Reference Document & Code Library

ACM ICPC Team Notebook of B-)

Rezwan Arefin

C	ont	ents					
1	Data Structure						
	1.1	Bridge Tree					
	1.2	Centroid Decompostion					
	1.3	Centroid Tree					
	1.4	Convex Hull Trick (Offline)					
	1.5	Convex Hull Trick (Dynamic)					
	1.6	Dominator Tree					
	1.7	Heavy Light Decomposition					
	1.8	Interval Container					
	1.9	KD Tree					
	1.10	MO's Algo with Updates					
	1.11	Persistent Segment Tree					
	1.12	Persistent Trie					
		${\it Treap (Implicit)} \ldots \ldots \ldots \ldots$					
2	Mat	hematics					
4	2.1	Chinese Reminder Theorem					
	2.2	Discrete Logarithm					
	2.3	Extended Euclid					
	2.4	Millar-Rabin					
	2.5	Partitions					
	2.6	Polard-Rho Factorization					
	2.7	Polynomials					
		2.7.1 Fast Fourier Transform					
		2.7.2 Fast Walsh Hadamard Transform					
		2.7.3 Number Theoretic Transform					
		2.7.4 Operations on Formal Power Series .					
		2.7.5 NTT Friendly Primes					
	2.8	Segmented Sieve					
	2.9	Simplex					
	2.10						
		2.10.1 Binomial Coefficients					
		2.10.2 Catalan Numbers					
		2.10.3 Eulerian Numbers 10					
		2.10.4 Fibonacci Numbers					
		2.10.5 Stirling Numbers of the First Kind . 1					
		2.10.6 Stirling Numbers of the Second Kind 1					
3	Cra	ph Theory 12					
J	3.1	Articulation Point and Bridge					
	3.2	Directed Minimum Spanning Tree					
	J.∠	Directed Minimum Spanning Tree 1.					

	3.3	Eulerian Path and Circuit	12
	3.4	Hopcroft Karp	12
	3.5	Hungarian	13
	3.6	Kth Best Sortest Path	13
	3.7	Kuhn	14
	3.8	Manhattan Minimum Spanning Tree	14
	3.9	Maximum Closure	14
	3.10	Max Flow - Dinic	14
	3.11	Max Flow with Edge Bound	15
	3.12	Minimum Cost Maximum Flow	15
	3.13	Stoer Wagner	15
	3.14	Strongly Connected Components	16
4	Stri	ng Processing	16
	4.1	Aho-Corasick	16
	4.2	Knuth Morris Pratt	16
	4.3	Lyndon Factorization	16
	4.4	Manacher	16
	4.5	Suffix Array	17
	4.6	Suffix Automata	17
	4.7	Z-Algorithm	17
	4.8	Zhou Yuan	17
5	Mis	cellaneous	17
	5.1	Dotfiles	17
1	D	ata Structure	
_			
1.	1 ł	Bridge Tree	
		int> adj[N], tree[N]; // tree = Bridge Tree	
in [.]	t vis	[N], low[N], comp[N], bicon[N], tym = 1;	
vo:	id cal	<pre>lc(int u, int par, int c) {</pre>	
		i] = c;	
		= low[u] = tym++;	
1		nt v : adj[u]) {	
		ris[v]) {	
		(v - par) low[u] = min(low[u], vis[v]);	
		<pre>se par = -1; // Handles multiple edgesse {</pre>	
	-	lc(v, u, c);	
	- u		

```
}
 }
void shrink(int u, int now) {
 bicon[u] = now;
 for(int v : adj[u]) if(!bicon[v]) {
  if(low[v] > vis[u]) {
     tree[now].push_back(c);
     shrink(v, c++);
   } else shrink(v, now);
 }
```

Centroid Decomposition

```
// Impl. of count number of K-len paths in a tree
const int N = 1e5 + 10;
int n, k, vis[N], sub[N];
vector<int> adj[N];
void calc(int u, int par) { sub[u] = 1;
 for(int v : adj[u]) if(!vis[v] && v - par)
   calc(v, u), sub[u] += sub[v];
int centroid(int u, int par, int r) {
 for(int v : adj[u]) if(!vis[v] && v - par)
   if(sub[v] > r) return centroid(v, u, r);
 return u;
int dist[N]; ll ans;
int in[N], out[N], vert[N], tym = 0;
void dfs(int u, int par = -1, int d = 0) {
 dist[u] = d;
 in[u] = tym;
 vert[tym++] = u;
 for(int v : adj[u]) if(v - par && !vis[v])
   dfs(v, u, d + 1);
 out[u] = tym - 1;
void solve(int u) {
 tym = 0; dfs(u);
 unordered_map<int, int> cnt; cnt[0] = 1;
 for(int v : adj[u]) if(!vis[v]) {
   for(int t = in[v]; t <= out[v]; ++t)</pre>
     if(dist[vert[t]] <= k)</pre>
```

low[u] = min(low[u], low[v]);

```
ans += cnt[k - dist[vert[t]]];
for(int t = in[v]; t <= out[v]; ++t)
    ++cnt[dist[vert[t]]];
}

void decomp(int u, int par = -1) {
  calc(u, par);
  int c = centroid(u, par, sub[u] / 2);
  solve(c); vis[c] = 1;
  for(int v : adj[c]) if(!vis[v]) decomp(v, c);
}</pre>
```

1.3 Centroid Tree

```
// p[u] = parent of u in centroid tree
// u in subterr of centroid c
// => d[lvl[c]][u] = dist(c, u)
vector<int> adj[N];
int lvl[N], sub[N], p[N], del[N], d[18][N], ans[N];
void calc(int u, int par) { sub[u] = 1;
 for(int v : adj[u]) if(v - par && !del[v])
   calc(v, u), sub[u] += sub[v];
}
int centroid(int u, int par, int r) {
 for(int v : adj[u]) if(v - par && !del[v])
   if(sub[v] > r) return centroid(v, u, r);
 return u;
}
void dfs(int 1, int u, int par) {
 if(par + 1) d[1][u] = d[1][par] + 1;
 for(int v : adj[u]) if(v - par && !del[v])
   dfs(1, v, u);
void decompose(int u, int par) {
 calc(u, -1):
  int c = centroid(u, -1, sub[u] >> 1);
 del[c] = 1, p[c] = par;
  if(par + 1) lvl[c] = lvl[par] + 1;
  dfs(lvl[c], c, -1);
 for(int v : adj[c]) if(v - par && !del[v])
   decompose(v, c);
void update(int u) {
 for(int v = u; v + 1; v = p[v])
   ans[v] = min(ans[v], d[lvl[v]][u]);
```

```
}
int query(int u) {
  int ret = 1e9;
  for(int v = u; v + 1; v = p[v])
    ret = min(ret, ans[v] + d[lvl[v]][u]);
  return ret;
}
```

1.4 Convex Hull Trick (Offline)

```
// m[] decreasing:
// minimum => bad(s-3, s-2, s-1), x[] increasing
// maximum => bad(s-1, s-2, s-3), x[] decreasing
// If m[] is increasing:
// maximum => bad(s-3, s-2, s-1), x[] increasing
// minimum => bad(s-1, s-2, s-3), x[] decreasing
// x[] isn't monotone: Ternary Search
struct CHT {
 vector<ll> m, b; int ptr = 0;
 bool bad(int 11, int 12, int 13) {
   // returns intersect(11, 13) <= intersect(11, 12)</pre>
   return 1.0 * (b[13] - b[11]) * (m[11] - m[12]) <=
          1.0 * (b[12] - b[11]) * (m[11] - m[13]);
 void add(ll _m, ll _b) {
   m.push_back(_m); b.push_back(_b);
   int s = m.size();
   while(s >= 3 && bad(s-3, s-2, s-1)) {
     m.erase(m.end()-2);
     b.erase(b.end()-2):
   }
 }
 11 f(int i, 11 x) { return m[i]*x + b[i]; }
 11 query(11 x) {
   if(ptr >= m.size()) ptr = m.size()-1;
   while(ptr < m.size()-1 &&</pre>
     f(ptr+1, x) < f(ptr, x)) ptr++;
   return f(ptr, x);
};
```

1.5 Convex Hull Trick (Dynamic)

```
// Keeps upper hull for maximums.
// For Minimum: add -m, -b. Return -ans.
const ll is_query = -(1LL<<62);</pre>
struct Line {
 11 m. b:
 mutable function<const Line*()> succ;
 bool operator<(const Line& rhs) const {</pre>
   if(rhs.b != is_query) return m < rhs.m;</pre>
   const Line* s = succ():
   if(!s) return 0;
   11 x = rhs.m:
   return b - s->b < (s->m - m) * x;
};
struct HullDynamic : public multiset<Line> {
 bool bad(iterator y) {
   auto z = next(y);
   if(y == begin()) {
     if (z == end()) return 0:
     return y->m == z->m && y->b <= z->b;
   auto x = prev(y);
   if(z == end()) return y->m == x->m && y->b <=
        x->b:
   return 1.0 * (x->b - y->b)*(z->m - y->m) >=
          1.0 * (y->b - z->b)*(y->m - x->m);
  void insert_line(ll m, ll b) {
   auto y = insert({ m, b });
   y->succ = [=] { return next(y) == end() ? 0 :
        &*next(v); };
   if(bad(y)) { erase(y); return; }
    while(next(y) != end() && bad(next(y)))
        erase(next(y));
   while(y != begin() && bad(prev(y)))
        erase(prev(y));
 11 eval(ll x) {
   auto 1 = *lower_bound((Line) { x, is_query });
   return 1.m * x + 1.b:
};
```

