IAP12 Rec'd PCT/PTO 23 AUG 2006

WO 2005/087770 PCT/EP2005/002424

5,6-Dialkyl-7-amino-triazolopyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen sowie sie enthaltende Mittel

Beschreibung

5

Die vorliegende Erfindung betrifft 5,6-Dialkyl-7-amino-triazolopyrimidine der Formel I

$$\begin{array}{c|c}
N - N & R^1 \\
N - N & R^2
\end{array}$$

in der die Substituenten folgende Bedeutung haben:

10 R¹ C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten unsubstituiert sind oder eine bis drei gleiche oder verschiedene Gruppen R^a und/oder R^b tragen;

oder

15

 C_1 - C_{14} -Alkyl, C_1 - C_{12} -Alkoxy- C_1 - C_{12} -alkyl, C_1 - C_6 -Alkoxy- C_2 - C_{12} -alkenyl oder C_1 - C_6 -Alkoxy- C_2 - C_{12} -alkinyl, wobei die Kohlenstoffketten eine bis drei gleiche oder verschiedene Gruppen R^a tragen;

20 R^a Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkylthio, C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy, NR¹¹R¹², oder

C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen R^b tragen kann;

25

R^b C₁-C₄-Alkyl, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy und NR¹¹R¹²

R¹¹, R¹² Wasserstoff oder C₁-C₆-Alkyl;

30

wobei die Kohlenstoffketten der Gruppen Ra ihrerseits halogeniert sein können;

- R² C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten durch eine bis drei Gruppen R^c substituiert sein können:
 - R^c Cyano, Nitro, Hydroxy, NR¹¹R¹²; oder C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen C₁-C₄-Alkyl, Halogen, Cyano,

Nitro, Hydroxy, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkylthio, C_3 - C_6 -Alkenýloxy, C_3 - C_8 -Alkinyloxy, $NR^{11}R^{12}$ tragen kann.

Außerdem betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von pflanzenpathogenen Schadpilzen.

In GB 1 148 629 werden 5,6-Dialkyl-7-amino-triazolopyrimidine allgemein vorgeschlagen. Aus EP-A 141 317 sind einzelne fungizid wirksame 5,6-Dialkyl-7-amino-triazolopyrimidine bekannt. Ihre Wirkung ist jedoch in vielen Fällen nicht zufriedenstellend. Davon ausgehend, liegt der vorliegenden Erfindung die Aufgabe zugrunde, Verbindungen mit verbesserter Wirkung und/oder verbreitertem Wirkungsspektrum bereitzustellen.

10

30

35

- Demgemäss wurden die eingangs definierten Verbindungen gefunden. Des weiteren wurden Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel sowie Verfahren zur Bekämpfung von Schadpilzen unter Verwendung der Verbindungen I gefunden.
- Die Verbindungen der Formel I unterscheiden sich von den aus den oben genannten Schriften durch die spezielle Ausgestaltung des Substituenten in der 6-Position des Triazolopyrimidin-Gerüstes, der eine Halogenalkylgruppe oder eine ungesättigte aliphatische Gruppe darstellt.
- 25 Die Verbindungen der Formel I weisen eine gegenüber den bekannten Verbindungen erhöhte Wirksamkeit gegen Schadpilze auf.

Die erfindungsgemäßen Verbindungen können auf verschiedenen Wegen erhalten werden. Vorteilhaft werden die erfindungsgemäßen Verbindungen erhalten, indem man substituierte ß-Ketoestern der Formel II mit 3-Amino-1,2,4-triazol der Formel III zu 7-Hydroxytriazolopyrimidinen der Formel IV umsetzt. Die Gruppen R¹ und R² in Formeln II und IV haben die Bedeutungen wie für Formel I und die Gruppe R in Formel II bedeutet C₁-C₄-Alkyl, aus praktischen Gründen ist Methyl, Ethyl oder Propyl darin bevorzugt.

Die Umsetzung der substituierten ß-Ketoester der Formel II mit den Aminoazolen der Formel III kann in Gegenwart oder Abwesenheit von Lösungsmitteln durchgeführt werden. Vorteilhaft ist es, solche Lösungsmittel zu verwenden, gegenüber denen die

5

10

15

20

25

30

35

Einsatzstoffe weitgehend inert sind und in denen sie ganz oder teilweise löslich sind. Als Lösungsmittel kommen insbesondere Alkohole wie Ethanol, Propanole, Butanole, Glykole oder Glykolmonoether, Diethylenglykole oder deren Monoether, aromatische Kohlenwasserstoffe, wie Toluol, Benzol oder Mesitylen, Amide wie Dimethylformamid, Diethylformamid, Dibutylformamid, N,N-Dimethylacetamid, niedere Alkansäuren wie Ameisensäure, Essigsäure, Propionsäure oder Basen, wie wie Alkalimetall- und Erdalkalimetallhydroxide, Alkalimetall- und Erdalkalimetalloxide, Alkalimetall- und Erdalkalimetallhydride, Alkalimetallamide, Alkalimetall- und Erdalkalimetall carbonate sowie Alkalimetallhydrogencarbonate, metallorganische Verbindungen, insbesondere Alkalimetallalkyle, Alkylmagnesiumhalogenide sowie Alkalimetall- und Erdalkalimetallalkoholate und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin, Tributylamin und N-Methylpiperidin, N-Methylmorpholin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine und Mischungen dieser Lösungsmittel mit Wasser in Frage. Als Katalysatoren kommen Basen, wie voranstehend genannt, oder Säuren, wie Sulfonsäuren oder Mineralsäuren in Frage. Besonders bevorzugt wird die Umsetzung ohne Lösungsmittel oder in Chlorbenzol, Xylol, Dimethylsulfoxid, N-Methylpyrrolidon durchgeführt. Besonders bevorzugte Basen sind tertiäre Amine wie Triisopropylamin, Tributylamin, N-Methylmorpholin oder N-Methylpiperidin. Die Temperaturen liegen zwischen 50 und 300°C, vorzugsweise bei 50 bis 180°C, wenn in Lösung gearbeitet wird [vgl. EP-A 770 615; Adv. Het. Chem. Bd. 57, S. 81ff. (1993)].

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuss oder gegebenenfalls als Lösungsmittel verwendet werden.

$$|V| = \frac{[HAL]}{N N R^2} \frac{NH_3}{N R^2}$$

Die so erhaltenen Kondensationsprodukte der Formel IV fallen aus den Reaktionslösungen meist in reiner Form aus und werden nach dem Waschen mit dem gleichen Lösungsmittel oder mit Wasser und anschließendem Trocknen mit Halogenierungsmitteln, insbesondere Chlorierungs- oder Bromierungsmittel zu den Verbindungen der Formel V, in der Hal für Chlor oder Brom, insbesondere für Chlor steht, umgesetzt. Bevorzugt erfolgt die Umsetzung mit Chlorierungsmitteln, wie Phosphoroxychlorid, Thionylchlorid oder Sulfurylchlorid bei 50°C bis 150°C vorzugsweise in überschüssigem Phosphoroxitrichlorid bei Rückflußtemperatur. Nach dem Verdampfen des überschüssigen Phosphoroxitrichlorids wird der Rückstand mit Eiswasser gegebenenfalls unter Zusatz eines mit Wasser nicht mischbaren Lösungsmittels behandelt. Das aus der getrockneten organischen Phase gegebenenfalls nach Verdampfung des inerten Lösungsmittels isolierte Chlorierungsprodukt ist meist sehr rein und wird anschließend mit Ammoniak in inerten Lösungsmitteln bei 100°C bis 200°C zu den 7-Amino-triazolo[1,5-

a]-pyrimidinen umgesetzt. Die Reaktion wird vorzugsweise mit 1- bis 10-molarem Überschuss an Ammoniak unter Druck von 1 bis 100 bar durchgeführt.

Die neuen 7-Amino-azolo[1,5-a]-pyrimidine werden gegebenenfalls nach Verdampfen des Lösungsmittels durch Digerieren in Wasser als kristalline Verbindungen isoliert.

Die ß-Ketoester der Formel II können hergestellt werden wie in Organic Synthesis Coll. Vol. 1, S. 248 beschrieben, bzw. sind kommerziell erhältlich.

10 Alternativ können die neuen Verbindungen der Formel I erhalten werden, indem man substituierte Acylcyanide der Formel VI, in der R¹ und R² die oben angegebenen Bedeutungen haben, mit 3-Amino-1,2,4-triazol der Formel III umsetzt.

Die Umsetzung kann in Gegenwart oder Abwesenheit von Lösungsmitteln durchgeführt werden. Vorteilhaft ist es, solche Lösungsmittel zu verwenden, gegenüber denen die Einsatzstoffe weitgehend inert sind und in denen sie ganz oder teilweise löslich sind. Als Lösungsmittel kommen insbesondere Alkohole wie Ethanol, Propanole, Butanole, Glykole oder Glykolmonoether, Diethylenglykole oder deren Monoether, aromatische Kohlenwasserstoffe wie Toluol, Benzol oder Mesitylen, Amide wie Dimethylformamid, Diethylformamid, Dibutylformamid, N,N-Dimethylacetamid, niedere Alkansäuren wie Ameisensäure, Essigsäure, Propionsäure oder Basen, wie voranstehend genannt, und Mischungen dieser Lösungsmittel mit Wasser in Frage. Die Umsetzungstemperaturen liegen zwischen 50 und 300°C, vorzugsweise bei 50 bis 150°C, wenn in Lösung gearbeitet wird.

25

30

35

20

15

5

Die für die Herstellung der 7-Amino-azolo[1,5-a]-pyrimidine benötigten substituierten Alkylcyanide der Formel VI sind teilweise bekannt oder können nach bekannten Methoden aus Alkylcyaniden und Carbonsäureestern mit starken Basen, z.B. Alkalihydriden, Alkalimetallalkoholaten, Alkaliamiden oder Metallalkylen, hergestellt werden (vgl.: J. Amer. Chem. Soc. Bd. 73, (1951) S. 3766).

