Chapitre 4 : Condensateurs

I Définitions

A) Condensateur 1) Définition

C'est un ensemble de deux conducteurs en influence totale (c'est-à-dire que toute ligne de champ d'un des conducteurs aboutit sur l'autre)

2) Réalisation

• Théorique :

• Pratique :

On a des effets de bord:

On peut les minimiser en prenant $e \ll d$ (d: distance caractéristique de la plaque), ou faire un anneau de garde :

Cela permet en quelque sorte de prolonger le condensateur, et ainsi les effets de bord ne se feront sentir qu'à un endroit où ce n'est plus gênant.

B) Capacité

1) Définition

Pour la surface en pointillés rouge, on a $\phi = 0$. Donc $Q_1 + Q_2 = 0$

Et $Q_1 = C(V_1 - V_2)$; C: capacité du condensateur.

(Même démonstration que dans le chapitre précédent en remplaçant V_2 par

2) Propriétés

 V_{∞})

- Unité : Farad.
- C'est une caractéristique géométrique.
- La valeur de C est positive.

II Condensation des charges

A) Intérêt du condensateur

1) Avec un conducteur seul dans l'espace

On part du conducteur non chargé.

On apporte une première charge.

La deuxième : plus dur car repoussée par la première.

La troisième : encore plus dur...

Quand le condensateur est chargé, on a V = E, $Q = 4\pi\varepsilon_0 RE$

Avec R = 1 cm, E = 1 kV, on obtient $Q = 10^{-9} \text{C}$, ce qui est très faible.

2) Avec un condensateur

C'est moins difficile de le charger, lorsque les plaques sont proches.

On a
$$Q = C(V_1 - V_2) = CE = 4\pi\epsilon_0 \frac{r_1 r_2}{r_2 - r_1} E$$
 (montré après)

Donc Q augmente beaucoup plus lorsque $r_2 - r_1$ est assez petit.

B) Augmentation de *C*.

On peut augmenter C en :

- Diminuant l'écart entre les conducteurs
- Augmentant la surface
- Mettant un milieu diélectrique ($\varepsilon_0 \to \varepsilon_0 \varepsilon_r > \varepsilon_0$)

III Association de condensateurs

A) Parallèle

Donc l'association en parallèle de deux condensateurs équivaut à un condensateur unique de capacité la somme des deux autres.

B) Série

$$\frac{A_{1}}{A} \begin{vmatrix} A_{2} B_{1} \\ B \end{vmatrix} = \frac{B_{2}}{B}$$
On a $Q_{A_{1}} = -Q_{A_{2}} = C_{A}(V_{A_{1}} - V_{A_{2}}), Q_{B_{1}} = -Q_{B_{2}} = C_{B}(V_{B_{1}} - V_{B_{2}})$
Donc comme $V_{A_{2}} = V_{B_{1}},$

$$\frac{Q_{A_{1}}}{C_{A}} + \frac{Q_{B_{1}}}{C_{B}} = -\left(\frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{B_{2}}}{C_{B}}\right) = V_{A_{1}} - V_{B_{2}} = V_{1} - V_{2}$$

$$\frac{Q_{A_{1}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{A_{2}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{A_{2}}}{C_{B}} = \frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{A_{2}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{A_{2}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{A_{2}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A}} + \frac{Q_{A_{2}}}{C_{A}} = \frac{Q_{A_{2}}}{C_{A$$

Dans l'espace entouré, sous l'hypothèse que la charge totale est nulle, et en supposant aussi que la charge est portée essentiellement par les deux armatures, on a alors $Q_{A_2} = -Q_{B_1}$, et donc :

$$Q_{1}\left(\frac{1}{C_{A}} + \frac{1}{C_{B}}\right) = V_{1} - V_{2}$$
Soit $\frac{1}{C} = \frac{1}{C_{A}} + \frac{1}{C_{B}}$.

Remarque : $C \le \inf(C_A, C_B)$

IV Condensateurs usuels

A) Condensateur plan

- On fait en sorte de pouvoir négliger les effets de bord (anneau de garde...)

