Appendix A

An Expectation-Maximization Algorithm for the SISM Model

By referring to the derivation of formulas for the expectation-maximization algorithm illustrated in de la Torre (2009), the probability of correctly answering item j can be reexpressed as

$$P_{j}(\alpha_{l}) = \begin{cases} h_{j} & \text{if } \eta_{j} = 1, \gamma_{j} = 0\\ \omega_{j} & \text{if } \eta_{j} = 1, \gamma_{j} = 1\\ g_{j} & \text{if } \eta_{j} = 0, \gamma_{j} = 0\\ \varepsilon_{j} & \text{if } \eta_{j} = 0, \gamma_{j} = 1 \end{cases}$$
(A1)

According to the de la Torre (2009), $\partial l(X)/\partial \beta_{j(\eta,\gamma)}$ can be defined as

$$\frac{\partial l(X)}{\partial \beta_{j(\eta,\gamma)}} = \sum_{l=1}^{L} \frac{\partial P_{j}(\alpha_{l})}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{P_{j}(\alpha_{l})[1 - P_{j}(\alpha_{l})]} \right] [R_{jl} - P_{j}(\alpha_{l})I_{l}], \tag{A2}$$

where $\beta_{j(\eta,\gamma)} = h_j$ if $\eta = 1$ and $\gamma = 0$; $\beta_{j(\eta,\gamma)} = \omega_j$ if $\eta = 1$ and $\gamma = 1$; $\beta_{j(\eta,\gamma)} = g_j$ if $\eta = 0$ and $\gamma = 0$; and $\beta_{j(\eta,\gamma)} = \varepsilon_j$ if $\eta = 0$ and $\gamma = 1$. $I_l = \sum_{i=1}^l p(\alpha_l | \mathbf{X}_i)$ is the expected number of students whose attribute pattern is α_l , and $R_{jl} = \sum_{i=1}^l p(\alpha_l | \mathbf{X}_i) X_{ij}$ is the expected number of students who have the attribute pattern α_l and answer item j correctly. $p(\alpha_l | \mathbf{X}_i) = L(\mathbf{X}_i | \alpha_l) p(\alpha_l)$ is the posterior probability of the attribute pattern α_l , and $L(\mathbf{X}_i | \alpha_l)$ and $p(\alpha_l)$ are the likelihood function of \mathbf{X}_l conditioned on α_l and the prior probability, respectively.

To obtain estimators of parameters, Equation A2 can be written as

$$\begin{split} \frac{\partial l(\mathbf{X})}{\partial \boldsymbol{\beta}_{j(\eta,\gamma)}} &= \sum_{\{\boldsymbol{\alpha}_{l}: \boldsymbol{\eta}_{ij} = 1, \boldsymbol{\gamma}_{ij} = 0\}} \frac{\partial P_{j}(\boldsymbol{\alpha}_{l})}{\partial \boldsymbol{\beta}_{j(\eta,\gamma)}} \Bigg[\frac{1}{P_{j}(\boldsymbol{\alpha}_{l})[1 - P_{j}(\boldsymbol{\alpha}_{l})]} \Bigg] \Big[R_{jl} - P_{j}(\boldsymbol{\alpha}_{l}) I_{l} \Big] + \\ &\sum_{\{\boldsymbol{\alpha}_{l}: \boldsymbol{\eta}_{ij} = 1, \boldsymbol{\gamma}_{ij} = 1\}} \frac{\partial P_{j}(\boldsymbol{\alpha}_{l})}{\partial \boldsymbol{\beta}_{j(\eta,\gamma)}} \Bigg[\frac{1}{P_{j}(\boldsymbol{\alpha}_{l})[1 - P_{j}(\boldsymbol{\alpha}_{l})]} \Bigg] \Big[R_{jl} - P_{j}(\boldsymbol{\alpha}_{l}) I_{l} \Big] + \end{split}$$

