MINOR PROJECT | ETMN100

Flood Prediction Model

Gather data to preprocess the training and validation data

```
In [60]:
              # Load training/validation data
              trainval_data = pd.read_csv('train.csv')
              trainval_data.head()
In [61]:
   Out[61]:
                 SUBDIVISION YEAR JAN
                                          FEB MAR
                                                      APR
                                                            MAY
                                                                  JUN
                                                                        JUL
                                                                            AUG
                                                                                    SEP
                                                                                          OC
                  ANDAMAN &
               0
                     NICOBAR
                               1901 49.2
                                           87.1
                                                29.2
                                                       2.3 528.8 517.5 365.1 481.1 332.6 388
                     ISLANDS
                  ANDAMAN &
                     NICOBAR
                               1902
                                      0.0 159.8
                                                12.2
                                                       0.0 446.1 537.1 228.9 753.7 666.2 197
                     ISLANDS
                  ANDAMAN &
               2
                               1903 12.7 144.0
                     NICOBAR
                                                 0.0
                                                       1.0 235.1 479.9 728.4 326.7 339.0 181
                     ISLANDS
                  ANDAMAN &
                     NICOBAR
                               1904
                                      9.4
                                           14.7
                                                 0.0 202.4 304.5 495.1 502.0 160.1 820.4 222
                     ISLANDS
                   ANDAMAN &
                     NICOBAR
                               1905
                                      1.3
                                           0.0
                                                 3.3
                                                      26.9 279.5 628.7 368.7 330.5 297.0 260
                     ISLANDS
```

```
#Check for any colomns is left empty
In [62]:
             trainval_data.apply(lambda x:sum(x.isnull()), axis=0)
   Out[62]: SUBDIVISION
             YEAR
                             0
             JAN
                             0
             FEB
                             0
                             0
             MAR
             APR
                             0
             MAY
                             0
             JUN
                             0
                             0
             JUL
                             0
             AUG
             SEP
                             0
             OCT
                             0
                             0
             NOV
             DEC
                             0
             ANNUAL
                             0
             Flood
                             0
             dtype: int64
In [63]:
             #The data is required in numbers, therefore replace the yes/no in flood
             trainval_data['Flood'].replace(['Yes','No'],[1,0],inplace=True)
In [64]:
             trainval_data.head()
   Out[64]:
                SUBDIVISION YEAR JAN
                                        FEB MAR
                                                   APR
                                                         MAY
                                                               JUN
                                                                    JUL
                                                                         AUG
                                                                                SEP
                                                                                     OC
                 ANDAMAN &
              0
                    NICOBAR
                              1901 49.2
                                        87.1
                                              29.2
                                                        528.8 517.5 365.1 481.1 332.6 388
                    ISLANDS
                 ANDAMAN &
                    NICOBAR
                              1902
                                    0.0 159.8
                                              12.2
                                                    0.0 446.1 537.1 228.9 753.7 666.2 197
              1
                    ISLANDS
                 ANDAMAN &
                    NICOBAR
                              1903
                                   12.7
                                               0.0
                                                    1.0 235.1 479.9 728.4
                                                                         326.7
                                       144.0
                                                                              339.0 181
                    ISLANDS
                 ANDAMAN &
              3
                    NICOBAR
                              1904
                                    9.4
                                         14.7
                                               0.0 202.4 304.5 495.1 502.0 160.1 820.4 222
                    ISLANDS
                 ANDAMAN &
                    NICOBAR
                              1905
                                    1.3
                                         0.0
                                               3.3
                                                   26.9 279.5 628.7
                                                                   368.7 330.5 297.0
                                                                                    260
                    ISLANDS
In [65]:
          # Assuming 'SUBDIVISION' is the column name in your dataset
             label encoder = LabelEncoder()
             trainval_data['subdivision_encoded'] = label_encoder.fit_transform(train
```

Out[66]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	C
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	38
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	19
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	18
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	22
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	26
5	ANDAMAN & NICOBAR ISLANDS	1906	36.6	0.0	0.0	0.0	556.1	733.3	247.7	320.5	164.3	26
6	ANDAMAN & NICOBAR ISLANDS	1907	110.7	0.0	113.3	21.6	616.3	305.2	443.9	377.6	200.4	26
7	ANDAMAN & NICOBAR ISLANDS	1908	20.9	85.1	0.0	29.0	562.0	693.6	481.4	699.9	428.8	17
8	ANDAMAN & NICOBAR ISLANDS	1910	26.6	22.7	206.3	89.3	224.5	472.7	264.3	337.4	626.6	20
9	ANDAMAN & NICOBAR ISLANDS	1911	0.0	8.4	0.0	122.5	327.3	649.0	253.0	187.1	464.5	33
4												•

```
#moving the encoded subdivision column infront to easily separate targe
In [67]:
              column_order = ['subdivision_encoded', 'SUBDIVISION', 'YEAR', 'JAN', 'F
              # Rearrange columns based on 'column_order'
              trainval_data = trainval_data[column_order]
              trainval data.head()
   Out[67]:
                 subdivision_encoded SUBDIVISION YEAR JAN
                                                                        APR
                                                            FEB MAR
                                                                             MAY
                                                                                   JUN
                                     ANDAMAN &
              0
                                 0
                                       NICOBAR
                                                 1901 49.2
                                                             87.1
                                                                  29.2
                                                                         2.3 528.8 517.5 36
                                       ISLANDS
                                     ANDAMAN &
                                 0
                                       NICOBAR
                                                 1902
                                                        0.0 159.8
                                                                  12.2
                                                                         0.0 446.1 537.1 22
                                       ISLANDS
                                     ANDAMAN &
              2
                                 0
                                       NICOBAR
                                                 1903 12.7 144.0
                                                                   0.0
                                                                         1.0 235.1 479.9 72
                                       ISLANDS
                                     ANDAMAN &
              3
                                                 1904
                                                                   0.0 202.4 304.5 495.1 50
                                 0
                                       NICOBAR
                                                        9.4
                                                             14.7
                                       ISLANDS
                                     ANDAMAN &
                                 0
                                       NICOBAR
                                                 1905
                                                        1.3
                                                             0.0
                                                                   3.3
                                                                        26.9 279.5 628.7
                                       ISLANDS
              trainval_data.drop('SUBDIVISION', axis=1, inplace=True)
In [68]:
In [69]:
           ▶ #Seperate the data for prediction
              X = trainval_data.iloc[:,0:15]
              X.head()
   Out[69]:
```

	subdivision_encoded	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SI
0	0	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332
1	0	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666
2	0	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339
3	0	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820
4	0	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297
4											•

Preprocessing the test dataset

```
In [70]: # Load testing data
test_data = pd.read_csv('maintest.csv')
```

```
▶ test_data.head()

In [71]:
    Out[71]:
```

	SUBDIVISIONS	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	С
0	ANDAMAN & NICOBAR ISLANDS	2019	173.8	5.8	15.8	35.3	230.9	662.2	212.0	860.4	596.8	13
1	ANDAMAN & NICOBAR ISLANDS	2021	42.7	48.8	38.3	150.2	414.1	315.9	535.3	506.5	667.3	41
2	ANDAMAN & NICOBAR ISLANDS	2016	72.0	15.8	5.4	2.4	191.1	429.4	301.2	227.7	604.3	28
3	ANDAMAN & NICOBAR ISLANDS	2017	228.7	5.6	33.0	108.3	275.8	349.1	389.4	414.7	372.8	26
4	ANDAMAN & NICOBAR ISLANDS	2018	167.3	36.2	21.5	90.0	372.5	518.4	239.1	415.7	395.9	29

In [72]: ▶ #Check for any colomns is left empty test_data.apply(lambda x:sum(x.isnull()), axis=0)

Out[72]: SUBDIVISIONS 0 YEAR 0 0 JAN FEB 0 MAR 0 APR 0 MAY 0 JUN 0 JUL 0 AUG 0 SEP 0 0 0CT NOV 0 DEC 0 ANNUAL 0 FL00D dtype: int64

