< 2018 학년도 2 학기 - 운영체제(Operating System) 과제 #3 >

이름 : 유기성

학번 : 20120139

제출일 : 2018 년 12 월 11 일 (화)

1. Definition of the Problem

이번 과제는 앞에서 제작한 User Defined Timer 를 활용해서 Pseudo Blood Pressure Detector 를 만드는 것이다.

병원에서 환자실에 누워있으면 흔히 볼 수 있는 혈압측정계의 텍스트 버전이라고 생각하면 된다.

2. Architecture of the Solution

구현 과정을 요약하면 다음과 같다.

- 1) 모든 변수를 초기화한다.
- 2) Data Acquisiton Thread 를 생성한다.
- 3) BP Processing Thread 를 생성한다.
- 4) Posix Timer 를 생성해서 일정한 시간마다 User Defined Timer 를 작동하도록 만든다.

(선택사항)

- 5) Robust Programming with exception check
- 6) Signal 발생 시 (SIGRTMIN ~ SIGRTMAX) 프로그램이 gracefully exit 하도록 만든다.

Header File Dependency Graphs

how pthread_cancel() works

pthread_cleanup_push(routine, arg)
 pthread_cleanup_pop();

스레드를 생성하기 전에 pthread_attr_t 변수를 활용해서 옵션을 주는 기능이 있다. 그러나 스레드를 생성한 이후에 스레드의 속성을 설정하는 함수도 다양하게 존재한다.

여기서 해결하고자 하는 문제점은 다음과 같다. 특정한 스레드에 대해서 pthread_cancel() 함수를 호출했을 때 제대로 동작하지 않았고 메인 스레드가 pthread_join()에서 끝없이 블록 상태인 경우가 발생했다.

이에 대해서는 크게 두 가지 옵션을 추가해야만 했다.

- [1] 첫째로는 pthread_setcancelstate() 함수를 사용해서 PTHREAD CANCEL ENABLE 옵션을 주는 것이다.
- [2] 둘째로는 pthread_setcanceltype() 함수를 사용해서 스레드를 PTHREAD_CANCEL_ASYNCHRONOUS 타 입으로 만들어주는 것이다.

PTHREAD_CANCEL_DEFERRED 타입은 pthread_testcancel() 부분을 스레드가 실행하고 있을때에 만 pthread_cancel()이 valid 하게 동작하고 나머지는 invalid 이다. 반면에

PTHREAD_CANCEL_ASYNCHRONOUS 타입은 스레드가 어느 부분을 실행하고 있는지 상관없이 pthread_cancel()이 valid 하게 정상적으로 동작한다.

pthread_cleanup_push(routine, arg) pthread_cleanup_pop();

여기에 더해서 cleanup code 도 지정해야 한다. 스레드가 cancel() 되기 위해서는 해당 스레드가 cancellation point 에 도달해 있어야만 한다. 간단하게 말하면 종료하려는 스레드가 모든 리소스를 반환한 상태여야만 한다고 보면 된다. 그러나 예를 들어 mutex_lock(), pthread_cond_wait(), mutex_unlock() 함수를 차례대로 호출했기에 스레드가 blocked 상태로 잠들어 있는 경우 mutex 변수를 점유하고 있는 것으로 봐야한다.

pthread_cancel() 를 호출하는 경우 스레드에 의해서 적재된 스택메모리를 모두 반환해야 하는데 이 과정에서 stack of thread-cancellation clean-up handler 가 활용된다. 자원반환을 제대로 수행하지 않으면 데드락이 발생하거나 다른 스레드의 작업 실행에 장애를 일으킨다. 이를 방지하는 매커니즘이 clean-up stack 이다.

pthread_cleanup_push() 를 통해서 CleanUp Handler 를 지정해서 고정할 수 있고, pthread_cleanup_pop()은 반대의 작용을 한다. 클린업 과정에서는

pthread_cleanup_push()을 통해 적재된 것의 역순으로 스레드가 사용한 자원을 반환한다.

Signal Handling in Multithreaded Programming

```
[ __sighandler_t ] = static void signal_handler(int);
signal( signum, __sighandler_t)
```

signal handling 방식을 간단하게 요약하면 다음과 같다. signal() 함수를 통해서 signal handler 를 지정할 수 있고, 시그널 핸들러는 반드시 static void (*) (int) 타입으로 forward declare 해야 한다.

이 외에 sigset_t 변수와 sigprocmask() 함수를 활용하므로써 시그널 별로 BLOCK, IGNORE, UNBLOCK 처리를 지정할 수 있다.

3. Encountered Obstacles and Realizations

이번 과제를 진행하면서 부딪쳤던 몇 가지 어려움은 다음과 같다.

- 1) 제일 큰 어려움은 함수를 기능별로 잘게 쪼개서 구현하는 부분이었다. 프로그램에서 사용되는 기능은 무엇이 있고 중복해서 사용되는 코드는 어디이며 변수도 전역변수, 지역변수로 나누는 과정에서 많은 어려움이 있었다. 이 프로그램은 멀티스레드 프로그래밍 방식으로 구현되어 있기에 여러 개의 스레드가 서로 공유하는 변수가 많았고 코드에서 어느 부분이 Critical Section 이고 어떤 방식으로 Mutex Lock Condition Variable Mutex Unlock 을 지정해야 할지 고민이 많았다. 함수를 파일마다 나눠놓다보니 각각의 파일마다 "extern data-type identifier;"를 추가해야 하는 번거로움이 있었다.
- 2) 기존에 두번째 과제로 제작했던 user_defined_timer 를 이 세번째 과제의 코드 안에 정교하게 합쳐놓는 과정에서 약간의 복잡함이 있었다. 새로운 애플리케이션을 만들 때에는 기존에 아무리 잘 만들어진 API 를 선택한다고 할지라도 그대로 가져다 쓰는 것은 거의 불가능하다는 것을 깨달았다. 새롭게 구현하려는 애플리케이션에 맞춰서 API 의 내부구현을 수정해야 하는 일이 빈번하게 발생한다는 것을 명확하게 알 수 있었다.
- 3) 이번 과제를 하면서 한 가지 특이한 점은 pseudo blood pressure 를 관리하는 자료구조로 FIFO Queue 를 사용했다. C++에 기본으로 내장된 STL Container 인 std::queue<T>를 사용했는데, cppreference 의 도큐멘테 이션에 의하면 큐타입 컨테이너가 Multithread-Unsafe 하다고 나와있음에도 불구하고 enqueu()와 dequeue() 과정에서 mutual exclusion 이나 conditional variable 없이 프로그램을 동작하게 만들 수 있었다. 이것이 가능했던 이유는 첫번째로 queue.front(), queue.back()에 접근하는 스레드가 각각 한 개씩으로 고정되어 있었기 때문에 Race Condition 이 발생하지 않은 것이다. 두번째로는 timer 에 의해서 data_acquisition_thread 와 bp_processing_thread 가 관리되었기 때문이다. 데이터를 생산해서 큐에 삽입하는 스레드가 10ms 주기(user defined timer 가상의 시간)로 작동했다면 데이터를 큐로부터 추출해서 분석하는 스레드가 100ms 주기로 정확하게 동작하고 있었기 때문에 타이머에만 문제가 없다면 코드 전에는 segmentation fault 없이 계속해서 동작할 수 있다.
- 4) C++의 inline 키워드는 컴파일러에게 프로그래머의 의도를 힌트로 주는 것이다. Inline 으로 선언된 함수를 컴파일러가 실제로 inline 으로 구현할 수도 있지만 그 힌트를 따르지 않을 수도 있다. 반대로 inline 으로 선언되지 않았다고 해서 컴파일러가 항상 스택에 추가적인 메모리를 요구하면서 컴파일하지는 않으며 해당 함수를 inline 함수로 자동 변경하기도 한다. 그러나 코드를 실제로 구현하는 프로그래머 입장에서 inline function 을 다룰 경우 기억해야할 점은 컴파일 순간에 inline 으로 지정되는 함수는 컴파일러 입장에서 볼 때 'body of inline function'을 인식할 수 있어야만 한다. 이를 통해서 Header File 안에 Declaration 뿐만 아니라 Definition 까지 존재해야만 하는 함수는 크게 보아서 a) template function, b) inline function only using local variables 두 가지임을 알 수 있다. 반대로 하나의 소스파일 내에서만 사용하는 함수를 inline 으로 구현하고 싶다면 헤더파일에 함수를 선언하지 않고 소스파일에 바로 함수 정의를 구현하면 된다.
- 5) CmakeLists.txt 파일에서 새로운 변수를 도입할 때는 set(var value-string) 을 사용한다. 그리고 앞에서 도입한 변수를 사용하고 싶다면 \${ }와 같이 중괄호를 사용해야 한다. (This must be curly bracket, not paranthesis or square bracket) 여기서 오타를 내는 바람에 꽤 오랜 시간을 낭비하기도 했다. 앞으로는 비슷한실수를 하지 않을 것이다.
- 6) Header File 에서 Declaration 할 때와 Source File 에서 Definition 을 기록할 때 function argument 를 일치시키는 것이 중요하다. 이를 철저하게 지키지 않을 경우 'undefined reference to'에러가 발생한다.
- 7) 포인터를 사용할 경우 ptr 의 값과 &(*ptr)의 값은 같지 않다. 그리고 포인터 변수 ptr 이 STL 컨테이너(STL Container)를 가리키고 있을 경우 ptr \rightarrow some_var 이 가리키는 것이 무엇인지 확인해야 오류를 방지할 수 있다.

