A1) Given $f:(a,x_0)\cup(x_0,b)\to\mathbb{R}$, then $\lim_{x\to x_0}f(x)$ exists iff for any $\varepsilon>0$, there exists $\delta>0$ such that for any $x_1,x_2\in(x_0-\delta,x_0+\delta)$, $|f(x_1)-f(x_2)|<\varepsilon$.

Proof: <== Let $x_n=x_0+1/n$, then $\{f(x_n)\}$ form a Cauchy sequence, hence $f(x_0)=\lim_{n\to\infty}f(x_n)$ exists. For any $\varepsilon>0$, there exists $N,\delta>0$ such that for any $x,y\in(x_0-\delta,x_0+\delta), |f(x)-f(y)|<\varepsilon$ and for any $n>N, |f(x_n)-f(x_0)|<\varepsilon$, hence let $\delta'=\min\{\delta,1/N\}$, then for any $x\in(x_0-\delta',x_0+\delta')$, $|f(x)-f(x_0)|\leqslant|f(x)-f(x_N)|+|f(x_N)-f(x_0)|<2\varepsilon$. Hence $\lim_{x\to x_0}f(x)=f(x_0)$ exists. ==> For any $\varepsilon>0$ there exists $\delta>0$ such that for any $x\in(x_0-\delta,x_0+\delta)$, $|f(x)-f(x_0)|<\varepsilon$, hence for any $x,y\in(x_0-\delta,x_0+\delta), |f(x)-f(y)|<2\varepsilon$.

A2) Suppose I is an interval (not a point), prove that the linear space C(I) on $\mathbb R$ is of infinite dimension.

Proof: C(I) contains the subspace of all polynomials, hence is of infinite dimension.

A3) Suppose $f:X \to Y$ and $g:Y \to Z$ are both continuous, prove that $g\circ f:X \to Z$ is also continuous.

Proof: For any open set $U\in Z$, $g^{-1}(U)\subset Y$ is an open set, and $f^{-1}(g^{-1}(U))\subset X$ is an open set, hence $(g\circ f)^{-1}(U)$ is an open set in X and therefore $g\circ f$ is continuous on X.

A4) Suppose (X,d_X) and (Y,d_Y) are metric spaces, $f:X\to Y$ is continuous. If d_X' and d_X are equivalent metrics, and so are d_Y' and d_Y , then in the spaces (X,d_X') and (Y,d_Y') , f is also continuous.

Proof: The topology generated by equivalent metrics are the same.

A5) The mapping $f:X o \mathbb{R}^n$ can be written in the form

$$f:X o \mathbb{R}^n,\, x\mapsto f(x)=(f_1(x),f_2(x),\cdots,f_n(x)).$$

Prove that f is continuous iff f_i is continuous for every $i=1,2,\cdots,n$. Proof: Since f is continuous iff $\forall x_n \to x, f(x_n) \to f(x)$, and $\{x_k = (x_k^{(1)}, \cdots, x_k^{(n)})\}_{k\geqslant 1}$ converges iff every $\{x_k^{(i)}\}_{k\geqslant 1}$ converges, f is continuous iff every f_i is continuous.

A6) Suppose (X,d_X) is a metric space, $(V,\|\cdot\|)$ is a normed linear space. $f:X\to V$ and $g:X\to V$ are continuous mappings. Prove that $f\pm g:X\to V$ is continuous. If $V=\mathbb{C}$ then $f\cdot g:X\to \mathbb{C}$ is continuous. If $V=\mathbb{C}$ and for any $x\in X$, $g(x)\neq 0$, then $f/g:X\to \mathbb{C}$ is continuous.

(Choose one statement to prove.)

Proof: Since for $\{x_n\},\{y_n\}\subset\mathbb{C}$, $\lim_{n\to\infty}x_ny_n=\lim_{n\to\infty}x_n\cdot\lim_{n\to\infty}y_n$ and if $y_n\neq 0$, then

$$\lim_{n o\infty}x_n/y_n=\lim_{n o\infty}x_n/\lim_{n o\infty}y_n.$$

Hence $f \cdot g$, f/g are both continuous.

