Open Mobile Network Infra Hands-on #1 OpenAirInterface RAN

2021年6月8日 井上 義雄 / Inoue Yoshio 原田 将如 / Harada Masayuki

質疑応答について

• <u>OMNI Slack #hands-on-1 チャンネル</u>へ 書き込みをお願いいたします

• 質疑応答のarchiveも兼ねてさせていただきます

本日の流れ

1. OpenAirInterface(OAI) RANとは

- ざっくりLTE説明
- OpenAirInterface RANで出来ること

2. OAI RANのインストール

• 事前準備でスキップしているインストール手順

3. Basic Simulator noS1モード

• 事前準備で動作させたBasic Simulator noS1モードを使ったeNBとUE間の動作説明

4. OAI RANソフトアーキテクチャの概要

• RANソフトアーキテクチャ、インタフェースの概要説明

5. L2 nFAPI Simulator

- L2 nFAPI Simulatorをfree5GC stage1へ接続させる
- L2 nFAPI Simulatorを使ったeNB/UE-CN間の動作説明

ハンズオンでの習得できる?イメージ

- 1. OAIを知っている
- 2. OAIを動かせる
- 3. OAIがどのように動いてるも知っている
- 4. OAIを改造して動かせる

今回のハンズオンは 3.のさわりあたりまでを 想定してコンテンツ化

1. OpenAirInterface(OAI) RANとは

ざっくりLTEの通信

ざっくりLTEのプロトコル

	プロトコル名	<u>。</u>
NAS	None Access Stratum	認証、セキュリティ等の端末機能を取り扱う
S1AP	S1 Application Protocol	ベアラ管理、認証、セキュリティ、ページング等のアイドルモード手順
RRC	Radio Resource Control	UEと無線アクセスネットワーク間の通信に必要なパラメータ設定
GTP-U	GPRS Tunneling Protocol for User Plane	UE毎のユーザデータを転送、ベアラ設定
PDCP	Packet Data Convergence Protocol	IPヘッダの圧縮、暗号化やC-plane完全性保証、順序保持配信、ハンドオーバーでの重複データ除去
RLC	Radio Link Control	データ分割と連結、再送制御、重複データ検出、順序保持配信
MAC	Medium Access Control	論理チャネルの多重化、ハイブリッドARQ再送、DL/ULの無線リソースブロックへのスケジューリング
PHY	Physical Layer	符号化と暗号化、変調と復調、アンテナ及び無線リソースへのデータマッピング

OAI とは

- OpenAirInterface Software Alliance(OSA)が提供する3GPPプロトコルに準拠したRAN(Radio Access Network)、CN(Core Network)系のソフトウェア
- RANは、eNB(無線基地局)とUE(無線端末)の機能を実現するソフトウェア
- ざっくり説明したLTEのプロトコルをオールソフトウェアで実現している
- OAIに関するアクティビティ(OSAメンバやロードマップ、git構成など)は OMNI meetup#1「OpenAirInterafceの紹介」資料をご参照ください https://github.com/omni-jp/meetup/blob/master/meetup%231/20210204_OpenAirInterface%E3%81%AE%E7%B4%B9%E4%BB%8B.pdf
- OAI RANのOverview, Installation, Usageがまとまった資料 (2019年12月のworkshopでの資料のため少し古め) https://www.openairinterface.org/docs/workshop/8-Fall2019Workshop-Beijing/Training/2019-12-03-KALTENBERGER-1.pdf

OAIRANソフトで出来ること

• RANの各種プロトコルに関するシミュレーション(エミュレーション)、OAIの無線基地局への商用端末接続、無線区間でのOAI UE接続

起動方法	説明	
ulsim/dlsim	PHY各種チャネルのソフトウェアを動作させるシミュレータ	
Basic simulator	無線機無しでeNB/UEの全てのプロトコルスタックを起動させ、eNBとUEを接続させるシミュレータ	ハンズオン で実施
L1 simulator	PHY OFDM以下を除く(IF4.5)、eNB/UEの全てのプロトコルスタックを起動させ、eNBとUEを接続させるシミュレータ	
L2 nFAPI simulator	eNB/UEのPHYを除くプロトコルスタックを起動させ、eNBとUEをnFAPIインタフェース(eNB MAC-PHY)により接続させるシミュレータ	ハンズオン で実施
eNB	無線機を接続し、OAI eNBの全プロトコルスタックを起動させる OMNI meetup#2「OAI Master v1.2.2にスマホにつないだ結果」資料参照 https://github.com/omni- jp/meetup/blob/master/meetup%232/20210413 OAI Master v1.2.2%E3%81%AB%E3%82%B9%E3%83%9E%E3%83%9B%E3%81%AB%E3%81%A4%E3%81%AA%E3%81%A0%E7%B5%90%E6%9E%9C.pdf	
UE	無線機を接続し、OAI eNBの全プロトコルスタックを起動させる	
noS1モード	EPC接続なし、S1/GTP-U/NASを除くeNBとUEの接続完了を行うことができるすべてのシミュレータ/無線機接続でnoS1モードが可能	ハンズオン で実施

