Lecture 4 State Reduction, Regular Expressions and CFL

CSc 135

Computing Theory and Programming Languages

State Reduction

Equivalent DFAs

A DFA defines a unique language.

 But a given language can have many DFAs that define it.

- Two DFAs can be equivalent and yet have a different number of states.
 - Equivalent DFAs define the same language.

Equivalent DFAs (cont.)

These two DFAs are equivalent:

Indistinguishable States

- Consider two states p and q of a DFA and <u>all</u> strings w in Σ^* .
- If there <u>is</u> path from p to a final state implies there <u>is</u> a path from q to a final state, and

Not necessarily the same final state.

- If there is <u>no</u> path from p to a final state implies there is <u>no</u> path from q to a final state,
- Then states p and q are indistinguishable.

Distinguishable States

- However, if for <u>any one</u> string w there <u>is</u> a path from p to a final state but <u>no</u> path from q to a final state (or vice versa),
- Then the states p and q are distinguishable.

Reducing the Number of States

- Given a DFA, how can we simplify it by reducing the number of states?
 - Of course, we want the simplified DFA to be equivalent to the original one.
- One way:
 - Find and combine indistinguishable states.
- Plan:
 - First eliminate inaccessible states.
 - Then repeatedly partition the states into equivalence classes of indistinguishable states.

State Reduction Example #1

- □ Remove inaccessible state q5.
- □ Final states q_3 and q_4 are in one equivalence class:

 $q_0 q_1 q_2 \mid q_3 q_4$

• From either q_1 or q_2 , input 1 and input 01 lead to a final state, so they're together in another equivalence class.

$$|q_0| q_1 q_2 | q_3 q_4$$

 We can't partition any further, so make new states out of each equivalence class.

State Reduction Example #2

- States q_2 and q_4 are final:
- From q_1 and q_3 , strings 0 and 1 both lead to final states:
- $\delta(q_4, 0) = q_4$ but $\delta(q_2, 0) = q_1$:
- No further partitioning is possible.

013 | 24

0 | 13 | 24

0 | 13 | 2 | 4

Regular Expressions

Regular Languages and Automata

- A language L is called regular if and only if there exists a finite acceptor M such that L = L(M).
- The finite acceptor can be a DFA or an NFA.
- Is there a more concise way to describe a regular language?

Regular Expressions

• A regular expression consists of strings of symbols from an alphabet Σ , parentheses, and the operators:

```
- + for union: a + b
```

- for concatenation: a•b which can also be written ab
- * for star-closure: a*

• Example: $(a + (b \cdot c))^*$ is the star-closure of $\{a\} \cup \{bc\}$, which is the language $\{\lambda, a, bc, aa, abc, bca, bcbc, aaa, aabc, ...\}$

Regular Expressions (cont.)

Let Σ be an alphabet. Then

- 1 The primitive regular expressions are \emptyset , λ , and $a \in \Sigma$.
- ② If r_1 and r_2 are regular expressions, then $r_1 + r_2$, $r_1 \cdot r_2$, r_1^* , and (r_1) are also regular expressions.
- 3 A string is a regular expression if and only if it can be derived from the primitive regular expressions by a finite number of applications of the rules in (2).

Regular Expression Example

• Is $(a + b \cdot c)^* \cdot (c + \phi)$ a regular expression?

 Yes, since it is derived from the primitive regular expressions and repeated applications of the rules in (2) on the previous slide.

• But (a + b +) is not.

