

Intelligent Agents

Russell & Norvig: Chapter 2

Agents

"An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators"

Agents

For example:

- Humans
- Animals
- Robots
- Various software systems

Agents: Terminology

Perceiving:

- Percept: Agent's perceptual inputs at any given instant
- Percept sequence: Complete history of everything the agent has perceived

Agents: Terminology

Acting:

- Agent function: decides what action to take in any given situation (possibly non-deterministic)
- In general, an agent's choice of action can depend on the entire percept sequence observed to date
- Agent program: implements an agent function internally

Agent Program

The AI is to design the agent program

Agent = architecture + program

Easy?

Simply fill out the agent function table!

Even though we could, impractical except for most simple problems

The Vacuum-Cleaner World

Agent Function

Percept sequence

[A, Clean]

[A, Dirty]

[B, Clean]

[B, Dirty]

[A, Clean], [A, Clean]

Action

Right

Suck

Left

Suck

Right

• •

The Vacuum-Cleaner World

Agent Program

function DECIDE([location, status]) returns an action

if status = **Dirty** then return **Suck**

else if location = A then return Right

else if location = B then return Left

The Concept of Rationality

Rational behavior is making the "right" decisions based on what you know

What is rational at any given time depends on:

- The performance measure that defines the criterion of success
- The agent's prior knowledge of the environment
- The actions that the agent can perform
- The agent's percept sequence to date

Rational Agent

"For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has."

Note:

- Does not imply perfect decision making
- Does usually imply a learning agent

Challenge for Al

"produce rational behavior from a smallish program rather than a vast table"

The Nature of Environments

Task environment:

"Problem domain"

Specifying the task environment:

- Performance measure
- Environment
- Actuator
- Sensors

See figures 2.5 and 2.6 (book chapter 2) for examples

The Nature of Environments

PEAS description for an automated taxi driver

Performance Measure	Environment	Actuators	Sensors
Safe, fast, legal, comfortable trip, maximize profits	Roads, traffic, pedestrians, customers	Steering, accelerator, brake, signal, horn, display or voice output to passenger	Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard or microphone

The Nature of Environments

Properties of environments:

- Fully vs. partially observable
- Deterministic vs. Stochastic
- Episodic vs. Sequential
- Static vs. Dynamic
- Discrete vs. Continuous
- Single vs. Multi-agent:
 - Cooperative
 - Competitive

The hardest case:

Partially observable

Multiagent

Nondeterministic

Sequential

Dynamic

Continuous

Unknown

Simple Reflex Agent

Simple reflex agents:

- Only current percept
- Condition-Action Rules

Model-Based Reflex Agent

Model-based reflex agents:

- Model of world internal state
- World evolves
- Actions affect it

Goal-Based Agent

Goal-based agents

- Current State and a Goal
- Desired Future State: planning/search used
- (condition-action rules insufficient)

Utility Based Agent

Utility based agents

 Utility function returns a "happy value" about state

Learning Agents

Performance standard

Summary

Agent

Rational Agent

Task environment

Structure of Agents

- Simple Reflex
- Model-Based
- Goal-Based
- Utility-Based

Learning Agents

PEAS Exercise

Task Environment	Р	E	Α	s
Playing tennis				
Online auction bidder				
Robotic guard dog				
Automatic crib				
Post-meal cleaner				