AU OPTRONICS CORPORATION

()	Preliminary Specification
(V)	Final Specification

Module	32.0" Color TFT-LCD
Model Name	M320QAN02.5

Customer	Date
Approved by	
Note: This Specification without notice.	is subject to change

Approved by	Date				
	<u>Mar 26, 2019</u>				
Prepared by	Date				
	<u>Mar 26, 2019</u>				
AU Optronics corporation					

AU OPTRONICS CORPORATION

Contents

I Handling Precautions	6
2 General Description	7
2.1 Display Characteristics	7
2.2 Absolute Maximum Rating of Environment	8
2.3 Optical Characteristics	9
2.4 Mechanical Characteristics	14
3 TFT-LCD Module	15
3.1 Block Diagram	15
3.2 Interface Connection	16
3.2.1 Connector Type	16
3.2.2 Connector Pin Assignment	16
3.3 Electrical Characteristics	18
3.3.1 Absolute Maximum Rating	18
3.3.2 Recommended Operating Condition	19
3.4 Signal Characteristics	20
3.4.1 LCD Pixel Format	20
3.4.2 eDP Data Format	21
3.4.3 Color versus Input Data	22
3.4.4 eDP Specification (Follow as VESA DisplayPort Standard Version 1.1)23
3.4.5 Input Timing Specification	26
3.5 Power ON/OFF Sequence	27
4 Backlight Unit	29
4.1 Interface Connection	29
4.1.1 Connector Type	29
4.2 LED Control mapping	32
4.3 Electrical Characteristics	34
4.3.1 Absolute Maximum Rating	34
4.3.2 Recommended Operating Condition	
4.3.3 Recommended Operating Condition	35
4.3.4 SPI Interface	
4.3.5 Power Sequence for Backlight	
5 Reliability Test	
6 Shipping Label	
7 Mechanical Characteristics	
8 Packing Specification	
8.1 Packing Flow	
9 Design Guide for System	46

AU OPTRONICS CORPORATION

Record of Revision

Version	Date	Date Page Old description		New Description	Remark
0.1	2018/7/18	All			
		7	Total = 121.58W PDD(typ)=17.76W	Total = 116.543W PDD(typ)=12.72W	
		7	Weight is 4680g +/- 230	Weight is 4760g +/- 230	
		9	-	Lw1(typ) = 720nits Lw2(typ)= 1440nits	
		10	Note 2-3: LED current condition @HDR off Is=4.0 mA. Note 2-5: Measurement Pattern: 10% active area with	Note 2-3: LED current condition @HDR off Is=3.2 mA. Note 2-5: Measurement Pattern: 10% active area with	
			L1023 at center. LED Light on condition:TBD	L1023 at center. LED Light on condition: 16(H) x 8(V)= 128 zones , ls= 15mA	
0.2	2018/11/17	18	Orignal rear view of panel	New rear view of panel	
	2010/11/17	19	TCON board recommended operating condition Symbol Developing Ma Typ Max Unit Nameric	TCON board recommended Operating condition	
		31	Orignal rear view of panel	New rear view of panel	
		35	Original LED recommended operating condition Seeled Description Ma. Typ Heat Like Get at	New LED recommended operating condition Speak Description Pen Typ Na. Unit Giroft of	
		35	Original LED driver board recommended operating condition	New LED driver board recommended operating condition	

AU OPTRONICS CORPORATION

			No. December Special No. Sp. No. Um No. No.	Contemple
		37	condition Is =4.0mA	condition Is =3.2mA
		42	Original mechanical characteristic	New mechanical characteristics
		45	Original pallet shipment Information	New pallet shipment
		39	Original power sequence or	New power sequence for backlight Ne
0.3	2018/12/25	42	Original mechanical characteristic	New mechanical characteristics
		35	Original unit of IDDB2 is A.	New unit of IDDB2 is mA
0.4	2019/1/11	39	Original power sequence or backlight No Description 1- VODST Ruer Time 1- VODST Ruer Time 1- VODST day time 1- Cend 1- Dest grape date yies 1- Dest grape date yies	New power sequence for backlight New Japan New J
		9-12	-	Modify ordinal number of note
1.0	2019/3/26	33	Orignal LED& driver mapping	New LED& driver mapping Part took too Reprise took too See took took See

M320QAN02.5

AU OPTRONICS CORPORATION

		Original mechanical	New mechanical	
	42	characteristic	characteristics	
	12			

M320QAN02.5

AU OPTRONICS CORPORATION

I Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case a TFT-LCD Module has to be put back into the packing container slot after once it was taken out from the container.
- 10) Insert or pull out the interface connector, be sure not to rotate nor tilt it of the TFT-LCD Module.
- 11) Do not twist nor bend the TFT -LCD Module even momentary. It should be taken into consideration that no bending/twisting forces are applied to the TFT-LCD Module from outside. Otherwise the TFT-LCD Module may be damaged.
- 12) Please avoid touching COF position while you are doing mechanical design.
- 13) When storing modules as spares for a long time, the following precaution is necessary:

 Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.

