

Welcome to TI Power Management's Second in a Series of Reference Design Cookbooks

Welcome to TI's latest Power Management Cookbook! Based on popular demand and distribution of over 20,000 copies of the first *Reference Design Cookbook*, we are happy to bring you Issue 2. This is a collection of complete power solutions and design documentation from TI's extensive library of reference designs and evaluation modules (EVMs) available to our customers. It includes input from Robert Kollman, his Design Services team and TI Applications Engineers.

TI has hundreds of other reference designs that may be found at: **www.ti.com/powerreferencedesigns.** If you want to view more of these, please check this website. It is frequently updated with new circuits. If you would like to access the first issue of the Cookbook from 2005, please download at the URL referenced above, or request a copy by calling; **972-644-5580 and mention Lit #: SLUB009**.

TI hopes you enjoy these "recipes", and that this Cookbook will help simplify and streamline your power supply designs.

Device Quick Search Tool

Table of Contents

				Inside	9
Converter Design Topology	V _{IN}	V _{out}	I _{out} (A)	Part Number	Page
Synchronous Boost	0.9 to 6.5	1.8 to 5.5	0.5	TPS61020	4
Synchronous Buck	3.8 to 17.0	3.3	1.5	TPS62111	6
Synchronous Buck	3.1 to 3.5	1.8	3.0	TPS54317	8
Synchronous Buck	6.0 to 18.0	3.3	3.0	TPS54356	10
Synchronous Buck	4.25 to 5.75	3.3	20.0	TPS40021	12
Synchronous Buck	5.5	1.0	4.0	TPS40040	14
Synchronous Buck	12.0	1.8	5.0	TPS40100	16
Synchronous Buck	10.0 to 14.0	1.5	10.0	TPS40190	18
Dual Synchronous Buck	6.5 to 15.0	3.3, 1.5	15.0, 10.0	TPS5124	20
Dual Synchronous Buck with Regulator	4.75 to 5.25	1.22, 3.3, 2.5	2.0, 2.0, 0.3	TPS75003	22
Non-Synchronous Buck	10.8 to 33.0	3.6	3.0	TPS40200	24
Non-Synchronous Buck	4.5 to 8.0	1.4	1.6	TPS40222	26
Non-Synchronous Buck	10.8 to 19.8	5.0	3.0	TPS5430	28
Multi-Channel Buck for DDR	12.0	2.5, 0.4	6.0, 3.0	TPS51116	30
Isolated Flyback for Power over Ethernet	34.0 to 57.0	12.0	1.0	TPS23750	32
Isolated Active Clamp	-48.0	12.0	10.0	UCC2897	34
Boost Converter	4.5 to 5.5	12.0	1.0	UCC3807	36
Synchronous Battery-Pack Charger	13.0 to 24.0	12.0 to 19.2	0 to 6.0	bq24721	38
Digital Half Bridge	36.0 to 75.0	12.0	8.0	UCD8220	40

TI has many other reference designs that may be found at:

www.ti.com/powerreferencedesigns

Synchronous Boost Converter for Battery-Powered Applications

Description

The TPS6102x family of synchronous boost converters provides a solution for products powered by either a one-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-lon or Li-Polymer battery. Output currents can go as high as 200 mA while using a single-cell alkaline discharged down to 0.9 V. It can also be used for generating 5 V at 500 mA from a 3.3-V rail or Li-lon battery. The boost converter is based on a fixed frequency, pulse-width-modulation (PWM) controller using a synchronous rectifier to obtain maximum efficiency. At low load currents the converter enters the Power Save Mode to maintain high efficiency over a wide load current range.

The TPS6102x devices keep the output voltage regulated even when the input voltage exceeds the nominal output voltage. The output voltage can be programmed by an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is completely disconnected from the battery.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TPS61020

Specifications								
Parameter	Test Conditions	Min	Тур	Max	Unit			
Input Voltage		0.9		6.5	V			
Output Voltage		1.8		5.5	V			
Output Current			500		mA			
Output Ripple Voltage	V_{IN} = 1.2 V; I_{O} = 100 mA; PWM Mode		16		mV_PP			
	V_{IN} = 1.2 V; I_{O} = 10 mA; PFM Mode		18		mV_PP			
Efficiency	V_{IN} = 3.0 V; I_{O} = 250 mA		96		%			
	$V_{IN} = 1.4 \text{ V; } I_{O} = 300 \text{ mA}$		85		%			

Evaluation Module TPS61020EVM

Synchronous Boost Converter for Battery-Powered Applications

Efficiency vs. Output Current

Output Voltage in Continuous Mode

Efficiency vs. Input Voltage

Output Voltage in Power Save Mode

Maximum Output Current vs. Input Voltage

Load Transient Response

1.5-A Synchronous Buck Converter with Light Load Efficiency

Description

The TPS6211x family of synchronous buck converters with integrated FETs can provide up to 1.5 A of output current from inputs as low as 6 V. The circuit below uses the TPS62111 fixed output voltage option configured to provide 3.3 V and up to 1500 mA with a 6.8- μ H inductor and 22- μ F output capacitor. The TPS6211x achieves high efficiency over the entire load current range by switching from traditional pulse width modulation (PWM) at high load to pulsed frequency modulation (PFM) or Power Save Mode at light load.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TPS62111

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		3.8		17	V
Output Voltage		3.201	3.3	3.399	V
Load Current	$3.8 \text{ V} < \text{V}_{\text{IN}} < 4.3 \text{ V}$	0		500	mA
	$4.3 \text{ V} < \text{V}_{\text{IN}} < 6.0 \text{ V}$	0		1200	mA
	$6.0 \text{ V} < \text{V}_{\text{IN}} < 17 \text{ V}$	0		1500	mA
Output Ripple Voltage	V_{IN} = 8.4 V; I_O = 100 mA		25	40	mV_PP
	V_{IN} =8.4 V; I_{O} = 1500 mA		5	10	mV_PP
Efficiency	V_{1N} =8.4 V; I_{0} = 1 mA		83		%
	V_{IN} =8.4 V; I_{O} = 750 mA		90		%

Evaluation Module TPS62110EVM-001

1.5-A Synchronous Buck Converter with Light Load Efficiency

Efficiency vs. Output Current

Load Transient

Line Transient

Output Ripple

1.1-MHz, Highly Efficient 3-A Buck Converter

Description

The TPS54317 DC/DC converter is designed to provide up to 3 A output from an input voltage source of 3 V to 6 V. This device features extended operating frequency range. This evaluation module is designed to demonstrate the small PCB areas that may be achieved when designing with the TPS54317 regulator, and does not reflect the high efficiencies that may be achieved when designing with this part. The switching frequency is set at a nominal 1.1 MHz, allowing the use of a small-footprint 1.5-mH output inductor. The high- and low-side MOSFETs are incorporated inside the TPS54317 package along with the gate-drive circuitry. The low drain-to-source on resistance of the MOSFETs allows the TPS54317 to achieve high efficiencies and helps to keep the junction temperature low at high output currents. The compensation components are provided external to the IC, and allow for an adjustable output voltage and a customizable loop response. Additionally, the TPS54317 provides a full feature set including programmable undervoltage lockout, synchronization, adjustable switching frequency, enable, and power-good functions.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TPS54317

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		3.1	3.3	3.5	V
V _{OUT} Set Point			1.8		V
I _{OUT} Range	$V_{IN} = 3.3V$	0		3	Α
Operating Frequency			1.1		MHz
Output Ripple			4		mV_PP
Efficiency	$V_{1N} = 3.3 \text{ V}, = V_0 = 1.8 \text{ V}, I_0 = 0.6 \text{ A}$		90.5		%

Evaluation Module TPS54317EVM-159

1.1-MHz, Highly Efficient 3-A Buck Converter

Efficiency vs. Output Current

Load Transient Response

Load Regulation

Measure Loop Response

Line Regulation

Power Up, V_{OUT} Relative to V_{IN}

12-V to 3.3-V, 3-A Buck Converter Input with Bi-Directional Synchronization

Description

The TPS54356 DC/DC converter is designed to provide up to 3-A output from an input voltage source of 6 to 10 V. This evaluation module is designed to demonstrate the small PCB areas that may be achieved when designing with the TPS54356 regulator, and does not reflect the high efficiencies that may be achieved when designing with this part. The switching frequency is set at a nominal 500 kHz, allowing the use of a relatively small footprint 22-µH output inductor. The high-side MOSFET is incorporated inside the TPS54356 package along with gate drive circuitry for an external synchronous FET. The low drain-to-source on resistance of the MOSFET allows the TPS54356 to achieve high efficiencies and helps to keep the junction temperature low at high output currents. The compensation components are provided internal to the IC. The TPS54356 is a full featured device including programmable under-voltage lockout, bidirectional synchronization, adjustable switching frequency, enable and power good functions.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TP\$54356

Specifications							
Parameter	Test Conditions	Min	Тур	Max	Unit		
Input Voltage		6.0	12.0	18.0	V		
Output Voltage Set Point			3.3		V		
Output Current Range	V _{IN} = 6 V to 18 V	0		3	А		
Switching Frequency			500		kHz		
Output Ripple	Full Load		5	10	mV_PP		
Max Efficiency	$V_{IN} = 6.0 \text{ V}, V_{OUT} = 3.3 \text{ V}, I_{OUT} = 0.5 \text{ A}$			92	%		

Evaluation Module TPS54356EVM-058

12-V to 3.3-V, 3-A Buck Converter Input with Bi-Directional Synchronization

Efficiency vs. Output Current

Power Up with Tracking

Load Regulation

Power Down with Tracking

Load Transient

Synchronous Buck Converter Delivers 20 A from Standard 5-V Input

Description

This is a synchronous buck design that uses the TPS40021 to generate a 3.3-V output at up to 20 A from a 5-V input. The TPS40021 is a low-input voltage synchronous buck controller with integrated N-channel MOSFET drivers and Predictive Gate Drive™ technology for high efficiency in a small footprint. A user-programmable operating frequency and synchronization input make the TPS40021 a versatile device that can be used in a wide variety of applications. The focus for this design was to generate a low-voltage/high-current output from a standard 5-V input.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TP\$40021

