See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/244403040

Luminescence from the 3 P 2 State of Tm 3+

ARTICLE *in* THE JOURNAL OF PHYSICAL CHEMISTRY B · APRIL 2002

Impact Factor: 3.3 · DOI: 10.1021/jp0138680

CITATIONS READS
14 30

5 AUTHORS, INCLUDING:

Peter Anthony Tanner

The Hong Kong Institute of Education

355 PUBLICATIONS 4,367 CITATIONS

SEE PROFILE

David Lee Phillips

The University of Hong Kong

345 PUBLICATIONS **7,054** CITATIONS

SEE PROFILE

Wai-Ming Kwok

The Hong Kong Polytechnic University

141 PUBLICATIONS 4,015 CITATIONS

SEE PROFILE

Luminescence from the ³P₂ State of Tm³⁺

Peter A. Tanner,*,† Chris S. K. Mak,† Wai Ming Kwok,‡ David L. Phillips,‡ and Marie-France Joubert §

Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China, and Laboratoire de Physico-Chimie des Matériaux Luminescents, Université Claude-Bernard Lyon-1, UMR 5620 du CNRS, Bâtiment A. Kastler, 69622 Villeurbanne Cedex, France

Received: October 18, 2001; In Final Form: February 6, 2002

Using various ultraviolet laser excitation lines between 199.8 nm (50 034 cm $^{-1}$) and 266 nm (37 583 cm $^{-1}$), emission transitions have been observed and assigned for the first time from the 3P_2 term of Tm $^{3+}$, located near 37 500 cm $^{-1}$. The most intense transitions are to the terminal 3H_6 and 3F_4 states, and are almost entirely vibronic in character for Tm $^{3+}$ in elpasolite cubic lattices. In other systems, these transitions may find application in ultraviolet lasers. The interpretation of the $^3P_2 \rightarrow ^3H_4$ emission transition in Cs₂NaTmCl₆ reveals electron—phonon coupling phenomena analogous to that in the 3H_6 ground state, and which provides the explanation for the enormous deviation between the experimental and calculated energy of the 3H_4 [evel. We also report the quantum cutting of blue to infrared radiation in Cs₂LiTmCl₆ and the upconversion from 1D_2 to 3P_2 in Cs₂NaTmCl₆.

Introduction

Recently, Dieke's diagram has been extended into the vacuum ultraviolet for several lanthanide ions from the excitation spectra using synchrotron radiation. We are investigating the ultraviolet emission spectra of lanthanide ions from previously uncharacterized levels, using H₂-shifted frequency-tripled Nd:YAG excitation. Herein we report extensive luminescence from the ³P₂ term of Tm³⁺. Although this term has been previously located from absorption measurements, we are unaware of any previous report of its luminescence transitions.

We also report the upconversion from the Tm^{3+} $^{1}D_{2}$ energy level to the $^{3}P_{2}$ level. Upconversion results when a single ion in a crystalline lattice attains a higher energy level than the energy of incident photons, by way of processes such as excited-state absorption, energy transfer, or two-photon excitation. In the case reported, the $^{3}P_{2}$ energy is some $16\,000$ cm $^{-1}$ higher than the incident photon energy. A downconversion process has also been found, and is reported for $Cs_{2}LiTmCl_{6}$. Here, the *quantum cutting* of an incident blue photon (of energy ca. 21 000 cm $^{-1}$) results in the emission of several infrared photons.

Various studies of the optical spectra of Tm^{3+} in different host lattices have been cited by Hölsä et al.⁴ Lasing under infrared pumping has been investigated for Tm^{3+} and $Tm^{3+}-Yb^{3+}$ codoped systems.⁵ For Tm^{3+} diluted in elpasolite host lattices, blue luminescence has previously been reported from the 1G_4 term in dilute $Cs_2NaGdCl_6:Tm^{3+}$ and from the 1D_2 term in $Cs_2NaYCl_6:Tm^{3+}$.^{8,9} The electronic spectra of Tm^{3+} in elpasolite lattices have been studied extensively, 6,10 and the most recent energy level calculations are given in ref 11.

TABLE 1: Vibronic Displacement Energies from Zero Phonon Lines in the Electronic Spectra of Cs₂NaTmCl₆ and Cs₂LiTmCl₆^a

unit cell	moiety	displacement energy (cm ⁻¹) from electronic origin and typical relative intensity		
group mode ¹⁴	mode	Cs ₂ NaTmCl ₆	Cs ₂ LiTmCl ₆	Cs ₂ LiYCl ₆ :Tm
$S_5 \tau_{2g}$	-	47m	462, 53m	38,44
Cs ⁺ lattice				
$S_6 \tau_{1u}$	ν_3	244m, 257s,	226m, 250s,	262
Ln-Cl str.		285mw	283mw, 320vw	
$S_7 \tau_{1u}$	ν_4	113s, 132w	109m, 119s,	99s, 112vw
Cl-Ln-Cl b.			140w	
$S_8 \tau_{1u}$	-	182mw	207m	197w
M-Cl str.				
$S_9 \tau_{1u} Cs^+$	-	55 mw	66m, 73mw	58
transl.				
$S_{10} au_{2u}$	ν_6	79w, 86s	94m, 99s, 104w	68s,79sh
Cl-Ln-Cl b.				
ZB acoustic		36w		

 $^{^{}a}$ transl., translation; str., stretch; b., bend; ZB, zone boundary. The relative intensities are an approximate average guide: m, medium; s, strong; w, weak; M = Na, Li.

