

Sistemas de Informação

Estrutura de Dados II Árvores multi-way

Prof. Ivan José dos Reis Filho ivanfilhoreis@gmail.com

Aula Anterior

- Processamento de texto
- Trie Padrão
- Código de Huffman

Árvores multi-way(d-node)

2-node

- Um ou mais elementos por nó:
 - e₁, e₂, e₃, ..., e_{d-1}
 - $e_1 \le e_2 \le e_3 \le ..., e_{d-1}$
 - Dois ou mais filhos por nó:
 - $f_1, f_2, f_3, \dots f_d$

- Árvore de busca:
 - Sub-árvore f_i contém elementos maiores que e_{i-1} e maiores e_i.
- Balanceamento:
 - Crescimento de "baixo" para "cima"

- Apenas nós com 1 ou 2 elementos
 - 2-node: um elemento e dois filhos
 - 3-node: dois elementos e três filhos
- Todos as folhas possuem a mesma profundidade (balanceamento perfeito)
- Crescimento de baixo para cima

Tree height.

Worst case: lg N. [all 2-nodes]

• Best case: $\log_3 N \approx .631 \lg N$. [all 3-nodes]

- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Busca

successful search for H

unsuccessful search for B

B is between A and C so look in the middle link is null so B is not in the tree (search miss)

- Inserção
 - Busca da posição correta
 - Inserção no nó folha
 - 1-node: fácil
 - 2-node:
 - Temporariamente forma um 3-node
 - Operador split no 3-node

split 4-node into two 2-nodes pass middle key to parent

Inserção:

Estrutura de Dados II

2-4 trees

- Formada por nós: 2-node, 3-node e 4-node
 - No máximo 4 filhos
- Busca: fácil
- Inserção: generalização da 2-3 tree

2-4 trees

at the root

on the way down

at the bottom

Transformations for insert in top-down 2-3-4 trees

- Árvore binária de busca
- Correspondência direta com a 2-4 tree
- Left-learning RB-tree (Sedgewick)
 - Correspondência direta com a 2-3 tree
- Armazenamento de uma flag binária (red/black)
- Associação dos nós vermelhos e pretos com cada d-node das árvores 2-3 ou 2-4
- Balanceamento perfeito considerado apenas ascendentes pretos (perfect black balance)

- Nós vermelhos sempre a esquerda de um nó preto;
- Filho de nós vermelhos são sempre pretos

- Inserção
 - 2-node
 - 2 casos (era direto na 2-3)
 - 3-node
 - 3 casos

Estrutura de Dados II

- Inserção
 - 2-node
 - 2 casos
 - 3-node
 - 3 casos

Árvores Red-Black (2-3 trees) LEMG UNIVERSIDAD DO ESTADO E MINAS GERA

- Raiz sempre preta
- Resumo da inserção

Campus de Frutal

Árvores Red-Black (2-4 trees) LEMG UNIVERSIDATE DO ESTADO E MINAS GERA

- Correspondência com árvores 2-4
- Balanceamento perfeito considerando ascendentes pretos
- Filhos de nós vermelhos são pretos
- Novos casos:

Campus de Frutal

Inserção

DÚVIDAS?

