TOPIC #1 Logic Design

Introduction

- Analog vs Digital
 Continuous and discrete
- The analog world or the digital world?

Why we need digital system

Digital signal is more robust than the analog one

Digital signal is easy to be used (store and operate)

Computer Arithmetic

• Skip

Boolean Algebra (1/5)

- Logic algebra
 A kind of algebra about 0 and 1
- But! What is algebra?AB =? BA ; x+y=z and x+w=z =>? y=w
- Any operation don't follow the postulate(公設) / axiom (公理) must be proved
- Any theorem is derived from another theorem or postulate/axiom.

Boolean Algebra (2/5)

- 1. Closure with respect to "+" and "•"
- 2. An identity element with respect to "+" and "•".

$$x + 0 = 0 + x = x$$
 and $x \cdot 1 = 1 \cdot x = x$

3. Commutative with respect to "+" and "•"

$$x + y = y + x$$
 and $x \cdot y = y \cdot x$

4. Distributive over "+" and "•".

$$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$$
 and $x + (y \bullet z) = (x + y) \bullet (x + z)$

- 5. For $x \in B$, there exists $x' \in B$ (complement of x) such that x + x' = 1 and $x \cdot x' = 0$.
- 6. There exist at least two elements x, y \in B, such that x \neq y.

Boolean Algebra (3/5)

Pos.	2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Pos.	5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Thm	. 1	(a)	x + x = x	(b)	$x \cdot x = x$
Thm	. 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Thm	. 3, involution	(a)	(x')' = x	(b)	
Pos.	3, commutative	(a)	x + y = y + x	(b)	xy = yx
Thm	. 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Pos.	4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Thm	. 5, DeMorgan	(a)	$(x+y)'=x'\cdot y'$	(b)	(xy)' = x' + y'
Thm	. 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

Boolean Algebra (4/5)

• Thm. 1(a): x + x = x

• Thm. 1(b): x • x = x

Boolean Algebra (5/5)

• Thm. 2: x + 1 = 1

• Thm. 6: x + xy = x

DeMorgan's Law(1/3)

• (x + y)' = x' • y' (General)

To prove the two set are equivalent, we use **Elementwise method**.

DeMorgan's Law(2/3)

$$\bullet (x + y)' = x' \bullet y'$$

DeMorgan's Law(3/3)

$$\bullet (x \bullet y)' = x' + y'$$

Homework

Simplification of Boolean Algebra

1. Mathematical way

Not intuitive, complicate

2. Truth table

- Easy, but may not be the simplest circuit.
- Used with K-Map

3. Karnaugh map

 Easy, often used in Logic design course but the number of the parameters may not exceed 6.

4. Other ways

Truth Table(1/3)

x	y	x + y
0	0	0
0	1	0
1	0	0
1	1	1

AND Logic

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

OR Logic

x	<i>x</i> '
0	1
1	0

NOT Logic

Truth Table(2/3)

Example

x	y	Z	F_1	F_2
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0
	0 0 0 0 1	0 0 0 0 0 0 1 0 1 1 0 1 0 1	0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1	0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1

Truth Table(3/3)

• Simplify F = x'y'z + x'yz + xy' = x'z(y' + y) + xy' = x'z + xy'

Karnaugh map

- There are some details to discuss
- Skip but refer to 清大開放式課程 數位邏輯設計

Logic Gate (1/2)

2 - input AND gate

2 - input OR gate

Α	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

Input	Output
0	1
1	0

Logic Gate (2/2)

2 - input NAND gate

2 - input NOR gate

Exclusive-OR gate

Α	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

Exercise 1

Exercise 2-1(algebra)

•
$$F = ((AB)' + A')B + A$$

Exercise 2-2(K-Map)

•
$$F = ((AB)' + A')B + A$$

Exercise 3-1 (algebra)

•
$$F = (A+BC)(A+B)'$$

Exercise 3-2 (K-Map)

•
$$F = (A+BC)(A+B)'$$

Combination/ Sequential Logic

- Combinational circuits contain no memory elements, and the outputs depend on the current inputs.
- Designing the sequential logic, you need to consider "clock" well. The main element in sequential logic is memory devices. And we will only introduce Flip-Flop.

Latch(1/3)

- Latch is a logic device that it can help us be able to control signal well.
- Latch is an asynchronous sequential circuit. (state changes whenever inputs change).

Latch(2/3)

• Exercise: Draw the output of an SR latch for the input waveforms shown below.

Latch(3/3)

D Latch

- D latch can eliminate the undesirable condition of the indeterminate state in the SR latch
- D >> Q when En = 1; no change when En = 0
- A transparent latch when En = 1, then D >> Q

Trigger

A trigger

• The change of the output state of a latch or flip-flop is enabled by a change of the control input (Enable). This momentary change is called trigger.

• Level triggered

- The state transition starts as soon as clock(Enable) is during logic 1 or logic 0 level.
- The change of input makes the combination logic keep changing with the input latch at logic 1 or logic 0.
- Edge triggered
 - The state transition starts only at positive or negative edge of the clock signal.
 - The edge triggered flip-flops will isolate the input changes (current state) and output driving logic (previous state).

Flip-Flop(1/4)

- D Flip-Flop
 - Edge-Triggered

Flip-Flop(2/4)

• Exercise: Please plot the graph of D-FF and D-latch according to the following plot.

Flip-Flop(3/4)

Flip-Flop(4/4)

Homework

- 1
- 2(a)(c)
- 3
- 4
- 5