Contents

		Packages MCMCglmm	1 1				
2 Influence Analysis for Repeated Measures Data							
	2.1	SAS Example 65.8: Influence Analysis for Repeated Measures Data	2				
	2.2	R Implementation	3				
	2.3	Data	4				
	2.4	Subject level influence	6				
	2.5	Fixed-Effects Deletion Estimates	9				
	2.6	MCMCglm	10				
	2.7	Fixed-Effects Deletion Estimates	14				

1 R Packages

1.1 MCMCglmm

Generalized linear mixed models provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form. Markov chain Monte Carlo methods solve this problem by sampling from a series of simpler conditional distributions that can be evaluated. The R package MCMCglmm, implements such an algorithm for a range of model fitting problems. More than one response variable can be analysed simultaneously, and these variables are allowed to follow Gaussian, Poisson, multi(bi)nominal, exponential, zero-inflated and censored distributions. A range of variance structures are permitted for the random effects, including interactions with categorical or continuous variables (i.e., random regression), and more complicated variance structures that arise through shared ancestry, either through a pedigree or through a phylogeny. Missing values are permitted in the response variable(s) and data can be known up to some level of measurement error as in meta-analysis. All simulation is done in C/C++ using the CSparse library for sparse linear systems. If you use the software please cite this article, as published in the Journal of Statistic Software (Hadfield 2010)

2 Influence Analysis for Repeated Measures Data

2.1 SAS Example 65.8: Influence Analysis for Repeated Measures Data

This example revisits the repeated measures data of Pothoff and Roy (1964) that were analyzed in Example 65.2. Recall that the data consist of growth measurements at ages 8, 10, 12, and 14 for 11 girls and 16 boys. The model being fit contains fixed effects for Gender and Age and their interaction. The earlier analysis of these data indicated some unusual observations in this data set. Because of the clustered data structure, it is of interest to study the influence of clusters (children) on the analysis rather than the influence of individual observations. A cluster comprises the repeated measurements for each child. The repeated measures are first modeled with an unstructured within-child variance-covariance matrix. A residual variance is not profiled in this model. A noniterative influence analysis will update the fixed effects only. The following statements request this noniterative maximum likelihood analysis and produce Output 65.8.1:

```
proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /
influence(effect=person);
repeated / type=un subject=person;
ods select influence;
run;
```

Each observation in the Influence Diagnostics for Levels of Person table in Output 65.8.1 represents the removal of four observations. The subjects 10, 15, and 24 have the greatest impact on the fixed effects (Cooks D), and subject 10 and 21 have large PRESS statistics. The 21st child has a large PRESS statistic, and its D statistic is not that extreme. This is an indication that the model fits rather poorly for this child, whether it is part of the data or not The previous analysis does not take into account the effect on the covariance parameters when a subject is removed from the analysis. If you also update the covariance parameters, the impact of observations on these can amplify or allay their effect on the fixed effects. To assess the overall influence of subjects on the analysis and to compute separate statistics for the fixed effects and covariance parameters, an iterative analysis is obtained by adding the INFLUENCE suboption ITER=, as follows:

```
ods graphics on;
proc mixed data=pr method=ml;
class person gender;
model y = gender age gender*age /
influence(effect=person iter=5);
repeated / type=un subject=person;
run;
```

The number of additional iterations following removal of the observations for a particular subject is limited to five. Graphical displays of influence diagnostics are created when ODS Graphics

