

Aprendizaje Automático Profundo (Deep Learning)

Descenso de Gradiente

Descenso de gradiente

- Descenso de gradiente
 - Iterativo
 - Generalizable
 - Regresión Lineal
 - Regresión Logística
 - Redes Neuronales
 - Máquinas de Vectores de Soporte
 - Cualquier modelo con E derivable
 - Escalable (con modificaciones)
 - Millones de ejemplos

Derivadas

- Función f(x) = ...
 - \circ Alternativamente y = f(x)
 - Derivable → suave
- Derivada
 - Función calculada a partir de otra función
- Derivada 1D: y'=f'(x)
 - f'(x) = pendiente a la recta tangente en el punto x
 - Razón de cambio dy/dx
 - Signo indica dirección de crecimiento

Derivada 1D como indicador de

crecimiento/decrecimiento

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \begin{cases} > 0 & \text{si } f \text{ crece} \\ < 0 & \text{si } f \text{ decrece} \\ = 0 & \text{pto crítico} \end{cases}$$

- Cociente incremental
 - Límite por izquierda y por derecha
 - Signo indica si crece o decrece
 - Solo alrededor del punto!

Derivada 1D como indicador de

crecimiento/decrecimiento

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \begin{cases} > 0 & \text{si } f \text{ crece} \\ < 0 & \text{si } f \text{ decrece} \\ = 0 & \text{pto crítico} \end{cases}$$

- Cociente incremental
 - Límite por izquierda y por derecha
 - Signo indica si crece o decrece
 - Solo alrededor del punto!

- Dados
 - Función E
 - De error u otra
 - Parámetro w
 - Valor inicial w=w₀ aleatorio
 - o Derivada de E
 - Con respecto a w
 - δE(w)/δw
 - Velocidad de aprendizaje α
 - Tamaño del **paso**
- Iterar
 - $\circ w = w \alpha \delta E(w)/\delta w$
 - Hasta converger

Iterar

- Interpretamos
 - \circ w = w <algo>
 - Modificamos w
 - \circ $\delta E(w)/\delta w$
 - Dirección y magnitud del cambio
 - \circ α
 - Magnitud del cambio
 - α δE(w)/δw →
 - Dirección y magnitud del cambio


```
def descenso_gradiente(E,w,x,y):
    w = ...
    converge=False
    while not converge:
        δΕδw = derivada(E,w,x,y)
        w = w - δΕδw
        converge = ... (depende)
    return w
```


Efecto de α en $w := w - \alpha (\delta E(w)/\delta w)$

- α demasiado chico
 α "correcto"
 - Poco avance por iteración
 - Alto coste computacional

- - Buen avance por iteración
 - Razonable coste computacional

- α demasiado **grande**
 - "saltos" grandes
 - o Puede no converger
 - Erorres numéricos

¿Por qué descenso de gradiente?

- Si tenemos 2 parámetros
 - \circ W₁ y W₂
 - 2 derivadas parciales
 - $\delta E/\delta W_1$
 - $\delta E/\delta W_2$
 - Gradiente ΔE
 - Vector de derivadas parciales
 - $\Delta E = (\delta E / \delta W_1, \delta E / \delta W_2)$
- Con P parámetros
 - W₁, W₂, ..., W_P
 - \circ ΔE = (δE/δw₁, δE/δw₂, ..., δE/δw_D)

- 1 sólo parámetro
 - \circ W
 - \circ $\Delta E = (\delta E / \delta W)$
 - Gradiente = derivada

- 2D vs 1D
 - Mismo algoritmo
 - 2 parámetros
 - \blacksquare E(W₁,W₂) = ..
 - $\Delta \mathbf{E} = (\delta E / \delta W_1, \delta E / \delta W_2)$
- Ecuaciones
 - $\circ W_1 = W_1 \alpha \delta E(W_1, W_2) / \delta W_1$
 - $\circ W_2 = W_2 \alpha \delta E(W_1, W_2) / \delta W_2$
 - En general

Diagramas de contorno y gradientes

```
W1 = np.arange(-10, 10, 0.8)
W2 = np.arange(-10, 10, 0.8)
W1, W2 = np.meshgrid(W1,W2)
E = (W1**2 + W2**2)
```

Flechas: Vectores gradiente

plt.contour(W1, W2, E)
dEdW1, dEdW2 = np.gradient(E)
plt.quiver(W1, W2, dEdW1, dEdW2)


```
ax = Axes3D(fig)
ax.plot_surface(W1, W2, E)
ax.contourf(W1, W2, E)
```

Funciones no convexas

- Redes Neuronales
 - Varían parámetros iniciales
 - Varían parámetros finales
 - Función de error no convexa → mínimos locales

Resumen

- Descenso de gradiente
 - Iterativo
 - Generalizable
 - Requiere f derivable
 - Escalable
 - Millones de ejemplos
 - Con modificaciones
 - Ecuación fundamental
 - $w := w \alpha (\delta E(w_i)/\delta w_i)$
 - Mueve a w_i en la dirección que minimiza E
 - α indica el tamaño del paso

