

ATTACHMENT A

Claims 1 - 17: (Cancelled)

- 18. (Currently Amended) A multistage process comprising the following steps:
- polymerizing a <u>poly</u>propylene resin optionally comprising one or more monomers selected from ethylene and alpha olefins of formula $CH_2=CHT^1$, wherein T^1 is a C_2-C_{20} alkyl radical in presence of a catalyst system, the catalyst system supported on a porous organic polymer, comprising:
 - i) at least one metallocene compound of formula(I):

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}

wherein

M is a transition metal selected from those belonging to group 3, 4, 5, 6 or to a lanthanide or actinide group in the Periodic Table of the Elements;

p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2;

X, same or different, is hydrogen, a halogen, or R, OR, OSO₂CF₃, OCOR, SR, NR₂ or PR₂, wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or OR'O, wherein R' is a divalent radical selected from C_1 - C_{20} alkylidene, C_6 - C_{40} arylidene, C_7 - C_{40} alkylarylidene and C_7 - C_{40} arylalkylidene radicals;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

 R^1 , is a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 R^2 is a branched C_1-C_{40} -alkyl radical;

T, equal to or different from each other, is a moiety of formula (IIIa) or (IIIb):

wherein:

the atom marked with symbol * is bonded to the atom marked with the same symbol in the metallocene compound of formula (I), with the proviso that at least one T is a moiety of formula (IIIa);

 R^5 , R^6 , R^7 , R^8 and R^9 , equal to or different from each other, are hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl, C_3 - C_{40} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, or C_7 - C_{40} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^5 , R^6 , R^7 , R^8 and R^9 can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{20} alkyl substituent;

 R^{10} is hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing one or more

heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 R^{11} , R^{12} and R^{13} , equal to or different from each other, are hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^{11} , R^{12} and R^{13} can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{20} alkyl substituent;

- ii) an alumoxane or a compound capable of forming an alkyl metallocene cation; and
- contacting under polymerization conditions in a gas phase, ethylene with one or more alpha olefins of formula $\text{CH}_2\text{--CHT}^2$, wherein T^2 is a $\text{C}_1\text{--C}_{20}$ alkyl radical, and optionally with a non-conjugated diene, in presence of the polypropylene resin.
- 19. (Previously Presented) The multistage process according to claim 18, wherein the catalyst system further comprises iii) an organo aluminum compound.
- 20. (Currently Amended) The multistage process according to claim 18, wherein the process of polymerizing a polypropylene resin is carried out in presence of an additional organo aluminum compound.

21. (Previously Presented) The multistage process according to claim 18, wherein M is titanium, zirconium or hafnium; X is hydrogen, a halogen, or R, wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; and L is selected from Si(Me)₂, SiPh₂, SiPhMe, SiMe(SiMe₃), CH₂, (CH₂)₂, (CH₂)₃ and C(CH₃)₂.

22. (Currently Amended) The multistage process according to claim 18, wherein R^1 is a methyl or ethyl radical; R^2 is a group of formula (II):

$$R^3$$
 R^4

wherein R^3 and R^4 , equal to or different from each other, are linear or branched, saturated or unsaturated C_1 - C_{10} -alkyl radicals optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; and R^{10} is a hydrogen atom or a linear or branched, saturated C_1 - C_{20} -alkyl radical.

23. (Previously Presented) The multistage process according to claim 18, wherein R^5 , R^6 , R^8 and R^9 , are hydrogen, and R^7 is a group of formula $-C(R^{14})_3$, wherein R^{14} , equal to or different from each other, are a linear or branched, saturated or unsaturated C_1-C_{10} -alkyl, C_3-C_{10} -cycloalkyl, C_6-C_{10} -aryl, C_7-C_{10} -alkylaryl, or C_7-C_{10} -arylalkyl radicals,

optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements.

