

MONOLITHIC FABRICATION OF FLUIDIC STRUCTURES

CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of Provisional Application No.

5 60/115,854, filed January 13, 1998, and entitled "Monolithic Nanofluid Sieving
Structures for DNA Manipulation", the disclosure of which is hereby incorporated
herein by reference.

BACKGROUND OF THE INVENTION

The present invention was made with Government support under Grant No.

10 , awarded by . The Government has certain rights in the invention.

The present invention relates, in general, to methods of fabricating fluidic devices and to structures produced by such methods, and more particularly to processes including the removal of sacrificial layers for fabricating multi-level fluidic devices integrally with other devices on a substrate for interconnecting such devices .

15 The emerging field of fluidics has the potential to become one of the most important areas of new research and applications. Advances in genomics,

chemistry, medical implant technology, drug discovery, and numerous other fields virtually guarantee that fluidics will have an impact that could rival the electronics revolution.

Many fluidic applications have already been developed. Flow cytometers, cell sorters, pumps, fluid switches, capillary electrophoresis systems, filters, and other structures have been developed using a variety of materials and techniques in a wide range of applications, including protein separation, electrophoresis, mass spectrometry, and others, have been developed. One of the goals of workers in this field is to develop a "total analysis system" wherein various structures are integrally formed on a single substrate, and for this purpose a variety of techniques, ranging from silicon micromachining to injection molding of plastics, have been developed. All of these prior techniques, however, have in common that fluid capillaries are formed by bonding or lamination of a grooved surface to a cap layer, and in cases where multiple layers are present, these result from bonding together multiple substrates. Unfortunately, the drive to develop complex fluidic devices in the environment of a total analysis system has been hindered by the inherent difficulties

with lamination-based fabrication techniques. As more devices are integrated onto a single substrate, the connection of the devices requires that connecting fluidic tubes cross over each other. With bonding technology, two capillaries cannot cross without lamination of a second wafer to the basic substrate. Further, the second wafer must 5 be thick, resulting in large aspect ratio vertical interconnects, and ultimately resulting in a limit on miniaturization. If such devices were to reach mass production, alignment and bonding technology to handle the complex assembly would have to be developed, and whatever technology is employed would in all likelihood require costly redevelopment with each generation of smaller more complex fluidic devices.

10 One major application of fluidic devices is in the fabrication of artificial gel media, which has been a topic of interest for some years for scientific and practical reasons. Artificial gels differ from conventional polyacrylamide or agarose gels currently used for DNA separation in that the sieving matrix in an artificial gel can be defined explicitly using nanofabrication, rather than relying on the random 15 arrangement of long-chain polymers in the conventional gel. As such, the dimensions and topology of the artificial gel sieving matrix can be controlled and measured

precisely. This makes it possible to test theories of DNA electrophoresis with fewer free variables. Artificial gels also have advantages over conventional gels in that conventional gels are expensive and require skilled operators to prepare them immediately before use, whereas artificial gels can be integrated with mass-produced

5 microfabricated chemical processing chips and shipped in a ready-to-use form.

However, previous methods for fabricating artificial gels involved bonding a top layer, either glass or a pliable elastomeric material, to a silicon die with columnar obstacles micromachined into the surface. Such methods have been successful for structures with fluid gap heights as small as 100nm, but it is difficult to establish a

10 uniform and predictable fluid gap between a silicon floor and a glass or elastomeric top layer. An elastomer layer, and in many cases even a glass layer, can flow between the retarding obstacles in the fluid gap, either closing the gap entirely or creating large variations in the gap height. Both methods are sensitive to particulate contamination to the extent that a single particle can render an entire device

15 unusable.

SUMMARY OF THE INVENTION

It is, therefore, an object of the invention to provide a method for fabricating multiple fluidic devices as a monolithic unit by the use of a sacrificial layer removal process wherein fluidic devices with one or more layers can be fabricated by successive application and patterned removal of thin films. Some of these films are permanent, and some are sacrificial; that is, they will be removed before the fabrication is complete. When the sacrificial layers are removed, the empty spaces left behind create a "working gap" for the fluidic device which can be virtually any shape, and which can be configured to perform a number of different functions.

Another object of the present invention is to produce nano-fabricated flow channels having interior diameters on the order of 10 nm. Such nanometer-scale dimensions are difficult to attain with conventional micro-fluidic fabrication techniques, but the present invention facilitates fabrication at this scale while at the same time providing integration of such flow channels with other devices. These devices can provide fundamental insights into the flow of fluids in nano-constrictions and are useful in studying the behavior of biological fluids with molecular components similar in size to the cross-section of the channel. The process of the

present invention permits the dimensions of the flow channels to be adjusted, for example to manipulate and analyze molecules, viruses, or cells, and the process has the potential of producing structures which will reach currently unexplored areas of physics and biology.

5 Another object of the invention is to provide a multi-level fluid channels fabricated on a single substrate with fluid overpasses and selective vertical interconnects between levels. Multi-level fabrication is a requirement for any complex fluid circuit, where fluid channels interconnect multiple devices on a single substrate, for without multiple levels, interconnection of large numbers of devices is 10 either impossible or requires tortuous interconnect pathways. The available level of sophistication of microfluidic devices is tremendously improved by the capabilities provided by the present invention.

Briefly, the present invention is directed to procedures and techniques for 15 overcoming the inherent difficulties and limitations of prior art laminar bonding approaches to fluidics fabrication and integration of components. In one aspect of the invention, these difficulties are avoided in the fabrication of a monolithic fluidic

device by utilizing a shaped sacrificial layer which is sandwiched between permanent floor and ceiling layers, with the shape of the sacrificial layer defining a working gap.

When the sacrificial layer is removed, the working gap becomes a fluid channel having the desired configuration. This approach eliminates bonding steps and allows

5 a precise definition of the height, width and shape of interior working spaces, or fluid channels, in the structure of a fluidic device. The sacrificial layer is formed on a substrate, is shaped by a suitable lithographic process, for example, and is covered by a ceiling layer. Thereafter, the sacrificial layer is removed with a wet chemical etch, leaving behind empty spaces between the floor and ceiling layers which form working 10 gaps which may be used as flow channels and chambers for the fluidic device. In such a device, the vertical dimension, or height, of a working gap is determined by the thickness of the sacrificial layer film, which is made with precise chemical vapor deposition (CVD) techniques, and accordingly, this dimension can be very small.

In order to provide access to the sacrificial layer contained in the structure for 15 the etching solution which is used to remove the sacrificial layer, one or more access holes are cut through the ceiling layer, with the wet etch removing the sacrificial

layer through these holes. An extremely high etch selectivity is required between the
sacrificial layer and the dielectric layers in order to allow the etch to proceed in the
sacrificial layer a significant distance laterally from the access holes without
consuming the floor and ceiling layers which compose the finished device. One
5 combination of materials that meets the requirements for such a process is polysilicon
and silicon nitride, for the sacrificial layer and for the floor and ceiling layers,
respectively. Extremely high etch selectivities can be obtained with basic solutions
such as potassium hydroxide (KOH) or sodium hydroxide (NaOH), but especially with
tetramethyl ammonium hydroxide (TMAH). TMAH provides an etch selectivity
10 between silicon and silicon nitride as high as 1,500,000: 1, with etch rates as high as
0.6 μm per minute. Additionally, the basic solution contains no metal ions and is thus
compatible with the CMOS CVD equipment used to deposit the thin film sacrificial
polysilicon layer and the thin film ceiling layer.

