Lecture 9: Dimensionality Reduction: PCA, LDA, Fisher

STAT261: Introduction to Machine Learning

Lecture 9, April 25

Outline

Dimensionality Reduction: Linear Approaches

- Review: linear transformation of Gaussians
- Review: projection and least squares

PCA

- Last time, derive probabilistic "maximal" variance basis
- Maximize variance of projection of data
- Minimal approximation error from projection

SVD

- Definition & illustration
- Relate to PCA
- Classification from PCA
- LDA

Dimensionality Reduction: Linear Methods

- Many data sets are high-dimensional
- Want to reduce dimension:
 - Operations become computationally simpler
 - Extracts meaningful component of data
 - Removes noise
 - Simpler to visualize data
- Linear representation toward dimensionality reduction
 - Data x is p-dimensional
 - Find K-dimensional representation: $K \ll p$

$$x \approx \mu + \sum_{k=1}^{K} \alpha_k \mathbf{v}_k$$

Approximately express each data vector by K numbers

Review: Jointly Gaussian PDF

■ If X is (jointly) Gaussian, then pdf is

$$f(x) = \frac{1}{(2\pi)^{n/2} det^{1/2}(P)}$$

$$\times \exp\left\{-\frac{1}{2}(x-\mu)^* P^{-1}(x-\mu)\right\}$$

Gaussian characterized by mean and variance matrix

$$-\mu = E(X), P = var(X)$$

- Special cases:
 - n = 1
 - Independent Gaussian

Bivariate Gaussian (n = 2)

X and Y are jointly Gaussian and zero mean then, pdf is:

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}$$

$$\times \exp\left[-\frac{1}{2(1-\rho^2)}\left(\frac{x^2}{\sigma_x^2} - \frac{2\rho xy}{\sigma_x\sigma_y} + \frac{y^2}{\sigma_y^2}\right)\right]$$

- σ_x^2 , σ_y^2 = variance of X and Y
- ρ = correlation coefficient
- For non-zero mean replace
 - x with $x \mu_x$ and y with $y \mu_y$

Linear Transforms of Gaussian

- Suppose Y = AX + b
- Then, *Y* is also Gaussian with:
 - $\mu_Y = A\mu_X + b$
 - $var(Y) = Avar(X)A^T$

Properties: Jointly Gaussian Random Vectors

- Definition: A random vector X is (jointly) Gaussian if and only if a^*X is a Gaussian scalar for all non-random a.
- Jointly Gaussian ⇒ Gaussian components
- But, not converse
- Independent Gaussian ⇒ Jointly Gaussian
- Generalization of 2-dim case

Basics Reminder: Inner Products, Norms & Outer Products

- Given vectors $x, y \in \mathbb{R}^p$
- Inner product: $x^T y = \sum_{i=1}^p x_i y_i$
- Norm:

$$||x||^2 = \sum_{i=1}^p x_i^2$$

Outer product:

$$M = xy^T = [x_i y_i]$$

- $p \times p$ matrix
- Inner product: $x^T y = \sum_{i=1}^p x_i y_i$

Projection Operators Important in Linear methods**

- A matrix (or linear operator) P is a projection if:
 - $P^2 = P$ (idempotent)
 - $P = P^*$ (orthogonal, complex case) or $P = P^T$ (real case)

Define

- V = range space of $P = \{Px\}$
- V^{\perp} = orthogonal complement = { $y | y \perp v$, for all $v \in V$ }

Orthonormal Representations

- Linear algebra fact: $v_1, ..., v_p$ are an orthornormal basis
- \blacksquare A set of vectors $v_1, ..., v_p$ are called orthonormal if
 - $||v_k||^2 = v_k^T v_k = 1$ for all k (all vectors are unit norm)
 - $v_j^T v_k = 0$ for all $j \neq k$ (different vectors are perpendicular)
- Representation property of orthonormal basis:
 - For any vector x
 - Representation property: $\mathbf{x} = \sum_{k=1}^{p} \alpha_k v_k$, $\alpha_k = \mathbf{v}_k^T \mathbf{x}$
 - Get coefficients in basis from inner product

Projection to a Range Space

- Let P be a projection with range space V
- Lemma (will prove on board):
 - $-x \in V \Rightarrow Px = x$
 - $-x \in V^{\perp} \Rightarrow Px = 0$
- P removes the component orthogonal to V
 - Write any vector as $x = u + v \in V \oplus V^{\perp}$
 - Px = u

