STRICT AND WEAK CHOICE IN RANDOM EXPECTED UTILITY MODELS

Evan Piermont & Roee Teper

Feb, 2019; Linz

Economic choice data is usually aggregated across

- many subjects, or,
 - many different points in time, or both

For a choice problem: $D = \{a, b, c\}$

The analyst observes: $\rho_D(E)$ for $E \subseteq D$, representing the frequencies of choice.

Economic choice data is usually aggregated across

- many subjects, or,
- many different points in time, or both

For a choice problem: $D = \{a, b, c\}$

The analyst observes: $\rho_D(E)$ for $E\subseteq D$, representing the frequencies of choice.

Can we still falsify individual rationality / expected utility?

Random Utility Models are a way of dealing with aggregated choice data:

Let \mathcal{U} denote a set of utility functions. Then $\xi \in \Delta(\mathcal{U})$ is a **Random Expected Utility Model** (REUM) representing ρ if

$$\rho_D(E) = \xi\{u \in \mathcal{U} \mid \arg\max_D u \in E\}$$

Random utility models do not deal well with ties:

- If with positive ξ -probability u(a) = u(b), what is $\rho_D(b)$?
- Depends on how indifferences are broken.
- Gul and Pesendorfer (2006) (and the following literature) assume ties occur with probability 0

We present a model of random choice capacities (RCCs), such that

- Represents upper-bounds of choice probability (sub-additive).
- Set of RCCs satisfying our axioms homeomorphic to the set of REUMs.

- The theory of RCCs can help us understand tie breaking from (observable) additive choice rules.
- Each additive choice rule corresponds to a set of RCCs (thus a set of REUMs)
 - When the choice rule is extreme (a la GP) then ties happen with probability 0.
 - There exists an RCC which minimizes tie breaking.
 - Choosing the model with the least tie-breaking is normatively appealing; errors are not costly.

Example

- $D = \{a, b, c = \frac{1}{2}a + \frac{1}{2}b\}$ is a decision problem.
- \blacktriangleright Let ξ be the uniform measure over the expected utility indices

$$u_1 = [1,0], u_2 = [-1,0], \text{ and } u_3 = [0,0].$$

- \blacktriangleright if u_1 is realized then a is definitely chosen,
 - $^{\bullet}$ a is chosen ≥ $\frac{1}{3}$;
- \Rightarrow if u_2 , b is definitely chosen,
 - a is chosen $\leq \frac{2}{3}$;
- \Rightarrow if u_3 , depends on tie breaking
 - Conclude: a is chosen $\in \left[\frac{1}{3}, \frac{2}{3}\right]$

Example

Our primitive, ρ_D , reflects the upper bounds of choice frequency.

•
$$\rho_D(c) = \frac{1}{3}$$

•
$$\rho_D(a) = \rho_D(b) = \rho_D(\{a, c\}) = \rho_D(\{b, c\}) = \frac{2}{3}$$

•
$$\rho_D(\{a,b\}) = \rho_D(\{a,b,c\}) = 1$$

Set Up

 \mathcal{D} is the set of **decision problems**: all finite non-empty subsets of \mathbb{R}^n .

Our primitive is a random choice capacity (RCC),

$$\rho = {\rho_D : 2^D \to [0, 1]}_{D \in \mathcal{D}}.$$

that is

- grounded: $\rho_D(\emptyset) = 0$.
- normalized: $\rho_D(D) = 1$.
- ▶ monotone: $\rho_D(A \cup B) \ge \rho_D(A)$.
- not necessarily additive!

Random Linear Representations

Call ξ , a (finitely additive) probability measure over \mathbb{R}^n , a random linear representation (RLR). Say that ρ maximizes ξ if

$$\rho_D(A) = \xi(\{u \in \mathbb{R}^n \mid A \cap (\arg\max_{y \in D} u \cdot y) \neq \emptyset\})$$

for all (D, A).

Theorem

Every RLR has a unique maximizer and every ρ maximizes at most one RLR.

GP axioms

If ρ is additive then GP provide conditions for the existence of a RLR:

- 1. Monotonicity: $D \subseteq D' \implies \rho_D(a) \ge \rho_{D'}(a)$.
- 2. Extremeness: $\rho_D(\text{ext}(D)) = 1$
- 3. Linearity: $\rho_D(a) = \rho_{\lambda D+b}(\lambda a + b)$ for $\lambda > 0$.
- 4. Mixture Cont: $\rho_{\lambda D + \lambda' D'}$ is continuous in λ, λ' for $\lambda, \lambda' \geq 0$.

We keep Linearity and Mixture Continuity and Monotonicity.

Relax Extremeness to Convex Modularity.

Let $D = \{a, b, \frac{1}{2}a + \frac{1}{2}b\}$. Notice:

So.

 $\rho_D(\{a\}) = \xi(\{u \mid u(a) > u(b)\}) + \xi(\{u \mid u(a) = u(b)\}), \text{ and}$ $\rho_D(\{b\}) = \xi(\{u \mid u(b) > u(a)\}) + \xi(\{u \mid u(a) = u(b)\}).$

 $\rho_D(\{a,b\}) = \rho_D(\{a\}) + \rho_D(\{b\}) - \xi(\{u \mid u(a) = u(b)\})$

Also,

 $u(a) = u(b) \iff \frac{1}{2}a + \frac{1}{2}b \in \argmax_{z \in D} u(z)$

 $\rho_D(\{a,b\}) = \rho_D(\{a\}) + \rho_D(\{b\}) - \rho_D(\{\frac{1}{2}a + \frac{1}{2}b\})$

Hence

Convex-Modularity

Let $A, B \subseteq D$ be such that $\alpha A + (1 - \alpha)B \subseteq D$ for $\alpha \in (0, 1)$.

Let
$$A,B\subseteq D$$
 be such that $\alpha A+(1-\alpha)B\subseteq D$ for $\alpha\in(0,1)$. Then

 $\rho_D(\alpha A + (1 - \alpha)B) = \rho_D(A) + \rho_D(B) - \rho_D(A \cup B).$

Theorem

The following are equivalent:

- 1. ρ satisfies Monotonicity, Convex-Modularity, Linearity, and Mixture-Continuity.
- 2. ρ maximizes a finitely additive RLR, ξ .

On additive choice rules

An additive choice rule μ is consistent with ξ + "some tie breaking"

 \iff

 μ is point-wise dominated by ρ , where ρ is the unique RCC that maximizes \mathcal{E}

- > To ensure consistency with an RLR, we only need to find a dominating ρ
- The (point-wise) minimal dominating RCC corresponds to the RLR that minimizes tie breaking.
- This can be done constructively.

$$\Gamma(\xi, D) = \left\{ \int_{\mathbb{R}^n} \tau_u(\cdot) \xi(du) \mid \tau_u \in \Delta \left(\underset{u \in D}{\operatorname{arg max}} \ u(y) \right) \right\}.$$

* the set of all possible choice rules constructed by first choosing a utility u according to ξ , and subsequently choosing among the maximizers in D according to some tie breaking procedure.

Theorem

Let ρ maximize ξ . Then $\rho_D(A) = \sup_{m \in \Gamma(\xi, D)} m(A)$ for all D.

More generally, for any linear, mixture continuous, monotone capacity ρ° and RLR ξ , TFAE

- 1. There exists a set of tie breaking rules $G(D) \subseteq \Gamma(\xi, D)$ such that $\rho_D^{\circ}(A) = \sup_{m \in G(D)} m(A)$.
 - 2. $\rho_D^{\circ}(A) \leq \rho_D(A)$ for all $D \in \mathcal{D}$ and $A \subseteq D$, where ρ is the unique RCC that maximizes ξ .

Constructing ρ from μ

Let μ be an additive, linear, mx-cont, monotone, but **not** necessarily extreme choice rule.

- This is what would be observed.
- May admit ties.
- Always trivially dominated by $\rho \equiv 1$.

Let pi(D, A) =

. .

 $\{x\in \operatorname{conv}(D)\mid x=\alpha a+(1-\alpha)y, a\in A, y\in \operatorname{conv}(D), \alpha\in (0,1]\}$

denote the projective interior of A in D.