Verbindungen der Formel I, in der R¹ C₁-C₁₄-Halogenalkyl, C₁-C₁₂-Halogenalkoxy-C₁-C₁₂-alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-halogenalkyl, C₂-C₁₂-Halogenalkenyl oder C₂-C₁₂-Halogenalkinyl bedeutet, sind vorteilhaft durch Halogenierung entsprechender Triazolopyrimidine der Formel VII zugänglich:

$$\begin{array}{c|c}
 & NH_2 \\
 & NN \\
 & N \\
 & R^2
\end{array}$$
[HAL]
$$\begin{array}{c}
 & NH_2 \\
 & NN \\
 & N \\
 & N \\
 & N \\
 & R^2
\end{array}$$

25

30

35

In Formel VII steht R für C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₂-C₁₂-Alkenyl, C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten eine bis drei Gruppen R^a tragen können.

Die Halogenierung erfolgt üblicherweise bei Temperaturern von 0°C bis 200°C, vorzugsweise 20°C bis 110°C, in einem inerten organischen Lösungsmittel in Gegenwart eines Radikalstarters (z.B. Dibenzoylperoxid oder Azobisisobutyronitril oder unter UV-Bestrahlung, z.B. mit einer Hg-Dampflampe) oder einer Säure [vgl. Synthetic Reagents, Bd. 2, S. 1-63, Verlag Wiley, New York (1974)].

Die Reaktanden werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, das Halogenierungsmittel in einem Überschuss bezogen auf VII einzusetzen.

Als Halogenierungsmittel dienen beispielsweise elementare Halogene (z.B. Cl₂, Br₂, 15 J₂), N-Brom-Succinimid, N-Chlor-Succinimid oder Dibrom dimethylhydrantoin. Die Halogenierungsmittel werden im allgemeinen äquimolar, im Überschuss oder gegebenenfalls als Lösungsmittel verwendet.

Verbindungen der Formel I, in der R¹ C₁-C₁₄-HalogenalkyI, C₂-C₁₂-Halogenalkenyl oder C₂-C₁₂-Halogenalkinyl bedeutet, sind alternativ durch Etherspaltung entsprechender Triazolopyrimidine der Formel VIIa zugänglich:

In Formel VIIa steht R^A für C₁-C₁₄-alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Gruppen R^A durch Hydroxy- oder Alkoxygruppen substituiert sind. Durch Erhitzen der Verbindungen VIIa in Gegenwart von Mineralsäuren [HX], wie Salzsäure oder Bromwasserstoffsäure, oder Salpertersäure, werden die Verbindungen I erhalten [vgl. Organikum, 15. Auflage, S. 237 ff, VEB Deutscher Verlag der Wissenschaften, Berlin 1981].

Die für die Herstellung der voranstehend beschriebenen Verbindungen I benötigten Triazolopyrimidine der Formeln VII und VIIa sind teilweise bekannt oder können nach bekannten Methoden hergestellt werden [vgl. EP-A 141 317].

Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung für die Anwendung oder bei der Anwendung (z.B. unter Licht-, Säure-

oder Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen können auch nach der Anwendung, beispielsweise bei der Behandlung von Pflanzen in der behandelten Pflanze oder im zu bekämpfenden Schadpilz erfolgen.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

Halogen: Fluor, Chlor, Brom und Jod, insbesondere Fluor oder Chlor;

10

15

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6, 8 oder 10 Kohlenstoffatomen, z.B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 2, 4 oder 6 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können: insbesondere C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl,
 Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl oder 1,1,1-Trifluorprop-2-yl;

Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 6, 8 oder 10 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger 30 Position, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyi-1-butenyi, 2-Methyi-1-butenyi, 3-Methyi-1-butenyi, 1-Methyi-2-butenyi, 2-Methyi-2butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-bu-35 tenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-1propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-40 pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-

7 Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Di-

PCT/EP2005/002424

WO 2005/087770

25

methyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyi, 1-Ethyi-1-butenyi, 1-Ethyi-2-butenyi, 1-Ethyi-3-butenyi, 2-Ethyi-1-butenyi, 2-Ethyi-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

Alkoxyalkyl: gesättigte, geradkettige oder ein-, zwei- oder dreifach verzweigte Kohlenwasserstoffkette, die durch ein Sauerstoffatom unterbrochen ist, z. B. C₅-C₁₂-Alkoxyalkyl: Kohlenwasserstoffkette wie voranstehend beschrieben mit 5 bis 12 Kohlenstoff-10 atomen, die durch ein Sauerstoffatom an beliebiger Stelle unterbrochen sein kann, wie Propoxy-ethyl, Butoxy-ethyl, Pentoxy-ethyl, Hexyloxy-ethyl, Heptyloxy-ethyl, Octyloxyethyl, Nonyloxy-ethyl, 3-(3-Ethyl-hexyloxy)-ethyl, 3-(2,4,4-Trimethyl-pentyloxy)-ethyl, 3-(1-Ethyl-3-methyl-butoxy)-ethyl, Ethoxy-propyl, Propoxy-propyl, Butoxy-propyl, Pentoxy-propyl, Hexyloxy-propyl, Heptyloxy-propyl, Octyloxy-propyl, Nonyloxy-propyl, 15 3-(3-Ethyl-hexyloxy)-propyl, 3-(2,4,4-Trimethyl-pentyloxy)-propyl, 3-(1-Ethyl-3-methylbutoxy)-propyl, Ethoxy-butyl, Propoxy-butyl, Butoxy-butyl, Pentoxy-butyl, Hexyloxybutyl, Heptyloxy-butyl, Octyloxy-butyl, Nonyloxy-butyl, 3-(3-Ethyl-hexyloxy)-butyl, 3-(2,4,4-Trimethyl-pentyloxy)-butyl, 3-(1-Ethyl-3-methyl-butoxy)-butyl, Methoxy-pentyl, Ethoxy-pentyl, Propoxy-pentyl, Butoxy-pentyl, Pentoxy-pentyl, Hexyloxy-pentyl, Heptyl-20 oxy-pentyl, 3-(3-Methyl-hexyloxy)-pentyl, 3-(2,4-Dimethyl-pentyloxy)-pentyl, 3-(1-Ethyl-3-methyl-butoxy)-pentyl;

Halogenalkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 6, 8 oder 30 10 Kohlenstoffatomen und einer oder zwei Dreifachbindungen in beliebiger Position, z.B. C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-35 pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-40 3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

WO 2005/087770 PCT/EP2005/002424

Cycloalkyl: mono- oder bicyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 Kohlenstoffringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;

In dem Umfang der vorliegenden Erfindung sind die (R)- und (S)-Isomere und die Razemate von Verbindungen der Formel I eingeschlossen, die chirale Zentren aufweisen.

Im Hinblick auf ihre bestimmungsgemäße Verwendung der Triazolopyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

10 Verbindungen I werden bevorzugt, in denen die Gruppe R¹ maximal 9 Kohlenstoffato-

5

15

25

30

35

me aufweist.

Gleichermaßen werden Verbindungen der Formel I bevorzugt, in denen R1 eine unverzweigte oder ein-, zwei-, drei- oder mehrfach verzweigte Halogenalkylgruppe darstellt.

Sofern R¹ für Halogenalkyl steht, liegt die Halogenierung bevorzugt am endständigen Kohlenstoffatom vor. Monohalogenalkylgruppen sind bevorzugt.

In einer Ausgestaltung der erfindungsgemäßen Verbindungen I steht R¹ für C₁-C₁₄-Halogenalkyl, C₁-C₁₂-Halogenalkoxy-C₁-C₁₂-alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-halogenalkyl, C2-C12-Halogenalkenyl oder C2-C12-Halogenalkinyl, welche Gruppen ein oder zwei Halogenatome aufweisen. Hierbei sind C₁-C₈-Halogenalkoxy-propyl- und C₁-C₈-Alkoxyhalogenpropyl-Gruppen bevorzugt.

In einer anderen Ausgestaltung der Verbindungen I bedeutet R1 eine Gruppe C1-C14-Halogenalkyl, C₁-C₁₂-Halogenalkoxy-C₁-C₁₂-alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-halogenalkyl, C₂-C₁₂-Halogenalkenyl oder C₂-C₁₂-Halogenalkinyl, we1che Gruppen ein Halogenatom am α-ständigen Kohlenstoffatom enthalten.

Daneben werden Verbindungen der Formel I bevorzugt, in denen R1 für eine Gruppe $(CH_2)_nCH_2CI$, $(CH_2)_nCH_2Br$, $CH(CH_3)(CH_2)_mCH_2CI$, $CH(CH_3)(CH_2)_mCH_2BR$, $(CH_2)_nCF_3$ oder CH(CH₃)(CH₂)_mCF₃, worin n eine Zahl von 0 bis 13 und m eine Zahl von 0 bis 11 bedeutet, steht.

Besonders bevorzugt sind Verbindungen I, in denen R1 für Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 1,1,1-Trifluorprop-2-yl, 1-Chlorpropyl, 1-Fluorpropyl, 3-Chlorpropyl, 3-Fluorpropyl, 3,3,3-Trifluorpropyl, 1-Chlorbutyl, 1-Fluorbutyl, 4-Chlorbutyl, 4-Fluorbutyl, 4,4,4-Trifluorbutyl,

1-Chlorpentyl, 1-Fluorpentyl, 5,5,5-Trifluorpentyl, 5-Chlorpentyl, 5-Fluorpentyl, 1-Chlorhexyl, 1-Fluorhexyl, 6-Chlorhexyl, 6-Fluorhexyl, 6,6,6-Trifluorhexyl, 1-Chlorheptyl, 1-Fluorheptyl, 7-Chlorheptyl, 7-Fluorheptyl, 7,7,7-Trifluorheptyl, 1-Chloroctyl, 1-Fluorheptyl, 8,8,8-Trifluoroctyl, 1-Chlornonyl, 1-Fluornonyl, 9-Fluornonyl, 9-Siluornonyl, 1-Fluordecyl, 1-Chlordecyl, 10-Fluordecyl, 10,10,10-Trifluordecyl, 10-Chlordecyl, 1-Chlorundecyl, 1-Fluorundecyl, 11-Chlorundecyl, 11-Fluorundecyl, 11-Fluorundecyl, 1-Fluordodecyl, 12-Chlordodecyl, 12-Fluordodecyl, 12-Fluordodecyl, 12-Fluordodecyl, 12-Trifluordodecyl steht.

