การอ่านและตรวจสอบตัวต้านทานแบบคงที่

ตัวต้านทานแบบคงที่โดยทั่วไปจะเห็นแถบสีอยู่บนตัวซึ่งเป็นรหัสที่ใช้อ่านค่าความต้านทานเรามักจะเห็นอยู่ 2 แบบ คือ มี 4 แถบสีกับ 5 แถบสีตัวต้านทาน 5 แถวสีจะมีค่าความคลาดเคลื่อนน้อยกว่าแถบสีซึ่งจะเห็น อยู่ที่ 1% และการอ่านตัวต้านทาน 4 แถบสี และ 5 แถบสี ซึ่งมีหลักการที่อ่านเหมือนกัน

การอ่านตัวต้านทาน 4 แถบสี

การอ่านตัวต้านทาน 4 แถบสี แถบสีที่1 แถบสีที่2 เป็นแถบสีหลัก แถบสีที่3 เป็นตัวคูณ และแถบสีที่4 เป็นค่าความคลาดเคลื่อน

การอ่านค่าตัวต้านทาน 4 แถบสี

การอ่านตัวต้านทาน 5 แถบสี

การอ่านตัวต้านทาน 5 แถบสี แถบสีที่1 แถบสีที่2 แถบสีที่3 เป็นแถบสีหลัก แถบสีที่4 เป็นตัวคูณ และ แถบสีที่5 เป็นค่าความคลาดเคลื่อน

แถบสีที่2 แถบสีที่3 แถบสีที่1 แถบสีที่4 แถบสีที่5 สี หลักที่1 หลักที่2 หลักที่3 ด้วคุณ ค่าความคลาดเคลื่อน ตัวเลข ตัวอักษร 0 0 0 1 น้ำตาล 1 1 10 1% 1 2 2 2 100 2% แดง G สัม 3 3 3 1,000 เหลือง 4 4 4 10,000 เขียว 5 5 5 100,000 0.50% D น้าเงิน 6 1,000,000 0.25% C 6 6 7 7 7 ม่วง 0.10% В 8 8 0.05% เทา 9 9 ขาว 9 ทอง --0.1 5% J เงิน 0.01 10% K

การอ่านค่าตัวต้านทาน 5 แถบสี่

S.	แถบสีที่1 หลักที่1	แถบสีที่2 หลักที่2	แถบสีที่3 หลักที่3	แถบสีที่4 ตัวคูณ	แถบสีที่5 คำความคลาดเคลื่อน	
					ตัวเลข	ตัวอักษร
ดำ	0	0	0	1	-	-
น้าตาล	1	1	1	10	1%	F
แดง	2	2	2	100	2%	G
ส้ม	3	3	3	1,000	2	5
เหลือง	4	4	4	10,000	-	2
เขียว	5	5	5	100,000	0.50%	D
น่าเงิน	6	6	6	1,000,000	0.25%	С
ม่วง	7	7	7	0 = 0	0.10%	В
เทา	8	8	8	-	0.05%	1
ขาว	9	9	9	9 4 0	-	-
ทอง	-	0.5	-	0.1	5%	J
เงิน	-	N#	-	0.01	10%	K

ตารางสีค่าความต้านทาน

การวัดและตรวจสอบตัวต้านทาน

การวัดหาค่าตัวต้านทานโดยการใช้มัลติมิเตอร์แบบเข็ม

- 1) ปรับมิเตอร์ไปที่ย่านโอมห์มิเตอร์
- 2) ปรับ Zero โอมห์มิเตอร์ ปรับเข็มให้ไปอยู่ที่เลข 0 โดยใช้สายมิเตอร์ บวก และ ลบ แตะกันแล้ว ปรับ
 - 3) ใช้สายมิเตอร์แตะที่ขาตัวต้านทานแล้วอ่านค่าโดยค่าที่อ่านได้นำไปคูณกับย่านการวัดที่ตั้งไว้

<u>ตัวอย่าง</u>

หน้าปัดเข็มอ่านค่าได้ 20 นำค่าที่อ่านได้ย่านการวัดที่ตั้งไว้ เช่นตั้งโอมห์มิเตอร์ที่ x1, x10, x100 จะได้ 20x1 =20 โอมห์, 20x10 =200 โอมห์, 20x100 = 2000โอมห์

การปรับ ADJust Zero

ปลดสายออก

วัดตัวต้านทานที่ต้องการ

ค่าความต้านทานที่อ่านได้จากรูปเท่ากับ 20 ย่านการวัดที่ x10 ค่าความต้านทานของตัวต้านทาน 20x10 = 200 โอมห์

การตรวจเช็คตัวต้านทานเสียหรือไม่เสีย

ทำเหมือนกับการวัดค่าความต้านทาน แต่ต้องรู้ว่าตัวต้านทานนั้นมีค่าความต้านทานเท่าไหร่ ซึ่งอ่านจาก แถบสี ถ้าตัวต้านทานยังใช้งานได้ค่าที่อ่านได้ต้องตรงหรือใกล้เคียงกับค่าที่อ่านจากแถบสี แต่ถ้าค่าที่อ่านได้ ต่างกันมากหรือไม่ขึ้นเลยแสดงว่าตัวต้านทานเสียแล้วใช้งานไม่ได้