Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises

Bernard Carrette

 $March\ 16,\ 2022$

Remarks and warnings

You're welcome to use these notes, but they may contain errors, so proceed with caution. If you do find an error, however, I'd be happy to receive bug reports, suggestions, and the like through Github.

Some notation conventions

$$\partial_r \equiv \frac{\partial}{\partial x^r}$$

$$\Gamma_{mn}^r \equiv \begin{Bmatrix} r \\ mn \end{Bmatrix}$$
 Christoffel symbol of the second kind

Contents

	Curvature of space			
	1.1	p98 - Clarification	5	
	1.2	p109 - Exercise 6	6	
	1.3	p109 - Exercise 7	10	
	1.4	p109 - Exercise 8	12	
	1.5	p110 - Exercise 9	24	
	1.6	p110 - Exercise 10	26	
	1.7	p110 - Exercise 11	28	

List of Figures

Curvature of space

1.1 p98 - Clarification

... it is easy to see that the expansion takes the form

3.425.
$$\eta = \theta \left(s - \frac{1}{6} \epsilon K s^3 + \dots \right)$$

Expanding η in a power series gives

$$\eta = \underbrace{\eta|_{0}}_{=0} + \underbrace{\frac{d\eta}{ds}|_{0}}_{=\theta} s - \frac{1}{2} \underbrace{\frac{d^{2}\eta}{ds^{2}}|_{0}}_{=0} s^{2} + \frac{1}{6} \frac{d^{3}\eta}{ds^{3}}|_{0} s^{3} + \dots$$
 (1)

$$\frac{d^2(1)}{ds^2} \quad \Rightarrow \quad \frac{d^2\eta}{ds^2} = \left. \frac{d^3\eta}{ds^3} \right|_0 s + \dots \tag{2}$$

for
$$\lim_{s \to 0}$$
 we have $\eta \approx \theta s$ so (2) $\Rightarrow \frac{d^2 \eta}{ds^2} = \frac{d^3 \eta}{ds^3} \Big|_{0} \frac{\eta}{\theta} + \dots$ (3)

$$\Rightarrow \quad \eta = \theta \left(s - \frac{1}{6} \epsilon K s^3 + \dots \right) \tag{5}$$

1.2 p109 - Exercise 6

For an orthogonal coordinates system in a V_2 we have

$$ds^{2} = a_{11} (dx^{1})^{2} + a_{22} (dx^{2})^{2}$$

Show that

$$\frac{1}{a}R_{1212} = -\frac{1}{2}\frac{1}{\sqrt{a}}\left[\partial_1\left(\frac{1}{\sqrt{a}}\partial_1 a_{22}\right) + \partial_2\left(\frac{1}{\sqrt{a}}\partial_2 a_{11}\right)\right]$$

We have

$$(a_{mn}) = \begin{pmatrix} a_{11} & 0 \\ 0 & a_{22} \end{pmatrix} \quad (a^{mn}) = \frac{1}{a} \begin{pmatrix} a_{22} & 0 \\ 0 & a_{11} \end{pmatrix} \quad a = a_{11}a_{22} \tag{1}$$

We have also

$$R = -\frac{2}{a}R_{1212} \tag{2}$$

$$R = a^{mn}R_{mn} \Rightarrow R = a^{11}R_{11} + a^{22}R_{22}$$
 (3)

Looking at the pattern generated by equations (2) and (3) suggests that using these equations could lead to the proposed equation. Let's have a try ...

$$\begin{cases}
\Gamma_{11}^{1} = \frac{1}{2} \frac{a_{22}}{a} \partial_{1} a_{11} & \Gamma_{22}^{1} = -\frac{1}{2} \frac{a_{22}}{a} \partial_{1} a_{22} \\
\Gamma_{11}^{2} = -\frac{1}{2} \frac{a_{11}}{a} \partial_{2} a_{11} & \Gamma_{22}^{2} = \frac{1}{2} \frac{a_{11}}{a} \partial_{2} a_{22} \\
\Gamma_{12}^{1} = \frac{1}{2} \frac{a_{22}}{a} \partial_{2} a_{11} & \Gamma_{12}^{2} = \frac{1}{2} \frac{a_{11}}{a} \partial_{1} a_{22}
\end{cases}$$

$$3.205. \Rightarrow R_{rm} = \frac{1}{2} \partial_{rm} \log a - \frac{1}{2} \Gamma_{rm}^{p} \partial_{p} \log a - \partial_{n} \Gamma_{rm}^{n} + \Gamma_{rn}^{p} \Gamma_{pm}^{n}$$

$$\begin{cases}
R_{11} = \frac{1}{2} \partial_{11} \log a - \frac{1}{2} \Gamma_{11}^{1} \partial_{1} \log a - \frac{1}{2} \Gamma_{11}^{2} \partial_{2} \log a \\
-\partial_{1} \Gamma_{11}^{1} - \partial_{2} \Gamma_{11}^{2} + \Gamma_{11}^{2} \Gamma_{11}^{2} + \Gamma_{12}^{2} \Gamma_{21}^{2}
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2} \partial_{22} \log a - \frac{1}{2} \Gamma_{12}^{1} \partial_{1} \log a - \frac{1}{2} \Gamma_{22}^{2} \partial_{2} \log a \\
-\partial_{1} \Gamma_{12}^{1} - \partial_{2} \Gamma_{22}^{2} + \Gamma_{21}^{2} \Gamma_{12}^{1} + \Gamma_{22}^{2} \Gamma_{22}^{2}
\end{cases}$$

$$\Rightarrow \begin{cases}
(6) \\
-\partial_{1} \Gamma_{12}^{1} + \Gamma_{12}^{1} \Gamma_{12}^{2} + \Gamma_{21}^{2} \Gamma_{12}^{2} + \Gamma_{22}^{2} \Gamma_{22}^{2}
\end{cases}$$

$$\begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{1}{2}\frac{a_{22}}{a_{2}}\partial_{1}a_{11}\partial_{1}\log a - \frac{1}{2}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11})\partial_{2}\log a \\
-\partial_{1}(\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{11}) - \partial_{2}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11}) + \\
\frac{1}{2}\frac{a_{22}}{a^{2}}\partial_{1}a_{11}\frac{1}{2}\frac{a_{22}}{a^{2}}\partial_{1}a_{11} + \frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11}(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11}) + \\
(-\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{11})\frac{1}{2}\frac{a_{22}}{a^{2}}\partial_{2}a_{11} + \frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2}\partial_{22}\log a - \frac{1}{2}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22})\partial_{1}\log a - \frac{1}{2}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\partial_{2}\log a \\
-\partial_{1}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22}) - \partial_{2}(\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}) + \\
\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11}\frac{1}{2}\frac{a_{22}}{a}\partial_{2}a_{11} + (-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22})\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22} + \\
\frac{1}{2}\frac{a_{11}}{a}\partial_{1}a_{22}(-\frac{1}{2}\frac{a_{22}}{a}\partial_{1}a_{22}) + \frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}\frac{1}{2}\frac{a_{11}}{a}\partial_{2}a_{22}
\end{cases}$$
(7)

Simplifying the notational burden by replacing a_{11} by γ and a_{22} by η :

Simplifying the notational burden by replacing
$$a_{11}$$
 by γ and a_{22} by η .

