Exercises 13-15 prove the three possible cases of Theorem 9-8. In each case you are given chord  $\overline{TA}$  and tangent  $\overline{TP}$  of  $\odot O$ .

13. Supply reasons for the key steps of the proof that  $m \angle ATP = \frac{1}{2} \widehat{mANT}$  in Case I.

Case I: O lies on  $\angle ATP$ .

- 1.  $\overline{TP} \perp \overline{TA}$  and  $m \angle ATP = 90$ .
- 2.  $\widehat{ANT}$  is a semicircle and  $\widehat{mANT} = 180$ .
- 3.  $m \angle ATP = \frac{1}{2} \widehat{mANT}$



In Case II and Case III,  $\overline{AT}$  is not a diameter. You can draw diameter  $\overline{TZ}$  and then use Case I, Theorem 9-7, and the Angle Addition and Arc Addition Postulates.

- **B** 14. Case II. O lies inside  $\angle ATP$ . Prove  $m \angle ATP = \frac{1}{2} m \widehat{ANT}$ 
  - A O N

15. Case III. O lies outside  $\angle ATP$ . Prove  $m \angle ATP = \frac{1}{2}m\widehat{ANT}$ 



- **16.** Prove that if one pair of opposite sides of an inscribed quadrilateral are congruent, then the other sides are parallel.
- 17. Draw an inscribed quadrilateral ABCD and its diagonals intersecting at E. Name two pairs of similar triangles.
- 18. Draw an inscribed quadrilateral  $\overrightarrow{PQRS}$  with shortest side  $\overrightarrow{PS}$ . Draw its diagonals intersecting at T. Extend  $\overrightarrow{QP}$  and  $\overrightarrow{RS}$  to meet at V. Name two pairs of similar triangles such that each triangle has a vertex at V.

Exercises 19-21 refer to a quadrilateral ABCD inscribed in a circle.

- 19.  $m \angle A = x$ ,  $m \angle B = 2x$ , and  $m \angle C = x + 20$ . Find x and  $m \angle D$ .
- **20.**  $m \angle A = x^2$ ,  $m \angle B = 9x 2$ , and  $m \angle C = 11x$ . Find x and  $m \angle D$ .
- **21.**  $m \angle D = 75$ ,  $\widehat{mAB} = x^2$ ,  $\widehat{mBC} = 5x$ , and  $\widehat{mCD} = 6x$ . Find x and  $m \angle A$ .
- **22.** Parallelogram *ABCD* is inscribed in  $\bigcirc O$ . Find  $m \angle A$ .
- **23.** Equilateral  $\triangle ABC$  is inscribed in a circle. P and Q are midpoints of  $\widehat{BC}$  and  $\widehat{CA}$ , respectively. What kind of figure is quadrilateral AQPB? Justify your answer.