The SIunits package*

support for the International System of Units

Marcel Heldoorn[†] SIunits@webschool.nl

File date 2002/08/01 — Printed August 1, 2002

Abstract

This article describes the SIunits package that provides support for the Système International d'Unités (SI).

The Système International d'Unités (SI), the modern form of the metric system, is the most widely used system of units and measures around the world. But despite this there is widespread misuse of the system with incorrect names and symbols used as a matter a course - even by well educated and trained people who should know better. For example how often do we see: mHz, Mhz or mhz written when referring to computer clock rates? The correct form is actually MHz. Note that the capitalisation does matter.

Hence, a clear system for the use of units is needed, satisfying the next principles:

- the system should consist of measuring units based on unvariable quantities in nature;
- 2. all units other than the base units should be derived from these base units; and
- 3. multiples and submultiples of the units should be decimal.

The name Système International d'Unités (International System of Units) with the international abbreviation SI was adopted by the Conférence Générale des Poids et Mesures (CGPM) in 1960. It is a coherent system based on seven base units (CGPM 1960 and 1971).

The SIunits package can be used to standardise the use of units in your writings. Most macros are easily adaptable to personal preferences. However, you are welcome (and strongly invited¹) to suggest any improvements.

Enjoy the SIunits package!

marcel h.

^{*}This file has version number v1.33, last revised 2002/08/01

 $^{^\}dagger \text{Mail: Kennedylaan 24, NL-3844 BC Harderwijk, The Netherlands}$

 $^{^1\}mathrm{There}$ is an enormous LATEX Knowledge Base out there.

What's new?

New in version v1.33

- 1. Adaptive spacing of \degree, \paminute, \arcminute, \pasecond and \arcsecond: no space between quantity and unit.
- 2. Solved bug: extra space in ready to use ready-to-use units when using texts-tyle option. Thanks to Svend Tollak Munkejord.
- 3. Option italian added to solve interference problem with the babel package and language italian: Babel defines \unit. When using the option italian, use \unita instead. Thanks to Lorenzo Cappelletti and Luca Rossato.

New in version 1.x

- 1. binary.sty style with binary prefixes and units added (see table 6);
- 2. binary.sty can be loaded by using the binary package option (see page 24);
- 3. unit **\one** added: the derived unit for a derived quantity of dimension one is also the number one;
- 4. In the pstricks package the command \gray is defined. This will cause error messages when the pstricks package is used in combination with the SIunits package. To prevent errors one can choose two different options:
 - **pstricks** This option redefines the pstricks command \gray to get the desired SIunits definition of the command.

Note: When using this option, the pstricks command \gray is redefined.

Gray This option defines a new command \Gray that can be used instead of the SIunits command \gray.

Note: When using this option, \gray is defined in the pstricks package.

- 5. When using the option textstyle units are printed in the typeface of the enclosing text, automatically.
- 6. the. (period) was made active in the second argument of the \unit macro: it will act like a unit skip (\usk), for example: use \unit{1}{\newton.\metre} instead of \unit{1}{\newton\usk\metre}.
- 7. \katal added: "The 21st Conférence Générale des Poids et Mesures decides to adopt the special name katal, symbol kat, for the SI unit mole per second to express catalytic activity, especially in the fields of medicine and biochemistry, ..." (21th CGPM (1999), Resolution 12).
- 8. The ready-to-use units used \square instead of \squaren when using the option squaren. Fixed!
- 9. Fixed index and change history generation error.
- 10. Documentation update: implementation of SI-brochure Supplement 2000.

- 11. Documentation updated/corrected: table heads.
- 12. E-mail changed: SIunits@webschool.nl
- 13. Solved bug: Defining units using **\addunit** in combination with the cdot and textstyle options. Thanks to Michael Müller.

Contents

1	Intr	oduction 7
	1.1	Historical notes
	1.2	The classes of SI units
	1.3	The SI prefixes
	1.4	Acronyms
	1.5	Some useful definitions
2	SΙι	mits 9
	2.1	SI base units
		2.1.1 Definitions
		2.1.2 Symbols
	2.2	SI derived units
		2.2.1 Units expressed in terms of base units
		2.2.2 SI derived units with special names and symbols 13
		2.2.3 Use of SI derived units with special names and symbols 13
	2.3	Dimension of a quantity
		2.3.1 Units for dimensionless quantities, quantities of dimension
		one
	2.4	Rules and style conventions for writing and using SI unit symbols . 16
		2.4.1 Space between numerical value and unit symbol 17
3	SLE	Prefixes 17
Ū	3.1	Decimal multiples and submultiples of SI units
	3.2	Rules for using SI prefixes
		3.2.1 The kilogram
		3.2.2 The 'degree Celsius'
4	Pre	fixes for binary multiples 19
	4.1	Official publication
	4.2	The binary.sty style for binary prefixes and (non-SI) units 20
5	Uni	ts outside the SI
	5.1	Units accepted for use with the SI
	5.2	Units temporarily accepted for use with the SI
6	Las	t notes about correct usage of the SI 20
7	Hov	v to use the package 23
		Loading
	7.2	The package options
		7.2.1 Unit spacing options
		7.2.2 Quantity-unit spacing options
		7.2.3 Options to prevent conflicts
		7.2.4 textstyle
		7.2.5 miscellaneous
	7.3	How to compose units in your text
		7.3.1 Division or multiplication of SI units
		7.3.2 Raising SI units to a power
	74	Quantities and units 28

		7.4.1 Ready-to-use units	 			28
8	How	w the package works				30
	8.1	Compatibility	 			30
	8.2	Known problems and limitations	 			31
	8.3	Sending a bug report				31
9	In c	conclusion				32
•	9.1	Acknowledgements	 			32
	9.2	References				32
	9.3	Bye				33
10	ml	- Maria Cada				9.4
10		e Magic Code				34 34
	10.1	Hello world				
		10.1.1 Declare globals				34
		10.1.2 Font handling				34
		10.1.3 The text sensitive μ				34
	10.0	10.1.4 The upright (roman) μ				35
	10.2	2 Runtime options to use with the \SIunits command				35
		10.2.1 thickspace				35
		10.2.2 mediumspace				35
		10.2.3 thinspace				35
		10.2.4 cdot				35
		10.2.5 thickqspace				36
		10.2.6 mediumqspace				36
	10.0	10.2.7 thingspace				36
	-0.0	3 text				36
		International needs				36
		5 Personal needs				37
	10.0	Spacing units				37
	10.7	10.6.1 (Re)define the spacing commands				38
		7 Spacing between numerical quantities and unit				38
		8 Power(full) macros				38
	10.9	9 SI decimal prefixes				40
		10.9.1 Symbols				40
	10.10	10.9.2 Decimal form				41
		10SI base units				42
	10.1.	11SI derived units				42
		10.11.1 The derivedinbase mode				45
	10.10	10.11.2 The derived mode				46
		12Units that are used with the SI				47
		13SI units with compound names				50
		14Various ready-to-use units				50
	10.15	15 Option handling				55
		10.15.1 cdot option				55
		10.15.2 thickspace option				55
		10.15.3 mediumspace option				55
		10.15.4 thinspace option				55
		$10.15.5\mathrm{thickqspace}$ option	 		•	55
		10.15.6 mediumaspace option				56

10.16compatibility options		$10.15.7\mathrm{thinqspace}$ option $10.15.8\mathrm{textstyle}$ option													
10.18Unknown options		10.16compatibility options.													
•		10.17 Miscellaneous options													
10.19The SIunits.cfg file		10.18Unknown options													
		10.19The SIunits.cfg file													
11 The binary.sty style for binary prefixes and (non-SI) units	11	G												•	•

1 Introduction

1.1 Historical notes

In 1948 the 9th General Conference on Weights and Measures (CGPM²), by its Resolution 6, instructed the International Committee for Weights and Measures (CIPM²):

- 'to study the establishment of a complete set of rules for units of measurement';
- 'to find out for this purpose, by official inquiry, the opinion prevailing in scientific, technical, and educational circles in all countries'; and
- 'to make recommendations on the establishment of a practical system of units of measurement suitable for adoption by all signatories to the Meter Convention.'

The same General Conference also laid down, by its Resolution 7, general principles for unit symbols and also gave a list of units with special names.

The 10th CGPM (1954), by its Resolution 6, and the 14th CGPM (1971), by its Resolution 3, adopted as base units of this 'practical system of units,' the units of the following seven quantities: length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity.

The 11th CGPM (1960), by its Resolution 12, adopted the name Système International d'Unités (International System of Units), with the international abbreviation SI, for this practical system of units of measurement, and laid down rules for the prefixes, the derived and supplementary units, and other matters, thus establishing a comprehensive specification for units of measurement.

1.2 The classes of SI units

The General Conference decided to base the International System on a choice of seven well-defined units which by convention are regarded as dimensionally independent: the metre, the kilogram, the second, the ampere, the kelvin, the mole, and the candela. These units are called *base units*.

The second class of SI units contain *derived units*, i.e., units that can be formed by combining base units according to the algebraic relations linking the corresponding quantities. The names and symbols of some units thus formed in terms of base units can be replaced by special names and symbols which can themselves be used to form expressions and symbols of other derived units (see section 2.2, p. 12).

The 11th CGPM (1960) admitted a third class of SI units, called *supplementary* units and containing the SI units of plane and solid angle.

The 20th CGPM (1995) decided to eliminate the class of supplementary units as a separate class in the SI. Thus the SI now consists of only two classes of units: base units and derived units, with the radian and the steradian, which are the two supplementary units, subsumed into the class of derived SI units.

²See section 1.4 for acronyms

1.3 The SI prefixes

The General Conference has adopted a series of prefixes to be used in forming the decimal multiples and submultiples of SI units. Following CIPM Recommendation 1 (1969), the set of prefixes is designated by the name SI prefixes.

The multiples and submultiples of SI units, which are formed by using the SI prefixes, should be designated by their complete name, *multiples and submultiples of SI units*, in order to make a distinction between them and the coherent set of SI units proper.

1.4 Acronyms

The SI was established in 1960 by the CGPM. The CGPM is an intergovernmental treaty organisation created by a diplomatic treaty called the Meter Convention (*Convention du Mètre*, often called the Treaty of the Meter in the United States). The Meter Convention was signed in Paris in 1875 by representatives of seventeen nations, including the United States. There are now forty-eight Member States, including all the major industrialised countries. The Convention, modified slightly in 1921, remains the basis of all international agreement on units of measurement.

The Meter Convention also created the International Bureau of Weights and Measures (BIPM, Bureau International des Poids et Mesures) and the International Committee for Weights and Measures (CIPM, Comité International des Poids et Mesures). The BIPM, which is located in Sèvres, a suburb of Paris, France, and which has the task of ensuring worldwide unification of physical measurements, operates under the exclusive supervision of the CIPM, which itself comes under the authority of the CGPM.

- **CGPM** General Conference on Weights and Measures (*Conférence Générale des Poids et Mesures*). The CGPM is the primary intergovernmental treaty organisation responsible for the SI, representing nearly 50 countries. It has the responsibility of ensuring that the SI is widely disseminated and modifying it as necessary so that it reflects the latest advances in science and technology.
- CIPM International Committee for Weights and Measures (Comité International des Poids et Mesures). The CIPM comes under the authority of the CGPM. It suggests modifications to the SI to the CGPM for formal adoption. The CIPM may also on its own authority pass clarifying resolutions and recommendations regarding the SI.
- BIPM International Bureau of Weights and Measures (*Bureau International des Poids et Mesures*). The BIPM, located outside Paris, has the task of ensuring worldwide unification of physical measurements. It is the "international" metrology institute, and operates under the exclusive supervision of the CIPM.

1.5 Some useful definitions

quantity in the general sense A quantity in the general sense is a property ascribed to phenomena, bodies, or substances that can be quantified for, or assigned to, a particular phenomenon, body, or substance. Examples are mass and electric charge.

quantity in the particular sense A quantity in the particular sense is a quantifiable or assignable property ascribed to a particular phenomenon, body, or substance. Examples are the mass of the moon and the electric charge of the proton.

physical quantity A physical quantity is a quantity that can be used in the mathematical equations of science and technology.

unit A unit is a particular physical quantity, defined and adopted by convention, with which other particular quantities of the same kind are compared to express their value.

The value of a physical quantity is the quantitative expression of a particular physical quantity as the product of a number and a unit, the number being its numerical value. Thus, the numerical value of a particular physical quantity depends on the unit in which it is expressed.

More formally, the value of quantity A can be written as $A = \{A\}[A]$, where $\{A\}$ is the numerical value of A when A is expressed in the unit [A]. The numerical value can therefore be written as $\{A\} = A/[A]$, which is a convenient form for use in figures and tables. Thus to eliminate the possibility of misunderstanding, an axis of a graph or the heading of a column of a table can be labelled 't/°C' instead of 't(°C)' or 'Temperature (°C)'. Similarly, another example: 'E/(V/m)' instead of 'E(V/m)' or 'Electric field strength (V/m)'.

For example: the value of the height h_W of the Washington Monument is $h_W = 169 \text{ m} = 555 \text{ ft}^3$. Here h_W is the physical quantity, its value expressed in the unit metre, unit symbol m, is 169 m, and its numerical value when expressed in metres is 169.

2 SI units

2.1 SI base units

2.1.1 Definitions

The SI is founded on seven SI base units for seven base quantities assumed to be mutually independent. The primary definitions of the SI base units are in French. Their current definitions, along with an English translation, are given below:

metre; $m\`{e}tre$

Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde. (17th CGPM (1983), Resolution 1).

The metre is the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second.

³foot (ft) is not part of the SI units

kilogram; kilogramme

Le kilogramme est l'unité de masse; il est égal à la masse du prototype international du kilogramme.

(1st CGPM (1889) and 3rd CGPM (1901)).

The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.

Note: This international prototype is made of platinum-iridium and is kept at the International Bureau of Weights and Measures, Sèvres, France.

second; seconde

La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de cesium 133.

(13th CGPM (1967), Resolution 1).

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom.

Note: This definition refers to a caesium atom at rest at a temperature of 0 K.

ampere; ampère

L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable, et placés à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2×10^{-7} newton par mètre de longueur.

(9th CGPM (1948), Resolutions 2 and 7).

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length.

kelvin; kelvin

Le kelvin, unité de température thermodynamique, est la fraction 1/273.16 de la température thermodynamique du point triple de l'eau. (13th CGPM (1967), Resolution 4).

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.

Note: The 13th CGPM (1967, Resolution 3) also decided that the unit kelvin and its symbol K should be used to express both thermodynamic temperature and an interval or a difference of temperature, instead of 'degree Kelvin' with symbol °K.

In addition to the thermodynamic temperature (symbol T) there is also the Celsius (symbol t) defined by the equation $t = T - T_0$ where $T_0 = 273.15$ K. Celsius temperature is expressed in degree Celsius; degré Celsius (symbol °C).

