实验报告 评分:

实验题目: 自由落体法测重力加速度

实验目的: 利用自由落体法测量合肥当地重力加速度

实验原理: 真空中的自由落体运动遵从公式

$$h = \frac{1}{2}gt^2 \tag{1}$$

其中h是下落高度,t是所经历的时间。由于剩磁等的影响,从释放点处开始计时将不准确。因此本实验使用卷尺测量长度,用双光电门测量时间。采用如下方法进行重力加速度的测量:

保持光电门1的位置不变,即可保持小球通过光电门1时的速度vo不变。

改变光电门 2 的位置,分别测出在光电门 2 第 i 次调整位置时,光电门 1、2 之间的距离 h_i 、时间差 t_i 。获得一系列数据满足关系:

$$h_i = v_0 t_i + \frac{1}{2} g t_i^2 \tag{2}$$

定义 $\frac{-}{v_i} = \frac{h_i}{t_i}$ 为小球经历所研究的这一过程的平均速度,于是得到可用于数据分析的式子

$$\overline{v_i} = v_0 + \frac{1}{2}gt_i \tag{3}$$

测量多组数据,并用最小二乘法进行回归计算得出回归曲线,设回归曲线的斜率为k,则重力加速度的测量值为g=2k。

实验仪器: 本实验的测量装置如下图。数字毫秒计连接两个光电门,可以显示小球经过光电门 1、2 时所用的时间和经过这两个光电门所用的时间差。按下数字毫秒计上的"ON"按钮,电磁铁将通电,能够吸附小球;按下"OFF"按钮,电磁铁磁性消失,小球下落,之后毫秒计将显示所需时间。按"RESET"重置。

图 1 实验装置

测量记录: (原始数据附后)

为了减少偶然性,本次实验使用了大球、小球、圆柱三种物体。

	i	1	2	3	4	5	6
大球	h _i /cm	74.52	61.88	65.01	69.70	51.70	57.98
人环	t _i /ms	256.1	223.8	231.2	243.4	196.3	212.9
小球	h _i /cm	57.98	54.35	65.60	61.15	53.10	58.67
小球	t _i /ms	211.6	202.1	232.3	220.6	198.6	214.1
圆柱体	h _i /cm	61.15	53.10	58.67	63.50	46.58	57.80
四任平	t _i /ms	219.5	198.8	212.7	225.9	179.9	210.8

表 1 原始实验数据表格

分析讨论:

(1) 实验数据处理

利用 $\overline{v_i} = \frac{h_i}{t_i}$,用 Excel 计算上面三组实验的 $\overline{v_i}$ 值如下表所示。

	i	1	2	3	4	5	6
大球	t_i/s	0.2561	0.2238	0.2312	0.2434	0.1963	0.2129
八环	$\overline{v_i}/(\mathbf{m} \cdot \mathbf{s}^{-1})$	2.909	2.764	2.811	2.863	2.633	2.723
小球	t_i/s	0.2116	0.2021	0.2323	0.2206	0.1986	0.2141
	$\overline{v_i}/(\mathbf{m} \cdot \mathbf{s}^{-1})$	2.740	2.689	2.823	2.771	2.673	2.740
圆柱体	t_i/s	0.2195	0.1988	0.2127	0.2259	0.1799	0.2108
四任中	$\overline{v_i}/(\mathbf{m} \cdot \mathbf{s}^{-1})$	2.785	2.671	2.758	2.810	2.589	2.741

表 2 用于回归计算所需要的数据

以t为自变量, \overline{v} 为因变量,用 Origin 作散点图,并生成回归直线如下

因此本实验得到的重力加速度平均值为 $g = \frac{1}{3} \sum_{i=1}^{3} g_i = 9.35 \text{m/s}^2$ 。

(2) 误差分析

1°相对误差

合肥地区重力加速度公认值 $g_0 = 9.79 \, \mathrm{m/s^2}$,因此本实验的相对误差为

$$\delta = \frac{|g - g_0|}{g_0} = 4.5\% \tag{4}$$

2° 不确定度

根据回归分析的公式, 最终 $g=2\cdot\frac{\Sigma vt-6vt}{\Sigma t^2-6t^2}=2\cdot\frac{\Sigma h-\frac{1}{6}\left(\Sigma\frac{h}{t}\right)(\Sigma t)}{\Sigma t^2-6t^2}$, 如果将 g 看成

是 h_i,t_i 的间接测量,则总的不确定度应为

$$\frac{\Delta g}{g} = \sqrt{\sum_{i=1}^{6} \left(\frac{\partial \ln g}{\partial h_i} \Delta h_i \right)^2 + \sum_{i=1}^{6} \left(\frac{\partial \ln g}{\partial t_i} \Delta t_i \right)^2}$$
 (5)

由于每次测量 h_i 和每次测量 t_i 的仪器都相同,因此 $\Delta h_i = 0.01 {
m cm}$, $\Delta t_i = 0.01 {
m ms}$ 。 三次实验计算所得的计算量如下表所示。

