De Cifris Trends in Cryptographic Protocols

University of Trento and De Componendis Cifris

October 2023

Lecture 6
Fully-homomorphic Encryption

Lecture 6 Fully-homomorphic Encryption

Daniele Venturi

Sapienza University of Rome

Public-key encryption

- Proposed by Diffie and Hellman in their seminal paper
 - W. Diffie, M. E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 1976
- First realization based on the hardness of factoring
 - R. L. Rivest, A. Shamir, L. M. Adleman: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21(2), 1978

Chosen-plaintext attacks security

- The attacker cannot even guess a single bit of the plaintext
 - The messages are chosen by the adversary
 - CPA security implies hardness of recovering the message
 - CPA security implies hardness of recovering the secret key

Computing over encrypted data

- Can we have a (public-key) encryption scheme which allows to run computations over encrypted data?
- Question dating back to the late 70s
 - Ron Rivest and "privacy homomorphisms"
- Partial solutions known
 - E.g., RSA and Elgamal enjoy limited forms of homomorphism
- First solution by Craig Gentry after 30 years
 - C. Gentry. Fully-Homomorphic Encryption Using Ideal Lattices. STOC 2009
- The "Swiss Army knife of cryptography"

Outsourcing of computation

- Email, web search, navigation, social networking, ...
- What about **private** *x*?

Fully-homomorphic encryption

$$c = \mathbf{Enc}(pk, x)$$

$$y = \mathbf{Eval}(pk, f, c)$$

Correctness:

$$\mathbf{Dec}(sk, y) = f(x)$$

Privacy:

 $\mathbf{Enc}(pk, x) \approx \mathbf{Enc}(pk, 0^{|x|})$

FHE = Correctness \forall efficient f = Correctness for universal set

Levelled FHE: Bounded depth f

- NAND
- (+,×) over a ring

Trivial FHE

- Let (KGen, Enc, Dec) be any PKE scheme
- Define the following "fully-homomorphic" PKE (KGen, Enc, Eval, Dec'):
 - **Eval**(pk, f, c) = (f, c)
 - $\mathbf{Dec'}(sk,c) = f(\mathbf{Dec}(sk,c))$

Wish: Complexity of decryption much less than running the circuit from scratch

Compactness

- We say that Π is **compact** if there is a **fixed polynomial bound** $B(\cdot)$ such that the size of an **evaluated** ciphertext is $\leq B(\lambda)$ (with high probability)
 - The latter should hold for all circuits f (with bounded depth $\tau \in \mathbb{N}$), and for all inputs to the circuit
 - The probability is over the randomness for key generation and ciphertext computation
- Note that B does not depend on τ (but only depends on the security parameter $\lambda \in \mathbb{N}$)
 - An even weaker condition (dubbed weak compactness) is to have $B = B(\lambda, \tau)$, but still say $B(\lambda, \tau) = \text{poly}(\lambda) \cdot o(\log |f|)$

The Gentry-Sahai-Waters scheme

- In what follows we will present the FHE scheme due to:
 - C. Gentry, A. Sahai, B. Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. CRYPTO 2013
- Based on the Learning with Errors (LWE) assumption
- Only achieves levelled homomorphism
 - But can be bootstrapped to full homomorphism using a trick by Gentry (under additional assumptions)
- The plaintext space will be $\mathbb{Z}_q = [-q/2, q/2)$, for a large prime q
 - For simplicity we sometimes write $[a]_q$ for $a \mod q$

Learning with errors

- Introduced by Oded Regev in his seminal paper
 - O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. STOC 2005

