Written in Wolfram Mathematica vII.0

Image processing of clinical trials results

Images are from Figure 1A (intent-to-treat population) of Larkin et al, 2015, Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma, New England Journal of Medicine; v373:p23-34. Responses to Ipilimumab and Nivolumab were plotted in Larkin et al. with dashed lines; to obtain data within dashes, the figure was first processed in Adobe Illustrator to remove the line dashing option and produce complete solid lines.

Mapping the horizontal and vertical axes

```
In[1]:= AxesImage = Import[NotebookDirectory[] <> "Larkin combination.png", "PNG"];
In[2]:= BinarizedAxesImage = Binarize[AxesImage, 0.7];
     MaximumHeight = 2600;
     MaximumWidth = 6000;
     Show[ImageTake[BinarizedAxesImage, {1, MaximumHeight}, {1, MaximumWidth}],
       ImageSize \rightarrow \{ \{700\}, \{700\} \} \}
      100
       90
       80-
       70-
       60-
       50-
       40-
Out[5]=
       30-
       20-
       10-
        0-
                                  5
                                            7
                                                 8
                                                          10
                                                              11
                                                                   12
                                                                        13
                                                                            14
                                                                                 15
                                                                                      16
                                                                                           17
                                                                                                18
                                                                                                    19
                                                                                                         20
                                                         Months
```

10

500

1000

1500

Vertical axis

Extracting the subset of the image containing the vertical tick marks

```
In[6]:= (* manually determined positions of the vertical tick marks
       (which columns of pixels contain the vertical axis ticks) *)
      VerticalAxisStart = 230;
      VerticalAxisEnd = 270;
      Show[ImageTake[BinarizedAxesImage, {1, MaximumHeight}, {VerticalAxisStart, VerticalAxisEnd}],
       ImageSize \rightarrow \{\{500\}, \{500\}\}\}
Out[8]=
 In[9]:= (* plotting the number of colored pixels per row in the subset with vertical tick marks *)
      VerticalAxesMarks =
        1 - ImageData[ImageTake[BinarizedAxesImage, {1, MaximumHeight},
            {VerticalAxisStart, VerticalAxisEnd}]];
      ListPlot[Map[Total, VerticalAxesMarks], Joined → True]
      40 -
      30
Out[10]= 20
```

2000

2500


```
4 Figure 1BC code.nb
```

```
In[16]:= (* position of the zero tick mark (0% PFS) *)
    ZeroSurvivalTickPosition = Round[x /. Solve[((m*x+c) /. VerticalTicksFit) == 0, x] [1]]]
    (* position of the 100 tick mark (100% PFS) *)
    FullSurvivalTickPosition = Round[x /. Solve[((m*x+c) /. VerticalTicksFit) == 100, x] [1]]]
Out[16]= 2059
Out[17]= 121
```

Horizontal axis

1000

2000

3000

4000

5000

6000

Extracting the subset of the image containing the horizontal tick marks

```
In[18]:= (* manually determined positions of the horizontal tick marks
        (which rows of pixels contain the horizontal axis ticks) *)
      HorizontalTickStart = 2095;
      HorizontalTickEnd = 2130;
      Show[ImageTake[BinarizedAxesImage, {HorizontalTickStart, HorizontalTickEnd}, {1, MaximumWidth}],
       ImageSize \rightarrow \{\{1000\}, \{500\}\}\}
Out[20]=
In[21]:= (* plotting the number of colored pixels per column in the subset with horizontal tick marks *)
      HorizontalAxesMarks =
        1 -
         ImageData[ImageTake[BinarizedAxesImage, {HorizontalTickStart, HorizontalTickEnd},
             {1, MaximumWidth}]]<sup>T</sup>;
      ListPlot[Map[Total, HorizontalAxesMarks], Joined → True]
      20
      15
Out[22] = 10
       5
```

AdjacentHorizontalTickMarks =

Gather[Select[{Range[Length[HorizontalAxesMarks]], Map[Total, HorizontalAxesMarks]}[⊤],
#[2] > 10 &], Abs[#1[1] - #2[1]] < 20 &];

