Examen Final Problemes

Enunciat-v2

16 de juny de 2016

1 Determineu l'error màxim en el càlcul de $y = \frac{x_1 x_2^2}{\sqrt{x_3}}$ amb $x_1 = 2.0 \pm 0.1$, $x_2 = 3.0 \pm 0.2$ i $x_3 = 1.0 \pm 0.1$. Quina de les dades contribueix més a l'error en y? Per què? (5punts)

Resposta. Si $g: \mathbb{R} \to \mathbb{R}$ una funció diferenciable i \widetilde{x}_1 , \widetilde{x}_2 i \widetilde{x}_3 aproximacions de x_1 , x_2 i x_3 amb cotes d'error ϵ_1 , ϵ_2 i ϵ_3 , és a dir $x_1 = \widetilde{x}_1 \pm \epsilon_1$, $x_2 = \widetilde{x}_2 \pm \epsilon_2$ i $x_3 = \widetilde{x}_3 \pm \epsilon_3$, llavors l'error propagat en el càlcul de g és;

$$|\Delta g| \approx \left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_1} \right| |\epsilon_1| + \left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_2} \right| |\epsilon_2| + \left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_3} \right| |\epsilon_3|.$$

En el nostre cas els càlculs són

$$\left|\frac{\partial g(\widetilde{x}_1,\widetilde{x}_2,\widetilde{x}_3)}{\partial x_1}\right| = \left|\frac{\widetilde{x}_2^2}{\sqrt{\widetilde{x}_3}}\right| = 9\,, \quad \left|\frac{\partial g(\widetilde{x}_1,\widetilde{x}_2,\widetilde{x}_3)}{\partial x_2}\right| = \left|\frac{2\widetilde{x}_1\widetilde{x}_2}{\sqrt{\widetilde{x}_3}}\right| = 12\,, \quad \left|\frac{\partial g(\widetilde{x}_1,\widetilde{x}_2,\widetilde{x}_3)}{\partial x_3}\right| = \left|\frac{\widetilde{x}_1\widetilde{x}_2}{2\sqrt{\widetilde{x}_3^3}}\right| = 9\,.$$

que substituint a l'error propagat ens dóna $|\Delta g| \approx 9 \cdot 0.1 + 12 \cdot 0.2 + 9 \cdot 0.1 = 4.2$ i pertant $y = 18 \pm 4.2$.

La dada que més contribueix és x_2 , motiu tant ϵ_2 com $\left| \frac{\partial g(\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3)}{\partial x_2} \right|$ són molt més grans que per a les altres dades.

2 Considereu el mètode iteratiu següent:

$$x_{n+1} = x_n - \lambda(x_n^3 - x_n^2 - x_n - 1).$$

(a) Per a $1.5 \le x_0 \le 2$, estudieu la convergència del mètode a l'arrel real de $x^3 - x^2 - x - 1 = 0$ sense calcular les iteracions en Matlab a partir del teorema de convergència. (4punts)

Resposta

El mètode iteratiu $x^{n+1}=g(x^n)$ és convergent si $|g'(\alpha)|<1$ per a qualsevol x^0 de l'entorn de l'arrel α tal que $|g'(x^0)|<1$.

En el nostre cas, g(x) es correspon a $g(x)=x-\lambda(x^3-x^2-x-1)$. L'expressió simplificada de la funció derivada és

$$g'(x) = 1 - \lambda(3x^2 - 2x - 1) .$$

La condició $|g'(x^0)| < 1$ resulta que

$$|1 - \lambda(3(x^0)^2 - 2x^0 - 1)| < 1 \Leftrightarrow -1 < 1 - \lambda(3(x^0)^2 - 2x^0 - 1) < 1 \Leftrightarrow 0 < \lambda(3(x^0)^2 - 2x^0 - 1) < 2 \ .$$

(b) Per a $1.5 \le x_0 \le 2$ donat, doneu un l'interval per a λ que asseguri la convergència del mètode. (2punts)

Resposta

Del fet que $3x^2-2x-1=(3x+1)(x-1)$ per a $1.5\leq x_0\leq 2$ és una funció positiva i creixent , resulta que

$$0 < \lambda(3(x^0)^2 - 2x^0 - 1) < 2 \Leftrightarrow \lambda \in \left(0, \frac{2}{3(x^0)^2 - 2x^0 - 1}\right)$$
.

