03-08 - Probabilidade

Como deve ser a coleção $\mathbb A$ dos subconjuntos de Ω aos quais vai se atribuir probabilidade?

- 1. $\Omega \in \mathbb{A}$ (para poder escrever $P(\Omega) = 1$);
- 2. $A\in\mathbb{A}\implies A^c=\Omega-A\in\mathbb{A}$ (para poder escrever $P(A^c)=1-P(A)$);
- 3. $A, B \in \mathbb{A} \implies A \cup B \in \mathbb{A}$ (para poder escrever $P(A \cup B) = P(A) + P(B)$, quando $A \in B$ disjuntos. Consequências:

$$A,B,C\in\mathbb{A} \implies A\cup B\cup C\in\mathbb{A}$$
 $A_1,\ldots,A_n\in\mathbb{A} \implies A_1\cup A_2\cup\ldots\cup A_n\in\mathbb{A}$ $A,B\in\mathbb{A} \implies A\cap B\in\mathbb{A}$

Em particular

$$A\cap B=(A^c\cup B^c)^c$$
 $A_1,\ldots,A_n\in\mathbb{A}\implies A_1\cap A_2\cap\ldots\cap A_n\in\mathbb{A}$

Dizemos que $\mathbb A$ é uma álgebra de subconjuntos de Ω . Exemplos:

- 4. $\Omega=\{1,2,3\}$ $\mathbb{A}=\{A/A\subset\Omega\} \text{ \'e uma \'algebra de subconjuntos.}$ $\mathbb{A}=\{\phi,\{1,2,3\},\{1\},\{2,3\}\} \text{ tamb\'em \'e uma \'algebra de subconjutnos de }\Omega.$
- 5. $\Omega = [0,1]$ $\mathbb{A}_1 = \{A|A\Omega\}$ é álgebra (mas não serve por incluir subconjuntos aos quais não é possível atribuir probabilidade). $\mathbb{A}_2 = \{$ intervalos de $[0,1]\}$ não é álgebra.

$$A = [0,1/4) \in \mathbb{A} \; \mathrm{e} \; B = [3/4,1] \in \mathbb{A} \; \mathrm{mas} \; [0,1/4) \cup [3/4,1]
otin \mathbb{A}$$

 $\mathbb{A}_3 = \{ \text{ uniões finitas de intervalos possivelmente degenerados em } [0,1] \}$ é álgebra e é a menor álgebra que contém \mathbb{A}_2 .

Definição: uma coleção $\mathbb A$ de subconjuntos de Ω é uma sigma álgebra de subconjuntos de Ω quando satisfaz

- 1. $\Omega \in \mathbb{A}$
- $2. A \in \mathbb{A} \implies A^c \in A$
- 3. $A_1,\ldots,A_n\in\mathbb{A}\implies A_1\cup A_2\cup\ldots\cup A_n\in\mathbb{A}=\cup_{n=1}^\infty A_n\in\mathbb{A}$ Toda σ -álgebra é uma álgebra.

Exemplo: $\Omega = \{1, 2, 3\}$

 \mathbb{A} é σ - álgebra se, e somente se \mathbb{A} é álgebra.

Exemplo: $\Omega = [0, 1]$

 \mathbb{B} é a menor σ -álgebra que contém todos os intervalos

 $\mathbb{B} = \cap \{\mathbb{F} | \mathbb{F} \text{ \'e sigma \'algebra e } \mathbb{F} \text{ possui como elemento os intervalos} \}$

 2^Ω representa união de todos os conjuntos

 $\mathbb{F}_1 \cap \mathbb{F}_2$ é sigma álgebra.

Definição: um espaço de probabilidade é uma tripla (Ω, \mathbb{A}, P) onde

- Ω é um conjunto (espaço amostral);
- \mathbb{A} é sigma álgebra de subconjuntos de Ω (o conjunto dos eventos aleatórios).
- P é uma função de $\mathbb A$ em $\mathbb R$. tal que:
- 1. $P(A) \geq 0 \forall A \in \mathbb{A}$
- 2. $P(\Omega) = 1$
- 3. Se $A_1,A_2,\ldots\in\mathbb{A}$ e são disjuntos 2 a 2, então $P(\cup_{n=1}^\infty A_n)=\sum_{n=1}^\infty P(A_n)$

Em particular se A e B são disjuntos, então

$$P(A \cup B) = P(A \cup B \cup \phi...) = P(A) + P(B) + 0 + ... = P(A) + P(B)$$

Consequências:

$$4. \ P(A^c) = 1 - P(A)$$
$$P(A^c \cup A) = 1$$

5.
$$0 \le P(A) \le 1$$

6.
$$A \subset B \implies P(A) \leq P(B)$$

7.
$$P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i)$$

8.
$$P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_n)$$

9. Se $A_n \uparrow A$ então $P(A_n) \uparrow P(A)$.

Se $A_n \downarrow A$ então $P(A_n) \downarrow P(A)$.

Dizemos que $A_n \uparrow A$ quando $\forall n, A_n \subset A_{n+1}$ e $\cup_{n=1}^\infty A_n = A$ Exemplo:

$$A_n = [0, 1-1/n]$$
, então $A_n \uparrow [0,1)$