}		~ x	1 >	1	,
-	THE THE PERMITTER AND ADDRESS OF THE PERMITTE	Sell -	1 1	a un	
	The state of the s		The state of the state of		,

		Solutions	Marks	Remarks
1.		$\frac{\pi}{6} \text{ (radian) } \left(\sqrt{\alpha} \right) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	1A	
	(p)	$\frac{\pi}{6}$ (radian) $\sqrt{3}$ 0 167 π 1 - 1 π 2 π 2 π 2 π 2 150° ($\frac{5\pi}{6}$, 2.62)	1 A	
	(c)	cos A	<u>1A</u>	
2.	(a)	p+q	1A	
	(b)	-2	1A	
	(c)	·√3 - √2 (5) A + (L)	1A3	
. 3.	(a)	$y \geq \frac{1}{2}$	1A)	Withhold 1 mk if
		$2x - y \ge 2$	1A /	'=' omitted
_		$3x + 5y \le 30$	1A J	
	(b)	16	1A 4	
4.	(a)	(i) $x^2 - 2x = x(x - 2)$	1A	72.2727 (p) 1
		(ii) $x^2 - 6x + 8 = (x - 2)(x - 4)$	1 A	V(V-2) 23 V
	(b)	$\frac{1}{x^2-2x}+\frac{1}{x^2-6x+8}=\frac{1}{x(x-2)}+\frac{1}{(x-2)(x-4)}$		
		$= \frac{(x-4)+x}{x(x-2)(x-4)}$	1M ᅾ	Bury to co
		$= \frac{(x-4)+x}{x(x-2)(x-4)}$ $= \frac{2x-4}{x(x-2)(x-4)}$ $= \frac{2x-4}{x(x-2)(x-4)}$ $= \frac{2x-4}{x(x-2)(x-4)}$	1A	
		$= \frac{2}{x(x-4)} \qquad \left(=\frac{2}{x^2-4x}\right)$	1 A	
			5	
5.	(a)	Slope of $L_2 = \frac{1}{2}$	1 A	
		Slope of $L_1 = -2$	d :	
		Equation of $L_1: y-5 = -2(x-10)$	1M	Pt-slope form
		i.e. $2x + y - 25 = 0$ (or $y = -2x + y$)	1 A	
	(b)	Solving $\begin{cases} x - 2y + 5 = 0 \\ 4x + 2y - 50 = 0 \end{cases}$		
		5x - 45 = 0	1M	Eliminating 1 unknown
		x = 9 (or y = 7)	1 A	
		L_1 and L_2 meet at (9, 7)	_1A 6	Accept $x = 9$, $y = 7$
		· · · · · · · · · · · · · · · · · · ·		•

RESTRICTED MANX	y Line	
Solutions	Marks	Remarks
For distinct real roots $\Delta = (2k)^2 - 4(k+6) > 0$	2M+1A	1A for $(2k)^2 - 4(k+6)$ 2M for $\Delta > 0$
(k+2)(k-3) > 0		$(\Delta \ge 0, 1M \text{ only})$ For $(k+2)(k-3)$
∴ k < -2 or k > 3	2A	For ',','=' withhold 1 mk
र्वस्त्र गर्दे	6) <u>-6</u>	each finand to
. (a) $\angle AOB = \frac{360^{\circ}}{5} = 72^{\circ} \left(= \frac{2\pi}{5} \approx 1.26 \text{ radians} \right)$	1A	
Area of $\triangle OAB = \frac{1}{2} (10) (10) \sin 72^{\circ}$	1M	
= 47.6 (47.5528)	1A	Any figure roundable to 47.6
(b) Area of sector $OAB = \frac{1}{5} \cdot \pi 10^2$	1A	
= 20π (62.83)		
Area of shaded part = $20\pi - 47.55$	1M 1A	Accept 15.2 ~ 15.3
2. 行业4分	6	
(a) Total score of the team = $70(m + n)$ (b) Total score is also equal to $75m + 62n$.	1A 1A	
(b) Total score is also equal to $75m + 62n$. 75m + 62n = 70(m + n)	1M	
5m = 8n		
$m: n=8: 5\left(-\frac{g}{+}\right)$	1A	
(c) The number of men = $39 \times \frac{8}{8+5}$	1M	
= 24	1 <u>A</u> 6	
8n=11.75		
B Sul Tool E		

47. Page	(20. 48	No.	ec. pro	54	Ř,	deg.	* (j##	$\oplus_{i=1}^{p^{m_{i}}(i)}.$	1,7114.	4. Fa	, type i	الوداع	ings.	ŝ	· AN
1 222	2.00	7.2	**	1	-3	i.a	-17	10.12	3						100
3. A.	C none	Sec. Sec.	2,	7 4	- 54	1.50	- 12	-4	Page 1			, 40.77			di.