1.6 Dominator Tree

```
// adj[], par[] for main DAG. par[] = reversed edges
// p[][], L[], dom[] for dominator tree
vector<int> adj[N], par[N], topo;
int dom[N], L[N], p[N][22], vis[N];
void addEdge(int u, int v) { // Build DAG like this
  adj[u].push_back(v);
 par[v].push_back(u);
void dfs(int u) { // topo sort
 if(vis[u]) return; vis[u] = 1;
 for(int v : adj[u]) if(!vis[v]) dfs(v);
 topo.push_back(u);
void addToTree(int par, int u) { // to Dominator Tree
 dom[u] = par; p[u][0] = par;
 L[u] = L[par] + 1;
 for(int i = 1; i \le 20; ++i)
   if(p[u][i-1]+1)
     p[u][i] = p[p[u][i-1]][i-1];
int lca(int u, int v) { /* LCA routine here */ }
void DominatorTree(int root) {
 dfs(root);
 memset(p, -1, sizeof p);
  memset(dom, -1, sizeof dom);
 for(int i = (int) topo.size() - 2; i >= 0; --i) {
   int u = topo[i], d = -1;
   for(int v : par[u]) d = d == -1 ? v : lca(v, d);
   addToTree(d, u);
 }
}
```

1.7 Heavy Light Decomposition

```
// head[u] = head node of u's chain
// pos[u] = position of u in seg tree
struct SegmentTree { ... } tree;
vector<int> adi[N]:
int n, p[N], heavy[N], dep[N], head[N], pos[N];
```

```
int dfs(int u, int par) {
 if(par + 1) dep[u] = dep[par] + 1;
 int size = 1, Max = 0; p[u] = par;
 for(int v : adj[u]) if(v - par) {
   int sub = dfs(v, u);
   if(sub > Max) Max = sub, heavy[u] = v;
   size += sub;
 } return size;
template <class BinaryOperation>
void processPath(int u, int v, BinaryOperation op) {
 for(; head[u] != head[v]; u = p[head[u]]) {
   if(dep[head[v]] > dep[head[u]]) swap(u, v);
   op(pos[head[u]], pos[u]);
 f(dep[v] > dep[u]) swap(u, v);
 op(pos[v] + weight_on_edge, pos[u]);
int updatePath(int u, int v, int val) {
 processPath(u, v, [&val](int 1, int r) {
   tree.update(1, r, v);
 });
int queryPath(int u, int v) {
 int ret = 0:
 processPath(u, v, [&ret](int 1, int r) {
   ret += tree.query(1, r);
 }); return ret;
void init() {
 fill_n(heavy, n, -1); dfs(0, -1);
 for(int i = 0, idx = 0; i < n; i++) {</pre>
   if(p[i] == -1 || heavy[p[i]] != i) {
     for(int j = i; j + 1; j = heavy[i])
     head[j] = i, pos[j] = idx++;
   }
 } tree.init(n);
 for(int i = 0: i < n: i++)</pre>
   tree.set(pos[i], value[i]);
1.8 Interval Container
```

```
// Intervals are [inclusive, exclusive].
template <class T>
auto addInterval(set<pair<T, T>>& is, T L, T R) {
```

```
if(L == R) return is.end();
 auto it = is.lower_bound({L, R}), before = it;
 while(it != is.end() && it->first <= R) {</pre>
   R = max(R. it->second):
   before = it = is.erase(it);
 if(it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
template <class T>
void removeInterval(set<pair<T, T>>& is, T L, T R) {
 if(L == R) return;
 auto it = addInterval(is, L, R);
 T r2 = it->second;
 if(it->first == L) is.erase(it):
 else(T&)it->second = L;
 if(R != r2) is.emplace(R, r2);
```

3

KD Tree

```
struct Node {
 Point p, v;
 Node *1, *r;
Node* build(int N, Point *sX, Point *sY, int h) {
 Node *root = allocateNode():
 if(N == 1) {
  root->p = sX[0];
 } else {
   Point * sx = (h \& 1) ? sX : sY;
   Point * sy = (h \& 1) ? sY : sX;
   bool (*cmp)(const Point &, const Point &);
   cmp = (h \& 1) ? cmpX : cmpY;
   root -> v = sx[N / 2];
   int K = 0;
   REP(i, 0, N) {
     if(!cmp(sy[i], root->v)) {
      tmp[K++] = sy[i];
    } else {
       sy[i - K] = sy[i];
```

```
REP(i, 0, K) sy[N - K + i] = tmp[i];
   root->1 = build(\mathbb{N} / 2, sX, sY, h + 1);
   root->r = build(K, sX + N/2, sY + N/2, h + 1);
 return root:
void findClosest(Node* root, const Point &p, 11
    &minDist, int h) {
 if(root->1 == NULL) {
   if(! (root->p == p) )
     minDist = min(minDist, (p - root->p).len());
   return:
 }
  bool (*cmp)(const Point &, const Point &);
  cmp = (h \& 1) ? cmpX : cmpY;
  11 d = (h \& 1)?(root->v.x - p.x):(root->v.y - p.y);
  if(cmp(p, root->v)) {
   findClosest(root->1, p, minDist, h + 1);
 } else {
   findClosest(root->r, p, minDist, h + 1);
  if(sqr(d) < minDist) {</pre>
   if(cmp(p, root->v)) {
     findClosest(root->r, p, minDist, h + 1);
   } else {
     findClosest(root->1, p, minDist, h + 1);
   }
 }
}
```

1.10 MO's Algo with Updates

```
const int N = 1e5 + 10;
int n, m, a[N], prv[N], ans[N], block;

struct query {
  int l, r, id, t, blcl, blcr;
  query(int _a, int _b, int _c, int _d) {
    l = _a, r = _b; id = _c, t = _d;
    blcl = l / block; blcr = r / block;
}

bool operator < (const query &p) const {
  if(blcl != p.blcl) return l < p.l;
  if(blcr != p.blcr) return r < p.r;
  return t < p.t;</pre>
```

```
}; vector<query> q;
struct update { int pos, pre, now; };
vector<update> u;
int 1, r, t; // for mo's left/right/time pointer.
int cnt[N * 2];
void add(int x) { } // Add a[x] to ds
void remove(int x) { } // Remove a[x] from ds
void apply(int i, int x) { // Change a[i] to x
 if(1 <= i && i <= r) {</pre>
   remove(i); a[i] = x; add(i);
 else\ a[i] = x:
int main(int argc, char const *argv[]) {
 read(n): read(m):
 block = pow(n, 0.6667);
 for(int i = 0; i < n; ++i)
   read(a[i]), prv[i] = a[i];
 u.push_back(\{-1, -1, -1\});
 for(int i = 0; i < m; ++i) {</pre>
   int t. 1. r:
   read(t); read(1); read(r);
   if(t == 1) \{ --r;
     q.push_back({1, r, q.size(), u.size() - 1});
   } else {
     u.push_back({1, prv[1], r});
     prv[1] = r;
   }
 sort(q.begin(), q.end());
 1 = 0, r = -1, t = 0;
 for(int i = 0; i < q.size(); i++) {</pre>
   while(t < q[i].t) ++t,apply(u[t].pos, u[t].now);
   while(t > q[i].t) apply(u[t].pos, u[t].pre),--t;
   while(r < q[i].r) add(++r);
   while(1 > q[i].1) add(--1);
   while(r > q[i].r) remove(r--);
   while(1 < q[i].1) remove(1++);</pre>
   ans[q[i].id] = ds.get();
```

```
for(int i = 0; i < q.size(); i++)
  printf("%d\n", ans[i]);</pre>
```

1.11 Persistent Segment Tree

```
// Update version x from vecrsion y:
// root[x] = root[v];
// update(root[x], ...)
struct node { int 1, r, sum; } t[N * 20];
int root[N], a[N], n, m, k, idx, M;
void update(int &nd, int 1, int r, int &i) {
 t[++idx] = t[nd]:
 ++t[nd = idx].sum; // += v;
 if(1 == r) return;
 int m = 1 + r >> 1;
 if(i <= m) update(t[nd].1, 1, m, i);</pre>
 else update(t[nd].r, m + 1, r, i);
// a = root[r], b = root[1 - 1]
int lesscnt(int a, int b, int l, int r, int k) {
 if(r <= k) return t[a].sum - t[b].sum;</pre>
 int m = 1 + r >> 1:
 if(k <= m) return lesscnt(t[a].1, t[b].1, 1, m, k);</pre>
 else return lesscnt(t[a].1, t[b].1, 1, m, k) +
       lesscnt(t[a].r, t[b].r, m + 1, r, k);
int kthnum(int a, int b, int l, int r, int k) {
 if(1 == r) return 1:
 int cnt = t[t[a].1].sum - t[t[b].1].sum;
 int m = 1 + r >> 1;
 if(cnt >= k) return kthnum(t[a].1, t[b].1, 1, m, k);
 else return kthnum(t[a].r, t[b].r, m+1, r, k-cnt);
void init() {
 t[0].1 = t[0].r = t[0].sum = 0;
 for(int i = 1; i <= n; ++i)</pre>
   update(root[i] = root[i - 1], 0, M, a[i]);
```

1.12 Persistent Trie

```
struct node {
 node *ch[2]:
 node() \{ ch[0] = ch[1] = NULL; \}
 node *clone() {
   node *ret = new node();
   if(this) {
     ret \rightarrow ch[0] = ch[0];
     ret -> ch[1] = ch[1];
   } return ret;
} *trie[N];
void insert(int v, int p, int val) {
 node *curr = trie[v] = trie[p] -> clone();
 for(int i=31: i>=0: i--) {
   int bit = (val >> i) & 1:
   node* &ch = curr -> ch[bit];
   curr = ch = ch -> clone();
 }
}
```