- 8) 나중에 프로그램에 수신된 임의의 시그널에 대해서 생성한 스레드 두 개를 명시적으로 소멸하기 위해서 pthread_cancel() 함수를 호출하려고 했다. 테스트 과정에서 pthread_cancel 함수가 제대로 실행되지 않아서 메인 스레드가 pthread_join()에서 블록 상태로 유지되는 것을 확인했다. 이 문제점을 해결하는 것이 까다로운 부분 중 하나였다.
- 9) 어디선가 '자신이 충분한 실력이 쌓였다는 것을 어떻게 확인할 수 있을까'라는 질문에 대해서 누군가가 '한 번 코딩을 한 후에 한달이든 일년이든 나중에 다시 같은 코드를 봤을 때 손댈 곳이 거의 없으면 실력이 충분히 쌓인 것이다'라는 대답을 한 것을 봤다. 현재의 나는 일주일 단위로도 코드에서 손 볼 곳을 발견할 수 있고, 보다 나은 설계방식이 생각이 난다. 겨우 학부졸업생일 뿐이니 당연한 것이겠지만 아직 많이 부족하다. 진정으로 실력을 갖춘 사람이 될 때까지 더욱 정진해야겠다.

4. Source Codes (with comments)

Project Structure

README.md

Terminal Command Examples

```
(in the root directory of project)

$ mkdir build && cd build && cmake ..

$ make

$ ./03_pseudo_blood_pressure_detector

Clear

(in the build directory)

$ cd .. && rm -rf build/
```

Terminal File Edit View Search Terminal Help D/a/0/0/CMakeLists.txt 1 cmake_minimum_required (VERSION 3.0) 3 project(PSEUDO_BLOOD_PRESSURE_DETECTOR) 5 set(CMAKE_BUILD_TYPE Debug)
6 set(CMAKE_CXX_FLAGS "\${CMAKE_CXX_FLAGS} -g -std=c++14 -Wall") 8 # set(CMAKE_BUILD_TYPE Release) 9 # set(CMAKE_CXX_FLAGS "\${CMAKE_CXX_FLAGS} -std=c++14 -Wall") 10 11 set(INCLUDE_ROOT_DIRS \${PROJECT_SOURCE_DIR}/include)
12 set(INCLUDE_PTTTM_DIRS \${PROJECT_SOURCE_DIR}/include/include_ptttm)
13 set(INCLUDE_PBPD_DIRS \${PROJECT_SOURCE_DIR}/include/include_pbpd) 14 set(INCLUDE_DIRS \${INCLUDE_ROOT_DIRS}
\${INCLUDE_PTTTM_DIRS}
\${INCLUDE_PBPD_DIRS} 16 17 18) 19 include directories(\${INCLUDE DIRS}) 20 21 set(SOURCE_ROOT_DIR \${PROJECT_SOURCE_DIR}/src)
22 set(SOURCE_PBPD_DIR \${PROJECT_SOURCE_DIR}/src/src_pbpd)
23 set(SOURCE_PTTTM_DIR \${PROJECT_SOURCE_DIR}/src/src_ptttm) 24 set(SOURCE_FILES \${SOURCE_ROOT_DIR}/main_executor.cpp 25 \${SOURCE_ROOT_DIR}/print_functions.cpp \${SOURCE_ROOT_DIR}/signal_handlers.cpp 26 27 28 \${SOURCE_ROOT_DIR}/Container.cpp 29 \${SOURCE_PBPD_DIR}/bp_processing_thread.cpp \${SOURCE_PBPD_DIR}/data_acquisition_thread.cpp 30 31 \${SOURCE_PBPD_DIR}/dequeue_bp_queue.cpp \${SOURCE_PBPD_DIR}/enqueue_bp_queue.cpp 32 33 34 \${SOURCE_PBPD_DIR}/initialize_pbpd_variables.cpp 35 \${SOURCE_PBPD_DIR}/periodic_alarm_clock.cpp \${SOURCE_PBPD_DIR}/pseudo_blood_pressure_generator.cpp 36 37 \${SOURCE_PBPD_DIR}/static_pbpd_variables.cpp 39 \${SOURCE_PTTTM_DIR}/create_posix_timer.cpp \${\$SOURCE_PTTTM_DIR}/create_pthread.cpp \${\$SOURCE_PTTTM_DIR}/initialize_ptttm_variables.cpp \${\$SOURCE_PTTTM_DIR}/static_ptttm_variables.cpp 40 41 42 \${SOURCE_PTTTM_DIR}/tt_thread_register.cpp \${SOURCE_PTTTM_DIR}/tt_thread_wait_invocation.cpp 43 44 45) 46 47 add_executable(03_pseudo_bpd \${SOURCE_FILES}) 48 target_link_libraries(03_pseudo_bpd 49 50 pthread 51 гt 52

NORMAL <seudo_blood_pressure_detector/CMakeLists.txt cmake utf-8[unix] 100% = 52: 1 = [14]tra..

user_defined_types.hpp

```
h wser_defined_types.hpp ×
include ▷ h++ user_defined_types.hpp ▷ ...
      #ifndef USER_DEFINED_TYPES__f95fef91_27b2_494b_8f58_a6ef2a2651e4__HPP
      #define USER DEFINED TYPES f95fef91 27b2 494b 8f58 a6ef2a2651e4 HPP
  3
     #include <signal.h>
  4
  5
  6
  7
     using err_msg_type = const char*;
  8
  9
     using event = struct sigevent;
 10
      using t spec = struct itimerspec;
 11
 12
      struct TCB
 13
      {
 14
                      tid;
 15
          pthread t
          long
                         period;
 16
                         time left to invoke;
          long
 17
                            self TCB idx;
 18
          // size t
     };
 19
      using TCB = struct TCB;
 20
 21
 22
      struct timer args
 23
          size t ptimer period;
 24
 25
      using timer args = struct timer args;
 26
  27
     struct thread args
 28
 29
          size_t period;
 30
 31
      using thread args = struct thread args;
 32
 33
 34
 35
     #endif /* USER_DEFINED_TYPES__f95fef91_27b2_494b_8f58_a6ef2a2651e4__HPP___ */
 36
```

static_ptttm_variables.hpp

```
h<sup>™</sup> static ptttm variables.hpp ×
include ▶ include_ptttm ▶ h++ static_ptttm_variables.hpp ▶ ...
       #ifndef STATIC PTTTM VARIABLES 11e7bb96 698c 43ee 8e2b c3dd52e333c7 HPP
      #define STATIC PTTTM VARIABLES 11e7bb96 698c 43ee 8e2b c3dd52e333c7 HPP
   3
      #include <string>
     #include <vector>
   5
   6 #include <unordered map>
     #include <memory>
   7
  8
      #include <pthread.h>
  10 #include <unistd.h>
     #include <sys/types.h>
  11
  12 #include <signal.h>
  13
     #include "../print functions.hpp"
  14
  15
      #include "../Container.hpp"
  16
      #define ZERO
  17
                                   0UL
     #define ONE
                                   1UL
  18
  19 #define TEN
                                   10UL
     #define HUNDRED
  20
                                   100UL
  21
     #define THOUSAND
                                   1000UL
     #define MILLION
                                  1000000UL
  22
  23
  24
  25
      #endif /* STATIC PTTTM VARIABLES 11e7bb96 698c 43ee 8e2b c3dd52e333c7 HPP */
  26
```