•	A Com took	B B W Comment of the		Maria di	
· • ·	Solutions			Marks	Remarks
9. (a)	(i) Area of $OAPB = a \times A$	b		1A	
		$a^2 - 4a + 3$		1A	
	= 2a ³	- 4a² + 3a			
	(ii) For OAPB to be a sq	quare, $a = b \gamma$	ck=015	1M	Equating adjacent sides
	$a = 2a^2 - 4a + 3$				
	$2a^2 - 5a + 3 = 0$	at :	2 4 m = 1 3 %	1 A	
	$2a^2 - 5a + 3 = 0$ (2a - 3)(a - 1) = 0	生大的多人	t -40 . c3		
	$\therefore a = \frac{3}{2} \text{ or } 1$	ŕ	,	<u>1A+1A</u> 6	室到69月三战。
(p)	(i) If the area of OAPB	$=\frac{3}{2}$,			
	$2a^3 - 4a^2 + 3a = \frac{3}{2}$		7		
	$\therefore 4a^3 - 8a^2 + 6a$	- 3 = 0	(*)	1 A	
· 1	(ii) Let $f(a) = 4a^3 - 8a^2$	+ 6a - 3	· -		f(1.2) ·f(1.5) < 0 1.5).
144.	(ii) Let $f(a) = 4a^3 - 8a^2$ $f(1.2) < 0 = -0.40$ (*) has a roo	8) and f(1.3) >	0 (= 0.068)	1.11.13-	Correct signs only
1.5	∴ (*) has a roo	t lying betweer	1.2 and 1.3) ************************************	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
女 京芸 イマン \	Interval	Mid-value a _i	f (a _i)		
5335	1.2 < a < 1.3	1.25 _K	- (-0.1875)	1M+1	A 1M for testing sign at mid-value * &
13.2×3	1.25 < a < 1.3	1.275	- (-0.0643)	1M	Choosing correct interval
	1.275 < a < 1.3	1.2875(1,288) etc			
_	1.275 < a < 1.2875	1.28125	- (-0.0321)		
	1.28125 < a < 1.2875 1.284375 < a < 1.2875	1.284375	- (-0.01578		
		1.2859375	- (-0.00757		
	1.28593 7 5 < a < 1.2875				
	$\therefore a = 1.29 \text{ (corr. to}$	2 d.p.)		_1A	Check last interval, a ≈
	Í	1		6	1.2874
		/			
		$y = 2x^2 - 4x + 3$			
		$y = 2x^2 - 4x + 3$			
	P(a,b)				
	B(0,b) ——				
		x			
92-CE-Mat	hs. $O A(a,0)$,			P.4
	2350, \$500 perc	المحاجبات المستخم			

