THEORY AND MODELS OF LAMBDA CALCULUS: UNTYPED AND TYPED

Session 2: Modeling by Enumeration Operators

Dana S. Scott

University Professor Emeritus Carnegie Mellon University

Jeremy G. Siek

Associate Professor of Computer Science Indiana University, Bloomington

Basics of Topology

Definition. A **topological space** is a set (space) \mathcal{S} of **points** together with a notion of "closeness" or "convergence".

NOTE: There at two popular ways of presenting topological structures: (1) specifying the collection of open subsets, or (2) providing a neighborhood base.

Axioms for Opens: Opens for \mathcal{G} consist of a given collection \mathcal{O} of subsets of the space closed under arbitrary unions and finite intersections.

Axioms for Neighborhoods: A base for $\mathscr S$ consists of a collection $\mathscr N$ of subsets (neighborhoods) such that every finite intersection from $\mathscr N$ is the union of the neighborhoods it contains.

Arbitrary opens of $\mathscr S$ are then the unions of sets of neighborhoods.

Convergence and Continuity

Convergence: A sequence of points of a space \mathscr{S} converges to a *limit* iff every neighborhood of the limit contains all but a *finite number* of points of the sequence.

Continuity: A function $\mathbf{F}: \mathcal{S} \longrightarrow \mathcal{J}$ between topological spaces is **continuous** iff for every point \mathbf{x} of \mathcal{S} and every \mathcal{J} -neighborhood \mathbf{U} of $\mathbf{F}(\mathbf{x})$, there is an \mathcal{S} -neighborhood \mathbf{V} of \mathbf{x} such that $\mathbf{F}(\mathbf{y})$ is in \mathbf{U} for all \mathbf{y} in \mathbf{V} .

Inverse Images: Note that continuous functions are **exactly** those where the inverse image of every open set is open.

Euclidean Spaces: In 3-D for example, use **open balls** as forming a neighborhood base. Connect this idea with the **distance metric**. **How many** balls do we actually need?

Those Es and δs : Recall from *Calculus* the $\epsilon - \delta$ definition of continuity and check that it agrees with our definitions here.

Separation Axioms in Topology

Note: "T" stands for *Trennung*, a German word for "separation".

- (T0) Kolmogorov space
- (T1) Fréchet space
- (T2) Hausdorff space
- (T2½) Urysohn space
- (T3) Regular Hausdorff space
- (T3½) Tychonoff space
- (T4) Normal Hausdorff space
- (T5) Completely normal Hausdorff space
- (T6) Perfectly normal Hausdorff space

A *T0-space* is one where each point is *uniquely determined* by its neighborhoods.

A **T1-space** is one where, for every pair of distinct points, each has a neighborhood **not containing** the other.

A *T2-space* is one where two distinct points always have *disjoint* neighborhoods.

Note: The points of a **T0-space** are **partially ordered** by by a **specialization order**, where $x \le y$ iff every neighborhood of x is a neighborhood of y.

T0-spaces that are not T1-spaces are exactly those spaces where the specialization order is a **nontrivial** partial ordering.

(Such spaces naturally occur in Computer Science, specifically in Denotational Semantics.)

The Powerset of the Integers

The powerset $\mathcal{P}(\mathbb{N}) = \{ x \mid x \subseteq \mathbb{N} \}$ becomes a T_0 -topological space with the sets of the form $\{ x \subseteq \mathbb{N} \mid E \subseteq X \}$ as a *neighborhood base*, where E is taken as a *finite* set.

- **Exercise 1:** What are the **open** subsets of $\mathcal{P}(\mathbb{N})$ in this topology?
- **Exercise 2:** Show that the *continuous* functions $F:\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ are those where for all $X \in \mathcal{P}(\mathbb{N})$ and all finite $E \in \mathcal{P}(\mathbb{N})$ we have $E \subseteq F(X)$ iff there is a finite $D \subseteq X$ with $E \subseteq F(D)$.
 - Exercise 3: Prove that all continuous functions are *monotone* for the relationship of **set** inclusion.
 - Exercise 4: Find a monotone function that is *not* continuous.
 - Exercise 5: Which of the usual **Boolean operations** are continuous?

Enumeration Operators

```
Definitions. (1) Pairing: (n,m) = 2^n(2m+1)-1.

(2) Sequence numbers: \langle \rangle = 0 and \langle n_0, n_1, \ldots, n_{k-1}, n_k \rangle = (\langle n_0, n_1, \ldots, n_{k-1} \rangle, n_k)+1.

(3) Sets: set(0) = \emptyset and set((n,m)+1) = set(n) \cup \{m\}.

(4) Kleene star: x* = \{n \mid set(n) \subseteq x \}, for sets x \subseteq \mathbb{N}.
```

Note: X* consists of all the sequence numbers representing all the finite subsets of the set X.

Definition. An enumeration operator $F:\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ is a mapping determined by a given subset $F \subseteq \mathbb{N}$ by the formula:

$$F(X) = \{ m \mid \exists n \in X*.(n,m) \in F \}$$

Exercise: Show that the enumeration operators on $\mathcal{P}(\mathbb{N})$ are **exactly** the continuous functions.

The \(\lambda\)-Calculus Model

```
Application: F(X) = \{ m \mid \exists n \in X*.(n,m) \in F \}
Abstraction: \lambda X.[..X..] = \{ (n,m) \mid m \in [...set(n)..] \}, where X \mapsto [..X..] is continuous.
```

Exercise 1: Application is a continuous function of *two* variables.

Exercise 2: If F(X) is continuous, then $\lambda X \cdot F(X)$ is the *largest* set $F(X) \cdot F(X) \cdot F$

Note: Generally we only have $F \subseteq \lambda X \cdot F(X)$.

Exercise 3: If the function F(X,Y) is continuous, then the abstraction term $\lambda X \cdot F(X,Y)$ is continuous in the *other variable*.

Some Historical Background

This model clearly satisfies all the axioms but the last, and it could easily have been defined in 1957!!

John R. Myhill: Born: 11 August 1923, Birmingham, UK **Died:** 15 February 1987, Buffalo, NY

John Shepherdson: Born: 7 June 1926, Huddersfield, UK **Died:** 8 January 2015, Bristol, UK

Hartley Rogers, Jr.: Born: 6 July, 1926, Buffalo, NY Died: 17 July, 2015, Waltham, MA

- John Myhill and John C. Shepherdson, *Effective operations on partial recursive functions*, **Zeitschrift für Mathematische Logik und Grundlagen der Mathematik**, vol. 1 (1955), pp. 310-317.
- Richard M. Friedberg and Hartley Rogers Jr., *Reducibility and completeness for sets of integers*, **Mathematical Logic Quarterly**, vol. 5 (1959), pp. 117-125. Some earlier results are presented in an abstract in **The Journal of Symbolic Logic**, vol. 22 (1957), p. 107.
- Hartley Rogers, Jr., **Theory of Recursive Functions and Effective Computability**, McGraw-Hill, 1967, xix + 482 pp.

Some λ -Properties & Computability

Theorem. For all sets of integers F and G we have:

$$\lambda X.F(X) \subseteq \lambda X.G(X)$$
 iff $\forall X.F(X) \subseteq G(X)$,
 $\lambda X.(F(X) \cap G(X)) = \lambda X.F(X) \cap \lambda X.G(X)$,
and
 $\lambda X.(F(X) \cup G(X)) = \lambda X.F(X) \cup \lambda X.G(X)$.

Definition. An enumeration operator $F(X_0, X_1, ..., X_{n-1})$ is *computable* iff in the model this set is **RE**: $F = \lambda X_0 \lambda X_1 ... \lambda X_{n-1} . F(X_0, X_1, ..., X_{n-1}).$

Fixed Points and Recursion

Three Basic Theorems.

- All pure λ -terms define *computable* operators.
- **Y**(F) is the *least fixed point* of the enumeration operator F.
- The least fixed point of a *computable* operator is computable.

A Principal Theorem. These computable operators:

```
\label{eq:Succ} \text{Succ}(X) = \{n+1 \mid n \in X \} \text{,} \text{Pred}(X) = \{n \mid n+1 \in X \} \text{, and} \text{Test}(Z)(X)(Y) = \{n \in X \mid 0 \in Z \} \cup \{m \in Y \mid \exists \ k.k+1 \in Z \} \text{,} together with $\lambda$-calculus, suffice for defining all RE sets.
```

Hint of Proof: Show first that all primitive recursive functions have the form $P(\{n\})$ with P λ -definable.

Gödel Numbering RE Sets

Theorem. There is a computable $V = \lambda X \cdot V(X)$ where

- (i) $V(\{0\}) = \lambda Y.\lambda X.Y = K$,
- (ii) $V(\{1\}) = \lambda Z.\lambda Y.\lambda X.Z(X)(Y(X)) = S$,
- (iii) $V(\{2\}) = Test$,
- (iv) $V({3}) = Succ,$
- (v) $V(\{4\}) = Pred$, and
- (vi) $V({5 + (n,m)}) = V({n})(V({m}))$.

Theorem. Every *recursively enumerable set* is of the form $V(\{n\})$.

NOTE: The operator V is the analogue of the Universal Turing Machine.

The Category of Closure Operators

Definition. A set $C = \lambda X \cdot C(X)$ represents a *closure operator* iff for all $X \subseteq \mathbb{N}$ we have $X \subseteq C(X) = C(C(X))$.

Note. The set of *fixed points* of a closure operator form a *lattice* and uniquely determine the operator. They give examples (up to isomorphism) of all *countably based algebraic lattices*.

Theorem. We have *function spaces* and thus a *category* for closure operators via these definitions:

$$F: C \rightarrow D \text{ iff } F = D \circ F \circ C$$
 and
$$(C \rightarrow D) = \lambda F \cdot D \circ F \circ C, \text{ where } F \circ G = \lambda X \cdot F(G(X)) \cdot$$

Products of Closures

Definition. Pairing functions for sets in $\mathcal{P}(\mathbb{N})$ can be defined by these enumeration operators: Pair(X)(Y)={2n | n ∈ X} \cup {2m+1 | m ∈ Y}

Fst(Z)={n | 2n ∈ Z} and Snd(Z)={m | 2m+1 ∈ Z}.

Theorem. In the category of closure operators, **products** of closures can be defined as: $(C \times D) = \lambda Z \cdot Pair(C(Fst(Z)))(D(Snd(Z))).$

Exercise: Show that $I = (I \times I)$. Are there **other** such closures?

Note. The closure operators as a *cartesian closed category* is equivalent to the category of *countably based algebraic lattices*.

A Universal Closure Operator

Theorem. Every enumeration operator F *generates* a closure operator C with range $\{ x \subseteq \mathbb{N} \mid F(X) \subseteq X \}$, where we can define

$$C(X) = Y(\lambda Y.(X \cup F(Y))).$$

Hint. The set $\{ x \subseteq \mathbb{N} \mid F(x) \subseteq X \}$ is closed under *arbitrary intersections*, and we want C(X) to be defined as *the least* Y in that set with $X \subseteq Y$. Thus we can make the theorem into an *operator* by the definition:

Clos =
$$\lambda F.\lambda X.Y(\lambda Y.(X \cup F(Y)))$$
.

Using Fixed Points of Closures

Definition. In the category of closure operators, define:

$$D = Y(\lambda D.Clos(D \rightarrow I)).$$

Theorem. Because $D = D \rightarrow I$ and $I = I \times I$, we have

 $D \cong D \times D$ and $D \cong D \rightarrow D$,

where we invoke the idea of *isomorphism* in the cartesian closed category of closure operators.

Conclusion: The range of D can be made into a model of all the three λ -calculus axioms along with a surjective pairing.

An Easier Model?

Definition. In the category of closure operators, define:

$$D = Y(\lambda D.Clos(D \rightarrow D)).$$

Exercise: Show that $D(\emptyset) = \emptyset$ and $D(\mathbb{N}) = \mathbb{N}$.

Conclusion: Because we have D = (D → D), and because the range of D is *non-trivial*, the range of D is very directly (without isomorphisms) a model of *all* the three λ-calculus axioms.