Algebra9
Datenanalyse9
Wahrscheinlichkeitsrechnung ... 15
Geometrie20
Wirtschaftsmathematik30

Formelsammlung Mathematik für die Berufsmaturität (RLP-BM)

Auszug aus "Mathematik für die Berufsmaturität" © www.promath.ch

Algebra

Einführung

Griechisches Alphabet

Kleinbuchstabe	Grossbuchstabe	Name
α	A	Alpha
β	В	Beta
γ	Γ	Gamma
8	Δ	Delta
ϵ	E	Epsilon
ζ	Z	Zeta
η	Н	Eta
θ	Θ	Theta
ι	I	Iota
χ	K	Kappa
λ	Λ	Lambda
μ	M	Му

Kleinbuchstabe	Grossbuchstabe	Name
ν	N	Ny
ξ	Ξ	Xi
0	О	Omikron
П	П	Pi
ρ	P	Rho
σ	Σ	Sigma
au	Т	Tau
υ	Υ	Ypsilon
ϕ	Φ	Phi
	X	Chi
$\chi \ \psi$	Ψ	Psi
ω	Ω	Omega

Mengen und Intervalle

- o $x \in A$ bedeutet, dass x ein Element der Menge A ist
- o $A \subset B$ bedeutet, dass die Menge A eine Teilmenge von B ist

Zahlbereiche

Natürliche Zahlen $\mathbb{N} = \{0; 1; 2; 3; \ldots\}$

Ganze Zahlen $\mathbb{Z} = \{\ldots; -3; -2; -1; 0; 1; 2; 3; \cdots\}$ Rationale Zahlen $\mathbb{Q} = \left\{\frac{p}{q}\right\}$ mit $p \in \mathbb{Z}$, $q \in \mathbb{Z}$ und $q \neq 0$

Reelle Zahlen \mathbb{R}

Venn-Diagramme

A B	Schnittmenge $A \cap B$ $A \text{ und } B$
A B	Vereinigungsmenge $A \cup B$ $A \text{ oder } B$
A B	Differenzmenge $A \setminus B$ A ohne B
A	Komplementmenge \overline{A} nicht A

Intervalle

Abgeschlossenes Intervall
 Offenes Intervall
 Rechtsoffenes Intervall
 Linksoffenes Intervall
 $a; b = a \le x \le b$ $a < x < b = a \le x \le b$ $a < x < b = a \le x \le b$ $a < x < b = a \le x \le b$ $a < x < b = a \le x \le b$ $a < x < b = a \le x \le b$ $a < x < b \le a \le x \le b$

Algebra

Potenzen und Wurzeln

$0^n = 0$	$x^0 = 1$	0 ⁰ ist nicht definiert!	$1^n = 1$
$x^m \cdot x^n = x^{m+n}$	$\frac{x^m}{x^n} = x^{m-n}$	$x^n \cdot y^n = (x \cdot y)^n$	$\frac{x^n}{y^n} = \left(\frac{x}{y}\right)^n$
$x^{-n} = \frac{1}{x^n}$	$(x^m)^n = x^{m \cdot n}$	$x^{m^n} = x^{(m^n)}$	$\sqrt[n]{x^m} = x^{m/n}$
$\sqrt[n]{x} = x^{1/n}$	$\sqrt{x^2} = x $	$\sqrt[n]{x} \cdot \sqrt[n]{y} = \sqrt[n]{x \cdot y}$	$\frac{\sqrt[n]{x}}{\sqrt[n]{y}} = \sqrt[n]{\frac{x}{y}}$

Wissenschaftliche Notation

Darstellung einer Zahl in der Form:

$$\pm a \times 10^n$$
 mit $a \in [1; 10]$ und $n \in \mathbb{Z}$

• Beispiel: $1234 = 1,23 \times 10^3$

Besondere Identitäten

$(a+b)^2 = a^2 + 2ab + b^2$	$(a-b)^2 = a^2 - 2ab + b^2$
$a^2 - b^2 = (a+b)(a-b)$	$a^2 + b^2$ ist nicht faktorisierbar in $\mathbb R$
$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$	$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$
$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

Faktorisierung

- Ausklammern: 6a 3ab = 3a(2 b)
- Ausklammern und Zusammenfassen: $x^3 + x^2 + x + 1 = x^2(x+1) + 1(x+1) = (x+1)(x^2+1)$
- Verwendung einer besonderen Identität: $(x + a)^2 1 = (x + a 1)(x + a + 1)$
- Einfaches Trinom: $x^2 + Sx + P = x^2 + (m+n)x + m \cdot n = (x+m) \cdot (x+n)$

Betrag

$$|x| = \begin{cases} x, & \text{wenn } x \ge 0 \\ -x, & \text{wenn } x < 0 \end{cases}$$

$a \ge 0$	<i>a</i> < 0
$ x = a \rightarrow x = a \text{oder} x = -a$	$ x = a \to x = \emptyset$
$ x \le a \to x \le a \text{und} x \ge -a$	$ x \le a \to x = \emptyset$
$ x \ge a \to x \ge a \text{oder} x \le -a$	$ x \ge a \to x = \mathbb{R}$

