Quantum NAS DS4QISKIT 1조

Quantum Neural Network

Quantum Convolutional Neural Network

Quantum Convolutional Neural Network

Parameterized quantum circuits used in the convolutional layer.

Hur, Tak, Leeseok Kim, and Daniel K. Park. "Quantum convolutional neural network for classical data classification." *Quantum Machine Intelligence* 4.1 (2022): 1-18.

Can we search the "best circuit architecture"?

Heuristic Search

Metric-based Entanglement & Expressibility

DL/RL

Neural Architecture Search(NAS)

Fundamental Concept of RNN-controller based NAS (2016, Zoph et al.)

Zoph, Barret, and Quoc V. Le. "Neural architecture search with reinforcement learning." arXiv preprint arXiv:1611.01578 (2016).

NAS algorithm can give 'accuracy score & loss' of configured model as a 'reward' to RNN controller, to perform reinforcement learning.

Updated RNN Network returns
Configuration of CNN Network that
performs classification task.

(Example for CNN-NAS)

- 1. RNN Network > Return [2,4,4]
- 2. Configure CNN Network with 3 layers with filter number [2,4,4]
- 3. Train & assess accuracy of configured CNN Network
- > Return loss 0.042 & accuracy 0.976
- 4. Update RNN Network via Reinforcement Learning

Proposed QNN-NAS Architecture

Configurable QNN

Controller LSTM

Overall Architecture

Trained via Classical optimization COBYLA

LSTM QNN Child Network Controller

Reward

Trained via Reinforcement Learning

Backend simulator with Qiskit

Plugin with **V** Pennylane

QNN Architecture Configuration

Reinforcement Learning on OpyTorch

QNN Configuration & Accuracy (Without NAS)

QNN Configuration & Accuracy (Without NAS)

Fails to converge with COBYLA optimization

Validation loss (= 1-accuracy) of various QNN circuits.

QNN Configuration & Accuracy (Without NAS)

Fails to converge with COBYLA optimization but shows consistency on test dataset

Configuration	Best valid loss	Test loss	# of params
HCXY HXCY	0.172	0.311	4
HCXCZ HXCZC	0.16	0.1955	4
HCCCC HXXZZ	0.176	0.349	4
HCXCXCZCZ HXCXCZCZC	0.18	0.267	8
XZXCXZ XZCZXZ	0.208	0.2125	10
YCYX YXYC	0.302	0.42	8
XZZCXZ XZCZXZ	0.18	0.2785	10
HCXXC HXCCX	0.172	0.3425	4

QCNN Configuration & Accuracy (Without NAS)

Fails to converge with COBYLA optimization

Convolution circuit config CXCYCZ

ZCYCXC

CXCYCZZCYCXC

Minimum validation loss: 0.225

Test loss: 0.291

Convolution circuit config

XZZC

XZCZ

Validation loss = 1-accuracy)

of various QCNN circuits.

Minimum validation loss: 0.183

Test loss: 0.247

QCNN Configuration & Accuracy (Without NAS)

Fails to converge with COBYLA optimization but shows consistency on test dataset

Our observation

1. Length of configuration matters (Too short configuration shows poor performance)

4-length configuration takes half training time compared with 5-length configuration

- 2. Entanglement(like CX- XC) matters
- 3. These symmetric circuits are quite preforming well(60~80% accuracy), but overfitting exists

"Let's find the best architecture in constrained-length (5) architecture space!"

Fixed Length(5) architecture

Only select elements (C, H, X, Y, Z) with LSTM

[HXYZX] [HCCXC]

Total 10 selections

QNN Configuration & Accuracy (With NAS)

Evolution of quantum neural network architecture


```
Agent = Controller()
config = []
for 10 iterations:
    input = Agent.lstm(input, hidden state)
    output = Agent.linear(input)
    config.append(output.argmax())
Model = QNN(config)
for 50 iterations:
    param = Model.train(param)
    valid_loss = Model.eval(param)
    if best:
        best_param = param
reward = Model.test(best_param)
controller_loss = Agent.update(reward)
```

QNN Configuration & Accuracy (With NAS)

Evolution of quantum neural network architecture But failed to converge...

Epoch	wire1	wire2	accuracy
1	YYCZY	CCYYX	0.161167
2	HYZHZ	CYYHZ	0.539167
3	HZZHX	XXXCH	0.659833
4	ZCXZY	CXZYC	0.179667
5	XCYYY	HXCHC	0.710333
6	XYCXX	XXXCZ	0.257
7	XYCYY	YYHCH	0.345167
8	XXZXX	XXYZH	0.282667
9	YXCYY	ZYYYY	0.3785
10	XXYCH	CYYXC	0.176167
11	YCCYX	XYYHZ	0.365833
12	XXXZX	YXHCY	0.201167

13	XZYHY	ZHYXC	0.195667
14	XZCZY	CYZYZ	0.172833
15	XXXCC	CXZHY	0.1775
16	ZCCZZ	HCHYZ	0.7435
17	HXCHZ	CZYYC	0.542833
18	CXHYX	YXYYC	0.187333
19	YXXXC	ZCCYY	0.3495
20	XZHYX	YYYHC	0.4995
21	XHYCX	YYCHC	0.546333
22	XXHXH	ZYCHC	0.168
23	HCXHZ	YHXXC	0.712167
24	XHYZY	YZHCY	0.509833
25	XYCXZ	CHXYX	0.174167

Challenges & Future plans

Current Challenges

- 1. AER simulator(about 1 hr/epoch, total 1day training for 25 epoch)
 - Not available at real NISQ device
- 1. Robustness problem : QNN does not converge
- 2. Robustness problem: LSTM policy reward does not converge
- 3. Searching on fixed space (5⁵ dimension)
 - Autoregressive RNN : pennylane plugin does not support variable parameter inputs

2022 양자정보경진대회 **Further study** \equiv 행사개요 공지사항 지정주제 ENG 1. COBYLA optimization rho hyperparameter tuning 공모분야 2. Search for another robust classical optimizers QNN to QCNN 분야 주요 내용 제출 서류 Technical Challenge (도전형, 지정주제) 멘토가 지정한 주제 참가신청서, 개인정보이용동의서 Creative Challenge (창의형, 자유주제) 참가자(팀)별 자유 주제

Appendix

Generalizable convolution layer configuration

