

Actividad de la lección 1.4.5.2

Determinar el área de la superficie genera al girar la región dada con respecto al eje señalado.

- **1.** $4x = y^2 \operatorname{de} A(0,0) \operatorname{a} B(1,2)$; eje x
- **2.** $x = 4\sqrt{y}$ de A(4,1) a B(12,9); eje y
- 3. El arco de la parábola $y^2 = x$ con el primer cuadrante que va de (1,1) a (4,2) gira alrededor del eje x. Calcular el área de la superficie resultante.
- **4.** Hallar el área de la superficie lateral del cono generado al girar el segmento de recta $y = \frac{x}{2}$, $0 \le x \le 4$ gira alrededor del eje x. Verifica tu respuesta.
- 5. ¿Sabías que, si cortas una pieza esférica de pan en rebanadas del mismo ancho, cada una tendría la misma cantidad de corteza? Para probarlo supongamos que el semicírculo $y = \sqrt{r^2 x^2}$ mostrado gira alrededor del eje x. Sea AB un arco del semicírculo que esta sobre un intervalo de longitud h en el eje x. Muestra que el área barrida por AB no depende de la ubicación del intervalo, si no que depende de la longitud del intervalo.

6.
$$8y = 2x^4 + x^{-2} \operatorname{de} A\left(1, \frac{3}{8}\right) \operatorname{a} B\left(2, \frac{139}{32}\right)$$
; eje x

7.
$$y = 2\sqrt{x+1} \text{ de } A(0,2) \text{ a } B(3,4)$$
; eje x

8.
$$y = 2\sqrt[3]{x}$$
 de $A(1,2)$ a $B(8,4)$; eje y

9.
$$x = 4\sqrt{y} \text{ de } A(4,1) \text{ a } B(12,9)$$
; eje y

10.
$$y = \tan x \text{ en } 0 \le x \le \frac{\pi}{4}$$
; eje x

11.
$$x = 2\sqrt{4 - y}$$
, $0 \le y \le \frac{15}{4}$; eje y

12.
$$x = \sqrt{2y - 1}$$
, $\frac{5}{8} \le y \le 1$; eje y

13.
$$x = \frac{y^4}{4} + \frac{1}{8y^2}$$
, $1 \le y \le 2$; eje y

14.
$$y = \frac{x^2}{4} - \frac{\ln x}{2}$$
, $1 \le x \le 4$; eje x

15.
$$y = \cosh x$$
, $0 \le x \le 1$; eje x

16.
$$x = e^y$$
, $0 \le y \le \frac{1}{2}$; eje y

17. El arco de la parábola $y^2 = x$ con el primer cuadrante que va de (1, 1) a (4, 2) gira alrededor del eje x. Calcular el área de la superficie resultante.

- **18.** Hallar el área de la superficie lateral del cono generado al girar el segmento de recta $y = \frac{x}{2}$, $0 \le x \le 4$ gira alrededor del eje x. Verifica tu respuesta con la formula geométrica.
- **19.** Hallar el área de la superficie lateral del cono generado al girar el segmento de recta $y = \frac{x}{2} + \frac{1}{2}$, $1 \le x \le 3$ gira alrededor del eje x. Verifica tu respuesta con la formula geométrica.
- **20.** Hallar el área de la superficie generada al girar alrededor del eje x, la parte de la hipocicloide $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$.
- **21.** La banda sombreada que se muestra en la siguiente figura es un corte de la esfera del radio R por planos paralelos que se encuentran a h unidades uno del otro. Muestra que el área de la superficie de la banda es $2\pi Rh$.

- **22.** La forma del reflector de un faro se obtiene haciendo girar una parábola alrededor de su eje. Calcular el área de la superficie de un reflector que mide 4 pies de diámetro y tiene una profundidad de 1 pie.
- **23.** Calcular el área de la superficie generada cuando el menor de los arcos de la circunferencia $x^2 + y^2 = 25$ entre los puntos (- 3,4) y (3,4) gira alrededor del eje x.
- **24.** Mostrar que el área de la superficie de un cono circular recto de altura a y radio de la base b es $\pi b \sqrt{a^2 + b^2}$
- **25.** Halla el área de la superficie lateral del cono generado al girar el segmento de recta $y = \frac{x}{2}$, $0 \le x \le 4$, alrededor del eje y.
- **26.** Mostrar que el área de la superficie de una esfera de radio a es $4\pi a^2$.
- **27.** La elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ con a > b se hace girar en torno del eje x para formar una superficie llamada elipsoide. Calcular el área superficial del elipsoide.