Output 65.8.1 Default Influence Statistics in Noniterative Analysis

The Mixed Procedure

Influence Diagnostics for Levels of Person								
Person	Number of Observations in Level	PRESS Statistic	Cook's					
1	4	10.1716	0.01539					
2	4	3.8187	0.03988					
3	4	10.8448	0.02891					
4	4	24.0339	0.04515					
5	4	1.6900	0.01613					
6	4	11.8592	0.01634					
7	4	1.1887	0.00521					
8	4	4.6717	0.02742					
9	4	13.4244	0.03949					
10	4	85.1195	0.13848					
11	4	67.9397	0.09728					
12	4	40.6467	0.04438					
13	4	13.0304	0.00924					
14	4	6.1712	0.00411					
15	4	24.5702	0.12727					
16	4	20.5266	0.01026					
17	4	9.9917	0.01526					
18	4	7.9355	0.01070					
19	4	15.5955	0.01982					
20	4	42.6845	0.01973					
21	4	95.3282	0.10075					
22	4	13.9649	0.03778					
23	4	4.9656	0.01245					
24	4	37.2494	0.15094					
25	4	4.3756	0.03375					
26	4	8.1448	0.03470					
27	4	20.2913	0.02523					

Figure 1:

is enabled. For general information about ODS Graphics, see Chapter 21, Statistical Graphics Using ODS. For specific information about the graphics available in the MIXED procedure, see the section ODS Graphics on page 5324. The MIXED procedure produces a plot of the restricted likelihood distance (Output 65.8.2) and a panel of diagnostics for fixed effects and covariance parameters (Output 65.8.3).

2.2 R Implementation

I am trying exercise 59.8 (page 5057) of the SAS/STAT Users Guide 12.3 in R. The interesting thing is that influence is investigated on subject level rather than individual level. The diagnostics in nlme does not do leave-subject-out, at least, not that I know of. MCMCglm hardly has any diagnostics. This does not mean no validation is possible, this is R, programming is not optional, but rather expected. Hence with a little bit of work it is possible to estimate PRESS, Cook's D and effects on fixed effects. From this it follows extensive validation is possible, provided we can extract the underlying variables from the model fit object.

2.3 Data

Data is same as exercise 59.2 (exercise in R).

```
r1 <- read.table(textConnection(')</pre>
1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5
10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
'), col.names=c('Person', 'Gender', 'Age8', 'Age10', 'Age12', 'Age14'),
colClasses=c('factor','factor',rep('numeric',4)))
```

```
rm <- reshape(r1,direction='long',
    varying=list(c('Age8','Age10','Age12','Age14')),
    timevar='Age',idvar=c('Person','Gender'),
    v.names='y',
    times=c(8,10,12,14))
rm$Gender <- relevel(rm$Gender,ref='M')</pre>
```

```
rm$fage=factor(rm$Age)
rm$Person <- factor(rm$Person,levels=format(1:27,trim=TRUE))
rm <- rm[order(rm$Person,rm$Age),]</pre>
```

> head(rm)

Person	Gender	Age		y fa	ıge	
1.F.8	1		F	8	21.0	8
1.F.10	1		F	10	20.0	10
1.F.12	1		F	12	21.5	12
1.F.14	1		F	14	23.0	14
2.F.8	2		F	8	21.0	8
2.F.10	2		F	10	21.5	10

Analysis, standard plot are not too difficult.

```
library(nlme)
lSymm <- lme(y ~ Age * Gender,

   data=rm, random= list(Person =pdSymm(~ fage-1)),method='ML')

plot(lSymm, resid(., type = "p") ~ Age | Person)</pre>
```


