Аналитиеская механика.					
Положение материаль- ной точки:	$\vec{r} = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$	Ускорение:	$\vec{w} = w_1 \vec{e_1} + w_2 \vec{e_2} + w_3 \vec{e_3},$ $\vec{w} = \frac{d^2 x}{dt^2} \vec{i} + \frac{d^2 y}{dt^2} \vec{j} + \frac{d^2 z}{dt^2} \vec{k}$		
Скорость материаль- ной точки:	$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dx}{dt}\vec{k}$	Производные декартовых координат через произвоные криволинейных:	$\frac{d^2\chi_i}{dt^2} = \sum_{l=1}^{l \le 3} \sum_{m=1}^{m \le 3} \frac{\partial^2 \chi_i}{\partial q_l \partial q_m} \dot{q}_l \dot{q}_m + \frac{\partial \chi_i}{\partial q_l} \ddot{q}_l,$ $\chi_0 = x, \chi_1 = y, \chi_2 = z.$		
Ускорение материаль- ной точки:	$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d^2x}{dt^2}\vec{i} + \frac{d^2y}{dt^2}\vec{j} + \frac{d^2x}{dt^2}\vec{k}$	Углы Эйлера:	Я не очень умею техатб.		
Вектор $\vec{ au}$, определение:	$\vec{v} = \frac{d}{dt}r[\vec{s(t)}] = \frac{d\vec{r}}{ds}\frac{ds}{dt} = \vec{\tau}\frac{ds}{dt},$ $\vec{\tau} = \frac{d\vec{r}}{ds}$	Ортогональные отобра- жения:	$\vec{R} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \vec{R'} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix},$ $\vec{R'} = A\vec{R}$		
Ускорение через $\vec{\tau}$:	$\vec{w} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v\vec{\tau}) = \frac{dv}{dt}\vec{\tau} + v\frac{d\vec{\tau}}{ds}\frac{ds}{dt} = \frac{dv}{dt}\vec{\tau} + v^2\frac{d\vec{\tau}}{ds}$	Ортогональное пре- образование для ком- плексного вектора:	$A(\vec{P} + i\vec{Q}) = A\vec{P} + iA\vec{Q}$		
Вектор кривизны, и его связь с \vec{n} :	$rac{dec{ au}}{ds} = rac{1}{ ho}ec{n}$	«Хорошее» определение нормы комплексного вектора:	$ \begin{vmatrix} \vec{P} + i\vec{Q} &= \sqrt{(\vec{P} + i\vec{Q})(\vec{P} + i\vec{Q})} &= \\ \sqrt{\vec{P}^T\vec{P} + \vec{Q}^T\vec{Q}} &= \end{aligned} $		
Разложение \vec{w} по $\vec{\tau}$ и \vec{n} :	$\vec{w} = rac{dv}{dt}\vec{ au} + rac{v^2}{ ho}\vec{n}$	Кватернион:	$\Lambda = \lambda_0 i_0 + \lambda_1 i_1 + \lambda_2 i_2 + \lambda_3 i_3$		
Вектор бинормали $ec{b}$:	$ec{b}=ec{ au} imesec{n}$	Свойства кватернио- нов:	$(\Lambda \circ \mathcal{M}) \circ \mathcal{N} = \Lambda \circ (\mathcal{M} \circ \mathcal{N}),$ $(\Lambda + \mathcal{M}) \circ (\mathcal{N} + \mathcal{R}) =$ $\Lambda \circ \mathcal{N} + \mathcal{M} \circ \mathcal{N} +$ $\Lambda \circ \mathcal{R} + \mathcal{M} \circ \mathcal{R},$ $(\lambda \Lambda) \circ (\mu \mathcal{M}) = \lambda \mu \Lambda \circ \mathcal{M}$ $i_0 \circ i_k = i_k \circ i_0 = i_k, k = 0, 1, 2, 3$		