- 24. (Cancelled)
- 25. (Cancelled)
- 26. (Previously Presented) The multistage process according to claim 23, wherein one T has formula (IIIa), and one T has formula (IIIb).
- 27. (Currently Amended) The multistage process according to claim 23, wherein one T have is of formula (IIIb), and R^{11} , R^{12} and R^{13} are hydrogen.
- 28. (Previously Presented) The multistage process according to claim 23, wherein the organic porous polymer has pores having a diameter up to 10 μ m (100000 Å) and a porosity higher than 0.1 cc/g.
- 29. (Previously Presented) The multistage process according to claim 28, wherein the organic porous polymer has pores having a diameter between 0.02 μm (200 Å) and 10 μm (100000 Å).
- 30. (Previously Presented) The multistage process according to claim 29, wherein at least 30% of the total porosity of the organic porous polymer is comprised of pores having a diameter between 0.1 μ m (1000 Å) and 2 μ m (20000 Å).

- 31. (Currently Amended) The multistage process according to claim 18, wherein the polypropylene resin comprises from 5% to 90% by weight of a polypropylene homopolymer or a polypropylene copolymer comprising up to 20% by mol of one or more alpha olefins of formula $CH_2=CHT^1$, wherein T^1 is a C_2-C_{20} alkyl radical, and from 10 to 95% by weight, of [[an]] a polyethylene copolymer comprising from 5% to 90% by mol of one or more alpha olefins of formula $CH_2=CHT^2$, wherein T^2 is a C_1-C_{20} alkyl radical.
- 32. (Currently Amended) The multistage process according to claim 31, wherein the <u>poly</u>ethylene copolymer comprises up to 20% by mol of a non conjugated diene.
- 33. (Currently Amended) The multistage process according to claim 31, wherein the polypropylene resin is a polypropylene homopolymer.
- 34. (Previously Presented) The multistage process according to claim 31, wherein the alpha olefins are selected from propylene and 1-butene.
- 35. (Currently Amended) A <u>poly</u>propylene polymer composition comprising:
 - a) 5% to 90% by weight of a polypropylene homopolymer or a polypropylene copolymer containing up to 20% by mol of derived units of one or more alpha olefins of formula $CH_2=CHT^1$ wherein T^1 is a C_2-C_{20} alkyl radical; the polypropylene homopolymer or polypropylene copolymer having isotactic pentads (mmmm) higher than 90%;

b) from 10 to 95% by weight of [[an]] a polyethylene copolymer containing from 5% to 90% by mol of one or more alpha olefins of formula $CH_2=CHT^2$, wherein T^2 is a C_1-C_{20} alkyl radical;

wherein the <u>polypropylene</u> polymer composition has a flowability index equal to or lower than 2, and the <u>polypropylene</u> polymer composition is produced by the following steps:

- polymerizing a polypropylene resin optionally comprising one or more monomers selected from ethylene and alpha olefins of formula $CH_2=CHT^1$, wherein T^1 is a C_2-C_{20} alkyl radical in presence of a catalyst system, the catalyst system supported on a porous organic polymer, comprising:
 - ii) at least one metallocene compound of formula(I):

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}

wherein

M is a transition metal selected from those belonging to group 3, 4, 5, 6 or to a lanthanide or actinide group in the Periodic Table of the Elements;

p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2;

X, same or different, is hydrogen, a halogen, or R, OR, OSO_2CF_3 , OCOR, SR, NR_2 or PR_2 , wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or ORO, wherein RO is a divalent radical selected from C_1 - C_{20} alkylidene, C_6 - C_{40} arylidene, C_7 - C_{40} alkylarylidene and C_7 - C_{40} arylalkylidene radicals;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

 R^1 , is a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; R^2 is a branched C_1 - C_{40} -alkyl radical;

T, equal to or different from each other, is a moiety of formula (IIIa) or (IIIb):

wherein:

the atom marked with symbol * is bonded to the atom marked with the same symbol in the metallocene compound of formula (I), with the proviso that at least one T is a moiety of formula (IIIa);

 R^5 , R^6 , R^7 , R^8 and R^9 , equal to or different from each other, are hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl, C_3 - C_{40} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, or C_7 - C_{40} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^5 , R^6 , R^7 , R^8 and R^9 can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{20} alkyl substituent;

 R^{10} is hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radical, optionally containing one or more

heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 R^{11} , R^{12} and R^{13} , equal to or different from each other, are hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^{11} , R^{12} and R^{13} can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{20} alkyl substituent;

