

Unit 1 Machine Learning: Introduction

Disclaimer

The content is curated from online/offline resources and used for educational purpose only

Learning Objectives

- About Machine Learning
- Applications
- Types of Platforms
- Categories of Machine Learning
- GUI & Non-GUI Approach
- "Hello world to ML"
- Git & GitHub

About Machine Learning

Concept emerged during WW-II

Primarily knows as Turing Machine

- Intent to learn encrypted message.
- Accepted as field of science in 1950's.

Reference link

Machine Learning: Definition

Early definition of Machine Learning

"Field of study that gives computers the ability to learn without being explicitly programmed". Arthur Samuel (1959)

- What do you mean by Explicitly Programmed?
- So, machine learning algorithms, inspired by the human learning process, iteratively learn from data, and allow computers to find hidden insights.
- These models help us in a variety of tasks, such as object recognition, summarization, recommendation, and so on.

Click here

Reference link

Differs to Casual Programming

Traditional Programming

Machine Learning Applications

Assisted Driving

Let's try ML...

Click here

Reference link

Types of Machine Learning

Types of ML

ML Categories: Supervised & Unsupervised

Supervised Learning

Unsupervised Learning

ML Hands-on: GUI V/S Bare Coding

- Two approaches are there to practice ML.
- Dedicated Cloud services for GUI (eg:- https://studio.azureml.net/)
- Customized modeling needs bare coding.

Microsoft Azure Workspace

https://studio.azureml.net/

Model Development with Azure ML Studio

https://studio.azureml.net/

Coding Platform: Python

- Python is a General-Purpose Programming language that is often applied in scripting roles.
- So, Python is programming language as well as scripting language.
- Python is an Interpreted language

Python - Uses

Python Applications

Anaconda: Introduction

- An easy-to-install collection of high-performance
 Python libraries
- For managing packages and environments.
- Can use Conda to install over 1.5k packages (including the R language) from the Anaconda public repository.
- More than 20k packages from community channels, such as Conda-forge and bioconda

Lab 1 - Demonstration of Anaconda Installation

Anaconda Installation

- Visit the following link: https://www.anaconda.com/distribution/
- Scroll down the page and select windows.

Anaconda

Anaconda Installation....

Download version matching to your machine

https://www.anaconda.com/download/

Anaconda Installation....

Run the installation file and accept product terms

https://docs.anaconda.com/free/anaconda/install/windows/

Anaconda Navigator

 Anaconda Navigator is a desktop graphical user interface included in Anaconda that allows you to launch applications and easily manage conda packages, environments and channels without the need to use command line commands.

https://anaconda.org/anaconda/anaconda-navigator

Types of Data

Example

- Nominal Good, Bad,...
- Ordinal First, Second....
- Discrete Student count
- Continuous -- Temperature

Requisite libraries: Numpy, Pandas & Seaborn

Numpy

- Multidimensional arrays and matrices
- High-level mathematical functions
- pip install numpy
- >>> import numpy
- >>> numpy.__version__

Pandas

- Easy data structure
- quicker data analysis
- Structed & Un-structured data
- pip install pandas
- import pandas as pd

Seaborn

- Seaborn
- Visualization library
- Statistical graphics plots
- Relational patterns
- Used for EDA
- pip install seaborn
- import seaborn as sns

Scikit-Learn Library

- A free machine learning library.
- Includes most of the classification, regression and clustering algorithms.
- Works with numerical and scientific libraries, NumPy and SciPy.
- Machine learning pipelined tasks are already in scikit learn.
- Includes pre-processing, feature selection, data splitting, customize algorithms, fitting models, tuning parameters, prediction, evaluation, and exporting the model.
- Has an extended support for Deep learning and cloud services.

Machine Learning Workflow

Writing your first Machine Learning Codes in Only 6 Lines!

Write a code to differentiate between Apples & Oranges?

Training Data

Features

Input of classifier		Output of classifier
Weight	Texture	Label
150g	Bumpy	Orange
170g	Bumpy	Orange
140g	Smooth	Apple
130g	Smooth	Apple

- 1. import sklearn
- 2. features = [[140,"smooth"],[130,"smooth"],[150,"bumpy"],[170,"bumpy"]]
- 3. labels = ["apples", "apples", "orange", "orange"]

Change strings to integers

First 3 Lines of Code!

Classifier

- Box of RULES
- Learning Algorithms are the procedure that creates RULES, by finding patterns in your training DATA.
- Ex: It creates RULE that heavier fruit is more likely to be an orange!

Decision Tree

Machine Learning......Final Code

- 1. from sklearn import tree
- 2. features = [[140, 1], [130, 1], [150, 0], [170, 0]]
- 3. labels = [0, 0, 1, 1]
- 4. clf = tree.DecisionTreeClassifier()
- 5. clf = clf.fit(features, labels)
- 6. print(clf.predict([[150, 0]]))

_0: bumpy ; 1: smooth

0: apple; 1: orange

Classifier gets trained on input data

Need for Model Evaluation

- Built on a subset of the total data, termed as training data, and they are used to predict on new data that is not part of this training subset.
- If a model is totally adapted to its training data, it would fail to predict accurately any new data (Overfitting).
- If model is too general, it would predict poorly on particular cases (Underfitting).
- A good model should be perfectly balanced to avoid both.
- By holding out part of the data from the training set and evaluating model with this subset of test data.

