

Instructor: Dr. Sunho Lim (Ph.D., Assistant Professor)

Lecture 07

sunho.lim@ttu.edu

Adapted partially from Mobile Communications, Jochen Schiller, Energy-Efficient Medium Access Control, K. Langendoen and G. Halkes, and AVAYA communication

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

1

IEEE 802.11 MAC: Fragmentation

- Bits error rate in WLAN:
 - Several orders of magnitude higher than e.g., fiber optics
 - Any idea?
- Fragmentation:
 - Use short frames
 - Bit error rate is the same, but only short frames are destroyed
- Fragmentation mode in IEEE 802.11:
 - Sender sends the first data frame, frag l
 - Including duration
 - Reserve the medium for another transmission

Ŧ

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

IP Fragmentation & Reassembly: Revisit (cont.) ID length fragflag offset =4000 **Example** 4000 byte datagram one large datagram becomes □ 3980 bytes + 20 bytes several smaller datagrams MTU = 1500 bytes length ID fragflag offset =1500 =0 =| 1480 bytes in data field + 20 bytes of IP header length ID fragflag offset =1500 =185 offset = 185 = 1480/8 length fragflag offset =1040 ..=0.. =370 offset = 370 = 2960 /8 CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

IEEE 802.11 - MAC Management

- Synchronization:
 - Try to find a LAN, try to stay within a LAN
 - Timer etc.
- Power management:
 - Sleep-mode without missing a message
 - Periodic sleep, frame buffering, traffic measurements
- Association/Reassociation:
 - Integration into a LAN
 - Roaming, i.e., change networks by changing access points
 - Scanning, i.e., active search for a network
- MIB Management Information Base:
 - Managing, read, write

7

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

9

IEEE 802.11: Synchronization using a Beacon (infrastructure)

- Each node of an 802.11 network maintains an internal clock.
- AP performs synchronization by transmitting the periodic beacon signal.
 - Beacon: contains a time-stamp and other management info (e.g. power management)

.

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

IEEE 802.11: Power Management (cont.)

- Infrastructure
 - Traffic Indication Map (TIM)
 - List of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - List of broadcast/multicast receivers transmitted by AP
- Ad-hoc:
 - Ad-hoc Traffic Indication Map (ATIM)
 - Announcement of receivers by stations buffering frames
 - More complicated no central AP
 - Collision of ATIMs possible (scalability?)

Ŧ

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

IEEE 802.11: Roaming

- No or bad connection?
 - Then perform:
- Scanning:
 - Scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Re-association Request:
 - node sends a request to one or several AP(s)
- Re-association Response:
 - Success: AP has answered, node can now participate
 - Failure: continue scanning
- AP accepts re-association Request:
 - Signal the new node to the distribution system
 - The distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

CS4331/5331: Wireless Networks and Mobile Computing, Fall 2021

