Precursors of the multilevel random coefficient model

Lecture 18

Multilevel Modeling

Psychology 613 – Spring 2022

Example data

Effect of homework on academic achievement

260 students nested within 10 schools

Subset of the National Education Longitudinal Study, 1988 ("NELS88"); now on Canvas

School is 1st var, homework is 5th, MathAch is 9th, School type is 6th

Regression in one school

Run simple OLS regression with one school

With a single predictor X, the equation is:

$$Y_i = b_0 + b_1X_i + e_i$$
 AKA
MathAch_i = $b_0 + b_1$ Homework_i + e_i

(Quick regression refresher)

OLS estimates of b_0 and b_1 define the best-fitting linear relationship between X and Y (in that they minimize the sum of squared errors).

OLS predictor in a singlegroup

OLS regression equation with a single predictor:

$$Y_i = b_0 + b_1 X_i + e_i$$

Where:

 $b_1 = cov(X,Y) / var(X) = \Delta Y$ for 1-unit Δ in X $b_0 = value$ of Y when X=0

Assumes the errors to be independent and identically distributed ~ N(0, σ^2)

Single-group regression example

First school, OLS regression:

 $Math_i = 44.07^{***} + 3.57^{**} Homework_i + e_i$

 b_0 = 44.07; expected value of Math for a Homework value of 0

 b_1 = 3.57; expected change in Math for a one unit increase in Homework

Note: With additional predictors, bs are interpreted as partial regression coefficients

Using ANCOVA to incorporate information about multiple groups

Traditional way to think about ANCOVA:

Grouping variable = Categorical treatment

Continuous variable = "Covariate"

Interested in effect of treatment after removing the effect of (controlling for) the covariate

(Removes variance due to the covariate for a more powerful test of the treatment effect)

But here, we are interested in the effect of the continuous variable, controlling for the grouping

(ANCOVA refresher)

Create dummy variables to indicate group membership:

	D1	D2	D3	•••	D9
Group 1	1	0	0	0	0
Group 2	0	1	0	0	0
•••					
Group 10	0	0	0	0	0

$$Y_i = b_0 + b_1D_1 + b_2D_2 + ... + b_9D_9 + b_{10}X_i + e_i$$
 (Math) (Homework)

Dummy code for group 1

Dummy code for

group 2

D2 D3 D4 D5 D6 D7 D8 D9

ANCOVA in R

- > dataset <- read.spss("filename.sav",
 as.data.frame = TRUE)</pre>
- > model1 <- lm(mathscore ~
 D1+D2+D3+D4+D5+D6+D7+D8+D9+timeonmath,
 data = dataset)</pre>
- > summary(model1)

```
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.4314 1.8990 23.398 < 2e-16 ***
        -1.6650 2.4585 -0.677 0.49888
D1
D2
           -7.3025 2.5576 -2.855 0.00466 **
D3
          4.9015 2.4349 2.013 0.04519 *
           -4.3822 2.4830 -1.765 0.07881 .
D4
D5
           3.5870 2.4990 1.435 0.15244
D6
    -0.4885 2.5473 -0.192 0.84807
D7
           11.3418 2.1489 5.278 2.84e-07 ***
D8
          0.7585 2.5182 0.301 0.76350
         -0.9469 2.5131 -0.377 0.70665
D9
timeonmath 2.1366
                     0.3836 5.570 6.60e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

ANCOVA example

$$Math_i = 44.43^{***} - 1.66D_1 - 7.30D_2^{**} + 4.90D_3^{*} + ... - 0.95D_9 + 2.13^{***}HW_i + e_i$$

 R^2 change test to determine whether the nine dummy codes containing the grouping information contribute to model fit (compared to Math_i = $b_0 + b_1HW_i + e_i$):

$$F(9, 249) = 13.93, p < .0001$$

Model comparison in R

