

HT82V806 CCD 6 Channel Vertical Driver

Features

- Operating voltage: 3.0V~5.5V
- Built-in seven circuits
 - 2-level output:
 - 2 circuits for vertical CCD clock driver Output voltage level (typ.) = -9V to 0V
 - 3-level output:
 - 4 circuits for vertical CCD clock driver
 - Output voltage level (typ.) = -9V to 15V
 - 2-level output:
 - 1 circuit for shutter driver
 - Output voltage level (typ.) = -9V to 17V

- Switchable between NTSC (EIA) and PAL (CCIR) modes
- 24-pin SSOP (150mil) package

General Description

HT82V806 is a CMOS vertical clock driver and shutter driver IC for CCD area sensors. It has the capability of

converting the voltage and impedance from the CMOS level.

Block Diagram

Rev. 1.00 1 February 8, 2006

Pin Assignment

Pin Description

Pin No.	Pin Name	I/O	Description	
1	POFD	0	Electronic shutter pulse output (High level=V _{OFDH} , low level=V _L)	
2	VMB	_	Power supply for high level V2 and V4	
3	VL	_	Power supply for all low level output pulses	
4	V2	0	Pulse to drive vertical CCD shift register; Connect to V2	
5	V4	0	Pulse to drive vertical CCD shift register; Connect to V4	
6	NC	_	No connection	
7	V3B	0	Pulse to drive vertical CCD shift register; Connect to V3B	
8	V3A	0	Pulse to drive vertical CCD shift register; Connect to V3A	
9	V1B	0	Pulse to drive vertical CCD shift register; Connect to V1B	
10	V1A	0	Pulse to drive vertical CCD shift register; Connect to V1A	
11	VMA	_	Power supply for intermediate level V1A, V1B, V3A and V3B	
12	VH	_	Power supply for high level V1A, V1B, V3A and V3B	
13	VHIBX	I	Pulse that transfers the charge of the photo-diode to the vertical shift regist	
14	V4X	1	/ertical transfer pulse input	
15	VH3AX	I	Pulse that transfers the charge of the photo-diode to the vertical shift register.	
16	VSS	_	Negative power supply, ground	
17	VDD	_	Positive power supply	
18	V3X	I	Vertical transfer pulse input	
19	VH1AX	I	Pulse that transfers the charge of the photo-diode to the vertical shift register.	
20	V1X	1	Vertical transfer pulse input	
21	V2X	ı	Vertical transfer pulse input	
22	OFDX	ı	Electronic shutter pulse input	
23	VH3BX	I	Pulse that transfers the charge of the photo-diode to the vertical shift register.	
24	VOFDH		Power supply for high level POFD	

Rev. 1.00 2 February 8, 2006

Absolute Maximum Ratings

Supply Voltage	GND-0.3V to GND+6V	Storage Temperature	55°C to 150°C
Input Voltage	V_{SS} =0.3V to V_{DD} +34V	Operating Temperature	25°C to 70°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{DD}		3.0	3.3	5.5	
V _H		_	15	_	
V _L	Supply Voltage	_	-9	_	V
V _{MA} , V _{MB}	-	_	0	_	
V _{OFDH}			17	_	
V _{IN} (LOW)		0	_	0.3V _{DD}	.,
V _{IN} (HIGH)	Input Voltage	0.7V _{DD}		V _{DD}	V
NTSC	0		15.734	_	1.11-
PAL	Operating Frequency		15.625	_	kHz
T _{OPR}	Operating Temperature	-20	_	+70	°C

