sam Power (joint with Sergio Bacallado)

Algorithms & Computationally Intensive Inference Seminar University of Warwick

sp825@cam.ac.uk

June 6, 2019

Overview

- PDMPs
- 2 PDMPs for MCMC
- Construction of Algorithms
- 4 Remarks, Open Questions, Takeaways

• Informally: Deterministic dynamics + Jump Process

- Informally: Deterministic dynamics + Jump Process
- ullet Stochastic process Z_t which

- Informally: Deterministic dynamics + Jump Process
- ullet Stochastic process Z_t which
 - Follows a deterministic path, until

- Informally: Deterministic dynamics + Jump Process
- ullet Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which

- Informally: Deterministic dynamics + Jump Process
- ullet Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which
 - The position jumps, and then

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until
 - An event occurs, at a certain rate, upon which
 - The position jumps, and then
 - Resumes following the deterministic path

- Informally: Deterministic dynamics + Jump Process
- Stochastic process Z_t which
 - Follows a deterministic path, until
 - 2 An event occurs, at a certain rate, upon which
 - The position jumps, and then
 - Resumes following the deterministic path

Today: PDMPs from ODEs

- Today: PDMPs from ODEs
 - Vector field $\phi(z)$
 - Use dynamics $\frac{dz}{dt} = \phi(z)$

- Today: PDMPs from ODEs
 - Vector field $\phi(z)$
 - Use dynamics $\frac{dz}{dt} = \phi(z)$
 - Event rate $\lambda(z) \geqslant 0$
 - Dictates how often events happen (inhomogeneous Poisson process)

- Today: PDMPs from ODEs
 - Vector field $\phi(z)$
 - Use dynamics $\frac{dz}{dt} = \phi(z)$
 - Event rate $\lambda(z) \geqslant 0$
 - Dictates how often events happen (inhomogeneous Poisson process)
 - Transition dynamics $Q(z \to dz')$
 - Dictates what happens at events (Markov jump kernel)

• Want $\pi(dx)$, but work on extended target:

• Want $\pi(dx)$, but work on extended target:

• Set z = (x, v).

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - $\bullet \ \ {\rm Choose \ your \ own} \ \psi(dv).$

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv)$.
 - Target is then $\mu(dz) = \pi(dx)\psi(dv)$.

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv)$.
 - Target is then $\mu(dz) = \pi(dx)\psi(dv)$.
- Typically, jumps fix $x \rightsquigarrow X_t$ has continuous sample paths.

- Want $\pi(dx)$, but work on extended target:
 - Set z = (x, v).
 - Choose your own $\psi(dv)$.
 - Target is then $\mu(dz) = \pi(dx)\psi(dv)$.
- Typically, jumps fix $x \rightsquigarrow X_t$ has continuous sample paths.
- Question:

Given target measure
$$\mu$$
, vector field ϕ , (1)

how can I build
$$(\lambda, Q)$$
 to sample μ ? (2)

Bouncy Particle Sampler

Bouncy Particle Sampler

•
$$\dot{x} = v, \dot{v} = 0$$

- Bouncy Particle Sampler
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda(x, v) = \langle v, -\nabla_x \log \pi(x) \rangle_+$

- Bouncy Particle Sampler
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda(x, v) = \langle v, -\nabla_x \log \pi(x) \rangle_+$
 - Jump by reflecting velocity

- Bouncy Particle Sampler
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda(x, v) = \langle v, -\nabla_x \log \pi(x) \rangle_+$
 - Jump by reflecting velocity
- Zig Zag Process

- Bouncy Particle Sampler
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda(x, v) = \langle v, -\nabla_x \log \pi(x) \rangle_+$
 - Jump by reflecting velocity
- Zig Zag Process
 - $\dot{x} = v, \dot{v} = 0$

- Bouncy Particle Sampler
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda(x, v) = \langle v, -\nabla_x \log \pi(x) \rangle_+$
 - Jump by reflecting velocity
- Zig Zag Process
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda_i(x, v) = \langle v_i, -\nabla_{x_i} \log \pi(x) \rangle_+$