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		4.25	5	5.75	V
Output Voltage		3.25	3.3	3.35	V
Load Current		0		20	Α
Switching Frequency		255	300	345	kHz
Output Ripple Voltage	$V_{1N} = 5 \text{ V; } I_{O} = 20 \text{ A}$		20	30	mV_PP
Efficiency	$V_{1N} = 5 \text{ V; } I_{O} = 20 \text{ A}$		91		%
	$V_{1N} = 5 \text{ V; } I_{O} = 10 \text{ A}$		95		%
	$V_{IN} = 5 \text{ V; } I_{O} = 1 \text{ A}$		90		%

Reference Design PMP1050

Synchronous Buck Converter Delivers 20 A from Standard 5-V Input

Efficiency (V_{IN} = 5 V)

Loop Response ($V_{IN} = 5 \text{ V}$, $I_{OUT} = 20 \text{ A}$)

Output Voltage Ripple ($V_{IN} = 5 \text{ V}, I_{OUT} = 20 \text{ A}$)

Transient Response ($V_{IN} = 5$ V, $I_{OUT} = 0$ A to 15 A) Channel 3 = Output Current, Channel 4 = Output Voltage

Output Voltage Precision

Cost-Optimized Synchronous Buck Converter Provides 4 A from 5.5 V

Description

This reference design uses the TPS40040 controller to provide an output voltage of 1 V at a current up to 4 A from a regulated 5.5-V input voltage. The TPS40040 is a low-cost synchronous buck controller that operates over the input voltage range of 2.25 V to 5.5 V. The TPS40040 integrates several circuit functions, such as over-current, soft start, and fixed switching frequency to minimize the number of external components required. The controller also provides a short circuit threshold that is user selectable between one of three values. The protection level is set by a single external resistor from COMP to GND. The controller ensures a monotonic startup of the output voltage whether the output voltage starts from zero volts or from a pre-biased output level. The controller utilizes voltage mode operation at a fixed 300 kHz switching frequency (or 600 kHz for the TPS40041) to maximize circuit efficiency. This reference design achieves a peak efficiency of greater than 88%. The actual design PWB area is less than 0.8 in².

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TP\$40040

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage			5.5		V
V _{OUT}	All		1		V
I _{OUT}		0		4	Α
Switching Frequency			300		kHz
Efficiency	5.5 V at 4 A		88		%

Reference Design PMP1632A

Cost-Optimized Synchronous Buck Converter Provides 4 A from 5.5 V

Efficiency

Switch Node Waveforms ($V_{IN} = 12 \text{ V}, V_{OUT} 5.5 \text{ V}$) (Loaded Current Stepped Between 0.5 A and 1 A)

Startup

 $(V_{IN} = 12 \text{ V}, V_{OUT} = 5.5 \text{ V} @ 1 \text{ A}, 1 \text{ V} @ 4 \text{ A}, 1.8 \text{ V} @ 1.8 \text{ A})$

Control Loop Gain/Stability ($V_{IN} = 15 \text{ V}$, $V_{OUT} 5.5 \text{ V}$, Loaded to 4 A)

Load Transients (V_{IN} = 12 V, V_{OUT} 5.5 V)

12-V_{IN}, 5-A Synchronous Buck Converter with Voltage Margining and Tracking

Description

This design utilizes the TPS40100 in a synchronous buck configuration to generate a 1.8-V/5-A output from a 12-V input. In addition to providing this power conversion, voltage margining, tracking, and device enable are supported through the use of user-configurable jumpers. The TPS40100's voltage margining feature allows the output to be adjusted 3% or 5% above or below the nominal 1.8 V through the use of a digital input. The TPS40100 also has an integrated tracking control loop that can limit the output voltage according to the input voltage on the Tracking Input line. This feature is useful in designs where power-up sequencing is needed. Other features of the TPS40100 include a wide input voltage range (4.5 V to 18 V), integrated gate drivers for N-channel MOSFETs, adaptive gate-drive circuitry for improved efficiency, programmable Under Voltage Lockout (UVLO) protection, and programmable overcurrent protection.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TP\$40100

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		10.8	12	13.2	V
Output Voltage		1.76	1.8	1.84	V
Load Current		0	5	6.5	Α
Switching Frequency		255	300	345	kHz
Output Ripple Voltage	$V_{IN} = 12 \text{ V; } I_{O} = 5 \text{ A}$		20	30	mV_PP
Efficiency	$V_{IN} = 12 \text{ V; } I_{O} = 5 \text{ A}$		89		%
	V_{IN} = 12 V; I_{O} = 0.5 A		72		%

Reference Design PMP1048

12-V_{IN}, 5-A Synchronous Buck Converter with Voltage Margining and Tracking

Efficiency ($V_{IN} = 12 V$)

Loop Response ($V_{IN} = 12 \text{ V}, I_{OUT} = 5 \text{ A}$)

Output Voltage Ripple ($V_{IN} = 12 \text{ V}, I_{OUT} = 5 \text{ A}$)

Transient Response ($V_{IN} = 12 \text{ V}$, $I_{OUT} = 0 \text{ A to 5 A}$) Channel 3 = Output Voltage Channel 4 = Output Current