Regular Expression Languages

- We can use a regular expression (RE) r to describe an associated language L(r).
 - 1. Ø is a RE denoting the empty set.
 - 2. λ is a RE denoting $\{\lambda\}$.
 - 3. For every $a \in \Sigma$, a is a RE denoting $\{a\}$.

terminating conditions

If r_1 and r_2 are regular expressions, then

4.
$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

5.
$$L(r_1 \cdot r_2) = L(r_1)L(r_2)$$

6.
$$L((r_1)) = L(r_1)$$

7.
$$L(r_1^*) = L(r_1)^*$$

recursive definitions

Regular Expression Language Example #1

• What language is defined by the RE $r = a^* \cdot (a + b)$?

$$L(r) = L(a * \bullet (a + b))$$

$$= L(a*)L(a+b)$$

$$= (L(a))*(L(a) \cup L(b))$$

$$= \{\lambda, a, aa, aaa, ...\}(\{a\} \cup \{b\})$$

$$= \{\lambda, a, aa, aaa, ...\}\{a, b\}$$

$$= \{a, aa, aaa, ..., b, ab, aab, ...\}$$

Precedence Rules

- Consider the RE $a \cdot b + c$
 - If it's $(a \bullet b) + c$ then $L(a \bullet b + c) = \{ab, c\}.$
 - If it's $a \bullet (b+c)$ then $L(a \bullet b+c) = \{ab, ac\}.$
- To resolve this ambiguity, we use the precedence rules:
 - star-closure is the highest
 - concatenation is the next highest
 - union is the lowest
- Therefore, $a \bullet b + c$ is $(a \bullet b) + c$.

Regular Expression Language Example #2

- Let $\Sigma=\{0,1\}$. Find regular expression r such that $L(r)=\{w\in\Sigma^*:w\text{ has } \underline{\text{at least one pair }} \text{of consecutive zeros}\}$
- RE r must have 00 in it somewhere.
- What comes before or after the 00 is arbitrary.
- Therefore, r = (0+1)*00(0+1)*

Regular Expression Language Example #3

- Let $\Sigma = \{0, 1\}$. Find regular expression r such that $L(r) = \{w \in \Sigma^* : w \text{ has } \underline{\text{no pair}} \text{ of consecutive zeros}\}$
- Whenever there's a 0, it <u>must</u> be followed immediately by a 1.
- There may be any number of leading and trailing 1's.
- There can be a 0 at the very end.
- Therefore, $r = (1*011*)*(0 + \lambda) + 1*(0 + \lambda)$

Regular Expression Language Example #3 (cont.)

$$r = (1*011*)*(0 + \lambda) + 1*(0 + \lambda)$$

- Alternate view:
 The RE r can be a repetition of 1's and 01's, with a possible 0 at the end.
- Therefore, $r = (1 + 01)*(0 + \lambda)$.
- Or, $r = 1*(011*)*(0 + \lambda)$.
- There is more than one RE for a given language.
- Two REs are equivalent if they denote the same language.

Regular Expressions for Tokens

- Regular expressions can define the syntax of the tokens of a programming language.
 - Tokens are the low-level language elements, such as numbers, strings, and identifiers.
- Example: An identifier is a single letter optionally followed by letters and digits.
 - a
 - alpha
 - ab123c
 - But not: 3abc

[a-z]([a-z]|[0-9])*

Regular Expressions for Tokens (cont.)

An number token can be an unsigned integer constant:

```
- 12 123 6789

- But not: -12
```

Or it can be an unsigned real constant:

```
- 12.34 12e3 12e+45 0.123e4 123.45e-12

- But not: +12.34 12. .34
```

```
([0-9])*.([0-9])*
| ([0-9])*(e|E)([0-9])*
| ([0-9])*(e|E)(+|-)([0-9])*
| ([0-9])*.([0-9])*(e|E)([0-9])*
| ([0-9])*.([0-9])*(e|E)(+|-)([0-9])*
```

Regular Expressions for Tokens (cont.)

• Integer constant: (1)

([0-9])+

Real constant:

```
([0-9])<sup>+</sup>.([0-9])<sup>+</sup>
| ([0-9])<sup>+</sup>(e|E)([0-9])<sup>+</sup>
| ([0-9])<sup>+</sup>(e|E)(+|-)([0-9])<sup>+</sup>
| ([0-9])<sup>+</sup>.([0-9])<sup>+</sup>(e|E)([0-9])<sup>+</sup>
| ([0-9])<sup>+</sup>.([0-9])<sup>+</sup>(e|E)(+|-)([0-9])<sup>+</sup>
```

Regular Expressions and Regular Languages

- Regular expressions and regular languages are the same concept.
- For every regular expression r, there is a regular language L = L(r).

