Siamese Networks

What are Siamese Networks

- The term comes from Siamese twins (conjoined twins) which are twins that unfortunately joined together at birth, sometimes sharing organs.
- Siamese Networks are similarly 'connected'. They consist of:
 - Two or more identical (in architecture) subnetworks (Neural Networks)
 - The subnetworks share the same parameters & weights
 - Parameter updates are mirrored on both networks (i.e. when one updates, the other one updates as well)

https://commons.wikimedia.org/wiki/ File:Chang_and_Eng_the_Siamese _twins,_in_a_game s_room._Coloured_e_Wellcome_V0 007366.jpg

What are Siamese Networks used for?

- Siamese Networks are very useful for comparing images or image similarity tasks.
- Examples of these are Signature Verification, Face Recognition and Finger Print Matching.
- Siamese Networks give a simple binary output, Yes if the images match or No if they do not match.

Rajeev Ratan Rajeev Ratan Rajeev Ratan Pajeev Ratan

Yes

High Level Diagram of a Siamese Network

High Level Diagram of a Siamese Network

Siamese Network Architecture

- Notice that the output of Conv Networks in a Siamese Networks are a flat matrix.
- This is the embedding layer or encoding which can be considered the features extracted from that image.
- The Differencing Layer is where we can find the difference using Euclidian or Cosine Difference between the matrices produced by each network.
- We can then use a loss function to assess whether the Siamese Networks made the right decision.

Siamese Networks Loss Functions

Popular Loss functions used when training Siamese Networks are:

- Triplet Loss where a baseline input is compared to a positive input and a negative input. The distance from the baseline input to the positive input is minimized, and the distance from the baseline input to the negative input is maximized
- Contrastive Loss
- Binary Cross-Entropy

https://commons.wikimedia.org/wiki/File:Triplet_loss.png

Siamese Networks Loss Functions

Popular Loss functions used when training Siamese Networks are:

- Triplet Loss
- Contrastive Loss The goal of a siamese networks is to differentiate between pairs of images. Contrastive refers to the fact that these losses are computed contrasting two or more data points representations.
- Binary Cross-Entropy

Siamese Networks Loss Functions

Popular Loss functions used when training Siamese Networks are:

- Triplet Loss
- Contrastive Loss
- Binary Cross-Entropy given the output of our Siamese Model is binary,
 i.e. similar or dis-similar, using binary cross-entropy loss function is often the obvious default choice.

Training Siamese Networks

Dataset Preparation

- We start the training process by firstly preparing our data by creating Image Pairs.
- We create two types of pairs:
 - Positive data pair is when both the inputs are the same class
 - Negative pair is when the two inputs are difference classes

Building the Network

- We build a CNN that outputs the feature encoding or embedding using a fully connected layer.
- We build the sister CNN's will have the same architecture, hyperparameters, and weights.
- We then build the differencing layer to calculate the Euclidian distance between the output of the two CNN subnetworks encoding.
- The final layer is a fully-connected layer with a single node using the sigmoid activation function to output the Similarity score.
- Compile the model using one of the loss functions (Contrastive or Triplet Loss work well).

Facial Recognition

What is Facial Recognition?

- The ability to automatically attach an individual's identity to a face.
- Human is great at this, but can machines do it?

Similar Face...

Similar Face...

Facial Recognition using Deep Learning

- Siamese Networks can be used for Facial Recognition.
- Two popular Deep Learning Facial Recognition Networks:
 - VGGFace
 - FaceNet

VGGFace

- VGGFace was introduced by Oxford University Researchers Omkar M.
 Parkhi, Andrea Vedaldi and Andrew Zisserman in their paper titled 'Deep Face Recognition) in 2015
- They used Triplet Loss and an embedding vector of 2,622 or 1,024 (depending on the configuration) with input image size being 224 x 224

Figure 1: Example images from our dataset for six identities.

VGGFace Architechture

Dataset	Identities	Images
LFW	5,749	13,233
WDRef [4]	2,995	99,773
CelebFaces [25]	10,177	202,599

Dataset	Identities	Images
Ours	2,622	2.6M
FaceBook [23]	4,030	4.4M
Google [[7]]	8M	200M

Table 1: **Dataset comparisons:** Our dataset has the largest collection of face images outside industrial datasets by Goole, Facebook, or Baidu, which are not publicly available.

FaceNet

- FaceNet was first introduced by Google in 2015
- It transforms a face into a 128 dimension Euclidian space embedding
- Uses the triplet loss function

3 Dim in euclidian space

Triplet Loss Training

FaceNet

One shot learning using FaceNet

Implementation

Download notebook at:

https://github.com/albert831229/nchu-computer-vision/tree/main/113/night