% // TableForm

	0 / / 100							
Out[24]//Tab								
		294	295	296	297	298	299	300
	19	19	19	19	19	19	19	19
	547	548	549	550	551	552	553	554
	19	19	19	19	19	19	19	19
	802	803	804	805	806	807	808	809
	19	19	19	19	19	19	19	19
	1056 19	1057 19	1058 19	1059 19	1060 19	1061 19	1062 19	1063 19
	1311	1312	1313	1314	1315	1316	1317	1318
	19	19	19	19	19	19	19	19
	1566	1567	1568	1569	1570	1571	1572	1573
	19	19	19	19	19	19	19	19
	1820	1821	1822	1823	1824	1825	1826	1827
	19	19	19	19	19	19	19	19
	2075	2076	2077	2078	2079	2080	2081	2082
	19	19	19	19	19	19	19	19
	2329	2330	2331	2332	2333	2334	2335	2336
	19	19	19	19	19	19	19	19
	2584	2585	2586	2587	2588	2589	2590	2591
	19	19	19	19	19	19	19	19
	2839 19	2840	2841 19	2842 19	2843 19	2844 19	2845 19	2846
		19						19
	3093 19	3094 19	3095 19	3096 19	3097 19	3098 19	3099 19	3100 19
	3348	3349	3350	3351	3352	3353	3354	3355
	19	19	19	19	19	19	19	19
	3602	3603	3604	3605	3606	3607	3608	3609
	19	19	19	19	19	19	19	19
	3857	3858	3859	3860	3861	3862	3863	3864
	19	19	19	19	19	19	19	19
	4112	4113	4114	4115	4116	4117	4118	4119
	19	19	19	19	19	19	19	19
	4366	4367	4368	4369	4370	4371	4372	4373
	19	19	19	19	19	19	19	19
	4621	4622	4623	4624	4625	4626	4627	4628
	19	19	19	19	19	19	19	19
	4875 19	4876 19	4877 19	4878 19	4879 19	4880 19	4881 19	4882 19
	5130	5131	5132	5133	5134	5135	5136	5137
	19	19	19	19	19	19	19	19
	5385	5386	5387	5388	5389	5390	5391	5392
	19	19	19	19	19	19	19	19
	5639	5640	5641	5642	5643	5644	5645	5646
	19	19	19	19	19	19	19	19

In[25]:= (* marking the location of each tick mark by the average horizontal coordinate *)

HorizontalTickPositions =

{Map[Mean, AdjacentHorizontalTickMarks[1;, All, 1]], (Range[22] - 1) *1}

Out[25]=
$$\left\{\left\{\frac{593}{2},0\right\}, \left\{\frac{1101}{2},1\right\}, \left\{\frac{1611}{2},2\right\}, \left\{\frac{2119}{2},3\right\}, \left\{\frac{2629}{2},4\right\}, \left\{\frac{3139}{2},5\right\}, \left\{\frac{3647}{2},6\right\}, \left\{\frac{4157}{2},7\right\}, \left\{\frac{4665}{2},8\right\}, \left\{\frac{5175}{2},9\right\}, \left\{\frac{5685}{2},10\right\}, \left\{\frac{6193}{2},11\right\}, \left\{\frac{6703}{2},12\right\}, \left\{\frac{7211}{2},13\right\}, \left\{\frac{7721}{2},14\right\}, \left\{\frac{8231}{2},15\right\}, \left\{\frac{8739}{2},16\right\}, \left\{\frac{9249}{2},17\right\}, \left\{\frac{9757}{2},18\right\}, \left\{\frac{10267}{2},19\right\}, \left\{\frac{10777}{2},20\right\}, \left\{\frac{11285}{2},21\right\}\right\}$$

In[26]:= (* fitting a straight line to the tick marks positions and the numbers on their labels *) HorizontalTicksFit = FindFit[HorizontalTickPositions, m*x+c, $\{m,c\}$, x]

```
Out[26]= \left\{\,\text{m}\,\rightarrow\,\text{0.00392777}\,\text{, }c\,\rightarrow\,-\,\text{1.16316}\,\right\}
```

```
In[27]:= (* comparing the fit (red line) with the positions of the tick marks (black) *)
      Show [
       ListPlot [HorizontalTickPositions, PlotStyle → Black, Frame → True,
        FrameLabel → {"pixel row", "Time (months)"}],
       Plot[(m * x + c) /. HorizontalTicksFit, {x, 0, MaximumWidth}, PlotStyle \rightarrow Red]
      ]
         20
      ime (months)
          5
                   1000
                            2000
                                     3000
                                             4000
                                                      5000
                                  pixel row
In[28]:= (* position of the Time=0 tick mark *)
      TimeZeroTickPosition = Round[x /. Solve[((m * x + c) /. HorizontalTicksFit) == 0, x] [[1]]]
Out[28]= 296
In[29]:= TimeZeroTickPosition
Out[29]= 296
In[30]:= (* this function takes a pixel coordinate (number of pixels to the right of the Time=0 point)
        and converts it to a number of months of PFS *)
      SurvivingMonthsFromPixelCoordinate[numberofhorizontalpixels_] :=
        (m /. HorizontalTicksFit) * numberofhorizontalpixels
```

