Least Favorable Direction Test for Multivariate Analysis of Variance in High Dimension

Beijing Institute of Technology

Supplementary Material

This file contains the proofs of Propositions and Theorems given in the main text.

S1 Technical lemmas

Lemma 1. Suppose A is a $p \times r$ matrix with rank r and B is a $p \times p$ non-zero positive semi-definite matrix. Denote by $A = U_A D_A V_A^{\top}$ the singular value decomposition of A, where U_A and V_A are $p \times r$ and $r \times r$ column orthogonal matrices, respectively, and D_A is a $r \times r$ diagonal matrix. Let $P_A = U_A U_A^{\top}$ be the projection matrix onto the column space of A. Then

$$\max_{a^{\top}a=1, a^{\top}\mathbf{A}\mathbf{A}^{\top}a=0} a^{\top}\mathbf{B}a = \lambda_1 (\mathbf{B}(\mathbf{I}_p - \mathbf{P}_{\mathbf{A}})).$$

Proof. It can be seen that $a^{\top} \mathbf{A} \mathbf{A}^{\top} a = 0$ if and only if $a = (\mathbf{I}_p - \mathbf{P}_{\mathbf{A}})a$.

Then

$$\max_{a^{\mathsf{T}}a=1, a^{\mathsf{T}}\mathbf{A}\mathbf{A}^{\mathsf{T}}a=0} a^{\mathsf{T}}\mathbf{B}a = \max_{a^{\mathsf{T}}a=1, \mathbf{P}_{\mathbf{A}}a=0} a^{\mathsf{T}}(\mathbf{I}_p - \mathbf{P}_{\mathbf{A}})\mathbf{B}(\mathbf{I}_p - \mathbf{P}_{\mathbf{A}})a, \quad (S1.1)$$

which is obviously no greater than $\lambda_1 ((\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}))$. To prove that they are equal, without loss of generality, we can assume $\lambda_1 ((\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A})) > 0$. Let α_1 be one eigenvector corresponding to the largest eigenvalue of $(\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A})$. Since $(\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{P_A} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{P_A} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{P_A} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{B} (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} \mathbf{P_A} \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} \mathbf{P_A} \mathbf{P_A} \mathbf{P_A} \mathbf{P_A} = (\mathbf{I} - \mathbf{P_A}) \mathbf{P_A} \mathbf{P_A}$

Lemma 2. Let $\xi_{n,i}$, i = 1, ..., n, n = 1, 2, ..., be iid s-dimensional random vectors with mean zero, covariance matrix \mathbf{M} and finite fourth moment. For n = 1, 2, ..., let $\{a_{n,i}\}_{i=1}^n$ be real random variables which are independent of $\{\xi_{n,i}\}_{i=1}^n$ and satisfy

$$\frac{\max_{1 \le i \le n} a_{n,i}^2}{\sum_{i=1}^n a_{n,i}^2} \xrightarrow{P} 0.$$
 (S1.2)

Then

$$(\sum_{i=1}^{n} a_{n,i}^{2})^{-1/2} \sum_{i=1}^{n} a_{n,i} \xi_{n,i} \xrightarrow{\mathcal{L}} \mathcal{N}_{s}(\mathbf{0}_{s}, \mathbf{M}).$$

Proof. First we observe that if $\{a_{n,i}\}_{i=1}^n$ are fixed numbers satisfying (S1.2), then Lyapunov central limit theorem and continuity theorem imply that for any $t \in \mathbb{R}^s$,

$$\mathbb{E}\left[\exp\left(\left(\sum_{i=1}^{n}a_{n,i}^{2}\right)^{-1/2}\sum_{i=1}^{n}a_{n,i}it^{\top}\xi_{n,i}\right)\right] \to \exp\left(-\frac{1}{2}t^{\top}\mathbf{M}t\right).$$

We only need to prove that for every subsequence of $\{n\}$, there is a further subsequence along which the conclusion holds. Let $\{m(n)\}$ be a subsequence of $\{n\}$. We can find a further subsequence of $\{m(n)\}$ along which (S1.2) holds almost surely. Then along this subsequence, our previous argument implies that for any $t \in \mathbb{R}^s$,

$$\mathbb{E}\left[\exp\left(\left(\sum_{i=1}^{n}a_{n,i}^{2}\right)^{-1/2}\sum_{i=1}^{n}a_{n,i}it^{\top}\xi_{n,i}\right)\left|a_{n,1},\ldots,a_{n,n}\right]\to\exp\left(-\frac{1}{2}t^{\top}\mathbf{M}t\right)\right]$$

almost surely. Then by dominated convergence theorem, we have

$$\mathbb{E}\left[\exp\left(\left(\sum_{i=1}^{n}a_{n,i}^{2}\right)^{-1/2}\sum_{i=1}^{n}a_{n,i}it^{\top}\xi_{n,i}\right)\right] \to \exp\left(-\frac{1}{2}t^{\top}\mathbf{M}t\right)$$

along this further subsequence. This implies the conclusion holds along this further subsequence, which completes the proof.

Lemma 3 (Weyl's inequality). Let **A** and **B** be two symmetric $n \times n$ ma-

trices. If $r + s - 1 \le i \le j + k - n$, we have

$$\lambda_i(\mathbf{A}) + \lambda_k(\mathbf{B}) \le \lambda_i(\mathbf{A} + \mathbf{B}) \le \lambda_r(\mathbf{A}) + \lambda_s(\mathbf{B}).$$

See, for example, Horn and Johnson (2012) Theorem 4.3.1.

Lemma 4 (von Neumann's trace theorem). Let \mathbf{A} and \mathbf{B} be two $m \times n$ matrices. Let $\sigma_1(\mathbf{A}) \geq \ldots \geq \sigma_q(\mathbf{A})$ and $\sigma_1(\mathbf{B}) \geq \cdots \geq \sigma_q(\mathbf{B})$ denote the non-increasingly ordered singular values of \mathbf{A} and \mathbf{B} , respectively. Then

$$\operatorname{tr}(\mathbf{A}\mathbf{B}^{ op}) \leq \sum_{i=1}^{\min(m,n)} \sigma_i(\mathbf{A}) \sigma_i(\mathbf{B}).$$

See, for example, Horn and Johnson (2012) Theorem 7.4.1.1.

Lemma 5. Let $\{Z_i\}_{i=1}^n$ be iid m-dimensional random vectors with common distribution $\mathcal{N}_m(\mathbf{0}_m, \mathbf{I}_m)$. Then for any n-dimensional vector $\omega = (\omega_1, \ldots, \omega_n)^\top$, we have

$$\left\| \sum_{i=1}^n \omega_i (Z_i Z_i^\top - \mathbf{I}_m) \right\| = O_P(|\omega|_2 \sqrt{m} + |\omega|_\infty m),$$

where $|\omega|_2 = \sqrt{\sum_{i=1}^n \omega_i^2}$ and $|\omega|_{\infty} = \max_{1 \le i \le n} |\omega_i|$.

Remark 1. Our proof implies that the conclusion is still valid if ω is random and is independent of $\{Z_i\}_{i=1}^n$.

Proof. Our proof is adapted from the proof of Theorem 5.39 in Vershynin (2010). By Lemma 5.2 and Lemma 5.4 of Vershynin (2010), there exists a

set $\mathcal{C} \subset \{x \in \mathbb{R}^m : |x|_2 = 1\}$ satisfying $\operatorname{Card}(\mathcal{C}) \leq 9^m$ such that for any $m \times m$ symmetric matrix \mathbf{A} ,

$$||A|| \le 2 \max_{x \in \mathcal{C}} |x^{\top} \mathbf{A} x|. \tag{S1.3}$$

Then for t > 4,

$$\Pr\left(\left\|\sum_{i=1}^{n} \omega_{i}(Z_{i}Z_{i}^{\top} - \mathbf{I}_{m})\right\| > t(|\omega|_{2}\sqrt{m} + |\omega|_{\infty}m)\right)$$

$$\leq \Pr\left(2\max_{x \in \mathcal{C}} \left|\sum_{i=1}^{n} \omega_{i}(x^{\top}Z_{i}Z_{i}^{\top}x - 1)\right| > t(|\omega|_{2}\sqrt{m} + |\omega|_{\infty}m)\right)$$

$$\leq \sum_{x \in \mathcal{C}} \Pr\left(\left|\sum_{i=1}^{n} \omega_{i}(x^{\top}Z_{i}Z_{i}^{\top}x - 1)\right| > 2|\omega|_{2}\sqrt{\frac{mt}{4}} + 2|\omega|_{\infty}\frac{mt}{4}\right)$$

$$\leq 2 \cdot 9^{m} \exp\left(-\frac{mt}{4}\right) = 2 \exp\left((2\log 3 - t/4)m\right),$$

where the first inequality follows from (S1.3), the second inequality follows from the union bound and the third inequality follows Lemma 1 of Laurent and Massart (2000). The upper bound $2 \exp((2 \log 3 - t/4)m)$ can be arbitrarily small as long as t is large enough. This completes the proof. \square

S2 Proofs of Propositions 1-4

Proof of Proposition 1. We only need to deal with the matrix $n^{-1}\mathbf{Z}^{\top}\mathbf{\Lambda}\mathbf{Z}$ since it shares the same non-zero eigenvalues as $\hat{\Sigma}$. Write

$$n^{-1}\mathbf{Z}^{\top}\boldsymbol{\Lambda}\mathbf{Z} = n^{-1}\mathbf{Z}_{1}^{\top}\boldsymbol{\Lambda}_{1}\mathbf{Z}_{1} + n^{-1}\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2}$$
$$= n^{-1}\mathbf{Z}_{1}^{\top}\boldsymbol{\Lambda}_{1}\mathbf{Z}_{1} + n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\mathbf{I}_{n} + n^{-1}\left(\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2} - \operatorname{tr}(\boldsymbol{\Lambda}_{2})\mathbf{I}_{n}\right).$$

Then Weyl's inequality implies that for $i=1,\ldots,r,$

$$\left| \lambda_i \left(n^{-1} \mathbf{Z}^\top \mathbf{\Lambda} \mathbf{Z} \right) - \lambda_i (n^{-1} \mathbf{Z}_1^\top \mathbf{\Lambda}_1 \mathbf{Z}_1) - n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \right| \le n^{-1} \left\| \mathbf{Z}_2^\top \mathbf{\Lambda}_2 \mathbf{Z}_2 - \operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{I}_n \right\|.$$
(S2.1)

Using Weyl's inequality, we can derive the following lower bound for $\lambda_i(\mathbf{Z}_1^{\top} \mathbf{\Lambda}_1 \mathbf{Z}_1)$, $i=1,\ldots,r$.

$$\lambda_{i}(\mathbf{Z}_{1}^{\top}\boldsymbol{\Lambda}_{1}\mathbf{Z}_{1}) \geq \lambda_{i}(\mathbf{Z}_{1}^{\top}\operatorname{diag}(\boldsymbol{\lambda}_{i}\mathbf{I}_{i}, \mathbf{O}_{(r-i)\times(r-i)})\mathbf{Z}_{1})$$

$$=\lambda_{i}\left(\boldsymbol{\lambda}_{i}\mathbf{Z}_{1}^{\top}\mathbf{Z}_{1} - \boldsymbol{\lambda}_{i}\mathbf{Z}_{1}^{\top}\operatorname{diag}(\mathbf{O}_{i\times i}, \mathbf{I}_{r-i})\mathbf{Z}_{1}\right)$$

$$\geq \lambda_{r}\left(\boldsymbol{\lambda}_{i}\mathbf{Z}_{1}^{\top}\mathbf{Z}_{1}\right) + \lambda_{n+i-r}\left(-\boldsymbol{\lambda}_{i}\mathbf{Z}_{1}^{\top}\operatorname{diag}(\mathbf{O}_{i\times i}, \mathbf{I}_{r-i})\mathbf{Z}_{1}\right)$$

$$=\boldsymbol{\lambda}_{i}\lambda_{r}(\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top}).$$

Similarly, we can derive the following upper bound for $\lambda_i(\mathbf{Z}_1^{\top}\mathbf{\Lambda}_1\mathbf{Z}_1)$, $i = 1, \ldots, r$.

$$\lambda_{i}(\mathbf{Z}_{1}^{\top}\boldsymbol{\Lambda}_{1}\mathbf{Z}_{1})$$

$$=\lambda_{i}\left(\mathbf{Z}_{1}^{\top}\left(\operatorname{diag}(\boldsymbol{\lambda}_{1},\ldots,\boldsymbol{\lambda}_{i-1},\mathbf{O}_{(r-i+1)\times(r-i+1)})+\operatorname{diag}(\mathbf{O}_{(i-1)\times(i-1)},\boldsymbol{\lambda}_{i},\ldots,\boldsymbol{\lambda}_{r})\right)\mathbf{Z}_{1}\right)$$

$$\leq\lambda_{i}\left(\mathbf{Z}_{1}^{\top}\left(\operatorname{diag}(\boldsymbol{\lambda}_{1},\ldots,\boldsymbol{\lambda}_{i-1},\mathbf{O}_{(r-i+1)\times(r-i+1)})\right)+\lambda_{1}\left(\operatorname{diag}(\mathbf{O}_{(i-1)\times(i-1)},\boldsymbol{\lambda}_{i},\ldots,\boldsymbol{\lambda}_{r})\right)\mathbf{Z}_{1}\right)$$

$$\leq\lambda_{1}(\mathbf{Z}_{1}^{\top}\operatorname{diag}(\mathbf{O}_{(i-1)\times(i-1)},\boldsymbol{\lambda}_{i}\mathbf{I}_{r-i+1})\mathbf{Z}_{1})\leq\boldsymbol{\lambda}_{i}\lambda_{1}(\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top}).$$

The above lower bound and upper bound imply

$$\left| \lambda_i (n^{-1} \mathbf{Z}_1^{\top} \boldsymbol{\Lambda}_1 \mathbf{Z}_1) - \boldsymbol{\lambda}_i \right| \leq \boldsymbol{\lambda}_i \max \left(|\lambda_1 (n^{-1} \mathbf{Z}_1 \mathbf{Z}_1^{\top}) - 1|, |\lambda_r (n^{-1} \mathbf{Z}_1 \mathbf{Z}_1^{\top}) - 1| \right)$$

$$= \boldsymbol{\lambda}_i ||n^{-1} \mathbf{Z}_1 \mathbf{Z}_1^{\top} - \mathbf{I}_r||.$$
(S2.2)

Combining the bounds (S2.1) and (S2.2) gives that for $i=1,\ldots,r,$

$$\begin{aligned} & \left| \lambda_i \left(n^{-1} \mathbf{Z}^\top \mathbf{\Lambda} \mathbf{Z} \right) - \boldsymbol{\lambda}_i - n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \right| \\ \leq & n^{-1} \left\| \mathbf{Z}_2^\top \mathbf{\Lambda}_2 \mathbf{Z}_2 - \operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{I}_n \right\| + \boldsymbol{\lambda}_i \| n^{-1} \mathbf{Z}_1 \mathbf{Z}_1^\top - \mathbf{I}_r \|. \end{aligned}$$

From Lemma 5, we have

$$\|n^{-1}\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top} - \mathbf{I}_{r}\| = O_{P}\left(\sqrt{\frac{r}{n}}\right),$$

$$(S2.3)$$

$$n^{-1}\|\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2} - \operatorname{tr}(\boldsymbol{\Lambda}_{2})\mathbf{I}_{n}\| = O_{P}\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}} + \boldsymbol{\lambda}_{r+1}\right).$$
(S2.4)

This proves the first statement.

