

(1) Publication number:

0 197 718 B1

(12)

EUROPEAN PATENT SPECIFICATION

- 45 Date of publication of patent specification: 15.12.93 (51) Int. Cl.5: A61K 47/00
- (21) Application number: 86302291.9
- 2 Date of filing: 27.03.86

Divisional application 93200175.3 filed on 27/03/86.

- Mew medicaments for topical use.
- Priority: 05.04.85 IT 4792485 23.12.85 IT 4898085
- 43 Date of publication of application: 15.10.86 Bulletin 86/42
- 45 Publication of the grant of the patent: 15.12.93 Bulletin 93/50
- Designated Contracting States: AT DE GB IT NL SE
- 66 References cited:

EP-A- 0 138 572

FR-A- 1 425 265 GB-A- 2 099 826

GB-A- 818 336

US-A- 3 792 164

US-A- 4 141 973

CHEMICAL ABSTRACTS, vol. 102, no. 16, April 22, 1985, page 359, ref. no. 137591n; Columbus, Ohio, US & JP-A-59 219 209

CHEMICAL ABSTRACTS, vol. 68, no. 7, February 12, 1968, page 2627, ref. no. 27273g; Columbus, Ohio, US N. KELLER: "Aleration of the hydrodynamic properties of hyaluronate solutions by corticosterone" & BIOCHEM. BIOPHYS. ACTA, 148 (3), 757-66, 1967.

- Proprietor: FIDIA S.p.A. Via Ponte della Fabbrica 3-A I-35031 Abano Terme (Padova)(IT)
- Inventor: Della Valle, Francesco VIa Cerato 14 I-Padova(IT) Inventor: Romeo, Aurelio Viale-Ippocrate 93 I-Rome(IT) Inventor: Lorenzi, Sllvana Via Eugenea 108 I-35100 Padova(IT)
- (4) Representative: Pendlebury, Anthony et al **PAGE, WHITE & FARRER 54 Doughty Street** London WC1N 2LS (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

CHEMICAL ABSTRACTS, vol. 80, no. 15, April 15, 1974, page 137, ref no. 79756j; Columbus Ohlo, US M.K. PAL et al.: "Separation of hyaluronate, chondroitin sulfate and heparin by adsorption-desorption technique" & ANAL BIOCHEM. 1974, 57(2), 395-402.

CHEMISTRY ANSD INDUSTRY, February 12, 1955, pages 168-169; Soc. of Chem. Ind., London, GB J.E. SCOTT: "The reaction of long-chain quaternary ammonium salts with acidic polysaccharides"

Description

10

15

The present invention relates to new medicaments for topical use.

European patent application No. 0138572 discloses hyaluronic acid fractions having pharmaceutical activity and compositions containing those fractions. Two fractions are disclosed: one having a molecular weight between 50,000 and 100,000; and the other having a molecular weight between 500,000 and 730,000. The compositions disclosed comprise mixtures of the hyaluronic acid fractions with ophthalmic drugs. Chemical Abstracts 68, No. 27273g (1968) discloses a study of the hydrodynamic properties of hyaluronate solutions in the presence and absence of corticosterone.

U.K. patent application No. 2099826 discloses cosmetic formulations containing hyaluronate based compositions. A water based formulation is described as comprising a mixture of sodium hyaluronate fractions with protein. The cosmetic formulations comprise 0.05 to 5% of the composition with an emollient, a sugar alcohol, a neutral or anionic polysaccharide, a preservative, and water. The preservative is disclosed as a bacteriostatic or fungistatic substance which does not react with or degrade the hyaluronic acid.

Chemical Abstracts 102, No. 137591n (1985) discloses skin conditioners which contain hyaluronic acid salts. A skin lotion is also disclosed.

Chemical Abstracts 80, No. 79756j (1974) discloses the separation of hyaluronate by adsorption to, and elution from, calcium phosphate, barium sulphate and aluminium oxide.

The application of a topically active medicament may be a benefit or remedy, especially in dermatology, diseases of the mucuous membranes in general and particularly membranes of the oral and nasal cavities, diseases of the outer ear, and especially diseases of the outer surface of the eye. Application of these topical medicaments is particularly advisable in pediatrics and in the veterinary field.

The advantages of therapy using the medicaments according to the present invention are due to a more efficient vehicle for the drugs promoted by the acidic polysaccharide of the hyaluronic acid component and to a better bioavailability of the active substance as compared to that obtainable with known pharmaceutical formulations. Furthermore, the new medicaments of the invention assume particular importance in the case of ophthalmic medicaments, because due to the above mentioned qualities, there is an additional special compatibility with the corneal epithelium and, therefore, a very high level of tolerability, with no sensitization effects. When the medicaments are administered in the form of concentrated solutions with elastic-viscose characteristics or in solid form, it is possible to obtain films on the corneal epithelium which are homogeneous, stable, perfectly transparent, and which adhere well, guaranteeing prolonged bioavailability of the drug, thereby forming excellent preparations with a retard effect.

Such ophthalmic medicaments are of exceptional value especially in the veterinary field, considering for example that there are at present no veterinary specialities for oculistic use containing chemotherapeutics. Indeed, preparations intended for human use are usually used, and these do not always guarantee a specific range of activity nor comply with the particular conditions in which the treatment should be effected.

This is the case, for example, in therapy for infectious keratoconjunctivitis, pink eye or IBK, an infection which mainly affects cattle, sheep and goats. Presumably, these three species have in common specific etiological factors. In particular, in cattle the main microorganism involved seems to be Moraxella bovis (even though other agents of a viral origin should not be excluded, such as Rhinotracheitis virus, Micoplasma, Rickettsia and Chlamydia in the case of sheep, and Rickettsia in the case of goats). The disease manifests itself in an acute form and tends to spread quickly. In the initial stages the symptomatology is characterized by blepharospasm and excessive lacrimation, followed by purulent exudate, conjuctivitis and keratitis, often accompanied by fever, reduced apetite and milk production. Lesions of the cornea are particularly serious and in the final stages can even cause perforations of the cornea itself. The clinical course varies from a few days to several weeks.

A vast range of chemotherapeutic agents are used for treatment, administered both topically (often in association with anti-inflammatory steroids), and systemically. Among these are the following: tetracyclines, such as oxytetracycline, penicillins, such as cloxacillin and benzylpenicillin, sulfamides, polymyxin B (associated with miconazole and prednisolone), chloramphenicol, tylosin and chloromycetin. Topical treatment of the disease, despite its apparent simplicity, still represents an unsolved problem, since for one reason or another it has proved impossible up until now to obtain oculistic preparations having concentrations of antibiotics or sulfamides which are therapeutically effective in the secretion of tears. This is quite understandable in the case of solutions, bearing in mind the mainly reclining position of the head in these animals. But it is also true of semisolid medicaments, since the excipients normally used in them do not have the qualities necessary for adhering to the surface of the cornea, as they do not usually have a sufficiently high concentration of active substance and cannot achieve perfect distribution (i.e., the presence

of a distribution gradient). These defects of conventional colliriums in ophthalmic use have been described by Slatter et al. in "Austr. vet. J.," 1982, 59 (3), pp. 69-72.

The present invention provides a medicament which comprises,

- (a) a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
- (b) hyaluronic acid or a pharmaceutically acceptable salt of said hyaluronic acid, optionally together with an additional excipient suitable for topical administration, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.

There is also provided a medicament for topical use which comprises a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature suitable for topical administration.

5 Detailed Description of the Invention

10

35

45

One advantage of the present invention is having perfected new types of collirium in which the above defects have been overcome. The use of hyaluronic acid as a vehicle for ophthalmic drugs allows for the formulation of excellent preparations free from concentration gradients of the active substance and, therefore, perfectly homogenous, transparent and adhesive to the corneal epithalium, without sensitization effects, with excellent vehicling of the active substance and possibly with a retard effect.

The above mentioned properties of the new medicaments may of course be used also in other fields besides opthalmology. As already mentioned, they may be applied in dermatology and in diseases affecting the muccus membranes, such as in the mouth, for instance in odontology. They may also be used to obtain a systemic effect due to the effect of transcutaneous riabsorption, for instance in suppositories. All of these applications are possible both in human and veterinary medicine. In human medicine the new medicaments are particularly suitable for use in pediatrics. The present invention also includes, in particular, any one of the therapeutic applications.

The present invention, therefore, is in its essential aspect related to the use of hyaluronic acid as a vehicle in association with a pharmaceutical substance to provide an improved drug delivery system. New medicaments according to the invention basically contain two components:

Component (1) - a pharmacologically active substance, including, as discussed below, mixtures of different such substances.

Component (2) - hyaluronic acid, including as discussed below, molecular weight fractions of hyaluronic acid and various salts of hyaluronic acid or the molecular weight fractions thereof,

with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.

The present invention can further be characterized as including physical mixtures of Component (1) and Component (2), complexes of the Component (1) active substance with the Component (2) hyaluronic acid, or various combinations or mixtures thereof.

Component (1) - Pharmaceutical Substance:

The Component (1) may first of all be catagorized with respect to its use in the various fields of therapy, starting with the distinction between human and veterinary medicine and then specifying the various sectors of application with respect to the organs or to the tissues to be treated, such as dermatology, otorhinolaryngology, obstetrics, angiology, neurology or any type of pathology of the internal organs which may be topically treated, such as for example rectal applications. According to a particular aspect of the present invention, where the medicament comprises a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature, the pharmacologically active substance (1) is first and foremost for ophthalmic use. According to another criterion, the pharmacologically active substance (1) must be distinct with respect to its effect and may therefore, for example, be used as an anesthetic, analgesic, vasoconstrictor, antibacterial, antiviral, or anti-inflammatory agent. For the ophthalmic field, it may particularly be indicated for example for its miotic, anti-inflammatory, wound healing and antimicrobial effects.

The component (1) may also be, according to the invention, a mixture of two or more active substances. For example, in ophthalmology, an antibiotic may be associated with an antiphlogistic and a vasoconstrictor

or several antibiotics may be associated with one or more antiphlogistics, or one or more antibiotics may be associated with a mydiatric, a miotic, a wound healing or an antiallergic agent. For example it is possible to use the following associations of ophthalmic drugs: (a) kanamycin + phenylephrine + phosphate dexamethasone; (b) kanamycin + phosphate betamethasone + phenylephrine, or similar associations with other antibiotics used in ophthalmology, such as rolitetracycline, neomycin, gentamicin, and tetracycline.

In dermatology it is possible to use as the active component (1) or mixtures of various antibiotics, such as erythromycin, gentamicin, neomycin, gramicidin, polymyxin B, or mixtures of such antibiotics with anti-inflammatory agents, for example corticosteroids. For example, mixtures comprising: (a) hydrocortisone + neomycin; (b) hydrocortisone + neomycin + polymyxin B + gramicidin; (c) dexamethasone + neomycin; (d) fluorometholon + neomycin; (e) prednisolone + neomycin; (f) triamcinolone + neomycin + gramicidin + nystatin, or any other mixture used in conventional preparations for dermatology. The mixtures of various active substances are not of course limited to this field, but in each of the above mentioned fields of medicine it is possible to use mixtures similar to those already in use for the known pharmaceutical preparations of the art.

Examples of the pharmacologically active substance (1) for use in ophthalmic medicaments according to the invention are: basic and non-basic antibiotics, for example aminoglucosidics, macrolides, tetracycline and peptides, such as for example gentamicin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, vancomycin, novobiocin, ristocetin, clindamycin, amphotericin B, griseofulvin, nystatin and possibly their salts, such as sulphates or nitrates, or mixtures of the same or with other active principles, such as those mentioned hereafter.

15

Other ophthalmic drugs to be used to advantage according to the present invention are: other anti-infective agents such as diethylcarbamazine, mebendazole, sulfamides such as sulfacetamide, sulfadiazine, sulfisoxazole; antiviral and antitumor agents such as iododeoxyuridine, adenine arabinoside, trifluorotht-midine, aciclovir, ethyldeoxyuridine. bromovinyldeoxyuridine, 5-iodo-5'-amino-2',5'-dideoxyuridine; steroid anti-inflammatory agents, such as for example dexamethasone, hydrocortisone, prednisolone, fluorometholon, medrysone and possibly their esters, for example esters of phosphoric acid; non-steroid anti-inflammatory agents, for example indomethacin, oxyphenbutazone, flurbiprofen; wound healers such as the epidermal growth factor EGF; local anesthetics, such as Benoxinate, proparacaine and possibly their salts; cholinergic agonist (promoter) drugs such as pilocarpine, metacholine, carbaylocholine, aceclidine, physiostigmine, neostigmine, demecarium and possibly their salts; cholinergic antagonist drugs such as atropine and its salts; the adrenergic agonist (promoter) drugs such as noradrenaline, adrenaline, naphozoline, methoxamine and possibly their salts; and adrenergic antagonist drugs such as propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, pindolol, bupranolol, metoprolol, oxprenolol, practolol, butoxamine, sotalol, budarine, labetalol and possibly their salts.

As noted above, the active Component (1) may take the form of a mixture to two or more active substances. Examples of active substances to be used alone or in mixture between themselves or with other active principles in dermatology are: therapeutic agents such as anti-infective, antibiotic, antimicrobial, anti-inflammatory, cytostatic, cytotoxic, antiviral, anesthetic agents, and prophylactic agents, such as sun shields, deodorants, antiseptics and disinfectants. Of the antibiotics the following should be noted: erythromycin, bacitracin, gentamicin, neomycin, aureomycin, gramicidin and their mixtures, of the antibacterials and disinfectants: nitrofurazone, mafenide, chlorhexidine, and derivatives of 8-hydroxyquinoline and possibly their salts; of the anti-inflammatory agents, above all the corticosteroids such as prednisolone, dexamethasone, flumethasone, clobetasol, triamcinolone acetonide, betamethasone or their esters, such as valerianates, benzoates, dipropionates; of the cytotoxics, bluorouracil, methotrexate, podophyllin; of the anesthetics dibucaine, lidocaine, benzocaine.

The list is of course only for illustrative purposes and any other agent described in literature may be used.

Of the examples mentioned for ophthalmology and dermatology, it is possible to conclude by analogy which are the medicaments according to the present invention to be used in the above mentioned fields of medicine, such as for example in otorhinolaryngology or odontology or in internal medicine, for example in endocrinology, where it is possible to effect treatments with preparations for intradermic absorption or absorption through the mucous, for example rectal or intranasal absorption, for example such as nasal sprays or inhalations in the oral cavity and in the pharynx.

These preparations may therefore be for example anti-inflammatory, or vasoconstricting or vasopressors such as those already mentioned for ophthalmology, vitamins, antibiotics, such as those mentioned above, hormones, chemiotherapeutics, antibacterials, etc., including those mentioned above for use in dermatology.

Component (2) - Hyaluronic Acid Vehicle:

15

As noted above, the medicaments of the invention comprise as Component (2) hyaluronic acid, molecular weight fractions thereof, or various salts thereof. Hyaluronic acid (hereinafter sometimes referred to a "HY") is a natural heteropolysaccharide which is composed of alternating residues of D-glucuronic acid and N-acetyl-D-glucosamine. HY is present in pericellular gels, in the fundamental extracellular substance of connective tissues, in vertabrate organisms, in the synovial fluid of the joints, in the vitreous humor, in human umbellical tissue, in cocks' combs and in some bacteria. Its molecular weight is about 8-13 million.

The first research carried out on HY was by Balazs (see US-A-4,141,973), who isolated a HY fraction able to substitute for endobulbar fluids and suitable for other therapeutic applications. Hyaluronic acid and its molecular weight fractions with lower molecular weights have in fact proved widely useful in medicine and a cosmetic use is also being considered (see for example, Balass et al., Cosmetics & Toiletries, Italian Edition No. 5/84). It has especially been used as a therapeutic agent in therapies for arthropathies, such as in the veterinary field to cure arthritis in horses (Acta Vet. Scand. 167, 379 (1976).

Hyaluronic acid and its molecular fractions have been used in ophthalmic surgery as therapeutic, auxilliary and substitutive agents for natural organs and tissues (see for example E. A. Balazs et al., Modern Problems in Ophthalmology, 10, 3 (1970), E. B. Strieff, S. Karger, eds. Basel and Balazs et al., Viscosurgery and the Use of Sodium Hyaluronate During Intraocular Lens Implantation, Paper presented at the International Congress and First Film Festival on Intraocular Implantation, Cannes, 1979).

In published European Patent Application EP-A-0138572 filed on October 10, 1984, there is a description of a molecular fraction of hyaluronic acid which may be used for intraocular and intra-articular injections, respectively, suitable for the substitution of the endobulbar fluids in the eye and for therapy of arthropathies.

In contrast to this therapeutic use or as a plastic auxilliary in surgery or in cosmetics, in the present invention, hyaluronic acid or its molecular fractions are used as vehicles for the administration of pharmacologically active substances for topical use.

As a vehicle to be used as the component (2) of the present invention, hyaluronic acid of any origin may be used, such as the acids extracted from the above mentioned natural starting materials, including cocks' combs. The preparation of crude extracts of such acids is described in literature. Preferably, purified hyaluronic acids should be used. According to the invention, in the place of integral hyaluronic acids obtained directly be extraction of the organic materials, it is possible to use fractions of the same with molecular weights which may vary greatly, such as for example from 90-80% (MW = 11.7-10.4 million) to 0.23% (MW = 30,000) of the molecular weight of an integral acid having a molecular weight of 13 million, preferably between 5% and 0.23%. Such fractions may be obtained by various procedures such as by hydrolyzing, oxydizing or enzymatic chemical agents, physical procedures such as mechanical or by irradiation, and, therefore, are often formed in the same purification procedures of the primary extracts (see for example, Balazs et al., Cosmetics and Toiletries, cited above). The separation and purification of the fractions obtained is achieved, for example, by molecular filtration.

Of particular importance to be utilized as the vehicle (2) according to the present invention are two purified fractions which may be obtained from hyaluronic acid, for example from cocks' combs, and known as Hyalastine and Hyalectin. The fraction known as Hyalastine has an average molecular weight of 50,000 and 100,000. Hyalectin has an average molecular weight of 500,000 to 730,000. A combined fraction of these two fractions has also been isolated and characterized as having an average molecular weight of 250,000 to 350,000. This combined fraction may be obtained with a yield of 80% of total hyaluronic acid available from the particular starting material, while the fraction Hyalectin may be obtained with a yield of 30% and the fraction Hyalastine wih a yield of 50% of the starting HY. (The preparation of these fractions is described in Examples 20-22, hereinafter).

Thus, the preferred hyaluronic acid to be utilized is a molecular weight fraction having a molecular weight broadly ranging from 30,000 to 13 million and preferably from 30,000 to 730,000. The most preferred hyaluronic fractions have a molecular weight of from 50,000 to 100,000, or from 500,000 to 730,000, or a combined fraction having a molecular weight of from 250,000 to 350,000. These preferred fractions are importantly substantially free of low molecular weight hyaluronic acid having a molecular weight of less than 30,000, and, therefore, are free of inflammatory side reactions when administered. (Further references hereinafter to hyaluronic acid or HY are intended to include, where consistent with the particular context, both hyaluronic acid and molecular weight fractions thereof.)

According to the invention, in place of hyaluronic acids and their molecular weight fractions as the Component (2) of the medicaments, it is also possible to use their salts with inorganic bases, such as alkali metal (sodium, potassium, lithium), alkali earth metal (calcium, barium, strontium), magnesium or aluminum.

These salts may be stoichiometrically neutral in the sense that all the acid functions are salified, or partial salts or acids, in which only a certain number of the acid functions are salified with the above mentioned metals. Such salts are easily obtained, for example, by reacting HY or the above mentioned fractions with the basic calculated quantity, and it is also possible to use mixed salts originating from different bases.

In addition to the above salts, it is also possible to utilize salts of HY with compounds which can broadly be considered ammonium or substituted ammonium (amines), for example mono, di, tri and tetra-alkylammonium where the alkyl groups have preferably between 1 and 18 carbon atoms or arylalkyls with the same number of carbon atoms in the aliphatic portion and where aryl means a benzene residue, optionally substituted with between 1 and 3 methyl, halogen or hydroxy groups. These ammonium or substituted ammonium salts of HY are formed by chemical reaction between hyaluronic acid and primary, secondary or tertiary amine moieties or ammonium hydroxide moieties of compounds or drugs having pharmaceutical activity, that is, with these moieties of the compounds which comprise active Component (1). As with the above-discussed salts, these salts also may be stoichiometrically neutral wherein all of the acid functions are salified, or may be partial salts or acids, and may comprise mixed salts originating from different bases.

Hyaluronic acid or its molecular fractions as the Component (2) may, therefore, be substituted by their salts with inorganic bases, such as alkali metal (sodium, potassium, lithium), alkaline earth metal (calcium, barium, strontium), magnesium, aluminum, ammonium or substituted ammonium. This principal is also valid for the above mentioned partial acid salts, in which all the acid groups present may be partially or totally neutralized with the above mentioned metals, or with ammonia or with amines, wherein the ammonium salts are formed by chemical reaction between hyaluronic acid and primary, secondary or tertiary amine moieties or ammonium hydroxide moieties of compounds or drugs having pharmaceutical activity, i.e. Component (1).

5 Medicament Preparations Combining Components (1) and (2):

30

35

There are various possibilities of realizing the medicaments according to the invention including:

- (a) using a neutral or acid active substance Component (1) mixed together with hyaluronic acid or a molecular weight fraction thereof; or their metallic salts;
- (b) using partial salts of HY with a basic active substance Component (1) leaving the residual acid groups of HY free or neutralized with the above-mentioned metals or bases;
- (c) using stoichiometrically neutral salts of HY with a basic substance Component (1), possibly adding HY or one of its partial or total (neutral) metal salts;
- (d) using stoichiometrically neutral salts of HY with a basic substance Component (1), adding further quantities of Component (1); and
- (e) using ad libitum mixtures of the salts or of the mixtures described hereinabove.

One particular form of medicament according to the invention is represented by mixtures of the pharmacologically active substance Component (1) with hyaluronic acids or molecular fractions thereof when the said active substance (1) is of a basic nature, for example in the case of basic antibiotics. In this case, the hyaluronic acid component (2) and the active substance (1) together from stoichiometrically partial salts, or acid salts, in which an aliquot part of all the acid groups of the HY Component (2) are salified with the basic groups of the active Component (1); or stoichiometrically neutral salts, in which all the groups of the HY Component (2) are salified, or mixtures of these neutral salts with a further quantity of the basic active substance (1).

Therefore, for the purpose of the present invention, if a basic active substance (1) is used, it is possible to replace the mixtures of Components (1) and (2) with the above mentioned acid salts or those which are stoichiometrically neutral, or, of course mixtures of such salts both with Component (1) and with Component (2).

Mixtures of drugs between themselves and possibly with other principles may also be used as the active Component (1) according to the invention. If, in the place of only one active substance (1), mixtures of active substances are used, such as those mentioned above, the salts of the basic active substances and hyaluronic acid and its molecular weight fractions may be mixed salts of one or more of such basic substances or possibly mixed salts of this type with a certain number of other acid groups of the HY polysaccharide salified with the above mentioned metals or bases. For example, it is possible to prepare salts of hyaluronic acid or one of the molecular fractions Hyalastine or Hyalectin with a certain percentage of salified acid groups with the antibiotic kanamycin, another percentage salified with the vasocostrictor phenylephrine, while a remaining percentage acid groups are free or salified for example with sodium or another of the above mentioned metals. It is also possible to mix this type of mixed salt with other quantities

of hyaluronic acid or its fractions or their metallic salts, as indicated above for the medicament containing salts of only one active substance with the aforesaid acidic polysaccharides.

It is, therefore, possible according to a particular aspect of the present invention to use the above mentioned salts, isolated and possibly purified to the solid anhydrous state, as an amorphous powder. When the powder comes into contact with the tissue to be treated, the powder forms a concentrated aqueous solution of a gelatinous character, of a viscous consistency, and with elastic properties. These qualities are also maintained at stronger dilutions and may therefore be used in place of the above mentioned anhydrous salts, solutions in water at various degrees of concentration or in saline, possibly with the addition of other pharmaceutically acceptable excipients or additives, such as other mineral salts to regulate the pH and the osmotic pressure. It is also possible of course to use the salts to make gels, inserts, creams or ointments, in which there are other excipients or ingredients used in conventional formulations of these pharmaceutical preparations. According to a particular aspect of the invention, there is a preference for the medicaments containing hyaluronic acid, the molecular weight fractions thereof or their mineral salts or their partial or neutral salts with the active substance (1) as the sole vehicle (with the possible exception of an aqueous solvent).

The quantitative ratios by weight of the two components (1) and (2) according to the invention may vary within ample limits and this naturally depends also on the nature of the two components and in the first case on that of the active substance. Such limits are for example the ratios of 0.01:1 and 100:1 between the two components (1) and (2). The range of variation however is preferably between the limits of 0.01:1 and 10:1 for the two said components and especially between 0.1:1 and 2:1.

The medicaments according to the invention may be in solid form, for example freeze-dried powders containing only the two components in mixture or separately packed.

In solid form, such medicaments form, on contact with the epithelium to be treated, more or less concentrated solutions according to the nature of the particular epithelium with the same characteristics of the previously prepared solutions in vitro which represent another particularly important aspect of the present invention. Such solutions are preferably in distilled water or sterile saline and contain preferably no other pharmaceutical vehicle besides hyaluronic acid or one of its salts. The concentrations of such solutions may also vary within ample limits, for example between 0.01 and 75% both for each of the two components taken separately, and for their mixtures or salts. There is a particular preference for solutions of a pronounced elastic-viscose character, for example with a content of between 10% and 90% of the medicament or of each of its components. Medicaments of this type are particularly important, both in an anhydrous form (freeze-dried powders) or concentrated solutions or diluted in water or saline, possibly with the addition of additive or auxiliary substances, such as particular disinfectant substances or mineral salts acting as buffer or others, for ophthalmic use.

Among the medicaments of the invention the following should be chosen in particular, as the case may be, those with a degree of acidity suiting the place to which they are to be applied, that is with a physiologically tolerable pH. Adjustment of the pH, for example in the above mentioned salts of hyaluronic acid with a basic active substance, may be effected by regulating in a suitable manner the quantities of polysaccharide, of its salts and of the basic substance itself. Thus, for example, should the acidity of a hyaluronic acid salt with a basic substance be too high, the excess of the free acid groups with the above mentioned inorganic bases is neutralized, for example with sodium or potassium or ammonium hydrate.

The following formulations are exemplary of preparations according to the present invention comprising an association of an active pharmaceutical Component (1) and the vehicle Component (2) comprising hyaluronic acid as defined by the claims.

Formulation 1 - A 100 mg INSERT WITH PILOCARPINE CONTAINING:

mixed salt of hyaluronic acid with pilocarpine and with sodium (see preparation in Example 18, 100

Formulation 2 - A COLLIRIUM CONTAINING GENTAMYCIN AND NAPHAZOLINE, OF WHICH 100 ml CONTAINS:

- mixed salt of hyaluronic acid with gentamycin, with naphazoline and with sodium (see preparation in Example 16), 2.910 g
- propyl oxybenzoate, 0.050 g
- sodium phosphate, 1.500 g

45

55

- distilled water, q.b.a. 100 ml

Formulation 3 - A COLLIRIUM WITH CHLORAMPHENICOL, NEOMYCIN, PHENYLEPHRINE, NITROFURAZONE, OF WHICH 100 ml CONTAINS:

- mixed salt of hyaluronic acid with neomycin, with phenylephrine and with sodium (see preparation Example 17), 2.890 g
 - chloramphenicol, 0.500 g
 - nitrofurazone, 0.02 g
 - distilled water, q.b.a. 100 ml
- Formulation 4 A COLLIRIUM WITH DEXAMETASONE PHOSPHATE, KANAMYCIN E PHENYLEPHRINE, OF WHICH 100 ml CONTAINS:
 - mixed salt of hyaluronic acid with kanamycin and phenylephrine (see preparation Example 15), 3.060
 - dexametasone phosphate sodium salt, 0.100 g
 - methyl p-hydroxybenzoate, 0.060 g
 - distilled water, q.b.a. 100 ml.

METHODS OF PREPARATION

20

15

5

Method A -

The preparation of the salts according to the invention may be carried out in a known manner by bringing together solutions or suspensions in water or in organic solvents of the two components (1) and (2) and possibly of bases or basic salts of the above mentioned alkali metal, alkali earth metals, magnesium, aluminum or ammonium, in calculated quantities and isolating the salts in an amorphous anhydrous form according to known techniques. It is possible, for example to first prepare aqueous solution of the two components (1) and (2), freeing such components from aqueous solutions of their salts with acids of the metallic salts, respectively, for example, sulphates in the case of component (1) and sodium salts in the case of component (2) for treatment with relative ionic exchangers, uniting the two solutions at a low temperature, for example between 0°C and 20°C. If the salt thus obtained is easily soluble in water, it should be freeze-dried, while salts which are not easily soluble may be separated by centrifugation, filtration or decantation and possibly then exsiccated.

The following examples are given merely as illustrative of Method A of the present invention and are note to be considered as limiting.

Example 1 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH STREPTOMYCIN

2.43 g of streptomycin sulfate (10 mEq) are solubilized in 25 mI of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 15 mI of quaternary ammonium resin (Dowex 1 x 8) in the OH⁻ form. The sulfate-free eluate is collected in a thermostatic container at 5 °C. 4.0 g of the sodium salt of hyaluronic acid having a molecular weight of 255,000 (corresponding to 10 mEq of a monomeric unit) are solubilized in 400 mI of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 mI of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The sodium-free eluate is collected under agitation in the solution of streptomycin base. The resulting solution is frozen and instantly freezedried. In the salt thus obtain, all of the acidic groups of hyaluronic acid are salified with the basic functions of streptomycin. Yield: 5.5 g.

Microbiological determination on Bacillus subtilis ATCC 6633 compared to standard streptomycin shows a content of 33.8% by weight of streptomycin base, corresponding to the theoretically calculated weight.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. (Anal. Biochem. 4, 330, 1962) shows a content by weight of HY acid of 66.2% (theoretical percentage 66.0%)

Example 2 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH ERYTHROMYCINE

55

4.0 g of the sodium salt of hyaluronic acid with a molecular weight of 77,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from

sodium, is kept at a temperature of 5 °C. 7.34 g of erythromycin base (10 mEq) are added to the solution of HY under agitation at 5 °C until complete solubilization is obtained. The resulting solution is frozen and freeze-dried. In the salt thus obtain, all of the acid groups of hyaluronic acid are salified with erythromycin. Yield: 10.8 g.

Microbiological determination on staphylococcus aureus ATCC 6538p in comparison with standard erythromycin shows a content of 66.0% by weight of erythromycin base, corresponding to the theoretical value. Colorimetric determination of the glucuronic acid combined in the polysaccharide according to the method of Bitter et al. shows a content of HY acid of 34.0% by weight, corresponding to the theoretically calculated percentage.

Example 3 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH KANAMYCIN.

10

1.46 g of dikanamycin sulphate (10 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form. The eluate, free from sulfates, is gathered in a thermostatic container at 5 °C 4.0 g of the sodium salt of HY having a molecular weight of 165,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under vortex agitation in the solution of kanamycin base. The solution thus obtained is instantly frozen and freeze-dried. Yield: 4.8 g.