$$\begin{cases}
R_{11} = \frac{1}{2}\partial_{11}\log a - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\partial_{1}\gamma\partial_{1}\log a + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\log a \\
-\frac{1}{2}\partial_{1}(\frac{1}{\gamma}\partial_{1}\gamma) + \frac{1}{2}\partial_{2}(\frac{1}{\eta}\partial_{2}\gamma) \\
+\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_{1}\gamma\partial_{1}\gamma - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\gamma \\
-\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\gamma + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta
\end{cases}$$

$$\Rightarrow \begin{cases}
R_{22} = \frac{1}{2}\partial_{22}\log a + \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\partial_{1}\eta\partial_{1}\log a - \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\partial_{2}\eta\partial_{2}\log a \\
+\frac{1}{2}\partial_{1}(\frac{1}{\gamma}\partial_{1}\eta) - \frac{1}{2}\partial_{2}(\frac{1}{\eta}\partial_{2}\eta) \\
+\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_{2}\gamma\partial_{2}\gamma - \frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta \\
-\frac{1}{2}\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\eta\partial_{1}\eta + \frac{1}{2}\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{2}\eta\partial_{2}\eta
\end{cases}$$
Noting that $\partial_{ii}\log a = \partial_{i}\left(\frac{1}{a_{11}}\partial_{i}a_{11}\right) + \partial_{i}\left(\frac{1}{a_{22}}\partial_{i}a_{22}\right)$ and $\partial_{i}\log a = \frac{1}{a_{11}}\partial_{i}a_{11} + \frac{1}{a_{22}}\partial_{i}a_{22} \quad (i = 1, 2),$ we get:

we get:

$$2R_{11} = 2R_{22} = \frac{\partial_{1}\left(\frac{1}{\gamma}\partial_{1}\gamma\right) + \partial_{1}\left(\frac{1}{\eta}\partial_{1}\eta\right)}{2} \qquad \frac{\partial_{2}\left(\frac{1}{\gamma}\partial_{2}\gamma\right) + \underbrace{\partial_{2}\left(\frac{1}{\eta}\partial_{2}\eta\right)}_{*}}{2} \\
-\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}(\partial_{1}\gamma)^{2} - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_{1}\gamma\partial_{1}\eta \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} \\
+\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_{2}\gamma\partial_{2}\eta \qquad -\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\gamma) \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\eta}(\partial_{2}\gamma)^{2}}_{*} \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2}}_{+} \qquad + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{+} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{2}\gamma)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{+} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2} + \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{2}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2}}_{-} \qquad - \underbrace{\frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_{1}\eta)^{2$$

$$\Rightarrow \begin{vmatrix} 2R_{11} = & 2R_{22} = \\ \partial_1 \left(\frac{1}{\eta}\partial_1\eta\right) + \partial_2 \left(\frac{1}{\eta}\partial_2\gamma\right) & \partial_1 \left(\frac{1}{\gamma}\partial_1\eta\right) + \partial_2 \left(\frac{1}{\gamma}\partial_2\gamma\right) \\ + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}(\partial_1\eta)^2 - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_2\gamma)^2 & -\frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}(\partial_1\eta)^2 + \frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}(\partial_2\gamma)^2 \\ - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_1\gamma\partial_1\eta + \frac{1}{2}\frac{1}{\eta}\frac{1}{\eta}\partial_2\gamma\partial_2\eta & +\frac{1}{2}\frac{1}{\gamma}\frac{1}{\gamma}\partial_1\gamma\partial_1\eta - \frac{1}{2}\frac{1}{\gamma}\frac{1}{\eta}\partial_2\gamma\partial_2\eta \end{vmatrix}$$

$$(10)$$

Be $R = \frac{1}{\gamma}R_{11} + \frac{1}{\eta}R_{22}$, all first order derivatives vanish and we get,

$$\frac{1}{\gamma}R_{11} + \frac{1}{\eta}R_{22} = \frac{1}{2} \left[\frac{1}{\eta} \partial_1(\frac{1}{\gamma}\partial_1\eta) + \frac{1}{\gamma} \partial_1(\frac{1}{\eta}\partial_1\eta) \right] + \frac{1}{2} \left[\frac{1}{\gamma} \partial_2(\frac{1}{\gamma}\partial_2\gamma) + \frac{1}{\eta} \partial_2(\frac{1}{\eta}\partial_2\gamma) \right]$$
(11)

We further simplify this expression. Considering the symmetry of (11) we only explicit the calcula-

tions for the first terms in ∂_1 .

$$\frac{1}{\eta}\partial_1(\frac{1}{\gamma}\partial_1\eta) + \frac{1}{\gamma}\partial_1(\frac{1}{\eta}\partial_1\eta) = \frac{1}{\eta}\partial_1(\frac{1}{\sqrt{\gamma}}\frac{1}{\sqrt{\gamma}}\frac{\sqrt{\eta}}{\sqrt{\eta}}\partial_1\eta) + \frac{1}{\gamma}\partial_1(\frac{1}{\sqrt{\eta}}\frac{1}{\sqrt{\eta}}\frac{\sqrt{\gamma}}{\sqrt{\gamma}}\partial_1\eta)$$
(12)

$$= \frac{1}{\eta} \partial_1 \left[\left(\frac{\eta}{\gamma} \right)^{\frac{1}{2}} \frac{1}{\sqrt{a}} \partial_1 \eta \right] + \frac{1}{\gamma} \partial_1 \left[\left(\frac{\eta}{\gamma} \right)^{-\frac{1}{2}} \frac{1}{\sqrt{a}} \partial_1 \eta \right]$$
(13)

$$= \begin{cases} \frac{1}{\eta} \left(\frac{\eta}{\gamma}\right)^{\frac{1}{2}} \partial_{1} \left[\frac{1}{\sqrt{a}} \partial_{1} \eta\right] + \underbrace{\frac{1}{\gamma} \left(\frac{\eta}{\gamma}\right)^{-\frac{1}{2}}}_{=\frac{1}{\sqrt{a}}} \partial_{1} \left[\frac{1}{\sqrt{a}} \partial_{1} \eta\right] \\ + \underbrace{\frac{1}{\sqrt{a}} \partial_{1} \eta}_{=0} \left[\frac{1}{\eta} \partial_{1} \left(\frac{\eta}{\gamma}\right)^{\frac{1}{2}} + \frac{1}{\gamma} \partial_{1} \left(\frac{\eta}{\gamma}\right)^{-\frac{1}{2}}\right] \\ = 0 \end{cases}$$

$$(14)$$

$$=2\frac{1}{\sqrt{a}}\partial_1\left[\frac{1}{\sqrt{a}}\partial_1 a_{22}\right] \tag{15}$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{\eta} \partial_1 (\frac{1}{\gamma} \partial_1 \eta) + \frac{1}{\gamma} \partial_1 (\frac{1}{\eta} \partial_1 \eta) \right] = \frac{1}{\sqrt{a}} \partial_1 \left[\frac{1}{\sqrt{a}} \partial_1 a_{22} \right]$$
 (16)

Using (16) and the same calculations for the terms in ∂_2 and using (2) and (3) we get

$$\frac{1}{a}R_{1212} = -\frac{1}{2}\frac{1}{\sqrt{a}}\left[\partial_1\left(\frac{1}{\sqrt{a}}\partial_1 a_{22}\right) + \partial_2\left(\frac{1}{\sqrt{a}}\partial_2 a_{11}\right)\right]$$

♦

1.3 p109 - Exercise 7

Suppose that in a V_3 the metric is:

$$ds^{2} = (h_{1}dx^{1})^{2} + (h_{2}dx^{2})^{2} + (h_{3}dx^{3})^{2}$$

whre h_1, h_2, h_3 are functions of the three coordinates. Calculate the curvature tensor in terms of the h's and their derivatives. Check your result by nothing that the curvature tensor will vanish if h_1 is a function of x^1 only, h_2 a function of x^2 only, and h_3 a function of x^3 only.

From **3.115**. and **3.115**. we get for the non vanishing components of the covariant curvature tensor(6 independent components to calculate):

$$R_{1212} = \begin{cases} -R_{1221} & R_{2323} = \begin{cases} -R_{2332} & R_{1313} = \begin{cases} -R_{1331} & \\ -R_{3113} & \\ R_{3131} & \\ R_{3131} & \\ R_{3131} & \\ R_{1213} = \begin{cases} -R_{1231} & \\ -R_{1312} & \\ -R_{2113} & \\ R_{2131} & \\ -R_{3112} & \\ R_{3121} & \\ R_{3212} & \\ -R_{3221} & \\ R_{3212} & \\ -R_{3221} & \\ R_{3231} & \\ R_{3232} &$$

The metrix tensors:

$$(a_{mn}) = \begin{pmatrix} h_1^2 & 0 & 0 \\ 0 & h_2^2 & 0 \\ 0 & 0 & h_3^2 \end{pmatrix} \quad (a_{mn}) = \begin{pmatrix} \frac{1}{h_1^2} & 0 & 0 \\ 0 & \frac{1}{h_2^2} & 0 \\ 0 & 0 & \frac{1}{h_3^2} \end{pmatrix}$$
(3)

