Filter Design

Filter Configuration

$$\Omega = \frac{\omega}{\omega_c}$$

where ω_c is defined as the cutoff frequency for low-pass and high-pass filters and the center frequency for bandpass and bandstop filters.

Filter Frequency Response

A perfect filter would have zero insertion loss in the pass band, infinite attenuation in the stop band, and a linear phase response (to avoid signal distortion) in th pass band.

Binomial

 easy to implement, monotonic profile, requires numerous elements

Chebyshev

 equal amplitude variations, steeper profile than Butterworth

Elliptic

 amplitude varies in both stopband and passband, steepest profile, complicated design

Filter Definitions

- Insertion loss how much power is lost in going through the filter. IL = 10 log P_{in}/P_L IL quantity is the reciprocal of $|S_{12}|^2$
- Ripple the flatness of the signal in the passband.
- Bandwidth the width of the passband

Filter Design

Filter Design Process

Filter Design Prototype

Maximally Flat LPF element Values

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10)

N	g_1	g_2	<i>g</i> ₃	<i>g</i> ₄	g 5	g 6	g 7	<i>g</i> ₈	g 9	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Equiripple Filter element Values (0.5 dB

n. /

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes ($g_0 = 1$, $\omega_c = 1$, N = 1 to 10, 0.5 dB and 3.0 dB ripple)

0.5 dB Ripple											
N	g_1	g_2	<i>g</i> ₃	g_4	<i>g</i> 5	g 6	g 7	<i>g</i> 8	g 9	g_{10}	g 11
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.984

Equiripple Filter element Values (3 dB Ripple)

3.0 dB Ripple

N	g_1	g_2	g_3	g_4	<i>g</i> ₅	g_6	g 7	g_8	g 9	g_{10}	<i>g</i> ₁₁
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Filter Design by Richards Transformation and Kuroda's Identity

Lumped element filter

- difficult to implement at MW frequency, as they are available at limited range
- Distance between filter components are not negligible

Richards Transformation

Lumped element converted to transmission line section

Kuroda's identity

- Separate filter elements using transmission line structure
- Doesnot affect filter response, hence known as redundant filter

Lumped element implementation in Transmissionline

Richards' transformation. (a) For an inductor to a short-circuited stub. (b) For a capacitor to an open-circuited stub.

Equivalent circuits illustrating Kuroda identity (a) in Table 8.7

Problems

- 3. Design a lowpass filter for 3dB equi-ripple response for following specifications: frequency of operation 4 GHz, 3^{rd} order,, impedance 50Ω . Consider a T section prototype and implement using shunt stub.
- 4. Design a lowpass filter for the following specifications: frequency of operation 4 GHz, 3^{rd} order, maximally flat response, impedance 50Ω . Consider a T section prototype and implement using shunt stub.

- 5. Design a low-pass, third-order, maximally flat filter using only series stubs. The cutoff frequency is 6 GHz and the impedance is 50Ω .
- 6. Design a low-pass, third-order, 3 dB ripple Chybyshev filter using series stubs only. The cutoff frequency is 6 GHz and the impedance is 50Ω .
- 7. Design 4th order maximally flat filter using shunt stubs at 8 GHz and the impedance is 50Ω .

Stepped Impedance Filter

Stepped impedance filter

- Easiest method to implement LPF
- Use low and high impedances
- Popular because, less space than stubs
- Sharp cutoff not possible due to approximation

Stepped Impedance Filter

Inductor

$$eta l = rac{LR_0}{Z_h}$$
Capacitor $eta l = rac{CZ_l}{R_0}$

 R_0 is the filter impedance; L, C are element values from the table.

a. LPF Prototype b. Stepped impedance implementation c. Microstrip Layout

Filter Design

- 8. Design a stepped-impedance low-pass filter having maximally flat response and a cut off frequency of 2.5 GHz. It is necessary to have more than 20 dB insertion loss at 4 GHz. The filter impedance is 50 Ω . The highest practical line impedance is 150 Ω and the lowest is 10 Ω .
- 9. Design a stepped-impedance low-pass filter with fc = 2.0 GHz and $R_0 = 50$. Assume a maximally flat N =
- 5 response, and solve for the necessary line lengths and impedances if $Z_1 = 10 \Omega$ and $Z_h = 150 \Omega$

Attenuation versus normalized frequency for maximally flat filter prototypes

- a cutoff frequency of --- GHz and a fifth-order / 0.5 dB equal-ripple response. Assume $R_0=50\Omega$, $Z_l=15~\Omega$, and $Z_h=120~\Omega$.
- (a) Find the required electrical lengths of the five sections,
- (b) Lay out the microstrip implementation of the filter on an substrate having εr = 4.4, thickness h = 1.6 mm, with copper conductor of 0.5 mil thick. Use CAD to plot the insertion loss versus frequency in the passband of the filter

Filter Response

