K J Somaiya College of Engineering, Mumbai-77

(CONSTITUENT COLLEGE OF SOMAIYA VIDYAVIHAR UNIVERSITY)

Module 3 : Centroid of Wires and Laminas

Presented by:

Prof. Vijay Shinde

Centroid of wires/rods, Centroid of plane laminas: Plane lamina consisting of primitive geometrical shapes.

Centroid of composite areas/lines or wires

(a) For Areas

$$\overline{x} = \frac{A_1 x_1 + A_2 x_2 + A_3 x_3 + \dots}{A_1 + A_2 + A_3 + \dots} = \frac{\sum A_i x_i}{\sum A_i} \qquad \overline{y} = \frac{A_1 y_1 + A_2 y_2 + A_3 y_3 + \dots}{A_1 + A_2 + A_3 + \dots} = \frac{\sum A_i y_i}{\sum A_i}$$

Here $A_1, A_2,...$ = Areas of individual components.

 $x_1, x_2,...$ = Distance of individual centroid from y-axis.

 $y_1, y_2,...$ = Distance of individual centriod from x-axis.

(b) For Lines

$$\overline{x} = \frac{l_1 x_1 + l_2 x_2 + l_3 x_3 + \dots}{l_1 + l_2 + l_3 + \dots} = \frac{\sum l_i x_i}{\sum l_i}$$

$$\overline{z} = \frac{l_1 z_1 + l_2 z_2 + l_3 z_3 + \dots}{l_1 + l_2 + l_3 + \dots} = \frac{\sum l_i z_i}{\sum l_i}$$

$$\bar{y} = \frac{l_1 y_1 + l_2 y_2 + l_3 y_3 + \dots}{l_1 + l_2 + l_3 + \dots} = \frac{\sum l_i y_i}{\sum l_i}$$

Here $l_1, l_2, =$ Length of individual rods.

Centroid of regular plane areas

SR. NO.	FIGURE	AREA	x	Ÿ
1.	RECTANGLE y A A.O.S.	and the state of t	W Boyle to	
, viori	$\overline{Y} = \frac{d}{2}$ $\overline{X} = \frac{b}{2}$ $\overline{X} = \frac{b}{2}$ $\overline{X} = \frac{b}{2}$	$\mathbf{b} \times \mathbf{d}$	$\frac{\mathbf{b}}{2}$	<u>d</u> 2
2.	RT. ANGLE TRIANGLE $ \downarrow \qquad \qquad$	½ × b × h	<u>b</u> 3	<u>h</u> 3
3.	ANY TRIANGLE	in a	- 11 - 12	
lips	$ \begin{array}{c c} \hline & \overline{Y} = \frac{h}{3} \\ \hline & \overline{Y} = \frac{h}{3} \end{array} $	$\frac{1}{2} \times b \times h$	orner (C)	<u>h</u> 3

* α is in radians

Table 6.1 # α in the denominator is in radians

Centroid of Lines/Wires

SR. NO	FIGURE	LENGTH	Co-ordinates	
			Х	Y
1.	STRAIGHT HORIZONTAL LINE	L	$\frac{L}{2}$	0
2.	STRAIGHT INCLINED LINE y b/2 b/2 b/2 a/2 a/2 a/2 a/2 a/2	L	$\frac{\mathbf{a}}{2}$	<u>b</u> 2
3. 81 0111 910191	SEMI-CIRCULAR ARC	π r	0	<u>2 r</u> π

4.	QUARTER-CIRCULAR ARC y A.o.s.			0.3
M Edit	$\frac{1}{2r}$ $\frac{2r}{\pi}$ $\frac{2r}{\pi}$	$\frac{\pi r}{2}$	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$
5.	CIRCULAR ARC	e all all		a () ich
41	$C = \frac{1}{\alpha} \frac{\alpha}{\alpha} = \frac{G}{A.O.S.} \times$	2 r α*	$\frac{r \sin \alpha}{\alpha^{\#}}$	0
STATE OF STREET	$\frac{r \sin \alpha}{\alpha}$	int or contraction	adamber on	talor is

- * α is in radians
- # α in the denominator is in radians

