

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

### Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

### **About Google Book Search**

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

# General Library ——of—— UNIVERSITY OF MICHIGAN. ————

The Publishess
16 June 1897

775 . A 171ab









REDUCTION CO.



aluminum congrang, amonia

# The Pittsburgh Reduction Go.

MANUFACTURERS OF

# «ALUMINUM»

UNDER THE PATENTS OF CHARLES M. HALL.

### **ALUMINUM AND ALUMINUM ALLOYS**

N THE FORM OF

INGOTS, CASTINGS, BARS, PLATES, SHEETS, TUBES, WIRE AND ALL FORMS OF STRUCTURAL SHAPES.

ALFRED E. HUNT, President. GEO. H. CLAPP, Secretary.

CABLE ADDRESS:—"REDUCTION PITTSBURGH,"
USE A. B. C. CODE (FOURTH EDITION), OR A I CODE, OR LIEBER'S CABLE CODE.

### BRANCH OFFICE:

701 Ferguson Building, No. 319 Third Avenue, PITTSBURGH, PA.

New York Store, 10 & 11 Havemeyer Building, No. 26 Cortlandt Street,
Philadelphia Store, 360 Builitt Building, No. 133 South Fourth Street,
Chicago Store, Nos. 156 and 158 Lake Street.

### WORKS:

NEW KENSINGTON, WESTMORELAND COUNTY, PA.
NIAGARA FALLS, NIAGARA COUNTY, N. Y.

U. S. A.

1897.

THE MYERS & SHINKLE COMPANY, PRINTERS AND STATIONERS, 523 WOOD STREET, PITTSBURGH, PA.



### CONTENTS.

### PART I.

| Data with Never ence to Aluminum.                                           |        |
|-----------------------------------------------------------------------------|--------|
| INGOTS:                                                                     | PAGE.  |
| Shape of ordinary Ingots furnished by The Pittsburgh Re-                    |        |
| duction Company                                                             | 2      |
| Standard Re-melting Ingots                                                  | 3      |
| Hollow Tube Ingots                                                          | 3      |
| ACKNOWLEDGMENTS                                                             | 4      |
| Purity, Composition, Etc.:                                                  |        |
| General Characteristics                                                     | 5      |
| Composition and Forms of Aluminum as sold by The Pitts-                     |        |
| burgh Reduction Company                                                     | 7      |
| No. 1 grade                                                                 | 7      |
| Extra Pure Aluminum                                                         | 7      |
| No. 2 grade                                                                 | 7      |
| Rolling Ingots                                                              |        |
| Rolling Slabs                                                               | 7<br>8 |
| Aluminum Ingots for Re-melting                                              | 8      |
| Aluminum Bronze Powder                                                      | 9      |
| Data on Varnish for Aluminum Bronze Powder                                  | ģ      |
| Properties of Aluminum                                                      |        |
| Including Data Regarding some of the Properties Other Metals for Reference. | of     |
| Solubility                                                                  | 10     |
| Galvanic Action                                                             | 11     |
| Position in Electro-Chemical Series                                         | 12     |
| Melting Point of Aluminum                                                   | 13     |
| Melting Points of Various Substances                                        | 13-16  |
| PHYSICAL PROPERTIES OF METALS:                                              | Ü      |
| Physical Properties of Metals                                               | 17-18  |
| Latent Heat of Fusion                                                       | 19     |
| Comparative Specific Heats                                                  | 20     |
| Specific Heats and Combining Numbers                                        | 21     |
| Specific Heats of Metals                                                    | 22     |
| Linear Expansion                                                            | 23     |
| Co-efficients of Linear Expansion                                           |        |
| Characteristics of Metals                                                   | 25     |
| Conduction of Heat                                                          | 25     |
| Relative Thermal Conductivity                                               | 25     |
| ELECTRICAL PROPERTIES OF METALS:                                            | ,      |
| Electrical Conductivity of Aluminum                                         | 26-27  |
| Relative Electrical Conductivity                                            |        |
| IMPURITIES                                                                  |        |
| HARDNESS AND ELASTICITY.                                                    |        |
| Order of Ductility of Metals                                                |        |
| Order of Malleability of Metals                                             |        |
|                                                                             |        |
| Malleability                                                                | . 31   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAGE.   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Sonorousness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31      |
| SPECIFIC GRAVITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| Specific Gravity of Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32-33   |
| Nickel Aluminum Alloy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34      |
| Specific Gravity and Selling Price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35      |
| Specific Gravity and Unit Weights of Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26_25   |
| Specific Gravity of Liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30-37   |
| Specific Gravity and Weight of Wood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38      |
| Specific Gravity of Differ't Kinds of Wood, Water being Unity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39      |
| Weight of a Cubic Foot of Various Substances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40-41   |
| Specific Gravity and Weights of Liquids—Rain Water 1000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42      |
| Specific Gravity and Weights of Elastic Fluids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43      |
| Comparative Weights of Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44      |
| STRENGTH AND ELASTICITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| Strength of Pure Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45-46   |
| Strength of Nickel-Aluminum Alloy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46-47   |
| Moduli of Elasticity—Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48      |
| Ultimate Resistance to Tension—Metals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40      |
| Ultimate Resistance to Tension Timber and Other Files                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| Ultimate Resistance to Tension—Timber and Other Fiber Ultimate Resistance to Tension—Stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 49      |
| Ultimate Resistance to Tension—Stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50      |
| Ultimate Resistance to Compression—Metals Ultimate Resistance to Compression—Timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50      |
| Ultimate Resistance to Compression—Timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50      |
| Ultimate Resistance to Compression—Stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50      |
| Moduli of Elasticity—Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51      |
| Shearing and Bearing Value of Aluminum Rivets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52-53   |
| Ultimate Resistance to Shearing—Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54      |
| Ultimate Resistance to Shearing—Timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54      |
| ALUMINUM FOR STRUCTURAL PURPOSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 A 5 6 |
| STRENGTH OF GOLD ALLOYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56      |
| Methods of Working Aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Melting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57      |
| Shrinkage of Castings of Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57-58   |
| Casting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 58-59   |
| Annealing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59-60   |
| Rolling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ر<br>ا  |
| Rolled Aluminum Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60      |
| Drop Forgings of Aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61      |
| Squirted Aluminum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61      |
| Polishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Polishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01-0    |
| Scratch Brushing and Sand Blasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63-64   |
| Dipping and Frosting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64      |
| Burnishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64      |
| Lubricant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64      |
| Tooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64-65   |
| Speed Used for Spinning or Buffing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6       |
| Welding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6       |
| Soldering Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65-66   |
| Plating Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66-6    |
| General Remarks Upon Alloys.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 57   |
| to the contract of the contrac | _       |
| Remarks on Alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.      |

PAGE.

| Commercial Metals                              | 68    |
|------------------------------------------------|-------|
| Costly and Precious Metals                     | 68    |
| Rare Metals                                    | 68    |
| ALUMINUM ALLOYS:                               |       |
| Aluminum and the Rare and Costly Metals        | 68-70 |
| Aluminum and Other Metals                      | 70    |
| Aluminum and Tin                               | 70-71 |
| Aluminum and Chromium                          | 71    |
| Aluminum and Titanium                          | 71    |
| Aluminum and Tungsten                          | 71    |
| Aluminum and Nickel                            | 71-72 |
| Aluminum and Cobalt                            | 72    |
| Aluminum and Gold                              | 72    |
| Aluminum with the Metalloids                   | 72    |
| Aluminum with the Alkali Metals                | 73    |
| Aluminum and Molybdenum.                       | 73    |
| Aluminum and Tellurium                         | 73    |
| Aluminum and Arsenic                           | 73    |
| Aluminum and Silver                            | 73    |
| Aluminum and Mercury.                          |       |
| Aluminum and Magnesium                         | 74    |
| Aluminum and Manganese                         | 74    |
| Aluminum and Uranium                           | 74    |
|                                                | 74    |
| Aluminum and Cadmium                           | 74    |
| Aluminum and Bismuth                           | 74    |
| Aluminum and Vanadium                          | 75    |
| Aluminum and Indium                            | 75    |
| Aluminum and Antimony                          | 75    |
| Aluminum and Lead                              | 75    |
| Aluminum and Zinc                              | 75    |
| Aluminized Zinc                                | 75-76 |
| Use of Aluminized Zinc in the Galvanizing Bath | 76-77 |
| Brasses                                        | 77    |
| Properties of Copper-Zinc Alloys in Casting    | 78    |
| Aluminum Brass                                 | 78-8o |
| Uses of Brass                                  | 80    |
| Analyses of Metals                             | 80    |
| Bronzes                                        | 81    |
| Properties of Copper-Tin Alloys in Casting     | 82    |
| THE KALCHOIDS                                  | 82    |
| Copper-Tin-Zinc Alloys                         | 82-83 |
| Useful Alloys:                                 | _     |
| German Silver                                  | 83    |
| Copper Alloys                                  | 84    |
| Copper-Nickel                                  | .85   |
| Tin Alloys                                     | 85    |
| Tin AlloysLead Alloys                          | 86    |
| Zinc Alloys,                                   | 86    |
| Zinc Alloys                                    | 86    |
| Alloys for Coinage                             | 86    |
|                                                |       |

| Metals Manufactured by the Use of Aluminu                                                                | m.      |
|----------------------------------------------------------------------------------------------------------|---------|
| Aluminum Bronze                                                                                          | 87-88   |
| Aluminum Alloys with Small Percentages of Copper                                                         | 88-80   |
| Manufacture of Aluminum Bronze                                                                           | 89-91   |
| Nickel Bronze                                                                                            |         |
| Aluminum Bearing Metal                                                                                   |         |
| Aluminum and Iron                                                                                        |         |
| ALUMINUM IN STEEL                                                                                        |         |
| FERRO-ALUMINUM                                                                                           | 98      |
| ALUMINUM IN CAST IRON.                                                                                   | 99      |
| ALUMINUM IN WROUGHT IRON.                                                                                |         |
|                                                                                                          | 95      |
| PART II.                                                                                                 |         |
| Gauges, Tables, Etc.                                                                                     | 100     |
| Comparison of Wire and Sheet-Metal Gauges (table)                                                        | 101     |
| Master Mechanics' Standard Gauge (table)                                                                 | 101     |
| WEIGHTS OF ALUMINUM, WRO'T IRON, STEEL, COPPER, BRASS.                                                   | Free    |
| Weight of Aluminum, Wrought Iron, Steel. Copper and                                                      | , Etc.  |
| Brass Plates (table)                                                                                     |         |
| Weight of Sheet and Bar Alum.; also Brass and Steel (table)                                              | 103     |
| Relation in Weight of Rolled Plates—Aluminum and                                                         | 104     |
| Copper (table)                                                                                           |         |
| Weight of Zinc Sheets of Standard Dimensions (table)                                                     | 105     |
| Relation in Weight, Aluminum and Tin Plates (table)                                                      | 105     |
| Weight of Sheet Metals, Kilos per Square Metre (table)                                                   |         |
| Weight of Flat Rolled Bars of Aluminum (table)                                                           | 107-111 |
| Weight of Flat Rolled Bars of Aluminum (table) Weight of Aluminum Bars, Areas and Circumferences (table) | 112-117 |
| Diameter and Weight of Aluminum and Copper Wire (table)                                                  |         |
| Weight of Aluminum, Wrought Iron, Steel, Copper and                                                      | 120     |
|                                                                                                          |         |
| Brass Wire (table)                                                                                       | 121     |
| Resistance of Pure Aluminum Wire (table)                                                                 |         |
| Resistance of Pure Copper Wire (table)                                                                   | 122     |
| SEAMLESS TUBING:                                                                                         | 123     |
| Standard Sizes of Seamless Tubing Kept in Stock (table)                                                  |         |
| Aluminum Pipe Sizes to correspond with Iron Tubes (table)                                                | 124     |
| Weight per Ft. of Aluminum Tubing, outside diameter (table)                                              | 125     |
| Safe Pressures on Aluminum Tubing (table)                                                                | 120-127 |
| RIVETS:                                                                                                  | 128-130 |
| Rivets and Burrs                                                                                         |         |
| Round Head Rivets Kept in Stock (table)                                                                  | 131     |
| Flat Head Rivets Kept in Stock (table)                                                                   | 131-132 |
| ANGLES:                                                                                                  | 133     |
|                                                                                                          |         |
| Thickness of Aluminum Angles                                                                             | 133     |
| Weight per Foot of Aluminum Angles (table) DECIMAL EQUIVALENTS:                                          | 134     |
| Decimal Parts of a Foot in Square Inches (table)                                                         | ,       |
| Dec'l Equivalents of 8ths, 16ths, 32ds, 64ths of an In. (table)                                          | 135     |
| Decimal Equivalents of an Inch for each $\frac{1}{64}$ (table)                                           | 136     |
| Decimal parts of a Foot for each $\frac{1}{64}$ of an Inch (table)                                       | 137     |
|                                                                                                          |         |

| Contents.                                                   | VII     |
|-------------------------------------------------------------|---------|
| MENSURATION:                                                | PAGE.   |
| Length                                                      | 142     |
| Area                                                        | 142-143 |
| Solid Contents                                              | 143     |
| Prismoidal Formula.                                         | 143     |
| AREAS, CIRCUMFERENCES AND CONTENTS OF SPHERES:              |         |
| Areas of Flat Rolled Bars (table)                           | 144-149 |
| Areas and Circumf's of Circles, Advancing by Inches (table) | 150-154 |
| Areas and Circumf's of Circles, Advancing by Tenths (table) | 155-164 |
| Contents of Spheres (table)                                 | 164     |
| ELECTRICAL UNITS:                                           | •       |
| The Ohm                                                     | 165     |
| Powers and Roots:                                           | ·       |
| Squares, Cubes, Square and Cube Roots of Fractions (table)  | 166-167 |
| Squares, Cubes, Square and Cube Roots, 4th and 5th          | •       |
| Powers of Numbers (table)                                   | 168-171 |
| METRIC WEIGHTS AND MEASURES:                                |         |
| Metric and English Systems of Measures, and their Rela-     |         |
| tions to One Another                                        | 172-173 |
| The Metric System of Weights and Measures (table)           | 174-176 |
| Inches and Fractions and their Equivalents in Millimetres   | -/4 -/- |
| (table)                                                     | 177     |
| Millimetres Reduced to Inches and Decimals of an Inch       | 178-182 |
| Feet and their Equivalents in Metres                        | 183     |
| Metres and their Equivalents in Feet and Inches (table)     | 184     |
| Metric Weights and English Equivalents (table)              | 185     |
| Equivalent Square Measure (table)                           | 186     |
| Equivalent Cubic Measure (table)                            | 187     |
| Pounds per Square Inch, with Equivalent Kilos per Square    | /       |
| Centimetre (table)                                          | 188     |
| Centimetre (table)                                          |         |
| Inch (table)                                                | 189     |
| Tables for Converting U. S. Weights and Measures            | 190-193 |
| Metric Conversion Tables, Latimer Clark                     | 194-200 |
| Metric Conversion Tables, Nelson Foley:                     | - 94    |
| Lineal                                                      | 201     |
| Square                                                      | 201     |
| Cube and Capacity                                           | 202     |
| Weight                                                      | 203-204 |
| Pressure and Stress                                         | 205     |
| Useful Equations                                            | 206-207 |
| Velocity and Speed                                          | 207-208 |
| Heat Intensity                                              | 208     |
| Kilogrammes and English Equivalents:                        |         |
| Ounces or Fractions of a Pound to Kilos                     | 209     |
| Kilogrammes to Pounds Avoirdupois                           | 209     |
| Fractions of Kilos to Pounds Avoirdupois                    | 209     |
| ENGLISH WEIGHTS AND MEASURES:                               | -39     |
| Avoirdupois or Ordinary Weight                              | 210     |
| Long Measure                                                | 210     |
| Saucre Measure                                              | 210     |

|                                                            | PAGE    |
|------------------------------------------------------------|---------|
| Nautical Measure                                           | 210     |
| Cubic or Solid Measure                                     | 211     |
| Dry Measure                                                | 211     |
| Measures of Weights (table)                                | 212     |
| Unit Equivalents for Electric Heating Problems,            | 213     |
| HEAT:                                                      |         |
| Heat Units                                                 | 214-218 |
| Specific Heat                                              | 218     |
| Heat Unit Table                                            | 210     |
| USEFUL INFORMATION:                                        |         |
| Steam                                                      | 220-221 |
| Water                                                      |         |
| Weight and Capacity of Different Standard Gallons of Water | . 222   |
| Weight and Comparative Fuel Value of Wood                  | 222-223 |
| Duty of Steam Engines                                      | 223     |
| The Horse Power of Boilers                                 | 224-225 |
| THERMOMETRIC SCALES:                                       |         |
| Table of Centigrade and Fahrenheit Degrees                 | 226     |
| Relation of Thermometric Scales                            | 226     |
| FUELS:                                                     |         |
| Comparative Fuel Value of Coal, Oil and Gas                | 227     |
| One Pound of Bituminous Coal Oxidized with Perfect         | ,       |
| Efficiency                                                 | 227     |
| One Pound of Water Evaporated at 212° Fahrenheit           | 227     |
| F. W. CLARK'S LIST OF THE ATOMIC WEIGHTS OF THE 74         | ,       |
| KNOWN AND RECOGNIZED ELEMENTS                              | 228-220 |
| COINAGE AND RELATIVE VALUES:                               | ,       |
| Tables of the World's Money Units:                         |         |
| Single Gold Standard Countries                             | 230     |
| Single Silver Standard Countries                           | 231     |
| Double Standard Countries                                  | 232     |
| U. S. Post-Office Regulations:                             | -3-     |
| Rates of Postage, Domestic                                 | 233     |
| Money Orders, Domestic                                     | 233     |
| Registration, Domestic.                                    | 233     |
| Foreign Postage                                            | 233     |
| COINAGE AND RELATIVE VALUES:                               | -33     |
| Values of Foreign Coins, U. S. Treasury Circular           | 234-236 |
| Descriptive Table of U. S. Coins in Use December, 1896,    | 237     |
| Table of Comparative Value per Pound and per Kılogramme    | 238-230 |
| Table Illustrating the Monetary System of the U. S         | 240     |
| Fineness of Coins                                          | 241     |
| U. S. Values of Marks and Francs                           | 241     |
| CUSTOMS DUTIES ON ALUMINUM IN VARIOUS COUNTRIES,           | -4-     |
| MAY, 1896:                                                 |         |
| United States                                              | 242     |
| France                                                     |         |
| Germany                                                    | 243     |
| Holland                                                    | 244     |
| Relainm                                                    | 244     |

# Aluminum



The
Pittsburgh Reduction
Company







### EDITED BY ALFRED E. HUNT, S. B.

### PRICE, \$1.50.

### ACKNOWLEDGMENTS:

### REFERENCES HAVE BEEN MADE AND EXTRACTS TAKEN BY PER-MISSION FROM THE FOLLOWING AUTHORITIES.

- "Pocket Companion" of the Carnegie Steel Co., Ltd , edited by F. H. Kindl, C. E.
- "Mechanical Engineers' Reference Book," by Nelson Foley, published by Crosby, Lockwood & Co., 7 Stationers Hall, London.
- "A Dictionary of Metric and Other Useful Measures," by Latimer Clark, published by E. & F. N. Spon, 25 Strand, London.
- "Alloys for Brasses and Bronzes," by Prof. R. H. Thurston, Cornell University, Ithaca, N. Y.
- "Introduction to the Study of Metallurgy," by Sir W. C. Roberts-Austen, published by Chas. Griffin & Co., London.
- "Gauges at a Glance," by Thomas Taylor, published by Dunsford & Son, South Castle Street, Liverpool, England.
- "Monetary Systems of the World," M. L. Muhleman, Deputy Assistant Treasurer of the United States.
- "Mechanical Engineers' Pocket Book," by Wm. Kent, C. E. published by John Wiley & Sons, New York.
- "Mechanics & Engineers' Pocket Book," by Chas. H. Haswell, published by Harper & Bro., New York.
- "Chemical Technology," Groves & Thorp, "Fuels," published by P. Blakiston, Son & Co., Philadelphia.
- The following pages of this Catalogue are quoted from the "Aluminium" Catalogue of the Aluminium Supply Co., of Manchester, England:
- Pages, 42, 43, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189.
- Valuable assistance has been rendered in the compiling of this Catalogue by the following officials of The Pittsburgh Reduction Co.:

  MR. GEORGE H. CLAPP, Secretary.

MR. ARTHUR V. DAVIS, Assistant General Manager.

MR. JAMES C. McGUIRE, New York Agent and Consulting Engineer.
MR. S. K. Colby, C. E.

## ALUMINUM.

The aluminum manufactured by The Pittsburgh Reduction Company is guaranteed to be equal in purity to the best metal in the market.

The metal is very ductile, and has frequently been subjected to the most severe tests with most satisfactory results. It can be rolled into sheets of .0007" thickness, and from this beaten into leaf, equal in quality to the best leaf manufactured in the world. It can also be drawn into tubes or wire and spun or stamped into different shapes. It is susceptible of a high degree of finish by polishing or burnishing. Aluminum like other metals becomes hard by working, but requires less annealing than copper or brass, but if required soft, as for stamping or spinning, it must be annealed after rolling. By forging and cold rolling it can be given considerable rigidity and temper.

The rigidity and temper of aluminum is considerably increased by the addition of a few per cent. of hardening ingredients. The metals commonly used for this purpose are nickel, copper, chromium, tungsten, manganese, tin, iron and zinc.

In plates and sheets these metals are added in amounts not to exceed five or six per cent., for greater percentages render these aluminum alloys non-malleable. The Pittsburgh Reduction Company sell hard plates, sheets and sections of tensile strength superior to that of brass under the trade name of "NICKEL ALUMINUM;" these "NICKEL ALUMINUM plates, sheets and sections having a composition of from two to five per cent. of nickel and copper, alloyed with pure aluminum, and with a specific gravity of about 2.75, are furnished either hot rolled and annealed for stamping and spinning, or medium hard rolled, or cold rolled and very stiff, as may be required. The same ingredients, nickel and copper, added in proportions of from seven to ten per cent., form the "NICKEL ALUMINUM CASTING ALLOYS," which are sold by The Pittsburgh Reduction Company for cast hollow ware and other castings, where some malleability together with great ductility and toughness are required.

This metal is easy to cast in either iron or sand moulds, has about the same shrinkage as brass, and has a specific gravity of from 2.80 to 2.85. The Pittsburgh Reduction Company sell under the name of "SPECIAL CASTING ALLOY," a metal containing over eighty per cent. of pure aluminum alloyed with zinc, copper, tin, manganese and iron, having a specific gravity of about 3.0. This alloy has a tensile strength about equal to that of brass, has no more shrinkage than brass, and can be as easily tooled or cast. If this "SPECIAL CASTING ALLOY" is found too brittle for any particular use, it can be toughened by re-melting and adding pure aluminum.

Special attention is given in the fabrication of aluminum alloys, by The Pittsburgh Reduction Company, to avoid oxidation, and to this end rich alloys are first made, to be afterwards reduced down to their proper percentages by re-melting with pure aluminum. These rich alloys are made in the electrical pots or furnaces at the same time that the aluminum is made, in this way more perfectly combining the metals than can possibly be done by melting them and mixing in crucibles where their varying melting points render the oxidation from over-heating very liable to occur.

Aluminum is the lightest of the commercial metals. A given bulk of it being only one-third as heavy as a corresponding bulk of iron.

# COMPOSITION AND FORMS OF THE ALUMINUM AS SOLD BY THE PITTSBURGH REDUCTION CO.

The purity of commercial aluminum varies from 98% to 99.75%. The Pittsburgh Reduction Co. sells its commercial aluminum in three grades.

THE No. 1 GRADE of aluminum has an analysis approximately as follows:

| Silicon, | -  |   | - | - | - | - | - | - | 0.30%    |
|----------|----|---|---|---|---|---|---|---|----------|
| Iron, -  |    | - | - | - | - | - | - |   | - 0.15%. |
| Aluminun | n. | _ |   |   |   | - | - |   | 00.55%   |

EXTRA PURE The Pittsburgh Reduction Company always have ALUMINUM. in stock, however, metal still purer than this, some running as high as 99.90% pure, which is sold for special uses at an added price.

THE No. 2 GRADE ordinarily runs quite uniform in composition, and has an analysis approximately as follows:

| Silicon, - | - | - | - | - | - | - | -   | 2%  |
|------------|---|---|---|---|---|---|-----|-----|
| Iron,      | - | - | - | - | - | - | -   | 2%  |
| Aluminum,  | - | - | - | - | - | - | - ( | 96% |

This metal, however, is not guaranteed to be over 94% pure.

There can occasionally be bought aluminum ingots made from scrap. It is evident, however, that if scrap ingots are made from aluminum or alloyed aluminum, whose composition is unknown to the makers of such ingots, that great risk is run of unknowingly using aluminum unfitted for the purpose.

For instance, for the steel trade, aluminum scrap ingots containing copper, nickel, zinc and tin, are manifestly injurious, while such scrap ingots might be safely used, if their composition is known, by brass manufacturers; and, on the other hand, aluminum having considerable silicon and iron in its composition which might answer satisfactorily to the steel maker, would be injurious to brass.

ROLLING Sound ingots of the No. 1 grade metal, suitable for INGOTS. rolling, are kept in stock of which the following are some of the sizes:

### ROLLING INGOTS.

| 12  | inches   | х | 3  | ir       | ches | X | 18  | inches |
|-----|----------|---|----|----------|------|---|-----|--------|
| 7   | "        | x | 3  |          | "    | x | 22  | "      |
| 12  | "        | x | 1  | 1/8      | "    | x | 18  | "      |
| 12  | "        | x | 1  | 8        | "    | x | 18  | "      |
| 111 | 2 "      |   | I  |          |      | x | 16  | "      |
| 10  | "        | x | I  |          | "    | x | 18  | "      |
| 8   | "        | x | 3  | <b>%</b> | "    | x | 18  | "      |
| 6   | 66       |   | 3  |          |      | x | I 2 | "      |
| 2   | "        |   | į  |          |      | x | 5   | 1/2 :  |
| 4   | "        |   | 2  |          |      |   | 84  |        |
|     | ź "      | x | 33 | 4        | "    | x | 36  | "      |
|     | <u> </u> |   | 21 |          |      |   | 36  |        |

Ingots of any size can be furnished, providing the amount of metal ordered will warrant the expenditure for moulds.

ROLLING Which have been "broken down" from thick ingots SLABS and rolled to about 3% of an inch in thickness, free from flaws and with sound rolled edges and ends sheared off square, are furnished of any desired widths by The Pittsburgh Reduction Company.

The purchase of the metal in this form, reduces to a minimum the amount of scrap produced, and ensures for the manufacturer of the finished sheet a perfect and sound stock

Metal furnished in this form has become deservedly popular with manufacturers possessing rolling mills.

ALUMINUM INGOTS Are kept in stock of the various grades of FOR RE-MELTING metal, in what are called "waffle" ingots. They are square placques, three inches on a side and of about ¼ of an inch in thickness and weigh about one-half pound each; they are connected together by thin webs, which makes them easily detachable from an ingot four "waffles" wide by seven long, weighing about fourteen pounds.

The Pittsburgh Reduction Company also furnish aluminum for re-melting, in ingots 14 inches long and 1¼ inches wide, which ingots are so notched as to be easily divided into small pieces. These ingots are made with different number of notches as shown in the sketch on the second

page of this catalogue. Thus, ingots of the above length and width can be furnished to be broken up in any number of pieces from two to ten. For convenience sake The Pittsburgh Reduction Company use for each of the several grades of metal a certain one of the above forms, although if so desired, metal of the different grades will be furnished in any of these ingots.

ALUMINUM "Bronze" is the name technically given in BRONZE POWDER. the trade to metallic powders, and ALUMINUM BRONZE POWDERS consist of finely powdered pure aluminum. They are prepared by beating out, under trip hammers, thin rolled sheets of aluminum into very thin foil; this foil is afterwards ground into powder in especially designed grinding mills.

Aluminum Bronze Powder is only made from the purest and best grades of aluminum, for only this quality of aluminum is malleable enough to permit of its being hammered into sufficiently thin foil for the purpose. Aluminum Bronze Powders are, however, sometimes adulterated with Tin Bronze Powders.

Aluminum Bronze Powder is largely used as a metallic paint, it having almost entirely replaced the previous use of silver for this purpose. It is also largely used in the manufacture of wall paper, and for a coloring matter in the manufacture of celluloid and rubber materials.

### DATA ON VARNISH FOR ALUMINUM BRONZE.

The liquid which is sold in the United States under the trade name of the "Light Japan Gold Size," is the best varnish to use with powdered "Aluminum Bronze," This, however, is not the same article as is sold in England under the name of the "Gold Size," and the best of these varnishes is made by taking fifty pounds of Kauri and fifty pounds of Zanzibar resin, together with five gallons of refined linseed oil, cooking these at a high temperature until there is no free oil left. This mixture should then be "thinned down" with a proper amount of turpentine, (about twenty-five or thirty gallons) and then a "drier" should be added.

### PROPERTIES OF ALUMINUM

# Including Data Regarding Some of the Properties of Other Metals for Reference.

**SOLUBILITY.** Hydrochloric acid is the natural solvent for aluminum. Dilute sulphuric acid slowly dissolves the metal on heating, with the evolution of sulphurous acid gas.

Concentrated sulphuric acid acts only very slowly on the metal, although the sulphuric acid of commerce usually contains an amount of hydrochloric acid sufficient to rapidly act on the metal.

Nitric acid, either concentrated or dilute, has very little action on aluminum when cold; when heated it acts very slowly.

Sulphur has no action at a temperature less then a red heat. Solutions of caustic alkalies, chlorine, bromine, iodine and fluorine rapidly corrode the metal.

Aluminum is found to withstand the action of organic secretions better than silver, and is receiving large use for dental plates and surgical instruments, and in places where subjected to carbolic acid or other antiseptic solutions.

Aluminum is little acted upon by salt water. Solutions of salt and vinegar such as it is apt to be subjected to in ordinary culinary operations, do not injure the metal.

Aluminum is little acted upon by mineral waters, and withstands the action of sea water better than iron, steel or copper. Strips of aluminum placed upon the sides of a wooden vessel corroded less than  $\frac{5}{1000}$ ths of an inch after six months exposure to sea water. Copper sheet treated similarly was cor-

roded to nearly double this amount. In salt water barnacles will attach themselves to unprotected aluminum vessels, but these can be protected with special paints or varnishes. Aluminum has been successfully used for structural purposes under water and is standing such exposure much better than steel, wrought iron, or even cast iron. It has been used as shims in masonry foundations, and lasts well in such places. It has also been used to a small extent for roofing, and doubtless this use will be extended as its advantages become better known, more especially as aluminum is now relatively cheaper than copper.

Ammonium solutions gradually attack the surface of aluminum leaving behind a more resisting surface coating containing silicon, which, although rapidly attacked by concentrated alkali or acid solutions, resists corrosion from dilute mineral acids and dilute solutions of organic acids as well as moist or dry air. An aluminum surface thus treated has a brown color which may be given different shades; it may be left smooth or with a rough finish, or matt, and is really a very serviceable way to treat the metal for a durable finish to withstand corrosion.

Aluminum is not acted upon by carbonic acid, carbonic oxide, or sulphuretted hydrogen; but on being melted, will absorb these gases, quite a portion of which is again excluded on the metal cooling.

The presence of the impurities silicon and sodium in aluminum markedly decrease the power of the metal to resist corrosion, and most of the failures from this cause are due to these impurities.

The occlusion of gases in moken aluminum, such as nitrogen, carburetted hydrogen, etc., occasion blow holes in the ingots, which in turn make laminated plates when the ingots are afterward rolled or hammered. Such laminated material is much more liable to corrosion than is sound metal.

GALVANIC The common metals are very electro-negative to ACTION. aluminum in a voltaic couple, and as the electro-positive element is the one attacked first and most severely,

and the electro-motive force (or force produced by the difference in chemical action between aluminum and any of the common metals with which it comes in contact in a voltaic element), is equal to the sum of the electro-motive forces between all the intervening metals, it follows that care should be taken that aluminum exposed to water or other solutions shall not come in contact with any other metal, which will cause a voltaic couple to be formed.

Aluminum can be protected in places where it is exposed to galvanic action, by insulating with rubber, or canton flannel soaked in a mixture of white lead and oil, or some other non-conducting substance. It can also be protected by placing between the aluminum and the metal with which it is in contact, a more electro-positive metal, such as magnesium, where the metal from which the aluminum is insulated is electronegative to it, as is the case with most metals.

The table given below shows what metals are electropositive or electro-negative to each other:

### POSITION IN ELECTRO-CHEMICAL SERIES.

### IN THE ORDER OF THE MOST POSITIVE FIRST:

|    | Caesium,   |            | Nickel,                   | 22         | Rhodium,          |
|----|------------|------------|---------------------------|------------|-------------------|
| I  | Caesium,   | 17         | •                         | 33         | •                 |
| 2  | Rubidium,  | 18         | Thallium,                 | 34         | Platinu <b>m,</b> |
| 3  | Potassium, | 19         | Indium,                   | 35         | Osmium,           |
| 4  | Sodium,    | 20         | Lead,                     | 36         | Silicon,          |
| 5  | Lithium,   | 21         | Cadmium,                  | <b>37</b>  | Carbon,           |
| 6  | Barium,    | 22         | Tin,                      | 38         | Boron,            |
| 7  | Strontium, | 23         | Bismuth,                  | <b>3</b> 9 | Nitrogen,         |
| 8  | Calcium,   | 24         | Copper,                   | 40         | Arsenic,          |
| 9  | Magnesium, | 25         | Hydrogen,                 | 41         | Selenium,         |
| 10 | Aluminum,  | 26         | Mercury,                  | 42         | Phosphorus,       |
| ΙI | Chromium,  | 27         | Silver,                   | 43         | Sulphur,          |
| 12 | Manganese, | 28         | Antimony,                 | 44         | Iodine,           |
| 13 | Zinc,      | <b>2</b> 9 | Tellurium,                | 45         | Bromine,          |
| 14 | Gallium,   | 30         | Palladium,                | 46         | Chlorine,         |
| 15 | Iron,      | 31         | Gold,                     | 47         | Oxygen,           |
| 16 | Cobalt,    | 32         | Iridium,                  | 48         | Fluorine.         |
|    |            |            | ( A4 - A - I - II ( ( D ) | B. C       | C E D C           |

Authority "Electrolytic Separation of Metals," (1890.)—By G. Gore, F. R. S.

MELTING Aluminum melts at a temperature between silver POINT. and zinc—a temperature of about 650 degrees Centigrade, or 1,200 Fahrenheit (according to the latest experiments.) It has been found that a small percentage of iron materially raises the melting point. Aluminum does not volatilize at any temperature ordinarily produced by the combustion of carbon, even though the high temperature be kept up for a considerable number of hours. It, however, is not good practice in making castings of aluminum to heat it much above its melting point, or to allow it to remain melted for any great length of time, on account of its capacity for absorbing gases.

### MELTING POINTS OF VARIOUS SUBSTANCES.

The following figures are given by Clark (on the authority of Pouillet, Claudel & Wilson), except those marked (\*), which are given by Prof. Roberts-Austen. The latter are probably the most reliable figures:

|                                 | Deg. Cent.   | Deg. Fahr. |
|---------------------------------|--------------|------------|
| Sulphurous Acid                 | -100         | -148       |
| Carbonic Acid                   | -77.8        | -108       |
| Mercury                         | -39.4        | -39        |
| Bromine                         | -12.6        | 9.5        |
| Turpentine                      | -10          | . 14       |
| Hyponitric Acid                 | -8.9         | 16         |
| Ice                             | 0.0          | 32         |
| Nitro-Glycerine                 | 7.2          | 45         |
| Tallow                          | 33.3         | 92         |
| Phosphorus                      | 44.4         | 112        |
| Acetic Acid                     | 45.0         | 113        |
| Stearine                        | 42.8 to 48.9 | 109 to 120 |
| Spermaceti                      | 48.9         | 120        |
| Margaric Acid                   | 55.0 to 60.0 | 131 to 140 |
| Potassium                       | 57.8 to 62.2 | 136 to 144 |
| Wax                             | 61.1 to 67.8 | 142 to 154 |
| Stearic Acid                    | 70.0         | 158        |
| Sodium                          | 90.0 to 97.8 | 194 to 208 |
| Alloy, 3 lead, 2 tin, 5 bismuth | , 92.8       | 199        |

### MELTING POINTS OF VARIOUS SUBSTANCES,—Continued.

| T 1' .                  | Deg. Cent.   | Deg. Fahr.                 |
|-------------------------|--------------|----------------------------|
| Iodine                  | 107.2        | 225                        |
| Sulphur                 | 115.0        | 239                        |
| Alloy, 11/2 tin, 1 lead | 167.8        | 334                        |
| Alloy, I tin, I lead187 | .8 to 240.1  | 370 to 466                 |
| Tin                     | .8 to 230.0  | <b>442</b> to 446          |
| Cadmium                 | 227.8        | 442                        |
| Bismuth                 | .2 to 263.9  | <b>50</b> 4 to 5 <b>07</b> |
| Lead                    | 325.6*       | 618*                       |
| Zinc                    | 415.0*       | 779*                       |
| Antimony432             | .2 to 621.1  | 810 to 1150                |
| Aluminum                | 625.0*       | 1157                       |
| Magnesium               | 648.9        | 1200                       |
| Calcium                 |              | Full red heat.             |
| Bronze                  | 922.2        | 1692                       |
| Silver                  | 945.0*       | 1733*                      |
| Potassium Sulphate      | 1015.0*      | 1859*                      |
| Gold                    | 1045.0*      | 1913*                      |
| Copper                  | 1053.9*      | 1929*                      |
| Cast Iron, White1050.   | o to 1135.0* | 1922 to 2075*              |
| Cast Iron, Gray 1220.   | 0* to 1530.0 | 2228* to 2786              |
| Steel1300.              | o to 1377.8  | 2372 to 2532               |
| Steel, Hard             | 1410.0*      | 2570*                      |
| Steel, Mild             | 1475.0*      | 2687*                      |
| Wrought Iron1500.       | o to 1600.0  | 2732 to 2912*              |
| Palladium               | 1500.0*      | 2732*                      |
| Platinum                | 1775.0*      | 3227*                      |

The melting point of metals varies in the tables given by standard authorities due to amount of impurities contained in the samples experimented upon, and also due to the slight inaccuracy of the instruments or methods used in determining high temperatures, as well as to errors in observation.

A table showing results of various observations on the melting points of some of the metals, is given below, to illustrate the discrepancy between the various authorities; it also gives further information for interpreting the average and approximate results of melting point tables in this pamphlet:

| METAL.                                   | MELTING POINT.        | OBSERVER.                        |
|------------------------------------------|-----------------------|----------------------------------|
| Antimony                                 | 450                   | Watts.                           |
|                                          | 432                   | Dalton.                          |
| "                                        | 425                   | Fehling.                         |
|                                          | 440                   | Pictet, 1879.                    |
| " " Comm'l                               | 432                   | Ledebur, 1881.                   |
| Lead                                     | 322                   | Daniell, 1830.                   |
| "                                        | 326                   | Rudberg, 1848.                   |
|                                          | 325                   | Vincentini &<br>Omodei, 1888.    |
| "/                                       | 326                   | Ledebur, 1881.                   |
| "                                        | 326, by air therms. & |                                  |
|                                          | 334, by merc'y therm. | Persons.                         |
| "                                        | 335                   | Pictet, 1879.                    |
| Iridium                                  | 2200                  | V. A. Weyde.                     |
|                                          | 1950, Calor           | Violle, 1873.                    |
| Copper                                   | 1090                  | Daniell, 1830.                   |
| "                                        | 1000-1200             | Pouillet, 1836.                  |
| "                                        | 1236                  | Wilson, 1852.                    |
| "                                        | 1050                  | Pictet, 1879.                    |
| " Comm'l.                                | 1100                  | Ledebur, 1881.                   |
| "                                        | 1054                  | Violle, 1879.                    |
| Gold                                     | 1100                  | Pictet, 1879.                    |
| "                                        | 1035, Calor           | Violle, 1879.                    |
| "                                        | 1144                  | Daniell, 1830.                   |
| "                                        | 1200                  | Pouillet, 1836.                  |
| "                                        | 1250                  | V. A. Weyde.                     |
| **                                       | 1240                  | Pictet, 1879.                    |
| Nickel                                   | 1450 {                | Carnelli & Carleton<br>Williams. |
| "                                        | 1450                  | Pictet, 1879.                    |
|                                          | 1392-1420             | Schertel, 1880.                  |
| Palladium                                | 1360-1380             | Becquerel, 1862.                 |
| "                                        | 1950                  | Carnelli, 1879.                  |
| "                                        | 1700                  | Pictet, 1879.                    |
|                                          | 1500, Calor           | Violle, 1879.                    |
| Platinum                                 | 1460–1480             | Becquerel, 1863.                 |
| •• • • • • • • • • • • • • • • • • • • • | 1779                  | Violle, 1879.                    |

| METAL.                                  | MELTING POINT.       | OBSERVER.      |  |  |  |  |
|-----------------------------------------|----------------------|----------------|--|--|--|--|
| Platinum                                | 2200                 | V. A. Weyde.   |  |  |  |  |
| • • • • • • • • • • • • • • • • • • • • | 2000                 |                |  |  |  |  |
| Zinc                                    | 412                  | Daniell, 1830. |  |  |  |  |
| "                                       | 433 by merc. thermo. |                |  |  |  |  |
| "                                       | 415 by air thermo    | Persons, 1848. |  |  |  |  |

The above observations have been made with mercury thermometers as far as possible, the higher temperature with the air thermometer: except where stated Violle has used the calorimeter. The temperatures have not necessarily been made by the above observers, but have in some instances been taken from their works.

The Centigrade scale was used throughout.

The following table of physical properties of metals, published by a well known authority, is appended, as giving further determinations of the melting points of metals:

PHYSICAL PROPERTIES OF METALS.
FION "AN INTRODUCTION TO METALLUBOT;" BY FROT. W. C. ROBERS-AUSTEN, C.B., F.E.S.,

Associate of the Royal School of Mines. Chemist and Assayer of the Boyal Mint.

| Electrical<br>Con-<br>ductivity.        | Hg.at 0°-1<br>31.726                                                      | 2.053           | 2.679   | 0.80             |        | 12.46     |           | 9.685            | 55.86     |                      | 13.84     |             | 8.341          | 4.818                      | 10.69       |
|-----------------------------------------|---------------------------------------------------------------------------|-----------------|---------|------------------|--------|-----------|-----------|------------------|-----------|----------------------|-----------|-------------|----------------|----------------------------|-------------|
| Thermal<br>Con-                         | Ag.=100.<br>31.33                                                         | 4.03            | ı       | 1.8              | 2      | ı         |           | ı                | 73.6      |                      | 23.5      | }           | 11.9           | oc.                        | 1           |
| Co-efficient<br>of Linear<br>Expansion. | 0 0000231                                                                 | 0.0000105       |         | 0,0000162        |        | ı         |           | 0.0000123        | 0.0000167 |                      | 0.0000144 | 0.0000417   | 0.0000121      | 0.0000999                  | -           |
| Melting<br>Point.                       | (625<br>654<br>654<br>654<br>654<br>654<br>654<br>654<br>654<br>654<br>65 | 630<br>4<br>030 | 15      | 888              | 38     | Red heat. | Sb. & Ag. | than Pt.<br>1500 | 200       |                      | 1045      | 176         | 999            | 395                        | <u>8</u>    |
| Specific<br>Jash                        | 0.2120+                                                                   |                 |         | 0.031            |        |           | _         |                  | 0.094     | 0.046                | 0.032     | 0.057       | 0.110          | 5.045                      | 15.         |
| Specific (Aravity.                      | 2.56                                                                      | 6.71            | 5.67    | . 6. 9<br>. 6. 9 | 38     | 17.89     | 6.80      | 8.50             | 8.82      | 6.54<br>2.07         | 19.32     | 7. č.       | 1.85           | 6.20<br>7.20               | 0.59        |
| Atomic Volume.                          | 10 6                                                                      | 17.9            | 13.2    | 27.5             | 9.01   | %2<br>4.0 | 1-        | 6.9              | 7.2       | 27 rc<br>8 9         | 10.2      | 15.3        | 917            | 22<br>22<br>23<br>24<br>24 | 11.9        |
| Atomic<br>Weight.                       | 27.00                                                                     | 120.00          | 74.90   | 207.50           | 132.70 | 39.91     | 52.40     | 58.60            | 63.20     | 145.00<br>9.08       | 196.20    | 113.40      | 20.00<br>20.00 | 138.50<br>206.40           | 7.01        |
| Symbol.                                 | AI.                                                                       | Sp.             | A's     | izi              | 33     | و ق       | Ċ.        | Ço.              | Cu.       | ದಕ                   | γn.       | <u>.</u> =: | . e            |                            | ;. <u>;</u> |
|                                         | Aluminum,                                                                 | Autimony        | Arsenic | Bismuth          | Cæsium | Calcium.  | Chromium  | Cobalt           | Copper    | Didymium<br>Glueinum | Gold      | Indium      | Iron.          | Lanthanum                  | Lithium     |

\* Haycock and Neville.

† Roberts-Austen.

‡ Authority-Landolt and Bornstein.

| 7                | Electrical<br>Con-<br>ductivity.        | Hg.at 00-1 | 22.57                                  | 1,000                        | 7,374                    |                                                              | 6.910<br>8.257                                                     | 11.23             |                   | i                 | 18.38<br>38.38 | 3.774                | 0.0004       | 077.0                                                                             | 8 927        |          |          |                     | ;     | 16.92     | !<br>!                    |
|------------------|-----------------------------------------|------------|----------------------------------------|------------------------------|--------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-------------------|-------------------|-------------------|----------------|----------------------|--------------|-----------------------------------------------------------------------------------|--------------|----------|----------|---------------------|-------|-----------|---------------------------|
| ntinue           | Thermal<br>Con-<br>ductivity.           | Ag.=100.   | 34.3                                   | 1.3                          | ı                        |                                                              | %                                                                  | 1                 |                   | 0 001             | 36.5           | 1                    | ı            | 1                                                                                 | 15.9         | 7.07     |          |                     | ,     | 7.83      | a calculation is the same |
| METALSContinued. | Co-efficient<br>of Linear<br>Expansion. |            | 0.0000269                              | ı                            | 0.0000127                | 0.0000065                                                    | 0.0000117                                                          | 0.0000841         | 96000000          | 0.000010+0        | 0.0000710      | 1                    | 0.0000167    | 7000000                                                                           | 0.000093     |          |          |                     |       | 0.0000291 |                           |
| METAL            | Melting<br>Point.                       | ٠ <u>٠</u> | ************************************** | 28<br>1                      | 1600                     | 2500                                                         | 1500<br>1775                                                       | 3002              | 8,0               | \$ <del>1</del> 5 | 38             | ı                    | 525          | 8                                                                                 | 11 %<br>12 % |          | higher   |                     | (415+ | +30-      |                           |
| 0 F              | Specific<br>Heat.                       |            | 0.250                                  | 0.032                        | 0.110                    | 0.031                                                        | 0.080                                                              | 0.170             | 0.077             | 0.056             | 0.230          | 0.074<br>?           | 0.047        | * 80<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 | 920.0        | 0.130?   | 0.033    | 82Ú.6               | . 0.0 | 0.066     | * Haycock and Neville.    |
| IES              | Specific<br>(Aravity.                   | ,          | 7.5                                    | 0.55<br>0.55<br>0.55<br>0.55 | 385                      | 2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85<br>2.85 | ::2<br>5:35                                                        | 0.87<br>12.10     | 12.52<br>12.26    | 10.53             | 0.97           | 10.2<br>10.8<br>10.8 | 6.25<br>5.25 | 11.10                                                                             | 7.29         | ı        | 19.10    | 18.70               | 7.15  | 4.15      | yeock an                  |
| ERT              | Atomic Volume.                          |            | 8.8                                    | 14.7                         | 1.6.7                    | 25.0                                                         | 9.7                                                                | 4.č4<br>4.č       | .8<br>4.8         | 10.2              | 23.7           | 9.4.0                | 20.5         | 20.9                                                                              | 16.1         | ı        | 9.6      | 12.8<br>9.3         | 9.1   | 21.7      | * Ha                      |
| PROPERTIES       | Atomic<br>Weight.                       | 3          | # S                                    | 8.36.8<br>8.36.8             | 365<br>365<br>365<br>365 | 3.85                                                         | 3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5<br>3.5 | 8.5<br>8.5<br>8.5 | 85.20<br>103.50   | 107.66            | 27:<br>66:21:  | 182.00               | 126.30       | 237.00                                                                            | 117.40       | 18.00    | 184.00   | 240.00              | 36    | 04.06     |                           |
| SAL              | Symbol.                                 | ;          | Mg.                                    | HE S                         |                          | <br>40                                                       | F.F.                                                               | A. H.             | Ru.               | Ag.               | Na.            | Ta.                  | Te.          | Ţĥ.                                                                               | Sn.          | Ţ.       |          | <b>E</b> >          | Zn.   | Zr.       | en.                       |
| PHYSICAL         |                                         |            | Magnesium                              | Mercury                      | Nickel                   | Osmium                                                       | Palladium                                                          | Potassium.        | RubidiumRuthenium | Silver            | Sodium         | Tantalum             | Tellurium    | Thorium                                                                           | Tin          | Titanium | Tungsten | Uranium<br>Vanadium | Zine  | Zirconium | † Roberts-Austen.         |

Probably the most reliable data as to melting points is published by Prof. S. W. Holman in conjunction with R. R. Lawrence and L. Barr, in the "Proceedings of the American Academy," Nov. 13, 1895.

Aluminum, melting point, 660 degrees centigrade.

| Silver,     | " | " | 970  | 4.6 | "   |
|-------------|---|---|------|-----|-----|
| Gold,       | " | " | 1072 | 4.6 | • • |
| Copper,     | " | " | 1095 | "   | "   |
| Platinum, . | " | " | 1760 | "   | "   |

The aluminum experimented upon was furnished by The Pittsburgh Reduction Co., and contained 99.93 per cent. aluminum, with .07 per cent. silicon.

The silver, gold, copper and platinum were of the purest quality obtainable, probably with less than three one-hundredths of one per cent. of impurity in each case.

### LATENT HEAT OF FUSION.

AUTHORITY M. PIERSON.

| Calories. Heat Units. Kilos. Lbs. Mercury 2.83 5.1 | Calories. Heat Units. Kilos. Ubs. Silver 21.07 38.0 |
|----------------------------------------------------|-----------------------------------------------------|
| Lead 5.37 9.7<br>Bismuth 12.64 22.8                | Zinc 28.13 50.7 *Aluminum 28.50 51.4                |
| Cadmium13.66 24.6<br>Tin14.25 25.7                 | *Richards publis's 3 29.00 53.00 Water 79.00 142.2  |

The mean SPECIFIC HEAT of aluminum from zero to the melting point is very high, being 0.2185, water being taken as 1, and the latent heat of fusion is 28.5 calories per kilogramme or 51.4 heat units per lb.; that is, the number of heat units required to melt a pound of aluminum, is the same as would raise 51.4 pounds of aluminum through one degree Fahrenheit.

### THE FOLLOWING IS A TABLE OF COMPARATIVE SPECIFIC HEATS:

SIR ROBERTS-AUSTEN AUTHORITY, EXCEPT WHERE OTHERWISE INDICATED.

| Water 1.0000       | Nickel              | .1100          | Antimony0510    |
|--------------------|---------------------|----------------|-----------------|
| Lithium            | Copper              | .0940          | Barium 0470     |
| Glucinum5800       | Zinc                | .0940          | Tellurium0470   |
| Sodium2900         | *Brass, { 70 Cu. }  | -              | Didymium .0460  |
| Magnesium 2500     | ^ Drass, { 30 Zn. } | .0939          | Cerium          |
| *Aluminum 2185     | Arsenic             | .0810          | Lanthanum .0450 |
| Silicon1730        | Rubidium            | .0770          | Thallium0340    |
| Calcium 1700       | Strontium           | .0740          | Platinum0330    |
| Potassium1700      | Molybdenum.         | .0720          | Tungsten0330    |
| Titanium1300?      | Zirconium           | .0660          | Gold            |
| *Grey Iron 1268    | Ruthenium           | . <b>0</b> 610 | Mercury0320     |
| Chromium1200       | Palladium           | .0590          | Lead            |
| Manganese 1200     | Rhodium             | .0580          | Osmium0310      |
| *Steel 1175        | Cadmium             | .0570          | Bismuth0310     |
| *Wr'ght Iron .1138 | Indium              | .0570          | Thorium0280     |
| Pure Iron 1100     | Tin                 | . <b>05</b> 60 | Uranium0280     |
| Cobalt1100         | Silver              | .0560          |                 |
|                    |                     |                |                 |

Roberts-Austen gives specific heat of aluminum as 0.2120.

The specific heat of aluminum being .2185, means that the quantity of heat which would raise the temperature of any given quantity of aluminum through one degree would only raise the temperature of the same quantity of water through .2185 of one degree.

Aluminum follows the general law of specific heats, i. e. that they are inversely as their atomic weights.

<sup>\*</sup> These values are given on the authority of Landolt & Bornstein.

The following table exhibits the relationship between the combining numbers and specific heats of the metals; the product of specific heat and of the combining number is seen to be very nearly constant, as shown by Kopp. He also verifies the law of Woestyn and Garnier, finding the specific heat of the molecule equal to the sum of the specific heats of the constituent atoms:

SPECIFIC HEATS AND COMBINING NUMBERS.

| METALS.         | COMBINING<br>NUMBERS. | SPECIFIC HEAT<br>(REGNAULT.) | PRODUCT |
|-----------------|-----------------------|------------------------------|---------|
| Aluminum,       | 27                    | 0.2143                       | 5.8     |
| Antimony        | 122                   | 0.0508                       | 6.1     |
| Arsenic         | 75                    | 0.0814                       | 6.1     |
| Bismuth         | 210                   | 0.0308                       | 6.5     |
| Cadmium         | 112                   | 0.0567                       | 6.3     |
| Copper          | 63.5                  | 0.0951                       | 6.0     |
| Gold            | 196                   | 0.0324                       | 6.4     |
| Lead            | 207                   | 0.0314                       | 6.4     |
| ron             | 56                    | 0.1138                       | 6.1     |
| Magnesium       | 24<br>55              | 0.2499                       | 6.0     |
| Manganese       | 55                    | 0.1217                       | 6.7     |
| Mercury (solid) | 200                   | 0.325                        | 6.5     |
| Nickel          | 59                    | 0.1089                       | 6.4     |
| Palladium       | 106                   | 0.0593                       | 6.3     |
| Platinum        | 197.6                 | 0.0329                       | 6.5     |
| Potassium       | 39.1                  | 0.1695                       | 6.5     |
| Silver          | 108                   | 0.0570                       | 6.2     |
| Sodium          | 23                    | 0.2934                       | 6.7     |
| l'in            | 118                   | 0.0562                       | 6.6     |
| Zinc            | 65                    | 0.0956                       | 6.2     |

### SPECIFIC HEATS OF METALS.

|                 | SPRCIFIC<br>HEAT. | AUTHORITY.                              |
|-----------------|-------------------|-----------------------------------------|
| Wrought iron    | .1138             | Regnault.                               |
| 32—212 F        | .1098             | Dulong & Petit.                         |
| " 32—392 F      | .1150             |                                         |
| " 32—572 F      | .1218             | **                                      |
| " 32—662 F      | 1255              | **                                      |
| Cast Iron       | 1298              | Regnault.                               |
| Steel, soft     | .1165             | -44                                     |
| " tempered      | .1175             | **                                      |
| Copper          | .09515            | **                                      |
| 32—212 F        | .0927             | Dulong & Petit.                         |
| " 32—572 F      | .1013             |                                         |
| Cobalt          | .10696            | Regnault.                               |
| " carburetted   | .11714            | **                                      |
| Nickel          | .1086             | **                                      |
| " carburetted   | .1119             | **                                      |
| Tip. English    | .05695            | **                                      |
| Tin, English    | .05623            | . **                                    |
| Zina            | .09555            | 44                                      |
| " 32—212 F      | .0927             | Dulong & Petit.                         |
| " 32—572 F      | .1015             |                                         |
| Brass           | .0939             | Regnault.                               |
| Lead            | .0314             |                                         |
| Platinum, sheet | .03243            | ••                                      |
| ** 32—212 F     | .0335             | Dulong & Petit.                         |
| " at 572 F      | .03434            | Pouillet.                               |
| " 932 F         | .03518            | 44                                      |
| 1832 F.         | .03718            | 44                                      |
| " 2195 F        | .03818            | 46                                      |
| Mercury, solid  | .0319             | Regnault.                               |
| " liquid        | .03332            | ••                                      |
| " 32—212 F      | .033              | Dulong & Petit.                         |
| " 32—572 F      | .035              |                                         |
| A Ai            | .05077            | Regnault.                               |
| 32—572 F        | .0547             | Dulong & Petit                          |
| Bismuth         | .03084            | Regnault.                               |
| Gold            | .03244            |                                         |
| Silver          | .05701            | 44                                      |
| 32-572 F.       | .611              | Dulong & Petit.                         |
| Manganese       | .14411            | Regnault.                               |
| [ridium         | 1887              | • • • • • • • • • • • • • • • • • • • • |
| Fungsten        | .03636            | 44                                      |

The linear expansion of aluminum is relatively LINEAR very high, being exceeded only by zinc and lead EXPANSION. of the common metals. The table below shows the expansion per degree per unit of length of the various metals in relative order:

### COEFFICIENTS OF LINEAR EXPANSION.

AUTHORITY, SIR ROBERTS-AUSTEN.

| ACTIONITY ON NOBERTO |           |          |
|----------------------|-----------|----------|
|                      | CENT.     | FAHR.    |
| Potassium            | .0000841  | .0000476 |
| Sodium               | .0000710  | .0000395 |
| Indium               | .0000417  | .0000231 |
| Cadmium              | .0000306  | .0000170 |
| Thallium             | .0000302  | .0000168 |
| Lead                 | .0000292  | .0000162 |
| Zinc                 | .0000291  | .0000161 |
| Magnesium            | .0000269  | .0000150 |
| Aluminum             | 0000231   | .0000130 |
| Tin                  | .0000223  | .0000124 |
| Silver               | .0000192  | .0000107 |
| Tellurium            | .0000167  | .0000093 |
| Copper               | .0000167  | .0000093 |
| Bismuth              | .0000162  | .0000090 |
| Gold                 | .0000144  | .0000080 |
| Nickel               | .0000127  | .0000071 |
| Cobalt               | .0000123  | .0000070 |
| Iron                 | .0000121  | .0000069 |
| Palladium            | .0000117  | .0000065 |
| Antimony             | .0000105  | .0000058 |
| Ruthenium            | .0000006  | .0000053 |
| Platinum             | ,00000089 | .0000050 |
| Rhodium              | .0000085  | .0000046 |
| Iridium              | .0000070  | .0000039 |
| Osmium               | .0000065  | .0000036 |
| Arsenic              | .0000055  | .0000031 |
| •                    | - 33      | 3-       |

Chaney gives the following values of the coefficients of linear expansion, at ordinary temperature, as recalculated by him, and corrected for the author, from selected data, for the Standards Office of the British Board of Trade:

|                          | For 1° F.  | For 1° C.  | Authority.         |
|--------------------------|------------|------------|--------------------|
| Aluminum, cast,          | 0.00001234 | 0.00002221 | Fizeau.            |
| Brass, cast              | 0.00000957 | 0.00001722 | Sheepshanks.       |
| " plate                  | 0.00001052 | 0.00001894 | Ramsden.           |
| " sheet                  | 0.00001040 | 0.00001872 | Kater.             |
| Bronze, Baileys,         |            |            |                    |
| Cop. 17; tin 25; zinc 1. | 0.00000986 | 0.00001774 | Clarke.            |
| Same                     |            | 0.00001775 | Hilgard.           |
| Copper                   | 0.00000887 | 0.00001596 | Fizeau.            |
| Gold                     | 0.00000786 | 0.00001415 | Chandler & Roberts |
| Iridium                  | 0.00000356 | 0.00000641 | Fizeau.            |
| Lead                     | 0.00001571 | 0.00002828 | "                  |
| Mercury (cubic expan.)   | 0.00009984 | 0.00017971 | Regnault & Miller. |
| Nickel                   |            | 0.00001251 | Fizeau.            |
| Osmium                   | 0.00000317 | 0.00000570 | •                  |
| Palladium                | 0.00000556 | 0.00000100 | Wollaston.         |
| Pewter                   | 0.00001129 | 0.00002033 | Daniell.           |
| Platinum                 |            | 0.00000863 | Fizeau.            |
| " 90; iridium 10.        | 0.00000476 | 0.00000857 | **                 |
| " 85; " 15.              | 0.00000453 | 0.00000815 | ••                 |
| Silver                   | 0.00001079 | 0.00001943 | Chandler & Roberts |
| Tin                      | 0.00001163 | 0.00002094 | Fizeau.            |
| Zine                     | 0.00001407 | 0.00002532 | Baeyer.            |
| " 8; tin 1               | 0.00001496 | 0.00002692 | Smeaton.           |

THE EXPANSION OF THE METALS by increase of temperature is exhibited by the following table of coefficients of linear expansion.

These figures represent the extension, in parts of its own length, of a bar of the given metal during a rise in temperature from the freezing to the boiling point of water:

|                                                                              | EXPANSION BETWEEN<br>32° F. (0°.C.) AND 212° F.<br>(100 C.)                                                                                                 | AUTHORITY.                                                                                                                     |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Glass Copper Brass Iron Steel (untempered) (Cast Iron Lead Tin Silver (fine) | 0.000872 to 0.000918 0.000776 to 0.000808 0.001712 to 0.001722 0.001867 to 0.001890 0.001855 to 0.001895 0.001220 to 0.001235 0.001079 to 0.001080 0.001240 | Lavoisier & Laplace. Roy & Ramsden. Lavoisier & Laplace. Roy & Ramsden. Lavoisier & Laplace Roy & Ramsden. Lavoisier & Laplace |
| Platinum                                                                     | 0.000884<br>0.002976                                                                                                                                        | Dulong & Petit.<br>Daniell.                                                                                                    |

These coefficients are not absolutely constant, but vary with the physical conditions of the metals. They are not the same with the same material in its forms of cast, rolled, hammered, hardened, or annealed metal. The value of the coefficient of expansion also increases slightly with increase of temperature.

The following table of the principal metals and their properties is extracted from Watts' Dictionary of Chemistry:

### CHARACTERISTICS OF METALS.

| NAME                      | Name of Discoverer. |                | Sp. G. Sp. Heat.                                     |                                                                              | Melting Point.                                        | Conductivity.             |                                                |
|---------------------------|---------------------|----------------|------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|------------------------------------------------|
|                           | Disco               | Discoverer.    | Water == 1.                                          |                                                                              |                                                       | Ther-<br>mal.             | Elect.                                         |
| Lead<br>Silver<br>Bismuth | 1803                | Wollaston      | 11.33<br>10.57<br>9.80                               | 0.0324<br>0.0326<br>0.0324<br>0.0319<br>0.0593<br>0.0314<br>0.0570<br>0.0308 | 1200° C. (?)<br>-39° C<br>332° C<br>1000° C<br>270° C | 6.3<br>8.5<br>100.<br>1.8 | 18.<br>78.<br>18.4<br>8.3<br>100<br>1.2        |
| Nickel                    | 1751<br>1774        | Gahn ; Scheele | 8.94<br>8.82<br>8.02<br>7.84<br>7.30<br>7.13<br>6.72 | 0.0952<br>0.1086<br>0.1217<br>0.1138<br>0.0562<br>0.0955<br>0.0508           | 1200° C. (?)<br>2000° C. (?)<br>433° C<br>450° C      | 11.9<br>14.5              | 99.9<br>13.1<br><br>16.8<br>12.4<br>29.<br>4.6 |
| Aluminum,<br>Magnesium    | 1828                | Wöhler         | 2.56<br>1.74                                         | 0.2143<br>0.2499                                                             | 433° C                                                |                           | <b>56.1</b> 41.2                               |

**CONDUCTION** The thermal conductivity of aluminum is very **OF HEAT.** high, and is exceeded by only one of the baser common metals, *i. e.* copper, all the others being less, iron having but one-third as much. The following table gives metals in their order:

### RELATIVE THERMAL CONDUCTIVITY.

| Silver 100.00   | * Aluminum 31.33 | Lead 8.50     |
|-----------------|------------------|---------------|
|                 | Zinc 28.10       |               |
| Gold 53.20      | Cadmium 20.06    | Antimony 4.03 |
|                 | Tin 15.20        |               |
| Magnesium 34.30 | Iron 11.90       | Mercury 1.30  |
|                 | Steel 11.60      |               |

### ELECTRICAL PROPERTIES OF ALUMINUM.

THE ELECTRICAL CONDUCTIVITY of silver being taken as 100, that of pure aluminum is about 63.

Aluminum is practically non-magnetic, and may therefore be used for many purposes in electrical work where a magnetic metal would be useless; at the same time its electrical conductivity is excellent, as the following ELECTRICAL CONDUCTIVITIES of various metals will show. Aluminum may therefore in the future be largely used in the windings of field magnets on dynamos where weight is an object, and in general for switches, brushes, brush-holders, and apparatus where its non-tarnishing and non-corrosive qualities render it specially valuable.

As is the case with other metals of good electrical conducttivity, the conducting power of aluminum is greatly decreased as the result of the presence of alloying metals. Pure aluminum has a much higher relative conductivity to pure copper than is ordinarily given in the books, occasioned by the considerable impurities in the aluminum that has been in the past tested for its relative electrical conductivity.

In the early part of the year 1896, tests made of aluminum wire manufactured by The Pittsburgh Reduction Company, by Mr. Charles F. Scott at the electrical testing laboratory of the Westinghouse Electric Company and also by Prof. Joseph W. Richards, at Lehigh University, gave the following results in electrical conductivity:

These samples of aluminum were .0282 of an inch in diameter, and of the following composition:

Sample No. 1, .... 99.50 per cent. pure aluminum.

- " No. 2, .....99.00 " " "
- " No. 3, .....98.00 " " "

The impurities in each case being chiefly silicon and some iron.

Sample No. 4, XB. was the nickel aluminum alloy used in rolling into stiff sections; this alloy contained about 97 per cent. pure aluminum.

Sample No. 5, XCWC. was a stiff alloy containing copper and zinc, and about 96 per cent. pure aluminum.

Fifty feet of each sample of wire was tested, the wire being wound on wooden spools, and immersed in oil. The temperature was varied by placing the spools so immersed into a steam heater; the oil was kept thoroughly stirred.

Resistance measurements were made by means of a "Wheatstone's Bridge."

The resistance of a soft, pure copper wire one foot long, and one-thousandth of an inch in diameter (unit foot) was taken as 9.720 B. A. units at 0 degrees C.; this corresponding to 9.612 legal ohms at 0 degrees C., or 10.20 legal ohms at 15.5 degrees C.

The results of the tests made, by Mr. Chas. F. Scott, were as follows:

| SAMPLE.                                                 | Ohms per 1000 feet Of inch diam.               | Per Cent.<br>Conductivity<br>at 15 Deg. C.                     | 4 variation per<br>deg. between<br>15 deg. C.<br>and 80 deg. C. |
|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Pure Copper Wire,                                       | 101.83<br>161.40<br>163.80<br>181.30<br>174.10 | 100.00%<br>63.09 "<br>62.17 "<br>56.17 "<br>58.48 "<br>55.01 " | .388<br>.385<br>.385<br>.360<br>.361                            |
| Result of Prof. J. W. Richards on the 99½ pure Aluminum |                                                | 64.50 ''                                                       | .300                                                            |

### RELATIVE ELECTRICAL CONDUCTIVITY.

AUTHORITY, SIR ROBERTS-AUSTEN.

| Silver, (pure) 100.00    | Iron (pure) 14.57         |
|--------------------------|---------------------------|
| Copper " 97.61           | Platinum (pure) 14.43     |
| * " (refined) 97.50      | Tin " 14.39               |
| Gold (pure) 76.61        | Nickel " 12.89            |
| † Aluminum (pure) 63.00  | Bronze (10% Alu'm,) 12.60 |
| Magnesium " 39.44        | Palladium " 12.08         |
| Sodium " 31.98           | *Steel (Siemen's). 12.00  |
| Zinc " 29.57             | Thallium (pure) 9.13      |
| Cadmium " 24.38          | Lead " 8.42               |
| Calcium " 21.77          | Strontium '' 6.60         |
| *Brass (35 % Zinc) 21.50 | Arsenic " 4.68            |
| Potassium (pure) 19.62   | Antimony " 3.59           |
| Lithium " 18.68          | Mercury " 1.75            |
| Cobalt " 16.93           | Bismuth " 1.40            |
| * Iron (Swedish) 16.00   | Tellurium "0007           |
|                          |                           |

<sup>\*</sup> Authority, Lazare Weiler.

† Authority, Scott & Richards.

M. Charpentier-Page, in the April 1896 number of "L'Electrochimie," publishes electrical conductivity results obtained under his direction, as follows:

### ELECTRICAL CONDUCTIVITY.

| Pure Copper,                                     | 100 |
|--------------------------------------------------|-----|
| Commercially pure Aluminum,                      | 62  |
| Aluminum 97%, Copper 3%,                         | 49  |
| Aluminum 94%, Copper 6%,                         |     |
| Aluminum 10%, Copper 90%,                        | 13  |
| wire tested having a diameter of two millimeters |     |

The wire tested having a diameter of two millimeters.

IMPURITIES. The impurities most commonly found in aluminum are silicon and iron, and it may be said of the metal made by The Pittsburgh Reduction Co. that these two impurities are the only ones ordinarily found. Silicon in aluminum exists in two forms, one seemingly combined with aluminum as combined carbon exists in pig iron, and the other as an allotropic graphitoidal modification.

For many purposes the pure aluminum cannot be so advantageously used as that containing 3% or 4% of alloying metals to harden it, as the pure aluminum is soft and not so strong as the alloyed metal. It is only where extreme malleability, ductility, electrical conductivity and non-corrodibility are required, that the purest metal should be used.

For some purposes, small amounts of copper, nickel, tungsten, manganese, chromium, titanium, zinc or tin, are advantageously added to produce hardness, rigidity and strength—constituents that will not detract from the lightness of the metal and will not affect the non-corrodibility so much as either silicon or iron.

Besides the common impurities of aluminum, there are found in small proportions in commercial aluminum: copper, sodium, carbon, and occluded gases. Nitrogen is specially liable to be present in the metal

These impurities, however, occur in such small quantities in good metal, that their presence need not be considered in commercial dealings.

The hardness of aluminum varies according HARDNESS AND to its purity; the purest metal being the softest. ELASTICITY. The ordinary commercial aluminum is about as hard as copper. Aluminum hardens remarkably when it is being worked, either by pressing, forging, rolling, stamping or other similar treat-By reason of this the metal may be turned out very rigid in the finished shape, where the soft annealed metal would be too weak to answer the purpose. This is especially true with aluminum containing a few per cent. of some other metals as hardeners. Castings require a larger amount than rolled aluminum of alloying metal in order to increase their hardness. When these castings are drop-forged or hammered, the metal can be produced very rigid and hard.

Great differences are observable between the hardness of the different metals. The results of the experiments of Bottone give valuable information. In his scale, the hardness of the diamond was found to be 3010, whilst the relative hardness of twenty metals was determined with the following results:

### TABLE OF RELATIVE HARDNESS OF METALS.

| Manganese 1456 | Gold 979      |
|----------------|---------------|
| Cobalt 1450    | Aluminum, 821 |
| Nickel 1410    | Cadmium 760   |
| Iron           | Magnesium 726 |
| Copper 1360    | Tin 651       |
| Palladium 1200 | Lead 570      |
| Platinum 1107  | Thallium 565  |
| Zinc1077       | Calcium 405   |
| Silver         | Sodium 400    |
| Indium 984     | Potassium 230 |

In these determinations the time necessary to produce a cut of definite depth was taken as a measure of the hardness of the material, and Bottone concluded that the result so obtained was proportional to the specific gravity of the metal divided by its atomic weight. Metals that possess high limits of elasticity are usually very hard.

### ORDER OF DUCTILITY OF METALS.

| I. | Gold,     | 4. | Iron,     | 7. | Zinc, |
|----|-----------|----|-----------|----|-------|
| 2. | Silver,   | 5. | Copper,   | 8. | Tin,  |
| 3. | Platinum, | 6. | Aluminum, | 9. | Lead. |

### ORDER OF MALLEABILITY OF METALS.

| î. | Gold,     | 5. | Tin,      | 8.  | Zinc,   |
|----|-----------|----|-----------|-----|---------|
| 2. | Aluminum, | 6. | Platinum, | 9.  | Iron,   |
| 3. | Silver,   | 7. | Lead,     | 10, | Nickel. |
| 4. | Copper.   |    |           |     |         |

Prechtl gives the following as the order in which the metals stand:

| MALLEAI      | DUCTILITY. |            |  |
|--------------|------------|------------|--|
| Hammered.    | Rolled.    | Wire-drawn |  |
| I. Lead,     | Gold,      | Platinum,  |  |
| 2. Tin,      | Silver,    | Silver,    |  |
| 3. Gold,     | Copper,    | Iron,      |  |
| 4. Zinc,     | Tin,       | Copper,    |  |
| 5. Silver,   | Lead,      | Gold,      |  |
| 6. Copper,   | Zinc,      | Zinc,      |  |
| 7. Platinum, | Platinum,  | Tin,       |  |
| 8. Iron.     | Iron.      | Lead.      |  |

MALLEABILITY. Aluminum is preceded in the relative MALLEABILITY of the metals, only by gold, and in ductility by gold, silver, platinum, iron, soft steel and copper. Both malleability and ductility are impaired by the presence of the two common impurities, silicon and iron. Aluminum of over 99 per cent. purity, is rolled into sheets of only five to seven ten-thousandths of an inch in thickness, and such sheets are hammered into leaf nearly as thin as any gold leaf can be beaten. Aluminum leaf is largely used in decorative work, and on account of its relative cheapness and non-tarnishing qualities has almost entirely superseded the use of silver leaf. Aluminum leaf is ground up into powder and used in large quantities for the pigment of a decorative paint called by the trade "Aluminum Bronze Paint."

Pure aluminum is very sonorous, and its tone seems to be improved by alloying with a few per cent. of silver or german silver. **SPECIFIC** The specific gravity of aluminum is one of its most **GRAVITY**. striking properties, being 2.56 in ordinary castings of pure aluminum, and 2.68 in the compressed and worked metal. The following is the comparative weight of aluminum with other metals.

## SPECIFIC GRAVITY AT 62° FAHRENHEIT OF ALUMINUM AND ALUMINUM ALLOYS.

| ALUMINUM ALLUIS.                                              |
|---------------------------------------------------------------|
| Aluminum Commercially Pure, Cast 2.56                         |
| Nickel Aluminum Alloy Ingots for Rolling 2.72                 |
| " Casting Alloy 2.85                                          |
| Special Casting Alloy, Cast 3.00                              |
| Aluminum Commercially Pure, as rolled, sheets and wire, 2 68  |
| " " Annealed 2.66                                             |
| Nickel Aluminum Alloy, as rolled, sheets and wire 2.76        |
| " " Sheets Annealed 2.74                                      |
| WEIGHT:                                                       |
| Using these specific gravities, assuming water at 62 de-      |
| grees Fahrenheit and at Standard Barometric Height, as 62.355 |
| lbs. per cubic foot, (authority Kent and D. K. Clark.)        |
| Sheet of cast aluminum, 12 inches square and 1                |
| inch thick, weighs 13.3024 lbs.                               |
| Sheet of rolled aluminum, 12 inches square and 1              |
| inch thick, weighs                                            |
| Bar of cast aluminum, I inch square and 12                    |
| inches long, weighs 1.1085 lbs.                               |
| Bar of rolled aluminum, I inch square and 12                  |
| inches long, weighs                                           |
| Bar of aluminum, cast, I inch round and 12                    |
| inches long, weighs                                           |
| Bar of rolled aluminum, I inch round and 12                   |
| inches long, weighs                                           |
| The weight per cubic inch of Pure Cast                        |
| Aluminum, is                                                  |
| The weight per cubic inch of Pure Rolled                      |
| Aluminum annealed, is                                         |
| The weight per cub. ft. of pure cast alum'm is 159.6288 lbs.  |
| " " " rolled " is 167.1114 lbs.                               |

| GRADE OF METAL.              | Specific Gravity.    | WEIGHT PER<br>CUBIC FOOT. |  |
|------------------------------|----------------------|---------------------------|--|
| Pure Cast Aluminum           | 2.56                 | 159.6288*                 |  |
| " Rolled "                   | 2.68                 | 167.1114*                 |  |
| Nickel Alum. Rolli'g Ingots, | 2.72                 | 169.606                   |  |
| " " Rolled Sheets,           | 2.76                 | 172.10                    |  |
| " " Casting Metal,           | 2.85                 | 177.71                    |  |
| Special Casting Alloy        | 3.00                 | 187.40                    |  |
| Wrought Iron,                | 7.698                | 480.00                    |  |
| Soft Steel,                  | 7.858                | 490.00*                   |  |
| Cast Iron,                   | 7.218 (mean-Kent),   | 450.78*                   |  |
| " Brass; 33 Zn., 67 Cu.,     | 8.320 ( " Haswell),  | 518.79                    |  |
| " Bronze; 16 Tin, 84 Cu.,    | 8.832 ( " " ),       | 550.72                    |  |
| Rolled High Yellow Brass,    | 8.549 ( " P. R. C.), | 533.073*                  |  |
| " Commercial Copper,         | 8.93 ( A. C. M. A.), | 556.83*                   |  |

<sup>\*</sup> These values used in calculation of tables.

Weight of pure rolled aluminum, being t, (specific gravity 2.68), relative weights of common metals have the following factors of increase in weight:

| Tin, speci | fic gravit | y 7.29   | (Robe   | erts-Austen)   | <b></b>          | 2.720 |
|------------|------------|----------|---------|----------------|------------------|-------|
| Wrought    | Iron, spec | cific gr | avity ? | 7.698, (Kent). | <b>.</b>         | 2.872 |
| Rolled Hi  | gh Brass   | ,        | " {     | 8.549, (T. P.  | R. Co.)          | 3.190 |
| Rol'd Con  | nmer. Co   | pper,    | " {     | 3.93. (A. C. 1 | М. А <i>.</i> ). | 3.332 |
| Nickel,    | specific   | gravit   | y 8.80  | (Roberts-Au    | sten)            | 3.284 |
| Silver,    | "          | "        | 10.5    | 3 "            |                  | 3.929 |
| Lead,      | 66         | "        | 11.3    | 7 "            |                  | 4.243 |
| Gold,      | "          | " "      | 19.3    | 2 "            |                  | 7.209 |
| Platinum.  | "          | 66       | 21.50   | . "            |                  | 8.022 |

### NICKEL ALUMINUM ALLOY.

Weight of nickel aluminum, cast, being I, (specific gravity 2.85), relative weights of common metals have the following factors of increase in weight:

| FACTOR.                                                                                                       |
|---------------------------------------------------------------------------------------------------------------|
| Cast Iron, specific gravity 7.218 2.533                                                                       |
| Cast Brass, 33 zinc, 67 cu., specific gravity 8.320 2.919                                                     |
| Cast Bronze or Composition, 16 tin, 84 cu., specific                                                          |
| gravity 8.832 3.099                                                                                           |
| Weight of rolled nickel aluminum being 1, (specific gravity 2.76), relative weights of common metals have the |
| following factors of increase in weight:                                                                      |
|                                                                                                               |
| Wrought Iron, specific gravity 7.698 2.789                                                                    |
| Soft Steel, specific gravity 7.858 2.847                                                                      |
| Rolled Brass, High Yellow, specific gravity 8.549 3.097                                                       |
| Rolled Commercial Copper, specific gravity 8.930 3.235                                                        |

# THE SPECIFIC GRAVITY OF ALUMINUM IN COMPARING ITS RELATIVE SELLING PRICE PER POUND WITH THOSE OF OTHER METALS.

It is evident that for any use of aluminum in the form of sheets, bars, tubes, wire or castings, its relative light weight to other metals should be taken into consideration in comparing their relative costs for any given purpose.

The common metals; wrought iron, cast iron, steel, copper, zinc, tin, lead, brass, bronze, german silver, nickel, antimony and brittania metal, are each a great deal heavier, and the relative economy in their use in either the cast or worked shape, can only be arrived at by multiplying the price of the heavier metal, by the factor of its specific gravity relative to the specific gravity of aluminum.

For convenience in these calculations the following table is given:

| METALS.                                                      | SPECIFIC GRAVITY.      | Factor of Specific Gravity relative<br>to Aluminum. | Selling price per pound New York<br>Market in May, 1896, in large lots. | Relative selling price per pound<br>New York Market to Aluminum<br>obtained by multiplying price per<br>pound by factor given in column B. | Value per pound that Aluminum<br>is thus relatively cheaper. | Value per pound that Aluminum<br>is relatively dearer. |
|--------------------------------------------------------------|------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
|                                                              | A                      | В                                                   | C                                                                       | D                                                                                                                                          | E                                                            | F                                                      |
| No. 1 Aluminum, Cast,                                        | 2.56                   | 1.000                                               | \$ .35                                                                  | 8.35                                                                                                                                       | \$                                                           | \$                                                     |
| No. 1 Aluminum, Wrot,                                        | 2.68                   | 1.000                                               | .45                                                                     | .45                                                                                                                                        |                                                              |                                                        |
| Commercial Copper, Cast                                      | 8.85                   | 3.457                                               | .1025                                                                   | .354                                                                                                                                       | .004                                                         |                                                        |
| Commercial Copper, Wro't                                     | 8.93<br>7.29           | 3.332<br>2.848                                      | .14                                                                     | .466                                                                                                                                       | .016                                                         |                                                        |
| Tin, Cast                                                    | 7.29                   | 2.848                                               | .1345                                                                   | .383                                                                                                                                       | .033                                                         |                                                        |
| Tin, Wrought                                                 | 7.36                   | 2.746                                               | .20                                                                     | .549                                                                                                                                       | .199                                                         |                                                        |
| Bronze, 16 Tin, 84 cu., Cast                                 | 8.832                  | 3.451                                               | .12                                                                     | .414                                                                                                                                       | .064                                                         |                                                        |
| Bronze, 16 Tin, 84 eu., Wro't.                               | 8.90<br>7.261<br>7.301 | 3,321                                               | .18                                                                     | .597                                                                                                                                       | .147                                                         |                                                        |
| Britannia Metal, Cast                                        | 7.261                  | 2.836<br>2.724<br>3.360<br>3.246<br>3.237           | .125                                                                    | .354                                                                                                                                       | .004                                                         | ********                                               |
| Britannia Metal, Wrought                                     | 7.301                  | 2.724                                               | .200                                                                    | .545                                                                                                                                       | .095                                                         |                                                        |
| 20% German Silver, Cast                                      | 8.60                   | 3.360                                               | .16                                                                     | .538                                                                                                                                       | .188                                                         | ********                                               |
| 20% German Silver Wrought                                    | 8.70                   | 3,246                                               | .2925                                                                   | .949                                                                                                                                       | .459                                                         |                                                        |
| Nickel, Cast                                                 | 8,287                  | 3,237                                               | .35                                                                     | 1.133                                                                                                                                      | .783                                                         | *********                                              |
| Nickel, Wrought                                              | 8.67                   | 3.235<br>3.250                                      | .45                                                                     | 1.456                                                                                                                                      | 1.006                                                        |                                                        |
| Brass, 33 Zn., 67 Cu. Cast                                   | 8.32                   | 3.250                                               | .095                                                                    | .309                                                                                                                                       | *******                                                      | .041                                                   |
| Brass, 33 Zn., 67 Cu., Wro't                                 | 8.549                  | 3.190                                               | .12                                                                     | .383                                                                                                                                       | ******                                                       | .067                                                   |
| Antimony, Cast                                               | 6.71                   | 2.621                                               | .08                                                                     | .210                                                                                                                                       | *********                                                    | .140                                                   |
| Brass, 33 Zn., 67 Cu., Wro't<br>Antimony, Cast<br>Lead, Cast | 11.36                  | 4,438                                               | .0308                                                                   | .1367                                                                                                                                      |                                                              | .2133                                                  |
| Lead, Wrought                                                | 11.38                  | 4.247                                               | .045                                                                    | .1911                                                                                                                                      |                                                              | .2589                                                  |
| Zinc, Cast                                                   | 6.861                  | 2.680                                               | .0410                                                                   | .1099                                                                                                                                      |                                                              | .2401                                                  |
| Zine, Wrought                                                | 7,191                  | 2.683                                               | .06                                                                     | .1620                                                                                                                                      |                                                              | .2880                                                  |
| Steel Cast                                                   | 7 82                   | 3.055                                               | .025                                                                    | .0764                                                                                                                                      |                                                              | .2736                                                  |
| Steel, Wrought                                               | 7,858                  | 2,932                                               | .016                                                                    | .0469                                                                                                                                      |                                                              | .4031                                                  |
| Iron, Cast                                                   | 7.218                  | 2,820                                               | .006                                                                    | .0169                                                                                                                                      |                                                              | .3331                                                  |
| Iron, Wrought                                                | 7.698                  | 2.872                                               | .015                                                                    | .0421                                                                                                                                      |                                                              | .4079                                                  |

### TABLE OF SPECIFIC GRAVITY AND UNIT WEIGHTS.

Water at 39.1° Fahrenheit = 4° Centigrade; 62.425 pounds to the cubic foot (authority, Kent, Haswell, and D. K. Clark).

|                             | Specific<br>Gravity. Authority. |           | Lbs. per<br>Cubic Foot | Lbs. per<br>Cubic Inch | Kilos<br>per Cubic<br>Dacm.           |  |
|-----------------------------|---------------------------------|-----------|------------------------|------------------------|---------------------------------------|--|
| Aluminum, pure cast         | 2.56                            | P. R. C.  | 159.63                 | .0924                  | 2.56                                  |  |
| " rolled,                   | 2.68                            |           | 167.11                 | .0967                  | 2.68                                  |  |
| annealeu                    | 2 66                            |           | 165.86                 | .0960                  | 2.66                                  |  |
| nickei aliby, cast,         | 2.85                            |           | 178.10                 | .1031                  | 2.85                                  |  |
| rollea                      | 2.76                            | 1 ::      | 172.10                 | .0996                  | 2.76                                  |  |
| anne ia                     | 2.74                            |           | 170.85                 | .0989                  | 2.74                                  |  |
| Aluminum Bronze, 10%.       | 7.70                            | Riche.    | 480.13                 | .2779                  | 7.70                                  |  |
| 5%.                         | 8.26                            |           | 515.63                 | .2984                  | 8.26                                  |  |
| Brass, cu. 67, zn. 33 cast. | 8.32                            | Haswell.  | 519.36                 | .3006                  | 8.32                                  |  |
| " cu. 60, zn. 40 "          | 8.405                           | Thurston. | 524.68                 | .3036                  | 8.405                                 |  |
| Cobalt                      | 8.50                            | RA.       | 530.61                 | .3071                  | 8.50                                  |  |
| Brass, plates               |                                 |           |                        |                        |                                       |  |
| high yellow                 | 8.586                           | P. R. C.  | 535.38                 | .3098                  | 8.586                                 |  |
| Bronze composition          |                                 |           |                        |                        |                                       |  |
| cu. 90, tin 10              | 8.669                           | Thurston. | 541.17                 | .3132                  | 8.669                                 |  |
| Bronze composition          |                                 |           |                        |                        | · · · · · · · · · · · · · · · · · · · |  |
| cu. 84, tin 16              | 8.832                           | Haswell.  | 551.34                 | .3191                  | 8.832                                 |  |
| Lithium                     | 0.57                            | RA.       | 36.83                  | .0213                  | .57                                   |  |
| Potassium                   | 0.87                            | ••        | 54.31                  | .0314                  | .87                                   |  |
| Sodium                      | 0.97                            | ••        | 60.55                  | .0350                  | .97                                   |  |
| Rubidium                    | 1.52                            | ••        | 94.89                  | .0549                  | 1.52                                  |  |
| Calcium                     | 1.57                            | **        | 98.01                  | .0567                  | 1.57                                  |  |
| Magnesium                   | 1.74                            | 4.        | 108.62                 | .0629                  | 1.74                                  |  |
| Caesium                     | 1.88                            | ••        | 117.36                 | .0679                  | 1.88                                  |  |
| Boron                       | 2.00                            | Haswell.  | 124.85                 | .0723                  | 2.00                                  |  |
| Glucinum                    | 2.07                            | RA.       | 129.22                 | .0748                  | 2.07                                  |  |
| Strontium                   | 2.54                            | **        | 158.56                 | .0918                  | 2.54                                  |  |
| Barium                      | 3.75                            | RA.       | 234.09                 | .1355                  | 3.75                                  |  |
| Zirconium                   | 4.15                            | **        | 259.06                 | .1499                  | 4.15                                  |  |
| Selenium                    | 4.50                            | Haswell.  | 280.91                 | .1626                  | 4.50                                  |  |
| Titanium                    | 5.30                            |           | 330.85                 | .1915                  | 5.30                                  |  |
| Vanadium                    | 5.50                            | RA.       | 343.34                 | .1987                  | 5,50                                  |  |
| Arsenic                     | 5.67                            | ••        | 353-95                 | .2048                  | 5.67                                  |  |
| Columbium                   | 6.00                            | Haswell.  | 374.55                 | .2168                  | 6.00                                  |  |
| Lanthanum                   | 6.20                            |           | 387.03                 | .2240                  | 6.20                                  |  |
| Niobium                     | 6.27                            | RA.       | 391.40                 | .2265                  | 6.27                                  |  |
| Didymium                    | 6.54                            | •••       | 408.26                 | .2363                  | 6.54                                  |  |
| Cerium                      | 6.68                            | **        | 417.00                 | .2413                  | 6.68                                  |  |
| Antimony                    | 6.71                            | **        | 418.86                 | .2424                  | 6.71                                  |  |
| Chromium                    | 6.80                            |           | 429.49                 | .2457                  | 6.80                                  |  |
| Zinc, cast                  | 6.861                           | Haswell.  | 428.30                 | .2479                  | 6.861                                 |  |
| " nure                      | 7.15                            | RA.       | 446,43                 | .2583                  | 7.15                                  |  |
| " rolled                    | 7.191                           | Haswell.  | 448.90                 | 2598                   | 7.191                                 |  |

TABLE OF SPECIFIC GRAVITY AND UNIT WEIGHTS.—Continued.

|                         | Specific<br>Gravity. | Authority.  | Lbs. per<br>Cubic Poot | Lbs. per<br>Cubic Inch | Kiles<br>per Cubic<br>Decm. |
|-------------------------|----------------------|-------------|------------------------|------------------------|-----------------------------|
| Wolfram                 | 7.119                | Haswell.    | 414.40                 | .2572                  | 7.119                       |
| Tin, pure               | 7.29                 | RA.         | 455.08                 | .2634                  | 7.29                        |
| Indium                  | 7.49                 | **          | 463.19                 | .2681                  | 7.42                        |
| Iron, cast              | 7.218<br>7.70        | Kent.       | 450.08                 | .2605                  | 7.218                       |
| " wrought               | 7.70                 |             | 480.13                 | .2779                  | 7.70                        |
| " wire                  | 7.774                | Haswell.    | 485.29                 | .2808                  | 7.774                       |
| Steel, Bessemer         | 7.852                |             | 479.00                 | .2837                  | 7.852                       |
| " soft                  | 7.854                | Keut.       | 489.74                 | .2834                  | 7.854                       |
| Iron, pure              | 7.86                 | RA.         | 490.66                 | .2840                  | 7.86                        |
| Manganese               | 8.00                 |             | 499.40                 | .2890                  | 8.00                        |
| Cinnabar                | 8,809                | Haswell.    | 505.52                 | .2925                  | 8,098                       |
| Cadmium                 | 8.60                 | RA.         | 536.85                 | .3107                  | 8.60                        |
| Molybdenum              | 8.60                 |             | 536.85                 | .3107                  | 8.60                        |
| Gun Bronze              | 8.750                | Haswell.    | 546.22                 | .3161                  | 8.750                       |
| Tobin Bronze            | 8.379                | A. C. Co.   | 523.06                 | 3021                   | 8.379                       |
| Nickel                  | 8.80                 | RA.         | 549.34                 | 3179                   | 8.80                        |
| Copper, pure            | 8.82                 | *****       | 550.59                 | .3186                  | 8.82                        |
| Copper plates and sheet | 8.93                 | A. of C. M. | 556.83                 | 3222                   | 8.93                        |
| Bismuth                 | 9.80                 | RA.         | 611.76                 | 3540                   | 9.80                        |
| Silver                  | 10.53                | 101,711     | 657.33                 | .3805                  | 10.53                       |
| l'antalum               | 10.80                | **          | 674.19                 | 3902                   | 10.80                       |
| Chorium                 | 11.10                | ••          | 692.93                 | .4010                  | 11.10                       |
| Lead.                   | 11.37                | **          | 709.77                 | .4108                  | 11.37                       |
| Palladium               | 11.50                | **          | 717.88                 | .4154                  | 11.50                       |
| Challium                | 11.85                | **          | 739.73                 | .4281                  | 11.85                       |
| Rhodium                 | 12.10                | **          | 755.34                 | .4371                  | 12.10                       |
| Duthanium               | 12.26                |             | 765.33                 | .4429                  | 12.26                       |
| Ruthenium               | 13.59                | 4.          | 848.35                 | .4909                  | 13.59                       |
| Mercury                 | 18.70                |             |                        | 6755                   | 18.70                       |
| Jranium                 | 19.10                | **          | 1167.45                | .6900                  | 19.10                       |
| lungsten                |                      |             | 1192.31                |                        | 19.10                       |
| lold                    | 19.32                | ••          | 1206.05                | .6979                  |                             |
| Platinum                | 21.50                | .,          | 1342.13                | .7767                  | 21.50                       |
| ridium                  | 22.42                |             | 1399.57                | .8099                  | 22.42                       |
| )smium                  | 22.48                | "           | 1403.31                | .8121                  | 22.48                       |

Authorities- R.-A.....Prof. Roberts-Austen.

Haswell ..... Haswell's Engineer's Pocket Book.

P. R. C.....Pittsburgh Reduction Co.'s tests.

Kent .......Kent's Mechanical Engineer's Pocket Book.

Thurston ... Report of Committee on Metallic Alloys of U. S. Board appointed to test iron, steel, and other metals. Thurston's Materials of Engineering.

Riche.....Quoted by Thurston.

A. C. Co..... Ansonia Brass and Copper Co.

A. of C. M. . Association of Copper Manufacturers.

### SPECIFIC GRAVITY OF LIQUIDS AT 60° FAHRENHEIT.

| Acid, Muriatic, 1.2000  '' Nitric, 1.217  '' Sulphuric, 1.849 | Oil, Olive,                                                                                       |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Alcohol, pure,                                                | " Rape,92 " Turpentine,87 " Whale,92 Tar,1.00 Vinegar, 1.08 Water, 1.00 Water, Sea, 1.03 to 1.026 |

This table is taken from Kent's Mechanical Engineer's Pocket Book.

### SPECIFIC GRAVITY AND WEIGHT OF WOOD.

|               | Specific Gravity. | Average. | Weight<br>per<br>Cubic Foot |
|---------------|-------------------|----------|-----------------------------|
| Ash,          | .60 to .84        | .72      | 45                          |
| Beech,        | .62 '' .85        | .73      | 46                          |
| Cedar,        | ·49 '' ·75        | .63      | 39                          |
| Cherry,       | .61 " .72         | .66      | 41                          |
| Chestnut,     | .46 '' .66        | .56      | 35                          |
| Cork,         | .24 ''            | .24      | 15                          |
| Ebony,        | 1.13 " 1.33       | 1.23     | 7Ğ                          |
| Hickory,      | .69 '' .94        | .77      | 48                          |
| Lignum Vitæ,  | .65 " 1.33        | 1.00     | 62                          |
| Mahogany,     | .56 " 1,06        | .81      | 51                          |
| Oak, Live,    | .96 '' 1.26       | 1.11     | 69                          |
| Oak, White,   | .69 '' .86        | -77      | 48                          |
| Oak, Red,     | ·73 " ·75         | .74      | 46                          |
| Pine, White,  | ·35 " ·55         | .45      | 28                          |
| Pine, Yellow, | .46 " .76         | .61      | 38                          |
| Poplar,       | .38 " .58         | .48      | 30                          |
| Spruce,       | .40 '' .50        | .45      | 28                          |
| Walnut,       | .50 '' .67        | .58      | 36                          |

This table is taken from Kent's Mechanical Engineer's Pocket Book.

### SPECIFIC GRAVITY OF DIFFERENT KINDS OF WOOD: WATER BEING UNITY.

FROM GROVES & THORP'S CHEMICAL TECHNOLOGY OF FUELS.

| VARIETY OF WOOD.           | I.                                                                                                                            | II.                                                                                                                                                          | III.                                     | IV.                                                                                                               | V.                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                            | Recently                                                                                                                      | Dried in                                                                                                                                                     | Strongly                                 | Strongly                                                                                                          | Average                              |
|                            | felled.                                                                                                                       | air.                                                                                                                                                         | dried.                                   | dried.                                                                                                            | Dried.                               |
| Common Oak (Quercus robur) | 0.9822<br>0.9476<br>0.9452<br>0.9205<br>0.9121<br>0.9036<br>0.9012<br>0.8699<br>0.8571<br>0.7795<br>0.7654<br>0.7634<br>Grif- | 0.7075<br>0.4873<br>0.5907<br>0.5474<br>0.7695<br>0.4735<br>0.5502<br>0.6592<br>0.6274<br>0.5550<br>0.4716<br>0.3656<br>0.4302<br>0.3981<br>1.3420<br>1.2260 | 0.6441<br>0.4464<br>0.5422<br>0.5788<br> | 0.663<br>0.457<br>0.560<br>0.518<br>0.691<br>0.441<br>0.425<br>0.618<br>0.619<br>0.493<br>0.493<br>0.494<br>0.434 | 0.929<br>0.585<br>0.852<br>0.600<br> |

### The Following Determinations of the Specific Gravity of Woods were made by Karmarsh.

|                       |                                                               | SPECIFIC GRAVITY. |                            |                  |                                                |
|-----------------------|---------------------------------------------------------------|-------------------|----------------------------|------------------|------------------------------------------------|
| NAMES OF WOODS.       | IN THE GREEN                                                  | STATE.            | IN THE AIR-DRIED STATE.    |                  | weight of 1<br>cubic foot of<br>air-dried Wood |
|                       | Limits.                                                       | Mean.             | Limits.                    | Mean.            | in lbs.*                                       |
| Maple                 | 0.843-0.944                                                   | 0.893             | 0.645-0.750                | 0.697            | 37 lbs.                                        |
| Apple<br>Pear         | 0.960—1.137                                                   | 1.048             | 0.734-0.793<br>0.646-0.732 | 0.763<br>0.689   | 37 "                                           |
| Red Beech             | 0.852-1.109                                                   | 0.980             | 0.690—0.852<br>0.912—1.031 | $0.771 \\ 0.971$ | 41 "<br>52 "                                   |
| Box<br>Cedar          |                                                               | 0.973             | 0.561—0.575<br>0.650—0.920 | 0.568<br>0.785   | 30 ···                                         |
| Oak<br>Ash            | $\begin{array}{c} 0.885 - 1.062 \\ 0.778 - 0.927 \end{array}$ | 0.852             | 0.540-0.845                | 0.692            | 37 "                                           |
| Pine<br>Larch         | 0.8480.993<br>0.6940.924                                      | 0.920<br>0.809    | 0.454-0.481<br>0.565       | 0.467<br>0.565   | 30 "                                           |
| Lime<br>Poplar        | 0.710—0.878<br>0.758—0.956                                    | 0.794<br>0.857    | 0.559-0.604<br>0.383-0.591 | 0.581<br>0.487   | 26 "                                           |
| Elm                   | 0.8780.941<br>0.8380.855                                      | 0.909             | 0.568-0.671<br>0.392-0.530 | 0.619<br>0.461   | 36<br>25                                       |
| Willow<br>White Beech | 0.939-1.137                                                   | 1.038             | 0.728-0.790                | 0.759            | 40 "                                           |

\* The Hanoverian pound is equal to 1.031114 lb. English.

Most trustworthy results, obtained by the method of immersion, have been recorded by Marcus Bull, who took the precaution of covering each specimen with a varnish of sp. gr. = 1.000, which, without giving rise to error, ensured the presence of the whole natural quantity of air in the wood. The most important of his experiments are given in the table below:

| Walnut (with scaly bark) | 1.000 |
|--------------------------|-------|
| White Oak and Chestnut   | 0.885 |
| American Ash             | 0.772 |
| BeechSassafras           | 0.618 |
| Virginian Cherry         | 0.597 |

| American Elm            | 0.580 |
|-------------------------|-------|
| Virginian Cedar         | 0.565 |
| Yellow Pine             | 0.551 |
| Birch (poplar-leaved)   | 0.530 |
| American Horse-chestnut | 0,522 |
| Italian Poplar          | 0.397 |
| Toursett Tobies         |       |

### WEIGHT OF A CUBIC FOOT OF VARIOUS SUBSTANCES.

| FROM "OARNEGIE'S HAND-BOOK."                           | Average<br>Weight |
|--------------------------------------------------------|-------------------|
| Names of Substances.                                   | Lbs.              |
| Anthracite, solid, of Pennsylvania                     | 93                |
| " broken, loose                                        | 54                |
| " moderately shaken                                    | 58                |
| " heaped bushel, loose                                 | (80)              |
| Asphaltum                                              | 87                |
| Brick, best pressed                                    | 150               |
| " common hard                                          | 125               |
| " soft, inferior                                       | 100               |
| Brickwork, pressed brick                               | 140               |
| " ordinary                                             | 112               |
| Cement, hydraulic, ground, loose, American, Rosendale, | 56                |
| " " Louisville,                                        | 50                |
| " " English Portland                                   | 90                |
| Coal, bituminus, solid                                 | 84                |
| " broken, loose                                        | 49                |
| " heaped bushel, loose                                 | (76)              |
| Coke, loose, of good coal                              | 27                |
| " " heaped bushel                                      | (38)              |
| Earth, common, loam, dry, loose                        | 76                |
| " " moderately rammed                                  | 95                |
| Elm, dry                                               | 35                |
| Flint,                                                 | 162               |
| Glass, common window                                   | 157               |
| Gneiss, common                                         | 168               |
| Granite                                                | 170               |
| Gravel, about the same as sand, which see.             | •                 |
| Hemlock, dry                                           | 25                |
| Hornblende, black                                      | •                 |
| Ice                                                    |                   |
| Ivory                                                  | •                 |

### WEIGHT OF SUBSTANCES.—Continued.

| NAMES OF SUBSTANCES.                             | Weight<br>Lbs. |
|--------------------------------------------------|----------------|
| Lime, quick, ground, loose, or in small lumps    | 53             |
| " " thoroughly shaken                            | 75             |
| " " per struck bushel                            | (66)           |
| Limestone or Marbles                             |                |
| " loose, in irregular fragments                  | 96             |
| Maple, dry                                       | 49             |
| Marbles, see Limestones.                         |                |
| Masonry, of granite or limestone, well dressed   | 165            |
| " mortar rubble                                  | 154            |
| " dry " (well scabbled)                          | 138            |
| " sandstone, well dressed                        | 144            |
| Mica                                             | 183            |
| Mortar, hardened                                 | 103            |
| Petroleum                                        | 55             |
| Quartz, common, pure                             | 165            |
| Rosin                                            | 69             |
| Salt, coarse, Syracuse, N. Y                     | 45             |
| " Liverpool, fine, for table use                 | 49             |
| Sand, of pure quartz, dry, loose 90 to           |                |
| " well shaken 99 to                              | 117            |
| " perfectly wet 120 to                           | 140            |
| Sandstones, fit for building                     | 151            |
| Shales, red or black                             | 162            |
| Slate                                            | 175            |
| Snow, freshly fallen 5                           |                |
| " moistened and compacted by rain 15             | to 50          |
| Sulphur                                          | ,              |
| Sycamore                                         | 37             |
| Tar                                              |                |
| Turf or Peat, dry, unpressed 20                  |                |
| Water, pure rain or distilled, at 60° Fahrenheit |                |
| " sea                                            | 64             |
| Wax, bees                                        | ,              |
| Green timbers usually weigh from one fifth to on | e-half         |
| more than dry.                                   |                |

### SPECIFIC GRAVITY AND WEIGHTS OF LIQUIDS.

RAIN WATER EQUALS 1000.

Calculated upon the basis of a Cubic Foot of Water at 62° F., weighing 62.50 Pounds.

| Substances.                              | Specific<br>Gravity. | Weight of<br>a Cubic<br>Foot. | Substances.       | Specific<br>Gravity.   | Weight of<br>a Cubic<br>Foot. |
|------------------------------------------|----------------------|-------------------------------|-------------------|------------------------|-------------------------------|
| Liquids.                                 |                      |                               | Liquids.          |                        |                               |
| Acid, Acetic                             | 1062                 | 66.375                        | Ether, nitric     | £110                   | 69.375                        |
| " Benzoic                                | 667                  | 41.687                        | " sulphuric.      | 715                    | 44.687                        |
| " Citric                                 | 1034                 | 64.625                        | Honey             | 1450                   | 90.625                        |
| " Concentrated                           | 1521                 | 95.062                        | Milk              | 1032                   | 64.500                        |
| " Fluoric                                | 1500                 | 93.750                        | Oil. Anise Seed   | 986                    | 61.625                        |
| " Muriatic                               | 1200                 | 75.000                        | " Codfish         | 923                    | 57.687                        |
| " Nitric                                 | 1217                 | 76.062                        | " Cotton-seed     | _                      |                               |
| " Nitrous                                | 1550                 | 96.875                        | " Linseed         | 940                    | 58.750                        |
| " Phosphoric.                            | 1558                 | 97.375                        | " Naphtha         | 850                    | 53.125                        |
| " solid                                  | 2800                 | 175.000                       | " Olive           | 915                    | 57.187                        |
| " Sulphuric                              | 1849                 | 115.562                       | " Palm            | 969                    | 60.562                        |
| Alcohol, pure, 60°                       | 794                  | 49.622                        | " Petroleum       | 88o                    | 55.000                        |
| " 95 per cent                            | 816                  | 51.000                        | " Rape            | 914                    | 57.125                        |
| " 80 · · · · · · · · · · · · · · · · · · | 863                  | 53.937                        | " Sunflower       | 926                    | 57.875                        |
| " 50 " "                                 | 934                  | 58.375                        | " Turpentine      | 870                    | 54.375                        |
| " 40 " "                                 | 951                  | 59.437                        | " Whale           | 9 <b>2</b> 3           | 57.687                        |
| " 25 " "                                 | 970                  | 60,625                        | Spirit, rectified | 824                    | 51.500                        |
| " 10 " "                                 | 986                  | 61.625                        | Steam at 212°     | ,00061                 | .03818                        |
| " 5 " "                                  | 992                  | 62,000                        | Tar               | 1015                   | 63.437                        |
| " proof spirit, 50                       | 1 024                | 58.375                        | Vinegar           | 1080                   | 67.500                        |
| per cent60°                              | } 934                | 30.373                        | Water, at 32°     | 998.7                  | 62.418                        |
| " proof spirit, 50                       | } 875                | 54.687                        | " " 39.1°         | <b>9</b> 9 <b>8.</b> 8 | 62.425                        |
| per cent80°                              | ٥/3                  | i .                           | " " 62°           | 997.7                  | 62.355                        |
| Ammonia, 27.9 per cent.                  | 891                  | 55.687                        | " "212°           | 956.4                  | 59.640                        |
| Aquafortis, double                       | 1300                 | 81.250                        | " distilled 39°   | 998                    | 62.379                        |
| " single                                 | 1200                 | 75.000                        | " Dead Sea        | 1240                   | 77.500                        |
| Beer                                     | 1034                 | 64.625                        | " Mediterranean   | 1029                   | 64.312                        |
| Benzine                                  | 850                  | 53.125                        | " rain            | 1000                   | 62.500                        |
| Bitumen, liquid                          | 848                  | 53.000                        | " sea             | 1029                   | 64.312                        |
| Blood (human)                            | 1054                 | 65.875                        | Wine, Burgundy    | 992                    | 62.000                        |
| Brandy, & or .5 of spirit.               | 924                  | 57.750                        | " Champagne.      | 997                    | 62.312                        |
| Bromine                                  | 2966                 | 185.375                       | " Madeira         | 1038-                  | 64.375                        |
| Cider                                    | 81ò1                 | 63.625                        | " Port            | 997                    | 62.312                        |
| Ether, acetic                            | 866                  | 54.125                        | Atmospheric Air   | .001292                | .080728                       |
| " muriatic                               | 845                  | 52.812                        | 1                 | l .                    | 1                             |

# SPECIFIC GRAVITY AND WEIGHTS OF ELASTIC FLUIDS AT ATMOSPHERIC PRESSURE.

### ATMOSPHERIC AIR AT $32^{\circ} = 1$ .

| Substances.          | Specific<br>Gravity. | Weight<br>per Cubic<br>Foot. | Substances.          | Specific<br>Gravity. | Weight<br>per Cubic<br>Foot. |
|----------------------|----------------------|------------------------------|----------------------|----------------------|------------------------------|
|                      |                      | Lbs.                         |                      |                      | Lbs.                         |
| Acetic Ether         | 3.040                | 245430                       | Phosphureted hydro   | 1.770                | 142910                       |
| Ammonia              | .589                 | 047557                       | Sulphureted ,,       | 1.170                | .094463                      |
| Atmospheric air, 32° | 1.000                | 080728                       | Sulphurous acid      | 2.210                | 178430                       |
| " " <b>62</b> °      | ·9 <b>426</b>        | 076097                       | Steam, 212°          | 47295                | 038185                       |
| Azote                | ·976                 | .078805                      | Smoke, of bituminous |                      |                              |
| Carbonic acid        | 1.520                | 122720                       | coal                 | ·102                 | .008235                      |
| " oxyd               | .972                 | .078482                      | " coke               | ·105                 | 008476                       |
| Carbureted hydrogen  | .559                 | .045136                      | ,, wood              | .090                 | .007266                      |
| Chlorine             | 2.421                | 195470                       | Vapor of alcohol     | 1.613                | 130230                       |
| Chloro-carbonic      | 3.389                | 273640                       | " bisulphuret of     |                      |                              |
| Chloroform           | 5.300                | 428000                       | carbon               | 2.640                | ·213150                      |
| Cyanogen             | 1.815                | 146540                       | " bromine            | 5.400                | · <b>436</b> 000             |
|                      | · <b>43</b> 8        | .035360                      | ,, chloric ether.    | 3.440                | 277740                       |
| Gas, coal            | ·752                 | .060710                      | " chloroform         | 4.200                | .339080                      |
| Hydrogen             | 0692                 | .005507                      | ,, ether             | 2.586                | 208790                       |
| Hydrochloric acid    | 1.278                | 103180                       | " hydrochloric       |                      |                              |
| Hydrocyanic ,,       | ·942                 | .076055                      | ether                | 2.255                | 182080                       |
| Muriatic acid        | 1.247                | 100680                       | ,, iodine            | 8.716                | .703650                      |
| Nitrogen             | $\cdot 972$          | .078596                      | " nitric acid        | 3.750                | 302780                       |
| Nitric acid          | 1.217                | 098255                       | ,, spirits of tur-   |                      |                              |
| Nitric oxyd          | 1.094                | 088320                       | pentine              | 5.013                | · <b>40470</b> 0             |
| Nitrous acid         | 2.638                | 212990                       | ,, sulphuric acid    | 2.700                | ·218000                      |
| Nitrous oxyd         | 1.527                | 123280                       | ,, ,, ether          | 2.586                | .208900                      |
| Olefiant gas         | $\cdot 9672$         | .078100                      | ,, sulphur           | 2.214                | .178760                      |
| Oxygen               | 1.106                | .089290                      | ,, water             | 623                  | .020300                      |
|                      |                      | j                            | ! "                  |                      |                              |

### COMPARATIVE WEIGHT OF METALS.

| METALS.       |            | Wrights                                       | APPROXIMATE PRECENTAGE. |                       |  |
|---------------|------------|-----------------------------------------------|-------------------------|-----------------------|--|
|               |            | in Pounds per<br>Square Foot<br>1 Inch Thick. | HEAVIER THAN            | Lighter than<br>Iron. |  |
| Iron, Rolled, |            | 40.000                                        |                         |                       |  |
| Steel,        |            | 40.833                                        | 2 per ct.               |                       |  |
| Aluminun      | n, "       | 13.926                                        |                         | 65.2 per ct.          |  |
| Brass,        |            | 44.43                                         | 11.08 per ct.           |                       |  |
| Copper,       | ( <b>6</b> | 46.41                                         | 16.02 ''                |                       |  |
| Gold,         | "          | 100.5                                         | 151.25 "                |                       |  |
| Lead,         | "          | 59.15                                         | 47.87 "                 | ∵                     |  |
| Nickel,       | ٠.         | 45.78 .                                       | 14.45 "                 | ••••                  |  |
| Silver,       | "          | 54.78                                         | 36.95 "                 | •• •                  |  |
| Tin,          |            | 37.92                                         | ••••                    | 5.2 per ct.           |  |
| Zinc,         |            | 37.21                                         | •••                     | 7.0 "                 |  |

### STRENGTH.

The tensile, crushing and transverse tests of aluminum vary considerably with different conditions of hardness, due to cold working; also by the amount of work that has been put upon the metal, the character of the section, amount of hardening ingredients, etc. Cast aluminum has about an equal strength to cast iron in tension, but under compression it is comparatively weak. The following is a table giving the average results of many tests of aluminum of 99.0% purity:

```
POUNDS.
Elastic limit per sq. in. in tension (castings)...... 8,500
                                 (sheet). 12,500 to 25,000 ·
                            "
                                (wire). . 16,000 to 33,000
                                 (bars). . 14,000 to 23,000
Ultimate strength per sq. in.
                                (castings).....18,000
                                 (sheet) . 24,000 to 40,000
                                (wire) . .30,000 to 55,000
                                (bars). . 28,000 to 40,000
Per cent. of reduct'n of area in tens'n (castings).. 15 per cent.
                                 (sheet) 20 to 30
   ..
                            "
                                 (wire) 40 to 60
                      "
                            "
                                 (bars) 30 to 40
Elastic limit per square inch under compression in
  cast cylindrical short columns, with length twice
  the diameter ..... 3,500 lbs.
Ultimate strength per square inch under compression
  in cast cylindrical short columns, with length
  twice the diameter.....12,000 lbs.
The modulus of elasticity of cast aluminum is about
  11,500,000.
```

Aluminum in castings, can readily be strained to the unit stress of 1,500 lbs. per sq. inch in compression, and to 5,000 lbs. per sq. inch in tension. It is rather an open metal in its texture; and for cylinders, to stand pressure, an increase in thickness over the ordinary formulæ should be given to allow for its porosity.

