Tema 5: Distribuciones Especiales.

- 5.1. Distribución Binomial.
- 5.2. Distribución de Poisson.
- 5.3. Distribución Normal.
- 5.4. Teorema Central del Límite.

ESTADÍSTICA

Distribución Bernoulli (I).

Sea una v.a. X discreta con solo dos valores posibles:

$$X = \begin{cases} 1 \text{ (\'exito)} & \text{con probabilidad } p \\ 0 & \text{(fracaso)con probabilidad } q = 1 - p \end{cases}$$

A la distribución de probabilidad de esta variable se le llama distribución de **Bernoulli.**

Parámetros:

$$E(X)=1 p + 0 q = p$$

 $E(X^2)=1^2 p + 0^2 q = p$
 $Var(X)=E(X^2)-[E(X)]^2=p-p^2=p (1-p)=pq$

Ca

Distribución Bernoulli (II).

Supongamos que lanzamos una moneda, y que consideramos un éxito que salga cara. La v.a. X con valores :

$$X = \begin{cases} 1 \text{ (cara)} & \text{con probabilidad } p = \frac{1}{2} \\ 0 \text{ (cruz) con probabilidad } q = 1 - p = \frac{1}{2} \end{cases}$$

tiene una distribución Bernoulli.

Si lanzamos diez veces una moneda, cada uno de los lanzamientos se puede considerar una prueba de Bernoulli independiente, tendremos diez pruebas de Bernoulli independientes X_1 , X_2 , ..., X_{10} todas con la misma probabilidad de éxito $p=\frac{1}{2}$.

ESTADÍSTICA

Distribución Binomial (I).

Definición: Sean n pruebas de Bernoulli independientes X_1 , $X_2,...,X_n$ con la misma probabilidad de éxito p. $X = X_1 + X_2 + ... + X_n = n^o$ de éxitos en las n pruebas de Bernoulli, tiene una distribución de probabilidad **Binomial** B(n, p). La función de probabilidad es:

$$f(x) = P(X = x) = \binom{n}{x} p^x q^{n-x}, \ 0 \le x \le n$$

Parámetros:

$$E(X) = E(X_1 + \dots + X_n) = \sum_{i=1}^n E(X_i) = p + \dots + p = np$$

$$Var(X) = Var(X_1 + + X_n) = \sum_{i=1}^{n} Var(X_i) = pq + ... + pq = npq$$

Mar Puiol

Distribución Binomial (II).

Teorema: Si X_1 , X_2 , ..., X_k son v.a. independientes con una distribución binomial $B(n_i, p)$, entonces $X = X_1 + X_2 + ... + X_k$ tiene una distribución binomial $B(n_1 + n_2 + ... + n_k, p)$

Tablas de la Binomial

Las tablas dan el valor de la función de distribución

$$F(k) = P(X \le k) = \sum_{x=0}^{k} P(X = x) = \sum_{x=0}^{k} {n \choose x} p^{x} q^{n-x}$$

<u>a</u>

ESTADÍSTICA

Mar Pujol

Distribución Binomial (III).

Binomial $B(n,p): F(k) = \sum_{i=0}^{k} {n \choose i} p^i q^{n-i}$													
n	k	0.01	0.05	0.10	0.15	0.20	0.25	0.30	1/3	0.35	0.40	0.45	0.50
1	0	0.0990	.9500	.9000	.8500	.8000	.7500	.7000	.6667	.6500	.6000	.5500	.5000
	1	1	1	1	1	1	1	1	1	1	1	1	1
	0	.9801	.9025	.8100	.7225	.6400	.5625	.4900	.4444	.4225	.3600	.3025	.2500
2	1	.9999	.9975	.9900	.9775	.9600	.9375	.9100	.8889	.8775	.8400	.7975	.7500
	2		1	1	1	1	1	1	1	1	1	1	1
	0	.9703	.8574	.7290	.6141	.5120	.4219	.3430	.2963	.2746	.2160	.1664	.1250
l	1	.9997	.9928	.9720	.9393	.8960	.8438	.7840	.7407	.7183	.6480	.5748	.5000
3	2	1	.9999	.9990	.9966	.9920	.9844	.9730	.9630	.9571	.9360	.9089	.8750
	3	l	1	1	1	1	1	1	1	1	1	1	1

Sea X una v.a. B(13, 0.4), calcular $P(X \le 7)$ y P(X = 10) $P(X \le 7) = F(7) = 0.9023$ $P(X = 10) = P(X \le 10) - P(X \le 9) = F(10) - F(9) = 0.9987 - 0.9922 = 0.0065$

Distribución Poisson (I).