Tracking Input Response Channel 3 = 5-V Tracking Input Channel 4 = 1.8-V Output

12-V Input, 1.5-V Output, 10-A Synchronous Buck Converter

Description

The TPS40190EVM-001 evaluation module (EVM) is a synchronous buck converter providing a fixed 1.5-V output at up to 10 A from a 12-V input bus. The EVM is designed to startup from a single supply, so no additional bias voltage is required for startup. The module uses the TPS40190 reduced pin count synchronous buck controller. TPS40190EVM-001 is designed to use a regulated 12-V (10 V to 14 V) bus to produce a high current, regulated 1.5-V output at up to 10 A of load current. The TPS40190EVM-001 is designed to demonstrate the TPS40190 in a typical regulated bus to low-voltage application while providing a number of test points to evaluate the performance of the TPS40190 in a given application. The EVM can be modified to support output voltages from 0.9 V to 3.3 V by changing a single set resistor.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TP\$40190

Specifications								
Parameter	Test Conditions	Min	Тур	Max	Unit			
V_{IN}		10	12	14	V			
V _{OUT}	R6 = 9.53 k, R5 = 105 k	1.45	1.50	1.55	V			
I _{OUT}		0		10	Α			
Switching Frequency		240	300	360	kHz			
Output Ripple	V _{IN} = 14 V, I _{OUT} = 10 A		25	50	mV_PP			
Peak Efficiency	V_{OUT} = 1.5 V, 8 A < 1 _{OUT} < 12 A V_{IN} =10 V		87		%			
	V _{IN} = 12 V		85					
	V _{IN} = 14 V		83					
Full Load Efficiency	$V_{OUT} = 1.5 \text{ V}, I_{OUT} = 15 \text{ A } V_{IN} = 10 \text{ V}$		84		%			
	V _{IN} = 12 V		83					
	$V_{IN} = 14 \text{ V}$		81					

Evaluation Module TPS40190EVM-001

Optional component not populated on PCB

For loop response testing only

12-V Input, 1.5-V Output, 10-A Synchronous Buck Converter

Efficiency vs. Load Current

Line and Load Regulation

Dual Synchronous Converter Provides 3.3 V at 15 A and 1.5 V at 10 A from a 12-V Bus

Description

The TPS5124 is a dual independent synchronous buck controller. Both controllers internal to the TPS5124 operate at 180° phase shift and the input ripple is partially cancelled and therefore the required input capacitance is reduced. Other features include separate soft start circuit and standby control. See the TPS5124 data sheet (SLUS571) for detail. This EVM is designed to operate from 12-V bus voltage. It generates two outputs, 3.3 V at 15 A and 1.5 V at 10 A.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS5124

Specifications							
Parameter	Test Conditions	Min	Тур	Max	Unit		
Input Voltage		6.5	12	15	V		
Switching Frequency			300		kHz		
Channel 1							
Output Current Range	6.5 V V _{IN} 15 V	0	15	16			
Output Ripple	I _{OUT} = 15 A		33	66	mV_PP		
Full Load Efficiency	V_{IN} = 12 V, V_{OUT} = 3.3 V, I_{OUT} = 15 A		90.6		%		
Channel 2							
Output Current Range	6.5 V V _{IN} 15 V	0	10	12			
Output Ripple	I _{OUT} = 10 A		15	30	mV_PP		
Efficiency	V_{IN} = 12 V, V_{OUT} = 1.53 V, I_{OUT} = 10 A		85.5		%		

Evaluation Module TPS5124EVM-001

Dual Synchronous Converter Provides 3.3 V at 15 A and 1.5 V at 10 A from a 12-V Bus

Overall Efficiency vs. Output Current V_{OUT1} (3.3 V) Enabled Only

Overall Efficiency vs. Output Current V_{OUT2} (1.5 V) Enabled Only

Overall Efficiency vs. Output Power Both Channels Enabled

Gain and Phase vs. Oscillator Frequency (Channel 1)

Gain and Phase vs. Oscillator Frequency (Channel 2)

Converter Provides Dual 2-A Buck Outputs and 300-mA Regulator

Description

The TPS75003 is a multi-channel power management IC. The device consists of two step-down controllers, each capable of providing up to 3 A of output current and a 300-mA linear regulator. The input voltage input range is 2.2 V to 6.5 V. The buck controllers can be configured for output voltages between 1.2 V and 6.5 V and the linear regulator can be configured for output voltages between 1.0 V and 6.5 V. Individual enable pins and soft start capacitors for each output allow minimization of inrush currents at startup.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TP\$75003

Specifications			_	_	
Parameter	Test Conditions	Min	Тур	Max	Unit
V _{IN}		4.75	5	5.25	V
V_{OUT1}	-40° C to 85° C, $I_{OUT1} = 0$ to 2 A	1.16	1.22	1.28	V
V_{OUT2}	-40° C to 85° C, $I_{OUT1} = 0$ to 2 A	3.14	3.3	3.47	
V _{OUT3}	-40° C to 85° C, $I_{OUT1} = 0$ to 0.30 A	2.38	2.5	2.63	
0UT1		0		2	А
OUT2		0		2	А
OUT3		0		300	mA
V _{OUT1} Ripple Voltage	$V_{IN} = 5.0 \text{ V}; I_0 = 2 \text{ A}$		20		mV_PP
V _{OUT2} Ripple Voltage	$V_{IN} = 5.0 \text{ V}; I_0 = 2 \text{ A}$		40		mV_PP
V _{OUT1} Efficiency	$V_{IN} = 5 \text{ V; } I_0 = 10 \text{ mA}$		69		%
V _{OUT1} Efficiency	$V_{IN} = 5 \text{ V; } I_0 = 1 \text{ A}$		79		%
V _{OUT2} Efficiency	$V_{IN} = 5 \text{ V; } I_0 = 10 \text{ mA}$		84		%
V _{OUT2} Efficiency	$V_{IN} = 5 \text{ V; } I_0 = 1 \text{ A}$		91		%

