DyniBaR

Neural Dynamic Image-Based Rendering

Seungyeol Lee

Purpose of Research

- Synthesizing Novel Views depicting a complex dynamic scene

Purpose of Research

- Synthesizing Novel Views depicting a complex dynamic scene

Purpose of Research

- Novel view synthesis from a Monocular Video is Challenging

Limitations of Previous Research

1. NSFF

- Local scene-flow based methods

- Struggle to scale longer input videos captured with unconstrained camera motions.

- Only good performance for 1-second, forward-facing videos.

Limitations of Previous Research

2. HyperNeRF

- Construct a canonical model

- Mostly constrained to object-centric scenes with controlled camera paths

- Can fail on scenes with complex object motion.

New Approach scalable to Dynamic Videos

Captured with

- (1) Long time duration
- (2) Unbounded scenes
- (3) Uncontrolled Camera Trajectories
- (4) Fast and Complex Object Motion

1. Rendering Static Scenes

- Aggregate multi-view image features in "scene motion-adjusted" ray space.

- Correctly reason about spatio-temporally varying geometry and appearance.

2. Rendering Dynamic Scene Motions

- "Motion Trajectory Fields" that span multiple frames

- "Motion Trajectory Fields" represented with learned basis functions.

3. Temporal Coherence in Dynamic Scene Reconstruction

- Introduce a new temporal photometric loss

- Operated in motion-adjusted ray space

4. New IBR-based Motion Segmentation Technique

- Factor the scene into static and dynamic components

- Use Bayesian Learning Framework

Aggregating Features extracted from temporally nearby source views

Given

 (I_1,I_2,\ldots,I_N) - Image Frames

 $(\mathbf{P}_1,\mathbf{P}_2,\ldots,\mathbf{P}_N)$ - Known Camera Parameters

Render an image at time i

- Identify source views I_{j} within a temporal radius r frames of i
- $-j \in N(i) = [i-r, i+r]$

Extract 2D Feature Map F_i

- For each source view, extract 2D feature map.
- Extracted by shared convolutional encoder network.

Account for Scene Motion

- Moving scene elements lead to inconsistent feature aggregation.
- So, we perform motion-adjusted feature aggregation.

Trajectory Coefficients

$$\{\phi_i^l(\mathbf{x})\}_{l=1}^L = G_{\text{MT}}(\gamma(\mathbf{x}), \gamma(i))$$

Trajectory Coefficients

$$\{\phi_i^l(\mathbf{x})\}_{l=1}^L = G_{\text{MT}}(\gamma(\mathbf{x}), \gamma(i))$$

Given 3D point \mathbf{x} along target ray r at time i

Trajectory Coefficients

$$\{\phi_i^l(\mathbf{x})\}_{l=1}^L = G_{\text{MT}}(\gamma(\mathbf{x}), \gamma(i))$$

γ - Positional Encoding

Trajectory Coefficients

$$\{\phi_i^l(\mathbf{x})\}_{l=1}^L = G_{\text{MT}}(\gamma(\mathbf{x}), \gamma(i))$$

 $G_{
m MT}$ - Motion Trajectory MLP

Trajectory Coefficients

$$\{\phi_i^l(\mathbf{x})\}_{l=1}^L = G_{\text{MT}}(\gamma(\mathbf{x}), \gamma(i))$$

 $\phi_i^l \in \mathcal{R}^3$ - Basis Coefficients for x, y, z using the motion basis

Global Learnable Motion Basis

$$\{h_i^l\}_{l=1}^L$$

Optimized jointly with the MLP $(h_i^l \in \mathcal{R})$

Motion Trajectory of x

$$\Gamma_{\mathbf{x},i}(j) = \sum_{l=1}^{L} h_j^l \phi_i^l(\mathbf{x})$$

Relative displacement between \mathbf{X} and $\mathbf{X}_{i \rightarrow j}$

$$\Delta_{\mathbf{x},i}(j) = \Gamma_{\mathbf{x},i}(j) - \Gamma_{\mathbf{x},i}(i)$$

Summarize

1. Source features are fed to a shared MLP.

- 2. Shared MLP produces a single feature vector at each 3D sample point.
- 3. Ray Transformer processes aggregated features produced by shared MLP.
- 4. Ray Transformer predicts (\mathbf{c}_i, σ_i) (per-sample colors and densities.)
- 5. We use NeRF volume rendering to obtain a final pixel color $\hat{\mathbf{C}}_i(\mathbf{r})$.

