Basic Principles of the ARIMA Model

The ARIMA model consists of three components:

AR (Autoregressive): Uses past data to predict current values.

For example, today's sales may be correlated with sales from the previous few days.

I (Differencing): Transforms non-stationary data (those with trends or seasonality) into stationary data by differencing the data.

For example, taking a first-order difference can eliminate the trend in an upward-trending time series.

MA (Moving Average): Uses an error term from previous periods to correct the predicted value. For example, a discrepancy between yesterday's predicted value and the actual value may affect today's forecast.

ARIMA(p, d, q):

- p: The order of the autoregressive function (how many past observations are used).
- d: The number of differencing steps (the number of times the data is stationary).
- q: The order of the moving average function (how many past errors are used).

Modeling Steps:

1. Visualization and Stationarity Testing

- Plot the time series to observe any trend or seasonality.
- Use the Augmented Dickey-Fuller (ADF) test to determine whether the data is stationary.

2.Differencing

• If it is not stationary, perform difference analysis on the data until it becomes stationary.

3. Model Order (Determine p and q)

• Use the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots to select appropriate p and q.

4.Model Fitting
5.Model Diagnostics
6.Forecasting

This is a graph of average daily prices for the Fruit & Vegetables category, with 2,378,674 raw transaction records aggregated into 731 days of daily data (approximately 2 years, from January 2024 to January 2026).

Time Series Trend Analysis

1. Overall Level

The average daily price is concentrated between \$5.04 and \$5.14, with a relatively small fluctuation range, indicating overall price stability in this category.

2. Cyclical Characteristics

The chart clearly shows regular ups and downs, exhibiting a roughly monthly cycle.

3. Short-Term Fluctuations

Local prices may experience rapid declines and rebounds, potentially due to short-term supply and demand shocks, holiday promotions, or seasonal factors.

4. Trend

There is no clear upward or downward trend; prices remain within a narrow range.

Missing values: daily_price 0

dtype: int64

Test Statistic -1.196817e+01
p-value 3.955338e-22
#Lags Used 2.000000e+01
Number of Observations Used 7.100000e+02
Critical Value (1%) -3.439594e+00
Critical Value (5%) -2.865619e+00
dtype: float64

- 1. Stationary Test (ADF Test)
- Test Statistic = -11.97 (much less than the critical values of -3.43, -2.86, and -2.57).
- p-value ≈ 3.96e-22 < 0.05.

2. ACF

- The ACF plot shows cyclical fluctuations (approximately 12–13 days per cycle).
- This indicates significant seasonality/cyclicality in the series, typically a monthly cycle effect.

3. PACF

• The PACF plot has significant peaks at lag=1 and lag=2, followed by a rapid decay.

Train period: 2024-01-01 00:00:00 to 2025-08-06 00:00:00 Test period: 2025-08-07 00:00:00 to 2025-12-31 00:00:00

Train size: 584, Test size: 147

Training Set (80%): $01.01.2024 \rightarrow 06.08.2025$, a total of 584 days. Test Set (20%): $07.08.2025 \rightarrow 31.12.2025$, a total of 147 days.

Model Summary:

SARIMAX Results

========			=======	========	========	========	
Dep. Variable:		daily_pri	.ce No.	Observations	:	584	
Model: A		ARIMA(2, 1,	0) Log	Likelihood		1964.355	
Date:	Fı	ri, 12 Sep 20	25 AIC			-3922.711	
Time:		15:26:	27 BIC			-3909.606	
Sample:		01-01-20				-3917.603	
		- 08-06-20	25				
Covariance Type:		C	pg				
=======		- + -!		D: 1-1	[0.025	0.0751	
	соет	std err 	Z	P> z	[0.025 	0 . 975]	
ar.L1	0.1129	0.033	3.407	0.001	0.048	0.178	
ar.L2	0.3172	0.034	9.268	0.000	0.250	0.384	
sigma2	6.93e-05	3.57e-06	19.410	0.000	6.23e-05	7.63e-05	
Ljung-Box (L1) (Q):			 1.46	Jarque-Bera	 (JB):	2	27.35
Prob(Q):			0.23	Prob(JB):			0.00
Heteroskedasticity (H):			0.84	Skew:			0.31
<pre>Prob(H) (two-sided):</pre>			0.23	Kurtosis:			3.86
========	========		=======	========	========	========	====

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Model Diagnostics: Residuals mean: 0.0088 Residuals std: 0.2126

Model Fitting Results:

Model: ARIMA(2,1,0)

AIC = -3922.71, BIC = -3909.61 (The low AIC values indicate a good model fit.)

AR Coefficients:

AR(1) = 0.113 (Significant, p=0.001)

AR(2) = 0.317 (Highly Significant, p<0.001)

This indicates that the current price is primarily influenced by price changes over the previous two days.

ACF of Residuals: Most of the data fall within the confidence interval.

Q-Q Plot: There are slight deviations in the tails, but the overall distribution is close to normal.

Parameter Optimization

```
Order (1, 1, 0): MAE=$0.03, AIC=-3863.0, BIC=-3854.3
```

Order (2, 1, 0): MAE=\$0.02, AIC=-3922.7, BIC=-3909.6

Order (3, 1, 0): MAE=\$0.02, AIC=-3935.4, BIC=-3917.9

Order (0, 1, 1): MAE=\$0.03, AIC=-3856.8, BIC=-3848.1

Order (1, 1, 1): MAE=\$0.02, AIC=-3898.3, BIC=-3885.2

Order (2, 1, 1): MAE=\$0.02, AIC=-3930.2, BIC=-3912.7

The (3,1,0) and (2,1,1) models have lower AIC values (indicating a better fit). However, they are more complex (requiring more parameters to estimate, making them prone to overfitting).

The (1,1,1) model also has a very small MAE (\$0.02), and its prediction accuracy is comparable to that of the more complex models.

Forecast Results:

The 30-day forecast shows the price will remain around \$5.13-5.14