- Ainsi, V ne dépend que de z.

Le champ \vec{E} est uniforme :

$$\vec{E} = -\vec{\nabla} V = E_z \vec{u}_z \, .$$

Comme $\vec{\nabla} \cdot \vec{E} = 0$, on a $\frac{dE_z}{dz} = 0$.

D'où
$$\vec{E} = \frac{\sigma_1}{\varepsilon_0} \vec{u}_z$$

- On a
$$\int_{1}^{2} \vec{E} \cdot d\vec{l} = V_{1} - V_{2}$$

Donc
$$\frac{\sigma_1}{\varepsilon_0}e = V_1 - V_2$$

Soit
$$Q_1 = \frac{\mathcal{E}_0 S}{e} (V_1 - V_2)$$

Donc $C = \frac{\mathcal{E}_0 S}{e}$

Donc
$$C = \frac{\varepsilon_0 S}{e}$$

B) Condensateur sphérique

Par symétrie sphérique, V ne dépend que de r.

Donc $\vec{E} = E(r)\vec{u}_r = \frac{Q_1}{4\pi\varepsilon_r r^2}\vec{u}_r$ (en utilisant le théorème de Gauss)

On a
$$\int_{1}^{2} \vec{E} \cdot d\vec{l} = V_{1} - V_{2}$$

Donc
$$\frac{Q_1}{4\pi\varepsilon_0} \int_1^2 \frac{dr}{r^2} = V_1 - V_2$$
, soit $\frac{Q_1}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = V_1 - V_2$

Donc
$$C = 4\pi\varepsilon_0 \frac{R_1 R_2}{R_2 - R_1}$$

Remarque:

Si $e \ll R_2 - R_1$, on a $C = \varepsilon_0 \frac{4\pi R^2}{e} = \varepsilon_0 \frac{S}{e}$ et on retrouve un condensateur plan

C) Condensateur cylindrique

On fait aussi en sorte de pouvoir négliger les effets de bords.

Par symétrie de révolution et invariance par translation verticale, V ne dépend que de r (des coordonnées cylindriques)

Donc
$$\vec{E} = E(r)\vec{u}_r = \frac{Q_1}{2\pi . h \varepsilon_0 r} \vec{u}_r$$

On a
$$\int_{1}^{2} \vec{E} \cdot d\vec{l} = V_{1} - V_{2}$$

Donc
$$\frac{Q_1}{2\pi h \varepsilon_0} \int_1^2 \frac{dr}{r} = V_1 - V_2$$
, soit $Q_1 = \frac{2\pi \varepsilon_0 h}{\ln \frac{R_2}{R_1}} (V_1 - V_2)$

Donc
$$C = \frac{2\pi\varepsilon_0 h}{\ln\frac{R_2}{R_1}}$$

Si
$$R_2 = R_1 + e$$
 avec $\frac{e}{R_1} << 1$, on a

$$\ln \frac{R_2}{R_1} = \ln \left(1 + \frac{e}{R_1} \right) \approx \frac{e}{R_1}$$

Donc ici encore
$$C = \varepsilon_0 \frac{2\pi . R_1 h}{e} = \frac{\varepsilon_0 S}{e}$$

V Compléments

A) Condensateur plan-conique

1) Méthode 1

• Potentiel:

Déjà, par symétrie de révolution, V ne dépend pas de φ (on se place en coordonnées sphériques)

On admet que V ne dépend pas non plus de r, c'est-à-dire que les équipotentielles sont des cônes de révolution.

Ceci est assez naturel, puisque c'est déjà vrai pour un angle de α et un angle de $\frac{\pi}{2}$, et on voit mal comment les équipotentielles pourraient varier autrement. Cette hypothèse sera validée par le résultat, montré dans la méthode 2, sans faire cette hypothèse.

