```
In [1]:
        import seaborn as sns
        import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd
In [2]: df = catalog.load("MICRODADOS_ENEM")
        [01/14/23 18:27:39] INFO
                                        Loading data from 'MICRODADOS_ENEM' (ParquetDa
In [3]:
        df.head()
           NU_INSCRICAO NU_ANO TP_ST_CONCLUSAO IN_TREINEIRO CO_MUNICIPIO_ESC TP_PRESI
Out[3]:
            210053865474
                                                               0
                             2021
                                                                              NaN
            210052384164
                             2021
                                                               0
                                                                              NaN
        2
            210052589243
                             2021
                                                 1
                                                               0
                                                                              NaN
            210052128335
                             2021
                                                                         2304202.0
            210051353021
                             2021
                                                 2
                                                               0
                                                                         2311603.0
        id_cols = ["NU_INSCRICAO", "NU_ANO"]
       flag_cols = ["TP_ST_CONCLUSAO", "IN_TREINEIRO", "CO_MUNICIPIO_ESC", "TP_PRESENCA
In [6]: calc_cols = ["NU_NOTA_MT"]
        filtered_df = df.query("TP_PRESENCA_MT == 1")
```

Distribuição populacional

```
In [8]: sns.displot(data=filtered_df, x="NU_NOTA_MT", kind="kde", hue="NU_ANO");
```


In [9]:	<pre>filtered_df.groupby("NU_ANO")["NU_NOTA_MT"].describe()</pre>								
Out[9]:		count	mean	std	min	25%	50%	75%	max
	NU_ANO								
	2018	3905085.0	535.405276	103.150900	0.0	455.3	516.6	600.7	996.1
	2019	3710335.0	523.124060	109.062957	0.0	435.1	501.1	597.8	985.5
	2020	2597440.0	520.578335	117.305453	0.0	425.8	505.1	602.3	975.0
	2021	2245844.0	535.080186	110.626652	0.0	444.7	515.4	613.9	953.1

In [10]: filtered_df.boxplot(column="NU_NOTA_MT", by="NU_ANO")

Distribuição amostral de 2021 a 2018

```
In [12]: from scipy.stats import ttest_ind
In [13]: sample_2021 = np.random.choice(filtered_df.query("NU_ANO == 2021")["NU_NOTA_MT"]
         sample_2020 = np.random.choice(filtered_df.query("NU_ANO == 2020")["NU_NOTA_MT"]
         sample_2019 = np.random.choice(filtered_df.query("NU_ANO == 2019")["NU_NOTA_MT"]
         sample_2018 = np.random.choice(filtered_df.query("NU_ANO == 2018")["NU_NOTA_MT"]
In [14]: mean_sample_2021 = sample_2021.mean(axis=1)
In [15]: mean_sample_2020 = sample_2020.mean(axis=1)
In [16]: mean_sample_2019 = sample_2019.mean(axis=1)
In [17]: mean_sample_2018 = sample_2018.mean(axis=1)
In [18]: mean_samples = pd.DataFrame({
                 '2021': mean sample 2021,
                  '2020': mean_sample_2020,
                  '2019': mean_sample_2019,
                 '2018': mean sample 2018
         })
         sns.displot(
             data=mean_samples,
             kde=True
         );
```


In [19]: mean_samples.describe()

Out[19]: 2021 2020 2019 2018 **count** 50000.000000 50000.000000 50000.000000 50000.000000 535.041765 520.551910 523.117227 535.408385 mean 3.489767 3.714303 3.444114 3.284534 std min 520.704000 503.677500 509.472500 522.137300 25% 532.680050 518.015200 520.786825 533.179175 **50%** 535.030500 520.567850 523.098150 535.392000 **75**% 537.395575 523.082025 525.437350 537.603050 549.585100 549.249100 max 535.332200 538.202200

In [20]: mean_samples.boxplot()

Testes de hipóteses

```
In [21]: sns.displot(
    data=pd.DataFrame({'2021': mean_sample_2021, '2019': mean_sample_2019}),
    kde=True
);
```


In [22]: ttest_ind(mean_sample_2021, mean_sample_2019, equal_var=False, alternative='grea

Ttest_indResult(statistic=543.8207437152116, pvalue=0.0)

 H_0 : $\mu_{2021} \le \mu_{2019}$

 H_1 : $\mu_{2021} > \mu_{2019}$

 $pvalue = 0.0 \leq 0.05$ portanto, rejeita-se H_0

```
In [23]: sns.displot(
    data=pd.DataFrame({'2021': mean_sample_2021, '2020': mean_sample_2020}),
    kde=True
);
```


In [24]: ttest_ind(mean_sample_2021, mean_sample_2020, equal_var=False, alternative='greater
Ttest_indResult(statistic=635.733801986235, pvalue=0.0)

 H_0 : $\mu_{2021} \le \mu_{2020}$

 H_1 : $\mu_{2021} > \mu_{2020}$

 $pvalue = 0.0 \leq 0.05$ portanto, rejeita-se H_0

```
In [25]: sns.displot(
    data=pd.DataFrame({'2021': mean_sample_2021, '2018': mean_sample_2018}),
    kde=True
);
```


In [26]: ttest_ind(mean_sample_2021, mean_sample_2018, equal_var=False, alternative='greater
Ttest_indResult(statistic=-17.106181519378392, pvalue=1.0)

 H_0 : $\mu_{2021} \le \mu_{2018}$

 H_1 : $\mu_{2021} > \mu_{2018}$

 $pvalue = 0.99 \geq 0.05$ portanto, não se rejeita H_0

```
In [27]: sns.displot(
    data=pd.DataFrame({'2019': mean_sample_2019, '2020': mean_sample_2020}),
    kde=True
);
```


In [28]: ttest_ind(mean_sample_2019, mean_sample_2020, equal_var=False, alternative='greater
Ttest_indResult(statistic=113.24393358566942, pvalue=0.0)

 H_0 : $\mu_{2019} \le \mu_{2020}$

 H_1 : $\mu_{2019} > \mu_{2020}$

 $pvalue = 0.0 \leq 0.05$ portanto, rejeita-se H_0

In []: