

Algebra of Matrices Ex 5.3 Q62

Given,

$$A = diag(a,b,c)$$

Show that,

$$A^n = \operatorname{diag}(a^n, b^n, c^n)$$

Step 1: Put n = 1

$$A^1 = \mathsf{diag}\left(a^1,b^1,c^1\right)$$

$$A = diag(a, b, c)$$

So,

 A^n is true for n = 1

Step 2: Let,
$$A^n$$
 be true for $n = k$, so,
$$A^k = \operatorname{diag}\left(a^k, b^k, c^k\right) \qquad \qquad ---(i)$$

Step 3: Now, we have to show that,

$$A^{k+1} = \text{diag}\{a^{k+1}, b^{k+1}, c^{k+1}\}$$

Now,

$$\begin{aligned} A^{k+1} &= A^k \times k3 \\ &= \operatorname{diag} \left(a^k, b^k, c^k \right) \times \operatorname{diag} \left(a, b, c \right) \end{aligned} \qquad \text{ {using equation (i) and given}}$$

$$A^{k+1} = \begin{bmatrix} a^k & 0 & 0 \\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$

$$=\begin{bmatrix} a^{k} \times a + 0 + 0 & 0 + 0 + 0 & 0 + 0 + 0 \\ 0 + 0 + 0 & 0 + b^{k} \times b + 0 & 0 + 0 + c^{k} \times c \\ 0 + 0 + 0 & 0 + 0 + 0 & 0 + 0 + c^{k} \times c \end{bmatrix}$$

$$=\begin{bmatrix} a^{k+1} & 0 & 0 \\ 0 & b^{k+1} & 0 \\ 0 & 0 & c^{k+1} \end{bmatrix}$$

$$A^{k+1} = \text{diag}\left(a^{k+1}, b^{k+1}, c^{k+1}\right)$$

So, P(n) is true for n = k + 1 whenever P(n) is true for n = k.

Hence, by principle of mathematical induction \mathcal{A}^n is true for all positive integer.

Algebra of Matrices Ex 5.3 Q64

Given, order of matrix
$$X = (a+b) \times (a+2)$$
 order of matrix $Y = (b+1) \times (a+3)$

Given, $X_{(a+b)\times(a+2)}.Y_{(b+1)\times(a+3)}$ exist.

 $\Rightarrow a+2=b+1$
 $\Rightarrow a-b=-1$ ---(i)

And

 $Y_{(b+1)\times(a+3)}.X_{(a+b)\times(a+2)}$ exists.

 $\Rightarrow a+3=a+b$
 $\Rightarrow b=3$

Put $b=3$ in equation (i),
 $a-b=-1$
 $a-3=-1$
 $a=3-1$
 $a=2$

So, $a=2,b=3$

So,
Order of $X = (a+b) \times (a+2)$
 $= (2+3) \times (2+2)$
 $= 5 \times 4$

Order of $Y = (b+1) \times (a+3)$
 $= (3+1) \times (2+3)$
 $= 4 \times 5$

Order of $X_{5\times4}.Y_{4\times5} = 5 \times 5$

Order of $X_{4\times5}.Y_{5\times4} = 4 \times 4$

So, order of XY and YX are not same and they are not equal but both are square matrices.

******* END *******