

The jpnedumathsymbols package:

mathematical equation representation in Japanese education

Yukoh KUSAKABE

2022-07-10

English

Mathematical equation representation in Japanese education differs somewhat from the standard LaTeX writing style. This package introduces mathematical equation representation in Japanese education.

- § 1 System Requirements
- § 2 Installation
- § 3 Loading
- § 4 Usage
- § 5 For More Information

§ 1 System Requirements

- LATEX 2ε format
- amsmath package
- amssymb package
- empheq package
- xparse package
- pTEX/upTEX engine and japanese-off package (when [curriculum] is loaded)
- LuaTeX engine luatexja-otf package
 (when [lua] and [curriculum] are loaded)

日本語 (Japanese)

日本の教育における数式表現には、LaTeX の標準である書きかたとはやや異なる部分があります。このパッケージでは、日本の教育における数式表現を導入します。

- § 1 前提条件
- §2 インストール
- § 3 読み込み
- § 4 使用方法
- § 5 問い合わせ・詳しくは

§ 1 前提条件

- LATEX 2_{ε} フォーマット
- amsmath パッケージ
- amssymb パッケージ
- empheq パッケージ
- xparse パッケージ
- pT_EX/upT_EX と japanese-otf パッケージ ([curriculum] 使用時)
- LuaT_EX と luatexja-otf パッケージ ([lua] かつ [curriculum] 使用時)

§ 2 Installation

If not available, move jpnedumathsymbols.sty file to

\$TEXMF/tex/latex/jpnedumathsymbols.

§ 3 Loading

To use this package, load .sty file with \usepackage{jpnedumathsymbols} command in preamble.

Several options are available and will be presented in the usage guide. The reason is that they generally just switch the output of the same instruction. One exception is the [lua] option. This should be specified if you are using LualATeX when using the [curriculum] option. The reason for this specification is to allow for flexibility in future enhancements.

§ 4 Usage

\frac \sqrt \lim \vec

When the package is loaded, the symbols for fractions, root signs, limits, and vectors are automatically changed. If you do not need that, please specify the options, [nofrac], [nosqrt], [nolim], and [novec]. The original symbol is saved with the name original (\originalfrac, \originalsqrt, \originallim and \originalvec).

§ 2 インストール

直ちに使えなければ, jpnedumathsymbols.sty を \$TEXMF/tex/latex/jpnedumathsymbols に置いてください。

§ 3 読み込み

このパッケージを使用するには、プリアンブルに \usepackage{jpnedumathsymbols} と書いてください。

いくつかのオプションがありますが,使用方法を説明する中で紹介します。おおむね,同じ命令での出力を切り替えるだけだからです。例外として [lua] オプションがあります。これは,[curriculum] オプションを使うときに LualATEX を使っているのであれば指定してください。このような仕様にしているのは,将来的な機能拡張において柔軟性を保てるようにするためです。

§ 4 使用方法

パッケージを読み込むと自動的に分数・根号・極限・ベクトルの記号が(教科書風に)変更されます。変更されたくないときはオプション [nofrac] [nosqrt] [nolim] [novec] を指定してください。もとの記号は original をつけた名前で保存されています (\originalfrac \originalsqrt \originallim \originalvec)。

\$\frac{1}{2}+2^{\frac{1}{2}}+\lim_{x\to0}x\$
\begin{gather*}
\frac{1}{2}+2^{\frac{1}{2}}+\sqrt[3]{2}+\lim_{x\to0}x\\
\vec{a}+\vec{b}+\vec{\AA\BB}}
\end{gather*}
\$\originalfrac{1}{2}+2^{\originalfrac{1}{2}}+\originallim
_{x\to0}x\$
\begin{gather*}
\originalfrac{1}{2}+2^{\originalfrac{1}{2}}+\originalsqrt
[3]{2}+\originallim_{x\to0}x\\
\originalvec{a}+\originalvec{b}+\originalvec{\AA\BB}}
\end{gather*}

$$\frac{1}{2} + 2^{\frac{1}{2}} + \lim_{x \to 0} x$$

$$\frac{1}{2} + 2^{\frac{1}{2}} + \sqrt[3]{2} + \lim_{x \to 0} x$$

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{AB}$$

$$\frac{1}{2} + 2^{\frac{1}{2}} + \lim_{x \to 0} x$$

$$\frac{1}{2} + 2^{\frac{1}{2}} + \lim_{x \to 0} x$$

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{AB}$$

Fractions are also larger in inline equations. On the other hand, exponents, for example, have shorter horizontal bars. The limit subscripts are always directly below. 分数はインライン数式でも大きくなります。 一方、指数などでは横棒が短くなります。極 限の添字も常に真下になります。

Roman Typeface Meaning Point

It is customary to use the Roman font to denote points. To make typing easier, the same letter can be typed twice in succession to form a roman letter. For example, \AA will form the Roman letter A. Any conflicts with the original command are renamed (original \AA is \angstrom, original \SS is \capitaleszett). If you do not need that, please specify the option [nopointroman].