1.13 Treap (Implicit)

```
struct node {
  int prior, size;
 ll val, sum, lazy;
  node *1, *r;
  node(int v = 0) {
    val = sum = v: lazv = 0:
   prior = rand(); size = 1;
   1 = r = NULL:
 }
} *root:
typedef node* pnode;
int sz(pnode t) { return t ? t -> size : 0; }
void upd_sz(pnode t) {
 if(t) t -> size = sz(t -> 1) + 1 + sz(t -> r);
void push(pnode t) {
 if(!t || !t -> lazy) return;
 t \rightarrow val += t \rightarrow lazy;
 t \rightarrow sum += t \rightarrow lazv * sz(t):
  if(t \rightarrow 1) t \rightarrow 1 \rightarrow lazy += t \rightarrow lazy;
  if(t \rightarrow r) t \rightarrow r \rightarrow lazv += t \rightarrow lazv:
  t \rightarrow lazy = 0;
```

```
void combine(pnode t) { // Reset then update
  if(!t) return;
  push(t \rightarrow 1); push(t \rightarrow r);
  t -> sum = t -> val: // Reset
  if(t \rightarrow 1) t \rightarrow sum += t \rightarrow 1 \rightarrow sum;
 if(t \rightarrow r) t \rightarrow sum += t \rightarrow r \rightarrow sum;
void split(pnode t, pnode &1, pnode &r, int pos, int
    1 (0 = bbs)
 if(!t) return void(1 = r = NULL);
  push(t):
  int curr = sz(t \rightarrow 1) + add:
  if(curr <= pos)</pre>
   split(t \rightarrow r, t \rightarrow r, r, pos, curr + 1), l = t;
  else split(t \rightarrow 1, 1, t \rightarrow 1, pos, add), r = t;
  upd_sz(t); combine(t);
void merge(pnode &t, pnode 1, pnode r) {
 push(1), push(r);
  if(!1 || !r) t = 1 ? 1 : r;
  else if(1 -> prior > r -> prior)
   merge(1 \rightarrow r, 1 \rightarrow r, r), t = 1;
  else merge(r \rightarrow 1, 1, r \rightarrow 1), t = r;
  upd_sz(t); combine(t);
11 query(pnode t, int 1, int r) {
 pnode L, mid, R;
  split(t, L, mid, l - 1); split(mid, t, R, r - 1);
  11 ans = t -> sum;
  merge(mid, L, t); merge(t, mid, R);
 return ans;
void update(pnode t, int 1, int r, 11 v) {
 pnode L, mid, R;
  split(t, L, mid, l - 1); split(mid, t, R, r - 1);
  t -> lazy += v;
  merge(mid, L, t); merge(t, mid, R);
void insert(pnode &t, int pos, int v) {
 pnode L, R, tmp, y = new node(v);
  split(t, L, R, pos - 1);
  merge(tmp, L, y); merge(t, tmp, R);
void Del(pnode &t, int pos) {
  pnode L, R, mid;
  split(t, L, mid, pos - 1); split(mid, t, R, 0);
```

```
pnode tmp = t;
merge(t, L, R); free(tmp);
```

Mathematics

Chinese Reminder Theorem

```
// mods are parewise coprime
11 CRT(vector<11> &a, vector<11> &m) {
 11 M = 1. ret = 0:
 for(ll num : m) M *= num;
 for(int i = 0: i < a.size(): i++) {</pre>
   ll tmp = (a[i] * (M / m[i])) % M;
   tmp = (tmp * inv(M / m[i], m[i])) % M;
   ret = (ret + tmp) % M;
 } return ret;
// (m, n) = 1. finds x: x mod m = a, x mod n = b
ll CRT(ll a, ll m, ll b, ll n) {
 ll x, y; egcd(m, n, x, y);
 ll ret = a * (v + m) % m * n + b * (x + n) % n * m;
 if(ret >= m * n) ret -= n * m;
 return ret:
// no restriction on (m, n):
11 CRT_Common(11 a, 11 m, 11 b, 11 n) {
 11 d = \_gcd(m, n);
 if(((b -= a) \%= n) < 0) b += n;
 if(b % d) return -1; // No soln
 return d * CRT(0, m / d, b / d, n / d) + a;
```

Discrete Logarithm

```
// minimum x: a ** x = b (mod m)
11 shanks(11 a, 11 b, 11 m) {
 a \%= m, b \%= m; ll n = sqrt(m) + 1;
 unordered_map<11, 11> mp;
 ll an = 1. base = 1. ans = -1:
 for(int i = 0; i < n; i++) an = (an * a) % m;</pre>
 for(int i = 1: i <= n: i++) {
   base = (base * an) % m;
   if(!mp.count(base))
```

```
mp[base] = i;
} base = b;
for(int j = 0; j <= n; j++) {
  if(mp.count(base)) {
    ll ret = mp[base] * n - j;
    if(ans == -1 || (ret < m && ans > ret)) ans =
        ret;
} base = (base * a) % m;
} return ans;
```

2.3 Extended Euclid

```
ll egcd(ll a, ll b, ll &x, ll &y) {
  if(!b) { x = 1, y = 0; return a; }
  ll ret = egcd(b, a % b, y,x);
  y -= (a / b) * x;
  return ret;
}
ll inv(ll n, ll mod) {
  ll x, y;
  ll gcd = egcd(n, mod, x,y);
  return (x + mod) % mod;
}
```

2.4 Millar-Rabin

```
ll mul64(ll a, ll b, ll m) { // 64-bit long long
    multiplication
 a \%= m, b \%= m;
 11 \text{ ret} = 0;
 for(; b; b >>= 1) {
   if(b & 1) ret = (ret + a) % m;
   a = (a + a) \% m;
 } return ret:
}
11 Pow(int a, 11 p, 11 mod) { /* -_- */ }
bool miller_rabin(ll n, ll b) {
 11 m = n - 1, cnt = 0;
 while (m \% 2 == 0) m >>= 1, ++cnt;
 11 \text{ ret} = Pow(b, m, n):
  if (ret == 1 || ret == n - 1) return true;
  while (cnt > 0) {
   ret = mul64(ret, ret, n);
   if (ret == n - 1) return true;
```

```
--cnt;
} return false;
}
bool ptest(ll n) { // miller-rabin primality test
    if(n < 2) return false;
    if(n < 4) return true;
    const int BASIC[12] = { 2, 3, 5, 7, 11, 13, 17,
        19, 23, 29, 31, 37 };
    for(int i = 0; i < 12 && BASIC[i] < n; ++i)
        if(!miller_rabin(n, BASIC[i])) return false;
    return true;
}
```

2.5 Partitions

```
int partition(int n) {
  int[] dp = new int[n + 1];
  dp[0] = 1;
  for(int i = 1; i <= n; i++) {
    for(int j = 1, r = 1; i - (3 * j * j - j) / 2 >=
        0; j++, r *= -1) {
        dp[i] += dp[i - (3 * j * j - j) / 2] * r;
        if (i - (3 * j * j + j) / 2 >= 0)
            dp[i] += dp[i - (3 * j * j + j) / 2] * r;
    }
} return dp[n];
}
```

2.6 Polard-Rho Factorization

```
LL pollard_rho(LL n, LL seed) {
   LL x, y;
   x = y = rand() % (n - 1) + 1;
   int head = 1, tail = 2;
   while (true) {
      x = mul64(x, x, n);
      x = (x + seed) % n;
      if (x == y) return n;
      LL d = gcd(max(x - y, y - x), n);
      if (1 < d && d < n) return d;
      if (++head == tail) y = x, tail <<= 1;
   }
}
void factorize(LL n, vector<LL> &divisor) {
   if (n == 1) return;
```

```
if (ptest(n)) divisor.push_back(n);
 else {
   LL d = n:
   while (d \ge n) d = pollard_rho(n, rand()%(n-1)+1);
   factorize(n / d, divisor);
   factorize(d. divisor):
 }
vector<LL> divisors(vector<LL> d) {
 vector<LL> ret = {1};
 sort(d.begin(), d.end());
 for (int i = 0, count = 1; i < d.size(); ++i) {</pre>
   if (i + 1 == d.size() || d[i] != d[i + 1]) {
     int c = ret.size();
     ret.resize(ret.size() * (count+1));
     LL n = 1:
     for (int j = 1; j <= count + 1; ++j) {
      for (int k = 0; k < c; ++k) {
        ret[(j-1)*c+k] = ret[k]*n;
       n *= d[i]:
     count = 1;
   } else count += 1;
 sort(ret.begin(), ret.end());
 return ret:
```

2.7 Polynomials

2.7.1 Fast Fourier Transform

```
// Call calcw() in beginning to precalculate all
    w_pre[]
// Call calcrev(sz) before a multiplication.
// Take precautions while calculating sz.

#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("sse,sse2,sse3,sse3,sse4,
    popcnt,abm,mmx,avx,tune=native")

typedef long double ld;
ld PI = acos(-1);

struct base {
```

```
ld a, b;
 base(ld _a = 0.0, ld _b = 0.0) : a(_a), b(_b) {}
  const base operator + (const base &c) const
   \{ return base(a + c.a. b + c.b): \}
  const base operator - (const base &c) const
   { return base(a - c.a, b - c.b); }
  const base operator * (const base &c) const
   { return base(a * c.a - b * c.b, a * c.b + b *
        c.a): }
};
const int N = 1 \ll 20:
base w_pre[N|1], w[N|1]; int rev[N];
void calcw() {
 for(int i = 0; i <= N; ++i)</pre>
   w_{pre}[i] = base(cos(2*PI/N*i), sin(2*PI/N*i));
void calcrev(int n) {
 int sz = 31 - __builtin_clz(n); sz = abs(sz);
 for(int i = 1; i < n - 1; ++i)
   rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << sz - 1);
void fft(base *p, int n, int dir) {
 for(int i = 1: i < n - 1: i++)
   if(i < rev[i]) swap(p[i], p[rev[i]]);</pre>
 for(int h = 1; h < n; h <<= 1) { int l = h << 1;
   if(!dir) for(int j = 0; j < h; ++j) w[j] =</pre>
        w_pre[N/1*i];
   else for(int j = 0; j < h; ++j) w[j] =</pre>
        w_pre[N-N/1*i];
   for(int j = 0 ; j < n; j += 1) {
     base t, *wn = w;
     base *u = p + j, *v = u + h, *e = v;
     while(u != e) {
       t = *v * *wn:
       *v = *u - t;
       *u = *u + t:
       ++u, ++v, ++wn;
     }
 } if(dir) for(int i = 0; i < n; ++i) p[i].a /= n,</pre>
      p[i].b /= n;
}
```

