COVID Model Projections

May 14, 2021

BC COVID-19 Modelling Group

About BC COVID-19 Modelling Group

The BC COVID-19 Modelling Group works on rapid response modelling of the COVID-19 pandemic, with a special focus on British Columbia and Canada.

The interdisciplinary Group was convened by <u>Caroline Colijn (SFU)</u> and <u>Dan Coombs (UBC)</u> with support from the <u>Pacific Institute</u> for the Mathematical Sciences.

https://bccovid-19group.ca

Contributors to report

Eric Cytrynbaum (UBC, co-editor)
Sarah Otto (UBC, co-editor)
Dean Karlen (UVic and TRIUMF)
Caroline Colijn (SFU)
Jens von Bergmann (MountainMath)
Rob James (evidently.ca)
James Colliander (UBC and PIMS)
Daniel McDonald (UBC)
Paul Tupper (SFU)
Daniel Coombs (UBC)
Elisha Are (SFU)
Bryn Wiley (UBC)

Independent and freely offered advice, using a diversity of modelling approaches.

Bending down the VOC curve

Key messages

- Cases are projected to decline through May
- Hospital and ICU occupancy declining slowly but predicted to remain above 300 and above 100 through May.
- If recent measures are lifted at the end of May (returning to February/March 2021 activities), cases, hospital, and ICU occupancy will grow briefly but then decline by late June as vaccination catches up.
- Recent changes in growth had larger impact on VOC than WT.
 - Not due to vaccination
 - Likely due to individual behaviour changes (masks, distancing, restaurant rule)

State of the COVID-19 Pandemic in BC

Covid-19 daily new cases in British Columbia (up to Tue May 11)

Timeline of **closure** and **reopening** events

Source (J. von Bergmann) Case data from BC COVID-19 Database (http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data). Vertical lines give dates of public health measures (major as thick lines, minor as thin lines). Grey dots are raw case counts, grey lines is cases abused for weekly pattern, black STL trend line and blue fitted periods of constant exponential growth.

State of the COVID-19 Pandemic in BC

Source (J. von Bergmann). Case data from BC COVID-19 Database (http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data) and smoothed using STL trend line that removes day-of-the-week effects. VOC data from BCCDC (April 7, 2021). Variant data: http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data#variants 5 *Accounting for slowdown in variant spread (slide 11).

April 30 model fit to case data by Health Authority

Source (D. Karlen). See www.pypm.ca. Assumes homogeneous mixing (no age structure). Assumes vaccination rate of 1st doses continues at 35,000/day (assumes vaccines given to all ages and in proportion to HA populations). Vaccination model benchmarked with data from Israel: see this link. Model fits to case data projected into May assuming current public health measures. Shaded bands indicate range of trajectories consistent with case data (68% CL).

Updated model fit to case data by Health Authority

Source (D. Karlen). See www.pypm.ca. These models have no age structure. Assumes vaccination rate of 1st doses grows to 45,000/day on May 17 (given to all ages and in proportion to HA populations until 75% of the population is vaccinated), ultimate 1st dose effectiveness is 90%. Vaccination model benchmarked with data from Israel: see this link. Assumes current public health measures remain in place. Shaded bands indicate range of trajectories consistent with case data (68% CL).

Source (D. Karlen). See www.pypm.ca. Homogeneous mixing (no age structure). *Nominal versus low vaccination rate assumptions: 45,000/day vs 35,000 up until 75% vs 65% vaccinated, with 90% vs 80% effectiveness of first dose. Projection is for a scenario rescinding the March 30 measures (the "circuit breaker") on May 25, returning BC to activity levels in early 2021. ‡To match ICU data, the fraction of cases leading to ICU admission is increased by 60% ± 20% in early April. Bands show approximate 50%, 80%, and 95% intervals for nominal vaccination campaign.

Source (D. Karlen). See www.pypm.ca. Homogeneous mixing (no age structure). *Nominal versus low vaccination rate assumptions: 45,000/day vs 35,000 up until 75% vs 65% vaccinated, with 90% vs 80% effectiveness of first dose. Projection is for a scenario rescinding the March 30 measures (the "circuit breaker") on June 15, returning BC to activity levels in early 2021. ‡To match ICU data, the fraction of cases leading to ICU admission is increased by 60% ± 20% in early April. Bands show approximate 50%, 80%, and 95% intervals for nominal vaccination campaign.

Growth advantage of Variants of Concern (VoC) in BC

VoC initially grew 8%/day faster than original strains

Became dominant near April 1 (Northern: May 1)

After "circuit breaker": advantage reduced to 4%/day faster than

original strains: - measures had greater effect on VoC

Source (D. Karlen). Fit to weekly VoC and non-VoC case data from BCCDC. For Fraser and Coastal data, a change to the growth advantage is apparent in early April, and fit estimates the change to occur near April 10. There are insufficient cases in the other regions to measure a similar change in advantage. For details, see Appendix.

CAROLINE SLIDE COMING!!

Last BC data update May 1, 2021

Last BC data update May 1, 2021

Herd immunity: the level of immunity in a population at which a disease starts to decline

 \rightarrow (1-f) R < 1 where f is level of immunity

Reproductive number (R): number of new cases per case, called R_0 in the absence of any control measures.

Return to Feb/March 2021 activities when *R*~1.7 for variants now in BC[†]

Last BC data update May 1, 2021

Last BC data update May 1, 2021

Fraction registered for vaccination in BC

Last BC data update May 9, 2021

Source (B. Wiley). Design by Blake Shaffer. https://news.gov.bc.ca/files/5-10-21 vaccine registration.pdf Many individuals in the older age groups and in targetted communities have been vaccinated without registration, but all adults (18+) are currently being asked to register (https://www.getvaccinated.gov.bc.ca or call 1-833-838-2323).