The unit 'degree Celsius' is equal to the unit 'kelvin'; in this case, 'degree Celsius' is a special name used in place of 'kelvin'. A temperature interval or difference of Celsius temperature can, however, be expressed in kelvins as well as in degrees Celsius.

mole; mole

- 1. La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme de carbone 12.
- 2. Lorsqu'on emploie la mole, les entités élémentaires doivent être spécifiées et peuvent être des atomes, des molécules, des ions, des électrons, d'autres particules ou des groupements spécifiés de telles particules.

 (14th CGPM (1971), Resolution 3).
- 1. The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12.
- 2. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles or specified groups of such particle.

Note: In this definition, it is understood that the carbon 12 atoms are unbound, at rest and in their ground state.

candela; candela

La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet une radiation monochromatique de fréquence 540×10^{12} hertz et dont l'intensité énergétique dans cette direction est 1/683 watt par stéradian. (16th CGPM (1979), Resolution 3).

The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of a frequency 540×10^{12} hertz and has a radiant intensity in that direction of 1/683 watt per steradian.

Table 1: — SI bas	e units —	
Quantity	\mathbf{Name}	Symbol
length	metre	m
mass	kilogram	$_{ m kg}$
time	second	\mathbf{s}
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

Table 2: — Examples of SI derived units —

	5 Of DI delived units	
Derived quantity	Name	\mathbf{Symbol}
area	square metre	m^2
volume	cubic metre	m^3
speed, velocity	metre per second	$\mathrm{m/s}$
acceleration	metre per second squared	$\mathrm{m/s^2}$
wave number	reciprocal metre	m^{-1}
mass density	kilogram per cubic metre	${ m kg/m^3}$
specific volume	cubic metre per kilogram	m^3/kg
current density	ampere per square metre	$\mathrm{A/m^2}$
magnetic field strength	ampere per metre	A/m
amount-of-substance concentration	mole per cubic metre	$\mathrm{mol/m^3}$
luminance	candela per square metre	${\rm cd/m^2}$
mass fraction	kilogram per kilogram	kg/kg^a

 $^{^{}a}$ the symbol 1 for quantities of dimension 1 such as mass fraction is generally omitted.

2.1.2 Symbols

The base units of the International System are collected in table 1 with their names and their symbols (10th CGPM (1954), Resolution 6; 11th CGPM (1960), Resolution 12; 13th CGPM (1967), Resolution 3; 14th CGPM (1971), Resolution 3).

2.2 SI derived units

Derived units are units which may be expressed in terms of base units by means of the mathematical symbols of multiplication and division. Certain derived units have been given special names and symbols, and these special names and symbols may themselves be used in combination with those for base and other derived units to express the units of other quantities.

2.2.1 Units expressed in terms of base units

Table 2 lists some examples of derived units expressed directly in terms of base units. The derived units are obtained by multiplication and division of base units.

2.2.2 SI derived units with special names and symbols

For ease of understanding and convenience, 21 SI derived units have been given special names and symbols, as shown in table 3. They may themselves be used to express other derived units.

2.2.3 Use of SI derived units with special names and symbols

Examples of SI derived units that can be expressed with the aid of SI derived units having special names and symbols (including the radian and steradian) are given in table 3. The advantages of using the special names and symbols of SI derived units are apparent in table 4. Consider, for example, the quantity molar entropy: the unit J/mol K is obviously more easily understood than its SI base-unit equivalent, m² kg s⁻² K⁻¹mol⁻¹. Nevertheless, it should always be recognised that the special names and symbols exist for convenience. Tables 3 & 4 also show that the values of several different quantities are expressed in the same SI unit. For example, the joule per kelvin (J/K) is the SI unit for heat capacity as well as for entropy. Thus the name of the unit is not sufficient to define the quantity measured. A derived unit can often be expressed in several different ways through the use of base units and derived units with special names. In practice, with certain quantities, preference is given to using certain units with special names, or combinations of units, to facilitate the distinction between quantities whose values have identical expressions in terms of SI base units. For example, the SI unit of frequency is specified as the hertz (Hz) rather than the reciprocal second (s^{-1}) , and the SI unit of moment of force is specified as the newton metre (N m) rather than the joule (J).

2.3 Dimension of a quantity

Any SI derived quantity Q can be expressed in terms of the SI base quantities length (l), mass (m), time (t), electric current (I), thermodynamic temperature (T), amount of substance (n), and luminous intensity $(I_{\rm v})$ by an equation of the form

$$Q = l^{\alpha} m^{\beta} t^{\gamma} I^{\delta} T^{\varepsilon} n^{\zeta} I_{\mathbf{v}}^{\eta} \sum_{k=1}^{K} a_{k},$$

where the exponents α , β , γ , ... are numbers and the factors a_k are also numbers. The dimension of Q is defined to be

$$\dim Q = \mathsf{L}^{\alpha}\mathsf{M}^{\beta}\mathsf{T}^{\gamma}\mathsf{I}^{\delta}\Theta^{\varepsilon}\mathsf{N}^{\zeta}\mathsf{J}^{\eta}.$$

where L, M, T, I, Θ , N and J are the dimensions of the SI base quantities length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity, respectively. The exponents α , β , γ , ... are called "dimensional exponents". The SI derived unit of Q is \mathbf{m}^{α} kg $^{\beta}$ s $^{\gamma}$ A $^{\delta}$ K $^{\varepsilon}$ mol $^{\zeta}$ cd $^{\eta}$, which is obtained by replacing the dimensions of the SI base quantities in the dimension of Q with the symbols for the corresponding base units.

For example: Consider a nonrelativistic particle of mass m in uniform motion which travels a distance l in a time t. Its velocity is v = l/t and its kinetic energy is $E_{\rm k} = mv^2/2 = l^2mt^{-2}/2$. The dimension of $E_{\rm k}$ is dim $E_{\rm k} = \mathsf{L}^2\mathsf{MT}^{-2}$ and the dimensional exponents are 2, 1, and -2.

Table 3: — SI derived units with special names and symbols —

inits_
1

 $[^]a$ The radian and steradian may be used advantageously in expressions for derived units to distinguish between quantities of a different nature but of the same dimension; some examples are given in table 4.

 $[^]b \mathrm{In}$ practice, the symbols rad and sr are used where appropriate, but the derived unit '1' is generally omitted.

 $^{^{}c}$ In photometry, the unit name steradian and the unit symbol sr are usually retained in expressions for derived units.

 $[^]d$ Other quantities expressed in sieverts are ambient dose equivalent, directional dose equivalent, personal dose equivalent, and organ equivalent dose.

^eThe 21st Conférence Générale des Poids et Mesures decides to adopt the special name katal, symbol kat, for the SI unit mole per second to express catalytic activity, especially in the fields of medicine and biochemistry, ... (21th CGPM (1999), Resolution 12).

Table 4: — Examples of SI derived units expressed with the aid of SI derived units having special names and symbols —

Derived quantity	Name	Symbol
angular velocity	radian per second	rad/s
angular acceleration	radian per second squared	$\rm rad/s^2$
dynamic viscosity	pascal second	Pa s
moment of force	newton metre	N m
surface tension	newton per metre	N/m
heat flux density,		
irradiance	watt per square metre	$ m W/m^2$
radiant intensity	watt per steradian	W/sr
radiance	watt per square metre steradian	$W/m^2 sr$
heat capacity,		
entropy	joule per kelvin	$_{ m J/K}$
specific heat capacity,		
specific entropy	joule per kilogram kelvin	J/kg K
specific energy	joule per kilogram	J/kg
thermal conductivity	watt per metre kelvin	$\mathrm{W/m~K}$
energy density	joule per cubic metre	$ m J/m^3$
electric field strength	volt per metre	V/m
electric charge density	coulomb per cubic metre	C/m^3
electric flux density	coulomb per square metre	C/m^2
permittivity	farad per metre	F/m
permeability	henry per metre	$\mathrm{H/m}$
molar energy	joule per mole	$_{ m J/mol}$
molar entropy, molar		
heat capacity	joule per mole kelvin	J/mol K
exposure (x and γ rays)	coulomb per kilogram	C/kg
absorbed dose rate	gray per second	$\mathrm{Gy/s}$
catalytic (activity)		
concentration	katal per cubic metre	${ m kat/m^3}$

The SI derived unit of E_k is then m² kg s⁻², which is given the special name "joule" and special symbol J.

2.3.1 Units for dimensionless quantities, quantities of dimension one

A derived quantity of dimension one, which is sometimes called a "dimensionless quantity", is one for which all of the dimensional exponents are zero: $\dim Q = 1$. It therefore follows that the derived unit for such a quantity is also the number one, symbol 1, which is sometimes called a "dimensionless derived unit". Thus the SI unit of all quantities having the dimensional product one is the number one. Examples of such quantities are refractive index, relative permeability, and friction factor. All of these quantities are described as being dimensionless, or of dimension one, and have the coherent SI unit 1. Their values are simply expressed as numbers and, in general, the unit 1 is not explicitly shown.

For example: The mass fraction $w_{\rm B}$ of a substance B in a mixture is given by $w_{\rm B} = m_{\rm B}/m$, where $w_{\rm B}$ is the mass of B and m is the mass of the mixture. The dimension of $w_{\rm B}$ is dim $w_{\rm B} = {\sf M}^1 {\sf M}^{-1} = 1$; all of the dimensional exponents of $w_{\rm B}$ are zero, and its derived unit is ${\sf kg}^1 {\sf kg}^{-1} = 1$ also.

In a few cases, however, a special name is given to this unit, mainly to avoid confusion between some compound derived units. This is the case for the radian, steradian and neper.

2.4 Rules and style conventions for writing and using SI unit symbols

The general principles concerning writing the unit symbols were adopted by the 9th CPGM (1948), by its Resolution 7:

- 1. Roman (upright) type, in general lower case⁴, is used for the unit symbols. If, however, the name of the unit is derived from a proper name, the first letter of the symbol is in upper case.
- 2. Unit symbols are unaltered in the plural.
- 3. Unit symbols are not followed by a period 5 .

To ensure uniformity in the use of the SI unit symbols, ISO International Standards give certain recommendations. Following these recommendations:

a) The product of two or more units are indicated by means of either a half-high (that is, centred) dot or a space⁶. The half-high dot is preferred, because it is less likely to lead to confusion,

for example:

 $N \cdot m$ or N m.

 $^{^4{\}rm The}$ recommended symbol for the litre ('liter') in the United States is L.

⁵Unless at the end of a sentence.

 $^{^6}$ ISO suggests that if a space is used to indicate units formed by multiplication, the space may be omitted if it does not cause confusion. This possibility is reflected in the common practice of using the symbol kWh rather than kW · h or kW h for the kilowatt hour.

b) A solidus (oblique stroke,/), a horizontal line, or negative exponents may be used to express a derived unit formed from two others by division,

```
for example:

m/s, \frac{m}{s}, or m s^{-1}
```

c) The solidus must not be repeated on the same line unless ambiguity is avoided by parentheses. In complicated cases negative exponents or parentheses should be used,

```
for example:

m/s^2 or m s^{-2} but not: m/s/s

m kg/(s^3 A) or m kg s^{-3} A^{-1} but not: m kg/s^3/A
```

2.4.1 Space between numerical value and unit symbol

In the expression for the value of a quantity, the unit symbol is placed after the numerical value and a space is left between the numerical value and the unit symbol. The only exceptions to this rule are for the unit symbols for degree, minute, and second for plane angle: °, ', and ", respectively (see Table 8), in which case no space is left between the numerical value and the unit symbol.

```
for example:

\alpha = 30^{\circ}22'8'' Note: \alpha is a quantity symbol for plane angle.
```

This rule means that the symbol °C for the degree Celsius is preceded by a space when one expresses the values of Celsius temperatures.

```
for example:

t = 30.2 °C but not t = 30.2 °C
```

3 SI Prefixes

3.1 Decimal multiples and submultiples of SI units

The 11th CGPM (1960), by its Resolution 12, adopted a first series of prefixes and symbols of prefixes to form the names and symbols of the decimal multiples and submultiples of SI units. Prefixes for 10^{-15} and 10^{-18} were added by the 12th CGPM (1964), by its Resolution 8, those for 10^{15} and 10^{18} by the CGPM (1975), by its Resolution 10, and those for 10^{21} , 10^{24} , 10^{-21} , and 10^{-24} were proposed by the CIPM for approval by the 19th CGPM (1991), and adopted. The prefixes are as shown in tabel 5.

3.2 Rules for using SI prefixes

In accord with the general principles adopted by the ISO⁷, the CIPM recommends that the following rules for using the SI prefixes be observed:

 $^{^7\}mathrm{ISO}$ 31, in 'Units of measurement,' ISO Standards Handbook 2, 2nd Edition, ISO, Geneva, 1982, pp. 17–238

Table 5: — SI prefixes —

Name	Symbol	Factor	Name	Symbol	Factor
yocto	У	$10^{-24} = \left(10^3\right)^{-8}$	yotta	Y	$10^{24} = (10^3)^8$
zepto	\mathbf{Z}	$10^{-21} = \left(10^3\right)^{-7}$	zetta	Z	$10^{21} = (10^3)^7$
atto	a	$10^{-18} = (10^3)^{-6}$	exa	E	$10^{18} = (10^3)^6$
femto	f	$10^{-15} = \left(10^3\right)^{-5}$	peta	P	$10^{15} = (10^3)^5$
pico	p	$10^{-12} = \left(10^3\right)^{-4}$	tera	T	$10^{12} = (10^3)^4$
nano	n	$10^{-9} = (10^3)^{-3}$	giga	G	$10^9 = (10^3)^3$
micro	μ	$10^{-6} = (10^3)^{-2}$	mega	\mathbf{M}	$10^6 = (10^3)^2$
milli	m	$10^{-3} = (10^3)^{-1}$	kilo	k	$10^3 = (10^3)^1$
centi	\mathbf{c}	10^{-2}	hecto	h	10^{2}
deci	d	10^{-1}	$deca^a$	da	10^{1}

 $[^]a$ In the USA, the spelling 'deka' is extensively used.

- 1. Prefix symbols are printed in roman (upright) type without spacing between the prefix symbol and the unit symbol.
- 2. The grouping formed by the prefix symbol attached to the unit symbol constitutes a new inseparable symbol (of a multiple of the unit concerned) which can be raised to a positive or negative power and which can be combined with other unit symbols to form compound unit symbols,

for example:

$$1 \text{ cm}^3 = (10^{-2} \text{ m})^3 = 10^{-6} \text{ m}^3$$

 $1 \text{ cm}^{-1} = (10^{-2} \text{ m})^{-1} = 10^2 \text{ m}^{-1}$
 $1 \text{ V/cm} = (1 \text{ V})/(10^{-2} \text{ m}) = 10^2 \text{ V/m}$

3. Compound prefixes, i. e., prefixes formed by juxtaposition of two or more SI prefixes are not to be used,

for example:

1 pg (one picogram), but not 1 mng (one millinanogram)

4. A prefixes should never be used alone,

for example: $10^6/\mathrm{m}^3$, but not $\mathrm{M/m}^3$

3.2.1 The kilogram

It is important to note that the kilogram is the only SI unit with a prefix as part of its name and symbol. Because multiple prefixes may not be used, in the case of the kilogram the prefix names are used with the unit name 'gram' and the prefix symbols are used with the unit symbol g, for example:

 $10^{-6} \text{ kg} = 1 \text{ mg}$ (one milligram), but not $10^{-6} \text{ kg} = 1 \text{ }\mu\text{kg}$ (one microkilogram).

