ME231: Solid Mechanics-I

Stress and Strain

Strain-displacement relations(in 2D)

Engineering strain components,

$$\epsilon_x = \frac{\partial u}{\partial x}, \quad \epsilon_y = \frac{\partial v}{\partial y}, \quad \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$
(34)

Similar to stress, strain is also a second order tensor. In plane strain case, strain matrix is defined as,

$$[\boldsymbol{\epsilon}] = \begin{bmatrix} \epsilon_{xx} & \gamma_{xy}/2 \\ \gamma_{yx}/2 & \epsilon_{yy} \end{bmatrix} \dots \dots (36)$$

Strain transformation

Being a second order tensor, strain tensor follows general rules of transformations.

$$[oldsymbol{\epsilon}]' = [oldsymbol{Q}]^T [oldsymbol{\epsilon}] [oldsymbol{Q}],$$

Following this equation transformed strains will be given as

$$\epsilon'_{xx} = \frac{(\epsilon_{xx} + \epsilon_{yy})}{2} + \frac{(\epsilon_{xx} - \epsilon_{yy})}{2} \cos 2\theta + \frac{\gamma_{xy}}{2} \sin 2\theta,$$

$$\epsilon'_{yy} = \frac{(\epsilon_{xx} + \epsilon_{yy})}{2} - \frac{(\epsilon_{xx} - \epsilon_{yy})}{2} \cos 2\theta - \frac{\gamma_{xy}}{2} \sin 2\theta,$$

$$\gamma'_{xy} = \frac{\gamma_{xy}}{2} \cos 2\theta - \frac{(\epsilon_{xx} - \epsilon_{yy})}{2} \sin 2\theta.$$

 $\cdots (37)$

Strain transformation equations (35) can also be derived from purely geometrical relations. Relations between the coordinate and displacements in xy-system and x'y'-system is given as

$$x = x' \cos \theta - y' \sin \theta$$

$$y = x' \sin \theta + y' \cos \theta.$$

$$u' = u \cos \theta + v \sin \theta$$

$$v' = -u \sin \theta + v \cos \theta.$$
.....(38)

Now, using strain-displacement relations,

$$\epsilon_{x}' = \frac{\partial u'}{\partial x'} = \frac{\partial u'}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial u'}{\partial y} \frac{\partial y}{\partial x'} = \frac{\partial u'}{\partial x} \cos \theta + \frac{\partial u'}{\partial y} \sin \theta$$

$$\Rightarrow \left(\frac{\partial u}{\partial x} \cos \theta + \frac{\partial v}{\partial x} \sin \theta\right) \cos \theta + \left(\frac{\partial u}{\partial y} \cos \theta + \frac{\partial v}{\partial y} \sin \theta\right) \sin \theta$$

$$\Rightarrow \frac{\partial u}{\partial x} \cos^{2} \theta + \frac{\partial v}{\partial y} \sin^{2} \theta + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) \sin \theta \cos \theta,$$

$$\Rightarrow \epsilon_{x} \cos^{2} \theta + \epsilon_{y} \sin^{2} \theta + \gamma_{xy} \sin \theta \cos \theta.$$
.....(39)

$$\epsilon'_{y} = \frac{\partial v'}{\partial y'} = \frac{\partial v'}{\partial x} \frac{\partial x}{\partial y'} + \frac{\partial v'}{\partial y} \frac{\partial y}{\partial y'} = -\frac{\partial v'}{\partial x} \sin \theta + \frac{\partial v'}{\partial y} \cos \theta$$

$$\Rightarrow -\left(-\frac{\partial u}{\partial x} \sin \theta + \frac{\partial v}{\partial x} \cos \theta\right) \sin \theta + \left(-\frac{\partial u}{\partial y} \sin \theta + \frac{\partial v}{\partial y} \cos \theta\right) \cos \theta$$

$$\Rightarrow \frac{\partial v}{\partial y} \cos^{2} \theta + \frac{\partial u}{\partial x} \sin^{2} \theta - \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) \sin \theta \cos \theta$$

$$\Rightarrow \epsilon_y \cos^2 \theta + \epsilon_x \sin^2 \theta - \gamma_{xy} \sin \theta \cos \theta$$

$$\gamma'_{xy} = \frac{\partial u'}{\partial v'} + \frac{\partial v'}{\partial x'} = \left(\frac{\partial v'}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial v'}{\partial y} \frac{\partial y}{\partial x'}\right) + \left(\frac{\partial u'}{\partial x} \frac{\partial x}{\partial y'} + \frac{\partial u'}{\partial y} \frac{\partial y}{\partial y'}\right)$$

$$\Rightarrow \left(\frac{\partial v}{\partial y} - \frac{\partial u}{\partial x}\right) \sin\theta \cos\theta + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) \left(\cos^2\theta - \sin^2\theta\right)$$

$$\Rightarrow (\epsilon_y - \epsilon_x) \sin\theta \cos\theta + \gamma_{xy} \left(\cos^2\theta - \sin^2\theta\right)$$
se of trigonometric identities will results in equations identical to the equations