 \bigcirc Distanz, Abstand zwischen zwei Werten etc. \rightarrow d(a;b) = |a-b|

Lineare Gleichungen und Funktionen

Lineare Gleichung

$$ax + b = 0$$
 mit $a \neq 0$ \rightarrow $x = -\frac{b}{a}$

Lineare Funktion

$$f(x) = ax + b \quad \text{mit } a \neq 0$$

- *y*-Achsenabschnitt: f(0) = b \rightarrow H(0; b)
- x-Achsenabschnitt: f(x) = 0 $\rightarrow K\left(-\frac{b}{a}; 0\right)$
- Steigung der Geraden f: $a = \frac{\Delta_y}{\Delta_x} = \frac{y_2 y_1}{x_2 x_1}$

Gleichung einer Geraden durch zwei Punkte

Die Punkte seien $P_1(x_1; y_1)$ und $P_2(x_2; y_2)$. Man erhält die Geradengleichung durch Lösen des Gleichungssystems:

$$\begin{cases} a \cdot x_1 + b = y_1 \\ a \cdot x_2 + b = y_2 \end{cases}$$

Besondere Geraden

Es seien: $y_1 = a_1 x + b_1$ und $y_2 = a_2 x + b_2$

Quadratische Gleichungen und Funktionen

Quadratische Gleichung

$$f(x) = ax^2 + bx + c = 0$$
 mit $a \neq 0$ Berechnung der Diskriminanten (D): $D = b^2 - 4ac$

D > 0	D = 0	D < 0
$x_1; x_2 = \frac{-b \pm \sqrt{D}}{2a}$	$x_1 = x_2 = -\frac{b}{2a}$	keine Lösung in $\mathbb R$

Quadratische Funktion

- Grundform: $f(x) = ax^2 + bx + c$ mit $a \neq 0$
- Scheitelform: $f(x) = a \cdot (x h)^2 + k$ mit $a \neq 0$ und Scheitelpunkt S(h; k)
- Produktform: $f(x) = a \cdot (x x_1) \cdot (x x_2)$ mit $a \neq 0$ und x_1 ; x_2 den Lösungen von f(x) = 0

• Form und Lage des Graphen:

a D	D > 0	D = 0	D < 0
a > 0	x	x	x
<i>a</i> < 0	x	x	

Exponential- und Logarithmusgleichungen/-funktionen

Exponential- und Logarithmusgleichung

$$y = \log_a(x) \iff x = a^y \qquad (x > 0, a > 0, a \neq 1)$$

$$a^x = a^y \iff x = y \qquad \log_a(x) = \log_a(y) \iff x = y$$

- $\log(x) = \log_{10}(x)$ \rightarrow Taste LOG auf dem Taschenrechner

$\log_a(x \cdot y) = \log_a(x) + \log_a(y)$	$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y)$
$\log_a\left(\frac{1}{x}\right) = -\log_a(x)$	$\log_a(x^n) = n \cdot \log_a(x)$
$\log_a(a^x) = x$	$a^{\log_a(x)} = x$
$\log_a(1) = 0$	$\log_a(a) = 1$

• Rechenregel für den Basiswechsel (mit dem Taschenrechner):

$$\log_a(x) = \frac{\log(x)}{\log(a)} = \frac{\ln(x)}{\ln(a)}$$

Exponential- und Logarithmusfunktion

Exponentielle Wachstums- und Zerfallsprozesse

- o $f(t) = a \cdot (1+b)^t$ mit $\pm b$ der Wachstums-/Zerfallsrate und a dem Anfangswert
- o $f(t) = \alpha \cdot e^{\beta t}$ mit $\pm \beta$ der Wachstums-/Zerfallskonstanten und α dem Anfangswert

Graphen einiger elementarer Funktionen

Definitionsbereich

Aufgepasst werden muss bei folgenden Punkten (☺ = ein beliebiger algebraischer Ausdruck):

$$\begin{cases} \frac{1}{\odot} & \Rightarrow & \odot \neq 0 \\ \sqrt[n]{\odot} & \Rightarrow & \odot \geq 0 & nur \ f\"ur \ gerade \ n \\ \log_a(\odot) & \Rightarrow & \odot > 0 & unabh\"angig \ von \ der \ Basis \ des \ Logarithmus \end{cases}$$

Beispiel:
$$f(x) = \frac{x}{2-x} + \sqrt{x+5} - \log(10-x)$$

- $\begin{array}{lll} \bullet \, 2 x \neq 0 & \to & x \neq 2 & \textit{Bedingung für den Nenner} \\ \bullet \, x + 5 \geq 0 & \to & x \geq -5 & \textit{Bedingung für die Quadratwurzel} \\ \bullet \, 10 x > 0 & \to & x < 10 & \textit{Bedingung für den Logarithmus} \end{array}$

