Sprawozdanie

Kontrolowana praca własna

Wyłącznik automatyczny

Mateusz Muszak 195999

Spis treści

1. Wstęp		3
2. Realizacja p	projektu	3
3. Projekt ukła	adu	4
3.1 Symulac	cja w programie LT Spice	4
3.2 Projekt į	płytki w programie Eagle	6
4. Pomiary ukł	ładu	8
5. Wnioski		17
6. Załączniki		17
7. Oświadczen	nie	17

1. Wstęp

Projekt zakłada wykonanie wyłącznika sterowanego przyciskiem z układem zabezpieczającym obciążenie przed zbyt dużymi spadkami napięcia zasilania. Wyłącznik ten z założenia zasilany ma być bateryjnie i przeznaczony jest do układów niskonapięciowych (np. lampki namiotowe).

2. Realizacja projektu

Do wykonania układu konieczne było użycie komparatora, dwóch przerzutników typu D (w tej roli wykorzystano układ 4013 zawierający dwa takie przerzutniki w jednej obudowie) oraz tranzystora. W układzie użyto tranzystor bipolarny BC327-40, chociaż możliwe było także wykorzystanie tranzystora IRF9540 (tranzystor typu p-MOSFET). Tranzystor bipolarny wybrano ze względu na cenę, która była korzystniejsza niż tranzystora polowego, jednak ta decyzja wpłynęła na obniżenie się maksymalnej możliwej obciążalności prądowej układu.

W roli komparatora użyto wzmacniacz operacyjny TL081, którego diagram wyprowadzeń widnieje poniżej.

Rys. 1 Schemat wyprowadzeń układu TL081 [http://html.alldatasheet.com/html-pdf/28774/TI/TL081/19/1/TL081.html]

Największą zaletą, wziętą pod uwagę przy projektowaniu układu była duża impedancja wejściowa (rzędu $10^{12} \, \Omega$) oraz minimalne napięcie zasilania wynoszące 3V, co powoduje, że całość może być zasilona 2 bateriami AAA ($U_{bat}=1,5V$).

Niezbędnym elementem funkcjonalnym układu są także dwa przerzutniki typu D umieszczone w układzie 4013, którego schemat wyprowadzeń przedstawiono na rys. 2.

TERMINAL ASSIGNMENT

Rys. 2 Schemat wyprowadzeń układu 4013 [http://html.alldatasheet.com/html-pdf/26845/TI/CD4013B/99/4/CD4013B.html]

Wybór padł na ten układ głównie ze względu na jego kompaktowość (zawiera dwa przerzutniki w jednym układzie, dzięki czemu można zaoszczędzić miejsce na płytce obwodu drukowanego) oraz napięcie zasilania zgodne z napięciem zasilania wzmacniacza TL081, co pozwala umieścić oba te elementy w układzie bez konieczności zwiększania potrzebnego napięcia zasilającego całość.

Ostatnim użytym w projekcie elementem aktywnym jest tranzystor bipolarny BC327-40 pełniący rolę przełącznika pomiędzy zasilaniem a układem obciążającym.

3. Projekt układu

3.1 Symulacja w programie LT Spice

Pierwszą czynnością wykonaną w celu wytworzenia działającego układu było zasymulowanie jego działania w programie LT Spice IV. Aby tego dokonać wykonano schemat symulacji w sposób przedstawiony na rys. 3. Pozwoliło to ocenić prawidłowość projektu oraz przeanalizować zasadę działania układu, dzięki czemu można było określić oczekiwania związane z funkcjonowaniem wykonywanego układu. Symulację początkową układu przedstawiono na rys. 4.

Rys. 3 Schemat symulacji LT Spice

Rys. 4 Wyniki symulacji układu w LT Spice IV

urpot - spadek napięcia na potencjometrze wraz ze zwiększaniem jego rezystancji z punktu widzenia komparatora uod - napięcie odniesienia podawane na wejście nieodwracające komparatora ukomp - zmiana napięcia wyjściowego na komparatorze przy zbyt dużych spadkach napięcia wejściowego

d_out - wyjście Q przerzutnika D sterującego bazą tranzystora

usw - symulacja wciskania przycisku

uce - zmiany napięcia kolektor- emiter tranzystora

Można zatem zauważyć, że układ dzieli się na 2 części, ściśle ze sobą związane. Pierwszym blokiem układu jest para przerzutników D (w układzie 4013) oraz sterujący nimi przycisk. pełnia rolę inwerterów zatrzaskujących umożliwiających tranzystorem bipolarnym. Naciśnięcie przycisku ustawia wejście SET pierwszego z przerzutników w stan wysoki. Powoduje to zmianę napięcia na wyjściu Q tego przerzutnika na stan wysoki. Wejście CLK drugiego z przerzutników wykrywając zbocze narastające sygnału zegarowego (generowanego przez parę przycisk- przerzutnik) zmienia stan wyjścia Q na przeciwny (dzieje się tak dzięki zwarciu ze sobą wyjścia negującego oraz wejścia przerzutnika). Zwolnienie przycisku powoduje ustawienie linii SET pierwszego z przerzutników na logiczne zero, co przy jednoczesnym napięciu stanu wysokiego na wejściu RESET powoduje wystawienie na wyjście Q stanu niskiego. Dzięki temu przy kolejnym wciśnięciu przycisku wyjście przerzutnika wygeneruje stan wysoki, a wejście CLK odczyta zbocze narastające na sygnale zegarowym (zmiana stanu wyjść przerzutników użytych w układzie następuje po wykryciu zbocza narastającego na sygnale zegarowym). Pierwszy z przerzutników nie otrzymuje sygnału zegarowego, ponieważ wpływ stanów na wejściach SET i RESET jest niezależny od tego sygnału. Zabezpieczenie przed niekontrolowanymi zmianami napięcia na linii SET pierwszego z przerzutników stanowi para kondensatora i rezystora eliminujac tzw. efekt bouncingu.

Automatyczne sterowanie wyjściem zapewnia komparator oznaczony tu jako U1. W momencie gdy napięcie zasilania zaczyna spadać zmienia się wartość spadku napięcia na potencjometrze. Dzięki zastosowaniu na linii napięcia odniesienia diody LED spolaryzowanej w kierunku przewodzenia możliwe jest utrzymanie na tej linii stałego poziomu napięcia, co pozwala skutecznie wykrywać zmianę napięcia zasilania układu. Dzieje się tak dlatego, że napięcie na diodzie LED spolaryzowanej w kierunku przewodzenia jest (od pewnych wartości prądów płynących przez diodę) utrzymywane na stałym poziomie (lub jego zmiany są bardzo niewielkie). Zabezpieczeniem przed niekontrolowanym przekazaniem napięcia do układu obciążającego wyłącznik w momencie włączenia są kondensatory C2 i C3, które ładując się obniżają wartość spadku napięcia na potencjometrze, przez co wyjście komparatora ustawia się w stan wysoki. Powoduje to przełączenie wyjścia Q przerzutnika również w stan wysoki, co skutkuje dostarczeniem do bazy tranzystora prądu zaporowo polaryzującego złącze kolektor - emiter.

3.2 Projekt płytki w programie Eagle

Po wykonaniu symulacji w programie LT Spice zaprojektowałem w programie Eagle płytkę obwodu drukowanego, która miała stanowić sieć połączeń układu. Schemat w programie Eagle przedstawia rys. 5.

Rys. 5 Schemat układu w programie Eagle

Kolejnym krokiem było wykonanie projektu maski na płytkę, przedstawia ją rys. 6.

Rys. 6 Topologia układu ścieżek na płytce obwodu drukowanego

Następnie płytkę wytrawiono, elementy umieszczono na właściwych miejscach i przylutowano, co pozwoliło przystąpić do wykonywania serii pomiarów.

4. Pomiary układu

W poniższej tabeli przedstawiono wyniki pomiarów i obliczeń zależności rezystancji na potencjometrze od napięcia ustawiającego wyjście Q przerzutnika U2 w stan wysoki (powodujące przejście tranzystora w stan odcięcia).

Tabela 1 Porównanie wartości spadku napięcia widzianego przez komparator do napięcia zasilania ustawiającego wyjście komparatora w stan wysoki oraz napięcia ustawiającego komparator w stan wysoki według symulacji w programie LT Spice IV

$U_{odc}[V]$	$I_{pot}[\mu A]$	$U_{pot}[V]$	$R_{pot}[k\Omega]$	$U_{\mathrm{wyj}}[V]$	$U_{odc_spice}[mV]$
3,5	3,2	0,04	12,57	3,49	542,97
3,8	3,5	0,27	78,15	3,78	579,24
4,0	3,6	0,40	110,00	3,98	596,75
4,2	3,8	0,53	138,81	4,19	612,97
4,5	4,1	0,63	154,00	4,48	612,97
4,8	4,4	0,90	206,25	4,78	656,43
5,0	4,5	1,03	226,60	4,98	670,27
5,2	4,7	1,15	243,27	5,19	683,02
5,5	5,0	1,33	266,00	5,48	698,64
5,8	5,3	1,52	288,28	5,78	711,65
6,0	5,5	1,63	298,83	5,98	723,43
6,5	5,9	1,94	328,31	6,48	741,35
7,0	6,4	2,25	353,57	6,98	760,54
7,5	6,8	2,57	376,93	7,49	782,43
8,0	7,3	2,88	396,00	7,97	787,02
8,5	7,7	3,20	414,12	8,49	808,64

Można zatem zauważyć, że zmiana wartości rezystancji na potencjometrze zmienia wartość napięcia, dla którego układ przestaje przekazywać do obciążenia zasilanie, dzięki czemu możliwe jest zabezpieczenie tak zasilania (np. baterii) jak i układu obciążającego przed skutkami przeciążenia źródła. Problemem jest niezgodność tych wyników z symulacjami w programie LT Spice IV, przedstawionymi na serii wykresów.

Rys. 7 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 3,5V

Rys. 8 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 3,8V

Rys. 9 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 4V

Rys. 10 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 4,2V

Rys. 11 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 4,5

Rys. 12 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 4,8V

Rys. 13 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 5V

Rys. 14 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 5,2V

Rys. 15 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 5,5V

Rys. 16 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w program LT Spice IV dla napięcia od 5,8V

Rys. 17 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 6V

Rys. 18 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 6,5V

Rys. 19 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 7V

Rys. 20 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 7,5V

Rys. 21 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 8V

Rys. 22 Zależność spadku napięcia zasilania oraz różnicy ustawiającej wyjście komparatora zasymulowane w programie LT Spice IV dla napięcia od 8,5V

Drugim z pomiarów był pomiar wartości napięcia na wyjściach układu 4013 dla zadanych napięć zasilania. Wyniki pomiaru przedstawia tabela 2.

Tabela 2 Wartości napięć stanów wysokiego i niskiego układu 4013

U _{zas} [V]	U _{LOW} [V]	U _{HIGH} [V]	
3,5	0,42	3,49	
5	0,48	4,98	
8	0,58	7,97	

Widać, że napięcia stanów niskich różnią się nieznacznie, jednak cały czas oscylują wokół wartości 0,5 V (co jest zgodne z oczekiwaniami), natomiast napięcia stanów wysokich są zbliżone do wartości napięcia zasilania. Nie jest to jednak zgodne z symulacjami w programie LT Spice, który za każdym razem jako stan wysoki wyjścia układu podaje wartość napięcia 5V.

5. Wnioski

Projekt rzeczywistego układu różni się nieco od schematu symulacji w programie LT Spice IV. Może być to związane z różnicą w obliczaniu przez algorytm prawdopodobnych wyników działania zaprojektowanego układu. Także poziomy napięć przedstawione w symulacjach nie zawsze są zgodne z uzyskanymi w rzeczywistości. Prawdopodobną przyczyną takiego stanu rzeczy są różnice w modelowaniu przez program niektórych układów a ich faktycznym działaniem w rzeczywistości. Innym czynnikiem wpływającym na niezgodności może być wykorzystanie w symulacji modeli układów różniących się od tych, które zostały użyte w fizycznym projekcie (różnica wynika z braku modeli wykorzystanych układów dla programu LT Spice IV). Symulacja pozwala jednak określić prawdopodobny sposób funkcjonowania projektowanego układu, ponieważ pomijając różnice w obliczanych wartościach zasada funkcjonowania pozostaje niezmieniona.

6. Załączniki

1) Karta uczestnictwa w zajęciach Laboratorium Otwartego

7. Oświadczenie

Oświadczam, że projekt został sprawdzony, jest kompletny i poprawny, spełnia wymagania projektowe oraz został wykonany samodzielnie.