Стохастическое решение уравнений Больцмановского типа: наихудший случай

Советкин Евгений Алексеевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Некруткин В.В. Рецензент: к.ф.-м.н., доц. Голяндина Н.Э.

Санкт-Петербург 2013

Однородное уравнение Больцмановского типа

- ullet Параметры: четвёрка $(E,\mathcal{E},T,arphi)$.
 - (E, \mathcal{E}) фазовое пространство;
 - $T(dx; u_1, u_2)$ ударная трансформанта;
 - φ вероятностная мера.
- Обозначение:

$$\mathbf{T}(\mu_1, \mu_2)(dx) = \int_{E^2} T(dx; u_1, u_2) \,\mu_1(du_1) \,\mu_2(du_2);$$

• Уравнение:

$$\frac{d\varphi_t}{dt} = \mathbf{T}(\varphi_t, \varphi_t) - \varphi_t, \quad \varphi_0 = \varphi;$$

• Единственное положительное решение — вероятностная мера.

Применение: механика, физика, химия и пр.

Постановка задачи

Рассматриваются: случайные (n,1)- и (n,2)- процессы и системы.

Обозначения:

- $\mu_r^{(n)}(t)$ распределение r координат n-мерного аппроксимирующего процесса/системы;
- $\varphi_t^{\otimes r} r$ -кратное произведение решения уравнения.

Известно: (условия) $\operatorname{Var}\left(\mu_r^{(n)}(t)-\varphi_t^{\otimes r}\right)\to 0$ при $n\to\infty$ при любых t и r.

Задача: построить такую оценку сверху

$$\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right) \leqslant u(n, r, t),$$

которая достигается при любых $n,\,t$ и r для некоторой четвёрки $(E,\mathcal{E},T,\varphi).$

Разложение Вальда

Разложение Вальда решения уравнения: $r\geqslant 1$,

$$\varphi_t^{\otimes r} = \sum_{p=0}^{\infty} C_{p+r-1}^p e^{-rt} (1 - e^{-t})^p \mathbf{D}_{p,p+r},$$

где $\mathbf{D}_{p,p+r}$ распределения, связанные с бинарными деревьями.

Пример:
$$r=1$$
, $\mathbf{D}_{p,p+1}=rac{1}{p!}\sum_{\delta\in M_{p,p+1}}B_{\delta}$, δ — бинарные деревья.

Бинарное дерево $\delta = (\,\cdot\,2\,(\,\cdot\,1\,\cdot\,))$

Mepa
$$B_{\delta} = \mathbf{T}(\mathbf{T}(\varphi, \varphi), \varphi)$$

(n,1)-процесс. Определение

 $\xi^{(n)}(t)$ — скачкообразный марковский процесс в (E^n,\mathcal{E}^n) .

•
$$\mathcal{L}(\xi^{(n)}(0)) = \varphi^{\otimes n};$$

- ullet скачки через $\mathrm{Exp}(n)$;
- Столкновения: выбор двух «частиц».

Столкновение

Процесс определяется по четвёрке $(E,\mathcal{E},T,\varphi).$

(n,1)-процесс. Разложение распределений

Пусть
$$L=\{1,\ldots,r\}$$
 и $\xi_L^{(n)}(t)\stackrel{\mathrm{def}}{=} \left(\xi_1^{(n)}(t),\ldots,\xi_r^{(n)}(t)\right)^{\mathrm{T}}.$

Результат [Nekrutkin and Tur, 1997]:

$$\mathcal{L}(\xi_L^{(n)}(t)) = \sum_{p=0}^{n-r} C_{p+r-1}^p \alpha_r(n, p, p+r) e^{-rt} (1 - e^{-t})^p \mathbf{D}_{p, p+r} + p_{\mathbb{NT}} \mathbf{D}_{\mathbb{NT}},$$

где

- $\mathbf{D}_{p,p+r}$ из разложения Вальда;
- ullet α_r известны;
- $0 \leqslant p_{\mathbb{NT}} \leqslant 1$;
- $oldsymbol{ ext{0}}$ $oldsymbol{ ext{D}}_{\mathbb{N}\mathbb{T}}$ некоторое распределение.