Folgerung: $x \in [-5; 2[\cup]2; 10[$

Weitere Eigenschaften von Funktionen

Datenanalyse

Statistische Variablen

qualitative		
Ausprägung	abs. Häufigkeit (n_i)	
verheiratet	3	
geschieden 5		
ledig	2	

diskrete quantitative	
Ausprägung (x_i) n	
3	3
4	5
5	2

kontinuierliche quantitative		
Klasse	x_i	n_i
[2;4[3	4
[4;6[5	12
[6; 8[7	4

Definitionen und Grundformeln

- X = statistische Variable oder Merkmal
- o k = Anzahl Merkmalsausprägungen oder Klassen (im obigen Beispiel k = 3)
- o i = i-te Ausprägung oder Klasse, mit i = 1, 2, 3, ..., k
- b_i = obere Grenze der Klasse i
- O L_i = Klassenbreite der Klasse i

$$L_i = b_i - b_{i-1}$$

$$x_i = \frac{b_{i-1} + b_i}{2}$$

- o n_i = absolute Häufigkeit der Ausprägung bzw. Klasse i
- N = Gesamtzahl der Messwerte

$$N = n_1 + n_2 + \dots + n_k$$
 bzw. $N = \sum n_i$

o f_i = relative Häufigkeit der Ausprägung bzw. Klasse i $f_i = n_i/N$

$$f_1 + f_2 + \dots + f_k = 1$$
 bzw. $\sum f_i = 1$

o $F_i =$ relative kumulierte Häufigkeit der Ausprägung bzw. Klasse i $F_i = f_1 + f_2 + \cdots + f_i$

Graphische Darstellung

• Qualitative + diskrete quantitative Variablen: verschiedene Diagramme

o Kontinuierliche quantitative Variablen: Histogramm

Verwendung der kumulierten Häufigkeiten

diskrete Variable	kontinuierliche Variable
Anteil P der Messwerte, deren Ausprägung	Anteil P der Messwerte, deren Ausprägung
kleiner oder gleich x_i ist	kleiner als x_i ist
$F_i = P(X \leq x_i)$	$F_i = P(X < x_i)$
$P(a < X \le b) = F_b - F_a$	$P(a \le X < b) = F_b - F_a$

Beispiel (kontinuierliche Variable): Anteil der Messwerte zwischen [4; 7 [= F_7 - F_4]

• $F_7 = \frac{0.8+1}{2} = 0.9$ [durch Interpolation]

• $F_4 = 0.2$

Somit ist: $F_7 - F_4 = 0, 9 - 0, 2 = 0, 7$ d.h. 70% der Messwerte

Lageparameter

Parameter	Notation	diskrete Variable	kontinuierliche Variable
Modus	M_o	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n_{i} \operatorname{oder} f_{i}$ $\Delta_{1} = f_{i} - f_{i-1}$ $b_{i-1} M_{o}$ $\Delta_{2} = f_{i} - f_{i+1}$ X_{i}
		$M_o = 6$	$M_o = b_{i-1} + \frac{\Delta_1}{\Delta_1 + \Delta_2} \cdot L_i$
Median	M_e	erstes x_i für welches $F_i > 0,5$	$M_e = b_{i-1} + \frac{0.5 - F_{i-1}}{f_i} \cdot L_i$
	-	wenn $F_i = 0.5 \to M_e = \frac{x_i + x_{i+1}}{2}$	für die erste Klasse mit $F_i \ge 0,5$
1. Quartil	Q_1	erstes x_i für welches $F_i \ge 0,25$	$Q_1 = b_{i-1} + \frac{0.25 - F_{i-1}}{f_i} \cdot L_i$
		·	für die erste Klasse mit $F_i \ge 0,25$
3. Quartil	Q_3	erstes x_i für welches $F_i \ge 0.75$	$Q_3 = b_{i-1} + \frac{0.75 - F_{i-1}}{f_i} \cdot L_i$
			für die erste Klasse mit $F_i \ge 0.75$

• Berechnung des Medians von N in aufsteigender Reihenfolge sortierten Messwerten

$$M_e = \left\{ \begin{array}{ll} x_{(N+1)/2} & \text{ für ungerade } N \\ \\ \frac{x_{N/2} + x_{N/2+1}}{2} & \text{ für gerade } N \end{array} \right.$$

• Arithmetisches Mittel (\overline{x})

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{n_1 \cdot x_1 + n_2 \cdot x_2 + \dots + n_k \cdot x_k}{N} = f_1 \cdot x_1 + f_2 \cdot x_2 + \dots + f_k \cdot x_k$$

oder in abgekürzter Schreibweise:

$$\overline{x} = \frac{\sum x_i}{N} = \frac{\sum n_i \cdot x_i}{N} = \sum f_i \cdot x_i$$

Streuungsparameter

- Spannweite = $\begin{cases} & \text{Differenz zwischen dem grössten und kleinsten } x_i & \text{(diskret)} \\ & \text{Gesamtbreite } b_k b_0 & \text{(kontinuierlich)} \end{cases}$
- Quartilsabstand (QA) und Semiquartilsabstand (SQA)

$$QA = Q_3 - Q_1$$
 oder $SQA = \frac{Q_3 - Q_1}{2}$

• Varianz (σ^2) und Standardabweichung (σ) einer nach Ausprägung gruppierten Datenreihe (x_i und f_i)

$$\sigma^2 = f_1(x_1 - \overline{x})^2 + f_2(x_2 - \overline{x})^2 + \dots + f_k(x_k - \overline{x})^2$$

$$\sigma = \sqrt{\sigma^2}$$

Verschiebungssatz:
$$\overline{x^2} = f_1 \cdot x_1^2 + f_2 \cdot x_2^2 + \dots + f_k \cdot x_k^2$$

$$\sigma^2 = \overline{x^2} - (\overline{x})^2$$

Variationskoeffizient (v)

$$v = \frac{\sigma}{x} \times 100 \quad (v \ge 25\% \rightarrow \text{stark gestreut})$$

Schiefemasse

Zentrale Momente

- Zentrales Moment 3. Ordnung: $\mu_3 = f_1(x_1 \overline{x})^3 + f_2(x_2 \overline{x})^3 + \dots + f_k(x_k \overline{x})^3$
- Zentrales Moment 4. Ordnung: $\mu_4 = f_1(x_1 \overline{x})^4 + f_2(x_2 \overline{x})^4 + \dots + f_k(x_k \overline{x})^4$

Wichtigste Schiefemasse

Quartilsschiefe (QS)

$$\label{eq:QS} \mathrm{QS} = \frac{Q_3 + Q_1 - 2 \; M_e}{Q_3 - Q_1} \qquad \left\{ \begin{array}{l} \mathrm{QS} > 0 \quad \mathrm{rechtsschief} \\ \mathrm{QS} = 0 \quad \mathrm{symmetrisch} \\ \mathrm{QS} < 0 \quad \mathrm{linksschief} \end{array} \right.$$

• Schiefekoeffizient nach Pearson (β_1)

$$\beta_1 = 3 \frac{(\overline{x} - M_e)}{\sigma} \qquad \left\{ \begin{array}{c} \beta_1 \to 1 & \text{rechtsschief} \\ \beta_1 \to 0 & \text{symmetrisch} \\ \beta_1 \to -1 & \text{linksschief} \end{array} \right.$$

• Momentschiefe (γ_1)

$$\gamma_1 = \frac{\mu_3}{\sigma^3} \qquad \left\{ \begin{array}{l} \gamma_1 > 0 \quad \text{rechtsschief} \\ \gamma_1 = 0 \quad \text{symmetrisch} \\ \gamma_1 < 0 \quad \text{linksschief} \end{array} \right.$$

Wölbungsmasse

ullet Wölbungskoeffizient nach Pearson (eta_2)

$$\beta_2 = \frac{\mu_4}{\sigma^4} \qquad \left\{ \begin{array}{l} \beta_2 > 3 \Rightarrow \text{leptokurtisch} \\ \beta_2 = 3 \Rightarrow \text{normal verteilt} \\ \beta_2 < 3 \Rightarrow \text{platykurtisch} \end{array} \right.$$

Boxplot

Wahrscheinlichkeitsrechnung und Inferenzstatistik

Wahrscheinlichkeitsrechnung

Ereignisse und Wahrscheinlichkeit

- \circ Ω : Ergebnismenge (sicheres Ereignis)
- Ø: unmögliches Ereignis
- \overline{A} : komplementäres Ereignis oder Gegenereignis von A
- $A \cup B$: Ereignis A ODER B
- o $A \cap B$: Ereignis A UND B
- P(A): Wahrscheinlichkeit des Ereignisses A

$$P(A) = \frac{\text{Anzahl günstiger Fälle}}{\text{Anzahl möglicher Fälle}}$$

Eigenschaften

$P(\Omega) = 1$	$P(\varnothing) = 0$	$0 \le P(A) \le 1$	$P(\overline{A}) = 1 - P(A)$
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		$P(\overline{A} \cup \overline{B}) = 1 - P(A \cap B)$	
$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B)$		$P(A \cap \overline{B}) = P(A \cap \overline{B}) = $	$A)-P(A\cap B)$

Inkompatible und unabhängige Ereignisse

- A und B sind inkompatibel, wenn : $A \cap B = \emptyset$ \rightarrow $P(A \cup B) = P(A) + P(B)$
- A und B sind unabhängig, wenn : $P(A \cap B) = P(A) \times P(B)$

Geometrische Wahrscheinlichkeit

eindimensionaler Fall	zweidimensionaler Fall
$P(A) = \frac{\text{Länge von } A}{\text{Länge von } S}$	$P(A) = \frac{\text{Fläche von } A}{\text{Fläche von } S}$

Bedingte Wahrscheinlichkeit

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$
 = Wahrscheinlichkeit von B , falls A bereits eingetreten ist.

Schemata zur Ermittlung der Wahrscheinlichkeit

Verschiedene Arten von Wahrscheinlichkeiten:

- A-priori-Wahrscheinlichkeit : P(A) = 0, 6
- Zusammengesetzte Wahrscheinlichkeit : $P(A \cap B) = 0, 6 \times 0, 2 = 0, 12$
- Totale Wahrscheinlichkeit : $P(B) = 0, 6 \times 0, 2 + 0, 4 \times 0, 5 = 0, 32$
- Bedingte Wahrscheinlichkeit : $P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{0.12}{0.6} = 0.2$
- A-posteriori-Wahrscheinlichkeit : $P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.12}{0.32} = 0.375$

Diskrete Zufallsvariablen

X nimmt die Werte $x_1; x_2; \cdots x_n$ mit den Wahrscheinlichkeiten $p_1; p_2; \cdots p_n$ an, wobei

$$p_1 + p_2 + p_3 + \dots + p_n = 1$$
 oder $\sum p_i = 1$

Indikator	Notation	Formel
Erwartungswert	E(X)	$E(X) = p_1 \cdot x_1 + p_2 \cdot x_2 + \dots + p_n \cdot x_n$
Erwartungswert von X^2	$E(X^2)$	$E(X^{2}) = p_{1} \cdot x_{1}^{2} + p_{2} \cdot x_{2}^{2} + \dots + p_{n} \cdot x_{n}^{2}$
Varianz	V(X)	$V(X) = E(X^2) - E(X)^2$ Verschiebungssatz
Standardabweichung	$\sigma(X)$	$\sigma(X) = \sqrt{V(X)}$

Wahrscheinlichkeitsverteilung

$$F(X) = P(X \le x_i)$$

$$P(a < X \le b) = F(b) - F(a)$$

Inferenzstatistik

 $\stackrel{ ext{$\widehat{Y}$}}{}$ Die Berechnungen in diesem Abschnitt setzen einen Stichprobenumfang von $n \geq 30$ voraus.

