

ICPC

Graphen 3

Tobias, Julian, Jakob, Tobias | 6. Juni 2018

Outline/Gliederung

- Einführung
- Max-Flow Algorithmen
 - Ford-Fulkerson
 - Edmonds-Karp
- Julian
- Tobias T

Gegeben gerichteter Graph

Max-Flow Algorithmen

s: source, t:sink

Max-Flow Algorithmen

Fluss

Max-Flow Algorithmen

Flusserhaltung

Max-Flow Algorithmen

Einführung

Julian

Wert eines s-t-Flusses

Max-Flow Algorithmen

Max-Flow Algorithmen

Max-Flow Algorithmen

Exzess: Werte entsprechend der Kantenkapazität abzüglich bereits vorhandener Flüsse

Max-Flow Algorithmen

Flussprobleme

 Schwierigeit im Erkennen der Aufgaben Proble UVa xxx

Flussprobleme

- Schwierigeit im Erkennen der Aufgaben
- Seit 2013 vermehrtes vorkommen in contests decider Problem

Bestimmung des maximalen Flusses

Idee:

- Starte mit dem leeren Fluss
- Bestimme erweiternden Pfad (augmenting path) P, auf dem der Fluss von s nach t vergrößerbar ist
- Erweitere die Lösung um Pfad P
- Wiederhole so oft, wie es einen passenden Pfad P gibt

Frage: Wie kann P gefunden werden?

Ford-Fulkerson Algorithmus

- Greedy Algorithmus veröffentlicht in 1956 von L. R. Ford, Jr. und D. R. Fulkerson
- Verwendet Tiefensuche um den erweiternden Pfad P zu bestimmen
- Die Lösung wird um P erweitert indem,
 - die geringste Kapazität f einer Kante in P bestimmt wird
 - die Kapazitäten aller Kanten in P um f verringert werden
 - die Kapazitäten aller Gegenkanten um f erhöht werden
 - der maximale Fluss um f erhöht wird

Ford-Fulkerson Algorithmus

Ford-Fulkerson Algorithmus

- Im Worst-Case wird der maximale Fluss pro Iteration nur um 1 erhöht
- \Rightarrow Laufzeit in $\mathcal{O}(|f^*|\cdot|E|)$, wobei $|f^*|$ der Wert des maximalen Flusses beschreibt
 - Deshalb nicht für ICPC-Aufgaben geeignet!

Edmonds-Karp Algorithmus

- 1972 von J. Edmonds und R. M. Karp veröffentlicht
- Verwendet Breitensuche um den k\u00fcrzesten erweiternden Pfad P zu bestimmen
- Erweiterung der Lösung um P analog zu Ford-Fulkerson
- Die Länge des erweiternden Pfades ist monoton steigend
- Es sind maximal $|V| \cdot |E|$ Iterationen notwendig
- \Rightarrow Laufzeit in $\mathcal{O}(|V| \cdot |E|^2)$

Edmonds-Karp Implementierung

Algorithm 1: Edmonds-Karp

```
Function Max-Flow (G = (V, E), s, t, c)
   maxFlow = 0
   do
       find augmenting path P using BFS
       f = min(c(u, v)|(u, v) \in P)
       foreach (u, v) \in P do
           c(u,v) = f
           c(v,u) += f
       end
       maxFlow += f
   while P exists
   return maxFlow
```

Edmonds-Karp Algorithmus

Einführung

Max-Flow Algorithmen

Julian

Tobias T

Tobias, Julian, Jakob, Tobias - Graphen 3

6. Juni 2018

11/36

Edmonds-Karp Implementierungsdetails

- In Adjazenzliste neben Zielknoten auch Kapazität und Verweis auf die Rückkante speichern
- In Breitensuche nur Kanten mit positiver Kapazität berücksichtigen
- Breitensuche abbrechen, sobald t erreicht wurde

Min-Cut

Min-Cut

- Definiere Schnitt C = (S Komponente, T Komponente) als Partition von V ∈ G, wobei s ∈ S – Komponente und t ∈ T – Komponente
- Weiter sei die Schnittmenge $c = \{(u, v) \in E | u \in S Komponente \land v \in T Komponente\}$
- Wähle c so, dass Max Flow von s nach t 0 ist, für $E' = E \setminus c$

Max-Flow-Min-Cut-Theorem

Max-Flow-Min-Cut-Theorem

 Ein maximaler Fluss im Netzwerk hat genau den Wert eines minimalen Schnitts.

6. Juni 2018

Max-Flow-Min-Cut

Bsp.:

- Hier
 - $C = (\{s, q_1\}, \{t, q_0\})$
 - $c = \{(s, q_0), (q_1, q_0), (q_1, t)\}$

Multi-Quelle/Multi-Abfluss

Gegeben sei folgende Situation:

- Problem: Max-Flow Algorithmus kann nur mit einer Quelle und einer Senke arbeiten.
- Lösung: Ertelle Super-Quelle und Super-Senke und verbinde alle Quellen und Senken mit Kantengewicht ∞

Multi-Quelle/Multi-Abfluss Lösung

Knotenkapazität

- Gegeben sind Knoten mit Kapazität.
- Bsp.:

Knotenkapazität

- Gegeben sind Knoten mit Kapazität.
- Bsp.:

Modellierung

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - ...

