บทที่ 4 ปริภูมิเวกเตอร์ทั่วไป (General Vector Spaces)

4.1 ปริภูมิเวกเตอร์จริง (Real Vector Spaces)

บทนิยาม 4.1.1

ให้ V เป็นเซตที่ไม่ใช่เซตว่างของวัตถุใดๆ ที่มีนิยามการดำเนินการสองชนิดคือการ บวก (addition) และการคูณด้วยสเกลาร์ (scalar multiplication) โดย **การบวก** หมายถึงกฎสำหรับการรวมกันของ ของวัตถุ ${\bf u}$ และ ${\bf v}$ แต่ละคู่ใน V ซึ่งวัตถุ ${\bf u}+{\bf v}$ เรียกว่า **ผลบวก** (sum) ของ ${\bf u}$ และ ${\bf v}$ ส่วนการคูณด้วยสเกลาร์ หมายถึงกฎสำหรับ การรวมกันของ สเกลาร์ k และวัตถุ ${\bf u}$ ใน V ซึ่งวัตถุ $k{\bf u}$ เรียกว่า **พหุคูณสเกลาร์** (scalar multiple) ของ ${\bf u}$ โดย k ถ้าสัจพจน์ (axioms) ต่อไปนี้เป็นจริงสำหรับทุกๆ วัตถุ ${\bf u}, {\bf v}, {\bf w}$ ใน V และทุกๆ สเกลาร์ k และ k แล้วเราเรียก k ว่าเป็น **ปริภูมิเวกเตอร์** (vector space) และเรียกวัตถุใน k ว่า **เวกเตอร์** (vector)

- (1) ถ้า ${\bf u}$ และ ${\bf v}$ เป็นวัตถุใน V แล้ว ${\bf u}+{\bf v}$ อยู่ใน V ด้วย
- $(2) \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- (3) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- (4) มีวัตถุ ${f 0}$ ใน V เรียกว่า **เวกเตอร์ศูนย์** สำหรับ V ที่ทำให้ ${f 0}+{f u}={f u}+{f 0}={f u}$ สำหรับ ทุก ${f u}$ ใน ${f v}$
- (5) สำหรับแต่ละวัตถุ ${\bf u}$ ใน V มีวัตถุ $-{\bf u}$ ใน V เรียกว่า **ลบ** (Negative) ของ ${\bf u}$ ที่ทำให้ ${\bf u}+(-{\bf u})=(-{\bf u})+{\bf u}={\bf 0}$
- (6) ถ้า k เป็นสเกลาร์ใดๆ และ ${f u}$ เป็นวัตถุใน V แล้ว $k{f u}$ อยู่ใน V ด้วย
- (7) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- (8) $(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$
- (9) $k(l\mathbf{u}) = (kl)\mathbf{u}$
- (10) 1u = u

จากบทนิยามที่ 4.1.1 ด้านบน เราอาจมองได้ว่าปริภูมิเวกเตอร์ คือเซตของวัตถุหนึ่ง ที่มีนิยามการดำเนิน การสองชนิดคือการบวก และการคูณด้วยสเกลาร์ ซึ่งเมื่อนำมาดำเนินการ กับสมาชิกในเซตดังกล่าวแล้ว จะได้ผลลัพธ์ที่สอดคล้องกับสัจพจน์ทั้งสิบประการ นิยามของปริภูมิเวกเตอร์ ไม่ขึ้นอยู่กับธรรมชาติของ เวกเตอร์หรือตัวดำเนินการ วัตถุใดๆ อาจเป็นเวกเตอร์ และการดำเนินการบวก และการคูณด้วยสเกลาร์ อาจไม่มีความสัมพันธ์ หรือความคล้ายคลึงกันกับการดำเนินการเวกเตอร์มาตรฐานบน \mathbb{R}^n

สัจพจน์ประการที่ (1) และ (6) เรียกว่า **สมบัติปิดภายใต้การบวก** (closure under addition) และ **สมบัติ ปิดภายใต้การคูณด้วยสเกลาร์** (closure under scalar multiplication) ตามลำดับ สมบัติสองประการนี้ เป็นเครื่องมือสำคัญที่ใช้ในการตรวจสอบว่า เซตของวัตถุหนึ่งที่กำลังพิจารณา เป็นปริภูมิเวกเตอร์หรือไม่

4.2 ปริภูมิย่อย (Subspaces)

บทนิยาม 4.2.1

เซตย่อย (Subset) W ของปริภูมิเวกเตอร์ V หนึ่งเรียกว่า **ปริภูมิย่อยของ** (subspace) ของ V ถ้า W เป็นปริภูมิเวกเตอร์ภายใต้การบวก และการคูณด้วยสเกลาร์ ที่นิยามบน V

