



## Devoir surveillé n° 3/4 6 mars 2016

| Nom                                                 | Prénom                        | Groupe de td |
|-----------------------------------------------------|-------------------------------|--------------|
|                                                     |                               |              |
|                                                     |                               |              |
| Barème indicatif  — Elévation d'une matrice à une p | uissance entière : 10 points. |              |
| — Résolution d'une équation matri                   | cielle : 10 points.           |              |
|                                                     |                               |              |

**Note finale** : ...../20

POUR CE PREMIER EXERCICE, UTILISER UNE PREMIERE COPIE.

## Exercice 1: puissance matricielle

On donne la définition suivante de la puissance négative d'une matrice inversible :

$$\forall M \in \mathcal{GL}_2(\mathbb{R}) \quad \forall n \in \mathbb{Z} \setminus \mathbb{N} \quad M^n = (M^{-1})^{-n}$$

Soit A la matrice de  $\mathcal{M}_2(\mathbb{R})$  définie par  $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ .

- (1) Justifier que A est inversible puis calculer  $A^{-1}$ .
- (2) Calculer  $A^3$  et  $A^{-3}$ .
- (3) On pose :  $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  et  $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ .
  - (a) Vérifier que N est nilpotente. Préciser son indice de nilpotence.
  - (b) Donner  $(x, y) \in \mathbb{R}^2$  tel que  $: A = x \cdot I_2 + y \cdot N$ . En déduire, pour tout entier n strictement positif, une expression de la matrice  $A^n$  en fonction de  $I_2$  et de N.
  - (b) Donner  $(x, y) \in \mathbb{R}^2$  tel que  $: A^{-1} = x \cdot I_2 + y \cdot N$ . En déduire, pour tout entier n strictement négatif, une expression de  $A^n$  en fonction de  $I_2$  et de N.
- (4) Pour conclure : soit  $n \in \mathbb{Z}$ , expliciter les coefficients de  $A^n$  en fonction de n.

POUR CE SECOND EXERCICE, UTILISER UNE SECONDE COPIE.

## Exercice 2 : équation matricielle

Soit 
$$A = \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Le but de cet exercice est de résoudre l'équation  $(\star)$ :  $AX - XA = 0_3$  dans  $\mathcal{M}_3(\mathbb{R})$ .

- (1) On nomme S l'ensemble des solutions de  $(\star)$ .
  - (a) Justifier que  $\mathcal S$  est un ensemble infini.
  - (b) Montrer que  $\mathcal S$  est stable par combinaison linéaire. Cela signifie qu'il faut montrer :

$$\forall M, N \in \mathcal{M}_3(\mathbb{R}) \quad \forall \lambda, \mu \in \mathbb{R} \quad M, N \in \mathcal{S} \Rightarrow (\lambda \cdot M + \mu \cdot N) \in \mathcal{S}$$

(2) On donne : 
$$P = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- (a) Montrer que P est inversible.
- (b) Déterminer l'inverse de P.
- (c) Calculer  $P^{-1} A P$ .
- (3) Soient M une solution de  $(\star)$  et  $M' \in \mathcal{M}_3(\mathbb{R})$ , une matrice telle que  $M' = P^{-1} M P$ .
  - (a) Déduire la matrice triangulaire supérieure T telle que :

$$AM - MA = 0_3 \Leftrightarrow TM' - M'T = 0_3.$$

- (b) Résoudre alors l'équation matricielle  $TM' M'T = 0_3$ . Pour cela, poser :  $M' = \begin{pmatrix} a & i & p \\ b & j & q \\ c & k & r \end{pmatrix}$ . Préciser le nombre d'inconnues et le rang du système linéaire associé à cette équation.
- (c) Déduire que M est de la forme :

$$M = \begin{pmatrix} -a+2j & 2a-2j & -a+j+2q \\ -a+j & 2a-j & -a+j+q \\ 0 & 0 & j \end{pmatrix}.$$

(d) Déduire les matrices  $X_1$ ,  $X_2$ ,  $X_3$  telles que :

$$\mathcal{S} = \{ a \cdot X_1 + j \cdot X_2 + q \cdot X_3, a, j, q \in \mathbb{R} \}$$