EL3370 Mathematical Methods in Signals, Systems and Control

Topic 2: Inner Product Spaces

Cristian R. Rojas

Division of Decision and Control Systems KTH Royal Institute of Technology

Motivation and Definitions

Inner Product Spaces as Normed Spaces

A More Interesting Example for System Theory

Bonus Slides

Motivation and Definitions

Inner Product Spaces as Normed Spaces

A More Interesting Example for System Theory

Bonus Slides

Cristian R. Rojas Topic 2: Inner Product Spaces 2

Motivation and Definitions

Consider the space \mathbb{C}^n . It has:

- 1. Vector space (algebraic) structure: Given $x,y\in\mathbb{C}^n$, their sum x+y and scalar multiplication αx ($\alpha\in\mathbb{C}$) are defined.
- 2. Inner product structure:

$$(x,y) = \sum_{i=1}^{n} x_i \overline{y}_i, \qquad x = (x_1, \dots, x_n), \quad y = (y_1, \dots, y_n) \in \mathbb{C}^n. \quad (\overline{x}: complex \ conjugate \ \text{of} \ x \in \mathbb{C})$$

Many physical properties (e.g., work) can be defined in terms of inner products. Also, (\cdot, \cdot) can define: *distances* (metrics), *length* (norms), *angles*, *limits* (topologies), . . .

Goal: Extend inner products to general (possibly infinite dimensional) vector spaces.

Definition

Let ℓ_2 denote the vector space over $\mathbb C$ of all complex sequences $x=(x_n)$ which are square summable, i.e., that satisfy $\sum_{n=1}^\infty |x_n|^2 < \infty$, with componentwise addition and scalar multiplication:

$$\begin{split} x+y &:= (x_n+y_n), \quad x = (x_n), \ y = (y_n) \in \ell_2, \\ \alpha x &:= (\alpha x_n), \qquad \alpha \in \mathbb{C}, \end{split}$$

and inner product: $(x, y) := \sum_{n=1}^{\infty} x_n \overline{y}_n$.

Observation

Need to verify that these operations (sum, scalar multiplication, inner product) are valid! (We will do it later, using the Cauchy-Schwarz inequality.)

Definition (reminder)

A *vector space* V over a field F (*e.g.*, $\mathbb R$ or $\mathbb C$) is a set with two operations, sum ($x+y\in V$, for $x,y\in V$) and scalar multiplication ($\lambda x\in V$, for $x\in V$ and $\lambda\in F$) s.t. for all $x,y,z\in V$, $\alpha,\beta\in F$:

- 1. x + y = y + x,
- 2. (x + y) + z = x + (y + z).
- 3. There is a null vector $0 \in V$ s.t. 0 + x = x,
- 4. $\alpha(x+y) = \alpha x + \alpha y$,
- 5. $(\alpha + \beta)x = \alpha x + \beta x$,
- 6. $(\alpha \beta)x = \alpha(\beta x)$,
- 7. 1x = x.

A field F is a set with operations + and \cdot which are: associative and commutative; F has additive and multiplicative identities (0 and 1, respectively); every $a \in F$ has an additive inverse (-a) and, if $a \neq 0$, a multiplicative inverse too $(a^{-1} \in F)$; and \cdot is distributive with respect to +: $a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

(commutativity)
(associativity)

(distributivity)

(distributivity)

(associativity)

Definition (reminder)

Let *V* be a vector space over F; $\alpha_1, ..., \alpha_n \in F$; $x_1, ..., x_n \in V$; and $X \subseteq V$.

- (*Linear*) subspace X of V: subset of V s.t., if $x, y \in X$, $\alpha \in F$, then $x + y \in X$ and $\alpha x \in X$.
- Affine subspace (or linear variety) X of V: subset of V of the form $x+M:=\{x+m: m\in M\}$, where $x\in V$ and M is a linear subspace of V.
- *Linear combination* of x_1, \ldots, x_n : an element $\alpha_1 x_1 + \cdots + \alpha_n x_n \in V$ (for *finite n*).
- lin X (span of X): set of all linear combinations of elements of X.
 Note. lin X is the intersection of all linear subspaces of V containing X (why?).
- If for every linear combination $\alpha_1 x_1 + \dots + \alpha_n x_n = 0$, $x_1, \dots, x_n \in X$, we have that $\alpha_1 = \dots = \alpha_n = 0$, X is *linearly independent* (l.i.). If not, X is *linearly dependent* (l.d.).
- *Basis* of *V*: An l.i. set $X \subseteq V$ which spans V (*i.e.*, $\lim X = V$).
- dim V (dimension of V): number of elements of some basis of V. (All finite bases of V have the same number of elements; why?).
- If $\dim V < \infty$, V is a finite-dimensional vector space. (**Obs**: V is not necessarily finite!)

