

BCC202 – ESTRUTURA DE DADOS 1 TRABALHO PRÁTICO 1

TAD: SUDOKU

Data da Entrega: 23/12/12

Valor: 1 ponto

+0.1 extra documentação Doxygen em HTML

+0.2 extra análise empírica completa com gráficos

Objetivos:

• Implementar um tipo abstrato de dados.

• Calcular complexidade de operações simples.

• Virar um ninja na verificação de um Sudoku.

Contéudo a ser entregue:

• Código fonte e executável devem ser depositados no Moodle.

Relatório deve ser depositado no Moodle.

Sempre cite suas fontes: pessoas, livros, sítios.

O Jogo Sudoku

	1	2	3	4	5	6	7	8	9	
1			1	4	5	2				9
2		3				9		4	5	1
3		5		8					6	7
4							3	7		
5				6	2		5	1		
6				3	4					
7		4	3					6		2
8		8	2	7		4				5
9		1				5	2	8	4	

Neste trabalho prático você deverá implementar um verificador de soluções para o jogo Sudoku e também um aconselhador de valores válidos ¹. No Sudoku, um tabuleiro vem parcialmente preenchido e você deve encontrar números que o completem, mantendo linhas, colunas e regiões válidas: sem números repetidos. Uma célula específica do jogo será referenciada pela sua linha e coluna. Por exemplo, a célula destacada em azul é a (3,6). A região em verde é a 6, e para que a solução seja válida as células vazias não podem ser preenchidas com 1 e 7. Para que a linha 2 (em

1

¹ Se você nunca jogou Sudoku (o que eu duvido), então leia sobre o assunto na rede. Há vários sítios explicando as regras e inclusive permitindo que você jogue online (por exemplo, http://www.sudoku.name/index-pt.php).

rosa) seja válida, as células vazias só poderão ser preenchidas com 2,6,7 ou 8. Já na coluna 3 (amarela), só podemos colocar 1,2,5 ou 9.

ARQUIVOS DE ENTRADA

Os tabuleiros serão informados para seu programa através de arquivos. O nome do arquivo deverá ser informado na linha de comando e seguir o formato (entradas vazias são representadas por 0) onde há uma linha do arquivo por linha do tabuleiro. O tabuleiro acima seria representado como:

SAÍDA DO SEU PROGRAMA

Seu objetivo é construir um programa para verificar se um preenchimento (parcial) de um tabuleiro é válido e, caso afirmativo, para cada célula vazia, indicar quais são os valores válidos para mesma. Se o tabuleiro é inválido, todas as consistências deverão ser apontadas. O tabuleiro será lido de um arquivo de entrada, fornecido como parâmetro:

.\sudoku <arquivo entrada>

A saída dependerá do estado do tabuleiro e deverá seguir exatamente os formatos sugeridos abaixo.

1. O tabuleiro completo (todas as células preenchidas) e válido (sem valor duplicado na linha, coluna ou região), só informe.

6	1	4	5	2	7	3	8	9
3	7	2	6	9	8	4	5	1
5	9	8	1	3	4	2	6	7
2	5	1	8	6	3	7	9	4
9	4	6	2	7	5	1	3	8
7	8	3	4	1	9	5	2	6
4	3	5	9	8	1	6	7	2
8	2	7	3	4	6	9	1	5
1	6	9	7	5	2	8	4	3

Jogo completo. Voce ganhou!

2. O tabuleiro incompleto e válido: informe os valores possíveis para as células vazias.

6	1	4	5	2	7	3	8	9
3	7	2	6	9	8	4	5	1
5	9	8		3		2	6	7
2	5	1	8	6	3	7	9	4
9	4	6	2	7	5	1	3	8
7	8	3			9	5	2	6
4	3	5	9	8		6	7	2
8	2	7	3		6	9	1	5
1	6	9	7	5	2	8	4	3

Voce esta no caminho certo. Sugestoes:

(3,4):14

(3,6):14

(6,4):14

(6,5):14

(7,6): 1

(8,5):4

3. O tabuleiro inválido (completo ou não): você deverá indicar TODAS as inconsistências.

6	1	4	5	2	7	3	8	9
3	7	2	6	9	8	4	3	1
5	9	8	1	3	4	2	6	7
5	5	1	8	6	3	7	9	4
9	4	6	2	7	5	1	3	8
7	8	3	4	1	9	5	2	6
4	3	5	9	8	1	6	7	2
8	2	7	3	4	6	9	1	5
1	6	9	7	5	2	8	4	3

Alguma coisa deu errado... Invalidos:

Linha 2: (2,1) e (2,8)

Linha 4: (4,1) e (4,2)

Coluna 1: (3,1) e (4,1)

Coluna 8: (2,8) e (5,8)

```
Regiao 3: (1,7) e (2,8)
Regiao 4: (4,1) e (4,2)
```

IMPLEMENTAÇÃO

Para atingir seu objetivo, você deverá construir um Tipo Abstrato de Dados Tabuleiro como representação do Sudoku que você quer resolver. O TAD deverá implementar, pelo menos, as seguintes operações:

- 1. Tabuleiro inicializa(NomeArquivo): inicializa tabuleiro a partir de arquivo
- 2. Celula[] defineVazias(Tabuleiro): retorna célula vazias do tabuleiro
- 3. boolean éValido(Tabuleiro): verifica se uma célula é válida
- 4. Inteiro[] valoresValidos(Tabuleiro,Celula): retorna todos os valores válidos para uma célula vazia

onde Celula é o par (linha,coluna). O TAD deve ser implementado utilizando a separação interface no .h e implementação .c discutida em sala, bem como as convenções de tradução. Caso a operação possa dar errado, devem ser definidos retornos com erro, tratados no corpo principa.

O código do arquivo main.c **somente** poderá ser alterado nos lugares indicados ou para declaração de variáveis, ou seja, a assinatura das funções está definida pelo uso.

Se necessário, você poderá definir e implementar outras operações para seu TAD. A implementação da Estrutura de Dados do TAD Tabuleiro deverá necessariamente utilizar um arranjo de duas dimensões para representar ou o tabuleiro completo ou as regiões, você escolhe.

A SER ENTREGUE

- 1. Código fonte comentado e executável (compilado para Windows) Moodle
 - a. É mandatório seguir a divisão em .h e .c e seguir as regras de implementação de TAD.
 - b. É mandatório a utilização de pelo menos uma estrutura bidimensional.
 - c. Indentação, comentários e clareza são essenciais para boa compreensão do código.
 - d. Cópia e plágio serão punidos com ZERO.
 - e. Ponto extra para quem documentar usando Doxygen.
- 2. Relatório com a seguinte estrutura: Moodle e impresso.
 - a. Introdução: descrição geral do problema.
 - b. Tipo Abstrato de Dados: Descrição da TAD e da estrutura de dados utilizada para implementá-la.
 - i. Discussão do impacto de se alterar o tamanho do grid para outro valor (4 ou 16, por exemplo) na sua implementação.
 - c. Análise de complexidade
 - i. Teórica: para as quatro funções descritas acima, em função do tamanho do grid n (no nosso caso, 9).
 - ii. Empírica: medida de tempo para os exemplos disponibilizados no Moodle.
 Descrever com tempo foi medido e apresentar gráficos.
- 3. Conclusões: o que você achou do trabalho, o que teve mais dificuldade.

AVALIAÇÃO

	1.3
Código	0.6
Relatório	0.4
Extras	0.3