• Champ:

On a
$$\vec{E} = -\vec{\nabla}V = -\frac{1}{r}\frac{dV}{d\theta}\vec{u}_{\theta} = E_{\theta}\vec{u}_{\theta}$$

 $E_{\theta}(r, \frac{\pi}{2}) = \frac{-\sigma_{1}}{\epsilon} (\sigma_{1} \text{ dépend de } r)$

On prend un tube de champ s'appuyant sur un cerceau partant du plan, centré en 0, et finissant à l'angle θ ($\theta > \alpha$):

(On prend le début de la surface légèrement en dessous du plan, pour contenir des charges)

On a, d'après le théorème de Gauss :

$$-E_{\theta}(r,\theta) \times 2\pi \cdot r \sin \theta \cdot dr = \frac{\sigma_1(r) \times 2\pi \cdot r \cdot dr}{\varepsilon_0}$$

(Le flux est nul partout sauf en haut)

Donc
$$E_{\theta}(r,\theta) = \frac{-\sigma_1(r)}{\varepsilon_0 \sin \theta}$$

• Circulation de \vec{E} :

$$\begin{split} & \int_{1}^{2} \vec{E} \cdot d\vec{l} = V_{1} - V_{2} \\ & \text{Soit } \int_{1}^{2} E_{\theta} r \cdot d\theta = V_{1} - V_{2} \\ & \frac{\sigma_{1}(r) \times r}{\varepsilon_{0}} \underbrace{\int_{1}^{2} \frac{d\theta}{\sin \theta}}_{\left[\ln(\tan \frac{\theta}{2})\right]_{x}^{\frac{\theta}{2}}} = V_{1} - V_{2} \end{split}$$

Donc
$$V_1 - V_2 = \frac{-\sigma_1(r) \times r}{\varepsilon_0} \ln(\tan \frac{\alpha}{2})$$

Soit
$$\sigma_1(r) = \frac{-\mathcal{E}_0(V_1 - V_2)}{\ln(\tan\frac{\alpha}{2})} \times \frac{1}{r}$$

On a ainsi
$$Q_1 = \int_0^R \sigma_1(r) \times 2\pi r dr = \frac{-\varepsilon_0(V_1 - V_2)}{\ln(\tan\frac{\alpha}{2})} \times 2\pi R$$

Donc
$$C = \frac{-2\pi\varepsilon_0 R}{\ln(\tan\frac{\alpha}{2})}$$

$$(C > 0 \text{ car } \alpha < \frac{\pi}{2})$$

2) Méthode 2

On note V_1 le potentiel du plan, V_2 celui du cône.

Alors:

$$\begin{cases} \vec{\nabla}^2 V = 0 \\ V = V_1 \text{ si } \theta = \frac{\pi}{2} \\ V = V_2 \text{ si } \theta = \alpha \end{cases}$$

Ici, toujours par symétrie, V est indépendant de φ (mais on n'admet plus que V ne dépend pas de r)

On cherche une solution par séparation des variables :

$$V(r,\theta) = \alpha(r)\beta(\theta)$$

On trouve alors une solution vérifiant $\alpha = \text{cte}$, qui est la seule possible d'après Dirichlet.

B) Résistance de fuite d'un condensateur sphérique

Au lieu d'avoir du vide entre les deux conducteurs, on met un milieu diélectrique. Ainsi, on a une meilleure capacité.

1) Diélectrique parfait

Diélectrique LHI

• Définition de *C* :

On pose
$$C = \frac{Q_{1,\text{libre}}}{V_1 - V_2}$$

• Expression de *C* :

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_{\text{libre}}}{\varepsilon_0 \varepsilon_r} \; , \; \vec{\nabla} \wedge \vec{E} = \vec{0}$$

Donc on a la même chose que dans le vide en remplaçant \mathcal{E}_0 par $\mathcal{E}_0\mathcal{E}_r$

On n'a donc pas à tenir compte de la polarisation pour calculer la capacité C du condensateur (mais il faut mettre $\varepsilon_0 \varepsilon_r$).

2) Résistance de fuite

A part le vide, tout matériau est, même légèrement, conducteur. On a donc quand même une petite conductivité σ :

A l'instant initial, $Q_1 = Q_{1_0}$, $Q_2 = -Q_{1_0}$

On peut modéliser le milieu par une résistance :

On cherche la résistance r, appelée résistance de fuite.

