

MATEMATIKA DISKRETUA 3. GAIA - KONBINATORIA

Erik Alonso González

Matematika Aplikatua Saila Bilboko Ingeniaritza Eskola (Industria Ingeniaritza Teknikoa) Euskal Herriko Unibertsitatea (EHU)

Aurkibidea

- 2 Zenbaketa
- 2 Aldakuntzak, permutazioak eta konbinazioak
- 3 Probabilitate diskretua
- 4 Eragiketak gertaerekin
- 6 Probabilitate baldintzatua
- 6 Proposatutako ariketak

Aurkibidea

2 Zenbaketa

Zenbaketaren oinarrizko printzipioak Zenbaketaren beste printzipio erabilgarriak

Zenbaketaren oinarrizko printzipioak

1.1. Proposizioa - Baturaren erregela

 Lehenengo zeregin bat n eratan egin badaitake eta bigarren zeregin bat m eratan egin badaiteke eta gainera bateraezinak badira, orduan n+m era daude bi eginkizunak egiteko.

1.2. Proposizioa - Biderkaduraren erregela

 Zeregin bat ondoz ondoko bi zereginetan banatu badaitake eta gainera lehenengo zeregina egiteko n era badaude eta lehenengoa egin ondoren bigarren zeregina egiteko m era badaude, orduan lehenengo zeregina burutzeko n·m era daude.

Zenbaketaren beste printzipio erabilgarriak 1

1.3. Definizioa

 A multzo baten elementu kopuruari A-ren kardinal deritzo eta honela denotatuko da: |A|.

1.4. Definizioa

• Izan bitez m eta n bi zenbaki arrunt. m eta n-ren gehiegizko zatidura m/n baino handiagoa den m/n zatidurari hurbilen dagoen zenbaki osoa izango da eta honela denotatuko da: [m/n].

1.5. Definizioa

• Izan bitez m eta n bi zenbaki arrunt. m eta n-ren gutxiegizko zatidura m/n baino txikiagoa den m/n zatidurari hurbilen dagoen zenbaki osoa izango da eta honela denotatuko da: m/n .

1.6. Proposizioa - Usategiaren printzipioa (Dirichlet-en printzipio laburtua)

m objektu n kutxatan banatzen badira, non m>n den, orduan gutxienez bi edo objektu gehiago dituen kutxa bat existituko da.

Zenbaketaren beste printzipio erabilgarriak III

1.7. Proposizioa - Dirichlet-en printzipio orokortua

 m objektu n kutxatan banatzen badira, non m>n den, orduan gutxienez [m/n] objektu dituen kutxa bat existituko da gutxienez eta beste bat gehienez [m/n] objektu dituena.

1.8. Proposizioa

 X multzo finitu bat bada eta ACX bada, orduan honako hau egiaztatuko da:

$$|X-A| = |X| - |A|$$

Aurkibidea

Aldakuntzak, permutazioak eta konbinazioak Laginak eta selekzioak

Laginak eta selekzioak | I

Konbinatoriako ariketetan paper garrantzitsua jokatzen duten bi eragiketa daude: multzo baten zati bat *aukeratu* eta multzo baten elementuak *ordenatu*.

2.1. Definizioa

- Izan bedi A multzo bat. A-ren edozein azpimultzori A-ren lagin deritzo.
- Multzo baten zati bat aukeratzea lagin bat definitzea da.

Laginak eta selekzioak II

2.2. Definizioa

- Lagin bat, ordenatua edo ez ordenatua da, baldin eta elementuen ordena kontuan hartzen bada edo ez.
- Lehen ateratako elementu bat ordezkatu egin daiteke ala ez, hurrengo ateratzea baino lehen.
- Horrela, ordezkapen edo ordezkapen gabeko laginak bereiztuko dira (errepikatuz edo errepikatu gabe)

Laginak eta selekzioak III

2.3. Definizioa - s-naka hartutako n elementuen aldakuntza sinpleak (Ordezkapen gabeko lagin ordenatua)

• Izan bedi n elementu desberdin dituen multzo bat. Eskuragai dauden n elementuetatik, s elementuz osatutako talde desberdinei, s-naka hartutako n elementuen aldakuntza sinple deritzo. Horrela, talde horietako bi, desberdinak izango dira elementu desberdinak badituzte, edo bestela, elementu berdinak izanda ordena desberdinean kokatuta badaude (n>s).

