

2. Markov Decision Processes

COMP 7404 Computational Intelligence and Machine Learning

Dirk Schnieders

Sequential Decision Problem

- In a sequential decision problem the agent's utility depends on a sequence of decisions
- Sequential decision problems incorporate utilities, uncertainty and sensing
- Optimal behavior balances the risks and rewards of acting in an uncertain environment

Non-Deterministic Search

http://ai.berkeley.edu

Running Example: Grid World

Grid World

COMP 7404

- Maze-like problem
 - Agent lives in a grid
 - Walls block the agent's path
- Unreliable actions
 - Each action achieves the intended effect 80% of the time
 - o 10% of the time the action moves the agent at right angles (i.e., 90°) to the intended direction

Example of stochastic motion:

Intended direction is north

0.8

0.1

- If the agent bumps into a wall it stays in the same square
- The agent receives rewards for each action
 - Small "living" rewards (can be negative)
 - Big rewards come at the end (good or bad)
- Goal states
 - +1 and -1 are goal states
 - Only action available: exit action
- Goal: maximize sum of rewards

Deterministic vs. stochastic motion

0.8

0.1

0.1

0.8

0.1

Example episode in grid world

Quiz - North North

- Consider the fixed action sequence [North, North]
 - What is the probability of reaching the highlighted state from the start state with this action sequence?

Quiz - East East

• Which squares can be reached from the start state by the action sequence [East, East] and with what probabilities?

Transition model

- The transition model T(s,a,s') describes the outcome of each action in each state
- The outcome is stochastic and we write P(s'|s,a) to denote the probability of reaching state s' if action a is done in state s
- We assume that transitions are Markovian
 - I.e., the probability of reaching s' from s depends only on s and not on the history of earlier states
 - The Markov property is named after the Russian mathematician Andrey Markov

Andrey Markov (1856-1922)

Markov Decision Processes

- A sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards is called a Markov decision process (MDP)
- It is defined by
- \circ A set of states s ∈ S
 - \circ A set of actions $a \in A$
 - A transition function T(s,a,s')
 Probability that action a from s leads to s', i.e., P(s'|s,a)
 - A reward function R(s,a,s')
 - A start state s₀
 - A terminal state (optional)

What is the solution to an MDP?

A fixed action sequence?

Policy

http://ai.berkeley.edu

- How to solve MDPs?
 - A fixed action sequence won't solve the problem because the agent might end up in a state other than the goal
 - A solution must specify what the agent should do for any state that the agent might reach
 - \circ A solution of this kind is called a policy π
 - $\pi(s)$ is the action recommended by the policy π for the state s

Optimal Policy

- Each time a given policy is executed, the stochastic nature of the environment may lead to a different environment history
- The quality of a policy is therefore measured by the expected utility of the possible environment histories generated by that policy
- An optimal policy π^* is a policy that yields the highest expected utility
- Example: π^* for Grid World with R(s) = -0.04 (\forall nonterminal s)

Optimal Policy - Example

$$R(s) = -0.01$$

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0

Example: Racing Car

http://ai.berkeley.edu

Example: Racing Car

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow (+1), Fast (+2)

MDP Search Tree

• Each MDP state projects an expectimax-like search tree

Q state

• The agent has committed to the action but has not done it yet

Quiz - Notation

COMP 7404

- Consider a grid world MDP as shown above
- The available actions in each state are to move to the neighboring grid squares
- East and west actions are successful 80% of the time
- When not successful, the agent stays in place From state a, there is also an exit action
- available, which results in going to the terminal state and collecting a reward of 10 Similarly, in state e, the reward for the exit action is 1
- Exit actions are successful 100% of the time

Find the following quantities

b

T(c,East,d)T(c,East,e)

10

а

T(c,East,c)

T(c,East,b)

T(c,East,a) T(c,East,terminal state)

T(a,Exit,terminal state)

T(a,East,b)T(a, East, a)

R(a,East,a)

R(a,Exit,terminal state)

12. R(c,East,d)

8.

10.

Utility of State Sequences

Utility of State Sequences

- How to calculate the utility of state sequences?
 - What preferences should an agent have over reward sequences?
- More or less?
 - o [1, 2, 2] or [2, 3, 4]
- Now or later?
 - \circ [0, 0, 1] or [1, 0, 0]

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution
 - Values of rewards decay exponentially

Quiz - [1,2,3] vs. [3,2,1]

- Consider the sequences [1,2,3] and [3,2,1]
- Let $\gamma = 0.5$, which sequence has a higher utility?