Table 6: — Prefixes for binary multiples —

Factor	Name	Symbol	Origin		Deriva	tion
2^{10}	kibi	Ki	kilobinary:	$(2^{10})^1$	kilo:	$(10^3)^1$
2^{20}	mebi	${ m Mi}$	megabinary:	$(2^{10})^2$	mega:	$(10^3)^2$
2^{30}	gibi	Gi	gigabinary:	$(2^{10})^3$	giga:	$(10^3)^3$
2^{40}	tebi	Ti	terabinary:	$(2^{10})^4$	tera:	$(10^3)^4$
2^{50}	pebi	Pi	petabinary:	$(2^{10})^5$	peta:	$(10^3)^5$
2^{60}	exbi	Ei	exabinary:	$(2^{10})^6$	exa:	$(10^3)^6$

Table 7: — Examples and comparisons with SI prefixes —

one kibibit	1 Kibit	=	2^{10} bit	=	1 024 bit
one kilobit	1 kbit	=	10^3 bit	=	1000 bit
one mebibyte	1 MiB	=	$2^{20} \; { m B}$	=	$1048576\;\mathrm{B}$
one megabyte	$1 \mathrm{MB}$		$10^6 \; \mathrm{B}$	=	$1000000\;\mathrm{B}$
one gibibyte	1 GiB	=	$2^{30} \; { m B}$	=	$1073741824\;\mathrm{B}$
one gigabyte	1 GB	=	$10^9 \; \mathrm{B}$	=	$1000000000~\mathrm{B}$

3.2.2 The 'degree Celsius'

Except for the kilogram, any SI prefix may be used with any SI unit, including the 'degree Celsius' and its symbol $^{\circ}$ C, for example: 10^{-3} $^{\circ}$ C = 1 m $^{\circ}$ C (one millidegree Celsius), or 10^{6} $^{\circ}$ C = 1 M $^{\circ}$ C.

4 Prefixes for binary multiples

In December 1998 the International Electrotechnical Commission (IEC), the leading international organization for worldwide standardization in electrotechnology, approved as an IEC International Standard names and symbols for prefixes for binary multiples for use in the fields of data processing and data transmission. The prefixes are as shown in table 6. It is suggested that in English, the first syllable of the name of the binary-multiple prefix should be pronounced in the same way as the first syllable of the name of the corresponding SI prefix, and that the second syllable should be pronounced as "bee".

Note

It is important to recognize that the new prefixes for binary multiples are *not* part of the International System of Units (SI), the modern metric system. However, for ease of understanding and recall, they were derived from the SI prefixes for positive powers of ten. As can be seen from the above table, the name of each new prefix is derived from the name of the corresponding SI prefix by retaining the first two letters of the name of the SI prefix and adding the letters "bi", which recalls the word "binary". Similarly, the symbol of each new prefix is derived from the symbol of the corresponding SI prefix by adding the letter "i", which again recalls the word "binary". (For consistency with the other prefixes for binary multiples, the symbol Ki is used for 2¹⁰ rather than ki.)

4.1 Official publication

These prefixes for binary multiples, which were developed by IEC Technical Committee (TC) 25, Quantities and units, and their letter symbols, with the strong support of the International Committee for Weights and Measures (CIPM) and the Institute of Electrical and Electronics Engineers (IEEE), were adopted by the IEC as Amendment 2 to IEC International Standard IEC 60027-2: Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics. The full content of Amendment 2, which has a publication date of 1999-01, is reflected in the tables above and the suggestion regarding pronunciation.

4.2 The binary style for binary prefixes and (non-SI) units

The binary.sty style for binary prefixes and (non-SI) units can be loaded by using the option binary, as in \usepackage[binary]{SIunits}. This unit should always be used in conjunction with the SIunits package.

5 Units outside the SI

Units that are outside the SI may be divided into three categories:

- 1. those units that are accepted for use with the SI;
- 2. those units that are temporarily accepted for use with the SI; and
- those units that are not accepted for use with the SI and thus must strictly be avoided.

5.1 Units accepted for use with the SI

The CIPM (1969) recognised that users of SI will also wish to employ with it certain units not part of it, but which are important and are widely used. These units are given in table 8. The combination of units of this table with SI units to form compound units should be restricted to special cases in order not to lose the advantage of the coherence of SI units.

It is likewise necessary to recognise, outside the International System, some other units that are useful in specialised fields, because their values expressed in SI units must be obtained by experiment, and are therefore not known exactly (table 9).

5.2 Units temporarily accepted for use with the SI

Because of existing practice in certain fields or countries, in 1978 the CIPM considered that it was permissible for the units given in table 10 to continue to be used with the SI until the CIPM considers that their use is no longer necessary. However, these units must not be introduced where they are not presently used.

6 Last notes about correct usage of the SI

The following points underline some of the important aspects about using SI units and their symbols, and also mention some of the common errors that are made.

Table 8: — Units accepted for use with the SI —

CHIEB GOOG	opted for doe with the Si
Symbol	Value in SI units
min	$1 \min = 60 s$
h	1 h = 60 min = 3600 s
d	1 d = 24 h = 86400 s
0	$1^{\circ} = (\pi/180) \text{ rad}$
,	$1' = (1/60)^{\circ} = (\pi/10800) \text{ rad}$
//	$1'' = (1/60)' = (\pi/648000)$ rad
l, L^b	$1 l = 1 L = 1 dm^3 = 10^{-3} m^3$
t	$1 t = 10^3 kg$
Np	1 Np = 1
В	$1 \text{ B} = (1/2) \ln 10 \text{ (Np)}^g$
	$\begin{array}{c} \textbf{Symbol} \\ \textbf{min} \\ \textbf{h} \\ \textbf{d} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

 $^{^{}a}$ ISO 31 recommends that the degree be subdivided decimally rather than using the minute and second

^eThe bel is used to express values of such logarithmic quantities as field level, power level, sound pressure level, and attenuation. Logarithms to base ten are used to obtain the numerical values of quantities expressed in bels. The submultiple decibel, dB, is commonly used. For further information see International Standard ISO 31.

^fIn using these units it is particularly important that the quantity be specified. The unit must not be used to imply the quantity.

 $^g\mathrm{Np}$ is enclosed in parentheses because, although the neper is coherent with the SI, it has not yet been adopted by the CGPM.

Table 9: — Units accepted for use with the SI whose values in SI units are obtained experimentally —

Name	Symbol	Definition
electronvolt	eV	a
unified atomic mass unit	u	b

 $[^]a\mathrm{The}$ electron volt is the kinetic energy acquired by an electron in passing through a potential difference of 1 V in vacuum; 1 eV = 1.602 177 33 \times 10 $^{-19}$ J with a combined standard uncertainty of 0.000 000 49 \times 10 $^{-19}$ J.

^bThe alternative symbol for the litre, L, was adopted by the CGPM in order to avoid the risk of confusion between the letter l and the number 1. Thus, although both l and L are internationally accepted symbols for the litre, to avoid this risk the symbol to be used in the United States is L.

^cIn some English-speaking countries this unit is called 'metric ton'.

^dThe neper is used to express values of such logarithmic quantities as field level, power level, sound pressure level, and logarithmic decrement. Natural logarithms are used to obtain the numerical values of quantities expressed in nepers. The neper is coherent with the SI, but not yet adopted by the CGPM as an SI unit. For further information see International Standard ISO 31.

^bThe unified atomic mass unit is equal to 1/12 of the mass of an atom of the nuclide 12 C; 1 u = $1.660\,540\,2\times10^{-27}$ kg with a combined standard uncertainty of $0.000\,001\,0\times10^{-27}$ kg.

Table 10: — Units in use temporarily with the SI —

Name	Symbol	Value in SI units
nautical mile ^a		1 nautical mile = 1852 m
knot		1 nautical mile per hour = $(1852/3600)$ m/s
pproxangström	Å	$1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$
are^b	a	$1 a = 1 dam^2 = 10^2 m^2$
$hectare^b$	ha	$1 \text{ ha} = 1 \text{ hm}^2 = 10^4 \text{ m}^2$
$barn^c$	b	$1 \text{ b} = 100 \text{ fm}^2 = 10^{-28} \text{ m}^2$
bar^d	bar	$1 \text{ bar} = 0.1 \text{ MPa} = 10^5 \text{ Pa}$
gal^e	Gal	$1 \text{ Gal} = 1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$
curie^f	Ci	$1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq}$
$roentgen^g$	R	$1 R = 2.58 \times 10^{-4} C/s$
rad^h	rad	$1 \text{ rad} = 1 \text{ cGy} = 10^{-2} \text{ Gy}$
rem^i	rem	$1 \text{ rem} = 1 \text{ cSv} = 10^{-2} \text{ Sv}$

^aThe nautical mile is a special unit employed for marine and aerial navigation to express distances. The conventional value given above was adopted by the First International Extraordinary Hydrographic Conference, Monaco, 1929, under the name "International nautical mile".

^bThis unit and its symbol were adopted by the CIPM in 1879 (BIPM Proc. Verb. Com. Int. Poids et Mesures, 1879, p. 41) and are used to express agrarian areas.

^cThe barn is a special unit employed in nuclear physics to express effective cross sections.

^dThis unit and its symbol are included in Resolution 7 of the 9th CGPM (1948).

 $^{^{}e}$ The gal is a special unit employed in geodesy and geophysics to express the acceleration due to gravity.

^fThe curie is a special unit employed in nuclear physics to express activity of radionuclides (12th CGPM (1964), Resolution 7).

 $[^]g$ The roentgen is a special unit employed to express exposure of x or γ radiations.

^hThe rad is a special unit employed to express absorbed dose of ionising radiations. When there is risk of confusion with the symbol for radian, rd may be used as the symbol for rad.

ⁱThe rem is a special unit used in radioprotection to express dose equivalent.

The SI differs from some of the older systems in that it has *definite* rules governing the way the units and symbols are used.

- The unit of measure is the 'metre', not 'meter'. The latter is a device used for measuring things. (Unless you live in the USA in which case you will just have to live with the ambiguity.)
- Using a comma to separate groups of three digits is not recommended a (thin) space is preferable, since many countries use the comma as the decimal point marker. Both the USA and UK use the 'dot on the line' (full stop). So the following would be correct: 1234 555.678 990.
- The term **billion** should be avoided since in most countries outside the USA (including the UK) it means a million-million (prefix tera), whereas in the USA it means a thousand million (prefix giga). Likewise the term **trillion** means million-million-million (prefix exa) in most countries outside the USA.
- The 'litre' ('liter' in the US) is one of those units which is approved by the CGPM for use with the metric system. The official unit of volume in the SI is the cubic metre. However, since this is not convenient for much day-to-day use the CGPM has approved the use of the 'other unit', the litre. The litre represents a cubic decimetre and you may use either the symbol 'l' or 'L'⁸ (small or capital 'ell') to represent it. They do not approve using any prefixes other than milli or micro with it. It was originally defined as the volume occupied by 1 kg of water. Subsequently it was found that this was not precisely 1 cubic decimetre, so the term litre was withdrawn. Later it was re-introduced officially as 1 cubic decimetre exactly. So, 1 l = 1 dm³ = 1 L.

7 How to use the package

7.1 Loading

Most features are controlled by package options that can be selected when the package is loaded (e.g $\scalebox{usepackage}[\langle options \rangle] {SIunits})$ or at 'runtime' as an optional argument(list) to the $\scalebox{SIunits command (e.g. }\slashbox{SIunits}[\langle options \rangle])$.

\documentclass[]{article}
\usepackage[options]{SIunits}
\begin{document}
\ldots
\SIunits[options]
\ldots
\end{document}

⁸Recommended symbol for the 'liter' in the USA

7.2 The package options

The options can be grouped in the following categories:

- 1. unit spacing;
- 2. quantity-unit spacing;
- 3. conflicts;
- 4. textstyle;
- 5. miscellaneous.

7.2.1 Unit spacing options

cdot This mode provides the use of \cdot as spacing in units.

thickspace This mode provides the use of \; (thick math space) as spacing in units

mediumspace This mode provides the use of \setminus : (medium math space) as spacing in units.

thinspace This mode provides the use of \, (thin math space) as spacing in units.

7.2.2 Quantity-unit spacing options

thickqspace This mode provides the use of \; (thick math space) as spacing between numerical quantities and units.

mediumqspace This mode provides the use of \: (medium math space) as spacing between numerical quantities and units.

thinqspace This mode provides the use of \, (thin math space) as spacing between numerical quantities and units.

7.2.3 Options to prevent conflicts

Conflicts with the amssymb package

In the amssymb package the command \square is defined. This will cause error messages when the amssymb package is used in combination with the SIunits package. To prevent errors one can choose two different options:

amssymb This option redefines the amssymb command \square to get the desired SIunits definition of the command.

Note: When using this option, the amssymb command \square can not be used.

squaren This option defines a new command \squaren that can be used instead of the SIunits command \square.

Note: When using this option, the amssymb definition for \square is used.

Conflicts with the pstricks package

In the pstricks package the command \gray is defined. This will cause error messages when the pstricks package is used in combination with the SIunits package. To prevent errors one can choose two different options:

pstricks This option redefines the pstricks command \gray to get the desired SIunits definition of the command.

Note: When using this option, the pstricks command \gray can not be used.

Gray This option defines a new command \Gray that can be used instead of the SIunits command \gray.

Note: When using this option, the pstricks definition for \gray is used.

Conflicts with the babel package in combination with the italian language

In the babel package, when using the italian language, the command \unit is defined. This will prevent SIunits from functioning. To prevent this, choose the option:

italian This option defines a new command \unita (italian for unit) that can be used instead of the SIunits command \unit.

Note: When using this option, the babel definition for \unit is used.

7.2.4 textstyle

textstyle When using the option textstyle units are printed in the typeface of the enclosing text, automatically.

7.2.5 miscellaneous

binary This option loads the file binary.sty, which defines prefixes for binary multiples.

noams This option redefines the \micro command; use it when you don't have the AMS font, eurm10.

derivedinbase This mode provides the ready-to-use expressions of SI derived units in SI base units, e.g. \pascalbase to get 'm⁻¹ kg s⁻²'.

derived This mode provides the ready-to-use expressions of SI derived units in SI derived units, e.g. \derpascal to get 'N m⁻²'.

See table 11 for examples of the spacing options.

Command Reference

7.3 How to compose units in your text.

The purpose of the SIunits package is: to give an author an intuitive system for writing units. Just type (in LATEX-kind commands) what you would say: \kilogram or \kelvin to get 'kg' or 'K'.