Laginak eta selekzioak IV

2.4. Proposizioa

- Biderkaduraren erregelaren arabera saioak $n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-s+1)$ aukera posible ditu.
- s-naka hartutako n elementuen aldakuntza sinpleen kopurua honako hau da:

$$V_{n,s} = V_n^s = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot (n-s+1) = \frac{n!}{(n-s)!}$$

Laginak eta selekzioak V

2.5. Definizioa - s-naka hartutako n elementuen errepikatuzko aldakuntzak (Lagin ordenatua ordezkapenarekin)

 s-naka hartutako n elementuen aldakuntzetan elementuak errepikatzea posible bada, selekzio hauei s-naka hartutako n elementuen errepikatuzko aldakuntza deritze. n elementuen errepikatuzko aldakuntzetan gerta daiteke s>n izatea.

2.6. Proposizioa

• s-naka hartutako n elementuen errepikatuzko aldakuntzen kopurua honako hau da.

$$\forall R_{n,s} = V_{n,s}^R = n^s$$

Laginak eta selekzioak VI

2.7. Definizioa - n elementuen permutazio sinpleak

 Aldakuntza sinpleetan, n=s bada, hots, selekzio bakoitzak eskuragai dauden n elementuak baditu, aldakuntza sinpleei n elementuen permutazio sinple deritze.

2.8. Proposizioa

• n elementuen permutazio sinpleen kopurua honako hau da:

$$P_n=n!$$

• Definizioz, 0!=1 izango da

Laginak eta selekzioak VII

2.9. Definizioa - n elementuen errepikatuzko permutazioak

• Izan bedi n elementuz osotutako multzo bat, non n_1 berdinak diren elkarren artean eta era batekoak, n_2 berdinak diren ere baina beste era batekoak, eta horrela jarraituz n_k elementu berdinak elkarren artean eta aurrekoekin desberdinak. Beraz, $n=n_1+n_2+...+n_k$ egiaztatuko da. n elementu horiek konbinatzeko aukera guztiei n elementuen errepikatuzko permutazio deritze.

2.10. Proposizioa

• n elementuen errepikatuzko permutazioen kopurua, non n_1 berdinak diren, n_2 berdinak diren, eta abar, $P_n^{n_1,n_2,\ldots,n_k}$ denotatuko da eta honako hau da:

$$P_n^{n_1,n_2,...,n_k} = \frac{n!}{n_1! \cdot n_2! \cdot ... \cdot n_k!}$$

Laginak eta selekzioak VIII

2.11. Proposizioa - Permutazio zirkularrak

• Izan bedi n elementu dituen multzo bat. Permutazio zirkular bat, n elementu horien taldekatze bat izango da, non edozein taldekatze honetako bat beste taldekatze batetik desberdinduko den, osotzen duten elementuen posizio erlatiboa aldatuta dutelako. P_n' denotatuko da permutazio zirkularra.

2.12. Proposizioa

 n elementuen permutazio zirkularren kopurua honako hau izango da:

$$P'_{n}=(n-1)!$$

Laginak eta selekzioak IX

2.13. **Definizioa - s-naka hartutako n elementuen konbinazioak** (Ordenatu gabeko lagina ordezkapen gabe)

• Izan bedi n elementu dituen multzo bat. Emandako n elemetuekin, s elementu dituzten taldeak osotuko ditugu. Talde horietako bi, gutxienez elementu batean desberdintzen dira; eta berdinak balira bezala hartuko dira elementu berdinak badituzte, nahiz eta ordena desberdinean egon. Selekzio hauei s-naka hartutako n elementuen konbinazio sinple deritze, eta honela denotatuko dira: $C_{n,s} = C_n^s$

