COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Spring 2017

Announcements

Homework 5 Up

• Due April 4

Today

Number Theory

So Far...

Two ways to construct cryptographic schemes:

- Use others as building blocks
 - PRGs → Stream ciphers
 - PRFs → PRPs
 - PRFs/PRPs → CPA-secure Encryption
 - ...
- From scratch
 - RC4, DES, AES, etc

In either case, ultimately scheme or some building block built from scratch

Cryptographic Assumptions

Security of schemes built from scratch relies solely on our inability to break them

- No security proof
- Perhaps arguments for security

We gain confidence in security over time if we see that nobody can break scheme

Number-theory Constructions

Goal: base security on hard problems of interest to mathematicians

- Wider set of people trying to solve problem
- Longer history

Discrete Log

Discrete Log

Let **p** be a large integer (maybe prime)

Given $g \in \mathbb{Z}_p^*$, $a \in \mathbb{Z}$, easy to compute $g^a \mod p$. Time poly(log a, log p)

However, no known efficient ways to recover **a** from **g** and **g**^a **mod p**

Discrete Log Assumption: Let p be a λ -bit integer.

Then the function $(g,a) \rightarrow (g,g^a \mod p)$ is oneway, where

- $g \in \mathbb{Z}_p^*$
- **a**∈ℤ_{Φ(p)}

Generalizing Discrete Log

Let G_{λ} be multiplicative groups of size n_{λ}

Definition: The discrete log assumption holds on $\{G_{\lambda}\}$ if the function $F:G_{\lambda}\times\{0,...,n_{\lambda}-1\}\to G_{\lambda}^2$ is oneway, where

$$F(g,a) = (g,g^a)$$

Plausible examples:

- G = \mathbb{Z}_p^* for a prime p, n = p-1
- **G** = subgroup of \mathbb{Z}_p^* of order **q**, where **q**| **p**-1
- **G** = "elliptic curve groups"

Non-example

```
G = additive group of integers mod p
g*h = g+h mod p
g-1 = -g mod p
ga = g*g*g...*g mod p = ag mod p
```

Discrete log?

Generalizing Discrete Log

Often, the group **G** will be:

- Cyclic: $G = \{1, g, g^2, ..., g^{|G|-1}\}, g$ is a "generator"
- Of prime size

This means that every element except for the identity is a generator of **G**

• G =
$$\{1,g,g^2,...,g^p\}$$

Hardness of Discrete Log

Brute force search: O(n)

Better generic algorithm: $O(n^{1/2})$

Known to be optimal for generic algorithms

```
Much better algorithms are known for \mathbb{Z}_p^* exp( C (log p)<sup>1/3</sup> (log log p)<sup>2/3</sup> ) (still super-polynomial)
```

For elliptic curves, best known attack is $O(n^{1/2})$

Applications of Discrete Log

One-way functions

Collision resistance

- Key space = G^2 , G has prime order P
- Domain: \mathbb{Z}_{p}^{2}
- Range: **G**
- H((g,h), (x,y)) = $g^x h^y$

Collision Resistance from Discrete Log

$$H((g,h),(x,y)) = g^xh^y$$

Theorem: If the discrete log assumption holds on G, then **H** is collision resistant

Goal: show that from collision, can compute discrete log of **g** and **h**: **a** where **h**=**g**^a

Blum-Micali PRG

Let
$$G=\mathbb{Z}_p^*$$

Let **g** be a generator of **G**

Let $h:G \to \{0,1\}$ be h(x) = 1 if 0 < x < (p-1)/2

Seed space: $\mathbb{Z}_{\mathbf{p}}^*$

Algorithm:

- Let \mathbf{x}_0 be seed
- For **i=0,...**
 - Let $x_{i+1} = g^{x_i} \mod p$
 - Output h(x_i)

Theorem: If the discrete log assumption holds on $\mathbb{Z}_{\mathbf{p}}^*$, then the Blum-Micali generator is a secure PRG

We will prove this next time

Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:

• Given (g,g^a,g^b) , compute g^{ab}

Decisional Diffie-Hellman:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Hard Problems on Groups

• Given (g,ga), compute a

CDH:

Increasing Difficulty

• Given (g,g^a,g^b) , compute g^{ab}

DDH:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Another PRG

Group **G** of order **p**

Seed space: \mathbb{Z}_{p}^{2}

Range: **G**³

 $PRG(a,b) = (g^a,g^b,g^{ab})$

Naor-Reingold PRF

Domain: **{0,1}**ⁿ

Key space: \mathbb{Z}_p^{n+1}

Range: **G**

$$F((a,b_1,b_2,...,b_n), x) = g^{ab_1^{x_1}b_2^{x_2}}...b_n^{x_n}$$

Theorem: If the discrete log assumption holds on **G**, then the Naor-Reingold PRF is secure

Proof by Hybrids

Hybrids 0:
$$H(x) = g^{a b_1^{x1} b_2^{x2}} ... b_n^{xn}$$

Hybrid i:
$$H(x) = H_i(x_{[1,i]})^{b_{i+1}^{x_{i+1}}} \dots b_n^{x_n}$$

• H_i is a random function from $\{0,1\}^i \rightarrow G$

Hybrid \mathbf{n} : $\mathbf{H}(\mathbf{x})$ is truly random

Proof

Suppose adversary can distinguish Hybrid **i-1** from Hybrid **i** for some **i**

Easy to construct adversary that distinguishes:

$$x \to H_i(x)$$
 from $x \to H_{i-1}(x_{[1,i-1]})^{b^{x_i}}$

Proof

Suppose adversary makes **2q** queries

Assume wlog that queries are in pairs x||0, x||1

What does the adversary see?

