HPCA - recap and moving forward

Soumyajit Dey, Assistant Professor, CSE, IIT Kharagpur

January 7, 2021

What is Computer Architecture? ²

- ► Several years ago, the term computer architecture often referred only to instruction set design. Implementation is considered separately. Leaves out much critical details
- What people advocate: think of the instruction set architecture (ISA) as boundary of HW and SW
- ► ISA : the programmer/compiler- visible instruction set
- ► Kind of ISA; are instructions complex/simple in function, are they fast/slow to execute?
- ► Kind of ISA : are instructions able to access memory directly ? Is access *aligned* ¹ ??

¹shall study later

²Ref: Hen Pat books

Addressing modes

- ► Register get data in register and register (e.g. \$r1) encoding is part of instruction. (direct addressing). Ex: add \$t0 \$t1 \$t2
- ▶ Displacement indirect addressing. Ex: lw rd, i(rb),
- ► Immediate Ex: addi \$t1 \$t1 1. Operand (limited by bit width) is a constant within the instruction itself.
- ► PC relative address is the sum of the program counter and a constant in the instruction.

Technology Trends

- ➤ Transistor density increases by about 35% per year. Increases in die size: 10% to 20% per year. The combined effect is a growth rate in transistor count on a chip of about 40% to 55% per year, or doubling every 18 to 24 months. This trend is popularly known as Moore's law.
- ▶ DRAM the rate of improvement has continued to slow

DRAM growth rate	Characterization of impact on DRAM capacity
60%/year	Quadrupling every 3 years
60%/year	Quadrupling every 3 years
40%–60%/year	Quadrupling every 3 to 4 years
40%/year	Doubling every 2 years
25%–40%/year	Doubling every 2 to 3 years

Technology Trends

- ➤ Semiconductor Flash Nonvolatile. Flash memory is 15 to 20 times cheaper per bit than DRAM. Capacity double roughly twice per year
- ► Magnetic disk 15 to 25 times cheaper per bit than Flash. Density doubles every three years. Central to server and warehouse scale storage.

Performance Trends

- Bandwidth or throughput is the total amount of work done in a given time, such as megabytes per second for a disk transfer.
- ▶ Latency or response time is the time between the start and the completion of an event, such as milliseconds for a disk access.
- ➤ Simple rule of thumb is that bandwidth grows by at least the square of the improvement in latency.

Performance Trends

Energy and Power consumption in Microprocessor

Transistor dynamic power consumption

- ▶ $Power_{dyn} = C \times V_{DD}^2 \times f$
- ► *f* : switching frequency
- C: capacitive load driven by the transistor
- $ightharpoonup V_{DD}$: operating voltage

The first microprocessors consumed less than a watt and the first 32-bit microprocessors used about 2 watts, while a 3.3 GHz Intel Core i7 consumes 130 watts. Given that this heat must be dissipated from a chip that is about 1.5 cm on a side, we have reached the limit of what can be cooled by air.

Clock rate flattening out

Optimizations

Modern microprocessors try to improve energy efficiency despite flat clock rates and constant supply voltages

- ► Clock gating: if no floating-point instructions are executing, the clock of the floating-point unit is disabled. If some cores are idle, their clocks are stopped.
- ► Dynamic Voltage-Frequency Scaling (DVFS)
- ► Mode based optimizations: DRAMs have a series of increasingly lower power modes to extend battery life. Disk can spin slowly when idle.

Dependability

►
$$MTTF = \frac{1}{failure\ rate(\lambda)}$$

► Availability =
$$\frac{MTTF}{MTTF + MTTR}$$

► Let us check some examples from book

