NASA TECHNICAL NOTE

NASA IN D-8121

LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, N. M.

INLET NOISE OF 0.5-METER-DIAMETER
NASA QF-1 FAN AS MEASURED IN
AN UNMODIFIED COMPRESSOR
AERODYNAMIC TEST FACILITY
AND IN AN ANECHOIC CHAMBER

Thomas F. Gelder and Richard F. Soltis

Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . DECEMBER 1975

1. Report No. NASA TN D-8121	2. Government Accession No.	3. Recipient's Catalog No.			
4. Title and Subtitle	 	5. Report Date December 1975			
	R-DIAMETER NASA QF-1 FAN AS				
TEST FACILITY AND IN AN A	ED COMPRESSOR AERODYNAMIC	6. Performing Organization Code			
7. Author(s)	8. Performing Organization Report No.				
Thomas F. Gelder and Richar	d F. Soltis	E-8201			
		10. Work Unit No.			
9. Performing Organization Name and Address		505 -04			
Lewis Research Center		11. Contract or Grant No.			
National Aeronautics and Spac	e Administration				
Cleveland, Ohio 44135		13. Type of Report and Period Covered			
12. Sponsoring Agency Name and Address		Technical Note			
National Aeronautics and Spac	e Administration	14. Sponsoring Agency Code			
Washington, D.C. 20546					
15. Supplementary Notes					
BPF noise (harmonics combine	e. From one-third octave bandwidt ed), and the MPT noise (harmonics n 1.5 dB or less over the range of s performance is also presented.	combined, excepting BPF's)			
17. Key Words (Suggested by Author(s)) Low speed fan noise Compressor noise Low speed fan aero	18. Distribution Statemer Unclassified - STAR Categor	unlimited			
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price*			

. • · • • • ·

CONTENTS

Pag	, 0
SUMMARY	1
INTRODUCTION	2
APPARATUS	3
Test Stage Design	3
Test Facilities	3
Compressor aerodynamic test facility and instrumentation	3
Anechoic chamber test facility and instrumentation	4
Comparison of fan inlet configurations	6
Comparison of fair infet configurations	·
PROCEDURES	6
Test	6
Noise Data Reduction	7
General	7
Anechoic chamber	8
Plenum chamber	9
RESULTS AND DISCUSSION	10
Aerodynamic Performance	10
	10
	L 1
	l 1
	l 1
	L 1
	12
Control of the contro	14
	15
Throttle noise in unmodified compressor test facility	16
CONCLUDING REMARKS	۱7
SUMMARY OF RESULTS	18
APPENDIXES	
	20
	23
·	
C - ABBREVIATIONS AND UNITS USED IN TABLES	26
REFERENCES 2	29

INLET NOISE OF 0, 5-METER-DIAMETER NASA QF-1 FAN AS MEASURED IN AN UNMODIFIED COMPRESSOR AERODYNAMIC TEST FACILITY AND IN AN ANECHOIC CHAMBER

by Thomas F. Gelder and Richard F. Soltis

Lewis Research Center

SUMMARY

The inlet noise from a 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan was determined from measurements in the reverberant plenum chamber of an unmodified (i.e., no acoustic treatment) compressor aerodynamic test facility and from measurements in an anechoic chamber. These noise results are presented along with detailed aerodynamic performance recently published. Narrowband (50-Hz) noise analyses revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and, at the higher tip speeds, multiple pure tone (MPT) noise were superimposed on a broadband (BB) base noise. Sound power levels were determined from one-third octave bandwidth analyses. On that basis the BPF noise (harmonics combined) and the MPT noise (harmonics combined, excepting BPF's) agreed between facilities within 1.5 dB or less over the range of speeds and flows tested. Trends in the total broadband noise with changes in speed and flow were similar in each facility but comparisons of the absolute power levels are questionable because of differing frequency spectra and maximum frequency limits analyzed.

The satisfactory determination of one-third octave based inlet tone power levels in the same installation and time period that the detailed aerodynamic performance is obtained allows early screening of designs. And coupled with narrowband spectra that are representative of free and far field spectra it also offers the potential for cause and effect relationships between aerodynamic and noise performance.

In the anechoic chamber the BPF noise was highest near peak efficiency operation. It propagated at all speeds despite a design to cut it off at low speeds and despite inlet flow with low free stream turbulence intensity and flow distortion. The MPT noise was only significant at 100 percent design speed where it dominated the spectrum. The broadband noise increased about 6 dB from 60 to 80 percent design speed then decreased about 1 dB from 80 to 90 percent speed, all on a calculated operating line passing through the design point.

INTRODUCTION

Facilities utilized to determine the detailed aerodynamic performance of a fan or compressor are generally unsuitable for free and far field noise measurements. The test package is usually installed between an upstream plenum chamber and a downstream collector and exhaust system which have hard, noise reflecting walls throughout. However, it has been demonstrated (ref. 1) that the usual noise components of blade passing frequency tones, multiple pure tones, and broadband noise can be identified and sound power levels determined from noise measurements in the reverberant field environment of the inlet plenum chamber of an unmodified (i.e., no acoustic treatment) compressor aerodynamic test facility. These data contained no directivity information, no downstream or exit noise measurements, and were for rotors with blade passing frequencies at design speed of at least 10 kilohertz which eliminated any significant standing wave problems.

There is a real incentive to obtain meaningful noise data in the same installation and time period that the detailed aerodynamic data are obtained. Early screening of designs and the potential for cause and effect relationships between the aerodynamic and noise performance is thereby possible.

A 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan has been tested for noise and aerodynamic performance in an unmodified compressor test facility. The detailed aerodynamic performance has been recently reported (ref. 2). In addition, the same QF-1 scale model, renamed stage 15-9 (rotor 15 - stator 9) for convenient reference, was recently tested for inlet noise in an anechoic chamber. This anechoic chamber is a new facility which belongs to the General Electric Co. It was designed and developed by them and is located at their Corporate Research and Development Center, Schenectady, New York. The cooperation of the General Electric Company and particularly that of C. T. Savell and R. J. Wells is gratefully acknowledged.

The purposes of this report are the following: (1) to compare the inlet sound pressure level spectra and the absolute sound power levels in each noise component as determined in an unmodified compressor aerodynamic test facility with that determined in an anechoic chamber and thereby establish the validity and limitations of the non-anechoic facility and (2) to document the inlet acoustic performance of a 0.271-scale model of NASA QF-1 fan over a wide range of speeds and flows for which detailed aerodynamic data are also available.

The design tip speed of the NASA QF-1 fan is 337 meters per second (1107 ft/sec) and design total pressure ratio is 1.50. The fan was tested over a range of speeds from 50 to 100 percent of design and weight flows between near choke and near stall. One-third octave bandwidth sound power spectra for all test conditions and narrowband (50-Hz) sound pressure spectra for selected conditions are presented.

All symbols and equations are defined in appendixes A and B, respectively. Abbreviations and units for the tabular data are defined in appendix C.

APPARATUS

Test Stage Design

The overall aerodynamic design parameters for stage 15-9 are listed in table I. Design total pressure ratio, efficiency, and weight flow per unit annulus area were 1.499, 0.848, and 201.8 kilograms per second per square meter (41.3 lb/(sec)(ft²)), respectively, at a tip speed of 337 meters per second (1107 ft/sec). There were 53 rotor blades and 112 stator blades spaced 3.5 rotor chords downstream of the rotor trailing edge. The flow path through the blading and aerodynamic instrumentation stations are shown in figure 1. A view of the stage with outer casing removed is shown in figure 2.

The blade element design parameters for rotor 15 and stator 9 are presented in tables II and III, respectively. The blade geometry is presented in table IV for the rotor and in table V for the stator. Both rotor and stator used multiple circular arc blade shapes. Further details of the aerodynamic and mechanical designs appear in reference 2. Stage 15-9 is a 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan (refs. 3 and 4).

Test Facilities

Compressor aerodynamic test facility and instrumentation. - The compressor test facility has been previously described (e.g., refs. 2 and 5), but pertinent features are repeated here for convenience. An overall schematic view is shown in figure 3(a) while rotor and microphone locations are detailed in figure 3(b). The drive system consists of a 3000-hp electric motor with a variable-frequency speed control. The drive motor is coupled to a 5.521-to-1 ratio speed-increaser gearbox that drives the test rotor.

Atmospheric air enters through a filter house (not shown) into a line on the roof of the building. The air passes successively through a flow measuring orifice, inlet throttle valves, two cascades of turning vanes which reverses the direction of flow, and then into the 183-centimeter - (72-in. -) diameter plenum chamber. As shown by figure 3(b), the air then enters a 122-centimeter - (48-in. -) diameter pipe leading to a bell-mouth which then reduces the flow path to the 49.5-centimeter (19.49-in.) diameter of the rotor tip. Downstream of the stator, the air is turned into a toroid-shaped collector. A cylindrically shaped and translatable sleeve valve at the collector entrance was used

exclusively to throttle the airflow for the present tests. The air is finally exhausted to either a low- or high-vacuum receiver, as required.

The walls of the plenum chamber and all piping to and from it are rolled steel plate about 1.3 cm (1/2 in.) thick with no acoustic treatment. The volume of the chamber between the rotor and the turning vanes in the first 90° bend upstream is about 13.3 cubic meters (470 ft^3). The corresponding wall surface area is about 36 square meters (388 ft^2).

Hereafter, noise data from the microphone locations of figure 3(b) are referred to as those from the plenum chamber.

The acoustic instrumentation was the same as that detailed in reference 1. A 0.64-centimeter- (1/4-in.-) diameter condenser-type microphone was positioned by remote control to two different radii in the plenum chamber in a plane 236 centimeters (93 in.) upstream of the rotor as shown in figure 3(b). A pistonphone-type microphone calibrator was routinely used. The microphone signal was recorded in the FM-mode at a tape speed of 19.05 centimeters per second $(7\frac{1}{2}$ in./sec) with a frequency capability to 25 kilohertz. Playback from the tape recorder was connected to either a continuous 50 hertz constant bandwidth wave analyzer geared to its graphic level recorder, or to a continuous one-third octave constant percentage bandwidth analyzer geared to its graphic level recorder.

The aerodynamic instrumentation is pictured in figure 4(a) and its location is given in figure 4(b). The wedge probes were used to determine static pressure and the combination probes were used to determine total pressure, total temperature, and flow angle. These probes were automatically alined with the direction of flow. Radial traverses of the flow were made at three axial stations labeled 1, 2a or 2b, and 3 in figure 1. Further downstream at station 4 were four fixed rakes for measuring total pressure. Each fixed rake contained five radially spaced tubes with equal circumferential spacing between rakes. Two combination probes and two 8° wedge probes (fig. 4) were radially traversed at each of the stations 1 to 3. The combination probes at station 3 were also circumferentially traversed across one stator blade gap (3.2°) from the nominal values shown in figure 4(b). Calibrated transducers were used to measure all pressures. The total pressures at station 4 were used to monitor online overall performance. The traversable probes at station 1 to 3 were used for more accurate determination of overall performance and for the blade element performance. The data were recorded by a central data recording system.

Anechoic chamber test facility and instrumentation. - A three view schematic of the General Electric Company's anechoic chamber is shown in figure 5. The structural enclosure of the chamber is approximately 10.4 meters (34 ft) wide, 7.2 meters (23.5 ft) long, and 4.1 meters (13.5 ft) high. All enclosing surfaces are covered with an array of polyurethane foam wedges about 0.7 meter (2.3 ft) long. A photograph of the anechoic chamber taken from the air intake opening is shown in figure 6. The anechoic chamber

was designed to test fans in both intake and exhaust modes. In the intake mode the test fan is mounted so that air flows into the anechoic chamber and out through the muffler and inlet noise may be measured. In the exhaust mode the test fan and airflow are reversed and exhaust noise may be measured. For the present tests only the intake mode was used. All the anechoic chamber walls were made porous by leaving small spaces between the foam wedges. By distributing the intake air with ducting to all the porous walls, spherical sink-type flow was simulated in the intake mode of operation. This was to minimize inlet flow distortion and turbulence level.

Test fans in the anechoic chamber are driven by a constant speed motor of 2500 hp. A gearbox for speeds to 19 000 rpm was used for stage 15-9. The airflow was throttled about 43 meters (141 ft) downstream of the fan (fig. 5), and a muffler was installed about 2 meters (6.5 ft) upstream of this throttle. A flow measuring orifice was 7.6 meters (25 ft) upstream of the muffler.

Acoustic calibration tests of the chamber utilized a horn driver with pure tone inputs. Microphone traverses were made from about 1 to 6 meters (3 to 20 ft) along different azimuthal rays emanating from the fan inlet location. Results of these tests indicated a standing wave ratio of ± 1 dB or less for frequencies from about 400 to 40 000 hertz and for azimuthal angles from 0° to 90° . Fan far field noise measurements were made at a fixed radius of 5.18 meters (17 ft) (\sim 7 bellmouth diameters) at driveshaft height and for azimuthal angles from 0° to 120° .

The acoustic instrumentation utilized in the anechoic chamber consisted of the following: Thirteen 0.64-centimeter- (1/4-in.-) diameter condenser-type microphones and pistonphone-type microphone calibrator. The acoustic data were recorded in the FM-mode at 152.4 centimeters per second (60 in./sec). The tape recorder was calibrated over the frequency range from 0 to 80 kilohertz. Only above 40 kilohertz were significant corrections to the data necessary and these have been incorporated in the data presented. These data were all processed by a one-third octave bandwidth analyzer with digital output. Selected data were further reduced by a 50 hertz constant bandwidth analyzer and corresponding graphic level recorder. Computers were utilized to process the digital one-third octave data into various standardized formats and also to calculate the sound power levels from the sound pressure levels measured by the azimuthal array of 13 inlet microphones.

The aerodynamic instrumentation in the anechoic chamber was minimal. It consisted of two five-element total pressure rakes at station 4 (fig. 1). These were two of the four rakes utilized in the compressor aerodynamic test facility to monitor overall performance. Only two rakes, 180° apart, were used in the anechoic chamber due to limitations in available data channels. Inlet total pressure was taken equal to anechoic chamber static pressure. Mass flow was measured by a 55.9-centimeter- (22-in.-) diameter orifice. Inlet mean velocity and turbulence intensity were measured by a radially traversable single-wire hot film probe in a plane 26.8 centimeters (10.6 in.)

upstream of the rotor (fig. 7). Four circumferential locations, 90° apart were surveyed with the hot film. The fluctuating velocity was measured by a true rms meter. All hot film data were recorded on tape for later processing.

Comparison of fan inlet configurations. - Above the fan centerline in figure 7 is shown the anechoic chamber inlet and below the fan centerline is shown the unmodified compressor test facility inlet. A nearly spherical screen encloses the well rounded bell-mouth in the anechoic chamber for most of the tests. The purpose of the screen was to homogenize the inflow to the fan and thus produce lower turbulence intensity levels. There is a flat screen in the plenum chamber of the other facility (figs. 7 and 3(b)). The screens for each facility utilized different wire and mesh sizes but the ratio of screen distance from rotor to mesh size was comparable. The unmodified compressor facility also utilizes four support struts in a relatively low velocity section about 60 centimeters (23.6 in.) upstream of the rotor. These struts are equally spaced, airfoil shaped, and have maximum thickness to chord ratio of about 23 percent. The contour of the case between the support struts and the rotor was designed to minimize boundary layer growth and prevent separation. The centerbody in the compressor test facility was fixed and longer than the rotating spinner utilized in the anechoic chamber.

PROCEDURES

Test

In both facilities the fan was tested over a range of speeds from 50 to 100 percent of design and weight flows between near choke and near stall. Fan rotative speed and temperatures were allowed to stabilize before any aerodynamic or acoustic measurements were made. Downstream throttle valves were then adjusted to the several desired weight flows. In the unmodified compressor test facility the aerodynamic data at stations 1 to 3 (fig. 1) were obtained at nine radial positions for each speed and weight flow tested. All the aerodynamic performance data presented herein are from mass weighted integrations of the traverse data taken in the non-anechoic facility. The anechoic chamber aerodynamic performance was related to this traverse data performance through the common rake measurements at station 4 and the respective flow measurements.

Hot film measurements in the anechoic chamber were recorded for 2 minutes at each location. Corrections for any temperature and pressure changes during testing were made from manufacturers' calibrations.

All 13-arc microphones in the anechoic chamber were calibrated with a pistonphone before and after each test. If these levels differed for any microphone, its average level was used to reduce the data from that microphone. Frequency response of the acoustic data acquisition system was calibrated by inserting constant amplitude sine waves at each

one-third octave center frequency. Anechoic chamber acoustic data from all microphones were recorded simultaneously for at least 1 minute at each operating point. No inlet probes (hot film) were in place during acoustic tests.

The plenum chamber microphone was calibrated with a pistonphone before each test. About 2 minutes of data at each operating point and for each of two radial positions (fig. 3(b)) were recorded.

Prior to taking noise data in the plenum chamber, all the aerodynamic probes at stations 1 to 4 were withdrawn from the flow path and the holes in the outer case smoothly plugged. Aerodynamic probes in the flow path can create extraneous noise sources as demonstrated in reference 1. Except for adding a microphone in the plenum chamber and the removal of all aerodynamic probes (except for a single pitot tube at station 4 for monitoring purposes), the compressor test facility was not otherwise modified for the present noise tests.

Noise Data Reduction

General. - Sound power levels (PWL) rather than sound pressure levels (SPL) must be utilized for absolute value comparisons of stage 15-9 inlet noise determined in the anechoic chamber with those determined in the reverberant environment of the untreated plenum chamber in the compressor test facility. Inlet noise directivity is measured in the anechoic chamber but cannot be measured in the plenum chamber. In the latter a diffuse sound field exists (ref. 1). Thus a different calculation for inlet PWL from the measured SPL values will be described for each facility.

Fan noise is usually subdivided into the following three components (refs. 6 and 7): (1) the fundamental blade passing frequency (1×BPF) and its harmonics (2×BPF, etc.), (2) multiple pure tones (MPT), and (3) broadband (BB). One-third octave bandwidth analysis is most commonly used to display the spectra of fan noise and determine its noise components. However, MPT noise is generally not obvious from one-third octave bandwidth spectra alone. Significant MPT noise is usually associated with rotor blade relative Mach numbers that are supersonic. These MPT occur at harmonics of rotor speed frequency (rotor RPM/60, Hz) which usually cannot be identified without narrow (~50-Hz), constant bandwidth analysis. These narrowband analyses provide a continuous trace of the sound pressure level with frequency as measured at a particular microphone location. Such narrowband traces are rarely used to calculate a sound power level which would require a large amount of detailed interpretation and calculation.

A typical compromise in reducing fan noise data (refs. 4 and 8) is to process all of the data by one-third octave bandwidth SPL and PWL analyses. Then data from selected microphone locations are further reduced by narrowband analysis to continuous SPL against frequency traces. The narrowband results are then used to guide the

interpretation of the one-third octave bandwidth SPL and PWL spectra. Such a procedure was adopted for reducing the noise data from both the anechoic chamber and the plenum chamber as illustrated next.

Anechoic chamber. - Sample narrowband and one-third octave bandwidth noise spectra are shown in figure 8 for a speed high enough to generate all three noise components - BPF, MPT, and BB. In figures 8(a) and (b), the SPL from the 60° microphone are shown. But in figure 8(c), the inlet PWL based on all microphones is presented for one-third octave bandwidths. These PWL were obtained by assuming symmetry above and below the plane of the microphones (fig. 5) and integrating the SPL over the nearly hemispherical surface that could be generated by rotating the arc of 13 microphones through 180°. (The SPL from the 100° to 120° microphones was included in the PWL calculation but that sector had an insignificant influence on the overall level from 0° to 90°, the hemisphere of interest herein.)

In figure 8(a) the 50-hertz analysis extends from 0 to 25 kilohertz and the 1×BPF tone is clearly shown by the peak in SPL at about 11.6-kilohertz. The MPT noise is at integral multiples of rotor speed frequency of 219 hertz and is most significant at frequencies below 1×BPF. Peak MPT values are higher than values of 1×BPF and appear between 4 and 8 kilohertz. In figure 8(b) the one-third octave SPL analysis of the same data also shows a significant peak in the 4- to 8-kilohertz range. With the previous narrowband detail (fig. 8(a)) this hump in the one-third octave band data (fig. 8(b)) can be identified as MPT noise. Similarly, in the PWL spectrum from all inlet microphones (fig. 8(c)) the powerpeak in the 4- to 8-kilohertz range is attributed to MPT noise.

The 1×BPF noise at 11.6 kilohertz (fig. 8(a)) is near the dividing frequency of 11.3 kilohertz which separates adjacent one-third octave bands (indicated along abscissa of figs. 8(b) and (c)). To account for this adjacent band sharing or band splitting of the 1×BPF noise, the sound energy in the two bands is added. As will be evident in subsequent plots, when 1×BPF falls near the center frequency of the one-third octave band, band sharing does not occur. In the sample shown (fig. 8), 2×BPF noise is insignificant (at least 10 dB lower) relative to 1×BPF. At lower speeds it is not. For all speeds and weight flows, the 1×BPF and 2×BPF noise are added together in subsequent comparison plots of BPF noise from each facility.

A broadband noise base is indicated on all parts of figure 8. In figure 8(a) it is estimated to be along a line connecting the low points of the narrowband spectrum as shown. From this narrowband estimate a one-third octave bandwidth broadband level is calculated for figure 8(b) as indicated on the figure and discussed next.

A spectrum level (SL) for the broadband base is determined from the 50-hertz analysis at each one-third octave center frequency which are indicated along the abscissa of figure 8(a). The spectrum level, SL, is defined as the average sound pressure level of the broadband base in decibels referred to a 1-hertz-wide bandwidth. To each SL the

corresponding one-third octave bandwidth, (bw) $_{1/3}$ oct, allowance was added to yield the broadband SPL in that band (fig. 8(b)).

The indicated broadband base in the one-third octave PWL spectrum (fig. 8(c)) is obtained by joining the low points in the PWL spectrum underlying the BPF's and MPT's which have been previously identified in narrowband SPL analyses like figure 8(a). The reasonably close agreement of the broadband base levels between figures 8(b) and (c) supports this technique.

All levels above the calculated broadband base in figures 8(b) or (c) are interpreted as the total noise in either (MPT + BB) or (BPF + BB). The MPT or BPF noise is determined by decibel subtraction of the underlying BB energy contribution from the total SPL or PWL values at that frequency.

The tabulations on figure 8(c) show a sample breakdown of the noise components and the broadband corrections to the indicated tones. The total BB noise indicated in figure 8(c), 135.8 dB, resulted from adding the energy at the centerline frequencies of each one-third octave band between 100 and 80 000 hertz. Also tone indications, if any, below about 250 hertz were generally ignored because of poor narrowband resolution there and possible starting transient errors in the graphic level recorders.

<u>Plenum chamber</u>. - These noise data were reduced in a manner similar to the anechoic chamber data with the following exceptions: (1) the upper limit of frequency analysis was 20 kilohertz (instead of 80 kHz) because of tape recorder limitations, and (2) the calculation of PWL from SPL measurements was based on reverberant chamber relations (instead of free and far field integrations over a hemisphere) because of the diffuse sound field in the plenum. These relations are developed in reference 1 and result in the following equation:

$$PWL = SPL + 10 \log (v) - 10 \log (\tau) - 19 dB$$
 (1)

where PWL is in dB (referenced to 10^{-13} W), SPL is in dB (referenced to 0.0002 μ bar), v is chamber volume in cubic feet (470 ft³), and τ is reverberation time in seconds. The experimentally determined reverberation time is shown in figure 9(a) taken from reference 1. (The microphone locations in fig. 9(a) encompass those utilized in the present study (fig. 3(b)). Because reverberation time is a function of frequency and chamber volume is a known constant, the PWL-SPL relation can be plotted as shown in figure 9(b). Further details of this procedure are given in reference 1. An average SPL from the two radial positions in the plenum was utilized to calculate the one-third octave PWL spectra presented although such radial differences were usually within 1 dB for all conditions and center frequencies. Finally, separating out the MPT and BPF noise from the BB and adjusting the tone levels for the broadband contribution was exactly the same for the plenum chamber data as for the anechoic chamber data previously illustrated (fig. 8(c)).

RESULTS AND DISCUSSION

Aerodynamic as well as acoustic results are presented in this section. Some of the data are tabulated as well as plotted. The overall aerodynamic performance for eleven representative operating points with stage 15-9 are given in table VI. Blade element performance for these operating points is presented in table VII for the rotor and table VIII for the stator. These and other aerodynamic data for the stage can be found in reference 2 and are repeated here for convenience. Operating points for the acoustic data will be indicated. In general they are close to but not identical to those in table VI.

Acoustic data from each of the 13 microphones in the anechoic chamber reduced to one-third octave bandwidth spectra from 100 to 80 000 hertz and adjusted to standard day conditions at 30.48 meters (100 ft) are presented in table IX along with the acoustic power levels calculated from the microphone array. Subsequent plots will present all of the anechoic and plenum chamber results from one-third octave bandwidth analyses as well as narrowband (50-Hz) analyses for selected operating conditions and microphone locations.

Aerodynamic Performance

Overall pressure ratio and efficiency. - An overall performance map for stage 15-9 is presented in figure 10. The solid lines are fairings through the data of reference 2. Operating points for the acoustic data are indicated by arrowheads. At design speed and on an operating line calculated to pass through the design point with a fixed fan exhaust nozzle (see ref. 2), the stage pressure ratio, efficiency, and percent design weight flow were 1.475, 0.835, and 98.0, respectively; these compare favorably with design values of 1.499, 0.848, and 100.0 (table I). The near stall or near surge lines indicated are not much removed from the calculated operating line, particularly in the anechoic chamber installation. The near surge line in the anechoic chamber occurs at higher weight flows than in the compressor aerodynamic facility. This is believed related to the much larger volume between the stator trailing edge and the throttling valve in the anechoic facility (fig. 5) compared with the sleeve valve located in the collector inlet in the compressor test facility (fig. 3(a)). Also, the increased exit ducting and muffler in the anechoic chamber installation caused its minimum resistance line (wide open throttle) to occur at lower weight flows than that for the other facility. The combined result was a relatively narrow flow range of operation at a given speed in the anechoic chamber facility. Flow range was less than half that available in the compressor test facility. Power and vibration limits at design speed caused an additional restriction to the anechoic chamber operating range.

Rotor tip Mach number. - Speed is a primary variable in evaluating acoustic as well as aerodynamic performance. For convenient reference the Mach number relative to the rotor blade leading edge at 5 percent span from the tip, $(M_{1,05}')$, is presented in figure 11 for all conditions tested. These data along with loadings (diffusion factor D), loss coefficients, incidence angles, and so forth, are available at nine spanwise locations for both rotor and stator blades in tables VII and VIII, respectively.

Inlet flow mean velocity and turbulence intensity in anechoic chamber. - These data were obtained from radial surveys with a hot film at four equally spaced circumferential locations, 26.8 centimeters (10.6 in.) upstream of the rotor in the anechoic chamber installation both with and without the inlet turbulence screen as indicated in figure 7. Comparable data were not taken in the compressor test facility. Results of the hot film surveys are shown in figure 12. A circumferentially averaged mean velocity without the turbulence screen is presented in figure 12(a). Circumferential variations were less than ±2 percent (within accuracy of measurement) and nonsystematic. (Hot film calibration problems with the screen in place made that data unreliable thus it is not shown). As indicated by the radial profile of mean velocity, the boundary layer from the well-rounded bellmouth inlet did not extend beyond a radius ratio of about 0.98 at the measuring station. Also, the free stream average velocity of about 97.5 meters per second (320 ft/sec) (fig. 12(a)) agrees within a few percent of an average value that was calculated from the measured flow, the cross-sectional area in the hot wire plane, and the local density deduced from static conditions measured in the anechoic chamber.

Circumferentially averaged turbulence intensities with and without the screen in place are presented in figure 12(b). With screen, the midstream levels are quite low, about 0.0045. (Nonsystematic circumferential variations ranged from 0.0035 to 0.0055). Similar midstream levels have been measured in outdoor model tests. Turbulence intensities within the boundary layer were much higher than in midstream, ranging from 2 to over 6 percent. Tests without the inlet screen show an average midstream intensity level of about 0.007. (Midstream circumferential variations ranged from 0.0065 to 0.0085.) Also without the screen, the region of intense turbulence near the case wall was thickened. There were no measurable differences in overall pressure ratio or weight flow in the anechoic chamber with or without the turbulence screen. The effects of the screen on the acoustic results are discussed next.

Inlet Noise Performance

Effect of turbulence screen. - As shown by one-third octave band sound power spectra in figures 13(a) to (d) for speeds of 70 to 100 percent of design, respectively, the screen in the anechoic chamber reduced the high frequency broadband noise (above about 2×10^4 Hz) at all speeds by 3 to 5 dB. In general as speed was increased, the

effectiveness of the screen spread to lower frequencies. Blade passing tone levels were generally affected less than 2 dB. At design speed (fig. 13(d)) the screen was not effective in reducing the multiple pure tone noise occurring in the frequency range from 4 to 8 kilohertz. Because the screen was found from calibrations not to have significantly altered the sound from a speaker source, and because the screen was located in a low velocity region, the broadband noise reduction is believed to be a result of a reduction in the noise source levels. As previously discussed, the screen reduced the inlet free-stream turbulence intensity and reduced the thickness of intense turbulence near the case wall.

The flat screen half way through the plenum chamber of the compressor test facility (fig. 3(b)) was not removed thus comparable data from that facility are not available.

As shown in figure 7, the distance between the screen and the rotor, divided by the mesh size (wire center to center distance) was about 960 for the anechoic chamber and about 850 for the compressor test facility with plenum chamber. Such large and comparable distance to mesh size ratios are an indication of comparable turbulence intensities at the rotor face (ref. 9). Thus the noise data from the two facilities, discussed next, is with their respective screens in place.

Typical noise spectra in each facility. - In the anechoic chamber the effect of speed on narrowband and on one-third octave band SPL from the 60° microphone is shown in figures 14 and 15, respectively. Comparable results from a microphone in the plenum chamber of the aerodynamic test facility are shown in figures 16 and 17. The 60° angle SPL was selected for comparison because it is generally at or near the peak azimuthal value for all operating conditions (see table IX) and is representative of the spectra which has the major influence on the inlet sound power.

The narrowband results from the anechoic chamber (fig. 14) show prominent 1×BPF tones at all speeds despite a design that should cut them off at low speeds (refs. 4 and 10). The MPT content increases as the speed is increased from 70 to 100 percent speed. High levels of MPT noise relative to the 1×BPF noise in the far field have been related to supersonic relative blade speeds (refs. 7 and 11). The blade relative Mach number (at 5 percent span from tip) at 100 percent design speed is about 1.15 and that at 70 percent speed is about 0.75 (see fig. 11). Also, figure 14 shows the 2×BPF tone decreasing relative to the 1×BPF level as speed is increased.

At 70 percent speed (fig. 14(c)), there is an extraneous tone near 2000 hertz, the source of which is unknown. Other fan designs tested in this anechoic chamber have not displayed such a tone. Also, at comparable speed and flow conditions, the same fan tested for noise in the compressor aerodynamic facility did not generate the stray tone (see fig. 16(c)). Fortunately the 2000-hertz tone is not a factor in evaluating the three noise components of interest.

Also at 70 percent speed in the anechoic chamber (fig. 14(c)) the 2×BPF and 3×BPF tones appear split into two discrete tones about 600 hertz (4 rev/sec) apart. This

phenomena also did not appear in the narrowband analyses of the plenum chamber data (fig. 16(c)) nor at any of the higher speeds in either facility. Reasons for the split are unknown. However, it is not a factor in the one-third octave analyses (fig. 15(c)) where the wider bandwidths automatically combine the aforementioned tone splits.

Direct graphic comparison of the 50-hertz spectra from each facility (figs. 14 and 16) is a little difficult because of the different scales utilized by the different graphic level recorders. To eliminate that difficulty and also to illustrate that MPT's (including the BPF's) occur at multiples of the engine order E (rev/sec of the rotor shaft), figures 18 and 19 were constructed. Figure 18 is for 70 percent speed, and figure 19 is for 100 percent speed. Part (a) of each figure represents the anechoic chamber traces of figures 14 (a) and (c); part (b) represents the plenum chamber traces of figures 16(a) and (c). The peaks and valleys of each MPT, relative to the level of 1×BPF, were read from the graphic traces. The peaks were plotted at the appropriate engine orders and the valleys half way between. Straight lines were drawn between them. In regions without MPT clusters (mainly the 70 percent speed data) the SPL at each engine order was read from the respective analyzer traces then these levels were joined by straight lines. Exact correspondence of noise spectra from any single microphone in an anechoic chamber with that from any microphone in a reverberant chamber is of course not expected or even possible. However, there are enough similarities in the narrowband spectra between the plenum chamber data and the anechoic chamber data to make the former a helpful representation of the free and far field frequency content and of relative dB levels. For example, in either facility, the MPT's are similar in frequency content and in level (relative to 1×BPF) at 100 percent speed (fig. 19). At this speed the MPT's dominate the spectrum. Likewise in either facility the MPT's are equally insignificant at 70 percent speed (fig. 18).

With regard to 1×BPF at 70 percent speed, (fig. 18) similar patterns are evident in either facility although the tone is wider at the broadband base level in the plenum chamber. Also at 70 percent speed, the 2×BPF tone is lower relative to the 1×BPF tone in the plenum chamber than in the anechoic chamber. At 100 percent speed (fig. 19), the 1×BPF tone level is less above the broadband base in the plenum chamber data than in the anechoic chamber data.

There are gross similarities in the narrowband (50-Hz) spectra from each facility at comparable operating conditions. However, some of the finer details differ.

