ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 19 febbraio 2018

Esercizio A

$\begin{split} R_2 &= 67 \; k\Omega \\ R_3 &= 15 \; k\Omega \\ R_4 &= 3750 \; \Omega \\ R_5 &= 500 \; \Omega \\ R_6 &= 2.4 \; k\Omega \\ R_7 &= 100 \; \Omega \\ R_8 &= 7.9 \; k\Omega \\ R_9 &= 8 \; k\Omega \\ R_{10} &= 20 \; k\Omega \end{split}$	$R_{11} = 4.5 \text{ k}\Omega$ $R_{12} = 100 \Omega$ $R_{13} = 2.4 \text{ k}\Omega$ $R_{14} = 50 \Omega$ $R_{15} = 15 \text{ k}\Omega$ $C_{1} = 470 \text{ nF}$ $C_{2} = 68 \text{ nF}$ $C_{3} = 820 \text{ pF}$ $V_{CC} = 18 \text{ V}$	V_{cc} R_{6} R_{7} R_{10} R_{11} R_{14} C_{3} R_{15}
---	--	--

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = 1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_1 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 9 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_1 = 105709.7 \Omega$).
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.43$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{Z1} =42.86 Hz, f_{p1} =84.09 Hz, f_{Z2} =975 Hz, f_{p2} =4876 Hz, f_{Z3} =0 Hz, f_{p3} =9928 Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (\overline{A} + \overline{C}D + E)(\overline{BC}) + BE + A\overline{B}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R. N = 14)

Esercizio C

$R_1 = 200 \Omega$	$R_5 = 4 \text{ k}\Omega$
$R_2 = 200 \Omega$	$R_6 = 600 \Omega$
$R_3 = 6.8 \text{ k}\Omega$	$C = 0.47 \mu F$
$R_4 = 1 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, Q_2 ha una $R_{on} = 0$ e $V_T = -1V$, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 1307.79 Hz)