Assignment-based Subjective Questions and Answers

Que 1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?

Answer: After analysis on categorical columns using the boxplot and bar plot.

Below are the few points we can infer from the visualization –

From the Box Plots:

Seasons: Majoririty of the Bikes are shared during summer and fall

Months: Majority of the Bikes are shared between June and October

Weekdays: IQR is more on Wednesday and Saturday

Weathersit: Bikes are more used in Clear Weather

Holiday: IQR is more on Holidays but Median is more on no-holiday

WorkingDay: Median is almost same on workingday and Weekend/holiday

Year: IQR and Median both are more in 2019

From the Bar Plots:

The demand for bikes has increased from January to June and has remained relatively constant till September and then later declined from September to December in both the years Most of the bookings has been done during the month of may, june, july, aug, sep and oct. Trend increased starting of the year till mid of the year and then it started decreasing as we approached the end of year. Number of booking for each month seems to have increased from 2018 to 2019.

Que 2. Why is it important to use drop_first=True during dummy variable creation?

Answer: drop_first = True is important to use, as it helps in reducing the extra column created during dummy variable creation. Hence it reduces the correlations created among dummy variables.

Syntax - drop_first: bool, default False, which implies whether to get n-1 dummies out of n categorical levels by removing the first level. Let's say we have 3 types of values in Categorical column and we want to create dummy variable for that column. If one variable is not A and B, then It is obvious C. So we do not need 3rd variable to identify the C.

Que 3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?

Answer: 'temp' variable has the highest correlation with the target variable.

Que 4. How did you validate the assumptions of Linear Regression after building the model on the training set?

Answer: I have validated the assumption of Linear Regression Model based on below 5 assumptions-

- Normality of error terms Error terms should be normally distributed
- Multicollinearity check There should be insignificant multicollinearity among variables.
- Linear relationship validation Linearity should be visible among variables
- Homoscedasticity There should be no visible pattern in residual values.
- Independence of residuals No auto-correlation

Que 5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes?

Answer: Below are the top 3 features contributing significantly towards explaining the demand of the shared bikes

- Temp
- Winter
- Sat

General Subjective Questions and Answers

Que 1. Explain the linear regression algorithm in detail.

Answer: Linear regression may be defined as the statistical model that analyses the linear relationship between a dependent variable with given set of independent variables. Linear relationship between variables means that when the value of one or more independent variables will change (increase or decrease), the value of dependent variable will also change accordingly (increase or decrease). Mathematically the relationship can be represented with the help of following equation—

Y = mX + c

Here, Y is the dependent variable we are trying to predict.

X is the independent variable we are using to make predictions.

m is the slope of the regression line which represents the effect X has on Y

c is a constant, known as the Y-intercept. If X = 0, Y would be equal to c.

Linear regression is of the following two types

- Simple Linear Regression
- Multiple Linear Regression

Assumptions -

The following are some assumptions about dataset that is made by Linear Regression model –

- Multi-collinearity Linear regression model assumes that there is very little or no multi-collinearity in the data. Basically, multi-collinearity occurs when the independent variables or features have dependency in them.
- Auto-correlation Another assumption Linear regression model assumes is that there is very little or no auto- correlation in the data. Basically, auto-correlation occurs when there is dependency between residual errors.
- Relationship between variables Linear regression model assumes that the relationship between response and feature variables must be linear.
- Normality of error terms Error terms should be normally distributed
- Homoscedasticity There should be no visible pattern in residual values.

Que 2. Explain the Anscombe's quartet in detail.

Answer: Anscombe's Quartet is the modal example to demonstrate the importance of data visualization which was developed by the statistician Francis Anscombe in 1973 to signify both the importance of plotting data before analyzing it with statistical properties.

It comprises of four data-set and each data-set consists of eleven (x,y) points. The basic thing to analyze about these data-sets is that they all share the same descriptive statistics(mean, variance, standard deviation etc) but different graphical representation. Each graph plot shows the different behavior irrespective of statistical analysis.

Que 3. What is Pearson's R?

Answer: Pearson's r is a numerical summary of the strength of the linear association between the variables. If the variables tend to go up and down together, the correlation coefficient will be positive. If the variables tend to go up and down in opposition with low values of one variable associated with high values of the other, the correlation coefficient will be negative. The Pearson correlation coefficient, r, can take a range of values from +1 to -1. A value of 0 indicates that there is no association between the two variables. A value greater than 0 indicates a positive association; that is, as the value of one variable increases, so does the value of the other variable. A value less than 0 indicates a negative association; that is, as the value of one variable increases, the value of the other variable decreases. This is shown in the diagram below:

Que 4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

Answer: It is a step of data Pre-Processing which is applied to independent variables to normalize the data within a particular range. It also helps in speeding up the calculations in an algorithm.

Most of the times, collected data set contains features highly varying in magnitudes, units and range.

If scaling is not done then algorithm only takes magnitude in account and not units hence incorrect modelling. To solve this issue, we have to do scaling to bring all the variables to the same level of magnitude. It is important to note that scaling just affects the coefficients and none of the other parameters like t-statistic, F-statistic, p-values, R-squared, etc.

Normalization/Min-Max Scaling:

• It brings all of the data in the range of 0 and 1. sklearn.preprocessing.MinMaxScaler helps to implement normalization in python.

MinMax Scaling:
$$x = \frac{x - min(x)}{max(x) - min(x)}$$

Standardization Scaling:

• Standardization replaces the values by their Z scores. It brings all of the data into a standard normal distribution which has mean (μ) zero and standard deviation one (σ).

Standardisation:
$$x = \frac{x - mean(x)}{sd(x)}$$

- sklearn.preprocessing.scale helps to implement standardization in python.
- One disadvantage of normalization over standardization is that it loses some information in the data, especially about outliers.

Que 5. You might have observed that sometimes the value of VIF is infinite. Why does this happen?

Answer: If there is perfect correlation, then VIF = infinity. A large value of VIF indicates that there is a correlation between the variables. If the VIF is 4, this means that the variance of the model coefficient is inflated by a factor of 4 due to the presence of multicollinearity. When the value of VIF is infinite it shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R-squared (R2) =1, which lead to 1/ (1-R2) infinity. To solve this, we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

Que 6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression.

Answer: Quantile-Quantile plot or Q-Q plot is a scatter plot created by plotting 2 different quantiles against each other. The first quantile is that of the variable you are testing the hypothesis for and the second one is the actual distribution you are testing it against.

Use of Q-Q plot:

A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second dataset. By a quantile, we mean the fraction (or percent) of points below the given value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of the data fall below and 70% fall above that value. A 45-degree reference line is also plotted. If the two sets come from a population with the same distribution, the points should fall approximately along this reference line. The greater the departure from this reference line, the greater the evidence for the conclusion that the two data sets have come from populations with different distributions.

Importance of Q-Q plot:

When there are two data samples, it is often desirable to know if the assumption of a common distribution is justified. If so, then location and scale estimators can pool both data sets to obtain estimates of the common location and scale. If two samples do differ, it is also useful to gain some understanding of the differences. The q-q plot can provide more insight into the nature of the difference than analytical methods such as the chi-square and Kolmogorov-Smirnov 2-sample tests.