Points $\mathbf{X}_{i \to j}$ along motion-adjusted ray $\mathbf{r}_{i \to j}$

- Treat them as if they lie along a ray at time j

Motion-disocclusion-aware RGB reconstruction loss Lpho

$$\mathcal{L}_{\text{pho}} = \sum_{\mathbf{r}} \sum_{j \in \mathcal{N}(i)} \hat{\mathbf{W}}_{j \to i}(\mathbf{r}) \rho(\mathbf{C}_i(\mathbf{r}), \hat{\mathbf{C}}_{j \to i}(\mathbf{r})).$$

Motion-disocclusion-aware RGB reconstruction loss Lpho

$$\mathcal{L}_{\text{pho}} = \sum_{\mathbf{r}} \sum_{j \in \mathcal{N}(i)} \hat{\mathbf{W}}_{j \to i}(\mathbf{r}) \rho(\mathbf{C}_i(\mathbf{r}), \hat{\mathbf{C}}_{j \to i}(\mathbf{r})).$$

 $\hat{\mathbf{W}}_{j
ightarrow i}(\mathbf{r})$ - Motion Disocclusion Weight

Motion-disocclusion-aware RGB reconstruction loss Lpho

$$\mathcal{L}_{\text{pho}} = \sum_{\mathbf{r}} \sum_{j \in \mathcal{N}(i)} \hat{\mathbf{W}}_{j \to i}(\mathbf{r}) \rho(\mathbf{C}_i(\mathbf{r}), \hat{\mathbf{C}}_{j \to i}(\mathbf{r})).$$

P. - Generalized Charbonnier loss for RGB

Combining Static and Dynamic Models

Dynamic Content (c_i, σ_i) with a time-varying model

Figure 3. Network architecture of our time-varying dynamic representation.

Combining Static and Dynamic Models

Static content (c, σ) with a time-invariant model

Figure 4. Network architecture of our time-invariant static representation.

Combining Static and Dynamic Models

Combined Dynamic and Static Predictions

Cst: color estimated by time-invariant model

 $\hat{\mathbf{C}}_{i}^{\mathrm{dy}}$: color estimated by time-varying model

 $\hat{\mathbf{C}}_i^{ ext{full}}$: color rendered by combining dynamic and static predictions

$$\mathcal{L}_{\text{pho}} = \sum_{\mathbf{r}} \sum_{j \in \mathcal{N}(i)} \hat{\mathbf{W}}_{j \to i}(\mathbf{r}) \rho(\mathbf{C}_i(\mathbf{r}), \hat{\mathbf{C}}_{j \to i}^{\text{full}}(\mathbf{r}))$$

New Motion Segmentation Module

- Segmentation masks for supervising dynamic and static scene representations

Bst: pixel color rendered by IBR-Net with static scene content

$$\hat{\mathbf{B}}_{i}^{\mathrm{dy}}, \boldsymbol{\alpha}_{i}^{\mathrm{dy}}, \boldsymbol{\beta}_{i}^{\mathrm{dy}} = D(I_{i}).$$

- D: 2D-convolutional encoder-decoder network
- $-\hat{\mathbf{B}}_{i}^{\mathrm{dy}}$: RGB image from D and input frame
- α_i^{dy} : 2D opacity map from D and input frame
- β_i^{dy} : confidence map from D and input frame

Full Reconstructed Image

$$\hat{\mathbf{B}}_{i}^{\text{full}}(\mathbf{r}) = \alpha_{i}^{\text{dy}}(\mathbf{r})\hat{\mathbf{B}}_{i}^{\text{dy}}(\mathbf{r}) + (1 - \alpha_{i}^{\text{dy}}(\mathbf{r}))\hat{\mathbf{B}}^{\text{st}}(\mathbf{r}).$$