Table 11: — Spacing options —

Option	Example	
cdot	$N \cdot m$	
thickspace	N m	
mediumspace	N m	
thinspace	${ m Nm}$	
thickqspace	10 N m	
mediumqspace	$10 \mathrm{\ Nm}$	
thinqspace	$10\mathrm{N}\;\mathrm{m}$	

To use the prefixes with SI units simply place them before the unit, e.g. $\mbox{milli\ampere}$, $\deca\mbox{metre}$ (or $\deka\mbox{meter}$) or $\mbox{mega\ohm}$ to get: 'mA', 'dam' or 'M Ω '. Decimal values of the prefixes can be made by adding d behind the prefix command. See command reference on page 27.

7.3.1 Division or multiplication of SI units

The next step is the formation of units based on division and/or multiplication of SI units.

Division How to get the unit of speed?

- 1. Write down the unit in words: metre per second
- 2. Replace the spaces with backlashes to get the command: \metre\per\second
- 3. The result is: $\frac{m}{s}$.

Simple! Ready!

Multiplication Now an example of multiplication of units, the unit of torque (newton metre):

- 1. Write down the unit in words: newton metre
- 2. To get an separation character between the two units use the command \usk (unitskip): \newton\usk\metre
- 3. The result is: 'N m'. The spacing between the units depends on the spacing options (see: page 24).

Mixed case The mixed case should be simple now; the unit of thermal conductivity (watt per metre kelvin):

- $1.\ Use\ your\ just-learned-knowledge: \verb|\watt\per\metre\usk\kelvin|$
- 2. The result is: W/m K'.

Now, you can do it all in one step! Intuitive & simple.

SI base units

SI base units								
\metre	m	\second	S	\mole	mol			
\meter	\mathbf{m}	\ampere	A	\candela	cd			
\kilogram	kg	\kelvin	K					
	SI derived units							
\hertz	Hz	\farad	F	\degreecelsius	$^{\circ}\mathrm{C}$			
\newton	N	\ohm	Ω	\lumen	lm			
\pascal	Pa	\siemens	\mathbf{S}	\lux	lx			
\joule	J	\weber	Wb	\becquerel	Bq			
\watt	W	\tesla	Τ	\gray	Gy			
\coulomb	\mathbf{C}	\henry	Н	\sievert	Sv			
\volt	V	\celsius	$^{\circ}\mathrm{C}$					
Units outside of SI								
\angstrom	Å	\dday	d	\minute	\min			
\arcminute	,	\degree	0	\neper	Np			
\arcsecond	"	\electronvolt	eV	\rad	rad			
\are	a	\gal	Gal	\rem	rem			
\atomicmass	u	\gram	g	\roentgen	\mathbf{R}			
\barn	b	\hectare	ha	\rperminute	r/min			
\bbar	bar	\hour	h	\tonne	\mathbf{t}			
\bel	В	\liter	$_{\rm L}$	\ton	\mathbf{t}			
\curie	Ci	\litre	1					
<u> </u>								
		SI Prefix						
\yocto	У	\milli	m	\mega	M			
\zepto	\mathbf{Z}	\centi	c	\giga	G			
\atto	a	\deci	d	\tera	T			
\femto	f	\deca	da	\peta	Р			
\pico	p	\deka	da	\exa	\mathbf{E}			
\nano	\mathbf{n}	\hecto	h	\zetta	\mathbf{Z}			
\micro	μ	\kilo	k	\yotta	Y			
Decimal values of SI Prefixes								
\yoctod	10^{-24}	\millid	10^{-3}	\megad	10^{6}			
\zeptod	10^{-21}	\centid	10^{-2}	\gigad	10^9			
\attod	10^{-18}	\decid	10^{-1}	\terad	10^{12}			
\femtod	10^{-15}	\decad	10^{1}	\petad	10^{15}			
\picod	10^{-12}	\dekad	10^{1}	\exad	10^{18}			
\nanod	10^{-9}	\hectod	10^{2}	\zettad	10^{21}			
\microd	10^{-6}	\kilod	10^{3}	\yottad	10^{24}			

7.3.2 Raising SI units to a power

The SIunits package provides a set of functions to get units raised to a particular power.

Squaring and cubing How to get the units of area (square metre) and volume (cubic metre)?

- 1. Write down the unit in words: square metre and cubic metre
- 2. Replace the spaces with backlashes to get the commands: \square\metre and \cubic\metre
- 3. The result is: 'm²' and 'm³'.

I can hear you say: "We only use the word 'square' before the unit metre, normally we place the word 'squared' behind the unit name.". OK, lets try: \second\squared and \second\cubed gives: 's²' and 's³'. Thus, no problem.

The reciprocal, reciprocal squaring and - cubing How to get negative powers?

- 1. Use \rpsquare or \rpsquared, and \rpcubic and \rpcubed
- 2. For example: \rpsquare\metre and \second\rpcubed
- 3. The result is: ' m^{-2} ' and ' s^{-3} '.

Normally, we leave out the exponent 1, but sometimes we want to use the exponent -1. How to form the unit of frequency (reciprocal second = Hz)

- 1. Write down the unit in words: reciprocal second,
- 2. Replace the spaces with backlashes to get the commands: \reciprocal\second,
- 3. The result is: s^{-1} .

The power function The \power macro has been added to be able to form the wildest types of power raising: \power{10}{35} gives: 10^{35} .

7.4 Quantities and units

Use the command \unit to get consistent spacing between numerical quantities and units. Usage:

 $\displaystyle \begin{array}{ll} \displaystyle 120 \\ \displaystyle \begin{array}{ll} \displaystyle 120 \\ \displaystyle \end{array} \end{array}$

7.4.1 Ready-to-use units

\amperemetresecond	A m s
\amperepermetre	A/m
\amperepermetrenp	${ m A~m^{-1}}$
\amperepersquaremetre	$\mathrm{A/m^2}$
\amperepersquaremetrenp	${ m A~m^{-2}}$

 $\rm cd/m^2$ \candelapersquaremetre $\rm cd\;m^{-2}$ \candelapersquaremetrenp C/m^3 \coulombpercubicmetre ${\rm C}~{\rm m}^{-3}$ \coulombpercubicmetrenp \coulombperkilogram C/kg $\mathrm{C}\;\mathrm{kg}^{-1}$ \coulombperkilogramnp \coulombpermol C/mol $C \text{ mol}^{-1}$ \coulombpermolnp C/m^2 \coulombpersquaremetre ${\rm C}^{'}{\rm m}^{-2}$ \coulombpersquaremetrenp m^3 \cubicmetre \faradpermetre F/m $\rm F \ m^{-1}$ \faradpermetrenp Gy/s\graypersecond $\mathrm{Gy}\;\mathrm{s}^{-1}$ \graypersecondnp H/m\henrypermetre ${\rm H} \; {\rm m}^{-1}$ \henrypermetrenp \jouleperkelvin J/K $\rm J~K^{-1}$ \jouleperkelvinnp J/kg \jouleperkilogram $\mathrm{J~kg}^{-1}$ \jouleperkilogramnp \joulepermole J/mol $\mathrm{J} \; \mathrm{mol}^{-1}$ \joulepermolenp \joulepermolekelvin J/mol K $\mathrm{J} \; \mathrm{mol}^{-1} \; \mathrm{K}^{-1}$ \joulepermolekelvinnp J/m^2 \joulepersquaremetre $\rm J~m^{-2}$ \joulepersquaremetrenp J/T\joulepertesla $J T^{-1}$ \jouleperteslanp \kilogrammetrepersecond kg m/s ${\rm kg} \; {\rm m} \; {\rm s}^{-1}$ \kilogrammetrepersecondnp $kg m/s^2$ \kilogrammetrepersquaresecond $\rm kg \; m \; s^{-2}$ \kilogrammetrepersquaresecondnp \kilogrampercubicmetre kg/m^3 ${\rm kg}~{\rm m}^{-3}$ \kilogrampercubicmetrenp kg/kmol \kilogramperkilomole ${\rm kg}\;{\rm kmol}^{-1}$ \kilogramperkilomolenp kg/m \kilogrampermetre $\rm kg \ m^{-1}$ \kilogrampermetrenp \kilogrampersecond kg/s $\rm kg\;s^{-1}$ \kilogrampersecondnp kg/m^2 \kilogrampersquaremetre $\rm kg \ m^{-2}$ \kilogrampersquaremetrenp ${\rm kg/m^2~s}$ \kilogrampersquaremetresecond ${\rm kg} {\rm m}^{-2} {\rm s}^{-1}$ \kilogrampersquaremetresecondnp $kg m^2$ \kilogramsquaremetre $kg m^2$ \kilogramsquaremetrenp $kg m^2/s$ \kilogramsquaremetrepersecond $kg m^2 s^{-1}$ \kilogramsquaremetrepersecondnp

kWh \kilowatthour m/s^2 \metrepersquaresecond $\rm m\;s^{-2}$ \metrepersquaresecondnp \molepercubicmetre mol/m^3 $\mathrm{mol}\ \mathrm{m}^{-3}$ \molepercubicmetrenp N/m^3 \newtonpercubicmetre ${
m N~m^{-3}}$ \newtonpercubicmetrenp N/kg\newtonperkilogram ${
m N~kg^{-1}}$ \newtonperkilogramnp N/m^2 \newtonpersquaremetre ${
m N~m^{-2}}$ \newtonpersquaremetrenp Ω m \ohmmetre Pa s \pascalsecond \persquaremetresecond $1/\mathrm{m}^2 \mathrm{s}$ ${\rm m}^{-2}~{\rm s}^{-1}$ \persquaremetresecondnp rad/s\radianpersecond $\rm rad~s^{-1}$ \radianpersecondnp $\rm rad/s^2$ \radianpersquaresecond \radianpersquaresecondnp $\rm rad~s^{-2}$ m^2 \squaremetre $\mathrm{m}^2/\mathrm{m}^3$ \squaremetrepercubicmetre $\mathrm{m}^2\,\mathrm{m}^{-3}$ \squaremetrepercubicmetrenp $\rm m^2/N~s$ \squaremetrepernewtonsecond ${
m m^2~N^{-1}~s^{-1}}$ \squaremetrepernewtonsecondnp $\rm m^2/s$ \squaremetrepersecond $m^{2} s^{-1}$ \squaremetrepersecondnp $\rm m^2/\rm s^2$ \squaremetrepersquaresecond ${\rm m}^{2}\,{\rm s}^{-2}$ \squaremetrepersquaresecondnp \voltpermetre V/m ${
m V}~{
m m}^{-1}$ \voltpermetrenp W/m^3 \wattpercubicmetre $\mathrm{W}^{\mathrm{-}3}$ \wattpercubicmetrenp \wattperkilogram W/kg $W'kg^{-1}$ \wattperkilogramnp W/m^2 \wattpersquaremetre ${
m W~m^{-2}}$ \wattpersquaremetrenp $W/m^2 sr$ \wattpersquaremetresteradian $W m^{-2} sr^{-1}$ \wattpersquaremetresteradiannp

8 How the package works

8.1 Compatibility

The package has been tested using:

- 1. MiKTEX 1.10b, including LaTeX 2_{ε} standard classes (LaTeX 2_{ε} [1997/12/01] patch level 1) and TeX 3.14159, both under Microsoft Windows 95 and MS Windows NT 4.0.
- 2. MiKTEX 1.11, including LaTeX $2_{\mathcal{E}}$ standard classes (LaTeX $2_{\mathcal{E}}$ [1998/06/01])

and TeX 3.14159, both under Microsoft Windows 95 and MS Windows NT 4.0.

3. MiKTEX 2 UP 1, including LATEX 2_{ε} standard classes (LATEX 2_{ε} [2000/11/28]) and TEX 3.14159, under Microsoft Windows 2000 professional.

8.2 Known problems and limitations

- 1. When you don't have the AMS font eurm10 use the option noams.
- 2. The amssymb package defines the \square command. Two possible solutions to avoid conflicts:
 - Use option amssymb: \usepackage[amssymb]{SIunits}. When using this option the amssymb command \square is redefined to the SIunits command.
 - Use option squaren: \usepackage[squaren]{SIunits}. When using this option the amssymb command \square is not redefined. Use the newly defined SIunits command \squaren instead of \square to get the desired behaviour.

Note: Load SIunits package after amssymb package.

- 3. The pstricks package defines the \gray command. Two possible solutions to avoid conflicts:
 - Use option pstricks: \usepackage[pstricks]{SIunits}. When using this option the pstricks command \gray is redefined to the SIunits command.
 - Use option Gray: \usepackage[Gray]{SIunits}. When using this option the pstricks command \gray is not redefined. Use the newly defined SIunits command \Gray instead of \gray to get the desired behaviour.

Note: Load SIunits package after pstricks package.

No further known problems or limitations. That doesn't mean this package is bug free, but it indicates the lack of testing that's been done on the package.

8.3 Sending a bug report

Reports of new bugs in the package are most welcome. However, I do **not** consider this to be a 'supported' package. This means that there is no guarantee I (or anyone else) will put any effort into fixing the bug (of course I will try to find some time). But, on the other hand, someone may try debugging, so filing a bug report is always a good thing to do! (If nothing else, your discoveries may end up in future releases of this document.) Before filing a bug report, please take the following actions:

- 1. Ensure your problem is not due to your input file;
- 2. Ensure your problem is not due to your own package(s) or class(es);

- 3. Ensure your problem is not covered in the section "Known problems and limitations" above;
- 4. Try to locate the problem by writing a minimal IATEX 2_{ε} input file which reproduces the problem. Include the command \setcounter{errorcontextlines}{999} in your input;
- 5. Run your file through $\LaTeX 2_{\varepsilon}$;
- Send a description of your problem, the input file and the log file via e-mail to: SIunits@webschool.nl.

9 In conclusion

9.1 Acknowledgements

I want to thank Werenfried Spit (w.spit@WITBO.NL) answering my question to TEX-NL@NIC.SURFNET.NL about the "power functie", as well as Hans Hagen (pragma@WXS.NL) for the kind reaction to that question.

- v0.01: Typos Jürgen von Haegen (vonHagen@engr.psu.edu)
- v0.02 Beta 4: Typos Rafael Rodriguez Pappalardo (rafapa@cica.es)
- v0.02 Beta 5: Tips/non-SI units Timothy C. Burt
 (tcburt@comp.uark.edu)
- v0.02 Beta 7: \angstrom definition changed Hint: Lutz Schwalowsky
 (schalow@mineralogie.uni-hamburg.de); Solution: Piet van Oostrum
 (piet@cs.uu.nl)
- v0.04: \ohm definition corrected Jürgen von Haegen (von Hagen@engr.psu.edu)
- v0.06: Conflict with amssymb solved thanks to Timothy C. Burt
 (tcburt@comp.uark.edu)

9.2 References

- 1. National Institute of Standards and Technology Special Publication 330, *The International System of Units (SI)*, 1991 Edition, by Barry N. Taylor, 62 p.: http://physics.nist.gov/Document/sp330.pdf
- 2. National Institute of Standards and Technology Special Publication 811, Guide for the Use of the International System of Units (SI), 1995 Edition, by Barry N. Taylor, 84 p.: http://physics.nist.gov/Document/sp811.pdf
- 3. National Institute of Standards and Technology, *Diagram of SI unit relations-hips:* http://physics.nist.gov/cuu/Units/SIdiagram2.html

- 4. International Bureau of Weights and Measures (Bureau International des Poids et Mesures), SI brochure: http://www.bipm.fr/pdf/si-brochure.pdf and Supplement 2000: http://www.bipm.fr/pdf/si-supplement2000.pdf
- 5. National Physical Laboratory, *The International System of Units:* http://www.npl.co.uk/npl/reference/si_units.html
- 6. National Institute of Standards and Technology,

 The NIST reference on Constants, Units and Uncertainty:

 http://physics.nist.gov/cuu/Units/introduction.html
- 7. David Barlett, *The Metric System: a concise reference guide:* http://subnet.virtual-pc.com/ba424872/

9.3 Bye

I hope that some users will find the package useful and not too bugful. :-) Comments and suggestions for improvements are always most welcome!