Experimental Section

Cs₂MTmCl₆ (M = Li, Na), Cs₂LiYCl₆:Tm³⁺, and Cs₂-NaGdCl₆:Tm³⁺ were prepared as powders in sealed quartz tubes using Morss Method E, ¹² as described previously. ⁶ Dry hydrogen chloride gas was passed over these powders at 420 °C for 2 days, before passage through a Bridgman furnace at 800–850 °C. We were unable to synthesize pure crystals by the ammonium chloride method. ¹³ The Tm₂O₃ and Y₂O₃ starting materials were of 99.9% (Strem Chemicals) and 99.999% (Berkshire Ores) purity, respectively. Inductively coupled plasma—atomic emission spectroscopic analysis of the Tm₂O₃ starting material showed the presence of 2.8 ppm Ce, 21 ppm Pr, and 0.3 ppm Nd. Crystals were mounted in an Oxford Instruments closed-cycle cooler cryostat for the emission spectra recorded at Hong Kong University at 10 K, using a resolution

^{*} Corresponding author. Fax: (852) 2788 7406. E-mail: bhtan@cityu.edu.hk.

[†] City University of Hong Kong.

[‡] The University of Hong Kong.

[§] Université Claude-Bernard Lyon-1.

B J. Phys. Chem. B

Figure 1. (a)—(f) The 204.2 nm excited 10 K emission spectrum of $Cs_2NaTmCl_6$ between 37 500 and 15 000 cm⁻¹. The upper level is 3P_2 Γ_3 in all cases. Refer to Tables 3 and 4 for line assignments of (d) and (e), respectively.

of 0.05 nm (ca. 4 cm $^{-1}$) from 190 to 800 nm. In these experiments the sample was excited by the anti-Stokes H₂-shifted harmonics of 266 nm radiation from a Nd:YAG pulsed laser, or by the 476.5 nm (20 981 cm $^{-1}$) line of an argon ion laser. The emission was collected at 90° and passed through an Acton 0.5-m spectrometer, with a liquid-N₂-cooled SDS 9000 charge-coupled device (Photometrics). The emission line energies were converted to vacuum wavenumbers.

Room-temperature spectroscopy of $Cs_2NaTmCl_6$ and $Cs_2NaGdCl_6$: Tm^{3+} was also investigated at the Université Claude Bernard Lyon-1. The luminescence was excited by an excimer laser with variable pulse repetition rate (duration 10 ns, energy 40 mJ at 308 nm), followed by a dye laser. Pulsed radiation at 360.97 nm (27 695 cm⁻¹) was employed for excitation into the 1D_2 term of Tm^{3+} and at 467.76 nm (21 373 cm⁻¹) for excitation into 1G_4 . Luminescence was detected with a Hilger and Watts monochromator (dispersion 0.8 nm mm⁻¹) equipped with an

RCA GaAs photomultiplier. The signal was processed with an Ortec photon counting system. The setup was controlled with a PC. Decay times were measured with a Canberra 35+ multichannel analyzer with the maximum resolution 200 ns per channel.

Results and Discussion

Ultraviolet Excitation of 3P_2 Emission in $Cs_2NaTmCl_6$. The electronic ground state of the f^{12} ion Tm^{3+} in $Cs_2NaTmCl_6$ is 3H_6 Γ_1 (the gerade subscript is omitted throughout). The electronic spectra of this ion in cubic crystals comprise electric quadrupole and/or magnetic dipole allowed zero phonon lines, and extensive vibronic sidebands involving single ungerade phonons and lattice vibrations. The energies and assignments of vibronic structure in the electronic spectra of $Cs_2NaTmCl_6$ are included in Table 1. Two notations are given for the moiety and unit cell group vibrational modes.