- H_i(x): 2q random elements in G
- $H_{i-1}(x_{[1,i-1]})^{b_i^{x_i}}$: q random elements in G, $h_1,...,h_q$ as well as h_1^b , ..., h_q^b

Lemma: Assuming the DDH assumption on **G**, for any polynomial q, the following distributions are indistinguishable:

$$(g,g^{x1},g^{y1},...,g^{xq},g^{yq})$$
 and $(g,g^{x1},g^{b},x^{1},...,g^{xq},g^{b},x^{q})$

Suffices to finish proof of NR-PRF

Proof of Lemma

Hybrids O: $(g,g^{x1},g^{b})^{x1}$, ..., $g^{xq},g^{b})^{xq}$

Hybrid **i**:
$$(g,g^{x_1},g^{y_1},...,g^{x_i},g^{y_i},g^{x_{i+1}},g^{b}_{x_{i+1}},...g^{x_q},g^{b}_{x_q})$$

Hybrid **q**: $(g,g^{x_1},g^{y_1},...,g^{x_q},g^{y_q})$

Proof of Lemma

Suppose adversary distinguishes Hybrid i-1 from Hybrid i

Use adversary to break DDH:

Proof of Lemma

$$(g,g^{x_1},g^{y_1},...,g^{x_{i-1}},g^{y_{i-1}},u,v, g^{x_{i+1}},h^{x_{i+1}}, ...g^{x_q},h^{x_q})$$
If $(g,h,u,v) = (g,g^b,g^{x_i},g^{b},v^{i})$, then Hybrid $i-1$
If $(g,h,u,v) = (g,g^b,g^{x_i},g^{y_i})$, then Hybrid i

Therefore, ** s advantage is the same as **(s

Further Applications

From NR-PRF can construct:

- CPA-secure encryption
- Block Ciphers
- MACs
- Authenticated Encryption

Parameter Size in Practice?

- **G** = subgroup of \mathbb{Z}_p^* of order **q**, where **q**| **p-1**
- In practice, best algorithms require **p** ≥ 2¹⁰²⁴ or so

- **G** = "elliptic curve groups"
- Can set **p** ≈ 2²⁵⁶ to have security
 - \Rightarrow best attacks run in time 2¹²⁸

Therefore, elliptic curve groups tend to be much more efficient \Rightarrow shift to using in practice

Integer Factorization

Integer Factorization

Given an integer **N**, factor **N** into its prime factors

Studied for centuries, presumed computationally difficult

- Grade school algorithm: O(N^{1/2})
- Much better algorithms:
 exp(C (log N)^{1/3} (log log N)^{2/3})
- However, all require super-polynomial time

Factoring Assumption: Let \mathbf{p} , \mathbf{q} be two random λ -bit primes, and $\mathbf{N} = \mathbf{p}\mathbf{q}$. Then any PPT algorithm, given \mathbf{N} , has at best a negligible probability of recovering \mathbf{p} and \mathbf{q}

One-way Functions From Factoring

$$P_{\lambda} = {\lambda-bit primes}$$

$$F: P_{\lambda}^{2} \rightarrow \{0,1\}^{2\lambda}$$

$$F(p,q) = p \times q$$

Trivial Theorem: If factoring assumption holds, then **F** is one-way

Sampling Random Primes

Prime Number Theorem: A random λ -bit number is prime with probability $\approx 1/\lambda$

Primality Testing: It is possible in polynomial time to decide if an integer is prime

Fermat Primality Test (randomized, some false positives):

- Choose a random integer a ∈ {0,...,N-1}
- Test if a^N = a mod N
- Repeat many times

Another OWF

Fix a large integer N = pq

• Primes **p,q** random, unknown

$$F_N(x) = x^2 \mod N$$

Theorem: If the factoring assumption holds, then F is one-way: given y, computaitonally infeasible to compute an x such that $x^2 = y \mod N$

Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let
$$\mathbf{x} \in \mathbb{Z}_{p'}$$
 $\mathbf{y} \in \mathbb{Z}_{q}$

Then there exists a unique integer $\mathbf{z} \in \mathbb{Z}_{N}$ such that

- $\cdot x = z \mod p$, and
- \cdot y = z mod q

Proof: $z = [py(p^{-1} \mod q) + qx(q^{-1} \mod p)] \mod N$

Quadratic Residues

Definition: y is a quadratic residue mod N if there exists an x such that $y = x^2 \mod N$. x is called a "square root" of y

Ex:

- Let p be a prime, and y≠0 a quadratic residue mod
 p. How many square roots?
- Let N=pq be the product of two primes, y a quadratic residue mod N. Suppose y≠0 mod p and y≠0 mod q. How many square roots?

