Data Representation and Manipulation

Part 2

A Faster Carry: Carry Look Ahead Adder

Faster Carry Or Look Ahead Adder:

- In a row of adders: try to generate what is the next carry into column on left
- All the bits of numbers A and B are known at beginning.
- CarryIn to each adder is unknown.

Faster Carry Or Look Ahead Adder:

- $c1 = (a0 \cdot c0) + (b0 \cdot c0) + (a0 \cdot b0)$
- $c2 = (a1 \cdot c1) + (b1 \cdot c1) + (a1 \cdot b1)$
- $c2 = (a1 \cdot a0 \cdot b0) + (a1 \cdot a0 \cdot c0) \cdot (a1 \cdot b0 \cdot c0) + (b1 \cdot a0 \cdot b0) + (b1 \cdot a0 \cdot c0) + (b1 \cdot b0 \cdot c0) + (b1 \cdot a1)$

can predict the next carry based on a, b values and c0.

```
c2 = (a1 \cdot a0 \cdot b0) + (a1 \cdot a0 \cdot c0) \cdot (a1 \cdot b0 \cdot c0) + (b1 \cdot a0 \cdot b0) + (b1 \cdot a0 \cdot c0) + (b1 \cdot b0 \cdot c0) + (b1 \cdot a1)
```

- Therefore, additional gates, added into each adder.
- Next level, gets more complicated. Simple substitution into the same formula.
- Hardware quickly adds up and can get expensive for each bit
- Carry look ahead adder, much more efficient and some level of look ahead is added into each adding unit.
- Fast carry using propagate and generate: Read about it in the text B.6

Convert this Fractional number to IEEE

Floating Point Representation

Start: 42.3125

$$.3125x2 = 0.625$$
 Apply the same algorithm from previous slides

$$.625x2 = 1.25$$

$$.25x2 = 0.5$$

$$.5x2 = 1$$

$$\rightarrow$$
 42.3125 = 101010.0101 = 1.010100101x2^5 Need to Normalize : Only one leading 1

Sign bit: 0 (pos)

Exponent –
$$127 = 5 \rightarrow$$
 Exponent = $132 = 10000100$

Final 32 Bits Representation

Floating-Point Addition

- Decimal example: $9.54 \times 10^2 + 6.83 \times 10^1$ Only 1 leading digit before decimal (assume we can only store two digits to right of decimal point)
 - 1. Match exponents: $9.54 \times 10^2 + .683 \times 10^2$
 - 2. Add significands, with sign: 10.223×10^2
 - 3. Normalize: 1.0223×10^{3}
 - 4. Check for exponent overflow/underflow
 - 5. Round: 1.02×10^3
 - 6. May have to normalize again
- Same idea works for binary

A: 0 10000100 0101001010...

B: 1 10000011 0001001010...

A's exponent: 5

B's exponent: 4

A's mantissa: 1.0101001010...

B's mantissa: 1.0001001010...

Must shift B's mantissa, exponent by 1 so they become 5

0.1000100101

Because we are adding two numbers of different signs, we use signed magnitude addition: subtract the smaller mantissa from the larger mantissa, and keep the sign of the larger

1.0101001010... x2^5

- 0.10001001010... x2^5 Performing Subtration

(+) 0.11001001010... x2^5

Normalize: 1.1001001010... x2^4

Sign bit = 0

Exponent $-127 = 4 \rightarrow \text{exponent} = 131 = 10000011$

Deriving the Sign Bit: If opposite signs

Additional logic to determine which is the greater Number

In this case (ALU) performs a subtract

Convert 0.375 to binary

- A) 0.11
- B)0.0101
- C) 0.01101
- D) 1.11
- E) 0.011

Floating Point

- Single Precision: Exponent bits in 8 precision: Bias of 127
- Double Precision: 11 bits Exponent: Bias
- Based on COAD Text (H&P) Representing 0:
 - 0000 0000 RESERVED for Zero
 - 1111 1111 RESERVED for exceptions beyond scope of normal floating point numbers. Such as De-normalized numbers

Therefore lowest exponent is -126, highest positive exponent +127

Convert this binary numb to binary fp notation according to IEEE754 Standard

- A) + $1.010101000... \times 2^{129}$
- B) 1.010101000... x 2²
- C) + $1.010101000... \times 2^2$
- D) 1.010101000... x 2⁻²
- E) + $1.010101000... \times 2^{257}$