Sea X una **Binomial** B(n, p), calculamos el límite de su función de probabilidad cuando n tiende a infinito y p a cero:

$$\lim_{\substack{n \to \infty \\ p \to 0}} f(k) = \lim_{\substack{n \to \infty \\ p \to 0}} P(X = k) = \lim_{\substack{n \to \infty \\ p \to 0}} {n \choose k} p^k q^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

A la distribución de probabilidad límite resultante se le llama distribución de **Poisson**.

Definición: X tiene una distribución de **Poisson** de media λ $P(\lambda)$ si su función de probabilidad es:

$$f(k) = P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0,1,2,...$$

(Ĉa

ESTADÍSTICA

Distribución Poisson (II).

Parámetros:

$$E(X) = \lambda$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \lambda$$

Distribución Poisson (III).

Teorema: Si X_1 , X_2 , ..., X_k son v.a. independientes con una distribución de Poisson $P(\lambda_i)$, entonces $X=X_1+X_2+...+X_k$ tiene una distribución de Poisson $P(\lambda_1+\lambda_2+...+\lambda_k)$

Tablas de Poisson

ESTADÍSTICA

Las tablas dan el valor de la función de distribución

$$F(k) = P(X \le k) = \sum_{x=0}^{k} P(X = x) = \sum_{x=0}^{k} e^{-\lambda} \frac{\lambda^{k}}{k!}$$

₩ 🔨 🗲

Distribución Poisson (IV).

	Poisson $P(\lambda) : F(k) = \sum_{i=0}^{k} e^{-\lambda} \frac{\lambda^{i}}{i!}$													
k / λ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1				
0	.9048	.8187	.7408	.6703	.6065	.5488	.4966	.4493	.4066	.3679				
1	.9953	.9825	.9631	.9384	.9098	.8781	.8442	.8088	.7725	.7358				
2	.9998	.9989	.9964	.9921	.9856	.9769	.9659	.9526	.9371	.9197				
3	1	.9999	.9997	.9992	.9982	.9966	.9942	.9909	.9865	.9810				
4		1	1	.9999	.9998	.9996	.9992	.9986	.9977	.9963				
5				1	1	1	.9999	.9998	.9997	.9994				
6							1	1	1	.9999				
7										1				
k / λ	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2				
0	.3329	.3012	.2725	.2466	.2231	.2019	.1827	.1653	.1496	.1353				
1	.6990	.6626	.6268	.5918	.5578	.5249	.4932	.4628	.4337	.4060				
2	.9004	.8795	.8571	.8335	.8088	.7834	.7572	.7306	.7037	.6767				
3	.9743	.9662	.9569	.9463	.9344	.9212	.9068	.8913	.8747	.8571				
1 .	0040	mmn.	none	DOM:	mma a	meno.	men a	0000	O P P C	0.450				

Si X tiene una distribución P(6), calcular $P(X \le 9)$ y P(X = 15) $P(X \le 9) = F(9) = 0.9161$ $P(X = 15) = P(X \le 15) - P(X \le 14) = F(15) - F(14) = 0.9995 - 0.9986 = 0.0009$

ESTADÍSTICA

Distribución Poisson (V).

Aproximación de la Binomial por la de Poisson

•Las tablas de la Binomial solo son del orden n=25 ó 30

•La distribución Binomial se puede aproximar por la de Poisson cuando n es grande (n > 25 ó 30), llamando λ =np

•Si X es B(n,p), podemos considerar que para valores de n mayores de 25, X es $P(\lambda = np)$

Si X es B(100, 0.04), calcular la $P(X \le 3)$

$$\lambda = np = 100 \times 0.04 = 4$$

Podemos considerar que X es P(4) y calcular $P(X \le 3)$

11

Problema 5.1

 $Si\ X\ es\ B(8,\ 0.35),\ calcular:$

- a) P(X=3)
- b) $P(X \le 5)$
- c) $P(X \ge 5)$

a) $P(X=3)=P(X \le 3) - P(X \le 2) = 0.7064 - 0.4278 = 0.2786$

- b) $P(X \le 5) = 0.9747$
- c) $P(X \ge 5) = 1 P(X < 5) = 1 P(X \le 4) = 1 0.8939 = 0.1061$

ESTADÍSTICA

Mar Puiol

Problema 5.16

 $Si\ X\ es\ P(2.9)$, calcular:

- a) $P(X \le 5)$
- *b*) P(X = 7)
- c) $P(X \ge 4)$

a) $P(X \le 5) = 0.9258$

- b) $P(X=7)=P(X \le 7) P(X \le 6) = 0.9901 0.9713 = 0.0188$
- c) $P(X \ge 4) = 1 P(X < 4) = 1 P(X \le 3) = 1 0.6696 = 0.3304$

ESTADÍSTICA

Mar Puiol