Time Dilation in Special Relativity

Lorentz Factor

The Lorentz factor (γ) describes how time dilates for an object moving at velocity v relative to an observer:

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

where: - v = velocity of the moving object, - c = speed of light ($c = 299, 792, 458 \,\mathrm{m/s}$).

Time Dilation Formula

The relationship between time intervals measured in different frames:

$$\Delta t = \gamma \Delta t'$$

- $\Delta t'$ = time interval measured in the **moving frame** (proper time), - Δt = time interval measured in the **stationary frame**.

Time Difference

The time difference $(\Delta \tau)$ between the two frames:

$$\Delta \tau = \Delta t - \Delta t' = \Delta t' (\gamma - 1)$$

Calculations

We will calculate the Lorentz factor and time difference for velocities ranging from 0 to c.

Example Velocities

Let's consider the following velocities:

$$v = 0.1c, 0.5c, 0.9c, 0.99c, 0.999c$$

Calculations for Each Velocity

1. Calculate γ :

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

2. Assume $\Delta t' = 1$ s, calculate Δt and $\Delta \tau$:

$$\Delta t = \gamma \Delta t'$$

$$\Delta \tau = \Delta t - \Delta t' = (\gamma - 1) \Delta t'$$

Tabulated Results

\overline{v}	v/c	γ	Δt (s)	$\Delta \tau$ (s)
0.1c	0.1	1.0050	1.0050	0.0050
0.5c	0.5	1.1547	1.1547	0.1547
0.9c	0.9	2.2942	2.2942	1.2942
0.99c	0.99	7.0888	7.0888	6.0888
0.999c	0.999	22.3663	22.3663	21.3663

Plots of Lorentz Factor and Time Difference

Plot of v vs. γ

Lorentz Factor vs. Velocity

25
20
15
10
0 0.2 0.4 0.6 0.8 1 v (in multiples of c)

Plot of v vs. $\Delta \tau$

Assuming $\Delta t' = 1 \,\mathrm{s}$.

Energy Requirements

Relativistic Kinetic Energy

The kinetic energy (KE) required to accelerate an object to a relativistic speed is:

$$KE = (\gamma - 1)mc^2$$

where: - m= rest mass of the object, - $\gamma=$ Lorentz factor, - c= speed of light.

Calculations for the DeLorean

Assuming the DeLorean has a mass $m = 1,230 \,\mathrm{kg}$.

Calculations at Various Speeds

1. v = 0.1c: $\gamma = 1.0050$

2. v = 0.5c: $\gamma = 1.1547$

3. v = 0.9c: $\gamma = 2.2942$

4. v = 0.99c: $\gamma = 7.0888$

5. v = 0.999c: $\gamma = 22.3663$

Calculate KE for each velocity:

$$KE = (\gamma - 1)mc^2$$

Tabulated Results

\overline{v}	γ	KE(J)	$KE (10^{16} \text{ J})$
0.1c	1.0050	3.328×10^{16}	0.3328
0.5c	1.1547	1.066×10^{18}	10.66
0.9c	2.2942	2.205×10^{19}	220.5
0.99c	7.0888	6.583×10^{19}	658.3
0.999c	22.3663	2.078×10^{20}	2078

Plot of v vs. KE

Energy from Hydrogen Fusion

Energy Released per Fusion Reaction:

In the proton-proton chain reaction (dominant in stars like the Sun), four protons fuse to form a helium nucleus, releasing about $26.7\,\mathrm{MeV}$ per reaction.

$$E_{\text{fusion}} = 26.7 \,\text{MeV} = 4.28 \times 10^{-12} \,\text{J}$$

Energy per Kilogram of Hydrogen:

Mass of four protons:

$$m_{\text{protons}} = 4 \times 1.6726 \times 10^{-27} \,\text{kg} = 6.6904 \times 10^{-27} \,\text{kg}$$

Number of reactions per kg of hydrogen:

$$N = \frac{1 \text{ kg}}{6.6904 \times 10^{-27} \text{ kg}} \approx 1.495 \times 10^{26}$$

Total energy per kg of hydrogen:

$$E_{\text{total}} = N \times E_{\text{fusion}} = (1.495 \times 10^{26}) \times (4.28 \times 10^{-12} \text{ J}) \approx 6.4 \times 10^{14} \text{ J}$$

Calculating Mass of Hydrogen Needed

For v = 0.9c:

Energy required:

$$KE = 2.205 \times 10^{19} \,\mathrm{J}$$

Mass of hydrogen needed:

$$m_{\rm H} = \frac{KE}{E_{\rm total~per~kg}} = \frac{2.205 \times 10^{19} \, \rm J}{6.4 \times 10^{14} \, \rm J/kg} \approx 34,453 \, \rm kg$$

For v = 0.99c:

Energy required:

$$KE = 6.583 \times 10^{19} \,\mathrm{J}$$

Mass of hydrogen needed:

$$m_{\rm H} = \frac{6.583 \times 10^{19} \, \rm J}{6.4 \times 10^{14} \, \rm J/kg} \approx 102,859 \, \rm kg$$

For v = 0.999c:

Energy required:

$$KE = 2.078 \times 10^{20} \,\mathrm{J}$$

Mass of hydrogen needed:

$$m_{\rm H} = \frac{2.078 \times 10^{20} \, \rm J}{6.4 \times 10^{14} \, \rm J/kg} \approx 324,688 \, \rm kg$$

Summary Table

\overline{v}	$KE (10^{19} \text{ J})$	$m_{\rm H}~({\rm kg})$	$m_{\rm H}$ (tonnes)
0.9c	2.205	34,453	34.5
0.99c	6.583	$102,\!859$	102.9
0.999c	20.78	$324,\!688$	324.7

Interpretation

- Accelerating the DeLorean to relativistic speeds requires immense amounts of energy. - Even with efficient hydrogen fusion, large masses of hydrogen would be needed. - For v=0.999c, over 324 tonnes of hydrogen would be required.

Key Equations Summary

Lorentz Factor

$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

Time Dilation

$$\Delta t = \gamma \Delta t'$$

Time Difference

$$\Delta \tau = \Delta t - \Delta t' = \Delta t' (\gamma - 1)$$

Relativistic Kinetic Energy

$$KE = (\gamma - 1)mc^2$$

Energy from Fusion

$$E_{\rm fusion\ per\ kg} \approx 6.4 \times 10^{14} \, {\rm J/kg}$$