The one-third octave band results from either the anechoic chamber (fig. 15) or the plenum chamber (fig. 17) are much easier to interpret when their corresponding narrow-band results (figs. 14 and 16, respectively) are available. The MPT noise at 100 percent design speed (figs. 15(a) or 17(a)) is mainly clustered in the one-third octave bands centered at 4, 5, 6.3, and 8 kHz. The 1×BPF noise at 100 percent speed is shared by the 10 and 12.5 kilohertz centered bands and the 2×BPF by the 20 and 25 kilohertz centered bands. At 70 percent speed (figs. 15(c) or 17(c)) the 1×BPF is near the center of the one-

third octave band centered at 8 kilohertz and no band sharing of this tone or its second harmonic is apparent. The one-third octave broadband base calculated from the narrow-band analyses (fig. 14) agrees with the direct one-third octave analysis for all speeds (fig. 15).

In the plenum chamber at 70 percent speed and 67 percent flow (figs. 16(c) and 17(c)) there is a broadband hump in the SPL spectra extending from about 500 to about 3000 hertz that is not present for comparable conditions in the anechoic chamber (figs. 14(c) and 15(c)). This is believed due to exit throttle generated noise in the compressor test facility discussed later.

One-third octave band power spectra comparisons. - As previously discussed, the flow range at each speed is much less in the anechoic chamber installation than in the compressor test facility. Thus, in general there was only one flow at a given speed that was nearly the same in each facility. These four directly comparable operating conditions are shown in figures 20(a), (b), (c), and (d) for 70, 80, 90, and 100 percent speed, respectively.

In general, the broadband spectra are somewhat different between the two facilities as is the upper frequency limit of the analysis. There is the previously indicated low speed (70 and 80 percent), low frequency range (500- to 3000-Hz) hump in the plenum data. Also, above 1×BPF, the plenum broadband is less than the anechoic data. At 90 and 100 percent speed (figs. 20(c) and (d)), the plenum broadband is higher under the MPT noise than in the anechoic chamber. Above 1×BPF, the broadband noise switches to higher in the plenum at 90 percent speed and about equal at 100 percent speed relative to the anechoic chamber levels. Substantially different downstream throttle systems are believed responsible for the broadband differences below about 3000 hertz (see later discussion). Reasons for the inconsistent broadband relation between facilities above 1×BPF are not apparent. The overall result is that absolute value comparisons of broadband noise power are questionable because of the aforementioned differences. However, the broadband contribution to the indicated 1×BPF tone levels is not significantly different between facilities to adversely affect that tone noise comparison described next.

The 1×BPF noise component is nearly the same in both facilities for all speeds shown (fig. 20). At 70 and 80 percent speed the 2×BPF noise is higher in the anechoic chamber than in the plenum but the combined BPF noise agrees within less than 1.5 dB for speeds from 70 to 100 percent.

The MPT spectra are quite similar at 90 and 100 percent speed and the absolute values are in close agreement at 100 percent speed where the MPT component is dominant.

The satisfactory determination of one-third octave based inlet tone power levels (BPF's and MPT's) in the same installation and time period that the detailed aerodynamic performance is obtained allows early screening of designs. And coupled with narrowband

spectra that are representative of free and far field spectra it also offers the potential for cause and effect relations between the aerodynamic and noise performance.

All of the one-third octave band power spectra from each facility are presented in figures 21 to 26 for speeds of 50 to 100 percent of design, respectively. At 50 and 60 percent speed directly comparable data are not available as it is for 70, 80, 90, and 100 percent speed. The weight flows at each speed are shown and the absolute value of each noise component tabulated.

In the anechoic chamber at 60 and 70 percent speed (figs. 22 and 23(a)) the second harmonic (2×BPF) is about equal to the fundamental (1×BPF). In the aerodynamic test facility at 70 percent speed (fig. 23(b)), the 2×BPF noise level is 7 to 9 dB below 1×BPF for all weight flows tested. This implies that the stage 15-9 waveforms measured in the reverberant plenum chamber are shaped nearly like sine waves while those in the anechoic chamber are more irregular in shape. However the combined acoustic power in 1×BPF and 2×BPF in one chamber is nearly equal to that in the other at comparable operating conditions. Also, at the higher speeds (figs. 24 to 26), the 2×BPF noise levels are nearly 10 dB lower than 1×BPF in both facilities.

Crossplots summarizing each of the noise components are presented and discussed next. Following that, the throttle noise in the compressor aerodynamic test facility is examined.

Noise components as functions of speed and flow. - The inlet sound power in blade passing frequencies (BPF), in multiple pure tones (MPT), and in the broadband (BB) noise are shown in figures 27, 28, and 29, respectively, for both test facilities. These results are from the previously presented one-third octave analyses (figs. 21 to 26) and cover the range of speeds and flows tested.

The levels of BPF noise (fig. 27) represent the combined power of 1×BPF and 2×BPF. On this basis there is very good agreement between the two facilities over the entire range studied. At a midthrottle setting, the BPF levels generally increase with increasing tip speed from 50 to 80 percent speed and remain near the later level at 90 and 100 percent speed. The effect of flow or loading at a fixed speed on BPF levels is mixed. At speeds between 70 and 100 percent the midthrottle settings associated with near peak efficiency operation (fig. 10) produce the highest level of BPF noise. Also, the near stall flows in the aerodynamic test facility generally result in the lowest levels of BPF at a given speed. Reasons for this unexpected behavior of BPF noise are not presently known.

The levels of the multiple pure tones are shown in figure 28 against a background of blade passing frequency levels. Only at 100 percent speed are the MPT a significant noise source (relative to the BPF) and there the agreement between the two facilities is very good. There is some MPT contribution at 90 percent speed where the relative Mach number is near 1.0 but it is less than the BPF. The MPT levels at 90 percent speed are about 5 dB less in the anechoic chamber than in the plenum for unknown reasons. At 100 percent speed the combined MPT levels exceed the combined BPF levels. It appears that

some of the acoustic energy in the blade passing frequency is increasingly shifted into multiple pure tones as the blade relative Mach number increases above unity. Evidence for this is the leveling off of the BPF noise near 1.0 relative Mach number concurrent with increasing MPT noise as Mach number increases beyond about 1.0. At design speed there is no effect of loading (flow changes) on the MPT levels for the range of flows that could be tested.

The broadband noise levels for each facility are presented in figure 29. As previously discussed, the plenum chamber data show a broadband frequency spectra that generally differs from the anechoic chamber data as does the upper frequency limit analyzed thus absolute value comparisons of total broadband power are questionable. However, trends with speed and flow may be valid and are similar in each facility. At constant speed, the broadband noise increases steadily with decreases in flow. Such flow decreases mean increased blade loading with possibly increased flow separation and thus increased turbulence from blade and wall boundary layers. The allowable flow range at constant speed was small in the anechoic chamber thus the range of broadband noise was only a few dB. The broadband noise in the anechoic chamber increased about 6 dB from 60 to 80 percent design speed (about fifth power of speed dependence) then decreased about 1 dB from 80 to 90 percent speed. These values apply along a fan operating line calculated to pass through the design point with a fixed fan exhaust nozzle. Design speed data could not be run at this throttle setting (fig. 10). Reasons for the lower broadband noise at 90 percent speed are not known.

A summary of the one-third octave based inlet sound power from the 0.271-scale model of the NASA QF-1 fan tested in an anechoic chamber revealed the following: the blade passing frequency noise was highest near a midthrottle, peak efficiency, setting. It propagated to the far field at all speeds despite a stator to rotor blade number ratio satisfying the cutoff criteria (ref. 10) and despite low levels of free stream inlet turbulence intensity and flow distortion. The MPT noise was not significant at 90 percent speed (takeoff condition, ref. 3) but was dominant at 100 percent speed. And the broadband noise increased with speed between 60 and 80 percent design speed but declined about 1 dB from 80 to 90 percent speed.

Throttle noise in unmodified compressor test facility. - As previously mentioned there is a broadband hump in the noise spectra from about 500 to 3000 hertz for the mid-throttle data at 70 and 80 percent speed (figs. 20(a) and (b)) that is not apparent from the anechoic chamber data. The source of this broadband hump is believed to be the sleeve throttle valve at the entrance to the collector about 60 centimeters (23.6-in.) downstream of the stator in the compressor test facility (fig. 3(b)). At maximum flow, the sleeve valve is translated forward and completely out of the flow path. Under these conditions (see figs. 23(b) to 26(b)), the plenum chamber noise spectra do not show a low frequency hump and are similar to the anechoic chamber spectra. However, to reduce weight flow, the sleeve valve must be translated rearward and into the flow path. Then the broadband

noise hump is present as shown (figs. 23(b) to 26(b)). On the other hand in the anechoic chamber installation, the throttle valve is remote from the stator and also there is a muffler in the line to reduce its upstream noise (fig. 5).

To further identify possible secondary noise sources, additional data from the aerodynamic compressor test facility without stage 15-9 installed is presented in figure 30. A range of weight flows was drawn by vacuum exhaust equipment (fig. 3(a)) through the compressor flow path and throttled by the collector entrance sleeve valve. The overall sound powers measured in the plenum as a function of flow are shown in figure 30(a). In figure 30(c) are the one-third octave power spectra for a range of flows, while figure 30(b) presents the average Mach number of the flow in the minimum area section (station 3 of fig. 1). Noise levels increased with increasing flow until the annulus was nearly choked and then the noise dropped off over 10 dB when the average Mach number approached 0.9. The noise spectra were similarly shaped for all flows with the highest levels in the range of frequencies between about 500 and 3000 hertz. These highest absolute levels are about the same as those with stage 15-9 operating at conditions resulting in about the same average Mach number at station 3 (fig. 1). By choking the flow at station 3 in the vacuum exhaust tests without stage 15-9 installed, the noise decrease extends across most of the spectrum (fig. 30(c)). In particular, the broadband noise between about 500 and 3000 hertz is substantially reduced. Thus the noise that has been choked off is believed to originate from the partly closed sleeve throttle.

The high broadband noise at the near stall flows in the aerodynamic test facility (figs. 21 to 26) are believed generated by stage 15-9. The continuously increasing level with increasing frequency (up to 1×BPF) is not characteristic of the facility operated without the stage (fig. 30(c)). Increased regions of flow separation from the highly loaded rotor and stator blades is a possible source of the increased broadband noise. In the anechoic chamber, similarly low weight flows and the correspondingly high blade loadings were not attainable thus acquiring noise data under such conditions was not possible.

CONCLUDING REMARKS

There are some obvious limitations to the noise measurements taken in the reverberant inlet plenum chamber of the present or any similar aerodynamic compressor test facility. No noise directivity information is possible from reverberant facilities which is required for effective perceived noise level or noise footprint calculations. Also, fan exit as well as inlet noise data are essential in evaluating its overall noise performance and these are not reported herein. Although 1.32-centimeter- (1/8-in.-) diameter microphones were radially traversed behind the stators of stage 15-9 (and others), there

are presently no anechoic or other free and far field data with which to compare and thus evaluate it.

The high blade passing frequencies of stage 15-9 (about 11 kHz at design speed) eliminated any significant standing wave problems in the symmetrical plenum chamber (ref. 1). Rotors with much lower blade passing frequencies (due to lower numbers of blades or lower tip speeds) may introduce such problems. Then modifications to the plenum or to the method of acquiring a good space average of the noise level will probably be required. Finally, the presently described contamination by exit throttle noise may be reduced by using a more remote and perhaps muffled throttle than one at the collector entrance.

SUMMARY OF RESULTS

The inlet noise from a 0.271-scale model (0.5-m or 20-in. diameter) of the NASA QF-1 fan was determined from measurements in the reverberant plenum chamber of an unmodified compressor aerodynamic test facility and from measurements in an anechoic chamber. The principle results of the study were the following:

- 1. Narrowband (50-Hz) analyses revealed grossly similar sound pressure level spectra in each facility. Blade passing frequency (BPF) noise and, at the higher tip speeds, multiple pure tone (MPT) noise were superimposed on a broadband (BB) based noise.
- 2. Sound power levels were determined from one-third octave bandwidth analysis. On that basis the BPF noise (harmonics combined) and the MPT noise (harmonics combined excepting BPF's) agreed between facilities within 1.5 dB or less over the range of speeds and flows tested. However, the sound power difference between 1×BPF and 2×BPF was not the same in each facility at low speed. Trends in the total broadband noise with changes in speed and flow were similar in each facility but comparisons of the absolute power levels are questionable because of differing frequency spectra and maximum frequency limit analyzed.
- 3. The satisfactory determination of one-third octave based inlet tone power levels in the same installation and time period that the detailed aerodynamic performance is obtained allows early screening of designs. And coupled with narrowband spectra that are representative of free and far field spectra it also offers the potential for cause and effect relations between the aerodynamic and noise performance.
- 4. In the anechoic chamber the BPF noise was highest near peak efficiency operation. It propagated at all speeds despite a design to cut it off at low speeds and despite free stream inlet flow with low turbulence intensity and flow distortion. Also the MPT noise was only significant at 100 percent design speed (tip relative Mach number of about 1.10) where it dominated the spectrum. The broadband noise increased about 6 dB from

60 to 80 percent design speed then decreased about 1 dB from 80 to 90 percent speed, all on a calculated operating line passing through the design point.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 22, 1975,
505-04.

APPENDIX A

SYMBOLS

Α	annulus area at rotor leading edge, 0.144 m ² ; 1.55 ft ²
A _{an} A _f	frontal area at rotor leading edge, 0.192 m ² ; 2.07 ft ²
-	
С _р	specific heat at constant pressure, 1004 J/(kg)(K); 0.24 Btu/(lb)(OR)
С	aerodynamic chord, cm; in.
D	diffusion factor
E	engine order, rev/sec
ⁱ mc	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
i _{ss}	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
M	Mach number
N	rotative speed, rpm
$^{ m N}_{ m D}$	design rotative speed, 13 020 rpm
P	total pressure, N/cm ² ; psia
PWL	sound power level, dB (referenced to 10 ⁻¹³ W)
p	static pressure, N/cm ² ; psia
r	radius, cm; in.
SM	stall margin
SPL	sound pressure level, dB (referenced to 0.0002 $\mu \mathrm{bar})$
T	total temperature, K; OR
U	wheel speed, m/sec; ft/sec
U'	fluctuating velocity from hot film probe, m/sec; ft/sec
$\overline{\mathbf{U}}$	mean velocity from hot film probe, m/sec; ft/sec
v	air velocity, m/sec; ft/sec
W	weight flow, kg/sec; lb/sec
$\mathbf{w}_{\mathbf{D}}$	design weight flow, 29.16 kg/sec; (64.3 lb/sec)
${f Z}$	axial distance referenced from rotor blade hub leading edge, cm; in.

```
cone angle, deg
\alpha_{c}
        slope of streamline, deg
\alpha_{c}
β
        air angle, angle between air velocity and axial direction, deg
\beta_{\mathbf{c}}'
        relative meridional air angle based on cone angle, arctan
           (\tan \beta_{\rm m}^{\prime} \cos \alpha_{\rm c}/\cos \alpha_{\rm s}), \deg
        ratio of specific heats (1.40)
γ
        ratio of rotor inlet total pressure to standard pressure of 10.13 N/cm<sup>2</sup>
δ
           (14.69 \text{ lb/in.}^2)
δO
        deviation angle, angle between exit air direction and tangent to blade mean
           camber line at trailing edge, deg
         efficiency
η
        ratio of rotor inlet total temperature to standard temperature of 288,2 K
θ
           (518, 7° R)
         angle between blade mean camber line and meridional plane, deg
\kappa_{\rm mc}
         angle between blade suction surface at leading edge and meridional plane, deg
\kappa_{ss}
         solidity, ratio of chord to spacing
σ
\overline{\omega}
         total loss coefficient
         profile loss coefficient
\bar{\omega}_{\mathbf{s}}
         shock loss coefficient
Subscripts:
ad
         adiabatic (temperature rise)
id
         ideal
LE
        blade leading edge
         meridional direction
m
mom
        momentum rise
         polytropic
р
\mathbf{R}
         rotor
ref
         reference
stall
         stall
TE
         blade trailing edge
```

tip

tip

- z axial direction
- θ tangential direction
- 05 5 percent span from tip of rotor
- 1 instrumentation plane upstream of rotor (fig. 1)
- 2a instrumentation plane nearest rotor trailing edge (fig. 1)
- 2b instrumentation plane nearest stator leading edge (fig. 1)
- 3,4 instrumentation planes downstream of stator (fig. 1)

Superscript:

relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle

$$i_{SS} = (\beta_c')_{LE} - \kappa_{SS}$$
 (B1)

Mean incidence angle

$$i_{mc} = (\beta'_{c})_{LE} - (\kappa_{mc})_{LE}$$
 (B2)

Deviation angle

$$\delta^{O} = \left(\beta_{C}^{'}\right)_{TE} - \left(\kappa_{mc}\right)_{TE}$$
 (B3)

Diffusion factor

$$D = 1 - \frac{V_{TE}'}{V_{LE}'} + \left| \frac{\left(rV_{\theta} \right)_{TE} - \left(rV_{\theta} \right)_{LE}}{\left(r_{TE} + r_{LE} \right) \sigma \left(V_{LE}' \right)} \right|$$
(B4)

Total loss coefficient

$$\overline{\omega} = \frac{\left(\mathbf{P'id}\right)_{TE} - \left(\mathbf{P'}\right)_{TE}}{\left(\mathbf{P'}\right)_{LE} - \left(\mathbf{p}\right)_{LE}}$$
(B5)

Profile loss coefficient

$$\overline{\omega}_{\mathbf{p}} = \overline{\omega} - \overline{\omega}_{\mathbf{s}}$$
 (B6)

Total loss parameter

$$\frac{\overline{\omega}\cos\left(\beta_{\mathbf{m}}^{\dagger}\right)_{\mathbf{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter

$$\frac{\overline{\omega}_{p} \cos \left(\beta_{m}^{\prime}\right)_{TE}}{2\sigma} \tag{B8}$$

Adiabatic (temperature-rise) efficiency

$$\eta_{\text{ad}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{\text{TE}}}{T_{\text{LE}}} - 1}$$
(B9)

Momentum-rise efficiency

$$\eta_{\text{mom}} = \frac{\left(\frac{\mathbf{P}_{\text{TE}}}{\mathbf{P}_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{\left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{TE}} - \left(\mathbf{U}\mathbf{V}_{\theta}\right)_{\text{LE}}}{\mathbf{T}_{\text{LE}}\mathbf{C}_{p}}} \tag{B10}$$

Equivalent weight flow

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area

$$\frac{\mathbf{w}\sqrt[4]{\theta}}{\frac{\delta}{\mathbf{A}_{\mathbf{an}}}} \tag{B13}$$

Weight flow per unit frontal area

$$\underbrace{\left(\frac{\mathbf{w}\sqrt[4]{\theta}}{\delta}\right)}_{\mathbf{A_f}} \tag{B14}$$

Head-rise coefficient

$$\frac{C_{p}T_{LE}}{U_{tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma} - 1\right]$$
(B15)

Flow coefficient

$$\left(\frac{\mathbf{V}_{\mathbf{z}}}{\mathbf{U}_{\mathbf{tip}}}\right)_{\mathbf{I},\mathbf{E}} \tag{B16}$$

Stall margin

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}}\right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}}\right)_{ref}} \times \frac{\left(\frac{W\sqrt[4]{\theta}}{\delta}\right)_{ref}}{\left(\frac{W\sqrt[4]{\theta}}{\delta}\right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytropic efficiency

$$\eta_{\mathbf{p}} = \frac{\ln\left(\frac{\mathbf{P}_{\mathbf{TE}}}{\mathbf{P}_{\mathbf{LE}}}\right)^{(\gamma-1)/\gamma}}{\ln\frac{\mathbf{T}_{\mathbf{TE}}}{\mathbf{T}_{\mathbf{LE}}}}$$
(B18)

APPENDIX C

ABBREVIATIONS AND UNITS USED IN TABLES

(Aerodynamic and acoustic parameters listed separately)

Aerodynamic Parameters

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is 1)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean

defined by eq. (B2)), deg

KIC angle between blade mean camber line at leading edge and

meridional plane, deg

KOC angle between blade mean camber line at trailing edge and

meridional plane, deg

KTC angle between blade mean camber line at transition point and

meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R

meridional velocity ratio

OUT

outlet (trailing edge of blade)

PERCENT SPAN

percent of blade span from tip at rotor trailing edge for design

streamlines

PHISS

suction-surface camber ahead of assumed shock location, deg

PRESS

pressure, N/cm²

PROF

profile

RADII

radius, cm

REL

relative to blade

RI

inlet radius (leading edge of blade), cm

RO

outlet radius (trailing edge of blade), cm

RP

radial position

RPM

equivalent rotative speed, rpm

SETTING ANGLE

angle between aerodynamic chord and meridional plane, deg

SOLIDITY

ratio of aerodynamic chord to blade spacing

SPEED

speed, m/sec

SS

suction surface

STREAMLINE SLOPE

slope of streamline, deg

TANG

tangential

TEMP

temperature, K

ΤI

thickness of blade at leading edge, cm

TM

thickness of blade at maximum thickness, cm

TO

thickness of blade at trailing edge, cm

TOT

total

TOTAL CAMBER

difference between inlet and outlet blade mean camber lines,

deg

VEL

velocity, m/sec

WT FLOW

equivalent weight flow, kg/sec

X FACTOR

ratio of suction-surface camber ahead of assumed shock

location of a multiple-circular-arc blade section to that

of a double-circular-arc blade section

ZIC axial distance to blade leading edge from rotor hub leading edge, cm

ZMC axial distance to blade maximum thickness point from rotor hub leading

edge, cm

ZOC axial distance to blade trailing edge from rotor hub leading edge, cm

ZTC axial distance to transition point from rotor hub leading edge, cm

Acoustic Parameters

BAR barometric pressure, in. Hg

DBA decibels using A weighted frequency response network (ref. 12)

DBB decibels using B weighted frequency response network (ref. 12)

DBC decibels using C weighted frequency response network (ref. 12)

HACT absolute moisture content of inlet air, g/m³

NFA actual rotative speed, rpm

NFK equivalent (corrected rotative speed, NFA/ $\sqrt[4]{\theta}$), rpm

NFD design rotative speed, rpm

PERC RH percent relative humidity

PNL perceived noise level, PN dB

PNLT tone corrected perceived noise level

PWL sound power level, dB (referenced to 10⁻¹³ W)

SPLS sound pressure level, dB (referenced to 0.0002 μ bar)

TAMB ambient temperature, ^OF

TWET wet bulb temperature, OF

REFERENCES

- Gelder, Thomas F.; and Soltis, Richard F.: Inlet Plenum Chamber Noise Measurement Comparison of 20-Inch Diameter Fan Rotors with Aspect Ratios 3.6 and 6.6. NASA TM X-2191, 1971.
- Gelder, Thomas F.; and Lewis, George W., Jr.: Aerodynamic Performance of a 0.5-Meter Diameter, 337-Meters-Per-Second Tip Speed, 1.5-Pressure Ratio, Single Stage Fan Designed for Low Noise Aircraft Engines. NASA TN D-7836, 1974.
- Leonard, Bruce R.; Schmiedlin, Ralph F.; Stakolich, Edward G.; and Neumann, Harvey E.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines. I - Design of Facility and QF-1 Fan. NASA TN D-5877, 1970.
- Goldstein, Arthur W.; Lucas, James G.; and Balombin, Joseph R.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines.
 II - Performance of QF-1 Fan in Nacelle Without Acoustic Suppression.
 NASA TN D-6080, 1970.
- Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet per Second. NASA TM X-2484, 1972.
- 6. Kester, J. D.; and Slaiby, T. G.: Designing the JT9D Engine to Meet Low Noise Requirements for Future Transports. SAE Paper 670331, April 1967.
- 7. Kramer, James J.; Hartmann, Melvin J.; Leonard, Bruce R.; Klapproth, Jack F.; and Sofrin, Thomas G.: Fan Noise and Performance. Section II of Aircraft Engine Noise Reduction. NASA SP-311, 1972, pp. 7-61.
- 8. Montegani, Francis J.: Noise Generated by Quiet Engine Fans. I Fan B. NASA TM X-2528, 1972.
- 9. Hinze, J. O.: Turbulence; An Introduction to its Mechanism and Theory. McGraw-Hill Book Co., Inc., 1959, (p. 217 and figs. 3-19).
- 10. Tyler, J. M.; and Sofrin, T. G.: Axial Flow Compressor Noise Studies. SAE Trans., vol. 70, 1962, pp. 309-332.
- 11. Burdsall, E. A.; and Urban, R. H.: Fan-Compressor Noise: Prediction, Research, and Reduction Studies. Pratt and Whitney Aircraft (FAA-RD-71-73), 1971.
- 12. Beranek, Leo L.; ed: Noise Reduction. McGraw-Hill Book Co., Inc., 1960.

TABLE I. - OVERALL AERODYNAMIC DESIGN

PARAMETERS FOR STAGE 15-9

ROTOR TOTAL PRESSURE RATIO	1.541
STAGE TOTAL PRESSURE RATIO	1.499
ROTOR TOTAL TEMPERATURE RATIO	1.145
STAGE TOTAL TEMPERATURE RATIO	1.145
ROTOR ADIABATIC EFFICIENCY	0.909
STAGE ADIABATIC EFFICIENCY	0.848
ROTOR POLYTROPIC EFFICIENCY	0.915
STAGE POLYTROPIC EFFICIENCY	0.856
ROTOR HEAD RISE COEFFICIENT	0.334
STAGE HEAD RISE COEFFICIENT	0.312
FLOW COEFFICIENT.	0.581
HT FLOW PER UNIT FRONTAL AREA 15	51.534
MT FLOW PER UNIT ANNULUS AREA 20	1,797
	29.161
RPM 1302	20.000
TIP SPEED 33	57.451

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 15

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 24.750 2 23.510 2 23.510 2 23.884 2 21.021 1 18.550 16.075 14.192 13.573 12.960 12.352	0UT 23.962 23.424 22.886 22.347 20.732 18.579 16.425 14.810 14.272 13.734	ABS (N 0. 000000000	BETAM OUT 40.8 38.9 37.6 36.9 38.2 41.5 45.3 48.6 49.9 51.3 52.6	REI (N 63.6 61.6 59.8 58.3 54.7 50.9 47.2 44.0 42.7 41.5 40.1	BETAM OUT 45.6 44.9 44.1 43.0 37.6 27.1 11.7 -3.0 -8.3 -13.8 -19.2	TOTA IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	RATIO 1.169 1.158 1.149 1.143 1.139 1.141 1.144 1.148 1.149 1.151	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RAT (0 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541
RP TIP 1 2 3 4 5 6 7 8 9 HJB	ABS IN 167.3 177.8 186.3 192.7 203.0 205.7 203.2 200.7 200.2 200.1	VEL 0UT 229.2 227.4 226.5 226.3 230.9 242.4 261.7 282.0 290.1 298.8 308.3	REL IN 376.6 374.0 370.7 356.7 351.2 326.1 298.9 278.8 272.7 266.9 261.5	VEL OUT 247.7 249.9 249.8 247.4 229.1 203.9 188.0 186.6 188.7 192.5 198.1	MERI 1N 167.3 177.8 186.3 192.7 203.0 205.7 203.2 200.7 200.2 200.0	VEL OUT 173.4 176.9 179.4 180.9 181.5 181.6 184.2 186.3 186.8 187.0	TAN IN 0. 000000000	VEL 0UT 149.8 142.9 138.2 135.9 142.7 160.6 185.9 211.7 221.9 233.1 245.0	WHEEL IN 337.5 329.0 320.5 312.0 286.6 253.1 219.2 193.5 185.1 176.7 168.4	SPEED OUT 326.7 519.4 312.0 304.7 282.7 253.3 224.0 201.9 194.6 187.3 179.9
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS M IN 0.504 0.557 0.565 0.619 0.628 0.620 0.611 0.610 0.609	ACH NO OUT 0.649 0.646 0.648 0.663 0.699 0.759 0.825 0.851 0.880	REL M IN 1.135 1.130 1.124 1.114 1.071 0.995 0.911 0.849 0.831 0.813	ACH NO OUT 0.701 0.710 0.713 0.708 0.658 0.558 0.546 0.546 0.567 0.586	MERID M IN 0.504 0.537 0.585 0.619 0.628 0.620 0.611 0.610 0.609	ACH NO OUT 0.491 0.503 0.512 0.518 0.523 0.534 0.545 0.548 0.551	IN -19.40 -16.77	NE SLOPE OUT -14.51 -12.48 -10.63 -8.97 -4.78 -0.20 4.15 7.57 8.79 10.05 11.34		PEAK SS MACH NO 1.448 1.455 1.455 1.448 1.451 1.475 1.405 1.324 1.292 1.258 1.222
RP TIP 1 2 5 4 5 6 7 8 9	PERCENT SPAN 0. 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 3.3 3.4 3.5 3.6 4.2 5.5 7.8 10.3 11.6 13.1	DENCE SS -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	7.0 6.4 5.9 5.7 5.8 6.4 7.4 8.1 8.2 8.3	D-FACT 0.488 0.469 0.458 0.453 0.479 0.517 0.529 0.504 0.486 0.462 0.430	0.778 0.834 0.883 0.919 0.944 0.936 0.914 0.890 0.882 0.873 0.864	LOSS (70T 0.189 0.135 0.093 0.063 0.046 0.058 0.090 0.131 0.148 0.166 0.185	OEFF PROF 0.154 0.100 0.059 0.031 0.018 0.035 0.081 0.129 0.147 0.165 0.185	LOSS F TOT 0.049 0.035 0.024 0.016 0.012 0.015 0.022 0.029 0.031 0.033	PARAM PROF 0.040 0.026 0.015 0.008 0.005 0.009 0.020 0.029 0.031 0.033

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 9

TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 23.414 22.949 22.478 22.004 20.577 18.692 16.785 15.345 14.848 14.344 13.853	OUT 25.409 22.945 22.475 21.999 20.575 18.718 16.916 15.622 15.165 14.683	ABS IN 37.5 55.8 52.9 55.4 55.1 40.2 45.4 47.2 49.0 50.8	OUT Q. Q. -0. -0. -0. -0. -0. -0.	REL IN 37.5 35.3 35.8 32.9 35.4 36.1 40.2 45.4 47.2 49.0 50.8	BETAM OUT 0. 0. -0. -0. -0. -0. -0. -0.	TOTA IN 536.9 535.6 331.1 329.4 328.3 328.7 329.6 330.7 531.1 331.6 332.0	RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTAL IN 15.61 15.61 15.61 15.61 15.61 15.61	PRESS RATIO 0.952 0.951 0.969 0.975 0.985 0.985 0.985 0.951 0.899 0.821
RP TIP 1 2 3 4 5 6 7 8 9 3 3 ₩3	ABS IN 252.0 252.2 253.0 254.3 261.2 271.2 281.8 287.2 289.9 293.5 297.8	VEL 0UT 187.1 190.9 195.8 195.9 198.7 199.1 198.5 195.2 188.7 177.7 162.0	RZL IN 252.0 252.2 253.0 254.3 261.2 271.2 281.8 207.2 209.9 295.5 297.8	VEL 0UT 187.1 190.9 193.8 195.9 198.7 199.1 193.5 193.5 183.7 177.7 162.0	MERI IN 199.9 205.7 210.3 213.6 218.1 219.2 215.1 201.8 196.9 192.5 188.3	D VEL 0UT 187.1 190.9 195.8 195.9 193.7 199.1 198.5 196.2 188.7 177.7 162.0	TAN IN 153.4 145.9 140.7 138.0 143.8 159.7 181.9 204.4 212.7 221.5 230.7	OUT O.	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HJB	ABS M IN 0.719 0.724 0.750 0.755 0.760 0.792 0.825 0.825 0.850 0.862 0.876	ACH NO 0.5337 0.5337 0.5535 0.5535 0.5535 0.5535 0.5455 0.5455	RZL M IN 0.719 0.750 0.750 0.753 0.760 0.792 0.825 0.842 0.850 0.862 0.876	ACH NO OUT 0.522 0.533 0.547 0.555 0.563 0.563 0.553 0.453	MERID M (N 0.571 0.591 0.608 0.640 0.640 0.630 0.592 0.578 0.565 0.554	ACH NO OUT 0.5256 0.547 0.565 0.565 0.565 0.553 0.499 0.453	STREAML1 IN -0.01 0.02 0.03 0.27 1.39 3.69 6.87 7.91 8.84 9.67	NE SLOPE OUT 0.00 0.01 0.01 0.00 0.18 1.25 3.59 7.40 9.04 10.85 12.85		PEAK SS MACH NO 1.261 1.212 1.181 1.165 1.196 1.274 1.377 1.469 1.506 1.546 1.539
TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN 13.7 14.1 14.3 13.1 11.2 9.4 8.1 7.6 7.2 6.8	DENCE SS 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0	DEV 5.3 4.8 4.5 4.5 5.1 5.9 6.8 7.1 7.4 7.6	D-FACT 0.474 0.445 0.424 0.411 0.412 0.433 0.460 0.485 0.513 0.557 0.616	EFF 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.165 0.131 0.103 0.082 0.053 0.040 0.048 0.056 0.130 0.264 0.455	OEFF PROF 0.165 0.131 0.103 0.082 0.053 0.040 0.045 0.046 0.116 0.245 0.428	LOSS F TOT 0.059 0.046 0.035 0.027 0.017 0.011 0.012 0.013 0.029 0.057 0.095	PARAM PROF 0.059 0.046 0.035 0.027 0.017 0.011 0.011 0.011 0.026 0.053 0.090

