Chapitre 5 - Séries entières

Définition

Soit
$$(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^\mathbb{N}$$

<u>Définition</u>: On appelle <u>série entière</u> (S.E) définie par la suite complexe $(a_n)_{n\in\mathbb{N}}$ la série de fonctions $\sum u_n$ où $\forall n\in\mathbb{N}, u_n:\mathbb{C}\to\mathbb{C}, z\mapsto a_nz^n$

Par abus de notation, on note cette série de fonction $\sum\limits_{n\in\mathbb{N}}a_nz^n$

L'ensemble $\mathcal D$ des $z\in\mathbb C$ par lesquels la série numérique $\sum\limits_{n\in\mathbb N}a_nz^n$ CV est appelé le domaine de convergence de la S.E. $\sum\limits_{n\in\mathbb N}a_nz^n$ et la fonction $S:\mathcal D\to\mathbb C, z\mapsto\sum_{n=0}^{+\infty}a_nz^n$ est appelé somme de la série entière $\sum\limits_{n\in\mathbb N}a_nz^n$

Exemple:

1) La SE $\sum\limits_{n\in\mathbb{N}}z^n$ a pour domaine $\mathcal{D}=\{z\in\mathbb{C},|z|<1\}:=\mathcal{D}(0;1)$ = disque ouvert de centre 0 et de rayon 1

Rayon de convergence

<u>Lemme d'Abel</u>: Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. Soit $z_0\in\mathbb{C}$ tel que la suite $(a_nz_0^n)_{n\in\mathbb{N}}$ est bornée. Alors pour tout $z\in\mathbb{C}$ tel que $|z|<|z_0|$, la série numérique $\sum\limits_{n\in\mathbb{N}}a_nz^n$ converge absolument.

Démonstration : 🕏

- Si $z_0 = 0$, $\exists z \in \mathbb{C}$ tel que $|z| < |z_0|$, donc la propriété est vérifiée.
- Si $z_0 \neq 0$, soit $z \in \mathbb{C}$ tel que $|z| < |z_0|$. Comme la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée, $\exists M \in \mathbb{R}_+, \forall n \in \mathbb{N}, |a_n z_0^n| < M$

Alors
$$\forall n \in \mathbb{N}, 0 \le |a_n z^n| = |a_n||z|^n = |a_n z_0^n| \times \left(\frac{|z|}{|z_0|}\right)^n \le M \times \left(\frac{|z|}{\frac{|z_0|}{|z_0|}}\right)^n$$

Or la série géométrique $\sum \left(\frac{|z|}{|z_0|}\right)^n$ CV, donc par comparaison de SATP, $\sum |a_nz^n|$ CV, donc la série numérique $\sum a_nz^n$ CVA

<u>Définition</u> : on appelle rayon de convergence (R_{CV}) de la série entière $\sum\limits_{n\in\mathbb{N}}a_nz^n$ l'élément :

$$R = \sup\{r \in \mathbb{R}_+ | \text{ La suite } (a_n r^n) \text{ est bornée}\} \in \mathbb{R}_+ \cup \{+\infty\}$$

Remarque : cet ensemble est non vide car pour r=0 la suite correspondante vaut la suite nulle.

Exemple : $\sum n! z^n$

Soit
$$r \in \mathbb{R}_+$$
, si $r \neq 0$, $n! \, r^n = \left(\frac{\left(\frac{1}{r}\right)^n}{n!}\right)^{-1} \xrightarrow[n \to +\infty]{} + \infty$

Donc $(n! r^n)_n$ n'est pas bornée, donc $R = \sup\{0\} = 0$

<u>Propriété</u>: De manière équivalent, on a aussi $R = \sup \left\{ r \in \mathbb{R}_+ | a_n r^n \xrightarrow[n \to +\infty]{} 0 \right\}$

<u>Propriété</u>: Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Soit $z \in \mathbb{C}$