The access holes cut in the top layer need to be covered before the device can
15 be used. For this purpose, a sealing layer of silicon dioxide is deposited on top of the
ceiling layer to fill in the access holes, and this additional thin film layer provides a

good seal against leakage or evaporation of fluids in the working gap. SiO₂ CVD techniques which yield a low degree of film conformality, such as very low temperature oxide (VLTO) deposition, form a reliable seal without excessive loss of device area due to clogging near the access holes. If desired, the access holes may be
5 drilled through the bottom layer, instead of or in addition to the holes in the ceiling layer, and later resealed by depositing a layer of silicon dioxide.

In one embodiment of the invention, wherein the process is utilized to fabricate artificial gels, a multiplicity of retarding obstacles in the form of vertical pillars are fabricated in a selected portion of the sacrificial layer before the ceiling
10 layer is applied. The obstacles are defined using standard photolithographic techniques. In another embodiment of the invention, electron beam lithography is used for this purpose, permitting the fabrication of obstacles several times smaller than can be produced utilizing the photolithographic techniques.

In one example, lithography was used to define in the sacrificial layer a filter
15 chamber incorporating an artificial gel and connected to inlet and outlet fluid channels. In this process, an array of holes was formed in a chamber region of the

sacrificial layer, the holes being about 100 nm in diameter and separated by 100 nm

in a square array, for example. When the ceiling layer was applied, the ceiling

material filled the holes to form a multiplicity of pillars about 100 nm in diameter and

separated by 100 nm. The pillars extended through the sacrificial material between

the floor and ceiling layers, and when the sacrificial layer was removed the pillars

formed in the chamber region the vertical obstacles of an artificial gel. The chamber

region had an active area 800 μ m by 500 μ m, with connecting inlet and outlet flow

channels, or microchannels, connected to opposite sides of the chamber to make a

microfluidic device 15 mm in length. The extra length provided by the inlet and

outlet capillaries was provided in the example to allow fluid interconnects to the

device to be outside the footprint of an objective lens used to observe material within

the filter chamber, but any desired inlet or outlet channel configurations can be used.

The interconnection of the fluid between external devices and the working gap

produced by a sacrificial layer, as described above, preferably is made by way of one

or more loading windows and outlet windows on the top (ceiling) surface of the inlet

and outlet microchannels. These windows are defined with photolithography and are

etched through the ceiling layer with RIE. They may be located at the outer ends of the microchannels, which may be near opposite edges of a silicon chip or substrate carrying the artificial gel.

In a typical use of an artificial gel device such as that described above, an aqueous buffer with fluorescent-labeled DNA molecules in solution is supplied to the loading window from a fluid reservoir which forms a meniscus with the edge of the silicon chip, and after passing through the gel the buffer is delivered to a reservoir connected to the outlet window. A potential is applied across the gel by a voltage connected across electrodes immersed in the buffer reservoirs, and the applied potential difference drives the DNA molecules through the device, where their motion is observed with epi-fluorescence microscopy.

In another aspect of the invention, multiple fluidic levels are constructed on a single substrate by repeated applications of the sacrificial layer technique. With this process, barriers between the layers can be extremely thin, because the solid 15 sacrificial layer mechanically stabilizes the film during construction of multiple layer devices. Each layer could potentially add less than 500 nm to the thickness of the

device, with miniaturization being limited only by available lithographic or electron beam techniques. The fabrication of multiple-level devices is an extension of the single-level fabrication technique outlined above. The first level is defined exactly as in the single level system, but instead of perforating the ceiling layer to provide access holes for sacrificial layer removal, holes are made in the first level ceiling layer only where there are to be connections to the second level. These vertical interconnect holes are made using the same steps used for making access perforations. If no connections are needed, then no interconnect holes are made in the first level ceiling layer. Thereafter, a second sacrificial layer is deposited over the structure, this layer having a thickness equal to the desired vertical dimension of a working gap in the second layer, and preferably being between 30nm and 1000 nm in thickness. Photolithography or electron beam lithography is used to pattern the second sacrificial layer to define a desired structure configuration, such as fluid-carrying tubes or microchannels, fluid chambers, or the like. The second level structure may be configured to pass over fluid microchannels that were previously defined in the first-level lithography step, and the first and second level sacrificial

layers may make contact with each other where vertical interconnect holes breaching
the ceiling of the first level and intersecting the working gap defined by the sacrificial
layer in the second level have been provided. Finally, the second level ceiling layer is
deposited, in the manner previously described for a single level device, and access
holes are defined as before.

If desired, additional layers may be added by depositing additional patterned
sacrificial layers on prior ceiling layers in the manner described for the second level,
and depositing additional corresponding ceiling layers. Thereafter, the sacrificial
layers are removed from all layers by a wet chemical etch, as previously described,
producing a multiple-level fluidics structure. If all the layers are vertically
interconnected through access holes, the sacrificial layers can all be removed
together. If they are not so interconnected, the sacrificial layer is removed by way of
separate access layers, which may be located at the edges of the multilevel device.

The unique approach to the fabrication of nanofluidic structures in accordance
with the present invention offers several advantages over prior processes. First and
foremost is the integration of fluidic devices with other devices, such as optical or

electronic devices, on a single substrate, without lamination or bonding steps. Such integration can be obtained by reason of the fact that the methods of the invention rely on semiconductor manufacturing techniques and equipment already in existence in the semiconductor manufacturing industry. The ability to create multi-level structures with vertical interconnections allows significant increases in integration and functionality, allowing large-scale integration of fluidic devices and permitting fabrication of structures which allow parallel processing and high speed analysis to be performed. Since the technology is compatible with other fields of microfabrication such as planar waveguide optics and silicon-based microelectronics technology, not only can microfluidic components be integrated with each other, but they also can be integrated on a single wafer with other types of components or devices, such as those required for analysis and data collection. The fabrication techniques of the present invention permit creation of extremely small features with excellent control over dimensions and placement of devices and interconnections so that microfluidic components will be comparable in dimensions to macromolecules, facilitating the fabrication of complex biochemical analysis systems.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing, and additional objects, features and advantages of the present invention will become apparent to those of skill in the art from the following detailed description of preferred embodiments thereof, taken in conjunction with the accompanying drawings, in which:

Figs. 1-3 are partial, diagrammatic, perspective views of the process of the present invention, Fig. 1 illustrating formation of a patterned sacrificial layer on a substrate, Fig. 2 illustrating formation of a ceiling dielectric layer over the sacrificial layer, with access holes, and Fig. 3 illustrating the steps of etching away the sacrificial layer and sealing the access holes.

Figs. 4(a) and 4(b) diagrammatically illustrate the steps used in fabricating a two dimensional artificial gel media on a wafer;

Fig. 5A is a scanning electron micrograph of an irrigation hole formed in the media of Fig. 1, after resealing by a VLTO oxide, the wafer having been cleaved through the center of the irrigation hole to provide a cross-sectional view;

Fig. 5B is a scanning electron micrograph of a cleaved edge of a device

fabricated in accordance with Fig. 1, showing micron-sized tubes, or microchannels, buried beneath a silicon nitride layer;

Figs. 6A, 6B and 6C are scanning electron micrographs showing the

dimensions of three different fluid gap heights in a device fabricated in accordance

5 with Fig. 1;

Fig. 7 is a schematic diagram illustrating the operating principle of a sieving structure fabricated in accordance with the present invention;

Figs. 8A and 8B are fluorescence optical micrographs showing DNA molecules in an artificial gel fabricated in accordance with the present invention;

10 Fig. 9, Steps 1-9 are diagrammatic illustrations of a second embodiment of a

process for fabricating devices in accordance with the present invention;

Fig. 10 is a scanning electron micrograph of a resist layer after electron beam patterning and development in accordance with the embodiment of Fig. 9, Step 2;

