Práctica 3 de Computabilidad y Algoritmia

Autómatas finitos con JFLAP

Ejercicio 1.- Construir un autómata finito determinista que reconozca cadenas que comienzan por **a**, no tienen 2 **a** consecutivas y terminen en al menos una **b**. Úsese el alfabeto $\Sigma = \{a, b\}$.

- Expresión regular: ((ab⁺)*)(Nota: JFLAP dice "ab(b⁺ab)*", obligando a que exista al menos una vez, utilizando Kleene, en vez de cierre positivo).
- Autómata:

- Datos:

- Tabla de transición:

δ	а	b
q0	q1	q3
q1	q3	q2
q2	q1	q2
q3	q3	q3

- Alfabeto: $\Sigma = \{a, b\}$.

- Estados: Q = {q0, q1, q2, q3}

Estado inicial: s = q0Estado final: F = q2

q2 es el estado final, y q3 es un estado de muerte.

Ejercicio 2.- Construir un autómata finito determinista que reconozca cadenas binarias que empiecen por 1 y contengan un número par de ceros mayor o igual a 2.

- Expresión regular: $(1^+(01*01*)^+)(Nota: JFLAP dice "11*01*0(1+01*0)*", en vez de usar un cierre positivo).$
- Autómata:

- Datos:

- Tabla de transición:

δ	0	1
q0	q4	q1
q1	q2	q1
q2	q3	q2
q3	q2	q3
q4	q4	q4

- Alfabeto: $\Sigma = \{0, 1\}$.

- Estados: Q = {q0, q1, q2, q3, q4}

Estado inicial: s = q0Estado final: F = q3

q3 es el estado final, y q4 es un estado de muerte.

Ejercicio 3.- Construir un autómata finito determinista que reconozca cadenas binarias que contengan al menos tres unos consecutivos.

- Expresión regular: ((0|1)*111(0|1)*)(Nota: JFLAP dice "(0+10+110)*111(0+1)*" pudiendo ahorrar todo el comienzo de la expresión poniendo la cadena binaria).
- Autómata:

- Datos:

- Tabla de transición:

δ	0	1
q0	q0	q1
q1	q0	q2
q2	q0	q3
q3	q3	q3

- Alfabeto: $\Sigma = \{0, 1\}$.

- Estados: Q = {q0, q1, q2, q3}

Estado inicial: s = q0Estado final: F = q3

q3 es el estado final y no existe ningún estado de muerte.