Lab 3: Multiplier Design

Name: Peng Guo GTID: 903424176

1. Tables

a) Resources

i. Slice Logic

√ From multiplier_utilization_placed.rpt

Site Type	Used	Fixed	Available	Util%
Slice LUTs	122	0	20800	0.59
LUT as Logic	122	0	20800	0.59
LUT as Memory	0	0	9600	0.00
Slice Registers	58	0	41600	0.14
Register as Flip Flop	58	0	41600	0.14
Register as Latch	0	0	41600	0.00
F7 Muxes	0	0	16300	0.00
F8 Muxes	1 0	0	8150	0.00

From multiplier_updated_utilization_placed.rpt

Site Type	Used	Fixed	Available	Util%
Slice LUTs	54	0	20800	0.26
LUT as Logic	54	0	20800	0.26
LUT as Memory	0	0	9600	0.00
Slice Registers	56	0	41600	0.13
Register as Flip Flop	56	0	41600	0.13
Register as Latch	0	0	41600	0.00
F7 Muxes	0	0	16300	0.00
F8 Muxes	0	0	8150	0.00

ii. DSP

✓ From multiplier_utilization_placed.rpt

Site Type	Ì	Used	I	Fixed	ĺ	Available	Ì	Util%
DSPs	Ī	0	1	0	Ì	90	1	0.00

✓ From multiplier_updated_utilization_placed.rpt

Site Type	Used	i	Fixed	ĺ	Available	U1	til%
DSPs DSP48E1 only	1	Ī					
+	+	+-		+-		+	

iii. IO and GT Specific

✓ From multiplier_utilization_placed.rpt

Site Type	Used	Fixed	Available	Util%
Bonded IOB	60	0	106	56.60
IOB Master Pads	29		İ	i
IOB Slave Pads	30	i	i	i
Bonded IPADs	0	0	10	0.00
Bonded OPADs	0	0	4	0.00
PHY_CONTROL	0	0	5	0.00
PHASER_REF	0	0	5	0.00
OUT_FIF0	0	0	20	0.00
IN_FIFO	0	0	20	0.00
IDELAYCTRL	0	0	5	0.00
IBUFDS	0	0	104	0.00
GTPE2_CHANNEL	0	0	2	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	20	0.00
PHASER_IN/PHASER_IN_PHY	0	0	20	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	250	0.00
IBUFDS_GTE2	0	0	2	0.00
ILOGIC	0	0	106	0.00
OLOGIC	0	0	106	0.00

From multiplier_updated_utilization_placed.rpt

Site Type	Used	Fixed	Available	Util%
Bonded IOB	60	0	106	56.60
IOB Master Pads IOB Slave Pads	29 29			
Bonded IPADs	0	0	10	0.00
Bonded OPADs	0	0	4	0.00
PHY_CONTROL	0	0	5	0.00
PHASER_REF	0	0	5	0.00
OUT_FIF0	0	0	20	0.00
IN_FIFO	0	0	20	0.00
IDELAYCTRL	0	0	5	0.00
IBUFDS	0	0	104	0.00
GTPE2_CHANNEL	0	0	2	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	20	0.00
PHASER_IN/PHASER_IN_PHY	0	0	20	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	250	0.00
IBUFDS_GTE2	0	0	2	0.00
ILOGIC	0	0	106	0.00
OLOGIC	0	0	106	0.00
+	+			++

iv. Primitives

✓ From multiplier_utilization_placed.rpt

+	+	
Ref Name	Used	Functional Category
+	+	+
FDRE	58	Flop & Latch
LUT6	52	LUT
LUT4	50	LUT
LUT2	48	LUT
OBUF	33	10
IBUF	27	10
CARRY4	26	CarryLogic
LUT5	12	LUT
LUT3	12	LUT
BUFG	1	Clock
+		

✓ From multiplier_updated_utilization_placed.rpt

+	+	
Ref Name	Used	Functional Category
+	++	+
FDRE	56	Flop & Latch
OBUF	33	10
IBUF	27	I0
LUT1	23	LUT
LUT2	18	LUT
CARRY4	13	CarryLogic
LUT6	11	LUT
LUT4	3	LUT
LUT5	2	LUT
DSP48E1	1	Block Arithmetic
BUFG	1 1	Clock
+	++	

b) Power

✓ From multiplier_power_placed.rpt

Dynamic: 0.03W

Static: 0.1 - 0.03 = 0.07W

+	++
Total On-Chip Power (W)	0.100
Dynamic (W)	0.030
Device Static (W)	0.070
Effective TJA (C/W)	5.0
Max Ambient (C)	84.5
Junction Temperature (C)	25.5
Confidence Level	Low
Setting File	
Simulation Activity File	
Design Nets Matched	NA
4	4

✓ From multiplier_updated_power_placed.rpt

Dynamic: 0.033W Static: 0.07W

```
Total On-Chip Power (W) | 0.103 |
| Dynamic (W) | 0.033 |
| Device Static (W) | 0.070 |
| Effective TJA (C/W) | 5.0 |
| Max Ambient (C) | 84.5 |
| Junction Temperature (C) | 25.5 |
| Confidence Level | Low |
| Setting File | --- |
| Design Nets Matched | NA
```

c) Worst Negative Slack

WNS(ns)

4.350

✓ From multiplier timing summary.rpt

0.000

WNS(ns)	TNS(ns)	TNS Failing Endpoints	TNS Total	Endpoints	WHS(ns)	THS(ns)
2.998	0.000	0		33	0.245	0.000

WHS(ns)

0.181

THS(ns)

0.000

TNS(ns) TNS Failing Endpoints TNS Total Endpoints

2. Answers

- a) Compare the tables above and briefly explain the difference between two designs. (Answer should not exceed 4 sentences)
 Compared with the original design, the updated one uses DSP and fewer LUTs, consumes a little bit more power, and has larger worst negative slack.
- b) What is the advantage of using DSP instead of LUTs on FPGA? (Answer should not exceed 4 sentences)

The DSP has multiplication operation unit, also called mac unit, it can finish a multiplication and addition in a cycle. Also, the operation speed is quicker and the wasted resources is less.