Quiz - Optimal Action 1

- Consider the same grid world MDP as in one of the previous quiz
- Let actions always be successful
- Let the discount factor be $\gamma = 0.1$
 - Q1: What is the optimal action in the state d?
- Now let the discount factor be $\gamma = 0.9999$
 - Q2: What is the optimal action in the state d?

Quiz - Optimal Action 2

• Consider the following 101 x 3 world

- In the start state, the agent has a choice of two deterministic actions up or down but in the other states the agent has one deterministic action
- Assuming a discounted reward function, for what values of γ will the agent choose up ?
- Compute the utility of each action as a function of γ

Stationary Preferences

- We assume an agent's preferences between state sequences are stationary
- If two state sequences begin with the same state r, then the two sequences should be preference-ordered the same way as the sequences without r

$$[r, s_1, s_2, \dots] \succ [r, s'_1, s'_2, \dots]$$

$$\updownarrow$$
 $[s_1, s_2, \dots] \succ [s'_1, s'_2, \dots]$

Stationary Preferences

- Stationarity has strong consequences
- It turns out that there are just two coherent ways to assign utilities to sequences
- Additive rewards

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + R(s_1) + R(s_2) + \dots$$

Discounted rewards

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

Quiz - Stationary Preference

- Suppose that we define the utility of a state sequence to be the maximum reward obtained in any state in the sequence
- Does this utility function result in stationary preference between state sequences?

http://ai.berkeley.edu

Infinity Utilities?

- What if the environment does not contain a terminal state or if the agent never reaches one?
- Utilities with additive undiscounted rewards will be infinite
 - E.g., Race game
- The smart race car will never overheat
- With discounted rewards, the utility of an infinite sequence is finite

$$U([s_0, s_1, s_2, \dots]) = \sum_{t \in \mathcal{C}} \gamma^t R(s_t) \le \sum_{t \in \mathcal{C}} \gamma^t R_{max} = R_{max}/(1 - \gamma)$$

Optimal Quantities

- V*(s) is the value (utility) of a state s
 - Expected utility starting in s and acting optimally
- Q*(s,a) is the value (utility) of a q-state (s,a)
 - Expected utility for having taken action a from state s and thereafter acting optimally
- $\pi^*(s)$ is the optimal policy for state s
 - I.e., optimal action from state s

Example - π^* and V^*

0.64	0.74	0.85	exit 1.00
0.57		0.57	exit -1.00
0.49	0.43	0.48	0.28

Example - Q*

Bellman Equation

- How to compute the value of a state?
 - Average sum of discounted action
 - Very similar to expectimax

s,a

s'

$$(s) = \max_{a} Q^*(s, a)$$

$$V^*(s) = \max_{a} Q^*(s, a)$$

 $V^*(s) = \max_{a} \sum_{s} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Racing Search Tree

- Problems
 - States are repeated (even at same depth)
 - Tree goes on forever
- Idea
 - Do a depth-limited computation, but with increasing depths until change is small
 - Note: Deep parts of the tree eventually don't matter if γ < 1
- Solution
 - Only compute needed quantities once
 - Do a depth-limited computation, but with increasing depths until change is small

Time-Limited Values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps (k more rewards)
- Equivalently, it's what a depth-k expectimax would give from s

Example - V_0

0.00	0.00	0.00	0.00
0.00		0.00	0.00
0.00	0.00	0.00	0.00

40

Example - V₁

	0.00	0.00	0.00	1.00
•				
	0.00		0.00	-1.00
	0.00	0.00	0.00	0.00

43

Example - V_4

→	→	→	
0.50	0.81	0.93	1.00
		↑	
0.00		0.64	-1.00
0.00	0.00	0.42	0.00

Example - V_5

Example - V_6

46

Example - V₇

→	→	→	
0.88	0.94	0.96	1.00
↑		↑	
0.77		0.73	-1.00
↑	→	1	—
0.58	0.58	0.65	0.42

Example - V_{100}

→	\longrightarrow	→	
0.95	0.97	0.98	1.00
↑		—	
0.94		0.89	-1.00
↑	—	—	↓
0.93	0.92	0.90	0.82

Computing Time-Limited Values

- We can save a lot of computation
- Example:
 - At every layer we have to compute at most 3 time limited values

