Example of the mdfga fonts.

Paul Pichaureau

15 janvier 2006

Résumé

The package mdfga consists of a full set of mathematical fonts, designed to be combined with fontsite garamond as the main text font.

This example is extracted from the excellent book *Mathématiques pour la physique et les physiciens*, W. Appel, Paris, éd. H.& K., 1999.

1 Dérivation de la transformée de Fourier

On a la relation très importante entre T.F. et dérivation:

Théorème 10.22 Soit $f \in L^1(\mathbb{R})$ une fonction décroissant suffisamment vite pour que $x \mapsto x^k f(x)$ soit également dans $L^1(\mathbb{R})$ pour k = 0, ..., n. Alors \tilde{f} est n fois dérivable et on a

$$\mathscr{F}\left((-2i\pi x)^k f(x)\right) = \widetilde{f}^{(k)}(v)$$
 pour $k = 1, ..., n$.

Inversement, si $f \in L^1(\mathbb{R})$, si f est de classe \mathscr{C}^n et si, de plus, les dérivées successives $f^{(k)}$ sont intégrables pour $k = 1, \ldots, n$, alors on a

$$\mathscr{F}\left(f^{(m)}(x)\right) = (2i\pi v)^m \widetilde{f}(v)$$
 pour $k = 1, ..., n$.

Notamment, on retiendra que:

$$\mathscr{F}(f'(x)) = 2i\pi\nu\widetilde{f}(\nu)$$
 et $\mathscr{F}(-2i\pi x f(x)) = \frac{d}{d\nu}\widetilde{f}(\nu)$.

Pour tout $x \in \mathbb{R}$, la fonction $v \mapsto f(x) e^{-2i\pi vx}$ est de classe \mathscr{C}^{∞} , de dérivée k-ième bornée en module par $|(2\pi x)^k f(x)|$, qui est intégrable. On applique alors le théorème de dérivation sous le signe somme, qui nous donne

$$\widetilde{f}'(v) = \int \frac{\mathrm{d}}{\mathrm{d}v} \left[f(x) e^{2\mathrm{i}\pi vx} \right] \mathrm{d}x = \int (-2\mathrm{i}\pi x) f(x) e^{-2\mathrm{i}\pi vx} \, \mathrm{d}x$$

puis, par une récurrence immédiate, la première formule.

On rappelle que pour toute fonction intégrable ϕ , on a

$$\int \phi(x) dx = \lim_{R \to +\infty} \int_{-R}^{R} \phi(x) dx.$$

Puisque f' est intégrable, on a donc

$$\mathcal{F}(f')(\nu) = \lim_{R \to +\infty} \int_{-R}^{R} f'(x) e^{-2i\pi\nu x} dx$$

$$= \lim_{R \to +\infty} \left\{ \left[f'(x) e^{-2i\pi\nu x} \right]_{-R}^{R} + \int_{-R}^{R} (2i\pi\nu x) f(x) e^{-2i\pi\nu x} dx \right\}.$$

Comme f est sommable ainsi que sa dérivée, f admet une limite nulle en $\pm \infty$. La formule précédente nous montre alors, en faisant tendre R vers l'infini, que

$$\int f'(x) e^{-2i\pi\nu x} dx = \int (-2i\nu x) f(x) e^{-2i\pi\nu x} dx,$$

ce qui nous montre la deuxième formule pour k = 1. Une récurrence sur k permet de conclure.

Walter Appel, Mathématiques pour la physique et les physiciens