Konfidenzintervalle

Konfidenzintervall für den Mittelwert einer Grundgesamtheit

- 1. Der geschätzte Mittelwert μ der Grundgesamtheit entspricht dem Mittelwert \overline{x} der Stichprobe.
- 2. Der Schätzwert S der Standardabweichung der Grundgesamtheit kann berechnet werden, indem die Stichprobenstandardabweichung σ wie folgt korrigiert wird:

$$S = \sigma \times \sqrt{\frac{n}{n-1}}$$

Dann kann μ durch Eingrenzen wie folgt geschätzt werden:

$$\mu \in \left[\overline{x} - z \times \frac{S}{\sqrt{n}} \quad ; \quad \overline{x} + z \times \frac{S}{\sqrt{n}}\right]$$

Ermittlung von z:

Konfidenzniveau $(1 - \alpha)$	90%	95%	98%	99%
z	1,64	1,96	2,33	2,58

Konfidenzintervall für einen Anteilswert an einer Grundgesamtheit

Eine Zufallsstichprobe wird mit Zurücklegen gezogen und innerhalb der Stichprobe ein beliebiger Anteilswert untersucht: $p = n_i/n$.

Dann kann man schliessen, dass der relative Anteil π an der Gesamtpopulation sich innerhalb des folgenden Konfidenzintervalls befindet:

$$\pi \in \left[p - z \cdot \sqrt{\frac{p(1-p)}{n}} \quad ; \quad p + z \cdot \sqrt{\frac{p(1-p)}{n}} \right]$$

Ermittlung von *z*:

Konfidenzniveau $(1 - \alpha)$	90%	95%	98%	99%
z	1,64	1,96	2,33	2,58

Statistische Tests

Test auf einen bestimmten Mittelwert

Mithilfe dieses Tests kann man herausfinden, ob der Mittelwert μ_x einer Grundgesamtheit gleich gross, grösser oder kleiner ist als ein Standardwert μ_0 .

Bekannt sind: der Mittelwert \overline{x} der Stichprobe, der vorgegebene Standardwert μ_0 , der Schätzwert S der Standardabweichung der Grundgesamtheit sowie der Stichprobenumfang n. Man geht wie folgt vor:

1. Formulieren der Nullhypothese H_0 und der Alternativhypothese H_1

linksseitiger Test	rechtsseitiger Test	zweiseitiger Test
$H_0: \mu_x = \mu_0$	$H_0: \mu_x = \mu_0$	$H_0: \mu_x = \mu_0$
$H_1: \mu_x < \mu_0$	$H_1: \mu_x > \mu_0$	$H_1: \mu_x \neq \mu_0$

2. Wahl des Fehlerrisikos α bzw. des Konfidenzniveaus $(1-\alpha)$ und Bestimmung von z

Fehlerrisiko α	10%	5%	1%
Wert von z, linksseitiger Test	-1,28	-1,64	-2,33
Wert von z, rechtsseitiger Test	1,28	1,64	2,33
Wert von z, zweiseitiger Test	1,64	1,96	2,58

3. Berechnung von Z (grosses Z)

$$Z = \frac{\overline{x} - \mu_0}{S / \sqrt{n}}$$

4. Ablehnungsbereich der Nullhypothese je nach Art des Tests:

H_0 ablehnen	linksseitiger Test	rechtsseitiger Test	zweiseitiger Test
wenn	Z < z	Z > z	Z > z

Test auf einen bestimmten Anteilswert

Mithilfe dieses Tests kann man herausfinden, ob ein Anteilswert π_x gleich gross, grösser oder kleiner ist als ein bestimmter Standardwert π_0 .

Bekannt sind: der relative Anteil \overline{p} an der Stichprobe, der vorgegebene Standardwert π_0 sowie der Stichprobenumfang n. Man geht wie folgt vor:

1. Formulieren der Nullhypothese H_0 und der Alternativhypothese H_1

linksseitiger Test	rechtsseitiger Test	zweiseitiger Test
$H_0: \pi_x = \pi_0$	$H_0: \pi_x = \pi_0$	$H_0: \pi_x = \pi_0$
$H_1: \pi_x < \pi_0$	$H_1: \pi_x > \pi_0$	$H_1: \pi_x \neq \pi_0$

2. Wahl des Fehlerrisikos α bzw. des Konfidenzniveaus $(1-\alpha)$ und Bestimmung von z

Fehlerrisiko $lpha$	10%	5%	1%
Wert von z , linksseitiger Test	-1,28	-1,64	-2,33
Wert von z, rechtsseitiger Test	1,28	1,64	2,33
Wert von z , zweiseitiger Test	1,64	1,96	2,58

3. Berechnung von Z (grosses Z)

$$Z = \frac{\overline{p} - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

4. Ablehnungsbereich der Nullhypothese je nach Art des Tests:

H_0 ablehnen	linksseitiger Test	rechtsseitiger Test	zweiseitiger Test
wenn	Z < z	Z > z	Z > z