Processing Ipilimumab response

```
In[31]:= Mono1Image = Import[NotebookDirectory[] <> "Larkin ipilimumab.png", "PNG"];
In[32]:= BinarizedMono1Image = Binarize[Mono1Image, 0.7];
      Show[ImageTake[BinarizedMono1Image, {1, MaximumHeight}, {1, MaximumWidth}],
        ImageSize \rightarrow \{ \{700\}, \{700\} \} \}
       100
        90-
        80
        70-
        60
        50-
        40-
Out[33]=
        30-
        20-
        10-
                                                      9
                                                                       13 14 15
                                                          10
                                                              11
                                                                    12
                                                                                      16 17
                                                          Months
```

```
In[41]:= (* plotting the resulting survival function *)
        Plot[SurvivalFunction[EmpiricalDistribution[Mono1SurvivalDistribution[All, 2]]][x],
         \{x, 0, 16\}, Exclusions \rightarrow None, ImageSize \rightarrow {{500}}, {500}}, Frame \rightarrow {{True, False}},
         FrameStyle → Directive[Black, Thickness[Medium]],
         BaseStyle \rightarrow {FontFamily \rightarrow "Arial", FontSize \rightarrow 12}, PlotRangePadding \rightarrow None,
          PlotRange \rightarrow \{\{\textbf{0, 15}\}, \{\textbf{0, 1}\}\}, FrameLabel \rightarrow \{"Progression free survival (months)", "Probability"\}] 
            1.0
           8.0
           0.6
Ont[41]= Ont[41]=
           0.2
           0.0
                          2
                                                           8
                                                                      10
                                                                                 12
                                                                                            14
                                        Progression free survival (months)
```

Processing Nivolumab response

```
In[42]:= Mono2Image = Import[NotebookDirectory[] <> "Larkin nivolumab.png", "PNG"];
In[43]:= BinarizedMono2Image = Binarize[Mono2Image, 0.7];
      Show[ImageTake[BinarizedMono2Image, {1, MaximumHeight}, {1, MaximumWidth}],
       ImageSize \rightarrow \{ \{700\}, \{700\} \} \}
       100
        90-
        80-
        70-
        60-
        50-
        40-
Out[44]=
        30-
        20-
        10-
                                     6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
                                                       Months
```

```
(ZeroSurvivalTickPosition - FullSurvivalTickPosition) - #[1]} &, SurvivalPixelsPerRow];
In[50]:= (* capping 'survival' time at 17 months (the effective end of the data) *)
     MaximumSurvivalMonths = 17;
     (* building a survival distribution from counts of pixels in each row *)
     Mono2SurvivalDistribution = Table[{i,
         If[
           (* test *) Select[SurvivingMonthsPerPixelRow, #[2] == i &] == {},
           (* true; no progression time found *) MaximumSurvivalMonths,
           (* false; use observed progression time *)
          Select[SurvivingMonthsPerPixelRow, #[2] == i &] [[1, 1]]
        }, {i, 1, ZeroSurvivalTickPosition - FullSurvivalTickPosition}];
```

```
In[52]:= (* plotting the resulting survival function *)
      Plot[SurvivalFunction[EmpiricalDistribution[Mono2SurvivalDistribution[All, 2]]][x],
       \{x, 0, 16\}, Exclusions \rightarrow None, ImageSize \rightarrow {{500}}, {500}}, Frame \rightarrow {{True, False}},
       FrameStyle → Directive[Black, Thickness[Medium]],
       BaseStyle → {FontFamily → "Arial", FontSize → 12}, PlotRangePadding → None,
        PlotRange \rightarrow \{\{\textbf{0, 15}\}, \{\textbf{0, 1}\}\}, FrameLabel \rightarrow \{"Progression free survival (months)", "Probability"\}] 
          1.0
         8.0
         0.6
      Probability
         0.2
         0.0
                       2
                                                       8
                                                                10
                                                                           12
                                                                                      14
                                     Progression free survival (months)
```

