1999

[nhoduation to Functional Programming

Model Answer

1. Bookwork (slide 65).

2. Bookwork (slide 65).

```
fun foldr f (e,[]) = e
    | foldr f (e,x::xs) = f(x,foldr f (e,xs));
```

- 3. (a) fun append(xs,ys) = foldr (op::) (ys,xs);
 - (b) fun length $l = foldr (fn (x,c) \Rightarrow 1+c) (0,1);$
 - (c) fun map f l = foldr (fn (x,xs) => f(x)::xs) ([],1);
- 4. Students were shown in the lectures that fold1 and foldr can be visualised as

$$(\cdots ((e \oplus x_1) \oplus x_2) \cdots)$$

 $(x_n \oplus \cdots (x_2 \oplus (x_1 \oplus e)) \cdots)$

respectively (this is the point of the hint). From this it is quite straightforward to see that if they are to be equal it is sufficient that the function \oplus be associative and $e \oplus x_1 = x_1 \oplus e$. More formally, the theorem

holds if (f,e) forms a monoid (students are only expected to give the two conditions), i.e.

- (a) f is associative, i.e. f(f(a,b),c)=f(a,f(b,c)).
- (b) e is a zero element, i.e. f(a,e)=f(e,a)=a.