Касательные к координатныйм линиям $(\vec{r} = \vec{r}(q_1, q_2, q_3))$:	$\frac{\partial \vec{r}}{\partial q_m} = \frac{\partial x}{\partial q_m} \vec{i} + \frac{\partial y}{\partial q_m} \vec{j} + \frac{\partial z}{\partial q_m} \vec{k} = H_1 \vec{e_m}, m = 1, 2, 3$	Умножение кватернио- нов:	$i_{0} \circ i_{k} = i_{k} \circ i_{0} = i_{k}, k = 0, 1, 2, 3$ $i_{k} \circ i_{k} = -i_{0}, k = 1, 2, 3$ $i_{1} \circ i_{2} = i_{3}, i_{2} \circ i_{3} = i_{1}, i_{3} \circ i_{1} = i_{2},$ $i_{2} \circ i_{1} = -i_{3}, i_{3} \circ i_{2} = -i_{1},$ $i_{1} \circ i_{3} = -i_{2}$		
Коэффициенты Ляме:	$H_k = \sqrt{\left(\frac{\partial x}{\partial q_k}\right)^2 + \left(\frac{\partial y}{\partial q_k}\right)^2 + \left(\frac{\partial z}{\partial q_k}\right)^2}$	Ещё свойства умножения кватернионов:	$\begin{vmatrix} i_0 \circ i_0 = i_0, i_0 \circ i_1 = i_1 \circ i_0 = i_1, i_1 \circ i_1 = \\ -i_0 \end{vmatrix}$		
Ортогональные криво- линейные координаты:	$(\vec{e_1} \cdot \vec{e_2}) = (\vec{e_2} \cdot \vec{e_3}) = (\vec{e_3} \cdot \vec{e_1}) = 0$	Ортогональная матри- ца:	$\vec{R'} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} \vec{r_1} & \vec{r_2} & \vec{r_3} \\ \vec{r_i} = 1, \vec{r_i} \cdot \vec{r_j} = 0, i \neq j \end{pmatrix}$		
. Эквивалентные условия ортогональности криволинейных координат:	$\begin{vmatrix} \frac{\partial x}{\partial q_l} \frac{\partial x}{\partial q_m} = \frac{\partial y}{\partial q_l} \frac{\partial y}{\partial q_m} = \frac{\partial z}{\partial q_l} \frac{\partial z}{\partial q_m} = 0 \text{ для} \\ l \neq m \end{vmatrix}$	Матрица поворота относительно оси X на угол ϕ :	$A = \begin{pmatrix} 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix}$		
Дифференциал дуги произвольной кривой (метрика пространства):	$ds^{2} = dx^{2} + dy^{2} + dz^{2} = \sum_{i=1}^{3} \sum_{j=1}^{3} g_{ij} dq_{i} dq_{j}$	Числовая интерприта- ция кватернионов:	$i_0-1,\ i_1-\sqrt{-1},\ $ то векторное пространство $\Lambda=\lambda_0+\lambda_1\sqrt{-1}$ подчиняется вышеуказанным правилам		
Метрика пространства (случай ортогональных координат):	$ds^2 = H_1^2 dq_1^2 + H_2^2 dq_2^2 + H_3^2 dq_3^2$	Матричная интерпри- тация кватернионов:	$i_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, i_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$ $\Lambda = \lambda_0 i_0 + \lambda_1 i_1$		
Скорость через криволинейные координаты:	$ \vec{v} = \frac{d\vec{r}}{dt} = \frac{\partial \vec{r}}{\partial q_1} \dot{q}_1 + \frac{\partial \vec{r}}{\partial q_2} \dot{q}_2 + \frac{\partial \vec{r}}{\partial q_3} \dot{q}_3 = H_1 \dot{q}_1 \vec{e}_1 + H_2 \dot{q}_2 \vec{e}_2 + H_2 \dot{q}_2 \vec{e}_2 $	Геометро-числовая ин- терпритация кватерни- онов:	$\Lambda = \lambda_0 + \lambda_1 \vec{i_1} + \lambda_2 \vec{i_2} + \lambda_2 \vec{i_2},$ $\lambda_0 \in \mathbb{R}, \vec{\lambda} \in \mathbb{E}^3$		

Аналитиеская механика.							
