7	(a)	$A(1\frac{1}{2},0), B(0,1)$	B1, B	1
		4)	D.1	
	(b)	$\begin{array}{ll} \text{(i)} & x = 3 \\ \text{(ii)} & 2 \end{array}$	B1	
		(ii) $y = 2$	B1	
	(c)	4- 1.5 3 x	B1 B1 B1	two branches in correct quadrants asymptotes dep on some curve intercepts
	(d)	$\frac{dy}{dx} = \frac{2(x-3) - (2x-3)}{(x-3)^2} = \frac{-3}{(x-3)^2}$	M1 A1	Quotient rule Result (unsimplified)
		At B, $x = 0$ so $\frac{dy}{dx} = \frac{-3}{(-3)^2} = -\frac{1}{3}$	A1	
		Grad of normal = $-1/(-1/3) = 3$ Normal $y = 3x + 1$	B1ft	
		1101111111 y = 3x + 1	B1ft	
	(e)	At D, $3x+1 = \frac{2x-3}{x-3}$	M1	
		$3x^2 - 8x - 3 = 2x - 3$		
		$3x^2 - 10x = 0$ $x(3x - 10) = 0$	A1 M1	
		x(3x - 10) = 0 x = 0 or x = 10/3	IVII	
		At D , $x = 3\frac{1}{3}$	A1	
		•	16	

10	(a)	(i) $\overrightarrow{BC} = -\frac{1}{2}\mathbf{c} - \mathbf{a} + \mathbf{c} = \frac{1}{2}\mathbf{c} - \mathbf{a}$	M1 A1
		(ii) $\overrightarrow{PQ} = \frac{3}{4} \mathbf{a} + \frac{1}{2} \mathbf{c} + \frac{1}{3} (\frac{1}{2} \mathbf{c} - \mathbf{a}) = \frac{5}{12} \mathbf{a} + \frac{2}{3} \mathbf{c}.$	M1 $\sqrt[3]{4} \mathbf{a} + \sqrt[1]{2} \mathbf{c} + \dots$ M1 $\sqrt[1]{3}(\sqrt[1]{2} \mathbf{c} - \mathbf{a})$
	(b)	(i) $\overrightarrow{AT} = -\frac{3}{4} \mathbf{a} + \lambda \left(\frac{5}{12} \mathbf{a} + \frac{2}{3} \mathbf{c}\right)$	A1 B1ft
		$(ii) \overrightarrow{AT} = \mu (\mathbf{c} - \mathbf{a})$	B1
	(c)	$-\frac{3}{4} \mathbf{a} + \lambda (\frac{5}{12} \mathbf{a} + \frac{2}{3} \mathbf{c}) = \mu (\mathbf{c} - \mathbf{a})$ $\Rightarrow -\frac{3}{4} + \frac{5}{12} \lambda = -\mu \text{ and } \frac{2}{3} \lambda = \mu$ $\Rightarrow \frac{5}{12} \lambda = \frac{3}{4} - \frac{2}{3} \lambda$	M1 M1 A1ft M1
		$\Rightarrow 5 \lambda = 9 - 8 \lambda$ $\Rightarrow \lambda = \frac{9}{13}$ $\Rightarrow PT : TQ = 9 : 4$	A1 A1ft
			13
11	(a)	$V = \pi \int_0^h x^2 dy = \pi \int_0^h (10y - y^2) dy$	M1 use of $\int \pi x^2 dy$
		$= \pi \left[5y^2 - \frac{1}{3}y^3 \right]_0^h$ = $\pi \left[5h^2 - \frac{1}{3}h^3 \right]$	M1 A1 integration
		$= \pi [5n - \frac{1}{3}n]$ $= 1/3 \pi h^2 (15 - h)$	M1 use of correct limits A1 cso
	(b)	$V = \pi (5h^2 - \frac{1}{3}h^3) \implies \frac{\mathrm{d}V}{\mathrm{d}h} = \pi (10h - h^2)$	B1 oe
	(c)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pi (10h - h^2) \frac{\mathrm{d}h}{\mathrm{d}t}$	M1 chain rule
		When $h=1.5$, $6 = \pi(15 - 2.25)^{dh}/_{dt}$ $\Rightarrow^{dh}/_{dt} = 6/(12.75\pi) = 0.150 \text{ cm/s (3sf)}$	M1 A1 substitution A1 cao
	(d)	$W = \pi x^2 = \pi (10y - y^2)$ When depth is h , $W = \pi (10h - h^2)$	B1
		$\frac{dV}{dt} = \pi (10h - h^2) \frac{dh}{dt} = W \frac{dh}{dt}$ Since $\frac{dV}{dt} = 6$, $\frac{dh}{dt} = 6/W$ so $k = 6$	M1 A1
			13