This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT.
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

,				
			. 4	
		,		
	·.			
		,,,		

世界知的所有権機關 Ħ. 務

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C'07D 205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K 31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

A1

(11) 国際公開番号

WO98/22432

(43) 国際公開日

1998年5月28日(28.05.98)

(21) 国際出願番号

PCT/JP97/04174

(22) 国際出願日

1997年11月17日(17.11.97)

(30) 優先権データ

持願平8/306192

1996年11月18日(18.11.96)

〒305 茨城県つくば市松代五丁目6番14号 Ibaraki. (JP) (74) 代理人

弁理士 長井省三,外(NAGAI, Shozo et al.) 〒174-8612 東京都板橋区連根三丁目17番1号 山之内製薬株式会社 特許情報部内 Tokyo, (JP)

神徳 宏(KOUTOKU, Hiroshi)[JP/JP]

(71) 出願人(米国を除くすべての指定国について) 山之内製薬株式会社

(YAMANOUCHI PHARMACEUTICAL CO., LTD.)[JP/JP] 〒103 東京都中央区日本橋本町2丁目3番11号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

谷口伸明(TANIGUCHI, Nobuaki)[JP/JP]

〒305 茨城県つくば軍桜田丁目28番4号 Ibaraki, (JP)

圆田 他(OKADA, Minoru)[JP/JP]

〒302 茨城県取手市本郷五丁目6番29号 Ibaraki, (JP)

加来英貴(KAKU, Hidetaka)[JP/JP]

〒305 茨城県つくは市松代四丁目6番7-403 Ibaraki, (JP)

島田逸郎(SHIMADA, Itsuro)[JP/JP]

〒305 茨城県つくば市高野台 二丁目12番1-B201 Ibaraki, (JP)

野澤栄典(NOZAWA, Eisuke)[JP/JP]

〒305 茨城県つくば市三の宮三丁目13番1-402 (baraki, (JP)

AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GH, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU. ARIPO特許 (GH. KE, LS, MW, SD, SZ, UG, ZW), ユーラシ ア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

PT. SE). OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,

添付公開書類

NE, SN, TD, TG).

国際調査報告書

NOVEL ACYLAMINO-SUBSTITUTED ACYLANILIDE DERIVATIVES OR PHARMACEUTICAL (54)Title: COMPOSITION COMPRISING THE SAME

(54)発明の名称 - 新規アミルアミノ置模アンエアニリト誘導体又はその医薬組成物

(57) Abstract

Acylamino-substituted acylanilide derivatives represented by general formula (1) or salts thereof, and a pharmaceutical composition comprising the same. They have an antiandrogenic activity and are useful as a prophylactic or therapeutic agent for prostatic cancer, prostatic hypertrophy, defemination, hypertrichosis, bald head, acne, seborrhea and the like in whole mog., is involved as an exacerbating factor.

(57) 要約

下記一般式(I)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩及び、これらを含有する医薬組成物。

抗アンドロゲン作用を有し、アンドロゲンが増悪因子として関与する前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の予防又は治療剤として有用。

- 開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

T U V C D G K L N R W X E L O Z L T O U D E G T U V C D G K L N R W X E L O Z L T O U D E G T U V C D G K L N R W X E L O Z L T O U D E G T U V C D G K L N R W X E L O Z L T O U D E G T U V C D G K L N R W X E L O Z L T O U D E G T U V C D G K L N R W X E L O Z L T O U D E G T U V C D E G T U

时和谐

新規アジルでミノ置換でしルアニ四/誘導体では毛の属薬組成物

技術分野

本発明は、抗アンドロゲン薬として有用な、新規アシルアミノ置換アシルアニリト誘導体及 びその塩並びに医薬組成物に関する

背景技術

ステロイトホルモンの一種であるアンドロゲンは精巣や副腎皮質から分泌され、男性ホルモン作用を引き起こす。アンドロゲンは、標的細胞内に取り込まれて核内のアンドロゲン侵容体に結合し、アンドロゲンが結合した該受容体は、遺体を形成する。この工量体はDNA上のアンドロゲントレスホンスーエレスントに結合してmーRNAの合成を促進し、アンドロゲン作用を引る蛋白を誘導することにより、生体内で種々の作用を発現させる(Prostate Suppl 45-51(1996))。アンドロゲンが増悪因子となる疾患には、前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ磨、脂漏等が挙げられる。抗アンドロゲン剤は、アンドロゲンの触写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンの性写活性化を抑制し、アンドロゲンで使用が連携があることが、これにのデートロテーの理想因子となる疾患の治療剤として有用である。

一抗ではトロケン剤は、基質類的のスペッチ骨格を有する化合物(ステロ音) 系抗ではよっ ゲン剤(と、非ステロイ) 骨格を有する化合物(非ステロイ) 系抗ではトロゲン剤(に分類されている)

非ステコイド系抗アンドロゲン剤としては、アシルアニリド誘導体であるフルタミド(特開昭49-81332)が知られている。フルタミド自体には抗アンドロゲン作用はなく、代謝によってカルボニル基に直結する炭素原子(α炭素原子)に水酸基が置換することによりハイドロキシフルタミドとなり、活性発現することが知られており、この水酸基が抗アンドロゲン作用の発現に不可欠なものであると考えられている(J. Med. Chem 31, 954-959 (1988))。また、ビカルタミド(GB 8, 221, 421)も既に諸外国にて上市されており、GB 8, 221, 421にはアシルアニリド誘導体のアシル部分がアリール(又はヘテロアリール)スルホニル(又はスルフィニル若しくはチオ)やアリール(又はヘテロアリール)アミノで置換されたアルカノイル等であるアシルアニリド誘導体がクレームされている。しかしながら、実質的に開示された化合物は、ハイドロキシフルタミドと同様に、全てα炭素原子に水酸基を有する化合物である。

一方、カルボニルアミ/アセトアニリド誘導体としては、US 4、532、251に、セラジニルカルボニル基又は置換イミダブリルカルボニル基で置換された2、6ージハロゲブ/ユニルクルンドミドが殺菌剤として開示されている。しかしながら、これらの化合物が抗アンドロゲン作用を有することは開示も示唆もされていない。

非ステロイド系抗アンドロゲン剤としては、上記の化合物がよく知られているが、これらの抗アンドロゲン剤の効果は十分とはいえず、また副作用の面でいくつかの問題が指摘されている。即も、薬物の中枢・の作用によると考えられる女性化乳房、乳房痛 (Semin. Oncol. 18 (5 Suppl 6) 13-18 (1991). J. Med. Chem. 31 954-959 (1988)) や長期使用によるアゴニスト作用の発現 (J. Urol. 153 (3 part 2) 1070-1072 (1995)) 等である。特に、前立腺癌の治療においては、アンドロゲン作用を完全に遮断する必要がある為、アゴニスト作用の発現は治療上大きな問題となる。

本発明の目的は、強力な抗アンドロゲン作用を有し、これらの副作用が少ない、新規アシルアミノ置換アシルアニリト誘導体及びその塩を提供すること、更にはこれらを含有する医薬を提供することである。

発明の開示

本発明者には、既存の抗型、上に対し強に付随するではらの問題点を解決する。「統定研究を行ったとこう。意外には、アンルアミノ基が関換してでしまった。 誘導体が、従来、活性発現に必要であると考えられていた。炭素原子の水酸基を存さなくどは、強い抗力に下に対し作用を示し、更に副作用が少なく、良好な経口活性を有する化合物である事を見出し本発明を完成させるに至った。

即ち、本発明は、下記一般式(I)で示されるアシルアミノ置換アシルアニリド誘導体又は その塩に関する

(式中の記号は以下の意味を有する。

R¹及びR²:同一又は異なってハロゲン原子,シアノ,ハロゲノ低級アルキル,ニトロ,カルボキシル,低級アルカノイル又は低級アルコキシカルボニル基

R":水素原子又は低級アルキル基

n:0 えば1

 R^{\dagger} 、 R^{\dagger} 、 R^{\dagger} 及び R° :同一又は異なって水素原子、置換基を有っていても良い低級アルキル 又はアラルキル 基

或いた、R*とR*が一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが1のときR*とR*が一体となって、シクロアルキレン基を形成してもよい。 A,及びA.: 同一又は異なって結合又は低級アルキレン基

R*: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキル又はアラルキルナキシ 基

- 或いはRibRiが一体となって含窒素シクロアルキレン基を形成してもよく、文はnが1のと きRibRiが一体となって含窒素シクロアルキレン基を形成してもよい。

Z:アシル基

N::酸素原子又は硫黄原子

便し、Zがベデロアリールカルボニル基の場合は、RでRの生なくとも一方は水素原子は 外の基を示す。)

好妻し、は、ZがY-R下式中の記号は以下の意味を有する

R*: 低級でルキル、1 クロアルキル、又は置換基を有していていたいでサール、アラルヤニル、アラルキル、昔しくはアリー・ルオキシ 低級でルキル、或いは、ペンセン環と縮合して行じいペテロアリール基

R": 水素原子又は低級アルキル基

X:酸素原子又は硫黄原子

in. o 人は1, 2

但し、Yがカルボニル基であり、R[®]がヘテロアリール基の場合は、R[®]とR[®]の少なくとも一方は水素原子以外の基を示す。)であるアシルアミノ置換アシルアニリド誘導体又はその塩:

更に好ましくは、R*又はR*、R*及びR*の低級アルキル基若しくはアラルキル基の置換基が、1以上の同一又は異なった、ハロゲン原子、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロゲノ低級アルキル基からなる群より選択される置換基であり、R*:のアリール、アラルケニル、アラルキル若しくはアリールオキシ低級アルキル基、若しくは、ベンゼン

環と縮合してもよいペテロアリール 基の置換 基が、1 又はそれ以上の同一又は異なった、ペロテン原子、水酸基、ペロデノ低級アルキル、低級アルキル、低級アルコキン、ペロテノ低級アルカノイルオキシ、フェニル、モノ若しくはご低級アルキルキルアミノ基、カルボキシル基、低級アルコキシカルボニル 基、モノ苦しくはご低級アルキルアミノカルボニル、低級アルカノイルアミノ及びオキソ基からなる様より選択される置換基であるアシルアミノ置換アシルアニリビ誘導体又はその塩;

より好ましくは、nが0であり、R⁴又はR⁵が同一又は異なって水素原子、又は1以上の同一 又は異なった置換基が、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロザノ低級 アルキル基からなる群より選択される置換基を有していても良い低級アルキル若しくはアラ ルキル基であるアシルでミノ置換アシルアニ男/誘導体又はその塩;

最も好ましては、以下よりなる群の化合物又はその塩から選択される化合物:

N-|1-[(4-シアノ-3-トリフルオロメチルフェニル) カルバモイル]-|-メチルエチル!-4-フルオロベンズアミド:

N-|1-[(3, 4-ジシアノフェニル)カルバモイル]-|-メチルエチル|-4-フルオロバンズアミド:

N = [1 = [1] = '12 = 4 - 1 ' T' (고고자) 하지 ((변구자) = 1 = 7 주지고 주지 = 4 - 4 전 지역(2) : 조합점 :

N-11-[(4-, アノー3-)世(4 寸ロメチルフェニル) カルトサイル) 1・メチルエチル 1-2, 4, 6-トリアルオロベンズア (注:

4ークロコーNー{1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルバモイル]ー1ー メチルエチル[ベンズアミド;

である。

生 生態明け ア "アミノ置換アシルアニル"誘導体又はその製薬学的に許容される 塩を有効成分とする医薬組成物、殊に抗アンドロゲン剤である医薬組成物に関し、なかでも、 前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏の予防又は治療剤である 医薬組成物に関する

一般式(1)で示される化合物について更に説明すると、次の通りである。

本明細書の一般式の定義において、特に断らない限り「低級」なる用語は炭素数が1万至 6個の直鎖又は分枝状の炭素鎖を意味する。 置換基を行して、ても良いアリール基、アラルケニル基、アラルキル基、ベンゼン環と縮合しても良い、テロアリール基、高しくはアリールオキン低級アルキル基は、環上に1万至3個の置換基を有していてもよう。好ましくは、ハロケン原子、ハロゲノ低級アルキル基、低級アルキル基、低級アルカル者、低級アルコキシ基、ハロゲノ低級アルコキシ基、シアノ基、ニトロ基、低級アルカノイルオキシ基、水酸基、フェニル基、モノ若しくは近低級アルキルアミノ基、モノ若しくは近低級アルキルアミノカルボニル基、低級アルカノイルアミノ基又はオキソ基である

R*, R*, R*及びR*において「置換基を有していても良い低級アルキル基又はアラルキル 基)の置換基は、1以上の同一又は異なった置換基が、水酸基、低級アルコキシ基、低級ア ルカノイルオキシ基、ヘロテノ低級アルキル基がらなる群より選択される

「低級アルキル基」は運動状では分枝状の炭素数1~6の低級アルキル基を示し、例え (世メチル、エチル、nープロビル、イソプロビル、nープチル、イソプチル、secープチル、ten ープチル、nーペンチル、nーペキシルなどが挙げられ、炭素数1~3の低級アルキル基が 好ましい

「低級アルキレン基」に直鎖状では分枝状の炭素数1~6の低級アルキレン基を示し、例 えばメチレン、エチレン、コロビレン、イソアロビレン、アチレン、インスチレン、エキレメチ レンなどのではつは、炭素数1~3の低級でのキレン基)がおし、更に対すし当まれたしてある。

「アリール基」は炭素数6~12の芳香族炭素水素基が好まし、例えばフェニル、 α ・ サフチル、 β ーナフチルなどがあげられる。更には、炭素数6~10のものが好ましい。

「アラルキル基」は「アリールー低級アルキレンー」を意味する

「アラルキルオキシ基」は「アリールー低級アルキレン・〇一」を意味する。

「アラルケニル基」は「アリールー低級アルケニレンー」を意味し、好ましくはC₆₋₁₀アリールーC。アルケニル基でもり、フェニルエテニル、フェニルフロペニル、ナフチルエテニル、ナフチルプロペニルなどが挙げられる。

「アリールオキシ低級アルキル基」は「アリールー〇ー低級アルキレンー」を意味する。 「低級アルコキシ基」は「低級アルキルー〇ー」を意味する。

「低級アルコキシカルボニル基」は「低級アルキルー〇一〇(=〇)ー」を意味する。

「低級アルカノイル基」は「低級アルキルーC(=O)-」を意味する。

「低級アルカノイルオキシ基」は「低級アルキルーC(=O)-O-」を意味する。

WO 98/22432

「低級アルカフィルでミノ基目は(低級アルキルーC)=O)-NR"-」を意味し、R"は水・素原子又は低級アルキル基を示す。

「ハロゲン原子」としては例えば、アッ素、塩素、異素又はヨウ素原子などが挙げられる「ハロゲノ低級アルキル基」の低級アルキル基は上記のC₁₋₁、アルキル基に上記ハロゲン原子が1-3個置換したものであり、「リフルオロメチルが好ましい

トハロゲノ低級アルコキシ 基口は「ハロゲノ低級アルキルーOー」を意味する

「アシル基」は、広義のアシル基を意味し、カルボニル誘導体及びスルホニル誘導体を意味する。

「シクロアルキル基」は3~8員飽和炭化水素環を意味し、好ましては3~6員のシクロアルキルである。

「シグコアルキレン基」は上記の、グロアルキルの結合手が2つのものである

「モノ告しくはジ低級アルキルでミノ基」とは、上記低級アルキル基が1又は2置換したアミノ基を意味する。

「モノ苦しくはジ低級アルキルアミノカルボニル基」とは、「モノ若しくはジ低級アルキルアミノーC(=O)ー」を意味する

「R Park And Anders And Anders Ander

「nが1のときR®とR®が一体となって、シクロアルキレン基を形成する」とは、R®とR®及びそ というと結合して、エピ 赤原子とA、を環原子として含む上記シクロアルキレンを形成すること を意味する。

「ベンゼン環と縮合していても良いヘテロアリール基」とは、窒素原子、酸素原子又は硫 黄原子から選択されるヘテロ原子1乃至3個を含む5又は6員ヘテロアリール基、又はベン ゼン環と縮合した2環系ヘテロアリール基を意味し、該ヘテロアリールとしては、ビロール、イ ミダゾール、ビラゾール、ピリジン、ビラジン、ビリミジン、ヒリダジン、トリアゾール、チオフェン、 チオピラン、フラン、ピラン、ジオキソラン、チアゾール、インチアゾール、チアジアゾール、チ

アンシ、オキサソール、イバキサソール、オキサジアゾール、アラザン、、オキサソール、オキサジン、オキサジアシン、シオキサシン等が挙げられ、ベンセン環と縮合した含窒素ペデロアリールとしてはインドール、イバインドール、キ 切ン、イソキ 切と、ベンソチオニュン、ベンソデアゾール、ベンパフラン、ベンゾフラザン等が挙げられる 好ましくは、ヒサジン、ヒリミジン、インドール、キ ガン、チオフェン、フラン等である

- キャデロアリールカルボニル基」とは、キャデロアリールーC(=O) - jを意味し、ママコアリールとは、上記の5 又は6員ペポロアリールを意味する。

「R**とR*か一体となって含窒素シクロアルキレン 塩を形成する」又は「nか1のときR*とR*ルー体となって含窒素シクロアルキレン 塩を形成する」とは、環原子としてR*が置換している炭素原子を含む5~7 質含窒素シクロアルカン、又は環原子としてR*が置換している炭素原子を含む5~7 質含窒素シクロアルカン、又は環原子としてR*が置換している窒素原子とR*が置換している炭素原子及(テA)を含む4~7 買含窒素シクロアルカンを形成することを意味し、具体的にはヒロール、ヒヘリシン、2ーへキサビドコアゼヒン等が挙げられ、ヒロール又はヒヘリシンが好ましい。

本発明化合物において三級アジンを有する化合物は当該アジンがオキシド化されていて もよい行れらのオキンド化誘導体をすって包含するものである。

本範期化合物中に、江洋結合に基一八五要異性体が存在する。置換基の種類によっては、1個円面複数調の毛質模素原子を有する場合にあり、「紅江基金、(R)体、(S)体等の光学異性体、ラボ(体、)、アステにオート等が存在する。また、置換基の種類によっては、工重結合を有する場合もあり、(Z)体、(E)体等の幾何異性体が存在する。更に環を有する化合物ではシスートランスが存在することがある。本発明は、これらの異性体の分離されたものあるいは混合物を全て包含する。

本発明化合物は塩を形成する。具体的には、無機酸若しくは有機酸との酸付加塩、あるいは無機若しくは有機塩基との塩であり、製薬学的に許容しうる塩が好ましい。これらの塩としては、具体的には塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸若しくは燐酸等の鉱酸、又はギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸若しくは、トルエンスルホン酸等の有機酸、又はアスハラギン酸若しくはグルタミン酸などの酸性アミノ酸との付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、リチウムなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オルなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オル

ニーンなどの塩基性できる酸との塩等を挙げることが出来る。更に4級アンモニウム塩であることができる。4級アンモニウム塩は、具体的には低級アルキルハライト、低級アルキルトンでラート、低級アルキルトシラートスはペンシルハライド等と反応させて得られるアンモニウム。塩であり、好ましてはメチルヨージド又はペンシルクロリド等との塩である。