CA 29

, • .		RESIRICIEU M部分		
		Solutions	Marks	Remarks
10. (a)	The p	robabilities that a car leaving P will		
	(i)	pass through $B = 1 - \frac{2}{5} = \frac{3}{5}$ (= 0.6) (P_1)	1A	
	(ii)	not arrive at $T = 1 - \frac{4}{7} = \frac{3}{7}$ (= 0.429)	1 A	$\frac{1}{7} + \frac{2}{7}$
	(iii)	arrive at R through Tunnel B = $\frac{3}{5} \times \frac{1}{7}$	1M	$P_1 \times \frac{1}{7}$
		$= \frac{3}{35} (= 0.0857)$	1A	· 5 () ()
	(iv)	pass through Tunnel A but not arrive at R		
		$= \frac{2}{5} \times \left(1 - \frac{1}{7}\right)$	1 A	$\frac{2}{5} \times \frac{2}{7} + \frac{2}{5} \times \frac{4}{7}$
_		$= \frac{12}{35} (= 0.343)$	<u>1A</u> 6	
(b)	(i)	The probability that the first one will		
		arrive at R and the second one at S		
		$S = \frac{1}{7} \times \frac{2}{7} = \frac{2}{49} (= 0.0408) (P_2)$	1A 7	Award 1A if $\frac{2}{49}$
		The probability that one of them will	1 (given as answer
		arrive at R and the other one at S	}	
		$S = 2 \times \frac{1}{7} \times \frac{2}{7}$	1м	P ₂ x 2
		$= \frac{4}{49} \ (= 0.0816)$	1A)	₹ 2 ³ 7
	(ii)	The probability that both cars will arrive at		
		\boldsymbol{s} with the first one through Tunnel \boldsymbol{A} and the		
_	•	second one through Tunnel B		
		$= \frac{2}{5} \times \frac{2}{7} \times \frac{3}{5} \times \frac{2}{7} = \frac{24}{1225} (0.0196) (P_3)$	1A }	Award 1A if $\frac{24}{1225}$ given as answer
		The required probability = $2 \times \frac{24}{1225}$	1M	P ₃ x 2
		$= \frac{48}{1225} (0.0392)$	1A)	
		2 7 R	6	
	/	Tunnel A S	•	
I	·	Tunnel B &		

RESTRICTED 内部文件

	<u> </u>	TRICILD 内部3	L1 -1-	
	Solutions		Marks	Remarks
ll. (a)	Proof :			
• •) (Corr. /s, AD//FE .)	1 A	Accept a_1 , etc.
		(But / susling sund)	1 A	任-孝舜 松之意.格
	But $\angle a_1 = \angle e_3$	(Ext. ∠ , cyclic quad.)	IA	The transfer of the second
	∴ ∠f ₁ = ∠e ₃			
	$\therefore EY = \boxed{FY}$	(Sides opp. equal ∠s)	1A	
	i.e. ΔEFY is isosceles			
(þ)	Proof:			
	$\widehat{BCD} = \widehat{AFE}$	(Given)		
	$\therefore \angle a_2 = \boxed{ \angle d }$	(Equal arcs subtend equal		
	∴ BA // DE	∠sat circumference) (Alt. ∠sequal)	1 <u>A</u> 1	
(c)	Proof :			
	$\angle a_1 = \boxed{\angle f_1}$	(Corr ∠s, AD//FE)	1A	
	But $\angle f_i = \angle b$	(Ext. Z , cyclic quad.)	1A	
	and $\angle b = \angle e_1$	(Alt. $\angle s$, $BA//DE$)		
	$\therefore \angle a_1 = \boxed{\angle e_1}$		1A	
	\therefore A, X, E, Y are c	concyclic.		
		(Ext. ∠ equals int.opp. ∠	3	
(d)	Solution:		連	大 Note that
	$ 2f_1 = 47^{\circ} $		1A 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\angle y = 86^{\circ}$	A	1M+1A	or $y = 180^{\circ} - x_{<}$
	/x = 94°		1M+1A	$x = 180^{\circ} - y$ or $x = b + a_2$
	BOATO	F	5	or $x = e_1 + d$
		Fig. 18		选举信 4-1
	c			

RESTRICTED 內部文件

		RESTRICTED 内部2	4	
		Solutions	Marks	Remarks
12. (a	L) (i	i) Capacity of funnel = $\frac{1}{3}\pi (9)^2 \times 20$	1A	
		$= 540\pi \text{ cm}^3$	1A	
,	(i	ii) Vol. of water : total vol. of oil and water :	cap of f	unnel
		$= 10^3 : 15^3 : 20^3$	1A+1A	1A for 10:15:20
		$= 2^3 : 3^3 : 4^3 (= 8:27:64)$	1A (A 16 14 26
		. vol. of water : vol. of oil : capacity of f	unnel	or the first
		= 8:19:64	1A 6	·
(t) L	et the depth of water be h cm.		
	C	apacity of bottom part = $\frac{2}{3}\pi \cdot 3^3$	1A	
		$= 18\pi \text{ (cm}^3\text{)}$		
_	67.57	$\frac{6}{40\pi \times \frac{8}{64}} = \pi \times 3^2 (h-3) + 18\pi$	1M	Equating vol. of water in two forms
	•	$depth = 8\frac{1}{2} cm$	_1A 3	
(0	c) V	ol. of water : vol. of oil = 8:19		
		depth of water : depth of oil = $2:\sqrt[3]{19}$	2M	
		depth of oil = $10 \times \frac{\sqrt[3]{19}}{2} = 5\sqrt[3]{19}$ cm (13.3 cm)	_ <u>1A</u>	
		9 cm 5 cm 15 cm 15 cm 15 cm Figure 6a Figure 6b		
•				
			1	