Evaluation Module TPS75003EVM-092

Converter Provides Dual 2-A Buck Outputs and 300-mA Regulator

Efficiency

Output Ripple ($V_{OUT} = 3.3 \text{ V}$, $I_{OUT} = 2 \text{ A}$)

Output Ripple ($V_{OUT} = 1.2 \text{ V}$, $I_{OUT} = 2 \text{ A}$)

Output Voltage vs. Time (EN2 = V_{OUT3} , EN1 = V_{OUT2})

Flexible, Wide Input Range 3-A Buck Converter for 12-V and 24-V Inputs

Description

The TPS40200 is a flexible non-synchronous controller with a built-in 200-mA driver for P-channel FETs. The circuit operates with inputs up to 52 V with a power-saving feature that turns off driver current once the external FET has been fully turned on. The circuit operates with voltage-mode feedback and has feed-forward input-voltage compensation that responds instantly to input voltage change. The integral 700-mV reference is trimmed to 1%, providing the means to accurately control low voltages and supports many of the features of more complex controllers. Clock frequency, soft start, and overcurrent limit are each easily programmed by a single, external component. The part has undervoltage lockout, and can be easily synchronized to other controllers or a system clock to satisfy sequencing and/or noise-reduction requirements. Ultra-wide-input operating range makes this controller suitable for a wide range of low-current applications.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TP\$40200

Specifications							
Parameter	Test Conditions	Min	Тур	Max	Unit		
Input Voltage		10.8		33	V		
Output Voltage		3.45	3.6	3.75	V		
Load Current		0		3	А		
Switching Frequency		250	280	310	kHz		
Output Ripple Voltage				40	mV/ _{PPK}		

Reference Design PMP1510

Flexible, Wide Input Range 3-A Buck Converter for 12-V and 24-V Inputs

Efficiency

Load Regulation

Output Ripple ($V_{OUT} = 3.65 \text{ V}$, $I_{OUT} = 3 \text{ A}$)

Load Transient ($V_{IN} = 3.6$, Load Current = .5 A and 3 A)

Start Up ($V_{IN} = 12 \text{ V}, V_{OUT} = 3.6 \text{ V}$)

Control Loop ($V_{IN} = 33 \text{ V}$, Gain 1) ($V_{IN} = 10.8 \text{ V}$, Gain 2)

5-V Input, 1.6-A Output, Non-Synch. Buck Converter with Minimal External Components

Description

The TPS40222EVM-001 evaluation module (EVM) is a non-synchronous buck converter with a 4.5-V to 8-V input range with a built in N-channel power FET, that can deliver 1.6 A of output current. The EVM is designed to operate with a minimum of components and yet has the features of more complex buck converters.

The TPS40222EVM-001 is designed to use a 4.5- to 8-V input voltage to produce a high current, regulated 1.4 V output at up to 1.6 A of load current. This application board is designed to demonstrate the TPS40222 in a typical voltage bus to low-voltage application while providing a number of test points to evaluate the performance of the IC. The EVM can be modified to support output voltages from 0.8 V to 6.3 V by changing a single resistor. The TPS402224EVM-001 has been built with the internal clock operating at 1.25 MHz.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples, Software:

www.ti.com

Part Number Search: TPS40222

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range		4.5		8	V
No-Load Input Current	V_{IN} = 5 V, I_{OUT} = 0 A, R_5 = 120 Ω		11		mA
	(10-mA Load)				
Output Voltage	R2 = 10.0 k, R ₁ = 7.5 k	1.35	1.40	1.44	V
			8		2
Output Voltage Ripple	V _{IN} = 5 V, I _{OUT} = 1.0 A		10		mV_{PP}
Output Load Current		0		1.6	А
Output Over Current			2.6		А
Switching Frequency		1.0	1.25	1.5	MHz
Peak Efficiency	$V_{OUT} = 3.3 \text{ V}, 0.1 \text{ A} < I_{OUT} < 1.0 \text{ A}$				%
	V _{5V IN} = 5 V		90		
Full Load Efficiency	$V_{OUT} = 1.25 \text{ V}, I_{OUT} = 1.6 \text{ A}$				%
	$V_{5V_IN} = 5.0 \text{ V}$		74		

Evaluation Module TPS40222EVM-001

5-V Input, 1.6-A Output, Non-Synch. Buck Converter with Minimal External Components

