1184. Показать, что функция

$$y = x^n \left[C_1 \cos \left(\ln x \right) + C_2 \sin \left(\ln x \right) \right].$$

где C_1 и C_2 — произвольные постоянные и n — постоянная, удовлетворяет уравнению

$$x^2y'' + (1-2n)xy' + (1+n^2)y = 0.$$

1185. Показать, что функция

$$y = e^{x/\sqrt{2}} \left(C_1 \cos \frac{x}{\sqrt{2}} + C_2 \sin \frac{x}{\sqrt{2}} \right) + \\ + e^{-x/\sqrt{2}} \left(C_3 \cos \frac{x}{\sqrt{2}} + C_4 \sin \frac{x}{\sqrt{2}} \right).$$

где C_1 , C_2 , C_3 и C_4 — произвольные постоянные, удовлетворяет уравнению

$$y^{\mathsf{IV}} + y = 0.$$

1186. Доказать, что если функция f(x) имеет производную n-го порядка, то

$$[f(ax+b)]^{(n)} = a^n f^{(n)}(ax+b).$$

1187. Найти $P^{(n)}(x)$, если

$$P(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n$$

Найти $y^{(n)}$, если:

1188.
$$y = \frac{ax+b}{cx+d}$$
. 1189. $y = \frac{1}{x(1-x)}$.

1190.
$$y = \frac{1}{x^2 - 3x + 2}$$
.

У казание. Разложить функцию на простейшие дроба.

1191.
$$y = \frac{1}{\sqrt{1-2x}}$$
. 1192. $y = \frac{x}{\sqrt[3]{1+x}}$.

1193. $y = \sin^2 x$. 1194. $y = \cos^2 x$. 1195. $y = \sin^2 x$.

1196. $y = \cos^3 x$. 1197. $y = \sin ax \sin bx$.

1198. $y = \cos ax \cos bx$. 1199. $y = \sin ax \cos bx$.

1200. $y = \sin^2 ax \cos bx$. 1201. $y = \sin^4 x + \cos^4 x$.

1202. $y = x \cos ax$. **1203.** $y = x^2 \sin ax$.

1204. $y = (x^2 + 2x + 2)e^{-x}$. **1205.** $y = e^x/x$.

1206. $y = e^x \cos x$. 1207. $y = e^x \sin x$.