ÿ ÿ ÿ ÿ ÿ ÿ ÿ

A REPRESENTATION THEOREM FOR CAUSAL DECISION MAKING

Evan Piermont Royal Holloway, University of London

Theory Workshop

June 2024

The \longrightarrow of time

- Time appears to advance in a single direction, from earlier to later
- Causality is the influence of earlier events on later ones
- What exactly constitutes a causal relation is philosophically sticky
 - Taking the structure causality as given, identifying causal relations is still not straightforward

This paper

We represent causality via *structural equations*, and consider an agent's preference over *interventions*:

- Representation Theorem
 - How an agent's subjective causal model influence her decision making
- ♦ Identification Theorem
 - When can this model be recovered from observation

Causation and Counterfactuals

- Modern theories define causation through counterfactuals.
- \diamond Simplest form is 'but for' causality: α causes β
 - \diamond when α occurs so does β occur
 - \diamond had α not occurred, β would not occur
- ⋄ There are many subtitles here
- Requires evaluating worlds that do not exist

Causation in Fconomics

Reduced Form

- ♦ At the population level
- Understood via conditional dependence
- ♦ I.e., Smoking causes cancer

Structural Form

- At the individual level
- Understood via equations between variables
- I.e., agent's education level caused her earnings

Structural causality + uncertainty/hidden variables = reduced from causality

We take a structural approach a la Pearl [2000]:	

- ⋄ These equations directly encode causal mechanisms

Provide a succinct way of contemplating counterfactuals

- ⋄ Equations relate the values of variables

Causal Models

A causal model M consists of:

- $\diamond~\mathcal{U}$ and \mathcal{V} denote exogenous and endogenous variables, resp.
- $\diamond \ \mathcal{R}(Z) \subset \mathbb{R}$ is the range of $Z \in \mathcal{U} \cup \mathcal{V}$
- $\diamond \mathcal{F} = \{F_X\}_{X \in \mathcal{V}}$ is a set of structural equations where

$$F_X: \prod_{Y \in \mathcal{U} \cup (\mathcal{V} - \{X\})} \mathcal{R}(Y) \to \mathcal{R}(X).$$

Causal Models

- ♦ Call M recursive if
 - \diamond exists a partial order on \mathcal{V}
 - $\diamond F_X$ is independent of the variables succeeding X

Causal Models

- \diamond A *context* is a vector \vec{u} of values for all the exogenous variables \mathcal{U} .
 - \diamond Let $\mathtt{ctx} = \prod_{U \in \mathcal{U}} \mathcal{R}(U)$ collect all contexts
- \diamond A resolution is a vector \vec{a} of values for all variables $\mathcal{U} \cup \mathcal{V}$.
 - \diamond Let $\mathtt{res} = \prod_{V \in \mathcal{U} \cap \mathcal{V}} \mathcal{R}(Y)$ collect all resolutions
- \diamond Given a recursive model, each context \vec{u} uniquely determines a resolution \vec{a} .

The US Federal Reserve is contemplating the economy.

The relevant variables are: the growth rate (grow), the prior interest rate (prior), the current interest rate (rate), inflation (inf), employment rate (emp):

$$\mathcal{U} = egin{cases} U_{grow} \ U_{prior} \end{cases} \quad \mathcal{V} = egin{cases} Y_{rate} \ X_{emp} \ X_{inf} \end{cases}$$

Assume for simplicity that all variables take values in in $\{0,1\}$. The causal equations are

$$\begin{split} X_{inf} &= 1 - Y_{rate} & (F_{X_{inf}}) \\ X_{emp} &= 1 - (Y_{rate} \times (1 - U_{grow})) & (F_{X_{inf}}) \\ Y_{rate} &= U_{prior} & (F_{Y_{rate}}) \end{split}$$

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$egin{array}{ll} Y_{rate} = & U_{prior} \ X_{inf} = & 1 - Y_{rate} \ X_{emp} = & 1 - (Y_{rate} imes (1 - U_{grow})) \end{array}$$

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$Y_{rate} = 0$$

$$X_{inf} = 1 - Y_{rate}$$

$$X_{emp} = 1 - (Y_{rate} \times (1 - 0))$$

Given the context:
$$ec{u} = \left\{ egin{align*} U_{grow} = 0 \\ U_{prior} = 0 \end{array} \right.$$

$$egin{array}{ll} Y_{rate} &= 0 \ X_{inf} &= 1 - 0 \ X_{emp} &= 1 - (0 imes (1 - 0)) \end{array}$$

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$egin{array}{ll} Y_{rate} = 0 \ X_{inf} = 1 \ X_{emp} = 0 \end{array}$$

If instead both were high:
$$ec{u} = \left\{ egin{align*} U_{grow} = 1 \\ U_{prior} = 1 \end{array} \right.$$

$$Y_{rate} = U_{prior}$$
 $X_{inf} = 1 - Y_{rate}$
 $X_{emp} = 1 - (Y_{rate} \times (1 - U_{arow}))$

