Санкт-Петербургский политехнический университет Высшая школа теоретической механики, ФизМех

Направление подготовки

«01.03.03 Механика и математическое моделирование»

Индивидуальное задание № 3

тема "Решение плоской задачи теплопроводности" дисциплина "Вычислительная механика" Вариант 2

Выполнил студент гр. 5030103/90301

М. А. Бенюх

Преподаватель:

Е.Ю. Витохин

Санкт-Петербург

2022

Содержание:

1.	Формулировка задачи	. 3
2.	Алгоритм метода	. 3
3.	Результаты в Abaqus	. 6
4.	Результаты в Python	. 6
5.	Сравнение результатов	. 7
	Заключение	
	Код программы	

1. Формулировка задачи.

Требуется определить стационарное распределение температур в плотине. На границе контакта плотины и окружающей среды зададим граничные условия — температуры сред: синим цветом - грани, имеющие температуру воды, красным — температуру воздуха.

Рис.1. Постановка задачи

Ниже приведены параметры, используемые в задаче.

Параметр	Значение
Коэффициент теплопроводности грунта	1.5 ^{BT} _{м⋅K}
Коэффициент теплопроводности бетона	$1.75 \frac{BT}{M \cdot K}$
Температура воздуха	25°C
Температура воды	5°C

Таблица 1. Параметры задачи

2. Алгоритм метода.

Введем треугольный конечный элемент и функции форм

$$T = A + Bx + Cy T = T_i N_i + T_j N_j + T_k N_k = [N] \cdot \{T\}$$
 (1)

Запишем Закон Фурье

$$\underline{h} = -\varkappa \nabla T$$
, \varkappa – коэффициент теплопроводности (2)

Распишем закон Фурье из (2) покомпонентно:

$$h_x = -\lambda_x \frac{\partial T}{\partial x}, \qquad h_y = -\lambda_y \frac{\partial T}{\partial y},$$
 (3)

Подставим (3) в (2), а затем в соотношение (1):

$$\{h\} = \begin{cases} -\lambda_{x} \left(\frac{\partial N_{i}}{\partial x} T_{i} + \frac{\partial N_{j}}{\partial x} T_{j} + \frac{\partial N_{k}}{\partial x} T_{k} \right) \\ -\lambda_{y} \left(\frac{\partial N_{i}}{\partial y} T_{i} + \frac{\partial N_{j}}{\partial y} T_{j} + \frac{\partial N_{k}}{\partial y} T_{k} \right) \end{cases}$$
(4)

Вынесем из (4) T_i, T_j, T_k :

$$\{h\} = -\lambda [B]\{T^e\} \tag{5}$$

 Γ де [B] — матрица температурных градиентов,

$$[B] = \begin{bmatrix} \frac{\partial N_i}{\partial x} & \frac{\partial N_j}{\partial x} & \frac{\partial N_k}{\partial x} \\ \frac{\partial N_i}{\partial y} & \frac{\partial N_j}{\partial y} & \frac{\partial N_k}{\partial y} \end{bmatrix}$$

Перейдем к решению задачи теплопроводности. Запишем уравнение баланса внутренней энергии:

$$\rho \dot{u} = -\nabla \cdot h$$

Выражение для внутренней энергии:

 $u = C_V T$, C_V – удельная теплоемкость при постоянном объеме

Подставим (2) в выражение баланса энергии (1):

$$\rho C_V \dot{T} = -\nabla \cdot \underline{h} \tag{6}$$

Подставим выражения (1) и (5) в (6):

$$\rho C_V[N] \cdot \{\dot{T}^e\} - \lambda[B]\{T^e\} = 0 \tag{7}$$

Полученное уравнение решим с помощью метода Галеркина:

$$\int_{V} (\rho C_{V}[N] \cdot \{\dot{T^{e}}\} - \lambda [B] \{T^{e}\}) \cdot [N] dV = 0$$

$$\rho C_V \int_V [N] \cdot \{\dot{T}^e\} \cdot [N] dV - \lambda \int_V [B]^T \{B\} dV \{T^e\} = 0$$

