第十三章 主观概率决策

背景

- 在经济预测与决策中,许多经济现象中的不确定性,难以用统计方法和确切的概率理论去描述。
 - 不具备历史的统计数据;
 - 有些经济现象虽然有历史统计数据,但在新的经济环境中,由于有新竞争者介入,经济系统发生变化,使原有的数据不起作用或者不再适用;
 - 生产管理人员虽然有可能掌握某些同类产品的经验,但不掌握直接用于预测的历史数据;
- 掌握好未来事件发生的规律,充分了解它的 不确定性,以提高决策的科学性是当前管理 决策科学中面临的重要课题。

主观概率的基本概念

- 主观概率(Subjective Probability): 在一定条件下,对未来事件发生可能性大小的一种主观相信程度或置信程度的度量,它表示个人信任程度的指数。
- 主观概率的度量方法,常常根据人们长期积累的经验以及对预测与决策事件的了解,从而对事件发生的可能性大小所作的一种主观估计。这种估计所表示的置信程度,还取决于一个人的知识和观察判断能力。
- 主观概率的数值在0至1之间。

主观概率必须满足概率的三条基本公式 设P(A_i)为事件A_i发生的主观概率,则满足:

- (1) $0 \le P(A_i) \le 1$;
- $(2)P(\Omega) = 1, \Omega$ 为样本空间;
- (3)若 $A_i \cap A_j = \emptyset (i \neq j)$,即 A_i 和 A_j 为互斥事件,则

$$P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

主观概率与客观概率的主要区别:主观概率 无法用试验或统计的方法来检验它的正确性。

主观概率在决策中的应用

某厂进行投标,有3种投标价格:标价1每件2.8元;标价2每件2.5元;标价3每件2.2元。进行主观概率估计,估计结果为:标价1中标的可能性为0.3;标价2中标的可能性为0.5;标价3中标的可能性为0.8。又假定每件的成本为1.9元,订购数量为160000件。为了使得经济效益达到最高,应该如何决策?

解:标价1的总平均收益为

$$[(2.8-1.9)\times0.3+0\times0.7]\times160000=43200;$$

标价2的总平均收益为

$$[(2.5-1.9)\times0.5+0\times0.5]\times160000=48000;$$

标价3的总平均收益为

[
$$(2.2-1.9)\times0.8+0\times0.2$$
]× $160000=38000$;
所以采用标价2。

主观概率的求估方法

- 概率转盘法;
- 累计概率法;
- 正态分布的主观概率估计法;

一、概率转盘法

概率转盘法:概率转盘是一种有黑、白两个扇形的圆盘。圆盘中心有一根可旋转的指针, 指针可以位于黑扇区也可位于白扇区内,且 黑扇区的大小可以随意调节。

二、累积概率法

根据主观判断确定一些特殊点的概率以后, 画出这条概率曲线,利用它去近似估计其他 点的概率。

例:某销售员对某种新产品销量估计如下

- (1) 最高需求量2400, 最低需求量400;
- (2) 在400至1200, 1200至2400之间的可能性各占一半;
- (3) 当需求小于1200时,需求在400至900,900至1200之间的可能性相等:
- (4) 当需求多于1200时,需求在1200至1600,1600至2400之间的可能性相等;
- (5) 当需求多于1600时,需求在1600至1900,1900至2400之间的可能性相等;
- (6) 当需求小于900时,需求在400至700,700至900之间的可能性相等;
- (7) 当需求多于1900时,需求在1900至2100,2100至2400之间的可能性相等;
- (8) 当需求小于700时,需求在400至600,600至700之间的可能性相等; 试计算主观概率。

解:

- (1) 最高需求量2400,最低需求量400; P(D > 2400) = P(D < 400) = 0
- (2) 在400至1200, 1200至2400之间的可能性各占一半; P(400 < D < 1200) = P(1200 < D < 2400) = 0.5
- (3) 当需求小于1200时,需求在400至900,900至1200之间的可能性相等; P(400 < D < 900) = P(900 < D < 1200) = 0.25
- (4) 当需求多于1200时,需求在1200至1600,1600至2400之间的可能性相等; P(1200 < D < 1600) = P(1600 < D < 2400) = 0.25
- (5) 当需求多于1600时,需求在1600至1900,1900至2400之间的可能性相等; P(1600 < D < 1900) = P(1900 < D < 2400) = 0.125
- (6) 当需求小于900时,需求在400至700,700至900之间的可能性相等; P(400 < D < 700) = P(700 < D < 900) = 0.125
- (7) 当需求多于1900时,需求在1900至2100,2100至2400之间的可能性相等; P(1900 < D < 2100) = P(2100 < D < 2400) = 0.0625
- (8) 当需求小于700时,需求在400至600,600至700之间的可能性相等; P(400 < D < 600) = P(600 < D < 700) = 0.0625

需求区间	区间中点	需求区间的概率	累积概率
400-600	500	0.0625	0.0625
600—700	650	0.0625	0. 125
700—900	800	0. 125	0. 25
900—1200	1050	0. 25	0.5
1200—1600	1400	0.25	0.75
1600—1900	1750	0. 125	0.875
1900—2100	2000	0.0625	0. 9375
2100—2400	2250	0.0625	100

三、正态分布的主观概率估计法

例:假设某商品未来一年的需求量服从正态分布,由主观估计未来一年最可能的销售量为100,需求在80至120之间的可能性为80%。试求需求服从的分布。

例:设需求为D, E(D) = 100.

$$P(80 < D < 120) = 0.8 \tag{1}$$

$$\Rightarrow P(\frac{80 - 100}{\sigma} < \frac{D - 100}{\sigma} < \frac{120 - 100}{\sigma}) = 0.8 \tag{2}$$

$$\Rightarrow P(-\frac{20}{\sigma} < \xi = \frac{D - 100}{\sigma} < \frac{20}{\sigma}) = 0.8 \tag{3}$$

$$\Rightarrow P(\xi < \frac{20}{\sigma}) = 0.9 \tag{4}$$

$$\Rightarrow \Phi(\frac{20}{\sigma}) = 0.9 \tag{5}$$

$$\Rightarrow \frac{20}{\sigma} = 1.29 \tag{6}$$

$$\Rightarrow \sigma = \frac{20}{1.29} = 15.5$$

$$D \sim N(100, 15.5^2)$$

x	$x \Phi(x)$		<i>x</i> Φ(<i>x</i>)	
1.20	0.8849	1. 50	0. 9332	
1.21	0.8869	1.51	0.9345	
1.22	0.8888	1. 52	0.9357	
1.23	0.8907	1. 53	0.9370	
1.24	0.8925	1. 54	0.9382	
1.25	0.8944	1. 55	0.9394	
1.26	0.8962	1.56	0.9106	
1.27	0.8980	1. 57	0.9418	
1.28	0.8997	1.58	0.9429	
1.29	0.9015	1.59	0.9441	
1.30	0. 9032	1. 60	0.9452	