Problem with Artificial Neural Networks Solving the Quantum Many-Body

Carleo, Giuseppe, and Matthias Troyer. Science 355, no. 6325 (2017): 602-606

CQT Quantum Machine Learning Journal Club Presented By: Remmy A. M. Zen

Type of Data

Paper in a Nutshell

Solving the Quantum Many-Body Problem with Artificial Neural Networks

1. Ground State

2. Unitary Dynamics

$$|\Psi(s)|^2 = P(v)$$

Neural Network

Quantum States (NQS)

Restricted Boltzmann Machine (RBM)

Roadmap

Introduction

Quantum Physics

Machine Learning

NQS

Experiments

Conclusion

Roadmap

Introduction

NQS

Experiments

Conclusion

- Quantum Physics
- Machine Learning

Wave Function

- Quantum many-body system is a system made of more than two microscopic interacting particles.
- Wave function (Ψ) is used to describe the quantum state of a system.
- $|\Psi|^2$ gives you the probability density for each configuration S in the system
- Impossible to save a complete wave function
- 46 qubits = $2^{46} \sim 1$ petabyte of memory!

Many-Body Problem

Hamiltonian (H) is an operator corresponding to total energy of the system.

Central goal of Quantum mechanics to solve the Schroedinger equation

$$H|\Psi_i\rangle = E_i|\Psi_i\rangle$$

Find the smallest \mathbf{E}_0 (ground-state energy) corresponding to the $\mathbf{\Psi}_0$ (ground-state wave function)

How to represent Ψ?

Previous Work

- Quantum Monte Carlo (QMC)
- Stochastic: Sample a finite number of configurations.
- (-) Break for frustrated models or sign problem.
- Matrix Product States (MPS)
- Compression: Find an efficient representations.
- (-) Mostly 1D geometries and lattice problems.

This Paper proposed Neural Network Quantum States (NQS)!

Variational Theorem

Variational Theorem:

$$E[\psi] = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \ge E_0$$

and E₀ is the exact ground-state energy of the Hamiltonian H. E[ψ] is the expectation of the energy function, ψ is some arbitrary state

Optimization Problem:

$$\psi_0 = argmin_{\psi} {\sf E}[\psi]$$

$$E[\psi] = \frac{\sum_{v} |\psi(v)|^{2} (\sum_{v'} H_{v,v'} \frac{\psi(v')}{\psi(v)})}{\sum_{v} |\psi(v)|^{2}}$$

Involves sums/integrals over high-dimensional space, hard to compute analytically

Variational Monte Carlo

$$E[\psi] = \frac{\sum_{v} |\psi(v)|^{2} (\sum_{v'} H_{v,v'} \frac{\psi(v')}{\psi(v)})}{\sum_{v} |\psi(v)|^{2}}$$

If we have samples distributed according to $|\psi(v)|^2$,

 $E[\psi]$ can be written as a statistical expectation value of the local energy E_{loc}

$$E[\psi] = \langle \langle E_{loc}(v) \rangle \rangle$$

$$E_{loc}(v) = \sum_{v'} H_{v,v'} \frac{\psi(v')}{\psi(v)}$$

Roadmap

Introduction

Quantum Physics

Machine Learning

NQS

Experiments Conclusion

Generative vs Discriminative

Generative Model based on Neural Network

- **Restricted Boltzmann Machine**
- Initially 1986, Hinton at 2006 [1]
- Recurrent Neural Network
- Initially 1980s, turned into generative at 2011 [2]
- Variational Autoencoder (VAE) [3]
- Generative Adversarial Network (GAN) [4]

^[1] Hinton, G. E.; Salakhutdinov, R. R. (2006). "Reducing the Dimensionality of Data with Neural Networks". Science. 313 (5786):

²⁸th International Conference on Machine Learning (ICML-11). 2011 [2] Sutskever, Ilya, James Martens, and Geoffrey E. Hinton. "Generating text with recurrent neural networks." Proceedings of the

^[3] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013). [4] Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014

Recurrent Neural Network

Neural network with recurrent unit. Ideal for Sequence data.