- ii) an alumoxane or a compound capable of forming an alkyl metallocene cation; and
- contacting under polymerization conditions in a gas phase, ethylene with one or more alpha olefins of formula $\text{CH}_2 = \text{CHT}^2$, wherein T^2 is a $\text{C}_1 \text{C}_{20}$ alkyl radical, and optionally with a non-conjugated diene, in presence of the polypropylene resin.
- 36. (New) A multistage process comprising the following steps:
- polymerizing a polypropylene resin optionally comprising one or more monomers selected from ethylene and alpha olefins of formula $CH_2=CHT^1$, wherein T^1 is a C_2-C_{20} alkyl radical in presence of a catalyst system, the catalyst system supported on a porous organic polymer, comprising:

iii) at least one metallocene compound of formula
(I):

$$R^{1}$$
 L
 MXp
 R^{2}
 T
 T

wherein

M is a transition metal selected from those belonging to group 3, 4, 5, 6 or to a lanthanide or actinide group in the Periodic Table of the Elements;

p is an integer from 0 to 3, wherein p is equal to a formal oxidation state of M minus 2;

X, same or different, is hydrogen, a halogen, or R, OR, OSO_2CF_3 , OCOR, SR, NR_2 or PR_2 , wherein R is a linear or branched, saturated or unsaturated C_1 - C_{20} alkyl, C_3 - C_{20} cycloalkyl, C_6 - C_{20} aryl, C_7 - C_{20} alkylaryl or C_7 - C_{20} arylalkyl radical, optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two X can optionally form a substituted or unsubstituted butadienyl radical or ORO, wherein RO is a divalent radical selected from C_1 - C_{20} alkylidene, C_6 - C_{40} arylidene, C_7 - C_{40} alkylarylidene and C_7 - C_{40} arylalkylidene radicals;

L is a divalent bridging group selected from C_1 - C_{20} alkylidene, C_3 - C_{20} cycloalkylidene, C_6 - C_{20} arylidene, C_7 - C_{20} alkylarylidene, or C_7 - C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

 R^1 , is a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl radical, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; R^2 is a branched C_1 - C_{40} -alkyl radical;

one T group is a moiety of formula (IIIa):

and one T group is a moiety of formula (IIIb):

$$\begin{array}{c}
R^{13} \\
R^{1} \\
R^{5} \\
R^{7}
\end{array}$$

(IIIb)

wherein:

the atom marked with symbol * is bonded to the atom marked with the same symbol in the metallocene compound of formula (I);

 R^5 , R^6 , R^7 , R^8 and R^9 , equal to or different from each other, are hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{40} -alkyl, C_3 - C_{40} -cycloalkyl, C_6 - C_{40} -aryl, C_7 - C_{40} -alkylaryl, or C_7 - C_{40} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^5 , R^6 , R^7 , R^8 and R^9 can join to form a 4-7 membered saturated or unsaturated ring, said ring can bear at least one C_1 - C_{20} alkyl substituent;

 R^{10} is a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

 R^{11} , R^{12} and R^{13} , equal to or different from each other, are hydrogen or a linear or branched, saturated or unsaturated C_1 - C_{20} -alkyl, C_3 - C_{20} -cycloalkyl, C_6 - C_{20} -aryl, C_7 - C_{20} -alkylaryl, or C_7 - C_{20} -arylalkyl radicals, optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two or more R^{11} , R^{12} and R^{13} can join to form a 4-7 membered

saturated or unsaturated ring, said ring can bear at least one $C_1\text{-}C_{20}$ alkyl substituent;

- ii) an alumoxane or a compound capable of forming an alkyl metallocene cation; and
- contacting under polymerization conditions in a gas phase, ethylene with one or more alpha olefins of formula $CH_2=CHT^2$, wherein T^2 is a C_1-C_{20} alkyl radical, and optionally with a non-conjugated diene, in presence of the polypropylene resin.
- 37. (New) The multistage process according to claim 18, wherein R^{10} is selected from methyl, ethyl, or isopropyl.
- 38. (New) The propylene polymer composition according to claim 35, wherein R^{10} is selected from methyl, ethyl, or isopropyl.
- 39. (New) The multistage process according to claim 36, wherein \mathbb{R}^{10} is selected from methyl, ethyl, or isopropyl.