MATH 589: Advanced Probability Theory 2 Final Exam: 14 December 2021 18:30-21:30

Central Limit Theorem, Characteristic Functions, and Convergence 1 of Probability Measures

Review of Sums of Independent Random Variables 1.1

Consider $\{X_n \mid n \in \mathbb{N}\}\$ iid random variables with $\mathbb{E}[X_1] = 0$ (WLOG) and $\mathbb{E}[X_1^2] = 1$. Set $S_n :=$ $\sum_{i=1}^{n} X_{J}$. From the SSLN,

$$\frac{S_n}{n} \to 0$$

almost surely. In other words, $|S_n|$ has sub-linear growth as $n \to \infty$. In fact, given any sequence $\{b_n \mid n \geq 1\} \subseteq]0, \infty[$ such that $b_n \uparrow \infty$, if

$$\sum_{n=1}^{\infty} \frac{1}{b_n^2} < \infty,$$

i.e., b_n grows sufficiently fast, then $\frac{S_n}{b_n} \to 0$ almost surely (by Kronecker's Lemma, c.f. MATH 587). Why?

$$\sum_{n=1}^{\infty} \frac{\mathbb{E}\left[X_n^2\right]}{b_n^2} < \infty \Rightarrow \sum_{n=1}^{\infty} \frac{X_n}{b_n} \text{ converges almost surely } \Rightarrow \frac{S_n}{b_n} \to 0 \text{ almost surely.}$$

Such a sequence $\{b_n\}$ includes:

- $\{n^p\}$ for $p > \frac{1}{2}$. $\{\sqrt{n}(\ln(n))^p\}$ for any $p > \frac{1}{2}$.

This means that I can do better than what I know about the LLN. For example, we know that $|S_n|$ grows slower than $\sqrt{n}(\ln(p))^{1/2}$ for any $p > \frac{1}{2}$. Since the inequality is strict, this means you can always do better. There is not a critical level. Now suppose we are interested in the asymptotic behaviour? Can we find a lower bound for the growth rate of S_n ?

On the other hand, if $\{X_n \mid n \geq 1\}$ is iid N(0,1) standard Gaussian random variables. Then, set:

$$\check{S}_n := \frac{S_n}{\sqrt{n}}.$$
(1)

 \breve{S}_n is again N(0,1) for all $n \geq 1$. At least, in this case, \breve{S}_n doesn't converge to any constant almost surely. In fact, it's easy to see that $\limsup_n \frac{S_n}{\sqrt{n}} = +\infty$ and $\liminf_n \frac{S_n}{\sqrt{n}} = -\infty$ almost surely. Why is this? Let's consider the limsup. For all R > 0,

$$\mathbb{P}\left(\breve{S}_n > R\right) = \frac{1}{\sqrt{2\pi}} \int_R^{+\infty} e^{-\frac{x^2}{2}} dx$$
$$= p_R$$
$$> 0.$$

Since $\limsup_n \check{S}_n \in m\mathcal{T}$ (tail σ -algebra, we have from the Kolmogorov 0-1 Law that $\limsup_n \check{S}_n$ is constant almost surely. What is this constant? Write:

$$\check{S}_n = \frac{S_n}{\sqrt{n}} = \frac{\sum_{j=1}^n X_j + \sum_{j=N+1}^n X_j}{\sqrt{n}}.$$

As $n \to \infty$, $\frac{\sum_{j=1}^{n} X_j}{\sqrt{n}}$ goes to infinity. Hence, $\limsup_{n} \breve{S}_n = \infty$ almost surely. One can do a similar analysis for the liminf.

Remark that $\check{S}_n \sim N(0,1)$ is also seen for a more general sequence of random variables. This phenomenon is called the **Central Limit Phenomenon**.

Q: Can I have a better description of the asymptotics of S_n ?

The answer is the Law of the Iterated Logarithm.

Theorem 1 (Law of Iterated Logarithm). Let $\{X_n\}$ be a sequence of iid RVs with $\mathbb{E}[X_1] = 0$ and $\mathbb{E}\left[X_1^2\right] = 1$. For every $n \geq 1$, set $S_n = \sum_{j=1}^n X_j$, and define Λ_n to be the iterated logarithm:

$$\Lambda_n := \sqrt{2n\ln(\ln(n\vee 3))}.$$

It turns out that Λ_n will give us the accurate oscillation rate of S_n . Recall that the notation $n \vee 3 =$ $\max\{n,3\}$. Then, we can conclude:

- lim sup_n \$\frac{S_n}{\Lambda_n} = 1\$ almost surely.
 lim inf_n \$\frac{S_n}{\Lambda_n} = -1\$ almost surely.

In fact, for every $c \in [-1,1]$, for almost every sample point $\omega \in \Omega$, there exists a subsequence $\{n_k\}_{\omega} \subseteq \mathbb{N}$ such that

$$\lim_{k \to \infty} \frac{S_{n_k}(\omega)}{\Lambda_{n_k}} = c. \tag{2}$$

The picture you want to have in mind is the following:

Figure 1: The oscillations of S_n will always be in the envelope given by $\pm \Lambda_n$.

In particular, note that LIL \Rightarrow SLLN. The LIL is a refinement of the SLLN; Λ_n is sub-linear. Another perspective is by looking at it from the Kolmogorov 0-1 Law perspective: the liminf and limsup are constant almost surely.

Task # 1: Prove the Law of Iterated Logarithm.

Q: What can we say about the distribution?

The Central Limit Theorem will answer this question. For now, we will provide a heuristic overview; in the coming sections, we will rigorously do everything.

Idea: in the study of LLN, we consider $\bar{S}_n := \frac{S_n}{n}$, where $\mathbb{E}\left[\bar{S}_n\right] = \mathbb{E}\left[S_1\right] = 0$ for all $n \in \mathbb{N}$. Here, this means that \bar{S}_n preserves the first moment. In **(CLT)** we will consider $\check{S}_n := \frac{S_n}{\sqrt{n}}$, where $\mathbb{E}\left[\check{S}_n\right] = 0$ (so, $\check{S}_n = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{n}}$, where $\mathbb{E}\left[\check{S}_n\right] = 0$. Moreover,

$$\mathbb{E}\left[(\breve{S}_n)^2 \right] = \frac{n\mathbb{E}\left[X_1^2 \right]}{n} = 1.$$

Note that in the CLT, the first and second moments are preserved.

- 1. The expected value tells us where the mass is centred.
- 2. The variance measures how the mass is spread out: how random the random variable is.

Heuristically, the CLT studies how the randomness will replace itself under the assumption / condition that the amount of randomness is preserved or fixed. For sure, it will not be going to a constant, and it will resemble a N(0,1) as $n \to \infty$.