	RESTRICTED 内部3	7件	
	Solutions	Marks	Remarks
Alte	ernatively: $\frac{1}{3}\pi(45)^{2}(10)$		
(a)	(ii) Vol. of water = $\frac{1}{3}\pi \left(\mathbf{q} \times \frac{10}{20} \right)^2 \times 10 \left(\frac{10}{20} \times \frac{10}{20} \right)^2 \times 10 \left(\frac{10}{20} \times \frac{10}{20} \right)^2 \times 10 \left(\frac{10}{20} \times \frac{10}{20} \right)^2 \times 15 \left(\frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \right)^2 \times 15 \left(\frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \right)^2 \times 15 \left(\frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \right)^2 \times 15 \left(\frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \right)^2 \times 10 \left(\frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \times \frac{10}{20} \right)^2 \times 10 \left(\frac{10}{20} \times $	1 A	
	Vol. of water + oil = $\frac{1}{3}\pi (4 \times \frac{15}{20})^2 \times 15 = 227.8$	125π)(cm ³) 1A
	∴vol. of water : vol. of oil cap. of funnel		
	$= 67.5\pi : 227.8125\pi : 540\pi$		
	= 8 : 27 : 64	1A 🖔 🏃	後ろいな!
l	Vol. of water : vol. of oil : cap. of funnel		
	= 8 : 19 : 64	1A	
(c)	Let the depth of the oil be h cm, the radius of the		ŀ
	oil surface be r cm.		
-	Then $\frac{r}{h} = \frac{9}{20}$		
	Volume of oil remaining = $\frac{1}{3}\pi r^2 h$		
	$= \frac{1}{3}\pi \left(\frac{9h}{20}\right)^2 h \ (cm^3)$	1M	Sub r
	But volume of oil = $540\pi \times \frac{19}{64}$ (cm ³)		
5/10	$\begin{bmatrix} 0.5 \\ 540\pi \times \frac{19}{64} = \frac{1}{3}\pi (\frac{9h}{20})^2 h \end{bmatrix}$	1M	
[6	$\frac{135 \times 19}{16} = \frac{27}{400} h^3$		
	Depth = $5 \times \sqrt[3]{19}$ cm $\left(13.54$ cm $\right)$.	1A	
$\overline{}$	540 (1/24) = (20)		
	540 91 (V)		

3645 TE : 540TE

· .	RESTRICTED 内部	Marks	Remarks
	Solutions	1A	8.7 (pp.).
(a)	C = (9,7) (or x = 9, y = 7)		At
	Radius = $\sqrt{9^2 + 7^2 - 105} = 5$	1 <u>A</u> 2	
(b)	Putting $y = mx$,		
	$x^2 + (mx)^2 - 18x - 14(mx) + 105 = 0$	1A	
	$(1 + m^2) x^2 - (18 + 14m) x + 105 = 0$		
	As x_1 , x_2 are the roots, $x_1x_2 = \frac{105}{1 + m^2}$		Only awarded if above correct
(c)	$OA = \sqrt{x_1^2 + y_1^2}$	1A -	optional).
	$= \sqrt{x_1^2 + (mx_1)^2}$	1A (
	$(=(\sqrt{1+m^2)}x_1)$		2 + 1
	$OB = \sqrt{x_2^2 + y_2^2} = \sqrt{x_2^2 + (mx_2)^2} \left(= (\sqrt{1 + m^2}) x_2 \right)$	1A)	
	$\therefore OA \times OB = (1 + m^2) X_1 X_2$	·	
	= 105	1 <u>A</u>	
(d)	Let $M = \text{mid-point of } AB$. If $CM = 3$,		
	$AM = \sqrt{5^2 - 3^2} (= 4)$	1m (程序就,但用作《建设》
	$\therefore AB = 2 \times 4 = 8$	1A	(1)
	Let $OA = x$, then	" ORX	OR T
	x(x+8) = 105	1M 7	$OM = \sqrt{OC^2 - CM^2}$
	$x^2 + 8x - 105 = 0$)	$= \sqrt{9^2 + 7^2 - 3^2} \text{ 1M}$
	(x-7)(x+15)=0		= 11
	$\therefore x = 7 (as \ x \neq -15)$	1A 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	y		
	$\hat{\mathbf{B}}(\mathbf{x}_2, \mathbf{y}_2)$		
	$A(x_1, y_1)$ $x^2 + y^2 - 18x - 14y + 105 = 0$		
	$A(x_1,y_1)$ \subset C		
-	x		
-	Figure 7		

