

CS 443 Map Reduce

Winter 2012 Adapted from Suciu & Balazinska

Parallel DBMS

- Intra-operator parallelism
 - An operator runs on multiple processors
 - For both OLTP and Decision Support
 - □ Main parallelism used in Parallel DBMS since 1980's
- Last week we discussed how to use data partitioning to parallelize main database operations like join and group by

Review: Parallel DBMS

Figure 5 - Master server performs global planning and dispatch

From: Greenplum Database Whitepaper

Parallel DBMS

- □ Parallel query plan: tree of parallel operators
 - □ Data streams from one operator to the next
 - Typically all cluster nodes process all operators
- Can run multiple queries at the same time
 - Queries will share the nodes in the cluster
- Notice that user does not need to know how his/ her SQL query was processed

Cluster Computing

- Large number of commodity servers, connected by high speed, commodity network
- □ Rack: holds a small number of servers
- □ Data center: holds many racks
- Massive parallelism
 - ■100s, or 1000s, or 10000s servers

Commodity Clusters

- □ Web data sets can be very large
 - Tens to hundreds of petabytes
- □ Cannot analyze on a single server
- □ Standard architecture
 - Cluster of commodity Linux nodes
 - □ Gigabit ethernet interconnect
- ☐ How to organize computations on this architecture?
 - □ Shared-nothing Parallel DBMS, right?
 - New performance issue: fault-tolerance
 - Mask issues such as hardware failure 11/16/1

Single-node architecture

Node architecture same as in shared nothing parallel DBMS

Cluster Architecture

2-10 Gbps backbone between racks

Each rack contains 16-64 nodes

Distributed File System

- □ For very large files: TBs, PBs
 - Each file is partitioned into *chunks*, typically 64MB
- □ Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- □ Implementations:
 - □ Google's DFS: GFS, proprietary
 - □ Hadoop's DFS: HDFS, open source
- □ Typical usage pattern
 - □ Data is rarely updated in place
 - Reads and appends are common

Map-Reduce

- □ Google paper published 2004
 - Free variant: Hadoop
- Map-reduce = high-level programming model and implementation for largescale parallel data processing

Data Model

- Based on file processing
- \Box A file = a bag of (key, value) pairs
- □ A map-reduce program
 - Input: a bag of (inputkey, value)
 pairs
 - Output: a bag of (outputkey, value) pairs

Map

- ☐ User provides the MAP-function:
 - □Input: (input key, value)
 - Output: bag of (intermediate key, value)
- System applies the map function in parallel to all (input key, value) pairs in the input file
 - Each mapper takes care one chunk of the file

Reduce

- □ User provides a REDUCE function:
 - Input: (intermediate key, bag of values)
 - Output: bag of output (values)
- System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example: Word Count

- We have a large file of words, one word to a line
- Count the number of times each distinct word appears in the file
- □ Each Document Doc(did, word)
 - The key = document id (did)
 - The value = list of words (word)

```
reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each word w in value:

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));6/11
```

MapReduce: The Map Step

Input Intermediate key-value pairs

k

v

map

k

v

map

map

•

MapReduce: The Reduce Step

Example

- □ Doc I: the weather is good
- □ Doc 2: today is good
- □ Doc 3: good weather is good.

Map output

```
    Doc I:

            (the I), (weather I), (is I), (good I).

    Doc 2:

            (today I), (is I), (good I).

    Doc 3:

            (good I), (weather I), (is I), (good I).
```


Reduce Input

```
□ Key I:
  □ (the I)
□ Key 2:
  □ (is I), (is I), (is I)
□ Key 3:
  □ (weather I), (weather I)
□ Key 4:
  □ (today I)
□ Key 5:
  □ (good I), (good I), (good I)
```


Reduce Output

```
□ Key I:
  □ (the I)
□ Key 2:
  □ (is 3)
□ Key 3:
  □ (weather 2)
□ Key 4:
  □ (today I)
□ Key 5:
  □ (good 4)
```


This example in SQL

21

MAP = GROUP BY REDUCE = Aggregate

Doc(did, word)