Efficiency vs. Load $(V_{IN} = 5, V_{OUT} = 1.25)$

Line and Load Regulation

Typical Ripple Voltage

Small, 3-A Integrated MOSFET Buck Converter from a 12-V or 15-V Input

Description

The TPS5430 DC/DC converter is designed to provide up to a 3-A output from a typical bus voltage of 12 V or 15 V. This evaluation module is designed to demonstrate the small PCB areas that may be achieved when designing with the TPS5430 regulator and does not reflect the high input voltages that may be used when designing with this part. The switching frequency is internally set at a nominal 500 kHz. The high-side MOSFET is incorporated inside the TPS5430 package along with the gate-drive circuitry. The low drain-to-source on resistance of the MOSFET allows the TPS5430 to achieve high efficiencies and helps to keep the junction temperature low at high output currents. The compensation components are provided internal to the IC whereas an external divider allows for an adjustable output voltage. Additionally, the TPS5430 provides an enable input. The absolute maximum input voltage is 24 V.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TP\$5430

Specifications						
Parameter	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		10.8	12 or 15	19.8	V	
V _{OUT}			5.0		V	
lout		0		3	Α	
Switching Frequency			500		kHz	
Output Ripple	Full Load		20		mV_PP	
Efficiency	12 V _{IN} , 1 A Load		92.3%		%	

Evaluation Module TPS5430EVM-136

Small, 3-A Integrated MOSFET Buck Converter from a 12-V or 15-V Input

Efficiency vs. Output Current

Load Transient

Load Regulation vs. Output Current

Measured Loop Response

Line Regulation vs. Input Voltage

Output Voltage Ripple

Integrated Buck Converter Plus LDO for DDR and DDR2

Description

The TPS51116 provides a complete power supply solution for both DDR/SSTL-2 and DDR2/SSTL-18 memory systems. It integrates a synchronous buck controller with a 3-A sink/source tracking linear regulator. The TPS51116 offers the lowest total solution costs where system space is at a premium. This reference design operates from a 12-V rail and can provide a V_{DDQ} voltage of either 2.5 V (DDR) or 1.8 V (DDR2) at 6-A maximum. The V_{TT} output voltage (1.25 V or 0.9 V) is supplied from an internal linear regulator and is equal to half of the V_{DDQ} output. This output voltage can either source or sink 3-A maximum and is supplied by the V_{DDQ} output. The synchronous buck controller operates at 400 kHz using a pseudo-constant frequency PWM with an adaptive on-time control and implements current mode control.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TPS51116

Specifications						
Parameter	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		10.8	12	13.2	V	
Output Voltage (V _{DDQ})		2.425	2.5	2.575	V	
Output Voltage Tol (V _{TT})	$V_{TT} = V_{DDQ}/2$	-40	0	40	mV	
Load Current (V _{DDQ})		0		6	А	
Load Current (V _{TT})		-3		3	Α	
Switching Frequency			400		kHz	
Output Ripple Voltage	$V_{IN} = 12 \text{ V; } I_0 = 9 \text{ A}$		25	40	mV_PP	
Efficiency 1	$V_{IN} = 12 \text{ V}; I_0 = 9 \text{ A}$		92		%	
Efficiency 2	$V_{IN} = 12 \text{ V}; I_0 = 4.5 \text{ A}$		92		%	

Reference Design PMP1516

Integrated Buck Converter Plus LDO for DDR and DDR2

Efficiency

Turn On: 0.5 V/div, 200 μ S/div V_{IN} = 12 V; 2.5 V @ 4 A, 1.25 V @ 1 A,

Control Loop V_{IN} = 12 V; I_O = 4 A

Output Ripple: 20 mV/div, 1µS/div

V_{IN} = 12 V; 2.5 V @ 9 A

Voltage Tracking

Top Trace: V_{TT} x 2 (1.25 V x 2)

Bottom Trace: V_{DDQ}

Transient Response

Top Trace: 2.5 V @ 50 mV/div Bottom Trace: I_0 @ 2 A/div

IEEE 802.3af PD Controller with Integrated DC/DC

Description

This reference design uses a TPS23750 in an isolated, discontinuous mode flyback converter for Power-over-Ethernet (PoE) applications. An input voltage of 34 to 57 VDC is converted to 12 V at 1 A at efficiencies up to 84%. The high level of integration of the TPS23750 provides a small, cost effective solution for PoE applications.

The TPS23750 integrates the functions of a PoE Powered Device (PD) switch and a primary side DC/DC PWM controller. The PoE front end is IEEE802.3af compliant and contains all necessary functions including detection, classification, undervoltage lockout, and inrush current limit, plus the integrated input switch. The PWM section supports isolated flyback and forward topologies, as well as non-isolated, low-side-switch buck topologies.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: TP\$23750

Specifications						
Parameter	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		34	48	57	VDC	
Output Voltage		11.6	12.0	12.4	VDC	
Load Current		0	1		А	
Switching Frequency			250		kHz	
Output Voltage Ripple	V_{IN} = 48 VDC, I_{OUT} = 1 A		80		mV	
Efficiency	V _{IN} = 48 VDC, I _{OUT} = 1 A		84		%	

Reference Design PMP1360

IEEE 802.3af PD Controller with Integrated DC/DC

Efficiency (V_{IN} = 48 V) (J2 = System Efficiency)

Load Step (3 = 1 ms, 100 mV) (4 = 1 ms, .50 A)

