Углерод

(Кейс-технология)

Предмет: Химия

Класс: 9.

Цель: Задание подготовлено на основе материала, предложенного традиционной программой учащимся 9 классов, для изучения аллотропных модификаций, свойств, применения углерода и его соединений.

Действия учащихся: задание может быть использовано как обучающее для самостоятельного получения знаний по теме «Углерод», в качестве зачетов: перед зачетом ученик может получить кейс-задание на дом, он должен его проанализировать и принести экзаменатору отчет с ответами на поставленные вопросы; или в качестве подготовки обучающихся к ГИА.

Задача ориентирована на преодоление дефицитов, таких как:

- находить точную информацию в тексте;
- переводить один вид текста в другой (от схемы к словесному описанию);
- работать с составными текстами (сопоставлять, сравнивать, делать заключение);
- при решении задачи неоднократно возвращаться к ее условию;
- использовать результаты решения предыдущего задания для поиска решения следующих заданий внутри текста;
- привлекать личный опыт, известные знания для решения поставленной задачи.

Использованные источники:

- 1. Федеральный компонент Государственного стандарта 2010 г.
- 2. Габриелян О.С. Химия. 9 класс: учебник для общеобразовательных учреждений, М.: Дрофа, 2019.
- 3. Настольная книга учителя химии 9 класс. Габриелян О.С., Москва, «Блик и К^о», 2001
 - 4. Поурочные разработки по химии. 9 класс. Габриелян О.С., Рудзидис Г.Е. 2013.
- 5. Э. Гроссе, Х. Вайсмантель. Химия для любознательных. Основы химии и занимательнын опыты. Ленинград «Химия», 1987

6. http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a href="http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a href="http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a href="http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a href="http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a href="http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a href="http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=B5ABAFAA3D60BFE8443A0440 <a hr

7. https://fipi.ru/otkrytyy-bank-zadaniy-dlya-otsenki-yestestvennonauchnoy-gramotnosti

Соединения этого элемента образовались из остатков отмерших растений под влиянием анаэробных микробов в ранних эпохах – 400 миллионов лет назад. Этому процессу способствовали высокое давление и температура, которые возникали при движении земной коры, связанным с образованием гор. По остаткам в современных

образцах каменного угля можно получить представление о растительном и животном мире того времени.

Нефть и природный газ возникали на дне огромных озер и морей, где было необычайно много водорослей и водных животных.

От 40 до 60 миллионов лет назад в наших широтах преобладал теплый субтропический климат, способствовавший возникновению обильных заболоченных лесов, появлению богатого животного мира. Из останков погибших животных и растений образовался бурый уголь, один из важнейших видов сырья для химической промышленности.

Название этого химического элемента переводится как «рождающий уголь». Это один из удивительнейших химических элементов. Его история — это история возникновения и развития жизни на Земле, потому что он входит в состав всего живого Земли. Помимо этого, он способен существовать в таких формах, которые кардинально

различаются по всем параметрам, но при этом состоят только лишь из атомов одного химического элемента.

В природе этот элемент встречается как в свободном виде (алмаз, графит), так и в связанном, в составе карбонатов. CaCO₃ - мрамор, известняк, мел; MgCO₃ - магнезит; CaCO₃ x MgCO₃ - доломит. Этот элемент входит в состав все живых и растительных организмов, нефти, природных газов, углей.

Нефть является смесью соединений этого элемента (в основном жидкие углеводороды).

Природный газ состоит из углеводородов.

Состав его неорганических соединений:

Каменный уголь – 99% этого элемента.

Бурый уголь – 72% этого элемента.

Торф – 57% этого элемента.

Кальцит (известняк, мел, мрамор) СаСО3.

Углекислый газ (CO₂) – содержится в атмосфере, образуется при дыхании живых организмов и при сгорании топлива; больше, чем в воздухе углекислого газа содержится в водных морей и океанов.

Все перечисленные источники этого элемента участвуют в круговороте его в природе.

1) Назовите этот химический элемент

(Деятельность обучающихся: находить точную информацию в однородных, однотипных текстах)

2) Изучите текст и заполните таблицу

(Деятельность обучающихся: уметь переводить один вид текста в другой (от словесного описания к таблице)

	Агрегатное	Цвет	Степень
	состояние		окисления
			элемента в
			соединении
Мрамор, мел,			
известняк			
Магнезит			
Доломит			
Углекислый газ			
Каменный уголь			
(99% углерода)			
Бурый уголь			*****

(72%)	
Торф (57%)	*******
Нефть	Смесь
	соединений
	углерода
Природный газ	Смесь
	соединений
	углерода

Возможный ответ

Ответ: 1) Углерод

2)

L)			
	Агрегатное	Цвет	Степень
	состояние		окисления
			элемента в
			соединении
Мрамор, мел, известняк	Твердый	Белый	+4
Магнезит	Твердый	Белый с	+4
	1	сероватым	
		оттенком	
Доломит	Твердый	Белый с	+4
	·	сероватым	
		оттенком	
Углекислый	Газообразный	Бесцветный	+4
газ		·	
Каменный	Твердый	Черный	0
уголь (99%			
углерода)			
Бурый уголь (72%)	Твердый	Бурый	******
Торф (57%)	Твердый		*****
Нефть	Жидкая	Черная	Смесь
-			соединений
			углерода
Природный	Газообразный	Бесцветный	Смесь
газ		·	соединений
			углерода

Записан верный ответ на два вопроса балла

Записан верный ответ на один вопрос	1 балл
Другие ответы или ответ отсутствует баллов	0

2. «Какое лицо у углерода?»

Для углерода характерно явление аллотропии. В виде простого вещества углерод существует в нескольких формах – алмаз, графит, аморфный углерод.

Алмаз – прозрачное бесцветное вещество с сильной лучепреломляемостью.

Алмаз – химически очень устойчивое вещество, однако при достаточно высокой температуре (700-800°C) в атмосфере кислорода он сгорает с ослепительным блеском до CO₂.

Алмаз обладатель наибольшей твердостью из всех известных веществ в природе. Он в 1000 раз тверже кварца, в 150 раз – корунда.

Окраска алмаза обусловлена примесями. Алмазы красивой синей, зеленой и красноватой окраски весьма редки и ценятся очень высоко, встречается даже черный алмаз. Один из известных – алмаз «Гоппе» из Индии в 44,5 карата является одним из самых дорогих в мире.

«Карат» - единица измерения драгоценных камней. В аравийской пустыне растет дерево «каратина силиква», косточка плодов которой весит ровно 0,2г. Этот точный вес косточки имеют всегда в любой год и на любом дереве. Поэтому ювелиры древности и приняли для своих весов такие гирьки.

Искусственно ограненные алмазы называются бриллиантами и являются предметами роскоши. В России бриллиантовый бум пришелся на правлении Екатерины II. Приближенные императрицы на праздники в дворце появлялись в усыпанном бриллиантами сказочном одеянии.

Свойства алмаза, как, впрочем, любого кристалла анизотропны – неодинаковы во всех направлениях. На одних гранях алмаза невозможно оставить царапины, на других – возможно оставить надпись. На знаменитом алмазе «Шах» на одном из граней алмаза начертаны имена трех его владельцев.

Графит – вещество серо-стального цвета, жирное на ощупь с металлическим блеском. Он является хорошим проводником электричества. Кристаллы графита имеют слоистую структуру (расстояние между отдельными атомами одного слоя меньше расстояния между слоями). Эти объясняется свойство графита оставлять след на бумаге. И эта же способность графита делиться на слои используется для приготовления различных смазок. При высокой температуре и давлении из графита получают искусственные алмазы. Графит очень тугоплавок.

Аморфный углерод – известен в виде сажи, кокса, древесного угля. Аморфный углерод представляет собой очень мелкопористый графит. Алмаз и графит имеют упорядоченную структуру, а в аморфном углероде межатомные связи беспорядочные, случайные. Имеет способность адсорбации.

Аморфный углерод, у которого искусственно увеличена поверхность, называется активированным углем.

1) Укажите причину разнообразия аллотропных модификаций углерода (Деятельность обучающихся: использовать школьные знания для объяснения явлений окружающего мира)

2) Выберите правильный ответ:

Адсорбция - это процесс:

- 1. Поглощения и выделения газообразных веществ поверхностью твердых веществ
- 2. Выделения и поглощения газообразных веществ поверхностью твердых веществ
- 3. Поглощения и выделения растворенных веществ поверхностью твердых веществ
- 4. Поглощение и удерживание на своей поверхности газы и растворенные вещества (Деятельность обучающихся: решать задачу с привлечением дополнительной информации, личного опыта)

3) Установите соответствие между аллотропными модификациями угле	рода,
кристаллическими решетками и их применением.	

А. Алмаз – ()			
Б.Графит - ()			
В. Аморфный	углерод -()		

3

Применение:

Предметы роскоши; противогазы; электроды; производство резины; замедлители нейтронов в атомных реакторах; производство красок; изготовление буров, сверл, пил по камню; изготовление искусственных алмазов; карандаши; очистка многих

продуктов, например спирта от сивушных масел, сахарного сиропа от окрашенных веществ, для улавливания бензина из природных газов; заправка картриджей. (Деятельность обучающихся: Выявление информации в тексте и установление соответствия среди нескольких позиций)

4) Предположите причину появления крылатого выражения: «Тяжела ты, шапка Мономаха»

(Деятельность обучающихся: уметь выделять неявную, скрытую дополнительную необходимую информацию из вопроса к поставленной задаче)

Возможный ответ

Ответ: 1) Причина разнообразия полиморфных модификаций углерода в различном строении кристаллических решеток.