Fig. 11 is a scanning electron micrograph of a device fabricated in accordance

15 with the process of Fig. 9, step 3, after transferring a pattern of holes utilizing dry etching;

Figs. 12A and 12B are scanning electron micrographs of the device of Fig. 9,

Step 7, taken at 45° after removal of the sacrificial layers, Figs. 12A and 12B showing

the same structure at two different magnifications;

Fig. 12C is a diagrammatic illustration of a working gap containing closely-

5 spaced pillars;

Fig. 13 is a photomicrograph of a completed wafer, illustrating loading and exit windows at opposite ends of the wafer;

Figs. 14 diagrammatically illustrates a fluid interconnection structure for supplying fluids to devices fabricated in accordance with the present invention;

10 Fig. 15 is a chart illustrating the velocity of two difference molecule types for various applied potentials measured in apparatus fabricated in accordance with the present invention;

Figs. 16-19 are diagrammatic illustrations of the steps of a method for fabricating multiple level structures on a single substrate;

15 Fig. 19A illustrates a three-level structure on a single substrate fabricated by the process of the present invention as illustrated in Figs. 16-19;

Figs. 20 and 21 are diagrammatic illustrations of examples of multiple
sacrificial levels produced in the process of Figs. 16-19;

Fig. 22 is a diagrammatic illustration of a sub-femtoliter mixing system
fabricated by the multiple level process of the invention;

5 Figs. 23-25 are diagrammatic illustrations of a step-edge deposition process for
fabricating ultra-small diameter capillaries;

Figs. 26 and 27 illustrate a second process for fabricating ultra-small diameter
capillaries;

10 Figs. 28 and 29 are diagrammatic perspective view of an integrated microcapillary and
waveguide device using the sacrificial layer process of the present invention;

Fig. 29 is an enlarged view of a portion of the device of Fig. 28.

Fig. 30 is a partial perspective view of an integrated electrical heating element
in a fluidic system; and

Fig. 31 is a top plan view of the structure of Fig. 30.

15 **DESCRIPTION OF PREFERRED EMBODIMENTS**

The basis of the fabrication techniques of the present invention is the use of a

pattern of sacrificial and permanent layers which defines the interior geometry of a fluidic device. To define the potential of the technology, several fabrication methods

an applications are described herein as embodiments of the invention. A single-level, or two-dimensional embodiment of the process illustrates the basic concepts common

5 to additional embodiments and applications, thus serving as a foundation for more complex processes and structures. Accordingly, the first embodiment of the invention will be described in terms of a process for producing a single level fluidic structure.

As will be described, the process of the invention relies on techniques developed for semiconductor fabrication. For example, chemical vapor deposition (CVD) may be

10 used to deposit the device materials, including permanent wall materials which are usually a dielectric material such as silicon nitride or silicon dioxide, and nonpermanent sacrificial layer materials, such as amorphous silicon or polysilicon.

CVD is preferred, since it is ideally suited for precise control of the dimensions of a fluidic device, providing excellent precision and uniformity in the thickness of the 15 deposited films.

In broad outline, as illustrated in Figs. 1, 2 and 3, the first step in the process

of the present invention is to deposit on a substrate 10 a first layer 12 which will serve as the floor of the fluidic device being fabricated. The layer 12 may be a dielectric material between 30 nm and 1000 nm thick which serves as a bottom wall for the fluidic channels which are to be formed, and may be referred to as a permanent layer. A nonpermanent, or sacrificial layer 14 is deposited next, with the thickness of this thin film layer controlling the interior vertical dimensions of the final product. Films ranging from 5 nm to 10 μm may preferably be utilized for some products, but any desired thickness may be provided. The geometry of the fluidic structure that is to be fabricated, which structure may include fluid pathways, fluid chambers, sieves, filters, artificial gels or other components of the fluidic device, are then defined in the sacrificial layer 14 by a suitable lithographic process, which can include the steps of patterning a resist material, transferring the pattern to a pattern mask layer, and then transferring the pattern to layer 14, in known manner. Processes which do not use a resist material, such as laser machining, may also be used to define the structures. For electron beam lithography and deep structures made with photolithography, a hard pattern mask is required to assist in pattern

transfer, and silicon dioxide or aluminum hard masks may be used for this purpose, as is known in the art.

The fabrication of a fluid pathway in the form of a simple tube 16 is shown in Figs. 1, 2 and 3. As there illustrated, after the pattern of the tube has been defined

5 lithographically, unwanted portions of the sacrificial layer 14 are removed with reactive ion etching (RIE) to expose portions of the top surface 18 of floor layer 12.

The remaining sacrificial material defines the interior shape of the tube 16, as

illustrated in Figure 1. Thereafter, a top wall layer 20 is added, covering the top

surface 18 of layer 12 where it is exposed around the remaining sacrificial material

10 14, and covering the exposed side wall surfaces 22 and 24 and the top surface 26 of the tube 16, as illustrated in Fig. 2. This top wall layer 20 preferably is a dielectric thin film deposited by CVD techniques, and is also referred to as a permanent wall.

The removal of the sacrificial layer 14 from within the now-covered tube 16

requires that a wet etch be able to get inside the tube. This can be done from the

15 edge of the substrate if tube 16 extends to that edge, or the top layer 20 may be perforated at intervals to allow access to the interior through layer 20, as illustrated

by access holes 30 in Fig. 2. An etchant such as tetramethyl ammonium hydroxide, which is used because it yields extraordinary selectivity for sacrificial layers of polysilicon or amorphous silicon over the permanent bottom wall material 12 and the permanent top wall material 20, is supplied through the ends of the tubes or through 5 access holes 30 to remove the sacrificial layer 14. Thereafter, the ends of the tubes or the holes 30 are sealed by a layer 32 of a very low temperature oxide (VLTO) which is selected to have only moderate conformality. This material is desirable because it deposits as little oxide as possible on the interior walls of tube 16 while still closing off the access holes 30. Once the device is sealed, standard lithography and etching 10 techniques are used to open loading holes, such as aperture 34, through the top layer 20 and the sealing layer 32 into tube 16 in appropriate places to enable the interior of the tube 16 to interface with an external fluid interconnect device. The fluid pathways and chambers produced by the removal of the sacrificial layer 14 and exemplified by tube 16, may be generally referred to herein as the "working gap", or 15 "fluid gap" of the fluidic device.

The basic process steps of the invention are outlined in greater detail in a

partial, schematic, perspective view in Figs. 4(a) and 4(b) as including process steps

1-8. A three-inch (100) N-type silicon wafer 40 was used as a substrate in this process. The silicon wafer served only as a carrier for the thin-film fluidic device, and any material compatible with a CMOS film deposition furnace could be used as a
5 substrate. The wafer was subjected to a conventional RCA cleaning step, and covered with a first, 420 nm thick bottom thin film layer 42 of low pressure CVD (LPCVD) silicon nitride. Immediately following this, a polysilicon sacrificial layer 44 was grown over the silicon nitride layer 40, the thickness of the polysilicon layer serving to establish the height of the fluid gap in the final device. To investigate the behavior
10 of the process with different fluid gap heights, three wafers with different polysilicon sacrificial layer 44 thicknesses were fabricated: 120 nm, 280 nm and 530 nm. In each case, following polysilicon deposition, a thermal oxide hard mask 46 was grown on the surface. The choice of thickness for the hard mask was made according to the thickness of the polysilicon layer. For the thinnest polysilicon layer, a mask layer of
15 approximately 10 nm of SiO₂ was used. For the thicker polysilicon films, an 80 nm thick mask layer 46 was applied. A photoresist layer 48 was then applied to the top

surface of layer 46.

