

IFWO

RAW SEQUENCE LISTING

DATE: 08/04/2004

PATENT APPLICATION: US/10/723,147

TIME: 08:28:23

```
1 <110 > APPLICANT: Beraud, Christophe
      2
             Craven, Andrew
             Yu, Ming
      3
             Sakowicz, Roman
      4
              Patel, Umesh A.
             Davies, Katherine A.
      7 <120> TITLE OF INVENTION: NOVEL MOTOR PROTEINS AND METHODS FOR THEIR USE
      8 <130> FILE REFERENCE: 020552-001410US
      9 <140> CURRENT APPLICATION NUMBER: US/10/723,147
     10 <141> CURRENT FILING DATE: 2003-11-25
     11 <150> PRIOR APPLICATION NUMBER: US/09/883,096
     12 <151> PRIOR FILING DATE: 2001-06-15
     13 <150> PRIOR APPLICATION NUMBER: US 09/594,655
     14 <151> PRIOR FILING DATE: 2000-06-15
                                                                FNTERB
     15 <160> NUMBER OF SEQ ID NOS: 6
    16 <170> SOFTWARE: PatentIn Ver. 2.1
    18 <210> SEQ ID NO: 1
    19 <211> LENGTH: 4108
    20 <212> TYPE: DNA
    21 <213> ORGANISM: Artificial Sequence
    22 <220> FEATURE:
    23 <223> OTHER INFORMATION: Nucleic acid sequence of human kinesin motor
             protein gene HsKip3a (Figure 1).
     25 <223> OTHER INFORMATION: Description of Artificial Sequence: HsKip3a gene.
W--> 26 < 400 > 1
    27
             geggeegega atteggeace aggggegete teteceggtg tgggtaetge tgtetgtggt 60
    28
             gtggctgtgg gacccgtgag caagcagcga cgccagcggc ggagaaccga cgaaaggtgt 120
    29
             caccacagtg atggcagtgg aggacagcac gctgcaagta gtggtacggg tgcggccccc 180
    30
             cacccctcgg gagctggaca gtcagcggcg gccagtggtt caggtggtgg acgagcgggt 240
    31
             getggtgttt aaccetgagg ageeegatgg agggtteeet ggeetgaaat ggggtggeac 300
    32
             ccatgatggc cccaagaaga agggcaaaga cctgacgttt gtctttgacc gggtctttgg 360
    33
             cgaggcggcc acccaacagg acgtgttcca gcacaccacg cacagcgtcc tggacagctt 420
    34
             cctccagggc tacaactgct cagtgtttgc ctacggggcc accggggctg ggaagacaca 480
    35
             caccatgctg ggaagggagg gggaccccgg catcatgtac ctgaccaccg tggaactgta 540
    36
             caggegeetg gaggeeegee ageaggagaa geaettegag gtgeteatea getaceagga 600
    37
             ggtgtataat gaacagatcc atgacctcct ggagcccaag gggccccttg ccatccgcga 660
    38
             ggaccccgac aagggggtgg tggtgcaagg actttctttc caccagccag cctcagccga 720
    39
             gcagctgctg gagatactga ccagggggaa ccgtaaccgc acgcagcacc ccactgatgc 780
    40
             caacgogact tecteceget eccatgocat ettecagate tttgtgaage ageaggaceg 840
    41
             ggttccagga ctgacccagg ctgtccaggt ggccaagatg agcctgattg acctggctgg 900
             ctcagagcgg gcatccagca cccatgcgaa gggggagcgg ctgcgggagg gggccaacat 960
    42
    43
             caacegetet etgetggege teateaaegt eeteaatgee ttggeegatg caaagggeeg 1020
    44
             caagacccat gtgccctacc gggacagcaa actgacccgc ctgctcaaaq actccctcgg 1080
```

RAW SEQUENCE LISTING DATE: 08/04/2004 PATENT APPLICATION: US/10/723,147 TIME: 08:28:23

45	gggcaactgc	cgcacagtga	tgatcgctgc	catcagcccc	tccaqcctqa	cctacgagga	1140
46			,			cgctgaagag	
47						aacagctcca	
48						gccagccccc	
49						ttcccagctc	
50						cagggcctag	
51						tggaagggaa	
52						aggaggttcc	
53						gcctgaccct	
54						accgttctaa	
55						tccaagcagc	
56						tggtgcaaga	
57						ggggggcacc	
58						gcccagagcc	
59						gcccctgca	
60						gatggcccat	
61						cctcaaagcg	
62						ctctgcctga	
63						cccctgcca	
64						gcccttccgc	
65						ccacctttga	
66						gggacaaaat	
67						tgcccctgtt	
68						gcaagaagaa	
69						tccccagcag	
70						gtcccctgtg	
71						tctcagcagg	
72						gtgtcctaac	
73						caggagctgg	
74						ttaacatccc	
75						tcagcttctt	
76						tttggtggtt	
77						ggctggagtg	
78						attctcctgc	
79						taattttcgt	
80						tcctgacctc	
81						gctaccacgc	
82						tttttttgag	
83						gctcactgca	
84						gctgggacta	
85						ggggtttcac	
86						cctcccaaag	
87						tgatgccctc	
88						ggccccacgg	
89						agtcgcggct	
90						tccccaacca	
91						gacagcttta	
92					_	taaaggggaa	
93						atagccttct	

