Perguntas do Exame de AC1 - 13/01/2012

- 4. Implementações distintas do mesmo programa; CPI_A=1,2 e CPI_B=1,5.
 - a. A tem maior desempenho que B
 - b. B tem maior desempenho que A
 - c. Não há dados suficientes
- 5. A divisão com sinal obtem-se a partir de:
 - a. complemento para 1 do divisor e do dividendo
 - b. complemento para 2 do divisor e do dividendo
 - c. módulo do divisor e do dividendo
- 7. beq \$3, \$2, label; no endereço: 0x43FF00, cujo endereço alvo é 0x43FF0C. Os 16 bits menos significativos do código máquina da instrução são:...
- 9. Quando o sinal de memRead está activo:
 - a. a informação está disponível no próximo flanco activo do relógio
 - b. a informação está imediatamente disponível
- 11- O controlo do pipeline é:
 - a. máquina de estados
 - b. elemento combinatório
- 12. Uma implementação multicycle tem a vantagem de (em relação a uma singlecycle):
 - a. diminuir o tempo de execução
 - b. diminuir o tempo de execução de cada uma das instruções
 - c. aumentar o débito
- 13. A frequência de relógio de uma implementação multicycle:
 - a. é limitada pelo maior dos atrasos cumulativos dos elementos
 - b. é limitada pelo menor dos atrasos dos elementos operativos
 - c. é limitada pelo maior dos atrasos dos elementos operativos
- 14. sub \$t1, \$t1, \$t2

lw \$t2, 0(\$t1)

- a. hazard de dados que pode ser resolvido por forwarding
- b. hazard estrutural e de dados que pode ser resolvido por forwarding
- c. hazard de dados que não pode ser resolvido por forwarding
- 15. O que é o delayed branch slot:
 - a. insere nop's para atrasar a execução do programa
- b. executa a instrução seguinte ao branch independentemente do resultado

- 16. Forwarding é:
- a. máquina de estados que após a detecção da dependência envia informação para um estágio mais atrasado
- b. elemento combinatório que após a detecção da dependência envia informação para um estágio mais atrasado
- c. elemento combinatório que após a detecção da dependência envia informação para um estágio mais avançado
- 17. Jump no endereço 0x1040000C; código máquina: 0x081000F2; Qual o endereço alvo?
- 19. Subtração de duas quantidades em vírgula flutuante
- 20. Máxima frequência de relógio na implementação pipeline, sabendo que: acesso à memoria 10 ns; ALU 4ns; somadores 9 ns; controlo 1 ns;...
 - a. 4 ns (f=1/4ns)
 - b. 24 ns (f=1/24ns)
 - c. 10 ns (f=1/10ns)
 - d. nenhuma
- 21. Descrever tipos de hazards
- 22. (implementação pipeline)

slti \$t2, \$t0, \$t1

beg \$t2, \$0, L1

lw \$t4, 0(\$t2)

sub \$t7, \$t5, \$t6

- L1: add \$t8, \$t4, \$t7
 - → Tipos de hazards
 - → Quais podem ser resolvidos por forwarding(dos hazards de dados)
- 23. Ver sinais de controlo num diagrama temporal (exemplo:

lw \$6, 0(\$7)

and \$8, \$0, \$5

beq \$8, \$0, L2

identificar ALUselB; ALUop; PCSource.

Endereço	Dados		
0x1001009C	0x01234567	\$5=0x100100A4	L1:beq \$5, \$6, L2
0x100100A0	0x7CABCDEF	\$6=0x100100B4	lw \$7, -4(\$5)
0x100100A4	OxF9FC3CF3	\$7=0x00000000	and \$7, \$7, \$8
0x100100A8	0xDF1134FE	\$8=0x1600003C	addi \$5, \$5, 4
0x100100AC	0x377933FD		bne \$7, \$8, L1
0x100100B0	0x5EFF00BC	PC=0x00400028	L2: nop

- ! PC = endereço onde está armazenada a 1ª instrução (beq)
 - 24. Na 2ª instrução o que está no ALU out no fim da 2ª fase?
 - 25. Tendo em conta os sinais de controlo de uma implementação multicycle, podemos dizer que este se encontra na fase:

. 1	lorD=1	CPinv=0
a. 1	PCWrite=0	PCSource=01
b. 2	PCWriteCond=0	ALUop=00
c. 3	MemRead=0	ALUselA=0
d.4	MemWrite=0	ALUselB=11
	IRWrite=0	RegWrite=0
	MemtoReg=0	RegDst=1

- 26. Nº de ciclos de uma implementação multicycle (desde beq até bne):
 - a. 16
 - b. 57
 - c. 56
 - d. 38
- 27. Nº de ciclos numa implementação pipeline (com forwarding no EX; funciona com delayed branch) desde beq até à instrução a seguir ao nop:
 - a. 19
 - b. 32
 - c. 24
 - d. 26
- 28. Vai iniciar-se a 1^a fase (IF) da primeira instrução (t=0). Valor à saída da ALU em t=6?

Resolução