2.7.2 Fast Walsh Hadamard Transform

```
// Hadamard Matrix -
// 1. For XOR-Convolution -
// H = H_inverse = {{1, 1}, {1, -1}}
// 2.For AND-Convolution -
// H
            = \{\{0, 1\}, \{1, 1\}\}
// H_inverse = {{-1, 1}, {1, 0}}
// 3. For OR-Convolution -
// H
            = \{\{1, 1\}, \{1, 0\}\}
// H_inverse = {{0, 1}, {1, -1}}
const int mod = 1e9 + 7;
void fwht(int *p, int n) {
 for(int len = 1; 2 * len <= n; len <<= 1) {
   for(int i = 0; i < n; i += 2 * len) {
     for(int j = 0; j < len; j++) {</pre>
       int a = p[i + j];
       int b = p[i + j + len];
       p[i + j] = (a + b) \% mod;
       p[i + i + len] = (mod + a - b) \% mod:
   }
 }
```

2.7.3 Number Theoretic Transform

```
const int N = 1 << 18, mod = 7 * 17 * (1 << 23) + 1.
    g = 3;
int rev[N], w[N], inv_n;
void prepare(int &n) {
 int sz = 31 - __builtin_clz(n); sz = abs(sz);
 int r = Pow(g, (mod - 1) / n);
 inv_n = Pow(n, mod - 2);
 w[0] = w[n] = 1;
 for(int i = 1; i < n; ++i)</pre>
   w[i] = (11)w[i - 1] * r \% mod;
 for(int i = 1; i < n; ++i)</pre>
   rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (sz -
       1)):
void ntt(int *a, int n, int dir) {
 for(int i = 1; i < n - 1; ++i)
   if(i < rev[i]) swap(a[i], a[rev[i]]);</pre>
```

```
for(int m = 2: m <= n: m <<= 1) {
   for(int i = 0; i < n; i += m) {</pre>
     for(int j = 0; j < (m >> 1); ++j) {
       int &u = a[i + j], &v = a[i + j + (m >> 1)];
       int t = (11)v * w[dir ? n - n / m * j : n / m
           * i] % mod:
      v = u - t < 0 ? u - t + mod : u - t;
       u = u + t > = mod ? u + t - mod : u + t;
 } if(dir) for(int i = 0; i < n; ++i) a[i] =</pre>
      (11)a[i] * inv n % mod:
// primitive root, finding the number with order p-1
int primitive_root(int p) {
 vector<int> factor:
 int tmp = p - 1;
 for(int i = 2; i * i <= tmp; ++i) {</pre>
  if (tmp % i == 0) {
    factor.push_back(i);
     while (tmp \% i == 0) tmp /= i;
   }
 }
 if(tmp != 1) factor.push_back(tmp);
 for(int root = 1; ; ++root) {
   bool flag = true;
   for(int i = 0; i < factor.size(); ++i) {</pre>
     if(Pow(root, (p - 1) / factor[i], p) == 1) {
      flag = false;
       break;
    }
   }
   if (flag) return root;
```

2.7.4 Operations on Formal Power Series

```
Inverse of a Polynomial: Let, g_n(z)f(z) \equiv 1 \pmod{z^n}. Then, g_{2n}(z) \equiv 2g_n(z) - g_n(z)^2 f(z) \pmod{z^{2n}}.

// b * a = 1 (mod z^n). make sure N >= 2n
int ta[N], tb[N], tc[N];
void polyinv(int *a, int *b, int n) {
  if(n == 1) return void(b[0] = Pow(a[0], mod - 2));
  polyinv(a, b, n >> 1);
```

8

```
for(int i = 0; i < n; ++i)
    ta[i] = a[i], tb[i] = b[i];
  for(int i = n; i < (n << 1); ++i)</pre>
   ta[i] = tb[i] = 0:
  n <<= 1; prepare(n);</pre>
  ntt(ta, n, 0), ntt(tb, n, 0);
  for(int i = 0; i < n; ++i)</pre>
   b[i] = (11) tb[i] * (2 + mod - (11) ta[i] * tb[i]
        % mod) % mod;
  ntt(b, n, 1);
 fill(b + (n >> 1), b + n, 0);
Square Root of a Polynomial: Let, g_n(z)^2 \equiv f(z)
\pmod{z^n}. Then, g_{2n}(z) \equiv 2^{-1} \{g_n(z) + f(z)g_n(z)^{-1}\}
\pmod{z^{2n}}.
// b^2 = a (mod z^n). Make sure N >= 2n
int ta[N], tb[N], inv2 = Pow(2, mod - 2);
void polysqrt(int *a, int *b, int n) {
 if (n == 1) return void(b[0] = 1); // b_0 = x : x^2 \equiv a_0
 polysqrt(a, b, n >> 1);
  polvinv(b. tb. n):
  for(int i = 0; i < n; ++i)</pre>
   ta[i] = a[i];
  for(int i = n; i < (n << 1); ++i)</pre>
   ta[i] = tb[i] = 0;
  n <<= 1; prepare(n);</pre>
  ntt(ta, n, 0); ntt(tb, n, 0);
  for(int i = 0; i < n; ++i)</pre>
   ta[i] = (ll) ta[i] * tb[i] % mod;
  ntt(ta, n, 1);
  for(int i = 0; i < n; ++i)</pre>
   b[i] = (11) inv2 * (ta[i] + b[i]) % mod;
 fill(b + (n >> 1), b + n, 0);
}
Rising Factorial: Let P_N(x) = (x+1)(x+2)\cdots(x+1)
N = \sum_{i=0}^{N} c_i x^i. Now, P_{2N}(x) = P_N(x) P_N(x+N). Here,
P_N(x+N) = \sum_{i=0}^{N} c_i(x+N)^i = \sum_{i=0}^{N} h_i x^i where,
                 h_i = \frac{1}{i!} \cdot [x^{N-i}] A(x) B(x)
```

```
A(x) = \sum_{i=1}^{N} (c_{N-i} \cdot (N-i)!) x^{i} \text{ and } B(x) = \sum_{i=1}^{N} \left(\frac{N^{i}}{i!}\right) x^{i}
// f = (x+1)(x+2)...(x+n)
int f[M], h[M], a[M], b[M];
int fact[M], inv[M];
void build(int n) {
   if(n == 1) return void(f[0] = f[1] = 1);
 if(n & 1) {
   build(n - 1):
       for(int i = n; i >= 1; i--) {
           f[i] = f[i - 1] + (11) n * f[i] % mod;
           if(f[i] >= mod) f[i] -= mod;
       f[0] = (11) f[0] * n % mod;
       return;
 }
   n >>= 1; build(n);
  int t = n + n + 1, sz = 1;
  while(sz < t) sz <<= 1;</pre>
 prepare(sz);
 for(int i = 0; i <= n; i++)</pre>
   a[i] = (11) f[n - i] * fact[n - i] % mod;
 for(int i = 0, p = 1; i <= n; i++) {
   b[i] = (11) p * inv[i] % mod;
   p = (11) p * n \% mod;
   for(int i = n + 1; i < sz; i++) a[i] = b[i] = 0;
 ntt(a, sz); ntt(b, sz);
 for(int i = 0; i < sz; i++)</pre>
   h[i] = (11) a[i] * b[i] % mod;
 ntt(h, sz, 1);
 reverse(h, h + n + 1);
 for(int i = 0; i <= n; i++)</pre>
   h[i] = (ll) h[i] * inv[i] % mod:
  for(int i = n + 1; i < sz; i++) f[i] = h[i] = 0;
 ntt(h, sz); ntt(f, sz);
 for(int i = 0; i < sz; i++)</pre>
   f[i] = (11) f[i] * h[i] % mod;
 ntt(f, sz, 1);
```

2.7.5 NTT Friendly Primes

n	2^n	a	$p = a \times 2^n + 1$	g
5	32	3	97	5
6	64	3	193	5
7	128	2	257	3
8	256	1	257	3
9	512	15	7681	17
10	1024	12	12289	11
11	2048	6	12289	11
12	4096	3	12289	11
13	8192	5	40961	3
14	16384	4	65537	3
15	32768	2	65537	3
16	65536	1	65537	3
17	131072	6	786433	10
18	262144	3	786433	10
19	524288	11	5767169	3
20	1048576	7	7340033	3
21	2097152	11	23068673	3
22	4194304	25	104857601	3
23	8388608	20	167772161	3
23	8388608	119	998244353	3
24	16777216	10	167772161	3
25	33554432	5	167772161	3
26	67108864	7	469762049	3
27	134217728	15	2013265921	31

Random Primes: 100003, 200003, 300007, 400009, 500009, 600011, 700001, 800011, 900001, 1000003, 2000003, 3000017, 4100011, 5000011, 8000009, 9000011, 10000019, 20000003, 50000017, 50100007, 100000007, 100200011, 200100007, 250000019

