Design and Analysis of Algorithms

(CS345/CS345A)

Lecture 19

Dynamic Programming – (Final lecture)

- Bellman-Ford Algorithm (A new perspective)
- All-Pairs Shortest Paths

BELLMAN-FORD ALGORITHM

For shortest paths in a graph with Negative weights

BUT No negative cycle

Exploiting the Optimal subpath property

Observation:

Aim: To compute P(v, n-1)

All paths from s to v.

Q(v,k):

P(v,k):

To compute P(v, k)

Q(v, k): all paths from s to v consisting of at most k edges.

P(v, k): the shortest among all paths from s to v consisting of at most k edges.

Q(v, k): all paths from s to v consisting of at most k edges.

P(v, k): the shortest among all paths from s to v consisting of at most k edges.

Collaboration of vertices

Given $P(v_i, k-1)$ for all $v_1, ..., v_n$.

Computing $P(v_i, k)$ for all $v_1, ..., v_n$.

$$Q(v_1, k-1)$$

$$Q(v_n, k-1)$$

Collaboration of vertices

Given $P(v_i, k)$ for all $v_1, ..., v_n$.

Computing $P(v_j, k+1)$ for all $v_1, ..., v_n$.

And so on ...

L(v, i): length of the shortest $s \rightsquigarrow v$ having at most i edges

Aim: To compute L(v, n-1) for each v.

Bellman-Ford's algorithm

```
Bellman-Ford-algo(s, G)
  For each v \in V \setminus \{s\} do
       If (s, v) \in E then L[v, 1] \leftarrow \omega(s, v)
                                                                 Initializing L[*, 1]
                          else L[v,1] \leftarrow \infty;
 L[s,1] \leftarrow 0;
  For i = 2 to n - 1 do
      For each v \in V do
      \{L[v,i] \leftarrow L[v,i-1];
          For each (x, v) \in E do
                                                               Computing L[v, i]

L[x, i - 1] + \omega(x, v)
                 L[v,i] \leftarrow \min(L[v,i])
```

Lemma: L[v, i] stores the shortest path from s to v having at most i edges.

Single source shortest paths in a graph

Problem: Given a graph G = (V, E) on n = |V| vertices and m = |E| edges, and a source vertex s, compute shortest path from s to v for each $v \in V$. **Solutions**:

Edge weights are non-negative

Dijkstra's algorithm

Time complexity = $O(m + n \log n)$

Edge weights are negative but no-negative cycle

Bellman-Ford algorithm.

Time complexity = O(mn)

Data structure for reporting shortest path from **s**:

Shortest paths tree rooted at s

Time taken to report shortest path from s to v = O(|P(u, v)|)

All-pairs shortest paths in a graph with positive edge weights

Problem: Given a graph G = (V, E) on n = |V| vertices and m = |E| edges, compute distance/shortest-path from u to v for each $u, v \in V$. **Solutions**:

Execute Dijkstra's algorithm from each $v \in V$.

Total time = $O(mn + n^2 \log n)$

Data structure for reporting shortest path from \boldsymbol{v} :

Shortest paths tree rooted at v

Space taken by the data structure = $O(n^2)$

All-pairs shortest paths in a graph with negative edge weights but no negative cycle

Problem: Given a graph G = (V, E) on n = |V| vertices and m = |E| edges, compute shortest path from u to v for each $u, v \in V$.

Solution:

Execute Bellman-Ford's algorithm from each $v \in V$.

Total time =
$$O(mn^2)$$
 How to improve it to $O(n^3)$?

Data structure for reporting shortest path from \boldsymbol{v} :

Shortest paths tree rooted at v

Space taken by the data structure = $O(n^2)$

ALL-PAIRS SHORTEST PATHS IN $O(n^3)$ TIME

In graphs with negative edge weights but no negative cycle

The Optimal substructure property

Consider any shortest path P(u, v).

We used "no. of edges" for a recursive formulation of $\delta(s, v)$. [Bellman Ford algo] L(v, i): length of the shortest $s \rightsquigarrow v$ having at most i edges.

- $\delta(s,v) = L(v,n-1)$
- Expressed L(v, i + 1) recursively in terms of L(x, i) for all $(x, v) \in E$
- Base case: $L(v, 1) = \omega(s, v)$ if $(s, v) \in E$, and ∞ otherwise.

The Optimal substructure property

Consider any shortest path P(u, v).

Question: Can we use "<u>vertices</u>" for recursive formulation of $\delta(u, v)$?

The Optimal substructure property

Consider any shortest path P(u, v).

For a recursive formulation of $\delta(u, v)$,

We can use max-index of intermediate vertices on P(u, v).

Term for Recursive formulation of $\delta(u, v)$?

 $P_k(i,j)$: the shortest path from i to j with intermediate vertices of index $\leq k$ $D_k(i,j)$: length of $P_k(i,j)$.

Question: How can we express $\delta(i,j)$ in terms of $D_k(i,j)$?

Answer: $\delta(i,j) = D_n(i,j)$:

Base Case:

$$D_0(i,j) = \begin{cases} \omega(i,j) & \text{if } (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

Question: What is recursive formulation of $D_k(i,j)$?