2.4 Subject level influence

I have chosen to display three items, PRESS, Cook's D and effect on fixed parameters. PRESS is reasonable straightforward, the numbers more or less match. Cook's D on the other hand, is not. I took the formula of the SAS/STAT guide, which calculated it, my wording, as Mahalanobis distance of leave-subject-out fixed parameters. However, the numbers don't match. Part of that may be that I do recalculate random parameters too. Compare my figure with Output 59.8.3 top left, this seems quite similar.

```
coefFulllme <- as.numeric(coef(lSymm)[1,1:4])</pre>
VCMlme <- vcov(lSymm)</pre>
# > VCMlme
 (Intercept)
                        Age
                                GenderF
                                          Age:GenderF
# (Intercept)
               0.87535442 -0.064802764 -0.87535442 0.064802764
# Age
              -0.06480276
                            0.006259044
                                          0.06480276 -0.006259044
# GenderF
              -0.87535442
                            0.064802764
                                          2.14859720 -0.159061330
# Age:GenderF
               0.06480276 -0.006259044 -0.15906133 0.015363109
```

```
1SymmLSO <- sapply(levels(rm$Person), function(x) {</pre>
      rloo <- rm[rm$Person !=x,]</pre>
      1Symm <- lme(y ~ Age * Gender,</pre>
           data=rloo, random= list(Person =pdSymm(~ fage-1)),
          method='ML')
      coef <- as.numeric(coef(lSymm)[1,1:4])</pre>
      genderF <- rm[rm$Person==x,'Gender'][1]=='F'</pre>
      pred <- coef[1]+</pre>
           c(8,10,12,14)*coef[2]+
           genderF*coef[3]+
           c(8,10,12,14)*coef[4]*genderF
      obs <- rm[rm$Person ==x,'y']</pre>
      CD=mahalanobis(coef,coefFulllme,VCMlme)/4
      c(press=sum((obs-pred)^2),cd=CD,coef)
    })
```

```
1SymmLS0 <- t(lSymmLS0)
1SymmLS0[ ,1:2]</pre>
```

For the sake of brevity, here are the last ten output rows.

```
plot(y=lSymmLSO[,2],x=1:27,main="Cook's D",xlab='Subject',type='h')
points(y=lSymmLSO[,2],x=1:27,main="Cook's D",xlab='Subject',type='p',pch=18,col="red")
```


2.5 Fixed-Effects Deletion Estimates

Having done all the pre-work, the fixed effects deletion statistics are just a plot away. They do look slightly different from PROC MIXED as the model is a bit different in the SAS/STAT Guide.

```
par(mfrow=c(2,2))
dummy <- sapply(1:4,function(x) {
    plot(y=lSymmLSO[,x+2],x=1:27,main=names(coef(lSymm))[x],ylab='',xlab='Subject')</pre>
```


Figure 2:

```
abline(h=coefFulllme[x])
})
```

2.6 MCMCglm

The model is easy enough to fit. The approach used in nlme is easy enough to convert. Only first 5 subject's data shown for brevity.

```
library(MCMCglmm)
prior1 <- list(R=list(V=diag(4),nu=.01),
   G=list(G1=list(V=diag(1),nu=.01)))</pre>
```

```
> prior1
$R
$R$V
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
```

```
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
$R$nu
[1] 0.01
$G
$G$G1
$G$G1$V
[,1]
[1,] 1
$G$G1$nu
[1] 0.01
 m1 <- MCMCglmm(y ~ Age* Gender ,</pre>
     random= ~ Person ,
     rcov=~ us(fage) :Person,
     data=rm,family='gaussian',
     nitt=500000,thin=20,burnin=50000,
     verbose=FALSE
      prior=prior1
 )
> summary(m1)
Iterations = 50001:499981
Thinning interval = 20
Sample size = 22500
DIC: 122.9287
G-structure: ~Person
post.mean 1-95% CI u-95% CI eff.samp
Person
           4.222
                    2.034
                             6.874
                                       6387
R-structure: ~us(fage):Person
post.mean 1-95% CI u-95% CI eff.samp
```

```
8:8.Person
                2.6452 0.32083
                                  5.6106
                                            456.4
10:8.Person
               -0.5309 -1.92814
                                  0.9496
                                            602.9
12:8.Person
               0.4166 - 1.48035
                                  2.8015
                                            434.0
14:8.Person
              -0.7591 -2.32263
                                  1.0064
                                            594.7
8:10.Person
              -0.5309 -1.92814
                                  0.9496
                                            602.9
10:10.Person
               1.4521 0.03047
                                  3.3624
                                            428.2
12:10.Person
              -0.4711 -1.97060
                                  1.1899
                                            643.0
14:10.Person
               0.1578 - 1.09865
                                  1.7728
                                            520.9
8:12.Person
               0.4166 -1.48035
                                  2.8015
                                            434.0
10:12.Person
              -0.4711 - 1.97060
                                  1.1899
                                            643.0
12:12.Person
               3.1513 0.55445
                                  6.4259
                                            549.2
14:12.Person
                                  3.0711
               0.7605 - 0.98999
                                            516.9
8:14.Person
               -0.7591 - 2.32263
                                  1.0064
                                            594.7
10:14.Person
               0.1578 -1.09865
                                  1.7728
                                            520.9
12:14.Person
                                  3.0711
               0.7605 - 0.98999
                                            516.9
14:14.Person
               2.0289 0.29857
                                  4.4075
                                            615.5
```