A pattern 50 for a fluidic device having inlet and outlet tubes, or microchannels, (not shown) connected to a fluid chamber 51 (indicated by dotted lines) defines in the resist layer 48 (Step 2) an array 52 of retarding obstacles such as those that might be fabricated as an artificial gel or a sieve. The pattern 50 is produced using standard photolithographic techniques. In one example, the pattern 50 for the array 52 of retarding obstacles included a multiplicity of 1.0 μm diameter cylindrical holes whose centers were separated by 2.0 μm . The pattern of holes was transferred from the resist layer 48 to the oxide hard mask layer 46 with a CHF_3/O_2 RIE, and subsequently was transferred into the polysilicon layer 44 (Step 3) using a three-step Cl_2/BCl_3 RIE. The holes making up the array 52 in the sacrificial layer were the template in which the obstructing pillars were later formed.

In step 4, the wafer was again subjected to an RCA clean, followed by a final dip in 10:1 solution of 48% hydrofluoric acid and DI water for 30 seconds to remove 15 the oxide hard mask 46 from the polysilicon surface. The wafer was rinsed, spin-dried and coated with an additional 420 nm thick layer 54 of LPCVD silicon nitride

(Step 5). Since LPCVD silicon nitride coats conformably, it coated the floor and walls of the holes of array 52 cut in the polysilicon layer 44, thus forming obstructing pillars 56 in those holes. These pillars extend substantially the full thickness of layer 44 and contact the top surface of bottom wall 42.

5 Irrigation holes 60 were then defined in the top nitride layer 54 (Step 6) using photolithography aligned to the previous layer. A photoresist pattern (not shown) masked a CF₄ RIE, which cut all the way through the silicon nitride top, or ceiling layer 54, exposing the polysilicon layer 44 underneath. The photoresist was removed by immersion in acetone, followed by a 10 minute O₂ plasma strip. Native oxide 10 which formed during the oxygen plasma strip was removed with a 20 second dip in hydrofluoric acid buffered 30:1 with ammonium fluoride.

The sacrificial layer 44 was then removed with a 5% solution of TMAH in water heated to 80 C. The irrigation holes 60 were conservatively placed 20 microns from each other. After 40 minutes of immersion in the hot TMAH, the polysilicon 15 layer 44 was completely removed (Step 7), leaving a working gap 62 between the bottom wall 42 and the top wall 54. No degradation of the silicon nitride layers 42 or

54 was detected.

The wafer was again RCA cleaned and coated with a layer 64 of very low temperature oxide (VLTO) to seal the irrigation holes 62. For a structure with a working gap of 500 nm, a 1000 nm thick film sealing layer 64 of oxide was deposited.

5 For thinner structures, a 500 nm film 64 was sufficient to seal the irrigation holes 60.

Leaks in the structures were readily detected by immersing the sealed wafer in water or some other solvent. If a fluid channel contained a leak, it rapidly filled with liquid and a striking change in color was observed. One wafer was soaked for 24 hours, and although some slow leaks were found, over 90% of the structures fabricated on the wafer remained dry.

10 The three wafers mentioned above each were coated with a protective layer of photoresist and scribed with an automated diamond scribe through the centers of a row of pillars 56 and through an irrigation hole 60, as illustrated in the sectional views of Steps 1-8 in Fig. 4. The photoresist was removed by spin-rinsing with isopropanol, acetone and isopropanol again. The wafers were cleaved, leaving the 15 working gap 62 and cross-sections of pillars 56 open to the outside at two edges of

each chip. The cleaved chips were annealed at 900 C for 40 minutes with dry oxygen flow to grow an insulating layer 66 (Fig. 5A) of thermal SiO₂ on the freshly cleaved edges.

The finished devices were inspected with white-light interferometry and

5 scanning electron microscopy (SEM). Fig. 5A is a scanning election micrograph of a portion of a wafer, illustrating the working gap 62, pillars 56, and irrigation hole 60 filled with oxide 64 in a working chamber 51 for use as an artificial gel. No variation could be detected in the height of the working gap between the two nitride layers.

There was some polysilicon film loss associated with the growth and removal of the

10 oxide hard-mask, so the final devices had fluid gap heights of 63 nm, 266 nm

(illustrated in Fig. 5A), and 497 nm. There was some sagging of the top nitride layer

at the cleaved edges which took place during the 900°C anneal step.

Fig. 5B is a scanning electron micrograph of a cleaved edge of a wafer,

illustrating a plurality of micron-sized tubes, or microchannels, such as the tube 16 of

15 Fig. 3. Figs. 6A, 6B and 6C are scanning electron micrographs showing the

dimensions of the working gaps for the three wafers discussed above. Fig. 6A is a

micrograph of a wafer having a fluid tube 16 with a working gap height of 497 nm, and without a VLTO sealing layer. Fig. 6B is an enlarged micrograph of the cleaved edge of a working gap chamber of Fig. 5A, having a working gap 62 with a height of 266nm, and including a VLTO sealing layer 64. Fig. 6C is a micrograph of a cleaved edge of a working gap chamber, having a gap 62 height of 63 nm.

To test the operation of an artificial gel chamber 51 fabricated by the foregoing process, a Plexiglas jig 72 was fabricated (see Figs. 7A and 7B) which allowed the meniscuses of two overfilled buffer reservoirs 74 and 76 to make contact with the cleaved exposed edges 78 and 80, respectively, of the chamber, and thus with the device's fluid gap (62 in Fig. 4). A silicon chip 82 cleaved from a wafer and bearing the chamber 51 was affixed to the jig 72 with vacuum grease. A voltage source 84 was connected across platinum electrodes 86 and 88, which were immersed in the buffer reservoirs 74 and 76, respectively, for driving a current through the chamber 51. The jig 72 and artificial gel chamber 51 were mounted on the stage of an upright fluorescence microscope. As illustrated, the artificial gel chamber 51 was a thin flat channel fabricated on the chip 82 in the form of a working gap, or fluid gap such as

the gap 62, in which was located an array 52 of vertical submicron pillars, or obstructions 56 such as those described with respect to Fig. 4, and illustrated in the enlarged partial view of Fig. 7B.

λ -phage DNA was stained with YOYO-1 (Molecular Probes) to 1 dye molecule (illustrated at 94) per 10 base pairs, and was diluted to 0.5 μ g/ml DNA in 0.5x tris 5 borate EDTA (TBE) buffer with 3% mercaptoethanol added to prevent photobleaching. The solution including molecules 94 was injected in the cathode reservoir 74 of the sample jig 72, and voltages ranging from 0 - 20 V were applied across the 5 mm-long chamber 51. DNA molecules 94 were observed to move 10 electrophoretically through the artificial gel obstructions 56 in all three fluid gap heights, although in the smallest fluid gap height (63 nm) structures, the channel had an enhanced population of shorter molecules.

The motion of the DNA was observed in chamber 51 with a 100x 0.9 NA air immersion objective. Fluorescence was excited with a 50 W mercury arc lamp with 15 an excitation filter cutoff at 490 nm. Figure 8A shows a fluorescence micrograph of DNA molecules 94 moving through the chamber 51 with an applied potential of 5 V.

This region is free of closely-spaced obstructions, so the DNA molecules are moving freely under the influence of the electric field. The image was accumulated over a 10-second interval, so the horizontal streaks in the picture represent the trajectories of the DNA molecules as they move from right to left in the frame. The highlighted circles are the sealed access apertures 60. Figure 8B shows a portion of the boundary between chamber 51 with densely spaced retarding obstacles 56 and a region of the assembly 72 prior to the obstacles. In this image, some molecules have become trapped at the threshold 96 of the obstructed region, while others proceed.

The process steps for a second embodiment of the fabrication process of the invention, utilizing electron beam lithography, are outlined schematically in Fig. 9.