2.8 Segmented Sieve

```
// table[i-L] == true <=> i == prime
const int SQRTN = 1<<16; // upperbound of sqrt(H) + 10
vector<bool> segmentSieve(ll L, ll H) {
   static ll p[SQRTN];
   static int lookup = 0;
   if (!lookup) {
      for (ll i = 2; i < SQRTN; ++i) p[i] = i;
   }
}</pre>
```

2.9 Simplex

```
double a[maxN] [maxM], b[maxN], c[maxM], d[maxN] [maxM];
int ix[maxN + maxM]; // !!! Array all indexed from 0
// Target: max{cx|Ax<=b,x>=0}
// n: Constraints, m: Variables
double simplex(double a[maxN][maxM], double b[maxN],
    double c[maxM], int n, int m) {
 ++m:
 int r = n, s = m - 1:
 memset(d, 0, sizeof(d));
 for(int i = 0; i < n + m; ++i) ix[i] = i;</pre>
 for(int i = 0; i < n; ++i) {</pre>
   for(int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
   d[i][m-1] = 1;
   d[i][m] = b[i];
   if(d[r][m] > d[i][m]) r = i;
 for(int j = 0; j < m - 1; ++j) d[n][j] = c[j];
 d[n + 1][m - 1] = -1;
 for(double dd;;) {
   if(r < n) {
     int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
     d[r][s] = 1.0 / d[r][s];
     for(int j = 0; j \le m; ++j) if (j != s) d[r][j]
         *= -d[r][s];
     for(int i = 0; i <= n + 1; ++i) if (i != r) {
```

```
for(int j = 0; j \le m; ++j) if (j != s)
          d[i][j] += d[r][j] * d[i][s];
     d[i][s] *= d[r][s];
 r = -1: s = -1:
 for(int j = 0; j < m; ++j) if (s < 0 || ix[s] >
      ix[i]) {
   if(d[n + 1][j] > eps || (d[n + 1][j] > -eps &&
        d[n][j] > eps)) s = j;
 }
 if(s < 0) break:
 for(int i = 0; i < n; ++i) if (d[i][s] < -eps) {</pre>
   if(r < 0 \mid | (dd = d[r][m] / d[r][s] - d[i][m] /
        d[i][s]) < -eps || (dd < eps && ix[r + m] >
        ix[i + m])) r = i;
 }
 if(r < 0) return -1; // not bounded</pre>
if(d[n + 1][m] < -eps) return -1; // not executable</pre>
double ans = 0;
for(int i = m; i < n + m; ++i) { // the missing
    enumerated x[i] = 0
 if(ix[i] < m - 1) ans += d[i - m][m] * c[ix[i]];
} return ans:
```

2.10 Special Numbers

2.10.1 Binomial Coefficients

■ Calculating Binomial Coefficient with large mod and small n, r

```
11 C_mod_p_q(ll n, ll r, ll p, ll q) {
  if(r > n) return 0;
  if(n == r || r == 0) return 1;
 11 M = Pow(p, q, 1e18);
  11 t = Leg(n, p) - Leg(r, p) - Leg(n - r, p);
  if(t >= q) return 0;
  s_fact[0] = 1;
  for(ll i = 1; i < M; i++)</pre>
   s_{fact[i]} = s_{fact[i-1]} * ((i\%p)?i:1) % M;
  ll res = spf(n, p, M);
 res *= inv(spf(r, p, M) * spf(n - r, p, M) % M, M);
 res %= M;
 res *= Pow(p, t, M);
 return res % M;
}
11 C(11 n, 11 r, int mod) {
  if(r > n || mod == 1) return 0;
  if(n == r \mid \mid r == 0) return 1;
  vector<ii> ppf = factorize(mod);
  // factorize should return prime power
      factorization.
  vector<ll> a, m;
  for(ii p : ppf) {
   11 pp = Pow(p.first, p.second, 1e7);
   11 aa = C_mod_p_q(n, r, p.first, p.second);
   a.push_back(aa);
   m.push_back(pp);
 } return CRT(a, m);
```

\blacksquare Calculating Binomial Coefficient with large n, r and small prime modulo (Lucas)

■ Parity of Binomial Coefficient

- $\binom{n}{k}$ is odd, if and only if $k \subseteq n$.
- For fixed n, number of odd $\binom{n}{k} = 2^{popcount(n)}$.
- Total number of odd entries in first n rows of pascal's triangle f(1) = 1, f(2k) = 3f(k), f(2k+1) = 2f(k) + f(k+1)

2.10.2 Catalan Numbers

Formulas:

- n^{th} Catalan Number is given by $C_n = \frac{1}{n+1} \binom{2n}{n} = \prod_{k=2}^{n} \frac{n+k}{k}$. Trademark: [1,1,2,5,14,42,132,429,1430].
- Catalan numbers satisfy recurrences -

$$C_0 = 1; \ C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

$$C_0 = 1; \ C_{n+1} = \frac{2(2n+1)}{n+2}C_n$$

Applications:

- C_n counts number of Dyck words of length 2n. A dyck word consists of n 'X' and n 'Y', with no prefix having more 'Y' than 'X'.
- C_n counts number of valid expression of n pairs of parenthesis.
- C_n is the number of different ways n+1 factors can be completely parenthesized. Ex. ((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).
- C_n is number of full binary trees (a node hase either 2 childs or none) with n+1 leafs (and n internal nodes).
- C_n is number of monotonic lattice paths from (0,0) to (n,n) without crossing x=y line. Rotate grid 45° to get mountain range.

• C_n is number of triangulation with non-crossing line segments, of convex polygon with n+2 edges.

10

- C_n is number of stack sortable permutations of $[1,2,\cdots,n]$. A permutations w=u+n+v is stack sortable if $S(w)=[1,2,\cdots,n]$, and S(w)=S(u)+S(v)+n.
- C_n is number of permutations of $[1, 2, \dots, n]$, which avoids a pattern of length 3.
- C_n is the number of ways to tile a stairstep shape of height n with n rectangles.

2.10.3 Eulerian Numbers

■ **Definition:** $\binom{n}{k}$ counts the number of permutations of the numbers from 1 to n in which exactly k numbers are greater than the previous element. Trademark: $\binom{n}{4} \Rightarrow [1,11,11,1,0]$.

The permutations of the multiset $[1,1,2,2,\cdots,n,n]$ which have the property that for each k, all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number (2n-1)!!. The Eulerian number of the second kind, denoted $\binom{n}{k}$, counts the number of all such permutations that have exactly m ascents.

■ Formulas:

• Recurrence:

- Reflection: $\binom{n}{k} = \binom{n}{n-k-1}$.
- Coefficients that arise when ordinary poweres are written in terms of consecutive binomial coefficients -

$$x^n = \sum_{k} \binom{n}{k} \binom{x+k}{n}.$$

- Explicit Formula: $\binom{n}{m} = \sum_{k=0}^{m} \binom{n+1}{k} (m+1)$ $k)^{n}(-1)^{k}$.
- Special Values: $\binom{n}{0} = 1$; $\binom{n}{1} = 2^n n 1$; $\binom{n}{2} = n n 1$ $3^{n} - (n+1)2^{n} + \binom{n+1}{2}$.
- Row Sum: $\sum_{k=1}^{n} \binom{n}{k} = n!$; $\sum_{k=1}^{n} \binom{n}{k} = \frac{(2n)^n}{2^n}$

2.10.4 Fibonacci Numbers

Definition: $F_n = F_{n-1} + F_{n-2}$; $F_0 = 0, F_1 = 1$.

Identities:

- Closed Form: $\frac{\phi^n (1 \phi)^n}{\sqrt{5}}$; $\phi = \frac{1 + \sqrt{5}}{2}$
- Partial Sum: $\sum_{i=1}^{n} F_i = F_{n+2} 1$.
- Sum of squared terms: $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$.
- Sum of odd terms: $\sum_{i=1}^{n} F_{2i+1} = F_{2n}.$
- Sum of even terms: $\sum_{i=1}^{n} F_{2i} = F_{2n+1} 1$.
- Cassini's identity: $F_n^2 F_{n+1}F_{n-1} = (-1)^{n-1}$.
- Catalan's identity: $F_n^2 F_{n+r}F_{n-r} = (-1)^{n-r}F_r^2$.
- GCD: $gcd(F_n, F_m) = F_{gcd(m,n)}$. Pairwise gcd of three consecutive Fibonacci number is 1.
- Divisibility: $\begin{cases} p = 5 & \Rightarrow p \mid F_p, \\ p \equiv \pm 1 \pmod{5} & \Rightarrow p \mid F_{p-1}, \end{cases}$

• *n* steps forward:

$$F_{m+n} = F_{m-1}F_n + F_m F_{n+1}$$

$$F_{2n-1} = F_n^2 + F_{n-1}^2$$

$$F_{2n} = (F_{n-1} + F_{n+1})F_n = (2F_{n-1} + F_n)F_n$$

• Right triangles:

$$F_{2n-1}^2 = (2F_n F_{n-1})^2 + (F_n^2 - F_{n-1}^2)^2$$
$$(F_n F_{n+3})^2 = (2F_{n+1} F_{n+2})^2 + (F_{n+1}^2 + F_{n+2}^2)^2$$

• Periodicity: If the members of the Fibonacci sequence are taken mod n, the resulting sequence is periodic with period at most 6n.

2.10.5 Stirling Numbers of the First Kind

Definition: $\binom{n}{k}$ counts the number of ways to arrange n objects into k cycles. Trademark: $\binom{n}{4} \Rightarrow [6, 11, 6, 1]$.