TABLE IV. - BLADE GEOMETRY FOR ROTOR 15

RP TIP 1 2 3 1 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 95.		R0 23.962 23.424 22.886 22.347 20.732 18.579 16.425 14.810 14.272 13.734	KIC 60.18 58.16 56.33 54.69 50.52 45.41 39.39 33.67 31.22	45.02 38.87 32.45 27.61 26.10 24.63	55 K0C 37.62 37.68 37.68 37.00 31.80 20.63 4.28 -11.12 -16.53 -22.01 -27.59	3.37 3.46 3.58 4.17 5.49 7.78 10.32 11.60 13.13	
RP TIP 1 2 3 4 5 6 7 8 9 HVB	BLADE TI 0.036 0.036 0.037 0.038 0.042 0.050 0.062 0.074 0.079 0.084 0.090	0.145 0.147 0.151 0.167 0.199 0.246 0.295 0.315	ESSES TO 0.032 0.031 0.032 0.034 0.034 0.039 0.052 0.055 0.058 0.061	ZIC 0.711 0.666 0.620 0.573 0.448 0.313 0.082 0.048 0.022 0.000	XIAL D ZMC 1.655 1.683 1.700 1.706 1.673 1.624 1.625 1.631 1.637 1.648	1.674 1.408 1.114	Z0C 2.83 2.92 2.99 3.19 3.40 3.63 3.72 3.73	1 0 0 0 2 6 7 8 3 4 8
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 5.880 3.865 3.851 5.858 5.812 5.802 3.858 5.872 5.872 5.906	53.99 51.91 50.05 48.36 42.94 34.58 23.55 13.29 9.62		SOLIDITY 1.344 1.370 1.400 1.431 1.540 1.727 1.983 2.244 2.346 2.456 2.579	X FACTOR 0.500 0.578 0.658 0.681 0.780 0.858 0.920 0.963 0.976 0.989 1.000	PHISS 8.34 8.62 8.76 8.78 9.66 11.38 13.11 13.64 13.54 13.50 12.92	AREA RATIO 1.005 1.014 1.024 1.036 1.045 1.045 1.045 1.045 1.045 1.045 1.045	

TABLE V. - BLADE GEOMETRY FOR STATOR 9

配 TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.		R0 25.409 22.9-5 22.475 21.999 20.575 18.718 16.916 15.622 15.165 14.633	KIC 23.77 21.22 19.49 18.58 20.52 24.83 50.81 57.14 59.39 41.60	14.42 14.48 14.59 15.70 17.85 20.69 23.74 24.91 26.13	KOC -5.26 -4.82 -4.49 -4.29 -4.50 -5.14 -5.94 -6.78 -7.09	13.73 14.11 14.30 14.30 13.09 11.19 9.39 8.06 7.64 7.22	CONE ANGLE -0.162 -0.100 -0.125 -0.180 -0.060 1.156 4.176 9.026 10.248 10.973 11.305
PTP 1 25456789B	BLADE TI 0.037 0.035 0.035 0.035 0.050 0.028 0.028 0.028 0.028	THICKN TM 0.184 0.181 0.177 0.175 0.162 0.147 0.152 0.118 0.115 0.110	TO 0.028 0.023 0.023 0.023 0.028 0.028 0.028 0.028	ZIC 17.585 17.585 17.586 17.587 17.589 17.575 17.593 17.599 17.407	18.165 18.164 18.161 18.154 18.145 18.145	ZTC 17.771 17.740 17.718 17.705 17.709 17.751 17.750 17.767 17.773 17.777	ZOC 19.162 19.163 19.164 19.165 19.164 19.159 19.155 19.154 19.155	
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO CHORD 1.846 1.845 1.845 1.844 1.846 1.865 1.869 1.875	SETTING ANGLE 7.93 7.61 7.41 7.53 8.02 9.49 11.46 13.62 14.45 15.24 16.07	29.05 29.04 25.93 22.97 24.82 30.02 56.75 45.95	1.463 1.495 1.597 1.757 1.953 2.145 2.220 2.501	1.500 1.500 1.500 1.500 1.500 1.500 1.500	R PHISS 19.55 17.05 15.59 14.56 14.11 15.13 16.87 19.13 19.88 20.55 21.15	AREA RAT [0 1.123 1.095 1.074 1.061 1.052 1.054 1.178 1.124 1.140 1.157	

TABLE VI. - OVERALL AERODYNAMIC
PERFORMANCE OF STAGE 15-9

Percent	Percent	Stage	Stage	Reading
design	design	pressure	efficiency	number
speed	flow	ratio		
100	100.3	1.397	0.763	558
100	98.2	1.463	. 830	539
100	94.8	1.484	. 821	551
90	94.9	1.320	. 806	564
90	88.4	1.377	. 852	567
90	75.5	1.334	.715	545
80	60.4	1. 243	. 657	572
70	79.9	1. 177	. 855	573
70	67.0	1.211	. 851	575
70	52.7	1, 185	. 673	550
50	36.3	1. 090	.771	579

(a) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 558

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN 1 -0.12-0.8 -0.8 -0.5-0.8	BETAM OUT 51.4 31.4 31.5 34.2 38.0 41.4 45.3 46.8 48.9	IN 60.8 58.8 57.4 54.0 50.2 46.3 43.6	BETAM OUT 48.5 46.1 39.0 27.5 12.0 -3.8 -8.6 -13.3	TOT: IN 288.7 288.5 288.0 288.0 269.0 287.9 287.7	TEMP RAT !0 1.123 1.122 1.125 1.131 1.137 1.149 1.152 1.151	TOTAL IN 10.06 10.13 10.12 10.14 10.14 10.14	PRESS RATIO 1.401 1.409 1.420 1.447 1.470 1.567 1.573
RP 1 23 4 5 6 7 8 9	ABS IN 184.6 194.8 200.5 210.0 213.6 211.2 205.3 200.8	VEL 0UT 215.6 218.9 221.9 230.1 247.6 273.2 305.2 311.9 312.8	REL 1N 378.6 376.2 372.3 357.4 333.7 505.6 283.6 276.5	VEL 0UT 277.9 272.9 267.9 244.8 220.1 209.6 215.1 215.7 211.1	MER! IN 184.8 194.8 200.0 213.2 201.3 201.3 201.3 201.3 201.3 201.3 201.3 201.3	D VEL 0UT 184.0 186.9 189.1 190.3 195.3 205.3 205.5	TAN IN -0.3 -0.4 -0.6 -1.9 -1.9 -1.6	WEL OUT 112.3 114.0 116.0 129.3 152.3 180.7 217.5 235.8	WHEEL IN 330.2 321.4 313.1 287.3 253.5 219.2 185.8	SPEED 0UT 320.5 312.9 305.7 283.3 253.8 224.3 202.7 195.3 187.3
B - 512 4 10 10 1- 20 01	ABS M IN 0.558 0.592 0.611 0.642 0.627 0.627 0.621 0.612	ACH NO 0.621 0.621 0.661 0.661 0.905 0.928	REL M. 1N 1.146 1.134 1.093 1.022 0.935 0.935 0.845 0.822	ACH NO 0.799 0.785 0.7639 0.636 0.640 0.626	MERID M. IN 0.558 0.592 0.611 0.642 0.654 0.627 0.621 0.612	ACH NO 0.529 0.538 0.550 0.567 0.600 0.635 0.610				PEAK SS MACH NO 1.439 1.432 1.442 1.463 1.414 1.343 1.311 1.282
RP 1 23 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 50.00 90.00 95.00	INCI MEAN 2.6 2.4 2.7 3.5 4.9 10.1 11.5 13.5	DENCE SS -0.8 -1.0 -0.9 -0.7 -0.7 -0.9 -0.3 -0.1 0.4	DEV 10.0 .8.6 7.8 7.1 6.8 7.7 7.3 8.0 8.8	D-FACT 0.373 0.382 0.389 0.433 0.475 0.466 0.418 0.402	EFF 0.824 0.844 0.862 0.888 0.890 0.905 0.920 0.912 0.883	LOSS C TOT 0.114 0.101 0.091 0.093 0.093 0.095 0.109	OEFF PROF 0.068 0.059 0.052 0.065 0.081 0.092 0.108 0.150	LOSS P TOT 0.028 0.025 0.022 0.023 0.023 0.023 0.023 0.023	ARAM PROF 0.019 0.017 0.014 0.013 0.017 0.020 0.020 0.023 0.030

EDGES FOR ROTOR 15

(b) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 539

12 34 56 7 8	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN -0.1 0.5 -0.2 -1.1 -1.0 -1.2 -0.3	BETAM OUT 34.3 33.2 33.6 36.6 39.6 43.3 47.2 49.4 51.4	IN 61.5 59.2 57.9 54.3 50.8	BETAM 0UT 48.3 46.1 44.0 38.1 26.8 12.3 -2.1 -8.3 -13.7	TOTA IN 288.9 288.6 288.4 288.1 287.9 287.9 287.9 288.0 288.0	L TEMP RATIO 1.136 1.135 1.135 1.136 1.137 1.140 1.146 1.148	TOTAL IN 10.03 10.11 10.13 10.14 10.15 10.15 10.14	PRESS RAT10 1.457 1.477 1.494 1.500 1.534 1.552 1.566 1.563
RP 1 23 4 5 6 7 8 9	ABS IN 179.8 190.7 196.7 206.7 210.2 201.6 188.2 187.0 186.9	VEL 0UT 215.1 220.7 224.7 231.0 247.5 266.0 286.1 294.3 298.4	REL IN 376.3 372.2 369.7 354.6 332.6 301.0 273.2 264.3 259.7	VEL 0UT 267.1 266.2 260.3 235.7 213.6 198.3 194.7 193.6 191.6	MERI IN 179.8 190.7 196.7 210.2 201.6 188.2 187.0 185.8	D VEL 0UT 177.7 184.6 187.2 185.4 190.8 193.7 194.5 191.6 186.2	TAN IN -0.3 1.6 -0.5 -0.8 -4.1 -3.6 -1.0 -3.2	121.2 121.0 124.3 137.8 157.7 182.3 209.7 223.3 233.2	WHEEL [N 330.3 321.3 312.5 287.3 253.7 219.9 194.2 185.7	SPEED 0UT 323.6 312.1 283.3 253.9 222.2 31.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
R- 254567-89	ABS M 0.543 0.578 0.598 0.631 0.643 0.615 0.571 0.567	ACH NO 0.614 0.632 0.645 0.717 0.775 0.839 0.866 0.879	REL M. 1.137 1.129 1.124 1.083 1.017 0.918 0.829 0.801 0.788	ACH NO OUT 0.763 0.762 0.747 0.618 0.578 0.571 0.570 0.565	MERID M. 1N 0.543 0.578 0.598 0.631 0.643 0.645 0.571 0.567 0.567	OUT 0.507 0.529 0.533 0.552 0.565 0.571 0.564 0.549			MER: 5 VEL R 0.988 0.968 0.952 0.897 0.908 0.961 1.025 0.997	1.454 1.454 1.436 1.446 1.446 1.448 1.438 1.363 1.367
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 3.2 2.8 3.1 3.8 5.4 8.6 12.8 13.8 15.7	DENCE 5S -0.2 -0.7 -0.4 -0.3 -0.1 0.8 2.5 2.2 2.5	9.8 7.9 6.7 6.3 6.1 8.0 9.1 8.2 8.4	D-FACT 0.406 0.398 0.412 0.461 0.499 0.465 0.453	0.835 0.874 0.899 0.900 0.927 0.931 0.918 0.922 0.914	LOSS C TOT 0.118 0.091 0.074 0.078 0.063 0.071 0.101 0.103	OEFF PROF 0.082 0.059 0.042 0.049 0.037 0.058 0.098 0.102 0.118	LOSS P TOT 0.029 0.023 0.019 0.020 0.016 0.017 0.022 0.022	ARAM PROF 0.020 0.015 0.011 0.013 0.009 0.014 0.022 0.022

EDGES FOR ROTOR 15

(c) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 551

RP 1 23 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	OUT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN 0.5 0.1 -0.8 -1.2 -1.0 -0.5 -0.7	BETAM OUT 39.2 37.9 38.2 39.7 41.3 44.2 48.5 50.1	IN 62.7 60.7 59.1 55.5 51.7 48.7 47.0 45.9	BETAM 45.9 44.3 42.6 37.5 27.0 13.0 -2.5 -8.3 -13.7	TOTA IN 289.1 288.9 288.4 287.9 287.8 287.8 287.8	RATIO 1.159 1.154 1.151 1.146 1.139 1.146 1.150	TOTAL IN 10.06 10.11 10.13 10.14 10.15 10.14 10.14	PRESS RATIO 1.569 1.571 1.568 1.547 1.532 1.525 1.545 1.560 1.562
RP 1 2 3 4 5 6 7 8 9	ABS IN 169.3 178.9 186.6 198.8 203.7 195.7 182.4 180.9 181.1	VEL 0UT 223.1 225.4 227.4 230.4 243.5 259.7 280.6 288.8 294.3	REL IN 368.7 365.4 363.8 351.3 328.4 296.4 267.2 259.9 254.5	VEL 0UT 248.3 248.4 242.8 223.2 205.3 191.2 186.2 187.2 187.2	MERI 189.2 178.9 186.6 198.8 203.6 195.7 182.4 180.9	D VEL 0UT 172.9 177.8 178.6 177.2 183.0 186.3 186.1 185.2 181.9	TAN IN 1.5 1.9 0.2 -2.7 -4.1 -3.5 -1.8 -1.4 -2.3	IG VEL 0UT 141.1 138.6 140.7 147.2 160.6 180.9 210.1 221.6 231.3	WHEEL IN 329.1 320.5 312.5 287.0 253.5 219.2 193.6 185.1 176.5	SPEED OUT 319.4 312.0 305.2 283.0 253.7 224.0 202.0 194.7 187.1
RP 1 23 4 5 6 7 8 9	ABS M IN 0.509 0.540 0.605 0.622 0.596 0.552 0.548	ACH NO OUT 0.632 0.641 0.659 0.703 0.755 0.821 0.847 0.865	IN 1.110 1.104 1.102 1.070 1.002 0.902	ACH NO OUT 0.703 0.706 0.692 0.639 0.592 0.556 0.545 0.550	MERID M. 1.509 0.540 0.565 0.605 0.621 0.595 0.552 0.548 0.548	ACH NO OUT 0.490 0.505 0.509 0.507 0.528 0.542 0.543 0.535			MER:3 F VEL R N 1.021 0.994 0.957 0.891 0.898 0.952 1.020 1.024 1.005	PEAK SS MACH NO 1.476 1.469 1.469 1.508 1.508 1.345 1.308 1.275
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 4.4 4.3 5.0 6.3 13.3 14.8 16.3	DENCE SS 1.1 0.8 0.8 0.9 0.8 1.5 3.0 3.2	7.3 6.1 5.3 5.6 6.3 8.7 8.6 8.3	D-FACT 0.463 9.452 0.466 0.502 0.520 0.513 0.483 0.467 0.457	0.866 0.896 0.908 0.910 0.926 0.919 0.906 0.906	LOSS CO TOT 0.113 0.087 0.076 0.076 0.067 0.085 0.121 0.129 0.132	DEFF PROF 0.077 0.052 0.042 0.044 0.038 0.073 0.119 0.129 0.132	LOSS PA TOT 0.029 0.022 0.020 0.020 0.017 0.021 0.027 0.027	RAM PROF 0.020 0.013 0.011 0.011 0.010 0.018 9.027 9.027 0.026

EDGES FOR ROTOR 15

(d) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 564

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN -0.4 -0.6 -0.8 -0.9 -0.5 -0.6 -0.4	BETAM OUT 27.9 27.6 28.1 30.8 34.7 38.8 43.4 45.7 47.2	REL IN 60.5 58.6 57.3 53.8 49.7 45.8 43.2 42.1	BETAM CUT 48.2 46.6 44.8 38.7 27.3 12.6 -2.0 -7.9 -12.5	TOTA 1N 288.7 288.4 288.2 288.1 288.0 288.0 288.0 288.0	L TEMP RATIO 1.089 1.090 1.091 1.096 1.102 1.109 1.117 1.120	TOTAL 10.07 10.14 10.15 10.14 10.14 10.14 10.14	PRESS RATIO 1.295 1.299 1.312 1.346 1.476 1.404 1.429 1.446 1.454
RP 1 2 3 4 5 6 7 8 9	ABS IN 167.9 177.3 181.7 191.5 195.4 193.5 187.6 186.2 184.2	VEL 0UT 197.4 200.2 203.4 212.3 229.6 251.8 274.6 283.4 289.4	REL IN 341.3 340.0 336.0 324.0 302.4 277.8 257.3 250.8 245.7	VEL 0UT 261.6 258.5 253.0 233.9 212.3 201.0 199.5 199.9 201.4	MERI IN 167.9 177.3 181.7 191.5 195.4 193.5 187.6 186.2 184.2	D VEL OUT 174.4 177.4 179.4 182.5 188.7 195.1 199.4 198.0 196.6	TAN IN -1.0 -1.9 -2.9 -1.7 -1.9 -1.2 -3.3	OVEL 0UT 92.5 92.8 95.8 108.6 130.8 158.0 182.8 202.8 212.4	WHEEL IN 296.1 288.4 280.6 227.5 197.5 174.2 166.8 159.3	SPEED CUT 287.57 287.11 2255.01 221.8 181.8 175.4 168.8
R 1 23 4 5 6 7 8 9	ABS M 1.5050 0.5580 0.5581 0.5688 0.5658	ACH NO 0UT 0.573 0.582 0.592 0.619 0.671 0.741 0.841 0.860	REL M. 1.027 1.027 1.027 1.017 0.984 0.920 0.844 0.780 0.761 0.744	OUT 0.750 0.751 0.751 0.681 0.681 0.590 0.593	MERID MA IN 0.505 0.535 0.550 0.581 0.588 0.569 0.565 0.558	OUT 0.506 0.516 0.552 0.5532 0.5577 0.590 0.588			MER:D F VEL R 1 1.039 1.001 0.987 0.953 0.966 1.014 1.063 1.063	PEAK SS MACH NG 1.356 1.355 1.360 1.327 1.327 1.196 1.151
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN 2.3 2.2 2.5 3.3 4.5 9.6 10.9 13.1	DENCE SS -1.1 -1.3 -1.0 -0.9 -1.2 -1.3 -0.8 -0.7	9.6 8.5 7.9 6.3 9.1 7	D-FACT 0.332 0.338 0.348 0.389 0.426 0.423 0.393 0.381 0.364	0.859 0.859 0.859 0.854 0.927 0.937 0.937 0.920 0.924 0.913	LOSS C TOT 0.079 0.080 0.068 0.047 0.045 0.058 0.089 0.090	OEFF PROF 0.066 0.067 0.036 0.036 0.058 0.089 0.090 0.110	LOSS P TOT 0.019 0.020 0.017 0.012 0.014 0.020 0.019	ARAM PROF 0.016 0.017 0.014 0.009 0.010 0.014 0.020 0.019 0.022

EDGES FOR ROTOR 15

(e) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 567

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	OUT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN -0.4 -0.5 -1.2 -0.6 -0.4 -0.5 -0.7	BETAM OUT 35.1 34.6 35.1 47.1 40.3 43.7 48.3 49.7 51.1	IN 62.7 60.7 59.4 56.2 52.4 49.2 47.0	BETAM OUT 45.8 44.5 43.1 37.8 27.8 14.1 -2.9 -8.8 -13.7	TOT/ IN 288.8 288.4 288.3 288.1 288.0 287.9 288.0 288.0	RATIO 1.114 1.112 1.110 1.109 1.111 1.119 1.122 1.123	TOTAL IN 10.07 10.13 10.14 10.14 10.13 10.14 10.13	PRESS RATIO 1.418 1.412 1.410 1.412 1.401 1.404 1.438 1.457 1.458
RP 1 2 3 4 5 6 7 8 9	ABS IN 153.7 163.3 168.3 176.0 178.6 172.9 164.4 163.5 162.4	VEL 0UT 203.7 204.6 205.3 208.8 217.8 232.3 255.9 265.9 271.1	REL IN 335.4 333.4 316.4 292.9 264.4 241.0 235.1 229.3	VEL 0UT 238.7 236.1 230.2 210.8 188.0 175.1 170.4 173.9 175.3	MERI IN 153.7 163.2 168.2 176.0 178.6 172.9 164.4 163.5 162.4	D VEL 0UT 166.5 168.4 168.6 166.6 167.9 170.2 171.8 170.3	TAN IN -1.0 -1.4 -2.3 -4.2 -3.8 -1.8 -1.2 -1.4	NG VEL OUT 117.2 116.2 117.9 125.9 140.8 160.6 191.2 202.9 210.9	NHEEL 1N 297.0 289.3 281.9 258.4 158.3 175.0 167.6 159.9	SPEED OUT 288.3 281.6 275.1 228.6 202.6 182.7 176.2 169.5
R 1 23 4 5 6 7 8 9	ABS M IN 0.461 0.507 0.532 0.540 0.522 0.495 0.492 0.489	ACH NO OUT 0.586 0.589 0.592 0.603 0.632 0.677 0.750 0.782	REL M/ 1.005 1.003 0.995 0.956 0.886 0.798 0.726 0.707 0.690	ACH NO 0.686 0.680 0.664 0.609 0.545 0.504 0.499 0.511	MERID MA IN 0.461 0.491 0.507 0.532 0.540 0.522 0.495 0.492 0.489	0.479 0.479 0.485 0.484 0.481 0.482 0.489 0.505 0.502			MERID F VE. R 1 1.083 1.032 0.999 0.946 0.931 0.971 1.035 1.051	PEAK SS MACH NO 1.426 1.422 1.423 1.410 1.359 1.284 1.206 1.177 1.148
RP: 23456789	PERCENT SPAN 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INC I MEAN 4.5 4.7 5.7 7.0 9.8 13.4 14.8 16.6	DENCE 55 1.1 0.8 1.5 1.5 2.0 3.0 3.2 3.4	7.2 6.3 5.8 5.9 7.2 9.8 8.3 7.7 8.4	D-FACT 0.415 0.416 0.429 0.466 0.501 0.502 0.475 0.450 0.430	0.920 0.919 0.924 0.938 0.926 0.918 0.918 0.932 0.927	LOSS C. TOT 0.058 0.055 0.047 0.063 0.084 0.104 0.092 0.103	OEFF PROF 0.039 0.041 0.038 0.035 0.058 0.083 0.104 0.092 0.103	LOSS PATOT 0.015 0.015 0.014 0.012 0.016 0.020 0.023 0.019 0.020	ARAM PROF 0.010 0.010 0.010 0.009 0.015 0.020 0.023 0.019

EDGES FOR ROTOR 15

(f) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 545

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN -0.6 -0.5 -1.8 -1.8 -1.0 -0.4 -0.2	BETAM OUT 46.4 43.1 41.8 43.2 46.8 47.0 50.5 51.5	REL IN 67.9 65.8 64.5 61.7 58.2 54.0 50.9 49.6 48.3	BETAM 0UT 48.3 46.2 44.5 39.9 29.3 14.0 -2.4 -8.5 -13.5	TOTA IN 289.0 288.5 288.3 288.1 287.9 287.9 287.9	L TEMP RAT [0 1.134 1.130 1.127 1.120 1.117 1.114 1.121 1.123 1.124	TOTAL IN 10.07 10.12 10.14 10.14 10.14 10.14 10.14	PRESS RATIO 1.389 1.391 1.394 1.382 1.378 1.396 1.429 1.455 1.464
RP 1 2 3 4 5 6 7 8 9	ABS IN 121.0 130.1 134.7 141.6 144.3 144.9 142.4 142.0 141.9	VEL 0UT 192.1 194.2 195.8 196.5 205.2 223.5 247.5 258.7 266.0	REL IN 321.8 317.2 313.1 298.3 273.7 246.6 225.8 219.3 213.3	VEL 0UT 199.2 204.9 204.6 186.7 161.1 157.1 160.5 166.4 170.5	MERI 181.0 130.1 134.7 141.5 144.2 144.9 142.3 142.3	D VEL 0UT 132.4 141.8 145.8 143.2 140.5 152.4 160.3 164.6 165.8	TAN IN -1.3 -1.0 -2.0 -4.5 -4.5 -2.5 -1.1 -0.6	139.2 139.2 132.7 130.6 134.6 149.6 163.4 188.6 199.6 208.0	WHEEL IN 296.8 288.3 288.6 258.0 228.1 197.0 174.1 166.5 158.7	SPEED OUT 288.1 280.6 274.0 254.4 228.3 201.3 181.7 175.1 168.2
RP : 23456789	ABS M IN 0.360 0.388 0.402 0.423 0.432 0.434 0.425 0.425	ACH NO 0.545 0.553 0.559 0.569 0.648 0.758 0.782	REL M. 1.N 0.956 0.946 0.955 0.892 0.819 0.739 0.676 0.657	ACH NO OUT 0.565 0.583 0.584 0.535 0.463 0.463 0.468 0.468	MERID MA IN 0.360 0.388 0.402 0.423 0.423 0.434 0.426 0.425	0.416 0.416 0.416 0.410 0.404 0.442 0.468 0.482 0.487				PEAK SS MACH NG 1.532 1.508 1.500 1.482 1.417 1.310 1.214 1.175
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN 9.7 9.8 11.2 12.8 14.6 17.3 18.5 20.0	DENCE SS 6.3 6.0 6.2 7.0 7.3 6.9 7.0 6.9 6.8	9.8 8.1 7.2 8.1 8.6 9.7 8.1 8.6	D-FACT 0.538 -0.503 0.524 0.574 0.535 0.480 0.441	0.732 0.760 0.787 0.808 0.819 0.875 0.888 0.922 0.930	LOSS C TOT 0.234 0.209 0.185 0.172 0.182 0.146 0.160 0.119	OEFF PROF 0.206 0.186 0.157 0.157 0.177 0.146 0.160 0.119	LOSS P TOT 0.057 0.052 0.046 0.043 0.046 0.036 0.036 0.025	ARAM PROF 0.050 0.046 0.041 0.039 0.045 0.036 0.036 0.025

EDGES FOR ROTOR 15

(g) 80 Percent of design speed; intrablade row instrumentation at station 2a; reading number 572

RP 1 2 3 4 5 6 7 8 9	RAD IN 24,133 23,510 22,883 21,026 18,560 16,076 14,194 13,574 12,959	OUT 25.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN -0.5 -0.6 -1.1 -1.8 -1.7 -0.5 -0.6	BETAM OUT 52.8 47.8 49.9 53.3 51.2 50.9 51.9	IN 70.7 68.9 67.9 65.4 62.2 57.9 54.2 52.7	BETAM OUT 52.2 48.7 46.5 42.1 30.3 12.3 -3.1 -9.4 -14.8	TOTA IN 288.6 288.3 288.3 288.1 288.0 288.0 287.9 286.1	RATIO 1.11! 1.106 1.102 1.098 1.096 1.094 1.096 1.097 1.098	TOTAL IN 10.09 10.13 10.14 10.13 10.14 10.13 10.14	PRESS RATIO 1.283 1.289 1.294 1.280 1.278 1.306 1.337 1.352 1.363
RP 1 2 3 4 5 6 7 8 9	ABS !N 92.7 99.7 102.2 106.4 108.6 112.3 113.0 113.7	VEL 0UT 162.7 166.4 168.3 176.4 196.0 218.3 227.6 235.6	REL IN 280.7 277.8 255.4 233.1 211.5 193.4 187.6 183.2	VEL 0UT 160.4 169.5 170.9 146.3 122.0 125.7 137.9 142.5 147.2	MERI IN 92.7 99.7 102.2 108.5 112.3 113.0 113.7	D VEL OUT 98.4 111.9 117.5 108.5 105.3 122.8 137.7 140.6 142.4	TAN IN -0.9 -1.0 -2.1 -3.4 -3.3 -1.7 -1.0 -1.3	VEL 0UT 129.6 123.2 120.8 128.7 141.6 152.7 169.5 179.0 187.8	WHEEL IN 264.1 257.4 250.8 230.2 202.9 175.7 155.2 148.2 141.8	SPEED 0UT 256.3 250.6 244.9 226.9 203.1 179.5 162.0 155.9 150.2
RP 1 25 4 5 6 7 8 9	ABS M. IN 0.274 0.296 0.303 0.316 0.322 0.334 0.336 0.338	ACH NO OUT 0.463 0.475 0.483 0.508 0.568 0.638 0.667 0.692	REL M. IN 0.831 0.821 0.806 0.758 0.692 0.628 0.575 0.558 0.544	0.456 0.456 0.484 0.489 0.420 0.351 0.365 0.403 0.417	MERID MA IN 0.274 0.296 0.303 0.316 0.322 0.334 0.336 0.338	0.280 0.319 0.356 0.311 0.303 0.356 0.402 0.412 0.418			MER(D) VEL R: 1.061 1.122 1.150 1.020 0.970 1.094 1.218 1.237 1.244	PEAK SS MACH NO 1.410 1.396 1.396 1.355 1.294 1.199 1.058 1.027
RP 1 23 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 50.00 50.00 70.00 85.00 90.00 95.00	INC I MEAN 12.5 12.5 13.2 14.9 16.8 18.5 20.6 21.6 23.0	DENCE SS 9.1 9.6 10.7 11.3 10.7 10.3 10.0 9.9	DEV 13.6 10.6 9.2 10.3 9.7 8.0 8.0 7.2	D-FACT 0.596 0.546 0.526 0.592 0.657 0.593 0.428 0.450 0.412	0.662 0.707 0.747 0.743 0.754 0.842 0.902 0.927	LOSS C TOT 0.306 0.261 0.225 0.245 0.270 0.201 0.1150 0.119 0.097	OEFF PROF 0.30! 0.257 0.222 0.244 0.270 0.201 0.150 0.119 0.097	LOSS P. TOT 0.068 0.061 0.054 0.059 0.067 0.050 0.033 0.025 0.019	ARAM PROF 0.067 0.053 0.059 0.067 0.050 0.033 0.025

EDGES FOR ROTOR 15

(h) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 573

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN 0.4 0.0 -0.1 -0.4 -0.9 -0.6 -0.8 -0.6	BETAM OUT 20.5 20.5 21.3 24.4 29.5 34.7 40.5 42.8	REL IN 60.0 57.8 56.6 53.0 49.1 45.4 41.5 40.3	BETAM OUT 47.7 46.4 44.9 39.3 28.2 13.8 -1.2 -7.0 -12.3	TOTA IN 288.5 288.3 288.1 288.1 288.0 288.0 288.0	L TEMP RATIO 1.943 1.043 1.044 1.048 1.055 1.063 1.072 1.074	TOTAL IN 10.08 10.14 10.13 10.14 10.14 10.14 10.15	PRESS RAT10 1.141 1.142 1.148 1.170 1.196 1.224 1.255 1.268 1.275
RP 1 23 4 5 6 7 .8 9	ABS IN 132.4 141.0 144.3 151.9 155.4 153.6 149.4 148.6 147.5	VEL OUT 161.6 163.8 165.4 170.5 184.5 202.9 222.8 231.2 238.2	REL 1N 264.7 264.9 262.2 252.4 237.3 218.6 202.5 198.6 193.4	VEL 0UT 225.1 222.4 217.6 200.8 192.2 171.8 169.5 171.1 173.1	MERI IN 132.4 141.0 151.9 155.3 153.6 149.4 148.6 147.5	D VEL OUT 151.4 153.4 155.3 160.6 166.8 169.5 169.8 169.1	TAN IN 0.8 0.1 -0.2 -1.1 -2.4 -1.4 -2.1	G VEL OUT 56.7 57.5 60.0 70.5 90.9 115.5 144.6 157.0 167.8	WHEEL IN 230.0 224.4 218.7 200.6 176.9 153.3 135.2 129.6 123.4	SPEED OUT 223.3 218.4 213.6 197.8 177.1 156.6 141.1 136.2 130.8
RP 1 2334 5 67 8 9	ABS M. IN 0.395 0.422 0.432 0.455 0.466 0.466 0.448 0.442	ACH NO OUT 0.475 0.482 0.487 0.502 0.543 0.599 0.686 0.708	REL M. 1N 0.789 3.792 0.785 0.757 0.656 0.607 0.595 0.580	ACH NO OUT 0.662 0.654 0.591 0.537 0.507 0.502 0.514	MERID M. IN 0.395 0.422 0.432 0.455 0.466 0.461 0.448 0.445	OUT 0.445 0.451 0.453 0.457 0.473 0.492 0.502 0.504 0.502				PEAK SS MACH NO 1.050 1.047 1.034 1.012 0.971 0.915 0.902 0.874
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 1.7 1.5 1.9 2.5 3.7 6.0 8.8 10.4 12.0	DENCE SS -1.6 -2.0 -1.7 -1.7 -1.8 -1.8 -1.5 -1.2	9.2 8.2 7.6 7.5 7.6 9.5 9.9 9.6 9.8	D-FACT 0.226 0.237 0.250 0.296 0.346 0.352 0.327 0.314 0.288	0.894 0.893 0.913 0.953 0.951 0.944 0.934 0.943	LOSS C TOT 0.045 0.045 0.038 0.024 0.031 0.047 0.070 0.065 0.080	OEFF PROF 0.045 0.045 0.024 0.024 0.031 0.047 0.070 0.065 0.080	LOSS P TOT 0.011 0.011 0.009 0.006 0.008 0.011 0.016	PROF 0.011 0.011 0.009 0.006 0.008 0.011 0.016 0.014

