大学化学期末复习讲座

期末考完真 轻松 与黑头发无影 踪

仲英学业辅导中心 chungyingxuefu 王逸阳

宗濂71

2019.1.7

化学反应平衡

水溶液中的离子平衡

电化学基础

目录

Content

study

热力学基本概念(有关概念的判断题与填空题)

(重要的基础知识! 对概念的清晰理解会帮助解题)

4.1.1 系统与环境(会考概念题)

封闭系统有()交换,没有()交换

4.1.2 状态与状态量

状态量 又称状态函数

描述系统状态的物理量

数值仅与系统状态有关

温度、压力、体积、内能、焓、熵、吉布斯自由能

焓变、熵变......是状态函数吗?

Stridy

热力学基本概念(有关概念的判断题与填空题)

(重要的基础知识! 对概念的清晰理解会帮助解题)

4.1.3 过程与过程量

过程与途径的关系 由始态变为终态经历的全部过程称为途径 大部分情况下不严格区分过程与途径!

准静态过程 过程中所经历的每一步都是平衡态(都能在p-V图上显示) 无耗散的准静态过程是可逆过程

stridy

热力学基本概念(有关概念的判断题与填空题)

(重要的基础知识! 对概念的清晰理解会帮助解题)

热与功是典型的过程量

热 Q_v Q_p

功 在不做非体积功的情况下 $\delta W = pdV$

盖斯定律适用于所有的过程(×)

盖斯定律不适用于做非体积功的过程

study

热力学基本公式(学粉群里问得很多的几道题)

4.2.1 理想气体状态方程

$$pV = nRT$$

4.2.2 热力学第一定律

$$\Delta U = Q + W$$

4.2.3 热力学第二定律

对可逆过程
$$dS = \frac{\delta Q}{T}$$

焓 熵 吉布斯自由能 (计算题的重点!)

4.3.1 焓

定义来源:等压条件下,不做非体积功的化学反应中的热效应科学家希望定义一个状态函数H,使得 $\Delta H = Q_p$

4.3.2 熵

4.3.3 吉布斯自由能

定义来源:科学家希望衡量等压条件下,不做非体积功的化学 反应中自发性,希望定义一个状态函数G,使得G的变化能作为 自发性判据

注意:标准摩尔生成焓/熵/吉布斯自由能的零点规定!

Stridy

(有可能考的一类计算题)

2017·期中 计算 3

3. 反应 $2AgNO_3(s) = Ag_2O(s) + 2NO_2(g) + \frac{1}{2}O_2(g)$,已知 298K 时数据如下:

物质	AgNO ₃ (s)	$Ag_2O(s)$	$NO_2(g)$	$O_2(g)$
$\triangle_{\mathrm{f}}H^{\theta}_{\mathrm{m}}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	-124.4	-31.1	33.18	0
$S_{m}^{\theta}/J\cdot mol^{-1}$	140.9	121.3	240.06	205.03

- (1) 求该反应在 298 K 时的标准摩尔焓变 $\triangle_r H^\theta_m$,并判断反应是吸热还是放热反应。
- (2) 计算 298 K 时反应的标准摩尔吉布斯焓变 $\triangle_r G^{\theta}_m$,并判断反应在该条件下能否自发进行。
- (3) 试估算在标准状态下,该反应正向自发进行所需要的最低温度。假设反应的 $\triangle_r H^{\theta_m}$ 和 $\triangle_r S^{\theta_m}$ 均不随温度而变化。

Study

学粉群里问得很多的几道题

2017·期中 选择 9

9. 2 mol H₂和 2 mol Cl₂在绝热钢筒内反应生成 HCl 气体, 起始时为常温常压,则()。

A.
$$\triangle_r U = 0$$
, $\triangle_r H = 0$, $\triangle_r S > 0$, $\triangle_r G < 0$

B.
$$\triangle_r U < 0$$
, $\triangle_r H < 0$, $\triangle_r S > 0$, $\triangle_r G < 0$

C.
$$\triangle_{\mathbf{r}}U = 0$$
 $\triangle_{\mathbf{r}}H > 0$, $\triangle_{\mathbf{r}}S > 0$, $\triangle_{\mathbf{r}}G < 0$

D.
$$\triangle_r U > 0$$
, $\triangle_r H > 0$, $\triangle_r S = 0$, $\triangle_r G > 0$

讨论: 高中认为氯气与氢气的燃烧是放热反应,为什么此时焓变大于零呢?