In [73]: #The data is required in numbers, therefore replace the yes/no in flood: test_data['FLOOD'].replace(['YES','NO'],[1,0],inplace=True)

In [74]: ► test_data.head()

Out[74]:

	SUBDIVISIONS	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	С
0	ANDAMAN & NICOBAR ISLANDS	2019	173.8	5.8	15.8	35.3	230.9	662.2	212.0	860.4	596.8	13
1	ANDAMAN & NICOBAR ISLANDS	2021	42.7	48.8	38.3	150.2	414.1	315.9	535.3	506.5	667.3	41
2	ANDAMAN & NICOBAR ISLANDS	2016	72.0	15.8	5.4	2.4	191.1	429.4	301.2	227.7	604.3	28
3	ANDAMAN & NICOBAR ISLANDS	2017	228.7	5.6	33.0	108.3	275.8	349.1	389.4	414.7	372.8	26
4	ANDAMAN & NICOBAR ISLANDS	2018	167.3	36.2	21.5	90.0	372.5	518.4	239.1	415.7	395.9	29

In [75]:

ightharpoonup #encoding string to integer

label_encoder = LabelEncoder()

test_data['subdivision_encoded'] = label_encoder.fit_transform(test_data

Out[76]:

	SUBDIVISIONS	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	(
0	ANDAMAN & NICOBAR ISLANDS	2019	173.8	5.8	15.8	35.3	230.9	662.2	212.0	860.4	596.8	1;
1	ANDAMAN & NICOBAR ISLANDS	2021	42.7	48.8	38.3	150.2	414.1	315.9	535.3	506.5	667.3	4
2	ANDAMAN & NICOBAR ISLANDS	2016	72.0	15.8	5.4	2.4	191.1	429.4	301.2	227.7	604.3	28
3	ANDAMAN & NICOBAR ISLANDS	2017	228.7	5.6	33.0	108.3	275.8	349.1	389.4	414.7	372.8	20
4	ANDAMAN & NICOBAR ISLANDS	2018	167.3	36.2	21.5	90.0	372.5	518.4	239.1	415.7	395.9	2!
5	ANDHRA PRADESH	2017	2.2	0.0	12.5	8.8	34.7	124.1	110.8	202.1	164.0	1(
6	ANDHRA PRADESH	2018	0.1	2.0	16.7	24.9	51.7	90.5	117.1	141.3	97.7	4
7	ARUNACHAL PRADESH	2016	29.4	73.2	128.4	333.1	278.9	379.4	620.1	145.7	532.9	1.
8	ARUNACHAL PRADESH	2017	8.2	86.2	221.8	348.2	257.1	370.8	437.8	456.4	318.6	2:
9	ARUNACHAL PRADESH	2018	30.9	67.7	139.5	150.7	269.9	320.7	341.7	247.3	288.8	ţ
4												•

In [77]: #moving the encoded subdivision column infront to easily separate targe
column_order = ['subdivision_encoded', 'SUBDIVISIONS', 'YEAR', 'JAN', '
Rearrange columns based on 'column_order'
test_data = test_data[column_order]
test_data.head()

Out[77]:

	subdivision_encoded	SUBDIVISIONS	YEAR	JAN	FEB	MAR	APR	MAY	JUN	
0	1	ANDAMAN & NICOBAR ISLANDS	2019	173.8	5.8	15.8	35.3	230.9	662.2	
1	1	ANDAMAN & NICOBAR ISLANDS	2021	42.7	48.8	38.3	150.2	414.1	315.9	ţ
2	1	ANDAMAN & NICOBAR ISLANDS	2016	72.0	15.8	5.4	2.4	191.1	429.4	(
3	1	ANDAMAN & NICOBAR ISLANDS	2017	228.7	5.6	33.0	108.3	275.8	349.1	(
4	1	ANDAMAN & NICOBAR ISLANDS	2018	167.3	36.2	21.5	90.0	372.5	518.4	2

In [79]: ▶ test_data.head(10)

