2019 - 20

ISTANBUL OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

MATH216 Mathematics IV - Exercise Sheet 3

N. Course

In the exams, you will typically not be told if an equation is linear, separable, exact, homogeneous, etc – you should be able to determine this yourself. You can use Exercises 15 and 16 to practise.

Exercise 15 (First Order ODEs). Find the general solutions of the following ODEs:

(a)
$$9yy' + 4x = 0$$
.

(b)
$$y' + (x+1)y^3 = 0$$
.

(c)
$$\frac{dx}{dt} = 3t(x+1)$$
.

(d)
$$y' + \csc y = 0$$
.

(e)
$$x' \sin 2t = x \cos 2t$$
.

(f)
$$y' = (y - 1) \cot x$$
.

(g)
$$\frac{dy}{dx} + \left(\frac{2x+1}{x}\right)y = e^{-2x}$$
.

(h)
$$(3x^2 + y^2)dx - 2xydy = 0$$
.

(i)
$$y' = \frac{y}{\pi} + \tan\left(\frac{y}{\pi}\right)$$
.

(j)
$$e^{\frac{x}{y}}(y-x)\frac{dy}{dx} + y(1+e^{\frac{x}{y}}) = 0.$$

(k)
$$(2x+3y)dx + (3x+2y)dy = 0$$

(1)
$$(x^3 + \frac{y}{x})dx + (y^2 + \ln x)dy = 0$$

(m)
$$(e^x \sin y + \tan y) dx + (e^x \cos y + x \sec^2 y) dy = 0.$$

(n)
$$ydx + (2x - ye^y)dy = 0$$
.

(o)
$$xy' + y = y^{-2}$$

(p)
$$y' = y(xy^3 - 1)$$

(q)
$$(1+x^2)y' = 2xy(y^3-1)$$
.

Exercise 16 (Initial Value Problems). Solve the following IVPs:

(a)
$$\begin{cases} y' = x^3 e^{-y} \\ y(2) = 0 \end{cases}$$

(e)
$$\begin{cases} \frac{dy}{dx} = \frac{10}{(x+y)e^{x+y}} - 1\\ y(0) = 0 \end{cases}$$

(i)
$$\begin{cases} (xy+1)ydx + (2y-)dy = 0\\ y(0) = 3 \end{cases}$$
.

(b)
$$\begin{cases} y \frac{dy}{dx} = 4x(y^2 + 1)^{\frac{1}{2}} \\ y(0) = 1 \end{cases}$$

(f)
$$\begin{cases} (4x^2 - 2y^2)y' = 2xy \\ y(3) = -5 \end{cases}$$

$$\begin{cases}
y' - \frac{1}{x}y = y^2 \\
y(1) = 2
\end{cases}$$

(c)
$$\begin{cases} y' = y \cot x \\ y(\frac{\pi}{2}) = 2 \end{cases}$$

(f)
$$\begin{cases} (4x^2 - 2y^2)y' = 2xy \\ y(3) = -5 \end{cases}$$
 (g)
$$\begin{cases} (x - y)dx + (3x + y)dy = 0 \\ y(3) = -2 \end{cases}$$

(d)
$$\begin{cases} y' + 3(y - 1) = 2x \\ y(0) = 1 \end{cases}$$

(h)
$$\begin{cases} \frac{dy}{dx} = \frac{x^3 - xy^2}{x^2y} \\ y(1) = 1 \end{cases}$$

Exercise 17 (Homogeneous Second Order Linear ODEs with constant coefficients). Solve the following IVPs:

(a)
$$\begin{cases} y'' - 3y' + 2y = \\ y(0) = 1 \end{cases}$$

(b)
$$\begin{cases} y'' + 4y' + 3\\ y(0) = 2\\ y'(0) = -1 \end{cases}$$

(c)
$$\begin{cases} y'' + 3y' = \\ y(0) = -2 \\ y'(0) = 3 \end{cases}$$

(a)
$$\begin{cases} y'' - 3y' + 2y = 0 \\ y(0) = 1 \end{cases}$$
 (b)
$$\begin{cases} y'' + 4y' + 3y = 0 \\ y(0) = 2 \\ y'(0) = -1 \end{cases}$$
 (c)
$$\begin{cases} y'' + 3y' = 0 \\ y(0) = -2 \\ y'(0) = 3 \end{cases}$$
 (d)
$$\begin{cases} y'' + 5y' + 3y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Exercise 18 (Fundamental Sets of Solutions). In each of the following: Verify that y_1 and y_2 are solutions of the given ODE; calculate the Wronskian of y_1 and y_2 ; and determine if they form a fundamental set of solutions.

(a)
$$t^2y'' - 2y = 0$$
; $y_1(t) = t^2$, $y_2(t) = t^{-1}$

(b)
$$y'' + 4y = 0$$
; $y_1(t) = \cos 2t$, $y_2(t) = \sin 2t$

(c)
$$y'' - 2y + y = 0$$
; $y_1(t) = e^t$, $y_2(t) = te^t$

(d)
$$(1 - x \cot x)y'' - xy' + y = 0$$
 $(0 < x < \pi)$; $y_1(x) = x$, $y_2(x) = \sin x$