CS221 Section 3: Search

DP, UCS and A*

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Uniform Cost Search

Idea: In UCS, we find the shortest cost to a node by using the fact we already know the shortest path to a set of nodes.

Recall: We have the following three sets

- Explored Set: contains nodes we know the path length to
- Frontier Set: contains nodes that are neighbors of those in the explored set, but we don't know their costs yet
- Unexplored Set: Nodes in the graph we haven't encountered

In the following graph, find the costs to reach each node given that we start on

node **a**.

Explored

[a:0]

Frontier

[b:0+1,e:0+2,c:0+3]

Unexplored

We start with node **a**. We add all neighbors of **a** to the frontier. Note: [a : 0] means it takes 0 cost to get to node a.

Explored

[a:0, **b:1**]

Frontier

[c:1+1, e:0+2]

Unexplored

In the frontier, **b** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **b** to the frontier, updating costs to reach some nodes if necessary (we updated **c**).

Explored

[a:0,b:1,c:2]

Frontier

[e:0+2, d:2+1]

Unexplored

In the frontier, **c** has the lowest cost (ties broken alphabetically here). Thus, we can add it to the explored set. We add all neighbors of **c** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2]

Frontier

[d:2+1, f:2+1, h:2+3]

Unexplored

In the frontier, **e** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **e** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3]

Frontier

[f:2+1, g:3+1, h:2+3]

Unexplored

In the frontier, **d** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **d** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3,f:3]

Frontier

[g:3+1, h:3+1]

Unexplored

In the frontier, **f** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **f** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3,f:3,g:4]

Frontier

[h:3+1]

Unexplored

In the frontier, **g** has the lowest cost. Thus, we can add it to the explored set. We add all neighbors of **f** to the frontier, updating as necessary.

Explored

[a:0,b:1,c:2,e:2,d:3,f:3,g:4,

h:4]

Frontier

Unexplored

In the frontier, **h** has the lowest cost. Thus, we can add it to the explored set. There are no more nodes in the frontier, so we are done.

Uniform Cost Search

Algorithm: uniform cost search [Dijkstra, 1956]-

Add $s_{
m start}$ to **frontier** (priority queue)

Repeat until frontier is empty:

Remove s with smallest priority p from frontier

If $\mathbf{IsEnd}(s)$: return solution

Add s to explored

For each action $a \in Actions(s)$:

Get successor $s' \leftarrow \operatorname{Succ}(s, a)$

If s' already in explored: continue

Update **frontier** with s' and priority $p + \mathrm{Cost}(s,a)$

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Problem

There exists N cities, conveniently labelled from 1 to N.

There are roads connecting some pairs of cities. The road connecting city **i** and city **j** takes **c(i,j)** time to traverse. However, one can only travel from a city with smaller label to a city with larger label (i.e. each road is one-directional).

From city **1**, we want to travel to city **N**. What is the shortest time required to make this trip, given the additional constraint that we should visit more odd-labeled cities than even labeled cities?

Example

Best path is [1, 3, 4, 5] with cost 16.

[1, 2, 4, 5] has cost 14 but visits equal number of odd and even cities.

State Representation

Key idea: state-

A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.

State Representation

We need to know where we are currently at: current_city

We need to know how many odd and even cities we have visited thus far: **#odd**, **#even**

State Representation: (current_city, #odd, #even)

Total number of states: $O(N^3)$

Can We Do Better?

Check if all the information is really required

We store **#odd** and **#even** so that we can check whether **#odd** - **#even** > 0 at (N, **#odd**, **#even**)

Why not store #odd - #even directly instead?

(current_city, #odd - #even) -- O(N²) states

Solving the Problem

Since we are computing shortest path, which is some form of optimization, we consider DP and UCS.

Recall:

- DP can handle negative edges but works only on DAGs
- UCS works on general graphs, but cannot handle negative edges

Since we have a DAG and all edges are positive, both work! We already went through UCS, so we solve this with DP.

