

- Minimizzazione di funzioni: determinare l'espressione che le rappresentano aventi un numero minimo di prodotti e prodotti con poche variabili
- Equivalentemente, consiste nel determinare circuiti che le realizzano di dimensione minima, ossia con poche porte e pochi ingressi
- In generale non esiste una forma minima, ma diverse forme minimali, ossia che non possono essere ulteriormente ridotte
- Quanto diremo vale per forme SP, ma per il principio di dualità è possibile trasporre il tutto a forme PS

- Un metodo di minimizzazione classico è quello delle cosiddette mappe di Karnaugh
- Si basa sul principio che dato un qualsiasi prodotto X, l'espressione Xx+X¬x
 può essere semplificata nel seguente modo:

$$Xx+X\neg x=X(x+\neg x)=X\cdot 1=X$$

- La minimizzazione di forme SP consiste nell'applicazione sistematica di tale proprietà mediante la determinazione di termini adiacenti Xx e X¬x
- Il metodo delle mappe di Karnaugh può essere applicato convenientemente per determinare termini adiacenti in funzioni di al più 5 variabili
- In tali mappe ogni casella corrisponde ad una riga delle tabelle di verità, e caselle (o celle) adiacenti corrispondono a termini adiacenti
- Le tabelle sono "avvolgenti", ossia la prima e l'ultima riga sono adiacenti e lo stesso vale per la prima e l'ultima colonna

Mappe di Karnaugh di ordine ≤ 4: corrispondenza celle - valori funzioni

X		
	0	1
	f(0)	f(1)
•		

X	0	1
0	f(00)	f(01)
1	f(10)	f(11)

y:	z 00	01	11	10
0	f(000)	f(001)	f(011)	f(010)
1	f(100)	f(101)	f(111)	f(110)

,	. / =			
wx	yz 00	01	11	10
00	f(0000)	f(0001)	f(0011)	f(0010)
01	f(0100)	f(0101)	f(0111)	f(0110)
11	f(1100)	f(1101)	f(1111)	f(1110)
10	f(1000)	f(1001)	f(1011)	f(1010)

NB: ogni casella riporta il valore di f per la configurazione di variabili che ne dà le coordinate

Mappe di Karnaugh di ordine ≤ 4: corrispondenza celle - valori funzioni

data una funzione a n variabili, le 2ⁿ configurazioni delle sue variabili possono essere viste come vertici di un n-cubo due veritici adiacienti differiscono di una sola coordinata

caso n=3

y:	z 00	01	11	10
0	f(000)	f(001)	f(011)	f(010)
1	f(100)	f(101)	f(111)	f(110)

Mappe di Karnaugh di ordine ≤ 4: corrispondenza celle - mintermini

、 X		
	0	1
	m_0	m ₁

、	<i>'</i>	
\times	0	1
0	m_0	m_1
1	m ₂	m_3

y	Z			
X	00	01	11	10
0	m_0	m ₁	m_3	m ₂
1	m ₄	m ₅	m ₇	m ₆

wx	yz 00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m_9	m ₁₁	m ₁₀

Esempio

W	Х	У	Z	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

y	Z			
	00	01	11	10
wx 00	0	0	1	0
01	0	1	1	0
11	1	0	1	0
10	0	0	0	1

- Come già accennato, nelle mappe celle (o caselle) adiacenti corrispondono a termini adiacenti del tipo Xx+X¬x
- Gli 1 in celle adiacenti vengono raggruppati in sottocubi
- I sottocubi possono solo avere un numero di 1 che è una potenza di 2 (1,2,4,8,...)
- Come già visto, un sottocubo di dimensione 1 corrisponde ad un mintermine
- Un sottocubo di dimensione 2 permette un passo di semplificazione tra mintermini adiacenti

Es.: sottocubo di dimensione 2

$$f(w,x,y,z) = \neg wx \neg yz + \neg wxyz = \neg wxz$$

- Un sottocubo di dimensione 4 permette un ulteriore passo di semplificazione tra termini adiacenti
- In particolare, a partire da un gruppo di 4 celle adiacenti contenenti 1, si arriva ad un unico termine con 2 variabili in meno
- Tale termine è equivalente all'OR dei 4 mintermini corrispondenti alle celle pari ad 1
- Vediamo un esempio ...

