Sprawozdanie 2

Eksploracja danych

Kacper Szmigielski, 282255 i Mateusz Wizner

2025-04-22

Spis treści

1	1.1 1.2 1.3	1 2	a) Dane: iris (b) Wybór cech	1	ets)		·	iągłych) 		2 2 2 4
2		PC 11 2 3 4 5 6	A))) a) Dane: City Kaggle/Telepo b) Przygotowa c) Wyznaczeni d) Zmienność e) Wizualizacj f) Korelacja za	Quality of Life ort.org)	e Datas głównyc poszcz wymiar 	et (plik u h ególnym s owych .	aScoresDa	Component An ataFrame.csv, źró	dło:	4 4 4 4 4 4 4
3	\mathbf{Z}_{I}	ΑI	DANIE 3 (Skalowaniewi	elowyı	niarowe	(Multio	dimensional Sc	aling	g
	•		$(\mathbf{S})))$							4
	3.	1	,	, –		,				4
	3.5	2								4
	3.3	3	c) Redukcja w	ymiaru na bazi	ie MDS					4
	3.4	4	d) Wizualizac	ja danych						4
##		Х	UA Name	UA Country	UA Co	ntinent	Housing	Cost.of.Living	Star	rtups
##	1	0	- Aarhus	Denmark	_	Europe	•	4.015		.8270
##	2	1	Adelaide	Australia		Oceania		4.692		. 1365
##	3	2	Albuquerque	New Mexico	North	America	7.2620	6.059		.7720
##			Almaty	Kazakhstan		Asia	9.2820	9.333	2	. 4585
##	5	4	Amsterdam	Netherlands		Europe	3.0530	3.824	7	.9715
##	6	5	Anchorage	Alaska	North	America	5.4335	3.141	2	.7945

```
Venture.Capital Travel.Connectivity Commute Business.Freedom Safety
##
## 1
                2.512
                                    3.5360 6.31175
                                                             9.940000 9.6165
## 2
                2.640
                                    1.7765 5.33625
                                                             9.399667 7.9260
## 3
                1.493
                                    1.4555 5.05575
                                                             8.671000 1.3435
## 4
                0.000
                                    4.5920 5.87125
                                                             5.568000 7.3090
## 5
                6.107
                                    8.3245 6.11850
                                                             8.836667 8.5035
                0.000
## 6
                                    1.7380 4.71525
                                                             8.671000 3.4705
##
     Healthcare Education Environmental. Quality Economy Taxation Internet. Access
## 1
       8.704333
                    5.3665
                                          7.63300
                                                    4.8865
                                                              5.0680
                                                                               8.3730
## 2
       7.936667
                    5.1420
                                          8.33075
                                                    6.0695
                                                              4.5885
                                                                               4.3410
## 3
       6.430000
                    4.1520
                                          7.31950
                                                    6.5145
                                                              4.3460
                                                                               5.3960
## 4
       4.545667
                    2.2830
                                          3.85675
                                                    5.2690
                                                              8.5220
                                                                               2.8860
## 5
       7.907333
                    6.1800
                                          7.59725
                                                    5.0530
                                                              4.9550
                                                                               4.5230
                    3.6245
## 6
       6.060333
                                          9.27200 6.5145
                                                              4.7720
                                                                               4.9645
     Leisure...Culture Tolerance Outdoors
## 1
                 3.1870
                           9.7385
                                     4.1300
## 2
                 4.3285
                           7.8220
                                     5.5310
## 3
                 4.8900
                           7.0285
                                     3.5155
## 4
                 2.9370
                           6.5395
                                     5.5000
## 5
                 8.8740
                           8.3680
                                     5.3070
## 6
                 3.2660
                           7.0930
                                     5.3580
```

1 ZADANIE 1 (Dyskretyzacja(przedziałowanie) cech ciągłych)

1.1 a) Dane: iris (R-pakiet datasets).

3 Pierwsze wiersze z pakietu iris

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1 4.9 4.7	3.5 3.0 3.2	1.4 1.4 1.3	0.2	setosa setosa

Zbiór danych zawiera wyniki pomiarów uzyskanych dla **trzech gatunków irysów** (tj. setosa, versicolor i virginica) i został **udostępniony przez Ronalda Fishera w roku 1936.**

 Pomiary dotyczą długości oraz szerokości dwóch różnych części kwiatu- działki kielicha (ang. sepal) oraz płatka (ang. petal).

1.2 b) Wybór cech

Cechy, inaczej właściwie możemy to rozstrzygać jako kolumny, które charakteryzują się największym zróżnicowaniem w stosunku do rodzaju gatunku

Po utworzeniu wykresów zależności długości i szerokości taki zmiennych jak od gatunku, jasno widać ,że

warto jest zwrócić uwagę na takie cechy jak: Petal.Length i Petal.Width

Z wykresów widać,że Petal.Legnth jak i Petal.Width charakteryzuje się 3 zagęszczeniami wyników z czego każde należy do innej grupy.

Widać również, że Sepal nie jest tak zróżnicowany na tle gatunkowym kwiatów jak Petal.

Wariancje:

Dla Length: 3.1162779

Dla Width: 0.5810063

Pomimo znacznie większej wariancji dla Petal. Length , widać że o wiele lepiej można wnioskować gatunek za pomocą Petal. Width, gdzie

dla

setosy jest on w przedziale (0,2)

versicolor jest on w przedziale (1,1.7)

a dla virginica znaczna większość znajduje się w przedziale (1.5,2.5)

Natomiast gdyby rozróżniać wedłóg Petal.Length mogły by wystąpić sprzeczność idla versicolor i setosy, które

w znaczniej wieszkośći wykazują skołonność do posiadania od 4 do 6 Petal.Length

- 1.3 c) Porównanie nienadzorowanych metod dyskretyzacji
- 2 ZADANIE 2 (Analizaskładowych głównych (Principal Component Analysis (PCA)))
- 2.1 a) Dane: City Quality of Life Dataset (plik uaScoresDataFrame.csv, źródło: Kaggle/Teleport.org)
- 2.2 b) Przygotowanie danych
- 2.3 c) Wyznaczenie składowych głównych
- 2.4 d) Zmienność odpowiadająca poszczególnym składowym
- 2.5 e) Wizualizacja danych wielowymiarowych
- 2.6 f) Korelacja zmiennych
- 2.7 g) Końcowe wnioski
- 3 ZADANIE 3 (Skalowaniewielowymiarowe (Multidimensional Scaling (MDS)))
- 3.1 a) Dane: titanic_train (R-pakiet titanic)
- 3.2 b) Przygotowanie danych
- 3.3 c) Redukcja wymiaru na bazie MDS
- 3.4 d) Wizualizacja danych