Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

OLS #9 (boostrap & incertitude)

Régression Linéaire & Bootstrap (1)

```
Dataset \{\mathbf{z}_i = (y_i, \mathbf{x}_i)\}, i = 1, \dots, n.
Use paired sampling by (repeatedly)
resampling \{z_1^{\star}, \cdots, z_n^{\star}\}.
Idea:
\{(y_i, \mathbf{x}_i)\}\ is obtained from (unknown) \mathbb{P}
Based on n observations, we observe \mathbb{P}_n
We generate other samples by resampling
from \mathbb{P}_n
```

- 1. sample $\{i_1^{(b)}, \dots, i_n^{(b)}\}$ randomly with replacement in $\{1, 2, \dots, n\}$
- 2. consider dataset $(\mathbf{x}_i^{(b)}, y_i^{(b)}) = (\mathbf{x}_{i^{(b)}}, y_{i^{(b)}})$'s, and fit a model
- 3. let $\widehat{\beta}^{(b)}$ denote the estimated values, or $\widehat{y}_{n+1}^{(b)}$ some prediction

Ofreakonometrics of freakonometrics of freakonometrics.hypotheses.org

Régression Linéaire & Bootstrap (1)

```
BETA = matrix(NA, 1000, 2)
 > for(s in 1:1000){
   idx = sample(1:nrow(Davis),nrow(
3
     Davis),replace=TRUE)
   reg_sim = lm(weight~height, data=
     Davis[idx,])
   BETA[s,] = reg_sim$coefficients
6
   hist(BETA[,1])
   hist(BETA[,2])
 XX
```


Height (cm)

Régression Linéaire & Bootstrap (1)

```
BETA = matrix(NA, 1000, 2)
 > for(s in 1:1000){
   idx = sample(1:nrow(Davis),nrow(
     Davis),replace=TRUE)
   reg_sim = lm(weight~height, data=
4
     Davis[idx,])
   BETA[s,] = reg_sim$coefficients
5
6 }
  hist(BETA[,1])
 > hist(BETA[,2])
 XX
```


Régression Linéaire & Bootstrap (2)

As an alternative model-based resampling

- 1. sample $\widehat{\varepsilon}_1^{(b)}, \dots, \widehat{\varepsilon}_n^{(b)}$ resample from $\{\widehat{\varepsilon}_1, \widehat{\varepsilon}_2, \dots, \widehat{\varepsilon}_n\}$
- 2. set $y_i^{(b)} = \widehat{\beta}_0 + \widehat{\beta}_1 x_i + \widehat{\varepsilon}_i^{(b)} = \widehat{y}_i + \widehat{\varepsilon}_i^{(b)}$
- 3. consider dataset $(\mathbf{x}, y^{(b)}) = (\mathbf{x}_i, y_i^{(b)})$'s and fit a model
- 4. let $\widehat{\boldsymbol{\beta}}^{(b)}$ denote estimated values

Note in a simple regression

$$\widehat{\beta}_1^{(b)} = \frac{\sum [x_i - \overline{x}] \cdot y_i^{(b)}}{\sum [x_i - \overline{x}]^2} = \widehat{\beta}_1 + \frac{\sum [x_i - \overline{x}] \cdot \widehat{\varepsilon}_i^{(b)}}{\sum [x_i - \overline{x}]^2}$$

hence $\mathbb{E}[\widehat{\beta}_1^{(b)}] = \widehat{\beta}_1$, while

$$\mathsf{Var}[\widehat{\beta}_1^{(b)}] = \frac{\sum [x_i - \overline{x}]^2 \cdot \mathsf{Var}[\widehat{\varepsilon}_i^{(b)}]}{\left(\sum [x_i - \overline{x}]^2\right)^2} \sim \frac{\sigma^2}{\sum [x_i - \overline{x}]^2}$$

Régression Linéaire & Bootstrap (2)

```
> BETA = matrix(NA,1000,2)
 > reg = lm(weight~height, data=Davis)
3 > epsilon = residuals(reg)
4 > for(s in 1:1000){
   eps = sample(epsilon,nrow(Davis),
     replace=TRUE)
   Davis_s = data.frame(height =
6
     Davis$height, weight =predict(reg)
     +eps)
   reg_sim = lm(weight~height, data=
     Davis_s)
   BETA[s,] = reg_sim$coefficients
8
g
 > hist(BETA[,1])
 > hist(BETA[,2])
 XX
```


Height (cm)

Régression Linéaire & Bootstrap (2)

```
> BETA = matrix(NA,1000,2)
2 > reg = lm(weight~height, data=Davis)
3 > epsilon = residuals(reg)
4 > for(s in 1:1000){
   eps = sample(epsilon, nrow(Davis),
5
     replace=TRUE)
   Davis_s = data.frame(height =
6
     Davis$height, weight =predict(reg)
     +eps)
   reg_sim = lm(weight~height, data=
7
     Davis_s)
   BETA[s,] = reg_sim$coefficients
8
9
 > hist(BETA[,1])
 > hist(BETA[,2])
 XX
```


