TD n°5: Topologies et derivées faibles.

Exercice 1 : En dimension finie

Montrer que sur \mathbb{R}^n , la topologie faible est identique à la topologie forte.

Exercice 2: Test sur un sous-ensemble dense

- 1) Montrer que si (x_n) est une suite bornée de X telle que $f(x_n)$ converge vers f(x) pour tout f dans un ensemble D dense de X^* , alors (x_n) converge vers x faiblement.
- 2) Montrer que si (f_n) est une suite bornée de X' telle que $f_n(x)$ converge vers f(x) pour tout x dans un ensemble D dense de X, alors (f_n) converge vers f faiblement-*.
- 3) Donner un exemple de suite $(x_n) \subset X$ telle que $f(x_n)$ converge vers f(x) pour tout f dans un ensemble D dense de X^* mais telle que (x_n) ne converge pas faiblement.

Exercice 3 : Ouverts et fermés de la topologie faible.

Soit X un espace de Banach de dimension infinie qu'on munit de sa topologie faible.

- 1. Soit V un ouvert de la topologie faible de X. Montrer que pour chaque $x \in V$ il existe un sous-espace $K \subset X$ de dimension infinie telle que $x+K \subset V$. Déduire qu'aucun ouvert de la topologie faible n'est borné dans X.
- 2. En déduire que le sphère unité de X n'est pas fermé pour la topologie faible. Quel est son adhérence?
- 3. Soit W un convexe fermé pour la topologie forte. Montrer que W est fermé pour la topologie faible. Déduire que la boule unité est un fermé de la topologie faible, d'intérieur vide.
- 4. Donner un exemple d'un fermé pour la topologie faible qui n'est pas convexe.

Exercice 4 : Dans un Hilbert.

Soit X un espace de Hilbert, muni d'un produit scalaire \langle , \rangle . Soit (e_i) une famille orthonormé de vecteurs dans H tels que

$$\overline{\mathrm{Vect}(e_1,\ldots,e_n,\ldots)}=H.$$

Soit (x_n) une suite dans X.

- 1. Montrer que $x_n \to x$ faiblement si et seulement si pour tout $y \in X$ on a $\lim_{n\to\infty} \langle y, x_n \rangle = \langle y, x \rangle$.
- 2. Montrer que les trois affirmations suivantes sont équivalentes
 - (a) x_n converge vers x faiblement quand $n \to \infty$

- (b) $\sup ||x_n|| < \infty$ et pour chaque *i* la suite $\langle e_i, x_n \rangle$ converge quand $n \to \infty$.
- (c) $\sup ||x_n|| < \infty$ et il existe un ensemble dense M tel que pour chaque $y \in M$ on a que la suite $\langle y, x_n \rangle$ converge quand $n \to \infty$.
- 3. Soit maintenant $X = l^2(\mathbb{N})$ et e_i sa base canonique. Donner un exemple d'une suite x_n d'éléments de X telle que $\langle e_i, x_n \rangle$ converge pour chaque i mais x_n ne converge pas faiblement.

Exercice 5 : Exemples dans L^p

On considère $X = L^p(\mathbb{R})$ avec $p \in]1, +\infty[$. On introduit une fonction $f \in \mathcal{C}_0^{\infty}(\mathbb{R})$ telle que $||f||_p = 1$. Montrer que les suites suivantes convergent faiblement vers 0 dans X, bien qu'elles soient de norme 1.

- 1) Concentration : $u_n : x \longmapsto n^{1/p} f(nx)$.
- 2) Fuite à l'infini $v_n : x \longmapsto f(x-n)$.
- 3) Etalement $w_n : x \longmapsto n^{-1/p} f(x/n)$.
- 4) Oscillations : $e_n : x \longmapsto e^{2i\pi nx} f(x)$.

On admettra que $X^* = L^q(\mathbb{R})$, q étant le conjugé de p, et que les fonction continues sont denses dans $L^p(\mathbb{R})$ pour tout $p \neq \infty$.

En déduire un exemple sur $X = L^2(\mathbb{R})$ de suites (x_n) convergeant faiblement dans X et (f_n) convergeant faiblement-* dans X' telles que $f_n(x_n)$ ne converge pas.

Exercice 6 : Compacité séquentielle de la boule unité faible-*

- 1) Montrer que la boule unité fermée de X^* pour la topologie forte est compacte pour la topologie faible-*.
- 2) On suppose que X est séparable. Soit (x_n) un ensemble dense et dénombrable de X. Montrer qu'un suite bornée f_n converge vers f dans la topologie faible-* si et seulement si pour tout m on a que $f_n(x_m)$ converge vers $f(x_m)$.
- 3) En déduire une métrique d sur la boule unité dans X^* telle que $d(f_n, f) \to 0$ si et seulement si f_n converge vers f pour la topologie faible-*.
- 4) Montrer par un exemple que la sphère unité de X^* pour la topologie forte n'est pas compacte pour la topologie faible-*.
- 5) En déduire que si X est réflexif et séparable, alors la boule unité fermée de X (pour la topologie forte) est faiblement compacte pour les suites.
- 6) Montrer par un contre-exemple que la compacité de la question précédente est fausse si X n'est pas réfléxif.

Exercice 7: Dérivées faibles. On considère une fonction $f \in L^p(\mathbb{R})$, ou $p \in [1, \infty]$.

