Александра Игоревна Кононова

ТЄИМ

9 сентября 2021 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Кодирование — преобразование дискретной информации

$$x \in X = A_1^+ \rightarrow code(x) \in A_2^+$$

смена алфавита, сжатие, защита от шума, шифрование.

x — сообщение, исходный текст, исходная строка, блок;

X — источник сообщений;

 A_1 — первичный алфавит (до преобразования);

 A_2 — вторичный (алфавит конечного представления).

Обычно A_1 — байты, исходные тексты x — бинарные файлы.

Сжатие (компрессия, упаковка) — кодирование |code(X)| < |X|, причём X однозначно и полностью восстанавливается по code(X). Согласно первой теореме Шеннона $|code(X)| \geqslant I(X)$ (средние!). Кодирование с $|code(X)| \rightarrow I(X)$ и $|code(x)| \rightarrow I(x)$ — оптимальное.

- lacktriangle Сжимается не отдельное сообщение x, а источник X.
- ② Сжатие возможно только при наличии избыточности в изначальном кодировании X (|X| > I(X)).

Если источник X порождает блоки длины N бит с равной вероятностью $(p=\frac{1}{2^N})$, он неизбыточен \to не существует такого алгоритма сжатия, который сжимает любой блок длины N.

Любой алгоритм сжатия сжимает часто встречающиеся блоки данных за счёт того, что более редкие увеличиваются в размерах.

Источник X генерирует входную последовательность $C = c_1 c_2 \dots c_n \dots$ $c_i \in A$ — символы пронумерованы (есть «предыдущий» и «последующий»). X неизвестен \Rightarrow строится модель источника по входной последовательности.

- блок конечная входная последовательность (произвольный доступ);
- поток с неизвестными границами (последовательный доступ).

Алгоритмы сжатия по типу входной последовательности:

- блочные статистика всего блока добавляется к сжатому блоку;
- поточные (адаптивные) статистика вычисляется только для уже обработанной части потока, «на лету».

Свойства алгоритмов сжатия:

- ① степень сжатия $\frac{|X|}{|code(X)|}$ (в среднем по источнику; $\frac{|X|}{|code(X)|} \leqslant \frac{|X|}{|I(X)|}$) и степень увеличения размера в наихудшем случае;
- скорость сжатия и разжатия.

Оптимальное кодирование источника X

Пусть X порождает последовательность из 2^N возможных символов.

- **1** Равновероятный источник (I(X) = N) кодирование отдельных символов кодами фиксированной ширины N бит.
- 2 Стационарный источник без памяти, порождающий символы с разными постоянными вероятностями (I(X) < N) — кодирование отдельных символов кодами переменной ширины: коды Хаффмана, методы семейства арифметического кодирования.
- Стационарный источник с памятью, порождающий символы с вероятностями, зависящими от контекста (I(X) < N) кодирование сочетаний символов: словарные методы семейства LZ77 (словарь=текст) и семейства LZ78 (отдельный словарь в виде дерева/таблицы).

Если изначально каждый символ записан кодом фиксированной ширины из N бит \Rightarrow сжатие для 2 и 3.

Оценка алфавита A_1 и вероятностей источника по сообщению:

$$x = «молоко»$$

- $lacktriangledown A_1$ koi-8, равновероятные символы: $p=rac{1}{256}$, $I(x)=6\cdot \log_2(256)=48$ (бит
- **2** A_1 русский алфавит, равновероятные: $p = \frac{1}{33}$, $I(x) = 6 \cdot \log_2(33) \approx 30.3$
- **3** A_1 Unicode 12.1, равновероятные: $p = \frac{1}{137994}, I(x) \approx 6 \cdot 17, 1 \approx 102, 4$
- $A_1 = \{ \kappa, \pi, \kappa, o \}$, равновероятные: $p = \frac{1}{4}$, $I(x) = 6 \cdot \log_2(4) = 12$

 $\{ \mathbf{o} \in A_1 = \{ \kappa, \pi, \kappa, \mathbf{o} \} \}$ или koi-8, неравновероятные, стац-й источник без

памяти: o (3) + κ (1) + π (1) + π (1): $p(o) = \frac{3}{6}, \quad p(\kappa) = p(\pi) = p(\pi) = \frac{1}{6}$

$$I(x) = -3 \cdot \log_2(\frac{3}{6}) - \log_2(\frac{1}{6}) - \log_2(\frac{1}{6}) - \log_2(\frac{1}{6}) = 3 \cdot \log_2(2) + 3 \cdot \log_2(6) \approx 10.8$$