- Bouncy Particle Sampler
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda(x, v) = \langle v, -\nabla_x \log \pi(x) \rangle_+$
 - Jump by reflecting velocity
- Zig Zag Process
 - $\dot{x} = v, \dot{v} = 0$
 - $\lambda_i(x, v) = \langle v_i, -\nabla_{x_i} \log \pi(x) \rangle_+$
 - ullet Jump by flipping i^{th} velocity

Aside on Reversibility, Symmetry

- Reversibility
 - Much MCMC work built on reversible methods
 - PDMPs are generally non-reversible
 - To design algorithms, locality is the important part

Aside on Reversibility, Symmetry

- Reversibility
 - Much MCMC work built on reversible methods
 - PDMPs are generally non-reversible
 - To design algorithms, locality is the important part
- Symmetry
 - Existing PDMPs are highly symmetric (BPS, ZZ)
 - A priori, not necessary to have symmetry
 - Want to be able to use all ODEs!

• Idea:

- Idea:
 - $\textbf{ 1} \textbf{ Introduce 'direction of time' variable } \tau \in \{\pm 1\}$

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
 - $\textbf{ 2 Target } \tilde{\mu}(dz,d\tau) = \mu(dz)R(d\tau).$

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
 - ② Target $\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$.
- \bullet Write $\phi(z,\tau)=\tau\cdot\phi(z);$ use dynamics $\frac{dz}{dt}=\phi(z,\tau)$

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
- Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$
 - Solve system forwards and backwards in time

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
- \bullet Write $\phi(z,\tau)=\tau\cdot\phi(z);$ use dynamics $\frac{dz}{dt}=\phi(z,\tau)$
 - Solve system forwards and backwards in time
- $\bullet \ \ \mathsf{Let} \ \lambda = \lambda(z,\tau)$

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
 - ② Target $\tilde{\mu}(dz,d\tau) = \mu(dz)R(d\tau)$.
- Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$
 - Solve system forwards and backwards in time
- Let $\lambda = \lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto -\tau$, i.e.

$$Q((z,\tau) \to (dz',d\tau')) = Q^{\tau}(z \to dz') \cdot \delta(-\tau,d\tau')$$
 (3)

Time-Augmented PDMPs

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
 - ② Target $\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$.
- Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$
 - Solve system forwards and backwards in time
- Let $\lambda = \lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto -\tau$, i.e.

$$Q((z,\tau) \to (dz',d\tau')) = Q^{\tau}(z \to dz') \cdot \delta(-\tau,d\tau')$$
 (3)

• 'Trajectorial Reversibility' → checking exactness becomes *local*!

Time-Augmented PDMPs

- Idea:
 - ① Introduce 'direction of time' variable $\tau \in \{\pm 1\}$
 - ② Target $\tilde{\mu}(dz, d\tau) = \mu(dz)R(d\tau)$.
- Write $\phi(z,\tau) = \tau \cdot \phi(z)$; use dynamics $\frac{dz}{dt} = \phi(z,\tau)$
 - Solve system forwards and backwards in time
- Let $\lambda = \lambda(z, \tau)$
- Stipulate that, at events, $\tau \mapsto -\tau$, i.e.

$$Q((z,\tau) \to (dz',d\tau')) = Q^{\tau}(z \to dz') \cdot \delta(-\tau,d\tau')$$
 (3)

- 'Trajectorial Reversibility' → checking exactness becomes local!
 - 'in at z forwards in time = out at z backwards in time'

Consider 'probability current'

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\text{div}_z \phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

Consider 'probability current'

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_z \phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

• Define 'natural' event rate as

$$\lambda^0(z,\tau) = (r(z,\tau))_+ \tag{5}$$

where $(u)_+ = \max(0, u)$

Consider 'probability current'

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_z \phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

Define 'natural' event rate as

$$\lambda^0(z,\tau) = (r(z,\tau))_+ \tag{5}$$

where $(u)_+ = \max(0, u)$

• Let $\gamma(z) \geqslant 0$ be some 'refreshment rate'.