AU OPTRONICS CORPORATION

2 General Description

This specification applies to the 32.0 inch wide Color a-Si TFT-LCD Module M320QAN02.5. The display supports the UHD - $3840(H) \times 2160(V)$ screen format and 1.07B colors (10 bits RGB data input). The input interface is 8-lanes eDP and this module contain 2 driver boards for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	812.8 (32.0")
Active Area	[mm]	708.48 (H) × 398.52 (V)
Pixels H x V	-	3840(x3) x 2160
Pixel Pitch	[um]	184.5 (per one triad) × 184.5
Pixel Arrangement	-	R.G.B. Vertical Stripe
Display Mode	-	Normally Black (AHVA)
HDR off White Luminance (Center)	[cd/m²]	400 (Typ.) @HDR off
HDR on White Luminance (Center)	[cd/m ²]	600 (min.) @HDR on
Contrast Ratio	-	1000 (Тур.)
Response Time	[msec]	12 (Typ., Gray to Gray)
Power Consumption (LCD Module + Backligh unit)	[Watt]	Total = 116.543W(Typ.) LCD module : PDD(Typ.)=12.72W@white pattern,60Hz,12V Backlight unit (w/Driver Board) w/ all LED @ ls=6.5 mA (Typ.): PDDB1(Typ.) =98.8W PDDB2(Typ.) =3.95W PDDB3(Typ.)=1.073W
Weight	[Grams]	4760 +/- 230
Outline Dimension	[mm]	721.88 (H) × 417.87 (V) × 40.61 (D) Typ.
Electrical Interface	-	8-lanes eDP, 10bits RGB data input
Support Color	-	1.07B colors
Surface Treatment	-	Anti-Glare, 3H, Haze 25%
Temperature Range Operating Storage (Shipping)	[°C]	0 to +50 -20 to +60
RoHS Compliance	-	RoHS Compliance

AU OPTRONICS CORPORATION

2.2 Absolute Maximum Rating of Environment

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min.	Max.	Unit	Remark
TOP	Operating Temperature	0	+50	[°C]	Note 2-I
TGS	Glass surface temperature (operation)	0	+65	[°C]	Note 2-1 Function judged only
НОР	Operation Humidity	5	90	[%RH]	Note 2-I
TST	Storage Temperature	-20	+60	[°C]	
HST	Storage Humidity	5	90	[%RH]	

Note 2-1: Temperature and relative humidity range are shown as the below figure.

- 1. 90% RH Max (Ta \leq 39 $^{\circ}$ C)
- 2. Max wet-bulb temperature at 39°C or less. (Ta \leq 39°C)
- 3. No condensation

Operating Range

Storage Range

AU OPTRONICS CORPORATION

2.3 Optical Characteristics

The optical characteristics are measured on the following test condition.

Test Condition:

I. Equipment setup: Please refer to Note 2-2.

2. Panel Lighting time: 30 minutes3. VDD=12.0V, Fv=60Hz, Ta=25°C

Symbol	Description		Min.	Тур.	Max.	Unit	Remark
L _w	White Luminance (Center	320	400	-	[cd/m²]	@ HDR off Note 2-2 Note 2-3 By SR-3	
L _{w1}	White Luminance (Center	of screen)	600	720	-	[cd/m2]	@ HDR on Note 2-2 Not 2-4 By SR-3
L _{w2}	White Luminance (10% o	f screen)	1200	1440	-	[cd/m2]	@ HDR on Note 2-5 By SR-3
L _{uni}	Luminance Uniformity (9	points)	75	80	-	[%]	Note 2-6 By SR-3
CR	Contrast Ratio (Center o	f screen)	600	1000	-	-	Note 2-7 By SR-3
θ_{R}	Horizontal Viewing Angle	Right	75	89	-	[degree]	
θι	(CR=10)	Left	75	89	-		Note 2-8
Фн	Vertical Viewing Angle	Up	75	89	-		By SR-3
Фь	(CR=10)	Down	75	89	-		
T_{GTG}	Response Time	Gray to Gray	-	12	-	[msec]	Note 2-9 By TRD-100
R_{x}		Red x	0.672	0.702	0.732		
R _y		Red y	0.264	0.294	0.324		
G _x		Green x	0.144	0.174	0.204		
G _y	Color Coordinates	Green y	0.729	0.759	0.789	_	By CD 2
B _x	(CIE 1931)	Blue x	0.121	0.151	0.181	-	By SR-3
Ву		Blue y	0.025	0.055	0.085		
W _x		White x	0.283	0.313	0.343		
W _y		White y	0.299	0.329	0.359		
Ru'	Color Coordinates	Red u'	-	0.548	-	-	-

Rv'	(CIE 1976)	Red v'	-	0.516	-		
Gu'		Green u'	-	0.059	-		
Gv'		Green v'	-	0.581	1		
Bu'		Blue u'		0.180	ı		
Bv'		Blue v'	-	0.147	-		
Wu'		White u'	-	0.198	-		
Wv'		White v'	-	0.468	-		
	Rec.2020 CIE1976 Coverage ratio		-	89.5	-	[%]	By SR-3

Note 2-2: Equipment setup:

Note 2-3: LED current condition @HDR off Is=3.2 mA.

Note 2-4: LED current condition @HDR on Is=6.5 mA.

Note 2-5: Measurement Pattern: 10% active area with L1023 at center. LED Light on condition: $16(H) \times 8(V) = 128$ zones, Is= 15mA

AU OPTRONICS CORPORATION

Note 2-6: Luminance Uniformity Measurement

Definition:

Luminance Uniformit $y = \frac{\text{Minimum Luminance of 9 Points (P1} \sim \text{P9})}{\text{Maximum Luminance of 9 Points (P1} \sim \text{P9})}$

a. Test pattern: White Pattern

Note 2-7: Contrast Ratio Measurement

Definition:

Contrast Ratio = $\frac{\text{Luminance of White pattern}}{\text{Luminance of Black pattern}}$

a. Measured position: Center of screen (P5) & perpendicular to the screen ($\theta=\Phi=0^{\circ}$)

Note 2-8: Viewing angle measurement

Definition: The angle at which the contrast ratio is greater than 10 & 5.

a. Horizontal view angle: Divide to left & right $(\theta_L \& \theta_R)$ Vertical view angle: Divide to up & down $(\Phi_H \& \Phi_L)$

AU OPTRONICS CORPORATION

Note 2-9: Response time measurement

The output signals of photo detector are measured when the input signals are changed from "Gray level A" to "Gray level B" (falling time, T_r), and from "Gray level B" to "Gray level A" (rising time, T_r), respectively. The response time is interval between the 10% and 90% of optical response.

The gray to gray response time is defined as the following table.

