

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Estructuras Discretas Tarea 8

PRESENTA

Castañon Maldonado Carlos Emilio Bazán Rojas Karina Ivonne

PROFESORA

Araceli Liliana Reyes Cabello

AYUDANTES

Rafael Reyes Sánchez Ricardo Rubén Gónzalez García Javier Enríquez Mendoza José Eliseo Ortíz Montaño

Estructuras Discretas

Tarea Semanal 8

Para cada una de las siguientes fórmulas, clasifica todas las presencias de variables en libres o ligadas. Además da el alcance de cada cuantificador.

a)
$$\neg R(f(x,x), w, g(x)) \land \forall x \exists y T(x,y,g(z))$$

$$\neg R(f(x,x), \overset{\text{(3)}}{w}, g(x)) \land \forall \overset{\text{(4)}}{x} \exists \overset{\text{(5)}}{y} \underbrace{T(\overset{\text{(6)}}{x}, \overset{\text{(7)}}{y}, g(z))}_{\text{alcance de } y}$$

Las presencias (4), (5), (6) y (7) son variables ligadas. Las presencias (1), (2), (3) y (8) son variables libres.

b) $\forall w T(w, x, g(y)) \rightarrow \neg \exists z R(x, (f(w, y)))$

$$\forall w \underbrace{T(w, x, g(y))}_{\text{alcance de w}} \rightarrow \neg \exists z \underbrace{R(x, (f(w, y)))}_{\text{alcance de z}}$$

Las presencias (1), (2) y (5) son variables ligadas. Las presencias (3), (4), (6) y (7) son variables libres.

c) $\exists y (C(x, f(y, z)) \land D(y) \land \forall x I(z, r(y)))$

$$\exists \ y \ \underbrace{(C(\ x\ , f(y,z)) \land D(\ y\) \land \forall \ x}_{\text{alcance de y}} \underbrace{\underbrace{I(\ z\ , r(y)))}_{\text{alcance de x}}$$

Las presencias (1), (3), (4), (5) y (7) son variables ligadas. Las presencias (2) y (6) son variables libres.

d) $\forall x \exists z I(z, r(x)) \rightarrow C(z, y) \land D(y)$

$$\forall \begin{array}{c} (1) \underbrace{\exists \begin{array}{c} (2) \underbrace{I(\begin{array}{c} (3) \end{array} (4)}_{\text{alcance de z}} \\ \end{array}} \to C(\begin{array}{c} (5) \underbrace{(6)}_{\text{z}} \\ \end{array}) \land D(\begin{array}{c} (7) \\ y \end{array})$$

Las presencias (1), (2), (3) y (4) son variables ligadas. Las presencias (5), (6) y (7) son variables libres.

- 2 Considera los siguientes predicados:
 - \circ S(x) x es un estudiante
 - P(x) x es un maestro
 - Q(x,y) x le hace una pregunta a y

En donde el dominio consiste de toda la comunidad de la Facultad de Ciencias. Traduce los siguientes enunciados a cuantificaciones:

- a) Algún estudiante no le ha hecho preguntas a ningún profesor. $\exists x(S(x) \land \forall y(P(y) \rightarrow \neg Q(x,y))$
- b) Hay un profesor a quien ningún estudiante le ha hecho nunca ninguna pregunta. $\exists x (P(x) \land \forall y (S(y) \to \neg Q(y,x)))$
- c) Un estudiante le ha hecho preguntas a todos los profesores. $\exists y(S(y) \land \forall x(P(x) \to Q(y,x)))$
- d) Hay un profesor que le ha hecho preguntas a cada uno de los profesores. $\exists x(P(x) \land \forall y(P(y) \to Q(x,y)))$
- e) Hay un estudiante al que ningún profesor le ha hecho preguntas. $\exists x(S(x) \land \forall y(P(y) \to \neg Q(y,x)))$
- 3 Transforma las siguientes fórmulas mediante equivalencias lógicas, de manera que las negaciones sólo figuren frente a predicados.
 - a) $\forall x \exists y \neg \forall z \exists w (P(x, w) \lor Q(z, y)) \rightarrow \neg \exists v \forall u \neg R(u, v)$

 - $\forall x \exists y \exists z \forall w (\neg P(x, w) \land \neg Q(z, y)) \rightarrow \forall v \neg \forall u \neg R(u, v)$

 - $\forall x \exists y \exists z \forall w (\neg P(x, w) \land \neg Q(z, y)) \rightarrow \forall v \exists u R(u, v)$
 - b) $\neg \forall x \exists y \neg \forall w \exists z (P(x,y) \lor \neg Q(x) \to \exists w \neg T(a,w))$
 - $\exists x \neg \exists y \neg \forall w \exists z (P(x,y) \lor \neg Q(x) \to \exists w \neg T(a,w))$
 - $\exists x \forall y \neg \neg \forall w \exists z (P(x,y) \lor \neg Q(x) \to \exists w \neg T(a,w))$
 - $\exists x \forall y \forall w \exists z (P(x,y) \lor \neg Q(x) \to \exists w \neg T(a,w))$

4 El micromundo de figuras, consta de una cuadrícula de cualquier tamaño donde en cada cuadro puede haber figuras que son círculos, cuadrados o triángulos, las cuales pueden ser pequeñas, medianas o grandes. También se tienen las relaciones dadas por la posición: sur, norte, este, oeste.

Los predicados para las figuras son: T(x), C(x) y S(x) para triángulo, círculo y cuadrado. Para tamaño tenemos P(x), M(x) y G(x) para pequeño, mediano y grande. Para la posición tenemos Z(x,y), N(x,y), E(x,y) y O(x,y) para sur, norte, éste y oeste.

Por ejemplo N(x,y) significa x está al norte de y.

Para cada fórmula da dos micromundos de figuras, uno donde la fórmula sea verdadera y otro donde sea falsa.

a)
$$\neg \forall x (C(x) \to G(x)) \land \exists z (P(z) \land \neg \exists y (T(y) \land O(y,z)))$$

Micromundo Verdadero

Sea una cuadricula de 3×3 Sean las siguientes figuras en las siguientes posiciones:

- ➤ Un triángulo pequeño En las coordenadas (2, 2).
- Un círculo grande En las coordenadas (1,1).
- Un cuadrado mediano En las coordenadas (3,3).

Micromundo Falso

Sea una cuadricula de 2×2 Sean las siguientes figuras en las siguientes posiciones:

- Un triángulo mediano En las coordenadas (2,1).
- Un círculo grande En las coordenadas (1,1).
- Un cuadrado pequeño En las coordenadas (1,2).

b) $\forall x \forall y (T(x) \land C(y) \land N(x,y) \rightarrow \exists z (S(z) \land Z(z,x) \land Z(y,z)))$

Micromundo Verdadero

Sea una cuadricula de 3×3 Sean las siguientes figuras:

- Un triángulo grande En las coordenadas (1,1).
- ➤ Un círculo grande En las coordenadas (2, 2).
- ➤ Un cuadrado grande En las coordenadas (3,3).

Micromundo Falso

Sea una cuadricula de 2×2 Sean las siguientes figuras:

- Un triángulo grande En las coordenadas (1,1).
- Un círculo grande En las coordenadas (1,2).
- ➤ Un cuadrado grande En las coordenadas (2, 1).

c) $\forall w(G(w) \rightarrow \exists y(P(y) \land N(y,w))) \lor \exists x \exists z (T(z) \land M(x) \land O(z,x))$

Micromundo Verdadero

Sea una cuadricula de 3×3 Sean las siguientes figuras en las siguientes posiciones:

- Un triángulo pequeño En las coordenadas (2,2).
- ➤ Un cuadrado grande En las coordenadas (1,1).

Micromundo Falso

Sea una cuadricula de 2×2 Sean las siguientes figuras en las siguientes posiciones:

- Un triángulo grande En las coordenadas (1,1).
- ➤ Un círculo pequeño En las coordenadas (2, 2).

