[PTKB] Kolokwium 2 - opracowanie

1 Kolokwium 2 z PTKB (11.01.2012)

1.1 Zadanie 1.

Treść: Ile razy trzeba wykonać protokół uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-1000} ?

Rozwiązanie: Prawdopodobieństwo udanego oszustwa po wykonaniu n eksperymentów wynosi $(\frac{1}{2})^n$. Rozwiązujemy równanie $(\frac{1}{2})^x = 10^{-1000}$.

$$\begin{array}{rcl} (\frac{1}{2})^x & = & 10^{-1000} \\ 2^x & = & 10^{1000} \\ x & = & \log_2 10^{1000} \\ x & = & 1000 \log_2 10 \\ x & \simeq & 3321.928 \end{array}$$

Wybieramy $\lceil x \rceil = 3322$.

1.2 Zadanie 2.

Treść: Skonstruować system podpisów cyfrowych ElGamala "dla małych liczb". Przyjąć odpowiedni klucz publiczny i prywatny. Podpisać dowolną wybraną wiadomość m i zweryfikować podpis.

Rozwiązanie:

- 1. Ustanawianie systemu. Wybieramy liczbę pierwszą np. p=13. Jako generator grupy multiplikatywnej Z_{13}^* można wybrać g=2, ponieważ $2^1(mod13)=2$, $2^2(mod13)=4$, $2^3(mod13)=8$, $2^4(mod13)=3$, $2^5(mod13)=6$, $2^6(mod13)=12$, $2^7(mod13)=11$, $2^8(mod13)=9$, $2^9(mod13)=5$, $2^{10}(mod13)=10$, $2^{11}(mod13)=7$, $2^{12}(mod13)=1$ Jako klucz prywatny wybieramy losowo dowolną liczbę $x\in <2$, p-2>. Wybierzmy np. x=3. Będzie to tajemnica strony podpisującej wiadomość. Ujawniamy klucz publiczny $y=g^x(modp)=2^3(mod13)=8$.
- 2. Podpisywanie wiadomości (dokumentu) przez stronę dysponującą tajnym kluczem prywatnym x. Wybieramy jako wiadomość podpisywaną dowolna liczbę $m \in \mathbb{Z}_{p-1}$ czyli w naszym przypadku $m \in \mathbb{Z}_{12}$. Wiadomość jawna m jest więc jednym z elementów zbioru $0, 1, 2, \cdots, 11$. Wybierzmy jako wiadomość podpisywaną m = 1

- 4. Mając m=4 i x=3 tworzymy teraz podpis wiadomości m=4 czyli odpowiednią parę uporządkowaną $(a,b)\in Z_p^*\times Z_{p-1}$. Losujemy $k\in Z_{p-1}$ takie, że NWD(k,p-1)=1. Niech to będzie k=5. Obliczamy k^{-1} w pierścieniu Z_{p-1} czyli w pierścieniu Z_{12} . Łatwo sprawdzić, że $k^{-1}=5$. Obliczamy $a\in Z_p^*$ jako $g^k(modp)$, mamy więc $2^5(mod13)=6$. Obliczamy teraz $b\in Z_{p-1}$ jako $b=k^{-1}\otimes_{p-1}(m-_{12}x\otimes [a]_{p-1})$. Przy przyjętych i obliczonych wartościach mamy więc $b=5\otimes_{12}(4-_{12}3\otimes_{12}6)=2$. Zatem podpis (a,b) wiadomości m=4 ma postać pary uporządkowanej (6,2) a podpisywana wiadomość 4 z podpisem to para uporządkowana (4,(6,2)).
- Weryfikacja podpisu. Równanie weryfikacyjne dla podpisów ElGamala ma postać:

$$y^a \otimes_p a^b = g^m$$

gdzie podnoszenie do potęgi jest jak pierścieniu Z_p . Musimy sprawdzić dla y=8, a=6, b=2, m=4 i g=2 czy równanie (*) jest spełnione.

$$\begin{split} L = y^a \otimes_p a^b = 8^6 \cdot 2(mod13) = 3 \\ P = g^m = 2^4(mod13) = 3 \end{split}$$

Mamy więc L = P i równanie weryfikacyjne (*) jest spełnione, zatem przedstawiony do weryfikacji podpis akceptujemy.

1.3 Zadanie 3.

Treść: Wykazać, że charakterystyka ciała skończonego (czyli najmniejsza taka liczba n, że spełniona jest równość $\underbrace{1+1+1+\cdots+1}_{}=0$) jest zawsze

liczbą pierwszą.

Rozwiązanie: Załóżmy, że charK = n i liczba $n = m_1 m_2$, gdzie $m_1, m_2 \in \mathbb{N}$, a więc $n \cdot 1 = (m_1 m_2) \cdot 1 = 0$. Z łączności dodawania i rozdzielności mnożenia względem dodawania w ciele K mamy $(m_1 m_2) \cdot 1 = (m_1 \cdot 1)(m_2 \cdot 1)$, zatem:

$$(m_1 \cdot 1)(m_2 \cdot 1) = 0$$

Jeśli $m_1 < n$ to z definicji charakterystyki dostajemy, że $m_1 \cdot 1 \neq 0$, zatem istnieje element odwrotny $(m_1 \cdot 1)^{-1}$ do $m_1 \cdot 1$. Mnożąc lewostronnie równość

 $(m_1 \cdot 1)(m_2 \cdot 1) = 0$ przez $(m_1 \cdot 1)^{-1}$ dostajemy $m_2 \cdot 1 = 0$, ponieważ jednak $1 \leq m_2 \leq n$ to biorąc pod uwagę definicję charakterystyki ciała musimy mieć $m_2 = n$. Wynika stąd, że liczba n nie jest podzielna przez żadną liczbę różną od n i 1, a zatem jest liczbą pierwszą.

Można też rozumować nieco inaczej. Załóżmy, że charK=n i liczba n daje się przedstawić w postaci $n=m_1m_2$, gdzie $m_1,m_2\in\mathbb{N}$ i $m_1,m_2\geqslant 2$, czyli n nie jest liczbą pierwszą. Wówczas $n\cdot 1=(m_1m_2)\cdot 1=(m_1\cdot 1)(m_2\cdot 1)=0$. Ponieważ $m_1\cdot 1\neq 0$ i $m_2\cdot 1\neq 0$ oraz $(m_1\cdot 1)(m_2\cdot 1)=0$ co nie jest możliwe, bo ciało nie ma niezerowych dzielników zera. Zatem założenie, że n nie jest liczbą pierwszą prowadzi do sprzeczności.

1.4 Zadanie 4.

Treść: Podać przykład liczby pseudopierwszej przy podstawie 2 i 3 jednocześnie. Czy takie liczby w ogóle istnieja?

Rozwiązanie: Liczba naturalna jest liczbą Carmichaela wtedy i tylko wtedy, gdy:

- 1. Jest liczbą złożoną.
- 2. Dla każdego $a \in \mathbb{N}$ z przedziału 1 < a < n, względnie pierwszej z n, liczba $(a^{n-1} 1)$ jest podzielna przez n.

Patrząc na najmniejsze liczby Carmichaela:

$$561 = 3 \cdot 11 \cdot 17$$

 $1105 = 5 \cdot 13 \cdot 17$

widzimy, że liczba Carmichaela 1105 jest względnie pierwsza zarówno z 2, jak również 3, a więc pozwala ona stworzyć liczby pseudopierwsze $2^{1105-1}-1$ oraz $3^{1105-1}-1$.

1.5 Zadanie 5.

Treść: Podać przykład ciała $GF(3^2)$, czyli ciała o 9 elementach.

Rozwiązanie: Ciało $GF(p^n)$, gdzie p jest liczbą pierwszą oraz $n \in \mathbb{N}$, można wygenerować:

- Znajdując wielomian f(x) stopnia n nierozkładalny w pierścieniu GF(p)[x].
- Znajdując wszystkie możliwe reszty z dzielenia wielomianu f(x) w pierścieniu GF(p)[x].
- Wykorzystując działania dodawania i mnożenia wielomianów modulo f(x).

Wielomianem drugiego stopnia nierozkładalnym w ciele G(3)[x] jest x^2+1 (patrz: Zadanie 7.). Wszystkie możliwe reszty z dzielenia tego wielomianu w pierścieniu G(3)[x] to: 2x+2, 2x+1, 2x, x+2, x+1, x, x, x, x.

1.6 Zadanie 6.

Treść: Podać przykład szyfru Rabina "dla małych liczb". Podać przykład szyfrowania i deszyfracji.

Rozwiązanie: Generacja pary kluczy przebiega następująco:

- Wybieramy dwie liczby pierwsze p i q. Dla uproszczenia można wybrać liczby, które spełniają warunek $p \equiv q \equiv 3 \mod 4$.
- Obliczamy klucz publiczny $n = p \cdot q$.

Żeby zaszyfrować wiadomość potrzebny jest wyłącznie klucz publiczny n. Żeby odczytać wiadomość potrzebny jest również rozkład klucza na czynniki pierwsze p i q. Przykładowe wartości "dla małych liczb" - $p=7,\ q=11,\ n=77.$

Szyfrowanie wiadomości $m \in P = \{0, \cdots, n-1\}$ polega na obliczeniu szyfrogramu $c = m^2 \mod n$. Przykładowo, chcąc zakodować wiadomość m = 20, obliczamy $c = 20^2 \mod 77 = 400 \mod 77 = 15$. Niestety, szyfrowanie nie jest jednoznaczne, ponieważ ten sam szyfrogram uzyskujemy dla czterech różnych wiadomości $m \in \{13, 20, 57, 64\}$.

Deszyfrowanie wiadomości wymaga obliczenia pierwiastków kwadratowych ze względu na obie części klucza prywatnego p i q.

$$\begin{array}{rcl} m_p & = & \sqrt{c} & \bmod p \\ m_q & = & \sqrt{c} & \bmod q \end{array}$$

Dla przykładowych małych liczb otrzymujemy $m_p=1$ oraz $m_q=9$. Następnie, używając rozszerzonego algorytmu Euklidesa, odnajdujemy y_p oraz y_q takie, że $y_p\cdot p+y_q\cdot q=1$. Dla przykładowych danych $y_p=-3$ oraz $y_q=2$. Teraz, korzystając z chińskiego twierdzenia o resztach, odnajdujemy cztery pierwiastki (+r,-r,+s oraz -s) równania $c+n\mathbb{Z}\in\mathbb{Z}/n\mathbb{Z}$:

$$r = (y_p \cdot p \cdot m_q + y_q \cdot q \cdot m_p) \mod n$$

$$-r = n - r$$

$$s = (y_p \cdot p \cdot m_q - y_q \cdot q \cdot m_p) \mod n$$

$$-s = n - s$$

Dla naszego przykładu pierwiastki tego równania przyjmują wartości $m \in \{64, 20, 13, 57\}$. Wśród nich jest zakodowana wiadomość m = 20.

1.7 Zadanie 7.

Treść: Wykazać, że wielomian x^2+1 jest nierozkładalny w pierścieniu wielomianów GF(3)[x], a jest rozkładalny w pierścieniu wielomianów GF(2)[x].

Rozwiązanie: Wielomian drugiego stopnia można rozłożyć za pomocą dwóch wielomianów pierwszego stopnia, więc:

$$x^{2} + 1 = (ax + b) * (cx + d)$$

 $x^{2} + 1 = (ac)x^{2} + (ad + bc)x + bd$

Dla ciała GF(3)[x] mamy: $a,b,c,d \in \{0,1,2\}$. Aby otrzymać wielomian x^2+1 , muszą być spełnione warunki: $ac \equiv 1 \mod 3$, $bd \equiv 1 \mod 3$. Zatem a=b=c=d=1, co daje wielomian x^2+2x+1 , a nie x^2+1 .

Dla ciała $GF(2)[x],\ b,d\in\{0,1\}$ oraz $a,c\in\{1\}.$ Jeżeli $(b+d)\equiv 0\mod 2\Rightarrow (b=0\land d=0)\lor (b=1\land d=1).$ Dla drugiego przypadku otrzymujemy w GF(2)[x]:

$$x^2 + 1 \equiv (x+1) * (x+1)$$

Zatem wielomian jest rozkładalny.

1.8 Zadanie 8.

Treść: Wykazać, że w grupie skończonej dla każdego $a \in G$ mamy: $a^{rzG} = 1$, gdzie rzG oznacza rząd grupy G. Wykazać, wykorzystując ten fakt, twierdzenie Eulera. (Wskazówka: wykorzystać twierdzenie Lagrange'a: dla grup skończonych rząd podgrupy jest dzielnikiem rzędu grupy).

Rozwiązanie: W ciągu $a^1, a^2, \cdots, a^{rzG}, a^{rzG+1}$ muszą być dwa elementy równe, tzn. dla pewnych $k', k'' \in [1, rzG+1], k' < k''$ musimy mieć $a^{k'} = a^{k''}$. Zatem $a^{k''-k'} = 1$. Istnieje więc takie $k \in [1, rzG](k = k'' - k')$, że $a^k = 1$. Niech r będzie najmniejszym takim k, że $a^k = 1$, wówczas zbiór $H = \left\{a^1, a^2, \cdots, a^r\right\}$ stanowi podgrupę cykliczną rzędu r grupy G. Ponieważ, z twierdzenia Lagrange'a, r jest dzielnikiem rzędu grupy G, więc również $a^{rzG} = 1$.

Twierdzenie Eulera: jeśli $n \in \mathbb{N}, n \geqslant 2$ i $a \in \mathbb{N}$ oraz NWD(a,n)=1 to $a^{\phi(n)}\equiv 1 \mod n$, gdzie ϕ jest funkcją Eulera. Rozważmy grupę multiplikatywną Z_n^* . Grupa Z_n^* ma rząd równy $\phi(n)$. Zatem korzystając z $a^{rzG}=1$ dostajemy, że dla każdego $a \in Z_n^*$ mamy $a^{\phi(n)}\equiv 1 \mod n$. Warunek $a \in Z_n^*$ jest równoznaczny warunkowi NWD(a,n)=1. Zatem twierdzenie Eulera jest prostym wnioskiem z ogólnego twierdzenia teoriogrupowego $a^{rzG}=1$.

1.9 Zadanie 9.

Treść: Mamy zapis RNS z modułami $m_1=5$, $m_2=7$, $m_3=11$, $m_4=13$, za pomocą którego zapisujemy liczby całkowite ze zbioru $[0,m_1\cdot m_2\cdot m_3\cdot m_4-1]$. Dodać i pomnożyć dwie liczby a=(3,5,9,11) oraz b=(1,3,7,9) stosując typowy dla RNS algorytm. Czy uzyskane wyniki są poprawne?

Rozwiązanie: W RNS można wykonywać operację mnożenia i dodawania według poniższego algorytmu, dla każdego elementu z bazy:

$$\forall i \in M \quad a_i \pm b_i \mod m_i$$
$$\forall i \in M \quad a_i \cdot b_i \mod m_i$$

Zatem:

$$(a+b) = (3+1 \bmod 5, 5+3 \bmod 7, \\ 9+7 \bmod 11, 11+9 \bmod 13) = \\ = (4,1,5,7)$$
$$(a \cdot b) = (3 \cdot 1 \bmod 5, 5 \cdot 3 \bmod 7, \\ 9 \cdot 7 \bmod 11, 11 \cdot 9 \bmod 13) = \\ = (3,1,8,8)$$

Aby sprawdzić poprawność tego rozwiązania, musimy wyznaczyć liczby a oraz b. Zapis RNS przedstawia liczby w postaci układu kongruencji w modulo bazy, a więc:

$$\begin{array}{rcl} a & \equiv & 3 \mod 5 \\ a & \equiv & 5 \mod 7 \\ a & \equiv & 9 \mod 11 \\ a & \equiv & 11 \mod 13 \end{array}$$

Układ ten można sprowadzić do $a \equiv -2 \mod 5005$. Analogicznie dla b:

$$\begin{array}{cccc} b & \equiv & 1 \mod 5 \\ b & \equiv & 3 \mod 7 \\ b & \equiv & 7 \mod 11 \\ b & \equiv & 9 \mod 13 \end{array}$$

Układ ten można sprowadzić do $b \equiv -4 \mod 5005.$ Wyznaczmy sumę a+b.

$$a+b \equiv -6 \mod 5005$$

Wyznaczmy iloczyn $a \cdot b$.

$$a*b \equiv 8 \mod 5005$$

Teraz sprawdźmy poprawność wyników uzyskanych przez algorytmy dodawania i mnożenia w RNS. Dodawanie:

$$\begin{array}{cccc} -6 & \equiv & 4 \mod 5 \\ -6 & \equiv & 1 \mod 7 \\ -6 & \equiv & 5 \mod 11 \\ -6 & \equiv & 7 \mod 13 \end{array}$$

Czyli uzyskaliśmy te same współczynniki. Teraz sprawdzamy poprawność mnożenia:

$$8 \equiv 3 \mod 5 \\
8 \equiv 1 \mod 7 \\
8 \equiv 8 \mod 11 \\
8 \equiv 8 \mod 13$$

Czyli wykorzystane algorytmy dodawania i mnożenia dały poprawne rezultaty.

