

Evaluating density forecasts

Antoine Lepeltier

26 août 2021

Introduction

Evaluating Density Forecasts, International Economic Review volume 39 (1997),

Co-écrit par Francis X. Diebold, Todd A. Gunther et Anthony S. Tay.

Implémentation en *Python* pour faciliter la représentation graphique.

Plan

- 1. Cadre théorique
- 2. Résultats théoriques
- 3. Application pratique
- 4. Applications sur données réelles
 - S&P500
 - Euro Stoxx 50
- 5. Extensions
 - Amélioration de l'estimation
 - Multi-dimensionelle

Cadre

$$(y_t)_{t=1}^m$$
 générées selon $(f_t|\Omega_t)_{t=1}^m$ où $\Omega_t = \{y_{t-1}, y_{t-2}, ..., y_1\}.$

Soit $(p_t|\Omega_t)_{t=1}^m$ l'estimation de la densité f.

L(a,y) la fonction de perte de l'utilisateur avec

$$a^*(p(y)) = \underset{a \in \mathcal{A}}{\operatorname{argmin}} \int L(a, y)p(y)dy$$

Résultats théoriques

L'utilisateur préfère p_j à p_k si

$$\int L(a_j^*, y) f(y) dy \le \int L(a_k^*, y) f(y) dy$$

Proposition 1 : Soit f la vraie densité de y et a_j^* (resp. a_k^*) l'action optimale basée sur p_j (resp. p_k). Sous l'hypothèse que p_j et p_k sont différentes de f, il n'est pas possible d'établir un classement entre les 2.

Le choix de p_j ou de p_k dépend de la fonction de perte L.

Résultats théoriques

Proposition 2 : Si $p_j \sim f$ alors l'action a_j^* basée sur p_j minimise toujours les pertes moyennes

$$\mathbb{E}[L(a_j^*, y)] = \int L(a_j^*, y) f(y) dy$$

Si l'estimation p_j est bonne elle sera toujours préférée peu importe la fonction de perte de l'utilisateur.

Résultats théoriques

L'objectif est d'évaluer la qualité de notre estimation.

Probability integral transform $z_t = \int_{-\infty}^{y_t} p_t(u) du = P_t(y_t)$.

Proposition 3 : Sous l'hypothèse que $(p_t(y_t|\Omega_t))_{t=1}^m$ coincïde avec $(f_t(y_t|\Omega_t))_{t=1}^m$ et que le Jacobien de P_t^{-1} est continu et différent de 0 alors

$$(z_t)_{t=1}^m \stackrel{\text{iid}}{\sim} \mathcal{U}(0,1)$$

Evaluation à l'aide d'un histogramme et de corrélogrammes

t-GARCH(1,1):
$$\begin{cases} y_t = \sqrt{\frac{h_t^2(\nu - 2)}{\nu}} \mathcal{T}(\nu) \\ h_t^2 = \omega + \alpha y_{t-1}^2 + \beta h_{t-1}^2 \end{cases} \quad \omega = 0,01 \quad \alpha = 0,13 \quad \beta = 0,86.$$

4000 observations pour estimer le modèle et les 4000 suivantes pour l'évaluation.

La suite $(z_t)_t$ n'est ni distribuée selon une $\mathcal{U}(0,1)$ ni indépendante.

$$y_t \sim \hat{p}_h(y) = \frac{1}{Nh} \sum_{i=1}^{N} K\left(\frac{y-y_i}{h}\right) \text{ et } h = 1.06n^{-\frac{1}{5}} \text{ (Silverman B.W, 1986)}.$$

La suite $(z_t)_t$ est maintenant distribuée selon une $\mathcal{U}(0,1)$ mais n'est toujours pas indépendante.

La suite $(z_t)_t$ n'est plus distribuée selon une $\mathcal{U}(0,1)$ mais est indépendante.

La suite $(z_t)_t$ est distribuée selon une $\mathcal{U}(0,1)$ et est indépendante. D'après nos critères c'est une bonne estimation.

Daily returns du S&P 500 de 1962 à 1995.

4100 observations pour estimer le modèle et les 4300 suivantes pour l'évaluation.

ARMA
$$(p_m, q_m)$$
GARCH $(p_v, q_v) :=$

$$\begin{cases} y_t &= \mu_t + h_t \xi_t \\ \mu_t &= \mu + \sum_{i=1}^{p_m} \phi_i y_{t-1} + \sum_{i=1}^{q_m} \theta_i \xi_{t-1} \\ h_t^2 &= \omega + \sum_{i=1}^{p_v} \alpha_i y_{t-1}^2 + \sum_{i=1}^{q_v} \beta_i h_{t-1}^2 \end{cases}$$

Bayesian information criterion, $BIC = k \ln N - 2 \ln(L)$

- ▶ k : nombre de paramètres
- N : taille de l'échantillon
- L: vraisemblance

Estimation des paramètres par la méthode du maximum de vraisemblance.