Gray Level to (Gray Loyal	Target gray level												
Gray Level to	Ji ay Levei	L0	L255	L511	L767	L1023								
	L0		4											
	L255													
Start gray level	L511													
	L767													
	L1023													

■ T_{GTG_typ} is the total average time at rising time and falling time of gray to gray.

Note 2-10: Evaluation test and mass production inspection shall be applied with LED current Is @ HDR off condition if there is not specified condition.

M320QAN02.5

2.4 Mechanical Characteristics

Symbol	Description	Min.	Max.	Unit	Remark
P_{bc}	Backside Compression	2.5	-	[Kgf]	Note 2-10

Note 2-13: Test Method:

The point is at a distance from right-downside 25mm x 25mm defined as the Start Point of Measure Points, and the point is at a distance 25mm from left-side & around 10mm from PCB defined as the End Point.

Align 50mm x 50mm block from Start Point on the Bezel Back, and the corners of each block are Measure Points.

Test pattern: L128 gray pattern

If the distance from the last block to each side of the End Point 25mm, add other blocks to make sure that most area of Bezel Back can be measured.

AU OPTRONICS CORPORATION

3 TFT-LCD Module

3.1 Block Diagram

The following shows the block diagram of the 32.0 inch Color TFT-LCD Module.

3.2 Interface Connection

3.2.1 Connector Type

TFT-LCD Connector	Manufacturer	JAE	P-TWO	STARCONN (CHIEF LAND)				
11 1-LCD Connector	Part Number	FI-RTE5 SZ-HF	187059-5122	115E51-0000RA-M3-R				
Marina Cannastan	Manufacturer	JAE or Compatible	JAE or Compatible					
Mating Connector	Part Number	FI-RE5 I CL (Locked	Туре)					

3.2.2 Connector Pin Assignment

PIN#	Symbol	Description	Remark
I	VDD	Power +12V	
2	VDD	Power +12V	
3	VDD	Power +12V	
4	VDD	Power +12V	
5	VDD	Power +12V	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	NC	No connection (for AUO test only. Do not connect)	
10	NC	No connection (for AUO test only. Do not connect)	
П		No connection (for AUO test only. Do not connect)	
12		No connection (for AUO test only. Do not connect)	
13		No connection (for AUO test only. Do not connect)	
14		No connection (for AUO test only. Do not connect)	
15		No connection (for AUO test only. Do not connect)	
16		No connection (for AUO test only. Do not connect)	
17	GND	Ground	
18	1st Lane3_N	Negative eDP differential data input	
19	1st Lane3_P	Positive eDP differential data input	
20	GND	Ground	
21	1st Lane2_N	Negative eDP differential data input	

	_	
22	Ist Lane2_P	Positive eDP differential data input
23	GND	Ground
24	Ist LaneI_N	Negative eDP differential data input
25	Ist LaneI_P	Positive eDP differential data input
26	GND	Ground
27	1st Lane0_N	Negative eDP differential data input
28	1st Lane0_P	Positive eDP differential data input
29	GND	Ground
30	Ist AUX_CH_P	Positive AUX Channel differential data input
31	Ist AUX_CH_N	Negative AUX Channel differential data input
32	GND	Ground
33	NC	No connection (for AUO test only. Do not connect)
34	GND	Ground
35	2nd Lane3_N	Negative eDP differential data input
36	2nd Lane3_P	Positive eDP differential data input
37	GND	Ground
38	2nd Lane2_N	Negative eDP differential data input
39	2nd Lane2_P	Positive eDP differential data input
40	GND	Ground
41	2nd LaneI_N	Negative eDP differential data input
42	2nd Lane I_P	Positive eDP differential data input
43	GND	Ground
44	2nd Lane0_N	Negative eDP differential data input
45	2nd Lane0_P	Positive eDP differential data input
46	GND	Ground
47	2nd AUX_CH_P	Positive AUX Channel differential data input
48	2nd AUX_CH_N	Negative AUX Channel differential data input
49	GND	Ground
50	HPD	Hot plug detection

M320QAN02.5

51	GND	Ground	
----	-----	--------	--

3.3 Electrical Characteristics

3.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

Symbol	Description	Min	Max	Unit	Remark
VDD	Power Supply Input Voltage	GND-0.3	14	[Volt]	Ta=25°C

3.3.2 Recommended Operating Condition

	offinended Operacii	.8 00		Т	1	
Symbol	Description	Min	Тур	Max	Unit	Remark
VDD	Power supply Input voltage	10.8	12.0	13.2	[Volt]	
IDD	Power supply	-	1.06	1.28	[A]	VDD= 12V, Whie Pattern, Fv=60Hz
	Input Current (RMS)	-	1.11	1.34		VDD= 12V, Whie Pattern, Fv=65Hz
PDD	VDD Power	-	12.72	15.36	[Watt]	VDD= 12V, Whie Pattern, Fv=60Hz
FDD	Consumption	-	13.32	16.08		VDD= 12V, Whie Pattern, Fv=65Hz
IRush	Inrush Current	-	-	3.0	[A]	Note 3-1
VDDrp	Allowable VDD Ripple Voltage	-	-	500	[mVolt]	VDD= 12.0V, White pattern, Fv=60Hz

Note 3-1: Inrush Current measurement:

The duration of VDD rising time: 470us.

3.4 Signal Characteristics

3.4.1 LCD Pixel Format

Following figure shows the relationship between the input signals and LCD pixel format.

	1st Lane0	1st Lane1	1st Lane2	1st Lane3		2nd Lane0	2nd Lane1	2nd Lane2	2nd Lane3	
	¥	↓	¥	↓		↓	↓	¥	¥	
	1	2	3	4	 1920	1921	1922	1923	1924	 3840
1	R G B	R G B	R G B	R G B	 R G B	R G B	R G B	R G B	R G B	 R G B
\										
2160	R G B	R G B	R G B	R G B	 R G B	R G B	R G B	R G B	R G B	 R G B

Note 3-2: The module use 8-Lanes eDP interface.

