

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2002-0074326

Application Number

출 원 년 월 일

2002년 11월 27일

Date of Application Nov 27, 2002

출 원 Applicant(s) 인 : 주식회사 포스코

POSC0

2003 년 11 월 06 일

특

청

COMMISSIONER

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2002.11.27

【국제특허분류】 C21D 8/12

【발명의 명칭】 자기특성이 우수한 고규소 무방향성 전기강판 제조방법

【발명의 영문명칭】 Method for manufacturing high silicon non-oriented

electrical steel sheet with superior magnetic properties

【출원인】

【명칭】 주식회사 포스코

【출원인코드】 1-1998-004076-5

【대리인】

【성명】 손원

【대리인코드】 9-1998-000281-5

【포괄위임등록번호】 1999-047186-5

【대리인】

【성명】 김성태

 【대리인코드】
 9-1999-000487-4

 【포괄위임등록번호】
 2000-032383-6

1-2100-162

[발명자]

【성명의 국문표기】 최규승

【성명의 영문표기】CHOI, Kyu Seung【주민등록번호】520108-1273919

【우편번호】 790-785

【주소】 경북 포항시 남구 괴동동1번지 (주)포스코내

【국적】 KR

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대리인

손원 (인) 대리인

김성태 (인)

[수수료]

【기본출원료】18면29,000 원【가산출원료】0면0

【우선권주장료】

【심사청구료】

【합계】

[첨부서류]

0 건

0 원

0 항

0 원

29,000 원

· 1. 요약서·명세서(도면)_1통

【요약서】

[요약]

자기특성이 우수한 고규소 무방향성 전기강판 제조방법이 제공된다.

본 발명은, 강슬라브를 재가열한후 열간압연하고, 열연판소둔 및 냉간압연으로 그 두께를 조정하며, 이어 냉연강판을 재결정소둔하는 공정으로 이루어진 무방향성 전기강판 제조공정에 있어서, 상기 냉간압연된 강판을 적절한 조건하에 중간소둔처리하여 그 표면산화물층내 총산소량을 210~420ppm으로 제어하고, 이어, 상기 중간소둔처리 된 강판 표면에, 소정의 조성과입도를 갖는 Fe-Si계 소성분말을 포함하여 이루어진 피복조성물을 도포한후 건조하고, 그리고상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 1050~1200℃온도범위로 확산소 문처리하는 것을 특징으로 하는 고규소 무방향성 전기강판 제조방법에 관한 것이다.

【색인어】

고규소 전기강판, Fe-Si계 분말, 표면산화막, 확산소둔

【명세서】

【발명의 명칭】

자기특성이 우수한 고규소 무방향성 전기강판 제조방법{Method for manufacturing high silicon non-oriented electrical steel sheet with superior magnetic properties}

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 자기특성이 우수한 무방향성 전기강판 전기강판 제조방법에 관한 것으로, 보다 상세하게는, 무방향성전기강판 제조공정에 있어서, 냉연판에 대한 중간소둔처리조건을 최적화한후 소정의 입도와 조성을 가진 Fe-Si계 소성분말을 강판표면에 도포하고 최종소둔처리함으로써 초기 자성개선과 더불어 침규소화 확산소둔시의 표면형상, 즉 표면조도 개선에 의해 2차자성향상을 동시에 가능케 할 수 있는 고규소 무방향성 전기강판에 관한 것이다.
- 무방향성전기강판이란 결정립의 방위가 불규칙적으로 배열되어 있어 자화방향별 자성편 차가 적은 전기강판으로서, 이러한 특성을 이용하여 발전기, 모타등 자속의 방향이 변화하는 회전기기용 철심에 주로 사용된다.
- 최근에 들어, 전기기기의 다양화에 따라 고주파영역에서 작동되는 기기에 대한 수요가 늘면서 고주파에서 자기적 특성이 우수한 철심소재에 대한 욕구가 증대되기 시작하였다.