10 In einer weiteren Ausgestaltung der Verbindungen I bedeutet R¹ C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten unsubstituiert sind oder eine bis drei gleiche oder verschiedene Gruppen R^a und/oder R^b tragen.

In einer bevorzugten Ausführung der Verbindungen der Formel I liegt keine Gruppe R^a vor.

Verbindungen I sind besonders bevorzugt, in denen Kohlenstoffketten von R¹ und R² gemeinsam nicht mehr als 14 Kohlenstoffatome aufweisen.

In einer Ausgestaltung der erfindungsgemäßen Verbindungen I steht R² für Methyl, Ethyl, iso-Propyl, n-Propyl oder n-Butyl, bevorzugt für Methyl, Ethyl, iso- oder n-Propyl, insbesondere für Methyl oder Ethyl.

Halogenatome in den Gruppen R¹ stehen bevorzugt am α - oder am Ω -Kohlenstoff-25 atom.

Cyanogruppen in R¹ und/oder R² stehen bevorzugt am endständigen Kohlenstoffatom.

In einer weiteren bevorzugten Ausführung der Verbindungen der Formel I liegt keine 30 Gruppe R^b vor.

Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

Tabelle 1

35

Verbindungen der Formel I, in denen R¹ für eine Verbindung jeweils einer Zeile der 40 Tabelle A entspricht und R² Methyl bedeutet

Tabelle 2

Verbindungen der Formel I, in denen R^1 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht und R^2 Ethyl bedeutet

5 Tabelle 3

Verbindungen der Formel I, in denen R^1 für eine Verbindung jeweils einer Zeile der Tabelle A entspricht und R^2 n-Propyl bedeutet

Tabelle 4

10 Verbindungen der Formel I, in denen R¹ für eine Verbindung jeweils einer Zeile der Tabelle A entspricht und R² iso-Propyl bedeutet

Tabelle 5

Verbindungen der Formel I, in denen R¹ für eine Verbindung jeweils einer Zeile der Tabelle A entspricht und R² n-Butyl bedeutet

Tabelle A

<u> </u>		
Nr.	R¹	
A-1	CH₂F	
A-2	CH₂Cl	
A-3	CH₂Br	
A-4	CHF₂	
A-5	CHCl₂	
A-6	CF ₃	
A-7	CCI ₃	
A-8	CHFCH₃	
A-9	CHCICH₃	
A-10	CH₂CH₂F	
A-11	CH₂CH₂CI	
A-12	CH₂CH₂Br	
A-13	CCl₂CH ₃	
A-14	CF₂CH₃	
A-15	CH₂CHF₂	
A-16	CH₂CHCl₂	•
A-17	CH₂CF₃	
A-18	CH₂CCI₃	

Nr.	R ¹
A-19	CF₂CF₃
A-20	CCI ₂ CCI ₃
A-21	CHFCH₂CH₃
A-22	CHCICH₂CH₃
A-23	CH₂CHFCH₃
A-24	CH₂CHCICH₃
A-25	CH₂CH₂CH₂F
A-26	CH₂CH₂CH2CI
A-27	CH₂CH₂CH₂Br
A-28	CCl₂CH₂CH₃
A-29	CF₂CH₂CH₃
A-30	CH₂CH₂CHF₂
A-31	CH₂CH2CHCI₂
A-32	CH₂CH₂CF₃
A-33	CH₂CH₂CCI₃
A-34	CF₂CF₂CF₃
A-35	CCl ₂ CCl ₂ CCl ₃
A-36	CH(CH₃)CF₃
A-37	CH(CH₃)CH₂F
A-38	CH(CH₃)CH₂CI
A-39	CH(CH₃)CH₂Br
A-40	CH(CH₃)CHF₂
A-41	CH(CH₃)CHCl₂
A-42	CH(CH ₂ F) ₂
A-43	CH(CH₂CI)₂
A-44	CH(CH₂Br)₂
A-45	CH(CHF ₂) ₂
A-46	CH(CHCl ₂) ₂
A-47	CHFCH₂CH₃
A-48	CHClCH₂CH₂CH₃
A-49	CH₂CHFCH₂CH₃
A-50	CH₂CHCICH₂CH₃

A-51 A-52 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-53 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-54 CH ₂ CH ₂ CH ₂ CH ₂ CH A-55 CH ₂ CH ₂ CH ₂ CH ₂ CH A-56 CCI ₂ CH ₂ CH ₂ CH ₂ CH A-57 CF ₂ CH ₂ CH ₂ CH ₂ CH A-58 CH ₂ CH ₂ CH ₂ CH ₂ CH A-59 CH ₂ CH ₂ CH ₂ CH A-60 CH ₂ CH ₂ CH ₂ CH A-61 CH ₂ CH ₂ CH ₂ CH A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₂ CI A-64 CH(CH ₃)CH ₂ CH ₂ CH A-65 CH(CH ₃)CH ₂ CH ₂ CH A-66 CH(CH ₃)CH ₂ CH ₂ CH A-67 CH(CH ₃)CH ₂ CH ₂ CH A-68 CHFCH ₂ CH ₂ CH ₂ CH A-69 CHCCH ₂ CH ₂ CH ₂ CH A-70 CH ₂ CHFCH ₂ CH ₂ CH A-71 CH ₂ CHCH ₂ CH ₂ CH A-72 CH ₂ CH ₂ CH ₂ CH CH ₃ CH A-73 CH ₂ CH ₂ CH	Nr.	R¹
A-53 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₃ CH ₄ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH A-55 CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₃ CH A-57 CF ₂ CH ₂ CH ₂ CH ₂ CH A-58 CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH C	A-51	CH₂CH₂CHFCH₃
A-54 A-54 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI CH ₂ CH ₂ CH ₂ CH ₂ Br CCI ₂ CH ₂ CH ₂ CH ₃ CF ₂ CH ₂ CH ₂ CH ₃ A-56 CCI ₂ CH ₂ CH ₂ CH ₃ A-57 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-58 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ A-60 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ A-60 CH ₂ CH ₂ CH ₂ CG ₃ A-61 CH ₂ CH ₂ CH ₂ CCI ₃ A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ CF A-65 CH(CH ₃)CH ₂ CH ₂ CF A-66 CH(CH ₃)CH ₂ CH ₂ CF A-67 CH(CH ₃)CH ₂ CH ₂ CH A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCCH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-74 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81	A-52	CH₂CH₂CHCICH₃
A-55 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-56 CCI ₂ CH ₂ CH ₂ CH ₃ A-57 CF ₂ CH ₂ CH ₂ CH ₃ A-58 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ A-60 CH ₂ CH ₂ CH ₂ CH ₂ CF ₃ A-61 CH ₂ CH ₂ CH ₂ CF ₃ A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ CH ₂ F A-65 CH(CH ₃)CH ₂ CH ₂ CF ₃ A-66 CH(CH ₃)CH ₂ CH ₂ CF A-67 CH(CH ₃)CH ₂ CH ₂ CF A-68 CH(CH ₃)CH ₂ CH ₂ CH ₃ A-69 CH(CH ₃)CH ₂ CH ₂ CH ₃ A-70 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-71 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-53	CH₂CH₂CH₂F
A-56 A-57 CF ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ A-58 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ A-60 CH ₂ CH ₂ CH ₂ CH ₃ A-61 CH ₂ CH ₂ CH ₂ CH ₃ A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCl ₂ CCl ₂ CCl ₂ CCl ₃ A-64 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-65 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-66 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-67 CH ₂ CH ₂ CH ₂ CH ₃ A-68 CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ A-69 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-71 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-79 CCl ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-79 CCl ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-54	CH₂CH₂CH₂CH
A-57 A-58 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ A-59 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ A-60 CH ₂ CH ₂ CH ₂ CH ₂ CCI ₃ A-61 CH ₂ CH ₂ CH ₂ CCI ₃ A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ CH ₂ C A-65 CH(CH ₃)CH ₂ CH ₂ CH A-66 CH(CH ₃)CH ₂ CH ₂ CH A-67 CH(CH ₃)CH ₂ CH ₂ CH A-68 CH(CH ₃)CH ₂ CH ₂ CH A-69 CHCH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH A-80 CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH CCI ₂ CH CCI ₂ CH ₂ CH ₂ CH CCI ₂ CH CCI ₂ CH ₂ CH CCI ₂ CH	A-55	CH₂CH₂CH₂CH₂Br
A-58 CH ₂ CH ₂ CH ₂ CH ₂ CHCl ₂ A-60 CH ₂ CH ₂ CH ₂ CH ₂ CCI ₃ A-61 CH ₂ CH ₂ CH ₂ CCI ₃ A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ CH ₂ CF A-65 CH(CH ₃)CH ₂ CH ₂ CH A-66 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CH ₂ CI A-67 CH(CH ₃)CH ₂ CH ₂ CH A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH CH ₂ CH CH CH CH CH CH CH CH CH CH	A-56	CCl₂CH₂CH₃
A-59 CH ₂ CH ₂ CH ₂ CHCl ₂ A-60 CH ₂ CH ₂ CH ₂ CF ₃ A-61 CH ₂ CH ₂ CH ₂ CCI ₃ CF ₂ CF ₂ CF ₃ CF ₃ A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ F A-65 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CH ₂ Br A-67 CH(CH ₃)CH ₂ CH ₂ Br A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CHCHCH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCHCH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CHCHCH ₃ A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₃ A-81 CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81	A-57	CF₂CH₂CH₃
A-60 CH ₂ CH ₂ CH ₂ CCI ₃ A-61 CH ₂ CH ₂ CH ₂ CCI ₉ CF ₂ CF ₂ CF ₃ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ CF A-65 CH(CH ₃)CH ₂ CH ₂ CF A-66 CH(CH ₃)CH ₂ CH ₂ CF A-67 CH(CH ₃)CH ₂ CH ₂ CH A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-71 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-70 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81	A-58	CH₂CH₂CHF₂
A-61 CH ₂ CH ₂ CCI ₃ CCI ₃ CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₃ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ F A-65 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CH ₂ CF A-67 CH(CH ₃)CH ₂ CH ₂ CF A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81	A-59	CH₂CH₂CHCl₂
A-62 CF ₂ CF ₂ CF ₂ CF ₃ A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ F A-65 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CH ₂ Br A-67 CH(CH ₃)CH ₂ CF ₃ A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-73 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-60	CH₂CH₂CF₃
A-63 CCI ₂ CCI ₂ CCI ₂ CCI ₂ CCI ₃ A-64 CH(CH ₃)CH ₂ CH ₂ F A-65 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CH ₂ Br CH(CH ₃)CH ₂ CH ₂ Br A-67 CH(CH ₃)CH ₂ CH ₂ CH ₃ A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH CH ₂ CH ₂ CH ₂ CH ₂ CH	A-61	CH₂CH₂CH₃
A-64 CH(CH ₃)CH ₂ CH ₂ CI A-65 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CH ₂ Br A-67 CH(CH ₃)CH ₂ CF ₃ A-68 CHFCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-76 CH ₂ CH ₃ A-77 CH ₂	A-62	CF ₂ CF ₂ CF ₃
A-65 CH(CH ₃)CH ₂ CH ₂ CI A-66 CH(CH ₃)CH ₂ CF ₃ CH(CH ₃)CH ₂ CF ₃ A-67 CH(CH ₃)CH ₂ CF ₃ A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH CH CH ₂ CH CH ₂ CH CH CH CH ₂ CH CH CH CH CH ₂ CH	A-63	CCI ₂ CCI ₂ CCI ₃
A-66 CH(CH ₃)CH ₂ CH ₂ Br A-67 CH(CH ₃)CH ₂ CF ₃ A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHCICH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHFCH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH ₂ CH ₂ CH ₂ CH CH ₂ CH CH ₂ CH ₂ CH ₂ CH CH CH ₂ CH ₂ CH ₂ CH	A-64	CH(CH₃)CH₂CH₂F
A-67 CH(CH ₃)CH ₂ CF ₃ A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂	A-65	CH(CH₃)CH₂CI
A-68 CHFCH ₂ CH ₂ CH ₂ CH ₃ A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-66	CH(CH₃)CH₂CH₂Br
A-69 CHCICH ₂ CH ₂ CH ₂ CH ₃ A-70 CH ₂ CHFCH ₂ CH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₂ CH ₃ A-72 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CHFCH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ F A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-67	CH(CH₃)CH₂CF₃
A-70 CH ₂ CHFCH ₂ CH ₃ A-71 CH ₂ CHCICH ₂ CH ₃ A-72 CH ₂ CH ₂ CHFCH ₂ CH ₃ A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CHFCH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂	A-68	CHFCH₂CH₂CH₃
A-71	A-69	
A-72	A-70	
A-73 CH ₂ CH ₂ CHCICH ₂ CH ₃ A-74 CH ₂ CH ₂ CH ₂ CHFCH ₃ A-75 CH ₂ CH ₂ CH ₂ CHCICH ₃ A-76 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ F A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-71	
A-74	A-72	
A-75	A-73	
A-76	A-74	
A-77 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI A-78 CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br A-79 CCl ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	A-75	
A-78	A-76	
A-79 CCI ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CH ₂ CH ₇ CH ₇	A-77	
A-80 CF ₂ CH ₂ CH ₂ CH ₂ CH ₃ A-81 CH ₂ CH ₂ CH ₂ CHF ₂	A-78	
A-81 CH ₂ CH ₂ CH ₂ CHF ₂	A-79	
	A-80	
A-82 CH ₂ CH ₂ CH ₂ CHCl ₂	A-81	
	A-82	CH₂CH₂CH₂CHCI₂