Out[79]:

	subdivision_encoded	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	s
0	1	2019	173.8	5.8	15.8	35.3	230.9	662.2	212.0	860.4	59
1	1	2021	42.7	48.8	38.3	150.2	414.1	315.9	535.3	506.5	66
2	1	2016	72.0	15.8	5.4	2.4	191.1	429.4	301.2	227.7	60
3	1	2017	228.7	5.6	33.0	108.3	275.8	349.1	389.4	414.7	37
4	1	2018	167.3	36.2	21.5	90.0	372.5	518.4	239.1	415.7	39
5	2	2017	2.2	0.0	12.5	8.8	34.7	124.1	110.8	202.1	16
6	2	2018	0.1	2.0	16.7	24.9	51.7	90.5	117.1	141.3	9
7	3	2016	29.4	73.2	128.4	333.1	278.9	379.4	620.1	145.7	53
8	3	2017	8.2	86.2	221.8	348.2	257.1	370.8	437.8	456.4	31
9	3	2018	30.9	67.7	139.5	150.7	269.9	320.7	341.7	247.3	28
4											•

EDA

In [80]: #Explore how rainfall index varies during rainy season for trainval_date
%matplotlib inline
 c = trainval_data[['JUN','JUL','AUG','SEP']]
 c.hist()
 plt.show()

In [81]: #Explore how rainfall index varies during rainy season for test dataset
%matplotlib inline
 c = test_data[['JUN','JUL','AUG','SEP']]
 c.hist()
 plt.show()


```
Out[82]: array([[0.
                           , 0.
                                       , 0.08428987, ..., 0.860225 , 0.0544129
         6,
                 0.52815531],
                [0.
                           , 0.00877193, 0. , ..., 0.55324395, 0.2599190
         3,
                 0.55168453],
                           , 0.01754386, 0.02175775, ..., 0.43828017, 0.3643724
                [0.
         7,
                 0.46182682],
                [0.51428571, 0.98245614, 0.04488607, ..., 0.12035753, 0.0432388
         7,
                 0.2175855 ],
                [0.51428571, 0.99122807, 0.09114271, ..., 0.0909231, 0.1008906]
         9,
                 0.21259252],
                [0.51428571, 1.
                                       , 0.00376906, ..., 0.35598706, 0.2574898
         8,
                 0.25213757]])
```

Flood Prediction Algorithms

1. KNN Classifier

```
In [83]:
          ▶ from sklearn.model_selection import train_test_split
             # Split the training+validation data into training (80%) and validation
             X_trainval, X_val, y_trainval, y_val = train_test_split(
                 trainval_data.drop('Flood', axis=1), # Features
                 trainval_data['Flood'], # Target variable
                 test_size=0.2, # Validation size
                 random_state=42
             )
             # Remaining training data after splitting
             X_train, y_train = X_trainval, y_trainval
          #Train and validate
In [84]:
             from sklearn.neighbors import KNeighborsClassifier
             from sklearn.metrics import accuracy_score, classification_report
             # Initialize KNN model
             knn = KNeighborsClassifier(n_neighbors=5) # You can adjust the number
             # Train the model on the training data
             knn.fit(X_train, y_train)
             # Predict on the validation set
             y_pred_val = knn.predict(X_val)
          ▶ # Evaluate performance on validation set
In [85]:
             accuracy_val = accuracy_score(y_val, y_pred_val)
             print("Validation Accuracy:", accuracy_val)
             # Additional evaluation metrics or reports for validation set
             report_val = classification_report(y_val, y_pred_val)
             print("Validation Classification Report:\n", report val)
             Validation Accuracy: 0.9902200488997555
             Validation Classification Report:
                            precision recall f1-score
                                                            support
                        0
                                0.99
                                          1.00
                                                    0.99
                                                               751
                                0.97
                                          0.91
                                                    0.94
                                                                67
                                                    0.99
                                                               818
                 accuracy
                macro avg
                                0.98
                                          0.95
                                                    0.97
                                                               818
             weighted avg
                                0.99
                                          0.99
                                                    0.99
                                                               818
```

```
In [86]: # Test the trained model on the separate test set
# Separate test data
X_test, y_test = test_data.drop('FLOOD', axis=1), test_data['FLOOD']

# Predict on the test set
y_pred_test = knn.predict(X_test)
# Evaluate performance on the test set
accuracy_test = accuracy_score(y_test, y_pred_test)
print("Test Accuracy:", accuracy_test)
# Additional evaluation metrics or reports for test set
report_test = classification_report(y_test, y_pred_test)
print("Test Classification Report:\n", report_test)
```