In the salt obtained, all the acid groups of HY are salified with kanamycin. Microbiological determination on B. subtilis ATCC 6633 in comparison with standard kanamycin shows a content of 24.2% by weight of kanamycin base, corresponding to the theoretically calculated percentage.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a content of HY acid of 75.8% by weight, also corresponding to the theoretical content.

Example 4 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH NEOMYCIN

1.52 g of neomycin sulfate (10 mEq) are solubilized in 20 ml of distilled H₂O and eluted in a thermostatic column at 5 °C, containing 15 ml of quatenary ammonium resin (Dowex® 1 x 8) in the OH⁻ form. The eluate, free from sulfates, is collected in a thermostatic container at 5 °C. 4.0 g of HY sodium salt with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O and eluted in a thermostatic column at 5 °C containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is gathered under agitation in the solution of neomycin base. The viscoelastic precipitate which forms is separated by decantation and freeze-dried. Yield: 4.76 g.

In the resulting salt, all of the HY acid groups are salified with neomycin. Quantitative microbiological determination carried out on S. aureus ATCC 6538p compared to standard neomycin shows a content by weight of 21.2% of neomycin base, corresponding to the theoretically calculated value.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the metod of Bitter et al. shows a HY acid content of 78.8% by weight.

Example 5 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH GENTAMYCIN.

1.45 g of gentamycin sulfate (10 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form. The eluate, free from sulfates, is collected in a thermostatic container at 5 °C. 4.0 g of the sodium salt of HY with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in a vortex in the solution of gentamycin base. The thick and very viscous precipitate which forms is separated by decantation and freeze-dried. Yield: 4.65 g.

In the salt thus obtained, all the HY acid groups are salified with gentamycin. Quantitative microbiological determination carried out on S. epidermidus ATCC 12228 compared to standard gentamycin shows a content by weight of 20.0% of gentamycin base, corresponding to the theoretical content.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 80.0%.

Example 6 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH AMIKACIN.

1.47 g of amikacin base (10 mEq) are solubilized in 100 ml of distilled H₂O at 500 °C. 4.0 g of the sodium salt of HY with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 4000 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in a vortex in the solution of amikacin base. The thick and extremely viscous precipitate which forms is separated by decantation and freeze-dried. Yield: 5.16 g.

In the salt thus obtained, all the HY acid groups are salified with amikacin. Quantitative microbiological determination carried out on S. aureus ATCC 29737 in comparison to standard amikacin shows a content of 27.7% by weight in amikacin base, corresponding to the theoretical content.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 72.3% by weight.

15 Example 7 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH ROLITETRACYCLINE.

4.0 g of HY sodium salt having a molecular weight of 170,00 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is kept at a temperature of 5 °C. 5.3 g of rolitetracycline base (10 mEq) are added to the solution of HY acid under agitation at 5 °C away from the light, until complete solubilization has been achieved. The solution thus obtained is instantly frozen and freeze-dried. Yield: 8.9 g.

In the salt thus obtained, all the HY acid groups are salified with rolitetracycline. Microbiological determination on B. pumilus ATCC 14884 in comparison to standard rolitetracycline shows a content of 58.2% by weight of rolitetracycline base, corresponding to the theoretical value. Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shown a HY acid content of 41.8% by weight.

Example 8 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH POLYMYXIN B.

30

2.4 g of polymyxin B base (10 mEq) are suspended in 100 ml of distilled H₂O at 5 °C. 4.0 g of HY sodium salt with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under vigorous agitation in the suspension of polymyxin base at 5 °C. After an initial phase during which the solution becomes clear, there is a progressive formation of a difficultly soluble product which is completely precipitated by 5 volumes of acetone. The precipitate is filtered, washed with acetone and then vacuum dried. Yield: 6.05 g.

In the salt thus obtained, all of HY acid groups are salified with polymyxin B. Quantitative micro-biological determination carried out on B. bronchiseptica ATCC 4617 in comparison to standard polymyxin B shows a content of 38.7% by weight of polymyxin B. base, corresponding to the theoretical value.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 61.3%.

45 Example 9 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH GRAMICIDIN S

6.7 g of gramacidin S hydrochloride salt (10 mEq) are suspended in 200 ml of ethanol/ H_2O (80:20). The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH^- form. 4.0 g of the sodium salt of HY with a molecular weight of 165,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O . The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form

200 ml of dimethyl sulfoxide (DMSO) are added to the eluate, free from sodium, and the mixture is kept under agitation at 5°C. The solution of gramicidin base is then slowly added. The resulting solution is precipitated by 10 volumes of acetone. The precipitate is filtered, washed with acetone and vacuum dried. Yield: 9.55 g.

In the salt thus obtained, all the HY acid groups are salified with gramicidin S. Quantitative micro-biological determination carried out on S. faecium ATCC 10541 in comparison to standard gramicidin S

shows a content of 60.0% by weight of gramicidin S base, corresponding to the theoretical value.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 40.0%.

5 Example 10 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH NAPHAZOLINE

Pure naphazoline base is prepared as follows: 4.94 g of naphazoline-HCl (20 mM) are solubilized in 100 ml of distilled H_2O at 5 °C. 20 ml of NH₄OH (5M) are added and extracted twice with 100 ml of ethyl acetate. The organic layers are extracted twice with 50 ml of H_2O , mixed together again and anhydrified with anhydrous Na₂SO₄. The solution is concentrated at about 50 ml and then placed in a freezer to crystallize. The crystallized product is filtered, washed with ethyl acetate and vacuum dried. Yield: 4.0 g of pure naphazoline base.

4.0 g of the HY sodium salt with a molecular weight of 625,000, corresponding to 10 mEq of a monomeric unit, are solubilized in 400 ml of distilled H₂O and eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is kept at a temperature of 5 °C. 2.1 g of naphazoline base (10 mEq) are added to the solution of HY acid and the mixture is agitated at 5 °C until complete solubilization is achieved. The resulting mixture is instantly frozen and freeze-dried. Yield: 5.72 g.

In the salt thus obtained, all the HY acid groups are salified with naphazoline. Quantitative spectrophotometric determination, carried out in comparison to a naphazoline standard (USP) shows a content of 35.7% by weight of naphazoline base, corresponding to the theoretical value.

Colorimetric determination of the glucuronic acid-combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 64.3%.

25 Example 11 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH PHENYLEPHRINE

2.04 g of L-phenylephrine-HCl (10 mEq) are solubilized in 25 ml of distilled H_2O . The solution is eluted in a thermostatic column at $5 \, ^{\circ}C$, containing 15 ml of quaternary ammonium resin (Dowex 1 x 8) in the OH⁻ form. The eluate, free from chlorides, is collected in a thermostatic container at $5 \, ^{\circ}C$. 4.0 g of a HY sodium salt having a molecular weight of 820,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O . The solution is then eluted in a thermostatic column at $5 \, ^{\circ}C$, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in the solution of phenylephrine base. The resulting mixture is instantly frozen and freeze-dried. Yield: 5.25 g.

In the salt thus obtained, all the HY acid groups are salified with phenylephrine. U.V. spectrophotometric determination using the standard addition method (USP) shows a content of 30.6% by weight of phenylephrine base, corresponding to the theoretical content.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 69.4%.

40 Example 12 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH ATROPINE

4.0 g of HY sodium salt having a molecular weight of 1,300,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is kept at a temperature of 5 °C. 2.89 g of atropine base (10 mEq) are added to the solution of HY acid and the mixture is agitated at 5 °C. The resulting mixture is frozen and freeze-dried. Yield: 6.5 g.

In the salt thus obtained, all the hyaluronic acid groups are salified with atropine. Quantitative gas chromatography determination (USP) carried out in comparison to standard atropine shows a content of 43.3% in atropine base, corresponding to the theoretical value.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 56.7%.

Example 13 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH PILOCARPINE

2.45 g of pilocarpine hydrochloride (10 mEq) are solubilized in 50 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form. The eluate, free from chlorides, is collected in a thermostatic container at 5 °C. 4.0 g of HY sodium salt with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are

solubilized in 400 ml of distilled H_2O . The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in the solution of pilocarpine base. The solution thus obtained is instantly frozen and freeze-dried. Yield: 5.25 g.

In the salt thus obtained, all the HY acid groups are salified with pilocarpine. Spectrophotometric determination according to the USP carried out in comparison to a pilocarpine standard shows a content of 35.1% by weight of pilocarpine base, corresponding to the theoretical value.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 64.6%.

Example 14 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH NEOMYCIN AND WITH POLYMYXIN.

4.0 g of HY sodium salt having a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O . The solution is eluted in a thermostatic column at $5\,^{\circ}$ C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H^+ form. The eluate, free from sodium is collected in a thermostatic container at $5\,^{\circ}$ C. 0.150 g of polymyxin B base (0.63 mEq) are added under vigorous agitation. 1.425 g of neomycin sulphate (9.37 mEq) are solubilized in 25 ml of distilled H_2O . The solution is eluted in a thermostatic column at $5\,^{\circ}$ C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH^- form. The eluate, free from sulphates, is collected under vigorous agitation in the solution of HY acid and polymyxin B. The precipitate which forms is separated by centrifugation and vacuum dried; there is no loss of the product in the residual solution. Yield: 4.85 g.

17.25 mg of this product contains:

10

25

Neomycin equal to 5.0 mg of Neomycin sulphate

Polymyxin equal to 0.63 mg (approx. 5000 UI) of polymyxin sulphate.

These determinations were carried out after separation by HPLC (high pressure liquid chromatography) of the two active principles.

Example 15 - PREPARATION OF THE MIXED SALT OF HYALURONIC ACID (HY) WITH KANAMYCIN AND WITH PHENYLEPHRINE

4.0 g of HY sodium salt having a molecular weight of 65,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O . The solution is then eluted in a thermostatic column at $5 \, ^{\circ}C$, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at $5 \, ^{\circ}C$. 0.85 g of kanamycin sulphate (5.82 mEq) are solubilized in 10 ml of distilled H_2O . The solution is eluted in a thermostatic column at $5 \, ^{\circ}C$, containing 10 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form.

The eluate, free from sulphates, is collected in a container kept at a temperature of 5°C. The phenylephrine base is prepared by dissolving phenylephrine hydrochloride in distilled H₂O at 5°C at 100 mg/ml, and NH₄OH (6N) is added until complete precipitation is achieved. The precipitate is separated by filtration, washed with distilled H₂O until the chlorides have disappeared from the washing water, and then vacuum dried. The HY acid and kanamycin base solutions are mixed and kept at a temperature of 5°C 699 mg of phenylephrine base (4.18 mEq) are added under agitation until being completely dissolved. The resulting solution is frozen and freeze-dried. Yield: 5.1 g.

Microbiological determination on B. subtilis ATCC 6633 in comparison to standard kanamycin shows a content of 13.55% by weight of kanamycin base. U.V. spectrophotometric determination using the standard addition method (USP) shows a content of 13.45% by weight of phenylephrine base.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 73.0%.

Example 16 - PREPARATION OF MIXED SALT OF HYALURONIC ACID (HY) WITH GENTAMYCIN, WITH NAPHAZOLINE AND WITH SODIUM.

4.0 g of HY sodium salt with a molecular weight of 50,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5 °C. 1.245 g of gentamycin sulphate (8.59 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 12 ml of

quaternary ammonium resin (Dowex 1 x 8) in the OH⁻ form.

The eluate, free from sulphates, is collected in a container kept at a temperature of 5 °C. The pure naphazoline base is prepared with naphazoline-hydrochloride dissolved in distilled H₂ at 5 °C at a concentration of 50 mg/ml, NH₄OH (5M) is added until pH 12 is achieved and the solution is extracted twice with ethyl acetate. The organic layers are washed with H₂O and anhydrified on anhydrous Na₂SO₄. The product is placed in a freezer to crystallize, and the precipitate is filtered, washed with ethyl acetate and vacuum dried. 2.5 g of HY sodium salt and 0.297 g of naphazoline base are added to the HY acid (1.41 mEq) and agitated until being completely solubilized. The solution of gentamycin base is then added, homogenized and then frozen and freeze-dried. Yield: 7.35 g.

Quantitative microbiological determination on B. epidermidus ATCC 12228 in comparison to a gentamycin standard shows a content of 11.1% by weight of gentamycin base. Quantitative spectrophotometric determination carried out in comparison to standard naphazoline (USP) shows a content of 4.0% by weight of naphazoline base.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 83.0%.

Example 17 - PREPARATION OF THE MIXED SALT OF HYALURONIC ACID (HY) WITH NEOMYCIN, WITH PHENYLEPHRINE AND WITH SODIUM.

4.0 g of HY sodium salt having a molecular weight of 65,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5 °C. 1.28 g of neomycin sulphate (8.42 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 12 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form.

The eluate, free from sulphates, is collected in a container kept at a temperature of 5 °C. The phenylephrine base is prepared by dissolving phenylephrine hydrochloride in distilled H₂O at 5 °C at 100 mg/ml, and adding NH₄OH (6N) until complete precipitation is achieved. The precipitate is separated by filtration, washed with distilled H₂O until the chlorides have disappeared from the washing water, and then it is vacuum dried.

2.5 g of HY sodium salt and 0.266 g of phenylephrine base (1.58 mEq) are added to a solution of HY acid and agitated until being completely solubilized. The solution of neomycin base is then added and after homogenization it is frozen and freeze-dried. Yield: 7.35 g.

Spectrophotometric determination by U.V. using the standard addition method (USP) shows a content of 3.57% by weight of phenylephrine base. Quantitative microbiological determination on B.aureus ATCC 6538p in comparison to a neomycin standard shows a content of 11.64% by weight of neomycin base.

Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 82.8%.

Example 18 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH PILOCARPINE AND WITH SODIUM.

98.31 g of HY sodium salt having a molecular weight of 170,000 corresponding to 245 mEq of a monomeric unit are solubilized in 8.5 liters of distilled H_2O .

The solution is then eluted in a thermostatic column at 5 °C, containing 300 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5 °C.

2.34 g of pilocarpine hydrochloride (9.6 mEq) are solubilized in 50 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 °C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form.

The eluate, free from chlorides, is collected under agitation in the solution of HY acid. 235.4 ml of a solution of sodium hydroxide (1M) are slowly added under agitation. The solution thus obtained is instantly frozen and freeze-dried. Yield: 99.8 g.

100 mg of the product contains 2 mg of pilocarpine as a base.

Example 19 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH STREPTOMYCIN AND WITH SODIUM.

98.68 g of HY sodium salt having a molecular weight of 255,000 corresponding to 246 mEq of a monomeric unit are solubilized in 8.5 liters of distilled H₂O. The solution is then eluted in a thermostatic column at 5 °C, containing 300 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5 °C.

1.88 g of streptomicin sulphate (7.74 mEq) are solubilized in 20 ml of distilled H_2O . The solution is eluted in a thermostatic column at 5 °C, containing 12 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH^- form.

The eluate, free from sulfates, is collected under agitation in the solution of HY acid. 238.3 ml of a solution of NaOH (1 M) are slowly added under agitation and the resulting solution is instantly frozen and freeze-dried. Yield: 99.8 g.

100 g of the product contain 1.5 g of streptomicin as a base.

15

Example 20 - METHOD TO OBTAIN A MIXTURE OF THE FRACTIONS HYALASTINE AND HYALECTIN WITH NO INFLAMMATORY ACTIVITY. (Hyalastine is a trade mark).

Fresh or frozen cocks' combs (3000 g) are minced in a meat mincer and then carefully homogenized in a mechanical homogenizer. The paste thus obtained is then treated in a stainless steel container (AISI 316) or in glass with 10 volumes of anhydrous acetone. The whole is then agitated for 6 hours at a speed of 50 rpm. It is left to separate for 12 hours after which the acetone is discarded by siphoning. The acetone extraction is repeated until the discarded acetone reaches the right degree of humidity (Karl-Fischer method). The whole is then centrifuged and vacuum dried at a suitable temperature for 5-8 hours. About 500-600 g of dry powder of cocks' combs are thus obtained.

300 g of dry powder are exposed to enzymatic digestion with papain (0.2 g) under aqueous conditions and buffered with phosphate buffer in the presence of a suitable quantity of cysteine hydrochloride.

The resultant is agitated for 24 hours at 60 rpm, keeping the temperature at 60-65 °C. It is then cooled at 25 °C and Celite® (60 g) is added, maintaining the agitation for another hour. The mixture thus obtained is filtered until a clear liquid is obtained. The clear liquid then undergoes molecular ultrafiltration using membranes with a molecular weight exclusion limit of 30,000, in order to retain on the membrane those molecules with a molecular weight greater than 30,000.

The product is ultrafiltered from 5 to 6 original volumes, adding distilled water continually to the product during the ultrafiltration procedure. The addition of water is discontinued and the ultrafiltration is continued until the volume is reduced to 1/3 of the original volume. The residual liquid is rendered 0.1M by the addition of sodium chloride and the temperature is brought to 50 °C. Under agitation at 60 rpm, 45 g of cetylpyridine chloride are added. The solution is agitated for 60 minutes and then 50 g of Celite^R are added. Under agitation, the temperature of the whole is brought to 25 °C and the precipitate formed by centrifugation is collected. The precipitate obtained is suspended in a 0.01M solution in sodium chloride (5 liters) containing 0.05% of cetylpyridinium chloride. The resulting suspension is agitated for 60 minutes at 50 °C; the temperature is then brought to 25 °C and the precipitate is centrifuged. The washing operation is repeated 3 times after which the precipitate is collected in a container having 3 liters of a 0.05M solution of sodium chloride containing 0.05% of cetylpyridine chloride. It is agitated at 60 rpm for 60 minutes and the temperature is kept constant at 25 °C for two hours. The supernatant is eliminated by centrifugation. The procedure is repeated several times with solutions of 0.1M sodium chloride containing 0.05% of cetylpyridinium chloride. The mixture is centrifuged and the supernatant is discarded. The precipitate is dispersed in a solution of 0.30M sodium chloride containing 0.05% of cetylpyridinium chloride (3 liters). The mixture is agitated and both the precipitate and the clear liquid are collected.

Extraction is repeated 3 more times on the precipitate, each time using 0.5 liter of the same aqueous solution.

Finally the precipitate residue is eliminated and the clear liquids are all placed together in a single container. The temperature of the liquid is brought to 50 °C while under constant agitation. The liquid is then brought to 0.23M with sodium chloride. 1 g of cetylpyridinium chloride is added, and the liquid is kept under agitation for 12 hours. The mixture is cooled to 25 °C and then it is filtered first on a Celite® pack and then through a filter. It then undergoes molecular ultrafiltration again, on a membrane with a molecular weight exclusion limit of 30,000, ultrafiltering three initial volumes with the addition of a solution of 0.33M sodium chloride. The addition of sodium chloride solution is interrupted and the volume is reduced to 1/4 of the initial volume. The solution thus concentrated is precipitated under agitation (60 rpm) at 25 °C with 3

volumes of ethanol (95%). The precipitate is collected by centrifugation and the supernatant is discarded. The precipitate is dissolved in 1 liter of a 0.1M solution of sodium chloride and the precipitation is repeated with 3 volumes of ethanol (95%). The precipitate is collected and washed first with ethanol (75%) 3 times, and then with absolute ethanol (3 times), and finally with absolute acetone (3 times). The product thus obtained (Hyalastine + Hyalectin fractions) has an average molecular weight of between 250,000 and 350,000. The HY yield is equal to 0.6% by weight of the original fresh tissue.

Example 21 - METHOD TO OBTAIN THE FRACTION HYALASTINE FROM THE MIXTURE OBTAINED BY THE METHOD DESCRIBED IN EXAMPLE 20.

The mixture obtained by the method described in Example 20 is dissolved in twice distilled, apyrogenetic water at the rate of 10 mg of product to each 1 ml of water. The solution obtained is exposed to molecular filtration through filter membranes with a molecular weight exclusion limit of 200,000, following a concentration technique on the membrane without the addition of water. During the process of ultrafiltration through membranes with a molecular weight exclusion limit of 200,000, the molecules with a molecular weight of more than 200,000 do not pass through, while the smaller molecules pass through the membrane together with the water. During the filtration procedure no water is added, so that the volume decreases, and there is therefore an increase in the concentration of molecules with a molecular weight of more than 200,000. The product is ultrafiltered until the volume on top of the membrane is reduced to 10% of the initial volume. Two-volumes of apyrogenetic, twice distilled water are added and the solution is then ultrafiltered again until the volume is reduced to 1/3. The operation is repeated two more times. The solution passed through the membrane is brought to 0.1M with sodium chloride and then precipitated with 4 volumes of ethanol at 95%. The precipitate is washed 3 times with ethanol (75%) and then vacuum dried.

The product thus obtained (Hyalastine fraction) has an average molecular weight of between 50,000 and

Example 22 - METHOD TO OBTAIN THE FRACTION HYALECTIN.

100,000. The HY yield is equal to 0.4% by weight of the original fresh tissue.

The concentrated solution collected in the container on top of the ultrafiltration membrane with a molecular weight exclusion of 200,000, as in Example 21, is diluted with water until a solution containing 5 mg/ml of hyaluronic acid is obtained, as determined by quantitative analyses based on the dosage of glucuronic acid. The solution is brought to 0.1M in an aqueous sodium chloride solution and then precipitated with 4 volumes of ethanol at 95%. The precipitate is washed 3 times with ethanol (75%) and then vacuum dried

The product thus obtained (Hyalectin fraction) has a molecular weight of between 500,000 and 730,000. This corresponds to a specific fraction of hyaluronic acid with a defined length of molecular chain of about 2,500 to 3,500 saccharide units with a high degree of purity.

The HY yield is equal to 0.2% by weight of the original fresh tissue.

METHOD B

10

The invention also concerns a new procedure for the preparation of hyaluronic acid salts, starting with hyaluronic acid barium salt. The new procedure regards the salts which are soluble in water and in particular the hyaluronic acid salts with active substances, in which all the carboxylic groups of hyaluronic acid may be salified or only a part of the groups are salified. In the partial salts, the remaining carboxylic groups of hyaluronic acid may be free or salified with other active substances or with alkaline metals, magnesium, aluminum, ammonium, or substituted ammonium.

The new procedure consists of preparing an aqueous solution of the barium salt of a hyaluronic acid, and adding an aqueous solution containing a number of sulfuric acid equivalents, totally or partially salified by one or more organic or inorganic bases; wherein the number of sulfuric equivalents corresponds to the number of hyaluronic acid equivalents present in the barium salt aqueous solution. The aqueous solution of hyaluronic acid salt is obtained by filtration of the separated barium sulfate. That is, by filtration of the separated barium sulfate it is possible to obtain the aqueous solution of hyaluronic acid salt from which the salt in its dry form is obtainable by concentration.

The barium salt of hyaluronic acid is not described in literature and, surprisingly, has proved to be soluble in water. It can be easily prepared by treating the not very soluble hyaluronate of cetylpyridinium with an aqueous solution of barium chloride and precipitating from the solution the hyaluronate of barium with ethanol or another suitable solvent. The hyaluronate of cetylpyridinium is an intermediate commonly

used in production procedures of hyaluronic acid to separate and purify the hyaluronic acid extracted from various organic materials.

The aqueous solution, containing a number of sulfuric acid equivalents, totally or partially salified with one or more organic bases, is prepared by dissolving in water the neutral sulfates of the bases and possibly adding sulfuric acid. Should there be a solution formed of neutral sulfates of one or more organic or inorganic bases, containing a number of sulfuric equivalents corresponding to the number of hyaluronic acid equivalents present in the aqueous solution of barium salt, the end result will be a stoichiometrically neutral salt of hyaluronic acid with the bases present in the corresponding aqueous solution (sulfates). If a stoichiometrically partial salt or acid salt of hyaluronic acid be desired, sulfuric acid should be added to the aqueous solution of sulfates, or basic acid sulfates should be used.

The Method B of the invention is illustrated by the following examples.

15

powdered cock's combs are obtained.

Example 23 - METHOD OF OBTAINING A MIXTURE OF FRACTIONS HYALASTINE AND HYALECTIN IN THE FORM OF BARIUM SALTS AND WITHOUT ANY INFLAMMATORY ACTIVITY

Fresh or frozen cock's combs (3000 g) are minced in a meat mincer and then carefully homogenized in a mechanical homogenizer. The paste obtained is treated in a stainless steel container (AISI 316) or in glass with 10 volumes of anhydrous acetone. The whole is agitated for 6 hours at a speed of 50 rpm. It is left to separate for 12 hours and the acetone is discarded by syphoning. The acetone extraction is contained until the discarded acetone has reached the right degree of humidity (Karl-Fischer method). The whole is then centrifuged and vacuum dried at a suitable temperature for 5-8 hours. In this way, about 500-600 g of dry

300 g of dry powder are exposed to enzymatic digestion with papain (0.2 g) under aqueous conditions and buffered in a phosphate buffer in the presence of a suitable quantity of cysteine hydrochloride. The resultant is agitated for 24 hours at 60 rpm, keeping the temperature constant at 60-65 °C. The whole is then cooled to 25 °C and Celite® (60 g) is added, while agitation is continued for another hour. The mixture is filtered until a clear liquid is obtained. The clear liquid undergoes molecular ultrafiltration using membranes with a molecular weight exclusion limit of 30,000. Between 5 and 6 original volumes of the product are ultrafiltered, continuously adding distilled water to the ultrafiltered product. The addition of water is discontinued and ultrafiltration is continued until the volume has been reduced to 1/3 of the original volume.

The residual liquid is brought to 0.1M with the addition of barium chloride and the temperature is brought to 50 °C. While agitating at 60 rpm, 45 g of cetylpyridinium chloride are added. The solution is agitated for 60 minutes and then 50 g of Celite® are added. While agitating, the temperature of the whole is brought to 25 °C and the precipitate formed by centrifugation is collected. The precipitate is suspended in a 0.01M solution in barium chloride (5 liters) containing 0.05% of cetylpyridinium chloride. It is agitated for 60 mnutes at 50 °C; the temperature is then brought to 25 °C and the precipitate is centrifuged. The washing process is repeated 3 more times and finally the precipitate is collected in a receptacle containing 3 liters of a 0.05M solution of barium chloride containing 0.05% of cetylpyridinium chloride. The resulting suspension is agitated at 60 rpm for 60 minutes and the temperature is kept constant at 25 °C for two hours. The clear supernatant is eliminated by centrifugation.

The process is repeated several times with a solution of 0.1M barium chloride containing 0.05% of cetylpyridinium chloride. The mixture is centrifuged and the supernatant is discarded. The precipitate is dispersed in a 0.30M solution of barium chloride containing 0.05% of cetylpyridinium chloride (3 liters). The mixture is agitated and both the precipitate and the clear liquid are gathered. The precipitate undergoes extraction 3 more times, each time using 0.5 liter of the same aqueous solution.

Finally, the residue precipitate is eliminated and the clear liquids are pooled in one container. The temperature of the liquid is brought to 50 °C under constant agitation. The liquid is then brought to 0.23M with barium chloride. 1 g of cetylpyridinium chloride is added, and agitation is maintained for 12 hours. The mixture is cooled to 25 °C, filtered first with Celite® and then through a filter. It then undergoes molecular ultrafiltration once more on membranes with a molecular exclusion limit of 30,000, ultrafiltering three initial volumes with the addition of 0.33M barium chloride solution. The addition of barium chloride solution is suspended and the volume is reduced to 1/4 of the original. The solution concentrated in this way is precipitated under agitation (60 rpm) at 25 °C with 3 volumes of ethanol (95%). The precipitate is gathered by centrifugation and the supernatant is discarded. The precipitate is dissolved in 1 liter of 0.1M solution of barium chloride and precipitation is repeated with 3 volumes of ethanol (95%).

The precipitate is collected and washed first three times with 75% ethanol, then with absolute ethanol (3 times), and finally with absolute acetone (3 times). The product thus obtained (fractions Hyalastine +

Hyalectin) has an average molecular weight between 250,000 and 350,000. The yield of HY corresponds to 0.6% of the original fresh tissue.

Example 24 - METHOD OF OBTAINING THE FRACTION HYALASTINE IN THE FORM OF BARIUM SALT OF THE MIXTURE OBTAINED BY THE METHOD DESCRIBED IN EXAMPLE 30.

The mixture obtained with the method described in Example 23 is dissolved in apyrogenic distilled water at a quantity of 10 mg of product per 1 ml of water. The solution thus obtained is subjected to molecular filtration through a membrane with a molecular exclusion limit of 200,000, following a concentration technique without the addition of water on top of the membrane. During the ultrafiltration process through membranes with a molecular exclusion limit of 200,000, the molecules with a molecular weight of more than 200,000 are detained, while the smaller molecules pass through the membrane together with the, water. During the filtration process, no water is added on top of the membrane, so that the volume diminishes and consequently the concentration of molecules with a molecular weight of more than 200,000 is increased. Ultrafiltration is maintained until the volume on top of the membrane is reduced to 10% of the initial volume. Two volumes of apyrogenic distilled water are added and the whole is ultrafiltered again until the volume is reduced to 1/3. The operation is repeated twice more. The solution which passes through the membrane is brought to 0.1M with barium chloride and is then precipitated with 4 volumes of 95% ethanol. The precipitate is washed 3 times with 75% ethanol and then vacuum dried. The product thus obtained (Hyalastine fraction) has an average molecular weight of between 50,000 and 100,000. The yield of HY is equal to 0.4% of fresh starting tissue.

Example 25 - METHOD OF OBTAINING HYALECTIN FRACTION IN THE FORM OF BARIUM SALT.

The concentrated solution gathered in the receptacle on top of the ultrafiltration membrane with a molecular exclusion limit of 200,000, as in Example 24 is diluted with water until a solution containing 5 mg/ml of hyaluronic acid is obtained, as determined by quantitative analysis based on the glucuronic acid dosage. The solution is brought to 0.1M in barium chloride and then precipitated with 4 volumes of 95% ethanol. The precipitate is washed 3 times with 75% ethanol and then vacuum dried. The product thus obtained (Hyalectin fraction) has a molecular weight of between 500,000 and 730,000. The yield of HY is equal to 0.2% of the fresh starting tissue.

Example 26 - PREPARATION OF THE SALT OF A HYALURONIC ACID (HY) WITH STREPTOMYCIN.

4.47 g of HY barium salt (10 mEq) are solubilized in 300 ml of distilled H2O.

25

35

2.43 g of streptomycin sulfate (10 mEq) are solubilized in 100 ml of distilled H_2O , then added drop-wise under agitation to the solution of HY salt. The mixture is centrifuged for 30 minutes at 6000 rpm. The solution is separated, the precipitate is washed 2 times with 25 ml of distilled H_2O . The solution and the washings are pooled and then freeze dried. In the salt thus obtained, all the acid groups of hyaluronic acid are salified with the basic functions of streptomycin. Yield: 5.5 g.

Microbiological determination on B. subtilis (ATCC 6633) compared to standard streptomycin shows a content of 33.8% in weight of basic streptomycin, corresponding to the theoretically calculated weight. Colorimetric determination of glucuronic acid combined in the polysaccharide according to the method of Bitter et al. (Anal. Biochem. 4, 330, 1962) shows a content in weight of HY acid of 66.2% (theoretic percentage 66.0%).

Example 27 - PREPARATION OF THE SALT OF A HYALURONIC ACID (HY) WITH NAPHAZOLINE.

4.47 g of the barium salt of HY with a molecular weight of 625,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O.

2.6 g of neutral naphazoline sulfate (10 mEq sulfate) are solubilized in 50 ml of distilled water and added to the solution of HY barium salt. The mixture is agitated at 5 °C until the barium sulfate is completely precipitated. After centrifugation the resulting solution is frozen and instantly freeze dried. Yield: 5.72 g.

