CS 140 Lecture 11

Sequential Networks: Timing and Retiming

Professor CK Cheng

CSE Dept.

UC San Diego

From

Taken

Sequential Networks

Timing: Setup Time and Hold Time Constraints

Sequential Networks

combinational circuit and flip-flips. A typical sequential network has both a

Input Timing Constraints

- data must be stable (i.e. not changing)) max-path. Setup time: t_{Setup} = time *before* the clock edge that
- data must be stable [min path] Hold time: $t_{hold} = time \ after$ the clock edge that
- must be stable ($t_a = t_{\text{setup}} + t_{\text{hold}}$) Aperture time: t_a = time around clock edge that data setup | hold

Output Timing Constraints

- Propagation delay: t_{pcq} = time after clock edge that changing) the output Q is guaranteed to be stable (i.e., to stop
- Contamination delay: t_{ccq} = time after clock edge that Q might be unstable (i.e., start changing)

Dynamic Discipline

The delay between registers has a minimum and circuit elements maximum delay, dependent on the delays of the

Setup Time Constraint

- delay from register R1 through the combinational logic. The setup time constraint depends on the maximum
- before the clock edge. The input to register R2 must be stable at least t_{setup}

Hold Time Constraint

- The hold time constraint depends on the minimum delay from register R1 through the combinational logic.
- after the clock edge. The input to register R2 must be stable for at least t_{hold}

Timing Analysis

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps

$$t_{pd}$$
 = 35 ps
 t_{cd} = 25 ps

Setup time constraint:

 $t_{cd} =$

$$f_C = 1/T_C =$$

Hold time constraint:

$$t_{ccq} + t_{pd} > t_{hold}$$
?

Timing Analysis

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps

$$t_{pd}$$
 = 35 ps
 t_{cd} = 25 ps

Setup time constraint:

 $t_{cd} = 25 \text{ ps}$

$$T_C \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

$$f_C = 1/T_C = 4.65 \text{ GHz}$$

Hold time constraint:

$$t_{ccq} + t_{pd} > t_{hold}$$
? (30 + 25) ps > 70 ps ? No!

Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

$$t_{ccq}$$
 = 30 ps
 t_{pcq} = 50 ps
 t_{setup} = 60 ps
 t_{hold} = 70 ps

$$t_{pd}$$
 = 35 ps
 t_{cd} = 25 ps

Setup time constraint:

Hold time constraint:

$$t_{ccq} + t_{pd} > t_{hold}$$
?

Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

$$t_{ccq} = 30 \text{ ps}$$
 $t_{pcq} = 50 \text{ ps}$
 $t_{\text{setup}} = 60 \text{ ps}$
 $t_{\text{hold}} = 70 \text{ ps}$

$$t_{pd}$$
 = 35 ps
 t_{cd} = 25 ps

Setup time constraint:

$$T_C \ge (50 + 105 + 60) \text{ ps} = 215 \text{ ps}$$

 $f_C = 1/T_C = 4.65 \text{ GHz}$

$$t_{ccq} + t_{pd} > t_{hold}$$
?
(30 + 50) ps > 70 ps ? Yes!

Clock Skew

- The clock doesn't arrive at all registers at the same time
- Skew is the difference between two clock edges
- in a system! discipline is not violated for any register – many registers Examine the worst case to guarantee that the dynamic

Setup Time Constraint with Clock Skew

In the worst case, the CLK2 is earlier than CLK1

CLK2

CLK1

Hold Time Constraint with Clock Skew

In the worst case, CLK2 is later than CLK1

Timing and Retiming

Retiming: Adjust the clock skew so that the clock period can be reduced.