更に、本発明化合物は水和物、エジノール等との溶媒和物や結晶多形を形成することのできる。本発明は、これらの水和物、溶媒和物では結晶多形の分離されたものあるいは混合化合物を全て包含する。

(製造法)

本発明化合物(f)は、種々の製造法を適用して製造することができる。以下にその代表的な製造法について説明する。

第一製法

(武甲の記号は、面連門同様でも6つ)

本製造法は、 敗式(II)で示される置換アニリ くけその塩と、一般式(III)で示される カルボン酸くはその反応性誘導体又はチオカルボン酸、又はその反応性誘導体とをでき 化し、保護基を有するときは保護基を除去する事により本発明化合物(I)を製造する方法である。

化合物(III)の反応性誘導体としては、カルボン酸のメチルエステル、エチルエステル、イソブチルエステル、tertーブチルエステルなどの通常のエステル、酸クロリド、酸プロミドリン如き酸ハライド、酸アジド、2、4ージニトロフェノールなどのフェノール系化合物や1ーヒドロキシスクシンイミド、1ーヒドロキシベンゾトリアゾールなどのNーヒドロキシアミン系化合物等と反応させて得られる活性エステル、対称型酸無水物、アルキル炭酸ハライドなどのハロカルボン酸アルキルエステルやヒバロイルハライドなどと反応させて得られる有機酸系混合酸無水物や塩化ジフェニルホスホリル、Nーメチルモルホリンとを反応させ、又はトリフェニルホスフィンなどの有機燐化合物とNーブロモスクシンイミド等の活性化剤の組み合わせで得られ

WO 98/22432

る有機燐系の活性エステルが業けられる。

またカルボン酸を選離酸で反応させるとき、又は活性エステルを単離せてに反応させる時など、ジシクロペキシルカルボジイミト、カルボエルジイミダブール、シフェニルボスボリルアジド、ジエモルボスボリルシアニドや1ーエモルー3ー(3ージメモルアミノコロヒル)カルボジイミド塩酸塩、チナニルクロリド、オキザリルクロリド、近塩化燐、三塩化燐、オキシ塩化燐、ベンソトリアゾールー1ーイルオキシトリス(ジメチルアミノ)コオスフォニウムペキャフルオロフオスフェート、無水トリフルオロ酢酸、無水酢酸、ビバロイルクロリド、メタンスルボニルクロリトやトシルクロリド等の縮台剤を使用するのが好適である。特に本発明においては酸クロリド又は、燐酸系の混合酸無水物を用いる方法が有利である。

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジグロロメタン、ジグロロエタン、グロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシンン等の 芳香族炭化水素類、エーデル、デトラヒドロフラン等のエーデル類、酢酸エチュエステル等のエステル類、アセトニビル、N、Nージメチルホルムアは、N、Nージメチルアセトアは、Nーメチルー2ーヒロ切びをジメチルスルがキシド等の反応に不活性な有機溶媒中、冷却下、冷却下乃至室温工、又は室温乃至加熱下に行われる

この際分子内に存在する酸素原子、硫黄原子、窒素原子等は保護基と結合していることが望ましい場合があり、このような保護基としてはGreene及びWuts著、「Protective Groups in Organic Synthesis」第2版に記載の保護基等を挙げることができ、これらを反応条件に応じて適宜使い分けることができる。

第二製法

$$R^3$$
 R^4 R^6 R^7 R^8 R^5 R^6 R^7 R^8 R^5 R^6 R^7 R^8 R^5 R^6 R^7 R^8 R^5 R^6 R^7 R^8 R^7 R^8 R^7 R^8 $R^$

(式中の記号は、前述と同様である。)

WO 98/22432

本製造法は、本意明化合物(IV)で示される離換アジン又はその塩と、一般式(V)で示されるカルボン酸、又はその反応性誘導体、スルボン酸、又はその反応性誘導体、チャカタボン酸、又はその反応性誘導体とを下決化し、本発明化合物(I)を製造する方法であり、第一製法と同様の反応条件が使用可能である。

PCT/JP97/04174

更にウレア又はチオウレア誘導体を合成する際には、上記の他にイバーアン酸エステル、 又はイソチオシアン酸エステル誘導体との縮合反応を用いるのが好適である

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジクロロメダン、ジクロコエダン、クロロボルムなどのハロゲン化炭化水素類、バンゼン、トルエン、キェレン等の芳香族炭化水素類、エーデル、テトラビドロフラン等のエーデル類、酢酸エチルエステル等のエステル類、N、NージメチルホルムアミドやN、Nージメチルアセトアミドやジメチルスルホキシド等の反応に不活性な有機溶媒中、治却下、治却下乃至室温下、又は室温乃至加熱下に行われる。

尚, 反応に際して、本発明化合物 (IV)を過剰に用いたり、Nーメチルモルホル、トリメチルアミン、トリエチルアミン、N, Nージメチルアニリン、ヒリジン、4ー(N, Nージメチルアミハ) ヒリジン、ヒコリン、ルチシン などの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合のある。ヒリニンなど(は溶媒とサネコといてきる)

第三製法

(式中の記号は、前述と同様である。)

工製造法は、本発明化台物(Ia)で示されるアミド基をチオアミド基へと変換し、本発明化合物(Ib)を製造する方法である。

本反応は五硫化二燐、Lawesson試薬等アミド誘導体からチオアミド誘導体を合成する 公知である任意の化学的方法により製造可能である

反応は通常ジクロロメタン,ジクロロエタン,クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、ビリジン等の反応に不活性な有機溶媒中、冷

却下、冷却下乃至毫温下、又は毫温乃至加熱下に行われる

また分子的に複数個のでは基文はウレアが存在する場合、反応条件等の調節により任意の部位又は複数個のでは基をデオアが基に、ウレアをデオウレアに変換する事が可能である。

その他、加水分解、水素化、ウレイド化等も常法により行われる

このようにして製造された本発明化合物は、遊離のまま、その塩、その水和物、その溶媒和物、あるいは結晶多形の物質として単離精製される。本発明化合物(I)の塩は、常法の造塩反応に付すことにより製造することもできる。

上記製法の原料化合物中には、新規な物質も含まれているが、参考例記載の製法やモの製法に進せる方法,或いは当業者が任意に実施可能な変法を適用して製造できる。

単離精製は、抽出、濃縮、留生、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は、適当な原料化合物を選択することにより、あるいは異性体間の物理化学的性質の差を利用して分離することができる。例えば、光学異性体は適当な原料を選択することにより、あるいはラセミ化合物のラセミ分割法により、立体化学的に純粋な異性体に、例うことのことも

産業上の利用可能性

本 免明化 合物はアンドロゲンによる転写活性化を抑制することにより、強力な抗す: 十コ ゲン 作用を有し、中枢作用、アゴニスト作用等の副作用の少ない化合物である。

従って、本発明化合物はアンドロゲンが増悪因子として関与する疾患、例えば、前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の治療又は予防剤として有用である。

本発明化合物の有用性は、下記の試験方法により確認されている。

1. ヒトアンドロゲン受容体に対する転写活性化作用

ヒト アンドロゲン受容体発現遺伝子、MMTVレホーター遺伝子安定形質転換体および SV40レホーター遺伝子安定形質転換体の取得

CHO 細胞を, 直径 100 mm の細胞培養用ディッシュに 1×10^6 個播き, $12 \sim 18$ 時間後に, リン酸カルシウムと共沈殿させたヒト アンドロゲン受容体発現プラスミト, MMTV-LTR

ルルフェラーゼレホーターフラスミド(ネオマイシン耐性遺伝子も含む)を加えトランスフェクションを行った。15時間後に培地を除き、細胞を数段階に希釈し播き直し、培地に

GENETICIN®(ネナマイシン)を終濃度 500 μ g/ml となるように加えた。約1週間後、ネオマイシンによって選択された細胞を剥がし、限界看釈法によりにトーアンドロデン侵害体を現遺伝子、MMTV-ルシフェラーゼレホーター遺伝子を恒常的に発現する細胞を単離取得した(CHO/MMTV 安定形質転換体)

上記と同様にして SV40 レホーター遺伝子安定形質転換体を取得した。たたし、SV40 レホーターフラス(おとネオマイシン耐性遺伝子発現フラス(影を同時にトランスフェクトした (CHO/SV40 安定形質転換体)

a) にトーアンドロゲン 受容体に対する転写活性化作用の評価(agonist 作用)

CHO/MMTV 安定形質転換体細胞および CHO/SV40 安定形質転換体細胞を、それぞれ 96well 細胞培養用ルミノフレートに 1×10⁴ 個播き、6~8 時間後に本発明化合物を添加した。化合物添加 18 間後に 1% トリトン・X および 10% グリセロールを含む溶液 20 μ 1を加え細胞を溶かし、0.47mM ルシフェリンを含むルシフェラーゼ基質液 100 μ 1を加え、ルミノメーターを用いて発光量を測定し、これらをローアンドロデン受容体による MMTV-LTR 転車活性化計まり、即時量的な SV40 コロエーター・転立活性化により得る。れるタミコュラーセの活性には、

本発明化合物による転送活性化作用を InM DHT により誘導される転送活性に対する 比率として以下の式により算出した

誘導率(%)=100(X-B)/(I-B)

LinM DHT を添加した場合の(MMTVルシフェラーゼ活性)/(SV40ルシフェラーゼ活性)

B.無処置での(MMTVハシフュラーゼ活性)/(SV40ハシフュラーゼ活性)

N 工意即化合物を添加 上場合の(MMTVルシフェラーゼ活性)/(SV40ルシフェラーゼ活性) b)ヒト アンドロゲン受容体に対する転写活性化抑制作用の評価(antagonist 作用)

CHO/MMTV 安定形質転換体細胞および CHO/SV40 安定形質転換体細胞を、それぞれ 96well 細胞培養用ルミノフレートに 1×10^4 個播き、 $6\sim8$ 時間後に DHT(最終濃度 0.3nM)と同時に本発明化合物を添加した 化合物添加 18 間後に 1% トリトン-X および 10% グリセロールを含む溶液 $20~\mu$ Tを加え細胞を溶かし、0.47mM ルシフェリンを含む ルシフェラーゼ基質液 $100~\mu$ Tを加え、ルミノメーターを用いて発光量を測定し、これらを

セド アンドロナン受容体による MMTV-LTR 転写活性化的よび、非特異的な SV40 フェモーター転写活性化により得られるが、フェラーせの活性とした

本苑明化合物による賦写活性化抑制作用を 0 3nM DHT により誘導される転写活性に対する阻害率として以下の式により算出した

阻害率(%)=100(Г-X)/(Г-B)

F:0.3nM DHT のみ添加した場合の(MMTVルシフェラーゼ活性)/(SV40ルシフェラーゼ活性)B:無処置での(MMTVルシフェラーゼ活性)/(SV40ルシフェラーゼ活性)

X) 本発明化合物と0.3nM DHT を同時に添加した場合の(MMTVルシフェラーセ活性)/(SV40ルシフェラーセ活性)

上記の方法で算出した阻害率が50%となる本発明化合物の濃度から1C点を求めた上記の及びb)により求められた本発明化合物の活性を以下に示す

表1

試験化合物	b) antagonist [評用] IC ₅₀ (nM)	a) agonist 作用 10 μ Μ添加時の誘導率 (%)
実施例25	0.87	1.9
実施例17	0.56	0.5
"耳旋例42	0.75	1.4
(兵施例72	0.71	0.4
(異施例69	10	0.3
Bicalutamide	0.88	. 18.9

2. 幼苔去勢ラ 中のデストスデロン誘導前立腺重量増加に対する抑制作用

3 週令の雄性 Wistar ラートを去勢後 72 時間よりコロビオン酸デストステロンおよび本発明 化合物を同時に1日1回5日間連続投与した。最終投与 6 時間後、腹側前立腺の湿重量を 測定し、プロビオン酸テストステロンによる前立腺重量増加に対する本発明化合物の抑制 作用を検討した。

プロピオン酸テストステロンは 5% エタノールを含む綿実油に溶解しラット体重 1Kg あたり 0.5mg を皮下投与した。本発明化合物は 0.5% メチルセルロース溶液に懸濁し経口投与した。

本発明化合物の前立腺重量増加抑制作用はフロビオン酸テストステロンおよび本発明化合物をともに投与した群を試験群、フロビオン酸テストステロンのみを投与した群を対照群、プロビオン酸テストステロンおよび本発明化合物ともに投与しない群を無処置群として、以下の計算式により算出した。

抑制率(%)=100(B-A)/(B-C)

- A:試験群の腹側面立腺湿重量
- B:対照群の腹側前立腺湿重量
- C.無処置群の腹側前立腺湿重量

上記の試験法により求められた本発明化合物の活性を以下に示す

表2

試験化合物	前立腺重量增加抑制率(%)
	(10mg/kg p.o.)
実施例42	79
実施例30	79

これらの試験により、本発明化合物は純粋な抗で、ドロゲン作用を有し、アンドロゲンの作用を強く抑制することが確認された。また、中枢移行性が低いことも確認されており、副作用が少なく、アンドロゲンが増悪因子として関与する疾患の予防・治療薬として有用な化合物である。

本発明化合物又はその塩の1種又は2種以上を有効成分として含有する製剤は、通常製剤化に用いられる担体や賦形剤、その他の添加剤を用いて調製される

投与に錠剤、圧剤、カンセル剤、腫粒剤、散剤、液剤等による経口投与、よるには静止、 筋圧等の圧射剤、生剤、経度等による非緑口投与のいずれの形態であって結果)。 投与 量は症状、投与対象の作金、性別等を考慮して個々の場合に応じて適宜決定されるか、通 常経口投与の場合成人111当90、01~1000mg程度、好ましくは0、1~100mg、非経口 投与の場合成人1日当90、1~100mg、好ましくは0、001~50mg程度であり、これを1回 で、あるいは2~4回に分けて投与する

ビルマチルセルロースアクレート等の糖表えば胃溶性あるいは腸溶性物質のファルムで被膜しても良い

経口投与ったから液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロ・ で剤、エリキシル剤等を含み、一般的に用いられる下活性な希釈剤、例えば精製水、エタケ ールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、 風味剤、芳香剤、防腐剤を含有していても良い

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ホリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルペート80等がある。このような組成物はさらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラケトース)、溶解補助剤(例えば、グルタン酸、アスハラギン酸)のような補助剤を含んでいても良い。これらは例えばパクモリア保留フィルターを通す滤過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することにできる。

范明全共通平方代20万最良万形態

以下に実施例を掲記し、本色明を更に詳細に説明する。本を明は、これもの実施例に何ら制限されるものではない。高、実施例で用いられる原料化合物の製造方法を参考例として説明する。

参考例1-1

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸メチル

2-〒ミノブタン酸メチル塩酸塩1.54gをクロロホルム15mlに溶解し、氷冷下、トリエチルアミン2.23g、pーフルオロフェニルスルホニルクロリド1.95gを順次滴下した後、アルゴン雰囲気下、室温で4時間攪拌した。反応液をクロロホルム35mlで希釈し、1N塩酸50ml、飽和重曹水50mlで洗浄後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣にジイソプロヒルエーテル10mlを加え、析出した結晶を酢酸エチルより再結晶し、無色結晶の表題化合物2.73gを得た。

参考例1-1と同様に以下の参考例を合成した。

参考例	但台物名
泰普例1-2	ター(4・7)かけ(り)にアイルでくた。ビースポルではハン酸メデル
参考例1-3	2-(2 やきシバンドイルアミノ)-2-マナルフロバン酸メナル
参考例1-4	セー (4~) アノベン イイルアミノ)・セーメチルフロバン酸メデル
参号例1 5	2-(4- リフルナロメモルペンソイルアミカー2-メモルブロバン酸メモル
参号例1-6	2-(4-フルオロフェニルスルホニルデミノ)-2-メチルフロバン酸ペチル
参考例17	2-(4-ニトロフェニルスルホニルアミノ)-2-メチルブロバン酸メチル
参考例1-8	2-(4-メトキシフェニルスルホニルアミノ)-2-メチルブロバン酸メチル
参号例1 - 9	3。(4-7)ルサロフェニルスルホニルアミノ)フロバン酸メチル
参考例1-10	3-(4-マルナロマミニルスルホニルアミリブミン酸メチル
参音例1-!1	1 - (4 - フルオロフェニルスルボニルアミノ)シャロフロビルカルボン酸メデル
泰考例1-12	1 (4-7)(す(いた) アイルアミハシ ^ロアロビルカルボン酸メモル
参考例1 13	1-(4-7)ルナロフェニルスルホニルアミバンドルジンチルガルボン酸メデル
泰省例1-14	1~(4~フルナロペンソイルアミリシ 当たら チルカルボン酸マチル
参号例1-15	1、(4-フルオロフェニルスルホニルアミハシ ニューキシルカルボン酸メチル
参号例1-16	1-(4-フルオロバンソイルアミハシグに、キシルカルボン酸メチル
参考例1 17	4-(4-フルオロベンソイルアミノ)テトラヒトロピラン・4・カルボン酸くデル
参考例]-18	3- (4-7)4 寸(いく) ブゴルブミノ)・2,2,3-トリメモル フタン酸エモル

参号例2-1

2-(4-マルオロフェエルスルホエルアミハブタン酸

2 (4-17年オロフェニルスルホニルアミハでタン酸メチル2, 73gをメタケール40ml(1 溶解)、生命工、IN水酸化土中ウン 水溶液20mlを滴下後、室温で8時間攪打した。減圧 上にメタケールを促去した後、水金子、IN塩酸20mlを滴干してpH2をし、酶酶エチル50m 1で4回抽出した。直機層を無水硫酸、生き、ウムで乾燥し、減圧上に溶媒を留ました後、 残渣によ子でロにルエーデル20mlを加え、抽出した結晶を衝酸エチルより再結晶し、無 色結晶の表題化合物1,53gを得た

参考例2-1と同様に、以下の参考例を合成した

参考例	化合物名
参考例2-2	2- (4-フルオロフェニルスルホニル)メチルアミノ プロパン酸
4 3 13	11 エーフルオロバンゾイルアミノ) 2 メチルプロバン酸
参考例2-4	2-(2-メトキシバンゾイルアミノ)-2-メモルプロバン酸
参考例2-5	2-(4-シア バジンゾイルアミバ) - 2-メチルプロパン酸
参考例2-6	2-(4-トリフルオロメチルバンソイルアミノ)-2-メチルプロバン酸
参考例2-7	2-(4-フルオロフェニルスルホニルアミノ)-2-メチルプロハン酸
参考例2-8	2-(4-ニトロフェニルスルホニルアミノ)-2-メチルプロパン酸
参考例2-9	2-(4-メトキシフェニルスルホニルアミノ)-2-メチルプロバン酸
参考例2-10	2-(N-ベンジルオキシー4-フルオロベンズアミド)-2-メチルプロパン酸
参考例2-11	3-(4-フルオロフェニルスルホニルアミノ)プロパン酸
参考例2-12	3-(4-フルオロフェニルスルホニルアミノ) ブタン酸
参考例2-13	1-(4-フルオロフェニルスルホニルアミノ)シクロプロピルカルボン酸

