Вихревые течения идеальной жидкости

Верещагин Антон Сергеевич канд. физ.-мат. наук, старший преподаватель

Кафедра аэрофизики и газовой динамики ФФ НГУ

16 ноября 2018 г.

Аннотация

Потенциальные и вихревые течения идеальной жидкости

Определение

Течение идеальной жидкости называется вихревым, если вектор $\vec{\Omega}={\rm rot}\,\vec{v}$ в некоторых точках исследуемой области отличен от нулевого.

Потенциальные и вихревые течения идеальной жидкости

Определение

Течение идеальной жидкости называется вихревым, если вектор $\vec{\Omega}={\rm rot}\,\vec{v}$ в некоторых точках исследуемой области отличен от нулевого.

Выражение для компонент вектора вихря

$$\Omega_x = \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}, \quad \Omega_y = \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}, \quad \Omega_z = \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}.$$

Потенциальные и вихревые течения идеальной жидкости

Определение

Течение идеальной жидкости называется вихревым, если вектор $\vec{\Omega}={\rm rot}\,\vec{v}$ в некоторых точках исследуемой области отличен от нулевого.

Выражение для компонент вектора вихря

$$\Omega_x = \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}, \quad \Omega_y = \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}, \quad \Omega_z = \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}.$$

Если же в исследуемой области везде $\vec{\Omega}=0$, тогда течение в этой области называется потенциальным, и существует потенциал φ такой, что

$$\vec{v} = \nabla \varphi.$$

Справедливо и обратное утверждение.

Пример вихревого течения

Движение жидкости слоями

$$v_x = ay, \quad v_y = 0, \quad v_z = 0.$$

Вихрь скорости

$$\Omega_x = 0, \quad \Omega_y = 0, \quad \Omega_z = -a.$$

Описание

По теореме Кельвина-Гельмгольца о скорости деформируемой частицы квадрат I переходит в параллелограмм II посредством сдвига вдоль оси x, поворота как твердого тела по указанной стрелке и чистой деформации в виде сжатия вдоль линии α и растяжения вдоль линии β .

Вихревые линии и вихревые трубки

Определение

Вихревой линиией называется такая линия, во всякой точке которой вихрь скорости $\vec{\Omega}$ направлен по касательной к этой линии.

Уравнения вихревой линии

$$\frac{dx}{\Omega_x} = \frac{dy}{\Omega_y} = \frac{dz}{\Omega_z}.$$

Вихревая трубка

Определение

Вихревой трубкой называется совокупность точек пространства, ограниченных вихревыми линиями, проведёнными через заданный замкнуты контур.

Циркуляция скорости и теорема Стокса

Определение

Циркуляцией скорости Γ по замкнутому контуру называется линейный интеграл

$$\Gamma = \oint_C \vec{v} \cdot d\vec{l} = \oint_C v_x dx + v_y dy + v_z dz.$$

Теорема Стокса

Циркуляция вектора по замкнутому контуру равна потоку ротора этого вектора через площадку, ограниченную этим контуром:

$$\oint_C \vec{v} \cdot d\vec{l} = \int_S (\vec{n} \cdot \operatorname{rot} \vec{v}) dS,$$

где вектор \vec{n} — вектор единичной нормали к S, направленный по правилу буравчика.

Интенсивность вихревой трубки

Определение Интенсивностью вихревой трубки называется поток вектора вихря Ω через сечение вихревой трубки

$$I = \int\limits_{S} \vec{\Omega} \cdot \vec{n} dS.$$

Теорема о постоянстве циркуляции для вихревой трубки

Теорема

Циркуляция скорости по любому замкнутому контуру, охватывающему данную вихревую трубку постоянна.

Теорема о постоянстве циркуляции для вихревой трубки

Теорема

Циркуляция скорости по любому замкнутому контуру, охватывающему данную вихревую трубку постоянна.

Рассмотрим вихревую трубку V, ограниченную с торцов сечениями S_1 , S_2 и боковой поверхностью ΔS . Сечения S_1 , S_2 пересекаются с ΔS по контурам C_1 и C_2 .

Теорема о постоянстве циркуляции для вихревой трубки

Теорема

Циркуляция скорости по любому замкнутому контуру, охватывающему данную вихревую трубку постоянна.