Under transverse tests, pure aluminum is not very rigid, although the metal will bend nearly double before breaking, while cast iron will crack before the deflection has become at all large.

The texture and strength of aluminum are greatly improved by subjecting the ingots to forging or pressing at a temperature of about 600° Fahrenheit.

Taking the tensile strength of pure aluminum in relation to its weight, it is as strong as steel of 80,000 pounds per square inch. Comparative results in this way are tabulated below as taken from Richards' work on "Aluminium:"

|           | Weight of 1 cubic foot in pounds. | Tensile<br>Strength<br>per square<br>inch. | Length of<br>a bar able<br>to support<br>its own w't<br>in feet. |
|-----------|-----------------------------------|--------------------------------------------|------------------------------------------------------------------|
| Cast Iron | 444                               | 16,500                                     | 5,351                                                            |
|           | 525                               | 36,000                                     | 9,893                                                            |
|           | 480                               | 50,000                                     | 15,000                                                           |
|           | 490                               | 78,000                                     | 23,040                                                           |
|           | <b>168</b>                        | <b>26,800</b>                              | <b>23,040</b>                                                    |

Aluminum wire will have (weight for weight) a conductivity of 200, taking copper as being 100 and aluminum 60. Taking into consideration the comparative tensile strengths of copper, aluminum and the above alloys, and the tension brought upon electrical conductors by having to withstand their own weight, there is a wide field open for aluminum.

NICKEL The strength of The Pittsburgh Reduction Co.'s ALUMINUM "Nickel Aluminum Alloy" is superior to that of ALLOY. pure aluminum, without differing materially from it in weight. Like pure aluminum, the results of tests vary with different conditions—the amount of cold working, character of sections, etc.,—this being particularly true of metal that has been annealed. Under compression and transverse tests, Nickel aluminum is much stiffer than pure aluminum. Generally speaking it should be used in all cases where the greatest strength and rigidity is desired.

The following table gives the average results of many tests of Nickel Aluminum.

```
Elastic limit per sq. in, in tension (castings).
                                                   8500 to 12000
                                     (sheet),
                                                  21000 to 30000
                                     (bars),
                                                  18500 to 25000
Ultimate strength, per sq. in. "
                                     (castings),
                                                  18000 to 28000
                                     (sheet),
                                                 35000 to 50000
                               "
                                     (bars).
                                                 30000 to 45000
Per cent. of reduction of area. ... (castings), 6 to 8 per cent.
    "
                               . . . . . (sheet).
                                              12 to 20
                               . . . . . (bars),
                                               12 to 15
```

Elastic limit lbs. per sq. in. under compression in

short columns, with length twice the diam. 6000 to 10000 Ultimate strength lbs. per sq. in. under compression

in short columns, with length twice the dia. 1600 to 24000

The following table shows a set of tests of plates of aluminum that were supplied for the American yacht "Defender." These tests were made from actual sections, which were quite thick, and cut from the finished plates two edges of which were left as they came from the rolls, and the other two edges were planed parallel. It will be seen that the sections were about 1½ inches wide, and of the thickness of the plate from which the specimen was taken.

The heaviest plate in the "Defender" weighs about 200 pounds, is  $38\frac{1}{2}$  inches wide,  $\frac{5}{16}$  of an inch thick, and 13 feet 10 inches long.

This plate gave an ultimate tensile strength of 40,780 pounds per square inch, an elongation of 10 per cent. in two inches, and the reduction of area at the point of fracture was 14.75 per cent.

Except for the color, the fracture of these test specimens is exactly like the fracture of a steel specimen of the same size, tested under the same conditions.

| Original     |       | Elastic<br>Limit,     | Tensile<br>Strength,  | ELONG    | ATION,       | Reduc-           |
|--------------|-------|-----------------------|-----------------------|----------|--------------|------------------|
| DIMENSIONS.  | ARXA. | Lbs. per<br>sq. inch. | Lbs. per<br>sq. inch. | 2 inches | Per<br>Cent. | Area,<br>Per ct. |
| 1.549 x .318 | .4926 | 29,430                | 41,920                | .16      | 8.           | 9.1              |
| 1.515 x .384 | .5818 | 29,220                | 43,480                | .16      | 8.           | 11.5             |
| 1.538 x .285 | .4383 | 36,510                | 39,250                | .20      | 10.          | 13.50            |
| 1.505 x .358 | .5386 | 30,440                | 40,550                | .18      | 9.           | 13.1             |
| 1.500 x .322 | .4856 | 36,010                | 39,130                | .20      | 10.          | 10.9             |
| 1.120 x .317 | .3550 | 33,240                | 39,720                | .12      | 6.           | 16.7             |
| 1.485 x .395 | .5866 | 36,650                | 36,820                | .20      | 10.          | 11.6             |
| 1.480 x .364 | -5387 | 37,130                | 39,730                | .18      | 9.           | 13.6             |
| 1.473 x .313 | .4610 | 33,620                | 40,780                | .20      | 10.          | 14.7             |
| 1.110 x .360 | .3996 | 28,780                | 39,040                | .21      | 10.50        | 12.7             |
| 1.530 x .384 | .5875 | 27,240                | 39,240                | .20      | 10.          | 22.8             |
| 1,506 x .366 | .5512 | 30,840                | 39,730                | .18      | 9.           | 11.6             |
| 1.481 x .389 | .5760 | 30,380                | 41,320                | .16      | 8.           | 12.19            |
| 1.480 x .324 | .4795 | 25,030                | 41,200                | .21      | 10.50        | 15.33            |
| 1.478 x .258 | .3813 | 31,470                | 41,700                | .17      | 8,50         | 18.4             |
| 1.530 x .381 | .5830 | 34,310                | 40,230                | .16      | 8.           | 13.4             |

### MODULI OF ELASTICITY OF METALS.

| Aluminum,    | Pounds per Sq. In 11,500,000 | Kilos per Sq. Cm.<br>808,500 |
|--------------|------------------------------|------------------------------|
| Lead         | 2,500,000                    | 176,000                      |
| Cadmium      | 7,700,000                    | 492,000                      |
| Gold         | 11,500,000                   | 808,500                      |
| Silver       | 10,000,000                   | 703,000                      |
| Palladium    | 17,000,000                   | 1,195,000                    |
| Platinum     | 24,000,000                   | 1,687,000                    |
| Soft Steel   | 30,000,000                   | 1,828,000                    |
| Wrought Iron | 26,000,000                   | 2,039,000                    |

### STRENGTH OF MATERIALS.

### ULTIMATE RESISTANCE TO TENSION IN LBS. PER SQUARE INCH. FROM "CARNEGIE'S HAND-BOOK."

| METALS.               |          |
|-----------------------|----------|
|                       | Average. |
| Brass, cast,          | 18000    |
| " wire,               | 49000    |
| Bronze, or gun metal, | 36000    |

|                                                                                                                                                                                                                                                                                                                                                        | Average.                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Copper, cast,                                                                                                                                                                                                                                                                                                                                          | 19000                                                                                           |
| " sheet,                                                                                                                                                                                                                                                                                                                                               | 30000                                                                                           |
| 66 bolts,                                                                                                                                                                                                                                                                                                                                              | 36000                                                                                           |
| " wire,                                                                                                                                                                                                                                                                                                                                                | 16500                                                                                           |
| Iron, cast, 13400 to 29000,                                                                                                                                                                                                                                                                                                                            | 16500                                                                                           |
| " wrought, round or square bars of 1 to 2 inch                                                                                                                                                                                                                                                                                                         |                                                                                                 |
| diameter, double refined, 50000 to                                                                                                                                                                                                                                                                                                                     | 54000                                                                                           |
| " wrought, specimens 1/2 inch square, cut from                                                                                                                                                                                                                                                                                                         |                                                                                                 |
| large bars of double refined iron,50000 to                                                                                                                                                                                                                                                                                                             | 53000                                                                                           |
| " wrought, double refined, in large bars of about                                                                                                                                                                                                                                                                                                      |                                                                                                 |
| 7 square inches section,46000 to                                                                                                                                                                                                                                                                                                                       | 47000                                                                                           |
| " wro't, plates, angles and other shapes,48000 to                                                                                                                                                                                                                                                                                                      | 51000                                                                                           |
| " plates over 36" wide,46000 to                                                                                                                                                                                                                                                                                                                        | 50000                                                                                           |
| " wire,                                                                                                                                                                                                                                                                                                                                                | 100000                                                                                          |
| "wire-ropes,                                                                                                                                                                                                                                                                                                                                           | 90000                                                                                           |
| Lead, sheet,                                                                                                                                                                                                                                                                                                                                           | 3300                                                                                            |
| Steel, 50000 to                                                                                                                                                                                                                                                                                                                                        | 80000                                                                                           |
| Tin, cast,                                                                                                                                                                                                                                                                                                                                             | 4600                                                                                            |
| Zinc,                                                                                                                                                                                                                                                                                                                                                  | 8000                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                        | 0000                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |
| TIMBER, SEASONED, AND OTHER ORGANIC FIB                                                                                                                                                                                                                                                                                                                | ER.                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                        | ER.<br>Average.                                                                                 |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.<br>Average.<br>17000                                                                        |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.<br>Average.<br>17000                                                                        |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.<br>Average.<br>17000<br>16000<br>18000                                                      |
| Ash, English,  " American,.  Beech, " 15000 to  Box,                                                                                                                                                                                                                                                                                                   | ER.<br>Average.<br>17000<br>16000<br>18000<br>20000                                             |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.<br>Average.<br>17000<br>16000<br>18000<br>20000<br>11400                                    |
| Ash, English,  "American,.  Beech, "15000 to Box,  Cedar of Lebanon,  "American, red,                                                                                                                                                                                                                                                                  | ER.<br>Average.<br>17000<br>16000<br>18000<br>20000<br>11400<br>10300                           |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.<br>Average.<br>17000<br>16000<br>18000<br>20000<br>11400<br>10300<br>136000                 |
| Ash, English,       " American,.         Beech, " 15000 to         Box,          Cedar of Lebanon,          " American, red,          Fir or Spruce,          Hempen Ropes,                                                                                                                                                                            | ER. Average. 17000 16000 18000 20000 11400 10300 136000 16000                                   |
| Ash, English,       " American,         Beech, " 15000 to         Box,          Cedar of Lebanon,          " American, red,          Fir or Spruce,          Hempen Ropes,          Hickory, American,                                                                                                                                                 | ER. Average. 17000 16000 18000 20000 11400 10300 136000 16000 11000                             |
| Ash, English,       " American,.         Beech, " 15000 to         Box,          Cedar of Lebanon,       " American, red,         Fir or Spruce,       10000 to         Hempen Ropes,       12000 to         Hickory, American,       Mahogany,                                                                                                        | ER. Average. 17000 16000 18000 20000 11400 10300 136000 16000 11000 21800                       |
| Ash, English,       " American,.         Beech, " 15000 to         Box,          Cedar of Lebanon,          " American, red,          Fir or Spruce,          Hempen Ropes,          Hickory, American,          Mahogany,       8000 to         Oak, American, white,                                                                                 | ER.  Average. 17000 16000 18000 20000 11400 10300 16000 11000 21800 18000                       |
| Ash, English,       " American,.         Beech, " 15000 to         Box,          Cedar of Lebanon,          " American, red,          Fir or Spruce,          Hempen Ropes,          Hickory, American,          Mahogany,       8000 to         Oak, American, white,          " European,                                                            | ER.  Average. 17000 16000 18000 20000 11400 10300 116000 11000 21800 18000 19800                |
| Ash, English,       " American,         Beech, " 15000 to         Box,          Cedar of Lebanon,          " American, red,          Fir or Spruce,          Hempen Ropes,          Hickory, American,          Mahogany,       8000 to         Oak, American, white,          " European,          Pine, American, white, red and pitch, Memel, Riga, | ER.  Average. 17000 16000 18000 20000 11400 10300 16000 11000 21800 18000 19800 10000           |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.  Average. 17000 16000 18000 20000 11400 10300 16000 11000 21800 18000 19800 10000           |
| Ash, English,  " American,  Beech, " 15000 to  Box,  Cedar of Lebanon,  " American, red,  Fir or Spruce, 10000 to  Hempen Ropes, 12000 to  Hickory, American,  Mahogany, 8000 to  Oak, American, white, 10000 to  " European, 10000 to  Pine, American, white, red and pitch, Memel, Riga,  " long leaf yellow, 12600 to  Poplar,                      | ER. Average. 17000 16000 18000 20000 11400 10300 16000 11000 21800 18000 19800 10000 19000 7000 |
| Ash, English,                                                                                                                                                                                                                                                                                                                                          | ER.  Average. 17000 16000 18000 20000 11400 10300 16000 11000 21800 18000 19800 10000           |

### STONE, NATURAL AND ARTIFICIAL Glass, ..... 9400 Slate, ...... 9600 to 12800 Mortar, ordinary, ..... 50 ULTIMATE RESISTANCE TO COMPRESSION. METALS. Brass, cast..... 10300 .... 82000 to 145000 Iron. TIMBER, SEASONED, COMPRESSED IN THE DIRECTION OF THE GRAIN. Beech. ..... 7000 Box, ... 10300 Ccdar of Lebanon, ..... 5900 American, red, ..... 6000 Deal, red, ..... 6500 Fir or Spruce, ...... 5000 Oak, American, white ...... 7000 British..... 10000 Dantzig, ..... 7700 Pine, American, white, ..... 5400 long leaf yellow, ..... 8500 STONE, NATURAL OR ARTIFICIAL. Brick, weak,..... 550 to 800 strong., ...... 1100 fire,..... 1700 Granite, ..... 5000 to 18000 Limestone ...... 4000 to 16000

# MODULI OF ELASTICITY. AUTHORITY: --MECHANICAL ENGINEERS' REFERENCE BOOK, BY NELSON FOLEY.

| METALS.                                                                                                                                        | Tension.            | Com-<br>pression.         | Shearing<br>or<br>Torsional |                  | Modulus, lbs. per sq. in, | per sq. in,                  |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|-----------------------------|------------------|---------------------------|------------------------------|
| sion and tension may be taken as the same; it is<br>probable that they would be so if the bar was sub-<br>jected to repeated shocks both ways. | Mod                 | Modulus, lbs. per sq. in. | ij                          | WOOD, Ac.        | Tension.                  | Shearing<br>or<br>Torsional. |
| Brass.                                                                                                                                         | 13000000            | স                         | 3500000                     | Ash,             | E<br>1600000              | 134300                       |
| Copper Wire, unannealed, .<br>Gun-metal or Bronze,                                                                                             | 1300000             |                           | 3700000                     | Birch,           |                           | 114300                       |
| Iron, Cast, at 1 ton per sq. in.                                                                                                               | 1345000<br>12925000 | 12750000                  |                             | Red Pine         | 150000                    | 120000<br>00000              |
| 00-41                                                                                                                                          | 11710000            | 12550000                  | 0000089                     | Yellow Pine,     | 1250000                   | 125000<br>125000             |
|                                                                                                                                                | 10100000            | 12370000                  |                             | Oak, English,    | 1500000                   | 132000                       |
| Iron, Malleable at 1 ton per sq. in. to                                                                                                        | 2900000             | 22400000                  | 10500000                    | Spruce, Tropian. | 150000                    | 120000                       |
| Steel, Mild, Forged or Rolled.                                                                                                                 | 1000                | 26000000                  | 11000000                    | African          | 230000                    | 190000                       |
| Cast, untempered,                                                                                                                              |                     | ĺ                         | 1100000                     | Leather,         | 25000                     |                              |
| Phosphor Bronze,                                                                                                                               | 14000000            |                           | 5250000                     |                  |                           | 1                            |

EXAMPLE—A connecting rod of some vaire gent, owing to the inertia stresses of the reciprocating parks, as well as the friction of the silde, is subjected to a stress 9000 pounds per square inch at one part of its stroke, if the rod is of forced steel what would be the extension if the normal length was 10 foot?

Taking 16 feet as 126 inches and taking F for steel at 30,000 000, we have 1 = 30,000 000

= .004 of an inch.

# SAFE EXTENSIONS OR COMPRESSIONS.

SAFE EXTENSION OR COMPRESSION = LENGTH X SAFE STRESS per square inch.

EXAMPLE—A bar of iron 10 feet long is to be subjected to a tensile stress and it is desired to know what would be the safe = .086 inch. 10 x 12 x 9 x 2,240 28,000,000 Taking the elastic limit for wrought iron, at 9 tons, we have safe extension =

SHEARING AND BEARING VALUE OF ALUMINUM RIVETS IN POUNDS AVOIRDUPOIS.

| Archeology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |              |        |                          |              |               |              |                   |                    |                  |              |               |                     |                |             |                |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------|--------------------------|--------------|---------------|--------------|-------------------|--------------------|------------------|--------------|---------------|---------------------|----------------|-------------|----------------|--------------|
| Decim   Deci   | Diam. of<br>in inc | Rivets thes. | Area   | Shear<br>sol 1000<br>in. | <i>32</i>    | Shearin       | ng Val       | ue for<br>Jiam. o | Differe<br>of Rive | nt Thi<br>t x Th | cknessicknes | es of Pl      | late at<br>ate x 8, | 8,000 l        | bs. per     | 8q. in.        |              |
| (c)         1125         0123         50         125         186         375         360         625         780         375         360         625         780         985         780         470         625         780         985         780         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480         480 <td>Fraction.</td> <td>Decim'l</td> <td>Rivet.</td> <td>olyniS<br/>O,4 1.8<br/>pe</td> <td>1-8<br/>inch.</td> <td>3-16<br/>inch.</td> <td>1-4<br/>inch.</td> <td>5-16<br/>inch.</td> <td>3-8<br/>inch.</td> <td></td> <td>1-2<br/>inch.</td> <td>9-16<br/>inch.</td> <td>5-8<br/>inch.</td> <td>11-16<br/>inch.</td> <td>34<br/>inch.</td> <td>13-16<br/>inch.</td> <td>7-8<br/>inch.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fraction.          | Decim'l      | Rivet. | olyniS<br>O,4 1.8<br>pe  | 1-8<br>inch. | 3-16<br>inch. | 1-4<br>inch. | 5-16<br>inch.     | 3-8<br>inch.       |                  | 1-2<br>inch. | 9-16<br>inch. | 5-8<br>inch.        | 11-16<br>inch. | 34<br>inch. | 13-16<br>inch. | 7-8<br>inch. |
| 1875         .0276         110         185         280         375         300         625         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         780         985         1125         780         985         1125         780         985         1125         1125         780         780         780         180         1810         780         780         780         780         180         1810         1810         780         780         780         180         1870         1810         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-8 inch.          | .125         | .0123  | 90                       | 135          | 185           |              | i                 |                    |                  |              |               |                     |                |             |                |              |
| ". 250         .0491         195         250         375         500         625         78         985         985         985         985         985         985         985         985         985         985         985         985         985         985         985         985         985         985         985         1128         985         1128         985         1128         985         1128         985         1128         985         1128         985         1128         1410         1885         1420         1885         1420         1885         1420         1885         1420         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885         1440         1885 </td <td>3-16 "</td> <td>.1875</td> <td>9270.</td> <td>110</td> <td>185</td> <td>280</td> <td>375</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-16 "             | .1875        | 9270.  | 110                      | 185          | 280           | 375          |                   |                    |                  |              |               |                     |                |             |                |              |
| ". 3125.         .0767         365         310         470         625         780         935         936         780         936         780         936         780         936         780         936         780         936         780         1125         936         780         1125         936         780         1126         1126         936         780         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126         1126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :                  | .250         | .0491  | 195                      | 250          | 375           | 200          | 625               |                    |                  |              |               |                     |                |             |                |              |
| ". 375         1104         440         375         680         750         935         1125         9         9         1125         9         125         9         125         1125         1125         1125         1130         9         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         1130         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5-16 "             | .3125        | 7920.  | 305                      | 310          | 470           | 625          | 780               | 935                |                  |              |               |                     |                |             |                |              |
| ". 4375         .1503         600         435         655         875         1095         1310         9         9           ". 5500         .1963         785         500         845         1120         1500         1870         9           ". 5625         .2485         .960         .845         1125         1110         1685         1970         9           ". 6875         .3712         1485         685         1030         1375         1115         2065         2405         2750           ". 7500         .4418         1765         750         1122         1675         285         3804         3875           ". 8125         .6038         2776         1875         1875         2835         3806         3806           ". 7500         .4418         1765         750         1122         1675         2185         2855         3806         3806           ". 8712         .6838         2470         1875         2340         2875         3806         3806         3806           ". 1000         .7844         3140         1000         1500         2500         2800         3806         3806           ". 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3-8                | 375          | 1104   | 440                      | 375          | 260           | 750          | 935               | 1125               |                  |              |               |                     |                |             |                |              |
| ". 560         1963         785         500         750         1005         120         1005         150         150         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         160         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ., 91-1            | .4375        | .1503  | 909                      | 435          | 655           | 875          | 1095              | 1310               |                  |              |               | •                   |                |             |                |              |
| ". 5625         .2485         .946         560         845         1125         1410         1685         1970           ". 625         .3088         1225         625         935         1260         1475         1475         2187         2187         2187         2187         2187         2187         2187         2186         2306         2486         2487         1488         1488         1488         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489         1489 <th< td=""><td>1-2 "</td><td>200</td><td>.1963</td><td>785</td><td>200</td><td>750</td><td>1005</td><td>1250</td><td>1500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-2 "              | 200          | .1963  | 785                      | 200          | 750           | 1005         | 1250              | 1500               |                  |              |               |                     |                |             |                |              |
| ". 625         3068         1225         625         935         1250         1565         1875         2186         2500         3775           ". 6877         3712         1445         685         1030         1375         1171         2266         2465         2465         1750         1875         1750         2455         2465         2767         3775         1125         1150         1875         2250         2625         3605         3875           ". 8775         6013         2466         875         1126         11730         1189         2435         2840         3876         3876         3876         3876         3876         3876         3876         3876         3876         3876         3876         3876         3876         3876         3876         4200         3876         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200         4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-1e               | .5625        | 2485   | 266                      | 290          | 345           | 1125         | 1410              | 1685               | 1970             |              |               |                     |                | _           |                |              |
| "         .6875         .3712         1445         685         1090         1375         1715         2066         2405         275         275           "         .7500         .4418         1766         750         1125         150.1         1875         2250         2825         2805         3875           "         .875         .6013         2975         810         1220         1625         283         2845         3840         3860         380           "         .9875         .6003         2760         935         1465         1875         2840         280         3750         4220           "         1.000         .7854         3140         1000         1500         250         290         380         420         420           "         1.0625         .8866         3845         1106         1500         250         290         380         450         450           "         1.1625         .8866         3845         1105         1785         225         2819         3719         450         450         560           "         1.1675         1.1075         1886         384         1185         1886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 87                 | .625         | 3068   | 1225                     | 625          | 935           | 1250         | 1565              | 1875               | 2185             | 2500         |               |                     |                | ,           |                |              |
| ". 7500         .4418         1765         750         1125         160.3         1875         225         3005         3875           ". 8712         .5185         2075         810         1220         1625         2082         2043         2845         2845         2845         3840         3876           ". 9875         .6003         2760         885         1410         1720         1875         2843         2845         3840         380         388           ". 1000         .7854         3140         1000         1500         2870         280         3750         4220           ". 11062s         8866         3545         1106         1506         1865         2125         2855         3190         3710         4500           ". 11075         4894         3875         1125         1785         2875         3819         3715         4290         4500           ". 11075         11077         11077         1875         2890         3871         4155         4750         5605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11-16              | 6789.        | .3712  | 1485                     | 685          | 1030          | 1375         | 1715              | 2065               | 2405             | 2750         |               |                     |                |             |                |              |
| .8125         .5186         2075         810         1220         1625         2030         2435         2846         875         1310         1750         2185         2625         3060         3500         3895           1.000         .8754         .8140         1875         1340         1750         2185         2625         3060         3500         3895           1.000         .7854         3140         1000         1500         2500         2500         3000         3500         4500           1.1052         .8866         3545         112         1687         212         2655         3190         3715         429         4780           1.1757         .9940         3975         112         188         222         821         3875         388         450         606           1.1875         1.1075         .8940         3975         1185         188         227         8910         3875         4750         606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34<br>1            | .7500        | .4418  | 1765                     | 750          | 1125          | 150          | 1875              | 2250               | 2625             | 3005         | 3375          |                     |                |             |                |              |
| "         .875         .6013         246         875         1310         1750         2185         262         306         350         3885           "         .9875         .6903         276         935         1405         1875         2340         2510         2390         3775         4220           "         1.000         .7854         3140         1000         1500         250         280         280         370         420         420         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780         4780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13-16              | .8125        | .5185  | 2075                     | 810          | 1220          | 1625         | 2030              | 2435               | 2845             | 3250         | 3660          | 4065                |                |             |                |              |
| "         .9875         .6903         2760         935         1405         1875         2340         2510         3280         3750         4220           "         1,000         .7884         3140         1000         1500         2500         2500         3800         3600         4500         4500           "         1,0625         .8886         3854         1060         1895         2195         5655         3190         3715         4296         7780           "         1,125         .9840         3977         1112         1786         2295         2810         3877         3870         4750         5606           "         1,1875         1,1075         1,429         1186         1896         2816         3817         4350         5616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 8-1              | .875         | .6013  | 2405                     | 875          | 1310          | 1750         | 2185              | 2625               | 3060             | 3500         | 3935          | 4375                |                |             |                |              |
| "         1,000         7854         3140         1000         1500         250         300         350         400         450           "         1,0625         8866         3545         1060         1695         2125         2655         3190         3715         2950         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500         4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15-16 "            | .9375        | .6903  | 2760                     | 935          | 1405          | 1875         | 2340              | 2810               | 3280             | 3750         | 4220          | 4790                | 5155           |             |                |              |
| "         1,0625         .8866         3545         1060         1695         2125         2655         3190         3715         4250         4780           "         1,125         .9940         3975         11125         1785         2250         2810         3375         3835         4500         6060           "         1,1875         1,1075         4449         11185         1880         2875         9970         3870         4155         4770         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         5245         524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                  | 1.000        | 7854   | 3140                     | 1000         | 1500          | 2000         | 2500              | 3000               | 3500             | 4000         | 4500          | 2000                | 5500           | 9000        |                |              |
| 1.125 9940 8975 125 1250 2810 8375 8385 4500 6060 1.1875 1.1075 4430 1185 1880 8375 9370 3775 3770 4155 4750 5245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 1.0625       | 9988.  | 3545                     | 1060         | 1695          | 2125         | 2655              | 3190               | 3715             | 4250         | 4780          | 5310                | 5845           | 6375        | 9069           |              |
| 1.1875 1.1075 4430 1185 1880 2275 2970 3570 4155 4750 5345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 1.125        | 9940   | 3975                     | 1125         | 1785          | 0 <u>55</u>  | 2810              | 3375               | 3935             | 4500         | 2060          | 5625                | 6185           | 9650        | 7310           | 7875         |
| The state of the s | 13-16 "            | 1.1875       | 1.1075 | 4430                     | 1185         | 1880          | 2375         | 2970              | 3570               | 4155             | 4750         | 5345          | 5935                | 6535           | 135         | 7115           | 8315         |

SHEARING AND BEARING VALUE OF ALUMINUM RIVETS IN POUNDS AVOIRDUPOIS.

|                               |        |        |                        |              | -             | -        |               | -                 |                                                                                                                                 |              | 1                  |                     |                      |                   |                |                 |
|-------------------------------|--------|--------|------------------------|--------------|---------------|----------|---------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|---------------------|----------------------|-------------------|----------------|-----------------|
| Diam. of Rivets<br>in inches. | rets   | Area   | .8d I 00               | -            | 3earin        | g Valu   | e for D       | ifferen<br>f Rive | Bearing Value for Different Thicknesses of Plate at 10,000 lbs. per sq. in. (Diam. of Rivet x Thickness of Plate x 10,000 lbs.) | knesse       | s of Pla<br>of Pla | ate at 1<br>te x 10 | 10,000 1<br>1,000 1b | bs. per<br>s.)    | . sq. in       |                 |
| Fraction. Decim'              | cim'l  | Rivet. | Single<br>G.t da<br>ps | 1-8<br>inch. | 3-16<br>inch. | 14 inch. | 5-16<br>inch. | 3-8<br>inch.      | 7-16 inch.                                                                                                                      | 1-2<br>inch. | 9-16<br>inch.      | 5-8<br>inch.        | 11-16<br>inch.       | 34<br>inch.       | 13-16<br>incb. | 7-8<br>inch.    |
| inch.                         | ន      | .0123  | 18                     | 155          | 233           |          |               |                   |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
| -:<br>-:                      | .1875  | 9220.  | 125                    | :£           | 350           | 470      |               |                   |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
| ·:                            | 25     | .0491  | 82                     | 310          | 470           | 625      | 280           |                   |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
| :                             | 3125   | 1910.  | 345                    | 98           | 585           | 287      | 975           | 1170              |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
| :                             | 375    | 1104   | 495                    | 470          | 705           | 935      | 1170          | 1405              |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
| :<br>-                        | 1375   | .1503  | 675                    | 545          | 820           | 1095     | 1365          | 1640              |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
| :                             | 8      | .1963  | 882                    | 625          | 38            | 1250     | 1565          | 1875              |                                                                                                                                 |              |                    |                     |                      |                   |                |                 |
|                               | 5625   | 2485   | 1120                   | 705          | 1055          | 1405     | 1760          | 2110              | 2460                                                                                                                            |              |                    |                     |                      |                   |                |                 |
| ب<br>                         | 325    | 3068   | 1380                   | <u>8</u>     | 1170          | 1565     | 1950          | 2345              | 2735                                                                                                                            |              |                    |                     |                      |                   |                |                 |
| -                             | 3875   | .3712  | 1675                   | 986          | 1290          | 1715     | 2150          | 2575              | 3010                                                                                                                            | 340          |                    |                     |                      |                   |                |                 |
| 17.<br>-                      | 750    | .4418  | 1990                   | 8            | 1405          | 1875     | 2340          | 2815              | 3285                                                                                                                            | 3750         | 4215               |                     |                      |                   |                |                 |
| جب<br><br>:                   | 3125   | 5816.  | 2335                   | 1015         | 1525          | 2035     | 2540          | 3050              | 3550                                                                                                                            | 4065         | 4565               | 5015                |                      |                   |                |                 |
| <u>س</u> :                    | 375    | .6013  | 2710                   | 1095         | 1640          | 2190     | 2735          | 3285              | 3825                                                                                                                            | 4375         | 4925               | 5465                |                      |                   | _              |                 |
| ب:<br>                        | 37.5   | 6903   | 3105                   | 1170         | 1760          | 2345     | 2935          | 3515              | 4100                                                                                                                            | 4690         | 5275               | 5860                | 9440                 |                   | _              |                 |
| 1.0                           | 90.    | 7854   | 3535                   | 1250         | 1875          | 2500     | 3125          | 3750              | 4375                                                                                                                            | 2000         | 5625               | 6250                | 6875                 | 7500              |                |                 |
| ;;                            | .0625  | 9988.  | 3990                   | 1330         | 1990          | 2660     | 3315          | 3985              | 9650                                                                                                                            | 5315         | 2660               | 0499                | 7310                 | 7965              | 8685           |                 |
| :                             | 183    | .9940  | 4470                   | 1405         | 2110          | 2815     | 3515          | 4215              | 4925                                                                                                                            | 5625         | 6325               | 7035                | 7735                 | 9 <del>1</del> 78 | 9140           | <del>9</del> 56 |
| 13-16 " 1.1                   | 1.1875 | 1.1075 | 0667                   | 1485         | 2225          | 2965     | 3710          | 4450              | 5190                                                                                                                            | 5940         | 6685               | 7425                | 8165                 | 8910              | 0296           | 10390           |

### ULTIMATE RESISTANCE TO SHEARING.

### METALS.

| meines.                                |  |
|----------------------------------------|--|
| Iron, cast, 25000                      |  |
| " wrought, along the fiber, 45000      |  |
| TIMBER ALONG THE GRAIN.                |  |
| White Pine, Spruce, Hemlock,250 to 500 |  |
| Yellow Pine, long leaf,300 to 600      |  |
| Oak,400 to 700                         |  |
| Ash American                           |  |

### **ALUMINUM FOR STRUCTURAL PURPOSES.**

In the use of aluminum for structural purposes, a great deal depends upon the specific purpose to which it is desired to apply the metal, as to just what is the proper grade that should be used; but generally speaking, for purposes where aluminum is brought into tension, such as in sheets or in rolled shapes, as angles, beams, etc., an ultimate tensile strength of from 32,000 to 40,000 pounds per square inch may be reckoned upon; and using a safety factor of four, gives an allowable working strain of from 8,000 to 10,000 pounds. This of course is not for pure metal, but for the stronger alloys.

The ultimate tensile strength of pure metal in plates and shapes, may be taken at from 24,000 to 28,000 pounds, with the same safety factor of four, it gives an allowable working strain of from 6,000 to 7,000 pounds.

For the alloys of cast aluminum in tension, the ultimate strength may be taken at from 18,000 pounds to 28,000 pounds per square inch; using a safety factor here of five, as aluminum castings are quite uniform and solid, a working strain is obtained of from 3,600 to 5,600 pounds per square inch.

It is difficult to give a value for the ultimate strength of pure cast aluminum in tension, for the reason that while the ordinary pure aluminum will run about 16,000 pounds per square inch, this can be increased very considerably by cold

working, and in some cases to as much as to 24,000 pounds per square inch; using a safety factor of four, gives an allowable working strain of from 3,200 to 4,800 lbs.

In compression, the alloys of aluminum in rolled plates and structural shapes, such as struts, columns, etc., have an ultimate tensile strength of from 26,000 to 34,000 pounds per square inch, which using a safety factor of four, gives an allowable working strain of from 6,500 to 8,500 pounds per square inch.

Pure aluminum sheets and structural shapes in compression, have an ultimate tensile strength of from 20,000 to 24,000 pounds per square inch; which, with a safety factor of four, gives an allowable working strain of from 5,000 to 6,000 pounds per square inch.

Castings of aluminum in compression can be taken at 16,000 pounds per square inch for pure aluminum, and from this to 24,000 pounds per square inch for the alloys; using again a safety factor of five, an allowable working strain is given of from 3,200 to 4,600 pounds per square inch. But the pure metal should not be used in castings, except for electrical purposes, as it is similar to pure copper in being difficult to cast, and is soft, comparatively weak, and has a large shrinkage. In its stead, alloys with from five to twenty per cent. of copper, nickel or other hardeners, should be used.

The alloys of aluminum in rivets and similar shapes in shear, have an ultimate shearing strength of from 24,000 to 27,000 pounds; which, using here a safety factor of six, gives an allowable working strain of from 4,000 to 4,500 pounds per square inch.

The ratios of the ultimate shearing strength, to the ultimate tensile strength for double riveted joints, is about 60 per cent.; and for single riveted joints, the ratio is about 70 per cent. The ratio for steel is about 75 per cent.

In bearing, the ultimate value of the alloys of aluminum is from 32,000 to 40,000 pounds per square inch; which, using a safety factor of four, gives an allowable working strain of from 8,000 to 10,000 pounds.

The attention of those contemplating the use of aluminum for structural purposes, is called to the fact that the elastic limit is closer to the ultimate tensile strength than in any other of the commercial metals, and for this reason the safety factor of four or five, means a great deal more than it does in steel or iron, where the same safety factor is used.

Where any great strength in aluminum is desired, the metal should be protected in such a way that its temperature is not raised very much beyond that of the ordinary atmospheric temperature, for the reason that aluminum melts at a little less than 1200 degrees Fahrenheit.

The values given above are for temperatures of less than 100 degrees Centigrade (212° Fahrenheit); for temperatures between 100 and 200 degrees Centigrade, the unit strain should be decreased by 50 per cent., and above 200 degrees aluminum should not be designed to be used in strain.

### STRENGTH OF GOLD ALLOYS.

The following table of tensile strength of gold with additions of some of the metals, is from Sir Roberts-Austen's work, "An Introduction to Metallurgy."

| Name of added Element                                                                                                                                  | Tensile<br>Strength.<br>Tons<br>per sq. inch.                   | Elongation,<br>Per Cent.<br>(on 3 inches.)                             | Impurity.<br>Per Cent.                                                                                               | Atomic<br>Volume<br>of<br>Impur-<br>ity.                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Potassium, Bismuth, Tellurium, Lead, Thallium, Tin, Antimony, Cadmium, Silver, Palladium, Zine, Rhodium, Mangan ese, Indium, Copper, Lithium, Aluminum | 0.5 (about) 3.88 4.17 6.21 6.0 (about) 7.10 7.76 7.79 7.99 7.99 | Not perceptible  4.9 8.6 12.3 94.0 33.3 32.6 28.4 28.7 28.7 28.5 21.25 | Less than 0.2. 0.210 0.186 0.240 0.193 0.196 0.203 0.202 0.200 0.205 0.201 0.207 0.290 0.193 0.201 0.193 0.201 0.198 | 45.1<br>20.9<br>20.5<br>18.0<br>17.2<br>16.2<br>17.9<br>10.1<br>9.4<br>9.1<br>8.4<br>6.8<br>15.3<br>7.0<br>11.8 |

# METHODS OF WORKING ALUMINUM.

**MELTING.** Aluminum is melted in ordinary plumbago crucibles, such as are used for melting brass. If the metal is not overheated, it will absorb no appreciable amount of silicon from the crucible. Aluminum re-melted twenty times in such a crucible, showed only an addition of  $\frac{1}{10}$  of one per cent. of silicon.

Aluminum does not unite with or absorb carbon in any considerable quantity when heated in contact with it, unless the metal is heated much above its melting point.

The MELTING POINT OF ALUMINUM is 1,157 degrees Fahrenheit or 625 degrees Centigrade, though at about 1,000 degrees Fahrenheit the metal becomes granular, and can be easily broken. The melting point of copper is 1,053 degrees Centigrade, or 1,929 degrees Fahrenheit, and of cast iron 1,300 degrees Centigrade or 2,372 degrees Fahrenheit.

No flux is needed to cover the metal, for it is non-volatile at any temperature that can be attained with any ordinary coke fire without blast. A very thin film of oxide forms on the surface of the molten metal, which, while not enough to injure either ingots or castings, protects the metal from further oxidation.

### SHRINKAGE OF CASTINGS OF METALS.

| Pure Aluminum, $(\frac{13}{64})$ inch)                                    | inch | the | e foot, |
|---------------------------------------------------------------------------|------|-----|---------|
| "NICKEL ALUMINUM CASTING ALLOY" (1875 inch)                               | "    |     | **      |
| "SPECIAL CASTING ALLOY" of The Pittsburgh Reduction Co., (1/4 inch) .1718 | "    | "   | "       |
| Iron, Small Cylinders                                                     | "    | "   | 6.      |
| " Pipes125                                                                | "    | 16  | "       |
| " Girders, Beams, Etc                                                     | "    | 6 4 | 61      |
| " Large Cylinders, Contraction of diameter at top                         | "    | 6.5 | "       |
| Iron, Large Cylinders, Contraction of diameter at bottom                  | "    |     | "       |
| Iron Large Cylinders, Cont'n in length .094                               | "    | "   | 66      |

### SHRINKAGE OF CASTINGS OF METALS.--Continued.

| Thin Brass Castings | .167 inch | to the | e foot. |
|---------------------|-----------|--------|---------|
| Thick "             | .150 "    | "      | "       |
| Zinc                | .3125 ''  | "      | 66      |
| Lead                | .3125 ''  | "      | 4 6     |
| Copper              | .1875 "   | "      | "       |
| Bismuth             | .1563 ''  |        | 4.4     |

**CASTING.** Aluminum, especially in forms where it is alloyed with a few per cent, of hardening ingredients, is now being used very largely in castings of all descriptions, where lightness, non-corrodibility or a silver color is desired. Those alloys most used in general castings have a tensile strength of about 20,000 pounds to the square inch, and are about one-third the weight of brass.

The same general method is followed as in making brass castings. Either iron or sand moulds can be used. The metal should be poured as cold as possible, in order to insure sound castings, free from blow-holes, (caused by the very great absorption of gas by over-heated molten aluminum), or cracks and depressions due to shrinkage. It is also desirable in most cases to use large gates and risers, as a further safeguard against these defects. The gate should be put in such a place on the casting that the metal will not "draw away" where the gate joins the piece. Particular care should be used for this reason in making "gated patterns."

The practice of some moulders is to immerse small quantities of nitre in molten aluminum to purify it, the oxidizing effect of this salt undoubtedly acting somewhat beneficially if care is taken to see that all of the potash salts are allowed to come to the surface and are skimmed off to prevent contamination of the metal. The method of adding nitre in foundry practice is as follows:—After the metal is removed from the fire, and before pouring, slightly dampen a sheet of writing paper in water. Put in this paper one tablespoonful of nitrate of potash, to about one hundred pounds of metal. After the nitrate of potash has been wrapped in this paper, it should be placed on the top of the molten metal, and instantly with an iron ladle or stick, it should be pushed to

the bottom of the pot. By the time it reaches the bottom the paper burns, and the nitre comes up through the metal, combining with the oxide as it comes to the surface. It is then skimmed off.

Sulphur is also used to purify from iron, and any other metallic impurities that would form sulphides at the temperature of molten aluminum. Sulphur does not unite with aluminum. Care should be taken however, to free the aluminum from the sulphur thus added.

Some customers of The Pittsburgh Reduction Company make a practice of placing a small amount of benzine on the surface of molten aluminum just as it is about to be cast.

A good method of producing sound castings is that patented by L. J. Crecellius, U. S. Patent, No. 537,277, by which the aluminum is cast in metal moulds, heated to about 1,200 degrees Fahrenheit or about the temperature of the molten aluminum, and causing the metal to cool from the bottom of the moulds upwards by a blast of cold air or other suitable means. Thus, the metal in the comparatively large sinking head or riser remains molten until the casting has solidified. In this way the impurities segregate in the sinking head and the shrinkage is replaced with fresh additions of molten metal.

Charcoal is the best fuel to use in melting aluminum and should be used in all cases where especially good castings are desired. Both coke fires and natural gas are successfully used in melting the metal. Care should always be taken, not only not to overheat the metal, but to prevent the occlusion of gases in aluminum; both nitrogen and hydro carbon gases are specially liable to be absorbed by molten aluminum. Care should also be taken to have the flasks well vented.

In the casting or working of aluminum, the alloys compare with the pure metal about the same as brass compares with copper.

In general, however, no trouble will be met with in making castings, as the metal flows very readily and takes well to sand.

ANNEALING. In annealing aluminum, an even heat should be maintained in the muffle, and the metal on being withdrawn should be allowed to cool slowly. The temperature should be

such that a piece of iron or steel placed in the muffle in the dark will show a red heat; for annealing thin sheet, a much lower temperature will suffice. The best test as to when the aluminum has come to the proper heat is to observe whether the metal will char the end of a pine stick, which should leave a black mark behind it as it is drawn over the plate. The metal should be at this temperature throughout and not only on the surface.

For thin sheet and wire, it is sufficient to draw it slowly over a fire and observe by bending the metal whether it has become soft enough.

ROLLING. The extreme ductility of aluminum makes it one of the readiest metals to work under the rolls. It is best to roll the larger ingots hot, that is, at a low annealing heat.

Aluminum becomes hard and loses its ductility under rolling, and therefore requires frequent annealing during the process. When the plate is soft from recent annealing, it will stand a very considerable reduction in thickness on each pass through the rolls; but as it becomes hard, the draught must be light to avoid cracking.

Aluminum can be rolled so as to be quite stiff. The hardest rolled aluminum is about the temper of hard brass.

Aluminum can, either in the pure state or alloyed ROLLED with a few per cent. of hardening ingredients, ALUMINUM SECTIONS. be rolled into any sections into which steel The Pittsburgh Reduction Company have such is rolled. business arrangements with the Carnegie Steel Company, Limited, of Pittsburgh, Pa., that they can have aluminum rolled for their customers, in any of the shapes that are illustrated in the Carnegie Hand Book of their rolled sections, providing that the order be of such size as will warrant the putting in of rolls for the purpose. In estimating the relative weights of the aluminum to the steel sections, the fact must be borne in mind that the Carnegie sections in steel are based upon a weight of 400 pounds to the cubic foot and that the corresponding aluminum sections will weigh 172 pounds to the cubic foot if of nickel aluminum, the steel being 2.847 times heavier than the similar aluminum section

**DROP FORGINGS**OF ALUMINUM. Cast aluminum can be very much improved in rigidity and tensile strength, if afterwards subjected to the drop forging process. For special light running machinery, drop forgings of the nickel aluminum casting metal produced by The Pittsburgh Reduction Company, are particularly well adapted.

Aluminum under pressure can be squirted through SOUIRTED ALUMINUM. dies into almost any shape, if the temperature of from 900 to 1,000 degrees Fahrenheit be maintained in the metal. Several devices are used for retaining the heat in the molten aluminum after it is poured into the cylinder in which it is subjected to pressure. In most of these devices the casting cylinder is on trunnions, so that the metal can be poured with the cylinder in a vertical position, after which it is changed to a horizontal position and the piston plunger inserted and made to act on what was the bottom of the ingot as cast, while the die, giving the desired shape to the metal when drawn, is inserted at the other end. An improvement which has been patented in England, is to have the cylinder in which the metal is cast a composite one, consisting of several cylinders of metal, one within the other, the space between the various metal cylinders being filled with some good nonconducting material, which has a high crushing strength; powdered granite is used as a preferable material for the purpose. By means of this device the pressure on the interior metal cylinder is conducted to the outer, thick, cool, and therefore strong cylinders, without the heat of the contained aluminum being conducted away in the same proportion. By means of this apparatus, aluminum can be very cheaply and efficiently squirted to almost any desired section.

**POLISHING.** An erroneous idea has become prevalent, that aluminum does not require cleaning or polishing.

All metals exposed to the influence of the atmosphere and moisture become tarnished and soiled to a greater or less extent, even though, as is the case with aluminum, the actual oxidation of the surface is almost *nil*. A thin film of "matter out of place," called by housewives by the general name of 'dirt," will form upon aluminum as it does upon gold.

Almost any good metal polish will cleanse aluminum. It is necessary, however, that the polish should contain no coarse grit. The ordinary metal polishes used for nickel, silver, etc., usually contain too much coarse material and scratch the surface of aluminum.

It will be found that if aluminum has one-half the attention that is given to brass, copper, silver or nickel, it will be kept polished with much less labor and will remain in a brighter condition than any of these metals.

Aluminum will take and retain a very high polish—fully equal to that of silver. The truly distinctive and beautiful color of aluminum is brought out in a highly polished plate. Aluminum can be polished on buffing wheels with rouge, the same as brass; and for polishing any considerable quantity of sheet, this course is the most economical way.

The Pittsburgh Reduction Company, recognizing the necessity of cleaning aluminum, offer for sale a polish, in round aluminum boxes, under the name of "Acme Aluminum Polish" These boxes hold about two ounces each, and can be heartly recommended for general household use. This material is in the form of a paste of a pink color; it is applied with a rag to the metal to be cleaned, rubbing well, then the polish is to be wiped off thoroughly with another rag. A third polishing cloth should be a clean, dry, soft, woolen cloth or chamois skin, to be used in giving the final finish to the metal. The Company sell this same polish in bulk by the pound.

A good polish that has been successfully used consists of the following materials and proportions:

| Stearic Acid                             | One part  | The whole     |
|------------------------------------------|-----------|---------------|
| Stearic Acid Fuller's Earth Rotten Stone | One part  | ground very   |
| Datter Ctare                             | C:        | fine and well |
| Rotten Stone                             | Six parts | mixed.        |

Castings are polished by the use of a solid felt wheel, or a muslin wheel, as the nature of the work requires. In either case the wheel should be coated with emery of about No. 100 fineness; the emery being applied in the usual way with glue.

For "cutting down" sheets, use a muslin wheel with tripoli. For putting on a fine finish, or "coloring up" either castings or sheets, use a canton flannel buff, with snow flake oil, or some other good coloring rouge.

If a particularly fine surface is desired, in either castings or sheets, it is well to use, after polishing the castings, or after "cutting down" in the case of sheet, a sheep-skin buff, with pumice stone and oil.

SCRATCH BRUSHING. A brass scratch brush run at a high AND SAND BLASTING. speed is used on sand castings. This work can be somewhat lessened by first taking a leather wheel and a very fine Connecticut sand, and revolving this wheel at a high rate of speed on a polishing lathe, feeding the sand at the same time between the wheel and the casting, so that the skin and irregularities in the surface are removed; and then putting the casting on a buffing wheel or scratch brushing it. In this way a variety of different effects can be produced. A fine brass scratch brush gives a most beautiful finish to sheet metal or to articles manufactured from the sheet. By this means a frosted appearance is given to the metal, which effect in many cases is equal to that given by a high polish.

An effect similar to the scratch brush finish can be given by sand blasting. The effect of first sand blasting and then scratch brushing sheets, gives a finish with very much less labor than with the scratch brush alone.

Another very pretty frosted effect is secured by first sand blasting, and then treating as hereinafter described under the head of "Dipping and Frosting."

A very pretty mottled effect is secured on aluminum goods, by first polishing them, and then holding them against a soft pine wheel run at a high rate of speed on a lathe. By careful manipulation, quite regular forms can be thus obtained.

This can be varied by first scratch brushing or sand blasting and then holding it against a wheel as above described.

Aluminum which has been sand blasted receives a grain which will allow of printing on the surface of the sheet with the best results, and aluminum sheets thus prepared, are coming very largely into use for photo-lithographic purposes.

The surface in such cases is first sand blasted in order that it will take and retain the ink, and produce very clear and sharp outlines when printed from.

The faces for cyclometer dials, watch dials, and similar articles, are generally sand-blasted before they are printed upon, which gives a very fine white background.

**DIPPING AND** Remove the grease and dirt from the plates by **FROSTING.** dipping in benzine. To whiten the metal and produce a handsome frosted surface, the sheet should be first dipped in a strong solution of caustic soda or potash; then in a solution of undiluted nitric acid; then washed thoroughly in water and dried in hot sawdust. The sawdust must be of a fine, dry grade, with no resin or pitch that will streak the surface.

FOR BURNISHING. Use a bloodstone or steel burnisher. For hand burnishing, use either a mixture of melted vaseline and kerosene oil, or a solution composed of two tablespoonsful of ground borax dissolved in about a quart of hot water, with a few drops of ammonia added.

### FOR LATHE WORK.

LUBRICANT. The best lubricant to use on aluminum when being turned in the lathe, is either coal oil or water, and in the press when the metal is being drawn or stamped, vaseline.

**TOOLING.** The best results can be derived in working aluminum by using a "shearing tool," or in other words, a tool which is shaped more resembling one used in working wood, than for working iron or brass, thus securing a tool with a sharp point, which gives the metal an opportunity to free itself, rather than clog the cutting edge. Tools of all descriptions can be made on this principle, regardless of the purpose for which they are intended, whether to cut a thread or turn to a surface.

Benzine is considered the best lubricant on engravers' tools to obtain a bright cut on aluminum, although naphtha, coal oil, or a mixture of coal oil and vaseline is sometimes used. The benzine is preferred, owing to the fact that it does not destroy the satin finish in the neighborhood of the cut, as these other mixtures sometimes do, if they are not carefully handled.

There is however, as much skill required in using and making a tool for a bright cut, as in the choice of the lubricant that is used.

SPEED USED

The best work in spinning aluminum on chucks from five to eight inches in diameter, can be performed by running the lathe at 2,600 revolutions a minute

Of course, as the diameter decreases for small articles, this speed can be increased up to 3,200 revolutions a minute, and on chucks larger than five or eight inches in diameter, the speed would be decreased somewhat below that given above.

In buffing aluminum, the best work is produced by using a buffer from eight to ten inches in diameter, at speed of about 3,800 revolutions a minute

Very fine effects can be produced by first burnishing or polishing the metal, and then stamping it in polished dies, showing unpolished figures in relief.

WELDING. Aluminum can be welded by the apparatus of The Thomson Electric Welding Co.

SOLDERING This has so far proven a difficult task. Most solders, ALUMINUM. such as ordinary hard solder composed of silver and tin, or ordinary soft solders, composed of lead and zinc, will not stick, owing to the high heat conductivity of aluminum. The heat is very rapidly drawn away from any of the molten solders, causing them to freeze before flowing sufficiently. Good joints can be made, however, by carefully cleaning the surfaces to be joined, and with very hot soldering bits, or careful work with the blow pipe, "tinning" the surfaces with some of the special solder used, before attempting to join the metals;

using special alloys for the solder. Several such solders are successfully used, pure tin with a little phosphor tin being the basis of the majority of such solders. Soldering bits of nickel are best to be used and specially good work has been done with those kept hot by a gasolene torch or electric appliance.

Special care should be taken to clean the surfaces to be soldered; this can be successfully accomplished by the mechanical means of scratch-brushing, scraping or filing the surfaces, thus, exposing fresh metal free from the thin film of oxide of aluminum and the oxide of silicon (silica), which forms a retentive and protecting coating over the surface of the metal, preventing either the soldering or plating of aluminum.

Another way to clean the surface of aluminum for either soldering or plating, is to dip the sheets into nitric acid diluted with three times its bulk of hot water, and which has had just enough hydrofluoric acid added to it, to make the solution act on the surface of the metal, this action being denoted by the evolution of gas bubbles. The solution can be kept in either a wooden or lead lined tank, and the amount of hydrofluoric acid added need be only small, say less than five, or at most, ten per cent. of the bulk of the solution. The hydrofluoric acid required is the cheap fluid of commerce sold in lead jugs and costing about five cents per pound.

The aluminum after being cleaned in this dilute nitric and hydrofluoric acid solution, is again dipped into hot water for rinsing and dried in hot sawdust; it is then cleaned so that either solder or plating solutions can be readily applied.

PLATING OF Aluminum which has been specially cleaned by ALUMINUM. any of the means suggested in the preceding paragraph, can be readily plated with copper in the way that such platings are usually applied.

Upon the copper plating, which can be put on in a very retentive coating of any desired thickness, either gold, silver, nickel, or other plating solutions can be applied. In some cases aluminum can be advantageously plated with other metals directly without first plating with copper.

Aluminum is now sold at a price per pound about equal to that of nickel, and not largely in excess of that of german silver; volume for volume it is much cheaper than german silver, and for replacing german silver or britannia metal as a base in silver plated vessels, its power of retaining heat, and its lightness, together with its much cheaper price, will certainly present such advantages as will cause its extensive use.

One method of plating is as follows:—The aluminum is 11rst immersed in a bath of acetate of copper dissolved in vinegar, to which oxide of iron, some sulphur, and aluminum chloride have been added. This gives a deposit of copper over the surface. After this, the article is brushed with a soft brass wire brush, and well rinsed in clear water, and is then placed in the electrolytic bath to be plated in the usual manner.

If the work is well done this plating is so strong that no amount of bending will cause it to chip off or crack.

After being plated with silver or copper, the article may be treated by the sulphide process for "oxidizing," giving the same results as "oxidized silver."

Another method consists of first cleaning the aluminum with an alkaline carbonate, after which it is thoroughly washed in water. This is followed by an immersion in a five per cent. solution of hydrochloric acid, and another washing in pure water. A preliminary deposit of copper is then placed on the article by immersing it in a weak, but slightly acid solution of sulphate of copper. It is then thoroughly washed and placed in the electrolytic bath.

GENERAL REMARKS It is to be noted, that it is not a matter of UPON ALLOYS. Indifference in what order the metals are melted in making an alloy. Thus, if we combine ninety parts of tin and ten of copper, and to this alloy add ten of antimony; and if again we combine ten parts of antimony and ten of copper, and to that alloy add ninety parts of tin, we shall have two alloys chemically the same, but in other respects—fusibility, tenacity, etc.—they totally differ. In the alloys of lead and antimony also, if the heat be raised in combining the two metals much above their fusing points, the alloy becomes hard and brittle.

THE COMMERCIAL Are never chemically pure. Lake Superior METALS copper, and the best lead and tin are nearly pure; but all of the other commercial metals have a considerable variety of impurities always present.

The COMMERCIAL METALS are iron, copper, lead, tin, zinc, aluminum, nickel, antimony, manganese, mercury, chromium, cadmium, magnesium, sodium, potassium, cobalt, bismuth and arsenic; the last eight of these metals, however, are comparatively costly and rare, and little used except for special purposes.

THE COSTLY AND Are gold, silver, platinum and iridium; PRECIOUS METALS they are obtained by special and costly methods of metallurgical treatment in almost perfect purity in commercial quantities.

THE RARE Have never been obtained in commercial quan-METALS tities at all, and most of them have only been isolated in a considerably alloyed and impure state. The rare metals are calcium, molybdenum, tellurium, titanium, uranium, palladium, osmium, thallium, barium, rhodium, columbium, ruthenium, indium, strontium, didymium, erbium, lithium, cerium, tantalum, gallium, glucinum, boron, thorium, germanium, lanthanum, zirconium, rubidium and vanadium.

ALUMINUM AND Undoubtedly many of the rare and costly THE RARE AND metals will form interesting if not valuable COSTLY METALS. alloys with aluminum. Gold costing \$20 per ounce, forms a series of purple and violet colored alloys which will have use in jewelry.

Gallium of the tin group costing \$200 an ounce, Palladium \$8 per ounce, Thorium \$160 per ounce, Germanium \$95 per ounce, Rubidium \$88 per ounce, Lanthanum \$80 per ounce, Glucinum \$80 per ounce, Calcium \$80 per ounce, Indium and Didymium \$72 per ounce, Lithium \$64 per ounce, Erbium \$62 per ounce, Ruthenium \$55 per ounce, Cerium, Strontium, Rhodium and Zirconium each costing \$40 per ounce, and Barium \$32 per ounce, are all costly metals, but on account of the extreme difficulties of preserving them from oxidation, are not "precious" or valuable. No valuable alloys of these metals with aluminum have yet been discovered.

Platinum (costing \$15 per ounce) and aluminum, alloy in a very interesting and probably valuable series.

Iridium (costing \$10 per ounce) and aluminum, alloy in any proportions, but no valuable alloys have as yet been discovered.

Glucinum on account of its lightness, specific gravity only 2.90, and its high electrical conductivity, which is even higher than that of pure silver or pure copper, is a valuable and will undoubtedly become a useful metal. Glucinum is white, malleable and moderately fusible, resembling aluminum.

Cadmium is a white, malleable and ductile metal resembling tin. Its sulphide, known as cadmium yellow, is bright in color and has qualities of great value to artists. The metal is of little use.

Calcium is yellow, ductile and malleable, and softer than gold. At a red heat it burns with a dazzling white light.

Erbium is very rare; it resembles aluminum in its properties and compounds.

Lithium is a metal resembling silver in color. It admits of being drawn into wire, but has little tenacity. It is remarkable for its lightness and the readiness with which it combines with oxygen.

Molybdenum is a silvery white, brittle and infusible metal. It never occurs native.

Osmium is remarkable for its high specific gravity and infusibility.

, Paladium resembles platinum. An alloy of 20 per cent. with 80 per cent. gold is perfectly white, very hard and does not tarnish by exposure.

Rhodium is white, very hard and infusible. Its specific gravity is about 11.

Ruthenium resembles iridium. It is rare and of little value. Strontium is yellowish, ductile and malleable; it burns in the air with a crimson flame.

Thallium is very soft and malleable.

Thorium is an extremely rare metal, remarkable for taking fire below red heat, and burning with great brillhancy; its oxide together with some of the other rare metals, forms a portion of the coating of the mantels of the celebrated "Wellsbach lights."

Titanium is a rare metal, usually obtained in crystalline form, and also as a heavy iron-gray powder. The crystals are copper-colored and of extreme hardness.

Tungsten is a hard, iron-gray metal, very difficult of fusion. An alloy of 10 per cent. of this metal and 90 per cent. of steel is of extreme hardness. Both the metal and its compounds have proved of value alloyed in steel and bronze.

Uranium is very heavy and hard, but moderately malleable, resembling nickel and iron; it is unaltered at ordinary temperatures by air or water.

Rubidium and caesium so closely resemble platinum that no ordinary test will distinguish them.

Indium is very soft, malleable and fusible; it marks paper like lead.

Barium, cerium, columbium (or niobium), didymium, lanthanum. tantalum, erbium, yttrium, and zirconium, are all rare metals and not very well known.

ALUMINUM AND With the exception of lead, aluminum unites of ther METALS. readily with all the common metals, and many useful alloys of aluminum with other metals have been discovered within the last few years. The useful alloys of aluminum so far found have been largely in two groups, the one of aluminum with not more than 15 per cent. of other metals, and the other of metals containing not over 15 per cent. aluminum; in the one case, the metals imparting hardness and other useful qualities to the aluminum, and in the other the aluminum giving useful qualities to the metals with which it is alloyed.

More or less useful alloys have been made of aluminum with copper, chromium, tungsten, titanium, molybdenum, zinc, bismuth, nickel, cadmium, magnesium, manganese, tin and antimony, these alloys all being harder than pure aluminum; but it is by combination of these metals that alloys of most value have so far been discovered.

ALUMINUM Tin has been alloyed with aluminum in proportions of from one to fifteen per cent. of tin, giving added strength and rigidity to heavy castings, as well as sharpness of outline, with a decrease in the shrinkage of the metal. The alloys of aluminum and tin are rather brittle, however, and while small proportions of tin in certain casting alloys have been advantageously used to decrease the shrinkage, on account of the comparative cost and brittleness of the tin alloys, they are not generally used. Sometimes phosphor tin is added to give increased hardness, together with good soldering properties to aluminum alloys.

ALUMINUM AND Chromium, though rather expensive, is an CHROMIUM. especially advantageous hardener of aluminum. Aluminum hardened with chromium seems to retain its hardness after annealing or being subjected to heat, better than almost any other of the alloys.

ALUMINUM AND Titanium alloys of aluminum, although hard to manufacture uniformly homogeneous, have greater spring and resilience than most other aluminum alloys. Alloys of titanium, chromium and copper, together with aluminum, give some of the hardest and toughest light alloys yet produced.

ALUMINUM AND The alloys of aluminum and tungsten have for TUNGSTEN. The past few years been especially popular for rolled sheets and plates, to be afterwards spun. Under the trade name of "Wolfram Aluminum" the metal has been largely used for military equipments. The alloys of aluminum and tungsten can be advantageously used with the addition of copper, and also with the triple hardeners, tungsten, copper and iron, or tungsten, copper and manganese. As usually made, the aluminum is hardened with some copper; tungstate of soda and ferro-manganese are added to the reducing bath, making an alloy of aluminum, copper, tungsten, manganese and iron.

ALUMINUM Nickel alloyed with copper is one of the favorite AND NICKEL. hardeners used by The Pittsburgh Reduction Company. This alloy, made in the reducing pot with from two to five per cent. of the combined alloying metals, is the most satisfactory all around hard aluminum for rolling or hammer-

ing that is produced. In larger proportions of from seven to ten per cent. of the combined hardeners, the best casting metal is produced for purposes where toughness combined with hardness and good casting qualities are desired.

The Pittsburgh Reduction Company sell their malleable hardened aluminum, as well as their toughest casting alloys, under the trade name of "Nickel Aluminum."

Several new nickel and aluminum alloys for jewelers and other special work, have been made. Two of these are:—

- (1) 20 parts nickel and 80 parts aluminum.
- (2) 40 parts nickel, 10 parts silver, 30 parts aluminum, and 20 parts of tin.

ALUMINUM Cobalt also acts, with about an equal amount of AND COBALT. of copper, as a specially good alloy for hardening aluminum. The following are two cobalt and aluminum alloys used for special purposes:

60 parts cobalt, 10 parts aluminum, 40 parts copper. 35 parts cobalt, 25 parts aluminum, 10 parts iron, 30 parts copper.

GOLD AND Professor W. C. Roberts-Austen has discovered ALUMINUM. a beautiful alloy, composed of 78 parts gold, and 22 parts aluminum, which has a rich purple color.

ALUMINUM COMBINED While all the metalloids and gaseous WITH THE METALLOIDS. elements, such as oxygen, nitrogen, sulphur, selenium, chlorine, iodine, bromine, fluorine, boron, silicon and carbon, unite with aluminum with more or less ease under certain conditions, yet, no useful result has been recorded from the presence of any of these elements with metallic aluminum. The union of the above metalloids in combination with aluminum results in alloys which are very undesirable in every way from a commercial standpoint.

The only advantageous result yet obtained by union of aluminum with any of the metalloids has been in the action of small amounts of phosphorus to aid soldering and in some phosphor aluminum bronzes. The prevention of the occlusion of gaseous metalloids in molten aluminum, and the prevention of the union of carbon with the metal, are among the chief precautions to be observed in the metallurgy of aluminum.

ALUMINUM AND THE Due to the ease with which these alloys ALKALI METALS. Due to the ease with which these alloys are decomposed, especially when subjected to water or moist air, none of them can be considered in any way advantageous; in fact, alloys of metallic sodium and potassium with aluminum are the "bete noir" of the metallurgy of aluminum, in the same way that sulphur and phosphorus are feared in the metallurgy of steel.

Due to the precautions taken by The Pittsburgh Reduction Company, their metal as sold in the market is especially free from contamination with the metalloids and alloys with the alkali metals.

ALUMINUM AND Aluminum can be readily alloyed with Molyb-MOLYBOENUM. denum in the process, by placing the molybdenum oxide in the electrolytic bath with the oxide of aluminum.

Molybdenum acts as a hardener for aluminum, and forms alloys which will have special advantages for some work, as in the production of aluminum coins and medals)

ALUMINUM AND When Tellurium is heated with aluminum, the two combine with explosive violence, forming a chocolate colored, difficultly fusible compound, which has the composition of Al<sub>2</sub> Te<sub>3</sub>. It is hard and brittle, and can readily be ground to powder; when exposed to moist air, it is decomposed and hydrogen telluride with its fetid odor is slowly evolved; when thrown into water, it is rapidly decomposed.

ALUMINUM No specially advantageous compounds of these AND ARSENIC. metals have yet been discovered, nor from the nature of the case are they likely to be, although the metals can readily be alloyed.

ALUMINUM

The addition of a new per cent. of silver to AND SILVER. aluminum, to harden, whiten and strengthen the metal, gives a material especially adaptable for many fine instruments and tools, and for electrical apparatus, where the work upon the tool and its convenience are of more consequence than the increased price due to the addition of the silver. Silver lowers the melting point of aluminum, and gives a metal susceptible of taking a good polish and making fine castings.

ALUMINUM AND These metals unite with difficulty, but at the MERCURY.

same time amalgams and alloys can be produced by uniting the two metals. No useful results, however, have yet been shown from any of such alloys or combinations.

ALUMINUM AND The alloys of these light metals are interesting and possess some practical advantages. Mixtures of the powders of the two metals have special actinic properties when burned, useful for photographic work. Magnesium being electro-positive to aluminum, will protect it from galvanic action with other metals at the expense of the corrosion of magnesium. The alloys of these two metals, and combinations of them with other metals, will warrant further research as to their advantage.

ALUMINUM AND Manganese is one of the best hardeners of MANGANESE. aluminum; it can be cheaply added in aluminum casting metal by means of the rich alloys of ferromanganese. To obtain this alloy for rolling purposes, the pure black oxide of manganese is added to the electrolytic bath in which the aluminum is produced. The alloys of manganese gives special rigidity and hardness to aluminum; in combination with copper and nickel, one of the hardest alloys of aluminum yet produced has been obtained.

ALUMINUM AND This alloy is an expensive one, and while uranium appears to be a good hardener for aluminum, on account of its expense and rarity, it has not had as yet a general application.

ALUMINUM AND These metals have been alloyed to produce a solder for aluminum which seems to give good results. Cadmium does not appear to act as a hardener for aluminum as almost all other metals do.

ALUMINUM AND These two metals combine easily, the alloys BISMUTH. being very fusible, as might be expected of alloys with bismuth. They remain unchanged in the air at ordinary temperatures, but oxidize rapidly when melted. Bismuth makes aluminum very brittle. No valuable alloys of these two metals have as yet been discovered.

**ALUMINUM AND** Vanadium is a good hardener of aluminum, **VANADIUM.** and can readily be alloyed with if, due to its presence in some of the bauxites, the native aluminum ores.

ALUMINUM AND No valuable alloys of these metals have as yet been discovered.

ALUMINUM AND These metals unite with difficulty, and only ANTIMONY. in bearing metals of the class of Babbitt metals, have any useful alloys as yet been discovered.'

ALUMINUM AND These metals unite only with great difficulty, and no useful alloys have yet been discovered.

ALUMINUM AND Zinc is used as a cheap and very efficient ZINC. hardener in aluminum castings, for such purposes as sewing machine frames, etc.) Proportions up to 30 per cent. of zinc with aluminum are successfully used. An alloy of about 15 per cent. zinc, 2 per cent. tin, 2 per cent. copper, ½ per cent. each of manganese and iron and 80 per cent. aluminum, has special advantages.

ALUMINIZED Aluminized zinc is used for two purposes, viz: ZINC. in the bath for galvanizing, and in aluminum brass; and is manufactured as follows:

Take five or ten pounds of aluminum, depending on whether it is desired to make a five per cent. or ten per cent. aluminized zinc, and put it in a plumbago crucible.

After the aluminum is melted, add the zinc, keeping the mass continually stirred until either ninety five or ninety pounds of zinc has been added, making the total weight of the metal in either case in the crucible, one hundred pounds, or in this proportion. After all the zinc has been added, the crucible should be removed from the fire, and the alloy cast into ingots of any convenient form or size for breaking up.

The five per cent. aluminized zinc will be found best to use in the galvanizing bath, and also in the lower grades of aluminum brass, but in the higher grades of brass containing upwards of one per cent. of aluminum, it would be best to use a ten per cent. aluminized zinc.

This aluminized zinc, both in brass and in the galvanizing baths, is treated in all respects the same as pure zinc, as far as the question of introducing it into molten metal is concerned.

### THE USE OF ALUMINIZED ZINC IN GALVANIZING BATHS.

The use of aluminum in a galvanizing bath, has become so universal that at the present time it is considered a necessity, in order to produce the best and the most economical work. It is added in the form of aluminized zinc, which is made as described above, and is used in such proportions that the total amount of aluminum in the bath will be about one pound of aluminum per ton of bath, or in using a five per cent. aluminized zinc, twenty pounds of aluminized zinc per ton of bath should be used.

These proportions, however, are varied according to the grade of zinc which is being used, and also upon the class of material to be galvanized; in some cases more, and some cases less than the quantities given above will be found most advantageous.

When aluminized zinc is used, it has been found unnecessary to use sal ammoniac, for clearing the bath of oxide, as the aluminum accomplishes the same purpose, and if the two are used together, they seem to counteract the effects of each other.

Aluminized zinc should be added to the galvanizing baths gradually, and not all at one time, and as the bath is consumed, fresh aluminized zinc is added in the proportion of about a pound at a time, for a five ton bath. This is when a five per cent. aluminized zinc is used.

The first action of aluminum in galvanizing baths is to make the bath more liquid, which is one of the objects in adding the aluminum; a greater amount of aluminum seems to combine with the impurities in the zinc, and come to the surface in the form of a scum, which makes galvanizing difficult. If therefore, too much aluminum goes into the bath, stir the bath well, and allow it to stand for a while until the aluminum combines with these impurities and comes to the

surface as a scum. Remove this scum, add some sal-ammoniac to counteract the effects of the aluminum, and reduce the proportion of the aluminized zinc added.

In starting with a new bath, it is specially important that these suggestions should be followed.

# BRASSES.

Brasses are alloys of copper and zinc, as distinguished from the Bronzes, which are alloys of copper and tin.

A common proportion for making brass is, copper 66 zinc 34. This alloy is a much poorer conductor of electricity and of heat than copper, is more fusible, oxidizes very slowly at low temperatures, but rapidly at a high heat.

It is customary in the manufacture of ordinary commercial brass to introduce from two to five per cent, of tin for the purpose of giving added strength and density.

The terms "high brass" and "low brass" are used in the trade but applied only to rolled material. "High brass" is composed of two parts of copper and one part of zinc and is of a light yellow color.

"Low brass" ranges from 75 per cent. to 88 per cent. copper and 25 per cent. to 12 per cent. of zinc, and in color is considerably darker than "high brass."

The brass of Romilly, which works remarkably well under the hammer, is composed of copper 70, zinc 30; English brass is often given 33 per cent. zinc, and for rolled brass 40 per cent. (This constitutes "Muntz sheathing metal," as patented by G. F. Muntz, in 1832.) The proportion of zinc ranges, however, for such purposes, from 37 to 50 per cent. copper 63 to 50.

All of these alloys are improved by additions of aluminum.

Mallet classifies the copper-zinc alloys according to the following table:

PROPERTIES OF COPPER-ZINC ALLOY IN CASTINGS.

| .g.                 | ataon.   | Copper         |                |                  |            | TENACITY              | ORDER O                                 | P .           |          |
|---------------------|----------|----------------|----------------|------------------|------------|-----------------------|-----------------------------------------|---------------|----------|
| Atomic              | Compos   | hy<br>Analy's  | Sp. G.         | COLOR.           | FRACT.     | Tons per<br>Sq. Inch. | Malleability.                           | Hard<br>ness. | Fus'y    |
| Cu                  | Zn       | pr. ct.        |                |                  |            |                       |                                         |               |          |
| 1:                  | 0        | 100.           | 8.667          | red              |            | 14.6                  | 8<br>6<br>4<br>2<br>0<br>5<br>11<br>7   | 22<br>21      | 15       |
| 10 :                | 1        | 98.80          | 8.605          | red-yellow       | coarse     | 12.1                  | 6                                       | 21            | 14       |
| 9 8 7 6 5 4 3 2 1 : | 1        | 90.72          | 8.607          |                  | fine       | 11.5                  | 4                                       | 20            | 13       |
| 8:                  | 1        | 88.60          | 8.633          | l :: i           |            | 12.8                  | Z 2                                     | 19            | 12       |
| 7:                  | 1        | 87.30          | 8.587          | l" .l            |            | 13.2<br>11.1          | i õ                                     | 18            | 11       |
| 6:                  | 1        | 85.40          | 8.591          | yellow-red       | fine fibre | 11.1                  | 10                                      |               | 10       |
| ə :                 | 1        | 83.02          | 8.415          | 1                |            | 13.7                  | 1,1                                     | 16            | 9        |
| 4:                  | 1        | 79.65          | 8.448          | ١."              |            | 14.7                  | 1 16                                    | 15            | 8        |
| 3:                  | 1        | 74.58          | 8.397          | pale yellow      |            | $13.1 \\ 12.5$        | 10                                      | 14            |          |
| 2:                  | 1        | 66.18          | 8.299          | deep "           |            | 12.5                  |                                         | 23<br>12      |          |
|                     | 1        | 49.47          | 8.230          | 3. 1. 11         | coarse     | 9.2                   | 12                                      | 12            |          |
| į:                  | 2        | 32.85          | 8.263          | aark             |            | 19.3                  |                                         | 10<br>5       |          |
| 8:                  | 17       | 31.52          | 7.721          | silver white     |            | $\frac{2.1}{2.2}$     | very brittle                            | 6             |          |
| ð:                  | 18<br>19 | 30.36<br>29.17 | 7.836          | silver white     |            | Z.Z                   |                                         | 7             |          |
| 3 :                 | 20       | 29.17          | 7.019<br>7.603 | light gray       | vitr'ous   | 0.7<br>3.2            | brittle                                 | 6             | 5        |
| 9:                  | 21       | 27.10          | 8.058          | ash "<br>light " |            | 0.9                   | mitte                                   | 3 9           | 5        |
| 1::8::8:::8:::8:::  | 22       | 26.24          | 7.882          | likut            | coarse     | 0.8                   | ••                                      | 1 1           | 2        |
| 3:                  | 23       | 25.39          | 7.443          | ash "            | fine       | 5.9                   | slight duct.                            | l i l         | 5        |
|                     | 3        | 24.50          | 7.449          | 8.511            | uiie       | 3.1                   | hrittla                                 | 2             | Ä        |
|                     | 7        | 19.65          | 7.371          |                  |            | 1.9                   | brittle                                 | 4             | 3        |
| 1:                  | 4<br>5   | 16.36          | 6.605          | dark "           |            | 1.8                   |                                         | 11            | 9        |
| ō :                 | ï        | 0.             | 6.895          | uaik             |            | 15.2                  |                                         | 23            | 55554321 |
| ٠.                  |          | · ·            | 0.050          | 1                |            | 1.7.2                 | *************************************** | 1 -00         |          |

In the above table, the minimum of hardness and fusibility is denoted by 1.

The conclusion of Storer that these alloys are mixtures rather than true compounds, is accepted by Watts and other authorities.

ALUMINUM Aluminum brass has an elastic limit of about 30,000 lbs. per square inch; an ultimate strength of from 40,000 to 50,000 lbs. per square inch, and an elongation of 3 to 10 per cent. in 8 inches.

Aluminum is used in brass in all proportions from onetenth of I per cent. to ten per cent., and the best results will be derived by introducing when possible this aluminum in the form of aluminized zinc, manufactured as previously described. This aluminized zinc is added in the same manner that the zinc is originally introduced into the copper, and in such proportions as will give the requisite amount of aluminum in the brass mixture.

As stated above, a five per cent. aluminized zinc is generally used when percentages of less than one per cent. of aluminum are required, and aluminized zinc of ten per cent. is used when a greater percentage than one per cent. is required.

The effect of aluminum in brass, added in this manner, in small quantities of less than one per cent., is mainly to make the brass flow freely, and present a smooth surface, free from blow holes. When used in these quantities, from one-half to one-third more small patterns can be used on a gate than can be used without the presence of aluminum, for this amount of aluminum gives to the brass such additional fluidity as enables it to run more freely in the moulds and a greater distance; consequently more patterns can be used on a gate.

In quantities of over about one per cent., the effect of the aluminum commences to be very perceptible, from the fact that it imparts to the brass additional strength, and this strength is increased directly as the percentage of aluminum is increased, up to about ten per cent.

One per cent. of aluminum in brass is very extensively used for electrical purposes, as it gives a brass casting free from pin holes and of greater strength than can be secured otherwise, from the same grade of brass.

It therefore follows that by the use of a small percentage of aluminum in brass, a cheaper grade of brass can be used to do the same work than would otherwise be possible.

In all cases, if MAXIMUM RESULTS are desired, care must be taken that only PURE METALS are used. In this connection it should be clearly understood that much of the copper and zinc commonly used contains a large amount of impurities, and the nature of some of these impurities is such as to absolutely prevent good alloys being made with aluminum. In all cases we would advise customers to insist on an analysis being given of the metal supplied, and for aluminum alloys, to exclude all containing more than one-fourth of one per cent, of

iron, arsenic, or antimony, or more than two-hundreths of one per cent. of bismuth. Alloys should be poured at a low heat, as soon as fluid.

It should be noted that the presence of aluminum in these alloys, lowers the point at which they become fluid, and that they are fluid at lower temperatures than either gun metal or ordinary brass mixtures; therefore the average brass-founder is very liable to overheat them, and great care must be taken to prevent this.

To illustrate the great difference which occurs in metals found in the open market, the following are given as analyses of metals, some of which are good, and others worthless for making good alloys:

### ANALYSES OF METALS.

|                                                                                 | Best C                                   | op <b>pe</b> r.                                         | Tough<br>Copper.                        | Bad 0 | opper.                    | Good<br>Tin.                          | Bad                                   | Tin.                                 | Good<br>Zinc.                                                                | Poor<br>Zinc.                         |
|---------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------|-----------------------------------------|-------|---------------------------|---------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------------------------------------|---------------------------------------|
| Copper Tin Zinc Silver Lead Bismuth Iron Nickel Arsenic Antimony Sulphur Oxygen | .0<br>.053<br>.017<br>.0<br>.030<br>.039 | 99.84<br>trace .061<br>.0 .0 .0<br>.0 .05<br>trace 0.26 | 99.67<br><br>.015<br>.018<br>.177<br>.0 | 98.04 | 98.02<br><br><br><br>1.40 | 98.60<br><br>.034<br>.09<br><br>trace | 95.55<br><br>.567<br>.812<br><br>2.58 | 95.80<br><br>3.04<br>714<br><br>.121 | trace<br>.020<br>99.656<br><br>.158<br>.0<br>.093<br><br>trace<br>.0<br>.073 | 98.76<br><br>1.09<br>.03<br><br>trace |

USES OF Brass is the alloy commonly employed in the arts BRASS. in the construction of scientific apparatus, mathematical instruments and small parts of machinery. It is cast into parts of irregular shape, drawn into wire, or rolled into rods and sheets. It is harder than copper, very malleable and ductile, and can be "struck up" in dies, formed in moulds, or "spun" into vessels of a wide variety of forms, if handled cold or slightly warm: it is brittle at a high temperature.

BRONZES. THE PRINCIPAL BRONZES are those used in coinage, in ordnance, in statuary, in bells, and musical instruments, and in mirrors and the specula of telescopes. These alloy oxidize less rapidly than copper, are all harder, and often stronger and denser.

The addition of a small quantity of tin to copper causes it to become brittle under the hammer, according to Karsten, and the ductility is restored only by heating to a red heat and suddenly cooling. Mushet finds that the alloy, copper 97, tin 3, makes good sheathing, as it is not readily dissolved in hydrochloric acid. The best gun-metal is from copper 90, tin 10, to copper 91, tin 9; if richer in copper, it is especially liable to liquation, which action is detrimental to all these alloys. Bell-metal, copper 80, tin 20, to copper 84, tin 16, is sonorous and makes good castings, but is hard, difficult to work and quite brittle. Suddenly cooling it from a high temperature, reduces its brittleness, while slow cooling restores its hardness and brittleness. It is malleable at low red heat, and can be forged by careful management.

Speculum-metal, copper 75, tin 25, is harder, whiter, more brittle and more troublesome to work than bell metal.

Old flexible bronzes contain about ¾ of an ounce of tin to the pound of copper, or copper 95, tin 5, as stated by Ure. Ancient tools and weapons, contain from 8 to 15 per cent. tin; medals from 8 to 12 per cent., with often 2 per cent. zinc to give a better color. Mirrors contained from 20 to 30 per cent. tin. The metals, copper and tin, mix in all proportions, and the alloys are, to a certain extent, independent of their chemical proportions. The occurrence of hard, brittle, elastic alloys between the extremes of a series having soft tin and ductile copper at either end, both of which metals are inelastic, is probably a proof that these alloys are sometimes chemical compounds. They are probably compounds in which are dissolved an excess of one or the others of the components.

Mallet similarly classifies the copper-tin alloys according to the following table:

### PROPERTIES OF COPPER-TIN ALLOYS IN CASTINGS.

At. wt. Cu. -- 63.3; Sn.-117.8

| Atomic<br>Composit'n                                                              | Copper.                 | Sp. G.                  | COLOR.                   | FRACT.                 | TENACITY<br>Tons per<br>Sq. Inch. | Malleable.         | Hard-<br>ness. | Fusibil'y             |
|-----------------------------------------------------------------------------------|-------------------------|-------------------------|--------------------------|------------------------|-----------------------------------|--------------------|----------------|-----------------------|
| Cu Sn                                                                             | pr. ct.                 |                         |                          |                        |                                   |                    |                |                       |
| $ \begin{array}{c} 1:0\\a\ 10:1\\b\ 9:1 \end{array} $                             | 100.<br>84.29<br>82.81  | 8.607<br>8.561<br>8.462 | red-yellow<br>yellow-red | fine grain             | 14.6<br>16.1<br>15.2              | $\frac{1}{2}$      | 10<br>8<br>5   | 16<br>15<br>14        |
| $\begin{array}{c} c & 8 & : & 1 \\ d & 7 & : & 1 \\ e & 6 & : & 1 \end{array}$    | 81.10<br>78.97<br>76.29 | 8.459<br>8.723<br>8.750 | pale red                 | " vitreous             | 17.7<br>13.6<br>9.7               | 4<br>·5<br>brittle | 4 3            | 13<br>12              |
| f 5:1                                                                             | 72.80<br>68.21          | 8.575<br>8.400          | ash gray<br>dark gray    | conchoid               | 4.9<br>0.7                        | friable            | 2<br>1<br>6    | 11<br>10<br>9         |
| $ \begin{array}{c} h & 3 : 1 \\ i & 2 : 1 \\ j & 1 : 1 \\ k & 1 : 2 \end{array} $ | 61.69<br>51.75<br>34.92 | 8.539<br>8.416<br>8.056 | white gray<br>white      | lam. grain<br>vitreous | 0.5<br>1.7<br>1.4                 | brittle            | 7<br>9<br>11   | 9<br>8<br>7<br>6<br>5 |
| $\begin{array}{c c} k & 1 & : & 2 \\ l & 1 & : & 3 \\ m & 1 & : & 4 \end{array}$  | 21.15<br>15.17<br>11.82 | 7.387<br>7.447<br>7.472 | "                        | lam.grain              | 3.9<br>3.1<br>3.1                 | 8 tough            | 12<br>13<br>14 | 5<br>4<br>3           |
| $ \begin{array}{c cccc} n & 1 & 5 \\ o & 0 & 1 \end{array} $                      | 9.68                    | 7.442<br>7.291          | **                       | earthy                 | 2.5<br>2.7                        | ř "                | 15<br>16       | 2<br>1                |

a, b, c are gun-metals; d, hard brass for pins; e, f, g, h, i, bell-metal; j, k, for small bells.

**THE KALCHOIDS**, or copper-tin zinc alloys, are of great value, and include the strongest and probably the hardest possible combinations of these metals.

## COPPER-TIN-ZINC ALLOYS.

| No. Cor                                                   | er. Tin.                                                      | Tin. Zinc.                                                     | REMARKS.                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1 2 11 3 14 11 5 10 10 10 11 11 11 11 11 11 11 11 11 11 | 50<br>25<br>25<br>20<br>20<br>16<br>14<br>12<br>11<br>10<br>8 | 50 50 50 25 25 25 20 20 16 16 14 14 12.5 12.5 11 11 10 8 8 7 7 | Very white, brittle, subject to liquation. but finer grain. Yellowish tint, hard, fine, not malleable. Brittle, hard, yellow. "close grained. Yellow, slightly malleable. "more malleable. Fine yellow, fine grain, malleable. Yellow, softer, more malleable. Golden, malleable, soft. |

The use of 8 to 15 per cent. of tin and 2 per cent. zinc in alloy with copper is probably as common as the employment of the bronzes without zinc; the latter is added to improve the color. Alloys of copper containing from 3 to 8 or 10 per cent. zinc, and from 8 to 15 per cent. tin are used in engineering very extensively, the softer alloys for pump-work, the harder for turned work and for nuts and bearings. An alloy of 5 per cent. tin, 5 zinc, and 90 copper is cast into ingots and remelted for general purposes. It is tough, strong and sound. Copper 75, tin 12, zinc 3, makes a good mixture for heavy journal-bearings. Copper 76, tin 12, zinc 12, is as hard as tempered steel and was made into a razor-blade by its discoverer, Sir F. Chantrey. When copper and brass are mixed in equal proportions and their sum is equal to the weight of tin used, the alloy constitutes a solder.

| Zinc,   |      | <br> |    | 20  | 66  |
|---------|------|------|----|-----|-----|
| Nickel, | <br> | <br> |    | 20  | 6.6 |
|         |      |      | ٠. | 100 | 4.6 |

This is the composition of almost all German Silver Sheet; but it can be had of any grade with from 4 to 20 per cent. nickel.

German Silver has a specific gravity of 8.50 to 8.60, according to composition.

German Silver rolls cold into sheets. For table utensils to be plated with silver, twenty five per cent. each of nickel and zinc, to fifty per cent. of copper is usually used.

An alloy consisting of copper 56 per cent., zinc 5 per cent. and nickel 39 per cent., makes a fine white metal of the same class as ordinary german silver.

Aluminum is added to advantage to german silver in varying proportions up to one per cent., the aluminum being first melted with the zinc, as "aluminized zinc."

The aluminum serves to protect the zinc from oxidization, prevents excessive dross, and makes the german silver stronger and somewhat more dense.

# COPPER ALLOYS.

AUTHORITY .- AN INTRODUCTION TO THE STUDY OF METALLURGY BY W. C. ROBERTS-AUSTEN.

|                                                  | COPPER.                    | ZINC.                      | TIN.                    | OTHER CONSTITUENTS.                                                                         | USES AND REMARKS.                                                                                                                                          |
|--------------------------------------------------|----------------------------|----------------------------|-------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brass                                            | 63 to 72<br>70.29          | 27 to 34<br>29.26          | 0.17                    | Pb 0.28                                                                                     | Typical brass.<br>Wire. Always brittle if Pb reaches 2 per                                                                                                 |
| Muntz's metal                                    | 60 to 62<br>55.33<br>60.00 | 38 to 40<br>41.80<br>38.12 | 111                     | Fe 4.66.<br>Fe 1.5.                                                                         | Cent. 1m may vary from 0.1 to 0.5.  Ship's sheathing.  Austrian, for ordnance.  Raglish. Sterro and Aich's metals are remarkable for their great strength. |
| Mosaic gold Pinchbeck Mannheim gold Gun metal    | 88.33<br>80 to 88          | 35.00<br>16.76<br>20 to 12 | 00.6                    |                                                                                             | 85,080 lbs. per square inch.                                                                                                                               |
| Bell metal.<br>Speculum metal                    |                            | trace.                     | 8888<br>897             | Fe, Ni, traces.                                                                             | "Big Ben," Westminster.<br>Telescope mirror, Birr Castle, Ireland.                                                                                         |
| Bronze                                           | 88888<br>6107              | 1123                       | 8.18.4.4.6.4.0.7.4.     | . 6,6 dq                                                                                    | Ross. Atomic proportion.<br>British bronze coinsge.<br>Japanese art bronze.                                                                                |
|                                                  |                            | 3 <u>5</u> 11              | 6.1.0<br>6.1.0<br>6.1.0 | Fo 16.3<br>Pb. 15.0<br>Pb. 8.3; Fe 3<br>Fe. 0.1                                             | Chinese Art Bronze.<br>Prehistoric sword, (Treland.)<br>Egyptian chisel.                                                                                   |
| Aluminum bronze                                  | -                          | 151                        | 18 to 12                | Pb 1.5.                                                                                     | Attic coin. Bearings for heavy axles. Tensile strength, 96,434 lbs. per sq. in.                                                                            |
| Floophor bronze. Manganese bronze Silicon bronze | 28.28.27<br>24.824.23      | 111125                     | 1.14<br>1.14            | FO 4.25; F 0.25;<br>Mn 13.48; Fe 1.24; C 0.11<br>Mn 16.86; Fe 1.67; C 0.06<br>Fe Si. trace. | Yellowish grey. Yellowish white. Telegraph wire. Telephone                                                                                                 |

# COPPER NICKEL ALLOYS.

|                                                                | Cu.          | Ni.                          | Zn.                  | Other<br>Constituents.                                    | Remarks.                                      |
|----------------------------------------------------------------|--------------|------------------------------|----------------------|-----------------------------------------------------------|-----------------------------------------------|
| Nickel coins Packfong English "German silver," Berlin argentan | 43.8<br>61.3 | 25.0<br>15.6<br>19.1<br>26.0 | 40.6<br>19.1<br>22.0 | _                                                         | Chinese alloy.                                |
| Sheffield Ger-<br>man silver<br>Platinoid                      |              | 24.0                         | 19.0                 | A German<br>silver, with<br>1 to 2 per                    | High electrical resistance, not changing with |
| Ancient coin                                                   | 77.58        | 20.0                         | _                    | cent. of<br>tungsten.<br>Fe 1.04;<br>Co 0.54;<br>Sn 0.03. | Second century,<br>B. C.                      |

# TIN ALLOYS.

|                                          | Sn.                  | Sb.            | Cu.          | Other<br>Constituents.                 | Remarks.                                                                                     |
|------------------------------------------|----------------------|----------------|--------------|----------------------------------------|----------------------------------------------------------------------------------------------|
| Britannia met'l<br>White metal           | 90.62<br>82.00       | 7.81<br>12.00  | 1.46<br>6.00 |                                        | Birmingham sheet.<br>For bearings. The<br>composition of<br>white metal is<br>very variable. |
| ** **                                    | 53.00                | 10.60          | 2.40         | Pb 33.0;                               | very variable.                                                                               |
| Ashberry metal<br>Pewter<br>Solder, fine | 77.8<br>80.0<br>66.6 | 19.4<br>—<br>— | =            | Zn 1.0<br>Zn 2.8<br>Pb 20.0<br>Pb 33.3 | The melting point increases with                                                             |
| " tin<br>" plumbers'                     | 50.0<br>33.3         | _              | =            | Pb 50.0<br>Pb 66.6                     | the proportion of lead.  Authorised by the Plumbers' Company.                                |

## LEAD ALLOYS.

|                             | Pb.                  | Sb.                  | Sn.         | Other<br>Constituents. | Remarks.                             |
|-----------------------------|----------------------|----------------------|-------------|------------------------|--------------------------------------|
| Type metal<br>Bearing metal | 70.0<br>82.0<br>84.0 | 18.0<br>14.8<br>16.0 | 10.0<br>3.2 | Cu. 2.0                | For stereotyping. For slowly revolve |
| Shot metal                  | 60.0<br>99.6         | 20.0                 | 20.0        | As. 0.2 to 0.35        | ing axles.                           |

## ZINC ALLOYS.

|                                          | Zn.          | Sn.  | Cu.        | Other<br>Constituents.       | Remarks.                    |
|------------------------------------------|--------------|------|------------|------------------------------|-----------------------------|
| Antifriction<br>metal<br>Babbitt's metal | 85.0<br>69.0 | 19.0 | 5.0<br>4.0 | Sb 10.0<br>Sb 3.0;<br>Pb 5.0 | For bearings.<br>(Ledebur.) |

# BISMUTH ALLOYS, (FUSIBLE METALS.)

|                 | Bi.                                  | Pb.                                       | Sn.                                       | Cd. | Melting<br>Point.                     |
|-----------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-----|---------------------------------------|
| Newton's alloys | 50.0<br>50.0<br>50.0<br>50.0<br>50.0 | 31.25<br>28.10<br>25.00<br>24.00<br>27.00 | 18.75<br>24.64<br>25.00<br>14.00<br>13.00 |     | C °<br>95<br>100<br>93<br>66—71<br>60 |

## ALLOYS FOR COINAGE.

|             | Au.           | Cu.          | Ag.   | Other<br>Constituents. | Remarks.                                                    |
|-------------|---------------|--------------|-------|------------------------|-------------------------------------------------------------|
| Gold coin   | 91.66<br>90.0 | 8.33<br>10.0 | =     | _                      | British standard.<br>"Latin Union"                          |
| •• ••       | 1.33          | 82.73        | 15.93 | _                      | and American.<br>Roman, Septimus<br>Severus, 265 A. D.      |
| * **        | 40.35         | 19.63        | 40.02 | _                      | Early British B.C.                                          |
| Silver coin | 0.1           | 7.1          | 92.5  | Pb 0.2                 | 50.<br>Roman, B. C. 31,<br>almost same as<br>British silver |
| Silver coin | -             | 7.5          | 92.5  | -                      | coin.<br>British standard.                                  |

# ALUMINUM AND COPPER.

Aluminum and copper form two series of valuable alloys. Aluminum bronze, containing from 2 to 12 per cent. of aluminum; and copper-hardened aluminum, containing from 2 to 15 per cent. of copper.

ALUMINUM The 5 to 10 per cent. aluminum bronzes are among BRONZE. the most dense, finest grained, and strongest alloys known-alloys having remarkable ductility as compared with tensile strength. The 10 per cent. bronze can be made in forged bars, with 70,000 pounds per square inch tensile strength, with 40,000 pounds elastic limit to the square inch, and with at least 25 per cent. elongation in 8 inches. bronze has a specific gravity of about 7.50, and is of a lightyellow color. The 5 to 71/2 per cent. aluminum bronzes of from 8.30 to 8 specific gravity, have a handsome yellow color, and readily give 40,000 to 50,000 pounds per square inch tensile strength, with over 30 per cent. elongation in 8 inches, and with an elastic limit of 20,000 pounds per square inch. will probably be alloys of the latter characteristics that will be most used—especially in bronze wire and for marine work; and the fact that 5 to 7 per cent. bronzes can be rolled or hammered at a red heat, proper precautions, which can readily be secured, being taken, will add greatly to their use. Alloys of this character can be worked in almost every way that steel can, having for its advantages greater combined strength and ductility, and its greater power to withstand corrosion. The presence of silicon makes a harder bronze, but one of much less comparative ductility and a less malleable alloy. The presence of iron weakens, and very seriously interferes with the value of the bronze. The presence of zinc in the aluminum bronze is not so deleterious-in fact it makes the best aluminum brasses.

Aluminum in bronzes lowers the melting-point of the copper at least 100° or 200°. The melting-point of 10 per cent. aluminum bronze is somewhere in the neighborhood of 1,800° Fahrenheit. Aluminum bronze is among the hardest of the bronzes, and hardens upon cold working considerably. hardness, however, can be lowered by annealing at a red-heat and plunging into cold water. Aluminum bronze can readily be worked in a lathe, the chips cut smooth and long, and do not clog the tool. Aluminum bronze is a remarkably rigid metal under transverse strain, being much more rigid than ordinary brass or even gun bronze, and under compressive strain, although rather low in elastic limit compared with its ultimate compressive strength, it is still much stronger than any of the other bronzes, and there is a long period of gradual compression before finally giving way, making it a peculiarly safe metal under compression.

Sound castings can be made with aluminum bronze if the precautions are taken to avoid the difficulties which are particularly imminent in melting.

ist. Care must be taken not to overheat the metal, for if the metal is heated to too high a temperature, the aluminum will oxidize; the aluminum oxide which is formed, making the entire casting "dirty." The metal will also be spongy from the presence of large amounts of occluded gases.

2nd. The scum which floats on top of the melted bronze in the crucible must be prevented from going into the body of the casting. This is accomplished by providing the casting with suitable skim gates.

3rd. The greatest trouble in making bronze castings, however, arises from the shrinkage of the metal, which is very excessive; but the difficulty can be overcome if the casting is given a large sinking-head and "risers." It is necessary to make the sinking-head fully as large as the casting, in many cases.

ALLOYS WITH Copper in proportions of from 2 to 15
SMALL PERCENTAGES
OF COPPER. Copper in proportions of from 2 to 15
per cent. has been advantageously used to harden aluminum in cases where a more rigid metal is required than pure aluminum. Copper

is the most common metal used at present to harden aluminum. A few per cent. of copper decreases the shrinkage of the metal, and gives alloys that are especially adapted for art castings. The remainder of the range, from 20 per cent. copper up to over 85 per cent., give crystalline and brittle grayish-white alloys of no use in the arts. After 80 per cent. copper is reached, the distinctly red color of the copper begins to show itself.

## THE MANUFACTURE OF ALUMINUM BRONZE.

In the manufacture of aluminum bronze, the best results will be derived by following closely the following method of manufacture:

Both the copper and the aluminum should be carefully selected, and none but the purest Calumet and Hecla Mine or "Lake" copper should be used and the aluminum should be guaranteed to be at least ninety-nine per cent. pure.

The copper should be put in a plumbago crucible, and melted over a charcoal or coke fire; these being the best fuels to use. Next to charcoal or coke comes oil, and then natural gas or producers gas as a fuel for melting. It is impossible to make satisfactory aluminum bronze over an ordinary coal fire, for the reason that the copper will absorb the gases from the coal. The copper should be covered with charcoal to prevent oxidation and the absorption of gases as far as possible, as there is always the liability of a small amount of gases being present, even in using the fuels previously mentioned.

After the copper has been melted, and the time has arrived to put in the aluminum, the crucible should be taken hold of with tongs in order to remove from the fire instantly and the percentage of aluminum which it is desired to add, is dropped into the pot through the charcoal.

In large pots of bronze, the pot may be removed from the fire before adding the aluminum. As soon as the aluminum

goes into the pot, the first action will be a cooling one to a certain extent, caused by the actual temperature of the aluminum, but as aluminum and copper form natural alloys, the aluminum as soon as it is heated to its melting temperature, goes into combination with the copper, and consequently a great deal of latent heat is set free or made sensible by the chemical union of these two metals, and consequently the temperature of the mass is raised.

If the mixture is watched, one can tell as soon as union takes place, for the reason that the copper will become more liquid, and also turn a little brighter.

This is only an instant after the aluminum is introduced, then if the crucible has remained on the fire, it should be removed instantly, the charcoal skimmed from the surface, and the contents, which is now aluminum bronze, poured into moulds of any convenient size, keeping the liquid stirred as much as possible until poured.

After this aluminum bronze has become cold, it should be remelted and poured into moulds as desired, for the purpose of manufacturing finished castings.

After aluminum bronze is made, it improves with each successive re-melting and casting, until this has been accomplished three or four times, for the reason that it seems to give the aluminum a better chance to become more freely disseminated, and form a more uniform alloy with the copper.

After putting the aluminum into the crucible, and before pouring, the molten mass should be stirred, in order to insure that the aluminum is as well disseminated through the alloy as possible.

If these points are strictly adhered to, good castings can be produced.

The percentage of aluminum in aluminum bronze varies from a few per cent. up to ten, or eleven per cent., depending for what purpose the metal is intended. The strongest mixture is between ten per cent. and eleven per cent. Beyond this point the bronze is hard to work, and becomes brittle.

Aluminum Bronze can be readily soldered. There is not the difficulty in soldering this that there is with pure aluminum. The best method of soldering aluminum bronze is to use pure block tin with a flux of zinc filings and muriatic acid. It is well to "tin" the two surfaces before putting them together.

NICKEL An alloy of 70 per cent. copper, 23 per cent. nickel, BRONZE. and 7 per cent. aluminum, has a fine yellow color and takes a high polish, a small percentage of phosphorus considerably hardening the alloy.

ALUMINUM Additions of ½ to 2 per cent. of aluminum BEARING METAL. to Babbitt metal with a composition of copper 3 7 per cent. antimony 7.3 per cent., tin 89 per cent., gives a very superior bearing metal.

Aluminum combines with iron in all proportions. ALUMINUM AND IRON. Few of the alloys, however, have yet proved of value, except those of small percentages of aluminum with steel, cast iron and wrought iron. Small amounts of iron have been used with advantage in some casting alloys of aluminum. An alloy of aluminum with a small percentage of copper, tungsten and iron has been shown to have some advantages for rigidity and strength. Iron as a ferro alloy of chromium, manganese or similar metals, is a convenient and cheap metal to use in hardening aluminum alloys. So far as experiments have yet gone, as a general proposition, other elements can better be employed to harden aluminum than iron, and its presence in aluminum is usually regarded as deleterious and to be avoided if possible. There are very few commercial metals not chemically pure containing as little iron as does aluminum as made by The Pittsburgh Reduction Company; certainly all of the brasses, bronzes or German silvers, contain a larger percentage of iron.

ALUMINUM Aluminum is largely used in the manufacture of IN STEEL. steel, the amount of aluminum used, however, being small. The amount of aluminum used to give the best results varies with the grade of steel, amount of occluded gases, temperature of the molten metal, etc.

Aluminum is usually added in proportions of from oneeighth to three-quarters of a pound to the ton of steel; the aluminum being added either in the ladle, or in the case of steel castings, with more economy of the aluminum as the metal is being poured into the ingot moulds or groups of moulds.

Until the proper percentage of aluminum to add to any particular grade of steel has been determined, it is advisable to start with small lots, for instance, with two or three ounces to the ton, working up to the proportion that seems to give the best results.

The special advantages to be gained by the use of aluminum in steel manufacture are enumerated as follows:

- The increase of soundness of tops of ingots and consequent decrease of scrap and other loss, which more than compensates for the cost of the small amount of aluminum added.
- 2. The quieting the ebullition in molten steel, thereby allowing the successful pouring of "wild" heats from furnaces, ladles, etc.
  - 3. The aid to the homogeneity of the steel;
  - (a)—By preventing oxidation;
- (b)—By that property of aluminum by which it rapidly permeates the body of the steel, thereby increasing the ease with which other metals will alloy homogeneously with steel;
- (c)—By decreasing the time that steel will remain fluid after being poured into moulds, and causing the steel when solidifying to do so more evenly, preventing a central core remaining molten longer than the outside portion of the metal, and in this way stopping the segregation of phosphorus and other impurities in the "mother liquor" of the metal remaining molten the longest.
- 4. The increase of the tensile strength of steel without decrease of the ductility.
- 5. The removal of any oxygen or oxides that there may be in the steel, the aluminum acting in the same way as manganese does as a deoxidizer. Good steel has been made for electrical purposes, using aluminum entirely in the place of manganese, to remove the oxidation from the molten steel and render it malleable.

- 6. The rendering steel less liable to oxidation. This is occasioned by preventing the continued exposure of fresh surfaces of the molten steel in its ebullition in the moulds after pouring.
- 7. The production of smoother surfaced castings and ingots of steel than it is possible to obtain without the use of aluminum.

There are no such metals as "aluminum steels," in the same way that there are "nickel steels" and "chromium steels." Aluminum is not a hardener of steel, and none of its alloys with steel in material proportions have so far proven advantageous. It has been proved that the addition of aluminum to the steel just before "teeming" causes the metal to lie quiet, and give off no appreciable quantity of gases, producing ingots with much sounder tops. There are two theories to account for this: one, that the aluminum decomposes these gases, and absorbs the oxygen contained in them; the other is that aluminum greatly increases the solubility in the steel of the gases which are usually given off at the moment of setting, thus forming blow-holes and bubbles.