 \LaTeX , enjoy it! marcel h.

10 The Magic Code

10.1 Hello world

First, we show the package message.

1 \typeout{\packagemessage}

10.1.1 Declare globals

Declare global \newif(s) and \newlength(s): boolean for redefinition of \square

2 \newif\if@redefsquare\@redefsquarefalse

boolean for definition of \squaren

3 \newif\if@defsquaren\@defsquarenfalse

boolean for redefinition of \gray

4 \newif\if@redefGray\@redefGrayfalse

boolean for definition of \Gray

5 \newif\if@defGray\@defGrayfalse

boolean for detection of textstyle option

 $\begin{tabular}{ll} 6 \mbox{$\ $$ if @textstyle @textstylefalse} \end{tabular}$

boolean for detection of binary option

7 \newif\if@optionbinary\@optionbinaryfalse

boolean for detection of NoAMS option

boolean for detection of \unit command

9 \newif\if@inunitcommand\@inunitcommandfalse

10 $\newlength{\qskwidth}$

boolean for detection of italian option

11 \newif\if@defitalian\@defitalianfalse

10.1.2 Font handling

When using the option textstyle units are printed in the typeface of the enclosing text, automatically.

12 \DeclareRobustCommand\SI@fstyle[1] {\mathrm{#1}}

10.1.3 The text sensitive μ

Ripped form the textcomp package: the text sensitive — but ugly — $\mu \mu \mu \mu$.

- 13 \DeclareTextSymbolDefault{\SImu}{TS1}
- 14 \DeclareTextSymbol{\SImu}{TS1}{181} % micro sign
- 15 \DeclareFontEncoding{TS1}{}{}

10.1.4 The upright (roman) μ

The next lines of code are necessary to get an beautifull upright (roman) μ (Greek 'em').

 $\begin{tabular}{\bf 17 \end{tabular} \end{tabular} $$ \end{tabular} $$$ \end{tabular$

\upmu

20 \DeclareMathSymbol{\upmu}{\mathord}{greek}{"16}

\SIunits

The \SIunits macro allows runtime option requests. Every argument of the optional argument list is passed to the macro \SIunits@execopt. The options thickspace & thickspace is selected by default.

21 \newcommand*\SIunits[1][thickspace,thickqspace]{\@for\SIunits@@:=#1%
22 \do{\SIunits@execopt\SIunits@0}}

\SIunits@execopt

Every execution of this macro with an argument n leads to the execution of a macro \S Iunits@opt@n or a warning if no such exists.

23 \newcommand*\SIunits@execopt[1]{\@ifundefined{SIunits@opt@#1}% 24 {\PackageWarning{SIunits}{Requested option '#1' not provided}}%

25 {\@nameuse{SIunits@opt@#1}}}

10.2 Runtime options to use with the \SIunits command

10.2.1 thickspace

\SIunits@opt@thickspace

This macro provides a thick math space $(\;)$ between units.

 $26 \verb|\newcommand*\SIunits@opt@thickspace{\%}|$

27 \@thickspace{runtime option 'thickspace' provided!}}

10.2.2 mediumspace

\SIunits@opt@mediumspace

This macro provides a medium math space (\:) between units.

 $28 \verb|\newcommand*\SIunits@opt@mediumspace{\%}|$

29 \@mediumspace{runtime option 'mediumspace' provided!}}

10.2.3 thinspace

\SIunits@opt@thinspace

This macro provides a thin math space $(\,)$ between units.

30 \newcommand*\SIunits@opt@thinspace{\%}

31 \@thinspace{runtime option 'thinspace' provided!}}

10.2.4 cdot

\SIunits@opt@cdot

This macro provides a $\cdot(\cdot)$ between units.

 ${\tt 32 \ \ lunits@opt@cdot{\%}}$

33 \@cdot{runtime option 'cdot' provided!}}

10.2.5 thickqspace

\SIunits@opt@thickqspace

This macro provides a thick math space (\;) between quantities and units.

- 34 \newcommand*\SIunits@opt@thickqspace{%
- 35 \@thickqspace{runtime option 'thickqspace' provided!}}

10.2.6 mediumqspace

\SIunits@opt@mediumqspace

This macro provides a medium math space (\:) between quantities and units.

```
36 \newcommand*\SIunits@opt@mediumqspace{%
```

37 \@mediumqspace{runtime option 'mediumqspace' provided!}}

10.2.7 thingspace

\SIunits@opt@thinqspace

This macro provides a thin math space (\;) between quantities and units.

```
38 \newcommand*\SIunits@opt@thinqspace{%
```

39 \@thinqspace{runtime option 'thinqspace' provided!}}

10.3 text

```
40 \DeclareRobustCommand{\@text}{%
   \ifmmode\expandafter\@text@\else\expandafter\mbox\fi}
42 \let\nfss@text\@text%
43 \def\@text@#1{\mathchoice%
   {\textdef@\displaystyle\f@size{#1}}%
   {\textdef@\textstyle\tf@size{\firstchoice@false #1}}%
45
   {\textdef@\textstyle\sf@size{\firstchoice@false #1}}%
46
    {\textdef@\textstyle\ssf@size{\firstchoice@false #1}}%
47
    \check@mathfonts}%
48
49 \det textdef@#1#2#3{\textstyle \hbox{{%}}
                       \everymath{#1}%
                       \let\f@size#2\selectfont%
51
                       #3}}}%
53 \newif\iffirstchoice@%
54 \firstchoice@true%
55 \def\stepcounter#1{%
    \iffirstchoice0%
56
57
       \addtocounter{#1}\@ne%
       \begingroup \let\@elt\@stpelt \csname cl@#1\endcsname \endgroup
58
   \fi%
59
60 }%
```

10.4 International needs

To prevent international problems, one can use both \meter and \metre for the SI length unit, and \deka and \dekad for the SI prefix commands \deca and \decad.

```
\meter 61 \DeclareRobustCommand*{\meter}{\metre}
```

62 \DeclareRobustCommand*{\deka}{\deca}

\dekad

\deka

63 \DeclareRobustCommand*{\dekad}{\decad}

10.5 Personal needs

\NoAMS The \NoAMS macro has to be added in the preamble, when you don't have the AMS font eurm10

\addunit The \addunit and \addprefix macros give one the possibility to add units and prefixes. This possibility was added after a lot of questions for support of non SI units, that can not be added to this package (it's called SI units!).

> Usage: \addunit{\foot}{ft}; then the unit can be used: \unit{1}{\foot} gives 1 ft.

65 \DeclareRobustCommand{\addunit}[2]{\newcommand{#1}{\ensuremath{\SI@fstyle{#2}}}} 66 \DeclareRobustCommand{\addprefix}[2] \\newcommand{\#1}{\ensuremath{\SIOfstyle{\#2}}}}

\unitskip

The \unitskip macro gives one the possibility to choose spacing characters that are not already defined, by the spacing options (page 24). It also gives the possibility to use various spacing character in your documents.

67 \DeclareRobustCommand*{\unitskip}[1]{\renewcommand{\usk}{\ensuremath{#1}}}

\quantityskip

The \quantityskip macro gives one the possibility to choose spacing characters that are not already defined, by the spacing options (page 24). It also gives the possibility to use various spacing character in your documents.

68 \DeclareRobustCommand*{\quantityskip}[1]{\renewcommand{\@qsk}{\ensuremath{#1}}}

10.6 Spacing units

In version v1.33 of the SIunits package, one has to do the spacing of units by hand. I have plans to get some things automated in a future version. The \per macro gives / to be used in a quotient of two units; \usk (unitskip) makes a thick math space by default, but can be changed by the spacing options (page 24) or the \unitskip command. Usage:

\metre\per\second (unit of speed) gives: m/s

\newton\usk\metre (unit of torque) gives: N m.

\@qsk (quantity skip) makes a thick math space by default, but can be changed by the options for spacing between quantity and unit (page 24) or the \quantityskip command. \Qqsk is used in the \unit macro.

\per

69 \DeclareRobustCommand*{\per}{\ensuremath{\SI@fstyle{/}}}

\usk

70 \DeclareRobustCommand*{\usk}{\ensuremath{\;}}

\@qsk

71 \DeclareRobustCommand*{\@qsk}{\ensuremath{\;}}

```
10.6.1 (Re)define the spacing commands.
```

72 \renewcommand{\cdot}{\,\mbox{\textperiodcentered}\,}

```
73 \newcommand{\@cdot}[1]{\DeclareRobustCommand*{\usk}{\ensuremath{\cdot}}\typeout{#1}}
74 \newcommand{\@thickspace}[1]{\DeclareRobustCommand*{\usk}{\ensuremath{\;}}\typeout{#1}}
75 \newcommand{\@mediumspace}[1]{\DeclareRobustCommand*{\usk}{\ensuremath{\;}}\typeout{#1}}
76 \newcommand{\@thinspace}[1]{\DeclareRobustCommand*{\usk}{\ensuremath{\,}}\typeout{#1}}
77 \newcommand{\@thickqspace}[1]{\DeclareRobustCommand*{\@qsk}{\ensuremath{\,:}}\typeout{#1}}
78 \newcommand{\@mediumqspace}[1]{\DeclareRobustCommand*{\@qsk}{\ensuremath{\,:}}\typeout{#1}}
79 \newcommand{\@thinqspace}[1]{\DeclareRobustCommand*{\@qsk}{\ensuremath{\,:}}\typeout{#1}}
```

10.7 Spacing between numerical quantities and unit

\unit The \unit macro is used to typeset conjunction of a numerical quantity and a unit. Usage: \unit{120}{\kilo\meter\per\hour} = \unit{33.3}{\meter\per\second} to get: 120 km/h = 33.3 m/s.

80 {\catcode'\.=13\gdef.{\usk}}

 $81 \end{\colored} \label{lem:command} $$1 \rightarrow \end{\colored} \label{lem:colored} $$1 \rightarrow \end{\colored} $$1 \rightarrow \end{\$

83 \ensuremath{\SI@fstyle{#1\@qsk\period@active{#2}}}%

84 \@inunitcommandfalse}

The \one macro is defined to be used for quantities of dimension 1 such as mass fraction. Usage: $\displaystyle \frac{10}{\kappa} = \frac{10}{\infty} = 10$.

\one

 $85 \end{\colored} \label{command-one} \end{\colored} \label{command-one} \end{\colored} \label{command-one-constraint} \end{\colored} \label{command-one-constraint} \end{\colored} \label{command-one-constraint} \end{\colored} \label{command-one-constraint} \end{\colored} \label{command-one-constraint} \end{\colored} \$

\no@qsk is a negative \hspace of length \@qskwidth if \if@inunitcommand is true, else it does nothing.

\no@qsk

```
86 \DeclareRobustCommand{\no@qsk}{%
87 \if@inunitcommand%
88 \one%
89 \else%
90 \relax%
91 \fi%
92}
```

10.8 Power(full) macros

\power The \power^1 macro is used to typeset a superscript. Usage: \power{\metre}{2} to get: m^2

93 \DeclareRobustCommand{\power}[2]{\ensuremath{\SI@fstyle{#1}^{\SI@fstyle{#2}}}}

\square and \squaren are defined \AtBeginDocument to detect and prevent conflicts with packages defining \square.

⁸Thanks to Werenfried Spit — (w.spit@WITBO.NL)

```
\square
            94 \AtBeginDocument{%
            95 \if@redefsquare
                \providecommand{\square}[1]{\power{#1}{2}}
            96
                \renewcommand{\square}[1]{\power{#1}{2}}
                \verb|\typeout{Option 'amssymb' provided! $$^J$}
                Command \protect\square\space redefined by SIunits package!}
                \typeout{}
           101 \else
  \squaren
           102
                  \if@defsquaren
           103
                   \providecommand{\squaren}[1]{\power{#1}{2}}
           104
                   \renewcommand{\squaren}[1]{\power{#1}{2}}
           105
                   \typeout{Option 'squaren' provided! ^^J
           106
                   Command \protect\squaren\space defined by SIunits package!}
           107
                   \typeout{}
           108
                  \else
                   \@ifundefined{square}{%
           109
                    \newcommand*{\square}[1]{\power{#1}{2}}
           110
                    }{%
           111
                    \PackageError{SIunits}{%
           112
                    The command \protect\square\space was already defined.\MessageBreak
           113
                    Possibly due to the amssymb package}%
                    {Hint: use option 'amssymb' or 'squaren' with SIunits package.\MessageBreak
                    See SIunits.dvi or readme.txt section: Known problems and limitations.}
           117
                   } %\ifundefined{square}
           118
                  \fi %\if@defsquaren
           119 \fi %\if@redefsquare
    \unita
           120 \if@defitalian
               \PackageWarning{SIunits}{Option 'italian' provided.\MessageBreak
           122
                                          Command \protect\unit\space defined by babel.\MessageBreak
           123
                                          Mind to use \protect\unita\space instead.}%
           124 \DeclareRobustCommand{\unita}[2]{%
           125
                          \@inunitcommandtrue%
                          \ensuremath{\SIQfstyle{\#1\Qqsk\periodQactive{\#2}}}\%
           126
                          \@inunitcommandfalse%
           127
                          }%
           128
           129 \fi%\if@defitalian
                     %\AtBeginDocument
           130 }
\SI@square This internal macro is used in the definitions of the ready-to-use units.
           131 \DeclareRobustCommand{\SI@square}[1]
           132
                   {\if@defsquaren%
           133
                     \squaren{#1}%
           134
                       \else
                     \square{#1}%
           135
                    \fi %\if@defsquaren
           136
```

