ADMISSION PREDICTION USING IBM AUTOAI & STREAMLIT

A Machine Learning-based Web App By Aquib Ali

INTRODUCTION

- Objective: Predict student admission chances using profile data.
- • Why it matters: Helps students evaluate their admission eligibility.

Technologies Used

- IBM Watson AutoAI
- Streamlit
- Python
- IBM Cloud Object Storage
- Pandas, Scikit-learn (if applicable)

Dataset Description

SOURCE: CSV FILE WITH 200+ ROWS FEATURES: GRE, TOEFL, SOP, LOR, CGPA, ETC. TARGET: CHANCE OF ADMIT (0-1)

:::	Admission_Predict 2 🖔 🗸								₩ Buy Microsoft 365		
File	Home	e Insert Sha	re Page Layout	Formulas Data	Review View H	Help Draw			Q	Comments	h up 🔀 Viewing 🗸
	$\bigvee \left[\times \checkmark f_{x} \cdot \right] \left[University Rating \right]$										
	4	Α	В	С	D	Е	F	G	Н	1	J
	1 5	Serial No.	GRE Score	TOEFL Score	University	SOP	LOR	CGPA	Research	Chance of	Admit
	2	1	337	118	4	4.5	4.5	9.65	1	0.92	
	3	2	324	107	4	4	4.5	8.87	1	0.76	
	4	3	316	104	3	3	3.5	8	1	0.72	
	5	4	322	110	3	3.5	2.5	8.67	1	0.8	
	6	5	314	103	2	2	3	8.21	0	0.65	
	7	6	330	115	5	4.5	3	9.34	1	0.9	
	8	7	321	109	3	3	4	8.2	1	0.75	
	9	8	308	101	2	3	4	7.9	0	0.68	
1	.0	9	302	102	1	2	1.5	8	0	0.5	
1	1	10	323	108	3	3.5	3	8.6	0	0.45	
1	.2	11	325	106	3	3.5	4	8.4	1	0.52	

Metric chart ①

Prediction column: Chance of Admit

Model Building with AutoAl

- AutoAl automates preprocessing and model selection
- Uploaded dataset to IBM Cloud
- Selected target column
- AutoAl generated and evaluated pipelines

Experiment Results

- Algorithm used: Best performing model from AutoAl
- Accuracy/R² Score: Displayed in AutoAl output
- Visualization: Include screenshot or graph from experiment

How to Run the Application

- Clone Repo: git clone <repo_url>
- Install Dependencies: pip install r requirements.txt
- Add .env file with WML credentials
- Run App: streamlit run app.py

Challenges Faced

- Challenge: Too many AutoAl pipelines → Selected best one
- Challenge: API Key security → Used .env file
- Challenge: Streamlit build error → Fixed pandas version

