Rockchip Rockit Runtime Library Developer Guide

文件标识: RK-KF-YF-939

发布版本: V1.4.56

日 期: 2023-07-27

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2022 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文对Rockit Runtime Library 做简要使用说明。

产品版本

芯片名称	内核版本
RV1106/RV1103	Linux5.10

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

1. 修订记录

日期	版本	作者	修改说明
2022-04-06	V1.4.11	SCH	初始发布
2022-05-26	V1.4.15	SCH	增加VENC, 新增一些说明
2022-11-30	V1.4.30	SCH	增加日志等级设置
2023-07-27	V1.4.56	SCH	增加MCU KO加载参数说明,增加调试信息参数说明

2. 目录

Rockchip Rockit Runtime Library Developer Guide

- 1. 修订记录
- 2. 目录
- 3. 框架
 - 3.1 KO支持的参数
 - 3.1.1 mcu_fw_path
 - 3.1.2 mcu_fw_addr
 - 3.1.3 isp max h
 - 3.1.4 isp_max_w
 - 3.1.5 en_mcu
 - 3.1.6 rk_dma_heap_base
 - 3.1.7 rk_dma_heap_size
- 4. VALLOC
- 5. VLOG
 - 5.1 查看内核LOG
 - 5.2 设置模块LOG输出等级的方式
 - 5.3 设置 SO LOG输出路径和大小
- 6. VSYS
- 7. VENC
- 8. VRGN

3. 框架

为了更好的移植rockit, 在内核中新开发一套runtime library, 目前以ko的形式发布。框图如下:


```
.

isp.ko ---- isp模块,对应/dev/mpi/rkisp-vir0节点

valloc.ko --- buffer管理器,对应/dev/mpi/valloc节点

venc.ko --- 编码器模块,对应/dev/mpi/venc

vmpi.ko --- 媒体框架,对应 /dev/mpi/vmpi

vpss.ko --- vpss模块,对应 /dev/mpi/vpss

vrga.ko --- rga模块,对应 /dev/mpi/vrga

vrgn.ko --- rgn模块,对应 /dev/mpi/vrgn

vsys.ko --- 系统模块,对应 /dev/mpi/vsys

vvi.ko --- vi模块,对应 /dev/mpi/vvi
```

在使用rockit 接口之前,需要加载上述ko, 加载方式如下(注:上述所有ko,已合并成一个ko):

```
insmod rockit.ko
```

使用以下命令检查是否加载成功

```
# lsmod

Module Size Used by Tainted: G

rknpu 21535 1

rockit 90530 14

mpp_vcodec 350020 4 rockit

rga3 76968 3 rockit

sc4336 8940 2

phy_rockchip_csi2_dphy 7657 0

phy_rockchip_csi2_dphy_hw 7644 0

video_rkisp 138585 3 rockit,[permanent]

video_rkcif 107889 4

rk_dvbm 5813 2 mpp_vcodec,video_rkisp
```

加载成功后,即可运行依赖rockit.so相关程序。

3.1 KO支持的参数

3.1.1 mcu_fw_path

mcu卷绕固件路径,默认空,不加载mcu固件

```
insmod rockit.ko mcu_fw_path=/oem/usr/ko/hpmcu_wrap.bin
```

3.1.2 mcu_fw_addr

mcu 卷绕固件的地址,默认为0xff6ff000

```
insmod rockit.ko mcu_fw_addr=0xff6ff000
```

3.1.3 isp_max_h

isp 前级输入的高度,如果VICAP配置裁剪功能,应配置裁剪后的宽度,如果次参数配置错误,cat /dev/mpi/vlog 会有提示正确的值。mpi_log_err("isp input height config err, config h= %d, real h = %d", isp_max_h, isp_h);

```
insmod rockit.ko isp_max_h=1920
```

3.1.4 isp max w

保留

3.1.5 en_mcu

是否使能MCU驱动,默认开启,关闭后不加载MCU驱动

```
insmod rockit.ko en_mcu=0
```

3.1.6 rk_dma_heap_base

RK_MPI_SYS_RelasePhyMemory释放的MMZ的首地址, 需要4K对齐, 并且大于MMZ的起始地址,MMZ 起始地址计算方式: 总物理内存 - MMZ大小

```
insmod rockit.ko rk_dma_heap_base=0x40000
```