Nr.	R¹
A-83	CH₂CH₂CH₂CF₃
A-84	CH₂CH₂CH₂CCl₃
A-85	CF ₂ CF ₂ CF ₂ CF ₃
A-86	CCl ₂ CCl ₂ CCl ₂ CCl ₃
A-87	CH(CH₃)CH₂CH₂CH₂F
A-88	CH(CH ₃)CH ₂ CH ₂ CH ₂ CI
A-89	CH(CH₃)CH₂CH₂CH₂Br
A-90	CH(CH ₃)CH ₂ CF ₃
A-91	CHFCH₂CH₂CH₂CH₃
A-92	CHClCH₂CH₂CH₂CH₃
A-93	CH₂CHFCH₂CH₂CH₃
A-94	CH ₂ CHCICH ₂ CH ₂ CH ₃
A-95	CH₂CH₂CHFCH₂CH₃
A-96	CH₂CH2CHCICH₂CH₃
A-97	CH₂CH₂CHFCH₂CH₃
A-98	CH₂CH₂CHCICH₂CH₃
A-99	CH₂CH₂CH₂CHFCH₃
A-100	CH₂CH₂CH₂CHCICH₃
A-101	, CH₂CH₂CH₂CH₂CH₂F
A-102	CH₂CH₂CH₂CH₂CH₂CI
A-103	CH₂CH₂CH₂CH₂CH₂Br
A-104	CCI ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-105	CF ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-106	CH ₂ CH ₂ CH ₂ CH ₂ CHF ₂
A-107	CH ₂ CH ₂ CH ₂ CH ₂ CHCl ₂
A-108	CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-109	CH₂CH₂CH₂CH₂CCI₃
A-110	CF ₂ CF ₂ CF ₂ CF ₂ CF ₃
A-111	CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₃
A-112	CH(CH₃)CH₂CH₂CH₂F
A-113	CH(CH₃)CH₂CH₂CH₂CH2CI
A-114	CH(CH₃)CH₂CH₂CH₂Br

Nr.	R¹
A-115	CH(CH₃)CH₂CH₂CH₂CF₃
A-116	CHFCH₂CH₂CH₂CH₂CH₃
A-117	CHCICH₂CH₂CH₂CH₂CH₃
A-118	CH₂CHFCH₂CH₂CH₂CH₃
A-119	CH₂CHClCH₂CH₂CH₂CH₃
A-120	CH₂CH₂CH₂CHFCH₂CH₃
A-121	CH₂CH₂CHCICH₂CH₂CH₃
A-122	CH₂CH₂CH₂CH5CH3
A-123	CH₂CH₂CH₂CHCICH₂CH₃
A-124	CH₂CH₂CH₂CH₂CHFCH₃
A-125	CH₂CH₂CH₂CH₂CHCICH₃
A-126	CH₂CH₂CH₂CH₂CH₂CH₂F
A-127	CH₂CH₂CH₂CH₂CH₂CH₂CI
A-128	CH₂CH₂CH₂CH₂CH₂CH₂Br
A-129	CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-130	CF₂CH₂CH₂CH₂CH₂CH₃
A-131	CH₂CH₂CH₂CH₂CH₂CHF₂
A-132	CH₂CH₂CH₂CH₂CH2CHCl₂
A-133	CH₂CH₂CH₂CH₂CH₂CF₃
A-134	CH₂CH₂CH₂CH₂CH₃CCI₃
A-135	CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃
A-136	CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₃
A-137	CH(CH₃)CH₂CH₂CH₂CH₂F
A-138	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH
A-139	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ Br
A-140	CH(CH₃)CH₂CH₂CH₂CF₃
A-141	CHFCH₂CH₂CH₂CH₂CH₂CH₃
A-142	CHClCH₂CH₂CH₂CH₂CH₂CH₃
A-143	CH₂CHFCH₂CH₂CH₂CH₂CH₃
A-144	CH₂CHClCH₂CH₂CH₂CH₂CH₃
A-145	CH₂CH₂CHFCH₂CH₂CH₂CH₃
A-146	CH₂CH₂CHCICH₂CH₂CH₂CH₃

Nr.	R¹
A-147	CH₂CH₂CH₂CHFCH₂CH₃
A-148	CH ₂ CH ₂ CH ₂ CHClCH ₂ CH ₂ CH ₃
A-149	CH₂CH₂CH₂CH₂CH5CH3
A-150	CH₂CH₂CH₂CH2CHCICH₂CH3
A-151	CH₂CH₂CH₂CH₂CH₂CHFCH₃
A-152	CH₂CH₂CH₂CH₂CH2CHCICH₃
A-153	CH₂CH₂CH₂CH₂CH₂CH₂CH₂F
A-154	CH₂CH₂CH₂CH₂CH₂CH₂CH₂CI
A-155	CH₂CH₂CH₂CH₂CH₂CH₂CH₂Br
A-156	CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-157	CF₂CH₂CH₂CH₂CH₂CH₂CH₃
A-158	CH₂CH₂CH₂CH₂CH₂CH₂CHF₂
A-159	CH₂CH₂CH₂CH₂CH₂CH₂CHCI₂
A-160	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-161	CH2CH2CH2CH2CH2CH3
A-162	CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃
A-163	CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₃
A-164	CH(CH₃)CH₂CH₂CH₂CH₂CH₂F
A-165	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH
A-166	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-167	CH(CH₃)CH₂CH₂CH₂CH₂CF₃
A-168	CHFCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-169	CHClCH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-170	CH ₂ CHFCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-171	CH₂CHCICH₂CH₂CH₂CH₂CH₂CH₃
A-172	CH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-173	CH₂CH2CHCICH₂CH2CH2CH2CH3
A-174	CH₂CH₂CH5CH₂CH₂CH₂CH3
A-175	CH₂CH₂CHCICH₂CH₂CH₂CH₃
A-176	CH₂CH₂CH₂CH₂CHFCH₂CH₃
A-177	CH2CH2CH2CH2CHCICH2CH3
A-178	CH₂CH₂CH₂CH₂CH₂CH₂CH₃

