1、实验名称及目的

自定义 uORB 消息: 通过创建一个自定义的 uORB 消息实现读写功能,以此熟悉并掌握 PX4 的 uORB 消息系统。

2、实验效果

实现自定义 uORB 消息,并写入飞控中进行消息的写入与读取。

3、文件目录

文件夹/文件名称		说明
msg	PX4uORBMsgGen.m	uORB 消息类型生成程序。
	rfly_test.msg	uORB 消息数据结构体文件。
init_control.m		初始化文件。
px4demo_uORB_create.slx		自定义 uORB 消息定义模型文件。

4、运行环境

序号	软件要求	硬件要求	
1, 4	长日安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上 [®]	数据线	1

- ①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html。
- ③:注: 若使用卓翼 H7 飞控进行本实验,须保证 MATLAB 版本为: 2020a 及以上

5、实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中运行 init_control.m 文件,即可将自定义的 uORB 消息加载到飞控固件中。可在"*\PX4PSP\Firmware\msg"中查看到 rfly_test.msg 文件,同时在本文件夹的 CMakeList.txt 中也可看到新增的 rfly_test.msg 消息。如下图所示。

Step 2:

打开 MATLAB 软件,在 MATLAB 中打开 px4demo_uORB_create.slx 文件,在 Simulin k 中,点击编译命令。

Step 3:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 4:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。

Step 5:

打开 QGroundControl 软件,点击左上角 Logo 在弹出的对话框中,选中 Analyze Tools,在 Mavlink 控制台中输入:

listener rfly_test 即可得出如下图的结果。