Modellierung

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - ...

Modellierung

- Erkennen eines Netzwerkfluss-Problems nicht immer einfach
- Was hilft?
 - Übung
 - Übung
 - · ...

Modellierung - Beispiel

- Situation: Die Titanic ist gesunken. Es soll ermittelt werden wie viele Menschen gerettet werden k\u00f6nnen.
- Eingabe: X, Y, P mit X,Y Dimension der Fläche ($1 \le X, Y \le 30$) und P ($P \le 10$) die Anzahl von Personen, welche gleichzeitig auf ein Holzbrett können.

Symbol	Bedeutung
*	Menschen auf Treibeis
~	Eiskaltes Wasser
	Treibeis
@	Großer Eisberg
#	Großes Holzbrett

Modellierung - Beispiel

Gegeben sei nun folgende Eingabe:

```
* ~ ~ #
. . . @
. ~ . *
```

Wandle in Graphen um...

Tobias, Julian, Jakob, Tobias - Graphen 3

Julian

Gegeben sei nun folgende Eingabe:

```
* ~ ~ #
. . . @
. ~ . *
```

Wandle in Graphen um...

Tobias, Julian, Jakob, Tobias - Graphen 3

Julian

Verbinde alle Knoten, über die ein Weg möglich ist...

6. Juni 2018

Tobias, Julian, Jakob, Tobias - Graphen 3

Verbinde alle Knoten, über die ein Weg möglich ist...

Tobias, Julian, Jakob, Tobias - Graphen 3

■ Füge Knotengewichte hinzu...

Einführung

Julian

■ Füge Knotengewichte hinzu...

Tobias, Julian, Jakob, Tobias - Graphen 3

Verbinde alle Menschen mit s und alle Holzbretter mit t...

Bem.: Knotengewichte müssen noch aufgelöst werden

Max-Flow Algorithmen

Bipartiter Graph

Bipartiter Graph

■ Ein Graph G = (V, E) heißt **bipartit**, wenn sich $V = A \cup B$ in 2 disjunkte Knotenmengen A und B aufteilen lässt, sodass zwischen den Knoten innerhalb der Teilmengen keine Kanten existieren.

Matching

Matching

- Sei G = (V, E) ein Graph. Ein **Matching** $M \subseteq E$ ist eine Menge paarweise knotendisjunkter Kanten, d.h.
 - $\forall e_1 = \{u_1, v_1\}, e_2 = \{u_2, v_2\} \in M, e_1 \neq e_2 : e_1 \cap e_2 = \emptyset$
- Analog f
 ür gerichtete Graphen

Matching

Matching

- Sei G = (V, E) ein Graph. Ein **Matching** $M \subseteq E$ ist eine Menge paarweise knotendisjunkter Kanten, d.h.
 - $\forall e_1 = \{u_1, v_1\}, e_2 = \{u_2, v_2\} \in M, e_1 \neq e_2 : e_1 \cap e_2 = \emptyset$
- Analog f
 ür gerichtete Graphen

Maximales Matching

Ein Matching heißt maximales Matching, wenn nicht durch Hinzufügen einer Kante ein größeres Matching erstellt werden kann. (D.h. es gibt keine Kante e = {u, v}, wobei u und v nicht Teil des Matchings sind.)

Perfektes Matching

Kardinalitätsmaximales Matching

■ Ein Matching $M \subseteq E$ heißt **kardinalitätsmaximales Matching**, wenn es kein größeres Matching gibt. (D.h. \forall Matchings $M' : |M| \ge |M'|$).

Perfektes Matching

Tobias, Julian, Jakob, Tobias - Graphen 3

Ein Matching M heißt perfekt, falls 2 * |M| = |V|, d.h. jeder Knoten V ∈ V kommt in M vor.

Perfektes Matching

Kardinalitätsmaximales Matching

■ Ein Matching $M \subseteq E$ heißt **kardinalitätsmaximales Matching**, wenn es kein größeres Matching gibt. (D.h. \forall Matchings $M' : |M| \ge |M'|$).

Perfektes Matching

■ Ein Matching M heißt **perfekt**, falls 2 * |M| = |V|, d.h. jeder Knoten $v \in V$ kommt in M vor.

Julian

Maximales Matching

Tobias T

Perfektes Matching

Tobias, Julian, Jakob, Tobias - Graphen 3

- Finden von kardinalitätsmaximalen Matchings in bipartiten Graphen $G = (V, E = A \cup B)$:
 - Einfügen von neuen Knoten s und t
 - Einfügen von Kanten zwischen s und allen Knoten v_A ∈ A, und zwischen allen Knoten v_B ∈ B und t.
 - Jede Kante im Graph (alte und neu eingefügte) hat Kapazität 1.
 - Berechnen des maximalen Flusses von s nach t.

Julian

Max-Flow Algorithmen

Einführung

Beispiel

- Kurz auf Laufzeit eingehen
- Beispiel: Primzahlen (Competitive Programming 3, Seite 180)
- Definitionen: Max Independent Set, Min Vertex Cover, Königs
 Theorem: —Min Vertex Cover— = —grtes Matching—

- Beispiel: Guardian of Decency (Competitive Programming 3, Seite 182)
- (Je nach verbleibender Zeit:) noch mehr Graphentheorie: bipartit <==> keine ungeraden Kreise, ...