Pour que le processus soit stationnaire il y a des bornes sur les paramètres.

Recherche du minimum sur une grille des paramètres puis avec la méthode de **Nelder-Mead**.

Le critère BIC sélectionne un ARMA(0,1)-GARCH(1,1).

```
ARMA(0,1)-GARCH(1,1)
Distribution
                    Normal
Standard deviation
                   9.96
Method
                   Maximum Likelihood
Log Likelihood
                   -3967.042020987171
ATC
                   7944.084041974342
BTC
                    7967.391077232389
                    Coeffs
     -----Mean Model-----
theta[0]
         0.2555273437499999
              -Volatility Model-----
        0.006953475275568938
omega
        0.11913311641542426
alpha[0]
beta[0]
        0.8808667833316336
```


D'après nos critères le modèle Student ARMA(0,1)-GARCH(1,1) est une bonne estimation des données du S&P 500.

Daily returns $\mathit{Euro}\ \mathit{Stoxx}\ 50$ disponibles sur $\mathit{www.stoxx.com}\ de\ 1992$ à aujourd'hui.

3900 observations pour estimer le modèle et les 3946 suivantes pour l'évaluation.

Le critère BIC sélectionne un modèle GARCH(2,2)

```
ARMA(0,0)-GARCH(2,2)
Distribution
                      Student
Degree of freedom
Method
                      Maximum Likelihood
Optimization method
                     Nelder-Mead
Sucess
                      True
Log Likelihood
                      -5571.390988829947
ATC
                      11164.781977659894
BTC
                      11225.46929598107
                      Coeffs
               -Volatility Model-----
          0.01271650622175058
omega
alpha[0]
          0.03463121646664299
alpha[1]
         0.06934018936033681
beta[0]
         0.787582559626089
beta[1]
          0.10818839476527395
```


D'après nos critères le modèle Student GARCH(2,2) est une bonne estimation des données de l'Euro Stoxx 50.

Extension $n^{\circ} 1$: Amélioration de l'estimation de densité.

D'après le Lemme 1 on a $f_t(y_t) = p_t(y_t)q_t(z_t)$.

La somme des erreurs est plus faible pour p * q que pour p. Autrement dit q a corrigé légèrement l'estimation p.

Extension n° 2 : Estimation de densité multi-dimensionelle.

On consière un Gaussian GARCH(1,1) n-dimensionelle.

$$\begin{pmatrix} y_{1,t} \\ \vdots \\ y_{n,t} \end{pmatrix} = \begin{pmatrix} h_{1,t} \times \xi_{1,t} \\ \vdots \\ h_{n,t} \times \xi_{n,t} \end{pmatrix} \text{ avec } \xi_{i,j} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$$

$$\begin{pmatrix} h_{1,t}^2 \\ \vdots \\ h_{n,t}^2 \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_n \end{pmatrix} + \begin{pmatrix} \alpha_{1,1} \dots \alpha_{1,n} \\ \vdots \\ \alpha_{n,1} \dots \alpha_{n,n} \end{pmatrix} \begin{pmatrix} y_{1,t-1}^2 \\ \vdots \\ y_{n,t-1}^2 \end{pmatrix} + \begin{pmatrix} \beta_{1,1} \dots \beta_{1,n} \\ \vdots \\ \beta_{n,1} \dots \beta_{n,n} \end{pmatrix} \begin{pmatrix} h_{1,t-1}^2 \\ \vdots \\ h_{n,t-1}^2 \end{pmatrix}$$

Simulation en dimension 3 sur 8000 pas de temps avec

$$\omega = \begin{pmatrix} 0,05 \\ 0,04 \\ 0,06 \end{pmatrix} \alpha = \begin{pmatrix} 0,06 & 0,03 & 0,02 \\ 0,02 & 0,10 & 0,04 \\ 0,03 & 0,03 & 0,09 \end{pmatrix} \beta = \begin{pmatrix} 0,70 & 0,07 & 0,07 \\ 0,05 & 0,67 & 0,02 \\ 0,06 & 0,07 & 0,60 \end{pmatrix}$$

Les 3 suites de $(z_t)_t$ sont bien iid $\mathcal{U}(0,1)$, notre méthode d'évaluation marche aussi en n dimensions.

Conclusion

Conclusion générale

Méthodologie complète pour évaluer des densités de probabilités.

Aucune contrainte sur les modèles donc possibilité d'une immense flexibilité.

Conclusion personelle

Une approche très intéressante.

Ce travail m'a permis de découvrir le domaines des séries temporelles.

Le procédé inverse de la génération des nombres aléatoires.

References

- [1] David Ruppert, David S. Matteson. Statistics and Data Analysis for Financial Engineering. Seconde édition, Springer 2015.
- [2] Bollerslev Tim, Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, volume 31, 1986.
- [3] Silverman B.W. Density Estimation for Statistics and Data Analysis, 1986.
- [4] John Nelder, Roger Mead. A simplex method for function minimization. Computer Journal volume 7, 1965.