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Solving the Problem: Dynamic Programming

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

If s has no successors, we set it as undefined

Visiting

Successors

Completed

Regular Graph

rtogular Graph	Otato Orapii	
2 1 1 3 3	1, 1	
(0	:(-(1/ -)	

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$$

Visiting

Successors

Completed

Regular Graph

Cache	
Key	Value

Rogalai Grapii	Otate Orapii	
2 1 1 4 7 5	1, 1	
	:f loCool(o)	

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$$

Visiting Successors

Completed

Regular Granh

Regulai Graph	State Graph	
2 1 1 4 7 5	5 1,1 3 3,2	
(0	:(I-C I/ -)	

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$$

3

Visiting

Successors

Completed

Regular Graph

State Graph

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Cache Key Value

Visiting Successors Completed

Regular Graph

FutureCost(s)	$\int 0$		$if \; IsGoal(s)$
$FutureCost(s) = \epsilon$	$\min_{a \in Actions(s)} [Cost(s, a)]$) + FutureCost(Succ(s,a))]	otherwise

Cache Value Key

Visiting Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache Key Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache Key Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache Key Value

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key Value	

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Key Value

Cache

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7

 $\mathsf{FutureCost}(s) = \begin{cases} 0 & \mathsf{if} \ \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \mathsf{otherwise} \end{cases}$

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13

Visiting

Successors

Completed

Regular Graph

State Graph

Ca	Cache	
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13

Visiting

Successors

Completed

Regular Graph

State Graph

Ca	Cache	
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞

Visiting

Successors

Completed

Regular Graph

 $\mathsf{FutureCost}(s) = \langle$

State Graph

$\begin{cases} 0 \\ \min_{a \in Actions(s)} [Cost(s, a)] \end{cases}$) + FutureCost(Succ(s,a))]	if $IsGoal(s)$ otherwise

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	

Visiting Successors

Completed

Regular Graph

State Graph

Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	8
(2, 0)	14

Cache

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14

Visiting

Successors

Completed

Regular Graph

State Graph

(5, 0)	٥
(4, -1)	o
(2, 0)	1

Cache

Key

(5, 1)

(4, 0)

(3, 1)

Value

0

13

Visiting

Successors

Completed

Regular Graph

State Graph

$$\mathsf{FutureCost}(s) = \begin{cases} 0 & \text{if } \mathsf{IsGoal}(s) \\ \min_{a \in \mathsf{Actions}(s)} [\mathsf{Cost}(s, a) + \mathsf{FutureCost}(\mathsf{Succ}(s, a))] & \text{otherwise} \end{cases}$$

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	

Visiting

Successors

Completed

Regular Graph

State Graph

Ca	Cache	
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14
(5, 2)	0

Visiting

Successors

Completed

Regular Graph

State Graph

Cache	
Key	Value
(5, 1)	0
(4, 0)	7
(3, 1)	13
(5, 0)	∞
(4, -1)	∞
(2, 0)	14
(5, 2)	0
(4, 1)	7

Visiting

Successors

Completed

Regular Graph

State Graph

Cache		
Key Value		
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	
(5, 2)	0	
(4, 1)	7	
(3, 2)	13	

Visiting

Successors

Completed

Regular Graph

State Graph

FuturaCast(a) —	$\int 0$		$if \; IsGoal(s)$
FutureCost(s) = c	$\min_{a \in Actions(s)} [Cost(s, a)]$) + FutureCost(Succ(s,a))]	otherwise

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	
(5, 2)	0	
(4, 1)	7	
(3, 2)	13	
(1, 1)	16	

Visiting

Successors

Completed

Regular Graph

State Graph

FutureCost(s)	(0	$if \; IsGoal(s)$
$FutureCost(s) = \langle$	$\begin{cases} 0 \\ \min_{a \in Actions(s)} [Cost(s, a) + FutureCost(Succ(s, a))] \end{cases}$	otherwise

Cache		
Key	Value	
(5, 1)	0	
(4, 0)	7	
(3, 1)	13	
(5, 0)	∞	
(4, -1)	∞	
(2, 0)	14	
(5, 2)	0	
(4, 1)	7	
(3, 2)	13	
(1, 1)	16	

Improve UCS: A* Search

Contents

- 1. Uniform Cost Search
- 2. Defining States
- 3. Dynamic Programming
- 4. A* Search

Recap of A* Search

- We want to avoid wasted effort (to go from SF to LA, we probably don't want to end up looking at roads to Seattle, for example).
- To do this, we can use a heuristic to estimate how far is left until we reach our goal.
- The heuristic must be optimistic. It must underestimate the true cost. Why?