Floating-Point Multiplication

- Decimal example: $(9.54 \times 10^2) \times (6.83 \times 10^1)$ (assume we can only store two digits to right of decimal point)
 - 1. Add exponents: 2 + 1 = 3 (Note: exponents stored in biased notation)
 - 2. Multiply significands: $9.54 \times 6.83 = 65.1582$
 - 3. Unnormalized result: 65.1582×10^3
 - 4. Normalize: 6.51582×10^4
 - 5. Check for overflow/underflow
 - 6. Round: 6.52×10^4 (May need to renormalize)
 - 7. Set sign

When examining the algorithm for FP

Multiplication, which step(s) can move closer to the beginning.

Floating-Point Multiplication

- Decimal example: $(9.54 \times 10^2) \times (6.83 \times 10^1)$ (assume we can only store two digits to right of decimal point)
 - 1. Add exponents: 2 + 1 = 3 (Note: exponents stored in biased notation)
 - 2. Multiply significands: $9.54 \times 6.83 = 65.1582$
 - 3. Unnormalized result: 65.1582×10^3
 - 4. Normalize: 6.51582×10^4
 - 5. Check for overflow/underflow
 - 6. Round: 6.52×10^4 (May need to renormalize)
 - 7. Set sign

- A)Normalize result
- B)Round Result
- C)Set sign
- D)Check for
 - overflow/underflow
- E)Add exponents

Example: Multiplication of two floating Point Numbers

A: 0 10000100 0101001010...

B: 1 10000011 0001001010...

A = 42.3125 and B = -17.15625.

A's exponent: 5

B's exponent: 4

A+B'S unbiased exponent: 9

- -> Exponent -127 = 9
- -> Exponent = 136 = 10001000

Multiply Mantissas:

1.0101001010...

0.0001001010...

1.0110101011110110010...

Sign = (A's sign + B's sign) %2 = (0 + 1) % 2 = 1 = 1 10001000 01101010111101100100000 = -725.9238281

Multiplying Two Numbers 1 1 0 1 Multiplicand 1 0 1 1 Multiplier $1 \ 1 \ 0 \ 1$

1 1 0 1

0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1 Product

Multiplying Two

Numbers: With a Decimal in the number

1.1 0 1 Multiplicand 1 0 1.1 Multiplier 1 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

1 0 0 0.1 1 1 $\overline{1}$ Product

Multiplying Two

Numbers: With a Decimal in the number

.1 1 0 1 Multiplicand .1 0 1 1 Multiplier $1 \ 1 \ 0 \ \overline{1}$

1 1 0 1

0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1 Product

Multiplying Two

Numbers: With a Decimal in the number

.1 1 0 1 Multiplicand .1 0 1 1 Multiplier $1 \ 1 \ 0 \ \overline{1}$

1 1 0 1

0 0 0 0

1 1 0 1

.1 0 0 0 1 1 1 1 Product

Example: Multiplication of two floating Point Numbers

A: 0 10000100 0101001010...

B: 1 10000011 0001001010...

A = 42.3125 and B = -17.15625.

A's exponent: 5

B's exponent: 4

A+B'S unbiased exponent: 9

- -> Exponent -127 = 9
- -> Exponent = 136 = 10001000

Multiply Mantissas:

1.0101001010...

0.0001001010...

1.0110101011110110010...

Sign = (A's sign + B's sign) %2 = (0 + 1) % 2 = 1 = 1 10001000 01101010111101100100000 = -725.9238281

Accuracy in Floating-Point Multiplication

- When multiplying two floating-point numbers, the significands are multiplied together
- If the significands have *n* bits of precision each, the result can have 2*n* bits of precision
- How many bits do we need to keep during the computation?
- Our multiplication examples will have n = 3

• Example:

- In above example, only top 3 bits are needed for final result of 1.10×2^4
- Example: Do we need circled (fourth) bit?

- With three bits, 10.0×2^3 is normalized to 1.00×2^4 , which is incorrectly rounded
- With four bits, 10.01×2^3 is normalized to 1.001×2^4 , and correctly rounded up to 1.01×2^4

• Example: Do we need circled (fourth, fifth) bits?

- With three bits, 01.1×2^3 is normalized to 1.10×2^3 , which is incorrectly rounded
- With four bits, 01.11×2^3 is normalized to 1.110×2^3 , and rounded to 1.11×2^3 , which is incorrectly rounded
- With five bits, 01.111×2^3 is normalized to 1.111×2^3 , rounded to 10.0×2^3 , and normalized again to 1.00×2^4 , which is correctly rounded

Floating-Point Architectural Issues

- To maintain n bits of accuracy after an operation, preserve n+2 bits during the computation (the two extra bits are sometimes called guard and round)
- Separate floating-point registers?
- Separate floating-point coprocessors?
- Rounding or truncating?
- What to do about overflow (same issue as for integer arithmetic)?

Integer Multiplication (not FP)

			1	1	0	1	Multiplicand
			1	0	1	1	Multiplier
			1	1	0	1	
		1	1	0	1		
	0	0	0	0			
1	1	0	1				
0	0	0	1	1	1	1	Product

*Understand the components
Of hardware that are necessary
For integer Multiplication

*Understand the improvements Achieved in the third version Of multiplication hardware

What is result of: 0011 x 0011

- A)1011
- B)1001
- C)0111
- D) 1111
- E) none

Multiplication Hardware, First Version

We do have a 64 bit product register... Low and High

Multiplication Hardware, First Version

Multiplication Hardware, First Version

				1	1	0	1	Multiplicand
				1	0	1	1	Multiplier
				1	1	0	1	-
			1	1	0	1		
		0	0	0	0			
	1	1	0	1				
1	0	0	0	1	1	1	1	Product

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial Values	1011	00001101	0000 0000
1	Add mpcd to prod			0000 1101
	Shift left mpcd		0001 1010	
	Shift right mplr	0101		
2	Add mpcd to prod			0010 0111
	Shift left mpcd		0011 0100	
	Shift right mplr	0010		
3	No operation			
	Shift left mpcd		0110 1000	
	Shift right mplr	0001		
4	Add mpcd to prod			1000 1111
	Shift left mpcd		1101 0000	
	Shift right mplr	0000		

Multiplication Hardware, Second Version Multiplicand 32 bits Multiplier32-bit ALU Shift right 32 bits Shift right Control test Product Write 64 bits

Multiplication Hardware, Second Version

Multiplication Hardware, Second Version

Product

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial Values	1011	1101	0000 0000
1	Add mpcd to prod			1101 0000
	Shift right prod		1101	0110 1000
	Shift right mplr	0101		
2	Add mpcd to prod			100111000
	Shift right prod		1101	1001 1100
	Shift right mplr	0010		
3	No operation			
	Shift right prod		1101	01001110
	Shift right mplr	0001		
4	Add mpcd to prod			100011110
	Shift right prod		1101	1000 1111
	Shift right mplr	0000		

Multiplication Hardware, Third Version

		1	1	0	1	Multiplicand
		1	0	1	1	Multiplier
	,	1	1	0	1	•
	1	1	0	1		
0	0	0	0			
	^	4				

Product

Multiplier = 1011, Multiplicand = 1101

	To 11, Transpired		1
Iteration	Step	Multiplicand	Product
0	Initial Values	1101	0000 1011
1	Add mpcd to prod		1101 1011
	Shift right prod	1101	01101 101
2	Add mpcd to prod		100111101
	Shift right prod	1101	1001 11 10
3	No operation		
	Shift right prod	1101	01001111
4	Add mpcd to prod		100011111
	Shift right prod	1101	1000 1111

Save One Register: Multiplier

Use 64 bits of Product Register Efficiently

Multiply Signed numbers:

- Best choice to Multiply two numbers:
 - Keep track of signs
 - Multiply as two positive numbers (convert to positive if negative)
 - Change answer to negative if needed. (this work for 64 bit results)
 - Third hardware version can allow 2s complement negative numbers
 - Where correct answer is in lower 32 bits

Multiplication Faster:

- Can add hardware to make multiplication faster:
- Instead of 1-32 bit adder (ALU)
 - Use 32 additions into a stack of adders: output of one addition feeds directly into next adder.
 - With the appropriate bit of multiplier ANDed with Multiplicand
 - If 0 nothing gets added
 - If 1 multiplicand gets added to summation.

What is NOT considered a major improvement from the first version to third version

- A) First version 64 bit register for product → came down to 32bit register for product in third version
- B) Removed need for separate register for Multiplier
- C) Reduced size of ALU from 64bits to 32bits.
- D) Used left half of product register more effectively
- E) Do not need 64 bit Multiplicand anymore. Reduced this to 32bits