Circuito de condicionamento do sinal do sensor piezoelétrico: Amplificador de carga passa-faixa

O sensor piezoelétrico requer um acoplamento de alta impedância para adequar seu sinal (que pode gerar picos abruptos muito altos de tensão). Para condicionar essa tensão elétrica, foi pensado o seguinte amplificador de carga:

Onde V_{en} é a tensão de resposta do piezo (tensão de entrada no circuito de condicionamento), $V_{\scriptscriptstyle L}$ é a entrada inversora do amplificador, $V_{\scriptscriptstyle +}$ é a entrada não-inversora do amplificador e $V_{\scriptscriptstyle S}$ é a saída do circuito que vai ser convertida para sinal digital. O sensor piezo pode ser simulado através de uma fonte de tensão linear para saber a resposta de cada estímulo. Na análise DC, os capacitores estão em aberto e, portanto, a tensão de saída pode ser calculada como segue:

$$\frac{V_{en} - V_{-}}{R_{1}} = \frac{V_{-} - V_{s}}{R_{2}}$$

Fazendo R_2/R_1 = 0.1 = G = ganho em malha aberta:

$$V_s = ((1+G) \times V_{-}) - G \times V_{en}$$

$$V_{en} = 10 x (1.1 V_{-} - V_{s})$$

Com essa relação, é possível saber o valor de tensão no sensor piezo conhecendo a saída medida do circuito de condicionamento.

O valor de V₊ é aproximadamente igual ao de V₋ (divisor de tensão com R₄ e R₃):

$$V_{-} = V_{+} = V_{CC} \times \frac{R_{4}}{R_{3} + R_{4}}$$

Na simulação V_{cc} = 5 V; R_3 = 220 $k\Omega$ e R_4 = 270 $k\Omega$; assim $V_{.}$ \approx 2.755 V

Esse circuito atua como um passa-faixa e a frequência de corte é dada por:

$$f_c = \frac{1}{2\pi RC}$$

Para os valores dados, a banda de frequência vai de aproximadamente 1,59 a 15,9 Hz. O limite superior foi pensado lembrando que cerca de 99% da frequência de caminhada humana é abaixo de 15 Hz, desse modo apenas essa banda passa pelo condicionamento, evitando ruídos.