Доказательство. От противного. Предполагаем, что для языка L невозможен полуразрешающий, то возможен разрешающий НА.

Пусть \mathscr{A}_L - разрешающий НА для $L\subseteq V^*$

По теореме о разветвлении строим

$$\mathscr{B}_L = \mathscr{A}_L(\mathscr{A}_L \vee Null),$$

где

$$Null:\Big\{ \rightarrow$$

Если $\mathscr{A}_L(x) = \lambda$, то есть $x \in L$, то $\mathscr{B}_L(x) = \mathscr{A}_L(x) = \lambda$.

Если $\mathscr{A}_L(x) \neq \lambda$, то есть $x \not\in L$, отсюда $\neg !\mathscr{B}_L(x)$, так как $\neg !Null(x)$

Итак, $!\mathscr{B}_L(x) \Longleftrightarrow x \in L$, то есть \mathscr{B}_L - полуразрешающий НА для Lвопреки условию теоремы.

Теорема 0.1. Если язык L разрешим, то и разрешимо его дополнение.

$$\mathscr{A}_L(x) = \lambda \Longleftrightarrow x \in L, mo \ ecmb \ \mathscr{A}_L \neq \lambda \Longleftrightarrow x \not\in L \ npu \ (\forall x)! \mathscr{A}_L(x)$$

Для универсального языка:

$$L = V^*$$
 $\mathscr{A}_{V^*}: \begin{cases} \xi \to \ //\xi \in V \\ \to \cdot \end{cases}$

Отсюда следует, что и пустой язык тоже разрешим, потому что он дополнение универсального.

Определение 1. Конструктивное натуральное число (КНЧ) - это слово вида $0\underbrace{11\dots 1}_{n\geq 0}$. Ноль кодирует ноль, 01 кодирует 1 и так далее. КНЧ $x\in V_0^*$

$$0 \rightarrow 0; \quad 01 \rightarrow 1; \quad 011 \rightarrow 2; \quad \dots$$

Определение 2. Конструктивное целое число (КЦЧ) - это слово вида [-]n, где n - КНЧ.

Определение 3. Конструктивное рациональное число (КРЧ): m/n, где m,n - КЦЧ, то есть слово в $\{0,1,-,/\}$ и $n \neq 0$

Определение 4. Язык $L\subseteq V^*$ называется алгорифмически перечислимым, если может быть построен НА N_L такой, что для любого КНЧ n ! $N_L(n)$ и $N_L(n) \in L$, и ($\forall x \in L$) осуществимо КНЧ nтакое, что $x = N_L(n)$

Определение 5. $A, \quad \nu : \mathbb{N}_0 \to A$ сюръективно, то есть $(\forall x \in A)(\exists n \in \mathbb{N}_0)(x = \nu(n))$. Это называется нумерацией множества A.

Далее будем предполагать, что отображение ν будет биективной.

Проведем нумерацию целых чисел

Можно записать в виде формулы:

$$\gamma(n) = \begin{cases} -\frac{n}{2}, & \text{если } n \text{ четное} \\ \frac{n+1}{2}, & \text{если } n \text{ нечетное} \end{cases}$$

Сначала сделаем 3 алгорифма, нужных для следующей задачи (?)

$$\mathscr{C}: \begin{cases} 11 \to \\ 0 \to \bullet \end{cases}$$

Можем заметить, что $\mathscr{C}(n) = \lambda \Longleftrightarrow n$ четное

$$N_L = \mathscr{C}(\mathscr{A} \vee \mathscr{B})$$

Схема \mathscr{A} :

$$\mathscr{A}: \begin{cases} \alpha 11 \to 1\alpha \\ \alpha \to \bullet \\ 01 \to -0\alpha 1 \\ 0 \to \bullet 0 \end{cases}$$

Причем $\alpha \notin V_0$ Схема \mathscr{B}

$$\mathscr{B}: \begin{cases} \alpha 11 \to 1\alpha \\ \alpha \to \bullet \\ 01 \to 0\alpha 11 \\ \to \bullet \end{cases}$$

Нужно пронумеровать рациональные числа. Это по факту пары двух целых. Значит, учимся упорядочивать пары. puc2

Определение 6. Область применимости НА \mathscr{A} относительно алфавита V: пусть $\mathscr{A} = (V' \supset V, S, P)$ - НА над V; Тогда область применимости НА относительно алфавита V есть множество $\mathscr{M}^V_{\mathscr{A}} \leftrightharpoons \{x: x \in V^* \text{ и } ! \mathscr{A}(x)\}$, причем $\mathscr{A}: V^* \to V^*$. $\mathscr{M}^V_{\mathscr{A}}$ и есть область применимости.

Теорема 0.2. Язык $L \subseteq V^*$ перечислим тогда и только тогда, когда он является областью применимости относительно алфавита V некоторого HA.

Следствие. Всякий разрешимый язык перечислим.

Доказательство. (следствия). Пусть L - разрешимый язык и \mathscr{A}_L - разрешающий НА.

Строим такой НА $\mathscr{B}_L = Empty \circ \mathscr{A}_L$, где Empty применим только к пустому слову.

$$Empty: \begin{cases} \xi \to \xi \ //\xi \in V \\ \to \bullet \end{cases}$$

Отсюда получаем

$$!\mathcal{B}_L(x) \iff !\mathcal{A}_L(x)$$
 и $\mathcal{A}_L(x) = \lambda$,

то есть $L = \mathcal{M}_{\mathcal{B}_L}^V$

Однако обратное неверно!