3.1.7 rk_dma_heap_size

RK_MPI_SYS_RelasePhyMemory释放的MMZ的大小,需要小于等于MMZ的大小

```
insmod rockit.ko rk_dma_heap_size=0x40000
```

4. VALLOC

媒体框架的内存分配器,负责分配,管理媒体框架所需要的内存,使用以下命令可以查看当前内存状态 cat /dev/mpi/valloc

信息说明

项目	说明	备注
module	模块信息	模块名
version	版本信息	仓库名: commit: 版本号
build	编译信息	编译者-编译日期
mpi buf list	buf 列表分界线	以下是BUF相关信息
buf_id	全局唯一ID	用来识别MPI BUF,相当于HANDLE
pool_id	buf pool ID	mpi buf 隶属那个buf pool , -1 表示无pool
refent	mpi buf使用计数	使用之前 +1, 使用之后-1,为0,没pool, mpi buf 将被释放
dmacnt	dma buf使用计数	使用之前 +1, 使用之后-1,为0,dma_buf 将被释放
size	buf 大小	单位BYTE,为0表示此路为卷绕模式
handle	buf 句柄	RV1106 是物理地址
create	buf 创建者	记录BUFFER分布,为乱码,代表该BUFFER创建者被删除
user	buf 使用者	所有轮转BUFFER,会被记录当前使用者,轮转BUFFER,会 有POOL
total	总内存	单位BYTE
mpi pool list	buf pool 列表分界 线	以下是POOL相关信息
poid	全局唯一ID	pool_id = poid 说明此BUFFER,隶属于这个POOL
total	总BUFFER个数	
free	剩余BUFFER个数	当前可用BUFFER
min	最小剩余	为-1,表示存在丢帧
size	pool 中BUFFER SIZE	所有的BUFFER大小必须大于这个值
create	pool 创建者	
user	pool 使用者	

5. VLOG

5.1 查看内核LOG

cat /dev/mpi/vlog

5.2 设置模块LOG输出等级的方式

echo module=level > /tmp/rt_log_level 能够改变模块的LOG输出等级,该命令同时影响rockit so 和 ko, 其中

module = all cmpi mb sys vdec venc rgn vpss vgs tde avs wbc vo vi ai ao aenc adec

level=0,1,2,3,4,5,6, 其中2是ERR(红色), 3 WRN(黄色), 4 INF(绿色)

5.3 设置 SO LOG输出路径和大小

```
echo rt_log_path=/tmp/rockit.log > /tmp/rt_log_level
echo rt_log_size=1024000 > /tmp/rt_log_level
```

6. VSYS

媒体绑定关系管理器,可以通过如下命令查看当前绑定关系和帧率相关信息

cat /dev/mpi/vsys

信息说明

项目	说明	备注
module	模块信息	模块名
version	版本信息	仓库名: commit: 版本号
build	编译信息	编译者-编译日期
mpi node list	node 列表分界线	以下是node相关信息
id	全局唯一ID	用来识别MPI node,相当于HANDLE
name	创建NODE的设备名	多个NODE可能同一个名字
nid	rockit 自定义ID	自定义ID, 方便ROCKIT管理NODE
ref	使用计数	使用之前 +1, 使用之后-1,为0, 释放
infa_cnt	接收帧计数	node 接收帧总数
lent	接收丢帧计数	因处理不过来,或者处理失败,引起的丢帧,帧 率控制不在此范围
frate	接收帧率	以S为单位进行统计,不支持设置
fbase	接收丢帧比例	接收fbase帧,取首帧,其余全丢
went	接收端用户队列实际帧 数	用户通过depth 设置用户队列大小,用户获取后未 释放的帧也算在内
depth	接收端用户队列深度	不能超过前级BUF队列的总大小,否则概率卡住 前级
timeout	接收端获取用户队列数 据超时时间	单位MS
onfa_cnt	发送帧计数	node 发送帧总数
lent	发送丢帧计数	因处理不过来,或者处理失败,引起的丢帧,帧 率控制不在此范围
frate	发送帧率	以S为单位进行统计,不支持设置
fbase	发送丢帧比例	发送fbase帧,发收帧,其余全丢
went	发送端用户队列实际帧 数	用户通过depth 设置用户队列大小,用户获取后未 释放的帧也算在内
depth	发送端用户队列深度	不能超过前级BUF队列的总大小,否则概率卡住 前级
timeout	发送端获取用户队列数 据超时时间	单位MS
itime	接收1帧耗时	单位us
otime	发送1帧耗时	单位us
next node	后级NODE ID	支持1个NODE 绑定多个NODE