The Christoffel symbols:

$$[11,1] = h_1 \partial_1 h_1 \qquad [11,2] = -h_1 \partial_2 h_1 \qquad [11,3] = -h_1 \partial_3 h_1$$

$$[12,1] = h_1 \partial_2 h_1 \qquad [12,2] = h_2 \partial_1 h_2 \qquad [12,3] = 0$$

$$[22,1] = -h_2 \partial_1 h_2 \qquad [22,2] = h_2 \partial_2 h_2 \qquad [22,3] = -h_2 \partial_3 h_2$$

$$[23,1] = 0 \qquad [23,2] = h_2 \partial_3 h_2 \qquad [23,3] = h_3 \partial_2 h_3$$

$$[33,1] = -h_3 \partial_1 h_3 \qquad [33,2] = -h_3 \partial_2 h_3 \qquad [33,3] = -h_3 \partial_3 h_3$$

$$[31,1] = h_1 \partial_3 h_1 \qquad [31,2] = 0 \qquad [31,3] = h_3 \partial_1 h_3$$

$$(4)$$

$$\Gamma_{11}^{1} = \frac{1}{h_{1}} \partial_{1} h_{1} \qquad \Gamma_{11}^{2} = -\frac{h_{1}}{h_{2}^{2}} \partial_{2} h_{1} \qquad \Gamma_{11}^{3} = -\frac{h_{1}}{h_{3}^{2}} \partial_{3} h_{1}
\Gamma_{12}^{1} = \frac{1}{h_{1}} \partial_{2} h_{1} \qquad \Gamma_{12}^{2} = \frac{1}{h_{2}} \partial_{1} h_{2} \qquad \Gamma_{12}^{3} = 0
\Gamma_{22}^{1} = -\frac{h_{2}}{h_{1}^{2}} \partial_{1} h_{2} \qquad \Gamma_{22}^{2} = \frac{1}{h_{2}} \partial_{2} h_{2} \qquad \Gamma_{23}^{3} = -\frac{h_{2}}{h_{3}^{2}} \partial_{3} h_{2}
\Gamma_{23}^{1} = 0 \qquad \Gamma_{23}^{2} = \frac{1}{h_{2}} \partial_{3} h_{2} \qquad \Gamma_{23}^{3} = \frac{1}{h_{3}} \partial_{2} h_{3}
\Gamma_{33}^{1} = -\frac{h_{3}}{h_{1}^{2}} \partial_{1} h_{3} \qquad \Gamma_{33}^{2} = -\frac{h_{3}}{h_{2}^{2}} \partial_{2} h_{3} \qquad \Gamma_{33}^{3} = \frac{1}{h_{3}} \partial_{3} h_{3}
\Gamma_{31}^{1} = \frac{1}{h_{1}} \partial_{3} h_{1} \qquad \Gamma_{31}^{2} = 0 \qquad \Gamma_{31}^{3} = \frac{1}{h_{3}} \partial_{1} h_{3}$$
(5)

We use 3.113.

$$R_{rsmn} = \partial_m[sn, r] - \partial_n[sm, r] + \Gamma_{sm}^p[rn, p] - \Gamma_{sm}^p[rm, p]$$

Note that we only have to perform the full calculation for two curvature tensors e.g. R_{1212} and R_{1213} as the others can be retrieved by using adequate indices renaming and use of the identities 3.115.

$$R_{1212} = -h_2 \partial_{11}^2(h_2) - h_1 \partial_{22}^2(h_1) + \frac{h_2}{h_1} \partial_1 h_1 \partial_1 h_2 + \frac{h_1}{h_2} \partial_2 h_1 \partial_2 h_2 - \frac{h_1 h_2}{h_3^2} \partial_3 h_1 \partial_3 h_2$$
 (6)

$$R_{2323} = -h_3 \partial_{22}^2(h_3) - h_2 \partial_{33}^2(h_2) + \frac{h_3}{h_2} \partial_2 h_2 \partial_2 h_3 + \frac{h_2}{h_3} \partial_3 h_2 \partial_3 h_3 - \frac{h_2 h_3}{h_1^2} \partial_1 h_2 \partial_1 h_3$$
 (7)

$$R_{1313} = -h_3 \partial_{11}^2(h_3) - h_1 \partial_{33}^2(h_1) + \frac{h_3}{h_1} \partial_1 h_1 \partial_1 h_3 + \frac{h_1}{h_3} \partial_3 h_1 \partial_3 h_3 - \frac{h_1 h_3}{h_2^2} \partial_2 h_1 \partial_2 h_3$$
 (8)

$$R_{1213} = -h_1 \partial_{32}^2(h_1) + \frac{h_1}{h_3} \partial_2 h_3 \partial_3 h_1 + \frac{h_1}{h_2} \partial_2 h_1 \partial_3 h_2 \tag{9}$$

$$R_{1223} = h_2 \partial_{31}^2(h_2) - \frac{h_2}{h_1} \partial_1 h_2 \partial_3 h_1 - \frac{h_2}{h_3} \partial_3 h_2 \partial_1 h_3$$
 (10)

$$R_{1323} = -h_3 \partial_{21}^2(h_3) + \frac{h_3}{h_1} \partial_1 h_3 \partial_3 h_1 + \frac{h_3}{h_2} \partial_2 h_3 \partial_1 h_2$$
(11)

And, indeed, all curvature tensors vanish when the h_i are only a function of the indices' dimension.

•

1.4 p109 - Exercise 8

In relativity we encounter the metric form

$$\Phi = e^{\alpha} + e^{x^{1}} \left[(dx^{2})^{2} + \sin^{2} x^{2} (dx^{3})^{2} \right] - e^{\gamma} (dx^{4})^{2}$$

where α and γ are functions of x^1 and x^4 only.

Show that the complete set of non-zero components of the Einstein tensor (see equation (3.214)) for the form given above are as follows

$$\begin{split} G^1_{.1} &= e^{-\alpha} \left(-\frac{1}{4} - \frac{1}{2} \gamma_1 \right) + e^{-x^1} \\ G^2_{.2} &= e^{\alpha} \left(-\frac{1}{4} - \frac{1}{2} \gamma_{11} - \frac{1}{4} \gamma_1^2 - \frac{1}{4} \gamma_1 + \frac{1}{4} \alpha_1 + \frac{1}{4} \alpha_1 \gamma_1 \right) \\ &+ e^{\gamma} \left(\frac{1}{2} \alpha_{44} + \frac{1}{4} \alpha_4^2 - \frac{1}{4} \alpha_4 \gamma_4 \right) \\ G^3_{.3} &= G^2_{.2} \\ G^4_{.4} &= e^{-\alpha} \left(-\frac{3}{4} - \frac{1}{2} \alpha_1 \right) + e^{-x^1} \\ e^{\alpha} G^4_{.1} &= -e^{\gamma} G^4_{.1} = -\frac{1}{2} \alpha_4 \end{split}$$

The subscript on α and γ indicate partial derivatives with respect to x^1 and x^4 .

We have

$$(a_{mn}) = \begin{pmatrix} e^{\alpha} & 0 & 0 & 0 \\ 0 & e^{x^{1}} & 0 & 0 \\ 0 & 0 & e^{x^{1}} \sin^{2} x^{2} & 0 \\ 0 & 0 & 0 & -e^{\gamma} \end{pmatrix} \quad (a^{mn}) = \begin{pmatrix} e^{-\alpha} & 0 & 0 & 0 \\ 0 & e^{-x^{1}} & 0 & 0 \\ 0 & 0 & \frac{e^{-x^{1}}}{\sin^{2} x^{2}} & 0 \\ 0 & 0 & 0 & -e^{-\gamma} \end{pmatrix}$$
(1)

And will use the following definitions:

$$G_{.t}^n = R_{.t}^n - \frac{1}{2}\delta_t^n R \tag{2}$$

$$R_{.t}^{n} = a^{nk} R_{kt} \tag{3}$$

$$R_{kt} = a^{sn} R_{sktn} (4)$$

$$R = a^{kt} R_{kt} (5)$$

Considering that the non-diagonal components of a_{mn} vanish and as $R_{sktn} = 0$ when s = k or t = n,

we can write:

$$\begin{pmatrix}
R_{11} \\
R_{22} \\
R_{33} \\
R_{44}
\end{pmatrix} = \begin{pmatrix}
0 & R_{2112} & R_{3113} & R_{4114} \\
R_{1221} & 0 & R_{3223} & R_{4224} \\
R_{1331} & R_{2332} & 0 & R_{4334} \\
R_{1441} & R_{2442} & R_{3443} & 0
\end{pmatrix} \begin{pmatrix}
a^{11} \\
a^{22} \\
a^{33} \\
a^{44}
\end{pmatrix}$$
(6)

$$\begin{pmatrix}
R_{12} \\
R_{13} \\
R_{14} \\
R_{23} \\
R_{24} \\
R_{34}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & R_{3123} & R_{4124} \\
0 & R_{2132} & 0 & R_{4134} \\
0 & R_{2142} & R_{3143} & 0 \\
R_{1231} & 0 & 0 & R_{4234} \\
R_{1241} & 0 & R_{3243} & 0 \\
R_{1341} & R_{2342} & 0 & 0
\end{pmatrix} \begin{pmatrix}
a^{11} \\
a^{22} \\
a^{33} \\
a^{44}
\end{pmatrix}$$
(7)