Bst: pixel color rendered by IBR-Net with static scene content

 $\hat{\mathbf{B}}_{i}^{dy}$: RGB image from D and input frame

 α_i^{dy} : 2D opacity map from D and input frame

 β_i^{dy} : confidence map from D and input frame

Segmentation Loss

$$\mathcal{L}_{\text{seg}} = \sum_{\mathbf{r}} \log \left(\boldsymbol{\beta}_i^{\text{dy}}(\mathbf{r}) + \frac{||\hat{\mathbf{B}}_i^{\text{full}}(\mathbf{r}) - \mathbf{C}_i(\mathbf{r})||^2}{\boldsymbol{\beta}_i^{\text{dy}}(\mathbf{r})} \right)$$

- Observations with a Cauchy distribution with $oldsymbol{eta}_i^{ ext{dy}}$

- Weighted loss taking the negative log-likelihood of the observations

Segmentation Mask Loss

$$\mathcal{L}_{\text{mask}} = \sum_{\mathbf{r}} (1 - M_i)(\mathbf{r}) \rho(\hat{\mathbf{C}}^{\text{st}}(\mathbf{r}), \mathbf{C}_i(\mathbf{r}))$$
$$+ \sum_{\mathbf{r}} M_i(\mathbf{r}) \rho(\hat{\mathbf{C}}_i^{\text{dy}}(\mathbf{r}), \mathbf{C}_i(\mathbf{r}))$$

- M_i : Masks with time-varying and time-invariant models

- Perform to obtain masks to turn off the loss near mask boundaries

Regularization

Regularization scheme

$$\mathcal{L}_{reg} = \mathcal{L}_{data} + \mathcal{L}_{MT} + \mathcal{L}_{cpt}$$

 $\mathcal{L}_{ ext{data}}$: <u>Data-Driven loss</u> consisting of l_1 monocular depth and optical flow consistency

 \mathcal{L}_{MT} : Motion-trajectory regularization to be cycle-consistent and spatio-temporally smooth

 \mathcal{L}_{cpt} : Compactness prior that encourages the scene decomposition to be binary

Final Combined Loss

$$\mathcal{L} = \mathcal{L}_{pho} + \mathcal{L}_{mask} + \mathcal{L}_{reg}$$

Evaluation Metrics

- PSNR, SSIM, and LPIPS

- Errors over the entire scene (Full)

- Errors restricted to moving regions (Dynamic Only)

Dynamic Scenes Dataset

- NVIDIA dataset

- UCSD dataset

- Qualitative Comparison with DVS, HyperNeRF, and NSFF

Qualitative Comparisons on Dynamic Scenes Dataset

NVIDIA dataset

UCSD dataset

Quantitative Comparisons on Dynamic Scenes Dataset

Methods	Full			Dynamic Only		
	SSIM↑	PSNR↑	LPIPS↓	SSIM↑	PSNR↑	LPIPS↓
Nerfies [49]	0.823	24.32	0.096	0.595	18.45	0.234
HyperNeRF [50]	0.859	25.10	0.095	0.618	19.26	0.212
DVS [19]	0.943	30.64	0.075	0.866	26.57	0.096
NSFF [35]	0.952	31.75	0.034	0.851	25.83	0.115
Ours	0.983	36.47	0.014	0.909	28.01	0.042

In-the-wild videos

- Straightforward modification to NeRF's Blender Dataset

- Designed to probe aliasing and scale-space reasoning

- Qualitative Comparisons with DVS, HyperNeRF, and NSFF

Qualitative Comparisons on In-the-wild videos

Limitations

- Relatively small viewpoint changes

- Not able to handle small fast moving objects (due to incorrect initial depth and optical flow estimates)

- Not strictly multi-view consistent

- Sensitive to degenerate motion patterns from in-the-wild videos (degenerate motions : object and camera motion is colinear)