项目	说明	备注
mpi node frame control	node 帧率控制表	以下是NODE帧率控制相关信息
id	全局唯一ID	用来识别MPI node,相当于HANDLE
name	创建NODE的设备名	多个NODE可能同一个名字
table	丢帧表	大小为帧率,0表示留,1表示丢

7. VENC

编码参数,可以通过以下命令

cat /proc/vcodec/enc/venc_info

• venc thread status

参数	描述
last_runing	线程最近一次被唤醒的时刻
run_cnt	线程运行的次数
que_cnt	线程触发次数

• venc chn running status

参数	描述
ID	编码通道号
runing	通道是否在工作
combo_run	通道jpeg合并编码是否工作
cfg_gap	通道配置寄存器耗时(ms)
strm_cnt	通道中缓存码流个数
strm_out	通道中送给应用码流个数
gap_time	通道前后两次启动编码的间隔(ms)
cb_gap_time	JPEG合并编码两个编码时间间隔
last_cb_start	最近一次JPEG合并编码启动时刻
last_cb_end	最近一次JPEG合并编码结束时刻

• venc chn attr 1

参数	描述
ID	编码通道号
Width	编码通道宽度
Height	编码通道高度
Туре	编码通道类型
ByFrame	按帧获取码流标识 0:按包获取 1:按帧获取
Sequence	序列号 按帧获取时为帧序列号,按包获取时为包序列号
GOPMode	GOP模式
Prio	通道优先级的值

• venc chn attr 2

参数	描述
ID	编码通道号
Vestr	是否启动编码
SrcFr	VENC帧率控制的源帧率,即输入帧率
TarFr	VENC帧率控制的目标帧率
Timeref	VENC启动时间
PixFmt	编码当前帧的格式
RealFps	VENC真实帧率
Rotation	VENC是否开启旋转
Mirror	VENC是否开启镜像

• h264e chn attr

参数	描述
ID	编码通道号
Width	宽度,以像素为单位
Height	高度,以像素为单位
Profile	编码通道profile Base: baseline Mp:main profile Hp:high profile

• Syntax INFO1

参数	描述
ID	通道号
Slcsplten	是否使用slice划分
SplitMode	slice划分模式 1:按字节划分 2:按宏块划分
Slcsize	slice的大小,当split_mode不同时,slice_size表示不同的意义
IntraRefresh	是否使能P帧刷I宏块
RefreshMode	刷I宏块的模式 row:按行刷 column:按列刷
RefreshNum	每帧刷I宏块的行数或者列数

• Syntax INFO2

参数	描述
ID	通道号
Profile	编码通道profile类型 Base: Baseline MP: Main profile HP: High profile
Cabac	熵编码模式,cavlc或cabac
Trans8	使用的变换模式 默认只使能trans4x4模式 Y:使能trans8x8模式
QMatrix	是否使用自定义的量化表
Poc	语法元素pic_order_cnt_type的值
Alpha	语法元素slice_alpha_c0_offset_div2的值
Beta	语法元素slice_beta_offset_div2的值

• h265e chn attr

参数	描述
ID	编码通道号
Width	宽度,以像素为单位
Height	高度,以像素为单位
Profile	编码通道profile main: main profile

• Syntax INFO1

参数	描述
ID	通道号
Slcsplten	是否使用slice划分
SplitMode	slice划分模式 1:按字节划分 2:按宏块划分
Slcsize	slice的大小,当split_mode不同时,slice_size表示不同的意义
IntraRefresh	是否使能P帧刷I宏块
RefreshMode	刷I宏块的模式 row:按行刷 column:按列刷
RefreshNum	每帧刷I宏块的行数或者列数

