Computational Conformal Geometry

Lecture Note 4: Maps between Topological Spaces

授课日期: 2020年11月

讲师: Xianfeng (David) Gu 撰写: 洪楠方

助教: 洪楠方 最后更新: January 9, 2021

Definition 1 (Continuous Map). a *continuous map* is a continuous function between two topological spaces, denoted as, e.g.

$$f: \mathbf{M} \to \mathbf{N}$$

Definition 2 (Simplicial Map). A simplicial map between simplicial complexes K and L is a function

$$\varphi: \operatorname{Vert}(K) \to \operatorname{Vert}(L)$$

from the vertex set of K to that of L such that whenever $v_0, v_1, ..., v_q$ span a q-simplex of K, $\varphi(v_0), \varphi(v_1), ..., \varphi(v_q)$ span a p-simplex $(p \le q)$ of L. Of course, repetition among $\varphi(v_0), \varphi(v_1), ..., \varphi(v_q)$ are allowed.

Note that the simplicial map φ can be regarded as a function from K to L: this function sends a simplex σ of K with vertices $v_0, v_1, ..., v_q$ to the simplex $\varphi(\sigma)$ of L spanned by vertices $\varphi(v_0), \varphi(v_1), ..., \varphi(v_q)$, so we also write φ as

$$\varphi:K\to L$$

Note that the simplicial map φ also induces a continuous map

$$\varphi: |K| \to |L|$$

between the polyhedra of K and L, denoted as |K| and |L|, where a point inside polyhedron |K| spanned by vertex $v_0, v_1, ..., v_q$ is sent to a point inside polyhedron |L| continuously by

$$\varphi\left(\sum_{j=0}^q t_j v_j\right) = \sum_{j=0}^q t_j \varphi(v_j) \quad \text{whenever} \quad 0 \le t_j \le 1 \quad \text{for} \quad j=0,1,...,q \quad \text{and} \quad \sum_{j=0}^q t_j = 1$$

As a closing remark, there are thus three equivalent ways of describing a simplicial map:

- 1. as a function between the vertex sets of two simplicial complexes, e.g. $\varphi : Vert(K) \to Vert(L)$
- 2. as a function from one simplicial complex to another, e.g. $\varphi: K \to L$
- 3. as a continuous map between the polyhedra of two simplicial complexes, e.g. $\varphi: |K| \to |L|$

We shall describe a simplicial map using the representation that is most appropriate in the given context.

1 Simplicial Approximation Theorem

You may have experience with *Minecraft* game or *Lego* toy. It seems obvious that any real world object can be represented by a labeled discretized lattice. The mathematical theorem to behind is *simplicial approximation*

theorem, which is a foundational result for algebraic topology, guaranteeing that given an embedded mesh, a continuous manifold can be (by a slight deformation) approximated by a simplicial complex of the simplest kind.

The manifold M embedded by a given simplicial complex L, was described by a continuous map from a parametric simplicial complex K, with its space of parameter denoted by |K|, to the space of polyhedron of simplicial complex L, denoted by |L|:

$$\mathbf{M}: |K| \to |L|$$

Example 3 (manifold embedded by simplicial complex). See figure 1, manifold \mathbf{M} was parametrized by a continuous map from space of a simplicial complex K, denoted by |K|, to the polyhedron of another simplicial complex L, the embedded space of manifold \mathbf{M} , denoted by |L|

Figure 1: manifold **M** was represented by a continuous map: $\mathbf{M}: |K| \to |L|$

Definition 4 (Star of a Vertex, "discrete version of neighbor of a point"). Let K be a simplicial complex and let $p \in \text{Vert}(K)$. Then the *star* of p, denoted by st(p), is defined by

$$\operatorname{st}(p) = \bigcup s^{\circ} \subset |K| \quad \text{where simplex} \quad s \in K \quad \text{such that} \quad p \in \operatorname{Vert}(s)$$

Figure 2: star of p, denoted by st(p)

Example 5 (Star of a Vertex). as shown in figure 2, st(p) consists of the open shaded region, all the open simplexes of which p is a neighbor.