第四章自测题(想不明白就不要想了.....)

7.100kPa下,100℃的 $H_2O(I)$ 在真空容器中蒸发成<mark>同温度的</mark>气态的 H_2O ,则下列不正确的叙述是(AC)

$$A.\Delta U = 0$$
 $B.\Delta G = 0$ $C.\Delta H = Q_V$ $D.\Delta S = Q_r/T$

- 1.此题条件不明确,补充条件"同温度的"
- 2.液体向真空容器蒸发,是一个非准静态过程, 不能用前述方法进行分析
- 3.注意到此题判断的物理量全部为状态函数,状态函数改变量仅与始态与末态有关,因此可以构造
- 一个准静态过程,来判断相关物理量的改变量
- 4.构造可逆蒸发过程 $\Delta G = 0$ $\Delta H = Q_p$ $\Delta U = \Delta H \Delta(pV)$

讨论:显然液体向真空容器中蒸发是自发过程,为什么 $\Delta G = 0$?

求解的一般套路

1.这是化学反应/相变吗?

若没有化学反应和相变,内能仅取决于温度

2.这个过程有什么特征?

等压?等容?绝热?等温?

特定的过程对应着不变量

3.根据不变量推算其他量的变化

定义式与实验定律

学粉群里问得很多的几道题

2017·期中 简答 3

- 3. 一理想气体在 298.15 K 及 200 kPa 压力下分别按下列两种方式膨胀:
- (a)可逆绝热膨胀;
- (b)可逆恒温膨胀。

试填充下表中各热力学量在以上两种过程中的符号(大于0为+,小于0为

	Δ3	ΔH	ΔU	Q	W	ΔΤ	
(a)		-1-1-504					(a)

化学反应平衡

study

(大部分是高中选修4内容)

5.1 标准状态 标准平衡常数 反应商

标准状态没有对温度进行定义 (判断题)

5.2 非标准状态下的吉布斯自由能变

$$\Delta_r G_m^{\theta} = -RT lnK^{\theta}$$

$$\Delta_r G_m = -RT lnK^{\theta} + RT lnJ$$
 (计算题)

化学反应平衡

化学平衡的移动

5.3.1 浓度与压强对化学平衡的影响(不影响K) 改变平衡的方法(会考选择与填空)

实质上是化学平衡的计算(高中知识)(可能考计算题)

5.3.2 温度对化学平衡的影响(影响K)

Van't Hoff方程
$$ln\frac{K_2^{\theta}}{K_1^{\theta}} = \frac{\Delta_r H_m^{\theta}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

重要! 联系 K与ΔH 一般会和第4章相互 联系出题

Arrhenius 方程
$$ln\frac{k_2}{k_1} = \frac{E_a}{R}(\frac{1}{T_1} - \frac{1}{T_2})$$

化学的统一性 帮助理解与记忆

化学反应平衡

(计算题是重点! 但其实没怎么考……)

化学平衡计算问题

第 6 题(14 分) N_2O_4 和 NO_2 的相互转化 $N_2O_4(g)$ \Longrightarrow $2NO_2(g)$ 是讨论化学平衡问题的常用体系。已知该反应在 295K 和 315K 温度下平衡常数 K_p 分别为 0.100 和 0.400。将一定量的气体充入一个带活塞的特制容器,通过活塞移动使体系总压恒为 1bar (1bar= 100 kPa)

- **6-1** 计算 295K 下体系达平衡时 N₂O₄ 和 NO₂ 的分压。
- 6-2 将上述体系温度升至 315K, 计算达平衡时 N₂O₄和 NO₂的分压。
- 6-3 计算恒压下体系分别在 315K 和 295K 达平衡时的体积比及物质的量之比。
- **6-4** 保持恒压条件下,不断升高温度,体系中 NO_2 分压最大值的理论趋近值是多少(不考虑其他反应)?根据平衡关系式给出证明。
- 6-5 上述体系在保持恒外压的条件下,温度从 295K 升至 315K,下列说法正确的是:
 - (a) 平衡向左移动 (b)平衡不移动 (c)平衡向右移动 (d) 三者均有可能
- - (a) 平衡移动程度更大 (b) 平衡移动程度更小 (c)平衡移动程度不变 (d) 三者均有可能

6-1 设体系在 295K(V_1 , T_1)达平衡时, $N_2O_4(g)$ 的分压为 P_1 , $NO_2(g)$ 的分压为 P_2 ,根据所给条件,有 $P_1+P_2=1$ bar (6a)

根据反应式: N₂O₄(g) = 2NO₂(g)和所给平衡常数,有:

$$K_{P(298K)} = (P_2/P_2^{\theta})^2/(P_1/P_1^{\theta}) = 0.100$$
 (6b)

解联立方程 (6a) 和 (6b), 得:

$$P_1 = 0.730 \text{ bar}, P_2 = 0.270 \text{ bar}$$

6-2 315K(V_2 , T_2)下体系达平衡, $N_2O_4(g)$ 的分压为 P_1 , $NO_2(g)$ 的分压为 P_2 , 类似地有:

$$P_1' + P_2' = 1$$
 bar

(6c)

$$K_{P(315K)} = (P_2^{1}/P_2^{0})^2/(P_1^{1}/P_1^{0}) = 0.400$$

(6d)

解联立方程 (6c) 和 (6d), 得:

$$P_1' = 0.537$$
 bar, $P_2' = 0.463$ bar

6-3 $2 \times \Delta n (N_2O_4) = \Delta n (NO_2)$, PV = nRT,

$$\{ \} \colon \ 2 \times (P_1 V_1 / T_1 - P_1 V_2 / T_2) \ / \ R = (P_2 V_2 / T_2 - P_2 V_1 / T_1) \ / \ R$$

$$(2 P_1 + P_2) V_1 / T_1 = (2P_1' + P_2') V_2 / T_2$$

$$V_2/V_1 = T_2/T_1 \times (2P_1 + P_2) / (2P_1^* + P_2^*)$$

因为体系的总压不变,则 $n_2/n_1 = V_2/V_1 \times T_1/T_2 = 1.20 \times 295/315 = 1.12$

6-4 1 bar

由恒压关系(=1bar)和平衡关系,设NO2分压为v.

$$y + y^2/K = 1 \quad \text{BP } y^2 + Ky - K = 0;$$

$$y = \frac{1}{2} (\sqrt{K^2 + 4K} - K) = \frac{1}{2} (\sqrt{(K+2)^2 - 4} - K)$$

当 K+2>>4 时,
$$\sqrt{(K+2)^2-4}\approx K+2$$
, 此时 $y=1$

6-5 c

6-6 a

因为平衡常数随温度升高而增大,恒容条件下升温平衡向右移动,从而导致体系总压增大,此时若要保 持恒压,则需要增大体积,而体积增大会促使反应向生成更多气体物质的量的方向移动,即促使平衡进 一步向右移动。

水溶液中的离子平衡 知识框架

酸碱平衡

酸碱滴定

配位平衡

配位滴定

沉淀平衡

沉淀滴定

氧化还原平衡

电化学基础

水溶液中的离子平衡

stridy

酸碱平衡

重点是pH的计算

一元强酸的解离 能不能忽略水的电离? 浓度不能太低

一元弱酸的解离 能不能忽略水的电离? K_a 不能太低

能不能忽略电离部分的减少? 浓度不能太低

二元弱酸的解离 能不能忽略水的电离? K_a 不能太小

能不能忽略电离部分的减少? 浓度不能太低

能不能忽略第二级的电离? 两级电离常数 不能相差太小

学业辅导中心

水溶液中的离子平衡

study

酸碱平衡

缓冲溶液pH的计算

共轭酸碱对组成的缓冲体系

原理:兵来将挡,水来土掩

$$pH = pK_a + lg\frac{c(A^-)}{c(HA)}$$

水溶液中的离子平衡 配位平衡

5.2 逐级/累积稳定常数

明确定义,不太可能考计算

逐级稳定常数多而复杂

图 4-7 Cu2+和 NH3 配位各种型体的分布

各级稳定常数之间相差不大,以至于计算时每一级都不能忽略 溶液中往往是各种配离子共存,每一种配离子浓度都不小

水溶液中的离子平衡

study

沉淀平衡

明确溶度积定义,掌握计算

同离子效应与盐效应

2016上·期末 填空14

 $Pb(OH)_2$ 在水中的溶解度为() $K_{sp,Pb(OH)_2} = 4 \times 10^{-15}$

 $Fe(OH)_3$ 在水中的溶解度为() $K_{sp,Fe(OH)_3} = 3 \times 10^{-39}$

水溶液中的离子平衡

沉淀平衡

沉淀的溶解、转化、分步平衡

实质是平衡的耦合

在任何条件下,沉淀都只能从 K_{sp} 大的物质向 K_{sp} 小的物质转化(\times)

$$BaSO_4(s) \Longrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$$
 $Ba^{2+}(aq) + CO_3^{2-}(aq) \Longrightarrow BaCO_3(s)$
总反应 $BaSO_4(s) + CO_3^{2-}(aq) \Longrightarrow BaCO_3(s) + SO_4^{2-}(aq)$
 $K = \frac{[SO_4^2]}{[CO_3^2]} = \frac{K_{sp}(BaSO_4)}{K_{sp}(BaCO_3)} = \frac{1.08 \times 10^{-10}}{2.58 \times 10^{-9}} = \frac{1}{24}$

这个沉淀转化平衡常数 K 并不大,转化不会彻底。但此 K 又不是太小,只要设法使 $[CO_3^{*-}]$ 比 $[SO_4^{?-}]$ 大 24 倍以上,这个转化就可能实现。实际操作可用饱和 Na_2CO_3 溶液处理 $BaSO_4$ 沉淀,待搅拌达平衡后,取出上层溶液,然后再加入新鲜饱和的 Na_2CO_3 溶液,重复处理多次 $BaSO_4$ 可全部转化为 $BaCO_3$;然后加入 HCl, Ba^{2+} 即转入溶液中。

电化学基础 化学反应的统一性

酸碱平衡 反应实质是质子的转移

配位平衡 反应实质是配体的转移

氧化还原平衡 反应实质是电子的转移

三种反应类型实际上是相同的

电化学基础

7.1 电池与电极电势

特别注意电池符号的书写(会考填空题)

7.2 原电池热力学

 $\Delta G = W'$ 关系式可从热力学第一定律和第二定律导出:

第一定律的数学式

若是等温可逆过程,则做功最大

体系所做的功在等压条件下可以分为体积功及其他功

 $\mathbf{H}(5.7)$ 式 $\Delta H = \Delta U + p \Delta V$ 代入得

由第二定律知 $Q_r = T\Delta S$ (等温),代入得

将(5.13)式 $\Delta G = \Delta H - T \Delta S$ 代人得

$$\Delta U = Q + W$$

$$\Delta U = Q_r + W$$

$$\Delta U = Q_r - p\Delta V + W'$$

$$\Delta H = Q_r + W'$$

$$\Delta H = T\Delta S + W'$$

 $\Delta G = W'$ (等温、等压)

电化学基础

(选择、填空、计算都有可能出题)

$$\Delta G = W = -nFE$$

$$\Delta G^{\theta} = W = -nFE^{\theta}$$

重要! 联系 Ε与 Δ G 一般会和第4、5章相互 联系出题

2015 期末 计算 4

- 5. 在 298 K,pH = 1.0,把电对 Cl_2/Cl^- 和 MnO_4 / Mn^{2+} 组成原电池,其它电极物质处于标准态。已知 $E^\Theta(MnO_4$ / $Mn^{2+})=1.507$ V, $E^\Theta(Cl_2/Cl^-)=1.358$ V。(F=96485 C·mol $^{-1}$)
 - (1) 写出该原电池的电极反应式、电池反应式和电池符号;
 - (2) 计算原电池的电动势 E;
 - (3) 求电池反应的 **Δ**, **G**^Θ_m 和 **K**^Θ

