AD~1 ENDSEM ODD~2023

	AD~1 ENDSEMI ODD~2025
L	Introduction to the course/subject: Program Outcomes; Course Outcomes; Lesson
01	plan; Teaching methodology; Evaluation strategy etc.
L	Introduction to Algorithm Design: Importance of problem solving using
02	algorithms; Characteristic features of an algorithm(input, output, finiteness,
	definiteness, effectiveness, correctness, efficiency);
L	Introduction to Algorithm Design: Expressing algorithms (pseudocode); Basic
03	aspects of algorithms (correctness, design and analysis)
L	Computational tractability: Polynomial time as a definition efficiency of an
04	algorithm; Worst case Running times and Brute-Force Search
L	Asymptotic order of growth (Big-Oh, Big-Omega, Big-Theta)
05	
L	Asymptotic order of growth (Big-Oh, Big-Omega, Big-Theta)
06	
L	Recurrences (Iterative, Substitution and Master method)
07	
L	Recurrences (contd)
08	
L	Priority Queue Implementation using Heap data structure
09	
L	Priority Queue Implementation using Heap data structure
10	
L	Graph: Basic definitions, applications and representations
11	
L	Graph: Basic definitions, applications and representations (contd)
12	
L	Graph: Graph connectivity and graph traversal (BFS, DFS)
13	
L	Graph: Graph connectivity and graph traversal (BFS, DFS)
14	
L	Graph: Testing bipartiteness – an application of BFS
15	
L	Graph: Connectivity in directed graph; Directed-Acyclic-Graph and Topological
16	ordering
L	Graph: Connectivity in directed graph; Directed-Acyclic-Graph and Topological
17	ordering
L	Graph: MST using Kruskal's algorithm—the union-find data structure
18	
L	Graph: MST using Kruskal's algorithm—the union-find data structure (contd)
19	

L	Graph: MST using Prim's algorithm
20	
L	Graph: Shortest path problem (Dijkstra' algorithm)
21	
L	Greedy Method: Interval Scheduling with proof of optimality using the Greedy
22	Algorithm Stays Ahead
L	Greedy Method: Interval Scheduling with proof of optimality using the Greedy
23	Algorithm Stays Ahead
L	Greedy Method: Scheduling to Minimize Lateness with proof of optimality using
24	An Exchange Argument
L	Greedy Method: Optimal Caching: A More Complex Exchange Argument (no
25	discussion on proof of optimality)
L	Greedy Method: Huffman Codes and Data Compression (no discussion on proof of
26	optimality)
L	Greedy Method: Huffman Codes and Data Compression (no discussion on proof of
27	optimality) contd
L 28	Divide and Conquer: Control abstraction
L 29	Divide and Conquer: Merge sort
L 30	Divide and Conquer: Counting inversions
L 31	Divide and Conquer: Quick sort
1 32	Divide and Conquer: Quick sort
L 33	Divide and Conquer: Fast integer multiplication (Karatsuba algorithm)
L 34	Dynamic Programming: Principles of Dynamic Programming (Memoization or Iteration over Subproblems)
L 35	Dynamic Programming: Weighted Interval Scheduling
L 36	Dynamic Programming: Subset Sums and Knapsacks
1 37	Dynamic Programming: RNA Secondary Structure
L 38	Dynamic Programming: Sequence Alligment
L 39	Dynamic Programming: Shortest Paths in a Graph (Bellman-Ford algorithm);
39	Negative-Weight-Cycles

LABS:- LAB1,LAB2,LAB3,

LAB4-SORTING,LAB-5:SORTING,LAB6-SEARCHING.

LAB7-SEARCHING, LAB8-LINKED LIST,

LAB-9: JAVA COLLECTIONS, LAB10-STACK,

LAB11-QUEUE,LAB12-TREE,LAB13-PRIORITYQUEUE,

LAB14-GRAPHS,LAB15-HASH TABLE