(n,1)-процесс. Результаты о погрешностях

В работе на основе этого разложения доказаны следующие утверждения.

Предложение

Существуют такие вероятностные меры \mathbf{G}_1 и \mathbf{G}_2 , что

$$\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right) = p_{\mathbb{N}\mathbb{T}} \operatorname{Var}\left(\mathbf{G}_1 - \mathbf{G}_2\right),$$

причём $p_{\mathbb{NT}}$ не зависит от четвёрки $(E, \mathcal{E}, T, \varphi)$.

Следствие

Имеет место оценка $\mathrm{Var}\left(\mu_r^{(n)}(t)-\varphi_t^{\otimes r}\right)\leqslant p_{\mathbb{NT}}.$ Оценка достигается тогда и только тогда, когда $\mathrm{supp}\,\mathbf{G}_1\cap\mathrm{supp}\,\mathbf{G}_2=\varnothing.$

(n,1)-процесс. Основной результат

Предложение

Существует такая четвёрка $(E,\mathcal{E},T,arphi)$, что для любых n,t и r

$$\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right) = p_{\mathbb{NT}},$$

где

$$p_{\mathbb{NT}} = 1 - \sum_{p=0}^{n-r} \alpha_r(n, p, p+r) C_{p+r-1}^p e^{-rt} (1 - e^{-t})^p,$$

И

$$\alpha_r(n,p,p+r) = \prod_{i=r-1}^{p+r-2} \left(1 - \frac{i}{n-1}\right).$$

(n,1)-процесс. Иллюстрация

Оценка сверху величины $\mathrm{Var}\left(\mu_1^{(n)}(t)-arphi_t
ight)$ для (n,1)-процесса

(n,1)-системы. Определение. Известные результаты

Определение:

- ullet Вложенная в (n,1)-процесс марковская цепь $\eta^{(n)} = \left\{ \eta_i^{(n)}
 ight\};$
- Число скачков au_n независимо от $\eta^{(n)}$. f_n производящая функция au_n ;
- ullet Тогда $\zeta^{(n)} = \eta^{(n)}_{ au_n} (n,1)$ -система.

Известные результаты ([Nekrutkin, 2000]):

- 1. Если $\tau_n/n \xrightarrow{\mathrm{w}} \mathcal{P}$, то $\mathcal{L}(\zeta_L^{(n)}) \xrightarrow{\mathrm{Var}} \int_0^\infty \varphi_t^{\otimes r} \mathcal{P}(dt)$.
- 2. Разложение

$$\mathcal{L}(\zeta_L^{(n)}) = \sum_{p=0}^{n-r} C_{p+r-1}^p \alpha_r(n, p, p+r) \,\omega(p, n, r) \,\mathbf{D}_{p, p+r} + p_{\mathbb{NT}} \,\mathbf{D}_{\mathbb{NT}}',$$

где
$$\omega(p,n,r) = \sum_{j=0}^{p} (-1)^{j} C_{p}^{j} f_{n} (1-(r+j)/n).$$

(n,1)-системы. Полученные результаты

Основной результат.

Предложение

Для любой (n,1)-системы существует такая функция u(n,r,t), не зависящая от четвёрки $(E,\mathcal{E},T,\varphi)$, что

$$\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right) \leqslant u(n, r, t),$$

причём это неравенство превращается в равенство при любых $n,\ r$ и t для некоторой четвёрки $(E,\mathcal{E},T,\varphi).$

Вычислительные особенности.

- $f_n(x) = \exp(\lambda t(x-1))$ Пуассоновский случай удобно для вычислений;
- $f_n(x) = m$ константный случай рекуррентная процедура.