	大球	小球	圆柱体
Σt	1.364	1.279	1.248
Σh	3.808	3.509	3.408
$\Sigma \frac{h}{t}$	16.71	16.44	16.36
Σt^2	0.3122	0.2735	0.2608

表 3 用于计算不确定度的一些常系数计算量

由以上计算得出 $\frac{\partial \ln g}{\partial h}$ 如下表。

i	1	2	3	4	5	6
大球	10.60	-1.467	1.596	6.240	-14.87	-6.367
小球	5.137	-8.563	31.11	17.03	-13.94	8.541
圆柱体	7.710	-6.722	3.279	11.64	-22.80	1.990

表 $4 \ln g$ 对 h_i 的偏导计算表

 $\frac{\partial \ln g}{\partial t_i}$ 如下表。

i	1	2	3	4	5	6
大球	-44.27	5.259	-5.344	-24.53	52.08	24.16
小球	10.52	58.14	-94.15	-37.44	77.25	-5.554
圆柱体	-29.95	23.45	-11.42	-47.03	80.76	-7.420

表 $5 \ln g$ 对 t_i 的偏导计算表

由式(5)计算得出的不确定度分别为

747 €/2074 74474					
	大球	小球	圆柱体		
$\frac{\Delta g}{g}$	0.003	0.004	0.002		

表 6 三次实验间接测量量的不确定度

均小于 1%,因此在此意义下,不确定度达到了要求。取平均值 $\frac{\Delta g}{g}=0.003$,则最终结果应表为

$$g = (9.35 \pm 0.03)$$
m / s²

(3) 实验讨论

本实验相对误差偏大,尤其是第二组利用小球进行实验时,重力加速度的测量值仅为 $8.85 \, \text{m/s}^2$ 。由于三组回归曲线的 R^2 值都非常接近 1,因此认为做实验时的仪器没有出现偶然的问题(如果有, R^2 值将与 1 有显著偏离)。所以猜想空气阻力导致了数据偏小的产生。由空气阻力的公式

$$F = \frac{1}{2}C\rho Sv^2 \tag{6}$$

其中 C 可看作常数, ρ 是空气密度,S 是小球迎风面积。对于半径约为 0.7cm 的大球,估算空气阻力 $F=5\times10^{-4}\,\mathrm{N}$,相比于大球的质量,这显然可以忽略不计。并且本实验位移范围数量级较小,因此空气阻力不大可能造成相对误差偏大的问题,仅在 $10^{-2}\sim10^{-3}$ 数量级上对测量值有修正。

对实验数据进行观察,可知该实验测得的数据范围较小,因此每个数据点的不确定 度将会导致拟合直线的斜率偏离,下面就第二组实验来稍作验证。若通过联立任意两点 解方程得到 g, 所得数据如下:

// 1 (4 // 2) [4 7 /	, -				
j	2	3	4	5	6
1	10.68	8.110	7.108	10.20	0.2467
2		8.923	8.950	8.848	8.518
3			8.880	8.915	9.190
4				8.934	9.747
5					8.593

表7 通过联立任意两点解方程得到的 g 值

可见该组实验误差过大,去掉(1,6)这组明显错误的数据外,该组实验的相对极差达到 $\sigma=\frac{g_{\max}-g_{\min}}{g_0}=37\%$,在数据范围如此小、测量次数如此有限的情况下,不适宜作

为正确的测量,应舍去,因此本实验最终 g 的测量值适宜取为

$$g = \frac{g_1 + g_3}{2} = 9.603 \,\mathrm{m/s^2}$$

同时,在测量长度时由于仪器竖直放置在地面上,使得很难平视观察光电门2的位置。这也给实验带来了一定的误差。

思考题:

1、在实际工作中,为什么利用 $h = \frac{1}{2}gt^2$ 很难精确测量重力加速度 g?

首先,从起点开始下落距离不易测准,因为小球下落的起始和终止位置不明确;其次, 从起点开始下落时间不易测准,这是由于电磁铁有剩磁。

2、为了提高测量精度,光电门1和光电门2的位置应如何选取?

光电门 1 应当固定在离起点稍远的地方,最大可能减少剩磁影响,并且使得 ν_0 固定。光电门 2 应当多选取几个位置,获得足够多的数据,而且离光电门 1 的距离应适当远。

3、利用本实验的装置,如何测量小球下落到某个位置的瞬时速度?

由于本实验的光电门只支持测量从开始计时到遮光时的时间间隔,因此只能使用公式 v = gt 计算某个位置的瞬时速度。

4、利用本实验装置, 你还能提出其他测量重力加速度 g 的实验方案吗?

利用 3 的结论,测量两个位置的瞬时速度 $v_{1,2}$ 和相对位置h,利用公式 $v_2^2 - v_1^2 = 2gh$ 计算重力加速度g。