EARTHQUAKE DAMAGE PREDICTION

Minería de Datos: Preprocesamiento y Clasificación (2020/2021)

Andrea Morales Garzón andreamgmg@correo.ugr.es

Ithiel Piñero Darias ithiel@correo.ugr.es

Paula Villa Martín pvilla@correo.ugr.es

Antonio Manjavacas Lucas manjavacas@correo.ugr.es

ÍNDICE DE CONTENIDOS

- Definición del problema
- 2. Análisis y preprocesamiento de datos
- Clasificación
 - 3.1. Regresión logística Andrea Morales Garzón (andreamorgar)
 - 3.2. Árboles de decisión Ithiel Piñero Darias (IthielPD)
 - 3.3. Reglas Antonio Manjavacas Lucas (manjavacas)
 - 3.4. SVM Paula Villa Martín (Paula Villa Martin)
- 4. Conclusiones

1. Definición del problema

Predicción del nivel de daño provocado por el terremoto Gorkha de 2015 sobre edificios en Nepal.

Trataremos de predecir la variable ordinal damage_grade, que representa el nivel de daño provocado sobre los edificios afectados por el terremoto:

- damage_grade = 1 representa un daño bajo;
- damage grade = 2 representa un daño medio;
- damage_grade = 3 representa una destrucción del edificio casi completa.

Las distribuciones son diferentes según el grado de daño (Test de Kolmogorov-Smirnov)

Se pueden
agrupar categorías
con patrones similares
en grado de daño.

Se pueden eliminar variables con patrones iguales para todas las categorías:

land_surface_condition,
position

Se pueden
eliminar categorías
con patrones similares
en grado de daño:

use, police, other, agriculture, hotel, industry

Se pueden
eliminar categorías
con patrones similares
en grado de daño:
timber,
bamboo,
other,
cement_mortar_stone,
mud_mortar_brick

Se pueden agrupar categorías en "robust" y "weak"

3. Clasificación

- Problema de clasificación con las clases desbalanceadas.
- Técnicas para balanceo de clases
 - Random Undersampling
 - SMOTE (con variables categóricas)
- Mejora/Empeoramiento de los resultados dependiendo del algoritmo de clasificación utilizado

3. Problema detectado

- Problema general detectado: la dificultad está principalmente al clasificar la clase 2
- Solución propuesta: entrenar de forma personalizada la clase 2 contra el resto, y la clase 1 contra la clase 3 → descomposición en dos problemas binarios

3.1. Clasificación: Regresión Logística

- La regresión logística es un algoritmo de clasificación sencillo e interpretable
- Ventaja: nos permite ver qué factores tienen más peso en la clasificación.
- Para cada muestra proporciona un valor entre 0 y 1, que se interpreta como probabilidades. En datasets desbalanceados 0.5 no suele ser un buen discriminador entre – clases [2].

^[2] Provost, F. (2000, July). Machine learning from imbalanced data sets 101. In *Proceedings of the AAAI'2000 workshop on imbalanced data sets* (Vol. 68, No. 2000, pp. 1-3). AAAI Press.

3.1. Clasificación: Regresión Logística Experimentación

3.1. Clasificación: Regresión Logística Relevancia de las variables

3.1. Clasificación: Regresión Logística

Pruebas

Ajuste del umbral de decisión para tratar con desbalanceo

3.1. Clasificación: Regresión Logística Modelos OVA-OVO

	Características				
1	A. 2vsALL: Seleccionar variables con FSelectorB. 1vs3: Todas las variables	0.6336			
2	A. 2vsALL: Seleccionar variables con FSelectorB. 1vs3: Seleccionar variables con FSelector	0.6337			
3	Selección de variables resultante del EDA (mejor modelo)	0.6453			
4	Modelo anterior añadiendo no linealidad				

En regresión, cada variable utilizada tiene un peso con su importancia en el modelo final \rightarrow si quitamos variables, no tenemos por qué mejorar. Solución: mejorar la calidad de las variables

3.1. Clasificación: Regresión Logística Mejor modelo

Las variables que mejor funcionan en el modelo se obtienen a partir del EDA:

```
geo_level_1_id → como factor
geo_level_2_id → como numérica
geo_level_3_id → como numérica

foundation_type
roof_type
ground_floor_type
plan_configuration
secondary_use

agrupación de los
factores de las
variables
```

- count_floors_pre_eq
 age
 area_percentage
 height_percentage
 land_surface_condition
 position
 legal_ownership_status
 count_families

