Цель

Реализовать алгоритм электронной цифровой подписи DSA. При постановке подписи использовать хеш-функцию SHA2. Реализовать атаку на систему DSA в случае, если атакующий получил две подписи, при создании которых использовалось одно и то же значение k.

1. Алгоритм

DSA — криптографический алгоритм с использованием закрытого ключа (из пары ключей: открытый и закрытый) для создания электронной подписи, но не для шифрования. Подпись создается секретно (закрытым ключом), но может быть публично проверена (открытым ключом). Это означает, что только один субъект может создать подпись сообщения, но любой может проверить её корректность. Алгоритм основан на вычислительной сложности взятия логарифмов в конечных полях.

2. Описание алгоритма

DSA включает в себя два алгоритма (S, V): для создания подписи сообщения (S) и для ее проверки (V).

Оба алгоритма вначале вычисляют хеш сообщения, используя криптографическую хеш-функцию SHA2. Алгоритм S использует хеш и секретный ключ для создания подписи, алгоритм V использует хеш сообщения, подпись и открытый ключ для проверки подписи.

Стоит подчеркнуть, что фактически подписывается не сообщение (произвольной длины), а его хеш (256 бит), поэтому неизбежны коллизии и одна подпись, вообще говоря, действительна для нескольких сообщений с одинаковым хешем.

Рисунок 1. Иллюстрация работы алгоритма DSA

3. Параметры схемы цифровой подписи

- 1. Хеш-функция SHA2
- 2. Простое число q размерностью 256 бит
- 3. Простое число р, такое, что (р-1) делится на q
- 4. Число $g = 2^{(p-1)/q}$
- 5. Секретный ключ $x \in (0; q)$
- 6. Открытый ключ $y = g^x mod p$

3.1. Подпись сообщения т:

- 1. Выбор случайного числа $k \in (0; q)$
- 2. Вычисление $r = (g^k mod p) mod q$
- 3. Выбор другого k, если r = 0
- 4. Вычисление $s = k^{-1}(SHA2(m) + x * r) \ mod \ q$
- 5. Выбор другого k, если s=0
- 6. Подписью является пара (r, s) общей длины 2N

3.2. Проверка подписи:

1. Вычисление $w = s^{-1} \mod q$

- 2. Вычисление $u_1 = SHA2(m) * w mod q$
- 3. Вычисление $u_2 = r * w \mod q$
- 4. Вычисление $v = (g^{u_1} * y^{u_2} \mod p) \mod q$
- 5. Подпись верна, если v = r

4. Примеры работы программы

Таблица 1. Результат работы программы

q	57008909191164406479706701297555312662629216285303530325741150410195292544473
n	805116880333109481784454972580568255866525802943847259162174767449762605150653037
p	4780470528867433774146950974958139912960291911849039248025596322037769933
g	748332575745974621813438395338040742764231808444972576276991477986670397455623913
g	3797027279245926865705708855558025008596837858618801606114624913349360423
открытый	780823881771330689214973641784297736364795912715489518286017374199856949044550841
ключ	1467451393919058239187250616565134114123118938426973588494849466450163928
закрытый	37329649249082264054059598327219224163116296592043618386802668109301138018824
ключ	
полице	r: 3458060234140430370823803099074210989599831486546641305853891959367588426341
подпись	s: 47196838163277508180573482455518989570890804642507501287587951509508187654908

Проверка подписи:

sign is correct

Изменим подпись:

Таблица 2. Результат работы программы

	полпись	r: 3458060234140430370823803099074210989599831486546641305853891959367588426341
		s: 47196838163277508180573482455518989570890804642507501287587951509508187654908

Проверим ее:

sign is not correct

5. Атака

Если для двух сообщений использовался один и тот же параметр k, тогда их подписи (r, s) будут иметь одинаковые r, но разные s, назовем их s_1, s_2 .

Из выражения для s можно выразить общий k:

$$k = (H(m) + xr)s_1^{-1} \bmod q$$

И приравнять общий k для разных сообщений:

$$(H(m_1) + xr)s_1^{-1} \mod q = (H(m_2) + xr)s_2^{-1} \mod q$$

Отсюда легко выразить секретный ключ х:

$$x = \frac{H(m_1)s_1^{-1} - H(m_2)s_2^{-1}}{r(s_2^{-1} - s_1^{-1})}$$

Таблица 3. Результат работы программы

X	37329649249082264054059598327219224163116296592043618386802668109301138018824
закрытый	37329649249082264054059598327219224163116296592043618386802668109301138018824
ключ	

Вывод

В ходе выполнения данной лабораторной работы был реализован алгоритм цифровой подписи DSA, а также проведена атака, когда были получены две подписи, при создании которых использовалось одно и то же значение k. Повторение параметра для двух сообщений ведет к простому взлому системы.