Conquest in the true world and the T3, T2 and T1 graphs

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe conquest in the true world and the T3, T2 and T1 graphs.

The paper ends with "The End"

Introduction

In a previous paper, I've described the generalized rate equation of the true world and a solution.

Contrary to popular belief, **conquest** is possible in the true world because conquest is also a truth of the true world.

Whenever x true nations eliminate the remaining (4-x) nations of the true world, the true world reduces further and become even more true.

Conquest is **easy** when x = 3, i.e., with three true nations attacking and defeating the fourth true nation in an **unfair war**.

Conquest is **fair** when x = 2, i.e., with two true nations attacking and defeating the two remaining true nations in an **allied war**.

Conquest is **difficult** when x = 1, i.e., with one true nation attacking and defeating the three remaining true nations in a **survivalist war**.

Therefore, in this paper, I describe the T3 graph, the T2 graph and the T1 graph.

The T3 graph

The set of vertices in the T3 graph are $\{1,2,3\}$. The set of edges in the T3 graph are $\{1\rightarrow 1,1\rightarrow 2,1\rightarrow 3,2\rightarrow 1,2\rightarrow 2,2\rightarrow 3,3\rightarrow 1,3\rightarrow 2,3\rightarrow 3\}$.

The T2 graph

The set of vertices in the T2 graph are $\{1,2\}$. The set of edges in the T2 graph are $\{1\to 1, 1\to 2, 2\to 1, 2\to 2\}$.

The T1 graph

The set of vertices in the T1 graph are $\{1\}$. The set of edges in the T1 graph are $\{1 \rightarrow 1\}$.

The End