

$ au_{1}^{\#2}$	0	0	0	$-\frac{2i}{kr_1+2k^3r_1}$	$\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$	0	$\frac{6k^2r_{1-4}t_3}{(1+2k^2)^2r_{1}t_3}$	
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2}}{k^2 r_1 + 2k^4 r_1}$	$\frac{3k^2r_{1-2}t_3}{(k+2k^3)^2r_1t_3}$	0	$-\frac{i\sqrt{2}(3k^2r_1-2t_3)}{k(1+2k^2)^2r_1t_3}$	
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	$-\frac{\sqrt{2}}{k^2 r_1 + 2 k^4 r_1}$	0	$\frac{2i}{kr_1+2k^3r_1}$	
$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{3 i \sqrt{2} k}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0	
$\sigma_1^{\#2}{}_+\alpha\beta$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3\bar{l}\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0	
	$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_1^{\#_2} + ^{lphaeta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$	

					m		
$f_{1}^{#2}$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 + \frac{2 t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1} \alpha eta$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2}t_2}{3}$	2 2	$-rac{1}{3}$ īk t_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$			$-\frac{1}{3}\bar{l}\sqrt{2}kt_2\left -\frac{1}{3}\bar{l}kt_2\right $	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + ^{\alpha}$

 $\tau_{2}^{\#1}{}_{\alpha\beta}\ \sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
† ^{αβ}	0	0	0
$+^{\alpha\beta}$	0	0	0
† ^{αβχ}	0	0	$k^2 r_1$

$\sigma_{\rm C}^{\!$)))	$\frac{1}{k^2 r_2}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
·	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2} \uparrow$	$\sigma_{0}^{\#1}$ †

? $J^P = 0^-$	
r	

	Massive particle							
?	Pole residue:	$-\frac{1}{r_2} > 0$						
=0-	Polarisations:	1						
ξ ^μ (Square mass:	$-\frac{t_2}{r_2} > 0$						
?	Spin:	0						
	Parity:	Odd						

(No massless particles)

$J^{P} = 0^{-} $?	Massive particle						
?	Pole residue:	$-\frac{1}{r_2}$					
$J^{T} = 0^{-}$	Polarisations:	1					
k^{μ}	Square mass:	$-\frac{t_2}{r_2}$					
?	Spin:	0					
	Parity:	Odo					

1		-		0#1 +	t	3	-Ī V	$2 kt_3$	0		0								
			f	`#1 0+ †	$i \sqrt{2}$	$\frac{1}{2}kt_3$	2	$k^2 t_3$	0		0			п.				1 r ₂ +t ₂	
0	0	0	f	`#2 0+ †		0		0	0		0			$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2}$	
			ω) ^{#1} †		0		0	0	k^2	$r_2 + t_2$	2		$\tau_0^{\#2}$	0	0	0	0	
0	0	0													$\frac{k}{3}$	2 t3			
				#	Н	1	m	Μ	0	Μ	2	Ŋ	24	$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
			υ 4	2			,== 0		-#						- (1-	(1+			
0	0	0	 2 4	ן מו		0 ==	$\sigma_{1}^{\#2}{}^{\alpha}$		$\sigma_1^{\#1}{}^{\alpha\beta}$	$\sigma_1^{\#2}{}^{\alpha\beta}$				- 1+	$^{2})^{2}t_{3}$	$\frac{1}{2}k$			
g	ø	α		SO(3) irreps		$i k \sigma_0^{\#1}$	2 i k	0	īκ	$=$ $\sigma_1^{\#}$	0 =	0 ==		$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	
$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$	0	3) ir	0 ==	-2 i k	+	<u> </u>	+ θπ		πβ ==		# 6		+		+	+	
3	+	4		SO(τ ^{#2} :	$\tau_{0}^{\#1}$ -	$\tau_{1}^{\#2\alpha}$	$ au_1^{\#_1} lpha$	$\tau_1^{\#1} \alpha \beta$	$\sigma_1^{\#1}{}^{\alpha\beta}$	$\tau_2^{\#1}\alpha\beta$	$\sigma_2^{\#1}\alpha\beta$	Total		$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1} \dagger$	