Mean Ergodicity

 X_t is WSS and $\mu_X = \mathbb{E}[X_t]$. X_t is called mean ergodic in an appropriate sense if

$$\lim_{t o \infty} rac{1}{t} \int_0^t X_t dt = \mu_X$$
 in an appropriate sense

or

$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K} X_k dt = \mu_X$$
 in an appropriate sense

Example

 $\{X_k\}$ i.i.d. with $\mathbb{E}[X_k] = \mu$ and $Var(X_k) < C$ for some C > 0. By SLLN X is mean ergodic in the a.s. sense.

Example

 X_1 is uniform over [0,1]. $X_k = X_1$ for any k > 1. Therefore, we have

$$\mathbb{E}[X_k] = \mathbb{E}[X_1] = rac{1}{2} \quad ext{and} \quad R_X(t,t+s) = \mathbb{E}[X_t,X_{t+s}] = \mathbb{E}[X_1^2].$$

Therefore, X_t is WSS. On the other hand,

$$\frac{1}{N}\sum_{k=1}^{N}X_{k}=X_{1}\neq\frac{1}{2}\text{ in any sense.}$$

Therefore X_t is not mean ergodic.

Sufficient conditions for mean ergodicity in the m.s. sense

 X_t is WSS and X_t is mean ergodic in the m.s. sense if one of the following conditions holds

$$\int_0^\infty |C_X(\tau)|d\tau < \infty.$$

$$\int_0^\infty |R_X(\tau)|d\tau < \infty.$$

$$\lim_{\tau\to\infty}R_X(\tau)=0$$

$$\lim_{\tau\to\infty} C_X(\tau)=0$$

Proof

To prove mean ergodicity in the m.s. sense, we need

$$\lim_{T \to \infty} \mathbb{E}\left[\left(\frac{1}{T} \int_0^T X_t dt - \mu_X\right)^2\right] = 0.$$

$$\mathbb{E}\left[\left(\frac{1}{T}\int_{0}^{T}X_{t}dt - \mu_{X}\right)^{2}\right] = \mathbb{E}\left[\frac{1}{T^{2}}\left(\int_{0}^{T}(X_{t} - \mu_{X})dt\right)^{2}\right]$$

$$= \frac{1}{T^{2}}\int_{0}^{T}\int_{0}^{T}C_{X}(t,s)dtds \quad (*)$$

$$= \frac{1}{T^{2}}\int_{0}^{T}\int_{0}^{T}C_{X}(t-s)dtds \quad (WSS)$$

*: Proposition 7.15 in "Random Processes for Engineers" by Bruce Hajek.

$$\begin{split} &\mathbb{E}[(\frac{1}{T} \int_{0}^{T} X_{t} dt - \mu_{X})^{2}] \\ &= \frac{1}{T^{2}} \int_{s=0}^{T} \int_{\tau=-s}^{T-s} C_{X}(\tau) d\tau ds \ (\tau = t - s) \\ &= \frac{1}{T^{2}} \int_{0}^{T} \int_{s=0}^{T-\tau} C_{X}(\tau) ds d\tau + \frac{1}{T^{2}} \int_{\tau=-T}^{0} \int_{s=-\tau}^{T} C_{X}(\tau) ds d\tau \\ &= \frac{2}{T^{2}} \int_{0}^{T} (T - \tau) C_{X}(\tau) d\tau \end{split}$$

 $\lim_{T\to\infty} \frac{2}{T^2} \int_0^T (T-\tau) C_X(\tau) d\tau = 0$ implies mean erdocicity in the m.s. sense.

Condition (1):

$$\left|\frac{2}{T^2}\int_0^T (T-\tau)C_X(\tau)d\tau\right| \leq \left|\frac{2}{T}\int_0^T C_X(\tau)d\tau\right| \leq \frac{2}{T}\int_0^T |C_X(\tau)|d\tau,$$

which converges to zero if

$$\int_0^\infty |C_X(\tau)|d\tau < \infty.$$

Condition (4): For any $\epsilon > 0$, there exists T_{ϵ} such that $|C_X(\tau)| \leq \epsilon$ for $\tau \geq T_{\epsilon}$.

$$\lim_{T\to\infty} \frac{1}{T} \int_0^T \left(1 - \frac{\tau}{T}\right) C_X(\tau) d\tau$$

$$\leq \lim_{T\to\infty} \frac{1}{T} \int_0^{T_{\epsilon}} \left(1 - \frac{\tau}{T}\right) C_X(\tau) d\tau + \frac{1}{T} \int_{T_{\epsilon}}^T \left(1 - \frac{\tau}{T}\right) \epsilon d\tau$$

$$\leq \epsilon.$$

Condition (2) and (3) imply $\mu_X = 0$.

Importance of Ergodicity

Consider a discrete-time random process $(X_n : n \in \mathbb{Z})$, and a function h which is bounded and Borel measurable on \mathbb{R}^k .

Question: When

$$\frac{1}{n}\sum_{j=1}^{n}h(X_{j},X_{j+1},\ldots X_{j+k-1})\approx \mathbb{E}[h(X_{1},\ldots ,X_{k})]?$$

In other words, can we learn the finite-dimensional statistics from data samples?

Definition: Ergodic

A stationary random process $\{X_n : n \in \mathbb{Z}\}$ is defined to be ergodic if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n h(X_j,\ldots,X_{j+k-1})=\mathbb{E}[h(X_1,\ldots,X_k)],\quad\forall k\text{ and }\forall h$$

where limit is taken in any of the three senses (a.s., m.s. or p.).

