# Experiment 2: Email Spam or Ham Classification using Naïve Bayes, KNN, and SVM

Sri Sivasubramaniya Nadar College of Engineering, Chennai Department of Computer Science and Engineering Academic Year: 2025–2026

#### Aim

To classify emails as spam or ham using three classification algorithms—Naïve Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM)—and evaluate their performance using accuracy metrics and K-Fold cross-validation.

## Objective

- Load and preprocess the dataset.
- Visualize and understand the distribution of features and target classes.
- Apply Gaussian, Multinomial, and Bernoulli Naïve Bayes classifiers.
- $\bullet$  Evaluate KNN for various k values and algorithms (KDTree and BallTree).
- Compare SVM with linear, polynomial, RBF, and sigmoid kernels.
- Use GridSearchCV to find optimal hyperparameters.
- Evaluate all models using accuracy, precision, recall, F1-score, AUC, and confusion matrix.
- Perform 5-Fold cross-validation and summarize the findings.

#### Libraries Used

- pandas, numpy, matplotlib.pyplot, seaborn
- sklearn.model\_selection, sklearn.metrics
- sklearn.naive\_bayes, sklearn.neighbors, sklearn.svm

#### **Dataset**

The dataset used is the **Spambase** dataset from Kaggle, containing email features extracted and labeled as spam or ham.

#### Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, KFc
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, con
from sklearn.naive_bayes import GaussianNB, MultinomialNB, BernoulliNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier, GradientBoostingClassifier
from xgboost import XGBClassifier
import warnings
warnings.filterwarnings('ignore')
# Load dataset
data = pd.read_csv('/content/spambase_csv.csv')
# Set features & target assuming 'class' is target column
X = data.drop('class', axis=1)
y = data['class']
# EDA
print("\nClass distribution (ham=0, spam=1):\n", y.value_counts())
plt.figure(figsize=(8, 5))
ax = sns.countplot(x=y)
plt.title("Class Distribution (ham=0, spam=1)")
plt.xlabel("Class")
plt.ylabel("Count")
# Add counts on top of bars
for p in ax.patches:
    ax.annotate(f'{p.get_height():.0f}',
                (p.get_x() + p.get_width() / 2., p.get_height()),
```

```
ha='center', va='center',
                xytext=(0, 9),
                textcoords='offset points')
plt.show()
# Top 10 features with highest variance (simple proxy for importance)
top10_features = X.var().sort_values(ascending=False).head(10).index.tolist()
print("\nTop 10 features by variance:\n", top10_features)
plt.figure(figsize=(10, 6))
X[top10_features].var().sort_values().plot(kind='barh', color='skyblue')
plt.title("Top 10 Features by Variance")
plt.xlabel("Variance")
plt.ylabel("Feature Name")
plt.tight_layout()
plt.show()
# Plot feature distributions (for first top 3 features as sample)
for feat in top10_features[:3]:
    plt.figure(figsize=(8,4))
    sns.histplot(data, x=feat, hue='class', bins=30, kde=True, stat="density")
    plt.title(f'Distribution of {feat} by Class')
    plt.show()
# Scale features for KNN and SVM
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train-test split (80-20 stratified)
X_train_scaled, X_test_scaled, y_train, y_test = train_test_split(
    X_scaled, y, test_size=0.2, random_state=42, stratify=y)
X_train_orig, X_test_orig, _, _ = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y) # for NB
def plot_confusion_and_roc(name, y_test, y_pred, y_proba=None):
    cm = confusion_matrix(y_test, y_pred)
    plt.figure(figsize=(5,4))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Ham', 'Spam'], ytic
    plt.title(f"{name} Confusion Matrix")
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.show()
    if y_proba is not None:
        fpr, tpr, _ = roc_curve(y_test, y_proba)
        roc_auc = auc(fpr, tpr)
```