• Syntax INFO2

参数	描述
ID	通道号
Dblken	语法元素slice_deblocking_filter_disabled_flag的取反值
Тс	语法元素slice_tc_offset_div2的值
Beta	语法元素slice_beta_offset_div2的值
Saoluma	语法元素slice_sao_luma_flag的值
Saochroma	语法元素slice_sao_chroma_flag的值
IntraSmoothing	语法元素strong_intra_smoothing_enabled_flag的值

• Trans Info

参数	描述
ID	通道号
CbQpoffset	语法元素pps_cb_qp_offset的值
CrQpoffset	语法元素pps_cr_qp_offset的值

• jpege chn attr

参数	描述
ID	通道号
width	图像宽度。单位:像素
height	图像高度。单位:像素
quant	通道量化qp
qfactor	通道采用的qfactor
qfmax	通道采用的qfactor的最大值
qfmin	通道采用的qfactor的最小值

• hw status

参数	描述
ID	通道号
hw_run	当前通道正在运行
enc_status	enc所处状态: 0: ENC_STATUS_CFG_IN, 1: ENC_STATUS_CFG_DONE, 2: ENC_STATUS_START_IN, 3: ENC_STATUS_START_DONE, 4: ENC_STATUS_INT_IN, 5: ENC_STATUS_INT_DONE
pkt_fail_cnt	enc请求packet pool失败次数
ring_fail_cnt	stream buf分配失败次数
cfg_fail_cnt	生成硬件配置信息失败次数
start_fail_cnt	启动硬件编码失败的次数
pkt_full_cnt	因为PACKET超过100个引起的丢帧次数。

• ring buf status

参数	描述
ID	通道号
w_pos	码流buf的写位置
r_pos	码流buf的读位置
used_len	码流buf用掉的空间
total_len	码流buf总空间大小
min_size	单帧分配要求最新free空间
l_w_pos	最近一次更新写位置
l_r_pos	最近一次更新读位置

• packet_pool

参数	描述
unused_cnt	packet空闲个数
used_cnt	packet被占用个数
total_cnt	目前总packet个数,上限所有通道共用128

• RC base param1

参数	描述
ChnId	编码通道号
Gop	编码Gop(Group of pictures)
StatTm	码率统计时间,单位秒
ViFr	VI发送图像帧率
TrgFr	编码目标帧率
RcMode	码率控制模式(cbr/fixqp/vbr/avbr)
Br(kbps)	码率,单位kbps
IQp	I帧Qp, FixQp有效
PQp	P帧Qp, FixQp有效

• RC base param2

参数	描述
ChnId	编码通道号
MinQp	P帧最小qp
MaxQp	p帧最大qp
MinIQp	I帧最小qp
MaxIQp	I帧最大qp
EnableIdr	IDR使能开关 Y:使能 N:关闭

• RC run comm param1

参数	描述
ChnId	编码通道号
bLost	当瞬时码率超出设定的阈值时是否丢帧
LostThr	丢帧阈值
LostFrmstr	丢帧的数量统计
EncGap	编码帧的间隔

• RC run comm param2

参数	描述
ChnId	编码通道号
SprFrmMod	超大帧处理模式
SprIFrm	I帧超大帧阈值
SprPFrm	P帧超大帧阈值
RCPriority	码率控制优先级 bitrate: 目标码率优先 framebits: 超大帧阈值优先

• RC gop mode attr

参数	描述	
ChnId	编码通道号	
GopMode	gop_mode的类型	
IpQpDelta	IP帧Qp Delta值。SmartP模式下显示Bg帧和P帧的Qp Delta值。 取值范围: [-10, 30]	
BgInterval	Special P帧的间隔 取值范围:小于等于Gop	
ViQpDelta	Vitual I帧和P帧的Qp Delta值 取值范围: [-10,30]	

