

SIR PRATEEK JAIN

- . Founder @ Physicsaholics
- . Top Physics Faculty on Unacademy (IIT JEE & NEET)
- . 8+ years of teaching experience in top institutes like FIITJEE (Delhi, Indore), CP (KOTA) etc.
- . Produced multiple Top ranks.
- . Research work with HC Verma sir at IIT Kanpur
- . Interviewed by International media.

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS and learn from India's Top Faculties.

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/WqijpBRMccA

Physics DPP

DPP-6 NLM: Pseudo Force
By Physicsaholics Team

Q) A wedge of mass M is pushed with an constant acceleration of $a = gtan\theta$ along a smooth horizontal surface and a block of mass m is projected down the smooth incline of the wedge with a velocity V relative to the wedge.

- (a) The time taken by the block to cover distance L on the incline plane is $\frac{L}{V}$
- (b) The time taken by the block to cover distance L on the incline plane is $\sqrt{\frac{2L}{g \sin \theta}}$
- (c) The normal reaction between the block and wedge is mg $sec\theta$
- (d) The horizontal force applied on the wedge to produce acceleration a is (M + m) g $tan\theta$.

Join Unacademy PLUS Referral Code:

Physicslive

Ans. a,c,d

=> w.r.t. wedge block moven with Constant vel city V.

$$t = \frac{Q}{V}$$

$$N Coso = mg \Rightarrow N = mg SecO$$

$$F = (M+m) a = (M+m)g tan O$$

Q) A man goes up in a uniformly accelerating lift. He returns downward with the lift accelerating at the same rate. The ratio of apparent weighs in the two cases is 2: 1. The acceleration of the lift is -

- (a) g/3 (b) g/4
- (c) g/5
- (d) g/6

Ans. a

$$N_1 = mg + ma$$

$$N_2 = mg - ma$$

$$\frac{N_1}{N_2} = \frac{g+q}{g-a} = \frac{2}{1}$$

$$= \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$$

$$= \frac{3}{3} = \frac{3}{3}$$

Q) A block can slide on a smooth inclined plane of inclination θ kept on the floor of a lift. When the lift is descending with a retardation a, the acceleration of the block relative to incline is -

(a)
$$(g + a) \sin \theta$$

(b)
$$(g - a)$$

(c)
$$g \sin \theta$$

(d)
$$(g - a) \sin \theta$$

Ans. a

retardation a => acceleration is a upward. W.8.1. lift Jeff = 3+a Mg Sho = Mao = 90 = geg Sino

Q) Two wooden blocks are moving on a smooth horizontal surface such that the mass m remains stationary with respect to block of mass M as shown in figure. The magnitude of force P is –

(a)
$$(M + m)$$
 g tan β

(c) mg cos β

(b) g tan
$$\beta$$

(d) (M + m) cosec β

Join Unacademy PLUS Referral Code:

Physicslive

Ans. a

Q) Two weights w_1 and w_2 are suspended from the ends of a light string passing over a smooth fixed pulley. If the pulley is pulled up at an acceleration g, the tension in the string will be-

(a)
$$4w_1 w_2 / (w_1 + w_2)$$

(b)
$$2w_1 w_2 / (w_1 + w_2)$$

(c)
$$(w_1 - w_2) / (w_1 + w_2)$$

(d)
$$w_1 w_2 / \{2 (w_1 + w_2)\}$$

Ans. a

$$\begin{array}{c}
\omega.8.4. \text{ bulley} \\
gry = g + g = 2g \\
\Rightarrow 2m_1g - T = 2m_1q \\
\hline
T - 2m_2g = 2m_1q \\
\hline
Q = \frac{m_1 - m_2}{m_1 + m_2} \times 2g \\
\Rightarrow T = \frac{4m_1 m_2}{m_1 + m_2} = \frac{4w_1w_2}{w_1 + w_2}
\end{array}$$

(A)

Q) A pearl of mass m is in a position to slide over a smooth wire. At the initial instant the pearl is in the middle of the wire. The wire moves linearly in a horizontal plane with an acceleration a in a direction having angle θ with the wire. The acceleration of the pearl w.r.t. wire is—

(a)
$$g \sin \theta - a \cos \theta$$

(b)
$$g \sin \theta - g \cos \theta$$

(c)
$$g \sin \theta + a \cos \theta$$

(d)
$$g \cos \theta + a \sin \theta$$

Ans. a

(A)

Q) A particle is observed from two frames S_1 and S_2 . The graph of relative velocity of S_1 with respect to S_2 is shown in figure. Let F_1 and F_2 be the pseudo forces on the particle when seen from S_1 and S_2 respectively. Which one of the following is not possible ?

(a)
$$F_1 = 0$$
, $F_2 \neq 0$

(b)
$$F_1 \neq 0$$
, $F_2 = 0$

(c)
$$F_1 \neq 0$$
, $F_2 \neq 0$

(d)
$$F_1 = 0$$
, $F_2 = 0$

Join Unacademy PLUS Referral Code:

Physicslive

Ans. d

(Þ)

- Q) A particle slides down a smooth inclined plane of elevation α . The incline is fixed end to end in an elevator of base length ℓ accelerating up with acceleration a_0 . Assume at t=0 the particle is at the top of the incline then—
- (a) the particle has to travel a length $\ell \cos \alpha$ with acceleration $(g + a_0)\sin \alpha$ down the incline in a time $\sqrt{\frac{\ell}{(g+a_0)\sin 2\alpha}}$
- (b) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration g sin α down the incline in a time $\sqrt{\frac{2\ell}{a_0 \sin 2\alpha}}$
- (c) the particle has to travel a length $\frac{\ell}{\cos \alpha}$ with acceleration g sin α down the incline in a time $\sqrt{\frac{2\ell}{a_0 \sin 2\alpha}}$
- (d) the incline offers a normal reaction $m(a_0 + g)\cos \alpha$ to the block so that it remains in contact with the incline.

Join Unacademy PLUS Referral Code:

Physicslive

Ans. d

$$\omega.x.t. \ \omega ft \ J_{eff} = g+q_0$$

$$\Rightarrow acceleration \ af \ block$$

$$\omega.x.t. \ lift = J_{eff} \ S_{ln} \ d$$

$$= (g+q_0) \ S_{ln} \ d$$

$$= (g+q_0) \ S_{ln} \ d$$

$$V_{ging} \ x = ut + \frac{1}{2}at^2$$

$$V_{ging} \ x = ut + \frac$$

Q) A block of mass 1 kg is at rest relative to a smooth wedge moving leftwards left with constant acceleration $a = 5 \text{ m/s}^2$. Let N be the normal reaction between the block and the wedge. Then $(g = 10 \text{ m/s}^2)$

(a)
$$N = 5\sqrt{5} \text{ N}$$

(b)
$$N = 15 \text{ N}$$

(c)
$$\tan \theta = \frac{1}{2}$$

(d)
$$tan \theta = 2$$

Join Unacademy PLUS Referral Code:

Physicslive

Ans. a,c

Q) A pendulum of mass m is hanging from the ceiling of a car having an acceleration a_o with respect to the road in the direction shown. If angle made by the string with the vertical is θ , find tan θ ?

- (a) a_0/g (c) $2 a_0/g$

- (b) $a_0/2g$
- (d) none of these

Join Unacademy PLUS Referral Code:

Physicslive

Ans. a

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/42

Video Solution on YouTube:-

https://youtu.be/WqijpBRMccA

CUSIS NIKIS