Math 74, Week 5

Tianshuang (Ethan) Qiu September 27, 2021

1 Mon Lec, 2a

Let the statement: "There is at most one parallel line to a given line l through a given point P." be statement A;

"If a line intersects one of two parallel lines, both of which are coplanar with the original line, then it also intersects the other." be statement B.

We first prove that $A \implies B$. Let $a \parallel b$, and c intersects a at point Q. Assume that statement B is false so c does not intersect b. Since it does not intersect and b and c are coplanar, we have $b \parallel c$, $a \parallel b$, and a, c intersect at

Q. However by A we know that there can be at most one line parallel to b at point Q. 4. Our assumption is incorrect, $A \Longrightarrow B$

Then we show that $B \implies A$. Let $a \parallel b$, and c intersects b at point P. Assume that A is incorrect, so we construct a' to also be parallel to b. We know that b must intersect a by B. We name this point P. Then since we have assumed that $a \parallel a'$, our line must also intersect a' at P. Consider $\angle SPT$, $\angle RQT$, and they must be equal because they $a \parallel b$, and corresponding angles are equal when the two lines are parallel. By the same logic we have $\angle SPT = \angle R'QT$.

Using the transitive property we can get $\angle RQT = \angle R'QT$. However this cannot be true because if the two angles are equal, a, a' overlap and they become the same line. 4

Our assumption is increased and $B \implies A$. Therefore $A \iff B$. Q.E.D.

2 Mon Lec, 3a

2.1 Bisector \implies equal distance from legs

Let OC bisect $\angle AOB$, choose A, B such that $CA \perp OA, CB \perp OB$ Consider $\triangle AOC, BOC$, since $CA \perp OA, CB \perp OB$, we can write the following using the inner sum of triangles:

$$\angle ACO + \angle COA + 90^{\circ} = 190^{\circ}$$

$$\angle BCO + \angle COB + 90^{\circ} = 190^{\circ}$$

Since OC bisect $\angle AOB$, we have $\angle COA = \angle COB$, so $\angle ACO = \angle BCO$. Finally, since $\triangle AOC$, BOC share OC, we have $\triangle AOC \cong \triangle BOC$ (ASA congruency). Therefore CA = CB. Q.E.D.

2.2 Equal distance from legs \implies angle bisection

Let OC be a ray from O, choose point C and draw $CA \perp OA, CB \perp OB$. AC = BC

Consider $\triangle AOC$, BOC, since $CA \perp OA$, $CB \perp OB$, they are both right triangles. Using AC = BC, we have $\triangle AOC \cong \triangle BOC$ (HL right triangle congruency). Therefore $\angle COA = \angle COB$. Q.E.D.

3 Mon Dis, 1b (second bullet)

$$\prod_{1}^{n} = \left(1 - \frac{1}{n^2}\right)$$

We examine $1 - 1/k^2$ and factor it into $\frac{k^2 - 1}{k^2} = \frac{(k+1)(k-1)}{k^2}$. Since k is incrementing by 1 in our series, we can cancel the majority of terms out since it is telescoping. We can expand our series into

$$\frac{1\times3}{2^2}\times\frac{2\times4}{3^2}\times\ldots\times\frac{(n-1)(n+1)}{n^2}$$
$$=\frac{1}{2}\times\frac{n+1}{n}=\frac{n+1}{2n}$$

4 Mon Dis, 1d

4.1 $4^n + 15n - 1$

The largest common divisor for these expressions is 9.

4.2
$$n^3 - n$$

The largest common divisor for these expressions is 6.

4.3
$$2^{n+2} + 7n$$

The largest common divisor for these expressions is 5.

5 Wed Lec, 3a

Base case: $n = 1, 1 = 1^2$. Base case holds.

Inductive hypothesis: assume that for some $n \ge 1, 1+3+5+...+(2n-1) = n^2$. Inductive proof: consider n + 1, 1 + 3 + 5 + ... + (2n - 1) + (2n + 1), using our inductive hypothesis, we can susbsitute everything but the last term: $n^2 + 2n + 1 = (n+1)^2$

Thus we have proven the inductive step. Q.E.D.

Wed Lec. 3c 6

Base case: $n = 1, 1/(4 \times 1^2 - 1) = 1/3 = 1/(2 \times 1 + 1)$. Base case holds. Inductive hypothesis: assume that for some $n \ge 1$, $\frac{1}{4 \times 1^2 - 1} + \frac{1}{4 \times 2^2 - 1} + \dots + \frac{1}$ $\frac{1}{4 \times n^2 - 1} = \frac{n}{2n+1}.$ Inductive proof: consider n + 1,

$$\frac{1}{4 \times 1^2 - 1} + \frac{1}{4 \times 2^2 - 1} + \ldots + \frac{1}{4 \times n^2 - 1} + \frac{1}{4 \times (n+1)^2 - 1}$$

Using our inductive hypothesis, we can susbsitute everything but the last

$$\frac{n}{2n+1} + \frac{1}{4(n+1)^2 - 1} = \frac{n(4(n+1)^2 - 1)}{(2n+1)(4(n+1)^2 - 1)} + \frac{2n+1}{(2n+1)(4(n+1)^2 - 1)}$$

$$= \frac{n(4n^2 + 3 + 8n) + 2n + 1}{(2n+1)(4n^2 + 3 + 8n)} = \frac{4n^3 + 3n + 8n^2 + 2n + 1}{8n^3 + 6n + 16n^2 + 4n^2 + 3 + 8n} = \frac{4n^3 + 8n^2 + 5n + 1}{8n^3 + 20n^2 + 14n + 3}$$

We apply long division by 2n + 3 to the denominator.

$$\frac{8n^3 + 20n^2 + 14n + 3}{2n + 3} = 4n^2 + 4n + 1$$

Now we apply long division by n+1 to the numerator.

$$\frac{4n^3 + 8n^2 + 5n + 1}{n+1} = 4n^2 + 4n + 1$$

Therefore we can factor the expression into

$$\frac{(n+1)(4n^2+4n+1)}{(2n+3)(4n^2+4n+1)} = \frac{n+1}{2n+3}$$

Thus we have proven the inductive step. Q.E.D.