3.1. Clasificación: Regresión Logística Conclusiones

- Utilizar geo_level_1_id como variable categórica permite mejorar resultados.
- El modelo 2 vs ALL es el más complejo de definir y conseguimos mejorar con su ajuste.
- El modelo selecciona internamente variables (con los pesos), por lo que la mejor solución se alcanza al mejorar las variables con agrupaciones en base al EDA.
- Modificar el umbral de decisión de los modelos mejora los resultados.
- No se consigue mejorar resultados con regularización, no-linealidad, undersampling
- A pesar de ello, los resultados con regresión logística no son los mejores:
 - No funciona bien con espacio de características muy grande.
 - No es capaz de obtener relaciones complejas entre variables.
- Posibles mejoras: usar regresión logística con kernel.

- **C4.5**, extensión de ID3 (Iterative Dichotomiser 3).
- Algoritmo de generación de árboles de decisión.
- Propuesto por Ross Quinlan en 1993.
- J48 es la implementación opensource.
- Disponible tanto en RWeka como en Caret.
- Disponible mejora con C5.0

• Selección de características según la ganancia de información del árbol (pérdida de entropía).

Selección de instancias

- -SMOTE
- -Undersampling
- -Oversampling
- •Mejor resultado obtenido con Random Undersampling hasta 180.000 instancias.

·Selección de hiperparámetros:

- -C, confidence factor.
- -M, mínimum number of instances per leaf.

	1 VS 2	1 VS 3	2 VS 3	1 VS ALL	2 VS ALL	3 VS ALL
Accuracy	0.8851	0.9262	0.7717	0.9221	0.7185	0.7919
MicroF1	0.5066	0.8337	0.8283	0.9579	0.6348	0.8515

Se comprueba:

- •1vsA + 3vsA
- •2vsA + 1vs3 (Mejor resultado obtenido entre todas)
- •1vsA + 2vs3
- -1vs3 + 1vs2 + 2vs3

Variables más relevantes modelo único vs OVA+OVO (umbral 0.1 en Gain

Information):

Variables modelo único
Geo_level_1_id
Geo_level_2_id
Geo_level_3_id
Foundation_type
Superstructure

2 vs All	1 vs 3			
geo_level_1_id geo_level_1_id				
geo_level_2_id	geo_level_2_id			
geo_level_3_id geo_level_3_id				
cluster	cluster			
	foundation_type			
	roof_type			
	ground_floor_type			
	other_floor_type			
superstructure				

Mejor resultado obtenido con Random Undersampling a 180.000 instancias con todas las variables. C = 0.1 & M = 25

0.7239

IthielPD 🏝

2021-01-29 00:03:35 UTC

Segundo mejor modelo obtenido 2VAII+1vs3+Clustering por similitud. C = 0.1 & M = 25

0.7194

IthielPD 🆀

2021-01-26 12:02:07 UTC

CV con 10 folds en ambos modelos.

•Conclusiones:

- Mejora con división del dataset mediante estrategias de OVA y OVO.
- •No existe presencia de ruido dentro de cada clase.
- •Se producen mejores resultados sin aplicar técnicas de corrección de balanceo, conllevan overfitting.
- •Problemas con variables con muchos levels (desbordamiento de pila en ejecución).
- •Mayor dificultad: diferenciar entre la clase 1 y 2 (0.5 en microF1).
- •Posibles mejoras: exploración de nuevas features selections en ajustadas a divisiones OVA u OVO.

- RIPPER (Repeated Incremental Pruning to Produce Error Reduction).
- Algoritmo de clasificación basado en reglas.
- Propuesto por W. Cohen en 1995.
- Mejora el rendimiento con respecto a las propuestas que lo precedieron: REP e IREP.
- Utilizaremos la implementación disponible en la librería RWeka: JRip.
 - Menor tiempo de ejecución que RKEEL.