Control Loop (3-kHz Bandwidth, 90 Degrees)

Output Ripple ($V_{IN} = 48 \text{ V}$, 1-A Load Across C10)

Input Ripple ($V_{IN} = 48 \text{ V}$, 1-A Load Across J2-1 and 3)

Turn On Response $(V_{IN} = 48 \text{ V}) (0-A \text{ Load})$

Negative Clamp Converter Provides 10 A at 12 V from a -48-V Telecom Input

Description

This reference design uses the UCC2897 current mode, active clamp, PWM controller to generate an isolated 12-V/10-A output from a standard –48-V telecom input. Hot swap inrush protection is provided by the TPS2391 hot-swap controller. The self-driven synchronous rectifiers allow this design to achieve efficiencies above 93%. A secondary current-sense resistor provides accurate current limit and output voltage fold back. Remote sensing is also provided, allowing accurate regulation at the point of load.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCC2897

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		-36	-48	-72	V
Output Voltage		11.78	12.15	12.51	V
Load Current		0		10	Α
Switching Frequency		180	200	220	kHz
Output Ripple Voltage	$V_{IN} = -48 \text{ V; } I_0 = 10 \text{ A}$		200	250	mV_PP
Efficiency	$V_{IN} = -48 \text{ V; } I_0 = 7 \text{ A}$		93.4		%
	$V_{IN} = -48 \text{ V; } I_0 = 10 \text{ A}$		93.0		%

Reference Design PMP1714

Negative Clamp Converter Provides 10 A at 12 V from a -48-V Telecom Input

Efficiency

Output Ripple ($V_{IN} = -48 \text{ V}$; $I_0 = 10 \text{ A}$; 100 mV/div; $2 \mu \text{s/div}$)

Control Loop ($V_{IN} = -48 \text{ V}; I_0 = 10 \text{ A}$)

Turn On ($V_{IN} = -48 \text{ V}$; No Load) Channel 1: V_{OUT} ; 5 V/div; 5 ms/div

Transient Response

Top Trace: V_0 @ 500 mV/div, 200 μ s/div Bottom Trace: I_0 @ 2 A/div, 200 μ s/div

Boost Converter Provides 12 V from 4.5-V to 5.5-V VIN at 1 A

Description

The UCC3807 family of high-speed, low-power ICs contains all of the control and drive circuitry required for off-line and DC/DC fixed-frequency current-mode switching power supplies with minimal external parts count. In addition, the UCC3807 has the a programmable maximum duty cycle, which makes it easier to implement the boost topology.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCC3807

Specifications						
Parameter	Test Conditions	Min	Тур	Max	Unit	
Input Voltage			4.5	5.5	V	
Output Voltage		11.88	12	12.12	V	
Load Current		0		1	А	
Switching Frequency		180	200	220	kHz	
Output Ripple Voltage	V _{OUT} = 12 V			10	$mV/_{PPK}$	

Reference Design PMP1545

Boost Converter Provides 12 V from 4.5-V to 5.5-V VIN at 1 A

Efficiency (V_{IN} = 12 V)

Start Up ($V_{IN} = 5$ V, $V_{OUT} = 12$ V, Loaded to 0 A)

Load Regulation

Load Transient ($V_{IN} = 5 \text{ V}$, $V_{OUT} = 12 \text{ V}$, Pulsed to 0.1 A and 1 A)

Control Loop (V_{IN} = 5 V, Gain 1, 1 A, Phased 90 Degrees)

Load Transient ($V_{IN} = 5 \text{ V}$, $V_{OUT} = 12 \text{ V}$, Pulsed to 0.1 A and 1 A)

Advanced Multi-Chemistry and Multi-Cell Battery-Pack Charger

Description

The bq2472x family is a synchronous battery-pack charger and path selector with a high level of integration for portable applications. The output voltage, charge current and input current limit are programmable via a simplified SBS-like SMBus interface. It can provide up to 8 A of charge current from an input 8 V to 28 V for 3-cell or 4-cell Li-lon or Li-Pol applications. The dynamic power management (DPM) function SMBus interface modifies the charge current depending on system load conditions, avoiding ac adapter overload. High-accuracy current-sense amplifiers enable accurate measurement of either the charge current or the ac adapter current, allowing termination of nonsmart packs and monitoring of overall system power.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: bq24721

Specifications						
Parameter	Test Conditions	Min	Тур	Max	Unit	
Input Voltage		13		24	V	
Battery Regulation Voltage		12		19.2	V	
Charge Current (Average)		0	3	6	Α	
Adapter Input Current		0		7	А	
(Average)						
Switching Frequency			300k		Hz	
Efficiency	$V_{IN} = 19.5 \text{ V}, V_{BAT} = 12.6 \text{ V}; I_0 = 3000 \text{ mA}$		93		%	

Evaluation Module bg24721EVM

Advanced Multi-Chemistry and Multi-Cell Battery-Pack Charger

Efficiency vs. Battery Charge Current

Battery Removal (Constant Current Mode)

Transient System Load

Soft-Start Charge Current

Digital Half-Bridge Converter

Description

The UCD8220 is a digitally managed push-pull analog PWM controller to be used in digitally managed power supplies using a microcontroller or the TMS320™ DSP family. The UCD8220 is a double-ended PWM controller configured with push-pull drive logic. Systems using the UCD8220 device close the PWM feedback loop with traditional analog methods, but the UCD8220 controller includes circuitry to interpret a time-domain digital pulse train "CLK Signal". The pulse train sets the operating frequency and maximum duty-cycle limit which are used to control the power-supply operation. This eases implementation of a converter with high-level control features without the added complexity or possible PWM resolution limitations of closing the control loop in the discrete time domain. The UCD8220 reference design is a half-bridge topology switching at 600 kHz. It operates from the standard telecom input range of 36 V to 75 V and produces 12 V at 100 W.