• RC run vbr common param

参数	描述	
ChnId	编码通道号	
ChgPs	VBR开始调整Qp时的码率相对于最大码率的比例。 该值通过bitrate/max_bitrate*100计算获取	
MinIprop	最小IP帧码率的比值。取值范围: [1,100]。 默认值: 1	
MaxIprop	最大IP帧码率的比值。取值范围: [MinIprop, 100]。 默认值: 100	
MaxQp	P帧的最大QP。取值范围: [0, 51]。 默认值: 51	
MinQp	P帧的最小QP。取值范围: [0, MaxQp]。 默认值: 24	
MaxIQp	I帧的最大QP。取值范围: [0,51]。 默认值: 51	
MinIQp	I帧的最小QP。取值范围: [0, MaxIQp]。 默认值: 24	
MaxReEncTimes	每帧重编码次数。0表示不进行重编码。取值范围:[0,3] 默认值:1	

• RC run cbr param

参数	描述	
MinIprop	最小IP帧比例。取值范围: [1, 100]	
MaxIprop	最大IP帧比例。取值范围:[MinIprop, 100]	
MaxQp	P帧最大QP,用于钳位质量。取值范围: [0, 51]	
MinQp	P帧最小QP,用于钳位码率波动。取值范围: [0, MaxQp]	
MaxIQp	I帧的最大QP。用于控制I帧的最小bits数。取值范围: [0, 51]	
MinIQp	I帧的最小QP。用于控制I帧的最大bits数。取值范围: [0, MaxIQp]	
MaxReEncTimes	每帧重编码次数。0表示不进行重编码。取值范围:[0,3]	

• RC HierarchicalQp INFO

参数	描述
ChnId	编码通道号
bEnable	分层qp是否使能
FrameNum[0]	qp为第1层的帧个数
FrameNum[1]	qp为第2层的帧个数
FrameNum[2]	qp为第3层的帧个数
FrameNum[3]	qp为第4层的帧个数
QpDelta[0]	第1层的帧的QpDelta
QpDelta[1]	第2层的帧的QpDelta
QpDelta[2]	第3层的帧的QpDelta
QpDelta[3]	第4层的帧的QpDelta

• RC debreath_effect info

参数	描述
ChnId	编码通道号
bEnable	去除呼吸效应是否使能
Strength0	去除呼吸效应强度0
DeBrthEfctCnt	去除呼吸效应图像处理的次数

• RC run info1

参数	描述	
ChnId	编码通道号	
InsBr(kbps)	瞬时码率,单位kbps	
InsFr	瞬时帧率	
WatL	码率水线	
CfgBt(kb)	前帧的目标大小,单位kb	
RealBt(kb)	上一帧码流的实际大小,单位kb	
IPRatio	I帧和P帧平均大小的比例	
StartQp	起始Qp	
MinQp	最小Qp	
MaxQp	最大Qp	

8. VRGN

媒体框架的RGN管理器,使用以下命令可以查看当前RGN的相关信息

cat /dev/mpi/vrgn

信息说明

项目	说明	备注
module	模块信息	模块名
version	版本信息	仓库名: commit: 版本号
build	编译信息	编译者-编译日期
rgn list	rgn 列表分界线	以下是RGN相关信息
handle	rgn 句柄	用来识别RGN
type	rgn 类型	用来识别RGN类型,OVERLAY、COVER、MOSAIC
width	rgn 区域宽度大小	
heigth	rgn 区域高度大小	
format	rgn 区域格式	OVERLAY、COVER类型有效,"-1" 表示输入类型不支持
buf_id	rgn 当前使用buf	OVERLAY类型有效,其他类型为 "-1"
refent	mpi buf使用计数	
channel_num	rgn attach 数量	RGN ATTACH 通道(模块)的数量
node_rgn list	node_rgn 列表分界 线	以下是NODE_RGN相关信息
id	全局唯一ID	用来识别MPI node
name	创建NODE的设备名	多个NODE可能同一个名字
h	rgn 句柄	用来识别RGN,相当于HANDLE
X	rgn 区域x坐标	RGN 起始位置的x偏移量
у	rgn 区域y坐标	RGN 起始位置的y偏移量
h x y	rgn 区域位置信息	h x y为一组,用来识别RGN位置信息