Régression Linéaire & Bootstrap (1/2)

```
> PRED = matrix(NA,1000,2)
2 > nwDavis = data.frame(height = 195)
3 > for(s in 1:1000){
+ idx = sample(1:n,n,replace=TRUE)
5 + reg_sim = lm(weight~height, data=
     Davis[idx,])
     PRED[s,1] = predict(reg_sim,
     newdata=nwDavis)
     eps = sample(epsilon, nrow(Davis),
     replace=TRUE)
8 +
     Davis_s = data.frame(height =
     Davis$height, weight =predict(reg)
     +eps)
     reg_sim = lm(weight~height, data=
     Davis s)
     PRED[s,2] = predict(reg_sim,
10 +
     newdata=nwDavis)
11 + }
```


Régression Linéaire & Bootstrap (1/2)

```
> apply(PRED,2,function(x) quantile(x
     ..025))
2 [1] 89.04203 89.63030
3 > apply(PRED,2,function(x) quantile(x
     ..975))
4 [1] 97.60345 97.02423
5 > predict(lm(weight~height, data=Davis
     ), newdata=nwDavis,interval="
     confidence", se.fit = TRUE)
 $fit.
         fit
                  lwr
7
                            upr
 1 93.35749 89.89571 96.81927
9
 $se.fit
 [1] 1.755451
```


Bootstrap heuristics

Here
$$\widehat{\pmb{\beta}} = \pmb{\beta} + (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\pmb{\varepsilon} = \mathcal{T}_{\beta}(\pmb{\varepsilon}) \text{ or } \widehat{y}_{n+1} = \mathbf{x}_{n+1}'\widehat{\pmb{\beta}} = \mathcal{T}_y(\pmb{\varepsilon})$$

Use simulations, we draw *n* values $\{\epsilon_1, \dots, \epsilon_n\}$ and

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}T(\epsilon_{i})\right] = \mathbb{E}[T(\varepsilon)] \text{ (unbiased)}$$

▶
$$\frac{1}{n} \sum_{i=1}^{n} T(\epsilon_i) \stackrel{\mathcal{L}}{\to} \mathbb{E}[T(\epsilon)]$$
 as $n \to \infty$ (consistent)

Bootstrap & Tests

Consider the test of $H_0: \beta_i = 0$,

- 1. compute $t_n = \frac{(\widehat{\beta}_j \beta_j)^2}{\widehat{\sigma}_{\cdot}^2}$
- 2. generate B boostrap samples, under the null assumption H_0
- 3. for each boostrap sample, compute $t_n^{(b)} = \frac{(\widehat{\beta}_j^{(b)} \widehat{\beta}_j)^2}{\widehat{\sigma}_j^{2(b)}}$
- 4. reject H_0 if $\frac{1}{B} \sum_{i=1}^{B} \mathbf{1}(t_n > t_n^{(b)}) < \alpha$.

Bootstrap & Tests

What does "generate B boostrap samples, under the null assumption H_0 " mean ?

Example: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ with $H_0: \beta_1 = 0$.

- 2.1. Estimate the model under H_0 , i.e. $y_i = \beta_0 + \eta_i$, and save $\{\widehat{\eta}_1,\cdots,\widehat{\eta}_n\}$
- 2.2. Define $\widetilde{\boldsymbol{\eta}} = \{\widetilde{\eta}_1, \cdots, \widetilde{\eta}_n\}$ with $\widetilde{\boldsymbol{\eta}} = \sqrt{\frac{n}{n-1}} \widehat{\boldsymbol{\eta}}$
- 2.3. Draw (with replacement) residuals $\widetilde{\pmb{\eta}}^{(b)} = \{\widetilde{\eta}_1^{(b)}, \cdots, \widetilde{\eta}_n^{(b)}\}$
- 2.4. Set $y_i^{(b)} = \widehat{\beta}_0 + \widetilde{\eta}_i^{(b)}$
- 2.5. Estimate the regression model $y_i^{(b)} = \beta_0^{(b)} + \beta_1^{(b)} x_i + \varepsilon_i^{(b)}$
- 3. for each boostrap sample, compute $t_n^{(b)} = \frac{(\widehat{\beta}_j^{(b)} \widehat{\beta}_j)^2}{\widehat{\sigma}_{\cdot}^{2(b)}}$
- 4. reject H_0 if $\frac{1}{R} \sum_{n=0}^{R} \mathbf{1}(t_n > t_n^{(b)}) < \alpha$.

