FEI - USTHB

L2-ACAD (Section A & C)

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

Exercice 6:

1)
$$L_1 = \{a^n b^p / n - p = 3k / k \in Z\}$$

Exemple: $L_1 = \{ \varepsilon, ab, aabb, aaa, bbb, aaaab, abbbb, aaabbb, abbbbbbb, ... \}$

Remarque : Les mots de L_1 sont composés d'une suite de \mathbf{a} suivie d'une suite de \mathbf{b} où la différence entre le nombre de \mathbf{a} et le nombre de \mathbf{b} est un multiple de 3 (Le nombre de \mathbf{a} peut être supérieur ou inférieur au nombre de \mathbf{b} car $k \in \mathbb{Z}$, i.e. \mathbf{k} peut positif, négatif ou nul).

On a : $n-p=3k / k \in \mathbb{Z}$ ssi (n=3i et p=3j) ou (n=3i+1 et p=3j+1) ou (n=3i+2 et p=3j+2). (Il faudrait que le nombre de **a** et le nombre de **b** aient le même reste de la division sur 3).

Donc, dans les mots de ce langage, il faut que le nombre de $\bf a$ et le nombre de $\bf b$ soient dans l'une des combinaisons suivantes : (3i, 3j) ou (3i+1, 3j+1) ou (3i+2, 3j+2). La première composante de chaque couple représente le nombre de $\bf a$ et la deuxième composante représente le nombre de $\bf b$.

D'où l'automate:

C'est un automate généralisé.

Explication de l'automate: Dans l'état q1, le nombre de **a** est 3i+1 et en transitant vers q3 par **b** le nombre de **b** dans l'état q3 serait 3j+1. Par contre, à l'état q2, le nombre de **a** est 3i+2 et en transitant vers q3 par **bb** le nombre de **b** dans l'état q3 serait 3j+2. Dans l'état q0, le nombre de a est 3i et en transition par le mot vide vers l'état q3, le nombre de b dans l'état q3 serait 3j.

L'automate précédent peut être compacté comme suit :

Remarque: Le langage L_1 peut s'écrire comme suit : $\{a^{3i}wb^{3j} / w = \varepsilon \text{ ou ab ou aabb et i, } j \ge 0\}$.

FEI - USTHB

L2-ACAD (Section A & C)

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

2) Soit MIL(L_1) ={w / $\exists u, v \in \{a, b\}^*$ et uwv $\in L_1$ }

Remarque : $MIL(L_1)$ représente tous les milieux des mots de L_1 . En d'autres termes, les sous mots ou les facteurs des mots de L_1 .

La forme générale des mots de L_1 est la suivante : $a_1...a_k...a_nb_1...b_p$. où pour chaque $a_i / i \in [1,n]$ et chaque $b_j / j \in [1,p]$ et n-p = 3k et $k \in \mathbb{Z}$. Ainsi, les **sous mots** des mots de L_1 sont composés d'une suite aléatoire (éventuellement vide) de **a** suivie d'une suite aléatoire (éventuellement vide) de **b**.

Donc, MIL(L₁) = { $a^i b^j / i, j \ge 0$ }

3) Démontrons que le langage MIL(L₁) est régulier.

Pour démontrer que $MIL(L_1)$ est régulier, il suffit de trouver un automate d'état fini le reconnaissant. Le but de cette question est de construire cet automate à partir de celui de L_1 afin de généraliser le résultat pour un langage régulier quelconque. Notons que l'automate reconnaissant L_1 proposé dans la question précédente est généralisé et ne permet pas d'avoir l'automate de MIL(L1).

Construisons tout **d'abord l'automate simple** reconnaissant le langage L₁.

La construction de l'automate reconnaissant $MIL(L_1)$ se fait à partir de l'automate simple reconnaissant L_1 comme suit :

Les mots de $MIL(L_1)$ sont des sous mots des mots de L_1 qui sont eux même de la forme $\mathbf{a_1...a_k...a_nb_1...b_l...b_p}$ Donc on commencera la lecture des mots de $MIL(L_1)$ à partir de n'importe quel symbole des mots de L_1 . Ainsi, on crée un nouvel état initial qui sera relié à tous les états de l'automate de L_1 (car on ne peut pas avoir plusieurs états initiaux).

Les mots de $MIL(L_1)$ se terminent avec n'importe quel symbole dans les mots de L_1 , donc tous les états de L_1 deviennent des états finaux.

FEI - USTHB

L2-ACAD (Section A & C) **Théor**

Théorie des Langages Série 2

LES AUTOMATES A ETATS FINIS & LANGAGES REGULIERS

Ainsi, l'automate reconnaissant $MIL(L_1)$ est construit à partir de celui reconnaissant (L_1) comme suit :

D'une manière générale, soit l'automate simple et émondé A_1 =(X_1 , Q_1 , $q0_1$, δ_1 , F_1) reconnaissant un langage L_1 . L'automate A=(X, Q, q0, δ , F) reconnaissant le langage MIL(L_1) est défini comme suit :

 $\begin{array}{lll} X = X_1 & /* \ L' \ alphabet \ de \ A \ est \ celui \ de \ A1*/ \\ Q = Q_1 \cup \{q0\} & q0 \not\in Q_1 & /* \ Les \ \'et \ ats \ de \ A1 \ plus \ un \ nouvel \ \'et \ at \ initial \ */ \\ q0 & /* \ Le \ nouvel \ \'et \ at \ initial \ */ \\ F = Q_1 & /* \ Tous \ les \ \'et \ ats \ de \ A1 \ deviennent \ finaux \ */ \\ \delta = \delta_1 \cup \{\delta(q0,\epsilon) = qi \ \forall qi \in Q_1\} \ /* \ On \ maintient \ toutes \ les \ transitions \ de \ A_1 \ et \ on \ leur \ ajoute \ des \ transitions \ reliant \ le \ nouvel \ \'et \ at \ initial \ \grave{a} \ tous \ les \ \'et \ ats \ de \ A_1 \ par \ epsilon \ */ \end{array}$

Remarque: Un automate d'états finis est émondé si tous ses états sont accessibles et co-accessibles