Failure of Kaplansky theory for non-surjective isometries

Simone Ramello

May 2023

Contents

1 Preliminaries on valued difference fields

4

1

2 The construction

Abstract

The goal of this note is to construct an equicharacteristic zero valued field (K,v) endowed with a non-surjective isometry σ that admits two immediate σ -algebraic extensions $K\langle \alpha \rangle_{\mathbb{N}}$ and $K\langle \beta \rangle_{\mathbb{N}}$ such that $K\langle \alpha, \beta \rangle_{\mathbb{N}}$ is not immediate over K. As a consequence, (K,v,σ) admits non-isomorphic σ -algebraically maximal immediate extensions.

1 Preliminaries on valued difference fields

Given a valued field (K, v), we denote by k its residue field and by Γ_K its value group.

Definition 1.1. A field endomorphism $\sigma: K \to K$ will be called an isometry if, for all $x \in K$, $v(\sigma(x)) = v(x)$. Any isometry induces a field endomorphism $\overline{\sigma}: k \to k$. We will call $(k, \overline{\sigma})$ the residue difference field.

Let $(K, \sigma) \subseteq (L, \tau)$ be an extension of fields with an endomorphism (i.e., $K \subseteq L$ is a field extensions and $\tau|_K = \sigma$). For any $\alpha \in L$, we denote by

$$K\langle \alpha \rangle_{\mathbb{N}} = K(\tau^n(\alpha) \mid n \in \mathbb{N}) \subseteq L$$

and by

$$K\langle \alpha \rangle_{\mathbb{Z}} = K(\tau^n(\alpha) \mid n \in \mathbb{Z}).$$

Note that the latter might not be contained in L (depending on whether τ is surjective or not), but rather in its *inversive closure* $L^{\text{inv}} = \bigcup_{n \in \mathbb{N}} \tau^{-n}(L)$.

Definition 1.2. Let $(K,\sigma) \subseteq (L,\tau)$ be an extension of fields with an endomorphism. An element $\alpha \in L \setminus K$ is said to be σ -algebraic if $\operatorname{trdeg}_K(K\langle \alpha \rangle_{\mathbb{N}}/K) < \infty$; it is said to be σ -transcendental otherwise.

Definition 1.3. A sequence $(a_{\rho})_{\rho<\lambda}\subseteq K$ is said to be pseudo-Cauchy if there is $\rho_0<\lambda$ such that, for all $\rho_0\leq\rho_1<\rho_2<\rho_3<\lambda$,

$$v(a_{\rho_3} - a_{\rho_2}) > v(a_{\rho_2} - a_{\rho_1}).$$

In this case, we denote by $\gamma_{\rho} := v(a_{\rho'} - a_{\rho})$ for any $\rho < \rho' < \lambda$, which is independent of ρ' . An element $a \in K$ such that $v(a - a_{\rho}) = \gamma_{\rho}$ for all ρ is said to be a pseudolimit of $(a_{\rho})_{\rho < \lambda}$, in symbols $a_{\rho} \implies a$.

Given a polynomial $P(X_0, X_1, ... X_n) \in K[X_0, X_1, ... X_n]$, we can build a σ -polynomial

$$p(X) = P(X, \sigma(X), \dots \sigma^n(X)).$$

Definition 1.4. Two pseudo-Cauchy sequences $(a_{\rho})_{\rho<\lambda}$ and $(b_{\rho})_{\rho<\lambda}$ are said to be equivalent if, for all extensions L of K and $a \in L$, $a_{\rho} \implies a$ if and only if $b_{\rho} \implies a$.

Definition 1.5. A pseudo-Cauchy sequence $(a_{\rho})_{\rho<\lambda}$ is said to be of algebraic type (respectively, of σ -algebraic type) if there is a polynomial Q(X) (respectively, a σ -polynomial p(X)) such that $(v(Q(b_{\rho})))_{\rho<\lambda}$ (respectively, $(v(p(b_{\rho})))_{\rho<\lambda}$) is strictly increasing in Γ_K for some equivalent $(b_{\rho})_{\rho<\lambda}$. It will be of transcendental type (respectively, of σ -transcendental type) otherwise.

