# Review Ch11、12

2023年1月4日

19:10

#### 功率放大电路:

- 1. 足够大的功率增益A\_p ->功率转化效率->功率器件的散热问题
- 2. 大信号工作状态 (非线性问题) ,饱和区电流过大,需要设计功放管保护
- 3. 输入级功率小, 需要多级放大

#### 参数:

- a. 单一频率交流信号输出功率  $P_o = V_o \cdot I_o = \frac{1}{8} V_{OP-P} \cdot I_{OP-P}$
- b. 功率增益  $G = \frac{P_o}{P_{in}}$
- C. 功率效率  $\eta = \frac{P_O}{P_{DC}}$
- d. 功率1dB压缩点: 记为开始失真。



 $OP_{1dB}(dBm) = IP_{1dB}(dBm) + G(dB) - 1(dB)$ , 当功率超过 $OP_{-1dB}$ , 增益迅速下降, 以至达到饱和输出 $OP_{sat}$ 

e. 3阶交截点: 互调成分,幅度相同、频率接近的信号时, $f = 2f_1 - f_2$   $(f_2 > f_1)$ 

#### 4. 导通角:



#### 5. 线性功放



输入输出电路中的匹配网络是指通过阻抗匹配, 使负载 能得到功放管输出的最大功率。

a. 甲类功放

最大不失真: 静态点平分交流负载线

最大交流输出电压 $V_{cem} \approx V_{CC} = V_{CC} - V_{CEsat}$ ,最大交流输出电流 $I_{cm} = \frac{V_{cem}}{R_L'} \approx \frac{V_{CC}}{R_L'}$ , $\eta_{max} = 50\%$ 

b. 乙类攻放

双管推挽放大电路实现



### 克服交越失真:

- 1) 负反馈,死区变为 $\frac{V_{BE}}{A_{v}}$
- 2) 甲乙类功放互补 门相放大
  - a) 输出电压 $v_o = v_i + \frac{1}{2}V_{BB} v_{BE}$
  - b) 输出电阻 $R_{out}=r_{eN}^{L}//r_{eP}=rac{V_T}{i_N+i_P}$ ,输入信号很小时,输出电阻保持不变;输入大负载电流时, $i_N$ 或 $i_P$ 显著增加,输出电流减小。
- 3) 二极管偏置:减少热漂移

| 工作类型。 | 导通角€     | 工作点电流。                                       | 理论极限效率。   | 实际工作效率。 |
|-------|----------|----------------------------------------------|-----------|---------|
| 甲。    | 360₽     | 0.5I <sub>max</sub> ₽                        | 50%₽      | 30~40%₽ |
| 甲乙₽   | 180~360₽ | 0.05 I <sub>max</sub> ~0.5I <sub>max</sub> ₽ | 50~78.5%₽ | 40~55%  |
| Z۰    | 180₽     | 约 0.05 I <sub>max</sub> 。                    | 78.5%₽    | 40~55‰  |

## 集成运放电路



### **音级作用**

- 1.输入级: 双端输入差分电路, $R_{in}$ 、 $A_{vd}$ 、CMRR 高。一般跟有射级恒流源(电流镜+有源负载)
- 2. 中间级: 放大, 共射 (源), 要求增益大。
- 3. 输出级: 负载能力强的基本放大电路(一般甲乙类功放),  $R_o$  小,输出电压高保真,非线性失真小。
- 4.偏置电路: 电流源电路, 静态工作点

#### ☑ 运放静态点计算

例:



如图,高精度运放电路原理图,试分析:

- (1)两个输入端中哪个是同相输入端,哪个是反相输入端;
- (2)  $T_3$ 与 $T_4$ 的作用;
- (3)电流源13的作用;
- (4) D<sub>1</sub>与D<sub>2</sub>的作用。
- (1) u12同相, u11反相

  - (2) 为T1、T2管提供有源负载
  - (3) 为T6提供静态电流;集电极有源负载,提高放大能力
  - (4) 消除交越失真

#### 运放工作时的直流偏置与失调

输入电流提供直流通路;外接失调调整电路,将offset降到最低。

(1) 输入端电流不对称引起的失调

输出电平失调值:  $v_o(v_{in}, i_b^-) = \left(1 + \frac{R_2}{R_1}\right)_{in} + R_2 i_b^-$ ,失调值为 $R_2 i_b^-$ .

平衡失调值: '+' 端具有 $r=R_1//R_2$ 的电阻, 则 $v_o=\left(1+\frac{R_2}{R_1}\right)_{in}+R_2(i_b^--i_b^+)$ ,失调取决于对称性好坏





(2) 输入端电阻不对称引起的失调

输入端失调电压 $\Delta v_R=i_b\Delta R$ ,输出端失调电压 $\Delta v_o=i_{os}R_2$ ,折算回输入端 $\Delta v_{ios}=i_{os}R_1$ .

(3) 差分管导通电压不对称引起的失调

必须输入失调电压1/2。.

最坏情况的总失调:  $\Delta = I_B \Delta R + R_1 I_{os} + V_{os}$ .