Рассмотрим вихревую трубку V, ограниченную с торцов сечениями S_1 , S_2 и боковой поверхностью ΔS . Сечения S_1 , S_2 пересекаются с ΔS по контурам C_1 и C_2 .

$$0 = \int_{V} \operatorname{div} \operatorname{rot} \vec{v} \, dV = \int_{V} \operatorname{div} \vec{\Omega} \, dV = \int_{S} \vec{\Omega} \cdot \vec{n} \, dS$$

Теорема о постоянстве циркуляции для вихревой трубки: доказательство

$$\int_{S} \vec{\Omega} \cdot \vec{n} dS = \int_{S_{1}} \vec{\Omega} \cdot \vec{n}_{1} dS + \int_{S_{2}} \vec{\Omega} \cdot \vec{n}_{2} dS + \int_{\Delta S} \vec{\Omega} \cdot \Delta \vec{n} dS.$$

Т.к. на боковой поверхности вихревой трубки ΔS вектора $\vec{\Omega}$ и $\Delta \vec{n}$ ортогональны, то последний интеграл равен 0.

Теорема о постоянстве циркуляции для вихревой трубки: доказательство

Таким образом, используя теорему Стокса, имеем

$$0 = \int_{S_1} \vec{\Omega} \cdot \vec{n}_1 dS + \int_{S_2} \vec{\Omega} \cdot \vec{n}_2 dS = \oint_{C_1} \vec{\Omega} \cdot d\vec{l} - \oint_{C_2} \vec{\Omega} \cdot d\vec{l}.$$

В последнем равенстве появился знак минус, потому что нормали \vec{n}_1 и \vec{n}_2 направлены в разные стороны. Так как контуры C_1 и C_2 выбраны произвольно, то справедливо утверждение теоремы.

Теорема о постоянстве циркуляции для вихревой трубки: доказательство

Таким образом, используя теорему Стокса, имеем

$$0 = \int_{S_1} \vec{\Omega} \cdot \vec{n}_1 dS + \int_{S_2} \vec{\Omega} \cdot \vec{n}_2 dS = \oint_{C_1} \vec{\Omega} \cdot d\vec{l} - \oint_{C_2} \vec{\Omega} \cdot d\vec{l}.$$

Дополнительно показано, что интенсивность вихревой трубки одна и та же в любом сечении.

Теорема о производной циркуляции скорости

Теорема

Производная по времени от циркуляции скорости \vec{v} по некоторому замкнутому контуру равна циркуляции от ускорения $d\vec{v}/dt$ по тому же контуру

$$\frac{d}{dt} \oint_{L} \vec{v} \cdot d\vec{s} = \oint_{L} \frac{d\vec{v}}{dt} \cdot d\vec{s}.$$

Рассмотрим в момент времени t_0 какую-нибудь линию A_0B_0 , проведённую в жидкости, состоящую из жидких частиц, которая в момент времени t перейдёт в другую линию AB. Рассмотрим линейный интеграл от скорости по этой кривой

$$J = \int_{AB} \vec{v} \cdot d\vec{s}$$

В момент времени $t'=t+\Delta t$ линия AB перейдёт в A'B' и можно определить J'

$$J' = \int\limits_{A'B'} \vec{v}' \cdot d\vec{s}$$

В момент времени $t'=t+\Delta t$ линия AB перейдёт в A'B' и можно определить J'

$$J' = \int_{A'B'} \vec{v}' \cdot d\vec{s}$$

Определим производную по времени от линейного интеграла $\frac{dJ}{dt}$ как

$$\frac{dJ}{dt} = \lim_{\Delta \to 0} \frac{J' - J}{\Delta t}.$$

Параметризуем отрезок A_0B_0 параметром σ равным расстоянию от выбранной точки M_0 вдоль дуги A_0M_0 . Тогда точку M отрезка AB в момент времени t можно однозначно определить с помощью следующих соотношений:

$$x = x(\sigma, t), \quad y = y(\sigma, t), \quad z = z(\sigma, t)$$

или

$$\vec{r} = \vec{r}(\sigma, t) \quad (0 \le \sigma \le \sigma_0, t \ge t_0),$$

при этом

$$\vec{r}(0,t) = A, \quad \vec{r}(\sigma,t) = M, \quad \vec{r}(\sigma_0,t) = B.$$

Скорости жидких частиц отрезка AB также можно параметризовать через σ и t:

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}(\sigma, t).$$

Скорости жидких частиц отрезка AB также можно параметризовать через σ и t:

$$\vec{v} = \vec{v}(\sigma, t)$$
.