Quiz - Time-Limited Values

- Consider the same grid world MDP as in the previous quiz
 - Actions are successful 100% of the time
 - \circ $\gamma = 1$
- Determine in the following quantities

$$\circ V_0(d)$$

$$\circ$$
 $V_1(d)$ \circ

$$\circ$$
 $V_2(d)$

$$\circ$$
 $V_3(d)$

$$\circ$$
 $V_{A}(d)$ 10

$$\circ$$
 $V_5(d)$ 10

Value Iteration

Value Iteration

- Start with $V_0 = 0$ No time steps left means an expected reward sum of zero
 - Given vector of V_k(s) values, do one round of expectimax

expectinax
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

- Repeat until convergence
- Complexity
- \circ O(S²A)
- Theorem
 - Converges to unique optimal values

s,a

不对

Quiz - V

- Consider the same grid world as in the previous quiz (where east and west actions are successful 100% of the time)
- \bullet $\gamma = 0.2$
 - Determine the following quantities

v2

v3

v1

v0

Quiz - Convergence

- Consider the following example where $\gamma = 1.0$ and R(s) = -0.04
- Show that the value at (3,3) has converged Vk+1(3,3)=max(0.8*[-0.04+1*1]+1 0.812 0.868 0.918 +0. 1* [-0. 04+1*0. 660] +0. 1* [-0. 04+1*0. 918]

find the max value in 4 directions

1 2 3 4
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V_k(s')]$$

Evolution of Utilities / # Iterations vs. Gamma

going down because at first -1 is always use

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value iteration. (b) The number of value iterations k required to guarantee an error of at most $\epsilon = c \cdot R_{\text{max}}$, for different values of c, as a function of the discount factor γ .

1.0

-2.0

-1.0

1.0

2.0

1.0

-1.0

-2.0

1.0

0.0

1.0

R(s,a,s')

Quiz - $V_{k+1}(B)$

- Consider the following transition and reward functions for an MDP with $\gamma = 0.5$
- Suppose that after iteration k of value iteration we end up with the following values for V₁ $V_{\nu}(A) = 1.7, V_{\nu}(B) = 1.82, V_{\nu}(C) = 1.22$
 - What is $V_{k+1}(B)$?
 - Now, suppose that we ran value iteration to completion and found the following value function

- \circ V*(A) = 2.208, V*(B) = 2.416, V*(C) = 1.766 What is $Q^*(B, CW)$? What is $Q^*(B, CCW)$? What is the optimal action from state B?

5	
A	
A	

В

В

В

В

CW **CCW**

CCW

CW

CW

CCW

CCW

CW

CW

CCW

CCW

В

Α

 \mathbf{C}

Α

Α

В

Α

В

В

0.6

T(s,a,s')

0.6 0.4

0.4

0.4

0.6

1.0

0.4

0.2

0.8 0.6

COMP 7404

- Consider the transition and reward function shown in the table for an MDP that has two states and two actions
- Let $\gamma = 1.0$
- Determine the following
 - $\circ V_0(A), V_0(B) \bigcirc$
 - \circ Q₁(A,0), Q₁(A,1), Q₁(B,0), Q₁(B,1)
 - $\circ V_1(A), V_1(B)$
 - \circ Q₂(A,0), Q₂(A,1)
 - \circ $V_2(A)$

S	a	S'	T(s,a,s')	K(s,a,s')
A	0	A	0.5	2
A	0	В	0.5	-1
A	1	A	0.5	1
A	1	В	0.5	2
В	0	A	0.0	-2
В	0	В	1.0	-1
В	1	A	0.1	-3
В	1	В	0.9	-1

Bellman Equation vs. Value Iteration

• Bellman equations characterize the optimal values

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Value iteration computes them

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

Policy Methods

Policy Extraction

Policy Iteration

- We would like to determine how good a given a policy π is
 - How well will I perform if I follow π ?

Utilities for a Fixed Policy

- We compute the utility of a state s under a fixed (generally non-optimal) policy
 - $\nabla^{\pi}(s)$ = expected total discounted rewards starting in s and following π

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

New Example

Example: Policy Evaluation

Quiz - Go East

Quiz - Go North

Example: Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
 - Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: $O(S^2)$ per iteration
- Idea 2: Without the max, the Bellman equations are just a linear system
 - Use a linear system solver

- 10 | 1 | 1 | a b c d e
- Consider the same grid world as in the previous quiz, where east and west actions are successful 100% of the time and $\gamma = 1$
- Consider the policy π

$$\longrightarrow \longrightarrow \longrightarrow \longrightarrow$$

- Evaluate the values for all states
- Consider the policy π '

Evaluate the values for all states

Policy Extraction

Policy Extraction

• Let's imagine we have the optimal values V*(s)

0.95	0.97	0.98	+1
0.94		0.89	-1
0.93	0.92	0.90	0.82

- How should we act?
- We need to do a mini-expectimax (one step)

$$\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

• This is called policy extraction, since it gets the policy implied by the values

Policy Extraction

• Let's imagine we have the optimal q-values

- How should we act?
- Super easy:

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

• Actions are easier to select from q-values than values

Can we improve the runtime of value iteration?

