Introduction

NP-Optimization Problems and Approximation Approximation Algorithm for Vertex Cover

"All exact science is dominated by the idea of approximation."

Bertrand Russell (1872 – 1970)

Many optimization problems are NP-hard!
 examples: traveling salesperson problem, maximum satisfiability

- Many optimization problems are NP-hard!
 examples: traveling salesperson problem, maximum satisfiability
- \rightarrow an optimal solution cannot be efficiently computed unless P=NP.

- Many optimization problems are NP-hard!
 examples: traveling salesperson problem, maximum satisfiability
- \sim an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!

- Many optimization problems are NP-hard!
 examples: traveling salesperson problem, maximum satisfiability
- \sim an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

- Many optimization problems are NP-hard!
 examples: traveling salesperson problem, maximum satisfiability
- \sim an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

today:

- Many optimization problems are NP-hard!
 examples: traveling salesperson problem, maximum satisfiability
- \sim an optimal solution cannot be efficiently computed unless P=NP.
- However, good approximate solutions can often be found efficiently!
- Techniques for the design and analysis of approximation algorithms arise from studying specific optimization problems.

today:

technique: lower bounding optimal solution (key ingredient for approximation!) optimization problem: vertex cover

Input: Graph G = (V, E)

Output:

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

this is a vertex cover

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

this is a vertex cover Q: can you argue that it is optimal?

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

this is a vertex cover 1 vertex per colored edge needed

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that

every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Exact Algorithm: ???

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that

every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Exact Algorithm:

test all possible subsets in $O(2^n m)$ time

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that

every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Exact Algorithm:

test all possible subsets in $O(2^n m)$ time

- → ILP-formulation
- \rightarrow parameterized in k = size of the vertex cover

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that

every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

Exact Algorithm:

test all possible subsets in $O(2^n m)$ time

- → ILP-formulation
- \rightarrow parameterized in k = size of the vertex cover

or approximate!

Input: Graph G = (V, E)

Output: a minimum vertex cover, that is,

a minimum-cardinality vertex set $V' \subseteq V$ such that

every edge is covered (i.e., for every $uv \in E$, it holds

that $u \in V'$ or $v \in V'$).

test all possible subsets in $O(2^n m)$ time

- → ILP-formulation
- \rightarrow parameterized in k = size of the vertex cover

or approximate!

"good" (5/4-) approximate solution

Key Concepts: NP-Optimization Problems and Approximation Algorithms

An NP-optimization problem Π is given by:

■ A set D_{Π} of instances. We denote the size of an instance $I \in D_{\Pi}$ by |I|.

- A set D_{Π} of instances. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:

- A set D_{Π} of instances. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and

- A set D_{Π} of instances. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.

- A set D_{Π} of instances. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.

NP-Optimization Problem

An NP-optimization problem Π is given by:

- A set D_{Π} of instances. We denote the size of an instance $I \in D_{\Pi}$ by |I|.
- For each instance $I \in D_{\Pi}$, a set $S_{\Pi}(I) \neq \emptyset$ of feasible solutions for I such that:
 - for each solution $s \in S_{\Pi}(I)$, its size |s| is polynomially bounded in |I|, and
 - there is a polynomial-time algorithm that decides, for each pair (s, I), whether $s \in S_{\Pi}(I)$.
- A polynomial time computable objective function obj_{Π} which assigns a positive objective value $\operatorname{obj}_{\Pi}(I,s) \geq 0$ to any given pair (s,I) with $s \in S_{\Pi}(I)$.
- \blacksquare Is either a minimization or maximization problem.

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_\Pi= ???$$
 For $I\in D_\Pi\colon ???$ $|I|= ???$ $S_\Pi(I)= ???$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_\Pi={}$$
 Set of all graphs For $I\in D_\Pi:???$ $|I|=???$ $S_\Pi(I)=???$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = ???$

$$G = (V, E)$$

$$S_{\Pi}(I) = ???$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = |V| + |E|$

$$G = (V, E)$$
 $S_{\Pi}(I) = ???$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = |V| + |E|$ $G = (V, E)$ $S_{\Pi}(I) = Set of all vertex covers of $G$$

- Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?
- For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = |V| + |E|$ $G = (V, E)$ $S_{\Pi}(I) = Set of all vertex covers of $G$$

■ Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

$$s \subseteq V \Longrightarrow |s| \le |V| \le |I|$$

■ For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$?

