Лабораторная работа 14

Модели обработки заказов

Извекова Мария Петровна

Содержание

Цель работы	5
Задание	6
Модель оформления заказов клиентов одним оператором	7
Упражнение.	11
Построение гистограммы распределения заявок в очереди	14
Модель обслуживания двух типов заказов от клиентов в интернет-магазине	19
Упражнение	23
Модель оформления заказов несколькими операторами	26
Выводы	32
Библиография	33

Список иллюстраций

1	Построение модели 1	8
2	Отчет модели 1	10
1	Упражнение 1: моделирование	11
2	Упражнение 1: отчет	12
1	моделирование	15
2	Отчет	16
3	Отчет	16
4	Гистограмма	18
1	Модель	20
2	Отчет	21
1	Модель	23
2	Отчет	24
1	Отчет	27
2	Модель	28
3	Молель	30

Список таблиц

Цель работы

Построить модели несколько моделей в GPSS и проанализировать их отчеты

Задание

Построить модели: 1. Модель оформления заказов клиентов одним оператором 2. Построение гистограммы распределения заявок в очереди 3. Модель обслуживания двух типов заказов от клиентов в интернет-магазине 4. Модель оформления заказов несколькими операторами

Модель оформления заказов клиентов одним оператором

В интернет-магазине заказы принимает один оператор. Интервалы поступления заказов распределены равномерно с интервалом 15 ± 4 мин. Время оформления заказа также распределено равномерно на интервале 10 ± 2 мин. Обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется разработать модель обработки заказов в течение 8 часов.

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе: 1) клиент оставляет заявку на заказ в интернет-магазине; 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа; 3) заявка от клиента принимается оператором для оформления заказа; 4) оператор оформляет заказ; 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) — ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания». рис. [-@fig:001]

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE — 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается— оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Рис. 1: Построение модели 1

После запуска симуляции получаем отчёт рис. [-@fig:002] Результаты работы модели: — модельное время в начале моделирования: START TIME=0.0; — абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; — количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; — количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;

– количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q. Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT — количество транзактов, вошедших в блок с начала процедуры моделирования. Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин

Далее информация об очереди: — QUEUE=operator_q — имя объекта типа «очередь»; — МАХ=1 — в очереди находилось не более одной ожидающей заявки от клиента; — CONT=0 — на момент завершения моделирования очередь была пуста; — ENTRIES=32 — общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; — ENTRIES(O)=31 — число заявок от клиентов, попавших к оператору без ожидания в очереди; — AVE.CONT=0, 001 заявок от клиентов в среднем были в очереди; — AVE.TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); — AVE.(—0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь). В конце отчёта идёт информация о будущих событиях: — XN=33 — порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора; — PRI=0 — все клиенты (из заявки) равноправны; — BDT=489, 786 — время назначенного события, связанного с данным транзактом; — ASSEM=33 — номер семейства транзактов; — CURRENT=5 — номер блока, в котором находится транзакт; — NEXT=6 — номер блока, в который должен войти транзакт.

Untitled Model 1.1.1							
	суббота, м	ая 10, 202	5 09:36:32				
STADT	TIME	FND TIM	F BIOCKS	FACTITATE	S STOP	ACES	
	0.000					ROLD	
			-	_	-		
NAN	ME	1	VALUE				
OPERATO	OR_Q	1	0000.000				
LABEL	LOC BLOC	K TYPE	ENTRY COU	NT CURRENT	COUNT I	RETRY	
	1 GENE						
			32				
	3 SEIZ	E	32		0	0	
	4 DEPA	RT	32				
	5 ADVA	NCE	32		1	0	
	6 RELE.	ASE	31		0	0	
	7 TERM	INATE	31		0	0	
	8 GENE	RATE	1		0	0	
	9 TERM	INATE	1		0	0	
FACILITY	ENTRIES HTT	T 7/17	TIME AVAIL	OWNED DE	יאר באדבי	D DETDV	DELVA
OPERATOR							
OFERATOR	32 0.	039	9.309 1	33	0 0		•
QUEUE	MAX CONT.	ENTRY ENTR	Y(0) AVE.C	ONT. AVE.	TIME A	VE.(-0)	RETRY
OPERATOR_Q							
_							
FEC XN PRI				T PARAMET	TER V	ALUE	
33 0							
34 0							
35 0	960.000	35	0 8				

Рис. 2: Отчет модели 1

Упражнение.