Definition (inner products)

An inner product (scalar product) on a vector space V over $\mathbb C$ is a mapping (\cdot,\cdot) : $V\times V\to \mathbb C$ s.t. for all $x,y,z\in V$ and $\lambda\in \mathbb C$:

- 1. $(x, y) = \overline{(y, x)}$,
- 2. $(\lambda x, y) = \lambda(x, y)$,
- 3. (x + y, z) = (x, z) + (y, z),
- 4. (x,x) > 0 when $x \neq 0$.

 $(V,(\cdot,\cdot))$ is an inner product space (or pre-Hilbert space).

Examples

- 1. Complex vector space $C[0,1] := \{f: [0,1] \to \mathbb{C}: f \text{ is continuous}\}$, with point-wise addition and scalar multiplication $((f+g)(t)=f(t)+g(t),(\lambda f)(t)=\lambda f(t))$ for $f,g \in C[0,1], \lambda \in \mathbb{C}$ and $t \in [0,1]$, and inner product $(f,g) = \int_0^1 f(t)\overline{g(t)}dt$.
- 2. Space $\mathbb{C}^{m \times n}$ of $m \times n$ complex matrices, with inner product $(A,B) = \operatorname{tr}(AB^H)$.

Proof for Example 1:

Since C[0,1] is a complex vector space (*exercise!*), we need to verify that (\cdot,\cdot) satisfies the axioms of an inner product. Let $f,g,h\in C[0,1]$ and $\lambda\in \mathbb{C}$:

- 1. $(f,g) = \int_0^1 f(t)\overline{g(t)}dt = \overline{\int_0^1 g(t)\overline{f(t)}dt} = \overline{(g,f)}.$
- $2. \ (\lambda f,g)=\int_0^1 \lambda f(t)\overline{g(t)}dt=\lambda \int_0^1 f(t)\overline{g(t)}dt=\lambda (f,g).$
- $3. \ (f+g,h)=\int_0^1 [f(t)+g(t)]\overline{h(t)}dt=\int_0^1 f(t)\overline{h(t)}dt+\int_0^1 g(t)\overline{h(t)}dt=(f,h)+(g,h).$
- 4. If $f \neq 0$, then there is a $t_0 \in [0,1]$ s.t. $l := |f(t_0)|^2 \neq 0$. Since $|f|^2$ is continuous, there is an $\varepsilon > 0$ s.t. $|f(t)|^2 > l/2$ whenever $|t t_0| < \varepsilon$. Therefore,

$$\begin{split} (f,f) &= \int_0^1 |f(t)|^2 dt \\ &\geq \int_{\{t \in [0,1]: \ |t-t_0| < \varepsilon\}} |f(t)|^2 dt \\ &\geq \varepsilon \frac{l}{2} > 0. \end{split}$$

Theorem

For every $\lambda \in \mathbb{C}$ and x, y, z in an inner product space V,

- (i) (x, y + z) = (x, y) + (x, z),
- (ii) $(x, \lambda y) = \overline{\lambda}(x, y)$,
- (iii) (x,0) = (0,x) = 0,
- (iv) If (x,z) = (y,z) for all $z \in V$, then x = y.

Proof

- (i) By definition: $(x, y + z) = \overline{(y + z, x)} = \overline{(y, x)} + \overline{(z, x)}$.
- (ii) Similar to (i).
- (iii) Notice that (x, 0) = (x, 0y), and use (ii).
- (iv) Since (x,z) = (y,z), then (x-y,z) = 0. Since this holds for every z, take z = x-y, which gives (x-y,x-y) = 0. By the last axiom of an inner product, this implies x-y = 0.

Motivation and Definitions

Inner Product Spaces as Normed Spaces

A More Interesting Example for System Theory

Bonus Slides

Idea: Inner products \implies lengths (norms) \implies distances (metrics).

Example: In \mathbb{R}^n , $(x,y) = x^T y \implies \text{length} = ||x|| = \sqrt{x^T x} = \sqrt{(x,x)} \implies \text{distance} = ||x - y||$.

Definition

In an inner product space V, the *norm* of a vector $x \in V$ is $||x|| := \sqrt{(x,x)}$. This norm induces a metric on V: d(x,y) := ||x-y|| $(x,y \in V)$, and hence also a topology.