Note that algebraic type implies σ -algebraic type.

Definition 1.6. An extension $(K, v, \sigma) \subseteq (L, w, \tau)$ will be σ -algebraic if all elements in L are σ -algebraic over K (equivalently, if they are roots of σ -polynomials over K), and σ -transcendental otherwise. It will be called immediate if $\Gamma_K = \Gamma_L$ and $k = \ell$ along the natural embeddings.

By *valued difference field* we will always mean valued field endowed with a (not necessarily surjective) isometry. We will use *inversive* to mean that the field endomorphism in question is surjective. All valued fields will be in equicharacteristic zero.

Definition 1.7. A valued difference field will be called (σ -algebraically) maximal if it admits no proper (σ -algebraic) immediate extension.

Definition 1.8. A valued difference field has enough constants if for every $\gamma \in \Gamma_K$, there is $c \in \text{Fix}(K) = \{x \in K \mid \sigma(x) = x\}$ such that $v(c) = \gamma$.

Definition 1.9 (cf. section 3 in [BMSo7]). *A field with an endomorphism* $(k, \overline{\sigma})$ *satisfies* (R_4) *if for all* $\Lambda \in k[X_0, X_1, \dots X_n] \setminus \{0\}$ *there is some* $a \in k$ *such that* $\Lambda(a, \overline{\sigma}(a), \dots \overline{\sigma}^n(a)) \neq 0$.

Useful facts

Lemma 1.10 (cf. 2.2.2. in [EPo5]). Suppose (K, v, σ) is a valued difference field. Let α in some extension be σ -transcendental over K. Then there is a unique valuation on $L = K\langle \alpha \rangle_{\mathbb{N}}$, extending v, where $v(\alpha) = 0$ and res α is σ -transcendental over $(k, \bar{\sigma})$.

Proof. First, existence. Start with elements of L of the form $p(\alpha) = \sum_{I} a_{I} \alpha^{I}$, where $p(X) \in K[X]_{\sigma}$. Let

$$v(p(\alpha)) := \min_{I} v(a_I).$$

Further, we let

$$v\left(\frac{p(\alpha)}{q(\alpha)}\right) = v(p(\alpha)) - v(q(\alpha)).$$

This gives an extension of v to L with value group $\Gamma_L = \Gamma_K$ and residue difference field $k\langle \operatorname{res} \alpha \rangle_{\mathbb{N}}$. Note that $\operatorname{res} \alpha$ is σ -transcendental over $(k, \bar{\sigma})$: if $\sum_I \operatorname{res} a_I \operatorname{res} \alpha^I = 0$, then

$$v\left(\sum_{I}a_{i}\alpha^{I}\right)=\min_{I}v(a_{I})>0,$$

hence res $a_I = 0$ for all I.

For the uniqueness part, let w be another such. For any $p(\alpha) = \sum_I a_I \alpha^I$, let J be such that $v(a_J) = \min_I v(a_I)$. Thus $p(\alpha) = a_J \sum_I b_I \alpha^I$, with $v(b_I) = v(a_I/a_J) \geq 0$. In the new valuation w, then, $w(p(\alpha)/a_J) \geq 0$, as $w(\alpha) = 0$ by definition. On the other hand, $w(p(\alpha)/a_J) = 0$, since $\operatorname{res}_w \alpha$ is \bar{v} -transcendental over k. Then it follows that

$$w(p(\alpha)) = w(a_I) + w(p(\alpha)/a_I) = w(a_I) = \min_I v(a_I) = v(p(\alpha)).$$

Lemma 1.11. Suppose (K, v) is a valued field which admits a pseudo-Cauchy sequence $(a_{\rho})_{\rho<\lambda}$ of transcendental type. Let δ be transcendental over K and, for some $\Gamma \geq \Gamma_K$, let $\gamma \in \Gamma$. Extend v to $L = K(\delta)$ with the Gauss valuation, so that $v(\delta) = \gamma$. Then $(a_{\rho})_{\rho<\lambda} \subseteq L$ is still of transcendental type. In particular it has no pseudolimit in L.

