Autoevaluación

Inducción completa

En esta oportunidad te proponemos probar, aplicando el principio de inducción completa, las siguientes expresiones. Luego, compará tu demostración con la resolución que anexamos en la próxima página.

$$\sum_{i=1}^{n} (3 \cdot i^{2} - i) = n^{2} \cdot (n+1)$$

$$6^{2n}$$
 - 1 es divisible por 35

Autoevaluación - Resolución

Inducción completa

Probar, aplicando el principio de inducción completa:

$$6^{2n}$$
 - 1 es divisible por 35

$$6^{2n} - 1 = 35 \operatorname{q} \operatorname{con} \operatorname{q} \in Z$$

PB) n=1

$$6^2$$
-1=36-1

HI) n=h

$$6^{2h}$$
-1=35 q₁ con q₁ $\in Z$

$$6^{2h} = 35 + 1 q_1 con q_1 *$$

TI) n=h+1

$$6^{2(h+1)}$$
-1=35 q₂ con q₂ $\in Z$

$$6^{2h} 6^2 - 1 =$$

=35 q₃ con q₃
$$\in Z$$