CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R's language

- Approach to come: Convert R to a finite automaton FA and see whether s is accepted by FA
 - Details: Convert R to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
 - which enjoys a fast acceptance algorithm

Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - > Easy to implement acceptance check
 - (Almost) all examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - A DFA is a specific kind of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- ▶ aba
- ababa
 ✓
 - Has paths to states S0, S1
 - Need to use ε-transition

NFA and DFA for (ab|aba)*

Quiz 1: Which string is **NOT** accepted by this NFA?

Quiz 1: Which string is **NOT** accepted by this NFA?

Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple (Σ, Q, q_0 , F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - F ⊆ Q is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - \triangleright What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- F = {S1}
- $\delta =$

		symbol	
		0	1
input state	S0	S0	S1
	S1	S0	S1


```
or as { (S0,0,S0),
 (S0,1,S1),
 (S1,0,S0),
 (S1,1,S1) }
```

Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA


```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                         printf("rejected\n"); return 0;
              default:
           break;
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
              default:
                         printf("rejected\n"); return 0;
            break;
   default: printf("unknown state; I'm confused\n");
            break;
```

CMSC330 Summer 2025

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q_0, F, \delta) of a DFA: let q = q_0 while (there exists another symbol \sigma of the input string) q := \delta(q, \sigma); if q \in F then accept else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

CMSC330 Summer 2025 15

Nondeterministic Finite Automata (NFA)

- ▶ An *NFA* is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ specifies the NFA's transitions

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - > Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s
- Example
 - After processing "a"
 - > NFA may be in states

S1

S2

S3

- > Since S3 is final, s is accepted
- Algorithm is slow, space-inefficient; prefer DFAs!

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them

Reducing Regular Expressions to NFAs

- Goal: Given regular expression *A*, construct NFA: $\langle A \rangle = (\Sigma, \mathbb{Q}, \mathbb{q}_0, \mathbb{F}, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - > Recall F = set of final states
- Will define <A> for base cases: σ, ε, Ø
 - Where σ is a symbol in Σ
- ► And for inductive cases: AB, AB, AB, A*

Reducing Regular Expressions to NFAs

Base case: σ

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where Σ is the alphabet Q is set of states q_0 is starting state F is set of final states δ is transition relation

$$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$$

(Σ , Q, q_0 , F, δ)

Reduction

Base case: ε

$$\langle \epsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where

Σ is the alphabet

Q is set of states

q₀ is starting state

F is set of final states

δ is transition relation

▶ Base case: Ø

$$<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

▶ Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Union

▶ Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

Reduction: Closure

▶ Induction: A*

• $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$

Reduction: Closure

▶ Induction: A*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$ $\delta_A \cup \{(f_A,\epsilon,S1), (S0,\epsilon,q_A), (S0,\epsilon,S1), (S1,\epsilon,S0)\})$

Quiz 2: Which NFA matches a*?

Quiz 2: Which NFA matches a*?

Quiz 3: Which NFA matches a|b*?

Quiz 3: Which NFA matches a|b*?

RE → NFA

Draw NFAs for the regular expression (0|1)*110*

Recap

- Finite automata
 - Alphabet, states...
 - $(\Sigma, Q, q_0, F, \delta)$
- Types

Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation

Closure

CMSC330 Summer 2025

Reduction Complexity

▶ Given a regular expression A of size n...

```
Size = # of symbols + # of operations
```

- How many states does <A> have?
 - Two added for each |, two added for each *
 - O(n)
 - That's pretty good!

Reducing NFA to DFA

Why NFA → DFA

▶ DFA is generally more efficient than NFA

Language: (a|b)*ab

Why NFA → DFA

- DFA has the same expressive power as NFAs.
 - Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, Q, q₀, F, δ). There exists a DFA D= (Σ, Q', q'₀, F', δ') that also accepts L. (L(N) = L(D))
- NFAs are more flexible and easier to build. But DFAs have no less power than NFAs.

NFA ↔ DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - > Each DFA state represents a set of NFA "current states"
- Example

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states.
- Algorithm
 - Input
 - \rightarrow NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - \rightarrow DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - \triangleright ε-closure(δ, p) (and ε-closure(δ, Q))
 - \rightarrow move(δ , p, σ) (and move(δ , Q, σ))
 - (where p is an NFA state)

ε-transitions and ε-closure

- We say $p \xrightarrow{\epsilon} q$
 - If it is possible to go from state p to state q by taking only $\epsilon\text{-}$ transitions in δ
 - If \exists p, p₁, p₂, ... p_n, q \in Q such that \Rightarrow {p, ϵ ,p₁} \in δ , {p₁, ϵ ,p₂} \in δ , ..., {p_n, ϵ ,q} \in δ
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that p $\xrightarrow{\epsilon}$ q according to δ
 - > ε-closure(δ, p) = {q | p $\stackrel{\epsilon}{\rightarrow}$ q in δ }
 - > ε-closure(δ, Q) = { q | p ∈ Q, p $\stackrel{\epsilon}{\rightarrow}$ q in δ }
 - Notes
 - > ε-closure(δ, p) always includes p