```
plt.figure(figsize=(6,5))
        plt.plot(fpr, tpr, label=f'AUC = {roc_auc:.4f}')
        plt.plot([0, 1], [0, 1], 'r--')
        plt.title(f"{name} ROC Curve")
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.legend(loc='lower right')
        plt.show()
        return roc_auc
    else:
        return None
def evaluate(name, model, X_test, y_test):
    y_pred = model.predict(X_test)
    if hasattr(model, "predict_proba"):
        y_proba = model.predict_proba(X_test)[:, 1]
    elif hasattr(model, "decision_function"):
        y_scores = model.decision_function(X_test)
        y_proba = (y_scores - y_scores.min()) / (y_scores.max() - y_scores.min())
    else:
        y_proba = None
    acc = accuracy_score(y_test, y_pred)
    prec = precision_score(y_test, y_pred)
   rec = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    auc_score = plot_confusion_and_roc(name, y_test, y_pred, y_proba)
    print(f"{name} metrics: Accuracy={acc:.4f}, Precision={prec:.4f}, Recall={rec:.4f},
          f"{name} metrics: Accuracy={acc:.4f}, Precision={prec:.4f}, Recall={rec:.4f},
    return {'Accuracy': acc, 'Precision': prec, 'Recall': rec, 'F1 Score': f1, 'AUC': au
# 1. Naive Bayes Variants (no hyperparameter tuning)
print("Training Naive Bayes variants:")
nb_results = {}
gnb = GaussianNB()
gnb.fit(X_train_scaled, y_train)
nb_results['Gaussian NB'] = evaluate('Gaussian NB', gnb, X_test_scaled, y_test)
mnb = MultinomialNB()
mnb.fit(X_train_orig, y_train)
nb_results['Multinomial NB'] = evaluate('Multinomial NB', mnb, X_test_orig, y_test)
```

```
bnb = BernoulliNB()
bnb.fit(X_train_orig, y_train)
nb_results['Bernoulli NB'] = evaluate('Bernoulli NB', bnb, X_test_orig, y_test)
nb_df = pd.DataFrame(nb_results).T
# ====== TABLE 1: Naïve Bayes Variant Comparison ========
print("\nTable 1: Naïve Bayes Variant Comparison")
print(nb_df[['Accuracy', 'Precision', 'Recall', 'F1 Score', 'AUC']])
# 2. KNN with k=1,3,5,7 (algorithm='auto', weights='uniform')
print("\nTraining KNN for k=1,3,5,7:")
knn_results = {}
for k in [1,3,5,7]:
    knn = KNeighborsClassifier(n_neighbors=k, algorithm='auto', weights='uniform')
    knn.fit(X_train_scaled, y_train)
    knn_results[f'KNN k={k}'] = evaluate(f'KNN k={k}', knn, X_test_scaled, y_test)
knn_df = pd.DataFrame(knn_results).T
# ======= TABLE 2: KNN Performance for Different k Values ========
print("\nTable 2: KNN Performance for Different k Values")
print(knn_df[['Accuracy', 'Precision', 'Recall', 'F1 Score', 'AUC']])
# 3. KNN KDTree vs BallTree (k=5)
def train_and_eval_knn_algo(algorithm):
    knn_model = KNeighborsClassifier(n_neighbors=5, algorithm=algorithm)
    start_time = time.time()
    knn_model.fit(X_train_scaled, y_train)
    training_time = round(time.time() - start_time, 4)
   y_pred = knn_model.predict(X_test_scaled)
    acc = accuracy_score(y_test, y_pred)
    prec = precision_score(y_test, y_pred)
    rec = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    return acc, prec, rec, f1, training_time
kd_acc, kd_prec, kd_rec, kd_f1, kd_time = train_and_eval_knn_algo('kd_tree')
ball_acc, ball_prec, ball_rec, ball_f1, ball_time = train_and_eval_knn_algo('ball_tree')
knn_tree_table = pd.DataFrame({
    'KDTree': [kd_acc, kd_prec, kd_rec, kd_f1, kd_time],
    'BallTree': [ball_acc, ball_prec, ball_rec, ball_f1, ball_time]
```

