Name (Print):
g this cover page) and 4 problems. Check to see if any
unauthorized assistance from any person, materials, or
Date
8

You are required to show your work on each problem on this exam. The following rules apply:

- Organize your work, in a reasonably neat and coherent way, in the space provided.
- No partial credit for any 1 point problem. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit.
- If you need more space, use the back of the pages; clearly indicate when you have done this.
- Any answer or solution on scratch paper will receive no credit.

Do not write in the table to the right.

Your section number: _

Problem	Points	Score
1	4	
2	5	
3	6	
4	5	
Total:	20	

- 1. Determine which of the following transformations with domain P_2 , the space of all polynomials of degree at most 2, is a linear isomorphism. Remember to justify your answers.
 - (a) (1 point) $T_1: P_2 \to \mathbb{R}^4$ defined by $T_1(p) = (p(0), p(1), p(2), p(3))$.

(b) (1 point) $T_2: P_2 \to \mathbb{R}^3$ defined by $T_3(p) = (p(0), p'(0), p''(0))$.

(c) (1 point) $T_3: P_2 \to \mathbb{R}^3$ defined by $T_2(p) = (p(1) + 2, (p(0))^3, p'(0))$.

(d) (1 point) $T_4: P_2 \to P_2$ defined by $T_4(p)(x) = xp'(x)$.

2. (a) (3 points) Let $\mathbb{R}^{2\times 2}$ to be the space of 2×2 matrices and consider the ordered basis \mathcal{B} of $\mathbb{R}^{2\times 2}$,

$$\mathcal{B} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right).$$

For the linear transformation $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined by

$$T(A) = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} A - A \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix},$$

determine $[T]_{\mathcal{B}}$, the \mathcal{B} -matrix of T.

(b) (2 points) Find a basis of $\operatorname{im}(T) \subset \mathbb{R}^{2 \times 2}$.

3. (a) (3 points) Perform the Gram-Schmidt process to $v_1, v_2 \in \mathbb{R}^4$, $v_1 = (-1, 1, 1, -1)$, $v_2 = (-1, 3, 1, -3)$, and find the corresponding QR factorization of the matrix

$$M = \begin{bmatrix} -1 & -1 \\ 1 & 3 \\ 1 & 1 \\ -1 & -3 \end{bmatrix}$$

(b) (3 points) Compute the 4×4 matrix (with respect to the standard basis) for the orthogonal projection onto the plane spanned by the vectors v_1 and v_2 above.

4. (a) (2 points) Can you find a 2×2 matrix A such that $\operatorname{im}(A) = \ker(A)$?

(b) (3 points) Can you find a 3×3 matrix A such that im(A) = ker(A)?

Please estimate your score. You can also provide your suggestion for the course here.