Examples

- 1. For $x = (x_1, ..., x_n) \in \mathbb{C}^n$: $||x|| = \sqrt{|x_1|^2 + \dots + |x_n|^2}$.
- 2. For $f \in C[0,1]$: $||f|| = \sqrt{\int_0^1 |f(t)|^2 dt}$.

Theorem. For every x, y in an inner product space V, and $\lambda \in \mathbb{C}$:

- (i) $||x|| \ge 0$, and ||x|| = 0 iff x = 0,
- (ii) $\|\lambda x\| = |\lambda| \|x\|$,
- (iii) $|(x,y)| \le \|x\| \|y\|$, with equality iff $x = \alpha y$ for some $\alpha \in \mathbb{C}$, (Cauchy-Schwarz inequality)

(triangle inequality)

(iv) $||x + y|| \le ||x|| + ||y||$.

Proof. (i) Direct from last axiom of an inner product.

(ii)
$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{\lambda(x, \lambda x)} = |\lambda| \sqrt{(x, x)} = |\lambda| \|x\|$$
.

(iii) For every
$$\alpha \in \mathbb{C}$$
: $0 \le (x - \alpha y, x - \alpha y) = ||x||^2 - 2\text{Re}\{\overline{\alpha}(x, y)\} + |\alpha|^2 ||y||^2$.

Take $\alpha = tu$, where $t \in \mathbb{R}$ and $u = \exp(i \arg(x, y))$, which gives $0 \le ||x||^2 - 2t|(x, y)| + t^2||y||^2$.

The minimum of this quadratic expression w.r.t. t is $||x||^2 - |(x,y)|^2 / ||y||^2$, which must be non-negative.

Furthermore, this is zero iff $x - \alpha y = 0$ for some $\alpha \in \mathbb{C}$.

(iv) By (iii),

$$\|x+y\|^2 \le \|x\|^2 + 2\operatorname{Re}\{(x,y)\} + \|y\|^2 \le \|x\|^2 + 2|(x,y)| + \|y\|^2 \le \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 = (\|x\| + \|y\|)^2.$$

Applications of Cauchy-Schwarz inequality

Probability

Let V be an inner product space of zero mean real random variables x with $\mathbb{E}\{x^2\} < \infty$, and inner product $(x,y) := \mathbb{E}\{xy\} = \text{cov}(x,y)$. Then the Cauchy-Schwarz inequality implies

$$|\text{cov}(x,y)|^2 = |(x,y)|^2 \le \|x\|^2 \|y\|^2 = \text{var}(x) \text{var}(y).$$

Exercise: Prove that the operations in ℓ_2 are well defined.

Applications of Cauchy-Schwarz inequality (cont.)

Theorem. In an inner product space V, the inner product is a continuous function, *i.e.*, for every sequences (x_n) , (y_n) s.t. $x_n \to x$ and $y_n \to y$, we have $(x_n, y_n) \to (x, y)$.

Proof. By Cauchy-Schwarz,

$$\begin{split} |(x,y)-(x_n,y_n)| &= |(x,y)-(x_n,y)+(x_n,y)-(x_n,y_n)| \\ &\leq |(x-x_n,y)|+|(x_n,y-y_n)| \\ &\leq \|y\| \|x-x_n\| + \|x_n\| \|y-y_n\|. \end{split}$$

Since (x_n) is convergent, it is also bounded (i.e., there is an M > 0 s.t. $||x_n|| \le M$ for all $n \in \mathbb{N}$). Indeed, since there is an $N \in \mathbb{N}$ s.t. $||x_n - x|| < 1$ for n > N, so $||x_n|| = ||x + x_n - x|| \le ||x|| + ||x_n - x|| < ||x|| + 1$, we can take $M = \max\{||x_1||, \dots, ||x_N||, ||x|| + 1\}$.

Then, given $\varepsilon > 0$, there is an $N_0 \in \mathbb{N}$ s.t. for $n > N_0$, $\|x_n - x\| < \varepsilon/(2\|y\|)$ and $\|y_n - y\| < \varepsilon/(2M)$, so $|(x,y) - (x_n,y_n)| \le \|y\|[\varepsilon/(2\|y\|)] + M[\varepsilon/(2M)] = \varepsilon$.

Exercise: Prove the theorem above using open sets instead, *i.e.*, that for every open set $W \subseteq \mathbb{R}$, there are open sets $U_x, U_y \subseteq V$ s.t. for all $x \in U_x$ and $y \in U_y$, $(x, y) \in W$.

Theorem (Parallelogram Law)

Let x, y be elements of an inner product space. Then,

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
.