SELECCIÓN DE INSTANCIAS

- Limitación: instancias permitidas por JRip (no más de ≈ 140k instancias por modelo)
- Selección de instancias:
 - SMOTE
 - Random Undersampling

SELECCIÓN DE CARACTERÍSTICAS

Modelo 2 vs ALL	Modelo 1 vs 3
geo_level_1_id geo_level_2_id geo_level_3_id count_floors_pre_eq age area_percentage height_percentage land_surface_condition foundation_type roof_type ground_floor_type other_floor_type other_floor_type position plan_configuration legal_ownership_status count_families superstructure secondary_use	<pre>Variables con InfoGain >= 0.1 geo_level_1_id geo_level_2_id geo_level_3_id foundation_type roof_type ground_floor_type other_floor_type superstructure</pre>

CLUSTERING

- El uso de *clusters* como predictores dio buenos resultados
 - Algoritmo de MacQueen mejor que k-means estándar
 - Mejora de *InfoGain* del 17%
 - Número de clusters = sqrt (N) → seguramente mejorable
 - Mejores resultados → clustering train y test por separado

AJUSTE DE HIPERPARÁMETROS

```
-F <number of folds>
    Set number of folds for REP. One fold is used as pruning set.
-N <min. weights>
    Set the minimal weights of instances within a split.
-O <number of runs>
    Set the number of runs of optimizations.
```

- 5-fcv utilizando caret
- Sin mejoras notables

CONCLUSIONES

- La clase 2 presentó más dificultades (F1 ≈ 0.6 vs 0.9 para clases 1 y 3)
- La división en 2 modelos supuso mejoras considerables
- El uso de datos sintéticos (SMOTE) hizo que el modelo tendiese a sobreajustarse
- Limitaciones técnicas: número de instancias permitidas por RWeka::JRip
- Poca influencia de los hiperparámetros
- La ganancia de información es una buena guía para elegir predictores
- El *overfitting* se debió más al balanceo de clases que a las variables elegidas

3.4. Clasificación: SVM

- SVM (Support Vector Machine).
- Algoritmo de clasificación basado en vectores de soporte.
- Propuesto por Vladimir Vapnik en 1992.
- Utilizaremos la implementación disponible en la librería LiquidSVM: svm.
 - o Menor tiempo de ejecución que *e1071*.

Preprocesamiento

Variables:

- Eliminación de categorías con patrones iguales en grado de daño 0
- Agrupación de categorías con patrones iguales en grado de daño
- Importancia (InfoGain): Mejores 8,6, y 4 variables 0
- One-hot encoding 0
- Estandarización de variables numéricas 0

Instancias:

- Random Undersampling
- Todas (Imbalance ratio 1:6:3 aproximadamente) 0

Configuraciones empleadas (más importantes)

Manteniendo fijo:

- 4 variables
- 75000 Instancias

Estrategia con el mejor ranking

Mejor modelo:

• F1 micro: **0.7256**

Ranking: 529

Características:

- Todas las instancias
- 4 variables más relevantes:
 - o Geo levels 1,2,3
 - o "Robust" superstructure

BEST	CURRENT RANK	# COMPETITORS	SUBS. MADE		
0.7256	529	3748	3 of 3		

Estrategia con el mejor ranking

BEST

Mejor modelo:

• F1 micro: **0.7256**

Ranking: 529

Características:

- Todas las instancias
- 4 variables más relevantes:
 - o Geo levels 1,2,3
 - "Robust" superstructure
- PROBLEMA ORDINAL → Ova ordinal

COMPETITORS

SUBS. MADE

CURRENT RANK

Conclusiones

- Las variables más relevantes en mi modelo son:
 - La localización del edificio.
 - La robustez del material empleado en la construcción.
- Aumentar el número de variables empeora las predicciones del modelo.
- Es muy importante tener en cuenta que es un problema ordinal.
- Es más importante entrenar con el **mayor número de instancias** ya que
- Considerar clases desbalanceadas no parece empeorar demasiado la predicción.

Evolución completa

0.5591	PaulaVillaMartin &
0.6329	PaulaVillaMartin 4
0.6378	PaulaVillaMartin &
0.6397	PaulaVillaMartin 🛔
0.6416	PaulaVillaMartin &
0.6401	PaulaVillaMartin &
0.6396	PaulaVillaMartin 🛔
0.6155	PaulaVillaMartin 🛔
0.6140	PaulaVillaMartin 🛔
0.6568	PaulaVillaMartin 🛔
0.6544	PaulaVillaMartin &
0.6980	PaulaVillaMartin 🛔
0.7256	PaulaVillaMartin 🛔
0.6163	PaulaVillaMartin 🛔

4. Conclusiones

Modelo	Random undersampling	SMOTE	Eliminación de ruido	Clustering	One-hot encoding (categóricas)	Centrado y escalado (numéricas)	Selección de variables	Max. score
Regresión logística	×	×	×	×	V	<u></u>	✓	0.6453
Árboles	×	×	×	×	×	•	V	0.7239
Reglas	V	×	×	V	×	•	V	0.6657
SVM	×	×	×	×	V	V	V	0.7256