The Christoffel symbols of the first kind are:

$$[11,1] = \frac{1}{2}\alpha_{1}e^{\alpha} \qquad [11,2] = 0 \qquad [11,3] = 0 \qquad [11,4] = -\frac{1}{2}\alpha_{4}e^{\alpha}$$

$$[12,1] = 0 \qquad [12,2] = \frac{1}{2}e^{x^{1}} \qquad [12,3] = 0 \qquad [12,4] = 0$$

$$[13,1] = 0 \qquad [13,2] = 0 \qquad [13,3] = \frac{1}{2}e^{x^{1}} \sin^{2}x^{2} \qquad [13,4] = 0$$

$$[14,1] = \frac{1}{2}\alpha_{4}e^{\alpha} \qquad [14,2] = 0 \qquad [14,3] = 0 \qquad [14,4] = -\frac{1}{2}\gamma_{1}e^{\gamma}$$

$$[22,1] = -\frac{1}{2}e^{x^{1}} \qquad [22,2] = 0 \qquad [22,3] = 0 \qquad [22,4] = 0$$

$$[23,1] = 0 \qquad [23,2] = 0 \qquad [23,3] = \frac{1}{2}e^{x^{1}} \sin 2x^{2} \qquad [23,4] = 0$$

$$[24,1] = 0 \qquad [24,2] = 0 \qquad [24,3] = 0 \qquad [24,4] = 0$$

$$[33,1] = -\frac{1}{2}e^{x^{1}}\sin^{2}x^{2} \qquad [33,2] = -\frac{1}{2}e^{x^{1}}\sin 2x^{2} \qquad [33,3] = 0 \qquad [33,4] = 0$$

$$[34,1] = 0 \qquad [34,2] = 0 \qquad [34,3] = 0 \qquad [34,4] = 0$$

$$[44,1] = \frac{1}{2}\gamma_{1}e^{\gamma} \qquad [44,2] = 0 \qquad [44,3] = 0 \qquad [44,4] = -\frac{1}{2}\gamma_{4}e^{\gamma}$$

We use 3.114. and considering that $a_{mn} = a^{mn} = 0$ for $m \neq n$:

$$R_{rsmn} = \begin{cases} \frac{1}{2} \left(\partial_{sm}^2 a_{rn} + \partial_{rn}^2 a_{sm} \right) \\ + \frac{1}{e^{\alpha}} \left([rn, 1][sm, 1] - [rm, 1][sn, 1] \right) \\ + \frac{1}{e^{x^1}} \left([rn, 2][sm, 2] - [rm, 2][sn, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([rn, 3][sm, 3] - [rm, 3][sn, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([rn, 4][sm, 4] - [rm, 4][sn, 4] \right) \end{cases}$$

(8)

(13)

Giving:

$$R_{2112} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{22} + \partial_{22}^2 a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][11, 1] - [21, 1][12, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][11, 2] - [21, 2][12, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][11, 3] - [21, 3][12, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][11, 4] - [21, 4][12, 4] \right) \end{cases}$$

$$(11)$$

$$R_{3113} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{33} + \partial_{33}^2 a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][11, 1] - [31, 1][13, 1] \right) \\ + \frac{1}{e^{x^1}} \left([33, 2][11, 2] - [31, 2][13, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([33, 3][11, 3] - [31, 3][13, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][11, 4] - [31, 4][13, 4] \right) \end{cases}$$

$$(12)$$

$$R_{4114} = \begin{cases} \frac{1}{2} \left(\partial_{11}^{2} a_{44} + \partial_{44}^{2} a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][11, 1] - [41, 1][14, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][11, 2] - [41, 2][14, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][11, 3] - [41, 3][14, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][11, 4] - [41, 4][14, 4] \right) \end{cases}$$

$$(15)$$

(21)

$$R_{3223} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{33} + \partial_{33}^2 a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][22, 1] - [32, 1][23, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([33, 2][22, 2] - [32, 2][23, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([33, 3][22, 3] - [32, 3][23, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][22, 4] - [32, 4][23, 4] \right) \end{cases}$$

$$(16)$$

$$R_{4224} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{44} + \partial_{44}^2 a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][22, 1] - [42, 1][24, 1] \right) \\ + \frac{1}{e^{x^1}} \left([44, 2][22, 2] - [42, 2][24, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([44, 3][22, 3] - [42, 3][24, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][22, 4] - [42, 4][24, 4] \right) \end{cases}$$

$$(18)$$

$$R_{4334} = \begin{cases} \frac{1}{2} \left(\partial_{33}^2 a_{44} + \partial_{44}^2 a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][33, 1] - [43, 1][34, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][33, 2] - [43, 2][34, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][33, 3] - [43, 3][34, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][33, 4] - [43, 4][34, 4] \right) \end{cases}$$

$$(20)$$

$$R_{3123} = \begin{cases} \frac{1}{2} \left(\partial_{12}^2 a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][12, 1] - [32, 1][13, 1] \right) \\ + \frac{1}{e^{x^1}} \left([33, 2][12, 2] - [32, 2][13, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([33, 3][12, 3] - [32, 3][13, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][12, 4] - [32, 4][13, 4] \right) \end{cases}$$
(23)

$$R_{4124} = \begin{cases} \frac{1}{2} \left(\partial_{12}^2 a_{44} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][12, 1] - [42, 1][14, 1] \right) \\ + \frac{1}{e^{x^1}} \left([44, 2][12, 2] - [42, 2][14, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([44, 3][12, 3] - [42, 3][14, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][12, 4] - [42, 4][14, 4] \right) \end{cases}$$
(27)

$$R_{2132} = \begin{cases} \frac{1}{2} \left(\partial_{13}^{2} a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][13, 1] - [23, 1][12, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][13, 2] - [23, 2][12, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][13, 3] - [23, 3][12, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][13, 4] - [23, 4][12, 4] \right) \end{cases}$$

$$(26)$$

(27)

(25)

$$R_{4134} = \begin{cases} \frac{1}{2} \left(\partial_{13}^{2} a_{44} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][13, 1] - [43, 1][14, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][13, 2] - [43, 2][14, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][13, 3] - [43, 3][14, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][13, 4] - [43, 4][14, 4] \right) \end{cases}$$

$$(29)$$

$$R_{2142} = \begin{cases} \frac{1}{2} \left(\partial_{14}^{2} a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][14, 1] - [24, 1][12, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][14, 2] - [24, 2][12, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][14, 3] - [24, 3][12, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][14, 4] - [24, 4][12, 4] \right) \end{cases}$$
(31)

$$R_{3143} = \begin{cases} \frac{1}{2} \left(\partial_{14}^{2} a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][14, 1] - [34, 1][13, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([33, 2][14, 2] - [34, 2][13, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([33, 3][14, 3] - [34, 3][13, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][14, 4] - [34, 4][13, 4] \right) \end{cases}$$

$$(33)$$

$$R_{1231} = \begin{cases} \frac{1}{2} \left(\partial_{23}^{2} a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([11, 1][23, 1] - [13, 1][21, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([11, 2][23, 2] - [13, 2][21, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([11, 3][23, 3] - [13, 3][21, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([11, 4][23, 4] - [13, 4][21, 4] \right) \end{cases}$$
(35)

$$R_{4234} = \begin{cases} \frac{1}{2} \left(\partial_{23}^{2} a_{44} \right) \\ + \frac{1}{e^{\alpha}} \left([44, 1][23, 1] - [43, 1][24, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([44, 2][23, 2] - [43, 2][24, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([44, 3][23, 3] - [43, 3][24, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([44, 4][23, 4] - [43, 4][24, 4] \right) \end{cases}$$

$$(36)$$

$$R_{1241} = \begin{cases} \frac{1}{2} \left(\partial_{24}^2 a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([11, 1][24, 1] - [14, 1][21, 1] \right) \\ + \frac{1}{e^{x^1}} \left([11, 2][24, 2] - [14, 2][21, 2] \right) \\ + \frac{1}{e^{x^1} \sin^2 x^2} \left([11, 3][24, 3] - [14, 3][21, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([11, 4][24, 4] - [14, 4][21, 4] \right) \end{cases}$$
(38)