```
model0 = lm(mathscore ~ timeonmath)
model1 = lm(mathscore \sim D1+D2+D3+D4+D5+D6+D7+D8+D9+timeonmath)
summary(model0)
summary(model1)
anova(model0, model1)
> anova(model0, model1)
Analysis of Variance Table
Model 1: mathscore ~ timeonmath
Model 2: mathscore \sim D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + timeonmath
 Res.Df RSS Df Sum of Sq F Pr(>F)
    258 24183
    249 16082 9 8100.4 13.935 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Interpreting the ANCOVA estimates

$$Math_i = 44.43^{***} - 1.66D_1 - 7.30D_2^{**} + 4.90D_3^{*} + ... - 0.95D_9 + 2.13^{***}HW_i + e_i$$

b₀: Expected Math score for HW=0 in school #10 b₁-b₉: Difference in expected Math score between indicated school and school #10

- → Unique intercept for each group e.g., school #1: $b_0 + b_1 = 44.43 1.66 = 42.77$
- → b₁₀: Common homework-achievement slope across all groups

Interpreting the ANCOVA estimates

Coefficients

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	44.074	.989	×	44.580	.000
	Time spent on math homework	3.572	.388	.497	9.200	.000
2	(Constant)	44.431	1.899		23.398	.000
	Time spent on math homework	2.137	.384	.297	5.570	.000
	Dummy: Group 1	-1.665	2.458	043	677	.499
	Dummy: Group 2	-7.302	2.558	175	-2.855	.005
	Dummy: Group 3	4.901	2.435	.128	2.013	.045
	Dummy: Group 4	-4.382	2.483	110	-1.765	.079
	Dummy: Group 5	3.587	2.499	.090	1.435	.152
	Dummy: Group 6	489	2.547	012	192	.848
	Dummy: Group 7	11.342	2.149	.446	5.278	.000
	Dummy: Group 8	.759	2.518	.019	.301	.763
	Dummy: Group 9	947	2.513	023	377	.707

Implied relationships in ANCOVA

MathAch

Homework

- → ANCOVA allows different intercepts, but assumes a common covariate effect (i.e., slope across groups)
- → Expected value of MathAch for Homework=0 differs across groups

Testing the common slope assumption

Create cross-products of dummy codes and covariate, e.g., D_1 * Homework

Estimate:
$$Math_i = b_0 + b_1D_1 + b_2D_2 + ... + b_9D_9 + b_{10}Homework_i + b_{11}D_1*HW_i + b_{12}D_2*HW_i + ... + b_{19}D_9*HW_i + e_i$$

Test to see whether the set of interactions $(b_{11} \text{ through } b_{19})$ is significant $(R^2 \text{ change test})$: F(9,240) = 14.81, p<.0001

Relaxing common slope assumption in R

```
model0 = lm(mathscore ~ timeonmath)
model1 = lm(mathscore \sim D1+D2+D3+D4+D5+D6+D7+D8+D9+timeonmath)
model2 = lm(mathscore \sim D1+D2+D3+D4+D5+D6+D7+D8+D9+timeonmath + D1*timeonmath + D2*timeonmath + D3*timeonmath + D3*timeonmat
                                    D4*timeonmath + D5*timeonmath + D6*timeonmath + D7*timeonmath + D8*timeonmath + D9*timeonmath)
                               Analysis of Variance Table
                               Model 1: mathscore ~ timeonmath
                               Model 2: mathscore \sim D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + timeonmath
                               Model 3: mathscore \sim D1 + D2 + D3 + D4 + D5 + D6 + D7 + D8 + D9 + timeonmath +
                                             D1 * timeonmath + D2 * timeonmath + D3 * timeonmath + D4 *
                                             timeonmath + D5 * timeonmath + D6 * timeonmath + D7 * timeonmath +
                                             D8 * timeonmath + D9 * timeonmath
                                      Res.Df
                                                                    RSS Df Sum of Sq F Pr(>F)
                                                258 24183
                                1
                                2 249 16082 9 8100.4 20.886 < 2.2e-16 ***
                                3
                                                240 10342 9 5740.2 14.801 < 2.2e-16 ***
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Now, the equation for each school contains the common intercept + group intercept AND common slope + group slope

e.g., Group 2:

 $Y_{i2} = 37.71 + 11.29 + 6.33*hw_i - 9.25*hw_i$

 $Y_{i2} = 49 - 2.92*hw_i$

		Coeff	ricients		× × ×	
Model		Unstandardized Coefficients		Standardized Coefficients		
		В	Std. Error	Beta	t	Sig.
1	(Constant)	44.074	.989	714767	44.580	.000
	Time spent on math homework	3.572	.388	.497	9.200	.000
2	(Constant)	44.431	1.899		23.398	.000
	Time spent on math homework	2.137	.384	.297	5.570	.000
	Dummy: Group 1	-1.665	2.458	043	677	.499
	Dummy: Group 2	-7.302	2.558	175	-2.855	.005
	Dummy: Group 3	4.901	2.435	.128	2.013	.045
	Dummy: Group 4	-4.382	2.483	110	-1.765	.079
	Dummy: Group 5	3.587	2.499	.090	1.435	.152
	Dummy: Group 6	489	2.547	012	192	.848
	Dummy: Group 7	11.342	2.149	.446	5.278	.000
	Dummy: Group 8	.759	2.518	.019	.301	.763
	Dummy: Group 9	947	2.513	023	377	.707
3	(Constant)	37.714	2.236		16.870	.000
	Time spent on math homework	6.335	1.054	.882	6.011	.000
	Dummy: Group 1	12.970	3.148	.331	4.121	.000
	Dummy: Group 2	11.298	3.803	.271	2.971	.003
	Dummy: Group 3	1.036	3.425	.027	.303	.763
	Dummy: Group 4	-3.320	3.067	083	-1.082	.280
	Dummy: Group 5	16.225	3.084	.406	5.261	.000
	Dummy: Group 6	11.545	3.420	.277	3.376	.001
	Dummy: Group 7	21.496	2.834	.846	7.585	.000
	Dummy: Group 8	-1.659	3.792	041	437	.662
	Dummy: Group 9	.806	3.413	.020	.236	.813
	D1*HW	-9.889	1.637	455	-6.042	.000
	D2*HW	-9.255	1.560	599	-5.932	.000
	D3*HW	1.574	1.606	.089	.980	.328
	D4*HW	742	1.423	042	522	.602
	D5*HW	-11.053	2.129	324	-5.192	.000
	D6*HW	-8.821	2.132	299	-4.138	.000
	D7*HW	-5.240	1.153	794	-4.543	.000
	D8*HW	.161	1.667	.009	.097	.923
	D9*HW	475	1.923	019	247	.805

a. Dependent Variable: Math score

Implied relationships in ANCOVA + interactions model

- → Unique intercept for each school (e.g., $b_0 + b_1$ for school #1)
- → Unique slope for each group (e.g., $b_{10} + b_{11}$ for school #1)
- → Alternatively, estimate regression in each group

Now we can predict variability in the slopes and intercepts!

10 OLS intercepts and 10 slopes can be used as group-level outcome variables l.e., one from each school

Create *separate* models at the group level to predict intercept and slope variability from group-level predictors

"Slopes and intercepts as outcomes" model

A two-stage analysis that implicitly recognizes the grouped structure of the data:

- (1) Run a regression within each group (or an ANCOVA with interactions)
- (2) Use the coefficients (one intercept and one slope per group) as outcome variables in regression equations at the group level

Regressions within each group

School		b_{0j}	b_{1j}
School 1:	Y =	50.68	- 3.55 X
School 2:	Y =	49.01	- 2.92 X
School 3:	Y =	38.75	+ 7.91 X
School 4:	Y =	34.39	+ 5.59 X
School 5:	Y =	53.94	- 4.72 X
School 6:	Y =	49.26	- 2.49 X
School 7:	Y =	59.21	+ 1.09 X
School 8:	Y =	36.06	+ 6.50 X
School 9:	Y =	38.52	+ 5.86 X
School 10:	Y =	37.71	+ 6.34 X

Equations at the school level

Regress intercepts and slopes on school-level variable of *school type* (public=1; private=0)

$$b_{0j} = g_{00} + g_{01} \text{ Public}_{j}$$

 $b_{0j} = 59.21^{***} - 16.06^{+} \text{ Public}_{j}$

$$b_{1j} = g_{10} + g_{11} Public_j$$

 $B_{1j} = 1.09 + 0.96 Public_j$

Slopes and intercepts as outcomes: Results

Describes two lines with marginally different intercepts (-16.06, p<.10) and non-significantly different slopes (0.96, ns).

	Private schools (Public = 0)	Public schools (Public = 1)
E(Math) for Homework = 0	59.21	59.21-16.06 = 42.15
Homework – Math slope	1.09	1.09 + 0.96 = 2.05

Slopes and intercepts as outcomes: Advantages

Two-stage estimation procedure acknowledges multilevel data structure:

First analysis (lower level): associations between L1 outcomes and L1 predictors

Second analysis (higher level): associations between L2 predictors and group intercepts/slopes

Slopes and intercepts as outcomes: Disadvantages

Requires large samples in each group (e.g., big drawback for dyad studies)

Small and large groups/ponds weigh equally

Error terms inconsistently defined at various levels of the model \rightarrow questionable p-values

Better alternative: Random coefficient model!

Slopes and intercepts as outcomes: When?

- In some cases we might be interested in only the particular groups we have in our analysis, in the values of these particular intercepts and slopes
 - (Fixed effects analysis)
- But in most cases, we want to generalize beyond the groups in our data to the population of similar groups
- So we are not interested in the particular values we have, but in the pattern of values

The logic: Moving from *sets* to *distributions* of coefficients

Our groups \rightarrow A random sample of possible groups Our lines \rightarrow A random sample of possible lines (i.e., slopes and intercepts)

So, rather than characterize the particular lines, our goal is to characterize the *distribution* of lines

- "Average" intercept and some measure of the variability around that intercept
- "Average" slope and the variability around that slope

Fixed vs. random effects

Fixed effects (ffx): within-group variation

Each group on it's own > 0

Random effects (rfx): betweengroup effects variation

- Population ~= 0

Distribution of population effect

Fixed vs. random effects

Different sources of error:

- FX: only source of error is measurement
 - True group response is fixed
- RX: sources of error = measurement and sampling
 - True population response is fixed
 - But groups vary based on sampling error

Fixed vs. Random Effects "In Other Words"

- Fixed effect inference: "I can see this effect in this cohort / sample"
- Random effect inference: "If I were to sample a new cohort from the same population I would get the same result"
- Fixed isn't 'wrong', it just is not usually of interest to many people

Random coefficient model: Multiple equation form

Within-Group (L1) Model: $Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + e_{ij}$

Coefficients of the within-group model then serve as criteria in between-group (L2) models:

$$\beta_{0j} = \gamma_{00} + u_{0j}$$

 $\beta_{1j} = \gamma_{10} + u_{1j}$