static_ptttm_variables.cpp

```
C++ static_ptttm_variables.cpp x
src > src_ptttm > C++ static_ptttm_variables.cpp
1  #include "../../include/include_ptttm/static_ptttm_variables.hpp"
2
3
4
```

static_pbpd_variables.hpp

```
h<sup>++</sup> static_pbpd_variables.hpp ×
include ▶ include_pbpd ▶ h++ static_pbpd_variables.hpp ▶ ...
       #ifndef STATIC PBPD VARIABLES c805db0f 1f87 4854 9fca df8988f2c10e HPP
       #define STATIC PBPD VARIABLES c805db0f 1f87 4854 9fca df8988f2c10e HPP
   2
   3
      #include <queue>
   5
      #include <memory>
      #include <pthread.h>
   7
      #include <unistd.h>
   8
      #include <signal.h>
   9
     #include <time.h>
  10
      #include <sys/types.h>
  11
  12
  13
      #include "../print_functions.hpp"
       #include "../Container.hpp"
  14
  15
  16
      #define MAX BP QUEUE SIZE 100
  17
  18
  19
       #endif /* STATIC_PBPD_VARIABLES__c805db0f_1f87_4854_9fca_df8988f2c10e__HPP__
  20
```

static_pbpd_variables.cpp

Container.hpp

```
h<sup>++</sup> Container.hpp ×
include ▶ h↔ Container.hpp ▶ ...
       #ifndef CONTAINER__77bc9d41_845e_4619_ab23_754c21514d10__HPP
   1
       #define CONTAINER 77bc9d41 845e 4619 ab23 754c21514d10 HPP
   2
   3
     #include "user_defined_types.hpp"
   4
   5 #include "include ptttm/static ptttm variables.hpp"
     #include "include pbpd/static pbpd variables.hpp"
   7
   8
   9
      struct Container
  10
  11
           // static PTTTM variables
  12
           std::unique ptr<pthread mutex t> API Mutex;
  13
  14
           std::unique ptr<timer args> TM Arg;
           std::unique ptr<timer t> Timer;
  15
  16
  17
           std::unique_ptr<thread_args> THR_Arg__acq_thread;
           std::unique_ptr<thread_args> THR_Arg__proc_thread;
  18
  19
  20
           std::unique_ptr<TCB> TCB_storage;
  21
           // PBPD variables
  22
           std::unique ptr<pthread cond t> API cond data acqusition;
  23
           std::unique ptr<pthread cond t> API cond bp processing;
  24
  25
           std::unique ptr<pthread t> acq thread;
  26
           std::unique ptr<pthread t> proc thread;
  27
  28
           std::unique ptr<std::queue<int>> bp queue;
  29
  30
       };
  31
       using Container = struct Container;
  32
  33
  34
       #endif /* CONTAINER 77bc9d41 845e 4619 ab23 754c21514d10 HPP */
  35
                                Container.cpp
                                     Container.cpp - 03_pseudo_blood_pre
       File Edit Selection View Go Debug Terminal Help
        C++ Container.cpp ×
         src ▶ C++ Container.cpp ▶ ...
                #include "../include/Container.hpp"
           1
           2
           3
               std::unique ptr<Container> C;
           4
                /*
           5
           6
               extern std::unique ptr<Container> C;
           7
           8
                */
           9
```

10

create_pthread.hpp

```
h ** create_pthread.hpp ×
include ▷ include_ptttm ▷ h++ create_pthread.hpp ▷ ...
       #ifndef CREATE PTHREAD a80a435d da41 4fbd 82e2 1a77995a4c1a HPP
       #define CREATE PTHREAD a80a435d da41 4fbd 82e2 1a77995a4c1a HPP
   2
   3
     #include "../Container.hpp"
   4
      #include "../include pbpd/data acquisition thread.hpp"
   5
      #include "../include pbpd/bp processing thread.hpp"
   6
   7
       #define DATA ACQUISITION THREAD TYPE
   8
                                                            4321U
       #define BLOOD PRESSURE PROCESSING THREAD TYPE
  9
                                                          9876U
  10
  11
  12
  13
       void add pthread arguments(uint, size t);
       void create new thread(uint);
  14
       void cancel all threads(void);
  15
  16
  17
  18
      #endif /* CREATE_PTHREAD__a80a435d_da41_4fbd_82e2_1a77995a4c1a_ HPP___ */
  19
```

create_pthread.cpp

```
create_pthread.cpp - 03_pseudo_blood_pressure_detector - Visual Studio Code
File Edit Selection View Go Debug Terminal Help
C++ create_pthread.cpp ×
 src ▷ src_ptttm ▷ C++ create_pthread.cpp ▷ ...
       #include "../../include/include_ptttm/create_pthread.hpp"
   1
   2
   3
   4
   5
        extern std::unique ptr<Container> C;
   6
   7
   8
        inline void add pthread arguments(uint thread type, size t new period)
   9
  10
  11
            switch (thread type)
  12
            {
                case DATA ACQUISITION THREAD TYPE:
  13
                    C->THR Arg acq thread->period = new period;
  14
  15
                    break:
                case BLOOD PRESSURE PROCESSING THREAD TYPE:
  16
                    C->THR Arg proc thread->period = OUL;
  17
                default:
  19
  20
                    std::string err msg = "ERROR : in switch-case\n";
  21
  22
                    err msg.append("/n/t check argument to the function add pthread arguments( )");
  23
                    print(err_msg);
  24
  25
  26
  27
        void create new thread(uint thread type)
  28
  29
            print("create new thread()", " ");
  30
            auto rv = 0;
  31
  32
            switch (thread type)
  33
  34
                case DATA ACQUISITION THREAD TYPE:
  35
  36
  37
                    print("data acquisition thread");
                    add pthread arguments(DATA ACQUISITION THREAD TYPE, HUNDRED);
  38
                    rv = pthread create(&(*(C->acq thread)), nullptr, data acquisition thread,
                             reinterpret cast<void*>(&(*(C->THR Arg acq thread))));
  40
  41
                    break;
                }
  42
                case BLOOD_PRESSURE_PROCESSING_THREAD_TYPE:
  43
  44
                    print("blood_pressure_processing thread");
  45
                    rv = pthread create(&(*(C->proc thread)), nullptr, bp processing thread,
  46
  47
                             nullptr);
  48
                    break;
```

```
Starracting off_mag - Endon , in switch case(ii ,
                 err msg.append("/n/t check argument to the function add pthread arguments()
22
                 print(err_msg);
23
24
25
26
27
28
     void create_new_thread(uint thread_type)
29
         print("create_new_thread( )", " ");
30
31
         auto rv = 0;
32
         switch (thread type)
33
34
             case DATA ACQUISITION THREAD TYPE:
35
                 print("data acquisition thread");
37
                 add pthread arguments(DATA ACQUISITION THREAD TYPE, HUNDRED);
38
                 rv = pthread create(&(*(C->acq thread)), nullptr, data acquisition thread,
39
                          reinterpret_cast<void*>(&(*(C->THR_Arg__acq_thread))));
40
41
                 break;
42
             case BLOOD PRESSURE PROCESSING THREAD TYPE:
43
44
                 print("blood_pressure_processing thread");
45
46
                 rv = pthread create(&(*(C->proc thread)), nullptr, bp processing thread,
47
                         nullptr);
48
                 break;
             }
49
             default:
50
51
                 std::string err msg = "ERROR : in switch-case\n";
52
53
                 err msg.append("/n/t check argument to the function create new thread()");
                 print(err_msg);
54
55
56
             if (rv != 0) {
57
                 print("pthread create() failed TT TT");
58
             }
59
60
61
62
     void cancel all threads(void)
63
64
         pthread_cancel(*(C->acq_thread));
65
         pthread_cancel(*(C->proc_thread));
66
67
68
```