参考例2-14	1 (4 - フルナロペンドイルアミハシケロアロビルカルボン酸
参考例2·15	主一日、アルオロフミニルスルポニルアと行われた。チルカルボン酸
参考例2 16	1 - (4 - フルナロバンフィルアミノ) シゴにら チェカルボン酸
参考例217	1 (4・72年 古はフェニルスルホニモデ(イ)しては人持したカルボン酸
参考例2-18	
参考例219	4 (4 - フルオロバン・ロイルアミア)テトがヒトがどうシー 4 - カルボン 酸
参考例21-20	コー (4ーフルオロバンフイルアミア) 2.2.3、同サメモルブタン酸

参考例()

2-[(4-7ルオロブニニルスルホニル)メデルアミバブロバン酸メデル

2-(4-マルオロフェニルスルホニルアミハフロハン酸メチル500mgをN, Nージメチルホルニアミプ5mlに溶解した後、炭酸カリウム320mgを加支、室温で10分間機拌した。皮症液を水治し、ヨウ化メチル330mgを加支、アルコン雰囲気下、室温で12時間機拌した。皮症液を酢酸ニチュ50mlで希釈し、蒸留水50mlで洗浄した後、無水硫酸マクネシウムで乾燥した。減圧下に溶媒を留去した後、得られた粗結晶を酢酸ニチルから再結晶し、無色結晶の表題化合物470mgを得た。

参考例4-1

 -2π のようで作りのなぶたれでも0,N -(4+1) アプールードサウルサビデルフェルル) ロボットの目

2 ミニオキャ、ウルキュルアドルロニ 1階6,69g N, N ユアルルドリアリアリアの mbの混合液化、20℃に治却に生後、チナニルクロ中3,90gを適下にた アルコ・専門気下、回温度で1時間攪拌した後、4ーアミノー2ートリアルオロメチルバンフェトリル5,58gを少量ずつ加え、更に3時間攪拌した 反応液を酢酸エチル200mlで希釈後、飽和重曹水200mlで洗浄し、更に蒸留水200mlで2回洗浄した後、無水硫酸マグネシウムで乾燥した 減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エニー・デーン (7:1) 店出部より粗結晶を得た この粗結晶を酢酸エチルから再結品し、

参考例4-1と同様に以下の参考例を合成した

無色結晶の表題化合物8.17gを得た。

参考例	化合物名
参考例4-2	2ーパンジルオキシカルボニルアミノーN - (4ーシアノー3 トリフルオロメチルフェニル)メチルブロハンアニリド
参考例4-3	2ーバンジルオキシカルボニルアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー3ーメトキシプロパンアミド

参考例4十4	ロー・ボンル すれた ウルボニル アミス・ベー (コージアン・ロートリアル すけべかルー アニニル・コンピー、メデルア ロージ アミト
参考例4 5	2・アリルオキシカルホニルアミノーペ (3) 4 . シアプレニルコー3・アデループタンアミド
泰考例4-6	1-ペンジルすれたカルボニルアミノーペー(4) シアノーミートリフルサロメナル フェニル)シフロブチルカルボキサミド

参考例5

2-(N-ベンジルオキシカルボニルアミハ-2-メチルフロバン酸

1N水酸化ナトリウム水溶液56mlに、水冷下、2ーでミノー2ーメチルフロハン酸5、79gを加え、続いて、ベンジルオキシカルボニルクロリド12、45gと1N水酸化ナトリウム水溶液75 mlをそれぞれ4回に分けて滴下し、室温で3時間提拌した。反応溶液を100mlのエーテルで3回洗った後、pH2になるまで1N塩酸を加え、300mlの酢酸エチルで3回抽出した。有機層を蒸留水で洗い、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留ました後、残渣を酢酸エチルーペキサン混合溶媒により再結晶し、無色結晶の表題化合物6、95gを得た参考例6

4'ーシアノー3'ートリフルオロメチルトリフルオロアセトアニリト

4-アミノ・2・トリアル すロメデル・コ ノニトリル 5,00gをクロロボルム20mlに溶解し、無水トリコ (*)で110mg 5,01mlを加え 室温に 530分提押した 再用して結晶を適取し、200年より立て洗浄し雲風化合物3,93gを得た。

参考例是

4ーメチルアミノーセートリフルオロメチルベンゾニトリル

水素化ナトリウム0. 22gをN, Nージメチルホルムアミド10mlに懸濁し,上記4'ーシアノー3'ートリフルオロメチルトリフルオロアセトアニリド1. 41gを加え水治下30分攪拌した 反応溶液にヨウ化メチル0. 62mlを加え4時間60℃で攪拌後,反応溶液に氷治下飽和炭酸カリウム水溶液10mlを加え同温度で1時間攪拌した 反応液を酢酸エチル50mlで希釈後,蒸留水50mlで2回洗浄し,無水硫酸マグネシウムで乾燥した 減圧下に溶媒を留去した後,残渣をシリカゲルカラムクロマトグラフィーに付し,酢酸エチルーへキサン(3:7)溶出部より表題化合物0. 63gを得た

参考例8

2-(ベンジルオキシアミノ)-2-メチルプロハン酸エチル

ループロモ (小館酸エチル1、95gおよびOェベンシルビドロキシルでご 塩酸塩1、6gで N、Nージメチルボルムでミド溶液20mlに無水炭酸カリウム3、3gを加え、120 Cで10時間、機律した 反応溶液を減圧下濃縮し、残渣に水を加え、酢酸エチルで抽出した 有機層を 0、5 N塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗滌した後、無水硫酸ナトリウムで乾燥した 溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーにて 情製し、ペキサン一酢酸エチル (10:1) 溶出部より油状物として表題化合物0、33gを得た参考例9

2-(N-バンジルオキシー4-フルオロバンズアミロ)-2-メチルフロハン酸エチル 2-(ベンジルオキシアミリー2-メチルフロハン酸エチル 0.85 g カビリジン溶液 10 ml に 4-フルオロバングイルクロリド 0.68 g を加え、10 時間加熱還流した。反応溶液を減圧下濃縮し、残流に1 N塩酸を加え、酢酸エチルで抽出した。有機層を水洗後、無水硫酸ベクキンウムで乾燥した。溶媒を減圧下留去し、得られた結晶を石油エーテルで洗滌し、表題化合物 0.95 g を得た

参考例10-1

セーブミノーNー(4ーシアノー3ー)サブルオロメチルフェニル)プロバシアドド

及名例は「TC合成」で2 ー に、ままさ、ウルリニュリア・コート・は一、アニコー」ではすの 45年年で2 - 年 についまでは 500mgを1、2 ー についませた 5ml(T溶解)、水溶 上、シチルスルでは 790mg、「こっ化すウ素」の チルエー・ル 錯体600mgを順次加点、アルゴン雰囲気下、空温で13時間提择した後、飽和塩化アンモニウム水溶液10mlを加入た。更に室温で30分攪拌した後、水冷下、pH10になるまで1N水酸化ナロウム水溶液を加え、酢酸エチル50mlで3回抽出し、有機層を無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣にメタノールを加え、析出した結晶をメタノールより再結晶し、無

(別法)

2ーアミノー2ーメチルプロピオン酸277mgをN, Nージメチルアセトアミド3mlに懸濁し、 ー10 CにてチオニルクロリドO, 206mlを加え同温にて1時間攪拌した。次いで4ーアミノー 2ートリフルオロメチルベンズニトリルを加え、室温まで徐々に昇温しながら2時間攪拌した 反応溶液に水を加え、酢酸エチルで洗浄後、1規定水酸化ナトリウム水溶液でアルカリ性に した。遊離した油状物を酢酸エチルで抽出し、無水硫酸ナトリウムにて乾燥した。溶媒を減

圧下濃縮し、得られた残留物をシリカゲルカラムクロットグラフィーにて精製し、クロコボルス ーメクノール (97:3) 溶出部より表題化合物 400 mgを無色油状物として得た。更に酢酸ニ チルーペキサンより再結晶を行い表題化合物を得た。本化合物の諸物性値は上記で得ら れた化合物と完全に一致した

参考例10-1と同様に以下の参考例を台成した

参考例10-2

2-TミノーNー (4-1) アノー3-Hリフルオロメチルフェニル) -2-メチルフロベン Tミト 参 号例10-3

N=(4-5)アパー3ートリフルオロメチルフェニル)ー2ーメチルフロリンアミド塩酸塩 参考例11-1

2ーアミノーNー(3, 4ージシアノフェニル) -2- メチルフロバンアミド

(1)2ーパンジルオキシカルボニルアミノー2ーメチルでロバン酸30gとN, Nージメチルアセトアミド130mlの混合液を、一20 Cに冷却した後、チオニルクロリド10、2mlを滴下した。アルコン雰囲気下、同温度で1時間攪拌した後、4ーアミノコクロニトリル18、2gとN, Nージメチルアセトアミド70mlの混合液を滴下し、同温度で7時間、更に0 Cで18時間攪拌した。反応流を酢酸エチリで布例後、飽和重曹水で洗浄レケー更に、1N塩酸、飽和塩化土に中ウケ水溶液で洗浄した。、無水硫酸マグネ、ウムで乾燥した。減用下に溶媒を留去し、阻結晶を得だ

(2)得られた粗結晶をミクロロメタン 100mlに溶解し、水冷下ジメチルスルフィト25ml、 デッ化ホウ素ジエチルエーテル錯体15mlを順次加え、室温で3日間攪拌した後、更に、ジメチルスルフィド25ml、三フッ化ホウ素ジエチルエーテル錯体15mlを加え、室温で1日間攪拌した。反応液に1N塩酸を加え、攪拌した後分液し、水層をクロロホルムで洗浄した。水層が5!110になるまで1N水酸化ナトリウムを加えた後、酢酸エチルにより抽出した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒より再結晶し、表題化合物4.7gを得た

参考例11-1と同様に以下の参考例を台成した

参考例11-2

2-アミノ-2-(3,4-ジシアノフェニルカルバモイル)エチル アセテート

参号例12-1

2ーパンジルオキシカルボニルでミニーNー(4ーシアノー3ートリマルオロメールでニニル) コーパンジルオキシカルボニルでミニーNー(4ーシアノー3ートリマルオロメールでニニル) ー3ーメトシフロハンアミド2.0gをアセトニトリル30mlに溶解し、水冷下、ヨウ化トリメチルシラン1.4mlを加え、同温で工時間攪拌した。反応液にメタノール1ml、水30mlを順次加え、ジエチルエーテルで洗浄した。水層がpH9になるまで飽和重曹水を加えた後、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとハキサンの混合溶媒により再結晶し、表題化合物1.0gを得た

参考例12-12同様に以下の参考例を合成した

参考例12-2

1-〒ミノーN-(4-) アノー:3ートリアルキロメデルでユニル)シクロプデルカルボキサミ!。 参考例12-3

3ーでミノーNー(4ーシアノー3ートリールオコメチルフェニル)ー2,2ージメチルコロバンでは

参号例13

2一下 15-10 (B) 4・3) アク (E)は4 (一) 一方子 4 (2) アイ

なら例10で含成した2ーア単年すれ、ウルボニルで / N (3,4-1, アイニニル / ニニル / ニニル / ニニル / アイニニル / ニニル / デール でクシア (注 1,88g及 / 等で酸530mg / ケーラに / ロローラ、溶液に ミラキス) 申 ニエル アナスフィン ハラジウム 1,66gを加えてルゴン 気流下10時間加熱還流した 反応混合物を減圧下濃縮し得られた残留物を1規定塩酸及 / び酢酸エチルに溶解し水層を分離した この水層を1規定水酸化ナトリウム水溶液にて塩基性にし、遊離した油状物を酢酸エチルで抽出後、無水硫酸ナトリウムにて乾燥した 溶媒を減圧下濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルムーメタノール (95:5、V/V) 溶出部より表題化合物435mgを無色油状物として得た。

参考例14

1ーベンジルオキシカルボニルーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2 ーメチルフロリンアミド

1ーベンジルオキシカルボニルー2ーメチルーフロリン3.2gを1,2ージクロロエタン10ml に溶解し、氷冷下、オキサリルクロリド470mgを滴下した後、触媒量のN、Nージメチルホル

ムアミドを加え、同温で1時間攪拌した。減圧下に溶媒を留ました後、1,2ージクロロエタン20mlを加え再度留去した。得られた残渣をN、Nージメチルアセトアミド5mlに溶解し、水冷下、4ーアミノー2ードリフルオロメチルボンソニドリル3,2gを少量ずつ加えた後、窒温で6時間攪拌した。反応液を酢酸エチル50mlで希釈した後、1N塩酸50ml、飽和重曹水50ml、蒸留水50mlでそれぞれ洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、クロコホルムーへキサンから再結晶し、素題化合物5,64gを得た

参考例15-1

[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボン酸

4ーアミルクロペキシルカルボン酸 (cis 及び trans の混合物) 1. 43gを1 規定水酸化ナトリウム水溶液10mlに溶解し、トリエチルアミン1. 01gを加えた。次いで4ーフルオロベンダイルクロ場(1.59gのテトラヒドロフラン溶液(5ml)を水冷下滴下し、室温にて2時間攪拌した反応溶液を減圧にて濃縮し、エーテルで洗浄後、濃塩酸を用いて酸性にし、酢酸エチルで抽出し、乾燥後濃縮し表題化合物2. 41gを得た

参考例15-1と同様にして以下の参考例を合成した

参考例15 2

これ、心参芳例の物性値を表に示け

なお、 裏中の記号は17下の意味を有する

Ref.Ex:参考例番号

AcOEt語酸エチル

DATA:物理化学的性状

Hex :ヘキサン

NMR :核磁気共鳴スペクトル

EtOH:エグバール

(特に明記しない限り、DMSO-da)

(Et)-O:ジエチルエーテル

TMS 内部標準で測定)

1.2-diCl-Et: 1, 2ージクロロエタン

mp :融点

表3

Ref.Ex	DATA	
1-1	NMR: 6:0.77(3H,t,J=7.3Hz),1.40-1.66(2H,m),3.40-3.64(1H,m),3.68(3H,s), 7.28-7.47 (2H,m),7.77-7.92(2H,m),8.15(1H,d,J=8.8Hz)	
1-2	NMR(CDCl₃,TMS internal standard) ∂:1.68(6H,s),3.79(3H,s),6.77(1H,br),7.00-7.19(2H,m),7.71-7.87(2H,m)	
1-3	NMR(CDCl ₃ ,TMS internal standard) δ:1.65(6H,s),3.62(3H,s),4.00(3H,s),6.95-7.45(3H,m),8.20-8.49(2H,m)	

Ref.Ex	DATA
1-4	NMD: 11 46(6H a) 2 59/2H a) 7 00 9 02(4H m) 9 72(1H a)
1-5	NMR: 6::1.46(6H,s),3.58(3H,s),7.90-8.03(4H,m),8.72(1H,s)
	NMR: 6:1.48(6H,s).3.60(3H,s),7.73-8.10(4H,m).8.85(1H,s)
1-6	NMR(CDCl ₃ ,TMS internal standard)
1-7	↑:1.39(6H.s),3.58(3H,s),5.43(1H.s),7.08-7.16(2H.m),7.85-8.85(2H,m)
1-7	NMR(CDCl ₃ ,TMS internal standard)
1-8	0:1.48(6H.s),3.71(3H,s),5.63(1H.br),8.02-8.12(2H,m),8.31-8.40(2H,m) NMR(CDCl ₃ ,TMS internal standard)
1-0	,
1-9	∴:1.44(6H,s),3.66(3H,s),3.86(3H,s),5.27(1H,br),6.90-7.00(2H,m),7.56-7.86 (2H,m) NMR(CDCl ₃ ,TMS internal standard)
1-9	△:2.55-2.64(2H,m),3.12-3.34(2H,m).3.69(3H,s).7.18-7.31(3H,m),7.81-7.85 (2H,m)
1-10	NMR(CDCl ₃ ,TMS internal standard)
1-10	े :1.19(3H.d.J=6.8Hz),2.53(2H.d.J=5.5Hz),3.62-3.90(4H,m),5.37-5.45(1H,m), 7.11-
	7.21(2H,m),7.79-7.95(2H.m)
1-11	NMR: 0:1.15-1.32(4H,m),3.31(3H,s).7.32-7.52(2H,m),7.73-7.89(2H,m), 8.78(1H,s)
1-12	NMR: 6:1.07-1.28(2H,m),1.35-1.55(2H,m),3.60(3H,s),7.20-7.40(2H,m),7.85-8.01
' -	(2H.m),9.08(1H,br)
1-13	NMR: o :1.40-1.57(4H.m),1.80-2.02(4H.m),3.45(3H.s),7.31-7.51(2H.m),7.40-7.90
	(2H.m).8.25(1H.s)
1-14	NMR: 0:1.55-2.25(8H,m),3.58(3H,s),7.19-7.39(2H,m),7.85-8.01(2H,m), 8.66(1H,s)
1-15	NMR: 6:1.15-1.40(6H,m),1.65-1.88(4H,m).3.39(3H,s),7.30-7.51(2H,m),7.74-7.90
	(2H.m).8.08(1H.s)
1-16	NMR: o :1.38-2.30(10H.m),3.58(3H.s),7.18-7.39(2H.m),7.83-7.98(2H,m), 8.38(1H.s)
1-17	NMR: 6:1.97-2.10(4H,m),3.58-3.76(7H,m).7.27-7.35(2H,m),7.90-7.98(2H,m),
	8.64(1H,br)
1-18	NMR(CDCl ₃ ,TMS internal standard)
	○ .1.29(3H.t.J=7.5Hz).1.30(6H.s).1.54(6H.s).4.21(2H.q.J=7.5Hz).7.10(2H,t.J=8.6Hz).
	7.74(1H,br),7.81(2H,dd, J=5.4.8.6Hz)
2-1	NMR: 6::0.77(3H.t.J=7.3Hz),1.40-1.66(2H.m),3.42-3.66(1H.m),7.29-7.49 (2H.m),
	7.77-7.92(2H.m),8.15(1H.d.J=8.8Hz)
2-2	NMR(CDCl ₃ ,TMS internal standard)
	o:1.39(3H,d,J=7.3Hz),2.84(3H,s),4.65-4.89(1H,m),7.07-7.27(2H,m),7.76-7.92
	(2H.m)
2-3	NMR(CDCl ₃ ,TMS internal standard)
0.4	o:1.68(6H,s),7.00-7.33(3H,m),7.73-7.89(2H,m)
2-4	NMR(CDCl ₃ ,TMS internal standard)
0.5	∆:1.69(6H.s),4.01(3H,s),6.95-7.52(3H.m).8.20-8.51(2H,m)
2-5	NMR: δ:1.46(6H,s),7.92-8.05(4H,m),8.70(1H,s),12.25(1H,br)
2-6	NMR: δ:1.48(6H,s),7.79-8.11(4H,m),8.87(1H,s),12.23(1H,br)
2-7	à:1.68(6H.s),5.05(1H,s),7.05-7.14(2H,m),7.66-7.77(2H,m)
2-8	NMR(CDCl ₃ ,TMS internal standard)
0.0	δ:1.53(6H,s),5.44(1H,s),8.03-8.12(2H,m),8.31-8.41(2H,m)
2-9	NMR(CDCl ₃ ,TMS internal standard)
2 10	<u>6:1.43(6H,s),3.74(3H,s),5.30(1H,br),6.89-7.01(2H.m),7.57-7.80(2H,m)</u>
2-10	NMR(CDCl ₃ ,TMS internal standard)
	o:1.76(6H.s),4.74(2H.br),6.95(2H,dd,J=1.8Hz,7.7Hz),7.08(2H,t,J=8.7Hz),7.24-7.35
2-11	(3H,m),7.78-7.84(2H,m) NMR(CDCL TMS internal standard)
4-11	NMR(CDCl ₃ ,TMS internal standard)
2-12	à :2.58-2.69(2H,m),3.12-3.33(2H,m),7.20-7.29(3H,m),7.81-7.87(2H,m) NMR(CDCl₃,TMS internal standard)
2-12	
	δ:1.19(3H,d,J=6.8Hz),2.53(2H,d,J=5.5Hz),3.59-3.88(1H,m),5.37-5.46(1H,m), 7.09-7.27(2H,m),7.83-7.99(2H,m)
I	(E. 1,11)(1.00-1.00\EII)