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин.

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator q
ADVANCE 6.6,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
```

Рис. 1: Упражнение 1: моделирование

Рис. 2: Упражнение 1: отчет

Результаты работы модели:

модельное время в начале моделирования: START TIME=0.0; абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator_q.

количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 152; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказ от клиентов (значение поля OWNER=71), но оператор успел принять в обработку до окончания рабочего времени только 70 (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занято-

сти оператора составило 6,796 мин.

Далее информация об очереди:

QUEUE=operator_q – имя объекта типа «очередь»; МАХ=82 – в очереди находилось 82 ожидающих заявок от клиента; CONT=82 – на момент завершения моделирования в очереди было 82 заявки; ENTRIES=82 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; ENTRIES(O)=1 – число заявок от клиентов, попавших к оператору без ожидания в очереди; AVE.CONT=39,096 заявок от клиентов в среднем были в очереди; AVE.TIME=123.461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); AVE.(-0)=123,279 минут в среднем заявки от клиентов провели в очередь). В конце отчёта идёт информация о будущих событиях.

Построение гистограммы распределения заявок в очереди

Предположим требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой. Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A,B,C,D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов. рис. [-@fig:005]

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 1: моделирование

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Untitled Mo	odel 1.4.1 - REPORT									
	GPSS World	Simulation	Repor	t - Untit	:led Mode	el 1.	4.1			
	суббо	га, мая 10,	2025	11:20:49						
	START TIME 0.000			BLOCKS 10			STORA 0	GES		
	NAME			VALUE						
	CUSTNUM			02.000						
	FIN			10.000						
	OPERATOR			03.000						
	OPERATOR_Q			01.000						
	WAITTIME		100	00.000						
LABEL	LOC	BLOCK TYPE	E	NTRY COUN	T CURRE	NT CO	UNT R	ETRY		
	1	GENERATE		102		0		0		
	2	TEST		102		0		0		
	3	SAVEVALUE		55		0		0		
	4	ASSIGN		55		0		0		
	5	QUEUE		55		1		0		
		SEIZE		54		1		0		
	7	DEPART		53		0		0		
		ADVANCE		53		0		0		
	9	RELEASE		53		0		0		
FIN	10	TERMINATE		100		0		0		
FACILITY	ENTRIES	UTIL. AV	Æ. TI	ME AVAIL.	OWNER I	PEND	INTER	RETRY	DELAY	
OPERATOR	5.4	0.987	6.	470 1	98	o	0	0	1	

Рис. 2: Отчет

Untitled Model 1					
Untitled Model 1.4.1	- REPORT				
FIN	10 TERMINATE	100	0	0	
	ENTRIES UTIL. AVE. 54 0.987				
QUEUE OPERATOR_Q	MAX CONT. ENTRY ENT 2 2 55	RY(0) AVE.CON 1 1.652	T. AVE.TIME	AVE.(-0) 10.824	RETRY 0
TABLE WAITTIME	MEAN STD.DEV.	RANGE	RETRY	FREQUENCY	CUM.%
WALLILLE	10.709 2.702	_	0.000	1	1.89
	0.0	_	2.000		1.89
			4.000		3.77
	4.0	000 -	6.000		3.77
	6.0		8.000		11.32
	8.0	000 - 1	0.000	12	33.96
	10.0	000 - 1	2.000	17	66.04
	12.0	000 - 1	4.000	14	92.45
	14.0	000 - 1	6.000	4	100.00
SAVEVALUE CUSTNUM	RETRY VA				
	M1 ASSEM C		PARAMETER	VALUE	
98 0	341.236 98		CUSTNUM	54.000	
FEC XN PRI	BDT ASSEM C 356.553 103		PARAMETER	VALUE	

Рис. 3: Отчет

Результаты работы модели:

модельное время в начале моделирования: START TIME=0.0; абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895; количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10; количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

QUEUE=operator_q – имя объекта типа «очередь»; MAX=2 – в очереди находилось не более двух ожидающих заявок от клиента; CONT=2 – на момент завершения моделирования в очереди было два клиента; ENTRIES=55 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; ENTRIES(O)=1 – число заявок от клиентов, попавших к оператору без ожидания в очереди; AVE.CONT=1,652 заявок от клиентов в среднем были в очереди; AVE.TIME=10.628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); AVE.(-0)=10,824 минут в среднем заявки от клиентов провели в очередь).

Рис. 4: Гистограмма

Частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, как мы и задали. Наибольшее количество заявок (17) обрабатывалось 10-12 минут, 14 заявок – 12-14 минут, 12 заявок – 8-10 минут, в остальных диапазонах 0-4 заявок.

Модель обслуживания двух типов заказов от клиентов в интернет-магазине

В интернет-магазин к одному оператору поступают два типа заявок от клиентов — обычный заказ и заказ с оформление дополнительного пакета услуг. Заявки первого типа поступают каждые 15 ± 4 мин. Заявки второго типа — каждые 30 ± 8 мин. Оператор обрабатывает заявки по принципу FIFO («первым пришел — первым обслужился»). Время, затраченное на оформление обычного заказа, составляет 10 ± 2 мин, а на оформление дополнительного пакета услуг — 5 ± 2 мин. Требуется разработать модель обработки заказов в течение 8 часов, обеспечив сбор данных об очереди заявок от клиентов.

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй — заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE—DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE—RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора.

Untitled Model 2

5/10/

```
; order
OUEUE operator_q
     GENERATE 15,4
      SEIZE operator
      DEPART operator_q
     ADVANCE 10,2
      TRANSFER 0.3, NONORDINARY
      ORDINARY RELEASE operator
      TERMINATE 0
      NONORDINARY ADVANCE 5,2
      RELEASE operator
      TERMINATE 0
     ; timer
      GENERATE 480
      TERMINATE 1
      START 1
```

Рис. 1: Модель

		суббо:	га, мая 1	0, 2025	12:00:20)					
	START	TIME	-	ND TIME	BLOCKS	PACTIT	TT00	STODACE			
		0.000			13				3		
					20	-		•			
	NA	ME			VALUE						
	NONORD	INARY			9.000						
	OPERAT				001.000						
	OPERAT			10	000.000						
	ORDINA	RY			7.000						
LABEL		T.OC	BLOCK TY	PE 1	ENTRY COL	INT CURR	ENT CO	UNT RET	RY		
			GENERATE		33		0		-		
			QUEUE		33		ō	0			
			SEIZE		33		0				
			DEPART		33		0	0			
		5	ADVANCE		33		0	0			
		6	TRANSFER	Ł	33		0	0			
ORDINARY		7	RELEASE		25		0	0			
		8	TERMINAT	E	25		0	0			
NONORDINA	ARY	9	ADVANCE		8		1	0			
		10	RELEASE		7		0	0			
			TERMINAT		7		0				
			GENERATE		1		0	-			
		13	TERMINAT	Έ	1		0	0			
FACILITY		FNTDIFS	HTTI.	AVF T	TMF AUATI	OWNED	DEND	TNTFD D	FTDV	DELAV	
OPERATOR			0.766								
OLLKAIO	`	33	0.766	11	.110 1	31	Ü	5	J	0	
QUEUE		MAX C	ONT. ENTE	Y ENTRY	(0) AVE.	CONT. AV	E.TIME	AVE.	(-0)	RETRY	
OPERATOR	₹_0	1	0 3	3 2	5 0.0	54	0.781	3	.220	0	
									_1		
FEC XN			ASS			T PARA	METER	VALU	E		
	0	482.	925 3	4	9 10						
35		487.	726 3 000 3	5	0 1						
36	U	960.	JUU 3	0	0 12						

Рис. 2: Отчет

Результаты работы модели:

модельное время в начале моделирования: START TIME=0.0; абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17; количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator_q.

количество транзактов, вошедших в блок первого типа заказов с начала процедуры моделирования ENTRY COUNT = 32, а второго типа(с дополнительными услугами) ENTRY COUNT = 15; обработано 12+27 = 39; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

QUEUE=operator_q – имя объекта типа «очередь»; MAX=8 – в очереди находилось не более двух ожидающих заявок от клиента; CONT=7 – на момент завершения моделирования в очереди было 7 клиентов; ENTRIES=47 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; 'ENTRIES(0)=2 – число заявок от клиентов, попавших к оператору без ожидания в очереди; AVE.CONT=3,355 заявок от клиентов в среднем были в очереди; AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); AVE.(-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь). В конце отчёта идёт информация о будущих событиях.

Упражнение

Скорректируйте модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов. Используйте оператор TRANSFER.

