

TD n°1: Calcul Stochastique

Master MMA - 1ère année - 2021/2022

Pr. Hamza El Mahjour

Espérances conditionnelles et Martingales

Exercice 1

Soient X,Y deux variables aléatoires réelles (v.a.r) intégrables sur $(\Omega,\mathcal{F},\mathbb{P})$ et $\mathcal{G},\mathcal{H}\subset\mathcal{F}$ telles que $\sigma(\mathcal{G},\mathcal{H})=\mathcal{F}$. Trouver des contre-exemples aux affirmations suivantes

- 1. $\mathbb{E}[X|Y] = \mathbb{E}[X] \implies X$ et Y sont indépendantes.
- 2. $\mathbb{E}[X|\mathcal{G}] = 0$ et $\mathbb{E}[X|\mathcal{H}] = 0 \implies X = 0$.
- 3. X et Y sont indépendantes $\implies \mathbb{E}[X|\mathcal{G}]$ et $\mathbb{E}[Y|\mathcal{G}]$ sont indépendantes.

Correction ▼ [01]

Exercice 2

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a positives sur $(\Omega, \mathscr{F}, \mathbb{P})$ et $(\mathscr{F}_n)_{n\in\mathbb{N}}$ une suite de sous-tribus de \mathscr{F} . On suppose que $\mathbb{E}[X_n|\mathscr{F}_n]$ converge en probabilité vers 0.

- 1. Montrer que $X_n \xrightarrow[n \to \infty]{\mathbb{P}^n} 0$.
- 2. La réciproque est-il vraie? (Justifier)

Correction ▼ [02]

Exercice 3

 1 On dit que deux v.a X et Y à valeurs dans un espace (E,\mathscr{E}) sont indépendantes conditionnellement à \mathscr{G} si pour toutes fonctions f et g de E dans \mathbb{R}^+ mesurables

$$\mathbb{E}[f(X)g(Y)|\mathcal{G}] = \mathbb{E}[f(X)|\mathcal{G}]\mathbb{E}[g(Y)|\mathcal{G}].$$

Que signifie ceci si $\mathscr{G} = \{\emptyset, \Omega\}$ et? si $\mathscr{G} = \mathscr{E}$?

Correction ▼ [03]

Exercice 4

Soit S_n une marche aléatoire (M.A) simple symétrique sur \mathbb{Z} et $\mathscr{F}_n = \sigma(S_1, \dots, S_n)$.

- Montrer que les processus suivants sont des martingales.
 - 1. $(S_n)_{n \ge 0}$.
 - 2. $(S_n^2 n)_{n \ge 0}$.
 - 3. $(S_n^3 3nS_n)_{n \ge 0}$.
- Soit Q(X,Y) un polynôme à deux variables et montrer que $(Q(S_n,n))_{n\in\mathbb{N}}$ est une martingale pour (F_n) si pour tout $s,n\in\mathbb{Z}$,

$$Q(s+1,n+1) - 2Q(s,n) + Q(s-1,n+1) = 0.$$

^{1.} j'ai supprimé la deuxième question de cette exercice 3 ...

• Soit $\alpha \in \mathbb{R}$. Trouver $\beta \in \mathbb{R}$ tel que $e^{(\alpha S_n - n\beta)}$ soit une martingale pour la filtration (\mathscr{F}_n) .

Correction ▼ [04]

Exercice 5

Soit $\mathscr T$ un temps d'arrêt pour une filtration (F_n) . On suppose qu'il existe $\varepsilon > 0$ et $n_0 \in \mathbb N^*$ tels que pour tout $n \geqslant 0$, on a $\mathbb P(\mathscr T \leqslant n + n_0|\mathscr F_n) > \varepsilon$. Montrez que $\mathscr T$ est fini p.s.

Correction ▼ [05]

Exercice 6

Soit (S_n) une M.A simple symétrique sur \mathbb{Z} . Soient $a, b \ge 0$. Considérons

$$\mathscr{T} = \inf\{n \in \mathbb{N}, S_n = -a \text{ ou } S_n = n\}$$

On rappelle que $\mathscr{T} < +\infty$ p.s.