- (i) Si |z| < R, la série numérique $\sum a_n z^n$ CVA
- (ii) Si |z| > R, la série numérique $\sum a_n z^n$ DVG

<u>Démonstration</u>: ★

- (i) Si R=0, $\nexists z\in\mathbb{C}$ tel que |z|< R. On suppose donc R>0 Comme |z|< R, z n'est pas un majorant de $\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}$ Donc il $\exists r_0\in\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}$ vérifiant $|z|< r_0$ On peut alors appliquer le Lemme d'Abel (car $(a_nr_0^n)_n$ est born\'ee, et donc la série $\sum a_nz^n$ CVA.
- (ii) Si $|z|>R=\sup\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}\ \mathrm{donc}\ |z|\notin\{r\in\mathbb{R}_+|\ (a_nr^n) \text{ est born\'ee}\}\ \mathrm{C'est-\`a-dire}\ \mathrm{que}\ (a_n|z|^n)_n\ \mathrm{est}\ \mathrm{non}\ \mathrm{born\'ee},\ \mathrm{or}\ \forall n\in\mathbb{N}, |a_nz^n|=|a_n||z^n|=|a_n|z|^n|\ \mathrm{Donc}\ (a_nz^n)_n\ \mathrm{est}\ \mathrm{non}\ \mathrm{born\'ee}.$ Alors la série $\sum a_nz^n\ \mathrm{DVG}$

Remarque: on utilise très souvent la contraposée du théorème précédent.

Remarque : si la série diverge mais pas grossièrement, alors $|z_0| = R$

Remarque : si la série est semi-convergente, alors $|z_0| = R$

<u>Corollaire</u>: Soit $\sum a_n z^n$ une SE de rayon de convergence R.

- Si R = 0, $\mathcal{D} = \{0\}$
- Si $R = +\infty$, $\mathcal{D} = \mathbb{C}$

- SI
$$R \in]0$$
; $+\infty[$, $\mathcal{D}(0,R) \subset \mathcal{D} \subset \overline{\mathcal{D}(0,R)}$, où $\begin{cases} \mathcal{D}(0,R) = \{z \in \mathbb{C} \mid |z| < R\} \\ \overline{\mathcal{D}(0,R)} = \{z \in \mathbb{C} \mid |z| \le R\} \end{cases}$

<u>Définition</u>: Soit $\sum a_n z^n$ une S.E. de rayon de convergence R. Le disque $\mathcal{D}(0,R)$ est appelé <u>disque</u> <u>ouvert de convergence</u> de $\sum a_n z^n$

Détermination pratique du rayon de convergence

Règle de d'Alembert

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes tels que $\exists n_0\in\mathbb{N}, \forall n\geq n_0, a_n\neq 0$.

 $\operatorname{Si} \frac{|a_{n+1}|}{|a_n|} \underset{n \to +\infty}{\longrightarrow} l \in \mathbb{R}_+ \cup \{+\infty\}, \text{ alors le rayon de convergence } R \text{ de la S.E. } \sum a_n z^n \text{ vérifie } R = \frac{1}{l}, \text{ avec les conventions } \frac{1}{0} = +\infty \text{ et } \frac{1}{+\infty} = 0$

Démonstration : 🖈

Soit
$$z\in\mathbb{C}$$
, posons $\forall n\in\mathbb{N}, u_n=a_nz^n$, alors $|u_n|=\underbrace{|a_n|}_{\neq 0}|z|^n>0 \ \forall n\geq n_0$

$$\operatorname{Et} \frac{|u_{n+1}|}{|u_n|} = \frac{|a_{n+1}|}{|a_n|} \times |z| \xrightarrow[n \to +\infty]{} l|z|. \text{ De plus, } l|z| < 1 \Longleftrightarrow |z| < \frac{1}{l}$$

Ainsi par la règle d'Alembert appliquée à la série numérique $\sum |u_n|$:

- Si $|z| < \frac{1}{l}$, l|z| < 1, donc la série numérique $\sum |u_n|$ CV, donc $\sum a_n z^n$ CV(A)

- Donc $|z| \le R$, ceci $\forall z \in \mathbb{C}^*$, $|z| < \frac{1}{l}$, donc $\frac{1}{l} < R$
- Si $|z| > \frac{1}{l}$, alors l|z| > 1 donc la série numérique $\sum |u_n|$ DVG donc la série numérique $\sum a_n z^n$ DVG aussi.
- Donc $\forall z \in \mathbb{C}^*$ tel que $|z| > \frac{1}{l}$, $|z| \ge R$ d'où en faisant tendre |z| vers $\frac{1}{l} : \frac{1}{l} \ge R$

D'où R =
$$\frac{1}{l}$$

Règle de Cauchy:

Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe. Si $|a_n|^{\frac{1}{n}} \longrightarrow l \in \mathbb{R}_+ \cup \{+\infty\}$, alors le rayon de convergence R de la S.E. $\sum a_n z^n$ vérifie $R = \frac{1}{l}$, avec les conventions $\frac{1}{l} = +\infty$ et $\frac{1}{l+\infty} = 0$.

Démonstration : 🕏

Soit $z \in \mathbb{C}$, on étudie la nature de la série numérique $\sum a_n z^n$.

$$\forall n \in \mathbb{N}^*, \left(|a_n|^{\frac{1}{n}}|z|\right)^n = |a_n z^n| \text{ et } |a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z|$$

- Si $|z| > \frac{1}{l}$, alors l|z| > 1, donc comme $|a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z| > 1$, par définition de la limite,

$$\exists n_0 \in \mathbb{N}, \forall n \geq n_0, |a_n|^{\frac{1}{n}}|z| \geq 1$$

 $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, |a_n|^{\frac{1}{n}}|z| \geq 1$ Et donc $|a_nz^n| \geq 1^n = 1$, donc $|a_nz^n|$ ne tend pas vers 0.

Donc la série numérique $\sum a_n z^n$ DVG, donc $R \leq \frac{1}{L}$

- Si $|z| < \frac{1}{l}$, alors l|z| < 1 et $|a_n|^{\frac{1}{n}}|z| \xrightarrow[n \to +\infty]{} l|z| > 1$

Donc par définition de la limite,

 $\exists q \text{ tel que } 0 < q < 1 \text{ et } \exists n_0 \in \mathbb{N}, \forall n \ge n_0, |a_n|^{\frac{1}{n}}|z| \le q$

D'où par croissance de $t \mapsto t^n$, $|a_n z^n| \le q^n$

Donc par comparaison de SATP, la série numérique $\sum |a_n z^n|$ CV,

D'où $\sum a_n z^n$ CVA, ceci $\forall z \in \mathbb{C}$ tel que $|z| < \frac{1}{l}$

Donc $\frac{1}{l} \le R$, donc par double inégalité, $R = \frac{1}{l}$

Cas des séries lacunaires

Il se peut que l'on rencontre des séries de la forme $\sum a_n z^{2n}$ ou $\sum a_n z^{3n}$

Ces deux séries peuvent s'interpréter comme les séries entières suivantes :

$$\sum c_p z^p$$
 , où $c_p=\left\{egin{array}{l} a_n & ext{si } p & ext{est pair} \\ 0 & ext{sinon} \end{array}
ight.$ et resp. $\sum d_q z^q$, où $d_q=\left\{egin{array}{l} a_n & ext{si } q\equiv 0 \ 0 \ ext{sinon} \end{array}
ight.$

Remarque: Très souvent, les règles de Cauchy et d'Alembert ne vont pas marcher. Dans ce cas, soit on revient à la définition du rayon de convergence, soit on étudie la nature de la série numérique $\sum a_n z^n$ pour obtenir des inégalités sur R.