Definition 6 (Simplicial Approximation). a manifold M, parametrized by simplicial complex K, embedded in simplicial complex L, represented by a continuous map

$$\mathbf{M}: |K| \to |L|$$

Its meshing approximation candidate \mathbf{M}_{Δ} , parametrized by simplicial complex K, embedded in simplicial complex L, represented by a simplicial map

$$\mathbf{M}_{\Delta}:K\to L$$

Then \mathbf{M}_{Δ} is simplicial approximation to \mathbf{M} if, for every vertex p of K,

$$\mathbf{M}(\mathrm{st}(p)) \subset \mathrm{st}(\mathbf{M}_{\Delta}(p))$$

which means \mathbf{M} carries neighboring simplexes of p inside the union of the simplexes near $\mathbf{M}_{\Delta}(p)$. \mathbf{M}_{Δ} and \mathbf{M} are close up to a meshing unit.

Example 7 (Simplicial Approximation). See figure 3, \mathbf{M}_{Δ} is an simplicial approximation to \mathbf{M} .

Figure 3: \mathbf{M}_{Δ} , illustrated by biggest nodes and bolded edges on right side, is the simplest approximation to \mathbf{M} , achieved by first-order barycentric subdivision of K, denoted by Sd^1K . The simplicial approximation theorem guarantees that a simplest approximation in a given embedding mesh will be achieved by sufficient iterations of barycentric subdivision. (barycentric subdivision and simplicial approximation theorem will be explained right away)

Definition 8 (Barycentric Subdivision). If s is a simplex, let b^s denote its barycenter. If K is a simplicial complex, define Sd K, the barycentric subdivision of K, to be the simplicial complex with

$$Vert(Sd\ K) = \{b^s : s \in K\}$$

note that here $s \in K$ are simplex of all dimensions in K. Recall that if s is a 0-simplex then trivially $b^s = s$; if s is a 1-simplex then b^s is the central point of two vertices; and so on. The q times iteration of barycentric subdivision is denoted by

$$\mathrm{Sd}^q K$$

Example 9 (Barycentric Subdivision). If simplex $\sigma = [p_0, p_1, p_2]$, then $Vert(Sd \sigma) = \{p_0, p_1, p_2, b_0, b_1, b_2, b^{\sigma}\}$. See figure 4

Theorem 10 (Simplicial Approximation Theorem). Given simplicial complexes K and L. A smooth manifold M, parametrized by K, embedded in |L| (the polyhedron of L), represented by

$$M: |K| \rightarrow |L|$$

must have a simplicial approximation, and could be found its simplest kind after some barycentric subdivision by

$$\mathbf{M}_{\Delta}: Sd^qK \to L \quad where \quad q \geq 1$$

Figure 4: first order barycentric subdivision of the simplex σ

Simplicial approximation theorem was the foundation of modern movie industry and game industry, since it provide a theoretical guarantee that the simplest discrete digital approximation of any smooth-shaped object exists.

Example 11 (Simplicial Approximation Theorem). See figure 1, one cannot construct a simplicial approximation to \mathbf{M} by its mapping parameter K, but one can do so by its first-order barycentric subdivision K_2 , as shown in figure 3

2 Chern-Gauss-Bonnet Theorem

Definition 12 (Induced Maps). Algebraic topology constructs functor

$$\mathfrak{C}_1 \to \mathfrak{C}_2$$

between $\mathfrak{C}_1 = \{\text{Topological Spaces, Homeomorphisms}\}\$ and $\mathfrak{C}_2 = \{\text{Groups, Homomorphisms}\}\$. Therefore, a continuous map $f: \mathbf{M} \to \mathbf{N}$, where \mathbf{M} and \mathbf{N} are two manifolds, naturally induces homomorphism. there basically two kinds of *induced map*:

