3.012 Fund of Mat Sci: Structure – Lecture 21 NON-(RYSTALLINE MATERIALS

Images of a silicon nanocrystal removed for copyright reasons.

Light amplification for crystalline silicon in a glassy SiO₂ matrix

Homework for Fri Dec 2

• Study: Chapter 2 of Allen-Thomas until 2.3.1

Last time:

- 1. Tensors, and their transformations
- 2. Orthogonal matrices
- 3. Neumann's principle
- 4. Symmetry constraints on physical properties
- 5. Curie's principle

Physical properties and their relation to symmetry

- Density (mass, from a certain volume)
- Pyroelectricity (polarization from temperature)
- Conductivity (current, from electric field)
- Piezoelectricity (polarization, from stress)
- Stiffness (strain, from stress)

• a crystal under an external influence will exhibit only those symmetry elements that are common to both the crystal and the perturbing influence

Loss of periodic order

- Liquids ("fluid")
- Glasses ("solid")
 - Oxide glasses (continuous random networks)
 - Polymeric glasses (self-avoiding random walks
- Oddballs
 - Quasicrystals
 - Superionics

Principle of operation of a CD-RW

Figure by MIT OCW.

Principle of operation of a CD-RW

Writing - Amorphous

The active layer is heated above its melting point and quenched into the amorphous phase with a short laser pulse to produce marks.

Erasure – Crystalline

Intermediate laser power is used, so that the active layer does not melt, but rather remains within the crystallization temperature region long enough that the amorphous marks re-crystallize.

Figure by MIT OCW.

Erasure: nucleation and growth of crystalline material

Te-Sb-Ge Alloy

Nucleation dominated: 4.7 GB DVD-RAM (Sb₂Te₃ to GeTe)

Growth dominated: CD-RW, DVD-RW, Blu-ray (Sb₆₉Te₃₁ eutectic)

Figure by MIT OCW.

Structural Descriptors

What do ice and silicon have in common?

Source: Wikipedia

What do ice and silicon have in common?

Photo courtesy of Ansgar Walk.

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)

ABAR & SCF HEGAGONAL

FCC [111] ABCARC

What do ice and silicon have in common?

SisFCC 2 ATOM BASIS

CUBIC ICE

Figure by MIT OCW.

Figure by MIT OCW.

What do ice and silicon have in common?

What do ice and silicon have in common?

Figure by MIT OCW.

Phase transitions in silicon

Order Parameters for Silicon AMANCE Before compression During compression P = 40 GPa160 150 150 140 50 20 σ

M. J. Demkowicz and A. S. Argon, Phys. Rev. Lett. <u>93</u>, 25505 (2004)

Pair correlation functions

Graphs of the pair-distribution functions for gas, liquid/gas, and monatomic crystal removed for copyright reasons. See page 41, Figure 2.5 in in Allen, S. M., and E. L. Thomas. *The Structure of Materials*. New York, NY: J. Wiley & Sons, 1999.

.

Pair correlation function: water

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005) Courtesy of Dr. J. Kolafa. Used with Permission.

See animation at http://www.icpf.cas.cz/jiri/movies/water.htm.

Pair correlation function: water

Count thy neighbours

Figure by MIT OCW.

Models of disorder: hard spheres

• Bernal random close packed sphere model

Photos of the Bernal random close-packing model removed for copyright reasons. See them at the Science & Society Picture Library: Image 1, Image 2.

Models of disorder: hard spheres

• Voronoi polyhedra (in a crystal: Wigner-Seitz cell)

Figure by MIT OCW.

Mean Square Displacements

Mean Square Displacements

Mean Square Displacements

