Ch5: Discrete Distributions

22 Sep 2011 BUSI275 Dr. Sean Ho

- HW2 due 10pm
- Download and open: 05-Discrete.xls

Outline for today

- Example: conditional probabilities
- Discrete probability distributions
 - Finding μ and σ
- Binomial experiments
 - Calculating the binomial probability
 - Excel: BINOMDIST()
 - Finding μ and σ
- Poisson distribution: POISSON()
- Hypergeometric distribution: HYPGEOMDIST()

Example: conditional prob.

	Age <18	18-25	>25	Total
Cell phone	40	80	60	180
No cell	40	10	20	70
Total	80	90	80	250

- What fraction are aged 18-25?
- What is the overall rate of cellphone ownership?
- What fraction are minors with cellphone?
- Amongst adults over 25, what is the rate of cellphone ownership?
- Are cellphone ownership and age independent in this study?

Discrete probability distribs

- A random variable takes on numeric values
 - Discrete if the possible values can be counted, e.g., {0, 1, 2, ...} or {0.5, 1, 1.5}
 - Continuous if precision is limited only by our instruments
- Discrete probability distribution:

for each possible value X, list its probability P(X)

- Frequency table, or
- Histogram
- Probabilities must add to 1
 - Also, all $P(X) \ge 0$

Probability distributions

Continuous Random Variable

Ch. 6

Binomial

Poisson

Hypergeometric

Normal

Uniform

Exponential

Mean and SD of discrete distr.

- Given a discrete probability distribution P(X),
- Calculate mean as weighted average of values:

$$\mu = \sum_{X} X P(X)$$

E.g., # of email addresses: 0% have 0 addrs; 30% have 1; 40% have 2; 3:20%; P(4)=10%

•
$$\mu = 1*.30 + 2*.40 + 3*.20 + 4*.10 = 2.1$$

Standard deviation:

$$\sigma = \sqrt{\sum_{X} (X - \mu)^2 P(X)}$$

Binomial variable

- A binomial experiment is one where:
 - Each trial can only have two outcomes: {"success", "failure"}
 - Success occurs with probability p
 - Probability of failure is q = 1-p
 - The experiment consists of many (n) of these trials, all identical
 - The variable x counts how many successes
- Parameters that define the binomial are (n,p)
- e.g., 60% of customers would buy again: out of 10 randomly chosen customers, what is the chance that 8 would buy again?

Binomial event tree

To find binomial prob. P(x), look at event tree:

- x successes means n-x failures
- Find all the outcomes with x wins, n-x losses:
 - Each has same probability: px(1-p)(n-x)
 - How many combinations?

Binomial probability

Thus the probability of seeing exactly x successes in a binomial experiment with n trials and a probability of success of p is:

$$P(x) = \binom{n}{x} (p)^x (1-p)^{(n-x)}, \quad \text{where } \binom{n}{x} = C_x^n = \frac{n!}{x!(n-x)!}$$

- "n choose x" is the number of combinations
 - n! ("n factorial") is (n)(n-1)(n-2)...(3)(2)(1),
 the number of permutations of n objects
 - x! is because the ordering within the wins doesn't matter
 - (n-x)! is same for ordering of losses

Pascal's Triangle

Handy way to calculate # combinations, for small n:

- In Excel: COMBIN(n, x)
 - COMBIN(6, 3) → 20

Excel: BINOMDIST()

- **Excel** can calculate P(x) for a binomial:
 - BINOMDIST(x, n, p, cum)
- e.g., 60% of customers would buy again: out of 10 randomly chosen customers, what is the chance that 8 would buy again?
 - BINOMDIST(8, 10, .60, 0) \rightarrow 12.09%
- Set cum=1 for cumulative probability:
 - Chance that at most 8 (≤8) would buy again?
 - ◆ BINOMDIST(8, 10, .60, 1) \rightarrow 95.36%
 - Chance that at least 8 (≥8) would buy again?
 - ◆ 1 BINOMDIST(7, 10, .60, 1) \rightarrow 16.73%

μ and σ of a binomial

- n: number of trialsp: probability of success
- Mean: expected # of successes: $\mu = np$
- Standard deviation: $\sigma = \sqrt{(npq)}$
- e.g., with a repeat business rate of p=60%, then out of n=10 customers, on average we would expect $\mu=6$ customers to return, with a standard deviation of $\sigma=\sqrt{(10(.60)(.40))}\approx 1.55$.

Binomial and normal

When n is not too small and p is in the middle, the binomial approximates the normal:

Poisson distribution

- Counting how many occurrences of an event happen within a fixed time period:
 - e.g., customers arriving at store within 1hr
 - e.g., earthquakes per year
- Parameters: λ = expected # occur. per period t = # of periods in our experiment
 - P(x) = probability of seeing exactly x occurrences of the event in our experiment

$$P(x) = \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}$$

Excel: POISSON()

- POISSON(x, λ*t, cum)
 - Need to multiply λ and t for second param
 - cum=0 or 1 as with BINOMDIST()
- Think of Poisson as the "limiting case" of the binomial as $n\to\infty$ and $p\to 0$

BUSI275: Discrete distributions

Hypergeometric distribution

- n trials taken from a finite population of size N
- Trials are drawn without replacement: the trials are not independent of each other
 - Probabilities change with each trial
- Given that there are X successes in the larger population of size N, what is the chance of finding exactly x successes in these n trials?

$$P(x) = \frac{\binom{X}{x} \binom{N-X}{n-x}}{\binom{N}{n}} \qquad (recall \binom{n}{x} = \frac{n!}{x!(n-x)!})$$

Hypergeometric: example

- In a batch of 10 lightbulbs, 4 are defective.
- If we select 3 bulbs from that batch, what is the probability that 2 out of the 3 are defective?
 - Population: N=10, X=4
 - Sample (trials): n=3, x=2

$$P(2) = \frac{\binom{4}{2}\binom{10-4}{3-2}}{\binom{10}{3}} = \frac{\left(\frac{4!}{2*2}\right)\left(\frac{6!}{1*5!}\right)}{\left(\frac{10!}{3!*7!}\right)} = \frac{(3!)(6)}{\left(\frac{10*9*8}{3!}\right)} = \frac{3}{10}$$

- In Excel: HYPGEOMDIST(x, n, X, N)
 - HYPGEOMDIST(2, 3, 4, 10) → 30%

TODO

- HW2 (ch2-3): due tonight at 10pm
 - Remember to format as a document!
 - HWs are to be individual work
- Form teams and find data
 - Email me when you know your team
- Dataset description due Tue 4 Oct