ในการตรจสอบว่าเซตย่อย W ในปริภูมิเวกเตอร์ V เป็นปริภูมิย่อยของ V หรือไม่ เราไม่จำเป็นต้องตรวจ สอบบางสัจพจน์ เนื่องจากความสอดคล้องกับสัจพจน์เหล่านี้ ได้รับการสืบต่อ (Inherited) จาก V

ทฤษฎีบท 4.2.1

ถ้า W เป็นเซตของเวกเตอร์มากกว่าหนึ่งตัวจากปริภูมิเวกเตอร์ V แล้ว W เป็นปริภูมิ ย่อยของ V ก็ต่อ เมื่อสอดคล้องกับ เงื่อนไขต่อไปนี้

- (ก) ถ้า ${f u}$ และ ${f v}$ เป็นเวกเตอร์ใน W แล้ว ${f u}+{f v}$ อยู่ใน W ด้วย
- (ข) ถ้า k เป็นสเกลาร์ใดๆ และ ${f u}$ เป็นเวกเตอร์ใดๆ ใน W แล้ว $k{f u}$ อยู่ใน W ด้วย

4.2.1 ปริภูมิผลเฉลยของระบบสมการเอกพันธ์ (Solution Spaces of Homogeneous Equation)

ทฤษฎีบท 4.2.2

ถ้า $A\mathbf{x} = \mathbf{0}$ เป็นระบบเชิงเส้นเอกพันธ์ ของ m สมการในค่าไม่ทราบค่า n ค่า แล้วเซตของเวกเตอร์ผลเฉลย เป็นปริภูมิย่อยของ \mathbb{R}^n

บทนิยาม 4.2.2

เวกเตอร์ ${f w}$ หนึ่งเรียกว่า **ผลรวมเชิงเส้น** (linear combination) ของปริภูมิเวกเตอร์ ${f v}_1, {f v}_2, \ldots, {f v}_r$ ถ้าสามารถเขียนให้อยู่ในรูป

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

เมื่อ k_1, k_2, \ldots, k_r เป็นสเกลาร์ใดๆ

4.3 การแผ่ทั่ว (Spanning)

ทฤษฎีบท 4.3.1

ถ้า $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ เป็นเวกเตอร์ในปริภูมิเวกเตอร์ V แล้ว

- (ก) เซต W ของผลรวมเชิงเส้นทั้งหมดของ $\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_r$ เป็นปริภูมิย่อยของ V
- (ข) W เป็นปริภูมิย่อยที่เล็กที่สุดของ V ที่มี $\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_r$ ในมุมที่ว่าปริภูมิย่อย อื่นใดของ V ที่มี $\mathbf{v}_1,\mathbf{v}_2,\dots,\mathbf{v}_r$ ต้องมี W

บทนิยาม 4.3.1

ถ้า $S=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r\}$ เป็นเซตของเวกเตอร์ ในปริภูมิเวกเตอร์ V แล้วปริภูมิ ย่อย W ของ V ที่ประกอบด้วยผลรวมเชิงเส้นทั้งหมดของเวกเตอร์ใน S เรียกว่า **ปริภูมิย่อยของ** V **แผ่ทั่วโดย** S (subspace of V spanned by S) และเรากล่าวว่า เวกเตอร์ $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r$ ใน S **แผ่ทั่ว** (span) W

เราใช้สัญกรณ์

$$W = \operatorname{span}(S)$$
 หรือ $W = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$

เพื่อบ่งว่า W เป็นปริภูมิที่แผ่ทั่วโดยเวกเตอร์ในเซต $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$

4.4 ความอิสระเชิงเส้น (Linear Independence)

บทนิยาม 4.4.1

ถ้า $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ เป็นเซตไม่ว่างของเวกเตอร์ แล้วสมการเวกเตอร์

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \dots + k_r\mathbf{v}_r = \mathbf{0}$$

มีผลเฉลยอย่างน้อยผลเฉลยหนึ่ง คือ

$$k_1 = 0, \quad k_2 = 0, \dots, \quad k_r = 0$$

ถ้าผลเฉลยมีเพียงหนึ่งเดียวนี้ แล้ว S เรียกว่าเป็นเซตที่ **อิสระเชิงเส้น** (linearly independence) ถ้ามีผลเฉลยอื่นอีก แล้ว S เรียกว่าเป็นเซตที่ **ไม่อิสระเชิงเส้น** (linearly dependence)

- 4.4.1 ความอิสระเชิงเส้นของฟังก์ชัน (Linear Dependent of Functions)
- 4.5 ฐานหลักและมิติ (Basis and Dimension)