6 $A_1 = \{ \kappa, \pi, \kappa, o \}$ или koi-8, марковский источник первого порядка:

предыдущий	$p(\kappa)$	$p(\pi)$	p(M)	p(o)
_	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
К, Л, М	0	0	0	1
0	$\frac{1}{2}$	$\frac{1}{2}$	0	0

$$I(x) = -\log_2(\frac{1}{4}) - \log_2(1) - \log_2(\frac{1}{2}) - \log_2(1) - \log_2(\frac{1}{2}) - \log_2(1) = 2 + 1 + 1 = 4$$

 $m{O}$ $A_1=\{$ молоко, чай $\}$, равновероятные символы: $p=rac{1}{27}I(x)=1$

Оценить алфавит и построить модели источника: а) равновероятную, б) стационарную без памяти, в) марковскую первого порядка для сообщения x, по модели оценить I(x) и I(y).

- ① x =хрюхрюхрюмяухрюмяумяухрюмяумяу (30 символов, 5 «хрю» и 5 «мяу» 0001011011); y =рюх.
- **2** x =кукукукукарекукукукарекукукарекукукарекукукареку (50 символов, 5 «ку» и 5 «кукареку» аналогично); y =кар.

} модель источника!

- lacktriangle Первичный алфавит A_1
- Оптимальность (неизбыточность)
- Избыточность (в том числе помехоустойчивость)
- lacktriangle Вторичный алфавит A_2 ($A_2 = \{0,1\}$ двоичный код)
- Однозначная декодируемость
- Разделяемость код code(x) любой последовательности $x = \overline{a_1 \dots a_n}$ единственным образом разделим на кодовые слова $c_i = code(a_i), a_i \in A_1$:
 - **1** коды фиксированной ширины $a, b, c \to 00, 01, 10;$
 - **2** коды с разделителем -1, 11, 111 (0 как разделитель символов);
 - **3** префиксные коды (дерево) 0, 10, 11;
 - прочие например, 11, 1110111, 11100111.

Построить разделимые коды для $A_1 = \{a, b, c, d, e\}, A_2 = \{0, 1\}$:

- фиксированной ширины;
- префиксный;
- «постфиксный»;
- с разделителем;
- не относящийся ни к одной категории.

Формат файла

- Сигнатура (обычно первые 2-4 байта для общепринятых форматов)
 - быстрое распознавание типа файла (свой/чужой).
- Метаданные (заголовок)
 - версия формата;
 - исходная длина файла;
 - смещение начала данных, их размер и формат;
 - тип сжатия, параметры для распаковки (обычно чем нестандартнее модель источника, тем объёмнее);
 - тип защиты от помех, параметры для восстановления;
 - зарезервированные поля для выравнивания;
 - контрольная сумма заголовка;
 - контрольная сумма файла и т. д.
- Данные
 - могут включать вложенные заголовки (контейнеров) с сигнатурами.

Идея кодирования: $x = A_1^+, x \in X \leftrightarrow code(x) \in A_2^+$

Ha практике: первичный алфавит — байты, исходный текст — произвольной длины nбайт; причём там может встречаться любой символ или их комбинация.

Алгоритм кодирования:

- собственно алгоритм;
- представление данных.

Программная реализация:

- дополнение исходного текста при необходимости (обычно нулями) и обрезка декодированного текста до длины n;
- при сжатии: анализ сжатия/увеличения (запись кода или копии);
- формирование и чтение заголовка.

$$(n \ \mathsf{байт}) \leftrightarrow \begin{cases} \mathsf{модель} \ X \\ x \in A_1^+ \end{cases} \leftrightarrow \begin{cases} \mathsf{модель} \ X, \\ \mathsf{алгоритм} \ \mathsf{кодирования}, \\ \mathsf{параметры} \ \mathsf{кодирования}, \\ \mathsf{code}(x) \in A_2^+ \end{cases} \Leftrightarrow \begin{cases} \mathsf{заголовок}, \\ \mathsf{данные} \ y \ (m \ \mathsf{байт}) \end{cases}$$

Алгоритм работает с блоком длины N байт (после кодирования M байт) — файл дополняется до kN и нарезается на блоки:

Алгоритм заменяет подстроку $c_i...c_j$ на некоторый кортеж α_i — предваряем кортеж α_i префиксом $p = c_k$ (выбираем самый редкий символ): $c_i...c_i \to p \alpha_i$, вхождения $p=c_k$ как символа экранируем (заменяем на $p\,\alpha_0$ такое, что никакое $\alpha_i \neq \alpha_0$ и не начинается с α_0):

$$\begin{cases} ...(c_i...c_j)...c_k...\\ c_i-\mathsf{байты} \end{cases} \leftrightarrow ...(\alpha_i)...c_k... \leftrightarrow \begin{cases} \mathsf{алгоритм},\\ \mathsf{значение} \ \mathsf{префикса} \ p=c_k,\\ ...p\ \alpha_i \ ...p\ \alpha_0... \end{cases}$$

где c_i, p — символы (байты), α_i, α_0 — цепочки символов (байтов).

