Using deep learning to annotate the protein universe

Irina Ponamareva

7 September 2022

Problem overview

- We have A LOT of data for protein sequences
- There is a need to assign a function to a protein sequence
- Can we do it using deep learning?

Protein structure

- Primary
- Secondary
- Tetriary
- Quaternary

Proteins and protein domains

What are protein domains?

 "Building blocks"of proteins: structurally, functionally conserved parts of a sequence

Sequence homology

 Sequences are homologous if they share ancestry in the evolutional development, i.e. 'similarity'

Domain family: group of homologous domains

Proteins and protein domains

Domains lie in the protein sequence:

Domain family can be represented by alignment:

Pfam – a database of proteins and protein domains. Current release (v35): 19,632 families

Existing approaches for function annotation

Main idea: searching for similar annotated sequences

 Profile Hidden Markov Model (pHMM) based — build a probabilistic model of the sequence. This is a backbone of Pfam

Position-specific scoring matrix based

Why pHMMs are not enough?

- Some domain families might be too complicated for a single model
- Clans: groups of related families; other tools for determining family similarity
- A lot of manual curation for each model!

ProtCNN and ProtENN

- ProtCNN: convolutional model for protein sequences
- ProtENN: ensemble, majority voting
- Maxwell L. Bileschi, David Belanger, Drew Bryant, Theo Sanderson, Brandon Carter, D. Sculley, Mark A. DePristo, and Lucy J. Colwell. Using deep learning to annotatethe protein universe, 2019.
- ullet Dataset: protein sequences with domains, each contains one domain. Reminder: ~ 19.000 classes

Model architecture

- Input: Amino acid sequence (20-letter alphabet)
- Output: class label (\sim 19,000 classes)

Results: random split and clustered split

Model	Error rate	Number of errors
ТРНММ	1.414%	1,784
phmmer	1.531%	1,932
BLASTp	1.654%	2,087
k-mer	9.994%	12,610
ProtCNN	0.495%	625
ProtENN	0.162%	205

Model	Error rate	Number of errors
Top Pick HMM	18.1%	3,844
phmmer	32.6%	6,942
BLASTp	35.9%	7,639
ProtCNN	27.6%	5,882
ProtENN	12.2%	2,590

- Test size: 126,171 (random split), 21,293 (clustered split)
- Outperforming state-of-art pHMM and PSSM methods

Results by sequence similarity

- Random split: ProtENN and ProtCNN make significantly fewer errors than alignment-based methods for sequences with sequence identity less than 90%. ProtENN outperforms these methods even at the lowest (10-20%) similarity rate
- For the clustered split, where all sequence identities are 25%, ProtENN is significantly more accurate for all bins: expanding the coverage!

Results: smallest families

- We adapt one-shot approach and use the nearest neighbor for prediction (ProtREP)
- For the smallest families, same computational cost as ProtCNN provides higher accuracy

Results: learned embedding

• The amino acid embedding learned by ProtCNN from unaligned sequence data reflects the overall structure of the BLOSUM62 matrix

Results: remote homology task

• We can learn information complementary to pHMMs (clan level)

What else

- The dataset is too simple: we need to detect domains
- Per-residue predictions: for multi-domain proteins, nested domains...
- Novel family discovery
- Clustering: defining relationships between different families