Corso di Laurea: Ingegneria Informatica

 ${\operatorname{Testo}}\ {\operatorname{n.xx}}$ - Esame di Fisica Generale sessione del 10/01/2024

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

(Figure qualitative e non in scala a scopo illustrativo)

Due corpi puntiformi A e B di massa $m_A = m_B = m = 10~kg$ giacciono su un piano inclinato scabro inclinato di $\theta = 30^{\circ}$ rispetto all'orizzontale. I due corpi sono collegati da una molla di massa trascurabile e costante elastica K = 300~N/m. Inizialmente un estremo della molla è fissato al piano nel punto P_A , mentre l'altro estremo è tenuto fermo a una distanza da P_A pari alla lunghezza a riposo della molla.

A un certo istante, si lascia libero il corpo B che scende verso il basso e si ferma, prima di invertire la direzione di moto, nel punto P_B , dopo aver percorso un tratto lungo $l=20\ cm$ (vedi $Fig.\ 1a$). Calcolare:

1.1 La variazione di energia meccanica, $\Delta E = E_f - E_i$, tra lo stato finale (f) e lo stato iniziale (i) del sistema costituito da molla e punti materiali

 $\Delta E = \dots$

1.2 Il coefficiente di attrito dinamico μ_D

 $\mu_D =$

Supponiamo ora che l'estremo della molla, che viene a coincidere con il punto P_B , prima che avvenga l'inversione del moto, viene bloccato sul piano inclinato e il corpo B viene rimosso (vedi Fig.~1b). L'estremo della molla in P_A viene quindi lasciato libero e il corpo A scende lungo il piano. Calcolare:

1.3 la distanza d percorsa dal corpo A prima di fermarsi

d =

Nota Bene: assumere per i calcoli $g = 9,81 \text{ m/s}^2$

(Figura qualitativa a solo scopo illustrativo)

Una sbarretta conduttrice, di massa m=10~g e resistenza $R=10~\Omega$, è posta su due guide orizzontali metalliche di resistenza trascurabile e prive di attrito. La distanza tra le guide è b=5~cm. Il sistema è immerso in un campo magnetico uniforme $\overrightarrow{B}=-0.4\hat{z}~T$, perpendicolare al piano individuato dalle guide (vedi figura).

All'istante t=0 la sbarretta è ferma e le guide sono collegate a un generatore $(V_A - V_B > 0)$ che eroga una corrente costante $i_0 = 0.1 \ A$.

2.1 Esprimere la potenza erogata dal generatore in funzione del tempo, P(t), e calcolarne il valore all'istante t' = 15 s, P(t')

$$P(t) = \dots P(t') = \dots$$

Consideriamo ora il caso in cui il generatore eroga una FEM costante pari a $\varepsilon = V_A - V_B = 1 \ V$.

2.2 Calcolare la forza magnetica \overrightarrow{F}_m che agisce sulla sbarretta al tempo t=0 ed esprimere la corrente che circola nella sbarretta in funzione della velocità v della sbarretta (supponendo nota la funzione v(t)) I(v)

$$\overrightarrow{F}_m = \dots \qquad I(v) = \dots \dots$$

2.3 Calcolare il modulo della velocità limite della sbarretta, v_{lim} , ossia la velocità della sbarretta quando si annulla l'accelerazione della sbarretta stessa.

 $v_{lim} = \dots$

(Figure qualitative e non in scala a scopo illustrativo)

Domanda 1.1

La variazione di energia meccanica, essendo nulla l'energia cinetica finale e iniziale è data da:

$$\Delta E = U_f - U_i = -mglsin\theta + \frac{1}{2}Kl^2 = -3.81J$$

dove $U_f(U_i)$ è l'energia potenziale finale (iniziale) del sistema. Il primo termine è dovuto alla diminuzione di energia potenziale gravitazionale di B il secondo termine all'aumento dell'energia potenziale elastica della molla, che ha una lunghezza iniziale pari alla lunghezza a riposo l_0 , mentre la lunghezza finale è pari a $l_0 + l$

Domanda 1.2

Il lavoro compiuto dalle forze non conservative \mathcal{L}_{NC} è pari alla variazione di energia meccanica: $\mathcal{L}_{NC} = \Delta E$

Con riferimento alla Fig. 1a, dove sono mostrate le forze agenti su B nella discesa, l'unica forza non conservativa che compie lavoro durante la discesa di B è la forza di attrito dinamico F_D che agisce sul punto materiale B (la reazione del piano, N_B , normale ad esso, agente su B non compie lavoro essendo ortogonale allo spostamento). Poichè $F_D = \mu_D N_B$, con $N_B = mgcos\theta$, otteniamo:

$$\mathcal{L}_{NC} = -\mu_D mq cos\theta l$$

Inoltre vale

$$\mathcal{L}_{NC} = \Delta E \quad \Rightarrow \quad -\mu_D mg cos\theta l = -mg l sin\theta + \frac{1}{2} K l^2 \quad \Rightarrow \quad \mu_D = tg\theta - \frac{K l}{2mg cos\theta} = 0.22$$

Domanda 1.3

Indicando con d la distanza percorsa dal corpo A prima di fermarsi (Fig.~1b), anche in questo caso vale: $\mathcal{L}_{NC} = \Delta E$, dove per uno spostamento pari a d di A:

$$\mathcal{L}_{NC} = -\mu_D mg cos\theta d$$

La lunghezza finale della molla è l_0+l-d dove con l_0 abbiamo indicato la lunghezza a riposo della molla. Mentre la lunghezza iniziale della molla è l_0+l a cui corrispondono rispettivamente l' energia potenziale elastica finale $U_f^{el}=\frac{1}{2}K(l-d)^2$, e quella iniziale $U_i^{el}=\frac{1}{2}K(l)^2$. Se A scende di un tratto d, la differenza tra l'energia gravitazionale finale (U_f^g) e quella iniziale (U_f^g) è $U_f^g-U_i^g=-mgdsin\theta$.

Essendo nulla l'energia cinetica iniziale e finale, otteniamo:

$$\Delta E = U_f^{el} - U_i^{el} + U_f^g - U_i^g = \frac{1}{2}K(l-d)^2 - \frac{1}{2}K(l)^2 - mgdsin\theta$$

Ponendo $\Delta E - \mathcal{L}_{NC} = 0$ otteniamo:

$$\frac{1}{2}Kd^2 + (\mu_D mgcos\theta - mgsin\theta - Kl) d = d \left[\frac{1}{2}Kd + (\mu_D mgcos\theta - mgsin\theta - Kl) \right] = 0$$

Scartando la soluzione d=0, risolvendo per d e sostituendo l'espressione di μ_D (Domanda 1.2) si ottiene:

$$d = 2l + \frac{2mg}{K}\left(sin\theta - \mu_D cos\theta\right) = 2l + \frac{2mg}{K}\frac{Klcos\theta}{2mgcos\theta} = 2l + l = 3l = 0.6 m$$

(Figura qualitativa e non in scala a scopo illustrativo)

Domanda 2.1

Il generatore di tensione genera una tensione variabile per mantenere la corrente i_0 costante. Poichè la corrente che circola nella sbarretta nel verso indicato nella Fig. 2a è costante, sulla sbarretta agisce la forza magnetica \overrightarrow{F}_m :

$$\overrightarrow{F}_m = i_0(-b\hat{y}) \wedge (-B\hat{z}) = i_0 b B\hat{x}$$

A questa forza corrisponde un un moto uniformemente accelerato lungo x essendo la forza costante, con accelerazione $\overrightarrow{d} = \frac{i_0 bB}{m} \hat{x}$ per cui la sbarretta si muove lungo x con velocità $\overrightarrow{v} = a_x t \hat{x}$ avendo al tempo t = 0 velocità nulla.

La potenza erogata dal generatore è la somma della potenza dissipata nella resistenza R e della potenza spesa sulla sbarra dal generatore per accelerarla:

$$P(t) = i_0^2 R + \overrightarrow{F}_m \cdot \overrightarrow{v} = i_0^2 R + \frac{i_0^2 b^2 B^2}{m} t \quad \Rightarrow \quad P(t') = 1.06 \times 10^{-1} \ W$$

Da notare che per mantenere la corrente costante il generatore dovrà contrastare la FEM indotta dalla variazione di flusso del campo magnetico, e quindi dovrà generare una FEM crescente nel tempo.

Domanda 2.2

Se invece di una corrente costante il generatore fornisce una tensione costante, il moto non sarà più uniformemente accelerato, poichè la corrente che circola nella sbarretta non è costante ma è funzione della velocità della sbarretta a causa della FEM indotta. Al tempo t=0 s, la sbarretta è ferma, la FEM indotta è nulla e la corrente che circola nella sbarretta è pari a $I_0 = \varepsilon/R$ per cui al tempo t=0 sulla sbarretta agisce la forza magnetica:

$$\overrightarrow{F}_m = I_0(-b\hat{y}) \wedge (-B\hat{z}) = I_0 b B \hat{x} = \frac{\varepsilon}{R} b B \hat{x} = 2 \times 10^{-3} N \hat{x}$$

Questa forza, con direzione e verso indicato nella Fig. 2b, mette in moto la sbarretta e negli istanti successivi si genera una variazione di flusso del campo magnetico attraverso la superficie del circuito. La FEM indotta ad un istante generico t, ε_{ind} è pari a:

$$\varepsilon_{ind} = -\frac{d\phi(B)}{dt} = -bB\frac{dx}{dt} = -bBv(t)$$

e la corrente indotta ad essa associata circola in senso antiorario.

Per cui a un istante generico l'espressione della corrente che circola nella sbarretta è pari a:

$$I(v) = \frac{\varepsilon + \varepsilon_{ind}}{R} = \frac{\varepsilon - bBv(t)}{R}$$

Domanda 2.3

La velocità limite si avrà quando la sbarretta non è più soggetta a forze esterne, per cui la forza magnetica deve essere nulla, che implica che la corrente nella sbarretta deve essere nulla.

Imponendo $I(v = v_{lim}) = 0$, si ottiene:

$$v_{lim} = \frac{\varepsilon}{bB} = 50 \ m/s$$