EDGES FOR ROTOR 15

(i) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 575

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	OUT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN 0.0 0.2 -0.5 -1.3 -0.5 -0.7 -0.5	BETAM OUT 34.0 33.2 33.6 36.2 39.8 43.4 47.5 48.9 50.2	REL IN 64.7 62.8 618.5 55.2 51.6 48.9 47.6	BETAM OUT 47.0 45.9 44.5 39.7 29.5 15.1 -1.0 -7.6 -12.5	TOTA IN 288.6 288.3 288.1 288.2 288.0 288.0 288.0 287.9	RATIO 1.066 1.065 1.063 1.063 1.064 1.066 1.072 1.074	TOTAL IN 10.10 10.13 10.13 10.14 10.14 10.13	1.220
RP 1 23 4 5 6 7 8 9	ABS IN 109.1 115.3 118.0 123.8 125.7 123.5 119.9 119.7	VEL OUT 154.4 155.5 156.9 165.8 178.1 195.6 205.1 209.5	REL (N 255.1 252.4 248.4 236.8 220.1 198.6 182.5 177.4 173.4	VEL OUT 187.8 186.4 181.7 164.8 146.4 134.1 132.2 135.9 137.5	MERI 1N 109.1 115.3 118.0 123.8 125.6 123.5 119.9 119.7	D VEL 0UT 128.0 129.6 129.5 126.7 127.5 129.5 132.2 134.7 134.2	TAN IN 0.0 0.3 -0.1 -1.1 -2.9 -1.7 -1.5 -1.0 -2.1	WEL OUT 86.4 85.0 86.0 92.6 106.1 122.3 144.2 154.6 160.9	WHEEL IN 230.5 224.9 218.4 200.7 177.9 153.8 136.0 129.9 123.8	SPEED OUT 223.8 218.9 213.3 197.9 178.1 157.2 141.9 136.6 131.2
RP 1 235 4 55 67-89	ABS M. IN 0.324 0.351 0.369 0.375 0.368 0.357 0.356 0.355	CH NO OUT 0.448 0.450 0.452 0.456 0.483 0.521 0.573 0.602 0.617	REL MA IN 0.757 0.750 0.759 0.705 0.656 0.592 0.543 0.516	QUT 0.545 0.545 0.541 0.528 0.479 0.427 0.392 0.388 0.399 0.405	MERID MA IN 0.324 0.351 0.351 0.369 0.374 0.368 0.357 0.356	OUT 0.371 0.377 0.377 0.377 0.369 0.372 0.379 0.388 0.396				PEAK SS MACH NO 1.130 1.121 1.121 1.095 1.068 1.000 0.938 0.908 0.888
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INC I MEAN 6.4 6.9 9.8 12.2 15.3 16.4 18.2	DENCE SS 3.1 3.3 3.8 4.3 4.4 5.0 4.8 5.1	DEV 8.5 7.8 7.2 7.9 8.8 10.8 10.2 9.0	D-FACT 0.386 0.380 0.388 0.432 0.478 0.484 0.457 0.426 0.404	0.896 0.904 0.923 0.927 0.926 0.920 0.925 0.944 0.939	LOSS CO TOT 0.070 0.064 0.052 0.053 0.062 0.083 0.097 0.078 0.088	DEFF PROF 0.070 0.064 0.052 0.053 0.062 0.083 0.097 0.078 0.088	LOSS P TOT 0.017 0.016 0.013 0.013 0.016 0.020 0.022 0.016 0.018	ARAM PROF 0.017 0.016 0.013 0.015 0.020 0.020 0.016 0.018

EDGES FOR ROTOR 15

(j) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 550

RP 1 2 3 4 5 6 7 8 9	RADI IN 24.133 2 23.510 2 22.883 2 21.026 2 18.560 1 16.076 1 14.194 1 13.574 1 12.959 1	OUT 23.424 22.885 22.347 20.731 8.578 6.426 4.811	ABS IN -0.1 0.3 0.2 -0.2 -1.0 -0.3 -0.4 -0.8	BETAM OUT 51.6 46.2 44.0 47.8 51.4 50.3 50.1 50.8 51.5	REL IN 71.1 69.1 68.0 65.3 62.1 58.0 54.3 51.9	BETAM CUT 51.9 48.9 42.3 31.1 13.1 -3.1 -8.2 -12.7	TCTA 1N 288.6 288.3 288.4 288.2 288.0 288.0 287.9 287.9	RATIO 1.084 1.080 1.076 1.074 1.073 1.072 1.074 1.074	TOTAL IN 10.10 10.12 10.13 10.13 10.14 10.14 10.13	PRESS RATIO 1.214 1.217 1.219 1.212 1.208 1.228 1.261 1.264 1.263
RP 1 2 3 4 5 6 7 8 9	ABS IN 78.7 85.0 87.8 92.2 94.1 96.8 97.5 97.6	VEL 0UT 141.2 143.7 145.4 146.1 152.6 170.5 192.8 198.3 202.8	REL 1N 242.4 238.8 234.1 220.7 201.0 182.6 167.2 162.3 158.2	VEL 0UT 142.2 151.2 152.6 132.7 111.2 111.9 123.8 126.7 129.3	MERI 18.7 85.0 87.8 92.2 94.1 96.8 97.6 97.7	D VEL OUT 87.8 99.4 104.5 98.2 95.2 109.0 123.6 125.4 126.1	TAN 101 -0.1 0.4 -0.3 -1.2 -1.7 -0.56 -1.3	OVEL OUT 110.6 103.8 101.1 108.2 119.2 131.1 148.0 153.6 158.8	WHEEL IN 229.2 217.4 200.2 176.5 153.1 135.3 129.3	SPEED OUT 222.5 217.7 212.3 197.4 176.6 156.4 141.2 135.6 130.5
R-254561-89	ABS MA IN 0.232 0.251 0.273 0.273 0.287 0.289 0.289	0.415 0.415 0.415 0.419 0.422 0.441 0.496 0.564 0.581 0.596	REL MI 0.7:6 0.7:6 0.653 0.6596 0.594 0.496 0.481 0.469	OLT 0.407 0.407 0.435 0.435 0.383 0.322 0.325 0.362 0.362 0.371	MERID MA IN 0.232 0.251 0.260 0.273 0.279 0.287 0.289 0.290	0.252 0.258 0.286 0.301 0.283 0.276 0.317 0.361 0.368 0.370				PEAK SS MACH NG 1,224 1,207 1,192 1,166 1,110 1,034 0,950 0,918 0,893
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INC II MEAN 12.8 12.8 13.3 14.8 16.7 18.6 20.7 21.9 23.5	DENCE SS 9.5 9.7 10.6 11.2 10.4 10.3	DEV 13.3 10.8 9.5 10.4 10.5 8.8 8.0 8.4 9.4	D-FACT 0.578 0.519 0.497 0.557 0.620 0.573 0.462 0.427 0.395	0.676 0.721 0.763 0.764 0.765 0.841 0.918 0.935 0.942	LOSS C TOT 0.291 0.245 0.208 0.222 0.256 0.205 0.129 0.108 0.099	OEFF PROF 0.291 0.245 0.222 0.256 0.256 0.129 0.108 0.099	LOSS P TOT 0.058 0.0553 0.0564 0.0569 0.023	PROF 0.065 0.058 0.050 0.053 0.064 0.050 0.029 0.023 0.020

EDGES FOR ROTOR 15

(k) 50 Percent of design speed; intrablade row instrumentation at station 2a; reading number 579

RP 1 2 3 4 5 6 7 8 9	RAD IN 24.133 23.510 22.883 21.026 18.560 16.076 14.194 13.574 12.959	0UT 23.424 22.885 22.347 20.731 18.578 16.426 14.811 14.272	ABS IN 37.7 48.5 29.0 4.6 -1.1 -1.2 -1.3 -1.3	BETAM OUT 55.5 57.6 50.2 46.5 47.3 49.7	IN 78.9 79.2 71.3 63.6 60.1 56.5 53.1	BETAM 0UT 53.2 51.7 49.6 44.1 31.6 15.7 -1.0 -6.9 -12.7	TOTA IN 290.9 292.2 291.2 288.8 287.3 286.9 286.6 287.0	L TEMP RATIO 1.030 1.024 1.025 1.029 1.034 1.036 1.040 1.042	TOTAL IN 10.09 10.06 10.08 10.15 10.17	PRESS RATIO 1.110 1.106 1.101 1.086 1.093 1.100 1.113 1.121
RP 1 23 4 5 6 7 8 9	ABS IN 35.2 37.9 50.7 68.2 73.5 73.6 73.9 74.2	VEL 0UT 100.7 102.5 101.5 101.2 110.3 121.8 139.2 146.6 151.8	REL IN 145.3 134.1 138.2 153.0 147.6 133.2 122.7 119.6 117.0	VEL 0UT 95.3 88.2 90.7 90.1 86.9 94.3 98.8 100	MERI IN 27.9 25.1 44.4 68.0 73.6 73.5 73.6 73.9 74.1	D VEL OUT 57.0 54.7 58.8 64.8 75.9 83.7 94.3 98.1	TAN IN 21.5 28.4 24.6 5.5 -1.4 -1.5 -1.7 -1.7	S VELT 000 85.67 85.78 80.5 102.9 115.8	WHEEL IN 164.2 160.1 1552.6 126.5 129.5 96.3 88	SPEED CUT 159.3 155.8 151.8 140.6 126.7 111.9 100.7 97.1
R - 25 4 5 67 8 9	ABS M IN 0.103 0.111 0.149 0.201 0.218 0.218 0.219 0.219	ACH NO OUT 0.293 0.298 0.295 0.295 0.322 0.357 0.409 0.431	REL M. IN 0.426 0.392 0.451 0.456 0.394 0.363 0.354 0.346	OUT 0.277 0.257 0.264 0.263 0.260 0.255 0.277 0.291	MERID M. IN 0.082 0.073 0.130 0.203 0.218 0.218 0.218 0.219	ACH NO OUT 0.166 0.159 0.171 0.189 0.222 0.245 0.277 0.289 0.289			MERID F VEL R 1 2,044 2.181 1.326 0.953 1.030 1.138 1.281 1.328 1.328	PEAK SS MACH NO 0.845 0.809 0.7779 0.7783 0.660 0.645
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 20.7 22.9 16.6 13.1 14.7 17.1 19.5 20.7 22.3	DENCE SS 17.4 19.4 13.0 8.9 9.2 9.3 9.2 9.1	DEV 14.7 13.5 12.3 11.0 11.3 10.1 9.7	D-FACT 0.495 0.493 0.487 0.563 0.556 0.520 0.424 0.376 0.350	EFF 1.001 1.209 1.094 0.810 0.756 0.762 0.789 0.821 0.810	LOSS CO TOT -0.00: - -0.172 - -0.076 - 0.145 0.227 0.283 0.321 0.291 0.334	PROF -0.001 -0.172	LOSS P. TOT -0.000 -0.038 -0.017 0.034 0.056 0.069 0.071 0.061 0.066	PRCF -0.000 -0.038

TABLE VIII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 9

(a) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 558

RP 1 2 3 4 5 6 7 8 9	RADII IN 22.949 22 22.479 22 22.004 21 20.577 20 18.682 18 16.787 16 15.342 15 14.849 15 14.343 14	0UT	ABS BETAM IN OUT 7.8 7.5 7.5 3.9 7.4 3.1 8.3 5.4 8.2 5.8 8.9 1.5 1.9 1.8 7.8 3.7	.N 27.8 27.5 27.4 29.3 32.2 35.9 41.9	BETAM 0UT 7.5 3.9 3.1 5.4 5.8 2.6 1.5 1.8 3.7		TEMP RATIO 0.997 0.999 1.000 1.000 1.000 0.999	TCTAL IN 14.10 14.27 14.38 14.67 15.26 15.26 15.69	PRESS RAT10 0.925 0.970 0.973 0.960 0.952 0.946 0.926 0.926
RP 1 2 3 4 5 6 7 8 9	245.5 2 251.1 2 255.9 2 266.4 2 284.4 2 301.7 2 313.9 2 311.9 2		228.7 5.9 231.1 5.4 228.7 4.4 230.2 1.7 234.6 5.9 244.1 1.9 248.9	MER II IN 217.1 222.6 227.1 232.4 240.8 244.5 233.8 222.4 204.6	0 VEL CUT 204.8 228.2 230.8 227.7 229.0 234.4 244.1 248.7 231.6	TANG IN 114.7 116.1 117.8 130.5 151.4 176.8 209.5 218.7 225.8	VEL OUT 26.9 15.7 12.6 21.4 23.4 10.8 6.4 7.7	HEEL !N 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT
R 1 254561 89	0.714 0. 0.733 0. 0.748 0. 0.782 0. 0.840 0. 0.896 0. 0.933 0.	H NO REDUT 1.593 0.7.662 0.7.669 0.7.6664 0.8.676 0.8.676 0.9.67664 0.9.6664 0.9.6664 0.9.6664 0.9.6664 0.9.6664 0.9.6664 0.9.6664 0.9.6664 0.9.6664 0.9.6664	14 0.593 33 0.662 48 0.669 82 0.661 440 0.664 96 0.676 933 0.702 925 0.716	MERID MA IN 0.631 0.650 0.664 0.682 0.71: 0.726 0.695 0.659	0.588 0.660 0.668 0.668 0.668 0.675 0.775 0.715 0.663				PEAK SS MACH NO 1.014 1.029 1.045 1.122 1.241 1.363 2.568 0.015 2.745
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	6.6 -6 8.0 -6 8.8 -5 9.0 -4 7.3 -3 5.0 -4 4.6 -3	E DEV SS 12.3 5.5 12.3 6.5 7.4 6.1 9.9 6.9 11.0 8.6 8.5 8.5 8.3 8.7 8.8	D-FACT 0.283 0.226 0.234 0.269 0.319 0.363 0.372 0.353	EFF 0. 0. 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.261 0.100 0.087 0.120 0.130 0.132 0.172 - 0.142 0.234 -	PROF 0.26: 0.100 0.087 0.120 0.130 0.126 0.213 0.142	0.032	ARAM PRCF 0.090 0.034 0.037 0.037 0.032 -0.050 0.032

EDGES FOR STATOR 9

(b) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 539

	-									
RP 1 2 3 4 5 6 7 8 9	RAD IN 22.949 22.479 22.004 20.577 18.682 16.787 15.342 14.849 14.343	OUT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164	ABS IN 30.7 29.3 29.4 31.7 33.9 38.1 47.2 50.3	BETAM OUT 7.7 5.4 3.1 3.1 1.2 1.9 3.7 4.5	1N 30.7 29.3 29.4 31.7 33.9 38.1 44.0 47.2	DETAM OUT 7.7 5.4 3.8 3.1 1.2 1.9 3.7	TOTA IN 328.2 327.5 327.3 327.4 327.4 328.1 329.8 330.7 330.9	1.000 0.999 1.001 0.999	TOTAL IN 14.62 14.94 15.14 15.22 15.57 15.89 15.83	0.969 0.977 0.969 0.974
RP 1 2 3 4 5 6 7 8 9	IN 242.2 251.5 257.2 264.1 281.0 288.8	VEL 0UT 178.1 199.0 205.2 207.2 206.1 207.6 210.8 206.0 194.3	IN 242.2 251.5 257.2 264.1 281.0 288.8 291.6 292.7	VEL 0UT 178.1 199.0 205.2 207.2 206.1 207.6 210.8 206.0 194.3	MERI IN 208.2 219.2 224.1 224.6 233.2 227.2 209.8 198.9 185.7	D VEL OUT 176.5 198.1 204.7 205.8 207.6 210.6 205.6 193.7	TAN IN 123.7 123.2 126.2 138.9 156.9 178.4 202.5 214.7 223.3	G VEL OUT 23.9 18.9 13.7 11.1 11.0 4.2 7.1 13.4 15.3	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT O. O. O.
RP 1 23 4 5 67 8 9	ABS M IN 0.699 0.729 0.770 0.826 0.851 0.858 0.860 0.852	ACH NO OUT 0.503 0.566 0.585 0.591 0.587 0.592 0.599 0.584 0.549	REL M/ IN 0.699 0.729 0.748 0.770 0.826 0.851 0.858 0.860 0.852	ACH NO OUT 0.503 0.566 0.585 0.591 0.587 0.592 0.599 0.584 0.549	0.655 0.685 0.669	ACH NO OUT 0.499 0.563 0.583 0.590 0.587 0.592 0.599 0.583			0.848 0.904	PEAK SS MACH NG 1.361 1.369 1.169 1.269 1.360 1.457 1.566
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INC I MEAN 9.5 9.8 10.8 11.4 9.0 7.3 6.7 7.6 8.5	DENCE \$5 -4.6 -4.5 -3.5 -1.7 -2.1 -2.1 -1.4 -0.0 1.2	DEV 12.5 9.9 8.1 7.6 8.2 7.1 8.7 10.8	D-FACT 0.408 0.350 0.349 0.367 0.414 0.435 0.432 0.449	EFF 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.207 0.114 0.099 0.069 0.087 0.069 0.083 0.145 0.214	DEFF PROF 0.207 0.114 0.099 0.069 0.086 0.066 0.073 0.128 0.192	LOSS PATOT 0.071 0.039 0.033 0.022 0.025 0.018 0.019 0.032 0.046	ARAM PROF 0.071 0.039 0.033 0.022 0.025 0.017 0.017 0.029 0.042

EDGES FOR STATOR 9

(c) 100 Percent of design speed; intrablade row instrumentation at station 2a; reading number 551

RP 1 2 3 4 5 6 7 8 9	RADII IN 00, 22.949 22.9 22.479 22.4 22.004 21.9 20.577 20.5 18.682 18.7 16.7342 15.6 14.849 15.1 14.343 14.6	IN 35.5 174 35.5 174 33.9 199 34.0 171 35.8 1916 39.2 1946 48.0	BETAM OUT 6.1 4.5 4.1 3.9 3.1 1.3 2.1 3.9	REL IN 35.5 33.9 34.0 35.8 39.2 45.4 48.0 50.7	BETAM OUT 6.1 4.5 4.1 3.9 3.1 1.3 2.1 3.9 4.1	TOTAL IN 334.9 333.3 332.0 330.1 328.2 328.0 329.9 330.9 331.1	TEMP RAT [0 0.998 0.998 1.000 1.000 1.000 0.999 0.997 0.997	TOTAL IN 15.78 15.89 15.69 15.54 15.47 15.68 15.82 15.82	PRESS RATIO 0.936 0.950 0.951 0.963 0.975 0.965 0.938 0.928
RP 1 2 3 4 5 6 7 8 9	252.7 195 255.5 195 259.1 195 272.7 196 279.9 198 284.8 202 286.9 196	JT IN 5.7 247.9 5.9 252.7 5.5 255.5	VEL CUT 186.7 195.9 195.5 195.1 198.4 202.6 196.6 192.3	MERII IN 201.8 209.6 211.8 212.4 221.1 216.8 200.0 192.1 181.5	VEL 0UT 185.7 195.3 195.0 194.7 198.3 198.3 202.5 196.1 191.8	TANG IN 144.0 141.1 142.9 148.4 159.7 177.0 202.8 213.0 221.5	VEL OUT 19.7 15.3 14.1 13.1 10.8 4.4 7.6 13.2 13.9	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R 1 23456789	0.835 0.5 0.841 0.5	1T IN 523 0.709 552 0.726 551 0.737 552 0.750	ACH NO OUT 0.523 0.552 0.552 0.552 0.564 0.564 0.575 0.5563	MERID MA IN 0.577 0.602 0.611 0.615 0.646 0.636 0.586 0.563	0.520 0.550 0.550 0.551 0.563 0.564 0.555 0.542			MER:D F VEL R N 0.920 0.932 0.923 0.917 0.897 0.915 1.012 1.056	
RP 1 2 3 4 5 6 7 8 9	5.00 10.00 15.00 30.00	INCIDENCE MEAN SS 14.3 0.2 14.4 0.1 15.4 1.1 14.6 1.5 11.0 -0.2 8.4 -1.0 8.1 0.1 8.4 0.7 8.9 1.7	DEV 10.9 9.0 8.4 8.3 7.2 8.9 10.9	D-FACT 0.422 0.395 0.404 0.410 0.427 0.449 0.447 0.470 0.484	EFF 0. 0. 0. 0. 0.	LOSS COTOT 0.225 0.169 0.096 0.167 0.196	0EFF PROF 0.225 0.169 0.162 0.118 0.085 0.067 0.087 0.153 0.178	LOSS P TOT 0.078 0.058 0.054 0.037 0.024 0.018 0.022 0.037 0.043	ARAM PROF 0.078 0.058 0.054 0.037 0.024 0.017 0.020 0.034 0.039

EDGES FOR STATOR 9

(d) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 564

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.949 22.479 22.004 20.577 18.682 16.787 15.342 14.343	0UT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164	ABS !N 24.8 24.5 26.4 29.4 33.7 40.1 43.9	BETAM OUT 6.0 2.5 1.6 2.5 3.7 1.6 3.3	IN 24.8 24.3 24.5 26.4 29.4 33.7 40.1 43.3	BETAM OUT 6.5 1.6 2.7 1.6 1.2 3.3	TOTA IN 314.5 314.4 314.5 315.7 317.3 319.3 321.7 322.6 323.7	1.000 1.000 0.999 1.001	TOTAL IN 13.04 13.17 13.29 13.65 13.96 14.24 14.49 14.66 14.70	0.983 0.974 0.963 0.961 0.964 0.969
R 1 23 4 5 6 1 8 9	IN 224.8 229.8 234.4 246.3 264.9	VEL 0UT 191.8 212.7 216.9 219.0 221.0 226.3 236.7 241.5 229.9	REL IN 224.8 229.8 234.4 246.3 264.9 278.6 283.1 284.1 283.1	VEL 0UT 191.8 212.7 216.9 219.0 221.0 226.3 236.7 241.5 229.9	1N 204.0 209.5 213.3 220.7 230.7 231.9 216.5	D VEL 0UT 190.7 212.5 216.8 218.8 220.5 226.2 236.7 241.5 229.5	TAN 1N 94.4 94.5 97.3 109.4 130.1 154.6 182.3 194.9 203.4		WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
B - 254567-89	ABS MA IN 0.659 0.675 0.690 0.727 0.786 0.830 0.841 0.839	OUT 0.556 0.621 0.634 0.640 0.644 0.658 0.688 0.702 0.665	REL MA IN 0.659 0.675 0.727 0.786 0.830 0.841 0.839	OUT 0.556 0.621 0.634 0.640 0.644 0.658 0.688 0.702 0.665	0.628 0.652 0.685	0.553 0.553 0.621 0.634 0.639 0.643 0.658 0.702			VEL R 1 (.935 (.014 (.016 (.991 ().956	PEAK SS 44CH NG 0.866 0.879 0.969 1.201 1.318 1.382
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 3.6 4.8 56.1 4.5 2.9 2.8 3.7	DENCE SS -10.5 -9.5 -8.4 -7.0 -6.6 -6.5 -5.3 -3.9	DEV 10.9 7.0 5.9 7.0 8.8 7.6 8.3 10.7	D-FACT 0.262 0.201 0.205 0.238 0.290 0.323 0.310 0.299 0.332	EFF 0. 0. 0. 0. 0. 0.	LOSS COTOT 0.252 C.082 0.064 0.089 0.109 0.107 0.096 0.083 0.185	OEFF PROF 0.252 0.082 0.064 0.089 0.109 0.107 0.095 0.079 0.179	LOSS P TOT C.087 C.028 C.021 0.028 0.031 0.027 0.022 C.019 0.040	PROF 0.087 0.028 0.021 0.028 0.031 0.027 0.022 0.018 0.039

EDGES FOR STATOR 9

(e) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 567

RP 1 2 3 4 5 6 7 8 9	RADI 1N 22.949 2 22.479 2 22.004 2 20.577 2 18.682 1 16.787 1 15.349 1	0UT 22.944 22.474 21.999 20.574 8.717 6.916 5.624	ABS 1N 31.7 31.0 31.2 32.7 35.3 39.2 45.3 47.5 49.8	BETAM OUT 6.8 4.6 3.1 3.0 1.5 2.0 3.5 4.5	1N 31.7 31.0 31.2 32.7 35.3 39.2 45.3 47.5	BETAM OUT 6.8 4.6 3.1 3.0 1.5 2.0 3.5	TOTAL 1N 321.7 320.8 320.5 319.9 319.4 319.9 323.3 323.3	RATIO 1.000 1.000 1.001 0.999 1.000 1.001 0.999 0.999 0.999	TOTAL 1N 14.28 14.30 14.31 14.21 14.23 14.27 14.75	PRESS RATIO 0.975 0.979 0.980 0.984 0.979 0.955 0.935
RP 1 2 3 4 5 6 7 8 9	ABS IN 227.6 230.0 231.0 235.0 242.2 248.8 259.5 264.4 264.4	VEL 0UT 169.8 185.5 187.2 186.1 185.6 194.7 193.5 184.7	REL 1N 227.6 230.0 231.0 235.0 242.2 248.8 259.5 264.4 264.4	VEL OUT 169.8 185.5 187.2 185.6 184.7 193.5 184.7	MERI IN 193.6 197.5 197.8 197.7 192.9 182.5 178.7	D VEL OUT 168.6 184.9 185.8 185.4 184.3 194.6 193.1	TAN IN 119.7 118.3 119.8 126.9 140.0 157.1 184.6 195.0 201.9	G VEL OUT 20.0 14.9 11.7 10.0 9.7 4.9 6.8 11.9	HHEEL IN 0. 0. 0. 0.	SPEED OUT O. O. O.
R 1034561-89	ABS MAIN 0.660 0.672 0.686 0.709 0.730 0.762 0.777	0.483 0.531 0.537 0.532 0.532 0.529 0.558 0.554 0.527	REL M. IN 0.660 0.669 0.709 0.730 0.762 0.777	NO 30.483: 0.55332 0.555329 0.555527 0.55527	MERID M/ IN 0.561 0.573 0.575 0.577 0.579 0.566 0.536 0.524 0.501	OUT 0.480 0.536 0.533 0.533 0.5532 0.555 0.555 0.555				PEAK SS MACH NG 1.024 1.018 1.027 1.063 1.123 1.192 1.384 1.415
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INC II MEAN 10.5 11.57 12.4 10.4 8.3 8.0 8.0	DENCE 5S -3.6 -2.8 -1.6 -0.7 -0.8 -1.! -0.0 0.3	DEV 11.6 9.1 7.9 7.6 8.1 7.5 8.8 10.6	D-FACT 0.407 0.347 0.364 0.364 0.387 0.415 0.408 0.422 0.453	EFF 0. 0. 0. 0. 0.	LOSS C TOT 0.225 0.398 0.075 0.056 0.072 0.081 0.138 0.198	OEFF PRCF 0.225 0.098 0.080 0.075 0.056 0.072 0.081 0.136 0.195	LOSS P TOT 0.078 0.033 0.027 0.023 0.016 0.018 0.019 0.031	ARAM PROF 0.078 0.033 0.027 0.023 0.016 0.018 0.019 0.031

EDGES FOR STATOR 9

(f) 90 Percent of design speed; intrablade row instrumentation at station 2a; reading number 545

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.949 22.479 22.004 20.577 18.682 16.787 15.342 14.343	OUT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164	ABS IN 43.2 39.6 38.1 39.0 42.7 46.7 48.3 50.2	BETAM OUT 4.4 3.5 3.2 3.3 2.7 2.8 2.2 3.5 4.4	IN 43.2 39.6 38.1 39.0 42.2	BETAM OUT 4.4 3.5 3.2 3.3 2.7 2.8 2.2 3.5 4.4	TOTA IN 327.9 326.0 324.8 322.6 321.8 320.8 322.7 323.1	L TEMP RATIO 0.997 0.998 0.999 1.000 0.998 0.999 0.998 0.998	TOTAL IN 13.99 14.08 14.13 14.01 13.97 14.16 14.49 14.75 14.83	PRESS RATIO 0.938 0.941 0.955 0.960 0.967 0.969 0.944 0.932
RP 1 2 3 4 5 6 7 8 9	ABS IN 207.4 211.9 214.7 215.2 221.4 235.9 250.1 257.0 259.5	VEL 0UT 149.7 155.5 156.7 158.6 156.2 164.8 180.1 178.2 175.0	REL IN 207.4 211.9 215.2 221.4 235.9 250.1 257.0 259.5	VEL 0UT 9.7 55.5 156.7 158.6 156.2 164.8 180.1 178.2 175.0	MERI IN 151.1 163.2 168.9 163.9 173.4 171.5 170.9 166.2	D VEL 0UT 149.3 155.2 156.5 158.4 156.0 164.6 180.0 177.9 174.5	TAN IN 142.1 135.1 132.6 135.6 148.8 159.9 182.0 191.9	G VEL OUT 11.4 9.4 8.8 9.1 7.5 8.0 6.8 10.8 13.4	HEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT O. O. O.
RP: 23456789	ABS M IN 0.591 0.607 0.620 0.640 0.687 0.731 0.752 0.760	ACH NO OUT 0.420 0.438 0.449 0.445 0.469 0.514 0.508 0.498	REL MO 0.591 0.607 0.617 0.620 0.640 0.687 0.731 0.752 0.760	ACH NO OUT 0.420 0.438 0.442 0.449 0.443 0.469 0.514 0.508 0.498	MERID MA IN 0.431 0.467 0.485 0.482 0.474 0.505 0.501 0.501	OUT 0.419 0.437 0.442 0.449 0.443 0.469 0.513 0.507			MER: D F VEL R N 0.988 3.951 0.927 0.947 0.952 0.949 1.050 1.041	PEAK SS 44CH NG 1.152 1.152 1.158 1.165 1.204 1.309 1.361 1.394
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN 22.0 20.1 19.6 18.7 17.3 11.9 9.4 8.7 8.4	DENCE 5S 7.9 5.8 5.6 6.2 2.5 1.4 1.1	9.2 8.0 7.5 7.8 7.9 8.7 8.9	D-FACT 0.498 0.469 0.463 0.447 0.476 0.465 0.441 0.463 0.479	EFF 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.294 0.267 0.196 0.165 0.122 0.105 0.178 0.215	PEFF PROF 0.294 0.267 0.261 0.196 0.165 0.122 0.105 0.177 0.213	LOSS PATOT 0.102 0.091 0.087 0.061 0.047 0.031 0.024 0.040 0.046	RAM PRCF 0.102 0.091 0.087 0.061 0.047 0.031 0.024 0.040

EDGES FOR STATOR 9

(g) 80 Percent of design speed; intrablade row instrumentation at station 2a; reading number 572

RP 1 23 4 5 67 89	RAD1 IN 22.949 2 22.479 2 22.004 2 20.577 2 18.682 1 16.787 1 15.342 1 14.849 1	OUT 22.944 22.474 21.999 20.574 8.717 6.916 5.624	ABS IN 50.0 44.6 42.4 46.1 49.3 47.3 48.1 49.7 51.5	BETAM OUT 2.3 1.6 2.1 3.2 2.5 2.5 1.4 3.1 4.7	REL IN 50.0 44.6 42.4 46.1 49.3 47.3 48.1 49.7 51.5	BETAM OUT 2.3 1.6 2.1 3.2 2.5 2.5 1.4 3.1 4.7	TOTAL IN 320.7 319.0 317.8 316.4 315.8 315.1 315.9 316.4	TEMP RATIO 0.995 0.998 1.000 1.000 0.999 1.001 0.997 0.996 0.998	TOTAL IN 12.95 13.06 13.11 12.97 12.96 13.24 13.56 13.71 13.80	PRESS RATIO 0.945 0.936 0.953 0.953 0.962 0.980 0.961 0.946 0.939
RP 1 23 4 5 6 7 8 9	ABS 1N 172.7 178.7 182.0 180.0 185.7 203.5 219.9 225.7 229.9	VEL 0UT 115.2 115.0 115.5 122.7 127.1 149.9 155.0 153.8 154.5	REL IN 172.7 178.7 182.0 180.0 185.7 203.5 219.9 225.7 229.9	VEL OUT 115.2 115.0 115.7 127.1 149.9 155.0 154.5	MERII 1N 111.0 127.3 134.4 124.8 121.1 138.2 146.9 146.3 143.2	VEL 0UT 115.1 115.0 115.4 122.5 126.9 144.9 153.6 154.0	TAN IN 132.3 125.4 122.7 129.7 140.8 149.5 163.6 172.1 179.8	VEL OUT 4.6 3.23 6.8 5.5 3.3 12.7	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT O. O.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.493 0.512 0.523 0.518 0.536 0.592 0.642 0.660 0.673	OUT 0.325 0.325 0.325 0.327 0.348 0.361 0.429 0.444 0.441	REL MA IN 0.493 0.512 0.518 0.536 0.536 0.642 0.660 0.673	OUT 0.325 0.325 0.327 0.327 0.348 0.361 0.449 0.444 0.441	MERID MA IN 0.317 0.365 0.366 0.359 0.349 0.402 0.429 0.427 0.420	0.325 0.325 0.326 0.348			MER:D F VEL R T 1.037 0.903 0.859 0.982 1.048 1.084 1.055 1.055 1.075	PEAK SS MACH NG 1.004 1.020 0.999 1.044 1.111 1.131 1.182 1.266
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 50.00 70.00 85.00 90.00 95.00	INC II MEAN 28.8 25.1 25.8 25.8 24.4 16.4 10.8 10.1 9.7	DENCE SS 14.7 10.8 9.5 12.7 13.2 7.0 2.7 2.5 2.5	7.1 6.1 6.4 7.7 7.7 8.4 8.2 10.2	D-FACT 0.591 0.590 0.583 0.532 0.523 0.443 0.463 0.480	0. 0. 0. 0. 0. 0.	LOSS C TOT 0.363 0.389 0.279 0.215 0.097 0.160 0.214 0.233	0EFF PROF 0.363 0.389 0.391 0.279 0.215 0.097 0.160 0.214 0.233	LOSS P TOT 0.126 0.133 0.1331 0.087 0.061 0.025 0.037 0.048 0.051	ARAM PROF 0.126 0.133 0.131 0.087 0.061 0.025 0.037 0.048 0.051