Test Accuracy: 0.991304347826087 Test Classification Report:

	precision	recall	f1-score	support
0	0.99	1.00	1.00	210
1	1.00	0.90	0.95	20
accuracy			0.99	230
macro avg	1.00	0.95	0.97	230
weighted avg	0.99	0.99	0.99	230

2. Logistic Regression

```
In [87]: ▶ from sklearn.linear_model import LogisticRegression
```

In [89]: # Evaluate performance on validation set
 accuracy_val_log_reg = accuracy_score(y_val, y_pred_val_log_reg)
 print("Validation Accuracy:", accuracy_val_log_reg)
Additional evaluation metrics or reports for validation set
 report_val_log_reg = classification_report(y_val, y_pred_val_log_reg)
 print("Validation Classification Report:\n", report_val_log_reg)

Validation Accuracy: 0.9926650366748166 Validation Classification Report:

	precision	recall	f1-score	support
0	1.00	0.99	1.00	751
1	0.93	0.99	0.96	67
accuracy			0.99	818
macro avg	0.96	0.99	0.98	818
weighted avg	0.99	0.99	0.99	818

```
In [90]: # Test the trained model on the separate test set
    y_pred_test_log_reg = log_reg.predict(X_test)
    # Evaluate performance on the test set
    accuracy_test_log_reg = accuracy_score(y_test, y_pred_test_log_reg)
    print("Test Accuracy:", accuracy_test)
    # Additional evaluation metrics or reports for test set
    report_test_log_reg = classification_report(y_test, y_pred_test_log_reg
    print("Test Classification Report:\n", report_test_log_reg)
```

Test Accuracy: 0.991304347826087 Test Classification Report:

	precision	recall	f1-score	support
0	0.99	1.00	1.00	210
1	1.00	0.90	0.95	20
accuracy			0.99	230
macro avg	1.00	0.95	0.97	230
weighted avg	0.99	0.99	0.99	230

2. Decision Tree Classifier

```
In [91]: ▶ from sklearn.tree import DecisionTreeClassifier
```

Validation Accuracy: 1.0
Validation Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	751
1	1.00	1.00	1.00	67
accuracy			1.00	818
macro avg	1.00	1.00	1.00	818
weighted avg	1.00	1.00	1.00	818

```
In [94]:  # Test the trained model on the separate test set
    y_pred_test_dec_tre = decision_tree.predict(X_test)
    # Evaluate performance on the test set
    accuracy_dec_tre = accuracy_score(y_test, y_pred_test_dec_tre)
    print("Test Accuracy:", accuracy_dec_tre)
    # Additional evaluation metrics or reports for test set
    report_dec_tre = classification_report(y_test, y_pred_test_dec_tre)
    print("Test Classification Report:\n", report_dec_tre)
```

Test Accuracy: 1.0

Test Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	20
accuracy			1.00	230
macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00	230 230

4. Random Forest Classifier

In [96]: # Evaluate performance on validation set
 accuracy_ran_for = accuracy_score(y_val, y_pred_val_ran_for)
 print("Validation Accuracy:", accuracy_ran_for)
Additional evaluation metrics or reports for validation set
 report_ran_for = classification_report(y_val, y_pred_val_ran_for)
 print("Validation Classification Report:\n", report_ran_for)

recall f1-score

support

Validation Accuracy: 1.0

Validation Classification Report:

precision

0	1.00	1.00	1.00	751
1	1.00	1.00	1.00	67
accuracy			1.00	818
macro avg	1.00	1.00	1.00	818
weighted avg	1.00	1.00	1.00	818

```
In [97]: # Test the trained model on the separate test set
    y_pred_test_ran_for = random_forest.predict(X_test)
# Evaluate performance on the test set
    accuracy_ran_for = accuracy_score(y_test, y_pred_test_ran_for)
    print("Test Accuracy:", accuracy_ran_for)
# Additional evaluation metrics or reports for test set
    report_ran_for = classification_report(y_test, y_pred_test_ran_for)
    print("Test Classification Report:\n", report_ran_for)
```

