

히스토그램 처리

- 히스토그램 평활화, 역투영

미디어기술콘텐츠학과 강호철

히스토그램 평활화

- 개념
 - 영상의 픽셀 값 분포가 그레이스케일 전체영역에서 균일
 하게 분포하도록 변경하는 알고리즘
 - 특정 밝기값 근방에 몰려 있는 픽셀 분포를 분산시킴
 - 히스토그램 누적 함수 H(g)를 이용하여 계산
 - h(g): 밝기값이 g인 픽셀의 개수

$$H(g) = \sum_{0 \le i \le g} h(i)$$

■ N: 영상 픽셀 개수, L_{max}: 255

$$dst(x, y) = round \left(H(src(x, y)) \times \frac{L_{max}}{N} \right)$$

히스토그램 평활화

■ 예제

0	0	0	2		
1	1	2	0		
1	5	6	5		
3	6	7	6		
(a)					

g	0	1	2	3	4	5	6	7
h(g)	4	3	2	1	0	2	3	1
H(g)	4	7	9	10	10	12	15	16

(b)

2	2	2	4		
3	3	4	2		
3	5	7	5		
4	7	7	7		
(d)					

$H(g) \times \frac{7}{16}$	1.75	3.06	3.94	4.38	4.38	5.25	6.56	7
$round(H(g) \times \frac{7}{16})$	2	3	4	4	4	5	7	7

(c)

히스토그램 평활화

- OpenCV 함수
 - cv2.equalizeHist(src[, dst]) → dst
 - 실습

히스토그램 역투영

■ 개념

- 주어진 히스토그램 모델과 일치하는 픽셀을 찾아내는 기법
- HSV 색 공간에서 H(색상)값을 이용하여 특정 색상 영역을 골라 낼 수 있음
 - 원색에 가까운 색상을 찾는데 효과적
- 입력 영상에서 객체에 관한 정보를 미리 가지고 있다면 히 스토그램 정보 이용, 비슷한 색상 영역을 찾을 수 있음
- 예) 피부색에 대한 정보를 이용하여 얼굴, 손, 피부 등 분할

히스토그램 역투영

OpenCV 함수

- cv2.calcBackProject(images, channels, hist, ranges, scale[,dst]) → dst
- 실습

화이트 보드

영상처리 프로그래밍 기초

- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018
- OpenCV4 로 배우는 컴퓨터 비전과 머신러닝
 - 황선규 지음
 - 길벗, 2019