Consider 'probability current'

$$r(z,\tau) \triangleq \underbrace{\langle \nabla H(z), \phi(z,\tau) \rangle}_{\text{Energy Gain}} - \underbrace{\operatorname{div}_z \phi(z,\tau)}_{\text{Compressibility Penalty}} \tag{4}$$

Define 'natural' event rate as

$$\lambda^0(z,\tau) = (r(z,\tau))_+ \tag{5}$$

where $(u)_+ = \max(0, u)$

- Let $\gamma(z) \ge 0$ be some 'refreshment rate'.
- We will take $\lambda(z,\tau)=\lambda^0(z,\tau)+\gamma(z)$

• Define 'jump measure':

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau)$$
 (6)

• Define 'jump measure':

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau)$$
 (6)

Want trajectorial reversibility

• Define 'jump measure':

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau)$$
 (6)

- Want trajectorial reversibility
 - Need jump chain reversible w.r.t. jump measure

• Define 'jump measure':

$$J^{\tau}(dz) \propto \mu(dz)\lambda(z,\tau)$$
 (6)

- Want trajectorial reversibility
 - Need jump chain reversible w.r.t. jump measure
 - ullet \sim Choose $q^{ au}(z o dz')$ to be $J^{ au}$ -reversible

Putting together the ingredients

Theorem

If (ϕ,λ,Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Putting together the ingredients

Theorem

If (ϕ, λ, Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Theorem

If (ϕ,λ,Q) is a trajectorially-reversible, $\tilde{\mu}$ -stationary TA-PDMP, then $\exists\,\gamma\geqslant 0$ such that

$$\lambda(z,\tau) = \lambda^0(z,\tau) + \gamma(z) \tag{7}$$

and for $\tau \in \{\pm 1\}$, Q^{τ} is J^{τ} -reversible

Putting together the ingredients

Theorem

If (ϕ, λ, Q) are chosen in this way, then the resulting PDMP is trajectorially reversible, and admits $\tilde{\mu}$ as a stationary measure.

Theorem

If (ϕ,λ,Q) is a trajectorially-reversible, $\tilde{\mu}$ -stationary TA-PDMP, then $\exists\,\gamma\geqslant 0$ such that

$$\lambda(z,\tau) = \lambda^0(z,\tau) + \gamma(z) \tag{7}$$

and for $\tau \in \{\pm 1\}$, Q^{τ} is J^{τ} -reversible

Comments on proof

Many PDMPs in use have different types of event

- Many PDMPs in use have different types of event
 - Refreshment
 - Zig-Zag
 - Local BPS (Factor Graph)
 - Subsampling
 - o · · ·

- Many PDMPs in use have different types of event
 - Refreshment
 - Zig-Zag
 - Local BPS (Factor Graph)
 - Subsampling
 - · · ·
- Each event type affects different parts of the system

- Many PDMPs in use have different types of event
 - Refreshment
 - Zig-Zag
 - Local BPS (Factor Graph)
 - Subsampling
 - · · ·
- Each event type affects different parts of the system
- ullet Key point: Different event types correspond to decompositions of r

- $z = (z_1, \dots, z_D), \ \tau = (\tau_1, \dots, \tau_D) \in \{\pm 1\}^D$

- $z = (z_1, \dots, z_D), \ \tau = (\tau_1, \dots, \tau_D) \in \{\pm 1\}^D$
- Assume decomposition

$$r(z,\tau) = \sum_{j=1}^{M} r_j(z,\tau) \tag{8}$$

and existence of involutions $\mathcal{F}_j: \{\pm 1\}^D \to \{\pm 1\}^D$ such that

$$r_j(z, \mathcal{F}_j(\tau)) = -r_j(z, \tau) \tag{9}$$

- $z = (z_1, \dots, z_D), \ \tau = (\tau_1, \dots, \tau_D) \in \{\pm 1\}^D$
- Assume decomposition

$$r(z,\tau) = \sum_{j=1}^{M} r_j(z,\tau) \tag{8}$$

and existence of involutions $\mathcal{F}_j: \{\pm 1\}^D \to \{\pm 1\}^D$ such that

$$r_j(z, \mathcal{F}_j(\tau)) = -r_j(z, \tau) \tag{9}$$

- Events of type j happen at rate $\lambda_j(z,\tau)$
 - and then jump according to $Q_j^{\tau}(z \to dz') \cdot \delta(\mathcal{F}_j(\tau), d\tau')$

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau) \tag{11}$$

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau) \tag{11}$$

Define

$$J_j^{\tau}(dz) \propto \mu(dz)\lambda_j(z,\tau)$$
 (12)

and for each $\tau \in \{\pm 1\}^D$, take Q_i^{τ} to be J_i^{τ} -reversible.

