Surface Mount Dual NPN Transistor

2N5794U (TX, TXV)

Electronics

Features:

- Ceramic 6 pin surface mount package
- Small package to minimize circuit board area
- Hermetically sealed
- Electrical performance similar to dual 2N2222
- Processed per MIL-PRF-19500/495

Description:

The 2N5794U (TX, TXV) are hermetically sealed, ceramic surface mount devices, consisting of two individual silicon NPN transistors. The six pin ceramic package is ideal for designs where board space and device weight are important design considerations.

Typical screening and lot acceptance tests are per MIL-PRF-19500/495. The burn-in condition is $V_{CB} = 30 \text{ V}$, $P_D = 300 \text{ mW}$ each transistor, $T_A = 25^{\circ}\text{C}$. Refer to MIL-PRF-19500/495 for complete requirements.

When ordering parts without processing, do not use the TX or TXV suffix.

Applications:

- General switching
- Amplification
- Signal processing
- Radio transmission
- Logic gates

Issue C 08/2016 Page 1

Surface Mount Dual NPN Transistor

Electrical Specifications

bsolute Maximum Ratings (T _A = 25° C unless otherwise noted)			
Collector-Emitter Voltage	45 V		
Collector-Base Voltage	75 V		
Emitter-Base Voltage	6 V		
Collector Current-Continuous	600 mA		
Operating Junction Temperature (T _J)	-65° C to +200 °C		
Storage Junction Temperature (T _{stg})	-65° C to +200° C		
Power Dissipation @ $T_A = 25^{\circ}C$	0.5 W		
Power Dissipation @ Tc = 25° C	0.6 W ⁽¹⁾		
Soldering Temperature (vapor phase reflow for 30 seconds)	215° C		
Soldering Temperature (heated collet for 5 seconds)	260° C		

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
OFF CHAR	ACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	40	-	V	I _C = 10 mA ⁽¹⁾
I _{CBO1}	Collector-Base Cutoff Current		10	μΑ	V _{CB} = 75 V
I _{CBO2}	Collector-Base Cutoff Current		10	nA	V _{CB} = 50 V
I _{CBO3}	Collector-Base Cutoff Current		10	μΑ	V _{BC} = 50 V, T _A = 150° C
I _{EBO1}	Emitter-Base Breakdown Voltage		10	V	V _{EB} = 6 V
I _{EBO2}	Emitter-Base Cutoff Current		10	nA	V _{EB} = 4 V
h _{FE1}	Forward-Current Transfer Ratio	35		-	$V_{CE} = 10 \text{ V}, I_{C} = 0.1 \text{ mA}$
h _{FE2}		50		-	$V_{CE} = 10 \text{ V}, I_{C} = 1.0 \text{ mA}$
h _{FE3}		75		-	$V_{CE} = 10 \text{ V, } I_{C} = 10 \text{ mA}^{(1)}$
h _{FE4}		100	300	-	V _{CE} = 10 V, I _C = 150 mA ⁽¹⁾
h _{FE5}		40		-	$V_{CE} = 10 \text{ V, } I_{C} = 300 \text{ mA}^{(1)}$
h _{FE6}		50		-	$V_{CE} = 1.0 \text{ V}, I_{C} = 150 \text{ mA}^{(1)}$
h _{FE7}		40		-	V _{CE} = 10 V, I _C = 150 mA, T _A = -55° (

Note:

1. Pulsed Test: Pulse Width = 300 μs ± 50, 1-2 % Duty Cycle

Issue C 08/2016 Page 2

Surface Mount Dual NPN Transistor

Electrical Characteristics (T _A = 25° C unless otherwise noted)								
SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS			
Off Characteristics continued								
V _{CE(SAT)1}	Collector-Emitter Saturation Voltage		0.3	V	I _C = 150 mA, I _B = 15 mA ⁽¹⁾			
V _{CE(SAT)2}	Collector-Emitter Saturation Voltage		0.9	V	$I_C = 300 \text{ mA}, I_B = 30 \text{ mA}^{(1)}$			
V _{BE(SAT)1}	Base-Emitter Saturation Voltage	0.6	1.2	V	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}^{(1)}$			
V _{BE(SAT)1}	Base-Emitter Saturation Voltage		1.8	V	$I_C = 300 \text{ mA}, I_B = 30 \text{ mA}^{(1)}$			
h _{fe}	Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio	2	10		V _{CE} = 20 V, I _C = 20 mA, f = 100 MHZ			
C _{obo}	Open Circuit Output Capacitance		8	pF	$V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHZ} \le f \le 1 \text{ MHz}$			
C_{ibo}	Input Capacitance (output open)		33	pF	$V_{EB} = 0.5 \text{ V}, I_{C} = 0, 100 \text{ kHZ} \le f \le 1 \text{ MHz}$			
t _{on}	Turn-on Time		45	ns	V _{CC} = 30 V, I _C = 150 mA, I _{B1} = 15 mA, PW = 200 ns			
t _{off}	Turn-off Time		310	ns	$V_{CC} = 30 \text{ V}, I_C = 150 \text{ mA}, I_{B1} = I_{B2} = 15 \text{ mA},$ PW = 10 μs			

Standard Packaging:

Waffle Pack

Note:

1. Pulsed Test: Pulse Width = 300 μs ± 50, 1-2 % Duty Cycle