For $\{x_n\}, \{y_n\} \subset V$, if $A = \lim_{n o \infty} x_n$ and $B = \lim_{n o \infty} y_n$ then

$$||x_n + y_n - A - B|| \le ||x_n - A|| + ||y_n - B|| \to 0.$$

Hence $f \pm g$ is continuous.

A7) Find all discontinuities of the function

$$f: \mathbb{R} o \mathbb{R}, \ x \mapsto egin{cases} 1/q, & ext{if } x = p/q \in \mathbb{Q}, ext{where } q \geqslant 1, (p,q) = 1. \ 0, & ext{if } x
ot \in \mathbb{Q}. \end{cases}$$

Solution: For any $x\in\mathbb{Q}$, $f(x)\neq 0$ but for any $\delta>0$ there exists $y\in(x-\delta,x+\delta)$ such that $y\notin\mathbb{Q}$. Hence |f(x)-f(y)|=f(x), so f is not continuous at x.

For any $x \notin \mathbb{Q}$, and any $\varepsilon > 0$, let $N = \lfloor 1/\varepsilon \rfloor + 1$ and $\delta = \inf_{n \leqslant N} \|xn\|/n$, then for any $y \in (x - \delta, y + \delta)$, if $y \notin \mathbb{Q}$ then f(x) = f(y) = 0, if $y = p/q \in \mathbb{Q}$ then $q > N > 1/\varepsilon$, hence $|f(x) - f(y)| = f(y) = 1/q < \varepsilon$. Therefore f is continuous at x iff $x \notin \mathbb{Q}$.

A8) Calculate

$$\lim_{x o 0} rac{e^x - 1}{x} = \lim_{x o 0} \sum_{n=1}^{\infty} rac{x^{n-1}}{n!} = 1.$$

A9) Calculate

$$\lim_{x o \infty} \left(1 + rac{1}{x}
ight)^x = e.$$

Since $\lim_{n\to\infty}(1+1/n)^n=e$ and $(1+1/x)^x$ is monotonic on $[100,\infty)$.

A10) Calculate

$$\lim_{x o -\infty} \left(1 + rac{1}{x}
ight)^x = e.$$

Since $\lim_{x o \infty} (1-1/x)^x = \lim_{x o \infty} (1-1/x)^{x-1} = e.$

PSB

B1) Calculate the following series:

1.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = 1.$$

2.

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2n - 1} - \frac{1}{2n + 1} = \frac{1}{2}.$$

3.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} = \frac{1}{4}.$$

4.

$$\sum_{n=1}^{\infty} \arctan rac{1}{n^2+n+1} = \sum_{n=1}^{\infty} \arctan rac{1}{n} - \arctan rac{1}{n+1} = rac{\pi}{4}.$$

5.

$$\sum_{n=0}^{\infty} \frac{(-1)^n + 2}{3^n} = \frac{1}{1 + 1/3} + \frac{2}{1 - 1/3} = \frac{3}{4} + 3 = \frac{15}{4}.$$

6.

$$\sum_{n=1}^{\infty} \frac{n}{3^n} = \frac{3}{4}.$$

7.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n-1}} = \frac{1}{1+1/2} = \frac{2}{3}.$$

8.

$$\sum_{n=1}^{\infty} \frac{2n-1}{2^n} = 3.$$

9.

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{(n+1)^2} = 1.$$

10.

$$\sum_{n=1}^{\infty} \sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n} = 1 - \sqrt{2}.$$

11.

$$\sum_{n=1}^{\infty} \log \left(rac{n(2n+1)}{(n+1)(2n-1)}
ight) = \lim_{n o \infty} \log \left(rac{2n+1}{n+1}
ight) = \log 2.$$

12.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+m)} = \frac{1}{m} \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+m} = \frac{1}{m} \sum_{n=1}^{m} \frac{1}{n}.$$

B2) Determine whether the following series converge:

1.

$$\sum_{n=1}^{\infty} \sqrt{n+1} - \sqrt{n} = \lim_{n \to \infty} \sqrt{n+1} - 1 = \infty.$$

2.

