Lecture 14:

Solved problems on angular momentum

Exercise 1: Demonstrate that $L^2 = L_-L_+ + L_3^2 + L_3$

Solution

We know that:

a)
$$L^2 = L_1^2 + L_2^2 + L_3^2$$

b)
$$L_{-} = L_{1} - iL_{2}$$

c)
$$L_{+} = L_{1} + iL_{2}$$

d)
$$[L_+, L_-] = 2L_3$$

Let us calculate $L_-L_+ = (L_1 - iL_2)(L_1 + iL_2) = L_1^2 + L_2^2 + i(L_1L_2 - L_2L_1)$. The term in brackets is the commutator $[L_1, L_2]$ which, neglecting \hbar (we consider here to have $\hbar = 1$), is equal to $[L_1, L_2] = iL_3$.

We thus have $L_-L_+ = L_1^2 + L_2^2 - L_3$. If we add $L_3 + L_3^2$, we obtain: $L_-L_+ + L_3 + L_3^2 = L_1^2 + L_2^2 + L_3^2 = L^2$, which concludes our demonstration.

Exercise 2: Demonstrate that, if J^2 has an eigenvalue j(j+1), there exists 2j+1 states that are eigenfunctions of J_3 with eigenvalues j, j-1, j-2, ..., -j.

Solution

First of all, we demonstrate that there exists an eigenfunction of J^2 with eigenvalue j(j+1) which has the maximum eigenvalue for J_3 , and that this is equal to j. In other words, there exists a state ψ such as $J^2\psi = j(j+1)\psi$ and, simultaneously, $J_3\psi = j\psi$. If the state ψ has the maximum eigenvalue of J_3 , it immediately follows that $J_+\psi = 0$. So, remembering that $J^2 = J_-J_+ + J_3^2 + J_3$, we have:

$$J^{2}\psi = J_{-}J_{+}\psi + J_{3}^{2}\psi + J_{3}\psi$$

The first term is equal to 0 (ψ is the state with maximum eigenvalue for J_3 implying that $J_+\psi=0$), the second is equal to $j^2\psi$ and the third is equal to $j\psi$ giving: $J^2\psi=j(j+1)\psi$. On the other hand, there must be also a state with the *minimum* eigenvalue for J_3 meaning that I can only apply the operator J_- a certain amount of times (which I will denote as n). We will have:

$$J_3J_-\psi = (j-1)J_-\psi$$
, $J_3J_-^2\psi = (j-2)J_-^2\psi$, $J_3J_-^3\psi = (j-1)J_-^3\psi$, ..., $J_3J_-^n\psi = 0$

For this state of minimum eigenvalue of J_3 we have:

$$J^2 J_-^n \psi = (J_+ J_- + J_3^2 - J_3) J_-^n \psi = ((j-n)^2 - (j-n)) J_-^n \psi$$

However, also the state $J_{-}^{n}\psi$ is eigenfunction of J^{2} with eigenvalue j(j+1). We thus have the equality:

$$j(j+1) = (j-n)^2 - (j-n)$$

which implies n = 2j. However, n is a positive integer number (it represents the times I can apply J_{-} to the state with maximum eigenvalue of J_{3}) implying that there are 2j + 1 states all with the same eigenvalue for J^{2} .

Exercise 3: Calculate the spherical harmonics $Y_{\ell,m}$ associated with: a) $\ell=0$, m=0, a) $\ell=1$, m=0, a) $\ell=1$, m=1.

Solution

We know that a general spherical harmonic can be written as:

$$Y_{\ell}^{m}(\theta,\phi) = (-)^{(m+|m|)/2} i^{\ell} \sqrt{\frac{(2\ell+1)(\ell-|m|)!}{4\pi(\ell+|m|)!}} P_{\ell}^{m}(\cos\theta) e^{im\phi}$$
 (1)

where the associated *Legendre* polynomials P_{ℓ}^{m} are defined as:

$$P_{\ell}^{m}(x) = (x^{2} - 1)^{m/2} \frac{\mathrm{d}^{m}}{\mathrm{d} x^{m}} P_{\ell}(x)$$
 (2)

and the Legendre polynomials P_{ℓ} are defined as:

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} \frac{\mathrm{d}^{\ell}}{\mathrm{d} \, x^{\ell}} (x^2 - 1)^{\ell} \tag{3}$$

We then start by calculating $P_0(x)$:

$$P_0(x) = 1 \tag{4}$$

and $P_1(x)$:

$$P_1(x) = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}x} (x^2 - 1) = x \tag{5}$$

Then, $P_0^0(x)$:

$$P_0^0(x) = 1 (6)$$

and $P_1^0(x)$:

$$P_1^0(x) = x \tag{7}$$

and $P_1^1(x)$:

$$P_1^1(x) = (x^2 - 1)^{1/2} \frac{\mathrm{d}}{\mathrm{d}x} x = \sqrt{x^2 - 1}$$
 (8)

We now have all the ingredients to calculate the various spherical harmonics (bear in mind that $x = \cos \theta$):

a)
$$Y_{0,0} = \frac{1}{\sqrt{4\pi}}$$
 (9)

$$b) \quad Y_{1,0} = i \frac{3}{\sqrt{4\pi}} \cos \theta \tag{10}$$

$$c) \quad Y_{1,1} = -i\frac{3}{\sqrt{8\pi}}\sin\theta e^{i\phi} \tag{11}$$

Exercise 4: Consider the Hamiltonian:

$$\hat{H} = q\hat{L} \cdot \hat{s}$$

Here \hat{L} is the angular momentum operator, \hat{s} is the spin of the electron and g is a coupling constant.

a Making use of the commutation rule between \hat{L} and \hat{s} , demonstrate that, the square of total angular momentum is given by:

$$\hat{J}^2 = \hat{L}^2 + \hat{s}^2 + 2\hat{L} \cdot \hat{s}$$

b If we have an electron with $\ell = 1$ and s = 1/2, what are the possible values of the eigenvalues of \hat{J}_z and \hat{J}^2 ?

c Still considering $\ell = 1$ and s = 1/2, find the eigenvalues of the Hamiltonian (energy) for all the possible configurations of the total angular momentum.

Solution

 $J^2 = (L+s)^2 = L^2 + s^2 + Ls + sL$. However [L,s] = 0 implying that $J^2 = L^2 + s^2 + 2Ls$. The Hamiltonian can thus be written as:

$$H = g(J^2 - L^2 - s^2)/2 \tag{12}$$

The possible values for the total angular momentum j are $j = \ell \pm s = 3/2$ or 1/2. We thus have two possible energy eigenvalues:

a)
$$j = 3/2 \ \ell = 1 \ s = 1/2 \ \rightarrow \ E = g/2$$
 (13)

or

b)
$$j = 1/2 \ \ell = 1 \ s = 1/2 \ \rightarrow \ E = -g/2$$
 (14)