Лекция 4

Теория отношений

Обратным отношением для ρ называется отношение

$$\rho^{-1} = \{ \langle y, x \rangle \mid \langle x, y \rangle \in \rho \}$$

Композицией отношений $\rho_{\scriptscriptstyle 1}$ и $\rho_{\scriptscriptstyle 2}$ называется отношение

$$\rho_1 \circ \rho_2 = \{ |\langle x, y \rangle| \exists z : \langle x, z \rangle \in \rho_2, \langle z, y \rangle \in \rho_1 \}$$

Пример:

$$X = \{1,2,3\}$$

$$\rho_1 = \{\langle 1,2 \rangle, \langle 2,2 \rangle, \langle 3,2 \rangle\}$$

$$\rho_1^{-1} = \{\langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle\}$$

$$\rho_2 = \{\langle 2,1 \rangle, \langle 3,3 \rangle\}$$

$$\rho_2^{-1} = \{\langle 1,2 \rangle, \langle 3,3 \rangle\}$$

$$\rho_1 \circ \rho_2 = \{\langle 2,2 \rangle, \langle 3,2 \rangle\}$$

$$\rho_2 \circ \rho_1 = \{(1,1),(2,1),(3,1)\}$$

$$\rho_1 \circ \rho_2 \neq \rho_2 \circ \rho_1$$

Свойства отношений:

- 1) $(\rho^{-1})^{-1} = \rho$
- 2) $(\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$
- 1) Доказательство свойства 2). $\langle x, y \rangle \in (\rho_1 \circ \rho_2)^{-1} \Leftrightarrow \langle y, x \rangle \in \rho_1 \circ \rho_2 \Leftrightarrow \exists z : \begin{cases} \langle y, z \rangle \in \rho_2 \\ \langle z, x \rangle \in \rho_1 \end{cases} \Leftrightarrow \begin{cases} \langle z, y \rangle \in \rho_2^{-1} \\ \langle x, z \rangle \in \rho_1^{-1} \end{cases} \Leftrightarrow \langle x, y \rangle \in \rho_2^{-1} \circ \rho_1^{-1}.$

Отношения эквивалентности и порядка.

Пусть задано отношение ρ на множестве X. Введем следующие определения.

- 1. ρ называется **рефлексивным**, если $\forall x \in X$ выполняется $\langle x, x \rangle \in \rho$
- 2. ρ называется **симметричным**, если $\forall x, y \in X \ \langle x, y \rangle \in \rho \implies \langle y, x \rangle \in \rho$
- 3. ρ называется антисимметричным, $\forall x, y \in X \ \langle x, y \rangle \in \rho \ \text{и} \ \langle y, x \rangle \in \rho \implies x = y$
- 4. ρ называется асимметричным, $\forall x, y \in X \ \langle x, y \rangle \in \rho \implies \langle y, x > \notin \rho$

- 5. ρ называется транзитивным, если $\forall x, y, z \in X$, $\langle x, y \rangle \in \rho$ и $\langle y, z \rangle \in \rho$ \Rightarrow $\langle x, z \rangle \in \rho$
- 6. Рефлексивное, симметричное и транзитивное отношение на множестве Х называется отношением эквивалентности на множестве Х.
- 7. Рефлексивное, антисимметричное и транзитивное отношение называется **отношением частичного порядка** на множестве X и обозначается ≤.
- 8. Отношение частичного порядка, у которого все элементы сравнимы между собой, называется отношением линейного порядка.
- 9. Асимметричное и транзитивное отношение на множестве X называется отношением строгого порядка на Х.

(Аналогично – строгий линейный порядок).

10. Рефлексивное и транзитивное отношение на множестве X называется отношением квазипорядка на множестве Х.

Квазипорядок обобщает отношения частичного порядка и эквивалентности. Отношения частичного порядка и эквивалентности – частный случай квазипорядка.

Является ли отношение рефлексивным, симметричным, антисимметричным, асимметричным и транзитивным можно проверить убедившись в справедливости следующих соотношений.

- 1) рефлексивно: $d \subseteq \rho$;
- 2) симметрично: $\rho^{-1} = \rho$;
- 3) антисимметрично: $\rho^{-1} \cap \rho \subset d$;
- 4) асимметрично: $\rho \cap \rho^{-1} = \emptyset$
- 5) транзитивно: $\rho^2 \subset \rho$.

Где d=e отношение диагональ – все пары $\langle x, x \rangle$, $x \in X$.

Примеры:

порядок.

1) Пусть $X = \{1,2,3\}.$ $d = \{ <1, 1>, <2, 2>, <3, 3> \}$

рефлексивное, симметричное, антисимметричное, транзитивное отношение. Эквивалентность и частичный

 $\rho_1 = \{(1,1)\}$ - симметричное, антисимметричное, транзитивное отношение.

 $\rho_2 = \{\langle 1,1\rangle,\langle 2,1\rangle,\langle 1,3\rangle\}$ - антисимметричное.

 $\rho_3 = \{\langle 1,2\rangle,\langle 2,1\rangle,\langle 1,3\rangle\}$ - не обладает ни одним из свойств.

 $\rho_4 = d \cup \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 1,3 \rangle\}$ - линейный порядок.

 $ho_5=d\cup\{<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>\}$ - эквивалентность. $ho_6=d\cup\{<1,2>,<2,1>,<1,3>,<2,3>\}$ - квазипорядок, но не эквивалентность и не частичный порядок. $ho_7=\{<1,2>,<1,3>,<2,3>\}$ - строгий порядок.

- 2) Отношение $x \le y$ на множестве R отношение частичного (линейного) порядка. Отношение x < y строгий линейный порядок.
- 3) Отношение подобия треугольников на множестве треугольников эквивалентность.
- 4) Отношение принадлежности к одной группе на множестве студентов института эквивалентность.
- 5) Отношение равенства на числовом множестве M отношение эквивалентности и отношение частичного порядка одновременно.
- 6) Отношение включения на множестве всех подмножеств множества A частичный порядок.
 - 7) Подчинение по званию на множестве военных квазипорядок.