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n} \leqslant \sum_{n=1}^{\infty} \frac{1}{2n\sqrt{n}}$$

converges.

3.

$$\sum_{n=2}^{\infty} (\sqrt[n]{n} - 1)^n$$

converges, since $\limsup_{n \to \infty} \sqrt[n]{(\sqrt[n]{n}-1)^n} = 0 < 1.$

4

$$\sum_{n=1}^{\infty} \frac{1}{1+x^n}$$

converges if |x|>1 and diverges if $|x|\leqslant 1$.

5.

$$\sum_{n=1}^{\infty} \frac{1}{n2^n} \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} = 1.$$

converges

6.

$$\sum_{n=1}^{\infty} \left(\frac{n^2}{3n^2+1}\right)^n \leqslant \sum_{n=1}^{\infty} \frac{1}{3^n} < 1.$$

converges.

7.

$$\sum_{n=1}^{\infty}rac{1}{n^{1+1/n}}\geqslant\sum_{n=1}^{\infty}rac{1}{2n}$$

diverges.

8.

$$\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\log n}} = \sum_{n=2}^{\infty} \frac{1}{n^{\log \log n}} \leqslant C + \sum_{n=100}^{\infty} \frac{1}{n^2}$$

converges.

9.

$$\sum_{n=1}^{\infty}rac{n^{n+1/n}}{\left(n+rac{1}{n}
ight)^n}$$

diverges, since

$$\lim_{n o\infty}rac{n^{n+1/n}}{\left(n+rac{1}{n}
ight)^n}=\exp\lim_{n o\infty}\left(rac{\log n}{n}-n\log\left(1+rac{1}{n^2}
ight)
ight)=1.$$

10.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}\sqrt{n}}{n+1}$$

converges (conditionally), since the partial sum of $(-1)^{n-1}$ is bounded and $\frac{\sqrt{n}}{n+1}$ monotonically tends to 0.

11.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt[n]{n}}$$

diverges since $(-1)^{n-1}n^{-1/n}$ does not tend to 0.

12.

Let $H_n = 1 + 1/2 + \cdots + 1/n$.

$$\sum_{n=1}^{\infty} \frac{H_n \sin nx}{n}$$

converges since the partial sum of $\sin nx$ is bounded and $\frac{H_n}{n}$ monotonically tends to 0.

B3) Determine whether the following series converge (absolutely):

1.

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}$$

converges since the partial sum of $(-1)^n$ is bounded and $\frac{1}{n \log n}$ monotonically tends to 0, but only conditionally by C3).

2.

$$\sum_{n=2}^{\infty} \frac{\sin\left(n\pi/4\right)}{\log n}$$

converges since the partial sum of $\sin{(n\pi/4)}$ is bounded and $\frac{1}{\log n}$ monotonically tends to 0, but only conditionally since $\sum_{n=2}^{\infty} \frac{1}{\log(4n+2)}$ tends to infinity.

$$\sum_{n=1}^{\infty} (-1)^n \frac{n-1}{n+1} \frac{1}{\sqrt[3]{n}}$$

converges since $\frac{n-1}{(n+1)\sqrt[3]{n}}$ monotonically tends to 0, but only conditionally since $\sum_{n=1}^{\infty} n^{-1/3}$ diverges.

4.

a > 1.

$$\sum_{n=1}^{\infty} (-1)^{n(n-1)/2} \frac{n^{10}}{a^n}$$

converges absolutely since there exists C>0 such that for n>C, $n^{10}a^{-n}\leqslant a^{-n/2}$, and $\sum_{n=1}^\infty a^{-n/2}$ converges.

PSC

Suppose the integer $b\geqslant 2$, $f:[1,\infty) o \mathbb{R}_{>0}$ is monotonically decreasing.

