(0.0.1) Show that the localization of a ring R at a prime ideal $\mathfrak p$ is a local ring. What is the maximal ideal?

Solution. I claim that the unique maximal ideal is the ideal of nonunits of $R_{\mathfrak{p}},$ more usually defined as

$$\mathfrak{m} = \{\frac{a}{b} : \text{some element of } \mathfrak{p} \text{ divides } a\}$$

For any other ideal \mathfrak{i} , there are two options:

- (a) It contains only nonunits. Then obviously $\mathfrak{i} \subset \mathfrak{m}$.
- (b) It contains some element that is a unit. Since ideals are closed under multiplication, multiply by the inverse of the unit to get a 1 in the ideal, implying that $\mathfrak{i}=(1)$.

Hence all proper ideals are contained in \mathfrak{m} .

Chapter 1

Rings and ideals

1.1 Nilradical and Jacobson radical

Define the nilradical of a ring R as

$$N_R := \sqrt{(0)_R}$$

equivalently, N(R) is the "ideal of nilpotents". The main use of the nilradical of a ring (as far as I know!) is to eliminate the problems associated with nilpotents by looking at R/N_R instead of R: it seems plausible (at least intuitively) that this ring has none.

(1.1.1) N_R is an ideal.

Proof. Closure under R-multiplication is clear. As for additive closure, consider $x,y \in N_R$, such that $x^m = y^n = 0$. We must show that x+y is also a nilpotent. Consider $(x+y)^{m+n-1}$. Every term of the binomial expansion contains either a power of $x^{r \geq m}$ or $y^{s \geq n}$ (else r+s < m+n-1), so the entire thing is zero.

(1.1.2) R/N_R has no nonzero nilpotents.

Proof. Suppose \bar{x} is a nilpotent in R/N_R , with $\bar{x}^n = 0$. Then x^n is a nilpotent in R and is mapped to $(0) \in R/N_R$, implying that $\bar{x} = 0$.

(1.1.3) The nilradical of a ring R is the intersection of all its prime ideals.

Proof. Let \mathfrak{P} denote the intersection of all the prime ideals. If $x \in R$ is nilpotent and \mathfrak{p} is a prime ideal, then (for some n) $x^n = 0 \in \mathfrak{p}$, hence $x \in \sqrt{\mathfrak{p}} = \mathfrak{p}$. Hence $N_R \subset \mathfrak{p}$.

Now we prove that x not nilpotent $\implies x \notin \mathfrak{P}$. Let Σ be the set of ideals whose radicals do not contain x. Since $(0) \in \Sigma$, it is nonempty and can be ordered by inclusion. Applying Zorn's lemma, we get a maximal element \mathfrak{p} of Σ . We will show that \mathfrak{p} is prime.

Choose $s, t \notin \mathfrak{p}$. Then $\mathfrak{p} + (s), \mathfrak{p} + (t)$ strictly contain \mathfrak{p} , so they are not in Σ . By the definition of Σ , this means that some power of x is in both those sum ideals:

$$x^m \in \mathfrak{p} + (s), x^n \in \mathfrak{p} + (t)$$

for some m and n. Then

$$x^{m+n} \in \mathfrak{p} + (xy)$$

so $\mathfrak{p} + (xy)$ is not in Σ either, so $xy \notin \mathfrak{p}$. Hence we have a prime ideal \mathfrak{p} not containing x, so $x \notin \mathfrak{P}$ either.

Balarka's proof. Assume x in A is not nilpotent. Then A_x , the localization at powers of x, is nonzero. Pick a maximal ideal \mathfrak{m} (\mathfrak{j} - here lies disguised Zorn). Contract to get a prime ideal in A not containing any power of x. Hence, x is not contained in a prime ideal of A and thus not in intersection of all prime ideals in A.