Číslo cvičení: 9 Jméno: Marek Bryša

UČO: 323771 Login: xbrysa1

- 1. (a) $4586^{107} = 1 \mod{7919}$, q is prime.
 - (b) $v = 4586^{-55} = 1175 \mod 7919$
 - (c) $\gamma = 4586^{29} = 48 \mod{7919}$
 - (d) $y = 29 + 55 \cdot 61 = 3384 \mod{7919}$
 - (e) $4586^{3384} \cdot 1175^{61} = 48 = \gamma \mod{7919}$
- 2. The father can use Shamir's (5,3)-threshold scheme, where the eldest son receives 2 pieces of the secret and the others get 1 each.

3.

4.
$$l_0 = \frac{x-3}{1-3} \cdot \frac{x-7}{1-7} = x^2/12 - (5x)/6 + 7/4$$

 $l_1 = \frac{x-1}{3-1} \cdot \frac{x-7}{3-7} = -x^2/8 + x - 7/8$
 $l_2 = \frac{x-1}{7-1} \cdot \frac{x-3}{7-3} = x^2/24 - x/6 + 1/8$
 $f(x) = 28l_0 + 31l_1 + 17l_2 = -(5x^2)/6 + (29x)/6 + 24$
 $S = f(0) = 24$

- 5. (a) Bob accepts iff $y^e = RX_A^f \mod n$.
 - (b) $Y = y^e = (rx_A^f)^e = RX_A^f \mod n$.
 - (c) In step (i) Eve chooses $R = X_a^{f(e-1)}$. In step (iii) Eve sends $y = X_A^f$. Then $Y = X_A^{fe}$ and $RX_A^f = X_A^{f(e-1)}X_A^f = X_A^{fe} \implies$ Bob accepts.