Alpaca API Trading

Selected 4 assets to construct a portfolio, namely, Apple stocks and 3 other ETF securities, SPDR S&P 500 ETF Trust, Vanguard 500 Index Fund ETF and Vanguard Total Bond Market Index Fund ETF.

```
In [70]: #imported libraries
         import requests
         import json
         import pandas datareader as web
         import pandas as pd
         import numpy as np
         import datetime
         import yfinance as yf
         import scipy
         from scipy.optimize import minimize
         import matplotlib.pyplot as plt
         import mplfinance as fplt
In [71]:
         #called data for Adjusted Closing price of assets.
         def get data(tickers):
             df = yf.download(tickers)["Adj Close"]
             df.columns = tickers
             df.ffill().dropna(inplace = True)
             return(df)
```

```
In [72]: #called Alpaca Broker API
         API KEY = "PKAFXSUMNDHG6RKLUCAF"
         SECRET KEY = "ZSMYUTPibqRt8aBkx9bI785e5x4ryRcNLMafD4Fi"
         BASE URL = "https://paper-api.alpaca.markets"
         ACCOUNT URL = BASE URL + "/v2/account"
         ORDERS URL = BASE URL + "/v2/orders"
         def stocks(symbol, quantity, side, type , time in force):
             stocks data = {
                     "symbol": symbol,
                     "qty": quantity,
                     "side": side,
                      "type": type ,
                     "time in force": time in force
             response = requests.post(ORDERS URL, data=json.dumps(stocks data), headers= {"ALPCA-API-KEY-ID": API KEY,
                  'APCA-API-SECRET-KEY': SECRET KEY})
             return json.loads(response.content)
In [73]: tickers = ["SPY", "BND", "VOO", "AAPL"]
In [74]: #created a function with equal weights for all securities.
         def equal weight(tickers):
             optimal = [1/len(tickers) for i in range(len(tickers))]
             return optimal
In [75]: #calculated returns
         df stocks = get data(tickers)
         returns = np.log(df_stocks / df_stocks.shift(1))
         returns
```

[******** 4 of 4 completed Out[75]: **AAPL** SPY BND VOO Date 1980-12-12 NaN NaN NaN NaN **1980-12-15** -0.053581 NaN NaN NaN **1980-12-16** -0.076231 NaN NaN NaN 1980-12-17 0.024450 NaN NaN NaN 1980-12-18 0.028580 NaN NaN NaN 0.023887 0.004389 2024-01-08 0.014175 0.014202 **2024-01-09** -0.002266 -0.000137 -0.001518 -0.002433 **2024-01-10** 0.005655 -0.001781 0.005639 0.006575 **2024-01-11** -0.003228 0.005197 -0.000441 -0.000343 **2024-01-12** 0.001777 0.002044 0.000692 0.000457

10862 rows × 4 columns

In [76]: df_stocks

	SPY	BND	VOO	AAPL
Date				
1980-12-12	0.099319	NaN	NaN	NaN
1980-12-15	0.094137	NaN	NaN	NaN
1980-12-16	0.087228	NaN	NaN	NaN
1980-12-17	0.089387	NaN	NaN	NaN
1980-12-18	0.091978	NaN	NaN	NaN
2024-01-08	185.559998	73.070000	474.600006	436.130005
2024-01-09	185.139999	73.059998	473.880005	435.070007
2024-01-10	186.190002	72.930000	476.559998	437.940002
2024-01-11	185.589996	73.309998	476.350006	437.790009
2024-01-12	185.919998	73.459999	476.679993	437.989990

10862 rows × 4 columns

Out[76]:

```
In [77]: #Mean Continuously Compounding returns
for ticker in tickers:
    df_stocks[f'{ticker}_CC_returns'] = np.log(np.array(df_stocks[ticker][1:])/df_stocks[ticker][:-1])
    df_stocks[f'{ticker}_mean_CC_return'] = np.mean(df_stocks[f'{ticker}_CC_returns'][:-1])

    plt.figure(figsize=(12,6))
    plt.plot(f'{ticker}_CC_returns', data=df_stocks[:-1])
    plt.plot(f'{ticker}_mean_CC_return', 'r--', data=df_stocks[:-1])
    plt.ylabel('CC Return')
    plt.legend(('CC Return', 'Mean'))
    plt.title(f'Daily CC Return of {ticker} with Mean CC Return')
    plt.show()
```


Out[78]:					Adj Close				Close		High	•••	
		AAPL	BND	SPY	voo	AAPL	BND	SPY	voo	AAPL	BND	•••	
	Date												
	2014- 01-02	17.318729	61.362770	152.669144	140.151871	19.754642	80.120003	182.919998	167.630005	19.893929	80.180000		182.479
	2014- 01- 03	16.938303	61.370464	152.644104	140.026443	19.320715	80.129997	182.889999	167.479996	19.775000	80.209999		182.63(
	2014- 01- 06	17.030672	61.424118	152.201782	139.675293	19.426071	80.199997	182.360001	167.059998	19.528570	80.260002		182.08(
	2014- 01-07	16.908875	61.500637	153.136520	140.544861	19.287144	80.300003	183.479996	168.100006	19.498571	80.300003	•••	182.949
	2014- 01-	17.015959	61.301517	153.169937	140.603333	19.409286	80.040001	183.520004	168.169998	19.484285	80.160004		182.889

5 rows × 24 columns

80

```
In [79]: # Candle Stick Plot to analyse the trend in securities' prices.
         for ticker in tickers:
             df ticker = pd.DataFrame({
                  'Open': assets['Open', ticker],
                  'Close': assets['Close', ticker],
                  'High': assets['High', ticker],
                  'Low': assets['Low', ticker],
                  'Volume': assets['Volume', ticker],
             })
             fplt.plot(
                 df_ticker,
                 type='candle',
                 title=f'{ticker}',
                  style='charles',
                 ylabel='Price ($)',
                 volume=True,
                 ylabel_lower='Shares\nTraded',
                 show nontrading=True,
                  warn too much data=len(df ticker),
```



```
In [80]: #calculated minimum variance portfolio with the 4 securities.
         def minimum variance(returns):
              def find port variance(weights):
                  # this is actually std
                  cov = returns.cov()
                  port var = np.sqrt(np.dot(weights.T, np.dot(cov, weights)) * 250)
                  return port var
              def weight cons(weights):
                  return np.sum(weights) - 1
              bounds \lim = [(0, 1) \text{ for } x \text{ in } range(len(returns.columns))] # change to (-1, 1) if you want to short
              init = [1/len(returns.columns) for i in range(len(returns.columns))]
              constraint = {'type': 'eq', 'fun': weight cons}
              optimal = minimize(fun=find port variance,
                                 x0=init,
                                 bounds=bounds lim,
                                 constraints=constraint,
                                 method='SLSOP'
             return list(optimal['x'])
In [81]:
         equal w=equal weight(tickers)
         equal w
         [0.25, 0.25, 0.25, 0.25]
Out[81]:
In [82]: min var w=minimum variance(returns)
         min var w
```

```
Out[82]: [0.00018777827990091746,
          0.9188034851392441,
          0.06292607821418948.
          0.0180826583666655221
         minVarWeights = get_minimum_variance_weights(tickers) minVarWeights
         #created a function to purchase the correct amount of assets based on the minimum variance portfolio with Broker!
In [83]:
         tickers = ["SPY", "BND", "VOO", "AAPL"]
         df stocks = get data(tickers)
         minVarWeights = min var w
         r = requests.get(ACCOUNT URL, headers = { 'APCA-API-KEY-ID': API KEY,
                                                 'APCA-API-SECRET-KEY': SECRET KEY})
         info = json.loads(r.content)
         accountval = float(info["cash"])
         shares = []
         for i, symbol in enumerate(tickers):
             weight = minVarWeights[i]
             price = df stocks[symbol][-1]
             gty = (weight*accountval)/price
             qty = qty//1
             shares.append(qty)
         #purchase
         for i, symbol in enumerate(tickers):
             qty = shares[i]
             stocks(symbol, qty, "buy", "market", "gtc")
         [******** 4 of 4 completed
In [84]:
         #number of shares to be purchased based on the above assessment for minimum variance portfolio
         shares
Out[84]: [0.0, 23.0, 0.0, 0.0]
```

As per our analysis we need to purchase, 0 SPY, 1252 BND, 13 VOO and 4 AAPL, number of securities for minimum variance portfolio.