10 MAY 2021 version 1

You must submit your exam by **Monday 10 May at 13:30** following the instruction at http://www.roma1.infn.it/people/rahatlou/cmp/

Electron energy loss in matter

The goal is to estimate the maximum penetration of an electron beam (10⁴ electrons) in a lead (Pb) target by taking into account Bremsstrahlung, above the critical energy, and energy loss by ionisation. Use a step size of 100 microns to estimate the probability of interaction and the average energy loss by each electron.

Reminders

- For E > E_c (critical energy) electrons loose energy mainly by Bremsstrahlung. The probability of an electron not-interacting after a penetration length \mathbf{x} is an exponential e^{-x/X_0} , where \mathbf{X}_0 is the interaction length. The energy of the electron after a penetration length \mathbf{x} is $E(x) = E_0 \cdot e^{-x/X_0}$, where \mathbf{E}_0 is the initial energy of the electron.
- Below the critical energy, you can estimate the average energy loss by ionisation with the approximate Bethe-Bloch formula

$$-\frac{dE}{dx} = \mathcal{C}\rho \frac{Z}{A} \frac{1}{2} \frac{1}{\beta^2} \left[\ln \frac{4 m_e^2 \beta^4 \gamma^4}{\bar{I}^2} - \beta^2 - \frac{\delta}{2} \right]$$

where $\mathscr{C} = 0.3 \, \mathrm{MeV} \, \mathrm{g}^{-1} \, \mathrm{cm}^2$, and β, γ are the parameters of the electron, and the lead parameters are provided in the table.

- A particle can loose only its kinetic energy $K_e = E_e - m_e$. The electron mass is 0.511 MeV

	Density [g/cm ³]	<l> eV]</l>	E _c [MeV]	Radiation Length X ₀ [cm]	Interaction Length X _I [cm]	Z	A	δ
Pb	11.35	823	7.4	0.56	17.59	82	207	0.6

In order to estimate the maximum penetration x_{max} , for each electron passing through Pb consider the following steps. It is mandatory to use functions (or possibly appropriate classes) whenever possible.

- 1. Based on the electron energy decide which energy loss mechanism is to be considered
- 2. If Bremsstrahlung, evaluate the probability of interaction and use a random number to decide if an interaction occurs. In case of interaction, compute the new electron energy

Computing Methods for Physics 10 May 2021

- 3. If ionisation, compute the average energy loss with Bethe-Bloch. Extract the actual energy loss from a Gaussian distribution with its mean given by the Bethe-Bloch formula, and a width of 5%. Compute the new energy.
- 4. When the electron has lost all its kinetic energy, compute the maximum penetration x_{max}
- 5. Compute the average and RMS of the distribution of x_{max} and print them with an informative message on the screen.
- 6. Repeat the simulation for electrons of 10 MeV, 1 GeV, 100 GeV
- 7. Provide a 1D histogram of the distribution of x_{max} for each energy and save the plot as a pdf file named, respectively, xmax-10mev.pdf, xmax-1gev.pdf, and xmax-100gev.pdf
- 8. Provide a plot showing the average of x_{max} as a function the electron energy (10 MeV, 1 GeV, 100 GeV) on the x axis and save the plot as xmax-energy.pdf

You can use C++/ROOT or python for this test.

The evaluation will take into account the following aspects of your code: use of functions, proper arguments and return types; use of C++/python objects and data formats; use of object-oriented programming instead of C-style loops and arrays; compilation or linking errors; correct physics calculation; correct physical units; proper legend, axis labels and units on the plots; significant digits (not more than 2).