

KEMENTERIAN PEKERJAAN UMUM DAN PERUMAHAN RAKYAT

DIREKTORAT JENDERAL SUMBER DAYA AIR BALAI TEKNIK BENDUNGAN

Gd. Balai Bendungan, Jl. Sapta Taruna Raya, Komplek PU Pasar Jum'at, Jakarta Selatan 12310 Telepon: (021) 75908364, 7514441 Faksimile: (021) 75908364

ANALISIS CURAH HUJAN (2/2)

Bahan Ajar (Modul) Bimbingan Teknis Analisis Debit Banjir Desain Dengan Menggunakan Data Hujan Satelit

JUNI 2022

RBPMD

Sesi	Indikator Keberhasilan	Materi Pokok	Waktu	Penilaian	
Sesi	Indikator Reperhasilan	IVIALEIT POKOK	vvaktu	Metode	Bobot
1	 Mampu menganalisis kebutuhan data minimum sesuai NSPM dan rumus atau metode analisis yang akan digunakan Mampu melakukan penyiapan data hidrologi sesuai dengan kebutuhan dalam analisis Mampu membaca data primer dan sekunder dengan baik dan benar Mampu menilai kelengkapan data dan informasi yang digunakan sesuai dengan rumus atau metode analisis yang akan digunakan Mampu mengatasi keterbatasan data yang ada dan mampu mencari solusi sesuai kaidah teknis yang berlaku dengan baik dan benar 	Pengumpulan data hujan: Data pos hujan Data hujan satelit	1 JP	Tes teori tertulis atau pilihan ganda	7%
2	 Mampu melakukan penyiapan data hidrologi sesuai dengan kebutuhan dalam analisis Mampu menganalisis kualitas dan kelayakan data dan informasi yang digunakan dalam analisis 	Pemeriksaan data hujan: Uji Outlier Uji Trend Uji Stabilitas Uji Independensi	2 JP	Tes teori tertulis atau pilihan ganda Latihan	14 %
3	 Mampu melakukan penyiapan data hidrologi sesuai dengan kebutuhan dalam analisis Mampu membaca data primer dan sekunder dengan baik dan benar Mampu menilai kelengkapan data dan informasi yang digunakan sesuai dengan rumus atau metode analisis yang akan digunakan Mampu melakukan analisis dan kalibrasi besaran angka parameter hidrologi yang sesuai 	Koreksi data hujan satelit: Pemilihan Data Stasiun Hujan Koreksi Data Hujan Satelit Verifikasi Hasil Koreksi Hujan Satelit	2 JP	 Tes teori tertulis atau pilihan ganda Latihan 	21 %

RBPMD

Sesi	Indikator Keberhasilan	Materi Pokok	Waktu	Penilaian	
Sesi	indikator Repernasiian	Materi Pokok	vvaktu	Metode	Bobot
4	 Mampu menganalisis kualitas dan kelayakan data dan informasi yang digunakan dalam analisis Mampu melakukan perhitungan dan analisis curah hujan rencana 	Distribusi Probabilitas: Distribusi Probabilitas General Extreme Value Distribusi Log Normal 2-Parameter Distribusi Log Normal 3-Parameter Distribusi Gumbel-1 Distribusi Pearson III dan Log-Pearson III Uji Kecocokan Probabilitas Uji Chi-Square Kolmogorov-Smirrnoff Analisis Metode Hershfield dan peta Isohyet PMP	3 JP	 Tes teori tertulis atau pilihan ganda Latihan 	21 %
5	Mampu melakukan perhitungan dan analisis curah hujan rencana	 Hujan Titik dan Hujan Rata-rata Wilayah Rata-rata Aritmatik Poligon Thiessen 	1 JP	 Tes teori tertulis atau pilihan ganda Latihan Tugas 	8 %
6	Mampu melakukan analisis dan kalibrasi besaran angka parameter hidrologi yang sesuai	Penentuan Durasi Hujan Rencana Pencatatan Hujan Klasifikasi Ukuran DAS Distribusi Temporal Hujan Rencana Distribusi PSA-007 Distribusi Huff-1 Distribusi SCS Pemilihan Distribusi Hujan Reduksi Hujan Terhadap Luas dan Reduksi Hujan Terhadap Durasi Temporal	4 JP	 Tes teori tertulis atau pilihan ganda Latihan Tugas 	29 %

ANALISIS FREKUENSI

BAB 5

MODUL 1 – ANALISIS CURAH HUJAN

ANALISIS FREKUENSI

Besarnya *magnitude* kejadian ekstrim mempunyai hubungan terbalik dengan **probabilitas** kejadian, dinyatakan dengan hubungan:

$$P(x) = \frac{1}{T}$$

Keterangan:

P(x): probabilitas terjadinya kejadian yang sama besar atau lebih besar dari x

T : periode ulang rencana (tahun)

Secara umum, analisis frekuensi suatu seri data curah HHMT memiliki persamaan:

$$x_T = \overline{x} + k \cdot s$$

keterangan:

 x_T : tinggi curah hujan rencana dengan periode ulang T tahun (mm)

 \overline{x} : rata-rata tinggi curah hujan dari seri data yang dimiliki (mm)

k: koefisien yang bergantung dari jenis distribusi seri data

s: standar deviasi tinggi curah hujan dari seri data yang dimiliki

Distribusi Probabilitas yang umum digunakan di Indonesia:

➤ **General Extreme Value (GEV)**, Log Normal 2 Parameter, Log Normal 3 Parameter, Gumbel-1, Pearson III, dan Log-Pearson III.