(39)

(37)

$$R_{3243} = \begin{cases} \frac{1}{2} \left(\partial_{24}^{2} a_{33} \right) \\ + \frac{1}{e^{\alpha}} \left([33, 1][24, 1] - [34, 1][23, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([33, 2][24, 2] - [34, 2][23, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([33, 3][24, 3] - [34, 3][23, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([33, 4][24, 4] - [34, 4][23, 4] \right) \end{cases}$$

$$(41)$$

$$R_{1341} = \begin{cases} \frac{1}{2} \left(\partial_{34}^{2} a_{11} \right) \\ + \frac{1}{e^{\alpha}} \left([11, 1][34, 1] - [14, 1][31, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([11, 2][34, 2] - [14, 2][31, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([11, 3][34, 3] - [14, 3][31, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([11, 4][34, 4] - [14, 4][31, 4] \right) \end{cases}$$

$$(43)$$

$$R_{2342} = \begin{cases} \frac{1}{2} \left(\partial_{34}^{2} a_{22} \right) \\ + \frac{1}{e^{\alpha}} \left([22, 1][34, 1] - [24, 1][32, 1] \right) \\ + \frac{1}{e^{x^{1}}} \left([22, 2][34, 2] - [24, 2][32, 2] \right) \\ + \frac{1}{e^{x^{1}} \sin^{2} x^{2}} \left([22, 3][34, 3] - [24, 3][32, 3] \right) \\ - \frac{1}{e^{\gamma}} \left([22, 4][34, 4] - [24, 4][32, 4] \right) \end{cases}$$

$$(45)$$

Considering that [mn, q] = 0 for $m \neq n \neq q \neq m$ and replacing the remaining Christoffels symbols:

$$R_{2112} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{22} + \partial_{22}^2 a_{11} \right) \\ -\frac{1}{4} \alpha_1 e^{x^1} \end{cases}$$
 (46)

(47)

$$R_{3113} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{33} + \partial_{33}^2 a_{11} \right) \\ -\frac{1}{4} \left(1 + \alpha_1 \right) e^{x^1} \sin^2 x^2 \end{cases}$$
 (48)

(49)

$$R_{4114} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{44} + \partial_{44}^2 a_{11} \right) \\ + \frac{1}{4} \left(\alpha_1 \gamma_1 e^{\gamma} - \alpha_4^2 e^{\alpha} \right) + \frac{1}{4} \left(\alpha_4 \gamma_4 e^{\alpha} - \gamma_1^2 e^{\gamma} \right) \end{cases}$$
(50)

(51)

$$R_{4114} = \begin{cases} \frac{1}{2} \left(\partial_{11}^2 a_{44} + \partial_{44}^2 a_{11} \right) \\ + \frac{1}{4} \left(\alpha_1 \gamma_1 e^{\gamma} - \alpha_4^2 e^{\alpha} \right) - \frac{1}{4} \left(\alpha_4 \gamma_4 e^{\alpha} - \gamma_1^2 e^{\gamma} \right) \end{cases}$$
(52)

(53)

$$R_{3223} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{33} + \partial_{33}^2 a_{22} \right) \\ + \frac{1}{4} \frac{e^{x^1}}{e^{2\alpha}} \sin^2 x^2 - e^{x^1} \cos^2 x^2 \end{cases}$$
 (54)

(55)

$$R_{4224} = \begin{cases} \frac{1}{2} \left(\partial_{22}^2 a_{44} + \partial_{44}^2 a_{22} \right) \\ -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \end{cases}$$
 (56)

(57)

$$R_{4334} = \begin{cases} \frac{1}{2} \left(\partial_{33}^2 a_{44} + \partial_{44}^2 a_{33} \right) \\ -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \sin^2 x^2 \end{cases}$$
 (58)

(59)

$$R_{3123} = \frac{1}{2} \left(\partial_{12}^2 a_{33} \right) = 0 \tag{60}$$

$$R_{4124} = \frac{1}{2} \left(\partial_{12}^2 a_{44} \right) = 0 \tag{61}$$

$$R_{2132} = \frac{1}{2} \left(\partial_{13}^2 a_{22} \right) = 0 \tag{62}$$

$$R_{4134} = \frac{1}{2} \left(\partial_{13}^2 a_{44} \right) = 0 \tag{63}$$

$$R_{2142} = e^{-\alpha} ([22, 1][14, 1]) \tag{64}$$

$$R_{3143} = e^{-\alpha} ([33, 1][14, 1]) \tag{65}$$

$$R_{1231} = \frac{1}{2} \left(\partial_{23}^2 a_{11} \right) = 0 \tag{66}$$

$$R_{4234} = \frac{1}{2} \left(\partial_{23}^2 a_{44} \right) = 0 \tag{67}$$

$$R_{1241} = \frac{1}{2} \left(\partial_{24}^2 a_{11} \right) = 0 \tag{68}$$

$$R_{3243} = \frac{1}{2} \left(\partial_{24}^2 a_{33} \right) = 0 \tag{69}$$

$$R_{1341} = \frac{1}{2} \left(\partial_{34}^2 a_{11} \right) = 0 \tag{70}$$

$$R_{2342} = \frac{1}{2} \left(\partial_{34}^2 a_{22} \right) = 0 \tag{71}$$

Giving:

$$R_{2112} = \frac{1}{4} (1 - \alpha_1) e^{x^1} \tag{72}$$

$$R_{3113} = \frac{1}{4} (1 - \alpha_1) e^{x^1} \sin^2 x^2 \tag{73}$$

$$R_{4114} = \begin{cases} \frac{1}{2} e^{\alpha} \left(\alpha_{44} + \frac{1}{2} \alpha_4^2 - \frac{1}{2} \alpha_4 \gamma_4 \right) \\ -\frac{1}{2} e^{\gamma} \left(\gamma_{11} + \frac{1}{2} \gamma_1^2 - \frac{1}{2} \alpha_1 \gamma_1 \right) \end{cases}$$
(74)

$$R_{3223} = \left(\frac{1}{4} \frac{e^{x^1}}{e^{\alpha}} - 1\right) e^{x^1} \sin^2 x^2 \tag{75}$$

$$R_{4224} = -\frac{1}{4}\gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \tag{76}$$

$$R_{4334} = -\frac{1}{4}\gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \sin^2 x^2 \tag{77}$$

$$R_{2142} = -\frac{1}{4}\alpha_4 e^{x^1} \tag{78}$$

$$R_{3143} = -\frac{1}{4}\alpha_4 e^{x^1} \sin^2 x^2 \tag{79}$$

As all other curvature components vanish, we get

$$\begin{pmatrix}
R_{11} \\
R_{22} \\
R_{33} \\
R_{44}
\end{pmatrix} = P \begin{pmatrix}
e^{-\alpha} \\
e^{-x^{1}} \\
e^{-x^{1}} \\
\frac{e^{-x^{1}}}{\sin^{2}x^{2}} \\
-e^{-\gamma}
\end{pmatrix}$$
(80)

With

$$P = \begin{pmatrix} 0 & \frac{1}{4} (1 - \alpha_1) e^{x^1} & \frac{1}{4} (1 - \alpha_1) e^{x^1} \sin^2 x^2 & \frac{1}{2} e^{\alpha} \left(\alpha_{44} + \frac{1}{2} \alpha_4^2 - \frac{1}{2} \alpha_4 \gamma_4 \right) \\ -\frac{1}{2} e^{\gamma} \left(\gamma_{11} + \frac{1}{2} \gamma_1^2 - \frac{1}{2} \alpha_1 \gamma_1 \right) \\ 0 & \left(\frac{1}{4} \frac{e^{x^1}}{e^{\alpha}} - 1 \right) e^{x^1} \sin^2 x^2 & -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \\ 0 & -\frac{1}{4} \gamma_1 \frac{e^{\gamma} e^{x^1}}{e^{\alpha}} \sin^2 x^2 \\ 0 & 0 \end{pmatrix}$$
(81)

and

$$\begin{pmatrix}
R_{12} \\
R_{13} \\
R_{14} \\
R_{23} \\
R_{24} \\
R_{34}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -\frac{1}{4}\alpha_4 e^{x^1} & -\frac{1}{4}\alpha_4 e^{x^1} \sin^2 x^2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
e^{-\alpha} \\
e^{-x^1} \\
e^{-x^1} \\
\frac{e^{-x^1}}{\sin^2 x^2} \\
-e^{-\gamma}
\end{pmatrix} (82)$$