■ Formulas:

- Recurrence: $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, \begin{bmatrix} n \\ 0 \end{bmatrix} =$
- Row Generator:

$$G_n(z) = \sum_{k=0}^{\infty} {n \brack k} x^k = x^{\overline{n}} = x(x+1)(x+2)\cdots(x+n-1)$$

In other works, Stirling Cycle numbers are the coefficients of ordinary powers that yeild rasing factorial powers. Using falling factorial generates signed stirling cycles numbers instead.

• Special Values:
$$\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!$$
, $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1)!$
1)! H_{n-1} , $\begin{bmatrix} n \\ n-1 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix}$, $\begin{bmatrix} n \\ n-2 \end{bmatrix} = \frac{1}{4}(3n-1)$
1) $\begin{pmatrix} n \\ 3 \end{pmatrix}$, $\begin{bmatrix} n \\ n-3 \end{bmatrix} = \begin{pmatrix} n \\ 2 \end{pmatrix} \begin{pmatrix} n \\ 4 \end{pmatrix}$.

- Parity: $\begin{bmatrix} n \\ k \end{bmatrix} \equiv \binom{n//2}{m-n//2} \pmod{2}$
- Every cycle represents a permutation. Hence, $\sum_{k=1}^{n} {n \brack k} = n! = {n+1 \brack 1}.$

■ Applications:

• Number of permutation of first n natural numbers with k elements maximum than all elements to its left is $\binom{n}{k}$.

2.10.6 Stirling Numbers of the Second Kind

Definition: $\binom{n}{k}$ stands for the number of ways to partition a set of n elements into k non-empty subsets. Trademark: $\binom{n}{4} \Rightarrow [1, 7, 6, 1].$

■ Formulas:

- Recurrence: $\begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix}, \begin{Bmatrix} n \\ 0 \end{Bmatrix} =$ [n = 0]
- Column Generator:

$$G_k(x) = \sum_{n} {n \brace k} x^n = \frac{x^n}{(1-x)(1-2x)(1-3x)\cdots(1-k)}$$

- Explicit Formula: ${n \brace k} = \sum_{k=0}^{k} (-1)^{k-r} \frac{r^n}{r!(k-r)!}$
- Coefficients that arise when x^n is written in terms of falling factorials $x^{\underline{k}}$:

$$x^{\underline{k}} = x(x-1)(x-2)\cdots(x-k+1)$$
$$x^{n} = \sum_{k=0}^{n} {n \brace k} x^{\underline{k}}$$

- Parity: $\binom{n}{k} \equiv [((n-k)\&((k-1)/2)) = 0]$
- Reduced Stirling numbers of the second kind: Lets use $S^d(n,k)$ to denote number of ways to partition first n natural numbers into k non-empty subsets such that all elements in each subset have pairwise distance at least d. Then $S^d(n,k) = {n-d+1 \brace k-d+1}, n \ge k \ge d$.
- Associated Stirling numbers of the second kind: Number of ways to partition a set of n objects into k subsets, with each subset containing at least r elements is $S_r(n,k) = kS_r(n-1,k) + \binom{n-1}{r-1}S_r(n-r,k-1)$.

■ Applications:

- Draw n cards from a deck of k cards, with replacement. Probability that each card was drawn at least once is given by $\binom{n}{k}k!/k^n$.
- $\binom{n}{k}k!$ counts the number of ways n labled objects can be distributed into k nonempty parcels.
- Number of partitions of first n natural numbers into k nonempty subsets of nonconsecutive integers is $\binom{n-1}{k-1}$.
- Number of k size collections of pairwise disjoint, nonempty subsets of [n] is $\binom{n+1}{k+1}$. Example: $\binom{3+1}{2+1} = 6 \Rightarrow \{(1)(23), (12)(3), (13)(2), (1)(2), (1)(3), (2)(3)\}$
- $\binom{n}{k}$ = Number of patterns (ex. AADCBB = XXEGTT) of length n using k distinct symbols.
- Number of ways to nest n matryoshkas so that exactly k matryoshkas are not contained in any other matryoshka is $\binom{n}{k}$.

3 Graph Theory

3.1 Articulation Point and Bridge

```
int vis[N], low[N], cut[N], now = 0;

void dfs(int u, int par) {
  low[u] = vis[u] = ++now; int ch = 0;
  for(int v : adj[u]) if(v - par) {
    if(vis[v]) low[u] = min(low[u], vis[v]);
    else { ch++;
      dfs(v, u);
    low[u] = min(low[u], low[v]);
    if(par + 1 && low[v] >= vis[u])
      cut[u] = 1;
    if(low[v] > vis[u]) {
      printf("Bridge %d -- %d\n", u, v);
    }
  }
  }
  if(par == -1 && ch > 1) cut[u] = 1;
}
```

3.2 Directed Minimum Spanning Tree

```
// Directed MST starting from node r.
int dmst(vector<edge> &e, int r, int n) {
  int ans = 0;
 int m = n;
  while(true) {
   vector<int> lo(m, inf), pi(m, inf);
   for(int i = 0; i < e.size(); ++i) {</pre>
     int u = e[i].u. v = e[i].v. w = e[i].w:
     if(w < lo[v] && u != v)</pre>
       lo[v] = w, pi[v] = u;
   }
   lo[r] = 0:
   for(int i = 0; i < lo.size(); ++i) if(i != r)</pre>
     if(lo[i] == inf) return -1;
   int cur id = 0:
   vector\langle int \rangle id(m, -1), mark(m, -1);
   for(int i = 0; i < m; ++i) {</pre>
     ans += lo[i];
     int u = i;
     while(u != r && id[u] < 0 && mark[u] != i) {
       mark[u] = i:
       u = pi[u];
     if(u != r && id[u] < 0) { // Cycle</pre>
       for(int v = pi[u]; v != u; v = pi[v])
```

```
id[v] = cur id:
      id[u] = cur_id++;
   }
 }
  if(cur_id == 0) break;
 for(int i = 0: i < m: ++i)</pre>
   if(id[i] < 0) id[i] = cur_id++;</pre>
  for(int i = 0; i < e.size(); ++i) {</pre>
    int u = e[i].u, v = e[i].v, w = e[i].w;
    e[i].u = id[u];
    e[i].v = id[v]:
    if (id[u] != id[v])
      e[i].w -= lo[v];
 m = cur_id;
 r = id[r];
} return ans:
```

3.3 Eulerian Path and Circuit

Unirected Graph: Number of nodes with odd degree should be 0 or 2. Start with a odd degree node if there are any. This code works for Eulerian Circuit in undirected graph too -

```
struct Edge;
typedef list<Edge>::iterator iter;
struct Edge { int v; iter u; Edge(int _v) : v(_v){} };
list<Edge> adj[N]; vector<int> path;
void dfs(int u) {
 while(adj[u].size()) {
   int v = adj[u].front().v;
   adj[v].erase(adj[u].front().u);
   adj[u].pop_front();
   dfs(v);
 } path.push_back(u);
void addEdge(int u, int v) {
 adj[u].push_front(Edge(v));
 adj[v].push_front(Edge(u));
 iter a = adj[u].begin(), b = adj[v].begin();
 a \rightarrow u = b, b \rightarrow u = a;
```

Directed Graph: Number of nodes where indegree and outdegree differ can be 0 or 2. Start with a vertex having out degree greater than in degree.

```
void dfs(int u) {
    while(done[u] < adj[u].size())</pre>
       dfs(adj[u][done[u]++]);
   path.push_back(u);
} // Eulerian path in 'path', reversed order.
```

3.4 Hopcroft Karp

```
// Left nodes are numbered from 1 to n
// Right nodes are numbered from n + 1 to n + m
// Complexity O(E sqrt V)
const int N = 2*5e4 + 10;
const int inf = 1e9:
vector<int> adj[N];
int match[N], dist[N], n, m, p;
bool bfs() {
 queue<int> Q;
 for(int i = 1; i <= n; i++) {</pre>
   if(!match[i]) dist[i] = 0, Q.push(i);
   else dist[i] = inf;
 } dist[0] = inf;
 while(!Q.empty()) {
   int u = Q.front(); Q.pop();
   if(u == 0) continue;
   for(int v : adj[u]) {
     if(dist[match[v]] == inf) {
       dist[match[v]] = dist[u] + 1:
       Q.push(match[v]);
   }
 } return dist[0] != inf;
bool dfs(int u) {
 if(!u) return 1:
 for(int v : adj[u]) {
   if(dist[match[v]] == dist[u] + 1) {
     if(dfs(match[v])) {
       match[u] = v, match[v] = u;
       return 1;
```

```
}
 } dist[u] = inf; return 0;
int hopcroft_karp() {
 int ret = 0:
 while(bfs())
   for(int i = 1; i <= n; i++)</pre>
     if(!match[i] && dfs(i))
       ret++;
 return ret:
```

3.5 Hungarian

```
struct Hungarian {
 static const int N = 650;
 static const int INF = 2147483647;
 int n, match[N], vx[N], vv[N];
 int e[N][N], lx[N], ly[N], slack[N];
 void init(int _n) { n = _n;
   for(int i = 0: i < n: i++)
    for(int j = 0; j < n; j++)
       e[i][i] = 0;
 void addEdge(int x, int v, int w) { e[x][v] = w; }
 bool DFS(int x){
   vx[x] = 1:
   for(int y = 0; y < n; y++) {
     if(vy[y]) continue;
     if(lx[x] + ly[y] > e[x][y]) {
       slack[y] = min(slack[y], lx[x] + ly[y] -
           e[x][v]:
     } else {
       vy[y] = 1;
       if(match[y] == -1 || DFS(match[y])) {
        match[v] = x;
        return true;
      }
   } return false:
 int solve() {
   fill(match, match + n, -1);
   fill(lx, lx + n, -INF);
```

```
fill(ly, ly + n, 0);
   for(int i = 0; i < n; i++)</pre>
     for(int j = 0; j < n; j++)
       lx[i] = max(lx[i], e[i][j]);
   for(int i = 0; i < n; i++) {</pre>
     fill(slack, slack + n,INF);
     while(true) {
       fill(vx, vx + n,0);
       fill(vy, vy + n,0);
       if(DFS(i)) break;
       int d = INF:
       for(int j = 0; j < n; j++)</pre>
         if(!vy[j]) d = min(d, slack[j]);
       for(int j = 0; j < n; j++){
         if(vx[i]) lx[i] -= d;
         if(vy[i]) ly[i] += d;
         else slack[i] -= d:
     }
   }
   int res = 0;
   for(int i = 0; i < n; i++)</pre>
     res += e[match[i]][i];
   return res;
} graph;
```