한편, Fe-Si합금에서 규소함량이 증가할수록 철손중에서 이력손, 자왜, 보자력, 자기이 방성이 감소하고 최대투자율이 증가하므로 고규소장제품은 우수한 연자성재료라 말할 수 있다. 이때 자왜의 감소 및 최대투자율의 증대는 규소함량의 증가에 따라 무한정 증가하는 것이 아니고 6.5%Si강에서 최고치를 보이며 또한 6.5%Si강은 상용주파수 뿐 만 아니라 고주파영역에서도 자기적 특성이 최고상태에 도달한다는 것은 전부터 잘 알려진 사실이다. 이러한 고규소장의 우수한 고주파수대의 자기적특성을 이용하여 가스터빈용 발전기, 전차전원, 유도가열장치, 무정전 전원장치등의 고주파 리액터와 도금전원, 용접기, X-선 전원등의 고주파변압기에 주로 적용 할 수 있으며 주로 방향성규소강판의 대체재로 사용되고 있고, 그 외에도 모터의 소모전력을 줄이고 효율을 높이는 용도로 적용이 가능하다.

그런데 Fe-Si강에서 규소함량이 증가할수록 규소강판의 연신율은 급격히 작아지므로, 3.5%이상의 규소를 함유하는 규소강판을 냉간압연법으로 제조하는 것은 거의 불가능한 것으로 알려져 있다. 따라서 규소함량이 높을수록 우수한 자기적특성을 얻을 수 있다는 사실을 알고 있음에도 불구하고 현존 기술로는 냉간압연법의 한계점으로 인식되어 냉간압연법의 한계를 극 복 할 수 있는 새로운 대체기술의 연구가 오래 전부터 시도되고 있다.

지금까지 고규소강판을 제조 할 수 있는 방법으로 알려진 기술들은 일특개소 56-3625호 등의 단롤 또는 쌍롤을 이용한 고규소강의 직접주조법이 있고, 일 특개소 62-103321호등의 적 정온도의 가열상태에서 압연하는 온간압연법, 일특개평 5-171281호등의 내부에 고규소강을 넣고 외부에 저규소강을 넣은 상태에서 압연하는 크래드압연법이 알려져 있으나 이러한 기술들은 아직까지 상용화되지는 못하고 있는 실정이다.

- 현재 고규소화 제품으로서 양산중인 기술은 3%급 무방향성제품을 SiC14가스를 이용한 화학중착법(CVD법)으로 규소성분을 소재표면에 부화시킨 후 확산소둔시켜 고규소강을 제조하는 기술로서, 이 기술은 일특개소 62-227078 및 미국 USP 3423253등에 잘 알려져 있다. 그러나 화학중착후 확산소둔처리법은 화학중착기술 자체의 어려움으로 인해 기존 3%Si강 제품에 비해약5배 이상의 고가격 판매가 불가피하여 우수한 자기적특성을 갖고 있는 제품임에도 불구하고 대중화 및 실용화에 어려움을 겪고 있다.
- * 또한, EP1052043A2, JP2000192204, JP2000144248, JP200045025등에서는 분말야금법을 이용하여 고규소강판을 제조하는 기술도 알려져 있으나, 이 기술 또한 고Si함량 때문에 냉간압연함에 제약이 있어 원하는 두께를 갖는 강판을 제조할 수 없다는 문제가 있었다.
- 9> 그리고 EP 1052043A2, USP 33634148 및 USP4073668등에서는 Fe-Si 합금분말단독 또는 바인더에 혼합하여, 그 혼합분말을 도포 후 5%이내의 압하율로 압연후 저온에서 장시간소둔법을 제안하고 있으나, 도포후 압연 및 저온 장시간소둔법등의 적용등 대량생산이 대량생산에 적합하지 않다.

【발명이 이루고자 하는 기술적 과제】

따라서 본 발명은 상술한 종래기술을 해결하기 위하여 마련된 것으로서, 냉연강판에 대하여 중간소문을 행한후, 그 소문처리된 강판표면에 소정 입도와 조성을 갖는 Fe-Si계 소성분말을 도포한후 최종 침규확산소문하는 것을 특징으로 하는 고규소 무방향성 전기강판 제조방법을 제공함을 그 목적으로 한다.

