Minimalni končni modeli prostorov

Filip Bezjak Mentor: dr. Petar Pavešić

5. april 2022

1 Uvod

Moja tema sodi na področje algebraične topologije na končnih prostorih. Topologije na končnih prostorih so večkrat spregledane, saj je vsaka T_1 topologija na končnem prostoru diskretna. Če pa lastnosti T_1 ne zahtevamo, postanejo veliko bolj zanimive.

2 Končni topološki prostori in delno urejene množice

Končni topološki prostor je topološki prostor s končno mnogo točkami, šibko urejena množica je množica s tranzitivno in z refleksivno relacijo. Če je relacija še antisimetrična, dobimo delno ureditev.

Naj bo X končni topološki prostor. Za vsako točko $x \in X$ obstaja najmanjša odprta množica U_x , ki jo vsebuje, oziroma presek vseh odprtih množic, ki vsebujejo x. Ta množica je odprta, saj je topologija zaprta za končne preseke. Točke uredimo s pravilom $x \leq y$, če $U_x \subseteq U_y$. S tem dobimo šibko ureditev. Relacija postane delna ureditev, natanko takrat, ko je topologija t_0 , in disktretna, ko je topologija T_1 .

Obratno, naj bo X šibko urejena množica. Na njej lahko definiramo topologijo z bazo $\{y \in X | y \leq x\}_{x \in X}$. Če je $y \leq x$, je y vsebovan v vsaki bazni množici, ki vsebuje x, torej je $y \in U_x$. Po drugi strani, če je $y \in U_x$, potem je $y \in \{y \in X | y \leq x\}$, torej velja, da je $y \leq x$ natanko tedaj ko je $y \in U_x$. Iz tega je razvidno, da so končni prostori in šibke ureditve enaki objekti, gledani z drugačnega stališča.

Definicija 1. Točka $x \in X$ je navzdol odpravljiva, če ima $\{y \in X | y \leq x\}$ maksimum in navzgor odpravljiva, če ima $\{y \in X | y \geq x\}$ minimum. Točka

je odpravljiva, če je eno ali drugo.

Definicija 2. T_0 prostor je *minimalen*, če nima odpravljivih točk.

3 Homotopska in šibka homotopska ekvivalenca

Pot v prostoru X je zvezna preslikava $f: I \to X$, pri čemer je I enotski interval [0,1]. Poti sta si homotopni, če lahko eno zvezno deformiramo v drugo, brez da bi premaknili krajišči poti.

Definicija 3. Homotopija poti v X je družina preslikav $f_t: I \to X, 0 \le t \le 1$, taka da

- sta krajišči $f_t(0) = x_0$ in $f_t(1) = x_1$ neodvisni od t in
- je prirejena preslikava $F: I \times X \to X$ definirana s $F(s,t) = f_t(s)$ zvezna.

Za preslikavi f_1 in f_0 , ki sta povezani s homotopiijo f_t rečemo, da sta homotopni in označimo $f_1 \simeq f_0$.

Definicija 4. Preslikava $f: X \to Y$ je homotopska ekvivalenca prostorov X in Y, če obstaja preslikava $g: Y \to X$, taka da je $fg \simeq \mathbb{1}$ in $gf \simeq \mathbb{1}$. Rečemo, da sta si prostora X in Y homotopsko ekvivalentna.

Izrek 1. relacija homotopije na poteh s fiksnima krajiščema je ekvivalenčna relacija za vsak topološki prostor.

Za poljubni poti $f, g: I \to X$, za kateri velja f(1) = g(0) lahko definiramo produkt $f \cdot g$, ki preteče f in g z dvojno hitrostjo v enotskem intervalu.

$$f \cdot g(s) \begin{cases} f(2s), & 0 \le s \le 1/2 \\ g(2s-1), & 1/2 \le s \le 1 \end{cases}$$

Če se omejimo samo na poti $f:I\to X$ z enako začetno in končno točko $f(0)=f(1)=x_0$, govorimo o zankah, za x_0 pa rečemo, da je bazna točka. Množico vseh homotopskih razredov [f], z bazno točko x_0 označimo z $\pi_1(X,x_0)$.

Izrek 2. $\pi_1(X, x_0)$ opremljena s produktom $[f][g] = [f \cdot g]$ je grupa.

Tej grupi pravimo fundamentalna grupa prostora X, z bazno točko x_0 . $\pi_1(X, x_0)$ je prva v zaporedju analogogno definiranih grup $\pi_n(X, x_0)$, pri katerih namesto iz I slikamo iz n-dimenzionalne kocke I^n .

Naj bo I^n n-dimenzionalna kocka. Rob ∂I^n od I^n je podprostor točk pri katerih je vsaj ena koordinata enaka 1 ali 0. Definirajmo $\pi_n(X, x_0)$, množico homotopskih razredov preslikav $f:(I^n, \partial I^n) \to (X, x_0)$ pri čemer velja $f(\partial I^n) = x_0$.

