

3D Modeling of Detached Metal Whiskers

Group # 8

ORR

MANAGER: Graham Duke

SCRIBE: Connor Massey

Meredith Osborne, Andrew Smith

List of Abbreviations

NASA	National Aeronautics and Space Administration
MDA	Missile Defense Agency
CCA	Circuit Card Assembly
CAD	Computer Aided Design
MCS	Monte Carlo Simulation
WP	Working Principle
PCB	Printed Circuit Board
UI	User Interface

Introduction / Problem Statement

- What are metal whiskers?
 - Microscopic, metal filaments (tin, zinc, cadmium)
 - Length: few microns to >10 mm
 - Thickness: submicron to tens of microns
 - Create bridges between exposed conductors
- Objective:
 - Risk-identifying simulation of detached whiskers bridging conductors
 - Visual identification
 - Statistical identification

Whisker Bridging

Design Specifications

- Rigid Cylindrical Model of Whisker
- Detached and Airborne Whiskers
- Physical and Statistical Simulation
 - Unity
 - MCS
- Simulate Environmental Effects on Detached Whiskers
 - Variety of forces
 - Gravitational acceleration

- Import User CCA Models
- Range of User Inputs
- Single Script

CCA Processing

- Overall plan for importing CCAs remained constant
- Altium used for test CCAs
- .mtl and .obj files created from Altium, inserted into Unity

CCA Designed in Altium

Material Identification

- Automated process (CDR manual)
- Code scans for input material
- Trigger tag applied to all surfaces with material name
 - If whisker contacts ≥ 2 triggers, bridge

Conductive Material Input Box

Distribution Selection

- Applied principals from CDR
- User selects desired distribution from dropdown menu
- Coded switch statement to change distribution function
 - Mu and sigma processed accordingly

```
private float GenerateLogNormalValue(float mu_log, float sigma_log)

float normalVal = RandomFromDistribution.RandomNormalDistribution(mu_log, sigma_log);
  float logNormalVal = Mathf.Exp(normalVal);
  return logNormalVal;

private float GenerateNormalValue(float mu_norm, float sigma_norm)

{
  return RandomFromDistribution.RandomNormalDistribution(mu_norm, sigma_norm);
}
```

Distribution Functions

Whisker Scaling

- Arbitrary unit system in Unity
- Whiskers must be in micrometers (μm)
- Internal code configures inputs to μm
- Proof:
 - Used Altium boards as reference
 - Test inputs to match board dimensions

3" x 3" Board for Whisker Comparison

Material Selection

- Applied principals from CDR
- User selects one of three preset materials from dropdown menu
- Code applies corresponding material properties to calculate whisker physics
- Calculate the following (per whisker)
 - Mass
 - Resistance
 - Friction Force

```
public Dictionary<MaterialType, MaterialProperties> materialProperties = new Dic
{ //density (kg/um^3), resistivity (ohm*um), coefficient of friction (unitless)
      { MaterialType.Tin, new MaterialProperties(7.3e-15f, 1.09e-1f, 0.32f) },
      { MaterialType.Zinc, new MaterialProperties(7.14e-15f, 5.9e-2f, 0.6f) },
      { MaterialType.Cadmium, new MaterialProperties(8.65e-15f, 7.0e-2f, 0.5f) }
};
```

Material Properties Dictionary

Drop Location

- User inputs X, Y, and Z coordinates to specify a drop location for whiskers
- Spawn area deviates from origin (0,0,0) in positive and negative direction

Drop-Location Coordinate Inputs

External Forces

- Three external forces implemented
 - Gravitational acceleration
 - Select between Earth, Moon, or Mars
 - Mechanical shock
 - Half-sine pulse
 - Apply uniaxially (X, Y, Z)
 - Constant vibration
 - Full-sine pulse
 - Apply uniaxially (X, Y, Z)
- Shock and vibration repeated in each iteration

Gravity User Interface

Shock User Interface

Vibration User Interface

Simulation Results

- Heat map of conductor bridging frequency
- Save simulation results to store length, diameter, resistance of:
 - All generated whiskers per iteration
 - All bridged whiskers per iteration

• Probability calculations (risk assessment)

Individual Probability =
$$\frac{\# of \ bridged \ whiskers}{\# of \ whiskers \ generated} \cdot 100$$
 (1)

Overall Probability =
$$\frac{\# of \ bridged \ iterations}{\# of \ iterations \ ran} \cdot 100$$
 (2)

- Four histograms generated
 - Bridging frequency for length, diameter, length:diameter ratio, and resistance

Simulation Accessibility

<u>GitHub</u>

- Version control and software management
- Ease of access to repositories of any size
- Repositories can be cloned to any device through the GitHub Desktop app or downloaded through the website
- Instructions are given in the User Manual

Unity

- Simulation runs entirely off the Unity Game Engine
 - Users must download the Unity Hub and the Unity Editor to begin
- Repositories cloned from GitHub can be added to the Unity Hub, allowing easy access to the simulation
- Unity Editor used to develop and host the simulation

Importing Board Models

User Interface

Running the Simulation

External Force Application & Heat Map

Results Analysis

ALT + F8 -> GenerateProb			ALT + F8 -> GenerateFreq			
Overall Probability			Length	Diameter	L:D Ratio	Resistance
	100.00%		4216.771	121.2332	34.782312	0.0398175
Indiv	Individual Probability		4212.525	165.9083	25.390683	0.0212394
Iter#	Probability		4556.262	206.9365	22.017682	0.0147663
1	10.67%		3908.231	82.9957	47.08956	0.0787419
2	5.33%		4792.311	111.1245	43.125602	0.0538595
3	14.67%		5363.687	197.8514	27.109674	0.0190161
			4130.755	147.3153	28.040231	0.0264162
			5202.961	139.1005	37.40433	0.037319
			3926.428	156.9299	25.020267	0.022127
			4609.084	128.3004	35.924159	0.0388593
			4003.366	95.61187	41.871015	0.0607769
			5043.786	122.6006	41.139978	0.0465702
			4538.517	136.732	33.192793	0.0336907
			4315.837	156.2732	27.617256	0.0245263
			4755.919	179.2377	26.534144	0.0205453
			4517.813	215.2865	20.98512	0.0135279
			4212.595	176.2689	23.898685	0.0188163
			5124.408	178.9008	28.643852	0.0222206
			4618.727	96.53155	47.846813	0.0687892
			5016.429	191.2884	26.224429	0.0190263
			4847.679	200.7805	24.144172	0.0166889
			4587.883	265.7054	17.266804	0.0090188
			3774.643	123.0862	30.666663	0.0345775

Macro Generated Tables and Histograms

Varied CCA Designs – Board Scaling

- Boards must be scaled to match whisker scale
- Unity uses arbitrary dimensions
- Grid tool implemented
 - 1 cm x 1 cm units
 - Visual reference for whiskers size comparison
 - Toggle on/off
- Unit system independent

Blank 5 cm x 5 cm Board

Blank 5 in x 5 in Board

Varied CCA Designs – Conductive Material Input

Exposed Conductive Materials

Simulation Material Identification

Distribution Validation

Normal Distribution Inputs

Length Normal Distribution

Lognormal Distribution Inputs

Length Lognormal Distribution

Numerical Input Handling

Improper Whisker Input Results

- Performance issues
 - Close spawning
 - Rapid collisions
 - Slowed response
- Requires force shutdown

Error Handling for Improper Inputs

- If-else Statements
 - Prevent actions
 - Error message
- Ensures user does not have to exit scene

External Force Effects – Perpendicular Force

External Force Effects – Parallel Force

Bridging Registration

Bridging Contact

Heat Map Test (10 Iterations, 2x Speed)

Results Assessment

Test Initial Inputs

Results Assessment – Small Whisker Storm (Qty: 50)

ALT + F8 -> GenerateProb		
Overall Probability		
66.67%		
Individual Probability		
Iter#	Probability	
1	2.00%	
2	4.00%	
3	0.00%	

Small Quantity Bridging Probability

Small Quantity Bridging Resistance Frequency

Results Assessment – Large Whisker Storm (Qty: 500)

ALT + F8 -> GenerateProb		
Overall Probability		
100.00%		
Individual Probability		
Iter#	Probability	
1	1.80%	
2	1.00%	
3	1.00%	

Large Quantity Bridging Probability

Large Quantity Bridging Resistance Frequency

Further Development

Simulation Errors & Suggested Improvements

Ideas for Further Development

Source of Error	Proposed Solutions
Exposed Traces	 Short Term – Remove traces (Un-route Tool) Long Term – Research different processing and/or collider process to see if possible
Component "Grouping"	Research working with different file types
Uniform and Constant Cross Section	 Research different modeling capabilities in Unity to see if solutions possible Potential – Poly Shape tool
Whisker Resistance	 Research different modeling capabilities in Unity to see if solutions possible Potential – Vectors

[3,4,5]

Further Development

Simulation Errors & Suggested Improvements

Ideas for Further Development

Source of Error	Proposed Solutions
Shock Accuracy	 Research different modeling capabilities in Unity to see if solutions possible Potential – Using time differential (2D version)
File Type Issuesobj	 Short Term – Replace component for one of similar makeup Long Term – Research different processing and/or file types Potential - Flipping Normals
Material Names	 Use different software Research different post processing for names to see if possible
Rigidity	Research different modeling capabilities to see if solutions possible

Conclusion

Design Specifications Met

- CCA importing & interaction
- Normal and lognormal dimensional distribution
- Drop location of airborne whiskers
- External forces through sine waves
- Physical results heatmap
- Statistical results probability & frequency histograms
- Single script C#
 - \approx 1500 lines of code

Continued Development

- Team 1 suggestions
 - Explore file types
 - Improve material ID
 - Realistic whiskers
- Team 2 improvements
 - Physical boundaries
 - Node & whisker ID
 - Enhanced data tracking

Gantt Chart

Construct Altium Test CCAs Import CCA Geometry into Program **Define Conductive Points** Add Inputs for Whisker Generation Add Inputs for Force Generation Add Outputs for Probabilities Add Outputs for Frequencies Test & Iterate Simulation Complete Method of Operation Development of ORR Finalize all ORR Deliverables Finalize & Upload Simulation

7/25/2024

References

- 1. Panashchenko, L. (2012) The Art of Metal Whisker Appreciation: A Practical Guide for Electronics Professionals, NASA. https://nepp.nasa.gov/whisker/reference/tech_papers/2012-Panaschenko-IPC-Art-of-Metal-Whisker-Appreciation.pdf (accessed Feb. 1 2024).
- 2. "Tablecloth whip-off Trick," Steve Spangler, https://stevespangler.com/experiments/tableclothsciencetrick/#:~:text=Plain%20and%20simple%2C%20Tablecloth,the%20object%20to%20move%20it. (accessed Jul. 23, 2024).
- P.M. Games, "Probulder Unity | drawing 3D shapes with polyshape tool," Youtube, https://www.youtube.com/watch?v=lr9cU0ejY8U (accessed Jul. 23, 2024).
- 4. "Modifying existing routes," Altium Documentation, https:// www.altium.com/documentation/altium-designer/modifying-existing-routes-pcb#routing-awaremove-component (accessed Jul. 22, 2024).
- 5. Wintersbane, Finding vector3 position of GameObject Questions & Answers Unity Discussions, https://discussions.unity.com/t/finding-vector3-position-of-gameobject/148031 (accessed Jul. 24, 2024).

References

- Ekta-Mehta-D, "Electric shock wave effect 2D Questions & Answers Unity Discussions," Unity Discussions, https://discussions.unity.com/t/ electric-shock-wave-effect-2d/71778 (accessed Jul. 24, 2024).
- "Why do my object files look weird when imported to unity?," Stack Overflow, https://stackoverflow.com/questions/72842393/why-do-my-object-files-look-weird-whenimported-to-unity (accessed Jul. 23, 2024).

Questions?

A special thanks to our advisors...

Dr. Donna Havrisik

Jay Brusse

Bill Arnold

Tim Mondy

Dr. George Flowers

Jake Botello