Three-inch (100) N-type silicon wafers, indicated at 110 in Step 1 of Fig. 9, were used as a substrate in this process. The silicon wafers served only as carriers for the thin-film devices; any material compatible with CMOS film deposition furnaces could be used as a substrate. The wafers were subjected to an RCA clean and a 1.0 μm thick film 112 of a permanent wall material such as a thermal silicon dioxide was grown in the surface. After oxidation, a 190 nm thick permanent film 114 of low-

stress LPCVD silicon nitride was deposited, followed by a nonpermanent sacrificial layer 116 formed as a 500 nm thick film of LPCVD polysilicon. A 100 nm thick hard mask layer 118 was thermally grown in the polysilicon layer 116, and a 40 nm thick film 120 of aluminum was thermally evaporated over the oxide hard mask to assist in pattern transfer and provide a conductive substrate for electron beam lithography (EBL). Finally, a 200 nm thick film 122 of 496 K PMMA resist material was spin-coated over the aluminum and baked for 10 minutes at 170° C on a vacuum hotplate.

To pattern the resist layer 122, electron beam lithography was carried out (Step 2) to form a mask pattern 124, using a Leica-Cambridge 10.5 at 1.0 nA and a spot size of 70 nm for the fine features, and 40 nA for the coarse features. The dot dose was 18 fC. To avoid shape overhead processing time, the dots were written “on-the-fly” without beam blanking between dots. For these exposure times, the beam shift and settling time are fast enough that there are no artifacts in the dot shape from the beam movements. The resist 122 was developed for 1.5 minutes in 1:1 MIBK:IPA, rinsed in IPA and blown dry with filtered dry nitrogen. Figure 10 is a scanning electron micrograph which shows the resist pattern 124 in a dense pillar

region after it has been patterned and developed.

The resist pattern 124 was transferred to the aluminum layer 120 (Step 3)

with a chlorine (Cl_2) boron trichloride (BCl_3) and methane (CH_4) reactive ion etch

(RIE). The aluminum mask was then used to pattern the SiO_2 hard mask layer 118

5 with a CF_4 etch. Finally, the SiO_2 hard mask was used to pattern the polysilicon

sacrificial layer 116 with a three-step RIE¹² with Cl_2 , BCl_3 and H_2 . At this point, the

sacrificial layer 116 was fully patterned with a dense array 125 of obstructions in an

active area 126 (such as the chamber 51 previously described) of the device (Fig. 11),

as well as with the channels required to bring fluid to the active area of the device.

10 Figure 11 is a scanning electron micrograph showing the sacrificial layer 116 after the

RIE transfer of pattern 124 is complete. The isolated holes 128 in the sacrificial layer

will later become isolated obstructions in the gap after the top layer is deposited and

the sacrificial layer removed, as was described above with respect to the first

embodiment.

15 The sample was again RCA-cleaned and dipped in a 1:10 dilution of

hydrofluoric acid in deionized water for 20 seconds to remove the SiO_2 hard mask

layer 118 (Step 4). The wafer was rinsed and spin-dried and the sacrificial layer was covered by a permanent top wall material such as a layer 130 of 320 nm thick low-stress LPCVD silicon nitride (Step 5). The top wall material 130 is selected to be extremely conformal, so in addition to coating the top surface of layer 116, it also 5 coats the sidewalls and floor of each of the holes 128 etched in the sacrificial layer 116. This deposition creates columns, or pillars 132 of silicon nitride or other top wall material buried in the sacrificial layer 116. By regulating the thickness of layer 116 and the diameter of the holes 128, each column may have an aspect ratio (height to width) of about 5:1. To remove the sacrificial layer 116, access holes 134 were 10 photolithographically defined in a Shipley 1813 positive photoresist layer (not shown) deposited on the top wall layer 130, using a 5x g-line reduction stepper and standard exposure conditions. The access holes were 2 μm in diameter, in a square array with a 20 μm period. The resist was developed in 1:1 Shipley MF312:deionized water for 1 minute. The access holes 134 were transferred to the silicon nitride top 15 layer 130 (Step 6) with a CF_4 RIE. The photoresist layer was stripped in Shipley 1165 photoresist remover. The wafer was subjected to an O_2 plasma strip to remove

any residual photoresist.

Prior to the removal of sacrificial layer 130, the wafer was dipped in hydrofluoric acid buffered 6:1 with ammonium fluoride to remove any native oxide which may have formed during the O₂ plasma strip. The sacrificial layer removal

5 (Step 7) was performed with a 5% TMAH solution in water maintained at 75 C with a temperature-controlled hot-plate. For both cost and convenience, the TMAH solution used was actually a photoresist developer, Shipley MF312. In 40 minutes the sacrificial layer removal was complete, leaving a working gap 140 in place of the sacrificial layer between top and bottom walls 130 and 114. The devices were rinsed in running deionized water for an hour and blown dry with filtered dry nitrogen.

Figs. 12A and 12B are scanning electron micrographs taken at a 45° angle and at different magnifications, showing the dense array of pillars 132 in active region 126 of the device after the sacrificial layer removal. The pillars 132 are obstructions in the fluid flow path through the active area 126 of the artificial gel, or filter, and have vertical sidewalls and uniform size and separation. The uniformity of the pillar height at this stage is better than 5 nm over the device.

Fig. 12C is a diagrammatic illustration of the active area 126 of the working gap, showing closely spaced vertical pillars 132 extending through fluid or working gap 140 between a lower floor layer 114 and a ceiling layer 130. Since the layers 114 and 130 preferably are optically transparent, the movement of molecules or 5 particles through the working gap 140 and between the obstacles, or pillars, 132 can be monitored and measured optically, as will be described.

To seal the access holes, a 2.5 μm film of VLTO oxide 142 was grown over the silicon nitride top layer 130 (Step 8). The devices were checked for leaks by immersion in DI H₂O. When a device is not fully sealed, it rapidly fills due to 10 capillary forces. This is readily seen even with the naked eye, because the thin film stack changes color when the gap fills with water. The devices were found to have sealed without any leakage.

To test the operation of an artificial gel fabricated in accordance with the foregoing process, photolithography was used to define loading windows 144 and 15 146 at the ends of the device (Step 9) as illustrated in the scanning electron micrograph of Fig. 13. A 5 μm thick layer of Shipley 1045 resist was patterned with a

g-line 5x reduction stepper. The resist was developed for 4 minutes in Shipley MF312 diluted 1:1 with deionized water. The loading windows 144 and 146 were etched most of the way through the 2.5 μm thick film 142 of VLTO with a magnetron induction etch (MIE) using CHF₃ as the etch gas. The wafer was then scribed for later cleavage with the photoresist still in place. The etching of the windows 144 and 146 was completed with a much slower CHF₃ RIE. The resist was removed with acetone and isopropanol on a photoresist spinner.

Fluid interconnects were established with the front face of the device in locations which would not interfere with the microscope objective used to observe the motion of molecules through the active region 126, where the obstructions are closely spaced to provide an artificial gel configuration. A separate interconnect "package" was manufactured for each device and permanently bonded to it. Such a package is generally indicated at 150 in Fig. 14 as being connected to a wafer 152 carrying an active region 126. Fluid channels 154 and 156 were defined between two 24x50 mm No. 1 cover slips 158, 160, and 162, 164, respectively, using silicone RTV. The channels 154 and 156 were connected to corresponding loading windows 144 and

146, respectively, through holes 168 and 170 machined in coverslips 158 and 162.

