Train

Outlier removal

Q1 = df.quantile(0.25)

Q3 = df.quantile(0.75)

IQR = Q3 - Q1

 $df = df.where((df \ge Q1 - 1.5 * IQR) & (df \le Q3 + 1.5 * IQR), np.nan)$

Month

Validation set

Conclusion

Notably:

- A lot of variation in prices across all time scales
- The data has extreme outliers
 - o Likely do not generalize and should be removed

There clearly are trends observable, generally:

- Prices are lower at night, higher during day
- Prices decline towards the weekends, sharp rise on Monday
- Prices decline during spring, rise during autumn

From this a few strategic insights arise:

- Buy during night
- During uptrend, storing energy is less risky
- During downtrend, storing energy is more risky
- Include measure of price volatility to let agent adjust risk profile

Possible volatility based storage strategy:

Factor	Autumn	Spring
Price Trend	Rising	Falling
Storage Risk	Lower	Higher
Volatility Impact	Amplifies potential savings	Amplifies potential losses
Best Strategy	Store during dips for later spikes	Delay storage until prices stabilize

Volatility analysis

