I. What is
$$\lim_{\beta \to \infty} \omega$$
? $\rightarrow T = \{T_1, T_2, ..., T_N\}$ and $\omega = \frac{1}{\beta} \log \sum_{k=1}^{N} \exp\{\beta T_k\}$ where $\beta > 0$

What is $\lim_{\beta \to \infty} z$?

$$\lim_{\beta \to \infty} \sum_{k=1}^{N} \frac{1}{\beta} \exp\{\beta T_k\}$$

$$\lim_{\beta \to \infty} \sum_{k=1}^{N} \exp\{\beta T_k\}$$

$$\lim_{\beta \to \infty} \sum_{k$$

22. For sigmoid activation function
$$Z(u) = \sigma(u) = \frac{1}{1+e\times p(-u)}$$
, and BCE loss function BCy , $Z(u) = y\log \frac{u}{z} + (1-y)\log \frac{1-u}{1-z}$.

$$= y\log(y) - \log(z) + (1-y)\log(\frac{1-u}{1-z})$$

$$= y\log(y) - y\log(z) + (1-y)\log(\frac{1-u}{1-z})$$

$$= y\log(y) - y\log(z) + (1-y)\log(1-y) - \log(1-z)$$
Oefine as variable u

= -yu + y(10g(z) + (1-y)u = -yu + y(10g(y) +v) + y10g(z) = -yu + 10g(1+exp{u}) +y10g(z) + terms independent of u

2b. https://colab.research.google.com/drive/1kUA1Q3sHpXvrXg5GFzVG38KQUy5rVAh1?usp=sharing

3. Schwarz Inequality:
$$\left(\sum_{k=1}^{N} |x_k y_{k_1}|\right)^2 \le \sum_{k=1}^{N} |x_k|^2 \sum_{k=1}^{N} |y_{k_2}|^2$$

For $c_n \ge 0$, $\sum_{k=1}^{N} c_n = 1$ and a vector $x \in |R^N|$ with elements $x_n \ge 0$, $\sum_{k=1}^{N} c_n x_n^2 \ge \left(\sum_{k=1}^{N} c_n x_k\right)^2$:

From this, we can say that $C_n = V_1$ and $\neg C_n = V_2$ V_1 and V_2 would be worthy substitutions for y_{K_1} and y_{K_2} respectively.

[K = n]

$$\left(\sum_{n=1}^{N}|(x_{n})(c_{n})|^{2} \leq \sum_{n=1}^{N}|x_{n}|^{2}\sum_{n=1}^{N}|f_{c_{n}}|^{2}$$

$$\left(\sum_{n=1}^{N} |(x_{n})(c_{n})|^{2} \leq \sum_{n=1}^{N} |x_{n}|^{2} \sum_{n=1}^{N} |T_{c_{n}}|^{2}$$

$$\left(\sum_{n=1}^{N} c_{n} x_{n}\right)^{2} \leq \sum_{n=1}^{N} |x_{n}|^{2} c_{n}$$