TABLE 2: ³P₂ Emission Transition Energies and Derived Energy Levels (cm⁻¹) for Tm³⁺ in Cs₂NaTmCl₆

	<i>5</i> 0	` /	2 0	
		electronic origin		
		energy from ³ P ₂	derived terminal	energy in
SLJ	$\gamma\Gamma$	emission spectrum	state energy	Cs ₂ NaTmCl ₆ ^a
$^{3}H_{6}$	Γ_1	37 460	0	0
0	Γ_4	37 404	56	56
	$a\Gamma_5$	37 356	104	108
		37 313	147	148
	Γ_2	37 199	261	261
	$b\Gamma_5$	37 090	370	370
	Γ_3	37 066	394	394
$^{3}F_{4}$	Γ_5	31 914	5 546	5 547
	Γ_3	31 647	5 813	5 814
	Γ_4	31 595	5 865	5 866
	Γ_1	31 523	5 937	5 938
${}^{3}H_{5}$	$a\Gamma_4$	29 221	8 239	8 241
	Γ_3	29 189	8 271	8 270
	Γ_5	29 024	8 436	8 436
	$\mathrm{b}\Gamma_4$	28 928	8 532	8 532
$^{3}H_{4}$	Γ_5	24 924	12 536	12 538
	Γ_3	24 855	12 605	12 607
	Γ_4	24 768	12 692	
		24 620	12 840	12 840
	Γ_1	24 581	12 879	12 882
$^{3}F_{3}$	Γ_2	22 993	14 467	
	Γ_4	23 034	14 426	14 431
	Γ_5	23 007	14 453	14 457
$^{3}F_{2}$	Γ_3			14 959
	Γ_5			15 133
$^{1}G_{4}$	Γ_5	16 611	20 849	20 851
	Γ_3	16 105	21 355	21 356
	Γ_4	16 039	21 421	21 424
	Γ_1	15 951	21 509	21 508
$^{3}P_{2}$	Γ_3	37 460	37 460	37 455
		2.1.1		

^a From ref 11.

The emission spectrum of Cs₂NaTmCl₆ between 37 500 and 15 600 cm⁻¹ under 204.2 nm (48 956 cm⁻¹) excitation is shown in Figure 1. These transitions originate from the ${}^{3}P_{2}$ (Γ_{3}) initial level, observed at 37 460 \pm 5 cm⁻¹ in the 10 K absorption spectrum of Cs₂NaTmCl₆,¹¹ terminating upon lower energy crystal field levels. The rationale for these assignments is based upon the following: (i) the spectra are virtually identical with those excited by 199.8 nm (50 034 cm⁻¹), 217.8 nm (45 899 cm⁻¹), and 266 nm (37 583 cm⁻¹) radiation; (ii) the spectra are vibronic in nature, as expected for a cubic Tm³⁺ site, and the derived vibrational energies are in agreement with previous studies of this system;⁶ (iii) the derived electronic energies match those previously derived from absorption studies^{6,11} (Table 2); and (iv) the gap between ${}^{3}P_{2}$ Γ_{3} and the next lowest energy level ${}^{3}P_{1}$ Γ_{4} is 1578 cm $^{-1}$, being spanned by six vibrational quanta, so that efficient luminescence is expected to occur from ${}^{3}P_{2}$ Γ_{3} in the absence of cross-relaxation deactivation. Since the next highest crystal field level of ${}^{3}P_{2}$ is Γ_{5} , at 393 cm⁻¹ above the luminescent Γ_3 level, no hot electronic spectral features are observed from this level at 10 K.

Mechanism of Excitation of TmCl₆³⁻. The emission spectrum is rather different under 223.1 nm (44 809 cm⁻¹) excitation, with more intense, sharp zero phonon lines at the energies expected for the Tm³⁺ transitions to lower term multiplets. Evidently, the $^{3}P_{2}$ emission occurs from a noncentrosymmetric defect site in this case. No $^{3}P_{2}$ emission is observed under 273.9 nm (36 499 cm⁻¹) excitation, since this energy is 950 cm⁻¹ lower than that of $^{3}P_{2}$ Γ_{3} , and no TmCl₆³⁻ absorption band exists in this region. Under 245.9 nm (40 655 cm⁻¹) and 239.5 nm (41 471 cm⁻¹) excitation, besides the Tm³⁺ emission, additional bands are clearly observed due to fd \rightarrow f² emission transitions of Pr³⁺ at a cubic site, as well as very weak features due to the

strongest emission from intraconfigurational f² transitions originating from ³P₀.