$$\begin{split} &\sum_{[\alpha_{l}:\eta_{\eta}=0,\gamma_{\eta}=0]} \frac{\partial P_{j}(\alpha_{l})}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{P_{j}(\alpha_{l})[1-P_{j}(\alpha_{l})]} \right] \left[R_{jl} - P_{j}(\alpha_{l})I_{l} \right] + \\ &\sum_{[\alpha_{l}:\eta_{\eta}=0,\gamma_{\eta}=1]} \frac{\partial P_{j}(\alpha_{l})}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{P_{j}(\alpha_{l})[1-P_{j}(\alpha_{l})]} \right] \left[R_{jl} - P_{j}(\alpha_{l})I_{l} \right] \\ &= \frac{\partial h_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{h_{j}[1-h_{j}]} \right]_{[\alpha_{l}:\eta_{\eta}=1,\gamma_{\eta}=0]} \sum_{[\alpha_{l}:\eta_{\eta}=1,\gamma_{\eta}=0]} \left[R_{jl} - h_{j}I_{l} \right] + \\ &\frac{\partial \omega_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right]_{[\alpha_{l}:\eta_{\eta}=0,\gamma_{\eta}=0]} \left[R_{jl} - g_{j}I_{l} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{\varepsilon_{j}[1-\varepsilon_{j}]} \right]_{[\alpha_{l}:\eta_{\eta}=0,\gamma_{\eta}=0]} \left[R_{jl} - \varepsilon_{j}I_{l} \right] + \\ &= \frac{\partial h_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{h_{j}[1-h_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=1,\gamma_{\eta}=0} - h_{j}I_{jl}^{\eta_{\eta}=1,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \omega_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{\omega_{j}[1-\omega_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=1,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=1,\gamma_{\eta}=1} \right] + \\ &\frac{\partial g_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{j}]} \right] \left[R_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{\eta}=0,\gamma_{\eta}=0} - g_{j}I_{jl}^{\eta_{\eta}=0,\gamma_{\eta}=0} \right] + \\ &\frac{\partial \varepsilon_{j}}{\partial \beta_{j(\eta,\gamma)}} \left[\frac{1}{g_{j}[1-g_{\eta}=0$$

where $I_{jl}^{\eta_{ij}=1,\gamma_{ij}=0}$ is the expected number of students whose $\eta_{lj}=1$ and $\gamma_{lj}=0$; $I_{jl}^{\eta_{ij}=1,\gamma_{ij}=1}$ is the expected number of students whose $\eta_{lj}=1$ and $\gamma_{lj}=1$; $I_{jl}^{\eta_{ij}=0,\gamma_{ij}=0}$ is the expected number of students whose $\eta_{lj}=0$ and $\gamma_{lj}=0$; and $I_{jl}^{\eta_{ij}=0,\gamma_{ij}=1}$ is the expected number of students whose $\eta_{lj}=0$ and $\gamma_{lj}=0$; and $\gamma_{lj}=0$;

represent the expected number of students among $I_{jl}^{\eta_{ij}=1,\gamma_{ij}=0}$, $I_{jl}^{\eta_{ij}=1,\gamma_{ij}=1}$, $I_{jl}^{\eta_{ij}=0,\gamma_{ij}=0}$, and $I_{jl}^{\eta_{ij}=0,\gamma_{ij}=1}$ who correctly answer item j.

When $\eta_{ij}=1$ and $\gamma_{lj}=0$, $\beta_{j(\eta,\gamma)}=h_j$, the first term $\partial h_j/\partial \beta_{j(\eta,\gamma)}$ of Equation A3 is 1 and the other terms are 0s. Thus, maximization $\partial l(X)/\partial \beta_{j(\eta,\gamma)}$ simplifies to solving for h_j in the

equation
$$\left[\frac{1}{h_j[1-h_j]}\right] \left[R_{jl}^{\eta_{ij}=1,\gamma_{ij}=0}-h_jI_{jl}^{\eta_{ij}=1,\gamma_{ij}=0}\right] = 0$$
, which gives the estimator of

 $\hat{h}_j = R_{jl}^{\eta_{ij}=1,\gamma_{ij}=0} / I_{jl}^{\eta_{ij}=1,\gamma_{ij}=0} \text{. Similarly, the estimators of } \hat{\omega}_j \text{, } \hat{g}_j \text{, and } \hat{\varepsilon}_j \text{ are } R_{jl}^{\eta_{ij}=1,\gamma_{ij}=1} / I_{jl}^{\eta_{ij}=1,\gamma_{ij}=1} \text{,}$

$$R_{jl}^{\eta_{lj}=0,\gamma_{lj}=0}/I_{jl}^{\eta_{lj}=0,\gamma_{lj}=0}$$
, and $R_{jl}^{\eta_{lj}=0,\gamma_{lj}=1}/I_{jl}^{\eta_{lj}=0,\gamma_{lj}=1}$.

