ECON0108 Lecture 7 2022-2023

T. Christensen

1 Consistency of Extremum Estimators

Recall that an estimator $\hat{\theta}$ of θ_0 is consistent if

$$\hat{\theta} \to_p \theta_0 \quad \text{as } n \to \infty \,.$$
 (1)

Consistency is a useful property. It says that as we observe more data, the probability of our estimator $\hat{\theta}$ being close to the estimand θ_0 should approach 1.

The following result is our master consistency result. The result can be used for M-estimation as well as GMM, SMM and MD. Let $\|\cdot\|$ denote a norm on Θ .

Theorem 1 (Consistency of extremum estimators). Let the following hold:

- (i) (clean maximum) for any $\delta > 0$ we have $\sup_{\theta \in \Theta: \|\theta \theta_0\| \ge \delta} Q(\theta) < Q(\theta_0)$
- (ii) (uniform convergence) $\sup_{\theta \in \Theta} |Q_n(\theta) Q(\theta)| = o_p(1)$.

Then: any estimator $\hat{\theta}$ that satisfies (2) is consistent, i.e. $\hat{\theta} \to_p \theta$ as $n \to \infty$.

The intuition is as follows (also see Figure 1). The estimator $\hat{\theta}$ is obtained by maximizing Q_n :

$$Q_n(\hat{\theta}) > \sup_{\theta \in \Theta} Q_n(\theta) - \eta_n , \qquad (2)$$

where $\eta_n \geq 0$ is $o_p(1)$. If θ_0 is identified, then the population objective function Q is uniquely maximized at θ_0 . As $\hat{\theta}$ is obtained by maximizing Q_n and we know that Q_n becomes closer to Q as we observe more data, the maximum of Q_n should become closer to θ_0 .

"Clean maximum" means $Q(\theta)$ can only approach $Q(\theta_0)$ as $\theta \to \theta_0$. This is needed to rule out situations in which $Q(\theta)$ may asymptote to $Q(\theta_0)$ as θ moves along certain directions (see Figure 2).

"Uniform convergence" means Q_n converges to Q in probability uniformly over the parameter space. This rules out, e.g., Q_n having a bump that moves around as n gets large.

For instance, suppose $\Theta = [-1, 1]$ and $Q : \Theta \to \mathbb{R}$ is continuous, with a unique maximum at $\theta_0 \neq 0$. Suppose also that

$$Q_n(\theta) = \begin{bmatrix} Q(\theta) & \text{if } \theta \neq \frac{1}{n} \\ Q(\theta_0) + 1 & \text{if } \theta = \frac{1}{n} \end{bmatrix}$$
 (3)

Then $Q_n(\theta)$ converges pointwise to $Q(\theta)$ but not uniformly, because $\sup_{\theta} |Q_n(\theta) - Q(\theta)| \ge 1$. But also note that for each $n \ge 1$ the argmax of $Q_n(\theta)$ is $\hat{\theta} = \frac{1}{n}$, which converges to $0 \ne \theta_0$.

Proof of Theorem 1. We want to show that $\Pr(\|\hat{\theta} - \theta_0\| > \delta) \to 0$ (as $n \to \infty$) for each $\delta > 0$.

Fix any $\delta > 0$. Let $\epsilon = Q(\theta_0) - \sup_{\theta \in \Theta: \|\theta - \theta_0\| \ge \delta} Q(\theta)$. Note $\epsilon > 0$ by (i).

As $\eta_n = o_p(1)$ and $\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| = o_p(1)$, we have with probability approaching one (wpa1) that

$$|\eta_n| < \frac{\epsilon}{3}, \quad \sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| < \frac{\epsilon}{3}.$$
 (4)

Whenever these inequalities hold, we therefore have that

$$Q(\hat{\theta}) > Q(\theta_0) - \epsilon = \sup_{\theta \in \Theta: \|\theta - \theta_0\| \ge \delta} Q(\theta), \tag{5}$$

where the second equality is by definition of ϵ . It follows that $\|\hat{\theta} - \theta_0\| \leq \delta$ must hold whenever inequality (4) holds. But as (4) holds wpa1, we have therefore shown

$$\Pr(\|\hat{\theta} - \theta_0\| \le \delta) \to 1,\tag{6}$$

as required.