1. Montrer que pour tout $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R})$ on a que

$$\int_{\mathbb{R}} \frac{f(x+h) - f(x)}{h} \phi(x) dx \to_{h \to 0} - \int_{\mathbb{R}} f(x) \phi'(x) dx.$$

2. Soit pour tout h la fonction $g_h(x) = \frac{f(x+h)-f(x)}{h}$. Montrer que s'il existe une suite h_n avec $h_n \to 0$ et une fonction g telle que $g_{h_n} \to g$ faiblement dans $L^p(\mathbb{R})$ alors g est la dérivée faible de f.

Exercice 8 : Derivées faibles, primitives et representants continus.

- 1. Soit $f \in L^1_{loc}(\mathbb{R})$. Montrer que la onction $g(x) = \int_0^x f(t)dt$ est continue.
- 2. Montrer que f(x) est la dérivée faible de g(x). (On pourra utiliser le théorème de Fubini.)
- 3. Soit f une fonction en $L^1_{loc}(\mathbb{R})$ qui admet une derivée faible. Montrer que la classe de f dans $L^1(\mathbb{R})$ contient un unique représentant continu.

Exercice 9 : Espaces de Sobolev et séries de Fourier.

On considère dans cet exercices l'espace des fonctions L^2 à valeur dans \mathbb{C} et 2π péreriodiques sur R, muni du produit hermitien

$$\langle f, g \rangle = \int_{-\pi}^{\pi} \overline{f(x)} g(x) dx.$$

On identifie cet espace avec l'espace de fonctions complexes L^2 sur $S^1 = \mathbb{R}/2\pi\mathbb{Z}$. On le note $L^2(S^1)$. On note que toute fonction sur S^1 est de support compacte.

Soit $H^1(S^1)$ l'ensemble de fonctions $f \in L^2(S^1)$ qui admettent un derivée faible dans $L^2(S^1)$. Nous munissons cet espace de son produit hermitien de Sobolev

$$\langle f, g \rangle = \int_{-\pi}^{\pi} \overline{f(x)} g(x) dx + \int_{-\pi}^{\pi} \overline{f'(x)} g'(x) dx$$

ou les derivées sont prises au sens faible. Nous noterons $||\cdot||_{1,2}$ la norme associée.

On admettra que chaque $f \in L^2(S^1)$ s'écrit de façon unique dans la forme

$$f = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx}$$

ou la somme est prise par rapport à la norme L^2 et que nous avons alors que $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx$.

- 1. Justifier que l'application $L^2(S^1) \to l^2(\mathbb{Z})$ donnée par $f \to \left(\frac{c_n(f)}{\sqrt{2\pi}}\right)$ est un isomorphisme isométrique d'espaces de Hilberts complexes.
- 2. Montrer que si f est \mathcal{C}^1 au sens fort alors $c_n = o(1/n)$. Montrer que si $c_n = o(1/n^{2+\delta})$ et $\delta > 0$ alors f est \mathcal{C}^1 au sens fort.
- 3. Montrer que si f admet une derivée faible f' alors la séries de Fourier de f' est donnée par $c_n(f') = -inc_n(f)$. Montrer que f admet une dérivée faible si et seulement si $(-inc_n(f))$ est dans $l^2(\mathbb{Z})$.
- 4. Exprimer la norme de Sobolev $||\cdot||_{1,2}$ en termes des coefficients de Fourier $c_n(f)$.
- 5. Montrer que l'adhérence en $L^2(S^1)$ de $B_1(H^1(S^1))$, la boule unité de la norme de Sobolev, est compacte dans $L^2(S^1)$.

Exercice 10 : Formule de trace, cas simple. On considère dans cette exercice le carré $C = [-1, 1] \times [-1, 1]$ dans \mathbb{R} . Nous considérons l'espace de Sobolev $W_{1,1}(C)$ que l'on munit de la norme de Sobolev

$$||f||_{1,1} = \int_C |f| + |\frac{\partial f}{\partial x}| + |\frac{\partial f}{\partial y}| dx.$$

On note que, a priori, les éléments de $W_{1,1}$ 'tant définis seulement presque partout, a restriction d'un élément de $W_{1,1}(C)$ au bord δC n'est pas définis pour les éléments non continus. Le but de cet exercice est de contourner ce problème.

- 1. Montrer que l'application de restriction $C^1(C) \to C^0(\delta C)$ n'est pas continu si on munit $C^1(C)$ et $C^0(\delta C)$ de la norme L^1 .
- 2. Pour tout $(x,y) \in C$ justifier que

$$|f(x,-1)| \le |f(x,y)| + \int_{-1}^{1} |\frac{\partial f}{\partial y}(x,t)| dt$$

et en déduire l'existence d'une constante C telle que

$$\int_{-1}^{1} |f(x,-1)| dx \le C||f||_{1,1}$$

- 3. Montrer que l'application de restriction $C^1(C) \to C^0(\delta C)$ est continue si on munit $C^1(C)$ de la norme $W_{1,1}$ et $C^0(\delta C)$ de la norme L^1 .
- 4. En déduire que cette application de restriction admet une extension

trace:
$$W_{1,1}(C) \to L^1(\delta C)$$
.

(Vous pouvez utiliser la densité des fonctions lisses à support compact dans les espaces de Sobolev.)