137

```
The above example can be realised in a more intuitive way: \square\metre: m<sup>2</sup>.
             The same goes for \cubic & \fourth: m^3 & m^4.
            138 \DeclareRobustCommand*{\squared}{\ensuremath{^{\mathrm{2}}}}
     \cubic
            139 \DeclareRobustCommand*{\cubic}[1]{\power{#1}{3}}
     \cubed
            140 \DeclareRobustCommand*{\cubed}{\ensuremath{^{\mathrm{3}}}}
    \fourth
            141 \DeclareRobustCommand*{\fourth}[1]{\power{#1}{4}}
             The macros \reciprocal, \rpsquare, \rpsquared, \rpcubic, \rpcubed and
             \rpfourth provide the reciprocal (negative power): e.g. m<sup>-1</sup>, m<sup>-2</sup>, m<sup>-3</sup> and
             m^{-4}. \rp is a short form for \reciprocal.
\reciprocal
            142 \DeclareRobustCommand*{\reciprocal}[1]{\power{#1}{-1}}
        \rp
            143 \DeclareRobustCommand*{\rp}{\reciprocal}
  \rpsquare
            144 \DeclareRobustCommand*{\rpsquare}[1]{\power{#1}{-2}}
 \rpsquared
            145 \ensuremath {^{\modelensuremath - {\modelensuremath - 2}}}}
   \rpcubic
            146 \DeclareRobustCommand*{\rpcubic}[1]{\power{#1}{-3}}
   \rpcubed
            147 \DeclareRobustCommand*{\rpcubed}{\ensuremath{^{\mathrm{-3}}}}
  \rpfourth
            148 \DeclareRobustCommand*{\rpfourth}[1]{\power{#1}{-4}}
             10.9
                     SI decimal prefixes
             These prefixes may be used to construct decimal fractions or multiples of units.
             Two different forms are provided, e.g. \milli and \millid.
             10.9.1 Symbols
             The first form gives the symbol of the prefix: \milli\second: ms;
            149 \addprefix{\yocto}{y}
            150 \addprefix{\zepto}{z}
            151 \addprefix{\atto}{a}
```

152 \addprefix{\femto}{f}
153 \addprefix{\pico}{p}
154 \addprefix{\nano}{n}

```
155 \AtBeginDocument{%
156 \if@optionNoAMS%
157 \addprefix{\micro}{\mbox{\SImu}}%
158 \else%
    \addprefix{\micro}{\upmu}%
159
160 \fi%
161 \if@textstyle%
     \DeclareRobustCommand{\micro}{{\ensuremath{\@text{\SImu}}}}%
163 \fi}
164 \addprefix{\milli}{m}
165 \addprefix{\centi}{c}
166 \addprefix{\det}{d}
167 \addprefix{\deca}{da}
168 \addprefix{\hecto}{h}
169 \addprefix{\kilo}{k}
170 \addprefix{\mega}{M}
171 \addprefix{\giga}{G}
172 \addprefix{	tera}{T}
173 \addprefix{\peta}{P}
174 \addprefix{\exa}{E}
175 \addprefix{\zetta}{Z}
176 \addprefix{\yotta}{Y}
```

10.9.2 Decimal form

```
The other form gives the decimal factor: \kilod\usk\hertz: 10<sup>3</sup> Hz
 177 \DeclareRobustCommand*{\yoctod}{\power{10}{-24}}
 178 \DeclareRobustCommand*{\zeptod}{\power{10}{-21}}
179 \label{localized} $$179 \end{area} \end{area} \label{localized} $$179 \end{area} $$10\end{area} $$10\end{
 181 \DeclareRobustCommand*{\picod}{\power{10}{-12}}
 182 \DeclareRobustCommand*{\nanod}{\power{10}{-9}}
 183 \DeclareRobustCommand*{\microd}{\power{10}{-6}}
 184 \DeclareRobustCommand*{\millid}{\power{10}{-3}}
 185 \DeclareRobustCommand*{\centid}{\power{10}{-2}}
 186 \DeclareRobustCommand*{\decid}{\power{10}{-1}}
 189 \DeclareRobustCommand*{\kilod}{\power{10}{3}}
 190 \ensuremath{\verb| DeclareRobustCommand*{\ensuremath{\verb| Megad}{\power{10}{6}}}}
 191 \DeclareRobustCommand*{\gigad}{\power{10}{9}}
 193 \DeclareRobustCommand*{\petad}{\power{10}{15}}
 194 \DeclareRobustCommand*{\exad}{\power{10}{18}}
 195 \DeclareRobustCommand*{\zettad}{\power{10}{21}}
 196 \DeclareRobustCommand*{\yottad}{\power{10}{24}}
```

The SI exception

In the SI, *Base* units and *Derived* units do not have prefixes, except for the *base* unit of mass: *kilogram*, not: gram. However, the macro \gram provides the symbol of gram: g.

\gram

```
10.10
                     SI base units
            \mathbf{length} \quad \mathbf{metre} - \mathbf{m}
            Both \metre and \meter can be used.
    \metre
           198 \addunit{metre}{m}
            mass kilogram — kg
 \kilogram
           199 \addunit{\kilogram}{\kilo\gram}
            time second - s
   \second
           200 \addunit{\second}{s}
            electric current ampere — A
   \ampere
           201 \addunit{\ampere}{A}
            thermodynamic temperature kelvin — K
   \kelvin
           202 \addunit{\kelvin}{K}
            amount of substance mole — mol
    \mole
           203 \addunit{mole}{mol}
           luminous intensity candela — cd
  \candela
           204 \addunit{\candela}{cd}
            10.11
                    SI derived units
            plane angle radian — rad
   \radian
           205 \addunit{\radian}{rad}
            solid angle steradian - sr
\steradian
```

 $206 \addunit{\operatorname{steradian}\{sr\}}$

197 $\addunit{\gamma}{gram}{g}$

```
{\bf frequency} \quad {\rm hertz} - {\rm Hz}
  \hertz
         207 \addunit{\hertz}{Hz}
          \mathbf{force} \quad \mathrm{newton} - \mathrm{N}
 \newton
         208 \addunit{\newton}{N}
          pressure pascal — Pa
 \pascal
         209 \addunit{\pascal}{Pa}
          energy, work, quantity of heat joule — J
  \joule
         210 \addunit{\joule}{J}
          power, radiant flux watt — W
   \watt
         211 \addunit{\mathbf{W}}
          electric charge, quantity of electricity coulomb - C
\coulomb
         212 \addunit{\coulomb}{C}
          electrical potential, potential difference, electromotive force volt — V
   \volt
         213 \d \V)
          {\bf capacitance} \quad {\rm farad} - {\rm F}
  \farad
         214 \quad farad}{F}
          electrical resistance ohm — \Omega
    \ohm
         215 \addunit{\on}{\on}{\on}
          electrical conductance siemens - S
\siemens
         216 \addunit{\simeq Siemens}{S}
```

```
magnetic flux, magnetic field strength weber — Wb
        \weber
               217 \addunit{\weber}{Wb}
                magnetic flux density tesla — T
        \tesla
               218 \addunit{	tesla}{T}
               inductance henry — H
        \henry
               219 \addunit{henry}{H}
                Celsius temperature degree Celsius — °C
                both \degreecelsius and \celsius can be used.
\degreecelsius
               220 \newcommand{\degreecelsius}{\protect\@inunitcommandfalse\ensuremath{\SI@fstyle{\degree\Celsius}}
      \celsius
               221 \addunit{\celsius}{\degreecelsius}
               luminous flux lumen — lm
        \lumen
               222 \addunit{\lumen}{lm}
               illuminance lux - lx
         \lux
               223 \addunit{\langle lux \rangle \{lx \}}
                activity of a radionuclide becquerel — Bq
   \becquerel
               224 \addunit{\becquerel}{Bq}
                absorbed dose, specific energy imparted, kerma gray — Gy
                \gray is defined \AtBeginDocument.
         \gray
               225 \AtBeginDocument{%
               226 \if@redefGray
                   \providecommand{\gray}{\ensuremath{\SI@fstyle{Gy}}}
                   \renewcommand{\gray}{\ensuremath{\SI@fstyle{Gy}}}
                   \typeout{Option 'pstricks' provided! ^^J
               229
                             Command \protect\gray\space redefined by SIunits package!}
               230
               231
                   \typeout{}
               232 \else
                    \if@defGray
               233
```

```
\providecommand{\Gray}{\ensuremath{\SI@fstyle{Gy}}}
         234
                 \renewcommand{\Gray}{\ensuremath{\SI@fstyle{Gy}}}
         235
                 \typeout{Option 'Gray' provided! ^^J
         236
                          Command \protect\Gray\space defined by SIunits package!}
         237
                \typeout{}
         238
         239
                \else
                 \@ifundefined{gray}{%
         240
         241
                 \newcommand*{\gray}{\ensuremath{\SI@fstyle{Gy}}}
         242
                 \PackageWarningNoLine{SIunits}{%
         243
                 The command \protect\gray\space was already defined.\MessageBreak
         244
                 Possibly due to the pstricks package}
         245
                 \typeout{Hint: use option 'pstricks' or 'Gray' with SIunits package.}
         246
                  \typeout{See SIunits.dvi or readme.txt section: Known problems and limitations.}
         247
                  \typeout{}
         248
                            %\ifundefined{gray}
         249
               \fi %\if@defGray
         250
         251 \fi
                   %\if@redefGray
         252 }
                    %\AtBeginDocument
                  \changes{v0.99}{1999/09/06}{Conflict between pstricks and \cs{gray} solved}
         253 %
          dose equivalent sievert — Sv
\sievert
         254 \addunit{\sievert}{Sv}
          catalytic activity katal — kat
 \katal
         255 \addunit{\katal}{kat}
```

10.11.1 The derivedinbase mode

Expression of derived SI units in SI base units

 $\verb|\SIunits@opt@derivedinbase| \\$

This macro provides the expression of derived SI units in SI base units. These macros can be accessed by putting 'base' behind the SI derived unit command, e.g. (\pascalbase) to get 'm⁻¹ kg s⁻²'.

```
256 \newcommand*\SIunits@opt@derivedinbase{%
257 \typeout{Option 'derivedinbase' provided!^^J}
258 \addunit{\radianbase}\%
           {\metre\usk\reciprocal\metre}
260 \addunit{\steradianbase}%
           {\squaremetre\usk\rpsquare\metre}
261
262 \addunit{\hertzbase}%
           {\reciprocal\second}
264 \addunit{\text{newtonbase}}%
           {\metre\usk\kilogram\usk\second\rpsquared}
266 \addunit{\pascalbase}%
           {\reciprocal\metre\usk\kilogram\usk\second\rpsquared}
268 \addunit{\joulebase}%
           {\squaremetre\usk\kilogram\usk\second\rpsquared}
270 \addunit{\wattbase}%
```

```
{\squaremetre\usk\kilogram\usk\rpcubic\second}
272 \addunit{\coulombbase}%
           {\ampere\usk\second}
274 \addunit{\voltbase}%
           {\squaremetre\usk\kilogram\usk\rpcubic\second\usk\reciprocal\ampere}
276 \addunit{\faradbase}%
           {\rpsquare\metre\usk\reciprocal\kilogram\usk\fourth\second\usk\ampere\squared}
278 \addunit{\ohmbase}%
           {\squaremetre\usk\kilogram\usk\rpcubic\second\usk\rpsquare\ampere}
279
280 \addunit{\siemensbase}%
           {\rpsquare\metre\usk\reciprocal\kilogram\usk\cubic\second\usk\ampere\squared}
281
282 \addunit{<text>
           {\squaremetre\usk\kilogram\usk\second\rpsquared\usk\reciprocal\ampere}
283
284 \addunit{\teslabase}%
           {\kilogram\usk\second\rpsquared\usk\reciprocal\ampere}
285
286 \addunit{\henrybase}%
           {\squaremetre\usk\kilogram\usk\second\rpsquared\usk\rpsquare\ampere}
288 \addunit{\celsiusbase}%
           {\kelvin}
289
290 \addunit{\lumenbase}%
           {\candela\usk\squaremetre\usk\rpsquare\metre}
291
292 \addunit{\luxbase}%
           {\candela\usk\squaremetre\usk\rpfourth\metre}
294 \addunit{\becquerelbase}%
           {\hertzbase}
296 \addunit{\graybase}%
           {\squaremetre\usk\second\rpsquared}
298 \addunit{\sievertbase}%
           {\graybase}
300 \addunit{\katalbase}%
           {\rp\second\usk\mole }
301
302 }
```

10.11.2 The derived mode

Expression of derived SI units in other derived SI units

 $\verb|\SIunits@opt@derived| \\$

This macro provides the expression of derived SI units in other SI derived units (if possible). These macros can be accessed by putting 'der' in front of the SI derived unit command, e.g. (derpascal) to get 'N m⁻²'.

```
318 \addunit{\dercoulomb}%
                   {\ampere\usk\second}
        319
        320 \addunit{\dervolt}%
                   {\watt\usk\reciprocal\ampere}
        322 \addunit{\derfarad}%
                   {\coulomb\usk\reciprocal\volt}
        324 \addunit{\derohm}%
                   {\volt\usk\reciprocal\ampere}
        325
        326 \addunit{\dersiemens}%
                   {\ampere\usk\reciprocal\volt}
        327
        328 \addunit{\derweber}%
                   {\squaremetre\usk\kilogram\usk\second\rpsquared\usk\reciprocal\ampere}
        329
        330 \addunit{\dertesla}%
                   {\weber\usk\rpsquare\metre}
        331
        332 \addunit{\derhenry}%
                   {\weber\usk\reciprocal\ampere}
        334 \addunit{\dercelsius}%
        335
                   {\kelvin}
        336 \addunit{\derlumen}%
                   {\candela\usk\steradian}
        337
        338 \addunit{\derlux}%
                   {\lumen\usk\rpsquare\metre}
        339
        340 \addunit{\derbecquerel}%
        341
                  {\derhertz}
        342 \addunit{\dergray}%
                   {\joule\usk\reciprocal\kilogram}
        344 \addunit{\dersievert}%
                   {\dergray}
        346 \addunit{\derkatal}%
        347
                   {\katalbase}
                \typeout{Option 'derived' provided!}}
        348
                  Units that are used with the SI
         10.12
         Time minute — min; hour — h; day — d
         \day was already defined, so use \dday.
\minute
        349 \addunit{\min\{\}}
  \hour
        350 \addunit{\hour}{h}
  \dday
        351 \addunit{\dday}{d}
         Plane angle degree — °; minute — '; second — "
         \minute and \second were already defined.
\degree
        352 \addunit{\degree}{\no@qsk\ensuremath{^{\circ}}}
```

{\joule\usk\reciprocal\second}

```
\paminute
           353 \addunit{\pi(`)}
\arcminute
           354 \addunit{\arcminute}{\no@qsk\ensuremath{'}}
\pasecond
           355 \addunit{\pasecond}{\no@qsk\ensuremath{""}}
\arcsecond
            356 \addunit{\arcsecond}{\no@qsk\ensuremath{``}}
             Mass metric ton or tonne — t
      \t
           357 \addunit{	ton}{t}
    \tonne
           358 \addunit{	tonne}{t}
             {\bf Volume} \quad {\rm litre-l} \ ; \ {\rm liter-L}
    \liter
           359 \addunit{\liter}{L}
    \litre
           360 \addunit{\langle litre \rangle}{1}
    \neper
           361 \addunit{\neper}{Np}
      \bel
            362 \addunit{bel}{B}
             Radioactivity curie — Ci
    \curie
            363 \addunit{\curie}{Ci}
             \textbf{Absorbed dose} \quad \mathrm{rad} - \mathrm{rad}
             When there is risk of confusion with the symbol for radian (rad), rd may be used
             as the symbol for rad.
      \rad
            364 \quad f(rad){rad}
     \arad
            365 \addunit{\arad}{rd}
```

```
\textbf{Dose equivalent} \quad \text{rem} - \text{rem}
         \rem
              366 \addunit{\rem}{rem}
               Exposure roentgen roentgen—R
    \roentgen
              367 \addunit{roentgen}{R}
               Energy electronvolt — eV
\electronvolt
               368 \addunit{\electronvolt}{e\volt}
               Unified atomic mass unit atomic mass — u
  \atomicmass
              369 \addunit{\atomicmass}{u}
               Area are — a; hectare — ha; barn — b
         \are
              370 \addunit{\are}{a}
     \hectare
              371 \addunit{\hectare}{\hecto\are}
        \barn
              372 \addunit{\barn}{b}
               Pressure bar — bar
        \bbar
              373 \addunit{\bar}{bar}
               {\bf Acceleration} \quad {\rm gal} - {\rm Gal}
         \gal
              374 \addunit{\gal}{Gal}
               Length ångström — Å
    \angstrom
              375 \addunit{\angstrom}{\mbox{{\AA}}}
```