Geometrie

Trigonometrie

Umrechnung Grad - Radiant

$$\frac{\text{Grad}}{180} = \frac{\text{Radiant}}{\pi}$$

Einheitskreis

Trigonometrische Beziehungen

$$\cos^2(\alpha) + \sin^2(\alpha) = 1$$
 $\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$ $\frac{1}{\cos^2(\alpha)} = 1 + \tan^2(\alpha)$

Exakte Werte für einige besondere Winkel

	0°	30°	45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$sin(\alpha)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$tan(\alpha)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-

Zusammenhänge zwischen Winkeln

$\cos(-\alpha) = \cos(\alpha)$	$\sin(-\alpha) = -\sin(\alpha)$	$\tan(-\alpha) = -\tan(\alpha)$
$\cos(\pi - \alpha) = -\cos(\alpha)$	$\sin(\pi - \alpha) = \sin(\alpha)$	$\tan(\pi - \alpha) = -\tan(\alpha)$
$\cos(\pi + \alpha) = -\cos(\alpha)$	$\sin(\pi + \alpha) = -\sin(\alpha)$	$\tan(\pi + \alpha) = \tan(\alpha)$
$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$	
$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin(\alpha)$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos(\alpha)$	

Trigonometrie im rechtwinkligen Dreieck

$$\sin(\alpha) = \frac{a}{c} \quad \cos(\alpha) = \frac{b}{c} \quad \tan(\alpha) = \frac{a}{b}$$
$$\sin(\beta) = \frac{b}{c} \quad \cos(\beta) = \frac{a}{c} \quad \tan(\beta) = \frac{b}{a}$$

 $\stackrel{ extstyle e$ für Gegenkathete, A für Ankathete und H für Hypotenuse): sin-GH, cos-AH und tan-GA.

Trigonometrie im beliebigen Dreieck

Kosinussatz

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos(\alpha)$$

$$b^{2} = a^{2} + c^{2} - 2ac \cdot \cos(\beta)$$

$$c^{2} = a^{2} + b^{2} - 2ab \cdot \cos(\gamma)$$

Grundlegende trigonometrische Gleichungen

$$\cos(x) = a \quad \to \quad \left\{ \begin{array}{l} x = \cos^{-1}(a) + k \cdot 2\pi \\ x = -\cos^{-1}(a) + k \cdot 2\pi \end{array} \right. \quad \text{mit } k \in \mathbb{Z}$$

$$\bullet \ \tan(x) = a \quad \to \quad \left\{ x = \tan^{-1}(a) + k \cdot \pi \right\} \quad \text{mit } k \in \mathbb{Z}$$

Grundlegende trigonometrische Funktionen

Umkehrfunktionen der trigonometrischen Funktionen

,	Trigonometrische	Definitionsbereich	Wertebereich
	Funktion	Werte von x	Werte von y
	$\sin^{-1}(x)$	[-1;1]	$\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$
	$\cos^{-1}(x)$	[-1;1]	$[0;\pi]$
	$\tan^{-1}(x)$	\mathbb{R}	$\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$

Sinusförmige Funktionen

Allgemeine Form: $y = a \cdot \cos(b(x - h)) + k$ oder $y = a \cdot \sin(b(x - h)) + k$ mit:

- *a* = Amplitude der Funktion (vertikale Streckung/Stauchung)
- p = Periode der Funktion
- b = horizontale Streckung/Stauchung $b = \frac{2\pi}{p}$
- *h* = Phasenverschiebung (Horizontalverschiebung)
- k = Position der Mittellage (Vertikalverschiebung)

Polarkoordinaten

r und φ sind die Polarkoordinaten eines Punktes P(x; y) in der Ebene.

Polar- in kartesische Koordinaten	kartesische in Polarkoordinaten
$x = r \cdot \cos(\varphi)$	$r = \sqrt{x^2 + y^2}$
$y = r \cdot \sin(\varphi)$	$\varphi = \tan^{-1}(y/x) \pm 180^{\circ}$

Ebene Geometrie

Beziehungen zwischen Distanzen

Satz des Pythagoras	$a^2 + b^2 = c^2$, A
Höhensatz	$HC^2 = BH \cdot HA$	H_{o} b
Kathetensatz des Euklid	$BC^2 = BH \cdot BA$	
	$AC^2 = AH \cdot AB$	$B \stackrel{\longleftarrow}{\longleftarrow} C$
Strahlensatz	$\frac{AC}{AE} = \frac{AB}{AD} = \frac{BC}{DE}$	

Besondere Geraden im Dreieck

Winkelsumme und Anzahl der Diagonalen

- Die Winkelsumme im Dreieck beträgt 180°.
- o Die Winkelsumme eines konvexen n-Ecks beträgt $(n-2) \cdot 180^{\circ}$.
- Die Anzahl der Diagonalen in einem konvexen n-Eck beträgt $\frac{n(n-3)}{2}$.