RAW SEQUENCE LISTING

DATE: 08/04/2004 PATENT APPLICATION: US/10/723,147 TIME: 08:28:23

```
94
            gateetttat ttetgeatat atatatagat atatacatat atttttggta taacaataaa 4080
   95
            ccgtctccat ccttgggaaa aaaaaaaa
                                                                                4108
   97 <210> SEQ ID NO: 2
   98 <211> LENGTH: 864
   99 <212> TYPE: PRT
   100 <213> ORGANISM: Artificial Sequence
   101 <220> FEATURE:
   102 <223> OTHER INFORMATION: Amino acid sequence encoded by human kinesin motor
             protein gene HsKip3a (Figure 1).
   104 <223> OTHER INFORMATION: Description of Artificial Sequence: Amino acid
   105
             sequence of HsKip3a.
-> 106 <400> 2
   107
             Met Ala Val Glu Asp Ser Thr Leu Gln Val Val Arg Val Arg Pro
   108
             Pro Thr Pro Arg Glu Leu Asp Ser Gln Arg Arg Pro Val Val Gln Val
   109
   110
                                               25
   111'
             Val Asp Glu Arg Val Leu Val Phe Asn Pro Glu Glu Pro Asp Gly Gly
   112
             Phe Pro Gly Leu Lys Trp Gly Gly Thr His Asp Gly Pro Lys Lys
   113
   114
                                       55
   115
             Gly Lys Asp Leu Thr Phe Val Phe Asp Arg Val Phe Gly Glu Ala Ala
   116
                                  70
                                                       75
            Thr Gln Gln Asp Val Phe Gln His Thr Thr His Ser Val Leu Asp Ser
   117
   118
                                                   90
   119
             Phe Leu Gln Gly Tyr Asn Cys Ser Val Phe Ala Tyr Gly Ala Thr Gly
   120
                         100
                                              105
             Ala Gly Lys Thr His Thr Met Leu Gly Arg Glu Gly Asp Pro Gly Ile
   121
   122
                                          120
                                                              125
             Met Tyr Leu Thr Thr Val Glu Leu Tyr Arg Arg Leu Glu Ala Arg Gln
   123
   124
                                      135
   125
             Gln Glu Lys His Phe Glu Val Leu Ile Ser Tyr Gln Glu Val Tyr Asn
   126
                                                      155
   127
             Glu Gln Ile His Asp Leu Leu Glu Pro Lys Gly Pro Leu Ala Ile Arg
   128
                                                  170
  129
             Glu Asp Pro Asp Lys Gly Val Val Val Gln Gly Leu Ser Phe His Gln
  130
   131
             Pro Ala Ser Ala Glu Gln Leu Leu Glu Ile Leu Thr Arg Gly Asn Arg
  132
                                         200
  133
             Asn Arg Thr Gln His Pro Thr Asp Ala Asn Ala Thr Ser Ser Arg Ser
  134
                                     215
  135
             His Ala Ile Phe Gln Ile Phe Val Lys Gln Gln Asp Arg Val Pro Gly
  136
                                 230
                                                      235
             Leu Thr Gln Ala Val Gln Val Ala Lys Met Ser Leu Ile Asp Leu Ala
  137
  138
                                                  250
  139
            Gly Ser Glu Arg Ala Ser Ser Thr His Ala Lys Gly Glu Arg Leu Arg
  140
                         260
                                              265
  141
            Glu Gly Ala Asn Ile Asn Arq Ser Leu Leu Ala Leu Ile Asn Val Leu
  142
                                         280
            Asn Ala Leu Ala Asp Ala Lys Gly Arg Lys Thr His Val Pro Tyr Arg
  143
```