Recap of A* Search

- Modify the cost of edges and run UCS on the new graph
 - New cost = Current cost + future cost
 - \circ Cost'(s, a) = Cost(s, a) + h(Succ(s, a)) h(s)
- You can find a good consistent h by performing relaxation.
- If c is min cost on original graph, c' is min cost on modified graph, then c' = c + h(s_goal) - h(s_start)

Relaxation

A good way to come up with a reasonable heuristic is to solve an easier (less constrained) version of the problem

For example, we can use geographic distance as a heuristic for distance if we have the positions of nodes.

Note: The main point of relaxation is to attain a problem that can be solved more efficiently.

How to compute h for our example?

Consider again our example from before. Suppose we ignore the constraint that there must be more odd cities visited. This is a relaxation of the problem. The following is h for our graph:

city	1	2	3	4	5
h	14	9	13	7	0

Modified State Graph

city	1	2	3	4	5
h	14	9	13	7	0

city	1	2	3	4	5	
h	14	9	13	7	0	

Explored:

(1, 1): 0

Frontier:

(2, 0): 5 + 9

(3, 2): 3 + 13

city	1	2	3	4	5
h	14	9	13	7	0

Explored:

(1, 1): 0

(2, 0):5

Frontier:

(3, 2): 3 + 13

(3, 1): 6 + 13

(4, -1): 7 + 7

	2, 0	→ 4,-1 O	5, 0
2	5		
1, 1	3, 1	4, 0	5, 1
2	3, 2	4, 1	5, 2

city	1	2	3	4	5	
h	14	9	13	7	0	

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

Frontier:

(3, 2): 3 + 13

(3, 1): 4 + 13

(5, 0): 7 + 7

city	1	2	3	4	5	
h	14	9	13	7	0	

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

(5, 0): 14

Frontier:

(3, 2): 3 + 13

(3, 1): 4 + 13

city	1	2	3	4	5	
h	14	9	13	7	0	

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

(5, 0): 14

(3, 2):3

Frontier:

(3, 1): 3 + 13

(4, 1): 9 + 7

city	1	2	3	4	5
h	14	9	13	7	0

Explored:

(1, 1): 0

(2, 0):5

(4, -1): 7

(5, 0): 14

(3, 2):3

(4, 1): 9

Frontier:

(3, 1): 3 + 13

(5, 2): 16 + 0

city	1	2	3	4	5	
h	14	9	13	7	0	

Explored:

(1, 1):0

(2, 0):5

(4, -1): 7

(5, 0): 14

(3, 2):3

(4, 1): 9

(5, 2): 16

Frontier:

(3, 1): 3 + 13

STOP!

Comparison of States visited

UCS		UCS(A*)		
Explored: (1, 1): 0 (3, 2): 3 (2, 0): 5 (3, 1): 6 (4, -1): 7 (4, 1): 9 (4, 0): 12 (5, 0): 14 (5, 2): 16	Frontier: (5, 1): 19	Explored: (1, 1): 0 (2, 0): 5 (4, -1): 7 (5, 0): 14 (3, 2): 3 (4, 1): 9 (5, 2): 16	Frontier: (3, 1):3+ 13	

Summary

- States Representation/Modelling
 - make state representation as compact as possible, remove unnecessary information
- DP
 - underlying graph cannot have cycles
 - visit all reachable states, but no log overhead
- UCS
 - actions cannot have negative cost
 - visit only a subset of states, log overhead
- A*
 - ensure that relaxed problem can be solved more efficiently