电化学基础 (选择、填空、计算都有可能出题)

7.3 Nernst方程 (一定会考!)

电池反应
$$E = E^{\theta} - \frac{RT}{nF} lnJ$$

电极反应
$$E = E^{\theta} + \frac{RT}{nF} ln \frac{(ox)^n}{(red)^m}$$

其实质为 $\Delta_r G_m = -RT ln K^{\theta} + RT ln I$

2016·下期末 计算 4 已知 $E_{Aq}^{\theta}+/Aq$, K_{sp} , 求 $E_{AgCl/Ag}^{\theta}$

已知
$$E_{Fe^{3+}/Fe^{2+}}^{\theta}$$
, $K_{f,Fe(phen)_3^{3+}}$, $K_{f,Fe(phen)_3^{2+}}$, 求 $E_{Fe(phen)_3^{3+}/Fe(phen)_3^{2+}}$

电化学基础 (选择、填空、计算都有可能出题)

7.3 Nernst方程 (一定会考!)

电池反应
$$E = E^{\theta} - \frac{RT}{nF} lnJ$$

电极反应
$$E = E^{\theta} + \frac{RT}{nF} ln \frac{(ox)^n}{(red)^m}$$

为构造浓差电池提供了可能!

电池的总反应一定是氧化还原反应 (X)

总反应没有发生化学反应,也能构造原电池

电化学基础

Study

(一定会考一道计算题)

第3題(10分)已知。

$$H_2S$$
 水溶液的酸式解离常数 $K_1 = 1.1 \times 10^{-7}$, $K_2 = 1.3 \times 10^{-13}$.

ZnS 的溶度积常数
$$K_{pp} = 2.5 \times 10^{-22}$$
,
CuS $K_{pp} = 6.3 \times 10^{-36}$,

$$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$$
 $E^0 = 0.957 V$
 $S + 2H^+ + 2e^- \longrightarrow H_2S$ $E^0 = 0.142 V$
 $S + 2e^- \longrightarrow S^{2-}$ $E^0 = -0.476 V$

3-1 ZnS 可以溶于稀盐酸,反应式为

$$ZnS + 2H^* = Zn^{2*} + H_2S$$

拟将 0.010 mol ZaS 溶于 1 升盐酸中,求所需盐酸的量低浓度。

3-2 CuS 可以溶于 HNO3,反成式为

电化学基础

其他细碎知识点

7.4 超电势

电解时,因为不知道什么原因而需要的额外电势

后来对超电势的解释……

2016上·期末 填空 27

电镀锌时,被镀工件作为阴极,此时尽管 $E_{Zn^+/Zn}^{\theta}$ 较 E_{H^+/H_2}^{θ} 更负,但镀件表面通常并不析出氢气,其原因是()

氢存在较大的超电势

7.5 金属的腐蚀与防护(要看书!)

2016上·期末 选择

- 24. 暴露在一般大气中的钢铁材料的腐蚀,主要是: (
- A.化学腐蚀 B. 吸氧腐蚀 C. 析氢腐蚀 D. 吸氧与析氢腐蚀
- 25. 为防止碳钢船体外表面海水腐蚀,其中哪一种保护措施是水正确的:(
 - A.涂漆
- B. 船体外挂 Zn 块
- C. 外加电流阴极保护 D. 外加电流阳极保护

2016下·期末 选择

20. 金属表面因其吸附的氧气分布不均匀而被腐蚀时,金属溶解处的氧气浓度和该处氧 电对的电极电势的大小相对其他区域各为

- A. 较大和较小 B. 较小和较大 C. 较大和较大 D. 较小和较小

线性代数/理论力学考完该如何复习大学化学呢?

知识都明白了吗? 课后题明白了吗? 辅导书自测题做了吗? 辅导书往年题做了吗? 都做完了,那就再串一遍知识吧

最后, 祝大家取得好成绩啦~

仲英书院学业辅导中心

学粉群4.1 928740856

仲英学业辅导中心 chungying-xuefu