- 2) 4.
- 3) А. (3) Предметы роскоши; изготовление буров, сверл, пил по камню;
- Б. (1) Изготовление электродов; замедлители нейтронов в атомных реакторах; изготовление искусственных алмазов; карандаши;
- В. (2) противогазы; производство резины; производство красок; очистка многих продуктов, например спирта от сивушных масел, сахарного сиропа от окрашенных веществ, для улавливания бензина из природных газов; заправка картриджей
- 4)) Возможно шапка Мономаха была украшена драгоценными камнями. В тексте сказано, что в тот период истории был бриллиантовый бум, значит, драгоценностей было так много, что она была очень тяжелой.

Apar adamentar assistant and minora, the analogue a fortal minoral					
Записаны верные ответы на четыре вопроса 4 балла					
Записан верный ответ на три вопроса 3 (3 балла
Записан 2 балла	верный	ответ	на	два	вопроса
Записан 1 балл	верный	ответ	на	один	вопрос
Другие 0 баллов	ответы	или	ответ	Г	отсутствует

3.

Атомы углерода могут находиться как в основном, так и в возбуждённом состоянии. Возбуждённое состояние возникает, когда электроны получают дополнительную энергию и могут переходить с одной орбитали на другую.

1) Охарактеризуйте углерод по положению в Периодической системе Д.И. Менделеева. Вставьте пропущенные слова:

Углерод находиться во
периоде,
группе,
подгруппе
Периодической системы
Д.И.Менделева.
Заряд ядра углерода
равен
Число протонов в ядре
атома углерода равно
LIVOTO OFFICIATION D
Число электронов в
атоме углерода равно

Число электронов на последнем энергетическом уровне атома углерода равно

Электронная формула распределения электронов в атоме углерода по
орбиталям

Высшая степень окисления углерода равна
Низшая степень окисления углерода равна
(Деятельность обучающихся: заполнять пропуски в тексте)

2) На основании вышеизложенной информации назовите характерные степени окисления углерода и спрогнозируйте окислительновосстановительные способности углерода.

(Деятельность обучающихся: по положению в ПСХЭ Д.И.Менделеева химического элемента и строению атома предполагать его свойства)

Возможный ответ

Ответ: 1) Углерод находиться во <u>втором</u> периоде, <u>четвертой</u> группе, <u>главной</u> подгруппе Периодической системы Д.И.Менделева.

Заряд ядра углерода равен <u>шести</u>.

Число протонов в ядре атома углерода равно *шести.*

Число электронов в атоме углерода равно *шести*.

Число электронов на последнем энергетическом уровне атома углерода равно <u>четырем.</u>

Электронная формула распределения электронов в атоме углерода по орбиталям 1s²2s²2p².

Высшая степень окисления углерода равна +4.

Низшая степень окисления углерода равна -<u>4.</u>

2) -4; 0; +2; +4. Атом углерода, чтобы достичь восьмиэлектронного

внешнего уровня может отдать 4 электрона (восстано	витель, сам		
окисляется) или принять на внешний энергетический уровень	· ·		
(окислитель, сам восстанавливается)			
Записаны верные ответы на два вопроса 2 балла			
Записан верный ответ на один вопрос 1 балл			
Другие ответы или ответ отсутствует	0 баллов		

4. Из аллотропов углерода наиболее реакционноспособным является аморфный углерод, затем следует графит и алмаз. При обычных условиях углерод химически инертен, но при нагревании реагирует со многими соединениями. Все реакции углерода протекают при высоких температурах (от 600 – 1700°C).

Правило: Восстановительные свойства он проявляет только по отношению к очень ЭО элементам. Окислительные свойства – при взаимодействии с водородом и металлами.

Углерод восстанавливает металлы из их оксидов (получение металлов из руд) **Демонстрационный опыт.** В пробирку с оксидом меди (II) всыпать измельченный уголь, встряхнуть. Закрыть пробирку пробкой с газоотводной трубкой, пробирку закрепить на штативе, конец трубки опустить в пробирку с известковой водой. Нагреть пробирку со смесью оксида меди (II) и угля на спиртовке. Наблюдаем помутнение известковой воды в одной пробирке и выделение красной меди в пробирке со смесью порошков.

