Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Title	AI powered nutrition analyzer for fitness enthusiasts				
Team id	PNT2022TMID15882				
Maximum Marks	8 <u>Marks</u>				

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Numbe r	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Download the food nutrition dataset	2	High	Tharun P,Yuvaraj M
Sprint-1	Data Preprocessing	USN-2	Importing the Dataset into Workspace	1	Medium	Thirishal S,Yuvaraj M
Sprint- 1		USN-3	Handling Missing data	3	Low	Yuvaraj M,Santhosh S
Sprint- 1		USN-4	Feature Scaling	3	Medium	Santhosh S
Sprint- 1		USN-5	Data Visualization	3	Low	Tharun P, Yuvaraj M
Sprint- 1		USN-6	Splitting Data into Train and set	4	High	Santhosh S
Sprint-1		USN-7	Creating A Dataset with Sliding Windows	4	Medium	Santhosh S
Sprint- 2	Model Building	USN-8	Importing The Model	1	High	Thirishal S

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
			Building Libraries			
Sprint-2		USN-9	Initializing The Model	1	Medium	Yuvaraj M
Sprint- 2		USN-10	Adding CNN Layers	2	High	Yuvaraj M
Sprint- 2		USN-11	Adding Dense Layers	3	Low	Yuvaraj M
Sprint- 2		USN-12	Configure The Learning Process	4	Medium	Thirishal S
Sprint- 2		USN-13	Train the model	2	Medium	Thirishal S
Sprint- 2		USN-14	Save the model	2	Medium	Thirishal S
Sprint- 2		USN-15	Test the model	3	High	Tharun P
Sprint- 3	Applicatio n Building	USN-16	Create an HTML file	4	Medium	Tharun P
Sprint- 3		USN-17	Build Python code	4	High	Santhosh S

Sprint- 3	USN-18	Creating our	4	Medium	Santhosh S
		flask			
		application			
		& loading			
		our model			
		using local			
		model			
		method			

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s	Priority	Team Members
Sprint- 3		USN-19	Run the application	4	High	S,Yuvaraj M, Thirishal S
Sprint- 4	Train the model on IBM	USN-20	Register for IBM Cloud	4	Medium	Tharun P, Santhosh S,Yuvaraj M, Thirishal S
Sprint- 4		USN-21	Train the ML Model on IBM	4	High	Tharun P, Santhosh S,Yuvaraj M, Thirishal S
Sprint- 4		USN-22	Integrate Flask with scoring End Point	8	High	Thirishal S

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Point s	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual
Sprint- 1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint- 2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint- 3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint- 4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