If instead both were high:
$$ec{u} = \left\{ egin{align*} U_{grow} = 1 \\ U_{prior} = 1 \end{array} \right.$$

$$Y_{rate} = 1$$

$$X_{inf} = 1 - Y_{rate}$$

$$X_{emp} = 1 - (Y_{rate} \times (1 - 1))$$

If instead both were high: $\vec{u} = \begin{cases} U_{grow} = 1 \\ U_{prior} = 1 \end{cases}$

$$egin{array}{ll} Y_{rate} = & 1 \ X_{inf} = & 1-1 \ X_{emp} = & 1-(1 imes(1-1)) \end{array}$$

If instead both were high:
$$\vec{u} = \begin{cases} U_{grow} = 1 \\ U_{prior} = 1 \end{cases}$$

$$Y_{rate} = 1$$
$$X_{inf} = 0$$
$$X_{emp} = 1$$

Interventions & Actions

A intervention

$$\mathbf{do}[Y_1 \leftarrow y_1, \dots, Y_n \leftarrow y_n]$$

is a mediation that sets the values of $Y_1 \dots Y_n \in \mathcal{V}$:

- $\diamond y_i \in \mathcal{R}(Y_i)$
- \diamond abbreviated as $\mathbf{do}[\vec{Y} \leftarrow \vec{y}]$
- ⋄ interventions only on endogenous variables.

Interventions & Actions

The intervention

$$\mathbf{do}[Y_1 \leftarrow y_1, \dots, Y_n \leftarrow y_n]$$

induces a $\textit{counterfactual model}, \mathcal{F}_{\mathbf{do}[\vec{\textit{Y}} \leftarrow \vec{\textit{y}}]}$ where

 F_{Y_i} is replaced by the constant function $F_{Y_i}' = y_i$

The action $\mathbf{do}[Y_{rate} \leftarrow 1]$ sets the current rate to 1:

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$Y_{rate} = 1$$

$$X_{inf} = 1 - Y_{rate}$$

$$X_{emp} = 1 - (Y_{rate} \times (1 - U_{grow}))$$

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$Y_{rate} = 1$$
 $X_{inf} = 1 - Y_{rate}$
 $X_{emp} = 1 - (Y_{rate} \times (1 - 0))$

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$egin{array}{ll} Y_{rate} = & 1 \ X_{inf} = & 1 - 1 \ X_{emp} = & 1 - (1 imes (1 - 0)) \end{array}$$

Given the context:
$$\vec{u} = \begin{cases} U_{grow} = 0 \\ U_{prior} = 0 \end{cases}$$

$$Y_{rate} = 1$$

$$X_{inf} = 0$$

$$X_{emp} = 0$$

Actions

An *action* is of the form:

if ϕ then A else B

- $\diamond \phi$ is a true/false valued question about the variable values
 - \diamond such as "the value of X is positive", etc
- $\diamond A$ and B are actions
- These is constructed recursively starting with interventions
- \diamond if ϕ then A shorthand for when $B = \emptyset$

Actions

Given a (recursive) model M and action A, let

$$\beta_{A}^{\mathsf{M}}:\mathsf{ctx}\to\mathtt{res}$$

transform contexts into resolutions in the obvious way:

- \diamond Each context determines which 'clause' of A will be in force, hence an intervention
- This intervention determines a (recursive) counterfactual model
- Along with context, this determines the resolution

Preference

The observable of the model is an agent's preference relation ≿ over actions

Representation

The agent's preferences are parameterized by

- ♦ M a recursive model capturing causal relationships
- \diamond **u** : res $\rightarrow \mathbb{R}$ value of a resolution of all uncertainty
- $\ \ \, \bullet \;\; \mathbf{p} \in \Delta(\mathtt{ctx}) \mathsf{belief} \; \mathsf{capturing} \; \mathsf{uncertainty} \; \mathsf{about} \; \mathsf{the} \; \mathsf{values} \; \mathsf{of} \; \\ \mathsf{exogenous} \; (\mathsf{hence} \; \mathsf{endogenous}) \; \mathsf{variables} \; \\$

Representation

Subjective Causal Utility

(M, p, u) is a subjective causal utility representation of \succeq :

$$A \succeq B$$

if and only if

$$\sum_{\vec{u} \in \mathtt{ctx}} \mathsf{u}(\beta^{\mathsf{M}}_A(\vec{u})) \mathsf{p}(\vec{u}) \geq \sum_{\vec{u} \in \mathtt{ctx}} \mathsf{u}(\beta^{\mathsf{M}}_B(\vec{u})) \mathsf{p}(\vec{u}).$$

The utility of the Federal Reserve is determined by the inflation rate and employment level, and is given by

$$\mathbf{u}(\vec{a}) = 2X_{emp} - X_{inf}.$$

$$U_{grow} = 0$$

$$\mathbf{u} \circ \beta \xrightarrow{\mathbf{do}(Y_{rate} \leftarrow 1)} 2 \times 0 - 0 = 0$$

$$\mathbf{u} \circ \beta \xrightarrow{\mathbf{do}(Y_{rate} \leftarrow 0)} 2 \times 1 - 1 = 1$$