Произведение трех- мерных ортов в геометро-числовой интерпритации:	$i_k \circ i_k = -1,$ $i_k \circ i_l = \vec{i_k} \times \vec{i_l} (k \neq l)$	Кватернионное сложение поворотов (активная точка зрения):	$R' = \Lambda \circ R \circ \overline{\Lambda}, R'' = \mathcal{M} \circ R \circ \overline{\mathcal{M}},$ $R'' = \mathcal{M} \circ \Lambda \circ R \circ \overline{\Lambda} \circ \overline{\mathcal{M}} =$ $\mathcal{M} \circ \Lambda \circ R \circ \overline{\mathcal{M}} \circ \overline{\Lambda}$				
Произведение кватернионов геометрочисловой интерпритации: Сопряженный кватер-	$ \Lambda = \lambda_0 + \vec{\lambda}, \mathcal{M} = \mu_0 + \vec{\mu}, \Lambda \circ \mathcal{M} = \lambda_0 \mu_0 - \vec{\lambda} \cdot \vec{\mu} + \lambda_0 \vec{\mu} + \mu_0 \vec{\lambda} + \vec{\lambda} \times \vec{\mu} $ $ \Lambda = \lambda_0 + \vec{\lambda}, \overline{\Lambda} = \lambda_0 + \vec{\lambda} $	Кватернионное сложение поворотов (пассивная точка зрения) Определение угловой	$i'_k = \Lambda \circ i_k \overline{\Lambda},$ $R = xi_1^{\overline{1}} + yi_2^{\overline{2}} + zi_3^{\overline{3}},$ $R^{(\prime)} = \overline{\Lambda} \circ \left(xi_1^{\overline{\prime}} + yi_2^{\overline{\prime}} + zi_3^{\overline{\prime}}\right) \circ \Lambda =$ $x'i_1^{\overline{\prime}} + y'i_2^{\overline{\prime}} + z'i_3^{\overline{\prime}},$ $\mathcal{N} = \Lambda \circ \mathcal{M}$				
нион:		скорости:	$\vec{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \phi(t + \Delta t)}{\Delta t} \vec{\epsilon}(t + \Delta t)$				
Норма кватерниона:	$ \Lambda = \Lambda \circ \overline{\Lambda} = \overline{\Lambda} \circ \Lambda = \lambda_0^2 + \lambda_1^2 + \lambda_2^2 + \lambda_3^2$	Угловая скорость через кватернион:	$\Lambda(t) = \cos \frac{\phi(t + \Delta t)}{2} + \\ \vec{\epsilon}(t) \sin \frac{\phi(t + \Delta t)}{2}, \\ \dot{\Lambda} = \frac{1}{2}\vec{\omega} \circ \Lambda(t), \vec{\omega} = 2\overline{\Lambda} \circ \dot{\Lambda}$				
Свойства (1) и (2) произведения кватернионов:	$\Lambda \circ \mathcal{M} \neq \mathcal{M} \circ \Lambda,$ $\overline{\Lambda} \circ \overline{\mathcal{M}} = \overline{\mathcal{M}} \circ \overline{\Lambda}$	Сложение угловых скоростей:	$ec{\omega} = ec{\omega_1} + ec{\omega_2}$ для $ec{\omega_1}$ и $ec{\omega_2},$				
Свойство (3) произведения кватернионов:	$ \Lambda \circ \mathcal{M} = (\Lambda \circ \mathcal{M}) \circ \overline{(\Lambda \circ \mathcal{M})} = \Lambda \circ \mathcal{M} \circ \overline{\Lambda} \circ \overline{\mathcal{M}} = \Lambda \cdot \mathcal{M} $	Формула Эйлера.	$\vec{r'}(t) = \Lambda(t) \circ \vec{r} \circ \overline{\Lambda}(t),$ $\dot{\vec{r}} = \vec{\omega} \times \vec{r}$				
Свойство (4) произведения кватернионов:	Инвариантно относительно ортого- нальных преобразований в вектор- ной части кватернионов.	Формула Эйлера в мат- ричной форме:	$\vec{r'} = \Omega \vec{r'},$ $\Omega = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}$				
Свойство (5) произ- ведения кватернионов (обратный):	$\Lambda^{-1} = \frac{\overline{\Lambda}}{ \Lambda }$	Уравнение Пуассона (x, y, z).	$\vec{r'} = A(t)\vec{r},$ $\dot{A} = \Omega A.$				
Присоединённое отоб- ражение:	$\mathcal{R} \to \mathcal{R}' : \mathcal{R}' = Ad\mathcal{R} = \Lambda \circ \mathcal{R} \circ \Lambda'$	Уравнение Пуассона (ξ, η, ζ) .	$\vec{r'} = A(t)\vec{r},$ $\dot{A} = A\Omega$				
Свойства (1) и (2) присоединенного отображения:	Не меняет скалярной части, дей- ствует на векторную часть как ли- нейное преобразование.	Уравнение Пуассона в кватернионах (x, y, z) :	$2\dot{\Lambda} = \vec{\omega} \circ \Lambda$				
