## Worksheet 42 - Group 1

### **Worksheet Group 1 Members**

Marc Clinedinst: clinedim@onid.oregonstate.edu Kelby Faessler: faesslek@onid.oregonstate.edu James Fitzwater: fitzwatj@onid.oregonstate.edu Tom Gariepy: gariepyt@onid.oregonstate.edu Sean Reilly: reillys@onid.oregonstate.edu Joseph Struth: struthj@onid.oregonstate.edu

#### Collaborators

Marc, Kelby, James, Tom, Sean, Joseph

## Worksheet 42: Dijkstra's Algorithm

In this worksheet, we will be modeling Dijkstra's Algorithm for the graph which appears below. More specifically, we'll be calculating the shortest distances from Pensacola to its reachable nodes.



The steps for Dijkstra's Algorithm are shown in the table that appears on the following page.

| Iteration | Priority Queue                                   | Reachable       |
|-----------|--------------------------------------------------|-----------------|
| 0         | Pensacola (0)                                    |                 |
| 1         | Phoenix (5)                                      | Pensacola (0)   |
| 2         | Pueblo (8), Peoria (9), Pittsburgh (15)          | Phoenix (5)     |
| 3         | Peoria (9), Pierre (11), Pittsburgh (15)         | Pueblo (8)      |
| 4         | Pierre (11), Pittsburgh (14), Pittsburgh (15)    | Peoria (9)      |
| 5         | Pendleton (13), Pittsburgh (14), Pittsburgh (15) | Pierre (11)     |
| 6         | Pittsburgh (14), Pittsburgh (15)                 | Pendleton (13)  |
| 7         | Pittsburg (15)                                   | Pittsburgh (14) |
| 8         |                                                  |                 |

# **Piazza Discussion**

https://piazza.com/class/ib2kus4hsie528?cid=317