シミュレータ起動構成

※記載はすべてnoS1モード

ハンズオンで実施 S1有でEPC(free5GC)接続 UE Attachを実施する

L1 simulator

2. OAI RANのインストール

3. Basic simulator noS1モード

4. OAI RANソフトアーキテクチャの概要

RAN-CNの概要説明

OAIのRANアーキテクチャ メッセージ駆動型

- メッセージ駆動型
 - 上位のプロトコルはそれぞれメッセージ駆動型のスレッド内で処理
 - メッセージを受信時に処理を行ってまたメッセージ待ちに入る
 - <u>ITTI</u>と呼ばれるOAIのmiddlewareを使用
 - ITTIはheaderで定義されたタスク毎にITTIのスレッドとキューを作成
 - スレッド間通信、タイマ、外部ソケットの追加・読み取りをサポート
 - PDCP/RLCの一部はリアルタイムから直接コールされる

OAIのRANアーキテクチャ リアルタイム処理

- PHY MACのアーキテクチャ
 - nFAPIベースの関数・構造体でのデータの受け渡し
 - 無線機からの信号でPHYの信号処理がキックされる

5. L2 nFAPI Simulator

エミュレータ② L2 nFAPI Emulator with S1

- L2 nFAPI Emulator (L2-Emu)の構成
 - EPCとの間をS1/NASとGTP-uで疎通
 - eNBのMACとUEのMAC間をnFAPI IFで疎通

nFAPIとは

- CiscoがSmall Cell Forumで提案したMACとPHYの間のIF
- FAPIを複数PHY収容できるように拡張されたIF
- 呼処理に使用するのは主にP5,P7(OAIはP5,P7に対応)

Figure 1-4 FAPI vs nFAPI architecture

エミュレータ② L2-Emu 起動手順

- 起動手順についてはgithub上の手順を参考
- URL:

エミュレータ② L2-Emuの動作確認 1

- C-planeの動作確認
 - 1. nFAPI IFの立ち上がり
 - wiresharkの設定
 - nFAPIメッセージの説明

仕様情報

- 2. RRC messages
 - eNBのコンソールログ
 - UEのコンソールログ

シーケンス

- 3. S1/NAS messages
 - eNBとEPC間のIFをcapture
 - Wiresharkで確認

シーケンス

• 起動手順についてはgithub上の手順を参考

動作確認:nFAPIIFの起動シーケンスについて

• 仕様情報から起動シーケンスを抜粋

Figure 2-10 PHY Initialization procedure

Figure 2-3 PNF Initialization procedure

動作確認:RRC/S1/NASのシーケンス

- OAIのRRC/S1/NASのシーケンスの情報を参照
 - RRCはeNBとUE間の無線アクセスの制御メッセージ
 - S1はeNBとMME間の制御メッセージ
 - NASはMMEとUE間の制御メッセージ

エミュレータ② L2-Emuの動作確認 2

- U-planeデータ確認
 - 1. GTP-uのキャプチャ
 - eNBとEPC間のIFをcapture
 - Wiresharkで確認

- 2. PDCP/RLCのログ
 - ログレベルを変更して起動
 - ログの確認

• 起動手順についてはgithub上の手順を参考

動作まとめ

- Basic SIM noS1
 - EPCなしで、 eNB・UE間はEth上でのBB信号交換によるシミュレータでの動作確認
 - RRC、U-planeの動作確認
- L2-Emu with S1
 - EPCあり、eNB・UE間はnFAPIを使用したEmulatorでの動作確認
 - eNB・UE間のIFキャプチャからnFAPIの動作を確認
 - EPC・eNBのIFキャプチャからS1、GTP-uの動作を確認
- 実機動作についは meetup#2のOAI Master v1.2.2にスマホにつないだ結果 やhassiwebさんブログを参照
 - URL: Open Mobile Network Infra Meetup #2 connpass
 - URL: https://hassiweb-programming.blogspot.com/2020/03/in-home-lte-network-recipe.html

OAIの5G状況について

• 5G SA

実端末との1call及びping疎通を確認

https://drive.google.com/file/d/1QogLk6bvfBCBfG1yFuwUq3Jz9Xlijy1Y/view?usp=sharing develop branchへのマージ実施中

• OAI Workshop 6/24 23:00~27:00で開催予定

OpenAirInterface 2021 Summer Virtual Workshop 24th June 2021 – Call for Participation – OpenAirInterface

MOSAIC5G
 OSAのプロジェクトに移管
 gitlab上のソースコードが公開
 mosaic5g・GitLab (eurecom.fr)