data_acquisition_thread.hpp

```
h↔ data_acquisition_thread.hpp ×
include ▷ include_pbpd ▷ h++ data_acquisition_thread.hpp ▷ ...
       #ifndef DATA_ACQUISITION_THREAD__67c639ed_0028_43fa_aea8_5e52f61ba665__HPP
       #define DATA ACQUISITION THREAD 67c639ed 0028 43fa aea8 5e52f61ba665
  3
     #include "../Container.hpp"
   5
      #include "pseudo_blood_pressure_generator.hpp"
   6
      #include "enqueue bp queue.hpp"
  7
      #include "../include_ptttm/tt_thread_register.hpp"
  8
      #include "../include ptttm/tt thread wait invocation.hpp"
  9
 10
 11
       void bp proc cleanup handler(void*);
 12
       void enqueue acquired data(uint*);
 13
       void* data_acquisition_thread(void*);
 14
 15
 16
 17
       #endif /* DATA_ACQUISITION_THREAD__67c639ed_0028_43fa_aea8_5e52f61ba665__HPP___ */
 18
```

data_acquisition_thread.cpp

```
data_acquisition_thread.cpp - 03_pseudo_blood_pressure_detector - Visual Studio Code
File Edit Selection View Go Debug Terminal Help
C++ data_acquisition_thread.cpp ×
 src ▷ src_pbpd ▷ C++ data_acquisition_thread.cpp ▷ ...
  41
  42
                ++turn;
  43
                tt thread wait invocation();
  44
                // posix timer overrun detection
  45
  46
                auto overrun_n = timer_getoverrun(*(C->Timer));
  47
                if (overrun n > 0) {
                    perr("overrun detected! (count = " + std::to string(overrun n) + ")");
  48
                }
  49
  50
                else if (overrun n == -1) \{
                    perr("ERROR : timer_getoverrun in data_acquisition_thread");
  51
                    should exit = true;
  52
                }
  53
  54
  55
                try {
  56
                    enqueue acquired data(&turn);
  57
                catch (std::exception e) {
  58
                    perr("ERROR: from enqueue acquired data() inside data acquisition thread");
  59
                    e.what();
  60
                    should exit = true;
  61
  62
  63
  64
                if (turn == 10) {
                    if (pthread mutex lock(&(*(C->API Mutex))) != 0) {
  65
                         perr("ERROR : mutex lock in data acquisition_thread");
  66
                         should exit = true;
  67
  68
                    }
                     if (pthread cond signal(&(*(C->API cond bp processing))) != 0) {
  69
  70
                         perr("ERROR : cond_signal in data_acquisition_thread");
                         should exit = true;
  71
  72
                    if (pthread_mutex_unlock(&(*(C->API_Mutex))) != 0) {
  73
                         perr("ERROR : mutex UNlock in data acquisition thread");
  74
  75
                         should exit = true;
  76
  77
                    turn = 0;
  78
  79
                if (should_exit) {
  80
  81
                    pthread_exit(nullptr);
  82
                pthread cleanup pop(0);
  83
  84
  85
            return nullptr;
  86
        }
  87
  88
⊗ 0 ∧ 0
                                                                (Global Scope) Ln 1, Col 1 Spaces: 4 UTF-8 LF
```

tt_thread_register.hpp

```
h tt_thread_register.hpp ×
include ▷ include_ptttm ▷ h++ tt_thread_register.hpp ▷ ...
       #ifndef TT THREAD REGISTER c9656d10 a146 482d b6e6 e70e83a74c77
       #define TT THREAD REGISTER c9656d10 a146 482d b6e6 e70e83a74c77 HPP
      #include "../Container.hpp"
   4
   5
   6
   7
   8
      void tt thread register(size t);
  9
  10
  11
       #endif /* TT THREAD REGISTER c9656d10 a146 482d b6e6 e70e83a74c77 HPP */
  12
```

tt_thread_register.cpp

```
tt_thread_register.cpp - 03_pseudo_blood_pressure_detection
File Edit Selection View Go Debug Terminal Help
C++ tt_thread_register.cpp ×
 src ▷ src_ptttm ▷ C++ tt_thread_register.cpp ▷ ...
        #include "../../include/include ptttm/tt thread register.hpp"
   1
   2
   3
   4
   5
        extern std::unique_ptr<Container> C;
   6
   7
   8
        void tt thread register(size t new period)
   9
  10
            C->TCB storage->period = new period;
  11
            C->TCB storage->time left to invoke = new period;
  12
  13
  14
```

tt_thread_wait_invocation.hpp

```
h ** tt_thread_wait_invocation.hpp ×
include ▶ include_ptttm ▶ h++ tt_thread_wait_invocation.hpp ▶ ...
      #ifndef TT_THREAD_WAIT_INVOCATION__1f52cc61_3fcd_4500_94f8_da44462a0f9a__HPP
      3
      #include "../Container.hpp"
  4
  5
  6
  7
      void tt thread wait invocation();
  8
  9
 10
 11
 12
      #endif /* TT THREAD WAIT INVOCATION 1f52cc61 3fcd 4500 94f8 da44462a0f9a HPP
```

tt_thread_wait_invocation.cpp

```
tt_thread_wait_invocation.cpp - 03_pseudo_blood_pressure_detector - Visual Studio Code
<u>File Edit Selection View Go Debug Terminal Help</u>
C++ tt_thread_wait_invocation.cpp ×
 src ▷ src_ptttm ▷ C++ tt_thread_wait_invocation.cpp ▷ ...
       #include "../../include/include_ptttm/tt_thread_wait_invocation.hpp"
   1
   2
   3
   4
   5
        extern std::unique ptr<Container> C;
   6
   8
        void tt_thread_wait_invocation()
   9
  10
            if (pthread mutex lock(&(*(C->API Mutex))) != 0) {
  11
                perr("ERROR : mutex_lock in tt_thread_wait_invocation");
  12
  13
            if (pthread_cond_wait(&(*(C->API_cond_data_acqusition)), &(*(C->API_Mutex))) != 0) {
  14
                perr("ERROR : cond_wait in tt_thread_wait_invocation");
  15
  16
            if (pthread mutex unlock(&(*(C->API Mutex))) != 0) {
  17
  18
                perr("ERROR : mutex UNlock in tt thread wait invocation");
  19
  20
  21
```

enqueue_bp_queue.hpp

```
h<sup>++</sup> enqueue_bp_queue.hpp ×
include ▶ include_pbpd ▶ h++ enqueue_bp_queue.hpp ▶ ...
       #ifndef ENQUEUE_BP_QUEUE__5c215eb5_0f20_4081_b2e8_fae84a1d6c7f__HPP
       #define ENQUEUE BP QUEUE 5c215eb5 0f20 4081 b2e8 fae84ald6c7f HPP
   3
       #include "../Container.hpp"
       #include "pseudo blood pressure generator.hpp"
   5
   7
   8
       void enqueue bp queue(int);
   9
  10
  11
  12
  13
       #endif /* ENQUEUE_BP_QUEUE__5c215eb5_0f20_4081_b2e8_fae84a1d6c7f__HPP___ */
```

enqueue_bp_queue.cpp

```
enqueue_bp_queue.cpp - 03_pseudo_blood_pressure_detector -
File Edit Selection View Go Debug Terminal Help
C++ enqueue_bp_queue.cpp ×
 src ▷ src_pbpd ▷ C++ enqueue_bp_queue.cpp ▷ ...
        #include "../../include/include pbpd/enqueue bp queue.hpp"
   1
   2
   3
   4
        extern std::unique ptr<Container> C;
   5
   6
   7
   8
        void enqueue bp queue(int bp data)
   9
  10
            try {
  11
  12
                 C->bp queue->push(bp data);
  13
            catch (std::exception e) {
  14
                 throw e;
  15
  16
  17
  18
```

