1 Existence and Uniqueness of Jordan Canonical Form

Theorem 1.1

If a characteristic polynomial f(t) of T splits, then

- a) $V = \bigoplus_{i=1}^r K_{\lambda_i}$, where λ_i for $i \in [1, r] \cap \mathbb{N}$ are distinct eigenvalues.
- b) dim $K_{\lambda} = m_{\lambda}$ for any eigenvalue λ .

Proof.

First we show that $V = \sum_{i=1}^{r} K_{\lambda_i}$ by induction on r.

Let $W = \operatorname{im}(T - \lambda I)^{m_{\lambda}}$.

Since dim $V = \dim K_{\lambda_1} + \dim W$, while $K_{\lambda_1} \cap W = \{0\}$,

then $\dim(K_{\lambda_1} + W) = \dim(K_{\lambda_1}) + \dim(W) = \dim V$, and thus $V = K_{\lambda_1} \oplus W$.

Note hat W is T-invariant and T_W has eigenvalues $\lambda_2, \ldots, \lambda_r$.

If $x \in W$, $x = (T - \lambda I)^{m_{\lambda}}(y)$ for some $y \in V$.

Therefore, $Tx = T(T - \lambda I)^{m_{\lambda}}(y) = (T - \lambda I)^{m_{\lambda}}T(y) \in W$.

Thus, W is T-invariant.

If $Tv = T|_W(v) = \mu v$ and $v \neq 0$, then μ is an eigenvalue of T, then μ is an eigenvalue of T, and hence $\mu \in \{\lambda_1, \ldots, \lambda_r\}$. If $\mu = \lambda_1$, then $v \in W \cap K_{\lambda_1} = \{0\}$ by the previous remark.

The generalised eigenspaces of $T|_W$ are $K_{\lambda_2}, \ldots, K_{\lambda_r}$. Notice that $K_{\lambda}^W = K_{\lambda} \cap W$, where K_{λ}^W is

By Theorem 7.1(b), since $(T - \lambda_1 I)^{m_{\lambda_1}} : K_{\lambda_i} \to K_{\lambda_i}$ for all $i \neq 1$, then $K_{\lambda_i} \subseteq \operatorname{im}((T - \lambda_1 I)) = W$ for all $i \neq 1$, and therefore $K_{\lambda_i}^W = K_{\lambda_i} \cap W = K_{\lambda_i}$ for all $i \neq 1$.

Thus, $K_{\lambda_1}^W = \{0\}.$

Now we apply the inductive hypothesis to $T_W: W \to W$ (the characteristic polynomial splits and it has r-1 eigenvalues).

Then $W = \sum_{i=2}^r K_{\lambda_i}^W = \sum_{i=2}^r K_{\lambda_i}$, and hence $V = K_{\lambda_1} + W = \sum_{i=1}^r K_{\lambda_i}$.

Since $V = \sum_{i=1}^{r} K_{\lambda_i}$ and $\dim V \leq \sum_{i=1}^{r} \dim K_{\lambda_i} \leq \sum_{i=1}^{r} m_i = \dim V$,

and thus dim $V = \sum_{i=1}^r \dim K_{\lambda_i}$ and dim $K_{\lambda_i} = m_i$, which means that $V = \bigoplus_{i=1}^r K_{\lambda_i}$.

Now we can fin a nice basis for each K_{λ} separately.

If $x \in K_{\lambda}$ and $x \neq 0$, there is a smallest $l \geq 1$ such that $(T - \lambda I)^{l} x = 0$.

We call a set $\{(T - \lambda I)^{l-1}x, (T - \lambda I)^{l-2}x, \dots, (T - \lambda I)x, x\}$ a **cycle of generalised eigenvectors** corresponding to λ of length l. Let's call $(T - \lambda I)^{l-1}$ an *initial vector* and x an *end vector*.

The initial vector is in $N(T - \lambda I) = E_{\lambda}$, and hence it is an eigenvector for λ .