```
🥌 Untitled Model 2
 ; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator q
 ADVANCE 10,2
 TRANSFER 0.3, NONORDINARY
 ORDINARY RELEASE operator
 TERMINATE 0
 NONORDINARY ADVANCE 5,2
 RELEASE operator
 TERMINATE 0
 ; timer
 GENERATE 480
 TERMINATE 1
 START 1
```

Рис. 1: Модель

	суббота,	мая 10, 2025	12:00:20				
STA	RT TIME	END TIME	BIOCKS	FACTITTIES	STODAG	7.0	
	0.000			1			
	0.000			-			
	NAME		VALUE				
NONO	RDINARY		9.000				
	ATOR		001.000				
	ATOR_Q	10	000.000				
ORDI	NARY		7.000				
LABEL	T.OC BT.O	CK TYPE	ENTRY COUN	T CURRENT (COUNT RE	TRY	
	1 GEN		33			0	
		UE	33			0	
	3 SEI	ZE	33	(0	
	4 DEP	ART	33	()	0	
	5 ADV	ANCE	33	()	0	
	6 TRA	NSFER	33	()	0	
ORDINARY	7 REL	EASE	25	(0	
	8 TER	MINATE	25	()	0	
NONORDINARY	9 ADV	ANCE	8	1	L I	0	
	10 REL		7			0	
	11 TER		7			0	
	12 GEN		1			0	
	13 TER	MINATE	1	()	0	
FACILITY	FNTDIFS UT	TI. AVE T	TMF AVATI	OWNED DENI	TNTFP	DETEV D	FT.AV
OPERATOR		.766 11					
QUEUE	MAX CONT.	ENTRY ENTRY					
OPERATOR_Q	1 0	33 2	5 0.05	4 0.78	31	3.220	0
FEC XN PRI	BDT	ASSEM CUR	RENT NEXT	PARAMETE	R VAL	JE	
34 0			9 10				
35 0	487.726	35 36					
36 0	060 000	26	0 12				

Рис. 2: Отчет

Результаты работы модели:

модельное время в начале моделирования: START TIME=0.0; абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11; количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator_q.

количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33, при этом из них второго типа (с дополнительными услугами) ENTRY COUNT = 8; обработано 32 заказа; Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34),

но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

QUEUE=operator_q – имя объекта типа «очередь»; MAX=1 – в очереди находилось не более двух ожидающих заявок от клиента; CONT=0 – на момент завершения моделирования в очереди было ноль клиентов; ENTRIES=33 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; ENTRIES(O)=25 – число заявок от клиентов, попавших к оператору без ожидания в очереди; AVE.CONT=0,054 заявок от клиентов в среднем были в очереди; AVE.TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); AVE.(-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь). В конце отчёта идёт информация о будущих событиях.

Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. Обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня.

😩 Untitled Model 2

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

odel

Рис. 1: Отчет

S	TART TIME				
	0.000	480.00	0 9	0	1
	NAME		VALUE		
	ERATOR		.0000.000		
	ERATOR Q		.0001.000		
LABEL	LOC BLO	CK TYPE	ENTRY COUN	T CURRENT CO	JNT RETRY
	1 GEN	ERATE	93	0	0
		UE	93	0	
	3 ENT		93		0
		ART			0
		ANCE		_	0
	6 LEA		91		0
		MINATE		0	
		ERATE		0	
	9 TER	MINATE	1	0	0
OUEUE	MAX CONT.	ENTRY ENTR	(Y(0) AVE.CO	NT. AVE.TIME	AVE.(-0) RETE
OPERATOR Q	MAX CONT. 1 0	93	93 0.00	0.000	0.000 0
_					
	CAP. REM.				
OPERATOR	4 2	0 4	93 1	1.926 0	.482 0 0
FFC VN DDT	BDT	ASSEM CII	DDFNT NEVT	DADAMETED	VALUE
	480.457			INNAIDIEN	ALUL
93 0					
94 0	483 473	94	5 6		
96 0	103.1/3	96	0 8		

Рис. 2: Модель

Результаты работы модели:

модельное время в начале моделирования: START TIME=0.0; абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator_q.

количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ; Далее информация об очереди: QUEUE=operator_q – имя объекта типа «очередь»; MAX=1 – в очереди находилось не более двух ожидающих заявок от клиента; CONT=0 – на момент завершения моделирования в очереди было ноль клиентов; ENTRIES=93 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;

ENTRIES(O)=93 — число заявок от клиентов, попавших к оператору без ожидания в очереди; AVE.CONT=0,000 — заявок от клиентов в среднем были в очереди; AVE.TIME=0.000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); AVE.(-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь). Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 93 заказа от клиентов, но не указано, сколько операторы успели принять в обработку. Полезность работы операторов составила 0,482. При этом среднее время занятости оператора составило 1,926 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов — 4, минимальное — 0.

В конце отчёта идёт информация о будущих событиях.

Упражнение

Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Добавим строчку TEST LE Q\$operator_q,2, которая проверяет больше ли в очереди клиентов, чем два, если нет – клиент поступает на обработку, иначе уходит. Также в ранее проанализированном отчете видно, что клиентов в очереди не было больше 2, поэтому увеличим время обработки заказов до 30±2 мин., чтобы проверить результаты изменений модели.

Mode

