AMENDMENTS TO THE CLAIMS

What is claimed is:

1	1. (Currently Amended) A system for providing two-way communication of
2	content between a wireless mobile communication device and a remote computer
3	network, comprising:
4	a wireless two-way messaging network further comprising:
5	said wireless communication device;
6	a basestation base station in communication with said wireless
7	communication device;
8	a gateway server in communication with said basestation; and
9	a network and layer framework for translating said communicated
10	content between said wireless communication device and said basestation; and
11	an intermediary computer system in communication with said wireless two-way
12	messaging network and said remote computer network, said intermediary computer
13	system further comprising:
14	means for effecting priority treatment of a specific connection between
15	said wireless mobile communication device and said remote computer network by
16	allocating dedicated resources of said intermediary computer system to enable said
17	specific connection to mimic a circuit communication.
1	2. (Original) The system of claim 1, wherein said network and layer
2	framework comprises:
3	a system layer;
4	an operating system framework layer;
5	a user interface; and
6	a Message Transport Protocol stack.
1	3. (Original) The system of claim 2, wherein said user interface comprises
2	a computer network browser.
1	4. (Original) The system of claim 2, wherein said network and layer
2	framework interface further comprises a data encryption module.

- 1 5. (Original) The system of claim 1, wherein said intermediary computer
- 2 system further comprises:
- a first electronic queue of data communicated from said wireless two-way
- 4 messaging network to said intermediary computer system;
- 5 a plurality of data modules in communication with said first electronic queue;
- an event handler in communication with said plurality of data modules;
- 7 an application dispatcher in communication with said plurality of data modules
- 8 and said event handler;
- 9 a second electronic queue of data communicated from said intermediary computer
- 10 system to said wireless two-way messaging network; and
- a content fetcher in communication with said application dispatcher and said
- 12 remote computer network.
- 1 6. (Original) The system of claim 5, wherein said second queue further
- 2 comprises means for Message Transport Protocol encoding.
- 1 7. (Currently Amended) The system of claim 5, wherein said plurality of
- 2 data modules comprises at least one of:
- 3 a message validator;
- 4 a session module;
- 5 a wireless IP/IP mapper database;
- 6 a data transformer;
- 7 an encryption module; [[and]] or
- 8 a cache manager.
- 1 8. (Currently Amended) A method for providing two-way communication
- 2 of content between a wireless mobile communication device and a remote computer
- 3 network via an intermediary computer system, comprising the steps of:
- 4 originating a request for data at said wireless mobile communication device and
- 5 transmitting said data request through a network and layer framework to a two-way
- 6 wireless messaging network;

- 7 transmitting said request for data from said two-way wireless messaging network
- 8 via a first electronic queue to said intermediary computer system in communication with
- 9 said remote computer network;
- retrieving the requested data from said remote computer network;
- placing said retrieved data in a first queue;
- 12 <u>assigning priority to said retrieved data;</u>
- allocating dedicated resources of said intermediary computer system to said
- 14 retrieved data based on said assigned priority to mimic a circuit communication;
- transmitting said retrieved data from said second queue to said wireless
- 16 communication device via said two-way wireless messaging network; and
- displaying said retrieved data at said wireless communication device.
 - 1 9. (Original) The method of claim 8, wherein said request for data is a
- 2 Uniform Resource Locator.
- 1 10. (Currently Amended) The method of claim 8, wherein said wireless
- 2 communication device includes a stored Wireless [[EP]] IP, and further wherein the step
- 3 of transmitting said data request through a network and layer framework to a two-way
- 4 wireless messaging network comprises the steps of:
- 5 encoding said data request into Message Transport Protocol;
- 6 sending said Message Transport Protocol-encoded data request to one of a short
- 7 messaging system stack and an email stack; and
- 8 transmitting said Message Transport Protocol-encoded data request and said
- 9 Wireless IP to said intermediary computer system.
- 1 11. (Currently Amended) The method of claim 10, wherein the step of
- 2 transmitting said data request through a network and layer framework to a two-way
- 3 <u>wireless messaging network</u> further comprising <u>comprises</u> the steps of:
- 4 generating a copy of said Message Transport Protocol-encoded data request;
- 5 placing [[a]] said copy of said Message Transport Protocol-encoded data request
- 6 in said wireless communication device;
- 7 waiting a fixed duration for one of positive receipt confirmation and negative
- 8 receipt confirmation from said intermediary computer system;

- 9 retrieving said copy of said Message Transport Protocol-encoded data request
- 10 from said wireless communication device in response to said negative receipt
- 11 confirmation;
- transmitting said retrieved copy of said Message Transport Protocol-encoded data
- 13 request and said Wireless IP to said intermediary computer system; and
- removing said copy of said Message Transport Protocol-encoded data request
- 15 from said wireless communication device in response to said positive receipt
- 16 confirmation from said intermediary computer system.
- 1 12. (Original) The method of claim 8, wherein the step of retrieving the
- 2 requested data from said remote computer network further comprises the steps of:
- 3 retrieving said request for data in said first electronic queue;
- 4 validating said retrieved request for data for Message Transport Protocol coding
- 5 and transmission completeness;
- analyzing said retrieved request for data to identify type of data requested;
- 7 locating a data module suitable for retrieval of said requested data; and
- 8 passing said data module to a content fetcher.
- 1 13. (Original) The method of claim 12, further including the steps of:
- 2 transforming said retrieved data to an intermediary markup language; and
- 3 transforming said retrieved data to a target markup language.
- 1 14. (Currently Amended) The method of claim [[12]] 13, wherein said
- 2 intermediary markup language is Extensible Markup Language.
- 1 15. (Original) The method of claim 8, wherein said second electronic queue
- 2 divides said retrieved data into a plurality of data packets.
- 1 16. (Original) The method of claim 15, further including the step of
- 2 Message Transport Protocol-encoding each of said plurality of data packets.
- 1 17. (Original) The method of claim 16, wherein each of said plurality of
- 2 data packets has a maximum length of 448 characters.
- 1 18. (Original) The method of claim 17, wherein said step of transmitting
- 2 said retrieved data from said second electronic queue to said wireless communication

- 3 device via said two-way wireless messaging network is conducted using one of Short
- 4 Messaging Service protocol, Simple Mail Transfer Protocol, and Simple Network Paging
- 5 Protocol.
- 1 19. (Original) The method of claim 17, further including the step of retrieving a
- 2 Wireless IP and Session ID for said retrieved data.
- 1 20. (Original) The method of claim 8, further including the steps of:
- 2 encrypting one of said data request and said retrieved data prior to transmission;
- 3 and
- 4 decrypting said one of said data request and said retrieved data subsequent to
- 5 transmission.

AMENDMENTS TO THE DRAWINGS

The attached three (3) sheets of drawings include changes to Fig. 7 (CONT-1), Fig. 7 (CONT-2), and Fig. 7 (CONT-3). Specifically, Fig. 7 (CONT-1), Fig. 7 (CONT-2), and Fig. 7 (CONT-3) have been renumbered as Fig. 7A, Fig. 7B, and Fig. 7C respectively. These three sheets replace the original three drawing sheets including Fig. 7 (CONT-1), Fig. 7 (CONT-2), and Fig. 7 (CONT-3).

Attachment: Replacement sheets of Fig. 7 (CONT-1), Fig. 7 (CONT-2), and Fig. 7 (CONT-3).

WAI-2134367v1 11