Ist port:

Ist Lane0: I+4n pixel

Ist Lane I: 2+4n pixel

Ist Lane2: 3+4n pixel

Ist Lane3: 4+4n pixel

2nd port:

2nd Lane0: 1921+4n pixel

2nd Lane I: 1922+4n pixel

2nd Lane2: 1923+4n pixel

2nd Lane3: 1924+4n pixel

n=0~479

M320QAN02.5

3.4.2 eDP Data Format

1st Lane0	lst Lanel	1st Lane2	1st Lane3
R1-9:2	R2-9:2	R3-9:2	R4-9:2
R1-1:0IG1-9:4	R2-1:0lG2-9:4	R3-1:0IG3-9:4	R4-1:0lG4-9:4
G1-3:0IB1-9:6	G2-3:0IB2-9:6	G3-3:0IB3-9:6	G4-3:0IB4-9:6
B1-5:0IR5-9:8	B2-5:0IR6-9:8	B3-5:0IR7-9:8	B4-5:0IR8-9:8
RS-7:0	R6-7:0	R7-7:0	R8-7:0
GS-9:2	G6-9:2	G7-9:2	G8-9:2
GS-1:0IBS-9:4	G6-1:0IB6-9:4	G7-1:0IB7-9:4	G8-1:0IB8-9:4
B5-3:0IR9-9:6	B6-3:0IR10-9:6	B7-3:0IR11-9:6	B8-3:0IR12-9:6
R9-5:0IG9-9:8	R10-5:0IG10-9:8	R11-5:0IG11-9:8	R12-5:0IG12-9:8
G9-7:0	G10-7:0	G11-7:0	G12-7:0
B9-9:2	B10-9:2	B11-9:2	B12-9:2
B9-1:0IR13-9:4	B10-1:0IR14-9:4	B11-1:0IR15-9:4	B12-1:0IR16-9:4
R13-3:0IG13-9:6	R14-3:0IG14-9:6	R15-3:0IG15-9:6	R16-3:0IG16-9:6
G13-5:0IB13-9:8	G14-5:0IB14-9:8	G15-5:0IB15-9:8	G16-5:0IB16-9:8
B13-7:0	B14-7:0	B15-7:0	B16-7:0

2nd Lane0	2nd Lanel	2nd Lane2	2nd Lane3
R1921-9:2	R1922-9:2	R1923-9:2	R1924-9:2
R1921-1:0IG1921-9:4	R1922-1:0IG1922-9:4	R1923-1:0IG1923-9:4	R1924-1:0IG1924-9:4
G1921-3:0IB1921-9:6	G1922-3:0IB1922-9:6	G1923-3:0IB1923-9:6	G1924-3:0IB1924-9:6
B1921-5:0IR1925-9:8	B1922-5:0IR1926-9:8	B1923-5:0IR1927-9:8	B1924-5:0IR1928-9:8
R1925-7:0	R1926-7:0	R1927-7:0	R1928-7:0
G1925-9:2	G1926-9:2	G1927-9:2	G1928-9:2
G1925-1:0IB1925-9:4	G1926-1:0IB1926-9:4	G1927-1:0IB1927-9:4	G1928-1:0IB1928-9:4
B1925-3:0IR1929-9:6	B1926-3:0IR1930-9:6	B1927-3:0IR1931-9:6	B1928-3:0IR1932-9:6
R1929-5:0IG1929-9:8	R1930-5:0IG1930-9:8	R1931-5:0IG1931-9:8	R 1932-5:01G1932-9:8
G1929-7:0	G1930-7:0	G1931-7:0	G1932-7:0
B1929-9:2	B1930-9:2	B1931-9:2	B1932-9:2
B1929-1:0IR1933-9:4	B1930-1:0IR1934-9:4	B1931-1:0IR1935-9:4	B1932-1:0IR1936-9:4
R1933-3:0IG1933-9:6	R1934-3:0IG1934-9:6	R1935-3:0IG1935-9:6	R 1936-3:01G1936-9:6
G1933-5:0IB1933-9:8	G1934-5:0IB1934-9:8	G1935-5:0IB1935-9:8	G1936-5:0IB1936-9:8
B1933-7:0	B1934-7:0	B1935-7:0	B1936-7:0

3.4.3 Color versus Input Data

The following table is for color versus input data (10bit). The higher the gray level, the brighter the color.

															Colo	or Inj	put [)ata														
Color	Gary Level				(MS	RED B:R9			l				GREEN data (MSB :G9, LSB :G0)								BLUE data (MSB :89, LSB :80)									Remark		
		R9	R8	R7	R6	R5	R4	R3	R2	R1	RO	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	В5	В4	ВЗ	В2	В1	ВО	
Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
L511	-	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
	LO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Black
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	L1023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	

AU OPTRONICS CORPORATION

3.4.4 eDP Specification (Follow as VESA DisplayPort Standard Version 1.1)

a. DisplayPort main link signal:

DisplayPort main link							
		Min	Тур	Max	unit		
Frequency	Main link Frequency	-	2.7	-	Gbps		
UI	Unit Interval	-	370	-	ps		
VCM	RX input DC Common Mode Voltage	-	0	-	[Volt]		
VDiff _{P-P}	Peak-to-peak Voltage at a receiving Device	150	- -	-	[mVolt]		
Down_Spread_Freq	Link clock down spread frequency	30	-	33	KHz		
Down_Spread_Amplitude	Link clock down spread amplitude	-	-	0.5	%		

Point	Time (UI)	Voltage (V)
1	0.245	
2	0.5	75mV
3	0.755	THE B
4	0.5	-75mV

Figure 5.55.3 Downstream Device EYE Mask at Receiver Connector for HBR

AU OPTRONICS CORPORATION

b. DisplayPort AUX_CH signal:

	DisplayPort AUX_CH						
		Min	Тур	Max	unit		
VCM	AUX DC Common Mode Voltage	0	-	2.0	[Volt]		
VDiff _{P-P}	AUX Peak-to-peak voltage at a receiving device	0.27	-	1.36	[Volt]		

c. DisplayPort VHPD signal:

	Display Port VHPD				
		Min	Тур	Max	unit
VHPD	HPD Voltage	2.25	-	3.6	[Volt]

d. Intra-Pair skew

LRX-SKEW-INTRA_PAIR	

M320QAN02.5

		Min	Тур	Max	unit
LRX-SK					
EW-IN	Lana Intra pain Skary Talamana			40	[-a]
TRA_P	Lane Intra-pair Skew Tolerance	-	-	60	[ps]
AIR					

e. Inter-Pair Skew

	LRX-SKEW-INTER_PAIR				
		Min	Тур	Max	unit
LRX-SK EW-IN TER_PA IR	Lane-to-Lane Skew at RX package pins	-	-	5200	[ps]

AU OPTRONICS CORPORATION

3.4.5 Input Timing Specification

The input timing is shown as the following table.

Symbol	Description		Min.	Тур.	Max.	Unit	Remark
Tv		Period	2180	2200	4500	Th	
Tdisp (v)		Active	2160	2160	2160	Th	
Tblk (v)	Vertical Section	Blanking	20	40	2340	Th	
Fv		Frequency	29	60	65	Hz	Note 3-5
							Note 3-6
Th		Period	2000	2100	3520	Tclk	
Tdisp (h)	Horizontal	Active	1920	1920	1920	Tclk	
Tblk (h)	Section	Blanking	80	180	1600	Tclk	
Fh		Frequency	40.0	131.9	144.0	kHz	Note 3-3
Tclk	Pixel Clock	Period	3.5	3.6	12.5	ns	I/Fclk
Fclk		Frequency	80.0	277.0	288.0	MHz	Note 3-4
	Link Rate per Lane			2.7		Gbps	

Note 3-3: The equation is listed as following. Please don't exceed the above recommended value.

Fh (Min.) = Fclk (Min.) / Th (Min.)

Fh (Typ.) = Fclk (Typ.) / Th (Typ.)

Fh (Max.) = Fclk (Max.) / Th (Min.)

Note 3-4: The equation is listed as following. Please don't exceed the above recommended value.

1st Lane N & 2nd Lane N skew < 200ns

Fclk (Typ.) = Fv (Typ.) \times Th (Typ.) \times Tv (Typ.)

 $Fclk (Min.) \le Fv x Th x Tv \le Fclk (Max.)$

Note 3-5: The equation is listed as following. Please don't exceed the above recommended value.

 $Fv = Fclk(Typ.) / (Tv \times Th)$

Note 3-6: The optimal Vertical Frequency is 50~65 Hz for best picture quality.

AU OPTRONICS CORPORATION

3.5 Power ON/OFF Sequence

VDD power,eDP signal and backlight on/off sequence are as following. eDP signals from any system shall be Hi-Z state when VDD is off.

Power Sequence Timing

Curah al		Value			Remark
Symbol	Min.	Тур.	Max.	Unit	
TI	0.5	-	10	[ms]	
T2	0	-	200	[ms]	
T3	0	-	-	[ms]	Note 3-7
T4	500	-	-	[ms]	
T5	100	-	-	[ms]	
T6	0		50	[ms]	Note 3-8 Note 3-9
Т7	0	-	200	[ms]	Note 3-9 Note 3-10
T8	1000	-	-	[ms]	

Note 3-7: During T3 period, eDP link training time by customer's system.

Note 3-8: Recommend setting T6 = 0ms to avoid electronic noise when VDD is off.

Note 3-9: During T6 and T7 period, please keep the level of input eDP signals with Hi-Z state.

M320QAN02.5

Note 3-10: Voltage of VDD must decay smoothly after power-off.(customer system decide this value)

4 Backlight Unit

4.1 Interface Connection

4.1.1 Connector Type

ltem		CNT2	CNT3
Driver	Manufacturer	JST	PTWO
Connector	Part Number	S14B-PHA-SM3-TB(HF)	187060-4122
Mating	Manufacturer	JST	JAE
Connector	Part Number	PHAR14	FI-RE41CL

4.1.2 Connector Pin Assignment

PIN#	Symbol	Description	Remark
I	VDDBI	Main Operation voltage supply (19V)	
2	VDDBI	Main Operation voltage supply (19V)	
3	VDDBI	Main Operation voltage supply (19V)	
4	VDDBI	Main Operation voltage supply (19V)	
5	VDDBI	Main Operation voltage supply (19V)	
6	VDDBI	Main Operation voltage supply (19V)	
7	VDDB2	Operation voltage supply (5V)	
8	GND	Ground	
9	GND	Ground	
10	GND	Ground	
П	GND	Ground	
12	GND	Ground	
13	GND	Ground	
14	GND	Ground	

CNT3:

PIN#	Symbol	Description	Remark
ı	GND	Ground	
2	GND	Ground	
3	GND	Ground	

4	GND	Ground	
5	GND	Ground	
6	GND	Ground	
7	GND	Ground	
8	NC	Do not connect	
9	NC	Do not connect	
10	NC	Do not connect	
П	NC	Do not connect	
12	GND	Ground and current return	
13	NC	Do not connect	
14	NC	Do not connect	
15	NC	Do not connect	
16	GND	Ground and current return	
17	NC	Do not connect	
18	SPII_CS	SPI interface chip select for AS3812	
19	ACT_CARD	Active LED driver board	
20	BL_CARD	BL Bleed card on	
21	NC	Do not connect	
22	NC	Do not connect	
23	FAILED_I	Error signal output (DEVI/2/3/4/5/6/7/8/~/35/36)	
23		(Open drain output. Pull H (3.3 or 1.8V) by system with 10K ohm)	
24	VDDB3	Digital Operation voltage supply(3.3V)	
25	SPII_SDO	SPI interface data output. Tristate output	
26	NC	Do not connect	
27	GND	Ground and current return	_
28	VSYNCI	Vertical sync frequency	
29	HSYNCI	Clock input for PWM generators	
30	SPII_SDI	SPI interface data input for AS3812	
31	GND	Ground and current return	
32	SPII_SCL	SPI interface clock input for AS3812	