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau) \tag{11}$$

Define

$$J_j^{\tau}(dz) \propto \mu(dz)\lambda_j(z,\tau)$$
 (12)

and for each $au \in \{\pm 1\}^D$, take $Q_j^{ au}$ to be $J_j^{ au}$ -reversible.

$\mathsf{Theorem}_{\mathsf{p}}$

This leads to trajectorially-reversible, $\tilde{\mu}$ -stationary Split PDMPs.

Define

$$\lambda_j^0(z,\tau) = (r_j(z,\tau))_+$$
 (10)

$$\lambda_j(z,\tau) = \lambda_j^0(z,\tau) + \gamma_j(z,\tau) \tag{11}$$

Define

$$J_j^{\tau}(dz) \propto \mu(dz)\lambda_j(z,\tau)$$
 (12)

and for each $au \in \{\pm 1\}^D$, take $Q_j^{ au}$ to be $J_j^{ au}$ -reversible.

Theorem

This leads to trajectorially-reversible, $\tilde{\mu}$ -stationary Split PDMPs.

Theorem.

Given a fixed splitting, all trajectorially-reversible, $\tilde{\mu}$ -stationary Split PDMPs take this form.

• Non-negotiable: we want samples from $\pi(dx)$.

- Non-negotiable: we want samples from $\pi(dx)$.
 - lacktriangle Decide on v.
 - ② Decide on ϕ .
 - **3** Decide on $\psi(dv)$ (and hence μ).

- Non-negotiable: we want samples from $\pi(dx)$.
 - lacktriangle Decide on v.
 - ② Decide on ϕ .
 - **3** Decide on $\psi(dv)$ (and hence μ).
 - lacktriangle Write down r, decide on a splitting.

- Non-negotiable: we want samples from $\pi(dx)$.
 - lacktriangle Decide on v.
 - ② Decide on ϕ .
 - **3** Decide on $\psi(dv)$ (and hence μ).
 - lacksquare Write down r, decide on a splitting.
 - **1** Write down λ^0 , decide on γ (and hence λ).

- Non-negotiable: we want samples from $\pi(dx)$.
 - lacktriangle Decide on v.
 - ② Decide on ϕ .
 - **3** Decide on $\psi(dv)$ (and hence μ).
 - lacksquare Write down r, decide on a splitting.
 - **⑤** Write down λ^0 , decide on γ (and hence λ).
 - \bigcirc Decide on Q.

ullet Choosing Q is often least obvious; order of preference:

- Choosing Q is often least obvious; order of preference:
 - ① Sample from J^{τ} directly.

- Choosing Q is often least obvious; order of preference:
 - **1** Sample from J^{τ} directly.
 - Sample from its restriction to a finite set. (e.g. BPS)

- Choosing Q is often least obvious; order of preference:
 - **1** Sample from J^{τ} directly.
 - Sample from its restriction to a finite set. (e.g. BPS)
 - (Use a Metropolis-Hastings step).

- ullet Choosing Q is often least obvious; order of preference:
 - **1** Sample from J^{τ} directly.
 - 2 Sample from its restriction to a finite set. (e.g. BPS)
 - (Use a Metropolis-Hastings step).
- ullet Choosing ψ could make a big difference; dictates μ .
 - Can have $\psi(dv|x)$ (relatively unexplored)

- Choosing Q is often least obvious; order of preference:
 - **1** Sample from J^{τ} directly.
 - 2 Sample from its restriction to a finite set. (e.g. BPS)
 - (Use a Metropolis-Hastings step).
- Choosing ψ could make a big difference; dictates μ .
 - Can have $\psi(dv|x)$ (relatively unexplored)
- Choosing ϕ : some room for creativity here.

• Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
 - Splittings may help

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
 - Splittings may help
- Speculation: Better dynamics $\phi \sim$ opportunities

- Andrieu, Livingstone (2018): Peskun-type ordering for (some) PDMPs
 - Conjecture: Split as little as possible
 - Conjecture: Refresh as little as possible
 - Pinch of salt / 'Pre-Asymptopia': Maire, Vialaret (2018)
- Implementation remains challenging
 - Splittings may help
- Speculation: Better dynamics $\phi \leadsto$ opportunities
- Curiosity: Other types of augmentation?

Thank you!