Probably both of these causes operate to produce the desired effect, but the well known affinity of aluminum for oxygen would point to the former as being the chief action, i. e., in combining with both the carbonic oxide and the dissolved oxide of iron which may be present. Professor Arnold has shown that blowholes in steel and iron are partly caused by the presence of carbonic oxide gas in the metal, and this gas is decomposed by the aluminum which unites with the oxygen, forming alumina, or oxide of aluminum, setting free the carbon, which appears as uncombined carbon or graphite. It also combines, in some way not yet determined, with the hydrogen and nitrogen present, absorbing these gases or rendering them more soluble in the steel. Aluminum also sets free much of the remaining carbon in the steel, as the following result obtained by Mr. R. A. Hadfield will clearly show. Believing that aluminum, like silicon, would cause a precipitation of graphite, he added between three and four per cent. to ordinary spiegel, (12 and 25 per cent. manganese).

result was in both cases a complete change from the well-known spiegel fracture to that of ordinary close No. 3 grey pig iron.

|                         | С. С. | Gr. C. | Si.  | Mn.   | Al.  |                                                 |
|-------------------------|-------|--------|------|-------|------|-------------------------------------------------|
| SPIEGEL.                |       |        |      |       |      |                                                 |
| 12 5 before addition of |       | i      |      |       |      | Non-magnetic susceptibility unaltered.          |
| Al                      |       | none.  |      | 13.65 | _    | Fract'e changed from                            |
| addition of             | .93   | 3.45   | 1.30 | 11.75 | 3.19 | "spiegel" appearance<br>to that of No. 3 iron.  |
| 25 % before             |       |        |      |       | l    |                                                 |
| addition of Al          | 4.10  | -      | _    | 25.20 | _    | Do. except the change was not quite so decided. |
| addition of             | 2.30  | 1.88   | 2.16 | 22.16 | 1.24 | There was considera-<br>ble loss of alumin'm    |

Aluminum is the principal deoxidizer known to metallurgists, the next being silicon; their relative values being shown as follows:-100 parts by weight of oxygen will combine with 114 parts of aluminum, or with 140 parts of silicon. or with 350 parts of manganese. This, however, does not correctly express the value of aluminum as a deoxidizer of iron and steel, as it has such a great affinity for oxygen that it will entirely disappear if there is any oxygen present, and will only be found in the steel and iron after all the oxygen has been absorbed. This is not the case with either silicon or manganese, as either or both of these are often found in the steel when oxygen is present. There is also an additional inducement to use aluminum, namely, in the cost, for the use of silicon will add from 87 cents to \$1.12 to the cost per ton of steel, while sufficient aluminum will not add over 20 cents, and in many cases not more than 10 cents per ton to the cost of the steel. The saving in bad castings, or unsound ingots, will repay this many times over. One large English steel maker estimates his saving at over £2,000 per annum from this source alone. The special advantage seems to be that aluminum combines the effects of both silicon and manganese to the steel maker.

There is danger of adding too large a quantity of aluminum, in which case the metal will set very solid and will be liable to form deep "pipes" in the ingots. To add just the right pro-

portion of aluminum requires some little experience on the part of the steel manufacturer, but successful results have been secured with varying kinds of steel by adding from oneeighth to three-quarters of a pound of aluminum to the ton of steel. No difficulty has been experienced with the thorough mixing of the aluminum added to steel, as it seems to rapidly and uniformly permeate the steel without any special pains being taken in stirring. This property adds to the homogeneous alloying of nickel to steel as well, and the nickel-steel manufacturers use aluminum in addition to nickel for this purpose. If the metal be "wild" in the ladle, full of occluded gases, too hot, or oxidized, a larger proportion of aluminum can be advantageously added. Mr. R. A. Hadfield says that the influence of aluminum in steel appears to be like that of silicon, though acting more powerfully. The same writer, together with Howe and Osmund, claim that an addition of aluminum does not lower the melting point of steel; i. e., that the critical point is about the same whether aluminum is present or not, but it is certain that when once melted, the alloys containing small percentages of aluminum are far more fluid than those without it. It is the aim, however, in adding aluminum to iron or steel, to add just sufficient to combine with all the oxygen present, but leave no trace in the ingot or casting; any more than this is not required.

Mr. J. E. Stead states that in a case where aluminum had been added to ordinary soft open-hearth steel with properly prepared moulds, the castings were very sound indeed. The test bars, which were cast about eight inches long by three-quarters of an inch square, were perfectly sound and had a tensile strength of 40,000 lbs. per square inch, whereas the same bar, without aluminum, only stood 20,000 lbs., the reason being that in the ordinary steel without aluminum the cavities were very numerous. One-tenth per cent. of aluminum in that casting increased the weight and solidity, and reduced the blowholes by 23 per cent.

In the manufacture of steel ingots, too large a proportion of aluminum added causes excessive piping and loss by increase of crop-ends, occasioned thereby. With steel ingots to be afterwards hammered or rolled, from two to four ounces of aluminum to the ton of steel has been found to be the most advantageous in producing ingots which have sound tops. In the manufacture of steel castings, where the first desideratum is soundness of the castings and freedom from blow-holes, and where the excessive piping and contraction in cooling is provided for by large runners and high and capacious fountain or "sinking head," as they are called in foundryman's parlance, larger amounts of aluminum, up to 16 or even 32 ounces of aluminum to the ton of steel, are advantageously added.

A valuable alloy of aluminum and ferro-manganese has lately been patented, the addition of a small percentage of aluminum to the ferro-manganese rendering the combined carbon, in the manganese alloy, graphitic, and throwing it out of the molten mass. This permits of the production of a ferro-manganese very low in combined carbon, and it is particularly useful in the manufacture of low carbon steel.

Professor Arnold states that his experiments show clearly that the effect of even small quantities of aluminum in producing steel free from blowholes is perhaps the most remarkable phenomenon in the metallurgy of steel. Its action is about twenty times as powerful as that of silicon, and the resultant steel is far superior in ductility and toughness. The action of aluminum is almost certainly chemical.

He also illustrates the remarkable results obtained by the use of aluminum with the following cuts:

A melted from Bessemer spring scrap only. Composition: C. 0.62, Si. 0.27, Mn. 0.46, S. 0.11, P. 0.08.



A exactly same as B, but 0.1 per cent. aluminum added five minutes before casting. Composition: C. 0.64, Si. 0.29, Mn. 0.62, S. 0.10, P. 0.08, Al. 0.04.

The following illustration of broken ingots shows clearly the effect of aluminum in producing better and more valuable ingots:



The two ingots are identical, except the addition of .05 per cent. of aluminum to the left-hand ingot.

Aside from the reduction of blowholes, and consequent greater soundness, the addition of about 1 pound of aluminum

per ton of steel, is of advantage where the steel is to be cast in heavy ingots which will receive only scant work. Here it seems to increase the ductility as measured by the elongation and reduction of area of tensile test specimens, without materially altering the ultimate strength.

In steel castings the benefit from the use of a small percentage of aluminum has become widely recognized, and it is being generally used. The additions of aluminum are in many instances made by throwing the metal, into the ladle, in pieces weighing a few ounces each, as the steel is poured into it.

This, however, is not always the method used to introduce the aluminum, and some manufacturers prefer to add the aluminum in the form of ferro-aluminum; in this case the alloy is first placed in the ladle, and as the molten steel runs in, the alloy melts, and is diffused through the entire contents of the ladle.

FERRO-ALUMINUM. This is the trade name given to alloys of from five to ten, or even twenty per cent. of aluminum added to iron. These alloys vary in quality occasioned by the grade of steel or iron used in making them. Either a good grade of cast iron, free from sulphur and phosphorus, or of pure steel low in these elements, is the best material used for this purpose. For most cases, in either steel making or foundry work, the use of pure aluminum is most general in American practice. It has the advantage, in that the consumer knows more exactly the amount of aluminum he is adding, and avoids the disadvantage of the addition of a considerable amount of iron of a quality foreign and perhaps injurious to his mixture.

The English practice favors more the use of ferro-aluminum, specially in foundry work, but it is believed among many American iron and steel founders, that this is more a prejudice and the result of having first used ferro-aluminum alloys which used to be sold cheaper for the contained pure aluminum. This is not now the case, and pure aluminum can be bought as cheaply as the contained aluminum in any of the ferro-aluminum alloys.

ALUMINUM In cast iron, from one to two pounds of alum-IN CAST IRON. inum per ton is put into the metal as it is being poured from the cupola or melting furnace. To soft gray No. 1 foundry iron it is doubtful if the metal does much good, except, perhaps, in the way of keeping the metal melted for a longer time; but where difficult castings are to be made, where much loss is occasioned by defective castings, or where the iron will not flow well, or give sound and strong castings, the aluminum certainly in many cases allows better work to be done and stronger and sounder castings to be made, having a closer grain, and hence much easier tooled. The tendency of the aluminum is to change combined carbon to graphitic, and it lessens the tendency of the metal to chill. Aluminum in proportions of two per cent. and over, materially decreases the shrinkage of cast iron.

ALUMINUM The effect of aluminum in wrought iron IN WROUGHT IRON. is not very marked in the ordinary puddling process. It seems to add somewhat to the strength of the iron, but the amount is not of sufficient value to induce the general use of aluminum for this purpose. The peculiar property of aluminum in reducing the long range of temperature between that at which wrought iron first softens and that at which it becomes fluid, is taken advantage of in the well-known Mitis process for making "wrought iron castings." It is for this that aluminum is most used in wrought iron at present.

One per cent. of aluminum makes wrought iron more fluid at 2,200 degrees Fahrenheit (which is about the melting point of cast iron) than it would be without it at 3,500 degrees Fahrenheit.

In puddling iron an addition of 0.25 per cent. to the bath causes the charge to stiffen more quickly, and in the shingling process and in rolling the balls work much stiffer than usual. In one instance, where the ordinary iron averaged 22 tons tensile strength, with 12 per cent. elongation, the iron treated with aluminum showed over 30 tons tensile strength, with 22 per cent. elongation.

## GAUGES.

As so many different gauges are in use in different countries, and even in different parts of the United States, and as no two gauges are exactly alike after being in use a few weeks (even if they are correct to start with), we advise all our customers, for the sake of clearness and accuracy, to give the thickness of sheets or diameter of wire in thousandths of an inch, or in millimetres, as they prefer. Micrometer gauges are now so common, that this is no longer a matter of difficulty.

To aid our customers, comprehensive tables are given in the following pages. First, of the correct sizes of the various gauges; second, of the weights of sheets to gauge sizes; and third, of the weights of sheets and wires both to English and metric measurements; and we would recommend these to the consideration of all parties who are contemplating the use of aluminum for various purposes. The difference in weight between aluminum and other metals is here clearly shown, and in many cases it will be found that this difference renders aluminum the cheapest metal, apart from the many other advantages obtained by its use.

The following rules may be used to advantage by all who have occasion to convert the metric into English measurement, or vice versa:—

Divide weight of square metre in kilogrammes by .309 and the quotient is the weight per square foot in ounces.

Multiply weight per square foot in ounces by .039 and the product is the weight per square metre in kilogrammes.

Divide weight per square foot in ounces by 25.2 and the quotient is the thickness in m.m.

Multiply thickness in m.m. by 25.2 and the product is the weight per square foot in ounces, or the thickness in 64ths of an inch.

# COMPARISON OF WIRE AND SHEET-METAL GAUGES.

|                                                                                                          | Brown a          | nd Sharpe's.                         | Birmi                      | ngham.                    | 8 H H                                                | a 😸                         | <b>ਜ਼</b> ਦ              | E-                                            |                                                     |
|----------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|----------------------------|---------------------------|------------------------------------------------------|-----------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------------|
| No. of<br>Gauge.                                                                                         | Inches.          | Nearest<br>Millimeter<br>Dimensions. | Wire<br>or Stubs<br>Gauge. | Sheet-<br>metal<br>Gauge. | Roebling's,<br>also<br>Washburn<br>and Moen's,       | Trenton<br>lron<br>Company. | U. S. Logal<br>Standard. | British<br>Imperial<br>and Legal<br>Standard. | No. of<br>Gauge                                     |
|                                                                                                          |                  |                                      | Inches.                    | Inches.                   | Inches.                                              | Inches.                     | Inches.                  | Inches.                                       |                                                     |
| 7   0                                                                                                    |                  |                                      |                            |                           | .490                                                 |                             | .50000                   | 500                                           | 710                                                 |
| 6 0<br>5 0<br>4 0                                                                                        |                  |                                      |                            |                           | .460                                                 |                             | .46875                   | 464                                           | 6 0                                                 |
| 5 0<br>4 0                                                                                               | .46000           | 11.000                               | .454                       |                           | .430<br>.393                                         | .450<br>.400                | .43750                   | .432                                          |                                                     |
| 3 0                                                                                                      | .40964           | 11.683<br>10.405                     | .425                       |                           | 362                                                  | 360                         | .40625<br>.37500         | .400<br>.372                                  | 4 0<br>3 0                                          |
| 2   0                                                                                                    | .36480           | 9.266                                | .380                       |                           | .362<br>.331                                         | .360<br>.330                | .34375                   | 348                                           | 2 0                                                 |
| ~ o l                                                                                                    | .32486           | 8.251                                | .340                       |                           | 307                                                  | .305<br>.285                | .31250                   | .324                                          | ~ jŏ                                                |
| ĭ                                                                                                        | .28930           | 7.348                                | .340<br>.300               | .0085                     | .283<br>.263                                         | .285                        | .31250<br>.28125         | .300                                          | ĭ                                                   |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                     | .25763           | 6.544                                | .284                       | .0095                     | .263                                                 | 1.265                       | .265625                  | .276                                          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                |
| 3                                                                                                        | .22942           | 5.827                                | .259                       | .0105                     | .244                                                 | .245                        | .25000                   | .252                                          | 3                                                   |
| 4                                                                                                        | .20431           | 5.189                                | .238<br>.220               | .012<br>.014              | .225<br>.207                                         | .225<br>.205                | .234375                  | .232                                          | 4                                                   |
| 2                                                                                                        | .18194<br>.16202 | 4.621<br>4.115                       | .203                       | .014                      | 109                                                  | 100                         | .21875<br>.203125        | .212<br>.192                                  | 9                                                   |
| 7                                                                                                        | .14428           | 2.115                                | .180                       | .019                      | .192<br>.177                                         | .190<br>.175                | .18750                   | .176                                          | 9                                                   |
| - ġ l                                                                                                    | 12849            | 3.665<br>3.264<br>2.906<br>2.588     | .165                       | .021                      | .162                                                 | .160                        | .171875                  | .160                                          | é                                                   |
| ğ l                                                                                                      | .12849<br>.11442 | 2.906                                | .148                       | .021<br>.023              | .148                                                 | 145                         | .15625                   | .144                                          | 9                                                   |
| 10<br>11                                                                                                 | .10190<br>.09074 | 2.588                                | .134                       | .027<br>.031              | .135<br>.120                                         | .130<br>.1175               | .140625                  | .128                                          | 10<br>11                                            |
| 11                                                                                                       | .09074           | 2,305                                | .120                       | .031                      | .120                                                 | .1175                       | .12500                   | .116                                          | 11                                                  |
| 12<br>13                                                                                                 | .08081           | 2.053                                | .109                       | .035                      | .105                                                 | .105<br>.0925               | .109375                  | .104                                          | 12                                                  |
| 13                                                                                                       | .07196           | 1.828<br>1.628                       | .095                       | .038                      | .092                                                 | .0925                       | .09375                   | .092                                          | 12<br>13<br>14<br>15                                |
| 15                                                                                                       | .06408<br>.05707 | 1.628                                | .083                       | .042<br>-047              | .080<br>.072                                         | .080<br>.070                | .078125<br>.0703125      | .080<br>.072                                  | 14                                                  |
| 16                                                                                                       | .05082           | 1.449                                | .065                       | .051                      | .063                                                 | .061                        | 06950                    | .064                                          | 10                                                  |
| 16<br>17                                                                                                 | .04526           | 1.290<br>1.150<br>1.024<br>.9116     | .058                       | .055                      | .054                                                 | .0525                       | .06250<br>.05625         | .056                                          | 16<br>17                                            |
| 18                                                                                                       | .04030           | 1.024                                | .049                       | .060                      | .047                                                 | .045                        | .05000                   | .048                                          | 18                                                  |
| 19                                                                                                       | .03589           | .9116                                | .042                       | .063                      | .041                                                 | .040                        | .04375<br>.03750         | .040                                          | 18<br>19                                            |
| 20                                                                                                       | .03196           | .8118                                | .035                       | .065                      | .035<br>.032<br>.028                                 | .035                        | .03750                   | .036                                          | 20                                                  |
| 21                                                                                                       | .02846           | .7229                                | .032                       | .068<br>.072              | .032                                                 | .031                        | .034375                  | .032                                          | 21                                                  |
| 22                                                                                                       | .02535<br>.02257 | .6439                                | .028                       | .072                      | .028                                                 | .028<br>.025                | .03125                   | .028                                          | 22                                                  |
| 23                                                                                                       | .02010           | .5733<br>.5105                       | .023                       | .077<br>.082              | .020                                                 | 0225                        | .028125<br>.02500        | .024                                          | 23                                                  |
| 25                                                                                                       | .01790           | .4547                                | .020                       | .090                      | .020                                                 | .020                        | .021875                  | 022                                           | 24<br>95                                            |
| 26                                                                                                       | .01594           | .4049                                | .018                       | .100                      | .018                                                 | .018                        | .01875                   | .022<br>.020<br>.018                          | 26                                                  |
| 27                                                                                                       | .01419           | .3604                                | .016                       | .112                      | .017                                                 | .017                        | .0171875                 | 0164                                          | 27                                                  |
| 28                                                                                                       | .01264<br>.01126 | .32106                               | .014                       | .124                      | .025<br>.023<br>.020<br>.018<br>.017<br>.016<br>.015 | .016                        | .015625                  | .0148<br>.0136<br>.0124                       | 223<br>24<br>25<br>26<br>27<br>28<br>30<br>31<br>32 |
| 29                                                                                                       | .01126           | .2860                                | .013                       | .136                      | .015                                                 | .015                        | .0140625                 | .0136                                         | 29                                                  |
| 30                                                                                                       | .01002           | .2545                                | .012                       | .150                      | .014                                                 | .014                        | .01250                   | .0124                                         | 30                                                  |
| 31                                                                                                       | .00893           | .2268                                | .010                       | .166<br>.182              | .0135                                                | .013                        | .0109375<br>.01015625    | .0116<br>.0108                                | 31<br>20                                            |
| 32                                                                                                       | .00708           | .2019<br>.1798                       | .008                       | .200                      | .013<br>.011                                         | .011                        | .009375                  | .0108                                         | 32                                                  |
| 34                                                                                                       | .00630           | .1600                                | .007                       | .216                      | .010                                                 | .010                        | .00859375                | .0092                                         | 34                                                  |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39 | .00561           | .1425                                | .005                       | .238                      | .0095                                                | .0095                       | .0078125                 | .0084                                         | 33<br>34<br>35                                      |
| 36                                                                                                       | .00500           | .1425<br>.1270<br>.1130              | .004                       | .238<br>.250              | .009<br>.0085                                        | .009                        | .00703125                | .0084<br>.0076                                | 36<br>37                                            |
| 37                                                                                                       | .00445           | .1130                                |                            | .270<br>.278              | .0085                                                | .0085                       | .006640625               | .0068                                         | 37                                                  |
| 38                                                                                                       | .00396           | .1006                                |                            | .278                      | .008                                                 | .008                        | .00625                   | .0060                                         | 38<br>39<br>40                                      |
| 39<br>40                                                                                                 | .00353           | .0897                                |                            | .289                      | .0075<br>.007                                        | .0075                       |                          | .0052                                         | 39                                                  |
| 40                                                                                                       | .00314           | .0798                                |                            | .300                      | .007                                                 | .007                        |                          | .0048<br>.0044                                | 40                                                  |
| 42                                                                                                       | .00249           | .0711<br>.0632                       | 1 1                        |                           |                                                      | İ                           |                          | .0044                                         | 41<br>42                                            |
| 72                                                                                                       | .00220           | .0032                                | 1 1                        |                           | - 1                                                  | - 1                         |                          | .0040                                         | 44                                                  |

## MASTER MECHANICS' STANDARD GAUGE (Decimal.)

Also Adopted by the Association of American Steel Manufacturers, October 23, 1896.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nies'               | ste Thick-<br>Fractions<br>ch. | hic <b>k-</b><br>lime- |                                   | ght Per Sq.<br>s. Avoirdu            |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|------------------------|-----------------------------------|--------------------------------------|---------------------------------------|
| 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mecha.              | mate T<br>resc.<br>nch.        | mate T<br>n Mil        | JM.<br>57.1114<br>97 Lb.<br>Inch. | sis 480<br>or Cu.<br>0.2778<br>r Cu. | Sasis<br>os. Per<br>r 0 2833<br>r Cu. |
| 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | age e               | i i i                          | M                      | E a goin                          | 8 4 5 4 .                            | L'ESTA .                              |
| 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mast<br>Star<br>Gau | Appropriate of a               | Appr                   | ALUN<br>Basi<br>Lbs.<br>Ft. o     | Lys.<br>Tr. Tr.                      | Stee<br>Cu. Fi<br>Lb.                 |
| 0.006         3-500         0.1524003         .084         0.240         0.245           0.008         1-125         0.2032004         .111         0.320         0.326           0.010         1-100         0.2540005         .140         0.400         0.408           0.012         3-250         0.3048001         .168         0.480         0.490           0.014         7 500         0.3556007         .195         0.560         0.571           0.018         9-500         0.4064008         .224         0.640         0.653           0.020         1 50         0.568010         .279         0.801         0.816           0.022         11-500         0.558012         .307         0.881         0.897           0.025         1-40         0.6350125         .349         1.001         1.020           0.023         7-250         0.7112014         .391         1.121         1.142           0.032         4-125 (\$\frac{1}{32}\$+)         0.8128016         .447         1.281         1.305           0.045         9 250         1.14100225         .629         1.801         1.836           0.055         11-20         1.270025         .699            | 0.002               | 1-500                          |                        |                                   |                                      |                                       |
| 0.008         1-125         0.2032004         .111         0.320         0.326           0.010         1-100         0.2540005         .140         0.400         0.408           0.012         3-250         0.3048001         .168         0.480         0.490           0.014         7 500         0.3556007         .195         0.560         0.571           0.018         9-500         0.4054008         .224         0.640         0.653           0.020         1-50         0.5080010         .279         0.801         0.816           0.022         11-500         0.558011         .307         0.881         0.897           0.025         1-40         0.6350125         .349         1.001         1.020           0.032         4-125(\frac{1}{32}+)         0.8128016         .447         1.281         1.305           0.036         9 250         1.0160020         .559         1.601         1.632           0.045         9 200         1.14100225         .629         1.801         1.836           0.055         11-200         1.2700025         .699         2.002         2.040           0.055         13-200         1.5490325         .908             |                     |                                |                        |                                   |                                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                |                        |                                   |                                      |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                |                        |                                   |                                      |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                | 0.2540005              |                                   | 0.400                                |                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                | 0.3048001              |                                   | 0.480                                |                                       |
| 0.018 9.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                        |                                   | 0.560                                |                                       |
| 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 2-125 (44+)                    |                        |                                   |                                      |                                       |
| 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                |                        |                                   |                                      |                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                | 0.5080010              |                                   |                                      |                                       |
| 0.028         7 250         0.7112014         .391         1.121         1,142           0.032         4-125 (\$\frac{1}{3}\$\frac{1}{2}\$+)         0.8128016         .447         1.281         1.305           0.036         9 250         0.9144018         .503         1.441         1.469           0.045         9 200         1.14100225         .629         1.801         1.836           0.050         1-20         1.2700025         .699         2.002         2.040           0.055         11-200         1.39500275         .768         2.202         2.244           0.065         13-200         1.5240030         .838         2.402         2.448           0.065         13-200         1.7780025         .978         2.802         2.856           0.075         3-40         1.90300375         1.048         3.002         3.060           0.080         2-25         2.0320040         1.117         3.202         3.264           0.085         17-200         2.15700425         1.187         3.403         3.468           0.095         19 200         2.41100475         1.327         3.603         3.672           0.100         1.10         2.540050 |                     |                                | 0.5588011              |                                   |                                      |                                       |
| 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                |                        |                                   |                                      |                                       |
| 0.036         9 250         0.9144018         .503         1.441         1.469           0.045         9 200         1.1410225         .559         1.601         1.632           0.050         1-20         1.270025         .629         1.801         1.836           0.055         11-200         1.39500275         .768         2.202         2.244           0.060         3-50 (\frac{1}{16}\rightarrow)         1.5240030         .838         2.402         2.448           0.065         13-200         1.64900325         .978         2.802         2.856           0.075         3-40         1.90300375         1.048         3.002         3.060           0.080         2-25         2.0320040         1.117         3.202         3.264           0.095         17-200         2.15700425         1.187         3.403         3.468           0.095         19 200         2.41100475         1.327         3.603         3.672           0.100         1 10         2.540050         1.397         4.003         4.080           0.110         11 100         2.7940055         1.537         4.404         4.487           0.125         1.8         3.17500625        |                     |                                |                        |                                   |                                      |                                       |
| 0.040         1 · 25         1.0160020         .559         1.601         1.632           0.045         9 200         1.14100225         .629         1.801         1.836           0.050         1 · 20         1.2700025         .699         2.002         2.040           0.055         11 · 200         1.39500275         .768         2.202         2.2448           0.065         13 · 200         1.64900325         .908         2.602         2.652           0.075         3 · 40         1.90300375         1.048         3.002         3.060           0.085         17 · 200         2.15700425         1.187         3.403         3.468           0.090         9 · 100         2.2820045         1.327         3.603         3.672           0.095         19 · 200         2.41100475         1.327         3.603         3.876           0.110         11 · 100         2.7940055         1.786         5.004         5.099           0.135         27-200         3.42706675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.1890825      |                     | $4^{-125}(\frac{1}{32}+)$      |                        | 1                                 |                                      |                                       |
| 0.045         9 200         1.14100225         .629         1.801         1.836           0.050         1-20         1.2700025         .689         2.002         2.040           0.055         11-200         1.39500275         .768         2.202         2.244           0.065         13-200         1.5240030         .838         2.402         2.448           0.070         7-100         1.7780025         .978         2.802         2.856           0.075         3-40         1.90300375         1.048         3.002         3.060           0.085         17-200         2.15700425         1.187         3.403         3.468           0.095         19 200         2.15700425         1.187         3.403         3.468           0.095         19 200         2.41100475         1.327         3.603         3.672           0.100         1.10         2.540050         1.397         4.003         4.080           0.110         11-100         2.7940055         1.746         5.004         5.507           0.135         27-200         3.8100075         2.096         6.005         6.119           0.165         33-200         4.1890825         2.305           |                     |                                |                        |                                   |                                      |                                       |
| 0.050         I-20         I.2700025         .689         2.002         2.040           0.055         II-200         1.39500275         .768         2.202         2.244           0.065         I3-200         1.5240030         838         2.402         2.448           0.070         7-100         I.5240030         .908         2.602         2.652           0.075         3-40         I.90300375         1.048         3.002         3.060           0.085         I7-200         2.15700425         1.187         3.403         3.468           0.09         9-100         2.2820045         1.257         3.603         3.672           0.095         I9 200         2.41100475         1.327         3.603         3.672           0.100         I-10         2.540050         1.397         4.003         4.080           0.110         II-100         2.7940055         1.746         5.004         5.099           0.135         27-200         3.8700075         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.180         9-50         4.5720090         2.516         <        |                     |                                |                        |                                   |                                      | 1.032                                 |
| 0.055         11-200         1.39500275         .768         2.202         2.244           0.060         3·50 (1/8)         1.5240030         838         2.402         2.448           0.065         13-200         1.64900325         .908         2.602         2.652           0.070         7·100         1.7780025         .978         2.802         2.856           0.075         3·40         1.90300375         1.048         3.002         3.060           0.085         17·200         2.15700425         1.187         3.403         3.468           0.090         9·100         2.2820045         1.257         3.603         3.672           0.095         19 200         2.41100475         1.327         3.603         3.876           0.100         1·10         2.5400050         1.397         4.003         4.080           0.110         11·100         2.7940055         1.746         5.004         5.099           0.135         27-200         3.8100075         1.886         5.404         5.507           0.150         3-200         4.1890825         2.305         6.605         6.119           0.165         33-200         4.5720090         2.586110   |                     |                                |                        |                                   |                                      |                                       |
| 0.060         3-50 (1 — )         1.5240030         .838         2.402         2.448           0.065         13-200         1.64900325         .908         2.602         2.652           0.070         7-100         1.7780025         .978         2.802         2.856           0.075         3-40         1.90300375         1.048         3.002         3.060           0.085         17-200         2.15700425         1.117         3.202         3.264           0.090         9-100         2.2820045         1.257         3.603         3.468           0.095         19 200         2.41100475         1.327         3.803         3.876           0.100         1-10         2.5400050         1.397         4.003         4.080           0.110         11-100         2.7940055         1.746         5.004         5.099           0.125         1-8         3.17500625         1.746         5.004         5.597           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.1890825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.794         |                     |                                |                        |                                   |                                      |                                       |
| 0.065         13-200         1.64900325         .908         2.602         2.652           0.070         7-100         1.64900325         .978         2.802         2.856           0.075         3-40         1.90300375         1.048         3.002         3.060           0.085         17-200         2.15700425         1.117         3.403         3.468           0.090         9-100         2.2820045         1.267         3.603         3.672           0.095         19 200         2.41100475         1.327         3.803         3.876           0.100         1-10         2.5400050         1.397         4.003         4.080           0.110         11-100         2.7940055         1.746         5.004         5.099           0.125         1-8         3.17500625         1.746         5.004         5.099           0.135         27-200         3.4270675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.1890825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.794            |                     |                                |                        |                                   |                                      |                                       |
| 0.070         7-100         1.7780025         .978         2.802         2.856           0.075         3-40         1.90300375         1.048         3.002         3.060           0.085         2-25         2.0320040         1.117         3.202         3.264           0.095         17-200         2.15700425         1.187         3.403         3.468           0.095         19 200         2.41100475         1.227         3.603         3.672           0.100         1-10         2.5400050         1.397         4.003         4.080           0.110         11-100         2.7940055         1.746         5.004         5.099           0.135         27-200         3.4700675         1.748         5.004         5.099           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.1890825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.794         8.06         8.159           0.220         11 50         5.5880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353                |                     |                                |                        |                                   |                                      |                                       |
| 0.075         3-40         1.90300375         1.048         3.002         3.060           0.085         17-200         2.0320040         1.117         3.202         3.264           0.095         17-200         2.15700425         1.187         3.403         3.468           0.095         19 200         2.41100475         1.227         3.603         3.672           0.100         1 10         2.5400050         1.397         4.003         4.080           0.110         11 100         2.7940055         1.748         5.004         4.487           0.125         1 8         3.17500625         1.746         5.004         5.099           0.135         27-200         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.794         8.06         8.159           0.220         11 50         5.5880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9,608         9,791                                                                          |                     |                                |                        |                                   |                                      | 2.052                                 |
| 0.080         2-25         2.0320040         1.117         3.202         3.264           0.085         17-200         2.15700425         1.187         3.403         3.468           0.090         9-100         2.2820045         1.257         3.603         3.672           0.095         19 200         2.41100475         1.327         3.803         3.876           0.100         1 10         2.5400050         1.397         4.003         4.080           0.110         11 100         2.7940055         1.746         5.004         5.099           0.135         27-200         3.42706675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.1890825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.516         7.206         7.343           0.220         11 50         5.5800100         2.0794         8.06         8.159           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                           |                     |                                |                        |                                   |                                      | 2.050                                 |
| 0.085         17-200         2.15700425         1.187         3.403         3.468           0.090         9-100         2.2820045         1.257         3.603         3.672           0.095         19 200         2.41100475         1.327         3.803         3.876           0.100         1-10         2.5400050         1.397         4.003         4.080           0.110         11-100         2.7940055         1.746         5.004         5.099           0.135         27-200         3.4270675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.515         7.206         7.343           0.200         1.5         5.0800100         2.794         8.06         8.159           0.220         11.50         5.5880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                             |                     |                                |                        |                                   |                                      | 3.000                                 |
| 0.090         9-100         2.2820045         1.267         3.603         3.672           0.095         19 200         2.41100475         1.327         3.803         3.876           0.100         1-10         2.5400050         1.397         4.003         4.080           0.110         11-100         2.7940055         1.537         4.404         4.487           0.125         1-8         3.17500625         1.746         5.004         5.099           0.135         27-200         3.4270675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.515         7.206         7.343           0.220         1 5         5.880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                                                                                                                          |                     |                                |                        |                                   |                                      | 3.204                                 |
| 0.095         19 200         2.41100475         1.327         3.803         3.876           0.100         1 10         2.540050         1.397         4.003         4.080           0.110         11 100         2.7940055         1.537         4.404         4.487           0.125         1 8         3.17500625         1.746         5.004         5.099           0.135         27-200         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9-50         4.5720090         2 516         7.206         7.343           0.220         1 5         5.880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                                                                                                                                                                                                                                                                                                              |                     |                                |                        |                                   |                                      |                                       |
| 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                |                        |                                   | 2.803                                | 2 876                                 |
| 0.110         11-100         2.7940055         1.537         4.404         4.487           0.125         1.8         3.17500625         1.746         5.004         5.009           0.135         27-200         3.42700675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9.50         4.5720090         2.515         7.206         7.343           0.220         1 5         5.0800100         2.794         8.06         8.159           0.220         1 1 50         5.5880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                                                                                                                                                                                                                                                                                                             |                     |                                |                        |                                   |                                      | 3.070                                 |
| 0.125     1.8     3.17500625     1.746     5.004     5.099       0.135     27-200     3.42700675     1.886     5.404     5.507       0.150     3-20     3.8100075     2.096     6.005     6.119       0.165     33-200     4.18900825     2.305     6.605     6.731       0.180     9-50     4.5720090     2.515     7.206     7.343       0.200     1.5     5.0800100     2.794     8.006     8.159       0.220     11.50     5.5880110     3.073     8.807     8.974       0.240     6-25     6.0960120     3.353     9.608     9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                   |                                |                        |                                   |                                      |                                       |
| 0.135         27-200         3.42706675         1.886         5.404         5.507           0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.515         7.206         7.343           0.220         1 5         5.0800100         2.794         8.006         8.159           0.220         1 1 50         5.5880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                |                        |                                   |                                      |                                       |
| 0.150         3-20         3.8100075         2.096         6.005         6.119           0.165         33-200         4.18900825         2.305         6.605         6.731           0.180         9-50         4.5720090         2.515         7.206         7.343           0.200         1 5         5.0800100         2.794         8.006         8.159           0.220         11 50         5.5880110         3.073         8.807         8.974           0.240         6-25         6.0960120         3.353         9.608         9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                |                        |                                   |                                      |                                       |
| 0.165     33-200     4.18900825     2.305     6.665     6.731       0.180     9.50     4.5720090     2.515     7.206     7.343       0.200     1.5     5.0800100     2.794     8.006     8.159       0.220     11.50     5.5880110     3.073     8.807     8.974       0.240     6-25     6.0960120     3.353     9.608     9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                                |                        |                                   |                                      |                                       |
| 0.180     9.50     4.5720090     2 515     7.206     7.343       0.200     1 5     5.0800100     2.794     8.006     8.159       0.220     11 50     5.5880110     3.073     8.807     8.974       0.240     6.25     6.0960120     3.353     9.608     9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                |                        |                                   |                                      |                                       |
| 0.200     1 5     5.0800100     2.794     8.006     8.159       0.220     11 50     5.5880110     3.073     8.807     8.974       0.240     6.25     6.0960120     3.353     9.608     9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                |                        |                                   |                                      |                                       |
| 0.220 11 50 5.5880110 3.073 8.807 8.974 0.240 6.25 6.0960120 3.353 9.608 9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                |                        |                                   |                                      |                                       |
| 0.240 6.25 6.0960120 3.353 9.608 9.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 11 50                          |                        |                                   |                                      | 8.074                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | 6.25                           |                        |                                   |                                      |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.250               | I-4                            | 6.3500125              |                                   |                                      | 10,199                                |

# Weight of Aluminum, Wro't Iron, Steel, Copper and Brass Plates.

THICKNESS DETERMINED BY AMERICAN (BROWN & SHARPE) GAUGE.
Water at 62° Fahrenheit, 62,355 lbs. per cubic foot.

| r cu. ft. Rolled | Metal, 167.                                                                                                                                                                                                                                                                                                                                                      | 111 480.00                  | 00 490.000       | 556.830          | 533.073          |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|------------------|------------------|
| Size of          | WRI                                                                                                                                                                                                                                                                                                                                                              | GHT OF PLA                  | ATES PER S       | QUARE FO         | ot.              |
| each No.         | ALUMINUM.                                                                                                                                                                                                                                                                                                                                                        | WR'T IRON.                  | STEEL.           | COPPER.          | BRASS.           |
| Inch.            | Lbs.                                                                                                                                                                                                                                                                                                                                                             | Lbs.                        | Lbs.             | Lbs.             | Lbs.             |
|                  | 6.406                                                                                                                                                                                                                                                                                                                                                            |                             | 18.784           | 21.345           | 20.435           |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | 18.200           |
| .32486           | 4.524                                                                                                                                                                                                                                                                                                                                                            | 14.592<br>12.995            | 13.265           | 15.075           | 16.205<br>14.431 |
| .28930           | 4.029                                                                                                                                                                                                                                                                                                                                                            | 11.572                      | 11.813           | 13.425           | 12.851           |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             | 10.520           |                  | 11.445           |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | 10.193           |
|                  | 2.534                                                                                                                                                                                                                                                                                                                                                            |                             |                  |                  | 9.076<br>8.083   |
| .16202           | 2.256                                                                                                                                                                                                                                                                                                                                                            | 6.481                       | 6.616            | 7.513            | 7.197            |
| .14428           | 2.009                                                                                                                                                                                                                                                                                                                                                            | 5.770                       | 5.890            | 6.693            | 6.408            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  | 5.139                       |                  | 5.961            | 5.707            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | 5.084<br>4.526   |
| .090742          | 1.264                                                                                                                                                                                                                                                                                                                                                            | 3.630                       | 3.706            | 4.212            | 4.032            |
| .080808          |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | 3.591            |
|                  | 1.002                                                                                                                                                                                                                                                                                                                                                            |                             |                  |                  | 3.196            |
|                  | .7946                                                                                                                                                                                                                                                                                                                                                            | 2,282                       | 2.330            |                  | 2.847<br>2.535   |
| .050820          | .7078                                                                                                                                                                                                                                                                                                                                                            | 2.033                       | 2.075            | 2.358            | 2.258            |
| .045257          |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | 2.010            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  | 1.612                       | 1.646            |                  | 1.790            |
|                  | .4998                                                                                                                                                                                                                                                                                                                                                            | 1.278                       | 1.405            | 1.000            | 1.594<br>1.420   |
|                  | 11                                                                                                                                                                                                                                                                                                                                                               | 1                           |                  |                  | 1.265            |
| .025347          | .3530                                                                                                                                                                                                                                                                                                                                                            | 1.014                       | 1.035            | 1.176            | 1.126            |
| .022571          |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  | 1.047            | 1.003            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | .8927            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  | 1                           |                  |                  | .7949<br>.7080   |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | .6305            |
|                  | .1760                                                                                                                                                                                                                                                                                                                                                            | ,5056                       | .5161            |                  | .5514            |
| .011257          | .1567                                                                                                                                                                                                                                                                                                                                                            | .4503                       | .4597            | .5224            | .5001            |
|                  | 11                                                                                                                                                                                                                                                                                                                                                               | 1                           | k.               |                  | .4455            |
|                  | .1244                                                                                                                                                                                                                                                                                                                                                            |                             |                  |                  | .3967            |
|                  |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | .3032            |
|                  | .08778                                                                                                                                                                                                                                                                                                                                                           | .2522                       | .2569            |                  | .2801            |
| .005614          |                                                                                                                                                                                                                                                                                                                                                                  | .2246                       | .2292            | .2605            | .2494            |
| .005000          | .06962                                                                                                                                                                                                                                                                                                                                                           | .2000                       | .2042            | .2320            | .2221            |
| .004453          |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | .1978<br>.1761   |
| 003900           |                                                                                                                                                                                                                                                                                                                                                                  |                             |                  |                  | .1569            |
| .003144          | .04378                                                                                                                                                                                                                                                                                                                                                           | .1257                       | .1284            | .1459            | .1396            |
|                  | Size of each No.  Inch. 46000 40964 .36480 .32486 .28930 .25763 .22942 .20431 .18194 .16202 .14428 .12849 .11443 .10189 .090742 .080808 .071961 .064084 .057068 .050820 .045257 .040.303 .035890 .031961 .028462 .025347 .022571 .020100 .c17900 .c17900 .015940 .014195 .012641 .011257 .010025 .008928 .007950 .007950 .007950 .006304 .005614 .005001 .005014 | Size of each No-   ALUMINUM | Size of each No. | Size of each No. | Size of each No. |

# TABLE SHOWING WEIGHT IN POUNDS

#### SHEET AND BAR ALUMINUM; ALSO, BRASS AND STEEL

Water at  $62^{\circ} = 62.355$  lbs.

Specific Gravity of Rolled Aluminum, 2.68. Specific Gravity of Rolled Brass, 8.549. Specific Gravity of Rolled Steel, 7.858.

Aluminum taken as 1, Brass is 3.190 times heavier, Steel is 2.9322 times heavier.

| Thickn<br>Diam<br>in in | eter,            | 100000000000000000000000000000000000000 | Sheets,<br>quare      |                |           | Square Bars,<br>One Foot Long.                 |                |                | und B<br>Foot I               |                          |                |                |
|-------------------------|------------------|-----------------------------------------|-----------------------|----------------|-----------|------------------------------------------------|----------------|----------------|-------------------------------|--------------------------|----------------|----------------|
| Fraction.               | Decimal.         | Aluminum.                               | Brass.                | Steel,         | Aluminum. | Brass.                                         | Steel.         | Aluminum.      | Brass.                        | Steel.                   |                |                |
| 1-16                    | .0625            | .869                                    | 2.77                  | 2.52           | .004      | .014                                           | .013           | .003           | .011                          | .010                     |                |                |
| 1-8                     | .125             | 1.739                                   | 5.55                  | 5.10           | .018      | .057                                           | .053           | .014           | .047                          | .042                     |                |                |
| 3-16                    | .1875            | 2.609                                   | 8.32                  | 7.65           | .041      | .131                                           | .119           | .032           | .102                          | .094                     |                |                |
| 1-4                     | .2500            | 3.479                                   | 11.10                 | 10.20          | .072      | .230                                           | .212           | .057           | .182                          | .167                     |                |                |
| 5-16                    | .3125            | 4.348                                   | 13.87                 | 12.75          | .114      | .380                                           | .333           | .089           | ,284                          | .261                     |                |                |
| 3-8                     | .3750            | 5.218                                   | 16.64                 | 15.30          | .163      | .520<br>.708                                   | .651           | .128           | .408                          | .375                     |                |                |
| 7-16<br>1-2             | .4375            | 6.088<br>6.958                          | $\frac{19.42}{22.20}$ | 17.85<br>20.40 | .222      | .925                                           | .850           | .174           |                               | .511                     |                |                |
| 9-16                    | .5625            | 7.827                                   | 21.07                 | 22.95          | .367      | 1.171                                          | 1.076          | .288           | 010                           | .919 .845<br>1.136 1.043 |                |                |
| 5-8                     | .6250            | 8.697                                   | 24.97<br>27.74        | 25.50          | .453      | 1.445                                          | 1.328          | .356           | 1 126                         |                          |                |                |
| 11-16                   | .6875            | 9.567                                   | 30.52                 | 28.05          | .548      | 1.748                                          | 1.608          | .430           | 1.372                         | 1.262                    |                |                |
| 3-4                     | .7500            | 10.436                                  | 33.29                 | 30.60          | .652      | 2.080                                          | 1.913          | .516           | 1.646                         | 1.502                    |                |                |
| 13-16                   |                  | 11.306                                  | 36.07                 | 33.15          | .766      | 2.445                                          | 2.245          | .601           | 1.917                         | 1.768                    |                |                |
| 7-8                     |                  | 12.175                                  | 38.84                 | 35.70          | .888      | 2.833                                          | 2.603          | .697           | 2.223                         | 2.044                    |                |                |
| 15-16                   | .9375            | 13.045                                  | 41.61                 | 38.25          | 1.019     | 3.251                                          | 2.989          | .800           | 2.552                         | 2.347                    |                |                |
|                         |                  | 13,915                                  | 44.39                 | 40.80          | 1.159     | 3.697                                          | 3.400          | .911           | 2.906                         | 2.670                    |                |                |
| 1-16                    |                  | 14.784                                  | 47.16                 | 43.35          | 1.309     | 1.467 4.630 4.303                              |                | 1.028<br>1.152 | 3.279                         | 3.014                    |                |                |
| 1-8                     | 1.125            | 15.654                                  | 49.94                 | 45.90          | 1.467     |                                                | 4.303          | 1.152          | 3.675                         | 3.379                    |                |                |
| 3-16                    | 1.1875           | 16.524                                  | 52.71                 | 48.45          | 1.635     | 5.216                                          | 4.795          | 1.284          | 4.096                         | 3.760                    |                |                |
| 14                      | 1.2500           | 17.394                                  | 55.48                 | 51.00          | 1.812     | 5.780                                          | 5.312          | 1.423          | 4.539                         | 4.17                     |                |                |
| 5-16                    | 1.3125           | 18.263                                  | 58.26                 | 53.55          | 1.997     | 6.370                                          | 5.857          | 1.569          | 5.003                         | 4.600                    |                |                |
| 3-8                     |                  | 19.133                                  | 61.04                 | 56.10          | 2.192     | 6.692                                          | 6.428          | 1.722          |                               | 5.518                    |                |                |
| 7-16                    |                  | 20.002                                  | 63.81                 |                | 58.65     | 58.65                                          | 2.396          |                | 644   7.026   322   7.650   2 | 1.722<br>1.882           | 5.491<br>6.002 | 5.049<br>5.518 |
| 1-2<br>9-16             | 1.5000           | 20.872                                  | 66.58                 | 61.20          | 2.609     | 2.609   8.322   7.650<br>2.831   9.030   8.301 |                | 2.049          | 6.536                         | 6.000                    |                |                |
| 9-16                    | 1.5625           | 21.741                                  | 69.35                 | 63.75          |           |                                                |                | 2.223          | 7.091                         | 6.52                     |                |                |
| 5-8<br>11-16            | 1.6250           | 22.611                                  | 72.13                 | 66.30          | 3.062     | 9.768                                          | 8.978          | 2.405          | 7.672                         | 7.05                     |                |                |
|                         | 1.6875           | 23.481 $24.350$                         | 74.90                 | 68.85          | 3.302     | 10.53                                          | 9.682          | 2.593          | 8.271                         | 7.60                     |                |                |
| 3-4<br>13-16            | 1.7500           |                                         | 77.67                 | 71.40          | 3.550     | 11.32                                          | 10.41          | 2.789          | 8.896                         | 8.17                     |                |                |
| 7-8                     | 1.8125<br>1.8750 | 25,250<br>26,090                        | $80.54 \\ 83.22$      | 73.95<br>76.50 | 3,810     | 12,15<br>13,00                                 | 11.17          | 2.992          | 9.544                         | 9.38                     |                |                |
| 15-16                   | 1.9375           | 26,960                                  | 86.00                 | 79.05          | 4.075     | 13.88                                          | 11.95<br>12.76 | 3.202          | 10.21<br>10.90                | 10.02                    |                |                |
| 10-10                   | 2.0000           | 27,829                                  | 88.77                 | 81.60          | 4.638     | 14.79                                          | 13.60          | 3.642          | 11.62                         | 10.68                    |                |                |

#### Relation of Aluminum to the Official Table Adopted by the Association of Copper Manufacturers of the United States, 1893.

ROLLED COPPER has a specific gravity of 8.93. One cubic foot weighs 558.125 pounds. One square foot of one inch thick weighs 46.51 pounds.

ROLLED ALUMINUM has a specific gravity of 2.68. One cubic foot weighs 167.1114 pounds. One square foot of one inch thick weighs 13.9259 pounds.

| _                          | 102                                       | oo p                           | ound                                                    | o.                                     | _                                                             |                                        | -                                                             |                                                 |                                                               |                                           |                                                               | . No                               |                                                               |
|----------------------------|-------------------------------------------|--------------------------------|---------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|
| Stub's gauge (nearest) No. | Thickness in decimal parts<br>of an inch. | 0z. per square foot of Copper. | 0z, per square foot of Alum-<br>inum of same thickness, | Sheets 14x48 weight in lbs. of Copper. | Sheets 14x48 weight in lbs. of<br>Aluminum of same th okness. | Sheets 24.28 weight in Ibs. of Copper. | Sheets 24x48 weight in 1bs. of<br>Aluminum of same thickness. | Sheets 30x60 weight in 1bs.<br>of Copper.       | Sheets 30x60 weight in lbs, of<br>Aluminum of same thickness. | Sheets 36z72 weight in lbs. of Copper.    | Sheets 36x72 weight in lbs. of<br>Aluminum in same thickness. | Sh'ts 48x72 w'ght in Ibs. of Cop'r | Sheets 48x72 weight in 1bs. of<br>Aluminum of same thickness. |
| 35                         | .00537                                    | 4                              | 1.20                                                    | 1.16                                   | 0.35                                                          | 2                                      | 0.60                                                          | 3.12                                            | 0.93                                                          | 4.50                                      | 1.35                                                          | 6                                  | 1.8                                                           |
| 33                         | .00806                                    | 6                              | 1.80                                                    | 1.75                                   | 0.52                                                          | 3                                      | 0.90                                                          | 4 69                                            | 1.40                                                          | 6.75                                      | 2.02                                                          | 9<br>12                            | 2.6                                                           |
| 31                         | .0107                                     | 8                              | 2.40<br>2.99<br>3.59<br>4.19<br>4.79                    | 2,33                                   | 0.70                                                          | 5 6                                    | 1.20                                                          | 6.25<br>7.81<br>9.37<br>10.93<br>12.50<br>14.06 | 1.87<br>2.34                                                  | 9.00<br>11.25<br>13.50<br>15.75           | 2.69                                                          | 12                                 | 3.5                                                           |
| 29                         | .0134                                     | 10                             | 2.99                                                    | 2.91<br>3.50                           | 0.87                                                          | 5                                      | 1.50<br>1.80<br>2.10<br>2.40                                  | 7.81                                            | 2.34                                                          | 11.25                                     | 3.37                                                          | 15                                 | 4.4<br>5.3                                                    |
| 27                         | .0161                                     | 12<br>14                       | 3.59                                                    | 3,50                                   | 1.05                                                          | 6                                      | 1.80                                                          | 9,37                                            | 2.81                                                          | 13.50                                     | 4.04                                                          | 18                                 | 5,3                                                           |
| 26                         | .0188                                     | 14                             | 4.19                                                    | 4.08                                   | 1.22<br>1.40<br>1.57                                          | 7                                      | 2.10                                                          | 10.93                                           | 3.27                                                          | 15.75                                     | 4.72                                                          | 21<br>24                           | 6.2<br>7.1                                                    |
| 24                         | .0215                                     | 16                             | 4.79                                                    | 4.66                                   | 1.40                                                          | 8                                      | 2.40                                                          | 12.50                                           | 3.74                                                          | 18.00                                     | 5.39                                                          | 24                                 | 7.1                                                           |
| 23                         | .0242                                     | 18                             | 5.39                                                    | 5.25                                   | 1.0(                                                          | 10                                     | 2.69                                                          | 14.06                                           | 3.27<br>3.74<br>4.21<br>4.68                                  | 20,25<br>22,50<br>27,00<br>26,00<br>45,00 | 6.06                                                          | 27                                 | 9.0                                                           |
| 22<br>21                   | .0269 $.0322$                             | 20<br>24                       | 7.00                                                    | 7.00                                   | 1.75                                                          | 12                                     | 2.99<br>3.59<br>4.79<br>5.99<br>7.19<br>8.38<br>9.58          | 15.62<br>18.75                                  | 5,61                                                          | 97.00                                     | 8.09                                                          | 36                                 | 8.9<br>10.7                                                   |
| 10                         | .0430                                     | 32                             | 7.99<br>9.58                                            | 9.33                                   | 2,10<br>2,79<br>3,49                                          | 16                                     | 4.70                                                          | 25.00                                           | 7.49                                                          | 96.00                                     | 8.08                                                          | 48                                 | 14.3                                                          |
| 19<br>18                   | .0538                                     | 40                             | 11.98                                                   | 11.66                                  | 3.49                                                          | 20                                     | 5.00                                                          | 25.00<br>31.25<br>37.50<br>43.75                | 9.36                                                          | 45.00                                     | 13.47                                                         | 60                                 | 17.9                                                          |
| iß                         | .0645                                     | 48                             | 14.37<br>16.77                                          | 14.00                                  | 4.19                                                          | 24                                     | 7.19                                                          | 37.50                                           | 11.23                                                         | 54.00                                     | 16.17                                                         | 72                                 | 21.5                                                          |
| 16<br>15                   | .0754                                     | 56                             | 16.77                                                   | 14.00<br>16.33                         | 4.89                                                          | 28                                     | 8.38                                                          | 43.75                                           | $11.23 \\ 13.10$                                              | 63.00                                     | 18,86                                                         | 84                                 | 25.1                                                          |
| 14                         | .0860                                     | 64                             | 19.16                                                   | 18.66                                  | 5.59                                                          | 32                                     | 9,58                                                          | 50.00                                           | 14.97                                                         | 72.00                                     | 21.56                                                         | 96                                 | 28.7                                                          |
| 13                         | .095                                      | 70                             | 20.96                                                   |                                        |                                                               | 35                                     | 10.48                                                         | 00.66                                           | 16.47                                                         | 79.00                                     | 99 RA                                                         | 105                                | 31.4                                                          |
| 12                         | .109                                      | 81                             | 24.25                                                   |                                        | *******                                                       | 401/2                                  | 12.13                                                         | 63.00                                           | 18.85                                                         | 91.00                                     | 27.25                                                         | 122                                | 36,5                                                          |
| u                          | .109<br>.120<br>.134                      | 89                             | 26,65                                                   |                                        | dinner.                                                       | 441/2                                  | 12.13<br>13.32                                                | 70.00                                           | 20.96                                                         | 100.00                                    | 27.25<br>29.94<br>23.54                                       | 234                                | 40.1                                                          |
| 10                         | .134                                      | 100                            | 29.94                                                   |                                        |                                                               | 50                                     | 14.97<br>16.47                                                | 78.00                                           | 23.85                                                         | 112,00                                    | 23.54                                                         | 150                                | 44.9                                                          |
| 9                          | .148                                      | 110                            | 32.94                                                   | ******                                 |                                                               | 55                                     | 16.47                                                         | 86.00                                           | $\frac{25.75}{28.74}$                                         | 124.00                                    | 37.13                                                         | 165                                | 49.4                                                          |
| 8                          | .165                                      | 123                            | $\frac{36.83}{40.12}$                                   | +++ ****                               | ******                                                        | 61                                     | 18.26                                                         | 96.00                                           | 28.74                                                         | 138.00                                    | 41.32                                                         | 184                                | 55.0                                                          |
| 7                          | .180                                      | 134                            | 40.12                                                   |                                        |                                                               | 67                                     | 20.06                                                         | 105.00<br>118.00                                | 31.44<br>35.33                                                | 151.00                                    | 45.21                                                         | 201                                | 60.1                                                          |
| 0                          | .148<br>.165<br>.180<br>.203<br>.220      | 101                            | 45.21                                                   | ***                                    |                                                               | 751/2                                  | 22.61<br>24.55                                                | 118.00                                          | 30.33                                                         | 170.00                                    |                                                               | 227                                | 67.9                                                          |
| 4                          | .220<br>.238<br>.259                      | 104                            | 49.10<br>53.00<br>57.79<br>63.18                        | ++++++                                 | 4544444                                                       | 881/2                                  | 24.00                                                         | 128,00                                          | 38,32<br>41,32<br>45,21<br>49,40                              | 184.00                                    | 55.09                                                         | 246<br>266                         | 73.6                                                          |
| 9                          | 950                                       | 103                            | 57.70                                                   | TRAINING.                              | ******                                                        | 96                                     | 26.50<br>28.74<br>31.59<br>33.39                              | 138,00<br>151,00                                | 45.91                                                         | 199,00<br>217.00                          | 59,58<br>64,98<br>71,27                                       | 289                                | 79.6                                                          |
| 321                        | .284                                      | 211                            | 63 19                                                   |                                        | ++++++++                                                      | 10534                                  | 21.50                                                         | 165.00                                          | 49.40                                                         | 238.00                                    | 71 97                                                         | 317                                | 86.5<br>84.9                                                  |
| í                          | .300                                      | 993                            | 66.77                                                   | 1000000                                | *******                                                       | 1051/4<br>1111/4<br>1261/2             | 33 30                                                         | 174.00                                          | 52.10                                                         | 251.00                                    | 75.16                                                         | 335                                | 100.3                                                         |
| 0                          | .340                                      | 953                            | 75.77                                                   | TELEFFE                                | 44141476                                                      | 12612                                  | 37.88                                                         | 198,00                                          | 59,29                                                         | 285,00                                    | 85.34                                                         | 380                                | 113.7                                                         |

One ounce per square foot aluminum sheet is 0.00449 inches thick and corresponds to about No. 37 B. & S. gauge.

#### Zinc Sheets of Standard Dimensions have the Following Weights:

| .0311 | inch | thick | weighs | 10 oz. | to the | square | foot |
|-------|------|-------|--------|--------|--------|--------|------|
| .0437 | **   | **    |        | 12 oz. | **     | •66    | **   |
| .0534 | ••   | **    | . **   | 14 oz. | ••     | **     | ••   |
| .0611 | **   | ••    | **     | 16 oz. | ••     | **     | **   |
| .0686 | **   | **    | **     | 18 oz. | **     | **     | **   |
| .0761 | **   | **    | **     | 20 oz. | **     | 44     |      |

## WEIGHT PER SQUARE FOOT

of the different denominations of aluminum and tin plates and corresponding number of the proposed new u. s. standard gauge, specific gravity aluminum, 2.68.

| Trade<br>Designati'n<br>of Gauge. | Fraction of a Pound Aluminum. | Ozs.<br>Aluminum. | Fraction of a Pound Tin Plate. | Ozs.<br>Tin Plate. | Proposed<br>U. S.<br>Standard<br>Gauge. | Nearest<br>B. & S.<br>Gauge. | Thickness in Decimal parts of an Inch. |
|-----------------------------------|-------------------------------|-------------------|--------------------------------|--------------------|-----------------------------------------|------------------------------|----------------------------------------|
|                                   |                               |                   |                                |                    | *                                       | *                            | •                                      |
| IC                                | .171                          | 2.73              | • • • • •                      | 8.                 | 30                                      | 28                           | .0125                                  |
| IX                                | .213                          | 3.41              | .625                           | 10.                | 28                                      | 26                           | .015625                                |
| IXX                               | .242                          | 3.88              | .711                           | 11.37              | 26½                                     | 24                           | .018930                                |
| IXXX                              | .273                          | 4-37              | .8                             | 12.8               | 25½                                     | 24                           | .020300                                |
| IXXXX                             | .307                          | 4.91              | .9                             | 14.4               | 25                                      | 23                           | .021875                                |
| IXXXXX                            | .341                          | 5.46              | 1.0                            | 16.                | 24                                      | 22                           | .02500                                 |
| DC                                | .218                          | 3.50              | .64                            | 10.25              | 28                                      | 26                           | .015025                                |
| DX                                |                               | 1                 |                                |                    | 251/2                                   | 24                           | .020300                                |
| DXX                               |                               |                   |                                |                    | 24                                      | 22                           | .02500                                 |
| DXXX                              | ∙379                          | 6.07              | 1.11                           | 17.8               | 23                                      | 21                           | .028125                                |
| DXXXX.                            | .426                          | 6.82              | 1.25                           | 20.                | 22                                      | 20                           | .031250                                |

<sup>\*</sup> Thickness of black sheet before tinning.

The thickness of tin plate varies according to the coating of tin retained on the surface of the sheet. About two or three numbers of Brown & Sharpe gauge should be added to the above columns for comparing the thickness of aluminum with tinned sheets.

VEIGHT OF SHEET METALS.
AUTHORITY.-WECHANICAL ENGINEERS' REFERENCE BOOK BY NELSON FOLEY.

| THICK-                  |                     |                |                 | Кш     | LOGRANME | KILOGRAMMES PER SQUARE METER.  | вк Метві | .,                        |             |                 |             |
|-------------------------|---------------------|----------------|-----------------|--------|----------|--------------------------------|----------|---------------------------|-------------|-----------------|-------------|
| in<br>Milli-<br>metres. | Distilled<br>Water. | Alumi-<br>num. | Delta<br>Metal. | Brass  | Copper.  | Iron and<br>Alumin.<br>Bronze. | Lead.    | Manga-<br>nese<br>Bronze. | Steel.      | Muntz<br>Metal. | Zinc.       |
| 4                       | 4                   | 10.68          | 34.4            | 38.8   | 35.12    | 30.8                           | 45.6     | 33.6                      | 31.36       | 32.88           | 28.8        |
| 4.4                     | 4.25                | 11.347         | 36.55           | 35.912 | 37.315   | 32.725                         | 48.45    | 35.7                      | 33.32       | 34.935          | 30.6        |
| 4/2                     | 4.5                 | 12.015         | 38.7            | 38.025 | 39.51    | 34.65                          | 51.3     | 37.8                      | 35.28       | 36.99           | 32.4        |
| **                      | 4.75                | 12.682         | 40.85           | 40.137 | 41.705   | 36.575                         | 54.15    | 39.9                      | 37.24       | 39.045          | 34.2        |
| 'n                      | ņ                   | 13.35          | 43.             | 42.25  | 43.9     | 38.5                           | 57.      | 42.                       | 39.2        | 41.1            | 36.         |
| 7,5                     | 5.5                 | 14.017         | 45.15           | 44.362 | 46.095   | 40.425                         | 59.85    | 4.                        | 41.16       | 43.155          | 37.8        |
| 5,2                     | 5.5                 | 14.685         | 47.3            | 46.475 | 48.29    | 42.35                          | 62.7     | 46.2                      | 43.12       | 45.21           | 36.6        |
| 5%                      | 5.75                | 15.352         | 49.45           | 48.587 | 50.485   | 44.275                         | 65.55    | 48.3                      | 45.08       | 47.265          | 41.4        |
| 9                       | 6.                  | 16.02          | 51.6            | 50.7   | 52.68    | 46.2                           | 68.4     | 50.4                      | 47.04       | 49.32           | 43.2        |
| 6.7                     | 6.25                | 16.687         | 53.75           | 52.812 | 54.875   | 48.125                         | 71.25    | 52.5                      | 49.         | 51.375          | 45.         |
| 2/ <sub>0</sub>         | 6.5                 | 17.355         | 55.9            | 54.925 | 57.07    | 50.05                          | 74.1     | 54.6                      | 50.96       | 53.43           | <b>46.8</b> |
| 63%                     | 6.75                | 18.022         | 58.05           | 57.037 | 59.265   | 51.975                         | 76.95    | 56.7                      | 52.92       | 55.485          | 48.6        |
| 7                       |                     | 18.69          | 60.2            | 59.15  | 61.46    | 53.9                           | 8.6      | 58.8                      | 54.88       | 57.54           | 50.4        |
| 74.                     | 7.25                | 19.357         | 62.35           | 61.26  | 63.655   | 55.825                         | 82.65    | 6.00                      | 56.84       | 59.595          | 52.2        |
| 1/2                     | 7.5                 | 20.025         | 64.5            | 63.375 | 65.85    | 57.75                          |          | 3                         | 58.8<br>8.8 | 61.65           |             |
| *                       | 7.75                | 20.692         | 00.05           | 05.457 | 09.045   | 59.075                         | 99.35    | 05.1                      | 00.70       | 03.705          | 55.0        |

WEIGHT OF SHEET METALS.-Continued.

|                             |                |   |                 | Kır    | OGRANARS | Kilogrammes per Square Metre   | RE METRE |                           |           |                 |       |
|-----------------------------|----------------|---|-----------------|--------|----------|--------------------------------|----------|---------------------------|-----------|-----------------|-------|
| Distilled Alumi-Water. num. | Alumi-<br>num. |   | Delta<br>Metal. | Brass. | Copper.  | Iron and<br>Alumin.<br>Bronze. | Lead.    | Manka-<br>nese<br>Bronze. | Steel.    | Muntz<br>Metal. | Zinc. |
|                             | 21.36          |   | 8.89            | 9.29   | 70.24    | 9.19                           | 91.2     | 67.2                      | 62.72     | 65.76           | 57.6  |
| 8.25   22.027               | 22.027         |   | 70.95           | 69.712 | 72.435   | 63.525                         | 94.05    | 69.3                      | 64.68     | 67.815          | 59.4  |
|                             | 22.695         |   | 73.1            | 71.825 | 74.63    | 65.45                          | 6.96     | 71.4                      | 66.64     | 69.87           | 61.2  |
|                             | 23.362         |   | 75.25           | 73.937 | 76.825   | 67.375                         | 99.75    | 73.5                      | 9.89      | 71.925          | 63.   |
| _                           | 24 03          |   | 77.4            | 76.05  | 79.02    | 69.3                           | 102.6    | 75.6                      | 70.56     | 73.98           | 64.8  |
| _                           | 24.697         |   | 79.55           | 78.16  | 81.215   | 71.225                         | 105.4    | 77.7                      | 72.52     | 76.035          | 9.99  |
| _                           | 25.365         |   | 81.7            | 80.275 | 83.41    | 73.15                          | 108.3    | 8.62                      | 74.48     | 78.09           | 68.4  |
| 9.75 26.032                 | 26.032         |   | 83.85           | 82.387 | 85.605   | 75.075                         | 11111    | 6.18                      | 76.44     | 80.145          | 70.2  |
|                             | 26.7           |   | .98             | 84.5   | 87.8     | 77.                            | 114.     | 84.                       | 78.4      | 82.2            | 72.   |
|                             | 28.035         |   | 90.3            | 88.72  | 92.19    | 80.85                          | 1.611    | 88.2                      | 82.32     | 86.31           | 75.6  |
|                             | 29.37          |   | 94.6            | 92.95  | 96.58    | 84.7                           | 125.4    | 92.4                      | 86.24     | 90.42           | 79.2  |
|                             | 30.7           | _ | 98.9            | 97.17  | 100.07   | 88.55                          | 131.1    | 96.6                      | 90.16     | 94.53           | 82.8  |
|                             | 32.04          |   | 103.2           | 101.4  | 105.36   | 92.4                           | 136.8    | 8.00                      | 94.08     | 98.64           | 86.4  |
| 12.5 33.37                  | 33.37          | _ | 107.5           | 105.62 | 109.75   | 96.25                          | 142.5    | 105.                      | <b>98</b> | 102.7           | 8     |
|                             | 34.71          |   | 8.111           | 109.85 | 114.14   | 1001                           | 148.2    | 109.2                     | 9.101     | 6.901           | 93.6  |
|                             | 36.04          |   | 1.911           | 114.07 | 118.53   | 103.95                         | 153.9    | 113.4                     | 105.8     | 111.            | 97.2  |
| _                           |                | _ | _               | _      | _        | _                              |          | _                         |           |                 |       |

SHEET METALS.-Continued. WEIGHT OF

| THICK-                  |                     |                |                 | Кп     | KILOGRAMMES | PER SQU.                        | PER SQUARE METRE. | ي                         |        |                 |               |
|-------------------------|---------------------|----------------|-----------------|--------|-------------|---------------------------------|-------------------|---------------------------|--------|-----------------|---------------|
| in<br>Milli-<br>metres. | Distilled<br>Water. | Alumi-<br>num. | Delta<br>Metal. | Brass. | Copper.     | I ron and<br>Alumin.<br>Bronze. | Lead.             | Manga-<br>nese<br>Bronze. | Steel. | Muntz<br>Metal. | Zinc.         |
| 14                      | 4.                  | 37.38          | 120.4           | 118.3  | 122.92      | 8.701                           | 159.6             | 117.6                     | 109.8  | 115.1           | 100.8         |
| 14.7<br>2, 21           | 14.5                | 38.71          | 124.7           | 122.52 | 127.31      | 111.65                          | 165.3             | 121.8                     | 113.7  | 119.2           | 104.4<br>108. |
| 15 1/2                  | 15.5                | 41.38          | 133.3           | 130.97 | 136.09      | 119.35                          | 1,96.7            | 130.2                     | 121.5  | 127.4           | 9"111         |
| 91                      |                     | 42.72          | 137.6           | 135.2  | 140.48      | 123.2                           | 182.4             | 134.4                     | 125.4  | 131.5           | 115.2         |
| 101/2                   | 16.5                | 44.05          | 141.9           | 139.42 | 144.87      | 127.05                          | 188.1             | 138.6                     | 129.4  | 135.0           | 118.8         |
| 17                      | 17.                 | 45.39          | 140.2           | 143.65 | 149.20      | 130.9                           | 193.8             | 142.8                     | 133.3  | 139.7           | 122.4         |
| 171/2                   | 17.5                | 46.72          | 150.5           | 147.87 | 153.65      | 134.75                          | 199.5             | 147.                      | 137.2  | 143.8           | 120.          |
| 18                      | 18.                 | 48.06          | 154.8           | 152.1  | 158.04      | 138.6                           | 205.2             | 151.2                     | 141.1  | 148.            | 129.6         |
| 181/2                   | 18.5                | 49.39          | 1.651           | 156.32 | 162.43      | 142.45                          | 210.9             | 155.4                     | 145.   | 152.1           | 133.2         |
| 61                      | .61                 | 50.73          | 163.4           | 160.55 | 166.82      | 146.3                           | 216.6             | 159.6                     | 149.   | 156.2           | 136.8         |
| 191/2                   | 19.5                | 52.06          | 167.7           | 164.77 | 171.21      | 150.15                          | 222.3             | 163.8                     | 152.9  | 160.3           | 140.4         |
| 20                      | 20.                 | 53.4           | 172.            | .691   | 175.6       | 154.                            | 228.              | 168.                      | 156.8  | 164.4           | 144           |
| 201/2                   | 20.5                | 54.73          | 176.3           | 173.22 | 179.99      | 157.85                          | 233.7             | 172.2                     | 100.7  | 168.5           | 147.6         |
| 21                      | 21.                 | 56.07          | 180.6           | 177.45 | 184.38      | 161.7                           | 239.4             | 176.4                     | 164.6  | 172.6           | 151.2         |
| 211/2                   | 21.5                | 57.4           | 184.9           | 181.67 | 188.77      | 165.55                          | 245.1             | 180.6                     | 9.891  | 176.7           | 154.8         |
| _                       |                     | _              |                 | _      | _           | -                               | _                 |                           | _      | _               |               |

WEIGHT OF SHEET METALS .- Continued.

| THICK-                  |                     |                |                 | KILC   | GRAMMES | KILOGRAMMES PER SQUARE METRE   | RE METRE |                           |        |                 | i     |
|-------------------------|---------------------|----------------|-----------------|--------|---------|--------------------------------|----------|---------------------------|--------|-----------------|-------|
| in<br>Milli-<br>metres. | Distilled<br>Water. | Alumi-<br>num. | Delta<br>Metal. | Вгаяв. | Copper. | Iron and<br>Alumin.<br>Bronze. | Lead.    | Manga-<br>nese<br>Bronze. | Steel. | Muntz<br>Metal. | Zino. |
| 22                      | 22.                 | 58.74          | 189.2           | 185.9  | 193.16  | 169.4                          | 250.8    | 184.8                     | 172.5  | 180.8           | 158.4 |
| 22 1/2                  | 22.5                | 60.07          | 193.5           | 190.12 | 197.55  | 173.25                         | 256.5    | 189.                      | 176.4  | 184.0           | 162.  |
| 23                      | 23.                 | 61.41          | 8.261           | 194.35 | 201.94  | 177.1                          | 262.2    | 193.2                     | 180.3  | 1.681           | 165.6 |
| 23 1/2                  | 23.5                | 62.74          | 202.1           | 198.57 | 206.33  | 180.95                         | 6.792    | 197.4                     | 184.2  | 193.2           | 169.2 |
| 24                      | 24.                 | 64.08          | 206.4           | 202.8  | 210.72  | 184.8                          | 273.6    | 9.102                     | 188.2  | 197.3           | 172.8 |
| 24 1/2                  | 24.5                | 65.41          | 210.7           | 207.02 | 215.11  | 188.65                         | 279.3    | 205.8                     | 192.1  | 201.4           | 176.4 |
| 25                      | 25.                 | 66.75          | 215.            | 211.25 | 219.5   | 192.5                          | 285.     | 210.                      | 196.   | 205.5           | 8     |
| 25 1/2                  | 25.5                | 80.89          | 219.3           | 215.47 | 223.89  | 196.35                         | 290.7    | 214.2                     | 6.661  | 209.6           | 183.6 |
| 56                      | 26.                 | 69.42          | 223.6           | 219.7  | 228.28  | 200.2                          | 296.4    | 218.4                     | 203.8  | 213.7           | 187.2 |
| 261/2                   | 26.5                | 70.75          | 227.9           | 223.92 | 232.67  | 204.05                         | 302.1    | 222.6                     | 207.8  | 217.8           | 190.8 |
| 27                      | 27.                 | 72.09          | 232.2           | 228.15 | 237.06  | 207.9                          | 307.8    | 226.8                     | 211.7  | 221.9           | 194.4 |
| 27.72                   | 27.5                | 73.42          | 236.5           | 232.37 | 241.45  | 211.75                         | 313.5    | 231.                      | 215.6  | 226.            | .98   |
| 78                      | 28.                 | 74.76          | 240.8           | 236.6  | 245.84  | 215.6                          | 319.2    | 235.2                     | 219.5  | 230.2           | 201.6 |
| 281/2                   | 28.5                | 76.09          | 245.1           | 240.82 | 250.23  | 219.45                         | 324.9    | 239.4                     | 223.4  | 234.3           | 205.2 |
| 56                      | 29.                 | 77.43          | 249.4           | 245.05 | 254.62  | 223.3                          | 330.6    | 243.6                     | 227.4  | 238.4           | 208.8 |
| 267                     | 29.5                | 78.76          | 253.7           | 249.27 | 259.01  | 227.15                         | 336.3    | 247.8                     | 231.3  | 242.5           | 212.4 |
| 30                      | 30.                 | 80.1           | 258.            | 253.5  | 263.4   | 231.                           | 342.     | 252.                      | 235.2  | 246.6           | 216.  |
|                         |                     | ,              |                 |        |         |                                |          |                           |        |                 |       |

#### PER LINEAL FOOT.

Specific Gravity 2.68 and at 62 degrees Fahr., Water taken as 62.355 Lbs. per cubic inch.

For Thickness from 3-16 in. to 2 in., and Widths from 1 in. to 12% in.

| Thickness<br>in Inches.     | 1"                               | 1¼"                              | 1½"                              | 13/4"                            | 2''                              | 21/4"                            | 2½"                              | 23/4"                            | 12"                                  |
|-----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|
| 3-16                        | .218                             | .272                             | .326                             | .379                             | .437                             | .491                             | .542                             | .597                             | 2.609                                |
| 1-4                         | .290                             | .362                             | .437                             | .508                             | .580                             | .651                             | .723                             | .798                             | 3.479                                |
| 5-16                        | .362                             | .454                             | .542                             | .634                             | .723                             | .815                             | .904                             | .996                             | 4.348                                |
| 3-8                         | .437                             | .542                             | .651                             | .761                             | .870                             | .979                             | 1.088                            | 1.197                            | 5.215                                |
| 7-16                        | .508                             | .634                             | .761                             | .887                             | 1.016                            | 1.143                            | 1.269                            | 1.395                            | 6.088                                |
| 1-2                         | .580                             | .723                             | .870                             | 1.016                            | 1.159                            | 1.306                            | 1.449                            | 1.593                            | 6.958                                |
| 9-16                        | .655                             | .815                             | .979                             | 1.143                            | 1.306                            | 1.466                            | 1.630                            | 1.794                            | 7,827                                |
| 5-8                         | .723                             | .904                             | 1.088                            | 1.269                            | 1.449                            | 1.630                            | 1.811                            | 1.992                            | 8,697                                |
| 11-16                       | .798                             | .996                             | 1.197                            | 1.395                            | 1.593                            | 1.794                            | 1.992                            | 2.193                            | 9,567                                |
| 3-4                         | .870                             | 1.088                            | 1.306                            | 1.524                            | 1.739                            | 1.961                            | 2.176                            | 2.394                            | 10,436                               |
| 13-16                       | .941                             | 1.177                            | 1.412                            | 1.651                            | 1.882                            | 2.118                            | 2.353                            | 2.592                            | 11. <b>3</b> 06                      |
| 7-8                         | 1.016                            | 1.269                            | 1.521                            | 1.773                            | 2.029                            | 2.282                            | 2.538                            | 2.790                            | 12.175                               |
| 15-16                       | 1.088                            | 1.361                            | 1.630                            | 1.903                            | 2.176                            | 2.449                            | 2.718                            | 2.991                            | 13.045                               |
| 1                           | 1.159                            | 1.449                            | 1.739                            | 2.029                            | 2.319                            | 2.609                            | 2.899                            | 3.189                            | 13.915                               |
| 1 1-16                      | 1.231                            | 1.541                            | 1.848                            | 2.155                            | 2.462                            | 2.773                            | 3.080                            | 3.387                            | 14.784                               |
| 1 1-8                       | 1.306                            | 1.630                            | 1.958                            | 2.285                            | 2.609                            | 2.936                            | 3.264                            | 3.588                            | 15.654                               |
| 1 3-16                      | 1.378                            | 1.722                            | 2.067                            | 2.411                            | 2.756                            | 3.100                            | 3.445                            | 3.789                            | 16.524                               |
| 1 1-4                       | 1.449                            | 1.811                            | 2.176                            | 2.538                            | 2.899                            | 3.264                            | 3.625                            | 3.987                            | 17.393                               |
| 1 5-16                      | 1.521                            | 1.903                            | 2.282                            | 2.664                            | 3.046                            | 3.424                            | 3.806                            | 4.185                            | 18.263                               |
| 1 3-8                       | 1.593                            | 1.992                            | 2.394                            | 2.790                            | 3.189                            | 3.588                            | 3.987                            | 4.383                            | 19.133                               |
| 1 7-16                      | 1.668                            | 2.084                            | 2.503                            | 2.919                            | 3.336                            | 3.752                            | 4,168                            | 4.584                            | 20.002                               |
| 1 1-2                       | 1.739                            | 2.176                            | 2.609                            | 3.045                            | 3.479                            | 3.915                            | 4.349                            | 4.785                            | 20.872                               |
| 1 9-16                      | 1.814                            | 2.265                            | 2.718                            | 3.172                            | 3.625                            | 4.076                            | 4.530                            | 4.983                            | 21.741                               |
| 1 5-8                       | 1.882                            | 2.353                            | 2.827                            | 3.298                            | 3.769                            | 4.239                            | 4.710                            | 5.181                            | 22.611                               |
| 1 11-16                     | 1.958                            | 2.445                            | 2.936                            | 3.424                            | 3.912                            | 4.403                            | 4.891                            | 5.382                            | 23.481                               |
| 1 3-4                       | 2.029                            | 2.538                            | 3.045                            | 3.551                            | 4.059                            | 4.570                            | 5.075                            | 5.580                            | 24.350                               |
| 1 13-16<br>1 7-8<br>1 15-16 | 2.101<br>2.176<br>2.248<br>2.319 | 2.626<br>2.718<br>2.810<br>2.899 | 3.151<br>3.264<br>3.370<br>3.479 | 3.680<br>3.806<br>3.392<br>4.059 | 4.205<br>4.349<br>4.495<br>4.638 | 4.727<br>4.891<br>5.058<br>5.218 | 5.252<br>5.437<br>5.621<br>5.798 | 5.781<br>5.979<br>6.180<br>6.378 | 25.250<br>26.090<br>26.960<br>27,829 |
|                             | 1                                |                                  | 3.110                            | 2.000                            | 2.000                            | J.210                            | 3                                | 3.0,0                            | 21.020                               |

#### PER LINEAL FOOT.

| Thickness<br>in Inches. | 3"             | 31/4"          | 31/2"          | 33/4"          | 4"             | 41/4"          | 41/2"          | 43⁄4"          | 12"          |
|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|
| 3-16<br>1-4             | .651<br>.870   | .706<br>.941   | .761<br>1.016  | .815<br>1.088  | .870<br>1.159  | .924<br>1.231  | .979<br>1.306  | 1.033<br>1.378 | 2.60<br>3.47 |
| 5-16                    | 1.088          | 1.177          | 1.269          | 1.361          | 1.449          | 1.541          | 1.630          | 1.722          | 4.34         |
| 3-8                     | 1.306          | 1.415          | 1.524          | 1.630          | 1.739          | 1.848          | 1.961          | 2.067          | 5.218        |
| 7-16<br>1-2             | 1.521<br>1.739 | 1.647<br>1.886 | 1.773<br>2.029 | 1.903<br>2.176 | 2.029<br>2.319 | 2.155<br>2.462 | 2.285<br>2.609 | 2.411<br>2.756 | 6.08<br>6.95 |
| 9-16                    | 1.958          | 2.121          | 2.285          | 2.445          | 2.609          | 2.773          | 2.936          | 3.100          | 7.82         |
| 5-8                     | 2.176          | 2.357          | 2.538          | 2.718          | 2.899          | 3.080          | 3.264          | 3.445          | 8.69         |
| 11-16                   | 2.394          | 2.592          | 2.790          | 2.988          | 3.189          | 3.387          | 3.588          | 3.789          | 9.56         |
| 3-4                     | 2.609          | 2.828          | 3.045          | 3.264          | 3.479          | 3.697          | 3.915          | 4.134          | 10.43        |
| 13-16                   | 2.827          | 3.062          | 3.298          | 3.533          | 3.769          | 4.004          | 4.239          | 4.475          | 11.30        |
| 7-8                     | 3.045          | 3.298          | 3,551          | 3.806          | 4.059          | 4.315          | 4.570          | 4.819          | 12.17        |
| 15-16                   | 3.264          | 3.533          | 3.806          | 4.076          | 4.349          | 4.621          | 4.891          | 5.164          | 13.04        |
| 1                       | 3.479          | 3.769          | 4.059          | 4.348          | 4.638          | 4.928          | 5.218          | 5.508          | 13.91        |
| 1 1-16                  | 3.697          | 4.004          | 4.315          | 4.621          | 4.928          | 5.235          | 5.546          | 5.853          | 14.784       |
| 1 1-8                   | 3.915          | 4.240          | 5.567          | 4.891          | 5.218          | 5.546          | 5.873          | 6.197          | 15.65        |
| 1 3-16                  | 4.134          | 4.475          | 4.819          | 5.164          | 5.508          | 5.852          | 6.197          | 6.542          | 16.52        |
| 1 1-4                   | 4.348          | 4.710          | 5.071          | 5.436          | 5.798          | 6.160          | 6.528          | 6.888          | 17.393       |
| 1 5-16                  | 4.567          | 4.945          | 5.328          | 5.710          | 6.088          | 6.467          | 6.849          | 7.231          | 18.26        |
| 1 3-8                   | 4.785          | 5.184          | 5.580          | 5.979          | 6.378          | 6.777          | 7.176          | 7.576          | 19.133       |
| 1 7-16                  | 5.000          | 5.416          | 5.832          | 6.251          | 6,668          | 7.084          | 7,500          | 7.919          | 20.002       |
| 1 1-2                   | 5.218          | 5.655          | 6.088          | 6.524          | 6.958          | 7.394          | 7.827          | 8.269          | 20.87        |
| 1 9-16                  | 5.436          | 5.890          | 6.344          | 6,794          | 7.248          | 7.702          | 8.145          | 8.608          | 21,741       |
| 1 5-8                   | 5.655          | 6.126          | 6.596          | 7.066          | 7.538          | 8,009          | 8,480          | 8.953          | 22,611       |
| 1 11-16                 | 5.872          | 6.361          | 6.848          | 7.336          | 7.827          | 8.315          | 8.806          | 9.297          | 23.481       |
| 1 3-4                   | 6.088          | 6.596          | 7.104          | 7.613          | 8.118          | 8.626          | 9.134          | 9.642          | 24.350       |
| 1 13-16                 | 6.306          | 6.832          | 7.356          | 7.882          | 8.407          | 8.933          | 9.458          | 9.970          | 25,250       |
| 1 7-8                   | 6.524          | 7.066          | 7.609          | 8.154          | 8.697          | 9.242          | 9.785          | 10.300         | 26.090       |
| 1 15-16                 | 6.744          | 7.302          | 7.864          | 8.424          | 8.988          |                | 10.110         |                | 26.960       |
| 2                       | 6.958          | 7.538          | 8.118          | 8.696          | 9.277          |                | 10.436         | 11.015         | 27.829       |

#### PER LINEAL FOOT.

| Thickness<br>in incnes.            | 5"                      | 51/4"                            | 51/2"                            | 53/4"                            | 6''                              | 61/4"                   | 614"                    | 63/4"                            | 12"                        |
|------------------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|----------------------------------|----------------------------|
| 3-16<br>1-4                        | 1.088<br>1.449          |                                  | 1.197<br>1.593                   |                                  | 1.306<br>1.739                   |                         | 1.415<br>1.886          |                                  | 2.609<br>3.479             |
| 5-16<br>3-8<br>7-16                | 1.811<br>2.176<br>2.538 | 2.664                            | 2.394<br>2.790                   | 2.503<br>2.919                   | 2.609<br>3.045                   | 2.722<br>3.168          | 2.828<br>3.298          | 2.445<br>2.936<br>3.424          | 4.348<br>5.218<br>6.088    |
| 1-2<br>9-16                        | 2.899<br>3.264          | 3.045<br>3.424                   |                                  | 3.752                            | 3.915                            | 3.626<br>4.076          | 4.240                   | 3.915<br>4.403                   | 6.958<br>7.827             |
| 5-8<br>11-16<br>3-4                | 3.625<br>3.987<br>4.349 | 3.806<br>4.185<br>4.567          |                                  | 4.587                            | 4.348<br>4.785<br>5.218          | 4.529<br>4.983<br>5.433 | 4.710<br>5.184<br>5.655 | 4.891<br>5.382<br>5.873          | 8.697<br>9.567<br>10.436   |
| 13-16<br>7-8                       | 4.710<br>5.075          | 4.945<br>5.328                   | 5,181<br>5,580                   |                                  | 5.655<br>6.088                   | 5.890<br>6.344          | 6.126<br>6.596          | 6.361<br>6.849                   | 11.306<br>12.175           |
| 15-16<br>1                         | 5.437<br>5.798          | 5.709<br>6.088                   | 6.378                            | 6.668                            | 6.524<br>6.958                   | 6.794<br>7.248          | 7.066<br>7.538          | 7.336<br>7.827                   | 13.045<br>13.915           |
| 1 1-16<br>1 1-8<br>1 3-16<br>1 1-4 | 6.159<br>6.528<br>6.886 | 6.466<br>6.848<br>7.230<br>7.613 | 6.777<br>7.176<br>7.576<br>7.975 | 7.084<br>7.500<br>7.919<br>8.335 | 7.394<br>7.827<br>8.264<br>8.697 | 7.701<br>8.152<br>8.605 | 8.009<br>8.483<br>8.950 | 8.318<br>8.805<br>9.293<br>9.784 | 14.784<br>15.654<br>16.524 |
| 1 5-16<br>1 3-8                    | 7.248<br>7.613<br>7.974 | 7.992<br>8.369                   | 8.369<br>8.768                   | 8.751<br>9.168                   | 9.134<br>9.567                   | 9.059<br>9.516          | 9.419<br>9.893<br>10.36 |                                  | 17.393<br>18.263<br>19.133 |
| 1 7-16<br>1 1-2                    | 8.335<br>8.696          | 8.751<br>9.134                   | 9.168<br>9.567                   | 9.584<br>10.00                   | 10.00<br>10.44                   | 10.42<br>10.87          | 10.83<br>11.31          | 11.25<br>11.74                   | 20.002<br>20.872           |
| 1 9-16<br>1 5-8<br>1 11-16         | 9.062<br>9.423<br>9.784 | 9.513<br>9.894<br>10.273         | 9.965<br>10.355<br>10.760        |                                  | 10.87<br>11.31<br>11.74          | 11.32<br>11.78<br>12.23 | 11.77<br>12.25<br>12.72 | 12.23<br>12.72<br>13.21          | 21.741<br>22.611<br>23.481 |
| 1 3-4<br>1 13-16                   | 10.147<br>10.508        | 10.655                           | 11.162<br>11.558                 | 11.67                            | 12.17<br>12.61                   | 12.68<br>13.14          | 13.19<br>13.66          | 13.70<br>14.19                   | 24.350<br>25.250           |
| 1 7-8<br>1 15-16<br>2              | 11.233                  | $11.416 \\ 11.796$               | 11.958                           | 12.50<br>12.92                   | 13.04<br>13.43<br>13.91          | 13.59<br>14.04<br>14.49 | 14.13<br>14.60<br>15.07 | 14.67<br>15.16<br>15.65          | 26.090<br>26.960<br>27.829 |

## PER LINEAL FOOT.

| Thickness<br>in inches.     | 7"                               | 71/4"                            | 7½"                              | 7¾"                              | 8"                               | 81/4"                            | 81/2"                            | 83⁄4″                            | 12"                                  |
|-----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|
| 3-16<br>1-4                 | 1.521<br>2.029                   | 1.576<br>2.101                   |                                  |                                  | 1.739<br>2.319                   | 1.794<br>2.391                   | 1.848<br>2.462                   | 1.903<br>2.534                   | 2.609<br>3.479                       |
| 5-16                        | 2.538                            | 2.626                            | 2.718                            | 2.807                            | 2.899                            | 2.988                            | 3.080                            | 3.169                            | 4.348                                |
| 3-8                         | 3.045                            | 3.155                            | 3.264                            | 3.370                            | 3.479                            | 3.588                            | 3.697                            | 3.806                            | 5.218                                |
| 7-16                        | 3.551                            | 3.677                            | 3.806                            | 3.932                            | 4.059                            | 4.185                            | 4.315                            | 4.441                            | 6.088                                |
| 1-2                         | 4.059                            | 4.202                            | 4.348                            | 4.495                            | 4.638                            | 4.785                            | 4.928                            | 5.072                            | 6.958                                |
| 9-16                        | 4.567                            | 4.727                            | 4.891                            |                                  | 5.218                            | 5.382                            | 5.546                            | 5.710                            | 7.827                                |
| 5-8                         | 5.072                            | 5.252                            | 5.436                            |                                  | 5.798                            | 5.979                            | 6.160                            | 6.340                            | 8.697                                |
| 11-16                       | 5.580                            | 5.777                            | 5.979                            |                                  | 6.378                            | 6.576                            | 6.777                            | 6.974                            | 9.567                                |
| 3-4                         | 6.088                            | 6.306                            | 6.524                            |                                  | 6.958                            | 7.176                            | 7.394                            | 7.612                            | 10.436                               |
| 13-16<br>7-8<br>15-16       | 6.596<br>7.104<br>7.613<br>8.118 | 6.832<br>7.356<br>7.881<br>8.406 | 7.066<br>7.613<br>8.154<br>8.696 | 7.302<br>7.861<br>8.424<br>8.988 | 7.538<br>8.118<br>8.697<br>9.277 | 7.773<br>8.373<br>8.970<br>9.567 | 8.009<br>8.626<br>9.242<br>9.856 | 8.243<br>8.881<br>9.513<br>10.15 | 11.306<br>12.175<br>13.045<br>13.915 |
| 1 1-16                      | 8.626                            | 8.932                            | 9.242                            | 9.550                            | 9.856                            | 10.16                            | 10.47                            | 10.78                            | 14.784                               |
| 1 1-8                       | 9.134                            | 9.458                            | 9.781                            | 10.11                            | 10.44                            | 10.76                            | 11.09                            | 11.42                            | 15.654                               |
| 1 3-16                      | 9.638                            | 9.982                            | 10.33                            | 10.67                            | 11.02                            | 11.36                            | 11.70                            | 12.05                            | 16.524                               |
| 1 1-4                       | 10.15                            | 10.51                            | 10.87                            | 11.23                            | 11.60                            | 11.96                            | 12.32                            | 12.69                            | 17.393                               |
| 1 5-16                      | 10.65                            | 11.03                            | 11.42                            | 11.80                            | 12.18                            | 12.55                            | 12.94                            | 13.32                            | 18.263                               |
| 1 3-8                       | 11.16                            | 11.56                            | 11.96                            | 12.36                            | 12.76                            | 13.15                            | 13.55                            | 13.95                            | 19.133                               |
| 1 7-16                      | 11.67                            | 12.09                            | 12.50                            | 12.92                            | 13.33                            | 13.75                            | 14.17                            | 14.59                            | 20.002                               |
| 1 1-2                       | 12.17                            | 12.61                            | 13.05                            | 13.48                            | 13.91                            | 14.35                            | 14.78                            | 15.22                            | 20.872                               |
| 1 9-16                      | 12.68                            | 13.13                            | 13.59                            | 14.04                            | 14.50                            | 14.95                            | 15.40                            | 15.86                            | 21.741                               |
| 1 5-8                       | 13.19                            | 13.66                            | 14.13                            | 14.60                            | 15.08                            | 15.54                            | 16.02                            | 16.49                            | 22.611                               |
| 1 11-16                     | 13.70                            | 14.18                            | 14.67                            | 15.17                            | 15.65                            | 16.14                            | 16.63                            | 17.12                            | 23.481                               |
| 1 3-4                       | 14.21                            | 14.71                            | 15.22                            | 15.73                            | 16.23                            | 16.74                            | 17.25                            | 17.76                            | 24.350                               |
| 1 13-16<br>1 7-8<br>1 15-16 | 14.71<br>15.22<br>15.73<br>16.23 | 15.24<br>15.76<br>16.29<br>16.81 | 15.76<br>16.31<br>16.85<br>17.39 | 16.29<br>16.85<br>17.41<br>17.97 | 16.81<br>17.39<br>17.97<br>18.55 | 17.34<br>17.94<br>18.54<br>19.13 | 17.87<br>18.48<br>19.10<br>19.71 | 18.39<br>19.03<br>19.66<br>20.29 | 25.250<br>26.090<br>26.960<br>27.829 |

#### PER LINEAL FOOT.

| Thickness<br>in inches. | 9"             | 91/4"          | 91⁄2′′                | 9%/′′          | 10"            | 10¼"           | 101/2"         | 10¾"           | 12"          |
|-------------------------|----------------|----------------|-----------------------|----------------|----------------|----------------|----------------|----------------|--------------|
| 3-16<br>1-4             | 1.957<br>2.609 | 2.012<br>2.681 | $\frac{2.067}{2.756}$ | 2.121<br>2.827 | 2.176<br>2.899 | 2.230<br>2.971 | 2.282<br>3.045 | 2.340<br>3.117 | 2.60<br>3.47 |
| F 10                    | 3.264          | 3.353          | 3.445                 | 3,533          | 3.625          | 3.714          | 3.806          | 3,895          | 4.04         |
| 5-16                    | 3.204          | 4.025          | 4.134                 | 4.243          | 4.349          | 4.458          | 4.567          | 4.676          | 4.34<br>5.21 |
| 3-8<br>7-16             | 4.567          | 4.693          | 4.819                 |                | 5.075          | 5.201          | 5.328          | 5.454          | 6.06         |
| 1-2                     | 5.218          | 5.365          | 5.508                 | 5.655          | 5.798          | 5.941          | 6.088          | 6.234          | 6.9          |
| 9-16                    | 5.873          | 6.034          | 6.197                 | 6.361          | 6.528          | 6.688          | 6.848          | 7.012          | 7.8          |
| 5.8                     | 6.528          | 6.702          | 6.888                 | 7.066          | 7.248          | 7.428          | 7.613          |                | 8.6          |
| 11-16                   | 7.176          |                | 7.576                 |                | 7.974          |                | 8.369          |                | 9.5          |
| 3-4                     | 7.827          | 8,046          |                       | 8.479          | 8.696          |                |                |                | 10.4         |
| 13-16                   | 8.480          | 8.714          | 8,953                 | 9.184          | 9,423          | 9.659          | 9.894          | 10.13          | 11.3         |
| 7-8                     | 9.134          | 9.385          |                       |                | 10.15          | 10.40          | 10.65          | 10.91          | 12.1         |
| 15-16                   | 9.785          | 10.06          | 10.30                 | 10.60          | 10.87          | 11.14          | 11.42          | 11.69          | 13.0         |
| 1                       | 10.44          | 10.73          | 11.01                 | 11.31          | 11.60          | 11.88          | 12.18          | 12.46          | 13.9         |
| 1 1-16                  | 11.09          | 11.39          | 11.70                 | 12.01          | 12.32          | 12.63          | 12.93          | 13.24          | 14.7         |
| 1 1-8                   | 11.74          | 12.07          | 12.39                 | 12.72          | 13.04          | 13.37          | 13.70          | 14.02          | 15.6         |
| 1 3-16                  | 12.39          | 12.74          | 13.08                 | 13.43          | 13.77          | 14.12          | 14.46          | 14.80          | 16.5         |
| 1 1-4                   | 13.05          | 13.41          | 13.77                 | 14.13          | 14.50          | 14.86          | 15.22          | 15.58          | 17.3         |
| 1 5-16                  | 13.70          | 14.08          | 14.46                 | 14.84          | 15.22          | 15.60          | 15.98          | 16.36          | 18.2         |
| 1 3-8<br>1 7-16         | 14.35          | 14.75          | 15.15                 | 15.54          | 15.94          | 16.34          | 16.74          | 17.14          | 19.1         |
| 1 7-16                  | 15.01          | 15.42          | 15.84                 | 16.25          | 16.67          | 17.09          | 17.50          | 17.92          | 20.0         |
| 1 1-2                   | 15.65          | 16.09          | 16.52                 | 16.96          | 17.39          | 17.83          | 18.26          | 18.70          | 20.8         |
| 1 9-16                  | 16.31          | 16.76          | 17.22                 | 17.67          | 18.12          | 18.57          | 19.02          | 19.48          | 21.7         |
| 1 5-8                   | 16.96          | 17.43          | 17.90                 | 18.37          | 18.84          | 19.31          | 19.78          | 20.26          | 22.6         |
| 1 11-16                 | 17.61          | 18.10          | 18.59                 | 19.08          | 19.57          | 19.82          | 20.55          | 21.03          | 23.4         |
| 1 3-4                   | 18.27          | 18.77          | 19.28                 | 19.78          | 20.29          | 20.80          | 21.31          | 21.82          | 24.3         |
| 1 13-16                 | 18.92          | 19.44          | 19.96                 | 20.49          | 21.01          | 21.54          | 22.07          | 22.59          | 25.2         |
| 1 7-8                   | 19.57          | 20.11          | 20.65                 | 21.20          | 21.74          | 22.29          | 22.83          | 23.37          | 26.0         |
| 1 15-16<br>2            | 20.22          | 20.78          | 21.34                 | 21.91          | 22.47          | 23.03          | 23.59          | 24.16          | 26.9         |
| z                       | 20.87          | 21.45          | 22.03                 | 22.61          | 23.19          | 23.77          | 24.35          | 24.93          | 27.82        |

#### PER LINEAL FOOT.

#### (CONTINUED.)

| Thickness<br>in Inches | 11"            | 11¼"  | 11%"  | 11¾"  | 12"            | 121/4"         | 12½"           | 123⁄4′′        |
|------------------------|----------------|-------|-------|-------|----------------|----------------|----------------|----------------|
| 3-16                   | 2.394          | 2.445 | 2.503 | 2.555 | 2.609          | 2.667          | 2.722          | 2.773          |
| 1-4                    | 3.189          | 3.284 | 3.332 | 3.411 | 3.479          | 3.554          | 3.626          | 3.697          |
| 5-16                   | 3.987          | 4.076 | 4.168 | 4.260 | 4.348          | 4.437          | 4.529          | 4.621          |
| 3-8                    | 4.785          | 4.894 | 5.007 | 5.113 | 5.218          | 5.328          | 5.433          | 5.543          |
| 7-16<br>1-2            | 5.580<br>6.378 | 5.710 | 5.836 | 5.965 | 6.088<br>6.958 | 6.217<br>7.101 | 6.344<br>7.248 | 6.470<br>7.390 |
| 9-16                   | 7.176          |       | 7.500 | 7.667 | 7.827          | 7.992          | 8.152          | 8.318          |
| 5-8                    | 7.975          |       | 8.335 | 8.516 | 8.697          | 8.877          | 9.059          | 9.273          |
| 11-16                  | 8.768          | 8.971 | 9.168 | 9.368 | 9.567          | 9.767          | 9.965          | 10.16          |
| 3-4                    | 9.567          | 9.781 | 10.00 | 10.22 | 10.436         | 10.66          | 10.87          | 11.04          |
| 13-16                  | 10.36          | 10.60 | 10.84 | 11.07 | 11.306         | 11.54          | 11.78          | 12.01          |
| 7-8                    | 11.16          | 11.42 | 11.67 | 11.92 | 12.175         | 12.43          | 12.68          | 12.94          |
| 15-16                  | 11.96          | 12.23 | 12.50 | 12.78 | 13.045         | 13.32          | 13.59          | 13.86          |
| 1                      | 12.76          | 13.04 | 13.33 | 13.63 | 13.915         | 14.20          | 14.49          | 14.78          |
| 1 1-16                 | 13.55          | 13.86 | 14.17 | 14.48 | 14.784         | 15.09          | 15.40          | 15.71          |
| 1 1-8                  | 14.35          | 14.68 | 15.00 | 15.33 | 15.654         | 15.98          | 16.31          | 16.63          |
| 1 3-16                 | 15.15          | 15.49 | 15.84 | 16.18 | 16.524         | 16.87          | 17.21          | 17.56          |
| 1 1-4                  | 15.95          | 16.31 | 16.67 | 17.03 | 17.393         | 17.75          | 18.12          | 18.48          |
| 1 5-16                 | 16.74          | 17.12 | 17.50 | 17.88 | 18.263         | 18.64          | 19.02          | 19.41          |
| 1 3-8                  | 17.54          | 17.94 | 18.33 | 18.73 | 19.133         | 19.53          | 19.93          | 20.33          |
| 1 7-16                 | 18.33          | 18.75 | 19.17 | 19.59 | 20.002         | 20.42          | 20.84          | 21.25          |
| 1 1-2                  | 19.13          | 19.56 | 20.00 | 20.44 | 20.872         | 21.31          | 21.74          | 22.18          |
| 1 9-16                 | 19.92          | 20.38 | 20.84 | 21.29 | 21.741         | 22.19          | 22.65          | 23.10          |
| 1 5-8                  | 20.73          | 21.20 | 21.67 | 22.14 | 22.611         | 23.08          | 23.55          | 24.02          |
| 1 11-16                | 21.52          | 22.01 | 22.50 | 22.99 | 23.481         | 23.97          | 24.46          | 24.95          |
| 1 3-4                  | 22.32          | 22.83 | 23.34 | 23.85 | 24.350         | 24.86          | 25.37          | 25.87          |
| 1 13-16                | 23.12          | 23.64 | 24.17 | 24.69 | 25.250         | 25.74          | 26.27          | 26.80          |
| 1 7-8                  | 23.92          | 24.46 | 25.00 | 25.55 | 26.090         | 26.63          | 27.18          | 27.72          |
| 1 15-16                | 24.71          | 25.28 | 25.84 | 26.40 | 26.960         | 27.52          | 28.08          | 28.65          |
| 2                      | 25.51          | 26.09 | 26.67 | 27.25 | 27.829         | 28.41          | 28.99          | 29.57          |

The weights for 12 in. width are repeated on each page to facilitate making the additions necessary to obtain the weights of plates wider than 12 in. Thus, to find the weight of  $15\frac{1}{2}$  in.  $x\frac{1}{2}$  in., add the weights to be found in the same line for  $3\frac{1}{2}$  x  $\frac{1}{2}$  and 12 x  $\frac{1}{2}$ , 3.551 + 12.175 = 15.726 lbs.