Location effects: y ~ Age * Gender

```
post.mean 1-95% CI u-95% CI eff.samp pMCMC
(Intercept)
              15.8643 13.6506 18.0950
                                           11707 <4e-05 ***
Age
               0.8265
                        0.6481
                                 1.0159
                                           22500 <4e-05 ***
GenderF
               1.5702 - 1.7959
                                 4.9877
                                           21631 0.3490
Age:GenderF
                                           22500 0.0141 *
              -0.3510 -0.6338 -0.0736
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
                                                   1
```

```
VCMM1 <- cov(m1$Sol)
coefFullM1 <- colMeans(m1$Sol)</pre>
```

```
> VCMM1
(Intercept)
                  Age
                         GenderF Age:GenderF
(Intercept) 1.26937339 -0.091886652 -1.28533882 0.092980766
Age
          GenderF
          -1.28533882 0.093050682 2.93663482 -0.211071425
Age:GenderF 0.09298077 -0.008769445 -0.21107143 0.019932764
>
> coefFullM1
(Intercept)
                 Age
                        GenderF Age:GenderF
15.8643063
           0.8265224
                     1.5702003 -0.3509745
```

```
m1LSO <- sapply(levels(rm$Person), function(x) {</pre>
      rloo <- rm[rm$Person !=x,]</pre>
      m1 <- MCMCglmm(y ~ Age* Gender ,</pre>
           random= ~ Person ,
           rcov=~ us(fage) :Person,
           data=rloo,family='gaussian',
     nitt=500000,thin=20,burnin=50000,
           verbose=FALSE
               prior=prior1
       )
      coef <- colMeans(m1$Sol)</pre>
      genderF <- rm[rm$Person==x,'Gender'][1]=='F'</pre>
      pred <- coef[1]+</pre>
           c(8,10,12,14)*coef[2]+
           genderF*coef[3]+
           c(8,10,12,14)*coef[4]*genderF
       obs <- rm[rm$Person ==x,'y']</pre>
      CD=mahalanobis(coefFullM1,coef,VCMM1)/4
      c(press=sum((obs-pred)^2),cd=CD,coef)
    })
m1LSO <- t(m1LSO)</pre>
m1LSO[1:5,1:2]
```

```
press cd

1 10.133019 0.01117458

2 3.835048 0.03347745

3 10.891120 0.02740768

4 24.167881 0.03618814

5 1.694508 0.01317537
```

For both PRESS and Cook's D it is close. For completeness the plot.Not exactly the same, but the trend and interpretations are clear enough.

```
plot(y=m1LSO[,2]*4,x=1:27,main="Cook's D",xlab='Subject',type='h')
```

2.7 Fixed-Effects Deletion Estimates

Following the template from nlme, the result is similar.

```
par(mfrow=c(2,2))
dummy <- sapply(1:4,function(x) {
    plot(y=m1LSO[,x+2],x=1:27,main=names(coefFullM1)[x],ylab='',xlab='Subject')
    abline(h=coefFullM1[x])
})</pre>
```


Figure 3:

Figure 4: