Machine Learning

(機器學習)

Lecture 2: The Learning Problems

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

When Can Machines Learn?

Lecture 2: The Learning Problems

- Learning with Different Output Space \mathcal{Y}
- Learning with Different Data Label y_n
- Learning with Different Protocol $f \Rightarrow (\mathbf{x}_n, y_n)$
- ullet Learning with Different Input Space ${\mathcal X}$

Credit Approval Problem Revisited

More Binary Classification Problems

- credit approve/disapprove
- email spam/non-spam
- patient sick/not sick
- ad profitable/not profitable
- answer correct/incorrect (KDDCup 2010)

core and important problem with many tools as building block of other tools

Multiclass Classification: Coin Recognition Problem

- classify US coins (1c, 5c, 10c, 25c) by (size, mass)
- $\mathcal{Y} = \{1c, 5c, 10c, 25c\}$, or $\mathcal{Y} = \{1, 2, \dots, K\}$ (abstractly)
- binary classification: special case with K = 2

Other Multiclass Classification Problems

- written digits $\Rightarrow 0, 1, \dots, 9$
- emails ⇒ spam, primary, social, promotion, update (Google)

many applications in practice

Multiclass Classification for Object Recognition: Which Fruit?

(image by Robert-Owen-Wahl from Pixabay)

apple

orange

strawberry

kiwi

(images by Pexels, PublicDomainPictures, 192635, Rob van der Meijden from Pixabay)

 $\mathcal{Y} = \{\text{apple}, \text{orange}, \text{strawberry}, \text{kiwi}\}$

Which Fruits?

?: {apple, orange, kiwi}

(image by Michal Jarmoluk from Pixabay)

apple

orange

strawberry

kiwi

(images by Pexels, PublicDomainPictures, 192635, Rob van der Meijden from Pixabay)

multilabel classification:

classify input to multiple (or no) categories

 $\mathcal{V}=\mathbf{2}$ {apple,orange,strawberry,kiwi}

?: {machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. }

another multilabel classification problem: tagging input to multiple categories

Binary Relevance: Multilabel Classification via Yes/No

binary classification

{yes, no}

multilabel w/ L classes: L yes/no

machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- Binary Relevance (BR): reduction (transformation) to multiple isolated binary classification
- disadvantages (addressed by more sophisticated models):
 - isolation—hidden relations not exploited
 (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - imbalanced—few yes, many no

BR for multilabel classification: uses binary classification as a core tool

Regression: Patient Recovery Prediction Problem

- binary classification: patient features ⇒ sick or not
- multiclass classification: patient features ⇒ which type of cancer
- regression: patient features ⇒ how many days before recovery
- $\mathcal{Y} = \mathbb{R}$ or $\mathcal{Y} = [\text{lower}, \text{upper}] \subset \mathbb{R}$ (bounded regression) —deeply studied in statistics

Other Regression Problems

- company data ⇒ stock price
- climate data ⇒ temperature

also core and important with many 'statistical' tools as building block of other tools

Sophisticated Output: Image Generation Problems

Style Transfer

(Leonardo da Vinci, in Public Domain)

(Van Gogh, in Public Domain) all images are downloaded from Wikipedia

(Pifinlay, with CC0)

Other Image Generation Problems

- noisy image ⇒ clean image
- low-resolution image ⇒ high-resolution image

 \mathcal{Y} : a 'manifold' $\subset \mathbb{R}^{w \times h \times c}$, arguably not just multi-pixel regression

Mini Summary

Learning with Different Output Space \mathcal{Y}

- binary classification: $\mathcal{Y} = \{-1, +1\}$
- multiclass classification: $\mathcal{Y} = \{1, 2, \cdots, K\}$
- multilabel classification: $\mathcal{Y} = 2^{\{1,2,\cdots,K\}}$
- regression: $\mathcal{Y} = \mathbb{R}$
- image generation: $\mathcal{Y} \subset \mathbb{R}^{w \times h \times c}$
- ... and a lot more!!

core tools: binary classification and regression

unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Questions?

supervised learning: every \mathbf{x}_n comes with corresponding y_n

Unsupervised: Coin Recognition without y_n

supervised multiclass classification

unsupervised multiclass classification

⇔ 'clustering'

Other Clustering Problems

- articles ⇒ topics
- consumer profiles ⇒ consumer groups

clustering: a challenging but useful problem

Unsupervised: Coin Recognition without y_n

supervised multiclass classification

unsupervised multiclass classification

⇔ 'clustering'

Other Clustering Problems

- articles ⇒ topics
- consumer profiles ⇒ consumer groups

clustering: a challenging but useful problem

Unsupervised: Learning without y_n

Other Unsupervised Learning Problems

- clustering: {x_n} ⇒ cluster(x)
 (≈ 'unsupervised multiclass classification')
 —i.e. articles ⇒ topics
- density estimation: {x_n} ⇒ density(x)
 (≈ 'unsupervised bounded regression')
 —i.e. traffic reports with location ⇒ dangerous areas
- outlier detection: {x_n} ⇒ unusual(x)
 (≈ extreme 'unsupervised binary classification')
 —i.e. Internet logs ⇒ intrusion alert
- ... and a lot more!!

unsupervised learning: diverse, with possibly very different performance goals

Self-supervised: Unsupervised + Self-defined Goal(s)

jigsaw puzzle: pieces → full picture

(Figure 1 of Noroozi and Favaro,

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles. ECCV 2016)

Other Popular Goals

- colorization: grayscale image → colored image
- center word prediction: chunk of text → center word
- next sentence prediction: sentence A → is sentence B next?

self-supervised learning: recipe to learn 'physical knowledge' before actual task

Semi-supervised: Coin Recognition with Some y_n

rised semi-supervised unsupervised (clustering)

Other Semi-supervised Learning Problems

- face images with a few labeled ⇒ face identifier (Facebook)
- medicine data with a few labeled ⇒ medicine effect predictor

semi-supervised learning: leverage unlabeled data to avoid 'expensive' labeling

Weakly-supervised: Learning without True y_n

complementary label: \bar{y}_n ('not' label) instead of y_n

(Figure 1 of Yu et al., Learning with Biased Complementary Labels, ECCV 2018)

Other Weak Supervisions

- partial label: a set Y_n that contains true y_n
- noisy label: y'_n , a noisy version of true y_n
- proportion label: aggregated statistics of a set of y_n

weakly-supervised learning: another realistic family to reduce labeling burden

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog pees on the ground.

BAD DOG. THAT'S A VERY WRONG ACTION.

- cannot easily show the dog that $y_n = \text{sit}$ when $\mathbf{x}_n = \text{sit down'}$
- but can 'punish' to say \tilde{y}_n = pee is wrong

Other Reinforcement Learning Problems Using $(\mathbf{x}, \tilde{\mathbf{y}}, \text{goodness})$

- (customer, ad choice, ad click earning) \Rightarrow ad system
- (cards, strategy, winning amount) ⇒ black jack agent

reinforcement: learn with 'partial/implicit information' (often sequentially)

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog sits down.

Good Dog. Let me give you some cookies.

- still cannot show y_n = sit when x_n = 'sit down'
- but can 'reward' to say $\tilde{y}_n = \sin i \sin good$

Other Reinforcement Learning Problems Using $(\mathbf{x}, \tilde{\mathbf{y}}, \text{goodness})$

- (customer, ad choice, ad click earning) \Rightarrow ad system
- (cards, strategy, winning amount) ⇒ black jack agent

reinforcement: learn with 'partial/implicit information' (often sequentially)

THE Most Well-known Reinforcement Learning Agent

(Public Domain, from Wikipedia; used here for education purpose; all other rights still belong to Google DeepMind)

Non-ML Techniques

Monte C. Tree Search \approx move simulation in brain

(CC-BY-SA 3.0 by Stannered on

Wikipedia)

ML Techniques

Deep Learning

pprox board analysis in human brain

(CC-BY-SA 2.0 by Frej Bjon on

Wikipedia)

Reinforcement Learn.

 \approx (self)-practice in human training

(Public Domain, from Wikipedia)

good AI: important to use the right techniques—ML & others, including human

Learning with Different Data Label yn

Mini Summary Learning with Different Data Label y_a

- supervised: all y_n
- unsupervised: no y_n
- self-supervised: self-defined y'_n from \mathbf{x}_n
- semi-supervised: some y_n
- weakly-supervised: no true y_n
- reinforcement: implicit y_n by goodness(\tilde{y}_n)
 - ... and more!!

core tool: supervised learning

unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Questions?

batch supervised multiclass classification: learn from all known data

- batch of (email, spam?) ⇒ spam filter
- batch of (patient, cancer) ⇒ cancer classifier
- batch of patient data ⇒ group of patients

batch learning: a very common protocol

Online: Spam Filter that 'Improves'

- batch spam filter: learn with known (email, spam?) pairs, and predict with fixed g
- online spam filter, which sequentially:
 - $\mathbf{0}$ observe an email \mathbf{x}_t
 - 2 predict spam status with current $g_t(\mathbf{x}_t)$
 - 3 receive 'desired label' y_t from user, and then update g_t with (\mathbf{x}_t, y_t)

Connection to What We Have Learned

- PLA can be easily adapted to online protocol (how?)
- reinforcement learning is often done online (why?)

online: hypothesis 'improves' through receiving data instances **sequentially**

Online + Batch for Real-World Applications

model re-trained with historical daily batch data, incrementally or completely

online prediction for each request

batch labelled data collected daily

purely online

- incremental update costly online
- delayed labels hard to handle properly

purely batch

 cannot capture drifts/trends well

26/39

complete re-training possibly costly

real-world ML system different from textbook settings

Active Learning: Learning by 'Asking'

Protocol ⇔ Learning Philosophy batch: 'duck feeding' online: 'passive sequential' unknown target function active: 'question asking' (sequentially) —query the y_n of the chosen \mathbf{x}_n

training examples $\mathcal{D}: (\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$

> hypothesis set \mathcal{H}

 $f \colon \mathcal{X} \to \mathcal{Y}$

learning algorithm

final hypothesis $g \approx f$

active: improve hypothesis with fewer labels (hopefully) by asking questions strategically

Making Active Learning More Realistic

open-source tool libact developed by NTU CLLab (Yang, 2017)

https://github.com/ntucllab/libact

- including many popular strategies
- received > 500 stars and continuous issues

"libact is a Python package designed to make active learning easier for real-world users"

Mini Summary

Learning with Different Protocol $f \Rightarrow (\mathbf{x}_n, y_n)$

- batch: all known data
- online: sequential (passive) data
- online + batch: best of both worlds
 - active: strategically-observed data
 - ... and more!!

core protocol: batch

 $f \colon \mathcal{X} \to \mathcal{Y}$

Questions?

Credit Approval Problem Revisited

concrete features: each dimension of $\mathcal{X} \subseteq \mathbb{R}^d$ represents 'sophisticated physical meaning'

More on Concrete Features

- (size, mass) for coin classification
- customer info for credit approval
- patient info for cancer diagnosis
- often including 'human intelligence' on the learning task

concrete features: the 'easy' ones for ML

Raw Features: Digit Recognition Problem (1/2)

- digit recognition problem: features ⇒ meaning of digit
- · a typical supervised multiclass classification problem

Raw Features: Digit Recognition Problem (2/2)

by Concrete Features

by Raw Features

- 16 by 16 gray image $\mathbf{x} \equiv$ $(0,0,0.9,0.6,\cdots) \in \mathbb{R}^{256}$
- 'simple physical meaning': thus more difficult for ML than concrete features

Other Problems with Raw Features

image pixels, speech signal, etc.

raw features: often need human ('feature engineering') or machines to convert to concrete ones

Deep Learning: 'Automatic' Conversion from Raw to Concrete

- layered extraction: simple to complex features
- natural for difficult learning task with raw features, like vision

deep learning: currently popular in vision/speech/...

Abstract Features: Rating Prediction Problem

Rating Prediction Problem (KDDCup 2011)

- given previous (userid, itemid, rating) tuples, predict the rating that some userid would give to itemid?
- a regression problem with $\mathcal{Y} \subseteq \mathbb{R}$ as rating and $\mathcal{X} \subseteq \mathbb{N} \times \mathbb{N}$ as (userid, itemid)
- 'no physical meaning'; thus even more difficult for ML

Other Problems with Abstract Features

- student ID in online tutoring system (KDDCup 2010)
- · advertisement ID in online ad system

abstract: again need 'feature conversion/extraction/construction'

Mini Summary

Learning with Different Input Space \mathcal{X}

- concrete: sophisticated (and related) physical meaning
 - raw: simple physical meaning
- abstract: no (or little) physical meaning
- ... and more!!

'easy' input: concrete

unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Questions?

Summary

When Can Machines Learn?

Lecture 1: Basics of Machine Learning

Lecture 2: The Learning Problems

- Learning with Different Output Space y
 [classification], [regression], others
- Learning with Different Data Label y_n

[supervised], un/semi/weakly-sup., reinforcement

- Learning with Different Protocol $f \Rightarrow (\mathbf{x}_n, y_n)$ [batch], online, active
- Learning with Different Input Space $\mathcal X$ [concrete], raw, abstract
- next: learning is impossible?!