Линейный интеграл J, используя σ и t можно переписать форме

$$J = \int_{0}^{\sigma_0} \left(v_x \frac{\partial x}{\partial \sigma} + v_y \frac{\partial y}{\partial \sigma} + v_z \frac{\partial z}{\partial \sigma} \right) d\sigma = \int_{0}^{\sigma_0} \left(\vec{v} \cdot \frac{\partial \vec{r}}{\partial \sigma} \right) d\sigma,$$

где предел интегрирования не зависит от переменной t.

Рассмотрим производную от J по t:

$$\frac{dJ}{dt} = \int_{0}^{\sigma_{0}} \left(\frac{\partial v}{\partial t} \cdot \frac{\partial \vec{r}}{\partial \sigma} \right) d\sigma + \int_{0}^{\sigma_{0}} \left(\vec{v} \cdot \frac{\partial^{2} \vec{r}}{\partial \sigma \partial t} \right) d\sigma =$$

$$= \int_{0}^{\sigma_{0}} \left(\vec{a} \cdot \frac{\partial \vec{r}}{\partial \sigma} \right) d\sigma + \int_{0}^{\sigma_{0}} \left(\vec{v} \cdot \frac{\partial \vec{v}}{\partial \sigma} \right) d\sigma.$$

Здесь

$$\frac{\partial}{\partial t}\vec{r}(\sigma,t) = \vec{v}(\sigma,t), \quad \frac{\partial^2}{\partial \sigma \partial t}\vec{r}(\sigma,t) = \frac{\partial}{\partial \sigma}\vec{v}(\sigma,t), \quad \frac{\partial}{\partial t}\vec{v}(\sigma,t) = \vec{a}(\sigma,t),$$

где \vec{a} – ускорение жидкой частицы.

Рассмотрим отдельно каждое слагаемое.

$$\int\limits_{0}^{\sigma_{0}}\left(\vec{a}\cdot\frac{\partial\vec{r}}{\partial\sigma}\right)d\sigma=\int\limits_{AB}\vec{a}\cdot d\vec{s}=\int\limits_{AB}\frac{d\vec{v}}{dt}\cdot d\vec{s},$$

в последнем равенстве d/dt – полная производная.

Рассмотрим отдельно каждое слагаемое.

$$\int_{0}^{\sigma_{0}} \left(\vec{a} \cdot \frac{\partial \vec{r}}{\partial \sigma} \right) d\sigma = \int_{AB} \vec{a} \cdot d\vec{s} = \int_{AB} \frac{d\vec{v}}{dt} \cdot d\vec{s},$$

в последнем равенстве d/dt – полная производная.

$$\int\limits_{0}^{\sigma_{0}}\left(\vec{v}\cdot\frac{\partial\vec{v}}{\partial\sigma}\right)d\sigma=\frac{1}{2}\int\limits_{0}^{\sigma_{0}}\frac{\partial}{\partial\sigma}\left(\vec{v}\cdot\vec{v}\right)d\sigma=\frac{v_{B}^{2}}{2}-\frac{v_{A}^{2}}{2},$$

где $\vec{v}_B = \vec{v}(\sigma_0,t), \, \vec{v}_A = \vec{v}(0,t)$ – скорости жидких частиц в точках B,A.

Теорема о производной циркуляции скорости: итог

Подводя итог вышесказанного

$$\frac{dJ}{dt} = \int_{AB} \frac{d\vec{v}}{dt} \cdot d\vec{s} + \frac{v_B^2}{2} - \frac{v_A^2}{2}.$$

Теорема о производной циркуляции скорости: итог

Подводя итог вышесказанного

$$\frac{dJ}{dt} = \int\limits_{AB} \frac{d\vec{v}}{dt} \cdot d\vec{s} + \frac{v_B^2}{2} - \frac{v_A^2}{2}.$$

Результат

Если в качестве линии AB рассматривать замкнутый контур L, тогда точки A и B совпадают и

$$\frac{d}{dt} \oint\limits_L \vec{v} \cdot d\vec{s} = \oint\limits_L \frac{d\vec{v}}{dt} \cdot d\vec{s}.$$

Теорема Томсона

Теорема

Если массовые силы допускают потенциал, а идеальная жидкость баротропна, то циркуляция скорости по любому замкнутому контуру во все время движения жидкости остаётся неизменной.