【발명의 구성 및 작용】

- b) 상기 목적을 달성하기 위한 본 발명은, 강슬라브를 재가열한후 열간압연하고, 열연판소 문 및 냉간압연으로 그 두께를 조정하며, 이어 냉연강판을 재결정소둔하는 공정으로 이루어진 무방향성 전기강판 제조공정에 있어서,
- ^{12>} 상기 냉간압연된 강판을 950~1100℃의 온도, 50%이상의 수소함유 질소분위기 및 이슬점 (PH₂O/PH₂): 0.06~0.30의 습윤분위기하에서 중간소둔처리하여 그 표면산화물층내 총산소량을 210~420ppm으로 제어하고,
- 이어, 상기 중간소둔처리된 강판 표면에, 그 입도가 -325mesh이고 Si를 20~70중량% 함유한 Fe-Si계 소성분말 100중량부; 및 상기 소성분말 100중량부기준으로 실리카가 고형분 기준으로 15~30중량부 함유되도록 조성된 콜로이달 실리카용액을 포함하여 조성된 피복조성물을 도포한후 건조하고, 그리고
- 14> 상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 1050~1200℃온도범위로 확산소둔처리하는 것을 특징으로 하는 고규소 무방향성 전기강판 제조방법에 관한 것이다.
- 15> 이하, 본 발명을 설명한다.
- ·16> 본 발명자는 전기강판 표면에 소정의 입도와 조성을 가진 Fe-Si계 소성분말을 포함하는 슬러리용액을 도포한후 고온소둔함으로써 고규소 전기강판을 제조할 수 있음을 대한민국 특허 출원 2002-69646, 2002-69647호등으로 제시한 바 있다.
- 17> 이러한 특허출원에서는 Fe-Si계 소성분말을 강판표면에 도포,소둔하여 고규소 전기강판을 제조할 때 Fe보다 빠른 Si 확산속도에 따라 야기되는 표면결함 발생문제를 해결하기 위해,

Fe-Si계 소성분말의 조성 및 입도를 최적화해야하고, 이러한 소성분말 대비 바인더로써 콜로이달 실리카의 첨가량, 그리고 소둔분위조건 등도 소정으로 제어되어야 함을 제시하고 있다.

18> 그런데 본 발명의 추가적인 연구결과에 의하면, 무방향성 전기강판 제조공정에서, 냉간 압연강판을 중간소둔처리하고, 중간소둔처리된 강판 표면에 상기와 같이 그 입도와 조성이 제어된 Fe-Si계 소성분말을 슬러리형태로 도포한후 고온소둔함으로써 보다 효과적으로 표면결함 발생없이 고규소화를 확보할 수 있음을 발견하고 본 발명을 제시하는 것이다.

19> 즉, 본 발명은 무방향성 전기강판 제조공정에 있어서, 냉연강판을 중간소둔처리한후 소 정조성의 침규확산 피복조성물을 도포하고 고온확산 소둔함을 그 특징으로 한다.

20> 이하, 본 발명의 침규제 피복조성물을 설명한다.

본 발명의 침규확산제의 주성분인 Fe-Si계 분말은 Fe분말과 Si분말을 상호 혼합하여 질소나 수소 또는 수소와 질소의 혼합가스하에서 1000~1200℃의 온도에서 3~5시간 소성하여 제조할 수 있으나, 이에 특별히 제한되는 것은 아니며 다양한 방법으로 그 제조가 가능한 것이다. 이때 Fe 분말과 Si분말의 배합량에 따라 소성분말의 화합물성분이 변화되며, 이론적으로는 50%Si+50%Fe시의 경우 FeSi2의 화합물이 생성되며, 34%Si+66%Fe시에는 FeSi의 화합물이, 25%Si+75%Fe시에는 Fe₅Si3의 화합물로, 14%Si+86%Fe시에는 Fe₃Si의 화합물로 존재하게 된다. 그러나 실제 소성시에는 초기 혼합상대에 따라 여러 화합물이 조금씩 혼재되어 있을 수 있다.

본 발명에서는 이렇게 얻어진 Fe-Si계 소성분말에서 Si성분 함량을 20~70중량%로 제한한다. 만일 Si함량이 20%미만이면, Si자체 함량이 너무 적어 확산속도가 너무 느릴 수 있으며, 또한 자체 밀도가 커서 현장에서 소재표면에 코팅작업시 분산성이 저조할 수 있다. 그리고 Si

함량이 70%를 초과하면 주성분이 FeSi₂ 및 과잉의 금속Si상의 혼합물로 존재하므로 금속Si성분이 소재표면에 접촉되어 확산소둔시 표면에 결함부 생성가능성이 크며, 아울러 침규량의 제어가 어려워질 수 있다.

