装订线

本试卷适用范围

植保 191-194, 农经 191-193, 经管实验 191 等

南京农业大学试题纸

2020-2021 学年 第 1 学期 课程类型: 必 (选)修 试卷类型: A

课程号 CROP3101

课程名 ___作物学通论____

学分 2

学号

姓名 _

班级

题号	 1 1	111	四	五	六	总分	签名
得分							

一、名词解释(每题2分,共20分)

1、作物

泛指人类栽培利用的具有一定经济价值的植物。

2、优良品种

在一定地区的生态条件和生产水平下,具有较高的产量和品质,具有较大的应用前景的品种。

3、作物的生育期

作物从播种到收获的整个生长发育所需时间为作物的大田生育期,以天数表示.

4、种子休眠

在适宜的条件下,作物种子和供繁殖的营养器官暂时停止萌发的现象。

- 5、有效分蘖
 - 一般只有早期发生的低位分蘖能够抽穗结实成为有效分蘖
- 6、根冠比

根系重与茎叶 (冠部)重之比。

7、经济系数

指生物产量转化为经济产量的效率(或收获指数),即:收获指数=经济产量/生物产量

8、叶面积指数

单位土地面积上所有叶面积(单面)的总和。

9、作物群体

作物的许多个体的聚集体.

10、营养最大效率期

在作物一生中养分需求量和吸收速度都很大的时期, 称为作物营养的最大效率期。

二、单项选择题(每题 1 分, 共 20 分)
 1、基于粳稻"粳"字科学内涵,经中国学者(B)等共 186 位水稻专家较真,2019 年 2 月
教育部正式发布"粳"读"gěng"不再读"jīng"。
A、喻树迅 B、张启发 C、傅廷栋 D、程顺和
2、现代作物传播的主要途径为 (D)
A、风、雨、水流 B、动物活动 C、种子的弹射 D、人类有目标的引种
3、下列作物感温特性与其他三种作物不同的是 (A)
A、水稻 B、小麦 C、油菜 D、蚕豆
4、中国农业农村部将(D)列为第4大粮食作物。
A、小麦 B、水稻 C、甘薯 D、马铃薯
5、近年来中国种植面积最大的纤维作物为(C)
A、亚麻 B、工业大麻 C、棉花 D、胡麻
6、南京水稻、玉米收获后,常到(C)加代种植,可提高种子繁殖系数。
A、云南昆明 B、青海西宁 C、海南三亚 D、新疆乌鲁木齐
7、利用品种的自然变异的育种方法为(B)
A、引育 B、选择育种 C、杂交育种 D、杂交优势利用
8、农家稻谷加工成大米后的副产品称为 (A)
A、稻糠 B、砻糠 C、米糠 D、麸皮
9、小麦的面筋含量属于(C)
A、外观品质 B、加工品质 C、营养品质 D、食味品质
10、饼干通常装在铁盒和硬纸盒中。从作物学的角度考虑,这样做是为了(C)
A、降低包装成本 B、延长产品保质期 C、避免产品碎裂 D、美化外包装
11、禾谷类作物的经济产量=单位面积穗数×每穗实粒数×粒重。下列说法错误的是(
A、粒重主要受遗传控制,而其他两要素更易受栽培调控。
B、三要素之间一般呈此消彼长的相互制约关系。
C、三要素是相互独立的,无论单一增加某一要素,均可获得高产。
D、作物高产需要三要素的协同和平衡。
12、甘薯地下茎为 (A)
A、根茎 B、块茎 C、球茎 D、鳞茎
13、有些作物的种子在收获后马上播种,发现发芽率很低,这是由于(A)
A、种子未完成后熟 B、种子为瘪种 C、温度不够 D、水分不够

