HW 4 solution

September 17, 2020

Problem 1

- a) $Fdcos(30^{\circ}) = 0.87Fd \rightarrow positive W$
- b) $Fdcos(100^{\circ}) = -0.17Fd \rightarrow negative W$
- c) $\overrightarrow{F} \cdot \overrightarrow{d} = -8 \rightarrow negative W$

Problem 2

Apply Work-Kinetic Energy Theorem: $\Delta K = W$ $11 - 20 = \int_0^3 F(x) dx$ $-9 = \int_0^3 cx - 3x^2 dx$ $-9 = \left(\frac{cx^2}{2} - x^3\right)\Big|_0^3$ $-9 = c\frac{9}{2} - 3^3 \rightarrow c = 4$

Problem 3

Elastic Potential Energy $=\frac{1}{2}kx^2$ $25 = \frac{1}{2}k(7.5/100)^2$ $k = 8889 \ N/m$

Problem 4

$$E_{mec} = 12 + 4 = 16 J$$

a) x= 3.5 cm
 $U = 9 J \rightarrow K = E_{mec} - U = 7$
 $K = \frac{1}{2}mv^2$

b) x = 6.5

$$U=0$$
 $J \rightarrow K=E_{mec}-U=16$
 $K=\frac{1}{2}mv^2$

c)
$$\frac{0-24}{7-8} = \frac{0-16}{7-x_R} \to x_R = 7.67$$

$$d)\frac{20-9}{1-3} = \frac{20-16}{1-x_L} \to x_L = 1.73$$

Problem 5

a)
$$W = Fdcos(\theta) = 7.68(4.06)cos(15) = 30.12 J$$

b)
$$W = \Delta K + \Delta U + \Delta E_{th}$$

 $W = 0 + 0 + \Delta E_{th}$

c)
$$F_N + F \sin(\theta) = mg \rightarrow F_N = 33.03 \ N$$

 $F \cos(\theta) - f_k = ma = m(0) = 0 \rightarrow f_k = 7.42 \ N$
 $f_k = \mu_k F_N \rightarrow \mu_k = 0.225 \ N$