- 마라서 본 발명에서는 Si성분의 확산속도를 보다 늦추기 위해, Si금속 단독분말을 침규학산용 도포제로 사용하지 않고 Si금속이 Fe금속과 결합된 화합물형태인 FeSi₂, FeSi, Fe₅Si₃ 또는 Fe₃Si 상태의 Fe-Si계 소성분말을 만들어 이를 침규제의 기본성분으로 이용함이 바람직함을 알 수 있다.
- 한편, 상기와 같이 제조된 Fe-Si계 소성분말을 전기강판의 도포제로 사용하는 경우, 이 러한 소성분말을 슬러리상태로 만들어 이를 롤코타를 이용하여 강판표면에 코팅함이 생산현장 에서 가장 경제적이다. 그런데 확산제인 Fe-Si계 소성분말 입도가 가능한한 미세하여야 현장에 서의 코팅작업시 도포작업성이 우수해지고 확산반응시의 소재의 표면형상 관리측면에서도 유리 하다. 그러나 상기 소성반응이 끝난 Fe-Si계 소성분물은 고온장시간 반응에서 다소 상호 융착 된 반덩어리 상태로 있으므로 그 분말의 입도를 미세하게 관리해야 할 필요가 있다.
- "25> 따라서 본 발명에서는 이를 고려하여 상기와 같이 마련된 Fe-Si계 소성분말의 입경을 미세화함이 바람직하며, 이러한 분말의 입도크기가 미세화 될수록 현장 도포작업성 측면등에서 유리하다. 다만 미립 분말화 작업 생산성을 고려하여 그 입도를 -325mesh로 한정하는 보다 바람직하다.

²⁶ 한편, 본 발명에서는 상기와 같이 마련된 Fe-Si계 분말의 현장 도포작업성 및 도포시의 Si 확산량제어를 고려하여, 그 분말을 용매에 녹여 슬러리용액을 제조하여, 이를 도포제로 사용한다.

》 본 발명에서는 이러한 용매로써 콜로이달 상태의 실리카용액을 사용한다. 이때, 실리카 성분은 콜로이달 상태의 크기를 가진 극미세 SiO₂입자로서, 이러한 미세입자가 물에 분산되어 있으므로 타 고형입자와 혼합사용시 슬러리액의 점성을 증가시킬 수 있어서 도포작업성이 확보할 수 있다.

본 발명에서는 상기 조성의 Fe-Si계 분말 100중량부에, 실리카가 그 고형분 기준으로 15~30중량부가 되도록 조성된 실리카용액을 첨가함이 바람직하다. 만일 실리카의 고형분 기준 첨가량이 15중량부 미만이면, 소재 표면과의 장력차이에 의해 피복조성물의 표면 갈라짐이 심하여 소재표면의 부착성이 불량해 질 수 있으며, 30중량부를 초과하면 도포특성이 불량하고 또 이후 확산소둔시 침규소 확산속도가 너무 늦어서 장시간의 소둔이 필요하므로 바람직하지 않다.

'9' 다음으로, 상기 피복조성물을 이용한 본 발명의 전기강판 제조방법을 설명한다.

P방향성 전기강판의 제조공정은 제조사, 기본 제조공정, 또는 사용용도에 따라 다소의 차이는 있지만 통상적으로 제강에서의 성분조정, 강슬라브 제조, 재가열 및 열간압연, 열연판소문 및 냉간압연으로 두께조정, 재결정소문 및 최종 절연코팅공정등의 순서로 제조되는 것이 기본이며, 이러한 제조공정, Si 함량 또는 자성수준에 따라 다양한 종류의 제품이 생산 판매되고 있다.

- 본 발명은 무방방향 전기강판 제조를 위한 초기 강슬라브의 구성성분에 제한되는 것은 아니나, 그 강슬라브는 자체중량%로 Si을 2.0~3.3%함유하고 있는 것이 바람직하다. 왜냐하면 그 Si함량이 2.0%미만이면 이후 침규소확산제인 Fe-Si계 분말을 이용한 침규확산반응시 너무 장시간이 소요될 뿐 만 아니라 경제성측면에서도 불리하며, 3.3%를 초과하는 경우 강이 취약해 져 냉간압연성이 극히 나빠질 수 있기 때문이다.
- 본 발명에서는 상기 냉간압연판을 중간소둔처리한후, 이어 상술한 조성의 피복조성물을 그 중간소둔처리된 강판표면에 도포하고, 이어 고온에서 확산소둔시킴을 특징으로 한다. 만일 중간소둔처리되지 냉연강판 표면에 상술한 피복조성물을 도포한후 권취하고, 그 권취된 코일을 고온확산소둔시키는 경우 승온속도의 급속상승에 따른 설비적인 한계를 가질 뿐만 아니라 개선된 초기 자성을 확보할 수 없어, 결과적으로 고규소화에 따라 우수한 자성특성을 얻을 수는 있지만 최상의 자성은 얻을 수 없기 때문이다.
- 상세하게 설명하면, 본 발명에서는 연속작업이 가능한 중간소둔로에서 상기 냉연강판을 승은 및 균열처리함으로써 소재의 집합조직을 개선하여 초기자성의 최적화를 도모할 수가 있다. 또한, 중간소둔시 소둔분위기조건을 적절하게 제어함으로써, 이후, 침규소화 확산소둔시 소재 표면에 파이어라이트(Faylite, Fe₂SiO₄) 중심의 얇고 치밀한 산화막을 형성시키고, 이러한 산화막이 Fe-Si계 소성분말중의 Si성분의 소재내로의 확산시 Fe₃Si계 중간상 화합물 형성을 억제하는 차단막 역할을 함으로서 표면형상 개선, 즉 표면조도 개선에 의해 동일한 Si성분의 침규소화시에 비해 자성이 우수해 질 수 있다.

이때, 그 중간소둔온도를 950~1100℃로 제한함이 바람직하다. 만일 중간소둔온도가 950℃미만이면 집합조직 개선 효과가 부족하고, 1100℃를 초과하면 설비관리의 어려움이 따르기 때문이다.

또한 중간소둔처리는 50%이상의 수소함유 질소분위기 및 이슬점을 기준으로하는 산화능 (PH_2O/PH_2) 을 0.06~0.30로 조정되는 습윤분위기하에서 수행함이 바람직하다. 50%미만의 수소분위기에서는 산화능 및 산화물층내 총산소량관리가 어려워질 수 있으며, 아울러, 및 PH_2O/PH_2 가 0.06~0.30범위를 벗어나면 수소분위기에서 치밀한 파이어라이트를 형성할 수 없기 때문이다.

- 본 발명에서는 또한 이러한 중간소둔처리된 강판의 표면산화물층내 총산소량을 210~420ppm으로 제어함이 바람직하다. 만일 그 총산소량이 210ppm미만이면 중간 결함상인 Fe3 Si의 생성 억제력이 부족하고, 420ppm를 초과하면 파이어라이트 피막에 다량의 Fe0산화물이 형성되기 때문이다.
- 본 발명에서는 상기와 같이 중간소둔처리된 강판 표면에 상술한 조성의 피복조성물을 롤코타를 이용하여 도포한후 건조시키는데, 이때 그 건조온도를 200~700℃로 제한함이 바람직하다. 만일 건조온도 200℃미만에서는 건조시간이 너무 길어져 생산성이 좋지 않으며, 700℃를 초과하면 소재 표면에 산화물 생성이 우려가 있기 때문이다.
- 38> 이어, 상기 건조된 강판은 권취되어, 소둔로에 장입하여 확산소둔시키는데, 이때 그 소 둔온도를 1050~1200℃로 제한한다. 만일 그 소둔온도가 1050℃미만이면 침규속도가 너무 느려

확산에 장시간 소요될 뿐만 이니라 침규반응 경계면의 표면형상이 조악하게 될 수 있어 자성이 열화 될 가능성이 있다. 그리고 1200℃를 초과하면 반응속도가 너무 빠름과 아울러, 권취코일의 표면끼리 판붙음현상이 나타나서 이후 분리작업시 작업성이 나빠질 수 있다.