Hardness of LWE

- Brute force requires $q = 2^{O(n)}$ and $2^{O(n)}$ time
 - By Gaussian elimination we can find a set S of O(n) equations such that $\sum_{S} \vec{a}_i = (1,0,...,0)$
 - This yields a guess for s_1 which is correct w.p. $1/2 + 2^{-\Theta(n)}$
 - An algorithm by Blum, Kalai, Wasserman reduces this to $2^{O(n/\log n)}$
- Worst-case to average-case hardness
 - Being able to solve LWE over a random choice of the secret, allows to solve it for all possible choices of the secret
- When $\alpha q > 2\sqrt{n}$, solving LWE is equivalent to approximating short vectors in a lattice to within $\tilde{O}(n/\alpha)$
 - It is also equivalent to decoding a random linear code

Rearranging notation

Rearranging notation
$$\vec{b} = \vec{s} \times A + \vec{\eta}$$
New secret $\vec{s} \in \mathbb{Z}_q^{n+1}$

$$\vec{s} = \vec{l}$$
New matrix
$$A' \in \mathbb{Z}_q^{(n+1) \times m}$$

$$|\eta_i| \leq \alpha q; \alpha \ll 1$$
LWE: $A' = (A||\vec{b}) \approx_c \mathbf{U}_q^{(n+1) \times m}$

Eigenvectors method

- Let C_1 and C_2 be matrices for eigenvector \vec{s} , and eigenvalues x_1, x_2 (i.e., $\vec{s} \times C_i = x_i \cdot \vec{s}$)
 - $C_1 + C_2$ has eigenvalue $x_1 + x_2$ w.r.t. \vec{s}
 - $C_1 \times C_2$ has eigenvalue $x_1 \cdot x_2$ w.r.t. \vec{s}
- Idea: Let C be the ciphertext, \vec{s} be the secret key and x be the plaintext (say over \mathbb{Z}_q)
 - Homomorphism for addition/multiplication
 - But insecure: Easy to compute eigenvalues

Approximate eigenvectors

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
 - Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$$
$$\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q$$

Goal: Define homomorphic operations

$$C_{\text{add}} = C_1 + C_2:$$

$$\vec{s} \times (C_1 + C_2) = \vec{s} \times C_1 + \vec{s} \times C_2$$

$$= x_1 \cdot \vec{s} + \vec{e}_1 + x_2 \cdot \vec{s} + \vec{e}_2$$

$$= (x_1 + x_2) \cdot \vec{s} + (\vec{e}_1 + \vec{e}_2)$$

Noise **grows** a little!

Approximate eigenvectors

- Approximate variant: $\vec{s} \times C = x \cdot \vec{s} + \vec{e} \approx x \cdot \vec{s}$
 - Decryption works as long as $\|\vec{e}\|_{\infty} \ll q$

$$\vec{s} \times C_1 = x_1 \cdot \vec{s} + \vec{e}_1 \qquad \vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$$
$$\|\vec{e}_1\|_{\infty} \ll q \qquad \|\vec{e}_2\|_{\infty} \ll q$$

$$\vec{s} \times C_2 = x_2 \cdot \vec{s} + \vec{e}_2$$
$$\|\vec{e}_2\|_{\infty} \ll q$$

Goal: Define homomorphic operations

$$C_{\text{mult}} = C_1 \times C_2:$$

$$\vec{s} \times (C_1 \times C_2) = (x_1 \cdot \vec{s} + \vec{e}_1) \times C_2$$

$$= x_1 \cdot (x_2 \cdot \vec{s} + \vec{e}_2) + \vec{e}_1 \times C_2$$

$$= x_1 \cdot x_2 \cdot \vec{s} + (x_1 \cdot \vec{e}_2 + \vec{e}_1 \times C_2)$$

Noise grows! Needs to be small!