C1) Prove that

$$(b-1)b^{k-1}f(b^k)\leqslant \sum_{j=b^{k-1}}^{b^k-1}f(j)\leqslant (b-1)b^{k-1}f(b^{k-1}).$$

Proof: There are $(b-1)b^{k-1}$ integers in $[b^{k-1},b^k-1]$, and since f is monotonically decreasing, for any $j\in[b^{k-1},b^k-1]$, $f(j)\in[f(b^k),f(b^{k-1})]$.

C2) Prove that the series

$$\sum_{n=1}^{\infty} f(n)$$
 and $\sum_{n=1}^{\infty} b^n f(b^n)$

converge or diverge simultaneously.

Proof: From C1),

$$\sum_{k=1}^{\infty}{(b-1)b^{k-1}f(b^k)}\leqslant \sum_{n=1}^{\infty}{f(n)}=\sum_{k=1}^{\infty}\sum_{j=b^{k-1}}^{b^k-1}{f(j)}\leqslant \sum_{k=1}^{\infty}{(b-1)b^{k-1}f(b^{k-1})}.$$

Therefore the two series converge or diverge simultaneously.

C3) Prove that $\sum_{n=2}^{\infty} rac{1}{n \log n}$ diverges.

Proof: Consider $f(x) = \frac{1}{x \log x}$ which is monotonically decreasing. Note that

$$\sum_{n=2}^{\infty}2^nf(2^n)=\sum_{n=2}^{\infty}rac{1}{n\log 2}=\infty.$$

From C2) we know that $\sum_{n=2}^{\infty} f(n)$ diverges.

C4) Prove that $\sum_{n=100}^{\infty} rac{1}{n \log n \log \log n}$ diverges.

Proof: Consider $f(x)=rac{1}{x\log x\log\log x}$ which is monotonically decreasing. From C3),

$$\sum_{n=100}^{\infty} 2^n f(2^n) = \sum_{n=100}^{\infty} \frac{1}{n \log 2 \cdot \log (n \log 2)}$$

diverges. Hence from C2) we know that $\sum_{n=100}^{\infty} f(n)$ diverges.

C5) Prove that $\sum_{n=1}^{\infty} n^{-s}$ converges iff s>1.

Proof: Consider $f(x)=x^{-s}$ which is monotonically decreasing. Note that

$$\sum_{n=1}^{\infty} 2^n f(2^n) = \sum_{n=1}^{\infty} 2^{-n(s-1)} = \frac{2^{1-s}}{1 - 2^{1-s}}.$$

C6) Suppose s>1, prove that $\sum_{n=2}^\infty \frac{1}{n(\log n)^s}$ and $\sum_{n=10}^\infty \frac{1}{n\log n(\log\log n)^s}$ converges.

Proof: Same as C3) and C4).

PSD

For $\{a_n\}_{n\geqslant 1}\subset \mathbb{R}$,

- $\alpha \in \mathbb{R}$, if for any $\varepsilon > 0$, there are infinitely many n such that $a_n \in (\alpha \varepsilon, \alpha + \varepsilon)$, then we call α a limit point of $\{a_n\}_{n \ge 1}$.
- Likewise define limit points for $\alpha = \pm \infty$.

D1) Prove that $\alpha \in \mathbb{R}$ is a limit point of $\{a_n\}_{n\geqslant 1}$ iff there is a subsequence $\{a_{n_k}\}_{k\geqslant 1}$ which converges to α .

Proof: <== is trivial. ==> Let $\varepsilon=1/k$ then there exists a_{n_k} such that $|a_{n_k}-\alpha|<\varepsilon$. Hence $\lim_{k\to\infty}a_{n_k}=\alpha$.

D2) Prove that $+\infty$ is a limit point of $\{a_n\}_{n\geqslant 1}$ iff there is a sub-sequence $\{a_{n_k}\}_{k\geqslant 1}$ such that $\lim_{k\to\infty}a_{n_k}=\infty$.

Proof: Same as D1).

