Assignment 4: MA3140

- **Q 1.** Let $X \sim P(\lambda)$. For testing $H_0: \lambda = 1$ vs. $H_a: \lambda = 4$, consider the test $\phi(x) = 1$, if x > 2; and 0, if $x \le 2$. Find the probabilities of Type I and Type II errors.
- **Q 2.** Let X have double exponential density $f_X(x) = \frac{1}{2\pi} \exp^{-|x|/\sigma}$, $x \in \mathbb{R}$, $\sigma > 0$. For testing $H_0: \sigma = 1$ vs. $H_a: \sigma > 1$, consider the test $\phi(x) = 1$, if |x| > 1; and 0, if $|x| \le 1$. Find the size and power of the test. Show that power is always more than the size of the test.
- **Q 3.** Let X have Cauchy density $f_{\sigma}(x) = \frac{\sigma}{\pi(\sigma^2 + x^2)}$, $x \in \mathbb{R}$, $\sigma > 0$. Find the most powerful test of size α for testing $H_0: \sigma = 1$ vs. $H_a: \sigma = 2$.
- **Q 4.** Let X have density $f_{\theta}(x) = \frac{2}{\theta^2}(\theta x)$, $0 < x < \theta$. Find the most powerful test of size α for testing $H_0: \theta = 1$ vs. $H_a: \theta = 2$.
- **Q 5.** Let X_1, \ldots, X_n be a random sample from a population with density $f_{\theta}(x) = \frac{1}{\Gamma \theta} x^{\theta-1} e^{-x}$, $x > 0, \ \theta > 0$. Show that the family has MLR in $\prod X_j$. Hence derive UMP test of size α for testing $H_0: \theta \leq 3$ vs. $H_a: \theta > 3$.
- **Q 6.** Based on a random sample of size n from $Exp(\lambda)$, derive UMP unbiased test of size α for testing $H_0: \lambda = 1$ vs. $H_a: \lambda \neq 1$.
- **Q 7.** For the set up in Q. 4, find LRT for testing $H_0: \theta = 2$ vs. $H_a: \theta \neq 2$.
- **Q 8.** Based on a random sample of size n from double exponential density $f_X(x) = \frac{1}{2\pi} \exp^{-|x|/\sigma}$, $x \in \mathbb{R}$, $\sigma > 0$, derive LRT for testing $H_0: \sigma = 1$ vs. $H_a: \sigma \neq 1$.