Web Links:

Reference Designs:

www.ti.com/powerreferencedesigns

Datasheets, User's Guides, Samples:

www.ti.com

Part Number Search: UCD8220

Specifications					
Parameter	Test Conditions	Min	Тур	Max	Unit
Input Voltage		36	48	75	V
Output Voltage			12		V
Load Current		3		8.33	Α
Switching Frequency	Output Ripple		600		kHz
Output Ripple Voltage			20		mV_PP
Efficiency	$V_{IN} = 48$; $I_0 = 5 A$		90.5		%
	$V_{IN} = 48$; $I_0 = 8.33 \text{ A}$		90		%

Reference Design UCD8220

Digital Half-Bridge Converter

Efficiency vs. Output Current ($V_{OUT} = 12 \text{ V}$)

UCD8220EVM Magnitude and Phase Plot ($V_{IN} = 48 \text{ V}, I_{OUT} = 8.3 \text{ A}$)

Clock and V_{OUT} During Soft Start ($V_{IN} = 48 \text{ V}$, I_{OUT} Set to 5 A)

Clock and V_{OUT} Soft Start ($V_{IN} = 48 \text{ V}$, $I_{OUT} = 5 \text{ A}$)

Transient Response (V_{IN} = 48 V, I_{OUT} = 3 A to 8 A)

 V_{OUT} Ripple ($V_{IN} = 48 \text{ V}, I_{OUT} = 5 \text{ A}$)

Reference Design Cookbook I for Power Management Products

TI introduced its first "cookbook" of power management reference designs in 3Q 2005. In this catalog, you will find many complete reference designs with tables, schematics and waveforms. A few of the designs included are:

- Synchronous Buck Converter
- Inverting Buck-Boost Converter
- 5-V, 1-A Boost Converter
- SEPIC High-Frequency Controller
- Negative-Output Flyback Converter
- Triple-Output Flyback PWM Controller
- Lithium-Ion Charger

This cookbook and other reference designs are available on TI's power management reference design website at: www.ti.com/powerreferencedesigns

Also, check out TI's "Power Quick Search" tool at **power.ti.com** for recommended power solutions across DC/DC conversion and PWM controller products based on user input criteria.

Thanks for using TI's **Design Reference Cookbook II**.
TI is ready to help you with all your design challenges.
Consult TI's website specifically devoted to Power.

POWERLICOM

TI Worldwide Technical Support

Internet

TI Semiconductor Product Information Center Home Page

support.ti.com

TI Semiconductor KnowledgeBase Home Page

support.ti.com/sc/knowledgebase

Product Information Centers

Americas

Phone +1(972) 644-5580 Fax +1(972)927-6377

Internet support.ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa

Phone

Belgium (English) +32 (0) 27 45 54 32 Finland (English) +358 (0) 9 25173948 France +33 (0) 1 30 70 11 64 Germany +49 (0) 8161 80 33 11 Israel (English) 180 949 0107 800 79 11 37 Italy Netherlands (English) +31 (0) 546 87 95 45 +7 (0) 95 363 4824 Russia +34 902 35 40 28 Spain Sweden (English) +46 (0) 8587 555 22 United Kingdom +44 (0) 1604 66 33 99

Fax +49 (0) 8161 80 2045

Internet support.ti.com/sc/pic/euro.htm

Japan

Fax

International +81-3-3344-5317

Domestic 0120-81-0036

Internet

International support.ti.com/sc/pic/japan.htm

Domestic www.tij.co.jp/pic

Asia Phone

Indonesia 001-803-8861-1006
Korea 080-551-2804
Malaysia 1-800-80-3973
New Zealand 0800-446-934
Philippines 1-800-765-7404
Singapore 800-886-1028
Taiwan 0800-006800
Thailand 001-800-886-0010

Fax +886-2-2378-6808

Email tiasia@ti.com or ti-china@ti.com Internet support.ti.com/sc/pic/asia.htm

D120905

Safe Harbor Statement

This publication may contain forward-looking statements that involve a number of risks and uncertainties. These "forwardlooking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forward-looking statements generally can be identified by phrases such as TL or its management "believes." "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forwardlooking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

Technology for Innovators, the black/red banner, TMS320 and PowerPAD are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

© 2006 Texas Instruments Incorporated

Printed in U.S.A. by (Printer, City, State), on recycled paper

Texas Instruments Incorporated

14950 FAA Blvd.

Ft. Worth, Texas 76155-9950

Address service requested

PRSRT STD U.S. POSTAGE PAID DALLAS, TEXAS PERMIT NO. 2758