Processing Combination response

```
In[53]:= ComboImage = Import[NotebookDirectory[] <> "Larkin combination.png", "PNG"];
In[54]:= BinarizedComboImage = Binarize[ComboImage, 0.7];
      Show[ImageTake[BinarizedComboImage, {1, MaximumHeight}, {1, MaximumWidth}],
       ImageSize \rightarrow \{ \{700\}, \{700\} \} \}
       100-
        90.
        80-
        70-
        60-
        50-
        40-
Out[55]=
        30-
        20-
        10-
                                     6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
                                                       Months
```

```
In[56]:= (* using the locations of 'zero' tick marks on horizontal and vertical axes to focus
       on the relevant portion of the plot *)
      ComboMappingImagePart =
       Show[ImageTake[BinarizedComboImage, {FullSurvivalTickPosition, ZeroSurvivalTickPosition},
         {TimeZeroTickPosition, MaximumWidth}], ImageSize → {{700}, {700}}]
Out[56]=
In[57]:= ComboMappingImageData = 1 - ImageData [ComboMappingImagePart];
In[58]:= (* how many pixels are in each row between the axis and the survival function? *)
      RunsOfConsecutiveElementsPerRow =
        Table [{i, Map [Length, Split [ComboMappingImageData[i]], Chop [#2 - #1] == 0 &]]},
         {i, 1, ZeroSurvivalTickPosition - FullSurvivalTickPosition}];
      SurvivalPixelsPerRow =
        Map[\{\#[1], \#[2, 2]\}\} &, Select[RunsOfConsecutiveElementsPerRow, Length[\#[2]]] > 2 &]];
      SurvivingMonthsPerPixelRow =
        Map[{SurvivingMonthsFromPixelCoordinate[#[2]]],
            (ZeroSurvivalTickPosition - FullSurvivalTickPosition) - #[1]} &, SurvivalPixelsPerRow];
In[61]:= (* capping 'survival' time at 17 months (the effective end of the data) *)
      MaximumSurvivalMonths = 17;
      (* building a survival distribution from counts of pixels in each row *)
      ComboSurvivalDistribution = Table[{i,
          If[
            (* test *) Select[SurvivingMonthsPerPixelRow, #[2] == i &] == {},
            (* true; no progression time found *) MaximumSurvivalMonths,
            (* false; use observed progression time *)
           Select[SurvivingMonthsPerPixelRow, #[2] == i &] [[1, 1]]
         }, {i, 1, ZeroSurvivalTickPosition - FullSurvivalTickPosition}];
```

```
In[63]:= (* plotting the resulting survival function *)
      Plot[SurvivalFunction[EmpiricalDistribution[ComboSurvivalDistribution[All, 2]]]][x],
        \{x, 0, 16\}, Exclusions \rightarrow None, ImageSize \rightarrow {{500}}, {500}}, Frame \rightarrow {{True, False}}, {True, False}},
        FrameStyle → Directive[Black, Thickness[Medium]],
        BaseStyle \rightarrow {FontFamily \rightarrow "Arial", FontSize \rightarrow 12}, PlotRangePadding \rightarrow None,
        PlotRange \rightarrow {{0, 15}, {0, 1}}, FrameLabel \rightarrow {"Progression free survival (months)", "Probability"}]
          1.0
          8.0
          0.6
      Probability
          0.2
          0.0
                        2
                                                                    10
                                                                               12
                                                         8
                                                                                          14
                                       Progression free survival (months)
```

Comparing observed combination with prediction from independent drug action

Randomly sampling monotherapy response distributions with no correlation

```
In[64]:= (* Simulate 5000 patients receiving combination
      therapy: each receives a randomly sampled response from each monotherapy response distribution,
     and the patients duration of PFS is the longer of the two sampled responses
      (the principle of independent drug action) *)
     UncorrelatedSamplesOfMonotherapyResponses =
       Table[Max[{RandomChoice[Mono1SurvivalDistribution[All, 2]]],
          RandomChoice[Mono2SurvivalDistribution[All, 2]]]], {5000}];
```

Randomly sampling monotherapy response distributions with partial correlation

This is achieved by starting with the two monotherapies response distributions in a perfectly correlated joint distribution, and then adding a random number (up to a userspecified size) to the rank (that is, row number) of each entry. As the degree of rankrandomization increases, the rank correlation decreases from I and approaches 0. Identifying the appropriate value of the rank randomization parameter to produce a desired Spearman Rank Correlation is matter of manual adjustment.

```
In[65]:= (* how many repeats of the complete data set to merge together
       (for purpose of minimizing variance between individual repeats of the 'rank
         randomization' process *)
     resamplingfactor = 1; (* '1' is sufficient for this data set;
      but a larger value may be helpful for data sets derived from lower-resolution images *)
      (* this is the amount of rank randomization that produces Spearman Rank Correlation
       of approximately 0.25 *)
     amountofrankrandomization = 1800;
     ReSampledMono1Distribution =
        Sort[Flatten[Table[Mono1SurvivalDistribution[All, 2], {resamplingfactor}]]];
     ReSampledMono2Distribution =
        Sort[Flatten[Table[Mono2SurvivalDistribution[All, 2], {resamplingfactor}]]];
      (* response distributions in partially randomized order *)
     SlightlyRandomizedMONO1Distribution =
        Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
           ReSampledMono1Distribution[[i]]}, {i, 1, Length[ReSampledMono1Distribution]}],
         #1[1] < #2[1] &];
     SlightlyRandomizedMONO2Distribution =
        Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
           ReSampledMono2Distribution[[i]]}, {i, 1, Length[ReSampledMono2Distribution]}],
         #1[1] < #2[1] &];
      (* computing the Spearman Rank Correlation of the partially randomized response
       distributions *)
     SpearmanRho[SlightlyRandomizedMONO1Distribution[All, 2],
       SlightlyRandomizedMONO2Distribution[All, 2]]
      (* applying the principle of independent drug action: in each row (representing a patient),
     the drug response (duration of PFS) is taken to be the best one of the two sampled
       monotherapy responses *)
     PartiallyCorrelatedSamplesOfMonotherapyResponses =
        Table[Max[{SlightlyRandomizedMONO1Distribution[i, 2],
           SlightlyRandomizedMONO2Distribution[[i, 2]]}], {i, 1, Length[ReSampledMono1Distribution]}];
Out[71]= 0.284383
```