Next we prove the second statement. Note that

$$\sum_{i=r+1}^{n} \lambda_{i}(\hat{\boldsymbol{\Sigma}}) = \sum_{i=r+1}^{n} \lambda_{i}(n^{-1} \mathbf{Z}^{\top} \boldsymbol{\Lambda} \mathbf{Z})$$

$$= \operatorname{tr}(n^{-1} \mathbf{Z}^{\top} \boldsymbol{\Lambda} \mathbf{Z}) - \sum_{i=1}^{r} \lambda_{i}(n^{-1} \mathbf{Z}^{\top} \boldsymbol{\Lambda} \mathbf{Z})$$

$$= \operatorname{tr}(n^{-1} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2}) - \frac{r}{n} \operatorname{tr}(\boldsymbol{\Lambda}_{2})$$

$$- \left(\sum_{i=1}^{r} \lambda_{i}(n^{-1} \mathbf{Z}^{\top} \boldsymbol{\Lambda} \mathbf{Z}) - \operatorname{tr}(n^{-1} \mathbf{Z}_{1}^{\top} \boldsymbol{\Lambda}_{1} \mathbf{Z}_{1}) - \frac{r}{n} \operatorname{tr}(\boldsymbol{\Lambda}_{2})\right).$$

It follows from inequalities (S2.1) and (S2.4) that

$$\left| \sum_{i=1}^{r} \lambda_{i}(n^{-1} \mathbf{Z}^{\top} \mathbf{\Lambda} \mathbf{Z}) - \operatorname{tr}(n^{-1} \mathbf{Z}_{1}^{\top} \mathbf{\Lambda}_{1} \mathbf{Z}_{1}) - \frac{r}{n} \operatorname{tr}(\mathbf{\Lambda}_{2}) \right|$$

$$\leq \frac{r}{n} \left\| \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} - \operatorname{tr}(\mathbf{\Lambda}_{2}) \mathbf{I}_{n} \right\| = O_{P} \left(r \sqrt{\frac{\operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}{n}} + r \mathbf{\lambda}_{r+1} \right).$$

Thus,

$$\sum_{i=r+1}^{n} \lambda_i(\hat{\boldsymbol{\Sigma}}) = \operatorname{tr}(n^{-1}\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2) - \frac{r}{n}\operatorname{tr}(\boldsymbol{\Lambda}_2) + O_P\left(r\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_2^2)}{n}} + r\boldsymbol{\lambda}_{r+1}\right).$$

It is straightforward to show that

$$\operatorname{E}\operatorname{tr}(n^{-1}\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2) = \operatorname{tr}(\boldsymbol{\Lambda}_2), \quad \operatorname{Var}\left(\operatorname{tr}(n^{-1}\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2)\right) = \frac{2}{n}\operatorname{tr}(\boldsymbol{\Lambda}_2^2).$$

Hence

$$\sum_{i=r+1}^{n} \lambda_{i}(\hat{\boldsymbol{\Sigma}})$$

$$= \operatorname{tr}(\boldsymbol{\Lambda}_{2}) + O_{P}\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}}\right) - \frac{r}{n}\operatorname{tr}(\boldsymbol{\Lambda}_{2}) + O_{P}\left(r\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}} + r\boldsymbol{\lambda}_{r+1}\right)$$

$$= \operatorname{tr}(\boldsymbol{\Lambda}_{2}) - \frac{r}{n}\operatorname{tr}(\boldsymbol{\Lambda}_{2}) + O_{P}\left(r\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}} + r\boldsymbol{\lambda}_{r+1}\right).$$

This completes the proof of the second statement.

Proof of Proposition 2. The first two statements are direct consequences of Proposition 1 and the condition r = o(n). Next we prove the third statement. We have $\widehat{\operatorname{tr}(\Lambda_2^2)} = n^{-2} \sum_{i=r+1}^n \lambda_i^2 (\mathbf{Y}^\top \mathbf{Y} - \widehat{\operatorname{tr}(\Lambda_2)} \mathbf{I}_n)$. Note that Weyl's inequality implies that for $i = r+1, \ldots, n$,

$$\lambda_i(\mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_n) \leq \lambda_i(\mathbf{Y}^{\top} \mathbf{Y} - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_n) \leq \lambda_{i-r}(\mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_n).$$

Define

$$C_1 = \left\{ i : 1 \le i \le n, \ \lambda_i \left(\mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_n \right) > 0 \right\},$$

$$C_2 = \left\{ i : r + 1 \le i \le n, \ \lambda_{i-r} \left(\mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_n \right) \le 0 \right\}.$$

It can be seen that $C_1 \cap C_2 = \emptyset$ and $Card(C_1 \cup C_2) \ge n - r$. For $i \ge r + 1$ and $i \in C_1$,

$$\lambda_i^2(\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n) \leq \lambda_i^2(\mathbf{Y}^{\top}\mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n) \leq \lambda_{i-r}^2(\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n);$$

for $i \in \mathcal{C}_2$,

$$\lambda_{i-r}^2(\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)}\mathbf{I}_n) \leq \lambda_i^2(\mathbf{Y}^{\top}\mathbf{Y} - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)}\mathbf{I}_n) \leq \lambda_i^2(\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)}\mathbf{I}_n);$$

for $i \geq r + 1$ and $i \notin \mathcal{C}_1 \cup \mathcal{C}_2$,

$$\lambda_i^2(\mathbf{Y}^{\top}\mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n) \leq \max\left(\lambda_{i-r}^2(\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n), \lambda_i^2(\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n)\right).$$

Therefore.

$$\left| \sum_{i=r+1}^{n} \lambda_{i}^{2} \left(\mathbf{Y}^{\top} \mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right) - \operatorname{tr}(\mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n})^{2} \right|$$

$$\leq \left| \sum_{i>r, i \in \mathcal{C}_{1}} \lambda_{i}^{2} \left(\mathbf{Y}^{\top} \mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right) - \sum_{i \in \mathcal{C}_{1}} \lambda_{i}^{2} \left(\mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right) \right|$$

$$+ \left| \sum_{i>r, i \notin \mathcal{C}_{1}} \lambda_{i}^{2} \left(\mathbf{Y}^{\top} \mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right) - \sum_{i \notin \mathcal{C}_{1}} \lambda_{i}^{2} \left(\mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right) \right|$$

$$+ \left| \sum_{i>r, i \notin \mathcal{C}_{1} \cup \mathcal{C}_{2}} \lambda_{i}^{2} \left(\mathbf{Y}^{\top} \mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right) \right|$$

$$\leq 3r \left\| \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right\|^{2}$$

$$\leq 3r \left(\left\| \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{n} \right\| + \left| \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \right| \right)^{2}$$

$$= O_{P} \left(rn \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2}) + rn^{2} \boldsymbol{\lambda}_{r+1}^{2} \right).$$
(S2.5)

where the last equality follows from (S2.4) and the second statement of the proposition.

Now we deal with $\operatorname{tr}(\mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_n)^2$. Let $Z_{2,i}$ be the *i*th column

of \mathbf{Z}_2 , i = 1, ..., n. Then

$$\operatorname{tr}(\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2 - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)}\mathbf{I}_n)^2 = \sum_{i=1}^n (Z_{2,i}^{\top}\boldsymbol{\Lambda}_2Z_{2,i} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)})^2 + 2\sum_{1 \leq i < j \leq n} (Z_{2,i}^{\top}\boldsymbol{\Lambda}_2Z_{2,j})^2.$$

For the first term, we have

$$\sum_{i=1}^n (Z_{2,i}^\top \boldsymbol{\Lambda}_2 Z_{2,i} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)})^2 \leq 2 \sum_{i=1}^n (Z_{2,i}^\top \boldsymbol{\Lambda}_2 Z_{2,i} - \operatorname{tr}(\boldsymbol{\Lambda}_2))^2 + 2n(\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)} - \operatorname{tr}(\boldsymbol{\Lambda}_2))^2.$$

Then it follows from the second statement of the proposition and the fact

$$\mathrm{E}\sum_{i=1}^n (Z_{2,i}^{\top} \mathbf{\Lambda}_2 Z_{2,i} - \mathrm{tr}(\mathbf{\Lambda}_2))^2 = 2n \, \mathrm{tr}(\mathbf{\Lambda}_2^2)$$
 that

$$\sum_{i=1}^{n} (Z_{2,i}^{\mathsf{T}} \mathbf{\Lambda}_2 Z_{2,i} - \widehat{\operatorname{tr}(\mathbf{\Lambda}_2)})^2 = O_P\left((n+r^2)\operatorname{tr}(\mathbf{\Lambda}_2^2) + r^2 n \mathbf{\lambda}_{r+1}^2\right).$$
 (S2.6)

For the second term, it is straightforward to show that $E 2 \sum_{1 \leq i < j \leq n} (Z_{2,i}^{\top} \mathbf{\Lambda}_2 Z_{2,j})^2 = n(n-1) \operatorname{tr}(\mathbf{\Lambda}_2^2)$. Furthermore, Chen et al. (2010), Proposition A.2 implies that

$$\operatorname{Var}\left(2\sum_{1\leq i< j\leq n} (Z_{2,i}^{\top} \mathbf{\Lambda}_2 Z_{2,j})^2\right) = O\left(n^2 \operatorname{tr}^2(\mathbf{\Lambda}_2^2) + n^3 \operatorname{tr}(\mathbf{\Lambda}_2^4)\right)$$
$$= O\left(n^2 \operatorname{tr}^2(\mathbf{\Lambda}_2^2) + n \operatorname{tr}(\mathbf{\Lambda}_2^2) n^2 \mathbf{\lambda}_{r+1}^2\right)$$
$$= O\left(n^2 \operatorname{tr}^2(\mathbf{\Lambda}_2^2) + n^4 \mathbf{\lambda}_{r+1}^4\right).$$

Thus,

$$2\sum_{1\leq i< j\leq n} (Z_{2,i}^{\top} \mathbf{\Lambda}_2 Z_{2,j})^2 = n^2 \operatorname{tr}(\mathbf{\Lambda}_2^2) + O_P \left(n \operatorname{tr}(\mathbf{\Lambda}_2^2) + n^2 \mathbf{\lambda}_{r+1}^2 \right).$$

Combining the last display and (S2.6) yields

$$\operatorname{tr}(\mathbf{Z}_{2}^{\top}\mathbf{\Lambda}_{2}\mathbf{Z}_{2}-\widehat{\operatorname{tr}(\mathbf{\Lambda}_{2})}\mathbf{I}_{n})^{2}=n^{2}\operatorname{tr}(\mathbf{\Lambda}_{2}^{2})+O_{P}\left((n+r^{2})\operatorname{tr}(\mathbf{\Lambda}_{2}^{2})+(n+r^{2})n\boldsymbol{\lambda}_{r+1}^{2}\right).$$

Combine the last display and (S2.5), we have

$$\sum_{i=r+1}^{n} \lambda_i^2 \left(\mathbf{Y}^{\top} \mathbf{Y} - \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)} \mathbf{I}_n \right) = O_P \left(rn \operatorname{tr}(\boldsymbol{\Lambda}_2^2) + rn^2 \boldsymbol{\lambda}_{r+1}^2 \right).$$

This completes the proof.

Proposition 6. Suppose that r = o(n) and $r\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$. Then

$$\|\mathbf{P}_{\mathbf{Y},1} - \mathbf{P}_{\mathbf{Y},1}^*\| = O_P\left(\frac{\boldsymbol{\lambda}_{r+1} + n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_2)}{\boldsymbol{\lambda}_r + n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_2)}\right),$$

where

$$\mathbf{P}_{\mathbf{Y},1}^* = \mathbf{U} egin{pmatrix} \mathbf{I}_r \ \mathbf{Q} \end{pmatrix} ig(\mathbf{I}_r + \mathbf{Q}^ op \mathbf{Q}ig)^{-1} ig(\mathbf{I}_r & \mathbf{Q}^ opig) \mathbf{U}^ op.$$

Proof. The following intermediate matrix

$$\hat{\boldsymbol{\Sigma}}_{0} = n^{-1} \mathbf{U}_{1} \boldsymbol{\Lambda}_{1}^{1/2} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\top} \boldsymbol{\Lambda}_{1}^{1/2} \mathbf{U}_{1}^{\top} + n^{-1} \mathbf{U}_{1} \boldsymbol{\Lambda}_{1}^{1/2} \mathbf{Z}_{1} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} + n^{-1} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{Z}_{1}^{\top} \boldsymbol{\Lambda}_{1}^{1/2} \mathbf{U}_{1}^{\top}$$

$$+ n^{-1} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top}$$

plays a key role in the proof. It can be seen that

$$\hat{\boldsymbol{\Sigma}}_0 = n^{-1} \mathbf{U} \begin{pmatrix} \mathbf{I}_r \\ \mathbf{Q} \end{pmatrix} \boldsymbol{\Lambda}_1^{1/2} \mathbf{Z}_1 \mathbf{Z}_1^{\top} \boldsymbol{\Lambda}_1^{1/2} \begin{pmatrix} \mathbf{I}_r & \mathbf{Q}^{\top} \end{pmatrix} \mathbf{U}^{\top}.$$

Consequently, $\hat{\Sigma}_0$ is a positive semi-definite matrix with rank r, and $\mathbf{P}_{\mathbf{Y},1}^*$ is the projection matrix onto the rank r principal subspace of $\hat{\Sigma}_0$.

From Cai et al. (2015), Proposition 1, we have

$$\|\mathbf{P}_{\mathbf{Y},1} - \mathbf{P}_{\mathbf{Y},1}^*\| \le \frac{2\|\hat{\mathbf{\Sigma}} - \hat{\mathbf{\Sigma}}_0\|}{\lambda_r(\hat{\mathbf{\Sigma}}_0)}.$$
 (S2.7)

We have the following upper bound for $\|\hat{\Sigma} - \hat{\Sigma}_0\|$.

$$\|\hat{\boldsymbol{\Sigma}} - \hat{\boldsymbol{\Sigma}}_{0}\| = n^{-1} \|\mathbf{U}_{2}\boldsymbol{\Lambda}_{2}^{1/2}\mathbf{Z}_{2}\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}^{1/2}\mathbf{U}_{2}^{\top} - \mathbf{U}_{2}\boldsymbol{\Lambda}_{2}^{1/2}\mathbf{Z}_{2}\mathbf{V}_{\mathbf{Z}_{1}}\mathbf{V}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}^{1/2}\mathbf{U}_{2}^{\top} \|$$

$$= n^{-1} \|\boldsymbol{\Lambda}_{2}^{1/2}\mathbf{Z}_{2}(\mathbf{I}_{n} - \mathbf{V}_{\mathbf{Z}_{1}}\mathbf{V}_{\mathbf{Z}_{1}}^{\top})\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}^{1/2} \|$$

$$\leq n^{-1} \|\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2}\|$$

$$\leq n^{-1} \|\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2} - \operatorname{tr}(\boldsymbol{\Lambda}_{2})\mathbf{I}_{n}\| + n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})$$

$$= O_{P} \left(\boldsymbol{\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}}} + \boldsymbol{\lambda}_{r+1} + n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\right)$$

$$= O_{P} \left(\boldsymbol{\lambda}_{r+1} + n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\right),$$
(S2.8)

where the second last equality follows from (S2.4) and the last equality follows from

$$\sqrt{\frac{\operatorname{tr}\left(\boldsymbol{\Lambda}_{2}^{2}\right)}{n}} \leq \sqrt{\frac{\boldsymbol{\lambda}_{r+1}\operatorname{tr}\left(\boldsymbol{\Lambda}_{2}\right)}{n}} \leq \frac{1}{2}\left(\boldsymbol{\lambda}_{r+1} + n^{-1}\operatorname{tr}\left(\boldsymbol{\Lambda}_{2}\right)\right).$$