Es.: sottocubo di dimensione 4

y:	z 00	01	11	10
wx 00	0	0	0	0
01	0	1	1	0
11	0	1	1	0
10	0	0	0	0

$$f(w,x,y,z) = \neg wx \neg yz + \neg wxyz + wx \neg yz + wxyz = \neg wxz + wxz = xz$$

- Si noti che ad un sottocubo corrisponde un termine costituito dal prodotto delle variabili il cui valore è lo stesso in tutte le configurazioni di input corrispondenti alle celle del sottocubo
- Ognuna di tali variabili nel termine compare in modo diretto se in tutte le celle è pari ad 1, in modo negato altrimenti
- Rivediamo tale proprietà mediante un ulteriore esempio contenente tra l'altro sottocubi che si sovrappongono
- In tale esempio sfruttiamo la proprietà di idempotenza per mostrare come riportarsi ai casi precedenti con un singolo sottocubo

Es.: sottocubi sovrapposti

$$f(w,x,y,z) = \neg wx \neg yz + \neg wxyz + \neg wxy \neg z = \neg wx \neg yz + \neg wxyz + \neg wxyz + \neg wxy \neg z = \neg wxz + \neg wxy$$

Vediamo altri esempi in cui per brevità nelle tabelle non sono riportati gli 0 delle funzioni

Figura 3.9 Esempi di funzioni sulle mappe di Karnaugh e loro minimizzazione.

- Iterando i discorsi precedenti, abbiamo che un sottocubo di dimensione 2^m permette m passi di semplificazione tra termini adiacenti
- Da un OR di 2^m mintermini si arriva ad un unico termine equivalente con m variabili in meno
- Un sottocubo di dimensione 2^m è anche detto di ordine m
- Nei sottocubi di ordine m gli 1 non possono comparire a caso, ma ci sono restrizioni circa la loro disposizione
- In pratica, ogni cella contenente un 1 deve essere adiacente ad esattamente m altre celle contenenti 1 dello stesso sottocubo

In generale

 $\overline{xyz} + \overline{xy}z = \overline{xy}$ prodotto di 3-1=2 var.i

- una funzione booleana di n variabili viene rappresentata su una mappa di Karnaugh di ordine n
- una mappa di ordine *n* contiene 2ⁿ celle
- le coordinate delle caselle corrispondono alle 2ⁿ configurazioni delle *n* variabili
- le celle sono disposte in modo da avere ognuna n adiacenti
- un sottocubo di ordine m≤n è un insieme di 2^m celle in cui ogni cella è adiacente ad altre m del sottocubo
- un sottocubo di ordine *m* con tutte le celle pari ad 1 corrisponde ad un prodotto delle (*n*-*m*) variabili che non variano nel sottocubo, in forma diretta se esse valgono sempre 1, complementata altrimenti
- quindi più aumenta la dimensione del sottocubo, più è piccolo il prodotto che gli corrisponde
- sottocubo massimale: sottocubo di 1 non contenuto in un sottocubo di 1 di dimensione (ordine) maggiore

- Copertura di una funzione: insieme di sottocubi che coprono tutti e soli gli 1 della funzione nella mappa
- Una copertura corrisponde ad una forma minimale se
 - è costituita da un insieme minimale di sottocubi, ossia nessuno di essi può essere eliminato senza violare la proprietà di ricoprimento (pochi prodotti)
 - ogni sottocubo è massimale, ossia corrisponde ad un prodotto che non può essere ulteriormente ridotto (prodotti piccoli e pochi)
- Riassumendo, per trovare una forma minimale, bisogna determinare una copertura formata da un insieme minimale di sottocubi massimali