In the salt thus obtained all the acid groups of HY acid are salified with naphazoline. Quantitative spectrophotometric determination compared with standard naphazoline (USP) showed a content of 35.7% in weight of basic naphazoline, corresponding to the theoretically calculated value. Colorimetric determination of the glucuronic acid combined in the polysaccharide, carried out according to the method of Bitter et al.

showed a HY acid content of 64.3%.

Example 28 - PREPARATION OF THE PARTIAL SALT OF A HYALURONIC ACID (HY) WITH NAPHAZOLINE.

5

- 4.47 g of the barium salt of HY with a molecular weight of 625,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O .
- 1.54 g of acid naphazoline sulfate (10 mEq sulfate) are solubilized in 50 ml bi-distilled water and added to the solution of barium salt of HY. The mixture is agitated at 5 °C until complete precipitation of the sulfate of barium. After centrifugation, the resulting solution is instantly frozen and freeze dried. Yield: 4.5 g.

In the salt thus obtained 50% of the acid groups of HY acid are salified with naphozoline and 50% are free. Quantitative spectrophotometric determination in comparison to standard naphozoline (USP) shows a content in weight of basic naphazoline which corresponds to the theoretically calculated value.

15 Example 29 - PREPARATION OF THE SALT OF A HYALURONIC ACID (HY) WITH PHENYLEPHRINE.

2.16 g of neutral L-phenylephrine sulfate (10 mEq) are solubilized in 25 ml of distilled H₂O.

4.47 g of the barium salt of HY with a molecular weight of 820,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled water and added to the solution of sulfate phenylephrine. The mixture is agitated until the barium sulfate is completely precipitated. After centrifugation the resulting solution is frozen and freeze dried. In the salt obtained all the acid groups of HY are salified with phenylephrine.

U.V. spectrophotometric determination carried out by the standard addition method (USP) shows a content of 30.6% of basic phenylephrine, corresponding to the theoretically calculated value.

Colorimetric determination of the glucuronic acid combined in the polysaccharide according to the method of Bitter et al. shows an HY acid content of 69.4%.

Example 30 - PREPARATION OF THE MIXED SALT OF A HYALURONIC ACID (HY) WITH NEOMYCIN, WITH PHENYLEPHRINE AND SODIUM.

30

25

- 7.15 g of HY barium salt with a molecular weight of 65,000 corresponding to 16 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O .
- 1.28 g of neomycln sulfate (8.42 mEq) are solubilized in 150 ml of distilled H₂O. 0.34 g of neutral phenylephrine sulfate (1.58 mEq) and 0.43 g of Na₂SO₄ (6 mEq) are added to the solution. The resulting solution is added to the solution of HY barium salt and, after complete precipitation of the barium sulfate, the mixture is centrifuged.

The barium sulfate is separated and the solution is frozen and freeze-dried. Yield: 7.35 g.

PHARMACOLOGICAL STUDIES

10

The topical effect of the new medicaments according to the present invention may be demonstrated in vivo by experiments on the rabbit eye which show their superiority as compared to the use of component (1) when administered in a conventional way. As an example, hereinafter are reported experiments carried out with hyaluronic acid salts with the following antibiotics: streptomycin, erythromycin and neomycin. These are the total salts in which all of the acid groups of hyaluronic acid are salified with a basic group of the antibiotic, and are described in examples 1, 2, 4 and 5. Of these, solutions in distilled water were used, having concentrations suitable to the antibiotic content, as follows:

hyaluronic acid + streptomycin (HYA1) - 33.8%

hyaluronic acid + erythromycin (HYA2) - 66.0%

hyaluronic acid + neomycin (HYA4) - 21.2%

The activity of these antibiotics was compared to that given by the same antibiotics dissolved in phosphate buffer and having the same concentrations of antibiotic. The activity of the two groups of products was measured on the basis of the time necessary to suppress a dry inflammation of the rabbit eye induced by a bacterial agent. More precisely, the dry inflammation was determined in both eyes of 24 rabbits by intraocular injection of a titered suspension of one of the following bacterial groups: pseudomonas aeruginosa, staphylococcus aureus, salmonella typhi (0.1 ml).

The various saline derivatives of the antibiotics were administered (3 drops every 6 hours) into the right eye (RE) of the rabbits, while into the left eye (LE) was instilled the corresponding quantities of the

antibiotics dissolved in phosphate buffer. The treatment was begun immediately after injection of the bacterial suspension and was continued until inflammation disappeared. Both eyes of each rabbit were observed with a slit lamp. In particular the following were examined: the state of the conjunctiva and the corneal epithelium, anterior chamber (presence of the Tyndall effect), and the state of the iris of the posterior segment of the eye. The state of the back of the eye was examined with a Goldman lens. The presence of signs of inflammation (hyperemia, exudates, cloudiness of the liquids etc.) was registered. The percentage of eyes which did not present any signs of inflammation was then calculated.

The results of the experiments are reported in Table 1, whereby it can be observed that administration of the saline derivatives according to the present invention was followed by a more rapid recovery from inflammation as compared to the administration of the corresponding antibiotics not salified with hyaluronic acid.

m 0

TABLE 1

5

10

15

20

25

30

35

40

45

50

Effect of the administration of the derivatives HYA

on recovery from dry inflammation in rabbit eye.

TREATMENT			DAYS FROM	THE	START OF	INFLAM	MATION		
		н	2 3 4 5 6	m	4	2	9	١	ω
Streptomycin (6)* 0.0 0.0 HYAl (6)* 0.0 0.0	* (9)	0.0	0.0	0.0	0.0 0.0 0.0 16.6 16.6 16.6 50.0 100.0	0.0	16.6	50.0 100.0 100.0 100.0	100.
Erythromycin (6)** 0.0 HYA2 (6)**	**(9)	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0 0.0 16.6 16.6	0.0	0.0	16.6 33.3 33.3 50.0	33.
Neomycin (6)*** HYA4 (6)***	*	0.0	0.0	0.0	0.0 0.0 0.0 16.6 16.6 33.3	0.0	33.3	16.6 33.3	33.3
HYAS (6) *		0.0		0.0	16.6	33.3	50.0	100.0	100.0

Values are expressed as percentages (number of eyes where inflammation had been relieved out of the total number of eyes treated). Between brackets are the number of eyes treated.

* Injection of pseudomonas aeruginosa
** Injection of staphylococcus aureus
*** Injection of salmonella typhi

The technical effect of the medicaments according to the invention is further demonstrated by the following other experiments.

I. Miotic Activity of Pilocarpine Salified With Hyaluronic Acid

Materials

- 5 For the various formulations of salified pilocarpine, the following products were used:
 - hyaluronic acid at low molecular weight (HYALASTINE, m.w. 100,000) [HY1];
 - hyaluronic acid sodium salt at high molecular weight (HYALECTIN, m.w. between 500,000 and 730,000) [HY₂-Na] at concentrations of 10 mg/ml and 20 mg/ml;
 - polyvinyl alcohol 5% as ophthalmic vehicle to obtain comparison formulations.
- The various formulations prepared were the following:
 - 1) saline with pilocarpine nitrate (PiNO₃) 2% (used as a reference);
 - 2) solution of PiNO₃ 2% vehicled with polyvinyl alcohol 5% (used as a reference);
 - solution of pilocarpine base/HY₁ acid in aqueous solution. The pilocarpine base content corresponds to 2%:
 - solution containing pilocarpine salt/HY₁ acid vehicled with HY₂-Na 10 mg/ml. The pilocarpine base content corresponds to 2%;
 - 5) solution containing pilocarpine salt/HY₁ acid vehicled with HY₂-Na 20 mg/ml. The pilocarpine base content corresponds to 2%.
 - 6) inserts of HY2-Na containing pilocarpine base salt with hyaluronic acid [HY1]. The pilocarpine base corresponded to 6.25%.

Method

15

20

Albino New Zealand rabbits were used (2-2.5 kg). The solution to be tested was instilled in one eye of each of the rabbits with a microsyringe (10 ul); the other eye was used as a reference. The insert was placed in the conjunctival sac by means of suitable pincers. In all cases the pupil diameter was measured at suitable intervals. Each formulation was tested on at least 8 rabbits. Each eye was treated no more than three times; a rest period of at least a week was observed between each treatment.

o Parameters

The pupil diameter was measured at various intervals of time in -order to determine the miotic activity curve in time and subsequent calculation, from the miosis/time graphs, of the following activity parameters:

I_{max} = maximum difference in pupil diameter between the treated eye and the reference eye;

Peak time = time taken to reach the I_{max};

duration = time taken to return to basal conditions;

plateau = period of absolute miotic activity;

AUC = area under the miosis/time curve.

40 Results

35

As can be seen from Table 2, where for each solution tested, the values of the various parameters registered from the miotic activity in time curve are reported, it is possible to show how salification with hyaluronic acid of Pilocarpine at 2% causes an increase in miotic activity of the drug, whose activity can reach about 2 times that shown by aqueous solution with pilocarpine nitrate 2% (formulation 1).

A statistically significant increase in activity should also be noted when hyaluronic acid with a high molecular weight is used as a vehicle both at 10 and 20 mg/ml (formulation 4-5).

Salification with hyaluronic acid is particularly interesting also in relation to the longer duration of miotic activity of pilocarpine after vehicling with such formulations: the time taken to return to normal pupil diameter under basal conditions reaches values of 160 minutes (formulation 3) compared to 110 minutes for pilocarpine (formulation 1).

5	containing	relative AUC	1.00 1.64 1.81 2.39 3.08
10	2: Biological activity parameters of the ophthalmic vehicles containing hyaluronic acid	AUC, cm ² (<u>+</u> LF 951)	117 ± 28 192 ± 32 212 ± 32 280 ± 48 361 ± 40 442 ± 70
20	the ophth	Plateau min.	1 1 0 0 4 4
25	eters of (Duration Plateau min. min.	110 140 160 180 200 230
30	ivity param d	Peak time min.	20 20 20 30 15
35	cal activ	3	0.35 0.28 0.28 0.43 0.20
40	Biological hyaluronic	I max, mm (<u>+</u> LF 959	1.93 + 2.33 + 2.25 + 2.70 + 2.80 + 3.70 +
45	ABLE 2:	ormula- Ion No.	

II. Stability of the Corneal Films of the Hyaluronic Acid and Pilocarpine Derivatives.

The aim of the experiments was to evaluate the adhesive and filmogeneous properties of the derivatives of salification between pilocarpine and hyaluronic acid following application to the cornea of animals.

Method

The test consisted in visually evaluating the formation, stability and duration of the film formed by the formulations on the cornea. To this end sodium fluorescein was added to the ophthalmic preparations (0.1%) and the eye was examined, after instillation in UV light of 366 nm.

12 albino rabbits were used in all (New Zealand, 2-2.5 kg) of both sexes. One drop (50 ul) of each vehicle was instilled in one eye of each rabbit, keeping the other eye as control.

Solutions used

10

15

30

50

- 1. saline at 2% of pilocarpine nitrate (PiNO₃);
- 2. solution at 2% of PiNO₃, thickened with polyvinyl alcohol 5% (Wacker Chemie, PVA W 48/20);
- 3. solution containing pilocarpine base salt/HY1 acid. The pilocarpine base content corresponds to 2%;
- 4. solution containing pilocarpine base salt/HY₁ acid vehicled with HY₂-Na 10 mg/ml. The pilocarpine base content corresponds to 2%;
- 5. solution containing pilocarpine base salt/HY₁ acid vehicled with HY₂-Na 20 mg/ml. The pilocarpine base content corresponds to 2%.

All solutions contained 0.1% of sodium fluorescein. The pH of the solutions was in all cases around 5.8.

20 Results

The parameters relative to the fluorescence: a) duration of the integral corneal film, b) duration of fluorescence (time necessary for the total disappearance of fluorescence from the eye), c) presence of fluorescence in the nose (time taken by the solution after application to appear at nose level), are reported in Table 3.

The derivatives of hyaluronic acid with pilocarpine produce a stable corneal film for periods of more than 2 hours. Transcorneal penetration of pilocarpine seems therefore to depend on the capacity of hyaluronic acid to vehicle the drug forming a homogeneous and stable film on the cornea.

TABLE 3

	Solution	Duration of integral film (min)	Duration of fluorescence (min)	Appearance of fluorescence in nose (min)
35	1	30	100	2 - 3
	2	80	150	10 - 15
	3	100	150	5
	4	120	180	15 - 20
	5	140	210	50
40				

Ciaim

Claims for the following Contracting States : DE, GB, IT, NL, SE

- 1. A medicament which comprises:
 - (a) a pharmaceutically active substance or a mixture of pharmacologically active substances suitable for topical administration; and
 - (b) hyaluronic acid or a pharmaceutically acceptable salt of said hyaluronic acid, optionally together with an additional excipient suitable for topical administration, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- A medicament according to claim 1, wherein said active substance is capable of being absorbed intradermally or through the nasal or rectal mucosa.
 - 3. A medicament according to either claim 1 or 2, wherein said active substance is of a basic nature and is present in the form of a salt with said hyaluronic acid.

- 4. A medicament for topical use which comprises a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature suitable for topical administration.
- 5 5. A medicament according to claim 4, wherein said active substance is capable of being absorbed intradermally or through the nasal or rectal mucosa.
 - A medicament according to either of claims 4 or 5, which contains an additional excipient suitable for topical administration.
 - 7. A medicament according to any one of claims 4-6, wherein said salt is a partial salt and at least a portion of the acid groups of said hyaluronic acid is salified with an alkali or alkaline earth metal, magnesium, aluminum or ammonium.
- 15 8. A medicament according to any one of claims 4 and 6-7, wherein said active substance is suitable for ophthalmological use.
 - 9. A medicament according to any one of claims 4-7, wherein said active substance is suitable for dermatological, otorhinolaryngological, odontological, angiological, obstetrical or neurological use.
 - 10. A medicament according to any one of claims 1-9, wherein said pharmacologically active substance is an antibiotic, anti-infective, antiviral, antimicrobial, antiinflammatory, wound healing, cytostatic, cytotoxic, anesthetic, cholinergic promotor, cholinergic antagonist, adrenergic promotor or adrenergic antagonist agent.
 - 11. A medicament according to claim 10, wherein said pharmacologically active substance is a member selected from the group consisting of aureomycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, vancomycin, novobiocin, ristocetine, clindamycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, idoxuridine, adenine arabinoside, trifluorothimidine, aciclovir, ethyldeoxyuridine, pilocarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demecarium, atropima, noradrenalin, adrenalin, norfazoline, methoxamine, propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, oxyprenolol, practolol, butoxamine, sotalol, butadrine; labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon, medrison, fluorocil, methotrexate, and podophyllin.
 - 12. A medicament according to any one of claims 4-9 wherein said active substance is a member selected from the group consisting of streptomycin, erythromycine, kanamycin, neomycin, gentamicin, pilocarpine, triamcinolone and epidermal growth factor.
 - 13. A medicament according to any one of claims 1-12 wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
- 45 14. A medicament according to claim 13, wherein said fraction has an average molecular weight between 50,000 and 100,000.
 - 15. A medicament according to claim 13 wherein said fraction has an average molecular weight between 500,000 and 730,000.
 - 16. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament suitable for ophthalmic administration.
- 17. Use of a mixture of hyaluronic acid with a pharmacologically active, non-ophthalmic substance for the preparation of a medicament suitable for topical administration.
 - 18. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament suitable for topical administration and capable of being absorbed

10

20

25

30

35

intradermally or through the nasal or rectal mucosa.

- 19. A process for the preparation of a hyaluronic acid salt which comprises:
 - a) combining an aqueous solution of a barium salt of hyaluronic acid with a sulfate of a pharmaceutically active substance; and
 - b) separating the precipitated barium sulfate to obtain the hyaluronic acid salt in aqueous solution.
- 20. A process according to claim 19, wherein said sulfate is added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents, thereby producing a stoichiometrically neutral hyaluronic acid salt.
- 21. A process according to claim 19, wherein said sulfate is added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents, thereby producing a partially salified hyaluronic acid salt.
- 22. A process according to any one of claims 19-21, wherein said barium salt of hyaluronic acid is further combined with a sulfate of at least one member selected from the group consisting of an alkali or alkaline earth metal, aluminum or ammonium.
- 20 23. A process according to claim 22, wherein said sulfates are added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents.
 - 24. A process according to claim 22, wherein said sulfates are added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents.
 - 25. A process according to any one of clams 19-24, wherein said active substance is at least one member selected from erythromycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, aureomycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, iodeoxyuridine, adenine arabinoside, tricarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demacarium, stropina, propanolol timolol, pindolol, bupranolol, atenolol, metoprolol, oxprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon and medrison.
 - 26. A process according to any one of claims 19-25, wherein the hyaluronic acid is a molecular weight fraction having a molecular weight of between 90-80% and 0.23% of the molecular weight of integral hyaluronic acid having a molecular weight of 13 million.
- 40 27. A process according to claim 26, wherein the hyaluronic acid fraction is free of hyaluronic acid having a molecular weight less than 30,000.
 - 28. A process according to claim 27, wherein the molecular weight fraction has an average molecular weight of 50,000 to 100,000, 500,000 to 730,000 or 250,000 to 350,000.

Claims for the following Contracting State: AT

- 1. A process for the preparation of a medicament, which process comprises mixing together:
 - (a) a pharmacologically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
 - (b) hyaluronic acid or a pharmaceutically acceptable salt of said hyaluronic acid, optionally together with an additional excipient suitable for topical administration, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- A process according to claim 1, wherein said active substance is capable of being absorbed intradermally or through the nasal or rectal mucosa.

26

15

10

5

25

30

3

45

50

- A process according to either claim 1 or 2, wherein said active substance is of a basic nature and is present in the form of a salt with said hyaluronic acid.
- 4. A process for the preparation of a medicament for topical use, which process comprising salifying hyaluronic acid with at least one pharmacologically active substance of a basic nature suitable for topical administration so as to produce a partial or stoichiometrically neutral salt of the hyaluronic acid with at least one pharmacologically active substance.
- 5. A process according to claim 4, wherein said active substance is capable of being absorbed intradermally or through the nasal or rectal mucosa.
 - A process according to either of claims 4 or 5, which includes adding an additional excipient suitable for topical administration.
- 75. A process according to any one of claims 4-6, wherein said salt is a partial salt and at least a portion of the acid groups of said hyaluronic acid is salified with an alkali or alkaline earth metal, magnesium, aluminium or ammonium.
- 8. A process according to any one of claims 4 and 6-7, wherein said active substance is suitable for ophthalmological use.
 - A process according to any one of claims 4-7, wherein said active substance is suitable for dermatological, otorhinolaryngological, odontological, angiological, obstetrical or neurological use.
- 25 10. A process according to any one claims 1-9, wherein said pharmacologically active substance is an antibiotic, anti-infective, antiviral, antimicrobial, antiinflammatory, wound healing, cytostatic, cytotoxic, anesthetic, cholinergic promotor, cholinergic antagonist, adrenergic promotor or adrenergic antagonist agent.
- 11. A process according to claim 10, wherein said pharmacologically active susbtance is a member selected from the group consisting of aureomycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, vancomycin, novobiocin, ristocetine, clindamycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, idoxuridine, adenine arabinoside, trifluorothimidine, aciclovir, ethyldeoxyuridine, pilocarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demecarium, atropina, noradrenalin, adrenalin, norfazoline, methoxamine, propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, oxyprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon, medrison, fluorocil, methotrexate, and podophyllin.
 - 12. A process according to any one of claims 4-9 wherein said active substance is a member selected from the group consisting of streptomycin, erythromycine, kanamycin, neomycin, gentamicin, pilocarpine, triamcinolone and epidermal growth factor.
 - 13. A process according to any one of claim 1-12 wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
- 14. A process according to claim 13, wherein said fraction has an average molecular weight between 50,000 and 100,000.
 - 15. A process according to claim 13 wherein said fraction has an average molecular weight between 500,000 and 730,000.
- 16. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament suitable for ophthalmic administration.

- 17. Use of a mixture of hyaluronic acid with a pharmacologically active, non-ophthalmic substance for the preparation of a medicament suitable for topical administration.
- 18. Use of a salt of hyaluronic acid with a pharmaceutically active substance of a basic nature for the preparation of a medicament suitable for topical administration and capable of being absorbed intradermally or through the nasal or rectal mucosa.
 - 19. A process for the preparation of hyaluronic acid salt which comprises:
 - a) combining an aqueous solution of a barium salt of hyaluronic acid with a sulfate of pharmaceutically active substance; and
 - b) separating the precipitated barium sulfate to obtain the hyaluronic acid salt in aqueous solution.
 - 20. A process according to claim 19, wherein said sulfate is added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents, thereby producing a stoichiometrically neutral hyaluronic acid salt.
 - 21. A process according to claim 19, wherein said sulfate is added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents, thereby producing a partially salified hyaluronic acid salt.
 - 22. A process according to any one of claims 19-21, wherein said barium salt of hyaluronic acid is further combined with a sulfate of at least one member selected from the group consisting of an alkali or alkaline earth metal, aluminium or ammonium.
- 25. A process according to claim 22, wherein said sulfates are added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents.
 - 24. A process according to claim 22, wherein said sulfates are added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents.
 - 25. A process according to any one of claims 19-24, wherein said active substance is at least one member selected from erythromycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, aureomycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxtetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, iodeoxyuridine, adenine arabinoside, tricarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demacarium, stropina, propanolol timolol, pindolol, bupranolol, atenolol, metoprolol, oxprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon and medrison.
 - 26. A process according to-any one of claim 19-25, wherein the hyaluronic acid is a molecular weight fraction having a molecular weight of between about 90-80% and 0.23% of the molecular weight of integral hyaluronic acid having a molecular weight of 13 million.
- 45 27. A process according to claim 26, wherein the hyaluronic acid fraction is substantially free of hyaluronic acid having a molecular weight less than 30,000.
 - 28. A process according to claim 27, wherein the molecular weight fraction has an average molecular weight of 50,000 to 100,000, 500,000 to 730,000 or 250,000 to 350,000.

Patentansprüche

Patentansprüche für folgende Vertragsstaaten: DE, GB, IT, NL, SE

- 1. Arzneimittel, umfassend
 - (a) einen pharmazeutischen Wirkstoff oder ein Gemisch von pharmakologischen Wirkstoffen, geeignet zur örtlichen Anwendung; und
 - (b) Hyaluronsäure oder ein pharmazeutisch verträgliches Salz der Hyaluronsäure, gegebenenfalls zusammen mit einem zusätzlichen, zur örtlichen Anwendung geeigneten Exzipienten, mit der

28

40

35

5

10

15

20

Maßgabe, daß der Wirkstoff keinen ophthalmischen Arzneistoff darstellt, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50 000 bis 730 000 ist und im wesentlichen frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30 000 aufweist.

 Arzneimittel nach Anspruch 1, wobei der Wirkstoff intradermal oder über die nasale oder rektale Schleimhaut absorbiert werden kann.

10

20

30

35

40

45

- 3. Arzneimittel nach Anspruch 1 oder 2, wobei der Wirkstoff basischer Natur ist und in Form eines Salzes mit der Hyaluronsäure vorliegt.
- Arzneimittel zur örtlichen Verwendung, umfassend ein Teil- oder stöchiometrisch neutrales Salz der Hyaluronsäure mit mindestens einem zur örtlichen Anwendung geeigneten pharmakologischen Wirkstoff basischer Natur.
- 15 5. Arzneimittel nach Anspruch 4, wobei der Wirkstoff intradermal oder über die nasale oder rektale Schleimhaut absorbiert werden kann.
 - Arzneimittel nach einem der Ansprüche 4 oder 5, das einen zur örtlichen Anwendung geeigneten zusätzlichen Exzipienten enthält.
 - Arzneimittel nach einem der Ansprüche 4 bis 6, wobei das Salz ein Teilsalz ist und mindestens ein Teil
 der Säuregruppen der Hyaluronsäure mit einem Alkali- oder Erdalkalimetall, Magnesium, Aluminium
 oder Ammonium als Salz vorliegt.
- 25 8. Arzneimittel nach einem der Ansprüche 4 und 6 bis 7, wobei der Wirkstoff zur ophthalmischen Verwendung geeignet ist.
 - Arzneimittel nach einem der Ansprüche 4 bis 7, wobei der Wirkstoff zur dermatologischen, otorhinolaryngologischen, odontologischen, angiologischen, geburtshilflichen oder neurologischen Verwendung geeignet ist.
 - 10. Arzneimittel nach einem der Ansprüche 1 bis 9, wobei der pharmakologische Wirkstoff ein antibiotisches, infektionsverhinderndes, antivirales, antimikrobielles, entzündungshemmendes, wundheilendes, cytostatisches, cytotoxisches, anästhesierendes, cholinergisches Promotor-, cholinergisch antagonistisches, adrenergisches Promotor- oder adrenergisch antagonistisches Mittel ist.
 - 11. Arzneimittel nach Anspruch 10, wobei der pharmakologische Wirkstoff ausgewählt ist aus Gentamycin, Neomycin, Aureomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Chloramphenicol, Lincomycin, Vancomycin, Novobiocin, Ristocetin, Clindamycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Uridin, Adeninarabinosid, Idox, Trifluorthimidin, Aciclovir, Ethyldesoxyuridin, Pilocarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demecarium, Atropin, Noradrenalin, Adrenalin, Norfazolin, Methoxamin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxyprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon, Medrison, Fluorocil, Methotrexat und Podophyllin.
 - Arzneimittel nach einem der Ansprüche 4 bis 9, wobei der Wirkstoff ausgewählt ist aus Streptomycin, Erythromycin, Kanamycin, Neomycin, Gentamycin, Pilocarpin, Triamcinolon und epidermaler Wachstumsfaktor.
 - 13. Arzneimittel nach einem der Ansprüche 1 bis 12, wobei die Hyaluronsäure eine Molekulargewichtsfraktion darstellt, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30 000 ist.
 - Arzneimittel nach Anspruch 13, wobei die Fraktion ein durchschnittliches Molekulargewicht zwischen 50 000 und 100 000 aufweist.

- Arzneimittel nach Anspruch 13, wobei die Fraktion ein durchschnittliches Molekulargewicht zwischen 500 000 und 730 000 aufweist.
- 16. Verwendung eines Salzen der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur ophthalmischen Verabreichung geeignet ist.
 - 17. Verwendung eines Gemisches von Hyaluronsäure mit einem nicht-opthalmischen pharmakologischen Wirkstoff zur Herstellung eines Arzneimittels, das zur örtlichen Anwendung geeignet ist.
- 18. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur örtlichen Anwendung geeignet ist und durch die nasale oder rektale Schleimhaut intradermal absorbiert werden kann.
 - 19. Verfahren zur Herstellung eines Hyaluronsäuresalzes umfassend:

- 15 a) Vereinigen einer w\u00e4ßrigen L\u00f6sung eines Bariumsalzes von Hyalurons\u00e4ure mit einem Sulfat eines pharmazeutischen Wirkstoffs und
 - b) Abtrennen des gefällten Bariumsulfats, wobei das Hyaluronsäuresalz in wäßriger Lösung erhalten wird.
- 20. Verfahren nach Anspruch 19, wobei das Sulfat in einer Menge zugegeben wird, daß die Zahl der Sulfatäquivalente gleich der Zahl der Hyaluronsäureäquivalente ist, wobei ein stöchiometrisch neutrales Hyaluronsäuresalz hergestellt wird.
- 21. Verfahren nach Anspruch 19, wobei das Sulfat in einer Menge zugegeben wird, daß die Menge der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist, wobei ein teilweise als Salz vorliegendes Hyaluronsäuresalz hergestellt wird.
 - 22. Verfahren nach einem der Ansprüche 19 bis 21, wobei das Bariumsalz der Hyaluronsäure zusätzlich mit einem Sulfat mindestens einer Verbindung ausgewählt aus Alkali- oder Erdalkalimetall, Aluminium oder Ammonium vereinigt wird.
 - 23. Verfahren nach Anspruch 22, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente gleich der Zahl der Hyaluronsäureäquivalente ist.
- 24. Verfahren nach Anspruch 22, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist.
- Verfahren nach einem der Ansprüche 19 bis 24, wobei der Wirkstoff mindestens eine Verbindung ist, ausgewählt aus Erythromycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Aureomycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Chloramphenicol, Lincomycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Iodeoxyuridin, Adenin, Arabinosid, Tricarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demacarium, Stropina, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon und Medrison.
 - 26. Verfahren nach einem der Ansprüche 19 bis 25, wobei die Hyaluronsäure eine Molekulargewichtsfraktion mit einem Molekulargewicht zwischen 90 80 % und 0,23 % des Malekulargewichts einer integralen Hyaluronsäure, die ein Molekulargewicht von 13 Millionen aufweist, darstellt.
 - 27. Verfahren nach Anspruch 26, wobei die Hyaluronsäurefraktion frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30 000 aufweist.
- 28. Verfahren nach Anspruch 27, wobei die Molekulargewichtsfraktion ein durchschnittliches Molekulargewicht von 50 000 bis 100 000, 500 000 bis 730 000 oder 250 000 bis 350 000 aufweist.

Patentansprüche für folgenden Vertragsstaat : AT

5

10

- 1. Verfahren zur Herstellung eines Arzneimittels, umfassend das Vermischen:
 - (a) eines pharmakologischen Wirkstoffes oder eines Gemisches von pharmazeutischen Wirkstoffen, geeignet zur örtlichen Anwendung; und
 - (b) Hyaluronsäure oder ein pharmazeutisch verträgliches Salz der Hyaluronsäure, gegebenenfalls zusammen mit einem zur örtlichen Anwendung geeigneten Exzipienten, mit der Maßgabe, daß der Wirkstoff keinen ophthalmischen Arzneistoff darstellt, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50 000 bis 730 000 ist und im wesentlichen frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30 000 aufweist.
- 2. Verfahren nach Anspruch 1, wobei der Wirkstoff intradermal oder über die nasale oder rektale Schleimhaut absorbiert werden kann.
- 3. Verfahren nach Anspruch 1 oder 2, wobei der Wirkstoff basischer Natur ist und in Form eines Salzes mit der Hyaluronsäure vorliegt.
- Verfahren zur örtlichen Verwendung, umfassend ein Teil- oder stöchiometrisch neutrales Salz der Hyaluronsäure mit mindestens einem zur örtlichen Anwendung geeigneten pharmakologischen Wirkstoff basischer Natur.
 - Verfahren nach Anspruch 4, wobei der Wirkstoff intradermal oder über die nasale oder rektale Schleimhaut absorbiert werden kann.
- 25 6. Verfahren nach einem der Ansprüche 4 oder 5, das einen zur örtlichen Anwendung geeigneten zusätzlichen Exzipienten enthält.
 - 7. Verfahren nach einem der Ansprüche 4 bis 6, wobei das Salz ein Teilsalz ist und mindestens ein Teil der Säuregruppen der Hyaluronsäure mit einem Alkali- oder Erdalkalimetall, Magnesium, Aluminium oder Ammonium als Salz vorliegt.
 - 8. Verfahren nach einem der Ansprüche 4 und 6 bis 7, wobei der Wirkstoff zur ophthalmischen Verwendung geeignet ist.
- Verfahren nach einem der Ansprüche 4 bis 7, wobei der Wirkstoff zur dermatologischen, otorhinolaryngologischen, odontologischen, angiologischen, geburtshilflichen oder neurologischen Verwendung geeignet ist.
- 10. Verfahren nach einem der Ansprüche 1 bis 9, wobei der pharmakologische Wirkstoff ein antibiotisches, infektionsverhinderndes, antivirales, antimikrobielles, entzündungshemmendes, wundheilendes, cytostatisches, cytotoxisches, anästhesierendes, cholinergisches Promotor-, cholinergisch antagonistisches, adrenergisches Promotor- oder adrenergisch antagonistisches Mittel ist.
- 11. Verfahren nach Anspruch 10, wobei der pharmakologische Wirkstoff ausgewählt ist aus Gentamycin, Neomycin, Aureomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Chloramphenicol, Lincomycin, Vancomycin, Novobiocin, Ristocetin, Clindamycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Idox, Uridin, Adeninarabinosid, Trifluorthimidin, Aciclovir, Ethyldesoxyuridin, Pilocarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demecarium, Atropin, Noradrenalin, Adrenalin, Norfazolin, Methoxamin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxyprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon, Medrison, Fluorocil, Methotrexat und Podophyllin.
- 12. Verfahren nach einem der Ansprüche 4 bis 9, wobei der Wirkstoff ausgewählt ist aus Streptomycin, Erythromycin, Kanamycin, Neomycin, Gentamycin, Pilocarpin, Triamcinolon und epidermaler Wachstumsfaktor.