Now we deal with $\lambda_r(\hat{\Sigma}_0)$. We have

$$\lambda_r(\hat{\boldsymbol{\Sigma}}_0) = \lambda_r \left(n^{-1} (\mathbf{Z}_1 \mathbf{Z}_1^\top)^{1/2} \boldsymbol{\Lambda}_1^{1/2} (\mathbf{I}_r + \mathbf{Q}^\top \mathbf{Q}) \boldsymbol{\Lambda}_1^{1/2} (\mathbf{Z}_1 \mathbf{Z}_1^\top)^{1/2} \right)$$
$$= \lambda_r \left(n^{-1} (\mathbf{Z}_1 \mathbf{Z}_1^\top)^{1/2} \boldsymbol{\Lambda}_1 (\mathbf{Z}_1 \mathbf{Z}_1^\top)^{1/2} + n^{-1} \mathbf{V}_{\mathbf{Z}_1}^\top \mathbf{Z}_2^\top \boldsymbol{\Lambda}_2 \mathbf{Z}_2 \mathbf{V}_{\mathbf{Z}_1} \right).$$

It can be seen that $\mathbf{Z}_2\mathbf{V}_{\mathbf{Z}_1}$ is a $(p-r)\times r$ random matrix with iid $\mathcal{N}(0,1)$

entries. Then Lemma 5 implies that

$$\|n^{-1}\mathbf{V}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2}\mathbf{V}_{\mathbf{Z}_{1}} - n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\mathbf{I}_{r}\| = O_{P}\left(n^{-1}\sqrt{r\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})} + rn^{-1}\boldsymbol{\lambda}_{r+1}\right)$$

$$= O_{P}\left(n^{-1}\sqrt{r\boldsymbol{\lambda}_{r+1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})} + rn^{-1}\boldsymbol{\lambda}_{r+1}\right)$$

$$= o_{P}\left(n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\right),$$
(S2.9)

where the last equality follows from the condition $r\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$. Then it follows from Weyl's inequality that

$$\left| \lambda_r(\hat{\mathbf{\Sigma}}_0) - \lambda_r \left(n^{-1} (\mathbf{Z}_1 \mathbf{Z}_1^\top)^{1/2} \mathbf{\Lambda}_1 (\mathbf{Z}_1 \mathbf{Z}_1^\top)^{1/2} + n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{I}_r \right) \right|$$

$$\leq \left\| n^{-1} \mathbf{V}_{\mathbf{Z}_1}^\top \mathbf{Z}_2^\top \mathbf{\Lambda}_2 \mathbf{Z}_2 \mathbf{V}_{\mathbf{Z}_1} - n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{I}_r \right\|$$

$$= o_P \left(n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \right).$$

On the other hand, (S2.2) and (S2.3) imply that

$$\lambda_r \left(n^{-1} (\mathbf{Z}_1 \mathbf{Z}_1^{\top})^{1/2} \mathbf{\Lambda}_1 (\mathbf{Z}_1 \mathbf{Z}_1^{\top})^{1/2} + n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{I}_r \right)$$

$$= \lambda_r \left(n^{-1} \mathbf{Z}_1^{\top} \mathbf{\Lambda}_1 \mathbf{Z}_1 \right) + n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2)$$

$$= \lambda_r + o_P(\lambda_r) + n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2).$$

Hence we have

$$\lambda_r(\hat{\Sigma}_0) = (1 + o_P(1))(\lambda_r + n^{-1}\operatorname{tr}(\Lambda_2)). \tag{S2.10}$$

Then the conclusion follows from (S2.7), (S2.8) and (S2.10).

Proof of Proposition 3. Note that

$$\left\|\mathbf{P}_{\mathbf{Y},1}-\mathbf{P}_{\mathbf{Y},1}^{\dagger}\right\| \leq \left\|\mathbf{P}_{\mathbf{Y},1}-\mathbf{P}_{\mathbf{Y},1}^{*}\right\| + \left\|\mathbf{P}_{\mathbf{Y},1}^{*}-\mathbf{P}_{\mathbf{Y},1}^{\dagger}\right\|.$$

Under the condition $\operatorname{tr}(\Lambda_2)/(n\lambda_r) \to 0$, Proposition 6 implies that

$$\|\mathbf{P}_{\mathbf{Y},1} - \mathbf{P}_{\mathbf{Y},1}^*\| = O_P\left(\frac{\boldsymbol{\lambda}_{r+1}}{\boldsymbol{\lambda}_r} + \frac{\operatorname{tr}(\boldsymbol{\Lambda}_2)}{n\boldsymbol{\lambda}_r}\right).$$

So we only need to deal with $\|\mathbf{P}_{\mathbf{Y},1}^* - \mathbf{P}_{\mathbf{Y},1}^{\dagger}\|$. We have

$$\begin{split} & \left\| \mathbf{P}_{\mathbf{Y},1}^{*} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} \right\| \\ \leq & \left\| \mathbf{P}_{\mathbf{Y},1}^{*} - \mathbf{U} \begin{pmatrix} \mathbf{I}_{r} \\ \mathbf{Q} \end{pmatrix} \left(\mathbf{I}_{r} \quad \mathbf{Q}^{\top} \right) \mathbf{U}^{\top} \right\| + \left\| \mathbf{U} \begin{pmatrix} \mathbf{I}_{r} \\ \mathbf{Q} \end{pmatrix} \left(\mathbf{I}_{r} \quad \mathbf{Q}^{\top} \right) \mathbf{U}^{\top} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} \right\| \\ = & \left\| \begin{pmatrix} \mathbf{I}_{r} \\ \mathbf{Q} \end{pmatrix} \left(\left(\mathbf{I}_{r} + \mathbf{Q}^{\top} \mathbf{Q} \right)^{-1} - \mathbf{I}_{r} \right) \left(\mathbf{I}_{r} \quad \mathbf{Q}^{\top} \right) \right\| + \left\| \mathbf{U}_{2} \mathbf{Q} \mathbf{Q}^{\top} \mathbf{U}_{2}^{\top} \right\| \\ = & \left\| \left(\left(\mathbf{I}_{r} + \mathbf{Q}^{\top} \mathbf{Q} \right)^{-1} - \mathbf{I}_{r} \right) \left(\mathbf{I}_{r} + \mathbf{Q}^{\top} \mathbf{Q} \right) \right\| + \left\| \mathbf{U}_{2} \mathbf{Q} \mathbf{Q}^{\top} \mathbf{U}_{2}^{\top} \right\| \\ = & 2 \left\| \mathbf{Q}^{\top} \mathbf{Q} \right\|. \end{split}$$

Note that

$$\|\mathbf{Q}^{\top}\mathbf{Q}\| = \|\mathbf{\Lambda}_{1}^{-1/2}(\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top})^{-1/2}\mathbf{V}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\mathbf{\Lambda}_{2}\mathbf{Z}_{2}\mathbf{V}_{\mathbf{Z}_{1}}(\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top})^{-1/2}\mathbf{\Lambda}_{1}^{-1/2}\|$$

$$\leq \mathbf{\lambda}_{r}^{-1}\|(\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top})^{-1}\|\|\mathbf{V}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\mathbf{\Lambda}_{2}\mathbf{Z}_{2}\mathbf{V}_{\mathbf{Z}_{1}}\|$$

$$= O_{P}\left(\frac{\operatorname{tr}(\mathbf{\Lambda}_{2})}{n\mathbf{\lambda}_{r}}\right),$$
(S2.11)

where the second last equality follows from the fact $\|(\mathbf{Z}_1\mathbf{Z}_1^\top)^{-1}\| = \lambda_r(\mathbf{Z}_1\mathbf{Z}_1^\top)^{-1}$,

(S2.3), (S2.9) and Weyl's inequality. Therefore, we have

$$\left\| \mathbf{P}_{\mathbf{Y},1}^* - \mathbf{P}_{\mathbf{Y},1}^{\dagger} \right\| = O_P \left(\frac{\operatorname{tr}(\mathbf{\Lambda}_2)}{n \mathbf{\lambda}_r} \right).$$

This completes the proof.

Proposition 7. Suppose that r = o(n) and $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$. Then

$$\left\|\mathbf{P}_{\mathbf{Y},2}-\mathbf{P}_{\mathbf{Y},2}^*\right\|=O_P\left(\min\left(\sqrt{rac{\mathrm{tr}(\mathbf{\Lambda}_2)oldsymbol{\lambda}_1}{noldsymbol{\lambda}_r^2}},1
ight)
ight).$$

where
$$\mathbf{P}_{\mathbf{Y},2}^* = \mathbf{U}_2 \mathbf{\Lambda}_2^{1/2} \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \left(\tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \right)^{-1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2^{1/2} \mathbf{U}_2^{\top}.$$

Proof. We only need to prove that for any subsequence of $\{n\}$, there is a further subsequence along which the conclusion holds. Thus, without loss of generality, we assume $\operatorname{tr}(\Lambda_2)\lambda_1/(n\lambda_r^2) \to c \in [0, +\infty]$. Since $\mathbf{P}_{\mathbf{Y},2}$ and $\mathbf{P}_{\mathbf{Y},2}^*$ are both projection matrices, we have $\|\mathbf{P}_{\mathbf{Y},2} - \mathbf{P}_{\mathbf{Y},2}^*\| \leq 2$. Therefore, the conclusion holds if c > 0. In the rest of the proof, we assume c = 0, that is $\operatorname{tr}(\Lambda_2)\lambda_1/(n\lambda_r^2) \to 0$.

Note that $\mathbf{U}_{\mathbf{Y},2}$ is in fact the leading n-r eigenvectors of $(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) \hat{\Sigma}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1})$. Under the condition $n \lambda_{r+1} / \operatorname{tr}(\Lambda_2) \to 0$, Proposition 3 implies that

$$\left\| \mathbf{P}_{\mathbf{Y},1} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} \right\| = O_P \left(\frac{\operatorname{tr}(\mathbf{\Lambda}_2)}{n \mathbf{\lambda}_r} \right).$$

It can be seen that

$$\begin{aligned} & \left\| (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) - (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| \\ & \leq \left\| (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \hat{\boldsymbol{\Sigma}} (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \right\| + 2 \left\| (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\|. \end{aligned}$$

Under the condition $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2)\to 0$, Proposition 1 implies that

$$\|\hat{\mathbf{\Sigma}}\| = \lambda_1 \left(1 + \frac{\operatorname{tr}(\mathbf{\Lambda}_2)}{n\lambda_1} + O_P \left(\sqrt{\frac{r}{n}} + \sqrt{\frac{\boldsymbol{\lambda}_{r+1}}{\boldsymbol{\lambda}_1} \frac{\operatorname{tr}(\mathbf{\Lambda}_2)}{n\lambda_1}} + \frac{\boldsymbol{\lambda}_{r+1}}{\boldsymbol{\lambda}_1} \right) \right) = \lambda_1 (1 + o_P(1)).$$

Then

$$\left\| (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \hat{\mathbf{\Sigma}} (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \right\| \leq \left\| \hat{\mathbf{\Sigma}} \right\| \left\| \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1} \right\|^{2} = O_{P} \left(\frac{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n^{2} \boldsymbol{\lambda}_{r}^{2}} \right).$$
(S2.12)

On the other hand, we have

$$\begin{aligned} & \left\| (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \hat{\mathbf{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| \\ & \leq \left\| \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1} \right\| \left\| n^{-1} \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{Z} \right\| \left\| \mathbf{Z}^{\top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| \\ &= n^{-1/2} \left\| \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1} \right\| \left\| \hat{\mathbf{\Sigma}} \right\|^{1/2} \left\| \mathbf{Z}^{\top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| \\ &= O_{P} \left(\frac{\operatorname{tr}(\mathbf{\Lambda}_{2}) \mathbf{\lambda}_{1}^{1/2}}{n^{3/2} \mathbf{\lambda}_{r}} \right) \left\| \mathbf{Z}^{\top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\|. \end{aligned}$$

It is straightforward to show that

$$\mathbf{Z}^{\top} \boldsymbol{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) = \tilde{\mathbf{V}}_{\mathbf{Z}_1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{U}_2^{\top} - \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2 \mathbf{Z}_2 \mathbf{Z}_1^{\top} (\mathbf{Z}_1 \mathbf{Z}_1^{\top})^{-1} \boldsymbol{\Lambda}_1^{-1/2} \mathbf{U}_1^{\top}.$$
(S2.13)

Then

$$\left\|\mathbf{Z}^{\top}\boldsymbol{\Lambda}^{1/2}\mathbf{U}^{\top}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y},1}^{\dagger})\right\|\leq\left\|\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2}\right\|^{1/2}+\boldsymbol{\lambda}_{r}^{-1/2}\left\|\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}\mathbf{Z}_{2}\right\|\left\|(\mathbf{Z}_{1}\mathbf{Z}_{1}^{\top})^{-1}\right\|^{1/2}.$$

It follows from (S2.4) and the condition $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$ that

$$\|\mathbf{Z}_2^{\mathsf{T}}\mathbf{\Lambda}_2\mathbf{Z}_2\| = (1 + o_P(1))\operatorname{tr}(\mathbf{\Lambda}_2). \tag{S2.14}$$

Consequently,

$$\left\| \mathbf{Z}^{\top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| = O_P \left(\operatorname{tr}^{1/2} (\mathbf{\Lambda}_2) \right) + O_P \left(\frac{\operatorname{tr}(\mathbf{\Lambda}_2)}{\sqrt{n \mathbf{\lambda}_r}} \right) = O_P \left(\operatorname{tr}^{1/2} (\mathbf{\Lambda}_2) \right).$$

Thus,

$$\left\| (\mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| = O_P \left(\frac{\operatorname{tr}^{3/2}(\boldsymbol{\Lambda}_2) \boldsymbol{\lambda}_1^{1/2}}{n^{3/2} \boldsymbol{\lambda}_r} \right).$$
 (S2.15)

Combine (S2.12) and (S2.15), we obtain

$$\left\| (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) - (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\|$$

$$= O_P \left(\frac{\operatorname{tr}^2(\boldsymbol{\Lambda}_2) \boldsymbol{\lambda}_1}{n^2 \boldsymbol{\lambda}_r^2} + \frac{\operatorname{tr}^{3/2}(\boldsymbol{\Lambda}_2) \boldsymbol{\lambda}_1^{1/2}}{n^{3/2} \boldsymbol{\lambda}_r} \right).$$

Now we deal with $(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger})\hat{\mathbf{\Sigma}}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger})$. In view of (S2.13), we have

$$\begin{split} &(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \hat{\mathbf{\Sigma}} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \\ = & n^{-1} \mathbf{U}_2 \boldsymbol{\Lambda}_2^{1/2} \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{U}_2^{\top} - n^{-1} \mathbf{U}_2 \boldsymbol{\Lambda}_2^{1/2} \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{Q} \mathbf{U}_1^{\top} \\ & - n^{-1} \mathbf{U}_1 \mathbf{Q}^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{U}_2^{\top} + n^{-1} \mathbf{U}_1 \mathbf{Q}^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{Z}_2 \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2^{1/2} \mathbf{Q} \mathbf{U}_1^{\top}. \end{split}$$

Then

$$\begin{aligned} & \left\| (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \hat{\mathbf{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) - n^{-1} \mathbf{U}_{2} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \right\| \\ \leq & n^{-1} \left\| \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Q} \right\| + n^{-1} \left\| \mathbf{Q}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Q} \right\| \\ \leq & n^{-1} \| \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \| \| \mathbf{Q}^{\top} \mathbf{Q} \|^{1/2} + n^{-1} \| \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \| \| \mathbf{Q}^{\top} \mathbf{Q} \| \\ = & O_{P} \left(\frac{\operatorname{tr}^{3/2}(\mathbf{\Lambda}_{2})}{n^{3/2} \mathbf{\lambda}_{r}^{1/2}} \right), \end{aligned}$$

where the last equality follows from (S2.11) and (S2.14).