Recursive formulation of $D_k(i, j)$

Consider the path $P_k(i,j)$

There are two cases:

Case 1: $P_k(i,j)$ does not pass through $k \rightarrow D_k(i,j) = D_{k-1}(i,j)$

Case 2: $P_k(i,j)$ indeed passes through $k \rightarrow ?$

Recursive formulation of $D_k(i, j)$

Consider the path $P_k(i, j)$

There are two cases:

Case 1: $P_k(i,j)$ does not pass through k

Case 2: $P_k(i, j)$ indeed passes through k

 $\rightarrow D_k(i,j) = D_{k-1}(i,j)$

 $\rightarrow D_k(i,j) = D_{k-1}(i,k) + D_{k-1}(k,j)$

In other words, what is the guarantee that $P_{k-1}(i,k)$::

 $P_{k-1}(k,j)$ does not have a cycle?

Removing the cycle will give a path of the same or smaller length which does not pass through
$$k$$
.

A contradiction!

negative weight.

 $D_{k}(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(i,j))$

FLOYD WARSHAL ALGORITHM FOR ALL PAIRS SHORTEST PATHS

in $O(n^3)$ time and $O(n^3)$ space

Floyd and Warshal's algorithm

```
Floyd-Warshal-algo(G)
{ For each i do
   For each j do
     If (i,j) \in E then D_0[i,j] \notin \omega(i,j) else D_0[i,j] \notin \infty;
                                               Computing D_0[*,*]
 For each i do D_0[i, i] \leftarrow 0;
 For k = 1 to n do
   For each i do
      For each i do
```

Lemma: $D_k[i,j]$ = length of the shortest path from i to j with all intermediate vertices of indices $\leq k$

FLOYD WARSHAL ALGORITHM FOR ALL PAIRS SHORTEST PATHS

in $O(n^3)$ time and $O(n^2)$ space

Hence we can just overwrite \mathbf{D}^{k-1} instead of creating a separate matrix for \mathbf{D}^k

$$D_k(i,j) = \min(D_{k-1}(i,j) , D_{k-1}(i,k) + D_{k-1}(k,j))$$

For computing $D_k(i,j)$ for any $i \neq k, j \neq k$, we need only kth column and kth row of D_{k-1}

Moreover $D_k(\mathbf{k},*) = D_{k-1}(\mathbf{k},*)$, and $D_k(*,\mathbf{k}) = D_{k-1}(*,\mathbf{k})$

Floyd and Warshal's algorithm

```
Floyd-Warshal-algo(G)
{ For each i do
    For each j do
       If (i, j) \in E then D[i, j] \leftarrow \omega(i, j);
                       else D[i,j] \leftarrow \infty;
  For each i do D[i, i] \leftarrow 0;
  For k = 1 to n do
    For each i do
       For each j do
            If (D[i,j] > D[i,k] + D[k,j])
                     D[i,j] \leftarrow D[i,k] + D[k,j];
Lemma: At the end of kth iteration,
D[i,j] = length of the shortest path from i to j with all intermediate vertices of indices \leq k
```

All-pairs shortest paths in a digraph with negative edge weights but no negative cycle

Theorem: Given a graph G = (V, E) on n = |V| vertices and m = |E| edges, we can compute all-pairs distances in $O(n^3)$ time. The space requirement is $O(n^2)$.

Homework:

How to retrieve shortest path?

Hint: Augment the given algorithm with a $O(n^2)$ size data structure. (that stores all-pairs shortest paths <u>implicitly</u>)

This view will add to your understanding of these two <u>algorithms</u>

In the following slides, we shall provide an alternate view of

Floyd & Warshal Algorithm

Both the algorithms (Bellman-Ford and Floyd & Warshal) use Optimal substructure property of shortest paths.

They differ due to <u>different hierarchies</u> of sets of paths ©.

Reviewing Floyd Warshal Algorithm

Aim: To compute $P_n(i,j)$

All paths from *i* to *j*.

 $Q_k(i,j)$: all paths from i to j with intermediate vertices having index at most k.

 $P_k(i,j)$: the shortest among all paths from i to j with each intermediate vertex having index at most k.

Computing $P_k(i, j)$

 $Q_k(i,j)$: all paths from i to j with intermediate vertices having index at most k.

 $P_k(i,j)$: the shortest among all paths from i to j with each intermediate vertex having index at most k.

Using **Optimal Substructure** property

 $Q_k(i,j)$: all paths from i to j with intermediate vertices having index at most k.

 $P_k(i,j)$: the shortest among all paths from i to j with each intermediate vertex having index at most k.

Collaboration of vertices

Given $P_{k-1}(i, j)$ for all (i, j) pairs

Computing $P_k(i,j)$ for all(i,j) pairs.

$$Q_{k-1}(i,j)$$
 sets

Collaboration of vertices

Given $P_k(i, j)$ for all (i, j) pairs

Computing $P_{k+1}(i,j)$ for all (i,j) pairs.

 $Q_k(i,j)$ sets

And so on ...