# WEIGHTS OF ALUMINUM BARS IN POUNDS: ALSO AREAS OF SQUARES AND ROUND BARS, AND CIRCUMFERENCES OF ROUND BARS.

Specific Gravity, 2.68 and at 62 deg. Fahr., Water taken as 62.355 lbs. per Cubic Inch.

| Thickness<br>or Diameter<br>in inches.                                            | Weight of<br>Square Bar<br>One Foot Long. | Weight of<br>Round Bar<br>One Foot Long. | Area of<br>Square Bar<br>in Sq. Inches. | Area of<br>Round Bar<br>in Sq. Inches. | Circumference<br>of Round Bar<br>in Inches. |
|-----------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------|
| o                                                                                 |                                           |                                          |                                         |                                        |                                             |
| 1 6                                                                               | .0044                                     | .0034                                    | .0039                                   | .0031                                  | .1963                                       |
| k                                                                                 | .018                                      | .014                                     | .0156                                   | .0123                                  | .3927                                       |
| 186                                                                               | .041                                      | .032                                     | .0352                                   | .0276                                  | .5890                                       |
| 1<br>5<br>16                                                                      | .072                                      | .057                                     | .0625                                   | .0491                                  | .7854                                       |
| 15<br>15                                                                          | .114                                      | .089                                     | .0977                                   | .0767                                  | .9817                                       |
| $\frac{\frac{3}{8}}{\frac{7}{7}}$                                                 | .163                                      | .128                                     | .1406                                   | .1104                                  | 1.1781                                      |
|                                                                                   | .222                                      | •174                                     | .1914                                   | .1503                                  | 1.3744                                      |
| 1<br>2<br>9<br>T_6                                                                | .290                                      | .227                                     | .2500                                   | .1963                                  | 1.5708                                      |
| 9<br>T 6                                                                          | .367                                      | .288                                     | .3164                                   | .2485                                  | 1.7671                                      |
| \$<br>*                                                                           | •453                                      | .356                                     | .3906                                   | .3068                                  | 1.9635                                      |
| $\frac{1}{1}\frac{1}{6}$                                                          | .548                                      | .430                                     | .4727                                   | .3712                                  | 2.1598                                      |
| 34                                                                                | .652                                      | .516                                     | .5625                                   | .4418                                  | 2.3562                                      |
| $\frac{13}{16}$                                                                   | .766                                      | .601                                     | .6602                                   | .5185                                  | 2.5525                                      |
| 7                                                                                 | .888                                      | .697                                     | .7656                                   | .6013                                  | 2.7489                                      |
| 15                                                                                | 1.019                                     | .800                                     | .8789                                   | .6903                                  | 2.9452                                      |
| I                                                                                 | 1.159                                     | .911                                     | 1,0000                                  | .7854                                  | 3.1416                                      |
| 1 1 6                                                                             | 1.309                                     | 1.028                                    | 1.1289                                  | .8866                                  | 3.3379                                      |
| $I^{-\frac{1}{8}}$                                                                | 1.467                                     | 1.152                                    | 1.2656                                  | .9940                                  | 3.5343                                      |
| $1\frac{3}{16}$                                                                   | 1.635                                     | 1.284                                    | 1.4102                                  | 1.1075                                 | 3.7306                                      |
| $I_{\frac{1}{4}}$                                                                 | 1.812                                     | 1.423                                    | 1.5625                                  | 1.2272                                 | 3.9270                                      |
| $1\frac{5}{1.6}$                                                                  | 1.997                                     | 1.569                                    | 1.7227                                  | 1.3530                                 | 4.1233                                      |
| 1 §                                                                               | 2.192                                     | 1.722                                    | 1.89 <b>0</b> 6                         | 1.4849                                 | 4.3197                                      |
| $1\frac{7}{16}$                                                                   | 2.396                                     | 1.882                                    | <b>2.</b> 0664                          | 1.6230                                 | 4.5160                                      |
| I ½                                                                               | 2,609                                     | 2.049                                    | 2.2500                                  | 1.7671                                 | 4.7124                                      |
| 1 <del>1 g</del>                                                                  | 2.831                                     | 2.223                                    | 2.4414                                  | 1.9175                                 | 4.9087                                      |
| I 5                                                                               | 3.062                                     | 2.405                                    | 2.6406                                  | 2.0739                                 | 5.1051                                      |
| 111                                                                               | 3.302                                     | 2.593                                    | 2.8477                                  | 2.2365                                 | 5.3014                                      |
| $\begin{array}{ccc} I & \frac{3}{4} \\ I & \frac{1}{1} & \frac{3}{6} \end{array}$ | 3.550                                     | 2.789                                    | 3.0625                                  | 2.4053                                 | 5.4978                                      |
| $1\frac{13}{16}$                                                                  | 3.810                                     | 2.992                                    | 3.285 <b>2</b>                          | 2.5802                                 | 5.6941                                      |
| 1 7                                                                               | 4.075                                     | 3.202                                    | 3.5156                                  | 2.7612                                 | 5.8905                                      |
| 115                                                                               | 4.352                                     | 3.417                                    | 3.7539                                  | 2.9483                                 | 6.0868                                      |
|                                                                                   |                                           |                                          |                                         |                                        | t                                           |

## SQUARE AND ROUND BARS.

| Thickness or Diameter in Inches.                | Weight of<br>Square Bar<br>One Foot Long. | Weight of<br>Round Bar<br>One Foot Long. | Area of<br>Square Bar<br>in. Sq. Inches. | Area of<br>Round Bar<br>in Sq. Inches.            | Circumference<br>of Round Bar<br>in Inches. |
|-------------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------|---------------------------------------------|
| 2<br>16<br>18<br>3<br>16                        | 4.638<br>4.931<br>5.235                   | 3.642<br>3.874<br>4.113                  | 4.0000<br>4.2539<br>4.5156               | 3.1416<br>3.3410<br>3.5466                        | 6.2832<br>6.4795<br>6.6759                  |
| 16<br>14<br>5<br>16<br>3<br>8<br>7              | 5.549<br>5.872<br>6.203<br>6.541          | 4.358<br>4.611<br>4.870<br>5.140         | 4.7852<br>5.0625<br>5.3477<br>5.6406     | 3.75 <sup>8</sup> 3<br>3.9761<br>4.2000<br>4.4301 | 6.8722<br>7.0686<br>7.2649<br>7.4613        |
| 1<br>9<br>16                                    | 6.889<br>7.248<br>7.616                   | 5.409<br>5.692<br>5.979                  | 5.9414<br>6.2500<br>6.5664               | 4.6664<br>4.9087<br>5.1572                        | 7.6576<br>7.8540<br>8.0503                  |
| 5816<br>343678                                  | 7.990<br>8.376<br>8.526<br>9.174          | 6.275<br>6.578<br>6.889<br>7.203         | 6.8906<br>7.2227<br>7.5625<br>7.9102     | 5.4119<br>5.6727<br>5.9396<br>6.2126              | 8.2467<br>8.4430<br>8.6394<br>8.8357        |
| 15/6<br>3                                       | 9.584<br>10.001<br>10.435                 | 7.528<br>7.857<br>8.195                  | 8.2656<br>8.6289<br>9.0000               | 6.4918<br>6.7771<br>7.0686                        | 9.0321<br>9.2284<br>9.4248                  |
| 1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8         | 10.876<br>11.323<br>11.782                | 8.540<br>8.894<br>9.252<br>9.618         | 9.3789<br>9.7656<br>10.160               | 7.3662<br>7.6699<br>7.9798                        | 9.6211<br>9.8175<br>10.014                  |
| 1 6 5 5 6 8 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 12.250<br>12.724<br>13.208<br>13.702      | 9.992<br>10.374<br>10.763                | 10.563<br>10.973<br>11.391<br>11.816     | 8.2958<br>8.6179<br>8.9462<br>9.2806              | 10.210<br>10.407<br>10.603<br>10.799        |
| 1<br>29<br>16<br>6<br>8<br>11<br>16             | 14.205<br>14.711<br>15.238<br>15.769      | 11.155<br>11.560<br>11.967<br>12.382     | 12.250<br>12.691<br>13.141<br>13.598     | 9.6211<br>9.9678<br>10.321<br>10.680              | 10.996<br>11.192<br>11.388<br>11.585        |
| $\frac{\frac{3}{4}}{\frac{1}{6}}$               | 16.308<br>16.855<br>17.410                | 12.810<br>13.235<br>13.676               | 14.063<br>14.535<br>15.016               | 11.045<br>11.416<br>11.793                        | 11.781<br>11.977<br>12.174                  |
| 18                                              | 17.976                                    | 14.119                                   | 15.504                                   | 12.177                                            | 12.370                                      |

# Table of Dimensions and Weights of Aluminum and Copper Wire.

Specific Gravity of Aluminum taken as 2.68, water weighing 62.355 pounds per cubic foot. Specific Gravity of Copper, 8.93.

| Gauge,             | <b>D</b> .     | A                                                    | REA.                       |                                | WEIGHT A                       | ND LENGTH.                     |                              |
|--------------------|----------------|------------------------------------------------------|----------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------|
| Am. Gau<br>B. & S. | Diam.<br>Mils. | Circular Mils, (d <sup>2</sup> ) 1 mil. = .001 inch. | Square Inch, (d² x .7854.) | Pounds<br>per mile,<br>Alum'n. | Pounds<br>per mile,<br>Copper. | Feet<br>per Pound<br>Aluminum. | Feet<br>per pound<br>Copper. |
| 0000               | 460.000        | 211600.00                                            | 166190.                    | 1018.30                        | 3393.07                        | 5.185                          | 1.728                        |
| 000                | 409.640        | 167805.00                                            | 131790.                    | 807.52                         | 2690.75                        | 6.539                          | 2.179                        |
| 00                 | 364.800        | 133079.40                                            | 104520.                    | 640.36                         | 2133.74                        | 8.246                          | 2.748                        |
| 0                  | 324.860        | 105534.00                                            | 82886.                     | 507.83                         | 1692.14                        | 10.397                         | 3.465                        |
| 1                  | 289.300        | 83694.20                                             | 65733.                     | 402.81                         | 1342.21                        | 13.108                         | 4.368                        |
| 2                  | 257.630        | 66373.00                                             | 52130.                     | 319.44                         | 1064.39                        | 16.529                         | 5.508                        |
| 3                  | 229.420        | 52634.00                                             | 41339.                     | 253.28                         | 843.96                         | 20.846                         | 6.946                        |
| 4                  | 204.310        | 41742.00                                             | 32784.                     | 200.90                         | 669.44                         | 26.281                         | 8.757                        |
| 5                  | 181.940        | 33102.00                                             | 25998.                     | 159.30                         | 530.79                         | 33.146                         | 11.044                       |
| 6                  | 162.020        | 26250.50                                             | 20617.                     | 126.35                         | 421.02                         | 41.789                         | 13.924                       |
| 7                  | 144.280        | 20816.00                                             | 16349.                     | 100.21                         | 333.93                         | 52.687                         | 17.556                       |
| 8                  | 128.490        | 16509.00                                             | 12966.                     | 79.46                          | 264.78                         | 66.445                         | 22.140                       |
| 9                  | 114.430        | 13094.00                                             | 10284.                     | 62.99                          | 209.90                         | 83.822                         | 27.931                       |
| 10                 | 101.890        | 10381.00                                             | 8153.2                     | 48.71                          | 162.32                         | 105.68                         | 35.215                       |
| 11                 | 90.742         | 8234.00                                              | 6467.0                     | 39.63                          | 132.04                         | 133.24                         | 44.398                       |
| 12                 | 80.808         | 6529.90                                              | 5128.6                     | 31.43                          | 104.71                         | 168.01                         | 55.983                       |
| 13                 | 71.961         | 5178.40                                              | 4067.1                     | 24.83                          | 83.02                          | 211.86                         | 70.595                       |
| 14                 | 64.084         | 4106.80                                              | 3146.9                     | 19.76                          | 65.83                          | 267.17                         | 89.022                       |
| 15                 | 57.068         | 3256.70                                              | 2557.8                     | 15.67                          | 52.22                          | 336.93                         | 112.27                       |
| 16                 | 50.820         | 2582.90                                              | 2028.6                     | 12.43                          | 41.42                          | 424.81                         | 141.55                       |
| 17                 | 45.257         | 2048.20                                              | 1608.6                     | 9.857                          | 32.85                          | 535.62                         | 178.47                       |
| 18                 | 40.303         | 1624.30                                              | 1275.7                     | 7.814                          | 26.04                          | 675.67                         | 225.14                       |
| 19                 | 35.890         | 1288.10                                              | 1011.66                    | 6.199                          | 20.65                          | 851.79                         | 283.82                       |
| 20                 | 31.961         | 1021.50                                              | 802.28                     | 4.916                          | 16.38                          | 1074.11                        | 357.91                       |
| 21                 | 28.462         | 810.10                                               | 636.25                     | 3.898                          | 12.99                          | 1354.65                        | 451.38                       |
| 22                 | 25.347         | 642.70                                               | 504.78                     | 3.091                          | 10.30                          | 1707.94                        | 569.10                       |
| 23                 | 22.571         | 509.45                                               | 400.12                     | 2.451                          | 8.169                          | 2153.78                        | 717.66                       |
| 24                 | 20.100         | 404.01                                               | 317.31                     | 1.944                          | 6.478                          | 2715.91                        | 904.97                       |
| 25                 | 17.900         | 320.40                                               | 251.64                     | 1.542                          | 5.138                          | 3424.66                        | 1141.1                       |
| 26                 | 15.940         | 254.01                                               | 199.50                     | 1,223                          | 4.075                          | 4317.78                        | 1438.7                       |
| 27                 | 14.195         | 201.50                                               | 158.26                     | .9694                          | 3.230                          | 5446.63                        | 1814.9                       |
| 28                 | 12.641         | 159.79                                               | 125.50                     | .7688                          | 2.562                          | 6868.13                        | 2288.5                       |
| 29                 | 11.257         | 126.72                                               | 99.526                     | .6098                          | 2.032                          | 8698.03                        | 2884.9                       |
| 30                 | 10.025         | 100.50                                               | 78.933                     | .4836                          | 1.612                          | 10917.0                        | 3637.7                       |
| 31                 | 8.928          | 79.71                                                | 62.604                     | .3836                          | 1.278                          | 13762.8                        | 4585.9                       |
| 32                 | 7.950          | 63.20                                                | 49.637                     | .3041                          | 1.013                          | 17361.1                        | 5784.9                       |
| 33                 | 7.080          | 50.13                                                | 39.372                     | .2412                          | .8039                          | 21886.7                        | 7292.9                       |
| 34                 | 6.304          | 39.74                                                | 31.212                     | .1912                          | .6373                          | 27609.1                        | 9199.6                       |
| 35                 | 5.614          | 31.52                                                | 24.756                     | .1517                          | .5055                          | 34807.3                        | 11627.4                      |
| 36                 | 5.000          | 25.00                                                | 19.635                     | .1203                          | .4010                          | 43878.9                        | 14620.6                      |
| 37                 | 4.453          | 19.83                                                | 15.567                     | .0954                          | .3179                          | 55340.4                        | 18440.0                      |
| 38                 | 3.965          | 15.72                                                | 12.347                     | .0757                          | .2521                          | 69783.7                        | 23252.6                      |
| 39                 | 3.531          | 12.47                                                | 9.7939                     | .0600                          | .1999                          | 88028.2                        | 29331.9                      |
| 40                 | 3.144          | 9.89                                                 | 7.7676                     | .0475                          | .1584                          | 111099.0                       | 37019.2                      |

# Weight of Aluminum, Wro't Iron, Steel, Copper and Brass Wire.

DIAMETERS DETERMINED BY AMERICAN (BROWN & SHARPE) GAUGE.

Water at 62° Fahrenheit, 62.355 lbs. per cubic foot.

| Drawn | Wrought Iron<br>Steel | is | 2,8724<br>2,9322 | times | heavier | than | Drawn | Aluminum. |
|-------|-----------------------|----|------------------|-------|---------|------|-------|-----------|
| **    | Copper                |    | 3.3321           | **    | **      | **   | **    | 44        |
| ••    | Brass                 | "  | 3.1900           | ••    | "       | **   | **    | **        |

|                         |                                               |                                | WEI                                         | GHT OF W                                     | RE PER 10                        | 00 LINEAL                                            | FT.                                          |
|-------------------------|-----------------------------------------------|--------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------|------------------------------------------------------|----------------------------------------------|
| No. of<br>Gauge.        | Size of each No.                              | Ft. per lb.<br>Aluminum.       | ALUMINUM.                                   | WR'T IRON.                                   | STEEL                            | COPPER.                                              | BRASS,                                       |
| 0000<br>000<br>00<br>00 | Inch.<br>.46000<br>.40964<br>.36480<br>.32486 | Feet. 5.185 6.539 8.246 10.396 | Lbs.<br>192.86<br>152.94<br>121.28<br>96.18 | Lbs.<br>553.97<br>439.33<br>348.40<br>276.30 | Lbs. 565.50 448.45 355.65 282.02 | Lbs.<br>  642.68<br>  509.32<br>  404.20<br>  320.50 | Lbs.<br>615.21<br>487.92<br>386.94<br>306.83 |
| 1                       | .28930                                        | 13.108                         | 76.29                                       | 219.11                                       | 223.68                           | 254.20                                               | 243.35                                       |
| 2                       | .25763                                        | 16.529                         | 60.50                                       | 173.78                                       | 177.38                           | 201.60                                               | 192.98                                       |
| 3                       | .22942                                        | 20.846                         | 47.97                                       | 137.80                                       | 140.67                           | 159.86                                               | 153.02                                       |
| 4                       | .20431                                        | 26.281                         | 38.05                                       | 109.28                                       | 111.57                           | 126.78                                               | 121.37                                       |
| 5                       | .18194                                        | 33.146                         | 30.17                                       | 86.68                                        | 88.46                            | 100.54                                               | 96.26                                        |
| 6                       | .16202                                        | 41.789                         | 23.93                                       | 68.73                                        | 70.15                            | 79.72                                                | 76.32                                        |
| 7                       | .14428                                        | 52.687                         | 18.98                                       | 54.43                                        | 55.56                            | 63.23                                                | 60.53                                        |
| 8                       | .12849                                        | 66.445                         | 15.05                                       | 43.23                                        | 44.12                            | 50.14                                                | 48.00                                        |
| 9                       | .11443                                        | 83.822                         | 11.93                                       | 34.28                                        | 34.99                            | 39.77                                                | 38.07                                        |
| 10                      | .10189                                        | 105.68                         | 9.462                                       | 27.18                                        | 27.74                            | 31.53                                                | 30.18                                        |
| 11                      | .090742                                       | 133.24                         | 7.505                                       | 21.56                                        | 22.01                            | 25.01                                                | 23.94                                        |
| 12                      | .080808                                       | 163.01                         | 5.952                                       | 17.10                                        | 17.46                            | 19.83                                                | 18.99                                        |
| 13                      | .071961                                       | 211.86                         | 4.720                                       | 13.56                                        | 13.84                            | 15.73                                                | 15.06                                        |
| 14                      | .064084                                       | 267.17                         | 3.743                                       | 10.75                                        | 10.98                            | 12.47                                                | 11.94                                        |
| 15                      | .057068                                       | 336.93                         | 2.968                                       | 8.526                                        | 8.704                            | 9.890                                                | 9.468                                        |
| 16                      | .050820                                       | 424.81                         | 2.354                                       | 6.761                                        | 6.903                            | 7.843                                                | 7.508                                        |
| 17                      | .045257                                       | 535.62                         | 1.867                                       | 5.362                                        | 5.474                            | 6.220                                                | 5.955                                        |
| 18                      | .040303                                       | 675.67                         | 1.480                                       | 4.252                                        | 4.342                            | 4.933                                                | 4.723                                        |
| 19                      | .035890                                       | 851.79                         | 1.174                                       | 3.372                                        | 3.443                            | 3.912                                                | 3.755                                        |
| 20                      | .031961                                       | 1074.11                        | .9310                                       | 2.672                                        | 2.730                            | 3.102                                                | 2.970                                        |
| 21                      | .028462                                       | 1354.65                        | .7382                                       | 2.121                                        | 2.165                            | 2.460                                                | 2.355                                        |
| 22                      | .025347                                       | 1707.94                        | .5855                                       | 1.682                                        | 1.717                            | 1.951                                                | 1.868                                        |
| 23                      | .02571                                        | 2153.78                        | .4643                                       | 1.333                                        | 1.361                            | 1.547                                                | 1.481                                        |
| 24                      | .020100                                       | 2715.91                        | .3682                                       | 1.058                                        | 1.080                            | 1.227                                                | 1.175                                        |
| 25                      | .017900                                       | 3424.66                        | .2920                                       | .8388                                        | .8563                            | .9731                                                | .9316                                        |
| 26                      | .015940                                       | 4317.78                        | .2316                                       | .6652                                        | .6791                            | .7716                                                | .7387                                        |
| 27                      | .014195                                       | 5446.63                        | .1836                                       | .5276                                        | .5385                            | .6120                                                | .5858                                        |
| 28                      | .012641                                       | 6868.13                        | .1456                                       | .4183                                        | .4270                            | .4853                                                | .4645                                        |
| 29                      | .011257                                       | 8698.03                        | .1155                                       | .3317                                        | .3386                            | .3849                                                | .3683                                        |
| 30                      | .010025                                       | 10917.0                        | .0916                                       | .2631                                        | .2686                            | .3052                                                | .2922                                        |
| 31                      | .008928                                       | 13762.8                        | .0727                                       | .2087                                        | .2130                            | .2421                                                | .2318                                        |
| 32                      | .007950                                       | 17361.1                        | .0576                                       | .1655                                        | .1693                            | .1919                                                | .1837                                        |
| 33                      | .007080                                       | 21886.7                        | .0457                                       | .1312                                        | .1340                            | .1522                                                | .1457                                        |
| 34                      | .006304                                       | 27609.1                        | .0362                                       | .1040                                        | .1062                            | .1207                                                | .1155                                        |
| 35                      | .005614                                       | 34807.3                        | .0287                                       | .0825                                        | .0842                            | .0957                                                | .0916                                        |
| 36                      | .005000                                       | 43878.9                        | .0228                                       | .0655                                        | .0668                            | .0759                                                | .0727                                        |
| 37                      | .004453                                       | 55340.4                        | .0181                                       | .0519                                        | .0530                            | .0602                                                | .0577                                        |
| 38                      | .003965                                       | 69783.7                        | .0143                                       | .0413                                        | .0420                            | .0478                                                | .0457                                        |
| 39                      | .003531                                       | 88028.2                        | .0114                                       | .0326                                        | .0333                            | .0379                                                | .0363                                        |
| 40                      | .003144                                       | 111099.0                       | .0090                                       | .0259                                        | .0264                            | .0300                                                | .0287                                        |
|                         | Gravity V                                     | Vire                           | 2.680                                       | 7.698                                        | 7.858                            | 8.930                                                | 8.549                                        |
|                         | per cubic                                     | foot, Wire                     | 167.111                                     | 480.000                                      | 490.000                          | 556.830                                              | 533.073                                      |

# TABLE OF RESISTANCES OF PURE ALUMINUM WIRE. \*

Pure aluminum weighs 167.111 pounds to the cubic foot. The conductivity of pure aluminum is 60% of the conductivity of pure copper.

|                                                                              | RESISTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CE AT 75°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F.                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R<br>Ohms<br>1000 Ft.                                                        | Ohms<br>per mile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Feet<br>per Ohm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ohms per lb.                                                                                                                                                                                                                                                                                                                                                                                                                        | $\text{Log } d^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Log R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 273.97<br>145.13<br>135.38<br>148.92<br>192.07<br>172.93<br>100.62<br>187.47 | .43172<br>.54440<br>.88645<br>.86515<br>1.09150<br>1.7357<br>2.1857<br>2.17597<br>3.48902<br>4.38902<br>11.4947<br>22.800<br>27.462<br>35.365<br>6.9767<br>6.2472<br>22.800<br>27.462<br>88.4390<br>27.462<br>89.439<br>11.7642<br>22.801<br>22.800<br>27.462<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89.439<br>89 | 12229.8<br>9699.0<br>7692.0<br>7692.0<br>3936.12<br>2412.60<br>2412.63<br>1913.22<br>2412.60<br>1913.22<br>2412.60<br>1913.22<br>1517.22<br>1517.22<br>1517.22<br>1517.22<br>1517.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.22<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1547.23<br>1 | .00042714 .00067022 .00108116 .0016739 .0027272 .0013441 .0069067 .0109773 .017456 .027758 .070179 .111561 .17467 .28211 .44856 .71478 .1.16225 .1.7600 .2.8667 .4.5588 .7.2490 .2.8667 .4.5588 .7.2490 .2.8667 .1.1916 .18.328 .29.142 .46.316 .78.686 .117.170 .186.28 .29.142 .46.316 .78.686 .79.02 .190.97 .1893.9 .2945.56 .749.02 .1190.97 .1893.9 .9341.5 .7788.9 .7610.7 .712109.4 .92513060048661 .76658 .121881 .193835. | 5.3255157 5.2248000 5.1241128 5.0236310 4.9228653 4.8219914 4.7212864 4.6205733 4.5198542 4.4191300 4.411707208 4.411707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.11707208 4.117072 | \$\frac{9}{12594}\$ 1.013259 1.113977 1.13977 1.13977 1.13977 1.13976 1.13976 1.13976 1.13976 1.13976 1.1416258 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 1.51682 |

<sup>\*</sup>Calculated on the basis of Dr. Matthiessen's standard, viz.: 1 mile of pure copper wire of  $\frac{1}{15}$  inch diameter equals 13.59 ohms at 15.5° **C**, or 59.9° Fahr.

## TABLE OF RESISTANCES OF PURE COPPER WIRE.\*

| 900                                                                                                | l                                                                                                                                                                                                                                                                                              | RESISTA                                                                                                                        | NCE AT 75°                                                                                                                                                                                                                                                                                   | · F.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Am. Gauge.<br>B. & S. No.                                                                          | R.<br>Ohms per<br>1000 Feet.                                                                                                                                                                                                                                                                   | Ohms<br>per mile.                                                                                                              | Feet<br>per Ohm.                                                                                                                                                                                                                                                                             | Öhms per lb.                                                                                                                                                                                                                                                                                                                                                                                | Log d2.                                                                                                                                                                                                                                                                                                                                                                    | Log R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0000 000 000 000 000 000 000 000 000 0                                                             | .04906<br>.06186<br>.07801<br>.09831<br>.12104<br>.15640<br>.19723<br>.24869<br>.31361<br>.39546<br>.49871<br>.62881<br>.79281<br>1.2607<br>1.5898<br>2.0047<br>2.5908<br>3.1150<br>4.0191<br>5.0683<br>6.3911<br>8.2889<br>10.163<br>12.815<br>16.152<br>20.377<br>25.695<br>32.400<br>40.868 |                                                                                                                                | 20383.<br>16165.<br>12820.<br>10409.<br>80623.<br>5070.2<br>4021.0<br>3188.0<br>2528.7<br>1590.3<br>1200.5<br>2205.2<br>1590.3<br>1000.0<br>799.18<br>385.97<br>321.02<br>248.83<br>385.97<br>321.02<br>248.81<br>197.30<br>161.64<br>98.401<br>78.03<br>61.911<br>49.08<br>93.464<br>94.464 | .000076736<br>.00012039<br>.00019423<br>.00039772<br>.0004894<br>.00078045<br>.0012406<br>.0019721<br>.0031361<br>.0049868<br>.0079294<br>.012608<br>.020042<br>.031330<br>.050682<br>.080585<br>.12841<br>.20880<br>.31658<br>.51501<br>.81900<br>1.3023<br>2.1904<br>3.2026<br>8.3238<br>8.3238<br>13.238<br>13.238<br>13.238<br>13.238<br>13.238<br>13.238<br>13.238<br>13.238<br>13.238 | 5.3255157<br>5.2248000<br>5.1241128<br>5.0236310<br>4.9225653<br>4.8219914<br>4.7212664<br>4.47212664<br>4.4191300<br>4.41170723<br>4.0162392<br>3.9156109<br>3.8149065<br>3.7141956<br>3.7141956<br>3.2106662<br>3.2106662<br>3.2106662<br>3.2106662<br>3.2106662<br>3.2106662<br>3.2106662<br>3.22068392<br>3.206682<br>3.2066825<br>2.2068392<br>2.5066925<br>2.5066925 | 2.6907235<br>2.7914392<br>2.7914392<br>2.8921284<br>2.9926082<br>1.0835439<br>1.1942478<br>1.2949728<br>1.2949728<br>1.4963850<br>1.5971092<br>1.7985184<br>1.5971092<br>0.000000<br>0.000003<br>0.2013327<br>0.3020436<br>0.4134415<br>0.4934614<br>0.704868<br>0.8055730<br>0.9184861<br>1.0070008<br>1.1070006<br>1.1070006<br>1.2092306<br>1.2092307<br>1.1092306<br>1.2092307<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1092407<br>1.1 |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | 51,519<br>64,966<br>81,921<br>103,30<br>127,27<br>164,26<br>207,08<br>261,23<br>329,35<br>415,24<br>523,76<br>660,37<br>832,48<br>1049,7                                                                                                                                                       | 272.02<br>343.02<br>432.54<br>545.39<br>671.99<br>867.27<br>1093.4<br>1379.3<br>1738.9<br>2192.5<br>2765.5<br>3486.7<br>4395.5 | 19,410<br>15,393<br>12,207<br>9,6812<br>7,8574<br>6,0880<br>4,8290<br>3,8281<br>3,0363<br>2,4981<br>1,9093<br>1,5143<br>1,2012<br>,9527                                                                                                                                                      | 84.644<br>134.56<br>213.96<br>340.25<br>528.45<br>860.33<br>1367.3<br>2175.5<br>3458.5<br>5497.4<br>8742.1<br>13772.<br>21896.                                                                                                                                                                                                                                                              | 2.3042751<br>2.2035496<br>2.1028452<br>2.0021661<br>1.9015128<br>1.8007171<br>1.70092279<br>1.4985862<br>1.3979400<br>1.2971037<br>1.1964525<br>1.0958665<br>0.9951963                                                                                                                                                                                                     | 1.7119646<br>1.8126899<br>1.9733940<br>2.0140731<br>2.1047264<br>2.2155221<br>2.3151415<br>2.4170113<br>2.5176530<br>2.6182992<br>2.7191355<br>2.8197867<br>2.9203727<br>3.0210429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

<sup>\*</sup>Calculated on the basis of Dr. Matthiessen's standard, viz.; 1 mile of pure copper wire of 1-16 inch diameter equals 13.59 Ohms at 15.5° C. or 59.9° Fahr.

# LIST OF STANDARD SIZES

## SEAMLESS DRAWN TUBING KEPT IN STOCK.

| Inches<br>Outside<br>Diameter. | Thickness<br>of Wall<br>Stubs'<br>Gauge. | Weights Per Foot in Pounds. | Inches<br>Outside<br>Diameter | Thickness<br>of Wall<br>Stubs'<br>Gauge. | Weights Per Foot in Pounds. |
|--------------------------------|------------------------------------------|-----------------------------|-------------------------------|------------------------------------------|-----------------------------|
| 1/4                            | 24                                       | .020                        | 34                            | 18                                       | .130                        |
| 1/4                            | 22                                       | .023                        | 3/4                           | 16                                       | .170                        |
| 1/4                            | 20                                       | .030                        | 7/8                           | 22                                       | .090                        |
| 1/4                            | 18                                       | .036                        | 7/8                           | 20                                       | .110                        |
| 5<br>T 6                       | 24 .                                     | .027                        | 7/8                           | 18                                       | . 160                       |
| 1 <sup>5</sup> 6               | 22                                       | .035                        | 7/8                           | 16                                       | .200                        |
| 1 <sup>5</sup> 6               | 20                                       | .043                        | I                             | 22                                       | .100                        |
| 16                             | 18                                       | .055                        | I                             | 20                                       | .130                        |
| 3/8                            | 24                                       | .030                        | I                             | 18                                       | . 180                       |
| 3/8                            | 22                                       | .037                        | I                             | 16                                       | .230                        |
| 3/8                            | 20                                       | .046                        | 1 1/4                         | 20                                       | . 160                       |
| 3/8                            | 18                                       | .063                        | 1 1/4                         | 18                                       | .230                        |
| 1 <sup>7</sup> 6               | 24                                       | .035                        | 1 1/4                         | 16                                       | .300                        |
| 77                             | 22                                       | .045                        | I ½                           | 20                                       | .190                        |
| 1 <sup>7</sup> 6               | 20                                       | .058                        | I ½                           | 18                                       | .270                        |
| 76                             | 18                                       | .077                        | 1 1/2                         | 16                                       | .360                        |
| 1/2                            | 24                                       | .040                        | 1 1/2                         | 14                                       | .450                        |
| 1/2                            | 22                                       | .050                        | 1 3/4                         | 20                                       | .230                        |
| 1/2                            | 20                                       | .063                        | 1 3/4                         | 18                                       | .320                        |
| 1/2                            | 18                                       | .086                        | 134                           | 16                                       | .420                        |
| 1/2                            | 16                                       | .110                        | 13/4                          | 14                                       | .530                        |
| 5∕8                            | 20                                       | .080                        | 2                             | 20                                       | .260                        |
| 5∕8                            | 18                                       | .110                        | 2                             | 18                                       | .360                        |
| 5∕8                            | 16                                       | . 140                       | 2                             | 16                                       | .480                        |
| 3/4                            | 22                                       | .076                        | 2                             | 14                                       | .610                        |
| 34                             | 20                                       | .096                        | 2                             | 12                                       | .790                        |

Tubes of any Size and Gauge Made to Order in Lots of over 50 Pounds, Specify whether to be Annealed for Bending.

## ALUMINUM PIPE SIZES.

SEAMLESS DRAWN ALUMINUM TUBES MADE TO CORRESPOND WITH IRON TUBES AND TO FIT IRON TUBE FITTINGS.

LIST OF SIZES, LENGTHS, &c.

| Sameas        | Outside                  | Thickness        | Weights per<br>Foot. |               |                |  |  |  |
|---------------|--------------------------|------------------|----------------------|---------------|----------------|--|--|--|
| Iron<br>Size. | Diameter.                | Stubs'<br>Gauge. | Alum'um<br>Lbs.      | Brass<br>Lbs. | Copper<br>Lbs. |  |  |  |
| 1/8           | $\frac{1}{3}\frac{3}{2}$ | 15               | .089                 | .27           | .29            |  |  |  |
| 1/4           | $\frac{1}{3}\frac{7}{2}$ | 15               | .123                 | ∙37           | .39            |  |  |  |
| 3/8           | $\frac{2}{3}\frac{1}{2}$ | 13               | . 199                | .60           | . 64           |  |  |  |
| 1/2           | $\frac{1}{1}\frac{3}{6}$ | 12               | .252                 | .76           | .80            |  |  |  |
| 3/4           | I 1 6                    | I 2              | .404                 | 1.22          | 1.28           |  |  |  |
| I             | I 15                     | 11               | . 540                | 1.63          | 1.74           |  |  |  |
| 11/4          | 1 5/8                    | 9                | .835                 | 2.52          | 2.65           |  |  |  |
| 1 1/2         | 1 7/8                    | 9                | .974                 | 2.94          | 3.12           |  |  |  |
| 2             | 23/8                     | 8                | 1.42                 | 4.28          | 4.53           |  |  |  |
| 21/2          | 2 7/8                    | 7                | 1.85                 | 5.58          | 5.92           |  |  |  |
| 3             | 31/2                     | 5                | 2.77                 | 8.35          | 8.84           |  |  |  |
| 4             | 41/2                     | 3                | 4.06                 | 12.24         | 12.96          |  |  |  |

## ALL TUBES

WARRANTED TO BE EQUAL IN QUALITY AND FINISH TO ANY MADE.

# WEIGHTS IN POUNDS PER FOOT OF ALUMINUM

STUBS'

| Nos. of Gauge.<br>Thick ness in | 1    | 2    | 3     | 4    | 5       | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|---------------------------------|------|------|-------|------|---------|------|------|------|------|------|------|------|
| thousandths<br>of an Inch       | .300 | .284 | .259  | .238 | .220    | .203 | .180 | .165 | .148 | .134 | .120 | .109 |
| Diamet'r.                       |      |      |       |      |         |      |      |      |      |      |      |      |
| 1/4 in.                         |      |      |       |      |         |      |      |      |      |      |      |      |
| 3∕8 "                           |      |      |       |      |         |      |      | <br> |      |      | .12  | .11  |
| 1/2 "                           |      |      |       |      |         |      |      | .22  | .20  | .19  | .18  | .17  |
| 5/8 "                           |      |      | ļ<br> |      |         | .33  | .31  | .30  | .27  | .25  | .23  | .22  |
| 3/4 "                           |      |      |       |      | <b></b> | .43  | .39  | .37  | .34  | .32  | .29  | .27  |
| 7⁄8 "                           |      |      | .61   | .58  | .56     | .52  | .48  | .45  | .42  | .38  | .35  | .32  |
| 1 "                             | .80  | .78  | .74   | .70  | .66     | .62  | .57  | .53  | .49  | .45  | .41  | .37  |
| 11/8 "                          | .94  | .91  | .86   | .81  | .76     | .72  | .65  | .61  | .56  | .51  | .46  | .43  |
| 11/4 "                          | 1.09 | 1.05 | .98   | .92  | .87     | .81  | .74  | .69  | .63  | .58  | .52  | .48  |
| 13% "                           | 1.23 | 1.18 | 1.11  | 1.03 | .97     | .91  | .83  | .77  | .70  | .64  | .58  | .53  |
| 11/2 "                          | 1.36 | 1.33 | 1.23  | 1.15 | 1.08    | 1.00 | .92  | .85  | .77  | .70  | .64  | .58  |
| 15% "                           | 1.52 | 1.45 | 1.36  | 1.26 | 1.18    | 1.11 | .99  | .93  | .84  | .77  | .69  | .63  |
| 13/4 "                          | 1.66 | 1.59 | 1.48  | 1.38 | 1.29    | 1.20 | 1.09 | 1.01 | .91  | .83  | .75  | .69  |
| 11/8 "                          | 1.81 | 1.73 | 1.60  | 1.49 | 1.39    | 1.30 | 1.17 | 1.09 | .98  | .90  | .81  | .74  |
| 2 "                             | 1.94 | 1.84 | 1.73  | 1.61 | 1.50    | 1.40 | 1.25 | 1.17 | 1.05 | .96  | .87  | .79  |
| 21/4 "                          | 2.23 | 2.13 | 1.97  | 1.77 | 1.71    | 1.59 | 1.43 | 1.32 | 1.20 | 1.09 | .98  | .90  |
| 21/2 "                          | 2.52 | 2.40 | 2.22  | 2.06 | 1.92    | 1.78 | 1.60 | 1.48 | 1.34 | 1.22 | 1.10 | 1.00 |
| 23/4 "                          | 2.80 | 2.67 | 2.47  | 2.28 | 2.12    | 1.98 | 1.78 | 1.64 | 1.48 | 1.35 | 1.21 | 1.11 |
| 3 "                             | 3.10 | 2.95 | 2.71  | 2.51 | 2.34    | 2.17 | 1.95 | 1.82 | 1.62 | 1.47 | 1.33 | 1.21 |
| 31/4 "                          | 3.37 | 3.21 | 2.96  | 2.74 | 2.52    | 2.36 | 2.12 | 1.96 | 1.76 | 1.60 | 1.44 | 1.32 |
| 31/2 "                          | 3.65 | 3.48 | 3.21  | 2.97 | 2.76    | 2.56 | 2.29 | 2.11 | 1.90 | 1.73 | 1.56 | 1.42 |
| 33/4 "                          | 3.97 | 3.81 | 3.47  | 3.19 | 2.96    | 2.75 | 2.46 | 2.27 | 2.05 | 1.86 | 1.67 | 1.52 |
| 4 "                             | 4.24 | 4.03 | 3.70  | 3.42 | 3.18    | 2.90 | 2.64 | 2.43 | 2.19 | 1.99 | 1.79 | 1.63 |
| 414 "                           | 4.51 | 4.30 | 3.71  | 3.65 | 3.39    | 3.14 | 2.81 | 2.59 | 2.33 | 2.12 | 1.90 | 1.73 |
| 41/2 "                          | 4.80 | 4.57 | 4.20  | 3.88 | 3.61    | 3.33 | 2.98 | 2.75 | 2.47 | 2.24 | 2.02 | 1.83 |
| 43/4 "                          | 5.10 | 4.84 | 4.45  | 4.11 | 3.81    | 3.53 | 3.15 | 2.91 | 2.61 | 2.37 | 2.13 | 1.94 |
| 5 "                             | 5.40 | 5.12 | 4.70  | 4.33 | 4.02    | 3.72 | 3.32 | 3.06 | 2.76 | 2.50 | 2.25 | 2.05 |
| 51/4 "                          | 5.67 | 5.40 | 4.94  | 4.56 | 4.24    | 3.91 | 3.49 | 3.22 | 2.89 | 2.62 | 2.36 | 2.15 |
| 51/2 "                          | 5.96 | 5.66 | 5.19  | 4.79 | 4.44    | 4.07 | 3.67 | 3.38 | 3.04 | 2.76 | 2.48 | 2.26 |
| 53/4 "                          | 6.26 | 5.93 | 5.44  | 5.02 | 4.65    | 4.30 | 3.84 | 3.54 | 3.18 | 2.89 | 2.59 | 2.36 |
| 6 "                             | 6,53 | 6,20 | 5.68  | 5.24 | 4.86    | 4,49 | 4.01 | 3.70 | 3.32 | 3.01 | 2.71 | 2.47 |

# TUBING OUTSIDE MEASUREMENT.

## GAUGE.

| 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   | 24   | Nos. of Gauge.<br>Thickness in |
|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------------|
| .095 | .083 | .072 | .065 | .058 | .049 | .042 | .035 | .032 | .028 | .025 | .022 | thousandths<br>of an Inch.     |
|      |      |      |      |      |      |      |      |      |      |      |      | Diamet'r.                      |
| .060 | .053 | .050 | .047 | .044 | .036 | .033 | .030 | .027 | .025 | .023 | .020 | 1/4 in.                        |
| .100 | .093 | .083 | .076 | .069 | .063 | .053 | .046 | .043 | .037 | .033 | .030 | 3% "                           |
| .147 | .133 | .120 | .110 | .100 | .086 | .073 | .063 | .056 | .050 | .046 | .040 | 1/2 "                          |
| .190 | .170 | .150 | .140 | .130 | .110 | .093 | .080 | .073 | .063 | .056 | .050 | 5% "                           |
| .240 | .210 | .190 | .170 | .150 | .130 | .110 | .096 | .090 | .076 | .070 | .060 | 3/4 "                          |
| .290 | .250 | .220 | .200 | .180 | .160 | .130 | .110 | .100 | .090 | .083 | .073 | 1∕8 "                          |
| .330 | .290 | .260 | .230 | .210 | .180 | .160 | .130 | .12  | .10  | .093 | .083 | 1 "                            |
| .38  | .33  | .29  | .27  | .24  | .20  | .18  | .15  | .14  | .12  | .11  | .093 | 11/8 "                         |
| .41  | .37  | .33  | .30  | .27  | .23  | .20  | .16  | .15  | .13  | .12  | .10  | 11/4 "                         |
| .46  | .41  | .36  | .33  | .29  | .25  | .22  | .18  | .17  | .15  | .13  | .11  | 13% "                          |
| .51  | .45  | .39  | .36  | .32  | .27  | .24  | .19  | .18  | .16  | .14  | .12  | 1½ "                           |
| .56  | .49  | .43  | .39  | .35  | .29  | .26  | .21  | .19  | .17  | .15  | .13  | 15% "                          |
| .60  | .53  | .47  | .42  | .38  | .32  | .27  | .23  | .21  | .18  | .16  | .14  | 13/4 "                         |
| .65  | .57  | .50  | .45  | .41  | .34  | .29  | .24  | .23  | .20  | .18  | .15  | 11/8 "                         |
| .70  | .61  | .53  | .48  | .43  | .36  | .31  | .26  | .24  | .21  | .19  | .16  | 2 "                            |
| .79  | .69  | .60  | .54  | .49  | .41  | .36  | .30  | .27  | .24  | .21  | .18  | 21/4 "                         |
| .88  | .77  | .69  | .61  | .54  | .46  | .39  | .33  | .30  | .26  | .24  | .21  | 21/~ "                         |
| .97  | .85  | .74  | .67  | .60  | .51  | .43  | .36  | .33  | .29  | .26  | .23  | 23/4                           |
| 1.07 | .93  | .81  | .73  | .65  | .55  | .48  | .40  | .36  | .32  | .28  | .25  | 3 "                            |
| 1.15 | 1.01 | .88  | .80  | .71  | .60  | .52  | .43  | .39  | .34  | .31  | .27  | 31/4 "                         |
| 1.24 | 1.09 | .95  | .86  | .77  | .65  | .56  | .46  | .42  | .37  | .33  | .29  | 31/2 "                         |
| 1.34 | 1.17 | 1.02 | .92  | .82  | .70  | .60  | .50  | .46  | .40  | .36  | .31  | 33/4 "                         |
| 1.43 | 1.25 | 1.09 | .98  | .88  | .74  | .64  | .53  | .49  | .42  | .38  | .33  | 4 "                            |
| 1.52 | 1.33 | 1.16 | 1.05 | .93  | .79  | .68  | .56  | .52  | .45  | .40  | .36  | 41/4 "                         |
| 1.61 | 1.41 | 1.23 | 1.11 | .99  | .84  | .72  | .60  | .55  | .48  | .43  | .38  | 41/2 "                         |
| 1.70 | 1.49 | 1.30 | 1.18 | 1.05 | .88  | .76  | .63  | .58  | .51  | .45  | .40  | 43/4 "                         |
| 1.79 | 1.57 | 1.36 | 1.23 | 1.07 | .93  | .80  | .67  | .61  | .53  | .48  | .42  | 5 "                            |
| 1.88 | 1.65 | 1.43 | 1.30 | 1.16 | .98  | .84  | .70  | .64  | .56  | .50  | .44  | 51/4 "                         |
| 1.98 | 1.73 | 1.50 | 1.36 | 1.21 | 1.03 | .88  | .73  | .67  | .59  | .52  | .46  | 51/2 "                         |
| 2.07 | 1.81 | 1.57 | 1.42 | 1.27 | 1.07 | .92  | .77  | .70  | .61  | .55  | .48  | 53/4 "                         |
| 2.16 | 1.89 | 1.64 | 1.48 | 1.33 | 1.12 | .96  | .80  | .73  | .64  | .57  | .50  | 6 "                            |

## SAFE PRESSURES ON ALUMINUM TUBING IN POUNDS PER SQUARE INCH.

According to the formula that the Tension per linear inch is equivalent to the Pressure per square inch, multiplied by the interior radius of the Tube, and to get the thickness of the Tube, divide by the Unit Stress per square inch.

| Outside<br>Dia.<br>in 1nch. | eas of<br>000ths<br>inch.              | No.<br>Stubs    |              |              |              |              |              |               |  |  |
|-----------------------------|----------------------------------------|-----------------|--------------|--------------|--------------|--------------|--------------|---------------|--|--|
|                             | Thickness of Wall, 1000ths of an inch. | Gauge.          | 5000<br>lbs. | 6000<br>lbs. | 7000<br>lbs. | 8000<br>lbs. | 9000<br>lbs. | 10000<br>lbs. |  |  |
| 1/4                         | .049                                   | 18              | 1960         | 2352         | 2744         | 3136         | 3528         | 3920          |  |  |
| / <b>*</b>                  | .035                                   | 20              | 1400         | 1680         | 1960         | 2240         | 2520         | 2800          |  |  |
|                             | .028                                   | 22              | 1120         | 1344         | 1568         | 1792         | 2016         | 2240          |  |  |
|                             | .022                                   | 24              | 880          | 1056         | 1232         | 1408         | 1584         | 1760          |  |  |
| 5-16                        | .049                                   | 18              | 1568         | 1882         | 2195         | 2508         | 2822         | 3136          |  |  |
|                             | .035                                   | 20              | 1120         | 1344         | 1568         | 1792         | 2016         | 2240          |  |  |
|                             | .028                                   | 22              | 896          | 1075         | 1254         | 1433         | 1613         | 1792          |  |  |
|                             | .022                                   | 24              | 704          | 845          | 986          | 1126         | 1267         | 1408          |  |  |
| 8€                          | .049                                   | 18              | 1307         | 1568         | 1829         | 2090         | 2352         | 2613          |  |  |
|                             | .035                                   | 20              | 933          | 1120         | 1306         | 1493         | 1680         | 1866          |  |  |
|                             | .028                                   | 22              | 747          | 896          | 1045         | 1195         | 1344         | 1493          |  |  |
|                             | .022                                   | 24              | 587          | 704          | 821          | 939          | 1056         | 1173          |  |  |
| 7-16                        | .049                                   | 18              | 1120         | 1344         | 1568         | 1792         | 2016         | 2240          |  |  |
|                             | .035                                   | 20              | 800          | 960          | 1120         | 1280         | 1440         | 1600          |  |  |
|                             | .028                                   | 22              | 640          | 768          | 896          | 1024         | 1152         | 1280          |  |  |
|                             | .022                                   | 24              | 503          | 603          | 704          | 804          | 905          | 1005          |  |  |
| 1/2                         | .065                                   | 16              | 1300         | 1560         | 1820         | 2080         | 2340         | 2600          |  |  |
|                             | .049                                   | 18              | 980          | 1176         | 1372         | 1568         | 1764         | 1960          |  |  |
|                             | .035                                   | 20              | 700          | 840          | 980          | 1120         | 1260         | 1400          |  |  |
|                             | .028                                   | 22              | 560          | 672          | 784          | 896          | 1008         | 1120          |  |  |
|                             | .022                                   | 24              | 440          | 528          | 616          | 704          | 792          | 880           |  |  |
| %                           | .065                                   | 16 <sub>1</sub> | 1040         | 1248         | 1456         | 1664         | 1872         | 2080          |  |  |
|                             | .049                                   | 18 '            | 784          | 941          | 1098         | 1254         | 1411         | 1568          |  |  |
|                             | .035                                   | 20              | 560          | 672          | 784          | 896          | 1008         | 1120          |  |  |
|                             | .028                                   | 22              | 448          | 538          | 627          | 717          | 806          | 896           |  |  |
| 3/4                         | .065                                   | 16 -            | 867          | 1040         | 1213         | 1387         | 1560         | 1733          |  |  |
|                             | .049                                   | 18              | 653          | 784          | 915          | 1045         | 1176         | 1306          |  |  |
|                             | .035                                   | 20              | 467          | 560          | 653          | 747          | 940          | 933           |  |  |
| ,.                          | .028                                   | 22              | 373          | 448          | 523          | 597          | 672          | 746           |  |  |
| 7 <u>%</u>                  | .065                                   | 16              | 743          | 891          | 1040         | 1188         | 1337         | 1485          |  |  |
| •••                         | .049                                   | 18              | 560          | 672          | 784          | 896          | 1008         | 1120          |  |  |
| •••                         | .035                                   | 20              | 400          | 480          | 560          | 640          | 720          | 800           |  |  |
|                             | .028                                   | 22              | 320          | 384          | 448          | 512          | 576          | 640           |  |  |
| 1                           | .065                                   | 16              | 650          | 780          | 910          | 1040         | 1170         | 1300          |  |  |
| •••                         | .049                                   | 28              | 490          | 588          | 686          | 784          | 882          | 980           |  |  |
| •••                         | .035                                   | 20              | 350          | 420          | 490          | 560          | 630          | 700           |  |  |
| -:"                         | .028                                   | 22              | 280          | 336          | 392          | 448          | 504          | 560           |  |  |
| 11/4                        | .083                                   | 14              | 664          | 797          | 930          | 1062         | 1195         | 1328          |  |  |
| •••                         | .062                                   | 16              | 520          | 624          | 728          | 832          | 936          | 1040          |  |  |
|                             | .049                                   | 18              | 392          | 470          | 549          | 627          | 706          | 784           |  |  |
| •••                         | .035                                   | 20              | 280          | 336          | 392          | 448          | 504          | 560           |  |  |

Safe Pressures on Aluminum Tubing in Pounds per Square Inch.—Continued.

| outside<br>Diam.              | ness of<br>1000ths<br>inch.          | No.<br>Stubs | Alle         | wable Uni    | t Stress in  | Pounds pe    | or Square l  | nch.         |
|-------------------------------|--------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| in inch.                      | Thickness of Wall, 1000t, of an inch | Gauge.       | 5000<br>lbs. | 6000<br>lbs. | 7000<br>lbs. | 8000<br>lbs. | 9000<br>lbs. | 1000<br>lbs. |
| 1½                            | .083                                 | 14           | 553          | 664          | 775          | 885          | 996          | 110          |
| •••                           | .065                                 | 16           | 433          | 520          | 606          | 693          | 779          | 86           |
| •••                           | .049                                 | 18           | 327          | 392          | 457          | 523          | 588          | 65           |
| 13%                           | .035                                 | 20<br>14     | 233          | 280          | 327          | 373          | 420          | 460          |
| 1%                            | .065                                 | 16           | 474<br>372   | 569<br>446   | 664<br>520   | 759<br>594   | 854<br>669   | 949          |
| •••                           | .049                                 | 16<br>18     | 280          | 336          | 392          | 448          | 504          | 56           |
| •••                           | .035                                 | 200          | 200          | 240          | 280          | 320          | 360          | 40           |
| 2                             | .109                                 | 20<br>12     | 545          | 654          | 763          | 872          | 981          | 109          |
|                               | .083                                 | 14           | 415          | 498          | 581          | 664          | 747          | 83           |
| •••                           | .065                                 | 16           | 325          | 390          | 455          | 520          | 585          | 650          |
| •••                           | .049                                 | 18           | 245          | 294          | 343          | 592          | 441          | 49           |
| -:-:                          | .035                                 | 20<br>12     | 175          | 210          | 245          | 280          | 315          | 350          |
| $2\frac{1}{4}$                | .109                                 | 12           | 485          | 581          | 678          | 775          | 872          | 96           |
| •••                           | .083                                 | 14           | 313          | 376          | 439          | 501          | 564          | 62           |
| 21/2                          | .109                                 | 16<br>12     | 289          | 347          | 404          | 462          | 520          | 578          |
| 472                           | .083                                 | 14           | 438<br>333   | 526<br>399   | 613<br>466   | 701<br>532   | 788<br>599   | 870<br>664   |
| •••                           | .065                                 | 16           | 260          | 312          | 364          | 416          | 468          | 52           |
| 23%                           | .109                                 | 12           | 396          | 476          | 555          | 634          | 714          | 79           |
| -/4                           | .083                                 | 14           | 302          | 362          | 423          | 483          | 543          | 60           |
|                               | .065                                 | 16           | 236          | 284          | 331          | 378          | 426          | 47           |
| 3                             | .134                                 | 1ŏ           | 447          | 536          | 625          | 715          | 804          | 89           |
|                               | .109                                 | 12           | 363          | 436          | 509          | 581          | 654          | 72           |
| ***                           | .083                                 | 14           | 277          | 332          | 387          | 443          | 498          | 553          |
| 31/4                          | .134                                 | 10           | 412          | 495          | 577          | 660          | 742          | 82           |
| •••                           | .109                                 | 12           | 335          | 403          | 470          | 537          | 604          | 67           |
| 3 <sup>1</sup> /2             | .083                                 | 14<br>10     | 255<br>383   | 307          | 358          | 409          | 460<br>689   | 51           |
| 3/2                           | 109                                  | 10           | 383<br>311   | 459<br>374   | 536<br>436   | 613          | 561          | 760<br>62    |
| •••                           | .083                                 | 14           | 237          | 285          | 352          | 478<br>379   | 427          | 474          |
| 33/4                          | .134                                 | 10           | 357          | 429          | 500          | 572          | 643          | 71           |
| 9/4                           | .109                                 | 12           | 291          | 349          | 407          | 465          | 524          | 583          |
|                               | .083                                 | 12<br>14     | 221          | 266          | 310          | 354          | 399          | 443          |
| 1                             | .165                                 | 10           | 413          | 495          | 578          | 660          | 743          | 825          |
|                               | .134                                 | 12           | 335          | 402          | 469          | 536          | 603          | 670          |
| .:-;                          | .109                                 | 14           | 273          | 327          | 382          | 436          | 491          | 545          |
| 11/4                          | .165                                 | 10           | 388          | 466          | 543          | 621          | 699          | 776          |
| •••                           | .134                                 | 12           | 315          | 378          | 442          | 505          | 568          | 631          |
| 1 <sup>1</sup> / <sub>2</sub> | .109<br>.165                         | 14<br>10     | 257<br>367   | 308          | 359          | 410          | 462<br>660   | 513<br>733   |
| 72                            | .134                                 | 12           | 298          | 440<br>357   | 513<br>417   | 587<br>477   | 536          | 596          |
| •••                           | .109                                 | 14           | 242          | 291          | 339          | 387          | 436          | 484          |
| 13/4                          | .165                                 | 10           | 347          | 417          | 486          | 556          | 625          | 695          |
|                               | .134                                 | 12           | 282          | 339          | 395          | 451          | 508          | 564          |
|                               | .109                                 | 14           | 229          | 275          | 321          | 367          | 412          | 459          |
| 5                             | .165                                 | 10           | 330          | 396          | 462          | 528          | 594<br>482   | 660          |
|                               | .134                                 | 12           | 268          | 322          | 375          | 429          | 482          | 536          |
| ا رت                          | .109                                 | 14           | 218          | 262          | 305          | 349          | 392          | 436          |
| 3/4                           | .165                                 | 10           | 314          | 377          | 440          | 503          | 566          | 629          |
|                               | .134                                 | 12           | 255          | 306          | 357          | 409          | 460          | 510          |
|                               | .109                                 | 14           | 208          | 249          | 291          | 332          | 374          | 415          |

Safe Pressures on Aluminum Tubing in Pounds per Square Inch.—Continued.

| Outside<br>Diam. | kness of<br>, 1000ths<br>an inch. | No.<br>Stubs | Allo         | wable Uni    | t Stress in       | Pounds pe    | r Square I   | nch.          |
|------------------|-----------------------------------|--------------|--------------|--------------|-------------------|--------------|--------------|---------------|
| in inch.         | Wall, 1                           | Gauge.       | 5000<br>lbs. | 6000<br>lbs. | 7000<br>lbs.      | 8000<br>ibs. | 9000<br>lbs. | 10000<br>lbs. |
| 51/2             | .165                              | 10           | 300          | 360          | 420               | 480          | 540          | 600           |
| •••              | .134                              | 12           | 244          | 292          | 341               | 390          | 438          | 487           |
| -4":             | .109                              | 14           | 198          | 238          | 277               | 317          | 357          | 396           |
| 53/4             | .165                              | 10           | 287          | 344          | 402               | 459          | 517          | 574           |
| •••              | .134                              | 12           | 233          | 280          | 326               | 373          | 419          | 466           |
| в <sup></sup>    | .109                              | 14           | 190          | 227          | 265               | 303          | 341          | 379           |
| ь                | .165                              | 10           | 275          | 330          | 385<br>313        | 440          | 495          | 550           |
| •••              | .134                              | 12           | 223          | 268          |                   | 357          | 402          | 447           |
| 61/2             | .109                              | 14           | 182          | 218          | 254               | 291          | 337          | 363           |
| 0/2              | .250                              | 10           | 385          | 462          | 538               | 615          | 692          | 769           |
| •••              | .1875<br>.175                     | 12<br>14     | 288<br>192   | 346          | 404<br>269        | 462          | 519<br>346   | 577           |
| 7                | .250                              | 2-3          | 357          | 231<br>429   | 500               | 308<br>571   | 643          | 385<br>714    |
| '                | .1875                             | 2-3<br>6-7   | 268          | 321          | 375               | 429          | 482          | 536           |
| •••              | .175                              | 10-11        | 206<br>179   | 214          | 250               | 286          | 321          | 357           |
| 71/2             | 250                               | 2-3          | 333          | 400          | 467               | 543          | 600          | 667           |
| ן ביי            | .1875                             | 6-7          | 250          | 300          | 350               | 400          | 450          | 500           |
|                  | .125                              | 10-11        | 167          | 200          | 233               | 267          | 300          | 333           |
| 8                | .250                              | 2-3          | 313          | 375          | 438               | 500          | 563          | 625           |
| °                | .1875                             | 6-7          | 234          | 281          | 328               | 375          | 422          | 469           |
|                  | .125                              | 10-11        | 156          | 187          | 219               | 250          | 281          | 313           |
| 81/2             | 250                               | 9_3          | 294          | 353          | 412               | 471          | 590          | 588           |
| 0/2              | .1875                             | 2-3<br>6-7   | 221          | 265          | 309               | 353          | 529<br>397   | 441           |
|                  | .125                              | 10-11        | 147          | 176          | 206               | 235          | 265          | 294           |
| 9                | .250                              | 2-3          | 278          | 333          | 389               | 445          | 500          | 556           |
| ٠ ا              | 1875                              | 6-7          | 208          | 250          | 292               | 333          | 375          | 417           |
|                  | .125                              | 10-11        | 139          | 167          | 194               | 222          | 250          | 278           |
| 10               | .250                              | 2-3          | 250          | 300          | 350               | 400          | 450          | 500           |
| - I              | .1875                             | 6-7          | 188          | 225          | 263               | 290          | 338          | 375           |
| ]                | .125                              | 10-11        | 125          | 150          | 175               | 200          | 225          | 250           |
| 1i"              | .375                              | 00-0         | 341          | 409          | 477               | 546          | 614          | 682           |
|                  | .250                              | 2-3          | 228          | 273          | 319               | 365          | 410          | 456           |
| 1                | .1875                             | 6-7          | 228<br>170   | 205          | 239               | 273          | 307          | 341           |
|                  | .125                              | 10-11        | 114          | 136          | 239<br>159        | 182          | 204          | 227           |
| 12               |                                   | ab00000      | 417          | 500          | 583<br>438<br>292 | 182<br>667   | 750          | 833           |
| ٠ ا              | .375                              | 00-0         | 313          | 375          | 438               | 500          | 563          | 625           |
| )                | .250                              | 2-3          | 208          | 250<br>125   | 292               | 333          | 375          | 417           |
|                  | .125                              | 10-11        | 104          | 125          | 146               | 167          | 187          | 208           |

The above allowable unit strains are based on a factor of safety of about four, and may be used as follows for the different alloys, when the temperature is not above 100° Centigrade; when the temperature is above 100° Centigrade, the allowable unit stresses should be divided by two, and aluminum should not be subject to strains at temperatures above 200° Centigrade.

FOR RIVETED JOINTS: Single riveted 60 per cent. of the allowable

unit stress as given above for the efficiency of the joint. For double riveted joints, 75 per cent. of the allowable stresses given above.

will be made as desired. On account, however, of the expense and inconvenience of specially making small lots of rivets, The Pittsburgh Reduction Company carry in stock a large assortment of rivets. Orders for rivets of a size or style not carried in stock, will not be taken for lots of less than five pounds.

The Pittsburgh Reduction Company carry in stock, aluminum rivets of the same size and shape as iron "tinners" or "pound" rivets, as follows:—8 oz., 10 oz., 12 oz., 14 oz., 1 lb., 1½ lb., 1½ lb., 1½ lb., 2 lb., 2½ lb., 3 lb., 3½ lb., 4 lb., 5 lb., 6 lb., 7 lb., 8 lb., 9 lb., 10 lb., 12 lb., 14 lb. and 16 lb.

The following is the list of round head and flat head rivets (other than the pound rivets) kept in stock:

ROUND HEAD RIVETS KEPT IN STOCK. (STUB'S GAUGE THE STANDARD.)

| 5∕8                                | in. | diameter, | 1 1/2 in | . long. | $\frac{1}{3}\frac{1}{2}$ | in. | diameter, | 7∕8 in.           | long. |
|------------------------------------|-----|-----------|----------|---------|--------------------------|-----|-----------|-------------------|-------|
| 5∕8                                | "   | 66        | I        | "       | $\frac{1}{3}\frac{1}{2}$ | "   | 66        | 11                | "     |
| 5/8                                | "   | "         | 3/4      | 66      | $\frac{1}{3}\frac{1}{2}$ | "   | 4.6       | 18                | "     |
|                                    | 44  | "         | 1 1/2    | "       | 5<br>16                  | "   | 44        | ı                 | "     |
| 19                                 | "   | "         | ľ        | 44      | 5<br>16                  | "   | 44        | 3/4               | "     |
| 9                                  | "   | "         | 3/4      | "       | 1 6                      | "   | "         | ₹8                | "     |
| 16<br>16<br>16<br>16<br>1/2<br>1/2 | "   | "         | 1 1/2    | "       | - 5                      | "   | "         | 1/2               | "     |
| 1/2                                | "   | "         | 11/4     | 66      | 5<br>16<br>16            | "   | 66        | 7<br>16           | "     |
| 1/2                                | "   | "         | ı        | "       | No.                      | Ι,  | "         | 11                | "     |
| 1/2                                | "   | 66        | 7/8      | 46      | 66                       | ı,  | 66        | 16                | "     |
| 1/2                                | 66  | "         | 3/4      | "       | 66                       | ı,  | 66        | $\frac{15}{32}$   | "     |
|                                    | "   | 66        | 5/8      | 66      | "                        | 2,  | 66        | <del>5/8</del>    | "     |
| 1/2<br>1/6<br>1/6<br>1/8           | 66  | "         | 1        | 44      | "                        | 2,  | 44        | 1/2               | "     |
| 7                                  | 66  | "         | 1/2      | "       | ٠.                       | 2,  | 46        | 7<br>16           | "     |
| 3/6                                | "   | "         | 1        | "       | "                        | 3,  | 46        | 16                | "     |
| 3/8                                | "   | "         | 5/8      | "       | "                        | 3,  | "         | $\frac{15}{32}$   | "     |
| 3/8                                | 44  | "         | 1/2      | "       | "                        | 3,  | "         | 3 2<br>1 3<br>3 2 | "     |
| 1/4                                | "   | 66        | 1        | 66      |                          | ٠,  |           | 32                |       |
| 1/4                                | 66  | 66        | 3/4      | "       |                          |     |           |                   |       |
| /4                                 |     |           | 74       | •       |                          |     |           |                   |       |

132

#### RIVETS AND BURRS.—Continued.

| ¼ in. di          | ameter. | 5∕6 iı                     | ı. long | No. 9   | , diameter, | ¼ iı                     | ı. long |
|-------------------|---------|----------------------------|---------|---------|-------------|--------------------------|---------|
| ¼ "               | 66      | 1/2                        | "       |         | ), ''       | 3<br>1 6                 | **      |
| <i>¼</i> "        | "       | 77<br>176                  | "       | "10     |             | 1/2                      | 66      |
| × "               | "       | 3/8                        | 66      | " 10    | -           | $\frac{18}{32}$          | 66      |
| 14 "              | 44      | 75<br>16                   | "       | " 10    | •           | $\frac{32}{11}$          | "       |
| 74<br>No. 4,      | "       | 16<br>16                   | 66      | "10     | •           | 3 2<br>3 2               | "       |
|                   | 46      | 16<br>15<br>32             | **      | " 10    | •           | 3 2<br>1 6               | "       |
| 41                | "       | 32<br>13<br>32             | "       | 1∕8 in. |             | 16<br>I                  | "       |
| 4,                | 66      | 3 2<br>1/2                 | "       | 1/8 "   | 66          | 7/8                      | "       |
| ٥,                | "       |                            | "       |         | "           | 78<br>34                 | **      |
| ٥,                | "       | 1 <sup>7</sup> 6           | 66      | 78      | 66          | 74<br>5⁄8                | 44      |
| " 5,              |         | 3∕8                        | 66      | 78      | 66          | 78<br>½                  | "       |
| " 5,              | 46      | 1 6                        | "       | 78      | 66          |                          | 44      |
| " 6,              | "       | $\frac{1}{3}\frac{5}{2}$   | "       | /8      | "           | 16                       | "       |
| " 6,              | 44      | $\frac{1}{3}\frac{8}{2}$   | "       | 78      | "           | 3/8                      | 66      |
| " 6,              | "       | $\frac{1}{3}\frac{1}{2}$   |         | 78      | 2.          | 16                       | "       |
| rs in.            |         | I                          | "       | 1/8 "   |             | *                        |         |
| Τ <sup>δ</sup> '' | "       | 7/8                        | "       | 1/8 "   | 44          | 18 ·                     |         |
| 136 "             | 66      | 3/4                        | " "     | 1/8 "   | "           | 1/8                      | "       |
| 3 "               | "       | 5∕8                        | 4.6     | No. 12  | •           | $\frac{1}{3}\frac{1}{2}$ | 44      |
| 3 ''<br>16        | "       | 1/2                        | "       | " 12    | 2, ''       | 3°2                      | "       |
| 3 "<br>16         | "       | $\mathbf{r}^{7}\mathbf{g}$ | • •     | ** 12   | 2, "        | 3 <sup>7</sup> 2         | "       |
| 3 · ·             | 44      | 3/8                        | "       | ** 12   | 2, "        | 1 <sup>3</sup> 6         | "       |
| 3 "<br>16         | 66      | 5 1<br>1 6                 | 44      | " I     | 2, ''       | 32                       | **      |
| 3 "<br>16         | "       | 1/4                        | "       | " [     | 3, "        | 7 6                      | "       |
| No. 7,            | "       | $\frac{1}{3}\frac{5}{2}$   | 66      | " 13    | 3, "        | 1/4                      | 44      |
| 7,                | 66      | $\frac{1}{3}\frac{3}{2}$   | 66      | " 13    | 3, "        | 3<br>16                  | "       |
| " 7,              | 44      | $\frac{11}{32}$            | 66      | " 13    | 3, ''       | 1/8                      | "       |
| "8,               | 44      | τ                          | 46      | " 12    |             | *                        | "       |
| ·· 8,             | "       | 7/8                        |         | ** 12   |             | 18                       | "       |
| ·· 8,             | 66      | 3/4                        | 66      | " 12    |             | 1/8                      | "       |
| ·· 8,             | "       | 5 <del>/</del> 8           | 4.6     | " 14    |             | 32                       | "       |
| "8,               | "       | 1/2                        | 4.6     | " 1     |             | 372                      | "       |
| " 8,              | "       | 7<br>16                    | 66      | " 1     |             | 5<br>3 2                 | 66      |
| " 8,              | "       | Τδ<br>3∕8                  | "       | " 1     |             | 3 2<br>3 2               | 44      |
| ٥,                |         | 78<br>1 €                  | "       | 1 in    |             | ¥<br>4                   | "       |
| ο,                | "       |                            | 66      |         |             | 74<br>16                 | 66      |
| יפ                | ••      | <b>3∕8</b><br>5            | "       | T6      | "           | 1 6<br>1/8               | 66      |
| " 9,              | ••      | 1,9                        | •       | 16      | 44          |                          | "       |
|                   |         |                            |         | 18 "    |             | 18                       |         |

#### FLAT HEAD RIVETS KEPT IN STOCK.

(STUB'S GAUGE THE STANDARD.)

|            |           |                          |           | _   |        |        |                  |          |
|------------|-----------|--------------------------|-----------|-----|--------|--------|------------------|----------|
| 3 in. d    | liameter, | $\frac{1}{3}\frac{3}{2}$ | in. long. | No. | 12, di | iamete | r, 5 i           | n. long. |
| 8 ''<br>16 | 44        | $\frac{1}{3}\frac{1}{2}$ | "         | "   | 12,    | 66     | *                | "        |
| 18 "       | "         | $\frac{9}{32}$           | "         | "   | 13,    | "      | $\frac{9}{32}$   | "        |
| No. 7,     | "         | $\frac{5}{16}$           | "         | "   | 13,    | 4.6    | 3 <sup>7</sup> 2 | "        |
| " 8,       | 66        | $\frac{1}{3}\frac{3}{2}$ | "         | "   | 13,    | "      | 1 <sup>8</sup> 5 | "        |
| " 8,       | "         | $\frac{9}{32}$           | "         | "   | 14,    | "      | $\frac{7}{32}$   | "        |
| " 9,       | "         | $\frac{7}{32}$           | "         | "   | 14,    | "      | 32               | "        |
| " 10,      | "         | 15<br>16                 | "         | "   | 15,    | "      | 3<br>16          | • •      |
| " 10,      | "         | $\frac{7}{32}$           | "         | "   | 15,    | "      | 1/8              | "        |
| ⅓ in.      | "         | 1 6                      | "         | 16  | in.    | "      | 3 2              | 66       |
| 1/8 "      | "         | 14                       | "         | 16  | "      | 4.6    | 3 2              | "        |
| 1/8 "      | "         | 3<br>T &                 | "         |     |        |        |                  |          |
|            |           |                          |           |     |        |        |                  |          |

#### ALUMINUM ANGLES.

The ratio of specific gravity of rolled steel and rolled aluminum of average composition, in bars and angles, is  $\frac{7.87}{2.72}$  =2.894.

The thickness of an aluminum angle in thirty-seconds of an inch, is equal to the weight per running foot multiplied by 2.894 and the product divided by the sum of the sides of the angle.

## ALUMINUM ANGLES.

Weights per foot corresponding to thickness varying by  $\frac{1}{16}$ ".

One Cubic Foot weighing 172 lbs. Nickel Alloy.

| Size<br>Inches.                    | ₫"       | 3"         | ₫"             | 5 "<br>16                     | 3"             | 7 "              | 1''                          | 9"                            | 5"         | 11/1     | 3''     | 13"               | 7"      |
|------------------------------------|----------|------------|----------------|-------------------------------|----------------|------------------|------------------------------|-------------------------------|------------|----------|---------|-------------------|---------|
| Equal Legs.                        |          |            |                |                               |                | l                |                              |                               |            | ļ        |         |                   |         |
| 6 x6                               |          |            |                |                               |                | 6.037            | 6.880                        | 7.687                         | 8.494      | 9.302    | 10.07   | 10.85             | 11.62   |
| 4 x4                               |          |            |                | 2.878                         | 3.440          | 3.966            | 4.493                        | 5.019                         | 5.511      | 6.002    | 6.494   | 6.985             |         |
| $3\frac{1}{2}x3\frac{1}{2}$        |          |            |                |                               | 2.984          | 3.440            | 3.896                        | 4.317                         | 4.774      | 5.195    | 5.616   | 6.002             |         |
| 3 x3                               |          |            | 1.720          | 2.141                         | 2.527          | 2.913            | 3.300                        | 3.651                         | 4.002      |          |         |                   |         |
| 23/4×23/4                          |          | [ <b>.</b> | 1.580          | 1.930                         | 2.317          | 2.667            | 2.984                        |                               |            |          |         | <b></b>           |         |
| 21/2×21/2                          |          | <b> </b>   | 1.439          | 1.755                         | 2.071          | 2.387            | 2.703                        | <b></b>                       |            |          |         |                   | l       |
| $2\frac{1}{4} \times 2\frac{1}{4}$ | l        | <b> </b>   | 1.299          | 1.580                         | 1.860          | 2.141            | 2.387                        | ļ                             |            |          | <b></b> |                   | l       |
| 2 x2                               | <b> </b> | .8775      | 1.123          | 1.404                         | 1.650          | 1.860            | <i>.</i>                     |                               | ļ          | <b></b>  |         |                   |         |
| 13/4 x 13/4                        | ļ        | .7372      | .9828          | 1.194                         | 1.404          | 1.615            | l <b></b>                    | ļ                             | ļ          |          |         |                   |         |
| 11/2×11/2                          | <b> </b> | .6318      | .8424          | 1.018                         | 1.194          |                  | <b></b>                      |                               |            |          | <br>    |                   | l       |
| 11/4×11/4                          | .3510    | .5265      | .6669          | .8424                         |                | <b>.</b>         | <b>.</b>                     |                               |            |          |         |                   |         |
| 11/8x11/8                          | .3159    | .4563      | .5967          | .7371                         |                | l                | <b></b>                      | l                             | <b>.</b>   | <b>.</b> |         |                   | l       |
| 1 x1                               | .2808    | .4212      | .5265          |                               |                |                  |                              |                               |            |          |         |                   | ١       |
| %x %                               | .2106    | .2808      | <b> </b>       |                               | <b> </b>       | <b></b>          |                              | <b>.</b>                      |            |          |         |                   |         |
| %x %                               | .1755    |            |                |                               |                |                  |                              | l                             |            |          |         | <b></b>           | <b></b> |
|                                    | ·        |            |                |                               |                |                  |                              |                               |            |          |         |                   |         |
| Size                               |          |            |                |                               |                | 1                |                              |                               |            |          |         |                   |         |
| Inches.                            | ₹"       | 3 "<br>16" | <u>‡</u> "     | $\frac{5}{16}^{\prime\prime}$ | 3''            | $\frac{7}{16}''$ | $\frac{1}{2}^{\prime\prime}$ | $\frac{9}{16}^{\prime\prime}$ | <u>₹</u> ″ | 11''     | 3''     | $\frac{13}{16}$ " | ₹"      |
| Unequal Legs                       |          |            |                |                               |                |                  |                              |                               |            |          |         |                   |         |
| 6 x4                               |          |            |                |                               | 4.317          | 5.019            | 5.686                        | 6.353                         | 7.020      | 7.652    | 8,284   | 8.915             | 9.547   |
| 5 x4                               |          |            |                |                               | 3.861          | 4.493            | 5.090                        | 5.686                         | 6.248      | 6.845    | 7.406   |                   | 8.495   |
| 5 x3½                              |          |            |                |                               | 3.651          | 4.212            | 4.774                        | 5.335                         | 5.897      | 6.423    | 6.950   | 7.476             | 7.968   |
| 5 x3                               |          |            |                | 2.878                         | 3.440          | 3.967            | 4.493                        | 4.984                         | 5.511      | 6.002    | 6.494   | 6.985             |         |
| 4 x3½                              |          |            |                |                               | 3.194          | 3.686            | 4.177                        | 4.669                         | 5.125      | 5.581    | 6.037   | 6.494             | l       |
| 4 x3                               |          |            |                | 2.492                         | 2.984          | 3.440            | 3.896                        | 4.317                         | 4.774      | 5.195    | 5.616   | 6.002             |         |
|                                    |          |            |                | 2.317                         | 2.738          | 3.194            | 3,580                        | 4.002                         | 4.388      | 4.774    | 5.160   | 5.511             |         |
| 3½x3                               |          |            |                |                               |                | 2.527            | 2.843                        | 3.159                         |            |          |         |                   |         |
| 3½x3<br>3½x2                       |          |            | 1.509          | 1.866                         | 2.176          | 4.041            |                              |                               |            |          |         |                   |         |
| 31/4×2                             |          | •••••      |                | 1.866                         | 2.176<br>2.317 | 2.668            | 2.984                        | 3.335                         |            |          |         |                   |         |
| 3½x2<br>3 x2½                      |          | •••••      | 1.579          | 1.931                         | 2.317          | 2.668            | 2.984                        |                               |            |          |         |                   |         |
| 3½x2<br>3 x2½<br>3 x2              |          | .9828      | 1.579<br>1.439 | 1.931<br>1.755                | 2.317<br>2.071 | 2.668<br>2.387   | 2.984<br>2.703               |                               |            |          |         |                   |         |
| 3½x2<br>3 x2½                      |          | .9828      | 1.579          | 1.931                         | 2.317          | 2.668            | 2.984                        |                               |            |          |         |                   |         |

## DECIMAL PARTS OF A FOOT IN SQUARE INCHES.

| Hundredths<br>of a sq. foot. | SQUARE<br>Inches.                            | Hundredths<br>of A sq. foot.     | Square<br>Inches:                            | Hundredths<br>of a sq. foot, | SQUARE<br>Inches.                         |
|------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------|------------------------------|-------------------------------------------|
| I 2 3 4 5 6                  | 1.44<br>2.88<br>4.32<br>5.76<br>7.20<br>8.64 | 34<br>35<br>36<br>37<br>38<br>39 | 49.0<br>50.4<br>51.8<br>53.3<br>54.7<br>56.2 | 67<br>68<br>69<br>70<br>71   | 96.5<br>97.9<br>99.4<br>100.8<br>102.2    |
| 7<br>8<br>9                  | 10.1<br>11.5<br>13.0<br>14.4                 | 40<br>41<br>42<br>43             | 57.6<br>58.0<br>60.5<br>61.9                 | 73<br>74<br>75<br>76         | 105.1<br>106.6<br>108.0<br>109.4          |
| 11<br>12<br>13<br>14         | 15.8<br>17.3<br>18.7<br>20.2<br>21.6         | 44<br>45<br>46<br>47<br>48       | 63.4<br>64.8<br>66.2<br>67.7<br>69.1         | 77<br>78<br>79<br>80<br>81   | 110.9<br>112.3<br>113.8<br>115.2<br>116.6 |
| 15<br>16<br>17<br>18         | 23.0<br>24.5<br>25.9<br>27.4                 | 49<br>50<br>51<br>52             | 70.6<br>72.0<br>73.4<br>74.9                 | 82<br>83<br>84<br>85<br>86   | 118.1<br>119.5<br>121.0<br>122.4          |
| 20<br>21<br>22<br>23         | 28.8<br>30.2<br>31.7<br>33.1                 | 53<br>54<br>55<br>56             | 76.3<br>77.8<br>79.2<br>80.6<br>82.1         | 87<br>88<br>89               | 123.8<br>125.3<br>126.7<br>128.2          |
| 24<br>25<br>26<br>27<br>28   | 34.6<br>36.0<br>37.4<br>38.9<br>40.3         | 57<br>58<br>59<br>60             | 83.5<br>85.0<br>86.4<br>87.8                 | 90<br>91<br>92<br>93<br>94   | 129.6<br>131.0<br>132.5<br>133.9<br>135.4 |
| 29<br>30<br>31<br>32         | 41.8<br>43.2<br>44.6<br>46.1                 | 62<br>63<br>64<br>65<br>66       | 89.3<br>90.7<br>92.2<br>93.6                 | 95<br>96<br>97<br>98         | 136.8<br>138.2<br>139.7<br>141.1          |
| 33                           | 47•5                                         | 66                               | 95.0                                         | 100                          | 142.6<br>144.0                            |

# TABLE OF DECIMAL EQUIVALENTS, IN FEET AND INCHES, of 8ths, 16ths, 32nds and 64ths of an Inch.

| Fract'n<br>of an<br>Inch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Decimal of an Inch.    | Decimal of a Foot. | Fract'n of an Inch. | Decimal<br>of an<br>Inch. | Decimal of a Foot. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|---------------------|---------------------------|--------------------|
| Sths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sths.                  | Sths.              | 64ths.              | 64ths.                    | 64ths.             |
| <u>}</u> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .125                   | .01041             | 64                  | .015625                   | .001302            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .250                   | .02083             | 3<br>64             | .046875                   | .003906            |
| 3 <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·375                   | .03125             | 5                   | .078125                   | .006510            |
| <u>1</u> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .500                   | .04166             | 674-                | .109375                   | .009114            |
| <u>\$</u> —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .625                   | .05208             | 94-                 | .140625                   | .011718            |
| 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 750                  | .06250             | 11-                 | .171875                   | .014322            |
| ₹-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .875                   | .07291             | 64-                 | .203125                   | .016926            |
| 16ths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16ths.                 | 16ths.             | 69-                 | .234375                   | .019530            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0625                  | .00521             | 44-                 | .265625                   | .022134            |
| $\frac{1}{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .0025                  | .01562             | 5 7                 | .296875                   | .024738            |
| $\frac{13}{16} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1875                  | .01502             | 64                  | .328125                   | .027342            |
| 176-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .3125                  | .02004             | 31-                 | ·359375                   | .029946            |
| $\frac{7}{196}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·4375                  | .03045             | 64                  | .390625                   | .032550            |
| 16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 —   16 | .56 <b>25</b><br>.6875 |                    | 21-                 | .421875                   | .035154            |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .8125                  | .05729             | 61-                 | .453125                   | .037758            |
| 16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | .06771             | 81-                 | 484375                    | .040362            |
| Ťě=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·9375                  | .07812             | 11-                 | .515625                   | .042966            |
| 32nds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32nds.                 | 32nds.             | 61                  | .546875                   | .045570            |
| 10=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .03125                 | .002604            | 84                  | .578125                   | .048174            |
| 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .09375                 | .007812            | 11                  | .609375                   | .050778            |
| 5.==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .15625                 | .013020            | *                   | .640625                   | .053382            |
| 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .21875                 | .018228            | 3.2                 | .671875                   | .055986            |
| 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .28125                 | .023436            | 44-                 | .703125                   | .058590            |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .34375                 | .028644            | 84=                 | ·734375                   | .061194            |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .40625                 | .033852            | 34-                 | .765625                   | .063798            |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .46875                 | .039060            | 84-                 | .796875                   | .066402            |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .53125                 | .044268            | 0 4                 | .828125                   | .069006            |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .59375                 | .049476            | 554                 | .859375                   | .071610            |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .65625                 | .054684            | 57-                 | .890625                   | .074214            |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .71875                 | .059892            | 5 4                 | .921875                   | .076818            |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .78125                 | .065100            | 61-                 | .953125                   | .079422            |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .84375                 | .070308            | 93-                 | .984375                   | .082026            |
| 2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .90625                 | .075516            | I ==                | 00000.1                   | .085000            |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .96875                 | .080724            |                     |                           |                    |
| 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .900/3                 | .000/24            |                     |                           |                    |

DECIMALS OF AN INCH FOR EACH of th.

| 3 2 ds. | 1 ths. | Decimal. | Fraction. | <sup>1</sup> / <sub>3 2</sub> ds. | 1/6 4 ths. | Decimal. | Fraction. |
|---------|--------|----------|-----------|-----------------------------------|------------|----------|-----------|
|         | I      | .015625  |           |                                   | 33         | .515625  |           |
| I       | 2      | .03125   | 1         | 17                                | 34         | .53125   |           |
| _       | 3      | .046875  | 1-16      | 18                                | 35<br>36   | .546875  | 0.16      |
| 2       | 4      | .0625    | 1-10      | 10                                | 30         | .5625    | 9–16      |
|         | 5<br>6 | .078125  |           |                                   | 37         | .578125  | }         |
| 3       |        | .09375   |           | 19                                | 38         | ·59375   | }         |
|         | 7 8    | .109375  |           | •                                 | 39         | .609375  | ٠.,       |
| 4       | 8      | .125     | 1–8       | 20                                | 40         | .625     | 5–8       |
|         | 9      | .140625  |           |                                   | 41         | .640625  |           |
| 5       | 10     | .15625   |           | 21                                | 42         | .65625   | į         |
|         | 11     | .171875  |           |                                   | 43         | .671875  |           |
| 6       | 12     | . 1875   | 3-16      | 22                                | 44         | .6875    | 11-16     |
|         | 13     | .203125  |           |                                   | 45         | .703125  |           |
| 7       | 14     | .21875   |           | 23                                | 46         | .71875   |           |
| _       | 15     | .234375  |           |                                   | 47         | •734375  | ļ         |
| 8       | 16     | .25      | I-4       | 24                                | 48         | -75      | 3-4       |
|         | 17     | .265625  |           |                                   | 49         | .765625  |           |
| 9       | 18     | .28125   |           | 25                                | 50         | .78125   |           |
| -       | 19     | .296875  |           |                                   | 51         | .796875  |           |
| 10      | 20     | .3125    | 5-16      | 26                                | 52         | .8125    | 13-16     |
|         | 21     | .328125  |           |                                   | 53         | .828125  |           |
| 11      | 22     | •34375   |           | 27                                | 54         | .84375   |           |
|         | 23     | -359375  |           |                                   | 55         | .859375  |           |
| 12      | 24     | ·375     | 3-8       | 28                                | 56         | .875     | 7–8       |
|         | 25     | .390625  |           |                                   | 57         | .890625  |           |
| 13      | 26     | .40625   | 1         | 29                                | 58         | .90625   |           |
|         | 27     | .421875  |           |                                   | 59<br>60   | .921875  |           |
| 14      | 28     | ·4375    | 7-16      | 30                                | 60         | •9375    | 15-16     |
|         | 29     | .453125  |           | ,                                 | 61         | .953125  |           |
| 15      | 30     | .46875   | 1         | 31                                | 62         | .96875   |           |
| ,       | 31     | .484375  |           |                                   | 63         | .984375  |           |
| 16      | 32     | .5       | 1-2       | 32                                | 64         | 1.       | I         |

DECIMAL PARTS OF A FOOT FOR EACH 44th OF AN INCH.

| INCH.      | ò             | 1,,   | 2,    | 3″    | <b>,</b> 4 | 2′′   | %      | <b></b> L | 8′     | <b>`6</b> | 10″   | 11"   |
|------------|---------------|-------|-------|-------|------------|-------|--------|-----------|--------|-----------|-------|-------|
| 0          | 0             | .0833 | 1991. | .2500 | -3333      | .4167 | .5000  | .5833     | .6667  | .7500     | .8333 | .9167 |
| ₹9         | .0013         | .0846 | .1680 | .2513 | .3346      | .4180 | .5013  | .5846     | 9999   | .7513     | .8346 | .9180 |
| - cc       | 9200.         | .0859 | .1693 | .2526 | .3359      | .4193 | 5026   | .5859     | .6693  | .7526     | .8359 | .9193 |
| <b>1</b>   | .0033         | .0872 | 90/1. | .2539 | .3372      | .4206 | .5039  | .5872     | 9029   | .7539     | ,8372 | .9206 |
| 7£         | .0052         | .0885 | 61/11 | .2552 | .3385      | 4219  | .5052  | .5885     | 61 29. | .7552     | .8385 | .9219 |
| 8.8<br>4.4 | .0065         | 8680. | .1732 | .2565 | .3398      | .4232 | .5065  | 8685.     | .6732  | .7565     | .8398 | .9232 |
| 8 KS       | 8/00:         | 1160. | .1745 | .2578 | .3411      | .4245 | .5078  | .5911     | .6745  | .7578     | .8411 | .9245 |
| 7.9<br>5.4 | 1             | .0924 | .1758 | .2591 | .3424      | .4258 | 5091   | .5924     | .6758  | .7591     | .8424 | .9258 |
| ~#**       | <b>4</b> 010. | .0937 | 1771. | .2604 | .3437      | .4271 | .5104  | .5937     | 1229.  | .7604     | .8437 | .9271 |
| 9 K        | 7110.         | 1560. | .1784 | 7192. | .3451      | .4284 | .5117  | 1565.     | .6784  | .7617     | .8451 | .9284 |
| o les      | .0130         | 4960  | 1621. | .2630 | .3464      | .4297 | .5130  | .5964     | 1619.  | .7630     | .8464 | .9297 |
| ***        | .0143         | 7160. | 0181. | .2643 | .3477      | .4310 | .5143  | .5977     | 0189.  | .7643     | .8477 | .9310 |
| 7°         | 9510.         | 9660. | .1823 | .2656 | .3490      | .4323 | .5156  | .5990     | .6823  | .7656     | .8490 | .9323 |
| , reto     | 6910.         | .1003 | .1836 | 6992. | .3503      | .4336 | .5169  | .6003     | .6836  | 6994.     | .8503 | .9336 |
| 2 20       | .0182         | 9101. | .1849 | .2682 | .3516      | .4349 | .5182  | 9109.     | .6849  | .7682     | .8516 | .9349 |
| -40        | .0195         | 1029  | .1862 | .2695 | .3529      | .4362 | .5195  | .6029     | .6862  | .7695     | .8529 | .9362 |
| - 44       | .0208         | .1042 | .1875 | .2708 | 3542       | .4375 | . 5208 | .6042     | .6878  | .7708     | .8542 | .0375 |

DECIMAL PARTS OF A FOOT FOR EACH 84th OF AN INOH.-Continued.

| :     | 9388<br>9401<br>9414<br>9427     | 9440<br>9453<br>9466<br>9479           | 94 <b>92</b><br>95 <b>05</b><br>9518<br>9518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9544<br>9557<br>9570<br>9583             |
|-------|----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 11,   |                                  | <u> </u>                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,9,9,9                                  |
| ò     | .8581<br>.8581<br>.8581          | .8620<br>.8620<br>.8633<br>.8646       | .8659<br>.8672<br>.8685<br>.8698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .8724<br>.8737<br>.8737<br>.8750         |
| 6     | .7721<br>.7734<br>.7747<br>.7747 | .7773<br>.7786<br>.7799<br>.7812       | .7826<br>.7839<br>.7852<br>.7865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .7878<br>.7891<br>.79 <b>04</b><br>.7917 |
| 8     | .6888<br>.6901<br>.6914<br>.6927 | .6940<br>.6953<br>.6966<br>.6979       | .6992<br>.7005<br>.7018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .7044<br>.7057<br>.7070<br>.7083         |
| 1,,   | 6055<br>6068<br>6081             | .6107<br>.6120<br>.6133<br>.6146       | .6159<br>.6172<br>.6185<br>.6198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .6211<br>.6234<br>.6237<br>.6250         |
| ĝ     | .5221<br>.5234<br>.5247<br>.5260 | .5273<br>.5286<br>.5299<br>.5312       | .5326<br>.5339<br>.5352<br>.5365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5378<br>.5391<br>.5404<br>.5417         |
| 2′    | .4388<br>.4401<br>.4414<br>.4427 | 4453<br>4453<br>474<br>674             | .4505<br>.4518<br>.4518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .4544<br>.4557<br>.4570<br>.4583         |
| ,4    | .3555<br>.3568<br>.3581<br>.3581 | .3627<br>.3620<br>.3633<br>.3646       | .3659<br>.3672<br>.3685<br>.3698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .3711<br>.3724<br>.3737<br>.3750         |
| ồ     | .2721<br>.2734<br>.2747<br>.2760 | .2773<br>.2786<br>.2799<br>.2812       | 2826<br>2839<br>2852<br>2865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .2891<br>.2891<br>.2904<br>.2917         |
| 'n    | .1888<br>.1901<br>.1914          | .1940<br>.1953<br>.1966                | .1992<br>.2005<br>.2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2044<br>.2057<br>.2070<br>.2083         |
| -     | .1055<br>.1068<br>.1081          | .1107<br>.1120<br>.1133                | 1159<br>1172<br>1185<br>1198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1211<br>.1224<br>.1237<br>.1250         |
| ò     | .0221<br>.0234<br>.0247          | .0273<br>.0286<br>.0299<br>.0312       | .0326<br>.0339<br>.0352<br>.0352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0378<br>.0391<br>.0404<br>.0417         |
| INCH. | Hopinale in                      | cako misocako esko<br>miseratos segles | coportion of the coport | ्रकान्यकाक न्यूत<br>कान्यकालनान्य        |

DECIMAL PARTS OF A FOOT FOR EACH &th OF AN INCH.-Continued.

| INCH.                                  | ,<br>o         | 1,,   | 5,    | œ́                     | ,,4            | 2′′            | 6′′            | 7,,            | à     | <b>,</b> '6    | 10″            | 11"             |
|----------------------------------------|----------------|-------|-------|------------------------|----------------|----------------|----------------|----------------|-------|----------------|----------------|-----------------|
| 60/40                                  | .0430          | .1263 | .2096 | .2930                  | .3763          | .4596          | .5430          | .6263          | 9602. | .7930          | .8763          | 9656            |
| kr-feare                               | .0443          | .1276 | 2109  | .2943                  | .3776          | .4609          | .5443          | 6276           | .7109 | .7943          | .8776          | 969             |
| ************************************** | .0450<br>.0469 | .1302 | .2122 | .2950<br>.296 <b>9</b> | .3802          | .4635          | .5450<br>.5469 | .6302          | .7122 | .7950          | .8802          | .9635           |
| 2000<br>1400                           | .0482          | 1315  | .2148 | 2982                   | .3815          | .4648          | .5482          | .6315          | .7148 | .7982          | .8815          | .9648           |
| io alto<br>fedanjet<br>fedanjet        | .0508<br>.0521 | .1341 | 2174  | 3008                   | 3841<br>3854   | .4674<br>.4688 | .5508          | 6341           | 7174  | .8008.<br>802. | .8841<br>.8854 | .9674<br>4796.  |
|                                        | .0534          | .1367 | .2201 | .3034                  | .3867          | .4701          | .5534          | .6367          | .7201 | 8034           | .8867          | .9701           |
| 2014-40                                | .0560          | .1393 | .2227 | 3060                   | .3906          | 4740           | .5560          | .6393          | .7227 | .8060<br>.8073 | .8893<br>.8906 | .9727           |
| 44000k                                 | .0586          | .1419 | .2253 | .3086                  | .3919          | .4753          | .5586          | .6419          | .7253 | .808.<br>809.  | .8919          | .9753           |
| 24/00/44<br>81-14/82/44                | .0612          | .1445 | .2279 | .3112                  | .3945<br>.3958 | .4779          | .5612          | .6445<br>.6458 | .7279 | .8112<br>.8125 | .8945<br>8958  | .9779.<br>2979. |

DECIMAL PARTS OF A FOOT FOR EACH 4th OF AN INCH.-Continued.

| È         | 9805<br>9818<br>9831<br>448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .9857<br>.9870<br>.9883<br>.9896                          | .99 <b>.</b><br>.99 <b>.</b><br>.993 <b>.</b><br>.994 <b>.</b> | .9961<br>4799.                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------------|
| 10        | .8984<br>.8984<br>.8997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .9023<br>.9036<br>.9049                                   | .9076<br>.9089<br>.9102<br>.9115                               | .9128<br>.9141<br>.9154          |
| à         | .8138<br>.8151<br>.8164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .8203<br>.8216<br>.8216                                   | .8255<br>.8255<br>.8268<br>.8281                               | .8394<br>.8307<br>.8320          |
| <u>``</u> | .7305<br>.7318<br>.7331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .7357<br>.7370<br>.7383<br>.7396                          | .7429<br>.7422<br>.7435                                        | .7461<br>.7474<br>.7487          |
| <u>"L</u> | .6471<br>.6484<br>.6497<br>.6510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .6536<br>.6536<br>.6549                                   | .6576<br>.6589<br>.6602<br>.6615                               | .6628<br>.6641<br>.6654          |
| è         | .5638<br>.5651<br>.5664<br>.5677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .5690<br>.5703<br>.5716<br>.5729                          | .5742<br>.5758<br>.5768                                        | .5794<br>.5807<br>.5820          |
| 2″        | .4805<br>.4818<br>.4831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .4857<br>.4870<br>.4883<br>.4896                          | .4922<br>.4922<br>.4935                                        | .4961<br>.4974<br>.4987          |
| 4         | .3971<br>.3984<br>.3997<br>.4010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .4023<br>.4036<br>.4049                                   | .4076<br>.4089<br>.4102                                        | .4128<br>.4141<br>.4154          |
| 8         | .3138<br>.3151<br>.3164<br>.3177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .3190<br>.3203<br>.3216                                   | .3242<br>.3255<br>.3268                                        | .3294<br>.3307<br>.3320          |
| 'n        | .2305<br>.2318<br>.2331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2357<br>.2370<br>.2383<br>.2396                          | .2422<br>.2422<br>.2435<br>.2448                               | .2461<br>.2474<br>.2487          |
| 1,        | .1471<br>.1484<br>.1497<br>.1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .1523<br>.1536<br>.1549<br>.1562                          | .1576<br>.1589<br>.1602<br>.1615                               | .1 <b>628</b><br>.1641<br>.1654  |
| ò         | .0638<br>.0651<br>.0664<br>.0677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0690<br>.0703<br>.0716                                   | .0755<br>.0755<br>.0768                                        | .0807<br>.0820                   |
| Inch.     | Alecalescales<br>Compared Compared Compare | reke olleneke<br>espansories (* jes<br>espansories (* jes | rokoskorko-d-<br>r 44000014-roko                               | ক্চ <b>ঞ্চ</b> ঞ্চ<br>ল্ব-ক্যঞ্ব |

#### MENSURATION

#### LENGTH.

Circumference of circle = diameter  $\times$  3.1416.

Diameter of circle = circumference  $\times$  0.3183.

Side of square of equal periphery as circle = diameter  $\times$  0.7854.

Diameter of circle of equal periphery as square = side  $\times$  1.2732.

Side of an inscribed square = diameter of circle  $\times$  0.7071.

Length of an arc = No. of degrees  $\times$  diameter  $\times$  0.008727.  $\pi$  = 3.14159265.



#### AREA.

Triangle = base  $\times$  half perpendicular height.

Parallelogram = base × perpendicular height.

Trapezoid = half the sum of the parallel sides × perpendicular height.

Trapezium, found by dividing in two triangles.

Circle = diameter squared  $\times$  0.7854; or,

= circumference squared  $\times$  0.07958.

Sector of circle = length of arc × half radius,

#### MENSURATION.—Continued.

Segment of circle = area of sector less triangle; also, for

flat segments very nearly = 
$$\frac{4 \text{ V}}{3}$$
  $\sqrt{0.388 \text{ v}^2 + \frac{c^2}{4}}$ 

Side of square of equal area as circle = diameter × 0.8862; also = circumference × 0.2821.

Diameter of circle of equal area as square = side × 1.1284.

Parabola = base  $\times \frac{2}{3}$  height.

Ellipse = long diameter  $\times$  short diameter  $\times$  0.7854.

Regular polygon = sum of sides × half perpendicular distance from center to sides.

Surface of cylinder = circumference  $\times$  height + area of both ends.

Surface of sphere = diameter squared  $\times$  3.1416.

also= circumference × diameter.

Surface of a right pyramid or cone = periphery or circumference of base × half slant height.

Surface of a frustrum of a regular right pyramid or cone = sum of peripheries or circumferences of the two ends × half slant height + area of both ends.

#### SOLID CONTENTS.

Prism, right or oblique—area of base × perpendicular height. Cylinder, right or oblique— area of section at right angles to sides × length of side.

Sphere = diameter cubed  $\times$  0.5236.

also= surface × 1/6 diameter.

Pyramid or cone, right or oblique, regular or irregular = area of base  $\times \frac{1}{2}$  perpendicular height.

#### PRISMOIDAL FORMULA.

A prismoid is a solid bounded by six plane surfaces, only two of which are parallel.

To find the contents of a prismoid, add together the areas of the two parallel surfaces, and four times the area of a section taken midway between and parallel to them, and multiply the sum by 1/6th of the perpendicular distance between the parallel surfaces.