WO 98/22432

Ref.Ex	DATA
nei.Ex	DATA
2-13	NMR: 0:1.10-1.42(4H.m),7.32-7.52(2H.m),7.73-7.89(2H.m),8.61(1H,s), 12.28(1H.br)
2-14	NMR: 0:1.01-1.20(2H.m),1.27-1.49(2H.m),7.15-7.45(2H.m),7.85-8.08(2H,m).
	8.98(1H,br). 12.37(1H,br)
2-15	NMR: 6:1.20-2.05(8H,m),7.29-7.50(2H,m),7.75-7.90(2H,m),8.05(1H,s), 12.42(1H,br)
2-16	NMR: δ:1.55-2.25(8H,m),7.18-7.40(2H,m),7.84-8.01(2H,m),8.51(1H,s), 12.12(1H,br)
2-17	NMR: 6:0.95-1.95(10H,m),7.27-7.50(2H,m),7.81-7.92(3H,m),12.38(1H,br)
2-18	NMR: ο :1.25-2.35(10H,m).7.15-7.42(2H,m).7.80-8.00(2H,m).8.24(1H,s)
2-19	NMR: δ:1.90-2.12(4H,m),3.57-3.77(4H,m),7.27-7.35(2H,m),7.90-7.98(2H,m), 8.52
	(1H,br).12.37(1H.br)
2-20	NMR(CDCl ₃ ,TMS internal standard)
<u> </u>	↑:1.33(6H.s),1.58(6H.s),7.07(2H,t,J=8.6Hz),7.40(1H.br),7.81(2H.dd, J=5.1.8.6Hz)
3	NMR(CDCl ₃ ,TMS internal standard)
	○:1.38(3H,d,J=7.3Hz),2.84(3H,s),3.56(3H,s),4.65-4.89(1H,m),7.08-7.29 (2H,m), 7.76-7.91(2H,m)
4-1	NMR(CDCl ₃ ,TMS internal standard)
4-1	6:1.47(3H,d,J=7.0Hz),4.32-4.48(1H,m),5.17(2H,s),5.25(1H,d,J=7.0Hz),7.35 (5H,s),
	7.75-7.77(2H,m),7.92(1H,br).9.06(1H,br)
4-2	NMR: 6:1.41(6H,s),5.01(2H,s),7.28-7.35(5H,m),7.69(1H,s), 8.07(1H,d,
	J=8.8Hz).8.20(1H,d,J=8.8Hz).8.33(1H,s),10.34(1H,s)
4-3	NMR: 8:3.27(3H,s),3.34-3.64(2H,m),4.35-4.46(1H,m),5.00-5.10(2H,m),7.30-
	7.39(5H,m),7.76-7.82(1H,m),8.01-8.14(2H,m),8.28-8.32(1H,m),10.91(1H,br)
4-4	NMR: 6:1.19(6H,s),3.27-3.32(2H,m),4.98(2H,s),7.25-7.38(6H,m),8.03-8.17(2H,m),
	8.30-8.35(1H,m)
4-5	NMR: 6::0.85-0.95(6H,m),1.99-2.09(1H,m),3.99(1H,t,J=7.8Hz),4.47-4.51 (2H,m),5.16-
	5.22(1H,m).5.27-5.35(1H,m).5.86-5.97(1H,m).7.64(1H,d,
	J=7.8Hz).7.99(1H,dd,J=1.4.6.3Hz).8.07(1H,d,J=6.3Hz).8.31(1H,d,J=1.4Hz).10.86(1H ,br)
4-6	NMR: o :1.60-2.90(6H,m),5.02(2H.s).7.10-7.50(5H.m),7.95-8.40 (4H.m), 10.24(1H.br)
5	NMR(CDCl ₃ ,TMS internal standard)
	○:1.57(6H.s),5.10(2H,s).5.50(1H.br),7.34(5H.s),10.42(1H.br)
6	NMR(CDCl ₃ ,TMS internal standard)
	o :7.28(1H,d,J=7.8Hz),7.87(1H,dd,J=1.5,7.8Hz),8.46(1H,d,J=1.5Hz)
7	NMR(CDCl ₃ ,TMS internal standard)
	ስ :2.93(3H.d.J=5.2Hz),4.68(1H,br),6.68(1H,dd,J=2.4,8.6Hz),6.84(1H,d,J=2.4Hz),7.41
	(1H,d,J=8.6Hz)
8	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.26(3H,t,J=7.3Hz),1.30(6H,s),4.18(2H,q,J=7.3Hz),4.72(2H,s),6.04(1H,s),7.25-
9	7.36(5H,m)
9	NMR(CDCl ₃ .TMS internal standard) o :1.29(3H,t,J=7.0Hz),1.72(3H,s),4.24(2H,q,J=7.0Hz),4.66(2H,br),6.95(2H,d,J=7.7Hz
).7.07(2H,t,J=8.7Hz),7.26-7.34(3H,m),7.73-7.77(2H,m)
10-1	mp: 79-80°C
10-2	mp: 116-117°C (AcOEt-Hex)
10-3	mp: 234-238°C (EtOH-(Et) ₂ O)
11-1	NMR: δ:1.32(6H,s),5.34(2H,br),8.06(1H,d,J=8.4Hz),8.21(1H,dd, J=2.1,8.4Hz),8.44
	(1H,d,J=2.1Hz)
11-2	NMR: 6:1.99(3H,s),3.67(1H,t,J=5.5Hz),4.18 (2H,d,J=5.5Hz) 5.05(2H,br), 7.95-8.20
_	(2H,m), 8.30-8.45(1H,m)
12-1	NMR: δ:3.26(3H,s).3.32-3.62(3H,m),4.97(2H,br),8.07-8.15(2H,m),8.38-8.41(1H,m)
12-2	NMR: δ:1.55-2.70(6H,m),5.31(3H,br),8.00-8.55(3H,m)
12-3	NMR: 8:1.14(6H,s),2.75(2H,s),3.31 (1H,br), 5.34(2H,br),7.96-8.10(2H,m),8.27-8.30
	(

Ref.Ex	DATA
	(1H.m)
13	NMR(CDCl _b ,TMS internal standard): 6:0.86(3H,d,J=6.6Hz), 1.07(3H,d, J=7.0Hz),2.41-2.53(1H,m),3.43(1H,d,J=3.3Hz),7.73(1H,d,J=8.8Hz),7.94 (1H,dd,J=2.2.8.8Hz), 8.21(1H,d,J=2.2Hz),10.18(1H,br)
14	NMR: $\&$:1.51(1.5H,s),1.53(1.5H,s),1.86-2.04(3H,m),2.13-2.23(1H,m),3.51-3.62 (1H,m),3.67-3.80(1H,m),4.88(0.5H,d,J=12.6Hz),5.07(1H,s),5.13 (0.5H,d,J=12.6Hz),7.02-7.18(2.5H,m),7.27-7.40(2.5H,m),8.03-8.30(3H,m),10.01(1H,s)
15-1	NMR: 6:1.30-2.50(9H, m), 3.10-3.50(1H, m), 7.21-7.36(2H, m), 7.87-8.40(2H, m), 8.14-8.28(1H, m), 12.24(1H, br)
15-2	NMR(CDCl ₃ ,TMS internal standard): 0 : 3.46-6.60(1H, m), 4.30-4.60(4H, m), 7.06-7.18(2H, m), 7.61-7.70(2H, m)

葉施例1

参考例10-1で合成した2ーアミノ-N-(4ーシアノ-3ートリフルオロメチルフェニル) アロハンアミド250mgをクロロボルム5mlに溶解し、水冷下、ドリエチルアミン110mg、メタンスルホニルクロリー120mgを加え、アルゴン雰囲気下、空温で3時間攪拌した。反応液をクロニエンニ50mlで布制後、1N塩酸50ml、飽和食塩水50mlで洗浄し、無水硫酸セクトニーで軽燥した。減損 下に溶媒を留ましたの月、復煮を酵酵にデルより再結晶し、無色結晶の表題化合物114mgを得た。

実施例12回様にして実施例2-16を合成した

実施例17

N-(4-シアノ-3-トリフル ナロメチルフェニル) -2-{[(4-フルオロフェニル) スルホニル] アミバブチルアミド

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸500mgをテトラヒドロフラン5mlに溶解し、水冷下、オキザリルクロリド470mgを滴下した後、触媒量のN、Nージメチルホルムアミドを加え、同温度で1時間攪拌した。減圧下に溶媒を留去した後、テトラヒドロフラン20mlを加え再度留去した。得られた残渣をN、Nージメチルホルムアミド5mlに溶解し、氷冷下、4-アミノー2ートリフルオロメチルベンゾニトリル580mgを少量ずつ加えた後、室温で6時間攪拌した。反応液を酢酸エチル50mlで希釈した後、1N塩酸50ml、飽和重曹水50ml、蒸留水50mlでそれぞれ洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(17:3)溶

WO 98/22432 PCT/JP97/0417-

出部上り粗結晶を得た。この粗結晶を酢酸エチルが、再結晶し、無色結晶の表題化合物3 81mgを得た

実施例17と同様にして実施例18-21を合成した

実施例22

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-([(4-フルオコフェニル)スルホニル!アミ/|フロハンチオアミド

N-(4-シアノー3-トリフルオロメチルフェニル) -2-1[(4-フルオロフェニル)スルボニル] アミノ(フロハンアミド600mgをトルエン 10mlに溶解し、Lawesson試薬290mgを加えた。アルゴン雰囲気下、3日間加熱環流にた後、反応液を室温まで冷却し、減圧下に溶媒を留去した。残渣をシリカゲルカラムプロマトグラフィーに付し、酢酸エチルーペキサン(4:1) 溶出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物339mgを得た。

実施例1と同様にして実施例23、24を合成した

(実施例25

N・11-[(4-ンアノ-3-トリフルオロスチルでピエル)カルドライル[-1-メチルエチル]-4-174 オロペンスでは

2-(4-7)ルチロベニソイルアニケー2-7-4-4 フロベニ酸500mgを、クロスタニ30ml (ご溶解に、水冷下、トリフェニルボスツ こ 933mg、N-7 ロモスク。こ子は633mgを順か、少量すつ加えた後、アルコン雰囲気下、同温度で2時間撹拌した。更に4-アニノー2ートリフルオロメチルペンジニトリル872mgを少量ずの加え、室温で3時間撹拌した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロベトグラフィーに付し、酢酸エチルーベキサン(17:3)溶出部よ9粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表質化合物156mgを得た。

実施例25と同様にして実施例26-33を合成した。

実施例1と同様にして実施例34-64を合成した

実施例65

N-\1-[(4-シアノ-3-トリフルオロメチルウェニル)カルバモイル]-1-メチルエチル\-2-シアノベンズアミド

(1) フタルアミド酸5.0gのジクロロメタン溶液80mlに、氷冷下、トリエチルアミン8.27ml

及びクロコギ酸エチル6.37mlを加え1時間攪拌した後、室温で更に6時間攪拌した。減圧 下、溶媒を留出し、メンセンーペキャン混合溶媒を加え折用した結晶を適別した。過消と 留出して、2ーシアフ欠息香酸無水物658mgを得た

(2)参考例10-2で台成した2-〒ミノーN-(4-シアノー3・トリフルナコメチルーェニル:
-2-マチルフロハンアミド200mgのジクロロメタン溶液10mlに上記2-シアノ安息香酸無水物323mgを加え、室温で9時間攪拌した。反応溶液に飽和重要水を加え攪拌した後、酢酸エチルにより抽出した。有機層を無水硫酸マグネシウムにより乾燥し、減圧下、溶媒を留去した。疾渣をシリカゲルカラムクロストグラフィーにて精製し、酢酸エチルーハキナニ(1:1)溶出部より粗結晶を得た。この粗結晶をメタノールー酢酸エチル混合溶媒により再結晶し、表題化合物190mgを得た。

実施例66

Nー(4ーシアノー3ートリフルオロメチルフェニル) -2-[2-(4-フルオロフェニル) ア セチルアミバー2ーメチルフロバンアミド

(1)4 アルオロフェニル酢酸102mgのジクロロメタン溶液5ml(1, 氷冷下, オキザリルクロデ)0, 057ml たび触媒量のN, Nージメチキリルム等 注を加え、窓温で2時間提打した。 後、減圧主、溶媒を鬱縮乾制に 1, 4 - アル・アニュルで セチェクロリ を書い

(2) 参考例10・2で合成した2ードに「-N-(4-1)でクロードでの「中の企業に対する」と 4) 2 メチルにロハンでは 150mgのビグロロメアン溶液5mlにに出、12mlを加えた後、 水治下上記4 にルオロフェニルでもチルクが明からグロロメアン溶液5mlを加え、同温でし 5時間攪拌した後、監温で1、5時間攪拌した 反応溶液に酢酸エチルを加え、これを飽和 重曹水、続いて、飽和食塩水で洗浄後、無水硫酸マグネシウムで有機層を乾燥し、減圧下、 溶媒を留去して粗結晶を得た この粗結晶を酢酸エチルから再結晶し、表題化合物98mg を得た

実施例67

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル1-2-ビドロキシベンズアミド

実施例44で合成した2-({1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}カルバモイル)フェニルアセテート150mgをメタノール1ml(ご溶解し、1N水酸化ナトリウム水溶液3mlを加えた後、室温で2時間攪拌した。減圧下にメタノ

WO 98/22432

ールを留去した後、IN塩酸を加えることにより粗結晶を得た。この粗結晶を酢酸エチルト ペキサンの混合溶媒により再結晶し、表題化合物102mgを得た。

実施例68

N = (1 + [(4 + i)T/-3 + N)7) n オロメチルフェニル) カル バモイル] + 1 + メチルエチル [+8 + キノリンカルボキサミド

- (1)8-キノリンカルボン酸230mg/リジクロロメヤン溶液5ml(こ、氷冷下、オキザリルクロナドの、114ml及び触媒量のN、Nージメチルホルムアミドを加え、氷冷下、30分攪拌した後、減圧下、溶媒を濃縮乾固して、8-キノリンカルボニルクロリド塩酸塩を得た
- (2)参考例10-2で合成した2-アミノーN-(4-シアノー3-トリフルオロメチルフェニル)-2-メチルフロハンアミド300mgのジクロロメソン溶液5mlに、水冷下、上記8-キュリンカルボニルクロ甲塩酸塩ソビクロロメソン溶液5ml及びドリエチルアシンの、364mlを加え、空温で2時間攪拌した。反応溶液に酢酸エチルを加え、これを飽和重暫水、続いて、水で洗浄後、無水硫酸マグネシウムで有機層を乾燥し、減圧下、溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーハキサン(1:1)溶出部より粗結晶を得た。この粗結晶を酢酸エチルとハキサンとの混合溶媒より再結晶し、表題化合物155mgを得た。

[異施例68是同様][7] 工具施例69~78至合成[7]

寒茄例79

Nー [1 - [(4 -) エノー3 - トリマルオロメチルフェエル) カル バモイル] - 1 - ノチル エチルト-4-ヒリジンカルボキサミド

イソニコチン酸0.15gとジクロロメタン10mlの混合液に、水冷下、Nーヒドロキシベンブトリアゾール0.18g、1ー(3ージメチルアミノフロヒル)ー3ーエチルカルボジイミド塩酸塩0.25pを順次加えた。同温で、2時間攪拌した後、2ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2ーメチルフロパンアミド0.30gを加え、空温で6時間、更にテトラヒドロフラン5mlを加え同温で65時間攪拌した。反応液に飽和重曹水を加え、酢酸エチルで抽出し、飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒より再結晶し、表題化合物0.26gを得た。

実施例79と同様にして実施例80-87を合成した。

実施例88

2-[(4-) アノ-3-トリアルオコノチルフェニル) カルパギイル] -2-(2-マルオコー、ンズア制のエチル アセデート

- (1)3-アセトキシー2-パンタルオキシカルボニルアミノフロバン酸3、9gをN、Nージメチルアセトアミド30mlに溶解し、一20℃に治却した後、チオニルクコリド1、1mlを滴下したアルゴン雰囲気下、0℃で1時間攪拌した後、4-アミノー3ートリアルオロメチル・ペンプニトリル2、6gを少量すつ加え、同温度で2時間攪拌した。反応液を酢酸エチルで合釈後、飽和重曹水で洗浄した。更に、0、1 N塩酸、飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸マグネンウムで乾燥した。減圧下に溶媒を留出し、粗結晶を得た。
- (2) 得られた粗結晶をジクロロメタン100mlに溶解し、水冷下、ジメチルズルフ計10ml、 三二、化中ウ素)エチルエーデル錯体8mlを順次加え、室温で4時間提拌した。反応液に 飽和重曹水を加え、酢酸エチルで抽出した後、飽和塩化ナトリウム水溶液で洗浄した。無 水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去し、粗結晶を得た
- (3) 得られた粗結晶をジクロロメタン 15mlに溶解し、水冷下、2 フルオロベンディルクロ 男- O. 56ml、トリエチルアミンO. 66mlを順次加点、室温で2時間攪拌した。反応液に飽和 重要水を加え、酢酸メチルでは10円で表。O. TN塩酸、飽和塩化土とウン水溶液で洗浄し た。無水硫酸、2 多)ウンで乾燥した後、減り上に溶焼を留去し、粗結晶を得た。胃におけ、 粗結晶を酢酸エチルト。キャンの混合溶媒により再結晶に、表題化合物1. 25gを得た 実施例89

Nー [1 ー [(4 ー シ ア ノー 3 ー トリマルオロメチルフェニル) カルバモイル] ー 2 ー ヒドロキシュ. チル } ー 2 ー フル オロベンズアミド

2-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-2-(2-フルオロベ * ゴアミド)エチル アセテート0.50gをメタノール5mlに溶解し、氷冷下、飽和炭酸カリウム、 水溶液2mlを加え、同温で 1 時間、更に室温で 1 時間攪拌した。反応液に1 N塩酸を加え pH2とし、析出した結晶を慮取した。得られた粗結晶を水で洗浄した後、酢酸エチルーへ キサンから再結晶し、表題化合物0.26gを得た

