Qualifying Exam Problems

Contents

misc 1

misc

- F08.7. Let u be a harmonic function on \mathbb{R}^2 that does not take zero value (i.e $u(x) \neq 0 \ \forall x \in \mathbb{R}^2$). Show that u is constant.
- S09.8. Let f(z) be holomorphic on a domain in the complex plane. If $|f(z)|^2$ is harmonic in D. What can you conclude on f? (Show your work.)
- F10.7. (i) State the Mean Value Theorem for analytic functions and use the Cauchy integral formula to prove it.
 - (ii) Prove that if f = u + iv is an analytic function from an open subset U of \mathbb{C} then the real and imaginary parts u and v of f are harmonic, i.e, $\Delta u = \Delta v = 0$.
 - (iii) Let U be an open subset of \mathbb{R}^2 , and $u:U\to\mathbb{R}$ a harmonic function. Prove that if there is $p_0\in U$ such that $u(p_0)=\inf_{x\in U}u(x)$, then u is a constant.
- F12.9. Let u be a real-valued harmonic function in $\mathbb{C} \setminus \{0\}$. Show that then

$$u(z) = c \log |z| + \operatorname{Re}(f(z))$$

for some real constant c and a holomorphic function f on $\mathbb{C} \setminus \{0\}$.

F13.5. Prove that the function

$$u(x, y) = y \cos y \sinh x + x \sin y \cosh x$$

is harmonic in \mathbb{R}^2 and find its harmonic conjugate.

- S14.5. Let f_1, \ldots, f_n be holomorphic in a domain D in \mathbb{C} and $p \in (0, \infty)$. Prove
 - (a) $\sum_{i=1}^{n} |f_i(z)|^p$ is subharmonic in D.
 - (b) If there is a $z_0 \in D$ such that $\sum_{j=1}^n |f_j(z_0)|^p \ge \sum_{j=1}^n |f_j(z)|^p$ for all $z \in D$, then f_j is constant for $j = 1, 2, \ldots, n$.
- F14.8. Let u(z) be harmonic in $D =: D(0,1) \setminus \{0\}$ such that

$$\lim_{z \to 0} \frac{u(z)}{\log|z|} = 0$$

Prove that u can be extended to be harmonic in D(0,1).

S15.7. TRUE or FALSE: There exists a bounded harmonic function on the upper half plane \mathbb{H} that cannot be extended to any larger domain. Explain your answer.

F15.5. Find a real valued function u(z) that is continuous in the closed disc $\overline{D(0,R)}$ (that is, closed disc centered at 0 of radius R>0) and harmonic in D(0,R), and satisfies

$$u(Re^{i\theta}) = \frac{1}{2}(1 + \cos^3 \theta), \ \theta \in [0, 2\pi)$$

F16.8. Let u be a real-valued harmonic function in $\overline{D(0,1)} \setminus \{0\}$ such that

$$\lim_{z \to 0} \frac{u(z)}{\log z} = 0.$$

Show that there is a harmonic function U on D(0,1) such that u(z) = U(z) for all $z \in D(0,1) \setminus \{0\}$.

- F17.1. Let u be a real-valued continuous function on $\mathbb C$ such that $e^{u(z)}$ is harmonic in $\mathbb C$. Then u is a constant.
- S19.2. Let $u: \mathbb{C} \to \mathbb{R}$ be a nonconstant real harmonic function. Show that there exists a sequence of points $\{z_n\} \in \mathbb{C}$ such that $\lim_{n \to \infty} u(z_n) = -\infty$.
- S19.8. Let u be harmonic in $D(0,1) \setminus \{0\}$ satisfying

$$\lim_{z \to 0} \frac{u(z)}{\ln|z|} = 0$$

Prove that u is harmonic on D(0,1).