

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Электронные устройства систем управления **Отчет по лабораторной работе №5.**<u>Вариант 6</u>

> Студенты: Евстигнеев Д.М. Яшник А.И. Виноградов С.Д. Группа: R34423 Преподаватель: Николаев Н.А.

Цель работы: ознакомиться с принципами работы широтно-импульсных преобразователей для управления исполнительными элементами автоматических систем.

Выполнение работы:

1) Соберите схему широтно-импульсного преобразователя (Рисунок 1): включите нагрузку (активную, активно-индуктивную) в диагональ транзисторного преобразователя.

Рисунок 1 - Схема широтно-импульсного преобразователя Снимем зависимость напряжения на нагрузке от величины и полярности напряжения на входе.

а. Активная нагрузка:

Pисунок 2 - Γ рафик напряжения на активной нагрузке при Un=5~B

Рисунок 3 - График напряжения на активной нагрузке при Un=2 B

Pисунок 4 - Γ рафик напряжения на активной нагрузке при Un = 0~B

Рисунок 5 График напряжения на активной нагрузке при Un = -5 B

b. Активно-индуктивная нагрузка:

Рисунок 6 График напряжения на активно-индуктивной нагрузке при Un=5

Рисунок 7 График напряжения на активно-индуктивной нагрузке при Un=2 В

Рисунок 8 График напряжения на активно-индуктивной нагрузке при Un = 0

Рисунок 9 График напряжения на активно-индуктивной нагрузке при Un = -5 В

2) Заменим транзисторы комплиментарной парой и рассчитаем значения сопротивлений резисторов R1, R2, R3, R4, Rn.

№ варианта	6
$U_{\mathrm{BX}},\mathrm{B}$	+3; -6
Транзисторы	2N5401/2N5550

$$U_p = 5 \text{ B}, U_{\text{K3}} = 0.6 \text{ B}, h_{21} = 60$$

$$I_{\text{K}} = \frac{U_p - 2 * U_{\text{K3}}}{R_n} = \frac{5 - 2 * 0.2}{60} = 0.063 \text{ A}$$

$$I_6 = \frac{I_{\text{K}}}{h_{21}} = \frac{0.063}{60} = 0.00105 \text{ A}$$

Для ключевого режима возьмем следующее соотношение:

$$I_{\mathrm{би}}=2*0.0013=0.0021\,A$$
 $R_i=rac{U_p-U_{\mathrm{б9}}}{I_{\mathrm{би}}}=rac{5-0.7}{0.0021}pprox2048\,\mathrm{Om}$

Рисунок 10 Схема широтно-импульсного преобразователя

а. Активная нагрузка

Рисунок 11 График напряжения на активной нагрузке при $Un = 3 \ B$

Рисунок 12 График напряжения на активной нагрузке при Un = 0 В

Рисунок 13 График напряжения на активной нагрузке при Un = -6 B

b. Активно-индуктивная нагрузка

Рисунок 14 График напряжения на активно-индуктивной нагрузке при Un = 3~B

Рисунок 15 График напряжения на активно-индуктивной нагрузке при Un = 0~B

Рисунок 16 График напряжения на активно-индуктивной нагрузке при Un = -6~B

3) Соберем классическую схему управления мотором постоянного тока с помощью моста из мощных транзисторов, в диагональ которой включена нагрузка.

Рисунок 17 Схема широтно-импульсного преобразователя с мостом Снимем зависимость напряжения на нагрузке от величины и полярности напряжения на входе.

а. Активная нагрузка

Рисунок 18 График напряжения на активной нагрузке при $Un = 5 \ B$

Рисунок 19 График напряжения на активной нагрузке при Un = 2 B

Pисунок 20 График напряжения на активной нагрузке при $Un=0\ B$

Рисунок 21 График напряжения на активной нагрузке при $Un = -5 \ B$

b. Активно-индуктивная нагрузка

Рисунок 22 График напряжения на активно-индуктивной нагрузке при $Un = 5 \ R$

Рисунок 23 График напряжения на активно-индуктивной нагрузке при $Un=2\ B$

Рисунок 24 График напряжения на активно-индуктивной нагрузке при $Un=0\ B$

Рисунок 25 - График напряжения на активно-индуктивной нагрузке при Un = -5 B

4) Заменим транзисторы комплиментарной парой рассчитаем значения сопротивлений резисторов R1, R2, R3, R4, Rn.

№ варианта	6
$U_{\mathrm{BX}},\mathrm{B}$	+3; -6
Транзисторы	2N5401/2N5550

$$\begin{split} U_p &= 5 \text{ B}, \, U_{\text{\tiny K9}} = 0.6 \text{ B}, \, h_{21} = 60 \\ I_{\text{\tiny K}} &= \frac{U_p - 2 * U_{\text{\tiny K9}}}{R_n} = \frac{5 - 2 * 0.2}{60} = 0.063 \, A \\ I_6 &= \frac{I_{\text{\tiny K}}}{h_{21}} = \frac{0.063}{60} = 0.00105 \, A \end{split}$$

Для ключевого режима возьмем следующее соотношение:

$$I_{\text{би}} = 2*0.0013 = 0.0021\,A$$

$$R_2 = \frac{U_p - 2*U_{\text{бэ}} - U_{\text{кэ}}}{I_{\text{би}}} = \frac{5 - 2*0.6 - 0.6}{0.0021} \approx 1524\,\text{Ом}$$

$$I_{\text{б1}} = \frac{I_6}{h_{21}} = \frac{0.00105}{60} = 0.0000175\,A$$

$$R_1 = \frac{U_p}{I_{\text{б1}}} = \frac{5}{0.0000175} \approx 285714\,\text{Ом}$$

Рисунок 26 Схема широтно-импульсного преобразователя с мостом

а. Активная нагрузка

Рисунок 27 График напряжения на активной нагрузке при $Un = 3 \ B$

Рисунок 28 График напряжения на активной нагрузке при $Un = 0 \ B$

Рисунок 29 График напряжения на активной нагрузке при $Un = -6 \ B$

b. Активно-индуктивная нагрузка

Рисунок 30 График напряжения на активно-индуктивной нагрузке при $Un=3\ B$

Рисунок 31 График напряжения на активно-индуктивной нагрузке при $Un = 0 \ B$

Рисунок 32 График напряжения на активно-индуктивной нагрузке при Un = -6~B

Вывод:

В данной лабораторной работе мы познакомились со схемой и принципами работы широтно-импульсного преобразователя. Были построены схемы ШИМ и рассчитаны их элементы, их работы была продемонстрирована графиками напряжения на активной и активно-индуктивной нагрузке при различных значениях входного напряжения.