Recurrent Neural Network for Text Generation

- Justin bieber apologizes for racist joke on twitter for gay fans
- of kim kardashian wedding

Dandekar, Ashish, Remmy AM Zen, and Stéphane Bressan. "Generating Fake but Realistic Headlines Using Deep Neural Networks." International Conference on Database and Expert Systems Applications. Springer, Cham, 2017.

Variational Autoencoder (VAE)

National University

NN where input is the same as output

Decoder: reconstruct from latent vector **Encoder: learn a latent vector**

Generated Digits

Generated Faces

National University of Singapore

Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN)

State-of-the-art, able to produce high quality images.

"Most interesting idea in machine learning in last ten years"

> 400 models, check-out the GAN Zoo!

https://github.com/hindupuravinash/the-gan-zoo

GAN

-GAN

DAGAN

3D-GAN

VariGAN

VAE-GAN

BiGAN

InfoGAN

DRAGAN

ABC-GAN

"GANs are great, but we should go back to exploring more widely the landscape of generative models, such as **Boltzmann Machines.**"

and Applications of Deep Generative Models Yoshua Bengio, at ICML workshop on Theoretical Foundations

Restricted Boltzmann Machine (RBM)

RBM is an undirected graphical model consists of:

One visible layer (v) corresponding to physical spin variable

$$V = \sigma_1, \sigma_2, ..., \sigma_N, \sigma_i \in \{-1, +1\}$$

One hidden Jayer (h) corresponding to auxiliary spin variable

$$h = h_1, h_2, ..., h_{N_h}, h_i \in \{-1, +1\}$$

Three parameters:

- weight connecting two layers (W)
- visible bias (a)
- hidden bias (b)

Restricted Boltzmann Machine (RBM)

RBM is an energy based model, joint probability is given by the Boltzmann Distribution

$$p(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{Z}$$

function Where $E(\mathbf{v}, \mathbf{h}) = -\mathbf{a}^T \mathbf{v} - \mathbf{b}^T \mathbf{h} - \mathbf{v}^T \mathbf{W} \mathbf{h}$ and Z is the normalizing partition

However, we are interested in $p(\mathbf{v})$ so, we can marginalize h:

$$p(\mathbf{v}) = \frac{1}{Z} e^{\sum_{i=1}^{N} a_i \sigma_i} \prod_{j} 2 \cosh(b_j + \sum_{i=1}^{N} w_{ij} \sigma_i)$$

Restricted Boltzmann Machine (RBM)

Generated samples from Digit dataset

```
レレレレレレレレレレ
ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ
ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ
 \infty \infty \infty \infty \infty \infty \infty \infty
80 80 80 80 80 80 80 80 80
80 80 80 80 80 80 80 80
ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ ૹ
ecccecece
999999999
レレレレひレレレレレ
ひししししししししし
```


Roadmap

Introduction

NQS

Experiments

Conclusion

- Quantum Physics
- Machine Learning

Variational Monte Carlo

$$E[\psi] = \frac{\sum_{v} |\psi(v)|^{2} (\sum_{v'} H_{v,v'} \frac{\psi(v')}{\psi(v)})}{\sum_{v} |\psi(v)|^{2}}$$

If we have samples distributed according to $|\psi(v)|^2$,

 $E[\psi]$ can be written as a statistical expectation value of the local energy E_{loc}

$$E[\psi] = \langle \langle E_{loc}(v) \rangle \rangle$$

$$E_{loc}(v) = \sum_{v'} H_{v,v'} \frac{\psi(v')}{\psi(v)}$$

Neural Network Quantum States (NQS)

$$|\psi(\mathbf{v})|^2 = p(\mathbf{v})$$

$$\psi(\mathbf{v}) = \sqrt{\rho(\mathbf{v})}$$

*Assume positive definite so modulus part can be ignored

It means that sampling p(v) using RBM is the same as sampling from $| \psi(v) |^2!$

Neural Network Quantum States (NQS)

Roadmap

Introduction

Quantum Physics

Machine Learning

NQS

Experiments

Conclusion

Experiments

Validate results with 1D Transverse Field Ising (TFI) model with Periodic **Boundary Conditions**

$$\mathcal{H}_{ ext{TFI}} = -h \sum_{i} \sigma_{i}^{x} - \sum_{\langle i,j \rangle} \sigma_{i}^{z} \sigma_{j}^{z}$$

1D & 2D Antiferromagnetic Heisenberg (AFH) model.

$$\mathcal{H}_{ ext{AFH}} = \sum_{\langle i,j
angle} \sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y + \sigma_i^z \sigma_j^z,$$

) /

Results for TFI

Compare with exact result from fermionization of TFI model.