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = |V| + |E|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

■ Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

$$s \subseteq V \Longrightarrow |s| \le |V| \le |I|$$

For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$obj_{\Pi}(I, s) = ???$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = |V| + |E|$
 $G = (V, E)$ $S_{\Pi}(I) = \text{Set of all vertex covers of } G$

■ Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

$$s \subseteq V \Longrightarrow |s| \le |V| \le |I|$$

For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$obj_{\Pi}(I, s) = |s|$$

Task: Fill in the gaps for the problem $\Pi = VERTEX$ COVER.

$$D_{\Pi} =$$
 Set of all graphs

For
$$I \in D_{\Pi}$$
: $|I| = |V| + |E|$ $G = (V, E)$ $S_{\Pi}(I) = Set of all vertex covers of $G$$

■ Why is $|s| \in \text{poly}(|I|)$ for every $s \in S_{\Pi}(I)$?

$$s \subseteq V \Longrightarrow |s| \le |V| \le |I|$$

For a given pair (s, I), how can we efficiently decide whether $s \in S_{\Pi}(I)$? Test whether all edges are covered.

$$obj_{\Pi}(I, s) = |s|$$

 Π is a min imization problem.

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is optimal if $\operatorname{obj}_{\Pi}(I, s^*)$ is minimal among the objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is optimal if $\max_{\substack{\text{maximal} \\ \text{obj}_{\Pi}(I,s^*)}}$ is $\min_{\substack{\text{minimal} \\ \text{attained}}}$ among the objective values attained by the feasible solutions of I.

maximization problem Let Π be a minimization problem and $I \in D_{\Pi}$ an instance of Π .

A feasible solution $s^* \in S_{\Pi}(I)$ is optimal if $\max_{\text{maximal}} \text{obj}_{\Pi}(I, s^*)$ is $\min_{\text{minimal}} \text{among the objective values}$ attained by the feasible solutions of I.

The optimal value $\operatorname{obj}_{\Pi}(I, s^*)$ of the objective function is denoted by $\operatorname{OPT}_{\Pi}(I)$ or simply by OPT in context.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\mathsf{obj}_\Pi(I,s)}{\mathsf{OPT}_\Pi(I)}$$

Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \leq \alpha.$$

$$\alpha \colon \mathbb{N} \to \mathbb{Q}$$

 $\alpha\colon \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+.$

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \leq \alpha(|I|)$$

maximization problem $\alpha: \mathbb{N} \to \mathbb{Q}$ Let Π be a minimization problem and $\alpha \in \mathbb{Q}^+$.

$$\frac{\mathsf{obj}_{\Pi}(I,s)}{\mathsf{OPT}_{\Pi}(I)} \stackrel{\geq}{\leq} \mathscr{A}. \quad \alpha(|I|)$$

Ideas?

Edge-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

- Edge-Greedy
- Vertex-Greedy

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Problem:

How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$

Q: how can we lower bound the size of a vertex cover?

Ideas?

- Edge-Greedy
- Vertex-Greedy

Quality?

How did we argue that OPT = 4 for this instance?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$

Q: how can we lower bound the size of a vertex cover?

Ideas?

- Edge-Greedy
- Vertex-Greedy

How did we argue that OPT = 4 for this instance?

Quality?

Problem: How can we estimate $obj_{\Pi}(I, s)/OPT$,

when it is hard to compute OPT?

Idea: Find a "good" lower bound $L \leq OPT$ for OPT and

compare it to our approximate solution.

$$\frac{\operatorname{obj}_{\Pi}(I,s)}{\operatorname{OPT}} \leq \frac{\operatorname{obj}_{\Pi}(I,s)}{L}$$

Q: how can we lower bound the size of a vertex cover?

need at least one vertex for each edge in a vertex-disjoint set of edges

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

$$OPT \ge |M|$$

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

 $OPT \ge |M|$

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

$$\begin{array}{c|c}
OPT \ge |M| \\
OPT = |M|
\end{array}$$
?

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

$$\begin{array}{c|c}
OPT \ge |M| \\
OPT = |M|
\end{array}$$
?

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

Vertex cover of *M*Vertex cover of *E*

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

M is maximal if there is no matching M' with $M' \supseteq M$.

Vertex cover of *M*Vertex cover of *E*

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

An edge set $M \subseteq E$ of a graph G = (V, E) is a matching if no two edges of M are adjacent (i.e., share an end vertex).

Algorithm VertexCover(*G*)

$$M \leftarrow \emptyset$$

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
foreach e \in E(G) do
```

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
foreach e \in E(G) do
if e is not adjacent to any edge in M then
```

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
\mathbf{foreach} \ e \in E(G) \ \mathbf{do}
\mathbf{if} \ e \ \text{is not adjacent to any edge in } M \ \mathbf{then}
M \leftarrow M \cup \{e\}
```

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
\mathbf{foreach} \ e \in E(G) \ \mathbf{do}
\mathbf{if} \ e \ \text{is not adjacent to any edge in } M \ \mathbf{then}
M \leftarrow M \cup \{e\}
\mathbf{return} \ \{u, v \mid uv \in M\}
```

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
\mathbf{foreach} \ e \in E(G) \ \mathbf{do}
\mathbf{if} \ e \ \text{is not adjacent to any edge in } M \ \mathbf{then}
M \leftarrow M \cup \{e\}
\mathbf{return} \ \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for VertexCover.

```
Algorithm VertexCover(G)
M \leftarrow \emptyset
\mathbf{foreach} \ e \in E(G) \ \mathbf{do}
\mathbf{if} \ e \ \text{is not adjacent to any edge in } M \ \mathbf{then}
M \leftarrow M \cup \{e\}
\mathbf{return} \ \{u, v \mid uv \in M\}
```

Theorem. The above algorithm is a factor-2 approximation algorithm for VertexCover.

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

tight example: graph with ALG = 2 OPT?

- Questions: better analysis of this algorithm?
 - better algorithm based on this lower bound?
 - better lower bound for designing an approx Alg?

No! On the $K_{n,n}$ the algorithm will pick all 2n vertices

- Questions: better analysis of this algorithm?
 - better algorithm based on this lower bound?
 - better lower bound for designing an approx Alg?

No! On the $K_{n,n}$ the algorithm will pick all 2n vertices

because any maximal matching has size *n*

- Questions: better analysis of this algorithm?
 - better algorithm based on this lower bound?
 - better lower bound for designing an approx Alg?

No! On the $K_{n,n}$ the algorithm will pick all 2n vertices

but an optimal vertex cover has size *n*

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

tight example: graph with |M| = OPT/2?

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

No! On the K_n , where n odd, the size . . .

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

No! On the K_n , where n odd, the size . . .

of a maximal matching is (n-1)/2

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

No! On the K_n , where n odd, the size . . .

of a maximal matching is (n-1)/2

of a minimal vertex cover is n-1

Questions: • better analysis of this algorithm?

- better algorithm based on this lower bound?
- better lower bound for designing an approx Alg?

Still open!

- Questions: better analysis of this algorithm?
 - better algorithm based on this lower bound?
 - better lower bound for designing an approx Alg?

Still open!

The best known approximation factor for VertexCover is

$$2 - \Theta(1/\sqrt{\log n}).$$

- Questions: better analysis of this algorithm?
 - better algorithm based on this lower bound?
 - better lower bound for designing an approx Alg?

Still open!

The best known approximation factor for VertexCover is

$$2 - \Theta(1/\sqrt{\log n}).$$

If P \neq NP, VertexCover cannot be approximated within a factor of 1.3606.

- Questions: better analysis of this algorithm?
 - better algorithm based on this lower bound?
 - better lower bound for designing an approx Alg?

Still open!

The best known approximation factor for VertexCover is

$$2 - \Theta(1/\sqrt{\log n}).$$

If P \neq NP, VERTEXCOVER cannot be approximated within a factor of 1.3606.

VERTEXCOVER cannot be approximated within a factor of $2 - \Theta(1)$

if the Unique Games Conjecture holds.

assuming that a certain problem is NP-hard to approximate

we used the lower bound $max | matching | \leq min | vertex cover |$

we used the lower bound $\max |matching| \le \min |vertex|$ and we saw graphs where $\max |matching| < \min |vertex|$

we used the lower bound $max | matching | \le min | vertex cover |$ and we saw graphs where max | matching | < min | vertex cover |as well as graphs where max | matching | = min | vertex cover |

we used the lower bound $max | matching | \le min | vertex cover |$ and we saw graphs where max | matching | < min | vertex cover |as well as graphs where max | matching | = min | vertex cover |in fact, this holds for all bipartite graphs!

we used the lower bound $max | matching | \le min | vertex cover |$ and we saw graphs where max | matching | < min | vertex cover |as well as graphs where max | matching | = min | vertex cover |

Theorem [König-Egerváry, 1931] In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

we used the lower bound $max | matching | \le min | vertex cover |$ and we saw graphs where max | matching | < min | vertex cover |as well as graphs where max | matching | = min | vertex cover |

Theorem [König-Egerváry, 1931] In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

Hence, (only) for bipartite graphs, these problems are equal!

we used the lower bound $max | matching | \le min | vertex cover |$ and we saw graphs where max | matching | < min | vertex cover |as well as graphs where max | matching | = min | vertex cover |

Theorem [König-Egerváry, 1931] In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

A little complexity theory

Q: Where are vertex cover and matching in general?

we used the lower bound $max | matching | \le min | vertex cover |$ and we saw graphs where max | matching | < min | vertex cover |as well as graphs where max | matching | = min | vertex cover |

Theorem [König-Egerváry, 1931] In a bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

Summary

Theorem.

Minimum-cardinality VertexCover can be approximated within a factor-2 by greedily computing a maximal matching M, and taking as vertex cover the endpoints of the edges in M.

- lacktriangle key ingredient: lower bound |M| on OPT
- giving tight examples provides crucial insight into the functioning and the algorithm and can provide ideas what to improve

Acknowledgements

Slides for approximation algorithms are mostly due to colleagues in Würzburg, in particular Joachim Spoerhase and Alexander Wolff. **Thanks!**