Dr. Francesco Gallinaro Tutorat: Max Herwig

Modelltheorie

Blatt 12

Abgabe: 30.01.2024, 12 Uhr

Aufgabe 1. (16 Punkte)

In der Sprache \mathcal{L} , welche die Gruppensprache enthält, sei T eine total transzendente abzählbare vollständige Theorie, deren Modelle unendliche Gruppen (möglicherweise mit Zusatzstruktur) sind.

a) Zeige, dass es in keinem Modell \mathcal{M} von T eine unendliche absteigende Kette mit Parametern definierbarer Untergruppen $H_1 \geq H_2 \geq \ldots \geq H_n \geq \ldots$ gibt.

HINWEIS: Nebenklassen von H_{n+1} .

- b) Ist die Theorie der Gruppe $(\mathbb{Z}, 0, +, -)$ in der Gruppensprache überabzählbar kategorisch?
- c) Gegeben \mathcal{M} ein Modell von T sei \mathcal{F}_M die Kollektion aller mit Parametern definierbarer Untergruppen H von M von endlichem Index. Zeige mi Hilfe der Teilaufgabe (a), dass

$$\bigcap_{H \in \mathcal{F}_M} H$$

eine definierbare Untergruppe von endlichem Index ist.

HINWEIS: Schätze den Index von $H_1 \cap H_2$ ab.

Im Folgenden bezeichnen wir mit $G_M^0[x]$ die Formel, welche den obigen Durchschnitt definiert.

d) Gegeben eine \mathcal{L} -Formel $\varphi[x, \bar{y}]$ und eine natürliche Zahl d, zeige, dass es eine \mathcal{L} -Formel $\theta_{\varphi,d}[\bar{y}]$ so gibt, dass für jedes Tupel \bar{b} aus M

 $M \models \theta_{\varphi,d}[\bar{b}] \ \Leftrightarrow \ \varphi[x,\bar{b}] \text{ definiert eine Untergruppe von } M \text{ von Index h\"ochstens } d.$

e) Wenn \mathcal{M} eine elementare Unterstruktur von \mathcal{N} ist, zeige, dass die Erfüllungsmenge $G_N^0(\mathcal{N})$ gleich $G_M^0(\mathcal{N})$ ist.

HINWEIS: Die Untergruppe $G_M^0(\mathcal{M})$ ist die kleinste Untergruppe von M definierbar über M mit endlichem Index.

f) Schließe daraus, dass $G_M^0(\mathcal{M})$ ohne Parameter definierbar ist.

HINWEIS: Saturierte Modelle.

Aufgabe 2. (4 Punkte)

Ein n-Typ q über der Parametermenge B der \mathcal{L} -Struktur \mathcal{M} ist Koerbe über $A \subset B$, falls jede B-Instanz $\varphi[\bar{x}, \bar{b}]$ aus $q(\bar{x})$ eine Realisierung \bar{a} aus A besitzt (d.h. $\mathcal{M} \models \varphi[\bar{a}, \bar{b}]$). Beachte, dass jeder Typ aus $S_n^{\mathcal{M}}(M)$ Koerbe über M ist.

a) In einer elementaren Oberstruktur $\mathcal{N} \succeq \mathcal{M}$ sei $M \subset B \subset N$ beliebig. Zeige, dass jeder Typ p aus $S_n^{\mathcal{M}}(M)$ sich so zu einem Typ q aus $S_n^{\mathcal{N}}(B)$ erweitern lässt, dass q Koerbe über M ist.

(Bitte wenden!)

b) Betrachte nun die dichte lineare Ordnung \mathbb{R} als Struktur \mathcal{M} in der Sprache $\mathcal{L} = \{<\}$. Sei $0 < \xi$ ein infinitesimales Element in der elementare Erweiterung $\mathcal{N} \succeq \mathcal{M}$. Beschreibe alle Erweiterungen q von $p = \operatorname{tp}^{\mathcal{M}}(\xi/\mathbb{R})$ zur Parametermenge $B = \mathbb{R} \cup \{\xi\}$ wie in Teil a).

Die Übungsblätter können zu zweit eingereicht werden. Abgabe der Übungsblätter im Fach 3.33 im Keller des mathematischen Instituts.