1. (10 MARKS) Consider a binary classification problem where the data points are two dimensional, i.e., $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ and the labels $y \in \{-1, 1\}$. Throughout this problem consider the following three points:

$$\mathbf{x}_1 = (1,0)^T$$
, $\mathbf{x}_2 = (0,1)^T$, $\mathbf{x}_3 = (2,2)^T$.

4 marks

(a) Suppose that the hypothesis set \mathcal{H} consists of all linear classifiers whose decision boundary is a **horizontal line** in the (x_1, x_2) plane. As one example, the classifier $h(\mathbf{x}) = \text{sign}(-x_2 - 1)$ belongs to the set \mathcal{H} . The decision boundary of $h(\mathbf{x})$ is the dashed horizontal line shown in the figure below. Note that in this classifier all points below this line are classified as $\hat{y} = +1$ while all points above the horizontal line are classified as $\hat{y} = -1$ by the hypothesis $h(\mathbf{x})$

List all dichotomies in $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ that can be achieved. (Recall that a dichotomy in this problem will be a vector of length three whose elements are either +1 or -1, and is achieved by applying some hypothesis in \mathcal{H} to the points \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 in that order.)

What is the VC dimension of \mathcal{H} ? (No justification is needed for this)

4 marks

(b) Suppose that the hypothesis set \mathcal{G} consists of all linear classifiers **passing through the origin**. As one example the classifier $g(\mathbf{x}) = \text{sign}(-x_1 - x_2)$ belongs to the set \mathcal{G} . Its decision boundary is shown by the solid line passing through the origin in the figure below. Note that all points below the decision boundary are classified as $\hat{y} = +1$ and all points above this line are classified as $\hat{y} = -1$.

List all dichotomies in $\mathcal{G}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ that can be achieved.

State without justification the VC dimension of \mathcal{G} .

2 marks

(c) Suppose $\mathcal{M} = \mathcal{H} \cup \mathcal{G}$ is the union of the hypothesis classes in parts (a) and (b). What is the number of dichotomies in $\mathcal{M}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$? Provide a **brief** justification for your answer.

10 marks

3. Suppose we are given a sequence of real numbers: $x_1, x_2, x_3, x_4, \ldots$ where $x_i \in \mathbb{R}$. We observe the following values: $x_1 = -1$, $x_2 = 0$, $x_3 = +1$, $x_4 = +1$.

We wish to select a prediction function of the form $\hat{x_i} = w_0 + w_1 \cdot x_{i-1}$, for $i \ge 2$ that makes a prediction of x_i from the value of x_{i-1} . Our task is to minimize the following in sample training error:

$$E_{\rm in}(\mathbf{w}) = \frac{1}{3} \sum_{i=2}^{4} (\hat{x}_i - x_i)^2.$$

3 marks

(a) Rewrite the above problem specifications to get the problem into the standard form of a least squares problem: $\mathbf{w}^* = \arg\min_{\mathbf{w} \in \mathbb{R}^2} \frac{1}{3} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$. Specifically specify the data matrix \mathbf{X} and the target vector \mathbf{y} , where $\mathbf{w} = (w_0, w_1)^T$.

3 marks

(b) Find the least squares solution $\mathbf{w}^* = (w_0^*, w_1^*)$ in part (a).

4 marks

(c) Redo parts (a) and (b) if the prediction function is of the form $\hat{x_i} = w_1 \cdot x_{i-1}$ i.e., we set $w_0 = 0$.

total/4 Page 7 of 9