HOCHSCHULE LUZERN

Informatik
FH Zentralschweiz

Relationale Algebra - Übung I

Prof. Dr. Josef F. Bürgler

I.BA_DBS, Semesterwoche 3

Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. **Abgabetermin: eine Woche nach Verteilung der Übung!** Die Übungen können gruppenweise abgegeben werden (Einteilung wie bei Dr. M. Kaufmann).

Aufgabe 1

Bestimmen sie die Kreuzprodukte $A \times B$ und $B \times A$ der beiden Mengen $A = \{b, z\}$ und $B = \{3, 1, 5\}$. Gilt das Kommutativgesetz, d.h. gilt $A \times B = B \times A$? Überlegen sie sich, wann das Kommutativgesetz gilt. Machen sie dazu ein möglichst kleines und damit einfaches Beispiel?

```
 A \times B = \{(b,3), (b,1), (b,5), (z,3), (z,1), (z,5)\} \\ B \times A = \{(3,b), (3,z), (1,b), (1,z), (5,b), (5,z)\} \\ A = \{a, b\} B = \{a, b\} Fazit: Falls A = B \}
```

Aufgabe 2

Bestimmen sie mit den Mengen A und B aus Aufgabe 1 das Kreuzprodukt $A \times A \times B$. Untersuchen sie, welche der folgenden Elemente im Kreuzprodukt liegen: (b, z, 1), (z, z, 5) und (1, z, 1). Liegt ein Tripel (oder 3-Tupel) nicht in $A \times A \times B$ geben sie ein Kreuzprodukt an, welches dieses Tripel enthält.

```
A \times A \times B = \{(b, b, 3), (b, b, 1), (b, b, 5), (b, z, 3), (b, z, 1), (b, z, 5), (z, b, 3), (z, b, 1), (z, b, 5), (z, z, 3), (z, z, 1), (z, z, 5)\}
```

Aufgabe 3

Wie viele Relationen gibt es auf einer Menge mit *n* Elementen?

2^(n^2)

Aufgabe 4

Ist die Relation $R = \{(x, y) | x \in \mathbb{R} \land y = 3x \in \mathbb{R} \}$ eine Funktion? Begründen sie die Antwort! Falls R eine Funktion ist, Wie lautet dann die Funktion in der Schreibweise $f_R : A \to B$, $x \mapsto y = f(x)$.

```
Ja, ist eine Funktion, da es eine lineare Gerade repräsentiert. f(x) = 3x = y
```

Aufgabe 5

```
\begin{aligned} &R1 = \{(1,1),(1,2),(1,3),(1,4),\dots,(2,2),(2,4),(2,6), \dots\} \\ &R2 = \{(1,1),(2,1),(3,1)\dots(2,2),(4,2),(6,2),\dots\} \end{aligned}
```

Sei R_1 die Relation "teilt" ¹ und R_2 die Relation "ist ein Vielfaches von" ² auf der Menge der ganzen Zahlen \mathbb{Z} . Bestimmen sie dann $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 \setminus R_2$ und $R_2 \setminus R_1$.

```
R1 u R2 = {(a, b) | a | b | ODER Ek | Z(a=k\cdot b)}
R1 n R2 = {(a, b) | a | b | UND Ek | Z(a=k\cdot b)}
R2 \ R1 = R2 \ (R2 n R1)
```

Aufgabe 6

Sei R die Relation auf der Menge der Menschen, bestehend aus Paaren (a, b) wobei a ein Elternteil von b ist. Sei S die Relation auf der Menge der Menschen, bestehend aus Paaren (b, c) wobei b und c Geschwister sind. Was sind dann $S \circ R$ und $R \circ S$?

(a,c) {}

Aufgabe 7

Sei R die Relation auf der Menge aller Menschen so, dass $(a, b) \in R$ falls a ein Elternteil von b ist. Wie kann man dann die Relationen R^2 und R^3 mit Worten beschreiben?

Grosseltern (R^2) & Urgrosseltern (R^3)

Aufgabe 8

Schleife auf sich selber

Welche Eigenschaften müssen die DiGraphen von Relationen haben, wenn sie reflexiv, symmetrisch oder transitiv sein sollen.

Bidirektionale Verbindungen

Falls 1->2 und 2->4 ist, dann muss 1-> 4 verbunden sein

Aufgabe 9

Definieren sie auf der Menge $A = \{1, 2, 3, 4\}$ eine Äquivalenzrelation und zeichnen sie deren DiGraphen. Versuchen sie Regeln zu finden, die es ihnen erlauben aus dem DiGraphen einer Relation abzulesen, ob es sich um eine Äquivalenzrelation handelt!

Viel Vergnügen!

¹Genauer: $R_1 = \{(a, b) | a | b\} \subset \mathbb{Z}^2$

²Genauer: $R_2 = \{(a, b) | \exists k \in \mathbb{Z} (a = k \cdot b)\} \subset \mathbb{Z}^2$