

FDP5800

N-Channel Logic Level PowerTrench $^{\circledR}$ MOSFET 60V,80A, 6m Ω

Features

- $R_{DS(on)}$ = 4.6m Ω (Typ.), V_{GS} = 10V, I_D = 80A
- High performance trench technology for extermly low Rdson
- · Low gate Charge
- · High power and current handing capability
- RoHs Compliant

Applications

- · Motor/ Body Load Control
- Power Train Management
- · Injection Systems
- DC-AC Converters and UPS

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

Symbol		Parameter	Ratings	Units
V_{DSS}	Drain-Source Voltage		60	V
V_{GSS}	Gate-Source Voltage		±20	V
		-Continuous (T _C = 25°C)	80	Α
I _D	Drain Current	-Continuous (T _C = 100°C)	80*	Α
		-Continuous (T _A = 25°C)	14	Α
I _{DM}	Drain Current	- Pulsed	320	Α
E _{AS}	Single Pulsed Avalanch	ne Energy (Note 1)	652	mJ
В	Power Dissipation	(T _C = 25°C)	242	W
P_{D}		- Derate above 25°C	1.61	W/°C
T _J , T _{STG}	Operating and Storage	Temperature Range	-55 to +175	°C

^{*}Drain current limited by package

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance , Junction to Case	0.62	°C/W
$R_{\theta JA}$	Thermal Resistance , Junction to Ambient, 1in ² copper pad area	43	°C/W
$R_{\theta JA}$	Thermal Resistance , Junction to Ambient	62.5	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP5800	FDP5800	TO220			50

Electrical Characteristics T_C= 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Charac	teristics					
B _{VDSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$	60			V
1	Zero Gate Voltage Drain Current	V _{DS} = 48V			1	μΑ
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_J = 150^{\circ}C$			500	μΑ
I _{GSS}	Gate-Body Leakage Current, Forward	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0		2.5	V
		$V_{GS} = 10V$, $I_{D} = 80A$		4.6	6.0	$m\Omega$
		V _{GS} =4.5V , I _D = 80A		5.9	7.2	mΩ
R _{DS(on)}	Static Drain-Source On Resistance	V _{GS} = 5V , I _D = 80A		5.6	7.0	mΩ
		V _{GS} =10V, I _D = 80A T _J = 175°C		10.4	12.6	mΩ

Dynamic Characteristics

C _{iss}	Input Capacitance	\/ 45\/\/ 0	n /	 6890	9160	pF
C _{oss}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0$ f = 1MHz	IV .	 750	1000	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112		 295	445	pF
R_G	Gate Resistance	V _{GS} = 0.5V, f = 1M	Hz	 1.2		Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V		 112	145	nC
$Q_{g(TH)}$	Total Gate Charge at 5V	V _{GS} = 0V to 5V	1,,	 58		nC
$Q_{g(TH)}$	Threshold Gate Charge	V _{GS} = 0V to 1V	$V_{DS} = 30V$ $I_{D} = 80A$	 7.0		nC
Q_{gs}	Gate to Source Gate Charge		$I_D = 80A$ $I_a = 1mA$	 23		nC
Q _{gs2}	Gate Charge Threshold to Plateau		.g	 13		nC
Q_{gd}	Gate to Drain "Miller" Charge			 18		nC

Switching Characteristics ($V_{GS} = 10V$)

t_{ON}	Turn-On Time			37	85	ns
t _{d(on)}	Turn-On Delay Time			18	46	ns
t _r	Turn-On Rise Time	V_{DD} = 30V, I_{D} = 80A V_{GS} = 10V, R_{GEN} = 1.5 Ω	-	19	47	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10V, R _{GEN} = 1.512		55	120	ns
t _f	Turn-Off Fall Time			9	28	ns
t _{OFF}	Turn-Off Time			64	138	ns

Drain-Source Diode Characteristics

V	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _{SD} = 80A	 	1.25	V
V_{SD}	Diam-Source Diode 1 ofward voltage	$V_{GS} = 0V, I_{SD} = 40A$	 -	1.0	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _{SD} = 60A	 58		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	 106		nC

Notes: 1: L = 1mH, I_{AS} = 36A, V_{DD} = 54V, V_{GS} = 10V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}$ C

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

Figure 6. Gate Charge Characteristics

3

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 9. Maximum Safe Operating Area

Figure 8. On-Resistance Variation vs. Temperature

Figure 10. Maximum Drain Current vs. Case Temperature

Figure 11. Transient Thermal Response Curve

FDP5800 Rev. A www.fairchildsemi.com

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Mechanical Dimensions

TO-220

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™
Bottomless™	GTO™	OPTOLOGIC [®]	SPM™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™
CoolFET™	I ² C™	PACMAN™	SuperFET™
CROSSVOLT TM	i-Lo™	POP™	SuperSOT™-3
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™
EnSigna™	LittleFET™	PowerTrench [®]	TCM™
FACT [®]	MICROCOUPLER™	QFET [®]	TinyBoost™
FAST [®]	MicroFET™	QS™	TinyBuck™
FASTr™	MicroPak™	QT Optoelectronics™	TinyPWM™
FPS™	MICROWIRE™	Quiet Series™	TinyPower™
FRFET™	MSX™	RapidConfigure™	TinyLogic [®]
	MSXPro™	RapidConnect™	TINYOPTO™
Across the board. Aroun	d the world.™	µSerDes™	TruTranslation™
The Power Franchise®		ScalarPump™	UHC [®]

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™ UltraFET® VCX^{TM} Wire™

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I21