IN THE CLAIMS:

Please cancel claim 2-3, 7, and 14; add claim 15; and amend claims 1, 4-6, 8, 10 and 13. All claims are reproduced below.

1. (Currently amended) A computer-implemented method for efficiently parsing input data, comprising: receiving a data file; 3 retrieving a stored version of the data file and a template/token tree corresponding to the data file, the tree including at least one static node; comparing the stored version of the data file with the received data file to identify non-matching content in the received data file; parsing only the non-matching content of the received data file to form at least one subtrees subtree; replacing at least one static node of the template/token tree with a token; and 10 creating a mapping from each token to one of the template/token tree to the 77 subtrees. 12 2. (Canceled) 3. (Currently amended) The computer-implemented method of claim 1 wherein creating the mapping from the tree to the subtrees further comprises: adding at least one token node to the template/token tree; and creating a mapping from each token to at least one subtree. 4. (Currently amended) The computer-implemented method of claim 1 wherein 1 the data file is a web page.

1	5. (Currently amended) The <u>computer-impremented</u> method of claim I where
2	the data file is an HTML file.
1	6. (Currently amended) A method for efficiently parsing web pages,
2	comprising:
3	receiving a first HTML page;
4	retrieving a cached version of the HTML page and a template/token tree
5	corresponding to the first HTML page, the tree including at least one static
6	node;
7	comparing the cached version of the HTML page with the received HTML pag
8	to identify non-matching content in the received HTML page;
9	parsing only the non-matching content in the received HTML page to form at
10	least one subtree;
11	replacing at least one static node of the template/token tree with a token; and
12	creating a mapping from the template/token tree to each token to one of the
3	subtrees.
1	7. (Canceled)
j	8. (Currently amended) A method for efficiently parsing HTML pages,
2	comprising:
3	receiving a first HTML page;
4	responsive to a determination that a cached version of the HTML page exists:
5	retrieving the cached version of the HTML page and a first
6	template/token tree corresponding to the first HTML page, the
7	first tree including at least one static node:

8	comparing the cached version of the first HTML page with the
9	received HTML page to identify non-matching content in the
10	received HTML page:
11	parsing only the non-matching content to form a subtree;
12	creating a mapping from a token of the first tree to associating the
13	first tree and the subtree;
14	responsive to a determination that the cached version of the HTML page doe
15	not exist:
16	parsing the received HTML page to form a second template/token
17	tree, the second tree containing at least one static node; and
18	storing the second tree and the received HTML page.
7	9. (Original) A method for providing derivative services comprising:
2	receiving a first HTML page:
3	constructing a template/token tree from the received HTML page, the tree
4	comprising a plurality of nodes;
5	determining that at least one node of the tree contains static content;
6	determining that at least one node of the tree contains dynamic content;
7	replacing the nodes of the tree containing dynamic content with tokens;
8	parsing the dynamic content to form subtrees; and
9	mapping the tokens to the subtrees.
1	10. (Currently amended) A computer-implemented method of providing
2	derivative services, comprising:
3	receiving a request for derivative services content from a customer;
4	retrieving data from a plurality of primary service providers on behalf of the
_	customer by:

6	identifying static content that has been previously retrieved from the
7	primary service providers and stored, and corresponding
8	template/token trees that have also been stored;
9	identifying dynamic content that differs from the previously retrieve
10	content;
11	parsing the dynamic content to form subtrees;
12	adding tokens to the template/token trees;
13	mapping the tokens to the subtrees;
14	creating at least one content page comprising the retrieved data; and
15	providing the created pages to the customer.
1	11. (Original) A method for efficiently parsing input data, comprising:
2	receiving a first data file;
3	retrieving a stored template/token tree, the stored template/token tree having
4	content associated with the first data file and containing at least one static
5	node and at least one token;
6	retrieving a second data file, the second data file associated with the first data
7	file;
8	identifying non-matching content present only in the first data file;
9	parsing only the non-matching content of the first data file to form at least one
10	subtree; and
11	mapping at least one of the tokens to at least one of the subtrees.
1	12. (Original) The method of claim 11, further comprising:
2	responsive to identifying non-matching content present only in the first file:
3	adding at least one new token to the template / token tree

1	13. (Currently amended) A system for efficiently parsing input data,
2	comprising:
3	at least one virtual browser for retrieving content from primary content servers;
4	an identification engine, communicatively coupled to the virtual browser for
5	identifying retrieved content;
6	a cache, communicatively coupled to the virtual browser and the parsing engine
7	for storing retrieved content and template/token trees;
8	a comparison engine, coupled to the virtual browser for comparing retrieved
9	content with stored content to identify differing content not stored in the
10	cache;
11	a token master, communicatively coupled to the cache, for allocating new tokens
12	to the virtual browser:
13	a parsing engine, communicatively coupled to the virtual browser, for parsing
14	content identified by the comparison engine as differing content and forming
15	subtrees from the content and creating a mapping from new tokens to
б	formed subtrees; and
17	a content server, coupled to the virtual browser.
	14 (C1-4)
1	14. (Canceled)
7	15. (New) A computer program product for efficiently parsing input data, the
2	computer program product stored on a computer-readable medium and including
3	instructions for causing a computer to carry out the steps of:
4	receiving a data file;
5	retrieving a stored version of the data file and a template/token tree
6	corresponding to the data file, the tree including at least one static node;

7	comparing the stored version of the data file with the received data file to
8	identify non-matching content in the received data file;
9	parsing only the non-matching content of the received data file to form at leas
0	one subtree;
1	replacing at least one static node of the template/token tree with a token; and
, ,	creating a mapping from each token to one of the subtrees.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.