Kth Best Sortest Path

```
const int N = 105, K = 100, inf = 1e9;
vector<int> adj[N], cost[N];
vector<vector<int> > ans[N]; // ans[u][v][k] = ...
int n, m;
struct info {
 int v, w, k;
 bool operator < (const info &p) const {</pre>
   return w > p.w;
// call with dist[N+1][K] = ans[i]
void kthbest(int s, vector<vector<int> > &dist) {
 info u. v:
 for(int i = 1; i <= n; i++)
  for(int j = 0; j < K; j++)
     dist[i][j] = inf;
 u.v = s, u.k = 0, u.w = 0;
```

```
priority_queue<info> Q;
Q.push(u);
while(!Q.empty()) {
 u = Q.top(); Q.pop();
 for(int i = 0; i < adj[u.v].size(); i++) {</pre>
   v.v = adj[u.v][i];
   int d = u.w + cost[u.v][i];
   for(v.k = u.k; v.k < K && d != inf; v.k++) {
     if(dist[v.v][v.k] > d) {
       swap(d, dist[v.v][v.k]);
       v.w = dist[v.v][v.k]:
       Q.push(v);
       break;
     }
   for(v.k++; v.k < K && d != inf; v.k++)</pre>
     if(dist[v.v][v.k] > d)
       swap(d, dist[v.v][v.k]);
 }
}
```

3.7 Kuhn

```
// Complexity O(V * min(BPM^2, E)).
// Left nodes - 0, 1, ..., n - 1. Right rest.
vector<int> adj[N];
int vis[N], match[N], iter;
int dfs(int u) {
 if(vis[u] == iter) return 0;
 vis[u] = iter;
 for(int v : adj[u]) {
   if(match[v] < 0 || dfs(match[v])) {</pre>
     match[u] = v, match[v] = u;
     return 1;
   }
 } return 0;
int kuhn() {
 memset(match, -1, sizeof match);
 int ans = 0;
 for(int i = 0; i < n; i++) {</pre>
   ++iter; ans += dfs(i);
 } return ans;
}
```

3.8 Manhattan Minimum Spanning Tree

```
struct point {
 int x, y, idx;
 bool operator<(const point &p) const {</pre>
   return x == p.x ? v < p.v : x < p.x;
 }
} p[N];
struct node { int val, p; } T[N];
int query(int x) {
 int r = \inf, p = -1;
 for(; x <= n; x += x & -x)</pre>
   if(r > T[x].val) r = T[x].val, p = T[x].p;
 return p;
void update(int x, int w, int p) {
 for(; x > 0; x -= x & -x)
   if(T[x].val > w) T[x].val = w, T[x].p = p;
void addEdge(int u, int v, int c) { /* -_- */ }
int kruskal() { /* -_- */ }
// Adds edge to nearest neighbour in each octant.
// In a fixed dir, for a point (x, y), finds point
// (x', y') such that x <= x', (y' - x') <= (y - x)
// and (x' + y') is minimum possible.
int manhattan() {
 for(int i = 1; i <= n; ++i) p[i].idx = i;</pre>
 for(int dir = 1; dir <= 4; ++dir) {</pre>
   if(dir == 2 || dir == 4) {
     for(int i = 1; i <= n; ++i)</pre>
       swap(p[i].x, p[i].y);
   } else if(dir == 3) {
     for(int i = 1; i <= n; ++i)</pre>
       p[i].x = -p[i].x;
   sort(p + 1, p + 1 + n);
   vector<int> v;
   static int a[N]:
   for(int i = 1; i <= n; ++i) {</pre>
     a[i] = p[i].y - p[i].x;
     v.push_back(a[i]);
```

```
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
for(int i = 1; i <= n; ++i)
    a[i] = lower_bound(v.begin(), v.end(), a[i]) -
        v.begin() + 1;
for(int i = 1; i <= n; ++i)
    T[i].val = inf, T[i].p = -1;
for(int i = n; i >= 1; --i) {
    int pos = query(a[i]);
    if(pos != -1) addEdge(p[i].idx, p[pos].idx,
        dist(p[i], p[pos]));
    update(a[i], p[i].x + p[i].y, i);
}
return kruskal();
}
```

14

3.9 Maximum Closure

A closure of a directed graph is a set of vertices with no outgoing edges.

Formally, given directed graph G = (V, E) and cost function $F: V \to R$. Find maximum (or minimum) weight closure.

Min Closure = Compliment of Max Closure Max Closure = Min cut in graph H:

- Add source s and sink t.
- For all vertices $v \in V(G)$:
 - if f(v) > 0: add edge (s, v, f(v)). - if f(v) < 0: add edge (v, t, -f(v))
- For all edge $(u, v) \in E(G)$: add edge $(u, v, +\infty)$.
- Vertices in same side of s forms a closure.
- Weight(cut) = $\sum f(v)[f(v) > 0]$ Weight(closure)
- Cut is minimum when closure is maximum.

3.10 Max Flow - Dinic

```
struct Dinic { // Complexity O(V^2 E)
    static const int MXN = 10000;
    struct Edge { int v,f,re; };
```

```
int n, s, t, level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
   n = _n; s = _s; t = _t;
   for(int i = 0; i < n; i++) E[i].clear();</pre>
  }
  void add_edge(int u, int v, int f){
   E[u].PB({v, f, SZ(E[v])});
   E[v].PB({u, 0, SZ(E[u])-1});
  }
  bool BFS(){
   for(int i = 0: i < n: i++) level[i] = -1:
   queue<int> que({s});
   level[s] = 0;
   while(!que.empty()){
     int u = que.front(); que.pop();
     for(auto it : E[u]){
       if(it.f > 0 && level[it.v] == -1) {
         level[it.v] = level[u]+1:
         que.push(it.v);
       }
   } return level[t] != -1;
  }
  int DFS(int u. int nf){
   if(u == t) return nf;
   int res = 0:
   for(auto &it : E[u]){
     if(it.f > 0 && level[it.v] == level[u]+1) {
       int tf = DFS(it.v, min(nf,it.f));
       res += tf; nf -= tf; it.f -= tf;
       E[it.v][it.re].f += tf:
       if(nf == 0) return res;
     }
   if(!res) level[u] = -1;
   return res;
  int flow(int res = 0){
   while(BFS())
     res += DFS(s,2147483647);
   return res;
  }
} flow;
```

3.11 Max Flow with Edge Bound

Without Source or Sink, Check

Set capacity = upper bound – lower bound Add source s, sink t.

Let $M_v = \sum$ ingoing edge lower bounds $-\sum$ outgoing edge lower bounds.

For all v, if $M_v > 0$, add edge (s, v, M), else add edge (v, t, -M).

If all outgoing edges from S are full \implies feasible flow exists, it is flow + lower bounds.

With Source or Sink, Find Max Flow

Binary search on Max Flow. Add edge (sink, source, Max Flow). Check whether feasible flow exists without source / sink. (Notice that we need to add another 2 source and sink for checking that).

3.12 Minimum Cost Maximum Flow

```
struct CostFlow {
 static const int MXN = 205:
 static const 11 INF = 102938475610293847LL;
 struct Edge {
   int v, r;
   11 f, c;
 };
 int n, s, t, prv[MXN], prvL[MXN], inq[MXN];
 11 dis[MXN], fl, cost;
 vector<Edge> E[MXN];
 void init(int _n, int _s, int _t) {
   n = _n; s = _s; t = _t;
  for(int i = 0; i < n; i++) E[i].clear();</pre>
   fl = cost = 0;
 void add_edge(int u, int v, ll f, ll c) {
   E[u].PB({v, E[v].size(), f, c});
   E[v].PB({u, E[u].size()-1, 0, -c});
 pair<ll, 11> flow() {
   while(true) {
     for(int i = 0; i < n; i++)</pre>
       dis[i] = INF, ina[i] = 0:
     dis[s] = 0;
     queue<int> q({s});
```

```
while(!q.empty()) {
       int u = q.front(); q.pop();
       inq[u] = 0;
       for(int i = 0; i < E[u].size(); i++) {</pre>
         int v = E[u][i].v;
         ll w = E[u][i].c:
         if(E[u][i].f > 0 \&\& dis[v] > dis[u] + w) {
           prv[v] = u; prvL[v] = i;
           dis[v] = dis[u] + w;
           if(!inq[v]) {
            inq[v] = 1;
            q.push(v);
           }
       }
     if(dis[t] == INF) break;
     11 tf = INF;
     for(int v = t, u, 1; v != s; v = u) {
       u = prv[v]; 1 = prvL[v];
       tf = min(tf, E[u][1].f);
     for(int v = t, u, 1; v != s; v =u) {
       u = prv[v]; l = prvL[v];
       E[u][1].f -= tf;
       E[v][E[u][1].r].f += tf;
     cost += tf * dis[t];
     fl += tf;
   return {fl, cost};
 }
} flow;
```