2.14. Proposizioa

• s-naka hartutako n elementuen konbinazio sinpleen kopurua honako hau izango da:

$$C_{n,s} = C_n^s = {n \choose s} = \frac{n!}{s! \cdot (n-s)!}$$

Laginak eta selekzioak X

2.15. **Definizioa** - **Errepikapenezko konbinazioak** (Ordenatu gabeko lagina ordezkapenarekin)

• Izan bedi n elementu dituen multzo bat. Emandako n elemetuekin, s elementu dituzten taldeak osotuko ditugu, baina oraingoan elementu berdinak edo errepikatuak kontsideratuko dira eta ez bakarrik desberdinak direnak. Horrelako selekzio bakoitzari, s ordenako errepikapenezko konbinazio deritzo eta honela denotatuko da: $\mathbb{C}^{\mathbb{R}}_{n,s}$

2.16. Proposizioa

 s ordenako errepikapenezko konbinazioen kopurua honako hau izango da:

$$C_{n,s}^{R} = C_{n+s-1,s}$$

Zenbaketa
Aldakuntzak, permutazioak eta konbinazioak
Probabilitate diskretua
Eragiketak gertaerekin
Probabilitate baldintzatua
Proposatutako ariketak

Aurkibidea

3 Probabilitate diskretua

Probabilitate diskretua 1

3.1. Definizioa

• Emaitza iragarri ezin den saioari, zorizko saio deritzo. Hau da, emaitza zoriaren menpe dagoen saioa.

3.2. Definizioa

 Zorizko saio baten emaitza guztien multzoari, zorizko saio horri dagokion lagin-espazioa deritzo. Lagin-espazioa E letraz denotatuko da.

Probabilitate diskretua II

3.3. Definizioa

- E lagin-espazioko edozein azpimultzori, gertaera deritzo. E, n elementu dituen multzo finitua bada, orduan 2ⁿ gertaera posible daude.
- Elementu bakarrez osatutako gertaerei, gertaera elemental deritze.

3.4. Definizioa

• E multzoa gertaera segurua da, eta Ø multzoa ezinezko gertaera da.

Aurkibidea

4 Eragiketak gertaerekin

Eragiketak gertaerekin 1

Multzoen artean ezagunak diren eragiketak dira.

4.1. Definizioa

 E-A gertaerari, A gertaeraren aurkako gertaera deritzo, eta honela denotatuko da: A' edo A.

4.2. Definizioa

- A eta B bi gertaera disjuntu, hots, $A \cap B = \emptyset$, bateraezinak dira.
- Bi gertaera bateraezin ezin dira aldi berean egiaztatu.

Eragiketak gertaerekin II

4.3. Definizioa

• Zorizko saio bat, baldintza egonkorretan errepikatzen bada, eta S edozein gertaera izanda, honako limite hau izango dugu:

$$p(S) = \lim_{n \to \infty} \frac{f(S)}{n}$$

- non f(S)=S gertaera zenbat aldiz errepikatu den adierazten duen eta n=saioa zenbat aldiz errepikatu den zehazten du.
- Limite horren balioari, S-ren probabilitate deritzo.

4.4. Proposizioa (Laplace-ren erregela)

 Zenbait saiotan gertaera elemental guztiek probabilitate berdina dutela suposa dezakegu. Haietan, gertaera baten probabilitatea, Laplace-ren erregelarekin lortuko da:

$$p(S) = \frac{\text{aldeko kasuak}}{\text{kasu posibleak}}$$

Eragiketak gertaerekin III

4.5. Proposizioa

- **1** S gertaera edozein izanda, honako hau egiaztatuko da: $p(S) \ge 0$.
- ② Bi gertaera bateraezinak badira, hau da, A∩B=∅ bada, orduan haien bilduraren probabilitatea, probabilitateen batura da:

$$p(A \cup B) = p(A) + p(B)$$

3 Probabilitate osoa 1 da:

$$p(E)=1$$

Eragiketak gertaerekin IV

4.6. Proposizioa

- $p(\emptyset) = 0$
- 3 A \subset B bada, orduan p(B)=p(A)+p(B-A) egiaztatuko da.
- 4 A \subset B bada, orduan p(A) \leq p(B) egiaztatuko da.
- $\mathbf{5}$ A_1 , A_2 , ..., A_k gertaera bateraezinak badira binaka, orduan honako hau egiaztatuko da:

$$p(A_1 \cup A_2 \cup ... \cup A_k) = p(A_1) + p(A_2) + ... + p(A_k)$$

- **6** $p(A \cup B) = p(A) + p(B) p(A \cap B)$
- $S = \{x_1, x_2, ..., x_k\}$ bada, orduan $p(S) = p(x_1) + p(x_2) + ... + p(x_k)$ egiaztatuko da.
- **8** $E=\{x_1,x_2,...,x_n\}$ eta $p(x_1)=p(x_2)=...=p(x_n)$ badira, orduan S gertaera baten probabilitatea honako hau izango da:

$$p(S) = \frac{S - ren elementu kopurua}{n}$$

Aurkibidea

6 Probabilitate baldintzatua

Probabilitate baldintzatua | 1

5.1. Definizioa

• Izan bitez A eta B bi gertaera. A-rekiko B-ren probabilitate baldintzatua honako balio hau izango da:

$$p(B/A) = \frac{p(A \cap B)}{p(A)}$$

5.2. Definizioa

 A eta B gertaerak independenteak direla diogu, baldin eta p(B/A)=p(B) egiaztatzen bada.

Probabilitate baldintzatua II

5.3. Proposizioa

• Izan bitez A_1 , A_2 , ..., A_n , n gertaera bateraezinak binaka, honako baldintza hau egiaztatuz $A_1 \cup A_2 \cup ... \cup A_n = E$, eta S gertaera bat. Orduan honako hau egiaztatuko da:

$$p(S) = \sum_{i=1}^{n} p(A_i) \cdot p(S/A_i)$$

5.4. Proposizioa Bayes-en formula

- Izan bitez A_1 , A_2 , ..., A_n , n gertaera bateraezinak binaka, honako baldintza hau egiaztatuz $A_1 \cup A_2 \cup ... \cup A_n = E$, eta S gertaera bat, non $p(S) \neq 0$ den.
- Aurreko familiako A_k edozein gertaera izanik, honako hau egiaztatuko da:

$$p(A_k/S) = \frac{p(A_k) \cdot p(S/A_k)}{\sum\limits_{i=1}^{n} p(A_i) \cdot p(S/A_i)}$$

Aurkibidea

6 Proposatutako ariketak Ariketak

Ariketak I

1. Ariketa

• Lurralde bateko ibilgailuen matrikula-plaketan lau letraren atzetik hiru zifra daude. Zenbat plaka desberdin egin daitezke?

2. Ariketa

• 5,6,7,8,9 digituekin, bost zifratako zenbat zenbaki sortu daitezke bi digitu bakoiti ondoan ezin badira egon?

3. Ariketa

• {1,2,3,...,99} multzotik 1 O zenbaki desberdin aukeratzen dira. Ziurtatu bi daudela non haien arteko diferentzia gehienez 1 O baita.

Ariketak II

4. Ariketa

 Publizitate karabana baten 6 kotxe eta 6 furgoneta daude, ibilgailu guztiak kolore desberdinekoak direlarik. Zenbat era desberdinetan antolatu daiteke karabana-ilara jakinda bi furgoneta ezin direla elkarren ondoan jarri? Bi furgoneta kentzen badira, zenbat karabana desberdin sortu daitezke aurreko baldintzarekin?

5. Ariketa

• Bost gazte gidariarenetik aparte 7 eserleku dituen furgonetan sartzen dira, zenbat era desberdinetan eseri al dira?

