HYDERABAD

Course Code: A52001

I Year B.Tech. IT - II Sem.

MATHEMATICS-II

(ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS)

Course Objectives: To learn

- 1. Methods of solving the differential equations of first and higher orders.
- 2. Evaluation of multiple integrals.
- 3. The basic properties of vector valued functions and their applications to line, surface and volume integrals.

Course Outcomes: At the end of this course, students will be able to:

- 1. Classify the various types of differential equations of first order and first degree and apply the concepts of differential equations to the real world problems.
- 2. Solve higher order differential equations and apply the concepts of differential equations to the real world problems.
- 3. Evaluate the Double and Triple integrals.
- 4. Identify the vector differential operators physically in engineering problems.
- 5. Evaluate the line, surface and volume integrals and converting them from one to another by using vector integral theorems.

UNIT-I:

Differential Equations of first order and their Applications

Formation of Differential equations, differential equations of first order and first degree: exact, linear and Bernoulli, applications to Newton's law of cooling, law of natural growth and decay, orthogonal trajectories.

UNIT-II:

Higher Order Linear Differential Equations

Linear differential equations of second and higher order with constant coefficients, RHS term of the type $f(X) = e^{ax}$, $\sin ax$, $\cos ax$ and x^k , $e^{ax}V(x)$, $x^kV(x)$. Method of variation of parameters. Equations reducible to linear ODE with constant coefficients: Cauchy-Euler equation, Legendre's equation.

Multiple Integrals

Multiple integrals - double and triple integrals - change of order of integration (Only Cartesian form)- change of variables (Cartesian to Polar for double integral, Cartesian to Spherical for triple integral). Applications of Double integrals and Triple integrals.

UNIT-IV:

Vector Differentiation

Scalar and Vector point functions, Gradient, Divergence, Curl and their related properties – Directional Derivatives, Solenoidal and Irrotational vectors, Scalar potential function.

UNIT-V:

Vector Integration

Line integral, work done, Surface and Volume integrals. Vector integrals theorems: Green's, Stoke's and Gauss Divergence Theorems (Only Statements) - Problems based on these theorems.

TEXTBOOKS:

- Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010

REFERENCES:

- G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.
- 2. N.P. Bali and Manish Goyal, A Text Book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- Dennis G Zill and Michael R Cullen, Advanced Engineering Mathematics, Jones & Bartlett Learning, 3rd Edition, 2006, Technology & Engineering.
- 4. S. L., Ross, Differential Equations, Wiley India, 3rd Edition, 2009.
- George Simmons, Differential Equations with Applications and Historical Notes, McGraw Hill Education; 2nd Edition, 2017.