Each β is a function of an "average" coefficient and random error (variation)

(Notation)

$$Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + e_{ij}$$

$$\beta_{0j} = \gamma_{00} + u_{0j}$$
 \leftarrow "0": equation for β_0
 $\beta_{1j} = \gamma_{10} + u_{1j}$ \leftarrow "1": equation for β_1

- ij subscripts indicate individuals within groups
- Double subscripts on gamma coefficients are positional: the 1st indicates equation, the 2nd indicates the position within the equation

Random coefficient model: Single equation form

Start with multiple equation form:

L1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + e_{ij}$$

L2: $\beta_{0j} = \gamma_{00} + u_{0j}$
 $\beta_{1i} = \gamma_{10} + u_{1i}$

Combine:
$$Y_{ij} = \gamma_{00} + u_{0j} + (\gamma_{10} + u_{1j}) X_{ij} + e_{ij}$$

 $Y_{ij} = \gamma_{00} + u_{0j} + \gamma_{10} X_{ij} + u_{1j} X_{ij} + e_{ij}$

Rearrange: $Y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + (u_{0j} + u_{1j} X_{ij} + e_{ij})$

→ Looks like a standard regression with a complex error term

Estimates

$$Y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + (u_{0j} + u_{1j} X_{ij} + e_{ij})$$

- (1) "average" intercept γ_{00}
- (2) "average" slope γ_{10}
- (3) variability of intercepts Var(u_{0i})
- (4) variability of slopes Var(u_{1j})
- (5) within-group variability Var(e_{ij})

Types of parameters / estimates

Fixed effects: γs (population parameters)

gs (sample estimates)

Similar to unstandardized regression params

Variance components: co/vars of error terms

L1: $var(e_{ij}) = \sigma^2$ (population parameter)

s² (sample estimate)

Similar to regression SS-error

Level 2 variance components

$$\begin{bmatrix} Var(u_{oj}) & Cov(u_{1j}, u_{0j}) \\ Cov(u_{oj}, u_{1j}) & Var(u_{1j}) \end{bmatrix} = \begin{bmatrix} \tau_{00} & \tau_{01} \\ \tau_{10} & \tau_{11} \end{bmatrix} = \begin{bmatrix} t_{00} & t_{10} \\ t_{01} & t_{11} \end{bmatrix}$$

$$\text{"True" population values estimates}$$

$$\text{(unknowable)}$$

These represent the variance of the slopes and intercepts around the gammas

NOTE: $t_{10} = t_{01}$ and $\tau_{10} = \tau_{01}$, so there are only 3 variance components to estimate at the second level

βs

$$Y_{ij} = \gamma_{00} + \gamma_{10} X_{ij} + (u_{0j} + u_{1j} X_{ij} + e_{ij})$$

Notice that single equation form contains no β 's!

Need not calculate βs in order to estimate fixed effects and variance components

Allows estimation in presence of rank deficiency If desired, can obtain post hoc estimates of β's

Example from NELS-88 data

Predicted Math = $44.77^{***} + 2.04$ Homework

$$\sigma^2 = 43.07 (3.93)^{***}$$

$$t_{00} = 69.24 (34.97)^*$$

 $t_{01} = -31.72 (18.14)^+$ $t_{11} = 22.43 (11.49)^+$

→ Significant variability to be explained in the intercepts across schools

Example from NELS-88 data

Predicted Math = $44.77^{***} + 2.04$ Homework

$$\sigma^2 = 43.07 (3.93)^{***}$$

$$t_{00} = 69.24 (34.97)^*$$

 $t_{01} = -31.72 (18.14)^+ t_{11} = 22.43 (11.49)^+$

$$ICC = between / (between+within)$$

= 69.24 / (69.24+43.07) = 61.6%

Adding L2 predictors

Multiple equation form:

L1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + e_{ij}$$

L2: $\beta_{0j} = \gamma_{00} + \gamma_{01} W_j + u_{0j}$
 $\beta_{1j} = \gamma_{10} + \gamma_{11} W_j + u_{1j}$

In the combined (single) equation, this is:

$$Y_{ij} = \gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + \gamma_{11}W_jX_{ij} ... + (e_{ij} + u_{0j} + u_{1j}X_{ij})$$

Fixed coefficients (w/ L2 predictors)

- γ_{00} an overall intercept
- γ_{01} the main effect of the level 2 (W_j) variable
- γ_{10} the main effect of the level 1 (X_{ij}) variable
- γ_{11} the cross-level interaction (the effect of the W_j variable on the relationship between X_{ij} and Y_{ij})

Variance components (with L2 predictors)

With a level 2 (W_j) predictor now in the model, our distribution of intercepts/slopes is conditional, i.e., expected value depends on the value of W_j for a particular group

L2 error terms (u's) now represent *residuals*, after controlling for W_j (no longer total variability in intercepts/slopes, but variability remaining after adjusting for W_i)

Example from NELS-88

Predicted Math = 59.21^{***} + 1.09 Homework ... -15.97^{+} public + .95 HW*Public

$$\sigma^2 = 42.96 (3.91)^{***}$$
 $t_{00} = 51.81 (28.64)^+$
 $t_{01} = -36.70 (20.07)^+$ $t_{11} = 27.26 (14.59)^+$

There is no longer significant L2 variability in the intercepts to be explained!

 Revisit the NELS-88 data (National Education Longitudinal Study 1988)

- Predict math achievement score from:
 - L1: Hours of homework + SES + interaction
 - L2: Random intercept and HW-slope

L1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} HW_{ij} + \beta_{2j} SES_{ij} + \beta_{3j} HW^*SES + e_{ij}$$

L2: $\beta_{0j} = \gamma_{00} + u_{0j}$ \leftarrow Intercept equation
$$\beta_{1j} = \gamma_{10} + u_{1j}$$
 \leftarrow HW equation
$$\beta_{2j} = \gamma_{20}$$
 \leftarrow SES equation
$$\beta_{3j} = \gamma_{30}$$
 \leftarrow HW*SES intx equation

With two 2^{nd} level random error terms (u_0 , u_1), we'll get a 2x2 var/cov matrix with 3 unique var. params.

First, estimate the "interaction null" model:

I.e., fixed effects for "time on math" and "ses" but only random effects for intercept and "time on math"

Key question: Does the interaction add anything above and beyond this?

Linear mixed model fit by REML ['lmerMod']

Formula: mathscore ~ timeonmath + ses + (timeonmath | Schoolid)

REML criterion at convergence: 1745.3

Chi-squared value of overall model fit

Scaled residuals:

Min 10 Median 30 Max

Min 1Q Median 3Q Max -2.46818 -0.67278 -0.00633 0.64581 2.63591

Random effects:

Groups Name Variance Std.Dev. Corr
Schoolid (Intercept) 55.17 7.428
timeonmath 20.10 4.483 -0.88
Residual 41.27 6.425
Number of obs: 260, groups: Schoolid, 10

Fixed effects:

Estimate Std. Error t value (Intercept) 46.1123 2.4840 18.564 timeonmath 1.8198 1.4742 1.234 g_{10} ses 2.7601 0.6099 4.525

L1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} HW_{ij} + \beta_{2j} SES_{ij} + e_{ij}$$

L2:
$$\beta_{0j} = 46.1 + u_{0j}$$

 $\beta_{1j} = 1.8 + u_{1j}$
 $\beta_{2j} = 2.8$

Second, estimate the interaction model:

I.e., fixed effects for "time on math," "ses," and their interaction, but still only random effects for intercept and "time on math"

Fixed effects: Estimate Std. Error t value **g**00 49.8105 (Intercept) 1,4782 33.70 **g**₁₀ c timeonmath 1.7402 1.5027 1.16 **g**₂₀ 2.6858 0.6218 4.32 ses

c_timeonmath:ses -0.3084

L1:
$$Y_{ij} = \beta_{0j} + \beta_{1j} HW_{ij} + \beta_{2j} SES_{ij} + \beta_{3j} HW^*SES_{ij} + e_{ij}$$

L2: $\beta_{0j} = 49.8 + u_{0j} \leftarrow Intercept equation$

$$\beta_{1j} = 1.7 + u_{1j} \leftarrow HW equation$$

$$\beta_{2j} = 2.7 \leftarrow SES equation$$

$$\beta_{3j} = -0.3 \leftarrow HW^*SES interaction equation$$

0.4652

-0.66

Use chi-squared change test from the deviance score (with 1 df)

g₃₀

Let's plot it!

First, decide which variable will go on x-axis and which will be the "low-med-high" variable.

Second, find range of x-axis and the "low" and "high" scores of that variable

Note: Mean= 0 if centered

X-axis: HW-hours. Range: [-2, 5]

L-M-H: SES. Centered, SD = 1

Rearrange: $Y_{ij} = (49.8 + 2.7 SES_{ij}) + HW_{ij} (1.7 - 0.3 SES_{ij})$

```
L1: Y_{ij} = \beta_{0j} + \beta_{1j} HW_{ij} + \beta_{2j} SES_{ij} + \beta_{3j} HW^*SES_{ij} + e_{ij}

L2: \beta_{0j} = 49.8 + u_{0j} \leftarrow Intercept equation
\beta_{1j} = 1.7 + u_{1j} \leftarrow HW \text{ equation}
\beta_{2j} = 2.7 \leftarrow SES \text{ equation}
\beta_{3j} = -0.3 \leftarrow HW^*SES \text{ interaction equation}

Combined: Y_{ij} = 49.8 + 1.7 HW_{ij} + 2.7 SES_{ij} - 0.3 HW^*SES_{ij} + (u_{0j} + u_{1j} HW + e_{ij})
```