(c) Preneu $\lambda=1/13$. Obteniu el punt fix amb un mínim de 8 decimals correctes. Doneu el punt inicial i els criteris d'aturada. Presenteu els resultats en una taula. (4punts)

Resposta

lambda = 1/13, resulta $1<x^0<3.352$

alpha = 1.83928675521416

taula =	x^n	x^n-x^(n-1)	f(x^n)
1.845451923	076923	0.004548076923077	0.033897604420609
1.842844415	044569	0.002607508032354	0.019518885279589
1.841342962	330754	0.001501452713815	0.011267290551325
1.840476247	672960	0.000866714657794	0.006513338552828
1.839975221	630435	0.000501026042525	0.003768296600682
1.839685352	661151	0.000289868969283	0.002181186916767
1.839517569	052169	0.000167783608982	0.001262874055720
1.839420424	894037	0.000097144158132	0.000731301165990
1.839364170	958192	0.000056253935845	0.000423518585910
1.839331592	605429	0.000032578352762	0.000245285476164
1.839312724	491878	0.000018868113551	0.000142064183746
1.839301796	477744	0.000010928014134	0.000082282055418
1.839295467	088866	0.000006329388878	0.000047657379727
1.839291801	136579	0.000003665952287	0.000027603095869
1.839289677	821512	0.000002123315067	0.000015987734798
1.839288447	995758	0.000001229825754	0.000009260127177
1.839287735	678283	0.000000712317475	0.000005363489971
1.839287323	102131	0.000000412576152	0.000003106549569
1.839287084	136780	0.000000238965352	0.000001799323584
1.839286945	727273	0.000000138409507	0.000001042174290
1.839286865	560020	0.000000080167253	0.000000603630945
1.839286819	126871	0.000000046433150	0.000000349625152
1.839286792	232628	0.000000026894242	0.000000202504118
1.839286776	655388	0.00000015577240	0.000000117291101
1.839286767	632996	0.000000009022392	0.000000067935422

1.8392867624071950.0000000052258020.0000000393484371.8392867593803920.0000000030268030.0000000227907551.8392867576272570.000000017531350.0000000132004861.8392867566118350.000000010154220.00000007645769

Prenent $x^0=1.85$, la successió $|f(x^n)|$ és convergent a 0, i la successió x^n convergeix a un valor fix. Els criteris d'aturada són tolx=tolf<0.00000001.

3 Per a les dades següents:

X	0	0.15	0.31	0.5	0.6	0.75
Y	1.0	1.004	1.031	1.117	1.223	1.422

a) Calculeu la recta que millor ajusta per mínims quadrats. Dóna l'error quadràtic mínim. Cal explicar el mètode que escolliu, les matrius usades i tots els càlculs que es fan. (5punts) Resposta Notem l'equació de la recta per $y=a_0x+a_1$, llavors la matriu del sistema A, és

És un sistema sobredeterminat, incompatible i el rang de la matriu A és 2, podem trobar una solució per mínims quadrats, les equacions normals són A'Ax = A'b, on b = Y, B = A'A i c = A'b. Aquestes matrius són

La solució del mètode és y=0.5281x+0.92951 i l'error quadràtic és $E_1=0.15674$

b) Calculeu el polinomi interpolador de grau 5 de tots els valors de la taula. (5punts)
Cal detallar la taula de diferències dividides i tots els càlculs que es fan. Resposta
La taula de diferències dividides és

taula =							
0	1	0.	026667	0.45833	0.70551	1 3.577	-16.297
0.15	1.004	0.	16875	0.81109	2.8517	-8.6457	0
0.31	1.031	0.	45263	2.0944	-2.3357	0	0
0.5	1.117	1.	06	1.0667	0	0	0
0.6	1.223	1.	3267	0	0	0	0
0.75	1.422	0		0	0	0	0
pd =							
-16.297		29	-16.6	622	4.2054	-0.31979	1

i el polinomi és
$$p(x) = -16.297x^5 + 29x^4 - 16.622x^3 + 4.2054x^2 - 0.31979x + 1$$

c) Representa gràficament les dades (punts), la paràbola (blau) i el polinomi (verd) en un mateix gràfic. (5punts)

Cal escriure el codi i mostrar el gr \tilde{A} fic al professor vigilant.

Exercici 3c Punts, paràbola i polinomi de grau 5

d) Doneu valors aproximats de f'(0.5) i f''(0.5) a partir de les dades de la taula prèvia i fent ús de fórmules centrades. (5punts)

Cal explicar el mètode que escolliu i tots els càlculs que es fan.

Resposta Per a fórmules centrades ens falten dades,

$$f'(0.5) \approx \frac{f(0.6) - f(0.4)}{0.2},$$
 $f''(0.5) \approx \frac{f(0.6) - 2f(0.5) + f(0.4)}{0.01}$

En aquest cas el millor potser seria derivar el polinomi interpolador i substituir.

$$f'(0.5) \approx p'(0.5) = 0.82678$$
, $f''(0.5) \approx p''(0.5) = 4.8045$.