(n,1)-системы. Иллюстрации

Константный случай. $m=\lfloor nt \rfloor\,,\,\,r=1$

Пуассоновский случай. $\lambda=n-1,\ r=1$

(n,2)-процесс. Определение

2-х частичная ударная трансформанта: $T_2(du_1 \times du_2; \, v_1, v_2)$. Условия:

$$T_2(A_1\times A_2;v_1,v_2)=T_2(A_2\times A_1;v_1,v_2)=T_2(A_1\times A_2;v_2,v_1),$$
 и $T(dx;v_1,v_2)=T_2(dx\times E;v_1,v_2).$

 $\xi^{(n)}(t)$ — скачкообразный марковский процесс в (E^n,\mathcal{E}^n) :

- $\mathcal{L}(\xi^{(n)}(0)) = \varphi^{\otimes n};$
- скачки через Exp(n/2);
- Столкновения: выбор двух «частиц».

Столкновение

(n,2)-процесс. Полученные результаты

Полученные результаты (сводка):

- ullet Исправлен вид разложения распределения $\mathcal{L}ig(\xi_L^{(n)}(t)ig)$ из статьи [Иванов et al., 1996];
- Доказано, что при этом результат $\mathcal{L}(\xi_I^{(n)}(t)) \xrightarrow{\operatorname{Var}} \varphi_t^{\otimes r}$, анонсированный в [Иванов et al., 1996], остаётся верным;
- ullet Получена оценка сверху погрешности $\mathrm{Var}\left(\mu_r^{(n)}(t)-arphi_t^{\otimes r}
 ight)$;
- Доказано, что эта оценка является достижимой.

(n,2)-системы. Определение

Определение.

- ullet Вложенная в (n,2)-процесс марковская цепь $\eta^{(n)} = \left\{ \eta_i^{(n)}
 ight\};$
- Число скачков au_n независимо от $\eta^{(n)}$. f_n производящая функция au_n ;
- ullet Тогда $\zeta^{(n)}=\eta^{(n)}_{ au_n}-(n,2)$ -система.

Частный случай: $au_n \sim \Pi(nt/2) - (n,2)$ -процесс.

(n,2)-системы изучались в [Nekrutkin and Romkin, 2002].

(n,2)-системы. Полученные результаты

Полученные результаты (сводка):

- ullet Исправлен вид разложения распределения $\mathcal{L}ig(\xi_L^{(n)}(t)ig)$ из статьи [Nekrutkin and Romkin, 2002];
- Доказано, что при этом основной результат статьи

Предложение

Если
$$2\tau_n/n \xrightarrow{\mathrm{w}} \mathcal{P}$$
, то $\mathcal{L}(\zeta_L^{(n)}) \xrightarrow{\mathrm{Var}} \int\limits_0^\infty \varphi_t^{\otimes r} \mathcal{P}(dt)$.

остаётся верным;

- ullet Получена оценка сверху погрешности $\mathrm{Var}\left(\mu_r^{(n)}(t)-arphi_t^{\otimes r}
 ight)$;
- Доказано, что эта оценка является достижимой.

Заключение

Полученные результаты:

ullet (n,1)- и (n,2)-процессы и системы: получена оценка

$$\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right) \leqslant u(n, r, t),$$

не зависящая от $(E, \mathcal{E}, T, \varphi)$;

- построены $(E, \mathcal{E}, T, \varphi)$, для которых оценка достигается;
- (n,2)-процессы и системы: исправлен вид разложения распределения $\mu_r^{(n)}(t)$.

Приложение. Интерпретация погрешности

Интерпретация погрешности $\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right)$:

$$\operatorname{Var}\left(\mu_r^{(n)}(t) - \varphi_t^{\otimes r}\right) = \frac{1}{2} \sup_{|f| \leqslant 1} \left| \int f \, d\mu_r^{(n)}(t) - \int f \, d\varphi_t^{\otimes r} \right|.$$

Задача оценивания $\int f \, d \varphi_t.$ Оценка $\sum_{i=1}^n f(\xi_i^{(n)}(t))/n.$

$$r=1$$
: $\mathrm{Var}\left(\mu_1^{(n)}(t)-arphi_t
ight)$ — максимальное смещение.

Приложение. Сравнения аппроксимаций

(n,1)-системы и процесс. $n=150,\ r=1$