 $x \in A_1 \ \leftrightarrow \ y \in A_2$ без сжатия, защиты от помех и шифрования

Простейший базовый код (подразумевается):

① байт памяти \leftrightarrow беззнаковое целое число 0...B (обычно: октет $\leftrightarrow 0...255$) натуральный двоичный код \Longrightarrow биты байта имеют номер.

Порядок байтов (если файл читается и записывается на одной платформе — не важен и также подразумевается):

- $lacksymbol{0}$ N байтов $(\chi_0,\ldots\chi_{N-1})$, $N=2^s\leftrightarrow$ беззнаковое целое число $0...B^N$;
- $oldsymbol{2}$ N битов, N произвольное \leftrightarrow беззнаковое целое число $0...2^N.$

Простые коды (фиксированной ширины): беззнаковое целое (код) \leftrightarrow ?

- **3** 0...127 ↔ символ из таблицы ASCII;
- Знаковые числа;
- числа с плавающей или фиксированной запятой;
- 🜀 нестандартные цифровые коды (ДДК, Грея, Джонсона) и т. д.

Целые неотрицательные числа: от 0 до 2^N-1 .

Для
$$N=4$$
 — целые 0 до $2^4-1=16-1=15$:

0	1	2	3	4	5	6	7
0000	0001	0010	0011	0100	0101	0110	0111
8	9	A (10)	B (11)	C (12)	D	E (14)	F (15)
					(13)		
1000	1001	1010	1011	1100	1101	1110	1111

Циклическая арифметика по модулю 2^N : то есть $(2^N - 1) + 1 = 0$.

 $2^N = 0$

Взвешенный:
$$x=1\cdot \mathrm{bit}[0]+\ldots+2^{N-1}\cdot \mathrm{bit}[N-1]=$$
 $=\alpha_0\cdot \mathrm{bit}[0]+\ldots+\alpha_{N-1}\cdot \mathrm{bit}[N-1].$

Целые числа (возможно — знаковые) в произвольном диапазоне $\left[a,b\right]$

— для $x \in [a, b]$ записываем беззнаковое число y = x - a натуральным двоичным кодом.

Дополнительный код

Целые знаковые числа, 0 и ближайшие к 0 положительные представляются как беззнаковые, циклическая арифметика по модулю 2^N : $(-1)=0-1\equiv 2^N-1$, $(-2)\equiv 2^N-2$, ... $(-2^{N-1})\equiv 2^N-2^{N-1}=2^{N-1}$ (считается отрицательным).

Целые числа от -2^{N-1} до $+2^{N-1}-1$:

0	+1	+2	+3	+4	+5	+6	+7	
0000	0001	0010	0011	0100	0101	0110	0111	
	-1	-2	-3	-4	-5	-6	-7	-8
	1111	1110	1101	1100	1011	1010	1001	1000

$$(-x) = 0 - x = (-1 - x) + 1 = (\sim x) + 1;$$

max + 1 = min.

Числа с плавающей запятой (IEEE 754)

s	$p + \Delta$		$m_2m_3m_4\dots m_{n+1}$	
n+w	n+w-1	n - 1		0

$$n+w$$
 $n+w-1$ n $n-1$

$$n+w$$
 $n+w-1$ $n-1$ 0

Нециклическая неассоциативная арифметика:
$$x+(y+z) \neq (x+y)+z$$
 $32=1+8+23$ бита — одинарная точность. $float$ $2^{-126} \leq |x| \leq 2^{127} \cdot (2-2^{-23})$

$$32 = 1 + 8 + 23$$
 бита — одинарная точность, $float$

$$64 = 1 + 11 + 52$$
 бита — двойная, $double$

Округление: к ближайшему чётному, к ближайшему
$$\infty$$
, к 0 , к $+\infty$ (вверх), к $-\infty$ (вниз)

$$\mathsf{C}/\mathsf{C}++$$
: float \subseteq double \subseteq long double $\subset \mathbb{R}$, но даже long double $eq \mathbb{R}$

