Mathematics 74-114 Midterm Examination - Solutions Spring 2012

I. Let $p:\widetilde{X}\to X$ be a covering map which is n-sheeted, $2\le n\le \infty$. Prove that there is no map $s:X\to \widetilde{X}$ such that $ps=\mathrm{id}$. (Such a map is called a section of p.)

Proof 1	Let x 6 X. Since ps = id, prs, = id, and so px: T(K, S(x)) ->
· · · · · · · · · · · · · · · · · · ·	T(X, x.) is onto. Let \$ = 5(x.), let \$ 6 p'(x) and let
<u>ka ar Cililian Gallaria (1827) (1827), arques pos información de la compresión en cultivada (</u>	l be a path in X from xo to x. [pl] = px [m] for some
The state of the s	loop m in & based at to. :: plrpm so lrm.
	$\tilde{\chi} = l(1) = m(1) = \tilde{\chi}_0$: $\rho^{-1}(\chi_0)$ has one point. Controduction
go plan plan apo no la la filo responsabilità di comi ministra e mante e mante e mante e mante e mante e mante	i I mo such s.
Bergerage region and the second secon	
Proof 2	$s: X \rightarrow \tilde{X}$ $p(sp) = (ps)p = p = p(id)$, : sp and it are
, , , , , , , , , , , , , , , , , , ,	both lifts of p. To ohow that they are equal, they must
The state of the s	agree on a point. Let $x_0 \in X$ so $s(x_0) \in X$.
Mark of the published supplementary and the	$sp(sx_0) = sx_0 = id(sx_0)$ and so $sp = id$. : $pio a$
	homeomorphism so X is 1-sheeted. Contradection
	The state of the s
And the second s	

II. Let G be a group with unit e and let $S \subseteq G$ be a set. The **normal** closure \overline{S} of S is defined to be the intersection of all normal subgroups of G which contain S. Prove

 $\overline{S} = \{e\} \cup \{c_1 \cdots c_k \mid k \geq 1, c_i = a_i s_i^{\epsilon_i} a_i^{-1}, \text{ where } a_i \in G, s_i \in S \text{ and } \epsilon_i = \pm 1\}.$

Let $H=S=S\cup A_{C_1}\cdots C_p I$. Then H is closed under multiplication and inverses and so H is a subgroup. His normal: Consider $X=a_{C_1}\cdots C_p a^{-1}=(a_{C_1}a^{-1})(a_{C_2}a^{-1}I-\cdots (a_{C_p}a^{-1}))$. If $C_i:=a_{iS_i}a_{i}I'$ then $a_{C_i}:=(a_{A_i}I_{S_i}:|a_{A_i}I_{S_i}I_{S_i}|a_{A_i}I_{S$

III. For any two based spaces (U, u_0) and (V, v_0) let [U, V] denote the set of based homotopy classes of based maps $(U, u_0) \to (V, v_0)$. Now let (A, a_0) , (X, x_0) and (Y, y_0) be based spaces and define

$$\theta: [A, X \times Y] \to [A, X] \times [A, Y]$$

by $\theta[f] = ([p_1f], [p_2f])$, where $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ are the projections. Prove that θ is a well-defined bijection.

IV. Let $f:X\to Y$ be a map and let $p:\widetilde{Y}\to Y$ be a covering map. Define the pull-back P by

$$P = \{(x, \widetilde{y}) \mid x \in X, \ \widetilde{y} \in \widetilde{Y} \text{ with } f(x) = p(\widetilde{y})\}.$$

Define maps $q: P \to X$ and $r: P \to \widetilde{X}$ by $q(x, \widetilde{y}) = x$ and $r(x, \widetilde{y}) = \widetilde{y}$.

- 1. Prove that $q: P \to X$ is a covering map.
- 2. Prove that r induces a bijection $q^{-1}(x) \to p^{-1}(f(x))$.
- 3. Prove that there is a section for $q:P\to X$ (that is, a map $s:X\to P$ such that $qs=\mathrm{id}$) if and only if f can be lifted to \widetilde{Y} .