- 또한 본 발명에서는 이러한 확산소문시 그 분위기가스를 20%이상의 수소함유 질소가스 분위기로 제어할 것이 필요하다. 왜냐하면 그 수소함량이 20%미만시에는 소재표면에 얇고 치밀한 SiO₂계 산화막층이 형성되어 소재내부로의 침규확산반응이 방해될 수 있으며, 또한 소재 성분증의 일부라도 Al성분이 존재시 소둔후 냉각시 AlN 석출물을 형성하여 철손이 급격히 열화될 수 있기 때문이다.
- 그리고 이때의 확산소둔시간은 1~10시간으로 제한함이 바람직한데, 이는 그 소둔시간이 1시간미만에서는 침규량이 적고, 10시간을 초과하면 침규량이 너무 과다하여 적정관리가 어렵 고 과잉의 장시간 반응으로 소재표면의 형상을 악화시킬 수 있기 때문이다.
- ●한편, 본 발명에서는 상기 침규확산처리된 강판의 표면에 절연코팅층을 형성하여 최종 무방향성 전기강판제품을 생산할 수 있다. 즉, 상기 침규확산처리된 강판의 표면에 잔류하는 미반응물을 제거하고, 최종적으로 크롬산염 및 아크릴계수지를 주성분으로 하는 유무기복합코 팅제를 도포함으로써 최종 고규소 무방향성전기강판 제품을 생산할 수 있는데, 본 발명은 이 러한 절연코팅제의 구체적인 조성에 제한되는 것은 아니다.
- 42> 이하, 실시예를 통하여 본 발명을 상세히 설명한다.

- > (실시예 1)
- 증량%로, C: 0.0018%, Si: 3.02%, Mn: 0.020%, P: 0.003%, Ni: 0.010%, N: 0.0005%, S: 0.0010%, 잔여 철 및 불가피한 불순물을 포함하여 조성되는 강슬라브를 1220℃에서 재가열한후 열간압연하여 2.5mm두께의 열간압연판을 제조하였다. 이어, 1000℃에서 5분간 열연판소둔하고 산세처리한 후 최종두께인 0.20mm로 냉간압연한 후, 표면에 부착된 압연유를 제거하였다.
- > 이렇게 제조된 냉연강판을 하기 표 1과 같은 조건으로 중간소둔처리하였다. 구체적으로, 소둔온도를 900~1125℃까지 변화시켰으며, 분위기가스도 75% 수소와 질소를 기준으로 하여 변화시켰다. 그리고 표면산화물층 형성을 위하여 이슬점(dew point)을 PH₂O/PH₂를 0.25을 기준으로 하여 변화시켰으며, 표면산화물층의 총산소량을 소둔시간등을 조정하여 특정 ppm까지 조정하였다.
- ሁ 상기와 같이 중간소둔처리된 강판 표면에, 그 입도가 -325mesh이고 Si를 45중량% 함유하는 Fe-Si계 소성분말 100중량부에, 상기 소성분말 100중량부 기준으로 실리카가 그 고형분 기준으로 25중량부가 되도록 조성된 콜로이달 실리카용액을 혼합 하여 조성되는 피복조성물을 슬러리상태로 하여 도포하여 400℃에서 건조시켰다. 이어, 50%의 수소함유 질소가스 분위기하에서 1125℃온도에서 5시간 확산소둔시켰으며, 침규확산반응이 끝난 강판 표면의 미반응물을 제거한후 크롬산염 및 아크릴계수지를 주성분으로 하는 유무기복합코팅제를 도포하여 절연코팅층이 형성된 최종 고규소 무방향성 전기강판을 제조하였다.

이들 제품의 소재Si함량과 자기적특성등을 조사하였으며, 자기적 특성은 단판측정기로 철손값 및 자속밀도(B8) 값을 조사하여 그 결과를 표 1에 나타내었다. 여기서, 철손 W_{10/50}은 50Hz, 1.0Tesla에서의 철심손실을, W_{5/1000}은 1000Hz, 0.5Tesla에서의 철심손실을 나타내며, 자속밀도 B8은 800A-turn/m의 자화력을 받았을 때 발생하는 단위면적당의 자속수를 Tesla로 나타내었으며, 그리고 소재 Si량은 습식분석 결과치이다.