Test Accuracy: 1.0

Test Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	20
accuracy			1.00	230
macro avg	1.00	1.00	1.00	230
weighted avg	1.00	1.00	1.00	230

5. SVM

```
In [99]: # Evaluate performance on validation set
    accuracy_val_svm = accuracy_score(y_val, y_pred_val_svm)
    print("Validation Accuracy:", accuracy_val_svm)
# Additional evaluation metrics or reports for validation set
    report_val_svm = classification_report(y_val, y_pred_val_svm)
    print("Validation Classification Report:\n", report_val_svm)
```

Validation Accuracy: 1.0
Validation Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	751
1	1.00	1.00	1.00	67
accuracy			1.00	818
macro avg	1.00	1.00	1.00	818
weighted avg	1.00	1.00	1.00	818

```
In [100]: # Test the trained model on the separate test set
y_pred_test_svm = svm_model.predict(X_test)
# Evaluate performance on the test set
accuracy_test_svm = accuracy_score(y_test, y_pred_test_svm)
print("Test Accuracy:", accuracy_test_svm)
# Additional evaluation metrics or reports for test set
report_test_svm = classification_report(y_test, y_pred_test_svm)
print("Test Classification Report:\n", report_test_svm)
```

Test Accuracy: 1.0

Test Classification Report:

		•		
	precision	recall	f1-score	support
0	1.00	1.00	1.00	210
1	1.00	1.00	1.00	20
accuracy			1.00	230
macro avg	1.00	1.00	1.00	230
weighted avg	1.00	1.00	1.00	230

6. Naive Bayes

```
In [101]: ▶ from sklearn.naive_bayes import GaussianNB
```

Validation Accuracy: 0.8936430317848411 Validation Classification Report:

precision recall f1-score support 0 1.00 0.88 0.94 751 1 0.44 1.00 0.61 67 0.89 818 accuracy 0.77 macro avg 0.72 0.94 818 weighted avg 0.95 0.89 0.91 818

```
In [104]:  # Test the trained model on the separate test set
    y_pred_test_nb = naive_bayes_model.predict(X_test)
    # Evaluate performance on the test set
    accuracy_test_nb = accuracy_score(y_test, y_pred_test_nb)
    print("Test Accuracy:", accuracy_test_nb)
# Additional evaluation metrics or reports for test set
    report_test_nb = classification_report(y_test, y_pred_test_nb)
    print("Test Classification Report:\n", report_test_nb)
```

Test Accuracy: 0.9478260869565217
Test Classification Report:

rese classific	precision		f1-score	support
0	1.00	0.94	0.97	210
1	0.62	1.00	0.77	20
accuracy			0.95	230
macro avg	0.81	0.97	0.87	230
weighted avg	0.97	0.95	0.95	230

Compare the models

KNN Validation Accuracy: 0.9902200488997555

Logistic Regression Validation Accuracy: 0.9926650366748166

Decision Tree Validation Accuracy: 1.0 Random Forest Validation Accuracy: 1.0

SVM Validation Accuracy: 1.0

Naive Bayes Validation Accuracy: 0.8936430317848411

Validation Accuracy Score vs Test Accuracy Score

	Model	Validation Accuracy	Test Accuracy
0	KNN	0.990	0.991
1	Logistic Regression	0.992	0.991
2	Decision Tree	1.000	1.000
3	Random Forest	1.000	1.000
4	SVM	1.000	1.000
5	Naive Bayes	0.893	0.947

From above, we can observe that Decision Tree, Random Forest and SVM show good accuracy than other models. Let us test the models with an unknown dataset.