Vaccination status by age group

Last age-based BC data update May 01

Israel: 62.7% vaccinated (at least one dose). Schools fully reopened on Apr 26 with no restrictions; no restrictions on travel; immunity passports being used for indoor dining, gyms and sports; no restrictions on indoor/outdoor socialization in groups of 50 or less

UK: 52.2% vaccinated (at least one dose). Schools fully open with optional rapid testing available and masks for secondary students; travel is discouraged; indoor dining remains closed; outdoor socializing only, in groups of up to 6.

Countries with high vaccination levels are seeing enough decline in cases to reopen slowly

Data gap: Where are the genomes?

BC is a global leader in genomics, yet BC has not publicly shared the thousands of SARS-CoV-2 genomes sequenced in 2021.

These sequences are needed for global analyses to:

- Identify new variants
- Estimate rates of spread
- Assess efficacy of restrictions
- Detect importations

Further messages

Case numbers projected to decline through May, with hospital and ICU remaining moderate (>300 and >100, respectively).

Partial re-opening to February/March 2021 levels of activity* on May 25 risks slight rise in cases and hospital demand, lower risk if delayed until mid-June.

Re-opening substantially beyond early 2021 activity levels requires higher vaccination uptake, second doses, and/or additional control measures.

Newly shared community-level data on cases and vaccinations will help guide future modelling and local efforts to vaccinate and tackle rising cases. Thank you!

Data gaps remaining

- <u>Serological survey data has not been released from recent surveys.</u> These
 data are essential for estimates of numbers of people previously infected,
 which impacts predictions about the level of vaccination required to achieve
 herd immunity. Data will also allow us to assess relative infection rates of
 age groups that are often asymptomatic (youth).
- <u>Data on presumptive and confirmed numbers of VOC is not provided or incomplete.</u> This hinders a full understanding of VOC impacts.
- Severity of each VOC (Hospital/ICU demand and death rates) is needed to better predict near-term impacts of COVID-19 on our comminities.
- <u>Crucial genetic data is missing.</u> Only 11 of >10,000 COVID-19 (0.1%) genomes sequenced in BC in 2021 have been uploaded to the global GISAID database. This impedes the global effort to learn about which variants matter and how they impact disease.

Appendix: Looking under the hood

How changes in transmission rate (yellow) and a decline in the number of susceptible individuals (blue) combine to reduce the growth of COVID-19 (green) in pypm model (slide 4)

The daily growth rate (δ) depends on the product of the transmission rate (α) and the susceptible fraction (S/N).

The product is shown by the green curves and the grey horizontal lines show the growth rate for a few values.

In the nominal vaccination scenario, growth becomes negative in mid-June.

Nominal vaccination scenario: ultimate effectiveness: 90%, 1st dose vaccination rate: 45,000/day until 75% of population vaccinated.

Low vaccination scenario (lv): ultimate effectiveness: 80%, 1st dose vaccination rate: 35,000/day until 65% of population vaccinated.

Fit for growth advantage

For an exponential process, the number of cases reported over a period of m days commencing on day d is

$$N(d) = \int_{d}^{d+m} N_0 e^{rt} dt = \frac{N_0}{r} e^{rd} (e^{rm} - 1)$$

For two exponential processes (variant and non-variant), the ratio of the daily cases is given by

$$R(d, s, d_0) = \frac{N_v(d)}{N_{nv}(d)} = a \exp(r_v - r_{nv})d = a \exp(sd) = \exp(s(d - d_0))$$

where a is a constant, d is an integer day number, and s is the selection coefficient $s = r_v - r_{nv}$. The constant a defines the relative prevalence for the period commencing on day 0. A more suitable parameterization specifies the time d_0 at which the two have equal prevalence.

In UK, lockdown measures were seen to change the growth advantage. Consider an instantaneous transition on day $d=d_0+d_1$:

$$r_v(d) = r_n v(d) + s_0 + (s_1 - s_0)H(d - d_0 - d_1)$$

where ${\pmb H}$ is the heavyside function. Imposing continuity for ${\pmb R}$ at the transition date.

For $d \leq d_0 + d_1$:

$$R(d, s_0, s_1, d_0, d_1) = \exp s_0(d - d_0)$$

and for $d \ge d_0 + d_1$:

$$R(d, s_0, s_1, d_0, d_1) = \exp s_1(d - d_0 - d_1) \exp s_0 d_1$$

The fraction of cases that are variant are:

$$p_v(d, s_0, s_1, d_0, d_1) = \frac{N_v(d)}{N_{nv}(d) + N_v(d)} = \frac{1}{1 + 1/R(d, s_0, s_1, d_0, d_1)}$$

Use maximum likelihood to estimate parameters and their covariance. This is a binomial problem, with $n = n_v + n_{nv}$ trials each day and n_v identified as variant.

$$\ln \mathcal{L}(s_0, s_1, d_0, d_1) = c + \sum_{d} \left[n_v(d) \ln p_v(d, s_0, s_1, d_0, d_1) + n_{nv}(d) \ln(1 - p_v(d, s_0, s_1, d_0, d_1)) \right]$$

Growth advantage of Variants of Concern (VoC) in BC

VoC initially grew 8%/day faster than original strains

Became dominant near April 1 (Northern: May 1)

After "circuit breaker": advantage reduced to 4%/day faster than original strains: - measures had greater effect on VoC