Теорема Томсона: доказательство

Уравнение движения

Для баротропного течения идеальной жидкости с потенциальными массовыми силами уравнение движения допускает следующее упрощение (см. предыдущую лекцию)

$$\frac{d\vec{v}}{dt} = -\operatorname{grad}\left(\mathscr{P}(p) + \Pi\right).$$

Здесь

$$\mathscr{P}(p) = \int\limits_{p_0}^{p} \frac{dp}{\rho}, \quad \vec{f} = -\nabla \Pi,$$

где $\mathscr{P}(p)$ – функция давления; \vec{f} , Π – вектор и потенциал объёмных сил.

Теорема Томсона: доказательство

Рассмотрим производную циркуляции вектора скорости по замкнутому контуру L. По теореме о циркуляции и закона движения имеем

$$\frac{d}{dt} \oint\limits_{L} \vec{v} \cdot d\vec{s} = \oint\limits_{L} \frac{d\vec{v}}{dt} \cdot d\vec{s} = - \oint\limits_{L} \operatorname{grad} \left(\mathscr{P}(p) + \Pi \right) ds = 0.$$

Теорема Томсона: доказательство

Рассмотрим производную циркуляции вектора скорости по замкнутому контуру L. По теореме о циркуляции и закона движения имеем

$$\frac{d}{dt} \oint\limits_{L} \vec{v} \cdot d\vec{s} = \oint\limits_{L} \frac{d\vec{v}}{dt} \cdot d\vec{s} = -\oint\limits_{L} \operatorname{grad} \left(\mathscr{P}(p) + \Pi \right) ds = 0.$$

Результат Таким образом,

$$\oint\limits_{I} \vec{v} \cdot d\vec{s} = const.$$

Теорема Лагранжа

Теорема

Если при баротропном течении идеальной жидкости в потенциальном внешнем поле в начальный момент времени какие-то жидкие частицы не имели завихрённости, то её в них не было раньше и не будет позже.

Теорема Лагранжа

Теорема

Если при баротропном течении идеальной жидкости в потенциальном внешнем поле в начальный момент времени какие-то жидкие частицы не имели завихрённости, то её в них не было раньше и не будет позже.

Теорема (альтернативная формулировка)

Если баротропное течении идеальной жидкости в потенциальном внешнем поле в начальный момент времени было потенциально в какой-то момент времени, то оно останется потенциальным в любой другой и далее.

Теорема Лагранжа: доказательство

Пусть в некоторый момент времени в каком-то объёме жидкости $\vec{\Omega}=0$, тогда по теореме Стокса циркуляция по любому замкнутому контуру в этой области равна 0. По теореме Томсона циркуляция для такой жидкости не меняется от времени, а значит, для рассматриваемых жидких частиц циркуляция в любой другой момент времени тоже равна 0.

Теорема Лагранжа: доказательство

Пусть в некоторый момент времени в каком-то объёме жидкости $\vec{\Omega}=0$, тогда по теореме Стокса циркуляция по любому замкнутому контуру в этой области равна 0. По теореме Томсона циркуляция для такой жидкости не меняется от времени, а значит, для рассматриваемых жидких частиц циркуляция в любой другой момент времени тоже равна 0.

В окрестности выбранной жидкой частицы рассмотрим всевозможные маленькие площадки S с нормалью \vec{n} и контуром L, тогда по теореме Стокса

$$\int\limits_{S}\vec{\Omega}\cdot\vec{n}dS=\oint\limits_{L}\vec{v}\cdot d\vec{s}=0,$$

а следовательно и

$$\vec{\Omega} = 0$$
.

Первая теорема Гельмгольца

Теорема (о сохранении вихревых линий) В баротропном течении идеальной жидкости в потенциальном внешнем поле частицы жидкости, образующие в некоторый момент вихревую линию, во всё время движения будут образовывать вихревую линию.

Рассмотрим вихревую поверхность — поверхность, образованная вихревыми линиями, проведёнными через некоторую линию в пространстве, которая сама не является вихревой линией. В каждой точке поверхности вектор $\vec{\Omega}$ будет ортогонален вектору нормали \vec{n} к этой поверхности. Покажем, что частицы, составляющие вихревую поверхность в какой-то момент времени будет ей является и далее.

Рассмотрим вихревую поверхность — поверхность, образованная вихревыми линиями, проведёнными через некоторую линию в пространстве, которая сама не является вихревой линией. В каждой точке поверхности вектор $\vec{\Omega}$ будет ортогонален вектору нормали \vec{n} к этой поверхности. Покажем, что частицы, составляющие вихревую поверхность в какой-то момент времени будет ей является и далее.

