A Book of Abstract Algebra (2nd Edition)

Problem Let F be a field, and let $a(x)$, $b(x) \in F[x]$. Prove the following: If $a(x)$ and $b(x)$ are relatively prime in $F[x]$, they are relatively prime in $K[x]$, for any extension K of F . Conversely, if they are relatively prime in $K[x]$, then they are relatively prime in $F[x]$. Step-by-step solution Step 1 of 3 Consider that F is any field, and K is some extension field of F . Let $a(x)$, $b(x) \in F[x]$. Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
Let F be a field, and let $a(x)$, $b(x) \in F[x]$. Prove the following: If $a(x)$ and $b(x)$ are relatively prime in $F[x]$, they are relatively prime in $K[x]$, for any extension K of F . Conversely, if they are relatively prime in $K[x]$, then they are relatively prime in $F[x]$. Step-by-step solution Step 1 of 3 Consider that F is any field, and K is some extension field of F . Let $a(x)$, $b(x) \in F[x]$. Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
If $a(x)$ and $b(x)$ are relatively prime in $F[x]$, they are relatively prime in $K[x]$, for any extension K of F . Conversely, if they are relatively prime in $K[x]$, then they are relatively prime in $F[x]$. Step-by-step solution Step 1 of 3 \bigwedge Consider that F is any field, and K is some extension field of F . Let $a(x)$, $b(x) \in F[x]$. Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
If $a(x)$ and $b(x)$ are relatively prime in $F[x]$, they are relatively prime in $K[x]$, for any extension K of F . Conversely, if they are relatively prime in $K[x]$, then they are relatively prime in $F[x]$. Step-by-step solution Step 1 of 3 ^ Consider that F is any field, and K is some extension field of F . Let $a(x)$, $b(x) \in F[x]$. Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
Step-by-step solution
Step 1 of 3 $ ildes$ Consider that F is any field, and K is some extension field of F . Let $a(x), b(x) \in F[x]$. Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x), g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
Consider that F is any field, and K is some extension field of F . Let $a(x)$, $b(x) \in F[x]$. Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
Objective is to prove that $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1$.
prime in $K[x]$. Let $a(x)$ and $b(x)$ are relatively prime in $F[x]$. Then their greatest common divisor will be 1. So, there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x)+b(x)g(x)=1.$
there are polynomials $f(x)$, $g(x) \in F[x]$ such that $a(x)f(x) + b(x)g(x) = 1$.
Comment
Step 2 of 3 ^
If c is some common root of $a(x)$ and $b(x)$, then the substitution of c for x yields
$0 \cdot f(x) + 0 \cdot g(x) = 1$
0 = 1,
a contradiction. Thus, $a(x)$ and $b(x)$ have no common root in any extension K of F . Hence, both are relatively prime in $K[x]$.
Conversely, assume that $a(x)$ and $b(x)$ are relatively prime in $K[x]$. Let both the polynomials
have a non-constant greatest common divisor $d(x)$ in F and c is the root of $d(x)$ in K . Since d divides both $a(x)$ and $b(x)$, therefore c is a common root of $a(x)$ and $b(x)$ in $K[x]$. This is a contradiction to the hypothesis.
Comment
Step 3 of 3
Hence, $a(x)$ and $b(x)$ are relatively prime in $F[x]$ if and only they are relatively prime in $K[x]$.
Comment

2 4 B