Linear Least Squares as a Projection

- Least square $x=H\theta + w$
- $\widehat{\theta} = \arg\min_{\theta} ||x H\theta||^2 = (H^T H)^{-1} H^T x$
- Let $\hat{x} = H\hat{\theta} = H(H^TH)^{-1}H^Tx = Px$
- $P = H(H^T H)^{-1} H^T$
- Proposition: P is an orthogonal projection onto Range(H)
- Proof: Can show the following four properties
 - $-P^2=P$
 - $-P=P^{T}$
 - Range(H) \subseteq Range(P)
 - Range(P) \subseteq Range(H)

Outline

Dimensionality Reduction: Linear Approaches

- Review: linear transformation of Gaussians
- Review: projection and least squares

- Last time, derive probabilistic "maximal" variance basis
- Maximize variance of projection of data
- Minimal approximation error from projection

SVD

- Definition & illustration
- Relate to PCA
- Classification from PCA
- LDA

Dimensionality Reduction: PCA

- Linear projection for dimensionality reduction
- Goal: keep most of the variance in the projected domain
- PCA for dimensionality reduction
 - Data x is p-dimensional
 - Find K-dimensional representation: $K \ll p$

$$x \approx \mu + \sum_{k=1}^{K} \alpha_k \mathbf{v}_k$$

Approximately express each data vector by K numbers

What does PCA do?

Transforms and shifts x to bases with maximal variation

Data and Sample Covariance Matrix

Given data matrix:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_N^T \end{bmatrix} \quad N \times p$$

- $\mathbf{x_i} = \left[x_{i1} \cdots x_{ip} \right]^T$
- N records, p dimensions each T
- Each data record is a row of X

Define

- Mean: $\mu = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_j$, (mean for each column)
- Sample covariance matrix $S = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i \mu) (\mathbf{x}_i \mu)^T$

PCA: End of last lecture, probabilistic...derivation

- Find a low-dimensional space such that when **x** is projected there, information loss is minimized.
- The projection of x on the direction of w is: $z = w^T x$
- Find w such that Var(z) is maximized

$$Var(z) = Var(\mathbf{w}^{T}\mathbf{x}) = E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})^{2}]$$

$$= E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})]$$

$$= E[\mathbf{w}^{T}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}\mathbf{w}]$$

$$= \mathbf{w}^{T} E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}]\mathbf{w} = \mathbf{w}^{T} \sum \mathbf{w}$$
where $Var(\mathbf{x}) = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}] = \sum$

.

PCA: maximize empirical variance of the projection

- For each record, give a vector w, let $z_i = (x_i \mu)^T w$
- \blacksquare Empirical variance in z_i (scalar)
- $\operatorname{Var}(z_i) = \frac{1}{N} \sum_{n=1}^{N} w^T (x_n \mu) (x_n \mu)^T w$ $\frac{1}{N} \sum |z_i|^2 = w^T S w$
- **z**=Xw, where is the inner product
- Maximal variance is the eigenvector of S
 - Brief explanation on board, similar to last time's probabilistic
- Principal components are the eigenvectors of $K=X^TX$ $Kv_k = \lambda_k v_k$
 - Order eigenvalues: $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p$
 - Assume $||\mathbf{v}_k|| = 1$

Approximation Property

- Let $v_1, ..., v_p$ be an orthonormal basis
- Any vector v has representation: $v = \sum_{k=1}^{p} \alpha_k v_k$,
- Given $K \le p$, consider K-term approximation:

$$\hat{x} = \sum_{k=1}^{K} \alpha_k v$$

Theorem: Error in K-term approximation is

$$\|x - \hat{x}\|^2 = \sum_{k=K+1}^{p} \alpha_k^2$$

The PCA Representation

Write each record in terms of PCs:

$$\mathbf{x}_i = \boldsymbol{\mu} + \sum_{k=1}^p \alpha_{ik} \boldsymbol{v}_k$$
, $\alpha_{ik} = \boldsymbol{v}_k^T (\mathbf{x}_i - \boldsymbol{\mu})$

Obtain K-term approximation:

$$\widehat{\boldsymbol{x}}_n = \boldsymbol{\mu} + \sum_{k=1}^K \alpha_{nk} \boldsymbol{v}_k$$

Each data record represented in terms of PCs

Measuring the Average Error

- Suppose we use a K term approximation
- Error in each data record is:

$$\|x_n - \hat{x}_n\|^2 = \sum_{k=K+1}^p \alpha_{nk}^2 = \sum_{k=K+1}^p v_k^T (x_n - \mu)(x_n - \mu)^T v_k$$