D.C. Characteristics

 V_{H} =15V, V_{L} =-9V, V_{MA} =0V, V_{MB} =0V, V_{OFDH} =15V, Ta=25°C

Cumbal	Parameter	Test Conditions		Min.	T	Mari	11
Symbol	Parameter	V_{DD}	Conditions	WIII.	Тур.	Max.	Unit
V _{IL}	Input Low Voltage	3.3V	_	0	_	0.3V _{DD}	V
V _{IH}	Input High Voltage	3.3V	_	0.7V _{DD}	_	V _{DD}	V
V _{IL1}	Input Low Current	3.3V	V _{IL} =0V	_	_	200	μА
V _{IH1}	Input High Current	3.3V	V _{IH} =3.3V	_	_	1	μА
V _{OL}	Output Low Voltage	3.3V	I _{OL} <1μA	_	_	-8.9	V
V _{OMLa}		9 3.3V	I _{OMLa} <1μA		_	0.1	V
V _{OMHa}	1		I _{OMHa} <1μA		_	0.1	V
V _{OMLb}	Output Intermediate Voltage		I _{OMLb} <1μA		_	0.1	V
V _{OMHb}			I _{OMHb} <1μA		_	0.1	V
R _{ONH}			I _{OH} =20mA	_	30	_	Ω
R _{ONOFH}		3.3V	I _{OFDH} =20mA	_	20	_	Ω
R _{ONM}	Output ON Resistance		I _{OM} =20mA	_	25	_	Ω
R _{ONL}			I _{OL} =20mA	_	20	_	Ω
I _{DD}				_	_	2.0	μА
I _H		3.3V		_	_	200	μА
I _{OFDH}	Static Current		_	_	_	200	μА
I _M				_	_	200	μА
IL				_	_	200	μА

Rev. 1.00 3 February 8, 2006

A.C. Characteristics

 $V_{H}\text{=}15V,\ V_{L}\text{=}-9V,\ V_{MA}\text{=}0V,\ V_{MB}\text{=}0V,\ V_{OFDH}\text{=}15V,\ Ta\text{=}25^{\circ}C$

Cumbal	Parameter	Test Conditions		Min.	Turn	May	Unit
Symbol		V_{DD}	Conditions	WIII.	Тур.	Max.	Unit
t_{TRM} $(V_L \rightarrow V_M)$	Sequential Delay	3.3V	V _{IN} to V _M (V _{1A} , V _{1B} , V ₂ , V _{3A} , V _{3B} , V ₄)	_	430	900	ns
t_{TFL} $(V_M \rightarrow V_L)$		3.3V	V_{IN} to V_L $(V_{1A}, V_{1B}, V_2, V_{3A}, V_{3B}, V_4)$	_	370	800	ns
t_{TRH} $(V_M \rightarrow V_H)$		3.3V	V_{IN} to V_{H} (V_{1A} , V_{1B} , V_{3A} , V_{3B})	_	550	1100	ns
t_{TFM} $(V_H \rightarrow V_M)$		3.3V	V_{IN} to V_{M} (V_{1A} , V_{1B} , V_{3A} , V_{3B})	_	630	1300	ns
t _{TROFDH} (V _L →V _{OFDH})		3.3V	V _{IN} to V _{OFDH} (POFD)	_	70	140	ns
t_{TFOFDL} $(V_{OFDH} \rightarrow V_L)$		3.3V	V _{IN} to V _L (POFD)	_	60	120	ns

Timing Diagrams

Application Circuits

Equivalent Circuits

While V_{1A} and V_{3A} (or V_{1B} and $V_{3B})$ are measured, V_{1B} and V_{3B} (or V_{1A} and $V_{3A})$ are open.

Rev. 1.00 5 February 8, 2006

Package Information

24-pin SSOP (150mil) Outline Dimensions

Comple al	Dimensions in mil				
Symbol	Min.	Nom.	Max.		
Α	228	_	244		
В	150	_	157		
С	8	_	12		
C'	335	_	346		
D	54	_	60		
E	_	25	_		
F	4	_	10		
G	22	_	28		
Н	7	_	10		
α	0°	_	8°		

Rev. 1.00 6 February 8, 2006

Product Tape and Reel Specifications

Reel Dimensions

SSOP 24N (150mil)

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 -0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	16.8+0.3 -0.2
T2	Reel Thickness	22.2±0.2

Rev. 1.00 7 February 8, 2006

Carrier Tape Dimensions

SSOP 24N (150mil)

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	16.0+0.3 -0.1
Р	Cavity Pitch	12.0±0.1
Е	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	7.5±0.1
D	Perforation Diameter	1.5+0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	8.2±0.1
В0	Cavity Width	8.6±0.1
K0	Cavity Depth	3.0±0.1
t	Carrier Tape Thickness	0.35±0.05
С	Cover Tape Width	13.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233

Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031

Tel: 0755-8346-5589 Fax: 0755-8346-5590 ISDN: 0755-8346-5591

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 010-6641-0030, 6641-7751, 6641-7752

Fax: 010-6641-0125

Holmate Semiconductor, Inc. (North America Sales Office)

46712 Fremont Blvd., Fremont, CA 94538

Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2006 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.00 9 February 8, 2006