Съседни класове. Теорема на Лагранж. Следствия.

Нека G е група, а H е нейна подгрупа. Нека $x \in G$ е произволен елемент. Множеството

$$xH = \{xh \mid h \in H\} \subseteq G$$

се нарича ляв съседен клас на G по H с представител елемента x. Аналогично, дефинираме множеството

$$Hx = \{hx \mid h \in H\} \subseteq G$$

се нарича десен съседен клас на G по H с представител x. Тривиални примери за съседни класове получаваме при H=G, където xG=G за $\forall x\in G$, както и при $H=\{1\}$, при което имаме $xH=\{x\}$. В общия случай $xH\neq xH$ и $xH\neq H$ и съседните класове не са подгрупи на G.

Свойства:

Ще покажем свойства само на левите съседни класове, които по аналогичен начин се превеждат и за десните. Нека G е група, $H \leq G$ и $x \in G$. Тогава:

- 1. Всеки елемент на G се съдържа в някой ляв съседен клас на G по H. Наистина, за произволно $x \in G$ имаме, че x = xe и $e \in H$. Следователно $x \in xH$.
- $2. \ xH = H \Leftrightarrow x \in H$. Необходимост: От свойство 1 имаме, че $x \in xH$, но xH = H и следователно $x \in H$. Достатъчност: Нека $x \in H$. Тогава за проиволен елемент $y \in xH$ е в сила, че y = xh за някой елемент $h \in H$. Сега от $x \in H$ и $h \in H$ следва, че трябва $y \in H$ и оттук получаваме включването $xH \subseteq H$. От друга страна, за произволен елемент $h \in H$ имаме $h = eh = (xx^{-1})h = x(x^{-1}h)$. Сега от $h \in H$ и $x \in H$ следва, че трябва $x^{-1}h \in H$. Оттук пък получаваме, че $x(x^{-1}h) \in xH$, т.е. че

 $h \in xH$. По този начин доказахме и обратното включване $H \subseteq xH$ и следователно H = xH.

3. Нека $x,y \in G$. Тогава $y \in xH \Leftrightarrow xH = yH$. (В частност това означава, че всеки елемент $y \in xH$ е представител на същия съседен клас.) Необходимост: Нека $y \in xH$, т.е. y = xh за някой елемент $h \in H$. За произволен елемент $u \in yH$ имаме, че $u = yh_1$ за някой елемент $h_1 \in H$. Сега имаме $u = yh_1 = (xh)h_1 = x\underbrace{(hh_1)}_{\in H}$, което означава, че

 $u \in xH$ и по този начин $yH \subseteq xH$. За произволен елемент $v \in xH$ имаме, че $v = xh_2$ за някой елемент $h_2 \in H$. Имайки предвид, че y = xh, от което следва, че $x = yh^{-1}$, получаваме $v = xh_2 = (yh^{-1})h_2 = y(h^{-1}h_2)$, което

означава, че $v \in yH$, откъдето следва и обратното включване $xH \subseteq yH$. Така xH = yH. Достатъчност: Нека xH = yH. Тогава $y \in yH = xH$ и директно $y \in xH$.

4. Нека $x, y \in G$. Тогава $xH = yH \Leftrightarrow x^{-1}y \in H$ (или еквивалентно $y^{-1}x \in H$, което следва и от факта, че $x^{-1}y \in H \Rightarrow (x^{-1}y)^{-1} = y^{-1}x \in H$). Необходимост: Нека xH = yH. Тогава от свойство 3 следва, че $y \in xH$, което означава, че y = xh за елемент $h \in H$. Но тогава $x^{-1}y = h \in H$. Достатъчност: Нека $x^{-1}y \in H$ и $x^{-1}y = h \in H$. Това ни дава, че y = xh и $x = yh^{-1}$. За всеки елемент $x \in xH$ имаме, че $x \in xH$ имаме, че $x \in xH$ имаме, че $x \in xH$ имаме в ключването следва включването

 $xH \subseteq yH$. За всеки елемент $v \in yH$ имаме, че $v = yh_2$ за някакъв елемент $h_2 \in H$ и така $v = (xh)h_2 = x(\underbrace{hh_2}_{\in H})$, откъдето пък следва обратното

включване $yH \subseteq xH$. Окончателно това ни дава, че xH = yH.

5. Ако $x,y\in G$, то или xH=yH, или $xH\cap yH=\varnothing$. Наистина, ако xH=yH, то първият случай е изпълнен и няма какво да доказваме. Нека сега $xH\neq yH$ и да допуснем, че $xH\cap yH\neq\varnothing$. Тогава $\exists z\in xH\cap yH$, т.е. $z\in xH$ и едновременно с това $z\in yH$. Тогава според свойство 3 имаме, че xH=zH и yH=zH, което ни дава противоречието xH=yH. Следователно остава да е вярно $xH\cap yH=\varnothing$.