Goldener Schnitt und Goldenes Rechteck

Flächeninhalte einiger elementarer Figuren

Dreieck	$\mathscr{A} = \frac{b \times h}{2}$	b
Rechteck	$\mathscr{A}=a\cdot b$	b a
Trapez	$\mathscr{A} = \frac{a+c}{2} \cdot h$	h a
Raute	$\mathscr{A} = \frac{d_1 \cdot d_2}{2}$	d_1
Parallelogramm	$\mathscr{A} = b \cdot h$	b
Regelmässiges <i>n</i> -Eck	$\mathscr{A} = \frac{c \cdot h}{2} \cdot n$	h c

Flächeninhalte einiger elementarer Figuren [Fortsetzung...]

Sehnenviereck	$p = \text{halber Umfang}$ $\mathcal{A} = \sqrt{(p-a)(p-b)(p-c)(p-d)}$	a b
Tangentenviereck	$p=$ halber Umfang $\mathscr{A}=r\cdot p$	
Kreissektor	$l = 2\pi r \cdot \frac{\alpha}{360}$ $\mathcal{A} = \pi r^2 \cdot \frac{\alpha}{360}$	

Räumliche Geometrie

Volumina einiger elementarer Körper

Platonische Körper

K: Anzahl KantenE: Anzahl EckenF: Anzahl Flächenc: Kantenlänge		
Tetraeder	$E = 4 K = 6 F = 4$ $\mathcal{A} = \sqrt{3} \cdot c^{2}$ $\mathcal{V} = \frac{\sqrt{2}}{12} \cdot c^{3}$	
Hexaeder (Würfel)	$E = 8 K = 12 F = 6$ $\mathcal{A} = 6c^2$ $\mathcal{V} = c^3$	
Oktaeder	$E = 6 K = 12 F = 8$ $\mathscr{A} = 2\sqrt{3} \cdot c^{2}$ $\mathscr{V} = \frac{\sqrt{2}}{3} \cdot c^{3}$	
Dodekaeder	$E = 20 K = 30 F = 12$ $\mathscr{A} = 3\sqrt{25 + 10\sqrt{5}} \cdot c^2$ $\mathscr{V} = \frac{15 + 7\sqrt{5}}{4} \cdot c^3$	
Ikosaeder	$E = 12 K = 30 F = 20$ $\mathscr{A} = 5\sqrt{3} \cdot c^{2}$ $\mathscr{V} = \frac{15 + 5\sqrt{5}}{12} \cdot c^{3}$	

Vektorgeometrie in der Ebene

- Beziehung von Chasles: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$; $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$
- Kollineare Vektoren: $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ kollinear zu $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \iff a_1 \cdot b_2 = a_2 \cdot b_1$
- Koordinaten eines Punktes A: $A(a_1; a_2) \iff \overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$
- Mittelpunkt der Strecke AB: $M\left(\frac{a_1+b_1}{2}; \frac{a_2+b_2}{2}\right)$
- Schwerpunkt des Dreiecks ABC: $G\left(\frac{a_1+b_1+c_1}{3}; \frac{a_2+b_2+c_2}{3}\right)$
- Betrag eines Vektors: $||\vec{a}|| = \sqrt{a_1^2 + a_2^2}$
- Skalarprodukt: $\vec{a} \cdot \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2 = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos \alpha$
- Winkel zwischen zwei Vektoren: $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \cdot ||\vec{b}||}$
- Senkrechte Vektoren: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

Geraden

Steigung einer Geraden mit Richtungsvektor $\begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$	$m=rac{d_2}{d_1}$
Steigung einer Geraden durch $A(a_1; a_2)$ und $B(b_1; b_2)$	$m = \frac{b_2 - a_2}{b_1 - a_1}$
Gleichung einer Geraden durch $(0;h)$ mit Steigung m	y = mx + h
Parametergleichung einer Geraden durch $A(a_1; a_2)$ mit Richtungsvektor $\begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$	$ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + k \cdot \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} $
Zwei Geraden mit den Steigungen m_1 und m_2 sind zueinander senkrecht, wenn	$m_1 \cdot m_2 = -1$
Spitzer Winkel zwischen zwei Geraden mit den Steigungen $\ m_1$ und m_2	$\tan(\alpha) = \left \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right $

Distanzen

Distanz zwischen zwei Punkten
$$A(a_1; a_2)$$
 und $B(b_1; b_2)$
Abstand eines Punktes $P(p_1; p_2)$ von einer Geraden d mit der Gleichung $ax + by + c = 0$

$$\delta(A; B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

$$\delta(P; d) = \frac{|ap_1 + bp_2 + c|}{\sqrt{a^2 + b^2}}$$

Vektorgeometrie im Raum

- Koordinaten eines Punktes A: $A(a_1; a_2; a_3)$ \iff $\overrightarrow{OA} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$
- Mittelpunkt der Strecke AB: $M\left(\frac{a_1+b_1}{2}; \frac{a_2+b_2}{2}; \frac{a_3+b_3}{2}\right)$
- Schwerpunkt des Dreiecks *ABC*: $G\left(\frac{a_1 + b_1 + c_1}{3}; \frac{a_2 + b_2 + c_2}{3}; \frac{a_3 + b_3 + c_3}{3}\right)$
- Betrag eines Vektors: $||\vec{a}|| = \sqrt{a_1^2 + a_2^2 + a_3^2}$
- Skalarprodukt: $\vec{a} \cdot \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3 = ||\vec{a}|| \cdot ||\vec{b}|| \cdot \cos \alpha$
- Winkel zwischen zwei Vektoren: $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| \cdot ||\vec{b}||}$
- Senkrechte Vektoren: $\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0$

