

Big-O definition

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that $f(n) < c_0^*g(n)$ for all $n > N_0$.

Big-O definition

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that $f(n) < c_0^*g(n)$ for all $n > N_0$.
- Notice:
 - We are only interested in large n, n > N₀.

Big-O definition

- For two functions f(n) and g(n), we say that f(n) is in O(g(n)) if:
 - There are constants c₀ and N₀, such that $f(n) < c_0^*g(n)$ for all $n > N_0$.
- Examples:
 - n² + 33 is in O(n²)
 - n² + 33n + 17 is in O(n²)
 - 15n² + 33n + 17 is in O(n²)

Exercises

- $n^2 + 33$ is in $O(n^2)$
 - For $c_0 = 2$, $N_0 = \text{sqrt}(33)$: $n^2 + 33 < 2n^2$

for all $n > N_0$

- $n^2 + 33n + 17$ is in $O(n^2)$
 - For $c_0 = 2$, $N_0 = 34$ $n^2 + 33n + 17 < 2n^2$
- $15n^2 + 33n + 17$ is in $O(n^2)$
 - For $c_0 = 15$, $N_0 = 34$ $15n^2 + 33n + 17 < 15n^2$

Big-O heuristics

- Examples:
 - n² + 33 is in O(n²)
 - $n^2 + 33n + 17$ is in $O(n^2)$
 - 15n² + 33n + 17 is in O(n²)
- Easy way to classify functions into big-O
 - Drop the lower order terms.
 - Forget about constants.

Why?

 Why can we drop constants and lower order terms? Because we care about the growth of the higher order terms, which dominate the computation time as input size grows

Terminology

• Examples:

- $n^2 + 33$ is in $O(n^2)$
- $n^2 + 33n + 17$ is in $O(n^2)$
- 15n² + 33n + 17 is in O(n²)
- Actually all these are also in O(n³)...
- ... and in O(2ⁿ).....
- But we are usually most interested in the closest bound.

Big-O

- Easy way to classify functions into big-O
 - Drop the lower order terms.
 - Forget about constants.
- What does this give us?
 - A theoretical way to compare growth rate.
 - Machine-independent
 - Ignoring constants not completely practical.

Big-O arithmetic

- If a program is in stages:
 - Stage 1 operates on m inputs, is linear O(m)
 - Then Stage 2 operates on n inputs, is linear O(n)
 - Whole program is
 - $O(m) + O(n) = O(m+n) \leftarrow Big-O Addition$
 - If m << n, then O(n)
- If the program operates on each of n inputs m times, program is
 - $O(m) * O(n) = O(m*n) \leftarrow Big-O Multiplication$

Big-O hierarchy

- Dominance Relation
 - $n! >> 2^n >> n^3 >> n^2 >> n \log n$
 - n log n >> n >> log n >> 1
- The base of *log n* doesn't matter, because:
 - Changing base of log_an → log_cn ?
 - Log_cn = log_an * log_ca
 - Log_ca is a constant and is lost in Big-O notation
 - Doesn't make a big difference:
 - $Log_2(10^6) = 19.9$ $Log_3(10^6) = 12.5$ $Log_{100}(10^6) = 3$

Workshops

- If you haven't been able to enrol, just attend a convenient workshop.
 - To register, send e-mail to madalain@unimelb.edu.au
- · Workshops are a great place to clarify concepts and ask questions!

COMP 20003 Algorithms and Data Structures

This lecture Big-O examples and fine points Other bounds: O() vs. Ω() vs.Θ() Average case vs. worst case Concrete analysis of algorithms on basic data structures

```
Big-O addition

• Loop:
for(i=0;i<m; i++)
{
    printf("%d\n",i);
}
for(i=0;i<n;i++)
{
    printf("%d\n",i);
}

COMP 20003 Algorithms and Data Structures 3-22
```

```
Big-O multiplication

• Loop:
for(i=0;i<m; i++)
{
    for(j=0;j<n;j++)
    {
        printf("%d-%d\n",i,j);
    }
}
```

```
Big-O arithmetic

• Successive operations add:

• O(m) + O(n) = O(m+n)

• Nested loops multiply:

• O(m)*O(n) = O(mn)

• Smaller variables can drop out:

• For n>>m, O(m+n) = O(n)
```

```
Nested loops

for(i=0;i<m; i++)
{
    for(j=0;j<n;j++)
    {
        for(k=0;k<p;k++)
        {
            printf("%d-%d-%d\n",i,j,k);
        } /* for i */
    } /* for i */
} /* for i */
```

Lower order terms Previously we showed n² + 3n is in O(n²) We can drop the 3n lower order term Useful for big-O analysis: n! >> 2ⁿ >> n³ >> n² >> n log n >> n >> log n >> 1

Exercises

- What is the difference between:
 - O(log₂n) and O(log₁₀n)? constant
 - O(log₂n) and O(log₂n²)? constant
- What is the complexity of a 2-stage algorithm where stage 1 is in O(n²) and stage 2 is in O(m)? O(n²)
- Is 2ⁿ⁺¹ in O(2ⁿ)? Yes, multiply constant
- Is (n+1)⁵ in O(n⁵)? Yes, multiply constant

COMP 20003 Algorithms and Data Structures

More exercises

- Show that big-O relationships are transitive, *i.e.* that
 - If f(n) = O(g(n)), and
 - g(n) = O(h(n)), then
 - f(n) = O(h(n))
 - " = " is an accepted abuse of notation

COMP 20003 Algorithms and Data Structures

3-32

Big-Omega is a lower bound

- Upper bound: O(g(n))
 - f(n) is O(g(n)): $f(n) < c_0^*g(n)$ for all $n > N_0$
 - 17n is O(n), 17n is also O(n²)
- Lower bound: Ω(g(n))
 - f(n) is $\Omega(g(n))$ if g(n) is O(f(n))
 - n is Ω(n), n² is Ω(n)

03 Algorithms and Data Structures

Big-Theta is the growth rate

- Tight bound: Θ(g(n))
 - f(n) is Θ(g(n)) when
 - f(n) is O(g(n)) and f(n) is $\Omega(g(n))$
- Example:
 - f(n) = x² is:
 - O(n²), O(n³), O(2n)....
 - Ω(n), Ω(n²), Ω(1)
 - Θ(n²)

COMP 20003 Algorithms and Data Structures

1-34

Examples

- Given the following functions f(n) and g(n), is f in O(g(n)) or is f in $\Omega(g(n))$, or both?
- YES TO ALL

COMP 20003 Algorithms and Data Structures

Average, worst, and best case analysis

- Given an unsorted list or array of items, searching for one item require looking at:
 - n items in the worst case
 - n/2 items on average
 - 1 item if you are lucky
- Average case and worst case analysis are useful.

COMP 20003 Algorithms and Data Structures

1-36

Average, worst, and best case analysis

- Average case analysis is often difficult!
 - Have to average over all possible inputs
- Worst case analysis and big-O are the most useful and the most widely used!

"Every science has a big lie. The big lie of complexity is worst case analysis." [C. Papadimitriou]

COMP 20003 Algorithms and Data Structures

Skiena:

The Algorithm Design Manual

• Chapter 2: Sections 2.1 through 2.4

COMP COORS ALTERNATION AND DATE OF THE CO.

Algorithms and Data Structures

- Next section:
 - · Simple data structures and algorithms.
 - Complexity analysis with concrete examples.

COMP 20003 Algorithms and Data Structu

3-39