Importance of Ergodicity

Consider a discrete-time random process $(X_n : n \in \mathbb{Z})$, and a function h which is bounded and Borel measurable on \mathbb{R}^k .

Question: When

$$\frac{1}{n}\sum_{j=1}^{n}h(X_{j},X_{j+1},\ldots X_{j+k-1})\approx \mathbb{E}[h(X_{1},\ldots,X_{k})]?$$

In other words, can we learn the finite-dimensional statistics from data samples?

Answer

If X_n is ergodic, then all of its finite dimensional distributions are determined as time averages.

Example

Consider an ergodic process $\{X_k\}$ and function

$$h(X_{k-1}, X_k) = \begin{cases} 1 \text{ if } X_{k-1} > 0 \ge X_k \\ 0 \text{ otherwise} \end{cases}$$

 $h(\cdot) = 1$ if X_k makes a "down crossing" of level 0. Since X_k is ergodic, we have

$$\lim_{n\to\infty}\frac{\text{number of downcrossings between 1 and n+1}}{n}\\ =& \mathbb{E}[h(X_1,X_2)] = \mathbb{P}(X_1>0\geq X_2)$$

Therefore, we can compute $\mathbb{P}(X_1 > 0 \ge X_2)$ by computing the long time-average down-crossing rate.

Two ergodic random processes

- $\{X_k\}$ i.i.d.
- $\{X_t\}$: Stationary Gaussian random process with $\lim_{\tau \to \infty} C_X(\tau) = 0$.

Linear time invariant (LTI) systems

System process input signals x(t) to produce output signals y(t). The output at time t given by y(t) can be dependent on past/future values of input signal.

A system is linear time invariant if it satisfies the following properties:

If a system is LTI then the output can be written as a convolution of the input signal and the impulse response h(t), which is the output of the system to a $\delta(t)$ input.

Definition: Joint Wide Sense Stationary (J-WSS)

Two process $\{X_t\}$ and $\{Y_t\}$ are said to be Joint-WSS if both the following conditions hold:

- \bullet $\{X_t\}$ and $\{Y_t\}$ are both WSS.
- ② Their cross correlation function $R_{XY}(t_1, t_2) := \mathbb{E}[X(t_1)Y(t_2)]$ depends on t_1 and t_2 only via their difference.

Theorem

Let $\{X_t\}$ be a WSS process which is passed a LTI system with impulse response h. The output process $\{Y_t\}$ and $\{X_t\}$ are J-WSS.

Theorem

Let $\{X_t\}$ be a WSS process which is passed a LTI system with impulse response h. The output process $\{Y_t\}$ and $\{X_t\}$ are J-WSS.

Proof: a) Mean function is constant

$$m_{Y}(t) = \mathbb{E}[Y_{t}] = \mathbb{E}\left[\int_{-\infty}^{\infty} h(t-\tau)X(\tau)d\tau\right]$$

$$= \int_{-\infty}^{\infty} h(t-\tau)\mathbb{E}[X(\tau)]d\tau = \int_{-\infty}^{\infty} h(t-\tau)m_{X}(\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h(t-\tau)\cdot c\,d\tau = c\int_{-\infty}^{\infty} h(\tau)d\tau$$

Thus, $m_Y(t)$ is independent of t.

Theorem

Let $\{X_t\}$ be a WSS process which is passed a LTI system with impulse response h. The output process $\{Y_t\}$ and $\{X_t\}$ are J-WSS.

Proof: b) Cross correlation function $R_{XY}(t_1, t_2)$ depends only on $t_1 - t_2$

Before looking at the auto-correlation function R_Y , let's calculate the cross-correlation function $R_{XY}(t_1,t_2):=\mathbb{E}[X_{t_1}Y_{t_2}]$

$$egin{aligned} R_{XY}(t_1,t_2) &= \mathbb{E}\left[X(t_1)\int_{-\infty}^{\infty}h(\tau)X(t_2- au)d au
ight] = \int_{-\infty}^{\infty}h(\tau)\mathbb{E}[X(t_1)X(t_2- au)]d au \ &= \int_{-\infty}^{\infty}h(\tau)R_X(t_1-t_2+ au)d au = (ar{h}*R_X)(t_1-t_2) =: R_{XY}(t_1-t_2) \end{aligned}$$

where $\bar{h}(x) = h(-x)$.

The cross correlation function depends on t_1 and t_2 only via their difference $t_1 - t_2$.

Theorem

Let $\{X_t\}$ be a WSS process which is passed a LTI system with impulse response h. The output process $\{Y_t\}$ and $\{X_t\}$ are J-WSS.

Proof: c) Correlation function $R_Y(t_1, t_2)$ depends only on $t_1 - t_2$

$$R_{Y}(t_{1}, t_{2}) = \mathbb{E}[Y_{t_{1}}Y_{t_{2}}] = \mathbb{E}\left[\left(\int_{-\infty}^{\infty} h(\tau)X(t_{1} - \tau)d\tau\right)Y(t_{2})\right]$$

$$= \int_{-\infty}^{\infty} h(\tau)\mathbb{E}[X(t_{1} - \tau)Y(t_{2})]d\tau = \int_{-\infty}^{\infty} h(\tau)R_{XY}(t_{1} - \tau, t_{2})d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)R_{XY}(t_{1} - t_{2} - \tau)d\tau = (h * R_{XY})(t_{1} - t_{2}) =: R_{Y}(t_{1} - t_{2})$$

Like the cross correlation function, the auto-correlation function too depends on t_1 and t_2 only via their difference $t_1 - t_2$. Thus, $\{Y_t\}$ and $\{X_t\}$ are J-WSS.

990