Proof. Suppose it is, i.e. there is $p(X) \in L[X]$ such that $p(a_{\rho}) \implies 0$. Without loss of generality, we can write

$$p(X) = \sum_{i=0}^{m} p_i(X)\delta^i,$$

for p_i over K. Note that, for i = 0, ...m, $v(p_i(a_\rho))$ is eventually constant, say equal to μ_i . Then, since v is extended to L as a Gauss valuation,

$$v(p(a_{\rho})) = v\left(\sum_{i=0}^{m} p_{i}(a_{\rho})\delta^{i}\right)$$
$$= \min_{i=0,\dots,m} \mu_{i} + iv(\delta),$$

and the latter is clearly not strictly increasing.

The proof of the following lemma goes through in the non-surjective case.

Lemma 1.12 (cf. 5.6 in [BMSo7]). Suppose (K, v, σ) is a valued difference field with enough constants and whose residue difference field satisfies (R_4) . Let $(a_\rho)_{\rho<\lambda}$ be a pseudo-Cauchy sequence in K, with pseudolimit a in some extension of K. If p(X) is a σ -polynomial over K, then there is an equivalent pseudo-Cauchy sequence $(b_\rho)_{\rho<\lambda}$ such that $p(b_\rho) \implies p(a)$.

Lemma 1.13 (cf. 7.1 and 7.2 in [BMSo7]). Suppose (K, v, σ) is a valued difference field with enough constants and whose residue difference field satisfies (R_4) . Suppose $(a_\rho)_{\rho<\lambda}\subseteq K$ is a pseudo-Cauchy sequence with no pseudo-limit in K. Let $(K, v, \sigma)\subseteq (L, w, \tau)$ be an extension and let $\alpha\in L\setminus K$ be such that $a_\rho\Longrightarrow\alpha$. If $(a_\rho)_{\rho<\lambda}$ is of σ -algebraic type, as witnessed by p(X) over K of minimal complexity, assume further that $p(\alpha)=0$. Then $K\subseteq K\langle\alpha\rangle_{\mathbb{N}}$ is an immediate extension.

Proof. We distinguish two cases.

 $(a_{\rho})_{\rho<\lambda}$ is of σ -transcendental type. Then α must be σ -transcendental over K: otherwise, upon switching to an equivalent pseudo-Cauchy sequence $(b_{\rho})_{\rho<\lambda}$, we would have $p(b_{\rho}) \implies p(\alpha) = 0$ for some p(X) over K. Now, take $\beta \in K\langle \alpha \rangle_{\mathbb{N}}$. Assume first that $\beta = p(\alpha)$, for some σ -polynomial p(X) over K. Since $(a_{\rho})_{\rho<\lambda}$ is of σ -transcendental type, $(v(p(a_{\rho})))_{\rho<\lambda}$ is eventually constant in Γ_K . Upon moving to an equivalent sequence $(b_{\rho})_{\rho<\lambda}$, we may assume that $v(p(b_{\rho})) = v(p(\alpha))$ eventually. Thus $v(p(\alpha)) \in \Gamma_K$. If now $\beta = p(\alpha)/q(\alpha)$, then we have $v(\beta) = v(p(\alpha)) - v(q(\alpha)) \in \Gamma_K$. Similarly, the residue field does not change.

 $(a_{\rho})_{\rho<\lambda}$ is of σ -algebraic type. Let $\beta\in K\langle\alpha\rangle_{\mathbb{N}}$. As before, we may assume that β is equal to $h(\alpha)$ for some h(X) over K and, upon operating division between the corresponding multivariate polynomials, we can write

$$q(X)h(X) = f(X) + r(X)p(X)$$

for f(X), q(X) of lower complexity than p(X). Evaluating at α gives

$$q(\alpha)h(\alpha) = f(\alpha),$$

thus, it suffices to work with $f(\alpha)$, for f(X) of lower complexity than p(X). Since $v(f(a_{\rho}))$ is eventually constant, by minimality of p(X), the same argument as in the σ -transcendental case applies.