Remark 1. If we assume $\eta_n = o_{a.s.}(1)$ and replace (ii) with $\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| = o_{a.s.}(1)$, then we can show that $\hat{\theta} \to_{a.s.} \theta_0$ as $n \to \infty$. The proof is left as an exercise.

2 Verifying Clean Maximum

There are many sufficient conditions for clean maximum. Here is one set:

Lemma 1 (Verifying "clean maximum"). Let the following hold:

- (i) Θ is compact
- (ii) $Q:\Theta\to\mathbb{R}$ is continuous
- (iii) $Q(\theta_0) > Q(\theta)$ for each $\theta \in \Theta$ with $\theta \neq \theta_0$.

Then: "clean maximum" holds.

Proof. Fix any $\delta > 0$. The set $\{\theta \in \Theta : \|\theta - \theta_0\| \ge \delta\}$ is compact by (i). Then by (ii), we know that there is some $\theta^* \in \{\theta \in \Theta : \|\theta - \theta_0\| \ge \delta\}$ such that $\sup_{\theta \in \Theta : \|\theta - \theta_0\| \ge \delta} Q(\theta) = Q(\theta^*)$ and by (iii) we must have $Q(\theta^*) < Q(\theta_0)$.

3 Verifying Uniform Convergence

This is done differently for M-estimators, GMM, SMM, and MD.

3.1 Consistency of M-Estimators

For M-estimators, it suffices to show that the following *uniform* law of large numbers holds:

$$\sup_{\theta \in \Theta} \left| \underbrace{\frac{1}{n} \sum_{t=1}^{n} m(X_t, \theta)}_{Q_n(\theta)} - \underbrace{\mathbb{E}[m(X_t, \theta)]}_{Q(\theta)} \right| = o_p(1). \tag{7}$$

Note that this is a stronger notion than the law of large numbers which asserts the pointwise result

$$\frac{1}{n} \sum_{t=1}^{n} m(X_t, \theta) - E[m(X_t, \theta) = o_p(1)]$$
(8)

for each θ .

We establish uniform convergence using a notion of the "size" or "complexity" of the class of functions whose average we are taking. It will turn out that uniform convergence holds whenever the class of functions $\mathcal{M} = \{m(\cdot; \theta) : \theta \in \Theta\}$ is small enough that it has *finite bracketing numbers*. Later in the course, we will see that similar notions of size or complexity are used to establish convergence results for nonparametric and modern machine learning methods.

Let $L^1 = \{f(X_t) : \mathrm{E}[|f(X_t)|] < \infty\}$ and let $\mathcal{F} \subset L^1$ be a collection of functions of interest. The list of pairs of functions

$$l_{\varepsilon,1}, u_{\varepsilon,1}, l_{\varepsilon,2}, u_{\varepsilon,2}, \dots, l_{\varepsilon,N}, u_{\varepsilon,N} \subset L^1$$
 (9)

is said to bracket \mathcal{F} at level ε if for each $f \in \mathcal{F}$ we can choose a pair $l_{\varepsilon,i}$ and $u_{\varepsilon,i}$ such that $l_{\varepsilon,i} \leq f \leq u_{\varepsilon,i}$ and $\mathrm{E}[u_{\varepsilon,i} - l_{\varepsilon,i}] \leq \varepsilon$ for each i. The ε -bracketing number of \mathcal{F} , denoted $N_{[\,]}(\mathcal{F},\varepsilon)$, is the minimal number pairs required to bracket \mathcal{F} at level ε . If $N_{[\,]}(\mathcal{F},\varepsilon) < \infty$ for all $\varepsilon > 0$ then we say that \mathcal{F} has finite bracketing numbers.

Lemma 2 (Uniform Strong Law of Large Numbers (ULLN)). Let the following hold:

- (i) X_1, \ldots, X_n are IID or SSE
- (ii) $N_{[]}(\mathcal{M}, \varepsilon) < \infty$ for each $\varepsilon > 0$.

