

:	k means1=	/ mean	10+1											
١. [<pre>k_means1=k_means+1 k_cluster = list(k_means1)</pre>													
]:[df1['k_cluster'] = k_cluster													
]:[<pre>kmeans_mean_cluster = pd.DataFrame(round(df1.groupby('k_cluster').mean(),1))</pre>													
	kmeans_mean_cluster													
1]:	kmeans_me	an_clu	ıster											
	kmeans_me			Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_12mo	Flight_trans_12	Days_since_enroll	Award?	
4]:	kmeans_me k_cluster			Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_12mo	Flight_trans_12	Days_since_enroll	Award?	
24]: 24]: -		ID# E		Qual_miles	cc1_miles	cc2_miles			Bonus_trans	Flight_miles_12mo			Award?	
4]:	k_cluster 1 23	ID# E	Balance			1.0	1.0	4906.6			0.6			

In [25]: pd.DataFrame(round(df1.groupby('k_clyester').count(),1)) KeyError Traceback (most recent call last) <ipython-input-25-75ec6ec37d5e> in <module> ----> 1 pd.DataFrame(round(df1.groupby('k_clyester').count(),1)) ~\anaconda3\lib\site-packages\pandas\core\frame.py in groupby(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna) 6509 axis = self._get_axis_number(axis) 6510 -> 6511 return DataFrameGroupBy(6512 obj=self, 6513 keys=by, ~\anaconda3\lib\site-packages\pandas\core\groupby\groupby\groupby\groupby\notinit__(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observe d, mutated, dropna) 523 from pandas.core.groupby.grouper import get_grouper 524 --> 525 grouper, exclusions, obj = get_grouper(526 obj, 527 keys, ~\anaconda3\lib\site-packages\pandas\core\groupby\grouper.py in get_grouper(obj, key, axis, level, sort, observed, mutated, validate, dropna) 779 in_axis, name, level, gpr = False, None, gpr, None 780 else: --> 781 raise KeyError(gpr) 782 elif isinstance(gpr, Grouper) and gpr.key is not None: 783 **# Add key to exclusions** KeyError: 'k_clyester' pd.DataFrame(round(df1.groupby('k_cluster').count(),1)) Out[26]: ID# Balance Qual_miles cc1_miles cc2_miles cc3_miles Bonus_miles Bonus_trans Flight_miles_12mo Flight_trans_12 Days_since_enroll Award?

1 2535 2535 2535 2535 2535 2535 2535 2535 2535 2535 2535 2535 164 164 164 164 **2** 164 164 164 164 164 164 1300 1300 **3** 1300 1300 1300 1300 1300 1300 1300 1300 1300 1300 plt.scatter(X[:, 0], X[:, 1], c=k_means, s=50, cmap='viridis')

Г							
15.0 -	•						
12.5	•						
10.0	•						
7.5 -		• • •			•		•
5.0 -	7	•		•	•		
2.5 -	Tia Ta	(11)					•
0.0	a didition		dindek	de distribution			ar Jac
L	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5

<matplotlib.collections.PathCollection at 0x1bdd7b28310>

Conclusion

import numpy as np
import pandas as pd

import seaborn as sns

df1=df.copy()

In [5]:

from matplotlib import pyplot as plt
from sklearn.cluster import KMeans

import scipy.cluster.hierarchy as sch

from sklearn import preprocessing

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import AgglomerativeClustering

df=pd.read_excel("C:/Users/HP/Downloads/EastWestAirlines.xlsx", sheet_name='data')

From the above data generated from K-Means clustering, we can see Cluster-1 has around 63% total travelers and cluster 2 has 33% of the travelers. We will target cluster 1 & 2. Cluster 1 contains less frequent or first time travellers, by giving them discount provided they travel more than twice or thrice and introduce more offer if they register or take the membership.