Proof. As $\|x \pm y\|^2 = \|x\|^2 \pm (x, y) \pm (y, x) + \|y\|^2$, the result follows by adding these expressions.

(See bonus slides for converse result!)

Theorem (Polarization Identity)

Let x, y be elements of an inner product space. Then,

$$\begin{split} (x,y) &= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + i \|x+iy\|^2 - i \|x-iy\|^2 \right) = \frac{1}{4} \sum_{k=0}^3 i^k \|x+i^ky\|^2, \quad \text{(complex case)} \\ &= \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right). \end{split}$$
 (real case)

Proof. Exercise!

Motivation and Definitions

Inner Product Spaces as Normed Spaces

A More Interesting Example for System Theory

Bonus Slides

A More Interesting Example for System Theory

 $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}: \qquad open \ unit \ disc$

 $\mathbb{T}:=\partial\mathbb{D}=\{z\in\mathbb{C}\colon |z|=1\}\colon\; unit\; circle$

 $\mathbb{E} := \{z \in \mathbb{C} : |z| > 1\} \cup \{\infty\}: exterior of the unit circle (including infinity)$

 RL_2 : space of real-rational functions (i.e., quotients of polynomials with real coefficients), analytic on the unit circle \mathbb{T} , with usual addition and scalar multiplication, and inner product

$$(f,g) := \frac{1}{2\pi i} \oint_{\mathbb{T}} f(z) \overline{g(z)} \frac{dz}{z} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\omega}) \overline{g(e^{i\omega})} d\omega.$$

 RH_2 : subspace of RL_2 , of functions analytic on the closed exterior of the unit disc $\overline{\mathbb{E}}$ (= $\mathbb{E} \cup \mathbb{T}$), with the same inner product as RL_2 .

In engineering terms:

 RL_2 consists of real-rational functions without poles on \mathbb{T} (can be stable or unstable), and RH_2 only has functions with poles inside \mathbb{D} (stable).

A More Interesting Example for System Theory (cont.)

Notation. The function $z \mapsto z$ in $\mathbb C$ is denoted q, *i.e.*, q(z) = z. In system theory, q is interpreted as the *forward shift operator*.

Exercise: Prove that RL_2 is an inner product space.

Cauchy integral formula simplifies calculations of inner products in RL_2 : For $h \in RL_2$,

$$\frac{1}{2\pi i} \oint_{\mathbb{T}} h(z) dz = \sum_{\substack{z_j = \text{pole of} \\ h \text{ in } \mathbb{D}}} \operatorname{Res}_{z=z_j}[h(z)] = -\sum_{\substack{z_j = \text{pole of} \\ h \text{ in } \mathbb{E} \cup \{\infty\}}} \operatorname{Res}_{z=z_j}[h(z)].$$

Example:
$$f(z) = \frac{1}{z-a}$$
, $g(z) = \frac{1}{z-b}$ ($|a| < 1$, $0 < |b| < 1$), thus
$$(f,g) = \frac{1}{2\pi i} \oint_{\mathbb{T}} \frac{1}{z-a} \frac{1}{\overline{z}-b} \frac{dz}{z} = -\frac{1}{2\pi i b} \oint_{\mathbb{T}} \frac{1}{z-a} \frac{1}{z-1/b} dz \qquad \text{(since } z\overline{z} = 1 \text{ in } \mathbb{T}\text{)}$$

$$= -\frac{1}{b} \text{Res}_{z=a} \left(\frac{h(z)}{z-a} \right) \quad \text{where } h(z) = \frac{1}{z-1/b} \qquad \text{(h is analytic at $z=a$)}$$

$$= -\frac{1}{b} h(a) = -\frac{1}{b} \frac{1}{a-1/b} = \frac{1}{1-ab}.$$

A More Interesting Example for System Theory (cont.)

Every $f \in RL_2$ can be expressed via partial fraction expansion (or polynomial division) as

$$f(z) = P(z) + \sum_{k=1}^{n} \sum_{j=1}^{m_k} \frac{b_{k,j}}{(z - p_k)^j},$$

where P(z) is a polynomial in $z, p_1, \ldots, p_n \in \mathbb{C} \setminus \mathbb{T}$ are the poles of f, and m_k is the multiplicity of pole z_k . The function f belongs to RH_2 iff P(z) is a constant (otherwise f would have a pole at $\infty \in \mathbb{E}$) and all its poles p_k lie in \mathbb{E} .