点を表すためにローマン体を用いる慣例があります。入力を楽にするために、同じ文字を2つ続けて打つとローマン体になります。たとえば、\AAでローマン体のAになります。元の命令と重なるものは名前を付け替えています(元の\AAは\angstrom,元の\SSは\capitaleszettです)。不要なときはオプション[nopointroman]を指定してください。

\begin{gather*}	
ABC\\	
\AA\BB\CC	
\end{gather*}	
ABC	
ABC	

Letters for Curriculum

For this feature only, the [curriculum] option must be loaded when used; for LuaTEX, the [lua] option is also required.

Sometimes it is more convenient for characters used in the curriculum to be full-width characters. They are in the form \curr??.

• Full-width Roman numeral

\currI, \currII, \currIII

• Full-width capital letters

\currA - \currZ

• Full-width lowercase letters

\curra - \currz

• Full-width lowercase Greek letters

\curralpha - \curromega

- Concurrent courses of study \currIIA, \currIIB, \currIIBC, \currIIIC
- Concurrent courses of study with "+" \currIIA*, \currIIBC*, \currIIIC*

この機能のみほかの設計と異なり、使用するときに [curriculum] オプションを読み込んでください。 $LuaT_EX$ の場合はさらに [lua] オプションも必要です。

カリキュラムで使われる文字は全角文字であるほうが便利なことがあります。それらは\curr?? という形の命令になっています。

• 全角ローマ数字

\currI, \currII, \currIII

• 全角英字大文字

\currA - \currZ

• 全角英字小文字

\curra - \currz

• 全角ギリシア文字小文字

\curralpha - \curromega

- 並行カリキュラムのセット \currIA, \currIIB, \currIIBC, \currIIIC
- 並行カリキュラムのセット(+つき)\currIIA*, \currIIB*, \currIIBC*, \currIIIC*

数学\currIA と数学\currIIBC 。数学\currIIIC*。

数学 I Aと数学 II B C。数学III+C。

\phantomheight[<letter>]

Places a post to enclose the box. If no optional argument is taken, \frac{1}{2} is entered.

枠で囲うための支柱を立てます。オプション引数を取らなければ $\{frac\{1\}\{2\}\}$ が入ります。

 $\begin{tabular}{ccc}\hline$

f(x)\$&\$1\$&\$2\$\\hline

 $\end{tabular}\quad$

\begin{tabular}{ccc}\hline

\end{tabular}

 $f(x) \quad 1 \quad 2 \qquad f(x) \quad 1 \quad 2$

Miscellaneous mathematical equation-related symbols

雑多な数式関係記号たち

It is easier to see the examples than to explain them one by one, so we will list them. 逐一説明するよりも例を見ていただくほう が分かりやすいので列挙します。

 $\verb|\A\comma B\comma C\period D\qquad|$

A\comma* B\comma* C\period* D\]

 A, B, C_{\circ} D A, B, C_{\circ} D

\begin{gather*}

\pair{1}{\frac{1}{2}}

\triplet{1}{\frac{1}{2}}{3}

 $\displaystyle \frac{1}{2}}{3}{4}\$

 $\pi {1}{\frac{1}{2}}$

\triplet*{1}{\frac{1}{2}}{3}

\quadruplet*{1}{\frac{1}{2}}{3}{4}

\end{gather*}

$$\left(1, \frac{1}{2}\right) \left(1, \frac{1}{2}, 3\right) \left(1, \frac{1}{2}, 3, 4\right)$$

$$(1, \frac{1}{2}) (1, \frac{1}{2}, 3) (1, \frac{1}{2}, 3, 4)$$

\intersection is a synonym for \cap.

\union is a synonym for \cup.

\[A\intersection B\qquad A\union B\]

 $A \cap B$ $A \cup B$

\cmpl is a synonym for \complement.