Combine the above bounds, we obtain

$$\left\| (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) \hat{\boldsymbol{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) - n^{-1} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \right\|
= O_{P} \left(\frac{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n^{2} \boldsymbol{\lambda}_{r}^{2}} + \frac{\operatorname{tr}^{3/2}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}^{1/2}}{n^{3/2} \boldsymbol{\lambda}_{r}} \right).$$
(S2.16)

The matrix $n^{-1}\mathbf{U}_2\mathbf{\Lambda}_2^{1/2}\mathbf{Z}_2\tilde{\mathbf{V}}_{\mathbf{Z}_1}\tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top}\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2^{1/2}\mathbf{U}_2^{\top}$ shares the same non-zero eigenvalues as $n^{-1}\tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top}\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2\mathbf{Z}_2\tilde{\mathbf{V}}_{\mathbf{Z}_1}$. Note that $\mathbf{Z}_2\tilde{\mathbf{V}}_{\mathbf{Z}_1}$ is a $p \times (n-r)$ random matrix with iid $\mathcal{N}(0,1)$ entries. Then it follows from Lemma 5 and the condition $n\mathbf{\lambda}_{r+1}/\operatorname{tr}(\mathbf{\Lambda}_2) \to 0$ that

$$\begin{aligned} \left\| n^{-1} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} - n^{-1} \operatorname{tr}(\boldsymbol{\Lambda}_{2}) \mathbf{I}_{n-r} \right\| &= O_{P} \left(n^{-1/2} \sqrt{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})} + \boldsymbol{\lambda}_{r+1} \right) \\ &= O_{P} \left(n^{-1/2} \sqrt{\boldsymbol{\lambda}_{r+1} \operatorname{tr}(\boldsymbol{\Lambda}_{2})} + \boldsymbol{\lambda}_{r+1} \right) \\ &= o_{P} \left(n^{-1} \operatorname{tr}(\boldsymbol{\Lambda}_{2}) \right). \end{aligned}$$

$$(S2.17)$$

This bound, combined with Weyl's inequality, leads to

$$\lambda_{n-r} \left(n^{-1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \right) = (1 + o_P(1)) n^{-1} \operatorname{tr}(\mathbf{\Lambda}_1).$$
 (S2.18)

It can be seen that the matrix $\mathbf{P}_{\mathbf{Y},2}^*$ is the projection matrix onto the rank n-r principal subspace of $n^{-1}\mathbf{U}_2\mathbf{\Lambda}_2^{1/2}\mathbf{Z}_2\tilde{\mathbf{V}}_{\mathbf{Z}_1}\tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top}\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2^{1/2}\mathbf{U}_2^{\top}$. Therefore, Cai et al. (2015), Proposition 1 implies that

$$\begin{aligned} & \left\| \mathbf{P}_{\mathbf{Y},2} - \mathbf{P}_{\mathbf{Y},2}^{*} \right\| \\ & \leq \frac{2 \left\| (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) \hat{\mathbf{\Sigma}} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) - n^{-1} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \right\|}{\lambda_{n-r} \left(n^{-1} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \right)} \\ &= O_{P} \left(\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n \boldsymbol{\lambda}_{r}^{2}} + \sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n \boldsymbol{\lambda}_{r}^{2}}} \right) \\ &= O_{P} \left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n \boldsymbol{\lambda}_{r}^{2}}} \right), \end{aligned}$$

where the second last equality follows from (S2.16) and (S2.18). This completes the proof.

Proof of Proposition 4. By some algebra, it can be seen that

$$\begin{aligned} \left\| \mathbf{P}_{\mathbf{Y},2}^* - \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right\| &= (\operatorname{tr}(\boldsymbol{\Lambda}_2))^{-1} \left\| \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \boldsymbol{\Lambda}_2 \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} - \operatorname{tr}(\boldsymbol{\Lambda}_2) \mathbf{I}_{n-r} \right\| \\ &= O_P \left(\frac{\sqrt{n \operatorname{tr}(\boldsymbol{\Lambda}_2^2)}}{\operatorname{tr}(\boldsymbol{\Lambda}_2)} + \frac{n \boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_2)} \right) \\ &= O_P \left(\sqrt{\frac{n \boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_2)}} \right), \end{aligned}$$

where the second last equality follows from (S2.17) and the last equality follows from the fact $\sqrt{n \operatorname{tr}(\mathbf{\Lambda}_2^2)}/\operatorname{tr}(\mathbf{\Lambda}_2) \leq \sqrt{n \lambda_{r+1}/\operatorname{tr}(\mathbf{\Lambda}_2)}$ and the condition $\sqrt{n \lambda_{r+1}/\operatorname{tr}(\mathbf{\Lambda}_2)} \to 0$. Then the conclusion follows from the last display and Proposition 7.

S3 Proofs of Theorems 1 and 2

It can be seen that \mathbf{XJC} is independent of \mathbf{Y} . We write $\mathbf{XJC} = \mathbf{\Theta}\mathbf{C} + \mathbf{U}\mathbf{\Lambda}^{1/2}\mathbf{Z}^{\dagger}$, where \mathbf{Z}^{\dagger} is a $p \times (k-1)$ matrix with iid $\mathcal{N}(0,1)$ entries and is independent of \mathbf{Z} . Then

$$\mathbf{C}^{\top}\mathbf{J}^{\top}\mathbf{X}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{X}\mathbf{J}\mathbf{C} = \mathbf{Z}^{\dagger\top}\boldsymbol{\Lambda}^{1/2}\mathbf{U}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger} + \mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Theta}\mathbf{C}$$
$$+ \mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger} + \mathbf{Z}^{\dagger\top}\boldsymbol{\Lambda}^{1/2}\mathbf{U}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Theta}\mathbf{C}.$$
(S3.1)

It can be seen that the first term of (S3.1) can be written as

$$\mathbf{Z}^{\dagger\top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{Z}^{\dagger} = \sum_{i=1}^p \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \eta_i \eta_i^{\top},$$

where η_1, \ldots, η_p are independent $\mathcal{N}_{k-1}(\mathbf{0}_{k-1}, \mathbf{I}_{k-1})$ random vectors and are independent of $\mathbf{P}_{\mathbf{Y}}$.

Lemma 6. Suppose that $n\lambda_1/\operatorname{tr}(\Sigma) \to 0$. Then

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right) = \operatorname{tr}(\boldsymbol{\Sigma}) - \frac{n\operatorname{tr}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}(\boldsymbol{\Sigma})} + O_{P}\left(n(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{p})\sqrt{\frac{n\boldsymbol{\lambda}_{1}}{\operatorname{tr}(\boldsymbol{\Sigma})}}\right),$$

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right)^{2} = \operatorname{tr}(\boldsymbol{\Sigma}^{2}) - \frac{n\operatorname{tr}^{2}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}^{2}(\boldsymbol{\Sigma})} + O_{P}(n\boldsymbol{\lambda}_{1}(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{p})).$$

Proof. First we approximate P_Y by a simple expression. We have

$$\begin{aligned} \left\| \mathbf{P}_{\mathbf{Y}} - (\operatorname{tr}(\boldsymbol{\Sigma}))^{-1} \mathbf{Y} \mathbf{Y}^{\top} \right\| &= \left\| \mathbf{Y} (\mathbf{Y}^{\top} \mathbf{Y})^{-1} \mathbf{Y}^{\top} - (\operatorname{tr}(\boldsymbol{\Sigma}))^{-1} \mathbf{Y} \mathbf{Y}^{\top} \right\| \\ &= (\operatorname{tr}(\boldsymbol{\Sigma}))^{-1} \left\| \mathbf{Y}^{\top} \mathbf{Y} - \operatorname{tr}(\boldsymbol{\Sigma}) \mathbf{I}_{n} \right\|. \end{aligned}$$

Then from Lemma 5, we have

$$\|\mathbf{P}_{\mathbf{Y}} - (\operatorname{tr}(\mathbf{\Sigma}))^{-1}\mathbf{Y}\mathbf{Y}^{\top}\| = (\operatorname{tr}(\mathbf{\Sigma}))^{-1}\|\mathbf{Z}^{\top}\mathbf{\Sigma}\mathbf{Z} - \operatorname{tr}(\mathbf{\Sigma})\mathbf{I}_{n}\|$$

$$= O_{P}\left(\frac{\sqrt{n\operatorname{tr}(\mathbf{\Sigma}^{2})}}{\operatorname{tr}(\mathbf{\Sigma})} + \frac{n\boldsymbol{\lambda}_{1}}{\operatorname{tr}(\mathbf{\Sigma})}\right)$$

$$= O_{P}\left(\frac{\sqrt{n\boldsymbol{\lambda}_{1}\operatorname{tr}(\mathbf{\Sigma})}}{\operatorname{tr}(\mathbf{\Sigma})} + \frac{n\boldsymbol{\lambda}_{1}}{\operatorname{tr}(\mathbf{\Sigma})}\right)$$

$$= O_{P}\left(\sqrt{\frac{n\boldsymbol{\lambda}_{1}}{\operatorname{tr}(\mathbf{\Sigma})}}\right).$$
(S3.2)

Now we deal with $\operatorname{tr}((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \Sigma (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}))$. It can be seen that

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right) = \operatorname{tr}\left(\boldsymbol{\Sigma}\right) - \operatorname{tr}\left(\boldsymbol{\Sigma}\mathbf{P}_{\mathbf{Y}}\right)$$

$$= \operatorname{tr}\left(\boldsymbol{\Sigma}\right) - \operatorname{tr}\left(\left(\boldsymbol{\Sigma} - \frac{\operatorname{tr}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}(\boldsymbol{\Sigma})}\mathbf{I}_{p}\right)\mathbf{P}_{\mathbf{Y}}\right) - \frac{n\operatorname{tr}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}(\boldsymbol{\Sigma})}.$$
(S3.3)

For the second term, we have

$$\left| \operatorname{tr} \left(\left(\mathbf{\Sigma} - \frac{\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} \mathbf{I}_{p} \right) \mathbf{P}_{\mathbf{Y}} \right) - \left(\operatorname{tr}(\mathbf{\Sigma}) \right)^{-1} \operatorname{tr} \left(\left(\mathbf{\Sigma} - \frac{\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} \mathbf{I}_{p} \right) \mathbf{Y} \mathbf{Y}^{\top} \right) \right|$$

$$= \left| \operatorname{tr} \left(\left(\mathbf{\Sigma} - \frac{\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} \mathbf{I}_{p} \right) \left(\mathbf{P}_{\mathbf{Y}} - \left(\operatorname{tr}(\mathbf{\Sigma}) \right)^{-1} \mathbf{Y} \mathbf{Y}^{\top} \right) \right) \right|$$

$$\leq 2n \left\| \mathbf{\Sigma} - \frac{\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} \mathbf{I}_{p} \right\| \left\| \mathbf{P}_{\mathbf{Y}} - \left(\operatorname{tr}(\mathbf{\Sigma}) \right)^{-1} \mathbf{Y} \mathbf{Y}^{\top} \right\|$$

$$= O_{P} \left(n(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{p}) \sqrt{\frac{n\boldsymbol{\lambda}_{1}}{\operatorname{tr}(\mathbf{\Sigma})}} \right),$$

where the last inequality follows from von Neumann's trace theorem and the fact Rank $(\mathbf{P}_{\mathbf{Y}} - (\operatorname{tr}(\boldsymbol{\Sigma}))^{-1} \mathbf{Y} \mathbf{Y}^{\top}) \leq 2n$, and the last equality follows from (S3.2) and the fact $\operatorname{tr}(\boldsymbol{\Sigma}^2)/\operatorname{tr}(\boldsymbol{\Sigma}) \in [\boldsymbol{\lambda}_p, \boldsymbol{\lambda}_1]$. On the other hand, it is straightforward to show that

$$E\left((\operatorname{tr}(\boldsymbol{\Sigma}))^{-1}\operatorname{tr}\left(\left(\boldsymbol{\Sigma} - \frac{\operatorname{tr}(\boldsymbol{\Sigma}^2)}{\operatorname{tr}(\boldsymbol{\Sigma})}\mathbf{I}_p\right)\mathbf{Y}\mathbf{Y}^\top\right)\right) = 0,$$

and

$$\operatorname{Var}\left((\operatorname{tr}(\boldsymbol{\Sigma}))^{-1}\operatorname{tr}\left(\left(\boldsymbol{\Sigma} - \frac{\operatorname{tr}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}(\boldsymbol{\Sigma})}\mathbf{I}_{p}\right)\mathbf{Y}\mathbf{Y}^{\top}\right)\right)$$

$$= \frac{2n}{\operatorname{tr}^{2}(\boldsymbol{\Sigma})}\operatorname{tr}\left(\boldsymbol{\Sigma}^{2} - \frac{\operatorname{tr}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}(\boldsymbol{\Sigma})}\boldsymbol{\Sigma}\right)^{2}$$

$$= \frac{2n}{\operatorname{tr}^{2}(\boldsymbol{\Sigma})}\sum_{i=1}^{p}\boldsymbol{\lambda}_{i}^{2}\left(\boldsymbol{\lambda}_{i} - \frac{\operatorname{tr}(\boldsymbol{\Sigma}^{2})}{\operatorname{tr}(\boldsymbol{\Sigma})}\right)^{2}$$

$$\leq \frac{2n\boldsymbol{\lambda}_{1}(\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{p})^{2}}{\operatorname{tr}(\boldsymbol{\Sigma})}.$$

Thus,

$$\operatorname{tr}\left(\left(\boldsymbol{\Sigma} - \frac{\operatorname{tr}(\boldsymbol{\Sigma}^2)}{\operatorname{tr}(\boldsymbol{\Sigma})}\mathbf{I}_p\right)\mathbf{P}_{\mathbf{Y}}\right) = O_P\left(n(\boldsymbol{\lambda}_1 - \boldsymbol{\lambda}_p)\sqrt{\frac{n\boldsymbol{\lambda}_1}{\operatorname{tr}(\boldsymbol{\Sigma})}}\right).$$

Then the first statement follows from the last display and (S3.3).

Next we deal with $\operatorname{tr}((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}))^2$. We have

$$\operatorname{tr}((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}))^2 = \operatorname{tr}(\boldsymbol{\Sigma}^2) - 2\operatorname{tr}(\boldsymbol{\Sigma}^2\mathbf{P}_{\mathbf{Y}}) + \operatorname{tr}((\boldsymbol{\Sigma}\mathbf{P}_{\mathbf{Y}})^2).$$

From von Neumann's trace theorem, the second term satisfies

$$\left| \operatorname{tr}(\mathbf{\Sigma}^2 \mathbf{P}_{\mathbf{Y}}) - \frac{n \operatorname{tr}^2(\mathbf{\Sigma}^2)}{\operatorname{tr}^2(\mathbf{\Sigma})} \right| = \left| \operatorname{tr} \left(\left(\mathbf{\Sigma}^2 - \frac{\operatorname{tr}^2(\mathbf{\Sigma}^2)}{\operatorname{tr}^2(\mathbf{\Sigma})} \mathbf{I}_p \right) \mathbf{P}_{\mathbf{Y}} \right) \right| \le n \lambda_1 (\lambda_1 - \lambda_p),$$

and the third term satisfies

$$\left| \operatorname{tr}((\mathbf{\Sigma} \mathbf{P}_{\mathbf{Y}})^{2}) - \frac{n \operatorname{tr}^{2}(\mathbf{\Sigma}^{2})}{\operatorname{tr}^{2}(\mathbf{\Sigma})} \right| = \left| \operatorname{tr}\left(\left(\mathbf{\Sigma} + \frac{\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} \mathbf{I}_{p}\right) \mathbf{P}_{\mathbf{Y}} \left(\mathbf{\Sigma} - \frac{\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} \mathbf{I}_{p}\right) \mathbf{P}_{\mathbf{Y}}\right) \right|$$

$$\leq 2n \boldsymbol{\lambda}_{1} (\boldsymbol{\lambda}_{1} - \boldsymbol{\lambda}_{p}).$$

This completes the proof of the second statement.

