A PROPER PLAN ON HOW TO STUDY OPERATING SYSTEMS EFFECTIVELY

Planning is the process of thinking about activities required to achieve
a desired goal
Desired goal :
() Understand the basics of operating system
Score good marks in competitive exams like GATE
Pass your college semester exam of OS
Crack your interviews
Activities:
Sollow the order of the topics as I mention below
Understand what to study vs what to not
Studying for GATE vs studying for semester exam
Theory vs Examples
Ask questions whenever you have doubt - google it or ask in
comments
Solve as much examples as you can
Pause the video and try to solve problem. Then watch my solution
Go slow. Don't aim for just completing the playlist. Exception exists
for college students who are just st <u>udying</u> for pa <u>ssing i</u> t 😛. Otherwise,
take your time.
Read my notes on each topic
Before I go through the planned syllabus for OS, let me discuss what I expect from you
Subscribe if you like the content - positive feedback
Oislike and comment on the video - negative feedback
Ssue with quality of the video or sound - comment
√ I will fix the issues and upload video again. — —

CONTENTS

1. Overview of operating system

- a. What is an operating system OS vs kernel
- b. Functions of an operating system
- c. System calls in operating system
- d. Interrupts in operating system
- e. Signals in operating system interrupts vs signals

2. Process Management

A. Process Concepts

- a. What is a process programs vs process
- b. How does OS keeps track or represent a process Process Control Block(PCB)
- c. Different states a process goes through
- d. Scheduling queues in operating system
- e. Schedulers in operating system
- f. Context switch in operating system
- g. Dispatcher in operating system
- h. Process creation and lifecycle management with fork(), exec(), wait() and exit() system calls
- i. Examples of process creation with fork()
- j. Basics of interprocess communication

B. Multithreaded programming

- a. What is a thread
- b. Process vs Thread
- c. User level threads vs kernel level threads
- d. Multithreading models

C. Process scheduling

- a. Already covered the scheduling queues and schedulers in process concepts section. If forgot, revisit it
- b. CPU bound vs IO bound process
- c. Preemptive vs nonpreemptive scheduling
- d. CPU scheduling criteria
- e. Scheduling algorithms with advantages, disadvantages and examples
- f. Examples with different arrival time, IO and context switch
- 3. Process coordination

A. Process synchronisation

- a. Race condition in operating system
- b. Critical section and critical section problem
- c. Software solution to critical section problem Peterson solution and its drawbacks
- d. Hardware solution to critical section problem test and set vs swap instruction solution
- e. Semaphore and mutex
- f. Spin lock vs mutex vs binary semaphore vs counting semaphore
- g. Producer consumer problem and its solution using mutex and semaphore
- h. Reader writer problem and its solution using mutex and semaphore

B. **Deadlocks**

- a. What is deadlock and its characteristics
- b. How to detect deadlock
- c. Methods for handling and preventing deadlocks

4. Memory management

A. Memory management techniques

- a. Contiguous memory management techniques
- b. Fixed partitioning method vs variable partitioning
- c. First fit, next fit and best fit algorithms
- d. Logical address space vs physical address space
- e. Memory mapping and protection in contiguous memory management
- f. Noncontiguous memory management techniques
- g. Paging in operating system
- h. /Pages, frames, page table concepts
- i. TLB in operating system
- j. Memory protection in paging
- k. \Segmentation memory management technique

B. Virtual memory management

- a. What is virtual memory and virtual memory management
- b. Demand paging in operating system
- c. (Page replacement techniques
- d. FIFO vs Optimal vs LRU page replacement algorithm with

- examples
 Frame allocation techniques and thrashing
- 5. Storage management
 - a. File representation and operation on files
 - b. Types of files
 - c. Access methods for files
 - d. Directory and its structure
 - e. File protection
 - f. How a file system is implemented
 - g. Disk scheduling
 - h. RAID levels