```
### CONTRICT OF CONTRICT ON CONTRICT OF CONTRICT ON CONTRICT OF CONTRICT ON CONTRICT OF CONTRICT OF CONTRICT OF CONTRICT OF CONTRICT OF CO
```

Рис. 3: Модель

Результаты работы модели:

модельное время в начале моделирования: START TIME=0.0; абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0; количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9; количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1; количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator_q.

количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 94; обработано 60 заказа; 27 человек отказались оставлять заявки, поскольку очередь была более 2ух заявок. Далее информация об очереди:

QUEUE=operator_q – имя объекта типа «очередь»; МАХ=3 – в очереди находилось не более трех ожидающих заявок от клиента(как и было указано); CONT=3 – на момент завершения моделирования в очереди было ноль клиентов; ENTRIES=67 – общее число заявок от клиентов, прошедших через очередь в течение периода моделирования; ENTRIES(O)=4 – число заявок от клиентов, попавших к оператору без ожидания в очереди; AVE.CONT=2,701 – заявок от клиентов в среднем были в очереди; AVE.TIME=19,347 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь); AVE.(-0)=20,576 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь). Затем идёт информация о многоканальном устройстве STORAGE (оператор, оформляющий заказ), откуда видим, что к операторам попало 64 заказов от клиентов. Полезность работы операторов составила 0,971. При этом среднее время занятости оператора составило 3,885 мин. Также появились значения, характерные для STORAGE: вместительность 4, максимальное число одновременно работающих операторов – 4, минимальное – 0.

В конце отчёта идёт информация о будущих событиях.

Выводы

В результате была реализована с помощью gpss:

модель оформления заказов клиентов одним оператором; построение гистограммы распределения заявок в очереди; модель обслуживания двух типов заказов от клиентов в интернет-магазине; модель оформления заказов несколькими операторами.

Библиография

- 1. Королькова А. В., Кулябов Д. С. Модели обработки заказов
- 2. Королькова А. В., Кулябов Д. С. Имитационное моделирование в GPSS