Proof of Theorem 1. In the current context, Lemma 6 implies that

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right) = \operatorname{tr}(\mathbf{\Sigma}) - \frac{n\operatorname{tr}(\mathbf{\Sigma}^{2})}{\operatorname{tr}(\mathbf{\Sigma})} + o_{P}(\sqrt{\operatorname{tr}(\mathbf{\Sigma}^{2})}), \quad (S3.4)$$

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right)^{2} = (1 + o_{P}(1))\operatorname{tr}(\boldsymbol{\Sigma}^{2}). \tag{S3.5}$$

The fact $\lambda_1((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{\Sigma}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \leq \lambda_1$ and (S3.5) imply that the first term of (S3.1) satisfies the Lyapunov condition

$$\frac{\lambda_1 \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)}{\sqrt{\operatorname{tr} \left(\left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)^2 \right)}} \leq \frac{\lambda_1}{\sqrt{(1 + o_P(1)) \operatorname{tr}^2(\mathbf{\Sigma})}} \xrightarrow{P} 0.$$

From Lemma 2, we have

$$\frac{\mathbf{Z}^{\dagger\top} \boldsymbol{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \boldsymbol{\Lambda}^{1/2} \mathbf{Z}^{\dagger} - \operatorname{tr} \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \boldsymbol{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) \mathbf{I}_{k-1}}{\sqrt{\operatorname{tr} \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \boldsymbol{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)^2}} \xrightarrow{\mathcal{L}} \mathbf{W}_{k-1}.$$

Then it follows from (S3.4), (S3.5) and Slutsky's theorem that

$$\frac{\mathbf{Z}^{\dagger \top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{Z}^{\dagger} - (\operatorname{tr}(\mathbf{\Sigma}) - n \operatorname{tr}(\mathbf{\Sigma}^{2}) / \operatorname{tr}(\mathbf{\Sigma})) \mathbf{I}_{k-1}}{\sqrt{\operatorname{tr}(\mathbf{\Sigma}^{2})}} \xrightarrow{\mathcal{L}} \mathbf{W}_{k-1}.$$
(S3.6)

Next we consider the second term of (S3.1). Note that

$$\left\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{\Theta}\mathbf{C} - \mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Theta}\mathbf{C}\right\| = \left\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{Y}(\mathbf{Y}^{\top}\mathbf{Y})^{-1}\mathbf{Y}^{\top}\mathbf{\Theta}\mathbf{C}\right\|.$$

We have

$$\begin{aligned} & \left\| \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{Y} (\mathbf{Y}^{\top} \mathbf{Y})^{-1} \mathbf{Y}^{\top} \mathbf{\Theta} \mathbf{C} - \operatorname{tr}(\mathbf{\Sigma})^{-1} \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{\Theta} \mathbf{C} \right\| \\ & \leq & \left\| \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{\Theta} \mathbf{C} \right\| \left\| (\mathbf{Y}^{\top} \mathbf{Y})^{-1} - \operatorname{tr}(\mathbf{\Sigma})^{-1} \mathbf{I}_{n} \right\| \\ & \leq & \left\| \operatorname{tr}(\mathbf{\Sigma})^{-1} \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{\Theta} \mathbf{C} \right\| \left\| (\mathbf{Y}^{\top} \mathbf{Y})^{-1} \right\| \left\| \mathbf{Y}^{\top} \mathbf{Y} - \operatorname{tr}(\mathbf{\Sigma}) \mathbf{I}_{n} \right\|. \end{aligned}$$

From Lemma 5, we have

$$\|\mathbf{Y}^{\top}\mathbf{Y} - \operatorname{tr}(\mathbf{\Sigma})\mathbf{I}_{n}\| = \|\mathbf{Z}^{\top}\mathbf{\Lambda}\mathbf{Z} - \operatorname{tr}(\mathbf{\Sigma})\mathbf{I}_{n}\|$$
$$= O_{P}(\sqrt{n\operatorname{tr}(\mathbf{\Sigma}^{2})} + n\boldsymbol{\lambda}_{1})$$
$$= o_{P}(\operatorname{tr}(\mathbf{\Sigma})).$$

Then
$$\|(\mathbf{Y}^{\top}\mathbf{Y})^{-1}\| = \lambda_n^{-1}(\mathbf{Z}^{\top}\mathbf{\Lambda}\mathbf{Z}) = (1 + o_P(1))\operatorname{tr}(\mathbf{\Sigma})$$
. Therefore,
$$\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{Y}(\mathbf{Y}^{\top}\mathbf{Y})^{-1}\mathbf{Y}^{\top}\mathbf{\Theta}\mathbf{C} - \operatorname{tr}(\mathbf{\Sigma})^{-1}\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{\Theta}\mathbf{C}\|$$

$$= o_P\left(\|\operatorname{tr}(\mathbf{\Sigma})^{-1}\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{\Theta}\mathbf{C}\|\right).$$

Note that the columns of $\mathbf{C}^{\mathsf{T}} \mathbf{\Theta}^{\mathsf{T}} \mathbf{Y} = \mathbf{C}^{\mathsf{T}} \mathbf{\Theta}^{\mathsf{T}} \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{Z}$ are iid $\mathcal{N}_{k-1}(\mathbf{0}_{k-1}, \mathbf{C}^{\mathsf{T}} \mathbf{\Theta}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{\Theta} \mathbf{C})$ random vectors. Hence we can write $\mathbf{C}^{\mathsf{T}} \mathbf{\Theta}^{\mathsf{T}} \mathbf{Y} = (\mathbf{C}^{\mathsf{T}} \mathbf{\Theta}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{\Theta} \mathbf{C})^{1/2} \mathbf{Z}^*$, where

 \mathbf{Z}^* is a $(k-1) \times n$ random matrix with iid $\mathcal{N}(0,1)$ entries. Then

$$\begin{aligned} & \left\| \operatorname{tr}(\boldsymbol{\Sigma})^{-1} \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \boldsymbol{\Theta} \mathbf{C} - \frac{n}{\operatorname{tr}(\boldsymbol{\Sigma})} \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\Theta} \mathbf{C} \right\| \\ \leq & \frac{n}{\operatorname{tr}(\boldsymbol{\Sigma})} \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\Theta} \mathbf{C} \right\| \left\| n^{-1} \mathbf{Z}^{*} \mathbf{Z}^{*\top} - \mathbf{I}_{k-1} \right\| \\ = & o_{P} \left(\frac{n}{\operatorname{tr}(\boldsymbol{\Sigma})} \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Sigma} \boldsymbol{\Theta} \mathbf{C} \right\| \right), \end{aligned}$$

where the last equality follows from the law of large numbers. Combine the above arguments, we have

$$\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{\Theta}\mathbf{C} - \mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Theta}\mathbf{C}\| = (1 + o_{P}(1)) \frac{n}{\operatorname{tr}(\mathbf{\Sigma})} \|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Sigma}\mathbf{\Theta}\mathbf{C}\|$$

$$\leq (1 + o_{P}(1)) \frac{n\lambda_{1}}{\operatorname{tr}(\mathbf{\Sigma})} \|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Theta}\mathbf{C}\|$$

$$= o_{P}\left(\sqrt{\operatorname{tr}(\mathbf{\Sigma}^{2})}\right).$$
(S3.7)

Now we deal with the cross term of (S3.1). Note that

$$E[\|\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger}\|_{F}^{2}|\mathbf{Y}] = (k-1)\operatorname{tr}\left(\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Theta}\mathbf{C}\right)$$

$$\leq (k-1)\boldsymbol{\lambda}_{1}\operatorname{tr}\left(\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C}\right).$$

Therefore,

$$\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}\mathbf{\Lambda}^{1/2}\mathbf{Z}^{\dagger}\| = O_{P}\left(\sqrt{\lambda_{1}\operatorname{tr}\left(\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Theta}\mathbf{C}\right)}\right)$$

$$= o_{P}\left(\sqrt{\operatorname{tr}(\mathbf{\Sigma}^{2})}\right),$$
(S3.8)

where the last equality follows from the conditions $\lambda_1/\sqrt{\mathrm{tr}(\Sigma^2)} \to 0$ and

$$\operatorname{tr}\left(\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Theta}\mathbf{C}\right) \leq (k-1)\left\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{\Theta}\mathbf{C}\right\| = O(\sqrt{\operatorname{tr}(\mathbf{\Sigma}^{2})}).$$

It follows from (S3.7), (S3.8) and Weyl's inequality that

$$\begin{aligned} & \left| T(\mathbf{X}) - \left(\lambda_{1} \left(\mathbf{Z}^{\dagger \top} \boldsymbol{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \boldsymbol{\Lambda}^{1/2} \mathbf{Z}^{\dagger} + \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Theta} \mathbf{C} \right) \right) \right| \\ & \leq \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Theta} \mathbf{C} + \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \boldsymbol{\Lambda}^{1/2} \mathbf{Z}^{\dagger} + \mathbf{Z}^{\dagger \top} \boldsymbol{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \boldsymbol{\Theta} \mathbf{C} \right\| \\ & \leq \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Theta} \mathbf{C} \right\| + 2 \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \boldsymbol{\Lambda}^{1/2} \mathbf{Z}^{\dagger} \right\| \\ & = o_{P} \left(\sqrt{\operatorname{tr}(\boldsymbol{\Sigma}^{2})} \right). \end{aligned}$$

But (S3.6) implies that

$$\begin{split} &\frac{\lambda_{1}\left(\mathbf{Z}^{\dagger\top}\boldsymbol{\Lambda}^{1/2}\mathbf{U}^{\top}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger}+\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C}\right)-\left(\mathrm{tr}(\boldsymbol{\Sigma})-n\,\mathrm{tr}(\boldsymbol{\Sigma}^{2})/\mathrm{tr}(\boldsymbol{\Sigma})\right)}{\sqrt{\mathrm{tr}(\boldsymbol{\Sigma}^{2})}}\\ =&\lambda_{1}\left(\frac{\mathbf{Z}^{\dagger\top}\boldsymbol{\Lambda}^{1/2}\mathbf{U}^{\top}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger}-\left(\mathrm{tr}(\boldsymbol{\Sigma})-n\,\mathrm{tr}(\boldsymbol{\Sigma}^{2})/\mathrm{tr}(\boldsymbol{\Sigma})\right)\mathbf{I}_{k-1}}{\sqrt{\mathrm{tr}(\boldsymbol{\Sigma}^{2})}}+\frac{\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C}}{\sqrt{\mathrm{tr}(\boldsymbol{\Sigma}^{2})}}\right)\\ \sim&\lambda_{1}\left(\mathbf{W}_{k-1}+\frac{\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C}}{\sqrt{\mathrm{tr}(\boldsymbol{\Sigma}^{2})}}\right)+o_{P}(1). \end{split}$$

This completes the proof.

Proof of Corollary 1. It is straightforward to show that $\widehat{\operatorname{Etr}(\Sigma)} = \operatorname{tr}(\Sigma)$

and
$$\operatorname{Var}\left(\widehat{\operatorname{tr}(\Sigma)}\right) = 2n^{-1}\operatorname{tr}(\Sigma^2)$$
. Then $\widehat{\operatorname{tr}(\Sigma)} = \operatorname{tr}(\Sigma) + O_P(\sqrt{n^{-1}\operatorname{tr}(\Sigma^2)})$.

Let Z_1, \ldots, Z_n be the columns of **Z**. Then we have

$$\widehat{\operatorname{tr}(\mathbf{\Sigma}^2)} = n^{-2} \operatorname{tr}(\mathbf{Z}^\top \mathbf{\Lambda} \mathbf{Z} - n^{-1} \operatorname{tr}(\mathbf{Z}^\top \mathbf{\Lambda} \mathbf{Z}) \mathbf{I}_n)^2$$
$$= n^{-2} \sum_{i=1}^n (Z_i^\top \mathbf{\Lambda} Z_i - n^{-1} \sum_{i=1}^n Z_i^\top \mathbf{\Lambda} Z_i)^2 + 2n^{-2} \sum_{1 \le i < j \le n} (Z_i^\top \mathbf{\Lambda} Z_i)^2.$$

It can be seen that $n^{-2} \sum_{i=1}^n (Z_i^\top \mathbf{\Lambda} Z_i - n^{-1} \sum_{i=1}^n Z_i^\top \mathbf{\Lambda} Z_i)^2 = O_P(n^{-1} \operatorname{tr}(\mathbf{\Sigma}^2)).$

On the other hand, we have $E 2 \sum_{1 \leq i < j \leq n} (Z_i^{\top} \mathbf{\Lambda} Z_i)^2 = n(n-1) \operatorname{tr}(\mathbf{\Sigma}^2)$. Furthermore, Chen et al. (2010), Proposition A.2 implies that

$$\operatorname{Var}\left(2\sum_{1\leq i< j\leq n}(Z_i^{\top}\mathbf{\Lambda}Z_j)^2\right) = O\left(n^2\operatorname{tr}^2(\mathbf{\Sigma}^2) + n^3\operatorname{tr}(\mathbf{\Sigma}^4)\right) = O\left(n^3\operatorname{tr}^2(\mathbf{\Sigma}^2)\right).$$

Hence
$$\widehat{\operatorname{tr}(\mathbf{\Sigma}^2)} = (1 + O_P(n^{-1/2}))\operatorname{tr}(\mathbf{\Sigma}^2).$$

Thus, we have

$$\widehat{\operatorname{tr}(\Sigma)} - n\widehat{\operatorname{tr}(\Sigma^{2})}/\widehat{\operatorname{tr}(\Sigma)}$$

$$= \operatorname{tr}(\Sigma) + O_{P}(\sqrt{n^{-1}\operatorname{tr}(\Sigma^{2})}) - \frac{n\operatorname{tr}(\Sigma^{2})(1 + O_{P}(n^{-1/2}))}{\operatorname{tr}(\Sigma)(1 + O_{P}(\sqrt{n^{-1}\operatorname{tr}(\Sigma^{2})}/\operatorname{tr}^{2}(\Sigma)))}$$

$$= \operatorname{tr}(\Sigma) + O_{P}(\sqrt{n^{-1}\operatorname{tr}(\Sigma^{2})}) - \frac{n\operatorname{tr}(\Sigma^{2})}{\operatorname{tr}(\Sigma)} \left(1 + O_{P}\left(\frac{1}{\sqrt{n}} + \sqrt{\frac{\operatorname{tr}(\Sigma^{2})}{n\operatorname{tr}^{2}(\Sigma)}}\right)\right)$$

$$= \operatorname{tr}(\Sigma) - \frac{n\operatorname{tr}(\Sigma^{2})}{\operatorname{tr}(\Sigma)} + o_{P}(\sqrt{\operatorname{tr}(\Sigma^{2})}).$$

Therefore,

$$Q_1 = \frac{T(\mathbf{X}) - (\operatorname{tr}(\mathbf{\Sigma}) - n \operatorname{tr}(\mathbf{\Sigma}^2) / \operatorname{tr}(\mathbf{\Sigma}))}{\sqrt{\operatorname{tr}(\mathbf{\Sigma}^2)}} + o_P(1).$$

Then the conclusion follows from Theorem 1.