Theorem 3.1

- The textbook proves this by constructing, for any regular expression r, an NFA that accepts L(r).
 - Recall that any language accepted by an NFA or a DFA is regular.

Construct an NFA from a Regular Expression

• NFA accepts ϕ

• NFA accepts {λ}

• NFA accepts {a}

• NFA accepts L(r)

Construct an NFA from an RE (cont.)

• NFA accepts $L(r_1 + r_2)$

• NFA accepts $L(r_1r_2)$

Construct an NFA from an RE (cont.)

• NFA accepts $L(r_1^*)$

Example: Construct an NFA from an RE

• Construct an NFA that accepts L(r), where RE

$$r = (a + bb)*(ba* + \lambda)$$

A Rough Algorithm

- Start with putting an initial and final state.
- Recursively, if you see
 - •: put a state,
 - +: put 4 states in a grid of 2x2, lambda transitions to the first two and out of the second two to the enclosing states,
 - *: put lambda transitions to and from the enclosing states,
 - primitive RE: create the NFA and connect to the enclosing states.

Generalized Transition Graph

 Generalized transition graph (GTG): A transition graph where the edges are labeled with regular expressions.

– Example:

Generalized Transition Graph (cont.)

The canonical form of a two-state GTG:

The RE

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

covers all possible paths and is the graph's RE.

NFA to RE Conversion

- Convert the NFA to a GTG.
- If the GTG has more than two states, remove the extra states one at a time.
 - See the procedure in the textbook:

NFA to RE Conversion (cont.)

- From an NFA, we can construct a GTG.
 - Recall that any language accepted by an NFA or a DFA is regular.

• From a GTG, we can derive a regular expression.

• Therefore, for every regular language L, Theorem 3.2 there is a regular expression r such that L=L(r).

Regular Expression, Acceptors and Regular Grammars

Kleene's Theorem:
 Stephen Kleene proved in 1956 that regular expressions and finite automata are equivalent.

 There is an FA for a language if and only if there is an RE for the language.

Context-Free Languages

Context-Free Languages

- A context-free grammar G = (V, T, S, P) has a more relaxed grammar than a regular grammar.
- All productions in P have the form

$$A \rightarrow x$$

where $A \in V$ and $x \in (V \cup T)^*$

- It's context-free because any time the variable on the left of a production appears in a sentential form, you can make the substitution.
- A language L is context-free if and only if there is a context-free grammar such that L = L(G).

Context-Sensitive Languages

• A grammar G = (V, T, S, P) is context-sensitive if all productions in P have the form

$$\alpha A\beta \rightarrow \alpha x\beta$$

where $A \in V$ and $\alpha, \beta \in (V \cup T)^*$ and $x \in (V \cup T)^+$.

• In other words, you can make the substitution $A \rightarrow x$ in a sentential form only within the context of α and β .

Context-Free Grammar Example #1

- Example 5.1
 - $L(G) = \{ww^R : w \in \{a, b\}^*\}$

Context-Free Grammar Example #2

- Example 5.3
 - $L(G) = \{a^n b^m : n \neq m\}$

Simplifying Context-Free Grammars

- We can convert a context-free grammar to an equivalent grammar that is somehow "simpler".
- An equivalent but simpler grammar may have more restrictions and is easier to work with.
- Simpler does not necessarily mean fewer production rules.

λ-Free Grammars

- We want to study context-free languages that do not contain the empty string λ .
 - Let L be any context-free language.
 - Let $G = \{V, T, S, P\}$ be a context-free grammar for $L \{\lambda\}$
 - Create a new grammar by adding the new start symbol S_0 to V and the new rules $S_0 \to S \mid \lambda$
 - The new grammar will generate L.
 - Therefore, any nontrivial conclusions made for $L \{\lambda\}$ will also apply to L.

λ -Free Grammars (cont.)

• For any context-free grammar G, we can construct a grammar \hat{G} such that $\hat{G} = L(G) - \{\lambda\}$

 Unless otherwise specified, we will discuss only λ-free context-free languages.