Za $n \ge 2$ posplošimo množenje definirano pri fundamentalni grupi.

$$f \cdot g(s) \begin{cases} f(2s_1, s_2, \dots, s_n), & 0 \le s_1 \le 1/2 \\ g(2s_1 - 1, s_2, \dots, s_n), & 1/2 \le s_1 \le 1 \end{cases}$$

Izrek 3. $\pi_n(X, x_0)$ opremljena s produktom $[f][g] = [f \cdot g]$ je grupa za vsak $n \in \mathbb{N}$.

Grupam $\pi_n(X, x_0)$ pravimo homotopske grupe.

Definicija 5. Topološka prostora sta *šibko homotopsko ekvivalentna*, če so njune homotopske grupe izomorfne za vsak $n \in \mathbb{N}$.

Homotopsko ekvivalentni prostori so si tudi šibsko homotopsko ekvivalentni.

Definicija 6. Preslikava je *šibka homotopska ekvivalenca*, če preko kompozicije inducira izomorfizem na vse homotopske grupe.

4 Simpleksi

Simpleks ali n-simpleks je n-razsežni analog trikotnika. Točka je 0-simpleks, 1-simpleks je daljica, 2-simpleks je trikotnik, 3-simpleks je tetraeder. n-simpleks definiramo kot množico svojih n+1 oglišč.

Simplicialni kompleks K je sestavljen iz množice oglišč V_K in množice simpleksov S_K , sestavljene iz končnih nepraznih podmnožic od V_k , pri čemer je vsak element S_k simpleks in vsaka podmnožica simpleksa je simpleks.

Naj bo $\sigma = \{v_0, v_1, \dots, v_n\}$ n-simpleks. Zaprt Simpleks $\bar{\sigma}$ je množica formalnih konveksnih combinacij $\sum_{i=0}^n \alpha_i v_i$ pri čemer je $\alpha_i \geq 0$ za vsak $0 \leq i \leq n$ in $\Sigma \alpha_i = 1$. Zaprt simpleks je metričen prostor z metriko

$$d(\sum_{v \in K} \alpha_v v, \sum_{v \in K} \beta_v v) = \sqrt{\sum_{v \in K} (\alpha_v - \beta_v)^2}$$

 $Geometrijska \ realizacija \ |K|$ simplicialnega kompleksa K je množica formalnih konveksnih kombinacij $\sum\limits_{v\in K} \alpha_v v$, takih da je $\{v|\alpha_v>0\}$ simpleks v K.

5 Minimalni modeli prostorov

Definicija 7. Končni topološki prostor je model prostora X, če mu je šibko homotopsko ekvivalenten. Model je minimalen, če ima izmed vseh modelov najmanjšo kardinalnost.

Izrek 4. Homotopska ekvivalenca med minimalnima T_0 prostoroma je homeomorfizem.

Izrek 5. Naj bo X T_0 prostor in x navzdol odpravljiva točka, tedaj je $r: X \to X - \{x\},$

$$r(u) = \begin{cases} u, & u \neq x \\ max(u), & u = x \end{cases}$$

homotopska ekvivalenca.

Preslikavo lahko analogno definiramo za navzgor odpravljive točke, le da namesto vmax(u) slikamo vmin(u). Iz poljubnega modela prostora torej dobimo minimalnega, s postopnim odstranjevanjem odpravljivih točk.

Definicija 8. Vsak končen T_0 -prostor X ima *prirejen* simplicialni kompleks $\mathcal{K}(X)$, katerega simpleksi so neprazne verige v prirejeni delni urejenosti na X.

Točka α v geometrijski realizaciji $|\mathcal{K}(\mathcal{X})|$ je konveksna kombinacija oblike $\alpha = t_1 x_1 + t_2 x_2 + \ldots + t_r x_r$, pri čemer $\sum_{i=1}^r t_i = 1$, za vsak $1 \leq i \leq r$, $t_i \geq 0$ in velja, da je $x_1 < x_2 < \ldots < x_r$ veriga v X. Nosilec α je množica support $(\alpha) = \{x_1, x_2, \ldots, x_r\}$. Pomembno vlogo igra preslikava $\alpha \mapsto x_1$.

Definicija 9. Naj bo X končen T_0 prostor, Definirajmo \mathcal{K} -McCordovo preslikavo $\mu_X : |\mathcal{K}(X)| \to X$, z $\mu_X(\alpha) = \min(support(\alpha))$.

Izrek 6. K-McCordova preslikava je šibka homotopska ekvivalenca za vsak končen T_0 -prostor.

Moja naloga v tem delu bo poiskati minimalne končne modele sfer in grafov.