





### **CASO PRACTICO AUTOMATA FINITO**

Lenguajes y Autómatas

NOMBRE DEL PROFESOR: Baume Lazcano Rodolfo

Juarez Perez Kevin Hans

FEBRERO - JUNIO 2024

# Gramáticas autóm GLRIG Lenguajes Ronsible al Contexto $q_1$ Sensible al Contexto $q_2$ Sensible al Contexto $q_3$ Sensible al Contexto $q_4$ Sensible al Con





# INTRODUCCIÓN

Los autómatas finitos son una herramienta invaluable en el diseño y la implementación de sistemas en la vida real, ofreciendo un enfoque estructurado y eficiente para modelar comportamientos y controlar procesos.

Su capacidad para representar estados, transiciones y condiciones de manera clara y concisa los convierte en una opción ideal para una amplia gama de aplicaciones prácticas.

Desde la regulación del tráfico en intersecciones hasta el control de puertas automáticas y la gestión de máquinas expendedoras, los autómatas finitos encuentran uso en numerosos escenarios del día a día.

A medida que la tecnología avanza y las demandas de automatización crecen, su importancia solo aumenta, demostrando ser una herramienta fundamental en el arsenal de cualquier ingeniero o diseñador de sistemas.





## **MAQUINA EXPENDEDORA**

Imagina una máquina expendedora que ofrece una variedad de productos y acepta monedas para realizar transacciones. Podemos modelar el comportamiento de esta máquina utilizando un autómata finito.

### Descripción paso a paso:

### Estado inicial (Máquina lista para recibir una selección):

 En este estado, la máquina expendedora está esperando que un cliente realice una selección y pague por el producto.

### Transición (Selección y pago):

 Cuando un cliente introduce el dinero y selecciona un producto, la máquina verifica si el producto está disponible y si hay suficiente cambio para realizar la transacción.

### Transición (Dispensar el producto y el cambio):

 Si el producto está disponible y hay suficiente cambio, la máquina dispensa el producto solicitado y devuelve el cambio correspondiente al cliente.

### Transición (Problema con la selección o el pago):

 Si por alguna razón el producto no está disponible o el cliente no tiene suficiente cambio, la máquina devuelve el dinero ingresado por el cliente y vuelve al estado inicial.





### Transición (Tiempo de espera agotado):

 Si no se realiza ninguna selección después de un cierto período de tiempo, la máquina expendedora devuelve automáticamente el dinero ingresado y vuelve al estado inicial.

Cada estado y transición en este autómata finito representa un aspecto clave del proceso de compra en la máquina expendedora.

La máquina puede moverse entre estos estados dependiendo de las acciones del cliente y las condiciones del sistema, proporcionando un modelo claro y conciso del comportamiento de la máquina expendedora.

Este modelo puede ser útil tanto para comprender cómo funciona la máquina como para implementar su lógica de control en un sistema real.









# CONCLUSIÓN

En conclusión, los autómatas finitos son mucho más que simples abstracciones teóricas; son herramientas prácticas y poderosas que ofrecen soluciones concretas a problemas del mundo real.

Su capacidad para modelar y controlar sistemas complejos de manera efectiva los convierte en elementos indispensables en una variedad de campos, desde la ingeniería de software hasta la automatización industrial.

Al aprovechar su simplicidad y versatilidad, los autómatas finitos permiten diseñar sistemas más eficientes, confiables y fáciles de entender.

En un mundo cada vez más orientado hacia la automatización y la optimización de procesos, su relevancia solo seguirá creciendo, asegurando su lugar como una herramienta fundamental en el arsenal de cualquier profesional de la ingeniería o la tecnología.