```
}, index=['Accuracy', 'Precision', 'Recall', 'F1 Score', 'Training Time (s)'])
# ====== TABLE 3: KNN Comparison KDTree vs BallTree ========
print("\nTable 3: KNN Comparison KDTree vs BallTree")
print(knn_tree_table)
# 4. SVM with different kernels (default params)
print("\nTraining SVM variants with default parameters:")
svm_kernels = ['linear', 'poly', 'rbf', 'sigmoid']
svm_results = {}
for kernel in svm_kernels:
    svm = SVC(kernel=kernel, probability=True)
    svm.fit(X_train_scaled, y_train)
    svm_results[f'SVM {kernel.capitalize()}'] = evaluate(f'SVM {kernel.capitalize()}', s
svm_df = pd.DataFrame(svm_results).T
# ====== TABLE 4 PART 1: SVM Kernels Performance (Default Params) ========
print("\nTable 4 Part 1: SVM Kernels Performance (Default Params)")
print(svm_df[['Accuracy', 'Precision', 'Recall', 'F1 Score', 'AUC']])
# 4b. Hyperparameter tuning with GridSearchCV for SVM
print("\nGridSearchCV for SVM:")
param_grid_svm = [
    {'kernel': ['linear'], 'C': [0.1, 1, 10]},
    {'kernel': ['poly'], 'C': [0.1, 1], 'degree': [2, 3], 'gamma': ['scale', 'auto']},
   {'kernel': ['rbf'], 'C': [0.1, 1, 10], 'gamma': ['scale', 'auto']},
    {'kernel': ['sigmoid'], 'C': [0.1, 1], 'gamma': ['scale', 'auto']}
svm_gs = GridSearchCV(SVC(probability=True), param_grid_svm, cv=5, scoring='accuracy', n
svm_gs.fit(X_train_scaled, y_train)
print(f"SVM Best Params: {svm_gs.best_params_}")
best_svm = svm_gs.best_estimator_
# Retrain best SVM for evaluation
svm_gs_results = evaluate("SVM GridSearchCV Best", best_svm, X_test_scaled, y_test)
# 4c. Retrain all grid SVM models to get detailed table with training time
svm_table_rows = []
for i in range(len(svm_gs.cv_results_['params'])):
    params = svm_gs.cv_results_['params'][i]
    mean_test_score = svm_gs.cv_results_['mean_test_score'][i]
    model = SVC(**params, probability=True)
```

```
start_time = time.time()
    model.fit(X_train_scaled, y_train)
    train_time = round(time.time() - start_time, 4)
    y_pred = model.predict(X_test_scaled)
    f1 = f1_score(y_test, y_pred)
    svm_table_rows.append({
        'Kernel': params['kernel'],
        'C': params.get('C', None),
        'Degree': params.get('degree', None),
        'Gamma': params.get('gamma', None),
        'Accuracy': round(mean_test_score, 4),
        'F1 Score': round(f1, 4),
        'Training Time (s)': train_time
    })
svm_param_table = pd.DataFrame(svm_table_rows)
# ======= TABLE 4 PART 2: SVM Performance with Different Kernels and Hyperparameters
print("\nTable 4 Part 2: SVM Performance with Different Kernels and Hyperparameters")
print(svm_param_table)
# 5. Hyperparameter tuning with GridSearchCV for KNN (already done inside earlier steps)
print("\nGridSearchCV for KNN:")
param_grid_knn = {
    'n_neighbors': [1, 3, 5, 7],
    'algorithm': ['kd_tree', 'ball_tree'],
    'weights': ['uniform', 'distance']
knn_gs = GridSearchCV(KNeighborsClassifier(), param_grid_knn, cv=5, scoring='accuracy',
knn_gs.fit(X_train_scaled, y_train)
print(f"KNN Best Params: {knn_gs.best_params_}")
best_knn = knn_gs.best_estimator_
knn_gs_results = evaluate("KNN GridSearchCV Best", best_knn, X_test_scaled, y_test)
# 6. Identify best Naïve Bayes variant by accuracy
best_nb_name = nb_df['Accuracy'].idxmax()
print("\nSummary of Best Model Candidates:")
print(f"Best Naive Bayes variant: {best_nb_name} with accuracy {nb_df.loc[best_nb_name,
print(f"KNN Best Model accuracy: {knn_gs_results['Accuracy']:.4f}")
print(f"SVM Best Model accuracy: {svm_gs_results['Accuracy']:.4f}")
```

