数学笔记

RC

2019年5月17日

目录

I	高等	ệ数学																							1
1	无穷	· · 字级数															2								
	1.1	概念和	性质 .																		 				2
		1.1.1	等比级	数.																					2
		1.1.2	调和级	数.																					2
		1.1.3	p 级数																						2
		1.1.4	敛散性																 		 				2
	1.2	常数项	[级数审:	敛法																					2
		1.2.1	正项级	数.																					2
		1.2.2	交错级	数.																					3
		1.2.3	绝对收	敛与	ì条	件业	女金	攵																	3
	1.3	幂级数	ι																						3
		1.3.1	阿贝尔	定理	Į .														 		 				3

Part I

高等数学

Chapter 1

无穷级数

- 1.1 概念和性质
- 1.1.1 等比级数

$$\sum_{n=0}^{\infty} aq^n = a + aq + aq^2 + \dots + aq^n \dots \begin{cases} = \frac{a}{1-q}, & |q| < 1, \\ \not \Xi \not \exists b, & |q| \ge 1. \end{cases}$$

1.1.2 调和级数

TODO

1.1.3 p 级数

TODO

1.1.4 敛散性

级数收敛的必要条件: $\lim_{n\to\infty}u_n=0$.

- 1.2 常数项级数审敛法
- 1.2.1 正项级数

收敛的充要条件: 部分和数列 $\{S_n\}$ 有界.

比较审敛法

若
$$u_n \leq v_n$$
, 则

$$\begin{cases} \sum_{n=1}^{\infty} v_n \psi \otimes \Longrightarrow \sum_{n=1}^{\infty} u_n \psi \otimes, \\ \sum_{n=1}^{\infty} u_n \otimes \otimes \Longrightarrow \sum_{n=1}^{\infty} v_n \otimes \otimes. \end{cases}$$

比值审敛法 (达朗贝尔判别法)

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho \begin{cases} <1\Longrightarrow \&\&\&,\\ >1\Longrightarrow \&\&\&\&,\\ =1\Longrightarrow 不确定. \end{cases}$$

根值审敛法 (柯西判别法)

$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho \begin{cases} <1 \Longrightarrow \psi \text{ in } \\ >1 \Longrightarrow \text{ in } \\ =1 \Longrightarrow \text{ in } \end{cases}$$

3

1.2.2 交错级数

莱布尼茨定理

对
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
, 若有

- 1. $u_n \ge u_{n+1}$ (绝对值递减),
- $2. \lim_{n\to\infty} u_n = 0,$

则收敛, 且和 $S \leq u_1$.

1.2.3 绝对收敛与条件收敛

绝对收敛: $\sum_{n=1}^{\infty} |u_n|$ 收敛.

条件收敛: $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} |u_n|$ 发散.

1.3 幂级数

1.3.1 阿贝尔定理