2 A hot-air balloon floats just above the ground. The balloon is stationary and is held in place by a vertical rope, as shown in Fig. 2.1.

Fig. 2.1

The balloon has a weight W of 3.39×10^4 N. The tension T in the rope is 4.00×10^2 N. Upthrust U acts on the balloon.

The density of the surrounding air is 1.23 kg m⁻³.

- (a) (i) On Fig. 2.1, draw labelled arrows to show the directions of the three forces acting on the balloon. [2]
 - (ii) Calculate the volume, to three significant figures, of the balloon.

(iii) The balloon is released from the rope.

Calculate the initial acceleration of the balloon.

acceleration =
$$ms^{-2}$$
 [3]

(b)		e balloon is stationary at a height of 500 m above the ground. A tennis ball is released from and falls vertically from the balloon.
		assenger in the balloon uses the equation $v^2 = u^2 + 2as$ to calculate that the ball will be relling at a speed of approximately $100 \mathrm{ms^{-1}}$ when it hits the ground.
		plain why the actual speed of the ball will be much lower than $100\mathrm{ms^{-1}}$ when it hits the und.
(c)		ore the balloon is released, the rope holding the balloon has a strain of 2.4×10^{-5} . Frope has an unstretched length of 2.5m . The rope obeys Hooke's law.
	(i)	Show that the extension of the rope is 6.0×10^{-5} m.
		[1]
	(ii)	Calculate the elastic potential energy $E_{\rm P}$ of the rope.
		E _P = J [2]
	(iii)	The rope holding the balloon is replaced with a new one of the same original length and cross-sectional area. The tension is unchanged and the new rope also obeys Hooke's law.
		The new rope is made from a material of a lower Young modulus.
		State and explain the effect of the lower Young modulus on the elastic potential energy of the rope.
		[2]