Out[79]= **14.2814**

Out[80]= **12.6867**

```
In[73]:= (* Repeating the randomization procedure 100 times to show that response correlation
       is tightly distributed around the targeted value of 0.25 *)
      TableOfCorrelationsFromRepeats = Table[
         amountofrankrandomization = 1800;
         SlightlyRandomizedMONO1Distribution =
          Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
              ReSampledMono1Distribution[[i]]}, {i, 1, Length[ReSampledMono1Distribution]}],
            #1 [1] < #2 [1] &];
         SlightlyRandomizedMONO2Distribution =
          Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
              ReSampledMono2Distribution[[i]]}, {i, 1, Length[ReSampledMono2Distribution]}],
            #1 [1] < #2 [1] &];
         SpearmanRho[SlightlyRandomizedMONO1Distribution[All, 2],
          SlightlyRandomizedMONO2Distribution[All, 2]]
         , {100}];
In[74]:= Print["Mean response correlation = " <>
        ToString[Round[Mean[TableOfCorrelationsFromRepeats], 0.001]]]
      Histogram [TableOfCorrelationsFromRepeats, {0., 1.0, 0.01}, "Probability", Frame → True,
       FrameLabel → {"Spearman Rank Correlation", "Probability"}]
      Mean response correlation = 0.264
         0.20
         0.15
         0.05
         0.00
            0.0
                     0.2
                                                0.8
                                                          1.0
                                       0.6
                           Spearman Rank Correlation
In[76]:= (* computing median PFS for each condition: the observed monotherapies,
      the observed combination, and the simulated effects with no response correlation or
       with partial response correlation *)
      Mono1Median = Median [Mono1SurvivalDistribution [All, 2]]
      Mono2Median = Median [Mono2SurvivalDistribution [All, 2]]
      ComboMedian = Median[ComboSurvivalDistribution[All, 2]]
      Sim1Median = Median[UncorrelatedSamplesOfMonotherapyResponses]
      Sim2Median = Median[PartiallyCorrelatedSamplesOfMonotherapyResponses]
Out[76]= 2.9851
Out[77]= 7.10141
Out[78]= 12.8949
```

```
In[81]:= SurvivalPlot = Plot[{
         SurvivalFunction[EmpiricalDistribution[Mono1SurvivalDistribution[All, 2]]][x],
         SurvivalFunction[EmpiricalDistribution[Mono2SurvivalDistribution[All, 2]]][x],
         SurvivalFunction[EmpiricalDistribution[ComboSurvivalDistribution[All, 2]]][x],
         SurvivalFunction[EmpiricalDistribution[PartiallyCorrelatedSamplesOfMonotherapyResponses]][
          X],
         SurvivalFunction[EmpiricalDistribution[UncorrelatedSamplesOfMonotherapyResponses]][x]
        \{x, 0, 16\}, PlotRange \rightarrow \{\{0, 15\}, \{0, 1.11\}\}, Exclusions \rightarrow None,
        PlotStyle → {Directive[RGBColor[0.8, 0.1, 0.6], AbsoluteThickness[3]],
          Directive[ColorData[3, 4], AbsoluteThickness[3]],
          Directive[ColorData[3, 6], AbsoluteThickness[3]],
          Directive[Black, Dashing[{0.2, 0.2}] AbsoluteThickness[2]],
          Directive[GrayLevel[0.5], AbsoluteThickness[2]]},
        BaseStyle \rightarrow {FontFamily \rightarrow "Arial", FontSize \rightarrow 12},
        FrameStyle → Directive[Black, Thickness[Medium]], Frame → {{True, False}}, {True, False}},
        FrameTicks \rightarrow {{Table[{i, 100 * i, {0, 0.015}}}, {i, 0, 1, 1/5}], None},
          {Table[{i, i, {0, 0.015}}}, {i, 0, 60, 3}], None}},
        FrameLabel → {Style["Progression free survival (months)"], Style["Patients (%)"]},
        Prolog → {Gray, Thickness [Medium], Lighter [Yellow, 0.75], EdgeForm [None],
          Rectangle [{0, 1}, {15, 1.11}],
          Black, Text["Median:", {0.2, 1.03}, {-1, -1}], RGBColor[0.8, 0.1, 0.6],
          Text[ToString[NumberForm[Mono1Median, {3, 1}]], {Mono1Median, 1.03}, {0, -1}],
          Darker[ColorData[3, 4], 0.1], Text[ToString[NumberForm[Mono2Median, {3, 1}]],
           {Mono2Median, 1.03}, {0, -1}], ColorData[3, 6],
          Text[ToString[NumberForm[ComboMedian, {3, 1}]], {ComboMedian, 1.03}, {0, -1}],
          GrayLevel[0.5], Text[ToString[NumberForm[Sim1Median, {3, 1}]], {Sim1Median, 1.0}, {0, 1}],
          Black, Text[ToString[NumberForm[Sim2Median, {3, 1}]], {Sim2Median, 1.0}, {0, 1}],
          AbsoluteThickness[2], RGBColor[0.8, 0.1, 0.6], Line[{{Mono1Median, 1}, {Mono1Median, 1.03}}],
          Darker[ColorData[3, 4], 0.1], Line[{{Mono2Median, 1}, {Mono2Median, 1.03}}],
          GrayLevel[0.5], Opacity[1], Line[{{Sim1Median, 1}, {Sim1Median, 1.03}}], Black,
          Line[{{Sim2Median, 1}, {Sim2Median, 1.03}}], ColorData[3, 6],
          Line[{{ComboMedian, 1}, {ComboMedian, 1.03}}]},
