WORKSHEET - 4 - KEY

- 1. Examine the following limits by working from the definition.
 - (a) $\lim_{x \to 0^+} \frac{\sin x}{\sqrt{x}} = 0$

To show: given $\varepsilon > 0$, $\exists \varepsilon > 0$ s.t. $0 < x < \varepsilon = 0$

Then

 $0 < x < S \Rightarrow \frac{|\sin x|}{\sqrt{x}} < \varepsilon$.

(b)
$$\lim_{x \to \infty} \frac{\sin x}{\sqrt{x}} = \bigcirc$$

To show: given
$$\varepsilon > 0$$
, $\exists M > 0 s.t.$
 $\chi > M \Rightarrow \frac{|\sin \chi|}{\sqrt{\chi}} < \varepsilon$

But, $\frac{|\sin \chi|}{\sqrt{\chi}} \leq \frac{1}{\sqrt{\chi}} < \varepsilon$

whenever $\chi > \frac{1}{\varepsilon^2}$

Take $M = \frac{1}{\varepsilon^2}$

Then $\chi > M \Rightarrow 1\sin \chi < \varepsilon$.

(c)
$$\lim_{x \to 1} \frac{x^2}{x - 1} = \bigcirc$$

To show: given M > 0, $\exists a \delta > 0$ s.t. $|x-1| < \delta = \sum_{x=1}^{\infty} |x - x| > M$.

We work with x satisfying $|x-1|<\frac{1}{2}$

 \Rightarrow $x > \frac{1}{1}$

Thus $\frac{\chi^2}{|\chi-1|} > \frac{1}{4|\chi-1|} > M$

Whenever $|x-1| < \frac{1}{4M}$

Take $\mathcal{E} = \min \left\{ \frac{1}{2}, \frac{1}{4M} \right\}$.

Then $|x-1| < S \Rightarrow \frac{x^2}{|x-1|} > M$.

2. Evaluate the following limits in any way you want.

(a)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$

Do it yourself

(b)
$$\lim_{x \to \infty} \frac{x + \sin x}{\sqrt{x^2 + 1}} = 1$$

Do it yourself.

(c)
$$\lim_{x \to 1} \frac{(1-x)(1-\sqrt[2]{x})(1-\sqrt[3]{x})\cdots(1-\sqrt[n]{x})}{(1-x)^n} = \bigcap_{x \to 1} \frac{1}{x}$$

Fost any
$$m \in IN$$
,

 $1-y^{m} = (1-y)(1+y+y^{2}+\cdots+y^{m-1})$

Thus,

 $1-x = (1-\sqrt{x})(1+\sqrt{x}+\sqrt{x^{2}+\cdots+\sqrt{x^{m-1}}})$
 $= > \lim_{x\to 1} \frac{1-\sqrt{x}}{1-x} = \lim_{x\to 1} (1+\sqrt{x}+\cdots+\sqrt{x^{m-1}})$

Therefore,

$$\lim_{x\to 1} (1-x)(1-\sqrt{x}) \cdots (1-\sqrt{x})$$

 $= (\lim_{x\to 1} \frac{1-\sqrt{x}}{1-x})(\lim_{x\to 1} \frac{1-\sqrt{x}}{1-x}) \cdots (\lim_{x\to 1} \frac{1-\sqrt{x}}{1-x})$
 $= 2.3. \cdots n = n!$

3. Suppose f(x) is defined on a deleted neighbourhood of c, and $\lim_{x\to c} f(x) = \ell$. Show that $\lim_{x\to c} |f(x)| = |\ell|$.

To show: given
$$8>0$$
 $\exists 8>0$ $a.t.$
 $|x-c| < 8 \Rightarrow ||f(x)|| - ||f||| < \epsilon$.

It is given that $\lim_{x \to c} f(x) = f$.

Thus, given $e>0$, $\exists 8>0$ $a.t.$
 $|x-c| < 8 \Rightarrow ||f(x)|| - f|| < \epsilon$.

