Convertitore innalzatore/abbassatore

Ipotesi per lo studio:

- interruttore ideale (u_{Son}=0,i_{Soff}=0, t_{swon}=t_{swoff}=0)
- diodo ideale (u_{Son}=0, i_{Soff}=0, t_{swon}= t_{swoff}=0)
- L,C ideali (R_L=0, ESR=0, ESL=0)
- u_i = U_i = costante
- u_o = U_o = costante
- i_o = I_o = costante

le corrente su Inon?

Analisi del funzionamento continuo (CCM)∢ Tempo di chiusura di S (t_{on}) S on - D off

Durante questa fase viene trasferita energia dall'alimentazione all'induttanza

```
come è la tensione in uscita e la corrente?? (qui dipende se il diodo Ip. Doff "da verificare" (conduce o no
```

1 I diodo in questo circuito é piú stressato Dato che Vo. Vo+Vi rispetto al circuito boost o buck · il di odo ha un suo tempo di commutazione e quindi il nodo mon pró far passare la corrente e quindi su 2 cresce la tensione fino ad essere 7 noga civa del carico e allo vo il diodo conduce pico di corrente che devo evitate -> mi serve un diodo molto veloce

Analisi del funzionamento continuo (CCM) Tempo di apertura di S (t_{off}) S off - D on

$$u_L = -U_o$$

$$u_S = U_o + U_i$$

Durante questa fase la sola induttanza fornisce energia allo stadio di uscita

fornisce energia allo stadio di uscita se chiudo l'interruttore ho che VI: L. di de switcho la devivata cambia e cambio segno

Analisi del funzionamento continuo (CCM)

Il meccanismo di trasferimento di energia in due fasi (sorgente -> induttanza -> carico) consente di alimentare il carico a qualunque tensione

Buck/Boost - Forme d'onda in CCM: uL

Buck/Boost - Forme d'onda in CCM: i

A regime:

$$\Delta I_{Lon} = \Delta I_{Loff} = \Delta I_{L} = \frac{U_{i}}{L} \cdot t_{on} = \frac{U_{o}}{L} \cdot t_{off}$$

$$M = \frac{U_o}{U_i} = \frac{t_{on}}{t_{off}} = \frac{\delta}{1 - \delta}$$

Buck/Boost - Forme d'onda in CCM: is, us

Nota

$$U_{Smax} = U_{Dmax} = U_o + U_i$$

Le maggiori capacitá di regolazione di questo convertitore si associano a maggiori sollecitazioni in tensione dei componenti

Convertitore Buck/Boost in CCM

Analisi del funzionamento discontinuo (DCM)

Tempo di chiusura di S (ton) S on - D off

A differenza del funzionamento CCM, la corrente i_L inizia con valore nullo.

Analisi del funzionamento discontinuo (DCM)

Tempo di apertura di S (t'off) S off - D on

Alla fine di questa fase la corrente dell'induttanza si annulla

Analisi del funzionamento discontinuo (DCM)

Tempo di apertura di S (t"off) S off - D off

Durante questa fase il solo condensatore fornisce energia al carico

Buck/Boost: Forme d'onda in DCM: iL

Buck/Boost: Forme d'onda in DCM: u_L

Caratteristica di controllo in DCM

$$I_{o} = \frac{I_{Lmax} \cdot t_{off}'}{2 \cdot T_{S}}; \qquad I_{Lmax} = \frac{U_{i}}{L} \cdot t_{on};$$

$$t_{off}' = \frac{U_{i}}{U_{o}} \cdot t_{on}$$

$$M = \frac{U_{o}}{U_{i}} = \delta^{2} \cdot \frac{U_{i}}{2 \cdot f_{S} \cdot L \cdot I_{o}} = \delta^{2} \cdot \frac{I_{N}}{I_{o}}$$

$$dove: \qquad I_{N} = \frac{U_{i}}{2 \cdot f_{S} \cdot L}$$

Caratteristiche di controllo totali

Anche in questo caso valgono le curve che danno la tensione d'uscita più elevata

Caratteristiche di controllo totali

Il funzionamento intermittente può manifestarsi per valori centrali di δ

Caratteristiche di uscita

Curva limite:
$$\frac{I_o}{I_N} = \frac{M}{(1+M)^2}$$

Caratteristica di controllo in DCM per carico resistivo

$$\mathbf{M} = \frac{\delta}{\sqrt{\mathbf{k}}}$$

dove:
$$k = \frac{2 \cdot f_S \cdot L}{R_o}$$

Nota: Correnti nei filtri capacitivi

Note: i_C presenta fronti ripidi

Nota: Correnti nei filtri capacitivi

Note:

i_C presenta fronti ripidi
 i_i = i_S presenta anch'essa fronti ripidi

Nota: Correnti nei filtri capacitivi

Sia il condensatore di filtro d'ingresso che quello di uscita devono avere bassa ESL

Note

- Le tecniche di controllo sono le stesse del convertitore Buck
- La risposta dinamica è però difficile da dominare in CCM (caratteristica statica nonlineare, modello ai piccoli segnali a parametri variabili e zero a parte reale positiva). In DCM invece si ha solo un polo con costante di tempo R₀C/2.
- Lo schema buck-boost a trasformatore (flyback) è molto usato per piccole potenze

Conclusioni

- I convertitori boost e buck-boost consentono di estendere il campo di regolazione del regolatore buck
- Ciò viene pagato con maggiori sollecitazioni in tensione dei componenti e con una maggiore difficoltà di controllo
- Il regolatore boost ha il vantaggio di filtrare la corrente d'ingresso
- Il regolatore buck-boost ha una semplice configurazione a trasformatore (flyback)