Is Gauss quadrature better than Clenshaw-Curtis?

For $f \in \mathbb{C}[-1,1]$, define

$$I = \int_{-1}^{1} f(x) dx$$
, $I_n = \sum_{k=0}^{n} w_k f(x_k)$

where $\{x_k\}$ are nodes in [-1,1] and $\{w_k\}$ are weights such that $I=I_n$ if f is a polynomial of degree $\leq n$.

Newton-Cotes: $x_k = -1 + 2k/n$ diverges as $n \to \infty$ (Runge phenomenon)

Clenshaw-Curtis: $x_k = \cos(k \pi / n)$ converges as $n \to \infty$

Gauss: $x_k = k$ th root of Legendre poly P_{n+1} converges as $n \to \infty$

C-C is easily implemented via FFT (O($n \log n$) flops). Gauss involves an eigenvalue problem (O(n^2) flops).

We think of Gauss as "twice as good" as C-C:

THEOREM

C-C: $|I - I_n| \le 4 E_n^*$

Gauss: $|I - I_n| \le 4 E_{2n+1}^*$

best approximation errors for polynomials of degrees n, 2n+1

Yet in experiments, this factor of 2 often doesn't appear.

In fact, Gauss beats C-C only for functions analytic in a big neighborhood of [-1,1].

And even then rarely by a full factor of 2.

The Gauss ≈ C-C phenomenon was noted by O'Hara and Smith (*Computer J.* 1968), but no theorems were proved.

Here's a theorem. ("Variation" involves a certain Chebyshev-weighted total variation, and $C = 64/15\pi$.)

THEOREM. Let $f^{(k)}$ have variation $V < \infty$. Then for $n \ge k/2$, the Gauss quadrature error satisfies

$$|I - I_n| \le C k^{-1} (2n + 1 - k)^{-k}$$
. (*)

THEOREM. For suff. large *n*, the C-C error satisfies (*) too!

Proofs: based on Chebyshev coefficients and aliasing.

But really I came here to show you some pictures.

Suppose f is analytic on [-1,1]. Let Γ be a contour in the region of analyticity of f enclosing [-1,1].

The following identity was used e.g. by Takahasi and Mori ≈1970 but more or less goes back to Gauss. (See Gautschi's wonderful 1981 survey of G. quad. formulas.)

THEOREM. For any interpolatory quadrature formula with nodes $\{x_k\}$ and weights $\{w_k\}$,

$$I - I_n = (2\pi i)^{-1} \int_{\Gamma} f(z) \left[\log((z+1)/(z-1)) - r_n(z) \right]$$

where $r_n(z)$ is the type (n, n+1) rational function with poles $\{x_k\}$ and corresponding residues $\{w_k\}$.

Proof: Cauchy integral formula.

So convergence of a quadrature formula depends on accuracy of rational approximations: $\log((z+1)/(z-1)) \approx r_n(z)$.

Contour lines $|\log((z+1)/(z-1)) - r_n(z)| = 10^0, 10^{-1}, 10^{-2}, ...$ (from inside out)

$$n = 32$$

For Gauss quadrature, there are 2*n*+3 interpolation points, all at ∞

Thus *r*_n is a Padé approximant.

(This is how Gauss himself derived Gauss quad.!)

Scallops reveal interpolation points — n–2 of them (as well as n+3 at ∞)

Contour lines $|\log((z+1)/(z-1)) - r_n(z)| = 10^0, 10^{-1}, 10^{-2}, \dots$

Interpolation pts — zeros of $\log((z+1)/(z-1)) - r_n(z)$

Weideman has shown that these ovals are close to ellipses of semiaxis lengths 1 and 3 $\log n / n$.

Interpolation pts — zeros of $\log((z+1)/(z-1)) - r_n(z)$

Weideman has shown that these ovals are close to ellipses of semiaxis lengths 1 and 3 $\log n / n$.

These observations suggest a prediction:

C-C is as good as Gauss when the region of analyticity of f is smaller than the magic oval.

This is just what we observe. We finish with an experiment to illustrate. Same experiment as before, carried to higher n. As n increases, the oval shrinks and cuts across the pole of f.