- 13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Hyaluronsäure eine Molekulargewichtsfraktion darstellt, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30 000 ist.
- Verfahren nach Anspruch 13, wobei die Fraktion ein durchschnittliches Molekulargewicht zwischen 50 000 und 100 000 aufweist.
 - Verfahren nach Anspruch 13, wobei die Fraktion ein durchschnittliches Molekulargewicht zwischen 500 000 und 730 000 aufweist.
 - 16. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur ophthalmischen Verabreichung geeignet ist.
- 17. Verwendung eines Gemisches von Hyaluronsäure mit einem nicht-opthalmischen pharmakologischen Wirkstoff zur Herstellung eines Arzneimittels, das zur örtlichen Anwendung geeignet ist.
 - 18. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur örtlichen Anwendung geeignet ist und durch die nasale oder rektale Schleimhaut intradermal absorbiert werden kann.
 - 19. Verfahren zur Herstellung eines Hyaluronsäuresalzes umfassend;

10

- a) Vereinigen einer wäßrigen Lösung eines Bariumsalzes von Hyaluronsäure mit einem Sulfat eines pharmazeutischen Wirkstoffs und
- b) Abtrennen des gefällten Bariumsulfats, wobei das Hyaluronsäuresalz in wäßriger Lösung erhalten wird.
- 20. Verfahren nach Anspruch 19, wobei das Sulfat in einer Menge zugegeben wird, daß die Zahl der Sulfatäquivalente gleich der Zahl der Hyaluronsäureäquivalente ist, wobei ein stöchiometrisch neutrales Hyaluronsäuresalz hergestellt wird.
- 21. Verfahren nach Anspruch 19, wobei das Sulfat in einer Menge Zugegeben wird, daß die Menge der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist, wobei ein teilweise als Salz vorliegendes Hyaluronsäuresalz hergestellt wird.
- 22. Verfahren nach einem der Ansprüche 19 bis 21, wobei das Bariumsalz der Hyaluronsäure zusätzlich mit einem Sulfat mindestens einer Verbindung ausgewählt aus Alkali- oder Erdalkalimetall, Aluminium oder Ammonium vereinigt wird.
- 23. Verfahren nach Anspruch 22, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente gleich der Zahl der Hyaluronsäureäquivalente ist.
 - 24. Verfahren nach Anspruch 22, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist.
- 25. Verfahren nach einem der Ansprüche 19 bis 24, wobei der Wirkstoff mindestens eine Verbindung ist, ausgewählt aus Erythromycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Aureomycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Chloramphenicol, Lincomycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Iodeoxyuridin, Adenin, Arabinosid, Tricarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demacarium, Stropina, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon und Medrison.
- 26. Verfahren nach einem der Ansprüche 19 bis 25, wobei die Hyaluronsäure eine Molekulargewichtsfraktion mit einem Molekulargewicht zwischen 90 80 % und 0,23 % des Molekulargewichts einer integralen Hyaluronsäure, die ein Molekulargewicht von 13 Millionen aufweist, darstellt.

- 27. Verfahren nach Anspruch 26, wobei die Hyaluronsäurefraktion frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30 000 aufweist.
- 28. Verfahren nach Anspruch 27, wobei die Molekulargewichtsfraktion ein durchschnittliches Molekulargewicht von 50 000 bis 100 000, 500 000 bis 730 000 oder 250 000 bis 350 000 aufweist.

Revendications

15

45

50

55

Revendications pour les Etats contractants suivants : DE, GB, IT, NL, SE

- o 1. Médicament comprenant :
 - (a) une substance pharmacologiquement active ou un mélange de substances pharmacologiquement actives convenant pour une administration topique ; et
 - (b) un acide hyaluronique ou un sel pharmaceutiquement acceptable dudit acide hyaluronique, éventuellement avec un excipient supplémentaire convenant pour une administration topique, à la condition que ladite substance active ne soit pas un médicament ophtalmique quand l'acide hyaluronique est une fraction ayant un poids moléculaire moyen de 50 000 à 730 000 et qui ne contient pratiquement pas d'acide hyaluronique ayant un poids moléculaire de moins de 30 000.
- 2. Médicament selon la revendication 1, dans lequel ladite substance active est capable d'être absorbée par voie intradermique ou à travers la muqueuse nasale ou rectale.
 - 3. Médicament selon la revendication 1 ou 2, dans lequel ladite substance active est de nature basique et est présente sous la forme d'un sel avec ledit acide hyaluronique.
- 4. Médicament à usage topique, comprenant un sel partiel ou stoechiométriquement neutre de l'acide hyaluronique avec au moins une substance pharmacologiquement active, de nature basique, convenant pour une administration topique.
- 5. Médicament selon la revendication 4, dans lequel ladite substance active est capable d'être absorbée par voie intradermique ou à travers la muqueuse nasale ou rectale.
 - Médicament selon la revendication 4 ou 5, contenant un excipient supplémentaire convenant pour une administration topique.
- 7. Médicament selon l'une quelconque des revendications 4 à 6, dans lequel ledit sel est un sel partiel, et au moins une partie des groupes acides dudit acide hyaluronique est salifiée avec un métal alcalin ou alcalino-terreux, le magnésium, l'aluminium ou l'ammonium.
- 8. Médicament selon l'une quelconque des revendications 4 et 6-7, dans lequel ladite substance active convient pour une utilisation en opthalmologie.
 - 9. Médicament selon l'une quelconque des revendications 4 à 7, dans lequel ladite substance active convient pour une utilisation en dermatologie, en oto-rhino-laryngologie, en odontologie, en angiologie, en obstétrique ou en neurologie.
 - 10. Médicament selon l'une quelconque des revendications 1 à 9, dans lequel ladite substance pharmacologiquement active est un agent antibiotique, anti-infectieux, antiviral, antimicrobien, anti-inflammatoire, de cicatrisation des plaies, cystostatique, cytotoxique, anesthésique, promoteur cholinergique, antagoniste cholinergique, promoteur adrénergique ou antagoniste adrénergique.
 - 11. Médicament selon la revendication 10, dans lequel ladite substance pharmacologiquement active est un élément choisi dans le groupe constitué par l'auréomycine, la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacine, la tobramycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, la vancomycine, la novobiocine, la ristocétine, la clindamycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazol, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adénine arabinoside, la trifluorothimidine, l'aciclovir, l'éthyldésoxyuridine, la pilocarpine,

la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropine, la noradrénaline, l'adrénaline, la norfazoline, la méthoxamine, le propanolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone, la médrisone, le fluorocil, le méthotrexate et la podophylline.

12. Médicament selon l'une quelconque des revendications 4 à 9, dans lequel ladite substance active est un élément choisi dans le groupe constitué par la streptomycine, l'érythromycine, la kanamycine, la néomycine, la gentamycine, la pilocarpine, la triamcinolone et le facteur de croissance épidermique.

5

10

- 13. Médicament selon l'une quelconque des revendications 1 à 12, dans lequel ledit acide hyaluronique est une fraction de poids moléculaire qui est essentiellement exempte d'acide hyaluronique ayant un poids moléculaire de moins de 30 000.
- 15. 14. Médicament selon la revendication 13, dans lequel ladite fraction a un poids moléculaire moyen compris entre 50 000 et 100 000.
 - Médicament selon la revendication 13, dans lequel ladite fraction a un poids moléculaire moyen compris entre 500 000 et 730 000.
 - 16. Utilisation d'un sel de l'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament convenant pour une administration ophtalmique.
- 17. Utilisation d'un mélange d'acide hyaluronique avec une substance non ophtalmique pharmacologiquement active pour la préparation d'un médicament convenant pour une administration topique.
 - 18. Utilisation d'un sel d'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament, convenant pour une administration topique et capable d'être absorbée par voie intradermique ou à travers la muqueuse nasale ou rectale.
 - 19. Procédé de préparation d'un sel d'acide hyaluronique, comprenant les étapes consistant à :
 - a) combiner une solution aqueuse d'un sel de baryum d'acide hyaluronique avec un sulfate d'une substance pharmacologiquement active ; et
 - b) séparer le sulfate de baryum précipité pour obtenir le sel de l'acide hyaluronique en solution aqueuse.
 - 20. Procédé selon la revendication 19, dans lequel ledit sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate est égal au nombre d'équivalents d'acide hyaluronique, grâce à quoi un sel d'acide hyaluronique stoechiométriquement neutre est produit.
 - 21. Procédé selon la revendication 19, dans lequel ledit sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate est inférieur au nombre d'équivalents d'acide hyaluronique, grâce à quoi un sel d'acide hyaluronique partiellement salifié est produit.
- 45 22. Procédé selon l'une quelconque des revendications 19 à 21, dans lequel ledit sel de baryum de l'acide hyaluronique est combiné en outre avec un sulfate d au moins un élément choisi dans le groupe constitué par un métal alcalin ou alcalino-terreux, l'aluminium ou l'ammonium.
- 23. Procédé selon la revendication 22, dans lequel lesdits sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate est égal au nombre d'équivalents d'acide hyaluronique.
 - 24. Procédé selon la revendication 22, dans lequel lesdits sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate est inférieur au nombre d'équivalents d'acide hyaluronique.
- 25. Procédé selon l'une quelconque des revendications 19 à 24, dans lequel ladite substance active est au moins un élément choisi parmi la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, ne, la kanamycine, l'amikacine, la tobramycine, l'auréomycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la

polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazol, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adénine arabinoside, la tricarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropine, le propanolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone et la médrisone.

- 26. Procédé selon l'une quelconque des revendications 19 à 25, dans lequel l'acide hyaluronique est une fraction de poids moléculaire ayant un poids moléculaire valant entre environ 90-80 % et 0,23 % du poids moléculaire de l'acide hyaluronique intégral ayant un poids moléculaire de 13 millions.
 - 27. Procédé selon la revendication 26, dans lequel la fraction d'acide hyaluronique ne contient pas d'acide hyaluronique ayant un poids moléculaire de moins de 30 000.
 - 28. Procédé selon la revendication 27, dans lequel la fraction de poids moléculaire a un poids moléculaire moyen de 50 000 à 100 000, de 500 000 à 730 000 ou de 250 000 à 350 000.

Revendications pour l'Etat contractant suivant : AT

- 1. Procédé de préparation d'un médicament, comprenant l'étape consistant à mélanger ensemble :
 - (a) une substance pharmacologiquement active ou un mélange de substances pharmacologiquement actives convenant pour une administration topique ; et
 - (b) un acide hyaluronique ou un sel pharmaceutiquement acceptable dudit acide hyaluronique, éventuellement avec un excipient supplémentaire convenant pour une administration topique, à la condition que ladite substance active ne soit pas un médicament ophtalmique quand l'acide hyaluronique est une fraction ayant un poids moléculaire moyen de 50 000 à 730 000 et qui ne contient pratiquement pas d'acide hyaluronique ayant un poids moléculaire de moins de 30 000.
- 20. Procédé selon la revendication 1, dans lequel ladite substance active est capable d'être absorbée par voie intradermique ou à travers la muqueuse nasale ou rectale.
 - 3. Procédé selon la revendication 1 ou 2, dans lequel ladite substance active est de nature basique et est présente sous la forme d'un sel avec ledit acide hyaluronique.
 - 4. Procédé de préparation d'un médicament à usage topique, comprenant la salification de l'acide hyaluronique avec au moins une substance pharmacologiquement active, de nature basique, convenant pour une administration topique, de manière à produire un sel partiel ou stoechiométriquement neutre de l'acide hyaluronique avec au moins une substance pharmacologiquement active.
 - 5. Procédé selon la revendication 4, dans lequel ladite substance active est capable d'être absorbée par voie intradermique ou à travers la muqueuse nasale ou rectale.
- 6. Procédé selon la revendication 4 ou 5, comprenant l'addition d'un excipient supplémentaire convenant pour une administration topique.
 - 7. Procédé selon l'une quelconque des revendications 4 à 6, dans lequel ledit sel est un sel partiel, et au moins une partie des groupes acides dudit acide hyaluronique est salifiée avec un métal alcalin ou alcalino-terreux, le magnésium, l'aluminium ou l'ammonium.
 - 8. Procédé selon l'une quelconque des revendications 4 et 6-7, dans lequel ladite substance active convient pour une utilisation en opthalmologie.
- Procédé selon l'une quelconque des revendications 4 à 7, dans lequel ladite substance active convient
 pour une utilisation en dermatologie, en oto-rhino-laryngologie, en odontologie, en angiologie, en obstétrique ou en neurologie.

35

15

20

25

- 10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel ladite substance pharmacologiquement active est un agent antibiotique, anti-infectieux, antiviral, antimicrobien, anti-inflammatoire, de cicatrisation des plaies, cystostatique, cytotoxique, anesthésique, promoteur cholinergique, antagoniste cholinergique, promoteur adrénergique ou antagoniste adrénergique.
- 11. Procédé selon la revendication 10, dans lequel ladite substance pharmacologiquement active est un élément choisi dans le groupe constitué par l'auréomycine, la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacine, la tobramycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, la vancomycine, la novobiocine, la ristocétine, la clindamycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazol, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adénine arabinoside, la trifluorothimidine, l'aciclovir, l'éthyldésoxyuridine, la pilocarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropine, la noradrénaline, l'adrénaline, la norfazoline, la méthoxamine, le propanolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone, la médrisone, le fluorocil, le méthotrexate et la podophylline.

10

15

- 20 12. Procédé selon l'une quelconque des revendications 4 à 9, dans lequel ladite substance active est un élément choisi dans le groupe constitué par la streptomycine, l'érythromycine, la kanamycine, la néomycine, la gentamicine, la pilocarpine, la triamcinolone et le facteur de croissance épidermique.
- 13. Procédé selon l'une quelconque des revendications 1 à 12, dans lequel ledit acide hyaluronique est une fraction de poids moléculaire qui est essentiellement exempte d'acide hyaluronique ayant un poids moléculaire de moins de 30 000.
 - 14. Procédé selon la revendication 13, dans lequel ladite fraction a un poids moléculaire moyen compris entre 50 000 et 100 000.
 - 15. Procédé selon la revendication 13, dans lequel ladite fraction a un poids moléculaire moyen compris entre 500 000 et 730 000.
- **16.** Utilisation d'un sel de l'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament convenant pour une administration ophtalmique.
 - 17. Utilisation d'un mélange d'acide hyaluronique avec une substance non ophtalmique pharmacologiquement active pour la préparation d'un médicament convenant pour une administration topique.
- 40 18. Utilisation d'un sel d'acide hyaluronique avec une substance pharmaceutiquement active de nature basique pour la préparation d'un médicament, convenant pour une administration topique et capable d'être absorbée par voie intradermique ou à travers la muqueuse nasale ou rectale.
 - 19. Procédé de préparation d'un sel d'acide hyaluronique, comprenant les étapes consistant à :
 - a) combiner une solution aqueuse d'un sel de baryum d'acide hyaluronique avec un sulfate d'une substance pharmacologiquement active ; et
 - b) séparer le sulfate de baryum précipité pour obtenir le sel de l'acide hyaluronique en solution aqueuse.
- 20. Procédé selon la revendication 19, dans lequel ledit sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate est égal au nombre d'équivalents d'acide hyaluronique, grâce à quoi un sel d'acide hyaluronique stoechiométriquement neutre est produit.
- 21. Procédé selon la revendication 19, dans lequel ledit sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate est inférieur au nombre d'équivalents d'acide hyaluronique, grâce à quoi un sel d'acide hyaluronique partiellement salifié est produit.

- 22. Procédé selon l'une quelconque des revendications 19 à 21, dans lequel ledit sel de baryum de l'acide hyaluronique est combiné en outre avec un sulfate d au moins un élément choisi dans le groupe constitué par un métal alcalin ou alcalino-terreux, l'aluminium ou l'ammonium.
- 5 23. Procédé selon la revendication 22, dans lequel lesdits sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate est égal au nombre d'équivalents d'acide hyaluronique.
 - 24. Procédé selon la revendication 22, dans lequel lesdits sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate est inférieur au nombre d'équivalents d'acide hyaluronique.
 - 25. Procédé selon l'une quelconque des revendications 19 à 24, dans lequel ladite substance active est au moins un élément choisi parmi la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacine, la tobramycine, l'auréomycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazol, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adénine arabinoside, la tricarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropine, le propanolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone et la médrisone.
 - 26. Procédé selon l'une quelconque des revendications 19 à 25, dans lequel l'acide hyaluronique est une fraction de poids moléculaire ayant un poids moléculaire valant entre environ 90-80 % et 0,23 % du poids moléculaire de l'acide hyaluronique intégral ayant un poids moléculaire de 13 millions.
 - 27. Procédé selon la revendication 26, dans lequel la fraction d'acide hyaluronique ne contient pratiquement pas d'acide hyaluronique ayant un poids moléculaire de moins de 30 000.
- 28. Procédé selon la revendication 27, dans lequel la fraction de poids moléculaire a un poids moléculaire moyen de 50 000 à 100 000, de 500 000 à 730 000 ou de 250 000 à 350 000.

37

10

15

20

25

35

40

45

50

(11) EP 0 197 718 B2

(12)

NEW EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the opposition decision: 25.07.2001 Bulletin 2001/30 (51) Int Cl.7: A61K 47/36

- (45) Mention of the grant of the patent: 15.12.1993 Bulletin 1993/50
- (21) Application number: 86302291.9
- (22) Date of filing: 27.03.1986

(54) New medicaments for topical use

Arzneimittel zur topischen Anwendung Médicaments pour application topique

- (84) Designated Contracting States: AT DE GB IT NL SE
- (30) Priority: 05.04.1985 IT 4792485 23.12.1985 IT 4898085
- (43) Date of publication of application: 15.10.1986 Bulletin 1986/42
- (60) Divisional application: 93200175.3 / 0 555 898
- (73) Proprietor: FIDIA S.p.A. 35031 Abano Terme (Padova) (IT)
- (72) Inventors:
 - Della Valle, Francesco I-Padova (IT)
 - Romeo, Aurelio I-Rome (IT)
 - Lorenzi, Silvana
 I-35100 Padova (IT)
- (74) Representative: Pendlebury, Anthony et al PAGE, WHITE & FARRER 54 Doughty Street London WC1N 2LS (GB)

(56) References cited:

EP-A- 0 138 572 FR-A- 1 425 265 GB-A- 818 336 GB-A- 2 099 826 JP-A- 57 183 707 US-A- 3 792 164 US-A- 4 141 973 US-A- 4 272 522

- CHEMICAL ABSTRACTS, vol. 102, no. 16, April 22, 1985, page 359, ref. no. 137591n; Columbus, Ohio, US & JP-A-59 219 209
- CHEMICAL ABSTRACTS, vol. 68, no. 7, February 12, 1968, page 2627, ref. no. 27273g; Columbus, Ohio, US N. KELLER: "Aleration of the hydrodynamic properties of hyaluronate solutions by corticosterone" & BIOCHEM. BIOPHYS. ACTA, 148 (3), 757-66, 1967.
- CHEMICAL ABSTRACTS, vol. 80, no. 15, April 15, 1974, page 137, ref no. 79756j; Columbus Ohio, US M.K. PAL et al.: "Separation of hyaluronate, chondroitin sulfate and heparin by adsorption-desorption technique" & ANAL. BIOCHEM. 1974, 57(2), 395-402.
- CHEMISTRY ANSD INDUSTRY, February 12, 1955, pages 168-169; Soc. of Chem. Ind., London, GB J.E. SCOTT: "The reaction of long-chain quaternary ammonium salts with acidic polysaccharides"
- MEDLINE (03833357, 79210357) & Br. J. Surg. (England) 66(4), 1979, pp. 226-229

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

Description

20

[0001] The present invention relates to new medicaments for topical use.

[0002] European patent application No. 0138572 discloses hyaluronic acid fractions having pharmaceutical activity and compositions containing those fractions. Two fractions are disclosed: one having a molecular weight between 50,000 and 100,000; and the other having a molecular weight between 500,000 and 730,000. The compositions disclosed comprise mixtures of the hyaluronic acid fractions with ophthalmic drugs. Chemical Abstracts 68, No. 27273g (1968) discloses a study of the hydrodynamic properties of hyaluronate solutions in the presence and absence of corticosterone.

[0003] U.K. patent application No. 2099826 discloses cosmetic formulations containing hyaluronate based compositions. A water based formulation is described as comprising a mixture of sodium hyaluronate fractions with protein. The cosmetic formulations comprise 0.05 to 5% of the composition with an emollient, a sugar alcohol, a neutral or anionic polysaccharide, a preservative, and water. The preservative is disclosed as a bacteriostatic or fungistatic substance which does not react with or degrade the hyaluronic acid.

[0004] Chemical Abstracts 102, No. 137591n (1985) discloses skin conditioners which contain hyaluronic acid salts. A skin lotion is also disclosed.

[0005] Chemical Abstracts <u>80</u>, No. 79756j (1974) discloses the separation of hyaluronate by adsorption to, and elution from, calcium phosphate, barium sulphate and aluminium oxide.

[0006] The application of a topically active medicament may be a benefit or remedy, especially in dermatology, diseases of the mucuous membranes in general and particularly membranes of the oral and nasal cavities, diseases of the outer ear, and especially diseases of the outer surface of the eye. Application of these topical medicaments is particularly advisable in pediatrics and in the veterinary field.

[0007] The advantages of therapy using the medicaments according to the present invention are due to a more efficient vehicle for the drugs promoted by the acidic polysaccharide of the hyaluronic acid component and to a better bioavailability of the active substance as compared to that obtainable with known pharmaceutical formulations. Furthermore, the new medicaments of the invention assume particular importance in the case of ophthalmic medicaments, because due to the above mentioned qualities, there is an additional special compatibility with the corneal epithelium and, therefore, a very high level of tolerability, with no sensitization effects. When the medicaments are administered in the form of concentrated solutions with elastic-viscose characteristics or in solid form, it is possible to obtain films on the corneal epithelium which are homogeneous, stable, perfectly transparent, and which adhere well, guaranteeing prolonged bioavailability of the drug, thereby forming excellent preparations with a retard effect.

[0008] Such ophthalmic medicaments are of exceptional value especially in the veterinary field, considering for example that there are at present no veterinary specialities for oculistic use containing chemotherapeutics. Indeed, preparations intended for human use are usually used, and these do not always guarantee a specific range of activity nor comply with the particular conditions in which the treatment should be effected.

[0009] This is the case, for example, in therapy for infectious keratoconjunctivitis, pink eye or IBK, an infection which mainly affects cattle, sheep and goats. Presumably, these three species have in common specific etiological factors. In particular, in cattle the main microorganism involved seems to be Moraxella bovis -(even though other agents of a viral origin should not be excluded, such as Rhinotracheitis virus, Micoplasma, Rickettsia and Chlamydia in the case of sheep, and Rickettsia in the case of goats). The disease manifests itself in an acute form and tends to spread quickly. In the initial stages the symptomatology is characterized by blepharospasm and excessive lacrimation, followed by purulent exudate, conjuctivitis and keratitis, often accompanied by fever, reduced apetite and milk production. Lesions of the cornea are particularly serious and in the final stages can even cause perforations of the cornea itself. The clinical course varies from a few days to several weeks.

[0010] A vast range of chemotherapeutic agents are used for treatment, administered both topically (often in association with anti-inflammatory steroids), and systemically. Among these are the following: tetracyclines, such as oxytetracycline, penicillins, such as cloxacillin and benzylpenicillin, sulfamides, polymyxin B (associated with miconazole and prednisolone), chloramphenicol, tylosin and chloromycetin. Topical treatment of the disease, despite its apparent simplicity, still represents an unsolved problem, since for one reason or another it has proved impossible up until now to obtain oculistic preparations having concentrations of antibiotics or sulfamides which are therapeutically effective in the secretion of tears. This is quite understandable in the case of solutions, bearing in mind the mainly reclining position of the head in these animals. But it is also true of semisolid medicaments, since the excipients normally used in them do not have the qualities necessary for adhering to the surface of the cornea, as they do not usually have a sufficiently high concentration of active substance and cannot achieve perfect distribution (i.e., the presence of a distribution gradient). These defects of conventional colliriums in ophthalmic use have been described by Slatter et al. in "Austr. vet. J.," 1982, 59 (3), pp. 69-72. The present invention provides a medicament which is adapted for only topical administration, comprising a drug delivery system which comprises:

- (a) a pharmaceutically active substance selected from an antiviral agent, antitumor agent, cholinergic agonist, adrenergic agonist, cytostatic agent and cytotoxic agent; and
- (b) a vehicle comprising hyaluronic acid or a pharmaceutically acceptable salt of said hyaluronic acid, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- [0011] The present invention further provides a medicament which is adapted for only topical administration, comprising a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature suitable for topical administration, with the proviso that said salt is not sodium hyaluronate.
- [0012] The present invention further provides use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament, with the proviso that said salt is not sodium hyaluronate. The medicament is suitable for topical administration, suitable for ophthalmic administration, or suitable for topical administration and capable of being absorbed intradermally or through the nasal or rectal mucosa.
- [0013] The present invention further provides use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to provide enhanced bioavailability of the drug, to provide systemic delivery of the drug, or to treat an internal organ pathology. Accordingly to this use,
 - (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
 - (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.

25 Detailed Description of the Invention

5

10

20

40

45

50

- [0014] One advantage of the present invention is having perfected new types of collirium in which the above defects have been overcome. The use of hyaluronic acid as a vehicle for ophthalmic drugs allows for the formulation of excellent preparations free from concentration gradients of the active substance and, therefore, perfectly homogenous, transparent and adhesive to the corneal epithalium, without sensitization effects, with excellent vehicling of the active substance and possibly with a retard effect.
- [0015] The above mentioned properties of the new medicaments may of course be used also in other fields besides opthalmology. As already mentioned, they may be applied in dermatology and in diseases affecting the muccus membranes, such as in the mouth, for instance in odontology. They may also be used to obtain a systemic effect due to the effect of transcutaneous riabsorption, for instance in suppositories. All of these applications are possible both in human and veterinary medicine. In human medicine the new medicaments are particularly suitable for use in pediatrics. The present invention also includes, in particular, any one of the therapeutic applications.
- [0016] The present invention, therefore, is in its essential aspect related to the use of hyaluronic acid as a vehicle in association with a pharmaceutical substance to provide an improved drug delivery system. New medicaments according to the invention basically contain two components:
 - Component (1) a pharmacologically active substance, including, as discussed below, mixtures of different such substances.
 - Component (2) hyaluronic acid, including as discussed below, molecular weight fractions of hyaluronic acid and various salts of hyaluronic acid or the molecular weight fractions thereof, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- [0017] The present invention can further be characterized as including physical mixtures of Component (1) and Component (2), complexes of the Component (1) active substance with the Component (2) hyaluronic acid, or various combinations or mixtures thereof.

Component (1) - Pharmaceutical Substance:

[0018] The Component (1) may first of all be catagorized with respect to its use in the various fields of therapy, starting with the distinction between human and veterinary medicine and then specifying the various sectors of application with respect to the organs or to the tissues to be treated, such as dermatology, otorhinolaryngology, obstetrics, angiology, neurology or any type of pathology of the internal organs which may be topically treated, such as for example

rectal applications. According to a particular aspect of the present invention, where the medicament comprises a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature, the pharmacologically active substance (1) is first and foremost for ophthalmic use. According to another criterion, the pharmacologically active substance (1) must be distinct with respect to its effect and may therefore, for example, be used as an anesthetic, analgesic, vasoconstrictor, antibacterial, antiviral, or anti-inflammatory agent. For the ophthalmic field, it may, particularly be indicated for example for its miotic, anti-inflammatory, wound healing and antimicrobial effects.

[0019] The component (1) may also be, according to the invention, a mixture of two or more active substances. For example, in ophthalmology, an antibiotic may be associated with an antiphlogistic and a vasoconstrictor or several antibiotics may be associated with one or more antiphlogistics, or one or more antibiotics may be associated with a mydiatric, a miotic, a wound healing or an antiallergic agent. For example it is possible to use the following associations of ophthalmic drugs: (a) kanamycin + phenylephrine + phosphate dexamethasone; (b) kanamycin + phosphate betamethasone + phenylephrine, or similar associations with other antibiotics used in ophthalmology, such as rolitetracycline, neomycin, gentamicin, and tetracycline.

[0020] In dermatology it is possible to use as the active component (1) or mixtures of various antibiotics, such as erythromycin, gentamicin, neomycin, gramicidin, polymyxin B, or mixtures of such antibiotics with anti-inflammatory agents, for example corticosteroids. For example, mixtures comprising: (a) hydrocortisone + neomycin; (b) hydrocortisone + neomycin + polymyxin B + gramicidin; (c) dexamethasone + neomycin; (d) fluorometholon + neomycin; (e) prednisolone + neomycin; (f) triamcinolone + neomycin + gramicidin + nystatin, or any other mixture used in conventional preparations for dermatology. The mixtures of various active substances are not of course limited to this field, but in each of the above mentioned fields of medicine it is possible to use mixtures similar to those already in use for the known pharmaceutical preparations of the art.

20

25

30

35

[0021] Examples of the pharmacologically active substance (1) for use in ophthalmic medicaments according to the invention are: basic and non-basic antibiotics, for example aminoglucosidics, macrolides, tetracycline and peptides, such as for example gentamicin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, vancomycin, novobiocin, ristocetin, clindamycin, amphotericin B, griseofulvin, nystatin and possibly their salts, such as sulphates or nitrates, or mixtures of the same or with other active principles, such as those mentioned hereafter.

