

Acoustic Characterization of Uniform Linear Microphone Arrays

MAE Capstone – A.Y. 2023/2024

Introduction and goals

– Eventide eStick V4:

- Uniform Linear Arrays;
- Network-based Modular Microphone Array Systems (16 mic. elements per device);
- Integrated Audinate Dante™ Power-over-Ethernet interface.

Introduction and goals

Frequency Response Cross Evaluation

- Consistency between different modules and between different capsules within the same device;
- Planar anisotropies (consistency across the angular spectrum in the horizontal plane);
- Direction of Arrival (DoA) Estimation (Application Test).
- → When using multiple devices, it is important that the response of each one is similar:
 - the overall system can accurately analyze the acoustic environment, i.e. not introducing significant variances or biases that could affect the integrity of the data.

Operational Methodology

- Semi-anechoic chamber;
- Source Signal: Exponential Frequency Sine Sweep (50 Hz 20 kHz);

- 36 Angular Positions (10° apart);
- Response recorded in a multichannel wave file (16 channels, one per capsule);

- Standard **Deconvolution** Technique → RIRs.
 - A. Farina, "Advancements in impulse response measurements by sine sweeps," *Audio Engineering Society Convention Paper*, May 2007.

Measurement Setup

Data Validation

Data Validation

→ Minor misalignment!

Data Validation

Frequency Response (eStick 1)

Frequency Response Cross Evaluation

Capsule N. 1

Frequency Response Cross Evaluation

Capsule N. 8

Frequency Response Cross Evaluation

- Behavior in line with expectations:
 - **Boost** due to **scattering** (*baffle*) after 3 4 kHz;
 - Peak at about 16 kHz;
 - The effect is much less apparent for $\theta = 90^{\circ}$, 180° especially for outermost capsules (less subject to scattering phenomena w.r.t. innermost ones).
- Result: the frequency response of a single capsule is consistent across different modules.
 - → Guaranteed reliability of measurements carried out by employing multiple modules.

- Practical Application:
 - Tracking of the direction of arrival of a source signal;
- Beamforming: Fourier-based spectral analysis of the spatially sampled data;
- Procedure:
 - Sweeping of the angle of interest + beamforming operation (delayand-sum beamforming) at each angle;
 - Peak detection in the resulting pseudospectrum.
 - A. Canclini and A. Sarti, "Microphone arrays: spatial methods for doa estimation," Sound Analysis, Synthesis and Processing Course Module 2: Sound Synthesis and Spatial Processing, 2024.

Stick: 1, Orientation: 0°

Stick: 1, Orientation: 90°

Stick: 1, Orientation: 180°

Error Parameter (difference between *estimate* and *ground truth*):

$$\Delta(\theta, f) = DOA(\theta, f) - \theta$$

- Averaged across 36 angular positions;
- Evaluated for 121 frequency bins in the range 50 – 5600 Hz:
 - maximum frequency provided by anti-aliasing condition;
- Higher accuracy at higher frequencies, i.e. when the microphone directivity pattern is narrower;
- Sistematic error probably due to the light misalignment we already mentioned.

Successful procedure!

Conclusions

- Eventide eSticks V4 are an effective and consistent tool to be employed in source tracking applications.
- Major qualities: ease of use and, most of all, their modularity.
- Possible improvements and further in-depth analysis:
 - evaluation of the devices' performance beyond the horizontal plane (e.g. by varying also the inclination angle of the device);
 - different modular configurations to evaluate how different microphone distributions (alongside an extension of the device's baffle) may influence the overall performance;
 - more accurate and elaborate DOA estimation methods may be implemented.

Conclusions

The End!

Thank you for your attention.