Image filtering

Slides Credits: CMU 16385 (Matthew O'Toole, Ioannis Gkioulekas) Dartmouth COSC 83/183 (Adithya Pediredla)

ICS 483 Computer Vision Fall 2025, Lecture 2

Course announcements

- Make sure you are on Discord https://discord.gg/S5Gbr3GCWj
- HW 1 posted [Lamaku → Assignments]. Due Tue 9/18 11:55pm. Start early! Some content is not covered in class yet, but you should be able to finish the image filtering part after today's class.
- Quiz 1 posted [Lamaku → Assignments]. Due Thu 9/5 11:55pm. Start early. Must be submitted as PDF generated using LaTex. You might need time to learn LaTex and Overleaf (~1 hour).
- The first extra credit mini programming exercise is **mandatory**. Please submit the co-lab link on [Lamaku → Assignments]. **Due Tue 9/3 11:55pm.**

Course announcements

- 1 Invited Speaker Confirmed!
- Agastya Kalra (Senior Staff Engineer / Tech Lead in Robotics, Alphabet). Date/time TBA. In class.

Course announcements

- (Paid) Undergraduate Research Opportunities
- https://manoa.hawaii.edu/undergrad/urop/
- Up to \$5000 per individual and \$10k per group
- Various programs

Overview of today's lecture

- Types of image transformations.
- Point image processing.
- Linear shift-invariant image filtering.
- Convolution.
- Image gradients.

Slide credits

Most of these slides were adapted directly from:

- Matt O'Toole (CMU, 15-463, Fall 2022).
- <u>Ioannis Gkioulekas (CMU, 15-463, Fall 2020).</u>
- Kris Kitani (CMU, 15-463, Fall 2016).

Inspiration and some examples also came from:

- Fredo Durand (Digital and Computational Photography, MIT).
- Kayvon Fatahalian (15-769, Fall 2016).

Types of image transformations

A (color) image is a 3D tensor of numbers.

How many bits are the intensity values?

color image patch

colorized for visualization

actual intensity values per channel

Each channel is a 2D array of numbers.

grayscale image

What is the range of the image function f?

(assuming a floating-point image from 0-1) (what about an 8-bit image)

A (grayscale) image is a 2D function.

What types of image transformations can we do?

Filtering

What types of image transformations can we do?

changes range of image function

What types of image filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

Point processing

Examples of point processing

original

invert

implement these? Examples of point processing

original

darken

lower contrast

non-linear lower contrast

lighten

raise contrast

non-linear raise contrast

implement these? Examples of point processing

original

x - 128

implement these? Examples of point processing

original

x - 128

implement these? Examples of point processing

original

darken

lower contrast

non-linear lower contrast

 \boldsymbol{x}

 $\times 255$

invert

lighten

raise contrast

non-linear raise contrast

implement these? Examples of point processing

original

 \boldsymbol{x}

x - 128

 $\times 255$

invert

lighten

implement these? Examples of point processing

original

darken

lower contrast

non-linear lower contrast

x - 128

 $\times 255$

invert

lighten

raise contrast

non-linear raise contrast

x + 128

implement these? Examples of point processing

original

darken

lower contrast

non-linear lower contrast

 $\times 255$

invert

lighten

raise contrast

non-linear raise contrast

255 - x

x + 128

 $x \times 2$

implement these? Examples of point processing

original

darken

lower contrast

non-linear lower contrast

 $\times 255$

invert

lighten

raise contrast

non-linear raise contrast

255 - x

 $x \times 2$

$$\left(\frac{x}{255}\right)^2 \times 255$$

Many other types of point processing

camera output

image after stylistic tonemapping

Many other types of point processing

Linear shift-invariant image filtering

Linear shift-invariant image filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is *shifted* to all pixel locations so that all pixels use the same linear combination of their neighbors.

Example: the box filter

- also known as the 2D rect (not rekt) filter
- also known as the square mean filter

kernel
$$g[\cdot,\cdot] = rac{1}{9} egin{array}{c|cccc} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

- replaces pixel with local average
- has smoothing (blurring) effect

ou	output $h[\cdot,\cdot]$										
L	Ш										
H											
									\square		

note that we assume that the kernel coordinates are centered

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	90	90	90	90	90	Ь	d
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

shift-invariant:
as the pixel
shifts, so does
the kernel

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

image_ $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

ou	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

ou	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			
	0										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	mage $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

out	output $h[\cdot,\cdot]$										
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30									

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

out	output $h[\cdot,\cdot]$											
	0	10	20	30	30	30	20	10				
	0	20	40	60	60	60	40	20				
	0	30	50	80	80	90	60	30				
	0	30	50	80	80	90	60	30				
	0	20	30	50	50	60	40	20				
	0	10	20	30	30	30	20	10				
	10	10	10	10	0	0	0	0				
	10											

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output $h[\cdot,\cdot]$												
	0	10	20	30	30	30	20	10				
	0	20	40	60	60	60	40	20				
	0	30	50	80	80	90	60	30				
	0	30	50	80	80	90	60	30				
	0	20	30	50	50	60	40	20				
	0	10	20	30	30	30	20	10				
	10	10	10	10	0	0	0	0				
	10	10	10	10	0	0	0	0				

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output filter image (signal)

... and the result is

image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output $h[\cdot,\cdot]$											
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30	50	80	80	90	60	30			
	0	30	50	80	80	90	60	30			
	0	20	30	50	50	60	40	20			
	0	10	20	30	30	30	20	10			
	10	10	10	10	0	0	0	0			
	10	10	10	10	0	0	0	0			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l] \label{eq:heat}$$
 output filter image (signal)

Some more realistic examples

Some more realistic examples

Some more realistic examples

Convolution

Convolution for 2D discrete signals

Definition of filtering as convolution: notice the flip $(f*I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$ filter input image

Convolution for 2D discrete signals

Definition of filtering as convolution:

notice the flip $(f*I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$ filter input image

If the filter f(i,j) is non-zero only within $-1 \leq i,j \leq 1$, then

$$(f * I)(x,y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i,y-j)$$

The kernel we saw earlier is the 3x3 matrix representation of f(i,j).

Convolution vs correlation

Definition of filtering as convolution:

ring as convolution: notice the flip
$$(f*I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$

Definition of filtering as correlation:

ring as correlation: notice the lack of a flip
$$(f*I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i,y+j)$$

- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering (lectures 5-6).

A 2D filter is separable if it can be written as the product of a "column" and a "row".

What is the rank of this filter matrix?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

Why is this important?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

What is the cost of convolution with a non-separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter? \longrightarrow $M^2 \times N^2$
- What is the cost of convolution with a separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter? \longrightarrow $M^2 \times N^2$
- What is the cost of convolution with a separable filter? \longrightarrow 2 x N x M²

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image
$$(f*I)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$
 filter input image

If the filter f(i,j) is non-zero only within $-1 \leq i,j \leq 1$, then

$$(f * I)(x,y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i,y-j)$$

The kernel we saw earlier is the 3x3 matrix representation of f(i,j).

Convolution for 1D continuous signals

Convolution for 1D continuous signals

Definition of filtering as convolution:

$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$
 filter signal

Consider the box filter example:

$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

notice the flip

filtering output is a blurred version of g
$$(f*g)(x) = \int_{-0.5}^{0.5} g(x-y) dy$$

A few more filters

original

3x3 box filter

do you see any problems in this image?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

• usually at 2-3σ

Is this a separable filter?

kernel $\begin{array}{c|ccccc} & 1 & 2 & 1 \\ \hline 16 & 2 & 4 & 2 \\ \hline 1 & 2 & 1 \\ \hline \end{array}$

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

• usually at 2-3σ

Is this a separable filter? Yes!

Gaussian filtering example

Gaussian vs box filtering

original

Which blur do you like better?

Gaussian vs box filtering

original

Which blur do you like better?

7x7 Gaussian

7x7 box

How would you create a soft shadow effect?

UH Manoa _____

UH Manoa

How would you create a soft shadow effect?

Gaussian blur

input

filter

0	0	0
0	1	0
0	0	0

output

?