▶ [표 1]

19>

구분	중간소둔 초건				자성			I A GIA PER
1	온도 H ₂ PH ₂ O 산소학			산소량				소재Si량
בון און	(°C)	(%)	/PH ₂	(ppm)	(Tesla)	(₩/Kg)	W _{5/1000} (W/Kg)	(%)
비교예1	_	_	_	_	1.26	0.63	8.38	6.3
비교예2	1050	75	0.03	120	1.26	0.62	8.34	6.4
비교예3	1050	75	0.05	180	1.26	0.60	8.31	
발명예1	1050	75	0.09	240	1.27	0.57		6.4
발명예2	1050	75	0.28	380	1.27	0.59	8.22	6.3
비교예4	1050	75	0.37	470	1.27	0.63	8.24	6.3
비교예5	1075	75	0.25	150	1.26		8.29	6.4
발명예3	1075	75	0.25	350	1.27	0.62	8.35	6.5
माज्य वि	1075	75	0.25	450	1.26	0.58	8.22	6.2
비교예7	900	75	0.25	160	1.25	0.61	8.32	6.3
						0.04	8.36	6.4
발명예4	1000	75	0.25	350	1.26	0.58	8.24	6.3
비교예8	1125	75	0.25	480	1.26	0.62	8.29	6.4
비교예9	1050	25	0.25	375	1.25	0.61	8.28	6.3
발명예5	1050	50	0.25	380	1.27	0.58	8.21	6.3
발명예6	1050	90	0.25	375	1.27	0.57	8.20	6.4

- 상기 표1에 나타난 바와 같이, 중간소둔처리시 이슬점(PH₂O/PH₂)이 발명조건 대비 낮은 비교예(2~3)와 너무 높은 비교예(4)은 소재의 Si량은 본 발명예와 거의 유사하지만 철손특성이 상대적으로 좋지 않았다. 그리고 중간소문을 행하지 않는 비교예(1)도 유사한 결과를 얻었다.
- 또한, 표면산화물층 중 총산소량이 본 발명 범위보다 낮은 비교예(5)와 너무 높은 비교예(6) 또한 철손특성이 상대적으로 좋지 않았다.
- 그리고 중간소둔온도가 본 발명범위 보다 낮은 비교예(7)과, 높은 비교예(8)의 경우는 총산소량 관리가 불가능하여 철손치가 높게 나타났다. 또한, 분위기가스 수소함량이 본 발명범 위를 벗어나는 비교예(9)도 철손특성이 좋지 않았다.
- 즉, 냉연강판을 소정의 조건으로 중간소든처리한 후, 그 표면에 피복조성물을 도포하고 고온소둔함으로서 보다 우수한 자성특성을 무방향성 전기강판을 제조할 수 있음을 알 수 있다. 【발명의 효과】
- 상술한 바와 같이, 본 발명은, 중간소둔처리된 강판의 표면에 소정의 입도와 조성을 갖는
 는 침규제 피복조성물을 도포한후 고온 확산소둔함으로서 보다 우수한 고주파 자기특성을 갖는
 고규소 무방향성 전기강판을 효과적으로 제조할 수 있는 것이다.

【특허청구범위】

【청구항 1】

강슬라브를 재가열한후 열간압연하고, 열연판소둔 및 냉간압연으로 그 두께를 조정하며, 이어 냉연강판을 재결정소둔하는 공정으로 이루어진 무방향성 전기강판 제조공정에 있어서,

상기 냉간압연된 강판을 950~1100℃의 온도, 50%이상의 수소함유 질소분위기 및 이슬점(PH₂O/PH₂): 0.06~0.30의 습윤분위기하에서 중간소둔처리하여 그 표면산화물층내 총산소 량을 210~420ppm으로 제어하고,

이어, 상기 중간소둔처리된 강판 표면에, 그 입도가 -325mesh이고 Si를 20~70중량% 함유한 Fe-Si계 소성분말 100중량부; 및 상기 소성분말 100중량부기준으로 실리카가 고형분 기준으로 15~30중량부 함유되도록 조성된 콜로이달 실리카용액을 포함하여 조성된 피복조성물을 도포한후 건조하고, 그리고

상기 건조된 강판을 20%이상의 수소함유 질소가스 분위기하에서 1050~1200℃온도범위로 확산소둔처리하는 것을 특징으로 하는 고규소 무방향성 전기강판 제조방법

【청구항 2】

제 1항에 있어서, 상기 강슬라브는 Si을 2.0~3.3중량% 함유하고 있는 것임을 특징으로 하는 고규소 무방향성 전기강판 제조방법.

【청구항 3】

제 1항에 있어서, 상기 피복조성물을 구성하는 Fe-Si계 소성분말은 Fe-Si계 복합화합물 형태의 분말인 것을 특징으로 하는 고규소 무방향성 전기강판 제조방법.