        AspectRatio \rightarrow 1/2, Filling \rightarrow None, FillingStyle -> Directive[Opacity[1], GrayLevel[0.75]],
        ImageSize \rightarrow {{1000}, {250}}, ImagePadding \rightarrow {{60, 10}, {60, 10}}, PlotPoints \rightarrow 500,
        Epilog -> {EdgeForm[Directive[Black, Thickness[Medium]]], White, Opacity[0.7],
          Opacity[1], EdgeForm[None], CapForm["Butt"], AbsoluteThickness[3], AbsolutePointSize[8],
          RGBColor[0.8, 0.1, 0.6], Line[{{0.4, 0.38}, {1, 0.38}}], ColorData[3, 4],
          Line[{{0.4, 0.3}, {1, 0.3}}], ColorData[3, 6], Line[{{0.4, 0.22}, {1, 0.22}}],
          GrayLevel[0.5], Opacity[1], AbsoluteThickness[2], Line[{{0.4, 0.14}, {1, 0.14}}],
          Black, Line[\{\{0.4, 0.06\}, \{1, 0.06\}\}], Black, FontFamily \rightarrow "Arial", FontSize \rightarrow 11,
          Text[Style["Ipilimumab", FontSize \rightarrow 11], {1.15, 0.38}, {-1, 0}],
          Text[Style["Nivolumab", FontSize \rightarrow 11], {1.15, 0.3}, {-1, 0}],
          Text[Style["Combination", FontSize \rightarrow 11], {1.15, 0.22}, {-1, 0}],
          Text[Style["Random sampling (\rho=0)", FontSize \rightarrow 11], {1.15, 0.14}, {-1, 0}],
          Text[Style["Correlated sampling (\rho=0.25)", FontSize \rightarrow 11], {1.15, 0.06}, {-1, 0}]}]
```

```
Figure 1BC code.nb | 17
In[82]:= (*vertical offset of median bar *)
     vo = -0.985;
     SurvivalPlot = Plot[{
         SurvivalFunction[EmpiricalDistribution[Mono1SurvivalDistribution[All, 2]]][x],
         SurvivalFunction[EmpiricalDistribution[Mono2SurvivalDistribution[All, 2]]][x],
         SurvivalFunction[EmpiricalDistribution[ComboSurvivalDistribution[All, 2]]][x],
         SurvivalFunction[EmpiricalDistribution[PartiallyCorrelatedSamplesOfMonotherapyResponses]][
          X],
         SurvivalFunction[EmpiricalDistribution[UncorrelatedSamplesOfMonotherapyResponses]][x]
        }
        \{x, 0, 16\}, PlotRange → \{\{0, 15\}, \{0, 1.11\}\}, Exclusions → None,
       PlotStyle → {Directive[RGBColor[0.8, 0.1, 0.6], AbsoluteThickness[3]],
          Directive[ColorData[3, 4], AbsoluteThickness[3]],
          Directive[ColorData[3, 6], AbsoluteThickness[3]],
          Directive[Black, Dashing[{0.2, 0.2}] AbsoluteThickness[2]],
          Directive[GrayLevel[0.5], AbsoluteThickness[2]]},
       BaseStyle \rightarrow {FontFamily \rightarrow "Arial", FontSize \rightarrow 12},
       FrameStyle → Directive[Black, Thickness[Medium]], Frame → {{True, False}, {True, False}},
        FrameTicks \rightarrow {{Table[{i, 100 * i, {0, 0.015}}}, {i, 0, 1, 1/5}], None},
          {Join[Table[\{i, i, \{0, 0.015\}\}, \{i, 0, 15, 3\}], Table[\{i, , \{0, 0.01\}\}, \{i, 0, 15, 1\}]], None}},
       FrameLabel → {Style["Progression free survival (months)"], Style["Patients (%)"]},
       Prolog → {Gray, Thickness[Medium], Lighter[Yellow, 0.75], EdgeForm[None],
          Rectangle [{0, 1 + vo - 0.02}, {15, 1.11 + vo}],
          Black, Text["Median:", {0.2, 1.03 + vo}, {-1, -1}], RGBColor[0.8, 0.1, 0.6],
          Text[ToString[NumberForm[Mono1Median, {3, 1}]], {Mono1Median, 1.03 + vo}, {0, +vo}],
          Darker[ColorData[3, 4], 0.1], Text[ToString[NumberForm[Mono2Median, {3, 1}]],
           \{Mono2Median, 1.03 + vo\}, \{0, -1\}\}, ColorData[3, 6],
          Text[ToString[NumberForm[ComboMedian, {3, 1}]], {ComboMedian, 1.03 + vo}, {-0.9, -1}],
          GrayLevel[0.5], Text[ToString[NumberForm[Sim1Median, {3, 1}]], {Sim1Median, 1.03 + vo},
           {-0.4, -1}], Black, Text[ToString[NumberForm[Sim2Median, {3, 1}]], {Sim2Median, 1.03 + vo},
           {1, -1}], AbsoluteThickness[2], RGBColor[0.8, 0.1, 0.6],
          Line[{{Mono1Median, 1 + vo - 0.015}, {Mono1Median, 1.03 + vo}}], Darker[ColorData[3, 4], 0.1],
          Line[{{Mono2Median, 1 + vo - 0.015}, {Mono2Median, 1.03 + vo}}], GrayLevel[0.5],
          Opacity[1], Line[{{Sim1Median, 1 + vo - 0.015}, {Sim1Median, 1.03 + vo}}], Black,
          CapForm["Round"], Line[{{Sim2Median, 1 + vo - 0.015}, {Sim2Median, 1.02 + vo}}],
          Line[{{Sim2Median, 1.02 + vo}, {Sim2Median - 0.15, 1.03 + vo}}], ColorData[3, 6],
          Line[{{ComboMedian, 1 + vo - 0.015}, {ComboMedian, 1.02 + vo}}],
          Line[{{ComboMedian, 1.02 + vo}, {ComboMedian + 0.15, 1.03 + vo}}]},
        AspectRatio \rightarrow 1/2, Filling \rightarrow None, FillingStyle -> Directive[Opacity[1], GrayLevel[0.75]],
        ImageSize \rightarrow { {1000}, {250}}, ImagePadding \rightarrow { {60, 10}, {60, 10}}, PlotPoints \rightarrow 500]
     Export[NotebookDirectory[] <> "Figure 1B, ipilimumab plus nivolumab PFS.pdf",
      SurvivalPlot, "PDF"]
          100
           80
           60
```