14、下列作物生长发育的最低温度最低的是(B)					
A、水稻 B、油菜 C、棉花 D、玉米					
15、作物受涝死亡,主要是由于(A)					
$A、缺少 O_2$ $B、缺少 CO_2$ $C、不能固氮 D、水分过多$					
16、7月前后,南方油菜早已扬花结籽收获入仓,而海拔3200多米的青海湖一带,此时的油菜					
花却正开得热闹。这一现象说明 (B)					
A、高海拔地区油菜的生育期较长 B、油菜的物候期具有广泛的地域变异					
C、高海拔地区油菜品质较好 D、油菜适宜在高海拔地区生长					
17、关于栽培措施对环境温度的影响,下列说法错误的是(C)					
A、在高温来临时灌溉可降温 B、在低温来临时灌溉可升温					
C、夏季中耕松土可降温,冬季镇压土壤可升温 D、秋冬季地膜、秸秆覆盖均可升温					
18、关于叶面肥,下列说法错误的是(A)					
A、仅限于铜、锌、锰、硼等微量元素的施用					
B、一般用于生长后期,改善叶片营养状况					
C、应在晴天露水初干时进行,喷施在生理活动旺盛的新叶上效果好					
D、喷施时以叶片上下表面湿润均匀,不成水滴下落为宜					
19、下列作物分枝或分蘖特性较弱的是(B))					
A、水稻 B、玉米 C、棉花 D、油菜					
20、种子萌发对温度和光照的要求说法错误的是(C)					
A、种子萌发有最低温度、最适温度和最高温度 B、种子萌发需要足够的水分					
C、只有充足的光照种子才能正常萌发 D、种子萌发需要足够的氧气					
三、判断题(每题 1 分, 共 10 分)					
1、全球小麦、水稻、玉米总和约占粮食作物总面积的80%,约占粮食总产的90%(✓)					
2、世界作物总产的增加主要得益于面积和单产的大幅度增加(×)					
3、作物缺氮时新叶先发黄(×)					
4、双子叶作物完整的叶片包括叶片和叶鞘、叶耳和叶舌(×)					
5、作物加工品质可以分为一次加工品质和二次加工品质(✓)					
6、全球天然纤维原料作物主要是棉花,中国种植面积最大、总产最高(×)					
7、全球气温升高,高温、干旱等极端灾害性天气发生概率增加(√)					

8、肥料按形态分,包括固体肥料、液态肥料和气态肥料等三种 (✓)					
9、随施肥量增加,单位施肥量的增产效应递减(✓)					
10、不当的化肥农药使用、灌排水、农机具作业等均可导致土壤障碍 (✓)					
四、填空题(每题 1 分, 共 10 分)					
1、现代分子生物学研究证实遗传的核心物质是脱氧核糖核酸(或 DNA)。					
2、大田作物播种方法主要有撒播、条播、					
3、双子叶作物的根系是					
4、					
5、水稻的需水包括生理需水和生态需水。					
6、土壤按其质地可分为三类,即砂土、壤土和。					
7、土壤中的					
8、春季最后一次霜冻到秋季最早一次霜冻出现所持续的天数叫 无霜期。					
9、土壤耕作可分为基本耕作 和表土耕作。					
10、干旱可分为土壤干旱和 <u>大气干旱</u> 两种。					
五、简答题(任选 6 题, 每题 5 分, 共 30 分)					
1、简述世界作物生产发展中的主要增产措施。					
(1)品种改良。(2)增施肥料与施肥技术。(3)扩大灌溉面积与节水技术。(4)土壤改良和低产					
地改造。(5)温室和保护地栽培。(6)作物病虫草防治。(7)高新技术的推广应用。					
(答对5个及以上给全分,少1点扣1分)					
2、简述中国作物生产面临的主要问题。					
(1)水资源缺乏,农业基础条件较差。(2)人口持续增长,增加了人口对作物生产的压力。(3)粮食					

(1)水资源缺乏,农业基础条件较差。(2)人口持续增长,增加了人口对作物生产的压力。(3)粮食生产重心转移问题。(4)粮食品种结构问题。(5)作物生产科技发展问题。(6)作物优质高产高效发展问题。

(答对5个以上给全分,少1点扣1分)

- 3、根据植物学分类系统和作物用途相结合方法对作物进行分类。
- (1) 粮食作物 包括禾谷类作物、豆类作物、薯类作物。
- (2) 经济作物 包括纤维作物、油料作物、糖料作物、嗜好类作物

- (3) 饲料及绿肥作物。
- (4) 药用作物、特用作物。

(每点1分,阐述1分)

- 4、简述作物叶的功能。
- ①进行光合作用。(1分)
- ②进行蒸腾作用。(2分)
- ③叶也具有直接吸收水分和无机盐溶液的功能。(2分)
- 5、简述作物生态因子的分类。
- (1) 气候因子。(2) 土壤因子。(3) 地形因子。(4) 生物因子。(5) 人为因子。

(每点1分)

- 6、简述光周期在农业生产中的应用。
- (1) 引种。(1分)
- (2) 育种。如促进花期相遇。南繁北育,加代繁殖。(1分)
- (3) 控制花期(花卉)。(1分)
- (4)调节营养和生殖生长。(2分)
- 7、简述地膜覆盖的作用。
- (1)作物种植区域的变化。(2)品种布局有了突破。(3)干旱半干旱地区、盐碱地区农业得到了新的发展。(4)提高复种指数。(5)增加了经济效益和社会效益。

(每点1分)

8、简述育苗移栽的优点和缺点。

优点:

- (1) 节省用种。
- (2) 缩短大田生育期,提高土地利用率,增加产量。
- (3) 人为创造良好的育苗环境, 防止或减轻自然灾害危害。
- (4) 便于茬口安排与衔接,有利于实现周年集约化栽培。
- (5) 苗体积小,可选择资源条件好、育苗成本低的地区异地育苗,提高作物生产效益。
- (6) 可进行商品苗生产,减轻农民生产秧苗的负担及技术压力。

(答对3点及以上给3分,少1点扣1点)

缺点:

- (1) 育苗移栽费工费时, 劳动强度大。
- (2) 苗移栽根系易受损伤,直根系作物,入土较浅,不利吸收土壤深层养分和水分。
- (3) 抗旱、抗倒伏能力较差。(答对2点及以上给2分,少1点扣1分)

9、影响作物播种期的因素有哪些?

根据品种特性、种植制度、气候条件、病虫害、种植方式、市场因素等综合考虑。(答对 5 点及以上给 5 分,少 1 点扣 1 分)

六、材料分析题(任选1题,共10分)

- 1、江苏某农户 11 月初播种小麦,出苗后开始天气偏干,较长时间没有明显降水,12 月上旬北方冷空气南下,并伴有多日阴雨天气,12 月中旬,该农户到田间察看苗情,发现部分田块小麦叶片发黄,长势瘦弱。根据以上材料:
 - (1) 请从土壤、气象和栽培措施等因素着手,分析麦苗发黄的可能原因。
 - (2) 提出应对上述灾害的预防技术措施。

可能原因

- (1)土壤存在障碍因子(如返盐)。(2)旱害、湿害(渍害或涝害)。(3)低温冷害。
- (4)缺少氮肥。(5)播种密度过大。(6) 前茬秸秆还田的影响。

(关键点4分,叙述1分)

应对措施(4分)

(1)选择抗性品种。(2)改良土壤、增施肥料、培肥地力。(3)开沟降渍、抗旱保墒。(4)施用外源调节剂,增强抗性。

(关键点4分,叙述1分)

2、我国是氮肥、磷肥生产和使用量最大的国家,目前氮磷钾化肥自给率分别达 100%、95%和 29%,大量施用化学氮肥、磷肥仍是提高作物产量的最主要途径。

新疆棉花生产纯氮用量约 20-25 千克/亩,是美国棉花带最高推荐施氮量(6 千克纯氮/亩)的 3.33-4.17 倍,氮肥利用率仅 35%左右,远低于世界平均水平,由此带来的生产成本居高不下、环境污染严重等问题日益突出。

我国作物秸秆以小麦、油菜、玉米和水稻为主,常年秸秆量达 7.6 亿吨以上,相当于每年 化肥用量的 1/4 以上。秸秆作为有机肥源,其肥力相当于 776 万吨氮肥、249 万吨磷肥、1342 万吨钾肥,但目前我国仅有 20%-30%的秸秆用作肥料,被燃烧和废弃的秸秆高达 45%-60%,不仅浪费了资源,还污染了环境。

根据上述材料,试分析:

- (1) 化肥减施、秸秆还田的必要性。
- (2)除了秸秆肥料化外,解决农村秆秸焚烧或废弃造成环境污染问题的技术途径还有哪些?

必要性:

(1)减少环境污染,促进土壤可持续发展;	(2)提高肥料利用率;(3)降低生产成本,提
高了经济效益。(关键点各1分,叙述2分)	
技术途径:	
(1) 秆秸能源化(转化成沼气、乙醇等);	(2) 秆秸基料化(如秸秆粉碎后再生板材原料、
食用菌原料等); (3) 饲料化。	
(关键点各1分, 叙述2分)	
系主任	出卷人