Then:

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{t=1}^{n} m(X_t, \theta) - \mathbb{E}[m(X_t, \theta)] \right| = o_{a.s.}(1). \tag{10}$$

Proof. Take any rational $\varepsilon > 0$. For each $\theta \in \Theta$ there is a pair $l_{\varepsilon,i(\theta)}(X_t), u_{\varepsilon,i(\theta)}(X_t)$ with

$$l_{\varepsilon,i(\theta)}(X_t) \le m(X_t;\theta) \le u_{\varepsilon,i(\theta)}(X_t) \tag{11}$$

for all X_t and

$$E[u_{\varepsilon,i(\theta)}(X_t) - l_{\varepsilon,i(\theta)}(X_t)] \le \varepsilon \tag{12}$$

and $i(\theta) \in \{1, \dots, N_{[]}(\mathcal{M}, \varepsilon)\}$. Therefore, for each $\theta \in \Theta$ we have

$$Q_{n}(\theta) - Q(\theta) = \frac{1}{n} \sum_{t=1}^{n} m(X_{t}; \theta) - \mathbb{E}[m(X_{t}; \theta)]$$

$$\leq \frac{1}{n} \sum_{t=1}^{n} u_{\varepsilon, i(\theta)}(X_{t}) - \mathbb{E}[m(X_{t}; \theta)] \qquad (13)$$

$$= \frac{1}{n} \sum_{t=1}^{n} u_{\varepsilon, i(\theta)}(X_{t}) - \mathbb{E}[u_{\varepsilon, i(\theta)}(X_{t})] + \left(\mathbb{E}[u_{\varepsilon, i(\theta)}(X_{t})] - \mathbb{E}[m(X_{t}; \theta)]\right) \qquad (14)$$

$$\leq \frac{1}{n} \sum_{t=1}^{n} u_{\varepsilon, i(\theta)}(X_{t}) - \mathbb{E}[u_{\varepsilon, i(\theta)}(X_{t})] + \varepsilon \qquad (15)$$

because $\mathrm{E}[u_{\varepsilon,i(\theta)}(X_t)] - \mathrm{E}[m(X_t;\theta)] \leq \mathrm{E}[u_{\varepsilon,i(\theta)}(X_t)] - \mathrm{E}[l_{\varepsilon,i(\theta)}(X_t)] \leq \varepsilon$.

Taking the sup over $\theta \in \Theta$:

$$\sup_{\theta \in \Theta} \left(Q_n(\theta) - Q(\theta) \right) \leq \sup_{\theta \in \Theta} \left(\frac{1}{n} \sum_{t=1}^n u_{\varepsilon, i(\theta)}(X_t) - \mathrm{E}[u_{\varepsilon, i(\theta)}(X_t)] \right) + \varepsilon \tag{16}$$

$$\leq \max_{1 \leq i \leq N} \left(\frac{1}{n} \sum_{t=1}^{n} u_{\varepsilon,i}(X_t) - \mathrm{E}[u_{\varepsilon,i}(X_t)] \right) + \varepsilon \tag{17}$$

where $N = N_{[]}(\mathcal{M}, \varepsilon)$. Applying the SLLN or Ergodic Theorem yields

$$\frac{1}{n} \sum_{t=1}^{n} u_{\varepsilon,i}(X_t) - \mathbb{E}[u_{\varepsilon,i}(X_t)] \to_{a.s.} 0$$
(18)

for each $1 \leq i \leq N_{[]}(\mathcal{M}, \varepsilon)$, and so

$$\max_{1 \le i \le N} \left(\frac{1}{n} \sum_{t=1}^{n} u_{\varepsilon,i}(X_t) - \mathbb{E}[u_{\varepsilon,i}(X_t)] \right) \to_{a.s.} 0.$$
 (19)

Therefore,

$$\sup_{\theta \in \Theta} (Q_n(\theta) - Q(\theta)) \le \varepsilon + o_{a.s.}(1). \tag{20}$$

A similar argument with the lower bracket gives us

$$\inf_{\theta \in \Theta} (Q_n(\theta) - Q(\theta)) \ge -\varepsilon + o_{a.s.}(1). \tag{21}$$

Combining the preceding two inequalities, we obtain

$$\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| \le \varepsilon + o_{a.s.}(1). \tag{22}$$

By definition of almost sure convergence, this means that there exists a set $S_{\varepsilon} \in \mathcal{F}$ with $\mathbb{P}(S_{\varepsilon}) = 1$ such that:

$$\limsup_{n \to \infty} \sup_{\theta \in \Theta} |Q_n(\theta; \omega) - Q(\theta)| \le \varepsilon \tag{23}$$

for all $\omega \in S_{\varepsilon}$. Take $S = \bigcap_{\varepsilon \in \mathbb{Q}_+} S_{\varepsilon}$ where \mathbb{Q}_+ is the set of positive rational numbers. Then $\mathbb{P}(S) = 1$ and for each rational $\varepsilon > 0$ we have

$$\limsup_{n \to \infty} \sup_{\theta \in \Theta} |Q_n(\theta; \omega) - Q(\theta)| \le \varepsilon \tag{24}$$

for all $\omega \in S$. As $\varepsilon \in \mathbb{Q}_+$ is arbitrary, we have shown that:

$$\lim_{n \to \infty} \sup_{\theta \in \Theta} |Q_n(\theta; \omega) - Q(\theta)| = 0$$
 (25)

for all
$$\omega \in S$$
.

How do we show a collection of functions has finite bracketing numbers? The following result uses compactness of Θ , continuity, and dominance assumptions.

Lemma 3. Let the following hold:

- (i) Θ is compact
- (ii) $m(X_t; \theta)$ is continuous in θ for all X_t
- (iii) $\mathrm{E}[\sup_{\theta\in\Theta}|m(X_t;\theta)|]<\infty$.

Then: $\mathcal{M} = \{m(X_t, \theta) : \theta \in \Theta\}$ has finite bracketing numbers. If, in addition,

(iv) X_1, \ldots, X_n are IID or SSE, then: $\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{t=1}^n m(X_t, \theta) - \mathbb{E}[m(X_t, \theta)] \right| \to_{a.s.} 0$.

Proof. Fix any $\delta > 0$. As Θ is compact, we can cover Θ with finitely many open balls of radius δ centered at $\theta_1, \ldots, \theta_J$. For each $j = 1, \ldots, J$, define

$$l_{\delta,j}(\cdot) = \inf_{\theta \in \Theta: \|\theta - \theta_j\| \le \delta} m(\cdot; \theta) \quad \text{and} \quad u_{\delta,j}(\cdot) = \sup_{\theta \in \Theta: \|\theta - \theta_j\| \le \delta} m(\cdot; \theta),$$
 (26)

so that $l_{\delta,j}(\cdot) \leq m(\cdot;\theta) \leq u_{\delta,j}(\cdot)$ holds for each θ with $\|\theta - \theta_j\| \leq \delta$. Note that the inf and sup are always finite by (i) and (ii).

Let $\varepsilon(\delta) = \max_{1 \leq j \leq J} \mathbb{E}[u_{\delta,j}(X_t) - l_{\delta,j}(X_t)]$. We have shown that $N_{[]}(\varepsilon(\delta), \mathcal{M}) \leq J < \infty$. It remains to show that $\varepsilon(\delta) \to 0$ as $\delta \to 0$. This will ensure that for any $\epsilon > 0$ we can choose a δ such that $\varepsilon(\delta) \leq \epsilon$, and hence that $N_{[]}(\epsilon, \mathcal{M}) < \infty$ for each $\epsilon > 0$.

Let $M_{\delta}(\cdot) = \max_{1 \leq j \leq J} (u_{\delta,j}(\cdot) - l_{\delta,j}(\cdot))$. We may use (i) and (ii) to deduce that $M_{\delta}(X_t) \to 0$ as $\delta \to 0$ for each X_t (Exercise: use the fact that a continuous function on a compact set is uniformly continuous to show this formally). Also notice that $|M_{\delta}(X_t)| \leq 2 \sup_{\theta \in \Theta} |m(X_t; \theta)|$. Then by (iii) we may apply the dominated convergence theorem to obtain:

$$\lim_{\delta \to 0} \varepsilon(\delta) \le \lim_{\delta \to 0} \mathrm{E}[M_{\delta}(X_t)] = \mathrm{E}[\lim_{\delta \to 0} M_{\delta}(X_t)] = 0 \tag{27}$$

as required.

Combining Lemmas 1, 2 and 3 gives the following consistency result.

Theorem 2 (Consistency of M-estimators). Let the following hold:

- (i) X_1, \ldots, X_n are IID or SSE
- (ii) Θ is compact
- (iii) $m(X_t;\theta)$ is continuous in θ for all X_t
- (iv) $\mathrm{E}[\sup_{\theta\in\Theta}|m(X_t;\theta)|]<\infty$
- (v) $Q(\theta_0) > Q(\theta)$ for all $\theta \in \Theta$ with $\theta \neq \theta_0$.

