MY FINAL PROJECT

CLASSIFYING POPULAR SONGS FROM SPOTIFY USING PARAMETRIC AND NON-PARAMETRIC MODELS

By Clarissa Ache-Cabello

PROJECT MOTIVATION & OBJECTIVES

A music genre is a collection of patterns. Songs that share patterns can be grouped in a genre. It is likely that Spotify uses measures of this patterns along with listening patterns to assign songs to genres.

In theory, one can determine the genre of a song only by identifying these patterns, and that is what I am going to try to do in this project.

Project Objectives:

- I. Find out what makes a song "belong" to a music genre.
- 2. Model the characteristics of popular songs to classify them into the genre Spotify has selected for them.

DATA

- Extracted from the Spotify Web API via the R package Spotifyr.
- My table for analysis has a sample of ~33K songs from 6 broad playlist genres:

Pop Rap Latin R&B Rock EDM

The data had the following 13 song measures:

track_popularity	danceability	energy	key	loudness	speechiness
acousticness	instrumentalness	liveness	valence	tempo	
mode	duration ms				

EDA

Looked at the distributions of the main effects of predictors for the songs in each genre.

Findings:

✓ Some predictors seem more useful at classifying than others:

Seemed very useful	Not very good at distinguishing songs
Energy – perceptual measure of of intensity and activity	• Loudness – The overall loudness of a track in decibels (dB)
 Speechiness – The presence of spoken words in a track. Acousticness – A confidence measure from 0.0 to 1.0 of 	 Instrumentalness – Predicts whether a track contains no vocals.
whether the track is acoustic (no electric instruments)	• Liveness – Detects the presence of an audience in the
 Valence - A measure from 0.0 to 1.0 describing the musical positiveness (happy, cheerful, euphoric) conveyed by a track. 	 Duration – Track duration in milliseconds
	• Tempo – Beats per minute (Bpm)
	• Popularity – Spotify's secret popularity score from 0 to 100

USEFUL VS. NOT SO USEFUL VARAIBLES

(ONLY LOOKING AT MAIN EFFECTS)

APPROACH

- Used 2 parametric models Multinomial regressions
 - One with only main effects, one with interactions
- Used 3 non-parametric ML models Classification trees
 - CART, Bagging, Random Forest

Summary of models

	Param	etric	Non-Parametric				
	Multinomial regression with main effects only	Multinomial regression with interactions	CART (single tree)	Bagging	Random Forest		
Accuracy	47.0%	48.2%	36.3%	57.0%	56.5%		

MULTINOMIAL REGRESSION MODEL (MAIN EFFECTS ONLY)

- A logistic regression for each level (genre) using EDM as the baseline.
- All p-values very significant
- Assumptions are plausible

genres1 <- multinom(playlist_genre ~ track_popularity + danceability + energy + key + loudness + speechiness +
acousticness + instrumentalness + liveness + valence + tempo + duration_ms + mode, data=songs)</pre>

Multinomial Regression Model 1 coefficients (exponentiated)

Genre	(Intercept)		danceability	energy	key		speechiness	acousticness	instrumentalness	liveness	valence			mode1
latin	1.12	1.01	1.32	0.09	1.01	0.92	4.86	10.86	0.09	0.58	42.81	0.99	1.00	1.23
рор	1.24	1.02	0.02	0.04	1.00	0.93	0.06	2.76	0.13	0.36	15.81	0.99	1.00	1.28
r&b	1.15	1.00	0.06	0.00	1.00	0.89	61.11	4.60	0.02	0.53	40.44	0.99	1.00	1.01
rap	1.11	1.01	2.94	0.01	1.00	0.92	11060.57	2.88	0.25	0.89	5.48	0.99	1.00	1.07
rock	0.30	1.01	0.00	2.26	1.00	0.69	0.00	2.15	0.04	0.43	161.53	0.99	1.00	1.89

THE BAGGING MODEL

• Is a tree-based method that instead of doing one tree classification does a number of them using bootstrapped datasets and averages them out to increase accuracy and reduce variance.

genres_bagg <- randomForest(as.factor(playlist_genre) ~ track_popularity + danceability + energy + key + loudness
+ speechiness + acousticness + instrumentalness + liveness + valence + tempo + duration_ms + mode, data=train1,
mtry=4)</pre>

Genre	Sensitivity (Recall)	Specificity
edm	71%	92%
latin	44%	92%
рор	35%	90%
r&b	48%	91%
rap	68%	90%
rock	77%	93%

Overall
Accuracy
57%

CONCLUSIONS (SO FAR), LIMITATIONS, & NEXT STEPS

• I wanted to try the Boosting model but I got a warning saying this:

Warning: Setting `distribution = "multinomial"` is ill-advised as it is currently broken. It exists only for backwards compatibility. Use at your own risk.

- The most important takeaways are that:
 - Rap is speechy
 - Latin is most acoustic
 - R&B is always in between
 - EDM is loud
 - Rock is happy and easier to identify
 - What is Pop?