Nr.	R¹
A-179	CH₂CH₂CH₂CH₂CH2CHCICH₂CH3
A-180	CH₂CH₂CH₂CH₂CH₂CH₂CHFCH₃
A-181	CH2CH2CH2CH2CH2CH2CHCICH3
A-182	CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂F
A-183	CH2CH2CH2CH2CH2CH2CH2CH2CI
A-184	CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂Br
A-185	CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-186	CF ₂ CH ₃
A-187	CH ₂ CHF ₂
A-188	CH2CH2CH2CH2CH2CH2CH2CHCI2
A-189	CH ₂ CF ₃
A-190	CH2CH2CH2CH2CH2CH2CH3
A-191	CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₃
A-192	CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₂ CCl ₃
A-193	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ F
A-194	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI
A-195	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-196	CH(CH₃)CH₂CH₂CH₂CH₂CH₂CF₃
A-197	CHFCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-198	CHClCH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-199	CH₂CHFCH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-200	CH₂CHCICH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-201	CH ₂ CH ₃
A-202	CH₂CH2CHCICH₂CH2CH2CH2CH3
A-203	CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-204	CH₂CH₂CHCICH₂CH₂CH₂CH₂CH₃
A-205	CH ₂ CH ₂ CH ₂ CHFCH ₂ CH ₂ CH ₂ CH ₃
A-206	CH₂CH₂CH₂CHCICH₂CH₂CH₂CH₃
A-207	CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃
A-208	CH₂CH₂CH₂CH₂CHCICH₂CH₂CH3
A-209	CH₂CH₂CH₂CH₂CH₂CH₂CH3
A-210	CH2CH2CH2CH2CH2CH2CHCICH2CH3

Nr.	R¹
A-211	CH ₂ CHFCH ₃
A-212	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CHCICH ₃
A-213	CH ₂
A-214	CH ₂
A-215	CH2CH2CH2CH2CH2CH2CH2CH2CH2CI
A-216	CCI ₂ CH ₃
A-217	CF ₂ CH ₃
A-218	CH ₂
A-219	CH2CH2CH2CH2CH2CH2CH2CH2CHCI2
A-220	CH ₂
A-221	CH2CH2CH2CH2CH2CH2CH2CH2CH3
A-222	CF ₂ CF ₃
A-223	CCI ₂ CCI ₃
A-224	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ F
A-225	CH(CH ₃)CH ₂ CH
A-226	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br
A-227	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CF ₃
A-228	CH=CH ₂
A-229	CH ₂ CH=CH ₂
A-230	CH=CHCH₃
A-231	C(CH ₃)=CH ₂
A-232	CH₂CH₂CH=CH₂
A-233	CH₂CH=CHCH₃
A-234	CH=CHCH₂CH₃
A-235	CH(CH ₃)CH=CH ₂
A-236	C(CH ₃)=CHCH ₃
A-237	CH=C(CH ₃) ₂
A-238	CH ₂ CH ₂ CH=CH ₂
A-239	CH₂CH₂CH=CHCH₃
A-240	CH₂CH=CHCH₂CH₃
A-241	CH=CHCH₂CH₂CH₃
A-242	CH(CH₃)CH₂CH=CH₂

Nr.	R¹
A-243	CH₂C(CH₃)=CHCH₃
A-244	CH ₂ CH=C(CH ₃) ₂
A-245	CH₂CH₂CH₂CH=CH₂
A-246	CH₂CH₂CH=CHCH₃
A-247	CH ₂ CH ₂ CH=CHCH ₂ CH ₃
A-248	CH ₂ CH=CHCH ₂ CH ₃
A-249	CH=CHCH₂CH₂CH₃
A-250	CH(CH₃)CH₂CH=CH₂
A-251	CH(CH₃)CH₂CH=CHCH₃
A-252	CH₂C(CH₃)=CHCH₂CH₃
A-253	CH ₂ CH ₂ CH=C(CH ₃) ₂
A-254	CH₂CH₂CH₂CH₂CH=CH₂
A-255	CH ₂ CH ₂ CH ₂ CH=CHCH ₃
A-256	CH ₂ CH ₂ CH=CHCH ₂ CH ₃
A-257	CH ₂ CH ₂ CH=CHCH ₂ CH ₃
A-258	CH ₂ CH=CHCH ₂ CH ₂ CH ₃
A-259	CH=CHCH₂CH₂CH₂CH₃
A-260	CH(CH ₃)CH ₂ CH ₂ CH=CH ₂
A-261	CH(CH₃)CH₂CH=CHCH₃
A-262	C(CH ₃)=CHCH ₂ CH ₂ CH ₂ CH ₃
A-263	CH ₂ CH ₂ CH=C(CH ₃) ₂
A-264	CH₂CH₂CH₂CH₂CH₂CH₂CH₂
A-265	CH₂CH₂CH₂CH₂CH=CHCH₃
A-266	CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₃
A-267	CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₃
A-268	CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₃
A-269	CH₂CH=CHCH₂CH₂CH₂CH₃
A-270	CH=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-271	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH=CH ₂
A-272	CH(CH ₃)CH ₂ CH ₂ CH=CHCH ₃
A-273	C(CH ₃)=CHCH ₂ CH ₂ CH ₂ CH ₃
A-274	CH₂CH₂CH₂CH=C(CH₃)₂

Nr.	R¹
A-275	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CH ₂
A-276	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₃
A-277	CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₃
A-278	CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₃
A-279	CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₃
A-280	CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₂ CH ₃
A-281	CH ₂ CH=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-282	CH=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-283	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH=CH ₂
A-284	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH=CHCH ₃
A-285	C(CH ₃)=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-286	CH₂CH₂CH₂CH₂CH=C(CH₃)₂
A-287	CH ₂ CH=CH ₂
A-288	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₃
A-289	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₃
A-290	CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₃
A-291	CH₂CH₂CH₂CH=CHCH₂CH₂CH₂CH₃
A-292	CH ₂ CH ₂ CH=CHCH ₂ CH ₂ CH ₂ CH ₃
A-293	CH2CH2CH=CHCH2CH2CH2CH2CH3
A-294	CH2CH=CHCH2CH2CH2CH2CH2CH3
A-295	CH=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-296	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=CH ₂
A-297	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH=CHCH ₃
A-298	C(CH ₃)=CHCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-299	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH=C(CH ₃) ₂
A-300	C≡ CH
A-301	CH₂C≡ CH
A-302	C≣ CCH₃
A-303	CH₂CH₂C≡ CH
A-304	CH ₂ C≡ CCH ₃
A-305	C≣ CCH₂CH₃
A-306	CH(CH₃)C≡ CH

Nr.	R¹
A-307	CH₂CH₂C≡ CH
A-308	CH₂CH₂C≡ CCH₃
A-309	CH₂C≡ CCH₂CH₃
A-310	C≡ CCH ₂ CH ₂ CH ₃
A-311	CH(CH₃)CH₂C≡ CH
A-312	CH₂CH₂CH₂C≡ CH
A-313	CH₂CH₂C≡ CCH₃
A-314	CH₂CH₂C≡ CCH₂CH₃
A-315	CH₂C≡ CCH₂CH₂CH₃
A-316	C≡ CCH₂CH₂CH₃
A-317	CH(CH₃)CH₂C≡ CH
A-318	CH(CH₃)CH₂C≡ CCH₃
A-319	CH₂CH₂CH₂CH₂C≡ CH
A-320	CH₂CH₂CH₂C≡ CCH₃
A-321	CH₂CH₂CE CCH₂CH₃
A-322	CH₂CH₂CE CCH₂CH₃
A-323	CH₂C≡ CCH₂CH₂CH₃
A-324	C≣ CCH₂CH₂CH₂CH₃
A-325	CH(CH₃)CH₂CH₂CE CH
A-326	CH(CH ₃)CH ₂ CE CCH ₃
A-327	CH(CH ₃)CH ₂ C≡ CCH ₂ CH ₃
A-328	CH₂CH₂CH₂CH₂CH₂C≡ CH
A-329	CH₂CH₂CH₂CH₂C≡ CCH₃
A-330	CH₂CH₂CH₂CE CCH₂CH₃
A-331	CH₂CH₂CE CCH₂CH₂CH₃
A-332	CH₂CH₂CE CCH₂CH₂CH₃
A-333	CH ₂ C≡ CCH ₂ CH ₂ CH ₂ CH ₃
A-334	C≡ CCH₂CH₂CH₂CH₂CH₃
A-335	CH(CH₃)CH₂CH₂CH₂C≡ CH
A-336	CH(CH₃)CH₂CH₂C≡ CCH₃
A-337	CH₂CH₂CH₂CH₂CH₂CH2C≡ CH
A-338	CH₂CH₂CH₂CH₂CH₂C≡ CCH₃