92-CE-Maths. I

·• •.		RESTRICTED 内部文	件	
		Solutions	Marks	Remarks
14.	(a)	The common ratio = $\frac{b}{a}$	1 A	
		The sum to n terms = $\frac{a^n \left[1 - \left(\frac{b}{a}\right)^n\right]}{1 - \frac{b}{a}}$	1M	or $\frac{a^n - \frac{b}{a}(ab^{n-1})}{1 - \frac{b}{a}}$
		$= \frac{a(a^{n}-b^{n})}{a-b} (= \frac{a^{n+1}-ab^{n}}{a-b})$	<u>1A</u>	
	(b)	(i) The balance at the end of		
		(1) the 1st year = $$1.08P$	1 A	= (1 + 8%)P
		(2) the 2nd year = $(1.08^2P + 1.1 \times 1.08P)$	1A+1A	= 1.1664P + 1.188P = 2.3544P
		(3) the 3rd year = $\$(1.08^3P + 1.1 \times 1.08^2P + 1$	$.1^2 \times 1.0$ $1A$	8 P) = 3.849552P
		(ii) At the end of the nth year, the balance		
		$= \$P[1.08^n + 1.08^{n-1} \times 1.1 + 1.08^{n-2} \times 1.1^2 + \dots + 1.08^{n-2}]$	$08^2 \times 1.$	$1^{n-2} + 1.08 \times 1.1^{n-1}$
		$= \$P \frac{1.08(1.08^n - 1.1^n)}{1.08 - 1.1}$	2 A	
		$= $54P(1.1^n - 1.08^n)$	<u> </u>	
	(c)	In n years' time, the flat is		
		worth \$1080000 x 1.15 ⁿ	1A	
		Put $P = 20000$, the amount in the man's account		
		$= \$1080000 (1.1^n - 1.08^n)$		
		< \$1080000 x 1.15 ⁿ	1 <u>A</u> 2	
-,		P(1+8%) = 1.08P		
		P. UP Lap.		. & ₹
				(- 12
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		(1.08p + 1.1p)x (1+8/0)		
		=(1.08p+1.1p)x 1.08		
		= 1.08°p+1.1×1.08×P.		

RFSTRICTED 内部文件

	Marks 1A 1A	Remarks 4.24, withhold 1 mk if answers not in surd form
	1A 1A	if answers not in surd form 3.74
	<u>1A</u>	
	<u>1A</u>	
	<u>1A</u>	
	_1A	
·	<u>1A</u>	
	<u>1A</u>	
	3	2.24
		e de la companya de l
0.8018)	1M+1A	
	1 A	36.5°~36.8°
		·
	1 A	Follow through if omitted
	1M	
	<u>1A</u>	36.5°~36.8°
	1M	or $\tan \angle BDE = \frac{2}{\sqrt{14}}$
	_1A	or $\cos \angle BDE = \frac{\sqrt{14}}{\sqrt{18}}$
TI C		
•	O.8018) II	1A 1A 1M 1A 1M 1A 2

AN 1 BD . We have DM = MB as AB = AD . Let N be the mid-point of AC . Then NN 1 AC as AM = MC . Similarly DN 1 AC . Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AN = 3 sin 36.7° m (= 1.7928) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}}$ (= 0.84515) \therefore $\angle AMN = 57.69$ (57.6885) \therefore $\angle AMC = 2 \times 57.69 = 115^{\circ}$ (-116°) Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AC = 2AN = 2 × 3 sin 36.7° m (= 3.5858) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$	٠.٠	RESTRICTED 内部文	F	
AN 1 BD . We have DM = MB as AB = AD . Let N be the mid-point of AC . Then NN 1 AC as AM = MC . Similarly DN 1 AC . Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AN = 3 sin 36.7° m (= 1.7928) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}}$ (= 0.84515) \therefore $\angle AMN = 57.69$ (57.6885) \therefore $\angle AMC = 2 \times 57.69 = 115^{\circ}$ (-116°) Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AC = 2AN = 2 × 3 sin 36.7° m (= 3.5858) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$	•	Solutions	Marks	Remarks
Let N be the mid-point of AC. Then MN \perp AC as AM = MC. Similarly $DN \perp$ AC. Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AN = 3 sin 36.7° m (= 1.7928) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}}$ (= 0.84515) \therefore $\angle AMN = 57.69$ (57.6885) \therefore $\angle AMC = 2 \times 57.69 = 115^{\circ}$ (-116°) Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AC = 2AN = 2 × 3 sin 36.7° m (= 3.5858) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ In Attempt to find $\angle AMC$	(d)	Let M be a point on BD such that (or mid-pt of BD,et	c.)1M	Considering AM
Let N be the mid-point of AC. Then MN \perp AC as AM = MC. Similarly $DN \perp$ AC. Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AN = 3 sin 36.7° m (= 1.7928) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}}$ (= 0.84515) \therefore $\angle AMN = 57.69$ (57.6885) \therefore $\angle AMC = 2 \times 57.69 = 115^{\circ}$ (-116°) Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AC = 2AN = 2 × 3 sin 36.7° m (= 3.5858) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2}$ m By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ In Attempt to find $\angle AMC$		$AM \perp BD$. We have $DM = MB$ as $AB = AD$.	T-4	P3
Similarly DN 1 AC . Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AN = 3 \sin 36.7° m (= 1.7928) $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} m$ $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}} = 0.84515$ \therefore $\angle AMN = 57.69 = 115^{\circ} (-116^{\circ})$ Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ \therefore AC = 2AN = 2 × 3\sin 36.7° m (= 3.5858) $AC = 2AN = \frac{3}{2}\sqrt{2} m$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ Sec also alt. solution 3 \sin 36.5° \times 3 \sin 36.5° \times 3 \sin 36.5° \times 3 \sin 36.8° Attempt to find \(AMC \)		Let N be the mid-point of AC .		
Now $\sin \angle ADE = \frac{AN}{AD}$ $\therefore AN = 3 \sin 36.7^{\circ} \text{ m } (= 1.7928)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ $\sin \angle AMN = \frac{AN}{AM} = \frac{3 \sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}} (= 0.84515)$ $\therefore \angle AMN = 57.69 (57.6885)$ $\therefore \angle AMC = 2 \times 57.69 = 115^{\circ} (-116^{\circ})$ Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ $\therefore AC = 2AN = 2 \times 3 \sin 36.7^{\circ} \text{ m } (= 3.5858)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3 \sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ See also alt. solution 3 $\sin 36.5^{\circ} - 3 \sin 36.5^{\circ}$ Attempt to fin $\angle AMN \text{ or } \angle AMC$		Then $MN \perp AC$ as $AM = MC$.		
$AN = 3\sin 36.7^{\circ} \text{ m } (= 1.7928)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}} (= 0.84515)$ $\therefore \angle AMN = 57.69 (57.6885)$ $\therefore \angle AMC = 2 \times 57.69 = 115^{\circ} (\sim 116^{\circ})$ $\frac{Alternatively:}{Now \sin \angle ADE} = \frac{AN}{AD}$ $\therefore AC = 2AN = 2 \times 3\sin 36.7^{\circ} \text{ m } (= 3.5858)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$		Similarly $DN \perp AC$.		
$AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ $\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}} \text{ (= 0.84515)}$ $\therefore \angle AMN = 57.69 \text{ (57.6885)}$ $\therefore \angle AMC = 2 \times 57.69 = 115^{\circ} \text{ (~116°)}$ Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ $\therefore AC = 2AN = 2 \times 3\sin 36.7^{\circ} \text{ m (= 3.5858)}$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^{2} + (\frac{3}{2}\sqrt{2})^{2} - (2 \times 3\sin 36.7^{\circ})^{2}}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to fin Attempt to find $\angle AMC$		Now $\sin \angle ADE = \frac{AN}{AD}$	٦	See also alt. solution
$\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}} \text{ (= 0.84515)}$ $\therefore \angle AMN = 57.69 \text{ (57.6885)}$ $\therefore \angle AMC = 2 \times 57.69 = 115^{\circ} \text{ (~116°)}$ $\frac{1A}{4}$ Attempt to fin \(\angle AMN \text{ or } \angle AMC \) $\frac{1A}{4}$ $Alternatively:$ Now $\sin \angle ADE = \frac{AN}{AD}$ $\therefore AC = 2AN = 2 \times 3\sin 36.7^{\circ} \text{ m (= 3.5858)}$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to fin \(\angle AMC \)		\therefore AN = 3sin36.7° m (= 1.7928)	1A	3 sin 36.5°~ 3 sin 36.8°
		$AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\sin \angle AMN = \frac{AN}{AM} = \frac{3\sin 36.7^{\circ}}{\frac{3}{2}\sqrt{2}} (= 0.84515)$	1м	Attempt to find
Alternatively: Now $\sin \angle ADE = \frac{AN}{AD}$ $\therefore AC = 2AN = 2 \times 3\sin 36.7^{\circ} \text{m} \ (= 3.5858)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^{\circ})^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$		\therefore $\angle AMN = 57.69 (57.6885)$		∠AMN or ∠AMC
Now $\sin \angle ADE = \frac{AN}{AD}$ $\therefore AC = 2AN = 2 \times 3\sin 36.7^{\circ} \text{ m } (= 3.5858)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^{2} + (\frac{3}{2}\sqrt{2})^{2} - (2 \times 3\sin 36.7^{\circ})^{2}}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$		\therefore $\angle AMC = 2 \times 57.69 = 115^{\circ} (\sim 116^{\circ})$	1A 4	
$AC = 2AN = 2 \times 3\sin 36.7^{\circ} \text{ m } (= 3.5858)$ $AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^{2} + (\frac{3}{2}\sqrt{2})^{2} - (2 \times 3\sin 36.7^{\circ})^{2}}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$	Alt	ernatively:		
$AM = \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$ By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^\circ)^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$	Now	$sin \angle ADE = \frac{AN}{AD}$		
By the cosine formula, $\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^\circ)^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$	÷	$AC = 2AN = 2 \times 3\sin 36.7^{\circ}$ m (= 3.5858)	1 A	·
$\cos \angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^\circ)^2}{2(\frac{3}{2}\sqrt{2})(\frac{3}{2}\sqrt{2})}$ $= -0.4286$ IM Attempt to find $\angle AMC$	AM	$= \frac{1}{2}BD = \frac{3}{2}\sqrt{2} \text{ m}$		
= -0.4286 find \(\alpha \text{AMC} \)	Ву	the cosine formula,		
= -0.4286 find \(\alpha \text{AMC} \)	cos	$3\angle AMC = \frac{(\frac{3}{2}\sqrt{2})^2 + (\frac{3}{2}\sqrt{2})^2 - (2 \times 3\sin 36.7^\circ)^2}{2}$	1M	Attempt to
= -0.4286		$2\left(\frac{3}{2}\sqrt{2}\right)\left(\frac{3}{2}\sqrt{2}\right)$		51 m 3 / 3 M G
$\therefore \angle AMC = 115^{\circ} (\sim 116^{\circ})$		= -0.4286		find ZAMC
\ '\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	:	$\angle AMC = 115^{\circ} (\sim 116^{\circ})$	1 A	
•				

 $= 2a^3 - 4a^2 + 3a$ $= a(2a^2 - 4a + 3)$ **#** 24

1. (a) $\frac{\pi}{6}$ (radian) (b) $x = 150^{\circ} (\frac{5\pi}{6}, 2.62)$ 7. (a) $\angle AOB = \frac{360^{\circ}}{5} = 72^{\circ} \left(= \frac{2\pi}{5} = 1.26 \text{ radians} \right)$ (a) Total score of the team = 70(m+n)(b) Total score is also equal to 75m + 62n. (b) Area of sector $OAB = \frac{1}{5} \cdot \pi \cdot 10^2$ Area of shaded part = $20\pi - 47.55$ Area of $\triangle OAB = \frac{1}{2}(10)(10)\sin 72^{\circ}$ 75m + 62n = 70(m + n)**= 47.6 (47.5528)** $= 20\pi (62.83)$ = 15.3 (15.2790)

1992