Untuk memilih distribusi probabilitas yang cocok untuk seri data HHMT tertentu, dapat dilakukan uji kecocokan distribusi menggunakan Uji **Chi-Square** atau **Kolmogorov-Smirrnoff**.

ANALISIS FREKUENSI

Distribusi probabilitas yang disarankan dalam modul ini adalah **distribusi probabilitas GEV**. Beberapa alasan mengapa GEV merupakan distribusi probabilitas yang paling baik untuk pemodelan banjir rencana adalah sebagai berikut:

- 1. Filosofi yang melatarbelakangi jenis distrbusi probabilitas (LN-2, LN-3, LP-3, Gumbel, GEV) adalah sejatinya satu jenis distribusi untuk satu wilayah dengan kesamaan iklim. Perbedaan jenis distrbusi dengan pos-pos hujan disekeliling lebih banyak disebabkan oleh sampling error (perbedaan periode dan panjang data).
- 2. Akibat perubahan iklim yang berdampak pada seri data Hujan Harian Maksimum Tahunan (HHMT) akan merubah besaran periode ulang. Dalam masa transisi ini, meninggalkan Analisis Frekuensi yang membutuhkan seri HHMT menuju era baru menggunakan Global Climate Model yang mampu memberi informasi proyeksi hujan ekstrim beberapa puluh tahun mendatang, sebaiknya menggunakan satu jenis distrbusi probabilitas saja. Dengan demikian tidak perlu lagi, dipilih berdasarkan uji S-K, Chi-Squre, RMSE dan lain-lain
- Menimbang kedua butir tersebut di atas, disarankan untuk memilih distribusi probabilitas GEV tanpa perlu pengujian (best fit) seperti diketahui bersama jenis distribusi GEV diterapkan di negara India, Malaysia, Cina, Banglades, Perancis, Inggris, Qatar, Brazil. Taiwan (Villafuerte & Matsumoto, 2015)

DISTRIBUSI GEV

Distribusi probabilitas General Extreme Value (GEV) merupakan distribusi probabilitas kontinu yang dikembangkan berdasarkan teori nilai ekstrem yang mencakup distribusi Gumbel, Frechet, dan Weibull. Sesuai dengan teori tersebut, distribusi GEV adalah satu-satunya distribusi yang menormalisasi nilai maksimum atas serangkaian data identik dan independen yang terdistribusi secara acak. Persamaan PDF dari GEV dengan parameter lokasi μ , parameter skala σ , dan parameter bentuk k \neq 0 adalah sebagai berikut.

$$y = f(x|k, \mu, \sigma) = \left(\frac{1}{\sigma}\right) exp\left(-\left(1 + k\frac{(x-\mu)}{\sigma}\right)^{-\frac{1}{k}}\right) \left(1 + k\frac{(x-\mu)}{\sigma}\right)^{-1 - \frac{1}{k}}$$

Untuk

$$1 + k \frac{(x - \mu)}{\sigma} > 0$$

Untuk k = 0, maka

$$y = f(x|0, \mu, \sigma) = \left(\frac{1}{\sigma}\right) exp\left(-exp\left(-\frac{(x-\mu)}{\sigma}\right) - \frac{(x-\mu)}{\sigma}\right)$$

keterangan:

k = Parameter bentuk

 σ = Parameter lokasi

 μ = Parameter skala

DISTRIBUSI LOG-NORMAL 2 PARAMETER

- Distribusi log normal dua parameter merupakan distribusi yang terdiri dari dua parameter yaitu μ n dan σ^2_n , masing-masing merupakan harga tengah dan variansi untuk fungsi logaritma dari variabelnya.
- Variasi nilai koefisien distribusi log normal dua parameter, bergantung pada peluang kumulatif, periode ulang rencana dan koefisien variasi dari data yang dimiliki, dapat dilihat pada tabel berikut ini:

