

step3:
$$\frac{1}{2} \left[(107 + 117) [4] + e^{i\theta_4} (107 - 117) [4] \right]$$

= $\frac{1}{2} \left[107 (1 + e^{i\theta_4}) + 117 (1 - e^{i\theta_4}) \right] [4]$

measure qubit 0:

prob
$$|1+e^{i\theta \xi}|^2$$
 =) measure 0
prob $|1-e^{i\theta \varphi}|^2$ =) measure | with small shift

if
$$\theta_{\psi} > 0$$
, $\text{prob}\left[0\right] = \cos^{2}\left(\frac{\theta_{\psi}}{2}\right)$

$$\text{prob}\left[1\right] = \sin^{2}\left(\frac{\theta_{\psi}}{2}\right) \sim$$

To measure 9 precisely using this bit of information, need to do

lots of measurements:

eq:
$$04 = 1^{\circ} \Rightarrow \text{Prob}[0], \text{Prob}[1] = \{0.9999, 7.615 \times 10^{\circ}\}$$
 $04 = 10^{\circ} \Rightarrow \gamma = \{0.9924, 0.007596\}$

not a good idea to try to measure with such low precision.

Better solution: use multiple qubits to measure the phase.

step 0:
$$(0)^{\otimes N}$$
 $|\Psi\rangle$

step 1: $\frac{1}{\sqrt{2}}$ $(0) + 117$ (14)

Before proceeding, node: $u^2 |\Psi\rangle = u^{2^{-1}}u|\Psi\rangle$

$$= u^{2^{-1}}e^{i\theta\psi}|\Psi\rangle$$

$$\vdots$$

$$= e^{i\theta\psi}2^{2^{-1}}|\Psi\rangle$$

step 2: $(\frac{1}{\sqrt{2}})^{N}$ $(|0\rangle + e^{2^{-1}}|1\rangle) \otimes (|0\rangle + e^{2^{-1}}|1\rangle) \otimes \cdots$
 $(|0\rangle + e^{2^{-1}}|1\rangle)$

Us QPT :

$$|\tilde{u}\rangle = \frac{1}{\sqrt{N}} (|0\rangle + e^{2^{-1}}|1\rangle) \otimes (|0\rangle + e^{2^{-1}}|1\rangle) \otimes \cdots$$

$$(|0\rangle + e^{2^{-1}}|1\rangle)$$

the form is the same, but $\theta_{\psi} \rightarrow e^{2^{-1}}|1\rangle$, so do inverse QFT

Measu	rement	should i	jveld	2°x(1 0		