Exercices ch 3 Les signaux dans l'Univers

Correction évaluation

<u>Question 1</u>: Quel type d'astres, présents en très grand nombre, sont en mouvement autour du centre de la galaxie d'Andromède ?

Dans la galaxie d'Andromède, il y a des étoiles qui tournent autour du centre.

Question 2 : Comment se nomme la galaxie dans laquelle se trouve notre système solaire ?

Notre galaxie s'appelle la Voie Lactée

<u>Question 3</u>: Quelle galaxie est la plus grande : Andromède ou celle contenant le système solaire ? (Effectue la conversion nécessaire pour répondre à cette question).

	En km	En a.l
Diamètre d'Andromède	1,33 x 10 ¹⁸ km	$\frac{1,33 \times 10^{18}}{9,5 \times 10^{12}} = \underline{1,4 \times 10^5 \text{ a.l}}$
Diamètre Voie Lactée	$1 \times 10^5 \times 9,5 \times 10^{12} = 0,95 \times 10^{18} \text{ km}$	1 x 10 ⁵ a.l

Notre galaxie : 100 000 a.l

$$1 \text{ al} = 9.5 \times 10^{12} \text{ km}$$

Andromède est la galaxie la plus grande car 1.4×10^5 a.l > 1×10^5 a.l

Question 4 : Convertir la distance Terre-Andromède en km.

Distance en UA	1 UA	1,52 x 10 ¹¹ UA
Distance en km	1,5 x 10 ⁸ km	$1,52 \times 10^{11} \times 1,5 \times 10^8 = 2,28 \times 10^{19} \text{ km}$

<u>Question 5</u>: Calculer en combien de temps la lumière de la galaxie d'Andromède arrive sur Terre. (vitesse de la lumière : $v = 3x10^5$ km/s).

Calculons la durée de propagation du signal entre le sol et le satellite :

$$t = \frac{d}{v} = \frac{2,28 \times 10^{19}}{3 \times 10^5} = \frac{0,76 \times 10^{14} s}{0.76 \times 10^{14} s} = \frac{7.6 \times 10^{13} s}{0.76 \times 10^{14} s}$$