To summarize the above experiments, 10 K emission from the ³P₂ level of TmCl₆³⁻ is observed for laser excitation energies between 50 034 and 45 899 cm⁻¹, and also under direct excitation into the ³P₂ vibronic sideband using 37 583 cm⁻¹ laser radiation. Since there are no further f¹² Tm³⁺ energy levels above the ${}^{3}P_{2}$ vibronic cutoff (38 300 cm⁻¹) up to the ${}^{1}S_{0}$ level (calculated to be above 71 000 cm⁻¹), or even up to the f¹¹d levels (estimated to be above 55 000 cm⁻¹), the direct population of a Tm³⁺ crystal field level by the laser radiation used in our experiments is not possible. Cresswell et al.⁸ have investigated the room-temperature ${}^{3}F_{4}$, ${}^{1}D_{2}$, and ${}^{1}G_{4}$ excitation spectrum of Tm³⁺ diluted into Cs₂NaYCl₆. Two broad ultraviolet bands were observed: (i) between 51 800 and 44 250 cm⁻¹, assigned to a TmCl₆³⁻ charge-transfer transition;⁸ (ii) between 31 000 and 38 900 cm⁻¹, which corresponds to unresolved f¹² transitions to terminal ³P₂ and ¹I₆ levels. Blasse¹⁵ has cited previous work where the first charge-transfer band of TmCl₆³⁻ has been located in the absorption spectrum at ca. 46 800 cm⁻¹. This chargetransfer band is weak (the corresponding feature in YbCl₆³⁻ has $\epsilon_{\rm max}=160~{\rm mol^{-1}~dm^3~cm^{-1}})^{15}$ and presumably corresponds to the ligand $t_{1g} \rightarrow \text{metal } a_{2u}$ transition. At 10 K, the hot bands at the low energy side of the charge-transfer transition are expected to disappear. Thus, our 223 nm (44 809 cm⁻¹) laser excitation was not absorbed by TmCl₆³⁻, but by a defect site, and produced trap emission. Our other, higher energy, laser excitation lines were directly into the charge-transfer band. Although the 245.9 nm (40 655 cm⁻¹) and 239.5 nm (41 471 cm⁻¹) excitation lines fall into a band gap, absorption occurred by Pr3+ impurities, which have strong, electric dipole allowed, $f^2 \rightarrow fd$ absorption bands in this region. ¹⁶ In fact, the lowest fd level of Pr³⁺ diluted into Cs₂NaTmCl₆ is at 38 723 cm⁻¹, ¹⁶ which is just above the upper limit of the Tm³⁺ ³P₂ vibronic structure in the absorption spectrum, so that in addition to fd \rightarrow f² emission of Pr³⁺, nonresonant energy transfer is expected to occur from Pr³⁺ to Tm³⁺.

van Pieterson et al.¹⁷ have noted that emission from chargetransfer states of lanthanide ions has only been observed for Ce⁴⁺ and Yb³⁺. The accepted model for the quenching of this broad-band emission^{15,17} is that the parabola of the chargetransfer state, in the configuration coordinate diagram, is considerably shifted along the metal—ligand stretching coordinate, relative to the (very similar) positions of the f-electron states. Nonradiative decay from the charge-transfer state is then facilitated by the parabola crossover with the f-electron parabolas.

Energy Level Assignments. The terminal levels of the 3P_2 transitions are readily assigned, from the known energy level scheme, 11 to crystal field levels of the 3H_6 ground-state term, and other terms up to those of 1G_4 . The locations of these crystal field levels are marked in Figure 1. Under the excitation conditions employed, luminescence is not observed from lower levels of ${\rm Tm}^{3+}$, except for 3H_4 . The transition from 3P_2 to 3F_2 is very weak, and it is not discussed further. The derived energy levels are in agreement with the more accurate locations from the absorption spectrum of the ${\rm Cs}_2{\rm NaTmCl}_6$ crystal (Table 2). Two transitions are of particular interest and are described in more detail.

 ${}^3P_2 \rightarrow {}^3H_4$ Transition of Cs₂NaTmCl₆. Figure 1d shows the 3P_2 $\Gamma_3 \rightarrow {}^3H_4$ transition, between 25 000 and 24 000 cm⁻¹. The analysis of the vibronic structure (Table 3) is consistent with the assignment of terminal 3H_4 Γ_5 , Γ_3 , Γ_4 , and Γ_1 crystal field levels from the absorption spectrum of Cs₂NaTmCl₆. However, some strong features then remain unassigned—in particular, the

D J. Phys. Chem. B

TABLE 3: Assignment of the 10 K ${}^{3}P_{2} \rightarrow {}^{3}H_{4}$ Emission Spectrum of Cs₂NaTmCl₆

Spectrum of Cs ₂	Na i iii Ci6	
line, Figure 1d	energy (cm ⁻¹)	terminal ³ H ₄ state and derived vibrational energy
1	24 926 vw	Γ_5
2 3	24 904 w	defect origin, Γ_5
	24 894 vw	Γ_5 + ZB ac (32)
4	24 882 w	$\Gamma_5 + S_5 (44)$
5	24 869 vw	$\Gamma_5 + S_9 (57)$
6	24 840 m	$\Gamma_5 + S_{10}$ (86)
7	24 820 m	$\Gamma_3 + ZB ac (37)$
8	24 810 m	$\Gamma_5 + S_7 (116)$
		$\Gamma_3 + S_5 (47)$
9	24 770 m	$\Gamma_3 + S_{10}$ (87)
10	24 746 m	$\Gamma_5 + S_8 (180)$
		$\Gamma_3 + S_7 (111)$
11	24 733 w, sh	$\Gamma_3 + S_7 (124)$
		Γ_{4a} + ZB ac (35)
12	24 726 w, sh	$\Gamma_{4a} + S_5 (42)$
13	24 713 vw, sh	$\Gamma_{4a} + S_9 (55)$
14	24 682 s	$\Gamma_5 + S_6 (244)$
		$\Gamma_{4a} + S_{10}$ (86)
15	24 662 m	$\Gamma_5 + S_6 (264)$
		$\Gamma_{4a} + S_7 (106)$
16	24 636 m	$\Gamma_5 + S_6 (290)$
17	24 611 w, sh	$\Gamma_3 + S_6 (246)$
18	24 599 m	$\Gamma_3 + S_6 (258)$
19	24 572 bw	$\Gamma_3 + S_6 (285)$
20	24 565 vw	$\Gamma_{4b} + S_9 (55)$
21	24 538 m	$\Gamma_{4b} + S_{10} (82)$
		$\Gamma_1 + S_5 (45)$
22	24 493 bm	$\Gamma_1 + S_{10}$ (90)
23	24 472 w, sh	$\Gamma_1 + S_7 (109)$
24	24 458 w, sh	$\Gamma_1 + S_7 (125)$
25	24 337 w, sh	$\Gamma_1 + S_6 (244)$
26	24 323 w	$\Gamma_1 + S_6 (258)$
27	24 295 w	$\Gamma_1 + S_6 (286)$
-		1 -0 (/