33	NC	Do not connect	
34	NC	Do not connect	
35	NC	Do not connect	
36	GND	GND	
37	GND	GND	
38	GND	GND	
39	GND	GND	
40	GND	GND	
41	GND	GND	

M320QAN02.5

AU OPTRONICS CORPORATION

4.2 LED Control mapping

- 1. LED Driver IC: AS3812 16ch. (36pcs on 1pcs LED driver board; 72pcs on 1pcs panel)
- 2. It needs to use at least 2sets SPI I/F on Ipcs panel case by daisy chain structure with LED Driver IC (at most 62pcs IC.)

document version 0.1 32

Below is the LED& driver mapping.

Panel back side

Below is the LED& driver mapping.

Panel front side

LeftLEDD	river	Right LED Driver
25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 25.10 25.11 25.12 25.13	25.14 25.15 25.16 261 262 263 264 265 266 267 36	8 1216 1219 1214 1214 1219 1212 1211 1210 129 128 127 126 125 124 123 122 121 1116 1115 1114 1115 11.17 11.10 11.9
269 2630 2631 2612 2613 2614 2615 2616 271 272 273 274 275	27.6 27.7 27.8 27.9 27.10 27.11 27.12 27.13 27.14 27.15 27.1	15 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1 10.16 10.15 10.14 10.13 10.12 10.11 10.10 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1
28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9 28.10 28.11 28.12 28.13	2814 2835 2836 291 292 293 294 295 296 297 29	8 916 915 914 913 912 911 910 99 98 97 96 95 94 93 92 91 816 815 814 813 812 811 810 89
29.9 29.10 29.11 29.12 29.13 29.14 29.15 29.16 30.1 30.2 30.3 30.4 30.5	30.6 30.7 30.8 30.9 30.10 30.11 30.12 30.13 30.14 30.15 30.1	16 88 87 86 85 84 83 82 81 7.16 7.15 7.16 7.15 7.17 7.10 7.10 7.10 7.10 7.10 7.10 7.10
31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 31.10 31.11 31.12 31.13	31.14 31.15 31.16 32.1 32.2 32.3 32.4 32.5 32.6 32.7 32.	8 616 615 614 613 612 611 610 69 68 67 66 65 64 63 63 61 516 515 518 513 512 511 510 59
32.9 32.10 32.11 32.12 32.13 32.14 32.15 32.16 33.1 33.2 33.3 38.4 33.5	33.6 33.7 33.8 33.9 33.10 33.11 33.12 33.13 33.14 33.15 33.1	16 58 57 56 55 54 53 52 51 416 4.15 4.14 4.13 4.12 4.11 4.20 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1
341 342 343 344 345 346 347 348 349 3410 3411 3412 3413	34.14 34.15 34.16 35.1 35.2 35.3 35.4 35.5 35.6 35.7 25.	8 336 315 314 313 312 311 310 39 34 37 36 35 34 33 32 31 236 215 214 213 212 211 210 29
35.9 35.10 35.11 35.12 35.13 38.34 35.15 35.16 36.1 36.2 36.3 36.4 36.5	366 367 368 369 3610 3611 3612 3613 3614 3615 361	16 28 27 26 25 24 23 22 21 116 135 134 1.13 1.12 1.11 1.10 19 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
13.1 13.2 13.3 13.4 19.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13	13.14 33.35 13.86 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.	8 38.66 38.37 38.38 38.33 38.33 38.31 38.30 38.9 38.8 38.7 38.6 38.5 38.4 38.3 38.2 38.1 33.66 33.55 33.8 23.3 33.0 23.0 23.0 23.0
14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 15.1 15.2 15.3 15.4 15.5	156 157 158 159 1510 1511 1512 1513 1514 1515 151	16 238 217 236 235 234 233 231 231 2316 2315 2314 2313 2312 231 2316 2315 2314 2313 2312 2311 2310 239 238 237 236 235 234 233 232 231
161 162 163 164 165 166 167 168 169 1610 1611 1612 1613	1614 1615 1616 173 172 173 174 175 176 177 17	8 31.65 31.15 21.36 31.13 21.12 21.11 21.50 21.9 21.8 31.7 21.6 21.5 21.4 21.3 21.2 31.1 30.16 20.15 20.14 20.13 20.12 20.11 20.10 20.9
179 1730 1731 1732 1733 1734 1735 1736 183 182 183 184 185	18.6 18.7 18.8 18.9 18.10 18.11 18.12 18.13 18.34 18.15 18.3	16 208 207 206 205 204 203 202 201 1916 1915 1914 1913 1912 1910 199 198 197 196 193 194 193 192 191
191 192 193 194 195 196 197 198 199 1910 1911 1912 1913	1914 1915 1916 201 202 203 204 205 206 207 20	8 5816 1815 1816 1827 1817 1817 1817 1817 1820 189 288 187 186 185 184 183 182 181 1716 1716 1714 1713 1712 1711 1710 179
20.9 20.10 20.11 20.12 20.13 20.14 20.15 20.16 21.1 21.2 21.3 21.4 21.5	21.6 21.7 21.8 21.9 21.10 21.11 21.12 21.13 21.14 21.15 21.1	16 178 177 176 175 174 173 173 173 173 1616 1615 1614 1613 1613 1613 1610 169 163 167 166 165 164 163 163 163
22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 22.9 22.10 22.11 22.12 22.13	22.14 22.15 22.16 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.	8 1516 1515 1518 1517 1517 1517 1510 159 158 157 156 155 154 153 152 151 1616 1615 1618 1617 1617 1617 1617 1619
239 2330 2331 2312 2313 2354 2315 2316 24.1 242 24.3 24.4 24.5	266 247 268 269 2610 2611 2612 2613 2614 2615 261	16 143 147 146 145 144 143 142 141 1316 1315 1314 1317 1317 1317 1317 1310 139 138 137 136 135 134 133 132 131
14 12 13 14 15 16 17 18 19 140 141 142 143	134 135 136 21 22 23 24 25 26 27 23	
29 210 211 212 213 214 215 216 31 32 33 34 35	104 105 106 20 22 23 24 25 26 27 28	6 359 357 366 355 354 353 352 351 3415 3415 3415 3419 3412 3411 3410 349 348 347 346 345 344 343 342 341
41 42 43 48 43 46 47 48 49 410 411 412 413	414 415 416 51 52 53 54 53 56 57 51	
	414 415 436 31 32 33 34 33 36 37 38	8 33.16 13.15 33.14 13.13 33.12 13.11 33.10 13.9 33.8 15.7 33.6 33.5 33.4 33.3 33.1 17.16 37.15 27.15 27.14 27.13 17.12 17.11 17.10 27.9
5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 61 62 63 64 65	CO 6.7 6.6 6.9 5.10 6.11 5.12 6.13 6.14 6.15 6.1	6 23 327 36 25 324 323 322 331 316 315 314 313 312 311 310 319 313 317 316 315 314 313 312 311
71 72 73 74 75 76 27 73 79 710 711 712 713	7.14 7.15 7.16 EL 82 83 8A 85 86 87 83	8 3016 3015 3014 3010 3012 3011 3010 309 308 307 306 305 304 303 302 301 2816 2815 2814 2810 2812 2811 2810 289
8.9 E.10 E.11 8.12 E.13 E.14 E.15 E.16 9.1 9.2 9.3 9.4 9.5	NO NY NE NY NIU NII 912 913 914 915 91	6 298 297 296 295 294 293 292 291 2816 2815 2814 2813 2812 2811 2810 289 288 287 286 285 284 283 282 281
10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.13	10.14 10.15 10.16 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.	8 27.16 27.15 27.14 27.13 27.12 27.11 27.10 27.9 27.8 27.7 27.6 27.5 27.4 27.3 27.3 27.1 26.16 26.13 26.14 26.13 26.12 26.11 26.10 26.9
31.9 11.30 11.31 11.12 11.33 11.34 11.35 11.36 12.1 12.2 12.3 12.4 12.5	126 127 128 129 1210 1211 1212 1213 1214 1215 121	16 268 267 266 265 264 263 263 263 261 2516 2515 2514 2513 2512 2511 2510 259 253 257 256 255 254 253 252 251