2 The construction

Let $(k, \overline{\sigma})$ be a difference field that satisfies (R₄), $\overline{\sigma}$ non-surjective, k of characteristic zero. Suppose k is of the form $k = k_0 \langle t \rangle_{\mathbb{N}}$, where t is σ -transcendental over k_0 .

Let (K, v, σ) be a valued difference field over $(k, \overline{\sigma})$ with enough constants, (K, v) henselian, $\Gamma_K = \mathbb{Z} \oplus_{\text{lex}} \mathbb{Z}$ and admitting a subfield $F \subseteq \emptyset_K$ such that $(F, \sigma|_F) \simeq (k, \overline{\sigma})$ via the residue map. For example, we may assume that we are working with $K = k((\mathbb{Z} \oplus_{\text{lex}} \mathbb{Z}))$ with the t-adic valuation and the lift of $\overline{\sigma}$ by acting on coefficients. Call F' the difference subfield of F isomorphic to k_0 and write $F = F' \langle \tau \rangle_{\mathbb{Z}}$. Assume further that $(F, \sigma|_F) \subseteq (K, \sigma)$ is not purely σ -algebraic.

Let $\varepsilon \in \operatorname{Fix}(K)$ be such that $v(\varepsilon) = (0,1)$, and consider $F_0 = F'(\varepsilon)$, with value group $\mathbb Z$ and residue difference field $(k_0, \overline{\sigma}|_{k_0})$. Let $\xi = \frac{1}{\varepsilon} \in F_0$, so that $v(\xi) < 0$, and let $\alpha = \xi \tau$. Then, since τ is σ -transcendental over F_0 , so is α . Let $c = \sigma(\alpha) - \varepsilon \alpha$. Note that c is still σ -transcendental over F_0 . Consider $F_1 = F_0 \langle c \rangle_{\mathbb N}^h$, with value group $\mathbb Z$ and

residue difference field $(k, \bar{\sigma})$ (note that $F_0\langle c\rangle_{\mathbb{N}}$ is the same extension as the one obtained by adjoining $\frac{c}{\xi}$, which has valuation zero and σ -transcendental residue, hence we can apply 1.10).

Note α is σ -algebraic over F_1 , but not algebraic. Now $F_1 \subseteq F_1\langle \alpha \rangle_{\mathbb{N}}$ is immediate: indeed, $F_1\langle \alpha \rangle_{\mathbb{N}} = F_1(\alpha)$ and the extension $F_1 \subseteq F_1(\alpha)$ is the same as the extension $F_1 \subseteq F_1(\frac{\alpha}{\epsilon})$, which is a Gauss valuation.

Thus, there is a pseudo-Cauchy sequence $(a_{\rho})_{\rho<\lambda}\subseteq F_1$ witnessing this. Note that the sequence is of σ -algebraic type over F_1 , as witnessed by $h_{\alpha}(X)=\sigma(X)-\varepsilon X-c$: we have

$$v(h_{\alpha}(a_{\rho})) = v(h_{\alpha}(\alpha) - h_{\alpha}(a_{\rho})) = v(\sigma(\alpha - a_{\rho}) - \varepsilon(\alpha - a_{\rho})) = v(\alpha - a_{\rho}) = \gamma_{\rho},$$

for all $\rho < \lambda$. It is, however, not of algebraic type over F_1 (as the latter is algebraically maximal, since we are in equicharacteristic zero).

Now, pick $\delta \in \text{Fix}(K)$ with $v(\delta) = (1,1)$, and consider $F_2 = F_1(\delta)$, with value group $\mathbb{Z} \oplus_{\text{lex}} \mathbb{Z}$. Note that α is still σ -algebraic over F_2 and not algebraic, by 1.11.

Lemma 2.1. (F_2, v, σ) has enough constants.