For Thicknesses from  $\frac{1}{16}$  in. to 2 in. and Widths from 1 in. to 12% in.

| Thickness<br>in Inches.                                                                                                                             | 1′′                          | 1¼′′                         | 1½"                          | 1¾′′                         | 2"                           | 2¼″                          | 2½"                          | 2¾′′                         | 12"                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|
| 16<br>18<br>8<br>8<br>16                                                                                                                            | .063<br>.125<br>.188         | .078<br>.156<br>.234         | .094<br>.188<br>.281         | .109<br>.219<br>.328<br>.438 | .125<br>.250<br>.375<br>.500 | .141<br>.281<br>.422<br>.563 | .156<br>.313<br>.469         | .172<br>-344<br>.516<br>.688 | .750<br>1.50<br>2.25<br>3.00     |
| 156<br>38<br>16                                                                                                                                     | .313<br>.375<br>.438<br>.500 | .391<br>.469<br>•547<br>.625 | .469<br>.563<br>.656<br>.750 | .547<br>.656<br>.766<br>.875 | .625<br>.750<br>.875<br>1.00 | .703<br>.844<br>.984<br>1.13 | .781<br>.938<br>1.09<br>1.25 | .859<br>1.03<br>1.20<br>1.38 | 3.75<br>4.50<br>5.25<br>6.00     |
| $   \begin{array}{c}     9 \\     \hline{16} \\     \hline{5} \\     \hline{8} \\     \hline{116} \\     \hline{3} \\     \hline{4}   \end{array} $ | .563<br>.625<br>.688<br>.750 | .703<br>.781<br>.859<br>.938 | .844<br>.938<br>1.03<br>1.13 | .984<br>1.09<br>1.20<br>1.31 | 1.13<br>1.25<br>1.38<br>1.50 | 1.27<br>1.41<br>1.55<br>1.69 | 1.41<br>1.56<br>1.72<br>1.88 | 1.55<br>1.72<br>1.89<br>2.06 | 6.75<br>7.50<br>8.25<br>9.00     |
| 136<br>7<br>8<br>15<br>16<br>I                                                                                                                      | .813<br>.875<br>.938<br>1.00 | 1.02<br>1.09<br>1.17<br>1.25 | 1.22<br>1.31<br>1.41<br>1.50 | 1.42<br>1.53<br>1.64<br>1.75 | 1.63<br>1.75<br>1.88<br>2.00 | 1.83<br>1.97<br>2.11<br>2.25 | 2.03<br>2.19<br>2.34<br>2.50 | 2.23<br>2.41<br>2.58<br>2.75 | 9.75<br>10.50<br>11.25<br>12.00  |
| 1 16<br>1 8<br>1 3<br>1 16<br>1 4                                                                                                                   | 1.06<br>1.13<br>1.19<br>1.25 | 1.33<br>1.41<br>1.48<br>1.56 | 1.59<br>1.69<br>1.78<br>1.88 | 1.86<br>1.97<br>2.08<br>2.19 | 2.13<br>2.25<br>2.38<br>2.50 | 2.39<br>2.53<br>2.67<br>2.81 | 2.66<br>2.81<br>2.97<br>3.13 | 2.92<br>3.09<br>3.27<br>3.44 | 12.75<br>13.50<br>14.25<br>15.00 |
| $1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$ $1\frac{1}{2}$                                                                                       | 1.31<br>1.38<br>1.44<br>1.50 | 1.64<br>1.72<br>1.80<br>1.88 | 1.97<br>2.06<br>2.16<br>2.25 | 2.30<br>2.41<br>2.52<br>2.63 | 2.63<br>2.75<br>2.88<br>3.00 | 2.95<br>3.09<br>3.23<br>3.38 | 3.28<br>3.44<br>3.59<br>3.75 | 3.61<br>3.78<br>3.95<br>4.13 | 15.75<br>16.50<br>17.25<br>18.00 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                               | 1.56<br>1.63<br>1.69<br>1.75 | 1.95<br>2.03<br>2.11<br>2.19 | 2.34<br>2.44<br>2.53<br>2.63 | 2.73<br>2.84<br>2.95<br>3.06 | 3.13<br>3.25<br>3.38<br>3.50 | 3.52<br>3.66<br>3.80<br>3.94 | 3.91<br>4.06<br>4.22<br>4.38 | 4.30<br>4.47<br>4.64<br>4.81 | 18.75<br>19.50<br>20.25<br>21.00 |
| 1 1 3 1 7 1 1 1 5 1 1 1 5 2                                                                                                                         | 1.81<br>1.88<br>1.94<br>2.00 | 2.27<br>2.34<br>2.42<br>2.50 | 2.72<br>2.81<br>2.91<br>3.00 | 3.17<br>3.28<br>3.39<br>3.50 | 3.63<br>3.75<br>3.88<br>4.00 | 4.08<br>4.22<br>4.36<br>4.50 | 4.53<br>4.69<br>4.84<br>5.00 | 4.98<br>5.16<br>5.33<br>5.50 | 21.75<br>22.50<br>23.25<br>24.00 |

| Thickness<br>in Inches,                                                                                                  | 3″                           | 3¼″                          | 3½′′                         | 3¾″                          | 4′′                          | 4¼′′                         | 4½′′                         | 4¾′′                         | 12"                              |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|
| 16<br>16<br>8<br>3<br>16                                                                                                 | .188<br>-375<br>.563<br>.750 | .203<br>.406<br>.609         | .219<br>.438<br>.656         | .234<br>.469<br>.703         | .250<br>.500<br>.750<br>1.00 | .266<br>.531<br>.797<br>1.06 | .281<br>.563<br>.844         | .297<br>.594<br>.891         | .750<br>1.50<br>2.25<br>3.00     |
| 15<br>3<br>8<br>7<br>16<br>1                                                                                             | .938<br>1.13<br>1.31<br>1.50 | 1.02<br>1.22<br>1.42<br>1.63 | 1.09<br>1.31<br>1.53<br>1.75 | 1.17<br>1.41<br>1.64<br>1.88 | 1.25<br>1.50<br>1.75<br>2.00 | 1.33<br>1.59<br>1.86<br>2.13 | 1.41<br>1.69<br>1.97<br>2.25 | 1.48<br>1.78<br>2.08<br>2.38 | 3.75<br>4.50<br>5.25<br>6.00     |
| 18<br>5<br>11<br>16<br>3                                                                                                 | 1.69<br>1.88<br>2.06<br>2.25 | 1.83<br>2.03<br>2.23<br>2.44 | 1.97<br>2.19<br>2.41<br>2.63 | 2.11<br>2.34<br>2.58<br>2.81 | 2.25<br>2.50<br>2.75<br>3.00 | 2.39<br>2.66<br>2.92<br>3.19 | 2.53<br>2.81<br>3.09<br>3.38 | 2.67<br>2.97<br>3.27<br>3.56 | 6.75<br>7.50<br>8.25<br>9.00     |
| $   \begin{array}{r}     \frac{13}{16} \\     \frac{7}{8} \\     \cdot \frac{15}{16} \\     \hline     1   \end{array} $ | 2.44<br>2.63<br>2.81<br>3.00 | 2.64<br>2.84<br>3.05<br>3.25 | 2.84<br>3.06<br>3.28<br>3.50 | 3.05<br>3.28<br>3.52<br>3.75 | 3.25<br>3.50<br>3.75<br>4.00 | 3.45<br>3.72<br>3.98<br>4.25 | 3.66<br>3.94<br>4.22<br>4.50 | 3.86<br>4.16<br>4.45<br>4.75 | 9.75<br>10.50<br>11.25<br>12.00  |
| I 16<br>I 18<br>I 18<br>I 16<br>I 14                                                                                     | 3.19<br>3.38<br>3.56<br>3.75 | 3.45<br>3.66<br>3.86<br>4.06 | 3.72<br>3 94<br>4.16<br>4.38 | 3.98<br>4.22<br>4.45<br>4.69 | 4.25<br>4.50<br>4.75<br>5.00 | 4.52<br>4.78<br>5.05<br>5.31 | 4.78<br>5.06<br>5.34<br>5.63 | 5.05<br>5.34<br>5.64<br>5.94 | 12.75<br>13.50<br>14.25<br>15.00 |
| I 15<br>I 3<br>I 7<br>I 16<br>I 1                                                                                        | 3.94<br>4.13<br>4.31<br>4.50 | 4.27<br>4.47<br>4.67<br>4.88 | 4.59<br>4.81<br>5.03<br>5.25 | 4.92<br>5.16<br>5.39<br>5.63 | 5.25<br>5.50<br>5.75<br>6.00 | 5.58<br>5.84<br>6.11<br>6.38 | 5.91<br>6.19<br>6.47<br>6.75 | 6.23<br>6.53<br>6.83<br>7.13 | 15.75<br>16.50<br>17.25<br>18.00 |
| $ \begin{array}{c} 1 & \frac{9}{16} \\ 1 & \frac{5}{8} \\ 1 & \frac{11}{16} \\ 1 & \frac{3}{4} \end{array} $             | 4.69<br>4.88<br>5.06<br>5.25 | 5.08<br>5.28<br>5.48<br>5.69 | 5.47<br>5.69<br>5.91<br>6.13 | 5.86<br>6.09<br>6.33<br>6.56 | 6.25<br>6.50<br>6.75<br>7.00 | 6.64<br>6.91<br>7.17<br>7.44 | 7.03<br>7.31<br>7.59<br>7.88 | 7.42<br>7.72<br>8.02<br>8.31 | 18.75<br>19.50<br>20.25<br>21.00 |
| 1 <del>  3</del>   1   <del>3</del>   1   <del>3</del>   1   <del>1</del>   5   2     2                                  | 5.44<br>5.63<br>5.81<br>6.00 | 5.89<br>6.09<br>6.30<br>6.50 | 6.34<br>6.56<br>6.78<br>7.00 | 6.80<br>7.03<br>7.27<br>7.50 | 7.25<br>7.50<br>7.75<br>8.00 | 7.70<br>7.97<br>8.23<br>8.50 | 8.16<br>8.44<br>8.72<br>9.00 | 8.61<br>8.91<br>9.20<br>9.50 | 21.75<br>22.50<br>23.25<br>24.00 |

| Thickness<br>in Inches.                                                                                                    | 5′′                           | 5¼″                            | 5½"                                      | 5¾′′                             | 6′′                              | 6¼′′                             | 6½′′                             | 6¾′′                             | 12"                              |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 1<br>16<br>8<br>3<br>16<br>4                                                                                               | .313<br>.625<br>.938          | .328<br>.656<br>.984           | .344<br>.688<br>1.03                     | ·359<br>.719<br>1.08             |                                  | .391<br>.781<br>1.17<br>1.56     | .406<br>.813<br>1.22<br>1.63     |                                  |                                  |
| 5<br>16<br>3<br>8<br>7<br>16<br>1                                                                                          | 1.56<br>1.88<br>2.19<br>2.50  | 1.64<br>1.97<br>2.30<br>2.63   | 1.72<br>2.06<br>2.41<br>2.75             | 1.80<br>2.16<br>2.52<br>2.88     | 1.88<br>2.25<br>2.63<br>3.00     | 1.95<br>2.34<br>2.73<br>3.13     | 2.03<br>2.44<br>2.84<br>3.25     | 2.11<br>2.53<br>2.95<br>3.38     | 3.75<br>4.50<br>5.25<br>6.00     |
| 9<br>T 6<br>5<br>8<br>1 1<br>1 6<br>3                                                                                      | 2.81<br>3.13<br>3.44<br>3.75  | 2.95<br>3.28<br>3.61<br>3.94   | 3.09<br>3.44<br>3.78<br>4.13             | 3.23<br>3.59<br>3.95<br>4.31     | 3.38<br>3.75<br>4.13<br>4.50     | 3.52<br>3.91<br>4.30<br>4.69     | 3.66<br>4.06<br>4.47<br>4.88     | 3.80<br>4.22<br>4.64<br>5.06     | 6.75<br>7.50<br>8.25<br>9.75     |
| 136<br>7<br>8<br>15<br>16<br>I                                                                                             | 4.06<br>4.38<br>4.69<br>5.00  | 4.27<br>4.59<br>4.92<br>5.25   | 4.47<br>4.81<br>5.16<br>5.50             | 4.67<br>5.03<br>5.39<br>5.75     | 4.88<br>5.25<br>5.63<br>6.00     | 5.08<br>5.47<br>5.86<br>6.25     | 5.28<br>5.69<br>6.09<br>6.50     | 5.48<br>5.91<br>6.33<br>6.75     | 9.75<br>10.50<br>11.25<br>12.00  |
| I 16<br>I 18<br>I 16<br>I 16<br>I 16<br>I 1                                                                                | 5.31<br>5.63<br>5.94<br>6.25  | 5.58<br>5.91<br>6.23<br>6.56   | 5.84<br>6.19<br>6.53<br>6.88             | 6.11<br>6.47<br>6.83<br>7.19     | 6.38<br>6.75<br>7.13<br>7.50     | 6.64<br>7.03<br>7.42<br>7.81     | 6.91<br>7.31<br>7.72<br>8.13     | 7.17<br>7.59<br>8.02<br>8.44     | 12.75<br>13.50<br>14.25<br>15.00 |
| 1 5 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                    | 6.56<br>6.88<br>7.19<br>7.50  | 6.89<br>7.22<br>7.55<br>7.88   | 7.22<br>7.56<br>7.91<br>8.25             | 7.55<br>7.91<br>8.27<br>8.63     | 7.88<br>8.25<br>8.63<br>9.00     | 8.20<br>8.59<br>8.98<br>9.38     | 8.53<br>8.94<br>9.34<br>9.75     | 8.86<br>9.28<br>9.70<br>10.13    | 15.75<br>16.50<br>17.25<br>18.00 |
| I <sup>9</sup> / <sub>16</sub> I <sup>5</sup> / <sub>8</sub> I <sup>11</sup> / <sub>16</sub> I <sup>3</sup> / <sub>4</sub> | 7.81<br>8.13<br>8.44<br>8.75  | 8.20<br>8.53<br>8.86<br>9.19   | 8.59<br>8.94<br>9.28<br>9.63             | 8.98<br>9.34<br>9.70<br>10.06    | 9.38<br>9.75<br>10.13<br>10.50   | 9·77<br>10.16<br>10.55<br>10.94  | 10.16<br>10.56<br>10.97<br>11.38 | 10.55<br>10.97<br>11.39<br>11.81 | 18.75<br>19.50<br>20.25<br>21.00 |
| I 1 3<br>I 7<br>I 1 5<br>I 1 1 6<br>2                                                                                      | 9.06<br>9.38<br>9.69<br>10.00 | 9.52<br>9.84<br>10.17<br>10.50 | 9.97<br>10.31<br>10.66<br>11. <b>0</b> 0 | 10.42<br>10.78<br>11.14<br>11.50 | 10.88<br>11.25<br>11.63<br>12.00 | 11.33<br>11.72<br>12.11<br>12.50 | 11.78<br>12.19<br>12.59<br>13.00 | 12.23<br>12.66<br>13.08<br>13.50 | 21.75<br>22.50<br>23.25<br>24.00 |

| Thickness<br>in Inches.                                                                                                                                               | 7′′                          | 7¼′′                         | 7½′′                         | 7¾′′                         | 8′′                          | 8¼″                          | 8½′′                         | 8¾′′                         | 12′′                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|
| 16<br>16                                                                                                                                                              | .438                         | ·453<br>.906                 | .469<br>9.38                 | .484                         |                              | .516<br>1.03                 | .531                         | ·547                         | .750<br>1.50                    |
| 1 8<br>3 1 6<br>1 4                                                                                                                                                   | 1.31                         | 1.36                         | 1.41                         | 1.45<br>1.94                 | 1.50<br>2.00                 | 1.55<br>2.06                 | 1.59<br>2.13                 | 1.64<br>2.19                 | 2.25<br>3.00                    |
| $\frac{1}{8}$ $\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$                                                                                                              | 2.19                         | 2.27                         | 2.34                         | 2.42                         | 2.50                         | 2.58                         | 2.66                         | 2.73                         | 3.75                            |
|                                                                                                                                                                       | 2.63                         | 2.72                         | 2.81                         | 2.91                         | 3.00                         | 3.09                         | 3.19                         | 3.28                         | 4.50                            |
|                                                                                                                                                                       | 3.06                         | 3.17                         | 3.28                         | 3.39                         | 3.50                         | 3.61                         | 3.72                         | 3.83                         | 5.25                            |
|                                                                                                                                                                       | 3.50                         | 3.63                         | 3.75                         | 3.88                         | 4.00                         | 4.13                         | 4.25                         | 4.38                         | 6.00                            |
| 9<br>16<br>5<br>8<br>11<br>16<br>3                                                                                                                                    | 3.94<br>4.38<br>4.81<br>5.25 | 4.08<br>4.53<br>4.98<br>5.44 | 4.22<br>4.69<br>5.16<br>5.63 | 4.36<br>4.84<br>5.33<br>5.81 | 4.50<br>5.00<br>5.50<br>6.00 | 4.64<br>5.16<br>5.67<br>6.19 | 4.78<br>5.31<br>5.84<br>6.38 | 4.92<br>5.47<br>6.02<br>6.56 | 6.75<br>7.50<br>8.25<br>9.00    |
| 13<br>16<br>7<br>8<br>15<br>16<br>I                                                                                                                                   | 5.69<br>6.13<br>6.56<br>7.00 | 5.89<br>6.34<br>6.80<br>7.25 | 6.09<br>6.56<br>7.03<br>7.50 | 6.30<br>6.78<br>7.27<br>7.75 | 6.50<br>7.00<br>7.50<br>8.00 | 6.70<br>7.22<br>7.73<br>8.25 | 6.91<br>7.44<br>7.97<br>8.50 | 7.11<br>7.66<br>8.20<br>8.75 | 9.75<br>10.50<br>11.25<br>12.00 |
| $\begin{bmatrix} 1 \\ 1 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 1 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ | 7.44                         | 7.70                         | 7.97                         | 8.23                         | 8.50                         | 8.77                         | 9.03                         | 9.30                         | 12.75                           |
|                                                                                                                                                                       | 7.88                         | 8.16                         | 8.44                         | 8.72                         | 9.00                         | 9.28                         | 9.56                         | 9.84                         | 13.50                           |
|                                                                                                                                                                       | 8.31                         | 8.61                         | 8.91                         | 9.20                         | 9.50                         | 9.80                         | 10.09                        | 10.39                        | 14.25                           |
|                                                                                                                                                                       | 8.75                         | 9.06                         | 9.38                         | 9.69                         | 10.00                        | 10.31                        | 10.63                        | 10.94                        | 15.00                           |
| $\begin{array}{c} 1 & \frac{5}{16} \\ 1 & \frac{3}{8} \\ 1 & \frac{7}{16} \\ 1 & \frac{1}{2} \end{array}$                                                             | 9.19                         | 9.52                         | 9.84                         | 10.17                        | 10.50                        | 10.83                        | 11.16                        | 11.48                        | 15.75                           |
|                                                                                                                                                                       | 9.63                         | 9.97                         | 10.31                        | 10.66                        | 11.00                        | 11.34                        | 11.69                        | 12.03                        | 16.50                           |
|                                                                                                                                                                       | 10.06                        | 10.42                        | 10.78                        | 11.14                        | 11.50                        | 11.86                        | 12.22                        | 12.58                        | 17.25                           |
|                                                                                                                                                                       | 10.50                        | 10.88                        | 11.25                        | 11.63                        | 12.00                        | 12.38                        | 12.75                        | 13.13                        | 18.00                           |
| I                                                                                                                                                                     | 10.94                        | 11.33                        | 11.72                        | 12.11                        | 12.50                        | 12.89                        | 13.28                        | 13.67                        | 18.75                           |
|                                                                                                                                                                       | 11.38                        | 11.78                        | 12.19                        | 12.59                        | 13.00                        | 13.41                        | 13.81                        | 14.22                        | 19.50                           |
|                                                                                                                                                                       | 11.81                        | 12.23                        | 12.66                        | 13.08                        | 13.50                        | 13.92                        | 14.34                        | 14.77                        | 20.25                           |
|                                                                                                                                                                       | 12.25                        | 12.69                        | 13.13                        | 13.56                        | 14.00                        | 14.44                        | 14.88                        | 15.31                        | 21.00                           |
| $ \begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array} $                                                                                | 12.69                        | 13.14                        | 13.59                        | 14.05                        | 14.50                        | 14.95                        | 15.41                        | 15.86                        | 21.75                           |
|                                                                                                                                                                       | 13.13                        | 13.59                        | 14.06                        | 14.53                        | 15.00                        | 15.47                        | 15.94                        | 16.41                        | 22.50                           |
|                                                                                                                                                                       | 13.56                        | 14.05                        | 14.53                        | 15.02                        | 15.50                        | 15.98                        | 16.47                        | 16.95                        | 23.25                           |
|                                                                                                                                                                       | 14.00                        | 14.50                        | 15.00                        | 15.50                        | 16.00                        | 16.50                        | 17.00                        | 17.50                        | 24.00                           |

| Thickness<br>in Inches.                                                                               | 9″                               | 9¼″                              | 9½"                              | 9¾′′                             | 10′′                             | 10}"                             | 10½″                             | 10¾″                             | 12"                              |
|-------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| 1<br>1 6<br>1<br>8<br>3<br>1 6<br>1                                                                   | .563<br>1.13<br>1.69<br>2.25     | .578<br>1.16<br>1.73<br>2.31     | .594<br>1.19<br>1.78<br>2.38     | .609<br>1.22<br>1.83<br>2.44     | .625<br>1.25<br>1.88<br>2.50     | .641<br>1.28<br>1.92<br>2.56     | .656<br>1.31<br>1.97<br>2.63     | .672<br>1.34<br>2.02<br>2.69     | .750<br>1.50<br>2.25<br>3.00     |
| 5<br>1 6<br>3<br>8<br>7<br>1 6<br>1                                                                   | 2.81<br>3.38<br>3.94<br>4.50     | 2.89<br>3.47<br>4.05<br>4.63     | 2.97<br>3.56<br>4.16<br>4.75     | 3.05<br>3.66<br>4.27<br>4.88     | 3.13<br>3.75<br>4.38<br>5.00     | 3.20<br>3.84<br>4.48<br>5.13     | 3.28<br>3.94<br>4.59<br>5.25     | 3.36<br>4.03<br>4.70<br>5.38     | 3·75<br>4·50<br>5·25<br>6.00     |
| 9<br>16<br>5<br>8<br>11<br>16<br>3                                                                    | 5.06<br>5.63<br>6.19<br>6.75     | 5.20<br>5.78<br>6.36<br>6.94     | 5·34<br>5·94<br>6·53<br>7·13     | 5.48<br>6.09<br>6.70<br>7.31     | 5.63<br>6.25<br>6.88<br>7.50     | 5.77<br>6.41<br>7.05<br>7.69     | 5.91<br>6.56<br>7.22<br>7.88     | 6.05<br>6.72<br>7.39<br>8.06     | 6.75<br>7.50<br>8.25<br>9.00     |
| 1 3<br>7 8<br>1 5<br>1 5<br>1 6                                                                       | 7.31<br>7.88<br>8.44<br>9.00     | 7.52<br>8.09<br>8.67<br>9.25     | 7.72<br>8.31<br>8.91<br>9.50     | 7.92<br>8.53<br>9.14<br>9.75     | 8.13<br>8.75<br>9.38<br>10.00    | 8.33<br>8.97<br>9.61<br>10.25    | 8.53<br>9.19<br>9.84<br>10.50    | 8.73<br>9.41<br>10.08<br>10.75   | 9.75<br>10.50<br>11.25<br>12.00  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 | 9.56<br>10.13<br>10.69<br>11.25  | 9.83<br>10.41<br>10.98<br>11.56  | 10.09<br>10.69<br>11.28<br>11.88 | 10.36<br>10.97<br>11.58<br>12.19 | 10.63<br>11.25<br>11.88<br>12.50 | 10.89<br>11.53<br>12.17<br>12.81 | 11.16<br>11.81<br>12.47<br>13.13 | 11.42<br>12.09<br>12.77<br>13.44 | 12.75<br>13.50<br>14.25<br>15.00 |
| $\begin{array}{c} 1  \frac{5}{16} \\ 1  \frac{3}{8} \\ 1  \frac{7}{16} \\ 1  \frac{1}{2} \end{array}$ | 11.81<br>12.38<br>12.94<br>13.50 | 12.14<br>12.72<br>13.30<br>13.88 | 12.47<br>13.06<br>13.66<br>14.25 | 12.80<br>13.41<br>14.02<br>14.63 | 13.13<br>13.75<br>14.38<br>15.00 | 13.45<br>14.09<br>14.73<br>15.38 | 13.78<br>14.44<br>15.09<br>15.75 | 14.11<br>14.78<br>15.45<br>16.13 | 15.75<br>16.50<br>17.25<br>18.00 |
| 1                                                                                                     | 14.06<br>14.63<br>15.19<br>15.75 | 14.45<br>15.03<br>15.61<br>16.19 | 14.84<br>15.44<br>16.03<br>16.63 | 15.23<br>15.84<br>16.45<br>17.06 | 15.63<br>16.25<br>16.88<br>17.50 | 16.02<br>16.66<br>17.30<br>17.94 | 16.41<br>17.06<br>17.72<br>18.38 | 16.80<br>17.47<br>18.14<br>18.81 | 18.75<br>19.50<br>20.25<br>21.00 |
| 1 1 3<br>1 7<br>1 1 5<br>1 1 5<br>2                                                                   | 16.31<br>16.88<br>17.44<br>18.00 | 16.77<br>17.34<br>17.92<br>18.50 | 17.22<br>17.81<br>18.41<br>19.00 | 17.67<br>18.28<br>18.89<br>19.50 | 18.13<br>18.75<br>19.38<br>20.00 | 18.58<br>19.22<br>19.86<br>20.50 | 19.03<br>19.69<br>20.34<br>21.00 | 19.48<br>20.16<br>20.83<br>21.50 | 21.75<br>22.50<br>23.25<br>24.00 |

| ck ness<br>inches.                     | 11"   | 111/  | 11½′′ | 113′′ | 12″   | 12}′′ | 121// | 12¾″  |
|----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| J.                                     | .688  | .703  | .719  | .734  | .750  | .766  | .781  | .797  |
| Ť,                                     | 1.38  | 1.41  | 1.44  | 1.47  | 1.50  | 1.53  | 1.56  | 1.59  |
| -å-                                    | 2.06  | 2.11  | 2.16  | 2.20  | 2.25  | 2.30  | 2.34  | 2.39  |
| 16<br>16<br>3<br>16<br>14              | 2.75  | 2.81  | 2.88  | 2.94  | 3.00  | 3.06  | 3.13  | 3.19  |
| 5<br>16<br>3<br>7<br>16<br>1<br>1<br>2 | 3.44  | 3.52  | 3.59  | 3.67  | 3.75  | 3.83  | 3.91  | 3.98  |
| <u>3</u>                               | 4.13  | 4.22  | 4.31  | 4.41  | 4.50  | 4.59  | 4.69  | 4.78  |
| <sup>7</sup> ह                         | 4.81  | 4.92  | 5.03  | 5.14  | 5.25  | 5.36  | 5.47  | 5.58  |
| ŀ                                      | 5.50  | 5.63  | 5.75  | 5.88  | 6.00  | 6.13  | 6.25  | 6.38  |
| e<br>1                                 | 6.19  | 6.33  | 6.47  | 6.61  | 6.75  | 6.89  | 7.03  | 7.17  |
|                                        | 6.88  | 7.03  | 7.19  | 7.34  | 7.50  | 7.66  | 7.81  | 7.97  |
| ŧ                                      | 7.56  | 7.73  | 7.91  | 8.08  | 8.25  | 8.42  | 8.59  | 8.77  |
| -                                      | 8.25  | 8.44  | 8.63  | 18.8  | 9.00  | 9.19  | 9.38  | 9.56  |
| <del>}</del>                           | 8.94  | 9.14  | 9.34  | 9.55  | 9.75  | 9.95  | 1016  | 10.36 |
|                                        | 9.63  | 9.84  | 10.06 | 10.28 | 10.50 | 10 72 | 10.94 | 11.16 |
|                                        | 10.31 | 10.55 | 10.78 | 11.02 | 11.25 | 11.48 | 11.72 | 11.95 |
|                                        | 00.11 | 11.25 | 11.50 | 11.75 | 12.00 | 12.25 | 12 50 | 12.75 |
|                                        | 11.69 | 11.95 | 12 22 | 12 48 | 12.75 | 13.02 | 13.28 | 13.55 |
| •                                      | 12.38 | 12.66 | 12.94 | 13.22 | 13.50 | 13.78 | 14.06 | 14.34 |
|                                        | 13.06 | 13.36 | 13.66 | 13.95 | 14.25 | 14.55 | 14.84 | 15.14 |
| •                                      | 13.75 | 14 06 | 14.38 | 14.69 | 15,00 | 15.31 | 15.63 | 15.94 |
|                                        | 14.44 | 14.77 | 15.09 | 15.42 | 15.75 | 16.08 | 16.41 | 16.73 |
|                                        | 15.13 | 15.47 | 15.81 | 16.16 | 16.50 | 16.84 | 17.19 | 17.53 |
|                                        | 15.81 | 16.17 | 16 53 | 16.89 | 17.25 | 17.61 | 17.97 | 18.33 |
|                                        | 16.50 | 16.88 | 17.25 | 17.63 | 18.00 | 18.38 | 18.75 | 19.13 |
|                                        | 17.19 | 17.58 | 17.97 | 18.36 | 18.75 | 19.14 | 1953  | 19.92 |
| Î                                      | 17.88 | 18.28 | 18.69 | 19.09 | 19.50 | 1991  | 20.31 | 20.72 |
|                                        | 18.56 | 18.98 | 19.41 | 19.83 | 20.25 | 20.67 | 21.09 | 21.52 |
|                                        | 19.25 | 19.69 | 20.13 | 20.56 | 21.00 | 21.44 | 21.88 | 22 31 |
|                                        | 19.94 | 20.39 | 20 84 | 21.30 | 21.75 | 22.20 | 22.66 | 23.11 |
|                                        | 20.63 | 21.09 | 21.56 | 22.03 | 22.50 | 22.97 | 23.44 | 23.91 |
|                                        |       | 21.80 | 22.28 | 22.77 | 23.25 | 23.73 | 24.22 | 24.70 |
| ı                                      | 22.00 | 22.50 | 23.00 | 23.50 | 24.00 | 24.50 | 25.00 | 25.50 |

## Areas and Circumferences of Circles

FROM 1 TO 50 FRET [advancing by an Inch], OR FROM 1 TO 50 INCHES [advancing by a Twelfth].

| Dia.      | Агеа.   | Circum. | Dia. | Area.   | Circum.   | Dia.  | Area.              | Circum.  |
|-----------|---------|---------|------|---------|-----------|-------|--------------------|----------|
|           | Feet.   | Feet.   |      | Feet.   | Feet.     |       | Feet.              | Feet.    |
| 1ft.      | ·7854   | 3.1416  | 4    | 14.7481 | 13.6136   | 8     | 46.1641            | 24:0856  |
| 1         | .9217   | 3.4034  | 5    | 15.3208 | 13.8754   | 9     | 47.1731            | 24.3474  |
| 2         | 1.0690  | 3.6652  | 6    | 15.9043 | 14.1372   | .10   | 48.1930            | 24.6092  |
| 3         | 1.2272  | 3.9270  | 7    | 16.4989 | 14.3990   | 11    | 49.2238            | 24.8710  |
| 4         | 1.3963  | 4.1888  | 8    | 17.1043 | 14.6608   | 8ft.  | 50.2656            | 25.1328  |
| 5         | 1.5763  | 4.4506  | 9    | 17.7206 | 14.9226   | 1     | 51.3183            | 25.3946  |
| 6         | 1.7671  | 4.7124  | 10   | 18.3478 | 15.1844   | 2     | 52.3818            | 25.6564  |
| 7         | 1.9690  | 4.9742  | 11   | 18.9859 | 15.4462   | 3     | 53.4563            | 25.9182  |
| 8         | 2.1817  | 5.2360  | 5ft. | 19.6350 | 15.7080   | 4     | 54.5417            | 26.1800  |
| 9         | 2.4053  | 5.4978  | 1    |         | 15.9698   | 5     | 55.6380            | 26.4418  |
| 10        | 2.6398  | 5.7596  | 2    | 20.9658 | 16.2316   | 6     | 56.7451            | 26.7036  |
| 11        | 2.8853  | 6.0214  | 3    | 21.6476 | 16.4934   | 7     | 57.8632            | 26.9654  |
| 2ft.      | 3.1416  | 6.2832  | 4    | 22.3403 | 16.7552   | 8     | 58.9923            | 27.2272  |
| 1         | 3.4088  | 6.5450  | 5    | 23.0439 | 17.0170   | 9     | 60.1322            | 27.4890  |
| 2         | 3.6870  | 6.8068  | 6    | 23.7583 | 17.2788   | 10    | 61.2830            | 27.7508  |
| 3         | 3.9761  | 7.0686  | 7    | 24.4837 | 17.5406   | 11    | 62.4448            | 28.0126  |
| 4         | 4.2761  | 7.3304  | 8    | 25,2201 | 17.8024   | 0.00  | 00.0174            | 20.0744  |
| 5         | 4.5869  | 7.5922  | 9    | 25.9673 | 18.0642   | 9/t.  | 63.6174            | 28.2744  |
| 6         | 4.9087  | 7.8540  | 10   | 26.7254 | 18.3260 ! | 1     | 64:8010            | 28.5362  |
| 7         | 5.2415  | 8.1158  | 11   | 27 4944 | 18.5878   | 2     | 65.9954            | 28.7980  |
| 8         | 5.5852  | 8.3776  |      |         | 1 1       | 3     | 67:2008            | 29.0598  |
| ğ         | 5.9396  | 8.6394  | 6ft. | 28.2744 | 18.8496   | 4     | 68.4170            | 29.3216  |
| 10        | 6.3020  | 8.9012  | 1    | 29.0653 | 19.1114   | 5     | 69.6442            | 29.5834  |
| 11        | 6.6814  | 9.1630  | 2    | 29.8670 | 19.3732   | 6     | 70.8823            | 29.8452  |
|           |         | Į.      | 3    | 30.6797 | 19.6350   | 7     | 72.1314            | 30.1070  |
| 3ft.      | 7.0686  | 9.4248  | 4    | 31.5033 | 19.8968   | 8     | 73·3913<br>74·6621 | 30.3688  |
| 1         | 7.4668  | 9.6866  | 5    | 32.3378 | 20.1586   | 9     |                    | 30.6306  |
| 2         | 7.8758  | 9.9484  | 6    | 33.1831 | 20.4204   | 10    | 75.9439            | 30.8924  |
| 3         | 8.2958  | 10.2102 | 7    | 34.0394 | 20.6822   | 11    | 77.2365            | 31.1542  |
| 4         | 8.7267  | 10.4720 | 8    | 34.9067 | 20.9440   | 10ft. | 78.5400            | 31.4160  |
| 5         | 9.1685  | 10.7338 | 9    | 35.7848 | 21.2058   | 1     | 79.8545            | 31.6778  |
| 6         | 9.6211  | 10.9956 | 10   | 36.6738 | 21.4676   | 2     | 81 1798            | 31.9396  |
| 7         | 10.0848 | 11.2574 | 11   | 37.5738 | 21.7294   | 3     | 82.5161            | 32.2014  |
| 8         | 10.5593 | 11.5192 | 7ft. | 38.4846 | 21.9912   | 4     | 83.8633            | 32.4632  |
| 9         | 11 0447 | 11.7810 | 1    | 39.4064 | 22.2530   | 5     | 85.2214            | 32.7250  |
| 10        | 11.5410 | 12.0428 | 2    | 40.3390 | 22.5148   | 6     | 86.5903            | 32.9868  |
| 11        | 12.0483 | 12.3046 | 3    | 41.2826 | 22.7766   | 7     | 87.9703            | 33.2486  |
| 4ft.      | 12.5664 | 12.5664 | 4    | 42.2371 | 23.0384   | 8     | 89:3611            | 33.5104  |
| 1         | 13.0955 | 12.8282 | 5    | 43.2025 | 23.3002   | 9     | 90.7628            | 33.7722  |
| $\hat{2}$ | 13.6354 | 13.0900 | 6    | 44.1787 | 23.5620   | 10    | 92.1754            | 34.0340  |
| 3         | 14.1863 | 13.3518 | 7    |         | 23.8238   | 11    | 93.5990            | 34.2958  |
|           |         | ·       |      |         | <u> </u>  | ·     |                    | <u> </u> |

AREAS AND CIRCUMFERENCES OF CIRCLES.

| Dia. 11ft. | Area.    | Circum.         | l ]   |          |         |       |                  |         |
|------------|----------|-----------------|-------|----------|---------|-------|------------------|---------|
| 11.64      |          |                 | Dia.  | Area.    | Circum. | Dia.  | Area.            | Circum. |
| 7 1 44 1   | Feet.    | Feet.           |       | Feet.    | Feet.   | 1-1   | Feet.            | Feet.   |
| 1          | 95.0334  | 34.5576         | 4     | 161.3561 | 45.0296 | 8     | 245.1321         | 55.5016 |
| 1          | 96.4787  | 34·8194         | 5     | 163.2378 | 45.2914 | 9     | 247.4501         | 55.7634 |
| 2          | 97.9350  | 35.0812         | 6     | 165 1303 | 45.5532 | 10    | 249.7790         | 56.0252 |
| 3          | 99.4022  | 35.3430         | 7     | 167.0338 | 45.8150 | 11    | $252 \cdot 1188$ | 56.2870 |
| 4          | 100.8803 | 35.6048         | 8     | 168.9483 | 46.0768 | 18ft. | 254.4696         | 56.5488 |
| 5          | 102.3693 | 35.8666         | 9     | 170.8736 | 46.3386 | 1     | 256.8312         | 56.8106 |
| 6          | 103.8691 | 36.1284         | 10    | 172.8098 | 46.6004 | 2     | 259.2038         | 57.0724 |
| 7          | 105.3800 | 36.3902         | 11    | 174.7569 | 46.8622 | 3     | 261.5873         | 57.3342 |
| 8          | 106.9017 | <b>36.652</b> 0 | 15ft. | 176.7150 | 47.1240 | 4     | 263.9817         | 57.5960 |
| 9          | 108.4343 | 36 9138         | 10,2  | 178.6840 | 47.3858 | 5     | 266.3869         | 57.8578 |
| 10         | 109.9778 | 37.1756         | 2     | 180.6638 | 47.6476 | 6     | 268.8031         | 58.1196 |
| 11         | 111.5323 | 37.4374         | 3     | 182.6546 | 47.9094 | 7     | 271.2302         | 58.3814 |
| 12ft.      | 113.0976 | 37.6992         | 4     | 184.6563 | 48.1712 | 8     | 273.6683         | 58.6432 |
| 1          | 114.6739 | 37.9610         | 5     | 186.6689 | 48.4330 | 9     | 276.1172         | 58.9050 |
| 2          | 116.2610 | 38.2228         | 6     | 188.6924 | 48.6948 | 10    | 278.5770         | 59.1668 |
| 3          | 117.8591 | 38.4846         | 7     | 190.7267 | 48.9566 | 11    | 281.0477         | 59.4286 |
| 4          | 119.4680 | 38.7464         | 8     | 192.7721 | 49.2184 | 1 1   |                  |         |
| 5          | 121.0880 | 39.0082         | 9     | 194.8283 | 49.4802 | 19ft. | 283.5294         | 59.6904 |
| 6          | 122.7187 | 39.2700         | 10    | 196.8954 | 49.7420 | 1     | 286.0219         | 59.9522 |
| 7          | 124.3605 | 39.5318         | 11    | 198.9734 | 50.0038 | 2     | 288.5255         | 60.2140 |
| 8          | 126.0131 | 39.7936         |       |          |         | 3     | 291.0398         | 60 4758 |
| 9          | 127.6766 | 40.0554         | 16ft. | 201.0624 | 50.2656 | 4     | 293.5651         | 60.7376 |
| 10         | 129.3510 | 40.3172         | 1     | 203 1622 | 50.5274 | 5     | $296 \cdot 1012$ | 60.9994 |
| 11         | 131.0363 | 40.5790         | 2     | 205.2730 | 50.7892 | 6     | 298.6483         | 61.2612 |
|            |          |                 | 3     | 207.3947 | 51.0510 | 7     | 301 2064         | 61.5232 |
| 13/t.      | 132.7326 | 40.8408         | 4     | 209.5273 | 51.3128 | 8     | 303.7753         | 61.7848 |
| 1          | 134.4398 | 41.1026         | 5     | 211.6707 | 51.5746 | 9.    | 306.3551         | 62.0466 |
| 2          | 136.1578 | 41.3644         | 6     | 213.8252 | 51 8364 | 10    | 308 9458         | 62:3084 |
| 3          | 137.8868 | 41.6262         | 7     | 215.9904 | 52.0982 | 11    | 311.5475         | 62.5702 |
| 4          | 139.6267 | 41.8880         | 8     | 218.1667 | 52.3600 | 20ft  | 314.1600         | 62.8320 |
| 5          | 141.3774 | 42.1498         | 9     | 220.3538 | 52.6218 | 1     | 316.7834         | 63.0938 |
| 6          | 143.1391 | 42.4116         | 10    | 222.5518 | 52.8836 | 2     | 319.4178         | 63.3556 |
| 7          | 144.9117 | 42.6734         | 11    | 224.7607 | 53.1454 | 3     | 322.0631         | 63.6174 |
| 8          | 146.6953 | 42.9352         | 17ft. | 226.9806 | 53 4072 | 4     | 324.7193         | 63.8792 |
| 9          | 148.4897 | 43.1970         | 1     | 229.2113 | 53.6690 | 5     | 327.3864         | 64.1410 |
| 10         | 150.2950 | 43.4588         | 2     | 231.4530 | 53.9308 | 6     | 330.0643         | 64.4028 |
| 11         | 152·1113 | 43.7206         | 3     | 233.7056 | 54.1926 | 7     | 332.7532         | 64.6646 |
| 14ft.      | 153.9384 | 43.9824         | 4     | 235.9691 | 54.4544 | . 8   | 335.4531         | 64.9264 |
| 1          | 155.7764 | 44 2442         | 5     | 238.2434 | 54.7162 | 9     | 338.1638         | 65.1882 |
| 2          | 157.6254 | 44.5060         | 6     | 240.5287 | 54.9780 | 10    | 340.8854         | 65.4500 |
| 3          | 159.4853 | 44.7678         | 7     | 242.8249 | 55.2398 | 11    | 343.6180         | 65.7118 |

人名加莫拉特格特特格特 化压缩物用的现在分词形式 医过程性眼外部的复数形式 电超影物子区 一

152

AREAS AND CIRCUMFERENCES OF CIRCLES.

| Dia.                    | Area.                 | Circum.          | Dia.  | Area.    | Circum. | Dia.  | Area.    | Circum. |
|-------------------------|-----------------------|------------------|-------|----------|---------|-------|----------|---------|
|                         | Feet.                 | Feet.            |       | Feet.    | Feet.   |       | Feet.    | Feet.   |
| 21ft.                   | 346.3614              | 65.9736          | 4     | 465.0440 | 76.4456 | 8     | 601.1800 | 86.9176 |
| 1                       | 349.1157              | 66.2354          | 5     | 468.2347 | 76.7074 | 9     | 604.8071 | 87.1794 |
| 2                       | 351.8810              | 66.4972          | 6     | 471.4363 | 76.9692 | 10    | 608.4450 | 87:4412 |
| 3                       | 354.6572              | 66.7590          | 7     | 474.6488 | 77.2310 | 11    | 612.0938 | 87.7030 |
| 4                       | 357.4442              | 67.0208          | 8     | 477.8723 | 77.4928 | 28ft. | 615.7536 | 87-9648 |
| 5                       | 360.2422              | 67.2826          | 9     | 481.1066 | 77 7546 | 1     | 619.4242 | 88.2266 |
| 6                       | 363.0511              | 67.5444          | 10    | 484.3518 | 78.0164 | 2     | 623:1058 | 88.4884 |
| 7                       | 365.8709              | 67.8062          | 11    | 487:6076 | 78-2782 | 3     | 626.7983 | 88.7502 |
| 8                       | 368.7017              | 68.0680          | 25ft. | 490.8750 | 78.5400 | 4     | 630.5016 | 89.0120 |
| 9                       | 371.5433              | 68.3298          | 1     | 494.1529 | 78.8018 | 5     | 634.2159 | 89-2738 |
| 10                      | 374.3958              | 68.5916          | 2     | 497.4418 | 79.0636 | 6     | 637.9411 | 89.5356 |
| 11                      | 377.2592              | 68.8534          | 3     | 500.7416 | 79.3254 | 7     | 641.6772 | 89.7974 |
| 20.00                   | 380:1336              | 69.1152          | 4     | 504.0523 | 79.5872 | 8     | 645.4243 | 90.0592 |
| 22ft.                   | 383.0188              | 69:3770          | 5     | 507:3738 | 79.8490 | 9     | 649.1822 | 90.3210 |
| 1 2                     | 385.9150              | 69.6388          | 6     | 510.7063 | 80.1108 | 10    | 652.9510 | 90.5828 |
| 3                       | 388.8221              | 69.9006          | 7     | 514.0492 | 80.3726 | 11    | 656.7307 | 90.8446 |
| 4                       | 391.7400              | 70.1624          | 8     | 517.4040 | 80.6344 | 20.61 | 000 7014 | 01.1004 |
| 5                       | 394.6689              | 70 1024          | . 9   | 520.7693 | 80.8962 | 29ft. | 660.5214 | 91.1064 |
| 6                       | 397.6087              | 70.6860          | 10    | 524.1454 | 81.1580 | 1     | 664.3229 | 91.3682 |
| 7                       | 400.5594              | 70.9478          | 11    | 527.5324 | 81.4198 | 2     | 668-1354 | 91.6300 |
| 8                       | 403.5211              | 71.2096          | . 1   | •        |         | 3     | 671.9588 | 91.8918 |
| 9                       | 406.4936              | 71.4714          | 26ft. | 530.9304 | 81.6816 | 4     | 675.7931 | 92.1536 |
| 10                      | 409.4770              | 71.7332          | 1     | 534.3392 | 81.9434 | 5     | 679.6382 | 92.4154 |
| 11                      | 412.4713              | 71.9950          | 2     | 537.7590 | 82.2052 | 6     | 683:4943 | 92.6772 |
| 11                      |                       |                  | 3     | 541.1897 | 82.4670 | 7     | 687:3613 | 92.9390 |
| 23ft.                   | 415.4766              | 72.2568          | 4     | 544.6313 | 82.7288 | 8     | 691:2393 | 93.2008 |
| 1                       | 418.4927              | 72.5186          | 5     | 548 0837 | 82.9906 | 9     | 695.1281 | 93.4626 |
| 2                       | 421.5198              | 72.7804          | 6     | 551.5471 | 83.2524 | 10    | 699.0278 | 93.7244 |
| 3                       | 424 <sup>.</sup> 5578 | 73.0422          | 7     | 555.0214 | 83.5142 | 11    | 702.9384 | 93.9862 |
| 4                       | 427.6067              | 73.3040          | 8     | 558.5066 | 83.7760 | 30ft. | 706.8600 | 94.2480 |
| 5                       | 430.6664              | 73.5658          | 9     | 562.0028 | 84 0378 | 1     | 710.7924 | 94.5098 |
| 6                       | 433.7371              | 73.8276          | 10    | 565.5098 | 84.2996 | 2     | 714.7358 | 94.7716 |
| 7                       | 436 8187              | 74.0894          | 11    | 569.0277 | 84 5614 | 3     | 718.6901 | 95.0334 |
| 8                       | 439.9111              | 74.3512          | 27ft. | 572.5566 | 84.8232 | 4     | 722.6553 | 95.2952 |
| 9                       | 443.0147              | 74.6130          | 1     | 576.0963 | 85.0850 | 5     | 726.6313 | 95.5570 |
| 10                      | 446·1290              | 74.8748          | 2     | 579.6467 | 85:3468 | 6     | 730.6183 | 95.8188 |
| 11                      | 449.2542              | 75·13 <b>6</b> 6 | 3     | 583.2086 | 85.6086 | 7     | 734.6162 | 96.0806 |
| 24ft.                   | 452:3904              | 75:3984          | 4     | 586.7810 | 85.8704 | 8     | 738.6251 | 96.3424 |
| ا. <i>البلا</i> نة<br>1 | 455.5374              | 75.6602          | 5     | 590.3644 | 86.1322 | 9     | 742.6448 | 96.6042 |
| 2                       | 458.6954              | 75.9220          | 6     | 593.9587 | 86.3940 | 10    | 746.6754 | 96.8660 |
| 3                       | 461.8643              | 76.1838          | 7     | 597.5639 | 86.6558 | 11    | 750.7164 | 97.1278 |

AREAS AND CIRCUMFERENCES OF CIRCLES.

|                        |                    | ī         | 1     |           | 1          | . 1   |           |          |
|------------------------|--------------------|-----------|-------|-----------|------------|-------|-----------|----------|
| Dia.                   | Area.              | Circum.   | Dia.  | Area.     | Circum.    | Dia.  | Area.     | Circum.  |
|                        | Feet.              | Feet.     |       | Feet.     | Feet.      | ا ا   | Feet.     | Feet.    |
| 31ft.                  | <b>754·7694</b>    | 97.3896   | 4     | 925.8120  | 107.8616   | 8     | 1114:3080 | 118.3336 |
| 1                      | 758.8327           | 97.6514   | 5     | 930.3117  | 108.1234   | 9     | 1119.2441 | 118.5954 |
| 2                      | 762:9070           | 97.9132   | 6     | 934 8223  | 108.3852   | 10    | 1124·1910 | 118.8572 |
| 3                      | 766.9922           | 98.1750   | 7     | 939.3439  | 108.6470   | , 11  | 1129.1489 | 119.1190 |
| 4                      | 771.0883           | 98.4368   | 8     | 943 8763  | 108.9088   | 38ft. | 1134.1176 | 119:3808 |
| 5                      | $775 \cdot 1952$   | 98.6986   | 9     | 948.4196  | 109.1706   | 1     | 1139.0972 | 119.6426 |
| 6                      | 779.3131           | 98.9604   | 10    | 952.9738  | 109.4324   | 2     | 1144.0878 | 119.9044 |
| 7                      | $783 \cdot 4419$   | 99.2222   | 11    | 957.5392  | 109.6942   | 3     | 1149.0893 | 120.1662 |
| 8                      | 787:5817           | 99.4840   | 35ft. | 962.1150  | 109.9560   | 4     | 1154.1017 | 120.4280 |
| 9                      | 791.7323           | 99.7458   | 1     | 966.7019  | 110.2178   | 5     | 1159.1249 | 120.6898 |
| 10                     | 795.8938           | 100.0076  | 2     | 971.2998  | 110.4796   | 6     | 1164.1591 | 120.9516 |
| 11                     | 800.0662           | 100.2694  | 3     | 975.9086  | 110.7414   | 7     | 1169-2042 | 121.2134 |
| 99.61                  | 804.2496           | 100.5312  | 4     | 980.5287  | 111.0032   | 8     | 1174 2603 | 121.4758 |
| 32ft.                  | 808.4439           | 100 3312  | 5     | 985.1588  | 111.2650   | 9     | 1179.3272 | 121.7370 |
| 1 2                    | 812.6490           | 101.0548  | 6     | 989.8005  | 111.5268   | 10    | 1184:4050 | 121.9988 |
| 3                      | 816.8651           | 101 0348  | 7     | 994.4527  | 111.7886   | ii    | 1189.4937 | 122-2606 |
|                        | 821.0920           | 101.5784  | 8     | 999.1160  | 112.0504   |       |           |          |
| 4<br>5                 | 825.3299           | 101 3734  | 9     | 1003.7903 | 112.3122   | 39ft. | 1194.5934 | 122.5224 |
| 6                      | 829·5787           | 102.1020  | 10    | 1008.4754 | 112.5740   | 1     | 1199.7039 | 122 7848 |
| 7                      | 833.8384           | 102 1020  | 11    | 1013-1714 | 112.8358   | 2     | 1204.8254 | 123.0460 |
|                        | 838.1091           | 102 3036  |       |           | 1          | 3     | 1209.9578 | 123.3078 |
| 8                      | 842.3906           | 102 0230  | 36ft. | 1017.8784 | 113.0976   | 4     | 1215.1010 | 123:5696 |
|                        | 846.6830           | 102 3374  | 1     | 1022.5962 | 113.3594   | 5     | 1220.2552 | 123 8314 |
| 10<br>11               | 850.9863           | 103 1432  | 2     | 1027:3250 | 113.6212   | 6     | 1225.4203 | 124 0932 |
| 11                     |                    | i i       | 3     | 1032 0647 | 113.8830   | 7     | 1230.5963 | 124.3550 |
| 33ft.                  | 855.3006           | 103.6728  | 4     | 1036 8153 | 114 1448   | . 8   | 1235.7833 | 124.6168 |
| 1                      | 859.6257           | 103.9346  | 5     | 1041 5767 | 114.4066   | 9     | 1240.9811 | 124.8786 |
| 2                      | 863.9618           | 104.1964  | 6     |           | 114.6684   | 10    | 1246 1898 | 125.1404 |
| 3                      | 868:3088           | 104.4582  | 7     | 1051.1324 | 114.9302   | 11    | 1251.4094 | 125.4022 |
| 4                      | 872.6667           | 104.7200  | 8     | 1055.9266 | 115.1920   | 40ft. | 1256.6400 | 125.6640 |
| 5                      | 877.0354           | 104.9818  | 9     | 1060.7318 | 115.4538   | 1     | 1261.8814 | 125.9258 |
| <b>6</b> <sup>l</sup>  | 881.4151           | 105.2436  | 10    | 1065.5478 | 115.7156   | 2     | 1267 1338 | 126.1876 |
| <b>7</b>  <br><b>8</b> | 885 8057           | 105.5054  | 11    | 1070.3747 | 115.9774   | 3     | 1272.3971 | 126.4494 |
|                        | 890.2073           | 105.7672  | 37ft. | 1075-2126 | 116-2392   | 4     | 1277.6712 | 126.7112 |
| 9                      | 894.6197           | 106.0290  | 1     | 1080 0613 | 116.5010   | 5     | 1282.9563 | 126.9730 |
| 10                     | 899.0430           | 106.2908  | 2     | 1084.9210 | 116.7628   | 6     | 1288.2523 | 127 2348 |
| 11                     | 903.4772           | 106.5526  | 3     |           | 117.0246   | 7     | 1293.5592 | 127.4966 |
| 21.54                  | 907.9224           | 106.8144  | 4     | 1094.6731 | 117.2864   | 8     | 1298.8770 | 127.7584 |
| 34ft.                  | 912:3784           | 100 8144  | 5     | 1099.5654 | 117.5482   | 9     | 1304.2058 | 128.0202 |
| 1<br>2                 | 912 37 84 916 8454 | 107 0702  | 6     |           | 117.8100   |       | 1309.5454 | 128.2820 |
| 3                      | 910.6404           | 107 55998 |       |           | 118.0718   |       | 1314.8959 | 128.5438 |
| 3                      | 941 0400           | 1701 0990 | , ,,  | 1100 0000 | 1 210 0110 | ,     |           |          |

| Dia.  | Area.             | Circum.  | Dia.  | Area.                  | Circum.          | Dia.  | Area.     | Circum.  |
|-------|-------------------|----------|-------|------------------------|------------------|-------|-----------|----------|
|       | Feet.             | Feet.    |       | Feet.                  | Feet.            | 11    | Feet.     | Feet.    |
| 41ft. | 1320 2574         | 128.8056 | 44ft. | 1520.5344              | 138.2304         | 47ft. | 1734.9486 | 147.6552 |
| 1     | 1325 6297         | 129 0674 | 1     | 1526.2994              | 138 4922         | 1     | 1741 1063 | 147.9170 |
| 2     | 1331.0130         | 129.3292 | 2     | 1532.0754              | <b>138.754</b> 0 |       | 1747.2750 | 148.1788 |
| 3     | 1336.4072         | 129.5910 | 3     | 1537.8623              | 139.0158         | 3     | 1753.4546 | 148.4406 |
| 4     | 1341.8123         | 129.8528 | 4     | 1543·6600              | 139.2776         | 4     | 1759.6451 | 148.7024 |
| 5     | $1347 \cdot 2282$ | 130.1146 | 5     | 1549.4687              | 139.5394         | 5     | 1765.8464 | 148 9642 |
| 6     | 1352.6551         | 130.3764 | 6     | 1555.2883              | 139.8012         | 6     | 1772.0587 | 149.2260 |
| 7     | 1358.0929         | 130.6382 | 7     | 1561.1188              | 140.0630         | 7     | 1778.2819 | 149.4878 |
| 8     | 1363.5416         | 130.9000 | 8     | 1566.9603              | 140.3248         | 8     | 1784.5160 | 149.7496 |
| 9     | 1369.0013         | 131.1618 | 9     | 1572.8126              | 140.5866         | 9     | 1790.7611 | 150.0114 |
| 10    | 1374.4718         | 131.4236 | 10    | 1578.6756              | 140.8484         | 10    | 1797:0170 | 150.2732 |
| 11    | 1379.9532         | 131.6854 | 11    | 1584.5499              | 141.1102         | 11    | 1803.2838 | 150.6350 |
| 42ft. | 1385.4456         | 131.9472 | 45ft. | 1590.4350              | 141.3720         | 48ft. | 1809.5616 | 150.7968 |
| 1     | 1390.9488         | 132.2090 | 1     | 1596:3309              | 141.6338         | 1     | 1815.8502 | 151.0586 |
| 2     | 1396.4630         | 132.4708 | 2     | 1602.2378              | 141.8956         | 2     | 1822-1498 | 151.3204 |
| 3     | 1401.9881         | 132.7326 | 3     | 1608.1556              | 142.1574         | 3     | 1828.4603 | 151.5822 |
| 4     | 1407.5241         | 132.9944 | 4     | 1614 0843              | 142.4192         | 4     | 1834.7817 | 151.8440 |
| 5     | 1413.0709         | 133.2562 | 5     | 1620.0238              | 142.6810         | 5     | 1841.1139 | 152.1058 |
| 6     | 1418.6287         | 133.5180 | 6     | 1625.9743              | 142.9428         | 6     | 1847.4571 | 152.3676 |
| 7     | 1424 1974         | 133.7798 | 7     | 1631.9357              | 143.2046         | 7     | 1853.8112 | 152.6294 |
| 8     | 1429.7770         | 134.0416 | 8     | 1637.9081              | 143.4664         | 8     | 1860 1763 | 152.8912 |
| 9     | 1435:3676         | 134.3034 | 9     | 1643.8913              | 143.7282         | 8     | 1866.5522 | 153.1530 |
| 10    | 1440.9690         | 134.5652 | [ 10  | 1649.8854              | 143.9900         | 10    | 1872.9390 | 153.4148 |
| 11    | 1446.5813         | 134.8270 | 11    | 1655 <sup>.</sup> 8904 | 144.2518         | 11    | 1879:3367 | 153.6766 |
| 43ft. | 1452.2046         | 135.0888 | 46ft  | 1661.9064              | 144.5136         | 49ft. | 1885.7454 | 153-9384 |
| 1     | 1457.8387         | 135.3506 | 1     | 1667.9332              | 144.7754         | 1     | 1892-1649 | 154.2002 |
| 2     | 1463.4838         | 135.6124 | 2     | 1673 9710              | 145.0372         | 2     | 1898.5954 | 154.4620 |
| 3     | 1469:1398         | 135.8742 | 3     | 1680 0197              | 145.2990         | 3     | 1905.0368 | 154.7238 |
| 4     | 1474.8066         | 136.1360 | 4     | 1686.0792              | 145.5608         | 4     | 1911:4897 | 154.9856 |
| 5     | 1480.4844         | 136.3978 | 5     | 1692:1497              | 145.8226         | 5     | 1917.9522 | 155.2474 |
| 6     | 1486:1731         | 136.6596 | 6     | 1698-2311              | 146.0844         | 6     | 1924.4263 | 155.5092 |
| 7     | 1491.8717         | 136.9214 | 7     | 1704.3234              | 146.3462         | 7     | 1930.9113 | 155.7710 |
| 8     | 1497.5833         | 137.1832 | 8     | 1710.4267              | 146.6080         | 8     | 1937.4073 | 156.0328 |
| 9     | 1503.3047         | 137 4450 | 9     | 1716.5408              | 146.8698         | 9     | 1943.9142 | 156.2946 |
| 10    | 1509.0370         | 137.7068 | 10    | 1722.6658              | 147.1316         | 10    | 1950.4318 | 156.5564 |
| 11    | 1514.7802         | 137.9686 | 1.1   | 1728.8017              | 147:3934         |       | 1956.9604 | 156.8182 |
| l     |                   |          |       |                        |                  | 50ft. | 1963.5000 | 157.0800 |

## Areas and Circumferences of Circles (either inches or feet) from $\frac{1}{100}$ to 100.

Advancing by 1-100ths, 5-100ths, and 1-10ths.

| Dia.       | A rea.  | Circum.  | Dia. | Area.   | Circum.                                                 | Dia. | Area.              | Circum. |
|------------|---------|----------|------|---------|---------------------------------------------------------|------|--------------------|---------|
|            |         |          | .40  | .125664 | 1.25664                                                 | .80  | .502656            | 2.51328 |
| .01        | .000078 | .031416  | .41  | .132025 | 1.28805                                                 | .81  | .515300            | 2.54469 |
| .02        | .000314 | .062832  | .42  | .138544 | 1.31947                                                 | .82  | .528102            | 2.57611 |
| .03        | .000706 | .094248  | .43  | .145220 | 1.35088                                                 | .83  | .541062            | 2.60752 |
| .04        | .001256 | .125664  | .44  | .152053 | 1.38230                                                 | .84  | .554178            | 2.63894 |
| .05        | .001963 | .157080  | .45  | .159043 | 1.41372                                                 | .85  | .567451            | 2.67036 |
| .06        | .002827 | .188496  | .46  | .166190 | 1.44513                                                 | .86  | .580881            | 2.70177 |
| .07        | .003848 | .219912  | .47  | .173494 | 1.47655                                                 | .87  | .594469            | 2.73319 |
| .08        | .005026 | .251328  | .48  | .180956 | 1.50796                                                 | .88  | .608213            | 2.76460 |
| .09        | .006361 | .282744  | .49  | .188574 | 1.53938                                                 | .89  | .622115            | 2.79602 |
| 10         | 005054  | 014100   | -0   | 100050  | 1 55000                                                 | 00   | 000154             | 0.00544 |
| .10        | .007854 | .314160  | .50  | .196350 | 1.57080                                                 | .90  | .636174            | 2.82744 |
| .11        | .009503 | .345576  | .51  | .204282 | 1.60221                                                 | .91  | .650389            | 2.85885 |
| .12        | .011309 | .376992  | .52  | .212372 | 1.63363                                                 | .92  | .664762            | 2.89027 |
| .13<br>.14 | .013273 | .408408  | .53  | .220618 | 1.66504                                                 | .93  | .679292            | 2.92168 |
|            | .015393 | .439824  |      | .229022 | 1.69646                                                 |      | .693979            | 2.95310 |
| .15<br>.16 | .017671 | .471240  | .55  | .237583 | 1.72788                                                 | .95  |                    | 2.98452 |
|            | .020106 | .502656  | .56  | .246301 | 1.75929                                                 | .96  | .723824            | 3.01593 |
| .17<br>.18 | .022698 | .534072  | .57  | .255176 | $egin{array}{c} 1.79071 \ 1.82212 \ \hline \end{array}$ | .97  | .738982<br>.754298 | 3.04735 |
|            | .025446 | .565488  |      | .264208 |                                                         | .98  |                    | 3.07876 |
| .19        | .028352 | .596904  | .59  | .273397 | 1.85354                                                 | .99  | .769770            | 3.11018 |
| .20        | .031416 | .628320  | .60  | .282744 | 1.88496                                                 | 1.   | .7854              | 3.1416  |
| .21        | .034636 | .659736  | .61  | .292247 | 1.91637                                                 | .05  | .8659              | 3.2986  |
| .22        | .038013 | .691152  | .62  | .301907 | 1.94779                                                 | .10  | .9503              | 3.4558  |
| .22        | .041547 | .722568  | .63  | .311725 | 1.97920                                                 | .15  | 1.0386             | 3.6129  |
| .24        | .045239 | .753984  | .64  | .321699 | 2.01062                                                 | .20  | 1.1310             | 3.7699  |
| .25        | .049087 | .785400  | .65  | .331831 | 2.04204                                                 | .25  | 1.2272             | 3.9270  |
| .26        | .053093 | .816816  | .66  | .342120 | 2.07345                                                 | .30  | 1.3273             | 4.0841  |
| .27        | .057255 | .848232  | .67  | .352566 | 2.10487                                                 | .35  | 1.4313             | 4.2412  |
| .28        | .061575 | .879648  | .68  | .363168 | 2.13628                                                 | .40  | 1.5394             | 4.3982  |
| .29        | .066052 | .911064  | .69  | .373928 | 2.16770                                                 | .45  | 1.6513             | 4.5553  |
| .30        | .070686 | .942480  | .70  | .384846 | 2.19912                                                 | .50  | 1.7671             | 4.7124  |
| .31        | .075476 | .973896  | .71  | .395920 | 2.22053                                                 | .55  | 1.8869             | 4.8695  |
| .32        | .080424 | 1.005312 | .72  | .407151 | 2.26195                                                 | .60  | 2.0106             | 5.0266  |
| .33        | .085530 | 1.036728 | .73  | .418539 | 2.29336                                                 | .65  | 2.1382             | 5.1837  |
| .34        | .090792 | 1.068144 | .74  | .430085 | 2.32478                                                 | .70  | 2.2698             | 5.3407  |
| .35        | .096211 | 1.099560 | .75  | .441787 | 2.35620                                                 | .75  | 2.4053             | 5.4978  |
| .36        | .101787 | 1.130976 | .76  | .453647 | 2.38761                                                 | .80  | 2.5447             | 5.6549  |
| .37        | .107521 | 1.162392 | .77  | .465663 | 2.41903                                                 | .85  | 2.6880             | 5.8119  |
| .38        | .113411 | 1.193808 | .78  | .477837 | 2.45044                                                 | .90  | 2,8353             | 5.9690  |
| .39        | .119459 | 1.225224 | .79  | .490168 | 2.48186                                                 | .95  | 2.9865             | 6.1261  |
|            |         |          |      |         |                                                         |      |                    |         |

156
AREA AND CIRCUMFERENCES OF CIRCLES.

| Dia. | Area.   | Circum. | Dia.                     | Area.   | Circum. | Dia. | Area.    | Circum. |
|------|---------|---------|--------------------------|---------|---------|------|----------|---------|
| 2.   | 3.1416  | 6.2832  | 4.                       | 12.5664 | 12.5664 | 8.   | 50.2656  | 25.1328 |
| .05  | 3,3006  | 6.4403  | .1                       | 13.2026 | 12.8806 | .1   | 51.5301  | 25.4470 |
| .10  | 3.4636  | 6.5974  | .2                       | 13.8545 | 13.1947 | .2   | 52.8103  | 25.7611 |
| .15  | 3.6305  | 6.7544  | .3                       | 14.5220 | 13.5089 | .3   | 54.1062  | 26.0753 |
| .20  | 3.8013  | 6.9115  | .4                       | 15.2053 | 13.8230 | .4   | 55.4178  | 26.3894 |
| .25  | 3.9761  | 7.0686  | .5                       | 15.9043 | 14.1372 | .5   | 56.7451  | 26.7036 |
| .30  | 4.1548  | 7.2257  | .6                       | 16.6191 | 14.4514 | .6   | 58.0882  | 27.0178 |
| .35  | 4.3374  | 7.3827  | .7                       | 17.3495 | 14.7655 | .7   | 59.4469  | 27.3319 |
| .40  | 4.5239  | 7.5398  | .8                       | 18.0956 | 15.0797 | 8.   | 60.8214  | 27.6461 |
| .45  | 4.7144  | 7.6969  | .9                       | 18.8575 | 15.3938 | 9.   | 62.2115  | 27.9602 |
| .50  | 4.9087  | 7.8540  | 5.                       | 19.6350 | 15.7080 | 9.   | 63.6174  | 28.2744 |
| .55  | 5.1071  | 8.0111  | .1                       | 20.4283 | 16.0222 | .1   | 65.0390  | 28.5886 |
| .60  | 5.3093  | 8.1682  | .2                       | 21.2372 | 16.3363 | .2   | 66.4763  | 28.9027 |
| .65  | 5.5155  | 8.3252  | .3                       | 22.0619 | 16.6505 | .3   | 67.9292  | 29.2169 |
| .70  | 5.7256  | 8.4823  | .4                       | 22.9023 | 16.9646 | .4   | 69.3979  | 29.5310 |
| .75  | 5.9396  | 8.6394  | .5                       | 23.7583 | 17.2788 | .5   | 70.8823  | 29.8452 |
| .80  | 6.1575  | 8.7965  | 6.                       | 24.6301 | 17.5930 | 6.   | 72.3825  | 30.1594 |
| .85  | 6.3794  | 8.9536  | .7                       | 25.5176 | 17.9071 | .7   | 73.8983  | 30.4735 |
| .90  | 6.6052  | 9.1106  | .8                       | 26.4209 | 18.2213 | .8   | 75.4298  | 30.7877 |
| .95  | 6.8349  | 9.2677  | 9.                       | 27.3398 | 18.5354 | .9   | 76.9771  | 31.1018 |
| 3.   | 7.0686  | 9.4248  | 6.                       | 28.2744 | 18.8496 | 10.  | 78.5400  | 31.4160 |
| .05  | 7.3062  | 9.5819  | .1                       | 29.2247 | 19.1638 | .1   | 80.1187  | 31.7302 |
| .10  | 7.5477  | 9.7390  | .2                       | 30.1908 | 19,4779 | .2   | 81,7130  | 32.0443 |
| .15  | 7.7931  | 9.8960  | .3                       | 31.1725 | 19.7921 | .3   | 83.3231  | 32.3585 |
| .20  | 8.0425  | 10.0531 | .4                       | 32.1700 | 20.1062 | .4   | 84.9489  | 32.6726 |
| .25  | 8.2958  | 10.2102 | .5                       | 33.1831 | 20.4204 | .5   | 86.5903  | 32.9868 |
| .30  | 8.5530  | 10.3673 | 6.                       | 34.2120 | 20.7346 | .6   | 88,2475  | 33.3010 |
| .35  | 8.8142  | 10.5243 | .7                       | 35.2566 | 21.0487 | .7   | 89.9204  | 33.6151 |
| .40  | 9.0792  | 10.6814 | ll .8                    | 36.3169 | 21.3629 | .8   | 91.6091  | 33,9293 |
| .45  | 9.3482  | 10.8385 | .9                       | 37.3929 | 21.6770 | .9   | 93.3134  | 34.2434 |
| .50  | 9.6211  | 10.9956 | 7.                       | 38.4846 | 21.9912 | 11.  | 95.0334  | 34.5576 |
| .55  | 9.8980  | 11.1527 | .1                       | 39.5920 | 22.3054 | .1   | 96.7691  | 34.8718 |
|      | 10.1788 | 11.3098 | $\parallel .2 \parallel$ | 40.7151 | 22.6195 | .2   | 98.5206  | 35.1859 |
|      | 10.4635 | 11.4668 | .3                       | 41.8540 | 22.9337 | .3   | 100.2877 | 35.5001 |
|      | 10.7521 | 11.6239 | .4                       | 43.0085 | 23.2478 | .4   | 102 0706 | 35.8142 |
|      | 11.0447 | 11.7810 | .5                       | 44.1 87 | 23.5620 | .5   | 103.8691 | 36.1284 |
|      | 11.3412 | 11.9381 | .6                       | 45.3647 | 23.8762 | .6   | 105.6834 | 36.4426 |
|      | 11.6416 | 12.0951 | .7                       | 46.5664 | 24.1903 | .7   | 107.5134 | 36.7567 |
|      | 11.9459 | 12.2522 | .8                       | 47.7837 | 24.5045 | .8   | 109.3591 | 37.0709 |
| .95  | 12.2542 | 12.4093 | .9                       | 49.0168 | 24.8186 | .9   | 111.2205 | 37.3850 |

157

| Dia | Area.    | Circum. | Dia. | Area.                     | Circum.         | Dia.  | Area.    | Circum.          |
|-----|----------|---------|------|---------------------------|-----------------|-------|----------|------------------|
| 12· | 113.0976 | 37.6992 | 16.  | 201.0624                  | 50.2656         | 20.   | 314.1600 | 62.8320          |
| •1  | 114.9904 | 38.0134 | 1    | 203.5835                  | 50.5797         | 1     | 317:3094 | 63.1462          |
| •2  | 116.8989 | 38.3275 | .2   | 206.1204                  | 50.8939         | •2    | 320.4746 | 63.4603          |
| .3  | 118.8232 | 38.6417 | .3   | 208.6729                  | 51.2081         | .3    | 323.6555 | 63.7745          |
| .4  | 120·7631 | 38.9558 | •4   | 211.2412                  | 51.5222         | .4    | 326.8521 | 64.0886          |
| •5  | 122.7187 | 39.2700 | . 5  | 213.8251                  | 51.8364         | .5    | 330.0643 | 64.4028          |
| •6  | 124.6901 | 39.5842 | .6   | 216.4248                  | 52.1505         | .⊢ -6 | 333-2923 | 64.7170          |
| •7  | 126.6772 | 39.8983 | .7   | 219.0402                  | 52.4647         | .7    | 336.5360 | 65.0311          |
| .8  | 128.6799 | 40.2125 | .8   | 221 6713                  | 52.7789         | .8    | 339.7955 | 65.3453          |
| .8  | 130.6984 | 40.5266 | .9   | 224:3181                  | 53.0930         | .9    | 343 0706 | 65.6594          |
| 13  | 132.7326 |         | 17.  | <b>226</b> · <b>9</b> 803 | 53.4072         | 21.   | 346 3614 | 65 97 <b>3</b> 6 |
| 1   | 134.7825 | 41.1550 | 1    | 229.6588                  | 53 7214         | .1    | 349.6678 | 66.2878          |
| .2  | 136.8481 | 41 4691 | .5   | 232.3527                  | 54 0355         | .2    | 352.9902 | 66.6019          |
| -3  | 138.9294 | 41.7833 | .3   | 235 0624                  | 54.3497         | .3    | 356.3281 | 66 9161          |
| •4  | 141.0264 | 42.0974 | 4    | 237.7877                  | 54.6638         | •4    | 359.6818 | 67.2302          |
| •5  | 143.1391 | 42.4116 | .2   | 240.5287                  | 54.9780         | -5    | 363.0511 | 67.5444          |
| .6  | 145.2676 | 42.7258 | 6    | 243.2855                  | 55.2922         | .6    | 366·4362 | 67.8586          |
| •7  | 147.4117 | 43.0399 | .7   | 246.0580                  | 55.6063         | .7    | 369.8370 | 68.1727          |
| -8  | 149.5716 | 43.3541 | .8   | 248.8461                  | 55.9205         | .8    | 373.2535 | 68.4869          |
| .9  | 151.7471 | 43.6682 | .9   | <b>251</b> ·6 <b>5</b> 00 | 56.2346         | .9    | 376.6857 | 68.8010          |
| 14· | 153.9384 | 43.9824 | 18.  | 254 4696                  | 56.5488         | 22.   | 380.1336 | 69.1152          |
| •1  | 156.1454 | 44.2965 | 1    | <b>257·3</b> 049          | 56.8630         | 1 .1  | 383.5972 | 69.4294          |
| •2  | 158.3681 | 44.6107 | '2   | 260.1559                  | 57 1771         | .2    | 387.0765 | 69.7435          |
| .3  | 160.6064 | 44.9249 | .3   | 263.0226                  | 57:4913         | .3    | 390.5716 | 70:0577          |
| •4  | 162.8605 | 45.2390 | .4   | <b>265</b> ·9050          | 57.8054         | .4    | 394.0823 | 70.3718          |
| .2  | 165.1303 | 45·5532 | .2   | <b>268</b> ·8031          | 58.1196         | . 5   | 397:6087 | 70.6850          |
| -6  | 167.4159 | 45.8674 | 6    | <b>27</b> 1.7170          | 58.4338         |       | 401.1509 | 71.0002          |
| .7  | 169.7171 | 46.1812 | .7   | 274.6465                  | 58.7479         | .7    | 401:7038 | 71 3143          |
| .8  | 172.0340 | 46.4957 | -8   | 277.5918                  | 59 0621         | -8    | 408.2823 | 71:5285          |
| .9  | 174.3667 | 46.8098 | .9   | 280.5527                  | 59.3762         | .9    | 411.8716 | 71:0426          |
| 15. | 176.7150 | 47.1240 | 19.  | 283.5294                  | 59.6904         | 23    | 415.4766 | 72.2568          |
| .1  | 179 0791 | 47.4382 | 1    | 286.5218                  | 60:0046         | 1     | 419.0973 | 72.5710          |
| .2  | 181.4588 | 47.7523 | .2   | 289.5299                  | 60.3187         | .2    | 422.7337 | 72.8851          |
| .3  | 183.8543 | 48.0665 | .3   | 292.5536                  | 60.6329         | .3    | 426.3858 | 73.1993          |
| 4   | 186.2655 | 48.3806 | ·4   | 295.5931                  | <b>60.947</b> 0 | .4    | 430.0536 | 73.5134          |
| •5  | 188.6924 | 48.6948 | .5   | 298.6483                  | 61.2612         | •5    | 433.7371 | 73.8276          |
| 6   | 191.1349 | 49.0090 | 6    | 301.7193                  | 61 5754         | 6     | 437:4364 | 74 1418          |
| .7  | 193.5932 | 49 3231 | .7   | 304.8060                  | 61 8895         | 7     | 441.1513 | 74 4559          |
| -8  | 196 0673 | 49.6373 | 8    | 307.9082                  | 62.2037         | .8    | 444.8820 | 74.7701          |
| .9  | 198.5570 | 49.9514 | 9    | 311.0263                  | 62 5178         | 9     | 448.6283 | 75·08 <b>42</b>  |

| Dia.            | Λrea.    | Circum. | Dia.    | Area.                 | Circum.  | Dia.         | Area.     | Circum.  |
|-----------------|----------|---------|---------|-----------------------|----------|--------------|-----------|----------|
| 24              | 452:3904 | 75.3984 | 28.     | 615.7536              | 87.9648  | 32.          | 804-2496  | 100.5312 |
|                 | 456.1682 | 75.7126 | . · · 1 | 620 1597              | 88.2790  | ·1           | 809.2840  | 100.8454 |
| .2              | 459.9617 | 76.0267 | ·2      | 624 5815              | 88.5931  | ·2           | 814.3341  | 101.1595 |
| .3              | 463.7708 | 76.3409 | .3      | 629.0190              | 88.9073  | .3           | 819.4000  | 101.4737 |
| .4              | 467.5957 | 76.6550 | •4      | 633.4722              | 89.2214  | •4           | 824.4815  | 101.7878 |
| .5              | 471.4363 | 76.9692 | .5      | 637.9411              | 89.5356  | •5           | 829.5787  | 102.1020 |
| .6              | 475.2927 | 77.2834 | 6       | 642.4258              | 89.8498  | .6           | 834.6917  | 102.4162 |
| .7              | 479.1647 | 77.5975 | .7      | 646.9261              | 90.1639  | 7            | 839.8204  | 102.7303 |
| .8              | 483.0524 | 77:9117 | -8      | 651.4422              | 90.4781  | -8           | 844.9647  | 103.0445 |
| .9              | 486.9559 | 78.2258 | .9      | 655 <sup>.</sup> 9739 | 90.7922  | .8           | 850.1248  | 103.3586 |
| 25              | 490.8750 | 78.5400 | 29.     | 660.5214              | 91.1064  | 33.          | 855.3006  | 103.6728 |
| -0.1            | 494.8099 | 78.8542 | 1       | 665.0846              | 91.4206  | 1            | 860.4921  | 103.9870 |
| $\cdot \bar{2}$ | 498.7604 | 79.1683 | ·2      | 669.6635              | 91.7347  | •₽           | 865.6993  | 104:3011 |
| .3              | 502.7267 | 79.4825 | .3      | 674.2580              | 92.0489  | .3           | 870.9222  | 104.6153 |
| .4              | 506.7087 | 79.7966 | 4       | 678.8683              | 92.3630  | -4           | 876.1608  | 104-9294 |
| .5              | 510.7063 | 80.1108 | .5      | 683.4943              | 92.6772  | .5           | 881.4151  | 105.2436 |
| -6              | 514.7196 | 80.4250 | .6      | 688.1361              | 92.9914  | .6           | 886.6852  | 105.5578 |
| •7              | 518.7488 | 80.7391 | 7       | 692.7935              | 93.3055  | .7           | 891.9709  | 105.8719 |
| -8              | 522.7937 | 81.0533 | ! ⋅8    | 697.4666              | 93.6197  | .8           | 897.2724  | 106.1861 |
| .9              | 526.8542 | 81.3674 | .9      | 702.1555              | 93.9338  | .9           | 902.5895  | 106.5002 |
| 26.             | 530.9304 | 81.6816 | 30.     | 706.8600              | 94.2480  | 34.          | 907.9224  | 106.8144 |
|                 | 535.0223 | 81.9958 | .1      | 711.5803              | 94.5622  | ·1           | 913.2710  | 107.1286 |
| .2              | 539.1300 | 82.3099 | •2      | 716.3162              | 94.8763  | ·2           | 918-6353  | 107.4427 |
| .3              | 543.2533 | 82.6241 | .3      | 721.0679              | 95.1905  | .3           | 924.0152  | 107.7569 |
| .4              | 547.3924 | 82.9382 | -4      | 725.8353              | 95.5046  | •4           | 929.4109  | 108.0710 |
| .5              | 551.5471 | 83.2524 | ' ·5    | 730.6183              | 95.8188  |              | 934.8223  | 108.3852 |
| .6              | 555.7176 | 83.5666 | .6      | 735.4171              | 96 1330  | .6           | 940.2495  | 108.6994 |
| .7              | 559.9038 | 83.8807 | ·7      | 740 2316              | 96.4471  | · ·7         | 945.6923  | 109.0135 |
| -8              | 564.1057 | 84.1949 | . 8     | 745.0619              | 96.7613  | .8           | 951.1508  | 109.3277 |
| .9              | 568.3233 | 84.5090 | .9      | 749.9078              | 97.0754  | .8           | 956-6251  | 109.6418 |
| 27              | 572.5566 | 84.8232 | 31.     | 754.7694              | 97:3896  | $35^{\circ}$ | 962.1150  | 109.9560 |
| ~′.1            | 576.8056 | 85 1374 | 1 .1    | 759.6467              | 97.7038  | ' 1          | 967.6207  | 110.2702 |
| .2              | 581.0703 | 85.4515 | .2      | 764.5398              | 98.0179  | .2           | 973 1420  | 110.5843 |
| .3              | 585 3508 | 85.7657 | .3      | 769.4485              | 98 3321  | .3           | 978.6791  | 110.8985 |
| .4              | 589.6469 | 86.0798 | •4      | 774.3730              | 98.6462  | .4           | 984.2319  | 111.2126 |
| .5              | 593.9587 | 86.3940 | · .5    | 779.3131              | 98 9604  | •5           | 989.8003  | 111.5268 |
| .6              | 598 2863 | 86.7082 | 6.      | 784.2690              | 99.2746  |              | 995.3845  | 111.8410 |
| ·7              | 602.6296 | 87 0223 | .7      | 789.2406              | 99.5887  | .7           | 1000.9844 | 112-1551 |
| -8              | 606.9885 | 87.3365 | -8      | 794.2279              | 99.9029  | 8            | 1006.6001 | 112.4693 |
| .9              | 611.3632 | 87.6506 | .9      | 799.2309              | 100.2170 | .9           | 1012-2314 | 112.7834 |

AREAS AND CIRCUMFERENCES OF CIRCLES.

| Dia. | Area.     | Circum.  | Dia. | Area.     | Circum.  | Dia             | Area.     | Circum.               |
|------|-----------|----------|------|-----------|----------|-----------------|-----------|-----------------------|
| 36.  | 1017-8784 | 113 0976 | 40·  | 1256.6400 | 125.6640 | 44.             | 1520.5344 | 138.2304              |
| •1   | 1023.5411 | 113.4118 | .1   | 1262 9311 | 125.9782 | ·1              | 1527.4538 | 138.5446              |
| •2   | 1029.2196 | 113.7259 | ·2   | 1269.2378 | 126.2923 | ·2              | 1534.3889 | 138.8587              |
| .3   | 1034.9137 | 114.0401 | .3   | 1275.5603 | 126.6065 | .3              | 1541.3396 | 139 1729              |
| •4   | 1040.6236 | 114.3542 | •4   | 1281.8985 | 126.9206 | •4              | 1548.3061 | 139.4870              |
| •5   | 1046.3491 | 114.6684 | .5   | 1288-2523 | 127.2348 | .5              | 1555.2883 | 139.8012              |
| .6   | 1052.0904 | 114.9826 | .6   | 1294.6219 | 127.5490 | .6              | 1562-2863 | 140.1154              |
| .7   | 1057 8474 | 115.2967 | .7   | 1301.0072 | 127.8631 | .7              | 1569-2999 | 140.4295              |
| ∙8   | 1063.6201 | 115.6109 | .8   | 1307.4083 | 128.1773 | .8              | 1576.3292 | 140 7437              |
| .9   | 1069.4085 | 115.9250 | .9   | 1313.8250 | 128.4914 | .9              | 1583.3743 | 141.0578              |
| 37.  | 1075-2126 | 116 2392 | 41.  | 1320-2574 | 128.8056 | 45·             | 1590.4350 | 141.3720              |
| ·1   | 1081.0324 | 116.5534 | 1    | 1326.7055 | 129.1198 | ·1              | 1597.5115 | 141.6862              |
| .2   | 1086.8679 | 116.8675 | .2   | 1333 1694 | 129.4339 | ·2              | 1604.6036 | 142.0003              |
| .3   | 1092.7192 | 117.1817 | .3   | 1339.6489 | 129.7481 | .3              | 1611.7115 | 142.3145              |
| •4   | 1098.5861 | 117.4958 | .4   | 1346-1442 | 130.0622 | .4              | 1618 8351 | 142.6286              |
| •5   | 1104.4687 | 117.8100 | .5   | 1352-6551 | 130.3764 | .5              | 1625.9743 | 142.9428              |
| -6   | 1110.3671 | 118-1242 | -6   | 1359.1818 | 130.6906 | -6              | 1633.1293 | 143.2570              |
| -7   | 1116.2812 | 118.4383 | .7   | 1365 7242 | 131.0047 | ·7              | 1640.3000 | 143.5711              |
| -8   | 1122-2109 | 118.7525 | .8   | 1372-2823 | 131.3189 | -8              | 1647.4865 | 143 8853              |
| -9   | 1128.1564 | 119.0666 | .9   | 1378.8561 | 131.6330 | .9              | 1654.6886 | 144.1994              |
| 38.  | 1134.1176 | 119.3808 | 42.  | 1385.4456 | 131.9472 | 46.             | 1661 9064 | 144.5136              |
| ·1   | 1140.0945 | 119.6950 | -1   | 1392.0508 | 132-2614 | -1              | 1669-1399 | 144.8278              |
| .2   | 1146.0871 | 120.0091 | .2   | 1398-6717 | 132.5755 | .2              | 1676.3892 | 145.1419              |
| .3   | 1152.0954 | 120.3233 | .3   | 1405 3084 | 132.8897 | .3              | 1683.6541 | 145.4561              |
| •4   | 1158·1194 | 120.6374 | -4   | 1411.9607 | 133.2038 | •4              | 1690.9348 | 145.7702              |
| ·5   | 1164-1591 | 120.9516 | .5   | 1418-6287 | 133.5180 | .5              | 1698-2311 | 146.0844              |
| ·6   | 1170.2146 | 121.2658 | .6   | 1425.3125 | 133.8322 | .6              | 1705.5432 | 146.3986              |
| .7   | 1176.2857 | 121.5799 | ·7   | 1432.0120 | 134.1463 | .7              | 1712.8710 | 146 <sup>:</sup> 7127 |
| .8   | 1182.3726 | 121.8941 | -8   | 1438.7271 | 134.4605 | -8              | 1720.2145 | 147.0269              |
| .9   | 1188-4751 | 122.2082 | .9   | 1445.4580 | 134.7746 | .9              | 1727.5737 | 147:3410              |
| 39.  | 1194.5934 | 122.5224 | 43.  | 1452 2046 | 135.0888 | <del>1</del> 7· | 1734-9486 | 147.6552              |
| ·1   | 1200.7274 | 122.8366 | 1    | 1458 9669 | 135.4030 | -1              | 1742.3392 | 147.9694              |
| .2   | 1206.8771 | 123.1507 | ·2   | 1465.7449 | 135.7171 | .2              | 1749.7455 | 148.2835              |
| .3   | 1213.0424 | 123 4649 | .3   | 1472.5386 | 136.0313 | -3              | 1757 1676 | 148.5977              |
| -4   | 1219-2235 | 123.7790 | •4   | 1479.3480 | 136.3454 | .4              | 1764 6053 | 148-9118              |
| •5   | 1225.4203 | 124.0932 | •5   | 1486.1731 | 136.6596 | .5              | 1772.0587 | 149.2260              |
| ·6   | 1231.6329 | 124 4074 | .6   | 1493.0140 | 136.9738 | .6              | 1779.5279 | 149.5402              |
| .7   | 1237.8611 | 124.7215 | .7   | 1499.8705 | 137.2879 | .7              | 1787.0128 | 149.8543              |
| .8   | 1244.1050 | 125.0357 | ·8   | 1506.7428 | 137.6021 | -8              | 1794 5133 | 150.1685              |
| .9   | 1250.3647 | 125.3498 | .9   | 1513 6307 | 137.9162 | .9              | 1802-0296 | 150.4826              |

160

| Dia. Area. Circum. Dia. Area. Circum. Dia. Area.                                                                                  | Circum.       |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------|
| 48                                                                                                                                | 44 175.9296   |
| 1 1817 1093 151 1110 1 2131 8976 163 6774 1 2471 81                                                                               | 87 176-2438   |
| 2   1824-6727   151-4251   2   2140-0893   163-9915   2   2480-63                                                                 | 88   176.5579 |
| 3   1832 2518   151 7393   3   2148 2968   164 3057   3   2489 47                                                                 | 45 176.8721   |
| 4 1839 8466 152 0534 4 2156 5199 164 6198 4 2498 32                                                                               | 60 177 1862   |
| 5   1847·4571   152·3676   ·5   2164·7587   164·9340   ·5   2507·19                                                               | 31 177.5004   |
| 6 1855 0834 152 6818 6 2173 0133 165 2482 6 2516 07                                                                               | 60 177.8146   |
| ·7   1862·7253   152·9959   ·7   2181·2836   165·5623   ·7   2524·97                                                              | 36 178 1287   |
| -8   1870·3830   153·3101   ·8   2189·5695   165·8765   ·8   2533·88                                                              | 89 178 4429   |
| 9 1878 0563 153 6242 9 2197 8712 166 1906 9 2542 81                                                                               | 89 178.7570   |
| 49.   1885.7454   153.9384   53.   2206.1886   166.5048   57.   2551.76                                                           |               |
| 1   1893 4502   154 2526   1   2214 5217   166 8190   1   2560 72                                                                 |               |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                              |               |
| $3 \mid 1908.9068 \mid 154.8809 \mid 3 \mid 2231.2350 \mid 167.4473 \mid 3 \mid 2578.69$                                          |               |
| $ \cdot 4 $   1916:6587   155:1950   $ \cdot 4 $   2239:6152   167:7614   $ \cdot 4 $   2587:70                                   |               |
| $ \cdot 5 $   $ 1924.4263 $   $ 155.5092 $   $ \cdot 5 $   $ 2248.0111 $   $ 168.0756 $   $ \cdot 5 $   $ 2596.72 $               |               |
| $6 \mid 1932 \cdot 2097 \mid 155 \cdot 8234 \mid  6 \mid 2256 \cdot 4228 \mid 168 \cdot 3898 \mid  6 \mid 2605 \cdot 76$          |               |
| $ \cdot 7 $   1940 0087   156 1375     $ \cdot 7 $   2264 8501   168 7039   $ \cdot 7 $   2614 82                                 |               |
| 8   1947-8234   156-4517   -8   2273-2932   169-0181   -8   2623-89                                                               |               |
| 9   1955-6539   156-7658   9   2281-7519   169-3322   9   2632-98                                                                 | 28   181.8986 |
| 50   1963-5000   157-0800   54   2290-2264   169-6464   58   2642-08                                                              |               |
| $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                              |               |
| $2 \mid 1979 \mid 2394 \mid 157 \cdot 7083 \mid  2 \mid \mid 2307 \cdot 2225 \mid 170 \cdot 2747 \mid  2 \mid \mid 2660 \cdot 33$ |               |
| $3 \mid 1987 \cdot 1327 \mid 158 \cdot 0225 \mid 3 \mid 2315 \cdot 7440 \mid 170 \cdot 5889 \mid 3 \mid 2669 \cdot 48$            |               |
| 4 1995 0417 158 3366 4 2324 2813 170 9030 4 2678 65                                                                               |               |
| -5 + 2002.9663 + 158.6509 + 5 + 2332.8343 + 171.2172 + 5 + 2687.83                                                                |               |
| $-6 \cdot 2010 \cdot 9067 \cdot 158 \cdot 9650 \cdot -6 \cdot 2341 \cdot 4031 \cdot 171 \cdot 5314 \cdot -6 \cdot 2697 \cdot 03$  |               |
| $\cdot 7 \mid 2018.8628 \mid 159.2791 \mid \cdot 7 \mid 2349.9875 \mid 171.8455 \mid \cdot 7 \mid 2706.24$                        |               |
| $8 \mid 2026.8347 \mid 159.5933 \mid 8 \mid 2358.5876 \mid 172.1597 \mid 8 \mid 2715.47$                                          |               |
| $9 \mid 2034.8222 \mid 159.9074 \mid 9 \mid 2367.2035 \mid 172.4738 \mid 9 \mid 2724.71$                                          | l l           |
| 51.   2042.8254   160.2216   55.   2375.8350   172.7880   59.   2733.97                                                           |               |
| $1 \mid 2050.8443 \mid 160.5358 \mid 1 \mid 2384.4823 \mid 173.1022 \mid 1 \mid 2743.25$                                          |               |
| 2   2058 8790   160 8499   2   2393 1452   173 4163   2   2752 54                                                                 |               |
| $3 \mid 2066.9293 \mid 161.1641 \mid  3 \mid 2401.8239 \mid 173.7305 \mid  3 \mid 2761.85$                                        |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                             |               |
| 6   2091 1746   162 1066   6   2427 9541   174 6730   6   2789 86                                                                 |               |
| 7   2099-2878   162-4207   -7   2436-6957   174-9871   -7   2799-23                                                               |               |
| 8   2107-4167   162-7349   -8   2445-4529   175-3013   -8   2808-62                                                               |               |
| 9 2115 5613 163 0490 9 2454 2258 175 6154 9 2818 02                                                                               | 31   188-1818 |

AREAS AND CIRCUMFERENCES OF CIRCLES.

|             | <del></del> | i        | ı.   |                   |          | l    |                            | Ī                     |
|-------------|-------------|----------|------|-------------------|----------|------|----------------------------|-----------------------|
| Dia.        | Area.       | Circum.  | Dia. | Area.             | Circum.  | Dia. | Area.                      | Circum.               |
| <b>6</b> 0· | 2827:4400   | 188.4960 | 64.  | 3216.9984         | 201.0624 | 68   | 3631.6896                  | 213 6288              |
| ·1          | 2836.8727   | 188 8102 | ·1   | 3227.0594         | 201.3766 | ·1   | 3642.3789                  | 213.9430              |
| .2          | 2846 3210   | 189.1243 | .2   | 3237.1361         | 201.6907 |      | 3653.0839                  | 214·2571              |
| .3          | 2855.7851   | 189.4385 | .3   | 3247.2284         | 202.0049 | .3   | 3663.8050                  | 214.5713              |
| •4          | 2865.2649   | 189.7526 | •4   | 3257:3365         | 202.3190 | 4    | 3674·5410                  | 214.8854              |
| •5          | 2874.7603   | 190.0668 | .5   | 3267.4603         | 202.6332 |      | 3685-2931                  | 215.1996              |
| .6          | 2884 2715   | 190.3810 | .6   | 3277.5999         | 202.9474 |      | 3696.0610                  | 215·5138              |
| •7          | 2893.7984   | 190.6951 | .7   | 3287.7551         | 203.2615 |      | 3706 8445                  | 215.8279              |
| -8          | 2903.3411   | 191.0093 | .8   | 3297.9261         | 203.5757 | ·8   | 3717.6438                  | 216·1421              |
| •9          | 2912.8994   | 191 3234 | .9   | 3308.1127         | 203.8898 | .8   | 3728-4587                  | 216.4562              |
| <b>61</b> · | 2922.4734   | 191.6376 | 65.  | 3318-3150         | 204.2040 | 69.  | 3739.2894                  | 216.7704              |
| ·1          | 2932 0631   | 191.9518 | ·1   | 3328.5331         | 204.5182 | .1   | 3750.1358                  | 217 0846              |
| -2          | 2941.6686   | 192.2659 | .2   | 3338.7668         | 204.8323 | ·2   | 3760.9979                  | 217:3987              |
| -3          | 2951.2897   | 192.5801 | .3   | 3349.0163         | 205.1465 | .3   | 3771.8756                  | 217.7129              |
| -4          | 2960.9266   | 192.8942 | •4   | 3359.2815         | 205.4606 | •4   | 3782.7691                  | 218.0270              |
| -5          | 2970.5791   | 193.2084 | •5   | 3369.5623         | 205.7748 | •5   | 3793.6783                  | 218 <sup>.</sup> 3412 |
| -6          | 2980 2474   | 193.5226 | .6   | 3379.8589         | 206.0890 | .6   | 3804.6033                  | 218.6554              |
| -7          | 2989.9314   | 193.8367 | .7   | 3390.1712         | 206.4031 | .7   | 3815 5439                  | 218.9695              |
| -8          | 2999.6311   | 194.1509 | .8   | 3400.4993         | 206 7173 | .8   | 3826 5002                  | 219.2837              |
| •9          | 3009.3465   | 194.4650 | .9   | 3410.8430         | 207.0314 | .9   | 3837-4722                  | 219.5978              |
| <b>62</b> · | 3019.0776   | 194.7792 | 66.  | 3421.2024         | 207 3456 | 70·  | 3848.4600                  | 219.9120              |
| •1          | 3028.8244   | 195.0934 | 1    | 3431.5775         | 207.6598 | ·1   | 3859.4635                  | 220.2262              |
| •2          | 3038.5869   | 195.4075 | ·2   | 3441.9684         | 207 9739 | •2   | 3870.4826                  | 220·5403              |
| •3          | 3048.3652   | 195.7217 | .3   | 3452.3749         | 208.2881 | .3   | 3881.5175                  | 220.8545              |
| -4          | 3058-1591   | 196.0358 | •4   | 3462.7972         | 208.6022 | •4   | 3892.5681                  | 221.1686              |
| •5          | 3067.9687   | 196.3500 | •5   | 3473.2351         | 208.9164 | •5   | 3903.6343                  | 221.4828              |
| <b>-6</b>   | 3077 7941   | 196.6642 | -6   | 3483.6888         | 209.2306 | .6   | 3914.7163                  | 221.7970              |
| -7          | 3087.6341   | 196.9783 | .7   | $3494 \cdot 1582$ | 209.5447 | .7   | 3925 8140                  | 222·1111              |
| -8          | 3097.4919   | 197 2925 | -8   | 3504.6433         | 209.8589 | .8   | 3936.9275                  | 222.4253              |
| ·9          | 3107 3644   | 197 6066 | .9   | 3515·1441         | 210.1730 | .9   | 3948-9566                  | 222.7394              |
| 63.         | 3117.2526   | 197.9208 | 67·  | 3525.6606         | 210.4872 | 71.  | 3959 2014                  | 223.0536              |
| •1          | 3127.1565   | 198.2350 | ·1   | 3536.1928         | 210.8014 | .1   | <b>397</b> 0· <b>3</b> 619 | 223.3678              |
| •2          | 3137.0761   | 198.5491 | ·2   | 3546 7407         | 211.1155 | ·2   | 3981.5382                  | 223.6819              |
| •3          | 3147.0114   | 198.8633 | .3   | 3557.3044         | 211.4297 | .3   | <b>3992</b> ·7301          | 223 9961              |
| •4          | 3156.9624   | 199.1774 | •4   | 3567.8837         | 211.7438 | •4   | 4003.9378                  | 224.3102              |
| •5          | 3166.9291   | 199.4916 | •5   | 3578.4787         | 212.0580 | .5   | 4015·1611                  | 224 6244              |
| .6          | 3176.9116   | 199.8058 | .6   | 3589.0895         | 212.3722 | .6   | 4026.4002                  | 224.9386              |
| .7          | 3186.9097   | 200.1199 | .7   | 3599.7160         | 212.6863 |      | 4037.6550                  | 225.2527              |
| -8          | 3196.9236   | 200.4341 | .8   | 3610.3581         | 213.0005 | .8   | 4048 9255                  | 225.5669              |
| •9          | 3206.9531   | 200.7482 | .9   | 3621.0160         | 213.3146 | .9   | 4060:2117                  | 225.8810              |
|             |             |          |      |                   |          |      |                            |                       |

| Dia.            | Area.                  | Circum.  | Dia. | Area.                  | Circum.  | Dia. | Area.      | Circum.  |
|-----------------|------------------------|----------|------|------------------------|----------|------|------------|----------|
| 72.             | 4071.5136              | 226.1952 | 76.  | 4536:4704              | 238.7616 | 80.  | 5026.5600  | 251.3280 |
| '- <sub>1</sub> | 4082.8312              | 226.5094 | 1    | 4548 4163              | 239.0758 | •1   | 5039.1343  | 251.6422 |
| ·2              | 4094 1645              | 226.8235 | .2   | 4560.3780              | 239.3899 | •2   | 5051.7242  | 251 9563 |
| -3              | 4105.5136              | 227.1377 | .3   | 4572.3553              | 239.7041 | .3   | 5064.3299  | 252.2705 |
| •4              | 4116.8783              | 227.4518 | •4   | 4584.3484              | 240 0182 | •4   | 5076.9513  | 252.5846 |
| .5              | 4128-2587              | 227.7660 | .5   | 4596.3571              | 240.3324 | •5   | 5089.5883  | 252.8988 |
| .6              | 4139.6550              | 228.0802 | -6   | 4608.3816              | 240.6466 | .6   | 5102·2411  | 253.2130 |
| -7              | 4151.0668              | 228.3943 | 7    | 4620.4218              | 240.9607 | .7   | 5114.9096  | 253.5271 |
| -8              | 4162-4943              | 228.7085 | .8   | 4632.4777              | 241.2749 | .8   | 5127.5939  | 253.8413 |
| -9              | 4173.9376              | 229.0226 | .9   | 4644·5493              | 241.5890 | .9   | 5140.2938  | 254.1554 |
| 73.             | 4185.3966              | 229.3368 | 77.  | 4656.6366              | 241.9032 |      | 5153 0094  | 254.4696 |
| ·1              | 4196.8713              | 229.6510 | .1   | 4668.7396              | 242.2174 | .1   | 5165.7407  | 254 7838 |
| •2              | 4208.3617              | 229.9651 | ·2   | 4680.8583              | 242.5315 | •2   | 5178.4878  | 255.0979 |
| •3              | 4219.8678              | 230.2793 | .3   | 4692.9928              | 242.8457 | .3   | 5191.2505  | 255:4121 |
| -4              | 4231 3896              | 230.5934 | •4   | 4705.1429              | 243·1598 | •4   | 5204.0289  | 255.7262 |
| •5              | 4242.9271              | 230.9076 | .5   | 4717:3087              | 243 4740 | •5   | 5216.8231  | 256.0404 |
| -6              | 4254.4804              | 231.2218 | .6   | 4729.4903              | 243.7882 | -6   | 5229.6330  | 256.3546 |
| -7              | 4266.0493              | 231.5359 | .7   | 4741.6876              | 244-1023 | .7   | 5242.4586  | 256.6687 |
| -8              | 4277.6340              | 231.8501 | .8   | 4753.9005              | 244·4165 | .8   | 5255.2999  | 256.9829 |
| -9              | 4289-2343              | 232-1642 | .8   | 4766-1292              | 244.7306 | .9   | 5268.1569  | 257.2970 |
| 74              | 4300.8504              | 232.4784 | 78·  | 4778.3736              | 245 0448 |      | 5281.0296  | 257.611  |
| •1              | 4312.4822              | 232.7926 | 1    | 4790.6337              | 245.3590 | •1   | -5293 9180 | 257.925  |
| •2              | 4324.1297              | 233.1067 | .2   | 4802.9095              | 245.6731 | .2   | 5306.8221  | 258.239  |
| •3              | 4335.7928              | 233.4209 | .3   | 4815 <sup>.</sup> 2010 | 245.9873 | .3   | 5319.7420  | 258.55   |
| •4              | 4347.4717              | 233.7350 | •4   | 4827.5082              | 246 3014 | •4   | 5332 6775  | 258.867  |
| -5              | 4359·1663              | 234.0492 | .5   | 4839.8311              | 246 6156 | .2   | 5345.6287  | 259.18   |
| •6              | 4370.8767              | 234.3634 | .6   | 4852.1698              | 246 9298 | .6   | 5358.5957  |          |
| -7              | 4382 6027              | 234.6775 | .7   | 4864·5241              | 247 2439 | .7   | 5371.5784  | 259.816  |
| -8              | 4394.3444              | 234.9917 | -8   | 4876.8942              | 247 5581 | .8   | 5384.5767  | 260.12   |
| .9              | 4406·1019              | 235.3058 | .9   | 4889 2799              | 247.8722 | .9   | 5397.5908  | 260.43   |
| 75·             | 4417.8750              | 235.6200 | 79·  | 4901.6814              | 248.1864 |      | 5410.6206  | 260.75   |
| •1              | 4429.6639              | 235.9342 | .1   | 4914.0986              | 248.5006 | •1   | 5423.6661  | 261.067  |
| .2              | 4441.4684              | 236.2483 | .2   | 4926.5315              | 248.8147 | •2   | 5436.7273  | 261 38h  |
| .3              | 4453 2887              | 236.5625 | .3   | 4938.9800              | 249.1289 | .3   | 5449.8042  | 261.695  |
| •4              | 4465-1247              | 236.8766 | •4   | 4951.4443              | 249.4430 | •4   | 5462 8968  | 262 009  |
| •5              | 4476.9763              | 237.1908 | .5   | 4963.9243              | 249.7572 | .5   | 5476.0051  | 262-323  |
| •6              | 4488 8437              | 237.5050 | .6   | 4976.4201              | 250.0714 | -6   | 5489.1292  | 262-6878 |
| 7               | 4500.7268              | 237.8191 | .7   | 4988.9315              | 250.3855 | .7   | 5502.2689  | 262-9519 |
| .8              | 4512 <sup>.</sup> 6257 | 238.1333 | •8   | 5001.4586              | 250.6997 | 8    | 5515.4244  | 263.266  |
| .9              | 4524 5402              | 238 4474 | .8   | 5014.0015              | 251.0138 | .9   | 5528.5955  | 263.580  |

Dia. , Area. | Circum. | Dia. | Area.

Circum. Dia.

Circum.

| Dia. | ,                      |          |             |                        |          |      |                        |          |
|------|------------------------|----------|-------------|------------------------|----------|------|------------------------|----------|
| 84.  | 5541.7824              | 263:8944 | 88.         | 6082:1376              | 276.4608 | 92.  | 6647.6256              | 289.0272 |
| ·1   | 5554.9850              | 264.2086 | ·1          | 6095 9685              | 276.7750 | 1    | 6662.0848              | 289.3414 |
| .2   | 5568.2033              | 264.5227 | .2          | 6109.8151              | 277.0891 | .2   | 6676.5598              | 289.6555 |
| .3   | 5581.4372              | 264.8369 | -3          | 6123.6774              | 277.4033 | .3   | 6691.0504              | 289.9697 |
| •4   | 5594.6869              | 265.1510 | •4          | 6137.5554              | 277.7174 | •4   | 6705.5567              | 290.2838 |
| •5   | 5607.9523              | 265.4652 | 1 .5        | 6151.4491              | 278.0316 | •5   | 6720.0787              | 290.5980 |
| -6   | 5621.2335              | 265.7794 | ·6          | 6165:3586              | 278.3458 | .6   | 6734 <sup>.</sup> 6165 | 290.9121 |
| .7   | 5634.5303              | 266.0935 |             | 6179 2837              | 278.6599 | .7   | 6749.1700              | 291.2263 |
| -8   | 5647.8428              | 266.4077 | 8           | 6193.2246              | 278.9741 | -8   | 6763.7391              | 291.5405 |
| .9   | 5661.1711              | 266.7218 | .9          | 6207:1811              | 279.2882 | .9   | 6778:3240              | 291.8546 |
| 85.  | 5674·5150              | 267.0360 | 89.         | 6221.1534              | 279.6024 | 63.  | 6792.9246              | 292.1688 |
| ·1   | 5687.8747              | 267.3502 | 1           | 6235.1414              | 279.9166 | .1   | 6807.5409              | 292.4830 |
| -2   | 5701.2500              | 267.6643 | .2          | 6249.1451              | 280.2307 | •2   | 6822.1729              | 292.7971 |
| .3   | 5714.6411              | 267.9785 | .3          | 6263.1644              | 280.5449 | ' .3 | 6836.8206              | 293.1113 |
| •4   | 5728.0479              | 268.2926 | •4          | 6277 1995              | 280.8590 | •4   | 6851.4840              | 293.4254 |
| -5   | 5741.4703              | 268.6068 | •5          | 6291.2503              | 281.1732 | -5   | 6866.1631              | 293.7396 |
| ·6   | 5754.9085              | 268.9210 | •6          | 6305:3169              | 281.4874 | .6   | 6880.8580              | 294.0538 |
| .7   | 5768:3624              | 269.2351 | .7          | 6319:3991              | 281.8015 | .7   | 6895 5685              | 294.3679 |
| -8   | 5781.8321              | 269.5493 | .8          | 6333.4970              | 282·1157 | .8   | 6910 2948              | 294.6821 |
| .9   | 5795·3174              | 269.8634 | .9          | 6347:6107              | 282.4298 | 9    | 6925.0367              | 294 9962 |
| 86·  | 5808 <sup>.</sup> 8184 | 270.1776 | <b>90</b> · | 6361.7400              | 282·7440 | 94   | 6939.7944              | 295.3104 |
| .1   | 5822.3351              | 270.4918 | .1          | 6375.8851              | 283.0582 | .1   | 6954·5678              | 295.6246 |
| .2   | 5835.8676              | 270.8059 | •2          | 6390.0458              | 283.3723 | .2   | 6969.3569              | 295.9387 |
| .3   | 5849.4157              | 271.1201 | .3          | 6404.2223              | 283.6865 | 3    | 6984.1616              | 296.2529 |
| •4   | 5862.9796              | 271.4342 | •4          | 6418 <sup>.</sup> 4144 | 284.0006 | •4   | 6998-9821              | 296.5670 |
| •5   | 5876.5591              | 271.7484 | •5          | 6432.6223              | 284.3148 | •5   | 7013.8183              | 296.8812 |
| •6   | 5890.1544              | 272.0626 | .6          | 6446.8459              | 284.6290 | .6   | 7028.6703              | 297.1954 |
| .7   | 5903.7654              | 272.3767 | .7          | 6461 0852              | 284.9431 | .7   | 7043.5379              | 297.5095 |
| -8   | 5917:3921              | 272.6909 | .8          | 6475.3403              | 285.2573 | .8   | 7058-4212              | 297.8237 |
| .8   | 5931.0345              | 273.0050 | .9          | 6489.6110              | 285.5714 | .9   | 7073.3203              | 298.1378 |
| 87.  | 5944.6926              | 273.3192 | 91.         | 6503.8974              | 285.8856 | 95.  | 7088-2350              | 298.4520 |
| 1    | 5958.3644              | 273.6334 | .1          | 6518 <sup>.</sup> 1995 | 286.1998 | 1 1  | 7103.1655              | 298.7662 |
| .2   | 5972.0559              | 273.9475 | .2          | 6532.5174              | 286.5139 | •2   | 7118.1116              | 299.0803 |
| .3   | 5985.7612              | 274.2617 | .3          | 6546 8509              |          | 3    | 7133.0735              | 299.3945 |
| •4   | 5999.4821              | 274.5758 | •4          | 6561 • 2002            |          | 4    | 7148.0511              | 299.7086 |
| •6   | 6013.2187              | 274.8900 | •5          | 6575.5651              | 287.4564 | •5   | 7163.0443              | 300.0228 |
| •6   | 6026 9711              | 275.2042 | •6          | 6589.9458              | 287.7706 | 6    | 7178.0533              | 300:3370 |
| .7   | 6040.7392              | 275.5183 | .7          | 6604.3422              | 288.0847 | . 7  | 7193.0780              | 300.6511 |
| -8   | 6054.5229              | 275.8325 | .8          | 6618.7543              | 288.3989 | 8    | 7208.1185              | 300.9653 |
| -9   | 6068-3224              | 276.1466 | . •9        | 6633.1821              | 288.7130 | .9   | 7223.1746              | 301.2794 |
|      | <del></del>            |          |             |                        |          |      |                        |          |

| Dia. | Атеа.     | Circum.          | Dia. | Area.     | Circum.  | Dia. | Area ≉    | Circum.  |
|------|-----------|------------------|------|-----------|----------|------|-----------|----------|
| 96.  | 7238:2464 | 301.5936         | •4   | 7450.9013 | 305.9918 | -8   | 7666-6350 | 310.3901 |
| •1   | 7253.3339 | 301.9078         | .5   | 7466.2087 | 306.3060 | .9   | 7682-1623 | 310.7042 |
| •2   | 7268-4372 | 302-2219         | .6   | 7481.5319 | 306.6202 | 99.  | 7697:7054 | 311.0184 |
| •3   | 7283.5561 | 302.5361         | .7   | 7496.8708 | 306.9343 | 1    | 7713.2642 | 311.3326 |
| ·4   | 7298.6908 | 302.8502         | -8   | 7512-2253 | 307.2485 | .2   | 7728.8337 | 311.6467 |
| •5   | 7313.8411 | 303.1644         | .9   | 7527.5956 | 307.5626 | .3   | 7744-4288 | 311.9609 |
| .6   | 7329.0072 | 303.4786         | 98.  | 7542.9816 | 307.8768 | •4   | 7760.0347 | 312.2750 |
| .7   | 7344.1890 | 303.7927         | •1   | 7558-3833 | 308 1910 | .5   | 7775.6563 | 312.5892 |
| .8   | 7359.3865 | <b>304</b> ·1069 | .2   | 7573.8007 | 308.5051 | .6   | 7791.2937 | 312.9034 |
| .9   | 7374:5997 | <b>304</b> ·4210 | -3   | 7589.2338 | 308.8193 | .7   | 7806.9467 | 313.2175 |
| 97.  | 7389-8286 | 304.7352         | .4   | 7604.6826 | 309.1334 | .8   | 7822.6154 | 313.5317 |
| ·1   | 7405.0732 | 305.0494         | .5   | 7620 1471 | 309:4476 | .9   | 7838-2999 | 313 8458 |
| .2   | 7420.3335 | 305.3635         | -6   | 7635.6274 | 309.7618 | 100  | 7854:0000 | 314-1600 |
| .3   | 7435.6096 | 305.6777         | .7   | 7651.1233 | 310.0759 | 100. | 7834 0000 | 314 1000 |

#### CONTENTS OF SPHERES.

| Dia. | Contents.        | Dia. | Contents. | Dia. | Contents.           | Dia. | Contents. | Dia. | Contents. |
|------|------------------|------|-----------|------|---------------------|------|-----------|------|-----------|
| •1   | •000523          | 2.1  | 4.849     | 4.1  | 36.087              | 6.1  | 118.847   | 8.1  | 278-262   |
| •2   | ·004189          | .3   | 5.575     | .2   | 38.792              | .2   | 124.788   | . 2  | 288.696   |
| .3   | ·014137          | .3   | 6.371     | .3   | 41.630              | .3   | 130.924   | .3   | 299:387   |
| •4   | .033510          | •4   | 7.238     | 4    | 44.602              | •4   | 137.258   | 4    | 310.339   |
| •5   | ·0 <b>654</b> 50 | .5   | 8.181     | .5   | 47.713              | •5   | 143.793   | .2   | 321.555   |
| .6   | ·113097          | .6   | 9.203     | -6   | 50.965              | .6   | 150·533   | .6   | 333.038   |
| .7   | ·179594          | .7   | 10.306    | 7    | 54.362              | .7   | 157:479   | .7   | 344.791   |
| •8   | •268082          | .8   | 11.494    | .8   | 57.906              | -8   | 164.636   | -8   | 356.818   |
| .9   | 381703           | .9   | 12.770    | .9   | 61.601              | .9   | 172.007   | .9   | 369-121   |
| 1.0  | •523599          | 3.0  | 14.137    | 5.0  | 65 <sup>.</sup> 450 | 7.0  | 179.594   | 9.0  | 381.703   |
| •1   | ·696910          | 1    | 15.598    | 1:   | 69.456              | .1   | 187.402   | ·1   | 394.569   |
| •2   | •904779          | 2    | 17.157    | ·2   | 73.622              | .2   | 195.432   | •2   | 407.720   |
| •3   | 1.150349         | .3   | 18.816    | .3   | 77.952              | .3   | 203.689   | .3   | 421.160   |
| •4   | 1.436758         | 1 .4 | 20.579    | 4    | 82.448              | .4   | 212.175   | -4   | 434.893   |
| •5   | 1.767250         | 5    | 22.449    | .5   | 87.114              | ·5   | 220.893   | •5   | 448 921   |
| •6   | 2.144665         | -6   | 24.429    | .6   | 91.952              | .6   | 229.847   | 6.   | 463 247   |
| •7   | 2.572446         | .7   | 26.552    | .7   | 96.967              | .7   | 239.040   | .7   | 477.875   |
| .8   | 3.053635         | 8    | 28.731    | .8   | 102.160             | -8   | 248.475   | 8.   | 492.807   |
| .9   | 3.591372         | 9    | 31.059    | 9    | 107.536             | .9   | 258.155   | 9    | 508.847   |
| 2.0  | 4.188800         | 4.0  | 33.210    | 6.0  | 113.097             | 8.0  | 268.083   | 10.0 | 523.599   |

### THE OHM.

Stated in algebraic formula, the equation for the Ohm would be c equals e divided by r. In this equation, e represents the electro-motive force in volts, r is the resistance in Ohms and e is the current in amperes.

The above demonstrates the law that the strength of the current in a wire or other conductor is directly proportional to the difference of potential between its ends and inversely proportionate to its resistance.

At the electrical congress held in Chicago at the World's Fair in 1893, a commission went over the ground and established the following units, which have been adopted the world over. The Ohm is represented by the resistance of a a column of mercury one square millimetre section at the temperature of 32° Fahrenheit, having a length of 106.3 Centimetres.

The current produced by a volt through an Ohm's resistance is called an ampere. A coulomb is the quantity of electricity defined by the condition that an ampere flowing for one second gives a coulomb. A farad is defined by the condition that a charge of one coulomb gives a potential of one volt at its terminals. A volt is the E. M. F. that will sustain a current of one ampere in a conductor whose resistance is an Ohm.