11	
<i>l</i> ,	Let x6X and let U be an elementary which of flot.
	Claem: f'(U) is an elementary noch (of x) in X.:
	p-1(u) = UV, g-1(f-1(u)) = +-1p-1(u) = U+-1(V,), a
	unen of disposent open sets. Clearly &'=610-1 Vy = 5-1Vs ->
	f. (11). 8' in continuous and we show it in a homea
	by constructing an enverse, k: f-1(U) -> r-1(Vy) defined
0	by k(v) = (x, (p/y) f(x)).
	g'k(x1=x so g'k=id. let (x, g) G F'(V1) EP
	kg'(x, y) = k(x) = (x, (p/4) (f(x))). But y G Vy
	and fx = py and so y = (ply) fx. : kg'(x, y) =
	[x, y], so kg' = id. Since k is continuous, g' is a homeo.
2 -	$(x,\tilde{y}) \in g^{-\delta}(x), fx = p\tilde{y}$ $r(x,\tilde{y}) = \tilde{y} \in p^{-1}(fx)$: r enduces
	r': g- (x) → p- (6x). We define s': p- (6x) → g- (x): Given
6	$\tilde{y} \in p^{-1}(\tilde{g} p)$, $p\tilde{y} = \tilde{g} x$ so $(x_1 \tilde{y}) \in \tilde{f}$ and $g(x_1 \tilde{y}) = \pi$
	Set s'(4) = (x,4) Then r's'=1d, s'r'=1d so r's byieten
	Using section for q, is in a lift of f to F.
	Conversely, if \tilde{f} in a lift of f , define $s: X \rightarrow P$ by $S(81 = (X, \tilde{f}(81)).$
7	$S(\mathfrak{gl} = (X, \tilde{\S}(X)).$

V. Let \widetilde{X} be any normal cover of X with covering map p, let $x_0 \in X$ be the base point and choose $\widetilde{x}_0 \in p^{-1}(x_0)$. Define $\theta : \pi(X, x_0) \to \mathcal{A}(\widetilde{X})$ (the group of deck transformations) as follows: Let $\alpha = [l] \in \pi(X, x_0)$ and let \widetilde{l} be the lift of l to \widetilde{X} starting at \widetilde{x}_0 . Set $x'_0 = \widetilde{l}(1)$. Then $p_*\pi(\widetilde{X}, \widetilde{x}_0)$ and $p_*\pi(\widetilde{X}, x'_0)$ are conjugate, hence equal. Therefore there exists $\phi \in \mathcal{A}(\widetilde{X})$ with $\phi(\widetilde{x}_0) = x'_0$. Set $\theta(\alpha) = \phi$. Prove

- 1. θ is a homomorphism.
- 2. Kernel $\theta = p_*\pi(\widetilde{X}, \widetilde{x}_0)$.

Thus θ induces a homomorphism $\theta': \pi(X, x_0)/p_*\pi(\widetilde{X}, \widetilde{x}_0) \to \mathcal{A}(\widetilde{X})$, where $\pi(X, x_0)/p_*\pi(\widetilde{X}, \widetilde{x}_0)$ is the set of right cosets. Prove

3. $\lambda \theta' = \mu$, where $\lambda : \mathcal{A}(\widetilde{X}) \to p^{-1}(x_0)$ and $\mu : \pi(X, x_0)/p_*\pi(\widetilde{X}, \widetilde{x}_0) \to p^{-1}(x_0)$ have been defined in class.

β=[m], \tilde{m} lift of m starting at $\tilde{\kappa}$. Let $\Psi \in \Omega(\tilde{X})$ such that $\Psi(\tilde{\chi}_{o}) = \tilde{m}(1)$. $\Psi(\tilde{m})$ is lift of m starting at $\Psi(\tilde{\chi}_{o}) = \tilde{\kappa}_{o}'$. Here path $\tilde{k} \cdot \Psi(\tilde{m}) = \tilde{k} \cdot \tilde{k}$ is $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} = \tilde{k} \cdot \tilde{k}$ in $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ and $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ and $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ and $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ and $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ and $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ and $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ be a lift of $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$. Let $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$ at $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$. Let $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$. Let $\tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k} \cdot \tilde{k}$. Let $\tilde{k} \cdot \tilde{k} \cdot \tilde{k}$. Let $\tilde{k} \cdot \tilde{k} \cdot \tilde{k}$. Let $\tilde{k} \cdot \tilde{k} \cdot \tilde{k}$