0.1 Проблема применимости нормальных алгорифмов Маркова

Частная проблема применимости. Дан НА $\mathscr A$ в алфавите V. Можно ли построить НА $\mathscr B$ над алфавитом V такой, что $(\forall x \in V^*)!\mathscr B(x)$ и $\mathscr B(x) = \lambda \Longleftrightarrow \neg !\mathscr A(x)$. Алгорифм Б задуман для того, чтобы расширить область применимости алгорфима A.

Общая проблема применимости. Дан алфавит V, $\$ \notin V \cup V_0$. Можно ли построить НА \mathscr{B} над алфавитом $V \cup V_0$ так, что для любых НА \mathscr{A} в алфавите V и слова $x \in V^*$

$$!\mathscr{B}(\mathscr{E}\mathscr{A}3\$x)$$
 и $\mathscr{B}(\mathscr{E}\mathscr{A}3\$x)=\lambda \Longleftrightarrow \neg !\mathscr{A}(x)$

0.1.1 Проблема самоприменимости.

Рассмотрим проблему самоприменимости. Мы хотим, чтобы алгорифм работал со своей собственной записью.

Соглашение. В дальнейшем, не оговаривая это особо, мы считаем, что алгорифм в алфавите V заменяем его в алфавит $V \cup V_0$

Дан алфавит V. Можно ли построить НА \mathscr{B} над алфавитом V_0 такой, что для любого НА \mathscr{A} в $V \cup V_0$ будет верно

$$!\mathscr{B}(\mathscr{E}\mathscr{A}3)$$
 и $\mathscr{B}(\mathscr{E}\mathscr{A}3)=\lambda \Longleftrightarrow \neg !\mathscr{A}(\mathscr{E}\mathscr{A}3)$

Примеры. Построим как самоприменимые, так и несамоприменимые HA.

$$\mathscr{A}_0: \begin{cases} \#a \to a\# \\ \#b \to b\# \\ \# \to \bullet aba \\ \to \# \end{cases}$$

Дадим ему на вход свою же запись:

$$\mathscr{A}_0: \mathscr{E}\mathscr{A}_0 3 \vdash \# \mathscr{E}\mathscr{A}_0 3 \vdash \bullet aba \mathscr{E}\mathscr{A}_0 3$$

Причем $V_0 \cap \{\#, a, b\} = \emptyset$. Этот алгорифм самоприменим.

$$\mathscr{A}_0^f: egin{cases} 0 o 0 \ 1 o 1 \ \mathrm{Cxema} \ \mathscr{A}_0 \end{cases}$$

Дадим ему на вход свою же запись:

$$\mathscr{A}_0^f : \mathscr{E} \mathscr{A}_0^f 3 \vdash \mathscr{E} \mathscr{A}_0^f 3 \vdash \dots$$

To есть $\neg ! \mathscr{A}_0^f (\mathcal{E} \mathscr{A}_0^f 3)$

Лемма. Невозможен НА \mathscr{B} в алфавите $V \cup V_0$ такой, что для любого НА \mathscr{A} в алфавите $V \cup V_0$ имело бы место

$$!\mathscr{B}(\mathcal{E}\mathscr{A}3) \Longleftrightarrow \neg !\mathscr{A}(\mathcal{E}\mathscr{A}3)$$

Доказательство. Пусть алгорифм ${\mathscr B}$ построен. Тогда при ${\mathscr A}={\mathscr B}$ имеем:

$$!\mathscr{B}(\mathcal{E}\mathscr{B}3) \Longleftrightarrow \neg !\mathscr{B}(\mathcal{E}\mathscr{B}3)$$

что является противоречием. То есть он применим тогда, когда не применим?) \Box

Теорема 0.3. Невозможен HA \mathscr{B} над алфавитом V_0 так, что для любого HA \mathscr{A} в алфавите V_1 имело бы место

$$!\mathscr{B}(\mathcal{E}\mathscr{A}3) \Longleftrightarrow \neg !\mathscr{A}(\mathcal{E}\mathscr{A}3)$$

Доказательство. По теореме о переводе может быть построен НА \mathscr{B}_1 в алфавите $V_0 \cup \{\alpha, \beta\}$ так, что $(\forall x \in V_0^*)\mathscr{B}_1(x) \simeq \mathscr{B}(x)$.

Строим НА \mathscr{B}_2 как естественное распространение НА \mathscr{B}_1 на алфавит V_1 .

Пусть

$$!\mathscr{B}(\mathscr{E}\mathscr{A}3) \Longleftrightarrow \neg !\mathscr{A}(\mathscr{E}\mathscr{A}3),$$

но тогда $!\mathscr{B}(\mathcal{E}\mathscr{A}3) \iff !\mathscr{B}_1(\mathcal{E}\mathscr{A}3) \iff \neg !\mathscr{A}(\mathcal{E}\mathscr{A}3),$ что невозможно в силу самой леммы.

Итак, мы доказали невозможность полуразрешимость самоприменимости.

Проблема самоприменимости для алгорифмов алгорифмически неразрешима.