DECIMAL EQUIVALENTS, ALSO SQUARES, CUBES, SQUARE ROOTS
AND CUBE ROOTS, OF FRACTIONS.

| Fraction.         | Equivalent. | Square.         | Cube.    | Square root.    | Cube root.      |
|-------------------|-------------|-----------------|----------|-----------------|-----------------|
| <u>1</u>          | .015625     | 00024399        |          | ·125            | .25             |
| 32                | .03125      | .00097656       |          | ·17698          | 31494           |
| 3                 | .046875     | .0021963        | 00010293 | ·21648          | ·36054          |
| 18                | .0625       | .0039062        | 00024414 | .25             | .39686          |
| 5 6 4             | .078125     | .0061035        | 00047684 | ·27951          | 42749           |
| 3 2               | .09375      | .0087891        | 00082397 | · <b>3</b> 0618 | 45428           |
| 7.                | 109375      | ·0119662        | .0013083 | ·32430          | ·47823          |
| <b>₩</b>          | ·125        | ·015625         | .0019531 | .35355          | ·5              |
| 9<br>64           | 140625      | .019683         | 0027615  | ·37456          | ·51962          |
| 3 2               | 15625       | ·0 <b>24414</b> | .0038147 | ·39529          | .53861          |
| 11                | 171875      | .029532         | .0050751 | 41455           | .55595          |
| 3 01              | .1875       | .035156         | .0065918 | · <b>42316</b>  | · <b>5</b> 7236 |
| 13                | 203125      | .041270         | .0083840 | 45077           | .58786          |
| 37 0 T            | ·21875      | 047851          | 010467   | 46771           | 60254           |
| 15<br>64          | 234375      | .054929         | .012874  | 48412           | 61655           |
| <u> }</u>         | .25         | .062500         | .015625  | ·5              | 62996           |
| 17                | 265625      | 070554          | .018741  | ·51538          | 64282           |
| 32                | ·28125      | 079102          | .022247  | •53033          | .65519          |
| 32 <del>} }</del> | 296875      | ·0881 <b>32</b> | .026164  | ·54486          | 66710           |
| 5 16              | 3125        | .097656         | .030518  | .55902          | 67860           |
| 2 1<br>6 4        | ·328125     | 107666          | .035326  | .57282          | 68978           |
| 11                | ·34375      | 118162          | .040619  | .58630          | 70051           |
| 23<br>64          | 359375      | 129151          | .046411  | 59948           | ·71096          |
| 3                 | ·375        | 140625          | 052734   | ·61237          | ·72113          |
| 2.5<br>0.4        | .390625     | 15258           | .059602  | 62499           | .73100          |
| 13                | 40625       | ·16504          | .067047  | 63738           | 74062           |
| 32 27             | 421875      | ·17797          | .075508  | 64951           | .75             |
| 7.                | 4375        | 19140           | .083740  | 66144           | 75915           |
| 16<br>64          | 453125      | 20531           | .093033  | 67314           | 76808           |
| 15                | 46875       | 21973           | 103000   | 68465           | 77681           |
| 32                | 484375      | 23461           | 113642   | 69596           | 78534           |
| 1 64              | .5          | .25             | 125      | 70711           | 79370           |

DECIMAL EQUIVALENTS, ALSO SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS, OF FRACTIONS.

| Fraction.       | Equivalent.      | Square.         | Cube.          | Square root.   | Cube root.      |
|-----------------|------------------|-----------------|----------------|----------------|-----------------|
| 33              | ·515625          | .26585          | .13708         | ·71806         | · <b>8</b> 0188 |
| $\frac{17}{32}$ | ·53125           | .28223          | 14993          | 72895          | 80996           |
| 3.5             | 546875           | 29907           | ·16355         | .73951         | ·81776          |
| 16              | .5625            | ·31641          | 17798          | .75            | 82548           |
| 37              | .578125          | .33422          | 19322          | ·76034         | ·8 <b>33</b> 05 |
| 19              | .59375           | ·35254          | .20932         | ·77055         | ·84049          |
| 39              | 609375           | · <b>37</b> 133 | .22628         | .78062         | ·84780          |
| <del>1</del>    | ·625             | .39063          | .24414         | .79057         | 85499           |
| 41<br>64        | 640625           | · <b>4</b> 1039 | 26290          | .80039         | .86205          |
| $\frac{21}{32}$ | .65625           | · <b>43</b> 066 | .28262         | .81009         | ·86901          |
| 43              | .671875          | ·45141          | *30329         | .81968         | .87585          |
| 11              | ·6875            | 47266           | 32495          | ·82917         | ·88258          |
| 45              | 703125           | 49438           | ·34761         | ·83852         | -88922          |
| 23 "            | ·71875           | •51660          | ·37131         | ·84779         | ·89576          |
| 47<br>64        | ·734375          | •53930          | ·39604         | 84695          | 90220           |
| 34              | ·75              | •56250          | · <b>42188</b> | ·86602         | ·90856          |
| 49<br>64        | ·765625          | .58617          | ·44879         | 875            | ·91 <b>482</b>  |
| $\frac{25}{32}$ | ·78125           | · <b>6</b> 1035 | 47684          | *88388         | · <b>921</b> 01 |
| 51              | ·796875          | ·6 <b>35</b> 00 | .50602         | *89267         | ·92711          |
| 13              | ·8125            | ·66013          | .53636         | 90139          | ·93313          |
| 53<br>64        | ·828125          | 68578           | .56791         | 91001          | ·93907          |
| 27<br>32        | ·84375           | ·71191          | .60068         | 91856          | ·94494          |
| 55<br>64        | ·8 <b>5</b> 9375 | ·7385 <b>2</b>  | 63466          | 92702          | ·95074          |
| 7               | ·875             | ·76563          | 66992          | .93541         | 95646           |
| 57<br>64        | ·890625          | 79142           | •70644         | 94320          | 96176           |
| 29<br>32        | 90625            | ·82129          | ·74429         | 95197          | 96772           |
| 59<br>6 +       | ·9218 <b>7</b> 5 | 84984           | ·78344         | 96014          | ·97325          |
| 18              | ·9375            | .87891          | 82397          | ·96825         | ·97872          |
| 6 1<br>6 4      | •953125          | •90845          | 86586          | .97632         | ·98 <b>4</b> 15 |
| 31              | 96875            | •93848          | 90'915         | 98425          | 98947           |
| 63              | 984375           | <b>·96898</b>   | 95384          | ·9921 <b>5</b> | · <b>9947</b> 6 |
| 1 .             | 1.               | 1.0             | 1.0            | 1.0            | 1.0             |

### Squares, Cubes, and Square and Cube Roots, of all Numbers from 1 to 500, and 4th and 5th powers of Numbers 1 to 150.

| No. | Square. | Cube.  | 4th Power. | 5th Power. | Square Root. | Cube Root |
|-----|---------|--------|------------|------------|--------------|-----------|
| 1   | 1       | 1      | 1          | 1          | 1.           | 1.        |
| 2   | 4       | 8      | 16         | 32         | 1.4142 136   | 1.2599 21 |
| 3   | 9       | 27     | 81         | 243        | 1.7320 508   | 1.4422 49 |
| 4   | 16      | 64     | 256        | 1024       | 2.           | 1.5874 01 |
| 5   | 25      | 125    | 625        | 3125       | 2.2360 680   | 1.7099 75 |
| 6   | 36      | 216    | 1296       | 7776       | 2.4494 897   | 1.8171 20 |
| 7   | 49      | 343    | 2401       | 16807      | 2.6457 513   | 1.9129 31 |
| 8   | 64      | 512    | 4096       | 32768      | 2.8284 271   | 2.        |
| 9   | 81      | 729    | 6561       | 59049      | 3.           | 2.0800 83 |
| 10  | 1 00    | 1 000  | 10000      | 100000     | 3.1622 777   | 2.1544 34 |
| 11  | 1 21    | 1 331  | 14641      | 161051     | 3.3166 248   | 2.2239 80 |
| 12  | 1 44    | 1 728  | 20736      | 248832     | 3.4641 016   | 2.2894 28 |
| 13  | 1 69    | 2 197  | 28561      | 371293     | 3.6055 513   | 2.3513 34 |
| 14  | 1 96    | 2 744  | 38416      | 537824     | 3.7416 574   | 2 4101 42 |
| 15  | 2 25    | 3 375  | 50625      | 759375     | 3.8729 833   | 2.4662 12 |
| 16  | 2 56    | 4 096  | 65536      | 1048576    | 4·           | 2.5198 42 |
| 17  | 2 89    | 4 913  | 83521      | 1419857    | 4.1231 056   | 2.5712 81 |
| 18  | 3 24    | 5 832  | 104976     | 1889568    | 4.2426 407   | 2.6207 41 |
| 19  | 3 61    | 6 859  | 130321     | 2476099    | 4.3588 989   | 2.6684 01 |
| 20  | 4 00    | 8 000  | 160000     | 3200000    | 4.4721 360   | 2.7144 17 |
| 21  | 4 41    | 9 261  | 194481     | 4084101    | 4.5825 757   | 2.7589 24 |
| 22  | 4 84    | 10 648 | 234256     | 5153632    | 4.6904 158   | 2.8020 39 |
| 23  | 5 29    | 12 167 | 279841     | 6436343    | 4.7958 315   | 2.8438 67 |
| 24  | 5 76    | 13 824 | 331776     | 7962624    | 4.8989 795   | 2.8841 99 |
| 25  | 6 25    | 15 625 | 390625     | 9765625    | 5.           | 2.9240 17 |
| 26  | 6 76    | 17 576 | 456976     | 11881376   | 5.0990 195   | 2.9624 96 |
| 27  | 7 29    | 19 683 | 531441     | 14348907   | 5.1961 524   | 3.        |
| 28  | 7 84    | 21 952 | 614656     | 17210368   | 5.2915 026   | 3 0365 88 |
| 29  | 8 41    | 24 389 | 707281     | 20511149   | 5.3851 648   | 3.0723 16 |
| 30  | 9 00    | 27 000 | 810000     | 24300000   | 5.4772 256   | 3.1072 32 |

SQUARES, CUBES, AND SQUARE AND CUBE ROOTS, OF ALL NUMBERS FROM I TO 500, AND 4TH AND 5TH POWERS OF NUMBERS I TO 150.

| No.       | Square. | Cube.         | 4th Power. | 5th Power. | Square Root.      | Cube Root. |
|-----------|---------|---------------|------------|------------|-------------------|------------|
| 31        | 9 61    | 29 791        | 923521     | 28629151   | 5.5677 644        | 3.1413 806 |
| 32        | 10 24   | <b>32</b> 768 | 1048576    | 33554432   | 5.6568 542        | 3.1748 021 |
| 33        | 10 89   | 35 937        | 1185921    | 39135393   | 5.7445 626        | 3.2075 343 |
| 34        | 11 56   | 39 304        | 1336336    | 45435424   | 5.8309 519        | 3.2396 118 |
| 35        | 12 25   | 42 875        | 1500625    | 52521875   | <b>5.9160</b> 798 | 3.2710 66  |
| 36        | 12 96   | 46 656        | 1679616    | 60466176   | 6•                | 3.3019 27  |
| 37        | 13 69   | 50 653        | 1874161    | 69343957   | 6.0827 625        | 3.3322 21  |
| 38        | 14 44   | 54 872        | 2085136    | 79235168   | 6.1644 140        | 3.3619 75  |
| 39        | 15 21   | 59 319        | 2313441    | 90224199   | 6.2449 998        | 3.3912 114 |
| 40        | 16 00   | 64 000        | 2560000    | 102400000  | 6.3245 553        | 3.4199 51  |
| 41        | 16 81   | 68 921        | 2825761    | 115856201  | 6.4031 242        | 3.4482 17  |
| 42        | 17 64   | 74 088        | 3111696    | 130691232  | 6.4807 407        | 3.4760 26  |
| <b>43</b> | 18 49   | 79 507        | 3418801    | 147008443  | 6.5574 385        | 3.5033 98  |
| 44        | 19 36   | 85 184        | 3748096    | 164916224  | 6.6332 496        | 3.5303 48  |
| 45        | 20 25   | 91 125        | 4100625    | 184528125  | 6.7082 039        | 3.5568 93  |
| 46        | 21 16   | 97 336        | 4477456    | 205962976  | 6.7823 300        | 3.5830 47  |
| 47        | 22 09   | 103 823       | 4879681    | 229345007  | 6.8556 546        | 3.6088 26  |
| 48        | 23 04   | 110 592       | 5308416    | 254803968  | 6.9282 032        | 3.6342 41  |
| 49        | 24 01   | 117 649       | 5764801    | 282475249  | 7.                | 3.6593 05  |
| 50        | 25 00   | 125 000       | 6250000    | 312500000  | 7.0710 678        | 3.6840 31  |
| 51        | 26 01   | 132 651       | 6765201    | 345025251  | 7.1414 284        | 3.7084 29  |
| 52        | 27 04   | 140 608       | 7311616    | 380204032  | 7.2111 026        | 3.7325 11  |
| 53        | 28 09   | 148 877       | 7890481    | 418195493  | 7.2801 099        | 3.7562 85  |
| 54        | 29 16   | 157 464       | 8503056    | 459165024  | 7.3484 692        | 3.7797 63  |
| 55        | 30 25   | 166 375       | 9150625    | 503284375  | 7.4161 985        | 3.8029 52  |
| 56        | 31 36   | 175 616       | 9834496    | 550731776  | 7.4833 148        | 3.8258 62  |
| 57        | 32 49   | 185 193       | 10556001   | 601692057  | 7.5498 344        | 3.8485 01  |
| 58        | 33 64   | 195 112       | 11316496   | 656356768  | 7.6157 731        | 3.8708 76  |
| 59        | 34 81   | 205 379       | 12117361   | 714924299  | 7.6811 457        | 3.8929 96  |
| 60        | 36 00   | 216 000       | 12960000   | 777600000  | 7.7459 667        | 3.9148 67  |
| 61        | 37 21   | 226 981       | 13845841   | 844596301  | 7.8102 497        | 3.9364 97  |
| 62        | 38 44   | 238 328       | 14776336   | 916132832  | 7.8740 079        | 3.9578 91  |
| 63        | 39 69   | 250 047       | 15752961   | 992436543  | 7.9372 539        | 3.9790 57  |
| 64        | 40 96   | 262 144       | 16777216   | 1073741824 | 8                 | 4.         |
| 65        | 42 25   | 274 625       | 17850625   | 1160290625 | 8.0622 577        | 4.0207 25  |
| 66        | 43 56   | 287 496       | 18974736   | 1252332576 | 8 1240 384        | 4.0412 40  |
| 67        | 44 89   | 300 763       | 20151121   | 1350125107 | 8.1853 528        | 4.0615 48  |
| 68        | 46 24   | 314 432       | 21381376   | 1453933568 | 8.2462 113        | 4.0816 55  |
| 69        | 47 61   | 328 509       | 22667121   | 1564031349 | 8.3066 239        | 4.1015 66  |
| 70        | 49 00   | 343 000       | 24010000   | 1680700000 | 8.3666 003        | 4.1212 85  |

. SQUARES, CUBES, AND SQUARE AND CUBE ROOTS, OF ALL NUMBERS FROM I TO 500, AND 4TH AND 5TH POWERS OF NUMBERS I TO 150.

|     |         | Cube.     | 4th Power. | 5th Power.  | Square Root. | Cube Root. |
|-----|---------|-----------|------------|-------------|--------------|------------|
| 71  | 50 41   | 357 911   | 25411681   | 1804229351  | 8.4261 498   | 4.1408 178 |
| 72  | 51 84   | 373 248   | 26873856   | 1934917632  | 8.4852 814   | 4.1601 676 |
| 73  | 53 29   | 389 017   | 28398241   | 2073071593  | 8.5440 037   | 4.1793 390 |
| 74  | 54 76   | 405 224   | 29986576   | 2219006624  | 8.6023 253   | 4.1983 364 |
| 75  | 56 25   | 421 875   | 31640625   | 2373046875  | 8.6602 540   | 4.2171 633 |
| 76  | 57 76   | 438 976   | 33362176   | 2535525376  | 8.7177 979   | 4.2358 236 |
| 77  | 59 29   | 456 533   | 35153041   | 2706784157  | 8.7749 644   | 4.2543 210 |
| 78  | 60 84   | 474 552   | 37015056   | 2887174368  | 8.8317 609   | 4.2726 586 |
| 79  | 62 41   | 493 039   | 38950081   | 3077056399  | 8.8881 944   | 4.2908 404 |
| 80  | 64 00   | 512 000   | 40960000   | 3276800000  | 8.9442 719   | 4.3088 695 |
| 81  | 65 61   | 531 441   | 43046721   | 3486784401  | 9.           | 4.3267 487 |
| 82  | 67 24   | 551 368   | 45212176   | 3707398432  | 9.0553 851   | 4.3444 815 |
| 83  | 68 89   | 571 787   | 47458321   | 3939040643  | 9.1104 336   | 4.3620 707 |
| 84  | 70 56   | 592 704   | 49787136   | 4182119424  | 9.1651 514   | 4.3795 191 |
| 85  | 72 25   | 614 125   | 52200625   | 4437053125  | 9.2195 445   | 4.3968 296 |
| 86  | 73 96   | 636 056   | 54708016   | 4704270176  | 9.2736 185   | 4.4140 049 |
| 87  | 75 69   | 658 503   | 57289761   | 4984209207  | 9.3273 791   | 4.4310 476 |
| 88  | 77 44   | 681 472   | 59969536   | 5277319168  | 9.3808 315   | 4.4479 602 |
| 89  | 79 21   | 704 969   | 62742241   | 5584059449  | 9.4339 811   | 4.4647 451 |
| 90  | 81 00   | 729 000   | 65610000   | 5904900000  | 9.4868 330   | 4.4814 047 |
| 91  | 82 81   | 753 571   | 68574961   | 6240321451  | 9.5393 920   | 4.4979 414 |
| 92  | 84 64   | 778 688   | 71639296   | 6590815232  | 9 5916 630   | 4.5143 574 |
| 93  | 86 49   | 804 357   | 74805201   | 6956883693  | 9.6436 508   | 4.5306 549 |
| 94  | 88 36   | 830 584   | 78074896   | 7339040224  | 9.6953 597   | 4.5468 359 |
| 95  | 90 25   | 857 375   | 81450625   | 7737809375  | 9.7467 943   | 4.5629 026 |
| 96  | 92 16   | 884 736   | 84034656   | 8153726976  | 9.7979 590   | 4.5788 570 |
| 97  | 94 09   | 912 673   | 88529281   | 8587340257  | 9.8488 578   | 4.5947 009 |
| 98  | 96 04   | 941 192   | 92236816   | 9039207968  | 9.8994 949   | 4.6104 363 |
| 99  | 98 01   | 970 299   | 96059601   | 9509900499  | 9.9498 744   | 4.6260 650 |
| 100 | 1 00 00 | 1 000 000 | 100000000  | 10000000000 | 10· •        | 4.6415 888 |
| 101 | 1 02 01 | 1 030 301 | 104060401  | 10510100501 | 10.0498 756  | 4.6570 095 |
| 102 | 1 04 04 | 1 061 208 | 108243216  | 11040808032 | 10.0995 049  | 4.6723 287 |
| 103 | 1 06 09 | 1 092 727 | 112550881  | 11592740743 | 10.1488 916  | 4.6875 482 |
| 104 | 1 08 16 | 1 124 864 | 116985856  | 12166529024 | 10.1980 390  | 4.7026 694 |
| 105 | 1 10 25 | 1 157 625 | 121550625  | 12762815625 | 10.2469 508  | 4.7176 940 |
| 106 | 1 12 36 | 1 191 016 | 126247696  | 13382255776 | 10.2956 301  | 4.7326 235 |
| 107 | 1 14 49 | 1 225 043 | 131079601  | 14025517307 | 10.3440 804  | 4.7474 594 |
| 108 | 1 16 64 | 1 259 712 | 136048896  | 14693280768 | 10.3923 048  | 4.7622 032 |
| 109 | 1 18 81 | 1 295 029 | 141158161  | 15386239549 | 10 4403 065  | 4.7768 562 |
| 110 | 1 21 00 | 1 331 000 | 146410000  | 16105100000 | 10.4880 885  | 4.7914 199 |

SQUARES, CUBES, AND SQUARE AND CUBE ROOTS, OF ALL NUMBERS FROM I TO 500, AND 4TH AND 5TH POWERS OF NUMBERS I TO 150.

| 116         1 34 56         1 560 896         181063936         21003416576         10·7703         296         4·8769         990           117         1 36 89         1 601 613         187388721         21924480357         10·8166         538         4·8909         732           118         1 39 24         1 643 032         193877776         22877577568         10·8627         805         4·9048         681           119         1 41 61         1 685 159         200533921         23863536599         10·9087         121         4·9186         847           120         1 44 00         1 728 000         207360000         24883200000         10·9544         512         4·9324         242           121         1 46 41         1 771         561         214358881         25937424601         11         4·9460         874           122         1 48 84         1 815         848         221533456         27027081632         11·0453         610         4·9596         757           123         1 51         29         1 860         867         228886641         28153056843         11·0905         365         4·9731         898           124         1 53 76         1 906                                                                                                                                                                                                     | -   |         |           |            |             |              |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----------|------------|-------------|--------------|------------|
| 112         1         25         44         1         404         928         157351936         17623416832         10-5830         652         4*8202         845         811         1         29         6         1         481         544         168860016         19254145824         10-6770         783         4*8488         076           115         1         32         25         1         520         875         174900625         20113581875         10-7238         053         4*8699         442           116         1         34         56         1         601         613         187388721         21924480357         10-7103         206         4*8769         900           117         1         36         9         1         643         032         193877776         228775757588         10-8627         505         49048         681           119         1         41         61         1         775         600         207360000         24883200000         10-954         512         4-9186         847           121         1         46         41         1         771         7561         2248588641         281534563         11-045                                                                                                                                                                                                                          | No. | Square. | Cube.     | 4th Power. | 5th Power.  | Square Root. | Cube Root. |
| 112         1         25         44         1         404         928         157351936         17623416832         10-5830         652         4*8202         845         811         1         29         6         1         481         544         168860016         19254145824         10-6770         783         4*8488         076           115         1         32         25         1         520         875         174900625         20113581875         10-7238         053         4*8699         442           116         1         34         56         1         601         613         187388721         21924480357         10-7103         206         4*8769         900           117         1         36         9         1         643         032         193877776         228775757588         10-8627         505         49048         681           119         1         41         61         1         775         600         207360000         24883200000         10-954         512         4-9186         847           121         1         46         41         1         771         7561         2248588641         281534563         11-045                                                                                                                                                                                                                          | 111 | 1 23 21 | 1 367 631 | 151807041  | 16850581551 | 10.5356 538  | 4.8058 955 |
| 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112 | 1 25 44 | 1 404 928 |            |             | 10.5830 052  |            |
| 115         1 32 25         1 520 875         174900025         20113581875         10 7238 053         4*8629 442           116         1 34 56         1 560 896         181063936         21003416576         10 7703 296         4*8769 990           117         1 36 89         1 601 613         187388721         21924480357         10 8627 805         4*9098 732           118         1 39 24         1 643 032         193877776         22877577568         10 8627 805         4*9048 681           119         1 41 61         1 685 159         200533921         23863536599         10 9087 121         4*9186 847           120         1 44 00         1 728 000         207360000         24883200000         10 9544 512         4*9460 874           121         1 46 41         1 771 561         214358881         2593742401         11         49566 757           123         1 51 29         1 860 867         228886641         28153056843         11 0905 365         49731 898           124         1 53 76         1 906 624         236421376         29316250624         11 1355 287         49866 310           125         1 56 25         1 951 125         244140625         31757969376         11 2249 722         50132 979                                                                                                                                                    | 113 | 1 27 69 | 1 442 897 | 163047361  | 18424351793 | 10.6301 458  | 4.8345 881 |
| 116         1         34         56         1         560         896         181063936         21003416576         10-7703         296         4*8769         990           117         1         36         89         1         601         613         187388721         21924480357         10-8627         805         4*9048         681           118         1         39         24         1         643         032         193877776         22877577568         10-8627         805         4*9048         681           120         1         44         00         1         728         000         207360000         24883200000         10-9544         512         4*9460         874           121         1         46         41         1         771         561         214358881         25937424601         11         49450         874           122         1         48         84         1         815         848         221533456         27027081632         11-0453         610         4*9566         310           122         1         58         12         1440625         30517578125         11-1803399         5           126                                                                                                                                                                                                                                               | 114 | 1 29 96 | 1 481 544 | 168896016  | 19254145824 | 10.6770 783  | 4.8488 076 |
| 117         1 36 89         1 601 613         187388721         21924480357         10 8166 538         4 8909 732           118         1 39 24         1 643 032         193877776         22877577568         10 8627 805         4 9048 681           119         1 41 61         1 685 159         200533921         23863536599         10 9087 121         4 9186 847           120         1 44 00         1 728 000         207360000         24883200000         10 9544 512         4 986 847           121         1 46 41         1 771 561         214358881         25937424601         11.         4 9460 874           122         1 48 84         1 815 848         221533456         27027081632         11 0453 610         4 9596 757           123         1 51 29         1 860 867         228886641         28153056843         11 0905 365         49731 86           124         1 53 76         1 965 624         236421376         29316250624         11 1803 399         5           126         1 58 76         2 004 383         260144641         3038369407         11 2249 722         50132 979           127         1 61 29         2 048 383         260149494         31730649         11 3578 167         50265 5026         50366 92                                                                                                                                              | 115 | 1 32 25 | 1 520 875 | 174900625  | 20113581875 | 10.7238 053  | 4.8629 442 |
| 117         1 36 89         1 601 613         187388721         21924480357         10 8166 538         4*8009 732           118         1 39 24         1 643 032         193877776         22877577568         10*8627 805         4*9048 681           119         1 41 61         1 685 159         200533921         23863536599         10*9087 121         4*9186 847           120         1 44 00         1 728 000         207360000         24883200000         10*9544 512         4*9186 847           121         1 46 41         1 771 561         214358881         25937424601         11         4*9460 874           122         1 48 84         1 815 848         221533456         27027081632         11*0453 610         4*9596 757           123         1 51 29         1 860 867         228886641         28153056843         11*0453 610         4*9596 757           125         1 58 76         2 000 376         252047376         31757969376         11*2249 722         5*0132 979           127         1 61 29         2 048 383         260144641         33038369407         11*2694 277         5*0265 257           128         1 63 84         2 097 152         268435456         34359738368         11*3137 085         5*0357 970                                                                                                                                               | 116 | 1 34 56 | 1 560 896 | 181063936  | 21003416576 | 10.7703 296  | 4.8769 990 |
| 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117 | 1 36 89 | 1 601 613 | 187388721  | 21924480357 | 10.8166 538  | 4.8909 732 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 118 | 1 39 24 | 1 643 032 | 193877776  | 22877577568 | 10.8627 805  | 4.9048 681 |
| 121         1 46 41         1 771 561         214358881         25937424601         11         49460 874           122         1 48 84         1 815 848         221533456         27027081632         11 0453 610         49596 757           123         1 51 29         1 860 867         228886641         28153056843         11 0905 365         49731 898           124         1 53 76         1 906 624         236421376         29316250624         11 1355 287         49866 310           125         1 56 25         1 953 125         244140625         30517578125         11 1803 399         5           126         1 58 76         2 000 376         252047376         31757969376         11 2249 722         50132 979           127         1 61 29         2 048 383         260144641         33038369407         11 2694 277         50265 257           128         1 63 84         2 097 152         268435456         34359738368         11 3137 085         50396 842           130         1 69 00         2 197 000         285610000         3712930000         11 4017 543         50657 970           131         1 71 61         2 248 091         29449921         38579489651         11 4891 253         50916 434           13                                                                                                                                                      | 119 | 1 41 61 | 1 685 159 | 200533921  | 23863536599 | 10.9087 121  | 4.9186 847 |
| 122         1 48 84         1 815 848         221533456         27027081632         11 0453 610         4*9596 757           123         1 51 29         1 860 867         228886641         28153056843         11 0905 365         4*9731 898           124         1 53 76         1 906 624         236421376         29316250624         11*1355 287         4*9866 310           125         1 56 25         1 953 125         244140625         30517578125         11*1303 399         5*           126         1 58 76         2 000 376         252047376         31757969376         11*2249 722         5*0132 979           127         1 61 29         2 048 383         260144641         33038369407         11*2694 277         5*0265 257           128         1 63 84         2 097 152         268435456         34359738868         11*3137 088         5*0396 842           129         1 66 41         2 146 689         276922881         35723051649         11*3578 167         5*0396 842           130         1 69 00         2 197 000         285610000         37129300000         11*4017 543         5*0627 743           132         1 74 24         2 299 968         303595776         40074642432         11*4891         253         5*0916 434<                                                                                                                                     | 120 | 1 44 00 | 1 728 000 | 207360000  | 24883200000 | 10.9544 512  | 4.9324 242 |
| 123         1         51         29         1         860         867         228886641         28153056843         11.0905         365         4.9731         898           124         1         53         76         1         906         624         236421376         29316250624         11.1355         287         4.9866         310           125         1         56         25         1         953         125         244140625         30517578125         11.1803         399         5           127         1         61         29         2         48         383         260144641         33038369407         11.2694         277         5-0265         257           128         1         63         84         2         097         152         268435456         34359738368         11.3137         085         5-0366         842           129         1         64         41         2         46         689         276922881         35723051649         11.3578         167         5-0527         743           130         1         69         0         2         197         000         285610000         37129300000         11.4017                                                                                                                                                                                                                                        | 121 | 1 46 41 | 1 771 561 | 214358881  | 25937424601 | 11·          | 4.9460 874 |
| 124         1 53 76         1 906 624         236421376         29316250624         11:1355 287         4:9866 310           125         1 58 76         2 000 376         2524440625         30517578125         11:1803 399 5         5:0132 979           127         1 61 29         2 048 383         260144641         33038369407         11:2249 722         5:0132 979           128         1 63 84         2 097 152         268435456         34359738368         11:3137 085         5:0396 842           129         1 66 41         2 146 689         276922881         35723051649         11:3578 167         5:0527 743           130         1 69 00         2 197 000         285610000         3712930000         11:4017 543         5:0657 790           131         1 71 61         2 248 091         294499921         38579489651         11:4891 253         5:0916 434           133         1 76 89         2 352 637         312900721         41615795893         11:5325 626         5:1044 687           134         1 79 56         2 466 104         322417936         43204003424         11:6189 500         5:1299 278           136         1 84 96         2 515 456         342102016         46525874176         11:619 038         5:1425 632                                                                                                                                     | 122 | 1 48 84 | 1 815 848 | 221533456  | 27027081632 | 11.0453 610  | 4.9596 757 |
| 125         1 56 25         1 953 125         244140625         30517578125         11·1803 399         5·122 979           126         1 58 76         2 000 376         252047376         31757969376         11·2249 722         5·0132 979           127         1 61 29         2 048 383         260144641         33038369407         11·2694 277         5·0265 257           128         1 63 84         2 097 152         268435456         34359738368         11·317 085         5·0396 842           129         1 66 41         2 146 689         276922881         35723051649         11·3578 167         5·0657 970           131         1 71 61         2 248 091         294499921         38579489651         11·4017 543         5·0657 970           131         1 76 89         2 352 637         312900721         41615795893         11·5358 369         5·1014 687           134         1 79 56         2 406 104         322417936         43204003424         11·5758 369         5·1172 299           135         1 82 25         2 460 375         332150625         44840334375         11·6189 500         5·1229 278           136         1 84 96         2 515 456         342102016         46525874176         11·6619 038         5·1425 632 </td <td>123</td> <td>1 51 29</td> <td>1 860 867</td> <td>228886641</td> <td>28153056843</td> <td>11.0905 365</td> <td>4.9731 898</td> | 123 | 1 51 29 | 1 860 867 | 228886641  | 28153056843 | 11.0905 365  | 4.9731 898 |
| 126         1 58 76         2 000 376         252047376         31757969376         11·2249 722         5·0132 979           127         1 61 29         2 048 383         260144641         3303869407         11·2694 277         5·0265 257           128         1 63 84         2 097 152         268435456         34359738368         11·3137 085         5·0396 842           129         1 66 41         2 146 689         276922881         35723051649         11·3678 167         5·0527 743           130         1 69 00         2 197 000         285610000         37129300000         11·4017 543         5·0587 970           131         1 71 61         2 248 091         294499921         38579489651         11·4017 543         5·0787 531           132         1 74 24         2 299 968         303595776         40074642432         11·4891 253         5·0916 434           133         1 76 89         2 352 637         312900721         41615795893         11·5325 626         5·1044 687           134         1 79 56         2 406 375         332150625         44840334375         11·6189 500         5·1299 278           136         1 84 96         2 515 456         342102016         46525874176         11·6189 500         5·1299 278     <                                                                                                                                 |     | 1 53 76 | 1 906 624 | 236421376  | 29316250624 | 11.1355 287  | 4.9866 310 |
| 127         1 61 29         2 048 383         260144641         3308369407         11·2694 277         5·0265 257           128         1 63 84         2 097 152         268435456         34359738368         11·3137 085         5·0396 842           129         1 66 41         2 146 689         276922881         35723051649         11·3578 167         5·0527 743           130         1 69 00         2 197 000         285610000         37129300000         11·4017 543         5·0567 970           131         1 71 61         2 248 091         294499921         38579489651         11·4455         231         5·0787 531           132         1 74 24         2 299 968         303595776         40074642432         11·4891 253         5·0916 434           133         1 76 89         2 352 637         312900721         41615795893         11·5325 626         5·1044 687           134         1 79 56         2 406 104         322417936         43204003424         1:5758 369         5·1172 299           135         1 82 55         2 460 375         332150625         44840334375         11·6189 500         5·1299 278           136         1 84 96         2 515 456         342102016         46525874176         11·6619 038         5·142                                                                                                                                     |     |         |           | 244140625  | 30517578125 | 11.1803 399  | 5          |
| 128         1 63 84         2 097 152         268435456         34359738368         11:3137 085         5:0396 842           129         1 66 41         2 146 689         276922881         35723051649         11:3578 167         5:0627 743           130         1 69 00         2 197 000         285610000         37129300000         11:4017 543         5:0657 797           131         1 71 61         2 248 091         294499921         38579489051         11:4455 231         5:0787 531           132         1 74 24         2 299 968         303595776         40074642432         11:4891 253         5:0916 434           133         1 76 89         2 352 637         312900721         41615795893         11:5325 626         5:1044 687           134         1 79 56         2 466 104         322417936         43204003424         11:6189 500         5:1299 278           135         1 84 96         2 515 456         342102016         46525874176         11:6189 500         5:1299 278           138         1 90 44         2 682 072         362673936         50049003168         11:7473 401         5:1676 493           139         1 93 21         2 685 619         373301641         5188844699         1:7898 261         5:1801 015 </td <td>126</td> <td></td> <td>2 000 376</td> <td>252047376</td> <td>31757969376</td> <td>11.2249 722</td> <td>5.0132 979</td>        | 126 |         | 2 000 376 | 252047376  | 31757969376 | 11.2249 722  | 5.0132 979 |
| 129         1 66 41         2 146 689         279922881         35723051649         11:3578 167         5:0527 743           130         1 69 00         2 197 000         285610000         37129300000         11:4017 543         5:0657 970           131         1 71 61         2 248 091         294499921         38579489651         11:4455         231         5:0787 531           132         1 74 24         2 299         968         303595776         40074642432         11:4891         253         5:0916 434           133         1 76 89         2 352 637         312900721         41615795893         11:5325 626         5:1044 687           134         1 79 56         2 406 104         322417936         43204003424         11:5758 369         5:1172 299           135         1 82 25         2 460 375         332150625         44840334375         11:689 500         5:1299 278           136         1 84 96         2 551 456         342102016         46525874176         11:689 500         5:1299 278           138         1 90 44         2 628 072         362673936         50049003168         11:7473 401         5:1676 493           139         1 93 21         2 685 619         373301641         51888844699                                                                                                                                                       | 127 |         |           | 260144641  | 33038369407 | 11.2694 277  | 5.0265 257 |
| 130         1 69 00         2 197 000         285610000         37129300000         11:4017 543         5-0657 970           131         1 71 61         2 248 091         294499921         38579489651         11:4455 231         5-0787 531           132         1 74 24         2 299 968         303595776         40074642432         11:4851 235         5-0916 434           133         1 76 89         2 352 637         312900721         41615795893         11:5325 626         5-1044 687           134         1 79 56         2 406 104         322417936         43204003424         11:5758 369         5-1172 299           135         1 82 25         2 460 375         332150625         44840334375         11:6189 500         5-1299 278           136         1 84 96         2 515 456         342102016         46525874176         11:6619 038         5-1425 632           137         1 87 69         2 571 353         352275361         48261724457         11:7049 99         5-1551 367           138         1 90 44         2 628 072         362673936         50049003168         11:7473 401         5-1676 493           139         1 93 21         2 685 619         373301641         5188844699         11:7898 261         5:1801 015 </td <td></td> <td></td> <td>2 097 152</td> <td>268435456</td> <td></td> <td></td> <td>5.0396 842</td>                                 |     |         | 2 097 152 | 268435456  |             |              | 5.0396 842 |
| 131         1         71         61         2         248         091         294499921         38579489651         11.4455         231         5-0787         531           132         1         74         24         2         299         968         303595776         40074642432         11.4891         253         5-0916         434           133         1         76         89         2         352         637         312900721         41615795893         11·5758         366         5-1014         687           134         1         79         56         2         406         104         322417936         43204003424         11·5758         369         5-1172         299           135         1         82         25         2         460         375         332150625         44840334375         11·6189         500         5-1299         278           136         1         84         96         2         571         353         352275361         48261724457         11·6189         500         5-1259         278           138         1         90         44         2         628         072         362673936         50049003168 </td <td></td> <td></td> <td></td> <td>276922881</td> <td>35723051649</td> <td>11.3578 167</td> <td></td>                                                                                                                          |     |         |           | 276922881  | 35723051649 | 11.3578 167  |            |
| 132         1 74 24         2 299 968         303595776         40074642432         11 4891 253         5 0916 434           133         1 76 89         2 352 637         312900721         41615795893         11 5325 626         5 1044 687           134         1 79 56         2 406 104         322417936         43204003424         11 5753 369         5 1172 299           135         1 82 25         2 460 375         332150625         44840334375         11 6189 500         5 1299 278           136         1 84 96         2 515 456         342102016         46525874176         11 6619 038         5 1425 632           137         1 87 69         2 571 353         352275361         48261724457         11 7046 999         5 1515 367           138         1 90 44         2 688 619         373301641         5188844699         11 7898 261         5 1801 015           140         1 96 00         2 744 000         384160000         53782400000         11 8743 422         5 2048 279           142         2 01 64         2 863 288         406586896         57735339232         11 9165 73         5 2171 034           143         2 04 49         2 924 207         418161601         59797108943         11 9565 607         5 2293 215 </td <td></td> <td></td> <td></td> <td>285610000</td> <td></td> <td></td> <td></td>                                                    |     |         |           | 285610000  |             |              |            |
| 133         1 76 89         2 352 637         312900721         41615795893         11:5325 626         5:1044 687           134         1 79 56         2 406 104         322417936         43204003424         11:5758 369         5:1172 299           135         1 82 25         2 460 375         332150625         44840334375         11:6189 500         5:1299 278           136         1 84 96         2 515 456         342102016         46525874176         11:6619 038         5:1425 632           137         1 87 69         2 571 353         352275361         48261724457         11:7046 999         5:1551 367           138         1 90 44         2 628 072         362673936         50049003168         11:7473 401         5:1676 493           139         1 93 21         2 685 619         373301641         51888446699         11:7898 261         5:1801 015           140         1 96 00         2 744 000         384160000         5378240000         11:8743 422         5:2048 279           142         2 01 64         2 863 288         406586896         5773539232         1:9165 753         5:2171 034           143         2 04 49         2 924 207         418161601         59797108943         1:9582 607         5:2293 215 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                    |     |         |           |            |             |              |            |
| 134         1 79 56         2 406 104         322417936         43204003424         11:5758 369         5:1172 299           135         1 82 25         2 460 375         332150625         44840334375         11:6189 500         5:1299 278           136         1 84 96         2 515 456         342102016         46525874176         11:6619 038         5:1425 632           137         1 87 69         2 571 353         352275361         48261724457         11:7046 999         5:1551 367           138         1 90 44         2 628 072         362673936         50049003168         11:7473 401         5:1676 493           139         1 93 21         2 685 619         373301641         51888844699         11:7898 261         5:1801 015           140         1 96 00         2 744 000         384160000         53782400000         11:821 596         5:1924 941           141         1 98 81         2 803 221         395254161         57735339232         11:9163 753         5:2171 034           143         2 04 49         2 924 207         418161601         59797108943         11:9582 607         5:2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5:2414 828                                                                                                                                                |     |         |           |            |             |              |            |
| 135         1 82 25         2 460 375         332150625         44840334375         11 6189 500         5 1299 278           136         1 84 96         2 515 456         342102016         46525874176         11 6619 038         5 1425 632           137         1 87 69         2 571 353         352275361         48261724457         11 7046 999         5 1551 367           138         1 90 44         2 628 072         362673936         50049003168         11 7473 401         5 1676 493           139         1 93 21         2 685 619         373301641         51888844699         11 7898 261         5 1801 015           140         1 96 00         2 744 000         384160000         53782400000         11 8321 596         5 1924 941           141         1 98 81         2 803 221         395254161         55730836701         11 8743 422         5 2048 279           142         2 01 64         2 863 288         406586896         57735339232         11 9165 753         5 2171         034           144         2 07 36         2 985 984         429981696         61917364224         12         5 2414 828           145         2 10 25         3 048 625         442050625         64097340625         12 0415 946         5 2535 879 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                            |     |         |           |            |             |              |            |
| 136         1         84         96         2         515         456         342102016         46525874176         11·6619         038         5·1425         632           137         1         87         69         2         571         353         352275361         48261724457         11·7046         999         5·1551         367           138         1         90         44         2         628         072         362673936         50049003168         11·7473         40)         5·1676         493           139         1         93         21         2         685         619         373301641         5188844699         11·7898         261         5·1801         015           140         1         96         00         2         744         000         384160000         53782400000         11·8321         596         5·1924         941           141         1         98         81         2         803         221         395254161         55730836701         11·8743         422         5·2048         279           142         2         01         64         2         863         288         406586896         57735339232 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                               |     |         |           |            |             |              |            |
| 137         1 87 69         2 571 353         352275361         48261724457         11.7046 999         5.1551 367           138         1 90 44         2 628 072         362673936         50049003168         11.7473 401         5.1676 493           139         1 93 21         2 685 619         373301641         5188844699         11.7898 261         5.1801 015           140         1 96 00         2 744 000         384160000         5378240000         11.8743 492         5.924 941           141         1 98 81         2 803 221         395254161         55730836701         11.8743 492         5.2048 279           142         2 01 64         2 863 288         406586896         57735339232         11.9165 753         5.2171 034           143         2 04 49         2 924 207         418161601         59797108943         11.9582 607         5.2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5.2414 828           145         2 10 25         3 048 625         442050625         64097340625         12.0415 946         5.2535 879           146         2 13 16         3 112 136         454371856         66388509976         12.0830 656         5.2656 374 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                   |     |         |           |            |             |              |            |
| 138         1 90 44         2 628 072         362673936         50049003168         11.7473 401         5.1676 493           139         1 93 21         2 685 619         373301641         5188844699         11.7898 261         5.1801 015           140         1 96 00         2 744 000         384160000         5378240000         11.8321 596         51924 941           141         1 98 81         2 803 221         395254161         55730836701         11.8743 422         5:2048 279           142         2 01 64         2 863 288         406586896         57735393932         11.9165 753         5:2171 034           143         2 04 49         2 924 207         418161601         59797108943         11.9582 697         5:2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5:2414 828           145         2 10 25         3 048 625         442050625         64097340625         12.0415 946         5:2535 879           146         2 13 16         3 112 136         454371856         66388209076         12.0830 460         5:2656 374           147         2 16 09         3 176 523         466948881         68641485507         12:1243 557         5:2776 321 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                   |     |         |           |            |             |              |            |
| 139         1         93         21         2         685         619         373301641         51888844699         11.7898         261         5.1801         015           140         1         96         00         2         744         000         384160000         53782400000         11.8321         596         5.1924         941           141         1         98         81         2         803         221         395254161         55730836701         11.8743         422         5.2048         279           142         2         01         64         2         863         288         406586896         57735339232         11.9165         753         5.2171         034           143         2         04         49         2         924         207         418161601         59797108943         11.9582         607         5.2293         215           144         2         07         36         2         985         984         429981696         61917364224         12         5.2414         828           145         2         10         25         3         048         625         442050625         64097340625         12.0415 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                               |     |         |           |            |             |              |            |
| 140         1 96 00         2 744 000         384160000         53782400000         11 8321 596         5 1924 941           141         1 98 81         2 803 221         395254161         55730836701         11 8743 422         5 2048 279           142         2 01 64         2 863 288         406586896         57735339232         11 9165 753         5 2171 034           143         2 04 49         2 924 207         418161601         59797108943         11 9582 607         5 2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5 2414 828           145         2 10 25         3 048 625         442050625         64097340625         12 0415 946         5 2535 879           146         2 13 16         3 112 136         454371856         66338290976         12 0830 460         5 2656 374           147         2 16 09         3 176 523         466948881         68641485507         12 1243 557         5 2776 321           148         2 19 04         3 241 792         479785216         71008211968         12 1265 251         5 2895 725           149         2 22 01         3 307 949         492884401         73489775749         12 2065 556         5 3014 592 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                         |     |         |           |            |             |              |            |
| 141         1 98 81         2 803 221         395254161         55730836701         11:8743 422         5:2048 279           142         2 01 64         2 863 288         406586896         57735339232         11:9163 753         5:2171 034           143         2 04 49         2 924 207         418161601         59797108943         11:9582 607         5:2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5:2414 828           145         2 10 25         3 048 625         442050625         64097340625         12:0415 946         5:2535 879           146         2 13 16         3 112 136         454371856         66338290976         12:0830 460         5:2656 374           147         2 16 09         3 176 523         466948881         68641485507         12:1243 557         5:2776 321           148         2 19 04         3 241 792         479785216         71008211968         12:1655 251         5:2895 725           149         2 22 01         3 307 949         492884401         73439775749         12:2065 556         5:3014 592                                                                                                                                                                                                                                                                            |     |         |           |            |             |              |            |
| 142         2 01 64         2 863 288         406586896         57735339232         11 9165 753         5 2171 034           143         2 04 49         2 924 207         418161601         59797108943         11 9582 607         5 2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5 2414 828           145         2 10 25         3 048 625         442050625         64097340625         12 0415 946         5 2535 879           146         2 13 16         3 112 136         454371856         66338290976         12 0830 460         5 2656 374           147         2 16 09         3 176 523         466948881         68641485507         12 1243 557         5 2776 321           148         2 19 04         3 241 792         479785216         71008211968         12 1655 251         5 2895 725           149         2 22 01         3 307 949         492884401         73439775749         12 2065 556         5 3014 592                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |           |            |             | 11 8321 596  |            |
| 143         2 04 49         2 924 207         418161601         59797108943         11 9582 607         5 2293 215           144         2 07 36         2 985 984         429981696         61917364224         12         5 2414 828           145         2 10 25         3 048 625         442050625         64097340625         12 0415 946         5 2535 879           146         2 13 16         3 112 136         454371856         66338290976         12 0830 460         5 2656 374           147         2 16 09         3 176 523         466948881         68641485507         12 1243 557         5 2776 321           148         2 19 04         3 241 792         479785216         71008211968         12 1265 251         5 2895 725           149         2 22 01         3 307 949         492884401         73439775749         12 2065 556         5 3014 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |         |           |            |             | 11.8743 422  |            |
| 144         2 07 36         2 985 984         429981696         61917364224         12         5 2414 828           145         2 10 25         3 048 625         442050625         64097340625         12 0415 946         5 2535 879           146         2 13 16         3 112 136         454371856         66338290976         12 0830 460         5 2656 374           147         2 16 09         3 176 523         466948881         68641485507         12 1243 557         5 2776 321           148         2 19 04         3 241 792         479785216         71008211968         12 1265 251         5 2895 725           149         2 22 01         3 307 949         492884401         73489775749         12 2065 556         5 3014 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |           |            |             |              |            |
| 145         2         10         25         3         048         625         442050625         64097340625         12·0415         946         5·2535         879           146         2         13         16         8         112         136         454371856         66338290976         12·0830         460         5·2656         374           147         2         16         09         3         176         523         466948881         68641485507         12·1243         557         5·2776         321           148         2         19         04         3         241         792         479785216         71008211968         12·1655         251         5·2895         725           149         2         22         01         3         307         949         492884401         73489775749         12·2065         556         5·3014         592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         |           |            |             |              |            |
| 146     2     13     16     3     112     136     454371856     66338290976     12·0830     460     5·2656     374       147     2     16     09     3     176     523     466948881     68641485507     12·1243     557     5·2776     321       148     2     19     04     3     241     792     479785216     71008211968     12·1655     251     5·2895     725       149     2     22     01     3     307     949     492884401     73439775749     12·2065     556     5·3014     592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |           |            |             |              |            |
| 147     2     16     09     3     176     523     466948881     68641485507     12·1243     557     5·2776     321       148     2     19     04     3     241     792     479785216     71008211968     12·1655     251     5·2895     725       149     2     22     01     3     307     949     492884401     73439775749     12·2065     556     5·3014     592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |         |           |            |             |              |            |
| 148         2         19         04         3         241         792         479785216         71008211968         12:1655         251         5:2895         725           149         2         22         01         3         307         949         492884401         73439775749         12:2065         556         5:3014         592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |           |            |             |              |            |
| 149 2 22 01 3 307 949 492884401 73439775749 12.2065 556 5.3014 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |           |            |             |              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |           |            |             |              |            |
| 150   2 25 00   3 375 000   506250000   75937500000   12:2474 487   5:3132 928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |           |            |             |              |            |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150 | 2 25 00 | 3 3/5 000 | 506250000  | 1998/200000 | 12'24/4 48/  | 9.3132 928 |

### METRIC AND ENGLISH SYSTEMS OF MEASURE, AND THEIR RELATION TO ONE ANOTHER.

One of the advantages of the metric system consists in the fact that the weight of any quantity of material is found in tons, or in kilogrammes, or in grammes, simply by multiplying its volume in cubic meters or cubic decimeters, or in cubic centimeters by its specific gravity; thus the specific gravity of cast aluminum being 2.56, the weight of a cubic metre of cast aluminum is 2560 kilogrammes.

The following data regarding weights and measures, is quoted from "Gauges at a Glance," by Thomas Taylor:

### MEASURE.

The mere mention of the fact that the English system of measures is based upon the length of Henry I.'s arm, is enough to condemn it in the eyes of many. He measured his arm, declared it to be the "ulna," or ancient ell. This was well maintained, and in 1742 the Royal Society carefully prepared a standard from the ells of Henry VII., and Elizabeth kept at the Exchequer, In 1758 an exact copy was made of this Royal Society's yard, examined by a Committee of the House of Commons, then marked and approved. The Act of George IV. declares this "straight brass rod," &c., to be our standard and unit; all other measures, whether lineal, superficial or solid, to be derived from it:

"and that  $\frac{1}{3}$ rd yard of the said standard yard shall be "a foot, and the 12th part of such foot shall be an "inch: and that the pole or perch in length shall con"tain  $5\frac{1}{2}$  such yards, the furlong 220 such yards, and "the mile 1760 such yards."

### And further for area:

"The rood of land shall contain 1,210 square yards, "according to the said standard yard; and that the "acre of land shall contain 4,840 such square yards, "being 160 square perches, poles or rods."

If the standard yard gets lost or destroyed, its recovery is provided for by reference to the Pendulum at London.

The following tables give its relation to the Metric system:

### INCHES.

|          |            |    | INCHES.                                                           |
|----------|------------|----|-------------------------------------------------------------------|
| 1 1      | Millimetre | =  | $0.039370 = (about \frac{1}{25}th inch.)$                         |
| 1 (      | Centimetre | =  | 0.393704                                                          |
| 1 ]      | Decimetre  | =  | $3.937043 = 3\frac{15}{16}$ inches.                               |
| <b>I</b> | Metre      | =  | $39.370432 == 3$ feet $3\frac{3}{8}$ th inches, or                |
|          |            |    | 3.28 feet.                                                        |
| 1        | Decametre  | =  | 393.704320 $=$ 32 feet, $9\frac{1}{16}$ th inch.                  |
| <b>1</b> | Hectometre | == | 3937.043196 = 109  yards 1 foot 1 inch.                           |
| 1        | Kilometre  | =  | $39370.431960 = 1093 \text{ yards 1 foot } 10_{16}^{7} \text{th}$ |
|          |            |    | inch, or .6214 miles.                                             |

1 Myriametre = 393704.319600 = 6 miles 376 yards 0 feet  $8\frac{5}{15}$ th inch, or 6.214 miles

### WEIGHTS.

The great advantage of the Metric System lies not so much in its determination as in its application. The former gives it a more scientific or philosophical basis: the latter the great merit of usefulness. The metre is determined by a terrestrial meridian; our yard from Henry I.'s arm, checked by the oscillations of a pendulum at London. This gives the yard an arbitrary character as the oscillations vary in different parallels of latitude, and hence its inferiority from a scientific standpoint. But having got our basis or unit it would not much matter how, so long as we proceeded to divide or multiply it for use in a rational way. When George IV., was king, the British act establishing uniform measures throughout the kingdom took effect on January 1, 1826 (5 George IV., c. 74.) Why the only rational system, the decimal system, was not then inaugurated, and tons, cwts, qrs., drams, &c., swept away, passes the comprehension of ordinary folk. It seems incredible, but it is true, that "Heaped" measure was actually preserved. This gross absurdity was left for the wisdom of William IV., to abolish at the close of 1835.

# THE METRIC SYSTEM OF WEIGHTS AND MEASURES.

SCHEME OF THE WEIGHTS AND MEASURES OF THE METRIC SYSTEM.

| Ratios.    | Length.     | Surfaces.   | Volumes.  | Weights.           |
|------------|-------------|-------------|-----------|--------------------|
| 1,000,000  |             |             |           | Millier or Tonneau |
| 96,69      | Mario       | Memicanaton |           | Quintal            |
| 000        | Kilometer   | Kiloliter   | Kiloliter | Kilogram or Kilo   |
| 901        | Hectometer  | Hectare     | _         | Hectogram          |
| 2          | Dekameter   |             | Dekaliter | Dekagram           |
| ٦,         | Meter       | Are         | Liter     | Gram               |
| <b>∵</b> 5 | Decimeter   |             |           | Decigram           |
| <b>10</b>  | Centimeter. | Centare     | ٠,        | õ                  |
| 100:       | Millimeter  | Millimeter  | Militer   | Milleram           |

It will be seen from this table that 10 Millimeters equal 1 Centimeter, 10 Centimeters equal 1 Decimeter, and so on. MEASURES OF LENGTHS.

| metric Deno               | minations                                                   | Equivalents in Denomin-                                                               | Metric Denomina                                | ominations                       | Equivalents in English |
|---------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|------------------------|
| and Va                    | lues.                                                       | ations in use.                                                                        | and Values.                                    | alues.                           | Denominations in use.  |
| meter 1<br>meter<br>neter | 0,000 Meters.<br>1,000 Meters.<br>100 Meters.<br>10 Meters. | 6.2138 miles<br>0.62138 miles or 3280 ft. 10 ins<br>328 feet 1 inch.<br>393,7 inches. | Meter<br>Decimeter<br>Centimeter<br>Millimeter | 1. Meter 39 1. Meter 3 .01 Meter | 39.37 inches           |

| Equivalents in English<br>Denominations in use. | 2.471 Acres Sards                                           |
|-------------------------------------------------|-------------------------------------------------------------|
| Metric Denominations and Values.                | 10,000 Square Meters<br>100 Square Meters<br>1 Square Meter |
| Metric Denomina                                 | Hectare Are Contare                                         |

MEASURES OF SURFACE.

## THE METRIC SYSTEM OF WEIGHTS AND MEASURES. -- Continued.

## MEASURES OF CAPACITY.

| Equivalents in U. S. Denominations in use. | Liquid or Wine Measure. | 284.17 Gallons                                                                                      |
|--------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|
| Equivalents in U. S.                       | Dry Measure.            | 1.308 Cubic Yards. 2.8377 Bushels, 11,351 Pecks. 9.01 Quart. 6.1023 Cubic Inches. 61022 Cubic Inch. |
| and Values                                 | Cubic Measure.          | 1 Cubic Meter                                                                                       |
| Metric Denominations and Values            | No. of Liters.          | 1,000<br>100<br>10<br>1<br>1.<br>.01<br>.01.                                                        |
| Metric ]                                   | Names.                  | Kiloliter or Stere Hectoliter Dekaliter Liter Deciliter Centiliter Milliter                         |

### WEIGHTS.

| Equivalents in English<br>Denominations in use. | Avoirdupois Weight.                                  | 2204.6 Pounds.<br>220.46 Pounds.<br>2.2046 Pounds.<br>3.577 Ounces.<br>3.577 Ounces.<br>15.422 Grains.<br>15.432 Grains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metric Denominations and Values.                | Weight of what quantity of Water at Maximum Density. | 1 Cubic Meter 14 Hectoliter 15 Liters 1 Liter 1 Deciliter 10 Cubic Centimeter 1 Cubic Centimeter 11 Cubic Continueter 10 Cubic Millimeter 11 Cubic Millimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Metric Denomi                                   | Number of Grams.                                     | 1,000,000<br>100,000<br>10,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000<br>1,000 |
| •                                               | Names.                                               | Millier or Tonneau Quintal Myriagram Kilogram or Kilo. Hettogram Dekagram Gram Centigram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## THE METRIC SYSTEM OF WEIGHTS AND MEASURES. -- Continued.

COMMON MEASURES AND WEIGHTS WITH THEIR METRIC EQUIVALENTS.

### .9071 Tonneau.... Grams..... Kilogram... 31.104 Grans..... .3732 Kilogram... ilters..... laters..... iters..... Equivalents. 8.809 28.38 Com. Measures. A Peck, U. S. A Bushel, U.S. An Oz.-Av. A Grain, Troy. Dry Quart ... Lb.-Av..... Ton..... A Lb. Troy.... Cub. Centim's Liters Cubic Meter... Cubic Meter ... Liter Hectare..... Steres ..... Sq. Centim's Equivalents. ectares .02832 1645 1946 6.451 3,624 258.99 A Sq. Mile A Sq. Inch. A Cubic Inch. A Cubic Foot. A Cabic Yard. A Gallon.... Com. Measures. ord ..... Liquid Qt .... An Aere 6.4513 Sq. Centimeters Square Meters., Centimeters.... Square Meter.. Meter... Meter..... Meter..... Meters,.... Kilometers.... Equivalents. Square 3048 0.0929 1.6093 5.029 988 Yard. Square Rod. An Inch..... neh. Foot. Rod..... Com. Measures. Mile .... Square Square Souare Yard

In the French Metric System, the Meter is the base of all the weights and measures which it employs.

The Meter was intended to be, and is very nearly one termillional part of the distance measured on a meridian the grantly from the equator to the pole, and equals after the sort nearly 3 feet, 3% inches.

The Meter is the primary unit of length.

Join the Meter are based the following primary units: The Square Meter, the Are, the Cubic Meter or Stere, the Liter and the Gram.

The Square Meter is the unit of measure for small surfaces: as the surface of a floor, table, etc. The Are is the unit of land measure; this is a square whose side is ten meters in length and which contains one

hundred square meters.

The Cubic Meter or Stere, is the unit of yolome: this is a cube whose edge is one meter in length.

The Litter is the unit of capacity; this is the capacity of a cube whose edge is one-tenth of a meter in length.

The Gram is the unit of weight; this is the weight of distilled water contained in a cube whose edge is the onehundredth part of a meter.

From these primary units the higher and lower orders of units are derived decimally.

The prefixes denoting multiples are derived from the Greek language and are: Deka, ten: Heeto, hundred; Kilo, thousand; Myria, ten-thousand. Those denoting sub-multiples are from the Latin and are: Deci, tenth; Centi, hundredth, and Mili, thousandth.

The money system of France is connected with that of Metric weights by an authorized coin of silver, (the standard being 9 parts silver and 1 of alloy) representing the unit called the Franc and weighing 5 grams. The other coins are multiples and sub-multiples of the franc. The ratio of value of gold and silver is fixed by law at 15% to 1. The 20-franc gold piece therefore, weighs 100 grams, divided by 12½—6.4516 grams of standard gold.

INCHES AND FRACTIONS OF AN INCH AND THEIR EQUIVALENTS IN MILLIMETRES.

| Fractions of an inch. | Milli-<br>metres. | Inches. | Milli-<br>metres. | Inches.   | Milli-<br>metres. | Inches. | Milli-<br>metres. |
|-----------------------|-------------------|---------|-------------------|-----------|-------------------|---------|-------------------|
| 32                    | 0.7937            | 1       | 25.3998           | 35        | 888-9920          | 69      | 1752.5842         |
| 16                    | 1.5875            | 2       | 50.7995           | 36        | 914.3918          | 70      | 1777.9840         |
| 3 3 2                 | 2.3812            | 3       | 76.1993           | 37        | 939.7916          | 71      | 1803-3838         |
| 4 °2                  | 3.1749            | 4       | 101.5991          | 38        | 965.1913          | 72      | 1828.7836         |
| 5 32                  | 3.9688            | 5       | 126.9989          | 39        | 990.5911          | 73      | 1854 1833         |
| າ <sub>ອ</sub> ີ້     | 4.7624            | 6       | 152.3986          | 40        | 1015.9908         | 74      | 1879.5831         |
| 7 32                  | 5.5562            | 7       | 177.7984          | 41        | 1041.3906         | 75      | 1904.9828         |
|                       | 6.3499            | 8       | 203.1982          | 42        | 1066.7904         | 76      | 1930-3826         |
| 9 33                  | 7.1437            | 9       | 228.5979          | 43        | 1092-1902         | 77      | 1955.7824         |
| 16                    | 7.9374            | 10      | 253.9977          | 44        | 1117.5899         | 78      | 1981.1822         |
| 10 11                 | 8.7312            | 11      | 279.3975          | 45        | 1142.9897         | 79      | 2006.5819         |
| 4 1                   | 9.5249            | 12      | 804.7973          | 46        | 1168 3895         | 80      | 2031.9817         |
| 13                    | 10.3186           | 13      | 330.1970          | 47        | 1193.7883         | 81      | 2057:3815         |
| 76                    | 11.1124           | 14      | 355.5968          | 48        | 1219 1890         | 82      | 2082.7813         |
| 15                    | 11.9061           | 15      | 380.9966          | 49        | 1244.5888         | 83      | 2108.1810         |
| 1                     | 12.6998           | 16      | 406.3963          | 50        | 1269.9886         | 84      | 2133.5808         |
| 17                    | 13.4936           | 17      | 431.7961          | 51        | 1295.3883         | 85 :    | 2158.9806         |
| 9 16                  | 14.2874           | 18      | 457.1959          | 52        | 1320.7881         | 86      | 2184.3803         |
| 19                    | 15.0811           | 19      | 482.5957          | 53        | 1346.1879         | 87      | 2209.7791         |
| 4                     | 15.8748           | 20      | 507.9954          | <b>54</b> | 1371 5877         | 88      | 2235.1798         |
| 2 1<br>3 2            | 16.6686           | 21      | 533.3952          | 55        | 1396.9874         | 89      | 2260.5796         |
| 11                    | 17.4623           | 22      | 558.7949          | <b>56</b> | 1422:3872         | 90      | 2285 9794         |
| 23                    | 18.2561           | 23      | 584.1948          | 57        | 1447.7869         | 91      | 2311.3792         |
| 3                     | 19.0498           | 24      | 609.5945          | 58        | 1473 1868         | 92      | 2336.7789         |
| 25<br>32              | 19.8436           | 25      | 634.9943          | 59        | 1498.5865         | 93      | 2362-1787         |
| 13                    | 20.6373           | 26      | 660.3941          | 60        | 1523 9863         | 94      | 2387.5765         |
| 27<br>32              | 21.4310           | 27      | 685.7938          | 61        | 1549.3861         | 95      | 2412.9763         |
| 4                     | 22.2248           | 28      | 711.1936          | 62        | 1574.7858         | 96      | 2438.3781         |
| 39                    | 23.0185           | 29      | 736·5934          | 63        | 1599.1856         | 97      | 2463.7778         |
| 15                    | 23.8123           | 30      | 761.9932          | 64        | 1625.5854         | 98      | 2489.1776         |
| 31                    | 24.6060           | 31      | 787.3929          | 65        | 1650.9842         | 99      | 2514.5774         |
|                       | 1.                | 32      | 812.7927          | 66        | 1676.3859         | 100     | 2539.9772         |
| j                     | l                 | 33      | 838.1925          | 67        | 1701.7857         | 101     | 2565.3769         |
| 1                     | 1                 | 34      | 863.5922          | 68        | 1727.1845         | 102     | 2590.7767         |

The above Table may be used for decimals of inches by altering the decimal point both Inches and Millimetres in the same number of\_places.

MILLIMETRES REDUCED TO INCHES AND DECIMALS OF AN INCH.

| Milli-<br>metres | Inches.        | Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches.                     | Milli-<br>metres | Inches.          |
|------------------|----------------|------------------|---------|------------------|---------|------------------|-----------------------------|------------------|------------------|
| . 1              | .03937         | 41               | 1.6142  | 81               | 3.1890  | 121              | 4.7638                      | 161              | 6.3386           |
| 2                | 07874          |                  | 1.6536  | 82               | 3.2284  | 122              | 4.8032                      | 162              | <b>-6</b> ·3780- |
| 8                | 11811          | 43               | 1.6929  | 83               | 3.2677  | 123              | 4.8426                      | 163              | 6.4174           |
| 4                | 15748          | 44               | 1.7323  | 84               | 3.3071  | 124              | 4.8819                      | 164              | 6.4568           |
| 5                | 19685          | 45               | 1.7717  | 85               | 3.3465  | 125              | 4.9213                      | 165              | 6.4961           |
| 6                | 23622          | 46               | 1.8110  | 86               | 3 3859  | 126              | 4.9607                      | 166              | 6.5355           |
| 7                | 27559          | 47               | 1.8504  | 87               | 3.4252  | 127              | 5.0000                      | 167              | 6.5749           |
| 8                | 31496          | 48               | 1.8898  | 88               | 3.4646  | 128              | 5.0394                      | 168              | 6.6142           |
| 9                | 35433          | 49               | 1.9291  | 89               | 3 5040  | 129              | 5.0788                      | 169              | 6.6536           |
| 10               | ·3937          | 50               | 1.9685  | 90               | 3.5433  | 130              | 5.1182                      | 170              | 6.6930           |
| 11               | · <b>433</b> 1 | 51               | 2.0079  | 91               | 3.5827  | 131              | 5.1575                      | 171              | 6.7323           |
| 12               | ·4724          | 52               | 2.0473  | 92               | 3.6221  | 132              | 5.1969                      | 172              | 6.7717           |
| 13               | .5118          | 53               | 2.0866  | 93               | 3.6614  | 133              | 5.2363                      | 173              | 6.8111           |
| 14               | ·5512          | 54               | 2.1260  | 94               | 3.7008  | 134              | 5.2756                      | 174              | 6.8502           |
| 15               | ·5906          | 55               | 2.1654  | 95               | 3.7402  | 135              | 5·3150                      | 175              | 6.8898           |
| 16               | ·6299          | 56               | 2.2047  | 96               | 3.7796  | 136              | 5.3544                      | 176              | 6.9292           |
| 17               | 6693           | 57               | 2.2441  | 97               | 3.8189  | 137              | 5.3937                      | 177              | 6.9686           |
| 18               | ·7087          | 58               | 2.2835  | 98               | 3.8583  | 138              | 5.4331                      | 178              | 7.0078           |
| 19               | · <b>748</b> 0 | 59               | 2.3229  | 99               | 3.8977  | 139              | 5.4725                      | 179              | 7.0472           |
| 20               | ·7874          | 60               | 2.3622  | 100              | 3.9370  | 140              | 5 5119                      | 180              | 7.0867           |
| 21               | .8268          | 61               | 2.4016  | 101              | 3.9764  | 141              | 5.5512                      | 181              | 7.1260           |
| 22               | 8661           | 62               | 2.4410  | 102              | 4.0158  | 142              | 5.5906                      | 182              | 7.1654           |
| 23               | ·9055          | 63               | 2.4803  | 103              | 4.0552  | 143              | 5.6300                      | 183              | 7.2048           |
| 24               | · <b>9449</b>  | 64               | 2.5197  | 104              | 4.0945  | 144              | 5.6693                      | 184              | 7.2442           |
| 25               | ·9843          | 65               | 2.5591  | 105              | 4.1339  | 145              | 5.7087                      | 185              | 7.2835           |
| 26               | 1.0236         | 66               | 2.5984  | 106              | 4.1733  | 146              | 5.7481                      | 186              | 7.3229           |
| 27               | 1.0630         | 67               | 2.6378  | 107              | 4.2126  | 147              | 5.7875                      | 187              | 7.3623           |
| 28               | 1.1024         | 68               | 2.6772  | 108              | 4.2520  | 148              | 5.8268                      | 188              | 7.4016           |
| 29               | 1.1417         | 69               | 2.7166  | 109              | 4.2914  | 149              | 5.8662                      | 189              | 7.4410           |
| 30               | 1.1811         | 70               | 2.7559  | 110              | 4.3308  | 150              | 5 <sup>.</sup> 905 <b>6</b> | 190              | 7.4804           |
| 31               | 1.2205         | 71               | 2.7953  | 111              | 4.3701  | 151              | 5.9449                      | 191              | 7 5198           |
| 32               | 1.2599         | 72               | 2 00,21 | 112              | 4.4095  | 152              | 5.9843                      | 192              | 7.5591           |
| -33              | 1.2992         | 73               | 2.8740  | 113              | 4.4489  | 153              | 6.0237                      | 193              | 7.5985           |
| 34               | 1.3386         | 74               | 2.9134  | 114              | 4.4882  | 154              | 6.0630                      | 194              | 7.6379           |
| 35               | 1.3780         | 75               | 2.9528  | 115              | 4.5276  | 155              | 6.1024                      | 195              | 7 6772           |
| 36               | 1.4173         | 76               | 2.9922  | 116              | 4.5670  | 156              | 6.1418                      | 196              | 7.7166           |
| 37               | 1.4567         | 77               | 3 0315  | 117              | 4.6063  | 157              | 6.1812                      | 197              | 7.7560           |
| 38               | 1.4961         | 78               | 3.0709  | 118              | 4.6457  | 158              | 6.2205                      | 198              | 7.7953           |
| 39               | 1.5354         | 79               | 3.1103  | 119              | 4.6851  | 159              | 6.2599                      | 199              | 7.8347           |
| [40              | 1.5748         | 80               | 3.1496  | 120              | 4.7245  | 160              | 6.2993                      | 200              | 7.8741           |

MILLIMETRES REDUCED TO INCHES AND DECIMALS OF AN INCH.

| Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches.         | Milli-<br>metres | Inches.              | Milli-<br>metres | Inches.              |
|------------------|---------|------------------|---------|------------------|-----------------|------------------|----------------------|------------------|----------------------|
| 201              | 7.9135  | 241              | 9.4883  | 281              | 11.0631         | 321              | 12.6379              | 361              | 14.2127              |
| 202              | 7.9528  | 242              | 9.5276  | 282              | 11.1024         | 322              | 12.6773              | 362              | 14.2520              |
| 203              | 7.9922  | 243              | 9.5670  | 283              | 11.1418         | 323              | 12.7166              | 363              | 14.2915              |
| 204              | 8.0316  | 244              | 9.6064  | 284              | 11.1812         | 324              | 12.7560              | 364              | 14.3308              |
| 205              | 8.0709  | 245              | 9.6458  | 285              | 11.2206         | 325              | 12.7954              | 365              | 14.3702              |
| 206              | 8.1103  | 246              | 9.6851  | 286              | 11.2599         | 326              | 12.8347              | 366              | 14.4096              |
| 207              | 8.1497  | 247              | 9.7245  | 287              | 11.2993         | 327              | 12.8741              | 367              | 14.4489              |
| 208              | 8.1890  | 248              | 9.7639  | 288              | 11.3387         | 328              | 12.9135              | 368              | 14.4883              |
| 209              | 8.2284  | 249              | 9.8032  | 289              | 11.3780         | 329              | 12.9528              | 369              | 14.5277              |
| 210              | 8.2678  | <b>25</b> 0      | 9.8426  | 290              | 11.4174         | 330              | 12.9922              | 370              | 14 5671              |
| 211              | 8.3072  | 251              | 9.8820  | 291              | 11.4568         | 331              | 13.0316              | 371              | 14 <sup>.</sup> 6064 |
| 212              | 8.3465  | 252              | 9.9213  | 292              | 11.4962         | 332              | 13.0709              | 372              | 14.6458              |
| 213              | 8.3859  | 253              | 9.9607  | 293              | 11.5355         | 333              | 13.1103              | 373              | 14.6852              |
| 214              | 8 4253  | 254              | 10.0001 | 294              | 11.5749         | 334              | 13.1497              | 374              |                      |
| 215              | 8.4646  | 255              | 10.0395 | 295              | 11.6143         | 335              | 13.1891              | 375              | 14.7639              |
| 216              | 8.5040  | 256              | 10.0788 | 296              | 11.6536         | 336              | 13.2285              | 376              | 14.8033              |
| 217              | 8.5434  | 257              | 10.1182 | 297              | 11 6930         | 337              | 13.2678              | 377              | 14.8426              |
| 218              | 8.5828  | 258              | 10.1576 | 298              | 11.7324         | 338              | 13 3072              | 378              | 14.8820              |
| 219              | 8.6221  | 259              | 10.1969 | 299              | 11.7717         | 339              | 13.3466              | 379              | 14.9214              |
| 220              | 8.6615  | 260              | 10.2363 | 300              | 11.8111         | 340              | 13.3859              | 380              | 14.9608              |
| <b>2</b> 21      | 8.7009  | 261              | 10.2757 | 301              | 11.8505         | 341              | 13.4253              | 381              | 15 0001              |
| 222              | 8.7402  | 262              | 10.3151 | 302              | 11.8899         | 342              | 13.4647              | 382              | 15.0395              |
| 223              | 8.7796  | 263              | 10.3544 | 303              | 11 9292         | 343              | 13.5040              | 383              | 15.0789              |
| 224              | 8.8190  | 264              | 10.3938 | 304              | 11.9686         | 344              | 13 <sup>.</sup> 5434 | 384              | 15 1182              |
| 225              | 8.8583  | 265              | 10.4332 | 305              | 12.0079         | 345              | 13.5828              | 385              | 15.1576              |
| 226              | 8.8977  | 266              | 10.4725 | 306              | 12.0473         | 346              | 13.6222              | 386              | 15.1969              |
| 227              | 8.9371  | 267              | 10.5119 | 307              | 12.0867         | 347              | 13.6615              | 387              | 15.2363              |
| 228              | 8 9765  | 268              | 10.5513 | 308              | 12.1261         | 348              | 13.7009              | 388              | 15.2757              |
| 229              | 9.0158  | 269              | 10.5906 | 309              | 12.1655         | 349              | 13.7403              | 389              | 15.3151              |
| 230              | 9.0552  | 270              | 10.6300 | 310              | $12 \cdot 2049$ | 350              | 13.7796              | 390              | 15.3545              |
| 231              | 9.0946  | 271              | 10.6694 | 311              | 12.2442         | 351              | 13 8190              | 391              | 15.3938              |
| 232              | 9.1339  | 272              | 10.7087 | 312              | 12.2836         | 352              | 13 8584              | 392              | 15 4332              |
| 233              | 9.1733  | 273              | 10.7481 | 313              | 12.3229         | 353              | 13.8978              | 393              | 15.4726              |
| 234              | 9.2127  | 274              | 10.7875 | 314              | 12.3623         | 354              | 13.9371              | 394              | 15.5119              |
| 235              | 9.2520  | 275              | 10.8269 | 315              | 12.4017         | 355              | 13.9765              | 395              | 15 5513              |
| 236              | 9.2914  | 276              | 10.8662 | 316              | 12.4410         | 356              | 14·0159              | 396              | 15.5907              |
| 237              | 9.3308  | 277              | 10.9056 | 317              | 12.4804         | 357              | 14.0552              | 397              | 15.6300              |
| 238              | 9.3702  | 278              | 10.9449 | 318              | 12.5198         | 358              | 14.0946              | 398              | 15 6694              |
| 239              | 9.4095  | 279              | 10.9843 | 319              | 12.5592         | 359              | 14.1339              | 399              | 15.7088              |
| 240              | 9.4489  | 280              | 11.0237 | 320              | 12.5985         | 360              | 14.1733              | 400              | 15.7482              |

### MILLIMETRES REDUCED TO INCHES AND DECIMALS OF AN INCH.

| Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches.              | Milli-<br>metres | Inches. | Milli-<br>metres | Inches. |
|------------------|---------|------------------|---------|------------------|----------------------|------------------|---------|------------------|---------|
| 401              | 15.7875 | 441              | 17:3624 | 481              | 18.9372              | 521              | 20.5120 | 561              | 22.0868 |
| 402              | 15.8269 | 442              | 17.4017 | 482              | 18.9765              | 522              | 20.5514 | 562              | 22.1262 |
| 403              | 15.8663 | 443              | 17.4411 | 483              | 19.0159              | 523              | 20.5908 | 563              | 22.1655 |
| 404              | 15.9056 | 444              | 17.4805 | 484              | 19.0553              | 524              | 20.6301 | 564              | 22.2049 |
| 405              | 15.9450 | 445              | 17.5198 | 485              | 19.0946              | 525              | 20.6695 | 565              | 22.2443 |
| 406              | 15.9844 | 446              | 17.5592 | 486              | 19.1340              | 526              | 20.7088 | 566              | 22.2837 |
| 407              | 16.0238 | 447              | 17.5986 | 487              | 19.1734              | 527              | 20.7482 | 567              | 22.3230 |
| 408              | 16.0631 | 448              | 17.6379 | 488              | 19.2128              | 528              | 20.7876 | 568              | 22.3624 |
| 409              | 16.1025 | 449              | 17.6773 | 489              | 19.2521              | 529              | 20.8269 | 569              | 22.4018 |
| 410              | 16·1419 | 450              | 17.7167 | 490              | 19 <sup>.</sup> 2915 | 530              | 20.8663 | 570              | 22:4411 |
| 411              | 16.1812 | 451              | 17.7561 | 491              | 19.3309              | 531              | 20.9058 | 571              | 22.4805 |
| 412              | 16.2206 | 452              | 17.7954 | 492              | 19.3702              | 532              | 20.9451 | 572              | 22.5199 |
| 413              | 16.2599 | 453              | 17.8349 | 493              | 19.4096              | 533              | 20.9844 | 573              | 22.5592 |
| 414              | 16.2993 | 454              | 17.8742 | 494              | 19.4490              | 534              | 21.0238 | 574              | 22.5986 |
| 415              | 16.3388 | 455              | 17.9135 | 495              | 19.4884              | 535              | 21.0632 | 575              | 22.6380 |
| <b>4</b> 16      | 16.3781 | 456              | 17.9529 | 496              | 19.5277              | 536              | 21.1025 | 576              | 22.6774 |
| 417              | 16.4175 | 457              | 17.9923 | 497              | 19.5671              | 537              | 21.1419 | 577              | 22.7167 |
| 418              | 16.4569 | 458              | 18.0316 | 498              | 19.6065              | 538              | 21.1813 | 578              | 22.7561 |
| 419              | 16.4962 | 459              | 18.0710 | 499              | 19.6458              | 539              | 21.2207 | 579              | 22.7955 |
| 420              | 16.5356 | 460              | 18.1104 | 500              | 19.6852              | 540              | 21.2600 | 580              | 22.8349 |
| 421              | 16.5750 | 461              | 18.1498 | 501              | 19.7246              | 541              | 21.2995 | 581              | 22.8742 |
| 422              | 16.6143 | 462              | 18.1891 | 502              | 19.7640              | 542              | 21.3388 | 582              | 22.9136 |
| 423              | 16.6538 | 463              | 18.2286 | 503              | 19.8033              | 543              | 21.3781 | 583              | 22.9530 |
| 424              | 16.6931 | 464              | 18.2679 | 504              | 19.8427              | 544              | 21.4175 | 584              | 22.9923 |
| 425              | 16.7324 | 465              | 18.3072 | 505              | 19.8821              | 545              | 21.4569 | 585              | 23.0317 |
| 426              | 16.7718 | 466              | 18.3466 | 506              | 19.9214              | 546              | 21.4962 | 586              | 23.0711 |
| 427              | 16.8112 | 467              | 18.3860 | 507              | 19.9608              | 547              | 21.5356 | 587              | 23.1104 |
| 428              | 16.8505 | 468              | 18.4253 | 508              | 20.0002              | 548              | 21.5750 | 588              | 23.1499 |
| 429              | 16.3899 | 469              | 18.4647 | 509              | 20.0395              | 549              | 21.6144 | 589              | 23.1892 |
| 430              | 16.9293 | 470              | 18.5041 | 510              | 20.0789              | 550              | 21.6537 | 590              | 23.2285 |
| 431              | 16.9686 | 471              | 18.5435 | 511              | 20.1183              | 551              | 21.6931 | 591              | 23.2679 |
| 432              | 17.0080 | 472              | 18.5828 | 512              | 20.1577              | 552              | 21.7325 | 592              | 23.3073 |
| 433              | 17.0474 | 473              | 18.6222 | 513              | 20.1970              | 553              | 21.7718 | 593              | 23.3467 |
| 434              | 17.0868 | 474              | 18.6616 | 514              | 20.2364              | 554              | 21 8112 | 594              | 23.38 0 |
| 435              | 17.1261 | 475              | 18.7009 | 515              | 20.2758              | 555              | 21.8506 | 595              | 23.4254 |
| 436              | 17 1655 | 476              | 18.7403 | 516              | 20.3151              | 556              | 21.8900 | 596              | 23.4648 |
| 437              | 17 2049 | 477              | 18.7797 | 517              | 20.3545              | 557              | 21.9293 | 597              | 23.5041 |
| 438              | 17.2442 | 478              | 18.8191 | 518              | 20.3939              | 558              | 21.9687 | 598              | 23.5435 |
| 439              | 17.2836 | 479              | 18.8584 | 519              | 20.4332              | 559              | 22.0081 | 599              | 23.5829 |
| 440              | 17 3230 | 480              | 18.8979 | 520              | 20.4726              | 560              | 22.0474 | 600              | 23.6222 |

MILLIMETRES REDUCED TO INCHES AND DECIMALS OF AN INCH.

| Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches.         | Milli-<br>metres | Inches. |
|------------------|---------|------------------|---------|------------------|---------|------------------|-----------------|------------------|---------|
| 601              | 23.6616 | 641              | 25.2364 | 681              | 26.8113 | 721              | 28.3861         | 761              | 29.9609 |
| 602              | 23.7010 | 642              | 25.2758 | 682              | 26.8506 | 722              | 28.4254         | 762              | 30.0003 |
| 603              | 23.7404 | 643              | 25.3152 | 683              | 26.8900 | 723              | 28.4648         | 768              | 30.0396 |
| 604              | 23.7797 | 644              | 25.3545 | 684              | 26 9294 | 724              | 28.5042         | 764              | 30.0790 |
| 605              | 23.8192 | 645              | 25.3939 | 685              | 26.9687 | 725              | 28.5436         | 765              | 30.1184 |
| 606              | 23.8585 | 646              | 25.4333 | 686              | 27.0081 | 726              | 28.5829         | 766              | 30.1577 |
| 607              | 23.8978 | 647              | 25.4727 | 687              | 27.0475 | 727              | 28.6223         | 767              | 30.1971 |
| 608              | 23.9372 | 648              | 25.5120 | 688              | 27.0868 | 728              | 28.6617         | 768              | 30.2365 |
| 609              | 23.9766 | 649              | 25.5514 | 689              | 27.1262 | 729              | 28.7010         | 769              | 30.2758 |
| 610              | 24.0160 | 650              | 25.5908 | 690              | 27.1656 | 730              | 28.7404         | 770              | 30.3152 |
| 611              | 24.0553 | 651              | 25.6301 | 691              | 27.2050 | 731              | 28.7798         | 771              | 30.3546 |
| 612              | 24.0947 | 652              | 25.6695 | 692              | 27.2443 | 732              | 28.8191         | 772              | 30.3940 |
| 613              | 24.1341 | 653              | 25.7089 | 693              | 27.2838 | 733              | 28.8585         | 773              | 30.4333 |
| 614              | 24.1734 | 654              | 25.7483 | 694              | 27.3231 | 734              | 28.8979         | 774              | 30.4727 |
| 615              | 24.2128 | 655              | 25.7876 | 695              | 27.3624 | 735              | 28.9373         | 775              | 30.5121 |
| 616              | 24.2522 | 656              | 25.8270 | 696              | 27.4018 | 736              | 28.9766         | 776              | 30.5514 |
| 617              | 24.2915 | 657              | 25.8664 | 697              | 27.4412 | 737              | 29.0160         | 777              | 30.5908 |
| 618              | 24.3309 | 658              | 25.9057 | 698              | 27.4805 | 738              | 29.0554         | 778              | 30.6302 |
| 619              | 24 3703 | 659              | 25.9451 | 699              | 27.5199 | 739              | 29.0947         | 779              | 30.6696 |
| 620              | 24.4097 | 660              | 25.9845 | 700              | 27.5593 | 740              | 29.1341         | 780              | 30.7089 |
| 621              | 24.4490 | 661              | 26.0238 | 701              | 27.5987 | 741              | 29.1735         | 781              | 30.7483 |
| 622              | 24.4885 | 662              | 26.0632 | 702              | 27.6380 | 742              | 29 2129         | 782              | 30.7877 |
| 623              | 24.5278 | 663              | 26.1026 | 703              | 27.6774 | 743              | 29.2522         | 783              | 30.8270 |
| 624              | 24.5671 | 664              | 26.1420 | 704              | 27.7168 | 744              | 29.2916         | 784              | 30.8664 |
| 625              | 24.6065 | 665              | 26.1813 | 705              | 27.7561 | 745              | 29.3310         | 785              | 30.9058 |
| 626              | 24.6459 | 666              | 26.2207 | 706              | 27.7955 | 746              | 29.3703         | 786              | 30.9451 |
| 627              | 24.6852 | 667              | 26.2601 | 707              | 27.8349 | 747              | 29.4097         | 787              | 30.9845 |
| 628              | 24.7246 | 668              | 26.2994 | 708              | 27.8743 | 748              | 29.4491         | 788              | 31.0239 |
| 629              | 24.7640 | 669              | 26.3388 | 709              | 27.9136 | 749              | 29.4884         | 789              | 31.0633 |
| 630              | 24.8034 | 670              | 26.3782 | 710              | 27.9530 | 750              | 29.5278         | 790              | 31.1026 |
| 631              | 24.8427 | 671              | 26.4175 | 711              | 27.9924 | 751              | 29.5672         | 791              | 31.1420 |
| 632              | 24.8821 | 672              | 26.4569 | 712              | 28.0317 | 752              | 29.6066         | 792              | 31.1814 |
| 633              | 24.9215 | 673              | 26.4963 | 713              | 28.0711 | 753              | 29.6459         | 793              | 31.2207 |
| 634              | 24.9608 | 674              | 26.5357 | 714              | 28.1105 | 754              | 29.6853         | 794              | 31 2601 |
| 635              | 25.0002 |                  | 26·5750 | 715              | 28.1498 | 755              | 29.7247         | 795              | 31.2995 |
| 636              | 25.0396 | 676              | 26.6144 | 716              | 28.1892 | 756              | 29.7640         | 796              | 31.3389 |
|                  | 25.0790 | 677              | 26.6538 | 717              | 28.2286 | 757              | 29.8034         | 797              | 31.3782 |
| 638              | 25.1183 |                  | 26.6931 | 718              | 28.2680 | 758              | 29.8428         | 798              | 31.4176 |
| 639              | 25.1578 | 679              | 26.7325 | 719              | 28.3073 | 759              | <b>29</b> ·8821 | 799              | 31.4570 |
|                  | 25.1971 | 680              | 26.7719 | 720              | 28.3467 | 760              | 29.9215         | 800              | 31 4963 |

MILLIMETRES REDUCED TO INCHES AND DECIMALS OF AN INCH.

| Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches. | Milli-<br>metres | Inches.         |
|------------------|---------|------------------|---------|------------------|---------|------------------|---------|------------------|-----------------|
| 801              | 31.5357 | 841              | 33.1105 | 881              | 34.6853 | 921              | 36.2602 | 961              | 37 8350         |
| 802              | 31.5751 | 842              | 33.1499 | 882              | 34.7247 | 922              | 36.2995 | 962              | 37.8743         |
| 803              | 31.6144 | 843              | 33.1893 | 883              | 34 7641 | 923              | 36.3389 | 963              | 37 9137         |
| 804              | 31.6538 | 844              | 33.2286 | 884              | 34.8035 | 924              | 36.3783 | 964              | 37.9531         |
| 805              | 31.6932 | 845              | 33.2681 | 885              | 34.8428 | 925              | 36.4176 | 965              | 37.9925         |
| 806              | 31.7326 | 846              | 33.3074 | 886              | 34.8822 | 926              | 36.4571 | 966              | 38.0318         |
| 807              | 31.7719 | 847              | 33.3467 | 887              | 34.9216 | 927              | 36.4964 | 967              | 38.0712         |
| 808              | 31.8113 | 848              | 33.3861 | 888              | 34.9609 | 928              | 36.5357 | 968              | 38.1106         |
| 809              | 31.8507 | 849              | 33.4255 | 889              | 35.0003 | 929              | 36.5751 | 969              | 38.1499         |
| 810              | 31.8900 | 850              | 33.4649 | 890              | 35.0397 | 930              | 36.6145 | 970              | 38.1893         |
| 811              | 31.9294 | 851              | 33.5042 | 891              | 35.0790 | 931              | 36.6539 | 971              | 38.2287         |
| 812              | 31.9688 | 852              | 33.5436 | 892              | 35.1184 | 932              | 36.6932 | 972              | 38.2680         |
| 813              | 32.0081 | 853              | 33.5830 | 893              | 35.1578 | 933              | 36.7326 | .973             | 38.3074         |
| 814              | 32.0475 | 854              | 33.6223 | 894              | 35.1972 | 934              | 36.7720 | 974              | 38.3468         |
| 815              | 32.0869 | 855              | 33.6617 | 895              | 35.2365 | 935              | 36.8113 | 975              | 38.3862         |
| 816              | 32.1263 | 856              | 33.7011 | 896              | 35.2759 | 936              | 36.8507 | 976              | 38.4255         |
| 817              | 32.1656 | 857              | 33.7404 | 897              | 35·3153 | 937              | 36.8901 | 977              | 38.4649         |
| 818              | 32.2050 | 858              | 33.7798 | 898              | 35.3546 | 938              | 36.9295 | 978              | 38 5043         |
| 819              | 32.2444 | 859              | 33.8192 | 899              | 35.3940 | 939              | 36.9688 | 979              | 38.5436         |
| 820              | 32.2837 | 860              | 33.8586 | 900              | 35.4334 | 940              | 37.0082 | 980              | 38.5830         |
| 821              | 32.3231 | 861              | 33.8979 | 901              | 35.4727 | 941              | 37.0476 | 981              | 38.6224         |
| 822              | 32.3625 | 862              | 33.9373 | 902              | 35.5121 | 942              | 37.0869 | 982              | 38.6618         |
| 823              | 32.4019 | 863              | 33.9767 | 903              | 35.5516 | 943              | 37.1263 | 983              | 38.7011         |
| 824              | 32.4412 | 864              | 34.0200 | 904              | 35.5909 | 944              | 37.1657 | 984              | 38·7 <b>405</b> |
| 825              | 32.4806 | 865              | 34.0554 | 905              | 35.6303 | 945              | 37.2050 | 985              | 38.7799         |
| 826              | 32.5200 | 866              | 34.0948 | 906              | 35.6697 | 946              | 37.2444 | 986              | 38.8192         |
| 827              | 32.5593 | 867              | 34.1342 | 907              | 35.7091 | 947              | 37.2838 | 987              | 38.8586         |
| 828              | 32.5987 | 868              | 34.1735 | 908              | 35.7484 | 948              | 37.3232 | 988              | 38.8980         |
| 829              | 32.6381 | 869              | 34.2129 | 909              | 35.7878 | 949              | 37.3625 | 989              | 38.9373         |
| 830              | 32.6774 | 870              | 34.2523 | 910              | 35.8271 | 950              | 37.4019 | 990              | 38.9767         |
| 831              | 32.7168 | 871              | 34.2916 | 911              | 35.8665 | 951              | 37.4413 | 991              | 39.0161         |
| 832              | 32.7562 | 872              | 34.3310 | 912              | 35.9058 | 952              | 37.4806 | 992              | 39.0555         |
| 833              | 32.7956 | 873              | 34.3704 | 913              | 35.9452 | 953              | 37.5200 | 993              | 39.0948         |
| 834              | 32.8349 | 874              | 34.4097 | 914              | 35.9846 | 954              | 37.5594 | 994              | 39.1342         |
| 835              | 32.8743 | 875              | 34.4491 | 915              | 36.0239 | 955              | 37.5988 | 995              | 39.1736         |
| 836              | 32.9137 | 876              | 34.4885 | 916              | 36.0633 | 956              | 37.6381 | 996              | 39.2129         |
| 837              | 32.9530 | 877              | 34.5279 | 917              | 36.1027 | 957              | 37.6775 | 997              | 39.2523         |
| 838              | 32.9924 | 878              | 34.5672 | 918              | 36.1420 | 958              | 37.7169 | 998              | 39.2917         |
| 839              | 33.0318 | 879              | 34.6066 | 919              | 36.1814 | 959              | 37.7562 | 999              | 39.3310         |
| 840              | 33.0712 | 880              | 34.6459 | 920              | 36.2208 | 960              | 37.7956 | 1000             | 39.3704         |

FEET AND THEIR EQUIVALENTS IN METRES.

| Feet. | Metres. | Feet. | Metres. | Feet. | Metres. | Feet. | Metres.  |
|-------|---------|-------|---------|-------|---------|-------|----------|
| 1     | .304    | 29    | 8.839   | 57    | 17:373  | 84    | 25.602   |
| 2     | .609    | 30    | 9.143   | 58    | 17.678  | 85    | 25.907   |
| 3     | ·914    | 31    | 9.448   | 59    | 17.983  | 86    | 26.212   |
| 4     | 1.219   | 32    | 9.753   | 60    | 18.287  | 87    | 26.517   |
| 5     | 1.523   | 33    | 10.058  | 61    | 18.592  | . 88  | 26.822   |
| 6     | 1.828   | 34    | 10.363  | 62    | 18.897  | 89    | 27.126   |
| 7     | 2.133   | 35    | 10.667  | 63    | 19.202  | 90    | 27.431   |
| 8     | 2.438   | 36    | 10.972  | · 64  | 19.507  | 91    | 27.736   |
| 9     | 2.743   | 37    | 11.277  | 65    | 19.811  | 92    | 28.041   |
| 10    | 3.047   | 38    | 11.582  | 66    | 20.116  | 93    | 28.346   |
| 11    | 3.352   | 39    | 11.887  | 67    | 20.421  | 94    | 28.650   |
| 12    | 3.657   | 40    | 12.191  | 68    | 20.726  | 95    | 28.955   |
| 13    | 3.962   | 41    | 12.496  | 69    | 21.030  | 96    | 29.260   |
| 14    | 4.267   | 42    | 12.801  | 70    | 21.335  | 97    | 29.565   |
| 15    | 4.571   | 43    | 13.106  | 71    | 21.640  | 98    | 29.870   |
| 16    | 4.876   | 44    | 13.411  | 72    | 21.945  | 99    | 30.174   |
| 17    | 5.181   | 45    | 13.715  | 73    | 22.250  | 100   | 30.479   |
| 18    | 5.486   | 46    | 14.020  | 74    | 22·554  | 200   | 60.959   |
| 19    | 5.791   | 47    | 14 325  | 75    | 22.859  | 300   | 91.439   |
| 20    | 6.095   | 48    | 14.630  | 76    | 23·164  | 400   | 121.918  |
| 21    | 6.400   | 49    | 14.935  | 77    | 23.469  | 500   | 152.398  |
| 22    | 6.705   | 50    | 15.239  | 78    | 23.774  | 600   | 182.878  |
| 23    | 7.010   | 51    | 15.544  | 79    | 24.078  | 700   | 213.357  |
| 24    | 7.315   | 52    | 15.849  | 80    | 24.383  | 800   | 243.837  |
| 25    | 7.619   | 53    | 16.154  | 81    | 24.688  | 900   | 274.317  |
| 26    | 7.924   | 54    | 16.459  | 82    | 24.993  | 1000  | 304.796  |
| 27    | 8.229   | 55    | 16.763  | 83    | 25.298  | 5280  | 1609 329 |
| 28    | 8.534   | 56    | 17:068  |       |         | 1     | 1        |

184

METRES AND THEIR EQUIVALENTS IN FEET AND INCHES.

| Metres. | Feet. | Inches: | Metres. | Feet.    | Inches. | Metres. | Feet. | Inches. |
|---------|-------|---------|---------|----------|---------|---------|-------|---------|
| 1       | 3     | 3.3704  | 38      | 124      | 8.0764  | 74      | 242   | 9.4119  |
| 2       | 6     | 6.7409  | 39      | 127      | 11.4468 | 75      | 246   | 0.7824  |
| 3       | 9     | 10.1113 | 40      | 131      | 2.8173  | 76      | 249   | 4.1528  |
| 4       | 13    | 1.4817  | 41      | 134      | 6.1877  | 77      | 252   | 7.5233  |
| 5       | 16    | 4.8522  | 42      | 137      | 9.5581  | 78      | 255   | 10.8937 |
| 6       | 19    | 8.2226  | 43      | 141      | 0.9286  | 79      | 259   | 2.2641  |
| 7       | 22    | 11.5930 | 44      | 144      | 4.2990  | 80      | 262   | 5.6345  |
| 8       | 26    | 2.9634  | 45      | 147      | 7.6694  | 81      | 265   | 9.0049  |
| 9       | 29    | 6.3334  | 46      | 150      | 11.0399 | 82      | 269   | 0.3754  |
| 10      | 32    | 9.7043  | 47      | 154      | 2.4103  | 83      | 272   | 3.7458  |
| 11      | 36    | 1.0747  | 48      | 157      | 5.7807  | 84      | 275   | 7.1163  |
| 12      | 39    | 4.4452  | 49      | 160      | 9.1512  | 85      | 278   | 10.4867 |
| 13      | 42    | 7.8156  | 50      | 164      | 0.5216  | 86      | 282   | 1.8571  |
| 14      | 45    | 11.1860 | 51      | 167      | 3.8920  | 87      | 285   | 5.2276  |
| 15      | 49    | 2.5565  | 52      | 170      | 7.2625  | 88      | 288   | 8.5980  |
| 16      | 52    | 5.9269  | 53      | 173      | 10.6329 | 89      | 291   | 11.9684 |
| 17      | 55    | 9.2973  | 54      | 177      | 2.0033  | 90      | 295   | 3.3389  |
| 18      | 59    | 0.6678  | 55      | 180      | 5.3737  | 91      | 298   | 6.7093  |
| 19      | 62    | 4.0382  | 56      | 183      | 8.7442  | 92      | 301   | 10.0797 |
| 20      | 65    | 7.4086  | 57      | 187      | 0.1146  | 93      | 305   | 1.4502  |
| 21      | 68    | 10.7791 | 58      | 190      | 3.4850  | 94      | 308   | 4.8206  |
| 22      | 72    | 2.1495  | 59      | 193      | 6.8555  | 95      | 311   | 8.1910  |
| 23      | 75    | 5.5199  | 60      | 196      | 10.2259 | 96      | 314   | 11.5615 |
| 24      | 78    | 8.8904  | 61      | 200      | 1.5963  | 97      | 318   | 2.9319  |
| 25      | 82    | 0.2608  | 62      | 203      | 4.9668  | 98      | 321   | 6.3023  |
| 26      | 85    | 3 6312  | 63      | 206      | 8.3372  | 99      | 324   | 9.6728  |
| 27      | 88    | 7.0017  | 64      | 209      | 11.7076 | 100     | 328   | 1.0432  |
| 28      | 91    | 10.3721 | 65      | 213      | 3 0781  | 200     | 656   | 2.086   |
| 29      | 95    | 1.7425  | 66      | 216      | 6.4485  | 300     | 984   | 3 129   |
| 30      | 98    | 5.1129  | 67      | 219      | 9.8189  | 400     | 1312  | 4.173   |
| 31      | 101   | 8.4834  | 68      | 223      | 1.1894  | 500     | 1640  | 5.216   |
| 32      | 104   | 11.8538 | 69      | 226      | 4.5598  | 600     | 1968  | 6.259   |
| 33      | 108   | 3.2242  | 70      | 229      | 7.9302  | 700     | 2296  | 7.302   |
| 34      | 111   | 6.5947  | 71      | 232      | 11.3007 | 800     | 2624  | 8.345   |
| 35      | 114   | 9.9651  | 72      | 236      | 2.6711  | 900     | 2952  | 9.389   |
| 36      | 118   | 1.3355  | 73      | 239      | 6.0412  | 1000    | 3280  | 10.432  |
| 37      | 121   | 4.7059  | 1       | <u> </u> |         | 1       |       |         |

METRIC WEIGHTS AND ENGLISH EQUIVALENTS.

| Kilogr'ms | Lbs.    | Kilogr'ms. | Lbs.             | Kilogr'ms. | Lbs.                  |
|-----------|---------|------------|------------------|------------|-----------------------|
| 1         | 2.2046  | 38         | 83.7756          | 75         | 165:3466              |
| 2         | 4.4092  | 39         | 85.9802          | 76         | 167 5512              |
| 3         | 6.6139  | 40         | 88.1848          | 77         | 169.7559              |
| 4         | 8.8185  | 41         | 90.3895          | 78         | 171.9605              |
| 5         | 11.0231 | 42 -       | 92.5941          | 79         | 174.1651              |
| , 6       | 13.2277 | 43         | 94.7987          | 80         | 176.3697              |
| 7         | 15.4324 | 44         | 97.0034          | . 81       | 178.5743              |
| 8         | 17.6370 | 45         | 99.2079          | 82         | 180.7789              |
| 9         | 19.8416 | 46         | 101.4126         | 83         | 182.9836              |
| 10        | 22.0462 | 47         | 103.6172         | 84         | 185.1882              |
| 11 .      | 24.2508 | 48         | 105.8218         | 85         | 187.3928              |
| 12        | 26.4554 | 49         | 108.0264         | 86         | 189.5974              |
| 13        | 28.6601 | 50         | 110·2311         | 87         | 191.8020              |
| 14        | 30.8647 | 51         | 112.4357         | 88         | 194.0067              |
| 15        | 33.0693 | 52         | 114.6403         | 89         | 196.2113              |
| 16        | 35.2739 | 53         | 116.8499         | 90         | 198.4159              |
| 17        | 37.4786 | 54         | 119.0495         | 91         | 200.6205              |
| 18        | 39.6832 | 55         | 121.2542         | 92         | 202.8251              |
| 19        | 41.8878 | 56         | 123 4588         | 93         | 205.0298              |
| 20        | 44 0924 | 57         | 125.6634         | 94         | 207.2344              |
| 21        | 46 2970 | 58         | 127.8680         | 95         | 209.4390              |
| 22        | 48.5017 | 59         | 130.0727         | 96         | 211.6431              |
| 23        | 50.7063 | 60         | $132 \cdot 2773$ | 97         | 213.8482              |
| 24        | 52.9109 | 61         | 134 4819         | 98         | 216.0529              |
| 25        | 55·1155 | 62         | 136.6865         | 99         | 218 <sup>.</sup> 2575 |
| 26        | 57.3202 | 63         | 138.8911         | 100        | 220 4621              |
| 27        | 59.5248 | 64         | 141.0958         | 200        | 440.9243              |
| 28        | 61.7294 | 65         | 143.3004         | 300        | 661.3864              |
| 29        | 63.9340 | 66         | 145.5050         | 400        | 881.8485              |
| 30        | 66.1386 | 67         | 147.7096         | 500        | 1102.3106             |
| 31        | 68.3433 | 68         | 149.9142         | 600        | 1322.7728             |
| 32        | 70.5479 | 69         | 152.1189         | 700        | 1543.2349             |
| 33        | 72.7525 | 70         | 154.3235         | 800        | 1763-6970             |
| 34        | 74.9571 | 71         | 156.5281         | 900        | 1984-1591             |
| 35        | 77.1617 | 72         | 158.7327         | 1000       | 2204.6213             |
| 36        | 79.3664 | 73         | 160.9374         | 1016       | 2239.8952             |
| 37        | 81.5709 | 74         | 163·1419         | 11 1       |                       |

### Equivalent Square Measure.

|      |                                                 | The second secon |                                           |                                            | -    |                                                  |                                               |                                           |                                            |
|------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------|
|      | Square<br>inches<br>to<br>square<br>centimetres | Square<br>leet<br>to<br>square<br>decimetres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Square<br>feet<br>to<br>square<br>metres. | Square<br>yards<br>to<br>square<br>metres. |      | Square<br>centimetres<br>to<br>square<br>inches. | Square<br>decimetres<br>to<br>square<br>feet. | Square<br>metres<br>to<br>square<br>feet. | Square<br>metres<br>to<br>square<br>yards. |
| 1 () | 6.45148                                         | 9-29013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0929013                                  | -836112                                    | _    | .155003                                          | .107641                                       | 10.7641                                   | 1.19601                                    |
|      | 12-90296                                        | 18-58026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1858026                                   | 1.672224                                   | 87   | .310006                                          | -215282                                       | 21.5282                                   | 2.39202                                    |
|      | 19-35444                                        | 27-87039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .2787039                                  | 2.508336                                   | က    | .465009                                          | .322923                                       | 32.2923                                   | 3 58803                                    |
|      | 25.80592                                        | 37-16052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3716052                                   | 3.344448                                   | 4    | .620012                                          | .430564                                       | 43.0564                                   | 4.78404                                    |
|      | 32.25740                                        | 46.45065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4645065                                  | 4.180560                                   | ro   | .775015                                          | .538205                                       | 53.8205                                   | 5 98005                                    |
|      | 38-70888                                        | 55-74078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5574078                                   | 5.016672                                   | 9    | .930018                                          | .645846                                       | 64 5846                                   | 7 17606                                    |
|      | 45.16036                                        | 65-03091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6503091                                  | 5.852784                                   | -1   | 1.085021                                         | .753487                                       | 75.3487                                   | 8.37207                                    |
|      | 51.61184                                        | 74-32104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7432104                                   | 968889.9                                   | · 00 | 1.240024                                         | .861128                                       | 86.1128                                   | 9.56808                                    |
|      | 58-06332                                        | 83.61117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8361117                                   | 7-525008                                   | 6    | 1.395027                                         | 692896                                        | 6928.96                                   | 10.76409                                   |
|      | 64.51480                                        | 92-90130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9290130                                  | 8.361120                                   | 10   | 1.550030                                         | 1.076410                                      | 107.6410                                  | 11.98010                                   |
|      | 70-96628                                        | 102.19143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0219143                                 | 9-197232                                   | Π    | 1.705033                                         | 1.184051                                      | 118.4051                                  | 13.15611                                   |
|      | 77-41776                                        | 111-48156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1148156                                 | 10.033344                                  | 12   | 1.860036                                         | 1.291692                                      | 129.1692                                  | 14.35212                                   |
|      | 83.86924                                        | 120-77169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2077169                                 | 10-869456                                  | 13   | 2.015039                                         | 1.399333                                      | 139.9333                                  | 15 54813                                   |
|      | 90-32072                                        | 130-06182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3006182                                 | 11-705568                                  | 77   | 2.170042                                         | 1.506974                                      | 150 6974                                  | 16.74414                                   |
|      | 96-77220                                        | 96-77220 139-35195 1-3935195 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-3935195                                 | 12.541680                                  | 15   | 2.325045                                         | 1.614615                                      | 161.4615                                  | 17 94015                                   |
|      | 103-22368                                       | 148.64208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4864208 13.377792                       | 13-377792                                  | 16   | 2.480048                                         | 1.722256                                      | 172 2256                                  | 19.13616                                   |
|      | 109-67516                                       | 157-93221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5793221                                 | 14-213904                                  | 17   | 2.635051                                         | 1.829897                                      | 182.9897                                  | 20.33217                                   |
| 18   | 116-12664                                       | 16-12664 167-22234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6722234 15.05001                        | 15.050016                                  | 18   | 2.790054                                         | 1.937538                                      | 193.7538                                  | 21.52818                                   |
|      | 122.57812                                       | 22-57812 176-51247 1-7651247 15-886128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-7651247                                 | 15-886128                                  | 19   | 2.945057                                         | 2.045179                                      | 204 5179                                  | 22.72419                                   |
| 20   | 129-02960                                       | 129-02960 185-80260 1-8580260 16-792240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.8580260                                 | 16-792240                                  | 08   | 3.100060                                         | 2.159890                                      | 915.9890                                  | 23.92020                                   |

to correspond. For instance, 130 square inches=838.6924 square centimetres (the decimal point in the number opposite 13 is moved one place to the right), or 1525 square yards=1275.0708 square metres, the sum being found as follows — 1500=1254.168 These equivalents can be used for larger or smaller numbers by placing the decimal points 20 = 16472224

4.18056

### Equivalent Cubic Measure.

|                    | Cubic<br>metres<br>to<br>cubic<br>yards.        | 1:308    | 2.616    | 3 924    | 5.232    | 6.540    | 7 848    | 9.156    | 10.464   | 11.772   | 13 080   | 14.388   | 15.696   | 17:004   | 18.312   | 19 620   | 20.928   | 22.236   | 23.544   | 24.852   | 96.160   |
|--------------------|-------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| ENGLISH.           | Cubic metres to cubic feet.                     | 35.8156  | 70.6312  | 105.9468 | 141.2624 | 176.5780 | 211.8936 | 247 2092 | 282.5248 | 817.8404 | 353.1560 | 388.4716 | 423.7872 | 459.1028 | 494.4184 | 529.7340 | 565.0496 | 600.3652 | 635.6808 | 670.9964 | 706.31%  |
| METRIC TO E        | Cubic decimetres to cubic feet.                 | .0353156 | .0706312 | 1059468  | 1412624  | 1765780  | .2118936 | 2472092  | 2825248  | .3178404 | .3531560 | .3884716 | .4237872 | .4591028 | 4944184  | 5297340  | .5650496 | .6003652 | .6356808 | 6709964  | .7063120 |
| ME                 | Cubic centimetres to cubic cubic inches.        | .061025  | .122050  | .183075  | .244100  | .305125  | .366150  | .427175  | .488200  | .549225  | .610250  | .671275  | .732300  | .793325  | 854350   | .915375  | .976400  | 1.037425 | 1.098450 | 1.159475 | 1.220500 |
|                    |                                                 | "        | 87       | အ        | 4        | 2        | 9        | 7        | 90       | 6        | 10       | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       |
|                    | Cubic<br>yards<br>to<br>cubic<br>metres.        | .76453   | 1.52906  | 2.29359  | 3.05812  | 3.82265  | 4.58718  | 5.35171  | 6.11624  | 6.88077  | 7.64530  | 8.40983  | 9.17436  | 9.93889  | 10.70342 | 11.46795 | 12.23248 | 12.99701 | 13.76154 | 14.52607 | 15.29060 |
| fetric.            | Cubic feet to cubic metres.                     | .028315  | .056631  | .084946  | .113261  | .141576  | 169892   | 198207   | -226522  | .254838  | .283153  | .311468  | .339783  | .368099  | .396414  | .424729  | .453045  | .481360  | .509675  | .537991  | .266306  |
| ENGLISH TO METRIC. | Cubic feet to cubic decimetres.                 | 28.3153  | 26.6306  | 84.9459  | 113.2612 | 141.5765 | 169.8918 | 198.2071 | 226.5224 | 254.8377 | 283.1530 | 311.4683 | 339.7836 | 368.0989 | 396.4142 | 424.7295 | 423.0448 | 481.3601 | 509.6754 | 537.9907 | 566.3060 |
| 5                  |                                                 |          | 4        | <br>::   | <b>4</b> | 33       | 355      | 14.709   | 31.096   | 147.483  | 63.870   | 80.257   | 96.644   | 213.031  | 229.418  | 545.805  | 262-192  | 528.579  | 594-966  | 311.353  | 327-740  |
| ENGLI              | Cubic Cubic inches feet to to cubic centimetres | 16.387   | 32.774   | 49.161   | 65.548   | 81.935   | 98.355   | 114      | 131      | 147      | 163      | 86       | 196      | 213      | 82       | 3        | 262      | 278      | 8        | 311      | 327      |

ALW MUVYE LAUVE CAN DE USECT for Sinaller of larger quantities, if desired, by changing the decimal points to correspond. For instance:-.2 cubic inch =3.2774 cubic centimetres, 170. =2785.79 ... 2815 cubic yards=2152.15195 cubic metres;

:: 

<sup>::</sup> which is calculated as follows:-

### POUNDS PER SQUARE INCH WITH EQUIVALENT KILOS PER SQUARE CENTIMETER.

| Lbs. per<br>sq. inch. |        | Lbs. per<br>sq. inch. | Kilos.<br>per<br>sq. cm. | Lbs. per<br>sq. inch. | Kilos.<br>per<br>sq. cm. | Lbs. per<br>sq. inch. | Kilos.<br>per<br>sq. cm. | Lbs. per | Kilos.<br>per<br>sq. cm. |
|-----------------------|--------|-----------------------|--------------------------|-----------------------|--------------------------|-----------------------|--------------------------|----------|--------------------------|
| 1                     | .0703  | 35                    | 2.460                    | 69                    | 4.850                    | 103                   | 7.241                    | 137      | 9.632                    |
| 2                     | 1406   | 36                    | 2.530                    | 70                    | 4 921                    | 104                   | 7.312                    | 138      | 9.702                    |
| 3                     | 2109   | 37                    | 2.601                    | 71                    | 4.991                    | 105                   | 7.382                    | 139      | 9.772                    |
| 4                     | .2812  | 38                    | 2.671                    | 72                    | 5.061                    | 106                   | 7.452                    | 140      | 9.843                    |
| 5                     | 3515   | 39                    | 2.741                    | 73                    | 5.131                    | 107                   | 7.522                    | 141      | 9.913                    |
| 6                     | 4218   | 40                    | 2.812                    | 74                    | 5.202                    | 108                   | 7.593                    | 142      | 9.983                    |
| 7                     | 4921   | 41                    | 2.882                    | 75                    | 5.272                    | 109                   | 7.663                    | 143      | 10.054                   |
| 8                     | .5624  | 42                    | 2.952                    | 76                    | 5.342                    | 110                   | 7.733                    | 144      | 10.124                   |
| 9                     | 6327   | 43                    | 3.022                    | 77                    | 5.413                    | 111                   | 7.804                    | 145      | 10.194                   |
| 10                    | .7030  | 44                    | 3.093                    | 78                    | 5.483                    | 112                   | 7.874                    | 146      | 10.264                   |
| 11                    | .7733  | 45                    | 3.163                    | 79                    | 5.553                    | 113                   | 7.944                    | 147      | 10.335                   |
| 12                    | *8436  | 46                    | 3.233                    | 80                    | 5.624                    | 114                   | 8.015                    | 148      | 10.405                   |
| 13                    | ·9140  | 47                    | 3.304                    | 81                    | 5.694                    | 115                   | 8.085                    | 149      | 10.475                   |
| 14                    | .9843  | 48                    | 3.374                    | 82                    | 5.764                    | 116                   | 8.155                    | 150      | 10.546                   |
| 15                    | 1.0546 | 49                    | 3.444                    | 83                    | 5.834                    | 117                   | 8.226                    | 155      | 10.897                   |
| 16                    | 1.1248 | 50                    | 3.515                    | 84                    | 5.905                    | 118                   | 8.296                    | 160      | 11.249                   |
|                       | 1.1952 | 51                    | 3.585                    | 85                    | 5.975                    | 119                   | 8.366                    | 165      | 11.600                   |
| 18                    | 1.265  | 52                    | 3.655                    | 86                    | 6.045                    | 120                   | 8.436                    | 170      | 11.952                   |
| 19                    | 1.335  | 53                    | 3.725                    | 87                    | 6.116                    | 121                   | 8.507                    | 175      | 12.303                   |
| 20                    | 1.406  | 54                    | 3.796                    | 88                    | 6.186                    | 122                   | 8.577                    | 180      | 12.655                   |
| 21                    | 1.476  | 55                    | 3.866                    | 89                    | 6.256                    | 123                   | 8.647                    | 185      | 13.006                   |
| 22                    | 1 546  | 56                    | 3.936                    | 90                    | 6.327                    | 124                   | 8.718                    | 190      | 13.358                   |
| 23                    | 1.616  | 57                    | 4.007                    | 91                    | 6.397                    | 125                   | 8 788                    | 195      | 13.710                   |
| 24                    | 1.687  | 58                    | 4.077                    | 92                    | 6.467                    | 126                   | 8.858                    | 200      | 14 061                   |
| 25                    | 1.757  | 59                    | 4.147                    | 93                    | 6.537                    | 127                   | 8.929                    | 210      | 14.76                    |
| 26                    | 1.827  | 60                    | 4.218                    | 94                    | 6.608                    | 128                   | 8.999                    | 220      | 15.46                    |
| 27                    | 1.898  | 61                    | 4.288                    | 95                    | 6.678                    | 129                   | 9.069                    | 230      | 16.16                    |
| 28                    | 1.968  | 62                    | 4.358                    | 96                    | 6.748                    | 130                   | 9.140                    | 240      | 16.87                    |
| 29                    | 2.038  | 63                    | 4.428                    | 97                    | 6.819                    | 131                   | 9.210                    | 250      | 17.57                    |
|                       | 2.109  | 64                    | 4.499                    | 98                    | 6.889                    | 132                   | 9.280                    | 260      | 18.27                    |
|                       | 2.179  | 65                    | 4.569                    | 99                    | 6.959                    | 133                   | 9.350                    | ' 270    | 18.98                    |
| 32                    | 2.249  | 66                    | 4.639                    | 100                   | 7.030                    | 134                   | 9.421                    | 280      | 19.68                    |
| 33                    | 2.319  | 67                    | 4.710                    | 101                   | 7.101                    | 135                   | 9.491                    | 290      | 20.38                    |
| 34                    | 2.390  | 68                    | 4.780                    | 102                   | 7.171                    | 136                   | 9.561                    | 300      | 21.09                    |

kilos per square centimeter with equivalent pounds  $\begin{tabular}{l} \bullet \\ \end{tabular}$  per square inch.

| Kilos.<br>per<br>sq. cm. | Lbs. per<br>square<br>inch. | Kilos.<br>per<br>sq. cm. | Lbs. per<br>square<br>inch. | Kilos.<br>per<br>sq. cm. | Lbs. per<br>square<br>inch. | Kilos.<br>per<br>sq. cm. | Lbs. per<br>square<br>inch. |
|--------------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|
| •1                       | 1.422                       | 3.1                      | 44.091                      | 6.1                      | 86.761                      | 9.1                      | 129.431                     |
| ·2                       | 2.844                       | 3.2                      | 45.514                      | 6.2                      | 88.183                      | 9.2                      | 130.853                     |
| .3                       | 4.266                       | 3.3                      | 46.936                      | 6.3                      | 89.606                      | 9.3                      | 132.275                     |
| •4                       | 5.689                       | 3.4                      | 48.358                      | 6.4                      | 91.028                      | 9.4                      | 133.698                     |
| .5                       | 7.111                       | 3.5                      | 49.781                      | 65                       | 92.450                      | 9.5                      | 135.120                     |
| -6                       | 8.533                       | 36                       | 51.203                      | 6.6                      | 93.873                      | 9.6                      | 136.542                     |
| .7                       | 9.956                       | 3.7                      | 52.625                      | 6.7                      | 95.295                      | 9.7                      | 137.965                     |
| -8                       | 11.378                      | 3.8                      | 54.048                      | 6.8                      | 96.717                      | 9.8                      | 139.387                     |
| .9                       | 12.800                      | 3.9                      | 55 470                      | 6.9                      | 98.140                      | 9.9                      | 140.809                     |
| 1.0                      | 14.223                      | 4.0                      | 56.892                      | 7.0                      | 99.562                      | 10.0                     | 142.232                     |
| 1.1                      | 15.645                      | 4.1                      | 58·315                      | 7.1                      | 100.984                     | 10.5                     | 149.343                     |
| 1.2                      | 17.067                      | 4.2                      | 59.737                      | 7.2                      | 102.407                     | 11.0                     | 156.455                     |
| 1.3                      | 18.490                      | 4.3                      | 61 159                      | 7.3                      | 103.829                     | 11.5                     | 163.566                     |
| 1.4                      | 19.912                      | 4.4                      | 62.582                      | 7.4                      | 105.251                     | 12.0                     | 170.678                     |
| 1.5                      | 21.334                      | 4.5                      | 64.004                      | 7.5                      | 106.674                     | 125                      | 177.790                     |
| 1.6                      | 22.757                      | 4.6                      | 65.426                      | 7.6                      | 108.096                     | 13.0                     | 184.901                     |
| 1.7                      | 24.179                      | 4.7                      | 66.849                      | 7.7                      | 109.518                     | 13.5                     | 192.013                     |
| 1.8                      | 25.601                      | 4.8                      | 68.271                      | 7.8                      | 110.940                     | 14.0                     | 199.124                     |
| 1.9                      | 27.024                      | 4.9                      | 69.693                      | 7.9                      | 112.363                     | 14.5                     | 206.236                     |
| 2.0                      | 28.446                      | 5.0                      | 71.116                      | 8.0                      | 113 785                     | 15.0                     | 213.348                     |
| 2.1                      | 29.868                      | 5.1                      | 72.538                      | 8.1                      | 115.207                     | 15.5                     | 220.459                     |
| 2.2                      | 31.291                      | 5.2                      | 73.960                      | 8.2                      | 116 630                     | 16.0                     | 227.571                     |
| 2.3                      | 32.713                      | 5.3                      | 75.382                      | 8.3                      | 118.052                     | 16.5                     | 234.682                     |
| 2.4                      | 34.135                      | 5.4                      | 76.805                      | 8.4                      | 119 474                     | 17.0                     | 241.794                     |
| 2.5                      | 35.558                      | 5.5                      | 78.227                      | 8.5                      | 120.897                     | 17.5                     | <b>248</b> ·906             |
| 2.6                      | 36.980                      | 5.6                      | 79.649                      | 8.6                      | 122.319                     | 180                      | 256.017                     |
| 2.7                      | 38.402                      | 5.7                      | 81.072                      | 8.7                      | 123.741                     | 18.5                     | 263.129                     |
| 2.8                      | 39.824                      | 5.8                      | 82.494                      | 8.8                      | 125.164                     | 19.0                     | <b>270</b> ·2 <b>40</b>     |
| 2.9                      | 41.247                      | 5.9                      | 83 916                      | 8.9                      | 126.586                     | 19.5                     | 277.352                     |
| ł                        | 42.669                      | 6.0                      | 85.339                      | 9.0                      | 128 008                     | 20.0                     | 284· <b>464</b>             |

United States Coast and Geodetic Survey. | Tables for Converting U. S. Weights and Measures.