15

3.13 Stoer Wagner

```
const int inf = 1e9; // larger than Min Cut
const int N = 160;
int cost[N][N], w[N];
bool vis[N], merged[N];
vector<int> bestCut;

int MinCut(int n) {
  int best = inf; merged[0] = 1;
  for(int i = 1; i < n; i++) merged[i] = 0;
  // vector<int> cut;
```

```
for(int phase = 1; phase < n; ++phase) {</pre>
  vis[0] = 1;
 for(int i = 1; i < n; ++i) if(!merged[i])</pre>
   vis[i] = 0, w[i] = cost[0][i]:
  int prv = 0. nxt:
 for(int i = n - 1 - phase; i >= 0; --i) {
   nxt = -1;
   for(int j = 1; j < n; ++j)
     if(!vis[j] && (nxt == -1 || w[j] > w[nxt]))
       nxt = j;
   vis[nxt] = 1:
   if(i) { prv = nxt;
     for(int j = 1; j < n; ++j)
       if(!vis[j]) w[j] += cost[nxt][j];
   }
  for(int i = 0; i < n; i++)</pre>
   cost[i][prv] = (cost[prv][i] += cost[nxt][i]);
  merged[nxt] = 1;
  // cut.push_back(nxt);
  if(best > w[nxt]) {
   best = w[nxt];
   // bestCut = cut;
} return best;
```

3.14 Strongly Connected Components

```
vector<int> adj[maxn], trans[maxn];
int col[maxn], vis[maxn], idx = 0, n, m;
stack<int> st;
void dfs(int u) {
    vis[u] = 1;
    for(int v : adj[u]) if(!vis[v]) dfs(v);
    st.push(u);
}
void dfs2(int u) {
    col[u] = idx;
    for(int v : trans[u]) if(!col[v]) dfs2(v);
}
void scc() {
    for(int i = 1; i <= n; i++) if(!vis[i]) dfs(i);
    for(int u = 1; u <= n; u++)
        for(int v : adj[u])</pre>
```

```
trans[v].push_back(u);
while(!st.empty()) {
  int u = st.top(); st.pop();
  if(col[u]) continue;
  idx++; dfs2(u);
}
```

4 String Processing

4.1 Aho-Corasick

```
const int N = 1e6 + 10;
int trie[N][26], link[N], idx, tot[N];
char p[N], s[N];
void insert() {
 int u = 0, len = strlen(p);
 for(int i = 0; i < len; i++) {</pre>
  int &v = trie[u][p[i] - 'a']:
   u = v = v ? v : ++idx;
 } tot[u]++:
void bfs() {
 queue<int> q;
 for(q.push(0); !q.empty(); ) {
   int u = q.front(); q.pop();
   for(int c = 0: c < 26: c++) {
     int &v = trie[u][c];
     if(!v) v = trie[link[u]][c];
     else {
       link[v] = u ? trie[link[u]][c] : 0:
       tot[v] += tot[link[v]]:
       q.push(v);
   }
 }
int match() {
 int u = 0, len = strlen(s);
 int ret = 0:
 for(int i = 0; i < len; i++) {</pre>
   u = trie[u][s[i] - 'a']:
   ret += tot[u]:
 } return ret;
```

4.2 Knuth Morris Pratt

```
const int maxn = 1e5 + 10;
string s, t;
int pi[maxn];
void prefixFn() {
 int now = pi[0] = -1;
 for(int i = 1; i < s.size(); i++) {</pre>
   while(now !=-1 \&\& s[now + 1] != s[i]) now =
        pi[now];
   if(s[now + 1] == s[i]) pi[i] = ++now;
   else pi[i] = now = -1;
 }
int kmp() {
 prefixFn();
 int cnt = 0, now = -1:
 for(int i = 0; i < t.size(); i++) {</pre>
   while(now != -1 && s[now + 1] != t[i]) now =
        pi[now];
   if(s[now + 1] == t[i]) ++now;
   else now = -1:
   if(now == s.size()-1) { now = pi[now]; cnt++; }
 } return cnt:
```

4.3 Lyndon Factorization

```
// Factorize s into w1 w2 .. wk : k maximum possible
    and w1 >= w2 >= ...
// each wi is Lyndon word (strictly smaller than all
    its rotation)
void lyndon(string s) {
    int n = s.length(), i = 0;
    while(i < n) {
        int j = i + 1, k = i;
        while(j < n && s[k] <= s[j]) {
            if(s[k] < s[j]) k = i;
            else ++k;
            ++j;
        } while(i <= k) {
            cout << s.substr(i, j - k) << ' ';</pre>
```

```
i += j - k;
  }
} cout << endl;</pre>
```

4.4 Manacher

```
// 1[2 * i] = len of palindrome centered at s[i]
// 1[2*i+1] = len of palindrome centered at s[i],
    s[i+1]
vector<int> manacher(string &s) {
 int n = s.size(): vector<int> 1(2 * n):
 for(int i = 0, j = 0, k; i < n * 2; i += k, j =
      \max(i - k, 0)) {
   while(i >= j && i + j + 1 < n * 2 && s[(i - j)/2]
        == s[(i + j + 1)/2]) ++j;
   for(k = 1; i \ge k \&\& j \ge k \&\& l[i - k] != j - k;
     l[i + k] = min(l[i - k], j - k);
 } return 1;
```

4.5 Suffix Array

```
char s[N];
int SA[N], iSA[N], cnt[N], next[N], lcp[N];
bool bh[N], b2h[N]:
void buildSA(int n) {
 for(int i = 0; i < n; i++) SA[i] = i;</pre>
 sort(SA, SA + n, [](int i, int j) { return s[i] <</pre>
      s[i]; });
 for(int i = 0; i < n; i++) {</pre>
   bh[i] = i == 0 \mid \mid s[SA[i]] != s[SA[i - 1]];
   b2h[i] = 0;
 for(int h = 1; h < n; h <<= 1) {</pre>
   int tot = 0;
   for(int i = 0, j; i < n; i = j) {
     i = i + 1:
     while(j < n && !bh[j]) j++;</pre>
     next[i] = j; tot++;
   } if(tot == n) break;
   for(int i = 0; i < n; i = next[i]) {</pre>
```

```
for(int j = i; j < next[i]; j++)</pre>
       iSA[SA[i]] = i;
     cnt[i] = 0;
   cnt[iSA[n - h]]++;
   b2h[iSA[n - h]] = 1:
   for(int i = 0; i < n; i = next[i]) {</pre>
     for(int j = i; j < next[i]; j++) {</pre>
       int s = SA[i] - h;
       if(s < 0) continue;</pre>
       int head = iSA[s]:
       iSA[s] = head + cnt[head]++:
       b2h[iSA[s]] = 1;
     for(int j = i; j < next[i]; j++) {</pre>
       int s = SA[i] - h;
       if(s < 0 || !b2h[iSA[s]]) continue;</pre>
       for(int k = iSA[s] + 1; !bh[k] && b2h[k]; k++)
         b2h[k] = 0:
     }
   }
   for(int i = 0; i < n; i++) {</pre>
     SA[iSA[i]] = i;
     bh[i] |= b2h[i];
   }
 }
 for(int i = 0: i < n: i++) iSA[SA[i]] = i:
void buildLCP(int n) {
 for(int i = 0, k = 0; i < n; i++) {
   if(iSA[i] == n - 1) { k = 0; continue; }
   int i = SA[iSA[i] + 1];
   while(i + k < n && j + k < n && s[i + k] == s[j +
       kl) ++k:
   lcp[iSA[i]] = k;
   if(k) k--;
 }
```

Suffix Automata

```
const int A = 26:
int len[N << 1], link[N << 1], sz, last;</pre>
int adj[N << 1][A];</pre>
void init() {
```

```
sz = last = 0;
 len[0] = 0; link[0] = -1;
 memset(adj, -1, sizeof adj);
 sz++:
void extend(int c) {
 int cur = sz++, p;
 len[cur] = len[last] + 1;
 for(p = last; p != -1 && adj[p][c] == -1; p =
     link[p])
   adj[p][c] = cur;
 last = cur:
 if(p == -1) return void(link[cur] = 0);
 int q = adj[p][c];
 if(len[q] == len[p] + 1)
   return void(link[cur] = q);
 int clone = sz++:
 len[clone] = len[p] + 1;
 link[clone] = link[q];
 for(int i = 0; i < A; i++)</pre>
   adj[clone][i] = adj[q][i];
 for(; p != -1 && adj[p][c] == q; p = link[p])
   adj[p][c] = clone;
 link[a] = link[cur] = clone:
```

4.7 Z-Algorithm

```
void Zfn(const char *s, int n, int *z) {
 z[0] = 0:
 for(int b = 0, i = 1; i < n; i++) {</pre>
   z[i] = max(min(z[i - b], z[b] + b - i), 0);
   while(s[i + z[i]] == s[z[i]]) ++z[i];
   if(i + z[i] > b + z[b]) b = i;
 }
```

4.8 Zhou Yuan

```
int minimumExpression(string s) { s = s + s;
 int i = 0, j = 1, k = 0, len = s.size();
 while(i + k < len && j + k < len) {</pre>
```

```
if(s[i + k] == s[j + k]) k++;
else if(s[i + k] < s[j + k]) {
    j = max(j + k + 1, i + 1); k = 0;
} else { i = max(i + k + 1, j + 1); k = 0; }
} return min(i, j);</pre>
```

5 Miscellaneous

5.1 Dotfiles

```
.vimrc
-----
filetype plugin indent on

sy on | colo morning

set cin nu ai so=10 ts=4 sw=4 sts=4 et noswapfile
set bs=indent,eol,start bg=light

nm <C-s> :up<CR> | im <C-s> <esc><C-s>
im jk <esc> | im kj <esc>

.bashrc
------
stty -ixon
```