[0022] Other ophthalmic drugs to be used to advantage according to the present invention are: other anti-infective agents such as diethylcarbamazine, mebendazole, sulfamides such as sulfacetamide, sulfadiazine, sulfisoxazole; antiviral and antitumor agents such as iododeoxyuridine, adenine arabinoside, trifluorothtmidine, aciclovir, ethyldeoxyuridine. bromovinyldeoxyuridine, 5-iodo-5'-amino-2',5'-dideoxyuridine; steroid anti-inflammatory agents, such as for example dexamethasone, hydrocortisone, prednisolone, fluorometholon, medrysone and possibly their esters, for example esters of phosphoric acid; non-steroid anti-inflammatory agents, for example indomethacin, oxyphenbutazone, flurbiprofen; wound healers such as the epidermal growth factor EGF; local anesthetics, such as Benoxinate, proparacaine and possibly their salts; cholinergic agonist (promoter) drugs such as pilocarpine, metacholine, carbaylocholine, aceclidine, physiostigmine, neostigmine, demecarium and possibly their salts; cholinergic antagonist drugs such as noradrenaline, adrenaline, naphozoline, methoxamine and possibly their salts; and adrenergic antagonist drugs such as propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, pindolol, bupranolol, atenolol, metoprolol, pindolol, bupranolol, atenolol, metoprolol, pindolol, bupranolol, atenolol, metoprolol, pindolol, budarine, labetalol and possibly their salts.

[0023] As noted above, the active Component (1) may take the form of a mixture to two or more active substances. Examples of active substances to be used alone or in mixture between themselves or with other active principles in dermatology are: therapeutic agents such as anti-infective, antibiotic, antimicrobial, anti-inflammatory, cytostatic, cytotoxic, antiviral, anesthetic agents, and prophylactic agents, such as sun shields, deodorants, antiseptics and disinfectants. Of the antibiotics the following should be noted: erythromycin, bacitracin, gentamicin, neomycin, aureomycin, gramicidin and their mixtures, of the antibacterials and disinfectants: nitrofurazone, mafenide, chlorhexidine, and derivatives of 8-hydroxyquinoline and possibly their salts; of the anti-inflammatory agents, above all the corticosteroids such as prednisolone, dexamethasone, flumethasone, clobetasol, triamcinolone acetonide, betamethasone or their esters, such as valerianates, benzoates, dipropionates; of the cytotoxics, bluorouracil, methotrexate, podophyllin; of the anesthetics dibucaine, lidocaine, benzocaine.

[0024] The list is of course only for illustrative purposes and any other agent described in literature may be used.
[0025] Of the examples mentioned for ophthalmology and dermatology, it is possible to conclude by analogy which are the medicaments according to the present invention to be used in the above mentioned fields of medicine, such as for example in otorhinolaryngology or odontology or in internal medicine, for example in endocrinology, where it is possible to effect treatments with preparations for intradermic absorption or absorption through the mucous, for example rectal or intranasal absorption, for example such as nasal sprays or inhalations in the oral cavity and in the pharynx.

[0026] These preparations may therefore be for example anti-inflammatory, or vasoconstricting or vasopressors such as those already mentioned for ophthalmology, vitamins, antibiotics, such as those mentioned above, hormones, chemiotherapeutics, antibacterials, etc., including those mentioned above for use in dermatology.

5 Component (2) - Hyaluronic Acid Vehicle:

20

35

[0027] As noted above, the medicaments of the invention comprise as Component (2) hyaluronic acid, molecular weight fractions thereof, or various salts thereof. Hyaluronic acid (hereinafter sometimes referred to a "HY") is a natural heteropolysaccharide which is composed of alternating residues of D-glucuronic acid and N-acetyl-D-glucosamine. HY is present in pericellular gels, in the fundamental extracellular substance of connective tissues, in vertabrate organisms, in the synovial fluid of the joints, in the vitreous humor, in human umbellical tissue, in cocks' combs and in some bacteria. Its molecular weight is about 8-13 million.

[0028] The first research carried out on HY was by Balazs (see US-A-4,141,973), who isolated a HY fraction able to substitute for endobulbar fluids and suitable for other therapeutic applications. Hyaluronic acid and its molecular weight fractions with lower molecular weights have in fact proved widely useful in medicine and a cosmetic use is also being considered (see for example, Balass et al., Cosmetics & Toiletries, Italian Edition No. 5/84). It has especially been used as a therapeutic agent in therapies for arthropathies, such as in the veterinary field to cure arthritis in horses (Acta Vet. Scand. 167, 379 (1976).

[0029] Hyaluronic acid and its molecular fractions have been used in ophthalmic surgery as therapeutic, auxilliary and substitutive agents for natural organs and tissues (see for example E. A. Balazs et al., Modern Problems in Ophthalmology, 10, 3 (1970), E. B. Strieff, S. Karger, eds. Basel and Balazs et al., Viscosurgery and the Use of Sodium Hyaluronate During Intraocular Lens Implantation, Paper presented at the International Congress and First Film Festival on Intraocular Implantation, Cannes, 1979).

[0030] In published European Patent Application EP-A-0138572 filed on October 10, 1984, there is a description of a molecular fraction of hyaluronic acid which may be used for intraocular and intra-articular injections, respectively, suitable for the substitution of the endobulbar fluids in the eye and for therapy of arthropathies.

[0031] In contrast to this therapeutic use or as a plastic auxilliary in surgery or in cosmetics, in the present invention, hyaluronic acid or its molecular fractions are used as vehicles for the administration of pharmacologically active substances for topical use.

[0032] As a vehicle to be used as the component (2) of the present invention, hyaluronic acid of any origin may be used, such as the acids extracted from the above mentioned natural starting materials, including cocks' combs. The preparation of crude extracts of such acids is described in literature. Preferably, purified hyaluronic acids should be used. According to the invention, in the place of integral hyaluronic acids obtained directly be extraction of the organic materials, it is possible to use fractions of the same with molecular weights which may vary greatly, such as for example from 90-80% (MW = 11.7-10.4 million) to 0.23% (MW = 30,000) of the molecular weight of an integral acid having a molecular weight of 13 million, preferably between 5% and 0.23%. Such fractions may be obtained by various procedures such as by hydrolyzing, oxydizing or enzymatic chemical agents, physical procedures such as mechanical or by irradiation, and, therefore, are often formed in the same purification procedures of the primary extracts (see for example, Balazs et al., Cosmetics and Toiletries, cited above). The separation and purification of the fractions obtained is achieved, for example, by molecular filtration.

[0033] Of particular importance to be utilized as the vehicle (2) according to the present invention are two purified fractions which may be obtained from hyaluronic acid, for example from cocks' combs, and known as Hyalastine and Hyalectin. The fraction known as Hyalastine has an average molecular weight of 50,000 and 100,000. Hyalectin has an average molecular weight of 500,000 to 730,000. A combined fraction of these two fractions has also been isolated and characterized as having an average molecular weight of 250,000 to 350,000. This combined fraction may be obtained with a yield of 80% of total hyaluronic acid available from the particular starting material, while the fraction Hyalectin may be obtained with a yield of 30% and the fraction Hyalastine wih a yield of 50% of the starting HY. (The preparation of these fractions is described in Examples 20-22, hereinafter).

[0034] Thus, the preferred hyaluronic acid to be utilized is a molecular weight fraction having a molecular weight broadly ranging from 30,000 to 13 million and preferably from 30,000 to 730,000. The most preferred hyaluronic fractions have a molecular weight of from 50,000 to 100,000, or from 500,000 to 730,000, or a combined fraction having a molecular weight of from 250,000 to 350,000. These preferred fractions are importantly substantially free of low molecular weight hyaluronic acid having a molecular weight of less than 30,000, and, therefore, are free of inflammatory side reactions when administered. (Further references hereinafter to hyaluronic acid or HY are intended to include, where consistent with the particular context, both hyaluronic acid and molecular weight fractions thereof.)

[0035] According to the invention, in place of hyaluronic acids and their molecular weight fractions as the Component (2) of the medicaments, it is also possible to use their salts with inorganic bases, such as alkali metal (sodium, potassium, lithium), alkali earth metal (calcium, barium, strontium), magnesium or aluminum. These salts may be stoichio-

metrically neutral in the sense that all the acid functions are salified, or partial salts or acids, in which only a certain number of the acid functions are salified with the above mentioned metals. Such salts are easily obtained, for example, by reacting HY or the above mentioned fractions with the basic calculated quantity, and it is also possible to use mixed salts originating from different bases.

[0036] In addition to the above salts, it is also possible to utilize salts of HY with compounds which can broadly be considered ammonium or substituted ammonium (amines), for example mono, di, tri and tetraalkylammonium where the alkyl groups have preferably between 1 and 18 carbon atoms or arylalkyls with the same number of carbon atoms in the aliphatic portion and where aryl means a benzene residue, optionally substituted with between 1 and 3 methyl, halogen or hydroxy groups. These ammonium or substituted ammonium salts of HY are formed by chemical reaction between hyaluronic acid and primary, secondary or tertiary amine moieties or ammonium hydroxide moieties of compounds or drugs having pharmaceutical activity, that is, with these moieties of the compounds which comprise active Component (1). As with the above-discussed salts, these salts also may be stoichiometrically neutral wherein all of the acid functions are salified, or may be partial salts or acids, and may comprise mixed salts originating from different bases.

[0037] Hyaluronic acid or its molecular fractions as the Component (2) may, therefore, be substituted by their salts with inorganic bases, such as alkali metal (sodium, potassium, lithium), alkaline earth metal (calcium, barium, strontium), magnesium, aluminum, ammonium or substituted ammonium. This principal is also valid for the above mentioned partial acid salts, in which all the acid groups present may be partially or totally neutralized with the above mentioned metals, or with ammonia or with amines, wherein the ammonium salts are formed by chemical reaction between hyaluronic acid and primary, secondary or tertiary amine moieties or ammonium hydroxide moieties of compounds or drugs having pharmaceutical activity, i.e. Component (1).

Medicament Preparations Combining Components (1) and (2):

15

20

25

30

35

[0038] There are various possibilities of realizing the medicaments according to the invention including:

- (a) using a neutral or acid active substance Component (1) mixed together with hyaluronic acid or a molecular weight fraction thereof; or their metallic salts;
- (b) using partial salts of HY with a basic active substance Component (1) leaving the residual acid groups of HY free or neutralized with the above-mentioned metals or bases;
- (c) using stoichiometrically neutral salts of HY with a basic substance Component (1), possibly adding HY or one of its partial or total (neutral) metal salts;
- (d) using stoichiometrically neutral salts of HY with a basic substance Component (1), adding further quantities of Component (1); and
- (e) using ad libitum mixtures of the salts or of the mixtures described hereinabove.

[0039] One particular form of medicament according to the invention is represented by mixtures of the pharmacologically active substance Component (1) with hyaluronic acids or molecular fractions thereof when the said active substance (1) is of a basic nature, for example in the case of basic antibiotics. In this case, the hyaluronic acid component (2) and the active substance (1) together from stoichiometrically partial salts, or acid salts, in which an aliquot part of all the acid groups of the HY Component (2) are salified with the basic groups of the active Component (1); or stoichiometrically neutral salts, in which all the groups of the HY Component (2) are salified, or mixtures of these neutral salts with a further quantity of the basic active substance (1).

[0040] Therefore, for the purpose of the present invention, if a basic active substance (1) is used, it is possible to replace the mixtures of Components (1) and (2) with the above mentioned acid salts or those which are stoichiometrically neutral, or, of course mixtures of such salts both with Component (1) and with Component (2).

[0041] Mixtures of drugs between themselves and possibly with other principles may also be used as the active Component (1) according to the invention. If, in the place of only one active substance (1), mixtures of active substances are used, such as those mentioned above, the salts of the basic active substances and hyaluronic acid and its molecular weight fractions may be mixed salts of one or more of such basic substances or possibly mixed salts of this type with a certain number of other acid groups of the HY polysaccharide salified with the above mentioned metals or bases. For example, it is possible to prepare salts of hyaluronic acid or one of the molecular fractions Hyalastine or Hyalectin with a certain percentage of salified acid groups with the antibiotic kanamycin, another percentage salified with the vasocostrictor phenylephrine, while a remaining percentage acid groups are free or salified for example with sodium or another of the above mentioned metals. It is also possible to mix this type of mixed salt with other quantities of hyaluronic acid or its fractions or their metallic salts, as indicated above for the medicament containing salts of only one active substance with the aforesaid acidic polysaccharides.

[0042] It is, therefore, possible according to a particular aspect of the present invention to use the above mentioned

salts, isolated and possibly purified to the solid anhydrous state, as an amorphous powder. When the powder comes into contact with the tissue to be treated, the powder forms a concentrated aqueous solution of a gelatinous character, of a viscous consistency, and with elastic properties. These qualities are also maintained at stronger dilutions and may therefore be used in place of the above mentioned anhydrous salts, solutions in water at various degrees of concentration or in saline, possibly with the addition of other pharmaceutically acceptable excipients or additives, such as other mineral salts to regulate the pH and the osmotic pressure. It is also possible of course to use the salts to make gels, inserts, creams or ointments, in which there are other excipients or ingredients used in conventional formulations of these pharmaceutical preparations. According to a particular aspect of the invention, there is a preference for the medicaments containing hyaluronic acid, the molecular weight fractions thereof or their mineral salts or their partial or neutral salts with the active substance (1) as the sole vehicle (with the possible exception of an aqueous solvent).

[0043] The quantitative ratios by weight of the two components (1) and (2) according to the invention may vary within ample limits and this naturally depends also on the nature of the two components and in the first case on that of the active substance. Such limits are for example the ratios of 0.01:1 and 100:1 between the two components (1) and (2). The range of variation however is preferably between the limits of 0.01:1 and 10:1 for the two said components and especially between 0.1:1 and 2:1.

[0044] The medicaments according to the invention may be in solid form, for example freeze-dried powders containing only the two components in mixture or separately packed.

[0045] In solid form, such medicaments form, on contact with the epithelium to be treated, more or less concentrated solutions according to the nature of the particular epithelium with the same characteristics of the previously prepared solutions in vitro which represent another particularly important aspect of the present invention. Such solutions are preferably in distilled water or sterile saline and contain preferalby no other pharmaceutical vehicle besides hyaluronic acid or one of its salts. The concentrations of such solutions may also vary within ample limits, for example between 0.01 and 75% both for each of the two components taken separately, and for their mixtures or salts. There is a particular preference for solutions of a pronounced elastic-viscose character, for example with a content of between 10% and 90% of the medicament or of each of its components. Medicaments of this type are particularly important, both in an anhydrous form (freeze-dried powders) or concentrated solutions or diluted in water or saline, possibly with the addition of additive or auxiliary substances, such as particular disinfectant substances or mineral salts acting as buffer or others, for ophthalmic use.

[0046] Among the medicaments of the invention the following should be chosen in particular, as the case may be, those with a degree of acidity suiting the place to which they are to be applied, that is with a physiologically tolerable pH. Adjustment of the pH, for example in the above mentioned salts of hyaluronic acid with a basic active substance, may be effected by regulating in a suitable manner the quantities of polysaccharide, of its salts and of the basic substance itself. Thus, for example, should the acidity of a hyaluronic acid salt with a basic substance be too high, the excess of the free acid groups with the above mentioned inorganic bases is neutralized, for example with sodium or potassium or ammonium hydrate.

[0047] The following formulations are exemplary of preparations according to the present invention comprising an association of an active pharmaceutical Component (1) and the vehicle Component (2) comprising hyaluronic acid as defined by the claims.

40 Formulation 1 - A 100 mg INSERT WITH PILOCARPINE CONTAINING:

[0048]

- mixed salt of hyaluronic acid with pilocarpine and with sodium (see preparation in Example 18, 100 mg

Formulation 2 - A COLLIRIUM CONTAINING GENTAMYCIN AND NAPHAZOLINE, OF WHICH 100 ml CONTAINS:

[0049]

- mixed salt of hyaluronic acid with gentamycin, with naphazoline and with sodium (see preparation in Example 16),
 2.910 a
- propyl oxybenzoate, 0.050 g
- sodium phosphate, 1.500 g
- distilled water, q.b.a. 100 ml

55

50

20

35

Formulation 3 - A COLLIRIUM WITH CHLORAMPHENICOL, NEOMYCIN, PHENYLEPHRINE, NITROFURAZONE, OF WHICH 100 ml CONTAINS:

[0050]

5

- mixed salt of hyaluronic acid with neomycin, with phenylephrine and with sodium (see preparation Example 17),
 2.890 g
- chloramphenicol, 0.500 g
- nitrofurazone, 0.02 g
- distilled water, q.b.a. 100 ml

Formulation 4 - A COLLIRIUM WITH DEXAMETASONE PHOSPHATE, KANAMYCIN E PHENYLEPHRINE, OF WHICH 100 ml CONTAINS:

15 [0051]

- mixed salt of hyaluronic acid with kanamycin and phenylephrine (see preparation Example 15), 3.060 g
- dexametasone phosphate sodium salt, 0.100 g
- methyl p-hydroxybenzoate, 0.060 g
- e distilled water, q.b.a. 100 ml.

METHODS OF PREPARATION

Method A -

25

[0052] The preparation of the salts according to the invention may be carried out in a known manner by bringing together solutions or suspensions in water or in organic solvents of the two components (1) and (2) and possibly of bases or basic salts of the above mentioned alkali metal, alkali earth metals, magnesium, aluminum or ammonium, in calculated quantities and isolating the salts in an amorphous anhydrous form according to known techniques. It is possible, for example to first prepare aqueous solution of the two components (1) and (2), freeing such components from aqueous solutions of their salts with acids of the metallic salts, respectively, for example, sulphates in the case of component (1) and sodium salts in the case of component (2) for treatment with relative ionic exchangers, uniting the two solutions at a low temperature, for example between 0°C and 20°C. If the salt thus obtained is easily soluble in water, it should be freeze-dried, while salts which are not easily soluble may be separated by centrifugation, filtration or decantation and possibly then exsiccated.

[0053] The following examples are given merely as illustrative of Method A of the present invention and are note to be considered as limiting.

Example 1 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH STREPTOMYCIN

40

35

[0054] 2.43 g of streptomycin sulfate (10 mEq) are solubilized in 25 ml of distilled H_2O . The solution is eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex 1 x 8) in the OH-form. The sulfate-free eluate is collected in a thermostatic container at 5°C. 4.0 g of the sodium salt of hyaluronic acid having a molecular weight of 255,000 (corresponding to 10 mEq of a monomeric unit) are solubilized in 400 ml of distilled H_2O . The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The sodium-free eluate is collected under agitation in the solution of streptomycin base. The resulting solution is frozen and instantly freeze-dried. In the salt thus obtain, all of the acidic groups of hyaluronic acid are salified with the basic functions of streptomycin. Yield: 5.5 g.

[0055] Microbiological determination on Bacillus subtilis ATCC 6633 compared to standard streptomycin shows a content of 33.8% by weight of streptomycin base, corresponding to the theoretically calculated weight.

[0056] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. (Anal. Biochem. 4, 330, 1962) shows a content by weight of HY acid of 66.2% (theoretical percentage 66.0%)

Example 2 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH ERYTHROMYCINE

55

[0057] 4.0 g of the sodium salt of hyaluronic acid with a molecular weight of 77,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled $\rm H_2O$. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is kept at a temperature

of 5°C. 7.34 g of erythromycin base (10 mEq) are added to the solution of HY under agitation at 5°C until complete solubilization is obtained. The resulting solution is frozen and freeze-dried. In the salt thus obtain, all of the acid groups of hyaluronic acid are salified with erythromycin. Yield: 10.8 g.

[0058] Microbiological determination on staphylococcus aureus ATCC 6538p in comparison with standard erythromycin shows a content of 66.0% by weight of erythromycin base, corresponding to the theoretical value. Colorimetric determination of the glucuronic acid combined in the polysaccharide according to the method of Bitter et al. shows a content of HY acid of 34.0% by weight, corresponding to the theoretically calculated percentage.

Example 3 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH KANAMYCIN.

10

20

25

35

40

55

[0059] 1.46 g of dikanamycin sulphate (10 mEq) are solubilized in 25 ml of distilled H_2O . The solution is eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH- form. The eluate, free from sulfates, is gathered in a thermostatic container at 5 °C 4.0 g of the sodium salt of HY having a molecular weight of 165,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O . The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under vortex agitation in the solution of kanamycin base. The solution thus obtained is instantly frozen and freeze-dried. Yield: 4.8 g.

[0060] In the salt obtained, all the acid groups of HY are salified with kanamycin. Microbiological determination on B. subtilis ATCC 6633 in comparison with standard kanamycin shows a content of 24.2% by weight of kanamycin base, corresponding to the theoretically calculated percentage.

[0061] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a content of HY acid of 75.8% by weight, also corresponding to the theoretical content.

Example 4 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH NEOMYCIN

[0062] 1.52 g of neomycin sulfate (10 mEq) are solubilized in 20 ml of distilled H_2O and eluted in a thermostatic column at 5°C, containing 15 ml of quatenary ammonium resin (Dowex® 1 x 8) in the OH-form. The eluate, free from sulfates, is collected in a thermostatic container at 5°C. 4.0 g of HY sodium salt with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H_2O and eluted in a thermostatic column at 5°C containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H+ form. The eluate, free from sodium, is gathered under agitation in the solution of neomycin base. The viscoelastic precipitate which forms is separated by decantation and freeze-dried. Yield: 4.76 g.

[0063] In the resulting salt, all of the HY acid groups are salified with neomycin. Quantitative microbiological determination carried out on S. aureus ATCC 6538p compared to standard neomycin shows a content by weight of 21.2% of neomycin base, corresponding to the theoretically calculated value.

[0064] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the metod of Bitter et al. shows a HY acid content of 78.8% by weight.

Example 5 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH GENTAMYCIN.

[0065] 1.45 g of gentamycin sulfate (10 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5 ° C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH-form. The eluate, free from sulfates, is collected in a thermostatic container at 5°C. 4.0 g of the sodium salt of HY with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in a vortex in the solution of gentamycin base. The thick and very viscous precipitate which forms is separated by decantation and freeze-dried. Yield: 4.65 g.

[0066] In the salt thus obtained, all the HY acid groups are salified with gentamycin. Quantitative microbiological determination carried out on S. epidermidus ATCC 12228 compared to standard gentamycin shows a content by weight of 20.0% of gentamycin base, corresponding to the theoretical content.

[0067] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 80.0%.

Example 6 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH AMIKACIN.

[0068] 1.47 g of amikacin base (10 mEq) are solubilized in 100 ml of distilled H_2O at 500°C. 4.0 g of the sodium salt of HY with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 4000 ml of distilled H_2O . The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex®

50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in a vortex in the solution of amikacin base. The thick and extremely viscous precipitate which forms is separated by decantation and freeze-dried. Yield: 5.16 a.

[0069] In the salt thus obtained, all the HY acid groups are salified with amikacin. Quantitative microbiological determination carried out on S. aureus ATCC 29737 in comparison to standard amikacin shows a content of 27.7% by weight in amikacin base, corresponding to the theoretical content.

[0070] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 72.3% by weight.

10 Example 7 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH ROLITETRACYCLINE.

[0071] 4.0 g of HY sodium salt having a molecular weight of 170,00 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is kept at a temperature of 5°C. 5.3 g of rolitetracycline base (10 mEq) are added to the solution of HY acid under agitation at 5°C away from the light, until complete solubilization has been achieved. The solution thus obtained is instantly frozen and freeze-dried. Yield: 8.9 g. [0072] In the salt thus obtained, all the HY acid groups are salified with rolitetracycline. Microbiological determination on B. pumilus ATCC 14884 in comparison to standard rolitetracycline shows a content of 58.2% by weight of rolitetracycline base, corresponding to the theoretical value. Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shown a HY acid content of 41.8% by weight.

Example 8 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH POLYMYXIN B.

25

35

[0073] 2.4 g of polymyxin B base (10 mEq) are suspended in 100 ml of distilled H₂O at 5°C. 4.0 g of HY sodium salt with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under vigorous agitation in the suspension of polymyxin base at 5 °C. After an initial phase during which the solution becomes clear, there is a progressive formation of a difficultly soluble product which is completely precipitated by 5 volumes of acetone. The precipitate is filtered, washed with acetone and then vacuum dried. Yield: 6.05 g.

[0074] In the salt thus obtained, all of HY acid groups are salified with polymyxin B. Quantitative microbiological determination carried out on B. bronchiseptica ATCC 4617 in comparison to standard polymyxin B shows a content of 38.7% by weight of polymyxin B. base, corresponding to the theoretical value.

[0075] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 61.3%.

Example 9 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH GRAMICIDIN S

[0076] 6.7 g of gramacidin S hydrochloride salt (10 mEq) are suspended in 200 ml of ethanol/H₂O (80:20). The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form. 4.0 g of the sodium salt of HY with a molecular weight of 165,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form.

[0077] 200 ml of dimethyl sulfoxide (DMSO) are added to the eluate, free from sodium, and the mixture is kept under agitation at 5°C. The solution of gramicidin base is then slowly added. The resulting solution is precipitated by 10 volumes of acetone. The precipitate is filtered, washed with acetone and vacuum dried. Yield: 9.55 g.

[0078] In the salt thus obtained, all the HY acid groups are salified with gramicidin S. Quantitative microbiological determination carried out on S. faecium ATCC 10541 in comparison to standard gramicidin S shows a content of 60.0% by weight of gramicidin S base, corresponding to the theoretical value.

[0079] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 40.0%.

Example 10 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH NAPHAZOLINE

[0080] Pure naphazoline base is prepared as follows: 4.94 g of naphazoline-HCl (20 mM) are solubilized in 100 ml of distilled H₂O at 5°C. 20 ml of NH₄OH (5M) are added and extracted twice with 100 ml of ethyl acetate. The organic layers are extracted twice with 50 ml of H₂O, mixed together again and anhydrified with anhydrous Na₂SO₄. The solution is concentrated at about 50 ml and then placed in a freezer to crystallize. The crystallized product is filtered,

washed with ethyl acetate and vacuum dried. Yield: 4.0 g of pure naphazoline base.

[0081] 4.0 g of the HY sodium salt with a molecular weight of 625,000, corresponding to 10 mEq of a monomeric unit, are solubilized in 400 ml of distilled H₂O and eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H+ form. The eluate, free from sodium, is kept at a temperature of 5°C. 2.1 g of naphazoline base (10 mEq) are added to the solution of HY acid and the mixture is agitated at 5°C until complete solubilization is achieved. The resulting mixture is instantly frozen and freeze-dried. Yield: 5.72 g.

[0082] In the salt thus obtained, all the HY acid groups are salified with naphazoline. Quantitative spectrophotometric determination, carried out in comparison to a naphazoline standard (USP) shows a content of 35.7% by weight of naphazoline base, corresponding to the theoretical value.

[0083] Colorimetric determination of the glucuronic acid-combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 64.3%.

Example 11 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH PHENYLEPHRINE

15 [0084] 2.04 g of L-phenylephrine-HCI (10 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex 1 x 8) in the OH form. The eluate, free from chlorides, is collected in a thermostatic container at 5°C. 4.0 g of a HY sodium salt having a molecular weight of 820,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in the solution of phenylephrine base. The resulting mixture is instantly frozen and freeze-dried. Yield: 5.25 g.

[0085] In the salt thus obtained, all the HY acid groups are salified with phenylephrine. U.V. spectrophotometric determination using the standard addition method (USP) shows a content of 30.6% by weight of phenylephrine base, corresponding to the theoretical content.

25 [0086] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 69.4%.

Example 12 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH ATROPINE

30 [0087] 4.0 g of HY sodium salt having a molecular weight of 1,300,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H+ form. The eluate, free from sodium, is kept at a temperature of 5°C. 2.89 g of atropine base (10 mEq) are added to the solution of HY acid and the mixture is agitated at 5 °C. The resulting mixture is frozen and freeze-dried. Yield: 6.5 g.

[0088] In the salt thus obtained, all the hyaluronic acid groups are salified with atropine. Quantitative gas chromatography determination (USP) carried out in comparison to standard atropine shows a content of 43.3% in atropine base, corresponding to the theoretical value.

[0089] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 56.7%.

Example 13 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH PILOCARPINE

[0090] 2.45 g of pilocarpine hydrochloride (10 mEq) are solubilized in 50 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH⁻ form. The eluate, free from chlorides, is collected in a thermostatic container at 5°C. 4.0 g of HY sodium salt with a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected under agitation in the solution of pilocarpine base. The solution thus obtained is instantly frozen and freeze-dried. Yield: 5.25 g.

[0091] In the salt thus obtained, all the HY acid groups are salified with pilocarpine. Spectrophotometric determination according to the USP carried out in comparison to a pilocarpine standard shows a content of 35.1 % by weight of pilocarpine base, corresponding to the theoretical value.

[0092] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 64.6%.

55

Example 14 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH NEOMYCIN AND WITH POLYMYXIN.

[0093] 4.0 g of HY sodium salt having a molecular weight of 170,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H+ form. The eluate, free from sodium is collected in a thermostatic container at 5°C. 0.150 g of polymyxin B base (0.63 mEq) are added under vigorous agitation. 1.425 g of neomycin sulphate (9.37 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH- form. The eluate, free from sulphates, is collected under vigorous agitation in the solution of HY acid and polymyxin B. The precipitate which forms is separated by centrifugation and vacuum dried; there is no loss of the product in the residual solution. Yield: 4.85 g.

[0094] 17.25 mg of this product contains:

15

Neomycin equal to 5.0 mg of Neomycin sulphate

Polymyxin equal to 0.63 mg (approx. 5000 UI) of polymyxin sulphate.

These determinations were carried out after separation by HPLC (high pressure liquid chromatography) of the two active principles.

Example 15 - PREPARATION OF THE MIXED SALT OF HYALURONIC ACID (HY) WITH KANAMYCIN AND WITH PHENYLEPHRINE

[0095] 4.0 g of HY sodium salt having a molecular weight of 65,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H+ form. The eluate, free from sodium, is collected in a thermostatic container at 5°C. 0.85 g of kanamycin sulphate (5.82 mEq) are solubilized in 10 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 10 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH form.

[0096] The eluate, free from sulphates, is collected in a container kept at a temperature of 5°C. The phenylephrine base is prepared by dissolving phenylephrine hydrochloride in distilled H₂O at 5°C at 100 mg/ml, and NH₄OH (6N) is added until complete precipitation is achieved. The precipitate is separated by filtration, washed with distilled H₂O until the chlorides have disappeared from the washing water, and then vacuum dried. The HY acid and kanamycin base solutions are mixed and kept at a temperature of 5°C 699 mg of phenylephrine base (4.18 mEq) are added under agitation until being completely dissolved. The resulting solution is frozen and freeze-dried. Yield: 5.1 g.

[0097] Microbiological determination on B. subtilis ATCC 6633 in comparison to standard kanamycin shows a content of 13.55% by weight of kanamycin base. U.V. spectrophotometric determination using the standard addition method (USP) shows a content of 13.45% by weight of phenylephrine base.

[0098] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 73.0%.

40 Example 16 - PREPARATION OF MIXED SALT OF HYALURONIC ACID (HY) WITH GENTAMYCIN, WITH NAPHAZOLINE AND WITH SODIUM.

[0099] 4.0 g of HY sodium salt with a molecular weight of 50,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H+ form. The eluate, free from sodium, is collected in a thermostatic container at 5 °C. 1.245 g of gentamycin sulphate (8.59 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 12 ml of quaternary ammonium resin (Dowex 1 x 8) in the OH- form.

[0100] The eluate, free from sulphates, is collected in a container kept at a temperature of 5°C. The pure naphazoline base is prepared with naphazollne-hydrochloride dissolved in distilled H2 at 5°C at a concentration of 50 mg/ml, NH4OH (5M) is added until pH 12 is achieved and the solution is extracted twice with ethyl acetate. The organic layers are washed with H₂O and anhydrified on anhydrous Na₂SO₄. The product is placed in a freezer to crystallize, and the precipitate is filtered, washed with ethyl acetate and vacuum dried. 2.5 g of HY sodium salt and 0.297 g of naphazoline base are added to the HY acid (1.41 mEq) and agitated until being completely solubilized. The solution of gentamycin base is then added, homogenized and then frozen and freeze-dried. Yield: 7.35 g.