```
candidate_scores = {
    best_nb_name: nb_df.loc[best_nb_name, 'Accuracy'],
    'KNN GridSearchCV Best': knn_gs_results['Accuracy'],
    'SVM GridSearchCV Best': svm_gs_results['Accuracy']
}
best_model_name = max(candidate_scores, key=candidate_scores.get)
print(f"\nOverall Best Model: {best_model_name} with accuracy {candidate_scores[best_model_name})
# 7. 5-Fold Cross Validation on best models (NB best variant, KNN best, SVM best)
kf = KFold(n_splits=5, shuffle=True, random_state=42)
def perform_cv(model, X_data, y_data):
    return cross_val_score(model, X_data, y_data, cv=kf, scoring='accuracy', n_jobs=-1)
# Prepare models for CV
models_for_cv = {}
# Naive Bayes model for CV
if best_nb_name == 'Gaussian NB':
    nb_model = GaussianNB()
    X_cv_nb = X_scaled
elif best_nb_name == 'Multinomial NB':
    nb_model = MultinomialNB()
    X_cv_nb = X.values
else:
    nb_model = BernoulliNB()
    X_cv_nb = X.values
models_for_cv[best_nb_name] = (nb_model, X_cv_nb)
models_for_cv['KNN GridSearchCV Best'] = (best_knn, X_scaled)
models_for_cv['SVM GridSearchCV Best'] = (best_svm, X_scaled)
cv_results = {}
for name, (model, X_data) in models_for_cv.items():
    scores = perform_cv(model, X_data, y)
    cv_results[name] = scores
    print(f"\n5-Fold CV Accuracy Scores for {name}: {scores}")
    print(f"Average 5-Fold CV Accuracy for {name}: {scores.mean():.4f}")
# ====== TABLE 5: K-Fold Cross-Validation Accuracy Scores ========
cv_df = pd.DataFrame(cv_results)
cv_df.index = [f'Fold {i+1}' for i in range(5)]
cv_df.loc['Average'] = cv_df.mean()
```

```
print("\nTable 5: K-Fold Cross-Validation Scores (Accuracy)")
print(cv_df)
# 8. Ensemble Methods
print("\nTraining Ensemble Methods:")
ensemble_results = {}
# Prepare data for ensemble methods
X_train_ens, X_test_ens, y_train_ens, y_test_ens = X_train_scaled, X_test_scaled, y_trai
# Bagging Classifier
bagging = BaggingClassifier(
    estimator=GaussianNB(),
   n_estimators=50,
   random_state=42
)
bagging.fit(X_train_ens, y_train_ens)
ensemble_results['Bagging'] = evaluate('Bagging', bagging, X_test_ens, y_test_ens)
# AdaBoost Classifier
adaboost = AdaBoostClassifier(
   n_estimators=50,
   random_state=42
)
adaboost.fit(X_train_ens, y_train_ens)
ensemble_results['AdaBoost'] = evaluate('AdaBoost', adaboost, X_test_ens, y_test_ens)
# Gradient Boosting Classifier
grad_boost = GradientBoostingClassifier(
    n_estimators=50,
   random_state=42
grad_boost.fit(X_train_ens, y_train_ens)
ensemble_results['Gradient Boosting'] = evaluate('Gradient Boosting', grad_boost, X_test
# XGBoost Classifier
xgb = XGBClassifier(
   n_estimators=50,
   random_state=42,
   use_label_encoder=False,
    eval_metric='logloss'
xgb.fit(X_train_ens, y_train_ens)
ensemble_results['XGBoost'] = evaluate('XGBoost', xgb, X_test_ens, y_test_ens)
```

```
# Create comparison table
ensemble_df = pd.DataFrame(ensemble_results).T
# ====== TABLE 6: Ensemble Methods Comparison =======
print("\nTable 6: Ensemble Methods Performance Comparison")
print(ensemble_df[['Accuracy', 'Precision', 'Recall', 'F1 Score', 'AUC']])
# 9. Hyperparameter Tuning for Best Ensemble Method
# Let's tune the best performing ensemble method based on accuracy
best_ensemble = ensemble_df['Accuracy'].idxmax()
print(f"\nBest performing ensemble method: {best_ensemble}")
# Tune XGBoost if it's the best performer
if best_ensemble == 'XGBoost':
   param_grid_xgb = {
        'n_estimators': [50, 100, 200],
        'max_depth': [3, 6, 9],
        'learning_rate': [0.01, 0.1, 0.2],
        'subsample': [0.8, 0.9, 1.0]
    xgb_gs = GridSearchCV(
        XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42),
        param_grid_xgb,
        cv=5,
        scoring='accuracy',
        n_{jobs}=-1
    )
    xgb_gs.fit(X_train_ens, y_train_ens)
    print(f"Best XGBoost parameters: {xgb_gs.best_params_}")
    best_xgb = xgb_gs.best_estimator_
    ensemble_results['XGBoost Tuned'] = evaluate('XGBoost Tuned', best_xgb, X_test_ens,
# Tune Gradient Boosting if it's the best performer
elif best_ensemble == 'Gradient Boosting':
    param_grid_gb = {
        'n_estimators': [50, 100, 200],
        'max_depth': [3, 6, 9],
        'learning_rate': [0.01, 0.1, 0.2],
        'subsample': [0.8, 0.9, 1.0]
    }
    gb_gs = GridSearchCV(
        GradientBoostingClassifier(random_state=42),
        param_grid_gb,
        cv=5,
        scoring='accuracy',
```

```
n_{jobs}=-1
    )
    gb_gs.fit(X_train_ens, y_train_ens)
    print(f"Best Gradient Boosting parameters: {gb_gs.best_params_}")
    best_gb = gb_gs.best_estimator_
    ensemble_results['Gradient Boosting Tuned'] = evaluate('Gradient Boosting Tuned', be
# Replace the problematic section (lines 414-425) with:
# 10. Compare all best models (including tuned ensemble)
print("\nFinal Model Comparison:")
final_comparison = pd.concat([
    nb_df[['Accuracy', 'Precision', 'Recall', 'F1 Score', 'AUC']],
    pd.DataFrame([knn_gs_results], index=['KNN Best']),
    pd.DataFrame([svm_gs_results], index=['SVM Best']),
    ensemble_df[['Accuracy', 'Precision', 'Recall', 'F1 Score', 'AUC']]
])
# Add tuned ensemble results if available
if 'XGBoost Tuned' in ensemble_results:
    xgb_tuned_df = pd.DataFrame([ensemble_results['XGBoost Tuned']], index=['XGBoost Tuned']]
    final_comparison = pd.concat([final_comparison, xgb_tuned_df])
elif 'Gradient Boosting Tuned' in ensemble_results:
    gb_tuned_df = pd.DataFrame([ensemble_results['Gradient Boosting Tuned']], index=['Gradient Boosting Tuned']]
    final_comparison = pd.concat([final_comparison, gb_tuned_df])
# Sort by accuracy for better comparison
final_comparison = final_comparison.sort_values('Accuracy', ascending=False)
# 11. Feature Importance for Best Model
best_overall_model = final_comparison.iloc[0].name
print(f"\nBest overall model: {best_overall_model}")
# Plot feature importance if applicable
if 'XGBoost' in best_overall_model or 'Gradient Boosting' in best_overall_model:
    plt.figure(figsize=(12, 8))
    if 'XGBoost' in best_overall_model:
        importances = best_xgb.feature_importances_
    else:
        importances = best_gb.feature_importances_
    # Get feature names
    feature_names = X.columns
```

```
# Create a DataFrame for feature importance
    feature_importance_df = pd.DataFrame({
        'feature': feature_names,
        'importance': importances
    }).sort_values('importance', ascending=False).head(15)
    plt.barh(feature_importance_df['feature'], feature_importance_df['importance'])
    plt.xlabel('Importance')
    plt.title(f'Feature Importance - {best_overall_model}')
    plt.gca().invert_yaxis()
    plt.tight_layout()
    plt.show()
# 12. Final Evaluation on Best Model
print(f"\nFinal Evaluation on Best Model ({best_overall_model}):")
if best_overall_model == 'XGBoost Tuned':
    final_model = best_xgb
elif best_overall_model == 'Gradient Boosting Tuned':
    final_model = best_gb
elif best_overall_model in ['Gaussian NB', 'Multinomial NB', 'Bernoulli NB']:
    if best_overall_model == 'Gaussian NB':
        final_model = GaussianNB()
    elif best_overall_model == 'Multinomial NB':
        final_model = MultinomialNB()
    else:
        final_model = BernoulliNB()
    final_model.fit(X_train_orig if best_overall_model != 'Gaussian NB' else X_train_sca
                   y_train)
else:
    # For KNN or SVM best models
    final_model = best_knn if best_overall_model == 'KNN Best' else best_svm
# Comprehensive evaluation
final_metrics = evaluate(f"Final Model - {best_overall_model}", final_model,
                        X_test_orig if best_overall_model in ['Multinomial NB', 'Bernoul
                        y_test)
```

# **Exploratory Data Analysis**

## **Class Distribution**



Figure 1: Class distribution visualization

## **Top Features**



Figure 2: Top 10 features by variance

## Feature Distributions



Figure 3: Feature distribution examples

# CONFUSION MATRIX AND ROC CURVE



Figure 4: Gaussian NB Confusion Matrix



Figure 6: Multinomial NB Confusion Matrix



Figure 8: Bernoulli NB Confusion Matrix



Figure 5: Gaussian NB ROC Curve



Figure 7: Multinomial NB ROC Curve



Figure 9: Bernoulli NB ROC Curve



Figure 10: KNN (k=1) Confusion Matrix



Figure 12: KNN (k=3) Confusion Matrix



Figure 14: KNN (k=5) Confusion Matrix



Figure 11: KNN (k=1) ROC Curve



Figure 13: KNN (k=3) ROC Curve



Figure 15: KNN (k=5) ROC Curve



Figure 16: KNN (k=7) Confusion Matrix



Figure 18: SVM Linear Confusion Matrix



Figure 20: SVM Polynomial Confusion Matrix



Figure 17: KNN (k=7) ROC Curve



Figure 19: SVM Linear ROC Curve



Figure 21: SVM Polynomial ROC Curve



Figure 22: SVM RBF Confusion Matrix



Predicted

Figure 24: SVM Sigmoid Confusion Matrix



Figure 23: SVM RBF ROC Curve



Figure 25: SVM Sigmoid ROC Curve

#### **Ensemble Methods**







## RESULT SUMMARY TABLES

Table 1: Naïve Bayes Variant Comparison

| Variant        | Accuracy | Precision | Recall | F1 Score | AUC    |
|----------------|----------|-----------|--------|----------|--------|
| Gaussian NB    | 0.8328   | 0.7146    | 0.9587 | 0.8188   | 0.9376 |
| Multinomial NB | 0.7763   | 0.7199    | 0.7080 | 0.7139   | 0.8248 |
| Bernoulli NB   | 0.8762   | 0.8716    | 0.8044 | 0.8367   | 0.9496 |

Table 2: KNN Performance for Different k Values

| k | Accuracy | Precision | Recall | F1 Score | AUC    |
|---|----------|-----------|--------|----------|--------|
| 1 | 0.8979   | 0.8768    | 0.8623 | 0.8694   | 0.8917 |
| 3 | 0.9012   | 0.8820    | 0.8650 | 0.8734   | 0.9378 |
| 5 | 0.9055   | 0.8876    | 0.8705 | 0.8790   | 0.9505 |
| 7 | 0.9077   | 0.8949    | 0.8678 | 0.8811   | 0.9539 |

Table 3: KNN Comparison: KDTree vs BallTree

| Metric            | KDTree | BallTree |
|-------------------|--------|----------|
| Accuracy          | 0.9055 | 0.9055   |
| Precision         | 0.8876 | 0.8876   |
| Recall            | 0.8705 | 0.8705   |
| F1 Score          | 0.8790 | 0.8790   |