DISTRIBUSI LOG-NORMAL 2 PARAMETER

Faktor Frekuensi Log-Normal 2 Parameter

Koefisien Variasi		Pelu	ang Kumu	latif P(%):F	P(X)				
	50	80	90	95	98	99			
(Cv)	Periode Ulang (Tahun)								
	2	5	10	20	50	100			
0,05	-0,0250	0,8334	1,2965	1,6863	2,1341	2,4570			
0,10	-0,0496	0,8222	1,3078	1,7247	2,2130	2,5489			
0,15	-0,0738	0,8085	1,3156	1,7598	2,2899	2,2607			
0,20	-0,0971	0,7926	1,3200	1,7911	2,3640	2,7716			
0,25	-0,1194	0,7746	1,3209	1,8183	2,4318	2,8805			
0,30	-0,1406	0,7647	1,3183	1,8414	2,5015	2,9866			
0,35	-0,1604	0,7333	1,3126	1,8602	2,5638	3,0890			
0,40	-0,1788	0,7200	1,3037	1,8746	2,6212	3,1870			
0,45	-0,1957	0,6870	1,2920	1,8848	2,6731	3,2799			
0,50	-0,2111	0,6626	1,2778	1,8909	2,7202	3,3673			
0,55	-0,2251	0,6379	1,2613	1,8931	2,7613	3,4488			
0,60	-0,2357	0,6129	1,2428	1,8915	2,7971	3,5211			
0,65	-0,2185	0,5879	1,2226	1,8866	2,8279	3,3930			
0,70	-0,2582	0,5631	1,2011	1,8786	2,8532	3,3663			
0,75	-0,2667	0,5387	1,1784	1,8677	2,8735	3,7118			
0,80	-0,2739	0,5118	1,1548	1,8543	2,8891	3,7617			
0,85	-0,2801	0,4914	1,1306	1,8388	2,9002	3,8056			
0,90	-0,2852	0,4686	1,1060	1,8212	2,9071	3,8140			
0,95	-0,2895	0,4466	1,0810	1,8021	2,9103	3,8762			
1,00	-0,2929	0,4254	1,0560	1,7815	2,9098	3,9035			

DISTRIBUSI LOG-NORMAL 3 PARAMETER

- Distribusi log normal tiga parameter merupakan distribusi yang hampir sama dengan log normal dua parameter, akan tetapi batas bawahnya tidak selalu sama dengan nol sehingga diperlukan modifikasi parameter dengan batas bawah β. Kemungkinan fungsi kerapatannya (probability density function) ditunjukkan pada persamaan berikut.
- Variasi nilai koefisien distribusi log normal tiga parameter, bergantung pada peluang kumulatif, periode ulang rencana dan koefisien variasi dari data yang dimiliki, dapat dilihat pada tabel berikut ini.

DISTRIBUSI LOG-NORMAL 3 PARAMETER

Faktor Frekuensi Log-Normal 3 Parameter

Koefisien Variasi	i Peluang Kumulatif P(%):P(X&X)								
	50	80	90	95	98	99			
(Cv)		P	eriode Ula	ang (Tahu	n)				
	2	5	10	20	50	100			
-2,0	0,2366	-0,6144	-1,2437	-1,8916	-2,7943	-3,5196			
-1,8	0,2240	-0,6395	-1,2621	-1,8928	-2,7578	-3,4433			
-1,6	0,2092	-0,6654	-1,2792	-1,8901	-2,7138	-3,3570			
-1,4	0,1920	-0,6920	-1,2943	-1,8827	-2,6615	-3,2601			
-1,2	0,1722	-0,7186	-1,3067	-1,8696	-2,6002	-3,1521			
-1,0	0,1495	-0,7449	-1,3156	-1,8501	-2,5294	-3,0333			
-0,8	0,1241	-0,7700	-1,3201	-1,8235	-2,4492	-2,9043			
-0,6	0,0959	-0,7930	-0,3194	-1,7894	-2,3600	-2,7665			
-0,4	0,0654	-0,8131	-0,3128	-1,7478	-2,2631	-2,6223			
-0,2	0,0332	-0,8296	-0,3002	-1,6993	-2,1602	-2,4745			
0,0	0	0	0	0	0	0			
0,2	-0,0332	0,8296	0,3002	1,6993	2,1602	2,4745			
0,4	-0,0654	0,8131	0,3128	1,7478	2,2631	2,6223			
0,6	-0,0959	0,793	0,3194	1,7894	2,3600	2,7665			
0,8	-0,1241	0,77	1,3201	1,8235	2,4492	2,9043			
1,0	-0,1495	0,7449	1,3156	1,8501	2,5294	3,0333			
1,2	-0,1722	0,7186	1,3067	1,8696	2,6002	3,1521			
1,4	-0,192	0,692	1,2943	1,8827	2,6615	3,2601			
1,6	-0,2092	0,6654	1,2792	1,8901	2,7138	3,3570			
1,8	-0,224	0,6395	1,2621	1,8928	2,7578	3,4433			
2,0	-0,2366	0,6144	1,2437	1,8916	2,7943	3,5196			

DISTRIBUSI GUMBEL 1

Koefisien distribusi Gumbel tipe I ditunjukan pada Persamaan berikut.

$$k = \frac{(Y - Yn)}{Sn}$$

keterangan:

 Y_n : nilai rata-rata dari *reduced variant*

 S_n : deviasi standar nilai *variant*

Nilai dari Yn dan Sn, bergantung dari panjang data yang dimiliki, dapat dilihat pada tabel-tabel berikutini.