Добавим граничные условия на температуру:

$$\rho C_{V} \int_{V} [N]^{T} \cdot [N] dV \cdot \{\dot{T}^{e}\} + \lambda \int_{V} [B]^{T} \{B\} dV \{T^{e}\} =
= - \int_{S_{1}} \{h^{b}\} \{n\} [N]^{T} dS + \int_{S_{2}} h_{s} [N]^{T} dS - \varkappa \int_{S_{3}} (Ts - T_{\mathcal{F}}) [N]^{T} dS
[C] \cdot \{\dot{T}^{e}\} + ([K_{c}] + [K_{\varkappa}]) \{T^{e}\} = \{R_{T}\} + \{R_{h}\} + \{R_{\varkappa}\}$$
(8)

Где

$$[C] = \rho \mathsf{C}_V \int_V [N] \cdot \{ \dot{T^e} \} \cdot [N] dV - \mathsf{матрица} \ \mathsf{теплоемкости}$$

$$[K_c] = \lambda \int_V [B]^T \{B\} dV - \mathsf{матрица} \ \mathsf{теплопроводности}$$

$$[K_\kappa] = \varkappa \int_{S_3} [N]^T [N] dS - \mathsf{матрица} \ \mathsf{конвективности}$$

Матрицы внешних нагрузок:

$$\{R_T\} = -\int_{S_1} \{h^b\} \{n\} [N]^T dS - \text{тепловой поток через границу } S_1$$

$$\{R_h\} = \int_{S_2} h_s [N]^T dS - \text{тепловой поток через границу } S_2$$

$$\{R_\varkappa\} = \varkappa \int_{S_3} T_{\mathcal{F}} [N]^T dS - \text{конфективный тепловой поток через границу } S_3$$

Для стационарного случая без конвективного теплообмена уравнение (8) примет вид:

$$[K_c]{T^e} = {R_T} + {R_h}$$

Для вычисления [B] введем матрицу [J]:

$$[J] = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial N_i}{\partial \xi} & \frac{\partial N_j}{\partial \xi} & \frac{\partial N_k}{\partial \xi} \\ \frac{\partial N_i}{\partial \eta} & \frac{\partial N_j}{\partial \eta} & \frac{\partial N_k}{\partial \eta} \end{bmatrix} \begin{bmatrix} x_i & y_i \\ x_j & y_j \\ x_k & y_k \end{bmatrix}$$

3. Результаты работы в Abaqus

Для построения было использовано NN конечных элемента и NN узлов.

Рис.2. Поле температур, полученное с помощью Abaqus

4. Результаты в Python

Для построения были использованы те же узлы. Поле температур и геометрия задачи отражены с помощью программы Paraview

Рис.3. Поле температур, полученное с помощью Python

5. Сравнение результатов

Приведем таблицу с результатами полей температур, полученных в Python и Abaqus.

Таблица 1. Результаты полей температур, полученных в Python и Abaqus.

Номер узла	Температура в Python	Температура в Abaqus	Номер узла	Температура в Python	Температура в Abaqus
1			29		
2			30		
3			31		
4			32		
5			33		
6			34		
7			35		
8			36		
9			37		
10			38		
11			39		
12			40		
13			41		
14			42		
15			43		
16			44		
17			45		
18			46		
19			47		
20			48		
21			49		
22			50		
23			51		
24			52		
25			53		
26			54		
27			55		
28			56		

Построим график относительной погрешности в каждом узле по формуле

$$\delta T = \frac{|T_{abaqus} - T_{python}|}{|T_{abaqus}|}$$

Где T_{abaqus} — температура в і-том узле, полученная с помощью Abaqus, а T_{python} — температура в і-том узле, полученная с помощью Python.

Рис.4. Значения относительной погрешности

Можно заметить, что результаты имеют малую погрешность порядка N знака за запятой.

Заключение

Для решения плоской задачи теплопроводности плотины был использован метод конечных элементов, были получены поле температур в КЭМ-пакете Abaqus и с помощью программирования на Python.

Было проведено сравнение результатов и построен график относительной погрешности результатов для каждого узла. Результаты, полученные разными способами, имеют незначительную относительную погрешность, что говорит о том, что решение произведено правильно.

Код программы

```
import numpy as np
import sympy as sym
from scipy.linalg import solve
import matplotlib.pyplot as plt
from scipy import integrate
Mass node T air, Mass node T water,
```

```
def Solve(self): # , GU, time, dt
```

```
elem_Priming.read().replace("\n", ',').replace(" ", '').split(",")]
node T water.read().replace("\n", ',').replace(" ", '').split(",")]
Mass_Element_Priming, Mass_node_T_air, Mass_node_T_water,
```