EDGES FOR STATOR 9

(h) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 573

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.949 22.94 22.479 22.47 22.004 21.99 20.577 20.57 18.682 18.71 16.787 16.91 15.342 15.62 14.849 15.16	IN 18.4 18.2 18.8 21.2 7 25.4 6 30.4 24 37.4 40.5	BETAM OUT 2.4 0.1 -0.8 -0.9 -1.1 -1.3 -1.1 0.3 2.3	REL IN 18.4 18.2 18.8 21.2 25.4 30.4 40.3 43.2	DETAM OUT 2.4 0.1 -0.8 -0.9 -1.1 -1.3 -1.1 0.3 2.3	TOTA IN 300.9 300.8 301.0 302.0 304.0 306.1 308.7 309.4 310.2	L TEMP RATIO 1.000 1.000 1.000 1.000 1.000 0.998 1.000	TOTAL IN 11.50 11.58 11.64 11.86 12.12 12.41 12.72 12.85 12.91	PRESS RAT10 0.963 0.989 0.992 0.997 0.987 0.977 0.980 0.963
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 183.5 155. 187.1 170. 189.5 174. 196.3 179. 210.9 185. 223.2 193. 230.1 202. 233.1 208. 234.5 203.	IN 0 183.5 6 187.1 0 189.5 4 196.3 4 210.9 4 223.2 0 230.1 1 233.1	VEL 0UT 155.0 170.6 174.0 179.4 185.4 193.4 202.0 208.1 203.9	MERI IN 174.2 177.8 179.4 183.0 190.5 192.5 182.9 177.7 170.8	D VEL OUT 154.8 ;70.6 174.0 179.3 185.3 193.3 202.0 208.1 203.7	TAN IN 57.9 58.5 61.0 90.3 113.1 139.6 150.9	G VEL OUT 6.4 0.3 -2.3 -2.7 -3.4 -4.4 -3.8 1.0 8.3	WHEEL 10. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
P = 25456789	ABS MACH N IN 0.45 0.543 0.45 0.555 0.51 0.582 0.52 0.627 0.54 0.664 0.56 0.683 0.59 0.692 0.61 0.695 0.59	IN 5 0.543 3 0.555 3 0.562 9 0.582 6 0.627 9 0.664 4 0.683 2 0.692	OUT 0.455 0.503 0.513 0.529 0.546 0.569 0.594 0.612 0.598	MERID MA IN 0.515 0.527 0.532 0.543 0.566 0.572 0.543 0.527 0.507	0.454 0.503 0.513 0.529 0.546 0.569 0.594 0.612 0.597			MER!D F VEL R ? 0.889 0.960 0.970 0.980 0.973 1.005 1.104 1.171 1.193	
RP 1 2 3 4 5 6 7 8 9	SPAN ME. 5.00 -2 10.00 -1 15.00 0 30.00 0 50.00 -0 85.00 -0 90.00 0	.8 -16.9 .3 -15.6 .2 -14.1 .9 -12.2 .5 -10.7	7.2 4.6 3.5 3.6 4.1 4.6 5.7 7.4 9.7	D-FACT 0.254 0.195 0.193 0.204 0.247 0.268 0.266 0.251 0.270	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS CO TOT 0.202 0.061 0.041 0.054 0.051 0.086 0.073 0.134	PEFF PROF 0.202 0.061 0.041 0.047 0.054 0.051 0.086 0.073 0.134	LOSS PATOT 0.070 0.021 0.014 0.015 0.015 0.013 0.020 0.016 0.029	PROF 0.070 0.021 0.014 0.015 0.015 0.013 0.020 0.016 0.029

EDGES FOR STATOR 9

(i) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 575

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.949 22.479 22.004 20.577 18.682 16.787 15.342 14.343	0UT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164	ABS IN 31.2 30.2 30.4 32.4 35.5 39.3 44.6 46.7 48.6	BETAM OUT 6.1 4.0 2.8 2.3 2.5 1.3 1.9 3.3	REL IN 31.2 30.2 30.4 32.4 35.5 39.3 44.6 46.7 48.6	BETAM OUT 6.1 4.0 2.8 2.3 2.5 1.3 1.9 3.3 4.6	TOTA 1N 307.6 307.0 306.3 306.3 306.6 307.1 308.6 309.1	RATIO 1.001 1.001 1.000 1.000 1.000 0.999 1.000 1.000	TOTAL IN 12.34 12.36 12.36 12.41 12.47 12.69 12.82 12.79	PRESS RAT10 0.966 0.984 0.989 0.991 0.988 0.987 0.978 0.978
RP 1 2 3 4 5 6 7 8 9	ABS IN 170.3 171.7 172.5 173.9 181.7 189.1 198.3 204.3 205.2	VEL 0UT 128.1 140.3 142.2 142.0 142.9 145.1 156.2 158.2 150.4	REL IN 170.3 171.7 172.5 173.9 181. 189.1 198.3 204.3 205.2	VEL 0UT 128.1 140.3 142.2 142.0 142.9 145.1 156.2 158.2 150.4	MERI IN 145.6 148.3 148.7 148.0 146.3 141.3 140.2 135.6	D VEL OUT 127.4 139.9 142.0 141.9 142.8 145.1 156.1 157.9 149.9	TAN IN 88.2 86.5 93.3 105.5 119.7 139.2 148.6 154.0	G VEL OUT 13.7 9.8 7.0 5.7 6.3 3.2 5.1 9.2	WHEEL IN 0. 0. 0. 0. 0.	SPEED OUT O. O. O. O.
R 1 25 4 5 6 7 8 9	ABS M IN 0.496 0.501 0.508 0.532 0.554 0.582 0.603	ACH NO OUT 0.369 0.412 0.412 0.412 0.414 0.421 0.452 0.458 0.435	REL M. IN 0.496 0.501 0.504 0.508 0.532 0.554 0.582 0.600 0.603	OUT 0.369 0.406 0.412 0.412 0.414 0.421 0.452 0.458 0.435	MERID MA IN 0.424 0.433 0.435 0.429 0.433 0.429 0.415 0.412 0.398	OUT 0.367 0.405 0.412 0.411 0.414 0.420 0.452 0.457 0.433			MERID F VEL R 1 0.875 0.943 0.955 0.967 0.965 1.104 1.126 1.105	PEAK SS MACH NG 0.76! 0.75: 0.754 0.784 0.846 0.8907 1.000 1.051
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 10.0 10.8 11.8 12.1 10.6 8.5 7.3 7.1	DENCE SS -4.1 -3.5 -2.5 -1.0 -0.6 -0.9 -0.8 -0.6	DEV 11.0 8.5 7.1 6.8 7.7 7.2 8.6 10.4 12.0	D-FACT 0.400 0.336 0.331 0.341 0.369 0.389 0.369 0.378 0.415	EFF 0. 0. 0. 0. 0.	LOSS CO TOT 0.217 0.100 0.071 0.058 0.071 0.073 0.065 0.100 0.164	0EFF PROF 0.217 0.100 0.071 0.058 0.071 0.073 0.065 0.100	LOSS P TOT 0.075 0.034 0.024 0.018 0.020 0.019 0.015 0.022 0.035	ARAM PROF 0.075 0.034 0.024 0.018 0.020 0.019 0.015 0.022 0.035

EDGES FOR STATOR 9

(j) 70 Percent of design speed; intrablade row instrumentation at station 2a; reading number 550

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.949 22.479 22.004 20.577 18.682 16.787 15.342 14.343	0UT 22.944 22.474 21.999 20.574 18.717 16.916 15.624 15.164	ABS IN 48.8 43.2 40.6 44.1 47.3 46.4 47.3 48.5 50.0	BETAM OUT 2.4 2.0 2.7 3.5 2.8 2.7 2.1 3.7	IN 48.8 43.2 40.8 44.1 47.3 46.4 47.3	BETAM OUT 2.4 2.0 2.7 3.5 2.8 2.7 2.1 3.7 5.0	TOTA IN 312.9 311.4 310.4 309.5 308.9 308.7 309.1 309.1	RATIO 0.996 0.998 1.001 1.000 1.000 0.997 0.997	TOTAL IN 12.26 12.32 12.35 12.28 12.25 12.45 12.81 12.80	0.966
RP 1 2 3 4 5 6 7 8 9	ABS IN 150.0 154.4 157.1 156.7 161.2 177.2 194.4 197.0 198.4	VEL 0UT 100.3 100.8 101.8 108.7 112.2 129.8 136.1 132.9 133.5	REL 1N 150.0 154.4 157.1 156.7 161.2 177.2 194.4 197.0 198.4	VEL 0UT 100.3 100.8 101.8 108.7 122.2 129.8 136.1 132.9 133.5	MERI IN 98.8 112.6 118.9 112.2 122.2 131.8 130.4 127.4	D VEL 0UT 100.2 100.7 101.7 108.5 112.1 129.7 136.0 132.7 133.0	TAN IN 112.9 105.7 102.6 109.0 118.5 142.8 147.7 152.0	VEL OUT 4.2 3.5 6.6 5.5 6.2 5.0 8.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT O. O. O. O.
RP 1 23 4 5 6 7 8 9	ABS M/ IN 0.431 0.454 0.453 0.467 0.516 0.569 0.577	0.286 0.288 0.290 0.311 0.322 0.374 0.392 0.383 0.384	REL MA 0.431 0.445 0.454 0.453 0.467 0.516 0.569 0.577 0.582	ACH NO OUT 0.286 0.288 0.290 0.311 0.322 0.374 0.392 0.383 0.384	MERID MA IN 0.284 0.324 0.344 0.326 0.317 0.356 0.386 0.382 0.374	0.286 0.287 0.290 0.311 0.321 0.373 0.392 0.382 0.383				PEAK SS MACH NG 0.928 0.9842 0.842 0.880 0.935 0.971 1.049
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INC II MEAN 27.6 23.7 22.2 23.8 22.5 15.6 10.0 9.0 8.3	DENCE 55 13.5 9.4 7.9 10.7 11.3 6.2 1.9 1.3	7.2 6.5 7.0 8.0 7.9 8.7 8.9 10.8	D-FACT 0.584 0.573 0.560 0.511 0.503 0.443 0.464 0.482 0.479	0. 0. 0. 0. 0. 0.	0.098	PROF 0.353 0.370 0.365 0.258 0.187 0.098 0.174 0.219 0.217	LOSS P TOT 0.123 0.126 0.122 0.081 0.053 0.025 0.041 0.049 0.047	PROF

EDGES FOR STATOR 9

(k) 50 Percent of design speed; intrablade row instrumentation at station 2a; reading number 579

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.949 22.944 22.479 22.474 22.004 21.999 20.577 20.574 18.682 18.717 16.787 16.916 15.342 15.624 14.849 15.164 14.343 14.684	ABS IN 53.0 55.1 51.7 46.8 42.6 42.8 44.5 45.7	BETAM OUT 2.6 3.2 3.1 2.6 2.2 3.1 4.0 3.1	REL 1N 53.0 55.1 51.7 46.8 42.6 42.8 44.5 45.7 48.0	BETAM OUT 2.6 3.2 3.1 3.1 2.6 2.2 3.1 4.0 3.1	TOTAL IN 299.6 299.2 298.7 297.4 297.1 297.2 298.0 298.2	TEMP RATIO 0.999 0.997 0.998 0.999 0.999 0.998 0.998	TOTAL (N 11.20 11.13 11.10 10.95 11.09 11.18 11.35 11.41	PRESS RATIO 0.979 0.981 0.986 1.002 0.999 0.997 0.984 0.972
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 106.0 69.1 107.5 69.4 107.0 77.0 117.6 85.1 127.4 91.2 141.0 93.4 146.3 89.6 149.1 85.2	REL IN 106.0 107.5 107.0 117.6 117.4 141.0 146.3	VEL OUT 69.1 69.4 72.3 77.0 85.1 91.2 93.4 89.6 85.2	MERII 1N 63.8 61.5 66.3 73.7 86.6 93.5 100.5 102.2 99.7	VEL OUT 69.0 69.3 72.2 76.9 85.0 91.1 93.3 89.4 85.0	TAN IN 84.7 88.2 84.0 78.6 86.6 96.8 104.7	VEL OUT 1 3.8 3.9 4.1 3.5 5.0 4.6	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
R123456789	ABS MACH NO IN OUT 0.308 0.200 0.313 0.201 0.312 0.210 0.314 0.224 0.344 0.248 0.374 0.266 0.414 0.272 0.433 0.261 0.438 0.248	REL M. IN 0.308 0.313 0.312 0.314 0.344 0.414 0.438	OUT 0.200 0.201 0.221 0.224 0.248 0.266 0.272 0.261	MERID M/ IN 0.186 0.179 0.193 0.215, 0.254 0.274 0.275 0.301 0.293	OUT 0.200 0.201 0.210 0.224 0.248 0.248 0.266 0.272 0.260				PEAK SS MACH NG 0.715 0.751 0.641 0.631 0.657 0.711 0.740 0.772
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 35.6 10.00 35.6 15.00 33.1 30.00 26.5 50.00 17.7 70.00 12.0 85.00 7.2 90.00 6.1	17.7 21.3 18.8 13.4 6.5 2.6 -0.9 -1.5	7.4 7.6 7.4 7.6 7.7 8.1 9.8 11.1	D-FACT 0.616 0.623 0.575 0.501 0.460 0.451 0.491 0.537	EFF 0. 0. 0. 0. 0.	LOSS C TOT 0.336 0.289 0.214 -0.033 0.018 0.037 0.147 0.235 0.287	PROF 0.336 0.289 0.214	LOSS F TOT 0.117 0.099 0.071 -0.010 0.005 0.009 0.034 0.053 0.062	PROF 0.117 0.099 0.071 -0.010 0.005 0.009 0.034 0.053

TABLE IX. - NOISE OF STAGE 15-9 IN ANECHOIC CHAMBER

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(a) Percent speed, 60; fan actual rotative speed, 7730 rpm; percent weight flow, 62.5

Fre-					A	ingle fro	m inlet,	deg						PWL, dB
uency	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W
			One -tl	nird octa	ve band	sound pr	essure l	level, dE	3 (re 0.0	002 μbar	.)			
100	59.6	59.3	58.5	57.6	56.5	57.7	60.2	59.3	58.5	58.5	58.6	56.7	52.3	107.0
125	62.5	62.n	59.2	58.3	58.9	59.2	62.2	63.8	64.4	65.6	66.8	63.9	58.0	112.3
160	61.2	59.5	6r•4	60.7	58.6	57 - 1	58.1	56.7	56.9	56.9	57 0	55-1	52.0	106.4
500	65.2	66.5	66.3	64.7	62.6	62-1	60.8	59.2	58.1	56.9	55 <u>.</u> 7	54+3	52.5	109.4
250	F9.4	68.2	6ו3	67.2	66+3	64.5	63.5	60.9	60.3	59.5	58.7	55.5	52.9	11109
315	68.6	58.9	68.n	67-1	65•5_	64.2	63.0	61.4	<u> 59.2</u>	58.4	57.6	54.7	51.6	111.6
400	64-1	54.1	63.7	62.8	61.0	60.2	58.7	56.1	54.5	53.8	53.1	50 • 7	47.3	107.2
ካባለ	61.5	<u> 51 • 5 </u>	61 • 1	6p.8	59.7	58-4	57.9	55.5	54.7	52.8	51.0	48.2	45+3	105.7
630	63.9	64.2	64.3	63.2	62 • 4	60.9	59 - 1	56.5	55.6	54.2	52.7	49.6	46.5	107.9
80.0	63-1	63.4	63.5	63.2	62.0	60.0	58.5	55.7	53.8	53.2	52.7	49.8	46.4	107-4
1001	59.A	50.6	60.7	50-1	58.5	57 • 0	55,5	52 - 1	49.5	47.0	47.6	45 • 0	42.3	104-1
121	62.n	61.8	61.4	59.8	58 • 2	56.7	54.9	51.5	49.2	47.2	46.0	43.2	39.8	104-1
1nin	76.4	72.8	67.8	67.3	67.9	66-1	63.3	59.2	55.9	52-1	51.0	48.6	48.2	112.7
251.0	ль.э	83.2 04.4	77.5 63.2	76.7 62.9	78 • 5 62 • 2	76.5 60.4	73.2 59.1	69.1 55.0	65.5 51.7	49.2	59.9 48.0	58 • 0 46 • 4	57.9 43.3	122.9 107.5
3150	6F.3	69.8	67.5	65.8	64.8	63.5	61.2	57 • 1	53.8	51.8	51.3	49.3	47.4	110.9
4CLU	F9.7	72.0	70.3	69.0	67 • 3	68.0	65.0	60.4	57.0	54.8	54.3	53.0	50.6	114.3
5(0)	4.43	70.2	69.6	49 <u>1</u>	68.9	67.3	65.0	61-2	56.9	55.1	55 • 4	53.1	51.5	114.4
6309	77.2	80.1	79.7	79.n	79.4	79.0	76.3	71.8	68.1	67.6	66.6	63.1	62.0	125.5
Arra	76.5	At . 7	78.0	74.9	78.5	79.2	74.6	68.3	65.6	68.2	65+2	60.5	62.1	125.0
10001	72.n	72.4	70.8	71.9	72.4	71.6	68,5	63.9	59.3	57.6	57.6	56.7	54.6	119.4
2501	72.2	74.8	74.8	76.1	78 - 1	76.7	77.0	73.5	66.0	65.5	63.1	60.8	60.6	126.5
Ann i	67.6	69.5	69.9	72.3	74.0	72.6	73.0	69.6	62.2	61.0	59.1	57 • 3	56+7	124.4
<u> 2000</u>	67 • n	66.9	66.7	68.B	68.4	69.4	68,5	64.7	57.7	54.9	54+4	53.3	52.2	122.6
25[10	40.0	61.8	61.3	62.3	63.6	62.6	63.7	57.4	51-1	48.6	48.8	47.7	45.4	120.6
<u> 3150</u>	52.4	53.9	54.3	55.9	56.1	55.9	57 - 1	51.0	43.9	41-3	43.3	41.0	39.4	119.2
4010	41.8	44.4	45 • 1	46 • ŋ	47 • 4	46.1	47.6	42.7	34.6	33.0	34.2	32 • 1	31.5	118.0
2000	2 R • 2	32.3	32.2	32.5	34.5	32.9	34.9	30.6	22.4	21.9	20.2	19.1	19.7	115.9
437 h	11.0	15-0	16.4	15.8	18.8	16 • 1	18.2	15.5	7.2	7.6	2.6	2.8	5 • 1	115.5
401110	<u>• n</u>			• 0	•0		0	0_	• 0	.0_	.0	•0	•0	114-4
r ~ 1	49.2	47.6	84.5	83.6	84.8	84-1	81.2	76.8	72.9	72.2	70.6	67 • 5	66+9	
limit	₽ ₽ ₽ 0	86.3	E.ER	22.4	83.4	82.6	79,8	75.7	72.3	71.7	70.6	67 • 6	66+2	
היינ	}•7•9	44.5	83.3	P 2 . 4	83.4	82.6	79.9	75.9	73.0	72.6	71.8	69.0	66.8	
B + 1	111.5	00.3	97.8	96.9	97.2	96.5	93.9	89.8	86.6	85.7	84.8	81.8	80.3	
PALT	155.2	100.5	102.7	101.9	103.0	102-3	99.1	94.9	91.5	89.4	88.9	86.0	85.5	
-				N	FA 77	30 RPM						<u> </u>		
				N	FK 78	09 RPM								
				N	FD 130	20 RPM								
		_		N	UMBER O	F BLADE	S 53							
			TAME	48 [EG F	TWET	45 D	EG F						
					ACT	7.36	GM/M3							

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(b) Percent speed, 60; fan actual rotative speed, 7724 rpm; percent weight flow, 55.7

Fre-						Angle fi	rom inle	t, deg						PWL, dB
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W)
			One-	third oc	tave ban	d sound p	pressure	level, d	lB (re 0.	0002 μb	ar)			
100	57.8	57.6	57 • D	55,8	54.7	55.5	58.0	57.3	56.7	56.6	56.6	54.7	50.6	105.1
125	61.5	61.0	57.7	57.0	58.4	58.2	61.4	63.5	63.7	65.0	66.3	63.7	58.0	111.8
160	57.2	57.2	57.4	57.5	56.1	54.6	56.6	54.0	54.1	54.3	54.5	52.6	49.5	103.8
200	62.5 65.9	64.2	63.6 64.8	62.0	60 • 1	59.8	59.1	57.0	55.6	54.1	52.7	51.6	50.5	107.0
25 <u>0</u> 315	65.6	65.4 65.9	65.0	64.1	63.0	62.0 61.0	59.7	58.2 58.4	56.8 56.0	55.0	55.4 54.1	53.0 51.7	50+2 48+6	108.9
400_	60.8	60.8	60.4	59.3	57.5	56.7	55.7	52.8	52.0	50.9	49.8	47.7	44.3	103.9
500	59.0	59.3	58.6	58.5	57.2	55.4	55.2	52.8	51.9	50.2	48.5	45.7	42.5	103.1
630	61.7	62.2	62-1	61.5	60.4	58.6	56.9	54.7	52.9	51.7	50.5	47.1	44.2	105.8
800	50 • 4	51.2	61.5	60.9	59.5	57.8	56.5	53.4	51.3	50.6	49.9	47.0	44.2	105.1
1000	59.5	59.8	59.7	59.6	<u> 57 • 7</u>	56.2	55.0	51.8	49.0	<u> 47.0</u> .	46.6	44.2	41.3	103.4
1250	61.0	62.8	63.1	62.3	59.9	58.7	56.4	53.5	50.7	48.9	47.8	45.2	41.5	105.9
1600 2000	78.9 79.8	82.7	83.3	79.2	77•6 76•5	75.3	72.8	69.2	63,9	61.9	59.0	57.6	55.5	124.1
25on	67.2	68.2	67.4	66.9	66.0	74.7 63.9	72.0 62.4	58.6 58.5	64.3 54.7	61.8 52.4	59.1 51.3	57.5 50.2	56.4 <u>47.3</u>	122.8 111.3
3150	69.3	69.8	69.8	69.8	68.6	66.7	64.0	60.4	56.8	54.3	54.3	53.0	50+4	113.8
4000	70.5	71.5	72.3	71.5	70.8	68.7	66.2	61.9	59.0	56.5	56.8	55.5	52.9	116.2
5000	72.8	73.7	74.3	73.6	73.2	70-6	68.0	63.7	60.6	58.8	58.9	57 • 4	55.7	118.4
6300	77.7	80.3	81.0	80.0	78.9	77.0	75.0	71.8	68.6	65.8	65.8	63.6	62.0	125,2
8000	73.2	75.2	75.7	75.9	75.0	73.5	70-1	66.1	63.1	61.4	60.9	59.5	57 • 6	121+4
10000	71.7 73.2	72.9	73.8 74.8	74.4 76.6	74.9 75.9	73.3	71.3 76.3	65.9 72.7	61.5	59.8	60.3	58.9	57.3 59.4	121.6
16000	67.9	69.0	69.9	70.8	70.5	70.1	71.0	65.6	60.5	57.2	57.4	56.1	54.2	126.1 122.0
20000	68.5	68.1	68.0	68.5	68.6	67.9	68.5	62.2	56.2	53.7	54.4	53.3	52.2	122.3
25000	52.9	63.3	62.8	63.3	64+1	62.9	63.5	57.4	51.1	48.3	49.8	48.7	46.9	121.0
31500	53.6	55.2	55.5	56.4	57 . 1	55.9	57.1	50.5	43.6	40.8	43.3	41.5	39.9	119.6
40000	44.3	46.6	46.9	46.7	48.7	46.9	48.9	43.2	34.6	33.5	35.2	33.1	32.3	119-1
50000	30.9	34.3	34.5	33.5	36.0	32.9	35.9	31.3	22.4	22.4	21.2	50.3	50.9	116.9
80000	14.9	20.3	19.2	17.8	20.3	17-1 -0	18.9	16.0	7.7	8.1	3.4	3.8	5.8	116.7
DBA	85.7	87.6												
D88	84.5	86.4	88.4 87.2	86.9 85.6	85•1 83•7	83.4 82.0	81.1	77.4 76.2	73.4 72.4	71.1 70.6	70.5 70.1	68.1	66.7 65.7	
DBC	84.5	86.3	87.1	85.5	83.6	81.9	79.7	76.4	72.9	71.4	71.2	69.1	66.3	
PNL	97.7	99.1	99.6	98.7	97.5	95.6	93.6	90.2	87.1	84.8	84.5	82.5	80.5	
PNLT	103.0	102.5	102.8	102.0	100.6	98.7	96.8	93.5	91.0	88.0	87.8	85.6	84+5	
		1.2 V - V									_ 1.2			
				N	FA 77	24 RPM								
						O3 RPM								
				N		20 RPM								
				N	UMBER O	F BLADE	S 53							
			TAMB	48 p		TWET		EG .F						
					ACT		EM/M3							
						7.36 (29.2	⊌M/M3 HG							

TABLE IX. - Continued.

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(c) Percent speed, 60; fan actual rotative speed, 7749 rpm; percent weight flow, 51.2

