- 1. Esboce as linhas de campo eléctrico de um sistemas de :
 - A) duas cargas pontuais positivas iguais.
 - B) duas cargas pontuais de sinal oposto. Justifique

2. Na figura são representados cinco objectos carregados de carga: $q_1=q_4=+3.1nC$; $q_3=-3.1nC$; $q_2=q_5=-5.9$ nC; A secção transversal de um superfície gaussiana é representada pela linha S. Indique, qual o fluxo do campo eléctrico através desta superfície. **Justifique.**

- **3.** Um corpo possui carga elétrica de 1,6 C. Sabendo-se que a carga elétrica fundamental é 1,6x10⁻¹⁹ C, pode-se afirmar que no corpo há uma falta de, aproximadamente:
- a) 10^{18} protões; b) 10^{13} eletrões; c) 10^{19} protões; d) 10^{19} eletrões; e) 10^{23} eletrões. Escolha a opção correta e justifique.
- **4.** Duas cargas pontuais de $q_1 = 10 \mu C$ e $q_2 = -10 \mu C$ estão localizadas nos pontos $P_1 = (-1 \text{ m}, 4 \text{ m})$ e $P_2 = (1 \text{ m}, -4 \text{ m})$ respectivamente. (Faça um esquema que traduza a situação descrita).
 - a) Calcule o campo eléctrico no ponto $P_3 = (0,0)$.
 - b) Calcule a força que atua num protão colocado no ponto P_3 .
- 5. Uma esfera condutora maciça de raio a=2cm tem uma carga líquida de -3.0 μ C. Uma casca condutora esférica de raio interno b=4.0cm e raio externo c=6.0cm, é concêntrica com essa esfera maciça e tem carga líquida de +9 μ C.
 - a) Faça um esquema que ilustre a distribuição de carga na casca esférica
 - b) Utilizando a lei de Gauss determine a intensidade do campo elétrico a uma distância de:
 - i) 7.0 cm do centro da esfera maciça
 - ii) 5.0 cm do centro da esfera maciça
- **6.** Um campo eléctrico $E = 2000 \, \hat{i}$ (V/m) está representado na figura por cinco linhas de campo paralelas e equidistantes. As linhas representadas a tracejado são perpendiculares às linhas de campo. Um protão, que se desloca ao longo do eixo dos xx, atravessa S com velocidade de 1 $\frac{\text{S}}{\text{F}}$ $\frac{\text{IP}}{\text{F}}$ km/s. A distância entre S e P é de 2 cm. Determine

- b) As diferenças de potencial V_Q - V_R e V_R - V_S .
- c) Calcule o trabalho realizado para levar o protão de S a P?