• push-forward map, denoted as $f_{\#}$ if on homotopy, and denoted as f_{*} if on homology. $f_{\#}$ maps between fundamental groups¹:

$$f_{\#}:\pi_1(\mathbf{M})\to\pi_1(\mathbf{N})$$

 f_* maps between homology groups:

$$f_*: H_p(\mathbf{M}) \to H_p(\mathbf{N})$$

• push-forward map, denoted as f^* if it maps between cohomology groups²:

$$f^*: H^p(\mathbf{N}) \to H^p(\mathbf{M})$$

$$f_\# \text{ takes "curves" to "curves":}$$

$$f_\# : C_p(\mathbf{M}) \to C_p(\mathbf{N})$$

$$f_\# \text{ takes "cycles" to "cycles":}$$

$$f_\# : Z_p(\mathbf{M}) \to Z_p(\mathbf{N})$$

$$f_\# \text{ takes "boundaries" to "boundaries":}$$

$$f_\# : B_p(\mathbf{M}) \to B_p(\mathbf{N})$$

²here we explain why push forward and pull back are opposite direction but both natural. Points are sent forward. Given $p \in \mathbf{M}$ we have $f(p) \in \mathbf{N}$. Functions are sent back, i.e. pull back from \mathbf{N} to \mathbf{M} . If we have a function $\omega : \mathbf{N} \to \mathbb{R}$ then we get the composition $\omega \circ f : \mathbf{M} \to \mathbb{R}$. So the pull back can be consider a functional map, which maps from function on \mathbf{N} to function on \mathbf{M}

Example 13 (Induced Maps of Surface). Suppose M and N are two closed surfaces, a continuous map:

$$f: \mathbf{M} \to \mathbf{N}$$

induces a push-forward map on first homology:

$$f_*: H_1(\mathbf{M}) \to H_1(\mathbf{N})$$

and a pull-back map on first cohomology:

$$f^*: H^1(\mathbf{N}) \to H^1(\mathbf{M})$$

Suppose a curve $\sigma \in C_1(\mathbf{M}) \subset H_1(\mathbf{M})$ and a vector field $\omega \in C^1(\mathbf{N}) \subset H^1(\mathbf{M})$, then

$$\omega[f_*(\sigma)] = [f^*(\omega)](\sigma)$$

Definition 14 (Degree of a Map). Suppose M and N are two closed surfaces, a continuous map:

$$f: \mathbf{M} \to \mathbf{N}$$

then the degree of map is the algebraic number³ of pre-image $f^{-1}(q)$ for arbitrary point $q \in \mathbb{N}$, denoted as $\deg(f)$, which is independent of the choice of the point q. An example see figure 5

Figure 5: a continuous map $f: \mathbf{M} \to \mathbf{M}$ from a sphere to itself but in 2x speed. For every point $q \in \mathbf{M}$, there are two pre-image, so $\deg(f) = 2$

Example 15 (Degree of a Map). Suppose M and N are two closed surfaces, a continuous map:

$$f: \mathbf{M} \to \mathbf{N}$$

induces a push-forward map on second homology:

$$f_*: H_2(\mathbf{M}) \to H_2(\mathbf{N})$$

since $H_2(\mathbf{M}, \mathbb{Z}) \cong \mathbb{Z} \cong H_2(\mathbf{N}, \mathbb{Z})$, we also write its isomorphism:

$$\tilde{f}_*: \mathbb{Z} o \mathbb{Z}$$

and it must have the form

$$\tilde{f}_*(z) = \deg(f) \cdot z$$

³ if Jacobian at that point q is positive then count +1, else then count -1, then degree of map is sum of total count