[0101] Quantitative microbiological determination on B. epidermidus ATCC 12228 in comparison to a gentamycin standard shows a content of 11.1% by weight of gentamycin base. Quantitative spectrophotometric determination carried out in comparison to standard naphazoline (USP) shows a content of 4.0% by weight of naphazoline base. [0102] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of

Bitter et al. shows a HY acid content of 83.0%.

5

20

25

55

Example 17 - PREPARATION OF THE MIXED SALT OF HYALURONIC ACID (HY) WITH NEOMYCIN, WITH PHENYLEPHRINE AND WITH SODIUM.

[0103] 4.0 g of HY sodium salt having a molecular weight of 65,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 15 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5°C. 1.28 g of neomycin sulphate (8.42 mEq) are solubilized in 25 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 12 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH form.

[0104] The eluate, free from sulphates, is collected in a container kept at a temperature of 5°C. The phenylephrine base is prepared by dissolving phenylephrine hydrochloride in distilled H₂O at 5°C at 100 mg/ml, and adding NH₄OH (6N) until complete precipitation is achieved. The precipitate is separated by filtration, washed with distilled H₂O until the chlorides have disappeared from the washing water, and then it is vacuum dried.

[0105] 2.5 g of HY sodium salt and 0.266 g of phenylephrine base (1.58 mEq) are added to a solution of HY acid and agitated until being completely solubilized. The solution of neomycin base is then added and after homogenization it is frozen and freeze-dried. Yield: 7.35 g.

[0106] Spectrophotometric determination by U.V. using the standard addition method (USP) shows a content of 3.57% by weight of phenylephrine base. Quantitative microbiological determination on B.aureus ATCC 6538p in comparison to a neomycin standard shows a content of 11.64% by weight of neomycin base.

[0107] Colorimetric determination of the glucuronic acid combined in polysaccharide according to the method of Bitter et al. shows a HY acid content of 82.8%.

Example 18 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH PILOCARPINE AND WITH SODIUM.

[0108] 98.31 g of HY sodium salt having a molecular weight of 170,000 corresponding to 245 mEq of a monomeric unit are solubilized in 8.5 liters of distilled H₂O.

[0109] The solution is then eluted in a thermostatic column at 5°C, containing 300 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5°C.

[0110] 2.34 g of pilocarpine hydrochloride (9.6 mEq) are solubilized in 50 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 15 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH form.

[0111] The eluate, free from chlorides, is collected under agitation in the solution of HY acid. 235.4 ml of a solution of sodium hydroxide (1 M) are slowly added under agitation. The solution thus obtained is instantly frozen and freezedried. Yield: 99.8 g.

³⁵ [0112] 100 mg of the product contains 2 mg of pilocarpine as a base.

Example 19 - PREPARATION OF THE SALT OF HYALURONIC ACID (HY) WITH STREPTOMYCIN AND WITH SODIUM.

[0113] 98.68 g of HY sodium salt having a molecular weight of 255,000 corresponding to 246 mEq of a monomeric unit are solubilized in 8.5 liters of distilled H₂O. The solution is then eluted in a thermostatic column at 5°C, containing 300 ml of sulfonic resin (Dowex® 50 x 8) in the H⁺ form. The eluate, free from sodium, is collected in a thermostatic container at 5 ° C.

[0114] 1.88 g of streptomicin sulphate (7.74 mEq) are solubilized in 20 ml of distilled H₂O. The solution is eluted in a thermostatic column at 5°C, containing 12 ml of quaternary ammonium resin (Dowex® 1 x 8) in the OH- form.

[0115] The eluate, free from sulfates, is collected under agitation in the solution of HY acid. 238.3 ml of a solution of NaOH (1 M) are slowly added under agitation and the resulting solution is instantly frozen and freeze-dried. Yield: 99.8 g.

[0116] 100 g of the product contain 1.5 g of streptomicin as a base.

Example 20 - METHOD TO OBTAIN A MIXTURE OF THE FRACTIONS HYALASTINE AND HYALECTIN WITH NO INFLAMMATORY ACTIVITY. (Hyalastine is a trade mark).

[0117] Fresh or frozen cocks' combs (3000 g) are minced in a meat mincer and then carefully homogenized in a mechanical homogenizer. The paste thus obtained is then treated in a stainless steel container (AISI 316) or in glass with 10 volumes of anhydrous acetone. The whole is then agitated for 6 hours at a speed of 50 rpm. It is left to separate for 12 hours after which the acetone is discarded by siphoning. The acetone extraction is repeated until the discarded acetone reaches the right degree of humidity (Karl-Fischer method). The whole is then centrifuged and vacuum dried

at a suitable temperature for 5-8 hours. About 500-600 g of dry powder of cocks' combs are thus obtained.

[0118] 300 g of dry powder are exposed to enzymatic digestion with papain (0.2 g) under aqueous conditions and buffered with phosphate buffer in the presence of a suitable quantity of cysteine hydrochloride.

[0119] The resultant is agitated for 24 hours at 60 rpm, keeping the temperature at 60-65 ° C. It is then cooled at 25°C and Celite® (60 g) is added, maintaining the agitation for another hour. The mixture thus obtained is filtered until a clear liquid is obtained. The clear liquid then undergoes molecular ultrafiltration using membranes with a molecular weight exclusion limit of 30,000, in order to retain on the membrane those molecules with a molecular weight greater than 30,000.

[0120] The product is ultrafiltered from 5 to 6 original volumes, adding distilled water continually to the product during the ultrafiltration procedure. The addition of water is discontinued and the ultrafiltration is continued until the volume is reduced to 1/3 of the original volume. The residual liquid is rendered 0.1M by the addition of sodium chloride and the temperature is brought to 50°C. Under agitation at 60 rpm. 45 g of cetylpyridine chloride are added. The solution is agitated for 60 minutes and then 50 g of Celite^R are added. Under agitation, the temperature of the whole is brought to 25°C and the precipitate formed by centrifugation is collected. The precipitate obtained is suspended in a 0.01M solution in sodium chloride (5 liters) containing 0.05% of cetylpyridinium chloride. The resulting suspension is agitated for 60 minutes at 50°C; the temperature is then brought to 25°C and the precipitate is centrifuged. The washing operation is repeated 3 times after which the precipitate is collected in a container having 3 liters of a 0.05M solution of sodium chloride containing 0.05% of cetylpyridine chloride. It is agitated at 60 rpm for 60 minutes and the temperature is kept constant at 25°C for two hours. The supernatant is eliminated by centrifugation. The procedure is repeated several times with solutions of 0.1M sodium chloride containing 0.05% of cetylpyridinium chloride. The mixture is centrifuged and the supernatant is discarded. The precipitate is dispersed in a solution of 0.30M sodium chloride containing 0.05% of cetylpyridinium chloride (3 liters). The mixture is agitated and both the precipitate and the clear liquid are collected.

Extraction is repeated 3 more times on the precipitate, each time using 0.5 liter of the same aqueous solution.

20

35

40

55

[0121] Finally the precipitate residue is eliminated and the clear liquids are all placed together in a single container. The temperature of the liquid is brought to 50°C while under constant agitation. The liquid is then brought to 0.23M with sodium chloride. 1 g of cetylpyridinium chloride is added, and the liquid is kept under agitation for 12 hours. The mixture is cooled to 25°C and then it is filtered first on a Celite® pack and then through a filter. It then undergoes molecular ultrafiltration again, on a membrane with a molecular weight exclusion limit of 30,000, untrafiltering three initial volumes with the addition of a solution of 0.33M sodium chloride. The addition of sodium chloride solution is interrupted and the volume is reduced to 1/4 of the initial volume. The solution thus concentrated is precipitated under agitation (60 rpm) at 25°C with 3 volumes of ethanol (95%). The precipitate is collected by centrifugation and the supernatant is discarded. The precipitate is dissolved in 1 liter of a 0.1 M solution of sodium chloride and the precipitation is repeated with 3 volumes of ethanol (95%). The precipitate is collected and washed first with ethanol (75%) 3 times, and then with absolute ethanol (3 times), and finally with absolute acetone (3 times). The product thus obtained (Hyalastine + Hyalectin fractions) has an average molecular weight of between 250,000 and 350,000. The HY yield is equal to 0.6% by weight of the original fresh tissue.

Example 21 - METHOD TO OBTAIN THE FRACTION HYALASTINE FROM THE MIXTURE OBTAINED BY THE METHOD DESCRIBED IN EXAMPLE 20.

[0122] The mixture obtained by the method described in Example 20 is dissolved in twice distilled, apyrogenetic water at the rate of 10 mg of product to each 1 ml of water. The solution obtained is exposed to molecular filtration through filter membranes with a molecular weight exclusion limit of 200,000, following a concentration technique on the membrane without the addition of water. During the process of ultrafiltration through membranes with a molecular weight exclusion limit of 200,000, the molecules with a molecular weight of more than 200,000 do not pass through, while the smaller molecules pass through the membrane together with the water. During the filtration procedure no water is added, so that the volume decreases, and there is therefore an increase in the concentration of molecules with a molecular weight of more than 200,000. The product is ultrafiltered until the volume on top of the membrane is reduced to 10% of the initial volume. Two-volumes of apyrogenetic, twice distilled water are added and the solution is then ultrafiltered again until the volume is reduced to 1/3. The operation is repeated two more times. The solution passed through the membrane is brought to 0.1M with sodium chloride and then precipitated with 4 volumes of ethanol at 95%. The precipitate is washed 3 times with ethanol (75%) and then vacuum dried.

[0123] The product thus obtained (Hyalastine fraction) has an average molecular weight of between 50,000 and 100,000. The HY yield is equal to 0.4% by weight of the original fresh tissue.

Example 22 - METHOD TO OBTAIN THE FRACTION HYALECTIN.

[0124] The concentrated solution collected in the container on top of the ultrafiltration membrane with a molecular weight exclusion of 200,000, as in Example 21, is diluted with water until a solution containing 5 mg/ml of hyaluronic acid is obtained, as determined by quantitative analyses based on the dosage of glucuronic acid. The solution is brought to 0.1 M in an aqueous sodium chloride solution and then precipitated with 4 volumes of ethanol at 95%. The precipitate is washed 3 times with ethanol (75%) and then vacuum dried.

[0125] The product thus obtained (Hyalectin fraction) has a molecular weight of between 500,000 and 730,000. This corresponds to a specific fraction of hyaluronic acid with a defined length of molecular chain of about 2,500 to 3,500 saccharide units with a high degree of purity.

[0126] The HY yield is equal to 0.2% by weight of the original fresh tissue.

METHOD B

20

35

55

[0127] The invention also concerns a new procedure for the preparation of hyaluronic acid salts, starting with hyaluronic acid barium salt. The new procedure regards the salts which are soluble in water and in particular the hyaluronic acid salts with active substances, in which all the carboxylic groups of hyaluronic acid may be salified or only a part of the groups are salified. In the partial salts, the remaining carboxylic groups of hyaluronic acid may be free or salified with other active substances or with alkaline metals, magnesium, aluminum, ammonium, or substituted ammonium.

[0128] The new procedure consists of preparing an aqueous solution of the barium salt of a hyaluronic acid, and adding an aqueous solution containing a number of sulfuric acid equivalents, totally or partially salified by one or more organic or inorganic bases; wherein the number of sulfuric equivalents corresponds to the number of hyaluronic acid equivalents present in the barium salt aqueous solution. The aqueous solution of hyaluronic acid salt is obtained by filtration of the separated barium sulfate. That is, by filtration of the separated barium sulfate it is possible to obtain the aqueous solution of hyaluronic acid salt from which the salt in its dry form is obtainable by concentration.

[0129] The barium salt of hyaluronic acid is not described in literature and, surprisingly, has proved to be soluble in water. It can be easily prepared by treating the not very soluble hyaluronate of cetylpyridinium with an aqueous solution of barium chloride and precipitating from the solution the hyaluronate of barium with ethanol or another suitable solvent. The hyaluronate of cetylpyridinium is an intermediate commonly used in production procedures of hyaluronic acid to separate and purify the hyaluronic acid extracted from various organic materials.

[0130] The aqueous solution, containing a number of sulfuric acid equivalents, totally or partially salified with one or more organic bases, is prepared by dissolving in water the neutral sulfates of the bases and possibly adding sulfuric acid. Should there be a solution formed of neutral sulfates of one or more organic or inorganic bases, containing a number of sulfuric equivalents corresponding to the number of hyaluronic acid equivalents present in the aqueous solution of barium salt, the end result will be a stoichiometrically neutral salt of hyaluronic acid with the bases present in the corresponding aqueous solution (sulfates). If a stoichiometrically partial salt or acid salt of hyaluronic acid be desired, sulfuric acid should be added to the aqueous solution of sulfates, or basic acid sulfates should be used.

[0131] The Method B of the invention is illustrated by the following examples.

Example 23 - METHOD OF OBTAINING A MIXTURE OF FRACTIONS HYALASTINE AND HYALECTIN IN THE FORM OF BARIUM SALTS AND WITHOUT ANY INFLAMMATORY ACTIVITY

[0132] Fresh or frozen cock's combs (3000 g) are minced in a meat mincer and then carefully homogenized in a mechanical homogenizer. The paste obtained is treated in a stainless steel container (AISI 316) or in glass with 10 volumes of anhydrous acetone. The whole is agitated for 6 hours at a speed of 50 rpm. It is left to separate for 12 hours and the acetone is discarded by syphoning. The acetone extraction is contained until the discarded acetone has reached the right degree of humidity (Karl-Fischer method). The whole is then centrifuged and vacuum dried at a suitable temperature for 5-8 hours. In this way, about 500-600 g of dry powdered cock's combs are obtained.

[0133] 300 g of dry powder are exposed to enzymatic digestion with papain (0.2 g) under aqueous conditions and buffered in a phosphate buffer in the presence of a suitable quantity of cysteine hydrochloride. The resultant is agitated for 24 hours at 60 rpm, keeping the temperature constant at 60-65 °C. The whole is then cooled to 25 °C and Celite® (60 g) is added, while agitation is continued for another hour. The mixture is filtered until a clear liquid is obtained. The clear liquid undergoes molecular ultrafiltration using membranes with a molecular weight exclusion limit of 30,000. Between 5 and 6 original volumes of the product are ultrafiltered, continuously adding distilled water to the ultrafiltered product. The addition of water is discontinued and ultrafiltration is continued until the volume has been reduced to 1/3 of the original volume.

[0134] The residual liquid is brought to 0.1M with the addition of barium chloride and the temperature is brought to 50°C. While agitating at 60 rpm, 45 g of cetylpyridinium chloride are added. The solution is agitated for 60 minutes

and then 50 g of Celite® are added. While agitating, the temperature of the whole is brought to 25°C and the precipitate formed by centrifugation is collected. The precipitate is suspended in a 0.01 M solution in barium chloride (5 liters) containing 0.05% of cetylpyridinium chloride. It is agitated for 60 mnutes at 50 °C; the temperature is then brought to 25 °C and the precipitate is centrifuged. The washing process is repeated 3 more times and finally the precipitate is collected in a receptacle containing 3 liters of a 0.05M solution of barium chloride containing 0.05% of cetylpyridinium chloride. The resulting suspension is agitated at 60 rpm for 60 minutes and the temperature is kept constant at 25 °C for two hours. The clear supernatant is eliminated by centrifugation.

[0135] The process is repeated several times with a solution of 0.1M barium chloride containing 0.05% of cetylpyridinium chloride. The mixture is centrifuged and the supernatant is discarded. The precipitate is dispersed in a 0.30M solution of barium chloride containing 0.05% of cetylpyridinium chloride (3 liters). The mixture is agitated and both the precipitate and the clear liquid are gathered. The precipitate undergoes extraction 3 more times, each time using 0.5 liter of the same aqueous solution.

[0136] Finally, the residue precipitate is eliminated and the clear liquids are pooled in one container. The temperature of the liquid is brought to 50°C under constant agitation. The liquid is then brought to 0.23M with barium chloride. 1 g of cetylpyridinium chloride is added, and agitation is maintained for 12 hours. The mixture is cooled to 25°C, filtered first with Celite® and then through a filter. It then undergoes molecular ultrafiltration once more on membranes with a molecular exclusion limit of 30,000, ultrafiltering three initial volumes with the addition of 0.33M barium chloride solution. The addition of barium chloride solution is suspended and the volume is reduced to 1/4 of the original. The solution concentrated in this way is precipitated under agitation (60 rpm) at 25°C with 3 volumes of ethanol (95%). The precipitate is gathered by centrifugation and the supernatant is discarded. The precipitate is dissolved in 1 liter of 0.1M solution of barium chloride and precipitation is repeated with 3 volumes of ethanol (95%).

[0137] The precipitate is collected and washed first three times with 75% ethanol, then with absolute ethanol (3 times), and finally with absolute acetone (3 times). The product thus obtained (fractions Hyalastine + Hyalectin) has an average molecular weight between 250,000 and 350,000. The yield of HY corresponds to 0.6% of the original fresh tissue.

Example 24 - METHOD OF OBTAINING THE FRACTION HYALASTINE IN THE FORM OF BARIUM SALT OF THE MIXTURE OBTAINED BY THE METHOD DESCRIBED IN EXAMPLE 30.

[0138] The mixture obtained with the method described in Example 23 is dissolved in apyrogenic distilled water at a quantity of 10 mg of product per 1 ml of water. The solution thus obtained is subjected to molecular filtration through a membrane with a molecular exclusion limit of 200,000, following a concentration technique without the addition of water on top of the membrane. During the ultrafiltration process through membranes with a molecular exclusion limit of 200,000, the molecules with a molecular weight of more than 200,000 are detained, while the smaller molecules pass through the membrane together with the, water. During the filtration process, no water is added on top of the membrane, so that the volume diminishes and consequently the concentration of molecules with a molecular weight of more than 200,000 is increased. Ultrafiltration is maintained until the volume on top of the membrane is reduced to 10% of the initial volume. Two volumes of apyrogenic distilled water are added and the whole is ultrafiltered again until the volume is reduced to 1/3. The operation is repeated twice more. The solution which passes through the membrane is brought to 0.1M with barium chloride and is then precipitated with 4 volumes of 95% ethanol. The precipitate is washed 3 times with 75% ethanol and then vacuum dried. The product thus obtained (Hyalastine fraction) has an average molecular weight of between 50,000 and 100,000. The yield of HY is equal to 0.4% of fresh starting tissue.

Example 25 - METHOD OF OBTAINING HYALECTIN FRACTION IN THE FORM OF BARIUM SALT.

[0139] The concentrated solution gathered in the receptacle on top of the ultrafiltration membrane with a molecular exclusion limit of 200,000, as in Example 24 is diluted with water until a solution containing 5 mg/ml of hyaluronic acid is obtained, as determined by quantitative analysis based on the glucuronic acid dosage. The solution is brought to 0.1M in barium chloride and then precipitated with 4 volumes of 95% ethanol. The precipitate is washed 3 times with 75% ethanol and then vacuum dried. The product thus obtained (Hyalectin fraction) has a molecular weight of between 500,000 and 730,000. The yield of HY is equal to 0.2% of the fresh starting tissue.

Example 26 - PREPARATION OF THE SALT OF A HYALURONIC ACID (HY) WITH STREPTOMYCIN.

[0140] 4.47 g of HY barium salt (10 mEq) are solubilized in 300 ml of distilled H₂O.

25

35

45

[0141] 2.43 g of streptomycin sulfate (10 mEq) are solubilized in 100 ml of distilled H_2O , then added drop-wise under agitation to the solution of HY salt. The mixture is centrifuged for 30 minutes at 6000 rpm. The solution is separated, the precipitate is washed 2 times with 25 ml of distilled H_2O . The solution and the washings are pooled and then freeze

dried. In the salt thus obtained, all the acid groups of hyaluronic acid are salified with the basic functions of streptomycin. Yield: 5.5 g.

[0142] Microbiological determination on <u>B. subtilis</u> (ATCC 6633) compared to standard streptomycin shows a content of 33.8% in weight of basic streptomycin, corresponding to the theoretically calculated weight. Colorimetric determination of glucuronic acid combined in the polysaccharide according to the method of Bitter et al. (Anal. Biochem. <u>4</u>, 330, 1962) shows a content in weight of HY acid of 66.2% (theoretic percentage 66.0%).

Example 27 - PREPARATION OF THE SALT OF A HYALURONIC ACID (HY) WITH NAPHAZOLINE.

6 [0143] 4.47 g of the barium salt of HY with a molecular weight of 625,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O.

[0144] 2.6 g of neutral naphazoline sulfate (10 mEq sulfate) are solubilized in 50 ml of distilled water and added to the solution of HY barium salt. The mixture is agitated at 5°C until the barium sulfate is completely precipitated. After centrifugation the resulting solution is frozen and instantly freeze dried. Yield: 5.72 g.

[0145] In the salt thus obtained all the acid groups of HY acid are salified with naphazoline. Quantitative spectrophotometric determination compared with standard naphazoline (USP) showed a content of 35.7% in weight of basic naphazoline, corresponding to the theoretically calculated value. Colorimetric determination of the glucuronic acid combined in the polysaccharide, carried out according to the method of Bitter et al. showed a HY acid content of 64.3%.

20 Example 28 - PREPARATION OF THE PARTIAL SALT OF A HYALURONIC ACID (HY) WITH NAPHAZOLINE.

[0146] 4.47 g of the barium salt of HY with a molecular weight of 625,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O.

[0147] 1.54 g of acid naphazoline sulfate (10 mEq sulfate) are solubilized in 50 ml bi-distilled water and added to the solution of barium salt of HY. The mixture is agitated at 5 ° C until complete precipitation of the sulfate of barium. After centrifugation, the resulting solution is instantly frozen and freeze dried. Yield: 4.5 g.

[0148] In the salt thus obtained 50% of the acid groups of HY acid are salified with naphozoline and 50% are free. Quantitative spectrophotometric determination in comparison to standard naphozoline (USP) shows a content in weight of basic naphazoline which corresponds to the theoretically calculated value.

Example 29 - PREPARATION OF THE SALT OF A HYALURONIC ACID (HY) WITH PHENYLEPHRINE.

[0149] 2.16 g of neutral L-phenylephrine sulfate (10 mEg) are solubilized in 25 ml of distilled H₂O.

[0150] 4.47 g of the barium salt of HY with a molecular weight of 820,000 corresponding to 10 mEq of a monomeric unit are solubilized in 400 ml of distilled water and added to the solution of sulfate phenylephrine. The mixture is agitated until the barium sulfate is completely precipitated. After centrifugation the resulting solution is frozen and freeze dried. In the salt obtained all the acid groups of HY are salified with phenylephrine.

[0151] U.V. spectrophotometric determination carried out by the standard addition method (USP) shows a content of 30.6% of basic phenylephrine, corresponding to the theoretically calculated value.

[0152] Colorimetric determination of the glucuronic acid combined in the polysaccharide according to the method of Bitter et al. shows an HY acid content of 69.4%.

Example 30 - PREPARATION OF THE MIXED SALT OF A HYALURONIC ACID (HY) WITH NEOMYCIN, WITH PHENYLEPHRINE AND SODIUM.

[0153] 7.15 g of HY barium salt with a molecular weight of 65,000 corresponding to 16 mEq of a monomeric unit are solubilized in 400 ml of distilled H₂O.

[0154] 1.28 g of neomycln sulfate (8.42 mEq) are solubilized in 150 ml of distilled H_2O . 0.34 g of neutral phenylephrine sulfate (1.58 mEq) and 0.43 g of Na_2SO_4 (6 mEq) are added to the solution. The resulting solution is added to the solution of HY barium salt and, after complete precipitation of the barium sulfate, the mixture is centrifuged.

[0155] The barium sulfate is separated and the solution is frozen and freeze-dried. Yield: 7.35 g.

PHARMACOLOGICAL STUDIES

30

45

[0156] The topical effect of the new medicaments according to the present invention may be demonstrated in vivo by experiments on the rabbit eye which show their superiority as compared to the use of component (1) when administered in a conventional way. As an example, hereinafter are reported experiments carried out with hyaluronic acid salts with the following antibiotics: streptomycin, erythromycin and neomycin. These are the total salts in which all of

the acid groups of hyaluronic acid are salified with a basic group of the antibiotic, and are described in examples 1, 2, 4 and 5. Of these, solutions in distilled water were used, having concentrations suitable to the antibiotic content, as follows:

hyaluronic acid + streptomycin (HYA1) - 33.8% hyaluronic acid + erythromycin (HYA2) - 66.0% hyaluronic acid + neomycin (HYA4) - 21.2%

10

20

25

30

35

40

45

50

55

The activity of these antibiotics was compared to that given by the same antibiotics dissolved in phosphate buffer and having the same concentrations of antibiotic. The activity of the two groups of products was measured on the basis of the time necessary to suppress a dry inflammation of the rabbit eye induced by a bacterial agent. More precisely, the dry inflammation was determined in both eyes of 24 rabbits by intraocular injection of a titered suspension of one of the following bacterial groups: pseudomonas aeruginosa, staphylococcus aureus, salmonella typhi (0.1 ml).

[0157] The various saline derivatives of the antibiotics were administered (3 drops every 6 hours) into the right eye (RE) of the rabbits, while into the left eye (LE) was instilled the corresponding quantities of the antibiotics dissolved in phosphate buffer. The treatment was begun immediately after injection of the bacterial suspension and was continued until inflammation disappeared. Both eyes of each rabbit were observed with a slit lamp. In particular the following were examined: the state of the conjunctiva and the corneal epithelium, anterior chamber (presence of the Tyndall effect), and the state of the iris of the posterior segment of the eye. The state of the back of the eye was examined with a Goldman lens. The presence of signs of inflammation (hyperemia, exudates, cloudiness of the liquids etc.) was registered. The percentage of eyes which did not present any signs of inflammation was then calculated.

[0158] The results of the experiments are reported in Table 1, whereby it can be observed that administration of the saline derivatives according to the present invention was followed by a more rapid recovery from inflammation as compared to the administration of the corresponding antibiotics not salified with hyaluronic acid.

m 0

10 15 20 25 30 35 40 45

50

55

5

TABLE 1 Effect of the administration of the derivatives HYA

on recovery from dry inflammation in rabbit eye.

TREATMENT			DAYS	FROM	THE	DAYS FROM THE START OF INFLAMMATION	INFLA	AMATION		
		-	7		m	4	2	9	7	œ
Streptomycin (6)* HYAl (6)*	* (9)	0.0	0.0		0.0	0.0	0.0	16.6	50.0	100.0
Erythromycin (6)** 0.0 HYA2 (6)** 0.0	**(9)	0.0	0.0		0.0	0.0	0.0	0.0	16.6 33.3	33.3
Neomycin (6)*** HYA4 (6)***	*	00	0.0		0.0	0.0	0.0	33.3	16.6 33.3	33.
HXAS (6)*		0.0	0.0		0.0	16.6	33.3	50.0	100.0	100.

Values are expressed as percentages (number of eyes where inflammation had been relieved Between brackets are the number of eyes out of the total number of eyes treated). treated.

Injection of pseudomonas aeruginosa
** Injection of staphylococcus aureus
*** Injection of salmonella typhi

^[0159] The technical effect of the medicaments according to the invention is further demonstrated by the following other experiments.

I. Miotic Activity of Pilocarpine Salified With Hyaluronic Acid

Materials

- 5 [0160] For the various formulations of salified pilocarpine, the following products were used:
 - hyaluronic acid at low molecular weight (HYALASTINE, m.w. 100,000) [HY₁];
 - hyaluronic acid sodium salt at high molecular weight (HYALECTIN, m.w. between 500,000 and 730,000) [HY₂-Na] at concentrations of 10 mg/ml and 20 mg/ml;
- polyvinyl alcohol 5% as ophthalmic vehicle to obtain comparison formulations.

[0161] The various formulations prepared were the following:

- 1) saline with pilocarpine nitrate (PiNO₃) 2% (used as a reference);
- 2) solution of PiNO₃ 2% vehicled with polyvinyl alcohol 5% (used as a reference);
- 3) solution of pilocarpine base/HY₁ acid in aqueous solution. The pilocarpine base content corresponds to 2%;
- 4) solution containing pilocarpine salt/HY₁ acid vehicled with HY₂-Na 10 mg/ml. The pilocarpine base content corresponds to 2%;
- 5) solution containing pilocarpine salt/HY₁ acid vehicled with HY₂-Na 20 mg/ml. The pilocarpine base content corresponds to 2%.
- 6) inserts of HY_2 -Na containing pilocarpine base salt with hyaluronic acid [HY_1]. The pilocarpine base corresponded to 6.25%.

Method

25

30

40

15

20

[0162] Albino New Zealand rabbits were used (2-2.5 kg). The solution to be tested was instilled in one eye of each of the rabbits with a microsyringe (10 ul); the other eye was used as a reference. The insert was placed in the conjunctival sac by means of suitable pincers. In all cases the pupil diameter was measured at suitable intervals. Each formulation was tested on at least 8 rabbits. Each eye was treated no more than three times; a rest period of at least a week was observed between each treatment.

Parameters

[0163] The pupil diameter was measured at various intervals of time in -order to determine the miotic activity curve in time and subsequent calculation, from the miosis/time graphs, of the following activity parameters:

 I_{max} = maximum difference in pupil diameter between the treated eye and the reference eye;

Peak time = time taken to reach the I_{max};

duration = time taken to return to basal conditions;

plateau = period of absolute miotic activity;

AUC = area under the miosis/time curve.

Results

[0164] As can be seen from Table 2, where for each solution tested, the values of the various parameters registered from the miotic activity in time curve are reported, it is possible to show how salification with hyaluronic acid of Pilocarpine at 2% causes an increase in miotic activity of the drug, whose activity can reach about 2 times that shown by aqueous solution with pilocarpine nitrate 2% (formulation 1).

[0165] A statistically significant increase in activity should also be noted when hyaluronic acid with a high molecular weight is used as a vehicle both at 10 and 20 mg/ml (formulation 4-5).

[0166] Salification with hyaluronic acid is particularly interesting also in relation to the longer duration of miotic activity of pilocarpine after vehicling with such formulations: the time taken to return to normal pupil diameter under basal conditions reaches values of 160 minutes (formulation 3) compared to 110 minutes for pilocarpine (formulation 1).

5	aining	relative AUC	1.00 1.64 1.81 2.39 3.08 3.78
10	the ophthalmic vehicles containing		28 1 32 1 32 1 32 2 48 2 40 3 70 3
15	almic ve	AUC, cm ² (± LF 95%)	117 + 192 + 212 + 280 + 361 + 442 +
20	he ophth	Plateau min.	1 20 4 40 1 25
25		Duration Plateau min. min.	110 140 160 180 200 230
30	activity parameters of acid	Peak time min.	20 20 20 30 15
35			0.35 0.28 0.43 0.20 0.30
40	Biological hyaluronic	I max, mm (± LF 95%	1.93 + 0. 2.33 + 0. 2.25 + 0. 2.70 + 0. 2.80 + 0. 3.70 + 0.
45	TABLE 2: B	formula- tion No.	
50	ę-i	4 1	H 6 M 4 M 9 M

 $\hbox{II. } \underline{\hbox{Stability of the Corneal Films of the Hyaluronic Acid and Pilocarpine Derivatives}.}$

55

[0167] The aim of the experiments was to evaluate the adhesive and filmogeneous properties of the derivatives of salification between pilocarpine and hyaluronic acid following application to the cornea of animals.

Method

[0168] The test consisted in visually evaluating the formation, stability and duration of the film formed by the formulations on the cornea. To this end sodium fluorescein was added to the ophthalmic preparations (0.1%) and the eye was examined, after instillation in UV light of 366 nm.

[0169] 12 albino rabbits were used in all (New Zealand, 2-2.5 kg) of both sexes. One drop (50 ul) of each vehicle was instilled in one eye of each rabbit, keeping the other eye as control.

Solutions used

[0170]

10

15

20

30

35

40

45

50

55

- 1. saline at 2% of pilocarpine nitrate (PiNO₃);
- 2. solution at 2% of PiNO3, thickened with polyvinyl alcohol 5% (Wacker Chemie, PVA W 48/20);
- 3. solution containing pilocarpine base salt/HY₁ acid. The pilocarpine base content corresponds to 2%;
- 4. solution containing pilocarpine base salt/HY₁ acid vehicled with HY₂-Na 10 mg/ml. The pilocarpine base content corresponds to 2%;
- 5. solution containing pilocarpine base salt/ HY_1 acid vehicled with HY_2 -Na 20 mg/ml. The pilocarpine base content corresponds to 2%.

[0171] All solutions contained 0.1% of sodium fluorescein. The pH of the solutions was in all cases around 5.8.

Results

25 [0172] The parameters relative to the fluorescence: a) duration of the integral corneal film, b) duration of fluorescence (time necessary for the total disappearance of fluorescence from the eye), c) presence of fluorescence in the nose (time taken by the solution after application to appear at nose level), are reported in Table 3.

[0173] The derivatives of hyaluronic acid with pilocarpine produce a stable corneal film for periods of more than 2 hours. Transcorneal penetration of pilocarpine seems therefore to depend on the capacity of hyaluronic acid to vehicle the drug forming a homogeneous and stable film on the cornea.

TABLE 3

Solution	Duration of integral film (min)	Duration of fluorescence (min)	Appearance of fluorescence in nose (min)
1	30	100	2 - 3
2	· 80	150	10-15
3	100	150	5
4	120	180	15 - 20
5	140	210	50

Claims

Claims for the following Contracting States: DE, GB, IT, NL, SE

- 1. A medicament which is adapted for only topical administration, comprising a drug delivery system which comprises:
 - (a) a pharmaceutically active substance selected from an antiviral agent, antitumor agent, cholinergic agonist, adrenergic agonist, cytostatic agent and cytotoxic agent; and
 - (b) a vehicle comprising hyaluronic acid or a pharmaceutically acceptable salt of said hyaluronic acid, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 2. A medicament according to claim 1, wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.

- 3. A medicament according to claim 2, wherein said fraction has an average molecular weight between 50,000 and 100,000.
- 4. A medicament according to claim 2, wherein said fraction has an average molecular weight between 500,000 and 730,000.
 - 5. A medicament which is adapted for only topical administration, comprising a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature suitable for topical administration, with the proviso that said salt is not sodium hyaluronate.
 - 6. A medicament according to claim 5, which contains an additional excipient suitable for topical administration.

10

15

25

30

40

45

- 7. A medicament according to claim 5 or claim 6, wherein said salt is a partial salt and at least a portion of the acid groups of said hyaluronic acid is salified with an alkali or alkaline earth metal, magnesium, aluminum, or ammonium.
- 8. A medicament according to any one of claims 5 to 7, wherein said active substance is suitable for ophthalmological use.
- A medicament according to any one of claims 5 to 7, wherein said active substance is suitable for dermatological, otorhinolaryngological, odontological, angiological, obstetrical or neurological use.
 - 10. A medicament according to any one of claims 5 to 7, wherein said active substance is an antibiotic, anti-infective, antiviral, antimicrobial, antiinflammatory, wound healing, cytostatic, cytotoxic, anesthetic, cholinergic promotor, cholinergic antagonist, adrenergic promotor or adrenergic antagonist agent.
 - 11. A medicament according to any one of claims 5 to 7, wherein said active substance is a member selected from the group consisting of aureomycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, lincomycin, vancomycin, ristocetine, clindamycin, amphotericin B, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, adenine arabinoside, aciclovir, pilocarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demecarium, atropima, noradrenalin, adrenalin, norfazoline, methoxamine, propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, oxyprenolol, practolol, butoxamine, sotalol, butadrine, labetalol and methotrexate.
- 12. A medicament according to any one of claims 5 to 7, wherein said active substance is a member selected from the group consisting of streptomycin, erythromycin, kanamycin, neomycin, gentamicin, pilocarpine, triamcinolone and epidermal growth factor.
 - 13. A medicament according to any one of claims 5 to 12, wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
 - 14. A medicament according to any one of claims 5 to 12, wherein said fraction has an average molecular weight between 50,000 and 100,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
 - **15.** A medicament according to any one of claims 5 to 12, wherein said fraction has an average molecular weight between 500,000 and 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 50 16. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament suitable for topical administration, with the proviso that said salt is not sodium hyaluronate.
 - 17. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament suitable for ophthalmic administration, with the proviso that said salt is not sodium hyaluronate.
 - 18. Use of a salt of hyaluronic acid with a pharmaceutically active substance of a basic nature for the preparation of a medicament suitable for topical administration and capable of being absorbed intradermally or through the nasat or rectal mucosa, with the proviso that said salt is not sodium hyaluronate.

19. Use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to provide enhanced bioavailability of the drug, wherein

5

10

15

20

25

30

35

40

45

50

- (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
- (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 20. Use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to provide systemic delivery of the drug, wherein
 - (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
 - (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 21. Use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to treat an internal organ pathology, wherein
 - (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
 - (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 22. Use of a hyaluronic acid according to any one of claims 19 to 21, wherein said active substance is suitable for dermatological, otorhinolaryngological, odontological, angiological, obstetrical or neurological use.
- 23. Use of a hyaluronic acid according to claim 22, wherein said active substance is an antibiotic, anti-infective, antiviral, antimicrobial, antiinflammatory, wound healing, cytostatic, cytotoxic, anesthetic, cholinergic promotor, cholinergic antagonist, adrenergic promotor or adrenergic antagonist agent.
- 24. Use of a hyaluronic acid according to claim 22, wherein said active substance is a member selected from the group consisting of aureomycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, vancomycin, novobiocin, ristocetine, clindamycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, idoxuridine, adenine arabinoside, trifluorothimidine, aciclovir, ethyldeoxyuridine, pilocarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demecarium, atropima, noradrenalin, adrenalin, norfazoline, methoxamine, propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, oxyprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon, medrison, fluorocil, methotrexate, and podophyllin.
- 25. Use of hyaluronic acid according to claim 22, wherein said active substance is a member selected from the group consisting of streptomycin, erythromycin, kanamycin, neomycin, gentamicin, pilocarpine, triamcinolone and epidermal growth factor.
- 26. Use of hyaluronic acid according to any one of claims 19 to 25, wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
- 27. Use of hyaluronic acid according to any one of claims 19 to 25, wherein said fraction has an average molecular weight between 50,000 and 100,000.

- 28. Use of hyaluronic acid according to any one of claims 19 to 25, wherein said fraction has an average molecular weight between 500,000 and 730,000.
- 29. A process for the preparation of a hyaluronic acid salt which comprises:

5

20

30

35

40

55

- a) combining an aqueous solution of a barium salt of hyaluronic acid with a sulfate of a pharmaceutically active substance; and
- b) separating the precipitated barium sulfate to obtain the hyaluronic acid salt in aqueous solution.
- 30. A process according to claim 29, wherein said sulfate is added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents, thereby producing a stoichiometrically neutral hyaluronic acid salt.
- 31. A process according to claim 29, wherein said sulfate is added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents, thereby producing a partially salified hyaluronic acid salt.
 - 32. A process according to any one of claims 29 to 31, wherein said barium salt of hyaluronic acid is further combined with a sulfate of at least one member selected from the group consisting of an alkali or alkaline earth metal, aluminum or ammonium.
 - 33. A process according to claim 32, wherein said sulfates are added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents.
- 25 34. A process according to claim 32, wherein said sulfates are added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents.
 - 35. A process according to any one of claims 29 to 34, wherein said active substance is at least one member selected from erythromycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, aureomycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, iodeoxyuridine, adenine arabinoside, tricarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demacarium, atropina, propanolol timolol, pindolol, bupranolol, atenolol, metoprolol, oxprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon and medrison.
 - **36.** A process according to any one of claims 29 to 35, wherein the hyaluronic acid is a molecular weight fraction having a molecular weight of between 90-80% and 0.23% of the molecular weight of integral hyaluronic acid having a molecular weight of 13 million.
 - **37.** A process according to claim 36, wherein the hyaluronic acid fraction is free of hyaluronic acid having a molecular weight less than 30,000.
- 38. A process according to claim 37, wherein the molecular weight fraction has an average molecular weight of 50,000 to 100,000, 500,000 to 730,000 or 250,000 to 350,000.

Claims for the following Contracting State : AT

- A process for the preparation of a medicament which is adapted for only topical administration, comprising a drug delivery system, which process comprises mixing together:
 - (a) a pharmaceutically active substance selected from an antiviral agent, antitumor agent, cholinergic agonist, adrenergic agonist, cytostatic agent and cytotoxic agent; and
 - (b) a vehicle comprising hyaluronic acid or a pharmaceutically acceptable salt of said hyaluronic acid, with the proviso that said active substance is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and being substantially free of hyaluronic acid having a molecular weight of less than 30,000; so that the medicament is adapted for only topical administration.

- A process for the preparation of a medicament according to claim 1, wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
- 3. A process for the preparation of a medicament according to claim 2, wherein said fraction has an average molecular weight between 50,000 and 100,000.
 - 4. A process for the preparation of a medicament according to claim 2, wherein said fraction has an average molecular weight between 500,000 and 730,000.
- 5. A process for the preparation of a medicament which is adapted for only topical administration, which process comprising salifying a partial or stoichiometrically neutral salt of hyaluronic acid with at least one pharmacologically active substance of a basic nature suitable for topical administration, with the proviso that said salt is not sodium hyaluronate, so that the medicament is adapted for only topical administration.
- 6. A process for the preparation of a medicament according to claim 5, which includes adding an additional excipient suitable for topical administration.

20

30

35

40

- 7. A process for the preparation of a medicament according to claim 5 or claim 6, wherein said salt is a partial salt and at least a portion of the acid groups of said hyaluronic acid is salified with an alkali or alkaline earth metal, magnesium, aluminum, or ammonium.
- 8. A process for the preparation of a medicament according to any one of claims 5 to 7, wherein said active substance is suitable for ophthalmological use.
- 9. A process for the preparation of a medicament according to any one of claims 5 to 7, wherein said active substance is suitable for dermatological, otorhinolaryngological, odontological, angiological, obstetrical or neurological use.
 - 10. A process for the preparation of a medicament according to any one of claims 5 to 7, wherein said active substance is an antibiotic, anti-infective, antiviral, antimicrobial, antiinflammatory, wound healing, cytostatic, cytotoxic, anesthetic, cholinergic promotor, cholinergic antagonist, adrenergic promotor or adrenergic antagonist agent.
 - 11. A process for the preparation of a medicament according to any one of claims 5 to 7, wherein said active substance is a member selected from the group consisting of aureomycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, lincomycin, vancomycin, ristocetine, clindamycin, amphotericin B, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, adenine arabinoside, aciclovir, pilocarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demecarium, atropima, noradrenalin, adrenalin, norfazoline, methoxamine, propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, oxyprenolol, practolol, butoxamine, sotalol, butadrine, labetalol and methotrexate.
 - 12. A process for the preparation of a medicament according to any one of claims 5 to 7, wherein said active substance is a member selected from the group consisting of streptomycin, erythromycin, kanamycin, neomycin, gentamicin, pilocarpine, triamcinolone and epidermal growth factor.
 - 13. A process for the preparation of a medicament according to any one of claims 5 to 12, wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
- 14. A process for the preparation of a medicament according to any one of claims 5 to 12, wherein said fraction has an average molecular weight between 50,000 and 100,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 15. A process for the preparation of a medicament according to any one of claims 5 to 12, wherein said fraction has an average molecular weight between 500,000 and 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
 - 16. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of

a medicament suitable for topical administration, with the proviso that said salt is not sodium hyaluronate.

- 17. Use of a salt of hyaluronic acid with a pharmacologically active substance of a basic nature for the preparation of a medicament suitable for ophthalmic administration, with the proviso that said salt is not sodium hyaluronate.
- 18. Use of a salt of hyaluronic acid with a pharmaceutically active substance of a basic nature for the preparation of a medicament suitable for topical administration and capable of being absorbed intradermally or through the nasal or rectal mucosa, with the proviso that said salt is not sodium hyaluronate.
- 19. Use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to provide enhanced bioavailability of the drug, wherein

5

15

25

35

- (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
- (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 20. Use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to provide systemic delivery of the drug, wherein
 - (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
 - (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 30 21. Use of a mixture of a drug and hyaluronic acid for the manufacture of a medicament for topical application to treat an internal organ pathology, wherein
 - (a) said drug is a pharmaceutically active substance or a mixture of pharmaceutically active substances suitable for topical administration; and
 - (b) said hyaluronic acid is hyaluronic acid or a pharmaceutically acceptable salt thereof, with the proviso that said drug is not an ophthalmic drug when the hyaluronic acid is a fraction having an average molecular weight of from 50,000 to 730,000 and is substantially free of hyaluronic acid having a molecular weight of less than 30,000.
- 40 22. Use of a hyaluronic acid according to any one of claims 19 to 21, wherein said active substance is suitable for dermatological, otorhinolaryngological, odontological, angiological, obstetrical or neurological use.
 - 23. Use of a hyaluronic acid according to claim 22, wherein said active substance is an antibiotic, anti-infective, antiviral, antimicrobial, antiinflammatory, wound healing, cytostatic, cytotoxic, anesthetic, cholinergic promotor, cholinergic antagonist, adrenergic promotor or adrenergic antagonist agent.
- 24. Use of a hyaluronic acid according to claim 22, wherein said active substance is a member selected from the group consisting of aureomycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, vancomycin, novobiocin, ristocetine, clindamycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, idoxuridine, adenine arabinoside, trifluorothimidine, aciclovir, ethyldeoxyuridine, pilocarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demecarium, atropima, noradrenalin, adrenalin, norfazoline, methoxamine, propanolol, timolol, pindolol, bupranolol, atenolol, metoprolol, oxyprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon, medrison, fluorocil, methotrexate, and podophyllin.
 - 25. Use of hyaluronic acid according to claim 22, wherein said active substance is a member selected from the group

- consisting of streptomycin, erythromycin, kanamycin, neomycin, gentamicin, pilocarpine, triamcinolone and epidermal growth factor.
- 26. Use of hyaluronic acid according to any one of claims 19 to 25, wherein said hyaluronic acid is a molecular weight fraction which is substantially free of hyaluronic acid having a molecular weight less than 30,000.
 - 27. Use of hyaluronic acid according to any one of claims 19 to 25, wherein said fraction has an average molecular weight between 50,000 and 100,000.
- 28. Use of hyaluronic acid according to any one of claims 19 to 25, wherein said fraction has an average molecular weight between 500,000 and 730,000.
 - 29. A process for the preparation of a hyaluronic acid salt which comprises:
 - a) combining an aqueous solution of a barium salt of hyaluronic acid with a sulfate of a pharmaceutically active substance; and
 - b) separating the precipitated barium sulfate to obtain the hyaluronic acid salt in aqueous solution.
- 30. A process according to claim 29, wherein said sulfate is added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents, thereby producing a stoichiometrically neutral hyaluronic acid salt.
 - **31.** A process according to claim 29, wherein said sulfate is added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents, thereby producing a partially salified hyaluronic acid salt.
 - 32. A process according to any one of claims 29 to 31, wherein said barium salt of hyaluronic acid is further combined with a sulfate of at least one member selected from the group consisting of an alkali or alkaline earth metal, aluminum or ammonium.
 - **33.** A process according to claim 32, wherein said sulfates are added in an amount such that the number of sulfate equivalents is equal to the number of hyaluronic acid equivalents.
 - 34. A process according to claim 32, wherein said sulfates are added in an amount such that the number of sulfate equivalents is less than the number of hyaluronic acid equivalents.
 - 35. A process according to any one of claims 29 to 34, wherein said active substance is at least one member selected from erythromycin, gentamycin, neomycin, streptomycin, dihydrostreptomycin, kanamycin, amikacyn, tobramycin, aureomycin, spectinomycin, erythromycin, oleandomycin, carbomycin, spiramycin, oxytetracycline, rolitetracycline, bacitracin, polymyxin B, gramicidin, colistin, chloramphenicol, lincomycin, amphotericin B, griseofulvin, nystatin, diethylcarbamazine, mebendazol, sulfacetamide, sulfadiazine, sulfisoxazole, iodeoxyuridine, adenine arabinoside, tricarpine, metacholine, carbamylcholine, aceclidine, fisostigmine, neostigmine, demacarium, atropina, propanolol timolol, pindolol, bupranolol, atenolol, metoprolol, oxprenolol, practolol, butoxamine, sotalol, butadrine, labetalol, dexamethasone, triamcinolone, prednisolone, fluorometholon and medrison.
 - **36.** A process according to any one of claims 29 to 35, wherein the hyaluronic acid is a molecular weight fraction having a molecular weight of between 90-80% and 0.23% of the molecular weight of integral hyaluronic acid having a molecular weight of 13 million.
- 37. A process according to claim 36, wherein the hyaluronic acid fraction is free of hyaluronic acid having a molecular weight less than 30,000.
 - 38. A process according to claim 37, wherein the molecular weight fraction has an average molecular weight of 50,000 to 100,000, 500,000 to 730,000 or 250,000 to 350,000.

5

15

25

30

35

40

45

Patentansprüche

5

10

15

30

40

45

50

Patentansprüche für folgende Vertragsstaaten: DE, GB, IT, NL, SE

- Arzneimittel, welches nur an die örtliche Anwendung angepaßt ist, umfassend ein Arzneistoff-Zufuhrsystem, welches umfaßt:
 - (a) einen pharmazeutischen Wirkstoff, ausgewählt aus einem antiviralen, Antitumor-, cholinergisch agonistischen, ädrenergisch agonistischen, cytostatischen und cytotoxischen Mittel; und
 - (b) einen Träger, umfassend Hyaluronsäure oder ein pharmazeutisch verträgliches Salz der Hyaluronsäure, mit der Maßgabe, daß der Wirkstoff keinen ophthalmischen Arzneistoff darstellt, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 ist und im wesentlichen frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30.000 aufweist.
- Arzneimittel nach Anspruch 1,: wobei die Hyaluronsäure eine Molekulargewichtsfraktion ist, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 3. Arzneimittel nach Anspruch 2, wobei die Fraktion ein mittleres Molekulargewicht zwischen 50.000 und 100.000 aufweist.
 - Arzneimittel nach Anspruch 2, wobei die Fraktion ein mittleres Molekulargewicht zwischen 500,000 und 730,000 aufweist.
- 5. Arzneimittel, welches nur an die örtliche Anwendung angepaßt ist, umfassend ein Teil- oder stöchiometrisch neutrales Salz der Hyaluronsäure mit mindestens einem zur örtlichen Anwendung geeigneten pharmakologischen Wirkstoff basischer Natur, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist
 - 6. Arzneimittel nach Anspruch 5, das einen zur örtlichen Anwendung geeigneten zusätzlichen Exzipienten enthält.
 - Arzneimittel nach Anspruch 5 oder Anspruch 6, wobei das Salz ein Teilsalz ist und mindestens ein Teil der Säuregruppen det Hyaluronsäure mit einem Alkali- oder Erdalkalimetall, Magnesium, Aluminium oder Ammonium als Salz vorliegt.
- Arzneimittel nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff zur ophthalmologischen Verwendung geeignet ist.
 - 9. Arzneimittel nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff zur dermatologischen, otorhinolaryngologischen, odontologischen, angiologischen, geburtshilflichen oder neurologischen Verwendung geeignet ist.
 - 10. Arzneimittel nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff ein antibiotisches, infektionsverhinderndes, antivirales, antimikrobielles, entzündungshemmendes, wundheilendes, cytostatisches, cytotoxisches, anästhesierendes, cholinergisches Promotor-, cholinergisch antagonistisches, adrenergisches Promotor- oder adrenergisch antagonistisches Mittel ist.
 - 11. Arzneimittel nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff ausgewählt ist aus Aureomycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Lincomycin, Vancomycin, Ristocetin, Clindamycin, Amphotericin B, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Adeninarabinosid, Aciclovir, Pilocarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigrnin, Demecarium, Atropin, Noradrenalin, Adrenalin, Norfazolin, Methoxamin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxyprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol und Methotrexat.
- 12. Arzneimittel nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff ausgewählt ist aus Streptomycin, Erythromycin, Kanamycin, Neomycin, Gentamycin, Pilocarpin, Triamcinolon und epidermalem Wachstumsfaktor.
 - 13. Arzneimittel nach einem der Ansprüche 5 bis 12, wobei die Hyaluronsäure eine Molekulargewichtsfraktion darstellt,

die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.

5

10

20

25

30

35

40

45

50

- 14. Arzneimittel nach einem der Ansprüche 5 bis 12, wobei die Fraktion ein mittleres Molekulargewicht zwischen 50.000 und 100.000 aufweist und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 15. Arzneimittel nach einem der Ansprüche 5 bis 12, wobei die Fraktion ein mittleres Molekulargewicht zwischen 500.000 und 730.000 aufweist und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 16. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur örtlichen Anwendung geeignet ist, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist.
- 17. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur ophthalmischen Anwendung geeignet ist, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist.
 - 18. Verwendung eines Salzes der Hyaluronsäure mit einem pharmazeutischen Wirkstoff basischer Natur zur Herstellung eines Medikaments, das zur örtlichen Anwendung geeignet ist und intradermal oder durch die nasale oder rektale Schleimhaut absorbiert werden kann, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist.
 - 19. Verwendung eines Gemisches eines Arzneistoffes und einer Hyaluronsäure zur Herstellung eines Arzneimittels zur örtlichen Anwendung, um verbesserte biologische Verfügbarkeit des Arzneistoffes bereitzustellen, wobei
 - (a) der Arzneistoff ein pharmazeutischer Wirkstoff oder ein Gemisch pharmazeutischer Wirkstoffe ist, der bzw. das zur örtlichen Anwendung geeignet ist; und
 - (b) die Hyaluronsäure Hyaluronsäure oder ein pharmazeutisch verträgliches Salz davon ist, mit der Maßgabe, daß der Arzneistoff kein ophthalmischer Arzneistoff ist, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 darstellt und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
 - 20. Verwendung eines Gemisches eines Arzneistoffes und einer Hyaluronsäure zur Herstellung eines Arzneimittels zur örtlichen Anwendung, um eine systemische Zufuhr des Arzneistoffes bereitzustellen, wobei
 - (a) der Arzneistoff ein pharmazeutischer Wirkstoff oder ein Gemisch pharmazeutischer Wirkstoffe ist, der bzw. das zur örtlichen Anwendung geeignet ist; und
 - (b) die Hyaluronsäure Hyaluronsäure oder ein pharmazeutisch verträgliches Salz davon ist, mit der Maßgabe, daß der Arzneistoff kein opthalmischer Arzneistoff ist, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 darstellt und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von wenigenals 30.000 ist.
 - 21. Verwendung eines Gemischs eines Arzneistoffes und einer Hyaluronsäure zur Herstellung eines Arzneimittels zur örtlichen Anwendung zur Behandlung einer inneren Organerkrankung, wobei
 - (a) der Arzneistoff ein pharmazeutischer Wirkstoff oder ein Gemisch pharmazeutischer Wirkstoffe ist, der bzw. das zur örtlichen Anwendung geeignet ist; und
 - (b) die Hyaluronsäure Hyaluronsäure oder ein pharmazeutisch verträgliches Salz davon ist, mit der Maßgabe, daß der Arzneistoff kein ophthalmischer Arzneistoff ist, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molckulargewicht von 50.000 bis 730.000 darstellt und im wesentlichen frei von Hyaluronsäure mit einem Molckulargewicht von weniger als 30.000 ist.
 - 22. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 21, wobei der Wirkstoff zur dermatologischen, otothinolaryngologischen, odontologischen, angiologischen, geburtshilflichen oder neurologischen Verwendung geeignet ist.
 - 23. Verwendung einer Hyaluronsäure nach Anspruch 22, wobei der Wirkstoff ein antibiotisches, infektionsverhinderndes, antivirales, antimikrobielles, entzündungshemmendes, wundheilendes, cytostatisches, cytotoxisches, anäs-

thesierendes, cholinergisches Promotor-, cholinergisch antagonistisches, adrenergisches Promotor- oder adrenergisch antagonistisches Mittel ist.

- 24. Verwendung einer Hyaluronsäure nach Anspruch 22, wobei der Wirkstoff ausgewählt ist aus Aureomycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Chloramphenicol, Lincomycin, Vancomycin, Novobiocin, Ristocetin, Clindamycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Idoxuridin, Adeninarabinosid, Trifluorthimidin, Aciclovir, Ethyldesoxyuridin, Pilocarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demecarium, Atropin, Noradrenalin, Adrenalin, Norfazolin, Methoxamin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxyprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon, Medrison, Fluorocil, Methotrexat und Podophyllin.
- 25. Verwendung einer Hyaluronsäure nach Anspruch 22, wobei der Wirkstoff ausgewählt ist aus Streptomycin, Erythromycin, Kanamycin, Neomycin, Gentamycin, Pilocarpin, Triamcinolon und epidermaler Wachstumsfaktor.
 - 26. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 25, wobei die Hyaluronsäure eine Molekulargewichtsfraktion darstellt, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
 - 27. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 25, wobei die Fraktion ein mittleres Molekulargewicht zwischen 50.000 und 100.000 aufweist.
- 28. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 25, wobei die Fraktion ein mittleres Molekulargewicht zwischen 500.000 und 730.000 aufweist.
 - 29. Verfahren zur Herstellung eines Hyaluronsäuresalzes, welches umfaßt:

5

10

15

20

30

35

40

- a) Vereinigen einer wäßrigen Lösung eines Bariumsalzes von Hyaluronsäure mit einem Sulfat eines pharmazeutischen Wirkstoffs; und
- b) Abtrennen des gefällten Bariumsulfats, um das Hyaluronsäuresalz in wäßriger Lösung zu erhalten.
- 30. Verfahren nach Anspruch 29, wobei das Sulfat in einer Menge zugegeben wird, daß die Zahl der Sulfaläquivalente gleich der Zahl der Hyaluronsäureäquivalente ist, wobei ein stöchiometrisch neutrales Hyaluronsäuresalz hergestellt wird.
- 31. Verfahren nach Anspruch 29, wobei das Sulfat in einer Menge zugegeben wird, daß die Zahl der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist, wobei ein teilweise als Salz vorliegendes Hyaluronsäuresalz hergestellt wird.
- 32. Verfahren nach einem der Ansprüche 29 bis 31, wobei das Bariumsalz der Hyaluronsäure weiter mit einem Sulfat mindestens einer Verbindung, ausgewählt aus Alkali- oder Erdalkalimetall, Aluminium oder Ammonium, vereinigt wird.
- 45 33. Verfahren nach Anspruch 32, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente gleich der Zahl der Hyaluronsäureäquivalente ist.
 - 34. Verfahren nach Anspruch 32, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist.
- 35. Verfahren nach einem der Ansprüche 29 bis 34, wobei der Wirkstoff mindestens eine erbindung ist, ausgewählt aus Erythromycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Aureomycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracim, Polymyxin B, Gramicidin, Colistin, Choramphenicol, Lincomycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Iodesoxyuridin, Adeninarabinosid, Tricarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demecarium, Atropin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon und Medrison.

- 36. Verfahren nach einem der Ansprüche 29 bis 35, wobei die Hyaluronsäure eine Molekulargewichtsfraktion mit einem Moletulargewicht zwischen 90-80% und 0,23% des Molekulargewichts einer integralen Hyaluronsäure, die ein Molekulargewicht von 13 Millionen aufweist, darstellt.
- 5 37. Verfahren nach Anspruch 36, wobei die Hyaluronsäurefraktion frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30.000 aufweist.
 - 38. Verfahren nach Anspruch 37, wobei die Molekulargewichtsfraktion ein mittleres Molekulargewicht von 50.000 bis 100.000, 500.000 bis 730.000 oder 250.000 bis 350.000 aufweist.

10

15

20

Patentansprüche für folgenden Vertragsstaat: AT

- 1. Verfahren zur Herstellung eines Arzneimittels, welches nur an die örtliche Anwendung angepaßt ist, umfassend ein Arzneistoff-Zufuhrsystem, umfassend das Vermischen:
 - (a) eines pharmazeutischen Wirkstoffs, ausgewählt aus einem antiviralen, Antitumor-, cholinergisch agonistischen, adrenergisch agonistischen, cytostatischen und cytotoxischen Mittel; und
 - (b) eines Trägers, umfassend Hyaluronsäure oder ein pharmazeutisch verträgliches Salz der Hyaluronsäure, mit der Maßgabe, daß der Wirkstoff keinen ophthalmischen Arzneistoff darstellt, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 ist und im wesentlichen frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30.000 aufweist, so daß das Arzneimittel nur an die örtliche Anwendung angepaßt ist.
- 25 2. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 1, wobei die Hyaluronsäure eine Molekulargewichtsfraktion ist, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
 - Verfahren zur Herstellung eines Arzneimittels nach Anspruch 2, wobei die Fraktion ein mittleres Molekulargewicht zwischen 50.000 und 100.000 aufweist.

30

35

- 4. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 2, wobei die Fraktion ein mittleres Molekulargewicht zwischen 500,000 und 730,000 äufweist.
- Verfahren zur Herstellung eines Arzneimittels, welches nur an die örtliche Anwendung angepaßt ist, umfassend die Salzbildung eines Teil- oder stöchiometrisch neutralen Salzes der Hyaluronsäure mit mindestens einem zur örtlichen Anwendung geeigneten pharmakologischen Wirkstoff basischer Natur, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist, so daß das Arzneimittel nur an die örtliche Anwendung angepaßt ist.
- 6. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 5, das die Zugabe eines zur örtlichen Anwendung 40 geeigneten zusätzlichen Exzipienten beinhaltet.
 - 7. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 5 oder Anspruch 6, wobei das Salz ein Teilsalz ist und mindestens ein Teil der Säuregruppen der Hyaluronsäure mit einem Alkali- oder Erdalkalimetall, Magnesium, Aluminium oder Ammonium als Salz vorliegt.

45

Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff zur ophthalmologischen Verwendung geeignet ist.

50

Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff zur dermatologischen, otorhinolaryngologischen, odontologischen, angiologischen, geburtshilflichen oder neurologischen Verwendung geeignet ist.

10. Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff ein antibiotisches, infektionsverhinderndes, antivirales, antimikrobielles, entzündungshemmendes, wundheilendes, cytosta-55 tisches, cytotoxisches, anästhesierendes, cholinergisches Promotor-, cholinergisch antagonistisches, adrenergisches Promotor- oder adrenergisch antagonistisches Mittel ist.

11. Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff ausgewählt

ist aus Aureomycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Lincomycin, Vancomycin, Ristocetin, Clindamycin, Amphotericin B, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Adeninarabinosid, Aciclovir, Pilocarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demecarium, Atropin, Noradrenalin, Adrenalin, Norfazolin, Methoxamin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxyprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol und Methotrexat.

12. Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 7, wobei der Wirkstoff ausgewählt ist aus Streptomycin, Erythromycin, Kanamycin, Neomycin, Gentamycin, Pilocarpin, Triamcinolon und epidermalem Wachstumsfaktor.

5

15

20

- 13. Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 12, wobei die Hyaluronsäure eine Molekulargewichtsfraktion darstellt, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 14. Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 12, wobei die Fraktion ein mittleres Molekulargewicht zwischen 50.000 und 100.000 aufweist und im wesentlichen frei von Hylaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 15. Verfahren zur Herstellung eines Arzneimittels nach einem der Ansprüche 5 bis 12, wobei die Fraktion ein mittleres Molekulargewicht zwischen 500.000 und 730.000 aufweist und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 25 16. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzheimittels, das zur örtlichen Anwendung geeignet ist, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist.
- 17. Verwendung eines Salzes der Hyaluronsäure mit einem pharmakologischen Wirkstoff basischer Natur zur Herstellung eines Arzneimittels, das zur ophthalmischen Anwendung geeignet ist, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist.
 - 18. Verwendung eines Salzes der Hyaluronsäure mit einem pharmazeutischen Wirkstoff basischer Natur zur Herstellung eines Medikaments, das zur örtlichen Anwendung geeignet ist und intradermal oder durch die nasale oder rektale Schleimhaut absorbiert werden kann, mit der Maßgabe, daß das Salz nicht Natriumhyaluronat ist.
 - 19. Verwendung eines Gemisches eines Arzneistoffes und einer Hyaluronsäure zur Herstellung eines Arzneimittels zur örtlichen Anwendung, um verbesserte biologische Verfügbarkeit des Arzneistoffes bereitzustellen, wobei
- (a) der Arzneistoff ein pharmazeutischer Wirkstoff oder ein Gemisch pharmazeutischer Wirkstoffe ist, der bzw. das zur örtlichen Anwendung geeignet ist; und
 (b) die Hyaluronsäure Hyaluronsäure oder ein pharmazeutisch verträgliches Salz davon ist, mit der Maßgabe, daß der Arzneistoff kein ophthalmischer Arzneistoff ist, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 darstellt und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
 - 20. Verwendung eines Gemisches eines Arzneistoffes und einer Hyaluronsäure zur Herstellung eines Arzneimittels zur örtlichen Anwendung, um eine systemische Zufuhr des Arzneistoffes bereitzustellen, wobei
- (a) der Arzneistoff ein pharmazeutischer Wirkstoff oder ein Gemisch pharmazeutischer Wirkstoffe ist, der bzw. das zur örtlichen Anwendung geeignet ist; und
 (b) die Hyaluronsäure Hyaluronsäure oder ein pharmazeutisch verträgliches Salz davon ist, mit der Maßgabe, daß der Arzneistoff kein opthalmischer Arzneistoff ist, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 darstellt und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
 - 21. Verwendung eines Gemischs eines Arzrieistoffes und einer Hyaluronsäure zur Herstellung eines Arzneimittels zur örtlidhen Anwendung zur Behandlung einer inneren Organerkrankung, wobei

- (a) der Arzneistoff ein pharmazeutischer Wirkstoff oder ein Gemisch pharmazeutischer Wirkstoffe ist, der bzw. das zur örtlichen Anwendung geeignet ist; und
- (b) die Hyaluronsäure Hyaluronsäure oder ein pharmazeutisch verträgliches Salz davon ist, mit der Maßgabe, daß der Arzneistoff kein ophthalmischer Arzneistoff ist, wenn die Hyaluronsäure eine Fraktion mit einem mittleren Molekulargewicht von 50.000 bis 730.000 darstellt und im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 22. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 21, wobei der Wirkstoff zur dermatologischen, otoshinolaryngologischen, odontologischen, angiologischen, geburtshilflichen oder neurdlogischen Verwendung geeignet ist.
- 23. Verwendung einer Hyaluronsäure nach Anspruch 22, wobei der Wirkstoff ein antibiotisches, infektionsverhinderndes, antivirales, antimikrobielles, entzündungshemmendes, wundheilendes, cytostatisches, cytotoxisches, anästhesierendes, cholinergisches Promotor-, cholinergisch antagonistisches, adrenergisches Promotor- oder adrenergisch antagonistisches Mittel ist.
- 24. Verwendung einer Hyaluronsäure nach Anspruch 22, wobei der Wirkstoff ausgewählt ist aus Aureomycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracin, Polymyxin B, Gramicidin, Colistin, Chloramphenicol, Lincomycin, Vancomycin, Novobiocin, Ristocetin, Clindamycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Idoxuridin, Adeninarabinosid, Trifluorthimidin, Aciclovir, Ethyldesoxyuridin, Pilocarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmn, Neostigmin, Demecarium, Atropin, Noradrenalin, Adrenalin, Norfazolin, Methoxamin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxyprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon, Medrison, Fluorocil, Methotrexat und Podophyllin.
- 25. Verwendung einer Hyaluronsäure nach Anspruch 22, wobei der Wirkstoff ausgewählt ist aus Streptomycin, Erythromycin, Kanamycin, Neomycin, Gentamycin, Pilocarpin, Triamcinolon und epidermalem Wachstumsfaktor.
- 26. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 25, wobei die Hyaluronsäure eine Molekulargewichtsfraktion darstellt, die im wesentlichen frei von Hyaluronsäure mit einem Molekulargewicht von weniger als 30.000 ist.
- 27. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 25, wobei die Fraktion ein mittleres Moleku largewicht zwischen 50.000 und 100.000 aufweist.
 - 28. Verwendung einer Hyaluronsäure nach einem der Ansprüche 19 bis 25, wobei die Fraktion ein mittleres Molekulargewicht zwischen 500.000 und 730.000 aufweist.
- 29. Verfahren zur Herstellung eines Hyaluronsäuresalzes, welches umfaßt:

5

10

15

20

25

- a) Vereinigen einer wäßrigen Lösung eines Bariumsalzes von Hyaluronsäure mit einem Sulfat eines pharmazeutischen Wirkstoffs; und
- b) Abtrennen des gefällten Bariumsulfats, um das Hyaluronsäuresalz in wäßriger Lösung zu erhalten.
- 30. Verfahren nach Anspruch 29, wobei das Sulfat in einer Menge zugegeben wird, daß die Zahl der Sulfatäquivalente gleich der Zahl der Hyaluronsäureäquivalente ist, wobei ein stöchiometrisch neutrales Hyaluronsäuresalz hergestellt wird.
- 31. Verfahren nach Anspruch 29, wobei das Sulfat in einer Menge zugegeben wird, daß die Zahl der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist, wobei ein teilweise als Salz vorliegendes Hyaluronsäuresalz hergestellt wird.
- 32. Verfahren nach einem der Ansprüche 29 bis 31, wobei das Bariumsalz der Hyaluronsäure weiter mit einem Sulfat mindestens einer Verbindung, ausgewählt aus Alkali- oder Erdalkalimetall, Aluminium oder Ammonium, vereinigt wird.
 - 33. Verfahren nach Anspruch 32, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäqui-

valente gleich der Zahl der Hyaluronsäureäquivalente ist.

- 34. Verfahren nach Anspruch 32, wobei die Sulfate in einer Menge zugegeben werden, daß die Zahl der Sulfatäquivalente geringer als die Zahl der Hyaluronsäureäquivalente ist.
- 35. Verfahren nach einem der Ansprüche 29 bis 34, wobei der Wirkstoff mindestens eine Verbindung ist, ausgewählt aus Erythromycin, Gentamycin, Neomycin, Streptomycin, Dihydrostreptomycin, Kanamycin, Amikacyn, Tobramycin, Aureomycin, Spectinomycin, Erythromycin, Oleandomycin, Carbomycin, Spiramycin, Oxytetracyclin, Rolitetracyclin, Bacitracim, Polymyxin B, Gramicidin, Colistin, Choramphenicol, Lincomycin, Amphotericin B, Griseofulvin, Nystatin, Diethylcarbamazin, Mebendazol, Sulfacetamid, Sulfadiazin, Sulfisoxazol, Iodesoxyuridin, Adeninarabinosid, Tricarpin, Metacholin, Carbamylcholin, Aceclidin, Fisostigmin, Neostigmin, Demecarium, Atropin, Propanolol, Timolol, Pindolol, Bupranolol, Atenolol, Metoprolol, Oxprenolol, Practolol, Butoxamin, Sotalol, Butadrin, Labetalol, Dexamethason, Triamcinolon, Prednisolon, Fluormetholon und Medrison.
- 36. Verfahren nach einem der Ansprüche 29 bis 35, wobei die Hyaluronsäure eine Molekulargewichtsfraktion mit einem Molekulargewicht zwischen 90-80% und 0,23% des Molekulargewichts einer integralen Hyaluronsäure, die ein Molekulargewicht von 13 Millionen aufweist, darstellt.
 - 37. Verfahren nach Anspruch 36, wobei die Hyaluronsäurefraktion frei von Hyaluronsäure ist, die ein Molekulargewicht von weniger als 30.000 aufweist.
 - 38. Verfahren nach Anspruch 37, wobei die Molekulargewichtsfraktion ein mittleres Molekulargewicht von 50.000 bis 100,000, 500.000 bis 730.000 oder 250.000 bis 350.000 aufweist.

Revendications

5

10

20

25

30

35

40

55

Revendications pour les Etats Contractants suivants : DE, GB, IT, NL, SE

- Médicament qui est apte à l'administration topique seulement, comprenant un système de libération d'agent médicamenteux :
 - (a) une substance pharmaceutiquement active choisie entre un agent antiviral, un agent antitumoral, un agoniste cholinergique, un agoniste adrénergique, un agent cytostatique et un agent cytotoxique; et
 (b) un véhicule comprenant de l'acide hyaluronique ou un sel pharmaceutiquement acceptable de cet acide hyaluronique, sous réserve que ladite substance active ne soit pas un médicament ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen de 50 000 à 730 000 et étant pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 2. Médicament suivant la revendication 1, dans lequel l'acide hyaluronique est une fraction de poids moléculaire qui est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 3. Médicament suivant la revendication 2, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000.
 - Médicament suivant la revendication 2, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 500 000 à 730 000.
- 50 Médicament qui est apte à l'administration topique seulement, comprend un sel partiel ou stoechiométriquement neutre d'acide hyaluronique avec au moins une substance pharmacologiquement active de nature basique apte à l'administration topique, sous réserve que ledit sel ne consiste pas en hyaluronate de sodium.
 - 6. Médicament suivant la revendication 5, qui contient un excipient supplémentaire apte à l'administration topique.
 - 7. Médicament suivant la revendication 5 ou la revendication 6, dans lequel le sel est un sel partiel et au moins une partie des groupes acides de l'acide hyaluronique est salifiée avec un métal alcalin ou alcalino-terreux, le magnésium, l'aluminium ou l'ion ammonium.

- Médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est apte à l'utilisation ophtalmologique.
- 9. Médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est apte à une utilisation dermatologique, otorhinolaryngologique, odontologique, angiologique, obstétricale ou neurologique.

5

10

15

20

25

30

40

45

- 10. Médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est un agent antibiotique, anti-infectieux, antiviral, antimicrobien, anti-inflammatoire, cicatrisant, cytostatique, cytotoxique, anesthésique, activateur cholinergique, antagoniste cholinergique, activateur adrénergique ou antagoniste adrénergique.
- 11. Médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est un membre choisi dans le groupe consistant en l'auréomycine, la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacyne, la tobramycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, la lincomycine, la vancomycine, la ristocétine, la clindamycine, l'amphotéricine B, la nystatine, la diéthylcarbamazine, le mébendazole, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'adénine-arabinoside, l'aciclovir, la pilocarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropima, la noradrénaline, l'adrénaline, la norfazoline, la méthoxamine, le propranolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol et le méthotrexate.
- 12. Médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est un membre choisi dans le groupe consistant en la streptomycine, l'érythromycine, la kanamycine, la néomycine, la gentamicine, la pilocarpine, la triamcinolone et le facteur de croissance épidermique.
- 13. Médicament suivant l'une quelconque des revendications 5 à 12, dans lequel l'acide hyaluronique est une fraction de poids moléculaire qui est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 14. Médicament suivant l'une quelconque des revendications 5 à 12, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000 et est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 35 15. Médicament suivant l'une quelconque des revendications 5 à 12, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 500 000 à 730 000 et est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
 - 16. Utilisation d'un sel d'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament apte à l'administration topique, sous réserve que ce sel ne consiste pas en hyaluronate de sodium.
 - 17. Utilisation d'un sel d'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament apte à l'administration ophtalmique, sous réserve que ce sel ne consiste pas en hyaluronate de sodium.
 - 18. Utilisation d'un sel d'acide hyaluronique avec une substance pharmaceutiquement active de nature basique pour la préparation d'un médicament apte à l'administration topique et capable d'être absorbé au niveau intradermique ou à travers la muqueuse nasale ou rectale, sous réserve que ce sel ne consiste pas en hyaluronate de sodium.
 - 19. Utilisation d'un mélange d'un agent médicamenteux et d'acide hyaluronique pour la production d'un médicament destiné à l'application topique pour provoquer une biodisponibilité accrue de l'agent médicamenteux, dans laquelle
- (a) ledit agent médicamenteux est une substance pharmaceutiquement active ou un mélange de substances
 pharmaceutiquement actives, apte à l'administration topique ; et
 - (b) ledit acide hyaluronique consiste en acide hyaluronique ou un de ses sels pharmaceutiquement acceptables, sous réserve que ledit agent médicamenteux ne soit pas un agent médicamenteux ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen compris dans l'intervalle de 50 000 à

730 000 et est pratiquement dépourvu d'acide hyaluronique avant un poids moléculaire inférieur à 30 000.

20. Utilisation d'un mélange d'un agent médicamenteux et d'acide hyaluronique pour la production d'un médicament destiné à l'application topique pour provoquer la libération générale de l'agent médicamenteux, dans laquelle

5

10

15

20

25

30

35

40

50

- (a) ledit agent médicamenteux est une substance pharmaceutiquement active ou un mélange de substances pharmaceutiquement actives, apte à l'administration topique; et
- (b) ledit acide hyaluronique consiste en acide hyaluronique ou un de ses sels pharmaceutiquement acceptables, sous réserve que ledit agent médicamenteux ne soit pas un agent médicamenteux ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen compris dans l'intervalle de 50 000 à 730 000 et est pratiquement dépourvu d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 21. Utilisation d'un mélange d'un agent médicamenteux et d'acide hyaluronique pour la production d'un médicament destiné à l'application topique pour le traitement d'une pathologie d'un organe interne, dans laquelle
 - (a) ledit agent médicamenteux est une substance pharmaceutiquement active ou un mélange de substances pharmaceutiquement actives, apte à l'administration topique ; et
 - (b) ledit acide hyaluronique consiste en acide hyaluronique ou un de ses sels pharmaceutiquement acceptables, sous réserve que ledit agent médicamenteux ne soit pas un agent médicamenteux ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen compris dans l'intervalle de 50 000 à 730 000 et est pratiquement dépourvu d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 22. Utilisation d'un acide hyaluronique suivant l'une quelconque des revendications 19 à 21, dans laquelle la substance active est apte à une utilisation dermatologique, otorhinolaryngologique, odontologique, angiologique, obstétricale ou neurologique.
- 23. Utilisation d'un acide hyaluronique suivant la revendication 22, dans laquelle la substance active est un agent antibiotique, anti-infectieux, antiviral, antimicrobien, anti-inflammatoire, cicatrisant, cytostatique, cytotoxique, anesthésique, activateur cholinergique, antagoniste cholinergique, activateur adrénergique ou antagoniste adrénergique.
- 24. Utilisation d'un acide hyaluronique suivant la revendication 22, dans laquelle la substance active est un membre choisi dans le groupe consistant en l'auréomycine, la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacyne, la tobramycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, la vancomycine, la novobiocine, la ristocétine, la clindamycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazole, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adéninearabinoside, la trifluorothimidine, l'aciclovir, l'éthyldésoxyuridine, la pilocarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropima, la noradrénaline, l'adrénaline, la norfazoline, la méthoxamine, le propranolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone, la médrisone, le fluorocile, le méthotrexate et la podophylline.
- 45 25. Utilisation d'acide hyaluronique suivant la revendication 22, dans laquelle la substance active est un membre choisi dans le groupe consistant en la streptomycine, l'érythromycine, la kanamycine, la néomycine, la gentamicine, la pilocarpine, la triamcinolone et le facteur de croissance épidermique.
 - 26. Utilisation d'acide hyaluronique suivant l'une quelconque des revendications 19 à 25, dans laquelle l'acide hyaluronique est une fraction de poids moléculaire qui est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
 - 27. Utilisation d'acide hyaluronique suivant l'une quelconque des revendications 19 à 25, dans laquelle la fraction a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000.
 - 28. Utilisation d'acide hyaluronique suivant l'une quelconque des revendications 19 à 25, dans laquelle la fraction a un poids moléculaire moyen compris dans l'intervalle de 500 000 à 730 000.

29. Procédé pour la préparataion d'un sel d'acide hyaluronique, qui comprend les étapes consistant

5

10

35

45

50

55

- a) à associer une solution aqueuse d'un sel de baryum d'acide hyaluronique avec un sulfate d'une substance pharmaceutiquement active ; et
- b) à séparer le sulfate de baryum précipité pour obtenir le sel d'acide hyaluronique en solution aqueuse.
- 30. Procédé suivant la revendication 29, dans lequel le sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate soit égal au nombre d'équivalents d'acide hyaluronique, en produisant ainsi un sel d'acide hyaluronique stoechiométriquement neutre.
- 31. Procédé suivant la revendication 29, dans lequel le sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate soit inférieur au nombre d'équivalents d'acide hyaluronique, en produisant ainsi un sel d'acide hyaluronique partiellement salifié.
- 32. Procédé suivant l'une quelconque des revendications 29 à 31, dans lequel le sel de baryum d'acide hyaluronique est en outre associé à un sulfate d'au moins un membre choisi dans le groupe consistant en un métal alcalin ou alcalino-terreux, l'aluminium et l'ion ammonium.
- 33. Procédé suivant la revendication 32, dans lequel les sulfates sont ajoutés en une quantité telle que le nombre
 d'équivalents de sulfate soit égal au nombre d'équivalents d'acide hyaluronique.
 - 34. Procédé suivant la revendication 32, dans lequel les sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate soit inférieur au nombre d'équivalents d'acide hyaluronique.
- 35. Procédé suivant l'une quelconque des revendications 29 à 34, dans lequel la substance active consiste en au moins un membre choisi entre l'érythromycine, la gentamicine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacyne, la tobramycine, l'auréomycinie, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazole, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adénine-arabinoside, la tricarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropima, le propranolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone et la médrisone.
 - 36. Procédé suivant l'une quelconque des revendications 29 à 35, dans lequel l'acide hyaluronique est une fraction de poids moléculaire ayant un poids moléculaire entre 90-80 % et 0,23 % du poids moléculaire de l'acide hyaluronique intégral ayant un poids moléculaire de 13 millions.
- 40 37. Procédé suivant la revendication 36, dans lequel la fraction d'acide hyaluronique est dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
 - 38. Procédé suivant la revendication 37, dans lequel la fraction de poids moléculaire a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000, 500 000 à 730 000 ou 250 000 à 350 000.

Revendications pour l'Etat Contractant suivant : AT

- Procédé pour la préparation d'un médicament qui est apte à l'administration topique seulement, comprenant un système de libération d'agent médicamenteux, procédé qui comprend l'étape consistant à mélanger ensemble :
 - (a) une substance pharmaceutiquement active choisie entre un agent antiviral, un agent antitumoral, un agoniste cholinergique, un agoniste adrénergique, un agent cytostatique et un agent cytotoxique; et
 - (b) un véhicule comprenant de l'acide hyaluronique ou un sel pharmaceutiquement acceptable de cet acide hyaluronique, sous réserve que ladite substance active ne soit pas un médicament ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen de 50 000 à 730 000 et étant pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000 ; de telle sorte que le médicament soit apte à l'administration topique seulement.

- Procédé pour la préparation d'un médicament suivant la revendication 1, dans lequel l'acide hyaluronique est une fraction de poids moléculaire qui est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- Procédé pour la préparation d'un médicament suivant la revendication 2, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000.

10

15

30

35

40

45

- Procédé pour la préparation d'un médicament suivant la revendication 2, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 500 000 à 730 000.
- 5. Procédé pour la préparation d'un médicament qui est apte à l'administration topique seulement, procédé qui comprend la salification d'un sel partiel ou stoechiométriquement neutre d'acide hyaluronique avec au moins une substance pharmacologiquement active de nature basique apte à l'administration topique, sous réserve que ledit sel ne consiste pas en hyaluronate de sodium, de telle sorte que le médicament soit apte à l'administration topique seulement.
- 6. Procédé pour la préparation d'un médicament suivant la revendication 5, qui comprend l'addition d'un excipient supplémentaire apte à l'administration topique.
- 7. Procédé pour la préparation d'un médicament suivant la revendication 5 ou la revendication 6, dans lequel le sel est un sel partiel et au moins une partie des groupes acides de l'acide hyaluronique est salifiée avec un métal alcalin ou alcalino-terreux, le magnésium, l'aluminium ou l'ion ammonium.
- 8. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est apte à l'utilisation ophtalmologique.
 - 9. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est apte à une utilisation dermatologique, otorhinolaryngologique, odontologique, angiologique, obstétricale ou neurologique.
 - 10. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est un agent antibiotique, antiinfectieux, antiviral, antimicrobien, anti-inflammatoire, cicatrisant, cytostatique, cytotoxique, anesthésique, activateur cholinergique, antagoniste cholinergique, activateur adrénergique ou antagoniste adrénergique.
 - 11. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est un membre choisi dans le groupe consistant en l'auréomycine, la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacyne, la tobramycine, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, la lincomycine, la vancomycine, la ristocétine, la clindamycine, l'amphotéricine B, la nystatine, la diéthylcarbamazine, le mébendazole, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'adénine-arabinoside, l'aciclovir, la pilocarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropima, la noradrénaline, l'adrénaline, la norfazoline, la méthoxamine, le propranolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol et le méthotrexate.
 - 12. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 7, dans lequel la substance active est un membre choisi dans le groupe consistant en la streptomycine, l'érythromycine, la kanamycine, la néomycine, la gentamicine, la pilocarpine, la triamcinolone et le facteur de croissance épidermique.
 - 13. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 12, dans lequel l'acide hyaluronique est une fraction de poids moléculaire qui est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 14. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 12, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000 et est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.

- 15. Procédé pour la préparation d'un médicament suivant l'une quelconque des revendications 5 à 12, dans lequel la fraction a un poids moléculaire moyen compris dans l'intervalle de 500 000 à 730 000 et est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 5 16. Utilisation d'un sel d'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament apte à l'administration topique, sous réserve que ledit sel ne consiste pas en hyaluronate de sodium.
 - 17. Utilisation d'un sel d'acide hyaluronique avec une substance pharmacologiquement active de nature basique pour la préparation d'un médicament apte à l'administration ophtalmique, sous réserve que ledit sel ne consiste pas en hyaluronate de sodium.

10

15

20

25

30

35

40

45

50

- 18. Utilisation d'un sel d'acide hyaluronique avec une substance pharmaceutiquement active de nature basique pour la préparation d'un médicament apte à l'administration topique et capable d'être absorbé par voie intradermique ou à travers la muqueuse nasale ou rectale, sous réserve que ledit sel ne consiste pas en hyaluronate de sodium.
- 19. Utilisation d'un mélange d'un agent médicamenteux et d'acide hyaluronique pour la production d'un médicament destiné à l'application topique pour provoquer une biodisponibilité accrue de l'agent médicamenteux, dans laquelle
 - (a) ledit agent médicamenteux est une substance pharmaceutiquement active ou un mélange de substances pharmaceutiquement actives, apte à l'administration topique; et
 - (b) ledit acide hyaluronique consiste en acide hyaluronique ou un de ses sels pharmaceutiquement acceptables, sous réserve que ledit agent médicamenteux ne soit pas un agent médicamenteux ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen compris dans l'intervalle de 50 000 à 730 000 et est pratiquement dépourvu d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 20. Utilisation d'un mélange d'un agent médicamenteux et d'acide hyaluronique pour la production d'un médicament destiné à l'application topique pour provoquer la libération générale de l'agent médicamenteux, dans laquelle
 - (a) ledit agent médicamenteux est une substance pharmaceutiquement active ou un mélange de substances pharmaceutiquement actives, apte à l'administration topique ; et
 - (b) ledit acide hyaluronique consiste en acide hyaluronique ou un de ses sels pharmaceutiquement acceptables, sous réserve que ledit agent médicamenteux ne soit pas un agent médicamenteux ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen compris dans l'intervalle de 50 000 à 730 000 et est pratiquement dépourvu d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 21. Utilisation d'un mélange d'un agent médicamenteux et d'acide hyaluronique pour la production d'un médicament destiné à l'application topique pour le traitement d'une pathologie d'un organe interne, dans laquelle
 - (a) ledit agent médicamenteux est une substance pharmaceutiquement active ou un mélange de substances pharmaceutiquement actives, apte à l'administration topique; et
 - (b) ledit acide hyaluronique consiste en acide hyaluronique ou un de ses sels pharmaceutiquement acceptables, sous réserve que ledit agent médicamenteux ne soit pas un agent médicamenteux ophtalmique lorsque l'acide hyaluronique est une fraction ayant un poids moléculaire moyen compris dans l'intervalle de 50 000 à 730 000 et est pratiquement dépourvu d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
- 22. Utilisation d'un acide hyaluronique suivant l'une quelconque des revendications 19 à 21, dans laquelle la substance active est apte à une utilisation dermatologique, otorhinolaryngologique, odontologique, angiologique, obstétricale ou neurologique.
- 23. Utilisation d'un acide hyaluronique suivant la revendication 22, dans laquelle la substance active est un agent antibiotique, anti-infectieux, antiviral, antimicrobien, anti-inflammatoire, cicatrisant, cytostatique, cytotoxique, anesthésique, activateur cholinergique, antagoniste cholinergique, activateur adrénergique ou antagoniste adrénergique.
- 24. Utilisation d'un acide hyaluronique suivant la revendication 22, dans laquelle la substance active est un membre choisi dans le groupe consistant en l'auréomycine, la gentamycine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacyne, la tobramycine, la spectinomycine, l'érythromycine, l'oléandomycine,

la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la-bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, la vancomycine, la novobiocine, la ristocétine, la clindamycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazole, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adéninearabinoside, la trifluorothimidine, l'aciclovir, l'éthyldésoxyuridine, la pilocarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropima, la noradrénaline, l'adrénaline, la norfazoline, la méthoxamine, le propranolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone, la médrisone, le fluorocile, le méthotrexate et la podophylline.

10

5

25. Utilisation d'acide hyaluronique suivant la revendication 22, dans laquelle la substance active est un membre choisi dans le groupe consistant en la streptomycine, l'érythromycine, la kanamycine, la néomycine, la gentamicine, la pilocarpine, la triamcinolone et le facteur de croissance épidermique.

15

26. Utilisation d'acide hyaluronique suivant l'une quelconque des revendications 19 à 25, dans laquelle l'acide hyaluronique est une fraction de poids moléculaire qui est pratiquement dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.

20

27. Utilisation d'acide hyaluronique suivant l'une quelconque des revendications 19 à 25, dans laquelle la fraction a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000.

28. Utilisation d'acide hyaluronique suivant l'une quelconque des revendications 19 à 25, dans laquelle la fraction a un poids moléculaire moyen compris dans l'intervalle de 500 000 à 730 000.

30

25

- 29. Procédé pour la préparation d'un sel d'acide hyaluronique, qui comprend les étapes consistant :
 - a) à associer une solution aqueuse d'un sel de baryum d'acide hyaluronique avec un sulfate d'une substance pharmaceutiquement active; et

hyaluronique partiellement salifié.

b) à séparer le sulfate de baryum précipité pour obtenir le sel d'acide hyaluronique en solution aqueuse.

30. Procédé suivant la revendication 29, dans lequel le sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate soit égal au nombre d'équivalents d'acide hyaluronique, en produisant ainsi un sel d'acide hya-

luronique stoechiométriquement neutre. 31. Procédé suivant la revendication 29, dans lequel le sulfate est ajouté en une quantité telle que le nombre d'équivalents de sulfate soit inférieur au nombre d'équivalents d'acide hyaluronique, en produisant ainsi un sel d'acide

35

32. Procédé suivant l'une quelconque des revendications 29 à 31, dans lequel le sel de baryum d'acide hyaluronique est en outre associé à un sulfate d'au moins un membre choisi dans le groupe consistant en un métal alcalin ou alcalino-terreux, l'aluminium et l'ion ammonium.

40

33. Procédé suivant la revendication 32, dans lequel les sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate soit égal au nombre d'équivalents d'acide hyaluronique.

45

34. Procédé suivant la revendication 32, dans lequel les sulfates sont ajoutés en une quantité telle que le nombre d'équivalents de sulfate soit inférieur au nombre d'équivalents d'acide hyaluronique.

50

35. Procédé suivant l'une quelconque des revendications 29 à 34, dans lequel la substance active consiste en au moins un membre choisi entre l'érythromycine, la gentamicine, la néomycine, la streptomycine, la dihydrostreptomycine, la kanamycine, l'amikacyne, la tobramycine, l'auréomycinie, la spectinomycine, l'érythromycine, l'oléandomycine, la carbomycine, la spiramycine, l'oxytétracycline, la rolitétracycline, la bacitracine, la polymyxine B, la gramicidine, la colistine, le chloramphénicol, la lincomycine, l'amphotéricine B, la griséofulvine, la nystatine, la diéthylcarbamazine, le mébendazole, le sulfacétamide, la sulfadiazine, le sulfisoxazole, l'idoxuridine, l'adéninearabinoside, la tricarpine, la métacholine, la carbamylcholine, l'acéclidine, la fisostigmine, la néostigmine, le démécarium, l'atropima, le propranolol, le timolol, le pindolol, le bupranolol, l'aténolol, le métoprolol, l'oxyprénolol, le practolol, la butoxamine, le sotalol, la butadrine, le labétalol, la dexaméthasone, la triamcinolone, la prednisolone, la fluorométholone et la médrisone.

- 36. Procédé suivant l'une quelconque des revendications 29 à 35, dans lequel l'acide hyaluronique est une fraction de poids moléculaire ayant un poids moléculaire entre 90-80 % et 0,23 % du poids moléculaire de l'acide hyaluronique intégral ayant un poids moléculaire de 13 millions.
- **37.** Procédé suivant la revendication 36, dans lequel la fraction d'acide hyaluronique est dépourvue d'acide hyaluronique ayant un poids moléculaire inférieur à 30 000.
 - 38. Procédé suivant la revendication 37, dans lequel la fraction de poids moléculaire a un poids moléculaire moyen compris dans l'intervalle de 50 000 à 100 000, 500 000 à 730 000 ou 250 000 à 350 000.