SELECT word, sum(1) FROM Doc GROUP BY word

Google MR Architecture

Worker

24

A worker is a process that executes one task at a time

 Typically there is one worker per processor, hence 4, or 8 per node

File System

25

- All data transfer between workers occurs through distributed file system
 - Support for split files
 - Workers perform local writes
 - Each map worker performs local or remote read of one or more input splits
 - Each **reduce** worker performs remote read of multiple intermediate splits
 - Output is left in as many splits as reduce workers

11/16/11

Data Partitioning

26

- □ Data partitioned (split) by hash on key
- Each worker responsible for certain hash bucket(s)
- □ How many workers/splits?
 - Best to have multiple splits per worker
 - Improves load balance
 - If worker fails, splits could be re-distributed across multiple other workers
 - Best to assign splits to "nearby" workers
 - Rules apply to both map and reduce workers

UoFT:DB Group

Job vs. Task

27

- □ A Map-Reduce Job
 - One single "query", e.g., count the words in all docs
 - More complex queries may consists of multiple jobs
- □ A Map Task or a Reduce Task
 - A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker

UOFT:DB GROUP

Implementation

29

- □ There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions (or intermediate splits)
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

UOFT:DB GROUP

Fault Tolerance

30

- □ Worker failure
 - Master pings workers periodically
 - If down then reassigns the task to another worker
 - Map/reduce tasks committed through master
- □ Master failure
 - Not covered in original implementation
 - Could be detected by user program or monitor
 - Could recover persistent state from disk

6/11

Performance

3 I

- Straggler = a machine that takes unusually long time to complete one of the last tasks. E.g.:
 - □ Bad disk forces frequent correctable errors (30MB/s
 → IMB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- Stragglers are a main reason for slowdown
 - Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Other Issues

- Handling bad records
 - Best is to debug and fix data/code
 - □ If master detects at least 2 task failures for a particular input record, skips record during 3rd attempt
 - □ Is this an issue in RDBMS?
- Debugging
 - □ Tricky in a distributed environment
 - Done through log messages and counters

Map-Reduce Summary

33

- Hides scheduling, fault recovery, and parallelization details
- Scales well, way beyond thousands of machines and terabytes of data
- Flexibility to handle heterogeneous unstructured data
- General enough for expressing many practical problems

UOFT:DB GROUP

Map-Reduce Summary

- □ One-input two-phase data flow rigid, hard to adapt
 - Does not allow for stateful multiple-step processing of records
 - □ Difficult to write more complex queries
 - Need multiple map-reduce jobs
- Procedural programming model requires (often repetitive) code for even the simplest operations (e.g., projection, filtering)
- Opaque nature of the map and reduce functions impedes optimization
- □ Solution: declarative query language! 16/11

Declarative languages on MR

- □ Hive (Facebook)
 - □ SQL + UDFs
- □ PIG Latin (Yahoo!)
 - New language, like Relational Algebra
- □ HadoopDB
 - □ MR + DB
- □ SQL /Tenzing (Google)
 - □ SQL on MR
 - Proprietary

Hive

- □ Is built on top of Hadoop (MapReduce + HDFS).
- Supports a declarative language (HiveQL) that is compatible with most SQL.
- Supports a combination of the declarative language and user defined functions.
- Compiles a query into a set of MapReduce jobs and executes these jobs in the MapReduce framework.

Pig Latin

37

- Is also built on top of Hadoop (MapReduce + HDFS).
- Is a procedure language that fits between the declarative style of SQL and the low-level MapReduce.
- □ Good
 - More straightforward for people who are not comfortable with SQL
 - □ Less coding compared to MapReduce.
- □ Bad
 - More coding compared to SQL.

11/16/11

HadoopDB

- □ Is a hybrid system of MapReduce and RDBMS.
- □ Replaces the storage layer by RDBMS.
 - Good
 - Many computations can be pushed to the database layer.
 - It can utilize nice database properties (e.g. indices)
 - Bad
 - Loading data is an overhead.
 - Some operations have to be done through MapReduce.

Parallel DBMS vs MR

39

- □ ParallelDBMS faster
 - Indexing
 - Physical tuning
 - Can stream data from one op. to the next without blocking
- □ MapReduce fault-tolerant
 - □ Can easily add nodes to the cluster (no need to even restart)
 - □ Uses less memory since processes one key-group at a time
 - Intra-query fault-tolerance thanks to results on disk
 - Handles adverse conditions: e.g., stragglers
 - Arguably more scalable... but also needs more nodes!

11/16/11