IN THE CLAIMS:

Claims 1-29 were canceled by the Preliminary Amendment filed July 14, 2000.

Please re-write the claims to read as follows:

- 1 30. (Previously Presented) A router for use in routing packets over a network,
- the router supporting a plurality, X, of classes of service and including:
- A. a plurality of input ports for receiving packets over the network;
- B. a plurality of output ports for transferring packets over the network;
- 5 C. a classifier for assigning packets received by the input ports to X * Y classes
- of service, where * represents multiplication, and mapping the XY classes of service to
- the X classes of service that are supported by the router, the classifier assigning to the
- packet one of Y associated levels of priority, wherein each level of priority is associated
- 9 with a different probability of packet loss;
 - D. a buffer subsystem for retaining the packets in class of service per output port queues based on probabilities of discard associated with the X * Y classes of service; and
 - E. a scheduler for transferring the packets from the buffer subsystem through each of the output ports based on the X classes of service.
- 1 31. (Original) The router of claim 30 wherein the buffer subsystem includes mul-
- tiple storage locations and links available storage locations in a free queue.
- 1 32. (Original) The router of claim 31 wherein the buffer subsystem includes a
- 2 processor that determines:

10

11

12

13

i. a new weighted average depth for the free queue, and

- ii. a probability of discard for a given packet if the new weighted average queue
- depth falls below a predetermined maximum threshold associated with the class of ser-
- 6 vice to which the packet is assigned by the classifier.
- 1 33. (Original) The router of claim 32 wherein the buffer subsystem discards a
- 2 given packet if the associated new weighted average depth for the free queue falls below
- a minimum threshold associated with the class of service to which the packet is assigned.
- 1 34. (Original) The router of claim 33 wherein the buffer subsystem processor cal-
- culates the probability of discard as $P_d = c-(m^*A_{NEW})$ where c is an intercept and m is a
- 3 slope that is associated with a line that plots average free queue depth versus probability
- of discard for the class of service to which the packet is assigned, and A_{NEW} is the new
- weighted average depth of the free queue.
- 1 35. (Original) The router of claim 34 wherein the buffer subsystem processor cal-
- culates the new weighted average depth of the free queue as $A_{NEW} = A_{CURRENT} + w(I-$
- 3 Acurrent) where w is a weighting factor, I represents the instantaneous depth of the free
- 4 queue and A_{CURRENT} is the current weighted average depth of the free queue.
- 1 36. (Previously Presented) The router of claim 30 wherein the scheduler selects
- from the buffer subsystem packets for transfer based on weighting factors associated with
- the respective X classes of service.
- 1 37. (Currently Amended) A router for use in routing packets over a network,
- the router supporting a plurality, X, of classes of service and including:
- A. a plurality of input ports for receiving packets over the network;

- B. a plurality of output ports for transferring packets over the network;
- 5 C. a multiple storage location buffer for retaining packets to be transferred
- 6 through the output ports;
- D. a buffer subsystem for retaining the packets in class of service per output port
- queues based on probabilities of discard associated with X*Y classes of service, where \underline{Y}
- 9 represents a number and * represents multiplication; and
- E. a scheduler for transferring the packets from the buffer subsystem through each
- of the output ports based on the X classes of service that the router supports.
- 1 38. (Previously Presented) The router of claim 37 further including a classifier
- 2 for:
- i. assigning packets received by the input ports to X*Y classes of service,
- ii. associating the packets with the X classes of service that are supported by the
- 5 router, and
- 6 iii. assigning to the packet one of Y associated levels of priority, wherein each
- level of priority is associated with a different probability of packet loss.
- 1 39. (Previously Presented) The router of claim 37 wherein the buffer subsys-
- tem includes a processor that determines
- i. a new weighted average queue depth for a free queue that links available buffer
- 4 storage locations, and
- ii. a probability of discard for a given packet if the new weighted average free
- 6 queue depth falls below a predetermined maximum threshold associated with the class of
- 7 service to which the packet is assigned.
- 1 40. (Original) The router of claim 39 wherein the buffer subsystem processor cal-
- culates the probability of discard as $P_d = c-(m^*A_{NEW})$ where c is an intercept and m is a

- slope that are associated with a line that plots average free queue depth versus probability
- of discard for the class of service to which the packet is assigned, and A_{NEW} is the new
- 5 weighted average depth of the free queue.
- 1 41. (Original) The router of claim 40 wherein the buffer subsystem processor cal-
- culates the new depth of the weighted average free queue as $A_{NEW} = A_{CURRENT} + w$ (I-
- 3 A_{CURRENT}) where w is a weighting factor, I represents the instantaneous depth of the free
- 4 queue and A_{CURRENT} is the current weighted average depth of the free queue.
- 1 42. (Previously Presented) The router of claim 40 wherein the buffer subsys-
- tem discards a given packet if the new weighted average free queue depth falls below a
- minimum threshold associated with the class of service to which the packet is assigned.
- 1 43. (Previously Presented) The router of claim 40 wherein the buffer subsys-
- tem retains a given packet if the new weighted average free queue depth is above a
- maximum threshold associated with the class of service to which the packet is assigned.
- 1 44. (Previously Presented) The router of claim 37 wherein the scheduler selects
- 2 packets for transfer through each output port based on weighting factors associated with
- the respective X classes of service.
- 1 45. (Currently Amended) An apparatus for routing packets through a router
- that supports a plurality, X, of classes of service, the apparatus comprising:

- means for receiving packets through one or more input ports and assigning the
- packets to X*Y classes of service, where Y represents a number and * represents multi-
- 5 plication;
- 6 means for retaining packets based on probabilities of discard associated with the
- 7 X*Y classes of service in a multiple storage location buffer that links available storage
- 8 locations to a free queue; and
- 9 means for transferring the packets through one or more output ports based on the
- 10 X classes of service.
- 1 46. (Previously Presented) The apparatus of claim 45, further including:
- means for associating packets assigned to the X*Y classes of service with the X
- 3 classes of service supported by the apparatus; and
- 4 means for assigning to the respective packets one of Y associated levels of prior-
- 5 ity, each level of priority being associated with a different probability of packet loss.
- 1 47. (Previously Presented) The apparatus of claim 46, further comprising:
- means for determining a new weighted average depth for the free queue; and
- means for determining a probability of discard for a given packet if the new
- 4 weighted average free queue depth falls below a predetermined maximum threshold as-
- sociated with the class of service to which the packet is assigned.
- 1 48. (Previously Presented) The apparatus of claim 47, wherein the means for
- 2 retaining packets further comprises:
- means for discarding a given packet if the new weighted average free queue depth
- 4 is less than a minimum threshold associated with the class of service to which the packet
- is assigned.

1	49.	(Previously Presented) The apparatus of claim 47, wherein the means f	or
2	retain	ing packets further comprises:	
3		means for retaining a given packet if the new weighted average free queue de	pth
4	is gre	ater than a maximum threshold associated with the class of service to which the	;
5	packe	t is assigned.	
1	50.	(Previously Presented) A computer-readable media, comprising:	
2		instructions for execution in a processor for the practice of a method,	said
3	metho	od having the steps,	
4		receiving packets through one or more input ports and assigning the pa	ack-
5		ets to X*Y classes of service, where * represents multiplication;	
6		retaining packets based on probabilities of discard associated with the	
7		X*Y classes of service in a multiple storage location buffer that links available	e
8		storage locations to a free queue; and	
9		transferring the packets through one or more output ports based on the	X
10		classes of service.	
1	51.	(Previously Presented) The computer-readable media of claim 50, who	rein
2		ethod further comprises the steps of:	/ICIII
3	the m	associating packets assigned to the X*Y classes of service with the X	
		classes of service supported by the apparatus; and	
5		assigning to the respective packets one of Y associated levels of priori	tv
		each level of priority being associated with a different probability of packet lo	•
6		cach level of phothly being associated with a different probability of packet le	,33.
1	52.	(Previously Presented) The computer-readable media of claim 51, whe	rein
2	the m	ethod further comprises the steps of:	
3		determining a new weighted average depth for the free queue; and	

4	determining a probability of discard for a given packet if the new weighted			
5	average free queue depth falls below a predetermined maximum threshold associ-			
6		ated with the class of service to which the packet is assigned.		
1	53.	(Previously Presented) The computer-readable media of claim 52, wherein		
2	the m	ethod further comprises the step of:		
3		discarding a given packet if the new weighted average free queue depth is		
4		less than a minimum threshold associated with the class of service to which the		
5		packet is assigned.		
1	54.	(Previously Presented) The computer-readable media of claim 52,		
2	wherein the method further comprises the step of:			
3		retaining a given packet if the new weighted average free queue depth is		
4		greater than a maximum threshold associated with the class of service to which		
5		the packet is assigned.		
1	55.	(Previously Presented) Electromagnetic signals propagating on a computer		
2	netwo	ork, comprising:		
3		instructions for execution on a processor for the practice of a method, said		
4	metho	od having the steps,		
5		receiving packets through one or more input ports and assigning the pack-		
6		ets to X*Y classes of service, where * represents multiplication;		
7		retaining packets based on probabilities of discard associated with the		
8		X*Y classes of service in a multiple storage location buffer that links available		
9		storage locations to a free queue; and		
10		transferring the packets through one or more output ports based on the X		
11		classes of service.		

i	56.	(Previously Presented) The electromagnetic signals of claim 55, wherein
2	the m	ethod further comprises the steps of:
3		associating packets assigned to the X*Y classes of service with the X
4		classes of service supported by the apparatus; and
5		assigning to the respective packets one of Y associated levels of priority,
6		each level of priority being associated with a different probability of packet loss.
1	57.	(Previously Presented) The electromagnetic signals of claim 56, wherein
2		ethod further comprises the steps of:
3		determining a new weighted average depth for the free queue; and
4		determining a probability of discard for a given packet if the new weighted
5		average free queue depth falls below a predetermined maximum threshold associ-
6		ated with the class of service to which the packet is assigned.
1	58.	(Previously Presented) The electromagnetic signals of claim 57, wherein
2	the m	ethod further comprises the step of:
3		discarding a given packet if the new weighted average free queue depth is
4		less than a minimum threshold associated with the class of service to which the
5		packet is assigned.
1	59.	(Previously Presented) The electromagnetic signals of claim 57, wherein
2	the m	ethod further comprises the step of:
3		retaining a given packet if the new weighted average free queue depth is
4		greater than a maximum threshold associated with the class of service to which
5		the packet is assigned.