 $2^{-1022} \le |x| \le 2^{1023} \cdot (2 - 2^{-52})$

 $(-1)^s \cdot 2^p \cdot \overline{0,1m_2m_3m_4 \dots m_{n+1}}$ $p_{min} \leq p \leq p_{max}$

 $(-1)^s \cdot 2^{p_{min}} \cdot \overline{0,0} \overline{m_2} \overline{m_3} \overline{m_4 \dots m_{n+1}}$

Коды и структура данных

Числа с плавающей запятой (IEEE 754)

 $(-1)^{s} \cdot 0$

 $(-1)^s \cdot \infty$

нечисло (nan)

Модель источника Прочие цифровые коды Кодовые таблицы Избыточный невзвешенный рефлексный (при переходе между кодовыми комбинациями изменяется только один бит) нециклический $(max + 1 \neq min)$ двоичный код

Для N битов — целые 0 до N:

0	1	2	3	4
0000	0001	0011	0111	1111
	0010	0101	1011	
	0100	1001	1101	
	1000	0110	1110	
		1010		
		1100		

Коды Грея и Джонсона

Код Грея — неизбыточный невзвешенный рефлексный циклический двоичный код

0	1	2	3	4	5	6	7
0000	0001	0011	0010	0110	0111	0101	0100
8	9	Α	В	С	D	Е	F
1100	1101	1111	1110	1010	1011	1001	1000

Код Джонсона — избыточный невзвешенный рефлексный циклический двоичный код

0	1	2	3	4	5	6	7
0000	0001	0011	0111	1111	1110	1100	1000

ASCII и Unicode

ASCII-128 символов и семибитная (\sim однобайтовая) кодировка

						м	2611		ue c	ııaı t						
	0	1	2	3	4	5	6	7	8	9	ΙA	В	С	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!	=	#	\$	%	&		()	*	+	,		•	/
3	0	1	2	3	4	5	6	7	8	9		;	٧	II	^	?
4	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
5	Р	Q	R	S	T	U	٧	W	Х	Υ	Z]	\]	^	1
6	,	а	b	U	d	e	f	g	h	i	j	k	7	m	n	0
7	р	q	r	s	t	u	٧	W	х	У	Z	{		}	1	DEL

Unicode — 137 994 символ (в версии 12.1) и набор кодировок: UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE)

UTF-8 (до 6 байт) 1 байт 0ааа аааа 2 байта 110х хххх 10хх хххх

3 байта 1110 xxxx 10xx xxxx 10xx xxxx

4 байта 1111 0xxx 10xx xxxx 10xx xxxx 10xx xxxx

5 байт 1111 10хх 10хх хххх 10хх хххх 10хх хххх 10хх хххх

6 байт 1111 110х 10хх хххх 10хх хххх 10хх хххх 10хх хххх 10хх хххх

Каждой букве или знаку соответствует определённая комбинация кратковременных (точка) и втрое более длинных (тире) импульсов тока, разделённых бестоковым интервалом, равным длительности точки.

Для разделения букв в словах и цифр в многозначных числах применяется тройной бестоковый интервал, заканчивающий каждую комбинацию.

Для разделения слов в тексте служит пятикратный бестоковый интервал.

 $A_2 = \{\cdot, -, \text{межсимвольный интервал}, \text{межсловный интервал}\}$

Код Бодо (Дональд Мюррей)

Международный телеграфный код №2 (ITA2) + + 00000 = MTK-2

Русский шрифт		E	III		V	Т	A	И	н	o	C	P	x	д	л	3	У	Ц	М	Φ	й	Г	п	ы	Б	В		к	ж	Ь	Я			
Дифры Латинский шрифт 1 2 Ведущие отверстия 3	3	вод строк	Пробел	рат каретк	5	-	8	,	9	,	ч	щ	кто там?)	+	7	:		э	Ю ^(3В)	ш	0	5	?	2	Цифры	(=	1	1	уквы лат.	Буквы рус.		
	й	E	Пере		Возв	т	A	I	N	О	s	R	н	D	L	z	U	C	М	F	J	G	P	Y	В	w		ĸ	v	x	Q		Р	
шрифі	1	•					•				•			•		•	•			•	•			•	•	•	•	•		•	•	•		Ξ
	2		•				•	•				•			•	[•	•			•	•	•			•	•	•	•		•	•		
Велушие		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3			•				•	•		•		•				•	•	•	•			•	•				•	•	•	•	•		
	ерстия 3 4 5				•		1	ļ	•	•		•		•				•	•	•	•	•			•		•	•	•	•		•		
						•				•			•		•	•			•			•	•	•	•	•	•		•	•	•	•		

фиксированной ширины 5, режимы

ТЕИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie

