Course name: Data Science (ITE4005)

Professor: Sang-Wook Kim (email: wook@agape.hanyang.ac.kr)

TAs: Dong-hyuk Seo (email: hyuk125@agape.hanyang.ac.kr)

Jiwon Son (email: tinybeing@agape.hanyang.ac.kr)

## < Programming Assignment #2 >

4 Apr. 2022

Due Date: 25 Apr. 2022, 11:59 pm

#### 1. Environment

- OS: Windows, Mac OS, or Linux
- Languages: C++, Java, or Python (any version is ok)
- 2. Goal: Build a decision tree with training set, and then classify the test set using it

### 3. Requirements

The program must meet the following requirements:

- Execution file name: dt.exe
- Execute the program with three arguments: training file name, test file name, output file name
  - Example:

### C:\/dt.exe dt\_train.txt dt\_test.txt dt\_result.txt

- Training file name: 'dt train.txt', test file name: 'dt test.txt', output file name: 'dt result.txt'
- If using python, you are allowed to use 'dt.py' file instead of 'dy.exe'.
- Dataset
  - We provide you with 2 datasets
    - Buy computer: dt train.txt, dt test.txt
    - Car\_evaluation: dt\_train1.txt, dt\_test1.txt
  - You need to make your program that can deal with any datasets
  - We will evaluate your program with other datasets.
- File format for a training set

```
[attribute_name_1]\t[attribute_name_2]\t ... [attribute_name_n]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n]\n
```

**attribute** name 1 - [attribute name n]: n attribute names

- $\blacksquare \quad [attribute\_1] \sim [attribute\_n-1]$ 
  - *n-1* attribute values of the corresponding tuple
  - All the attributes are categorical (not continuous-valued)
- $\blacksquare$  [attribute n]: a class label that the corresponding tuple belongs to
- Example 1 (data train.txt):

| age  | income | student | credit_rating | Class:buys_computer |
|------|--------|---------|---------------|---------------------|
| <=30 | high   | no      | fair          | no                  |
| <=30 | high   | no      | excellent     | no                  |
| 3140 | high   | no      | fair          | yes                 |
| >40  | medium | no      | fair          | yes                 |

Figure 1. An example of the first training set.

■ Example 2 (data train1.txt):

| buying | maint | doors | persons | : lug_boo | ot   | safety | car_evaluation |
|--------|-------|-------|---------|-----------|------|--------|----------------|
| high   | high  | 3     | 4       | big       | low  | unacc  |                |
| med    | high  | 2     | 2       | small     | med  | unacc  |                |
| low    | med   | 5more | 2       | big       | high | unacc  |                |
| low    | high  | 2     | 4       | med       | low  | unacc  |                |
| med    | vhigh | 4     | 2       | med       | med  | unacc  |                |

Figure 2. An example of the second training set.

- Title: car evaluation database
- Attribute values
  - Buying (Buying price): vhigh, high, med, low
  - Maint (Price of Maintenance): vhigh, high, med, low
  - Doors (Number of Doors): 2, 3, 4, 5more
  - Persons (Capacity of persons to carry): 2, 4, more
  - Lug\_boot (Size of Luggage Boot): small, med, big
  - Safety (Safety of car): low, med, high
- Class labels: unacc, acc, good, vgood
- Number of instances: training set 1,382; test set 346
- Attribute selection measure: information gain, gain ratio, or gini index
- File format for a test set

```
[attribute_name_1]\t[attribute_name_2]\t ... [attribute_name_n-1]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n-1]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n-1]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n-1]\n
```

- The test set does not have [attribute\_name\_n] (class label)
- Example 1 (dt\_test.txt):

```
age income student credit_rating
<=30 low no fair
<=30 medium yes fair
31...40 low no fair
```

Figure 3. An example of the first test set.

■ Example 2 (dt\_test1.txt):

| buying<br>med<br>low<br>high<br>high<br>low | maint<br>vhigh<br>high<br>vhigh<br>vhigh<br>high | doors<br>2<br>4<br>4<br>4<br>3 | persons<br>4<br>4<br>4<br>more<br>more | lug_boomed<br>small<br>med<br>big<br>med | ot<br>med<br>low<br>med<br>low<br>low | safety |
|---------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------------|------------------------------------------|---------------------------------------|--------|
|---------------------------------------------|--------------------------------------------------|--------------------------------|----------------------------------------|------------------------------------------|---------------------------------------|--------|

Figure 4. An example of the second test set.

### Output file format

```
[attribute_name_1]\t[attribute_name_2]\t ... [attribute_name_n]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n]\n
[attribute_1]\t[attribute_2]\t ... [attribute_n]\n
```

- Output file name: dt result.txt (for 1th dataset), dt result1.txt (for 2<sup>nd</sup> dataset)
- You must print the following values:
  - $[attribute\_1] \sim [attribute\_n-1]$ : given attribute values in the test set
  - [attribute\_n]: a class label predicted by your model for the corresponding tuple
- Please **DO NOT CHANGE the order of the tuples** in each test set.
  - You should print your outputs to match the order of correct answers.
- Please be sure to use \t to identify your attributes.
- Be sure to match the output format!
  If the format is not correct, you can't get any score.

#### 5. Submission

- Please submit the program files and the report to *GitLab* 
  - Report
    - File format must be \*.pdf.
    - Guideline
      - ✓ Summary of your algorithm
      - ✓ Detailed description of your codes (for each function)
      - ✓ Instructions for compiling your source codes at TA's computer (e.g. screenshot) (*Important!!*)
        - If TAs read your instructions but cannot compile your program, you will get a penalty. Please write the instructions carefully.
      - ✓ Any other specification of your implementation and testing
  - Program and code
    - An executable file (.exe or .py)

- ✓ If you are not in the following two cases, please submit alternative files (e.g., jar file, makefile, ...)
- All source files

# 6. Testing program

• Please put the following files in a same directory: Testing program, your output files (dt\_result.txt, dt\_result1.txt), an attached answer file (dt\_answer.txt, dt\_answer1.txt)



• Execute the testing program with two arguments (answer file name and your output file name)

```
DM_assignment2>dt_test.exe dt_answer1.txt dt_result1.txt
```

Check your score for the input file

346 / 346

- the number of your correct prediction / the number of correct answers
- The test program was built with program 'mono'. So, even if you are using mac or linux instead of window, you can run dt test.exe using C# mono.

### 7. Penalty

- Late submission
  - 1 week delay: 20%
  - 2 weeks delay: 50%
  - Delay more than 2 weeks: 100%
- Requirements unsatisfied
  - Significant penalty up to 30% will be given when the requirements are not satisfied