Lemma 7. Suppose that r = o(n), $\operatorname{tr}(\Lambda_2)\lambda_1/(n\lambda_r^2) \to 0$, $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$

0. Then uniformly for i = 1, ..., r,

$$\lambda_i \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) = n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \left(1 + O_P \left(\sqrt{\frac{\operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{\lambda}_1}{n \mathbf{\lambda}_r^2}} + \sqrt{\frac{n \mathbf{\lambda}_{r+1}}{\operatorname{tr}(\mathbf{\Lambda}_2)}} + \sqrt{\frac{r}{n}} \right) \right).$$

Proof. Note that

$$(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \Sigma (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) = (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},2}) (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) \Sigma (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},2}).$$
(S3.9)

We first deal with $(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1})$. Under the condition $n \lambda_{r+1} / \operatorname{tr}(\Lambda_2) \rightarrow 0$, Proposition 3 implies that

$$\|\mathbf{U}_{\mathbf{Y},1}\mathbf{U}_{\mathbf{Y},1}^{\top} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}\| = O_P\left(\frac{\operatorname{tr}(\boldsymbol{\Lambda}_2)}{n\boldsymbol{\lambda}_r}\right).$$

From the decomposition

$$\begin{split} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) & \Sigma (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) = & (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) \Sigma (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) + (\mathbf{P}_{\mathbf{Y},1}^\dagger - \mathbf{P}_{\mathbf{Y},1}) \Sigma (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) \\ & + (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) \Sigma (\mathbf{P}_{\mathbf{Y},1}^\dagger - \mathbf{P}_{\mathbf{Y},1}) + (\mathbf{P}_{\mathbf{Y},1}^\dagger - \mathbf{P}_{\mathbf{Y},1}) \Sigma (\mathbf{P}_{\mathbf{Y},1}^\dagger - \mathbf{P}_{\mathbf{Y},1}), \end{split}$$

we have

$$\begin{aligned} & \left\| (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}) - (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| \\ \leq & 2 \left\| \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1} \right\| \left\| \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| + \lambda_{1} \| \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},1} \|^{2}. \\ = & O_{P} \left(\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}{n \boldsymbol{\lambda}_{r}} \right) \left\| \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| + O_{P} \left(\frac{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n^{2} \boldsymbol{\lambda}_{r}^{2}} \right). \end{aligned}$$

Note that

$$\begin{split} \left\| \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| &= \left\| \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} - \mathbf{U}_{1} \mathbf{\Lambda}_{1} \mathbf{Q}^{\top} \mathbf{U}_{2}^{\top} - \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{Q} \mathbf{U}_{1}^{\top} \right\| \\ &\leq & \boldsymbol{\lambda}_{r+1} + \left\| \mathbf{\Lambda}_{1} \mathbf{Q}^{\top} \right\| + \boldsymbol{\lambda}_{r+1} \left\| \mathbf{Q} \right\| \\ &= & \boldsymbol{\lambda}_{r+1} + \left\| \mathbf{\Lambda}_{1}^{1/2} (\mathbf{Z}_{1} \mathbf{Z}_{1}^{\top})^{-1/2} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \right\| + \boldsymbol{\lambda}_{r+1} \left\| \mathbf{Q}^{\top} \mathbf{Q} \right\|^{1/2} \\ &\leq & \boldsymbol{\lambda}_{r+1} + \boldsymbol{\lambda}_{1}^{1/2} \left\| (\mathbf{Z}_{1} \mathbf{Z}_{1}^{\top})^{-1/2} \right\| \left\| \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right\|^{1/2} + \boldsymbol{\lambda}_{r+1} \left\| \mathbf{Q}^{\top} \mathbf{Q} \right\|^{1/2} \\ &= & O_{P} \left(\sqrt{\frac{\operatorname{tr}(\mathbf{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n}} \right), \end{split}$$

where the last equality follows from (S2.9), (S2.11) and the condition $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$. Thus,

$$\left\| (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}) - (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) \right\| = O_P \left(\frac{\operatorname{tr}^{3/2}(\boldsymbol{\Lambda}_2) \boldsymbol{\lambda}_1^{1/2}}{n^{3/2} \boldsymbol{\lambda}_r} \right).$$
(S3.10)

From the decomposition

we have

$$egin{aligned} & (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y},1}^\dagger) \ = & \mathbf{U}_2 \mathbf{Q} \mathbf{\Lambda}_1 \mathbf{Q}^ op \mathbf{U}_2^ op + \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^ op - \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{Q} \mathbf{U}_1^ op - \mathbf{U}_1 \mathbf{Q}^ op \mathbf{\Lambda}_2 \mathbf{U}_2^ op + \mathbf{U}_1 \mathbf{Q}^ op \mathbf{\Lambda}_2 \mathbf{Q} \mathbf{U}_1^ op, \end{aligned}$$

$$\|(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}) - \mathbf{U}_{2}\mathbf{Q}\boldsymbol{\Lambda}_{1}\mathbf{Q}^{\top}\mathbf{U}_{2}^{\top}\| \leq \boldsymbol{\lambda}_{r+1}(1 + 2\|\mathbf{Q}^{\top}\mathbf{Q}\|^{1/2} + \|\mathbf{Q}^{\top}\mathbf{Q}\|)$$

$$= O_{P}(\boldsymbol{\lambda}_{r+1}),$$
(S3.11)

where the last equality follows from (S2.11). Note that $\mathbf{U}_2\mathbf{Q}\mathbf{\Lambda}_1\mathbf{Q}^{\top}\mathbf{U}_2^{\top}=$

 $\mathbf{U}_2 \mathbf{\Lambda}_2^{1/2} \mathbf{Z}_2 \mathbf{V}_{\mathbf{Z}_1} (\mathbf{Z}_1 \mathbf{Z}_1^{\top})^{-1} \mathbf{V}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2^{1/2} \mathbf{U}_2^{\top}$. We have

$$\left\| \mathbf{U}_{2} \mathbf{Q} \mathbf{\Lambda}_{1} \mathbf{Q}^{\top} \mathbf{U}_{2}^{\top} - n^{-1} \mathbf{U}_{2} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \right\|$$

$$\leq \left\| \mathbf{U}_{2} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \right\| \left\| (\mathbf{Z}_{1} \mathbf{Z}_{1}^{\top})^{-1} - n^{-1} \mathbf{I}_{r} \right\|$$

$$\leq \left\| \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right\| \left\| (\mathbf{Z}_{1} \mathbf{Z}_{1}^{\top})^{-1} \right\| \left\| n^{-1} \mathbf{Z}_{1} \mathbf{Z}_{1}^{\top} - \mathbf{I}_{r} \right\|$$

$$= O_{P} \left(\frac{r^{1/2} \operatorname{tr}(\mathbf{\Lambda}_{2})}{n^{3/2}} \right),$$
(S3.12)

where the last equality follows from (S2.3) and (S2.9). From (S3.9), (S3.10), (S3.11) and (S3.12), we obtain that

$$\left\| (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) - n^{-1} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},2}) \mathbf{U}_{2} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y},2}) \right\|$$

$$= O_{P} \left(\left(\sqrt{\frac{\operatorname{tr}(\mathbf{\Lambda}_{2}) \mathbf{\lambda}_{1}}{n \mathbf{\lambda}_{r}^{2}}} + \frac{n \mathbf{\lambda}_{r+1}}{\operatorname{tr}(\mathbf{\Lambda}_{2})} + \sqrt{\frac{r}{n}} \right) \frac{\operatorname{tr}(\mathbf{\Lambda}_{2})}{n} \right).$$

Thus, the last display, together with Weyl's inequality, implies that uniformly for $i=1,\ldots,r,$

$$\lambda_{i} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right) = n^{-1} \lambda_{i} \left(\mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} (\mathbf{I} - \mathbf{P}_{\mathbf{Y}, 2}) \mathbf{U}_{2} \mathbf{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right)$$

$$+ O_{P} \left(\left(\sqrt{\frac{\operatorname{tr}(\mathbf{\Lambda}_{2}) \mathbf{\lambda}_{1}}{n \mathbf{\lambda}_{r}^{2}}} + \frac{n \mathbf{\lambda}_{r+1}}{\operatorname{tr}(\mathbf{\Lambda}_{2})} + \sqrt{\frac{r}{n}} \right) \frac{\operatorname{tr}(\mathbf{\Lambda}_{2})}{n} \right).$$

Note that

$$\begin{split} & \left\| n^{-1} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} (\mathbf{I} - \mathbf{P}_{\mathbf{Y},2}) \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right. \\ & \left. - \left(n^{-1} \operatorname{tr}(\boldsymbol{\Lambda}_{2}) \mathbf{I}_{r} - (n \operatorname{tr}(\boldsymbol{\Lambda}_{2}))^{-1} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right) \right\| \\ & \leq \left\| n^{-1} \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} - n^{-1} \operatorname{tr}(\boldsymbol{\Lambda}_{2}) \mathbf{I}_{r} \right\| \\ & + n^{-1} \left\| \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right\| \left\| \mathbf{P}_{\mathbf{Y},2} - (\operatorname{tr}(\boldsymbol{\Lambda}_{2}))^{-1} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \right\| \\ & = O_{P} \left(\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n \boldsymbol{\lambda}_{r}^{2}}} + \sqrt{\frac{n \boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}} \right) \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}{n} \right), \end{split}$$

where the last equality follows from (S2.9) and Proposition 4. Then it follows from Weyl's inequality that uniformly for i = 1, ..., r,

$$\lambda_{i} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right)$$

$$= n^{-1} \operatorname{tr}(\boldsymbol{\Lambda}_{2}) - (n \operatorname{tr}(\boldsymbol{\Lambda}_{2}))^{-1} \lambda_{r+1-i} \left(\mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} \right)$$

$$+ O_{P} \left(\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}) \boldsymbol{\lambda}_{1}}{n \boldsymbol{\lambda}_{r}^{2}}} + \sqrt{\frac{n \boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}} + \sqrt{\frac{r}{n}} \right) \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}{n} \right).$$
(S3.13)

Now we deal with the matrix $\mathbf{V}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 \mathbf{V}_{\mathbf{Z}_1}$. Note that $\mathbf{Z}_2 \mathbf{V}_{\mathbf{Z}_1}$ and $\mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1}$ both have iid $\mathcal{N}(0,1)$ entries and they are mutually independent. Then Lemma 5 implies that

$$\begin{aligned} & \left\| \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} - \operatorname{tr}(\mathbf{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}) \mathbf{I}_{r} \right\| \\ = & O_{P} \left(\sqrt{r \operatorname{tr}(\mathbf{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2})^{2}} + r \left\| \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \right\| \right). \end{aligned}$$

By some algebra, we have

$$\begin{aligned} & \left\| \mathbf{V}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2} \mathbf{Z}_{2} \mathbf{V}_{\mathbf{Z}_{1}} - \operatorname{tr}(\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}) \mathbf{I}_{r} \right\| \\ = & O_{P} \left(\sqrt{r \left\| \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \right\| \operatorname{tr}(\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}) + r \left\| \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \mathbf{\Lambda}_{2}^{2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \right\| \right). \end{aligned}$$

Since $\operatorname{Etr}(\tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top}\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2^2\mathbf{Z}_2\tilde{\mathbf{V}}_{\mathbf{Z}_1}) = (n-r)\operatorname{tr}(\mathbf{\Lambda}_2^2)$, we have

$$\operatorname{tr}(\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}^{2}\mathbf{Z}_{2}\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}) = O_{P}\left(n\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})\right) = O_{P}\left(n\boldsymbol{\lambda}_{r+1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\right).$$

On the other hand, Lemma 5 implies that

$$\|\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\boldsymbol{\Lambda}_{2}^{2}\mathbf{Z}_{2}\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}\| = O_{P}\left(\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2}) + n\boldsymbol{\lambda}_{r+1}^{2}\right) = O_{P}\left(\boldsymbol{\lambda}_{r+1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\right).$$

Combine these bounds, we have

$$\left\| \mathbf{V}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} \tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top} \mathbf{Z}_2^{\top} \mathbf{\Lambda}_2 \mathbf{Z}_2 \mathbf{V}_{\mathbf{Z}_1} - n \operatorname{tr}(\mathbf{\Lambda}_2^2) \mathbf{I}_r \right\| = O_P \left(\sqrt{rn} \boldsymbol{\lambda}_{r+1} \operatorname{tr}(\mathbf{\Lambda}_2) \right).$$

The last display, combined with Weyl's inequality, implies that uniformly for $i=1,\ldots,r,$

$$(n\operatorname{tr}(\boldsymbol{\Lambda}_2))^{-1}\lambda_i\left(\mathbf{V}_{\mathbf{Z}_1}^{\top}\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2\tilde{\mathbf{V}}_{\mathbf{Z}_1}\tilde{\mathbf{V}}_{\mathbf{Z}_1}^{\top}\mathbf{Z}_2^{\top}\boldsymbol{\Lambda}_2\mathbf{Z}_2\mathbf{V}_{\mathbf{Z}_1}\right) = O_P(\boldsymbol{\lambda}_{r+1}).$$

Then (S3.13) and the last display implies that uniformly for i = 1, ..., r,

$$\lambda_i \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)$$

$$= n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) + O_P \left(\left(\sqrt{\frac{\operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{\lambda}_1}{n \mathbf{\lambda}_r^2}} + \sqrt{\frac{n \mathbf{\lambda}_{r+1}}{\operatorname{tr}(\mathbf{\Lambda}_2)}} + \sqrt{\frac{r}{n}} \right) \frac{\operatorname{tr}(\mathbf{\Lambda}_2)}{n} \right).$$

This completes the proof.

Lemma 8. Suppose that r = o(n), $\operatorname{tr}(\Lambda_2)\lambda_1/(n\lambda_r^2) \to 0$, $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$

0. Then

$$\sum_{i=r+1}^{p} \lambda_i \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)$$

$$= \operatorname{tr}(\boldsymbol{\Lambda}_2) - \frac{n \operatorname{tr}(\boldsymbol{\Lambda}_2^2)}{\operatorname{tr}(\boldsymbol{\Lambda}_2)} + O_P\left(n(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_p) \left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_2)\boldsymbol{\lambda}_1}{n\boldsymbol{\lambda}_r^2}} + \sqrt{\frac{n\boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_2)}}\right) + r\boldsymbol{\lambda}_{r+1}\right).$$

Proof. Write $\Sigma = \mathbf{U}_1 \mathbf{\Lambda}_1 \mathbf{U}_1^{\top} + \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{\top}$. Note that $\mathbf{U}_1 \mathbf{\Lambda}_1 \mathbf{U}_1^{\top}$ is of rank r.

Then Weyl's inequality implies that for $i = r + 1, \dots, p$,

$$\lambda_{i} ((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})) \geq \lambda_{i} ((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})), \quad (S3.14)$$

$$\lambda_{i} ((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})) \leq \lambda_{i-r} ((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})). \quad (S3.15)$$

Hence we have

$$\left| \sum_{i=r+1}^{p} \lambda_{i} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right) - \operatorname{tr} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right) \right|$$

$$\leq r \lambda_{1} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right)$$

$$\leq r \lambda_{r+1}.$$

(S3.16)

Write

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_{2}\boldsymbol{\Lambda}_{2}\mathbf{U}_{2}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right)$$

$$= \operatorname{tr}\left(\boldsymbol{\Lambda}_{2}\mathbf{U}_{2}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_{2}\right)$$

$$= \operatorname{tr}(\boldsymbol{\Lambda}_{2}) - \operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2} - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\mathbf{I}_{p-r}\right)\mathbf{U}_{2}^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{2}\right) - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\operatorname{tr}\left(\mathbf{U}_{2}^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{2}\right).$$
(S3.17)

For the third term, note that $\operatorname{tr}\left(\mathbf{U}_{2}^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{2}\right) = \operatorname{tr}(\mathbf{P}_{\mathbf{Y}}) - \operatorname{tr}\left(\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{1}\mathbf{U}_{1}^{\top}\right)$.