bp_processing_thread.hpp

```
bp_processing_thread.hpp - 03_pseudo_blood_pressure_detector - Visual Studio C
File Edit Selection View Go Debug Terminal Help
h<sup>++</sup> bp_processing_thread.hpp ×
 include ▷ include_pbpd ▷ h++ bp_processing_thread.hpp ▷ ...
       #ifndef BP PROCESSING THREAD 38244d9b 0ba9 4bf0 aa00 6e5de889017a HPP
        #define BP PROCESSING THREAD 38244d9b 0ba9 4bf0 aa00 6e5de889017a HPP
      #include "../Container.hpp"
   4
       #include "dequeue bp queue.hpp"
   5
   6
   7
   8
       void data acq cleanup handler(void*);
   9
       void dequeue data to process(bool);
  10
       void* bp processing thread(void*);
  12
  13
  14
       #endif /* BP_PROCESSING_THREAD_ 38244d9b_0ba9_4bf0_aa00_6e5de889017a_ HPP___ */
  15
```

bp_processing_thread.cpp

```
bp_processing_thread.cpp - 03_pseudo_blood_pressure_detector - Visual Studio Code
File Edit Selection View Go Debug Terminal Help
C++ bp_processing_thread.cpp ×
 src ▷ src_pbpd ▷ C++ bp_processing_thread.cpp ▷ ...
   1
       #include "../../include/include pbpd/bp processing thread.hpp"
   2
   3
   4
        extern std::unique ptr<Container> C;
   5
   7
   8
       void data acq cleanup handler(void* arg)
   9
  10
            pthread mutex unlock(&(*(C->API Mutex)));
  11
  12
  13
        inline void dequeue_data_to_process(bool turn)
  14
  15
            auto is_diastolic_turn = turn;
  16
  17
            auto bp_data = 0U;
            auto sum = 0U;
  18
  19
            try {
  20
                if (is_diastolic_turn) {
  21
                     for (int i=0; i < 10; ++i) {
  22
                         bp data = dequeue bp queue();
  23
  24
                         if (60 <= C->bp queue->front() && C->bp queue->front() <= 90) {
                             sum += bp_data;
  25
  26
  27
                    print("diastolic bp = " + std::to_string(sum/5));
  28
  29
                else {
  30
                     for (int i=0; i < 10; ++i) {
  31
                         bp data = dequeue bp queue();
  32
                         if (110 <= C->bp queue->front() && C->bp queue->front() <= 150) {
  33
                             sum += bp data;
  34
  35
  36
                    print("systolic bp = " + std::to_string(sum/5));
  37
  38
  39
            catch (std::exception e) {
  40
  41
                throw e;
  42
  43
  44
        void* bp_processing thread(void* arg)
  45
  46
            bool turn = false;
  47
  48
            nmin+/).
```

```
49
         print();
50
         bool should exit = false;
         while (1)
51
         {
52
53
             pthread cleanup push(data acq cleanup handler, nullptr);
             pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, nullptr);
54
             pthread setcanceltype(PTHREAD CANCEL ASYNCHRONOUS, nullptr);
55
56
             if (pthread_mutex_lock(&(*(C->API_Mutex))) != 0) {
57
                  perr("ERROR : mutex lock in by processing thread").
58
                                           decltype((__test<...>(0))) std::unique_ptr<...>::operate
                  should exit = true;
59
                                           >() const noexcept
60
             if (pthread cond wait(&(*(C->API cond bp processing)), &(*(C->API Mutex))) != 0) {
61
                 perr("ERROR : cond wait in bp processing thread");
62
                  should exit = true;
63
64
65
66
             try {
                 dequeue data to process(turn);
67
68
69
             catch (std::exception e) {
70
                     "ERROR : from dequeue_data_to_process() inside bp_processing_thread"
71
72
                  );
                 e.what();
73
                 should exit = true;
74
75
76
77
             if (turn == false) {
78
                 turn = true;
             }
79
             else {
80
                  turn = false;
81
                 print();
82
83
84
85
             if (pthread mutex unlock(&(*(C->API Mutex))) != 0) {
86
                 perr("ERROR : mutex UNlock in bp processing thread");
87
                  should exit = true;
88
89
90
             if (should exit) {
                 pthread exit(nullptr);
91
92
93
             pthread cleanup pop(0);
94
95
         return nullptr;
96
```

🗴 0 🛕 0 (Global Scope) Ln 1, Col 1 Spaces: 4 UTF-8 LF C+

dequeue_bp_queue.hpp

```
h<sup>++</sup> dequeue_bp_queue.hpp ×
include ▷ include_pbpd ▷ h++ dequeue_bp_queue.hpp ▷ ...
       #ifndef DEQUEUE BP_QUEUE 7c6f641b 5ba2 4bfb b933 e67fdf46b73c HPP
       #define DEQUEUE BP QUEUE 7c6f641b 5ba2 4bfb b933 e67fdf46b73c HPP
   2
   3
      #include "../Container.hpp"
   4
   5
   6
   7
   8
      int dequeue bp queue(void);
   9
  10
  11
       #endif /* DEQUEUE BP QUEUE 7c6f641b 5ba2 4bfb b933 e67fdf46b73c HPP */
  12
```

dequeue_bp_queue.cpp

```
dequeue_bp_queue.cpp - 03_pseudo_blood_pressure_de
File Edit Selection View Go Debug Terminal Help
C++ dequeue_bp_queue.cpp ×
 src ▷ src_pbpd ▷ C++ dequeue_bp_queue.cpp ▷ ...
        #include "../../include/include pbpd/dequeue bp queue.hpp"
   2
   3
   4
   5
        extern std::unique ptr<Container> C;
   6
   7
   8
        int dequeue bp queue(void)
   9
  10
            auto bp data = 0;
  11
  12
            try {
  13
                bp data = C->bp queue->front();
  14
  15
                C->bp_queue->pop();
  16
            catch (std::exception e) {
  17
                throw e;
  18
  19
  20
            return bp data;
  21
  22
  23
```

create_posix_timer.hpp

```
h⇔ create_posix_timer.hpp ×
include ▶ include_ptttm ▶ h•• create_posix_timer.hpp ▶ ...
  #ifndef CREATE_POSIX_TIMER__eb2daa61_5eec_4e91_8f17_fd21d5312ee8_HPP
      #define CREATE_POSIX_TIMER__eb2daa61_5eec_4e91_8f17_fd21d5312ee8__HPP_
   3
   4 #define TIMER FREQUENCY FROM INTERNAL
                                                 101
   5 #define TIMER FREQUENCY FROM FILE
                                                  202
     #define TIMER FREQUENCY FROM STDIN
                                                  303
   6
     #include "../Container.hpp"
   8
     #include "../include_pbpd/periodic_alarm_clock.hpp"
  9
 10
 11
 12
       size t get timer frequency(void);
 13
       void set timer arguments(void);
 14
 15
      void create posix timer(void);
 16
 17
 18
       #endif /* CREATE_POSIX_TIMER__eb2daa61_5eec_4e91_8f17_fd21d5312ee8__HPP___ */
 19
```