Rotational frequency revolutions per minute — r/min; revolutions per second — r/s

\rperminute

 $376 \addunit{rperminute}{r\per\minute}$

\rpersecond

 $377 \addunit{rpersecond}{r\per\second}$

10.13 SI units with compound names

Area square metre — m²

\squaremetre

378 \addunit{\squaremetre}{\SI@square\metre}

Volume cubic metre — m³

\cubicmetre

379 \addunit{\cubicmetre}{\cubic\metre}

10.14 Various ready-to-use units

These units are provided for the ease of the users of the SIunits package. Normally, two forms of the units are provided, e.g. \graypersecond and \graypersecondnp. The commandnp form uses negative powers instead of /: 'Gy/s' and 'Gy s $^{-1}$ '.

absorbed dose rate

```
380 \addunit{\graypersecond}{\gray\per\second}
381 \addunit{\graypersecondnp}{\gray\usk\reciprocal\second}
```

acceleration

```
382 \addunit{\metrepersquaresecond}{\metre\per\second\squared}
383 \addunit{\metrepersquaresecondnp}{\metre\usk\second\rpsquared}
```

activation energy, molar energy

```
384 \addunit{\joulepermole}{\joule\per\mole} 385 \addunit{\joulepermolenp}{\joule\usk\reciprocal\mole}
```

amount-of-substance concentration

```
386 \addunit{\molepercubicmetre}{\mole\per\cubic\metre} 387 \addunit{\molepercubicmetrenp}{\mole\usk\rpcubic\metre}
```

angular acceleration

```
388 \addunit{\radianpersquaresecond}{\radian\per\second\squared}
389 \addunit{\radianpersquaresecondnp}{\radian\usk\second\rpsquared}
```

```
angular momentum
390 \addunit{\kilogramsquaremetrepersecond}{\kilogram\usk\squaremetre\per\second}
391 \label{linear_square_metre_persecond_np}{\label{linear_musk}} addunit{\label{linear_musk}} adduni
  angular velocity
392 \addunit{\radianpersecond}{\radian\per\second}
393 \addunit{\radianpersecondnp}{\radian\usk\reciprocal\second}
   area per unit volume
394 \addunit{\squaremetrepercubicmetre}{\squaremetre\per\cubic\metre}
395 \addunit{\squaremetrepercubicmetrenp}{\squaremetre\usk\rpcubic\metre}
   catalytic (activity) concentration
396 \addunit{\katalpercubicmetre}{\katal\per\cubic\metre}
397 \addunit{\katalpercubicmetrenp}{\katal\usk\rpcubic\metre}
   charge per mole
398 \addunit{\coulombpermol}{\coulomb\per\mole}
399 \addunit{\coulombpermolnp}{\coulomb\usk\reciprocal\mole}
   current density
400 \addunit{\amperepersquaremetre}{\ampere\per\squaremetre}
401 \addunit{\amperepersquaremetrenp}{\ampere\usk\rpsquare\metre}
   density
402 \addunit{\kilogrampercubicmetre}{\kilogram\per\cubic\metre}
403 \addunit{\kilogrampercubicmetrenp}{\kilogram\usk\rpcubic\metre}
   dynamic fluidity (1/viscosity)
404 \addunit{\squaremetrepernewtonsecond}{\squaremetre\per\newton\usk\second}
405 \ \texttt{Addunit} \\ \texttt{Squaremetrepernewtonsecondnp} \\ \texttt{Squaremetre} \\ \texttt{usk} \\ \texttt{reciprocal} \\ \texttt{newton} \\ \texttt{usk} \\ \texttt
   dynamic viscosity
406 \addunit{\pascalsecond}{\pascal\usk\second}
   electric charge density
407 \addunit{\coulombpercubicmetre}{\coulomb\per\cubic\metre}
408 \addunit{\coulombpercubicmetrenp}{\coulomb\usk\rpcubic\mbercubic}
   electric dipole moment
```

 $409 \addunit{\amperemetresecond}{\ampere\usk\metre\usk\second}$

411 \addunit{\voltpermetrenp}{\volt\usk\reciprocal\metre}

electric field strength

410 \addunit{\voltpermetre}{\volt\per\metre}

```
electric flux density
```

- $413 \addunit{\coulombpersquaremetrenp}{\coulomb\usk\rpsquare\mbox{\tt metre}}$

electrical permittivity

- 414 \addunit{\faradpermetre}{\farad\per\metre}
- 415 \addunit{\faradpermetrenp}{\farad\usk\reciprocal\metre}

electrical resistivity

416 \addunit{\ohmmetre}{\ohm\usk\metre}

energy

 $417 \addunit{ inv}{ inv} {\addunit}$

energy flux

- 418 \addunit{\wattpersquaremetre}{\watt\per\squaremetre}
- 419 \addunit{\wattpersquaremetrenp}{\watt\usk\rpsquare\metre}

energy per unit area

- 420 \addunit{\joulepersquaremetre}{\joule\per\squaremetre}
- 421 \addunit{\joulepersquaremetrenp}{\joule\usk\rpsquare\metre}

force (body)

- 422 \addunit{\newtonpercubicmetre}{\newton\per\cubic\metre}
- 423 \addunit{\newtonpercubicmetrenp}{\newton\usk\rpcubic\metre}

force per unit mass

- 424 \addunit{\newtonperkilogram}{\newton\per\kilogram}
- 425 \addunit{\newtonperkilogramnp}{\newton\usk\reciprocal\kilogram}

heat capacity, entropy

- $426 \addunit{\jouleperkelvin}{\joule\per\kelvin}$
- 427 \addunit{\jouleperkelvinnp}{\joule\usk\reciprocal\kelvin}

heat of combustion, fusion or vaporisation

- $428 \addunit{\jouleperkilogram}{\joule\per\kilogram}$
- $429 \addunit{\jouleperkilogramnp}{\joule\usk\reciprocal\kilogram}$

intensity of ionising radiation

- 430 \addunit{\coulombperkilogram}{\coulomb\per\kilogram}
- 431 \addunit{\coulombperkilogramnp}{\coulomb\usk\reciprocal\kilogram}

kinematic viscosity

- 432 \addunit{\squaremetrepersecond}{\squaremetre\per\second}
- $433 \addunit{\squaremetrepersecondnp}{\squaremetre\usk\reciprocal\second}$

```
kinematic energy of turbulence
```

- $435 \addunit{\squaremetrepersquaresecondnp}{\squaremetre\usk\second\rpsquared}$

linear momentum

- 436 \addunit{\kilogrammetrepersecond}{\kilogram\usk\metre\per\second}
- 437 \addunit{\kilogrammetrepersecondnp}{\kilogram\usk\metre\usk\reciprocal\second}

luminance

- $438 \addunit{\candelapersquaremetre}{\candelaper\squaremetre}$
- 439 \addunit{\candelapersquaremetrenp}{\candela\usk\rpsquare\metre}

magnetic field strength

- 440 \addunit{\amperepermetre}{\ampere\per\metre}
- 441 \addunit{\amperepermetrenp}{\ampere\usk\reciprocal\metre}

magnetic moment

- 442 \addunit{\joulepertesla}{\joule\per\tesla}
- $443 \addunit{\jouleperteslanp}{\joule\usk\reciprocal\tesla}$

magnetic permeability

- 444 \addunit{\henrypermetre}{\henry\per\metre}
- 445 \addunit{\henrypermetrenp}{\henry\usk\reciprocal\metre}

mass flow rate

- 446 \addunit{\kilogrampersecond}{\kilogram\per\second}
- $447 \addunit{\kilogrampersecondnp}{\kilogram\usk\reciprocal\second}$

mass flux

- $448 \verb| Addunit{\tilde{\kilogrampersquaremetresecond}{\tilde{\kilogrampersquaremetre}} \\ + (1) \\ + (2) \\ + (3)$
- $449 \verb|\addunit{\kilogrampersquaremetresecondnp}{\kilogram\usk\rpsquare\metre\usk\reciprocal\second}|$

mass per unit area

- $450 \addunit{\kilogrampersquaremetre}{\kilogram\per\squaremetre}$
- $451 \label{logrampersquaremetrenp} {\tt kilogram} usk \verb|rpsquare|| metre||$

mass per unit length

- $452 \addunit{\kilogrampermetre}{\kilogram\per\metre}$
- $453 \addunit{\kilogrampermetrenp}{\kilogram\usk\reciprocal\mbox{metre}}$

molar heat capacity, molar entropy

- $454 \addunit{\joulepermolekelvin}{\joule\per\mole\usk\kelvin}$

molecular weight

- 456 \addunit{\kilogramperkilomole}{\kilogram\per\kilo\mole}
- 457 \addunit{\kilogramperkilomolenp}{\kilogram\usk\kilo\reciprocal\mole}

```
moment of inertia
458 \addunit{\kilogramsquaremetre}{\kilogram\usk\squaremetre}
459 \addunit{\kilogramsquaremetrenp}{\kilogramsquaremetre}
 momentum flow rate
460 \addunit{\kilogrammetrepersquaresecond}{\kilogram\usk\metre\per\second\squared}
461 \addunit{\kilogrammetrepersquaresecondnp}{\kilogram\usk\metre\usk\second\rpsquared}
 momentum flux
462 \addunit{\newtonpersquaremetre}{\newton\per\squaremetre}
463 \addunit{\newtonpersquaremetrenp}{\newton\usk\rpsquare\metre}
 photon emission rate
464 \addunit{\persquaremetresecond} {1\per\squaremetre\usk\second}
465 \ \texttt{Addunit} \{ \texttt{persquaremetresecondnp} \} \{ \texttt{npsquare} \texttt{metre} \texttt{usk} \texttt{reciprocal} \texttt{second} \} \}
 power per unit mass
466 \addunit{\wattperkilogram}{\watt\per\kilogram}
467 \addunit{\wattperkilogramnp}{\watt\usk\reciprocal\kilogram}
 power per unit volume
468 \addunit{\wattpercubicmetre}{\watt\per\cubic\metre}
469 \addunit{\wattpercubicmetrenp}{\watt\usk\rpcubic\metre}
 radiance
470 \addunit{\wattpersquaremetresteradian}{\watt\per\squaremetre\usk\steradian}
471 \addunit{\wattpersquaremetresteradiannp}{\watt\usk\rpsquare\metre\usk\rp\steradian}
 specific heat capacity
472 \label{logramkelvin} {\clipsel{logram} with the logram of the logr
473 \addunit{\jouleperkilogramkelvinnp}{\joule\usk\reciprocal\kilogram\usk\reciprocal\kelvin}
 specific surface
474 \addunit{\squaremetreperkilogram}{\squaremetre\per\kilogram}
475 \addunit{\rpsquaremetreperkilogram}{\squaremetre\usk\reciprocal\kilogram}
 specific volume
476 \addunit{\cubicmetreperkilogram}{\cubic\metre\per\kilogram}
477 \addunit{\rpcubicmetreperkilogram}{\cubic\metre\usk\reciprocal\kilogram}
 surface tension
478 \addunit{\newtonpermetre}{\newton\per\metre}
derived SI unit: °C
480 \addunit{\Celsius}{\ensuremath{\SIOfstyle{C}}}\}
```

```
thermal conductivity
481 \addunit{\wattpermetrekelvin}{\watt\per\metre\usk\kelvin}
482 \addunit{\wattpermetrekelvinnp}{\watt\usk\reciprocal\metre\usk\reciprocal\kelvin}
torque
483 \addunit{\newtonmetre}{\newton\usk\metre} \addunit{\newtonmetrenp}{\newtonmetre}
turbulence energy dissipation rate
485 \addunit{\squaremetrepercubicsecondnp}{\squaremetre\usk\rpcubic\second}
velocity
486 \addunit{\metrepersecond}{\metre\per\second}
487 \addunit{\metrepersecondnp}{\metre\usk\reciprocal\second}
volumetric calorific value
488 \addunit{\joulepercubicmetre}{\joule\per\cubicmetre}
489 \addunit{\joulepercubicmetrenp}{\joule\usk\rpcubic\metre}
volumetric coefficient of expansion
490 \addunit{\kilogrampercubicmetrecoulomb}{\kilogram\per\cubic\metre\usk\coulomb}
491 \addunit{\kilogrampercubicmetrecoulombnp}{\kilogram\usk\rpcubic\metre\usk\reciprocal\coulomb}
volumetric flow rate
492 \addunit{\cubicmetrepersecond}{\cubicmetre\per\second}
493 \addunit{\rpcubicmetrepersecond}{\cubicmetre\usk\reciprocal\second}
volumetric mass flow rate
494 \addunit{\kilogrampersecondcubicmetre}{\kilogram\per\second\usk\cubicmetre}
495 \addunit{\kilogrampersecondcubicmetrenp}{\kilogram\usk\reciprocal\second\usk\rpcubic\metre}
10.15
        Option handling
10.15.1 cdot option
496 \DeclareOption{cdot}{\@cdot{Option 'cdot' provided!}}
10.15.2 thickspace option
497 \DeclareOption{thickspace}{\@thickspace{Option 'thickspace' provided!}}
10.15.3 mediumspace option
498 \DeclareOption{mediumspace}{\@mediumspace{Option 'mediumspace' provided!}}
10.15.4 thinspace option
```