 $\operatorname{do}[Y_{rate} \leftarrow 0] \succeq \operatorname{do}[Y_{rate} \leftarrow 1]$

$$U_{grow} = 1$$

 $\operatorname{do}[Y_{rate} \leftarrow 1] \succeq \operatorname{do}[Y_{rate} \leftarrow 0]$

Example

- \diamond Preference between setting interest rate at 1 or 0 depends on belief about U_{arow} .
- ♦ The (conditional) action

$$\mathbf{if}\left(\left.U_{grow}=1\right)\mathbf{then}\,\mathbf{do}[\left.Y_{rate}\leftarrow1\right]\mathbf{else}\,\mathbf{do}[\left.Y_{rate}\leftarrow0\right]$$

dominates

Ax 1: Cancellation

Let $A_1 \dots A_n$ and $B_1 \dots B_n$ be actions such that, for all $\vec{u} \in \mathsf{ctx}$ and interventions $\operatorname{do}[Y \leftarrow y]$ we have

$$\#\{A_i \mid A_i \text{ induces } \mathbf{do}[Y \leftarrow y] \text{ given } \vec{u}\}$$

$$\#\{A_i \mid A_i \text{ induces do}[Y \leftarrow y] \text{ given } \vec{u}\}$$

$$=$$

$$\#\{B_i \mid B_i \text{ induces do}[Y \leftarrow y] \text{ given } \vec{u}\}$$

- ♦ Adapted from Blume, Easley, Halpern (2021)
- Provides an (abstract) additive structure

then $A_i \succeq B_i$ for all i < n implies $B_n \succeq A_n$.

Ax 2: Model Uniqueness

For each $\vec{u} \in \mathtt{ctx}$, there is at most one $\vec{a} \in \mathtt{res}$ such that $\vec{a}|_{\mathcal{U}} = \vec{u}$ and \vec{a} is non-null.

- \diamond Non-null: (if \vec{a} then A) \succ (if \vec{a} then B) for some A, B.
 - The only uncertainty regards the context

For each $\vec{a} \in \text{res}$, write

$$\operatorname{do}[\vec{Y} \leftarrow \vec{y}] \sim \vec{a} (X = x)$$

as shorthand for the indifference relation

if
$$\vec{a}$$
 then $\mathbf{do}[\vec{Y} \leftarrow \vec{y}, X \leftarrow x] \sim \mathbf{if} \ \vec{a}$ then $\mathbf{do}[\vec{Y} \leftarrow \vec{y}]$.

- \diamond If setting \vec{Y} to \vec{y} yields X = x, then the agent is indifferent from making such a further intervention on X.
- \diamond However, definition allows for indifference between distinct values of X

Ax 3: Definiteness

Fix non-null $\vec{a} \in \mathtt{res}$, endogenous variables, \vec{Y} , and values $\vec{y} \in \mathcal{R}(\vec{Y})$. Then for variable X, there exists some $x \in \mathcal{R}(X)$ such that

$$\mathbf{do}[\vec{Y} \leftarrow \vec{y}] \sim \succ_{\vec{a}} (X = x)$$

- \diamond There is some value of X which is consistent with any intervention
- ⋄ May not be unique (i.e., indifference between resolutions)
- \diamond Ax3*: if the value x is unique

Ax 4: Centeredness

For $\vec{a} \in \mathtt{res}$, vector of endogenous variables \vec{Y} , and endogenous variable $X \notin \vec{Y}$, we have $\mathbf{do}[\vec{Y} \leftarrow \vec{a}|_{\vec{V}}] \sim \succ_{\vec{a}} (X = \vec{a}|_X)$

For $X, Y \in \mathcal{V}$, say that X is unaffected by Y if

$$\mathbf{do}[\vec{Z} \leftarrow \vec{z}] \sim_{\vec{\sigma}} (X = x)$$
 iff $\mathbf{do}[\vec{Z} \leftarrow \vec{z}, Y \leftarrow y] \sim_{\vec{\sigma}} (X = x)$

for all $\vec{a} \in \text{res}$, \vec{Z} and values for the variables.

- $\diamond~X$ is unaffected by Y if there is no intervention on $\,Y$ that changes the decision maker's perception of X
- \diamond If this relation does not hold, then X is affected by Y, written $Y \rightsquigarrow X$.

Ax 5: Recursivity

→ is acyclic

⋄ There are no cycles of variable dependence

Theorem

≿ satisfies Ax1-5 if and only if there exists a subjective causal utility

Moreover, if Ax3* holds, then **M** is unique.

representation, (M, p, u).

Each axiom helps discipline how counterfactuals are constructed:

Definiteness: There exists some counterfactual world

Model Uniqueness: It is unique

Centeredness: It is minimally different than the current world

Recursivity: Closeness is consistent across contexts

These properties suffice to prove the existence of a structural model.