create_posix_timer.cpp

```
create_posix_timer.cpp - 03_pseudo_blood_pressure_detector - Visual Studio
File Edit Selection View Go Debug Terminal Help
C++ create_posix_timer.cpp ×
 src ▷ src_ptttm ▷ C++ create_posix_timer.cpp ▷ ...
       #include "../../include/include ptttm/create posix_timer.hpp"
   1
   2
   3
   4
   5
        extern std::unique ptr<Container> C;
   6
   7
   8
       inline size_t get_timer_frequency(void)
   9
  10
  11
            size t freq;
            auto GET METHOD = TIMER FREQUENCY FROM INTERNAL;
  12
  13
            switch (GET_METHOD)
  14
  15
                case TIMER FREQUENCY FROM INTERNAL:
  16
  17
                    freq = THOUSAND;
                    break;
  18
                case TIMER_FREQUENCY FROM FILE:
  19
                    // do something
  20
  21
                    break;
  22
                case TIMER_FREQUENCY_FROM_STDIN:
  23
                    // do something
  24
                    break;
  25
                default:
                    print("nothing happens");
  26
  27
                    freq = 0;
  28
  29
            return freq;
  30
  31
  32
       inline void set_timer_arguments(void)
  33
  34
            auto freq = get_timer_frequency();
  35
  36
            if (freq == 0) {
  37
                throw "Frequency == 0";
  38
                std::exit(EXIT FAILURE);
  39
  40
  41
            else {
                C->TM Arg->ptimer period = THOUSAND / freq;
  42
  43
  44
  45
  46
       void create posix timer(void)
  47
            set_timer_arguments();
  48
```

```
Statistical contrast of the co
                                                err msg.append("/n/t check argument to the function add pthread arguments()");
22
23
                                                print(err msg);
24
25
26
27
28
              void create_new_thread(uint thread_type)
29
30
                         print("create_new_thread( )", " ");
                         auto rv = 0;
31
32
                         switch (thread_type)
33
                                     case DATA_ACQUISITION_THREAD_TYPE:
35
36
                                     {
37
                                                print("data acquisition thread");
                                                add pthread arguments(DATA ACQUISITION THREAD TYPE, HUNDRED);
38
39
                                                rv = pthread_create(&(*(C->acq_thread)), nullptr, data_acquisition_thread,
                                                                       reinterpret_cast<void*>(&(*(C->THR_Arg__acq_thread))));
40
                                                break;
41
                                    }
42
43
                                    case BLOOD PRESSURE PROCESSING THREAD TYPE:
44
                                                print("blood_pressure_processing thread");
45
                                                rv = pthread_create(&(*(C->proc_thread)), nullptr, bp_processing_thread,
46
47
                                                                      nullptr);
48
                                                break;
                                    }
49
                                    default:
50
                                     {
51
                                                std::string err msg = "ERROR : in switch-case\n";
52
53
                                                err msg.append("/n/t check argument to the function create new thread()");
54
                                                print(err msg);
55
56
57
                                     if (rv != 0) {
                                                print("pthread_create() failed TT TT");
58
59
60
61
              void cancel_all_threads(void)
63
64
65
                         pthread cancel(*(C->acq thread));
66
                         pthread cancel(*(C->proc thread));
67
68
```

periodic_alarm_clock.hpp

```
h<sup>™</sup> periodic_alarm_clock.hpp ×
include ▶ include_pbpd ▶ h•• periodic_alarm_clock.hpp ▶ ...
       #ifndef PERIODIC ALARM CLOCK 63f3af69 2f6b 4ccd a7dd 64588ef9408b
       #define PERIODIC ALARM CLOCK 63f3af69 2f6b 4ccd a7dd 64588ef9408b HPP
   2
   3
       #include "../Container.hpp"
   4
   5
   6
   7
       void periodic_alarm_clock(sigval_t);
   8
   9
  10
  11
       #endif /* PERIODIC ALARM CLOCK 63f3af69 2f6b 4ccd a7dd 64588ef9408b HPP */
  12
```

periodic_alarm_clock.cpp

```
C++ periodic_alarm_clock.cpp ×
src ▷ src_pbpd ▷ C++ periodic_alarm_clock.cpp ▷ ...
      #include "../../include/include pbpd/periodic alarm clock.hpp"
   1
   2
   3
   4
       extern std::unique ptr<Container> C;
   6
   7
   8
       void periodic_alarm_clock(sigval t)
   9
  10
           if (pthread mutex lock(&(*(C->API Mutex))) != 0) {
  11
               perr("ERROR : mutex lock in API Mutex");
  12
  13
  14
           C->TCB_storage->time_left_to_invoke -= 10;
           if ((C->TCB storage->time left to invoke -= 10) <= 0) {
  15
               C->TCB_storage->time_left_to_invoke = C->TCB_storage->period;
  16
  17
               if (pthread_cond_signal(&(*(C->API_cond_data_acqusition))) != 0) {
                    perr("ERROR : cond signal in periodic alarm clock");
  18
  19
  20
           if (pthread mutex unlock(&(*(C->API Mutex))) != 0) {
  21
  22
               perr("ERROR : mutex UNlock in periodic alarm clock");
           }
  23
  24
  25
```

signal_handler.hpp

```
h<sup>++</sup> signal_handlers.hpp ×
include ▶ h++ signal_handlers.hpp ▶ ...
       #ifndef SIGNAL_HANDLERS__36309805_6d6a_4b23_9dfd_9a0405db5d0a__HPP
       #define SIGNAL HANDLERS 36309805 6d6a 4b23 9dfd 9a0405db5d0a HPP
   3
     #include <string>
   5
      #include <signal.h>
   6
   7
      #include <bits/signum.h>
   8
      #include "include ptttm/create pthread.hpp"
   9
      #include "print functions.hpp"
  10
  11
  12
  13
                       SIGINT
                                      SIGQUIT

    SIGHUP

                                                        SIGILL
                                                                        SIGTRAP
  14
  15
       SIGABRT
                        SIGBUS
                                       SIGFPE
                                                        SIGKILL
                                                                        10) SIGUSR1
     6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL
11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM
16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP
                                                                        15) SIGTERM
  16
                                                                        20) SIGTSTP
  17
                     22) SIGTTOU 23) SIGURG
                                                      24) SIGXCPU
     21) SIGTTIN
                                                                        25) SIGXFSZ
     26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
                                                                        30) SIGPWR
  19
                   34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3
      31) SIGSYS
  20
      38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
  21
      43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
  22
       48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12
  23
       53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7
  24
       58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
  25
      63) SIGRTMAX-1 64) SIGRTMAX
  26
  27
       */
  28
  29
  30
  31
      void set signal handler(int);
  32
  33
       void signal SIGRTMIN handler(void);
  34
  35
  36
  37
       #endif /* SIGNAL HANDLERS 36309805 6d6a 4b23 9dfd 9a0405db5d0a HPP
  38
```

signal_handler.cpp

```
C++ signal_handlers.cpp ×
```

```
src ▷ C** signal_handlers.cpp ▷ ...
  #include "../include/signal_handlers.hpp"
  3
      * below line makes the user defined signal handler
       * matches the sighandler t
  5
       * which is passed as an argument in function "signal()"
  6
  7
      static void signal handler(int);
  9
 10
 11
 12
      void set_signal_handler(int sig_no)
 13
          signal(sig_no, signal_handler);
 14
 15
 16
      void signal_handler(int sig_no)
 17
 18
          if (34 <= sig_no && sig_no <= 64)
 19
 20
              // perr("signal with " + std::to_string(sig_no) + " is caught");
 21
              cancel_all_threads();
 22
 23
 24
 25
```

main_executor.hpp

```
h<sup>++</sup> main_executor.hpp ×
include ▶ h++ main_executor.hpp ▶ ...
      #ifndef MAIN EXECUTOR 16069d0c 57bd 483e 98e4 ea3cf98516f5 HPP
       #define MAIN EXECUTOR 16069d0c 57bd 483e 98e4 ea3cf98516f5 HPP
   2
   3
      #include <cstdlib>
   4
   5
     #include "signal handlers.hpp"
   6
      #include "include_pbpd/initialize_pbpd_variables.hpp"
   7
      #include "include ptttm/initialize ptttm variables.hpp"
   8
      #include "include ptttm/create posix timer.hpp"
  9
      #include "include ptttm/create pthread.hpp"
  10
  11
  12
  13
      void main executor(void);
  14
      int main(int argc, const char* argv[]);
  15
  16
  17
  18
  19
      #endif /* MAIN EXECUTOR 16069d0c 57bd 483e 98e4 ea3cf98516f5 HPP */
```