Theorem 1.2

If γ is a basis of V which is a disjoint union of cycles γ_i for $1 \le i \le r$ of generalised eigenvectors, let $W_i = \text{span}(\gamma_i)$.

- a) W_i is T-invariant and $[T_{W_i}]_{\gamma_i}$ is a Jordan block.
- b) $[T]_{\gamma}$ is in JCF.

Proof.

a) Fix i.

Suppose

$$\gamma_i = \{ (T - \lambda I)^{l-1}(x), \dots, (T - \lambda I)x, x \}.$$

Note that $W_i = \operatorname{span}(\gamma_i)$, but $\gamma_i \subseteq \gamma$, so γ_i is linearly independent and thus a basis of W_i .

Let $v_j = (T - \lambda I)^{l-j} x$ for $1 \le j \le l$.

We know that

$$(T - \lambda J)v_j = (T - \lambda J)^{l-j+1}(x) \tag{1}$$

$$= (T - \lambda J)^{l - (j-1)} x \tag{2}$$

$$= \begin{cases} v_{j-1} & \text{if } j > 1\\ 0 & \text{if } j = 1 \end{cases}$$
 (3)

Therefore,

$$Tv_j = \begin{cases} \lambda v_j + v_{j-1}, & \text{if } j > 1\\ \lambda v_j, & \text{if } j = 1 \end{cases}.$$

So $Tv_j \in W_i$ for all j, and thus W_i is T-invariant and $[T_{W_i}]_{\gamma_i}$ is a Jordan block.

b) Note that, by definition, $\gamma = \bigcup_{i=1}^r \gamma_i$. The matrix representation $[T]_{\gamma}$ has Jordan blocks on a diagonal, and thus $[T]_{\gamma}$ is in a Jordan Canonical Form.

Theorem 1.3

Suppose $\gamma_1, \ldots, \gamma_r$ are cycles of generalised eigenvalues corresponding to the **same** eigenvalue λ .

If the initial vectors are linearly independent, then the sets γ_i are disjoint and $\gamma = \bigcup_{i=1}^r \gamma_i$ is linearly independent.

Proof.

Let $W = \operatorname{span} \gamma$. From Theorem 1.2, W is T-invariant.

Let $U = T - \lambda I : W \to W$.

Note that $\gamma_i = \{U^{l_i-1}x_i, \dots, Ux_i, x_i\}.$

We proceed by induction on the number of vectors $l_1 + \cdots + l_r$.

If $\sum_{i=1}^{r} l_i = 1$, there is a one-dimensional cycle which is linearly independent trivially.

Suppose $U^{l_1-1}(x_1), \ldots, U^{l_r-1}x_r$, which are all in $E_{\lambda} = \ker(U)$, are linearly independent, and then $\dim \ker(U) \geq r$.

On the other hand, $\gamma'_i = \{U^{l_i-1}x_i, U^2x_i, Ux_i\}$ is a cycle of length $\lambda_i - 1$ contained in im U.

The total number of vectors is r fewer than before, so we can apply induction to $\gamma'_1, \ldots, \gamma'_r$. Therefore,

 $\bigcup_{i=1}^r \gamma_r'$ is a linearly independent disjoint union.

Therefore, dim im $(U) \ge \sum_{i=1}^r (l_i - 1) = -r + \sum_{i=1}^r l_i$.

Hence, by the dimension theorem,

$$d = \dim \operatorname{im} U + \dim \ker U \ge \left(\sum_{i=1}^{r} \lambda_i - r\right) + r \tag{4}$$

$$= \sum_{i=1}^{r} l_i \ge |\gamma| \ge \dim W = d. \tag{5}$$

Thus, the equality holds, so $|\gamma| = \sum l_i$, and thus γ is a disjoint union.

Therefore, $|\gamma| = \dim W$ and thus γ is a basis of W, and thus it is linearly independent. \square