Рассмотрим на поверхности контур L, образующий на поверхности площадку S, и посчитаем циркуляцию вектора скорости по этому контуру

$$\oint\limits_{L} \vec{v} \cdot d\vec{s} = \int\limits_{S} \vec{\Omega} \cdot \vec{n} dS = 0.$$

Последнее равенство выполнено в силу того, что $\vec{\Omega} \perp \vec{n}$.

В последующие моменты времени поверхность перейдёт в другую поверхность, а контур L в контур L', ограничивающий площадку S'. По теореме Томсона циркуляция по контуру L' равна циркуляции по контуру L и равна 0, следовательно, используя теорему Стокса

$$0 = \oint_{L'} \vec{v'} \cdot d\vec{s} = \int_{S'} \vec{\Omega'} \cdot \vec{n'} dS,$$

где \vec{v}' , $\vec{\Omega}'$ – вектора скорости и вихря в последующий рассматриваемый момент времени; \vec{n}' – нормаль к поверхности, образованной теми же самыми жидкими частицами.

В последующие моменты времени поверхность перейдёт в другую поверхность, а контур L в контур L', ограничивающий площадку S'. По теореме Томсона циркуляция по контуру L' равна циркуляции по контуру L и равна 0, следовательно, используя теорему Стокса

$$0 = \oint_{L'} \vec{v'} \cdot d\vec{s} = \int_{S'} \vec{\Omega'} \cdot \vec{n'} dS,$$

где \vec{v}' , $\vec{\Omega}'$ – вектора скорости и вихря в последующий рассматриваемый момент времени; \vec{n}' – нормаль к поверхности, образованной теми же самыми жидкими частицами.

Т.к. в последнем равенстве S' можно взять сколь угодно маленькую, то $\vec{\Omega}' \perp \vec{n}'$. Таким образом, поверхность, образованная теми же самыми жидкими частицами, тоже будет вихревой поверхностью.

Рассмотрим вихревую линию l, являющуюся пересечением двух вихревых поверхностей S и Σ в какой-то момент времени. В следующий рассматриваемый момент времени она перейдёт в линию l', являющуюся пересечением вихревых поверхностей S' и Σ' , в которые перейдут вихревые поверхности S и Σ .

Рассмотрим вихревую линию l, являющуюся пересечением двух вихревых поверхностей S и Σ в какой-то момент времени. В следующий рассматриваемый момент времени она перейдёт в линию l', являющуюся пересечением вихревых поверхностей S' и Σ' , в которые перейдут вихревые поверхности S и Σ .

В каждой точке кривой l' вихрь $\vec{\Omega}'$ лежит в касательной плоскости S' и Σ' , а значит и является касательным вектором для кривой l'.

Рассмотрим вихревую линию l, являющуюся пересечением двух вихревых поверхностей S и Σ в какой-то момент времени. В следующий рассматриваемый момент времени она перейдёт в линию l', являющуюся пересечением вихревых поверхностей S' и Σ' , в которые перейдут вихревые поверхности S и Σ .

В каждой точке кривой l' вихрь $\vec{\Omega}'$ лежит в касательной плоскости S' и Σ' , а значит и является касательным вектором для кривой l'.

Результат

В рассматриваемом случае каждая вихревая линия перемещается в пространстве вместе с жидкими частицами, её образующими. Это свойство называется сохраняемостью вихревых линий.

Первая теорема Гельмгольца: следствие

Теорема

В баротропном течении идеальной жидкости в потенциальном внешнем поле частицы жидкости, образующие в некоторый момент вихревую трубку, во всё время движения будут образовывать вихревую трубку.

Вторая теорема Гельмгольца

Теорема

В баротропном течении идеальной жидкости в потенциальном внешнем поле интенсивность выделенной вихревой трубки будет сохраняться во время её движения.

Вторая теорема Гельмгольца

Теорема

В баротропном течении идеальной жидкости в потенциальном внешнем поле интенсивность выделенной вихревой трубки будет сохраняться во время её движения.

Доказательство

Интенсивность вихревой трубки определяется циркуляцией по любому замкнутому контуру этой трубки

$$\Gamma = \oint\limits_L \vec{v} \cdot d\vec{s},$$

которая по теореме о сохранении циркуляции будет равна циркуляции по контуру трубки тока, образованной из тех же жидких частиц в последующие моменты времени. Т.е. интенсивность её будет такой же.

Литература

• Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. М.:Гос. издат. физ.-мат. лит., 1963.