実施例90

N-(1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-メトキシベンズアミド

2 「下ミノーN・(4ー) アノー3 ートリフル すロメデルフェニュュー2 メデルフロハン 下 芸は30mgを行いうに コンラン5mlに溶解し、水冷下、ビニデル ア C 260 μ L 4 ー がで、・ミンイルクロ川の10mgを順次加定、水冷下で40分間提出した後、水を加之た。更に設温で5分攪拌した後、減圧下に溶媒を留去し、残渣を酢酸エデル30mlと1N塩酸水溶液とに分配し、有機層を飽和炭酸水素ナトリウム水溶液15ml、水15ml×2、飽和食塩水15mlで洗浄し、硫酸ナトリウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロットグラフィー(酢酸エデル: ハキサン=1:1)にて精製し、得られた油状物質をジイソフロビルエーデルー酢酸エデル: ハキサン=1:1)にて精製し、得られた油状物質をジイソフロビルエーデルー酢酸エデル: いキサン=1:1)にて精製し、得られた油状物質をジイソフロビル

実施例90と同様にして実施例91,92を合成した

実施例93

4-プロモー2-クロローNー(1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルバ モイルコーエーメチルエチル1ペンペアで):

4 フロモ・2ークロロ安息香酸520mgをデトラはドロプラ: 10mlに溶解し、水冷下すキギリルクロ中230 μ1、N、Nーンメチルボルムで、下1滴を順け加え、室温にて1時間提打した反応記を減圧下に溶媒を留まし、残流に1.2ードクロロルツ: を加え再度留ました 残流を手ラビトロプラ: 4mlに溶解し、水冷下2 アジーNー(4)、アジー3 トリンチオロメモルフェエル)ー2ーメチルフロへにで、下540mg、1世エチルでは 310 μ1を順次加え、50分間攪拌した 反応設に水を加え、2時間30分間攪拌し、減圧下に溶媒を留ました 残流を酢酸エチル50mlと1N塩酸水溶液30mlとに分配し、有機層を飽和炭酸水素ナトリウム水溶液30ml、飽和食塩水30ml×2で洗浄し、硫酸ナトリウムで乾燥した 減圧下に溶媒を留去した後、残渣を酢酸エチルーエーテルより再結晶し、無色結晶の表題化合物572mgを得た

実施例93と同様にして実施例94を合成した。

実施例95

Nー:1-[(4-シアノー3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエニル1-4-ヒドロキシベンズアミド

N-(1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル)-4-メトキシベンズアミド340mgをメチレンクロリド10mlに溶解し、-78℃にて1M三

实施例96

NーパンジルオキシーNー(1ー[(4ーシアソー3ー(リフルオロメチルフェニル)カルバモ イル!ー1ーメチルエチル!ー4ーフルオロバンスア引。

2-(4-フルオローNーペンジルオキシペンズでは)-2-メチルフロペン酸(), 7gにジクロロメタン20mlを加え、-10~-15 Cで機律主、五塩化リン(), 48gを少しすつ加えた -10℃で1時間機律後、同温度で4-アミノ-2-ドリフルオコメチルペンソニドリル(), 59gを加え、さらに室温で1時間機律した。反応溶液をクロロボルムで希釈後、水洗し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマドグラフィーにて精製した。容媒を減圧下に留去し、残渣をシリカゲルカラムクロマドグラフィーにて精製した。ペキサン一酢酸エデル(2:1)溶出部より得られた結晶をごインコロビルニーデルで洗滌にて去趣化合物(), 61gを得た

玉施倒97

N (1-f)(4) アノーロートリングではまれて、これ)カルコモイル]・ 1 - からにっきれば・4 - マルオローN=ヒトロキシンジスでは・

NーベンジルオキシーNー(1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルバモイル]ー1ーメチルエチル)ー4ーフルオロベンズアミド0.3gおよびぎ酸アンモニウム0.15gのエタノール10mlの懸濁溶液に10%ハラジウム炭素0.05gを加え,室温で30分間攪拌した。ハラジウム炭素を濾去後,水を加え,酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後,溶媒を減圧下に留去し,残渣をシリカゲルカラムクロマトグラフィーにて精製した。ヘキサンー酢酸エチル(1:1)溶出部より得られた結晶を酢酸エチルおよびハキサンの混合溶媒より再結晶し,表題化合物0.18gを得た。

実施例98

N-(4-シアノ-3-トリフルオロメチルフェニル) -2-メチル-2-(3-フェニルウレイド)フロハンアミド

参考例10-2で合成した2-アミノーN·(4-)アノー3ートリブルオロメチルでエエル・ -2-メチルでロバンアミド300mgのジクロロメタン溶液10mlに、水冷下、フェニルイツ。で ナード659mgを加え、監温で4.5時間攪拌した。反応溶液に、飽和重要水、続いて1N塩 酸を加え、析出した粗結晶を遮取した。この粗結晶を酢酸エチルより再結晶し、表題化合 物205mgを得た。

実施例99

Nー(4ーシアノー3ートリアルオロメチルフェニル)ー2ーメチルー2ー(チオペンズアミド) フロハンアミド

参考例10-2で含成した2-アミノーN-(4-シアノー3-ドリフルオロメチルコェニル) -2-メチルコロハンアミド400mgをピリジン5mlに溶解し、(チオペンジイルチナ)酢酸34 4mg、ドリエチルアシン226mgを加え、室温で110時間攪拌した。反応液を2N硫酸水溶液 に注ぎ、酢酸エチルで抽出した。有機層を飽和重曹水で洗浄後、無水硫酸マケネシウムで 乾燥した。減圧下に溶媒を留ました後、残渣をシリカゲルカラムクロペトクラフィー(に付し、 酢酸エチルーペキサン(1:1)溶出部より粗結晶を得た。この粗結晶を酢酸エチルとペキサ との混合溶媒(1より再結晶し、表題化合物60mgを得た

|実施例25世間様に1||で実施例100~104を合成に2

実施例1と同様にはて実施例105~107を合成した

実施例25と同様にして実施例108を含成した

|実施例1と同様にして実施例109~111を合成した|

|実施例25と同様にして実施例112-122を合成した

実施例1と同様にして実施例123-129を合成した

実施例130

□ ボー (4-シアノー3ートリフルオロメチルベンゾイル)ー[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボキサミド

参考例15-1で合成した[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボン酸を用いて、参考例14と同様の手法を用いて反応及び後処理を行った。得られた粗抽出物をシリカゲルカラムクロマトグラフィーにより精製し、酢酸エチルーヘキサン(1:1)溶出部より単一の化合物(A)を得た。更に溶出を続け他の異性体(B)を得た。

実施例130と同様にして実施例131を合成した。

これの与実施例の構造及び物性値を表に示す。

R4 R5 R6 R/

ここで、野中のAは一般式(D)における

部分に相当する

なお、表中の記号は参考例の表と間様の意味を有し、それ以外の記号については以下の 意味を有する

Ex. : 実施例番号

MS :質量分析值

Me : 4チル

(i-Pr)₀O(ジイソフロビルエーデル

Et : エチル

MeOH : メタノー・ル

:アセチル Ac

i-PrOH イグロハノール

Benzyl

			R	~
Ex.	•	R'	R ⁹	DATA
1	CF,	CN	CH ₃	mp: 164-165 (
				NMR: + .1.37(3H,d.J=6.8Hz).2.94(3H,s).4.01-4.17
				(1H.m).7.68(1H.d,J=8.0Hz).8.06(1H.dd,J=1.8.8.8Hz).8
				.12(1H.d,J=8.8Hz).8.29(1H,d,J=1.8Hz),10.80(1H,s)
2	CF ₃	CN		mp: 189-190 ((AcOEt-Hex)
			/	NMR: 6:1.21(3H.d.J=6.8Hz),3.94-3.98(1H,m), 7.46-
				7.54(3H,m),7.74-7.84(3H,m),8.03-8.08 (2H.m), 8.32-
				8.33 (1H,m),10.71 (1H.s)
3	CF ₃	ĊΝ		mp: 178-179 C (AcOEt-Hex)
				NMR: δ:1.24(3H,d.J=7.0Hz),3.94-4.00(1H,m),7.28-
				7.31(2H,m).7.80-7.84(3H,m),8.04-8.08(2H,m), 8.37
				(1H,d,J=8.0Hz),10.71(1H,s)
4	CF ₃	CN		mp: 179-180 C(AcOEt-Hex)
Ì	,		CI	NMR: 6:1.24(3H,d,J=6.8Hz),3.94-3.99(1H,m),7.42-
				7.53(2H,m),7.73-7.80(3H,m),7.94-8.12(2H,m), 8.46
				(1H.d,J=8.4Hz),10.70(1H,s)
5	CF ₃	CN		mp: 170-171°C (AcOEt-Hex)
			Br	NMR: 6:1.24(3H,d,J=6.8Hz),3.93-4.04(1H,m),7.63-
				7.69(4H,m),7.78(1H,dd,J=1.6,8.4Hz),8.04-8.09(2H,m),
				8.07(1H,d,J=8.4Hz).8.46(1H,d,J=8.8Hz),10.69(1H,s)
6	CF₃	CN	(1)	mp: 183-184 C (AcOEt-Hex)
			—('')—CN	NMR: δ:1.25(3H,d,J=7.0Hz),3.98-4.05(1H,m),7.77
			<u> </u>	(1H, dd,J=2.0,8.2Hz),7.88-7.97(4H,m),8.00(1H,d,
				J=2.0Hz),8.08(1H,d,J=8.8Hz),8.69(1H,d,J=8.2Hz),10.
				74(1H,s)

Ex.	R:	R ²	R ⁹	DATA
7	CF ₃	CN	<i></i>	mp: 134-135 (`(AcOEt-Hex)
			$-\langle -\rangle - CF_3$	NMR: 6:1.27(3H,d.J=6.8Hz),3.99-4.07(1H,m), 7.72
				(1H,dd,J=1,2,8.8Hz),7.79(2H,d,J=8.0Hz),7.95-8.06
				(4H.m),8.66(1H,d,J=8.8Hz),10.73(1H,s)
8	CF ₃	CN		mp: 111-112 C (AcOEt-Hex)
		İ	$-\langle \rangle - 0CF_3$	NMR: 0:1.26(3H,d,J=6.8Hz).3.98-4.05(1H,m),7.41
				(2H,d.J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7.89(2H,m),
		Ì		8.06(2H,d,J=8.6Hz). 8.52(1H,d,J=8.6Hz),10.75(1H,s)
9	CF ₃	CN	F	mp: 184-185 C (AcOEt-Hex)
	, ,,		\	NMR: 0:1.32(3H,d,J=7.2Hz).4.01-4.14(1H,m),7.07-
		ļ	——// <i>></i> —F	7.12(1H.m).7.41-7.47(1H.m),7.78-7.82(2H.m),8.03
		İ		(1H,d,J=1.6Hz).8.08(1H,d,J=8.6Hz).8.67(1H,d,J=8.6H
	Ì			z).10.77(1H.s)
10	CF ₃	CN	C1	mp: 159-160 C (AcOEt-Hex)
	1		_// \\	NMR: 0:1.25(3H,d.J=7.6Hz),3.98-4.05(1H,m),7.49
			_/	(1H,t,J=8.4Hz),7.54-7.56(1H,m),7.70-7.78(2H,m), 7.79
				(1H,dd.J=1.8.8.4Hz),8.03(1H,d.J=1.8Hz),8.07(1H,d,J=
				8.4Hz).8.54(1H,d,J=8.4Hz),10.77(1H,s)
11	CF ₃	CN	CN	mp: 189-190 © (AcOEt-Hex)
	,		_// \\	NMR: 0:1.27(3H.d,J=7.2Hz),4.00-4.08(1H.m),7.67-
			\/	7.71(1H,m),7.78(1H,dd,J=1.6,8.6Hz),7.96(1H,d,J=7.6
				Hz), $8.00(1H,d,J=1.6Hz)$, $8.04-8.11(3H,m)$, $8.64(1H,d)$
				J=8.6Hz),10.79(1H,s)
12	CF ₃	CN	CF ₃	mp: 143-144 ^C (AcOEt-Hex)
	,		_// \\	NMR: 0:1.28(3H.d,J=6.8Hz),4.03-4.10(1H,m),7.70-
				7.74(2H,m).7.84(1H.d,J=8.0Hz).7.96(1H,d,J=1.6Hz).8.
				01(1H.s).8.04-8.07(2H.m).8.68(1H.d,J=8.8Hz),
				10.77(1H.s)
13	CF,	CN		mp: 167-168 ((AcOEt-Hex)
		İ		NMR: :1.24(3H.d.J=7.0Hz).4.00-4.04(1H.m),7.48-7.51
		1		(1H.m),7.57-7.60(2H.m),7.76-7.78(2H,m),7.85-7.90
				(3H,m),7.98(1H,d.J=8.8Hz),8.34(1H,s),8.41(1H.d.J=8.
				0Hz).10.63(1H,s)
14	CF ₃	CN	<u> </u>	mp: 193-194 (`(AcOEt-Hex)
				NMR: 6:1.19(3H,d,J=6.8Hz),3.95-4.00(1H,m), 7.51
				(1H,t,J=7.6Hz),7.58-7.62(2H,m),7.67-7.71(1H,m), 7.78
				(1H,d,J=1.6Hz),7.93-8.06(3H,m), 8.13(1H,d,J=7.2Hz),
<u> </u>				8.67(2H,d,J=8.8Hz),10.52(1H,s)
15	CF ₃	CN	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mp: 199-200°C (AcOEt-Hex)
			(Y")	NMR: δ:1.27(3H.d,J=7.2Hz),4.37-4.44(1H,m),7.60-
	! !	l i		7.72(4H.m)7.83(1H,d,J=1.6Hz).8.00(1H.d,J=8.8Hz).8.
				17(1H,dd,J=1.2,8.4Hz),8.31(1H,dd,J=4.6,7.2Hz),8.43(
				1H,dd,J=1.6,8.8Hz),9.02(1H,dd,J=1.6,4.0Hz),10.65(1
				H,s)
16	CF₃	CN		mp: 185-186°C (AcOEt-Hex)
			~ まり	NMR: δ:1.34(3H,d,J=6.8Hz),3.97-4.06(1H,m), 7.00-
				7.04(1H,m),7.25-7.35(4H,m),7.48-7.50(2H,m), 7.84
				(1H,dd,J=2.0,8.8Hz),7.96(1H,d.J=8.8Hz),8.04(1H,d,J=
				8.0Hz),8.10(1H,d,J=2.0Hz),10.80(1H,s)

$$\begin{array}{c|c}
R^{1} & R^{3} & R^{4} \\
\hline
R^{2} & X & R^{8}
\end{array}$$

$$\begin{array}{c|c}
R^{3} & R^{4} \\
\hline
R^{2} & R^{8}
\end{array}$$

	<u> </u>	5 2		<u> </u>	<u> </u>	78	5.7.
Ex.	R:	R²	\mathbb{R}^3	Χ	R ⁴	R ⁸	DATA
17	CF₃	CN	Н	0	CH₂CH₃	H	mp: 170-171 (NMR: \wedge :0.83(3H.t,J=7.4Hz),1.52-1.72 (2H, m), 3.77-3.82(1H,m),7.24-7.28(2H,m), 7.75-7.82 (3H,m),8.01(1H,d,J=2.0Hz),8.07(1H,d,J=8.4Hz), 8.36(1H,d,J=8.8Hz),10.74(1H,s)
18	CF₃	CN	H	0	CH₃	CH₃	mp: 171-172°C (AcOEt-Hex) NMR: (CDCl ₃ ,TMS internal standard) ::1.09(3H,d,J=7.3Hz).2.86(3H,s),4.58-4.62 (1H,m),7.26-7.30(2H,m).7.80(1H,d,J=8.6Hz), 7.86-7.90(3H,m). 8.08(1H,d,J=1.8Hz). 8.79 (1H,s)
19	CF₃	CN	СНЗ	0	CH₃	Н	mp: 157-158 (** (AcOEt-Hex) NMR: (AcOEt-Hex) NMR: (AcOEt-Hex) (10,000) (11,000) (
20	CF ₂	CN	Н	0	benzyl	Н	mp: 248-249 ((AcOEt-Hex) NMR: 6:2.77-2.99(2H,m),4.08-4.14(1H,m), 7.14 (2H,t,J=8.8Hz),7.19-7.26 (5H,m),7.61-7.64 (2H,m),7.72(1H,d,J=8.8Hz), 7.96(1H,s), 8.07 (1H,d,J=8.8Hz),8.61(1H,d,J=8.8Hz),10.77(1H,s)
21	CF,	CN	Н	0	Н	Н	mp: 179-180 ((AcOEt-Hex) NMR: 6:3.77(2H.d.J=6.1Hz).7.38-7.42 (2H. m), 7.86-7.90(3H.m).8.08-8.12(2H.m). 8.25-8.27 (1H.m),10.71(1H,s)
22	CF <u>.</u>	CN	Н	S	CH₃	н	mp: 86-87 (NMR: 0:1.32(3H.d.J=6.8Hz),4.39-4.46 (1H. m), 7.28-7.34(2H.m),7.78-7.84(2H,m), 8.18-8.24 (2H,m),8.31(1H.d.J=8.4Hz),8.42 (1H,s), 12.01(1H,s)

$$\begin{array}{c|c}
R^1 & H & A & (O)_2 \\
R^2 & O & H & S \\
\end{array}$$

Ex.	R¹	R ²	Α	R ⁹	DATA
23	CF₃	CN	M e M e	s	mp: 166-167 C(AcOEt-Hex) NMR: δ:1.41(6H,s),7.06-7.10(1H,m), 7.57-7.61(1H,m),7.84-7.87(1H,m),8.07-8.14 (2H,m),8.23-8.30(2H,m),10.29(1H,s)
24	CF₃	CN	OMe	———F	mp: 90-95 C (AcOE!-(i-Pr) ₂ O-Hex) NMR: δ :3.19(3H,s),3.42-3.52(2H,m), 4.09- 4.17(1H,m),7.23-7.28(2H,m),7.76-7.84 (3H, m),8.01-8.03(1H,m),8.07(1H,d,J=8.4Hz), 8.51(1H,d,J=9.2Hz),10.81(1H,s)

Ex.	R ¹	R^2	Α	R°	DATA
31	CF ₃	CN	Me Me	—√}F	mp: 117-118 ((AcOEt-Hex) NMR(CDCl ₃ ,TMS internal standard) o: 1.47(6H,s),5.84(1H,s),7.22(2H,t,J=8.8Hz), 7.79(1H,d,J=8.8Hz),7.90-7.95(3H,m), 8.07 (1H,s),9.20(1H,br)
32	CF₃	CN	Me Me	NO ₂	mp: 109-110°C(AcOEt-Hex) NMR: 6:1.50(6H,s),7.89-7.92(2H,m),8.00- 8.15(4H,m),8.28(1H,d,J=2.0Hz),8.90(1H,s),1 0.33(1H,s)
33	CF₃	CN	Me Mc	———осн _з	mp: 124-125 ((AcOEt-Hex) NMR: 0:1.45(6H,s),3.76(3H,s),6.82(2H,d, J=8.8Hz),7.73-7.75(3H,m),7.89-7.92 (1H,m), 8.00(1H,d,J=2.0Hz),9.67 (1H,s), 10.83(1H,s)