Nr.	R¹
A-339	CH ₂ CH ₂ CH ₂ CH ₂ C≡ CCH ₂ CH ₃
A-340	CH₂CH₂CH₂CH₂CH₂CH₃
A-341	CH₂CH₂CH₂C≡ CCH₂CH₂CH₃
A-342	CH₂CH₂CE CCH₂CH₂CH₂CH₃
A-343	CH₂C≡ CCH₂CH₂CH₂CH₂CH₃
A-344	C≅ CCH₂CH₂CH₂CH₂CH₂CH₃
A-345	CH(CH₃)CH₂CH₂CH₂CH₂C≡ CH
A-346	CH(CH ₃)CH ₂ CH ₂ CH ₂ C≡ CCH ₃
A-347	CH₂CH₂CH₂CH₂CH₂CH₂CH2C≡ CH
A-348	CH₂CH₂CH₂CH₂CH₂CH2C≡ CCH3
A-349	CH₂CH₂CH₂CH₂CH₂C⊟ CCH₂CH₃
A-350	CH ₂ CH ₂ CH ₂ CH ₂ C≡ CCH ₂ CH ₃
A-351	CH₂CH₂CH₂CE CCH₂CH₂CH₃
A-352	CH₂CH₂CE CCH₂CH₂CH₂CH₃
A-353	CH₂CH₂CE CCH₂CH₂CH₂CH₂CH₃
A-354	CH ₂ C≡ CCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-355	C≡ CCH₂CH₂CH₂CH₂CH₂CH₃
A-356	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C≡ CH
A-357	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C≡ CCH ₃
A-358	CH₂CH₂CH₂CH₂CN
A-359	CH(CH₃)CH₂CH₂CN
A-360	CH₂CH(CH₃)CH₂CH
A-361	CH₂CH₂CH(CH₃)CH₂CN
A-362	CH₂CH₂CH(CH₃)CH₂CN
A-363	CH(CH₃)CH(CH₃)CH₂CN
A-364	CH(CH₃)CH(CH₃)CH₂CN
A-365	CH₂C(CH₃)₂CH₂CN
A-366	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-367	CH(CH₃)CH₂CH₂CH₂CN
A-368	CH₂CH(CH₃)CH₂CH₂CN
A-369	CH₂CH₂CH(CH₃)CH₂CH
A-370	CH₂CH₂CH(CH₃)₂CH₂CN

Nr.	R¹			
A-371	CH₂CH₂CH(CH₃)CH₂CN			
A-372	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CN			
A-373	CH(CH₃)CH₂CH(CH₃)CH₂CN			
A-374	CH₂CH₂C(CH₃)₂CH₂CN			
A-375	CH(CH₃)CH₂CH(CH₃)CH₂CN			
A-376	CH₂CH₂CH₂CH₂CH₂CH₂CN			
A-377	CH(CH₃)CH₂CH₂CH₂CH₂CN			
A-378	CH₂CH(CH₃)CH₂CH₂CH₂CN			
A-379	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN			
A-380	CH₂CH₂CH(CH₃)CH₂CH₂CN			
A-381	CH₂CH₂CH₂CH(CH₃)CH₂CN			
A-382	CH₂CH₂CH₂CH(CH₃)CH₂CN			
A-383	CH(CH₃)CH(CH₃)CH₂CH₂CH			
A-384	CH₂CH(CH₃)CH(CH₃)CH₂CH₂CN			
A-385	CH₂CH₂C(CH₃)₂CH₂CN			
A-386	CH(CH₃)CH₂CH(CH₃)CH₂CH₂CN			
A-387	CH₂CH(CH₃)CH(CH₃)CH₂CH₂CN			
A-388	CH(CH₃)CH₂CH(CH₃)CH₂CN			
A-389	CH₂CH₂CH₂CH₂CH₂CH₂CN			
A-390	CH(CH₃)CH₂CH₂CH₂CH₂CH₂CN			
A-391	CH₂CH(CH₃)CH₂CH₂CH₂CH₂CH2CN			
A-392	CH₂CH₂CH(CH₃)CH₂CH₂CH₂CH2CN			
A-393	CH₂CH₂CH(CH₃)CH₂CH₂CH2CN			
A-394	CH₂CH₂CH₂CH(CH₃)CH₂CH2CN			
A-395	CH₂CH₂CH₂CH₂CH(CH₃)CH₂CN			
A-396	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN			
A-397	CH(CH₃)CH(CH₃)CH₂CH₂CH₂CH			
A-398	CH₂CH(CH₃)CH(CH₃)CH₂CH₂CH2CN			
A-399	CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CN			
A-400	CH(CH₃)CH₂CH(CH₃)CH₂CH₂CH2CN			
A-401	CH₂CH(CH₃)CH(CH₃)CH₂CH₂CH2CN			
A-402	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN			

Nr.	R¹				
A-403	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CN				
A-404	CH2CH2CH2CH2CH2CH2CH2CH2CN				
A-405	CH(CH₃)CH₂CH₂CH₂CH₂CH₂CH₂CN				
A-406	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-407	CH2CH2CH(CH3)CH2CH2CH2CH2CN				
A-408	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-409	CH₂CH₂CH₂CH(CH₃)CH₂CH₂CH2CN				
A-410	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN				
A-411	CH(CH₃)CH(CH₃)CH₂CH₂CH₂CH₂CN				
A-412	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-413	CH₂CH₂C(CH₃)₂CH₂CH₂CH2CN				
A-414	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-415	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CN				
A-416	CH(CH₃)CH₂CH(CH₃)CH₂CH₂CH₂CN				
A-417	CH(CH ₃)CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN				
A-418	CH ₂ CH(CH ₃)CH ₂ CH(CH ₃) ₂ CH ₂ CN				
A-419	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN				
A-420	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CN				
A-421	CH2CH2CH2CH2CH2CH2CH2CH2CH2CN				
A-422	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-423	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-424	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-425	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-426	CH ₂ CN				
A-427	CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN				
A-428	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-429	CH ₂ CH(CH ₃)CH(CH ₃) CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-430	CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CN				
A-431	CH(CH₃)CH₂CH(CH₃)CH₂CH₂CH₂CH₂CH2CN				
A-432	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN				
A-433	CH(CH₃)CH₂CH(CH₃)CH₂CH₂CH₂CH2CN				
A-434	CH(CH₃)CH₂CH₂CH(CH₃)CH₂CH₂CH₂CN				

Nr.	R¹			
A-435	CH(CH₃)CH₂CH₂CH₂CH(CH₃)CH₂CH₂CN			
A-436	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN			
A-437	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃)CH ₂ CN			
A-438	CH₂CH(CH₃)CH₂CH₂CH₂CH(CH₃)CH₂CN			
A-439	CH(CH ₃)CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN			
A-440	CH₂CH(CH₃)CH₂CH₂CH₂C(CH₃)₂CH₂CN			
A-441	CH ₂			
A-442	CH(CH ₃)CH ₂ CH ₂			
A-443	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-444	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-445	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-446	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-447	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN			
A-448	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-449	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-450	CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-451	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-452	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-453	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-454	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-455	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN			
A-456	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN			
A-457	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN			
A-458	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN			
A-459	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN			
A-460	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN			
A-461	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN			
A-462	CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CN			
A-463	CH(CH ₃)CH ₂ CH ₂			
A-464	CH₂CH(CH₃)CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH			
A-465	CH2CH2CH(CH3)CH2CH2CH2CH2CH2CH2CH2CH2CN			
A-466	CH2 CH2CH2CH(CH3)CH2CH2CH2CH2CH2CH2CH2CN			

Nr.	R¹			
A-467	`CH2CH2CH2CHCCH3)CH2CH2CH2CH2CH2CH2CN			
A-468	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-469	CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2CH2CN			
A-470	CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CH2CN			
A-471	CH2CH2CH2CH2CH2CH2CH2CH(CH3)CH2CH2CN			
A-472	CH ₂			
A-473	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-474	CH2CH(CH3)CH(CH3)CH2CH2CH2CH2CH2CH2CH2CN			
A-475	CH₂CH₂CH₂C(CH₃)₂CH₂CH₂CH₂CH₂CH₂CH₂CN			
A-476	CH2CH2CH2CH(CH3)CH2CH2CH2CH2CH2CH2CH			
A-477	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-478	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-479	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-480	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-481	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN			
A-482	CH(CH₃)CH₂CH₂CH₂CH₂CH₂CH(CH₃)CH₂CH₂CN			
A-483	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN			
A-484	CH2CH2CH(CH3)CH2CH2CH2CH2CH3)CH2CH2CN			
A-485	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN			
A-486	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN			
A-487	CHFCH₂CN			
A-488	CHCICH₂CN			
A-489	CCl₂CH₂CN			
A-490	CF₂CH₂CN			
A-491	CHFCH₂CH₂CN			
A-492	CHCICH₂CH₂CN			
A-493	CCl₂CH₂CH2CN			
A-494	CF₂CH₂CN			
A-495	CHFCH₂CH₂CN			
A-496	CHCICH₂CH₂CH2CN			
A-497	CCl₂CH₂CH₂CN			
A-498	CF₂CH₂CH₂CH2CN			

Nr.	R¹ ·			
A-499	CHFCH₂CH₂CH₂CN			
A-500	CHCICH2CH2CH2CN			
A-501	CCI ₂ CH ₂ CH ₂ CH ₂ CN			
A-502	CF₂CH₂CH₂CH₂CN			
A-503	CHFCH₂CH₂CH₂CH₂CN			
A-504	CHClCH₂CH₂CH₂CH₂CN			
A-505	CCl ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-506	CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-507	CHFCH₂CH₂CH₂CH₂CH₂CN			
A-508	CHClCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-509	CCl ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-510	CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-511	CHFCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-512	CHCICH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-513	CCI ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-514	CF ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-515	CHFCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN			
A-516	CHCICH2CH2CH2CH2CH2CH2CH2CN			
A-517	CCl ₂ CH ₂ CN			
A-518	CF ₂ CH ₂ CN			
A-519	CHFCH ₂ CH ₂			
A-520	CHClCH ₂ CH ₂			
A-521	CCI ₂ CH ₂ CN			
A-522	CF ₂ CH			

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten, Insbesondere aus der Klasse der Oomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt-, Beiz- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemü-

sepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbissen, sowie an den Samen dieser Pflanzen.