Value Iteration - V_0

0.00	0.00	0.00	0.00
0.00		0.00	0.00
0.00	0.00	0.00	0.00

Value Iteration - V_1

-0.10	-0.10	-0.10	1.00
-0.10		-0.10	-1.00
-0.10	-0.10	-0.10	-0.10

Value Iteration - V_3

	→	→	
-0.30	0.40	0.75	1.00
		↑	
-0.30		0.32	-1.00
-0.30	-0.30	-0.30	-0.30

R(s) = -0.10 $\gamma = 1.0$

Value Iteration - V₄

→	\longrightarrow	→	
0.16	0.58	0.81	1.00
		↑	
-0.40		0.43	-1.00
		1	
-0.40	-0.40	0.10	-0.40

R(s) = -0.10 $\gamma = 1.0$

Value Iteration - V_5

Value Iteration - V₆

→	→	→	
0.46	0.69	0.83	1.00
↑		↑	
0.16		0.51	-1.00
↑	→	↑	←
-0.20	0.01	0.26	-0.08

R(s) = -0.10 $\gamma = 1.0$

Value Iteration - V₇

	→	→	→	
	0.52	0.70	0.83	1.00
•	↑		↑	
	0.30		0.52	-1.00
	↑	→	↑	—
	0.01	0.11	0.30	0.00

Value Iteration - V₈

→	→	→	
0.54	0.71	0.83	1.00
↑		↑	
0.37		0.52	-1.00
↑	→	↑	—
0.15	0.16	0.32	0.04

Value Iteration - V_9

→	→	→	
0.56	0.71	0.84	1.00
↑		↑	
0.41		0.52	-1.00
↑	→	↑	—
0.23	0.19	0.34	0.06

Value Iteration - V_9

→	→	→	
0.56	0.71	0.84	1.00
↑		↑	
0.41		0.52	-1.00
↑	→	↑	←
0.23	0.19	0.34	0.06

Value Iteration - V₁₀₀

→	→	→	
0.57	0.71	0.84	1.00
↑		↑	
0.44		0.52	-1.00
↑	→	↑	—
0.31	0.22	0.35	0.09

Properties of Value Iteration

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$$

- Slow
 - \circ O(S²A) per iteration
- Max at each state rarely changes
 - The policy often converges long before the values

Policy Iteration

Policy Iteration

- Policy iteration is an alternative approach for optimal values
 - Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- Still optimal
- Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation
 - Iterate until values converge

 $V_{k+1}^{\pi_i}(s) \leftarrow \sum T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$

- extraction
 - One-step look-ahead

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$

Quiz - Policy Iteration

b c d e

10

a

- Consider the same grid world as in the previous quiz, where east and west actions are successful 100% of the time
- $\bullet \quad \gamma = 0.9$
- We will execute one round of policy iteration
- Consider the policy π_i shown below

- Evaluate the following quantities
 - o Policy evaluation: $V^{\pi_i}(a), V^{\pi_i}(b), V^{\pi_i}(c), V^{\pi_i}(d), V^{\pi_i}(e)$
 - o Policy improvement: $\pi_{i+1}(a), \pi_{i+1}(b), \pi_{i+1}(c), \pi_{i+1}(d), \pi_{i+1}(e)$

Comparison

COMP 7404

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration
- Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
 In policy iteration
 - In policy iteratio
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
 - Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

next chapter

MDP vs. RL

Double-Bandits

http://ai.berkeley.edu

Double-Bandits

- An agent can play two slot machines
 - o Blue, or Red

You receive \$1

You receive \$0 or \$2, 25% and 75% of the time, respectively

• What should the agent do?

Double-Bandits MDP

- Actions: Blue and Red
- States: Win, Lose
- Assumption:
 - No discount
 - o 100 time steps

Offline Planning

- Solving MDPs is offline planning
 - We determine all quantities through computation
 - We need to know the details of the MDP
 - We do not actually play the game

Let's Play!

\$2 \$0 \$2 \$2 \$0 \$0

Rules Changed!

Let's Play!

\$1 \$0 \$0 \$0 \$0 \$0 \$2

What Just Happened?

- That wasn't planning, it was learning
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation!
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - o Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - o Sampling: because of chance, you have to try things repeatedly
 - o Difficulty: learning can be much harder than solving a known MDPs