D3) Let $E=\{lpha\in\mathbb{R}\cup\{\pm\infty\}:lpha\ {
m is\ a\ limit\ point\ of}\ \{a_n\}\}$. Prove that $E
eq\emptyset$.

Proof: If $\{a_n\}$ is unbounded, then by D2) $E \cap \{\pm \infty\} \neq 0$. If $\{a_n\}$ is bounded, then by Bolzano-Weierstrass theorem, $E \neq \emptyset$.

D4) Prove that $E\subset \mathbb{R}$ iff $\{a_n\}$ is bounded.

Proof: Use D2)

D5) Suppose $\{a_n\}_{n\geqslant 1}$ is bounded. Prove that $\sup E=\limsup_{n\to\infty}a_n$, $\inf E=\liminf_{n\to\infty}a_n$.

Proof: Let $M=\limsup_{n\to\infty}a_n$, then for any $\varepsilon>0$, there exists n such that $M\leqslant\sup_{k\geqslant n}a_k< M+\varepsilon$, hence there exists $k\geqslant n$ such that $|a_k-M|<\varepsilon$, so $M\in E$. For any $\alpha\in E$, there is a sub-sequence $\{a_{n_k}\}\to \alpha$, hence

$$lpha = \lim_{k o \infty} a_{n_k} \leqslant \lim_{k o \infty} \sup_{m \geqslant n_k} a_{n_k} = \limsup_{n o \infty} a_n = M.$$

Therefore $M=\sup E$. Substitute $a_n \to -a_n$ and we obtain $\inf E=\liminf_{n\to\infty} a_n$.

D6) Suppose $\{a_n\}_{n\geqslant 1}$ is bounded. Let $a^*=\limsup_{n o\infty}a_n$. Prove that

i) $a^* \in E$, i.e. $\sup E \in E$.

Proof: See the proof of D5).

ii) For any $x>a^*$, there exists $N\in\mathbb{Z}_{\geqslant 1}$ such that for any n>N , $a_n< x$.

Proof: If there is an infinite sub-sequence $\{a_{n_k}\}_{k\geqslant 1}$ such that $a_{n_k}\geqslant x$, then $\{a_{n_k}\}$ has a limit point $a'>x>a^*$, contradicting $a^*=\sup E$.

D7) Construct an example of $\{a_n\}_{n\geqslant 1}$ such that $E\cap \mathbb{R}
eq \emptyset$ and $E
ot\subset \mathbb{R}$.

Solution: Since $\mathbb Q$ is countable, let $\{a_n\}_{n\geqslant 1}$ iterate every element of $\mathbb Q$, then $E=\mathbb R\cup\{\pm\infty\}$ is an infinite set.

D8) Construct $\{a_n\}_{n\geqslant 1}$ such that E is an infinite set.

Solution: Same as D7).

PSE: Reciprocal Sum of Primes

Define the ζ -function:

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}.$$

We have proved the formula:

$$\zeta(s) = \prod_{p \in \mathcal{P}} rac{1}{1 - p^{-s}}.$$

Prove that the series

$$\sum_{p\in\mathcal{P}} p^{-s}$$

converges when s>1 , and diverges when $0 < s \leqslant 1$.

Proof: We know that for $|a_n|<1$, $\prod_{n=1}^\infty (1-a_n)$ converges iff $\sum_{n=1}^\infty a_n$ converges. Hence by $\zeta(s)^{-1}=\prod_{p\in\mathcal{P}}(1-p^{-s})$, we obtain $\sum_{p\in\mathcal{P}}p^{-s}$ converges iff s>1.

