

Christine Dahn, Andrej Dudenhefner, Marc Jasper, Roman Kalkreuth, Philipp Oberdiek, Dimitri Scheftelowitsch, Christiane Spisla

Sommersemester 2018

Mathematik für Informatiker 2 Übungsblatt 3

Abgabefrist: 30.04.2018, 12:15 Uhr **Block:** 1

Aufgabe 3.1 Quiz

(1+1+1+1) Punkte

Welche der folgenden Aussagen sind richtig und welche falsch? Begründen Sie Ihre Antwort.

- 1. Ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge und $(b_n)_{n\in\mathbb{N}}$ eine beliebige Folge, so ist $(a_n\cdot b_n)_{n\in\mathbb{N}}$ ebenfalls eine Nullfolge.
- 2. Um die Divergenz einer Folge zu zeigen, reicht es, die Existenz einer unbeschränkten Teilfolge nachzuweisen.
- 3. Um die Konvergenz einer Folge zu zeigen, reicht es, zu zeigen, dass alle ihre Teilfolgen beschränkt sind.
- 4. Eine Folge ist konvergent, falls sie genau einen Häufungspunkt besitzt.

Aufgabe 3.2 Sandwich-Theorem

(4 Punkte)

Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ drei reellwertige Folgen mit $a_n \leq b_n \leq c_n$ für alle $n \in \mathbb{N}$. Beweisen Sie: wenn $(a_n)_{n\in\mathbb{N}}$, $(c_n)_{n\in\mathbb{N}}$ konvergent sind mit $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = b \in \mathbb{R}$, dann ist $(b_n)_{n\in\mathbb{N}}$ konvergent mit $\lim_{n\to\infty} b_n = b$.

Aufgabe 3.3 Konvergenz

(1+2+1) Punkte

Untersuchen Sie folgende Folgen auf Konvergenz. Bei Konvergenz der Folge bestimmen Sie den Grenzwert.

- 1. $(a_n)_{n \in \mathbb{N}} \text{ mit } a_n = \frac{1}{n^2}$.
- 2. $(b_n)_{n\in\mathbb{N}}$ mit $b_n = \frac{n!}{2^n}$.
- 3. $(c_n)_{n\in\mathbb{N}}$ mit $c_n=\frac{\ln n}{n^2}$. **Hinweis:** Es gilt $\ln n \leq n$ für $n\in\mathbb{N}$.

Aufgabe 3.4 Induktion

(4 Punkte)

Beweisen Sie mit der Technik der vollständigen Induktion folgende Ungleichung.

$$\sum_{i=1}^{n} \frac{1}{i^2} < 2$$

<u>Hinweis:</u> Zeigen Sie zunächst eine stärkere Aussage: $\sum_{i=1}^{n} \frac{1}{i^2} \le 2 - X_n$ (mit $X_n > 0$). Welche Werte von X_n kann man hier günstig wählen, damit die vollständige Induktion funktioniert?