C++ main_executor.cpp ×

```
src ▶ C•• main_executor.cpp ▶ ...
      #include "../include/main executor.hpp"
  2
  3
  4
  5
       extern std::unique_ptr<Container> C;
  6
  7
  8
       inline void main executor(void)
  9
 10
           try {
 11
               C = std::make unique<Container>();
 12
               initialize ptttm variables();
 13
               initialize pbpd variables();
 14
 15
           catch (std::exception e) {
 16
               e.what();
 17
               std::exit(EXIT FAILURE);
 18
 19
           }
           catch (err msg type e) {
 20
 21
               perr(e);
               std::exit(EXIT FAILURE);
 22
 23
 24
 25
           create new thread(DATA ACQUISITION THREAD TYPE);
           create new thread(BLOOD PRESSURE PROCESSING THREAD TYPE);
 26
 27
           for (auto i=34; i <= 64; ++i) {
 28
               set signal handler(i); // SIGRTMIN ~ SIGRTMAX
 29
 30
 31
           create posix timer();
 32
 33
 34
           pthread join(*(C->acq thread), nullptr);
           print("data acq threead _join OK");
 35
           pthread join(*(C->proc thread), nullptr);
 36
           print("bp proc thread join OK");
 37
 38
 39
 40
       int main(int argc, const char* argv[])
 41
       {
           print("main begins...");
 42
 43
           main executor();
 44
 45
           print("main ends");
 46
           return EXIT_SUCCESS;
 47
 48
⊗ 0 ∧ 0
                                                              (Global Scope)
```

print_functions.hpp

```
he print_functions.hpp ×
include ▶ h++ print_functions.hpp ▶ ...
   1 #ifndef PRINT_FUNCTIONS__2b784ca3_a7cd_4e18_ad2c_791129508144__H_
     #define PRINT FUNCTIONS 2b784ca3 a7cd 4e18 ad2c 791129508144 H
   3
     #include <exception>
      #include <iostream>
   5
      inline void print(void)
           std::cout << "\n";
   9
  10
  11
      inline void perr(void)
  12
  13
           std::cerr << "\n";
  14
  15
  16
  17
       template <typename T>
       inline void print(const T& msg, const std::string& end="\n")
  18
  19
           std::cout << msg << end;
  20
  21
  22
  23
       template <typename T>
       inline void perr(const T& msg, const std::string& end="\n")
  24
  25
           std::cerr << msg << end;
  26
  27
  28
       #endif /* PRINT FUNCTIONS 2b784ca3 a7cd 4e18 ad2c 791129508144 H */
  29
  30
```

print_functions.cpp

```
print_functions.cpp - 03_pseudo.
File Edit Selection View Go Debug Terminal Help

C** print_functions.cpp *

src > C** print_functions.cpp

1  #include "../include/print_functions.hpp"

2
3
4
```

5. Results Capture

Starting pace of the program

```
Terminal
yks93 = ~/Documents/assignments/Operating_System/03_pseudo_blood_pressure_detector/build = make
Scanning dependencies of target 03_pseudo_blood_pressure_detector
[ 5%] Building CXX object CMakeFiles/03_pseudo_blood_pressure_detector.dir/src/main_executor.cpp.o
[ 11%] Building CXX object CMakeFiles/03_pseudo_blood_pressure_detector.dir/src/signal_handlers.cpp.o
[ 16%] Building CXX object CMakeFiles/03_pseudo_blood_pressure_detector.dir/src/src_pbpd/bp_processing_th
read.cpp.o
[ 22%] Building CXX object CMakeFiles/03_pseudo_blood_pressure_detector.dir/src/src_pbpd/data_acquisition
thread.cpp.o [ 27%] Building CXX object CMakeFiles/03_pseudo_blood_pressure_detector.dir/src/src_ptttm/create_pthread.
cpp.o
[ 33%] Linking CXX executable 03_pseudo_blood_pressure_detector
[100%] Built target 03_pseudo_blood_pressure_detector
 yks93 🖹 ~/Documents/assignments/Operating_System/03_pseudo_blood_pressure_detector/build 🗄 ./03_pseudo_b
lood_pressure_detector
main begins...
initializing ptttm variables
initializing pbpd variables
create_new_thread( ) data_acquisition thread
create_new_thread( ) blood_pressure_processing thread
systolic bp = 63
diastolic bp = 124
systolic bp = 58
diastolic bp = 130
systolic bp = 54
diastolic bp = 125
systolic bp = 54
diastolic bp = 144
systolic bp = 53
diastolic bp = 134
systolic bp = 65
diastolic bp = 129
systolic bp = 63
diastolic bp = 132
systolic bp = 60
diastolic bp = 138
systolic bp = 61
diastolic bp = 121
systolic bp = 63
diastolic bp = 131
systolic bp = 68
diastolic bp = 129
systolic bp = 63
diastolic bp = 133
systolic bp = 62
diastolic bp = 145
systolic bp = 63
```

After sending signal (between 34(= SIGRTMIN) to 64(= SIGRTMAX)) **to the program**