Lage eines Punktes zu einer Geraden

d bezeichnet eine Gerade durch den Punkt $A(a_1; a_2; a_3)$ mit dem Richtungsvektor $\vec{d} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$

Ein Punkt P(x; y; z) liegt auf der Geraden d, wenn eine der folgenden Bedingungen erfüllt ist:

Vektorgleichung	$\overrightarrow{OP} = \overrightarrow{OA} + \lambda \cdot \overrightarrow{d}$
Parametergleichung	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$
Koordinatengleichung	$\frac{x - a_1}{d_1} = \frac{y - a_2}{d_2} = \frac{z - a_3}{d_3}$

Lage zweier Geraden

Wirtschaftsmathematik

Lineare Optimierung

• Ziel: Maximierung oder Minimierung einer Funktion $Z = a_1 x + b_1 y$ (Zielfunktion) unter verschiedenen linearen Nebenbedingungen der Form:

$$ax + by \ge c$$
 oder $x \ge 0$ oder $y \ge 0$ etc.

Vorgehen:

- Graphische Darstellung aller Nebenbedingungen
 Bereich der zulässigen Lösungen
- Ermittlung der Koordinaten aller Eckpunkte des Bereichs (durch Lösen von Gleichungssystemen)
- 3) Berechnung des Funktionswerts von \bar{Z} in jedem Eckpunkt.
- Bestimmen des oder der Eckpunkte(s), für welche(n) der Funktionswert von Z maximal bzw. minimal ist

Wachstumsrate

 ${\color{blue} \circ}$ Gesamtwachstumsrate izwischen einem Anfangswert V_0 und einem Endwert V_t :

$$i = \frac{V_t - V_0}{V_0} = \frac{V_t}{V_0} - 1$$

o Mittlere jährliche Wachstumsrate t_m über n Jahre:

$$t_m = \sqrt[n]{\frac{V_t}{V_0}} - 1$$

Finanzmathematik

Notation

 C_0 Anfangskapital r Aufzinsfaktor (r = 1 + i)

 C_n Endkapital v Diskontierungsfaktor (v = 1/r)

Jahreszinssatz

n Anlagedauer in Jahren d definiert als $d = \frac{i}{1+i}$

Zinsrechnung

Einfacher Zins	Zinseszins		
$C_n = C_0 \cdot (1 + ni)$	$C_n = C_0 \cdot r^n \to C_0 = C_n \cdot v^n$		

Periodenzinssatz

Üblicherweise ist der Zinssatz für einen Zeitraum von einem Jahr definiert. Soll die Verzinsung hingegen monatlich erfolgen, so ist der Monat die neue Zeiteinheit und der Jahreszinssatz i muss in einen Monatszinssatz i_{12} umgerechnet werden.

Einfacher Zins	Zinseszins
$i_{12} = i/12$	$i_{12} = (1+i)^{1/12} - 1$

 \circ Analog können auch Halbjahreszinssatz i_2 und Quartalszinssatz i_4 berechnet werden.

Barwert und Endwert einer Rente von 1 Währungseinheit

	Barwert	Endwert
Pränumerando-Rente	$\ddot{a}_{\overline{n} } = \frac{1 - v^n}{d}$	$\ddot{s}_{\overline{n} } = \frac{r^n - 1}{d}$
Postnumerando-Rente	$a_{\overline{n} } = \frac{1 - v^n}{i}$	$s_{\overline{n} } = \frac{r^n - 1}{i}$

\circ Endwert V_n einer jährlichen Pränumerando-Rente P , die während n Jahren zu einem Jahreszinssatz i ausbezahlt wird	$V_n = P \cdot \ddot{s}_{\overline{n} }$
\odot Monatsrate M zur Rückzahlung einer Kreditsumme V_0 , zahlbar in 60 nachschüssigen Raten zu einem Jahreszinssatz i	$V_0 = M \cdot a_{\overline{60} }$ $\text{mit}: i_{12} = (1+i)^{1/12} - 1$
$_{\odot}$ Monatsrate M eines Leasings über einen Betrag V_0 , zahlbar in 48 vorschüssigen Raten zu einem Jahreszinssatz i und mit einem vorgesehenen Restwert V_n bei Vertragsende	$V_0 = M \cdot \ddot{a}_{\overline{48} } + V_n \cdot v^{48}$ mit : $i_{12} = (1+i)^{1/12} - 1$

Preisbildung

Vollkommene Konkurrenz

Der Gleichgewichtspreis ergibt sich aus dem Schnittpunkt von Angebot und Nachfrage.

Für den vom Markt bestimmten Gleichgewichtspreis p_e stellt sich anschliessend die Frage: Welche Menge qmuss produziert werden, um den Gewinn G(q) zu maximieren?

Monopol

Im Gegensatz zur vollkommenen Konkurrenz kann der Monopolist den Preis selbst festlegen.

Die Nachfragefunktion ist dem Monopolisten bekannt und liegt in einer der folgenden Formen vor:

$$q = a p + b$$
 oder $p = aq + b$

Die Frage lautet: Welche Menge q muss produziert werden, um den Gewinn G(q) zu maximieren?

Nachdem die Menge *q* bestimmt wurde, kann anschliessend der Preis *p* ermittelt werden, zu welchem diese Menge abgesetzt werden kann (optimaler Preis).