Übungen zur Vorlesung Differentialgeometrie II

Blatt 9

Aufgabe 31. (4 Punkte)

Seien X und Y Mannigfaltigkeiten und $Z \subset Y$ eine Untermannigfaltigkeit mit codim Z = l. Seien $f: X \to Y$ und $g: Y \to \mathbb{R}^l$ in C^1 mit $Z = g^{-1}(0)$.

(i) Zeige, dass $g \circ f$ genau dann eine Submersion in $x \in f^{-1}(Z)$ ist, genau dann wenn

$$f_{*,x}(T_xX) + T_{f(x)}Z = T_{f(x)}Y$$
.

(ii) f heißt transversal zu Z, falls (i) für alle $x \in f^{-1}(Z)$ gilt. Zeige, dass $f^{-1}(Z) \subset X$ eine Untermannigfaltigkeit ist und, dass

$$\operatorname{codim}(f^{-1}(Z)) = l$$

gilt.

Aufgabe 32. (4 Punkte)

Sei Y eine Mannigfaltigkeit Seien W,Z Untermannigfaltigkeiten von Y mit dim $W,\dim Z<\dim Y,$ die sich transversal schneiden, d. h. dass

$$T_x Y = T_x W + T_x Z$$

für alle $x \in W \cap Z$.

(i) Zeige, dass $W \cap Z$ eine Untermannigfaltigkeit von Y bzw. Z ist und dass

$$\operatorname{codim}(W \cap Z) = \operatorname{codim}(W) + \operatorname{codim}(Z)$$

bzw.

$$\operatorname{codim}(W\cap Z)=\dim(W)-\dim(W\cap Z)$$

gilt.

(ii) Finde ein Beispiel, dass zeigt, dass $W \cap Z$ im Fall $T_xW \neq T_xZ$ für alle $x \in W \cap Z$ im Allgemeinen keine Untermannigfaltigkeit von $Y = \mathbb{R}^4$ zu sein braucht.

Aufgabe 33. (4 Punkte)

Sei N eine differenzierbare Mannigfaltigkeit. $A \subset N$ heißt Nullmenge, falls $\varphi(A)$ für eine höchstens abzählbare Menge von Kartenabbildungen eine Nullmenge ist, deren Kartenumgebungen N überdecken.

Seien M, N differenzierbare Mannigfaltigkeiten mit dim $M < \dim N$. M besitze einen abzählbaren Atlas und $f: M \to N$ sei in C^1 .

Zeige, dass f(M) eine Nullmenge ist.

Aufgabe 34 (Schwacher Einbettungssatz von Whitney). (4 Punkte) Sei M eine kompakte Untermannigfaltigkeit des \mathbb{R}^n mit $n > 2 \dim M + 1$.

Sei $\Delta = \{(x,y) \in M \times M : x = y\}$ und sei $\sigma : (M \times M) \setminus \Delta \to \mathbb{S}^{n-1}$ definiert durch

$$\sigma(x,y) = \frac{x-y}{|x-y|}.$$

Zeige:

(i) Es gibt $v \in \mathbb{S}^{n-1}$, $v^n \neq 0$ und $v \notin \overline{\text{Bild}(\sigma)}$.

Hinweis: Benutze Aufgabe 33.

(ii) Definiert man die schiefe Projektion $P_v: \mathbb{R}^n \to \mathbb{R}^{n-1} \times \{0\}$ durch

$$P_v(x) = x - \frac{x^n}{v^n} v,$$

so kann man v so wählen, dass $P_v|_M$ eine differenzierbare Einbettung wird.

(iii) Jede m-dimensionale kompakte differenzierbare Mannigfaltigkeit kann differenzierbar in den \mathbb{R}^{2m+1} eingebettet werden.

Hinweis: Benutze (i) und (ii).

Abgabe: Bis Donnerstag, 21.06.2018, 10.00 Uhr, in die Mappe vor Büro F 402.