

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

5 Oscillators

Classifications of Oscillators

- > Comparison:
- \triangleright RF Oscillatro vs. RF Small Signal Amplifier & RF Power Amplifier?

RC Oscillator vs. LC Oscillator?

Feedback LC Oscillator - Principle

> Why?

L&C, Positive Feedback

- > How?
 - \rightarrow How to start? "0 \rightarrow 1"
 - \triangleright Non-linear (Amplitude cannot be ∞)
 - > How to maintain?

- \succ K= "1", Resonant Amplifier, For $\dot{V}_f=\dot{V}_i$ by adjusting M
- $\succ K =$ "2", Resonant Amplifier \rightarrow Oscillator

Feedback LC Oscillator - Essential Elements

Resonant circuits
L & C

Energy for compensating loss of L
Vcc

➤ Energy to active devices on right time
Positive Feedback + Active Devices

Feedback LC Oscillator - Conditions

> Startup Condition

> Balance Condition

> Stability Condition for Balance

Startup Condition

Startup Condition of Oscillator

ightharpoonup Idea: Amplifier $\dot{A_f}
ightharpoonup \infty \Rightarrow$ Oscillator

- ightarrow $1-\dot{A_o}\cdot\dot{F}=0$ \Rightarrow $\dot{A_f} o\infty$. Non-input, Amplifier \Rightarrow Oscillator
- ightharpoonup If $\dot{A_o}\cdot\dot{F}=1$, amplitude may not be strong
- > F Should be big $\Rightarrow \dot{A_o} \cdot \dot{F} > 1$ In general $\frac{1}{8} \sim \frac{1}{2}$

Startup Condition of Oscillator

$$A_o>rac{1}{F}$$
 $A_o\cdot\dot{F}>1$ $Amplitude Startup Condition $\phi_A+\phi_F=2n\pi$ $(n=0,\pm 1,...)$ Phase Startup Condition$

Amplitude Startup Condition

 \triangleright Feedback Characteristics : F vs. V_o

Startup Condition of Oscillator

$$A_o>rac{1}{F}$$
 $A_o\cdot\dot{F}>1$ $Amplitude Startup Condition $A_o\cdot\dot{F}>1$ $Amplitude Startup Condition$$

Amplitude Startup Condition

Balance Condition

Balance Condition of Oscillator

$$ightarrow \dot{A} \cdot \dot{F} = 1$$
 $\begin{cases} A \cdot F = 1 \\ \varphi_A + \varphi_F = 2n\pi \end{cases}$ $(n = 0, 1, 2, 3 ...)$ Amplitude Condition

Physical Significance: $\dot{V}_f = \dot{V}_i, \text{ Maintain Oscillator}$

Balance Condition of Oscillator (Circuit Parameters)

 $ightarrow \dot{A} \cdot \dot{F} = 1$, To decompose A = Transistor + Parallel Resonance

$$ightarrow \overline{y_{fe}} \cdot Z_{p1} \cdot \dot{F} = 1$$
 $\begin{cases} |\overline{y_{fe}}| \cdot |Z_{p1}| \cdot F = 1 \\ \varphi_Y + \varphi_Z + \varphi_F = 2n\pi \end{cases}$ Amplitude Condition

Summary

> Balance:

$$A \cdot F = 1$$

$$\varphi_A + \varphi_F = 2n\pi$$

> Balance (Circuit):
$$|\overline{y_{fe}}| \cdot |Z_{p1}| \cdot F = 1$$
, $\varphi_Y + \varphi_Z + \varphi_F = 2n\pi$

Transistor

Parallel Resonance

Stability Condition

Balance Stability Condition of Oscillator

Stability Condition of Balance: ability to recover automatically to balance status

Unstable Balance

Stable Balance

Balance Stability Condition - Amplitude

① If $V_{om} \uparrow (> V_{omQ})$, $A \downarrow$, $V_{om} \downarrow$, back to Q

② If $V_{om} \downarrow (\langle V_{omQ} \rangle, A \uparrow, V_{om} \uparrow, \text{ back to } Q$

Balance Stability Condition - Amplitude

① If $V_{om} \uparrow (> V_{omB})$, $A \uparrow$, $V_{om} \uparrow$, far away from B

② If $V_{om} \downarrow (\langle V_{omB} \rangle, A \downarrow, V_{om} \downarrow$, far away from B

Balance Stability Condition - Amplitude

 \succ Condition: Gain A has negative slope around Q

$$\left. \frac{\partial A}{\partial V_{om}} \right|_{V_{om}=V_{omQ}} < 0$$
 Stability Amplitude Condition

Active devices (Transistors) have this property, which can help stable amplitude

- ightarrow Phase leads by external reasons ightarrow Frequency $ightharpoonup rac{\Delta\omega}{\Delta\omega} > 0$
- ightharpoonup To compensate $\Delta \varphi$: $\frac{\Delta \varphi}{\Delta \omega} < 0$
- ightharpoonup Partial Differential Form: $\frac{\partial \varphi}{\partial \omega} < 0$ or $\frac{\partial (\varphi_Y + \varphi_Z + \varphi_F)}{\partial \omega} < 0$
- $\triangleright \varphi_Z$ dominates frequency changing

$$\left| \frac{\partial \varphi_Y}{\partial \omega} \right| \ll \left| \frac{\partial \varphi_Z}{\partial \omega} \right| \qquad \left| \frac{\partial \varphi_F}{\partial \omega} \right| \ll \left| \frac{\partial \varphi_Z}{\partial \omega} \right|$$

Stability Phase Condition $\frac{\partial \varphi}{\partial \omega} pprox \frac{\partial \varphi_Z}{\partial \omega} < 0$

> Condition: Phase-frequency curve has negative slope

$$\frac{\partial \varphi}{\partial \omega} pprox \frac{\partial \varphi_Z}{\partial \omega} < 0$$
 Stability Phase Condition

LC parallel resonance circuits have this property, which can help stable phase. Meanwhile, LC parallel resonance circuits determine frequency

Phase-Frequency Curve of Parallel Resonance

- \triangleright To decrease $\Delta\omega$:
 - $ho \varphi_{YF}
 ightarrow 0$ (Resonant) \Rightarrow Stability \uparrow
 - $\triangleright \Delta \varphi_{YF} \downarrow \Rightarrow \Delta \omega \downarrow$

$$\varphi_Y + \varphi_Z + \varphi_F = 0$$

$$\varphi_Z = -(\varphi_Y + \varphi_F)$$

$$= -\varphi_{YF}$$

- \triangleright To decrease $\Delta\omega$:
 - $ho \varphi_{YF}
 ightarrow 0$ (Resonant) \Rightarrow Stability \uparrow
 - $ightharpoonup \Delta \varphi_{YF} \downarrow \Rightarrow \Delta \omega \downarrow$
 - > Increase Q