Definition 16 (Euler-Poincaré Characteristic). let g be the genus of a closed surface S, then Euler characteristic, denoted as $\chi(S)$, is

$$\chi(\mathbf{S}) = 2(1-g)$$

the discrete version, if **S** triangulated in S_{Δ} , is

$$\chi(\mathbf{S}_{\Delta}) = |\text{Faces}| - |\text{Edges}| + |\text{Vertices}|$$

Definition 17 (Gaussian Curvature). At any point on a surface, we can find a normal vector that is at right angles to the surface; planes containing the normal vector are called normal planes. The intersection of a normal plane and the surface will form a curve called a normal section and the curvature of this curve is the normal curvature. For most points on most surfaces, different normal sections will have different curvatures; the maximum and minimum values of these are called the principal curvatures, call these κ_1, κ_2 . The Gaussian curvature is the product of the two principal curvatures $K = \kappa_1 \cdot \kappa_2$, as shown in figure 6

Figure 6: Gaussian curvature is the product of κ_1, κ_2

Theorem 18 (Chern-Gauss-Bonnet Theorem). Let S be a closed surface, K(p) the Gaussian curvature at point p on surface, and dA(p) the element area at point p on surface, then its total Gaussian curvature

$$\int_{\mathbf{S}} K(p) dA(p) = 2\pi \chi(\mathbf{S})$$

Shiing-Shen Chern provided simple intrinsic proof of Gauss-Bonnet Theorem, which added his name to Gauss-Bonnet. We illustrate his beautiful proof by applying degree of Gauss map and homotopy between surfaces.

proof. consider the Gauss Map $G: \mathbf{S}^* \to \mathbb{S}^2$ from a canonical closed surface \mathbf{S}^* to unit sphere \mathbb{S}^2 . Whenever a point p on surface with normal $\mathbf{n}(p)$, the Gauss Map maps it to a point G(p) on unit sphere with the same normal $\mathbf{n}(p)$.

Note that

$$\deg(G) = 1 - g$$

so the total area of the image of S^* on unit sphere S^2 is

$$Area(\mathbb{S}^2) \times \deg(G) = 4\pi \deg(G) = 4\pi (1 - g) = 2\pi \chi(\mathbf{S}^*)$$

Figure 7: The canonical shape of genus g closed surface \mathbf{S}^* can guarantee $\deg(G) = 1 - g$ since the count of pre-image is strictly negative whenever a hole appears.

Note that the total area of the image of S^* on unit sphere S^2 also equals to

$$\int_{\mathbf{S}^*} \frac{\operatorname{Area}(G(p))}{\operatorname{Area}(p)} dA(p)$$

which equals to, since it is a Gauss Map⁴:

$$\int_{\mathbf{S}^*} \frac{\operatorname{Area}(G(p))}{\operatorname{Area}(p)} dA(p) = \int_{\mathbf{S}^*} K(p) dA(p)$$

thus we get, for a canonical closed surface S^* , the identity

$$\int_{\mathbf{S}^*} K(p) dA(p) = 2\pi \chi(\mathbf{S}^*)$$

Now consider the quantity

$$\frac{\int_{\mathbf{S}^*} K(p) dA(p)}{2\pi} = \chi(\mathbf{S}^*) \in \mathbb{Z}$$

is an integer, which should not change under continuous deformation from canonical shaped S^* to any closed surface S with same genus g, thus we get for any closed surface S

$$\int_{\mathbf{S}} K(p) dA(p) = 2\pi \chi(\mathbf{S})$$

Example 19 (Chern-Gauss-Bonnet Theorem). let **S** be a sphere with radius R, its genus g = 0, then $\chi(\mathbf{S}) = 2 \times (1 - 0) = 2$, its Gaussian curvature is constant $\frac{1}{R^2}$, according to Chern-Gauss-Bonnet formula

$$\int_{\mathbf{S}} \frac{1}{R^2} dA(p) = \frac{1}{R^2} \int_{\mathbf{S}} dA(p) = \frac{1}{R^2} \times \operatorname{Area}(\mathbf{S}) = 2\pi \chi(\mathbf{S}) = 4\pi$$

$$\lim_{\Omega_p \to 0} \frac{\operatorname{Area}(G(\Omega_p))}{\operatorname{Area}(\Omega_p)} = K(p)$$

 $^{^4}$ for Gauss Map, when shrinking a patch around point p, its limit is Gaussian curvature:

indeed Area(S) = $4\pi R^2$.

3 Fixed Point Theorem

Definition 20 (Inclusion Map). an *inclusion map* i from A to B, where $A \subset B$, satisfies that for any element $x \in A$ we have i(x) = x, denoted as

$$i:A\hookrightarrow B$$

Theorem 21 (Brouwer's Fixed Point Theorem). Suppose $\Omega \subset \mathbb{R}^n$ is a compact convex set, $f: \Omega \to \Omega$ is a continuous map, then there exists a point $p \in \Omega$ such that

$$f(p) = p$$

proof. Assume $f: \Omega \to \Omega$ has no fixed point, namely

$$\forall p \in \Omega, \ f(p) \neq p$$

Figure 8: diagram of $g: \Omega \to \partial \Omega$ (left) and $(g \circ i): \partial \Omega \to \partial \Omega$ (right)

We can construct $g:\Omega\to\partial\Omega$, a ray starting from f(p) through p and intersect $\partial\Omega$ at g(p). Because our assumption $f(p)\neq p$ and Ω is convex, g is well-defined. Note that if point $p\in\partial\Omega$ then g(p)=p, as shown in figure 8. We construct an inclusion map $i:\partial\Omega\hookrightarrow\Omega$, which maps a point $p\in\partial\Omega$ to itself. Then we compose it with g,

$$\partial\Omega \overset{i}{\hookrightarrow} \Omega \xrightarrow{g} \partial\Omega$$

we get an identity map:

$$(g \circ i) : \partial \Omega \to \partial \Omega$$

which induces a push-forward map on $(n-1)^{th}$ homology:

$$(g \circ i)_* : H_{n-1}(\partial\Omega, \mathbb{Z}) \to H_{n-1}(\partial\Omega, \mathbb{Z})$$

since it is identity map,

$$(g \circ i)_* : z \mapsto z$$

 $g:\Omega\to\partial\Omega$ induces a push-forward map on $(n-1)^{th}$ homology:

$$g_*: H_{n-1}(\Omega, \mathbb{Z}) \to H_{n-1}(\partial\Omega, \mathbb{Z})$$

however, since Ω is compact convex set

$$H_{n-1}(\Omega, \mathbb{Z}) = 0, \quad g_* = 0$$

SO

$$(g \circ i)_* = g_* \circ i_* = 0$$

contradiction! $f: \Omega \to \Omega$ has fixed point.

In 1910, Luitzen Egbertus Jan Brouwer proved his fixed point theorem, which ensured the existence of fixed point of a continuous self-map of convex compact space. Often, it can be stated as follow:

Theorem 22 ("Swirling Coffee" Theorem). Use a stick (volume can be ignored) to swirl a cup of coffee without making any bubble. In the end, there is a molecule with final position the same as initial position in your coffee.

Figure 9: "swirling coffee" theorem: at least one molecule, "doesn't move" before and after coffee swirling

In 1926, Solomon Lefschetz gave a formula that relates the number of fixed points of a map to the induced push-forward maps on homology.