- * pi(D, A) is the union of the relative interiors of all faces intersecting A.
 - * If $x \in pi(D, A)$ is chosen, then something in A is maximal.

Let CV(D) denote the set of decision problems with the same convex hull as D. Then set:

$$\rho_D(A) = \sup_{D' \in \mathit{CV}(D)} \mu_{D'}(\mathsf{pi}(D,A)).$$

The resulting capacity is linear, mx-cont, monotone, and convex-sub-modular:

$$\rho_D(\alpha A + (1 - \alpha)B) \le \rho_D(A) + \rho_D(B) - \rho_D(A \cup B)$$

Just need to increase LHS to make an equality.

$$\bullet\mu(\{a\}) = \frac{1}{3}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a\}) = \frac{1}{3}$$

$$\rho(\{b\}) = \frac{1}{3}$$

$$\rho(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a\}) = \frac{1}{3}$$

$$\rho(\{b\}) = \mu(\{b\}) = \frac{1}{3}$$

• $\rho(\{c\}) =$ • $\rho(\{d\}) =$ • $\rho(\{e\}) =$

$$\bullet\mu(\{a\}) = \frac{1}{3}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a\}) = \frac{1}{3}$$

• $\rho(\{b\}) = \mu(\{b\}) = \frac{1}{3}$ • $\rho(\{c\}) = \mu(\{c\}) = \frac{1}{3}$

$$-\mu(\{a\}) = \frac{1}{3}$$

$$-\mu(\{a\}) = \frac{1}{3}$$

$$-\mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a\}) = \frac{1}{3}$$

$$\rho(\{b\}) = \mu(\{b\}) = \frac{1}{3}$$

• $\rho(\{c\}) = \mu(\{c\}) = \frac{1}{3}$ • $\rho(\{d\}) = \mu(\{\emptyset\}) = 0$

$$\rho(\{a\}) = \mu(\{a\}) = \frac{1}{3}$$

$$\rho(\{b\}) = \mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{c\}) = \mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{c\}) = \mu(\{c\}) = \frac{1}{3}$$

• $\rho(\{d\}) = \mu(\{\emptyset\}) = 0$ • $\rho(\{e\}) = \mu(\emptyset) = 0$

$$\bullet\mu(\{a\}) = \frac{1}{6}$$

$$\bullet\mu(\{d\}) = \frac{1}{6}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

$$\rho(\{b\}) = \frac{2}{6}$$

$$\rho(\{c\}) = \frac{2}{6}$$

$$\bullet \mu(\{a\}) = \frac{1}{6} \qquad \bullet \mu(\{d\}) = \frac{1}{6} \qquad \bullet \mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

*
$$\rho(\{a\}) = \mu(\{a, d\}) = \frac{2}{6}$$

* $\rho(\{b\}) = \mu(\{b, d\}) = \frac{3}{6}$
* $\rho(\{c\}) = \frac{3}{6}$

$$\bullet\mu(\{a\}) = \frac{1}{6}$$

$$\bullet\mu(\{d\}) = \frac{1}{6}$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