Spezieil eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- 5 Alternaria-Arten an Gemüse und Obst,
 - Bipolaris- und Drechslera-Arten an Getreide, Reis und Rasen,
 - Blumeria graminis (echter Mehltau) an Getreide,
 - Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
 - · Bremia lactucae an Salat,
- 10 Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen,
 - Fusarium- und Verticillium-Arten an verschiedenen Pflanzen,
 - Mycosphaerella-Arten an Getreide, Bananen und Erdnüssen,
 - Peronospora-Arten an Kohl und Zwiebelgewächsen,
 - Phakopsora pachyrhizi und P. meibomiae an Soja,
- Phytophthora infestans an Kartoffeln und Tomaten,
 - Phytophthora capsici an Paprika,
 - Plasmopara viticola an Reben,
 - Podosphaera leucotricha an Apfeln,
 - Pseudocercosporella herpotrichoides an Weizen und Gerste,
- 20 Pseudoperonospora-Arten an Hopfen und Gurken,
 - Puccinia-Arten an Getreide,
 - Pyricularia oryzae an Reis,
 - Pythium aphanidermatum an Rasen,
 - Rhizoctonia-Arten an Baumwolle, Reis und Rasen,
- 25 Septoria tritici und Stagonospora nodorum an Weizen,
 - Uncinula necator an Reben,
 - Ustilago-Arten an Getreide und Zuckerrohr, sowie
 - Venturia-Arten (Schorf) an Äpfeln und Birnen.
- 30 Insbesondere eignen sie sich zur Bekämpfung von Schadpilzen aus der Klasse der Oomyceten, wie Peronospora-Arten, Phytophthora-Arten, Plasmopara viticola und Pseudoperonospora-Arten.
- Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Pae-*35 *cilomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

WO 2005/087770 PCT/EP2005/002424 28

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

5

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 1 bis 1000 g/100 kg, vorzugsweise 5 bis 100 g/100 kg Saatgut benötigt.

- Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.
- Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

25

Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butryolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

WO 2005/087770 PCT/EP2005/002424 29

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

20

35

10

15

Pulver-, Streu- und Stäubernittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch 25 Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere fes-30 te Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

40 Wasserlösliche Konzentrate (SL)

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem

WO 2005/087770 PCT/EP2005/002424 30

wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfsmittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

B Dispergierbare Konzentrate (DC)

5 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Wasser ergibt sich eine Dispersion.

C Emulgierbare Konzentrate (EC)

- 15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.
 - D Emulsionen (EW, EO)
- 40 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emulsion.

20 E Suspensionen (SC, OD)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdünnung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

25

- F Wasserdispergierbare und wasserlösliche Granulate (WG, SG) 50 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion, Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.
- G Wasserdispergierbare und wasserlösliche Pulver (WP, SP)
 75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Dispergier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei
 der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

PCT/EP2005/002424

2. Produkte für die Direktapplikation

H Stäube (DP)

5 Gew.Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel.

31

I Granulate (GR, FG, GG, MG)

0.5 Gew-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

J ULV- Lösungen (UL)

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen
 Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

25

20

5

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV)
40 verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-%
Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden,
Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der
Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide
mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden
Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- · Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodine, Dodernorph, Fenpropimorph, Fenpropidin,
 Guazatine, Iminoctadine, Spiroxamin, Tridemorph
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyprodinil,
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimenol, Triflumizol, Triticonazol,
 - Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
- Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
 - Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenamidol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Picobenzamid, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofom, Thiabandazol, Thifuzomid, Thiabandazol, Triforina.
 - fam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,

 Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches
 - Kupfersulfat,
 - Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl
- Phenylpyrrole wie Fenpicionil oder Fludioxonil,
 - Schwefel,

5

10

20

- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam. Phosphorige Säure. Fosetyl. Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
- Strobilurine wie Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- 10 Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid
 - Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

5

25

35

40

- Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden 15 unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle mit physikalischen Angaben aufgeführt.
- 20 Beispiel 1: Herstellung von 6-(3-Brompropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin [l-1]

Eine Lösung von 495 mg (1,7 mmol) 5-Ethyl-6-(3-pentyloxypropyl)-[1,2,4]triazolo[1,5a)pyrimidin-7-ylamin (Herstellung analog EP-A 141 317) in 5 ml Eisessig wurde bei 20 bis 25°C 0,60 ml 48 %ige wässr. Bromwasserstoffsäure versetzt, dann für 20 Std. refluxiert. Nach dem Erkalten wurde das Reaktionsgemisch von den flüchtigen Bestandteilen befreit, der Rückstand in CH₂Cl₂/H₂O aufgenommen und die wässrige Phase mit gesätt. NaHCO₃-Lsg. neutral gewaschen. Die organische Phase wurde abgetrennt, mit Wasser gewaschen, getrocknet und vom Lösungsmittel befreit. Aus dem Rückstand 30 erhielt man nach Chromatographie an RP18 Phase (MPLC isokratisch; Acetonitril-Wasser-Gemisch) 0,21g der Titelverbindung in Form weißer Kristalle.

Beispiel 2: Herstellung von 7-Amino-6-(5-cyanopentyl)-5-ethyl-[1,2,4]triazolo-[1,5-a]pyrimidin

2.a) 4,9-Dicyanononan-3-on

Zu einer Lösung von 6,8 g 1,6-Dicyanohexan und 11,2 g 95%igem Kaliumtertiärbutylat in 100 ml wasserfr. Dimethylformamid (DMF) wurden 5,6 g Propionsäureethylester zugetropft. Nach beendeter Zugabe wurde 17 Stunden bei 20 bis 25°C gerührt, dann das Reaktionsgemisch mit Wasser verdünnt und mit Tertiärbutylmethylether (MTBE) gewaschen. Nach Ansäuern mit konz. HCI wurde die wässrige Phase mit MTBE extrahiert. Diese Etherphase wurde mit Wasser gewaschen, nach Trocknung vom Lösungsmittel befreit. Es blieben 7,1 g der Titelverbindung als Öl zurück, das ohne weitere Reinigung umgesetzt wurde.

5 2.b) 7-Amino-6-(5-cyanopentyl)-5-ethyl-triazolo-(1,5-a)-pyrimidin [I-3]

4,76 g 4,9-Dicyanononan-3-on, 2,5 g 3-Amino-1H-1,2,4-triazol und 0,94 g p-Toluol-sulfonsäure wurden in 25 ml Mesitylen vier Stunden bei 170°C gerührt, wobei kontinuierlich etwas Mesitylen abdestillierte. Dann wurde das Lösungsmittel abdestilliert und der Rückstand mit Dichlormethan und Wasser aufgenommen. Nach Abtrennen unlöslicher Bestandteile wurde die organische Phase mit Wasser, gesättigter NaHCO₃-Lösung und gesättigter NaCl-Lösung gewaschen, dann getrocknet und von flüchtigen Bestandteilen befreit. Der Rückstand wurde in MTBE digeriert. Nach Abtrennen des Lösungsmittels blieben 2,0 g der Titelverbindung als farblose Kristalle vom Fp. 158 – 160°C zurück.

Beispiel 3: Herstellung von 5-Ethyl-6-(5,6,6-trifluor-hex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin [I-5]

20 3a) 7,8,8-Trifluor-2-propionyl-oct-7-ensäuremethylester

Zu einer Lösung von 3,30g (23mmol) Ethylpropionylacetat in 2,5ml Methanol wurden 5,40g methanolische Kaliummethylat-Lsg. (30%ig, 23 mmol) bei 20 bis 25°C zugetropft. Nach 1 Std. Rühren bei dieser Temperatur, dann 30 min bei 40°C wurden 5,00g (23 mmol) 6-Brom-1,1,2-trifluor-1-hexen bei 40°C während 5 min zugetropft. Die Reaktionsmischung wurde dann für 15 Std. bei dieser Temperatur gerührt. Die entstandene Suspension wurde in Methyl-tert.Butylether (MTBE) aufgenommen und über Kieselgel filtriert. Das Eluat wurde mit Wasser, dann mit gesätt. NaCl-Lsg. gewaschen, dann getrocknet und vom Lösungsmittel befreit. Es blieben 2,34 g der Titelverbindung als farbloses Öl zurück.

3b) 5-Ethyl-6-(5,6,6-trifluor-hex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol

Eine Mischung von 5,28 mmol 7,8,8-Trifluor-2-propionyl-oct-7-ensäuremethylester, 0,86g (10,2 mmol) 3-Amino-1,2,4-triazol und 10 ml Propionsäure wurde etwa 15 Std. refluxiert. Dann wurde die Propionsäure abdestilliert und der Rückstand an Kieselgel chromatografiert (Cyclohexan/Essigester-Gemisch). Es blieben 0,6 g der Titelverbindung in Form gelber Kristalle zurück.

15

25

3c) 7-Chor-5-ethyl-6-(5,6,6-trifluor-hex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin

0,60 g (2mmol) der Verbindung aus Bsp. 3b) in 20 ml Phosphorylchlorid wurden 15 Std. refluxiert. Dann wurden die flüchtigen Bestandteile abdestilliert, der Rückstand in CH₂Cl₂ aufgenommen, die Lösung mit NaHCO₃-Lsg. neutral gewaschen, getrocknet und vom Lösungsmittel befreit. Aus dem Rückstand erhielt man nach Chromatographie an Kieselgel (Essigester/Methanol-Gemisch) 0,38 g der Titelverbindung als gelbes Öl.

3d) 5-Ethyl-6-(5,6,6-trifluor-hex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin

10

15

5

Eine Lösung von 0,35g (1,1mmol) der Verbindung aus Bsp. 3c) in 2 ml Methanol wurde mit 10ml einer 7M methanolischen NH₃-Lsg. 48 Std. bei 20 bis 25°C gerührt. Die Lösung wurde von den flüchtigen Bestandteilen befreit, der Rückstand mit Wasser im Ultraschallbad aufgeschlämmt, abfiltriert, dann getrocknet. Es blieben 0,21g der Titelverbindung in Form weißer Kristalle vom Fp. 199°C zurück.

Tabelle I – Verbindungen der Formel I

Nr.	R¹	R²	Phys. Daten (Fp. [°C]; ¹H-NMR δ [ppm])
I-1	CH₂CH₂CH₂Br	CH₂CH₃	240-241
I-2	CH₂CH₂CH₂CI	CH₂CH₃	8,4 (s,1H), 7,8 (s,2H), 3,7 (t,2H), 2,8 (q, 2H), 2,7 (m,2H), 1,9 (m,2H), 1,2 (t,3H).
1-3	(CH₂)₅CN	CH₂CH₃	158 – 160
1-4	(CH₂)₅CN	CH₂CH₂CH₃	158
1-5	(CH ₂) ₄ CH=CH ₂	CH₂CH₃	199
I-6	(CH ₂) ₄ CH=CH ₂	CH₃	209-210
I-7	(CH ₂) ₄ CF=CF ₂	· CH ₃	190-191

Beispiele für die Wirkung gegen Schadpilze

20

Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden als eine Stammlösung aufbereitet mit 25 mg Wirkstoff, der mit einem Gemisch aus Aceton und/oder DMSO und dem Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) im Volumen-Verhältnis Lösungsmittel-Emulgator von 99 zu 1 ad 10 ml aufgefüllt wurde. Anschließend wurde ad 100 ml mit Wasser aufgefüllt. Diese Stammlösung wurde mit dem beschriebenen Lösungsmittel-Emulgator-Wasser Gemisch zu der unten angegeben Wirkstoffkonzentration verdünnt.

WO 2005/087770 PCT/EP2005/002424 36

Anwendungsbeispiel 1 - Wirksamkeit gegen Rebenperonospora verursacht durch *Plasmopara viticola*

5

10

Blätter von Topfreben wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Unterseiten der Blätter mit einer wässrigen Sporangienaufschwemmung von *Plasmopara viticola* inokuliert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfgesättigten Kammer bei 24°C und anschließend für 5 Tage im Gewächshaus bei Temperaturen zwischen 20 und 30°C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des Sporangienträgerausbruchs abermals für 16 Stunden in eine feuchte Kammer gestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blattunterseiten visuell ermittelt.

In diesem Test zeigten die mit 250 ppm der Verbindung I-7 behandelten Pflanzen keinen Befall, während die unbehandelten Pflanzen zu 90 % befallen waren.

Anwendungsbeispiel 2: Aktivität gegen die Krautfäule an Tomaten verursacht durch Phytophthora infestans bei protektiver Behandlung

20 Blätter von getopften Tomatenpflanzen wurden mit einer wässrigen Suspension der Wirkstoffe bis zur Tropfnässe besprüht. Vier Tage nach der Applikation wurden die Blätter mit einer wässrigen Sporangienaufschwemmung von *Phytophthora infestans* infiziert. Anschließend wurden die Pflanzen in einer wasserdampfgesättigten Kammer bei Temperaturen zwischen 18 und 20°C aufgestellt. Nach 6 Tagen wurde der Befall visuell in % ermittelt.

In diesem Test zeigten die mit 250 ppm der Verbindung I-7 behandelten Pflanzen keinen Befall, während die unbehandelten Pflanzen zu 100 % befallen waren.

Patentansprüche

1. Triazolopyrimidine der Formel I

5 in der die Substituenten folgende Bedeutung haben:

R¹ C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten unsubstituiert sind oder eine bis drei gleiche oder verschiedene Gruppen R^a und/oder R^b tragen;

oder

10

15

20

25

30

C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₁-C₆-Alkoxy-C₂-C₁₂-alkenyl oder C₁-C₆-Alkoxy-C₂-C₁₂-alkinyl, wobei die Kohlenstoffketten eine bis drei gleiche oder verschiedene Gruppen R^a tragen;

R^a Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkylthio, C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy, NR¹¹R¹², oder

C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen R^b tragen kann;

R^b C₁-C₄-Alkyl, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy und NR¹¹R¹²

R¹¹, R¹² Wasserstoff oder C₁-C₆-Alkyl;

wobei die Kohlenstoffketten der Gruppen R^a ihrerseits halogeniert sein können;

- R² C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten durch eine bis drei Gruppen R^c substituiert sind:
- Cyano, Nitro, Hydroxy, NR¹¹R¹²; oder C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen C₁-C₄-Alkyl, Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy oder NR¹¹R¹² tragen kann.

- Verbindungen der Formel I gemäß Anspruch 1, worin 2.
 - C₁-C₁₄-Halogenalkyl, C₁-C₁₂-Halogenalkoxy-C₁-C₁₂-alkyl, C₁-C₁₂-Alkoxy-C₁- R^1 C₁₂-halogenalkyl, C₂-C₁₂-Alkenyl, C₂-C₁₂-Halogenalkenyl, C₂-C₁₂-Alkinyl oder C2-C12-Halogenalkinyl, wobei die Kohlenstoffketten eine bis drei Gruppen R^a tragen können:
 - Rª Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₁₂-Alkenyloxy, C₃-C₁₂-Alkinyloxy, NR¹¹R¹², oder

C₃-C₆-Cycloalkyl, welches eine bis vier gleiche oder verschiedene Gruppen tragen kann;

- R⁵ C₁-C₄-Alkyl, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkythio, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy und NR¹¹R¹²
 - R¹¹, R¹² Wasserstoff oder C₁-C₆-Akyl;

wobei die Kohlenstoffketten der Gruppen Re ihrerseits halogeniert sein können;

- Verbindungen der Formel I gemäß Anspruch 1 oder 2, worin 3.
- R^2 C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten durch eine bis drei Gruppen R^c substituiert sein können: 25
 - Cvano, Nitro, Hydroxy, NR¹¹R¹²; oder C₃-C₆-Cycloalkyl, welches eine R° bis vier gleiche oder verschiedene Gruppen C₁-C₄-Alkyl, Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy oder NR¹¹R¹² tragen kann.
 - 4. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 3, worin
 - R^1 C₁-C₁₄-Alkyl, wobei die Kohlenstoffketten eine bis drei gleiche oder verschiedene Gruppen Cyano oder Halogen tragen;

bedeutet.

5

10

15

20

30

WO 2005/087770 PCT/EP2005/002424

5. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 3, worin

R¹ C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl, wobei die Kohlenstoffketten unsubstituiert sind oder eine bis drei gleiche oder verschiedene Gruppen R^a und/oder R^b tragen;

bedeutet.

Trifluordodecvl steht.

5

- Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, worin R¹ und R²
 gemeinsam nicht mehr als 14 Kohlenstoffatome aufweisen.
- Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, worin R1 für 7. Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Tri-15 fluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl, 1,1,1-Trifluorprop-2-yl, 1-Chlorpropyl, 1-Fluorpropyl, 3-Chlorpropyl, 3-Fluorpropyl, 3,3,3-Trifluorpropyl, 1-Chlorbutyl, 1-Fluorbutyl, 4-Chlorbutyl, 4-Fluorbutyl, 4,4,4-Trifluorbutyl, 1-Chlorpentyl, 1-Fluorpentyl, 5,5,5-Trifluorpentyl, 5-Chlorpentyl, 5-Fluorpentyl, 1-Chlorhexyl, 20 1-Fluorhexyl, 6-Chlorhexyl, 6-Fluorhexyl, 6,6,6-Trifluorhexyl, 1-Chlorheptyl, 1-Fluorheptyl, 7-Chlorheptyl, 7-Fluorheptyl, 7,7,7-Trifluorheptyl, 1-Chloroctyl, 1-Fluoroctyl, 8-Fluoroctyl, 8,8,8-Trifluoroctyl, 1-Chlornonyl, 1-Fluornonyl, 9-Fluornonyl, 9,9,9-Trifluornonyl, 9-Chlornonyl, 1-Fluordecyl, 1-Chlordecyl, 10-Fluordecyl, 10,10,10-Trifluordecyl, 10-Chlordecyl, 1-Chlorundecyl, 1-Fluor-25 undecyl, 11-Chlorundecyl, 11-Fluorundecyl, 11,11,11-Trifluorundecyl, 1-Chlordodecyl, 1-Fluordodecyl, 12-Chlordodecyl, 12-Fluordodecyl oder 12,12,12-
- 30 8. Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 7, worin R² für Methyl, Ethyl, iso-Propyl, n-Propyl oder n-Butyl steht.
- 6-(3-Brompropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 6-(3-Chlorpropyl)-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 6-(7-Amino-5-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-hexannitril;
 6-(7-Amino-5-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-6-yl)-hexannitril;
 5-Ethyl-6-hex-5-enyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 6-Hex-5-enyl-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;
 5-Methyl-6-(5,6,6-trifluor-hex-5-enyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin.

Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man ß-Ketoester der Formel II,

$$RO$$
 RO
 R^1
 R^2
 R^2

5 in der R für C₁-C₄-Alkyl steht, mit 3-Amino-1,2,4-triazol der Formel III

zu 7-Hydroxytriazolopyrimidinen der Formel IV

umsetzt, welche zu Verbindungen der Formel V,

10

25

in der Hal für Chlor oder Brom steht, halogeniert werden, und V mit Ammoniak umgesetzt wird.

11. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man Acylcyanide der Formel VI,

mit 3-Amino-1,2,4-triazol der Formel III gemäß Anspruch 10 umsetzt.

- 20 12. Verbindungen der Formeln IV und V gemäß Anspruch 10.
 - 13. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, in der R¹ durch Halogen substituiertes C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₂-C₁₂-Alkenyl oder C₂-C₁₂-Alkinyl bedeutet, durch Halogenierung von Triazolopyrimidinen der Formel VII,

WO 2005/087770 PCT/EP2005/002424

in der R für C₁-C₁₄-Alkyl, C₁-C₁₂-Alkoxy-C₁-C₁₂-alkyl, C₂-C₁₂-Alkenyl, C₂-C₁₂-Alkenyl, C₂-C₁₂-Alkinyl steht, wobei die Kohlenstoffketten eine bis drei Gruppen R^a gemäß Anspruch 1 tragen können, mit einem Halogenierungsmittel in Gegenwart eines Radikalstarters oder einer Säure.

- 14. Fungizides Mittel, enthaltend einen festen oder flüssigen Träger und eine Verbindung der Formel I gemäß einem der Ansprüche 1 bis7.
- 10 15. Saatgut, enthaltend eine Verbindung der Formel I gemäß einem der Ansprüche 1 bis 9 in einer Menge von 1 bis 1000 g pro 100 kg.

5

Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer
Verbindung der Formel I gemäß einem der Ansprüche 1 bis 9 behandelt.