ML: Problem Types

Problem types	Algorithms
Regression	Linear regression, K-NN, random forest, neural networks
Classification	Logistic regression, random forest, K-NN, gradient boosting classifier, neural networks
Clustering	K-Means, DBSCAN, Hierarchical clustering, Gaussian mixture models, BIRCH
Time-series forecasting	ARIMA, SARIMA, LSTM, Exponential smoothing, Prophet, GARCH, TBATS, Dynamic linear models
Anomaly detection	IsolationForest, Minimum covariance determinant, Local outlier factor, One-class SVM
Recommendation	Content-based and collaborative filtering machine learning methods
Data generation	Generative adversarial network (GAN), Hidden Markov models

Git & GitHub

Git

- Git is software for tracking changes.
- Handle any set of files
- Used for work among programmers collaboratively
- Developing source code during software development.

Click here

Reference link

GitHub

- Provider of Internet hosting for software development and version control.
- Offers the distributed version control
- Supports source code management (SCM)

Click here

Reference link

Difference between Git and GitHub

Git	GitHub	
Installed locally	Hosted in cloud	
First released in 2005	Company launched in 2008	
Maintained by The Linux Foundation	Purchase in 2018 by Microsoft	
Focused on version control and code sharing	Focused on centralized source code hosting	
Primarily a command-line tool	Administered through the web	
No user management features	Built-in user management	
Minimal external tool configuration features	Active marketplace for tool integration	
Competes with Mercurial, Subversion, IBM, Rational Team Concert and ClearCase	Competes with Atlassian Bitbucket and GitLab	
Open source licensed	Includes a free tier and pay-for-use tiers	

Version Controlling

- Version control (also known as revision control, source control, or source code management)
- Responsible for managing changes to computer programs.
- Handle documents, large web sites, or other collections of information.

Distributed Version Control

Distributed control

Centralized Version Control

Centralised control

Code-Cycle

Reference link

Git CMD Vs Git bash

- Git CMD just like Windows CMD.
- Can call all Git features

- Git Bash emulates bash environment
- Also support Unix commands

Click here

Reference link

Lab 2 - GitHub Commands

Git Commands

Click here

Reference link

Processing Stages

- Untracked: Files which are newly created in working directory and git does not aware of these files.
- Staged: Files which are added to staging area. These files are ready to commit.
- **Committed:** Files which is committed and placed in local repository/ Committed State.
- Modified: File which is already tracked by git. But is modified in working directory.

Git-Flow

Untracked file – Red color

Staging Area – Green Color

Branching

Master and branch

Create Account on GitHub

https://github.com/join?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F&s_ource=header-home

Lab 3 - Getting started with the GitHub

Connect to GitHub	×	
GitHub Sign in		
Sign in with your browser 🔼 or		
Personal Access Token Sign in Don't have an account? Sign up		
Don't nave an account? Sign up		

<u>GitHub</u>

Summary

- In the first section, we see definition of Machine Learning, that enables computers to learn from data. We delve into key types like Supervised, Unsupervised, and Reinforcement Learning, showcasing their real-world applications and examining different Machine Learning products.
- The second part focuses on Git and GitHub. Git is a version control system, while GitHub is a collaborative platform. We explain their roles in tracking changes, facilitating teamwork, and managing conflicts.
 Towards the end, we guide you through creating a GitHub account.
- Emphasizing best practices for version control, we highlight the benefits of using Git and GitHub for efficient collaboration and code management.

1. Which type of Machine Learning involves learning from a labeled dataset to make

- a) Unsupervised Learning
- b) Supervised Learning
- c) Semi-Supervised Learning
- d) Reinforcement Learning

B) Supervised Learning

2. Which type of Machine Learning Library use for Prediction of based on past data

- a) Pandas
- b) Numpy
- c) Sci-kit Learn (skleran)
- d) CV
- C) Sci-kit Learn (skleran)

3. Git is _____ Version Control system

- a) Distributed
- b) Centralized

Answer: a) Distributed

4. What is the main goal of Unsupervised Learning?

- a) To make predictions based on labeled data
- b) To learn from rewards and punishments
- c) To find hidden patterns and structures in unlabeled data
- d) To improve the accuracy of existing models

Answer - c) To find hidden patterns and structures in unlabeled data

5. Which Python Library Use for Data Visualization

- a) lineplot
- b) Seaborn
- c) matplotlib
- d) scatterplot

Answer - b and c

References

- https://en.wikipedia.org/wiki/Git
- https://en.wikipedia.org/wiki/GitHub
- https://medium.com/machine-learning-101
- https://medium.com/@randylaosat/a-beginners-guide-to-machine-learning-dfadc19f6caf
- https://sml.csa.iisc.ac.in/Courses/Spring21/E0_270/pdfs/1.pdf
- https://www.geeksforgeeks.org/difference-between-git-and-github/
- https://link.springer.com/book/10.1007/978-3-030-81935-4
- https://ai.stanford.edu/~nilsson/MLBOOK.pdf
- https://mitpress.mit.edu/9780262043793/introduction-to-machine-learning/

Thank you...!