^a The initial state is ${}^{3}P_{2}$ Γ_{3} in all cases. Refer to Table 1 for the description of vibrational modes. The labeling of vibrations is simplified under the unit cell group model, but the actual spectral features involve contributions from different points in **k** space.

strongest band at 24 682 cm⁻¹ (line 14). Part of the intensity of this band could arise from $\Gamma_1 \rightarrow \Gamma_3 + \nu_3$, S_6 (244), but then the higher energy component of S_6 near 259 cm⁻¹ would then be more intense than this band, as in all other transitions comprising S_6 . This is not observed to be so. Alternatively, this band, and several others, can be assigned to a further electronic transition with the electronic origin located at 24 768 cm⁻¹. The derived energy of the 3H_4 terminal state is then 12 692 cm⁻¹.

These results for an "additional" ³H₄ energy level may be rationalized in a manner similar to the observation of two a Γ_5 crystal field levels in the electronic ground state, ³H₆. In the latter case, it has been shown¹⁸ that a temperature-dependent electron—phonon coupling occurs between the $\Gamma_1 + \nu_5$ vibronic level and the $a\Gamma_5$ electronic level, to produce two electron phonon coupled states at low temperature. For the ³H₄ case, we suggest that the coupling occurs between $\Gamma_5 + \nu_2 = 12538$ +237 = 12775 cm⁻¹ and Γ_4 . The 3H_4 Γ_4 level is calculated to be near $12\,747~\mathrm{cm^{-1}},^{10,11}$ which constitutes a large error of 93cm⁻¹ from the previously assigned experimental value of 12 840 cm⁻¹. Taking the values 12 775 and 12 747 cm⁻¹ for the unperturbed state energies, and the values 12 840 and 12 692 cm⁻¹ for the perturbed state energies, an approximate calculation of the matrix element W of the electron-phonon coupling Hamiltonian from the equation

$$\begin{vmatrix} E(\Gamma_4) - E & W \\ W & E(\Gamma_5 + \nu_2) - E \end{vmatrix} = 0 \tag{1}$$

TABLE 4: Assignment of the 10 K $^3P_2 \rightarrow \,^3F_3$ Emission Spectrum of $Cs_2NaTmCl_6$

Spectrum or	0521 141 2 111 0 16	
line, Figure 1e	energy (cm ⁻¹)	terminal ³ F ₃ state and derived vibrational energy ^a
Tigure re	(сіп)	
1	23 034 m	Γ_4
2 3	23 007 m	Γ_5
	23 001 w, sh	Γ_4 + ZB ac (33)
4	22 995 ms	$\Gamma_4 + S_5 (39)$
5	22 978 m	$\Gamma_4 + S_9 (56)$
		$\Gamma_5 + ZB ac (29)$
6	22 951 s	$\Gamma_4 + S_{10}$ (83)
		$\Gamma_5 + S_9 (56)$
7	22 922 m	$\Gamma_5 + S_{10}$ (85)
8	22 918 m, sh	$\Gamma_4 + S_7 (116)$
9	22 908 vw	$\Gamma_2 + S_{10} (85)$
10	22 898 w	$\Gamma_5 + S_7 (109)$
11	22 881 w, sh	$\Gamma_5 + S_7 (126)$
	,	$\Gamma_2 + S_7 (112)$
12	22 852 vw, sh	$\Gamma_4 + S_8 (182)$
13	22 827 vw	$\Gamma_5 + S_8 (180)$
14	22 791 vw, sh	$\Gamma_4 + S_6 (243)$
15	22 780 w	$\Gamma_4 + S_6 (254)$
16	22 763 bw	$\Gamma_5 + S_6 (244)$
18	22 751 w	$\Gamma_5 + S_6 (256)$
10	22 /31 W	$\Gamma_4 + S_6 (285)$
		$\Gamma_2 + S_6 (241)$
19	22 736 w	$\Gamma_2 + S_6(241)$ $\Gamma_2 + S_6(257)$
20	22 736 w 22 715 vw, b	$\Gamma_5 + S_6 (286)$
20	22 /13 vw, 0	2 0 ()
21	22 666	$\Gamma_2 + S_6 (285)$
21	22 666 vw	$\Gamma_4 + S_{10} + S_1 (285)$