The fluid channels 154 and 156 were connected to corresponding 1 cm diameter

Pyrex reservoirs 172 and 174 that were bonded with RTV over corresponding holes

176 and 178 in the top cover-slips 158 and 162. The reservoirs contained gold

5 electrodes 180, 182 connected across a voltage source (not shown) to drive a current

through the device. The reservoirs also served as receptacles for loading the solution

which contains material to be passed through the region 126. The motion of

molecules or the like through region 126 was observed by fluorescence microscopy,

using, for example, an optical microscope having a 100x, 1.4 N.A. oil immersion

10 objective lens 190 and an image-intensified CCD camera (not shown).

To demonstrate the use of these microchannel devices, two different types of

DNA were introduced into the reservoirs, a potential difference was applied, and the

velocities of the molecules through the region 126 were measured. To allow

simultaneous observation of two different DNA molecule types using a single

15 fluorescent dye, molecules sufficiently different in size were chosen so that the

identity of the molecules could be determined by the fluorescence yield in the optical

microscope. For this demonstration, 43 kilobase (kb) lambda phage DNA and 7.2 kb M13mp8 phage were observed simultaneously. Both molecules are plasmid DNA, but the lambda DNA has been cut into a linear strand, while the M13mp8 DNA is still circular. The two types of DNA were both stained with YOYO-1 (Molecular Probes) at a concentration of 1 dye molecule per 10 base pairs and then diluted to 0.5 μ g/ml DNA in 0.5x tris-borate EDTA (ethylenediamene tetra-acetic acid) buffer with 2% mercaptoethanol added to prevent photobleaching. The solution was injected at both reservoirs.

5
四庫全書

Although the silicon devices 152 have hydrophilic interiors and thus spontaneously fill with liquid when submerged, when they were sealed into the fluid interconnect package, trapped air prevented the water column from reaching the device. For this reason it was necessary to load the devices under vacuum. Even with vacuum loading, some bubbles were incorporated, but because the buffer solutions were degassed during the vacuum pumping, most bubbles trapped in the device dissolved into the buffer and were eliminated. DNA velocities were recorded for applied potentials ranging from 2 - 20 V across the 15 mm-long channel. The velocity

was measured by recording the time required for individual molecules to traverse a 100 μm section of the dense pillar region 126.

Observations of the two different strand lengths were made side-by-side and at the same time. To minimize the effect of boundary clogging, the field was 5 periodically reversed, and occasionally the potential was increased briefly to assist molecules stuck at the boundary in overcoming the entropic barrier to entering the dense pillar region 126. The velocity comparison between the two strand types was reliable at a given potential because both molecule types were experiencing the same field. The M13mp8 DNA molecules were observed to have a significantly lower 10 velocity than the larger lambda phage DNA for applied potentials of 5, 7, 10 and 15 volts. At 20 volts there was evidence that the dielectric insulating layers had failed and that the device was being short-circuited by conduction through the substrate.

Figure 15 is a chart showing the velocity as a function of applied potential for both 15 molecule types studied here. Each data point is the mean of several single-molecule observations. The ratio of velocities was largest for an applied potential of 5 volts, for which the lambda phage DNA moved 1.8 times faster than the M13mp8 phage DNA.

The error bars for each data point reflect the standard deviation of the single molecule observations. As such, the deviation reflects on band-broadening mechanisms that would determine the resolution in DNA separation. Other processes, such as field fluctuations and measurement errors, will also contribute to the variation in the measurements, so the resolution figure extracted from the distribution should be interpreted as a lower bound on the intrinsic resolution of the process. Taking $h/2\sigma$ as the resolution, where h is the band separation and σ is the half-width of the band, this system shows a resolution of 118 per root-meter between the two molecule types working at 7 volts.

5

In a third embodiment of the invention, multi-level microchannel devices may be constructed utilizing the techniques described above. The process for fabricating such devices is an extension of the single-level fabrication techniques which have been described above, and this extension is illustrated in Figs. 16-19, to which reference is now made. Figure 16 illustrates a first stage in the fabrication of a multi-level microchannel device 200 formed on a wafer, or substrate 202. A bottom layer 204 of a permanent material such as an oxide or other dielectric material is deposited

40

on the substrate, and a sacrificial layer 206 is deposited on the bottom layer, as described with respect to Fig. 1. Following patterning of the sacrificial layer 206, a layer 208 is applied, as previously described, providing a first ceiling layer for the working gap, or microchannel that will be provided when the sacrificial layer 206 is removed. In this case, however, instead of perforating the ceiling layer 208 for removal of the sacrificial layer, as previously described, one or more vertical interconnect holes or apertures 210 may be provided in layer 208 where a vertical connection is to be made between the sacrificial layer 206 and corresponding sacrificial layers on second or subsequent levels. The vertical interconnect holes 210 are made using the same steps outlined above for making access holes for sacrificial layer removal, but are located so as to be aligned with corresponding structures in a second level. The layer 208 is optically transparent, and thus is of a suitable material such as silicon dioxide.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
937

layer 212 is deposited to a thickness of between 30 nm and 1000 nm, and photolithography or electron beam lithography is used to pattern it, in the manner described above. Fig. 18 illustrates the second patterned sacrificial layer as including structural components in the form of two generally parallel tubes, or microchannels 5 214 and 216 on top of layer 208, with one tube 214 passing over the vertical interconnect hole 210 and the other passing over microchannel 206 in an area where there is no hole 210. The first and second sacrificial layers 206 and 212 make contact with each other where the vertical interconnect holes breach the first level ceiling layer 208, as at hole 210, but are otherwise separated by layer 208. If desired, all 10 structural components of the second layer may be in contact with corresponding components of the first layer; alternatively only some may be in contact through selectively placed vertical interconnect holes, or there may be no contact between layers.

As illustrated in Fig. 19, a second level ceiling layer 220 is deposited over the 15 top of the wafer to cover the components defined in the second sacrificial layer 212. If this is the last layer to be provided, then appropriate access holes as well as loading

and exit apertures will be defined as previously described. If additional layers are desired, as illustrated in Fig. 19A, additional vertical interconnect holes may be provided in the layer 220 at selected locations, followed by a third sacrificial layer 221 and a third level ceiling layer 222. Additional layers may be provided as desired, 5 and the final layer may be provided with irrigation access holes for removal of the sacrificial layers on all levels through the microchannels and vertical interconnect holes. Alternatively, the sacrificial layers may be accessed individually by fabricating tubes which intersect edges of the wafer.

Figs. 20 and 21 diagrammatically illustrate the selectable separation and 10 interconnection of the sacrificial layers 206 and 212 by selecting the location of the vertical interconnect holes 210. Fig. 20 illustrates the crossing of the sacrificial material which will form microchannels 206 and 216 on two adjacent levels, where there is no connection between the two sacrificial layers, while Fig. 21 illustrates the 15 crossing of microchannel 212 on one level over microchannel 206 on an adjacent level, illustrating the connection 222 extending through vertical interconnect hole 210. Figs. 20 and 21 show the microchannels with the permanent layers removed for

purposes of illustration, but it will be understood that when the layers 204, 208 and 220 are in place, the sacrificial material defining microchannel 206 will be isolated from the sacrificial material defining microchannel 212, while the material in microchannels 206 and 214 will be interconnected through connector 222. When the 5 sacrificial layers are removed, the top and bottom permanent layers in each level remain, leaving hollow fluid flow microchannels, with fluid in channel 206 being able to flow into channel 214, but not into channel 216, in the illustrated example.