Definition 23 (Index of Fixed Point). Suppose **M** is an n-dimensional topological space, p is a fixed point of self-map $f: \mathbf{M} \to \mathbf{M}$. Choose a neighborhood **U** such that $p \in \mathbf{U} \subset \mathbf{M}$, consider the boundary of **U**, which is a (n-1)-dimensional $\partial \mathbf{U}$. Similar to the concept "degree of a map" (see example 15), the induced push-forward map on $(n-1)^{th}$ homology:

$$f_*: H_{n-1}(\partial \mathbf{U}, \mathbb{Z}) \to H_{n-1}(\partial \mathbf{U}, \mathbb{Z})$$

is $f_*: \mathbb{Z} \to \mathbb{Z}$ and must have the form $f_*: z \mapsto \lambda z$, where λ is an integer called the algebraic index of fixed point p of map f, denoted as

$$\operatorname{Ind}(f, p) = \lambda$$

Definition 24 (Trace of Self-map). Let **A** be a matrix representing a self-map $f : \mathbf{M} \to \mathbf{M}$ under any basis, then the *trace* of f, denoted as

$$\operatorname{Tr}(f)$$

is $Tr(\mathbf{A})$, the trace of \mathbf{A} , which is independent of choice of basis.

Definition 25 (Lefschetz-Hopf Fixed Point Formula). Given compact topological space \mathbf{M} . The sum of indexes of all fixed points of a self-map $f: \mathbf{M} \to \mathbf{M}$ equals to the alternating sum of trace of push-forward map on k^{th} homology $f_{*k}: H_k(\mathbf{M}, \mathbb{Z}) \to H_k(\mathbf{M}, \mathbb{Z})$ induced by the self-map f

$$\sum_{p \in \text{Fix}(f)} \text{Ind}(f, p) = \sum_{k} (-1)^{k} \text{Tr}(f_{*k}) =: \Lambda(f)$$

where $\Lambda(f)$ is called *Lefschetz number*

Example 26 (Lefschetz-Hopf Fixed Point Formula). consider a simple self-map $f:[0,1]\to[0,1]$. we have

$$\Lambda(f) = \underbrace{\mathrm{Tr}(f_{*0}: \mathbb{Z} \to \mathbb{Z})}_{1} - \underbrace{\mathrm{Tr}(f_{*1}: 0 \to 0)}_{0} = 1 = \sum_{p \in \mathrm{Fix}(f)} \mathrm{Ind}(f, p)$$

as shown in figure 10

Figure 10: a self-map $f_1:[0,1]\to \text{const}$ (left) versus its homotopic self-map f_2 with same Lefshcetz number $\Lambda(f_1)=\Lambda(f_2)=1$

Theorem 27 (Lefschetz's Fixed Point Theorem). Given a continuous self-map of a compact topological space $f: M \to M$, if its Lefschetz number $\Lambda(f) \neq 0$, then there is a point $p \in M$ such that

$$f(p) = p$$

Proof (Advanced). Notation update:

- f_k : the induced push-forward map on k-dimensional space
- $f_k \mid C_k$: the induced map on k-chain group
- $f_k \mid H_k$: the induced map on k-homology
- \oplus : direct sum between groups, e.g. $A \oplus B = \{(a+b) \mid a \in A, b \in B\}$

According to simplicial approximation theorem, there must be approximated maps up to any precision. So we triangulate \mathbf{M} first, and assume its induced map f can be both embedded in chain space and smooth space, as shown in the commutative diagram as figure 11:

$$\frac{C_k}{Z_k} \xrightarrow{f_k} \frac{C_k}{Z_k}$$

$$\frac{\partial_k}{\partial_k} \begin{vmatrix} A & & & \\ & \partial_k & & \\ & \partial_k & & \\ & & \partial_k & \\ & &$$

Figure 11: commutative diagram of induced map and boundary operator

we have

$$(f_{k-1} \mid B_{k-1}) = \partial_k \circ (f_k \mid \frac{C_k}{Z_k}) \circ \partial_k^{-1}$$

and thus

$$\operatorname{Tr}(f_{k-1} \mid B_{k-1}) = \operatorname{Tr}([\partial_k][f_k \mid \frac{C_k}{Z_k}][\partial_k^{-1}])$$

$$= \operatorname{Tr}([f_k \mid \frac{C_k}{Z_k}][\partial_k^{-1}][\partial_k])$$

$$= \operatorname{Tr}(f_k \mid \frac{C_k}{Z_k})$$

according to property of trace.

Let C_k be k-chain group, Z_k closed chain group, B_k exact chain group, H_k homology group. We have

$$C_k \cong \frac{C_k}{Z_k} \oplus Z_k$$
 and $Z_k \cong B_k \oplus H_k$

thus

$$\operatorname{Tr}(f_k \mid C_k) = \operatorname{Tr}(f_k \mid \frac{C_k}{Z_k} \oplus Z_k)$$

$$= \operatorname{Tr}(f_k \mid \frac{C_k}{Z_k}) + \operatorname{Tr}(f_k \mid Z_k)$$

$$= \operatorname{Tr}(f_{k-1} \mid B_{k-1}) + \operatorname{Tr}(f_k \mid B_k) + \operatorname{Tr}(f_k \mid H_k)$$

thus

$$\sum_{k} (-1)^{k} \operatorname{Tr}(f_{k} \mid C_{k}) = \sum_{k} (-1)^{k} \left[(\operatorname{Tr}f_{k-1} \mid B_{k-1}) + \operatorname{Tr}(f_{k} \mid B_{k}) + \operatorname{Tr}(f_{k} \mid H_{k}) \right]$$
(1)

$$= \sum_{k} (-1)^k \operatorname{Tr}(f_k \mid H_k) \tag{2}$$

$$= \Lambda(f) \tag{3}$$

according to Lefschetz-Hopf fixed point formula. Whenever $\Lambda(f) \neq 0$, there is an entry in a matrix such that $\mathrm{Tr}(f_k \mid C_k) \neq 0$, which means there is simplex $\sigma \in C_k$ such that $f_k(\sigma) \subset \sigma$, for any point in $|\sigma|$, the continuous map $f_k : |\sigma| \to |\sigma|$ must have a Brouwer's fixed point such that $f_k(p) = p$, which means

$$f(p) = p$$

Example 28 (Lefschetz Number, Betti Number and Euler-Poincaré Characteristic). Consider an identity map of a closed surface

$$\mathrm{id}:\mathbf{S}\to\mathbf{S}$$

the identity map is, of course, a self-map. According to equations 1, 2 and 3, we have

$$\Lambda(\mathrm{id}) = \sum_{k} (-1)^{k} \mathrm{Tr}(\mathrm{id}_{k} \mid C_{k}) = \underbrace{\mathrm{Tr}(\mathrm{id}_{2} \mid C_{2})}_{|\mathrm{Faces}|} - \underbrace{\mathrm{Tr}(\mathrm{id}_{1} \mid C_{1})}_{|\mathrm{Edges}|} + \underbrace{\mathrm{Tr}(\mathrm{id}_{0} \mid C_{0})}_{|\mathrm{Vertices}|}$$

$$= \sum_{k} (-1)^{k} \mathrm{Tr}(\mathrm{id}_{k} \mid H_{k}) = \underbrace{\mathrm{Tr}(\mathrm{id}_{2} \mid H_{2})}_{b_{2}} - \underbrace{\mathrm{Tr}(\mathrm{id}_{1} \mid H_{1})}_{b_{1}} + \underbrace{\mathrm{Tr}(\mathrm{id}_{0} \mid H_{0})}_{b_{0}}$$

$$= \chi(\mathbf{S})$$

Here we show that for an identity map, the connection between its Lefschetz number and Euler-Poincaré characteristic, and where Euler (number of triangulation elements) and Poincaré (Betti number⁵) coincide.

⁵geometrically, Betti number of surface can be understood as:

 $[\]bullet$ b_0 is the number of connected components

 $[\]bullet$ b_1 is the number of one-dimensional or "circular" holes

[•] b_2 is the number of two-dimensional "voids" or "cavities"