Then: $\hat{\theta} \to_p \theta_0$ as $n \to \infty$.

Proof. By Theorem 1 we just need to verify "clean maximum" and "uniform convergence".

We use Lemma 1 to verify "clean maximum". By conditions (ii) and (v), it is enough to show that Q is continuous under the stated conditions. To verify continuity of Q, take any $\theta^* \in \Theta$ and let $(\theta_n)_{n \in \mathbb{N}} \subset \Theta$ be a sequence such that $\|\theta_n - \theta^*\| \to 0$ as $n \to \infty$. By condition (iii) we know that $\lim_{n \to \infty} m(X_t; \theta_n) = m(X_t; \theta^*)$ for all X_t . Then by condition (iv) we may apply the dominated convergence theorem to deduce

$$\lim_{n \to \infty} Q(\theta_n) = \lim_{n \to \infty} \mathbb{E}[m(X_t; \theta_n)] = \mathbb{E}[\lim_{n \to \infty} m(X_t; \theta_n)] = \mathbb{E}[m(X_t; \theta^*)] = Q(\theta^*), \quad (28)$$

which verifies continuity of Q. Therefore "clean maximum" holds.

Conditions (ii)–(iv) give finite bracketing numbers by Lemma 3. Moreover, $\mathcal{M} \subset L^1$ by (iv). This, together with (i), gives "uniform convergence" by Lemma 2.

3.2 Consistency of GMM Estimators

We're going to apply Theorem 1 to establish consistency of the GMM estimator. This requires verifying "clean maximum" and "uniform convergence".

To apply Lemma 2, we need some notation. Write

$$g(X_t; \theta) = \begin{pmatrix} g_1(X_t; \theta) \\ g_2(X_t; \theta) \\ \vdots \\ g_K(X_t; \theta) \end{pmatrix}.$$
(29)

Then with this notation,

$$g_{n}(\theta) - g(\theta) = \begin{pmatrix} \frac{1}{n} \sum_{t=1}^{n} g_{1}(X_{t}; \theta) - \mathrm{E}[g_{1}(X_{t}; \theta)] \\ \frac{1}{n} \sum_{t=1}^{n} g_{2}(X_{t}; \theta) - \mathrm{E}[g_{2}(X_{t}; \theta)] \\ \vdots \\ \frac{1}{n} \sum_{t=1}^{n} g_{K}(X_{t}; \theta) - \mathrm{E}[g_{K}(X_{t}; \theta)] \end{pmatrix}.$$
 (30)

We will use Lemma 2 to ensure that each entry of $g_n(\theta) - g(\theta)$ converges in probability to zero (uniformly in θ), and hence $\sup_{\theta \in \Theta} ||g_n(\theta) - g(\theta)|| \to_p 0$. Let $\mathcal{G} = \{g_k(\cdot; \theta) : \theta \in \Theta, 1 \le k \le K\}$.

Theorem 3 (Consistency of GMM estimators). Let the following hold:

- (i) X_1, \ldots, X_n are IID or SSE
- (ii) Θ is compact
- (iii) $g(\theta)$ is continuous
- (iv) $\widehat{W} \rightarrow_p W$ where W is positive definite and symmetric
- (v) $g(\theta) = 0$ if and only if $\theta = \theta_0$
- (vi) \mathcal{G} has finite bracketing numbers.

Then: $\hat{\theta} \to_p \theta_0$ as $n \to \infty$.

Proof. We verify the conditions of Theorem 1.

Continuity of $Q(\theta)$ follows from continuity of $g(\theta)$ and positive-definiteness of W. Therefore "clean maximum" holds by Lemma 1 (under conditions (ii)–(v)).

We now verify "uniform convergence". Step 1: we show $\sup_{\theta \in \Theta} \|g_n(\theta) - g(\theta)\| \to_p 0$. Assumption (vi) implies that each of the K component functions in $g(X_t; \theta)$ has finite bracketing numbers. We may then apply Lemma 2 to deduce that each entry of $g_n(\theta) - g(\theta)$ converges in probability to zero (uniformly in θ), and hence

$$\sup_{\theta \in \Theta} \|g_n(\theta) - g(\theta)\| \to_p 0. \tag{31}$$

Before proceeding, we note that as g is continuous and Θ is compact, we also have:

$$\sup_{\theta \in \Theta} \|g(\theta)\| < \infty. \tag{32}$$

Combining (31) and (32) gives:

$$\sup_{\theta \in \Theta} \|g_n(\theta)\| \le \sup_{\theta \in \Theta} \|g_n(\theta) - g(\theta)\| + \sup_{\theta \in \Theta} \|g(\theta)\| = o_p(1) + \sup_{\theta \in \Theta} \|g(\theta)\| = O_p(1). \tag{33}$$

Step 2: we show $\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| \to_p 0$. Adding and subtracting terms:

$$2Q(\theta) - 2Q_n(\theta) = g_n(\theta)'\widehat{W}g_n(\theta) - g(\theta)'Wg(\theta)$$
(34)

$$= g_n(\theta)'(\widehat{W} - W)g_n(\theta) + g_n(\theta)'Wg_n(\theta) - g(\theta)'Wg(\theta)$$
(35)

$$= g_n(\theta)'(\widehat{W} - W)g_n(\theta) + (g_n(\theta) - g(\theta))'W(g_n(\theta) + g(\theta)).$$
 (36)

Notice that for any K-vectors x, y and $K \times K$ matrix A we have

$$|x'Ay| \le ||x|| ||y|| ||A|| \tag{37}$$

where ||x|| and ||y|| are the Euclidean norms of x and y and ||A|| is the spectral norm (largest singular value) of A. Applying the triangle inequality then inequality (37) to (36) yields:

$$\sup_{\theta \in \Theta} 2|Q_n(\theta) - Q(\theta)| \leq \sup_{\theta \in \Theta} |g_n(\theta)'(\widehat{W} - W)g_n(\theta)|
+ \sup_{\theta \in \Theta} |(g_n(\theta) - g(\theta))'W(g_n(\theta) + g(\theta))|
\leq \underbrace{\left(\sup_{\theta \in \Theta} ||g_n(\theta)||\right)^2}_{=O_p(1) \text{ by (iv)}} \times \underbrace{\|\widehat{W} - W\|}_{=o_p(1) \text{ by (iv)}}
+ \sup_{\theta \in \Theta} ||(g_n(\theta) - g(\theta))|| \times \sup_{\theta \in \Theta} ||g_n(\theta) + g(\theta)|| \times ||W||
= o_p(1) \text{ by (31)}}_{=O_p(1) \text{ by (32) and (33)}}$$

$$= O_p(1) \times o_p(1) + o_p(1) \times O_p(1) \times \text{constant = } o_p(1), \tag{40}$$

which verifies "uniform convergence".

3.3 Consistency of SMM Estimators

Consistency for SMM requires special treatment because of the additional noise introduced by the simulation draws. Let's suppose that the simulated data $X_1^{\theta}, \ldots, X_m^{\theta}$ are generated as functions of

i.i.d. draws $\varepsilon_1, \ldots, \varepsilon_m$ which represent the "shocks" used to simulate the data. That is,

$$X_s^{\theta} = a(\varepsilon_s, \theta) \tag{41}$$

for each $1 \leq s \leq m$ and each $\theta \in \Theta$. We expand the probability space to jointly accommodate the true data X_1, \ldots, X_n and the simulated draws $\varepsilon_1, \ldots, \varepsilon_m$. All probability statements we make in reference to SMM are to be understood with respect to the joint probability law of the data and simulated draws. As the sample size n gets large, we will be taking $m \to \infty$ also. If we don't, the simulation error will eventually dominate and the SMM estimator will not converge.

We again establish consistency by verifying "clean maximum" and "uniform convergence".

Theorem 4 (Consistency of SMM estimators). Let the following hold:

- (i) Θ is compact
- (ii) $\gamma(\theta)$ is continuous in θ
- (iii) $\sup_{\theta \in \Theta} \|\gamma_m(\theta) \gamma(\theta)\| = o_p(1)$
- (iv) $g_n \to_p g_0$ and $\widehat{W} \to_p W$ where W is positive definite and symmetric
- (v) $\gamma(\theta) = g_0$ if and only if $\theta = \theta_0$.

