Amritpal Saini, 30039983

The recursive function performs redundant calculations, as shown below.

Let Fib(x) be the recursive function for calculating the Fibonacci of x.

Evaluation	Number of Evaluations
Fib(2)	5
Fib(3)	3
Fib(4)	2
Fib(5)	1
Fib(6)	1

The big-O running time for the iterative algorithm is O(n) because, as seen in the Growth Rate analysis, the time units required to run the iterative algorithm grows linearly.

Line #	Function Loop	cost	time	Comments	
16	public static long	-	-	-	
	loop(int nMax) {				
17	long low = 0;	C1=1	1	Assignment operation	
18	long high = 1;	C2=1	1	Assignment operation	
19	long ans = 0;	C3=1	1	Assignment operation	
20	if (nMax == 0) {	C4=1	1	Relational operator	
21	return 0;	C5=1	1	Returning from method	
22	} else if (nMax == 1) {	C6=1	1	Relational operator	
23	return 1;	C7=1	1	Returning from method	
24	}else {	-	-	-	
25	for (int i = 0; i <=	C8=1	1	Assignment operator	
	nMax - 2; i++) {	C9=1	n-1	Relational operator (n+1 times but loop runs to n-2)	
		C10=2	n-2	Assignment and arithmetic operator	
26	ans = low + high;	C11=2	n-2	Assignment and arithmetic operator	
27	low = high;	C12=1	n-2	Assignment operator	
28	high = ans;	C13=1	n-2	Assignment operator	
29	}	-	-	-	
30	}	-	-	-	
31	return ans;	C14=1	1	Returning from method	
32	}	-	-	-	
7n+3	Thus big O of O(n)				

$$(C1*1) + (C2*1) + (C3*1) + (C4*1) + (C5*1) + (C6*1) + (C7*1) + (C8*1) + (C9*(n-1)) + (C10*(n-2)) + (C11*(n-2)) + (C12*(n-2)) + (C13*(n-2)) + (C14*1) = 7n + 3$$

$$g(n) = (7+3)n = 10n$$

The big-O running time for the matrix algorithm is $O(log_2n)$ because, as seen in the growth rate analysis, the time units required to run the matrix algorithm grows logarithmic.

Line #	Function Matrix	Cost	Time	Comments
1	If (n = 0)	C1 = 2	1	Relational Operator and returning to
	return			method
	0;			
2	Initialize FM;	C2 = 12	1	2 * array accesses by index
				1 * assignment operation
3	Call MatrixPower (n - 1);	C3 = 1	1	Method call
4	Return the element that is in	C4 = 3	1	1 * return
	the first column of the first			2 * array access
	row of FM;			

$$f(n) = (C1 * 1) + (C2 * 1) + (C3 * 1) + (C4 * 1) = 18$$

Line #	Function MatrixPower	Cost	Time	Comments
1	If (n > 1)	C1 = 1	1	Relational operative
2	Call MatrixPower (n / 2)	C2 = 1	f(n/2)	Recursive method call
3	Update FM = FM * FM;	C3 = 56	1	10 * array access
				3 * arithmetic operations
				1 * assignment
4	If (n is odd)	C4 = 2	1	Relational and arithmetic
5	Update FM = FM * $\frac{1}{1}$	C5 = 56	1	10 * array access
Ора	1 0			3 * arithmetic operations
				1 * assignment

$$f(n) = (C1*1) + (C2*\left(f\left(\frac{n}{2}\right)\right) + (C3*1) + (C4*1) + (C5*1) = 1 + f\left(\frac{n}{2}\right) + 56 + 2 + 56$$

$$f(n) = 115 + f\left(\frac{n}{2}\right) \to f(n) = (115 * k) + f\left(\frac{n}{2^k}\right)$$

base case, let $\frac{n}{2^k} = 1$, thus $n = 2^k$ which means $k = \log_2 n \rightarrow f(n) = 115 \log_2 n + 1$

Thus, f(n) (Matrix Power) + f(n) (Matrix) = $115log_2n + 19$

$$g(n) = (115 + 18)log_2 n = 134log_2 n$$

Based on the plots, the recursive function is better from around Fibonacci(0) to Fibonacci(2). From around Fibonacci(3) to around Fibonacci(158), the iterative function is, on average, higher. From around Fibonacci(159) onwards, the matrix function is faster.

Appendix

Sousa, M., CPSC 319, asgmt-1—hints, 2019

Sousa, M., CPSC 319, 01 - Algorithm Design Patterns - (1) Recursion - soln-HW -- 1 sld-pp, 2019