Shrinking gadgets

Write entries in C using binary decomposition; e.g.

$$C = \begin{bmatrix} 3 & 5 \\ 1 & 4 \end{bmatrix} \pmod{8} \xrightarrow{\text{yields}} \text{bits}(C) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \pmod{8}$$
Reverse operation:

Reverse operation:

$$C = G \times G^{-1}(C) = \begin{bmatrix} 2^{N-1} & \dots & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 2^{N-1} & \dots & 2 & 1 \end{bmatrix} \times \text{bits}(C)$$

$$k \cdot N = k \lceil \log q \rceil \qquad \Rightarrow \vec{s} \times C = \vec{s} \times G \times G^{-1}(C)$$

The GSW scheme: description

The GSW scheme: homomorphism

Invariant: $\vec{s} \times C = \vec{e} + x \cdot \vec{s} \times G$

$$C_{\text{mult}} = C_1 \times G^{-1}(C_2)$$

$$\vec{s} \times C_1 \times G^{-1}(C_2) = (\vec{e}_1 + x_1 \cdot \vec{s} \times G) \cdot G^{-1}(C_2)$$

$$= \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times G \times G^{-1}(C_2)$$

$$= \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{s} \times C_2$$

$$= \vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot (\vec{e}_2 + x_2 \cdot \vec{s} \times G)$$

$$= (\vec{e}_1 \times G^{-1}(C_2) + x_1 \cdot \vec{e}_2) + x_1 x_2 \cdot \vec{s} \times G$$

$$= \vec{e}_{\text{mult}} + x_1 x_2 \cdot \vec{s} \times G$$

The GSW scheme: noise growth

$$\|\vec{e}_{\text{out}}\|_{\infty} \le (N+1)^{\tau+1} m \cdot \alpha q$$

Correctness:

$$n \cdot m \cdot (N+1)^{\tau+1} < q/4$$

$$\|\vec{e}_{i+1}\|_{\infty} \le (N+1)\|\vec{e}_{i}\|_{\infty}$$

$$\|\vec{e}_{\rm in}\|_{\infty} \le m \cdot n = m \cdot \alpha q$$

Daniele Venturi Sapienza University of Rome

Depth

The GSW scheme: security

- Similar as in the proof of Regev PKE
- Using LWE we move to a mental experiment with $A \leftarrow \mathbb{Z}_q^{n \times m}$
- Hence, by the leftover hash lemma, with $m = \Theta(n \log q)$, the statistical distance between $(A, A \times \vec{r})$ and uniform is negligible
 - By a **hybrid argument** over the columns of R, it follows that the statistical distance between $(A, A \times R)$ and uniform is also negligible
 - Thus, the ciphertext statistically hides the plaintext

Increasing the homomorphic capacity

- The only way to increase the homomorphic capacity of GSW is to pick larger parameters
- This dependence can be broken using a trick by Gentry
- Main idea: Do a few operations, then switch keys

How to switch keys

Decryption circuit

Dual view

$$\mathbf{Eval}_{pk'}(D_c, aux) = \mathbf{Eval}_{pk'}(D_c, \mathbf{Enc}_{pk'}(sk))$$

$$= \mathbf{Enc}_{pk'}(D_c(sk))$$

$$= \mathbf{Enc}_{pk'}(x)$$

Bootstrapping

• Given ciphertexts c_1 , c_2 , let $D_{c_1,c_2}^*(sk)$ be the augmented decryption circuit, defined by

$$D_{c_1,c_2}^*(sk) = NAND(D_{c_1}(sk), D_{c_2}(sk))$$

 We say that Π is bootstrappable if its homomorphic capacity includes all the augmented decryption circuits

Theorem. Any bootstrappable homomorphic encryption scheme can be transformed into a compact somewhat homomorphic encryption scheme

Circular security

- The above scheme is compact, but not fully homomorphic, as we need a pair of keys for each level in the circuit
- A natural idea is to use a single pair (pk, sk) and include in pk' a ciphertext $\vec{c}^* \leftarrow \mathbf{Enc}(pk, sk)$
 - Correctness still holds, but the reduction to semantic security breaks
- Workaround: Assume circular security
 - I.e., $\mathbf{Enc}(pk, 0) \approx \mathbf{Enc}(pk, 1)$ even given $\vec{c}^* \leftarrow \mathbf{Enc}(pk, sk)$
 - GSW is conjectured to have this property, but no proof of this fact is currently known

De Componendis Cifris

https:/www.decifris.it