Then: $\hat{\theta} \to_p \theta_0$ as $n \to \infty$.

Note that in (iii) we explicitly assume the simulated moments converge (uniformly) to the moment function $\gamma(\theta)$ as the number of simulations increases. This can be verified under more primitive conditions by applying Lemma 2, substituting $\varepsilon_1, \ldots, \varepsilon_m$ for X_1, \ldots, X_n and $\gamma(a(\varepsilon_s, \theta); \theta)$ for $m(X_t, \theta)$.

Proof. By Theorem 1 we just need to verify "clean maximum" and "uniform convergence".

We use Lemma 1 to verify "clean maximum", noting Θ is compact (by (i)), $Q(\theta)$ is continuous (by (ii) and finiteness of W), and $Q(\theta_0) > Q(\theta)$ for any $\theta \neq \theta_0$ (by (v) and positive-definiteness of W).

We verify "uniform convergence" by similar arguments to the proof of Lemma 3. Adding and subtracting terms:

$$2Q(\theta) - 2Q_{n}(\theta) = (g_{n} - \gamma_{m}(\theta))'\widehat{W}(g_{n} - \gamma_{m}(\theta)) - (g_{0} - \gamma(\theta))'W(g_{0} - \gamma(\theta))$$

$$= (g_{n} - \gamma_{m}(\theta))'(\widehat{W} - W)(g_{n} - \gamma_{m}(\theta))$$

$$+ (g_{n} - g_{0} + \gamma(\theta) - \gamma_{m}(\theta))'W(g_{n} - \gamma_{m}(\theta) + g_{0} - \gamma(\theta)).$$
(43)

Conditions (iii) and (iv) imply that

$$\sup_{\theta \in \Theta} \|g_n - g_0 + \gamma(\theta) - \gamma_m(\theta)\| \le \|g_n - g_0\| + \sup_{\theta \in \Theta} \|\gamma_m(\theta) - \gamma(\theta)\| = o_p(1)$$
(44)

¹This is achieved by joining the σ -fields of the two and using the fact that the simulation draws are totally independent of the data.

and, moreover,

$$\sup_{\theta \in \Theta} \|g_n - \gamma_m(\theta)\| \le \sup_{\theta \in \Theta} \|g_0 - \gamma(\theta)\| + \sup_{\theta \in \Theta} \|g_n - g_0 + \gamma(\theta) - \gamma_m(\theta)\| = O_p(1)$$

$$\tag{45}$$

because $\sup_{\theta \in \Theta} ||g_0 - \gamma(\theta)|| < \infty$ by conditions (i) and (ii). Applying the triangle inequality then inequality (37) to (43), we obtain

$$\sup_{\theta \in \Theta} 2|Q_{n}(\theta) - Q(\theta)| \leq \underbrace{\left(\sup_{\theta \in \Theta} \|g_{n} - \gamma_{m}(\theta)\|\right)^{2} \times \underbrace{\|\widehat{W} - W\|}_{=o_{p}(1) \text{ by (iv)}}}_{=O_{p}(1) \text{ by (45)}} + \underbrace{\sup_{\theta \in \Theta} \|g_{n} - g_{0} + \gamma(\theta) - \gamma_{m}(\theta)\|}_{=o_{p}(1) \text{ by (44)}} \times \underbrace{\sup_{\theta \in \Theta} \|g_{n} - \gamma_{m}(\theta) + g_{0} - \gamma(\theta)\|}_{=O_{p}(1) \text{ by (45)}} \times \|W\|$$

$$= O_{p}(1) \text{ by (45)}$$

$$= O_{p}(1) \times o_{p}(1) + o_{p}(1) \times O_{p}(1) \times \text{constant} = o_{p}(1),$$

$$(47)$$

which verifies "uniform convergence".

Figure 1: Consistency of Extremum Estimators. When $Q_n(\theta)$ lies uniformly in $[Q(\theta) - \epsilon, Q(\theta) + \epsilon]$ we know that $\hat{\theta}$ must be in the set $\{\theta : Q(\theta) \ge Q(\theta_0) - \epsilon\}$. Provided clean maximum holds, this set becomes a shrinking interval around θ_0 as ϵ decreases.

Figure 2: Necessity of Clean Maximum.