7 Wed Lec, 6b

We claim that we can divide a single square into all $n \in \mathbb{N}, n \geq 6$ squares. First we define a process of "opening a window": by connecting midpoints of sides that are across each other, we draw a cross on a square, dividing it into 4 smaller squares. The total gain of this process is 4-1=3 squares. We split the cases into the following: $n=3k, n=3k+1, n=3k+2(k\geq 2)$, and we will prove by induction each case.

Base cases: n = 6, 7, 8, we can divide it up like the following:

Inductive case: Assume that for some $k \geq 2$, we can divide a square into 3k, 3k + 1, 3k + 2 smaller squares, then in order to get 3(k + 1) squares, we can simply "open a window" in any of the 3k sub squares. This yields a total of 3k + 3 = 3(k + 1) squares.

We can prove the cases for 3(k+1)+1, 3(k+1)+2 by also "opening a window" using a subsquare in squares that has been divided into 3k+1 and 3k+2 parts, yielding 3k+4 and 3k+5 squares.

Thus we have proven the inductive case. Q.E.D.

8 Wed Dis, 3a

Base case: n = 1, $1^3 = (1 \times 2/2)^2 = 1$, base case holds.

Inductive case: Assume that

$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

for some $n \ge 1$, consider $1^3 + 2^3 + ... + n^3 + (n+1)^3$, we can apply our inductive hypothesis to get

$$= \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$

$$=\frac{(n+1)^2(n^2+4(n+1))}{4}=\frac{(n+1)^2(n^2+4n+4)}{4}=(\frac{(n+1)^2(n+2)^2}{2^2})$$

The expression above is exactly what we would expect if we substitute (n+1) for n in $(\frac{n(n+1)}{2})^2$. Therefore we have proven the inductive case. Q.E.D.

9 Wed Dis, 4a

Base case: n = 0, 1 = (x - 1)/(x - 1) = 1 since $x \neq 1$. Base case holds. Inductive case: Assume that the statement is true for some $n \geq 0$. Consider n + 1, we have: $1 + x + x^2 + ... + x^n + x^{n+1}$. Now we apply our inductive hypothesis:

$$=\frac{x^{n+1}-1}{x-1}+x^{n+1}=\frac{x^{n+1}-1+x^{n+1}(x-1)}{x-1}=\frac{x^{n+1}-1+x^{n+2}-x^{n+1}}{x-1}=\frac{x^{n+2}-1}{x-1}$$

The expression above is exactly what we would expect if we substitute (n+1) for n in $\frac{x^{n+1}-1}{x-1}$. Thus we have proven the inductive case. Q.E.D.

10 Fri Lec, 2b

 $n! < n^n \forall n > 2$

Base case: $n = 2, n! = 2, n^n = 4, n! < n^n$, base case holds.

Inductive case: assume that $n! < n^n$ for some $n \ge 2$, consider $(n+1)!, (n+1)^{n+1}$. By the definition of factorials we have $(n+1)! = (n+1)n! < (n+1)n^n$ Now, consider $(n+1)n^n, (n+1)^{n+1}$. Since the latter is n+1 multiplied by itself n+1 times, and the former only has n+1 once and n n times, and since n < n+1, we have $(n+1)n^n < (n+1)^{n+1}$.

Now we can put it all together: $(n+1)! = (n+1)n! < (n+1)n^n < (n+1)^{n+1}$. Thus we have proven the inductive case. Q.E.D.

11 Fri Lec, 3a

Base case: $n = 0, n^3 - n = 0, n \mod 6 \equiv 0$ Base case holds. Inductive case: Assume that $6 \mid (n^3 - n)$ for some $n \ge 0$, consider $(n + 1)^3 - (n + 1)$.

$$= n^{3} + 3n^{2} + 3n + 1 - n - 1 = n^{3} + 3n^{2} + 2n = n(n^{2} + 3n + 2) = n(n+1)(n+2)$$

Integers that are divisible by 2 are spaced such that there is one every other, and those divisible by 3 are spaced such that there is one every third. Here we have a product of 3 consecutive integers, so there must be at least 1 integer between n, n+1, n+2 that is divisible by 2, and at least 1 that is divisible by 3. Since $6 = 2 \times 3$, we have $6 \mid n(n+1)(n+2)$.

We have proven the inductive case. Q.E.D.

12 Fri Lec, 3b

Base case: $n=0, 2^2+7^0=5, 5 \mod 5 \equiv 0$ Base case holds. Inductive case: Assume that $5 \mid 2^{n+2}+7^n$ for some $n \geq 0$, consider $2^{n+3}+7^{n+1}$. We add then subtract $2^{n+2}\times 7$ from the latter, this does not change the value but will alow us to manipulate the terms:

$$7 \times 2^{n+2} - 7 \times 2^{n+2} + 2^{n+3} + 7^{n+1} = 7(2^{n+2} + 7^n) + 2^{k+2}(2 - 7)$$
$$= 7(2^{n+2} + 7^n) - 5 \times 2^{k+2}$$

By the inductive hypothesis $5 \mid 2^{n+2} + 7^n$, and since $5 \mid -5$, both terms are divisible by 5, therefore the sum must also be divisible by 5. We have proven the inductive case. Q.E.D.