Average error is:

$$J_K = \frac{1}{N} \sum_{n=1}^{N} ||x_n - \hat{x}_n||^2 = \sum_{k=K+1}^{p} v_k^T K v_k = \sum_{k=K+1}^{p} \lambda_k$$

Percentage of Variance:

$$POV_K = 1 - \frac{J_K}{J_0} = \frac{\sum_{k=1}^K \lambda_k}{\sum_{k=1}^p \lambda_k}$$

Example: optical handwritten digits

Data set:images of handwritten digits

Example: OptDigits

- Handwritten digits
- Most variance is in 20 PCs

Visualizing Principal Components

Take coefficients along two PCs

Outline

Dimensionality Reduction: Linear Approaches

- Review: linear transformation of Gaussians
- Review: projection and least squares

PCA

- Last time, derive probabilistic "maximal" variance basis
- Maximize variance of projection of data
- Minimal approximation error from projection

- Definition & illustration
- Relate to PCA
- Classification from PCA

SVD: Mathematical Background

SVD: The mathematical formulation

- X N x p matrix of N p-dimrows, records, pt...
- SVD decomposition : $X = U \Sigma V^T$
 - $U(N \times N)$
 - U is orthogonal: $U^TU = I$
 - Cols of U are the orthogonal e-vectors of XX^T
 - Left singular vectors of X
 - $V(p \times p)$
 - V is orthogonal: $V^TV = I$
 - Cols of V are the orthogonal e-vectors of X^TX
 - Right singular vectors of X
 - Principal components for our data matrix
 - $-S\Sigma(N \times p)$
 - diagonal matrix consisting of r non-zero values in descending order
 - square root of the eigenvalues of XX^T (or X^TX)
 - r is the rank of the symmetric matrices
 - called the singular values

SVD: Mathematical Background

Reconstructed matrix $X_k = U_k \Sigma_k V_k^T$ the closest rank-k matrix to the original matrix X

• PCA: $:U_k.\Sigma_kV_k^{\mathrm{T}}$ Principal direction vectors: columns of V: V_k Principal components: $U_k\Sigma_k$

First row of $U_k S_k$ are the principal component "weights" for X_1

Outline

Dimensionality Reduction: Linear Approaches

- Review: linear transformation of Gaussians
- Review: projection and least squares

■ PCA

- Last time, derive probabilistic "maximal" variance basis
- Maximize variance of projection of data
- Minimal approximation error from projection

SVD

- Definition & illustration
- Relate to PCA

PCA for Classification

- PCA finds directions of maximal variation
 - Showed useful for *representation*

- Classification?
 - Let's have labelled data
 - How do we use PCA for classification?
- Take PCA of both data records together?
 - Separately?
 - What makes sense?

Problem Set Up

- \blacksquare X_1, X_2 : Data matrices from two classes
- Sample mean and covariance in each data set
 - μ_{ℓ} , K_{ℓ}
- May not be the directions that are useful in classification
- The PC directions may not discriminate btw the classes
- What are the best directions?

Problem Set Up

- \blacksquare X_1, X_2 : Data matrices from two classes
- Sample mean and covariance in each data set
 - μ_{ℓ} , K_{ℓ}
- Given vector w define:
 - Mean in each class: $m_{\ell} = w^T \mu_{\ell}$
 - Sample variance in each class: $s_{\ell}^2 = w^T K_{\ell} w$
 - Number of samples in each class: N_{ℓ}
- Project via PCA and try to classify

Example: optical handwritten digits

Data set:images of handwritten digits

Visualizing PCs

- Take coefficients along two PCs
- Classification: some benefits
- But problems already

Problems with PCA for Classification

- May not be the directions that are useful in classification
- The PC directions may not discriminate btw the classes
- Can we find better directions?