Поворот через кватернион:	$\Lambda = \lambda_0 + \lambda \vec{e}, \Lambda = \cos \frac{\phi}{2} + \vec{e} \sin \frac{\phi}{2} - $ поворот на угол ϕ вокруг \vec{e} .	Уравнение Пуассона в кватернионах (ξ, η, ζ) :	$2\dot{\Lambda} = \Lambda \circ \vec{\omega}$				
Группа <i>SO</i> (3):	R' = AR, R'' = BR', R'' = (BA)R, C = BA—матрица, задающая суммарный поворот.	Относительное движениие. Обозначения.	$\vec{r} = \begin{pmatrix} \zeta \\ \eta \\ \zeta \end{pmatrix}, \vec{r_0} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$ $\vec{v_{rel}} = \dot{\vec{r}}, \vec{w_{rel}} = \ddot{\vec{r}}, \vec{v_0} = \dot{\vec{r_0}}, \vec{w_0} = \ddot{\vec{r_0}}$				
Активная точка зрения. Пассивная точка зрения.	Матрицы последовательных поворотов перемножаются в обратном порядке. Все матрицы вычисляются в общем для всех базисе $\vec{i}, \vec{j}, \vec{k}$. Матрицы последовательных поворотов перемножаются в прямом порядке. Каждая матрица рассматривается в поворачиваемом ею базисе.	Сложение скоростей: Сложение ускорений:	$\vec{v} = \vec{v_0} + \vec{\omega} \times \vec{r} + \vec{v_{rel}}$ $\vec{w} = \vec{w_0} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) + \dot{\vec{\omega}} \times \vec{r} + 2\vec{\omega} \times \vec{v_{rel}} + \vec{w_{rel}}$				
Ещё про активную точ- ку зрения (сложение поворотов):	$R^{(\prime)} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = A^T \begin{pmatrix} x \\ y \\ z \end{pmatrix}$						

Аналитиеская механика.						
Конфигурационное многообразие и число степеней свободы:	$M \subset \mathbb{R}^m$, однозначно отображаемое в множество возможных положений системы. m - число степеней свободы.	Обобщённый интеграл энергии:	$\sum_{i} \dot{q}_{i} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} - \mathcal{L} = const$			
Параметризация и лагранжевы парамет- ры.	$R = R(\nu, t, q_1, \dots, q_n), q_1, \dots, q_n$ лагранжевы параметры.					
Стационарная параметризация: Нестационарная пара-	Параметризация не зависящая явно от времени. Параметризация явно зависящая					
метризация: Кинематически независимые координаты и голономные системы.	от времени. Покальные координаты не стеснены никакими дополнительными условиями типа $f_k(t,q,\dot{q})=0,k=1,\ldots,s$, а такие механические системы называются голономными.					
Виртуальное перемещение:	$\delta R = \sum_{i} \frac{\partial R}{\partial q_i} \delta q_i$					
Обобщённые силы:	$Q_i = \int \frac{\partial R}{\partial q_i} \cdot F^d dm$ $T = \int \vec{V} \cdot \vec{V} dm$					
Кинетическая энергия:	$T = \int \vec{V} \cdot \vec{V} dm$					
Уравнение Лагранжа: Потенциальная сила:	$\frac{d}{dt} \frac{\partial T}{\partial q_i} - \frac{\partial T}{\partial q_i} = Q_i (i=1,\ldots,n)$ Существует U , что $Q_i = \frac{\partial U}{\partial q_i} (i=1,\ldots,n)$					
Обощённо потенциальная сила:	Существует U , что $Q_i = \frac{\partial U}{\partial q_i} - \frac{d}{dt} \frac{\partial U}{\partial q_i} (i = 1, \dots, n)$					
Функция Лагранжа: Уравнение Лагранжа через функцию Лагранжа:	$\mathcal{L} = T + U$ $\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} - \frac{\partial \mathcal{L}}{\partial q_i} = 0 (i = 1, \dots, n)$					
Ковариантность урав- нений Лагранжа:	Если обощённые координаты подвергнуть преобразованиям $q_i o ilde q_i$ из C_2 : $q_i = q_i(t, ilde q)$					
	то в новых переменных уравнения Лагранжа сохраняют форму.					
Невырожденность						

уравнений Лагранжа: