تمرین سری چهارم درس هدایت و ناوبری

علی بنیاسد ۲۸ خرداد ۲ °۱۴

١ سوال اول

در این سوال به بررسی مسیر بالستیک موشک و مسیر بهینه آن پرداخته شده است.

١٠١ بخش الف

در این بخش به بررسی معادلات حرکت جسم نقطه در صفحه پرداخته شده است. معادلات حرکت جسم نقطه در صفحه به صورت زیر است:

$$\ddot{\mathbf{r}} = -\frac{GM}{r^3}\mathbf{r} \tag{1}$$

پارامترهای معادله به صورت زیر تعریف میشوند:

- r : بردار موقعیت جسم نقطه
 - نابت گرانشی: $G \bullet$
 - جرم جسم مرکزی : $M \bullet$
- فاصله جسم نقطه از مرکز جسم مرکزی : r

بردار موقعیت جسم نقطه به صورت زیر تعریف میشود:

$$\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} \tag{7}$$

با جایگذاری معادله (۲) در معادله (۱) داریم:

$$\ddot{x}\hat{\mathbf{i}} + \ddot{y}\hat{\mathbf{j}} = -\frac{GM}{(x^2 + y^2)^{3/2}}(x\hat{\mathbf{i}} + y\hat{\mathbf{j}}) \tag{\Upsilon}$$

بر اساس روابط بالا ارتفاع به صورت زیر بدست می آید.

$$h = \sqrt{x^2 + y^2} - a \tag{(4)}$$

در این رابطه a بیانگر شعاع زمین است. برای محاسبه سرعت تغیرات ارتفاع نیز به صورت زیر تعریف می شود.

$$\dot{h} = \frac{x\dot{x} + y\dot{y}}{\sqrt{x^2 + y^2}} \tag{2}$$

همچنین طول جغرافیایی برابر است با:

$$\lambda = \tan^{-1}\left(\frac{y}{x}\right) \tag{9}$$

و تغیرات طول جغرافیایی برابر است با:

$$\dot{\lambda} = \frac{x\dot{y} - y\dot{x}}{x^2 + y^2} \tag{Y}$$

زاویه فراز با فرض قرار دادن محور X بر روی مکان اولیه به صورت زیر تعریف میشود:

$$\theta = \arccos\left(\frac{\mathbf{r}.\mathbf{r}_0}{r.r_0}\right) = \arccos\left(\frac{x_0x + y_0y}{\sqrt{(x^2 + y^2)(x_0^2 + y_0^2)}}\right) \tag{A}$$

و تغیرات زاویه فراز برابر است با:

$$\dot{\theta} = \frac{x_0 \dot{x} + y_0 \dot{y}}{\sqrt{(x^2 + y^2)(x_0^2 + y_0^2)}} - \frac{x_0 x \dot{x} + y_0 y \dot{y}}{(x^2 + y^2)^{3/2} \sqrt{x_0^2 + y_0^2}} \tag{9}$$

فهرست مطالب
۱ سوال اول ۱۰۱ بخش الف
فهرست تصاوير
فهرست جداول