Solutions to Math 51 Second Exam — February 28, 2013

1. (10 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation whose matrix with respect to the standard basis is

$$A = \begin{bmatrix} 4 & -2 \\ 3 & -1 \end{bmatrix}.$$

(a) (4 points) Show that T has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$, and find a basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ of \mathbf{R}^2 such that $T\mathbf{v}_i = \lambda_i \mathbf{v}_i$.

The characteristic polynomial of A is

$$\begin{vmatrix} \lambda - 4 & 2 \\ -3 & \lambda + 1 \end{vmatrix} = (\lambda - 4)(\lambda + 1) + 6 = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2).$$

Therefore the eigenvalues are 1 and 2. The eigenspaces are

$$E_1 = N(I_2 - A) = N\left(\begin{bmatrix} -3 & 2 \\ -3 & 2 \end{bmatrix}\right) = \operatorname{span}\left(\begin{bmatrix} 2 \\ 3 \end{bmatrix}\right),$$

$$E_2 = N(2I_2 - A) = N\left(\begin{bmatrix} -2 & 2 \\ -3 & 3 \end{bmatrix}\right) = \operatorname{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right),$$

so such a basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

(Any $c_i \mathbf{v}_i$ with $c_i \neq 0$ is also correct in place of \mathbf{v}_i above.)

(b) (3 points) Find 2×2 matrices C and D so that D is diagonal and $A = CDC^{-1}$. Also compute CDC^{-1} explicitly to verify that it equals A.

Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ and define

$$C = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix},$$

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Since C is the change of basis matrix from \mathcal{B} -coordinates to standard coordinates (as C has columns given by the standard coordinates of \mathbf{v}_1 and \mathbf{v}_2), and since D is the matrix for T in \mathcal{B} -coordinates, $D = C^{-1}AC$. Therefore, $A = CDC^{-1}$; the direct numerical verification of this is straightforward. (It is also correct if we replace each column of C with a nonzero scalar multiple.)

(c) (3 points) What is A^7 ?

Note that

$$C^{-1} = \begin{bmatrix} -1 & 1\\ 3 & -2 \end{bmatrix}$$

(as is needed in the numerical verification in the previous part). We have

$$A^{7} = CD^{7}C^{-1}$$

$$= \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 128 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 3 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 128 \\ 3 & 128 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 3 & -2 \end{bmatrix}$$

$$= \begin{bmatrix} 382 & -254 \\ 381 & -253 \end{bmatrix}.$$

- 2. (10 points) Consider the symmetric 2×2 matrix $A = \begin{bmatrix} 7 & 6 \\ 6 & 2 \end{bmatrix}$.
 - (a) (2 points) Compute the quadratic form $Q_A(x,y) = \mathbf{v}^T A \mathbf{v}$ with $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$.

The diagonal entries contribute to the coefficients of the square terms and the off-diagonal entries contribute to the "cross-term". That is:

$$Q_A(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 7 & 6 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 7x + 6y \\ 6x + 2y \end{bmatrix} = 7x^2 + 12xy + 2y^2.$$

(b) (6 points) Find the characteristic polynomial $p_A(\lambda)$ of A, find its real roots $\lambda_1 < \lambda_2$ (they are distinct nonzero integers), and find eigenvectors \mathbf{v}_1 and \mathbf{v}_2 for these respective eigenvalues. Also determine if Q_A is positive-definite, negative-definite, or indefinite.

Computing the determinant of $\lambda I_2 - A$,

$$p_A(\lambda) = (\lambda - 7)(\lambda - 2) - 36 = \lambda^2 - 9\lambda - 22 = (\lambda + 2)(\lambda - 11),$$

so the eigenvalues are $\lambda_1 = -2$ and $\lambda_2 = 11$. The respective eigenspaces $N(\lambda_i I_2 - A)$ are then computed to be respectively spanned by $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. (Any $c_i \mathbf{v}_i$ with $c_i \neq 0$ is also correct in place of \mathbf{v}_i .) Since one eigenvalue is positive and one is negative, Q_A is indefinite.

(c) (2 points) Letting $\mathbf{u}_i = \mathbf{v}_i/\|\mathbf{v}_i\|$ be the unit vector in the direction of \mathbf{v}_i , what is the expression for Q_A in the linear coordinate system $\{u,v\}$ associated to the basis $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ of mutually perpendicular unit vectors? That is, find an explicit (non-matrix) formula for $Q_A(u\mathbf{u}_1 + v\mathbf{u}_2)$ in terms of u and v. (This does *not* require doing a long or messy computation.)

When using linear coordinates relative to a basis of unit eigenvectors for a symmetric matrix, the expression for the associated quadratic form is always diagonal with coefficients that are the respective eigenvalues. Thus,

$$Q_A(u\mathbf{u}_1 + v\mathbf{u}_2) = \lambda_1 u^2 + \lambda_2 v^2 = -2u^2 + 11v^2.$$

3. (10 points) Consider the matrices

$$A = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -2 & 4 \\ 3 & 1 & -1 \end{bmatrix}, \quad A' = \begin{bmatrix} -2 & -1 & 0 \\ 13 & 7 & 2 \\ 7 & 4 & 1 \end{bmatrix}.$$

(a) (7 points) Compute det(A), and then show A is invertible with inverse equal to A' by carrying out the usual method for finding the inverse of a matrix and verifying that you obtain A'.

Expanding along the top row,

$$\det(A) = -1(2-4) - 1(-1-12) - 2(1-(-6)) = 2 + 13 - 2 \cdot 7 = 1.$$

To find A^{-1} , swap the first and second rows to arrive at the augmented matrix form

$$\begin{bmatrix} 1 & -2 & 4 & | & 0 & 1 & 0 \\ -1 & 1 & -2 & | & 1 & 0 & 0 \\ 3 & 1 & -1 & | & 0 & 0 & 1 \end{bmatrix}.$$

Adding the first row to the second, and subtracting 3 times the first row from the third yields

$$\begin{bmatrix} 1 & -2 & 4 & | & 0 & 1 & 0 \\ 0 & -1 & 2 & | & 1 & 1 & 0 \\ 0 & 7 & -13 & | & 0 & -3 & 1 \end{bmatrix}.$$

Negate the second row and then add twice that to the first as well as subtract 7 times that from the third to arrive at

$$\begin{bmatrix} 1 & 0 & 0 & | & -2 & -1 & 0 \\ 0 & 1 & -2 & | & -1 & -1 & 0 \\ 0 & 0 & 1 & | & 7 & 4 & 1 \end{bmatrix}.$$

Finally, add twice the third row to the second to obtain

$$\begin{bmatrix} 1 & 0 & 0 & | & -2 & -1 & 0 \\ 0 & 1 & 0 & | & 13 & 7 & 2 \\ 0 & 0 & 1 & | & 7 & 4 & 1 \end{bmatrix}.$$

(b) (3 points) Replace the lower-right entry of A with a variable x, yielding the matrix

$$M(x) = \begin{bmatrix} -1 & 1 & -2 \\ 1 & -2 & 4 \\ 3 & 1 & x \end{bmatrix}.$$

Find the unique x for which M(x) is not invertible.

The matrix M(x) is not invertible precisely when its determinant vanishes. By expanding along the bottom row, we compute

$$\det(M(x)) = 3(4-4) - 1(-4-(-2)) + x(2-1) = 2 + x$$

(the computation can also be done by expanding along the top row, of course), so det(M(x)) = 0 precisely for x = -2.

4. (10 points) The Archimedes spiral is the parameterized curve given by

$$f(t) = \begin{bmatrix} t\cos(t) \\ t\sin(t) \end{bmatrix}$$

for t > 0; this "spirals" out from the origin in a counterclockwise manner, with its distance from (0,0) given by the angle t (in radians) at time t. (Its equation in polar coordinates is $r = \theta$, and its equation in rectangular coordinates is a bit of a mess.)

(a) (4 points) What are the velocity vector $\mathbf{v}(t)$ and speed of this parametric curve at time t? (If you get a mess for the speed then try to simplify or recheck your work.)

The velocity at time t is

$$\mathbf{v}(t) = f'(t) = \begin{bmatrix} -t\sin(t) + \cos(t) \\ t\cos(t) + \sin(t) \end{bmatrix}.$$

The speed at time t is the norm of the velocity:

$$\sqrt{t^2 \sin^2(t) - 2t \sin(t) \cos(t) + \cos^2(t) + t^2 \cos^2(t) + 2t \sin(t) \cos(t) + \sin^2(t)} = \sqrt{t^2 + 1}.$$

(b) (3 points) Find the acceleration $\mathbf{a}(t)$ of this parameterized curve at time t, and show that the dot product $\mathbf{v}(t) \cdot \mathbf{a}(t)$ is equal to t for all t > 0.

We have

$$\mathbf{v}(t) = \begin{bmatrix} -t\sin(t) + \cos(t) \\ t\cos(t) + \sin(t) \end{bmatrix},$$

so

$$\mathbf{a}(t) = \mathbf{v}'(t) = \begin{bmatrix} -t\cos(t) - 2\sin(t) \\ -t\sin(t) + 2\cos(t) \end{bmatrix}.$$

Thus, $\mathbf{v}(t) \cdot \mathbf{a}(t) = (-t\sin(t) + \cos(t))(-t\cos(t) - 2\sin(t)) + (t\cos(t) + \sin(t))(-t\sin(t) + 2\cos(t))$. After expanding out and collecting common terms (and cancelling) this collapses to

$$t\cos^2(t) + t\sin^2(t) = t$$

as desired.

(c) (3 points) Express the tangent line to this curve at $t = \pi$ in parametric form. What number is the slope of this line? (Recall $\cos(\pi) = -1$ and $\sin(\pi) = 0$.)

We have

$$f(\pi) = \begin{bmatrix} -\pi \\ 0 \end{bmatrix}.$$

$$f'(\pi) = \begin{bmatrix} -1 \\ -\pi \end{bmatrix}.$$

Hence the tangent line is given in parametric form by

$$\begin{bmatrix} -\pi \\ 0 \end{bmatrix} + s \begin{bmatrix} -1 \\ -\pi \end{bmatrix} = \begin{bmatrix} -\pi - s \\ -\pi s \end{bmatrix}$$

with $s \in \mathbf{R}$. Taking s = 0, 1, the line passes through $(-\pi, 0)$ and $(-\pi - 1, -\pi)$, so its slope is $(-\pi - 0)/((-\pi - 1) - (-\pi)) = \pi$.

- 5. (10 points) For $\mathbf{v}_1 = (3, -2)$ and $\mathbf{v}_2 = (-1, 1)$, consider the linear transformation $T : \mathbf{R}^2 \to \mathbf{R}^2$ that satisfies $T(\mathbf{v}_1) = \mathbf{v}_1$ and $T(\mathbf{v}_2) = -\mathbf{v}_2$.
 - (a) (4 points) Determine the matrix A for T with respect to standard linear coordinates on \mathbb{R}^2 , and verify by direct computation that $A^2 = I_2$.

Because the vectors \mathbf{v}_1 and \mathbf{v}_2 form a eigenbasis for the linear transformation T, the matrix A is given by $A = CBC^{-1}$ with

$$C = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Using the formula for the inverse of a 2×2 matrix we get that

$$C^{-1} = \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array} \right].$$

Hence,

$$A = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ -4 & -5 \end{bmatrix}.$$

It is straightforward to compute A^2 and check that it is equal to I_2 .

(b) (2 points) Let D be the unit disc $\{(x,y) \in \mathbf{R}^2 \mid x^2 + y^2 \le 1\}$. What is the area of the region T(D)?

The region D has area π and $|\det T| = |-1| = 1$, so T(D) has area π .

(c) (4 points) Let $\{u, v\}$ be the linear coordinates on \mathbb{R}^2 with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Express u and v in terms of x and y, and also express x and y in terms of u and v. Use the latter to express the equation $x^2 + y^2 = 1$ in terms of $\{u, v\}$ -coordinates; your answer should be $au^2 + buv + cv^2 = 1$ for some integers a, b, c.

The matrix C in the solution to (a) is the change of basis matrix from \mathcal{B} -coordinates (i.e., $\{u, v\}$) to standard coordinates $\{x, y\}$, so C^{-1} goes in reverse. Hence,

$$\begin{bmatrix} u \\ v \end{bmatrix} = C^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ 2x+3y \end{bmatrix},$$

which is to say u = x + y and v = 2x + 3y. We can express x and y in terms of u and v by proceeding similarly with C instead of C^{-1} , or by direct manipulation, either way obtaining that x = 3u - v and y = -2u + v. Thus,

$$1 = x^{2} + y^{2} = (3u - v)^{2} + (-2u + v)^{2} = 13u^{2} - 10uv + 2v^{2}.$$

- 6. (10 points) Let L be the line in \mathbf{R}^2 spanned by $\mathbf{v}=(4,3)$. Let $P:\mathbf{R}^2\to\mathbf{R}^2$ be the orthogonal projection Proj_L onto L.
 - (a) (2 points) Find a vector $\mathbf{w} = (a, b)$ on the line through (0,0) perpendicular to L, with a and b integers and b > 0.

The condition on $\mathbf{w} = (a, b)$ is that $\mathbf{w} \cdot (4, 3) = 0$, which is to say 4a + 3b = 0. Thus, $\mathbf{w} = (-3b/4, b)$ and we have to choose b to be a positive integer making 3b/4 an integer. The "simplest" choice is b = 4, yielding $\mathbf{w} = (-3, 4)$ (though (-3n, 4n) works just as well for any positive integer n).

(b) (4 points) Let $\mathcal{B} = \{\mathbf{v}, \mathbf{w}\}$, and explain why the matrix $[P]_{\mathcal{B}}$ for $P = \operatorname{Proj}_L$ with respect to the basis \mathcal{B} of \mathbf{R}^2 is $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Also determine the matrix C that converts \mathcal{B} -coordinates into standard coordinates (i.e., $C[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$ for all $\mathbf{x} \in \mathbf{R}^2$).

Since $\mathbf{v} \in L$ we have $P(\mathbf{v}) = \mathbf{v} = 1 \cdot \mathbf{v} + 0 \cdot \mathbf{w}$. Since \mathbf{w} is orthogonal to L, $P(\mathbf{w}) = \mathbf{0} = 0 \cdot \mathbf{v} + 0 \cdot \mathbf{w}$. This encodes precisely that the matrix for P relative to $\{\mathbf{v}, \mathbf{w}\}$ is as claimed. The change of basis matrix C is the one whose columns consist of the elements of \mathcal{B} expressed in standard coordinates, so

$$C = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}.$$

(Of course, if we had chosen $\mathbf{w} = (-3n, 4n)$ for an integer n > 1 – these are the other possibilities for \mathbf{w} – then we would have obtained a different C.)

(c) (4 points) Use C from part (b) to compute the matrix A for Proj_L with respect to standard coordinates. Use the geometric meaning of Proj_L to explain why $\operatorname{Proj}_L \circ \operatorname{Proj}_L = \operatorname{Proj}_L$, and explain why this equality of linear maps implies $A^2 = A$ as 2×2 matrices (you do *not* need to check that $A^2 = A$ by direct computation).

Since C turns \mathcal{B} -coordinates into standard ones, its inverse $C^{-1} = (1/25)\begin{bmatrix} 4 & 3 \\ -3 & 4 \end{bmatrix}$ does the reverse, so the matrix for Proj_L in terms of standard coordinates is

$$A = CBC^{-1} = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \cdot (1/25) \begin{bmatrix} 4 & 3 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 16/25 & 12/25 \\ 12/25 & 9/25 \end{bmatrix}.$$

(This answer is independent of the choice of \mathbf{w} made in part (a), upon which C depends.) The projection Proj_L leaves points of L unaffected and has image contained in L, so Proj_L has no effect on $\operatorname{Proj}_L(\mathbf{x})$ for any $\mathbf{x} \in \mathbf{R}^2$. That says $\operatorname{Proj}_L(\operatorname{Proj}_L(\mathbf{x})) = \operatorname{Proj}_L(\mathbf{x})$ for any $\mathbf{x} \in \mathbf{R}^2$,

which is to say $\operatorname{Proj}_L \circ \operatorname{Proj}_L = \operatorname{Proj}_L$. Since matrix multiplication computes composition of linear maps, the matrix for $\operatorname{Proj}_L \circ \operatorname{Proj}_L$ with respect to standard coordinates is A^2 , so $A^2 = A$.

7. (10 points) For each of the 5 functions below, find the corresponding contour plot among the 6 choices given; you must give a brief justification in each case (no credit without justification); 2 points each.

D	D1 + /A T/
Function	Plot (A-F)
$x^2 + xy + y^2$	
x + y	
	<u> </u>
$\sin(x+y)$	
$\sin(x) + y$	
$\sin(x) + y$	
$x^2 + 3xy + y^2$	

Function	Plot (A-F)
$x^2 + xy + y^2$	В
x + y	D
$\sin(x+y)$	F
$\sin(x) + y$	A
$x^2 + 3xy + y^2$	E

The quadratic form $x^2 + xy + y^2$ arises from $\begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix}$ whose eigenvalues 1/2 and 3/2, so in suitable linear coordinates it is $(1/2)u^2 + (3/2)v^2$; hence, the level sets are ellipses; this is plot B.

Level sets of x + y are lines y = c - x of slope -1 evenly spaced as c varies: plot D. Since sin is periodic, $\sin(x + y)$ is a periodic array of such lines (bunched up where sin rapidly changes): plot F.

The function $\sin(x) + y$ has level sets given by $y = c - \sin(x)$ for constant c, which are graphs of functions of the form $f(x) = c - \sin(x)$. This is plot A.

The quadratic form $x^2 + 3xy + y^2$ arises from $\begin{bmatrix} 1 & 3/2 \\ 3/2 & 1 \end{bmatrix}$ whose eigenvalues are -1/2 and 5/2, so in suitable linear coordinates it is $-(1/2)u^2 + (5/2)v^2$. This gives hyperbolas centered at (0,0): plot E.