1. En utilisant le fait que la M.A est une martingale et le théorème d'arrêt

$$\mathbb{P}(\{S_{\mathscr{T}}=b\})=\frac{a}{a+b}.$$

2. En utilisant la martingale $(S_n^2 - n)$ et le théorème d'arrêt. Montrer que $\mathbb{E}[\mathscr{T}] = ab$.

Correction ▼ [06]

Correction de l'exercice 1 A

- 1. Considérer X de loi uniforme sur $\{-2, -1, 1, 2\}$ et poser Y = |X|. On voit clairement que Y et X sont dépendants et par un calcul simple on trouve $\mathbb{E}[X|Y] = \mathbb{E}[X]$
- 2. Soit *X* et *Y* deux variables i.i.d avec $\mathbb{P}(\{X=1\}) = \mathbb{P}(\{X=-1\}) = 1/2$. On pose $\mathscr{F} = \sigma(X,Y)$. Soit $Z = X \cdot Y$. On a bien $\mathbb{E}[Z|X] = \mathbb{E}[Z|Y] = 0$ et $Z \neq 0$.
- 3. Il suffit de pendre X et Y deux variables suivant une loi de Bernoulli de paramètre 1/2 et $\mathscr{G} = \sigma(X + Y)$.

Correction de l'exercice 2 A

1. Soit $\varepsilon > 0$. Pour tout $n \in \mathbb{N}$, on note $A_n = \{\omega \in \Omega, \mathbb{E}[\{X | \mathscr{F}_n > \varepsilon^2/2\}]\}$. Par hypothèse, on a $\lim \mathbb{P}(A_n) = 0$, donc, pour n assez grand, $\mathbb{P}(A_n) < \varepsilon/2$. De plus $\mathbb{E}\left[X_n \mathbb{1}_{A_n^C}\right] = \mathbb{E}\left[\mathbb{E}\left[X_n | \mathscr{F}_n\right] \mathbb{1}_{A_n^C}\right] \leqslant \varepsilon^2/2$. En utilisant l'inégalité de Markov, on a

$$\mathbb{P}(\{X_n \geqslant \varepsilon \text{ et } A_n^C\}) \leqslant \frac{1}{\varepsilon} \mathbb{E}[X_n \mathbb{1}_{A_n^C}] \leqslant (1/\varepsilon)(\varepsilon^2/2) = \varepsilon/2.$$

ce qui nous permet d'écrire

$$\mathbb{P}(\{X_n \geqslant \varepsilon\}) \leqslant \mathbb{P}(A_n) + \mathbb{P}(\{X_n \geqslant \varepsilon \text{ et } A_n^C\}) \leqslant \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Donc X_n converge en probabilité vers 0.

2. Prenez par exemple $\mathscr{F}_n = \{\emptyset, \Omega\}$ avec $\mathbb{P}(X_n = 0) = 1 - 1/n$ et $\mathbb{P}(\{X_n = n^2\}) = 1/n$.

Correction de l'exercice 3 A

On rappelle que deux variables aléatoires X_1, X_2 réelles $(\in \mathbb{R}^{d^{\mathbb{R}^n}})$ sont indépendantes ssi, pour toutes fonctions f et g boréliennes on a

$$\mathbb{E}[f(X_1)g(X_2)] = \mathbb{E}[f(X_1)]\mathbb{E}[g(X_2)].$$

Si $\mathcal{G} = \{\emptyset, \Omega\}$ l'égalité s'écrit, on a

$$\mathbb{E}[f(X)g(Y)|\{\emptyset,\Omega\}] = \mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)|\{\emptyset,\Omega\}] \times \mathbb{E}[g(Y)|\{\emptyset,\Omega\}] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)].$$

pour toutes les fonctions f et g mesurables dans \mathbb{R}^+ , c'est à dire que X_1 et X_2 sont indépendants. Dans le deuxième cas où $\mathscr{G} = \mathscr{E}$ on aurait que $f(X), g(Y) \in \mathscr{E}$ et $f(X), g(Y) \in \mathscr{E}$ ce qui rend l'égalité triviale. Mais on ne peut rien dire sur l'indépendance de X et Y.

Correction de l'exercice 4 A

Notons $X_n = S_n - S_{n-1}$ le pas de la M.A.

