Logique des Prédicats

Corrigé Série N°5 Exo 3

Etude Syntaxique

USTHB Faculté Informatique L. KADDOURI

1/ Déterminer les occurrences libres et liées et les variables libres et liées dans les formules suivantes :

x est une Var Libre et Liée y est une Var Libre z est une Var Liée

x est une Var Liée y est une Var Libre et Liée

x est une Var Libre et Liée y est une Var Libre et Liée z est une Var Liée

x est une Var Libre et Liée y est une Var Libre et Liée z est une Var Libre et Liée

Occurrence libre de z

2a/E Est-ce que le terme $t_1 = f(x,y)$ est libre pour x dans

$$\alpha_1$$
: Q(x) y) $\wedge \exists x P(y, x)$
 α_1 [t₁/x]: Q(f(x,y), y) $\wedge \exists x P(y, x)$

Les variable du terme $t_1 = f(x,y)$ restent libres après substitution, donc : t_1 Libre pour x dans α_1

2b/Est-ce que le terme $t_2 = f(x,z)$ est libre pour y dans

$$\alpha_1: Q(x,y) \land \exists x P(y,x)$$

 $\alpha_1[t_2/x]: Q(x,f(x,z)) \land \exists x P(f(x,z),x)$

La variable x du terme $t_2 = f(x,z)$ devient liée après substitution, donc : t_2 N'est pas Libre pour y dans α_1

2a/ Est-ce que le terme $t_1 = f(x,y)$ est libre pour x dans $\alpha_2 : \forall x \ Q(x, y) \rightarrow P(y, a)$

Il n'y a pas d'occurrence libre de x dans α_2 donc : t_1 Libre pour x dans α_2

2b/Est-ce que le terme $t_2 = f(x,z)$ est libre pour y dans

$$\alpha_2 : \forall x Q(x,y) \rightarrow P(y,a)$$

$$\alpha_2[t_2/x]: \forall x Q(x, f(x,z)) \rightarrow P(f(x,z), a)$$

La variable x du terme $t_2 = f(x,z)$ devient liée après substitution, donc : t_2 N'est pas Libre pour y dans α_2

2a/E Est-ce que le terme $t_1 = f(x,y)$ est libre pour x dans

$$\alpha_3: P(x,y) \lor \neg \exists z P(z, f(x,y))$$

 $\alpha_3: P(f(x,y),y) \lor \neg \exists z P(z, f(f(x,y),y))$

Les variable du terme $t_1 = f(x,y)$ restent libres après substitution, donc : t_1 Libre pour x dans α_3

2b/Est-ce que le terme $t_2 = f(x,z)$ est libre pour y dans

$$\alpha_3: P(x,y) \lor \neg \exists z P(z, f(x,y))$$

 $\alpha_3: P(x,f(x,z)) \lor \neg \exists z P(z, f(x,f(x,z)))$

La variable z du terme $t_2 = f(x,z)$ devient liée après substitution, donc : t_2 N'est pas Libre pour y dans α_3