Una terminologia analoga:

- un implicante è un prodotto che corrisponde ad un sottocubo di 1
- un implicante è primo se corrisponde ad un sottocubo massimale
- minimizzare consiste nel trovare un insieme minimale di implicanti primi i cui sottocubi coprono la funzione

Mappe di Karnaugh a 2 variabili: sottocubi di ordine 1

Mappe di Karnaugh a 3 variabili: sottocubi di ordine 1

Mappe di Karnaugh a 3 variabili: sottocubi di ordine 2

Mappe di Karnaugh a 4 variabili: sottocubi di ordine 1

Mappe di Karnaugh a 4 variabili: sottocubi di ordine 2

Mappe di Karnaugh a 4 variabili: sottocubi di ordine 3

yz							
W/V	00	01	11	10			
wx 00	0000	0001	0011	0010			
01	0100	0101	0111	0110			
11	1100	1101	1111	1110			
10	1000	1001	1011	1010			

,	yz			
wx	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010
		-	-	

yz							
	00	01	11	10			
wx 00	0000	0001	0011	0010			
01	0100	0101	0111	0110			
11	1100	1101	1111	1110			
10	1000	1001	1011	1010			

yz							
\-	00	01	11	10			
wx 00	0000	0001	0011	0010			
01	0100	0101	0111	0110			
11	1100	1101	1111	1110			
10	1000	1001	1011	1010			

$$f(w,x,y,z) = \neg wxz + wy + y \neg z + \neg x \neg z$$

a)
$$f(x, y, z) = \overline{y}\overline{z} + \overline{y}z + \overline{x}y$$

yz x	00	01	11	10
0	1	1	1	1
1	1	1		

b)
$$f(x, y, z) = \overline{x} + \overline{y}$$

Figura 3.10 Esempio di due diverse coperture di un stessa funzione. La copertura di destra, essendo formata da sottocubi più ampi, fornisce la minima espressione SP.

Si noti che: $\neg y + \neg xy = \neg y - y + \neg xy = \neg y + \neg x$

a) $f(w, x, y, z) = \overline{w}\overline{x} + wy\overline{z} + \overline{x}\overline{z}$ b) $f(w, x, y, z) = \overline{w}x\overline{y} + \overline{w}yz + wxy + w\overline{y}z$

Figura 3.11 Esempio di mappe di ordine 4. Sulla mappa di sinistra si noti l'implicante corrispondente alle 4 caselle poste agli angoli della mappa. Esso porta un contributo pari a \overline{xy} . L'espressione minima SP relativa alla mappa di destra non comprende l'implicante primo xz in quanto non essenziale.

26

Mappe di Karnaugh a 5 variabili

$$f(v,w,x,y,z) = y + \neg x \neg z + \neg v \neg w \neg x + v x z$$

Funzioni non completamente specificate

- Spesso il valore di una funzione non è specificato per alcune configurazioni in ingresso
- Ciò accade ad esempio quando è noto a priori che tali configurazioni non possono presentarsi
- Per segnalare tale evenienza il valore della funzione viene indicato con il segno "-", che esprime una condizione di indifferenza
- Nel minimizzare la funzione il segno può essere posto indifferentemente 0 o 1 a seconda della convenienza
- Sottocubo massimale: sottocubo di 1 e contenente almeno un 1 e non contenuto in un sottocubo di 1 e - di dimensione (ordine) maggiore

A	B	C	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	-	-	-	-
1	0	1	1	-	-	-	-
1	1	0	0	-	-	-	-
1	1	0	1	-	-	-	-
1	1	1	0	-	-	-	-
1	1	1	1	-	-	-	-

Tabella 3.3 Tabella di decodifica da codice BCD a Eccesso 3. I trattini indicano condizioni di indifferenza.

Figura 3.13 Mappe e coperture delle funzioni di uscita del decodificatore da codice BCD a Eccesso 3.