Another OWF

Fix a large integer N = pq

• Primes **p,q** random, unknown

$$F_N(x) = x^2 \mod N$$

Theorem: If the factoring assumption holds, then \mathbf{F} is one-way: given QR \mathbf{y} , computationally infeasible to compute an \mathbf{x} such that $\mathbf{x}^2 = \mathbf{y} \mod \mathbf{N}$

Proof

Let \mathbb{R} be an adversary that, given a random quadratic residue \mathbf{y} mod \mathbf{N} , finds a square root \mathbf{x} .

How to factor:

- Choose a random z mod N
- Compute $y = z^2 \mod N$
- Run 🔭 on **y** to get a root **x**
- Let p = GCD(z-x, N), q = N/p

Analysis

Let **x** be the output of \mathbb{R} .

Given a **y**, **z** was equally likely to be each of the 4 quadratic residues:

- X
- -X
- w: $w = x \mod p$, $w = -x \mod q$
- -W

With probability ½, z = ±w

Analysis

Suppose z = w $\Rightarrow z = x \mod p$, $z = -x \mod q$ $\Rightarrow z-x=0 \mod p$, $z+x=0 \mod q$

Therefore, GCD(z-x,N) = p

Algorithm succeeds

z = -w case identical, except algorithm flips p and q

Collision Resistance from Factoring

Let **N=pq**, **y** a QR mod **N** Suppose **-1** is not a **QR** mod **N**

Hashing key: (N,y)

```
Domain: \{1,...,(N-1)/2\} \times \{0,1\}
Range: \{1,...,(N-1)/2\}
H( (N,y), (x,b) ): Let z = y^b x^2 \mod N
• If z \in \{1,...,(N-1)/2\}, output z
• Else, output -z \mod N \in \{1,...,(N-1)/2\}
```

Theorem: If the factoring assumption holds, **H** is collision resistant

Proof:

- Collision means $(x_0,b_0) \neq (x_1,b_1)$ s.t. $y^{b0} x_0^2 = \pm y^{b1} x_1^2 \mod N$
- If $b_0=b_1$, then $x_0\neq x_1$, but $x_0^2=\pm x_1^2 \mod N$
 - $x_0^2 = \pm x_1^2 \mod N$ not possible. Why?
 - $x_0 \neq -x_1$ since $x_0, x_1 \in \{1, ..., (N-1)/2\}$
 - GCD(x₀-x₁,N) will give factor
- If $b_0 \neq b_1$, then $(x_0/x_1)^2 = \pm y^{\pm 1} \mod N$
 - (x_0/x_1) or (x_1/x_0) is a square root of $\pm y$
 - -y case not possible. Why?

Choosing N

How to choose **N** so that **-1** is not a QR?

By CRT, need to choose **p,q** such that -1 is not a QR mod **p** or mod **q**

Fact: if $\mathbf{p} = \mathbf{3} \mod 4$, then $-\mathbf{1}$ is not a QR mod \mathbf{p}

Fact: if $p = 1 \mod 4$, then -1 is a QR mod p

Is Composite N Necessary for SQ to be hard?

Let p be a prime, and suppose $p = 3 \mod 4$

Given a QR x mod p, how to compute square root?

Hint: recall Fermat: $x^{p-1}=1 \mod p$ for all $x\neq 0$

Hint: what is $\mathbf{x}^{(p+1)/2}$ mod \mathbf{p} ?

Solving Quadratic Equations

In general, solving quadratic equations is:

- Easy over prime moduli
- As hard as factoring over composite moduli

Other Powers?

What about $x \rightarrow x^4 \mod N$? $x \rightarrow x^6 \mod N$?

The function $x \rightarrow x^3 \mod N$ appears quite different

- Suppose 3 is relatively prime to p-1 and q-1
- Then $x \rightarrow x^3 \mod p$ is injective for $x \neq 0$
 - Let a be such that 3a = 1 mod p-1
 - $(x^3)^a = x^{1+k(p-1)} = x(x^{p-1})^k = x \mod p$
- By CRT, $x \rightarrow x^3 \mod N$ is injective for $x \in \mathbb{Z}_N^*$

x³ mod N

What does injectivity mean?

Cannot base of factoring:

Adapt alg for square roots:

- Choose a random z mod N
- Compute $y = z^3 \mod N$
- Run inverter on y to get a cube root x
- Let p = GCD(z-x, N), q = N/p

RSA Problem

Given

- $\cdot N = pq$
- e such that GCD(e,p-1)=GCD(e,q-1)=1,
- y=x^e mod N for a random x

Find x

Injectivity means cannot base hardness on factoring, but still conjectured to be hard

Later, we will see why this version is useful

Roadmap

Next week:

OWF → almost everything we've seen so far

After that:

Public key cryptography