			110	<u>, , , , , , , , , , , , , , , , , , , </u>
Ex.	R:		R ⁹	DATA
25	CF ₃	Me Me		mp: 207-208 C
				NMR(CDCl ₃ ,TMS internal standard)
				δ:1.77(6H,s),6.29(1H,s),7.15-7.19(2H,m), 7.76 (1H,
				d,J=8.3Hz),7.75-7.83(2H.m),7.87-7.90(1H.m), 8.07
				(1H,d,J=2.0Hz).10.67(1H,s)
26	CF,	Me Me	осн _з	mp: 124-125 ((AcOEt-Hex)
		×	\	NMR: 4:1.57(6H,s),3.97(3H,s),7.05(1H,t, J=7.2Hz),
			<u> 一</u> (*_)	7.20(1H.d.J=8.4Hz),7.49-7.54(1H.m), 7.79(1H.dd.
				J=2.0,8.4Hz).8.07(1H.d,J=8.4Hz).8.15(1H.dd.J=2.0,8
				.4Hz).8.31 (1H.d.J=2.0Hz).8.55(1H.s).10.20(1H.s)
27	CF ₃	Me Me	/\ a	mp: 256-258 ((MeOH-EtOH)
			CN	NMR: 6:1.54(6H.s),7.98(2H.m).8.03-8.15 (4H. m),
ļ				8.29(1H.d,J=2.0Hz),8.85(1H,s).10.22(1H,s)
28	CF ₃	Me Me	7	mp: 222-225°C (AcOEt-Hex)
			CF3	NMR: 8:1.55(6H,s),7.87(2H,d,J=8.8Hz),8.06 (1H,d,
			_	J=8.8Hz),8.13-8.15(3H,m),8.30(1H,d,J=2.0Hz), 8.83
			·	(1H,s),10.23(1H,s)
29	CN	Me Me		mp: 198-199 C (EtOH)
!				NMR: δ:1.52(6H,s),7.31(2H,t,J=8.8Hz),7.98-8.04
				(3H,m),8.10(1H,dd,J=2.0,8.6Hz),8.30(1H,d,J=2.0Hz),
				8.59(1H,s),10.15(1H,s)
30	CI	Me Me		mp: 227-230°C (AcOEt-Hex)
				NMR: δ:1.51(6H,s),7.31(2H,t,J=8.9Hz),7.75(1H, dd,
				J=2.6,8.7Hz),7.85(1H,d,J=8.7Hz),8.00(2H,dd,J=5.4,8
				.9Hz),8.06(1H,d.J=2.6Hz),8.55(1H,br),10.00(1H,br)
34	CF ₃	Me Me	F	mp: 168-169 C (AcOEt-Hex)
				NMR: δ:1.54(6H,s),7.27-7.32(2H,m),7.52-7.58
			─ (′_ ⟩	(1H,m),7.72-7.76(1H,m),8.08 (1H,d, J=8.4Hz), 8.16
				(1H,dd,J=1.6,8.4Hz),8.33(1H,d,J=1.6Hz),8.52(1H,d,J
L		•		=1.6Hz),10.22(1H,s)

Ex.	R'	A	l R ^e	DATA
35	CF ₃	Me Me	F	mp: 204-206 ((AcOEt-Hex)
	3	\rightarrow		NMR: 0:1.53(6H,s),7.38-7.43(1H,m),7.50-7.56 (1H,
			\/	m),7.75-7.78(2H,m),8.04-8.15 (2H,m), 8.30(1H,s).
				8.69(1H.s),10.22(1H.s)
36	CF,	Ме Ме	1./3	mp: 184-185°((CHCl ₃)
	"	\sim		NMR: 0:1.54(6H,s),7.51-7.54(1H,m),8.05(1H,d,J=
-		*	N N	8.8Hz), 8.13-8.16(1H,m).8.24-8.27 (1H,m).8.30(1H,
				d.J=1.6Hz),8.72(1H.dd,J=1.6.5.2Hz), 8.80(1H,s).
				9.11(1H.d.J=1.6Hz), 10.22(1H.s)
37	CF ₃	Me Me	/:\	mp: 129-130 (((i-Pr) ₂ O)
		\sim		NMR: 0:1.61(6H.s),7.64-7.62(1H,m),8.00-8.01 (2H,
			- N	m). 8.06(1H.d.J=9.2Hz).8.14-8.16 (1H,m). 8.31
				(1H.d.
				J=1.6Hz).8.72(1H.d.J=8.8Hz).8.83(1H.s).10.34(1H.s)
38	CF ₃	Ме Ме		Imp: 173-174 ((AcOEt-C ₆ H ₆)
	, ,	\sim		NMR: 0:1.58(6H,s),7.59-7.65(2H,m),7.98-8.06 (5H,
				m),8:14-8.17(1H.m),8.32(1H,d,J=1.6Hz), 8.56 (1H,s),
				8.74(1H.s),10.26(1H.s)
39	CF ₃	Ме		mp: 220-221 ((AcOEt-Hex)
	J 3	بار.		INMR(CDCl ₃ ,TMS internal standard)
		<i>y</i> '*,		o:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m),
				5.98-6.00(1H,m),7.81-7.83(2H,m), 7.98-8.00 (1H,m),
				9.88-9.89(1H,m)
40	CF ₃	Мe		mp: 206-207 ((AcOEt-Hex)
	, ,	人	─ (′_)∕─F	NMR (CDCl ₃ .TMS internal standard): 6:1.61(3H.d.
		,· ·,	\ <u>-</u> /	J=8.6Hz).4.93-4.97(1H,m).6.82-6.84(1H,m). 7.16-
				7.19(2H.m).7.76(1H.d.J=8.5Hz).7.84-7.87 (2H.m).
				7.97(1H.d. J=8.5Hz).8.02 (1H.s).9.88(1H.s)
41	CF,	Me Mo	F	mp. 166-167+ (AcOEt Hex)
		V	<u> </u>	NMR. = 1.53(6H.s),7.18-7.23(1H.m),7.34-7.40 (1H.
			— / <i>></i> — F	m). 7.79-7.85(1H.m),8.08(1H.d, J=8.8Hz). 8.16 (1H.
İ				dd,J=1.6.8.8Hz).8.32(1H.d.J=1.6Hz).8.55(1H.d.J=1.6
				Hz).10.22(1H,s)
42	CF ₃	Me Mc		mp: 182-183 ((AcOEt-Hex)
				NMR: 6:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (1H,
				m), 8.10(1H,d,J=8.8Hz),8.17(1H.dd, J=1.6, 8.8Hz),
		·		8.33(1H,d.J=1.6Hz).9.10 (1H.s),10.20(1H,s)
43	CF ₃	Me Me	Cĺ	mp: 214-215 ((AcOEt-Hex)
		<u> </u>		NMR: 6:1.51(6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz),
			cı	7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1H,
!	<u> </u>			m), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s)
44	CF ₃	Me Me		mp: 171-172 C (AcOEt-Hex)
		<u> </u>	00001	1
			<u></u> >-ососн _з	7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=
		-		1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.8
				Hz),8.33(1H,d,J=1.6Hz),8.61(1H.s),10.17(1H.s)
45	CF₃	Me Me	_/	mp: 207-208°C (AcOEt-Hex)
		<u> </u>	/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2H,
			CF ₃	m).7.87-7.89(1H,m),8.08-8.10(1H,m), 8.18-8.20 (1H,
			_	m),8.38(1H.s),8.93(1H.s), 10.30(1H,s)
46	CF₃	Me Me	1	mp: 215-216 C (AcOEt-Hex)
		\times		NMR: δ:1.58(6H,s),7.46-7.60(3H,m),7.85 (1H,d,
			して入り	J=6.8Hz),7.97-8.13(4H,m),8.24-8.26 (1H,m),8.39
L	1			(**************************************

Ex.	R	Α	R ⁹	DATA
				(1H.s).8.86(1H.s).10.42(1H.s)
47	CF ₃	Me Me		mp. 195-196 ((AcOEt-Hex)
		$\mathcal{A}_{A}}}}}}}}}}$		NMR: 0:1.52(6H.s),7.35-7.40(1H.m),7.45-7.49 (1H,
			Br	m), 7.61-7.66(2H.m),8.08(1H.d. J=8.8Hz), 8.21(1H,
				dd,J=2.4,8.8Hz),8.38(1H,d.J=2.4Hz),8.81(1H.s),10.2
				7(1H.s)
48	CF ₃	Me Me	_/	mp: 180-182 C (AcOEt-Hex)
		×-	/ N_CI	NMR: 1.52(6H.s),7.40-7.51(3H,m),7.61-7.65 (1H,
			\	m),8.05-8.24(2H,m),8.37(1H,br),8.83 (1H,br),10.28
				(1H.s)
49	CF ₃	Mc Me		mp: 203-204 (C(AcOEt-Hex)
	. !			NMR: 6:1.54(6H.s),7.46-7.50(2H,m),7.53-7.57 (1H,
				m). 7.93-7.95(2H,m).8.05(1H,d, J=8.4Hz), 8.14
į				(1H.dd.J=1.6,8.4Hz),8.31(1H.d.J=1.6Hz),8.86(1H.s),
	0=	Me Me		10.20(1H,s)
50	CF ₃	Me Me	1	mp: 106-107 (`(AcOEt-Hex)
			~ ₀ /	NMR: 6:1.51(6H,s),6.63-6.66(1H,m),7.18-7.20 (1H, m),7.86-7.88(1H,m),8.05 (1H,d, J=8.4Hz), 8.13-8.17
	. !			
F1	CE !	Me Me		(1H,m),8.30(1H,d,J=2.0Hz),8.38(1H,s), 10.25(1H,s) mp: 145-146 C(AcOEt-Hex)
51	CF ₃]]	NMR: 6:1.48(6H,s),3.72(3H,s),6.04(1H,dd,J=2.4,
			N	4.0Hz).6.89-6.92(1H,m).6.98-7.01(1H,m).7.97 (1H,
			Me	s).8.05(1H,d,J=8.8Hz).8.15-8.19(1H,m), 8.33(1H,d,
				J=1.6Hz),10.17(1H,s)
52	CN	OAc		mp: 209-210 (`(AcOEt-MeOH)
"	0.1		(″ `}F	NMR: 6:2.01(3H.s),4.34-4.46(2H,m),4.83-4.90 (1H.
			<u> </u>	m),7.30-7.37(2H.m),7.96-8.06(3H.m), 8.09(1H.d.
				J=8.8Hz).8.30(1H.d.J=2.4Hz).8.97(1H.d.J=7.6Hz).10
				.98(1H.s)
53	CF ₃	Me Mo		mp: 125-127 (AcOEt-Hex)
		,×.		NMR: 0:1.52(6H,s),7.16-7.20(1H,m),7.76-7.79 (1H,
			`S	m).7.95-7.98(1H.m),8.05(1H,d,J=8.8Hz), 8.13-8.18
		N		(1H.m).8.30(1H.d.J=2.0Hz),8.54(1H.s).10.23(1H,s)
54	CF ₃	Me Me		mp: 198-199 ((AcOEt-Hex)
		X	Ma	NMR: 6:1.51(6H,s),2.27(3H,s),7.21-7.29(2H,m).
			Me Me	7.32-7.37(1H,m),7.54-7.58(1H,m),8.07(1H,d, J=8.8
				Hz),8.19(1H,dd,J=2.0,8.8Hz),8.38(1H,d,J=2.0Hz).8.5
		<u> </u>		3(1H,s),10.25(1H,s)
55	CN	Me Me		mp: 175-176°C (AcOEt-Hex)
			/ _F	NMR: 6:1.52(6H,s),7.27-7.33(2H,m),7.52-7.58 (1H,
	1		\ <u> </u>	m),7.72-7.77(1H,m),8.05(1H,d,J=8.4Hz), 8.13 (1H,
				dd,J=2.0,8.4Hz),8.34(1H,d,J=2.0Hz),8.51-8.55 (1H,
-	-	M - M -		m),10.20(1H,s)
56	CN	Me Me	F F	mp: 139-141°C(AcOEt-Hex)
				NMR: 0:1.51(6H,s),7.14-7.21(2H,m),7.48-7.57 (1H,
	, ,			m),8.07(1H,d,J=8.8Hz),8.12(1H,dd,J=2.0,8.8Hz),8.35
-	0-	No. 145		(1H,d,J=2.0Hz),9.11(1H,s),10.16(1H,s)
57	CF₃	Me Me		mp: 221-223 C(AcOEt-Hex)
				NMR: \(\delta : 1.56(6H,s), 7.43-7.50(2H,m), 7.95-8.08 (3H, \)
			S	m),8.15-8.19(1H,m),8.30-8.34(2H,m),8.86 (1H,s),
L	1	<u> </u>	L	10.29(1H,s)

Ex.	I R	A	R ^e	DATA
58	CF ₃	OMe		mp: 195-196 (*(AcOEt-MeOH)
. 30	C1 3			NMR: \(\alpha : 3.31(3H,s), 3.73(2H,d.J=4.4Hz), 4.78-4.85
			(_	(1H.m),7.28-7.35(2H.m),7.54-7.61(1H.m),7.66-7.71
				(1H,m),8.02-8.06(1H,m).8.12(1H,d.J=8.8Hz), 8.31
1				(11,d,J=2.4Hz).8.55-8.66(1H.m).11.01(1H.s)
59	CF ₃	_OMe	<u></u>	mp: 187-188 ((AcOEt-Hex)
33 .	0 3		<i>─</i> ⟨′ ′>─F	NMR: 0:3.32(3H.s),3.70-3.79(2H,m),4.77-4.84 (1H,
			\ <u> </u>	(m), 7.29-7.36(2H,m), 7.97-8.14(4H,m), 8.32 (1H.d. J=
			•	2.0Hz).8.83(1H.d.J=6.8Hz).10.99(1H.s)
60	CF ₃	Me Me	1	mp: 164-165 C (AcOEt-Hex)
	0, ,		F	NMR: 6:1.53(6H,s),7.28-7.34(1H,m),7.50-7.64 (2H.
İ			- 長、集	m).8.09(1H,d,J=8.4Hz).8.17(1H,dd,J=1.6,8.4Hz).8.34
			*** ** F	(1H.d.J=1.6Hz),8.74(1H,s).10.24(1H,s)
61	CF ₃	Ме Ме	> Ø [™] NJE	mp: 208-209'C (AcOEt-Hex)
"	0, 3	\times	7' 1	NMR: 6:1.53(6H.s).7.53-7.61(1H,m),7.78-7.84 (1H,
İ			F	m).8.01-8.08(2H,m),8.12-8.15(1H.m), 8.29 (1H,d,
				J=1.6 Hz), 8.70(1H,s), 10.21(1H,s)
62	CF ₃	Ме Ме	File	mp: 161-162 ((AcOEt-Hex)
"-	"	\sim		NMR: 6:1.52(6H,s),7.33-7.45(2H,m),7.59-7.65 (1H.
			- A standards . F	m),8.08(1H.d.J=8.8Hz),8.15(1H.dd,J=1.6,8.8Hz),8.33
				(1H.d.J=1.6Hz),8.71(1H.s),10.24(1H.s)
63	CF ₃	Ме Мс	Me	mp: 143-144 ('(i-Pr) ₂ O)
	0. 3	\times	——Me	NMR: 0:1.11(9H.s),1.42(6H.s),7.39(1H,s),8.04-8.11
			Me	(2H,m).8.30-8.33(1H,m).9.00(1H,s)
64	CN	Me Me	1416	MS FAB (m/z):383[(M+1)*]
04	CIV	T	Fig. 5 Park	NMR: 0:0.97(6H.d,J=6.6Hz),2.05-2.19(1H.m),4.51
		البر		(1H.t.J=8.3Hz).7.15(2H.t.J=7.9Hz).7.46-7.58(1H. m).
		ļ		8.01(1H.dd.J=1.9.8.5Hz).8.09(1H.d.J=8.5Hz).8.33(1
				H.d.J=1.9Hz).9.15(1H.d.J=8.3Hz).11.03(1H.br)
65	CF.	Me Mc		mp: 204 205 (
	. '	\sim		NMR: 0:1.54(6H.s), 7.67-7.71(1H.m), 7.80-7.84
			CN	(1H, m). 7.92(1H.d,J=7.6Hz). 7.99(1H.d, J=7.6Hz).
			·	8.07 (1H.d.J=8.8Hz), 8.19(1H.dd, J=1.6.8.8Hz), 8.31
				(1H.d,J=1.6Hz). 8.95(1H.s). 10.27(1H,s)
66	CF₃	Me Me	∠:F	mp: 215-217 (
		\times		NMR: 6:1.42(6H,s),5.02(2H,s),7.28-7.36 (4H,m),
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.69(1H,s),8.07(1H,d.J=8.2Hz),8.20(1H,d,J=8.2Hz),
				8.33(1H.s).10.32(1H.s)
67	CF ₃	Me. Me		mp: 205-206 C
		\times		NMR: δ:1.57(6H,s),6.91-6.94(2H,m),7.40-7.44(1H,
!			(_ <u>}</u> —0H	m), 7.99(1H,dd,J=1.6,8.0Hz),8.06 (1H,d, J=8.4Hz).
				8.15(1H,dd,J=2.0,8.4Hz), 8.30(1H,d, J=2.0Hz),
				8.86(1H,s),10.27(1H,s), 11.88(1H,s)
68	CF ₃	Me Me	1	mp: 188-189°C
		\rightarrow	N S	NMR: 1.66(6H.s),7.73-7.77(2H,m).8.06 (1H.d.
[[-		J=8.8Hz).8.17(1H,dd,J=2.0,8.4Hz),8.24(1H,dd,J=1.6,
			-	8.4Hz).8.31(1H,d,J=1.6Hz).8.49(1H,dd,J=1.6,7.2Hz),
				8.29(1H,dd,J=1.6,8.4Hz),9.15(1H,m),10.37(1H,s),11.
				46(1H,s)
69	CF₃	Me Me		mp: 122-123 C (AcOEt-Hex)
		×	٣ الله	NMR: δ:1.49(6H,s),6.08-6.12(1H,m),6.85-6.88
			N	(1H,m),6.93-6.97(1H,m),8.01-8.06(2H,m),8.13-8,17
				(1H,m),8.30-8.34(1H,m),10.21(1H,s),11.40-11.46

