1. Halmazok

Matematikában gyakran használt halmazok jelölései:

N – a természetes számok halmaza, a nullát is beleértve

 \mathbb{N}^+ – a pozitív egész számok halmaza

L – a logikai értékek kételemű halmaza

∅ – az üreshalmaz

A halmazokat gyakran vagy az elemeik felsorolásával (például a logikai értékek halmaza:)

$$\mathbb{L} ::= \{igaz, hamis\}$$

vagy egy tulajdonság megfogalmazásával (például a 100-nál nem nagyobb 5-tel osztható egészek halmaza:)

$$\{ x \in \mathbb{Z} \mid x \leqslant 100 \land 5 | x \}$$

adjuk meg.

Definíció: $Az [a..b] := \{ x \in \mathbb{Z} \mid a \leqslant x \land x \leqslant b \}$ halmazt (ahol a és b egész számok) intervallumnak nevezzük. Ami üres, ha b > a.

Jelölés: Egy H halmaz számosságát |H| jelöli. Azt, hogy egy H halmaz véges, így is írhatjuk: $|H| < \infty$.

2. Sorozatok

Jelölés: Ha H tetszőleges halmaz, akkor jelölje H^{**} az olyan (akár véges, vagy akár végtelen) sorozatok halmazát, mely sorozatok elemei mind a H halmazból valók. A H-beli véges sorozatok halmazát H^* -gal, a végtelen sorozatok halmazát H^{∞} -nel jelöljük. Tehát $H^{**} = H^* \cup H^{\infty}$. Egy $\alpha \in H^*$ sorozat hosszát jelölje $|\alpha|$, végtelen sorozat esetén legyen $|\alpha| = \infty$.

3. Relációk

Definíció: Legyenek A és B tetszőleges nemüres halmazok. Ekkor az $A \times B$ halmaz az A és B Descartes szorzata, és

$$A \times B ::= \{ (a,b) \mid a \in A \land b \in B \}$$

 $A \times B$ elemei tehát olyan rendezett párok, ahol a pár első komponense A-ból, a második B-ből van.

Definíció: Legyenek A és B tetszőleges nemüres halmazok. Ekkor az $A \times B$ halmaz minden R részhalmazát (tehát az üreshalmazt is) relációnak nevezzük.

Ha tehát $(x,y) \in R$, akkor azt mondjuk hogy x R relációban van y-nal, vagy hogy R x-hez hozzárendeli y-t.

Definíció: Legyenek A és B tetszőleges nemüres halmazok és $R \subseteq A \times B$ tetszőleges reláció. Az R reláció értelmezési tartománya:

$$\mathcal{D}_R ::= \{ a \in A | \exists b \in B : (a,b) \in R \}$$

a reláció értékkészlete:

$$\mathcal{R}_R ::= \{ b \in B | \exists a \in A : (a,b) \in R \}$$

a reláció értéke egy a helyen, vagy másképpen az a pont R reláció szerinti képe:

$$R(a) ::= \{ b \in B | (a, b) \in R \}$$

Az $R \subseteq A \times B$ relációt felfoghatjuk egy leképezésnek, megfeleltetésnek is az A és a B halmaz elemei között.

Definíció: Legyenek A és B tetszőleges nemüres halmazok és $R \subseteq A \times B$ tetszőleges reláció. Azt mondjuk hogy az R reláció determinisztikus, ha

$$\forall a \in A : |R(a)| \leq 1$$

A determinisztikus relációkat másképpen függényeknek hívjuk. Az $R \subseteq A \times B$ függvénynek, mint speciális relációnak külön jelölést vezetünk be: $R \in A \rightarrow B$.

Jelölés: Ha az $f \in A \rightarrow B$ függvényre még az is teljesül, hogy értelmezési tartománya megegyezik az A halmazzal, vagyis ha

$$\forall a \in A : |f(a)| = 1$$

akkor a következő jelölést alkalmazzuk: $f: A \rightarrow B$.

Megjegyzés: Az olyan $f \in A \to B$ függvényeket melyek nem rendelnek minden A-beli elemhez egy B-beli elemet (vagyis nincsenek mindenhol értelmezve az A felett), parciális függvényeknek nevezzük.

Megjegyzés: Legyen $f: A \to B$ függvény (tehát tudjuk hogy az f reláció az A halmaz minden eleméhez pontosan egy B-belit rendel) és $a \in A$. Legyen továbbá $f(a) = \{b\}$ ahol $b \in B$ az a-hoz rendelt egyetlen elem. Ebben az esetben az f(a) képet sokszor nem a $\{b\}$ egyelemű képhalmazként hanem egyszerűen csak mint b írjuk.

