## Problem Set I

1. The problem is to compare solution on a differential equation using two differential equations.

Euler's approximation approximates both  $v_t$  and  $\phi_t$  in each iteration

(a) 
$$\frac{dy}{dt} + 2y = 2 - e^{-4t}$$

Let 
$$\mu(t) = e(2t), \, \mu'(t) = 2e^{2t}$$

Multiply both sides by  $\mu(t)$ :  $\frac{de^{2t}y}{dt} + 2e^{2t}y = 2e^{2t} - e^{-2t}$ 

$$\mu(t)\frac{dy}{dt} + \mu'(t)y = 2e^{2t} - e^{-2t}$$

$$(\mu(t)y(t))' = 2e^{2t} - e^{-2t}$$

$$y(t) = 1 + \frac{1}{2}e^{-4t} - \frac{C}{e^{2t}}$$

Since y(0)=1,

$$y(t) = 1 + \frac{1}{2}e^{-4t} - \frac{1}{2e^{2t}}$$

(b) We can rewrite the equation as:

$$\frac{dy}{dt} = -2y + 2 - e^{-4t}$$

Then the equation of Euler approximation is:

$$d_{n+1} = d_n + h \frac{dy}{dt}$$
  
 
$$d_{n+1} = d_n + h(-2y + 2 - e^{-4t})$$

| step size | t = 1    | t = 2    | t = 3    | t = 4    | t = 5    |
|-----------|----------|----------|----------|----------|----------|
| 0.1       | 0.931324 | 0.991368 | 0.999050 | 0.999898 | 0.999989 |
| 0.05      | 0.936470 | 0.991113 | 0.998898 | 0.999866 | 0.999984 |
| 0.01      | 0.940499 | 0.991019 | 0.998789 | 0.999839 | 0.999979 |
| 0.005     | 0.940996 | 0.991014 | 0.998776 | 0.999836 | 0.999978 |
| 0.001     | 0.941391 | 0.991011 | 0.998766 | 0.999833 | 0.999977 |
| original  | 0.941490 | 0.991010 | 0.998764 | 0.999832 | 0.999977 |

Table 1: Values by Euler's Method

(c)

2. The problem is to use Euler's approximation to estimate the transformation at t = 1.

At the very beginning,  $v_0$  and  $\phi_0$  are initialized. The initial image is defined by  $I_0$ . At each iteration, I approximate  $v_t$  and  $\phi_t$  using equation:

$$v_{t+1} = v_t + h * \frac{dv_t}{dt} \tag{1}$$

$$\phi_{t+1} = \phi_t + h * \frac{d\phi_t}{dt} \tag{2}$$

h is the step size. Once I get transformation, Final image is interpolated by as equation (3):

$$I_{final} = I_0 \circ \phi_{t=1} \tag{3}$$



Figure 1: Final Image Transformed by (a)



Figure 2: Final Image Transformed by (b)