Note also that, for |z| = 1,

$$\frac{1}{(z-p)^m} = \begin{cases} z^{-m} + mpz^{-m-1} + \frac{m(m+1)}{2!}p^2z^{-m-2} + \frac{m(m+1)(m+2)}{3!}p^3z^{-m-3} + \cdots, & |p| < 1\\ (-p)^m \left[1 + \frac{m}{p}z + \frac{m(m+1)}{2!p^2}z^2 + \frac{m(m+1)(m+2)}{3!p^3}z^3 + \cdots\right], & |p| > 1. \end{cases}$$

Thus, every $f \in RL_2$ has a Laurent series $f(z) = \cdots + f_{-2}z^{-2} + f_{-1}z^{-1} + f_0 + f_1z + f_2z^2 + \cdots$ around |z| = 1, i.e., convergent for all a < |z| < b, where a > 0 is larger than the modulus of all poles in $\mathbb D$, while b > 0 is smaller than the modulus of all poles in $\mathbb E$, so 0 < a < 1 < b. Also, f belongs to RH_2 iff the Laurent series of f(z) around |z| = 1 has only non-positive

The norm of $f \in RL_2$, in terms of its Laurent series, satisfies $||f||^2 = \sum_{k=-\infty}^{\infty} |f_k|^2$ (Parseval's relation; see Topic 5 for generalizations).

powers of z.

Next Topic

Normed Spaces

Motivation and Definitions

Inner Product Spaces as Normed Spaces

A More Interesting Example for System Theory

Bonus Slides

Bonus: Converse of the Parallelogram Law

The parallelogram law can be used to show that a given norm does not come from an inner product. However, when it holds, the norm can be used to derive an inner product!

Idea: Use the polarization identity! (consider the real case for simplicity)

$$(x, y) = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

Let us check the properties of an inner product:

- $1. \ \ (y,x) = \frac{1}{4} \left(\left\| y + x \right\|^2 \left\| y x \right\|^2 \right) = \frac{1}{4} \left(\left\| x + y \right\|^2 \left\| x y \right\|^2 \right) = (x,y).$
- 4. $(x,x) = \frac{1}{4} (\|x+x\|^2 \|x-x\|^2) = \|x\|^2 > 0 \text{ if } x \neq 0.$
- 3. Decompose (x + y, z) in two different ways:

$$\begin{split} (x+y,z) &= \frac{1}{4} \left(\|x+y+z\|^2 - \|x+y-z\|^2 \right) \\ &= \frac{1}{4} \left(\|x+y+z\|^2 + \|x-y+z\|^2 - \|x+y-z\|^2 - \|x-y+z\|^2 \right) \\ &= \frac{1}{4} \left(\|x+y+z\|^2 + \|x-y-z\|^2 - \|x+y-z\|^2 - \|x-y-z\|^2 \right). \end{split}$$

Bonus: Converse of the Parallelogram Law (cont.)

Applying the parallelogram law yields:

$$\begin{split} (x+y,z) &= \frac{1}{4} \left(2\|x+z\|^2 + 2\|y\|^2 - 2\|x\|^2 - 2\|y-z\|^2 \right) \\ &= \frac{1}{4} \left(2\|x\|^2 + 2\|y+z\|^2 - 2\|y\|^2 - 2\|x-z\|^2 \right). \end{split}$$

Averaging these expressions and applying the polarization identity gives

$$(x+y,z) = \frac{1}{4} \left(\|x+z\|^2 - \|y-z\|^2 + \|y+z\|^2 - \|x-z\|^2 \right) = (x,z) + (y,z).$$

2. From the polarization identity and Property 3,

$$\begin{split} (-x,y) &= \frac{1}{4} \left(\| -x + y \|^2 - \| -x - y \|^2 \right) = -\frac{1}{4} \left(\| x + y \|^2 - \| x - y \|^2 \right) = -(x,y), \\ (0,y) &= (x-x,y) = (x,y) + (-x,y) = (x,y) - (x,y) = 0, \\ ([n+1]x,y) &= (nx,y) + (x,y), \end{split}$$

so by induction on $n \in \mathbb{N}$ and the 1st expression, (nx,y) = n(x,y) for all $n \in \mathbb{Z}$. Also, if $m,n \in \mathbb{Z} \setminus \{0\}$, n([m/n]x,y) = (mx,y) = m(x,y), so ([m/n]x,y) = [m/n](x,y), thus $(\lambda x,y) = \lambda(x,y)$ for all $\lambda \in \mathbb{Q}$. Since norms are continuous (because $||x|| - ||y||| \leq ||x-y||$ from the triangle inequality), this last expression can be extended to all $\lambda \in \mathbb{R}$.