Plotting the dependence of predicted PFS on correlation

```
In[85]:= (* this function takes as its input an amount of rank randomization,
     and returns a response correlation and predicted median PFS at this level of
      correlation in drug response *)
     PFSvsCorrelation[amountofrankrandomization_] := Module[{},
       SlightlyRandomizedMONO1Distribution =
        Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
           Mono1SurvivalDistribution[i, 2], {i, 1, Length[Mono1SurvivalDistribution]}],
         #1 [1] < #2 [1] &];
       SlightlyRandomizedMONO2Distribution =
        Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
           Mono2SurvivalDistribution[i, 2], {i, 1, Length[Mono2SurvivalDistribution]}],
         #1 [1] < #2 [1] &];
       ResponseCorrelation = SpearmanRho[SlightlyRandomizedMONO1Distribution[All, 2],
         SlightlyRandomizedMONO2Distribution[All, 2]];
       PartiallyCorrelatedSamplesOfMonotherapyResponses =
        Table [Max [ {SlightlyRandomizedMONO1Distribution [i, 2],
           SlightlyRandomizedMONO2Distribution[i, 2]]}], {i, 1, Length[Mono1SurvivalDistribution]}];
       MedianPFS = Median[PartiallyCorrelatedSamplesOfMonotherapyResponses];
       {ResponseCorrelation, MedianPFS}
In[86]:= (* this function takes as its input an amount of rank randomization,
     and returns a response correlation and predicted median PFS at this level of
      correlation in drug response *)
     PFSvsNegativeCorrelation[amountofrankrandomization_] := Module[{}},
       SlightlyRandomizedMONO1Distribution =
        Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
           Mono1SurvivalDistribution[i, 2], {i, 1, Length[Mono1SurvivalDistribution]}],
         #1 [1] < #2 [1] &];
       SlightlyRandomizedMONO2Distribution =
        Sort[Table[{i + RandomReal[{-amountofrankrandomization, amountofrankrandomization}],
            Reverse[Mono2SurvivalDistribution][i, 2]]}, {i, 1, Length[Mono2SurvivalDistribution]}],
         #1[1] < #2[1] &];
       ResponseCorrelation = SpearmanRho[SlightlyRandomizedMONO1Distribution[All, 2],
         SlightlyRandomizedMONO2Distribution[All, 2]];
       PartiallyCorrelatedSamplesOfMonotherapyResponses =
        Table[Max[{SlightlyRandomizedMONO1Distribution[i, 2],
            SlightlyRandomizedMONO2Distribution[[i, 2]]}], {i, 1, Length[Mono1SurvivalDistribution]}];
       MedianPFS = Median[PartiallyCorrelatedSamplesOfMonotherapyResponses];
       {ResponseCorrelation, MedianPFS}
      ]
In[87]:= (* executing the above function over a wide range of rank randomization values
      (log-distributed to achieve the necessary range) *)
     manycorrelations = Table [PFSvsCorrelation[10<sup>i</sup>], {i, 0., 5.5, 0.01}];
```

```
In[88]:= (* executing the above function over a wide range of rank randomization values
        (log-distributed to achieve the necessary range) *)
      manynegativecorrelations = Table [PFSvsNegativeCorrelation[10^i], \{i, 0., 5.5, 0.01\}];
In[89]:= joinedcorrelations = Join[manycorrelations, manynegativecorrelations];
In[90]:= (* fitting a linear-plus-sigmoidal curve to the relationship between response
         correlation and PFS *)
       nh = 2;
      model = b - h * \frac{(x + 1)^{nh}}{(x + 1)^{nh} + k^{nh}} - m * x;
       sigmoidfit50 = NonlinearModelFit[joinedcorrelations, model, {{b, 17}, {h, 5}, {k, 1}, {m, 8}}, x]
       Show [
        ListPlot[joinedcorrelations, PlotRange → {0, 20}, PlotStyle → Red],
        Plot[sigmoidfit50[x], \{x, -1, 1\}, PlotRange \rightarrow All, PlotStyle \rightarrow Gray],
        Frame → True, FrameLabel → {"Response correlation", "Median PFS"}]
                      20.1022 + 3.30831 \times -\frac{49.2589 (1 + x)^2}{7.91918 + (1 + x)^2}
Out[92]= FittedModel
         20
```


