Search

Euler's totient function

Table of Contents

- Properties
- Implementation
- Application in Euler's theorem
- Generalization
- Practice Problems

Euler's totient function, also known as **phi-function** $\phi(n)$, counts the number of integers between 1 and n inclusive, which are coprime to n. Two numbers are coprime if their greatest common divisor equals 1 (1 is considered to be coprime to any number).

Here are values of $\phi(n)$ for the first few positive integers:

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$\phi(n)$	1	1	2	2	4	2	6	4	6	4	10	4	12

Properties

The following properties of Euler totient function are sufficient to calculate it for any number:

• If p is a prime number, then $\gcd(p,q)=1$ for all $1 \leq q < p$. Therefore we have:

$$\phi(p) = p - 1$$
.

• If p is a prime number and $k\geq 1$, then there are exactly p^k/p numbers between 1 and p^k that are divisible by p. Which gives us:

$$\phi(p^k) = p^k - p^{k-1}.$$

• If a and b are relatively prime, then:

$$\phi(ab) = \phi(a) \cdot \phi(b).$$

This relation is not trivial to see. It follows from the Chinese remainder theorem. The Chinese remainder theorem guarantees, that for each $0 \le x < a$ and each $0 \le y < b$, there exists a unique $0 \le z < ab$ with $z \equiv x \pmod{a}$ and $z \equiv y \pmod{b}$. It's not hard to show that z is coprime to ab if and only if x is coprime to a and b is equal to product of the amounts of a and b.

• In general, for not coprime a and b, the equation

$$\phi(ab) = \phi(a) \cdot \phi(b) \cdot \frac{d}{\phi(d)}$$

with $d = \gcd(a, b)$ holds.

Thus, using the first three properties, we can compute $\phi(n)$ through the factorization of n (decomposition of n into a product of its prime factors). If $n=p_1^{a_1}\cdot p_2^{a_2}\cdots p_k^{a_k}$, where p_i are prime factors of n,

$$egin{aligned} \phi(n) &= \phi(p_1{}^{a_1}) \cdot \phi(p_2{}^{a_2}) \cdots \phi(p_k{}^{a_k}) \ &= \left(p_1{}^{a_1} - p_1{}^{a_1-1}
ight) \cdot \left(p_2{}^{a_2} - p_2{}^{a_2-1}
ight) \cdots \left(p_k{}^{a_k} - p_k{}^{a_k-1}
ight) \ &= p_1^{a_1} \cdot \left(1 - rac{1}{p_1}
ight) \cdot p_2^{a_2} \cdot \left(1 - rac{1}{p_2}
ight) \cdots p_k^{a_k} \cdot \left(1 - rac{1}{p_k}
ight) \ &= n \cdot \left(1 - rac{1}{p_1}
ight) \cdot \left(1 - rac{1}{p_2}
ight) \cdots \left(1 - rac{1}{p_k}
ight) \end{aligned}$$

Implementation

Here is an implementation using factorization in $O(\sqrt{n})$:

Application in Euler's theorem

The most famous and important property of Euler's totient function is expressed in **Euler's theorem**:

$$a^{\phi(m)} \equiv 1 \pmod{m}$$

if a and m are relatively prime.

In the particular case when m is prime, Euler's theorem turns into **Fermat's little theorem**:

$$a^{m-1} \equiv 1 \pmod{m}$$

Euler's theorem and Euler's totient function occur quite often in practical applications, for example both are used to compute the modular multiplicative inverse.

As immediate consequence we also get the equivalence:

$$a^n \equiv a^{n \bmod \phi(m)} \pmod{m}$$

This allows computing $x^n \mod m$ for very big n, especially if n is the result of another computation, as it allows to compute n under a modulo.

Generalization

There is a less known version of the last equivalence, that allows computing $x^n \mod m$ efficiently for not coprime x and m. For arbitrary x, m and $n \geq \log_2 m$:

$$x^n \equiv x^{\phi(m) + [n mod \phi(m)]} \mod m$$

Proof:

Let p_1,\ldots,p_t be common prime divisors of x and m, and k_i their exponents in m. With those we define $a=p_1^{k_1}\ldots p_t^{k_t}$, which makes $\frac{m}{a}$ coprime to x. And let k be the smallest number such that a divides x^k . Assuming $n\geq k$, we can write:

$$x^n \mod m = rac{x^k}{a} a x^{n-k} \mod m$$

$$= rac{x^k}{a} \left(a x^{n-k} \mod m \right) \mod m$$

$$= rac{x^k}{a} \left(a x^{n-k} \mod a rac{m}{a} \right) \mod m$$

$$= rac{x^k}{a} a \left(x^{n-k} \mod rac{m}{a} \right) \mod m$$

$$= x^k \left(x^{n-k} \mod rac{m}{a} \right) \mod m$$

The equivalence between the third and forth line follows from the fact that $ab \mod ac = a(b \mod c)$. Indeed if b=cd+r with r < c, then ab=acd+ar with ar < ac.

Since x and $\frac{m}{a}$ are coprime, we can apply Euler's theorem and get the efficient (since k is very small; in

fact $k \leq \log_2 m$) formula:

$$x^n mod m = x^k \left(x^{n-k mod \phi(rac{m}{a})} mod rac{m}{a}
ight) mod m.$$

This formula is difficult to apply, but we can use it to analyze the behavior of $x^n \mod m$. We can see that the sequence of powers $(x^1 \mod m, x^2 \mod m, x^3 \mod m, \ldots)$ enters a cycle of length $\phi\left(\frac{m}{a}\right)$ after the first k (or less) elements. $\phi(m)$ divides $\phi\left(\frac{m}{a}\right)$ (because a and $\frac{m}{a}$ are coprime we have $\phi(a) \cdot \phi\left(\frac{m}{a}\right) = \phi(m)$), therefore we can also say that the period has length $\phi(m)$. And since $\phi(m) \geq \log_2 m \geq k$, we can conclude the desired, much simpler, formula:

$$x^n \equiv x^{\phi(m)} x^{(n-\phi(m)) mod \phi(m)} mod m \equiv x^{\phi(m) + [n mod \phi(m)]}$$

Practice Problems

- SPOJ #4141 "Euler Totient Function" [Difficulty: CakeWalk]
- UVA #10179 "Irreducible Basic Fractions" [Difficulty: Easy]
- UVA #10299 "Relatives" [Difficulty: Easy]
- UVA #11327 "Enumerating Rational Numbers"
 [Difficulty: Medium]
- TIMUS #1673 "Admission to Exam" [Difficulty: High]
- UVA 10990 Another New Function
- Codechef Golu and Sweetness
- SPOJ LCM Sum
- GYM Simple Calculations (F)
- UVA 13132 Laser Mirrors
- SPOJ GCDEX
- UVA 12995 Farey Sequence
- SPOJ Totient in Permutation (easy)
- LOJ Mathematically Hard
- SPOJ Totient Extreme

- SPOJ Playing with GCD
- SPOJ G Force
- SPOJ Smallest Inverse Euler Totient Function
- Codeforces Power Tower

(c) 2014-2019 translation by http://github.com/e-maxx-eng 07:80/112