Devoir à la maison n°12

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 —

On note f l'application qui à un polynôme $P \in \mathbb{R}[X]$ associe le polynôme $(X^2 - 1)P'' + 4XP'$.

On rappelle que $\mathbb{R}_n[X]$ désigne l'ensemble des polynômes de degré *inférieur ou égal* à n. Notamment $\mathbb{R}_{-1}[X] = \{0\}$.

On notera également I_n l'identité de $\mathbb{R}_n[X]$.

Partie I – Étude d'un endomorphisme

- **1.** Montrer que f est un endomorphisme de $\mathbb{R}[X]$.
- 2. On suppose qu'il existe $\lambda \in \mathbb{R}$ et $P \in \mathbb{R}[X]$ non nul tel que $f(P) = \lambda P$. En considérant le coefficient dominant de P, montrer que l'on a nécessairement $\lambda = n(n+3)$ où n désigne le degré de P.
- 3. Dans la suite de l'énoncé, on pose $\lambda_n = n(n+3)$ pour $n \in \mathbb{N}$. Montrer que si un polynôme $P \in \mathbb{R}[X]$ non nul vérifie $f(P) = \lambda_n P$, alors deg P = n.
- **4.** Soit $n \in \mathbb{N}$. Montrer que f induit un endomorphisme de $\mathbb{R}_n[X]$, autrement dit que $\mathbb{R}_n[X]$ est stable par f. On notera f_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par f.
- **5.** Dans cette question, on pose $F_n = \text{Ker}(f_n \lambda_n I_n)$ et $G_n = \text{Im}(f_n \lambda_n I_n)$ pour tout $n \in \mathbb{N}$.
 - **a.** Montrer $G_n \subset \mathbb{R}_{n-1}[X]$. Que peut-on en déduire sur la dimension de F_n ?
 - **b.** Montrer que $\mathbb{R}_n[X] = \mathbb{F}_n \oplus \mathbb{R}_{n-1}[X]$.
 - c. En déduire la dimension de F_n puis l'existence d'un unique polynôme P_n unitaire tel que $f(P_n) = \lambda_n P_n$. On précisera le degré de P_n .
- **6.** On pose $Q_n = (-1)^n P_n(-X)$ pour $n \in \mathbb{N}$. Montrer que $f(Q_n) = \lambda_n Q_n$. Que peut-on en déduire sur la parité de P_n ?
- 7. Montrer que pour tout entier $n \ge 2$, le coefficient de X^{n-2} dans P_n est $-\frac{n(n-1)}{2(2n+1)}$.
- **8.** Calculer P_0 , P_1 et P_2 .
- **9.** On pose pour $n \in \mathbb{N}$, $R_n = (X^2 1)P'_n nXP_n$.
 - **a.** Montrer que $R'_n = (n+2)(nP_n XP'_n)$ puis calculer $f(R_n)$ en fonction de R_n seulement.
 - **b.** En déduire que pour tout $n \in \mathbb{N}^*$,

$$R_n + \frac{n(n+2)}{2n+1} P_{n-1} = 0$$

c. En dérivant cette dernière relation, montrer que pour tout entier $n \ge 2$,

$$P_n - XP_{n-1} + \frac{n^2 - 1}{4n^2 - 1}P_{n-2} = 0$$

Partie II - Comportement asymptotique d'une suite

On considère la suite réelle (u_n) de premiers termes $u_0=1, u_1=\frac{10}{9}$ et telle que pour tout entier $n\geq 2$,

$$u_n = u_{n-1} + \frac{1}{9} \left[u_{n-1} - u_{n-2} + \frac{3}{4n^2 - 1} u_{n-2} \right]$$

- 10. Décomposer en éléments simples la fraction rationnelle $\frac{1}{4X^2-1}$. En déduire un expression simple de $S_n = \sum_{k=2}^n \frac{1}{4k^2-1}$ pour tout entier $n \ge 2$ ainsi que la limite de la suite (S_n) .
- **11. a.** Montrer par récurrence que pour tout $n \in \mathbb{N}^*$, $u_n \ge u_{n-1} \ge 1$.
 - **b.** Montrer que pour tout entier $n \ge 2$,

$$u_n = u_1 + \frac{1}{9} \left[u_{n-1} - u_0 + \sum_{k=2}^{n} \frac{3}{4k^2 - 1} u_{k-2} \right]$$

- **c.** En déduire que $u_n \le \frac{6}{5}$ pour tout $n \in \mathbb{N}$ et en déduire la convergence de la suite (u_n) .
- **12.** On pose pour $n \in \mathbb{N}$ et $t \in \mathbb{R}$

$$f_n(t) = \frac{2^n}{e^{nt}} P_n(\operatorname{ch} t)$$

a. Déterminer les fonctions f_0 et f_1 et montrer que pour tout entier $n \ge 2$

$$\forall t \in \mathbb{R}, \ f_n(t) - f_{n-1}(t) = e^{-2t} \left[f_{n-1}(t) - f_{n-2}(t) + \frac{3}{4n^2 - 1} f_{n-2}(t) \right]$$

- **b.** Montrer par récurrence que pour tout entier $n \in \mathbb{N}^*$, les fonctions f_{n-1} et $f_n f_{n-1}$ sont positives et décroissantes sur \mathbb{R} .
- 13. Montrer que la fonction ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. On note argch sa bijection réciproque. Préciser le sens de variation de argch.
- **14.** a. On pose $\alpha = \operatorname{argch}(5/3)$. Déterminer e^{α} et montrer que $u_n = f_n(\alpha)$ pour tout entier $n \in \mathbb{N}$.
 - **b.** On se donne un réel $x \ge \frac{5}{3}$. Montrer que la suite de terme général $f_n(\operatorname{argch} x)$ converge vers une limite strictement positive $\ell(x)$ que l'on ne demande pas de déterminer. En déduire un équivalent de $P_n(x)$ lorsque n tend vers $+\infty$ que l'on exprimera à l'aide de $\ell(x)$.