Single Nucleotide Polymorphisms (SNP) analysis

Yuetiva Robles, PhD
Basics of Genetic Analysis: SNP analysis and GWAS
July 25, 2025

Genotype: Allele pairs

Genotype: Allele pairs

9	· 3	minor allele	#minor alleles
A	C	С	1
G	Α	G	1
Т	T	G	0
G	G	G	2
Т	Т	Т	2
С	C	A	0
G	T	G	1
Т	T	Т	2
Т	Т	G	0
С	C	С	2
C	Α	A	1

^{*}flipped strand to mirror alleles

SNP Analysis

- Usually logistic or linear regression
- •SNP usually coded as an additive 0, 1, 2 based on number of minor alleles a person has

Outcome = Intercept + SNP + covariates

SNP regression results - example

CSF Aβ₄₂ = Intercept + rs429358_C + age_lp + sex + Summary_Diagnosis (aka APOE ε4)

```
Residuals:
       10 Median 30
                                Max
   Min
-744.07 -232.79 -31.43 211.44 925.44
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                189.692 3.569 0.000404 ***
                      676.957
rs429358_C
                      -130.776 28.540 -4.582 6.24e-06 ***
age_lp
                      -1.654 2.379 -0.695 0.487261
genderMale
            -18.938 35.069 -0.540 0.589505
Summary_DiagnosisMCI-AD 183.143 82.101 2.231 0.026280 *
Summary_DiagnosisNormal 378.629 67.587 5.602 4.05e-08 ***
              0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Signif. codes:
Residual standard error: 330.4 on 383 degrees of freedom
  (25 observations deleted due to missingness)
Multiple R-squared: 0.2019, Adjusted R-squared: 0.1915
F-statistic: 19.38 on 5 and 383 DF, p-value: < 2.2e-16
```

SNP regression results - example

```
CSF Aβ<sub>42</sub> = Intercept + rs429358_C + age_lp + sex + Summary_Diagnosis

(aka APOE ε4)

Note the allele here

results = effect of # C alleles
```

```
Residuals:
                                  Max
    Min
            1Q Median 3Q
-744.07 -232.79 -31.43 211.44 925.44
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                 189.692 3.569 0.000404 ***
                       676.957
rs429358_C
                                   28.540 -4.582 6.24e-06 ***
                       -130.776
age_lp
                        -1.654 2.379 -0.695 0.487261
genderMale
                       -18.938 35.069 -0.540 0.589505
Summary_DiagnosisMCI-AD 183.143 82.101 2.231 0.026280 *
Summary_DiagnosisNormal 378.629
                                   67.587 5.602 4.05e-08 ***
               0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Signif. codes:
Residual standard error: 330.4 on 383 degrees of freedom
  (25 observations deleted due to missingness)
Multiple R-squared: 0.2019, Adjusted R-squared: 0.1915
F-statistic: 19.38 on 5 and 383 DF, p-value: < 2.2e-16
```

Genome-Wide Association Studies (GWAS)

GWAS – multiple testing

- Individual SNP tests repeated hundreds of thousands to millions
- Traditional Bonferroni threshold 5×10-8 based on assumption of 1 million independent tests
- Alternatives available including FDR, permutation, etc

Manhattan plot created from GWAS published by Kunkle et al, 2019

- Results from meta-analysis of logistic regressions (AD case/control defined by clinical status)
- Each dot represents a SNP, x-axis genomic location, y-axis -log10 p
- Dotted line is the genome-wide significance threshold (5×10-8)