7.3 0.0 7.0 7.0 2.5 4.7 4.1 0.1 8.7	58.3 61.3 5/.5 63.7 64.2 64.6 61.3	20 One 56.5 57.7 57.1 53.6 64.0 63.7	55.1 57.3 57.0 62.0 63.2	54.0 57.7 55.6 00.1	50 nd sound _55.0 57.9 _53.6 59.1	60 1 pressur 57.5 61.7 56.1 58.3	70 e level, 56.3 63.3 53.7	80 dB (re 0 55.7 62.9 53.6	90 .0002 μl 55.8 64.6 53.8	100 par) 55.8 66.3 54.0	110 54.0 63.9	120 49.3 58.5	dB (re 10 ⁻¹³ V
0.0 7.0 2.5 4.7 4.1 0.1 8.7	5/.5 63.7 64.2 04.6 61.3	56.5 57.7 57.1 53.6 64.0	55.1 57.3 57.0 62.0 63.2	54.0 57.7 55.6 00.1	_55.0 57.9 _53.6	57.5 61.7 56.1	56.3 63.3	55.7 62.9	55.8 64.6	55 <u>.8</u> 66.3	63.9	58.5	104.3
0.0 7.0 2.5 4.7 4.1 0.1 8.7	5/.5 63.7 64.2 04.6 61.3	56.5 57.7 57.1 53.6 64.0	55.1 57.3 57.0 62.0 63.2	54.0 57.7 55.6 00.1	_55.0 57.9 _53.6	57.5 61.7 56.1	56.3 63.3	55.7 62.9	55.8 64.6	55 <u>.8</u> 66.3	63.9	58.5	
0.0 7.0 2.5 4.7 4.1 0.1 8.7	5/.5 63.7 64.2 04.6 61.3	57.7 57.1 53.8 64.0	57.3 57.0 62.0 63.2	57 • 7 55 • 6 00 • 1	57.9 53.6	61.7 56.1	63.3	62.9	64.6	66.3	63.9	58.5	
7.0 2.5 4.7 4.1 0.1 8.7 1.4	5/.5 63.7 64.2 64.6 61.3	57•1 53•8 54•0	57.u 62.u 63.2	55•6 60•1	53.6	50.1							4444/
2.5 4.7 4.1 0.1 8.7 1.4	63.7 64.2 64.6 61.3	53.8 54.0	63.2	• Ü • 1						34.0	51.9	49.5	103.3
4.7 4.1 0.1 8.7 1.4	64.2 64.6 61.3	64.0	63.2				56.2	55.3	53.9	52.5	51.3	50.5	106.7
0 • 1 8 • 7 1 • 4	61.3	63.7		62.0	60.5	59.5	56.9	55.8	54.6	53.9	51+8	48.9	107.7
8.7 1.4			63.1	61.2	59.7	58.5	57.4	54.7	53.7	52.6	51.0	47.4	107.3
8.7 1.4		59.4	58.8	58.0	56.5	55.2	52.3	51.0	49.9	48.8	46.7	43.6	103.5
	62.3	59.1	58.5	56.9	55.9	54.7	52.0	51.9	50.0	48.0	45.7	42.5	103+4
	62.2	52.1	61.2	6n+1	58.6	.57.1	54.7	53.1	.51.9	50.Z_	47.4	44.5	105.7
1.6	62.4	62.8	61.9	60.0	58.8	57.8	53.9	52.3	51.9	51.4	48.3	45.2	106.1
1.5	• 0	5.5 · D	62.9	61.0	59.5	58.0	54.8	52.3	50.5	49.9	47.2	44.3	106.3
4.0	60.6	06.6	65.3	63.4	62.7	61.2	58.0	55.5	52.7	51.5	49.2	45+3	109.9
9.1	83.U	84.3	81.8	79.1	76.8	.75.6	72.2	.08.9	60.1	60.7	60.8	57 • 0	125.5
9.5					76.2	75.0	71.1	68.3	64.8	60.1	60.3	56 • 1	124.0
												52.3	110.5
													118.0
													120.0
													121.4
							-/1-1						125.0
													121.6
										62.1			122.6
									57.2	57.1			124.9
													122.9
													122.3
5 • 4									41.3				120.5
5.9	40.6	49 • 1	47.7										119.8
3.2	35.6	36.8	35.0	37 • 3				22.9					118.0
7.4	22.8	21.7	19.3	21.8				7.7					118.0
• 0	•0	• 0	• 0	• 0	• 0	• 0	.0	•0	• 0	• 0	•0	•0	116.5
6.4	86.8	89.5	87.8	86.5	84.7	83.1	79.2	75.9	73.3	71.6	70.4	68.0	
5 • 1				85 • 1	83.3	81.8	77.9	74.8	72.4	70.9	69.6	66.9	
5.0	87.4	88 • 1		45-1	83.2	81.7	78.0	74.9	72.9	71.0	70.3	67.3	
		100.7			96.7	94.9	91.2	88.3	86.0	85.3	83.7	81.5	
2.5	100.7	104+1	102.3	101.5	99.8	98.1	94.4	91.4	89.2	88.5	86.8	84.2	
	9.1 9.5 13.8 3.8 5.3 2.0 3.2 2.0 3.2 2.0 3.2 2.0 3.2 2.0 3.2 2.0 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	9-1	9-1	9-1	9-1 85.0 84.3 84.8 79.1 9-5 81.5 81.7 79.7 77.8 1-7 /2.9 72.7 71.9 70.7 3.8 /4.3 74.0 73.8 72.3 3.8 /5.5 75.5 74.6 5.3 76.9 77.3 76.1 76.2 7.2 79.6 80.7 79.2 79.2 3.2 75.9 74.6 74.7 75.4 3.2 74.8 75.0 75.1 75.6 9.4 70.7 71.4 71.3 71.0 0.8 70.7 70.2 69.5 68.6 4.1 65.3 54.6 64.8 65.4 5.9 40.6 49.1 4/.7 49.4 3.2 35.6 35.0 37.3 37.3 7.4 22.8 21.7 19.3 21.8 •0 •0 •0 •0 6.4 88.8 89.5 87.8 86.5 5.1 87.5 88.2 86.5 85.1 8.3 100.1 100.7 99.2 99.2 99.6	9-1 83.0 84.3 #1.8 79-1 76.8 9-5 81.5 81.7 79-7 77.8 76.2 1-7 /2.9 72.7 71.9 70.7 69.2 3.8 /4.3 74.0 73.8 72.3 70.7 3.8 /5.5 /5.8 75.5 74.6 72.2 5.3 /6.9 /7.3 76.1 /6.2 73.8 7.2 79.6 80.7 79.2 79.2 77.2 3.2 75.2 76.2 75.7 75.5 73.7 2.0 73.9 74.6 74.7 75.4 74.3 3.2 74.6 75.0 75.1 75.6 75.5 9.4 70.7 71.4 71.3 71.0 70.6 6.8 70.7 70.2 69.6 68.6 68.6 6.4 55.0 57.8 57.2 57.9 56.7 5.9 40.6 49.1 47.7 49.4 47.7 3.2 35.6 35.0 37.3 34.2 7.4 22.8 21.7 19.3 21.8 18.3 .0 .0 .0 .0 .0	9-1 83.0 84.3 81.8 79.1 76.8 75.6 9-5 81.5 81.7 79.7 77.8 76.2 75.0 1-7 72.9 72.7 71.9 70.7 69.2 68.1 3.8 /4.3 74.0 73.8 72.3 70.7 68.7 3.8 /5.5 /5.8 75.5 74.6 72.2 70.7 5.3 76.9 /7.3 76.1 /6.2 73.8 71.3 7.2 79.0 80.7 79.2 79.2 77.2 74.8 3.2 75.2 76.2 75.7 75.5 73.7 71.1 2.0 73.9 74.6 74.7 75.4 74.3 73.3 3.2 74.6 75.0 75.1 75.6 75.5 75.8 9.4 70.7 71.4 71.3 71.0 70.6 70.0 0.8 70.7 70.2 69.5 68.6 68.6	9-1 83.0 84.3 #1.8 79.1 76.8 75.6 72.2 9-5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 1.7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.0 3.8 75.5 75.8 75.5 74.6 72.2 70.7 66.4 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 7.2 79.0 80.7 79.2 79.2 77.2 74.8 71.1 67.4 7.2 79.0 80.7 79.2 79.2 77.2 74.8 71.1 67.1 22.0 73.9 74.6 74.7 75.4 74.3 73.3 67.9 33.2 74.6 74.7 75.4 74.3 73.3 67.9 9.4 70.7 71.4 71.3 71.0 70.6 <td>9-1 83.0 84.3 81.8 79.1 76.8 75.6 72.2 68.9 9-5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 68.3 1-7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.0 61.3 3.8 75.5 75.6 75.5 74.6 72.2 70.7 66.4 63.0 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 7.2 79.0 80.7 79.2 79.2 77.2 74.8 71.1 66.1 3.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.0 2.0 73.9 74.6 74.7 75.4 74.3 73.3 67.9 63.5 3.2 74.6 75.0 75.1 75.6 75.5 75.8 69.7 64.5 3.2 74.6 74.7 75.4 74.3 75.3 67.9 63.5 3.2 74.6 75.0 75.1 75.6 75.5 75.8</td> <td>9-1 83.0 84.3 #1.8 79.1 76.8 75.6 72.2 68.9 60.1 9-5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 68.3 64.8 1-7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.3 60.7 59.5 3.8 75.5 75.5 74.6 72.2 70.7 66.4 63.0 60.8 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 7.2 79.0 80.7 79.2 79.2 70.7 66.4 63.0 60.8 5.3 76.9 77.3 76.1 76.2 73.8 71.1 66.4 63.0 60.8 7.2 79.0 80.7 79.2 79.2 77.2 74.8 71.1 68.1 65.6 3.2 72.2 76.2 75.7 75.5</td> <td>9-1 85.0 84.3 A1.8 79.1 76.8 75.6 72.2 68.9 60.1 60.7 9.5 81.5 81.5 A1.7 79.7 77.8 76.2 75.0 71.1 68.3 64.8 60.1 1.7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 57.3 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.0 61.3 59.5 58.3 3.8 75.5 75.8 75.5 74.6 72.2 70.7 66.4 63.0 60.8 60.3 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 62.4 72.2 79.5 80.7 79.2 79.2 77.2 74.8 71.1 68.1 65.6 65.6 3.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.3 73.3 67.9 63.5 60.8 61.3 3.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 75.8 69.7 64.5 62.2 62.1 74.8 70.7 71.4 71.3 71.0 70.6 70.0 64.4 59.5 57.2 57.1 71.0 70.8 70.9 70.7 71.4 71.3 71.0 70.6 70.0 64.4 59.5 57.2 57.1 65.0 70.8 70.9 70.9 70.2 69.5 68.6 68.5 61.9 50.7 53.9 54.4 64.1 65.3 54.8 64.8 65.4 64.4 64.5 57.1 51.4 49.3 50.0 65.4 64.1 65.3 54.8 64.8 65.4 64.4 64.5 57.1 51.4 49.3 50.0 65.9 40.6 49.1 47.7 49.4 47.7 48.9 43.0 35.1 34.1 35.4 40.3 32.3 35.8 36.8 35.0 37.3 34.2 36.5 32.1 22.9 22.2 22.0 77.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 4.4 40.0 60.3 50.8 65.8 65.1 83.3 81.8 77.9 74.8 72.4 70.9 71.6 83.3 100.1 100.7 99.2 98.6 96.7 94.9 91.2 88.3 85.3 85.3</td> <td>9-1 85.0 84.3 81.8 79.1 76.8 75.6 72.2 68.9 60.1 60.7 60.8 9.5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 68.3 64.6 60.1 60.3 1.7 72.7 71.9 70.7 69.2 68.1 64.3 60.7 88.2 57.5 55.7 81.7 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 57.5 55.7 81.8 75.5 75.6 72.2 70.7 66.4 63.0 60.8 60.3 59.3 57.5 81.8 75.5 75.6 75.5 74.6 72.2 70.7 66.4 63.0 60.8 60.3 59.3 57.5 75.7 75.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 62.4 60.9 72.2 79.5 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 62.4 60.9 72.2 79.5 76.2 75.7 75.5 73.7 71.1 67.1 63.6 61.7 61.2 60.5 63.6 63.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.6 61.7 61.2 60.5 60.5 63.6 61.3 59.9 83.2 74.6 74.7 75.4 74.3 73.3 67.9 63.5 60.8 61.3 59.9 83.2 74.6 75.0 75.1 75.6 75.5 75.8 69.7 64.5 62.2 62.1 60.3 99.4 70.7 71.4 71.3 71.0 70.6 70.0 64.4 59.5 57.2 57.1 56.1 60.8 70.9 70.2 69.5 68.6 68.6 68.5 61.9 50.7 53.9 54.4 53.9 64.1 65.3 54.8 64.8 65.4 64.4 64.5 57.1 51.4 49.3 50.4 59.4 50.9 70.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 4.4 5.0 70.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 4.4 5.0 70.4 67.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 7.9 4.4 5.0 70.4 67.4 88.8 89.5 88.2 86.5 85.1 83.3 81.8 77.9 74.8 72.4 70.9 72.9 71.8 70.9 69.6 67.4 88.1 80.2 86.7 88.2 86.5 85.1 83.3 81.8 77.9 74.8 72.4 70.9 69.6 70.9 67.4 88.1 80.1 100.7 99.2 98.6 96.7 94.9 91.2 88.3 86.5 85.3 85.7</td> <td>9-1 83.0 84.3</td>	9-1 83.0 84.3 81.8 79.1 76.8 75.6 72.2 68.9 9-5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 68.3 1-7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.0 61.3 3.8 75.5 75.6 75.5 74.6 72.2 70.7 66.4 63.0 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 7.2 79.0 80.7 79.2 79.2 77.2 74.8 71.1 66.1 3.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.0 2.0 73.9 74.6 74.7 75.4 74.3 73.3 67.9 63.5 3.2 74.6 75.0 75.1 75.6 75.5 75.8 69.7 64.5 3.2 74.6 74.7 75.4 74.3 75.3 67.9 63.5 3.2 74.6 75.0 75.1 75.6 75.5 75.8	9-1 83.0 84.3 #1.8 79.1 76.8 75.6 72.2 68.9 60.1 9-5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 68.3 64.8 1-7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.3 60.7 59.5 3.8 75.5 75.5 74.6 72.2 70.7 66.4 63.0 60.8 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 7.2 79.0 80.7 79.2 79.2 70.7 66.4 63.0 60.8 5.3 76.9 77.3 76.1 76.2 73.8 71.1 66.4 63.0 60.8 7.2 79.0 80.7 79.2 79.2 77.2 74.8 71.1 68.1 65.6 3.2 72.2 76.2 75.7 75.5	9-1 85.0 84.3 A1.8 79.1 76.8 75.6 72.2 68.9 60.1 60.7 9.5 81.5 81.5 A1.7 79.7 77.8 76.2 75.0 71.1 68.3 64.8 60.1 1.7 72.9 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 57.3 3.8 74.3 74.0 73.8 72.3 70.7 68.7 64.0 61.3 59.5 58.3 3.8 75.5 75.8 75.5 74.6 72.2 70.7 66.4 63.0 60.8 60.3 5.3 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 62.4 72.2 79.5 80.7 79.2 79.2 77.2 74.8 71.1 68.1 65.6 65.6 3.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.3 73.3 67.9 63.5 60.8 61.3 3.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 73.7 71.1 67.1 63.0 61.7 61.2 73.9 74.6 74.7 75.5 75.8 69.7 64.5 62.2 62.1 74.8 70.7 71.4 71.3 71.0 70.6 70.0 64.4 59.5 57.2 57.1 71.0 70.8 70.9 70.7 71.4 71.3 71.0 70.6 70.0 64.4 59.5 57.2 57.1 65.0 70.8 70.9 70.9 70.2 69.5 68.6 68.5 61.9 50.7 53.9 54.4 64.1 65.3 54.8 64.8 65.4 64.4 64.5 57.1 51.4 49.3 50.0 65.4 64.1 65.3 54.8 64.8 65.4 64.4 64.5 57.1 51.4 49.3 50.0 65.9 40.6 49.1 47.7 49.4 47.7 48.9 43.0 35.1 34.1 35.4 40.3 32.3 35.8 36.8 35.0 37.3 34.2 36.5 32.1 22.9 22.2 22.0 77.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 4.4 40.0 60.3 50.8 65.8 65.1 83.3 81.8 77.9 74.8 72.4 70.9 71.6 83.3 100.1 100.7 99.2 98.6 96.7 94.9 91.2 88.3 85.3 85.3	9-1 85.0 84.3 81.8 79.1 76.8 75.6 72.2 68.9 60.1 60.7 60.8 9.5 81.5 81.7 79.7 77.8 76.2 75.0 71.1 68.3 64.6 60.1 60.3 1.7 72.7 71.9 70.7 69.2 68.1 64.3 60.7 88.2 57.5 55.7 81.7 72.7 71.9 70.7 69.2 68.1 64.3 60.7 58.2 57.5 55.7 81.8 75.5 75.6 72.2 70.7 66.4 63.0 60.8 60.3 59.3 57.5 81.8 75.5 75.6 75.5 74.6 72.2 70.7 66.4 63.0 60.8 60.3 59.3 57.5 75.7 75.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 62.4 60.9 72.2 79.5 76.9 77.3 76.1 76.2 73.8 71.3 67.4 63.9 62.1 62.4 60.9 72.2 79.5 76.2 75.7 75.5 73.7 71.1 67.1 63.6 61.7 61.2 60.5 63.6 63.2 75.2 76.2 75.7 75.5 73.7 71.1 67.1 63.6 61.7 61.2 60.5 60.5 63.6 61.3 59.9 83.2 74.6 74.7 75.4 74.3 73.3 67.9 63.5 60.8 61.3 59.9 83.2 74.6 75.0 75.1 75.6 75.5 75.8 69.7 64.5 62.2 62.1 60.3 99.4 70.7 71.4 71.3 71.0 70.6 70.0 64.4 59.5 57.2 57.1 56.1 60.8 70.9 70.2 69.5 68.6 68.6 68.5 61.9 50.7 53.9 54.4 53.9 64.1 65.3 54.8 64.8 65.4 64.4 64.5 57.1 51.4 49.3 50.4 59.4 50.9 70.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 4.4 5.0 70.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 4.4 5.0 70.4 67.4 22.8 21.7 19.3 21.8 18.3 19.7 16.3 7.7 7.9 7.9 4.4 5.0 70.4 67.4 88.8 89.5 88.2 86.5 85.1 83.3 81.8 77.9 74.8 72.4 70.9 72.9 71.8 70.9 69.6 67.4 88.1 80.2 86.7 88.2 86.5 85.1 83.3 81.8 77.9 74.8 72.4 70.9 69.6 70.9 67.4 88.1 80.1 100.7 99.2 98.6 96.7 94.9 91.2 88.3 86.5 85.3 85.7	9-1 83.0 84.3

TABLE IX. - Continued. $[Model \ SPLS \ for \ standard \ day \ (59^{0} \ F; \ 70 \ percent \ RH) \ at \ 100-ft \ radius. \]$

(d) Percent speed, 70; fan actual rotative speed, 8976 rpm; percent weight flow, 72.8

	0 61.1 62.0 63.2 67.7 72.4 70.9 67.6 64.7 66.1 65.1	61.1 61.5 61.7 68.7 71.2 71.1 67.3 64.5	60.7 59.4 63.6 68.3 71.3 70.0 66.4 64.1	30 -third od 59.3 58.8 66.0 66.5 70.4 68.9	40 etave ban 58.5 58.7 64.4 64.8 68.8 67.2	59.5 59.2 62.9 63.8	60 pressure	61.3 60.5	80 dB (re 0.	61.0	61.1	56.7	120 54.3	dB (re 10 ⁻¹³ W
125 160 200 250 315 400 500	62.0 63.2 67.7 72.4 70.9 67.6 64.7 66.4 66.1	61.5 61.7 68.7 71.2 71.1 67.3 64.5	60.7 59.4 63.6 68.3 71.3 70.0 66.4 64.1	59.3 58.8 66.0 66.5 70.4 68.9	58.5 58.7 64.4 64.8 68.8	59.5 59.2 62.9 63.8	51.7 59.7	61.3 60.5	61.0	61.0	61.1			
125 160 200 250 315 400 500	62.0 63.2 67.7 72.4 70.9 67.6 64.7 66.4 66.1	61.5 61.7 68.7 71.2 71.1 67.3 64.5	59.4 63.6 68.3 71.3 70.0 66.4 64.1	58.8 66.0 66.5 70.4 68.9	58 • 7 64 • 4 64 • 8 68 • 8	59.2 62.9 63.8	59.7	60.5						
160 200 250 315 400 500	63.2 67.7 72.4 70.9 67.6 64.7 66.4 66.1	61.7 68.7 71.2 71.1 67.3 64.5 67.5	63.6 68.3 71.3 70.0 66.4 64.1	66.5 70.4 68.9	64 • 8 64 • 8	62.9 63.8			62.2					
200 250 315 400 500 630	67.7 72.4 70.9 67.6 64.7 66.4 66.1	68.7 71.2 71.1 67.3 64.5 67.5	68.3 71.3 70.0 66.4 64.1	66.5 70.4 68.9	64 • 8 68 • 8	63.8	59.9			61.0	59.8	60.4	53.3	108.9
250 315 400 500 630	72.4 70.9 67.6 64.7 66.4 66.1	71.2 71.1 67.3 64.5 67.5	71.3 70.0 66.4 64.1	70•4 68•9	68.8		44 4	66.2	70.6	68.6	66.5	67 • 1 57 • 1	55.5	115.4
315 400 500 630	70.9 67.6 64.7 66.4 66.1	71 • 1 67 • 3 64 • 5 67 • 5	70 • 0 66 • 4 64 • 1	68.9		67.8	63.1 67.0	64.2	63.3	59.3 62.1	58.2	50.3	54 • 7 55 • 9	111.5
400 500 630	67.6 64.7 66.4 66.1	67.3 64.5 67.5	66.4 64.1			66.0	64.7	63.6	61.2	60.0	58.9	57.2	53.9	113.5
500 630	66.4 66.1	67.5			64+5	63-0	62.0	59.6	57.5	56.6	55.6	53.4	50.6	110.3
	66.1			63.8	62 • 4	60.9	60.7	58.8	57.4	55.6	53.8	51.2	48.0	108.5
800		E E =	67.3	66.5	65 • 4	64.4	62.4	60.0	58.9	57.6	56.2	52.9	50+0	111-1
	63.0	66.7	66.8	66.2	65•3	63.5	61.8	59.2	57.3	56.5	55.7	52.8	49.7	110.6
1000		63.6	63.5	63-1	62.0	60.2	58.0	55.3	52.8	51.0	51.6	48.7	46.1	107.2
1250	62.5	64.1	63.6	62.6 61.8	6n•7	59.2	57.7	54.8	51.5	49,7	48.8	45.8	42.8	106.6
1600	63•1 67•8	63.3 68.5	62.6 69.0	69.5	60•4 68•0	58.8	57 • 1 63 • 7	53.0 59.9	50.4 56.0	48.6 53.8	54.1	50 • 3	43.0 48.4	106.0 113.1
2000 2500	65.2	65.2	64.4	64.6	63.7	62.4	61.1	57 • D	53.2	51.4	50.5	48.7	45.3	109.2
3150	72.3	70.3	69.8	67.5	67 • 6	65.2	64.5	60.9	56.5	55.3	53.8	53.0	50.9	113.2
4000	77.0	76.5	75+5	73.5	72.6	7n•5	70.0	66.4	62.5	59.5	59.6	58.0	55.9	118.9
5000	71-1	71.9	71.8	70.6	70 • 2	69.6	68.3	63.9	60.4	57.6	57.7	55 • 1	53.5	116.5
6300	70.9	72.6	72.0	72.2	72.4	71.2	69,5	65.3	61.6	59.6	58,6	56.9	55.2	118.3
8000	77.5	80.2	79.2	81.2	81 • 5	An.5	79.4	75.3	71.6	68.9	67.4	66.5	63.3	128.0
	74.7	74.9	74.1	74.7	74 • 4	73.8	71.8	67.4	62.5	60.3	60-1	59.2	57 • 3	122.0
12500	74.0	75.1 73.7	75.0 76.2	75•1 77•3	74 • 4	74.2	74.3 78.0	68.5 75.9	63.5	60.7 65.7	60.9	59.3 64.1	58.4	124.0
16000 20000	66.8	67.9	67.0	70.0	70 • 4	70.1 70.6	71.5	65.9	61.0	57.2	57.2	55 • 4	63•4 54•0	124.5
25000	63.4	65.8	65.0	66.3	68-1	68.1	70.7	64.6	59.4	55.1	55.3	53.7	52.4	126.4
31500	54.6	57.0	57.3	59.4	59.9	50.9	61.9	55.8	50.7	45.8	47.3	45.0	43.9	123.4
40000	45.4	48.1	48.6	49.2	51+2	49.9	52.4	47.5	40.4	37.1	38.4	36.1	35.6	122.2
50000	31.5	35.8	35.8	36.2	39.3	37.2	40-0	36.1	28.4	24.7	24.5	23.9	24.2	120.5
63000	15.4	21.0	20.5	20 • 1	55.8	20.8	23.7	21-0	12.5	9-1	6.6	7.5	9 • 1	120.2
<u>8ეეეე</u>	0	• 0	0	•0	0	•0	.0	. 0	.0	0	<u>•</u> 0	• 0	• 0	117.6
	A3.3	84.0	83.4	83.6	83.4	82.3	81.2	77 • 1	73.5	71-1	70+2	68.7	66+1	
DBA	82.6	83-1	82.5	82.6	82.2	81-1	79.9	76.4	74-1	72-1	70.9	69.8	65.8	
PNL	82.8	83.3	82.7	82.7	82.3	P1 • 2	80-1	76.8	75.3 87.7	73.4	72.2	71.3	66.6	
	97.7	97.7 101.0	97.0	97.0	96+8	98.9	94.4	90.8	91.0	85.4 88.7	84.3	82.9	79.8	
1		1011	100.0	100	100-0	, .	,, •,	, , , ,	7120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3, 30	3301		
				N	FA 89	76 RPM								
				N	FK 90	65 RPM 20 RPM								
					UMRER OI		S 53							
			TAMR	48 D	EG F	THET	46 p	FG F				·		

TABLE IX. - Continued.

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(e) Percent speed, 70; fan actual rotative speed, 8991 rpm; percent weight flow, 66.8

Fre-						Angle f	rom inle	t, deg						PWL,
quency	_				40			70	0.0	0.0	100	110	100	dB
	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W
			One	-third oc	tave bar	nd sound	pressure	e level,	dB (re 0.	0002 μb	ar)			
100	59.6	59.1	59.5	57.8	57•2	57.7	60.2	59.3	58.7	50.8	58.8	57.0	52+3	107.2
125	60.8	សប∗ប	58.9	58.0	57 • 9	57 - 2	58.4	60.0	61.2	60.9	60.5	59.7	52.0	108.3
1 6g	62.0	61.2	63.1	60.7	65 • 1	59.9	62.4	67 . U	70.1	69.3	66.5	67 • 1	53.5	115.8
200	64.7	66.5	65.8	64.7	62 • 1	61.8	60.8	59.2	58.5	57.0	55.7	54.8	52.7	109.3
250	69.7	68.9	68.0	67.9	66.8	. 55∙0	64.0	61.7	6Q.3	59.6	58.9	56.3	53.7	112.3
315	68.9	69-1	67.7	67-1	66 • 0	63.7	63.0	61.6	59.0	50.2	57 • 4	55 • 2	52.6	111.6
400	64 • 8	64.3	63.9	62.8	61.5	60.5	59.0	56.0	54.7	54.0	53.3	50.9	48.1	107.5
500	62.0	62.3	62.1	61.5	₽0•5	59.2	58.2	50.J	55.2	53.2	51.3	48.9	45.5	106.3
63 0.	65.2	65.7	o5•6	65.0	64 • 4	62.1	60.6	58.2	56.9	55.4	54.0	51.1	47.7	109.4
800	64 - 1	65.2	64.5	64.7	63.3	62.0	60.3	57 • 4	55.1	54.5	53.9	50.8	47.9	108.8
1000	61.5	62.6	62.2	61.6	<u>60•7</u>	59+4	57.5	54.3	51.0	49.7	50.1	47.0	44.3	106.0
1250	62.7	63.3	63.1	62.6	60 • 9	59.4	58.2	54.8	52.0	49.9	49.0	45.9	42+5	106.6
.1600 _	71:4	68.3	67.1	67.5	67 • 9	67.8	64.8	60 - 2	56.1	54.1	52.0	49.8	47.5	115.8 X
2000	83.8	79.2	77.5	79 ∙ 8	80.5	80.0	77.2	72.6	67.0	66.0	62.9	60.0	58.6	124.9 >
_2500 _	67.9	67.9	67 • 2	67 - 1	66 • 7	64,9	63.6	59.8	55.7	53.2	25.9	50•7	47 • 8	111+9
3150	68.8	70.0	68.8	69.0	68.6	66.7	66.0	61.0	58.3	55.3	54.8	53.5	50 • 1	114.0
4000	74.0	73.5	72.8	72.3	72.1	Z0.2	69.5	65 · 4	61.3	50.8	58.6	57•□	54 <u>•6</u>	117.7
5000	73.8	73.7	74.1	73.6	73 • 2	71.6	69.3	65.2	61.1	59.3	56.9	57.9	56.2	118.7
. <u>63</u> .0.0	. 75.2	70.1	76.2	76.7	76.2	74-0	70.8	67 - 1	64.1	62-1	61.6	60+1	59 • Q	121.6
8000	77.7	80.2	80.5	82.7	81.0	81.2	78.4	76.3	71.6	68.4	68.2	66.5	64.6	128.4 -
10000	76.2	76.9	75.6	77.2	76•7	75.3	72.5	67.9	64.0	61.5	61.8	60.9	59.3	123.7
12500	74.7	75.8	75.5	77.1	76.3	75.5	75.2	69.7	64.8	62.2	62.6	60.8	59.3	125.3
16000	71.4	73.5	74.4	76.6	77.0	77.9	78,3	74.3	68.7	63.9	64.6	6 <u>2</u> .j	60.2	129.0
20000	69.3	69.6	68.7	70.8	71.9	71.6	72.2	66.9	61.0	57.4	57.1	55.8	54.2	125.5
25000	64.8	66.0	65.5	66.8	67 • 6	67.8	69.5	63.8	57.9	54.3	54.6	53.4	51.9	125.8
31500	56 • 1	57.9	58.0	60.1	60+6	60-2	61.8	56.0	49.4	45.5	47.0	45.4	44+1	123.7
40000	46.6	49.3	49.4	50.4	51 • 6	50.9	52.8	47.9	40.1	36.8	30.7	36.8	35.5	122.8
50000	33.7	37.8	36.7	37.7	39 • 7	37.4	40.9	36.5	27.9	24.6	24.7	24.6	24.7	121.2
63000	17.4	23.0	22.2	21.3	24.0	21.0	24.4	21.0	11.7	9.6	6.8	8.2	10.3	120.9
80000	• 0	• 0	• 0	• 0	• 0	• 0	.0	.0	.0	• 0	• 0	• 0	• 0	118.6
DHA	87.3	85.7	85.1	86.3	86.1	85.4	82.9	79.3	75.0	74.6	71.6	69.8	67.9	
DRB	86.1	84.5	83.8	84.9	84.7	84.0	81.5	78.1	74.8	72.8	71.9	70.1	66.9	
DAC	86.1	84.5	83.9	84.9	84.7	83.9	81.6	78.3	75.6	73.9	73.1	71.4	67.2	
PNL	100.3	98.1	97.5	98.7	98.3	97.4	95.1	92.0	88.3	85.8	85.2	83.4	80.9	
PNLT	106.2	101.8	101.0	105.6	103.6	103.0	100.2	96.2	92.3	89.9	88.7	86.6	85.1	
						91 RPM			-					
				<u>N</u>		87 RPM								
				<u>.</u>	UMBER C	F BLADE	S 53							

TAMB 48 DEG F TWET 45 DEG F
HACT 7.39 GM/M3
BAR 29.2 HG

TABLE IX. - Continued.

一本・中の一年の大学を記していませんできる。

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(f) Percent speed, 70; fan actual rotative speed, 9017 rpm; percent weight flow, 62.7

