Chun-Wei Liu

□ cl3762@columbia.edu | ♠ https://lufteracademy.netlify.app | □ Lufter

Education

Columbia University

New York, NY

M.S. IN APPLIED PHYSICS

• Courses: Quantum Optics, Condensed Matter Physics, Laser Physics, Semiconductor Physics and Device Microfabrication

09/2021-PRESENT

- Courses, Quantum Optics, Connecticut Matter Frysics, Easter Frysics, Semiconductor Frysics and Device Micro

National Cheng Kung University (NCKU)

Tainan, Taiwan

06/2020

B.S. IN CIVIL ENGINEERING

• Overall GPA: 3.55/4.3, Physics Core: 4.16/4.3

Courses: Quantum Physics, Electromagnetism, Machine Learning, Material Science and Engineering, Mechanics of Materials, Automata

Research Experience

Research Assistant, Physics Dept. Will Lab, Prof. Sebastian Will

New York, NY

TWEESR - PROGRAMMABLE ATOMIC TWEEZER ARRAYS [DAMOP2022]

09/2021 - PRESENT

- · Developing algorithms for atom-rearranging during tweezer array loading with high filling rate and with linear scaling.
- Constructing a multiplexing laser-optics system with stable PID control backend and sharp user-interface frontend.
- Building 3D MOT that successfully trapping Strontium atoms for further quantum simulation applications.

Research Assistant, Physics Dept. Matterwave Lab, Prof. Pei Chen Kuan

Tainan, Taiwan 08/2019 - 08/2021

QUANTUM WALKS

Investigated quantum spatial search algorithms powered by quantum walk protocols.

- Obtained analytical and numerical solutions for the evolution of an engineered quantum walk Hamiltonian.
- Explored the potential of quantum simulating Quantum Cellular Automata through discrete-time quantum walks.

Research Assistant, Civil Engineering Dept. AI Material Lab, Prof. Yun Che Wang

Tainan, Taiwan

MACHINE LEARNING IN MATERIAL DESIGN. [APCOM2019] [CTAM44][MLDT2021][USNCCM16]

02/2019 - 06/2020

- · Applied generative adversarial networks (GAN) to generate high-fidelity microstructure images.
- Adapted the 19-layer VGG networks (VGGNet) that can predict mechanical properties from material images with 95% accuracy.
- · Simulating mechanical properties of microstructure samples via Finite Element Methods (FEM) softwares.
- Investigated a Bayesian-optimization model that can fine-tune GAN-generated microstructure geometry through the rapid-labeling VGGNet.

CONSTRUCTING HOMOGENOUS MATERIALS UNSING COMPUTATIONAL METHODS.

- Applied multi-processing on molecular simulation to generate microstructures 40 times more efficient on cloud platforms.
- Implemented a stochastic protocol to produce large scale homogenous microstructure datasets by two-point correlation function.

Publication

- [1] Chun Wei Liu, Pei Chen Kuan, "Coherent localization in quantum walks". (In preparation).
- [2] Yun-Che Wang, <u>Chun Wei Liu</u>, Tsai-Wen Ko, "Optimization of Chiral Metamaterials via Deep Neural Networks", 16th U.S. National Congress on Computational Mechanics (USNCCM16), 2021.
- [3] Yun-Che Wang, <u>Chun Wei Liu</u>, Tsai-Wen Ko, "Using Deep Neural Networks to Generate Hierarchical Metamaterials for Enhanced Mechanical Properties", Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering and Technology (MMLDT), 2021.
- [4] Yun-Che Wang, <u>Chun Wei Liu</u>, Pei-Chen Cheng, Jyun-Ping Wang, Tsai-Wen Ko "Design of Chiral Metamaterials via Deep Neural Networks", 44th National Conference on Theoretical and Applied Mechanics (CTAM44), 2020.

Honors & Awards

- 2020 Chairman Special Award (entering final round), IBMq Qiskit Hackathon Taiwan
- 2018 **5th Place (out of 250 students)**, Asia Pacific Mechanics Contest for College Students
- 2017 **Dean's list**, GPA in top 5% of the department

Presentation

Design of Viscoelastic Auxetic Materials Through Machine Deep Learning | Link

Taipei, Taiwan

ASIAN PACIFIC CONGRESSON COMPUTATIONAL MECHANICS (APCOM2019)

12/2019

• Discussed the use of VGG networks as an alternative of Finite Element Methods (FEM) when labeling mechanical properties for microstructures.

Selected Projects

Predicting Handwriting Recognition With Parametrized Quantum Circuit Link

Xitou, Taiwan

For IBMQ QISKIT HACKTHON TAIWAN 2020

09/2020

- Implemented 4qubit-Ry gate circuits in predicting MNIST dataset with the learning curve converged after ten iterations.
- Analized the potential in predicting molecular ground state energies with Quantum LSTM Meta-Learner and VQE.

Skills

Languages: Python Libraries/Tools: MATLAB, Qiskits, Mathematica, PyTorch Other Technologies: COMSOL, GNU/Linux, Raspberry Pi, Git, LAMMPS