TESTE DE INSTRUMENTAÇÃO 1 - 2015/2016

Exercício 1 - Sensores

	Usa material absorvente de UV	Linear	Semicondutor	Funciona com λ ≅1550nm	R baixa quando aumenta a T	Precisa de uma T de referência
RTD		х			х	
Termopar						Х
Termístor			х			
Termómetro de radiação	х		х			
Fibras RBG				х		

Exercício 2 - Filtro

Figura de um filtro passa alto de 2ª ordem, com os valores de R, R1, R2 e C iguais aos do teste de 2015

- 1. Identificar o filtro e justificar
- 2. Calcular f0 e Q (ele deu as fórmulas de H(jf) do K e do Q)
- 3. Para o valor de Q obtido quais as consequências? (O Q⁻¹=0, o que significa que o Q era infinito, provocando oscilações do sinal para a frequência f0)
- 4. Calcular V0, com valores de R, R1, R2, e C iguais aos do testes de 2015.

Exercício 3 - Conversor

- 1. Esboçar o esquema de um conversor de dupla rampa com resolução de 15bits, descrever o seu funcionamento, e representar o sinal de saída.
- 2. Em que é que o conversor de dupla rampa é melhor do que o de rampa simples?
- 3. Quais os componentes limitadores deste conversor? (tabela fim do capítulo)
- 4. Para uma aplicação de processamento de sinal rápido, este conversor é adequado? Se responder que não, diga, justificando, qual o conversor que escolheria. (primeiramente não é adequado porque tem um tempo de resposta lento. Depois, era um bocado manhoso, porque tinha de se considerar a resolução que ele dava no enunciado de 15 bits motivo pelo qual não se podia optar pelo flash, que só tem resolução de até 6bits.Para a resolução pretendida de 15bits e um processamento de sinal médio, opta-se pelo conversor sigma delta de 1ª ordem que funciona com resoluções entre 15 e 16 bits)