DISTRIBUSI GUMBEL 1

Faktor Reduced Mean (Y_n)

N	0	1	2	3	4	5	6	7	8	9
10	0,4952	0,4996	0,5035	0,507	0,51	0,5128	0,5157	0,5181	0,5202	0,522
20	0,5236	0,5252	0,5268	0,5283	0,5296	0,5309	0,532	0,5332	0,5343	0,5353
30	0,5326	0,5371	0,538	0,5388	0,8396	0,5403	0,541	0,5418	0,5424	0,5436
40	0,5436	0,5442	0,5448	0,5453	0,5458	0,5463	0,5468	0,5473	0,5477	0,5481
50	0,5485	0,5489	0,5493	0,5497	0,5501	0,5504	0,5508	0,5511	0,5515	0,5518
60	0,5521	0,5524	0,5527	0,553	0,5533	0,5535	0,5538	0,554	0,5543	0,5545
70	0,5548	0,555	0,5552	0,5555	0,5557	0,5559	0,5561	0,5563	0,5565	0,5567
80	0,5569	0,557	0,5572	0,5574	0,5576	0,5578	0,558	0,5581	0,5583	0,5585
90	0,5586	0,5587	0,5589	0,5591	0,5592	0,5593	0,5595	0,5596	0,5598	0,5599
100	0,56	0,5602	0,5603	0,5604	0,5606	0,5607	0,5608	0,5609	0,561	0,5611

Faktor Reduced Standard Deviation (S_n)

N	0	1	2	3	4	5	6	7	8	9
10	0,9496	0,9676	0,9833	0,9971	1,0095	1,0206	1,0316	1,0411	1,0493	1,0565
20	1,0628	1,0696	1,0754	1,0811	1,0864	1,0915	1,0961	1,1004	1,1047	1,108
30	1,1124	1,1159	1,1193	1,1226	1,1255	1,1285	1,1313	1,1339	1,1363	1,1388
40	1,1413	1,1436	1,1458	1,148	1,1499	1,1519	1,1538	1,1557	1,1574	1,159
50	1,1607	1,1623	1,1638	1,1658	1,1667	1,1681	1,1696	1,1708	1,1721	1,1734
60	1,1747	1,1759	1,177	1,1782	1,1793	1,1803	1,1814	1,1824	1,1834	1,1844
70	1,1854	1,1863	1,1873	1,1881	1,189	1,1898	1,1906	1,1915	1,1923	1,193
80	1,1938	1,1945	1,1953	1,1959	1,1967	1,1973	1,198	1,1987	1,1994	1,2001
90	1,2007	1,2013	1,202	1,2026	1,2032	1,2038	1,2044	1,2049	1,2055	1,206
100	1,2065	1,2069	1,2073	1,2077	1,2081	1,2084	1,2087	1,209	1,2093	1,2096

DISTRIBUSI PEARSON III DAN LOG-PEARSON III

Distribusi Pearson III dan Log-Pearson III, sering digunakan pada perhitungan hujan harian maksimum untuk menghitung besarnya banjir rencana yang terjadi pada periode ulang tertentu. Kedua metode ini memiliki konsep yang serupa, namun pada metode Log-Pearson III, persamaan umum analisis frekuensinya terlebih dahulu dilogaritmakan. Karena alasan inilah, maka tabel yang digunakan untuk menentukan nilai koefisien distribusi pun berbeda.

Nilai koefisien distribusi kedua metode ini ditentukan tidak hanya dari derajat kepercayaan dan periode ulang rencana, tetapi juga koefisien kecondongan dari seri data yang ada, seperti dapat dilihat pada tabel-tabel berikut ini.

Interval kejadian tahun (periode ulang)									
	2	5	10	25	50	100	200		
Koef. G		Pres	entase l	Peluang	Terlam	paui			
	50	20	10	4	2	1	0.5		
3,0	-0,396	0,420	1,180	2,278	3,152	4,051	4,970		
2,8	-0,384	0,460	1,210	2,275	3,114	3,973	4,847		
2,6	-0,368	0,499	1,238	2,267	3,071	3,889	4,718		
2,4	-0,351	0,537	1,262	2,256	3,023	3,800	4,584		
2,2	-0,330	0,574	1,284	2,240	2,970	3,705	4,444		
2,0	-0,307	0,609	1,302	2,219	2,912	3,605	4,298		
1,8	-0,282	0,643	1,318	2,193	2,848	3,499	4,147		
1,6	-0,254	0,675	1,329	2,163	2,780	3,388	3,990		
1,4	-0,225	0,705	1,337	2,128	2,706	3,271	3,828		
1,2	-0,195	0,732	1,340	2,087	2,626	3,149	3,661		
1,0	-0,164	0,758	1,340	2,043	2,542	3,022	3,489		
0,8	-0,132	0,780	1,336	1,993	2,453	2,891	3,312		
0,6 -0,099 0,	0,800	1,328	1,939	2,359	2,755	3,132			
0,4	-0,066	0,816	1,317	1,880	2,261	2,615	2,949		
0,2	-0,033	0,830	1,301	1,818	2,159	2,472	2,763		
0,0	0,000	0,842	1,282	1,751	2,054	2,326	2,576		
-0,2	0,033	0,850	1,258	1,680	1,945	2,178	2,388		
-0,4	0,066	0,855	1,231	1,606	1,834	2,029	2,201		
-0,6	0,099	0,857	1,200	1,528	1,720	1,880	2,016		
-0,8	0,132	0,856	1,166	1,448	1,606	1,733	1,837		
-1,0	0,164	0,852	1,128	1,366	1,492	1,588	1,664		
-1,2	0,195	0,844	1,086	1,282	1,379	1,449	1,501		
-1,4	0,225	0,832	1,041	1,198	1,270	1,318	1,351		
-1,6	0,254	0,817	0,994	1,116	1,166	1,197	1,216		
-1,8	0,282	0,799	0,945	1,035	1,069	1,087	1,097		
-2,0	0,307	0,777	0,895	0,959	0,980	0,990	0,995		
-2,2	0,330	0,752	0,844	0,888	0,900	0,905	0,907		
-2,4	0,351	0,725	0,795	0,823	0,830	0,832	0,833		
-2,6	0,376	0,696	0,747	0,764	0,768	0,769	0,769		
-2,8	0,384	0,666	0,702	0,712	0,714	0,714	0,714		
-3,0	0,396	0,636	0,666	0,666	0,666	0,667	0,667		