PCA: Clustering Example

- PCA will identify:
- v_1 : dir of max variance

• v_2 : dir of min variance

Problems with PCA Illustrated

Principal components

- Projection onto v_1
 - Best PC vector, but
 - Very bad for separating classes

Problems with PCA clustering

Principal components

- Projection onto v_2
 - Worst PC vector, but
 - very good for separating classes

Problems with PC Illustrated: multi class

- PCA will identify:
- \mathbf{v}_1 : dir of max variance
 - Very bad for separating classes
- v_2 : dir of min variance
 - Very good for separating classes

Outline

Dimensionality Reduction: Linear Approaches

- Review: linear transformation of Gaussians
- Review: projection and least squares

PCA

- Last time, derive probabilistic "maximal" variance basis
- Maximize variance of projection of data
- Minimal approximation error from projection

SVD

- Definition & illustration
- Relate to PCA

Linear Discriminant Analysis

- Lower dimension-preserves class separation. (hence discriminant)
- Project data on vector w aga * (hence linear!)
- Find w that maximizes

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

It turns out that that w is the normal vector to the plane that best separates the classes

Problem Set Up

- \blacksquare X_1, X_2 : Data matrices from two classes
- Sample mean and covariance in each data set
 - μ_{ℓ} , S_{ℓ}
- Given vector w define:
 - Mean in each class: $m_{\ell} = w^T \mu_{\ell}$
 - Sample variance in each class: $s_{\ell}^2 = w^T S_{\ell} w$
 - Number of samples in each class: N_{ℓ}
- Fisher Criteria: Find direction w to maximize:

$$J = \frac{N|m_1 - m_2|^2}{N_1 s_1^2 + N_2 s_2^2}$$

Average squared difference normalized by the variance

Solution to the Fisher Criteria (K=2 classes)

Matrix form of Fisher criteria:

$$J = \frac{N|m_1 - m_2|^2}{N_1 s_1^2 + N_2 s_2^2} = \frac{N|w^T (\mu_1 - \mu_2)|^2}{N_1 w^T S_1 w + N_2 w^T S_2 w}$$
$$= \frac{w^T S_B w}{w^T S_W w}$$

-
$$S_B=(\mu_1-\mu_2)~(\mu_1-\mu_2)^T$$
, between class scatter, before projection
- $S_W=\frac{N_1}{N}S_1+\frac{N_2}{N}S_2$ weighted sum in-class scatter, before projection

Solution to the Fisher Criteria (K=2 classes)

- Optimization of Fisher
- Take derivative and set to zero:

-
$$(w^T S_B w) S_W w = (w^T S_W w) S_B w$$

- $(w^T S_B w) S_W w = (w^T S_W w) (\mu_1 - \mu_2)^T w (\mu_1 - \mu_2)$
- $S_W w = c(\mu_1 - \mu_2)$

■ LDA solution: $w = cS_w^{-1}(\mu_1 - \mu_2)$

K>2 Classes

- With multiple classes, let
 - Overall sample mean: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - Sample mean and covariance in each class: μ_{ℓ} , S_{ℓ}
- Define:
 - Cross-class variances: $S_B = \sum_{\ell=1}^K N_\ell (\mu \mu_\ell) (\mu \mu_\ell)^T$
 - In-class scatter: $S_W = \sum_{\ell=1}^K N_\ell S_\ell$
- LDA components are K-1 eigenvectors of $S_W^{-1}S_B$
- Or Find W that maximizes

$$J(\mathbf{W}) = \frac{|\mathbf{W}^T \mathbf{S}_B \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_W \mathbf{W}|}$$
 The largest eigenvectors of $\mathbf{S}_W^{-1} \mathbf{S}_B$ Maximum rank of K -1

Fisher's Linear Discriminant: K>2 Classes

- With multiple classes, let
 - Overall sample mean: $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - Sample mean and covariance in each class: μ_{ℓ} , S_{ℓ}
- Define:
 - Cross-class variances: $S_B = \sum_{\ell=1}^K N_\ell (\mu \mu_\ell) (\mu \mu_\ell)^T$
 - In-class scatter: $S_W = \sum_{\ell=1}^K N_\ell S_\ell$
- LDA components are K-1 eigenvectors of $S_W^{-1}S_B$

Fisher's Linear Discriminant: K>2 Classes

■ Find w that max

$$J(\mathbf{W}) = \frac{\left| \mathbf{W}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{W} \right|}{\left| \mathbf{W}^{\mathsf{T}} \mathbf{S}_{\mathsf{W}} \mathbf{W} \right|}$$

■ LDA soln:K-1 eigenvectors of $S_W^{-1}S_B$

The largest eigenvectors of $S_W^{-1}S_B$ Maximum rank of K-1

Parametric soln:

$$\mathbf{w} = \Sigma^{-1}(\mu_1 - \mu_2)$$
when $p(\mathbf{x} \mid C_i) \sim \mathcal{N}(\mu_i, \Sigma)$

OptDigits Example Revisited: After LDA

- Consider representation with 2 LDA components
- Visually you see a better separation between classes than with PC