Next, observe that

 $||f(x)|| = ||f(x)|| - f| + f|| \le ||f(x)|| + f|| + f||$
 $||f(x)|| - ||f|| \le ||f(x)|| - f||$

Similarly, $||f(x)|| - ||f|| \le ||f(x)||$

Thus, $||f(x)|| - ||f|| \le ||f(x)||$

Therefore, if $||x-c|| < \epsilon$, then

 $||f(x)|| - ||f|| < ||f(x)|| - f|| < \epsilon$.

4. Define the function f(x) as

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Prove that $\lim_{x\to 0} f(x) = 0$.

Observe that
$$|f(x)| \le |x|$$
Thus,
$$|x| < \varepsilon = |f(x) - f(0)|$$

$$= |f(x)| \le |x| < \varepsilon.$$
Work out the Jetails.

5. Define the function f(x) as

$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Prove that $\lim_{x\to 0} f(x)$ does not exists although $\lim_{n\to \infty} f(1/n) = 0$.

It is Jean that
$$\lim_{n\to\infty} f(\frac{1}{n}) = \lim_{n\to\infty} \frac{1}{n} = 0.$$
On the other hand,
$$\frac{1}{n\sqrt{2}} \to 0$$
but $f(\frac{1}{n\sqrt{2}}) = 1$

$$= \int f(\frac{1}{n\sqrt{2}}) \to 1$$
If $\lim_{n\to\infty} f(x)$ did exist, then
by Thm. A. of limits, we should have had
$$\lim_{n\to\infty} f(\frac{1}{n}) = \lim_{n\to\infty} f(\frac{1}{n\sqrt{2}})$$
But $\lim_{n\to\infty} f(x)$ does not exist.

Thus,
$$\lim_{n\to\infty} f(x)$$
 does not exist.

6. Let $f: \mathbb{R} \to \mathbb{R}$ be a periodic function. That is, there is a constant a>0 such that f(x+a)=f(x) for all $x\in \mathbb{R}$. Suppose $\lim_{x\to\infty}f(x)=\ell$ where ℓ is a real number. Show that f(x) must be a constant function. Deduce that $\lim_{x\to\infty}\sin x$ does not exist.

 $|f(x_1) - f(x_2)| = 0$

7. Prove the Sandwich Theorem for limits. Namely that if f,g and h are functions defined on a deleted neighbourhood I of c with $f(x) \leq g(x) \leq h(x)$ for all $x \in I$. If $\lim_{x \to c} f(x) = \ell$ and $\lim_{x \to c} h(x) = \ell$, then $\lim_{x \to c} g(x) = \ell$.

Let
$$x_n \to c$$

 $\lim_{x \to c} f(x) = l = l$ $f(x_n) \to l$
and $\lim_{x \to c} h(x) = l = l$ $h(x_n) \to l$
Next, $\exists a \ no \ s.t. \ x_n \in I \ \forall \ n \ge n_0$
Thus $f(x_n) \le g(x_n) \le h(x_n) \ \forall \ n \ge n_0$
 $= l$ $g(x_n) \to l$ by Sandwich Thm.
Since, $x_n \to c$ is an arbitrary sequence,

deduce by Thm. B. of Dimite that

lim g(x) = l.

- **8.** Suppose f and g are real valued functions with domain \mathbb{R} . We write $f \sim g$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$. We also write f(x) = o(g(x)) (small "oh") if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$. Establish the following.
 - (a) $x^3 + ax^2 + bx + c \sim x^3$ where a, b and c are constants.

$$\lim_{x \to \infty} \frac{\chi^3 + \alpha \chi^2 + b \chi + c}{\chi^3} = \lim_{x \to \infty} \frac{1 + \alpha}{\chi} + \frac{b}{\chi^2} + \frac{c}{\chi^3}$$

$$= \lim_{x \to \infty} \frac{1 + \lim_{x \to \infty} \frac{\alpha}{\chi} + \lim_{x \to \infty} \frac{b}{\chi^2}$$

$$+ \lim_{x \to \infty} \frac{c}{\chi^3}$$

$$= 1.$$

(b)
$$x^3 + ax^2 + bx + c = o(x^4)$$
.