ε-closure: Example 1

Following NFA contains

- $p1 \xrightarrow{\epsilon} p2$
- p2 $\stackrel{\varepsilon}{\rightarrow}$ p3
- p1 $\stackrel{\epsilon}{\rightarrow}$ p3
 - > Since p1 $\stackrel{\epsilon}{\rightarrow}$ p2 and p2 $\stackrel{\epsilon}{\rightarrow}$ p3

ε-closures

- ε-closure(p1) =
- ϵ -closure(p2) =
- ϵ -closure(p3) =
- ε-closure({ p1, p2 }) =

```
{ p1, p2, p3 }
{ p2, p3 }
{ p3 }
{ p1, p2, p3 } ∪ { p2, p3 }
```

ε-closure: Example 2

Following NFA contains

- p1 $\stackrel{\epsilon}{\rightarrow}$ p3
- p3 $\stackrel{\varepsilon}{\rightarrow}$ p2
- $p1 \xrightarrow{\epsilon} p2$

ε-closures

- ε-closure(p1) =
- ϵ -closure(p2) =
- ϵ -closure(p3) =
- ε-closure({ p2,p3 }) =

```
{ p1, p2, p3 }
{ p2 }
{ p2, p3 }
{ p2 } U { p2, p3 }
```

ε-closure Algorithm: Approach

▶ Input: NFA (Σ , Q, q₀, F_n, δ), State Set R

Output: State Set R'

Algorithm

```
Let R' = R  // start states  
Repeat  // continue from previous  
Let R' = R'  // continue from previous  
Let R' = R \cup {q | p \in R, (p, \epsilon, q) \in \delta}  // new \epsilon-reachable states  
Until R = R'  // stop when no new states
```

This algorithm computes a fixed point

ε-closure Algorithm Example

► Calculate ε-closure(δ,{p1})


```
Let R' = R
Repeat
Let R= R'
Let R' = R \cup {q | p \in R, (p, \epsilon, q) \in \delta}
Until R = R'
```

Calculating move(p,σ)

- move(δ ,p, σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - > Set of states q such that $\{p, \sigma, q\} \in \delta$
 - \triangleright move(δ ,p, σ) = { q | {p, σ , q} \in δ }
 - \triangleright move(δ ,Q, σ) = { q | p \in Q, {p, σ , q} \in δ }
 - i.e., can "lift" move() to a set of states Q
 - Notes:
 - \rightarrow move(δ, p, σ) is \emptyset if no transition (p, σ, q) $\in \delta$, for any q

$move(p,\sigma)$: Example 1

Following NFA

•
$$\Sigma = \{ a, b \}$$

• move(p3, a) =

• move(p3, b) =

Ø

CMSC330 Summer 2025

$move(p,\sigma)$: Example 2

Following NFA

•
$$\Sigma = \{ a, b \}$$

Move

$$move(\{p1,p2\},a) = \{p2,p3\}$$

NFA → DFA Reduction Algorithm ("subset")

- ▶ Input NFA (Σ , Q, q₀, F_n, δ), Output DFA (Σ , R, r₀, F_d, δ ')
- Algorithm

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
      Mark r
      For each \sigma \in \Sigma
            Let E = move(\delta,r,\sigma)
            Let e = \varepsilon-closure(\delta,E)
            If e ∉ R
                   Let R = R \cup \{e\}
            Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

```
// DFA start state
// process DFA state r
// each state visited once
// for each symbol σ
// states reached via σ
// states reached via ε
// if state e is new
// add e to R (unmarked)
// add transition r\rightarrow e on \sigma
// final if include state in F<sub>n</sub>
```

NFA → DFA Example

- Start = ε-closure(δ,p1) = { {p1,p3} }
 R = { {p1,p3} }
 r ∈ R = {p1,p3}
- $move(\delta, \{p1, p3\}, a) = \{p2\}$

$$\triangleright$$
 e = ε -closure(δ ,{p2}) = {p2}

$$\Rightarrow$$
 R = R \cup {{p2}} = { {p1,p3}, {p2} }

 $> \delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}\}$

• move(δ ,{p1,p3},b) = Ø

DFA

NFA → DFA Example (cont.)

- $R = \{ \{p1,p3\}, \{p2\} \}$
- $r \in R = \{p2\}$
- $move(\delta, \{p2\}, a) = \emptyset$
- $move(\delta, \{p2\}, b) = \{p3\}$
 - \triangleright e = ε -closure(δ ,{p3}) = {p3}
 - > R = R \cup {{p3}} = { {p1,p3}, {p2}, {p3} }
 - $> \delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}\}$

NFA

DFA

CMSC330 SQMMGer32025 50

NFA → DFA Example (cont.)

- $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
- $r \in R = \{p3\}$
- Move($\{p3\},a$) = \emptyset
- Move($\{p3\},b$) = \emptyset
- Mark {p3}, exit loop
- $F_d = \{\{p1,p3\}, \{p3\}\}\$ > Since $p3 \in F_n$
- Done!

NFA

DFA

NFA → DFA Example 2

Quiz 4: Which DFA is equiv to this NFA?

D. None of the above

b

Quiz 4: Which DFA is equiv to this NFA?

Actual Answer

NFA → DFA Example 3

$$R = \{ \{A,E\}, \{B,D,E\}, \{C,D\}, \{E\} \} \}$$