4. Állapottér

A feladat adatokról szól, a program is adatokkal dolgozik. Egy adat típusérték-halmaza az adat lehetséges értékeiből áll.

Definíció: Legyenek A_1, \ldots, A_n (ahol $n \in \mathbb{N}^+$) típusérték-halmazok és v_1, \ldots, v_n a halmazokat azonosító egyedi címkék (változók). Az ezekből képzett, címkézett értékeknek egy $\{v_1:a_1,\ldots,v_n:a_n\}$ halmazát (ahol $\forall i \in [1..n]: a_i \in A_i$) állapotnak nevezzük.

Egy-komponensű állapottér esetén $\{v_1:a_1\}$ helyett írhatunk a_1 -et is.

Definíció: Legyenek A_1, \ldots, A_n (ahol $n \in \mathbb{N}^+$) típusérték-halmazok és v_1, \ldots, v_n a halmazok azonosító egyedi címkék (változók). Az ezekből képzett összes lehetséges $\{v_1: a_1, \ldots, v_n: a_n\}$ állapot (ahol $\forall i \in [1..n]: a_i \in A_i$) halmazát állapottérnek nevezzük és $(v_1: A_1, \ldots, v_n: A_n)$ -nel jelöljük.

$$(v_1:A_1,\ldots,v_n:A_n) ::= \{ \{v_1:a_1,\ldots,v_n:a_n\} | \forall i \in [1..n] : a_i \in A_i \}$$

Definíció: Az $A = (v_1:A_1, \ldots, v_n:A_n)$ állapottér cimkéire (változók) úgy tekintünk mint $v_i: A \to A_i$ függvényekre, ahol $v_i(a) = a_i$ egy $a = \{v_1:a_1, \ldots, v_n:a_n\}$ állapot esetén.

Definíció: Legyenek $A = (v_1:A_1, \ldots, v_n:A_n)$ és $B = (u_1:B_1, \ldots, u_n:B_m)$ állapotterek $(n, m \in \mathbb{N}^+$ és $m \leq n)$. Azt mondjuk, hogy az A állapottérnek altere a B állapottér $(B \leq A)$, ha van olyan $\varphi \colon [1..m] \to [1..n]$ injekció, amelyre $\forall i \in [1..m] : B_i = A_{\varphi(i)}$.

5. Feladat

Definíció: Legyen A tetszőleges állapottér. Feladatnak nevezünk egy $F \subseteq A \times A$ relációt.

A feladat fenti definíciója természetes módon adódik abból, hogy a feladatot egy leképezésnek tekintjük az állapottéren, és az állapottér minden pontjára megmondjuk, hova kell

belőle eljutni, ha egyáltalán el kell jutni belőle valahova.

6. Program

Definíció: Legyen A az úgynevezett alap-állapottér ($fail \notin A$). Jelölje \bar{A} azon véges komponensű állapotterek unióját, melyeknek altere az A alap-állapottér: $\bar{A} = \bigcup_{A \leq B} B$. Az A feletti programnak hívjuk az $S \subseteq A \times (\bar{A} \cup \{\text{fail}\})^{**}$ relációt, ha

- 1. $\mathcal{D}_S = A$
- 2. $\forall a \in A : \forall \alpha \in S(a) : |\alpha| \ge 1 \text{ \'es } \alpha_1 = a$
- 3. $\forall \alpha \in \mathcal{R}_S : (\forall i \in \mathbb{N}^+ : i < |\alpha| \to \alpha_i \neq fail)$
- 4. $\forall \alpha \in \mathcal{R}_S : (|\alpha| < \infty \rightarrow \alpha_{|\alpha|} \in A \cup \{fail\})$

Definíció: $A\ p(S)\subseteq A\times A\ reláció\ az\ S\subseteq A\times (\bar A\cup \{fail\})^{**}\ program\ programfüggvénye,$ ha

- 1. $\mathcal{D}_{p(S)} = \{ a \in A \mid S(a) \subseteq \bar{A}^* \}$
- 2. $\forall a \in \mathcal{D}_{p(S)} : p(S)(a) = \{b \in A \mid \exists \alpha \in S(a) : b = \alpha_{|\alpha|}\}$

7. Megoldás

Definíció: Azt mondjuk hogy az S program megoldja az F feladatot (más szavakkal: az S program teljesen helyes az F feladatra nézve), ha

- 1. $\mathcal{D}_F \subseteq \mathcal{D}_{p(S)}$
- 2. $\forall a \in \mathcal{D}_F : p(S)(a) \subseteq F(a)$