METRIC TO CUSTOMARY.

CAPACITY.

STANDARD WEIGHTS AND MEASURES.
T. C. MENDENHALL, SUPT.

LINEAR.

|                            |                                | VEIGHT               | 3                                 |                                                  | ]              |                         | NRE.                | SQUARE             |                      |     |
|----------------------------|--------------------------------|----------------------|-----------------------------------|--------------------------------------------------|----------------|-------------------------|---------------------|--------------------|----------------------|-----|
| 26:5397                    | 23.7753                        | 9.5101               | 3.043<br>3.043<br>3.043           | 2.43                                             | 6 5            | 5.59233                 | 9-842500            | 29:52750           | 354.3300             | င်ဆ |
| 19.8642                    | 18.4919                        | 7.3968               | 2.367                             |                                                  | 1 .            | 4.34959                 | 7.655278            | 22.96583           | 275-5900             | 1-3 |
| 17.0265                    | 15.8502                        | 6.3401               | 2.059                             |                                                  | <del>=</del> 9 | 3.72822                 | 6.561667            | 19.68500           | 736.5200             | =9  |
| 14.1887                    | 13.2085                        | 2834                 | 1.691                             |                                                  | 5=             | 3.10685                 | 5.468056            | 16.40417           | 196.8500             | 5-  |
| 11.3510                    | 10.5668                        | 4.5567               | 1.353                             |                                                  | 1              | 2.48548                 | 4.37444             | 13.12333           | 157.4800             | 1   |
| 8.5132                     | 7.9251                         | 3.1700               | 1.014                             | Ū                                                | 3              | 1.86411                 | 3.280833            | 9.84250            | 118.1100             | 8   |
| 5.6755                     | 5.2834                         | 2.1134               | 9.9.0                             | _                                                | 2              | 1.24274                 | 2.187222            | 6.56167            | 78.7400              | 2   |
| 2.8377                     | 2.6417                         | 1.0567               | 0.338                             |                                                  | -              | 0.62137                 | 1.093611            | 3.58083            | 39.3700              | -   |
| Hectolitres<br>to Bushels. | Deca-<br>litres to<br>Gallons. | Litres to<br>Quarts. | Centi-<br>litres to<br>Fluid Ozs. | Millilitres or<br>cub. Centim's<br>to Fl'd Drams |                | Kilometres<br>to Miles. | Metres to<br>Yards. | Metres to<br>Feet. | Metres to<br>Inches. |     |
|                            |                                |                      |                                   |                                                  |                |                         |                     |                    |                      |     |

| Kilogrammes<br>to Pounds<br>Avoirdupois. | 2.20462<br>4.40924<br>6.61387<br>8.81849<br>11.02311<br>13.22773<br>15.5256              | 19.84160               |
|------------------------------------------|------------------------------------------------------------------------------------------|------------------------|
| Hectogr'mes<br>to Ounces<br>Avoirdupois. | 3:5274<br>7:0548<br>10:5822<br>14:1096<br>17:6370<br>21:1644<br>24:6918                  | 31.7466                |
| Kilogrammes<br>to Grams.                 | 15432°36<br>30864°71<br>4628°107<br>61729°43<br>77161°78<br>92594°14                     | 138891.21              |
| Milli-<br>grammes<br>to Grains.          | 0.01543<br>0.03086<br>0.04630<br>0.06173<br>0.07716<br>0.09259                           | 0.13889                |
|                                          |                                                                                          |                        |
|                                          | 1224200                                                                                  | £ 5.                   |
| Hectares to<br>Acres.                    | 2 471<br>4 942<br>7 413<br>9 884<br>12 356<br>14 826<br>17 297                           | 19.768 8=<br>22.239 9= |
| Sq. Metres Hectares to to Acres.         |                                                                                          |                        |
| <u> </u>                                 | 2:471<br>4:942<br>7:413<br>7:413<br>12:386<br>14:826<br>17:297                           | 10.764                 |
| Sq. Metres<br>t. Sq. Yards.              | 1.196 2.471<br>3.588 7.443<br>4.784 7.413<br>4.784 1.235<br>7.176 14.836<br>8.372 11.237 | 96.875 10.764          |

### CUBIC.

WEIGHT.-CONTINUED.

| Kilogrammes to<br>Ounces Troy.                    | 32.1507<br>64.3015<br>96.4522<br>128.6030<br>160.7637<br>190.9044<br>225.0652<br>227.206<br>289.3567 |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Milliers or Ton-<br>nes to Pounds<br>Avoirdupois. | 2204'6<br>4408'2<br>6613'9<br>8818'5<br>11023'1<br>13227'7<br>17637'4<br>17637'0                     |
| Quintals to<br>Pounds<br>Avoirdupois.             | 220°46<br>440°92<br>661°39<br>881°85<br>1102°31<br>1322°77<br>1543°24<br>1763°70                     |
|                                                   | 10004001-85                                                                                          |
| Cub. Metres<br>to Cub. Yds.                       | 1.308<br>2.616<br>3.924<br>5.232<br>6.530<br>7.848<br>9.156<br>10.464<br>11.771                      |
| Cubic Metres to<br>Cubic Feet.                    | 35-314<br>70-629<br>146-943<br>116-528<br>221-887<br>227-201<br>282-516<br>317-830                   |
| Cub. Decimet's to Cub. Inches.                    | 61.022<br>122.047<br>183.070<br>244.094<br>305.117<br>365.140<br>487.164<br>488.136<br>549.210       |
| Cub. Centi-<br>metres to<br>Cub. In.              | 0.0610<br>0.1220<br>0.1831<br>0.2441<br>0.3651<br>0.4272<br>0.4872<br>0.5492                         |
|                                                   | -912240.001-x2                                                                                       |

of pure platinum-iridium in the proportion of 9 parts of the former to 1 of the latter metal. From one of these a certain number of kilogrammes were prepared, from the other a definite number of metre bars. These standards of weight and length were intercompared, without preference, and earth ones were selected as International prototype standards. The others were distributed by lot, in September, 1889, to the different governments, and are called National prototype standards. Those apportioned to the United States were received in 1890 and are in the keeping By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris. Under the direction of the International Committee two ingots were east

The metric system was legalized in the United States in 1866.

of this office.

The International Standard Metre is derived from the Metre des Archives, and its length is defined by the distance between two lines at 0° Centigrade on a platinum-iridium bar deposited at the International Bureau of Weights and Measures.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

The litre is equal to a cubic decimetre, and it is measured by the quantity of distilled water which, at its maximum density, will counterpois the standard kilogramme in a vacuum, the volume of such quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

| •                | 1 |
|------------------|---|
| ۳                |   |
| _                |   |
| Geodetic Survey. |   |
| and              |   |
| Coast            |   |
| States           |   |
| United           |   |

OFFICE OF STANDARD WEIGHTS AND MEASURES.
T. C. MENDENHALL, SUPT.

LINEAR.

ables for Converting U. S. Weights and Measures. CUSTOMARY TO METRIC.

CAPACITY.

|            |           | WEIGHT       |                                 |           |             | RE.      | BQUARE   |                   |
|------------|-----------|--------------|---------------------------------|-----------|-------------|----------|----------|-------------------|
| 34.06891   | 8.51723   | 266.16       |                                 | =6        | 14.48412    | 8.229616 | 2.743205 | 228.6005          |
| 30.58348   | 7.57067   | 536.20       | 20.57                           | <b>*</b>  | 12.87478    | 7.315215 | 2.438405 | 203.2004          |
| 70867.93   | 6.62451   | 20.102       |                                 | 1         | 11.26543    | 6.400813 | 2.133604 | 144.8004          |
| 22.71261   | 5.67815   | 177.44       |                                 | <u></u> 9 | 9.65608     | 5.486411 | 1.828804 | 152.4003          |
| 18.92717   | 4.73179   | 147.87       |                                 | 2         | 8.04674     | 4.572009 | 1.524003 | 127.0003          |
| 15.14174   | 8-78543   | 118.29       | _                               | 4-        | 6.43739     | 3.657607 | 1.219202 | 101.6002          |
| 11.35630   | 2.83908   | 88-72        | _                               | 3         | 1.87804     | 2.743205 | 0.914402 | 76.2002           |
| 7.57087    | 1.89272   | 59.15        |                                 | 2         | 3.51869     | 1.828804 | 0.609601 | 50.8001           |
| 3.78543    | 0.04636   | 29.57        |                                 | #         | 1.60935     | 0.914402 | 0.304801 | 25.4001           |
| Litres.    | Litres.   | Millilitres. | millilitres or cub. centimetres |           | Kilometres. | Metres.  | Metres.  | Milli-<br>metres. |
| Gallons to | Quarts to | Fluid Ounces | Fluid drams to                  |           | Miles to    | Yards to | Feet to  | Inches to         |

|        | Troy<br>Ounces to<br>Grammes.            | 31.10348<br>62°20696<br>86°31044<br>124'41382<br>115'51740<br>186'62098<br>217'72457<br>246'82785<br>279'98133 |
|--------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|        | Avoirdupois<br>Pounds to<br>Kilogram'es. | 0.45359<br>0.90719<br>1136078<br>1136178<br>272156<br>272156<br>317515<br>3 62874<br>4 (16233                  |
| WEIGH  | Avoirdupois<br>Ounces to<br>Grammes.     | 28.3495<br>56.6991<br>85.0486<br>113.3981<br>147.7476<br>170.0872<br>198.4467<br>226.7962<br>255.1467          |
|        | Grains to<br>Milli-<br>grammes.          | 64.7989<br>129.5978<br>194.3968<br>323.946<br>388.7935<br>453.5924<br>518.3914                                 |
|        |                                          | 1004rc 01-80                                                                                                   |
|        | Acres to<br>Hectares.                    | 0.4047<br>0.8094<br>1.2141<br>1.6187<br>2.70234<br>2.70234<br>2.8283<br>3.52875<br>3.6422                      |
| T.     | Square Yards<br>to Square<br>Metres.     | 0.836<br>1.672<br>2.508<br>2.344<br>4.181<br>5.017<br>5.689<br>7.625                                           |
| BROAKE | Square Feet<br>to Square<br>Decimetres.  | 9.290<br>18.581<br>27.871<br>37.161<br>46.452<br>65.082<br>74.323<br>83.613                                    |
|        | Inches Square                            | 6.452<br>12.903<br>19.355<br>25.907<br>32.258<br>38.710<br>45.161<br>51.613                                    |
|        | ∡వచ్చ                                    |                                                                                                                |

|                  |                                                                     |                                                                           |                                                                      |                                                                                      |                |                                                                              | 1                                                       |
|------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------|---------------------------------------------------------|
| 4                | Cubic In.<br>to Cubic<br>Centim'tres                                | Cubic Feet<br>to<br>Cubic Metres.                                         | Cubic Yards<br>to<br>Cubic Metres.                                   | Bushels to<br>Hectolitres.                                                           |                |                                                                              |                                                         |
| 100040001-00<br> | 16.387<br>32.774<br>49.161<br>65.549<br>81.936<br>98.323<br>114.710 | 0.02832<br>0.05683<br>0.08495<br>0.11327<br>0.14158<br>0.16990<br>0.19822 | 0.765<br>1.529<br>2.234<br>3.058<br>3.058<br>4.587<br>5.352<br>6.116 | 0.35239<br>0.70479<br>1.05718<br>1.40957<br>1.76196<br>2.11436<br>2.46675<br>2.81914 | Gunter's chain | 201168<br>259:000 P<br>1:829<br>1853:25<br>9:484015<br>453:592427<br>1 kilog | metres<br>netres<br>metres<br>metres<br>8 log<br>7 gram |
| 6                | 147.484                                                             | 0.25485                                                                   | 6.881                                                                | 3.17154                                                                              |                |                                                                              |                                                         |

CUBIC.

\* \* \* \* \* \* \* \* \*

whose length at 59°.62 Fahr. conforms to the British standard. The yard in use in the United States is therefore The only authorized material standard of customary length is the Troughton scale belonging to this office, equal to the British yard. The only authorized material standard of customary weight is the Troy pound of the Mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7000 grains Troy.

The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The British gallon = 4.54346 litres.

The British bushel = 36.3477 litres.

The length of the nautical mile given above and adopted by the U. S. Coast and Geodetic Survey many years ago, is defined as that of a minute of arc of a great circle of a sphere whose surface equals that of the earth (Clark's WASHINGTON, D. C. NOVEMBER, 1891.

### METRIC CONVERSION TABLE.

According to Latimer Clark's "Metric Measures," which gives one cubic inch of distilled water, freed from air at 62 degrees Fahrenheit, barometer thirty inches, as 252.28599 grains; or one cubic foot as 62.2786 pounds.

Millimeters x .039371 = inches. Millimeters + 25.4 = inches. Centimeters x .393708 = inches. Centimeters + 2.5399 := inches. Meters x 39.37079 = inches. Meters x 3.280899 == feet. Meters x 1.09363 = vards. Kilometers x .62138 = miles. Kilometers + 1.6093 = miles. Kilometers x 3280.899 = feet.Square Millimeters x .00155 = square inches. Square Millimeters + 645.137 = square inches. Square Centimeters x .155006 = square inches. Square Centimeters + 6.4514 = square inches. Square Meters x 10.7643 == square feet, Square Kilometers x 247.114 = acres. Hectare x 2.47114 = acres. Cubic Centimeters + 16.3862 = cubic inches. Imperial gallon Cubic Centimeters + 3.5520 = fl. drachms of water at 6 Cubic Centimeters + 28,416 = fluid oz. Cubic Metres x 35.31658 = cubic feet. Cubic Meters x 1.30802 = cubic yards. Cubic Meters x 264.2 = gallons (231 cubic inches.)

Liters x 61.0364 = cubic inches,

### METRIC CONVERSION TABLE.—Continued.

Liters x 35.1968 = fluid ounces.

Liters x .2642 = gallons (231 cubic inches.)

Liters ÷ 3.785 = gallons (231 cubic inches.)

Liters  $\div$  28.311 = cubic feet.

Hectoliters x 3.5322 = cubic feet.

Hectoliters x 2.84 = bushels (2150.42 cubic inches.)

Hectoliters x .131 = cubic yards.

Hectoliters x 26.42 = gallons (231 cubic inches.)

Grammes x 15.43235 = grains.

Grammes  $\times$  981.17 = dynes.

Grammes + 28.416 = fluid oz. (Imp. gal. at 62° Fahr., 277.463 cubic inches.)

Grammes + 28.349 = ounces avoirdupois. (Water at 62° Fahr.)

Grammes per cubic cent.  $\div$  27.7 = lbs. per cubic inch.

Joule x .73719 = foot pounds.

Kilogrammes x 2.204621 = pounds avoirdupois.

Kilogrammes x 35.2739 = ounces avoirdupois.

Kilogrammes + 1016.05 = tons (2240 lbs.)

Kilogrammes + 907.18 = tons (2000 lbs.)

Kilogramme per square cent. x 14.2228 = lbs. per sq. in.

Kilogrammeters x 7.2331 = foot lbs.

Kilo. per meter x .67196 = lbs. per foot.

Kilo, per cubic meter x .06243 = lbs, per cubic foot.

Kilo, per cheval x 2.235 = lbs. per horse power.

Kilo. Watts x 1.3404 = horse power.

Watts  $\div$  746.071 = horse power.

Watts x .7372 = foot pounds per second.

Kilogram Calories x 3.968 = B. T. U.

Cheval vapeur x .98634 = horse power.

(Centigrade x 1.8) + 32 =deg. Fahr. (Temperature.)

Franc x .193 = dollars. [Exchange as per Treasury cir-

Gravity Paris = 980.94 centimeters per second. [cular. Tons of 2240 lbs. x 1.016 = tonnes.

Tons of 2000 lbs. x.9071 = tonnes.

Square inches x 645.137 =square millimeters.

Lbs. per square inch x .00070 $\mathfrak{t} \equiv \text{kilos}$  per square millimeters.

### METRIC CONVERSION TABLE .-- Continued.

Square miles x 2.590 = square kilometers.

Quarts dry measure x 1.101 = liters.

Quarts liquid or wine measure x .9461 = liters.

Foot pounds x .1383 = kilogrammes per meter.

Thousands of pounds per square inch x 0.703 = kilogrammes per square millimeter.

Pounds per square foot x 4.8826 == kilogrammes per square meter.

Pounds per cubic foot x 16.02 = kilogrammes per cubic meter.

Tonnes x .9842 =tons of 2240 lbs.

Tonnes x 1.1023 = tons of 2000 lbs.

Liters (one cubic decimeter) x 61.036 = cubic inches.

Liters x .908 = quarts, dry measure.

Liters x 1.0566 = quarts, liquid or wine measure.

Kilogrammes per square millimeter x 1422,28 = pounds per square inch.

Kilogrammes per square meter x.20481 == pounds per square foot.

Kilogrammes per cubic meter x .06243 = pounds per cubic foot.

### METRIC CONVERSION TABLE.—Continued.

| Kilowatts. Multiply. Divide. Logarit                                                                                                               | h <b>m.</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| " into horse-power, 1.3404 .746 0.12                                                                                                               | 722         |
| " into foot-pounds, per second, 737.2 2.86                                                                                                         | 758         |
| " into foot-pounds, per minute, 44,232 4.64                                                                                                        | 573         |
| " into kilogram-meters, per s. 101.919 2.00                                                                                                        | 326         |
| " into volt-amperes, per second 1000 3.000                                                                                                         | 000         |
| " into commercial 'units,' per h. 1 0.000                                                                                                          | 000         |
| Mils. Multiply. Divide. Logarithment                                                                                                               | ım.         |
| " into Micromillimetres, 25399.5 4.404                                                                                                             | 183         |
| " into microns or micrometres 25.3995 1.40a                                                                                                        | <b>18</b> 3 |
| Square Mils.                                                                                                                                       |             |
| " into square inches, 1,000,000 6.000                                                                                                              | 000         |
| " into square millimetres, .0006451 1550.059 4.800                                                                                                 | 965         |
| Circular Mils.                                                                                                                                     |             |
| " into square inches, 1,273,240 7.899                                                                                                              | 00          |
| " into square millimetres, .0005067 1973.6 4.702                                                                                                   |             |
| Cube Mils.                                                                                                                                         |             |
| " into cube inches, 1,000,000,000 9.000                                                                                                            | 200         |
| " into cube millimetres,00001639 61027.05 5.214                                                                                                    |             |
| " into grains (water 62° F.) 3,963,756 7,401                                                                                                       |             |
| WATT. The B. A. unit rate of work or unit of power                                                                                                 | _           |
| $\frac{1}{746}$ horse-power == 10 <sup>7</sup> absolute units of work, or 10 m                                                                     |             |
| lion ergs per second = 1 volt-ampere, or 1 joule per secon                                                                                         |             |
| (1 true watt = 1.0136 B. A. Watts.) volts <sup>2</sup>                                                                                             |             |
| (1 true watt = 1.0136 B. A. Watts.)<br>Watts = volts $\times$ amperes = amperes <sup>2</sup> $\times$ ohms = $\frac{\text{volts}^2}{\text{ohms.}}$ |             |
| Watt x seconds = joules. Logarith                                                                                                                  | ım.         |
| One watt raises .24046 grammes of water 1 °C. per sec. 1.381                                                                                       |             |
| " " 6.6796 grains of water 1° F. per sec. 0.824                                                                                                    | •           |
| •                                                                                                                                                  |             |
| Watts. Multiply. Divide Logarith                                                                                                                   |             |
| into noise power;;                                                                                                                                 |             |
| " into French torce de cheval, .001359 735.88 3.133                                                                                                | -           |
| " into foot-pounds per minute 44.2317 1.645                                                                                                        |             |
| into foot-pounds per minute 44.2317 1.045                                                                                                          |             |
| Into root-pounds per second 1/3/2 1.3505 1.00/                                                                                                     | )O          |

| Wat  | ts.                           | Multiply                          | Divide. I  | ogarithm.       |
|------|-------------------------------|-----------------------------------|------------|-----------------|
| "    | into kilogram-metres, per s.  | .10192                            | 9.8177     | 1,00826         |
|      | into joules per second,       | 1                                 |            |                 |
| "    | into gramme calories per s.   | .24046                            | 4.1586     | 1.38105         |
| "    | into British thermal units,   |                                   | -          |                 |
|      | per second,                   | .000954                           | 1048       | 4.97966         |
|      | t-Hours.                      |                                   |            | _               |
| "    | into horse-power hours,       | •                                 | 746.07 t   | 3.12722         |
| "    |                               | 2653.9                            |            | 3.42389         |
| "    | into British thermal units,   |                                   |            | 0.53596         |
| "    | into gramme calories,         | 865.67                            |            | 2.93735         |
| "    | into joules,                  | 3600                              |            | 3.55630         |
|      | into ergs,                    | 3.6 x 1010                        |            | 10.55630        |
| "    | into Board of Trade electri-  |                                   |            |                 |
|      | cal units,                    | .001                              | 1000       | 3.00000         |
| Ho   | RSE-POWER. The practical      | unit of                           | power :::: | 746.071         |
|      | watts == 33,000 lbs. raised 1 | foot per n                        | ninute.    |                 |
| Elec | ctrical horse-power. : ampere | $\times \times \text{volts}_{\_}$ | amperes    | ²×ohms.         |
| 2320 | 7                             | 46                                | 74         | μυ              |
|      | se-Power.                     | Multiply.                         | Divide. I  | ogarithm.       |
| "    | into foot-pounds per minute,  | 33000                             | • • • •    | 4.51851         |
| **   | into foot-pounds per second,  | 550                               |            | <b>2.</b> 74036 |
| 6 5  | into foot-tons per minute,    | 14.7321                           | • • •      | 1.16826         |
| 4.   | into foot-tons per hour,      | 883.928                           |            | 2.94642         |
| "    | into kilogram-metres per m.   | 4562                              |            | 3.65916         |
|      | into kilogram-metres per s.   | 76 <b>.0</b> 389                  |            | 1.88104         |
| "    | (electrical) into kilowatts   | .7461                             |            | 1.87278         |
| "    | into watts,                   | 746.071                           |            | 2.87278         |
| "    | into joules or volt-amperes,  |                                   |            |                 |
|      | per second,                   | 746.071                           |            | 2.87278         |
| 44   | into ergs per second,         | 7.46 x 10                         | 9          | 9.87278         |
| 4 6  | into gramme-cals, or therms   |                                   |            |                 |
|      | per second,                   | 179.40                            |            | 2.25383         |
| 6 5  | into British thermal units,   |                                   |            |                 |
|      | per second,                   | .71193                            | 1.4046     | 1.85244         |
| "    | into British thermal units,   | . ,0                              | • •        | 3               |
|      | per minute,                   | 42.7156                           |            | 1.63059         |
| 4.6  | into gallons water raised 1°  | 11-3-                             |            | 3-39            |
|      | F. per minute,                | 4.2716                            |            | 0.63059         |
| 66   | into French horse-power,      |                                   | • • • •    | 0.00597         |
|      | 2 ronom norse power,          |                                   |            | ~~597           |

Horse-Power-Hour

| Horse-Power-Hour.                                                                                      | Multiply.    | Divide.                                    | Logarithm.  |
|--------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|-------------|
| " into foot-tons,                                                                                      | 833.93       |                                            | 2.94642     |
| " into foot-pounds,                                                                                    | 1,980,000    |                                            | 6.29667     |
| " into kilogram-metres,                                                                                | 273740       |                                            | 5.43734     |
| " into large calories, (therm.                                                                         |              |                                            |             |
| equiv.)                                                                                                | 645.85       |                                            | 2.81013     |
| " into ergs, 2                                                                                         |              | 18                                         | 13.42908    |
| " joules,                                                                                              | 2685860      |                                            | 6.42908     |
| " into watt-hours,                                                                                     | 746.071      |                                            | 2.87278     |
| " into Board of Trade elec-                                                                            |              |                                            | _           |
| trical units,                                                                                          |              |                                            | 1.87278     |
| HEAT OF THE ELECTRIC CURRE                                                                             |              |                                            |             |
| the passage of an electric of                                                                          |              |                                            |             |
| without self-induction) is pro                                                                         | •            |                                            | •           |
| electricity which has passed                                                                           | in coulon    | ıbs, mul                                   | iplied by   |
| the fall of potential in volts, o                                                                      | r is equal t | o coulon                                   | ıbs⊠volts   |
| in inclus.                                                                                             |              |                                            | -           |
| The heat in gramme-calories, or t                                                                      | herms, per   | second=                                    | =           |
| $\frac{\text{amperes}^2 \times \text{ohms}}{4.1586} = \frac{\text{volts}^2}{\text{ohms} \times 4.158}$ | volts>       | <ampere< td=""><td>s_watts*</td></ampere<> | s_watts*    |
| 4.1586 ohms×4.158                                                                                      | 86 4         | .1586                                      | 4.1586      |
| *These should be true ohm:                                                                             | s and vol    | ts. The                                    | heat per    |
| second is proportional to C <sup>2</sup> R, o                                                          | r the squa   | are of th                                  | e current   |
| multiplied by the resistance, as al                                                                    | ove show     | n. It vai                                  | ries as the |
| square of the current. It also                                                                         | varies as    | the squa                                   | re of the   |
| E. M. F., or difference of potent                                                                      | tial, for th | ese two                                    | functions   |
| always vary in the same proportion                                                                     | on.          |                                            |             |
| Heat.                                                                                                  | Multiply.    | Divide. I                                  | Logarithm.  |
| Total heat in t seconds, in gramme                                                                     | -            |                                            |             |
| calories or therms =                                                                                   |              |                                            |             |
| volts $\times$ amperes $\times$ t $\times$                                                             | .2405        | 4.1586                                     | 1.38105     |
| " in kilogram-calories ==                                                                              |              |                                            | _           |
| $V \times A \times t \times \dots$                                                                     | .000240      | 4158.6                                     | 4.38105     |
| " in British therm, units, ==                                                                          |              |                                            | _           |
| $V \times A \times t \times \dots$                                                                     | .000954      | 1048                                       | 4.97966     |
| " in lbs. of water 1° C. =                                                                             |              |                                            | _           |
| $V \times A \times t \times \dots$                                                                     |              | •                                          | 4.72438     |
| HEAT OF EVAPORATION. The un                                                                            |              | •                                          |             |
| 1 lb. of water at 212° F. evap                                                                         |              |                                            |             |
| pressure = 966.1 British the                                                                           |              |                                            |             |
| of water at 100° C. evaporate                                                                          | d = 536.7    | kilogram                                   | -calories.  |
|                                                                                                        |              |                                            |             |

| ABSOLUTE ZERO OF HEAT, The absolu       | te zero == -274° C.,  |
|-----------------------------------------|-----------------------|
| or -461.2° F.                           |                       |
| ATMOSPHERE. English normal: = 14.7 l    | lbs, per square inch  |
| = 29.929 inches, or 760.18 millimetr    | es of mercury at 32°  |
| F.                                      |                       |
|                                         | y. Divide. Logarithm. |
| " into pounds per square inch, 14.7     | 1.16732               |
| " into pounds per circular inch, 11.545 | 1.06239               |
| " into pounds per square foot, 2116.8   | 3.32568               |
| " into pounds per circ'lr foot, 1662.5  | 3.22077               |
| " into cwts. per square foot,. 18,900   | 1.27646               |
| " into cwts. per circular foot, 14.844  | 1.17155               |
| " into cwts. per square inch,1312       | 7.62 1.11810          |
| " into tons per square inch,00656       | 152.38 3.81707        |
| " into tons per square foot, 9450       | 1.058 1.97543         |
| " into tons per circular foot, .7422    | 1.347 1.87052         |
| " into kilograms per square             |                       |
| centimetre, 1.0335                      | 0.01433               |
| " into inches of mercury at             |                       |
| 32° F., 29.929                          | 1.47610               |
| " into feet head of water 62° F 33.9892 |                       |
| " into metres head of water             |                       |
| 4° C., 10.3597                          | 1.01535               |
| ATMOSPHERE. French normal = 760 m       |                       |
| inches of mercury at 0° C= 14.696       |                       |
|                                         | . Divide. Logarithm.  |
| " into kilograms per square             | . Divide. Logarithm.  |
| centimetre, 1.0333                      | 0.01422               |
| " into grammes per circular             | 0.01422               |
| centimetre, 811.55                      | 2,90931               |
| " into grammes per square               | 2.90931               |
| millimetre, 10.333                      | 1.01422               |
| " into metres head of water,            | 1.01422               |
| 4° C., 10.345                           | 1.01476               |
| " into pounds per square inch, 14.696   | ••                    |
| " into dynes per square centi-          | 1.16721               |
| into dynes per square centi-            | 6 00=0=               |
| metre, 1013600                          | 6.00587               |

### USEFUL EQUATIONS FOR CONVERSION OF U. S. CUSTOMARY MEASURES TO METRIC EQUIVALENTS.

THE FOLLOWING DATA IS FROM THE MECHANICAL ENGINEERS' REFERENCE BOOK BY NELSON FOLEY.

| In.   | X          | 25.4    | m-m.      | m-m. | $\times$ | .0393704 | == ins.  |
|-------|------------|---------|-----------|------|----------|----------|----------|
| ••    | $\times$   | 2.54    | -= c-m.   | "    | $\times$ | .0032808 | = ft.    |
| **    | $\times$   | .0254   | = m.      | c-m. | $\times$ | .393704  | = ins.   |
| Ft.   | X          | 30-4797 | ==: c·m.  | "    | X        | .0328087 | = ft.    |
| "     | X          | .30479  | == m.     | m.   | X        | 39.3704  | = ins.   |
| Yards | <b>3</b> × | .91497  | ≕ m.      | "    | X        | 3.28087  | = ft.    |
| Miles | X          | .86842  | == knots. | "    | $\times$ | 1.0736   | = yds.   |
| "     | X          | 1.6093  | = km.     | km.  | X        | .62138   | = miles. |
| Knot  | s X        | 1.1515  | == miles. | "    | $\times$ | .5396    | == knots |
| "     | X          | 1.8531  | := km.    |      |          |          |          |

### SQUARE.

### BRITISH SYSTEM.

| 144                | square inches | == 1 square foot. |
|--------------------|---------------|-------------------|
| 183.35             | circular ''   | = I " "           |
|                    | square feet   | = 1 square yard.  |
| 3, <b>0</b> 97,600 | " yards       | ະະເ '' ່າກັlle.   |

### METRIC SYSTEM.

| 100 | square | millimetres, | == 1    | square | c·m.   |
|-----|--------|--------------|---------|--------|--------|
| 100 | **     | centimetres, | 1. 1    | ••     | d c-m. |
| 100 | **     | decimetres,  | l       | "      | metre. |
| i   | • •    | centimetres  | ( · · · |        | metre. |

### USEFUL EQUATIONS.

```
Square inches
                      645.14476 = sq. millimetres.
                 X
        "
                        6.45144 = " centimetres.
                 X
       feet
                      929,0088
       "
                       .0929
                 × .83611
× .00155
      yards
      millimetres
                                      inches.
                 × .155002 = "
      centimetres
                        .001076 = "feet."
  "
                       10.7641
      metres
  "
        "
                        1.196
                                = " yards.
```

### CUBIC AND CAPACITY.

### BRITISH SYSTEM.

```
= 1 cub, ft, = 6.23208 gallons,
1.728 cub. ins.
                    "
                               7.4805 A.
             =
  27 cub. ft.
            = 1 cub. yd.
   4 gills = 1 pint
                            34.659
                                       cub. in.
    2 pints = 1 quart
                         = 69.318
    4 quarts = 1 gallon = 277.274
    I gallon
                    ___
                                . 16046 cub. ft.
    8 gallons = 1 bushel =
                                1.28368
    I American gallon = I American gallon =
                                       cub. in.
                              231.
                                .13368 cub. ft.
```

### METRIC SYSTEM.

```
1.cco cub. m-m.
                                 1 cub, c-m.
    1.ďo5 * " c-m.
                                        d c-m. :=
                         _
                                                       ı litre.
    1,000 "d c-m.
                                               = 1,000
1,000,000 " c m.
      1 litre = 1 cub. decimetre = 1,000 cub. c-m.
   1,000 litres = 1 cub. metre.
     10 centilitres = 1 decilitre = 100 cub. c-m.
     10 decilitres = 1 litre = 1,000 "
                                            = 1 \text{ cub. d e-m}
                = 1 decalitre = 10,000 "
                                              = 10
     10 litres
                 = 1 hectolitre = 100,000 "
    100
                                             = 100
                  = 1 kilolitre = 1 cub. metre = 1,000 "
   1,000
```

### USEFUL EQUATIONS.

```
16.3865
Cub, ins.
                                             cub, c m.
                =
                           .016386
                                                  d c m.
                                      _
     ft.
                            .028316
                                                  m.
                           .76453
                                                  "
     vds.
                                      =
                           .061025
     c m.
                                                  ins.
                                      =
                                                  "
     d c·m.
                         61.02522
                                      =
                         35.3156
                                                  ft.
     m.
                                      =
                           1.308
                                      =
                                                  yds.
                          6.23208
                                             Br. gallons.
                                      =
                          7.4805
                                             A.
                                      =
Pints
                           .5679
                                             litres.
                                      =
Quarts
                          1.1359
                                               "
Br. gallons
                           4.5436
                                      =
                           1.20032
                                             A. gallons.
                                      =
                           .16046
                                             cub. ft.
                                      =
                          3.7853
                                             litres.
                                      =
 ٠.
                           .8331
                                             Br. gallons.
                                      =
                           .13368
                                             cub. ft.
                                      =
                                                  "
Litres, "
                           .035315
                                      =
  "
                         61.02524
                                              " ins.
                                      =
  "
                           .2201
                                             Br. gallons.
                                      =
                           .2642
                                             A.
                                      _
                           .8804
                                      =
                                             quarts.
  "
                           1,7608
                                             pints.
                                      =
```

### WEIGHT.

### BRITISH SYSTEM, (AVOIRDUPOIS.)

```
16 drachms
                      i ounce.
    or
4371/2 grains.
                                       oz. for ounces
16 ounces
                      1 pound.
                                        lbs. "
14 pounds
                  -=
                      I stone.
                                               pounds
28
                      ı quarter.
                                        st.
                                               stone.
                 _
                      1 hundred-
 4 qr. = 112 lbs. =
                                        qr.
                                            " quarter.
                                        cwt. " hundred wgt.
                          weight.
20 cwt. = 2,240 lbs. = 1 ton.
                                       T.
 I U. S. short cwt. = 100 lbs.
                  =2,000 " =1 U. S. short ton.
```

20

### METRIC SYSTEM.

```
1,000 grammes = 1 kilogramme.

100 kilogrs = 1 quintal.

10 quintals = 1 metric ton.

1,000 kilogrs.

1 metric ton.

2 q. "metric quintals t. " tons.
```

1 gramme = 10 decigrammes.

" = 100 centigrammes.

10 grammes = 1 dekagramme.

100 " I hectogramme.

1 metric ton = weight of 1 cub, m. of water at 39.1° F., 4° C.

1 litre of water weighs 1 kg. or 1,000 grammes.

### USEFUL EQUATIONS.

|            | _                                      |                 | •  |             |
|------------|----------------------------------------|-----------------|----|-------------|
| Ounces     | $\times$                               | 28.34954        | =  | grammes.    |
| Pounds     | $\times$                               | 453.59265       | == | "           |
| 4.6        | ×                                      | ·453 <b>5</b> 9 | =  | kilos.      |
| Cwt.       | X                                      | 50.80241        | =  | 4.6         |
| 66         | ×××××××××××××××××××××××××××××××××××××× | .50803          | == | quintals.   |
|            | $\times$                               | 1.12            | == | short cwt.  |
| Short cwt. | ×                                      | 45.3597         | -  | kilos.      |
| "          | $\times$                               | .89285          |    | cwts.       |
| 44         | X                                      | .4536           | -  | quintals.   |
| Tons       | X                                      | 1.01604         | =  | metric ton. |
| "          | $\times$                               | 10,1604         | =  | quintals.   |
| "          | X                                      | 1016.047        | == | kilos.      |
| "          | X                                      | 1.12            | =  | short tons. |
| Short tons | $\times$                               | .8928           | =  | Br. tons.   |
| "          | ×                                      | .9071           | =  | metric ton. |
| Grammes    | $\times$                               | .03527          | =  | oz.         |
| Kilos      | ×                                      | 2.2046          | =  | lbs.        |
|            | ×                                      | .01968          | =  | cwts.       |
|            | ×                                      | .0009842        | =  | tons.       |
| Quintals   | $\times$                               | 220.4621        | =  | lbs.        |
| 4.6        | $\times$                               | 1.9684          | =  | cwts.       |
| 41         | ×                                      | .09842          | == | tons.       |
| "          | X                                      | 2.2046          |    | short cwt.  |
| 4.6        | X                                      | .11023          | == | short tons. |
| Metric ton | ×                                      | .9842           | == | tons.       |
| 44 44      | X                                      | 1.1023          | == | short tons. |
|            |                                        |                 |    |             |

### PRESSURE AND STRESS.

| BRITISH UNITS.        | METRIC UNITS.       |  |  |
|-----------------------|---------------------|--|--|
| Tons per square inch. | kg. per square c-m. |  |  |
| Lbs. " "              | " " m-m.            |  |  |
| Oz. " "               | " " m.              |  |  |
| Lbs. " foot.          | Atmospheres.        |  |  |
| Atmospheres.          | * c m. of mercury.  |  |  |
| *Inches of mercury.   | * " water.          |  |  |
| * " " water.          | * Metres of water.  |  |  |
| *Feet " "             | İ                   |  |  |

\* The intensity of pressure capable of balancing a column of the stated height.

NOTE.—It is usual to compare an atmosphere to a column of mercury either at 32° F. or at 62°, the ordinary temperature of 62° is preferred here, the mercury column is then 30 inches high or 76.2 centimetres. If the temperature of 32° is desired, the column is 29,922 inches or 76 centimetres.

The water column is also taken at 62°, in practice the differences are not worth considering.

1,000 pounds per square inch = 0.703 Kilogrammes per square Millimetres.

I Kilogramme per square Millimetre = 1422.3 pounds per square inch, the thickness of a tube or cylinder to withstand a given pressure is equal to the normal pressure per square inch multiplied by the internal radius in inches of the tube or cylinder and the product divided by the working stress per square inch in tension of the material.

### USEFUL EQUATIONS.

| Lbs. per square inch | $\times$ | 2,0408           | =   | ins, of mercury. |
|----------------------|----------|------------------|-----|------------------|
| "                    | $\times$ | 5. 1836          | =   | c m.             |
| 66                   | $\times$ | 27.711           | =   | ins. of water.   |
| 44 44                | $\times$ | 2.31             | =   | ft. "            |
| 66 66                | ×        | .06802           | =   | Atmospheres.     |
| 66 66                | $\times$ | .0703 <b>0</b> 8 |     | kg. per sq. c m. |
| 46                   | $\times$ | .000703          | ==  | " " m m.         |
| " cubic in.          | $\times$ | 27.682           | =   | " cub. d c m.    |
| Ins. of mercury      | $\times$ | <b>.4</b> 9      | =   | lbs. per sq. in. |
| "                    | $\times$ | 13.596           | =   | ins. of water.   |
| "                    | $\times$ | 1.133            | =   | ft. "            |
| "                    | $\times$ | .0333            | =   | Atmospheres.     |
| "                    | $\times$ | 2.54             | =   | c·m. of mercury. |
| "                    | $\times$ | .03445           | =   | kg. per sq. c·m. |
| Feet of water        | $\times$ | .433             | =   | lbs. " in,       |
| "                    | $\times$ | .02945           | =   | Atmospheres.     |
| "                    | $\times$ | .03044           |     | kg. per sq. c-m, |
| Ins. of water        | $\times$ | .03608           | =   | lbs. per sq. in. |
| "                    | $\times$ | .57728           |     | oz. "            |
| "                    | $\times$ | .07355           | =   | ins. of mercury. |
| "                    | $\times$ | .002454          | =   | Atmospheres.     |
|                      | $\times$ | .002537          | =   | kg. per sq. c-m. |
| Oz. per sq. in.      | $\times$ | 1.732            | =   | ins. of water.   |
| "                    | $\times$ | .1275            | =   | " mercury.       |
| **                   | $\times$ | .0625            | ==  | lbs. per sq. in. |
| "                    | $\times$ | .004394          | =   | kg. per sq. c-m. |
| Tons "               | $\times$ | 157.49           | =   | "                |
| "                    | $\times$ | 1.5749           | =   | " " m-m.         |
| Atmospheres          | $\times$ | 14.7             | =   | lbs. " in.       |
| "                    | $\times$ | 30.              | =   | ins of mercury   |
| "                    | $\times$ | 76.2             | =   | c-m. \ at 62° F. |
| • •                  | $\times$ | 407.36           | =   | ins. of water.   |
| "                    | $\times$ | 33.947           | =   | ft. of water.    |
| 46                   | $\times$ | 1.0335           | === | kg. per sq. c-m. |
| kg. per sq. c-m.     | $\times$ | 29.0267          | =   | ins. of mercury. |
|                      | X        | 73.727           | =   | c-m. "           |

### USEFUL EQUATIONS.—Continued.

| Kg. per sq. c-m.  | × 394.139 = | ins. of water.     |
|-------------------|-------------|--------------------|
| "                 | ×1,000,0 =  | - c-m. "           |
| "                 | × 1.0 =     | = m. "'            |
| 66 66             | × .9675 ==  | Atmospheres.       |
| " "               | × 14.2232 = | : lbs, per sq. in. |
| " Cub. d c-m.     | × .036124=  | lbs. per cub. in.  |
| " " m m.          | × 1422.32 = | : lbs. ''          |
| ** **             | × .635 =    | tons "             |
| kg. per sq. metre | × .205 =    | lbs. per sq. ft.   |
| c-m. of mercury   | × .013563=  | kg. per sq. c-m.   |
| "                 | × 13.596 =  | c m. of water.     |
| "                 | × ·3937 =   | ins. of mercury.   |
| "                 | × .01312 =  | Atmospheres.       |
| " water           | × .001 =    | kg. per sq. c-m.   |
| ** **             | × .014205=  | lbs. per sq. in.   |

### VELOCITY AND SPEED.

| R∎ | TTI | cu I | INT | TIC |
|----|-----|------|-----|-----|

Feet per second.
"" "minute.
Miles per hour.
Knots ""

METRIC UNITS.

Metres per second.

" " hour.

Kilometres per hour.

Knots per hour are also used on European and American Continents.

### USEFUL EQUATIONS.

| Feet  | per   | second | X        | .3048           | _= | metres per second, |
|-------|-------|--------|----------|-----------------|----|--------------------|
| 44    | "     | minute | $\times$ | "               | == | " " minute         |
| "     | "     | 44     | $\times$ | .011363         | == | miles per hour.    |
| " "   | "     | 4.4    | $\times$ | .009868         | =  |                    |
| "     | "     | 46     | $\times$ | .018287         |    | km. "              |
| Miles | "     | hour   | $\times$ | 88.             |    | feet per minute.   |
| "     | "     | 4.6    | ×        | .8684           | -  | knots per hour.    |
| "     | • •   | 4.6    | ×.       | 1.6 <b>0</b> 93 | =  | km. "              |
| Knots | • • • | "      | X        | 101.333         | =  | feet per min.      |
| "     | 4.4   | 44     | X        | 1.151           | =  | miles per hour.    |
| 66    | 66    | 66     | X        | 1.8532          | =  | km. "              |

### USEFUL EQUATIONS.—Continued.

| Metres | per second | ×        | 3.2808 | == | feet per second. |
|--------|------------|----------|--------|----|------------------|
| 4.     | **         | ×        | 196.85 | == | " min.           |
| ٠.     | minute     | ×        | 3.2808 | == | 44 44            |
| "      | • 6        | $\times$ | .06    | =  | km. per hour.    |
| km. pe | r hour     | $\times$ | .621   | =  | miles ''         |
| "      | 4.         | ×        | .5396  | =  | knots "          |

### HEAT INTENSITY.

### FAHRENHEIT THERMOMETER.

When Barometer at 14.7 lbs. per square inch.

Freezing point of water registers 32°.

Boiling " " 212°.

180 equal divisions between these points.

Ordinary zero (0°) is 32° below freezing.

Absolute " 461 below ordinary, or 493° below freezing

### CENTIGRADE THERMOMETER.

When Barometer at 14.7 lbs. per square inch. Freezing point of water registers 0°.
Boiling " " 100°.
100 equal divisions between these points.
Absolute zero 274° below ordinary.

### ORDINARY TEMPERATURES INTO ABSOLUTE.

Fahrenheit——add 461 to ordinary temperature. Centigrade—— " 274 " " "

### OUNCES OR FRACTIONS OF POUND AVOIRDUPOIS.

|    |     |                     |        |                | KILOS  |
|----|-----|---------------------|--------|----------------|--------|
| I  | υz. | or 16th             | of lb. | =              | .02835 |
| 2  | 6 6 | ½th                 | "      | =              | .0567  |
| 3  | "   | $\frac{3}{16}$ ths  | "      | =              | .0850  |
| 4  | 6.6 | <u> </u>            |        | -              | .1134  |
| 5  | "   | $\frac{5}{16}$ ths  | 4.6    | =              | .1417  |
| 6  | 4.6 | §t <b>hs</b>        | ••     | =              | .1701  |
| 7  | ٠.  | $\frac{7}{16}$ ths  | "      | =              | .1984  |
| 8  | "   | $\frac{1}{2}$       | 4.     | ==             | .2268  |
| 9  | 4.4 | $\frac{9}{16}$ ths  | 44     | =              | .2551  |
| 10 | 44  | $\frac{5}{8}$ ths   |        | ==             | .2835  |
| 11 | 66  | $\frac{1}{6}$ ths   | "      | ==             | .3118  |
| 12 | "   | $\frac{3}{4}$ ths   | 66     | ==             | .3402  |
| 13 | 4 6 | 13/ths              | "      | =              | .3685  |
| 14 | "   | ₹ths                | "      | ==             | .3969  |
| 15 |     | $\frac{15}{16}$ ths | "      | =              | .42524 |
| 16 | "   | or                  | ı lb.  | <del>-</del> - | .4536  |
|    |     |                     |        |                |        |

### KILOGRAMMES AND ENGLISH EQUIVALENTS.

| KILOS.            | KILOS.             |
|-------------------|--------------------|
| 1 == 2.20462 lbs. | 6 == 13.22773 lbs. |
| 2 = 4.40924 "     | 7 = 15.43235 "     |
| 3 = 6.61386 "     | 8 = 17.63697 "     |
| 4 = 8.81848 "     | 9 = 19.84159 "     |
| 5 =11.02311 "     | 10 == 22.04621 "   |

### FRACTIONS OF KILOS.

|                    |      |       |     | l .                 |    |       |     |
|--------------------|------|-------|-----|---------------------|----|-------|-----|
| $\frac{1}{16}$ th  | =    | .138  | lb. | $\frac{9}{16}$ ths  | =: | 1.24  | lb. |
| ½ th               | =    | .2755 | "   | 5ths                | =  | 1.378 | • 6 |
| 3 ths              | -    | .413  | 66  | $\frac{11}{16}$ ths | == | 1.516 | ٠.  |
| ₁th                | ==   | .551  | "   | ₹ths                | == | 1.653 | • • |
| $\frac{5}{16}$ ths | ==   | .689  | "   | 13ths               | == | 1.791 | "   |
| ₹ths               | ==== | .8267 | " " | ₹ths                | =  | 1.929 | 66  |
| $\frac{7}{16}$ ths | ==   | .9645 |     | 15ths               | == | 2,067 | "   |
| 1                  |      | 1 102 | 44  |                     |    |       |     |

### WEIGHTS AND MEASURES.

### AVOIRDUPOIS, OR ORDINARY COMMERCIAL WEIGHT. UNITED STATES AND BRITISH.

| TON.  | cwrs.  | POUNDS. | OUNCES.                |
|-------|--------|---------|------------------------|
| 1.    | 20.    | 2240.   | 35840.<br>1792.<br>16. |
| 0.050 | 1.0    | 112.    | 1792.                  |
| •     | 0.0089 | 1.      | 16.                    |
|       | ,      | 0.0625  | 1.                     |

1 pound...27.7 cubic inches of distilled water at its maximum density, (39° Fahrenheit.)

### LONG MEASURE.

### SQUARE MEASURE.

Inches 144 = 1 Foot. 1296 = 9 =: 1 Yard. 39204 = 272.25 :: 30.25 = 1 Perch. 1568160 = 10890 ::: 1210 := 40 =: 1 Rood. 6272640 =: 43560 == 4840 == 160 == 4 == 1 Mile.

An Acre is 69.5700 yards square; or 208.740321 feet square.

A Township is 6 miles square = 36 Sections.

A Section "1" " = 640 Acres,

1/4" "1/2" " = 160 "

1/5" "1/4" " = 40 "

### NAUTICAL MEASURE.

Naut, Mile 1 = 6086.07 feet, == 1.152664 Statute or Land Miles.
" 3 == 1 league.

" 60 = 20 " = 1 Deg. = 69.16 Eng. Miles.

### WEIGHTS AND MEASURES.—Continued.

### CUBIC OR SOLID MEASURE.

### UNITED STATES AND BRITISH.

### 1728 cubic inches = 1 cubic foot.

1728 cubic filenes = 1 cubic 100

27 cubic feet = 1 cubic yard.

A cord of wood =  $4' \times 4' \times 8' = 128$  cubic feet.

A perch of masonry =  $16.5' \times 1.5' \times 1' = 24.75$  cubic feet, but is generally assumed at 25 cubic feet.

### DRY MEASURE. UNITED STATES ONLY.

| STRUCK<br>BUSH. | PECKS. | QUARTS. | PINTS. | GALLONS | CUBIC<br>INCH. |
|-----------------|--------|---------|--------|---------|----------------|
| I               | 4      | 32.     | 64     | 8.      | 2150.          |
|                 | 1      | 8.      | 16     | 2.      | 537.6          |
|                 |        | ı.      | 2      | 0.25    | 67.2           |
|                 |        | 0.5     | 1      | 0.125   | 33.6<br>268.8  |
|                 |        | 4.      | 8      | I.      | 268.8          |

A U. S. gallon of liquid measure = 231 cubic inches.

A heaped bushel  $= 1 \frac{1}{4}$  struck bushels. The cone in a heaped bushel must be not less than 6 inches high.

A barrel of U. S. hydraulic cement = 300 to 310 lbs., usually, and of genuine Portland cement = 425 lbs.

To reduce U. S. dry measures to British imperial of the same name, divide by 1.032.

The laws of the States of Pennsylvania and Massachusetts which correspond to the similar laws of most of the other States of the United States, provide as follows:

The avoirdupois pound bears to the troy pound the relation of seven thousand to five thousand seven hundred and sixty.

The barrel contains thirty-one and one-half gallons, and the hogshead two barrels.

The dry gallon contains two hundred and eighty-two cubic inches; and the liquid gallon two hundred and thirty-one cubic inches.

The bushel in heap measure contains twenty-one hundred and fifty and forty-two one hundredths cubic inches,

### COMPARATIVE MEASURES OF WEIGHT.

|                 |          | COMPANA   | IIVE ME    | MOUNES OF  | MEION       | 11.                                                      |
|-----------------|----------|-----------|------------|------------|-------------|----------------------------------------------------------|
| U.S.<br>SHORT C | wT       | BR. CW    |            | BR. TONS   | . к         | ILOGRAMMES.                                              |
| I               | =        | ,8928     | 3 =        | .04464     | ==          | 45.36                                                    |
| 2               | 11.      | 1.7856    |            | .08928     | -           | 90.72                                                    |
| 3               |          | 2.6786    | <b>5</b> = | .13392     | =           | 136.08                                                   |
| 4               |          | 3.5714    |            | .17857     | =           |                                                          |
|                 | : -      | 4.464     |            | .22321     | =           | # 181.44<br>226.8                                        |
| 5<br>6          | ===      | 5.357     | =          | .26786     | ==          | 2 272.15                                                 |
|                 | =        | 6.25      | =          | .3125      | =           | 2 317.51                                                 |
| 7<br>8          |          | 7.1428    |            | •35715     | =           | 317.51<br>362.87<br>408.23<br>453.59                     |
| 9               | _        | 8.0356    |            | .40178     | =           | ₹ 408.23                                                 |
| 10              | =        | 8,9286    | 5 =        | .44643     | ==          | 453.59                                                   |
| 11              |          | 9.822     | _          | .49107     | ==          | e 498.95                                                 |
| 12              |          | 10.714    | =          | .53572     | =           | \$ 498.95<br>\$ 544.31                                   |
| 13              |          | 11.607    | : ==       | .58036     | =           | 589.67                                                   |
| 14              | =        | 12.5      |            | .625       | =           | 589.07<br>635.03<br>680.38<br>725.74<br>771.11<br>816.46 |
| 15              |          | 13.392    |            | .66964     | =           | £ 680.38                                                 |
| 16              |          | 14.286    |            | .7143      | =           | 725.74                                                   |
| 17              |          | 15.179    |            | .75895     | _           | 문 771.11                                                 |
| 18              | =        | 16,071    | =          | .80357     | =           | 816.46                                                   |
| 19              | =        | 16.965    |            | .84822     | =           | 861.82                                                   |
| *20             | _        | 17.857    | _          | .89285     | =           | 907.18                                                   |
| 21              | =        | 18.750    |            | •9375      | =           | 952.54                                                   |
| 22              | =        | 19.643    |            | .98251     | ===         | 997.9                                                    |
| 22.4            | _        | 20.0      | _          | 1.0        | =           | 1016,04                                                  |
| 1               | Shor     | t Cwt.    | =.         | 100 Br. 11 | os.         |                                                          |
| * <sub>I</sub>  | U.S.     | . Short T | on, =_     | 2000 "     |             |                                                          |
| 1               | ••       |           | "´:-=      | 20 U. S.   | Shor        | rt Cwt.                                                  |
|                 | oz.      |           | I.B.       |            | GRA         | MMES.                                                    |
|                 | I        | 1772      | .0625      |            | 28.         | .3495                                                    |
|                 | 2        | =         | .125       | =          |             | .699                                                     |
|                 | 3        | ===       | .1875      |            |             | .049                                                     |
|                 | 4        |           | .25        | =          |             | 399                                                      |
|                 | 5<br>6   | ==        | .3125      | =          |             | .748                                                     |
|                 |          |           | •375       | =          |             | .098                                                     |
|                 | 7<br>8   | ===       | •4375      | =          |             | 447                                                      |
|                 |          | ===       | •5         | ===        |             | 797                                                      |
|                 | 9        | ==        | .5625      |            |             | . 146                                                    |
|                 | 10       |           | .625       | =          |             | .496                                                     |
|                 | 11       |           | .6875      |            | 311.        | .045                                                     |
|                 | 12       |           | .75        |            | 340,        | 195                                                      |
|                 | 13       | ==        | .8125      | =          | 300,        | 544                                                      |
|                 | 14       |           | .875       |            |             | .894                                                     |
|                 | 15<br>16 |           | .9375      | ===        |             | 244                                                      |
|                 | 10       |           | 1,0        | ==         | <b>45</b> 3 | -593                                                     |
|                 |          |           |            |            |             |                                                          |

### UNIT EQUIVALENTS FOR ELECTRIC HEATING PROBLEMS.

| K. W.     | 1,000 watt hours.<br>1.34 horse-power hours.<br>2,656,400 ft. lbs.<br>3,600,000 joulés.<br>3,440 heat units.<br>366,848 kg. m.                                                                                        | 1 joulé=                                | 1 watt second.<br>0.00000278 K. W. hour.<br>0.102 kg. m.<br>0.00094 heat unit.<br>0.73 ft. lb.                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hour=     | 0.229 lb. coal oxidized with perfect efficiency. 3 lbs. water evaporated at at 212° F. 22.9 lbs. water raised from 62° to 212° F. 8 cents at usual rates for electric heating.                                        | 1 ft. lb.==                             | 1.36 joulés.<br>0.1383 kg. m.<br>0.00000377 K. W. hour.<br>0.000291 heat unit.<br>0.0000005 H. P. hour.                                                                          |
| II. P.    | 0.746 K. W. hour.  1,980,000 ft. lbs. 2,580 heat units. 273,740 kg. m. 0.172 lb. coal oxidized with perfect efficiency. 2.25 lbs. water evaporated at 212° F.                                                         | 1 watt=                                 | 1 joulé per second. 0.00134 H. P. 0.001 K. W. 3.44 heat units per hour. 0.73 ft. lb. per second. 0.003 lb. of water evaporated per hour. 44.24 ft. lbs. per minute.              |
|           | 17.2 lbs. water raised from 62° to 212° F. 6 cents at usual rates for electric heating.                                                                                                                               | 1 watt per sq. in.=                     | 8.26 thermal units per sq. ft.<br>per minute.<br>120° F. above surrounding air<br>(japanned cast iron<br>surface.)<br>66° C. above surrounding air                               |
|           | 1.34 H. P.<br>2,656,400 ft. lbs. per hour.                                                                                                                                                                            |                                         | (japanned cast iron<br>surface.)                                                                                                                                                 |
| к. w      | 4.424 ft. lbs. per minute. 73.73 ft. lbs. per second. 3,440 heat units per hour. 573 heat units per minute. 9.55 heat units per second. 0.229 lb. coal oxidized per hour. 3 lbs. water evaporated per hour at 212° F. | 1 heat unit=                            | 1.048 watt seconds. 778 ft. lbs. 0.252 caloric (kg. d.) 108 kg. m. 0.000291 K. W. hour. 0.000388 H. P. hour. 0.000067 lb. coal oxidized. 0.00087 lb. water evaporated at 212° F. |
|           | 746 watts. 0.746 K. W. 33,000 ft. lbs. per minute. 550 ft. lbs. per second. 2,580 heat units per hour. 43 heat units per minute.                                                                                      | 1 heat unit<br>per sq. ft.<br>per min.= | 0.021 watt per sq. in.<br>0.0174 K. W.<br>0.0232 H. P.                                                                                                                           |
| 1 11. P.= | 0.71 heat unit per second. 0.712 lb. coal oxidized per hour. 2.25 lbs. water evaporated per hour at 212° F.                                                                                                           | 1 kg. m.=                               | 7.23 ft. lbs.<br>0.00000366 H. P. hour.<br>0.00000272 K. W. hour.<br>0.0092 heat unit.                                                                                           |

### HEAT UNITS.

The following information regarding Heat Units is from the pen of Dr. Slocum, published in the "American Manufacturer" of February 8th, 1895:

The heating value of any combustible, like its specific gravity, must be based on some unit. There exist at present three different heat units, without any specific name for each, with the exception of the British Heat Unit (B. H. U.), so that they are constantly confused and used without any specification as to which system they belong. Hence it is often difficult or impossible to determine which system is used.

These three systems are: First.—The Centigrade or Continental system, where the Centigrade thermometer is used, here the term applied to the heat unit is the calorie. Second.—The British system, in England, where Fahrenheit is mostly used in scientific research; the term used is the British heat unit (B. H. U.) Third.—The molecule-gram system or the Thomson system. In describing these different systems separately, the same example will be used in each, viz., marsh gas, in order to show clearly the differences numerically in the different systems:

First.—The unit of the French system, the calorie, is the amount of heat required to raise one kilo water one degree Centigrade. Therefore the number of kilos of water that are raised one degree Centigrade by the complete combustion of one kilo of a combustible gives the number of calories or its caloric value, e. g., one kilo marsh gas burned completely to water and carbon dioxid (C O<sup>2</sup>) will raise 13,244 kilos water one degree Centigrade. As is readily seen, this same number of calories would be obtained if pounds of combustible were

used and pounds of water were heated. This system will be termed for convenience, the Centigrade-Kilo system. Abbreviation—C. K.

Second.—The system used in Great Britain is the same as the French, except Fahrenheit is substituted for Centigrade; this decreases the size of one calorie \$\frac{4}{2}\text{ths}. Therefore the amount of heat necessary to raise one pound of water one degree Fahrenheit, is one Calorie, e. g., one pound of marsh gas burned completely to water and carbon dioxid (C O²) will raise 23,661 pounds of water one degree Fahrenheit. This is the calorie multiplied \$\frac{2}{3}\text{ths}. This Calorie is the British heat unit, (B. H. U.) and for convenience will be termed the Fahrenheit pound system. Abbreviation, F-P.

Third.—The molecular gram system is based on quite a different method of determination, having no fixed unit of the quantity employed, in fact every combustible employed is taken in different quantities, unless the molecular weight should happen to be the same as the molecular weight of some other substance. A calorie is the amount of heat necessary to raise one gram of water one degree Centigrade; the quantity used is the molecular weight of the substance taken in grams.

All gases, no matter what their composition, have the same sized molecules; therefore, a molecule of any gas takes up one unit of room. In the molecular gram system, therefore, the amount of substance used is its molecular weight taken in grams, and the caloric value of the substance is expressed in the number of grams of water that that amount of substance will raise one degree Centigrade, e. g., in marsh gas, (C. H4) molecular weight 16; then 16 grams of marsh gas burned completely to water and carbon dioxid will raise 211,900 grams of water one degree Centigrade. The caloric value in this case has the advantage of expressing the caloric value of the same volumes of substance when in its gaseous state and conveys quite a different meaning. It is the most useful system for general scientific research, but is apt to be misleading to the general technical world. It will be readily seen that it can be converted into the C.K. system by dividing the total calories given for any substance by its molecular weight, and

is further converted into the F-K. system by multiplying this result by §ths. For convenience we will term this system the the Molecular-gram system. Abbreviation M-G.

Making a comparison of the different values given above, marsh gas has its caloric value expressed as follows in the different systems:

These all indicate the same result and are all convertible one into the other; still, when given promiscuously, without any designation as to system, they must certainly be very confusing. The F-P, or the British heat unit is entirely superfluous, and the sooner it is dropped from all classes of heat unit investigations the better; it is only the C-K, system converted into Fahrenheit, and a division of the number 180 will never make a clear or useful unit for general and accurate work. There are only two temperatures that can be absolutely determined anywhere in the world and be always the same. The first is a mixture of ice and water, which has the same temperature (no matter where); hence, it should be zero (oo), as it is on the Centigrade theremometer, being the freezing point of water. The second is the temperature at which water is converted into steam; the temperature of steam is the same always under an atmospheric pressure of 30 inches of mercury or at sea level; this can be determined anywhere, making the barometric correction, which is easily done; therefore, this temperature should be 100°, as it is on the Centigrade scale This is a comprehensive division and certainly conveys clearer comprehension of unit than  $-\frac{1}{1600}$ , the difference between the freezing and boiling point of water on the Fahrenheit scale.

All three systems are at fault in one respect, which can only be overcome indirectly, as shown below. This difficulty is that the figures given in all systems even with the lowest heating substance are high numbers. The human mind cannot grasp readily comparisons of high figures and be able, at the same time, to use them quickly for comparison. In the tables given below, there has been added another unit for all combustible substances, and a second one for gases. A kilo

of pure carbon completely burned to dioxid (C O<sup>2</sup>)=8,080 C-K.; this number of calories is taken as a unit or as one heat value, abbreviation H V., hence: Carbon (C)=1 H V.

Carbon is the best as it is the type of all combustibles, and has a middle value among combustibles. Hence marsh gas, 13,244 C·K., would equal 13,244 + 8,080=1.63 H·V.

Marsh gas (C H<sup>4</sup>)=1.63 H·V.

ľ

That is, one pound of marsh gas equals 1.63 pounds of carbon for heating purposes. The decimals are only carried out two places; if five or over in the third place, one is carried up; if not, it is dropped. This gives a quick, intelligent comparison for general technical use, and, it is believed, will be an aid in the general use of heat unit comparisons, as they are all based on equal weights.

In the case of gases or substances which become gases by solution in other gases, another unit is also used; this unit is used exactly as the specific gravity of gases are compared with air, while all the solids are compared with water. This unit is hydrogen by volume. Hydrogen has the highest heating value of any element or compound and is the lightest. It is unneccessary to take any given volume, but make the comparison direct from the molecular-gram system, as all gases have the same sized molecule. The molecular weight of hydrogen is H2=2, hence, H2=68,435 M-G.; this is taken for the unit. V-C. is the abbreviation for a volume calorie; hence H=1 V-C.

Marsh gas under the M-G. system=211,900.

211,900 ÷ 68,435=3.09 V·C.

This makes a quick and intelligent comparison, as the numbers are low and easily grasped in the mind and far easier remembered than the higher numbers.

To estimate the percentage of loss in the practical combustion of any fuel, providing the combustion is complete; the temperature of the products of combustion, where they enter the flue or stack and to which any admixed nitrogen or other neutral gases are added, is multiplied by the quantity (weight) of the products of combustion multiplied by their specific heats (see table below) plus any latent heat that may be in the products of combustion. to=Temperature.

N ... Admixed nitrogen or other gases.

P --- Products of combustion.

W=Weight of all gases heated.

s =: Specific heat.

L \_=Latent heat.

Hence: to [W (Ps + Ns)] + L=Loss in calories.

If the quantity of combustible is known with the admixed air, the nitrogen is taken usually as 77 per cent. by weight. Below the calculation is made from an average analysis of air with impurities, which shows that for every pound of oxygen consumed 3.329 pounds of nitrogen are heated.

Analysis of air containing usual impurities shows:

|            | By volume. | By weight | t. |
|------------|------------|-----------|----|
| Oxygen     | 20.94%     | 23.10     | %  |
| Nitrogen   | 79.02%     | 76.84     | %  |
| Impurities | 0.04%      | 0.06      | %  |

Average weight of 1 liter of air=1.29306 grams, or 1 cubic foot weighs 565 grains.

Air is  $-\frac{1}{7}$  the weight of water volume for volume.

This article was written before the presence of the element Argon in the atmosphere had been determined. (T. P. R. Co.)

### SPECIFIC HEAT.

Calculated under constant pressure and an equal weight of water as unit.

| Air                                 |
|-------------------------------------|
| Carbon dioxid (C O <sup>2</sup> )   |
| Nitrogen (N <sup>2</sup> )          |
| Oxygen (O <sup>2</sup> )            |
| Water (H <sup>2</sup> O) (Gaseous)  |
| Water (H <sup>2</sup> O) (Liquid)   |
| Carbonous Oxid (C O)                |
| Sulphurous Oxid (S O <sup>2</sup> ) |
| Hydrogen 3.4090                     |
| Ammonia 0.5356                      |

In the following table are given the weights by volume and heat units of the chief combustibles:

| ornolad-canuloV  <br>.t=negonbyH  | 2.05.05<br>2.05.05<br>2.05.05<br>2.05.05<br>2.05.05<br>2.05.05<br>2.05.05<br>2.05.05<br>2.05<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coal Gas.<br>4.37%<br>None.<br>Trace.                     |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Heat-Value<br>.t=nodua0           | 1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15                                                                                                                                                                                                                                                                                                                                                       | -                                                         |
| Calories. C-K.                    | 34217.5<br>244.7<br>244.7<br>244.7<br>246.7<br>246.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260.8<br>260. | Water Gas<br>(Uncarburetted.)<br>43.8 %<br>2.7 %<br>4.0 % |
| Weight of 1 Cu.<br>Ft. in Pounds. | .00559<br>.04464<br>.07306<br>.07306<br>.08308<br>.08308<br>.01154<br>.01164<br>.010286<br>.47543<br>.010286<br>.47543<br>.010286<br>.17543<br>.010286<br>.17543<br>.010286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wa<br>(Unca                                               |
| Weight of I Cu.<br>It. in Grains. | 38.1283<br>546.4587<br>546.4587<br>557.5338<br>556.6318<br>585.7637<br>108.2072<br>108.2072<br>1483.2072<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>1483.577<br>148                                                                                                                                                                                                                                                                                                                                                    |                                                           |
| Weight of t<br>Liter in Grame.    | 0.08955<br>0.71506<br>1.25088<br>1.25088<br>1.34088<br>1.34088<br>1.34088<br>1.34088<br>1.34088<br>1.5214<br>1.5214<br>1.5214<br>1.5214<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218<br>1.5218                                                                                                                                                        | oxid<br>id                                                |
| Specific Gravity<br>Air—1.        | 0.06925<br>0.05530<br>0.056715<br>0.056715<br>1.45124<br>1.35184<br>1.35184<br>1.35184<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05825<br>0.05                                                                                                                                                                                                                                                                | Carbon monoxid<br>Carbon dioxid<br>Nitrogen               |
| Specific Gravity<br>Rydrogen—S.   | 25.000<br>25.914<br>25.934<br>25.934<br>25.934<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27.722<br>27                                                                                                                                                 | Carl<br>Carl<br>Nitr                                      |
| Products of<br>Combustion.        | H20<br>15.88 H20<br>15.81 H20<br>15.81 H20-C02<br>15.81 H20-C02<br>17.81 H20-C02<br>17.81 H20-C02<br>17.81 H20-C02<br>18.81 H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coal Gas.<br>50.28 %<br>36.35 %<br>6.34 %                 |
| Molecular<br>Weight               | 25222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ted.)                                                     |
| Atomic<br>JdgieW                  | 25.94<br>27.95<br>27.95<br>27.95<br>27.95<br>27.95<br>28.95<br>28.95<br>28.95<br>28.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>29.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95<br>20.95  | Water Gas. (Uncarburetted. 49.2 \$ 0.3 \$ Trace.          |
| Molecular<br>Symbol.              | 2022 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Cnc                                                      |
| NAME.                             | Hydrogen Aretic Gas Arbon Monoxid Aretrylene Aretrylene Archylene Arthane Butylene Butylene Butylene Butylene Samole Allylene Samole And Hydrogen Carbon Bi-Suphid And Maretry Annonia Annonia Annonia Annonia Annonia Annonia Annonia Bi-Suphid Carbon Form Wood Bi-Suphid Bi-Suphid Carbon Bi-Suphid Bi-Suphid Carbon Gas Annonia Annonia Annonia Annonia Annonia Coal Gas Bituminus Coal Bituminus Coal Bituminus Coal Bituminus Coal Bituminus Coal Bituminus Coal Bituminus Coal Bituminus Coal Gas House Coke Gas Tagr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * Note.<br>Hydrogen.<br>Marsh gas                         |

### USEFUL INFORMATION.

### STEAM.

A cubic inch of water evaporated under ordinary atmospheric pressure is converted into 1 cubic *foot* of steam (approximately.

Steam at atmospheric pressure flows into a Vacuum at the rate of about 1,550 feet per second, and into the Atmosphere at the rate of 650 feet per second.

The specific gravity of steam (at atmospheric pressure) is .411 that of air at 34° Fahrenheit, and .0006 that of water at same temperature.

27,222 cubic feet of steam, at atmospheric pressure, weigh 1 pound: 13,817 cubic feet of air weigh 1 pound.

Boilers require for each nominal horse power about I cubic foot of feed water per hour.

Locomotives average a consumption of 3000 gallons of water per 100 miles run.

The best designed boilers, well set, with good draft and skillful firing, will evaporate from 7 to 10 lbs. of water per pound of best quality coal. The average result is from 25 to 60 per cent, below this.

In calculating horse power of tubular or flue boilers, consider 15 square feet of heating surface equivalent to one nominal horse power.

One square foot of grate will consume on an average 12 lbs., of coal per hour.

Steam engines, in economy, vary from 20 to 60 lbs. of feed water and from  $1\frac{1}{2}$  to 7 lbs. of coal per hour per indicated horse power.

Condensing engines require from 20 to 30 gallons of water to condense the steam represented by every gallon of water evaporated—approximately say from 1 to 1½ gallons per minute per indicated horse power.

### RATIO OF VACUUM TO TEMPERATURE (FAHRENHEIT) OF FEED WATER.

| 00   | inches,    | Vacuum | 1212° |  |
|------|------------|--------|-------|--|
| II   | "          | "      | 190°  |  |
| 18   | "          | "      | 170°  |  |
| 221  | <b>2</b> " | 6.6    | 150°  |  |
| * 25 | "          | "      | 135°  |  |
| 271  | <b>2</b> " | 4.6    | 112°  |  |
| 281  | 2 "        | 44     | 92°   |  |
| 29   | "          | "      | 72°   |  |
| 291  | <b>2</b> " |        | 52°   |  |

<sup>. \*</sup> Usually considered the standard point of efficiency—condenser and air pump being well proportioned.

### USEFUL INFORMATION. WATER.

Doubling the diameter of a pipe increases its capacity four times. Friction of liquids in pipes increases as the square of the velocity.

The mean pressure of the atmosphere is usually estimated at 14.7 lbs. per square inch, so that with a perfect vacuum it will sustain a column of mercury 29.9 inches or a column of water 33.9 feet high.

To find the pressure in pounds per square inch of a column of water. Multiply the height of the column in feet by .434. Approximately, we say that every foot of elevation is equal to ½ lb. pressure per square inch; this allows for ordinary friction.

To find the diameter of a pump cylinder to move a given quantity of water per minute (100 feet of piston being the standard of speed.) Divide the number of gallons by 4; then extract the square root, and the product will be the diameter in inches of the pump cylinder.

To find the quantity of water elevated in one minute running at 100 feet of piston speed per minute. Square the diameter of the water cylinder in inches and multiply by 4. Example: Capacity of a 5-inch cylinder is desired. The square of the diameter (5 inch) is 25, which multiplied by 4 gives 100, the number of gallons per minute (approximately.)

To find the horse power necessary to elevate water to a given height. Multiply the total weight of the water to be elevated in one minute in lbs. by the height in feet, and divide the product by 33,000 (an allowance of 25 per cent. should be added for water friction, and a further allowance of 25 per cent. for loss in steam cylinder.)

The area of the steam piston, multiplied by the steam pressure, gives the total amount of pressure that can be exerted. The area of the water piston, multiplied by the pressure of water per square inch, gives the resistance. A margin must be made between the power and the resistance to move the pistons at the required speed—say from 20 to 40 per cent., according to speed and other conditions.

To find the capacity of a pumping cylinder in gallons. Multiplying the area in inches by the length of stroke in inches will give the total number of cubic inches. Divide this number 231 (which is the cubical contents of a U. S. gallon in inches), and product is the capacity in gallons.

WEIGHT AND CAPACITY OF DIFFERENT STANDARD GALLONS OF WATER.

|                     | Cubic Inches in a | Weight of a Gallon | Gallons in a Cubic |
|---------------------|-------------------|--------------------|--------------------|
|                     | Gallon.           | in Pounds.         | Foot,              |
| Imperial or English | 277 <b>.2</b> 74  | 10.00              | 6,232102           |
| United States       | 231.              |                    | 7,480519           |
| New York            | 221.819           | 8.00               | 7.901285           |

Weight of a cubic foot of water, English standard, 62,321 lbs. avoirdupois.

Weight of crude or refined petroleum, 6½ lbs. per U. S. gallon; 42 gallons to the barrel.

 $\Lambda$  "miner's" inch of water is approximately equal to a supply of 12 U. S. gallons per minute.

### WEIGHT AND COMPARATIVE FUEL VALUE OF WOOD.

- 1 cord air dried Hickory or Hard Maple weighs about 4500 lbs., and 1s equal to about 2000 lbs. coal.
- I cord air-dried White Oak weighs about 3850 lbs., and is equal to about 1715 lbs. coal.

I cord air dried Beech, Red or Black Oak weighs about 3250 lbs., and is equal to about 1450 lbs. coal.

1 cord air dried Poplar (whitewood), Chestnut or Elm weighs about 2350 lbs., and is equal to about 1050 lbs. coal.

I cord air-dried average Pine weighs about 2000 lbs., and is equal to about 925 lbs. coal.

From the above it is safe to assume that 2½ lbs. of dry wood is equal to 1 lb. average quality of soft coal, and that the full value of the same weight of different woods is very nearly the same—that is, a pound of hickory is worth no more for fuel than a pound of pine, assuming both to be dry. It is important that the wood be dry, as each 10 per cent. of water or moisture in wood will detract about 12 per cent. from its value as fuel.

### DUTY OF STEAM ENGINES.

The following are comparative figures showing the economy of high-grade steam engines in actual practice:

| TYPE OF ENGINE.    | Temperature of<br>Feed Water. | Pounds of Water Evaporated per pound of Cumberland Coal. | Pounds of Steam<br>per I. H. P. used<br>per hour. | Pounds of Cumberland Coal used per I. H. P. | Cost of I. H. P. per hour supposing Coal at \$6.00 per ton. |
|--------------------|-------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|
| Non-Condensing     | 210°                          | 10.5                                                     | 29.                                               | 2.75                                        | \$0.0073                                                    |
| Condensing         | 100°                          | 9.4                                                      | 20.                                               | 2.12                                        | 0.0056                                                      |
| Compound Jacketed. | 100°                          | 9.4                                                      | 17.                                               | 1.81                                        | 0.0045                                                      |

The effect of a good condenser and air pump should be to make available about 10 lbs. more mean effective pressure, with the same terminal pressure; or to give the same mean effective pressure, with a correspondingly less terminal pressure. When the load on the engine requires 20 lbs. M. E. P., the condenser does half the work; at 30 lbs., one-third of the work; at 40 lbs., one-fourth, and so on. It is safe to assume that practically the condenser will save from one-fourth to one-third of the fuel, and it can be applied to any engine, cut-of, or throttling, where a sufficient supply of water is available.

### THE HORSE-POWER OF BOILERS.

When an order is given for a boiler of a stated number of "nominal horse power" it is understood (in the absence of of any agreement to the contrary) that a "horse power" means the evaporation of 30 pounds of water per hour, under the conditions stated above.

In computing the horse power of a boiler by the Centennial rule, or by any other rule, the first problem is to find the heating surface of the proposed boiler, which consists of all those parts of the shell, heads and tubes, which are exposed to the direct action of the fire or of the hot gases that come from it. Considering these parts in detail:

The part of the shell which is exposed to the fire, extends from the back head to the rear surface of the front wall of the setting; and it is limited at the top by the side walls, where they extend inward and touch the boiler. To obtain this area with precision, one should know the exact length of the shell exposed to the fire, and also the height of the side walls of the furnace; but in practice it is usually assumed that the part of the shell exposed to the fire is equal to one-half of the area of the entire shell (omitting the dry-sheet, of course, in case there is one.) This simplifies the calculation very much, and yet the results correspond quite closely to the actual facts. The front head of the boiler is of little or no value as a heating surface, because, if the boiler is well designed, the temperature in the uptake does not greatly exceed the temperature of the boiler itself, and hence there cannot be any considerable absorption of heat through the front head. This head should therefore be entirely omitted in the calculation. The back head is more directly exposed to the heat of the furnace, and allowance is sometimes made for such heating surface as it contains. In general practice no allowance is made for the

back head, however, because the only part of its surface which is available, in any case, consists in the small segments which lie between the tubes, together with a narrow strip around the flange and just under the back arch. While there might be some heating value to these parts when the boiler is new, it is not considered that they are worth taking into account after it has been used for a time, because scale is likely to form upon them; and even though the scale were not heavy enough to produce over-heating, and consequent injury to the boiler, it might still be quite sufficient to destroy the efficiency of the head, when considered as a heating surface. The tubes are of a great importance in computing the heating surface, because their combined area is very large. Some engineers base the calculated heating surface upon the internal diameter of the tubes, while others use the external diameter, and still others the average of the two. General practice has been to take the external diameter.

This point being settled, the next step is to find the area of the tube, by multiplying its outside circumference by its length—the circumference being found by multiplying the outside diameter by 3.1416. (The diameter of the tube is usually given in *inches;* so that if the surface is required in *square feet*, it is necessary to divide the given diameter (or circumference) of the tube by 12, so that it may be expressed as a fraction of of a foot.) The area of one tube being thus found, it is multiplied by the *number* of tubes, and thus finds the united surface of all of them. This, when added to the heating surface afforded by the shell, gives the entire surface upon which the rated horse-power of the boiler is to be based.

Rule for Finding the actual Horse Power:—First find the heating surface (in square feet) as described above. Multiply this by 2½, which will give the number of pounds of steam that the boiler can produce per hour. The evaporation thus found is then to be divided by the weight of steam required by the engine that is to be used, per horse-power per hour, and the quotient is the actual horse-power that may reasonably be expected when the proposed boiler and engine are run together under favorable conditions.

### TABLE OF CENTIGRADE AND FAHRENHEIT DEGREES.

| Deg.<br>C. | Deg.<br>- P. | Deg.<br>G. | Deg.<br>P. | Deg.<br>C. | Deg.<br>F. | Dog.<br>C. | Deg.  | Deg.<br>C. | Deg.<br>P. |
|------------|--------------|------------|------------|------------|------------|------------|-------|------------|------------|
| 0          | 32.          | 21         | 69.8       | 41         | 105,8      | 61         | 141.8 | 81         | 177.8      |
| 1          | 33.8         | 22         | 71.6       | 42         | 107.6      | 62         | 143.6 | 82         | 179.6      |
| 2          | 35.6         | 23         | 73.4       | 43         | 109.4      | 63         | 145.4 | 83         | 181.4      |
| 3          | 37.4         | 24         | 75.2       | 44         | 111.2      | 64         | 147.2 | 84         | 183.2      |
| 4          | 39.2         | 25         | 77.        | 45         | 113.       | 65         | 149.  | 85         | 185.       |
| 5          | 41.          | 26         | 78.8       | 46         | 114.8      | 66         | 150.8 | 86         | 186.8      |
| 6          | 42.8         | 27         | 80.6       | 47         | 116.6      | 67         | 152.6 | 87         | 188.6      |
| 7          | 44.6         | 28         | 82.4       | 48         | 118.4      | 68         | 154.4 | 88         | 190.4      |
| 8          | 46.4         | 29         | 84.2       | 49         | 120.2      | 69         | 156.2 | 89         | 192.2      |
| 9          | 48.2         | 30         | 86.        | 50         | 122.       | 70         | 158.  | 90         | 194.       |
| 10         | 50.          | 31         | 87.8       | 51         | 123.8      | 71         | 159,8 | 91         | 195.8      |
| 11         | 51.8         | 32         | 89.6       | 52         | 125.6      | 72         | 161.6 | 92         | 197.6      |
| 12         | 53.6         | 33         | 91.4       | 53         | 127.4      | 73         | 163.4 | 93         | 199.4      |
| 13         | 55.4         | 34         | 93.2       | 54         | 129.2      | 74         | 165.2 | 94         | 201,2      |
| 14         | 57.2         | 35         | 95.        | 55         | 131.       | 75         | 167.  | 95         | 203.       |
| 15         | 59.          | 36         | 96.8       | 56         | 132.8      | 76         | 168.8 | 96         | 204.8      |
| 16         | 60.8         | 37         | 98.6       | 57         | 134.6      | 77         | 170.6 | 97         | 206.6      |
| 17         | 62.6         | 38         | 100.4      | 58         | 136.4      | 78         | 172.4 | 98         | 208.4      |
| 18         | 64.4         | 39         | 102.2      | 59         | 138.2      | 79         | 174.2 | 99         | 210.2      |
| 19         | 66.2         | 40         | 104.       | 60         | 140.       | 80         | 176.  | 100        | 212.       |
| 20         | 68.          |            | 1          |            |            |            |       |            |            |

### RELATIONS OF THERMOMETRIC SCALES.

- 9 Fahrenheit degrees 5 Centigrade degrees 4 Reaumur degrees.
- 1 degree Fahrenheit 0.5556 degree Centigrade.
- 1 degree Centigrade 1.8 degree Fahrenheit.

### TO CONVERT

|              |    |             | -0 00.   | . , |    |        |    |    |     |     |       |  |
|--------------|----|-------------|----------|-----|----|--------|----|----|-----|-----|-------|--|
| Fahrenheit   | to | Centigrade, |          |     |    |        |    |    |     |     | y 9.* |  |
| , <b>*</b> * | "  | Reaumur,    | ** 3     | 32. | •  | • ••   | 4. | •• | **  | **  | 9.*   |  |
| Centigrade   | to | Fahrenheit, | multiply | bу  | 9, | divide | bу | 5, | and | add | 32.*  |  |
| ••           | •• | Reaumur,    | ••       | ••  | 4, | **     | •• | 5. |     |     |       |  |
| Reaumur      | to | Fahrenheit, | ••       | • • | 9, | **     | ** | 4, | and | add | 32.*  |  |
| **           | "  | Centigrade, | **       | ••  | 5. | **     | •• | 4. |     |     |       |  |

Example-212° Fahrenheit to Centigrade,  $212-32-180\times 5 \div 9 - 100^\circ$  Centigrade.

<sup>\*</sup> If the temperature is below freezing, where above formulae read "add 32" becomes subtract from 32, and where formulae read "subtract 32," becomes subtract from 32

### COMPARATIVE FUEL VALUE OF COAL, OIL AND GAS.

I pound of coal will evaporate 10 pounds of water at 212 degrees atmospheric pressure.

I pound of oil will evaporate 16 pounds of water at 212 degrees atmospheric pressure.

I gallon crude lima oil 60° F., weighs 6.8945 lbs.

I pound of natural gas will evaporate 20 pounds of water at 212 degrees atmospheric pressure.

1 pound of coal will equal 11.225 cubic feet natural gas. 2000 pounds (1 ton) will equal 22,450 cubic feet natural gas.

1 pound of oil will equal 18 cubic feet natural gas.

1 barrel (42 gallons) will equal 5,310 cubic feet natural gas.

1.125 cubic feet natural gas will evaporate 1 pound of water.

I cubic foot natural gas will equal 860 B. H. U.

1000 cubic feet natural gas will equal 860,000 B. H. U.

1 ton of coal will equal 19,307,000 B. H. U.

1 barrel of oil will equal 4,566,600 B. H. U.

At an evaporation of 5½ lbs. water to one pound coal feed water at 60° F., 5.46 lbs. of coal will develop one horse-power and 3.03 barrels (42 gallons each) of oil equals one ton of coal for steam making purposes under boilers.

### 1 LB. BITUMINOUS COAL OXIDIZED WITH PERFECT EFFICIENCY=

15,000 heat units.

0.98 lb. anthracite coal oxidized.

2.1 lbs. dry wood oxidized.

15 cu. ft. illuminating gas.

4.37 K. W. hours (theoretical value.)

5.81 H. P. hours (theoretical value.)

11,590,000 ft. lbs. (theoretical value.)

13.1 lbs. of water evaporated at 212° F.

### 1 LB. WATER EVAPORATED AT 212° F.=

0.33 K. W. hour.

124,200 kg, m.

0.44 H. P. hour.

1,219,000 joulés.

1 148 heat units.

887,800 ft, lbs.

0.076 lb. of coal oxidized,

### F. W. CLARKE'S LIST OF THE ATOMIC WEIGHTS OF THE 74 KNOWN AND RECOGNIZED ELEMENTS.

### JANUARY 3RD, 1896.

| Chemical<br>Symbol. |            | Reckoning<br>Hydrogen<br>as One. | Reckoning<br>Oxygen<br>as Sixteen. |
|---------------------|------------|----------------------------------|------------------------------------|
| <b>A</b> I          | Aluminum   | 26.91                            | 27.11                              |
| Sb                  | Antimony   | 119.52                           | 120.43                             |
| Α                   | Argon      | 7                                | 7.                                 |
| As                  | Arsenic    | 74.52                            | 75.09                              |
| Ba                  | Barium     | 136.40                           | 137.43                             |
| Bi                  | Bismuth    | 206.54                           | 208.1I                             |
| В                   | Boron      | 10.86                            | 10.95                              |
| Br                  | Bromine    | 79.34                            | 79.95                              |
| Cd                  | Cadmium    | 111.08                           | 111.93                             |
| Cs                  | Caesium    | 131.89                           | 132 89                             |
| Ca                  | Calcium    | 39.78                            | 40.08                              |
| C                   | Carbon     | 11.92                            | 12.01                              |
| Ce l                | Cerium.    | 139.1                            | 140.2                              |
| Cl                  | Chlorine   | 35.18                            | 35.45                              |
| Cr                  | Chromium   | 51.74                            | 52.14                              |
| Co                  | Cobalt     | 58.49                            | 58.93                              |
|                     | Columbium  | 93.3                             | 94.0                               |
| Cu                  | Copper     | 63.12                            | 63.60                              |
| Er                  | Erbium     | 165.0                            | 166.3                              |
| F                   | Fluorine   | 18.8g                            | 19.3                               |
|                     | Gadolinium | 154.9                            | 156.1                              |
| Ga                  | Gallium    | 68.5                             | 69.0                               |
| Ge                  | Germaninm  | 71.75                            | 72.3                               |
| Gl or Be            | Glucinum   | 9.01                             | 9.08                               |
| \u                  | Gold       | 195.74                           | 197.24                             |
| He                  | Helium     | 737                              | , ,                                |
| н                   | Hydrogen   | 1.00                             | 1.008                              |
| n                   | Indium     | 112.8                            | 113.7                              |
| [ <b>.</b> ]        | Iodine     | 125.89                           | 126.85                             |
| r                   | Iridium    | 191.66                           | 193.12                             |
| 7е                  | Iron       | 55.60                            | 56.02                              |
| .a                  | Lanthanum  | 137.6                            | 138.6                              |
| Рb                  | Lead       | 205.36                           | 206.92                             |
| .i                  | Lithium    | 6.97                             | 7.03                               |

F. W. CLARKE'S LIST OF THE ATOMIC WEIGHTS.—Continued.

| Chemical<br>Symbol. |              | Reckoning<br>Hydrogen<br>as One. | Reckoning<br>Oxygen<br>as Sixteen. |
|---------------------|--------------|----------------------------------|------------------------------------|
| Mg                  | Magnesium    | 24. I I                          | 24.29                              |
| Mn                  | Manganese    | 54.57                            | 54.99                              |
| Hg                  | Mercury      | 198.5                            | 200.00                             |
| Mo                  | Molybdenum   | 95.26                            | 95.98                              |
|                     | Neodymium    | 139.4                            | 140.5                              |
| Ni                  | Nickel       | 58.24                            | 58.69                              |
| N                   | Nitrogen     | 13.94                            | 14.04                              |
| Os                  | Osmium       | 189.55                           | 190.99                             |
| O                   | Oxygen       | 15.879                           | 16,00                              |
| Pd                  | Palladium    | 105.56                           | 106,36                             |
| P                   | Phosphorus   | 30.79                            | 31.02                              |
| Pt                  | Platinum     | 193.41                           | 194.89                             |
| K                   | Potassium    | 38.82                            | 39.11                              |
|                     | Praseodymium | 142.4                            | 143.5                              |
| Rh                  | Rhodium      | 102.23                           | 103.01                             |
| Rb                  | Rubidium     | 84.78                            | 85.43                              |
| Ru                  | Ruthenium    | 100.91                           | 101.68                             |
| Sm                  | Samarium     | 148.9                            | 150.0                              |
| Sc                  | Scandium     | 43.7                             | 44.0                               |
| Si                  | Silicon      | 28.18                            | 28.40                              |
| Se                  | Selenium     | 78.4                             | 79.0                               |
| Ag                  | Silver       | 107.11                           | 107.92                             |
| Na                  | Sodium       | 22.88                            | 23.05                              |
| Sr                  | Strontium    | 86.95                            | 87.61                              |
| S                   | Sulphur      | 31.83                            | 32.07                              |
| Ta                  | Tantalum     | 181.2                            | 182.6                              |
| Te                  | Tellurium.   | 126.1?                           | 127.0?                             |
| Tr                  | Terbium      | 158.8                            | 160.0                              |
| Tl                  | Thallium     | 202,60                           | 204.15                             |
| Th                  | Thorium      | 230.87                           | 232.63                             |
| Tm                  | Thulium      | 169.4                            | 170.7                              |
| Sn                  | Tin          | 118.15                           | 119.05                             |
| Ti                  | Titanium     | 47.79                            | 48,15                              |
| W                   | Tungsten     | 183.44                           | 184.84                             |
| U                   | Uranium      | 237.77                           | 239.59                             |
| <b>V.</b>           | Vanadium     | 50.99                            | 51.38                              |
| Yb                  | Ytterbium    | 171.7                            | 173.0                              |
| <b>Y</b>            | Yttrium      | 88.28                            | 88.95                              |
| <b>Z</b> n          | Zinc         | 64.91                            | 65.41                              |
| Zr                  | Zirconium    | 89.9                             | 90.6                               |
|                     |              |                                  |                                    |

# TABLES OF THE WORLD'S MONEY UNITS.

Quoted from Monetary Systems of the World by M. L. Muhleman, Deputy Assistant Treasurer of the United States.

The value of silver coins is based upon the coining value of an ounce of silver in the United States, \$1.292b. Weights are given in grammes, values in United States coin, fineness in thousandths.

Countries with ? have now (1896) a depreciated paper basis; gold being at a premium. The Gramme = 15.432 grains.

## SINGLE-GOLD STANDARD COUNTRIES.

|                         |                    |                  |                  | (A    | SUBSIL                     | SUBSIDIARY SILVER COIN | 7ER COIN.                                                    |                             |
|-------------------------|--------------------|------------------|------------------|-------|----------------------------|------------------------|--------------------------------------------------------------|-----------------------------|
| Country.                | Unit.              | VALUE.           | <b>W</b> ківнт.  | NKSS. | Principal<br>Coin.         | Weight.                | Fine-                                                        | Equivalent at Coining Rate. |
| Great Britain.          | Pound<br>Mark      | \$1.863%<br>.238 | 7.988            | .916% | Shilling<br>Mark           | 5.655<br>5.555         | 28.<br>206.                                                  | \$0.217<br>.208             |
| Norway                  | Krone              | .268             | 8#.              | 006   | Krone                      | 7.<br>.c.              | 800                                                          | .249                        |
| Denmark                 | Krone              | 203              | 33%              |       | . Krone                    | 10,10                  | 8                                                            | .174                        |
| Turkey &                | Piaster<br>Wilreis | <u>\$</u> .      | 270.             | 916%  | 5-piasters                 | 6.014                  | 86.5<br>86.5<br>86.5<br>86.5<br>86.5<br>86.5<br>86.5<br>86.5 | 86                          |
| Brazil                  | Milreis            | 98.5             | 3965             |       | Milreis                    | 12.75                  | .917                                                         | <b>3</b> .                  |
| Canada<br>Newfoundland. | Dollar             | 1.014            | No gold<br>1.664 | 2     | Half-dollar<br>Half-dollar | 11.782                 | 88                                                           | <b>£</b>                    |
| Egypt                   | Pound              | 4.943            | 8.5              |       | 5-piasters                 | r-è                    | .888.<br>2.888.                                              | <u> </u>                    |
| CIMIO                   | Fego               | ģ                | Ş                |       | Lexo                       | 70.                    | Š                                                            | 5                           |

Australasia, Cape Colony, the British West Indies have the British standard, and in Canada the pound sterling is also a legal tender.

SINGLE-SILVER STANDARD COUNTRIES.

| Convers               | FINIT     | EQUIV-  | WeiGur | FINE- | SUBSIDIARY. PIECES - TO UNIT. | IARY:<br>FO UNIT. | GOLD PIRCK == TO UNIT. | SCK == TO | Unit.       |
|-----------------------|-----------|---------|--------|-------|-------------------------------|-------------------|------------------------|-----------|-------------|
|                       |           | RATE.   |        | NESS. | Weight.                       | Fine-<br>ness.    | Weight.                | Fine-     | Value.      |
| Russia?               | Rouble    | \$0.748 | 19.996 | 006   | 17.99                         | .500              | 1.29                   | 006       | \$0.772     |
| Mexico                | Peso      | 1.016   | 27.073 | 7206. | 27.073                        | 7206.             | 1.692                  | .875      | <b>28</b> : |
| Central America       | Peso      | .985    | ঞ্জ    | 006   | ક્ષ                           | .835              | 1.613                  | 006       | 386.        |
| Colombia 2            | Peso      | .985    | শ্ব    | 006:  | ક્ષ                           | .835              | 1.613                  | 006       | 365         |
| Bolivia               | Boliviano | .935    | ង់     | 006.  | 83                            | 006:              | 1.613                  | 006:      | 3965        |
| Peru                  | Sol       | .985    | 83     | 006   | ક્ષ                           | 006:              | 1.613                  | 006       | 3962        |
| Ecuador 2             | Sucre     | .935    | শ্ব    | .006  | 83.                           | 006:              | 1.613                  | 006       | 396:        |
| India.                | Rupee     | 4       | 11.664 | .916% | 11.664                        | .9163             | 11.664*                | .9163     | 7.109       |
| Japan                 | Yen       | 1.008   | 26.956 | 006.  | 35.                           | 908.              | 1.667                  | 006       | 766.        |
| China                 | Tselt     | 1.364   | 36.56  | :     |                               | :                 | _ <b>X</b>             | No coins. |             |
| Hong-Kong and Straits | Dollar    | 1.008   | 26.956 | 006   | 25.                           | 908.              | Z                      | No coins. |             |
| Cochin-China          | Piaster   | 1.018   | 27.215 | 006:  | 27.215                        | 006.              | Z                      | No coins. |             |

† Shanghai tael. The new dollar coinage has not yet been rated.

\* Mohur = to 15 rupees.

### DOUBLE STANDARD COUNTRIES.

| 18. 18. 18. 18. 18. 18. 18. 18. 18. 18. |
|-----------------------------------------|
|-----------------------------------------|

### RATES OF POSTAGE.—(United States.)

POSTAL CARDS.-1 cent each, go without further charge to all parts of the United States and Canada. Cards for foreign countries (within the Postal Union), 2 cents each. Postal cards are unmailable with any writing or printing on the address side, except the direction, or with anything pasted upon or attached thereto.

LETTERS.—To all parts of the United States, Canada and Mexico, 2 cents each ounce or fraction thereof.

LOCAL, or "DROP" LETTERS,—That is, for the city or town where deposited, 2 cents where the carrier system is adopted, and 1 cent where there is no carrier system.

FIRST CLASS:-Letters and written matter, whether sealed or unsealed, and all other matter sealed, nailed, sewed, or fastened in any manner so that it cannot be easily examined, 2 cents for each ounce or fraction thereof.

SECOND CLASS: Only for publishers and news agents, 1 cent per pound.

NEWSPAPERS and Periodicals (regular publications) can be mailed by the public at the rate of 1 cent for each 4 ounces or fraction thereof.

Third Class:—Printed matter, in unsealed wrappers only (all matter enclosed in notched envelopes must pay letter rates), I cent for each 2 ounces or fraction thereof, which must be fully prepaid. This includes books, circulars, etc.

FOURTH CLASS:-All mailable matter not included in the three preceding classes which is so prepared for mailing as to be easily withdrawn from the wrapper and examined, I cent per ounce or fraction thereof. Limit of weight, 4 pounds. Full prepayment compulsory.

### MONEY ORDERS.

On and after July 1, 1894, the fees for the issue of Domestic Money orders will be as follows:

| For orders not exceeding \$2.50,            |            |      |   | - | 3 ( | cents. |
|---------------------------------------------|------------|------|---|---|-----|--------|
| For orders exceeding \$ 2.50 and not excee  | ding 🛊 5   | .00, | - |   | 5   | **     |
| For orders exceeding \$ 5.00 and not excee  | ding 🕏 10  | .00, | - | - | 8   | 44     |
| For orders exceeding \$10.00 and not excee  | ding 🕏 20  | .00. |   | - | 10  | 44     |
| For orders exceeding \$20 00 and not excee  |            |      |   | - | 12  | 44     |
| For orders exceeding \$30.00 and not excee  | ding 8 40  | .00. |   |   | 15  | 44     |
| For orders exceeding \$40.00 and not excee  | ding \$ 50 | .00. |   | - | 18  | 66     |
| For orders exceeding \$50.00 and not exceed | ding \$ 60 | 00.  |   | - | 20  | 44     |
| For orders exceeding \$60.00 and not excee  |            |      |   |   | 25  | **     |
| For orders exceeding \$75.00 and not excee  | ding \$100 | .00. |   | - | 30  | **     |

### REGISTRATION.

All kinds of postal matter, except second-class matter, can be registered at the rate of eight cents for each package in addition to the regular rates of postage, to be fully prepaid by stamps. Each package must bear the name and address of the sender, and a receipt will be returned from the person to whom addressed. Mail matter can be registered at all post-offices in the United States.

The Post Office Department or its revenue is not by law liable for the loss of any registered mail matter.

### FOREIGN POSTAGE.

The rates for letters are for the half ounce or fraction thereof and

To Great Britain and Ireland, France, Spain, all parts of Germany, including Austria, Denmark, Switzerland, Italy, Russia, Norway, Sweden, Turkey (European and Asiatic), Egypt, Australia (all parts), letters, 5 cents; newspapers, 1 cents.

China or Japan:—Letters via San Francisco, Brindisi or England, 5 cents; newspapers, 1 cent for two ounces,
British India, Italian Mail:—Letters, 5 cents; newspapers, 1 cent

two ounces.

# VALUES OF FOREIGN COINS.

Corv or Department Carcular No. 51,

### UNITED STATES TREASURY DEPARTMENT,

### BUREAU OF THE MINT.

Hon. John G. Carlisle, Secretary of the Treasury.

Sin:—In pursuance of the provisions of section 25 of the act of August 28, 1894, I present in the following table an estimate of the values of the standard coins of the nations of the world: Washington, D. C., April 1, 1896.

### VALUE OF FOREIGN COINS.-CONTINUED

| COUNTRY.                        | STANDARD.                          | MONETARY UNIT.                      | Value in terms<br>of U. S gold<br>dollart. | COINS                                                                                                                                   |
|---------------------------------|------------------------------------|-------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Chile.                          | Gold and silver                    | Gold and silver Peso                | .912                                       | Gold: escudo (\$1.824), doubloon (\$4.561,)<br>and condor (\$9.123). Silver: peco and                                                   |
| China                           | Silver                             | Shanghai.<br>Haikwan.<br>Tael       | 927.<br>218.                               | divisions.                                                                                                                              |
| Colombia                        | Silver                             | Peso                                | :<br>:8:3                                  | Gold: condor (%9,647) and double-condor.                                                                                                |
| Cuba.<br>Denmark<br>Ecuador     | Gold and silver<br>Gold<br>Silver. | Peso.<br>Crown<br>Sucre.            | 926<br>882<br>883<br>893                   | Silver: peso. Gold: doubloon (\$5.017.) Silver: peso. Gold: 10 and 20 crowns. Gold: condor (\$9.647) and double condor.                 |
| Egypt                           |                                    |                                     | 4.943                                      | Silver: sucre and divisions.<br>Gold: pound (100 piasters), 5, 10, 20 and 50                                                            |
| FinlandFrance                   |                                    | Gold Mark<br>Gold and silver Franc  | .193                                       | phasters. Silver: 1, 2, 5, 10 and 20 phasters. Gold: 20 marks (\$3.859), 10 marks (\$1.93.) Gold: 5, 10, 20, 50 and 100 francs. Silver: |
| German Empire                   | Gold                               | Mark<br>Pound sterling              | .238<br>4.866½                             | 5 frames.<br>Gold: 5, 10 and 20 marks.<br>Gold: sovereign (pound sterling) and ½                                                        |
| Greece                          |                                    | Gold and silver Drachma             | .193                                       | Sovereign.<br>Gold: 5, 10, 20, 50 and 100 drachmas. Sil-                                                                                |
| Haiti<br>India                  |                                    | Gold and silver Gourde Silver Rupee | .23.<br>45.                                | ver; 5 drachmas.<br>Silver: gourde.<br>Gold: mohur (\$7,105.) Silver: rupee and                                                         |
| Italy Gold and silver Lira      | Gold and silver                    | Lira                                | .193                                       | Gold: 5, 10, 20, 50 and 100 lire. Silver: 5                                                                                             |
| JapanGoldand silver* Yen Silver | Goldand silver*                    | Yen { Gold                          | .997<br>.532                               | Gold: 1, 2, 5, 10 and 20 yen.<br>Silver: yen.                                                                                           |

\*Gold is the nominal standard. Silver the actual standard. The value of units of silver-standard countries varies with the price of silver.

### VALUE OF FOREIGN COINS.-CONTINUED.

| COUNTRY.                                | STANDARD.                                  | MONETARY UNIT.                                       | Value in terms<br>of U. S. Gold<br>dollars. | COINS                                                                                                                                                                                             |
|-----------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Liberia.<br>Mexico                      | Gold Silver                                | Dollar.<br>Dollar.                                   | 1,000                                       | Gold: dollar (90.983), 21%, 5, 10 and 20 dol-                                                                                                                                                     |
| Netherlands<br>Newfoundland.<br>Norway. | Gold and silver<br>Gold<br>Gold<br>Silver. | Florin.<br>Dollar.<br>Crown.<br>Kran.                |                                             | lart. Silver: dollar (orpeao) and division.<br>Gold: 10 florins. Silver: ½, 1 and 2½ florins<br>Gold: 2 dollars (22,027.)<br>Gold: 10 and 20 cowns.<br>Gold: 13, 1 and 2 tomans (33,409.) Silver: |
| Peru                                    | SilverGold                                 | Sol                                                  | 1.080                                       | 14, 15, 1, 2 and 5 krans.<br>Silver: sol and divisions.<br>Gold: 1, 2, 5 and 10 milreis.                                                                                                          |
| Russia                                  | Silver                                     | Ruble                                                | 277.                                        | Gold; imperial (\$7.718), and ½ imperial † (\$3.86.)                                                                                                                                              |
| Spain.<br>Sweden.<br>Switzerland.       | Gold and silver<br>Gold<br>Gold and silver | Gold and silver Peseta Crown. Gold and silver Franc. | 8<br>8<br>8<br>8<br>8<br>8<br>8             | Silver: % % and I ruble. Gold: 25 yeestas. Silver: 5 pesetas. Gold: 10 and 20 erowns. Gold: 5, 10, 20, 50 and 100 france. Silver:                                                                 |
| Tripoli.<br>Turkey<br>Venezuela         | Silver.<br>Gold and silver                 | Mahbub of 20 piasters.<br>Plaster.<br>Bolivar        | 445.<br>140.<br>193                         | 5 france.<br>Gold: 25, 50 100, 250 and 500 pissters.<br>Golfrars.<br>5 bolivars.                                                                                                                  |

† Coined since January 1st, 1886. Old half-imperial—88,986. ‡ Silver the nominal standard. Paper the actual currency, the depreciation of which is measured by the gold standard. R. E. PRESTON, Director of the Mint. Respectfully,

### TREASURY DEPARTMENT,

The foregoing estimate by the Director of the Mint, of values of foreign coins. I hereby proclaim to be the values of such coins in the terms of the money of account of the United States, to be followed in estimating the value of all foreign merchandise exported to the United States on or after April 1, 1886, expressed in any such metallic currencies. Washington, D. C., April 1, 1896. OFFICE OF THE SECRETARY.