1.10 Zadanie 10.

Treść: Załóżmy, że mamy dwie niezależne zmienne losowe X_1 oraz X_2 o wartościach w zbiorze $Z_2 = \{0,1\}$. Wykazać, że jeśli X_1 ma rozkład równomierny, to również $X_1 \oplus X_2$ ma rozkład równomierny. Ten fakt jest podstawą protokołu o nazwie "rzut monetą przez telefon".

Rozwiązanie: Najpierw wykażemy, że odwzorowanie $Y = X_1 \otimes X_2$ jest zmienną losową. Ogólnie rzecz biorąc, jeśli (Ω,\mathfrak{M}) jest przestrzenią mierzalną, $(E_t,\mathfrak{F}_t)_{t\in T}$ jest dowolną rodziną przestrzeni mierzalnych, a odwzorowania $f_t:\Omega\to E_t$ są $(\mathfrak{M},\mathfrak{F}_t)$ mierzalne dla każdego $t\in T$ to odwzorowanie $\underset{t\in T}{P}f_t:\Omega\to\underset{t\in T}{P}E_t$ jest $(\mathfrak{M},\underset{t\in T}{P}\mathfrak{F}_t)$ mierzalne. Stosując ten ogólny fakt do naszej sytuacji stwierdzamy, że odwzorowanie (X_1,X_2) jest $(\mathfrak{M},2^{\{0,1\}}\otimes 2^{\{0,1\}})$ mierzalne. Odwzorowanie $S:\{0,1\}\times\{0,1\}\ni (x_1,x_2)\to x_1\oplus x_2\in\{0,1\}$ jest oczywiście $(2^{\{0,1\}}\otimes 2^{\{0,1\}},2^{\{0,1\}})$ mierzalne, zatem $Y=X_1\oplus X_2$ jako superpozycja odwzorowań mierzalnych (X_1,X_2) i S jest $(\mathfrak{M},2^{\{0,1\}})$ mierzalne, jest więc zmienną losową.

Udowodnimy teraz równomierność rozkładu zmiennej losowej $Y=X_1\oplus X_2$. Oznaczmy:

$$\begin{array}{lcl} A_0 & = & \left\{\omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 0\right\}, \\ A_1 & = & \left\{\omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 0\right\}, \\ B_0 & = & \left\{\omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 1\right\}, \\ B_1 & = & \left\{\omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 1\right\}. \end{array}$$

Wówczas zdarzenia A_0 , A_1 , B_0 , B_1 są parami rozłączne. Stąd i z niezależności zmiennych losowych X_1 i X_2 oznaczając $P(X_1=0)=p_0$, $P(X_1=1)=p_1$ dostajemy:

$$P(Y = 1) = P(A_1 \cup B_1) = P(A_1) + P(B_1) =$$

$$= P(X_1 = 1) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 0) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

ponieważ $p_0 + p_1 = 1$. Podobnie:

$$P(Y = 0) = P(A_0 \cup B_0) = P(A_0) + P(B_0) =$$

$$= P(X_1 = 0) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 1) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

a więc istotnie zmienna losowa $Y = X_1 \oplus X_2$ ma rozkład równomierny.

2 Zadania przygotowujące do kolokwium #2 z PTKB

2.1 Zadanie 2.

Treść: Ile razy trzeba wykonać protokoł uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-100} .

Rozwiązanie: Patrz 1.1

2.2 Zadanie 3.

Treść: Pokazać jak musi spreparować protokół Fiata-Shamira Prover nie znający tajemnicy (a wieęc oszust lub zapominalski) by zawsze na wyzwanie e=1 odpowiadać prawidłowo.

