Tentamen - Mekanik F del 2 (FFM520)

Tid och plats: Lördagen den 19 januari 2013 klockan

08.30-12.30 i M.

Lösningsskiss: Christian Forssén

Denna lösningsskiss innehåller inga kompletta lösningar utan enbart svar, ledtrådar, och möjliga lösningsstrategier.

Obligatorisk del

1. Härled följande:

- (a) Se kursboken. $\vec{L}_G = (\sum_i \rho_i^2 m_i) \, \omega \hat{k}$, där \hat{k} är riktningen på rotationsvektorn ut ur planet, och $\bar{I} = \sum_i \rho_i^2 m_i$ är kroppens tröghetsmoment m.a.p. en axel genom masscentrum.
- (b) Se kursboken. $\vec{v}_{\text{boll},A} = \vec{\omega} \times \vec{r} + \vec{v}_{\text{boll},B}$. Där \vec{r} är lägesvektorn från observatör B till bollen.
- 2. Rotationsvektorn är riktad i y-led: $\vec{\omega} = \omega \hat{j}$. Tröghetsmatrisens relevanta element är $I_{xy} = 0$, $I_{yy} = \frac{1}{3}m(l\sin\theta)^2$, $I_{yz} = \frac{1}{3}ml^2\sin\theta\cos\theta$. Det eftersökta rörelsemängdsmomentet blir

$$\vec{L}_O = \frac{1}{3}ml^2\omega\sin\theta\left(\sin\theta\hat{j} - \cos\theta\hat{k}\right).$$

Den eftersökta kinetiska energin blir

$$T = \frac{1}{2}\vec{\omega} \cdot \vec{L}_O = \frac{1}{3}m(l\omega \sin \theta)^2.$$

3. Maximal hastighet för det odämpade fallet är $v_{\rm max,0}=x_0\omega_n$. För de dämpade fallen får man ta derivatan dv/dt för att hitta maxhastigheten. Som en funktion av dämpningsfaktorn ζ blir denna

$$v_{\rm max} = x_0 \omega \left(\frac{1-\varepsilon}{1+\varepsilon} \right)^{1/2\varepsilon},$$

$$\mathrm{d\ddot{a}r}\ \varepsilon \equiv \sqrt{1 - 1/\zeta^2}.$$

Vi söker kvoten $R \equiv v_{\rm max,0}/v_{\rm max}$. För väldigt stark dämpning $\zeta \gg 1$ förenklas den eftersökta kvoten till $R \approx 2\zeta$. För kritisk dämpning $\zeta = 1$ får vi $R \approx (1+2\varepsilon)^{1/2\varepsilon}$.

4. Använd kraftekvationen (notera att inga krafter verkar i x-led och att masscentrum följaktligen rör sig rakt neråt i vertikal led). Detta ger ett samband mellan masscentrums hastighet och stångens vinkelhastighet. Ett uttryck för den sistnämnda fås enklast från arbete-energi-principen. Slutligen ges kolvens acceleration från systemets kinematiska villkor

$$\vec{a}_A = -\frac{3}{2}g\hat{e}_x.$$

Överbetygsuppgifter

5. Fundera speciellt på vilken dynamisk storhet som är konserverad. I stötögonblicket påverkas skivan av krafter som angriper i kontaktpunkten med det lutande planet. Vi antar att $\theta < \pi/2$ och finner att den eftersökta farten blir

 $v' = \frac{v}{3}(1 + 2\cos\theta),$

för vilket vi enkelt kontrollerar specialfallet då $\theta=0.$

Andelen kinetisk energi som försvinner i stötögonblicket är

$$n = \frac{I\omega^2/2 - I\omega'^2/2}{I\omega^2/2} = 1 - \left(\frac{v'}{v}\right)^2 = 1 - \left(\frac{1 + 2\cos\theta}{3}\right)^2,$$

där ${\cal I}$ är kroppens tröghetsmoment m.a.p. en axel genom kontaktpunkten.

- 6. (a) Använd cylindriska koordinater. Vi finner att $m(\ddot{r} r\dot{\varphi}^2) = 2\lambda_1 r$, $m\frac{d}{dt}(r^2\dot{\varphi}) = 0$ och $m\ddot{z} = -mg \lambda_1 a$; samt tvångsvillkoret $2r\dot{r} a\dot{z} = 0$.
 - (b) För detta specialfall finner vi $\lambda_1 = -mg/a$. Ur den första rörelsekvationen, med $\dot{\varphi} = \omega$ och $r = r_0$, finner vi den sökta vinkelhastigheten $\omega = \sqrt{2g/a}$.
 - (c) Den andra rörelseekvationen ger den konserverade storheten $r^2 \dot{\varphi} \equiv A$. Eftersom rörelsebanans radie nu kommer att variera något $(r = r_0 + \varepsilon)$ får vi $\dot{\varphi} = ah\omega/r^2$. Under antagandet att $\lambda_1 \approx -mg/a$ (konstant) ger den första rörelseekvationen slutligen

$$\ddot{\varepsilon} + \frac{8g}{a}\varepsilon = 0,$$

Examinator: C. Forssén

och den sökta vinkelhastigheten är alltså $\sqrt{8g/a}$.