Singular Value Decomposition (SVD)

Semua matriks dapat diuraikan menjadi 3 matriks baru,

$$SVD(A) = U\Sigma U^T$$

$$A = input matrix$$

U = orthogonal matrix (m x m), left singular values $\Sigma = \text{diagonal singular values matrix (m x n)}$

V = orthogonal matrix (n x n), right singular values

Orthogonal Matrix

Matrix yang kolom dan barisnya merupakan vektor orthonormals

$$Q^TQ = QQ^T = I$$
, where $Q^T = Q^{-1}$

Suatu vektor dapat dikatakan orthonormal apabila memiliki magnitude = 1 dan dot product (\cdot) = 0.

Contoh pada matriks rotasi:

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Matriks rotasi merupakan orthogonal karena $RR^T=I$, dan $R^T=R^{-1}$

Singular Values

Singular values pada dasarnya merupakan akar dari eigenvalues $(\lambda_1,\lambda_2,\lambda_3,\ldots,\lambda_n)$ dari A^TA , maka singular valuesnya adalah

 $\sigma_1=\sqrt{\lambda}_1,\sigma_2=\sqrt{\lambda}_2,\sigma_3=\sqrt{\lambda}_3,\ldots,\sigma_n=\sqrt{\lambda}_n$. Matriks A^TA merupakan matriks symmetric n imes n.

Matriks diagonal Σ , memiliki urutan σ_n dari paling besar ke paling kecil dan ≥ 0 .

Rank Matrix

Rank matriks merupakan nilai kolom atau baris yang independen secara linear.

Contoh:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, R_2 = R_2 - 4R_1$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}, R_3 = R_3 - 7R_1$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}, R_2 = \frac{R_2}{R_3}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -6 & -12 \end{bmatrix}, R_3 = R_3 + 6R_3$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -6 & -12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Maka, jumlah rank dari matriks A adalah 2 (non-zeros baris atau kolom).

How To

- 1. Hitung A^TA adalah matriks simetrik, maka eigenvectornya orthogonal. Untuk mendapatkan matriks V^T
- 2. Hitung eigenvalues (λ) dengan $\det(A^TA-\lambda I)=0$, maka diperoleh eigenvalues $\lambda_1,\lambda_2,\ldots,\lambda_n$
- 3. Hitung eigenvector (v) dengan menggunakan $\lambda_{1:n}$. Agar magnitude eigenvector = 1, tiap element pada eigenvector dibagi dengan $\sqrt{v_i^2+v_j^2+\ldots+v_n^2}$
- 4. Hitung nilai singular value $\sigma_i = \sqrt{\lambda_i}$
- 5. Hitung langkah 1 sampai 3, dengan AA^T untuk mendapatkan matriks U