(a) Energy and Error after 2000 iterations

(b) Energy and Error after 25,000 iterations

Results for AFH

Better than results from MPS when you increased the size of hidden nodes.

https://www.netket.org/

A library by Giuseppe Carleo with C++ and MPI

NetKet

https://www.netket.org/

A library by Giuseppe Carleo with C++ and MPI

I		Feedforward Neural Networks
_		Restricted Boltzmann Machine
_	Custom Observables	Introduction
S	Observables	Machines
_	Custom Hamiltonians	
0	Graph Hamiltonians	Custom Graphs
=	Built-in Hamiltonians	Built-in Graphs
_	Hamiltonians	Graphs

<u>`</u>	
(D	
വ	
=	
\rightarrow	
$\overline{}$	
_	
uq	

Introduction

Optimizers

Learning the Ground State

Sampling

Introduction

Local Moves

Hamiltonian Moves

Experiment on Number of Particles

We are currently implementing it with Tensorflow and we can find energy for 100 particles.

Experiments on Initializer for 1D TFI

$\mathcal{N}(0, \frac{2}{v+h})$ $\mathcal{N}(0, \frac{2}{v})$ $\mathcal{U}(-\frac{6}{v+h}, \frac{6}{v+h})$ $\mathcal{U}(-\frac{6}{0}, \frac{6}{0})$	He Normal [3] Glorot Uniform [2] He Uniform [3]
Sampling $\mathcal{N}(0, 0.01)$	Method Hinton [4]

Experiments on Number of Hidden Nodes for 1D

in Hidden Layer after 1000 epochs (a) Errors on Different Number of Nodes(b) Times on Different Number of Nodes in Hidden Layer after 1000 epochs

Experiments on Different Optimizer for 1D TFI

- 1000 epochs (a) Errors on Different Optimizer after
- (b) Lowest Energy w.r.t the Number of Iterations

1D TFI with h = 1, J = 1Visible Layer Visualization

$$H(x) = -h\sum_{i} \sigma_{i} - J\sum_{i} \sigma_{i}\sigma_{i+1}$$

Visible Layer Visualization 1D TFI with h = 1, J = 10

$$H(x) = -h\sum_{i} \sigma_{i} - J\sum_{i} \sigma_{i}\sigma_{i+1}$$

Visible Layer Visualization 1D TFI with h = 1, J = 10

$$H(x) = -h\sum_{i} \sigma_{i} - J\sum_{i} \sigma_{i}\sigma_{i+1}$$

Visible Layer Visualization 1D TFI with h = 1, J = 10

$$H(x) = -h\sum_{i} \sigma_{i} - J\sum_{i} \sigma_{i}\sigma_{i+1}$$

Symmetry Constraint

There is a lattice translation symmetry in the system. Could we impose that?

Symmetry Constraint

National University of Gincanon

National University of Singapore

"Harder" to Optimize

Epoch to reach 0.001 error

Asymmetric: 1380.2 epochs

Symmetric: 1977.6 epochs

Energy after 1000 epochs

Asymmetric: -25.4817

Symmetric: -25.4057

Exact: -25.4910

Weight Visualization

National University of Singapore

With the Tensorflow Code

Roadmap

Introduction

Proposed Method

Experiments

Conclusion

Conclusion and Future Work

- Proposed Neural Network Quantum States that can be used to solve Quantum Many Body Problem by using RBM to represent wave function
- Future Works:
- Deep Learning?
- Other quantum systems other than spins.