APR Assignment 1: Predicting Income Using Logistic Regression and SVM on the Adult Dataset (Pranjal Chamaria 2201CS55)

1. Introduction

The goal of this experiment is to apply machine learning models taught in class to a real-world dataset obtained via Google Dataset Search. We chose the **Adult (Census Income)** dataset from the UCI Machine Learning Repository. The task is a **binary classification** problem: predicting whether an individual's income exceeds \$50K/year based on demographic and employment-related attributes.

We implemented and evaluated two supervised models:

- Logistic Regression (baseline, interpretable linear model)
- Support Vector Machine (SVM) (margin-based classifier)

The models were compared in terms of classification performance, cross-validation results, and error analysis.

2. Dataset Description

- Source: UCI Machine Learning Repository, Adult Dataset.
- **Size:** ~48,842 rows (32,561 training + 16,281 testing in original; here combined and re-split).
- **Features:** 14 attributes including both numeric (age, education-num, hours-per-week, capital-gain, etc.) and categorical variables (workclass, education, marital status, occupation, race, sex, native-country).
- Target variable: income (binary: <=50K = 0, >50K = 1).
- Preprocessing:
 - o Removed rows with missing values.

- Encoded categorical features using one-hot encoding.
- Scaled numerical features using **StandardScaler**.
- o Final split: 80% training, 20% test (stratified).

3. Models Implemented

3.1 Logistic Regression

- A linear classification model that predicts the probability of an individual earning >50K.
- Uses the sigmoid function and optimizes a log-likelihood objective with L2 regularization.
- Grid search hyperparameters tested:
 - Regularization strength: $C \in \{0.01, 0.1, 1, 10\}$
 - o Penalty: L2
 - o Solver: lbfgs
- Best Parameters: C=0.1, penalty=L2, solver=lbfgs

3.2 Support Vector Machine (SVM)

- A margin-based classifier that separates classes by maximizing the decision boundary margin.
- Due to computational constraints, SVM was trained on a **10k subset** of the dataset.
- Only linear kernel was used (scales better than RBF for high-dimensional sparse data).
- Grid search hyperparameters tested:
 - \circ C \in {0.1, 1, 10}
 - o Kernel = linear

• Best Parameters: C=0.1, kernel=linear

4. Results and Evaluation

4.1 Logistic Regression (Full Dataset)

• Best CV Accuracy: 85.27%

• Test Results (9,769 samples):

Accuracy: 85%

o Precision (class 1): 0.74

Recall (class 1): 0.60

o F1-score (class 1): 0.66

• Confusion Matrix:

True Negatives: 6,928

o True Positives: 1,397

False Negatives: 941

False Positives: 503

• **ROC-AUC:** 0.91 (from ROC curve)

4.2 SVM (Subset 10k)

- Best CV Accuracy: 84.88%
- Test Results (2,000 samples):
 - Accuracy: 85%
 - Precision (class 1): 0.75
 - o Recall (class 1): 0.56
 - o F1-score (class 1): 0.65

• Confusion Matrix:

- Similar distribution as Logistic Regression, with slightly more false negatives.
- ROC-AUC: 0.90 (from ROC curve)

5. Comparative Analysis

- Both models achieved **very similar accuracy (~85%)**, showing that linear models are well-suited for this dataset.
- Logistic Regression had slightly better recall for high-income individuals (class 1), meaning it identified more true positives.
- **SVM** showed marginally higher precision for class 1, meaning when it predicts >50K, it's slightly more reliable.

- ROC-AUC values were nearly identical, indicating both models rank predictions well.
- Logistic Regression is preferable here due to:
 - o Faster training (scales better on full dataset).
 - o Interpretability (coefficients provide insights into feature importance).
 - o Similar or slightly better recall for the minority class.

6. Conclusion

This study demonstrated the application of **Logistic Regression and SVM** on the Adult Census Income dataset. Both models achieved **~85% accuracy** with similar performance. Logistic Regression emerged as the more practical and interpretable choice for this dataset, while SVM provided comparable results on a reduced subset. The results highlight the strengths of linear classifiers for structured tabular data, while also indicating potential gains from more advanced models in future work.