Stratégie :

On va utiliser la loi d'Ohm (locale) : $\vec{j} = \sigma \vec{E}$

- Champ électrique :
- \vec{E} n'est pas un champ électrostatique.
- On a $\vec{E} = E(r,t)\vec{u}_r$
- D'après le théorème de Gauss,

 $E \times 4\pi r^2 = \frac{Q_1}{\varepsilon_0 \varepsilon_r}$ (les charges dans le diélectrique sont prises en compte par

 \mathcal{E}_r)

Donc $\vec{E} = \frac{Q_1}{4\pi\epsilon_0 \epsilon_r r^2} \vec{u}_r$ (correspond à l'approximation des régimes quasi permanents : ARPQ)

• Tension:

$$V_1 - V_2 = \int_1^2 \vec{E} \cdot d\vec{l} = \frac{Q_1(t)}{4\pi\varepsilon_0\varepsilon_r} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{Q_1(t)}{C}$$

• Intensité :

$$I = \oiint \vec{j} \cdot d\vec{S} = \oiint \sigma \vec{E} \cdot d\vec{S} = \sigma \oiint \vec{E} \cdot d\vec{S} = \sigma \underbrace{Q_1(t)}_{\mathcal{E}_{\circ}\mathcal{E}_{-}}$$

• Résistance :

On a
$$V_1 - V_2 = rI$$

Donc
$$r = \frac{\mathcal{E}_0 \mathcal{E}_r}{\sigma.C}$$
, ou $r.C = \frac{\mathcal{E}_0 \mathcal{E}_r}{\sigma}$

Ce résultat s'applique à n'importe quel condensateur.

3) Décharge du condensateur

$$\underbrace{\begin{array}{c|c}U=V_1-V_2\\Q_1\\ \hline \end{array}}_{I}-Q_1$$

On a
$$I = \frac{dQ_1}{dt}$$
, et $Q_1 = C(V_1 - V_2) = RCI$. Donc $I = -RC\frac{dI}{dt}$

Ou
$$Q_1 = -RC \frac{dQ_1}{dt}$$
, donc $Q_1 = Q_{1_0} e^{-t/RC}$; le condensateur se décharge avec

une constante de temps $\tau = \frac{\mathcal{E}_0 \mathcal{E}_r}{\sigma}$.

C) Condensateur diédrique

1) Equipotentielles

Par symétrie, le plan médiateur est un plan équipotentiel. Puis par dichotomie, tout plan équi- θ est une équipotentielle. Donc $V = V(\theta)$

2) Champ

On a
$$\vec{E} = -\vec{\nabla}V = -\frac{1}{r}\frac{dV}{d\theta}\vec{u}_{\theta} = -\frac{1}{r}f(\theta)\vec{u}_{\theta}$$

Théorème de Gauss :

On n'a du flux qu'à travers le couvercle :

$$\delta\phi = E(r,\theta)dS = \frac{\sigma_1 dS}{\varepsilon_0}$$

Donc
$$E(r, \theta) = \frac{\sigma_1}{\varepsilon_0}$$

Donc
$$f(\theta) = \frac{\sigma_1 r}{\varepsilon_0} (= \text{cte})$$

3) Capacité

On a
$$\frac{dV}{d\theta} = \frac{-\sigma_1 r}{\varepsilon_0}$$

Donc
$$V_1 - V_2 = \frac{\sigma_1 r}{\varepsilon_0} \alpha$$
, soit $\sigma_1 = \frac{\varepsilon_0}{\alpha} \frac{1}{r} (V_1 - V_2)$

Puis
$$Q_1 = \iint \sigma_1 dS = \int_a^b \frac{\mathcal{E}_0}{\alpha} \frac{1}{r} (V_1 - V_2) h dr = \underbrace{\frac{\mathcal{E}_0 h}{\alpha} \ln \frac{b}{\alpha}}_{C} (V_1 - V_2)$$