1. On a

$$\mathbb{E}[S_{n+1}|\mathscr{F}_n] = \mathbb{E}[S_n + X_{n+1}|\mathscr{F}_n] = S_n + \mathbb{E}[X_{n+1}] = S_n.$$

2. On a:

$$\mathbb{E}[S_{n+1}^2|\mathscr{F}_n] = \mathbb{E}[S_n^2] + 2S_n\mathbb{E}[X_{n+1}|\mathscr{F}_n] + \mathbb{E}[X_{n+1}^2|\mathscr{F}_n].$$

Or X_{n+1} et X_{n+1} sont indépendants de \mathcal{F}_n . Donc

$$\mathbb{E}[S_{n+1}^2|\mathscr{F}_n] = \mathbb{E}[S_n^2] + 2S_n\mathbb{E}[X_{n+1}] + \mathbb{E}[X_{n+1}^2].$$

De plus $\mathbb{E}[X_{n+1}]=0$ et $\mathbb{E}[X_{n+1}^2]=\sum_k k\mathbb{P}(X_{n+1}=k)$ mais il y a une valeur possible de k c'est k=1, le reste c'est de ensembles vides. Donc $\mathbb{E}[X_{n+1}^2]=\mathbb{P}(\{X_{n+1}=1\}\cup\{X_{n+1}=-1\})=\mathbb{P}(\Omega)=1$. Donc $\mathbb{E}[S_{n+1}^2|\mathscr{F}_n]=S_n^2+1$. Alors $\mathbb{E}[S_{n+1}^2-(n+1)|\mathscr{F}_n]=\mathbb{E}[S_{n+1}^2]-\mathbb{E}[(n+1)]=S_n^2+1-n-1=S_n^2-n$. Donc c'est bien une martingale.

3

- 3. calcul similaire au précédent.
- 4. On calcule

$$\mathbb{E}[P(S_{n+1}, n+1) | \mathscr{F}_n] = \frac{1}{2} (P(S_n+1, n+1) + P(S_n-1, n+1)).$$

Il suffit de prendre P(X+1,n+1) - 2P(X,n) + P(X-1,n+1) = 0 pour obtenir une martingale.

5. $\beta = \ln(\operatorname{ch}(\alpha))$.

Correction de l'exercice 5 A

On montre par réccurence sur k que $\mathbb{P}(\{T \geqslant kn_0\}) \leqslant (1-\varepsilon)^k$. C'est vrai pour k=0 ... Après, utilisez

$$\mathbb{P}(\lbrace T \geqslant (k+1)n_0 \rbrace) = \mathbb{E} \left[\mathbb{1}_{\lbrace T \geqslant kn_0 \rbrace} \mathbb{1}_{\lbrace T \geqslant (k+1)n_0 \rbrace} \right] \\
= \mathbb{E} \left[\mathbb{1}_{\lbrace T \geqslant kn_0 \rbrace} \mathbb{P}(\lbrace T \geqslant k(n_0+1) \rbrace | \mathscr{F}_{kn_0}) \right] \\
\leqslant \dots$$

On conclut par l'hypothèse de récurrence. On en déduit aisément que $\mathbb{E}[T] < \infty$ et T est p.s fini.

Correction de l'exercice 6

1. Soit t > 0, alors $\inf(\mathcal{T}, t)$ est un temps d'arrêt aussi qui est borné en plus. On peut alors appliquer le théorème d'arrêt :

$$\mathbb{E}\left[S_{\inf(\mathscr{S},\ t)}\right] = \mathbb{E}[S_0] = 0.$$

Et puisque $\mathscr{T} < \infty$ p.s donc $S_{\inf(\mathscr{T}, t)}$ converge vers $S_{\mathscr{T}}$ presque sûrement, et on a $-a \leqslant S_{\inf(\mathscr{T}, t)} \leqslant b$ pour tout t. Par convergence dominée, on peut donc écrire

$$\mathbb{E}\left[S_{\mathscr{T}}\right] = \lim_{t \to \infty} \mathbb{E}\left[S_{\inf(\mathscr{S}, t)}\right] = 0.$$

D'autre part, en notant $p = \mathbb{P}(\{S_{\mathscr{T}} = b\})$, on a

$$0 = \mathbb{E}[S_{\mathcal{T}}] = (1 - p)(-a) + pb.$$

d'où p = a/(a+b)

2. On applique le théorème d'arrêt sur $S_n^2 - n$ et au temps d'arrêt $\mathcal{T} \wedge t$. On obtient

$$\mathbb{E}\left[\mathscr{T}\wedge t\right] = \mathbb{E}\left[S_{\mathscr{T}\wedge t}^2\right]$$

On va utiliser la même procédure que la question 1 et en exploitant le résultat aussi de la première question, on trouvera enfin que

$$\mathbb{E}\left[\mathscr{T}\right] = \mathbb{E}\left[S_{\mathscr{T}}^{2}\right] = \frac{b}{a+b}(-a)^{2} + \frac{a}{a+b}b^{2} = ab.$$

4