Key concepts on Deep Neural Networks

Quiz, 10 questions

~	Congratulations! You passed!	Next Item		
~	1/1 point			
1. What is the "cache" used for in our implementation of forward propagation and backward propagation?				
	It is used to keep track of the hyperparameters that we are searching over, computation.	, to speed up		
	It is used to cache the intermediate values of the cost function during train	ing.		
0	We use it to pass variables computed during forward propagation to the copropagation step. It contains useful values for backward propagation to co			
Correct Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.				
	We use it to pass variables computed during backward propagation to the propagation step. It contains useful values for forward propagation to com-			
2. Among	1 / 1 point g the following, which ones are "hyperparameters"? (Check all that apply.)			
	bias vectors $b^{[l]}$			

Un-selected is correct

Key concepts on Deep Neural Networks Quiz, 10 questionize of the hidden layers $n^{[l]}$

Correct activation values $a^{[l]}$ **Un-selected** is correct number of iterations Correct number of layers L in the neural network Correct weight matrices $W^{\left[l
ight]}$ **Un-selected is correct** learning rate α Correct point Which of the following statements is true? The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers. Correct

The earlier layers of a neural network are typically computing more complex features of the input Key concepts one Deep Neural Networks

Quiz, 10 questions

1/1 point

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit forloop (or any other explicit iterative loop) over the layers l=1, 2, ...,L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 point

5

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims))):

Key concepts or Deep WeuratiWetworks.randn(layers[i-1],

layers[i])) * 0.01

Quiz, 10 questions

3 parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
\bigcirc
```

- 1 for(i in range(1, len(layer_dims))):
- parameter['W' + str(i)] = np.random.randn(layers[i], layers[i
 -1])) * 0.01
- parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

Correct

1/1 point

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers L is 3. The number of hidden layers is 3.

	y concepts roter breep sMeur abeNetweorks dden layers is 4. , 10 questions		
	The number of layers L is 5. The number of hidden layers is 4.		
~	1/1 point		
7.			
During function	forward propagation, in the forward function for a layer l you need to know what is the activation in in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward funct eds to know what is the activation function for layer l , since the gradient depends on it. True/False?		
0	True		
Corr			
Yes, back	as you've seen in the week 3 each activation has a different derivative. Thus, during epropagation you need to know which activation was used in the forward propagation to be able to pute the correct derivative.		
	False 1/1 point		
•	point		
8.			
I nere	are certain functions with the following properties:		
size by	ompute the function using a shallow network circuit, you will need a large network (where we meas the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you n n exponentially smaller network. True/False?		
0	True		
Corr	ect		
	False		

9.

Keycomeeptomingeandayeal. Natworks

Quiz, 10 questions

Which of the following statements are True? (Check all that apply).

Key concepts on Deep Neural Networks

z, 10 questions
$W^{[2]}$ will have shape (3, 4)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[2]}$ will have shape (1, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 1)
Un-selected is correct
$b^{[2]}$ will have shape (3, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1)
Un-selected is correct
$b^{[3]}$ will have shape (1, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$h^{[3]}$ will have shape (3.1)

Key condepts on Deep Neural Networks

Quiz, 10 questions

1/1 point

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

- $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$

