Završni ispit iz kolegija:

TEORIJA ELEKTRIČNIH STROJEVA I TRANSFOMATORA

20.01.2010.

- 1. Asinkroni motor s nazivnim podacima 100 kW, 400 V, 50 Hz, 4 pola ima parametre nadomjesne sheme za nazivnu frekvenciju zadane u jediničnim vrijednostima: $r_s = 0.022$, $x_{\sigma s} = 0.11$, $r'_r = 0.026$, $x'_{\sigma r} = 0.11$, $x_m = 2.5$. Gubici u željezu i mehanički gubici se mogu zanemariti.
 - a) Pri nazivnoj frekvenciji i klizanju 0,035 moment na osovini iznosi 1,25. Za tu radnu točku odredite:
 - a1) struju rotora $|\vec{i}_r|$,
 - a2) snagu na osovini P_2 ,
 - a3) omske gubitke u rotoru,
 - * a4) struju magnetiziranja (struja kroz poprečnu granu),
 - a5) struju statora $|\bar{i}_s|$,
 - a6) korisnost.
 - b) Za istu struju statora kao u a) dijelu zadatka izračunajte:
 - b1) koliko će iznositi klizanje i klizna frekvencija da bi motor na osovini razvio isti moment ($M_{em} = 1,25$) na frekvenciji 12,5 Hz,
 - b2) struju magnetiziranja za radnu točku iz b1),
 - b3) snagu na osovini za radnu točku iz b1).

U b) dijelu zadatka pretpostavite da je utjecaj otpora statora kompenziran, tj. da je napon statora tolikog iznosa da je struja statora na 12,5 Hz ista kao i na 50 Hz.

(4 boda)

- 2. Sinkroni motor s trajnim magnetima nazivnih podataka 15 kW, 400 V, 50 Hz, 6 polova napaja se iz strujno reguliranog pretvarača napona i frekvencije. Ako se pri nazivnoj frekvenciji vektorom struje upravlja tako da je $I_{ds}^r = 0$ ($\gamma = 0$), a $I_s = I_{qs}^r = 1$ uz napon na stezaljkama motora $U_s = 1$, onda faktor snage izmjeren na stezaljkama motora iznosi 0,6. Ako se vektor struje postavi tako da je kut $\gamma = -30^{\circ}$, pri čemu je $I_s = 1$, $U_s = 0,8$, onda faktor snage iznosi 0,866.
 - a) Skicirajte fazorske dijagrame za navedene radne točke
 - b) Odredite parametre motora X_d , X_q i E. Pretpostavite da je otpor statora jednak nuli ($R_s = 0$).
 - c) Kod kojeg kuta γ će motor razvijati maksimalni moment na 50 % nazivne frekvencije ako je $I_s = 1$. Koliki su moment M_{em} , napon U_s i faktor snage $\cos \varphi$ u tom slučaju?

(4 boda)

- 3. Dijametralni dvoslojni namot 6-polnog 3-faznog stroja smješten u 72 utora sa 6 vodiča po utoru protjecan je izmjeničnom strujom iznosa 8 A po fazi.
 - a) Koliki je korak svitka iskazan brojem utorskih koraka?
 - b) Koliki je faktor namota za osnovni harmonik protjecanja?
 - c) Kolika je amplituda osnovnog harmonika pulsirajućeg protjecanja jedne faze?
 - d) Kolika je amplituda osnovnog harmonika rezultantnog protjecanja (direktnog i inverznog)?

(3 boda)

- 4. Raspored jednofaznog 2-polnog namota po obodu stroja koji se sastoji od koncentrično namotanih svitaka s 20 i 10 zavoja prikazan je na slici. Linije koje povezuju vodiče predstavljaju električne spojeve vodiča na različitim stranama svitaka. Duljina zračnog raspora je δ , radijus je r, a duljina jezgre znosi l.
 - a) Nacrtajte funkciju namota $N(\alpha)$ i označite odgovarajuće numeričke iznose funkcije namota i pripadne kuteve α na mjestima gdje se nalaze vodiči.
 - b) Izračunajte omjer vlastitog induktiviteta namota uzimajući u obzir samo osnovni harmonik funkcije namota i ukupnog samoinduktiviteta.

(3 boda)

- 5. Stator općeg modela stroja ima 6 istaknutih polova. Njegov se rotor vrti brzinom od 1500 min⁻¹. Namotima statora teku struje frekvencije 60 Hz.
 - a) Napišite izraze za kriterije za postojanje srednje vrijednosti razvijenog elektromagnetskog momenta.
 - b) Odredite frekvenciju rotorskih struja pri kojima je moguća trajna elektromehanička pretvorba energije.
 - c) Odredite za sve slučajeve o kojoj se vrsti stroja i pretvorbe radi, prikazujući tumačenje i okretna protjecanja koja se sprežu za svaki navedeni kriterij.

(4 boda)

6. Transformatori T1, T2 i T3 su spojeni paralelno.

T1: 75 kVA, $u_k = 3.6$ %, $P_0 = 250$ W, $P_t = 1100$ W, Yd7, 10/0.4 kV

T2: 65 kVA, $u_k = 4.5 \%$, $P_0 = 200 \text{ W}$, $P_t = 900 \text{ W}$, Yd7, 10/0.4 kV

T3: 60 kVA, $u_k = 4.8 \%$, $P_0 = 180 W$, $P_t = 800 W$, Yd7, 10/0,4 kV

- a) Ako je potrebno prenijeti snagu od 123 kVA korištenjem samo dva transformatora, koja dva transformatora je potrebno priključiti da se postigne maksimalni η grupe transformatora pri traženom opterećenju uz $\cos \varphi_2 = 1$ i pri čemu nijedan transformator ne smije biti preopterećen?
- b) Koliko iznosi η za taj slučaj?

(2 boda)