Use of trigonometric identities will results in equations identical to the equations derived from tensor transformations. 36

Principal strains and maximum shear strain

• Planes at which shear strain is zero are called principal planes of strains and the normal strains at these planes are called principal strains. Inclination of principal planes from x-axis are given by

$$\tan 2\theta_p = \frac{\gamma_{xy}}{\epsilon_{xx} - \epsilon_{yy}} \qquad \dots (42)$$

• Maximum value of shear strain is given as,

$$\gamma_{\text{max}} = \sqrt{(\epsilon_{xx} - \epsilon_{yy})^2 + \gamma_{xy}^2}, \text{ at angle } \theta \text{ satisfying } \tan 2\theta_s = -\frac{\epsilon_{xx} - \epsilon_{yy}}{\gamma_{xy}}.$$

• Similar to stresses, Mohr's circle can be drawn for strains also.(43

Mohr's circle for strains

Principal strains in plane strain

For plane stress, $\varepsilon_{zz}=0$. In case ε_1 and, $\varepsilon_2>0$, then maximum stresses will be calculated as,

$$\gamma_{\max} = |\epsilon_{\max} - \epsilon_{\min}| = |\epsilon_3 - \epsilon_1|$$

Measurement of strains

- Electrical strain gages are used to measure strains.
- Strain gages work on the principal that certain metals exhibit a change in electrical resistance with change in mechanical strain.
- Strain gages are bonded on any surface and it measure strain the axial direction of the gage.
- Strain rosette are combination of strain gages, used to measure strains in different directions and calculate principal strains.

Strain rosette

If, in-plane strain components are ε_x , ε_y , γ_{xy} , then strains in the direction of a, b, and c can be expression using in-plane strains and the inclination from x-axis, as

$$\epsilon_a = \epsilon_x \cos^2 \theta_1 + \epsilon_y \sin^2 \theta_1 + \gamma_{xy} \sin \theta_1 \cos \theta_1,$$

$$\epsilon_b = \epsilon_x \cos^2 \theta_2 + \epsilon_y \sin^2 \theta_2 + \gamma_{xy} \sin \theta_2 \cos \theta_2,$$

$$\epsilon_c = \epsilon_x \cos^2 \theta_3 + \epsilon_y \sin^2 \theta_3 + \gamma_{xy} \sin \theta_3 \cos \theta_3.$$

 $\cdots \cdots (44)$

These three equations can be solved to find three unknowns i.e. ε_x , ε_y , and, γ_{xy} . With the knowledge of all in-plane strain components, principal strains and their directions can also be calculated.

Simple state of stress – Axial stress

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$$

$$\int dF = \int_A \sigma dA$$

From equilibrium

$$P = \int dF = \int_A \sigma dA$$

Idealization

Axial stress

Only normal stress in axial direction is non-zero. All other stress components are zero

Simple state of stress – Shear stress

Average shear stress

$$\tau_{\text{avg}} = \frac{P}{A} = \frac{F}{A}$$

Summarize

Example 1

The steel tie bar shown is to be designed to carry a tension force of magnitude P = 120 kN when bolted between double brackets at A and B. The bar will be fabricated from 20-mm-thick plate stock. The maximum allowable stresses are $\sigma = 175$ MPa, $\tau = 100$ MPa. Design the tie bar by determining the required values of (a) the diameter d of the bolt, (b) the dimension b at each end of the bar, and (c) the dimension h of the bar.

Diameter of the bolt:

Shear stress at any of the cross section of the bolt is

$$\tau = F_1/A = P/(2A)$$

$$\tau = P/(2A) = 4P/(2\pi d^2) \le \tau_{\text{allowable}}$$

Minimum required value of d can be obtained.

Dimension b of the bar:

Normal stress at the cross section is

$$\sigma = \frac{P/2}{A} = \frac{P/2}{at}$$
$$\sigma = \frac{P}{2at} \le \sigma_{\text{allowable}}$$

Thus for a given value of t, minimum required value of a can be obtained. Then b = 2a + d.

Dimension h of the bar:

Normal stress at the cross section is

$$\sigma = \frac{P}{A} = \frac{P}{th} \le \sigma_{\text{allowable}},$$

which gives us the minimum value of h required.

Example 2

Two wooden planks, each 12 in. thick and 9 in. wide, are joined by the dry mortise joint shown. Knowing that the wood used shears off along its grain when the average shearing stress reaches 8 MPa, determine the magnitude P of the axial load that will cause the joint to fail.