A Substitution Rule

- Let a context-free grammar *G* contain two different variables *A* and *B*.
- Suppose G contains a production of the form

$$A \rightarrow x_1 B x_2$$

and a production of the form

$$B \rightarrow y_1 \mid y_2 \mid \dots \mid y_n$$

• Then for each *B* in the right side of a production, we can substitute each of *B*'s right sides:

$$A \to x_1 y_1 x_2 | x_1 y_2 x_2 | \dots | x_1 y_n x_2$$

Remove Useless Productions

- A variable of a grammar is useless if:
 - It cannot be reached from the start variable, or
 - It cannot derive a terminal string.

• Example 1 :
$$S \rightarrow aSb \mid \lambda \mid A$$
$$A \rightarrow aA$$

 Variable A is useless because it cannot derive a terminal string.

Remove Useless Productions (cont.)

• Example 2 : $S \rightarrow A$ $A \rightarrow aA \mid \lambda$ $B \rightarrow bA$

- Even though variable B can derive a terminal string ...
- It's useless because it cannot be reached from the starting variable S.

Remove Useless Productions (cont.)

• Example 3:
$$S \rightarrow aS |A| C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

- − *C* is useless since it cannot derive a terminal string.
- Draw a dependency graph to show that B is useless since it cannot be reached from S:

$$S \longrightarrow A$$
 B

- Therefore: $S \rightarrow aS \mid A$ $A \rightarrow a$

Remove λ Productions

• In a context-free grammar, a λ -production is

$$A \rightarrow \lambda$$

Any variable A for which the derivation

$$A \Rightarrow^* \lambda$$

is possible is nullable.

• To remove λ -productions from a grammar, add new productions where you replace all nullable variables in the right sides of productions with λ in every combination.

Example Removal of λ **Productions**

Consider the productions

$$S \to ABaC$$

$$A \to BC$$

$$B \to b \mid \lambda$$

$$C \to D \mid \lambda$$

$$D \to d$$

- Variables A, B, and C are nullable.
 - Replace each of them with λ in every combination.
 - Example: Add to production A the rule with B replaced with λ and the rule with C replaced with λ :

$$A \rightarrow BC \mid B \mid C$$

Example Removal of λ Productions (cont.)

$$S \to ABaC$$

$$A \to BC$$

$$B \to b \mid \lambda$$

$$C \to D \mid \lambda$$

$$D \to d$$

- Similarly for production rule S, add rules where you replace A, B, and C in ABaC with λ in every combination:
 - Replace A with λ to get BaC
 - Replace B with λ to get AaC
 - Replace C with λ to get ABa
 - Replace both A and B with λ to get aC, etc.

$$S \rightarrow ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Aa \mid Ba \mid a$$

 $A \rightarrow BC \mid B \mid C$
 $B \rightarrow b$
 $C \rightarrow D$
 $D \rightarrow d$

Remove Unit Productions

• A unit production in a context-free grammar has the form $A \rightarrow B$ where A and B are variables.

We also want to remove unit productions.

Example Removal of Unit Productions

$$S \rightarrow Aa \mid B$$

$$B \rightarrow A \mid bb$$

$$A \rightarrow a \mid bc \mid B$$

$$S \rightarrow Aa$$

$$A \rightarrow a \mid bc$$

$$B \rightarrow bb$$

Example Removal of Unit Productions (cont.)

$$S \to Aa \mid B \qquad S \to Aa$$

$$B \to A \mid bb \qquad A \to a \mid bc$$

$$A \to a \mid bc \mid B \qquad B \to bb$$

- Draw the dependency graph for the <u>unit productions</u> to add new rules:
- $S \to a \mid bc \mid bb$ $A \to bb$ $B \to a \mid bc$

- The equivalent grammar:
 - Note that Bis now useless.

$$S \rightarrow a \mid bc \mid bb \mid Aa$$

 $A \rightarrow a \mid bb \mid bc$
 $B \rightarrow a \mid bb \mid bc$