Data Warehouse Schemas

Definition of Data Warehouse

A data warehouse is a *subject-oriented*, *integrated*, *time-varying*, *non-volatile* collection of data that is used primarily in organizational decision making.

Data Warehouse models

A data warehouse is usually modeled by a multidimensional database structure, where each dimension corresponds to an attribute or a set of attributes in the schema, and each cell stores the value of some aggregate measure.

The three data warehouse schemas are:

- 1. Star Schema
- 2. Snowflake Schema
- 3. Fact Constellation Schema

OLAP operations:

- 1. Drill down
- 2. Roll up
- 3. Slice
- 4. Dice
- 5. Pivot

- Roll-up: The roll-up operation (also called the drill-up operation) performs aggregation on a data cube, either by climbing up a concept hierarchy for a dimension or by dimension reduction.
- Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data to more detailed data. Drill-down can be realized by either stepping down a concept hierarchy for a dimension or introducing additional dimensions.

- Slice: The slice operation performs a selection on one dimension of the given cube, resulting in a subcube.
- Dice: The dice operation defines a subcube by performing a selection on two or more dimensions.
- Pivot: Pivot (also called rotate) is a visualization operation that rotates the data axes in view in order to provide an alternative presentation of the data.

Star Schema

 The most common modeling paradigm is the star schema, in which the data warehouse contains (1) a large central table (fact table) containing the bulk of the data, with no redundancy, and (2) a set of smaller attendant tables (dimension tables), one for each dimension.

Star Schema illustration

Star schema of a data warehouse for sales

Snowflake Schema

- The snowflake schema is a variant of the star schema model, where some dimension tables are normalized, thereby further splitting the data into additional tables.
- The major difference between the snowflake and star schema models is that the dimension tables of the snowflake model may be kept in normalized form to reduce redundancies.
 - Such a table is easy to maintain and saves storage space.
 - The snowflake structure can reduce the effectiveness of browsing, since more joins will be needed to execute a query. Consequently, the system performance may be adversely impacted.
 - Hence, although the snowflake schema reduces redundancy, it is not as popular as the star schema in data warehouse design.

Snowflake schema illustration

Snowflake schema of a data warehouse for sales

Fact Constellation Schema

 A fact constellation schema allows dimension tables to be shared between fact tables. This kind of schema can be viewed as a collection of stars, and hence is called a galaxy schema or a fact constellation.

Fact constellation schema illustration

Fact constellation schema of a data warehouse for sales and shipping

Data Mart

- A data warehouse collects information about subjects that span an *entire organization*, and thus its scope is *enterprisewide*. A data mart, is a department subset of a data warehouse. It focuses on selected subjects, and thus its scope is *department-wide*.
- For data warehouses, the fact constellation schema is commonly used, since it can model multiple, interrelated subjects. For data marts, the star or snowflake schema are commonly used.