Since $\mathbf{P}_{\mathbf{Y}}$ is of rank n and \mathbf{U}_1 is of rank r, we have

$$|\operatorname{tr}\left(\mathbf{U}_{2}^{\mathsf{T}}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{2}\right) - n| \le r.$$
 (S3.18)

Next we deal with the second term. We have

$$\begin{split} & \left| \operatorname{tr} \left(\left(\mathbf{\Lambda}_2 - \frac{\operatorname{tr}(\mathbf{\Lambda}_2^2)}{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_{p-r} \right) \mathbf{U}_2^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_2 \right) - \operatorname{tr} \left(\left(\mathbf{\Lambda}_2 - \frac{\operatorname{tr}(\mathbf{\Lambda}_2^2)}{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_{p-r} \right) \mathbf{U}_2^{\top} \left(\mathbf{P}_{\mathbf{Y},1}^{\dagger} + \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right) \mathbf{U}_2 \right) \right| \\ = & \left| \operatorname{tr} \left(\left(\mathbf{\Lambda}_2 - \frac{\operatorname{tr}(\mathbf{\Lambda}_2^2)}{\operatorname{tr}(\mathbf{\Lambda}_2)} \mathbf{I}_{p-r} \right) \mathbf{U}_2^{\top} \left(\mathbf{P}_{\mathbf{Y}} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right) \mathbf{U}_2 \right) \right|. \end{split}$$

Since $\operatorname{tr}(\boldsymbol{\Lambda}_2^2)/\operatorname{tr}(\boldsymbol{\Lambda}_2) \in [\boldsymbol{\lambda}_p, \boldsymbol{\lambda}_{r+1}]$, we have $\|\boldsymbol{\Lambda}_2 - (\operatorname{tr}(\boldsymbol{\Lambda}_2^2)/\operatorname{tr}(\boldsymbol{\Lambda}_2))\mathbf{I}_{p-r}\| \le$

 $\lambda_{r+1} - \lambda_p$. Also note that the rank of the matrix $\mathbf{P}_{\mathbf{Y}} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},2}^{\dagger}$ is at

most 2n. Therefore, von Neumann's trace theorem implies that

$$\left| \operatorname{tr} \left(\left(\mathbf{\Lambda}_{2} - \frac{\operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}{\operatorname{tr}(\mathbf{\Lambda}_{2})} \mathbf{I}_{p-r} \right) \mathbf{U}_{2}^{\top} \left(\mathbf{P}_{\mathbf{Y}} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right) \mathbf{U}_{2} \right) \right|
\leq 2n(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p}) \left\| \mathbf{P}_{\mathbf{Y}} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} - \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right\|
\leq 2n(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p}) \left(\left\| \mathbf{P}_{\mathbf{Y},1} - \mathbf{P}_{\mathbf{Y},1}^{\dagger} \right\| + \left\| \mathbf{P}_{\mathbf{Y},2} - \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right\| \right)
= O_{P} \left(n(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p}) \left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2})\boldsymbol{\lambda}_{1}}{n\boldsymbol{\lambda}_{r}^{2}}} + \sqrt{\frac{n\boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}} \right) \right),$$
(S3.19)

where the last equality follows from Proposition 3 and Proposition 4. Note

that

$$\operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2} - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\mathbf{I}_{p-r}\right)\mathbf{U}_{2}^{\top}\left(\mathbf{P}_{\mathbf{Y},1}^{\dagger} + \mathbf{P}_{\mathbf{Y},2}^{\dagger}\right)\mathbf{U}_{2}\right)$$

$$= \operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2} - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\mathbf{I}_{p-r}\right)\mathbf{U}_{2}^{\top}\mathbf{P}_{\mathbf{Y},2}^{\dagger}\mathbf{U}_{2}\right)$$

$$= \frac{1}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\operatorname{tr}\left(\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\left(\boldsymbol{\Lambda}_{2}^{2} - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\boldsymbol{\Lambda}_{2}\right)\mathbf{Z}_{2}\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}\right)$$

It is straightforward to show that

$$\operatorname{E}\operatorname{tr}\left(\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\left(\boldsymbol{\Lambda}_{2}^{2}-\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\boldsymbol{\Lambda}_{2}\right)\mathbf{Z}_{2}\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}\right)=0,$$

and

$$\operatorname{Var}\left(\operatorname{tr}\left(\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top}\mathbf{Z}_{2}^{\top}\left(\boldsymbol{\Lambda}_{2}^{2}-\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\boldsymbol{\Lambda}_{2}\right)\mathbf{Z}_{2}\tilde{\mathbf{V}}_{\mathbf{Z}_{1}}\right)\right)=2(n-r)\operatorname{tr}\left(\boldsymbol{\Lambda}_{2}^{2}-\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\boldsymbol{\Lambda}_{2}\right)^{2}$$

$$\leq 2n\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})(\boldsymbol{\lambda}_{r+1}-\boldsymbol{\lambda}_{p})^{2}$$

$$\leq 2n\boldsymbol{\lambda}_{r+1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})(\boldsymbol{\lambda}_{r+1}-\boldsymbol{\lambda}_{p})^{2}.$$

Thus,

$$\operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2}-\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\mathbf{I}_{p-r}\right)\mathbf{U}_{2}^{\top}\left(\mathbf{P}_{\mathbf{Y},1}^{\dagger}+\mathbf{P}_{\mathbf{Y},2}^{\dagger}\right)\mathbf{U}_{2}\right)=O_{P}\left((\boldsymbol{\lambda}_{r+1}-\boldsymbol{\lambda}_{p})\sqrt{\frac{n\boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}}\right).$$

The last display, combined with (S3.19), leads to

$$\operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2} - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\mathbf{I}_{p-r}\right)\mathbf{U}_{2}^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{2}\right) = O_{P}\left(n(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p})\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2})\boldsymbol{\lambda}_{1}}{n\boldsymbol{\lambda}_{r}^{2}}} + \sqrt{\frac{n\boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}}\right)\right).$$

It then follows from (S3.17), (S3.18) and the last display that

$$\operatorname{tr}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_{2}\boldsymbol{\Lambda}_{2}\mathbf{U}_{2}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right)$$

$$= \operatorname{tr}(\boldsymbol{\Lambda}_{2}) - \frac{n\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} + O_{P}\left(n(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p})\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2})\boldsymbol{\lambda}_{1}}{n\boldsymbol{\lambda}_{r}^{2}}} + \sqrt{\frac{n\boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}}\right) + r\boldsymbol{\lambda}_{r+1}\right).$$

Then the conclusion follows from (S3.16) and the last display.

Lemma 9. Suppose p > n, we have

$$\sum_{i=r+1}^{p} \lambda_i^2 \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) = \operatorname{tr}(\mathbf{\Lambda}_2^2) - \frac{n \operatorname{tr}^2(\mathbf{\Lambda}_2^2)}{\operatorname{tr}^2(\mathbf{\Lambda}_2)} + O_P \left(n \boldsymbol{\lambda}_{r+1} (\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_p) + r \boldsymbol{\lambda}_{r+1}^2 \right).$$

Proof. From (S3.14) and (S3.15), we have

$$\left| \sum_{i=r+1}^{p} \lambda_{i}^{2} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right) - \operatorname{tr} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right)^{2} \right|$$

$$\leq r \lambda_{1}^{2} \left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \right)$$

$$\leq r \lambda_{r+1}^{2}.$$
(S3.20)

It is straightforward to show that

$$\operatorname{tr}\left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_2\mathbf{\Lambda}_2\mathbf{U}_2^{\top}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\right)^2 = \operatorname{tr}(\mathbf{\Lambda}_2^2) - 2\operatorname{tr}(\mathbf{\Lambda}_2^2\mathbf{U}_2^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_2) + \operatorname{tr}(\mathbf{\Lambda}_2\mathbf{U}_2^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_2)^2.$$

For the second term, we have

$$\left| \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2} \mathbf{U}_{2}^{\top} \mathbf{P}_{Y} \mathbf{U}_{2}) - \frac{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2})} \operatorname{tr}(\mathbf{U}_{2}^{\top} \mathbf{P}_{Y} \mathbf{U}_{2}) \right| = \left| \operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2}^{2} - \frac{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{p-r}\right) \mathbf{U}_{2}^{\top} \mathbf{P}_{Y} \mathbf{U}_{2}\right) \right|$$

$$\leq n \boldsymbol{\lambda}_{r+1} (\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p}),$$

where the last equality follows from von Neumann's trace theorem. The last display, combined with (S3.18), implies that

$$\operatorname{tr}(\boldsymbol{\Lambda}_2^2 \mathbf{U}_2^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_2) = \frac{n \operatorname{tr}^2(\boldsymbol{\Lambda}_2^2)}{\operatorname{tr}^2(\boldsymbol{\Lambda}_2)} + O_P\left(n\boldsymbol{\lambda}_{r+1}(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_p) + r\boldsymbol{\lambda}_{r+1}^2\right).$$

For the third term, von Neumann's trace theorem implies that

$$\begin{aligned} & \left| \operatorname{tr}(\boldsymbol{\Lambda}_{2} \mathbf{U}_{2}^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_{2})^{2} - \frac{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2})} \operatorname{tr}(\mathbf{U}_{2}^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_{2})^{2} \right| \\ &= \left| \operatorname{tr}\left(\left(\boldsymbol{\Lambda}_{2} - \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{p-r} \right) \mathbf{U}_{2}^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_{2} \left(\boldsymbol{\Lambda}_{2} + \frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \mathbf{I}_{p-r} \right) \mathbf{U}_{2}^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_{2} \right) \right| \\ &\leq 2n \boldsymbol{\lambda}_{r+1} (\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_{p}). \end{aligned}$$

Note that

$$tr(\mathbf{U}_{2}^{\top}\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{2})^{2} = tr\left(\mathbf{P}_{\mathbf{Y}} - \mathbf{P}_{\mathbf{Y}}\mathbf{U}_{1}\mathbf{U}_{1}^{\top}\right)^{2}$$
$$= n - 2tr(\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{1}\mathbf{U}_{1}^{\top}) + tr(\mathbf{P}_{\mathbf{Y}}\mathbf{U}_{1}\mathbf{U}_{1}^{\top})^{2}$$
$$= n + O_{P}(r).$$

Therefore, the third term satisfies

$$\operatorname{tr}(\boldsymbol{\Lambda}_2 \mathbf{U}_2^{\top} \mathbf{P}_{\mathbf{Y}} \mathbf{U}_2)^2 = \frac{n \operatorname{tr}^2(\boldsymbol{\Lambda}_2^2)}{\operatorname{tr}^2(\boldsymbol{\Lambda}_2)} + O_P\left(n\boldsymbol{\lambda}_{r+1}(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_p) + r\boldsymbol{\lambda}_{r+1}^2\right).$$

Thus,

$$\operatorname{tr}\left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_2\mathbf{\Lambda}_2\mathbf{U}_2^{\top}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\right)^2 = \operatorname{tr}(\mathbf{\Lambda}_2^2) - \frac{n\operatorname{tr}^2(\mathbf{\Lambda}_2^2)}{\operatorname{tr}^2(\mathbf{\Lambda}_2)} + O_P\left(n\boldsymbol{\lambda}_{r+1}(\boldsymbol{\lambda}_{r+1} - \boldsymbol{\lambda}_p) + r\boldsymbol{\lambda}_{r+1}^2\right).$$

Then the conclusion follows from the last display and (S3.20).

Proof of Theorem 2. We have

$$\begin{split} &\mathbf{Z}^{\dagger\top}\boldsymbol{\Lambda}^{1/2}\mathbf{U}^{\top}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger} \\ &=\sum_{i=1}^{r}\lambda_{i}((\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}}))\eta_{i}\eta_{i}^{\top}+\sum_{i=r+1}^{p}\lambda_{i}((\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}}))\eta_{i}\eta_{i}^{\top}. \end{split}$$

From Lemma 7, the first term satisfies

$$\sum_{i=1}^{r} \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \eta_i \eta_i^{\top} = (1 + o_P(r^{-1/2})) n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \sum_{i=1}^{r} \eta_i \eta_i^{\top}.$$

Then

$$\frac{\sum_{i=1}^{r} \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \eta_i \eta_i^{\top} - r n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2) \mathbf{I}_{k-1}}{\sqrt{r} n^{-1} \operatorname{tr}(\mathbf{\Lambda}_2)} = \frac{\sum_{i=1}^{r} \eta_i \eta_i^{\top} - r \mathbf{I}_{k-1}}{\sqrt{r}} + o_P(1).$$
(S3.21)

Next we deal with the term $\sum_{i=r+1}^{p} \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \eta_i \eta_i^{\top}$. In the current context, Lemma 8 and Lemma 9 imply that

$$\sum_{i=r+1}^{p} \lambda_i \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) = \operatorname{tr}(\mathbf{\Lambda}_2) - \frac{n \operatorname{tr}(\mathbf{\Lambda}_2^2)}{\operatorname{tr}(\mathbf{\Lambda}_2)} + o_P \left(\sqrt{\operatorname{tr}(\mathbf{\Lambda}_2^2)} \right),$$

(S3.22)

$$\sum_{i=r+1}^{p} \lambda_i^2 \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) = (1 + o_P(1)) \operatorname{tr}(\mathbf{\Lambda}_2^2).$$
 (S3.23)

By Weyl's inequality, we have

$$\begin{split} &\lambda_{r+1}((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \\ = &\lambda_{r+1} \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_1\boldsymbol{\Lambda}_1\mathbf{U}_1^{\top}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) + (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_2\boldsymbol{\Lambda}_2\mathbf{U}_2^{\top}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) \\ \leq &\lambda_1 \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{U}_2\boldsymbol{\Lambda}_2\mathbf{U}_2^{\top}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right) \\ \leq &\boldsymbol{\lambda}_{r+1}. \end{split}$$

The last display and (S3.22) imply that

$$\frac{\lambda_{r+1}^2 \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{\top} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)}{\sum_{i=r+1}^p \lambda_i^2 \left((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{\top} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \right)} \leq \frac{\lambda_{r+1}^2}{(1 + o_P(1)) \operatorname{tr}(\mathbf{\Lambda}_2^2)} \xrightarrow{P} 0.$$

Then Lemma 2 implies that

$$\frac{\sum_{i=r+1}^p \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \eta_i \eta_i^\top - \sum_{i=r+1}^p \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \mathbf{I}_{k-1}}{\sqrt{\sum_{i=r+1}^p \lambda_i^2 ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}))}} \xrightarrow{\mathcal{L}} \mathbf{W}_{k-1}.$$

The last display, combined with (S3.22) and (S3.23), leads to

$$\frac{\sum_{i=r+1}^{p} \lambda_{i}((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})) \eta_{i} \eta_{i}^{\top} - (\operatorname{tr}(\boldsymbol{\Lambda}_{2}) - n \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2}) / \operatorname{tr}(\boldsymbol{\Lambda}_{2})) \mathbf{I}_{k-1}}{\sqrt{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}} \xrightarrow{\mathcal{L}} \mathbf{W}_{k-1}.$$
(S3.24)

Note that $\sum_{i=1}^r \eta_i \eta_i^{\top}$ is independent of $\sum_{i=r+1}^p \lambda_i ((\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{\Sigma} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})) \eta_i \eta_i^{\top}$.

Then (S3.21) and (S3.24) implies that

$$\frac{\mathbf{Z}^{\dagger\top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\top} (\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{Z}^{\dagger} - ((1 + r/n) \operatorname{tr}(\mathbf{\Lambda}_{2}) - n \operatorname{tr}(\mathbf{\Lambda}_{2}^{2}) / \operatorname{tr}(\mathbf{\Lambda}_{2})) \mathbf{I}_{k-1}}{\sqrt{rn^{-2} \operatorname{tr}^{2}(\mathbf{\Lambda}_{2}) + \operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}}
\sim \frac{n^{-1} \operatorname{tr}(\mathbf{\Lambda}_{2})}{\sqrt{rn^{-2} \operatorname{tr}^{2}(\mathbf{\Lambda}_{2}) + \operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}} (\mathbf{W}_{k-1}^{*} - r \mathbf{I}_{k-1}) + \frac{\sqrt{\operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}}{\sqrt{rn^{-2} \operatorname{tr}^{2}(\mathbf{\Lambda}_{2}) + \operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}} \mathbf{W}_{k-1} + o_{P}(1).$$
(S3.25)

This completes the proof of the first statement.

