Document Similarity

Natural Language Processing

Agenda

- What is Document Similarity
- Methods to measure Document Similarity
- Cosine Similarity Method

Goal

• Given a set of documents and search term(s)/query we need to retrieve relevant documents that are similar to the search query.

Match Relevant Documents

- a measure of similarity that can be used to
 - compare documents or
 - provide a ranking of documents
- with respect to a given vector of query words.

Cosine similarity measure

- Cosine similarity documents are represented as term vectors.
- The similarity of two documents corresponds to the correlation between the vectors.
- This is quantified as the cosine of the angle between vectors known as cosine similarity.
- Cosine similarity is one of the most popular similarity measure applied to text documents

Cosine Similarity Method

- Vector Space Model
- TF , TDF ...
- Cosine Similarity Method Calculation

Vector Space Model (VSM)

- Vector Space Model (VSM) is a way of representing documents through the words that they contain
- It is a standard technique in Information Retrieval

Steps - Cosine Similarity

- Step 1 : Term frequency (TF)
- Step 2: Inverse Document Frequency(IDF)
- Step 3 : TF * IDF
- Step 4: Vector Space Model Cosine Similarity

Example

- Document 1: The game of life is a game of everlasting learning
- Document 2: The unexamined life is not worth living
- Document 3: Never stop learning

Step 1: Term frequency (TF)

• The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

Step 1: Term frequency (TF)

Document1	the	game	of	life	is	a	everlasting	learning	
Term Frequency	1	. 2	2	. 1	. 1	1	1	1	

Document2	the	unexamined	life	is	not	worth	living
Term Frequency	1	. 1	. 1	. 1	. 1	1	. 1

Document3	never	stop	learning
Term Frequency	1	1	1

- Document 1: The game of life is a game of everlasting learning
- Document 2: The unexamined life is not worth living

Normalized TF

Document1	the	game	of I	ife i	is	a	everlasting	learning
Normalized TF	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1

Document2	the	unexamined li	ife i	s r	ot	worth l	iving
Normalized TF	0.142857	0.142857	0.142857	0.142857	0.142857	0.142857	0.142857

Document3	never	stop	learning	
Normalized TF		0.333333	0.333333	0.333333

Step2:Inverse Document Frequency(IDF)

- The main purpose of doing a search is to find out relevant documents matching the query.
- In the first step all terms are considered equally important.
- Certain terms that occur too frequently have little power in determining the relevance.
- We need a way to weigh down the effects of too frequently occurring terms.
- Also the terms that occur less in the document can be more relevant.
- We need a way to weigh up the effects of less frequently occurring terms.
- Logarithms helps to solve this problem.

idf - Inverse Document Frequency

- "inverse document frequency"
- measures how common a word is among all documents in bloblist.
- More common a word is, the lower its idf.
- We take the ratio of the total number of documents to the number of documents containing word, then take the log of that.
- Add 1 to the divisor to prevent division by zero.

- IDF(game) = 1 + log_e(Total Number Of Documents / Number Of Documents with term game in it)
- There are 3 documents in all
 - Document1, Document2, Document3
- The term game appears in Document1
- IDF(game) = $1 + \log_e(3 / 1) = 1 + 1.098726209 = 2.098726209$

Terms	IDF
the	1.405507153
game	2.098726209
of	2.098726209
life	1.405507153
is	1.405507153
a	2.098726209
everlasting	2.098726209
learning	1.405507153
unexamined	2.098726209
not	2.098726209
worth	2.098726209
living	2.098726209
never	2.098726209
stop	2.098726209

Step 3: TF * IDF

- to find out relevant documents for the query: life learning
- For each term in the query multiply its normalized term frequency with its IDF on each document.
- In Document1 for the term life the normalized term frequency is 0.1 and its IDF is 1.405507153.
- Multiplying them together we get 0.140550715 (0.1 * 1.405507153).

Step 3: TF * IDF

	Document1	Document2	Document3
life	0.140550715	0.200786736	0
learning	0.140550715	0	0.468502384

Step 4: Vector Space Model

- The representation of a set of documents as vectors in a common vector space is known as the vector space model
- It is fundamental to a host of information retrieval operations ranging from
 - scoring documents on a query,
 - document classification and
 - document clustering.

Step 4: Vector Space Model Cosine Similarity

- From each document we derive a vector.
- The set of documents in a collection then is viewed as a set of vectors in a vector space.
- Each term will have its own axis.

Overview

The Vector Space Model (VSM) is a way of representing documents through the words that they contain

It is a standard technique in Information Retrieval

The VSM allows decisions to be made about which documents are similar to each other and to keyword queries

Step 4: Vector Space Model Cosine Similarity

Cosine Similarity

$$\cos \theta = \frac{\mathbf{d_2} \cdot \mathbf{q}}{\|\mathbf{d_2}\| \|\mathbf{q}\|}$$

Rankingdocuments

A user enters a query

The query is compared to all documents using a similarity measure

The user is shown the documents in decreasing order of similarity to the query term