Finally we can compute the Einstein tensor:

$$R = a^{11}R_{11} + a^{22}R_{22} + a^{33}R_{33} + a^{44}R_{44}$$

$$= \begin{cases} e^{-\alpha} \left(\gamma_{11} + \frac{1}{2}\gamma_1^2 - \frac{1}{2}\alpha_1\gamma_1 \right) \\ e^{-\gamma} \left(\alpha_{44} + \frac{1}{2}\alpha_4^2 - \frac{1}{2}\alpha_4\gamma_4 \right) \\ + e^{-\alpha} \left(\frac{3}{2} + \gamma_1 - \alpha_1 \right) \end{cases}$$

$$(84)$$

$$G_{.1}^{1} = e^{-\alpha} R_{11} - \frac{1}{2} R \tag{85}$$

$$=e^{-\alpha}\left(-\frac{1}{4}-\frac{1}{2}\gamma_1\right)+e^{-x^1}\tag{86}$$

$$G_{.2}^2 = e^{-x^1} R_{22} - \frac{1}{2} R (87)$$

$$= \begin{cases} e^{-\alpha} \left(-\frac{1}{4} - \frac{1}{2} \gamma_{11} - \frac{1}{4} \gamma_1^2 - \frac{1}{4} \gamma_1 + \frac{1}{4} \alpha_1 \gamma_1 + \frac{1}{4} \alpha_1 \right) \\ + e^{-\gamma} \left(\frac{1}{2} \alpha_{44} + \frac{1}{4} \alpha_4^2 - \frac{1}{4} \alpha_4 \gamma_4 \right) \end{cases}$$
(88)

$$G_{.3}^{3} = \frac{e^{-x^{1}}}{\sin^{2} x^{2}} R_{33} - \frac{1}{2}R \tag{89}$$

$$\sin x^{2} = \begin{cases}
e^{-\alpha} \left(-\frac{1}{4} - \frac{1}{2}\gamma_{11} - \frac{1}{4}\gamma_{1}^{2} - \frac{1}{4}\gamma_{1} + \frac{1}{4}\alpha_{1}\gamma_{1} + \frac{1}{4}\alpha_{1} \right) \\
+ e^{-\gamma} \left(\frac{1}{2}\alpha_{44} + \frac{1}{4}\alpha_{4}^{2} - \frac{1}{4}\alpha_{4}\gamma_{4} \right)
\end{cases} (90)$$

$$G_{.4}^4 = -e^{-\gamma}R_{44} - \frac{1}{2}R\tag{91}$$

$$= e^{-\alpha} \left(-\frac{3}{4} + \frac{1}{2}\alpha_1 \right) + e^{-x^1} \tag{92}$$

$$G_4^1 = e^{-\alpha} R_{14} \tag{93}$$

$$= -\frac{1}{2}e^{-\alpha}\alpha_4 \tag{94}$$

$$G_1^4 = -e^{-\gamma} R_{14} \tag{95}$$

$$=\frac{1}{2}e^{-\gamma}\alpha_4\tag{96}$$

1.5 p110 - Exercise 9

If we change the metric tensor from a_{mn} to $a_{mn} + b_{mn}$ where b_{mn} is small, calculate the principal parts of the increment in the components of the curvature tensor.

Let's start with one form of the curvature tensor

$$R_{rsmn} = \begin{cases} \frac{1}{2} \left(\partial_{sm}^2 a_{rn} + \partial_{rn}^2 a_{sm} - \partial_{sn}^2 a_{rm} - \partial_{rm}^2 a_{sn} \right) \\ + a^{pq} \left([rn, p][sm, q] - [rm, p][sn, q] \right) \end{cases}$$
(1)

Be R'_{rsmn} and a'_{rn} the components of the tensors after changing the metric form to $a_{mn} + b_{mn}$.

$$R_{rsmn}^{'} = \begin{cases} \frac{1}{2} \left(\partial_{sm}^{2} a_{rn}^{'} + \partial_{rn}^{2} a_{sm}^{'} - \partial_{sn}^{2} a_{rm}^{'} - \partial_{rm}^{2} a_{sn}^{'} \right) \\ + a^{'pq} \left(\left[rn, p \right]^{'} \left[sm, q \right]^{'} - \left[rm, p \right]^{'} \left[sn, q \right]^{'} \right) \end{cases}$$
(2)

At the point where we want to calculate the increment of the curvature tensor, we can choose Riemannian coordinates related to the metric a'_{mn} . Then, the Christoffel symbols vanish at that point as origin and (2) becomes

$$R_{rsmn}^{'} = \frac{1}{2} \left(\partial_{sm}^{2} a_{rn}^{'} + \partial_{rn}^{2} a_{sm}^{'} - \partial_{sn}^{2} a_{rm}^{'} - \partial_{rm}^{2} a_{sn}^{'} \right) \tag{3}$$

$$= \begin{cases} \frac{1}{2} \left(\partial_{sm}^{2} a_{rn} + \partial_{rn}^{2} a_{sm} - \partial_{sn}^{2} a_{rm} - \partial_{rm}^{2} a_{sn} \right) \\ + \frac{1}{2} \left(\partial_{sm}^{2} b_{rn} + \partial_{rn}^{2} b_{sm} - \partial_{sn}^{2} b_{rm} - \partial_{rm}^{2} b_{sn} \right) \end{cases}$$
(4)

$$= \begin{cases} R_{rsmn} - a^{pq} \left([rn, p][sm, q] - [rm, p][sn, q] \right) \\ + \frac{1}{2} \left(\partial_{sm}^{2} b_{rn} + \partial_{rn}^{2} b_{sm} - \partial_{sn}^{2} b_{rm} - \partial_{rm}^{2} b_{sn} \right) \end{cases}$$
 (5)

$$\begin{array}{l}
R_{rsmn} = \frac{1}{2} \left(\partial_{sm}^{2} a_{rn} + \partial_{rn}^{2} a_{sm} - \partial_{sn}^{2} a_{rm} - \partial_{rm}^{2} a_{sn} \right) \\
= \begin{cases}
\frac{1}{2} \left(\partial_{sm}^{2} a_{rn} + \partial_{rn}^{2} a_{sm} - \partial_{sn}^{2} a_{rm} - \partial_{rm}^{2} a_{sn} \right) \\
+ \frac{1}{2} \left(\partial_{sm}^{2} b_{rn} + \partial_{rn}^{2} b_{sm} - \partial_{sn}^{2} b_{rm} - \partial_{rm}^{2} b_{sn} \right)
\end{cases} \\
= \begin{cases}
R_{rsmn} - a^{pq} \left([rn, p][sm, q] - [rm, p][sn, q] \right) \\
+ \frac{1}{2} \left(\partial_{sm}^{2} b_{rn} + \partial_{rn}^{2} b_{sm} - \partial_{sn}^{2} b_{rm} - \partial_{rm}^{2} b_{sn} \right)
\end{cases} \\
\Rightarrow \Delta R_{rsmn} = \begin{cases}
-a^{pq} \left([rn, p][sm, q] - [rm, p][sn, q] \right) \\
+ \frac{1}{2} \left(\partial_{sm}^{2} b_{rn} + \partial_{rn}^{2} b_{sm} - \partial_{sn}^{2} b_{rm} - \partial_{rm}^{2} b_{sn} \right)
\end{cases} \tag{5}$$

As [rn, p]' = 0 we have [rn, p]" = -[rn, p] (the suffix "referring to b_{mn}). So we have for [rn, s]" and [ms, r]"

$$\partial_r b_{sn} + \partial_n b_{rs} - \partial_s b_{rn} = -\partial_r a_{sn} - \partial_n a_{rs} + \partial_s a_{rn} \tag{7}$$

$$\partial_m b_{rs} + \partial_s b_{rm} - \partial_r b_{sm} = -\partial_m a_{rs} - \partial_s a_{rm} + \partial_r a_{sm} \tag{8}$$

$$\partial_m(7) \quad \Rightarrow \quad \partial_{rm}^2 b_{sn} + \partial_{mn}^2 b_{rs} - \partial_{sm}^2 b_{rn} = -\partial_{rm}^2 a_{sn} - \partial_{mn}^2 a_{rs} + \partial_{sm}^2 a_{rn} \tag{9}$$

$$\partial_n(8) \quad \Rightarrow \quad \partial_{mn}^2 b_{rs} + \partial_{sn}^2 b_{rm} - \partial_{rn}^2 b_{sm} = -\partial_{mn}^2 a_{rs} - \partial_{sn}^2 a_{rm} + \partial_{rn}^2 a_{sm} \tag{10}$$

Combining (9) and (10) in (6), we get

WATURE OF SPACE

$$\Delta R_{rsmn} = \begin{cases}
-a^{pq} ([rn, p][sm, q] - [rm, p][sn, q]) \\
+ \frac{1}{2} (\partial_{rm}^2 a_{sn} + \partial_{mn}^2 a_{rs} - \partial_{sm}^2 a_{rn}) \\
+ \frac{1}{2} (\partial_{mn}^2 a_{rs} + \partial_{sn}^2 a_{rm} - \partial_{rn}^2 a_{sm}) \\
+ \frac{1}{2} (\partial_{mn}^2 b_{rs} + \partial_{mn}^2 b_{rs})
\end{cases}$$
(11)

$$= \begin{cases}
a^{pq} ([rm, p][sn, q] - [rn, p][sm, q]) \\
+ \frac{1}{2} (\partial_{rm}^2 a_{sn} + \partial_{sn}^2 a_{rm} - \partial_{sm}^2 a_{rn} - \partial_{rn}^2 a_{sm}) \\
+ \frac{1}{2} (\partial_{rm}^2 a_{sn} + \partial_{sn}^2 a_{rm} - \partial_{sm}^2 a_{rn} - \partial_{rn}^2 a_{sm}) \\
+ \frac{1}{2} (\partial_{mn}^2 a_{rs} + \partial_{mn}^2 a_{rs}) \\
+ \frac{1}{2} (\partial_{mn}^2 a_{rs}$$

Can I simplify further ??

1.6 p110 - Exercise 10

If we use normal coordinates in a Riemannian V_n , the metric form is as in equation 2.630. For this coordinate system, express the curvature tensor, the Ricci tensor, and the curvature invariant in terms of the corresponding quantities for the (N-1) – space $x^N = C^{st}$ and certain additional terms. Check these additional terms by nothing that they must have tensor character with respect to transformations of the coordinates $x^1, x^2, \ldots, x^{N-1}$.

$$R_{rsmn} = \partial_m[sn, r] - \partial_n[sm, r] + \Gamma^p_{sm}[rn, p] - \Gamma^p_{sn}[rm, p]$$

We indicate by $R'_{...}$ the quantity generated by the previous definition, but restricted to the subspace V_{N-1} . Calculating $R_{\alpha\beta\gamma\delta}$ restricted to the subspace V_{N-1} gives:

$$R_{\alpha\beta\gamma\delta} = \underbrace{\partial_{\gamma}[\beta\delta,\alpha] - \partial_{\delta}[\beta\gamma,\alpha] + \Gamma^{\nu}_{\beta\gamma}[\alpha\delta,\nu] - \Gamma^{\nu}_{\beta\delta}[\alpha\gamma,\nu]}_{=R'_{\alpha\beta\gamma\delta}} + \Gamma^{N}_{\beta\gamma}[\alpha\delta,N] - \Gamma^{N}_{\beta\delta}[\alpha\gamma,N] \quad (1)$$

$$= R'_{\alpha\beta\gamma\delta} + \underbrace{\Gamma^{N}_{\beta\gamma}}_{-\frac{1}{2}\frac{1}{a_{NN}}\partial_{N}a_{\beta\gamma} - \frac{1}{2}\partial_{N}a_{\alpha\delta}}_{-\frac{1}{2}\frac{1}{a_{NN}}\partial_{N}a_{\beta\delta} - \frac{1}{2}\partial_{N}a_{\alpha\gamma}} \underbrace{[\alpha\gamma,N]}_{-\frac{1}{2}\frac{1}{a_{NN}}\partial_{N}a_{\beta\gamma} - \frac{1}{2}\partial_{N}a_{\alpha\delta}}_{-\frac{1}{2}\frac{1}{a_{NN}}\partial_{N}a_{\beta\delta} - \frac{1}{2}\partial_{N}a_{\alpha\gamma}} \quad (\text{see page 66/67}) \quad (2)$$

$$R_{\alpha\beta\gamma\delta} = R'_{\alpha\beta\gamma\delta} + \frac{1}{4}\frac{1}{a_{NN}} (\partial_{N}a_{\beta\gamma}\partial_{N}a_{\alpha\delta} - \partial_{N}a_{\beta\delta}\partial_{N}a_{\alpha\gamma}) \quad (3)$$

We calculate $R_{\alpha\beta}$:

$$R_{\alpha\beta} = a^{sn} R_{s\alpha\beta n}$$

$$= \underbrace{a^{\nu\mu} R_{\nu\alpha\beta\mu}}_{R'_{\alpha\beta}} + \underbrace{a^{N\mu}}_{=0} R_{N\alpha\beta\mu} + \underbrace{a^{\nu N}}_{=0} R_{\nu\alpha\beta N} + \underbrace{a^{NN}}_{=\frac{1}{a_{NN}}} R_{N\alpha\beta N}$$

$$= \underbrace{a^{\nu\mu} R_{\nu\alpha\beta\mu}}_{R'_{\alpha\beta}} + \underbrace{a^{N\mu}}_{=0} R_{N\alpha\beta\mu} + \underbrace{a^{\nu N}}_{=0} R_{\nu\alpha\beta N} + \underbrace{a^{NN}}_{=\frac{1}{a_{NN}}} R_{N\alpha\beta N}$$

$$(5)$$

$$(5) \Rightarrow R_{\alpha\beta} = R'_{\alpha\beta} + \frac{1}{a_{NN}} R_{N\alpha\beta N}$$
 (6)

$$R_{N\alpha\beta N} = \begin{cases} \partial_{\beta}[\alpha N, N] - \partial_{N}[\alpha \beta, N] \\ + \Gamma_{\alpha\beta}^{\nu}[NN, \nu] - \Gamma_{\alpha N}^{\nu}[N\beta, \nu] \\ + \Gamma_{\alpha\beta}^{N}[NN, N] - \Gamma_{\alpha N}^{N}[N\beta, N] \end{cases}$$

$$(7)$$

$$= \begin{cases} R'_{N\alpha\beta N} \\ + \underbrace{\Gamma^{N}_{\alpha\beta}}_{-\frac{1}{2}\frac{1}{a_{NN}}\partial_{N}a_{\alpha\beta}}\underbrace{[NN,N]}_{\frac{1}{2}\frac{1}{a_{NN}}\partial_{N}a_{NN}} - \underbrace{\Gamma^{N}_{\alpha N}}_{\frac{1}{2}\frac{1}{a_{NN}}\partial_{\alpha}a_{NN}}\underbrace{[N\beta,N]}_{\frac{1}{2}\partial_{\beta}a_{NN}} \end{cases}$$
(8)

$$=R_{N\alpha\beta N}^{'}-\frac{1}{4}\frac{1}{a_{NN}}\left(\frac{1}{a_{NN}}\partial_{N}a_{\alpha\beta}\partial_{N}a_{NN}+\partial_{\alpha}a_{NN}\partial_{\beta}a_{NN}\right) \tag{9}$$

(6) and (9)
$$\Rightarrow$$

$$R_{\alpha\beta} = \begin{cases} R'_{\alpha\beta} + \frac{1}{a_{NN}} R'_{N\alpha\beta N} \\ -\frac{1}{4} \frac{1}{a_{NN}^2} \left(\frac{1}{a_{NN}} \partial_N a_{\alpha\beta} \partial_N a_{NN} + \partial_\alpha a_{NN} \partial_\beta a_{NN} \right) \end{cases}$$
(10)

And the invariant curvature:

$$R = a^{mn} R_{mn} \tag{11}$$

$$=\underbrace{a^{\mu\nu}R_{\mu\nu}}_{=R'} + \underbrace{a^{N\nu}}_{=0} R_{N\nu} + \underbrace{a^{\mu N}}_{=0} R_{\mu N} + a^{NN}R_{NN}$$
(12)

$$= R' + a^{NN} R_{NN} (13)$$

$$R_{NN} = a_{sn} R_{sNNn} \tag{14}$$

$$=\underbrace{a_{\mu\nu}R_{\mu NN\nu}}_{=R'_{NN}} + \underbrace{a_{N\nu}R_{NNN\nu}}_{=0} + \underbrace{a_{\mu N}R_{\mu NNN}}_{=0} + \underbrace{a_{NN}R_{NNNN}}_{=0}$$
(15)

(13) and (15)
$$\Rightarrow$$
 $R = R' + \frac{1}{a_{NN}} R'_{NN}$ (16)

We now check the tensor character of the residuals in (3), (10) and (16)

♦

1.7 p110 - Exercise 11

$$T^{mn}_{|mn}=T^{mn}_{|nm}$$

whet T^{mn} is not necessarily symmetric.

$$T^{mn}_{|s} = \partial_s T^{mn} + \Gamma^m_{ks} T^{kn} + \Gamma^n_{ks} T^{mk} \tag{1}$$

$$T^{mn}_{|s} = \partial_s T^{mn} + \Gamma^m_{ks} T^{kn} + \Gamma^n_{ks} T^{mk}$$

$$T^{mn}_{|st} = (\partial_s T^{mn})_{|t} + (\Gamma^m_{ks})_{|t} T^{kn} + (\Gamma^n_{ks})_{|t} T^{mk} + \Gamma^m_{ks} (T^{kn})_{|t} + \Gamma^n_{ks} (T^{mk})_{|t}$$

$$(1)$$

We choose Riemannian coordinates and take as origin the point where we want to check the asked identity. At that point the Christoffel symbols vanish and (2) becomes

$$T^{mn}_{|st} = (\partial_{s}T^{mn})_{|t} + (\Gamma^{m}_{ks})_{|t}T^{kn} + (\Gamma^{n}_{ks})_{|t}T^{mk}$$

$$= \begin{cases} \partial_{st}^{2}T^{mn} + \text{ terms in } \Gamma \text{'s } (=0) \\ + T^{kn}(\Gamma^{m}_{ks})_{|t} \\ + T^{mk}(\Gamma^{n}_{ks})_{|t} \end{cases}$$

$$= \begin{cases} \partial_{st}^{2}T^{mn} \\ + T^{kn} \left[a^{mp}_{|t}[ks, p] + \frac{1}{2}a^{mp} \left((\partial_{k}a_{sp})_{|t} + (\partial_{s}a_{kp})_{|t} - (\partial_{p}a_{ks})_{|t} \right) \right] \\ + T^{mk} \left[a^{np}_{|t}[ks, p] + \frac{1}{2}a^{np} \left((\partial_{k}a_{sp})_{|t} + (\partial_{s}a_{kp})_{|t} - (\partial_{p}a_{ks})_{|t} \right) \right] \end{cases}$$

$$= \begin{cases} \partial_{st}^{2}T^{mn} \\ + \frac{1}{2}a^{mp} \left(\partial_{kt}^{2}a_{sp} + \partial_{st}^{2}a_{kp} - \partial_{pt}^{2}a_{ks} \right) T^{kn} \\ + \frac{1}{2}a^{np} \left(\partial_{kt}^{2}a_{sp} + \partial_{st}^{2}a_{kp} - \partial_{pt}^{2}a_{ks} \right) T^{mk} \end{cases}$$

$$(5)$$

In the same way we get

$$T^{mn}_{|ts} = \begin{cases} \partial_{st}^{2} T^{mn} \\ + \frac{1}{2} a^{mp} \left(\partial_{ks}^{2} a_{tp} + \partial_{st}^{2} a_{kp} - \partial_{ps}^{2} a_{kt} \right) T^{kn} \\ + \frac{1}{2} a^{np} \left(\partial_{ks}^{2} a_{tp} + \partial_{st}^{2} a_{kp} - \partial_{ps}^{2} a_{kt} \right) T^{mk} \end{cases}$$
 (7)

(13)

Hence

$$2\left(T^{mn}_{|st} - T^{mn}_{|ts}\right) = \begin{cases} a^{mp} \left(\partial_{kt}^{2} a_{sp} + \partial_{st}^{2} a_{kp} - \partial_{pt}^{2} a_{ks} - \partial_{ks}^{2} a_{tp} - \partial_{st}^{2} a_{kp} + \partial_{ps}^{2} a_{kt}\right) T^{kn} \\ + a^{np} \left(\partial_{kt}^{2} a_{sp} + \partial_{st}^{2} a_{kp} - \partial_{pt}^{2} a_{ks} - \partial_{ks}^{2} a_{tp} - \partial_{st}^{2} a_{kp} + \partial_{ps}^{2} a_{kt}\right) T^{mk} \end{cases}$$

$$= \begin{cases} a^{mp} \left(\partial_{kt}^{2} a_{sp} - \partial_{pt}^{2} a_{ks} - \partial_{ks}^{2} a_{tp} + \partial_{ps}^{2} a_{kt}\right) T^{kn} \\ + a^{np} \left(\partial_{kt}^{2} a_{sp} - \partial_{pt}^{2} a_{ks} - \partial_{ks}^{2} a_{tp} + \partial_{ps}^{2} a_{kt}\right) T^{mk} \end{cases}$$

$$(9)$$

Putting s = m and t = n:

$$2\left(T^{mn}_{|mn} - T^{mn}_{|nm}\right) = \begin{cases} a^{mp} \left(\partial_{kn}^{2} a_{mp} - \partial_{pn}^{2} a_{km} - \partial_{km}^{2} a_{np} + \partial_{pm}^{2} a_{kn}\right) T^{kn} \\ + a^{np} \left(\partial_{kn}^{2} a_{mp} - \partial_{pn}^{2} a_{km} - \partial_{km}^{2} a_{np} + \partial_{pm}^{2} a_{kn}\right) T^{mk} \end{cases}$$
(10)

In the last term of (10) we can swap the indices m and n giving

$$2\left(T^{mn}_{|mn} - T^{mn}_{|nm}\right) = \begin{cases} a^{mp} \left(\partial_{kn}^{2} a_{mp} - \partial_{pn}^{2} a_{km} - \partial_{km}^{2} a_{np} + \partial_{pm}^{2} a_{kn}\right) T^{kn} \\ + a^{mp} \left(\partial_{km}^{2} a_{np} - \partial_{pm}^{2} a_{kn} - \partial_{kn}^{2} a_{mp} + \partial_{pn}^{2} a_{km}\right) T^{nk} \end{cases}$$
(11)

In the second term of (11) we may again swap the indices n and k giving

$$2\left(T^{mn}_{|mn} - T^{mn}_{|nm}\right) = \begin{cases} a^{mp} \left(\partial_{kn}^{2} a_{mp} - \partial_{pn}^{2} a_{km} - \partial_{km}^{2} a_{np} + \partial_{pm}^{2} a_{kn}\right) T^{kn} \\ + a^{mp} \left(\partial_{nm}^{2} a_{kp} - \partial_{pm}^{2} a_{kn} - \partial_{kn}^{2} a_{mp} + \partial_{pk}^{2} a_{nm}\right) T^{kn} \end{cases}$$
(12)

$$= \left(\underbrace{a^{mp}\partial_{nm}^{2}a_{kp}}_{\text{swap m and p}} + \underbrace{a^{mp}\partial_{pk}^{2}a_{nm}}_{\text{swap m and p}} - a^{mp}\partial_{pn}^{2}a_{km} - a^{mp}\partial_{km}^{2}a_{np}\right)T^{kn}$$
(14)

$$= (a^{mp}\partial_{np}^{2}a_{km} + a^{mp}\partial_{mk}^{2}a_{np} - a^{mp}\partial_{pn}^{2}a_{km} - a^{mp}\partial_{km}^{2}a_{np})T^{kn}$$
 (15)

$$=0 (16)$$

•