Now we prove the second statement. For the second term of (S3.1), we have $\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p}-\mathbf{P}_{\mathbf{Y}})\boldsymbol{\Theta}\mathbf{C} = \mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C} - \mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\mathbf{P}_{\mathbf{Y}}\boldsymbol{\Theta}\mathbf{C}$. We need to deal with $\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\mathbf{P}_{\mathbf{Y}}\boldsymbol{\Theta}\mathbf{C}$. Note that Proposition 3 implies that

$$\|\mathbf{P}_{\mathbf{Y},1} - \mathbf{U}_1 \mathbf{U}_1^{\mathsf{T}}\| \le \|\mathbf{P}_{\mathbf{Y},1} - \mathbf{P}_{\mathbf{Y},1}^{\dagger}\| + 2\|\mathbf{Q}\| = o_P(1).$$

It follows from the last display and Proposition 4 that

$$\begin{aligned} & \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y}} \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{U}_{1} \mathbf{U}_{1}^{\top} \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y},2}^{\dagger} \boldsymbol{\Theta} \mathbf{C} \right\| \\ & \leq \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y},1} \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{U}_{1} \mathbf{U}_{1}^{\top} \boldsymbol{\Theta} \mathbf{C} \right\| + \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y},2} \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y},2}^{\dagger} \boldsymbol{\Theta} \mathbf{C} \right\| \\ & \leq \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Theta} \mathbf{C} \right\| \left(\left\| \mathbf{P}_{\mathbf{Y},1} - \mathbf{U}_{1} \mathbf{U}_{1}^{\top} \right\| + \left\| \mathbf{P}_{\mathbf{Y},2} - \mathbf{P}_{\mathbf{Y},2}^{\dagger} \right\| \right) \\ & = o_{P} \left(\sqrt{rn^{-2} \operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) + \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})} \right). \end{aligned}$$

We have

$$\mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{P}_{\mathbf{Y},2}^{\dagger} \mathbf{\Theta} \mathbf{C} = (\operatorname{tr}(\boldsymbol{\Lambda}_{2}))^{-1} \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{Z}_{2} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}} \tilde{\mathbf{V}}_{\mathbf{Z}_{1}}^{\top} \mathbf{Z}_{2}^{\top} \boldsymbol{\Lambda}_{2}^{1/2} \mathbf{U}_{2}^{\top} \mathbf{\Theta} \mathbf{C}.$$

Note that $\mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1}$ is a $(p-r) \times (n-r)$ matrix with iid $\mathcal{N}(0,1)$ entries. Then the columns of $\mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_2 \mathbf{\Lambda}_2^{1/2} \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1}$ are iid $\mathcal{N}_{k-1}(\mathbf{0}_{k-1}, \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{\top} \mathbf{\Theta} \mathbf{C})$

random vectors. Write $\mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_2 \mathbf{\Lambda}_2^{1/2} \mathbf{Z}_2 \tilde{\mathbf{V}}_{\mathbf{Z}_1} = (\mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_2 \mathbf{\Lambda}_2 \mathbf{U}_2^{\top} \mathbf{\Theta} \mathbf{C})^{1/2} \mathbf{Z}^*$, where \mathbf{Z}^* is a $(k-1) \times (n-r)$ random matrix with iid $\mathcal{N}(0,1)$ entries. Then

$$\begin{aligned} & \left\| \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{P}_{\mathbf{Y},2}^{\dagger} \mathbf{\Theta} \mathbf{C} - \frac{n}{\operatorname{tr}(\mathbf{\Lambda}_{2})} \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} \mathbf{\Theta} \mathbf{C} \right\| \\ & \leq \frac{n}{\operatorname{tr}(\mathbf{\Lambda}_{2})} \left\| \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_{2} \mathbf{\Lambda}_{2} \mathbf{U}_{2}^{\top} \mathbf{\Theta} \mathbf{C} \right\| \left\| n^{-1} \mathbf{Z}^{*} \mathbf{Z}^{*\top} - \mathbf{I}_{k-1} \right\| \\ & = o_{P} \left(\sqrt{rn^{-2} \operatorname{tr}^{2}(\mathbf{\Lambda}_{2}) + \operatorname{tr}(\mathbf{\Lambda}_{2}^{2})} \right), \end{aligned}$$

where the last equality follows from the law of large numbers, the local alternative condition and the condition $n\lambda_{r+1}/\operatorname{tr}(\Lambda_2) \to 0$. But

$$\frac{n}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{U}_{2} \boldsymbol{\Lambda}_{2} \mathbf{U}_{2}^{\top} \boldsymbol{\Theta} \mathbf{C} \right\| \leq \frac{n \boldsymbol{\lambda}_{2}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})} \left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \boldsymbol{\Theta} \mathbf{C} \right\| = o_{P} \left(\sqrt{r n^{-2} \operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) + \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})} \right).$$
Hence
$$\left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y}, 2}^{\dagger} \boldsymbol{\Theta} \mathbf{C} \right\| = o_{P} \left(\sqrt{r n^{-2} \operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) + \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})} \right).$$
 Consequently,
$$\left\| \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{P}_{\mathbf{Y}} \boldsymbol{\Theta} \mathbf{C} - \mathbf{C}^{\top} \boldsymbol{\Theta}^{\top} \mathbf{U}_{1} \mathbf{U}_{1}^{\top} \boldsymbol{\Theta} \mathbf{C} \right\| = o_{P} \left(\sqrt{r n^{-2} \operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2}) + \operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})} \right).$$
 Thus, the second term of (S3.1) satisfies

$$\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{\Theta}\mathbf{C} - \mathbf{C}^{\top}\mathbf{\Theta}^{\top}\mathbf{U}_{2}\mathbf{U}_{2}^{\top}\mathbf{\Theta}\mathbf{C}\| = o_{P}\left(\sqrt{rn^{-2}\operatorname{tr}^{2}(\mathbf{\Lambda}_{2}) + \operatorname{tr}(\mathbf{\Lambda}_{2}^{2})}\right).$$
(S3.26)

Next we consider the cross term of (S3.1). Note that

$$E[\|\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\mathbf{U}\boldsymbol{\Lambda}^{1/2}\mathbf{Z}^{\dagger}\|_{F}^{2}|\mathbf{Y}]$$

$$= (k-1)\operatorname{tr}(\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Theta}\mathbf{C})$$

$$\leq (k-1)\lambda_{1}\left((\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\boldsymbol{\Sigma}(\mathbf{I}_{p} - \mathbf{P}_{\mathbf{Y}})\right)\operatorname{tr}(\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C})$$

$$= O_{P}\left(n^{-1}\operatorname{tr}(\boldsymbol{\Lambda}_{2})\|\mathbf{C}^{\top}\boldsymbol{\Theta}^{\top}\boldsymbol{\Theta}\mathbf{C}\|\right),$$

where the last equality follows from Lemma 7. Under the condition $r \to \infty$ or $\operatorname{tr}(\mathbf{\Lambda}_2)/(n\sqrt{\operatorname{tr}(\mathbf{\Lambda}_2^2)}) \to 0$, we have $n^{-1}\operatorname{tr}(\mathbf{\Lambda}_2) = o_P\left(\sqrt{rn^{-2}\operatorname{tr}^2(\mathbf{\Lambda}_2) + \operatorname{tr}(\mathbf{\Lambda}_2^2)}\right)$. Therefore,

$$\|\mathbf{C}^{\top}\mathbf{\Theta}^{\top}(\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}})\mathbf{U}\mathbf{\Lambda}^{1/2}\mathbf{Z}^{\dagger}\| = o_P\left(\sqrt{rn^{-2}\operatorname{tr}^2(\mathbf{\Lambda}_2) + \operatorname{tr}(\mathbf{\Lambda}_2^2)}\right).$$

It follows from the last display, (S3.26) and Weyl's inequality that

$$|T(\mathbf{X}) - \lambda_1 \left(\mathbf{Z}^{\dagger \top} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\dagger} (\mathbf{I}_p - \mathbf{P}_{\mathbf{Y}}) \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{Z}^{\dagger} + \mathbf{C}^{\top} \mathbf{\Theta}^{\top} \mathbf{U}_2 \mathbf{U}_2^{\top} \mathbf{\Theta} \mathbf{C} \right) |$$

$$= o_P \left(\sqrt{rn^{-2} \operatorname{tr}^2(\mathbf{\Lambda}_2) + \operatorname{tr}(\mathbf{\Lambda}_2^2)} \right).$$

Then the second statement follows from the last display and (S3.25).

Proof of Corollary 2. From Proposition 2, we have

$$rn^{-2}(\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)})^2 + \widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2^2)} = (1 + o_P(1))(rn^{-2}\operatorname{tr}^2(\boldsymbol{\Lambda}_2) + \operatorname{tr}(\boldsymbol{\Lambda}_2^2)),$$

and

$$\begin{split} &(1+r/n)\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}-n\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}/\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\\ =&(1+r/n)\operatorname{tr}(\boldsymbol{\Lambda}_{2})+O_{P}\left(r\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}}+r\boldsymbol{\lambda}_{r+1}\right)\\ &-\frac{n\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})\left(1+O_{P}\left(r/n+r\boldsymbol{\lambda}_{r+1}^{2}/\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})\right)\right)}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})\left(1+O_{P}\left(r\sqrt{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})/n\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2})}+r\boldsymbol{\lambda}_{r+1}/\operatorname{tr}(\boldsymbol{\Lambda}_{2})\right)\right)}\\ =&(1+r/n)\operatorname{tr}(\boldsymbol{\Lambda}_{2})+O_{P}\left(r\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n}}+r\boldsymbol{\lambda}_{r+1}\right)\\ &-\frac{n\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\left(1+O_{P}\left(\frac{r}{n}+\frac{r\boldsymbol{\lambda}_{r+1}^{2}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}+r\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{n\operatorname{tr}^{2}(\boldsymbol{\Lambda}_{2})}}+\frac{r\boldsymbol{\lambda}_{r+1}}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}\right)\right)\\ =&(1+r/n)\operatorname{tr}(\boldsymbol{\Lambda}_{2})-\frac{n\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}{\operatorname{tr}(\boldsymbol{\Lambda}_{2})}+o_{P}\left(\sqrt{\operatorname{tr}(\boldsymbol{\Lambda}_{2}^{2})}\right). \end{split}$$

Therefore,

$$Q_2 = \frac{T(\mathbf{X}) - ((1 + r/n)\operatorname{tr}(\boldsymbol{\Lambda}_2) - n\operatorname{tr}(\boldsymbol{\Lambda}_2^2)/\operatorname{tr}(\boldsymbol{\Lambda}_2))}{\sqrt{rn^{-2}\operatorname{tr}^2(\boldsymbol{\Lambda}_2) + \operatorname{tr}(\boldsymbol{\Lambda}_2^2)}} + o_P(1).$$

On the other hand, it is not hard to see that the ratio consistency of $\widehat{\operatorname{tr}(\boldsymbol{\lambda}_2)}$ and $\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2^2)}$ imply $F_2^{-1}(1-\alpha;\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2)},\widehat{\operatorname{tr}(\boldsymbol{\Lambda}_2^2)})=F_2^{-1}(1-\alpha;\operatorname{tr}(\boldsymbol{\Lambda}_2),\operatorname{tr}(\boldsymbol{\Lambda}_2^2))+o_P(1)$. Then the conclusion follows from Theorem 2 and Slutsky's theorem.

Proof of Proposition 5. Under the conditions of Theorem 1, we have $n\lambda_1/\operatorname{tr}(\Sigma) \to 0$. From Lemma 5 and Weyl's inequality, we have

$$\lambda_1(\hat{\boldsymbol{\Sigma}}) = n^{-1}\lambda_1(\mathbf{Z}^{\top}\boldsymbol{\Lambda}\mathbf{Z}) = n^{-1}\operatorname{tr}(\boldsymbol{\Sigma}) + O_P\left(\sqrt{\frac{\operatorname{tr}(\boldsymbol{\Sigma}^2)}{n}} + \boldsymbol{\lambda}_1\right) = (1 + o_P(1))n^{-1}\operatorname{tr}(\boldsymbol{\Sigma}).$$

From the proof of Corollary 1, we have $\operatorname{tr}(\hat{\Sigma}) = (1 + o_P(1)) \operatorname{tr}(\Sigma)$. Therefore,

$$\frac{n\lambda_1(\hat{\Sigma})}{\operatorname{tr}(\hat{\Sigma})} \xrightarrow{P} 1.$$

This completes the proof of (i).

Now we prove (ii). Under the conditions of Theorem 2, Proposition 1 implies that

$$\frac{n\lambda_1(\hat{\Sigma})}{\operatorname{tr}(\hat{\Sigma})} = \frac{n\lambda_1(\hat{\Sigma})}{\sum_{i=1}^r \lambda_i(\hat{\Sigma}) + \sum_{i=r+1}^n \lambda_i(\hat{\Sigma})}$$

$$= (1 + o_P(1)) \frac{n\lambda_1 + \operatorname{tr}(\Lambda_2)}{\sum_{i=1}^r \lambda_i + \operatorname{tr}(\Lambda_2)}$$

$$\geq (1 + o_P(1)) \frac{n\lambda_1}{r\lambda_1 + \operatorname{tr}(\Lambda_2)} \xrightarrow{P} \infty.$$

It follows that

$$\Pr\left(\frac{n\lambda_1(\hat{\Sigma})}{\operatorname{tr}(\hat{\Sigma})} < \tau\right) \to 0.$$

Next we consider the consistency of \hat{r} . Note that

$$\{\hat{r}=r\} = \left\{ \frac{n\lambda_{i+1}(\hat{\Sigma})}{\sum_{j=i+1}^{n} \lambda_{j}(\hat{\Sigma})} \ge \tau, i = 1, \dots, r-1 \right\} \cap \left\{ \frac{n\lambda_{r+1}(\hat{\Sigma})}{\sum_{j=r+1}^{n} \lambda_{j}(\hat{\Sigma})} < \tau \right\}.$$

But Proposition 1 implies that uniformly for i = 1, ..., r - 1

$$\frac{n\lambda_{i+1}(\hat{\Sigma})}{\sum_{j=i+1}^{n}\lambda_{j}(\hat{\Sigma})} \ge \frac{n\lambda_{i+1}(\hat{\Sigma})}{(r-i)\lambda_{i+1}(\hat{\Sigma}) + \sum_{j=r+1}^{n}\lambda_{j}(\hat{\Sigma})}
= (1+o_{P}(1)) \frac{n\lambda_{i+1} + \operatorname{tr}(\Lambda_{2})}{(r-i)\lambda_{i+1} + (1-i/n)\operatorname{tr}(\Lambda_{2})} \xrightarrow{P} \infty.$$

Thus, we only need to prove that

$$\Pr\left(\frac{n\lambda_{r+1}(\hat{\Sigma})}{\sum_{j=r+1}^{n}\lambda_{j}(\hat{\Sigma})} < \tau\right) \to 1.$$

Weyl' inequality implies that $n\lambda_{r+1}(\hat{\Sigma}) = \lambda_{r+1}(\mathbf{Z}_1^{\top}\mathbf{\Lambda}_1\mathbf{Z}_1 + \mathbf{Z}_2^{\top}\mathbf{\Lambda}_2\mathbf{Z}_2) \le \lambda_1(\mathbf{Z}_2^{\top}\mathbf{\Lambda}_2\mathbf{Z}_2)$. Then using Lemma 5, we have $n\lambda_{r+1}(\hat{\Sigma}) \le (1+o_P(1))\operatorname{tr}(\mathbf{\Lambda}_2)$. Thus,

$$\frac{n\lambda_{r+1}(\hat{\Sigma})}{\sum_{j=r+1}^{n}\lambda_{j}(\hat{\Sigma})} \leq (1 + o_{P}(1)).$$

This completes the proof.

References

Cai, T., Z. Ma, and Y. Wu (2015). Optimal estimation and rank detection for sparse spiked covariance matrices. *Probability Theory & Related Fields* 161(3-4), 781–815.

Chen, S. X., L. Zhang, and P. Zhong (2010). Tests for high-dimensional covariance matrices. *Journal of the American Statistical Association* 105(490), 810–819.

Horn, R. A. and C. R. Johnson (2012). Matrix Analysis (2nd ed.). New York: Cambridge University Press.

Laurent, B. and P. Massart (2000). Adaptive estimation of a quadratic functional by model selection. *The Annals of Statistics* 28(5), 1302–1338.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv preprint arXiv:1011.3027.