NILAI KOEFISIEN DISTRIBUSI PEARSON III

	Interval kejadiantahun (periode ulang)									
	2	5	10	25	50	100	200			
Koef. G		Presentase Peluang Terlampaui								
	50	20	10	4	2	1	0.5			
3,0	-0,396	0,42	1,18	2,278	3,152	4,051	-0,396			
2,8	-0,384	0,46	1,21	2,275	3,114	3,973	-0,384			
2,6	-0,368	0,499	1,238	2,267	3,071	2,889	-0,368			
2,4	-0,351	0,537	1,262	2,256	3,023	3,8	-0,351			
2,2	-0,33	0,574	1,284	2,24	2,97	3,705	-0,33			
2,0	-0,307	0,609	1,302	2,219	2,192	3,605	-0,307			
1,8	-0,282	0,643	1,318	2,193	2,848	3,499	-0,282			
1,6	-0,254	0,675	1,329	2,163	2,78	3,388	-0,254			
1,4	-0,225	0,705	1,337	2,128	2,706	3,271	-0,225			
1,2	-0,195	0,732	1,34	2,087	2,626	3,149	-0,195			
1,0	-0,164	0,758	1,34	2,043	2,542	3,022	-0,164			
0,8	-0,132	0,78	1,336	1,993	2,453	2,891	-0,132			
0,6	-0,099	0,8	1,328	1,939	2,359	2,755	-0,099			
0,4	-0,066	0,816	1,317	1,88	2,261	2,615	-0,066			
0,2	-0,033	0,83	1,301	1,818	2,159	2,472	-0,033			
0,0	0	0,842	1,282	1,751	2,051	2,326	0			
-0,2	0,033	0,85	1,258	1,68	1,945	2,178	0,033			
-0,4	0,066	0,855	1,231	1,606	1,843	2,029	0,066			
-0,6	0,099	0,857	1,2	1,528	1,72	1,88	0,099			
-0,8	0,132	0,856	1,166	1,448	1,606	1,733	0,132			
-1,0	0,164	0,852	1,128	1,366	1,492	1,588	0,164			
-1,2	0,195	0,844	1,086	1,282	1,379	1,449	0,195			
-1,4	0,225	0,832	1,041	1,198	1,27	1,318	0,225			
-1,6	0,254	0,817	0,994	1,116	1,166	1,197	0,254			
-1,8	0,282	0,799	0,945	1,035	1,069	1,087	0,282			
-2,0	0,307	0,777	0,895	0,959	0,98	0,99	0,307			
-2,2	0,33	0,752	0,844	0,888	0,9	0,905	0,33			
-2,4	0,351	0,725	0,795	0,823	0,83	0,832	0,351			
-2,6	0,368	0,696	0,747	0,764	0,768	0,769	0,368			
-2,8	0,384	0,666	0,702	0,712	0,714	0,714	0,384			
-3.0	0.396	0.636	0.66	0.666	0.666	0 667	0.396			

NILAI KOEFISIEN DISTRIBUSI LOG-PEARSON III

UJI KECOCOKAN PROBABILITAS - UJI CHI-SQUARE

Metode ini menganggap pengamatan membentuk variabel acak dan dilakukan secara statistik dengan mengikuti kurva distribusi chi square dengan derajat kebebasan k-p-1, dengan p merupakan jumlah parameter yang diestimasi dari daya. Uji statistik ini berdasarkan pada bobot jumlah kuadrat perbedaan antara pengamatan dan teoritisnya yang dibagi dalam kelompok kelas. Uji kecocokan ini dapat dilihat pada persamaan di bawah ini.

$$X_{i=1}^{k} = \sum \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$$

Keterangan:

X : parameter chi square terhitung

K: jumlah sub kelompok

Oi : jumlah nilai pengamatan pada sub kelompok ke i

Ei : jumlah nilai teoritis pada sub kelompok ke i

Jika hasil X besar menunjukkan bahwa distribusi yang dipilih tidak cocok, tetapi uji ini dapat memberikan hasil yang baik jika mempunyai data yang panjang. Akan lebih baik jika jumlah data n lebih besar atau sama dengan 50 tahun dengan jumlah kelas interval lebih besar sama dengan 5.

