	Lösung:	
	(a)	
2.	Wie viele Elemente enthält die Potenzmenge $\mathcal{P}(A)$ einer (endlichen) Menge A mit $ A =n$? Schreibe z.B. alle Teilmengen von $\{1,2\}$ oder $\{1,2,3\}$ auf, und versuche eine Regelmäßigkeit zu erkennen. Wie könnte man die Regelmäßigkeit allgemein beweisen? Zeige dass für endliche Mengen stet $ A < \mathcal{P}(A) $ gilt.	
	Lösung:	
	(a)	
3.	Bestimme die folgenden Mächtigkeiten:	
	(a) $ \{1,4,6\} $	(c) {∅}
	(b) Ø	(d) $ \{\emptyset, \{1, 2, 3\}\} $
	Lösung:	
	(a)	
4.	Zeichne Punktmengen A,B und $C,$ die die folgenden vier Bedingunge zugleich erfüllen:	
	(a) $A \cap B \cap C = \emptyset$	(c) $B \cap C \neq \emptyset$
	(b) $A \cap B \neq \emptyset$	(d) $A \cap C \neq \emptyset$
	Gib daraufhin Zahlenmengen möglichst kleiner Mächtigkeit an, die d Bedingungen erfüllen.	
	Lösung:	
	(a)	
5.	A,B und C seien Teilmengen einer Grundmenge G . Beweise von den folgenden Aussagen die wahren und gib für die falschen jeweils ein Gegenbeispiel an.	

(a) Wenn $A \cup B = A \cup C$, dann ist B = C(b) Wenn $A \setminus B = A$, dann ist B = C(c) Wenn $B = \emptyset$, dann ist $A \setminus B = A$

1

1. Gegeben sind die folgenden Teilmengen $A=\{1,3,5,7,9\}, B=\{2,4,6,8,10\}$

(g) $D \setminus B$

(h) $D \setminus (A \cup B)$ (i) $D \setminus (A \cap B)$

(d) $A \setminus D$

(e) $B \setminus D$

(f) $D \setminus A$

und $D = \{5, 6, 7, 8, 9, 10\}.$ Gib die folgenden Mengen an:

(a) $A \cup B$

(b) $A \cap B$

(c) $A \setminus B$

(d) $A \setminus B$ und $B \setminus C$ sind immer disjunkt (d.h. die Schnittmenge ist leer). Lösung:

(a)

6. Beweise, dass zwei Mengen A und B gleich sind, wenn sie wechselseitig Teilmengen voneinander sind (und auch nur dann), also:

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Lösung:

(a)

7. Die 30 Schüler einer Klasse schrieben in den drei Fächern Deutsch, Englisch und Mathematik Prüfungsarbeiten mit folgendem Ergebnis: In Deutsch bestanden 22, in Englisch bestanden 17 und in Mathematik bestanden 22 Schüler. 4 bestanden weder Deutsch noch Englisch, 3 bestanden weder Deutsch noch Mathematik, 5 bestanden weder Englisch noch Mathematik. 1 Schüler schaffte keine der drei Prüfungen.

Wie viele Schüler bestanden die Prüfung in allen drei Fächern? Aussagen Hinweis: zeichne die Mengen!

Lösung:

(a)

8. Mit der Schreibweise

$$\bigcup_{k=1}^{n} A_k := A_1 \cup A_2 \cup \dots \cup A_n$$

kann man bequem auch kompliziertere Mengen formulieren, insbesondere dann, wenn man erlaubt, dass auch unendlich viele Mengen vereinigt werden dürfen:

$$\bigcup_{k=1}^{\infty} A_k := A_1 \cup A_2 \cup \dots \cup A_n \cup \dots$$

Ein Element ist in dieser Vereinigungsmenge enthalten, wenn es in einer der Mengen A_k enthalten ist. Überlege Dir, wie man zum Beispiel die Menge der Primzahlen hinschreiben könnte (Tipp: formuliere dazu z.B. die Menge V_2 der Vielfachen von 2, etc.).

Lösung:

(a)