1

 (\Longrightarrow) : We know that the number of edges in a tree is n-1. By the handshaking lemma, $\sum_{v \in V(G)} d(v) = 2e(G)$. Since e(G) = n-1, and $\sum_{v \in V(G)} d(v) = \sum_{i=1}^{n} d_i$, we have $\sum_{i=1}^{n} d_i = 2n-2$.

(\Leftarrow): [Induction on n]: When n=2, we have $\sum_{i=1}^2 d_i = 2(2) - 2 = 2$, so the only graphic sequence is (1,1), corresponding to the tree on 2 vertices. Assume this holds for n. Let d_1, \ldots, d_{n+1} be integers such that $\sum_{i=1}^{n+1} d_i = 2(n+1) - 2$. Suppose WLOG that $d_{n+1} \leq \ldots \leq d_1$. Then $d_{n+1} = 1$, otherwise $d_i \geq 2$ for all $1 \leq i \leq k$, and $\sum_{i=1}^{n+1} d_i \geq 2(n+1) > 2(n+1) - 2$. So if we remove the vertex corresponding to d_{n+1} from our list (note that we must also subtract 1 from some other degree, say d_j , so that our sequence remains graphic) then $\sum_{i=1}^n d_i = 2(n+1) - 4 = 2n-2$. By the induction hypothesis, there exists a tree with degrees $d_1, \ldots, d_j - 1, \ldots, d_n$. Take this tree, and add a new leaf to it, adjacent to a vertex with degree $d_j - 1$. Then we have a tree with degrees d_1, \ldots, d_{n+1} . Thus by induction, the claim holds.

$\mathbf{2}$

We claim that for each m < n, if G is a graph with n vertices and more than $n(m-1) - {m \choose 2}$ edges, then G contains each tree with m edges.

[Induction on n]: When n = 1, the only choice of m is 0, so the claim is clearly true. Assume the above claim holds for n. Let G be a graph with n vertices and $n(m-1) - {m \choose 2}$ edges. We want to add a vertex v to G such that $e(G+v) > (n+1)m - {m+1 \choose 2}$.

$$e(G+v) > (n+1)m - \binom{m+1}{2}$$

$$= (n+1)(m-1+1) - \frac{(m+1)m}{2}$$

$$= n(m-1+1) + (m-1+1) - \frac{(m-1+2)m}{2}$$

$$= n(m-1) + n + m - \frac{m(m-1) + 2m}{2}$$

$$= n(m-1) - \frac{m(m-1)}{2} + n + m - \frac{2m}{2}$$

$$= n(m-1) - \binom{m}{2} + n$$

We see that to obtain the desired inequality, the vertex we add must have degree n. By the induction hypothesis, G contains every tree with m edges. Since v is adjacent to every vertex in G, G+v must therefore contain every tree with m+1 edges. So by induction, the claim holds.

3

Suppose for a contradiction that X has no leaf. $d(x) \geq 2$ for any $x \in X$. Each edge has exactly one endpoint in X, so $\sum d(x) = e(T)$. But $\sum d(x) \geq 2|X| \geq 2\left(\frac{n}{2}\right) \geq n$, so $e(T) \geq n$, a contradiction since T is a tree. Thus X must contain a leaf.

4

Consider a vertex cover for G. Any vertex in this cover can cover at most $\Delta(G)$ edges, so it must have size at most $\frac{e(G)}{\Delta(G)}$. Thus, by the Kőnig-Egerváry Theorem, since a minimum vertex cover for G has size at most $\frac{e(G)}{\Delta(G)}$, a maximum matching for G must have size at least $\frac{e(G)}{\Delta(G)}$.

 $\Delta(K_{n,n}) = n-1$, so a vertex cover S of a subgraph of $K_{n,n}$ with at least (k-1)n edges has $|S| \geq \frac{(k-1)n}{n-1} > \frac{(k-1)n}{n} = k-1$, thus |S| > k-1, or $|S| \geq k$. By the Kőnig-Egerváry Theorem, there exists a maximum matching M with |M| = k.

5

 (\Longrightarrow) : Let $S \subseteq X$, and $S' \subseteq S$ be the smallest subset such that N(S') = N(S). Suppose for a contradiction that |S'| > k. Then for any $s' \in S'$, there exists $y \in N(S')$ that is uniquely covered by s'. If we pair off each such set of s' and y, we end up with a copy of $|S'|K_2$, where |S'| > k, a contradiction, so $|S'| \le k$.

(\Leftarrow): Let $S \subseteq X$ such that N(S) = Y and |S| is as small as possible, and let $S = \{s_1, \ldots, s_n\}$. Since S is minimal, we have that $N(s_i) \not\subseteq \bigcup_{j \neq i} N(s_j)$, for all $1 \le i \le n$. So the only $S' \subseteq S$ with N(S') = N(S) is S' = S, and k = |S'|. For any $s_i \in S$, there is an element in $N(s_i)$ which is not in any $N(s_j)$, $j \ne i$; call this element y_i . Then $\{s_i y_i \mid 1 \le i \le n\}$ is in fact a (maximum) set of copies of K_2 , since y_i is not adjacent to s_j for any $j \ne i$. Since the set of copies of K_2 we constructed is maximum, and since it contains exactly k copies, G contains kK_2 , but more importantly, it does *not* contain $(k+1)K_2$, as desired.

6 Bonus

Let S be a maximal independent set in D. In the underlying graph, each vertex not in S is adjacent to one or more vertices in S.

[Induction on n(D)]: When n(D) = 1, any vertex is already in the only indpendent set, so we're done. Suppose there exists some k such that our claim holds for all $n(D) \leq k$. Let $v \in V \setminus S$, either there exists an edge from v into S, or all edges between S and v point towards v. Let X be the set of all latter such vertices. By the induction hypothesis, there exists an independent set $X' \subseteq X$ in D[X] such that any vertex in X can reach X' in at most two steps. Let Y be the set of vertices in S that have edges leading to a vertex in X', and let $S' = (S \setminus Y) \cup X'$. We claim S' is an independent set reachable by any vertex in V in at most two steps. It is clear from its definition that S' is independent, so we must show that any vertex in V reaches it in at most two steps. We have five cases to check:

 $\frac{\text{Case 1: } v \in S'}{\text{We're done.}}$

Case 2: $v \in X \setminus X'$

 \overline{v} reaches $x' \in X' \subseteq S'$ in at most two steps by definition, so we're done.

Case 3: $v \in Y$

 \overline{v} is adjacent to a vertex in $X' \subseteq S'$, so it reaches S' in one step, and we're done.

Case 4: v is adjacent to a vertex in $S \setminus Y$

 \overline{v} reaches $S \setminus Y \subseteq S'$ in one step, so we're done.

Case 5: v is adjacent to $y \in Y$

 \overline{y} is adjacent to a vertex in $X' \subseteq S'$, so v reaches S' in two steps, and we're done

So by induction, the claim holds.