Question Number	Answer					Mark
3(a)	EITHER					
	$\ln P = \ln P_0 -$	(1)			
	Compares to y constant)	nt (which is (1				
	MP2 depende	nt on MP1				
	OR					
	$\ln P = -bh +$	$\ln P_0$			(1)
	Compares to y constant)	y = mx + c when	re the gradient is	s-b is the gradien	nt (which is	2
	MP2 depende	nt on MP1				
3(b)(i)	Values of ln F	stent to 2 d.p. (1)			
	Axes labelled	(1)			
	Appropriate so				(1	
		a plotted accura	tely		(1	
	Best fit line di	(1) 5			
	[Accept graph					
		<i>h</i> / m	<i>P</i> / kPa	ln (P / kPa)		
		305	97.7	4.582		
		762	92.5	4.527		
		1372	85.9	4.453		
		1829	81.2	4.397		
		2438	75.3	4.321		
		3048	69.7	4.244		

3(b)(ii) Uses large triangle to calculate gradient

(1)

Value of gradient in range (-)1.20 \times 10⁻⁴ to (-)1.30 \times 10⁴

(1) (1)

3

Value of gradient given to 2 or 3 s.f., and negative

[Allow unit of m⁻¹]

Example of calculation

gradient =
$$\frac{4.56 - 4.25}{500 - 3000} = \frac{0.31}{-250} = -1.24 \times 10^{-4}$$

3(b)(iii)	Uses gradient = $(-)\frac{Mg}{kT}$	(1)			
	Correct value of M e.c.f. $3(b)(ii)$	(1)			
	Value of M given to 2 or 3 s.f., correct unit	(1)	3		
	Example of calculation				
	$M = -\frac{-1.24 \times 10^{-4} \times 1.38 \times 10^{-2} \text{ JK}^{-1} \times 288 \text{K}}{9.81 \text{ms}^{-2}} = 5.02 \times 10^{-26} \text{ kg}$				
3(b)(iv)	Reads $\ln P_0$ from y-intercept \mathbf{Or} Calculates (\ln) P_0 using gradient and data point from best fit line				
	Or Substitutes for (ln) P_0 using gradient and data point from best fit line	(1)			
	Calculates P at $h = (-)414 \text{ m}$	(1) (1)	3		
	Value of P in range 105 kPa to 108 kPa [accept 2,3,4 SF]				
	MP3 dependent on MP2				
	Example of calculation				
	$\ln P_0 = 4.62$				
	$\ln P = 4.62 + (-1.24 \times 10^{-4} \times -414) = 4.67$				
	$P = e^{4.67} = 107 \text{ kPa}$				

16

Total for question 3