 $\label{local_complement_b} $$ \complement_a+\complement_b$ = \cmpl_a+\cmpl_b^]$

г -----

 $\overline{a} + \overline{b} = \overline{a} + \overline{b}$

They are named after text-and/or, english-and/or.

\[(A\tand B)\tor C\qquad (A\eand B)\eor C\]

(Aかつ B) または C (A and B) or C

\lto and \lfrom are named after \land and \lor.

\[A\lto B\qquad C\lfrom D\qquad E\iff G\]

 $A \Longrightarrow B \qquad C \Longleftarrow D \qquad E \Longleftrightarrow G$

\plto and \plfrom are the same as in the example below:

(The "p" is named after "phantom".)

\begin{align*}

&\peq A\\

&=В

\end{align*}

\begin{align*}

&\piff A\\

&\iff B

\end{align*}

A

= B

A

 $\iff B$

 $\[\left\{ x \right\} \left\{ x \right\}$

$$\left\{ \left. x \; \right| \; x \geqq \frac{1}{2} \; \right\}$$

When [setcolon] is loaded:

$$\left\{\,x\;;\;x\geqq\,\frac{1}{2}\,\right\}$$

 $\[\NNZ\NP\Z\Q\R\C\]$

 $\mathbf{N}\mathbf{N}_0\mathbf{N}_+\mathbf{Z}\mathbf{Q}\mathbf{R}\mathbf{C}$

When [mathbb] is loaded:

 $\mathbb{NN}_0\mathbb{N}_+\mathbb{ZQRC}$

 $\[\inverse{f}(x) \]$

$$f^{-1}(x)$$

 $\[\abs{\frac{1}{2}}\quad\abs*{\frac{1}{2}}\]$

$$\left|\frac{1}{2}\right| \qquad \left|\frac{1}{2}\right|$$

The default of optional argument is align*:

$$f(x) = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$$

$$f(x) = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases} \tag{1}$$

The default of optional argument is gather*:

\begin{simul} 2x+2y=0\\ x-y=0 \end{simul} \begin{simul}[align] 2x+2y&=0\\ x-y&=0 $\ensuremath{\mbox{lend}\{\mbox{simul}\}}$

$$\begin{cases} 2x + 2y = 0 \\ x - y = 0 \end{cases}$$

$$\begin{cases} 2x + 2y = 0 \\ x - y = 0 \end{cases}$$

$$(3)$$

$$(4)$$

Yukoh KUSAKABE

The internal environment is an array environment:

x	1		2		
f(x)	0	7	1		
x	1		2	• • •	3

\underline{%
\neconcave\ \seconcave\ \neconvex
\quad
\neconcave*\ \seconcave*\ \neconvex*}

\$\dint_{a}^{b}f(x)\dx+\int_{a}^{b}f(x)\dx\$\\ \${\dint_{a}^{b}f(x)\dx}+\int_{a}^{b}f(x)\dx\$

$$\int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x) dx + \int_{a}^{b} f(x) dx$$

\$f(x)dx+f(x)\dx\$, \$\dr\ds\dt\du\dx\dy\dz\dtheta\$,
\$\dint\dtheta=\theta+\const\$

f(x)dx + f(x) dx, $dr ds dt du dx dy dz d\theta$, $\int d\theta = \theta + \text{const.}$

 $\left(0\right)_{x}$

 $+ \left(\frac{1}{1} \left(\frac{x}{2} \right)^{\frac{1}{2}} \right)$

$$\left[x\right]_0^1 + \left[\left(\frac{x}{2}\right)^{\frac{1}{2}}\right]_0^1$$

 $\transformvariable{x}{1}{2}{t}{0}{1}$

$$\begin{array}{c|ccc} x & 1 & \rightarrow & 2 \\ \hline t & 0 & \rightarrow & 1 \end{array}$$

 $\rvec{1}{2}$, $\rvec*{1}{2}{3}$ \$

(1, 2), (1, 2, 3)

When [rvecbracket] is loaded:

[1, 2], [1, 2, 3]

 $\cvec{1}{2}$, $\cvec*{1}{2}{3}$ \$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

When [cvecbracket] is loaded:

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

 $\verb|\inp| is a synonym for \verb|\innerproduct|.$

 $\displaystyle \frac{\vec{a}}{\rac{\vec{b}}{2}}$

 $= \inf\{ \sqrt{a} \} { \frac{vec\{b\}}{2} } $,$

 $\displaystyle \frac{vec{a}}{\frac{b}}{2}}$

$$\overrightarrow{a} \cdot \overrightarrow{\frac{b}{2}} = \overrightarrow{a} \cdot \overrightarrow{\frac{b}{2}}, \overrightarrow{a} \cdot \overrightarrow{\frac{b}{2}}$$

When [innerproductbracket] is loaded:

$$\left\langle \overrightarrow{a}, \overrightarrow{\frac{b}{2}} \right\rangle = \left\langle \overrightarrow{a}, \overrightarrow{\frac{b}{2}} \right\rangle, \, \langle \overrightarrow{a}, \overrightarrow{\frac{b}{2}} \rangle$$

\seq is a synonym for \sequence.

 $\qquad \qquad \\ sequence \{a_{n}\} = \\ seq\{a_{n}\} \}$

$$\{a_n\} = \{a_n\}$$

 $\[\sum_{k=1}^{n}\]$

$$\sum_{k=1}^{n}$$

 $\CD\pi{1}{2}$, $\CM\pi{1}{2}$ \$

GCD(1, 2), LCM(1, 2)

\$30\degree\$

30°

This code is by Prof. Shingo SAITO.

\$\arc{\AA\BB}\$, \$\arc{\AA\BB\CC\DD}\$

 \widehat{AB} , \widehat{ABCD}

This code is by Mr./Ms. Ohishi.

\$1\parallel m\$, \$1\notparallel n\$, \$1\originalparallel m\$

 $l \not \mid m, \, l \not \mid n, \, l \parallel m$

The default of optional argument is 1.3:

 $\tilde AA\BB\CC\similar\triangle\AA\BB\CC\$,

 $\star \$

 $\triangle ABC \hookrightarrow \triangle ABC$, $\triangle ABC \hookrightarrow \triangle ABC$

\homogeneous is a synonym for \repeatedcombination.

 $\scriptstyle permutation{n}{r}+$

 $\combination{n}{r}+$

\repeatedpermutation{n}{r}+

 $\rownian {n}{r}$

\$\homogeneous{n}{r}\$

$$_{n}\mathbf{P}_{r} + _{n}\mathbf{C}_{r} + _{n}\mathbf{\Pi}_{r} + _{n}\mathbf{H}_{r}$$
 $_{n}\mathbf{H}_{r}$

\$\expectedvalue{P}\$

 $\mathbf{E}(P)$

When [mathbb] is loaded:

 $\mathbb{E}(P)$

 $\operatorname{Re} z + \operatorname{Im} z + \Re z + \Im z$

\conj is a synonym for \conjugate.

 $\conjugate{a}+\conjugate{b}=\conj{a}+\conj{b}$

$$\overline{a} + \overline{b} = \overline{a} + \overline{b}$$

a\parentext{a}\squaretext{a}\\
\$a\parentext{a}\squaretext{a}\whitesquaretext{a}\$

$$_{a}$$
 $_{(a)}$ $_{[a]}$ $_{[a]}$

$$a$$
 (a) $\lceil a \rfloor$ $\lceil a \rfloor$

\ltext and \lltext are named after \land and \lor.

 $a\left(\frac{a}\right)$

$$a \iff \lceil \mathbf{a} \rfloor \iff \lceil \mathbf{a} \rfloor$$

\begin{align*}

Α

&=\ltextbegin\text{a long long long long long}\\
&\text{long long text}\ltextend\\
&=\lltextbegin\text{a long long long long long long}\\
&\text{long long text}\lltextend
\end{align*}

= Ta long long long long long long long text1

 $a=\nomination{a}$

$$a = (a)$$

```
\left| f(x) = \right|
\begin{dcases}
x\&\condition{$x\geq qq0$}
-x\&\condition{$x<0$}
\end{dcases}
\1
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}
x&\condition*{$x\geqq0$}\\
-x&\condition*{$x<0$}
\end{ecases}
```

$$f(x) = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$$

$$f(x) = \begin{cases} x & (x \ge 0) \\ -x & (x < 0) \end{cases}$$

```
\[A=B\quad\explanation{$A=B$}\]
\begin{align*}
&=B&\explanation{$A=B$}\\
\&=C\&\ensuremath{\mbox{C\&B=C\$}}
\end{align*}
```

$$A = B$$
 $(\because A = B)$
 $A = B$ $(\because A = B)$
 $= C$ $(B = C)$

\[\quantify{For any real number \$x\$,}x=1.\]

For any real number x, x = 1.

 $a=1\geq 1$

a = 1 (kgw)


```
a \texttherefore\ b \textbecause\ c,
a $\therefore$ b $\because$ c

a ∴ b ∵ c, a ∴ b ∵ c

a \texttherefore\ b \textbecause\ c,
a $\therefore$ b $\because$ c

a ∴ b ∵ c, a ∴ b ∵ c

It follows that the number of primes is infinite.\QED
```

\arc is by Prof. Shingo SAITO. I would like to thank him.

\arc は斎藤新悟氏によるものです。お礼申 しあげます。

\parallel is by Mr./Ms. Ohishi. I would like to thank him/her.

\parallel は大石氏によるものです。お礼申しあげます。

This package is inspired by emath package by Kazuhiro Okuma (a.k.a. tDB). I would like to thank him.

このパッケージは、大熊一弘 (tDB) 氏による emath の影響を受けています。お礼申しあげます。

§ 5 For More Information

§ 5 問い合わせ・詳しくは

The jpnedumathsymbols package:

https://www.metaphysica.info/technote/package_jpnedumathsymbols/

Yukoh KUSAKABE: https://www.metaphysica.info/

https://twitter.com/metaphysicainfo

(screen-name, 日下部幽考 in Japanese)