	TP2 SAD - Charpin Chevillard	Pt		Α	В	C D	Note	
I.	Régulation de pression simple boucle (10 pts)							
	1 Donner le schéma électrique correspondant au cahier des charges.	1	Α				1	
	Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
	Régler votre maquette pour avoir une mesure de 50% pour une commande de 50%.	1	Α				1	
	Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α				1	
	5 Régler la boucle de régulation, en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PID.	4	Α				4	
	6 Enregistrer la réponse de la mesure X à un échelon de consigne W.	2	Α				2	Il fallait garder Td
II.	Régulation à partage d'échelle (10 pts)							
	Rappeler le fonctionnement d'une boucle de régulation à partage d'échelle.	1	В				0,75	
	Représenter graphiquement la relation entre Y1 la commande de la vanne V1 et la sortie Y du régulateur.	1	Α				1	
	Représenter graphiquement la relation entre Y2 la commande de la vanne V2 et la sortie Y du régulateur.	1	Α				1	
	4 Programmer le régulateur pour obtenir le fonctionnement de la régulation conformément au schéma TI ci-dessus.	2	Α				2	
	5 Régler la boucle de régulation utilisant la méthode par approches successives.	2	Α				2	
	Enregistrer la reponse des commandes Y1 et Y2 a une variation de la consigne w permettant l'ouverture des deux	2	Α				2	
	Expliquez l'intérêt d'une régulation à partage d'échelle en vous aidant de vos enregistrements. Citez un autre exemple pratique.	1	Α				1	

Note: 19,75/20

I. Régulation de pression simple boucle

1)

Entres

TagName	01M01_04		LIN Name	01M01_04	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	Al	0.00	mA
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	

sorties

TagName	02P01_04		LIN Name	02P01_04	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mΑ	
LR	0.0	%	HR_out	20.00	m
			LR_out	4.00	m
Out	0.0	%	AO	0.00	m
Track	0.0	%			
Trim	0.000	mΑ	Options	>0000	
			Status	>0000	

PID

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	9
PV	0.0	%	LAA	0.0	9
SP	0.0	%	HDA	100.0	9
OP	0.0	%	LDA	100.0	9
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	9
Track	0.0	%	TI PID.TimeBa	se 0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	01101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	9
LL_OP	0.0	%	FB_OP	0.0	9

3) Pour un op de 50%, pv= 50%/

On voit que lorsque la sortie du régulateur augmente, la mesure augmente, le procédé est direct, le régulateur est donc inverse.

Avec un PID mixte:

Xp=5 ici

Calcul paramètres PID: Tc= 4s

Xp = 1,7*Xpc = 8,5

Ti=4/2=2s

Td= 4/8=0,5s je choisie de la supprimer..

TimeBase	Secs	
XP	8.5	%
TI PID. TimeBase	2.00	
TD	0.00	

6)
Avec ses parametre :
Xp= 8,5
Ti=2s
Td=0s

on a : Réponse à un échellon de 10% de 40 à 50%...

On voit une vanne qui gouge énormément avec une légère instabilité sur la mesure, je vais toucher le paramètre PI pour apporté une stabilité :

Xp= 12 Ti=6s

On voit ici une mesure qui est stabilisé et une vanne qui ne pompe plus..

II. Régulation à partage d'échelle

- 1) La régulation partage d'échelle (split range) est fait pour contrôler deux organe de réglages avec un seul régulateur.
- 2) Relation entre Y1 la commande de la vanne V1 et la sortie Y du régulateur.

3) Op vanne (%)

Relation entre Y2 la commande de la vanne V2 et la sortie Y du régulateur

4) Programme dans le régulateur :

Calcul des paramètre pour les blocs add2 :

Pour bloc 1: (vanne1)

$$f(x)=ax+b$$

$$a=-100/20=-2$$

$$b=100 \text{ donc } f(x)=-2x+100$$

Pour bloc 2 : (vanne 2)

$$a=2$$

$$b=?$$

$$f(60)=2*60+b=20$$

$$=120+b=20$$

Donc
$$f(x) = 2x-100$$

Je met mon régulateur en Direct.

J'applique les valeurs dans les blocs add2 :

Dans le op 1 :

TagName	ope 1	
Туре	ADD2	
Task	3 (110ms)	
PV_1	52.7	%
K_1	-2.000	
PV_2	100.0	%
K_2	1.000	
OP	0.0	%
HL_OP	100.0	%
LL_OP	0.0	%

Dans le ope 2 :

TagName	ope 2	
Туре	ADD2	
Task	3 (110ms)	
PV_1	54.1	%
K_1	2.000	- 12
PV_2	-100.0	%
K_2	1.000	
OP	8.2	%
HL_OP	100.0	%
LL_OP	0.0	%

5) Méthode approches successive :

Je commence avec un Xp= 2 et Ti= 10s Je fini avec un Xp= 20 et Ti=10s On voit que la boucle est stable et que la vanne ne pompe plus..

On voit que lorsqu'on veut descendre la pression la vanne d'évacuation augmente, et quand on veut l'augmenter la vanne d'évacuation se ferme et celle d'alimentation s'ouvre..

7)

On utilise cette méthode quand on veut utiliser deux organes de réglages avec un seul régulateur et pour un même système.. Cela est souvent utilisé lorsque y à une entrer et une sortie de débit dans un seul bac pour une régulation de pression ou même de niveaux.. Même une régulation de température en alternant le chaud froid sur deux entré différente de débit par exemple...