The multi-level fabrication technique described with respect to Figs. 16-21 has many applications. As an example, it may be used to construct a 2-level combinatorial 10 chemistry reactor such as that generally illustrated at 230 in Fig. 22. The reactor 230 includes, for example, 6 input microchannels 232 through 237, each of which passes over (or under, if desired) a single outlet, or drain microchannel 240, without interconnection, as illustrated at the intersection 242. These overpasses are fabricated in a manner similar to the fabrication of microchannels 206 and 216, 15 described above and illustrated, for example, in Fig. 20. Each of the input channels is also connected to the drain 240 by way of interconnects such as that illustrated at

244, each interconnect being fabricated in the manner described with respect
microchannels 206 and 214, illustrated in Fig. 21, for example. The drain 240 leads
to an outlet, indicated by arrow 245, while the input channels 232-237 all lead to a
common reaction chamber 246 which , in turn, is connected to a fluid outlet
5 microchannel 248. Voltages applied at any of the fluid terminals of the device will
induce flow in the system via electroosmosis.

In the operation of a typical device, a steady flow of fluid is maintained from
each of the 6 input microchannels to the drain microchannel 240 by maintaining the
outlet 245 of the drain at a low potential. This serves, for example, to prevent cross
10 contamination of the fluids in each of the input channels by creating a small, constant
flow from each of the inputs 232-237 to the drain outlet 245. The drain line 240
passes under (or over) all six of the fluid input microchannels and makes a vertical
interconnect with each channel upstream from the reaction chamber 246, as at
interconnect 244. Multiple levels are required for this device, since it is topologically
15 impossible to provide a common drain for multiple channels in a single level.

To inject fluid from one of the input microchannels 232-237 to the reaction

site 246, a higher voltage is applied to the selected input channel so that fluid flows to both the drain 240 and the reaction site 246 for that channel. With this arrangement, reagents supplied through the input channels can be kept only a few microns from the reaction site 246 and at the same time remain clean. The device 5 illustrated in Fig. 22 is a prototype for a general purpose reactant mixing system, but natural extensions of this concept will permit mixing of reagents in any order and any time sequence, and will allow the injection of heat and light at any point in the device through the optically transparent ceiling layer. Any substance that can be synthesized using only liquid ingredients and modification by heat and light could be produced in 10 sub-femtoliter quantities in a device of this type, utilizing the microchannels of the present invention.

TOP SECRET//~~NOFORN~~

Another application of the process of the present invention is the fabrication of microchannels having widths and heights as small as about 10 nm. The controlled fabrication of channels in the form of tubes with such dimensions opens new 15 prospects for science, since the physical characteristics of fluid columns and such thin channels will be different from those in conventional capillaries. Decreased volume-

to-surface-area ratios for small channels means that the interaction between the channel walls and the fluid will be more important, and surface effects will be crucial factors in fluid flow.

Although advanced electron beam lithography can be employed to produce structures having lateral dimensions as small as about 20 nm, two methods for providing microchannels with lateral and vertical dimensions smaller than 10 nm are available using the techniques of the present invention. The first method uses thin film deposition over a step edge so that the lateral dimensions of the microcapillary are determined by the thickness of the film. A second technique uses thermal oxidation of polysilicon to reduce the dimensions of a microchannel which has been defined using conventional lithography.

Figs. 23, 24 and 25 illustrate a step edge deposition technique for fabricating a nanometer scale capillary, or nanochannel. In Fig. 23, a substrate 260, which preferably is a dielectric material such as silicon nitride or silicon dioxide, is patterned, by photolithography or electron beam lithography, and is etched with RIE to produce one or more ridges 262. Such a process provides corners on the ridges

having near atomic sharpness, with the ridges having substantially vertical sidewalls.

Thereafter, a sacrificial layer 264 of a conformal thin film of CVD polysilicon or

amorphous silicon is coated over the patterned silicon base 260. Films as thin as 10

nm can be deposited to a tolerance smaller than 1 nm, and the thickness of the film

5 can be used to control the vertical dimension of a channel in the manner described

above in the previous embodiments. The layer 264 is deposited to a substantially

uniform thickness except in the corners at the bases of the ridges 262, where the

layer accumulates to a greater thickness. In order to establish the lateral dimension

of the capillary, a subsequent unmasked RIE is used to remove the film 264

10 everywhere except where the step in the substrate has caused an increase in the

thickness of the film. This is illustrated in Fig. 24 by the small amount of film

material 266 remaining at the base of each of the ridges 262 after the RIE step. This

remaining material 266 forms thin sacrificial wires that extend along the bases of

each of the ridges and since the film thickness controls the width of the wire and the

15 RIE etch depth controls its height, both dimensions of the wire can be controlled to

dimensions smaller than 10 nm.

Thereafter, a ceiling layer 270 is deposited over the top surface of the substrate 260, covering the ridges 262 and the sacrificial wires 266. Perforations are provided in the layer 270 to permit access to the wires 266, and the sacrificial layer is removed by a wet etch process as previously described. Thereafter, the access holes 5 are closed by a sealing layer to provide enclosed nanochannels. The perforations for removal of the sacrificial layer preferably are made at the ends of the tubes to prevent clogging during the sealing.

A second method for producing nanochannels is illustrated in Figs. 26 and 27, wherein oxidative restriction is used to reduce the size of a sacrificial polysilicon or 10 amorphous silicon wire patterned onto a flat surface. In this process, a wire 280 is formed by depositing a sacrificial layer of polysilicon or amorphous silicon on the top surface of a silicon base 282. The layer has a thickness of approximately 40 nm, and is patterned by conventional electron beam lithography to a lateral dimension of about 40 nm. Thereafter, the patterned wire 280 is subjected to thermal oxidation to 15 reduce the width and height of the wire by consuming silicon from the surface to form a silicon dioxide coating 284, leaving the reduced wire 280 (Fig. 27). The oxide

284 can then be removed, or left in place to serve as the capillary wall and the application of ceiling layers, (if desired), perforations and removal of the sacrificial layer are performed as previously described.

Capillaries having dimensions on the order of 10 nm fabricated by one of the 5 above-described techniques may be used for a wide variety of purposes. The dimensions of the tube are so small that single molecule sensitivity is required to detect fluorescent molecules. The dimensions of such channels are comparable to the average pore size of other porous materials such as gels, and such channels could thus be used as a filter to remove larger molecules from solution. Since the techniques 10 described permit fabrication of channels with a specific depth or width, sophisticated filters can be designed.

A feature of the process of the present invention is that it provides a technique for interconnecting fluidic structures and devices not only with each other, but with non-fluidic devices which maybe fabricated on a common substrate using compatible 15 materials and procedures. One such application of the process described herein is the provision of a microchannel-based fluid flow system having integrated planar

waveguide optics on the same substrate as the fluidic circuitry. Such a unified structure is of vital interest in the development of complex analysis systems on a single chip which will require not only manipulation of fluids but also acquisition and processing of data. Not only is the method of fabricating an integral waveguide 5 structure compatible with the microfabrication process of the invention, but the small dimensions of the fluidic channel fabricated by the present process provides significant advantages over prior optical detection systems for fluid channels. For example, the integral structure and the small size reduces fluorescence background to a degree that will allow, for the first time, fluorescence correlation spectroscopy 10 (FCS) of samples at near biological concentrations, thereby opening the possibility of applying FCS as an analytical tool directly to biological fluids.

