Apellido y Nombre: email:

nota	1	2	3	4	5

Lenguajes y Compiladores

Primer Parcial 6/5/2016

- 1. Determinar si es verdadero o falso. Justificar la respuesta.
 - a) Sean p,q predicados. Si $\llbracket p \rrbracket = \llbracket q \rrbracket$, entonces para toda sustitución δ se tiene $\llbracket p/\delta \rrbracket = \llbracket q/\delta \rrbracket$.
 - b) Sea Ω el dominio del lenguaje imperativo con fallas y output. Si σ es un estado, entonces existe una cadena interesante que tiene como supremo a $\iota_{out}(1, \iota_{term}\sigma)$.
 - c) Sea $f, g \in \mathbf{Z} \to \mathbf{Z}_{\perp}$. Entonces existe $h \in \mathbf{Z} \to \mathbf{Z}_{\perp}$ tal que $f \leq h$ y $g \leq h$.
 - d) En el lenguaje imperativo simple, si $[c]\sigma = \langle abort, \sigma' \rangle$, entonces

$$[catchin \ c \ with \ c']\sigma = [c; c']\sigma.$$

- 2. Considere el lenguaje aplicativo con fallas, output e input. Analice utilizando la semántica denotacional la equivalencia entre los siguientes comandos:
 - a) newvar v := e in $?v; !v \equiv ?v; !v$
 - b) Si $FA \ c \cap FA \ c' = \emptyset$ entonces $c; c' \equiv c'; c$
- 3. Considere el lenguaje imperativo simple.
 - a) Dé la semántica denotacional de while b do c.
 - b) Pruebe que la función F que define la semántica de while b do c es continua.
 - c) De ejemplo de un comando c de la forma while b do c tal que $\llbracket c \rrbracket = F^3 \perp_{\Sigma \to \Sigma_{\perp}}$ pero $\llbracket c \rrbracket \neq F^2 \perp_{\Sigma \to \Sigma_{\perp}}$.
- 4. Considere el lenguaje imperativo simple, y sea $c = c_0; c_1$.
 - a) De las reglas de la semántica smallstep \rightarrow para esta frase abstracta.
 - b) Demuestre que si $\llbracket c \rrbracket \sigma = \sigma'$, entonces $\langle c, \sigma \rangle \to^* \sigma'$, para esta frase abstracta. Enuncie (sin probar) todo resultado que utilice.

5. Considere la función $F: (\mathbf{Z} \to \mathbf{Z}_{\perp}) \to (\mathbf{Z} \to \mathbf{Z}_{\perp})$ dada por:

$$Ffn = \begin{cases} n & n = 0, 1, 2 \\ f(n-3) & n > 1 \\ f(-n) & n < 0 \end{cases}$$

- a) ¿Cuánto vale $F^5 \perp_{Z \to Z_{\perp}} (-10)$?
- b) ¿Cuánto vale el menor punto fijo de F en -10? Justifique su respuesta.
- c) Justifique la siguiente afirmación: $F^2 \perp_{Z \to Z_1} \leq F^3 \perp_{Z \to Z_1}$.
- \vec{d}) Pruebe que F es continua.
- 6. Considere el lenguaje imperativo simple.
 - a) De las reglas de la semántica smallstep \rightarrow para al comando **newvar** v := e in c_0 .
 - b) Demuestre que si $\llbracket c \rrbracket \sigma = \sigma'$, entonces $\langle c, \sigma \rangle \to^* \sigma'$, para el caso $c = \mathbf{newvar} \ v := e \ \mathbf{in} \ c_0$.

Enuncie (sin probar) todo resultado que utilice.

- 7. a) Complete las siguientes igualdades, expresando de la forma más sencilla posible el resultado, sin efectuar ningún cálculo. Considere el lenguaje que corresponde en cada caso.
 - 1) $\llbracket \forall x. \exists y. \ y+y=y \rrbracket \sigma =$
 - 2) [?x; while true do skip; $!x]\sigma =$
 - 3) $[x := 1; \text{ newvar } x := 0 \text{ in } (!x; \text{ fail}; !x)] \sigma =$
 - b) Calcule la semántica denotacional del programa del item a) 3).
- 8. Considere el dominio Ω del lenguaje con fallas, input y output.
 - a) ¿Qué relaciones de orden encuentra entre los siguientes elementos?

$$\iota_{in}(\perp_{\mathbf{Z}\to\Omega}), \ \iota_{out}(n,\iota_{term}\ \sigma), \ \iota_{in}(\lambda n\in\mathbf{Z}.\ \iota_{term}\ \sigma), \ \iota_{out}(n,\perp),$$

 $\iota_{out}(n,\iota_{out}(n,\iota_{term}\ \sigma)), \ \iota_{in}(\lambda n\in\mathbf{Z}.\ \iota_{abort}\ \sigma),$

- b) Dé un ejemplo de una cadena interesante cuyo primer elemento sea $\iota_{in}(\perp_{\mathbf{Z}\to\Omega})$.
- c) ¿Puede encontrar un programa que tenga como semántica al supremo de la cadena? Si la respuesta es sí, muétrelo.(No calcule nada!)
- 9. Determinar si son equivalentes. Si lo son probarlo utilizando semántica denotacional, si no lo son, dar un contraejemplo.

```
newvar v := e in catchin c_0 with c_1 catchin newvar v := e in c_0 with c_1
```