

```
Properties of Triangles Ex 15.2 Q12
```

Answer:

```
Let each of the two acute angles of the given triangle be x.
```

We know that the third angle is 90°. (Given)

We also know that the sum of all the three angles of a triangle is equal to $180\,^\circ$.

Which means: $x + x + 90^{\circ} = 180^{\circ}$

 $\Rightarrow 2x = 180^{\circ} - 90^{\circ}$

 $\Rightarrow \mathbf{x} = \frac{90^{\circ}}{2}$

 $\Rightarrow x = 45^{\circ}$

Hence, we can conclude that each of the two acute angles is equal to 45°.

Properties of Triangles Ex 15.2 Q13

Answer

Let the three angles of the given triangle be $\angle a$, $\angle b$ and $\angle c$.

We know: $\angle a > \angle b + \angle c$ (i) (Given)

We also know that the sum of all the angles of a triangle is equal to 180°.

$$\therefore \angle \mathbf{a} + \angle \mathbf{b} + \angle \mathbf{c} = 180^{\circ}$$

 $\Rightarrow \angle b + \angle c = 180^{\circ} - \angle a$

Putting the value of $\angle b + \angle c$ from equation (i):

$$\angle \mathbf{a} > 180^{\circ} - \angle \mathbf{a}$$

 $\Rightarrow 2\angle a > 180^{\circ}$

 $\Rightarrow \angle a > 90^{\circ}$

Thus, the angle is more than 90°.

Hence, we can conclude by saying that the given triangle is an obtuse triangle.

Properties of Triangles Ex 15.2 Q14

Answer:

We have to find $\angle FAB + \angle ABC + \angle BCD + \angle CDE + \angle DEF + \angle EFA$ (i)

From the figure, we have:

 $\angle FAB = \angle FAE + \angle EAD + \angle DAC + \angle CAB$

 $\angle BCD = \angle ACB + \angle ACD$

 $\angle CDE = \angle ADC + \angle ADE$

 $\angle DEF = \angle AED + \angle AEF$

Putting the values of \angle FAB, \angle BCD, \angle CDE, \angle DEF in equation (i):

 $\left(\angle FAE + \angle EAD + \angle DAC + \angle \, CAB \right) \; + \; \angle ABC + \left(\angle \, ACB + \angle \, ACD \right) \; + \;$

 $(\angle ADC + \angle ADE) + (\angle AED + \angle AEF) + \angle EFA$

 $\Rightarrow (\angle ABC + \angle ACB + \angle CAB) \ + \ (\angle FAE + \angle AEF + \angle EFA) \ +$

 $(\angle FAE + \angle AEF + \angle EFA) + (\angle ADC + \angle ACD + \angle DAC) \dots (ii)$

We know that the sum of the three angles of a triangle is equal to 180°.

Hence we can say the following:

 $\angle ABC + \angle ACB + \angle CAB = 180^{\circ} (angles of \triangle ABC)$

 $\angle FAE + \angle AEF + \angle EFA = 180^{\circ} (angles of \triangle AFE)$

 $\angle AED + \angle ADE + \angle EAD = 180^{\circ} (angles \text{ of } \triangle AED)$

 $\angle ADC + \angle ACD + \angle DAC = 180^{\circ} (angles \text{ of } \triangle ADC)$

Putting these values in equation (ii):

180° + 180° + 180° + 180°

Hence, the sum of the given angles is 720°

********* END *******