UJI KECOCOKAN PROBABILITAS - KOLMOGOROV-SMIRNOV

Untuk menghindarkan hilangnya informasi data pada uji *Chi-Square* akibat pengelompokan data dalam kelas-kelas interval, ada beberapa metode lain yang telah dikembangkan. Salah satu metode yang sering digunakan adalah metode *Kolmogorov-Smirnov* (Frank Jr., 1951). Uji kecocokan ini adalah uji kecocokan *non-parametric* karena tidak mengikuti distribusi tertentu. Uji ini menghitung besarnya jarak maksimum secara vertikal antara pengamatan dan teoritisnya dari distribusi sampelnya. Perbedaan jarak maksimum untuk *Kolmogorov-Smirnov* tertera pada persamaan di bawah ini.

$$D_n = max|P(x) - P_o(x)|$$

Keterangan:

Dn: jarak vertikal maksimum antara pengamatan dan teoritisnya

P(x): probabilitas dari sampel data

Po(x): probabilitas dari teoritisnya

UJI KECOCOKAN PROBABILITAS - KOLMOGOROV-SMIRNOV

Distribusi dikatakan cocok jika nilai D_n

D kritisnya pada derajat kepercayaan yang diinginkan. Jika Δ
 Δ kritis sesuai harga kritis uji *Kolmogorov-Smirnov* seperti tabel di bawah maka distribusi teoritisnya dapat diterima dan sebaliknya

Keterangan:

- α : significant level.
- n: jumlah data.

Tabel Nilai Kritis

0,20	0,10	0,05	0.04
0 15		0,03	0,01
U,45	0,51	0,56	0,67
0,32	0,37	0,41	0,49
0,27	0,30	0,34	0,40
0,23	0,26	0,29	0,36
0,21	0,24	0,27	0,32
0,19	0,22	0,24	0,29
0,18	0,20	0,23	0,27
0,17	0,19	0,21	0,25
0,16	0,18	0,20	0,24
0,15	0,17	0,19	0,23
$\frac{1,07}{\sqrt{n}}$	$\frac{1,22}{\sqrt{n}}$	$\frac{1,36}{\sqrt{n}}$	$\frac{1,63}{\sqrt{n}}$
	0,27 0,23 0,21 0,19 0,18 0,17 0,16 0,15	0,320,370,270,300,230,260,210,240,190,220,180,200,170,190,160,180,150,171,071,22	0,32 0,37 0,41 0,27 0,30 0,34 0,23 0,26 0,29 0,21 0,24 0,27 0,19 0,22 0,24 0,18 0,20 0,23 0,17 0,19 0,21 0,16 0,18 0,20 0,15 0,17 0,19 1,07 1,22 1,36

HUJAN MAKSIMUM BOLEH JADI

BAB 6

MODUL 1 – ANALISIS CURAH HUJAN

CURAH HUJAN MAKSIMUM BOLEH JADI

- Curah hujan maksimum boleh jadi (PMP/Probable Maximum Precipitation) didefinisikan sebagai tinggi terbesar hujan dengan durasi tertentu yang secara meteorologis dimungkinkan bagi suatu daerah pengaliran dalam suatu waktu dalam tahun, tanpa adanya kelonggaran yang dibuat untuk trend klimatologis jangka panjang.
- Rumus untuk menghitung PMP yang disarankan pada SNI 7746:2012 adalah menggunakan metode Hershfield

CURAH HUJAN PMP METODE HERSHFIELD

Rumus yang digunakan oleh Hershfield didasarkan atas persamaan frekuensi umum, yaitu:

$$X_m = \bar{X}_n + K_m S_n$$

Dengan

 X_T = curah hujan maksimum yang tercatat

 \bar{X}_n = nilai rata-rata (mean) data hujan maksimum tahunan

 S_n = standar deviasi data hujan maksimum tahunan

K = faktor pengali terhadap deviasi

HERSHFIELD - GRAFIK K

Perhitungan Km harus sesuai dengan data hujan yang digunakan (data HHMT \rightarrow 24 jam)

HERSHFIELD – GRAFIK X

HERSHFIELD – GRAFIK S

PETA ISOHYET PMP

- Dipublikasi oleh Balai Bendungan tahun 2012, menggunakan seri data HHMT sampai dengan tahun 2010.
- Disarankan menggunakan PMP Metode Hershfield dengan data yang sudah diperbaharui.
- Perbandingan dengan PMP terdahulu dari Balai Bendungan masih dapat dilakukan untuk meninjau tingkat kewajaran dari PMP Hershfield yang dihasilkan.

ANALISIS HUJAN WILAYAH

BAB 7

MODUL 1 – ANALISIS CURAH HUJAN

HUJAN TITIK DAN HUJAN WILAYAH

- Apabila basin rainfall merupakan transformasi dari point rainfall, maka harga hujan rata-rata wilayah tersebut perlu direduksi terhadap luasan menggunakan fungsi hubungan luas atau Area Reduction Factor (ARF) (Point →Anfrek → Basin);
- Apabila hujan rencana wilayah (basin rainfall) disusun dari hujan titik (point rainfall), yang kemudian dianalisis frekuensi nya, maka nilai tersebut tidak perlu direduksi terhadap luasan. (Point -> Basin -> Anfrek).