PSF: Euler's "Proof" of the Basel Problem

For any $\theta \in \mathbb{R}, n \in \mathbb{Z}$, prove the identity

$$rac{\sin\left((2n+1) heta
ight)}{(2n+1)\sin heta} = \prod_{k=1}^n igg(1 - rac{\sin^2 heta}{\sin^2(k\pi/(2n+1))}igg).$$

Further prove that for any $x \in \mathbb{R}$,

$$\frac{\sin(\pi x)}{\pi x} = \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2}\right).$$

Proof: (1) By induction there is a polynomial $P_n(x)$ such that $P_n(\sin\theta)=\sin{(2n+1)}\theta$ for any $\theta\in\mathbb{R}$ and $\deg P_n=2n+1$. For any $k=1,2,\cdots,n$, and $\theta=\pm k\pi/(2n+1)$, $\sin{((2n+1)\theta)}=0$, hence P_n has roots 0 and $\pm\sin{(k\pi/(2n+1))}$ for $k=1,2,\cdots,n$. Since $\deg P_n=2n+1$,

$$P_n(x)=Cx\prod_{k=1}^n\left(1-rac{x^2}{\sin^2(k\pi/(2n+1))}
ight)$$

for some $C\in\mathbb{R}$. Let $x=\sin\theta$ and consider the derivatives on both sides when $\theta=0$, then we obtain C=2n+1, therefore

$$rac{\sin\left((2n+1) heta
ight)}{(2n+1)\sin heta} = \prod_{k=1}^n igg(1-rac{\sin^2 heta}{\sin^2(k\pi/(2n+1))}igg).$$

(2) Let m=2n+1. From (1) we know that for any $x\in\mathbb{C}$ and k< n, $\sin x=U_k^{(n)}\cdot V_k^{(n)}$, where

$$egin{align} U_k^{(n)} &= m \sin rac{x}{m} \prod_{j=1}^k igg(1 - rac{\sin^2(x/m)}{\sin^2(j\pi/m)}igg), \ V_k^{(n)} &= \prod_{j=k+1}^n igg(1 - rac{\sin^2(x/m)}{\sin^2(j\pi/m)}igg). \end{split}$$

Clearly, for any $k \in \mathbb{N}$,

$$\lim_{n o\infty}U_k^{(n)}=U_k=x\prod_{i=1}^kigg(1-rac{x^2}{j^2\pi^2}igg).$$

and for any $x \in \mathbb{C}$ and $j \in \mathbb{N}$,

$$\left| rac{\sin^2(x/m)}{\sin^2(j\pi/m)}
ight| \leqslant rac{x^2}{4j^2} \cdot K(|x|/m)^2,$$

where $K(x)=\sum_{n=0}^\infty |x|^n/(2n+1)!$ is monotonic on $[0,\infty)$ and K(0)=1. Note that for $\alpha_i\in\mathbb{C}$,

$$\left|1-\prod_{j=1}^n\left(1-lpha_n
ight)
ight|\leqslant \sum_{j=1}^n\left(\sum_{k=1}^n\left|lpha_k
ight|
ight)^j.$$

Hence for any $x\in\mathbb{C}$ and $\varepsilon>0$, there exists N such that for any $k\geqslant N$, and any n>k, $|V_k^{(n)}-1|<\varepsilon$, since

$$|V_k^{(n)} - 1| \leqslant \sum_{j=1}^\infty \left(\sum_{l=k+1}^\infty rac{x^2}{4l^2} K(|x|/m)^2
ight)^j \leqslant \sum_{j=1}^\infty \left(K(|x|/(2k+1))^2 \cdot rac{x^2}{k}
ight)^j o 0.$$

i.e. for any $x\in\mathbb{C}$

$$\lim_{k o\infty}\sup_{n>k}|V_k^{(n)}-1|=0.$$

And likewise we know that there is a constant M such that for any n>k, |x|< k, $|U_k^{(n)}|\leqslant M$. Therefore for any $x\in\mathbb{C}$,

$$\sin x = x \lim_{n o\infty} \prod_{k=1}^n \left(1-rac{x^2}{k^2\pi^2}
ight) = x \prod_{n=1}^\infty \left(1-rac{x^2}{n^2\pi^2}
ight).$$

Note

From the formula above, we can formally deduce that

$$\sin(\pi x) = \pi x (1 - \zeta(2)x^2 + \zeta(4)x^4 + \cdots).$$

Compare it to $\sin z = x - x^3/6 + \cdots$, and we get $\zeta(2) = \pi^2/6$.