Course overview

Microbial Genome and Microbiome Analysis

19/05/2024

Phuc Loi Luu, PhD Luu.p.loi@googlemail.com

Khóa hoc Tin Sinh Hoc - 2024

MICROBIAL GENOME & MICROBIOME ANALYSIS

Chào mừng anh/chi và các ban đến với khóa học phân tích dữ liệu bộ gen của một vi sinh vật (MICROBIAL GENOME) hay cả hệ vi sinh vật (MICROBIOTA) trong mẫu bệnh phẩm do TS. Lưu Phúc Lơi và các đồng nghiệp tổ chức, giảng day. Khoá học này nhằm đem đến các kiến thức về mảng tin sinh học (BIOINFORMATICS) từ cơ bản đến chuyên sâu cho các ban đang muốn tìm hiểu về tin sinh học và phân tích hệ gen vi sinh.

Nếu ban đã từng nghe đến và có hứng thú với vi sinh học, hệ gen và lập trình tính toán (Ubuntu, bash script, AWK and R) hoặc ban có niềm đam mê trải nghiệm tiếp thu kiến thức mới về phân tích dữ liêu bô gen của hệ vi sinh gây bệnh hoặc hệ vi sinh có lợi-ứng dung trong công nông nghiệp, nuôi trồng thủy hải sản thì đây là cơ hội để các ban tham gia học hỏi và trau đồi kiến thức cho bản thân mình.

Đừng ngần ngại, hãy đăng kí tham gia đến với khóa học nhé

Thông tin khóa học

- Ngôn ngữ: Tiếng Việt, slide và sách tiếng Anh
- Hình thức học: Online
- Thời gian: 8.00 PM 9.30 PM vào Thứ 5 và Chủ nhật hàng tuần
- Thời gian dư kiến diễn ra: 19/05/2024 22/08/2024
- Hoc phí: Hoàn toàn miễn phí

Yêu cầu

- Có laptop để làm bài tập
- Kiên trì tham gia đầy đủ các buổi học
- Chăm chỉ xem lại bài sau giờ trên lớp, làm bài tập về nhà đầy đủ và đọc thêm sách/bài báo khoa học có liên quan

Lưu ý

• Sau đăng kí BTC sẽ sắp xếp danh sách và liên hệ gửi link học đến các ban qua email đã đặng kí trước mỗi buổi học

Email cá nhân: luu.p.loi@googlemail.com

Email khóa hoc: bioinformatics.mgma@gmail.com

Content

- The Teams help US!
- Some terms and concepts of Microbial Genome and Microbiome
- What we will learn from the course?
- What you can do after the course?
- Github and youtube

TEACHING ASSISTANT TEAM (TRO'GIANG)

Nguyễn Quang Khải nguyenkhai12330@gmail.com

Hà Gia Huy hagiahuy311@gmail.com

Hồ Phú Quý hophuquy0944@gmail.com

Hoàng Sơn hoangsonltt710@gmail.com

Minh Nguyễn ducminhnguyenle30091 996@gmail.com

Nguyễn Quỳnh Như Lucianhu@gmail.com

Mỹ Quí ttmqui1912@gmail.com

Duy Đào khuongduying@gmail.com

Ngô Đại Phú phudaingobio@gmail.com

Duy Thanh Nguyễn duythanh200620@gmail.com

Lan Nguyễn nguyenlethuylan02@gmail.com

Phạm Văn Quan quanpham0512@gmail.com

Trinh Duy Khang duykhang.trinh1308@gmail.com

Trần Bùi Minh Trí minhtritran21062001@gmail.com

Nguyễn Thị Mỹ Ái nguyenthimyai04122016@gmail.com

LOGISTIC TEAM (HẬU CẦN)