$$\rho(\{b\}) = \mu(\{b,d\}) = \frac{3}{6}$$

$$\rho(\{c\}) = \mu(\{c\}) = \frac{1}{3}$$

$$- \mathbf{\Phi} \mu(\{b\}) = \frac{1}{3}$$

$$- - - \Rightarrow$$

$$- - \Rightarrow$$

$$-$$

$$\bullet \mu(\{e\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

$$\rho(\{b\}) = \mu(\{b,d\}) = \frac{3}{6}$$

• $\rho(\{d\}) = \mu(\{d\}) = \frac{1}{6}$

$$\rho(\{a\}) = \mu(\{a, d\}) = \frac{2}{6}$$

$$\rho(\{b\}) = \mu(\{b, d\}) = \frac{3}{6}$$

$$\rho(\{c\}) = \mu(\{c\}) = \frac{1}{3}$$

$$\mathbf{D}\mu(\{b\}) = \frac{1}{3}$$

$$\bullet \mu(\{c\}) = \frac{1}{3}$$

$$\rho(\{a\}) = \mu(\{a,d\}) = \frac{2}{6}$$

$$\rho(\{b\}) = \mu(\{b,d\}) = \frac{3}{6}$$

$$\rho(\{a\}) = \mu(\{a, d\}) = \frac{2}{6}$$

$$\rho(\{b\}) = \mu(\{b, d\}) = \frac{3}{6}$$

$$\rho(\{c\}) = \mu(\{c\}) = \frac{1}{3}$$

$$\rho(\{d\}) = \mu(\{d\}) = \frac{1}{6}$$

• $\rho(\{e\}) = \mu(\emptyset) = 0$

$$\bullet\mu(\{a\}) = \frac{1}{6}$$

$$\bullet\mu(\{d\}) = 0$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\bullet\mu(\{c\}) = \frac{1}{3}$$

$$\bullet\mu(\{c\}) = \frac{1}{6}$$

$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

$$\rho(\{b\}) = \frac{3}{6}$$

*
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

* $\rho(\{b\}) =$
* $\rho(\{c\}) =$

*
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

* $\rho(\{b\}) =$
* $\rho(\{c\}) =$
* $\rho(\{d\}) =$

$$| - - \bullet \mu(\{b\}) = \frac{1}{3}$$

$$= \frac{1}{3}$$

$$- - - - \rightarrow$$

$$- - - - \rightarrow$$

$$| - - - - \rightarrow$$

$$| - - - - \rightarrow$$

$$| - - - - - - \rightarrow$$

$$| - - - - - - \rightarrow$$

$$| - - - - - - - \rightarrow$$

$$| - - - - - - - - \rightarrow$$

$$| - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - \rightarrow$$

$$| - - - - - - - - - - - - \rightarrow$$

$$| - - - - -$$

$$\rho(\{a\}) = \mu(\{a,d,e\}) = \frac{3}{6}$$

•
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

• $\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{6}$
• $\rho(\{c\}) =$

•
$$\rho(\{a\})$$

• $\rho(\{b\}) =$
• $\rho(\{c\}) =$
• $\rho(\{d\}) =$

$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

$$\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{3}$$

*
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

* $\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{6}$
* $\rho(\{c\}) = \mu(\{c, e\}) = \frac{3}{6}$

•
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

• $\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{6}$
• $\rho(\{c\}) = \mu(\{c, e\}) = \frac{3}{6}$
• $\rho(\{d\}) =$

$$\bullet\mu(\{a\}) = \frac{1}{6}$$

$$\bullet\mu(\{d\}) = 0$$

$$\bullet\mu(\{b\}) = \frac{1}{3}$$

$$\bullet\mu(\{e\}) = \frac{1}{3}$$

$$\bullet\mu(\{c\}) = \frac{1}{6}$$

•
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

• $\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{6}$

=
$$\mu(\{a, d, e\})$$

= $\mu(\{b, d, e\})$

• $\rho(\{d\}) = \mu(\{d, e\}) = \frac{1}{3}$

•
$$\rho(\{a\}) = \mu(\{a, d, e\}) =$$
• $\rho(\{b\}) = \mu(\{b, d, e\}) =$
• $\rho(\{c\}) = \mu(\{c, e\}) = \frac{3}{6}$

$$(2) = \frac{3}{6}$$

 $(2) = \frac{4}{6}$
 $(3) = \frac{3}{6}$

$$\bullet\mu(\{a\}) = \frac{1}{6} \qquad \bullet\mu(\{b\}) = \frac{1}{3}$$

$$\bullet\mu(\{e\}) = \frac{1}{3}$$

$$\bullet\mu(\{e\}) = \frac{1}{3}$$

•
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{3}{6}$$

• $\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{6}$

 $\rho(\{d\}) = \mu(\{d,e\}) = \frac{1}{3}$ • $\rho(\{e\}) = \mu(\{e\}) = \frac{1}{3}$

•
$$\rho(\{a\}) = \mu(\{a, d, e\}) = \frac{5}{6}$$

• $\rho(\{b\}) = \mu(\{b, d, e\}) = \frac{4}{6}$
• $\rho(\{c\}) = \mu(\{c, e\}) = \frac{3}{6}$