In[94]:= Mono1Median = Quantile [Mono1SurvivalDistribution[All, 2], 0.5] Mono2Median = Quantile[Mono2SurvivalDistribution[All, 2], 0.5] ComboMedian = Quantile[ComboSurvivalDistribution[All, 2], 0.5]

Out[94]= **2.9851**

Out[95]= 7.10141

Out[96]= 12.8949

Export[NotebookDirectory[] <> "Figure 1C, Median PFS vs Correlation.pdf",
 PFSvsCorrelationPlot, "PDF"]


```
In[99]:= (* supplementary figure: relationship between median PFS and correlation,
      showing each simulation point *)
      Show [
        Plot[{sigmoidfit50[x], ComboMedian, Mono2Median, Mono1Median}, {x, 0, 1},
         PlotStyle → {Directive[GrayLevel[0.25], AbsoluteThickness[2]],
           Directive[Dashing[{0.04, 0.05}], ColorData[3, 6], AbsoluteThickness[2]],
           Directive[Dashing[{0.04, 0.05}], ColorData[3, 4], AbsoluteThickness[2]],
           Directive[Dashing[{0.04, 0.05}], RGBColor[0.8, 0.1, 0.6], AbsoluteThickness[2]]},
         Filling → None, FillingStyle → Directive[ColorData[3, 6], Opacity[0.3]],
         PlotRange \rightarrow {{-0.03, 1.0}, {0, 15}}, Frame \rightarrow {{True, False}}, {True, False}},
         FrameStyle → Directive[Black, Thickness[Medium]], Axes → False,
         BaseStyle → {FontFamily → "Arial", FontSize → 12}, AspectRatio \rightarrow 1, ImageSize \rightarrow {{1000}, {170}},
         ImagePadding \rightarrow \{ \{45, 10\}, \{45, 10\} \},
         FrameTicks →
          {Join[Table[{N[i], i, {0, 0.04}}, {i, -1, 1, 1/2}],}
              Table [\{N[i], \{0, 0.025\}\}, \{i, -1, 1, 1/10\}\}] /. \{1/2 \rightarrow "0.5", -1/2 \rightarrow "-0.5"\},
           Table [\{i, i, \{0, 0.035\}\}, \{i, 0, 20, 3\}]\},
         FrameLabel → {"Correlation in response ", "Median PFS (months)"}]
        ListPlot[manycorrelations, PlotRange \rightarrow \{\{-1, 1\}, \{0, 18\}\},
         Epilog → {Dashing[{0.05, 0.03}], ColorData[3, 6], AbsoluteThickness[2],
           Line[{{-1, ComboMedian}, {1, ComboMedian}}], ColorData[3, 4],
           Line[{{-1, Mono2Median}, {1, Mono2Median}}], RGBColor[0.8, 0.1, 0.6],
           Line[{{-1, Mono1Median}, {1, Mono1Median}}]},
         PlotStyle → Directive [GrayLevel[0.5], Opacity[0.7], AbsolutePointSize[3]],
         Frame → {{True, False}}, {True, False}}, FrameStyle → Directive[Black, Thickness[Medium]],
         Axes \rightarrow False, BaseStyle \rightarrow {FontFamily \rightarrow "Arial", FontSize \rightarrow 12}, AspectRatio \rightarrow 1,
         ImageSize \rightarrow \{\{1000\}, \{200\}\},\
         FrameTicks \rightarrow {Table[{i, i, {0.02, 0}}}, {i, -1, 1, 1/2}], Table[{i, i, {0.02, 0}}, {i, 0, 20, 3}]},
         FrameLabel → {"Correlation in response", "Median PFS"}]
      ]
      Export[NotebookDirectory[] <> "Supplementary Figure S10, Median PFS vs Correlation.pdf",
        %, "PDF"]
       Median PFS (months)
           9
           6
Out[99]=
```

0.5

Correlation in response