Hoàng Kim vanhohoangkim@gmail.com

Nguyễn Lê Quang quanglequang2003@gmail.com

Lê Giàu Igiau6366@gmail.com

Huỳnh Khôi Minh Uyên uyenhuynhkhoiminh.1.1@gmail.com

Lê Văn Hiếu levanhieu2307@gmail.com

Some terms and concepts of Microbial Genome and Microbiome

The relative sizes of various microscopic and nonmicroscopic objects

Microbial Genome Analysis: study one isolate at once

Culture microbe

Genome Sequencing

Serotyping/genotyping

Listeria monocytogenes

microbeonin

Beta-hemolytic colonies

Listeria monocytogenes EGD-e, complete genome

GenBank: AL591824.1

GenBank Graphics

>AL591824.1 Listeria monocytogenes EGD-e, complete genome TAATTAAATCTAACAATTTCGTTACAGATTTCTTTACACACAAGTTATACACAAGTTAACTGGCTGTGGA CAACCGTTTTTCACATCTGGACAGTTTTGTGGATAGATTTGGTAAGTCCTTGCTATCAGAGTGATTTTCT GATATTATAATTCCTGTCGAATAGAAATATAGCTGGGGAAAACTAAAGTTATCCACAATACATTTTTACT TTGTGGATAATTTTTTAACAGTGTTTGGATAACCTTATCCATAGCTTTTTCTATCTGTGGATAACTTTAT CTGCAAATTGTTAAAAAAAATATGAGTAAACCTAGTTACGATACATGGATGAAATCAACAACCGCTCATT CACTTGAAGGTAACACGTTTATTATTTCAGCGCCCAATAATTTTGTTCGCGATTGGTTAGAGAAAAGCTA CACTCAATTTATCGCTAACATTTTGCAAGAAATAACTGGTCGCTTATTTGATGTCCGCTTTATTGATGGC GAGCAGGAAGAAACTTTGAATACACTGTGATTAAACCAAATCCAGCATTAGATGAAGATGGCATTGAAA TTGGAAAACATATGCTTAATCCACGTTATGTTTTTGATACCTTTGTCATTGGTTCAGGGAACAGATTTGC CCACGCAGCATCACTTGCAGTAGCCGAAGCACCAGCGAAAGCATATAATCCACTCTTCATTTATGGAGGA GTTGGCCTCGGTAAAACACATTTAATGCACGCAGTTGGCCACTATGTTCAACAACATAAAGATAATGCGA AAGTAATGTACCTTTCCAGCGAAAAATTCACCAATGAGTTTATTAGCTCTATTCGTGATAATAAAACCGA GAAGGAACACAAGAGGAATTTTTCCATACATTTAACACACTTTATGATGAACAAAAGCAAATTATTATTT CCAGTGACCGACCACAAAGAAATTCCTACACTGGAAGATCGACTGAGATCCCGCTTTGAATGGGGCTT AATTACTGATATTACGCCACCAGACTTAGAAACCCGGATCGCCATTTTACGTAAAAAAGCAAAAGCAGAC GGATTAGATATTCCAAATGAAGTTATGCTTTATATCGCAAACCAAATTGATTCGAATATTCGCGAGCTAG AAGGCGCTCTCATCCGAGTAGTTGCTTATTCTTCCCTCGTTAATAAAGATATAACAGCTGGTCTTGCAGC AGAAGCACTAAAAGATATTATCCCCTCTTCTAAATCACAAGTTATTACTATTAGTGGTATTCAAGAAGCA GTCGGTGAATATTTCCACGTTCGTTTAGAAGATTTTAAAGCAAAAAAACGGACGAAAAGTATAGCATTCC CGCGCCAAATCGCCATGTATCTCTCAAGAGAGCTTACAGATGCCTCATTACCAAAAATCGGTGATGAATT TGGTGGTCGAGATCATACAACAGTTATTCATGCACATGAAAAAATATCGCAACTACTAAAAAACCGATCAA GTGTTGAAAAATGACCTTGCCGAAATTGAAAAAAATTTAAGAAAAGCACAAAATATGTTTTAATAGACCT GTGTACAATGTGGATAACTGAAACATACTTACCCACAAGTTATCAACATGTGGAAAACTTTATGCAGCAT

Microbial Genome Analysis: study one isolate at once

Opinion | Published: 26 November 2013

Bacterial genome sequencing in the clinic: bioinformatic challenges and solutions

W. Florian Fricke [™] & David A. Rasko

Nature Reviews Genetics 15, 49–55 (2014) Cite this article

18k Accesses | 110 Citations | 27 Altmetric | Metrics

Abstract

The potential of bacterial whole-genome sequencing (WGS) to complement existing diagnostic infrastructures in clinical microbiology has been shown in proof-of-principle examples and extensively discussed. However, less attention has been drawn to bioinformatic challenges that are associated with the clinical adoption of WGS-based molecular diagnostics. This Perspective article discusses questions that are related to standard operating procedures, computational resource management, and data storage and integration in the context of recent developments in the sequencing and bioinformatics service markets.

A summary of the proposed workflow is shown for bacterial whole-genome sequencing (WGS)-based molecular diagnostics (MDx), which uses benchtop sequencing for decentralized sequence generation, as well as the cloud for both central data storage and remote data processing. Doubleheaded arrows indicate that the central data repository and reference database are constantly updated on the basis of new analysis results.

Bioinformatic Upstream analysis

10.3390/microorganisms11071769

Bioinformatic Downstream analysis

SNP calling

Phylogeny tree predicting

10.3390/microorganisms11071769

Methods

No	Sequencing Platforms	Read mapping	Variant calling	<i>De novo</i> assembly	Annotation	phylogenetic tree
1	Illumina GAIIx and HiSeq	BWA	SAMtools			SplitsTree4, PhyML and BEAST
2	454 GS FLX, Illumina HiSeq, Ion Torrent PGM and Pacific Biosciences RS II		Mummer	AMOS assembly, assembler ALLORA, minimus2 and BLASTR	Glimmer, GeneMarkS, BLASTp, InterProScan, SignalP and VFDB virulence factor database	Mugsy, MUMmer, SeqAn, Gblocks and RAxML
3	454 GS FLX and Illumina GAIIx	Bowtie	SAMtools	Velvet and Newbler		
4	454 GS FLX		Mauve	Newbler	NCBI PGAAP	
5	Illumina MiSeq	SMALT	SSAHA			RAxML
6	Illumina MiSeq and HiSeq	BWA		Ray Meta		Bowtie and Metaphlan

Metagenome/ Microbiome

From Microbial Genome to Microbiome

The number of genomes in IMG

Microbiome Analysis: study of microbiota

Microbial Genome vs Microbiome Analysis

Shotgun Microbiome Analysis

Shotgun Microbiome Analysis: HOME-BIO workflow

Target vs Shotgun Microbiome Analysis

What we will learn from the course?

- 1. Install and use Ubuntu OS
- 2. Master programming language (Bash and R), Linux command line, and some bioinformatic tools
- 3. Manipulate Next Generation Sequencing data of WGS and Metagenomics
- 4. Plot a read-for-publication figures and statistically analyzing for a manuscript
- 5. Downstream analysis of WGS and Metagenomic data
- 6. Read a publication of WGS and Metagenomics

Github and youtube

1. Github:

Lecture Slides, Exercises, Books and Q&A

https://github.com/UeenHuynh/MGMA 2024

2. Youtube:

https://www.youtube.com/@vpivnpathoinformatics8930/playlists

Thank you for your listening!