J. G. CARLISLE, Secretary of the Treasury of the United States.



## DESCRIPTIVE TABLE OF UNITED STATES GOLD COINS IN USE DECEMBER, 1896.

| DENOMINATION.  |   |   | WRIGHT.     | PINENESS. | DIAMETER. | THICKNESS. |
|----------------|---|---|-------------|-----------|-----------|------------|
| Double-eagle,  | - | - | 516 grains. | .900      | 1.35 in.  | .077 in.   |
| Eagle          | - | - | 258 "       | .900      | 1.05 "    | .060 ''    |
| Half-eagle,    | - | - | 129 ''      | .900      | .85 "     | .046 ''    |
| Quarter-eagle, | - | - | 641/2 "     | .900      | .75 ''    | .034 "     |

Deduced from the above table, the value of gold of standard fineness (.900) is \$18.60\frac{1}{2}, and if fine or pure, \$20.67\frac{2}{10} per ounce.

The coinage of gold dollars and three-dollar pieces was suspended

by the act of September 26th, 1890.

According to the law of January 18, 1837, the weight of the silver dollar was fixed at 412½ grains, and the fineness at 900-thousandths; leaving the weight of pure silver 3711/4 grains. This changed the ratio to 15.988 (or nearly 16) to 1, and the coining value of silver at  $1.29_{\pm 0.0}^{2.9}$ .

The Mint Act of 1873 discontinued the coinage of the dollars by

omitting it from the list of authorized coins.

In 1878 (February 28th), Congress passed, over the veto of President Hayes, a law again authorizing its coinage, but in a limited amount Hayes, a law again authorizing its coinage, but in a limited amount only; not less than \$2,000,000 nor more than \$4,000,000 worth of silver was to be purchased monthly and coined into the dollars of 1837; the coin was made a legal tender for all debts, public and private, unless otherwise stipulated—excepting for the redemption of gold certificates of the Government. The seigniorage accrued to the Treasury.

Under the Mint Act of 1873, the change to the present (December, 1896) subsidiary silver coinage took place. The description of the pieces

follows:

| DENOMINATION    |   | w'gı | HT IN GRAINS. | PURE SILVER. | DIAMETER.                             | THICKNESS. |
|-----------------|---|------|---------------|--------------|---------------------------------------|------------|
| Half-dollar,    | - | -    | 192.9         | 173.61       | 1 <del>1</del> in.                    | .057 in.   |
| Quarter-dollar, |   | -    | 96.45         | 86.805       | 19 ··                                 | .045 "     |
| Dime,           | • | •    | 38.58         | 34.725       | $\frac{1}{20}^{9}$ " $\frac{7}{10}$ " | .032 ''    |

Fineness of all 900-thousandths.

The half-dollar now weighs exactly 121/2 grammes, two being equal to the five-franc piece of France, in weight and fineness.

The present minor coins are:

Five-cent nickel of 77.16 grains, 75 per cent. copper, 25 per cent. nickel, specific gravity 8.940, 93 weighing a pound Avoirdupois.

One cent. bronze, of 48 grains, 95 per cent. copper, 5 per cent. tin and zinc, specific gravity 8.782, 145 weighing a pound Avoirdupois.

Legal tender to the amount of twenty-five cents, redeemable at any sub-treasury in sums of \$20.00 or more, furnished free of transportation charge from the mint at Philadelphia, and obtainable in exchange at any sub-treasury.

The dimensions are: Five-cent pieces: diameter, 4ths of an inch; thickness, .062 of an inch. One-cent piece: diameter, 34 of an inch;

thickness, .043 of an inch.

### MINOR COINAGE, 1793-1894.

| DENOMINATION.        |    |   |   |   | PERIOD     | AMOUNT.           |
|----------------------|----|---|---|---|------------|-------------------|
| Half-cents.          |    | - | _ | - | 1793-1857. | \$ 39.926.11      |
| Copper cents,        | -  | - | - | - | 1793-1857. | 1.562.887.44      |
| Copper-nickel cents, | -  | - | - | - | 1857-1864. | 2,007,720,00      |
| Bronze cents,        | -  | - | - | - | 1864-1894, | 7,463,898.26      |
| Two-cent pieces, -   | -  | - | - | - | 1864-1873, | 912,020.00        |
| Three-cent nickels,  | -  | - | - | - | 1865-1889, | 941,349.48        |
| Five-cent nickels, - | -  | - | - | - | 1866-1894, | 13,663,730.50     |
| Tota                 | ٦, | - | - | - |            | - \$26,481,531.79 |

# TABLE OF COMPARATIVE VALUES PER POUND AND PER KILOGRAMME.

Reckoning the French Franc at 1940 cents, the German Mark at  $23_1^{81}_{00}$  cents, and the English Shilling at 241/3 cents, and the Kilogramme as equivalent to 2.20462 pounds Avoirdupois.

|                   | 2381 Lillo. | 2,222210 | 2.314802 | 2.407304 | 2.400086 | 2.502578 | 2.684170 | 2.777763 | 2.870355 | 2.962947 | 3.055530 | 3.148131 | 3.240723 | 3.333315 | 3.425907 | 3.518499 | 3.611091 | 3.703684 | 3.796276 | 3.888868 | 3,981460 | 4.074052 | 4.166644 | 4.259236 |
|-------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1                 | 193 Allo.   | 2.741496 | 2.855725 | 2.069054 | 3.084182 | 3.198412 | 3.312641 | 3.426870 | 3.541099 | 3.655328 | 3.769557 | 3.883786 | 3.998015 | 4.112244 | 4.226473 | 4.340702 | 4.454931 | 4.569160 | 4.683389 | 4.797618 | 4.911847 | 5.026076 | 5.140205 | 5.254534 |
| Per Lb.           | Farthings.  | 3.3424   | 1.3150   | 3.2876   | 1.2602   | 3.2328   | 1.2054   | 3.1780   | 1.1506   | 3.1232   | 1.0958   | 3.0684   | 1.0410   | 3.0136   | 0.9862   | 2.9588   | 0.9314   | 2.9040   | 0.8766   | 2.8492   | 0.8218   | 2.7944   | 0.7670   | 2.7396   |
| Shillings Per Lb. | d.          | 1.       | ó        | ö        | -        | ï        | 6        | 5.       | ÷        | ÷        | 4        | 4        | ņ        | 'n       | 6.       |          | 7        |          | ∞:       | ∞:       | 6        | 6        | .01      | 10.      |
| 63                | %           | 0        | -        | -        | -        | 1        | -        | -        | 1        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | -        | 1        | -        | _        |
| Cents             | Per lb.     | 24       | 25       | 56       | 27       | 28.      | 56       | 30       | 31       | 32       | 33       | 34       | 35       | 36       | 37       | 38       | 39       | 9        | 41       | 45       | 43       | 4        | 4        | 9        |
| Marks per Kile    | .2381       | .092592  | .185184  | .277776  | .370368  | .462960  | .555552  | .648144  | .740736  | .833328  | .925921  | 1.018513 | 1.111105 | 1.203697 | 1.296289 | 1.388881 | 1.481473 | 1.574065 | 1.666657 | 1.759249 | 1.851842 | 1.944434 | 2.037026 | 2.129618 |
| France per Kilo.  | 193         | .114229  | .228458  | .342687  | 916954.  | .571145  | .685374  | .799603  | .913832  | 1.028061 | 1.142290 | 1.256519 | 1.370748 | 1.484977 | 1.599206 | 1.713435 | 1.827664 | 1.941893 | 2.056122 | 2.170351 | 2.284580 | 2.398809 | 2.513038 | 2.627267 |
| Per Lb.           | Farthings.  | 1.9726   | 3.9452   | 8/16.1   | 3.8904   | 1.8630   | 3.8356   | 1.8082   | 3.7808   | 1.7534   | 3.7200   | 9869.1   | 3.6712   | 1.6438   | 3.6164   | 1.5890   | 3.5016   | 1.5342   | 3.5068   | 1.4794   | 3.4520   | 1.4246   | 3.3972   | 1.3698   |
| Shillings P       | d.          | o.       | o.       | -        |          | 6        | 6        | ÷        |          | 4        | 4        | Ņ        | 'n       | •        | •        | 7.       | ·        | xi o     | ×        | 6        | 6        | 0        | 0        | 11.      |
| 8                 | 8.          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Cents             | Per Lb.     | -        | 8        | r        | 4        | 'n       | 9        |          | ×        | 6        | 0        | Ξ        | 12       | 13       | 14       |          | 91       | Ľ1       | 81       | 61       | 20       | 21       | 52       | 23       |

TABLE OF COMPARATIVE VALUES PER POUND AND PER KILOGRAMME.—Continued.

| Cents   | _        | Shillings Per Lb. | Per Lb.    | Francs per Kilo. | Marks per Kilo. | Cents    | æ  | Shillings Per Lb. | er Ib.     | Francs to Kilo | Marks per Kilo. |
|---------|----------|-------------------|------------|------------------|-----------------|----------|----|-------------------|------------|----------------|-----------------|
| Per Lb. | *        | d.                | Parthings. | .193             | .2381           | per Ib.  | %  | d.                | Parthings. | .193           |                 |
| 47      | -        | 11.               | 0.7122     | 5.368763         | 4.351828        | 74       | ٠, | 0,                | 1.9726     | 8.452946       | 6.851815        |
| 8       | -        | 11.               | 2.6848     | 5.482992         | 4.444420        | 75       | 'n | 0.                | 3.9452     | 8.567175       | 6.944407        |
| 49      | 8        | o<br>_            | 0.6574     | 5.597221         | 4.537012        | 94       | 'n | 1                 | 1.9178     | 8.681404       | 7.036999        |
| 50      | 7        | ó                 | 2.6310     | 5.711450         | 4.629605        | 77       | m  | T.                | 3.8904     | 8.795633       | 7.129591        |
| 51      | 8        | -                 | 0.6026     | 5.825679         | 4.722197        | 28       | n  | 5                 | 1.8630     | 8.909862       | 7.222183        |
| 22      | 4        | -                 | 2.5752     | 5.939908         | 4.814789        | 64       | 'n | ;                 | 3.8356     | 9.024091       | 7.314775        |
| 53      | 4        | 4                 | 0.5478     | 6.054137         | 4.907381        | 80       | n  | ÷                 | 1.8082     | 9.138320       | 7.407368        |
| 54      | 67       | 4                 | 2.5204     | 6.168366         | 4.999973        | 81       | 'n | ŕ                 | 3.7808     | 9.252549       | 7.499960        |
| 55      | 6        | 3                 | 0.4930     | 6.282595         | 5.092565        | 82       | 'n | 4.                | 1.7534     | 9.366778       | 7.592552        |
| 29      | N        | ÷                 | 2.4656     | 6.396824         | 5.185157        | 83       | m  | 4                 | 3.7260     | 9.481007       | 7.685144        |
| 57      | 8        | 4                 | 0.4382     | 6.511053         | 5.277749        | 84       | n  | 'n                | 1.6986     | 9.595236       | 7.777736        |
| 28      | 8        | 4                 | 2.4108     | 6.625282         | 5.370341        | %        | 'n | iń                | 3.6712     | 9.709465       | 7.870328        |
| 59      | 8        | ķ                 | 0.3834     | 6.739511         | 5.462933        | 98       | n  | 9                 | 1.6438     | 9.823694       | 7.962920        |
| 8       | 8        | γ.                | 2.3560     | 6.853740         | 5.555526        | 87       | 'n | .9                | 3.6164     | 9.937923       | 8.055512        |
| 19      | 8        | •                 | 0.3286     | 696296.9         | 5.648118        | 8        | n  | 7.                | 1.5890     | 10.052152      | 8.148104        |
| 62      | 6        | 9.                | 2.3012     | 7.082198         | 5.740710        | %        | n  | 7.                | 3.5616     | 10.166381      | 8.240696        |
| 63      | 4        | 7                 | 0.2738     | 7.196427         | 5.833302        | 8        | n  | 00                | 1.5342     | 10.280610      | 8.333289        |
| 64      | <b>8</b> |                   | 2.2464     | 7.310656         | 5.925894        | 16       | n  | ó                 | 3.5068     | 10.394839      | 8.425881        |
| 65      | 64       | ∞:                | 0.2190     | 7.424885         | 6.018486        | 92       | ĸ  | 6                 | 1.4794     | 10.509068      | 8.518473        |
| 99      | 8        | ∞<br>—            | 2.1916     | 7.539114         | 6.111078        | 93       | 3  | .6                | 3.4520     | 10.623297      | 8.611065        |
| 29      | 7        | 6                 | 0.1642     | 7.653343         | 6.203670        | 46       | n  | 10,               | 1.4246     | 10.737526      | 8.703657        |
| 89      | 64       | 6                 | 2.1368     | 7.767572         | 6.296262        | 95       | m  | 10.               | 3.3972     | 10.851756      | 8.796249        |
| 69      | 61       | .0                | 0.1094     | 7.881801         | 6.388854        | 96       | 'n | 11.               | 1.3698     | 10.965985      | 8.888841        |
| 2       | 8        | .0                | 2.0821     | 7.996030         | 6.481447        | - 26     | e  | 11.               | 3.3424     | 11.080214      | 8.981433        |
| 71      | 61       | ==                | 0.0547     | 8.110259         | 6.574039        | <u>%</u> | 4  | 0                 | 1.3150     | 11.194443      | 9.074025        |
| 72      | (1       | 11.               | 2.0274     | 8.224488         | 6.666631        | 66       | 4  | o,                | 3.2876     | 11.308672      | 9.166617        |
| 73      | n        | ö                 | 0.0000     | 8.338717         | 6.759223        | 8        | 4  | 4.                | 1.2602     | 11.422901      | 9.259210        |

TABLE ILLUSTRATING THE MONETARY SYSTEM OF THE UNITED STATES.-MAY 1896. AUTHORITY .-- MONETARY SYSTEM OF THE WORLD BY M. L. MUHLEMAN.

| Minon<br>Corn.                |                                                        | 48 grains. 98 p.c. cop'r. 5 per ct. tin and zinc. Needs of the country. | o ce pr.                                                    | Not to ex-<br>ceed 25<br>cents.                     | To the amount of 25 cents for all dues.                               |                                                                      | In " lawful money" at the Treasury in sums of \$20 or more.                                       |                                         |
|-------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|
| SUBSTDIARY<br>STLVER<br>COIN. | 3×6.8 gr. to<br>the dollar.<br>990-1000<br>14.963 to 1 | Needs of<br>the country.                                                | 50 cents.<br>25 cents.<br>10 cents.                         | Not to ex-<br>ceed \$10.                            | To the amount of \$10 for all.                                        | For minor coin.                                                      | In " lawful money" at the treasury in sums of \$20 or any multiple.                               |                                         |
| NATIONAL<br>BANK<br>NOTES.    |                                                        | Volume of<br>United<br>States bonds<br>and their                        | 61,000<br>100<br>100<br>20<br>30<br>30<br>30<br>30          | Not a tender.                                       | For all dues<br>except du-<br>ties on im-<br>ports and<br>interest on | For silter<br>and minor<br>coin.                                     | In " lawful<br>money" at<br>the treasury<br>or bank of<br>issue.                                  |                                         |
| TREASURY<br>NOTES OF<br>1896. |                                                        | Silver bullion<br>and dollars<br>of 1896 in<br>Treasury.                | \$1,040<br>100<br>50<br>20<br>10<br>10<br>1                 | Unlimited<br>unless other-<br>wise con-<br>tracted. | For all dues.                                                         | For all kinds<br>of moneys<br>except gold<br>certificates.           | In coin at the Treasury or any Sub-Treasury                                                       | 1                                       |
| CURRENCY<br>CERTIFICATES.     |                                                        | The same<br>as United<br>States<br>Notes.                               | <b>\$10,000</b>                                             | Not a tender.                                       | Not re-                                                               | For<br>United<br>States<br>notes.                                    | In United<br>States<br>notes at<br>sub-fress-<br>ury where                                        | on only.                                |
| UNITED<br>STATES<br>NOTES.    |                                                        | \$346,641,016                                                           | \$1,000<br>500<br>100<br>50<br>50<br>10<br>10<br>10         | Unlimited unless otherwise con-                     | For all dues.*                                                        | For all kinds<br>of moneys<br>except gold<br>certificates.           | In coin at<br>sub-treasury<br>in New York<br>and San<br>Francisco in<br>sums of \$60<br>and over, | * Putter on Imports by regulation only. |
| SILVER<br>CER-<br>TIME ATER.  |                                                        | Silver<br>dollars in<br>use.                                            | \$1000<br>560<br>100<br>26<br>26<br>10<br>10                | Not a<br>tender.                                    | For<br>all public<br>dues.                                            | For dol-<br>lars or<br>smaller<br>coin at the<br>Treasury.           | In silver<br>dollars,                                                                             | Putter on In                            |
| Silver<br>Dollars.            | 412.5 grains.<br>900-1000<br>15.988 to 1.              | Requirement to redeem Treasury                                          | <b>∓</b>                                                    | Unlimited<br>unless other-<br>wise con-<br>tracted. | For all dues.                                                         | For silver<br>certificates<br>or smaller<br>coin at the<br>Treasury. | And may be deposited for sliver certificates.                                                     |                                         |
| GOLD<br>CERTIFICATES.         |                                                        | Issue suspended so long as free gold in Treasury is below \$100.        | \$10,000<br>5,000<br>1,000<br>500<br>100<br>20<br>500<br>20 | Not a tender.                                       | For all public dues.                                                  | For gold coin at the Treasury, or any other moneys.                  | In gold coin at the Treasury.                                                                     | 1                                       |
| GOLD COIN.                    | 25.8 grains<br>to the dollar.<br>900-1000              | Unlimited;<br>coinage<br>free.                                          | \$20<br>10<br>8 5<br>8 1-2                                  | Unlimited.                                          | For all dues.                                                         | For certifi-<br>cates under<br>the limita-<br>tion.                  |                                                                                                   | 1                                       |
|                               | Weight,                                                | Limit of Issue,                                                         | Denominations                                               | Legal Tender,.                                      | Receivable,                                                           | Kichangeable,                                                        | Redeemable, .                                                                                     |                                         |

### FINENESS OF COINS.

- U. S. Silver Dollar weighs 4121/2 grains Troy, 70 pure silver. U. S. Gold 25 % y pure gold.
- The pure gold in a U. S. Gold Dollar weighs 23.21997 grains
- Troy.
- The English "Unit" is the "Sovereign" or pound sterling, weighing 113.0016 grains Troy, of pure gold. The ratio of the gold of one U. S. Dollar to the gold in one Sovereign is as 1 is to 4.866.
- The Unit of value in Germany is the grains of gold in a Mark, namely 5.53134 grains.
- The Unit of value in France is the grains of gold in a Franc, namely 4.48035 grains.
- \$5 gold coin of U. S., contains 116.09985 grains of pure gold.

```
£ 1 Eng. Sovereign, )
                              113.00160
  (20 shillings,).... (
                               110.62680
The German 20 mark piece "
The French 20 franc piece "
                                89,607
The Spanish 25 pesetas p'ce "
                                                         "
                               112.0060
```

### U. S. VALUES OF MARKS AND FRANCS.

```
I Mark = 23.81 cents. x = 23.62 cents.
                      x 3, = 71.43
             "
                                      "
                      x 4, = 95.24
             "
                      x 5, = 119.05
                      x 6 = 142.86
             46
                      x 7, = 166.67
                                      ٠.
             ..
                      x 8 = 190.48
            ..
                                      "
                      x 9, = 214:29
                                      "
 1 Franc = 19.3
                      x 2, = 38.6
                      x_{3} =
                               57.9
            "
                                      "
                      x 4, = 77.2
             "
                                      "
                      x 5, = 96.5
            ٠.
                      x 6 = 115.8
                                      "
            "
                                      "
                      x 7, = 135.1
             "
                                      66
                      x 8, = 154.4
             "
                                      "
                      x 9, = 173.7
```

# CUSTOM DUTIES ON ALUMINUM IN VARIOUS COUNTRIES, IN MAY. 1896.

### UNITED STATES.

Custom Laws of 1894: Aluminum in crude form; alloys of any kind in which aluminum is the component material of chief value, ten cents per lb.

Manufactured articles or wares, composed wholly or in part of aluminum, and whether partly or wholly manufactured, thirty-five per centum, ad valorem.

### FRANCE.

General Customs Tariff, approved January 11th, 1892. SECTION 203. Aluminum, General Tariff, 200 francs per 100 kilograms; Minimum Tariff, 150 francs per 100 kilograms.

SECTION 205. Ferro aluminum, containing 10 per cent. of aluminum or less, General Tariff, 4.75 francs per 100 kilograms; Minimum Tariff, 3.50 francs per 100 kilograms.

Ferro-aluminum, containing more than 10 per cent. of aluminum and less than 20 per cent. of aluminum, General Tariff, 9.00 francs per 100 kilograms; Minimum Tariff, 7.50 francs per 100 kilograms.

SECTION 221. Aluminum bronze, crude, containing more than 20 per cent. of aluminum, General Tariff, 13 francs per 100 kilograms; Minimum Tariff, 13 francs per 100 kilograms.

SECTION 496. Imitation jewelry of aluminum, General Tariff, 250 francs per 100 kilograms; Minimum Tariff, 200 francs per 100 kilograms.

All additional taxes on importations of aluminum are included in the above rates.

The word "general" used in the French law, covers the tariff duty applicable to all States or Countries generally, i. e., those states or countries that have not entered into a special arrangement or treaty—in the form of a reciprocity treaty—with France. The word "minimum" applies to the duty to be assessed on articles imported from countries that have entered into a special treaty with France. It is the lowest duty.

The following states are entitled to the minimum tariff, in virtue of treaties, conventions or laws made between them and France:

Argentine Republic, Austria Hungary, Belgium, Bolivia, Bulgaria, Columbia, Denmark, Dominican Republic, Germany, Great Britain, Greece, Luxembourg, (Grand Duchy), Madagascar, Morocco, Montenegro, Netherlands, Ottoman Empire, Paraguay, Persia, Roumania, Russia, Servia, South African Republic, Spain, Sweden and Norway, Switzerland, UNITED STATES, Uruguay.

### GERMANY.

Law of July 15th, 1879. Ingots and unworked aluminum metal, duty free.

SECTION 19 (b). Aluminum, rolled, 9 marks per 100 kilos. SECTION 19 (d-e). Aluminum wares, 60 marks per 100 kilos.

Law of May 18th, 1895.

SECTION 20 (b-2), Fine, fancy and small wares composed wholly or in part of aluminum, 200 marks per 100 kilos; conventional duty, 175 marks per 100 kilos.

The conventional duties of Germany are applicable to goods proceeding from treaty countries, and by virtue of a decision of the Bundesrath in 1892, the following countries are declared to be treaty countries:

Argentine Republic, Chile, Belgium, Costa Rica, Denmark, Dominican Republic, Ecuador, France, Greece, Great Britain, Guatemala, Hawaii, Honduras, Italy, Corea, Liberia, Madagascar, Morocco, Mexico, Netherlands, Austria Hungary, Paraguay, Persia, Salvador, Sweden and Norway, Switzerland, Servia, South African Republic, Turkey, UNITED STATES, Zanzibar.

# HOLLAND.

Tariff of August, 1862, as last modified.

ARTICLE 2. Aluminum is admitted free.

ARTICLE 52. Manufactures of aluminum, 5 per cent. ad valorem.

### BELGIUM.

ARTICLE 37. Aluminum when unworked, free.

ARTICLE 33. Articles of aluminum, 10 per cent. ad valorem.

Decision of May 30th, 1891. Ferro aluminum, 50 centimes per 100 kilos.

# INDEX.

|                                                           | PAGE.    |                                           | PAGE.    |
|-----------------------------------------------------------|----------|-------------------------------------------|----------|
| Acid:                                                     |          | ALLOYS:                                   |          |
| Acetic, melting point                                     | 13       | Aluminum—classes of                       | 70       |
| Acetic, specific gravity                                  | 42       | Aluminum and copper                       | 88-89    |
| Acetic, weight per cubic foot                             | 42       | Aluminum, copper and nickel               | 91       |
| Benzoic, specific gravity                                 | 42       | Aluminum-customs duties                   |          |
| Benzoic, weight per cubic foot                            | 42<br>10 | Aluminum-tensile strength                 | 54       |
| Carbolic                                                  | 11       | Bismuth                                   | 86<br>86 |
| CarbonicCarbonic, melting point                           | 13       | For coinage                               | 85       |
|                                                           | 42.      | Copper-nickel                             | 84       |
| Citric, specific gravity<br>Citric, weight per cubic foot | 42       | Copper, summary<br>Copper-tin, properties | 82       |
| Fluoric, specific gravity                                 | 42       | Copper-zinc, properties                   | 78       |
| Fluoric, weight per cubic foot.                           | 42       | Copper-tin-zinc                           | 82       |
| Hydrochloric, (see hydrochloric                           | 74       | General remarks upon                      | 67       |
| acid'                                                     |          | Gold, strength                            | 56       |
| Hyponitric, melting point                                 | 13       | Lead                                      | 86       |
| Margaric, melting point                                   | 13       | Lead-tin-bismuth, melting point           | 13       |
| Nitric, (see nitric acid)                                 |          | Structural purposes                       | 54-56    |
| Nitrous, specific gravity                                 | 42       | Tin                                       | 85       |
| Nitrous, weight per cubic foot                            | 42       | Tin-lead, melting point                   | 14       |
| Organic                                                   | 10       | Zinc                                      | 86       |
| Phosphoric, specific gravity                              | 42       | Zinc-tin, co-efficient of linear          |          |
| Phosphoric, weight per cu. ft                             | 42       | expansion                                 | 24       |
| Stearic, melting point                                    | 13       | ALUMINUM:                                 |          |
| Sulphuric, (see sulphuric acid.)                          |          | Alloyed with other metals, gen'l,         | . 70     |
| Sulphurous, melting point                                 | 13       | Alloyed with antimony                     | 75       |
| Acknowledgments:                                          |          | Alloyed with arsenic.                     | 73       |
| Editorial                                                 | 4        | Alloyed with bismuth                      | 74       |
|                                                           | •        | Alloyed with cadmium                      | 74       |
| Air:                                                      |          | Alloyed with chromium                     | 74<br>71 |
| Specific gravity                                          | 42       | Alloyed with cobalt                       | 72       |
| Weight per cubic foot                                     | 42       | Alloyed with copper                       | 87-91    |
| ALCOHOL:                                                  |          | Alloyed with gold                         | 68       |
| Specific gravity                                          | 38, 42   | Alloyed with indium                       | 75       |
| Weight per cubic foot                                     | 42       | Alloyed with iridium                      | 69       |
|                                                           |          | Alloyed with magnesium                    | 74       |
| ALKALI MRTALS:                                            |          | Alloyed with manganese                    | 74       |
| As impurities in aluminum                                 | 73       | Alloyed with mercury                      | 74       |
| Alloying:                                                 |          | Alloyed with molybdenum                   | 73       |
|                                                           |          | Alloyed with nickel                       | 71-72    |
| Desirability of—aluminum                                  | 29       | Alloyed with platinum                     | 69<br>73 |
| Effect of—aluminum, general                               | 5        | Alloyed with tellurium                    | 70-71    |
| statement<br>Effect of—on hardness of alum-               | ð        | Alloyed with titanium                     | 70-71    |
| inum                                                      | 29       | Alloyed with tungsten                     | 71       |
| Effect of-on sonorousness of                              | 20       | Alloyed with vanadium                     | 71<br>75 |
| aluminum                                                  | 31       | Alloyed with uranium                      | 74       |
| Precautions taken by The Pitts-                           | ***      | Alloyed with zinc                         | 75       |
| burgh Reduction Co., in                                   | 6        | Alloying, general statement on            | •••      |
| Process of-by The Pittsburgh                              |          | effect                                    | 5        |
| Reduction Co                                              | 6        | Alloying, desirability of                 | 29       |
|                                                           |          |                                           |          |

| Aluminum:                                           | PAGR.              | PAGE.                                                           |
|-----------------------------------------------------|--------------------|-----------------------------------------------------------------|
| Alloys, classes                                     | 70                 | Lubricant for tooling 64                                        |
| Alloys, electrical conductivity                     | 28                 | Malleability 5, 30-31                                           |
| Alloys, strength                                    | 54, 55             |                                                                 |
| Alloys, strength in bearing                         | 55                 | Melting 57 Melting point 13, 14, 17, 19, 57                     |
| Alloys, strength in shear                           | 55                 | Non-magnetic quality                                            |
| And the alkali metals                               | 73                 | And phosphorus                                                  |
|                                                     | 134                | Plates on the "Defender." 47                                    |
| Angles, (table)                                     | 133                |                                                                 |
| Angles, to find thickness of                        | 5 <del>9-6</del> 0 |                                                                 |
| Annealing                                           |                    |                                                                 |
| Atomic volume                                       | 17 200             | Polish, "Acme."                                                 |
| Atomic weight                                       | 17, 228            | Position in electro-chemical                                    |
| Bearing metal                                       | 91                 | series                                                          |
| Brass                                               | 78                 | Properties of—and other metals 10-99                            |
| In brass, general effect                            | 79-80              | Purity of commercial                                            |
| Bronze, (see Aluminum Bronze                        |                    | Purity, The Pittsburgh Reduc-                                   |
| Bronze powder, (see Aluminum                        |                    | tion Co.'s guarantee 5                                          |
| Bronze Powder)                                      |                    | And the rare and costly metals 68                               |
| Burnishing                                          | 64                 | Reduction of area 45                                            |
| Casting                                             | 58-59              | Resistance of pure wire, (table) 122                            |
| Casting, in metal moulds                            | 59                 | Relation of—to copper, (table) 105                              |
| Combined with the gaseous ele-                      |                    | Relation in weight to steel 133                                 |
| ments                                               | 72                 | Relation of—sheet to tin plates.                                |
| Combined with the metaloids                         | 72                 | (table) 106                                                     |
| Combining number                                    | 21                 | Riveted joints, efficiency of 55                                |
| In compression                                      | 55                 | Rivets, shearing and bearing                                    |
| Conductivity, electrical, experi-                   | -                  | value, (table)                                                  |
| ments on                                            | 26-27              | Rivets and burrs 131                                            |
| Conductivity, electrical 17-25-2                    |                    | Rivets, strength 55                                             |
| Conductivity, thermal                               | 17, 25             | Rolling                                                         |
| Custom duties—in various coun-                      |                    | Safety factor for 54-55                                         |
| tries                                               | 949-944            | Scratch brushing and sand                                       |
| Dipping and frosting                                | 64                 | blasting                                                        |
|                                                     | 25                 | Sections, rolled 60                                             |
| Discoverer, name of                                 |                    | Selling price, etc                                              |
| Discovery, date of                                  |                    | Shrinkage 57                                                    |
| Drop forgings                                       |                    | Soldering 65-66                                                 |
| Ductility, relative<br>Ductility, general statement | 5                  | Solubility. 10                                                  |
|                                                     | 29                 | Sonorousness                                                    |
| Elasticity                                          |                    | Specific gravity 17, 25, 32, 35-36                              |
| Elastic limit, (tension)                            |                    | Specific gravity, alloys                                        |
| Elastic limit, (compression)                        |                    | Supplies heart 17 10 90 91 95                                   |
| Elasticity, moduli                                  | 26-28              | Specific heat                                                   |
| Electrical properties                               | 20-20<br>65        |                                                                 |
| Engraving upon                                      |                    |                                                                 |
| Expansion, co-efficient of linear                   |                    | In steel, percentage of 91-95, 97-98<br>Steel shapes, rolled 60 |
| Expansion, linear                                   |                    |                                                                 |
| Ferro —, manufacture of                             | 98                 | In steel, excessive use of                                      |
| Fuel for melting                                    | 59                 | In steel, effect, (cut)                                         |
| Galvanic action upon                                | 11-12              | Strength 45-46                                                  |
| Grades of commercial                                |                    | Strength of pure                                                |
| Hardness, relative                                  |                    | Strength, transverse                                            |
| Heat, effect upon                                   | 57                 | Strength, ultimate, tension and                                 |
| Impurities in                                       | 28-29              | compression                                                     |
| Ingots, shape                                       | 2-3                | Temperature, effect upon 56                                     |
| And iron alloyed                                    | · 91               |                                                                 |
| In iron, cast                                       | 99                 | Tooling 64                                                      |
| To iron, relative weights                           | 44                 | Tubing, iron pipe sizes, (table) 125                            |
| In iron, wrought                                    | 99                 | Tubing, pressures on                                            |
| Latent heat of fusion                               | 19                 | Tubing, in stock, (table) 124                                   |
| And lead                                            | 75                 | Unit weights 32-33, 36                                          |
|                                                     |                    |                                                                 |

| ALUMINUM:                                                     | I AUB.                   | Analysis:                                                     | PAGE.              |
|---------------------------------------------------------------|--------------------------|---------------------------------------------------------------|--------------------|
| Non-volatilization                                            | 13                       | Aluminum, No. 1 grade, ap-                                    |                    |
| Weight, general statement                                     | 6                        | proximate                                                     | 7                  |
| Weight, and relative selling                                  | 94 95                    | Aluminum, No. 2 grade, ap-                                    | _                  |
| price to other metals (table),<br>Weight, compared to other   | 34-35                    | Copper by in its sine allows                                  | 7                  |
| metals                                                        | 33                       | Copper by—in its zinc alloys<br>Copper by—in its tin alloys   | 78<br>82           |
| Weight, per cu. ft                                            | 46                       | Of metals                                                     | 80<br>80           |
|                                                               | 44                       | Of spiegel                                                    | 94                 |
| Weight, per sq. ft                                            | 107-111                  | Angles:                                                       |                    |
| Weight, ounces per sq. ft.,                                   | 105                      | Aluminum, to find thickness of                                | 133                |
| (table)<br>Weight, flat rolled bars, (table)                  | 105                      | Aluminum, weight, (table)                                     | 134                |
| Weight, sheet and bar, (table),                               | 32 104                   | Annealing:                                                    | 107                |
| Weight, bars, (table)                                         | 118-119                  |                                                               | #0 00              |
| Weight of—sheet B. & S. gauge,                                |                          | Aluminum                                                      | 5 <del>9-6</del> 0 |
| (table)                                                       | 103                      | ANTIMONY:                                                     |                    |
| weight of sheet per sq. ft. M.                                | 100                      | Alloyed with aluminum                                         | 75                 |
| M. gauge                                                      | 102                      | Atomic volume                                                 | 17                 |
| Weight per ft.—tubing, (table),<br>Weight of—and copper wire, | 120-121                  | Atomic weight                                                 | 17, 228            |
| (table)                                                       | 120                      | Combining number 1                                            | 7 95 99            |
| (table)                                                       |                          | Conductivity, thermal                                         | 17, 25             |
| (table)                                                       | 121                      | Expansion, co-efficient of linear                             | 17, 23             |
| Welding of                                                    | 65                       | Melting point 14-1                                            | 5, 17, 25          |
| Working, general statements                                   | 5                        | Properties, physical                                          | 17                 |
| concerning                                                    | J                        | Position in electro-chemical                                  |                    |
| ALUMINIZED ZINC:                                              |                          | series<br>Selling price, etc                                  | 12<br>35           |
| Method of manufacture and use                                 | 75-77                    | Specific gravity 17. 9                                        | 25, 35-36          |
| Precautions in the use of                                     | 76–77                    | Specine neat                                                  | 1. ZZ. ZD          |
| ALUMINUM BRONZE:                                              |                          | Unit weights                                                  | 36                 |
| Casting of                                                    | 88-90                    | Arka, Arkas:                                                  |                    |
| Conductivity, relative electrical                             | 28                       | Bars, flat rolled, (table)                                    | 144-149            |
| Custom duties on                                              |                          | Bars, square and round, (table)                               | 118-119            |
| Elastic limit                                                 | 87<br>89 <del>-9</del> 0 | And circumference of circles,                                 | 150 104            |
| Melting point                                                 | 88                       | (tables)<br>Formulæ concerning                                | 100-164            |
| Properties, general                                           | 87-89                    | Reduction of—in aluminum                                      | 45                 |
| Soldering                                                     | 90-91                    | Reduction of-in nickel alumi-                                 | 707                |
| Specific gravity                                              | 36                       | num                                                           | 47                 |
| Strength, tensile                                             | 87                       | Of wire in mils., (table)                                     | 120                |
| Weight, kg. per sq. m., (table),<br>Unit weights              | 36                       | Argon:                                                        |                    |
| ALUMINUM BRONZE POWDER:                                       | 00                       | Atomic weight                                                 | 228                |
|                                                               | •                        | Arsenic:                                                      |                    |
| Adulteration                                                  | 9<br>9–13                | Alloyed with aluminum                                         | 73                 |
| Manufacture<br>Quality of metal used                          |                          | Atomic volume                                                 | 17                 |
| Uses                                                          | ÿ                        | Atomic weight                                                 | 17, 228            |
| Varnish to be used with                                       | ğ                        | Combining number                                              | 21                 |
| ALUMINUM LEAF:                                                |                          | Conductivity, electrical<br>Expansion, co-efficient of linear | 17, 28             |
| Manufacture and uses                                          | 31                       | Position in electro-chemical                                  | 17, 23             |
|                                                               | . 01                     | series                                                        | 12                 |
| Ammonia, Ammonium:                                            |                          | Properties, physical                                          | 17                 |
| Solutions, action on aluminum,                                | 28 49                    | Specific gravity                                              | 17, 36             |
| Specific gravity<br>Weight per cubic foot                     | 38, 42<br>42             | Specific heat                                                 | 7, 20, 21          |
| " organ por outro root                                        | 74                       | Unit weights                                                  | 36                 |
|                                                               |                          |                                                               |                    |

|                                                                      | PAGE.            |                                                                          | AGK.             |
|----------------------------------------------------------------------|------------------|--------------------------------------------------------------------------|------------------|
| ATOMIC:                                                              |                  | BIRMINGHAM GAUGE:                                                        |                  |
| Composition of copper-tin alloys<br>Composition of copper-zinc al'ys | 82<br>78         | Thickness in inches, (table)                                             | 10               |
| Volume of aluminum                                                   | 17               | BISMUTH:                                                                 |                  |
| Volume of metals                                                     | 17-18            | Atomic volume                                                            | 1                |
| Weight of aluminum                                                   | 17, 228          | Atomic weight                                                            | 7, 22            |
| Weight of metals                                                     | 17-18            | Alloyed with aluminumAlloys                                              | 8                |
| Avoirdupois:                                                         | 20 220           | Combining number                                                         | 9                |
| Weight, (table)                                                      | 210              | Conductivity, electrical 17. 2                                           | 25. 2            |
| BARIUM:                                                              | 210              | Conductivity, thermal                                                    | 17. 2            |
|                                                                      | 17 000           | Expansion, co-efficient of linear 1 Latent heat of fusion                | 17, 2            |
| Atomic volume<br>Atomic weight                                       | 17, 228          | Melting point 14. 1                                                      | $17.\hat{2}$     |
| Conductivity, thermal                                                | 17               | Physical properties                                                      | ī                |
| Cost                                                                 | 68               | Position in electro-chemical series                                      | 1.               |
| Melting point<br>Position in electro-chemical                        | 17               | Shrinkage.                                                               | 5                |
| series                                                               | 12               | l Specific gravity 17 %                                                  | )5 Y             |
| Properties, physical                                                 | 17               | Specific heat                                                            | 2, 2             |
| Specific gravity                                                     | 17, 36           | Unit weights                                                             | 3                |
| Specific heatUnit weights                                            | 17, 20<br>36     | Boilers:                                                                 |                  |
| BAR. BARS:                                                           | 30               | Coal, consumption of                                                     | 22               |
| Areas of flat rolled, (table) 1                                      | 44 140           | Evaporation in                                                           | 22               |
| Areas of square and round,                                           | 44-149           | Feed water requirement                                                   | 22<br>1-99       |
| (table)1                                                             | 18-119           | ĺ , , , , , , , , , , , , , , , , , , ,                                  | . 44             |
| Casting ingot                                                        | 2                | Boron:                                                                   |                  |
| Circumferences of round, (table) 1<br>Weight of aluminum, (table) 1  | 18-119<br>18-110 | Atomic weight<br>Position in electro-chemical                            | 22               |
| Weight of flat rolled—of alumi-                                      |                  | series                                                                   | 1:               |
| num, (table) 1                                                       | 12-117           | Specific gravity                                                         | 3                |
| Weight of sheet and alumi-                                           | 00 104           | Unit weights                                                             | 31               |
| num, (table)                                                         | 32, 104          | Brass:                                                                   |                  |
| (table)                                                              | 104              | Aluminum-method of manu-                                                 |                  |
| Weight of sheet and—steel,                                           |                  | facture                                                                  | 7                |
| (table)                                                              | 104              | Composition                                                              | 77               |
| Braring:                                                             |                  | Conductivity, relative electrical<br>Elasticity, moduli                  | 22<br>51         |
| Shearing and—value of alumi-<br>num rivets, (table)                  | 50.50            | Expansion, co-efficient of linear                                        | 2                |
| Value of aluminum in                                                 | 52-53<br>55      | Selling price, etc                                                       | 3                |
| BEARING METAL:                                                       | · · ·            | Shrinkage                                                                | . 50<br>         |
| Aluminum                                                             | 91               | Specific heat                                                            | 10, 22<br>20, 22 |
| Composition of                                                       | 86               | Tensile strength                                                         | 45               |
| Belgium:                                                             |                  | Trade names                                                              | 7                |
| Custom duties on aluminum                                            | 244              | Ultimate resistance, compress'n<br>Unit weights                          | 50<br>36         |
| Monetary unit                                                        |                  | Uses                                                                     | 80               |
| Benzine:                                                             | j                | Weight, factor of increase—and                                           |                  |
| Specific gravity                                                     | 42               | aluminum                                                                 | 3, 34<br>44      |
| Use of—in casting aluminum                                           | 59               | Weight per cu. ft                                                        | 33               |
| Weight per cu. ft                                                    | 42               | Weight, kg. per sq. m., (table), 107<br>Weight of—sheet, (table) 44, 103 | -111             |
| BILLETS:                                                             |                  | Weight of—sheet, (table) 44, 103                                         | , 101            |
| Size of rectangular<br>Size of square                                | 2                | Weight of -sheet & bar, (table),<br>Weight of -wire, (table)             | 104              |
| Dire of square                                                       | 2                | " or Part of _ wite ' (minic)                                            | 121              |

|                                                 | PAGE.           | -                                         | PAGE.             |
|-------------------------------------------------|-----------------|-------------------------------------------|-------------------|
| Brick:                                          |                 | Burnishing:                               |                   |
| Tensile strengthUltimate resistance to compres- | 50              | Of aluminum                               | 64                |
| sion                                            | 50              | Burrs:                                    | 4.14              |
| Weight, (average)                               | 40              | Aluminum—carried in stock                 | 131               |
| BRITANNIA METAL:                                |                 | CADMIUM:                                  |                   |
| Composition                                     | 85              | Alloyed with aluminum                     | 74                |
| Selling price, etc                              | 35<br>35        | Atomic volume                             | 17                |
| Specific gravity                                |                 | Atomic weight                             | 17, 228           |
| BRITISH IMPERIAL STANDARD GAUG                  |                 | Combining number                          | 21<br>17, 28      |
| Thickness in inches, (table)                    | 101             | Conductivity, electrical                  | 25                |
| Bromink:                                        |                 | Elasticity, moduli                        | 48, 51            |
| Action on aluminum                              | 10              | Expansion, co-efficient of linear         | 17, 23            |
| Atomic weight                                   | 228             | Latent heat of fusion                     | 19                |
| Melting point                                   | 13              | Melting point                             | 14, 17            |
| Position in electro-chemical series             | 12              | series                                    | 12                |
| Specific gravity                                | 38, 42          | Properties                                | 17, 69            |
| Weight per cu. ft                               | 42              | Specific gravity                          | 17, 37            |
| Bronze:                                         |                 | Specific heat 1                           | .7, <i>2</i> 0–21 |
| Aluminum—castings                               | 90              | Unit weights                              | 37                |
| Aluminum, manufacture                           | 89-90           | CAESIUM:                                  |                   |
| Aluminum—soldering                              | 90-91           | Atomic volume                             | 17                |
| (Bailey's) expansion, co-effi-                  |                 | Atomic weight                             | 17, 228           |
| cient of linear                                 | 24<br>81        | Melting point                             | 17                |
| Composition of                                  | $\frac{61}{37}$ | series                                    | 12                |
| Gun—unit weights                                | 37              | Properties                                | 17, 70            |
| Manganese-composition of                        | 84              | Specific gravity                          | 17, 36            |
| Manganese—weight in kg. per                     |                 | Unit weights                              | 36                |
| sq. m., (table)                                 | 107-111         | CALCIUM:                                  |                   |
| Melting point                                   | 14<br>51        | Atomic volume                             | 17                |
| Nickel                                          | 91              | Atomic weight                             | 17, 228           |
| Phosphor—composition of                         | 84              | Conductivity, electrical                  | 17, 28            |
| Phosphor—moduli of elasticity                   | 51              | Cost                                      | 68                |
| Selling price, etc                              | 35<br>84        | Hardness, relative                        | 30                |
| Silicon—composition of                          |                 | Melting pointPosition in electro-chemical | 14, 17            |
| Tensile strength                                | 46, 48          | series                                    | 12                |
| Tobin—specific gravity                          | 37              | Physical properties                       | 17                |
| Tobin—unit weights                              | 37              | Specific gravity                          | 17, 36            |
| Trade name, definition                          | 9               | Specific heat                             | 17, 20<br>36      |
| Unit weights<br>Uses                            | 36<br>81        | Unit weights                              | 30                |
| Weight per cu. ft                               | 33, 46          | CAPACITY:                                 |                   |
| Weight, relative—and nickel                     | -               | Metric conversion table, 190, 192,        | 202, 203          |
| aluminum                                        | 34              | Of pumping cylinder                       | 221, 222          |
| Brown & Sharpe's Gauge:                         |                 | CARBON:                                   |                   |
| Thickness in inches and milli-                  |                 | Atomic weight                             | 228               |
| metres, (table)                                 | 101             | Dioxide                                   | 11                |
| Weight of sheet metals                          | 103             | Disulphide, specific gravity              | 38                |
| Weight of wire, (table)                         | 121             | Impurity in aluminum                      | 29                |
| Buffing:                                        |                 | Position in electro-chemical              | 44                |
| Of aluminum                                     | 65              | series                                    | 12                |
|                                                 |                 | 1                                         |                   |

|                                                        | PAGE.              |                                                               | PAGR.            |
|--------------------------------------------------------|--------------------|---------------------------------------------------------------|------------------|
| Casting, Castings:                                     |                    | COAL:                                                         |                  |
| Aluminum in metal moulds<br>Method of making—of alumi- | 59                 | Anthracite, average weight<br>Bituminous, average weight      |                  |
| num and alloys                                         | 58-59              | Consumption of—by boilers<br>Equivalent of one lb. perfectly  | 220              |
| Aluminum bronzeIngots, size, (cut)                     | 88, 90<br>2        | oxidized                                                      | 227              |
| Safety factor for—of aluminum                          | 55                 | Fuel value                                                    | 227              |
| Strength of aluminum and                               |                    | COBALT:                                                       |                  |
| alloys in                                              | 55                 | Alloyed with aluminum                                         | 72               |
| Shrinkage                                              | 57                 | Atomic volume                                                 | 17               |
| CAUSTIC ALKALIES:                                      |                    | Atomic weight                                                 | 17, 22           |
| Action on aluminum                                     | 10                 | Conductivity, electrical<br>Expansion, co-efficient of linear | 17, 25<br>17, 25 |
| CRMENT:                                                |                    | Hardness, relative                                            | 30               |
| Tensile strength                                       | 50<br>40           | Melting point                                                 | 17               |
| Average weight                                         | 40                 | Physical properties                                           | 17               |
| CENTIGRADE DEGREES:                                    | 000                | Position in electro-chemical series                           | 12               |
| Relation to Fahrenheit<br>Relation to Reaumur          | 226<br>226         | Specific heat 1                                               | 7, 20, 22        |
| ('ERICM:                                               | •                  | Specific gravity                                              | 17, 36           |
| Atomic volume                                          | 17                 | Unit weights                                                  | 36               |
| Atomic weight                                          | 17, 228            | CO-KFFICIENT:                                                 |                  |
| Cast                                                   | 68                 | Of linear expansion                                           | 23-24            |
| Melting point                                          | 17                 | Linear expansion of aluminum 1<br>Linear expansion of other   | 7, 23-24         |
| Physical properties<br>Specific gravity                | $\frac{17}{17,36}$ | metals                                                        | 17-18            |
| Specific heat                                          | 17, 20             | Coins:                                                        |                  |
| Unit weights                                           | 36                 | Alloys for                                                    | 86               |
| CHLORINE:                                              |                    | Fineness                                                      | 241              |
| Action on aluminum                                     | 10                 | U. S. gold, (table)<br>U. S. minor, (table)                   | 237<br>237       |
| Atomic weight                                          | 228                | U. S. silver, (table)                                         | 237              |
| Position in electro-chemical                           | 40                 | Value of foreign—in gold, (table)                             |                  |
| series                                                 | 12                 | (table)                                                       | 234-236          |
| CHROMIUM:                                              |                    | Coke:                                                         |                  |
| Alloyed with aluminum                                  | 71                 | Average weight                                                | 40               |
| Atomic weight                                          | 17, 228            | Color:                                                        |                  |
| Atomic volume                                          | 17<br>17           | Copper-tin alloys                                             | 82               |
| Physical properties                                    | 17                 | Copper-tin zinc alloys<br>Copper-zinc alloys                  | 82<br>78         |
| Position in electro-chemical                           | • • •              | COLUMBIUM. (See Niobium):                                     | ,,               |
| seriesSpecific heat                                    | $\frac{12}{17,20}$ | Atomic weight                                                 | 228              |
| Specific gravity                                       | 17, 36             | Specific gravity                                              | 36               |
| Unit weights                                           | 36                 | Unit weights                                                  | 36               |
| CINNABAR:                                              |                    | COMBINING NUMBER:                                             |                  |
| Specific gravity                                       | 37                 | Of metals                                                     | 21               |
| Unit weights                                           | 37                 | Combustibles:                                                 |                  |
| Circles:                                               |                    | Heat units, (table)                                           | 219              |
| Areas & circumferences, (tables)                       | 150-164            | Products of combustion, (table)                               | 219              |
| ••••                                                   | 1.30-104           | Weights by volume, (table)                                    | 219              |
| CIRCUMFERENCES:                                        |                    | COMMERCIAL METALS:                                            |                  |
| And areas of circles, (tables)<br>Round bars, (table)  |                    | Purity                                                        | 68<br>68         |
| IWILL DAIS, (LADIC)                                    | 110-119            | Summary                                                       | 08               |

| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAGE.          |                                                                         | PAGE.    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------|----------|
| COMPARATIVE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | Position in electro-chemical                                            | 12       |
| Money values, (table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 238-239        | Series                                                                  | 123      |
| (table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101            | Resistance of pure—wire (table) Selling price, etc                      | 35       |
| Composition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 141            | Shrinkage                                                               | 58       |
| Aluminum ingots made from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Specific gravity                                                        | 35, 37   |
| soran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7              | Specific heat                                                           | 22, 25   |
| Aluminum, No. 1 grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 777            | Tensile strength<br>Tin alloys, properties                              | 49<br>82 |
| scrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .7             | Tin-zinc alloys                                                         | 82       |
| Or copper alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84<br>78       | Unit weights                                                            | 37       |
| Of copper-tin alloys, (atomic)<br>Of copper-zinc alloys, (atomic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82             | Weight per cu. ft                                                       | 33       |
| Compression:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ٠              | Weight, kg. per sq. m., (table) 1<br>Weight, ounces per sq. ft.,(table) | 105      |
| Of aluminum and aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | Weight of sheet, (table) 10                                             | 03. 105  |
| alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55             | Weight of-wire, B. & S. gauge,                                          | -        |
| Ultimate resistance to, metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50             | (table) 1                                                               |          |
| Ultimate resistance to, stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50<br>50       | Weight per sq. ftZinc alloys, properties                                | 44<br>78 |
| Ultimate resistance to, wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90             |                                                                         | 10       |
| CONDUCTIVITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | CUBRS:                                                                  |          |
| Of metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17 05          | Of fractions                                                            | 69-171   |
| Electrical, of aluminum<br>Electrical, of metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | CUBE ROOTS:                                                             | 00-111   |
| Thormal of aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 25          |                                                                         | .a. 1am  |
| Thermal, of metals 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7, 18, 25      | Of fractions, (table) 1<br>Of numbers 1                                 |          |
| CONTENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | CUBIC MEASURE:                                                          |          |
| Spheres, (table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 164<br>142     | Customary and metric, (table) 19                                        | 91, 193  |
| Formula concerning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142            | English and metric, (table)                                             | 187      |
| Conversion: Metric table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 404 000        | Metric conversion table 2                                               | 02, 203  |
| Metric table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 194-200        | Table                                                                   | 211      |
| COPPER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | CUSTOM DUTIES:                                                          |          |
| Alloys, summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | On aluminum in various coun-                                            | 40_044   |
| And aluminum alloys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | tries 2                                                                 | 12-241   |
| (table)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105            | DECIMAL, DECIMAL EQUIVALENTS:                                           |          |
| And aluminum, relation in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Feet and inches, table) 136, 1                                          | 38-141   |
| weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33             | Fractions, (table)                                                      | 66-167   |
| And nickel aluminum, relation<br>in weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Parts of a foot in sq. in.,(table)                                      | 137      |
| Analysis of commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | DEGREE, DEGREES:                                                        | 100      |
| Atomic weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17, 228        | Table of Centigrade and Fahr-                                           |          |
| Atomic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17             | enheit                                                                  | 226      |
| Combining number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | k 97 99        | DELTA METAL:                                                            |          |
| Conductivity, relative thermal,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17, 25         | Composition                                                             | 84       |
| Ductility, relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30, 31         | Weight, kg. per sq. m., (table) 1                                       |          |
| Elasticity, moduli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51             | Diameters:                                                              | .,,      |
| Expansion, co-efficient of linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17,23,24<br>30 | Of pump cylinders                                                       | 221      |
| Hardness, relative As impurity in aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Diamond:                                                                | 221      |
| And iron, relative weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44             | Hardness                                                                | 29       |
| Malleability, relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30, 31         |                                                                         | 29       |
| Melting point 14, 15, 17, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9, 25, 57      | DIDYMIUM:                                                               | 10       |
| Nickel alloysOfficial table of —manufacturers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | Atomic volume<br>Atomic weight                                          | 17<br>17 |
| Physical properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | Cost.                                                                   | 68       |
| - A STATE RATE TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF |                |                                                                         | 30       |

|                                                          | PAGK.           |                                            | PAGE.                 |
|----------------------------------------------------------|-----------------|--------------------------------------------|-----------------------|
| Didymium:                                                |                 | ELONGATION:                                |                       |
| Physical properties<br>Specific gravity<br>Specific heat | 17, 39 $17, 20$ | Of aluminum brass English:                 | 48<br>78              |
| Unit weights                                             | 36              | Kilograms and—equivalents                  | 209                   |
| Dimensions:                                              |                 | Metric weight and—equiva-                  |                       |
| Of aluminum ingots                                       | 2-3             | lents, (table)                             | 185                   |
| Dipping and Frosting:                                    |                 | Metric measure and—equiva-<br>lents.       | 173                   |
| Of aluminum                                              | 64              | Measures of pressure with met-             |                       |
| DISCOVERY:                                               |                 | ric equivalents, (table)                   | 188-189               |
| Of aluminum                                              | 25              | Engraving:                                 |                       |
| DRY MEASURE:                                             |                 | Of aluminum                                | 65                    |
| Table                                                    | 211             | EQUIVALENTS:                               |                       |
| DUCTILITY:                                               |                 | Decimal—in feet and inches,                | 100                   |
| Of aluminum                                              | 30<br>5         | (table)                                    | 136<br>238-239<br>227 |
| Order of—of metals                                       | 30-31           | Of one lb. perfectly oxidized              |                       |
| DUTIES, (See Custom Duties):                             |                 | Unit—for electrical heating                | 227<br>213            |
| Duty:                                                    |                 | Erbium:                                    |                       |
| Steam engine                                             | 223             | Atomic weight                              | 228                   |
| ELASTIC FLUIDS:                                          |                 | Cost                                       | 68                    |
| Specific gravity and weights                             | 43              | Properties                                 | 69                    |
| ELASTICITY:                                              |                 | Етния:                                     |                       |
| Of aluminum                                              | 29              | Specific gravity                           | 38, 42                |
| Modulus of—cast aluminum<br>Metals, moduli               | 45<br>51        | Weight per cu. ft                          | 42                    |
| Wood, moduli                                             |                 | EXPANSION:                                 |                       |
| ELASTIC LIMIT:                                           |                 | Co-efficient of linear                     | 23, 24                |
| Aluminum                                                 | 45              | Co-efficient of linear—of alumi-           | 7, 23, 24             |
| Aluminum brass                                           | 78              | num                                        | 17. 18                |
| Aluminum bronze<br>Nickel aluminum                       | 87<br>47        | Extra Pure Aluminum:                       |                       |
| Relation ofto ultimate strengt                           |                 | Made by The Pittsburgh Re-                 |                       |
| ELECTRICAL CONDUCTIVITY:                                 |                 | duction Co                                 | 7                     |
| Of aluminum, 2                                           |                 | FAHRENHEIT DEGREES:                        |                       |
| Of aluminum with impurities                              |                 | Relation to Centigrade                     | 226                   |
| Of aluminum alloys<br>Of aluminum bronze                 | 27<br>28        | Relation to Reaumur                        | 226                   |
| Of aluminum wire                                         |                 | FRED WATER:                                |                       |
| Of nickel alloy wire                                     |                 | Consumption of per horse power             | r 220                 |
| Of pure copper wire                                      | 27, 28<br>28    | Consumption, (table)                       | 221                   |
| Metals, relative<br>Unit equivalents                     | 213             | FEET:                                      |                       |
| Definition                                               | 213             | Decimal equivalents—& inches,              |                       |
| ELECTRO-CHEMICAL SERIES:                                 |                 | (table)                                    | 138-141               |
| Order, (table)                                           | 12              | Decimal parts of—in square inches, (table) | 135                   |
|                                                          |                 | And equivalent meters, (table),            | 183                   |
| ELEMENTS:                                                | 990 999         | Meters and their equivalent,               | 104                   |
| Atomic weight                                            | 228-229         | (table)                                    | 184                   |

| P.                                     | AGE.        |                                                             | PAGE.            |
|----------------------------------------|-------------|-------------------------------------------------------------|------------------|
| Ferro-Aluminum:                        |             | GALLIUM:                                                    |                  |
| Custom duties                          | 2-244<br>98 | Atomic weight<br>Cost                                       | 228<br>68        |
| Fifth Powers:                          | 20 171      | Position in electro-chemical series                         | 12               |
| FINENESS OF COINS:                     | 111 B       | GALLONS:                                                    |                  |
| Money units 23                         | 00.000      | Weight of standard, (water)                                 | 222              |
| U. S. and European23                   | 241         | GALVANIC ACTION:                                            |                  |
| FLAT HEAD RIVETS:                      |             | Action on aluminum                                          | 12               |
| Kept in stock                          | 133         | Explanatory                                                 | 11-12            |
| FLUIDS, (See Elastic Fluids):          |             | GALVANIZING BATH: Precaution in using alumin-               |                  |
| FLUORINE:                              |             | ized zinc                                                   | 76-77            |
| Action on aluminum                     | 10          | GAS, GASES:                                                 |                  |
| Atomic weight                          | 228         | Fuel value                                                  | 227              |
| Position in electro-chemical           | 12          | Specinc neat of-water unity,                                | 218              |
| series                                 | 12          | (table)                                                     | 210              |
| Custom duties on aluminum 24           | 2-211       | Birmingham, (table)                                         | 101              |
| Values of—coins 230, 232, 23           |             | British Imperial & Legal Stand-                             | 101              |
| Forging:                               |             | ard, (table)<br>Brown and Sharps, (table)                   | 101<br>101       |
| Of aluminum                            | 61          | Comparison of wire and sheet                                |                  |
|                                        | 29, 46      | metal, (table)                                              | 101<br>100       |
| FOURTH POWERS:                         |             | Discussion of                                               | 100              |
| Of numbers 16                          | 8-171       | Roebling's, (table)                                         | 101              |
| Fractions:                             |             | Trenton Iron Co.'s (table)<br>U. S. Legal Standard, (table) | 101<br>101       |
| Cube roots of, (table)                 | 6-167       | Washburn & Moen's, (table)                                  | 101              |
| Cubes of, (table)                      | 6-167       | GERMANIUM:                                                  |                  |
| Squares of, (table)                    | 6-167       | Atomic weight                                               | 228              |
| Square roots of, (table) 16            | 6-167       | Cost.                                                       | 68               |
| FRACTURE:                              |             | GERMAN SILVER:                                              |                  |
| Of copper-tin alloys                   | 82<br>82    | Aluminum io                                                 | 83<br>83         |
| Of copper-zinc alloys                  | 78          | Composition<br>Selling price, etc                           | 85<br>35         |
| FRANCE:                                |             | Specific gravity                                            | 35, 83           |
| Custom duties on aluminum 24           | 2-243       | Uses                                                        | 83               |
| Monetary unit 23                       |             | GERMANY:                                                    |                  |
| Francs:                                |             | Custom duties on aluminum<br>Monetary unit                  | 243              |
| Values of marks and, (table)           | 241         | GLASS:                                                      | 230, 200         |
| Frosting:                              |             | Expansion, co-efficient of linear                           | 24               |
| Of aluminum                            | 64          | Tensile strength                                            | 50               |
| FURL:                                  |             | GLUCINUM:                                                   |                  |
| For melting aluminum                   | 59          | Atomic volume                                               | . 17             |
| Comparative—value of combus-<br>tibles | 227         | Atomic weight                                               | 17, 228<br>68    |
| tibles Weight and—value of wood 22     | 22-223      | Cost<br>Properties                                          | 17, 69           |
| GADOLINIÙM:                            |             | Specific heat                                               | 17, 20<br>17, 36 |
| Atomic weight                          | 228         | Specific gravity<br>Unit weights                            | 17, 36<br>36     |
|                                        |             | Cine aciento                                                |                  |

| PAGE.                                                                | Uwanogaw.                                      | PAGE.       |
|----------------------------------------------------------------------|------------------------------------------------|-------------|
| Gold:                                                                | Hydrogen:                                      | 000         |
| Alloyed with aluminum 56, 68, 72<br>And aluminum, relative weight 33 | Atomic weight<br>Carburetted—occlusion of      | 229<br>11   |
| Alloys for coin                                                      | Position in electro-chemical                   | **          |
| Alloys, strength, (table) 56                                         | series                                         | 12          |
| Atomic volume 17                                                     | Sulphuretted                                   | 11          |
| Atomic weight                                                        | ICE:                                           |             |
| Coinage, value of foreign, (table) 234-236<br>Coinage, table of U. S | Melting point                                  | 13          |
| Coinage, units of the world 230, 232                                 | Weight, (average)                              | 40          |
| Combining number 21                                                  | Inches:                                        |             |
| Cost 68                                                              | Decimal equivalents, (table)                   | 137         |
| Conductivity, electrical 17, 25, 28                                  | Decimal equivalents in feet                    |             |
| Conductivity, thermal                                                | and, (tables)                                  | 139-141     |
| Elasticity, moduli 48. 51                                            | Millimetres and equivalent,                    | 170 100     |
| Elasticity, moduli                                                   | (tables) 177,                                  | 1/0-102     |
| Hardness, relative 30                                                | Indium:                                        | •           |
| And iron, relative weights in                                        | Alloyed with aluminum                          | 75          |
| per cent                                                             | Atomic volume<br>Atomic weight                 | 17, 228     |
| Malleability, relative                                               | Cost                                           | 68          |
| Physical properties 17                                               | Expansion, co-efficient of linear              | 17, 23      |
| Position in electro-chemical                                         | Hardness, relative                             | 30          |
| series                                                               | Melting point                                  | 17          |
| Specific gravity                                                     | Physical properties                            | 17          |
| Unit weights                                                         | Position in electro-chemical series            | 12          |
| Weight per square foot 44                                            | Properties                                     | 70          |
| Gun-Bronze, (See Bronze):                                            | Specific gravity                               | 17, 37      |
| HARDNESS:                                                            | Specific heat                                  | 17, 20      |
| Of aluminum                                                          | Unit weights                                   | 37          |
| Of copper-tin alloys 82                                              | Ingots:                                        |             |
| Of copper-zinc alloys 78                                             | Bar casting, (cut)                             | 2           |
| Of diamond, (as standard) 29                                         | Dimensions and general char-                   | 8-9         |
| Of metals, relative, (table) 29, 30<br>Method of determining 30      | acteristics<br>Hollow tube                     | 3           |
| HEAT:                                                                | Long rectangular, (cut)                        | 2           |
|                                                                      | The Pittsburgh Reduction Co.'s                 | _           |
| Intensity, metric conversion table 208                               | standard                                       | 3           |
|                                                                      | Square billet, (cut)                           | 3<br>2<br>3 |
| HEAT UNITS:                                                          | Standard remelting ingots Plain rolling, (cut) | •           |
| In combustibles, (table) 219                                         | Waffle, (cut)                                  | 9           |
| Definition                                                           | IMPURITIES:                                    | _           |
|                                                                      |                                                | 90 00       |
| Holland:                                                             | In aluminumIn aluminum, effecting electri-     | 28-29       |
| Custom duties on aluminum: 244<br>Monetary unit232, 236              | cal conductivity                               | 26-27       |
| - · · · · · · · · · · · · · · · · · · ·                              | In gold alloys                                 | 56          |
| Horsk Power:                                                         | Maileability and ductility im-                 |             |
| Of boilers224, 225                                                   | paired by                                      | 31          |
| Equivalent, boiler heating sur-<br>face                              | IODINE:                                        |             |
| And relative pump capacity 222                                       | Action on aluminum                             | 10          |
| Steam engine economy per 220                                         | Atomic weight                                  | 228         |
| HYDROCHLORIC ACID, (See Muriatic Acid):                              | Melting point                                  | 14          |
| Action on aluminum                                                   | Position in electro-chemical series            | 12          |
| on withingmann                                                       | GO1100                                         | 12          |

| PAGR.                                                              | PAGK.                                        |
|--------------------------------------------------------------------|----------------------------------------------|
| IRIDIUM:                                                           | KILOGRAMS:                                   |
| Alloyed with aluminum 69                                           | And English equivalents 209                  |
| Atomic volume 17                                                   | LANTHANUM:                                   |
| Atomic weight                                                      | Atomic volume 17                             |
| Cost                                                               | Atomic weight                                |
| Discovery date 25                                                  | Cost                                         |
| Expansion, co-efficient of linear 17, 23, 24                       |                                              |
| Melting point 15, 17                                               | Specific gravity                             |
| Physical properties 17                                             | Unit weights                                 |
| Position in electro-chemical                                       | LATENT HEAT OF FUSION:                       |
| 12                                                                 | Of aluminum                                  |
| Specific heat                                                      | Of metals                                    |
| Unit weights                                                       | - Of Browns                                  |
| Iron:                                                              | LEAD: Action of—with aluminum 75             |
|                                                                    | 1100001 01 11100                             |
| Aluminum and                                                       | Alloys                                       |
| And aluminum, relative weight 33                                   | Atomic volume 17                             |
| And Nickel-Aluminum, relative                                      | Atomic weight 17, 228                        |
| weight 34                                                          | Combining number 21                          |
| Aluminum tubing—pipe sizes,                                        | Conductivity, electrical                     |
| (60010)                                                            |                                              |
| Atomic volume                                                      | Ductility, relative                          |
| Combining number                                                   | Expansion, co-efficient of linear 17, 23, 24 |
| Conductivity, relative thermal 17, 25                              | Hardness, relative                           |
| Conductivity, relative electrical 17, 25, 28                       | And iron, relative weights 44                |
| Ductility, relative 30-31                                          | Latent heat of fusion 19                     |
| Elasticity, moduli                                                 | Malleability, relative 30, 31                |
| Expansion, co-efficient of linear 17, 23, 24<br>Hardness, relative | Melting point                                |
| As impurity in aluminum 28                                         | Position in electro-chemical                 |
| Malleability, relative 30, 31                                      | series 12                                    |
| Melting point 14, 17, 25, 57                                       | Selling price, etc                           |
| Physical properties17                                              | Shrinkage. 58                                |
| Position in electro-chemical                                       | Specific gravity                             |
| Resistance to shearing                                             | Specific heat                                |
| Selling price, etc                                                 | Unit weights                                 |
| Shrinkage 57                                                       | Weight, kg. per sq. m., (table) 107-111      |
| Specific gravity 17, 25, 33, 35, 37                                | Weight per sq. ft 44                         |
| Specific heat                                                      | LKNGTH:                                      |
| Tensile strength 46, 49                                            | Mensuration142                               |
| Ultimate resistance to compres'n 50 Unit weights 37                |                                              |
| Unit weights                                                       | LINEAR EXPANSION, (See Expansion):           |
| Weight, kg. per sq. m., (table) 107-111                            | Liquids:                                     |
| Weight per sq. ft 44                                               | Flow of—in pipes 221                         |
| Weight per sq. ft                                                  | Specific gravity                             |
| Weight of—sheet B. & S. gauge,                                     | Specific gravity & unit weights, 38, 42      |
| (table)                                                            | Lithium:                                     |
| (table) 121                                                        | Atomic volume 17                             |
|                                                                    | Atomic weight                                |
| KALCHOIDS:                                                         |                                              |
| Composition                                                        | Cost                                         |
| Properties 83                                                      | Proteing point                               |

| <u>.</u>                                              | PAGE.            |                                                     | AGE.           |
|-------------------------------------------------------|------------------|-----------------------------------------------------|----------------|
| Lithium:                                              |                  | MANUFACTURE OF:                                     |                |
| Position in electro-chemical series                   | 12               | Aluminum bronze<br>Ferro-aluminum                   | 89, 9<br>9     |
| Properties                                            | 17, 69           | MARKS:                                              |                |
| Specific gravity<br>Specific heat                     | 17, 36<br>17, 20 | Values of-and francs                                | 24             |
| Unit weights                                          | 36               | MASTER MECHANICS:                                   |                |
| LONG MEASURE:                                         |                  | Standard gauge                                      | 10             |
| Customary and metric, (table) 1                       | 90-193           | MEASURE:                                            |                |
| Metric conversion table<br>Table of                   | 201<br>210       | History of units of                                 | 17             |
| LUBRICANT:                                            |                  | MELTING:                                            |                |
| For aluminum lathe work                               | 64               | Of aluminum                                         | 5              |
| For press work                                        | 64               | Fuel for—aluminum                                   | 5              |
| MAGNESIUM:                                            |                  | MELTING POINT:                                      |                |
| Alloyed with aluminum                                 | . 74<br>18       | Of aluminum                                         | - 8            |
| Atomic weight                                         | 18, 229          | Metals                                              | 18, 24<br>13-1 |
| Combining number                                      | 21               | Variously determined, (table)                       | 1.,,-1.        |
| Conductivity, electrical 18,<br>Conductivity, thermal | 25, 28           | MENSURATION:                                        | _              |
| Discoverer, name of                                   | 25               | Formula for 14                                      | 2-14:          |
| Discovery date                                        | 25               | MERCURY:                                            |                |
| Expansion, co-efficient of linear                     | 18, 23<br>30     | Alloyed with aluminum                               | 74             |
| Hardness, relative                                    | 18 95            | Atomic volume                                       | í              |
| Physical properties                                   | 18               | Atomic weight 18                                    | 3. 22          |
| Position in electro-chemical                          |                  | Combining number                                    | 2              |
| series                                                | 12               | Conductivity, electrical                            | 8, 2           |
| Specific gravity. 18, Specific heat                   | 25, 36           | Conductivity, thermal                               | 18, 25         |
| Unit weights                                          | 36               | Latent heat of fusion                               | 19             |
|                                                       | 30               | Melting point                                       | 8, 2           |
| MALLEABILITY:                                         | 1                | Physical properties                                 | 18             |
| Of aluminum                                           | 30, 31           | Position in electro-chemical                        | 10             |
| Of copper-tin alloys                                  | 82               | series                                              | 12             |
| General statement—of alumi-                           | 78               | Specific heat                                       | 2 2            |
| num                                                   | 5 1              | Unit weights                                        | 37             |
|                                                       | 30, 31           | METALOIDS:                                          |                |
| Manganese:                                            |                  | Presence in aluminum                                | 72             |
| Alloyed with aluminum                                 | 74               | METALS:                                             |                |
| Atomic volume                                         | 18<br>8, 229     | Aluminum & the rare & costly                        | 68             |
| Combining number                                      | 21               | Aluminum alloy-<br>ed with other 70-71-72 73-74-7   |                |
| Discoverer, name of                                   | 25               | ed with other \ 10-11-12 13-14-1                    | 19-10          |
| Discovery, date                                       | 25               | Analysis of                                         | - 80           |
| Hardness, relative                                    | 30               | Conductivity, relative thermal,<br>Ductility, order | 25<br>31–31    |
| Melting pointPhysical properties                      | 18<br>18         | Elasticity, moduli                                  | ×∕~ə∟<br>48    |
| Position in electro-chemical                          | 10               | Fusible                                             | 86             |
| series                                                | 12               | Hardness, relative                                  | 9, 30          |
| Specific gravity. 18                                  | 95 37            | Malleability, order of                              | 30-31          |
| Specific heat                                         | 22, 25           | Physical properties, (table) 1<br>Precious          | 17–18<br>68    |
| Unit weights                                          | 37               | Shrinkage of castings                               | 57             |
|                                                       | 1                |                                                     | 01             |

| PAGE.                                                  | PAGE.                                                                |
|--------------------------------------------------------|----------------------------------------------------------------------|
| Specific gravity and selling                           | MONEY:                                                               |
| price, (table) 34-35                                   | Order charges, (domestic) 233                                        |
| Summary of commercial 68                               | World's-units, (table) 230-232                                       |
| Summary of the rare                                    | MUNTZ METAL:                                                         |
| Tensile strength 48-49 Tensile strength in relation to | Composition 84                                                       |
| _weight                                                | Weight, kg. per sq. m., (table), 107-111                             |
| Ultimate resistance to compres'n 50                    | MURIATIC ACID, (See Hydrochloric Acid):                              |
| Weight, (comparative) 44                               | 1 0 0                                                                |
| Weight of sheet, (table) 107-111                       | Weight per cu. ft                                                    |
| METERS:                                                | NAUTICAL MEASURE:                                                    |
| And their equivalents in feet,                         | m 1 .                                                                |
| (table) 184                                            |                                                                      |
| Feet and their equivalents in,                         | NRODYMIUM:                                                           |
| (table) 183-184                                        | Atomic weight 229                                                    |
| MRTRIC SYSTEM:                                         | Nickel:                                                              |
| Advantages 172                                         | Alloyed with aluminum 71                                             |
| Advantages                                             | And aluminum, relative weight 33                                     |
| lents                                                  | Atomic volume                                                        |
| Converting customary to, (table) 190-191               | Atomic weight 18<br>Bronze 91                                        |
| Converting — to customary, (table) 190-191             | Combining number 21                                                  |
| Conversion of 100, 194-200, 201-208                    | Discoverer, name of                                                  |
| And English equivalents 173                            | Discovery, date 25                                                   |
| General scheme of 174                                  | Conductivity, electrical 18-25-28                                    |
| Of length 174                                          | Copper-alloys 85                                                     |
| Of pressure, with English equivalents, (table) 188-189 | Expansion, co-efficient of linear 18, 23, 24<br>Hardness, relative30 |
| Of surface, with English equiv-                        | And iron, relative weights 44                                        |
|                                                        | Malleability, relative 30                                            |
| Of weight, with English equiv-                         | Melting point 15. 18                                                 |
| alents 175                                             | Physical properties                                                  |
| Weight of sheet metals, (table) 107-111                | Position in electro-chemical series 12                               |
| MILLIMETRES:                                           | Series                                                               |
| Inches and equivalent, (table) 177                     | Specific gravity 18 95 25 27                                         |
| And equivalent inches, (table) 178-182                 | Specific heat                                                        |
| MITIS PROCESS:                                         | Unit weights                                                         |
|                                                        | Weight of—to other metals,                                           |
| Of making castings 99                                  | (relative)         34           Weight per sq. ft         44         |
| MODULI OF ELASTICITY:                                  | NICKEL ALUMINUM:                                                     |
| Of aluminum 48                                         |                                                                      |
| Of metals 48, 51                                       | Casting alloys                                                       |
| Of wood 51                                             | As trade name                                                        |
| MOLYBOKNUM:                                            | Plates, sheets and sections 6                                        |
| Alloyed with aluminum                                  | Reduction of area 47                                                 |
| Atomic volume                                          | Shrinkage                                                            |
| Atomic weight 18, 229                                  | Strength                                                             |
| Properties                                             | Specific gravity, rolling ingots. 32-33                              |
| Specific gravity                                       | Weight per cu. ft                                                    |
| Specific heat                                          | Unit weights                                                         |
|                                                        | NIOBIUM:                                                             |
| MONETARY SYSTEM:                                       | Atomic volume 18                                                     |
| Of the U. S., (table) 240                              | Atomic weight 18                                                     |
|                                                        |                                                                      |

| NIOBIUM:                                              | PAGE.               | PAGE.                                                         |
|-------------------------------------------------------|---------------------|---------------------------------------------------------------|
| Physical properties                                   | 18                  | Position in electro-chemical                                  |
| Specific gravity                                      | 18, 36              | series 12<br>  Properties 18, 6                               |
| Unit weights                                          | 36                  | Properties                                                    |
| NITRE:                                                |                     | 1 Specific heat 18, 21                                        |
| Use of—in casting aluminum                            | 58                  | Specific heat 18, 20<br>Unit weights 3                        |
| NITRIC ACID:                                          |                     | Oxygen:                                                       |
| Action on aluminum                                    | 10                  | Position in electro-chemical                                  |
| Specific gravity                                      | 38, 42              | series 1:                                                     |
| Weight per cu. ft                                     | 42                  | PALLADIUM:                                                    |
| NITROGEN:                                             |                     | Atomic volume 18                                              |
| Atomic weight                                         | 229                 | Atomic weight                                                 |
| As impurity in aluminum                               | 29<br>11            | Combining number                                              |
| Occlusion of                                          |                     | Conductivity, electrical 18, 25, 25<br>Conductivity, thermal  |
| series                                                | 12                  | Cost                                                          |
| NITRO-GLYCKRINE:                                      |                     | Discoverer, name of 2                                         |
| Melting point                                         | 13                  | Discovery, date 2                                             |
|                                                       | 10                  | Liasticity, moduli 4                                          |
| On: Anise seed—weight per cu. foot                    | 42                  | Expansion, co efficient of linear 18, 23, 2-<br>Melting point |
| Anise seed—specific gravity                           | 42                  | Properties 18, 69                                             |
| Codfish-weight per cu. ft                             | 42                  | Position in electro-chemical                                  |
| Codfish—specific gravity                              | 42                  | series 1                                                      |
| Fuel, value of                                        | $\frac{227}{38,42}$ | Specific gravity 18, 25, 3                                    |
| Linseed—specific gravity<br>Linseed—weight per cu. ft | 42                  | Specific heat                                                 |
| Naphtha—specific gravity                              | 42                  | PRWTER:                                                       |
| Naphtha-weight per cu. ft                             | 42                  | 1                                                             |
| Olive-specific gravity                                | 38, 42              | Composition                                                   |
| Olive—weight per cu. ft                               | 38, 42              | Phosphorus:                                                   |
| Palm—weight per cu. ft                                |                     |                                                               |
| Petroleum-specific gravity                            | 38, 42              | Action of—with aluminum 7: Atomic weight                      |
| Petroleum-weight per cu. ft                           | 42                  | Melting point                                                 |
| Rape—specific gravity                                 | 38, 42<br>42        | Position in electro-chemical                                  |
| Rape—weight per cu. ft<br>Sunflower—specific gravity  | 42                  | series 1:                                                     |
| Sunflower—weight per cu. ft                           | 42                  | PIPE, PIPES:                                                  |
| Turpentine—specific gravity                           | 38, 42              | Capacity of 221                                               |
| Turpentine-weight per cu. ft                          | 42                  | Iron—sizes of aluminum 12                                     |
| Whale—specific gravity<br>Whale—weight per cu. ft     | 38, 42<br>42        | THE PITTSBURGH REDUCTION Co.:                                 |
| Occluded Gases:                                       | 44                  | Alloys manufactured by                                        |
|                                                       | 11                  | Material sold by—for polishing 6:                             |
| Carburetted hydrogen<br>Nitrogen                      | 11<br>11            | Purity of metal sold by                                       |
|                                                       | 11                  | Shape of ingots furnished by.                                 |
| Онм:                                                  | 10-                 | (cuts)                                                        |
| Definition                                            | 165                 | PLATING:                                                      |
| ORGANIC ACIDS:                                        |                     | Of aluminum 66-67                                             |
| Action on aluminum                                    | 10                  | PLATINUM:                                                     |
| Osmium:                                               |                     | Alloyed with aluminum 69                                      |
| Atomic volume                                         | 18                  | And aluminum, relative weight 33                              |
| Atomic weight                                         | 18, 229             | Atomic volume 18                                              |
| Expansion, co-efficient of linear l                   | 18, 23, 24<br>18    | Atomic weight                                                 |
| Mercing Louis                                         | 10                  | Comming number 21                                             |

| PAGE.                                                              | PAGK.                                                                  |
|--------------------------------------------------------------------|------------------------------------------------------------------------|
| Cost 69                                                            | PRESSURE:                                                              |
| Discoverer, name of 25                                             | Mean atmospheric                                                       |
| Discovery, date                                                    | (tables)                                                               |
| Ductility, relative                                                | Safe—on aluminum tubing.                                               |
| Conductivity, thermal 18, 25                                       | (table)                                                                |
| Elasticity, moduli                                                 | Units                                                                  |
| Expansion, co-efficient of linear 18, 23, 24<br>Hardness, relative | PRICE:                                                                 |
| Malleability, relative 30, 31                                      | Selling—of aluminum                                                    |
| Melting point 14, 15, 16, 18, 19                                   | And specific gravity of metals,                                        |
| Physical properties 18 Position in electro-chemical                | (table)                                                                |
| series                                                             | Of the Pittsburgh Co.'s cata-                                          |
| Specific gravity                                                   | logue 4                                                                |
| Specific heat                                                      | PRISMOIDAL FORMULA:                                                    |
| ( Die wolg de community of                                         | Statement of 148                                                       |
| Polish, Polishing:                                                 | PROPERTIES:                                                            |
| Of aluminum                                                        | Electrical—of aluminum 26-28<br>Of copper-tin alloys in castings 82    |
|                                                                    | Of copper-tin zinc alloys 82                                           |
| Postage: Rates                                                     | Of copper-zinc alloys in castings 78                                   |
|                                                                    | Physical—of metals, (table) 17-18                                      |
| Potassium:                                                         | Римря:                                                                 |
| Atomic volume                                                      | Information concerning 221-222                                         |
| Combining number 21                                                | PURITY:                                                                |
| Conductivity, electrical 18, 28                                    | Of commercial aluminum 7 The Pittsburgh Reduction Co.'s                |
| Expansion, co-efficient of linear 18, 23<br>Hardness, relative 30  | guarantee of5                                                          |
| Hardness, relative                                                 | RAIN WATER:                                                            |
| Physical properties 18                                             | Specific gravity according to 42                                       |
| Position in electro-chemical                                       | RARE METALS:                                                           |
| series         12           Specific gravity         18, 36        | List                                                                   |
| Specific heat                                                      | REAUMUR DEGREES:                                                       |
| Sulphate, melting point 14                                         | Relation to Centigrade                                                 |
| Unit weights                                                       | Relation to Fahrenheit                                                 |
| Pounds:                                                            | REGISTRATION:                                                          |
| Foreign equivalents of cents<br>per, (table)                       | Of mail matter 233                                                     |
| Metric measures and equiva-                                        | RELATION:                                                              |
| lent—per sq. in 189                                                | Of aluminum to tin plates,                                             |
| Per sq. in. and equivalent met-                                    | (table) 106                                                            |
| ric measures 188                                                   | Of thermometric scales                                                 |
| Powder:                                                            |                                                                        |
| See Aluminum Bronze Powder.                                        | RESISTANCE:                                                            |
| Powers:                                                            | Of pure aluminum wire, (table) 122<br>Of pure copper wire, (table) 123 |
| See squares, cubes, fourth and fifth powers.                       | Rhodium:                                                               |
| Praskodymium:                                                      | Atomic volume                                                          |
| Atomic weight                                                      | Atomic volume                                                          |
| Precious Metals:                                                   | Cost 68                                                                |
|                                                                    | Expansion, co-efficient of linear 18, 23<br>Melting point 18           |
| List 68                                                            | Melting point 18                                                       |
|                                                                    |                                                                        |

| <b>Внорим</b> :                                    | PAGE.            | SAFETY FACTOR:                                        | PAGE.     |
|----------------------------------------------------|------------------|-------------------------------------------------------|-----------|
| Position in electro-chemical                       |                  | For aluminum and aluminum                             |           |
| series                                             | 12               | alloys                                                | 54-55     |
| Properties                                         | 18, 69<br>18, 37 | SALT:                                                 | 4.        |
| Specific gravity<br>Specific heat                  | 18, 20           | Average weight                                        | 41        |
| Unit weights                                       | 37               | Action on aluminum                                    | 10        |
| Rivers:                                            |                  | SAMARIUM:                                             | 10        |
| Shearing and bearing value of aluminum, (table)    | 52-53            | Atomic weight                                         | 229       |
| Aluminum—carried in stock                          | 131              | Sand:                                                 | 228       |
| Aluminum—strength                                  | 55               | Average weight                                        | 41        |
| Efficiency of riveted joints of aluminum           | 55               | SAND BLASTING:                                        | *1        |
| RORBLING'S GAUGE:                                  | •                | Of aluminum                                           | 63        |
| Thickness in inches, (table)                       | 101              | SCANDIUM:                                             | •         |
| ROLLED:                                            | 101              | Atomic weight                                         | 229       |
| Areas of flat-bars                                 | 144-149          | SCRATCH BRUSHING:                                     |           |
| Costiana of almosium                               | 20               | Of aluminum                                           | 63        |
| Weight of—aluminum, (table)                        | 112-117          | SEAMLESS TUBING, (See Tubing):                        |           |
| Weight of—copper, (table)                          | 105              |                                                       |           |
| ROLLING:                                           |                  | Sections:                                             |           |
| Ingot shapes, (cut)                                | 2                | Of sluminum                                           | 60        |
| Aluminum                                           | _60              | Squirted—of aluminum                                  | 61        |
| Ingot sizesSlabs                                   | 7-8<br>8         | SEA WATER:                                            | 10        |
| Roots:                                             | •                | Action on aluminum<br>Specific gravity                |           |
| See cube and square roots.                         |                  | Weight per cu. ft                                     | 41, 42    |
| -                                                  |                  | SELENIUM:                                             |           |
| ROUND HEAD RIVETS:                                 | ****             | Atomic weight                                         | 229       |
| Kept in stock                                      | 131-132          | Position in electro-chemical                          | 12        |
| Rubidium:                                          |                  | Specific gravity                                      | 36        |
| Atomic volume                                      | 18               | Unit weights                                          | 36        |
| Atomic weight<br>Cost                              | 18, 229          | SHAPE:                                                | _         |
| Melting point                                      | 18               | Of aluminum ingots (cut, 2-3),                        | 7-8       |
| Position in electro-chemical series                | 12               | SHEARING:                                             |           |
| Properties                                         | 18, 70           | Value of aluminum                                     | 55        |
| Specific gravity                                   | 18, 36           | num, rivets, (table)                                  | 52-53     |
| Specific heat                                      | 18, 20<br>36     | Resistance to-metals                                  | - 54      |
|                                                    | •                | Resistance to—timber                                  | 54        |
| RUTHENIUM: Atomic volume                           | 10               | SHEET:                                                |           |
| Atomic weight                                      |                  | Comparison of wire and — gauges, (table)              | 101       |
| Cost                                               | 68               | Aluminum—relative to tin plate                        | е         |
| Expansion, co-efficient of linear<br>Melting point | 18, 23<br>18     | (table)                                               | 106       |
| Properties                                         | 18, 69           | face of                                               | 66        |
| Specific gravity                                   | 18, 37           | Weight of-aluminum,(table) 32                         | , 104-105 |
| Specific heatUnit weights                          | 18, 20<br>37     | Weight of—brass, (table)<br>Weight of—copper, (table) |           |
|                                                    | 91               |                                                       | 100       |

| PAGI                                                                                                                                                  |                                                          | Sodium:                                                            | PAGE.                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Weight of zinc-per sq. ft.,                                                                                                                           | 111<br>104<br>104                                        | Atomic volume                                                      | 18, 229<br>18<br>21                                                               |
| Shrinkage:  Nickel aluminum alloy Pure aluminum. Special Casting Alloy Bismuth Brass castings Metal castings Copper Various shaped iron castings Lead | 57<br>57<br>57<br>58<br>58<br>57<br>58<br>57<br>58<br>57 | Conductivity, electrical                                           | 18, 28<br>18, 25<br>18, 23<br>30<br>11, 29<br>13, 18<br>18, 36<br>3, 20, 21<br>36 |
| SILICON:                                                                                                                                              |                                                          | SOLDER, SOLDERING:                                                 |                                                                                   |
| Impurity in aluminum                                                                                                                                  | 29<br>28<br>12<br>20                                     | Of aluminum Of aluminum bronze Composition SOLUBILITY: Of aluminum | 65-66<br>90, 91<br>85                                                             |
| SILVER:                                                                                                                                               |                                                          | Sonorousness:                                                      |                                                                                   |
| Alloyed with aluminum                                                                                                                                 | 73                                                       | Of aluminum                                                        | 31                                                                                |
| And aluminum, relative weight Atomic volume                                                                                                           | 37<br>31                                                 | General statements concerning<br>Shrinkage                         | 6<br>57<br>32, 33<br>33                                                           |
| Combining number                                                                                                                                      | 21<br>28<br>25<br>31<br>48                               | Of aluminum                                                        | 3, 35, 36<br>32–33<br>36<br>36<br>219<br>82<br>78<br>43                           |
| Latent heat of fusion                                                                                                                                 | 19<br>31<br>25<br>18<br>12<br>37                         | (Ferman silver                                                     | 38, 42<br>, 25, 36<br>34–35<br>38, 39<br>220                                      |
| Unit weights                                                                                                                                          | 25<br>37<br>44                                           | Of aluminum                                                        | 20<br>218                                                                         |
| Of rolling ingots 7                                                                                                                                   | -8                                                       | SPRED:                                                             | , _1, _0                                                                          |
| SLABS:                                                                                                                                                | l                                                        | For spinning or buffing alumi-                                     |                                                                                   |
| Rolling                                                                                                                                               | 8                                                        | Metric conversion table of                                         | 65<br>207-208                                                                     |

|                                                    | PAGE.    |                                                                  | PAGE.           |
|----------------------------------------------------|----------|------------------------------------------------------------------|-----------------|
| SPELTER (See Zinc):                                |          | Conductivity, relative thermal                                   | 25              |
| SPERMACETTI:                                       | •        | Elasticity, moduli of                                            | 48, 51          |
| Melting point                                      | 13       | Expansion, co-efficient of linear                                | 24              |
| SPHERES:                                           |          | And iron, relative weights                                       | 44<br>14        |
|                                                    | 164      | Melting point                                                    | 35              |
| Contents                                           | 104      | Similar shapes of aluminum and                                   | 60              |
| SPIEGEL:                                           |          | Specific gravity 33                                              | 3, 35, 37       |
| Analysis                                           | 94       | Specific heat                                                    | 20,22           |
| Effect of aluminum in                              | 94       | Tensile strength                                                 | 46, 49<br>37    |
| Spinning:                                          |          | Unit weights                                                     | 33, 46          |
| Of aluminum                                        | 65       | Weight, kg. per sq. m., (table)                                  |                 |
| Lathe speed for—aluminum                           | 65       | Weight of sheet, (table)                                         | 103, 104        |
| SQUARES:                                           |          | Weight per sq. ft                                                | 44              |
| ()f fractions, (table)                             | 166-167  | Weight per sq. ft., M. M. gauge<br>Weight of—wire B. & S. gauge, | 102             |
| Of numbers, (table)                                | 168-171  | (table)                                                          | 121             |
| SQUARE INCHES:                                     | ļ        | STONE:                                                           |                 |
| Decimal parts of a foot in,                        |          | Ultimate resistance                                              | 50              |
| (table)                                            | 135      |                                                                  | 90              |
| SQUARE MEASURE:                                    |          | STRENGTH:                                                        |                 |
| Metric conversion, (table) } 186, 190, 192,        | 901_909  | Of pure aluminum49                                               |                 |
|                                                    | 201-202  | Of aluminum alloys46 Of gold alloys, (table)                     | o, 48, 54<br>56 |
| Table                                              | 210      | Variations in—of nickel alumi-                                   | 00              |
| SQUARE ROOTS:                                      |          | num                                                              | 47              |
| ()f fractions, (table)                             | 166-167  | STRESS:                                                          |                 |
| Of numbers, (table)                                | 168-171  | Metric conversion table                                          | 205-206         |
| STANDARD:                                          |          | STRONTIUM:                                                       |                 |
| Electrical units                                   | 165      |                                                                  | 18              |
| Master Mechanics—gauge                             | 102      | Atomic volume<br>Atomic weight                                   | 18, 229         |
| Remelting ingots<br>Sizes tubing in stock, (table) | 3<br>124 | Conductivity, electrical                                         | 18, 28          |
| Weight of—gallons, (water)                         | 222      | Cost                                                             | 68              |
| STEAM:                                             |          | Position in electro-chemical                                     | 1.0             |
|                                                    | 220      | Series                                                           | 12<br>18, 69    |
| Rate of flow                                       |          | PropertiesSpecific gravity                                       | 18, 36          |
| Specific gravity                                   | 42       | Specific heat                                                    | 18, 20          |
| Weight per cu. ft                                  | 42       | Unit weights                                                     | 36              |
| STEAM ENGINES:                                     |          | STRUCTURAL:                                                      |                 |
| Economy per horse power                            | 220      | Use of aluminum5                                                 | 1_55_56         |
| Duty of                                            | 223      |                                                                  | *_00_00         |
| STRARIC ACID:                                      |          | STUBS' GAUGE:                                                    |                 |
| Melting point                                      | 13       | Thickness in inches, (table)                                     | 101             |
| STEEL:                                             | •        | SULPHUR:                                                         |                 |
|                                                    | 91-98    | Action on aluminum                                               | 10              |
| Aluminum in                                        | 91-96    | Atomic Weight                                                    | 229             |
| Excessive use of aluminum in                       | 95       | Position in electro-chemical                                     |                 |
| Saving by use of aluminum in                       | 94       | series                                                           | 12              |
| And aluminum, relation in                          | 000      | Melting point                                                    | 14              |
| weight<br>And nickel-aluminum, relative            | 33       | Weight, average                                                  | 41              |
| weight                                             | 34       | SULPHURIC ACID:                                                  |                 |
| Conductivity, relative electrical                  | 28       | Action on aluminum                                               | 10              |
|                                                    |          |                                                                  |                 |

|                                                               | PAGE.                         | _ PAGE.                                                             |
|---------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------|
| TALLOW:                                                       |                               | THERMOMETRIC SCALES:                                                |
| Melting point                                                 | 13                            | Relation of 22                                                      |
| TANTALUM:                                                     |                               | Thorium:                                                            |
| Atomic volume                                                 | 18, 229<br>18<br>18, 37<br>37 | Atomic volume                                                       |
| TAR:                                                          |                               | Specific heat                                                       |
| Specific gravity                                              | 38, 42                        |                                                                     |
| Weight, average<br>Weight per cu. ft                          | 41<br>42                      | THULIUM: Atomic weight                                              |
| TELLURIUM:                                                    |                               | Tin:                                                                |
| Alloyed with aluminum                                         | 73                            | Alloys 8                                                            |
| Atomic volume                                                 | 18                            | Alloyed with aluminum                                               |
| Melting point                                                 | 18                            | Analysis of commercial 80                                           |
| Physical properties<br>Position in electro-chemical           | 18                            | Atomic volume                                                       |
| series                                                        | 12                            | Combining number                                                    |
| Specific gravity                                              | 18                            | Contained in commercial zinc 80                                     |
| Specific heat                                                 | 18, 20                        | Conductivity, electrical 18, 25, 25<br>Conductivity, thermal 18, 25 |
| TEMPERATURE:                                                  |                               | Copper—zinc alloys 8                                                |
| Effect on aluminum                                            | 56                            | Copper—alloys, properties 82                                        |
| TENSILE STRENGTH:                                             |                               | Ductility, relative 30, 31                                          |
| AluminumAluminum and alloys                                   | 45, 54<br>54                  | Position in electro-chemical series                                 |
| Aluminum bronze                                               | 8 <del>7</del>                | Expansion, co-efficient of linear 18, 23, 24                        |
| Aluminum for the "Defen-                                      |                               | Hardness, relative                                                  |
| der," (table)                                                 | 48                            | And iron, relative weights 44 Latent heat of fusion                 |
| Copper-tin alloys<br>Copper-zinc alloys                       | 82<br>78                      | Malleability, relative 30, 31                                       |
| Gold alloys                                                   | 56                            | Melting point 14, 18                                                |
| Metals                                                        | 48-49                         | Phosphor—alloyed with alumi-<br>num                                 |
| Stone, natural and artificial Timber and organic fiber        | 50<br>49                      | Physical properties                                                 |
| In relation to weight, (table)                                | 46                            | Selling price, etc                                                  |
| TERBIUM:                                                      |                               | Specific gravity                                                    |
| Atomic weight                                                 | 229                           | Trade designation of—plate,                                         |
| THALLIUM:                                                     |                               | (table) 106                                                         |
| Atomic volume                                                 | 18                            | Unit weights                                                        |
| Atomic weight                                                 | 18, 229                       | Specific heat                                                       |
| Conductivity, electrical<br>Expansion, co-efficient of linear | 18, 28<br>18, 23              | TITANIUM:                                                           |
| Hardness, relative                                            | 30                            | Alloyed with aluminum                                               |
| Melting point                                                 | 18                            | Atomic weight                                                       |
| Position in electro-chemical                                  | 10                            | Properties 18, 70                                                   |
| series<br>Properties                                          | 12<br>18, 69                  | Specific gravity                                                    |
| Specific gravity                                              | 18, 37                        | Specific heat                                                       |
| Specific heat                                                 | 18, 20                        | -                                                                   |
| Unit weights                                                  | 37                            | Tobin-Bronze, (See Bronze):                                         |
|                                                               |                               |                                                                     |

|                                         | PAGE.     |                                                       | PAGE.            |
|-----------------------------------------|-----------|-------------------------------------------------------|------------------|
| Tooling:                                |           | Unit Wrights:                                         |                  |
| Of aluminum                             | 64        | Of combustibles, (tables)                             | 219              |
| TRANSVERSE STRENGTH:                    |           | Of liquids<br>Of steam                                | 42<br>220        |
| Of aluminum                             | 46        | URANIUM:                                              | 220              |
| TRENTON IRON CO.'S GAUGE:               |           | Alloyed with aluminum                                 | 74               |
| Thickness in inches. (table)            | 101       | Atomic volume                                         | 18               |
|                                         | 101       | Atomic weight                                         | 18               |
| TUBE, TUBING:                           |           | Properties                                            | 18, 70<br>18, 37 |
| Hollow-ingots                           | 3         | Specific gravity                                      | 18, 37           |
| Aluminum — iron pipe sizes,             |           | Specific heatUnit weights                             | 18, 20<br>37     |
| (table)                                 | 125       |                                                       | 31               |
| Pressure on aluminum, 128               | -129-130  | VALUE:                                                |                  |
| (table),                                | 124       | Of foreign coins, (table)230-232,                     |                  |
| Weight per foot of aluminum,            |           | Comparative money, (table) U. S.—of marks and francs, | 238-239          |
| (table)                                 | 126-127   | (table)                                               | 241              |
| _                                       |           | Of weights used in tables                             | 33               |
| TUNGSTEN:                               |           | VANADIUM:                                             |                  |
| Alloyed with aluminum                   |           |                                                       | 75               |
| Atomic volume                           |           | Alloyed with aluminum                                 | 75<br>18         |
| Melting point                           |           | Atomic weight                                         | 18, 229          |
| Properties                              | 70        | Physical properties                                   | 18               |
| Specific gravity                        | 18, 37    | Specific gravity                                      | 18, 36           |
| Specific heat 1                         | 8, 20, 22 | Unit weights                                          | 36               |
| Unit weights                            | 37        | Varnish:                                              |                  |
| TURPENTINE, (See Oil):                  |           | For Aluminum Bronze Powder                            | . 9              |
| Melting point                           | 13        | VELOCITY:                                             |                  |
| ULTIMATE STRENGTH:                      |           | Metric conversion table                               | 207-208          |
| Aluminum                                | 45        | VINEGAR:                                              |                  |
| Aluminum pickel alloy                   | 17        | Action on aluminum                                    | 10               |
| Aluminum brass                          | 78<br>50  | Specific gravity                                      | 38, 42           |
| Metal<br>Stone                          | 50<br>50  | Weight per cu. ft                                     | 42               |
| Timber                                  |           | WASHBURN & MORN'S GAUGE:                              |                  |
| United States:                          | •••       | Thickness in inches, (table)                          | 101              |
| Coinage, (table)                        | 237       | W                                                     |                  |
| Custom duties on aluminum               | 242       | WATER:                                                |                  |
| Money orders                            | 233       | Equivalents of one lb. of—                            |                  |
| Registration of mail                    | 233       | evaporated<br>Evaporation of                          | 227<br>220       |
| Rates of postage                        | 233       | Latent heat of fusion                                 | 19               |
| Values of marks and francs,             | 241       | Mineral—action on aluminum                            | iŏ               |
| (table)                                 | 241       | Pressure of columns of                                | 221              |
| U. S. LEGAL STANDARD GAUGE:             |           | Salt—action on aluminum                               | 10               |
| Thickness in inches, (table)            | 101       | Sea—action on aluminum                                | 20 10            |
| , , , , , , , , , , , , , , , , , , , , | 101       | Sea—spg. and weight per cu. ft.<br>Specific gravity   | 38, 42<br>38, 42 |
| Unit, Units:                            |           | Specific heat                                         | 20               |
| Of electrical measurement               | 165       | Useful information concerning,                        |                  |
| Equivalents for electric heating        | 213       | Weight, average                                       | 41               |
| Names of monetary, (tables)             | 234-236   | Weight, kg. per sq. m., distilled,                    |                  |
| World's money, (tables)                 |           | (table)                                               | 107-111<br>42    |
| ., or to moreof, (world)                |           | Weight per cu. ft                                     | 42               |

|                                                                  | AGE.       |                                                                          | PAGE.                |
|------------------------------------------------------------------|------------|--------------------------------------------------------------------------|----------------------|
| WAX:                                                             |            | Steel sheet D & S manne (toble)                                          | 103                  |
| Melting point                                                    | 13         | Steel sheet, B. & S. gauge, (table)<br>Steel sheet, M. M. gauge, (table) | 103                  |
| Weight, average                                                  | 41         | Ctool wine D & C manus (table)                                           | 121                  |
| WEIGHT. WEIGHTS:                                                 |            | Steel wire, B. & S. gauge, (table)<br>Steel, relation to aluminum        |                      |
|                                                                  |            |                                                                          | 104                  |
| Aluminum bars, (table)32, 104, 11                                | 8-119      | Steel sheet and bars, (table)                                            | 104                  |
| Aluminum bars, flat rolled,                                      |            | Tensile strength in relation to,                                         | 46                   |
| (table) 11                                                       | 2-117      | (metals)<br>Values, comparative, (table)                                 |                      |
| Aluminum bronze, kg. per sq.<br>m., (table)                      |            | Water be per as m (tuble)                                                | 107 111              |
| m., (table) 10                                                   | 7-111      | Water, kg. per sq. m., (table)<br>Wood, fuel value                       | 000 000              |
| Aluminum & copper wire (table)                                   | 120        | By volume of combustibles,                                               | ~~~~~~               |
| Aluminum, factor of to other                                     |            | (table)                                                                  | 219                  |
| metals                                                           | 33         | Zinc, kg. per sq. m., (table)                                            |                      |
| Aluminum, general statements                                     | 6          | Zinc sheet per sq. ft., (table)                                          | 105                  |
| Aluminum, kg. per sq. m. (table) 10                              | 77-111     |                                                                          | 100                  |
| Aluminum plates per sq. ft                                       | 44         | WEIGHTS AND MEASURES:                                                    |                      |
| Aluminum sheet, 32, 102, 103, 10                                 | 4. 105     | Common-with metric equiva-                                               |                      |
|                                                                  |            | lents                                                                    | 176                  |
| Aluminum tubing per ft, (table) 12                               | 70-1Z/     | WRIGHT PER CUBIC FOOT:                                                   |                      |
| Aluminum wire B. & S. gauge,                                     | 101        |                                                                          | 9.0                  |
| (table)                                                          | 121<br>219 | Aluminum bronze                                                          | 36                   |
| Atomic, of combustibles                                          | 219        | Aluminum nickel alloy, an-                                               | 36                   |
| Atomic, of elements                                              | 210        | nealed                                                                   | 33-36                |
| Avoirdupois, (table)                                             |            | Aluminum nickel alloy, cast                                              |                      |
| Brass, kg. per sq. m., (table) 10                                | 103        | Aluminum nickel alloy, rolled,                                           | 33, 36               |
| Brass sheet B. &. S. gauge, (table) Brass sheet and bar, (table) | 104        | Aluminum nickel alloy, rolling                                           | 33                   |
| Brass wire, B. & S. gauge (table)                                | 121        | Aluminum pure annealed                                                   | 36                   |
| Coins, money units 23                                            | 0-232      | Aluminum pure cast                                                       |                      |
| Copper wire, B. & S. gauge(table)                                | 121        | Aluminum pure rolled 3                                                   | 4-00, 00<br>9-33, 36 |
| Copper, kg. per sq. m., table) 10                                |            | Aluminum Special Casting Allo                                            | v 33                 |
| Copper sheet, (table)                                            | 105        | Elastic fluids                                                           | $\widetilde{43}$     |
| Copper sheet, B.& S.gauge, (table)                               | 103        | Metals                                                                   | 36                   |
| Delta metal, kg. per sq. m.(table) 10                            |            | Various substances                                                       | 40-41                |
| (Hallons, standard, (water)                                      | 222        | Wood                                                                     | 38                   |
| History of units                                                 | 173        | WRIGHT PER CUBIC INCH:                                                   |                      |
| Iron, kg. per sq. m., (table) 10                                 | 7-111      |                                                                          |                      |
| Iron, sheet, B. & S. gauge (table)                               | 103        | Aluminum bronze                                                          | 36                   |
| Iron, sheet, M. M. gauge (table)                                 | 102        | Aluminum nickel alloy, an-                                               | 0.0                  |
| Iron wire, B. & S. gauge (table)                                 | 121        | nealed                                                                   | 36                   |
| Lead, kg. per sq. m., (table) 10                                 | 7-111      | Aluminum nickel alloy, cast                                              | 36                   |
| Manganese bronze, kg. per sq.                                    |            | Aluminum nickel alloy, rolled,                                           | 36<br>36             |
| m., (table) 10                                                   | 7-111      | Aluminum pure annealed                                                   | 32, 36               |
| Measures of                                                      | 212        | Aluminum pure cast                                                       | 32, 36               |
| Measures, customary to metric,                                   |            | Metals                                                                   | 36                   |
| (table)                                                          | 192        |                                                                          | 30                   |
| Measures, metric to customary,                                   |            | WEIGHT PER CUBIC DECIMETER:                                              |                      |
| (table) 19                                                       |            | Aluminum pure annealed                                                   | 36                   |
| Metals, comparative                                              | 44         | Aluminum pure cast                                                       | 36                   |
| Metals, per sq. ft                                               | . 44       | Aluminum pure rolled                                                     | 36                   |
| Metals, sheet, (table) 10                                        | 11-111     | Aluminum nickel alloy, an-                                               |                      |
| Metric and English equiva-                                       | 185        | nealed                                                                   | 36                   |
| lents, (table)                                                   | 190        | Aluminum nickel alloy, cast                                              | 36                   |
| Metric conversion, 203-204, 20                                   | 7, 212     | Aluminum nickel alloy, rolled,                                           | 36                   |
| Molecular, combustibles, (table)                                 | 219        | Aluminum bronze                                                          | 36                   |
|                                                                  | 410        | Metals                                                                   | 36                   |
| Muntz metal, kg. per sq. m.,<br>(table) 10                       | 7-111      | Welding:                                                                 |                      |
| Steel, kg. per sq. m., (table) 10                                | 7-111      | Aluminum                                                                 | 65                   |
| proof we her ad me (wante) 10                                    |            | 7.14.11111 AIII.                                                         | 30                   |

| WIRE:  Area in circular mils., (table) Comparison of—gauges and sheet metal gauges, (table) Resistance of pure aluminum (table) |                 | Atomic volume         |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| per, (table)  WOLFRAM:  Aluminum as trade name  Specific gravity                                                                | 120<br>71<br>37 | Ductility, relative   |
| Unit weights  Wood: Specific gravity Tensile strength Ultimate resistance to compression Weight and fuel value  Working:        |                 | Latent heat of fusion |
| Effect of — on hardness of aluminum                                                                                             | 29              | Specific heat         |
| YTTRIUM: Atomic weight                                                                                                          | 86<br>80        | ZIRCONIUM:   18       |