Ex.	R'	A	R ^s	DATA
				(1H.br)
70	CF ₃	Me Mo	C (3)	MS FAB (m/z):418[(M+H)*]
		\sim		NMR: 6:1.41(6H.s),1.47(6H.s),7.18-7.33(5H,m),
			Me Me	7.45(1H.s),8.05-8.14(2H.m),8.24-8.26(1H,m), 9.89
			141.6 141.6	(1H,s)
71	CF,	Me Mc	F. CI	mp: 194-195 € (AcOEt-Hex)
				NMR: 6:1.52(6H,s),7.28-7.39(2H,m),7.45-7.52 (1H,
				m).8.09(1H,d,J=8.4Hz).8.16-8.20(1H,m), 8.33 (1H,d,
				J=1.6Hz).9.13(1H.s),10.15(1H,s)
72	CF ₃	Me Me	FY	mp: 182-184'(`(AcOEt-Hex)
				NMR: 0:1.53(6H,s),7.42(1H,dd,J=2.4,8.0Hz), 7.54-
				7.58(1H,m),7.78(1H,t,J=8.0Hz).8.08(1H,d, J=8.4Hz),
				8.15-8.18(1H,m),8.33-8.35(1H,m),8.62-8.65(1H,m).
72	CE.	Me Me	01 0 =	10.27(1H.s)
73	CF ₃	Vie We	CI	mp: 166-169 C (AcOEt-Hex)
				NMR: 6:1.51(6H.s),7.30-7.37(1H.m),7.52(1H.dd.
				J=2.4,8.4Hz),7.72(1H.dd,J=6.4,8.4Hz),8.09(1H,d.J=8
				l.8Hz),8.18-8.22(1H,m).8.34-8.37(1H,m),8.45 (1H,s),
74	CF ₃	Me Me		10.28(1H,s)
'4		×		mp: 187-188 C(AcOEt-Hex) NMR: \(\delta: \):1.53(6H,s),7.54(1H,t,J=9.2Hz),7.90-7.95
			CI	(1H,m),8.05(1H,d,J=8.4Hz),8.11-8.16(1H,m), 8.25
				(1H.dd,J=2.0,7.2Hz),8.28-8.30(1H,m),8.76 (1H,s).
				10.22(1H,s)
75	CF ₃	Ме Ме	1	mp: 197-199 ((AcOEI-Hex)
	J . 3	\rightarrow	1 TOTAL	NMR: 0:1.51(6H,s),7.27-7.34(2H,m),8.10(1H.d. J=
			1	8.4Hz).8.15-8.20(1H.m).8.31-8.33(1H.m).9.12(1H.s).
			Ė	10.22(1H.s)
76	CF,	Me Me		mp. 222-223 ((AcOEt-Hex)
				NMR: +: 1.42(6H,s).7.24-7.28(3H,m).7.35-7.40 (3H.
			N_//	m).7.44-7.56(2H.m),7.75-7.79(1H.m). 8.07 (1H.d.
				J=8.8Hz),8.13-8.16(1H.m),8.32-8.34 (1H,m), 8.65
				(1H.s),10.22(1H,s)
77	CF ₃	Me Mc		mp: 197-198 C (AcOEt-Hex)
				NMR: 1.55(6H,s),7.39-7.44(1H,m),7.47-7.53 (2H,
				m),7.72-7.81(4H.m),8.02-8.08(3H,m),8.14-8.18 (1H,
		N4 - N4 -		m),8.31-8.33(1H,m),8.63(1H,s),10.22 (1H,s)
78	CF ₃	Me Me	F	MS FAB (m/z):400[(M+H) ⁻]
				NMR: δ:1.56(6H,s),7.15(1H,d,J=5.6Hz),7.69-7.73
ļ			/_s/	(1H,m),7.82(1H,dd,J=4.5,5.6Hz),8.07(1H,d,J=8.5Hz),
			_	8.09(1H,br),8.13(1H,d,J=1.9,8.5Hz),8.28(1H,d,J=1.9
79	CF ₃	Me Me		Hz),10.24(1H,br) mp: 197-199 C(AcOEt-Hex)
'	U 3	X	⟨′ ``N	1
			\''	NMR: δ:1.54(6H,s),7.84-7.87(2H,m),8.06(1H,d,J=
		İ		8.8 Hz),8.12-8.16(1H,m),8.30(1H,d,J=2.4Hz), 8.73- 8.76(2H,m),8.87(1H,s),10.29(1H,s)
80	CF ₃	Ме Ме	/\	mp: 106-108°C (AcOEt-Hex)
	- 3	\times	N	NMR: δ:1.61(6H,s),8.07(1H,d,J=8.4Hz),8.13-8.17
			N	(1H,m),8.30(1H,d,J=1.6Hz),8.79-8.82(1H,m), 8.90-
				8.93(2H,m),9.15-9.17(1H,m),10.32(1H,s)
81	CF ₃	Me Me	, (A)	mp: 170-171 C(AcOEt-Hex)
	3	\times	N Y T	NMR: δ :1.65(6H,s),7.80-7.91(2H,m),8.06(1H,d, J=
				8.8Hz),8.13-8.20(2H,m),8.26-8.32(2H,m), 8.53 (1H,
İ				s),8.96(1H,s),9.45(1H,s),10.38(1H,s)
				40

Ex.	R	Α	R ⁹ .	DATA
82	CF ₃	Me Me		Imp: 172-173 ((AcOEt-Hex)
		<i>/</i> /		NMR: 0:1.57(6H,s),6.75-6.78(1H,m),7.14-7.19 (1H,
				m).7.40-7.44(1H.m).7.57(1H.d.J=8.0Hz).7.64 (1H.d.
			N N	J=8.0Hz).8.06(1H,d,J=8.8Hz),8.13-8.17 (1H,m),8.30-
			H	8.33(2H.m).10.22(1H.s),11.28(1H.br)
83	CF ₃	Ме Ме	<i>/</i> , \	MS EI (m/z):423(M¹)
	0. 3	\rightarrow	—СН҉Ω(′_ У̀—F	NMR: 0:1.47(6H.s),4.53(2H.s),6.94-7.00(2H.m),
		,		7.04-7.11(2H.m).8.08(1H,d,J=8.4Hz).8.17-8.22 (1H.
				m).8.27-8.30(1H,m),8.32(1H,s). 10.21 (1H,s)
84	CF ₃	Me Me	<i>7.</i> -0	mp: 289-290 (AcOEt-MeOH)
		\rightarrow		NMR: 6:1.72(6H,s),5.61(1H,d,J=9.2Hz).7.58 (1H,d,
				J=9.2Hz).8.13-8.20(2H,m),8.27-8.34(2H,m), 10.37-
				10.44(1H.m).10.49(1H.br)
85	CF₃	Me Me		mp: 147-149 ((AcOEt-Hex)
-	_, ,			NMR: 0:1.56(6H,s).7.02-7.07(1H,m).7.16-7.21 (1H,
		-	N N	m).7.32-7.36(1H.m),7.37-7.42(1H.m),7.62-7.66 (1H.
			н	m).8.05(1H.d,J=9.2Hz).8.14-8.19(1H,m). 8.30-8.33
				(1H,m),8.53(1H,s),10.29 (1H,s), 11.55(1H,br)
86	CF ₃	Me Me		mp: 100-102 ((AcOEt-Hex)
"	3	\times		NMR: 0:1.50(6H,s),2.45(3H,s),6.85-6.88(1H,m),
			S Me	7.76(1H,d,J=4.0Hz),8.03-8.07(1H,m),8.13-8.17 (1H,
		ļ		m).8.29-8.32(1H.m).8.41(1H,s).10.22(1H.s)
87	CF ₃	Me Me	^ r	mp: 231-232 C(AcOEI-Hex)
"	0, 3	\times		NMR: 0:1.55(6H,s),7.02-7.08(1H,m),7.32-7.34 (1H,
			\nearrow N \checkmark \checkmark	m).7.36-7.45(2H,m).8.05(1H,d,J=8.4Hz).8.16 (1H,dd,
		ŀ	Н	J=2.0.8.4Hz),8.31(1H,d,J=2.0Hz).8.59(1H,s).10.28(1
				H.s),11.66(1H.s)
88	CF,	, . · O A c		MS FAB (m/z).438[(M+H)*]
	,	l.		NMR: 0.2.01(3H.s).4.34-4.48(2H,m).4.87-4.96 (1H.
			′ _ / F	m).7.27-7.37(2H.m),7 43-7.68(1H.m).7.65-7.79(1H.
			-	m).8.05(1H.dd.J=2.1,9.0Hz), 8.14 (1H.d.J=9.0Hz),
				8.30(1H.d.J=2.1Hz).8.74-8.82(1H.m), 11.04(1H.br)
89	CF ₃	, он		mp: 181-182 ((AcOEt-MeOH)
		1	// -	NMR: 6:3.80-3.85(2H,m),4.63-4.68(1H,m),5.18-
			() F	5.24(1H,m),7.29-7.37(2H,m),7.55-7.62(1H,m), 7.72-
				7.77(1H,m),8.02-8.06(1H,m),8.12(1H,d, J=8.8Hz),
				8.33-8.38(2H.m).10.92(1H.s)
90	CF ₃	Me Me		mp: 179 (
	3	\times	—(′	NMR: 8:1.52(6H,s),3.81(3H,s),7.00(2H,d, J=8.7Hz),
		· ` \	\ _ _/	7.91(2H,d,J=8.7Hz).8.04(1H,d,J=8.7Hz),8.02-8.05
	!			(1H.m),8.29-8.31(1H.m),8.38(1H,br), 10.16(1H.br)
91	CF ₃	Me Me		mp: 182-183°C (AcOEt)
-	J. 3	\times	—⟨′	NMR: δ:1.52(6H,s),7.70(2H,d,J=8.4Hz),7.89(2H, d,
			\ <u> </u>	J=8.4Hz),8.05(1H,d,J=8.4Hz),8.11-8.16(1H,m), 8.28-
		İ		8.30(1H.m), 8.65(1H,br), 10.19(1H,br)
92	CF ₃	Me Me		mp: 173 C: (AcOEt)
"-	○ , 3	\times	/′ >>-cı	1 ' '
			\ <u>-</u> _	NMR: 6:1.52(6H,s),7.56(2H,d,J=8.4Hz),7.96(2H,d,
				J=8.4Hz).8.05(1H,d,J=8.7Hz).8.12-8.16(1H,m), 8.29-
93	CF ₃	Me Me		8.31(1H,m),8.65(1H,br),10.19(1H,br)
93	CF ₃		CI	mp: 223 (
			(' '}→Br	NMR: δ :1.50(6H,s),7.60(1H,d,J=8.1Hz),7.68(1H, d,
			\ <u>_</u> /	J=1.8,8.1Hz),7.81(1H,d,J=1.8Hz),8.08(1H,d,J=9.0Hz
),8.17-8.22(1H,m),8.35-8.36(1H,m),8.87 (1H,br),
				10.28(1H,br)

Ex.	R.	Α	l R ^s	DATA
94	CF ₃	Mc Mc	Br F	mp. 199 ((AcOEt-(Et) ₂ O) NMR: 0:1.51(6H,s),7.35-7.41(1H,m),7.62-7.66 (1H,m),7.68-7.73(1H,m),8.08(1H,d,J=8.4Hz),8.18-8.22 (1H,m).8.37-8.39(1H,m).8.83(1H,br).10.28 (1H,br)
95	CF ₃	Me Me	———ОН	MS FAB (m/z):392[(M+H)*] NMR: 0:1.50(6H,s),6.80(2H,d,J=8.7Hz),7.80(2H, d, J=8.7Hz),8.04(1H,d,J=9.0Hz),8.11-8.16(1H,m), 8.26 (1H,br),8.30-8.32(1H,m),9.99(1H,br), 10.15(1H,br)

				<u>-</u>
Ex.	R.	Α	R ⁸	DATA
96	CF₃			MS FAB (m/z):500[(M+H) ⁺] NMR(CDCl ₃ ,TMS internal standard): 0:1.85 (6H.s), 4.60 (2H.br),6.78(2H.d.J=7.4Hz),6.88(2H,t.J=8.8Hz),7.08-7.33 (3H,m),7.74-7.81 (3H,m), 7.93(1H.dd,J= 2.2, 8.4 Hz), 8.09 (1H,d,J=2.2Hz),10.05(1H.s)
97	CF ₃	Me Me	ОН	mp: 211-213 C NMR(CDCl ₃ +DMSO-d ₆ ,TMS internal standard) 0:1.67(6H,s),7.05-7.10(2H,m),7.74(1H,d, J=8.5Hz),7.84-7.89(2H,m),7.95(1H,d, J=1.8Hz),8.10(1H,dd, J=1.8.8.4Hz), 9.17(1H,s),9.23(1H,s)

Ex.	R¹	R ²	Υ	R ⁸	DATA
98	3-CF ₃	4-CN	O H N H	<u> </u>	mp: 144-146 C(AcOEt) NMR: δ:1.40(6H,s),6.69(2H,s),6.80-6.63 (1H,m).7.01(1H,d.J=2.4Hz),7.35-7.40(3H,m), 7.45-7.49(2H,m),7.65(1H,d,J=8.4Hz), 8.54(1H,br)
99	5 CF,	4-CN	C=S	~_>	mp: 194-196°C NMR: δ:1.70(6H,s),7.40-7.52(3H,m),7.84- 7.87(2H,m), 8.06-8.08(2H,m),8.24(1H,s), 10.02(1H,s),10.20(1H,s)
100	3-CI	5-CI	C=0	—√≻F	mp: 229-230 ℃ (AcOEt-Hex) NMR: →:1.50(6H.s),7.23(1H,t,J=1.3Hz), 7.31 (2H,t,J=6.8Hz),7.73(1H,d,J=1.3Hz),7.98-8.04 (2H,m),8.51(1H,s),9.73(1H,s)
101	3-CF ₃	5-CF ₃	C=0	F_F	mp: 240-241 C (AcOEt-Hex) NMR: \(\delta: 1.53(6H,s), 7.32(2H,t,J=6.6Hz), 7.71(1H,s), 8.02(2H,dd,J=3.9,6.6Hz), 8.37(2H,s), 8.5(1H,s), 10.10(1H,s)

Ex.	R [*]	R ²	Υ	R⁵ .	DATA
102	2-CF ₃	4-CN	C=0	— <u>(_</u>)—F	MS FAB (m/z):394[(M+H)*] NMR: 0:1.52(6H.s).7.32(2H.t,J=9.0Hz),7.95- 8.03(3H.m).8.13-8.19(1H.m),8.24-8.28(1H.m), 8.74(1H.br).9.16(1H.br)

			140		
Ex.	R:	Α	Υ	R°	DATA
103	CF ₃	**	SO ₂	/ 1	mp: 145-146 ((AcOEt-Hex)
					NMR: A:2.57(2H,t.J=6.8Hz),3.04-3.10
				_	(2H. m).7.40-7.45(2H.m).7.84-7.88 (3H.m),
					7.92 (1H.dd,J=2.0.8.6Hz).8.09(1H.d.
					J=8.6Hz),8.24(1H,d,J=2.0Hz),10.72(1H,s)
104	CF ₃	М е :	SO₂		mp: 163-164 ○(AcOEt-Hex)
					NMR: 1.02(3H.d.J=6.4Hz).2.46(2H,d,
					J=6.8Hz),3.64-3.71(1H,m),7.29-7.33(2H,m),
					7.80-7.91(5H,m).8.16(1H,s), 10.60(1H.s)
105	CF ₃	Me Me	C=0		mp: 180-181 ((AcOEt-Hex)
					NMR: 0:1.27(6H, s.),4.03(2H,d,J=7.0Hz),
					7.24-7.31 (2H,m),7.82-7.88(2H,m), 8.09
					(1H.d,J=8.6Hz), 8.13-8.18(1H,m),8.32-
					8.35(1H,m).8.42-8.48 (1H.m).10.02(1H,s)
106	CF,	Me Mo	SO ₂	11	mp: 161-162 ((AcOEt-Hex)
					NMR: 0:1.19(6H. >).3.02(2H,d,J=6.7Hz).
					7.36-7.43(2H.m).7.76-7.88(3H.m).8.06-8.13
					(2H.m).8.28-8.31(1H.m).9.91(1H.s)
107	CF,	Me Me	C=O	i -	mp: 191-192 (`(AcOEt-Hex)
					NMR: 6:1.27(6H.s).3.60(2H.d.J=6.4Hz),
			٠	1,8	7.10-7.16 (2H,m),7.44-7.53(1H,m),8.08
					(1H.d,J=8.8Hz), 8.15-8.19(1H,m),8.35-
<u> </u>				_	8.38(1H.m),8.72-8.77 (1H.m), 10.04(1H,s)
108	CF ₃	Me Me	·C=0		MS FAB (m/z):436[(M+H)*]
					NMR(CDCl ₃ ,TMS internal standard):
		Mc Me			∴ :1.48 (6H,s), 1.61 (6H,s), 7.11(2H,t,J=
		· .			8.7Hz).7.77-7.86(3H,m),7.93-8.05 (4H,m)

Ex.	R¹	Α	Υ	R ⁹	DATA
109	CF₃	\Diamond	C=0	F	mp: 236-238°C (AcOEt-Hex) NMR: (a):1.80-2.02(2H,m),2.28-2.38 (2H,m),2.60-2.74(2H,m),7.30-7.37 (2H,m), 8.01-8.08(3H,m),8.12-8.16 (1H,m),8.30- 8.32(1H,m),9.02(1H,s), 10.18(1H,s)

Ex.	R	A	Υ	R ⁹	DATA
110	CF ₃	$\overline{}$	SO ₂	// \	mp: 169-170 ((AcOEt-Hex)
,	-, 3	$\langle \rangle$	-	─ (′_	NMR: 0:1.53-1.80(2H,m),2.04-2.16 (2H,
					m).2.37-2.46(2H,m),7.23-7.32 (2H,m).
		ì			7.73-7.80(2H,m),7.98-8.15 (3H.m),8.41
					(1H,s).10.24(1H.s)
111	CF ₃		C=0		mp: 205-207 ((AcOEt-Hex)
1111	CF ₃		C=O	F	NMR: 8:1.79-2.05(2H,m),2.22-2.31 (2H,
		\times		[]	
		ŀ			m),2.67-2.76(2H,m),7.16-7.23(2H, m),
					7.50-7.59(1H,m),8.09-8.16(2H,m), 8.33-
					8.36(1H.m),9.46(1H.s),10.23 (1H.s)
112	CF ₃	$\sqrt{7}$	SO ₂		mp: 211-213 ((AcOEt-Hex)
					NMR: 6:1.02-1.05(2H,m),1.30-1.33 (2H,
				- -	m),7.30-7.35(2H.m),7.82-7.86(2H.m), 7.96
					(1H,dd,J=1.6,8.4Hz),8.07(1H,d,J=8.4Hz),8
					12(1H.d.J=1.6Hz).8.45(1H.s),10.24(1H.s)
113	CF ₃	, , ,	C=0		mp: 284-286 ((AcOEt-Hex)
	3	\sim \searrow		(′	NMR: 0:1.19-1.22(2H,m),1.53-1.56 (2H,
					m),7.31-7.37(2H,m),8.00-8.05(2H,m), 8.08
					(1H.d,J=8.8Hz),8.20(1H,dd,J=2.0,8.8Hz),8
144	0-				.32(1H,d,J=2.0Hz),9.03(1H,s),10.25(1H,s)
114	CF ₃	/	SO ₂	// \\	mp: 177-178 C (AcOEt-Hex)
			4	\ <u> </u>	NMR: 6:1.49-1.63(4H,m),1.84-1.90 (2H,
					m),2.06-2.12(2H,m),7.23-7.28(2H,m), 7.78
					-7.82(2H.m),7.97-8.09(4H,m), 10.11(1H.s)
115	CF₃		C=O		mp: 235-236 (`(AcOEt-Hex)
					NMR: 6:1.62-1.81(4H.m),1.99-2.05(2H,
					m).2.26-2.33(2H,m),7.28-7.34(2H,m), 7.99
					-8.05(3H.m),8.12(1H.dd,J=1.6.8.8Hz),8.29
					(1H,d.J=1.6Hz).8.62(1H,s), 10.23 (1H.s)
116	CF ₃		SO,	//	mp: 188-189 ((AcOEt-Hex)
	,			 (' '}-F	NMR: 0:1.22-1.54(6H.s),1.84-1.88 (4H.
					m).7.19-7.24(2H.m), 7.72(1H.s), 7.78-7.81
					(2H,m).7.95(1H.dd.J=1.6,8.8Hz),8.04-8.08
			•		(2H.m),9.91(1H.s)
117	CF ₃	. ^	C-0		mp: 241-242 ((AcOEt-Hex)
' ' '			C=O	— ⟨	
				\/ '	NMR: 6:1.31-1.42(1H,m),1.45-1.68 (5H,
					m),1.93-2.00(2H,m),2.04-2.11(2H,m), 7.28
					-7.33(2H,m),7.93-8.13(5H,m),8.29 (1H,d,
		<u> </u>		·	J=2.0Hz).10.12(1H,s)
118	CN		C=0		mp: 294-295 (`(AcOEt)
		X			NMR: 6:1.18-1.22(2H,m),1.52-1.55 (2H,
					m),7.30-7.36(2H,m),8.00-8.06 (3H,m),
					8.16-8.19(1H,m),8.33(1H,d, J=1.6Hz),
L					9.04(1H,s),10.21(1H,s)
119	CN		SO ₂		mp: 171-172 ((AcOEt-Hex)
				 ⟨′_ '}F	NMR: 6:0.98-1.02(2H,m),1.28-1.32 (2H,
	[m),7.33-7.39(2H,m),7.80-7.86 (2H,m),
					7.96(1H,dd,J=2.0,8.4Hz),8.04(1H,d,J=8.4
				1	1
					Hz),8.17(1H,d,J=2.0Hz),8.48(1H,s),10.23(1H,s)
100	CNI	 		 	
120	CN	/ `\	SO₂	// \\	mp: 214-215 C (AcOEt-Hex)
				\=/ '	NMR: δ:1.47-1.63(4H,m),1.80-1.89 (2H,
	1				m),2.02-2.12(2H,m),7.28-7.34 (2H,m),
		<u> </u>	<u> </u>	<u></u>	7.78-7.84(2H,m),7.93-7.97 (1H,m),8.02-

