11.10 Notes

Math 403/503

November 2022

First Video Lecture - Gram-Schmidt Example 1

Recall we will work in V = all continuous real-valued functions [-1,1], let $v = e^x$. This has a supspace $U = \text{span}(1, x, x^2)$. We are assuming an inner product:

$$< f, g > = \int_{-1}^{1} f g dx$$

 $||f|| = \sqrt{\int_{-1}^{1} f^{2} dx}$

First we need to replace $v_1 = 1, v_2 = x, v_3 = x^2$ with an ONB e_1, e_2, e_3 .

$$\begin{aligned} & \textbf{Gram-Schmidt:} \\ & e_1 = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{\int_{-1}^1 1^2 dx}} = \frac{1}{\sqrt{2}} \\ & e_2 = \frac{v_2 - \langle v_2, e_1 \rangle e_1}{||\dots||} \\ & = \frac{x - \int_{-1}^1 x \frac{1}{\sqrt{2}} dx (\frac{1}{\sqrt{2}}}{||\dots||} \end{aligned}$$

The integral term cancels out because x is an odd function! So...

$$= \frac{x}{||x||} = \frac{x}{\sqrt{\int_{-1}^{1} x^{2} dx}} = \frac{x}{\sqrt{\frac{3}{2}}} = \sqrt{\frac{3}{2}}(x)$$

$$e_{3} = \frac{v_{3} - \langle v_{3}, e_{1} \rangle e_{1} - \langle v_{3}, e_{2} \rangle e_{2}}{||\dots||}$$

$$= \frac{x^{2} - \int_{-1}^{1} x^{2} (\frac{1}{\sqrt{2}} dx \frac{1}{\sqrt{2}} - \int_{-1}^{1} x^{2} \sqrt{\frac{3}{2}} x dx \sqrt{\frac{3}{2}} x}{||\dots||}$$

$$= \frac{x^{2} - \frac{1}{3}}{||x^{2} - \frac{1}{3}||}$$

$$= \frac{x^{2} - \frac{1}{3}}{\sqrt{\int_{-1}^{1} (x^{2} - \frac{1}{3})^{2} dx}}$$

$$= \frac{x^{2} - \frac{1}{3}}{\sqrt{\frac{45}{45}}}$$

$$= \sqrt{\frac{45}{8}}(x^{2} - \frac{1}{3})$$

So,
$$e_1 = \frac{1}{\sqrt{2}}, e_2 = \sqrt{\frac{3}{2}}x, e_3 = \sqrt{\frac{45}{8}}(x^2 - \frac{1}{3})$$
. Next we project e^x onto $U = \operatorname{span}(e_1, e_2, e_3)$. $P_U v = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 + \langle v, e_3 \rangle e_3$. $\langle v, e_1 \rangle = \int_{-1}^1 e^x \frac{1}{\sqrt{2}} dx = \frac{1}{\sqrt{2}} e^x |_{-1}^1 = \frac{1}{\sqrt{2}} (e - \frac{1}{e}) dx = \frac{1}{\sqrt{2}} e^x |_{-1}^1 = \frac{1}{\sqrt{2}} (e - \frac{1}{e}) dx = \frac{\sqrt{6}}{e}$

This is an integration by parts problem, but we skipped it. We went to symbolab to compute it!

$$\langle v, e_3 \rangle = \int_{-1}^1 e^x \sqrt{\frac{45}{8}} (x^2 - \frac{1}{3}) dx = \sqrt{\frac{5}{2}} (e - \frac{7}{e})$$

$$P_U v = \frac{1}{\sqrt{2}} (e - \frac{1}{e}) \frac{1}{\sqrt{2}} + \frac{\sqrt{6}}{e} \sqrt{\frac{3}{2}} x + \sqrt{\frac{5}{2}} (e - \frac{7}{e} \sqrt{\frac{45}{8}} (x^2 - \frac{1}{3}))$$

Now we can plug our equation into desmos to see how close the approximation is over the given integral!

2 Second Video - Adjoints (Chapter 7)

Before proceeding generally, we state/recall the situation in \mathbb{R}^n or \mathbb{C}^n with the dot product. If A is an m x n matrix, it's <u>adjoint</u> (also called hermitian) is $A^* = \overline{A^t}$. So for R, A^* is just the transpose (dual) but for C, A^* is something different.

Example:
$$A = \begin{bmatrix} 1 & 2 & 3+i \\ -i & 4 & 0 \end{bmatrix}, A^* = \begin{bmatrix} 1 & i \\ 2 & 4 \\ 3-i & 0 \end{bmatrix}$$

Using the inner product $\langle v, w \rangle = v \cdot \overline{w}$. A and A^* have a special relationship: $\langle Av, w \rangle = \langle v, \underline{A^*w} \rangle$. To see this: $\langle Av, w \rangle = (Av) \cdot \overline{w} = (Av)^t \overline{w} = v^t A^t \overline{w} = v^t (A^t \overline{w}) = v^t \overline{(A^t w)} = v^t \overline{(A^*w)} = v \cdot \overline{(A^*w)} = \langle v, A^*w \rangle$.

This special property of A^* becomes the definition in general inner product spaces:

Definition: Let V, W be inner product spaces (finite dimensional). Let $T \in L(V, W)$. Then T^* is an element of L(W, V) defined by the relationship $\langle Tv, w \rangle = \langle v, T^*w \rangle$ for all $v \in V, wW$.

In order for the definition to make sense we need to show T^*w exists for every w and then that T^* is linear. We show existence; linearity is 7.5 in the text.

Proof that T^*w exists:

Let V,W as above, with TL(V,W). Let V have orthonormal basis $e_1,...,e_n$. Fix $w \in W$ as arbitrary. We are looking for a vector $u \in V$ such that $< Tv, w > = < v, u > \forall v \in V$. To do this let $\phi(v) = < Tv, w > .\phi$ is a linear functional (it is in V^*). So $\forall v: \phi(v) = \phi(< v, e_1 > \underline{e_1 + ...} + < v, e_n > e_n) = < v, e_1 > \phi(\underline{e_1}) + ... + < v, \underline{e_n} > \phi(e_n) = < v, \overline{\phi(e_1)e_1} > +... + < v, \phi(e_n)e_n > = < v, \overline{\phi(e_1)e_1} + ... + \phi(e_n)e_n >$. Let u be the second term in the inner product, thus, it equals < v, u >. Note that T^*w is now defined to be this vector, u.

The matrix of a linear map T is related to the matrix of T^* in the expected

way, provided you work over orthonormal bases for V and W. If V has ONB $e_1,...,e_n$ and W has ONB $f_1,...,f_n$ and if T has matrix A with respect to e_i,f_j then T^* has matrix $\overline{A^t}$ with respect to f_j,e_i . Note: If you work in polynomial spaces with basis $1,x,x^2,...,x^n$ and inner product $\int_{-1}^1 Pqdx$ then these are not orthonormal, so knowing the matrix of some $T\epsilon L(V)$ doesn't tell you the matrix.