Circuits And System 1

CSE103L Circuits & Systems-I Lab

LAB REPORT # 6

2020

Submitted to:

Engr. Faiz Ullah

Submitted by:

TAYYABA

Registration No:

19PWCSE1854

Semester: 2nd

Class Section: C

980

"On my honour, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Student Signature:

Thursday, March 12, 2020

Department of Computer Systems Engineering

University of Engineering and Technology, Peshawar

ASSESSMENT RUBRICS LAB # 6

Verification of KCL using PSPICE

Criteria		Excellent	Average	Nill	Marks Obtained
1.	Objectives of Lab	All objectives of lab are properly covered [Marks 0.5]	Objectives of lab are partially covered [Marks 0.25]	Objectives of lab are not shown [Marks 0]	
2.	Kirchhoff's Current Law (Statement, Mathematical Expression, Circuit Diagram)	Correct KCL statement and mathematical expression is written. Circuit diagram shown is correct and properly labeled [Marks 1]	KCL statement or mathematical expression or circuit diagram is missing or circuit diagram is not properly labeled [Marks 0.5]		
3.	PSPICE Simulator	Brief introduction of PSPICE simulator [Marks 1]	Brief introduction of PSPICE simulator Is not shown [Marks 0]		
4.	Procedure	All experimental steps are shown in detail [Marks 1.5]	Some of the experimental steps are missing [Marks 1]	Experimental steps are missing [Marks 0]	
5.	Observations & Calculations	All experimental results are completely shown in form of table for both cases of using same resistors and for different resistors with varying applied source voltage [Marks 4]	Experimental results are partially shown and some of the observations are missing [Marks 2]	No experimental results are shown [Marks 0]	
6.	Analysis	Analysis and discussion about all experimental results are shown [Marks 2]	Analysis and discussion about experimental results are partially shown [Marks 1]	Analysis is not shown [Marks 0]	

Verification of Kirchhoff Current Law (KCL) using PSPICE

Objectives:-

- 1. To learn about Kirchhoff's Current Law (KCL), its mathematical expression and its circuit diagram..
- 2. Learn to draw circuit for KCL in PSPICE software.
- 3. To verify KCL using PSPICE software.

Kirchhoff's Current Law:-

Kirchhoff's Current Law states that the sum of current into a junction is equal to the sum of current out of junction. The junction is a point where two or more then current paths joins together.

980

Circuit Diagram:-

Mathematical Expression:-

According to above diagram:

$$I_{in} = I_{out}$$

$$|_1+|_2 = |_3+|_4+|_5$$

$$I_1+I_2-I_3-I_4-I_5=0$$

PSPICE Simulator:-

PSPICE is a computer-aided simulation program that enables you to

design a circuit and then simulate the design on a computer. As this is one of its main purposes,

it is used circuit and then things we can learn are

extensively by electronic design engineers for building a testing out how that circuit will simulate. There are a lot of do with **PSPICE**, but the most important things for you to

1. Design and

draw circuits.

2. Simulate

circuits.

3. Analyze simulation results.

Procedure:-

- 1. Run the **PSPICE** software. A blank window will be opened.
- 2. Click on "Get New Part" from toolbar.

980

3. Type on part name and name part we want. Suppose we want DC Voltage so we will type VDC

4. Place it and assign its name and set the voltage.

again click on "**Get New Part**" and type **r**. place one such that the resistor is connected in **series** and place two resistor such that they are connected in **parallel**. Assign the resistance to each resistors.

6. Connect the whole circuit using "**Draw wire**" from toolbar.

- 7. Then again click on "Get New Part" and type GND and place ground at the end of circuit.
- **8.** Arrange the component according to this diagram:

9. Now click on "Simulate".

Observation & Calculation:-

Case 1 (Same Resistors):-

Table(Case 1):-

Sr. No.	Resistance	Current
1	1k Ω	166.67 uA
2	1k Ω	166.67 uA
3	1k Ω	3.333 uA

1980

Analysis:-

As from experimental data we can easily observe that the current going inside the circuit is equal to current going outside the circuit. As in above diagram, the flowed to **R3** and **R1** and **R2**. Their sum is equal to total current supplied to that point.

13 = 11 + 12

3.333 uA = 166.67 uA + 166.67 uA

Case 2 (Different Resistors):-

Table (Case 2):-

Sr. No.	Resistance	Current
1	2k Ω	1.563 mA
2	10k Ω	312.5 uA
3	1k Ω	1.875 mA

Analysis:-

As from experimental data we can easily observe that the current going inside the circuit is equal to current going outside the circuit. As in above diagram, current flowes from **R3** to **R1** and **R2**. Their sum is equal to total current supplied to that point.

13 = 11 + 12

1.875mA = 312.50uA + 1.563mA

1.875mA = 1.875mA