RAW SEQUENCE LISTING DATE: 08/04/2004 PATENT APPLICATION: US/10/723,147 TIME: 08:28:23

144		290					295					300				
145	Asp	Ser	Lys	Leu	Thr	Arg	Leu	Leu	Lys	Asp	Ser	Leu	Gly	Gly	Asn	Cys
146	305					310					315					320
147	Arg	Thr	Val	Met	Ile	Ala	Ala	Ile	Ser	Pro	Ser	Ser	Leu	Thr	Tyr	Glu
148					325					330					335	,
149	Asp	Thr	Tyr	Asn	Thr	Leu	Lys	Tyr	Ala	Asp	Arg	Ala	Lys	Glu	Ile	Arg
150				340					345					350		
151	Leu	Ser	Leu	Lys	Ser	Asn	Val	Thr	Ser	Leu	Asp	Cys	His	Ile	Ser	Gln
152			355					360					365			
153	Tyr	Ala	Thr	Ile	Cys	Gln	Gln	Leu	Gln	Ala	Glu	Val	Ala	Ala	Leu	Arg
154		370					375	_	_	_	_	380			_	
155		Lys	Leu	Gln	Val	Tyr	Glu	Gly	Gly	Gly		Pro	Pro	Pro	Gln	
156	385			_	_	390	_		_	_	395	-	•	_	_	400
157	Leu	Pro	GLY	Ser		Lys	Ser	GLY	Pro		Pro	GLu	His	Leu		Ser
158		~		_	405			_		410	_	~	m1	_	415	
159	ser	Pro	Leu		Pro	His	Pro	Pro		GIn	Pro	Cys	Thr		GIU	Leu
160	Dwa	77 7 ~	~1	420	70 =====	777	т о	01 m	425	<u>ما</u>	Com	T 0	~1	430	~1	ח ד ת
161	Pro	Ala	_	Pro	Arg	Ala	ьeu	440	GIU	GIU	ser	ьeu	_	мес	GIU	Ата
162	Cln	W-1	435	7. ~~	717	Met	Clu		7 cn	Cor	Cor	Λαn	445	Clu	Cln	Cor
163 164	GIII	450	Giu	Arg	ALG	MEL	455	Gry	ASII	per	PET	460	GIII	Gru	GIII	261
165	Dro		Δen	Glu	Δen	Glu		Dro	בומ	Glu	Glu		Dro	Thr	Gln	Mot
166	465	Olu	1150	OIU	1100	470	OL y	110	1114	Oru	475	vai	110	1111	OIII	480
167		Glu	Gln	Asn	Pro	Thr	His	Ala	Len	Pro		Ser	Pro	Ara	Leu	
168		014	01		485					490				5	495	
169	Leu	Gln	Pro	Lys		Val	Val	Gly	His		Ser	Ala	Arq	Glu		Asp
170				500				-	505					510		~
171	Gly	Asp	Arg	Ser	Lys	Gln	Leu	Ala	Leu	Lys	Val	Leu	Cys	Val	Ala	Gln
172			515					520					525			
173	Arg	Gln	Tyr	Ser	Leu	Leu	Gln	Ala	Ala	Asn	Leu	Leu	Thr	Pro	Asp	Met
174		530					535					540				
175	Ile	Thr	Glu	Phe	Glu	Thr	Leu	Gln	Gln	Leu	Val	Gln	Glu	Glu	Lys	Ile
176	545		*			550					555					560
177	Glu	Pro	Gly	Ala		Ala	Leu	Arg	Thr		Gly	Leu	Ala	Arg		Ala
178					565					570	_				575	
179	Pro	Leu	Ala		Glu	Leu	Cys	Ser		Ser	Ile	Pro	Val		Ser	Pro
180		~	_	580	***		~7		585	~ 7	-		m1	590		
181	Leu	Cys		GIu	Pro	Pro	Gly	_	Thr	Gly	Pro	Val		Arg	Thr	Met
182	n 3 -	7	595	T	0	01	D	600	77.2 -	m)	T	a 1	605	D	D	a 1
183	Ala		Arg	ьeu	ser	Gly		Leu	His	Thr	Leu		TTE	Pro	Pro	GTĀ
184	Dana	610	0	mla ac	Dece	7.7.	615	al. .	0	70 000	Managa	620	Mak	α1	T	T
185	625	ASII	Cys	1111	PIO	630	GIII	GIY	ser	Arg	635	PIO	мес	GIU	ьуѕ	Lys 640
186 187		720	λrα	Dro	Cor		Lou	Clu	ח 7 ח	7 an		Dro	Mot	ת ד ת	Cor	
188	лгд	ALG	Arg	FIO	645	Ala	шeu	GIU	нта	650	ner	F T O	rie C	лта	655	пуъ
189	Δτα	Glv	Thr	Lare		Gln	Δτα	Gln	Ser		Leu	Pro	Cve	Leu		Δrα
190	1119	O _T y	T11T	660	* · · · · · · · · · · · ·	0111	2329	O I II	665	1 116	سات للا	110	CyB	670	1119	<i>-</i> 11.9
191	G] v	Ser	Leu		Asp	Thr	Gln	Pro		G] n	G] v	Pro	Ser		Pro	Lvs
192	1	~~-	675		P			680	~		1		685			-1-
			•													