Quency- One-third octave band sound pressure level, dB (re 0,0002 µbar) 100	Fre-						Angle f	from inle	et, deg						PWL, dB
100 59.1 58.8 58.0 57.1 57.0 56.7 59.2 58.6 57.7 57.8 57.8 58.2 51.8 125 50.0 59.5 58.2 58.3 58.7 56.7 58.4 59.5 60.4 60.6 60.6 60.6 59.6 51.8 160 61.7 61.5 63.4 67.0 66.6 59.6 63.9 67.2 69.9 69.7 69.5 66.9 58.7 200 65.0 66.2 66.1 64.5 62.8 61.6 61.1 59.2 57.8 56.6 55.7 58.0 \$2.7 250 66.7 67.7 67.3 66.7 66.7 50.8 63.0 61.5 57.2 57.8 56.6 55.7 58.0 \$2.7 250 66.7 67.7 67.3 66.7 66.7 69.7 67.3 66.7 67.7 67.3 66.7 67.7 67.3 66.7 62.8 63.0 63.0 60.4 59.3 58.6 57.9 55.3 32.7 315 67.4 67.6 66.5 66.1 64.7 62.7 62.0 61.1 59.2 57.0 55.9 55.2 54.0 \$2.7 40.0 53.1 52.1 62.0 61.6 61.6 61.1 59.2 57.0 55.0 53.0 52.1 49.9 46.8 50.0 63.1 62.0 61.6 61.8 61.4 60.8 59.7 58.4 57.7 55.5 54.2 52.2 50.3 44.0 51.1 62.0 61.5 59.5 58.2 55.3 54.0 53.0 52.1 49.9 46.8 50.0 61.5 61.8 61.4 60.8 59.7 58.4 57.7 55.5 54.2 52.2 50.3 44.7 45.3 63.0 64.4 64.7 54.8 64.2 63.1 61.1 59.9 57.2 55.0 54.2 52.2 50.3 44.7 45.3 63.0 64.4 64.7 54.8 64.2 63.1 61.1 59.9 57.2 55.0 54.2 52.2 50.3 44.7 45.3 63.0 64.4 64.7 54.8 64.2 61.1 61.7 59.9 57.2 55.0 54.2 52.2 50.3 44.7 45.3 63.0 62.6 61.7 59.7 58.2 55.1 52.4 50.7 50.9 47.7 45.1 125.0 64.7 65.6 65.9 64.8 63.7 62.7 59.7 58.2 55.1 52.4 50.7 50.9 47.7 45.1 125.0 64.7 65.6 65.9 64.8 63.7 62.7 59.7 58.2 55.1 52.0 50.7 50.9 47.7 45.1 125.0 64.7 65.6 65.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 40.2 45.5 16.0 7.6 65.6 65.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 40.2 45.5 16.0 7.6 65.0 65.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 40.2 45.5 16.0 7.6 62.0 67.5 64.0 62.0 67.5 64.1 63.0 60.1 60.0 67.5 64.1 63.0 60.1 60.0 67.5 64.1 63.0 60.0 67.5 64.1 63.0 60.0 67.5 64.1 63.0 60.0 67.5 64.1 63.0 60.0 67.5 64.1 63.0 60.0 67.5 64.1 63.0 60.0 67.5 64.0 63.0 67.5 64.1 63.0 60.0 67.5 64.0 63.0 67.5 64.0 63.0 67.5 64.1 63.0 60.0 67.5 64.0 63.0 67.	quency-	0	10	20	30	40	50	60	70	80	90	100	110	120	(re 10 ⁻¹³ W
125 60.0 59.5 58.2 56.3 58.7 56.7 56.7 58.4 59.5 60.4 60.6 60.6 60.6 50.6 50.6 63.0 60.4 60.4 60.6 59.2 51.8 160 61.7 61.5 63.4 67.0 60.6 59.6 63.9 67.2 69.9 69.7 69.5 66.0 58.7 250.0 65.0 66.2 66.1 64.5 62.8 61.6 61.1 59.2 57.6 56.0 55.7 54.0 52.7 250.0 68.7 67.7 67.3 66.7 66.7 67.7 67.3 66.7 69.7 62.7 62.0 61.1 59.2 57.6 56.0 55.7 54.0 52.7 31.5 67.4 67.6 66.5 66.1 64.7 62.7 62.7 62.0 61.1 58.2 57.0 55.9 54.0 53.0 32.1 49.9 48.8 50.0 61.5 61.6 61.6 61.6 61.5 59.5 55.2 55.2 54.0 53.0 52.1 49.9 48.8 50.0 61.5 61.6 61.6 61.6 60.8 59.7 50.4 57.7 55.5 54.2 52.2 50.3 48.7 45.3 63.0 64.4 64.7 64.8 64.2 63.1 61.1 50.9 57.2 55.0 54.4 53.2 50.1 47.7 45.0 63.0 64.1 64.9 64.5 64.8 63.0 64.2 63.1 63.1 62.9 64.8 63.7 62.7 57.2 55.0 54.4 53.2 50.1 47.7 45.0 60.0 64.1 64.9 64.5 64.8 63.7 62.7 51.2 50.9 57.2 55.0 54.4 53.2 50.1 47.7 45.0 62.8 64.7 65.6 65.9 64.8 63.7 62.7 51.2 50.0 55.9 54.2 53.7 50.4 47.7 45.1 125.0 64.7 65.6 65.9 64.8 63.7 62.7 51.2 50.0 55.0 52.9 52.3 49.2 45.5 125.0 125.0 64.7 65.6 65.9 64.8 63.7 62.7 61.2 50.0 55.0 52.9 52.3 49.2 45.5 125.0 125.0 76.6 74.5 69.8 66.9 66.9 66.3 66.7 57.5 73.0 60.8 67.5 64.1 63.8 60.1 250.0 76.6 74.5 69.8 66.9 66.9 66.3 65.9 66.3 65.8 62.2 50.0 50.9 54.7 33.3 49.7 49.7 125.0 76.0 76.0 76.0 77.5 73.0 70.5 75.0 75.0 75.0 75.0 75.0 75.0 75				One	e-third o	ctave ba	nd sound	pressur	e level,	dB (re 0	. 0002 μ	oar)			
160	100		58.8	58.0	57 • 1	57 • 0	56.7	59.2	58.6	57.7	57.8	57.8	56.2	51.8	106+3
200 65.0 66.2 66.1 64.5 62.8 61.6 61.1 59.2 57.8 56.6 55.7 54.6 52.7 255.6 66.7 67.7 67.3 66.7 65.8 63.8 63.0 60.4 59.3 58.6 57.9 553.3 52.7 315 67.4 67.6 66.5 66.1 64.7 62.7 62.0 61.1 58.2 57.0 35.9 54.0 51.1 40.0 63.1 63.1 62.9 61.6 60.5 55.5 55.5 58.2 58.2 55.3 34.0 63.0 52.1 49.9 48.8 50.0 61.5 61.8 61.4 60.8 59.7 55.4 57.7 55.5 54.2 52.2 50.3 44.7 45.8 50.0 61.5 61.8 61.4 60.8 59.7 55.4 57.7 55.5 54.2 52.2 50.3 44.7 45.8 50.0 64.1 64.9 64.5 64.4 63.3 61.1 59.9 57.2 55.5 54.2 52.2 50.3 44.7 45.0 50.0 64.1 64.9 64.5 64.4 63.3 61.5 59.8 56.9 54.0 54.2 53.7 50.0 47.7 1000 62.6 63.1 63.5 62.2 61.7 59.7 56.2 55.1 52.8 50.7 50.7 50.9 47.7 45.1 1250 64.7 65.0 65.9 64.8 63.7 62.7 61.2 55.0 55.0 55.0 52.9 52.3 49.2 45.5 1600 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 58.0 55.0 52.9 52.3 49.2 45.5 1600 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 58.0 55.0 52.9 52.3 49.2 45.5 1600 76.6 74.5 69.8 68.9 68.3 65.8 67.9 63.8 69.9 54.7 53.1 49.7 20.0 69.3 67.0 80.2 79.5 80.3 80.5 77.5 73.0 68.6 67.5 64.1 63.8 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.8 55.2 51.8 51.8 40.0 72.3 73.5 73.0 72.5 72.0 77.2 69.5 65.4 61.3 59.0 58.8 57.0 54.4 4000 75.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.8 60.8 60.9 57.0 75.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.8 60.9 57.0 57.0 75.8 75.3 74.8 73.0 71.2 66.0 63.0 61.8 60.8 60.8 60.9 57.0 57.0 75.8 75.3 74.8 77.0 77.5 78.7 78.7 78.5 79.7 78.6 79.0 79.4 78.9 77.1 78.0 69.0 62.6 62.7 61.4 59.2 60.1 50.0 75.2 75.8 75.8 75.3 74.8 77.5 77.7 78.7 78.7 78.7 78.7 78.0 78.9 78.9 77.1 78.0 62.1 62.7 61.4 59.2 60.1 60.0 75.5 79.9 78.6 79.0 79.1 78.9 77.1 78.0 69.0 62.5 63.0 61.5 64.0 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63	125			58.2		58.7	56.7	58.4	59.5			60.8	59.2	51.8	108.0
250 68.7 67.4 67.5 66.1 65.8 63.8 63.0 60.4 59.3 59.6 57.9 55.3 52.7 52.7 51.3 52.7 315 67.4 67.6 66.5 66.1 64.7 62.7 62.0 61.1 55.2 57.0 55.9 54.0 51.1 49.9 68.8 50.0 61.5 61.8 62.9 61.0 60.5 59.5 59.5 58.2 57.0 55.9 59.9 54.0 51.1 50.0 61.5 61.8 62.9 61.0 60.5 59.5 58.2 55.3 54.0 53.0 52.1 49.9 46.8 50.0 61.5 61.8 61.4 60.8 59.7 58.4 57.7 55.5 54.2 55.3 54.0 53.0 52.1 49.9 46.8 50.0 61.5 61.8 61.4 60.8 59.7 58.4 57.7 55.5 54.2 55.0 54.2 53.0 52.1 49.9 46.8 50.0 61.5 61.8 61.2 61.1 52.9 57.2 55.5 54.2 53.0 52.1 47.1 60.0 64.1 64.9 64.5 64.4 63.3 61.5 59.8 56.9 54.2 55.1 52.8 51.4 53.2 50.1 47.1 60.0 62.1 63.1 63.1 62.9 61.7 59.7 56.2 55.1 52.8 51.2 50.7 50.9 47.7 100.0 62.1 63.1 63.5 62.6 61.7 59.7 56.2 55.1 52.8 50.7 50.9 47.7 47.7 120.0 62.1 63.1 63.1 63.7 62.7 61.7 59.8 50.0 50.9 54.0 55.0 52.9 54.7 53.1 120.0 76.0 74.5 69.9 68.8 68.9 68.9 68.3 65.6 62.2 58.0 55.9 54.7 53.1 49.2 120.0 69.3 37.0 80.2 79.5 80.3 80.5 77.5 73.0 68.0 67.5 64.1 63.8 60.1 250.0 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.0 53.2 51.8 51.8 31.8 40.0 75.0 70.0 75.6 75.3 74.6 73.0 71.2 69.5 65.4 61.3 59.0 54.6 63.6 60.1 62.0 67.5 64.1 63.8 60.1 62.0 67.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 7															116.2
315 67.4 67.6 66.5 66.1 64.7 62.7 62.0 61.1 56.2 57.0 55.9 54.0 51.1 40.0 63.1 63.1 63.1 62.9 61.6 60.5 59.5 58.2 55.3 54.0 53.0 52.1 49.9 46.8 50.0 61.5 61.8 61.4 60.8 59.7 38.4 57.7 55.5 54.2 52.2 80.3 44.7 45.3 63.0 61.4 64.7 64.0 63.5 59.7 38.4 57.7 55.5 54.2 52.2 80.3 44.7 45.3 63.0 64.4 64.7 64.9 64.5 63.1 61.1 59.9 57.2 55.6 54.4 53.2 50.1 47.0 60.0 64.1 64.9 64.5 64.2 63.1 61.1 59.9 57.2 55.6 54.4 53.2 50.1 47.0 10.0 52.6 63.1 63.5 50.6 63.7 62.7 61.2 58.0 56.9 54.8 54.2 53.7 50.0 47.7 10.0 52.6 63.1 63.5 50.6 63.7 62.7 61.2 58.0 55.0 52.9 52.3 40.2 45.5 15.0 0 4.7 65.6 55.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 40.2 45.5 15.0 0 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 56.6 50.9 54.7 53.3 49.7 20.0 89.3 87.0 80.2 79.5 80.3 80.5 77.5 73.6 68.8 67.5 64.1 63.8 60.1 250.0 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.8 55.2 51.8 20.0 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.8 55.2 51.8 3150 72.3 73.5 73.5 73.5 73.5 72.6 71.2 69.5 65.4 61.3 59.0 58.8 57.0 58.4 40.0 75.0 76.0 75.8 75.3 74.8 73.0 71.2 66.6 53.0 61.8 60.8 60.0 57.6 58.4 40.0 75.0 75.0 75.0 75.0 75.3 74.8 73.0 71.2 66.6 53.0 61.8 60.8 60.0 57.0 58.4 40.0 75.0 75.0 75.0 75.0 75.0 75.0 75.3 74.8 73.0 71.2 66.0 63.0 61.8 60.8 60.0 57.0 58.4 40.0 75.0 75.8 77.2 77.3 76.9 76.7 74.3 71.8 68.2 64.6 62.6 62.7 61.4 59.2 63.0 76.7 77.2 77.3 76.9 76.7 74.3 71.8 68.2 64.6 62.6 62.7 61.4 59.2 63.0 76.7 77.2 77.3 76.9 76.7 77.2 77.3 76.9 75.0 76.0 77.5 76.7 71.2 66.3 64.0 63.0 62.0 57.0 63.0 61.8 60.0 58.7 7.0 77.2 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.3 76.9 77.2 77.3 66.0 63.0 63.0 63.0 63.0 63.0 63.0 63															109.3
400 63.1 63.1 62.9 61.6 60.5 59.5 58.2 55.3 54.0 53.0 52.1 49.9 48.8 500 61.5 61.8 61.4 60.8 59.7 55.4 57.7 55.5 54.2 52.2 50.3 44.7 45.3 630 64.4 64.7 64.8 64.2 63.1 61.1 59.9 57.2 55.6 54.2 52.2 50.3 44.7 45.3 630 64.4 64.7 64.8 64.2 63.1 61.1 59.9 57.2 55.6 54.4 53.2 50.1 47.0 600 64.1 64.9 64.5 64.4 63.3 61.5 59.8 59.8 54.2 53.7 50.0 47.7 1000 62.6 63.1 63.5 62.6 61.7 59.7 55.2 55.1 52.8 54.2 53.7 50.0 47.7 1000 62.6 63.1 63.5 62.6 61.7 59.7 55.2 55.1 52.8 54.2 53.7 50.0 47.7 45.1 1250 64.7 65.6 65.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 49.2 45.5 1200 76.6 74.5 69.8 68.8 68.9 68.3 65.6 62.2 56.6 50.9 54.7 53.3 49.7 2000 69.3 67.0 80.2 79.5 80.3 80.5 77.5 73.0 68.6 67.5 64.1 63.6 60.1 52.2 50.1 50.0 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.6 55.2 51.3 349.7 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.6 55.2 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 54.4 51.3 59.0 58.6 57.0 54.4 4000 75.0 76.0 75.8 75.3 74.8 73.0 71.2 66.5 63.0 61.8 60.8 60.0 57.6 50.0 57.6 50.0 57.0 57.0 57.0 57.0 57.0 57.0 57.0															11112
500 61.5 61.6 01.4 60.8 59.7 58.4 57.7 55.5 54.2 52.2 50.3 48.7 45.3 63.0 63.0 64.4 64.7 64.8 64.2 63.1 61.1 59.9 57.2 55.0 54.4 53.2 50.1 47.0 800 64.1 64.9 64.5 64.4 63.3 61.5 59.8 56.9 54.6 54.2 53.7 50.0 47.7 1000 62.6 63.1 63.5 62.6 61.7 59.7 58.2 55.1 52.8 50.7 50.9 47.7 49.1 1250 64.7 65.0 65.9 64.6 63.7 62.7 61.2 58.0 55.0 52.9 52.3 49.2 43.5 1000 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 58.6 55.0 52.9 52.3 49.2 43.5 1000 76.6 74.5 69.8 68.8 68.9 68.9 68.3 65.8 62.2 58.6 58.9 54.7 33.3 49.47 2000 89.3 37.0 80.2 79.5 80.3 80.5 77.5 73.0 68.8 67.5 54.7 33.3 49.47 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.8 55.2 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 65.5 69.5 57.5 56.8 57.5 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 65.4 61.3 59.0 58.8 57.0 54.4 4000 75.0 76.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 67.0 57.6 54.4 4000 75.0 76.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 67.0 57.6 54.4 6000 75.0 76.3 77.2 77.3 76.9 76.7 74.3 71.6 68.2 64.6 62.6 62.7 61.4 59.2 6300 76.3 77.2 77.3 76.9 76.7 74.3 71.6 68.2 64.6 62.6 62.7 61.4 59.2 6300 79.4 60.4 60.5 61.7 62.3 61.0 76.9 75.3 71.3 66.1 60.8 63.6 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61															110.5
6300 64.1 64.9 64.7 64.8 64.2 6311 61.1 59.9 57.2 55.6 54.4 53.2 50.1 47.0 1000 62.6 63.1 63.0 63.5 62.6 61.7 59.7 58.2 55.1 52.8 50.7 50.9 47.7 45.1 1250 64.7 65.6 65.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 49.2 43.5 1200 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.5 58.6 50.9 54.7 33.3 49.7 2000 69.3 67.0 60.2 79.5 60.3 60.5 60.9 54.7 33.3 49.7 2000 69.3 67.0 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 69.9 67.5 64.1 63.6 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 69.9 57.7 56.8 55.2 58.6 50.9 54.7 33.3 49.7 2000 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.6 55.2 51.8 31.8 49.7 3															106.4
800 64.1 64.9 04.5 64.4 63.3 61.5 59.8 56.9 54.8 54.2 53.7 50.0 47.7 1000 62.8 63.1 63.5 62.6 61.7 59.7 59.7 58.2 55.1 52.8 50.7 50.9 47.7 45.1 1250 64.7 65.6 65.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 49.2 45.5 1600 76.6 77.5 69.8 68.8 68.9 68.3 65.8 62.2 58.0 55.0 52.9 54.7 53.3 49.7 2000 89.3 97.0 80.2 79.5 80.3 60.5 77.5 73.6 88.6 67.5 64.1 63.6 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.6 55.2 51.8 3150 72.3 73.5 73.5 72.6 71.2 69.5 69.5 69.5 69.8 57.0 54.4 4000 75.0 75.0 75.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.9 57.6 54.4 4000 75.0 76.0 77.2 77.3 76.9 76.7 74.3 71.6 66.2 64.6 62.6 62.7 61.4 59.2 63.0 76.3 77.2 77.3 76.9 77.2 73.8 69.3 66.1 64.8 60.8 60.9 57.6 60.0 79.4 80.4 80.5 81.7 82.3 81.0 78.9 75.3 71.3 66.1 67.7 66.2 63.0 61.5 80.0 76.3 77.2 77.8 77.4 77.4 77.5 70.5 65.5 65.9 63.0 62.6 62.6 62.6 62.7 61.4 59.2 60.0 76.3 77.2 73.8 77.4 77.4 77.5 70.5 65.5 63.0 62.0 62.6 62.6 62.6 62.6 62.6 62.6 62															105+6
1000 62.8 63.1 63.5 62.6 61.7 59.7 58.2 55.1 52.8 50.7 50.7 47.7 45.1 1250 64.7 65.6 65.9 64.8 63.7 62.7 61.2 55.0 52.9 52.9 52.9 49.2 45.5 1600 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 58.0 52.9 52.3 49.2 45.5 1600 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 58.0 52.9 52.3 49.2 45.5 1200 89.3 97.0 80.2 79.5 80.3 80.5 77.5 73.0 68.0 67.5 64.1 63.6 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.0 55.2 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 65.4 61.3 59.0 58.8 57.0 54.4 4000 75.0 75.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 67.0 54.4 4000 75.0 75.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 67.0 57.6 5000 76.3 77.2 77.3 76.9 76.7 74.3 71.8 68.2 64.0 62.6 62.7 61.4 59.2 6300 76.7 78.6 79.0 79.0 78.9 77.2 73.8 69.3 66.1 64.6 64.6 63.6 63.0 61.5 60.0 60.0 57.6 6000 79.4 80.4 80.5 81.7 82.3 81.0 78.9 77.1 75.0 69.0 65.5 63.0 61.3 60.0 75.5 70.9 76.6 78.2 78.9 77.1 75.0 69.0 65.5 63.0 63.3 62.2 60.1 12500 75.2 70.8 75.8 77.8 77.4 77.0 77.5 77.5 77.5 77.5 77.5 77.5 77.5															108.5
1250 64.7 65.6 05.9 64.8 63.7 62.7 61.2 58.0 55.0 52.9 52.3 49.2 45.5 1600 76.6 74.5 09.8 66.8 68.9 68.3 65.6 62.2 58.6 50.9 54.7 53.3 49.7 2000 89.3 87.0 80.2 79.5 80.3 80.5 77.5 73.0 68.8 67.5 64.1 63.8 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 50.8 53.2 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 65.4 61.3 59.0 58.6 57.0 54.4 4000 75.0 75.0 75.6 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.8 60.0 57.6 50.0 75.0 75.0 75.6 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.0 57.6 50.0 76.3 77.2 77.3 76.9 76.7 74.3 71.8 66.2 64.6 62.6 62.7 61.4 59.2 63.0 76.3 77.2 77.3 76.9 76.7 74.3 71.8 69.3 66.1 64.8 64.6 63.6 61.5 80.0 79.4 80.4 80.5 81.7 62.3 81.0 78.9 77.2 73.8 69.3 66.1 64.8 64.6 63.6 61.5 80.0 79.4 80.4 80.5 81.7 62.3 81.0 78.9 75.0 65.5 63.0 63.3 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.3 00.6 16000 72.1 74.2 74.4 76.8 77.5 77.9 77.8 72.1 67.2 64.9 64.9 62.6 60.4 62.6 55.2 50.0 66.8 67.8 67.6 67.7 65.7 66.8 77.7 77.8 72.1 77.8 72.1 77.8 72.1 77.8 72.1 77.8 72.1 77.8 72.1 77.8 72.1 77.8 72.1 77.4 77.8 72.1 72.1 72.1 72.1 72.2 66.0 63.0 64.0 63.9 62.3 60.0 14.4 60.0 77.0 77.8 72.1 72.1 72.1 72.1 72.1 72.1 72.1 72.1													47.7		108.6 106.9
1600 76.6 74.5 69.8 68.8 68.9 68.3 65.8 62.2 58.6 50.9 54.7 53.3 49.7 2000 89.3 67.0 80.2 79.5 80.3 80.5 77.5 73.6 68.8 67.5 64.1 63.8 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.8 53.2 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 65.4 61.3 59.0 58.8 57.0 58.4 4000 75.0 76.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.8 60.0 57.6 5000 76.3 77.2 77.3 76.9 76.7 74.3 71.2 66.6 63.0 61.8 60.8 60.8 60.0 57.6 5000 76.3 77.2 77.9 79.0 78.9 77.2 73.8 69.3 66.1 64.8 64.6 63.6 61.5 50.0 58.0 59.0 58.8 57.0 58.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59															109.4
2000 80.3 87.0 80.2 79.5 80.3 80.5 77.5 73.0 68.8 67.5 04.1 63.8 60.1 2500 72.4 72.2 71.4 70.9 70.2 69.4 67.9 63.8 59.9 57.7 56.8 55.2 51.8 3150 72.3 73.5 73.0 72.5 72.6 71.2 69.5 65.4 61.3 55.0 58.8 57.0 54.4 4000 75.0 76.0 75.8 75.3 74.8 73.0 71.2 66.6 63.0 61.8 60.8 60.0 57.6 5000 76.3 77.2 77.3 70.9 76.7 74.3 71.8 66.2 64.6 62.6 62.7 61.4 59.2 6300 76.3 77.2 77.3 70.9 76.7 74.3 71.6 66.8 2 64.6 62.6 62.7 61.4 59.2 6300 78.7 78.6 79.0 79.0 78.9 77.2 73.8 69.3 66.1 64.8 64.6 63.6 61.5 61.5 61.0 78.7 78.6 79.0 79.0 78.9 77.2 73.8 69.3 66.1 64.8 64.6 63.6 61.5 61.5 61.0 79.4 80.4 80.5 81.7 82.7 89.9 77.1 75.0 69.2 65.5 61.0 61.3 61.0 61.8 61.5 61.5 61.0 76.7 78.2 78.2 78.9 77.1 75.0 69.2 65.5 61.0 61.3 61.0 61.5 61.5 61.0 76.7 78.2 78.2 78.9 77.1 75.0 69.2 65.5 61.0 61.3 61.0 61.5 61.5 61.0 78.2 78.2 78.9 77.1 75.0 69.2 65.5 61.0 61.3 61.2 62.2 60.1 12500 76.5 78.9 76.6 78.2 78.9 77.4 77.5 70.7 71.2 66.3 64.0 63.9 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.4 77.5 77.5 77.9 77.8 72.1 67.2 64.9 64.9 62.6 61.4 62.0 62.0 60.4 62.0 62.0 62.0 60.4 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0															114.6
2500															126.2
3150 72-3 73-5 73-0 72-5 72-6 71-2 69-5 65-4 61-3 59-0 58-8 57-0 54-4 4000 75-0 75-0 75-8 75-3 74-8 73-0 71-2 66-6 63-0 61-8 60-8 60-0 57-6 5000 75-0 75-0 75-8 75-3 74-8 73-0 71-2 66-6 63-0 61-8 60-8 60-0 57-6 5000 76-3 77-2 77-3 76-9 76-7 74-3 71-5 68-2 64-6 62-6 62-7 61-4 59-2 6300 76-7 78-6 79-0 79-0 78-9 77-2 73-8 69-3 66-1 64-8 64-6 63-6 61-5 6000 79-4 80-4 80-5 81-7 82-3 81-7 8		72.4	72.2	71.4	70.9										115.9
5000 76.3 77.2 77.3 70.9 76.7 74.3 71.8 68.2 04.6 62.6 62.7 61.4 59.2 6300 78.7 78.6 79.0 79.0 79.0 77.2 73.8 69.3 66.1 64.6 64.6 63.6 61.5 63.6 10.7 66.2 63.6 10.0 78.4 80.4 80.5 81.7 82.3 81.0 78.9 75.3 71.3 661 67.7 66.2 63.6 10.0 10.0 76.5 76.9 76.6 78.2 78.9 77.1 75.0 69.0 65.5 63.0 63.3 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.3 60.6 18000 72.1 74.2 74.4 76.8 77.5 77.9 77.8 72.1 67.2 66.9 64.9 64.9 62.6 50.4 20000 72.0 71.8 70.7 71.3 72.1 72.1 72.5 65.9 60.7 57.4 57.4 56.6 55.2 25000 66.8 67.8 66.7 67.8 66.8 68.1 69.0 62.6 57.1 54.3 54.1 53.2 51.9 31500 56.1 60.2 59.5 60.0 61.9 60.9 61.9 60.9 61.8 56.0 49.1 45.8 46.3 46.4 44.9 40.0 48.8 50.8 51.1 51.9 53.4 51.9 53.1 48.4 40.6 37.8 39.9 37.8 36.8 50.00 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 8.3 9.0 10.5 80.0 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 8.3 9.0 10.5 80.0 0.0 10.5 80.0 0.0 11.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3150	72.3	73.5	73.0	72.5	72.6	71.2	69.5		61.3	59.0	58.8			117.8
6300 78.7 78.6 79.0 79.0 78.9 77.2 73.8 69.3 66.1 64.8 64.6 63.6 61.5 8000 79.4 80.4 80.5 81.7 82.3 81.0 78.9 75.3 71.3 68.1 67.7 66.2 63.6 10000 76.5 76.9 76.6 78.2 78.9 77.1 75.0 69.6 65.5 63.0 63.3 52.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.3 60.6 16000 72.0 71.8 70.7 71.3 72.1 72.1 72.1 67.2 64.9 64.9 62.9 60.4 20000 72.0 71.8 70.7 71.3 72.1 72.1 72.1 72.1 72.1 72.1 72.1 72.2 56.9 60.7 57.4 57.4 56.6 55.2 25000 66.8 67.8 96.7 67.8 68.8 68.1 69.0 62.0 57.1 54.3 54.1 53.2 51.9 31500 58.1 60.2 59.5 60.0 61.9 60.9 61.8 55.0 49.1 45.8 48.3 46.4 44.9 40.000 48.8 59.8 51.1 51.9 53.4 51.9 53.1 48.4 40.6 37.8 39.9 37.8 36.6 50.0 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 6.3 9.0 10.5 60.0 19.5 60.0 19.9 25.5 23.9 22.5 52.8 23.0 24.4 22.0 12.2 10.1 6.3 9.0 10.5 60.0 19.5 60.0 19.9 60.0 61.0 60.0 76.0 76.0 76.0 76.0 76.0 76.0 76								71.2	66.6	63.0	61.8	60.8	50 • D	57.6	120.3
8000 79.4 80.4 80.5 81.7 82.3 81.0 78.9 75.3 71.3 68.1 67.7 66.2 63.6 10000 75.5 76.9 76.6 78.2 78.9 77.1 75.0 69.6 65.5 63.0 63.5 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.3 60.6 16000 72.1 74.2 74.4 76.8 77.5 77.9 77.8 72.1 67.2 64.9 64.9 62.6 60.4 20000 72.0 71.8 70.7 71.3 72.1 72.1 72.5 65.9 60.7 57.4 57.4 56.6 55.2 25000 66.8 67.8 65.7 67.8 68.8 68.1 69.0 62.6 57.1 54.3 34.1 53.2 51.9 31500 58.1 60.2 59.5 60.6 61.9 60.9 61.8 55.0 49.1 45.8 48.3 46.4 44.9 40000 48.8 50.8 51.1 51.9 53.4 51.9 53.1 46.4 40.6 37.8 39.9 37.8 36.8 50000 35.9 39.0 39.0 38.4 41.7 39.1 41.4 37.3 26.9 25.6 26.0 25.8 25.7 63000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 8.3 9.0 10.5 80000 .0 .8 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0													61.4	59.2	121.9
10000 76.5 76.9 76.6 78.2 78.9 77.1 75.0 69.0 65.5 63.0 63.3 62.2 60.1 12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.3 60.6 126000 72.1 74.2 74.4 76.8 77.5 77.9 77.8 72.1 67.2 64.9 64.9 62.0 60.4 20000 72.0 71.8 70.7 71.3 72.1 72.1 72.5 65.9 60.7 57.4 57.4 56.6 55.2 25000 66.8 67.8 66.7 67.8 68.8 68.1 69.0 62.0 57.1 54.3 54.1 53.2 51.9 31500 58.1 60.2 59.5 60.0 61.9 60.9 61.8 56.0 49.1 45.8 48.3 46.4 44.9 40.0 37.8 39.9 37.8 39.0 38.4 41.7 39.1 41.4 37.3 28.9 25.6 26.0 25.8 25.7 63000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 6.3 9.0 10.5 80.0 0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0															124+3
12500 75.2 75.8 75.8 77.4 77.6 77.5 76.7 71.2 66.3 64.0 63.9 62.3 60.6 16000 72.1 74.2 74.4 76.8 77.5 77.9 77.8 72.1 67.2 64.9 64.9 62.6 60.4 20000 72.0 71.8 70.7 71.3 72.1 72.1 72.5 65.9 60.7 57.4 57.4 57.4 56.6 55.2 25000 66.8 67.8 66.7 67.8 68.8 68.1 69.0 62.6 57.1 54.3 54.1 53.2 51.9 31500 58.1 60.2 59.5 60.6 61.9 60.9 61.8 56.0 49.1 45.8 48.3 46.4 44.9 40.00 48.8 50.8 51.1 51.9 53.4 51.9 53.1 48.4 40.6 37.8 39.9 37.8 36.8 50.00 35.9 39.0 38.4 41.7 39.1 41.4 37.3 28.9 25.6 26.0 25.6 25.7 63.000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 8.3 9.0 10.5 80.000 .0 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0															128.4
16000 72-1 74-2 74-4 76-8 77-5 77-9 77-8 72-1 67-2 64-9 64-9 62-6 60-4 20000 72-0 71-8 70-7 71-3 72-1 72-1 72-5 65-9 60-7 57-4 57-4 56-6 55-2 25000 66-8 67-8 06-7 67-8 68-8 68-1 69-0 62-6 57-1 54-3 54-1 53-2 51-9 31500 58-1 60-2 59-5 60-6 61-9 60-9 61-8 56-0 49-1 45-8 48-3 46-4 44-9 40000 48-8 50-8 51-1 51-9 53-4 51-9 53-1 48-4 40-6 37-8 39-9 37-8 36-6 55000 35-9 39-0 38-4 41-7 39-1 41-4 37-3 28-9 25-6 26-0 25-8 25-7 63000 19-9 25-5 23-9 22-5 25-8 23-0 24-4 22-0 12-2 10-1 8-3 9-0 10-5 80000 0-0 8 0-0 0-1 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0															125.3
20000 72.0 71.8 70.7 71.3 72.1 72.1 72.5 65.9 60.7 57.4 57.4 56.6 55.2 25000 66.8 67.8 66.7 67.8 68.8 68.1 69.0 62.6 57.1 54.3 54.1 53.2 51.9 31500 56.1 60.2 59.5 60.6 61.9 60.9 61.8 56.0 49.1 45.8 48.3 46.4 44.9 40000 46.8 59.8 51.1 51.9 53.4 51.9 53.1 46.4 40.6 37.8 39.9 37.8 39.9 37.8 50000 35.9 39.0 38.4 41.7 39.1 41.4 37.3 28.9 25.6 26.0 25.8 25.7 63000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 6.3 9.0 10.5 80000 .0 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0														-	126.5
25000 66.8 67.8 06.7 67.8 68.8 68.1 69.0 62.6 57.1 54.3 54.1 53.2 51.9 31500 56.1 60.2 59.5 60.6 61.9 60.9 61.8 55.0 49.1 45.8 48.3 46.4 44.9 40000 48.8 50.8 51.1 51.9 53.4 51.9 53.1 48.4 40.6 37.8 39.9 37.8 36.8 50000 35.9 39.0 39.0 38.4 41.7 39.1 41.4 37.3 28.9 25.6 26.0 25.6 25.7 63000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 6.3 9.0 10.5 80000 0 0 .8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															128.7 125.9
31500 58-1 60-2 59-5 60-6 61-9 60-9 61-8 56-0 49-1 45-8 48-3 46-4 44-9 40000 48-8 50-8 51-1 51-9 53-4 51-9 53-4 40-4 40-6 37-8 37-8 37-8 36-8 55000 35-9 39-0 38-4 41-7 39-1 41-4 37-3 28-9 25-6 26-0 25-8 25-7 63000 19-9 25-5 23-9 22-5 25-8 23-0 24-4 22-0 12-2 10-1 8-3 9-0 10-5 80000 -0 -8 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0															126.0
## ## ## ## ## ## ## ## ## ## ## ## ##															124+3
50000 35.9 39.0 38.4 41.7 39.1 41.4 37.3 28.9 25.6 26.0 25.8 25.7 63000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 8.3 9.0 10.5 80000 .0 .8 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0															123.8
63000 19.9 25.5 23.9 22.5 25.8 23.0 24.4 22.0 12.2 10.1 8.3 9.0 10.5 80000 .0 .8 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0										28.9					122.4
80000		19.9		23.9	22.5										122+1
D88 90.5 89.0 d5.8 85.8 d6.0 85.0 82.7 78.8 75.4 73.9 73.0 71.4 58.0 D8C 90.4 88.9 d5.8 85.8 86.0 85.0 82.6 79.0 76.1 74.8 74.0 72.3 68.2 PNL 104.2 103.0 99.4 99.2 99.3 98.5 96.1 92.4 88.8 87.1 86.0 84.6 81.8 PNLT 110.7 108.7 102.6 102.4 102.8 102.4 99.7 96.0 92.0 90.5 89.0 87.8 85.1		• 0	.8	•0		• 1						• 0			120-1
DBC 90.4 88.9 85.8 85.8 86.0 85.0 82.6 79.0 76.1 74.8 74.0 72.3 68.2 PNL 104.2 103.0 99.4 99.2 99.3 98.5 96.1 92.4 88.8 87.1 86.0 84.0 81.8 PNLT 110.7 108.7 102.6 102.4 102.8 102.4 99.7 96.0 92.0 90.5 89.0 87.8 85.1 NFA 9017 RPM NFK 9113 RPM NFD 13020 RPM						87.5	86.5	84.1	80.0	76.0	74.1	73.0	71.8	69.1	
PNL 104-2 103-0 99-4 99-2 99-3 98-5 96-1 92-4 88-8 87-1 86-0 84-6 81-8 PNLT 110-7 108-7 102-6 102-4 102-8 102-4 99-7 96-0 92-0 90-5 89-0 87-8 85-1 NFA 9017 RPM NFK 9113 RPM NFD 13020 RPM		90.5													
PNLT 110.7 108.7 102.6 102.4 102.8 102.4 99.7 96.0 92.0 90.5 89.0 87.8 85.1 NFA 9017 RPM NFK 9113 RPM NFD 13020 RPM															
NFA 9017 RPM NFK 9113 RPM NFD 13020 RPM															
NFK 9113 RPM NFD 13020 RPM	FNLI	110./	100.7	102.0	102-4	102.8	102-4	99.7	96.0	92.0	90.5	98.0	87.5	85.1	
NFK 9113 RPM NFD 13020 RPM															
NFD 13020 RPM															· · · · · · · · · · · · · · · · · · ·
NUMBER OF BLADES 53															
					N	UMBER O	F BLADES	S 53							
TAMB 48 DEG F THET 45 DEG F				TAME	48 fi	EG F	TWET	45 11							

TAMB 48 DEG F TWET 45 DEG P HACT 7.39 GM/M3 BAK 29.2 HG

TABLE IX. - Continued. $[Model \; SPLS \; for \; standard \; day \; (59^O \; F; \; 70 \; percent \; RH) \; at \; 100\text{-ft } \; radius. \;]$

(g) Percent speed, 80; fan actual rotative speed, 10 287 rpm; percent weight flow, 83.4

1nn 125 167	0	10	20	30				t, deg						PWL,
125	5.13			50	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W
125	61.3		One	-third o	ctave bar	nd sound	pressur	e level,	dB (re 0	.0002 μt	ar)			
		hl.h	61.r	K1 . 3	54.2	60.5	52.7	62.3	62.0	62.1	62.3	60.0	55.1	110-1
167	62.3	62.0	60.4	54.3	59.7	FQ.2	60.2	60.5	59.9	59.9	59.8	58.7	54.0	108.4
	F4.2	63.5	63.6	67.2	65.9	66.9	62.1	64.2	63.4	64.3	65.2	64-1	63.2	113.7
200	69.5	79.7	59.3	44.6	67.1	66.3	64.1	63.2	h2.b	61.8	61.0	59.6	58.0	113.4
250	73.7	7,.7	12.5	71.9	10.5	5.A4	68•Û	A5.4	64.3	63.6	62.9	59.8	57 • 4	116.3
315	71.9	12.1	71.0	70.6	69.2	67.5	66.2	<u> 64.9</u>	62.2	61.5	60.9	56.5	55-1	114.9
4 7 0	44.1	5 H . F	67.7	67.3	66.0	64.2	63.5	61-1	59.2	58.5	57.8	55.9	52 • 1	111.7
500	KK.5	5r.h	66.4	65.8	67.6	63.7	62.9	61.0	59.9	59.1	56 • 3 57 • 5	53.9	50.3	110.9
630 630	F6.4	69.2	69+1 56+4	64.5 68.2	6A.8	66-1	54.4	61.7	60.6	57.9	57.2	54.6 54.0	51.2	113.0 112.2
1000	68.1 64.5	65.3	85.5	64.6	63.7	65 • 0 62 • 5	60.2	57.1	58.6 55.0	53.0	53.4	50-2	47.6	109•1
1250	64.7	65.8	55.9	65.3	63.7	62-2	5 <u>0.4</u>	_57.8	55.0	52.7	51.8	49.2	45.3	109.3
1600	65.4	65.3	64.5	63.3	62.4	61-1	59.6	56.2	52.9	51.4	50.2	48.3	44.5	108.0
2000		66.2	65.5	65.5	<u>-64.0</u>	62.5	61.7	57.9	54.0	52.0	51 • 4	50.0	45.9	109.7
2500	66.9	66.9	66.9	67.4	65+2	64.9	63.6	60.0	56.4	53.9	53.8	52.7	48.3	111+8
3150	_Zn.n_	69.3	69.3	64.3	_6A . 1	67.0	56.2	62.6	59.1	56.5	55 - 1	54.3	50.7	114.0
4000	75.0	73.5	74.0	72.8	72-1	70.2	69.6	65.6	62.0	60.0	59.1	58.8	54.9	118.0
5000	71.6	72.7	73-1	71.6	71.9	71.3	70.8	68.2	64.1	60.8	60.4	59.1	55.5	118.5
ჩკიი	75.4	72.1	72.7	73.n	72.7	72.5	71.3	64.3	64.8	62.6	60.4	58.9	57.3	119.5
8000	75.2	75.4	76.2	77.4	<u> 77 • n</u>	77.5	76.4	75.1	70.4	66.9	64.4	63.0	62-1	125.0
10000	77.7	79.2	79•1	90.2	79.9	An • 6	79.A	78.6	73.5	70.3	67.9	66.5	65.6	129.0
12500	73.2	72.5	73.0	73.4	73.4	73.5	74.n	70.5	65.0	63.0	61.6	59.0	57.4	123-3
16000	68.9	69.7	70.4	72.5	72.5	72.1	73.3	68.9	64.2	60.7 59.7	59•4 58•7	58.3	56.4	124-1
20000	67.1	67.9 53.1	63.8	72 • n	71+6	72-1	72.A	62.4	58.2	53.3	52.8	57 • 6 51 • 2	56.0 49.9	126-2
25000	53.6	ია•1 55•5	56.3	47.9	58.7	58.0	59.6	55.6	50.4	45.6	45.6	44.2	42.2	121.9
31500 40000	45.1	45.4	48.7	49.0	51.7	49.9	51.0	48.0	41.9	37.3	37.5	35.9	35.1	122.2
5 <u>0000</u>	32.5	36.3	36.8	36.2	39.0	35.9	39.5	36.1	29.7	25.4	23.8	23.9	23.7	120.3
630gn	15.8	21.9	20.0	20.5	23.2	19.7	23-1	21.4	14.3	10-0	6.3	7.9	9.0	120.2
80000	•0_	.0	_ ` • U	• 0		. •_0	n	.0	• 0	•0	• 0	• 0	• 0	118.2
						_								
DSA	82.8	83.2	83.3	83-4	82.9	82.8	81-9	80.0	75.6	72.8	71.1	69-6	67 • 7	
DAH	82.5	85.6	82.7	A2.7	A2 • 1	B1 - 7	80.A	78.9	75 • 1	73.0	71.8	70-1	68+0	
DBC	P2.8	96.6	83.0	96 - 1	95.4	95 • 1	80.9 74.1	79-1	75.6 88.3	73.8 85.8	72•9 84•3	71•2 82•8	69•1 80•6	
PNLT	97 • n 1 n n • 3	99.9	100.0	99.4	98.7	98.4	97.4	92.2	91.6	89.2	87.6	86.2	83.9	
FINE	1 (11) • 3	79.9	100.0	77.4	3	77.4	7/ • 4	90.0	11.0	(1-12	07.00	0002	0007	

TABLE IX. - Continued. $[Model \; SPLS \; for \; standard \; day \; (59^O \; F; \; 70 \; percent \; RH) \; at \; 100-ft \; radius. \;]$

(h) Percent speed, 80; fan actual rotative speed, 10 280 rpm; percent weight flow, 76.4

100	0	10	20	30										
				30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W
			One	-third o	ctave ba	nd sound	pressur	e level,	dB (re 0	.0002 μl	oar)			
	61.1	61.1	6n .7	59.3	59.0	60.5	61.7	61,3 59,3 63,0	60.7	60.8	60.8	59.2	54,3	109.2
125	61.0	61,0	58.9	56,8	58,7	58.7	59.2	59,3	58.9	59.0	59.0	57.9	53.3	107.5
160	63.0	02.7	64.4	66.7	65.3	66.6	60.6		62.4	63.4	64.5	64.1	63.7	113.2
200	66.7	68,5	67.1	66.0	65.3	64.6	62.3	61,0	60.1	59.5	59.0	57 • 8	56,7	111.4
250	71.9	70.9	70.8	69.9	68.5	67 • 5	66.3	63,7	62.5	62.0	61.4	58.5	55.7	114.5
315	70.6	70.9	69.7	68.6	67,7	66.0	64.7	63,1	61.0	60.0	59.1	56.7	54,6	113.4
400	66.8	66.3	65.4	65.1	63.2	62.7	61.0	58,8	57.0	56.0	55.1	52.9	49.8	109.4
500 630	64.0	64,5 67.5	64.1	63.3	62.7 66.4	61•2 64•6	60.4 63.1	58,5	57,2 58,6	55.5 57.3	53.8 56.0	51.2 53.4	48.0 49.7	108 ₋ 4 111.5
800	66.9 67.1	67.9	67.3 67.5	67.2 67.2	65.5	64.3	62.3	60,5 59.4	57.6	56.7	55.9	53.0	49.9	111.2
1000	64.5	65.3	64.7	64.4	63.0	61.7	59.7	56.3	54.3	51.7	52.4	50.0	46.8	108.5
1250	64.7	65.3	65.4	64.8	63.4	62.4	60.9	57.3	54.5	52.2	51.5	49.2	45.0	109.1
1600	65.1	65.5	64.6	63.5	52.9	61.8	59.8	57,3 56,5	53.4	51.4	51.0	48.8	45.2	108.4
2000	67,8	68,7	68.7	68.7	67.D	65.5	63.2	59 9	56.5	54.5	53.6	51.5	47.4	112.5
2500	67.7	67.9	67.9	67.6	67.0	65.7	65.1	61.3	57.7	55.2	54.3	52.7	48.3	112.6
3150	69.3	70.3	69,8	69.0	69,1	68.8	67.5	63,4	60.1	57.8	56.6	54.5	51.4	115.0
4000	71.0	72.5	72.5	72.0	70.8	70.7	69.2	64.9	61.5	59.3	58.6	57.5	54.1	117.4
5000	73.6	74.2	73.6	73.9	72.7	72.6	72.0	68.7	64.6	61.6	61.7	60.1	56.5	119.6
6300	73.9	75.6	75.0	75.5	74.7	73.7	72.3	68.1	63.8	62.1	61.6	59.5	58.0	121.0
8000	77.7	79.2	79.0	80.4	81.8	81.5	80.6	77,3	72.1	69.2	68.4	66.0	64.3	128.6
0000	60.5	80.2	79.4	81.7	84.4	83.9	84.3	80.9	75.3	70.8	70.6	66.5	67.4	132.0
2500	77.2	77.8	76.8	77.9	76,6	75•7	75.3	69,7	65.3	63.0	63.6	61.5	60.1	125.8
6000	72.9	74.7	75.7	76.8	79.0	76.6	77.0	71.6	66.7	63.2	63.9	62.8	60,4	128,6
30000	70.6	71.6	71.7	74,8	75.1	75.6	75.5	71.4	66.0	61.7	61.7	60.4	58,8	129.2
25000	66.1	66,8	66.8	69.1	70.1	70-1	71.2	00.1	60.7	56.3	56.6	55.2	53.7	127.9
1500	57,6	60.0	59.6	6ŋ <u>.</u> 9	61.9	62.2	63.4	56.3	52.4	47.6	49.3	47.2	45.4	125.4
0000	48.9	50.9	51.9	52.2	54.4	53.4	55.4	50,7	44.4	39.8	41.0	39.6	37.8	125.3
0000	35,5	39.1	39.5	39.5	42.3	40.2	43.0	39.3	31.9	26.9	27.3	26.6	26,5	123.6
3000	18.8	24.7	23,8	23,5	26.2	23.7	26.3	24,1	15.3	10.7	8.5	10.4	11.5	123.2
30000	•0	.0	•0	-0	<u>. 0</u>	1.1		• .		.0	.0	.0_	.0	120.9
DBA	83.9	84.7	84.2	85.1	86,0	85.5	85.1	81,6	76.6	73.4	73.0	70.9	69.0	
DBB	63.0	83.7	83.2	83.9	84.5	84.0	83.5	80,1	75.6	72.9	72.5	70.6	68.7	
DBC_	63,2	83.8	83.3	83.9	84.5	84+0	83.5	80,2	75.9	73.5	73.2	71.4	69.6	
PNL	96.2	97.2	96.9	97.5	97.9	97 • 4	96.6	93.3	89.0	86.5	85.8	83.7	81.4	
PNLT	99.5	100.5	100.2	100.8	101.2	100.7	100.0	96,7	92.3	89.8	89.2	87.0	84,7	
				 NI	FA 102	80 RPM			· · · · ·	-				
				N	FK 103								·	
	. —						 				***			
			•	. N	השפבות 0	F BLADE	<u>s</u> 53							
			TAMB		EG F	THET	44 DI GM/M3	EG F						

TABLE IX. - Continued.

[Model SPLS for standard day $(59^{\circ}\ \mathrm{F};\ 70\ \mathrm{percent\ RH})$ at 100-ft radius.]

(i) Percent speed, 90; fan actual rotative speed, 11 564 rpm; percent weight flow, 93.8

Fre-						Angle f	rom inle	t, deg						PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³ W
			One	-third oc	tave ban	nd sound	pressure	e level,	dB (re 0	.0002 μb	ar)			
100	56.8	57.1	56.7	55.8	56.7	57 • 7	58.7	58,3 57,5 58,2	58.2	58.1	58.1	55.7	51.8	106.3
125	58,8	58.8	56.9	54.8	56,9	57 • 4	57.4	57,5	57,4	58.0	58.5	57.7	53.0	106.2
160	56.5	57,0	56.4	57.2	57.6	58 • 4	58.4	58,2	58.4	59.2	60.0	58.6	55.0	107.3
- 200 250 -	67.2	_68_7	68.1	66.7	66,1	66 • 1	63,6	62,7	62.8	62.8	62.7	65.1	60.0	113.4
	66.9	66.4	66.0	65.7	64.0	63.0	61.5	59.4	58.5	57.7	56.9	54.5	52.4	110.1
315 400	65.9	66.1	64.7	64.4	62.7	62 • 0 59 • 0	61.5	59.1	57.0	56.8	56,6	54.5	51.6	109.3
500	63.1	62.8	61.9	61.3	60.2		58.2	55,1	54.0	53.6	53.3	52.9	49,8	106.3 104.1
630	58.7 62.2	59.0 62.5	58.9	58,5	57,9	57•2. 59•6	_ <u>56.7</u> 57.9	54,0 55,2	53.4 54.9	52.0 54.2	50.5 53.5	47.4	44.8 47.0	106.6
800	60.1	61.2	62.1 61.3	62.0 61.9	60.9 61.8	60.5	58.8	55.7	53.3	54.0	54.7	52.3	48.7	107.0
1000	60,8	61,1	61.2	60.1	59.5	58.0	56.5	53.3	51.8	50.2	- 50.3 -	48.5	44.6	105.0
1250	64.5	65.1	64.4	64.8	63.7	62.7	61.7	59.0	56.7	53.7	52.5	49.2	46,8	109.4
1600	68.4	68.3	66.1	65.0	64.1	63.8	62.6	60,2	56.4	53.6	53.5	50.8	47.7	110.5
2000	63.8	65.2	64.5	64.5	63,5	62.7	62.5	50 6	56.0	53.5	52.9	51.3	46.4	109.7
2500	66.7	65.9	66.7	67.1	66.5	66.2	65.9	63.5	59.4	56.9	55.0	52.9	48.6	112.8
3150	68.3	67.8	68.8	69.8	69.1	69+8	70.2	68" 1	64.1	61.3	59.9	58.3	53.2	116.5
4000	68.8	69.3	69.3	70.0	69,8	69.7	71.0	68,9	65.0	61.8	61.6	59.3	54.4	117.4
5000	71.1	72.4	72.6	72.9	73.4	75.8	76.3	72.9	68.4	66.6	66.4	62.6	58.7	122.0
6300	70.2	70.9	70.7	71.5	71.9	74.0	74.0	72.3	68.6	65.6	63.1	60.6	57.8	120.8
8000	69.7	70.7	70.5	71.7	72.8	72.7	72.9	70.1	66.1	62.9	61.2	59.2	56.1	120.4
10000	80.2	80,2	80.9	82.0	82.4	82.9	84.0	80,1	76.0	72.8	70.9	69.2	67.4	131.5
12500	_69.7	70.3	70.8	71 <u>.9</u>	72.4	73.2	74.8	80,1 72,2	67.8	64.0	61.6	60.3	57.9	123.4
16000	66.4	67.2	67.2	68.5	69.5	70-1	71.0	68,9	64.7	60.5	58.4	56.1	54.7	122.0
20000	67.1	68.1	69.0	70,3	71.1	71.4	71.5	66,9	62.7	58.2	56.4	55.9	54.8	125.1
25000	60.1	61.3	62.0	62.4	64.1	63.6	65.2	60,9	56.7	52.1	50.8	49.7	48.2	122.0
31500	54.9	56.7	57.3	57 <u>.7</u>	58.7	58.0	59.9	55,1	50.7	45.3	46.0	43.7	42.2	122.0
40000	45.4	48.1	48.1	48.2	49.9	48.9	49.9	46,7	41.1	36.1	36.7	34.9	33.3	120.8
50000 63000	32.2	36.1	36.5	35.5	37.7	36 • 1	37.7	35_3	28.6	24.4	23.0	22.6	22.7	119.3
	16.2	21.1	20.3	18.9	22.1	19.9	21.3	20,1	13.1	9.2	5.5	6.4	7.9	119.1
80000	.0	.0	.0	0_	•0	• 0	- 0	.0	.0	0	.0	.0	.0	118.0
DBA	81.5	81.8	82.0	82.8	83.0	83.8	84.5	81,3	77.3	74.5	73.2	70.9	68.0	
DBB	80.4	80.7	80.8	81.5	81.6	82.3	82.9	79.8	76.0	73.4	72.3	70.6	67.3	
DBC	80.5	80.8	80.9	81.5	81.6	82.3	82.9	79,8	76.1	73.8	72.8	71.3	67.9	
PNL	94.3	94.5	94.7	95.4	95.4	95.8	96.3	93.2	89.6	87.3	86.7	83.9	80.8	
PNLT	97.3	97.6	97.8	98.7	98,5	99.2	99.7	96,5	92.9	90.6	89.9	86.9	83.6	
									_					
				N	FA 115									
					FK 117 FD 130									
			-	¯ Ņ	UMBER O	F BLADE	s 53							
			TAMB		EG F	THET	44 N GM/M3	EG F						· -
	-				AR		HE							

TABLE IX. - Continued.

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(j) Percent speed, 90; fan actual rotative speed, 11 570 rpm; percent weight flow, 89.4

Fre-						Angle	from inle	et, aeg						PWL, dB
quency	0	10	20	30	40	50	60	70	80	90 (100	110	120	(re 10 ⁻¹³ W
			One	-third o	ctave bar	nd sound	pressure	e level,	dB (re 0	.0002 μb	ar)			
100	61.3	61 • 1	01.2	60.3	60.0	61.0	62.5	62.8	62.5	62.8	63.1	60.0	55.1	110.5
125	62.0	61.5	59.7	57.5	59.4	59.7	59.9	60.8	60.2	60.1	60.0	58.9	55.0	108.5
160	62.2	61.5	62.4	63.0	61.9	60.9	60.6	61.0	60.6	60.9	61.2	59.9	55.7	109.8
200	69.7	74.7	70.3	69.2	68 - 1	67.8	65.6	65.2	64.1	64.3	64.5	65.3	60.5	115.2
250	73.4	72.2	71.8	71•≥	69.8	68.3	67.5	65.2	54.0	63.3	62.7	59.3	57.2	115.7
315	71.6	71.9	76.7	69.9	68•5	67.2	66.0	64.4	61.5	60.8	60.1	58.2	55.6	114+4
400	67.3	67.1	66.7	65.6	64.5	62.7	61.5	59.6	57.5	56.8	56+1	54+2	51.3	110.2
500	65.5	66.0	65 • 1	64.8	63 • 4	62.9	62.2	59.8	58.9	57.0	55 • Q	52.7	49.3	109.8
630	68.2	69.2	n8.6	66.5	67-1	65.9	64.1	61.7	60 - 1	58.8	57.5	54 • 4	51.2	112+7
ខក្ខភ	68.4	68.9	09.0	68.4	67 • 3	65.5	64.0	60.9	58.6	58.2	57.9	55 <u>• 0</u>	52.4	112.7
1000	64.0	65.3	65.4	65.1	64.2	62.2	60.2	57.6	54.8	53.2	53.8	51 • 0	48.3	109.3
1250	64.7	66.1	65.9	65.6	64.1	- F3.4.	61.2 .	59.0	56.7	54.2	53.0	50.2	47.3	110.1
1500	67.4	67.3	56 • 1	64.0	64.4	64.6	63.3	60.7	57.6	54.6	54.2	51.6	48.7	110.8
5000	66.5	67.2	65.7	65.0	64.5	64.2	63.5	60.9	57.3	54.5	53•1	5 <u>2 • 0</u>	47 • 1	110.9
2500	67.7	68.2	67.2	67 - 1	67•0	66.9	66.9	63.8	59.9	57.4	56.0	53.9	49.8	113.4
3 1 5ŋ	69.0	ن • پ 7	70.5	70.3	7 u • 1	69.7	70.2	66.9	63.5	59.8	60.3	58.3	53.4	116.7
4000	70.8	71.8	71.3	71.5	70.8	70.2	71.0	68.4	65.5	62.0	61.6	59.5	55.6	116.0
5000	73.1	74.7	74.6	74.4	75.4	76.1	76.8	74.7	70.6	66.3	67.2	63.1	59.5	123-1
6300	72.4	73.4	/3.7	73.7	74.4	74.7	75.3	72.8	69.3	65.3	64.6	61.6	59.3	122.2
8000	73.0	73.2	73.5	74.7	74.8	75-0	74.9	72.1	67.9	64.2	62.9	61.5	58.6	122.6
10000	80.0	80.9	61.8	83.4	85.9	84.8	86.0	81-1	76.5	73.6	72.6	70.9	68.6 59.6	133.4
12500	73.5 69.9	73.6	73.5	74.4	75 • 1	75 • 2	76.8	73.0 70.9	68.5 66.5	65.0 63.0	63.6 61.4	58.3	57.4	125.3 124.8
16000	68.8	71.0	70.9	71.8	72 • 2	72.6	74.3	67.7	63.5	59.4	58.4	57,6	56.2	126.5
20000 25000	61.9	70.6 63.3	70.5	7 <u>2•0</u> 54.8	72.9	72.9	72.5 67.0	61.9	57.1	53.3	52.6	51.2	49.7	123.8
3 1500	56.6	58.2	59.0	59.4	61.1	60-4	60.8	56.5	51.4	40.6	47.3	45.7	43.9	123.7
40000	47.1	49.6	50 • 1	50.2	52 • 1	51.1	52.3	47.7	42.6	38.0	36.9	36.9	35.8	122.8
50000 50000	33.7	38.3	38.5	37.2	39.7	37.9	39.9	37.0	30.6	25.9	24.7	24.8	24.4	121.2
6300n	17.5	23.6	22.5	21.2	24.4	21.9	23.8	22.6	14.8	10.2	7.0	8.6	9.9	121.3
80000	.0	•0	•0	• C	•0	.0	.0		.0	.0	• 0	•0	• 0	119.8
DBA	82.9	83.7	83.9	84.5	85.8	A5+2	86.1	82.3	78.3	75.0	74.5	72.2	69.3	
DBB	82.4	83.1	83.1	83.5	84.5	83.9	84.5	81.0	77.2	74.5	74.0	71.9	68.8	
DBC	82.7	83.3	83.3	83.6	84.5	83.9	84.5	81.1	77.5	75.0	74.6	72.7	69.4	
PNL	95.8	96.8	96.7	97.3	98.3	97.6	98.1	94.8	91.2	88.0	88.0	85.3	82.3	
PNLT	99.1	100-1	100.0	100.6	101-7	100-9	101.5	98.1	94.5	91.4	91.3	58.5	85.7	
			_											
					FA 115	70 RPM								
						10 RPM 20 RPM								
						F ALADE		•						
				·	OHBEN U	L MEVE	S 53		-					
			TAME	46 n	EG F	TWET	44 D							

TABLE IX. - Continued.

[Model SPLS for standard day $(59^{\circ} \text{ F}; 70 \text{ percen } \text{RH})$ at 100-ft radius.]

(k) Percent speed, 100; fan actual rotative speed, 12 800 rpm; percent weight flow, 99.8

Fre-						Angle	from inle	et, deg						PWL, dB
quency	0	10	20	30	40	50	60	70	80	90	100	110	0 120	$(re\ 10^{-13})$
			One	e-third o	ctave ba	nd sound	pressur	e level,	dB (re (0.0002 μ	bar)			
100	49.3	49.8	50.5	50,6	53.7	54 • 7	59.0	55,6	55.7	56.0	56.3	54.2	50.1	104.2
125	53.0	52.5	52.4	50.5	52.9	54.7	57.9	56,5	57.4	58.6	59.8	58.2	54.0	106.0
160	53.2	53.5	51.9	54.2	57.6	57 6	62.6	59.0	60.1	60.7	61.2	58.9	55.2	108.4
200 250	59.7	61.5 53.2	56.6	62.5 54.9	60.1	64 e 6 56 e 0	60.8	62.7	67.1	67.5 57.5	66.0	65.6	64.5	114.2
315	52.4 55.1	55.9	51.8 56.0	54.4	53.8 56.5	57.2	56.0	53,9 53,6	56.8	53.2	58.2	55.8	50.4	103.7
400	54.3	55,6	55.4	55.6	54.5	55 5	56.2	5213	50.7	50.8	50.8	49.2	46,8	102.2
500	53.2	53,5	53.1	51.6	51.9	51.2	55.2	49.3	48.4	48.0	47.5	44.2	41.0	99.5
630	72.7	72.2	70.6	67.7	66.1	62.1	60.6	56.5	55.4	55.4	55.5	51.1	51.5	111.8
800	60.9	60.9	61.5	62.2	61.5	59.8	59.5	55,9	54.3	54.0	53.7	49.0	46,7	106.9
1250	60.5	60.1	59,2	60.4	59,5	50 g	57.5	54,1	52.3	52.2	51.1	47.7	45.1	105.0
1250	62.7	62.8	61.6	61.6	61.7	60.9	59.7	57,0	55.0	53.4	51.8	48.2	44,5	107.3
1600	65.1	65.8	66.8	65.8	63,9	63,1	63-1	61.2	58.6	55.6	53.7	51.8	47.5	110.7
2000 2500	61.5	62.7	64.2	62.7	62.0	62 + 5	63.0	61.4	58.4	55.0	55.6	52.8	47 • 1	109.7
3150	66.5	69.5	63.9 67.3	64.9	66,3	65e4 69e5	74.5	65,5	62.2	58.9	58.0	55.4 65.8	50.6	112.8
3150 4000	71.8	72.3	70.5	71.5	73.3	80.7	86.0	74.1 84.4	71.3 81.0	79.0	79.4	73.5	60.2 67.6	120.2 130.7
5000	71.3	76.2	74.3	74.4	75.4	81 9 1	88,8	88,9	83,4	84.3	80.9	80.1	73.7	134.3
6300	74.9	75.9	75.2	75.7	77.9	81.2	88.8	90.1	84.8	83.6	82.1	78.1	73.3	135.2
8000	72.2	71.9	74.0	72.7	73.8	7697	82.2	82,3	78.1	74,4	71.7	70.0	64.1	128.6
0000	76.7	77.7	77.6	78.5	78.9	7904	82.8	42.6	79.3	75.3	73.9	72.0	65,9	130.8
2500	78.7	79.3	79.5	80.6	81.1	81.2	83.3	83.0	79.3	74.7	72.9	69.0	66.1	132.7
16000 20000	68.1	69.2	69,4	70-1	72.0	71:7	74.5	73,4	69.7	65.2	59.9	57.4	57.7	125.2
25000	65,9	66.1	65,8	65,6	66.6	66 1	68,3	71.4	61.9	57.4	55.3	53.5	56,3 51,4	125.4
31500	56.7	57.2	57.6	57,7	58,9	57 2	60.1	58.8	54.7	49.3	47.6	45.0	43.4	122.9
40000	47.4	49.1	49.4	48.2	49.9	48 . 4	51.1	49.5	46.1	40.3	38.7	36.1	34.3	122.0
50000	34.5	37.6	37.3	35.7	36,5	35,4	39.0	38.1	33.7	20,9	25.3	23.6	23.0	120.7
63000	18.0	23.1	21.5	19.6	23.1	19.9	23.5	23,1	18.5	14.9	9.0	7.6	4.7	121.0
80000	•0	•0	.0	.0	• 0	•0	3.7	:0	•0	.0	•0	•0	• 0	122.1
DBA	82.1	83.4	82.9	83.5	84.2	87 9 6	93.9	94,1	69.3	88.4	86.6	83.7	77.9	_
DBC	80.8	82.0	81.4	81.7	82.5	85.9	92.2	92.4	87.5	86.7	84.9	82.0	76.4 76.5	
PNL	94.0	95.7	94.6	94.9	96.1	99.7	92.1	105.5	101.0	100.6	98.3	96.4	90.7	
PNLT	99.2	100.7	99.0	98.4	99.4	103.1	109.0	105,5	104.0	103.6	101.2	99.2	93.2	
				• •					•		••••			_
														-
				-	FA 126	OO RPM						_		
					IFK 129	56 RPM								
				P	FD 130	20 RPM					_			
			• • • • • •	,	UMBER C	F BLADE	s 53							
			TAME	3 46 1	EG F	THET	F 44 I	EG F						
					HACT	7.09	GM/M3							

TABLE IX. - Concluded.

[Model SPLS for standard day (59° F; 70 percent RH) at 100-ft radius.]

(1) Percent speed, 100; fan actual rotative speed, 12 737 rpm; percent weight flow, 99.5

Fre-						Angle	from in	let, deg						PWL,
quency	0	10	20	30	40	50	60	70	80	90	100	110	120	dB (re 10 ⁻¹³
			One	-third o	ctave ba	nd sound	d pressu	re level,	dB (re	0. 0002 μ	(bar)			
100	53 • 1	53.3	53.2	53.6	55•0	56.0	59.7	56.6	56.7	50.9	57.1	54.7	50.6	105.1
125	55.8	55.0	53.9	53.3	54.9	56.2	58.7	57.5	57.9	58.9	59.8	58.7	54.0	106.5
160	54.5	54.5	53.9	54.7	57 • 4	57.6	62.4	59.0	59.4	60.1	60.7	58.9	55.0	108.1
200 250	63.2	64.7	64.8	61.5 59.9	59.3	62.6	62.3	65.2	66.8	66.9	67 · u	64.0	64.0	114.0
315	60.6	61.4	00.5	60.1	59.7	58.5 59.5	58.5 59.2	56.7 56.1	56.8 54.7	54.8	56.9 54.9	54.5	52.7	106.5
400	58.8	59.1	58.4	57.8	56.7	56.2	57.0	53.8	52.5	52.8	53.1	53.2 50.7	51+4 47+8	105.3
500	56.2	50.5	56.4	55.8	54.9	54.7	55.4	52.0	50.9	5y • 2	49.5	45.9	43.0	101.6
630	70.7	69.2	67.6	64.7	62.6	59.4	58.9	54.5	55.1	54.7	54.2	51.6	49.7	109-1
800	59.9	59.9	61.0	61.9	61.5	61.0	59.8	57 • 2	56.1	55.2	54.4	52 · U	48.9	107.4
1000	61.5	61.1	60.7	60.9	00.5	60.0	59.5	56.8	54.5	53.5	53-1	50.0	46.6	106.6
1250	64.0	63.6	63.1	63.1	62.4	62.2	60.9	58.3	56.2	53.9	52.3	49.4	46.0	108.4
1600	67.9	66.8	68.1	67.3	66.9	66.6	65.8	64.0	60.9	50.6	56.0	54.3	50.5	113-1
2000	62.0	63.0	64.2	64.2	63.5	63.5	64.0	61.6	58.3	55.8	55.1	52.3	47.4	110.4
2500	63.7	63.4	66.4	66 - 1	66.5	66.9	68.4	65.8	62.4	59.7	56.0	54.9	50.6	113.9
315n	66.8	67.8	68.5	68.3	68-1	70.3.	69.2	66.9	62.8	61.0	59.6	57.5	52.9	115.9
4000 5000	70•5 72•1	7u•6 74•7	68+8 74+6	68.5 76.4	68 • 8 76 • 4	69.8	72.7	71.0	70.5	65.8 78.6	66 • 1	63.5	57 • 4	119-1
6300	74.2	74.4	75.5	76.7	76.9	80.0	90.1	85.7	83.9	81.6	82+1	80.4	73.8	132·1 135·2
8000	71.0	73.2	74.0	73.9	73.0	75.2	84.2	83.6	79.4	73.9	73.7	70.0	67.1	129.8
10000	77.5	78.4	78.4	79.5	79.9	79.9	82.1	80.4	77.0	73.1	71.1	69.0	65.9	129.9
12500	76.7	70.4	78.8	79.9	80.4	80.3	81.8	80.8	77.0	72.7	71.9	69.1	66.9	131.3
16000	68.2	68.8	69.2	70 • 1	71.0	70.7	73.1	71.4	68.3	63.7	61.7	56.6	57.2	124.0
20000	68.8	68.9	69.3	69.6	69.9	70.2	70.8	69.2	66.0	61.0	56.5	56.9	55.5	125.0
25000	05.4	66.1	65.8	66.1	66.9	66.2	67.3	64.7	61.2	50.6	54.9	53.0	51.5	125.0
31500	56.4	58.3	57.8	58.0	58 • 7	58 • 0	59.4	57 • 1	54.2	48.9	47.6	45.3	42.7	122.5
40000	47 • 1	49.4	49.4	49.0	50.5	48.7	51.2	48.0	45.4	40.1	39.2	35.9	34.6	121.9
50000	34.9	38.U	37.7	36.7	38 • 4	36 • 1	38.4	37.0	33-1	28.6	25.7	23.5	23.4	120.5
6 3 000	17.4	22.7	21.9	20•5	23.3	19.8	23.2	22.2	18.2	14.8	9.1	7.2	8.5	120.8
80000	•0_	• 0	• 0	• 0	• 0	•0	3.5	• 0	• Ú	-0	• U	• 0	• 0	121.9
DBA	81.8	82.7	83.0	83.8	83.9	86.2	93.0	91.6	89.4	84.3	84.4	82.7	76.3	
DeB	60.5	81.3	81.6	82.3	82.3	84.5	91.2	89.9	87.7	82.7	82.8	81.0	74.8	
DRC	80.5	81.3	81.5	82.2	82.3	84.5	91 - 1	89.8	87.6	82.7	82.8	81.0	74.9	
PNLT	94.1	95.ü	95.2	96 • U	95.9	99.0	105-1	103.5	101.5	97.0	97 • 1	95.2	89.3	
rnL;	98.3	98.7	98-1	99.3	99•3	105-1	108.6	106.9	105.8	100.4	100+4	99.0	92+1	
						37 RP4		-						
						20_RPM								
				N.	TWAFF C	F PLADE	5 53							
			TAME	45 DE	6 F	TMET	43 1	: FG F						
					101		64743							

Flow path coordinates								
Axial	Radius,							
distance,	r,							
Ζ,	cm,							
cm	Inner	Outer						
-10. 183	9.611	25, 412 -						
-5. 365	10.909	25, 412						
-3, 300	11.468	25, 412						
^a -1. 916	11.843	25. 385						
-1. 235	12.027	25. 311						
0. 314	12.443	24.917						
3.411	13. 132	23.792						
4.961	13. 365	23. 528						
^a 5. 628	13.437	23.475						
7.025	13, 503	23, 426						
10. 467	13. 597	23, 421						
13, 908	13, 600							
^a 14.439	13.600							
15. 974	13, 652							
17.350	13.764							
19. 278	14. 145							
^a 21. 122	14. 369							
21.480	14. 381							
24. 919	14. 389	Y						
28. 364	14. 389	23, 421						

^aInstrumentation survey plane.

Figure 1. - Flow path for QF-1 fan model.

- Stator mounting ring

Rotation

Flow

Figure 2. - Rear quarter view of stage 15-9. C-69-2510

Collector sleeve valve (translates)

(b) Rotor and microphone locations. (All dimensions are in cm.)

Figure 3. - Compressor aerodynamic test facility with noise measuring locations.

(a-1) Combination total pressure, total temperature, and flow angle probe (double barrel probe).

(a-2) Static pressure probe (80 wedge).

(b) Circumferential location of probes at measuring stations, view facing downstream.

Figure 4. - Aerodynamic instrumentation.

Figure 5. - Schematic of anechoic chamber. (All dimensions in m unless indicated otherwise.)

Figure 6. - Interior photograph of anechoic chamber; view looking at fan from air intake opening (intake mode), inlet screen not in place.

Figure 7. - Comparison of fan inlet configurations in anechoic chamber and in modified compressor test facility with plenum chamber. (All dimensions in cm.)

中一年前在北西西村村 有种用的时代 经过完全

Figure 8. - Sample sound pressure and sound power spectra from anechoic chamber. 100 Percent design speed; 99. 8 percent design weight flow.

Figure 9. - Determination of sound power level, PWL, from sound pressure level, SPL, measured in plenum chamber of unmodified compressor test facility.

があるがか。(called the transmission of the transm

Figure 10. - Overall aerodynamic performance for stage 15-9 with operating points for acoustic data indicated.

Figure 11. - Relative Mach number 5 percent span from tip of rotor 15 (from ref. 2).

(b) Turbulence intensity with and without turbulence screen.

Figure 12. - Radial profiles of mean velocity and turbulence intensity 26.8 centimeters upstream of rotor in anechoic chamber installation with well rounded bellmouth. 80 Percent of design speed, 83.4 percent of design weight flow.

Figure 13. - Effect of inlet turbulence screen on inlet sound power spectrum in anechoic chamber.

(d) 100 Percent of design speed; 99.8 percent of design weight flow.

Figure 13. - Concluded.

Figure 14. - Inlet sound pressure level spectra in anechoic chamber; 60^{0} microphone. Typical 50-hertz constant bandwidth analysis.

Figure 15. - Inlet sound pressure level spectra in anechoic chamber; 60⁰ microphone. Comparison of direct one-third octave band analysis of total noise with values of broadband component calculated from 50-hertz constant bandwidth analysis.

Figure 16. - Inlet sound pressure level spectra in unmodified compressor test facility. Typical 50-hertz constant bandwidth analysis.

Figure 17. - Inlet sound pressure level spectra in unmodified compressor test facility. Comparison of direct one-third octave band analysis of total noise with values of broadband component calculated from 50-hertz constant bandwidth analysis.

0.1.1.1.1

Figure 18. - Typical continuous 50-hertz constant bandwidth spectra (simulated) in anechoic chamber at 60° inlet angle and in inlet plenum chamber of unmodified compressor test facility. 70 Percent of design speed; P/R = 1.21; relative Mach number at inlet rotor tip, $M_{1, 05}^{t} = 0.75$.

(b) Untreated plenum chamber; percent of design weight flow, 100.5; $P_3/P_1 = 1.385$; relative Mach number at inlet rotor tip $M_{1,05}^1 = 1.145$.

Figure 19. - Typical continuous 50-hertz constant bandwidth spectra (simulated) in anechoic chamber at 600 inlet angle and in inlet plenum chamber of unmodified compressor test facility. 100 Percent of design speed.

Figure 20. - Inlet sound power spectra as measured in anechoic chamber and in unmodified compressor test facility at comparable conditions.

Figure 20. - Concluded.

Figure 21. - Inlet sound power spectrum as measured in unmodified compressor design speed.

Figure 22. - Inlet sound power spectrum as measured in anechoic chamber. 60 Percent of design speed.

Figure 23. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 70 Percent of design speed.

Figure 24. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 80 Percent of design speed.

Figure 25. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 90 Percent of design speed.

Figure 26. - Inlet sound power spectrum as measured in anechoic chamber and in unmodified compressor test facility. 100 Percent of design speed.

Figure 27. – Blade passing frequency noise (1xBPF + 2xBPF) as measured in unmodified compressor test facility and in anechoic chamber. One-third octave analysis.

Figure 28. - Multiple pure tone noise (BPF's excluded) as measured in unmodified compressor test facility and in anechoic chamber. One-third octave analysis.

Figure 29. - Broadband noise as measured in unmodified compressor test facility and in anechoic chamber. One-third octave analysis.

Figure 30. - Effects of corrected weight flow induced without rotor or stator in unmodified compressor test facility with collector sleeve valve.

NASA-Langley, 1975 E -8201 97

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

140 001 C1 U H 75 12 12 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546