| Training Time (s) | 0.0343 | 0.0124   |

Table 4: SVM Performance with Different Kernels and Hyperparameters

| Kernel  | Hyperparameters              | Accuracy | F1 Score | Training Time (s) |
|---------|------------------------------|----------|----------|-------------------|
| Linear  | C=0.1                        | 0.9245   | 0.9083   | 1.3663            |
| Linear  | C=1.0                        | 0.9296   | 0.9106   | 2.8080            |
| Linear  | C=10.0                       | 0.9293   | 0.9063   | 14.2990           |
| Poly    | C=0.1, degree=2, gamma=scale | 0.7101   | 0.4990   | 4.6430            |
| Poly    | C=0.1, degree=2, gamma=auto  | 0.7122   | 0.5081   | 4.7247            |
| Poly    | C=0.1, degree=3, gamma=scale | 0.6845   | 0.3921   | 3.5441            |
| Poly    | C=0.1, degree=3, gamma=auto  | 0.6859   | 0.3956   | 4.5605            |
| Poly    | C=1.0, degree=2, gamma=scale | 0.8334   | 0.7718   | 2.7677            |
| Poly    | C=1.0, degree=2, gamma=auto  | 0.8348   | 0.7805   | 2.7534            |
| Poly    | C=1.0, degree=3, gamma=scale | 0.7663   | 0.6220   | 3.3830            |
| Poly    | C=1.0, degree=3, gamma=auto  | 0.7685   | 0.6422   | 3.9291            |
| RBF     | C=0.1, gamma=scale           | 0.9062   | 0.8835   | 2.7757            |
| RBF     | C=0.1, gamma=auto            | 0.9054   | 0.8851   | 2.8310            |
| RBF     | C=1.0, gamma=scale           | 0.9340   | 0.9055   | 1.8260            |
| RBF     | C=1.0, gamma=auto            | 0.9340   | 0.9055   | 2.8488            |
| RBF     | C=10.0, gamma=scale          | 0.9332   | 0.9001   | 1.7754            |
| RBF     | C=10.0, gamma=auto           | 0.9332   | 0.9001   | 1.6441            |
| Sigmoid | C=0.1, gamma=scale           | 0.8910   | 0.8530   | 2.9397            |
| Sigmoid | C=0.1, gamma=auto            | 0.8916   | 0.8547   | 2.9691            |
| Sigmoid | C=1.0, gamma=scale           | 0.8804   | 0.8524   | 2.6172            |
| Sigmoid | C=1.0, gamma=auto            | 0.8804   | 0.8508   | 2.3010            |

Table 5: Cross-Validation Scores for Each Model (K=5)

| Fold    | Naïve Bayes (Bernoulli) | KNN (k=5) | SVM (RBF) |
|---------|-------------------------|-----------|-----------|
| Fold 1  | 0.8806                  | 0.9034    | 0.9349    |
| Fold 2  | 0.8902                  | 0.9174    | 0.9337    |
| Fold 3  | 0.8837                  | 0.9359    | 0.9228    |
| Fold 4  | 0.8870                  | 0.9141    | 0.9359    |
| Fold 5  | 0.8902                  | 0.9152    | 0.9304    |
| Average | 0.8863                  | 0.9172    | 0.9315    |

Table 6: Ensemble Methods Performance Comparison

| Method            | Accuracy | Precision | Recall | F1 Score | AUC    |
|-------------------|----------|-----------|--------|----------|--------|
| Bagging           | 0.8317   | 0.7131    | 0.9587 | 0.8179   | 0.9385 |
| AdaBoost          | 0.9186   | 0.9114    | 0.8788 | 0.8948   | 0.9736 |
| Gradient Boosting | 0.9327   | 0.9263    | 0.9008 | 0.9134   | 0.9805 |
| XGBoost           | 0.9468   | 0.9361    | 0.9284 | 0.9322   | 0.9869 |

Best performing ensemble method: XGBoost

```
Best XGBoost parameters: {'learning_rate': 0.1, 'max_depth': 9, 'n_estimators': 200, 'subsample': 0.9}
```

## Learning Outcome (observation)

- Best Classifier: SVM with RBF kernel had the highest average accuracy (93.15%).
- Best Naïve Bayes: Bernoulli Naïve Bayes performed best among NB variants.
- KNN Variability: Accuracy increased with k, peaking at k = 7. Both KDTree and BallTree yielded same metrics but BallTree had faster training.
- SVM Insights: RBF and Linear kernels outperformed Poly and Sigmoid. Hyperparameter tuning further improved performance.