ПРАКТИЧНЕ ЗАНЯТТЯ № 5. (Теорія)

Головні задачі математичної статистики.

Непараметричне оцінювання.

- 1. Задача оцінювання розподілу генеральної популяції.
- 2. Емпірична функція розподілу.
- 3. Формальне визначення емпіричної функції розподілу.

1. Задача оцінювання розподілу генеральної популяції.

В найбільш загальній постановці задачу непараметричне оцінювання можна сформулювати наступним чином:

- ightharpoonup Припустимо, що функція розподілу F(x) генеральної популяції невідома.
- ightharpoonup Маємо в розпорядженні просту випадкову вибірку $\{\xi_1, \, \xi_2, \, \dots, \, \xi_n\}$, що вибрана з цієї генеральної популяції.
- \triangleright Крім інформації, що містить в собі вибірка $\{\xi_1, \xi_2, \dots, \xi_n\}$, не володіємо ніякими іншими знаннями, що стосуються розподілу досліджуваної ознаки та не пов'язані із статистичним спостереженням.

Задача полягає в тому, щоб на підставі спостережень $\{\xi_1, \xi_2, \dots, \xi_n\}$ оцінити невідому функцію розподілу F(x), тобто побудувати таку функцію $\hat{F}_n(x)$, яку можна було б розглядати, як *статистичне наближення* невідомої функції розподілу F(x): $\hat{F}_n(x) \approx F(x)$, $-\infty < x < +\infty$.

2. Емпірична функція розподілу.

Нехай $\{\xi_1, \xi_2, \dots, \xi_n\}$ буде простою вибіркою, вибраною з популяції, що має функцію розподілу F(x). Розташуємо її елементи в зростаючому порядку:

$$\xi^*_1 \le \xi^*_2 \le \dots \le \xi^*_n$$
.

В математичній статистиці отриманий таким чином вектор $\{\xi^*_1, \xi^*_2, \dots, \xi^*_n\}$ називається варіаційним рядом.

• Координата ξ^*_i варіаційного ряду являється *i*-тою по порядку (за величиною) координатою вектору $\{\xi_1, \xi_2, \dots, \xi_n\}$.

Між іншим: $\xi^*_1 = min(\xi_1, \, \xi_2, \, \dots, \, \xi_n); \, \xi^*_n = max(\xi_1, \, \xi_2, \, \dots, \, \xi_n).$

• Координати ξ^*_i , i=1,2,...,n варіаційного ряду називаються *порядковими* (або *позиційними*) *статистиками*.

Функція розподілу F(x) генеральної популяції визначає розподіл значення ознаки X, що вивчається, серед елементів всієї популяції. Нашим завданням є побудова *наближення* невідомої функції розподілу F(x).

Оскільки проста вибірка *напевно* ϵ репрезентативною, тобто структура розподілу в ній властивості X *несуттево відрізняється* від структури цього розподілу у всієї популяції, то можна сподіватися, що:

• Розподіл значення ознаки X в вибірці $(\xi_1, \xi_2, \dots, \xi_n)$ можна розглядати, як *на-ближення* невідомої функції розподілу F(x) генеральної популяції.

Визначення. *Емпіричною функцією розподілу*, побудованою на підставі простої статистичної вибірки $(\xi_1, \xi_2, \dots, \xi_n)$ називається функція $\hat{F}_n(x), -\infty < x < +\infty$, яка визначає розподіл значення ознаки X в цій вибірці.

Іншими словами, для кожного дійсного числа x $\hat{F}_n(x)$ вказує *частоту появи* у вибірці $(\xi_1, \, \xi_2, \, \dots, \, \xi_n)$ *чисел менших від х*.

3. Формальне визначення емпіричної функції розподілу.

Запишемо це визначення формальним чином. Позначимо через $v_n(x)$ кількість елементів вибірки $(\xi_1,\,\xi_2,\,\dots,\,\xi_n)$ строго менших від x. Якщо використати індикатор I(A) випадкової події A, тобто: $\chi[x] = \begin{cases} 1, & supo A sid булась \\ 0, & supo A he sid булась \end{cases}$, то для підрахунку $v_n(x)$ маємо наступну формулу:

$$V_n(x) = \sum_{i=1}^n \chi[\xi_i < x].$$

Тоді визначення емпіричної функції розподілу приймає вигляд:

$$\hat{F}_n(x) = \frac{V_n(x)}{n}, -\infty < x < +\infty.$$

Або

$$\hat{F}_n(x) = \frac{1}{n} \cdot \sum_{i=1}^n \chi[\xi_i < x].$$

Використовуючи варіаційний ряд (ξ^*_1 , ξ^*_2 , ..., ξ^*_n) і припускаючи, що серед елементів вибірки немає однакових, тобто:

$$\xi^*_1 < \xi^*_2 < \dots < \xi^*_n$$

можна задати емпіричну функцію розподілу, визначаючи її значення на проміжках $(\xi^*_{i-1}, \xi^*_{i}], i = 1, 2, ..., n$, (покладаючи $\xi^*_0 = -\infty$), а саме:

$$\hat{F}_n(x) = \begin{cases} 0, & x \le \xi *_1, \\ \frac{k}{n}, & \xi *_k < x \le \xi *_{k+1}, \\ 1, & x > \xi *_n. \end{cases}$$

Іншими словами, на відрізках між двома сусідніми елементами варіаційного ряду емпірична функція розподілу $\hat{F}_n(x)$ зберігає постійні значення, які є кратними величині $\frac{1}{n}$. При цьому:

- На відрізку (ξ^*_{i-1} , ξ^*_i] $\hat{F}_n(x)$ зберігає значення: $\binom{(i-1)}{n}$, i=1,2,...,n.
- Якщо в якійсь точці x значення $\hat{F}_n(x)$ дорівнює $\frac{m}{n}$, то це означає, що у вибірці $(\xi_1, \xi_2, \dots, \xi_n)$ є *точно т* елементів, значення яких *строго менших* від x.
- Функція $\hat{F}_n(x)$ розривна, в точках ξ^*_i , i=1,...,n, має стрибки величиною $\frac{1}{n}$.
- Оскільки $[\xi^*_i, i=1, 2, ..., n]$ та $[\xi_i, i=1, 2, ..., n]$ це та сама множина дійсних чисел, то функція $\hat{F}_n(x)$ має *стрибки* в точках $(\xi_1, \xi_2, ..., \xi_n)$.

Легко переконатися, що для функції $\hat{F}_n(x)$ виконуються всі характеристичні властивості функції розподілу, тобто:

- \triangleright $\hat{F}_n(x)$ неспадна функція.
- $\hat{F}_n(-\infty) = 0, \ \hat{F}_n(+\infty) = 1.$
- \triangleright $\hat{F}_n(x)$ лівостороннє-неперервна.