ARITMATIK RATA-RATA

Metode rata-rata aritmatik adalah metode yang paling mudah dilakukan untuk mendapatkan sebuah nilai representasi hujan wilayah. Hasil yang diperoleh dari metode ini akan menjadi akurat, apabila topografi DAS relatif datar dan stasiun pengamatan curah hujan tersebar merata secara spasial pada DAS yang dikaji. Metode ini mengasumsikan penggunaan rata-rata data hujan titik yang jatuh di dalam DAS yang dikaji, sehingga dapat diformulasikan secara matematik, sebagai berikut:

$$\bar{P} = \frac{1}{A} \sum_{i=1}^{n} A_i \cdot P_i$$

dimana:

 \bar{P} : curah hujan wilayah (mm)

A: luas total DAS yang dikaji (km²)

P_i: curah hujan di titik pos hujan(mm)

 A_{i} : luas daerah pengaruh masing-masing data hujan (km²)

n: jumlah pos curah hujan

POLIGON THIESSEN

Metode ini memberikan proporsi luasan daerah pengaruh pos penakar hujan untuk mengakomodasi ketidakseragaman jarak. Meskipun belum dapat memberikan bobot yang tepat sebagai sumbangan satu pos untuk hujan wilayah, metode ini telah memberikan bobot tertentu kepada masing-masing pos sebagai fungsi jarak pos hujan.

Hujan rata-rata daerah untuk poligon *Thiessen* dihitung dengan persamaan berikut:

$$P = \frac{\sum_{i=1}^{n} P_i A_i}{\sum_{i=1}^{n} A_i}$$

dimana:

P: curah hujan wilayah (mm)

P: curah hujan di titik penakar hujan(mm)

 A_{ij} : luas daerah pengaruh masing-masing data hujan (km²)

n: jumlah pos curah hujan

DURASI DAN DISTRIBUSI CURAH HUJAN

BAB 8

MODUL 1 – ANALISIS CURAH HUJAN

DURASI HUJAN RENCANA

- Durasi hujan ditentukan oleh kejadian hujan durasi tertentu (dalam jam) yang sering terjadi yang diperoleh dari stasiun hujan otomatik atau data satelit 30 menit-an/3 jam-an.
- Durasi hujan dapat ditentukan juga dengan membandingkan hasil debit puncak dan elevasi muka air waduk puncak dengan berbagai durasi hujan dan dipilih durasi hujan yang memberikan hasil paling ekstrim
- Durasi kritis hujan badai harus lebih besar dari waktu konsentrasinya.
- Durasi hujan kurang dari 24 jam disarankan untuk DAS kecil. DAS menengah dan besar durasi hujan setidaknya 24 jam atau lebih.

Luas DAS (km²)	Klasifikasi	Durasi Hujan
>100	DAS Besar	≥ 24 jam
10-100	DAS Menengah	≤ 24 jam
1-10	DAS Kecil	<24 jam

Contoh perbandingan debit puncak dan elevasi muka air berbagai durasi hujan

Durasi Hujan	Debit Puncak (m³/s)	Elevasi MAB (m)		
24 jam	274.4	35.45		
12 jam	406.6	35.94		
9 jam	370.2	35.71		
6 jam	402.8	35.58		

DISTRIBUSI PSA-007

Mengacu pada dokumen Guidelines for Dam Flood Safety, salah satu distribusi hujan yang digunakan adalah distribusi hujan PSA-007. Selain dokumen tersebut, penggunaan PSA 007 juga dianjurkan dalam dokumen 'Petunjuk Banjir Desain Teknis Perhitungan 'Panduan Bendungan' dan Perencanaan Bendungan Urugan, Volume II Analisis Hidrologi Bab 3'.

Terdapat beberapa versi dari distribusi curah hujan berdasarkan PSA 007, namun secara umum distribusinya terjadi sesuai tabel di bawah ini.

Periode		Durasi Hujan [jam]								
ulang tahun	1/2	3/4	1	2	3	6	12	24		
5	32	41	48	59	66	78	88	100		
10	30	38	45	57	64	76	88	100		
25	28	36	43	55	63	75	88	100		
50	27	35	42	53	61	73	88	100		
100	26	34	41	52	60	72	88	100		
1.000	25	32	39	49	57	69	88	100		
CMB	20	27	34	45	52	64	88	100		

DISTRIBUSI HUFF-1

Selain distribusi hujan NRCS/SCS, di Amerika juga, tepatnya di Illinois, Huff mengembangkan analisis runtut waktu tipe hujan (Huff, 1967). Distribusi yang dikembangkan tersebut memiliki sebaran kumulatif seperti dapat dilihat pada gambar di bawah ini.

t/td	R/Rt			
	6 jam	12 jam	24 jam	
0.05	0.063	0.063	0.063	
0.10	0.178	0.178	0.178	
0.15	0.333	0.333	0.333	
0.20	0.500	0.500	0.500	
0.25	0.620	0.620	0.620	
0.30	0.705	0.705	0.705	
0.35	0.760	0.760	0.760	
0.40	0.798	0.798	0.798	
0.45	0.830	0.830	0.830	
0.50	0.855	0.855	0.855	
0.55	0.880	0.880	0.880	
0.60	0.898	0.898	0.898	
0.65	0.915	0.915	0.915	
0.70	0.930	0.930	0.930	
0.75	0.944	0.944	0.944	
0.80	0.958	0.958	0.958	
0.85	0.971	0.971	0.971	
0.90	0.983	0.983	0.983	
0.95	0.994	0.994	0.994	
1.00	1.000	1.000	1.000	