Ex.	R¹	Α	Y	₽°	DATA
		·			8.06(2H,m).8.16(1H.d, J=2.0Hz).
					10.12(1H,s)
121	CN		C=0		mp: 134-135' ℂ (AcOEt-Hex)
İ					NMR: 0:1.60-1.81(4H,m),1.96-2.07 (2H,
İ					m).2.22-2.34(2H.m),7.28-7.34(2H. m).
					7.98-8.05(3H,m),8.07-8.11(1H,m), 8.29
		-			(1H.d.J=2.0Hz).8.62(1H.s).10.19(1H.s)
122	CF ₃	(-O.,	C=0		mp: 246-247 C (AcOEt)
				F	NMR: 6:2.02-2.10(2H,m),2.15-2.24 (2H,
					m),3.70-3.77(4H,m),7.30-7.36 (2H,m),
					7.98-8.15(4H,m),8.28-8.30 (1H,m), 8.43
					(1H.s).10.23(1H.s)
130	CF ₃		C=O		(A) MS FAB(m/z):432[(M-H)]
					NMR: 6:1.30-1.70(4H, m), 1.90-2.00
					(4H. m), 2.25-2.50(1H, m), 3.70-3.85(1H,
					m), 7.25-7.38(2H, m), 7.88-7.96(2H, m),
					7.97-8.02(1H,m), 8.09(1H, d, J=8.4Hz),
					8.23-8.33(2H, m), 10.63(1H, br)
					(B) MS FAB(m/z):434[(M+H) ⁻]
	i				NMR: 0:1.58-1.90(8H, m), 2.57-2.65
					(1H, m), 3.90-4.02(1H, m), 7.23-7.31(2H,
					m), 7.88-7.96(2H, m), 7.97-8.03(1H, m),
					8.08(1H. d, J=8.4Hz), 8.19-8.26(1H. m),
					8.36(1H, br), 10.59(1H, br)

表12

				Λ -	-
Ex.	R'	R^2	Υ	R ⁹	DATA
123	CF_{9}	CN	C=O		mp: 249-250 ((EtOH)
					NMR: 6:1.63(3H,s),1.94-2.03(3H,m),2.17-
					2.28(1H.m),3.50-3.59(1H,m),3.73-3.82(1H,m),
					7.29(2H,t,J=9.0Hz),7.65(2H,dd,J=5.6,9.0Hz),8
					.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.8,8.8Hz),8.
					34(1H,d,J=1.8Hz),9.96(1H,s)
124	CF ₃	CN	SO ₂		mp: 115-116°C ((Et) ₂ O-Hex)
					NMR: 8:1.50(3H,s),1.88-2.07(3H,m),2.22-
1					2.31(1H,m),3.36-3.46(1H,m),3.61-3.69(1H,m),
					7.56-7.62(2H,m),7.66-7.71(1H,m),7.78-7.82
				t	(2H,m),8.14(1H,d, J=8.4Hz), 8.23(1H,dd,
					J=2.0,8.4Hz),8.29(1H,d,J=2.0Hz),10.04(1H,s)
125	CF₃	CN	SO₂		mp: 180-182°C (i-PrOH-CHCl ₃)
				\/ 「	NMR: δ:1.52(3H,s),1.89-2.07(3H,m),2.22-
					2.31(1H,m),3.39-3.46(1H,m),3.61-3.68(1H,m),
					7.39-7.45(2H,m),7.84-7.90(2H,m), 8.13(1H,d,
					J=8.8Hz),8.22(1H,dd,J=2.0,8.8Hz),8.27(1H,d,
122	~=	011	00		J=2.0Hz),10.03(1H,s)
126	CF ₃	CN	SO₂		mp: 149-150°C (EtOH-(Et)₂O)
					NMR: δ:1.49(3H,s),1.86-2.07(3H,m),2.20-
					2.30(1H,m),3.28-3.42(1H,m),3.56-3.68(1H,m),
					3.84(3H,s),7.03-7.13(2H,m), 7.70-7.75(2H,m),

Ex.	R!	R ²	Y	R ⁹	DATA
LA.		.,,			8.13(1H.d,J=8.8Hz), 8.23(1H.dd,J=2.0.8.8Hz).
					8.29(1H.d.J=2.0Hz),10.02(1H.s)
127	CF ₃	CN	0		mp: 182-184 ((CH ₂ Cl ₂ -(Et) ₂ O)
''	- 3		~_N~	—(_)—cı	NMR: δ:1.53(3H,s),1.86-1.95(1H,m),1.97-
			н	<u> </u>	2.20(3H,m),3.59-3.67(1H,m),3.75-3.83
					(1H.m), 7.23-7.28(2H,m),7.52-7.57(2H.m),
					8.07(1H,d, J=8.4Hz),8.18(1H,dd,J=2.0.8.4Hz),
					8.33(1H,d,J=2.0Hz).8.35(1H.br).9.97(1H.s)
128	CF ₃	CN	0	CH ₂ CH ₃	mp: 173-175°C (1,2-diCl-Et)
120	O, 3		__N_		NMR: 6:1.00(3H,t,J=7.2Hz),1.46(3H.s), 1.76-
	i		H		1.84(1H.m),1.86-2.02(2H.m),2.10-2.19
					(1H.m), 2.95-3.10(2H.m), 3.29-3.37(1H.m),
					3.51-3.60 (1H,m), 6.24-6.30(1H,m),8.07(1H.d.
					J=8.8Hz), 8.13(1H,dd,J=2.0,8.8Hz).8.31(1H,d.)
					J=2.0Hz), 10.15(1H,s)
129	CF ₃	CN	0	Me	mp: 167-168 ((AcOEt-Hex)
, 25	0. 3				NMR: 0:1.05(3H,t,J=6.4Hz),1.46(3H,s), 1.75-
			Ĥ	Me	1.83(1H,m),1.86-2.02(2H,m),2.10-2.20(1H,m).
				I WIC	3.31-3.38(1H,m),3.52-3.60 (1H,m),3.65-3.78
		1			(1H,m),5.93(1H, d, J=8.6Hz),8.07(1H,d,
				•	J=8.6Hz),8.12(1H.dd,J=1.8,8.6Hz),8.30(1H,d,
					J=1.8Hz).10.17(1H.s)

Ex.	Structure	DATA
131	F ₃ C NC N O F	MS FAB(m/z):392[(M+H)*] NMR. : 3.60-3.75(1H, m), 4.20-4.30 (2H, m), 4.35-4.60 (2H, m), 7.25-7.34(2H, m), 7.68-7.76(2H, m), 7.95-8.20(1H, m), 8.08-8.14(1H, m), 8.30(1H, br), 10.83(1H, br)

前記の実施例以外に以下に本発明の別の化合物を表に示す

これらの化合物は、上記の製造法及び実施例中に記載した合成経路と方法、及び通常の当業者にとって公知であるそれらの変法を用いて合成することができ、特別の実験を必要とするものではない。

ここで、表中の記号は以下の意味を示す。

Com.:化合物番号

Com.	Structure	Com	Characteristics
1	Structure	Com. 2	Structure
	F ₃ C N N N N N N N N N N N N N N N N N N N	2	HO ₂ C NO.
	NC H N H CI	4	MeO ₂ C F
5	F NC NH CI	6	F ₂ C N O F
	CI NH NH O	8 .	F ₃ C N H N N N N N N N N N N N N N N N N N
	0,N. H. S. O. CO,Me	10	F,C H N H Br
11	$\begin{array}{c c} F & & & \\ & &$	12	NC NC NC NC NC NC NC NC NC NC NC NC NC N
	$\begin{array}{c c} CI & H & CF_3 & CF_3 \\ N & N & H \end{array}$ $\begin{array}{c c} OCF_3 & OCF_3 \\ \end{array}$	14	F ₃ C NC NC NC NC NC NC NC NC NC NC NC NC NC
	CI NC CI	16	F ₃ C NC N N N F

Com.	Structure	Com.	Structure
17	NC H O S O F	18	F ₃ C H N O N O
	DE SE SE SE SE SE SE SE SE SE SE SE SE SE	20	Br N O N O CI
21	NC NC CI	22	F ₃ C NC CI
23	F NC NC NC NC NC NC NC NC NC NC NC NC NC	24	F ₃ C NC NMe ₂

請求の範囲

1. 下記一般式(1)で示されるアンルアミ/置換アンルアニ甲(誘導体文はその塩

(武中の記号は、以下の意味を有する

R¹及びR²:同一又は異なってハロゲン原子、シアノ、ハロゲノ低級アルキル、ニトロ、カルボキシル、低級アルカノイル又は低級アルコキシカルボニル基

R³:水素原子又は低級アルキル基

n:0又は1

 R^4 , R^6 , R^6 及び R^7 : 同一又は異なって水素原子、置換基を有していても良い低級アルキル 又はアラルキル基

| 或いは、R*とR*が一体となって小でロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、n=10ときR*とR*が一体となって、、クロアルギレ: 基を形成してもおい Λ_i 及びA:同 | 又は異な | こ結合 又は低級でよる。 基

R*: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキュ 又は低級アラルキルド キシ基

或いはR*とR*が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR*とR*が一体となって含窒素シクロアルキレン基を形成してもよい

Z:アシル基

X:酸素原子又は硫黄原子

但し、Zがヘテロアリールカルボニル基の場合は、R*とR®の少なくとも一方は水素原子以外の基を示す。)

2. 下記一般式(1)で示されるアシルアミノ置換アシルアニリバ誘導体又はその塩

WO 98/22432 PCT/JP97/04174

(式中の記号は、リ下の意味を育する

R¹及びR¹: 同一又は異なってハロギン原子、1 アノ、ハロゲノ低級アルキル、ニトロ、カルボ キシル、低級アルカフィル又は低級アルコキシカルボニル基

n:()又(に)

R*, R*, R*及びR*:同一又は異なって水素原子, 置換基を有していても良い低級アルキル 又はアラルキル基

或いた、R*とR*が一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが120ときR*とR*が一体となって、シクロアルキレン基を形成してもよいA、及びA:同一又は異なって結合又は低級アルキレン基

R*: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキル く(t低級アラルキルオキン 基

・或いはR*とR*が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR*とR*が一体となって含窒素シクロアルキレン基を形成してもよい。

$Z: Y - R^{\circ}$

Rで低級でルキル、1. クロアルキル、又は置換基を育。コンプルアレンル、アラルテニル、 アラルキル、若してはアリールオキと低級アルキル、成し付、2.2 世に環と縮合しており。 レルデロアリール基

R[®]及びR^b:水素原子又は低級アルキル基

X₁及びX₂:酸素原子又は硫黄原子

m:0又は1,2

但し、Yがカルボニル基であり、R*がヘテロアリール基の場合は、R*とR*の少なくとも一方は水素原子以外の基を示す。)

3. 下記一般式(1)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩

(式中の記号は、以下の意味を有する。

WO 98/22432 PCT/JP97/04174

R¹及びRf:同一又は異なってハロヤン原子、シアノ、ハロゲノ低級アルキル、ニシニ、カルホキシル、低級アルカフイル又は低級アルコキシカルボニル基

A,及びA.:同一又は異なって結合又は低級でルキレン基

n:0又に1

R*又はR*、R*及びR*:同一又は異なって水素原子、又は1以上の同一又は異なった。ハロゲン原子、水酸基、低級アルコキシ、低級アルカフィルオキシ、ハロザフ低級アルキル基がらなる群より選択される置換基を有していても良い低級アルキル苦しくはアラルキル基

或いて、R*とR*か一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが1のときR*とR*が一体となって、シクロアルキレン基を形成してもよい、R*: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキル又は低級アラルキルオキシ基

或いはR*とR*が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR*とR*が一体となって含窒素シクロアルキレン基を形成してもよい

 $Z:Y-R^*$

R*:低級アルキル、1.20ロアルキル、1.2はそれは上の同一又は異なった、ハロケ、原子、水酸基、ハロゲノ低級アルキル、低級アルキル、低級アルコキシ、ハロケノ低級アルキル キシ、シアノ、ニトロ、低級アルカノイルオキシ、フェニル、モノ若しくはび低級アルキル アミノ、カルボキシル、低級アルコキシカルボニル、モノ若しくはび低級アルキルアミノカルボニル、低級アルカノイルアミノ及びオキソ基からなる群より選択される置換基を有していてもよいアリール、アラルケニル、アラルキル、若しくはアリールオキシ低級アルキル、或いは、ベンゼン環と縮合してもよいヘテロアリール基

R³及びR¹⁰:水素原子又は低級アルキル基

X₁及びX₂:酸素原子又は硫黄原子

m:0又は1,2

但し、Yがカルボニル基であり、R[®]がヘテロアリール基の場合は、R[®]とR[®]の少なくとも一方は水素原子以外の基を示す。)

WO 98/22432 PCT/JP97/04174

4. nが0であり、R:又はR²が同一又は異なって水素原子、又は1以上の同一又は異なった置換基が、水酸型、低級アルコキシ、低級アルカノイルオキン、ハロゲノ低級アルキルからなる群より選択される置換基を有していても良い低級アルキル著しくはアラルキル基でもる請求の範囲6記載のアシルアミノ置換アシルアニ中、誘導体又はその塩

5. 以下よりなる群の化合物又はその塩から選択される清求の範囲1記載の化合物:

N-11-{(4-シアソー3-トリフルオロメチルフェニル)カルバモイル}-1-メチルエチルニ-4-フルオロベンズアジド:

N-:1-[(3, 4-ジシア /フェニル) カルバモイル]-1-メチルエチル!-4-フルオロベンズア(ド:

N-|1-[(3-クロロー4-シア /フェニル)カル バモイル]-----メチルエチル -4- フルオロベンズア (水:

 $N-\{1-[(4-5)\tau/-3-F)]$ フルオロメチルフェニル) カルバモイル]-1-メチルエチル $\{1-2,4,6-F\}$ フルオロベンズアミド又;

4-クロローN-(1-[(4-シアノー3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル | ヘンスアミド

- 6. 請求の範囲1記載のアンルデー (関換アンルデニリ) 誘導体 くにその製薬学的に許容される塩を有効成分とする医薬組成物
- 7. 抗アンドロゲン剤である請求り範囲6記載の医薬組成物
- 8. 前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ぎ瘡、脂漏の予防スは治療 剤である請求の範囲7記載の医薬組成物

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/04174

TA CLAS	CONTRACTION OF CURIED SANTED					
A. CLASSIFICATION OF SUBJECT MATTER Int. Cl ⁶ C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/18, 200/08, 200/20,						
According B. FIELD	207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED					
Int.C	Minimum documentation searched (classification system followed by classification symbols) Int.Cl° C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64,					
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA (STN), REGISTRY (STN)						
-	JMENTS CONSIDERED TO BE RELEVANT					
Category†	Citation of document, with indication, where a		Relevant to claim No.			
A	Chem. abstr Vol. 101, 1984, the abs 'Synthesis of α -(arylsulfonylamino)- ω -p -4-amidinoanilides', Pharmazic, 1983, 38(1	ohenylalkylcarboxylic acid 3- and	2, 3			
A	US, 4532251, A (Chevron Research Con July 30, 1985 (30, 07, 85), Claims; column 9, 10 (Family; none)	npany).	1 - 4			
A	JP, 49-81332, A (Scherico Ltd.), August 6, 1974 (06, 08, 74), Claims & BE, 807588, A & DE, 2357757, A & NL, 7315903, A & FR, 2207712, & US, 3875229, A & HU, 11563, T & GB, 1446084, A	A1	1 - 8			
Further	decimal to the second of Park C					
Further documents are listed in the continuation of Box C. Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search February 4, 1998 (04, 02, 98)		See patent family annex. The later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone The document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report February 17, 1998 (17, 02, 98)				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

International application No. PCT/JP97/04174

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

309/38. 333/34. 333/38. 333/70. 335/02. A61K31/165. 31/275. 31/34. 31/35. 31/38. 31/395. 31/40. 31/44. 31/47

B. (Continuation) FIELD SEARCHED

309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. 6 C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

3. 調査を行った分野

. ,--,-

調査を行った最小限資料(国際特許分類(IPC))

Int. C1. 6 C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	Chem. abstr., Vol. 101, 1984, the abstract No. 6764, VIEWEG, H. 'Synthesis of α -(arylsulfonylamino) - ω - phenylalkylcarboxylic acid 3- and -4-amidinoanilides', Pharmazie, 1983, 38(12), 818-20	2, 3
A	US、4532251, A (Chevron Research Company) 30.7月.1985 (30.07.85) クレーム、 第9-10欄 (ファミリーなし)	1 - 4

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」 元行又献ではあるが、国際出願日以後に公表されたもの
- 「し」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

04.02.98

国際調査報告の発送日

17.02.98.

国際調査機関の名称及びあて先

日本国特許庁([SA/JP) 郵便番号100-8915

東京都千代田区殿が関三丁目4番3号

特許庁審査官(権限のある職員)

4H 9547

柳 和子

電話番号 03-3581-1101 内線 3444

	OPTIME TO		
C (続き). 引用文献の	関連すると認められる文献		関連する
51円又献の カテゴリー*	引用文献名 及び一部の箇所が関連するときに	は、その関連する箇所の表示	調求の範囲の番号
A	JP, 49-81332, A(シエリコ・6.8月.1974(06.08.74) &BE, 807588, A &DE, 2 &NL, 7315903, A &FR, 2 &US, 3875229, A &HU, 1 &GB, 1446084, A	リミテツド) 特許請求の範囲 357757, A1 207712, A1 1563, T	1 - 8
	·		
			E