ELETROMAGNETISMO

Lista: Análise vetorial

1 - Dados os vetores $\vec{A}=4\hat{x}+2\hat{y}+\hat{z}$, $\vec{B}=\hat{y}+\hat{z}$

a - Ache os vetores unitários segundo suas direções;

b - Calcule a componente de cada vetor na direção do outro;

c - Ache o produto escalar dos mesmos;

Os dois vetores determinam uma superfície plana na região do campo vetorial $\vec{F}=\hat{x}+2\hat{y}+3\hat{z}$.

d - Determine a área vetorial correspondente à superfície;

e - Ache o vetor unitário para tal área;

f - Calcule o fluxo de \vec{F} através da superfície;

Em cada caso realce a relação vetorial empregada na solução.

Imagine agora que o campo vetorial \vec{F} assuma as configurações colocadas nos itens seguintes. Em cada caso determine o fluxo de \vec{F} através da área definida pelos limites $\left(2 \le x \le 4,\ 0 \le y \le 3\ e\ 2 \le z \le 3\right)$, sendo esta perpendicular ao plano "xz".

$$\mathbf{g} \cdot \vec{\mathbf{F}} = 1 \cdot \hat{\mathbf{x}}$$

$$\mathbf{h} \cdot \vec{\mathbf{F}} = \mathbf{x} \cdot \hat{\mathbf{x}}$$

2 - Determine $\vec{A} \cdot \vec{B}$ se:

a -
$$\vec{A} = 0.6\hat{x} + 0.2\hat{y} + \hat{z}$$
, $\vec{B} = 1.6\hat{x}$

3 - Ache o ângulo entre os vetores \vec{A} e \vec{B} através do produto escalar:

$$\vec{A} = -2\hat{x} + \hat{y} \quad , \quad \vec{B} = 1,5\hat{y} - 0,5\hat{z}$$

4 - Determine $\vec{A} \times \vec{B}$

$$\vec{A} = 3\hat{x} - 2\hat{y} + 2\hat{z}$$
 , $\vec{B} = -6\hat{x} + 4\hat{y} - 4\hat{z}$

5 - Ache o ângulo entre os vetores, a partir do produto vetorial.

$$\vec{A} = \hat{x} - \hat{y}$$
 , $\vec{B} = -\hat{x} + \hat{y}$

Obs: Os vetores unitários são: $\,\hat{x}=\hat{a}_{\,x}\,\,,\quad \, \hat{y}=\hat{a}_{\,y}\,\,,\quad \, \hat{z}=\hat{a}_{\,z}$