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

0	0	0
1	0	0
0	0	0

output

?

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

0	0	0
1	0	0
0	0	0

output

shift to left by one

input

(0)

filter

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{9}$	1	1	1
0	0	0	5	1	1	1

output

?

input

filter

0	0	0	1	1	1	1
0	2	0	$-\frac{1}{9}$	1	1	1
0	0	0	3	1	1	1

output

sharpening

- do nothing for flat areas
- stress intensity peaks

Do not overdo it with sharpening

original

sharpened

oversharpened

What is wrong in this image?

Image gradients

What are image edges?

grayscale image

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.

Calculus 101 reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Calculus 101 reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$
 What convolution kernel does this correspond to?

Calculus 101 reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2} \qquad \begin{array}{c} 0.5 \times |-1| \ 0 \ | 1 \\ 0.5 \times |-1| \ 0 \ | -1 \end{array}$$

Calculus 101 reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$
 1D derivative filter
$$0.5 \times \boxed{1 \quad 0 \quad -1}$$

Calculus 101 reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$
 1D derivative filter 1 0 -1

Remove 0.5. Edges will look brighter

1	0	-1		1		1 0 -1
2	0	-2	=	2	*	1D derivative
1	0	-1		1		filter

What filter

is this?

Sobel filter

Does this filter return large responses on vertical or horizontal changes in image?

Horizontal Sober filter:

1	0 -1		1		1	0	-1
2	0 -2	=	2	*			
1	0 -1		1				

What does the vertical Sobel filter look like?

Horizontal Sober filter:

=

*

Vertical Sobel filter:

=

*

Sobel filter example

original

which Sobel filter?

which Sobel filter?

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Several derivative filters

	1	0	-1
Sobel	2	0	-2
	1	0	-1

1	2	1
0	0	0
-1	-2	-1

3 0 -3
harr 10 0 -10
3 0 -3

3	0	-3	3	10	3
0	0	-10	0	0	0
3	0	-3	-3	-10	-3

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Roberts

0	1
-1	0

1	0
0	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

Computing image gradients

1. Select your favorite derivative filters.

$$S_x = egin{array}{c|cccc} 1 & 0 & -1 \ 2 & 0 & -2 \ \hline 1 & 0 & -1 \ \end{array}$$

Computing image gradients

1. Select your favorite derivative filters.

$$S_x = egin{array}{c|cccc} 1 & 0 & -1 \ 2 & 0 & -2 \ \hline 1 & 0 & -1 \ \end{array}$$

$$m{S}_y = egin{array}{c|cccc} 1 & 2 & 1 \ 0 & 0 & 0 \ \hline -1 & -2 & -1 \ \end{array}$$

2. Convolve with the image to compute derivatives.

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \otimes oldsymbol{f}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y \otimes oldsymbol{f}$$

Computing image gradients

Select your favorite derivative filters.

$$m{S}_x = egin{bmatrix} 1 & 0 & -1 \ 2 & 0 & -2 \ 1 & 0 & -1 \ \end{bmatrix} m{S}_y = egin{bmatrix} 1 & 2 & 1 \ 0 & 0 & 0 \ -1 & -2 & -1 \ \end{bmatrix}$$

$$m{S}_y = egin{array}{c|cccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \\ \hline \end{array}$$

Convolve with the image to compute derivatives.

$$rac{\partial m{f}}{\partial x} = m{S}_x \otimes m{f} \qquad \qquad rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

Image gradient example

original

vertical derivative

gradient amplitude

horizontal derivative

How does the gradient direction relate to these edges?

How do you find the edge of this signal?

How do you find the edge of this signal?

intensity plot

Using a derivative filter:

derivative plot

What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

How much should we blur?

Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

 How many operations did we save?

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$
 \longrightarrow 1D derivative filter 1 0 -1

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
 Laplace filter ?

Laplace filter

Basically a second derivative filter.

We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0}$$

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

1D derivative filter

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow$$

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

"zero crossings" at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).

2D Gaussian filters

Gaussian

Derivative of Gaussian

how does this relate to this lecture's cover picture?

Laplacian of Gaussian