Validating with unknown dataset

We used 2022 year rainfall dataset for testing our trained models

```
In [131]:  ▶ new_data= pd.read_csv('2022rainfall.csv')
```

In [181]: #Explore how rainfall index varies during rainy season for this unknown
%matplotlib inline
c = new_data[['JUN','JUL','AUG','SEP']]
c.hist()
plt.show()

In [132]: ▶ new_data.head()

Out[132]:

	SUBDIVISIONS	YEAR	JAN	FEB	MAR	APR	MAY	J
0	24 Paraganas North	2022	13.301102	36.471586	3.000000	4.000018	174.932867	103.620
1	24 Paraganas South	2022	17.610375	54.238550	4.536690	4.114744	198.517656	122.403
2	Adilabad	2022	49.152147	2.075905	3.223715	5.998382	27.967830	188.039
3	Agar Malwa	2022	20.066857	2.000000	3.435977	4.000000	5.504517	110.842
4	Agra	2022	27.187090	5.160622	3.000000	4.000000	17.863035	40.238
4								•

```
In [145]: #encoding string to integer
subdiv_encoder = LabelEncoder()
new_data['subdivision_encoded'] = subdiv_encoder.fit_transform(new_data
```

In [150]: #moving the encoded subdivision column infront to easily separate targe:
 column_order = ['subdivision_encoded', 'SUBDIVISIONS', 'YEAR', 'JAN', '
 # Rearrange columns based on 'column_order'
 new_data = new_data[column_order]
 new_data.head()

Out[150]:

	subdivision_encoded	SUBDIVISIONS	YEAR	JAN	FEB	MAR	APF
0	0	24 Paraganas North	2022	13.301102	36.471586	3.000000	4.000018
1	1	24 Paraganas South	2022	17.610375	54.238550	4.536690	4.114744
2	2	Adilabad	2022	49.152147	2.075905	3.223715	5.998382
3	3	Agar Malwa	2022	20.066857	2.000000	3.435977	4.000000
4	4	Agra	2022	27.187090	5.160622	3.000000	4.000000
4							•

In [169]: #The data is required in numbers, therefore replace the yes/no in floods
 new_data['FLOOD'].replace(['YES','NO'],[1,0],inplace=True)
 new_data.head()

Out[169]:

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
.301102	36.471586	3.000000	4.000018	174.932867	103.620638	161.875981	251.057881	2
.610375	54.238550	4.536690	4.114744	198.517656	122.403861	153.699521	363.866108	3
.152147	2.075905	3.223715	5.998382	27.967830	188.039380	962.068860	388.144703	2
.066857	2.000000	3.435977	4.000000	5.504517	110.842801	496.906508	632.753333	,
.187090	5.160622	3.000000	4.000000	17.863035	40.238522	240.372088	171.096539	1
4)	Þ

Out[171]:

	subdivision_encoded	YEAR	JAN	FEB	MAR	APR	MAY	
0	0	2022	13.301102	36.471586	3.000000	4.000018	174.932867	1
1	1	2022	17.610375	54.238550	4.536690	4.114744	198.517656	1
2	2	2022	49.152147	2.075905	3.223715	5.998382	27.967830	1
3	3	2022	20.066857	2.000000	3.435977	4.000000	5.504517	1
4	4	2022	27.187090	5.160622	3.000000	4.000000	17.863035	
4								•

With Decision Tree Model

```
In [175]: # Evaluate performance
    accuracy_testing = accuracy_score(checkvar, validity_dec_tree)
    print("Validation Accuracy:", accuracy_testing)
```

Validation Accuracy: 1.0

With SVM model

```
0 0
a
9 A
0 0
0 0
9 A
0 0
0 0 01
```

```
In [176]: # Evaluate performance
    accuracy_svm = accuracy_score(checkvar, testing_svm)
    print("Validation Accuracy:", accuracy_svm)
```

Validation Accuracy: 0.9976580796252927

Based on the accuracy scores obtained from testing the 2022 rainfall dataset, it's evident that the Decision Tree model outperforms the SVM model. The accuracy scores showcase that the Decision Tree model exhibits better accuracy when predicting the 2022 rainfall, indicating its superior performance over the SVM model in this specific context.

In []: 🕨	1		
-----------	---	--	--