Proof. Note that $\delta, \varepsilon \in \text{Fix}(F_2)$, hence $\mu = \frac{\delta}{\varepsilon} \in \text{Fix}(F_2)$ with value equal to the other generator $v(\mu) = (1,1) - (0,1) = (1,0)$. Then, any element $(n,m) \in \mathbb{Z} \oplus_{\text{lex}} \mathbb{Z}$ can be realized as the value of $\mu^n \varepsilon^m$.

Now, $h_{\alpha}(X) = \sigma(X) - \varepsilon X - c \in F_2[X]_{\sigma}$ is a minimal σ -polynomial for $(a_{\rho})_{\rho < \lambda}$ over F_2 , the latter has no pseudolimit in F_2 , $a_{\rho} \implies \alpha$, and $h(\alpha) = 0$. Thus, $F_2 \subseteq F_2\langle \alpha \rangle_{\mathbb{N}}$ is an immediate extension by 1.13 (which we can apply since F_2 has enough constants).

Consider now $z \in F$ such that res $z \notin \overline{\sigma}(k)$, and let $h_{\beta}(X) = \sigma(X) - \varepsilon X - c - \delta z$. We now build an extension of F_2 where $h_{\beta}(X)$ admits a root β .

Let $L \supseteq F_2$ be an inversive, σ -henselian valued difference field (for example, a σ -algebraically maximal extension of F_2^{inv}). Then $h_{\beta}(X)$ is in σ -Hensel configuration at 0: indeed,

$$\min\left\{v\left(\frac{\partial h_{\beta}}{\partial X_0}(0)\right),v\left(\frac{\partial h_{\beta}}{\partial X_1}(0)\right)\right\}=\min\{v(\varepsilon),v(1)\}=0,$$

and higher order derivatives vanish, so

$$v(h_{\beta}(0)) = v(c) + 0 < |J|v(c) + \infty = \infty$$

for all multi-indices J. Thus, by σ -henselianity, we can find an element $\beta \in L$ with $h_{\beta}(\beta) = 0$. Now,

- 1. by additivity, $v(\beta \alpha) = v(\delta) > \gamma_{\rho}$ for all $\rho < \lambda$, thus $a_{\rho} \implies \beta$,
- 2. $v(h_{\beta}(a_{\rho})) = v(h_{\alpha}(a_{\rho}) \delta z) = v(h_{\alpha}(a_{\rho}))$ eventually, so $h_{\beta}(a_{\rho}) \implies 0$,
- 3. $h_{\beta}(\beta) = 0$,

thus $F_2 \subseteq F_2 \langle \beta \rangle_{\mathbb{N}}$ is an immediate extension by 1.13.

Corollary 2.2. (F_2, v, σ) admits two $(\sigma$ -algebraically) maximal immediate extensions which are not isomorphic over F_2 .

Proof. The two extensions $F_2\langle\alpha\rangle_+$ and $F_2\langle\beta\rangle_{\mathbb{N}}$ cannot amalgamate in the immediate category. If L contains $F_2\langle\alpha\rangle_{\mathbb{N}}$ and $F_2\langle\beta\rangle_{\mathbb{N}}$, then $F_2\subseteq L$ is not immediate: indeed, if it were, then we would have

$$\operatorname{res} z = \overline{\sigma}\left(\operatorname{res}\left(\frac{\beta - \alpha}{\delta}\right)\right) \in \overline{\sigma}(k),$$

a contradiction. Thus any two (σ -algebraically) maximal immediate extensions E_1 and E_2 of F_2 such that $F_2\langle\alpha\rangle_{\mathbb{N}}\subseteq E_1$ and $F_2\langle\beta\rangle_{\mathbb{N}}\subseteq E_2$ will not be isomorphic over F_2 .

References

[BMSo7] Luc Bélair, Angus Macintyre, and Thomas Scanlon. Model theory of the frobenius on the witt vectors. *American Journal of Mathematics*, 2007.

[EPo5] Antonio J. Engler and Alexander Prestel. Valued Fields. Springer Berlin, 2005.