^a The initial state is ${}^{3}P_{2}$ Γ_{3} in all cases. Refer to Table 1 for the description of vibrational modes, and to the footnote in Table 3.

gives the value $W=73\pm5$ cm⁻¹. This is greater than that found in the 3H_6 ground state, 20 cm⁻¹. It is noted that although the energies of $\Gamma_3 + \nu_2 = 12607 + 237 = 12834$ cm⁻¹, and the Γ_4 level at 12840 cm⁻¹ are similar, no interaction is expected to occur in that case from symmetry considerations.

 3 P₂ \rightarrow 3 F₃ Transition of Cs₂NaTmCl₆. The 3 F₃ crystal field levels Γ_4 and Γ_5 have been assigned at 14431 and 14457 cm⁻¹ from the absorption spectrum of Cs₂NaTmCl₆. A firm assignment for the remaining level, Γ_2 , could not be made. Despite the fact that Γ_2 is *calculated* to be the lowest 3 F₃ crystal field level, 11 it is certain that Γ_4 is the lowest level, since low temperature emission is observed from 3 F₃ Γ_4 under suitable conditions. The assignment of the 3 P₂ \rightarrow 3 F₃ emission transition enables a tentative assignment to be made for the $\Gamma_3 \rightarrow \Gamma_2$ electronic origin at 22993 cm⁻¹ (Table 4), so that the Γ_2 level is inferred to be at 14467 cm⁻¹.

Quantum Cutting in Cs₂LiTmCl₆. The vibrational behavior of Cs₂LiTmCl₆ differs from that of Cs₂NaTmCl₆, and the energies and assignments of vibronic structure in the electronic spectra are included in Table 1. We have made a preliminary investigation of the emission of Cs₂LiTmCl₆ excited by ultraviolet laser radiation, and both the occurrence of emission solely from ³P₂, and the derived f¹² energy levels, are generally similar to the case of Cs₂NaTmCl₆. The 199.8 nm (50034 cm⁻¹) excited 10 K emission spectrum of Cs₂LiYCl₆:Tm³⁺ exhibits considerably more transitions, with emission occurring from the ${}^{3}P_{2}$, ${}^{1}I_{6}$, ${}^{1}D_{2}$ and ${}^{1}G_{4}$ terms in the region above 20000 cm⁻¹. Evidently, ion-ion cross-relaxation processes operate in the neat Cs₂LiTmCl₆ crystal to depopulate ¹I₆, ¹D₂ and ¹G₄, and the mechanisms of the latter two processes have previously been described in detail for Cs₂NaTmCl₆. ^{10,19-21} The lowest ¹I₆ crystal field level, Γ_3 , can be depopulated by a resonant cross-relaxation energy transfer mechanism:

$$^{1}I_{6} \Gamma_{3} \text{ (site 1)} + {^{3}H_{6} \Gamma_{1} \text{(site 2)}} \rightarrow {^{1}G_{4} \Gamma_{1} \text{(site 1)}} + {^{3}H_{4} \Gamma_{3} \text{(site 2)}}$$
 (2)

Figure 2. The 476.5 nm excited 10 K luminescence spectrum of Cs₂LiTmCl₆, containing trace amounts of Nd³⁺, between 11 350 and 10 950 cm⁻¹. Refer to Table 5 for band assignments.

TABLE 5: Assignment of the $^4F_{3/2}$ Γ_8 $^{-}$ $^4I_{9/2}$ Luminescence Transition of Cs₂LiTmCl₆:Nd³⁺

line, Figure 2	energy (cm ⁻¹)	terminal ⁴ I _{9/2} state and derived vibrational energy ^a
1	11 323 s	$a\Gamma_8$
2	11 270 m	$a\Gamma_8 + S_5 (53)$
3	11 257 w	$a\Gamma_8 + S_9$ (66)
4	11 247 bw	$a\Gamma_8 + S_{10}$ (76)
5	11 233 s	$a\Gamma_8 + S_{10}$ (90)
6	11 224 sh	$a\Gamma_8 + S_7 (99)$
7	11 218 bs	$a\Gamma_8 + S_7 (105)$
8	11 209 s	$a\Gamma_8 + S_7 (114)$
9	11 181 vw	$\Gamma_6 + S_5 (53)$
10	11 167 w	$\Gamma_6 + S_9 (67)$
11	11 145 w	$\Gamma_6 + S_{10} (89)$
12	11 135 mw	$\Gamma_6 + S_7 (99)$
13	11 120 w	$\Gamma_6 + S_7 (114)$
14	11 101 sh	$a\Gamma_8 + S_8$ (222)
15	11 093 mw	$a\Gamma_8 + S_6 (230)$
16	11 087 mw	$a\Gamma_8 + S_6 (236)$
17	11 069 mw	$a\Gamma_8 + S_6 (254)$
18	11 036 w	$a\Gamma_8 + S_6 (287)$
19	10 991 w	$\mathrm{b}\Gamma_8$

 a The initial state is $^4F_{3/2}$ Γ_8 (11 323 cm $^{-1})$ in all cases. The $^4I_{9/2}$ electronic energies are (in cm $^{-1})$ 0 (a Γ_8), 89 (Γ_6), and 332 (b Γ_8). The vibrational modes are described in Table 1, but refer to the footnote in Table 3.