DISTRIBUSI SCS

Distribusi hujan NRCS/SCS merupakan distribusi hujan yang diturunkan di seluruh daerah di Amerika Serikat oleh The U.S. Department of Agriculture, Soil Conservation Service pada tahun 1986. Pada awalnya, pola distribusi curah hujan SCS dikembangkan terhadap dua buah durasi hujan, yaitu 6 jam dan 24 jam. Terdapat empat jenis distribusi NRCS/SCS yang secara umum disebut distribusi NRCS/SCS tipe I, distribusi NRCS/SCS tipe IA, distribusi NRCS/SCS tipe II, dan distribusi NRCS/SCS tipe III. Berdasarkan buku Applied Hydrology karangan Ven Te Chow, berikut distribusi SCS masing-masing tipe.

t/24 -	R/Rt			
	SCS I	SCS IA	SCS II	SCS III
0.0000	0	0	0	0
0.0833	3.5	5	2.2	2
0.1667	7.6	11.6	4.8	4.3
0.2500	12.5	20.6	8	7.2
0.2917	15.6	26.8	9.8	8.9
0.3333	19.4	42.5	12	11.5
0.3542	21.9	48	13.3	13
0.3750	25.4	52	14.7	14.8
0.3958	30.3	55	16.3	16.7
0.4063	36.2	56.4	17.2	17.8
0.4167	51.5	57.7	18.1	18.9
0.4375	58.3	60.1	20.4	21.6
0.4583	62.4	62.4	23.5	25
0.4792	65.4	64.5	28.3	29.8
0.4896	66.9	65.5	35.7	33.9
0.5000	68.2	66.4	66.3	50
0.5208	70.6	68.3	73.5	70.2
0.5417	72.7	70.1	77.2	75.1
0.5625	74.8	71.9	79.9	78.5
0.5833	76.7	73.6	82	81.1
0.6667	83	80	88	88.6
0.8333	92.6	90.6	95.2	95.7
1.0000	100	100	100	100
				3

DURASI HUJAN RENCANA

Mengikuti distribusi PSA-007, Huff-1, SCS yang paling mendekati data hujan jaman.

PEMILIHAN DISTRIBUSI CURAH HUJAN RENCANA

FAKTOR REDUKSI HUJAN

BAB 9

MODUL 1 – ANALISIS CURAH HUJAN

FAKTOR REDUKSI HUJAN

ARF atau *Areal Reduction Factor* menunjukkan rasio antara hujan wilayah dan hujan titik yang diperoleh pada periode ulang yang sama.Nilai ARF terutama dibutuhkan pada kasus dimana kondisi sebagai beriku terjadi :

- Data hujan harian di beberapa penakar hujan mempunyai periode yang berbeda satu dengan yang lain meskipun secara keseluruhan semuanya panjang datanya lebih dari 20 tahun. Hujan Rencana yang dihasilkan setiap penakar hujan disebut hujan titik (point rainfall).
- Selanjutnya dari hujan rencana titik ditentukan hujan rata-rata Kawasan dengan Poligon Thiessen, ada penyimpangan yang diakibatkan karena hujan rencana periode ulang tertentu belum tentu terjadi pada penakar hujan yang lain. Hal ini mengakibatkan perlunya diperhitungkan joint probability yang disederhanakan menjadi ARF.
- Dalam kasus data hujan harian di semua pos penakar hujan mempunyai periode pencatatan yang sama, maka hujan rata-rata Kawasan dihitung setiap hari dan HHMT nya ditentukan. Selanjutnya hujan rencana dihitung dari seri HHMT tersebut. Dalam kasus ini tidak diperlukan ARF.

FAKTOR REDUKSI LUAS (ARF)

Berdasarkan hasil penelitian Puslibang SDA, untuk durasi kurang dari 24 jam

Persamaan untuk menghitung besaran ARF yang disarankan Pusair untuk Pulau Jawa adalah sebagai berikut:

Untuk periode 1 harian: $ARF = 1,620 \times A^{-0,128}$ dengan $R^2 = 0,773$ Untuk periode 2 harian: $ARF = 1,542 \times A^{-0,111}$ dengan $R^2 = 0,731$ Untuk periode 3 harian: $ARF = 1,389 \times A^{-0,092}$ dengan $R^2 = 0,677$

Keterangan:

ARF : parameter chi square terhitung

A : Luas DAS (km²)

FAKTOR REDUKSI TEMPORAL

Faktor reduksi temporal berlaku untuk hujan rencana dengan durasi kurang dari 24 jam. Faktor reduksi diambil berdasarkan publikasi WMO yang dikaji terutama untuk PMP tetapi dapat berlaku untuk semua besaran hujan rencana.

Durasi (jam)	Faktor Reduksi Hujan (WMO)	
4	0.7	
6	0.8	
9	87	
12	0.93	
24	1	