Ge YAN

Mobile: +1(858)531-8601 | Email: geyan@ucsd.edu | San Diego, CA

RESEARCH INTEREST

My research interest is mainly in **trustworthy machine learning** and **responsible AI**. My goal is to make current machine learning models **more robust and interpretable** and provide a quantification of **uncertainty**.

EDUCATION

Department of Computer Science and Engineering, UC San Diego

Current

Ph.D. student advised by Prof. Lily Weng.

Department of Electrical and Computer Engineering, UC San Diego

Mar 2023

M.S. in Machine Learning and Data Science (GPA 3.95/4)

School of Mathematical Sciences, Peking University

Jun 2021

B.S. in Information and Computing Science (GPA 3.484/4)

SKILLS

Programming Languages: Python, C. Proficiency in Python (8+ years of experience).

Solid mathematical foundation: linear algebra, probability, mathematical/real analysis.

Rich experience in conducting deep learning experiments with Pytorch.

RESEARCH EXPERIENCE

Improve the efficiency of robust conformal prediction methods (Submitted to ICLR24. Avg. score 7 after review)

Advisor: Professor Lily Weng, UC San Diego

- Studied robust conformal prediction which generates prediction sets that are robust against adversarial examples.
- Provided a theoretical analysis and proposed two methods based on theoretical insight.
- Successfully reduced the inefficiency of the current baseline by up to 48.80% on ImageNet.

Failure probability estimation via Bayesian neural networks

Advisor: Professor Chao Yang, Peking University

- Used Bayesian neural network as a surrogate model to reduce the requirement of expensive Monte-Carlo sampling.
- Introduced uncertainty information in Bayesian neural network as correction criteria.
- Performed probability estimation with about 1% Monte-Carlo sample number.

Neural network architecture design with ordinary differential equation numerical schemes

Advisor: Professor Bin Dong, Beijing International Center for Mathematical Research (BICMR)

- Refined the skip connection in Resnet leveraging numerical algorithms in solving ordinary differential equations, like
 Adams algorithm and three-step linear multistep method.
- Explored the influence of different skip connections inspired by different numerical algorithms on the model performance on CIFAR-10, a popular image classification dataset.
- Achieved 92.2% accuracy on CIFAR-10 using the refined model, outperformed the original Resnet by 0.9%.