The spectrum of *neat* Cs₂LiTmCl₆ under 476.5 nm argon ion laser excitation, which populates 1G_4 vibronic levels, also shows the cross-relaxation quenching of 1G_4 emission. No visible emission is observed, and the highest energy luminescence corresponds to $^3H_4 \rightarrow ^3H_6$, between 12 534 and 11 907 cm $^{-1}$. To lower energy, a further group of bands is observed (Figure 2) which is assigned to the $^4F_{3/2}$ $\Gamma_8 \rightarrow ^4I_{9/2}$ transition of trace Nd $^{3+}$ impurity (Table 5). Near-ultraviolet excitation thus produces near-infrared emission either from two Tm $^{3+}$ ions or from one Tm $^{3+}$ and one Nd $^{3+}$ ion. In the latter case, the cross-relaxation is nonresonant, but several mechanisms are possible with donor—acceptor energy mismatches of 15–36 cm $^{-1}$. The Tm $^{3+}$ ion relaxes from 1G_4 to 3H_5 , while Nd $^{3+}$ transits from $^4I_{9/2}$ to $^4F_{5/2}$ or $^2H_{9/2}$, which then relaxes nonradiatively to $^4F_{3/2}$, Figure 3.

Upconversion to ³**P₂ in Cs₂NaTmCl₆.** Figure 4a shows the room-temperature emission spectra of Cs₂NaGdCl₆ doped with 10% Tm³⁺, with excitation into ¹G₄. Weak emission is observed from ¹G₄ to lower levels in diluted samples, but this is totally quenched in neat Cs₂NaTmCl₆,^{6,19} with the highest energy

Figure 3. Suggested mechanism of quantum cutting in Cs₂LiTmCl₆: Nd³⁺. Only the relevant energy levels are shown, and initially populated states are circled.

Figure 4. Survey room-temperature emission spectra of (a) $Cs_2Na-Gd_{0.9}Tm_{0.1}Cl_6$ under 467.76 nm excitation into 1G_4 ; (b) $Cs_2NaGd_{1-x}Tm_xCl_6$ (x = 0.001-1) under 360.97 nm excitation into 1D_2 . The insert in (a) is the extended ${}^1G_4 \rightarrow {}^3F_4$ emission region.

emission then resulting from the ${}^3H_4 \rightarrow {}^3H_6$ transition. No upconverted emission from 1D_2 or higher levels is observed. The corresponding survey emission spectra for excitation into 1D_2 are shown in Figure 4b, for Cs₂NaGdCl₆ doped with 0.1–100% Tm³⁺. In the diluted samples, emission is observed from 1D_2 which terminates upon 3F_4 , 3H_5 , 3H_4 , 3F_3 , and 3F_2 , with the most intense transition being ${}^1D_2 \rightarrow {}^3F_4$. The ${}^3H_4 \rightarrow {}^3H_6$ transition is also observed near 800 nm. By increasing Tm³⁺ concentration, the intensity of emission from 3H_4 increases relative to that from 1D_2 . In neat Cs₂NaTmCl₆, however, emission from 1D_2 is quenched, and new transitions appear

F J. Phys. Chem. B PAGE EST: 5.8 Tanner et al.

Figure 5. Room-temperature luminescence decay profiles of Tm^{3+} doped into $Cs_2NaGdCl_6$ for (a) 1D_2 emission at 453.7 nm; (b) 3P_2 emission at 402.0 nm. The fitted natural lifetimes are marked, but emission from 1D_2 in *neat* $Cs_2NaTmCl_6$ is not mono- or biexponential.

which originate from 3P_2 . The energies of these transitions are consistent with those in Figure 1, but also emission from the thermally populated 3P_2 Γ_5 level, at 393 cm $^{-1}$ above 3P_2 Γ_3 , is clearly indicated. The luminescence decay from 1D_2 becomes markedly non-monoexponential in the neat sample, and cannot even be fitted by two exponential functions. The emission from 3P_2 does not show a detectable rise time (Figure 5), which is indicative of excited-state absorption (ESA) rather than energy-transfer upconversion. It is clear that, besides upconversion, *other* depopulation processes operate for 1D_2 in neat Cs_2 -NaTmCl₆, such as the cross-relaxation energy transfer:

$${}^{1}D_{2}$$
 (site 1) + ${}^{3}H_{6}$ (site 2) $\rightarrow {}^{3}H_{4}$ (site 1) + ${}^{3}F_{2}$ (site 2) (3)

where ³F₂ also decays nonradiatively to ³H₄.