Оттук се вижда, че ако $x \in G$, xH е левият съседен клас на G по H и имаме, че $xH \neq H$, то H = eH и $xH \cap eH = \varnothing$. По този начин $e \notin xH$ и xH няма как да е подгрупа на G.

6. За всеки елемент $x \in G$ е в сила |xH| = |H|, т.е. броят на елемените

на xH е равен на реда на H. Наистина, да разгледаме изображението

$$\varphi: H \longrightarrow xH,$$

дефинирано с $\varphi(h) = xh$ за всеки елемент $h \in H$. За всеки елемент $y \in xH$ имаме, че y = xh за някакъв елемент $h \in H$. Следователно $y = \varphi(h)$, т.е. всеки елемент от xH е образ на елемент от H под действието на φ и по този начин φ е сюрективно. Нека сега $h_1, h_2 \in H$ са такива, че $h_1 \neq h_2$. Ако допуснем, че $\varphi(h_1) = \varphi(h_2)$, получаваме равенството $xh_1 = xh_2$, което след ляво умножение с x^{-1} дава противоречието $h_1 = h_2$. Следователно остава да е вярно, че от $h_1 \neq h_2$ следва $\varphi(h_1) \neq \varphi(h_1)$, което означава, че φ е инективно изображение. По този начин φ е биекция, а xH и H са равномощни множества, което означава точно, че |xH| = |H|.

7. Нека L е множеството на всички леви съседни класове на G по H, а R е множеството на всички десни съседни класове на G по H. Тогава |L| = |R|, т.е. броят на левите е равен на броя на десните съседни класове. За да го докажем разглеждаме изображението

$$\varphi: L \longrightarrow R,$$

дефинирано с равенството $\varphi(xH) = Hx^{-1}$ за всеки елемент $x \in G$. Ще докажем, че φ е биективно. Първо, всеки елемент от R има вида Hy за елемент $y \in G$. Тогава $\exists y^{-1} \in G$ и разглеждаме левият съседен клас на G по H с представител y^{-1} , т.е. $y^{-1}H \in L$. Тогава $\varphi(y^{-1}H) = H(y^{-1})^{-1} = Hy$, откъдето следва че φ е сюрективно. Нека сега $x_1H, x_2H \in L$ са два леви съседни класа, такива че $x_1H \neq x_2H$. Ако допуснем, че $\varphi(x_1H) = \varphi(x_2H)$, получаваме че $Hx_1^{-1} = Hx_2^{-1}$. От еквивалента на свойство 4 за десни съседни класове имаме, че $x_1^{-1}(x_2^{-1})^{-1} \in H$, т.е. $x_1^{-1}x_2 \in H$. Сега, отново от свойство 4, този пътприложено за леви съседни класове, получаваме че трябва $x_1H = x_2H$, което е противоречие. Следователно $Hx_1^{-1} \neq Hx_2^{-1}$ и φ е инективно. Окончателно, φ е биекция, откъдето следва, че |L| = |R|.

Числото |L| = |R|, което току-що разгледахме се нарича undekc на $nodepynama\ H\ e\ G$. Означаваме го с|G:H|.

Примери:

1. За тривиалните подгрупи на G имаме: при H=G имаме |G:H|=|G:G|=1 тъй като xG=G за $\forall x\in G$ и същестува единствен ляв и

единствен десен съседен клас; при $H=\{e\}$ имаме |G:H|=|G|, т.к. получаваме различен съседен клас $gH=\{g\}$ за всеки различен елемент $g\in G$.

- 2. Нека разгледаме адитивната група на целите числа $G=\mathbb{Z}$. Ако $H\leq G$ е нейна подгрупа, то знаем, че $H=m\mathbb{Z}$ за $m=0,1,2,\ldots$ Нека $x\in G$. тогава ляв съседен клас на G по H с представител x е $x+H=\{x+h\mid h\in H\}=\{x+mz\mid z\in \mathbb{Z}\}$. Така x+H се състои от всички числа, сравними с x по модул m. Т.к. всевъзможните остатъципри деление с m са $0,1,\ldots,m-1$, то плучаваме, че всички съседни класове на G по H са $0+m\mathbb{Z}=m\mathbb{Z},1+m\mathbb{Z},\ldots,(m-1)+m\mathbb{Z}$. Те са m на брой и следователно индексът на H в G е |G:H|=m.
- 3. Нека $G = GL_n(F) = \{A \in F_{n \times n} \mid \det A \neq 0\}$, а $H = SL_n = \{A \in F_{n \times n} \mid \det A = 1\}$. Нека $x \in G$. Всеки елемент $y \in xH$ има вида y = xh за някакъв елемент $h \in H$. Тогава $\det y = \det(xh) = \det x \det h = \det x$. Обратно, ако $g \in G$ и $\det g = \det x$, то $\det(x^{-1}g) = \frac{1}{\det x} \det g = 1$. Това означава, че $x^{-1}g \in H$, което дава, че $g \in xH$. По този начин открихме, за за всеки елемент $x \in G$ левият съседен клас на G по $H \in xH = \{g \in G \mid \det g = \det x\}$, което означава, че xH = Hx, т.е. за всеки елемент $x \in G$ левите и десните съседни класове съвпадат, въпреки че групата $G = GL_n(F)$ не е абелева. Още повече, индексът на H в G е равен на броят на случаите, в които детерминантата на една матрица е ненулева, т.е. $|G:H| = |F\setminus\{0\}| = |F^*| = \infty$.

Нека G е крайна група, а H е нейна подгрупа. Тогава различните леви съседни класове на G по H са краен брой: x_1H,\ldots,x_kH , където k=|G:H| е индексът на H в G. От свойство 1 имаме, че всеки елемент на G се съдържа в някой от тези съседни класове x_iH за $i=1,\ldots,k$. Следователно

$$G = x_1 H \cup x_2 H \cup \dots \cup x_n H$$

. От свойство 5 имаме, че различните съседни калсове са непресичащи се, т.е. $x_i H \cap x_j H = \varnothing$ при $i \neq j$ и следователно

$$|G| = |x_1H| + |x_2H| + \dots + |x_kH|.$$

От свойство 6 имаме, че за всяко $x \in G$ е изпълнено |xH| = |H| което ни дава

$$|G| = \underbrace{|H| + |H| + \dots + |H|}_{k \text{ III-TM}} = k|H|.$$

По този начин доказахме, че

$$|G| = |G:K||H|,$$

което всъщност гласи

Теоремата на Лагранж. Ако G e крайна група и <math>H e произволна нейна подгрупа, то

$$|G| = |G:H||H|.$$

Нека сега видим няколко следствия от тази теорема.

Следствие 1. Ако G кранйа група и H е подгрупа на G, то редът на H дели реда на G и индекса на H дели реда на G

Следствие 2. Ако G е крайна група от ред |G| = n и $a \in G$ е произволен елемент, то |a| дели |G|. В частност $a^n = e$.

Доказателство. Нека |a|=r за $r\in\mathbb{N}$, т.е. r е най-малкото естествено число, за което $a^r=e$. Нека $H=\langle a\rangle$ е цикличната подгрупана G, породена от a. Тогава $|H|=|\langle a\rangle|=|a|=r$. От Следствие 1 имаме, че |H| дели |G|, т.е. r=|a| дели |G|=n. Оттук веднага следва и че $a^n=e$. \square

Следствие 3. Ако G е крайна група от ред p – просто число, то $G \cong \mathbb{C}_p$.

Доказателство. Т.к. $|G|=p\geq 2$, то същестува елемент $a\in G$, такъв че $a\neq e$. Разглеждаме цикличната група $\langle a\rangle$, породена от a. Според Следствие 1 $|\langle a\rangle|$ дели |G|=p и т.к. числото p е просто, а $a\neq e\Rightarrow |\langle a\rangle|\geq 2$, то следва, че $|\langle a\rangle|=p=|G|$. Т.к. $\langle a\rangle\leq G$, то достигаме до извода, че $G=\langle a\rangle$, т.е. G е крайна циклична група от ред p, а според класификацията на цикличните групи знаем, че в такъв случай $G\cong \mathbb{C}_p$.

Следствие 4. Ако $G \neq \{e\}$ е група и G няма подгрупи различни от $\{e\}$ и G, m.e. ако няма нетривиални подгрупи, то $G \cong \mathbb{C}_p$ за някое просто число p.

Доказателство. Нека $a \in G$ е такъв, че $a \neq e$. Тогава $\langle a \rangle \leq G$ и $\langle a \rangle \neq \{e\}$, откъдето следва, че $\langle a \rangle = G$ и G е циклина група. Ако допуснем, че G е безкрайна,то според класификацията на цикличните групи $G \cong \mathbb{Z}$. Тук обаче достигаме до противоречие, т.к. \mathbb{Z} има нетривиални

погрупи, откъдето следва, че ако $G\cong \mathbb{Z}$, то и G има нетривиални подгрупи. Следователно остава групата G да е крайна и |G|=p за $p\in \mathbb{N}$ и от класификацията на цикличните групи знаем, че $G\cong \mathbb{C}_p$. Ако p не е просто число, то същестува число $d\in \mathbb{N}, d\neq 1$, такова че $d\mid p$ и $\mathbb{C}_d\leq \mathbb{C}_p$ е нетривиална подгрупа на \mathbb{C}_p , което би означавало, че G също притежава нетривиални подгрупи. Това противоречие доказва, че числото p трябва да е просто, с което следствието е доказано.