1) Закончите уравнения. Составьте ОВР Углерод – восстановитель:

1)C +
$$O_2$$
 =

$$2)C + 2S =$$

 $3)C + 2F_2 _1000^{\circ}C$

(с другими галогенами углерод не взаимодействует)

Углерод - окислитель:

1)C +
$$^{2}H_{2}$$
 t, P, cat =

$$2)C + Si =$$

$$3)3C + 4AL =$$

(Деятельность обучающихся: уметь применять общее правило для решения частной конкретной задачи)

- 2) Как называются вещества, которые образуются при взаимодействии углерода с металлами:
- 1. Карбиды 2) Карбонаты 3) Силикаты 4) Нитраты (Деятельность обучающихся: актуализировать знания для выполнения задания с выбором одного ответа из предложенных)
- 3) Ознакомьтесь с описанием демонстрационного опыта. Сколько химических реакций описано в опыте? Назовите признаки реакций. Напишите уравнения химических реакций.

(Деятельность обучающихся: использовать исследовательский метод (анализ фактов, анализ полученных результатов, формулировка заключения, выводов, запись уравнений химических реакций)

4) Установите соответствие между полученными в результате проявления химических свойств углеродом соединений, их физическими свойствами и применением.

(Деятельность обучающихся: решать задачу с привлечением дополнительной информации, личного опыта)

	Соединения углерода	Физические свойства и применение	
1.	CO ₂ («сухой лед»),	А. Жидкость с неприятным запахом, токсичен. применяют как растворитель жиров, масел, смол, каучуков, фосфора, йода, нитрата серебра. В производстве используется для получения вискозы (искусственного шелка)	
2.	SC ₂ (сероуглерод),	Б. Газ, бытовой газ, широкое применение в промышленности также находят его производные.	
3.	СF ₄ (фторид углерода),	В. В промышленности применяют для хранения пищевых продуктов. Не поддерживает горения, используют для тушения пожаров. Также используют для изготовления шипучих напитков и для получения соды.	
4.	СН4 (метан)	Г. Бесцветный газ без запаха, применяется в качестве низкотемпературного хладагента (фреон, хладон), компонент дыхательных смесей при глубоководных погружениях.	

A.	Б.	B.	Γ.

5) Не производя расчетов, ответьте на вопрос: в каком соединении: СО или СО2, содержание углерода больше?

(Деятельность обучающихся: использовать обоснованные приближения, упрощающие подходы, нетрадиционные способы решения задачи)

Возможный ответ

Ответ: 1)C + O_2 = CO_2

$$C^0 - 4e = C^{+4}$$

восстановитель

$$O_2 + 4e = 20^{-2}$$

окислитель

$$2)C + 2S = CS_2$$
 (сероуглерод)

$$C^0 - 4e = C^{+4}$$

восстановитель

$$S + 2e = S^{-2}$$

окислитель

$$3)C + 2F_2 _1000^{\circ}C _CF_4$$
 (фторид углерода)

$$C^0 - 4e = C^{+4}$$

восстановитель

$$F_2 + 2e = 2F$$

окислитель

2) 1. Карбиды

3) Две химические реакции: получение меди (осадок) и помутнение известковой воды.

$$2CuO + C = 2Cu + CO_2$$
 и $Ca(OH)_2 + CO_2 = CaCO_3 + H_2O$

4)

'/					
A.	Б.	B.	Γ.		
2	4	1	3		

5) Больше в оксиде углерода (II)

Записаны верные ответы на пять вопросов	5 баллов
Записан верный ответ на четыре вопроса	4 балла
Записан верный ответ на три вопроса	3 балла

Записан верный ответ на два вопроса

Записан верный ответ на один вопрос

Другие ответы или ответ отсутствует

2 балла

1 балл

0 баллов

5. «Съедобен ли» углерод?

1) Изучите картинку. Подумайте, возможен ли в организме человека недостаток

углерода. Ответ поясните.

(Деятельность обучающихся: высказать предположение и обосновать его)

2) На основании представленной информации ответьте на вопрос, какова масса углерода в вашем организме? Ответ подтвердите расчетами.

(Деятельность обучающихся: решать задачу с привлечением дополнительной информации, личного опыта)

Возможный ответ	
Ответ: 1) Так как углерод находится во всех пищевых продуктах, то	
недостаток его в организме невозможен.	
2) Мой вес 75 кг. Содержание углерода составляет 18% от общего веса.	
Т.о. 75 х 18 /100 = 13,5 кг. Ответ: 13,5 кг.	
Записаны верные ответы на два вопроса	2 балла
Записан верный ответ на один вопрос	1 балл
Другие ответы или ответ отсутствует	0 баллов