

Cálculo I - Segunda Prova 14/05/2024 (7:00 – 8:40)

Nome:
Todas as questões devem ser justificadas através de cálculos e/ou argumentação.
Utilize resultados estudados na disciplina em todas as questões. BOA PROVA!!!
Questão 01 (5,0): Classifique as afirmativas como verdadeiras ou falsas, justificando sua resposta.
(a) A equação da reta tangente ao gráfico de $y = 4x^3 - 5$ no ponto $(0, -5)$ é $y + 5 = 12x^2 \cdot (x - 0)$.
(b) A taxa de variação da função $y = cosx$ em cada instante é dada por $y' = -senx$. Como essa
variação é negativa, a função $y = \cos x$ é sempre decrescente.

na ao vanago		e em relação				. 4
	Observ	/ação : O vol	ume de um	a esfera de	raio <i>r</i> é dad	$\frac{10}{3}$

$(a) g(x) = \sqrt{e^{-x} \cdot x^2}.$	
$(b) h(t) = (sen3t) \cdot e^{5-2t}$	

C	Questão 04 (6,0): Ao ser aquecida uma chapa circular de metal, seu diâmetro varia à razão o $0.03 \frac{cm}{min}$. Determine a taxa à qual a área de uma das faces varia quando o diâmetro é $24 \ cm$. Não esqueça de mencionar as equações usadas, e as unidades .	de se
1		