499 \DeclareOption{thinspace}{\@thinspace{Option 'thinspace' provided!}}

10.15.5 thickqspace option

Options

```
500 \DeclareOption{thickqspace}{\@thickqspace{Option 'thickqspace' provided!}}
  10.15.6 mediumgspace option
501 \DeclareOption{mediumqspace}{\@mediumqspace{Option 'mediumqspace' provided!}}
  10.15.7 thingspace option
502 \DeclareOption{thinqspace}{\@thinqspace{Option 'thinqspace' provided!}}
   10.15.8 textstyle option
  Typeset units in text style.
503 \end{The properties of the properties of t
504 \@textstyletrue%
505 \typeout{Option 'textstyle' provided!}}
  10.16
                                 compatibility options
506 \DeclareOption{amssymb}{\@redefsquaretrue%
507 \typeout{Option 'amssymb' provided!}}
508 \DeclareOption{squaren}{\@defsquarentrue%
509 \typeout{Option 'squaren' provided!}}
510 \DeclareOption{pstricks}{\@redefGraytrue%
511 \typeout{Option 'pstricks' provided!}}
512 \DeclareOption{Gray}{\@defGraytrue%
513 \typeout{Option 'Gray' provided!}}
514 \DeclareOption{italian}{\@defitaliantrue%
515 \typeout{Option 'italian' provided!}}
  10.17 Miscellaneous options
516 \DeclareOption{binary}{\@optionbinarytrue }
517 \AtEndOfPackage{\if@optionbinary\RequirePackage{binary}\fi}
518 \label{lem:simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple_simple
519 \DeclareOption{derived}{\SIunits@opt@derived}
520 \DeclareOption{noams}{\@optionNoAMStrue%
521 \typeout{Option 'noams' provided!}}
   10.18
                                 Unknown options
522 \DeclareOption*{\PackageWarningNoLine{SIunits}{What is '\CurrentOption'?}}
  10.19
                                 The SIunits.cfg file
  Load the SIunits.cfg file.
523 \InputIfFileExists{SIunits.cfg}{}%
524 {\PackageWarningNoLine{SIunits}{You have no 'SIunits.cfg' file installed.
525 \MessageBreak I will assume you are using 'thickspace' and 'thickqspace'}
526 \ExecuteOptions{thickspace,thickqspace}}
527 \ProcessOptions\relax
528 \langle /package \rangle
```

11 The binary style for binary prefixes and (non-SI) units

```
529 \*binary\
530 \AtBeginDocument{%
531 \addprefix{\kibi}{Ki} \newcommand{\kibid}{\power{2}{10}}
532 \addprefix{\mebi}{Mi} \newcommand{\mebid}{\power{2}{20}}
533 \addprefix{\gibi}{Gi} \newcommand{\gibid}{\power{2}{30}}
534 \addprefix{\tebi}{Ti} \newcommand{\tebid}{\power{2}{40}}
535 \addprefix{\pebi}{Pi} \newcommand{\pebid}{\power{2}{50}}
536 \addprefix{\exbi}{Ei} \newcommand{\exbid}{\power{2}{60}}
537
538 \addunit{\bit}{\bit}
539 \addunit{\byte}{B}%
540 } \%AtBeginDocument
541 \( /\binary \rangle
```

Copyright ©2001 Marcel Heldoorn.

This program may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.2 of this license or (at your option) any later version. The latest version of this license is in http://www.latex-project.org/lppl.txt and version 1.2 or later is part of all distributions of LaTeX version 1999/12/01 or later.

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols	\degree 43	\hectod 40
\ 37	\degreecelsius 43	\henry 52
\@cdot 34, 37, 54	\derbecquerel 46	\henrybase 45
\@defitalianfalse . 33	\dercelsius 46	\hertzbase 44, 45
\@defitaliantrue 55	\dercoulomb 46	\hour 51
\@inunitcommandfalse	\derfarad 46	_
33, 37, 38, 43	\dergray 46	I
\@inunitcommandtrue	\derhenry 46	\if@defitalian 33, 38
37, 38	\derhertz 45, 46	\if@inunitcommand 33, 37
\@mediumqspace 35, 37, 55	\derjoule 45	_
\@mediumspace 34, 37, 54	\derkatal 46	J
\@optionNoAMStrue . 55	\derlumen 46	\joule $46, 49, 51-54$
\@optionbinaryfalse 33	\derlux 46	\joulebase 44
\@thickqspace 35, 37, 55	\dernewton 45	
\@thickspace . 34, 37, 54	\derohm 46	\mathbf{K}
\@thinqspace . $35, 37, 55$	\derpascal 45	\katal 50
\@thinspace 34, 37, 54	\derradian 45	\katalbase \dots 45, 46
	\dersiemens 46	\k atalpercubicmetre 50
A	\dersievert 46	$\$ \katalpercubicmetrenp
\addprefix 36, 39, 40, 56	\dersteradian 45	50
\addunit 41-54, 56	\dertesla 46	\kelvin $45, 46, 51-54$
\ampere 45, 46, 50, 52	\dervolt 46	\kibi 56
\are 48	\derwatt 45	\kibid 56
\atto 39	\derweber 46	\kilo $40, 41, 51, 52$
\attod 40		10
(======================================	T.	\kilod 40
	E	\kilod 40 \kilogram . 44-46, 50-54
В	\exa 40	
${\bf B} \\ \texttt{becquerelbase} \ \ldots \ \ 45$	\exa 40 \exad 40	$\verb \kilogram . 44-46, 50-54 $
B \becquerelbase 45 \bit 56	\exa	$\verb \kilogram . 44-46, 50-54 $
${\bf B} \\ \texttt{becquerelbase} \ \ldots \ \ 45$	\exa 40 \exad 40	$\label{eq:kilogram} \begin{array}{llllllllllllllllllllllllllllllllllll$
B \becquerelbase 45 \bit 56 \byte 56	\exa	$\label{eq:local_local} $$ \begin{array}{cccc} {\bf kilogram} & . & 44-46, 50-54 \\ {\bf kilowatthour} & . & . & . & . \\ & {\bf L} \end{array} $$$
B \becquerelbase 45 \bit 56 \byte 56	\exa	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52	\exa	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
B \becquerelbase 45 \bit 56 \byte 56 C Candela 45, 46, 52 \catcode 37	\exa	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
B \becquerelbase 45 \bit 56 \byte 56 C C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53	\exa	\kilogram . 44-46, 50-54 \kilowatthour 51 \\
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\exa	\kilogram . 44-46, 50-54 \kilowatthour 51 \\ L \lumen 46 \lumenbase 45 \luxbase 45
B \becquerelbase 45 \bit 56 \byte 56 C C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40	\exa	\kilogram . 44-46, 50-54 \kilowatthour 51 \\ L \lumen 46 \lumenbase 45 \luxbase 45 \\ M \mebi
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\exa	kilogram .44-46, 50-54 kilowatthour .51 L .46 lumen .45 luxbase .45 M Mebi .56 mega .40
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \changes 44	\exa	kilogram .44-46, 50-54 kilowatthour .51 L .46 lumen .45 luxbase .45 M .45 Mebi .56 mega .40
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \changes 44 \coulomb . 46, 50, 51, 54	\exa	kilogram .44-46, 50-54 kilowatthour .51 L .46 lumen .45 luxbase .45 M .45 Mebi .56 mega .40 megad .40
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centid 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45	\exa	\kilogram . 44-46, 50-54 \kilowatthour 51 L \lumen 46 \lumenbase 45 \luxbase 45 M \mebi 56 \mebid 56 \mega 40 \megad 40 \metre 35, 44-46, 49-54 \micro 36, 40
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centid 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44	\exa	L L L L L L L L L L
B \becquerelbase 45 \bit 56 \byte 56 C \Candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centid 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44 \cubic 45, 49-51, 53, 54	\exa	L L L L L L L L L L
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centid 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44	\exa	L L L L L L L L L L
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centid 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44 \cubic 45, 49-51, 53, 54 \cubicmetre 54	\exa 40 \exad 40 \exbi 56 \exbid 56 F \farad 51 \faradbase 45 \femto 39 \femtod 40 \fourth 45 G \gibi 56 \gibid 56 \giga 40 \gigad 40 \gram 41 \Gray 44	L L L L L L L L L L
B \becquerelbase 45 \bit 56 \byte 56 C \candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centid 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44 \cubic 45, 49-51, 53, 54 \cubicmetre 54	\exa 40 \exad 40 \exbi 56 \exbid 56 F \farad 51 \faradbase 45 \femto 39 \femtod 40 \fourth 45 G \gibi 56 \gibid 56 \giga 40 \gigad 40 \gram 41 \Gray 44 \gray 49	L L L L L L L L L L
B \becquerelbase 45 \bit 56 \byte 56 C \Candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centi 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44 \cubic 45, 49-51, 53, 54 \cubicmetre 54 D \deca 35, 40	\exa 40 \exad 40 \exbi 56 \exbid 56 F \farad 51 \faradbase 45 \femto 39 \femtod 40 \fourth 45 G \gibi 56 \gibid 56 \giga 40 \gigad 40 \gram 41 \Gray 44	L L L L L L L L L L
B \becquerelbase 45 \bit 56 \byte 56 C \Candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centi 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44 \cubic 45, 49-51, 53, 54 \cubicmetre 54 D \deca 35, 40 \decad 35, 40	\exa 40 \exad 40 \exbi 56 \exbid 56 F \farad 51 \faradbase 45 \femto 39 \femtod 40 \fourth 45 G \gibi 56 \gibid 56 \giga 40 \gigad 40 \gram 41 \Gray 44 \gray 49 \graybase 45	Name
B \becquerelbase 45 \bit 56 \byte 56 C \Candela 45, 46, 52 \catcode 37 \Celsius 43, 53 \celsiusbase 45 \centi 40 \centi 40 \changes 44 \coulomb 46, 50, 51, 54 \coulombbase 45 \cs 44 \cubic 45, 49-51, 53, 54 \cubicmetre 54 D \deca 35, 40	\exa 40 \exad 40 \exbi 56 \exbid 56 F \farad 51 \faradbase 45 \femto 39 \femtod 40 \fourth 45 G \gibi 56 \gibid 56 \giga 40 \gigad 40 \gram 41 \Gray 44 \gray 49	Name

\newton $45, 50, 51, 53, 54$	\rp 45, 53	${f U}$
\newtonbase 44	\rpcubic 45, 49-51, 53, 54	\unit 38
\newtonmetre 54		\upmu 40
	${f S}$	\usk 36, 37, 44-46, 49-54
O	\second $44-46, 49-54$	
\ohm 51	\SI@square 49	${f V}$
\ohmbase 45	\siemensbase 45	\volt 46, 48, 50
\one 37	\sievertbase 45	\voltbase 45
P	\SImu 33, 36, 40	
-	, ,	\mathbf{W}
\pascal 50 \pascalbase 44	\square 38	\watt 46, 51, 53, 54
1	\squared . 45, 49, 52, 53	\wattbase 44
4	\squaremetre	\weber 46
\pebi 56	44–46, 50–54	\weberbase 45
\pebid 56	\squaren 38	
\per 49–54	\steradian \dots 46, 53	\mathbf{Y}
\peta 40	\steradianbase 44	\yocto 39
· · · · · · · · · · · · · · · · · · ·		\yoctod 40
\pico 39 \picod 40	${f T}$	\yotta 40
4	\tebi 56	\yottad 40
\power 38-40, 56	\tebid 56	.,
${f R}$	\tera 40	${f z}$
\radian 49,50	\terad 40	\zepto 39
\radianbase 44	\tesla 52	\zeptod 40
\reciprocal	\teslabase 45	\zetta 40
39, 44–46, 49–54	\textperiodcentered 37	\zettad 40

Change History

v0.00 Beta 1	Spacing examples table update 24
General: Initial working version 1	v0.03 Beta 3
v0.00 Beta 2	General: \unit command changed 37
General: Various small improve-	v0.03 Beta 4
ments 1	General: Stable version, before ad-
v0.00 Beta 3	ding configuration file parame-
General: Options implemented;	ters 1
better documentation 1	v0.03 Beta 5
v0.00 Beta 4	General: Load optional configurati-
General: Inconsistencies remo-	on file 'SIunits.cfg' 55
ved/changed 1	v0.03 Beta 6
v0.01	General: Stable version, before re-
General: Small documentation er-	leasing v0.03 1
rors (thanks to Juergen von	v0.03 Final Release
Haegen) 1	General: Release v0.03 1
v0.02 Beta 1	v0.04
\addunit: \addunit command ad-	\ohm: \ohm definition changed
ded 36	(thanks to Juergen von Hae-
v0.02 Beta 2	gen) $\dots \dots 42$
General: Code documentation cor-	v0.05 Beta 1
rections	\unit: \unit command changed,
Spacing examples table added . 24	thanks to Nancy Winfree 37
v0.02 Beta 3	v0.05 Beta 2
General: Code documentation	General: First package release un-
checked and corrected 1	der LaTeX Project Public Li-
decimals: \pH command removed	cense 1
(not in SI) 49	v0.05 Final Release
v0.02 Beta 4	General: Release v0.05 under La-
General: Typos corrected (thanks	TeX Project Public License 1
to Rafael Rodriguez Pappalar-	v0.06 Beta 1
do)	\unit: \unit command changed
v0.02 Beta 5	back to v0.04 version, thanks to
General: Generated for Timothy C.	Jürgen von Hagen 37
Burt (tcburt@comp.uark.edu) . 1	v0.06 Beta 2
v0.02 Beta 6	General: amssymb compatibility . 37
General: Inconsistencies removed in	amssymb conflicts section added
documentation 24	to documentation 23
v0.02 Beta 7	Problem with amssymb package
decimals: \angstrom changed;	solved thanks to Timothy C.
thanks to Lutz Schwalowsky . 48	Burt
v0.02 Final Release	v0.07 Beta 1
General: Acknowledgements upda-	\SIunits@opt@mediumqspace: me-
ted 31	diumqspace option corrected . 35
v0.03 Beta 1	v0.99
\lux: \lux unit corrected: lx 43	General: \one command added 37
v0.03 Beta 2	Font handling enhanced 33
General: \NoAMS command added 36	LaTeX2e option handling imple-
\qsk command added 36	mented 54
\quantityskip command added 36	New binary prefixes sup-
\unit command added 37	port/documentation section ad-
documentation undate 27	ded 10

pstricks conflicts section added to	with the cdot and textstyle op-
documentation 24	tions, by redefining the \cdot
\degree: \arcsecond and	command. Thanks to Michael
\arcminute added 46	Müller
\unit: period in second argument of	v1.23
\unit automatically spaces the	\unit: \unit command: parameter
unit using \usk 37	#1 made math by \ensuremath 37
v1.00	v1.26
General: released as SI units v1.00 \cdot 1	\no@qsk: \no@qsk command chan-
v1.01	ged to get right behaviour with
General: exponent of \power com-	degree, minute, second 37
mand made textstyle sensitive 37	v1.29
v1.08	General: Index and change history
General: amssymb compatibility	generation errors fixed 56
improved 38	\SI@square: unwanted space remo-
v1.13	ved (thanks to Svend Tollak
General: catalytic concentration ad-	Munkejord)
ded 50	v1.30
implementation of SI-brochure	General: E-mail address change:
Supplement 2000 1	${\tt SIunits@webschool.nl}$ 1
Index and change history generation error fixed	option italian added 55
	\unita: \unita added to resolve
\katal: unit katal with symbol kat implemented 44	conflict with babel with italian
v1.15	language option 38
General: E-mail address change:	v1.32
marcel.heldoorn@webschool.nl	General: hyperref package used in
	documentation driver 1
v1.20	v1.33
General: Solved bug: Defining units	General: Current version submitted
using \addunit in combination	to CTAN $\dots \dots 1$