The observation of 3P_2 upconversion was surprising to us, but its mechanism requires further experiments for elucidation, furthermore since the $Cs_2NaGdCl_6$ host employed is not fully transparent below the energy of the 3P_2 Tm^{3+} level. 22

Conclusions

The emission spectra of Tm³⁺ in elpasolite lattices are rich and show marked changes with increasing concentration of

 Tm^{3+} in the crystal. For the first time that we are aware of, firm assignments have been given for emission excited by ultraviolet laser radiation, at low temperatures, from the 3P_2 state, located near 37 500 cm $^{-1}$. The most intense transitions are to the terminal 3H_6 and 3F_4 term manifolds, and are almost entirely vibronic in character. The interpretation of the $^3P_2 \rightarrow ^3H_4$ emission transition reveals electron—phonon coupling phenomena which provide a clear explanation of the apparently enormous deviation between the experimental and calculated energy of the 3H_4 Γ_4 level. A new assignment has also been suggested for 3F_3 Γ_2 . Conversion of blue to infrared radiation in $Cs_2LiTmCl_6$ and upconversion from 1D_2 to 3P_2 in $Cs_2NaTmCl_6$ have been shown to occur. While the mechanism for the former process is clear, that for the latter requires further investigation.

Acknowledgment. P.A.T. acknowledges funding from CERG Grant CityU 1067/99P.

References and Notes

- Wegh, R. T.; Meijerink, A.; Lamminmäki, R.-J.; Hölsä, J. J. Lumin. 2000, 87, 1002.
- (2) Tanner, P. A.; Chua, M.; Kwok, W. M.; Phillips, D. L. Phys. Rev. 1999, B60, 13902.
- (3) Dieke, G. H. Spectra and Energy Levels of Rare Earth Ions in Crystals; Interscience: New York, 1968.
- (4) Hölsä, J.; Lamminmäki, R. J.; Fidancev, E. A.; Lemaitreblaise, M.; Porcher, P. *J. Phys. Condensed Matter* **1995**, *7*, 5127.
- (5) Wyss, C. P.; Kehrli, M.; Huber, Th.; Morris, P. J.; Lüthy, W.; Weber, H. P.; Zagumennyi, A. I.; Zavartsev, Yu. D.; Studenikin, P. A.; Shsherbakov, I. A.; Zerrouk, A. F. *J. Lumin.* **1999**, *82*, 137.
- (6) (a) Tanner, P. A. Mol. Phys. 1984, 53, 813, 835. (b) Tanner, P. A. Mol. Phys. 1985, 54, 883.
- (7) Joubert, M. F.; Guy, S.; Cuerq, S.; Tanner, P. A. J. Lumin. 1997, 75, 287.
- (8) Cresswell, P. J.; Robbins, D. J.; Thomson, A. J. J. Lumin. 1978, 17, 311.
 - (9) Kirk, A. D.; Furer, N.; Güdel, H. U. J. Lumin. **1996**, 68, 77.
- (10) Foster, D. R.; Reid, M. F.; Richardson, F. S. J. Chem. Phys. **1985**, 83, 3225.
- (11) Tanner, P. A.; Kumar, V. V. R. K.; Jayasankar, C. K.; Reid, M. F. J. Alloys Compd. 1994, 215, 349.
- (12) Morss, L. R.; Siegel, M.; Stinger, L.; Edelstein, N. Inorg. Chem. 1970, 9, 1771.
 - (13) Meyer, G.; Ax, P. Mater. Res. Bull. 1982, 17, 1447.
 - (14) Lentz, A. J. Phys. Chem. Solids 1974, 35, 827.
 - (15) Blasse, G. Struct. Bonding 1976, 26, 43.
- (16) Tanner, P. A.; Mak, C. S. K.; Faucher, M. D. Chem. Phys. Lett. **2001**, 343, 309.
- (17) van Pieterson, L.; Heeroma, M.; de Heer, E.; Meijerink, A. *J. Lumin.* **2000**, *91*, 177.
- (18) Tanner, P. A.; Xia, S.; Liu, Y. L.; Ma, Y. Phys. Rev. 1997, B55, 12182.
- (19) Tanner, P. A.; Chua, M.; Reid, M. F. J. Alloys Compd. 1995, 225, 20.
- (20) O'Connor, R.; Mahiou, R.; Martinant, D.; Fournier, M. T. J. Alloys Compd. 1995, 225, 107.
 - (21) Kirk, A. D.; Furer, N.; Güdel, H. U. J. Lumin. 1996, 68, 77.
 - (22) de Vries, A. J.; Blasse, G. J. Chem. Phys. 1988, 88, 7312.