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 4748 yks93						Termin	al		
18 Men	%Cpu(s): 6.0 u	ıs , 1.5 sy	, 1.2 ni,	91.1 id,	0.0	wa, (o.0 hi, 0.	1 si, 0.0 st	
PIO USER PR NI VIRT RES SHR S WCPU MMEN TIME CONMAND									
1748 yks93	KiB Swap: 2006	0892 total,	2000892	free,	0	used.	12010420 a	vail Mem	
1748 yks93	DID HEED	DD NIT	VIDI	cup.	6 %	CDIL WHI		COMMAND	
1593 yks93									
1606 1607 1607 1608 1700 5 6.7 0.0 0.00 0.10 0.00 0.00	· .								
	· .								
1 root 20 0 185420 6000 3948 S 0.0 0.0 0 0:00.01 kthreadd 4 root 0 -20 0 0 0 0 1 0.0 0.0 0:00.00 ktworker/0:00 H 1 0.0 0.0 0 0:25.64 rcu_sched 9 root 20 0 0 0 0 0 0 1 0.0 0.0 0 0:00.00 rcu_bh 1 0 0 0 0 0 0 0 0 0 0:00.00 rcu_bh 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15317 yks93								
4 root	1 root	20 0 1	85420 600	90 3948	S	0.0 0			
6 root 0 -20 0 0 0 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2 root								
8 root 20 0 0 0 0 0 1 0.0 0.0 0:00.23 ksoftirad/s 9 root 20 0 0 0 0 0 1 0.0 0.0 0:00.23 ksoftirad/s 10 root rt 0 0 0 0 5 0.0 0.0 0:00.00 rcu.bh 11 root rt 0 0 0 0 5 0.0 0.0 0:00.00 rcu.bh 11 root rt 0 0 0 0 5 0.0 0.0 0:00.00 rcu.bh 12 root 20 0 0 0 0 0 5 0.0 0.0 0:00.00 rcu.bh 13 root 20 0 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/s 14 root rt 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/s 15 root rt 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/s 16 root 20 0 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 17 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 18 root 0 -20 0 0 0 0 1 0.0 0.0 0:00.00 kwarkchdg/s 19 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 19 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 19 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 19 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 20 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 21 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 22 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 22 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 23 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 24 root 0 -20 0 0 0 1 0.0 0.0 0:00.00 kwarkchdg/s 25 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 26 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 27 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 30 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 31 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 32 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 33 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 34 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 35 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 36 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 37 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 38 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 39 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 39 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 39 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kwarkchdg/s 39 root rt 0 0 0 0 0 0 0 0 0 0 0 0:00.00 kwarkchdg/s 39 root rt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								•	
8 root 20 0 0 0 0 1 0.0 0.0 0:25.64 rcu sched 9 root 7t 0 0 0 0 0 0 1 0.0 0.0 0:25.64 rcu sched 10 root 7t 0 0 0 0 0 5 0.0 0.0 0:00.00 rcu bh 11 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 rcu bh 12 root 20 0 0 0 0 5 0.0 0.0 0:00.00 rw/p/8 13 root 20 0 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/8 14 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/1 15 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/1 16 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/1 16 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/1 16 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/1 18 root 0 -20 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/2 20 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/2 21 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/2 22 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 cpuhp/2 24 root 0 -20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/1:001 25 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:001 26 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:001 27 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:001 28 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:001 25 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:001 26 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:001 27 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 28 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 38 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 32 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 32 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/4:001 31 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:001 31 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/4:001 31 root 7t 0 0 0 0 5 0.0 0.0 0:00.00 kworker/4:001 31 root 7t 0 0 0 0 0 5 0.0 0.0 0:00.00 kworker/4:001 31 root 7t 0 0 0 0 0 5 0.0 0.0 0:00.00 kworker/4:001 31 root 7t 0 0 0 0 0 0 0 0 0 0 0 0:00.00 kworker/4:001 31 root 7t 0 0 0 0 0 0 0 0 0 0 0 0:00.00 kworker/3:001 31 root 7t 0 0 0 0 0 0 0 0 0 0 0 0:00.00 kworker/3:001									
9 root									
10 root									
11 root								. –	
13 root								T 4 4 2	
14 root	12 root	20 0	Θ	0 0	S	0.0 0	.0 0:00.0	00 cpuhp/0	
15 root	13 root	20 0	0			0.0 0	.0 0:00.0	00 cpuhp/1	
16 root									
18 root									
19 root									
20 root rt 0 0 0 0 5 0.0 0.0 0:00.04 watchdog/2 21 root rt 0 0 0 0 5 0.0 0.0 0:00.01 migration/2 22 root 20 0 0 0 0 1 0.0 0.0 0:00.08 ksoftirqd/2 24 root 0 -20 0 0 0 1 0.0 0.0 0:00.08 ksoftirqd/2 25 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:0H 25 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kworker/2:0H 26 root rt 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:0H 27 root rt 0 0 0 0 5 0.0 0.0 0:00.01 migration/3 28 root 20 0 0 0 0 5 0.0 0.0 0:00.01 migration/3 30 root 0 -20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:0H 31 root 20 0 0 0 0 5 0.0 0.0 0:00.00 kworker/3:0H 32 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/4 33 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/4 33 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/4 36 root 20 0 0 0 5 0.0 0.0 0:00.05 watchdog/4 37 root 20 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/4 38 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 39 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 39 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 39 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 42 root 0 -20 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 42 root 0 -20 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 43 root 20 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/5 44 root 1 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/6 46 root 20 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/5 47 root rt 0 0 0 0 5 0.0 0.0 0:00.05 watchdog/6 48 root rt 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/6 48 root rt 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/6 48 root rt 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/6 49 root 20 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/7 50 root rt 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/7 51 root rt 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/7 51 root rt 0 0 0 0 5 0.0 0.0 0:00.06 ksoftirqd/7 52 root 20 0 0 0 0 0 0 0 0 0.0 0:00.06 ksoftirqd/7 53 root rt 0 0 0 0 0 0 0 0 0 0.0 0:00.06 ksoftirqd/7 54 root 0 -20 0 0 0 0 0 0 0 0 0.0 0:00.06 ksoftirqd/7 55 root 20 0 0 0 0 0 0 0 0 0.0 0:00.00 kworker/7:00H 55 root 20 0 0 0 0 0 0 0 0 0 0.0 0:00.00 kworker/7:00H 55 root 20 0 0 0 0 0 0 0 0 0 0.0 0:00.00 kworker/5:00H								and the second s	
21 root								The state of the s	
22 root									
25 root								. •	
26 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/3 27 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/3 30 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.01 migration/4 31 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 33 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 34 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 35 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 36 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 37 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 38 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/4 39 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 38 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 38 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 40 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 41 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 42 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 47 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 48 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 53 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 54 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 56 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 59 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 50 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 50 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 50 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 50 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 50 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 50 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 50 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 50 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6	24 root	0 -20	Θ	0 0	I	0.0 0	.0 0:00.0	00 kworker/2:0H	
27 root	25 root					0.0 0	.0 0:00.0	00 cpuhp/3	
28 root									
30 root									
31 root									
32 root				_				and the second s	
33 root								The state of the s	
36 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/4:0H 37 root 20 0 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 38 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/5 39 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/5 40 root 20 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/5 42 root 0 -20 0 0 0 I 0.0 0:00.06 ksoftirqd/5 43 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/5:0H 43 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/6 48 root 0 -20 0 0 0 I 0.0 0:00.06 ksoftirqd/6 48 root 0 -20 0 0 0 I 0.0 0:00.06 ksoftirqd/6 49 root 20 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 50 root rt 0 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 51 root rt 0 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 52 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 53 root 0 -20 0 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd									
37 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/5 38 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/5 39 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/5 40 root 20 0 0 0 0 I 0.0 0.0 0:00.00 ksoftirqd/5 42 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/5:0H 43 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/6 48 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 54 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 55 root 20 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 I 0.0 0:00.00 kworker/5 56 root 20 0 0 0 0 0 0 0 0 0:00.00 kworker/5 57 root 20 0 0 0 0 0 0 0 0 0:00.00 kworker/5 58 root 20 0 0 0 0 0 0 0 0 0:00.00 kworker/5 58 root 20 0 0 0 0 0 0 0 0 0:00.00 kworker/5 58 root 20 0 0 0 0 0 0 0 0 0:00.00 kworker/5 58 root 20 0 0 0 0 0 0 0 0:00.00 kworker/5 58 root 20 0 0 0 0 0 0 0 0:00.00 kworker/5 58 kill -34 14666	34 root	20 0	0	0 0	S	0.0 0	.0 0:00.0	7 ksoftirqd/4	
38 root								and the second s	
39 root rt									
40 root 20 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/5 42 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/5:0H 43 root 20 0 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/6 46 root 20 0 0 0 0 I 0.0 0:00.06 ksoftirqd/6 48 root 0 -20 0 0 0 I 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 54 root 0 -20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 55 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0 0:00.00 kauditd									
42 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/5:0H 43 root 20 0 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 54 root 0 -20 0 0 0 S 0.0 0.0 0:00.01 migration/7 55 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd									
43 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/6 44 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/6 48 root 0 -20 0 0 0 I 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 54 root 0 -20 0 0 0 I 0.0 0:00.01 migration/7 55 root 20 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 I 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd									
44 root rt 0 0 0 0 S 0.0 0.0 0:00.05 watchdog/6 45 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/6 46 root 20 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/6 48 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/7 54 root 0 -20 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kdevtmpfs 56 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd								and the second s	
46 root 20 0 0 0 0 S 0.0 0.0 0:00.06 ksoftirqd/6 48 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/7 54 root 0 -20 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd									
48 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/6:0H 49 root 20 0 0 0 0 0 0 0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 0 0 0:00.00 0:00.00 cpuhp/7 51 root rt 0 0 0 0 0 0 0:00.01 migration/7 52 root 20 0 0 0 0 0 0 0 0:00.01 migration/7 54 root 0 -20 0 0 0 0 0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 0 0 0:00.00 kworker/7:0H 56 root 0 -20 0 0 0 0 0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 0 0 0:00.00 netns 57 root 20 0 0 0 0 0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 0 0:00.00 kauditd	45 root	rt 0	Θ	0 0	S	0.0 0	.0 0:00.0	1 migration/6	
49 root 20 0 0 0 0 S 0.0 0.0 0:00.00 cpuhp/7 50 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/7 54 root 0 -20 0 0 0 I 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd	46 root	20 0	0	0 0	S	0.0 0			
50 root rt 0 0 0 0 S 0.0 0.0 0:00.04 watchdog/7 51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/7 54 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd								and the second s	
51 root rt 0 0 0 0 S 0.0 0.0 0:00.01 migration/7 52 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/7 54 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd									
52 root 20 0 0 0 0 S 0.0 0.0 0:00.07 ksoftirqd/7 54 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd									
54 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/7:0H 55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd vks93 = E kill -34 14606									
55 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs 56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd /ks93 = E kill -34 14606				-					
56 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns 57 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_tasks_kthre 58 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kauditd 7ks93 = E kill -34 14606									
	56 root	0 -20	0			0.0 0	.0 0:00.0	00 netns	
<mark>/ks93 = ~</mark> E kill -34 14606			_						
7KS93 = ~ E KILL -34 14606 7KS93 = ~ E □				0 0	S	0.0 0	.0 0:00.0	00 kauditd	
	yks93 = ~ E ki	III -34 1 46	06						
	yk593 = ~ =								

Ending pace of the program

Terminal systolic bp = 72diastolic bp = 130 systolic bp = 69
diastolic bp = 130 systolic bp = 78diastolic bp = 134 systolic bp = 74diastolic bp = 132 systolic bp = 84 diastolic bp = 130 systolic bp = 76 diastolic bp = 142 systolic bp = 75diastolic bp = 129 systolic bp = 80 diastolic bp = 121 systolic bp = 78
diastolic bp = 132 systolic bp = 70diastolic bp = 139 systolic bp = 79diastolic bp = 129 systolic bp = 74diastolic bp = 121 systolic bp = 67 diastolic bp = 132 systolic bp = 71
diastolic bp = 137 systolic bp = 77 diastolic bp = 130 systolic bp = 72diastolic bp = 132 systolic bp = 66 diastolic bp = 137 systolic bp = 79 diastolic bp = 129 systolic bp = 73data acq threead _join OK bp proc thread _join OK main ends yks93 \equiv ~/Documents/assignments/Operating_System/03_pseudo_blood_pressure_detector/build \equiv