RAW SEQUENCE LISTING
PATENT APPLICATION: US/10/723,147
DATE: 08/04/2004
TIME: 08:28:23

```
193
               Gly Glu Arg Ala Ser Ser Pro Cys His Ser Pro Arg Val Cys Pro Ala
     194
                   690
                                        695
                                                             700
     195
               Thr Val Ile Lys Ser Arg Val Pro Leu Gly Pro Ser Ala Met Gln Asn
     196
               705
                                    710
                                                        715
     197
               Cys Ser Thr Pro Leu Ala Leu Pro Thr Arg Asp Leu Asn Ala Thr Phe
     198
                                                    730
     199
               Asp Leu Ser Glu Glu Pro Pro Ser Lys Pro Ser Phe His Glu Cys Ile
     200
                           740
                                                745
     201
               Gly Trp Asp Lys Ile Pro Gln Glu Leu Ser Arg Leu Asp Gln Pro Phe
     202
                                            760
                                                                 765
               Ile Pro Arg Ala Pro Val Pro Leu Phe Thr Met Lys Gly Pro Lys Pro
     203
     204
                                        775
                                                            780
     205
               Thr Ser Ser Leu Pro Gly Thr Ser Ala Cys Lys Lys Arg Val Ala
     206
                                    790
                                                        795
     207
               Ser Ser Ser Val Ser His Gly Arg Ser Arg Ile Ala Arg Leu Pro Ser
     208
                                                    810
     209
               Ser Thr Leu Lys Arg Pro Ala Gly Pro Leu Val Leu Pro Glu Leu Pro
     210
                                                825
                                                                     830
               Leu Ser Pro Leu Cys Pro Ser Asn Arg Arg Asn Gly Lys Asp Leu Ile
     211
     212
                                            840
                                                                 845
     213
               Arg Val Gly Arg Ala Leu Ser Ala Gly Asn Gly Val Thr Lys Val Ser
                   850
     214
                                        855
     216 <210> SEQ ID NO: 3 .
     217 <211> LENGTH: 1014
     218 <212> TYPE: DNA
     219 <213> ORGANISM: Artificial Sequence
     220 <220> FEATURE:
     221 <223> OTHER INFORMATION: Description of Artificial Sequence: HsKip3a
               fragment
     223 <223> OTHER INFORMATION: Nucleotide sequence encoding motor domain fragment
     224
               of HsKip3a (Figure 2).
W--> 225 <400> 3
     226
               gacagcacgc tgcaagtagt ggtacgggtg cggccccca cccctcggga gctggacagt 60
     227
               cagcggcggc cagtggttca ggtggtggac gagcgggtgc tggtgtttaa ccctgaggag 120
     228
               cccgatggag ggttccctgg cctgaaatgg ggtggcaccc atgatggccc caagaagaag 180
     229
               ggcaaagacc tgacgtttgt ctttgaccgg gtctttggcg aggcqqccac ccaacaqqac 240
     230
               gtgttccagc acaccacgca cagcgtcctg gacagcttcc tccagggcta caactgctca 300
     231
               gtgtttgcct acggggccac cggggctggg aagacacaca ccatgctggg aagggagggg 360
    232
               gaccccggca tcatgtacct gaccaccgtg gaactgtaca ggcgcctgga ggcccgccag 420
    233
               caggagaage acttegaggt geteateage taceaggagg tgtataatga acaqateeat 480
    234
               gacctcctgg agcccaaggg gccccttgcc atccgcgagg accccgacaa gggggtggtg 540
    235
               gtgcaaggac tttctttcca ccagccagcc tcagccgagc agctgctgga gatactgacc 600
    236
               agggggaacc gtaaccgcac gcagcacccc actgatgcca acgcgacttc ctcccqctcc 660
    237
               catgccatct tccagatctt tgtgaagcag caggaccggg ttccaggact gacccaggct 720
    238
               gtccaggtgg ccaagatgag cctgattgac ctggctggct cagagcgggc atccaqcacc 780
    239
               catgcgaagg gggagcggct gcggggagggg gccaacatca accgctctct qctqqcqctc 840
    240
               atcaacgtcc tcaatgcctt ggccgatgca aagggccgca agacccatgt gccctaccgg 900
    241
              gacagcaaac tgacccgcct gctcaaagac tccctcgggg gcaactgccq cacagtqatq 960
               ategetgeea teagecette cageetgace taegaggaca egtacaacae eete
    242
```

VERIFICATION SUMMARY

DATE: 08/04/2004 PATENT APPLICATION: US/10/723,147 TIME: 08:28:24

Input Set : N:\Crf3\RULE60\10723147.raw Output Set: N:\CRF4\08042004\J723147.raw

L:26 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:1 L:106 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:2 L:225 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:3 L:252 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:4 L:306 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:5 L:365 M:258 W: Mandatory Feature missing, <220> Tag not found for SEQ ID#:6