Université Paris-Dauphine – Année 2018-2019 Executive Master : Régression non-paramétrique

Attention! Il n'est pas nécessaire de traiter toutes les questions pour obtenir une bonne évaluation. Le devoir est conçu pour un travail personnel de 2 - 3 heures. Certaines questions sont exploratoires et n'admettent pas nécessairement de solution optimale unique.

Modalités : A envoyer par mail (convertir au format pdf) avant le 8 janvier 2019 à l'adresse celine.duval@parisdescartes.fr

Situation

On dispose d'un jeu de données $(X_i, Y_i)_{1 \le i \le 10^4}$ où les X_i et les Y_i sont idéalisées comme des (réalisations de) variables aléatoires réelles admettant la représentation

$$Y_i = r(X_i) + \xi_i, \quad i = 1, \dots 10^4,$$

où les ξ_i sont indépendantes et identiquement distribuées, admettant une densité μ vérifiant $\mathbb{E}[\xi_1] = 0$ et $\mathbb{E}[\xi_1^2] = \sigma^2 > 0$. Les X_i sont indépendantes et identiquement distribuées de densité $g:[0,1] \to \mathbb{R}$, et indépendantes des ξ_i . La fonction $r:[0,1] \to \mathbb{R}$ vérifie $|r(x)| \le 6$ pour tout $x \in [0,1]$. Les objectifs sont :

- 1. Reconstruire $x \mapsto g(x)$ graphiquement et étudier si g est la densité uniforme ou non.
- 2. Reconstruire $x \mapsto r(x)$ graphiquement.
- 3. Explorer les propriétés de $x \mapsto \mu(x)$ et estimer σ^2 .

FIGURE 1 – Jeu de données DataReg représentant le vecteur $Z^{10^4} = (X_i, Y_i)_{1 \le i \le 10^4}$ (X_i en abscisse et Y_i en ordonnée).

Les valeurs du vecteur Z^{10^4} se trouvent dans le fichier DataReg.csv. La première colonne correspond aux X_i et la seconde colonne correspond aux Y_i .

1 Exploration des propriétés de g(x)

1. Construire un estimateur non-paramétrique $\widehat{g}_{n,h}(x)$ de g(x) pour une fenêtre de lissage h > 0 donnée et représenter graphiquement $x \mapsto \widehat{g}_{n,h}(x)$ pour différentes valeurs de h que vous choisirez. On discutera la raison pour laquelle ce choix est important et ce qui se produit si h est mal choisi.

- 2. Représenter graphiquement $x\mapsto \widehat{g}_{n,\widehat{h}_n}(x)$, où \widehat{h}_n est la fenêtre donnée par validation croisée ou par une autre méthode.
- 3. Implémenter un QQ-plot pour vérifier empiriquement l'hypothèse g(x) = 1 pour tout $x \in [0, 1]$. L'hypothèse selon laquelle g est uniforme semble-t-elle raisonnable?

2 Reconstruction de r(x)

- 1. Est-il plausible de penser que la fonction r est linéaire? Si on voulait implémenter un modèle linéaire par morceaux sur ces données, en quoi l'estimation non paramétrique de r serait une première étape nécessaire?
- 2. Construire un estimateur non-paramétrique $\widehat{r}_{n,h}(x)$ de r(x) pour une fenêtre de lissage h > 0 donnée et représenter graphiquement $x \mapsto \widehat{r}_{n,h}(x)$ pour différentes valeurs de h.
- 3. Discuter du choix automatique de la fenêtre. On distinguera deux cas :
 - (a) Un cas où le h est le même pour tout x.
 - (b) le cas ou le choix du h dépend localement de la fonction à estimer.

${f 3}$ Étude de la loi des ξ_i

On considère deux estimateurs

$$U_n = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2$$
 et $V_n = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (\tilde{Y}_{i+1} - \tilde{Y}_i)^2$,

où $(\tilde{Y}_i)_i$ est obtenu en ordonnant l'échantillon $(Y_i)_i$ selon la permutation qui ordonne par ordre croissant les $(X_i)_i$ (Commande R pour générer $(\tilde{Y}_i)_i$: tilde_Y=Y[order(X)]).

- 1. Implémenter ces estimateurs sur le jeu de données.
- 2. Justifier (heuristiquement, à l'aide d'un argument mathématique ou bien empiriquement) ce qu'estiment ces deux quantités U_n et V_n .

 Indication: les données ont été générées avec $\sigma^2 = 1$.
- 3. On cherche à estimer $x \mapsto \mu(x)$. Pour cela, on coupe l'échantillon en deux, selon que $i \in \mathcal{J}_{-} = \{1, \dots, 5 \times 10^4\}$ ou que $i \in \mathcal{J}_{+} = \{5 \times 10^4 + 1, 10^4\}$. On note $\widehat{r}_{n,h}^{(-)}(x)$ (pour un choix de h établi à la question précédente) l'estimateur construit à l'aide de $(X_i, Y_i)_{1 \leq i \leq 5 \times 10^4}$ et on pose

$$\widetilde{Y}_i = Y_i - \widehat{r}_{n,h}^{(-)}(X_i), \quad i \in \mathcal{J}_+.$$

Quelle est la distribution approximative de \widetilde{Y}_i ?

- 4. En déduire un estimateur de $x \mapsto \mu(x)$ et l'implémenter graphiquement.
- 5. (Facultatif.) La densité $x \mapsto \mu(x)$ peut-elle être gaussienne? Proposer un protocole numérique pour le vérifier empiriquement et l'implémenter.