[12] **8.** Consider the following problem, in which $\mathbf{b} = (b_1, b_2)$ is not given explicitly:

(P) Maximize
$$f = 2x_1 + 3x_2 + x_3$$

subject to $x_1 - x_2 + 2x_3 + x_4 = b_1$
 $4x_1 + 2x_2 - x_3 + x_5 = b_2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

- (a) Find the set of all pairs (b_1, b_2) for which the given problem has an optimal basic solution with x_2 and x_3 as basic variables. Sketch this set on a Cartesian plane with axes labelled " b_1 " and " b_2 ".
- (b) Let $V = V(b_1, b_2)$ denote the maximum value in problem (P) as a function of the parameters. Give a simple formula for $V(b_1, b_2)$ that is valid on the set of **b**-values found in part (a).
- (c) Show that the formula from part (c) is *not* valid for all $\mathbf{b} \in \mathbb{R}^2$. (Suggestion: Show that the true value V(-1,-1) is obviously larger than the formula's preduction.)