An example of a microchannel fluidics system with integrated waveguide optics is illustrated at 300 in Figs. 28 and 29. The system 300 includes a glass substrate 302 on which is deposited a sacrificial layer 304 which is patterned in the 15 shape of a microchannel 305, in the manner described above. A dielectric ceiling layer 306 is placed over the patterned sacrificial layer 304; thereafter, a planar

waveguide 308 is fabricated in the ceiling layer using conventional photolithographic or electron beam lithography techniques as discussed above. The high refractive index ceiling material 306 serves as the optical guide medium. The waveguide is a ridge of the dielectric material 306 formed by etching grooves 310 and 312 on each side of the waveguide 308 during the same etching step in which perforation holes are defined in the ceiling layer 306 for use in removing the sacrificial layer. When the perforations are resealed (as described above), the lower refractive index resealing layer also fills in the grooves 310 and 312 and covers the top surface of the waveguide 308, so that this material surrounds three sides of the waveguide and serves as a cladding for it. The lower index glass substrate 302 provides the fourth wall for the waveguide. Light injection into the waveguide can be obtained directly by end coupling from a light source on the chip, as indicated by arrow 314 in Fig. 28, or can be obtained by patterning a diffractive coupler grating 316 in one of the CVD layers.

With the foregoing fabrication technique, the waveguide 308 is aligned to intersect the microchannel 304 (See Fig. 29), with the intersection of the two micron-

sized fluidic and optical elements defining an interaction region 320 having a sub-femtoliter volume. The optical waveguide may be used to provide light excitation to fluorescent solutions carried in the microchannels 304, as for use in fluorescence correlation spectroscopy.

5 The fabrication of the waveguide proceeds as follows. In a first step, a layer of 250-300 nm thick undoped polysilicon is deposited on a fused silica substrate. Fused silica is used because of its index of refraction, its low defect density, its absence of background fluorescence and its compatibility with CMOS processing rules. The polysilicon is capped with a 100 nm thick layer of thermally grown silicon oxide to be 10 used as a hard mask during the pattern transfer of the first lithography step.

The first lithography step is used to define the future shape of the microfluidic portion of the device. In one embodiment, the tube is 10 micrometers wide across most of the length of the device except in the interaction region where it is narrowed to 1 micrometer. High aspect ratios are directly possible with this method; aspect 15 ratios of up to 100: 1 have been demonstrated. The photolithography is performed on an I-line stepper with final resolution of 0.5 micrometer in 1.2 microns of

photoresist. The pattern is then transferred to the silicon oxide hard mask in a short CHF₃/O₂ dry etch. The resist is then stripped in a 15 minutes O₂ plasma by a barrel etch. The polysilicon is finally patterned using a C1₂/BC1₃/H₂ plasma RIE. This plasma is used to get a high selectivity between oxide and silicon, which avoids overetching into the substrate.

After this, the device is covered by a 1.1 micrometer thick ceiling, or top layer of PECVD silicon dioxide. The temperature and power of the system are tuned to obtain a layer of slightly out of stoichiometry oxide with a refractive index around 1.52. It is this layer that will form the core of the ridge waveguide that will be used for light delivery. All other layers will have a lower index. Because of the lower temperature at which this process is run, special care for the cleanliness of the sample is extremely important.

Once this ceiling layer has been deposited over the patterned sacrificial polysilicon layer, the second level of lithography is performed. The ridge waveguide and the access holes are patterned in two micrometers of photoresist. The access holes are the holes that will be used to give TMAH access to the sacrificial polysilicon

during the final removal step. The pattern is then transferred into the PECVD oxide using again the CHF₃/O₂ plasma RIE. In this step, overetching is not an issue while underetching would prove catastrophic to the device. The photoresist is stripped clean, using a sulfuric/water solution, and a new level of photolithography is

5 performed, this time defining the gratings that will be used to couple light from the laser to the waveguide. After that, the sample is immersed in a hot bath of TMAH for

6 hours to remove the polysilicon and to produce the working gap previously described. The etch rate of the sacrificial layer of polysilicon in TMAH is lower than the bulk value because of its confinement in the microchannel system. The process is

10 partially limited by the time it takes for the chemicals to renew themselves by diffusion out of the capillaries.

In a final deposition step, a 1.5 micrometer thick sealing layer of VLTO oxide is deposited by CVD. This oxide will reseal the access holes and cap the waveguide with a layer of index 1.46, VLTO oxide, which is particularly convenient since the low temperature of the process (475 °C) minimizes the application of thermal stress to the system, and the partial conformality of the VLTO furnace guarantees a good seal of

the access holes. At this point, the system is completely sealed and the working gap cavities are closed.

The final lithography step is to etch final access holes at the extremities of the working gap cavities. For this, 10 micrometers of photoresist is patterned with two 5 large (500 micrometers by 500 micrometers) holes that are etched through the sealing layer and the top, or ceiling layer, to intersect the microchannel in the usual CHF₃/O₂ plasma RIE. The photoresist is then stripped in an O₂ plasma and the device is ready for use.

The foregoing fluidics and optical waveguide system 300 addresses some of 10 the limitations of conventional fluorescence correlation spectroscopy (FCS). First, for a channel having a cross-sectional dimension of 0.1 x 0.1 micrometers, and a mode size at the output of the waveguide of 1.5 micrometers, the interaction volume 320 is as small as 15×10^{-18} liters. This is well below the limits of classical optics to which FCS is subjected. Both the background noise and the average number of molecules in 15 the interaction volume are significantly decreased, compared to conventional FCS, and the decreased interaction volume means that the average number of molecules in

it is significantly decreased. This opens to FCS a new range of reactions to fluorescence correlation spectroscopy studies.

The confinement of a molecule inside a microchannel presents another advantage, for since the flow is fully constrained in the channel, all of the solution is 5 probed. Thus, no molecule will escape detection by diffusing out of the interaction region. This decreases measurement time while maintaining statistical accuracy of the measurement. This is of crucial importance in single molecule sequencing, where the probability of a false negative must be maintained as low as possible.

Figs. 30 and 31 illustrate another example of the use of the process of the 10 present invention in the fabrication of an integrated system 350, wherein an electronic device 352, such as an electrical resistance which may serve as a heater or a sensor, is incorporated in a microchannel structure 354. The system 350 is fabricated on a substrate 356 on which is deposited a floor layer 358 of a permanent 15 material such as a suitable dielectric oxide. The resistor element 352 is positioned on the substrate, and a sacrificial layer 360 (illustrated by dotted lines) is deposited on layer 358, and is patterned as described above to form two chambers 362 and 364,

inlet and outlet microchannels 366 and 368, and connector microchannel 370

extending between chambers 362 and 364. The chamber 362 is further patterned to

include an array of holes 372. Thereafter, a ceiling layer 374, partially cut away in

the illustration of Fig. 30 and omitted from Fig. 31, is deposited over the patterned

5 sacrificial layer and over the portion of layer 358 exposed by the patterning of the

sacrificial layer. The ceiling layer enters the holes 372 to form closely spaced pillars

in chamber 362. Finally, the sacrificial layer is removed, as previously described, to

form the microchannel structure 354 between the floor and ceiling layers 358 and

374, respectively. The pillars form obstacles to fluid flow through chamber 362,

10 acting as a sieve or an artificial gel filter for fluid flowing through the system. The

resistor element is located in chamber 364 and is in contact with the fluid.

The present invention provides a new ability to design and build integrated

fluidic and optical circuits and provides the opportunity for new approaches to single

molecule studies, polymer dynamics, and fluid dynamics. The multilevel microfluidic

15 system is integrated on a single chip and represents a significant contribution towards

a fully integrated chemical reactor. The nanochannel described herein creates an

opportunity to study mesoscopic phenomena in solutions and can be used to study

the behavior of macromolecules in confined spaces. The present invention also

provides the ability to guide light with integrated optics in the same system as a

fluidic system to enable photo-detection, photo-chemistry and spectroscopy to be

5 integrated with complex fluidic and electronic systems, leading to the possibility of a

wide range of analytical devices on a single chip. Although the invention has been

described in terms of preferred embodiments, it will be apparent that numerous

modifications and variations may be made without departing from true spirit and

scope thereof, as set forth in the following claims.

10

15