Rozwiązanie:

- 1. Porver nie znający tajemnicy s prawdziwego Provera (czyli nie znający klucza prywatnego) losuje liczbę $r \in Z_n, r \neq 0, 1$. Podnosi do kwadratu modulo n (przypominamy, że n = pq, gdzie p, q są różnymi liczbami pierwszymi) i przesyła w pierwszym kroku protokołu do Verifiera liczbę $x = (r^2(modn)(s^2(modn))^{-1})(modn)$, gdzie $s \in Z_n$ jest tajemnicą (kluczem prywatnym) prawdziwego Provera, $s^2(modn) \in Z$, kluczem publicznym a odwrotność jest n brana w pierścieniu Z_n .
- 2. Jeśli Verifier żąda w drugim kroku protokołu odpowiedzi na pytanie e=1 to Prover wysyła do Verifiera liczbę y=r
- 3. Verifier sprawdza teraz równanie weryfikacyjne sprawdzając czy:

$$y^2(modn) = (x * s^2)(modn)$$

Równanie to jest dla y=r i $x=(r^2(modn)(s^2(modn))^{-1})(modn)$ Proverowi udało się dobrze odpowiedzieć na pytanie e=1 Verifiera.

2.3 Zadanie 11.

Treść: Niech $GF(2^k)[x]$ będzie pierścieniem wielomianów o współczynnikach w ciele $GF(2^k)$. Wykazać, że dla każdego wielomianu x^n (gdzie $n \in \mathbb{N}$) z pierścienia $GF(2^k)[x]$ mamy:

$$x^n(\operatorname{mod}(x^4+1)) = x^{n(\operatorname{mod}4)}$$

Rozwiązanie: 1. W ciele $Z_2 = \{0, 1\}$ dodawanie jest zwykłą sumą modulo 2 (oznaczaną symbolem \oplus). Również odejmowanie w Z_2 jest sumą modulo 2, bo mamy $1 \oplus 1 = 0$ i $0 \oplus 0 = 0$, więc -a = a dla

 $a \in \mathbb{Z}_2$ oraz $a -_2 b = a \oplus b$ dla $a, b \in \mathbb{Z}_2$, gdzie $-_2$ jest odejmowaniem modulo 2 w \mathbb{Z}_2 .

2. W ciele $GF(2^k)$, którego elementami są słowa binarne o długości k, definiujemy działanie dodawania standardowo jako sumę wielomianów. W naszej sytuacji jest to jednocześnie suma modulo 2 po współrzędnych, tzn. jeśli $a=(a_1,a_2,\cdots,a_k)\in GF(2^k)$, gdzie $a_i\in\{0,1\}$ oraz $b=(b_1,b_2,\cdots,b_k)\in GF(2^k)$, gdzie $b_i\in\{0,1\}$ to:

$$a+b=(a_1\oplus b_1,a_2\oplus b_2,\cdots,a_k\oplus b_k)$$

oraz:

$$a -_2 b = (a_1 -_2 b_1, a_2 -_2 b_2, \cdots, a_k -_2 b_k) =$$

= $(a_1 \oplus b_1, a_2 \oplus b_2, \cdots, a_k \oplus b_k)$

Dla n<4 wzór jest zawsze prawdziwy (przypadek trywialny). Dla $n\geqslant 4$ istnieje takie $q\in\mathbb{N}$, że $n=q\cdot 4+r$ i $0\leqslant r<4$, gdzie r=n(mod4). Zauważmy jak przebiega dzielenie wielomianu x^n dla $n\geqslant 4$. Uwzględniając, że w ciele modulo 2 operacje dodawania i odejmowania są tożsame, mamy:

z czego wynika, że $x^n (\text{mod}(x^4 + 1)) = x^{n (\text{mod}4)}$.

2.4 Zadanie 33.

Treść: Obliczyć wartość symbolu Legendre'a: a) $\left(\frac{35}{7}\right)$ b) $\left(\frac{64}{5}\right)$

Rozwiązanie:

1. $(\frac{35}{7}) = (\frac{5}{7})(\frac{7}{7}) = 0$

2. $(\frac{64}{5}) = (\frac{4}{5}) = (\frac{2 \cdot 2}{5}) = 1$

Symbol Legendre'a to funkcja $\left(\frac{a}{p}\right)$ (p musi być liczbą pierwszą większą od 2) zwracająca: 0, jeśli a jest wielokrotnością p 1, jeśli istnieje takie b, że $b^2=a \mod p$

-1, jeśli nie istnieje żadne b, żeby $b^2 = a \mod p$

2.5 Zadanie 10.

Rozwiązanie: Patrz 1.10