Because $I_l = \sum_{i=1}^{l} p(\alpha_l | X_i)$ and $R_{jl} = \sum_{i=1}^{l} p(\alpha_l | X_i) X_{ij}$, the formulas of \hat{h}_j , $\hat{\omega}_j$, \hat{g}_j , and $\hat{\varepsilon}_j$

can be written as

$$\hat{h}_{j} = \frac{R_{jl}^{\eta_{ij}=1,\gamma_{ij}=0}}{I_{jl}^{\eta_{ij}=1,\gamma_{ij}=0}} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) X_{ij} \eta_{lj} (1 - \gamma_{lj})}{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) \eta_{lj} (1 - \gamma_{lj})},$$
(A4)

$$\hat{\omega}_{j} = \frac{R_{jl}^{\eta_{ij}=1,\gamma_{ij}=1}}{I_{jl}^{\eta_{ij}=1,\gamma_{ij}=1}} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) X_{ij} \eta_{lj} \gamma_{lj}}{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) \eta_{lj} \gamma_{lj}},$$
(A5)

$$\hat{g}_{j} = \frac{R_{jl}^{\eta_{ij}=0,\gamma_{ij}=0}}{I_{jl}^{\eta_{ij}=0,\gamma_{ij}=0}} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) X_{ij} (1 - \eta_{lj}) (1 - \gamma_{lj})}{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) (1 - \eta_{lj}) (1 - \gamma_{lj})},$$
(A6)

$$\hat{\varepsilon}_{j} = \frac{R_{jl}^{\eta_{ij}=0,\gamma_{ij}=1}}{I_{jl}^{\eta_{ij}=0,\gamma_{ij}=1}} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) X_{ij} (1 - \eta_{lj}) \gamma_{lj}}{\sum_{l=1}^{L} \sum_{i=1}^{N} p(\alpha_{l} | \mathbf{X}_{i}) (1 - \eta_{lj}) \gamma_{lj}}.$$
(A7)

For details regarding the estimation process using EM algorithm for estimating the SISM model parameters, refer to Appendix 5 of Kuo et al. (2016).

Standard Errors (SEs) for Item Parameter Estimates

Let β denote the vector of the item parameters of the SISM model. The information matrix $I(\beta)$ is defined as $I(\beta) = -E[\partial^2 l(\mathbf{X})/\partial^2 \beta^2]$, where $l(\mathbf{X})$ is the log-marginalized likelihood of the observed data \mathbf{X} (de la Torre, 2009). Let β and β' respectively denote $P_j(\alpha_l)$ and $P_{j'}(\alpha_l)$. The second derivative of the log-marginalized likelihood regarding to $P_j(\alpha_l)$ and $P_{j'}(\alpha_l)$ is given as

$$\frac{\partial^{2}l(\mathbf{X})}{\partial P_{j}(\boldsymbol{\alpha}_{l})\partial P_{j'}(\boldsymbol{\alpha}_{l})} = -\sum_{i=1}^{L} \left\{ \sum_{l=1}^{L} p(\boldsymbol{\alpha}_{l} | \mathbf{X}_{i}) \frac{X_{ij} - P_{j}(\boldsymbol{\alpha}_{l})}{P_{j}(\boldsymbol{\alpha}_{l})[1 - P_{j}(\boldsymbol{\alpha}_{l})]} \frac{\partial P_{j}(\boldsymbol{\alpha}_{l})}{\partial \beta} \right\} \\
\times \left\{ \sum_{l=1}^{L} p(\boldsymbol{\alpha}_{l} | \mathbf{X}_{i}) \frac{X_{ij'} - P_{j'}(\boldsymbol{\alpha}_{l})}{P_{j'}(\boldsymbol{\alpha}_{l})[1 - P_{j'}(\boldsymbol{\alpha}_{l})]} \frac{\partial P_{j'}(\boldsymbol{\alpha}_{l})}{\partial \beta'} \right\}. \tag{A8}$$

After $p_j(\eta, \gamma | \mathbf{X}_i) = \sum_{\{\alpha_l : \eta_{lj} = \eta, \gamma_{lj} = \gamma\}} p(\mathbf{\alpha}_l | \mathbf{X}_i)$ and $P_j(\eta, \gamma) = P_j(\mathbf{\alpha}_l)$ are defined, Equation A8 can be written as

$$\frac{\partial^{2}l(\mathbf{X})}{\partial P_{j}(\boldsymbol{\alpha}_{l})\partial P_{j'}(\boldsymbol{\alpha}_{l})} = -\sum_{i=1}^{I} \left\{ \sum_{\eta=0}^{1} \sum_{\gamma=0}^{1} p_{j}(\eta, \gamma | \mathbf{X}_{i}) \frac{X_{ij} - P_{j}(\eta, \gamma)}{P_{j}(\eta, \gamma)[1 - P_{j}(\eta, \gamma)]} \frac{\partial P_{j}(\eta, \gamma)}{\partial \beta} \right\} \\
\times \left\{ \sum_{\eta'=0}^{1} \sum_{\gamma'=0}^{1} p_{j'}(\eta', \gamma' | \mathbf{X}_{i}) \frac{X_{ij'} - P_{j'}(\eta', \gamma')}{P_{j'}(\eta', \gamma')[1 - P_{j'}(\eta', \gamma')]} \frac{\partial P_{j'}(\eta', \gamma')}{\partial \beta'} \right\}, \quad (A9)$$

which sums the products of the expected values according to the posterior probabilities of students with η and γ for item j. $I(\beta)$ can be approximated by $I(\hat{\beta})$, where $\hat{\beta}$ represents the estimated item parameters. Therefore, the estimated item parameter standard error $SE(\hat{\beta})$ can be obtained by calculating the square roots of the diagonal elements of the estimated item parameter covariance matrix $Cov(\hat{\beta})$, which is approximated by the inverse information matrix $I^{-1}(\hat{\beta})$.

Appendix B

Table B1. The Q-matrix for the short test.

Item		Attribute								
-		Sk	ill	Misconception						
-	S 1	S2	S3	S4	B1	B2	В3			
1	1	0	0	0	0	0	0			
2	0	1	0	0	0	0	0			
3	0	0	1	0	0	0	0			
4	0	0	0	1	0	0	0			
5	0	0	0	0	1	0	0			
6	0	0	0	0	0	1	0			
7	0	0	0	0	0	0	1			
8	1	0	0	0	1	0	0			
9	0	1	0	0	1	0	0			
10	0	0	1	0	0	0	1			
11	0	0	0	1	0	1	0			
12	1	1	0	0	1	0	0			
13	1	0	1	0	0	0	1			
14	1	0	0	1	0	0	1			
15	0	1	1	0	0	0	1			
16	0	1	0	1	0	1	1			
17	0	0	1	1	0	1	1			
18	1	0	1	0	1	1	0			
19	1	1	0	1	1	1	0			
20	0	1	1	1	1	1	0			

Note. S1, S2, S3, and S4 are skills. B1, B2, and B3 are misconceptions.

 $\label{eq:Table B2} \textbf{Table B2}. \ \ \textbf{The Q-matrix for the Fraction Multiplication Data}.$

Item				Attribute				
		Sl	cill	Misconception				
	S1	S2	S3	S4	B1	B2	В3	
1	1	1	0	1	1	1	0	
2	0	1	1	0	1	0	0	
3	0	1	0	1	0	1	1	
4	1	1	0	1	1	1	0	
5	1	1	1	1	1	1	0	
6	1	1	0	1	1	1	0	
7	0	1	1	1	0	1	0	

Table B3. Q-matrices for the third and fourth real data-based simulation studies (modifications highlighted)

				Q3								Q4			
Item	S 1	S 2	S 3	S 4	B1	B2	В3	Items	S 1	S 2	S 3	S 4	B1	B2	B3
1	1	1	0	1	1	1	0	1	O	1	0	O	O	O	0
2	0	1	1	0	1	0	0	2	1	O	O	0	O	0	0
3	0	1	0	1	0	1	1	3	0	O	1	O	0	O	O
4	1	1	0	1	1	1	0	4	O	O	0	1	O	O	0
5	1	1	1	1	1	1	0	5	O	O	O	O	1	O	0
6	1	1	0	1	1	1	0	6	O	O	0	O	O	1	0
7	0	1	1	1	0	1	0	7	0	O	O	O	0	O	1
8	1	1	0	1	1	1	0	8	1	1	0	1	1	1	0
9	0	1	1	0	1	0	0	9	0	1	1	0	1	0	0
10	0	1	0	1	0	1	1	10	0	1	0	1	0	1	1
11	1	1	0	1	1	1	0	11	1	1	0	1	1	1	0
12	1	1	1	1	1	1	0	12	1	1	1	1	1	1	0
13	1	1	0	1	1	1	0	13	1	O	0	O	1	O	0
14	0	1	1	1	0	1	0	14	0	1	1	1	0	1	0

Appendix C

(\geq) 3. There are two variables A and B. The value of A is $3\frac{1}{3}$, and B is one-fifth of

A. What is the product of A and B?

①
$$2\frac{2}{9}$$
 ② 4 ③ $2\frac{13}{16}$ ④ $3\frac{3}{20}$

Please write down your problem solving process:

Figure C1. An example of Item 3.