6. Ariketa

• Segurtasuneko sei zaindarik zentro komertzial bateko goizeko txandan daude. Txanda horretan bi zaindari baino ez badira behar, zenbat egun igaro daitezke bikote berdina errepikatu gabe?

Ariketak III

7. Ariketa

Askatu honako ekuazio-sistema, ezezagunak m eta n izanik:

$$V_{m,n+2}=20 V_{m,n}$$
 , $V_{m,2}=110$

8. Ariketa

 Haur-festa baten lau haurren artean 12 kanika berdin banatzen dira, zenbat era desberdinetan bana daitezke? eta haur bakoitzak gutxienez bat jasotzen badu?

9. Ariketa

• Bi dado jaurtitzen dira, zein da batura posible bakoitzaren probabilitatea?

Ariketak IV

10. Ariketa

 Aldi berean lau txanpon jaurtitzen dira, zein da gutxienez aurpegi bat lortzearen probabilitatea?

11. Ariketa

 Bi gertaera batera suertatzeko probabilitatea p bada, zein da qutxienez bat ez gertatzearen probabilitatea?

12. Ariketa

 Aldi berean espainiar motako bi karta ateratzen dira eta dado bat jaurtitzen da. Zein da kartak txankak eta dadoaren zenbakia bikoitia izateko probabilitatea?

Ariketak V

13. Ariketa

 Artilleria pieza batek 7 obus ditu helburura heltzeko. Tiro bakoitzean lortzeko probabilitatea 117-ekoa da. Zein da obusen batek jomuga arrapatzeko probabilitatea?

14. Ariketa

• A kutxan 6 bola zuri eta 4 beltz daude eta B bigarren kutxa baten 5 bola zuri eta 2 beltz daude. Zoriz kutxa bat aukeratzen da eta bertatik bi bola ateratzen dira ordezkapen gabe. Zein da kolore desberdinekoak izateko probabilitatea?

Ariketak VI

15. Ariketa

- Kutxa baten 15 bola zuri eta 25 bola beltz daude. Bi bola ateratzen dira. Aurkitu bakoitza kolore batekoa izateko probabilitatea honako kasu hauetan:
 - Lehenengo bola atera ondoren berriro sartzen da kutxan bigarrena atera baino lehen.
 - **2** Lehenengo bola atera ondoren kanpoan utziko dugu eta geratzen direnen artean aterako da bigarren bola.

Ariketak VII

16. Ariketa

- Sagu bat katu baten ihesi dabil. A, B eta C kalezuloetan sar daiteke. Bakoitzean katuak harrapatu dezake ala ez. Honako probabilitate hauek ditugu:
 - p(A-n sartzeko)=p(A)=0.3
- p(harrapatu/A-tik sartu da)=p(+/A)=0.4
- p(B-n sartzeko)=p(B)=0.5
- p(harrapatu/B-tik sartu da)=p(+/B)=0.6
- p(C-n sartzeko)=p(C)=0.2
- p(harrapatu/C-tik sartu da)=p(+/C)=0.1

Kalkulatu katuak sagua harrapatzeko probabilitatea.

Kalkulatu sagua B kalezulotik sartu izanaren probabilitatea jakinda harrapatua izan dela.

Ariketak VIII

17. Ariketa

 Iruzurti bat matematikari batekin ari da jolasean. Jokoa honetan datza: Karta-sorta batetik bat aukeratu eta batekoa den ala ez igarri. Iruzurtiak figurak (batekoa, erregea, zaldia eta txanka) markatuta ditu eta honako hau erabaki du: karta markatu gabe badago ez dela batekoa esango du ziurtasun osoz. Markatuta badago batekoa dela esango du. Matematikariak beti esango du ez dela batekoa.

Kalkulatu bakoitzak igartzeko duen probabilitatea.

MATEMATIKA DISKRETUA 3. GAIA - KONBINATORIA

ERIK ALONSO GONZÁLEZ

Matematika Aplikatua Saila Bilboko Ingeniaritza Eskola (Industria Ingeniaritza Teknikoa) Euskal Herriko Unibertsitatea (EHU)

