7. heti gyakorlat

2005. október 25.

<u>**Deriválás**</u> Határozzuk meg az alábbi függvények deriváltfüggvényét. (A feladat megoldásához hozzátartozik a függvény és a deriváltfüggvény értelmezési tartományának meghatározása.)

(1) (Szorzat és hányados deriváltja)

a)
$$\frac{\ln(x)}{\sin(x)}$$
 b) $2^x \tan(x)$ c) $x(1 + 2x + 3x^2)^{10}$ d) $\frac{6 - x^2}{\sqrt{x}}$. (1)

(2) (Közvetett függvény deriváltja)

a)
$$\sqrt{\frac{2x+1}{x-1}}$$
 b) $\exp(\cot(x))$ c) $(x-\frac{1}{x})^3$ d) $\ln(\ln(x))$ (2)

e)
$$x^x = \exp(x \ln(x))$$
 f) $(\arctan(2x))^x = \exp(x \ln(\arctan(2x)))$. (3)

- (3) (a) Differenciálható-e az $x \mapsto x|x|$ függvény a 0 pontban?
 - (b) Differenciálható-e az

$$f(x) := \left\{ \begin{array}{ll} \frac{\arcsin(x)}{\tan(x)}, & \text{ha} \quad x \neq 0 \text{ \'es } |x| < 1; \\ 1, & \text{ha} \quad x = 0 \end{array} \right.$$

függvény a 0 pontban?

- (c) Milyen α mellett differenciálható az $x\mapsto |x|~$ függvény?
- (4) *Bizonyítsuk be, hogy $\frac{d}{dx} \operatorname{arccot}(\frac{\sin(x) + \cos(x)}{\sin(x) \cos(x)}) \equiv 1$.

- (5) *Bizonyítsuk be, hogy $3\arccos(x)-\arccos(3x-4x^3)=\pi$, ha $|x|\leq \frac{1}{2}$. [Kell, hogy $x\mapsto 3x-4x^3$ monoton nő $[-\frac{1}{2},\frac{1}{2}]$ -en, ezt deriválással ellenőrizzük.]
- (6) Hol monoton: a) $x \mapsto 3x x^3$ b) $x \mapsto \frac{\sqrt{x}}{x+100}$?
- (7) (Érintő egyenes)
 - (a) Határozzuk meg a megadott függvények adott ponton átmenő érintőjét.

a)
$$\sin^3(x^4)$$
, $x_0 = \sqrt[4]{\frac{\pi}{2}}$; b) $\frac{1+x}{1-2x}$, $x_0 = 0$; c) $\tan(e^x)$, $x_0 = -1$.

- (b) Az $f(x) := x^3$ függvénynek két érintő egyenese is áthalad a (2, 8) ponton. Írjuk fel mindkét egyenes egyenletét.
- (c) Milyen szögben metszi egymást az $x\mapsto x^2$ és az $x\mapsto x$ függvény grafikonja? (Két metszéspont!)
- (8) (Inverz függvény deriválása) Határozzuk meg a megadott függvények inverzének deriváltját a megadott pontban.

(a)
$$ln(x^2 + x)$$
 $(x > 0)$ $ln(2)$

(b)
$$f(x) := \frac{\sin(x)}{5-x}$$
 $(0 < x < \frac{1}{2})$ $\frac{1}{10-\frac{1}{3}}$

(c)
$$f(x) := 2^{\tan(x)} \quad (-\frac{\pi}{2} < x < \frac{\pi}{2})$$
 2

(9) *Egy hógolyó olvad, a térfogatcsökkenés sebessége mindig a felszínnel arányos. Ha 10 órakor a térfogata 500 cm³, 11 órakor pedig 250 cm³, hány órakor olvad el teljesen? (A hógolyó mindig gömb alakú.)