The data mapping is (device, channel)

4.3 Electrical Characteristics

4.3.1 Absolute Maximum Rating

Permanent damage may occur if exceeding the following maximum rating.

 $(Ta=25^{\circ}C)$

Symbol	Description	Min	Max	Unit	Remark
ls	LED String Current (VDD)	0	20	[mA]	100% duty ratio
VDDBI	Main Operation voltage supply	18	21.6	[Volt]	
VDDB2	Operation voltage supply	4.5	7	[Volt]	
VDDB3	Digital Operation voltage supply	3	4	[Volt]	
Vsignal/ Vset	Signal and Setting pin voltage supply	0	5	[Volt]	SDI, SDO, SCL, SDA, xCS, FAILED, BST_EN, HSYNC, VSYNC, ACT_CARD, BL_CARD

Duty ratio= (A / B) X 100%; (A: Pulse time, B: Period)

4.3.2 LED Recommended Operating Condition

 $(Ta=25^{\circ}C)$

Symbo	Description	Min.	Тур.	Max.	Unit	Remark
						@HDR off
ls	LED String Current		3.2	3.4	[mA]	100% duty ratio of LED
						chip
						@HDR on
Is	LED String Current		6.5	6.83	[mA]	100% duty ratio of LED
						chip
LT _{LED}	LED Life Time	30000			[Hour]	Note 4-2
LT _{LED}	LED Life Time	30000			[Hour]	

4.3.3 LED Driver Board Recommended Operating Condition

No	Description	1	Symbol	Min	Тур	Max	Unit	Remark
	D		VDDBI	18	19	20		
- 1	Driver Board In	•	VDDB2	4.5	5	5.5	[Volt]	
	Voltage Rang	e	VDDB3	3	3.3	3.6		
	D : D		IDDBI	-	3.62	5.43	[A]	@HDR off
2	Driver Board In Current	put	IDDB2	-	760	912	[mA]	All LED @ls=3.2mA
	- Carrone		IDDB3	-	324	388	[mA]	Duty 100%
	5 . 5 . 15		PDDBI	-	68.78	103.17	[Watt]	Note 4-3
3	Driver Board Po Consumption		PDDB2	-	3.8	4.56	[Watt]	(TBD)
	Consumption		PDDB3	-	1.069	1.28	[Watt]	
	Driver Board Input Current		IDDBI	-	5.2	7.8	[A]	@HDR on
4			IDDB2	-	790	948	[mA]	All LED @ls=6.5 mA
			IDDB3	-	325	390	[mA]	Duty 100%
	Driver Board Power Consumption		PDDBI	-	98.8	148.2	[Watt]	Note 4-3
5			PDDB2	-	3.95	4.74	[Watt]	(TBD)
	Consumption	. [PDDB3	-	1.073	1.288	[Watt]	
	5 . 5		IDDBI	-	10.2	15.3	[A]	@HDR on
6	Driver Board In Current	put	IDDB2	-	854	1025	[mA]	All LED @ls=13mA
	Current		IDDB3	-	320	384	[mA]	Duty 100%
	D : 5 .5		PDDBI	-	193.8	290.7	[Watt]	Note 4-3
7	Driver Board Po Consumption		PDDB2	-	4.27	5.125	[Watt]	
	Consumption		PDDB3	-	1.056	1.267	[Watt]	
8	Active LED	ON	ACT_CARD	0	-	0.8	[Volt]	BL on/off:

M320QAN02.5

AUO-General

	driver board	OFF		2.5	-	3.45		Low for on, High for off.
9	BL Bleed card	ON		2.5	10	19.95		BL_discharge on/off:
9	on	OFF	BL_CARD	0	-	0.8	[Volt]	High for on. Low for off,
10	SPI_SDI, SPI_SCL,	V _{IH}	SPII_SDI, SPII_SCL, SPII_CS,	2.5	-	3.6	[Volt]	VDDB3=3.0~3.6V
10	SPI_CS, VSYNC, HSYNC		HSYNCI, VSYNCI	0		0.8	[voit]	
11	CDI CDO	V _{OH}		2.7	1	3.3	[Volt]	
''	II SPI_SDO	V _{OL}	SPII_SDO	0	-	0.3	[VOIL]	
		Н		1.71	_	3.6		LED DB status High by system pull
12	I2 Error Signal output	L	FAILED_I	0	,	I	[Volt]	high with 10K ohm for normal work; Low for some LED channel open
13	SPI Input impeda	ance	RIN	300	_	_	ΚΩ	
14	4 SPI Frequency		Fsclk	0	<i>></i>	4	MHz	
15	VSYNC Control Frequency		FVSYNC	60		40000	Hz	
16	HSYNC Control		FHSYNC	100		20000	KHz	

AU OPTRONICS CORPORATION

4.3.4 SPI Interface

For the data transfer a serial peripheral interface (SPI) is used. The SPI is configured to work only as SPI slave. The SDI and SDO are all must meet below SPI specification.

Symbol	Parameter	Min	Тур	Max	Unit
fSCLK	SCLK frequency	0		4	MHz
tl	xCS setup time	50			ns
t2	xCS hold time	100			ns
t3	xCS disable time	100	P		ns
t4	SDI setup time	5			ns
t5	SDI hold time	5		4	ns
t6	SCLK rise time			25	ns
t7	SCLK fall time			25	ns
t8	SCLK low time	40			ns
t9	SCLK high time	40	,		ns
tI0	Output valid from SCLK low			П	ns
tll	SCLK falling to xCS rising edge	50			ns

SPI Timing Characteristics

Note 4-1: When SCLK frequency operates with 2MHz, the max SCLK rise/ fall time can be expand to 50ns.

SPI Input Timing

AU OPTRONICS CORPORATION

SPI Output Timing

Note 4-2 Definition of life time:

- a. Brightness of LED becomes to 50% of its original value
- b. Test condition: Is = 3.2 mA and 25°C (Room Temperature)
- **Note 4-3** Evaluation test and mass production inspection shall be applied with LED current Is @ HDR off condition if there is not specified condition and all power define at Typ. VDDBx.
- **Note 4-4:** It can't use over 2.5 second and need to turn off BLU 10 second at least before next turn on when all LED are working at 13 mA with 100% duty.
- **Note 4-5:** AUO recommend that Dimming Control Signal (PWM Signal) should be synchronized with Frame Frequency.
- **Note 4-6:** Ensure that the LED light bar is not subjected either forward or reverse voltage while monitor set is on standby mode or not in use.
- **Note 4-7:** Please resend the SPI command at one frame interval.
- **Note 4-8:** The SPI signal need to synchronization with Panel's V-sync signal
- **Note 4-9:** ALL other information (ex. SPI signal, Protocol..etc) of driver board can been referenced and Should be meet the spec of the LED driver IC's datasheet (including SPII SDI SDI).
- **Note 4-10:** If usage is 0mA, we suggest to set PWM output = 0 and current sink = 0 (channel off).

AU OPTRONICS CORPORATION

4.3.5 Power Sequence for Backlight

Digital signal is the BLU ON signal.

Input Timing

No	Description	Symbol	Min	Тур	Max	Unit	Note
I	VDDB1 Rising Time	T _{RI}	10	-		[ms]	
2	VDDB3 delay time	T _{D3V}	10	-		[ms]	
3	ACT_CARD turn on delay time	T_{DACT_ON}	75	-		[ms]	
4	Digital Signal delay time	T_{DDGS}	40	-		[ms]	
5	ACT_CARD turn off delay	T _{DACT_OFF}	10	-		[ms]	

5 Reliability Test

AUO reliability test items are listed as following table. (Bare Panel only)

Items	Condition	Remark
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: I.5 Grms Wave: Random Frequency: I0 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	Note 5-1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Flacture Static Dischause)	Contact Discharge: \pm 15KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	Note 5-2
ESD (Electro Static Discharge)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	Note 3-2
Altitude Test	Operation: 18,000 ft Non-Operation: 40,000 ft	

- **Note 5-1**: a. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test.
 - b. After finish temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 5-2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost

Self-recoverable

No hardware failures.

ESD discharged point should avoid display area and periphery front bezel of display area. Suggest point were

display function.

Product Specification AU OPTRONICS CORPORATION

M320QAN02.5

4 side parallel edge of display area surface. Metal front bezel must cover half area of BM(Black matrix) and

Note5-3: Result Evaluation Criteria: TFT-LCD panels test should take place after gradually cooling enough at room temperature. In the normal application, there should be no particular problems that may affect the

metal front bezel must connect with metal back bezel to protect source IC of panel by ESD damaged.

M320QAN02.5

AU OPTRONICS CORPORATION

6 Shipping Label

The label is on the panel as shown below:

- Note 6-1: For Pb Free products, AUO will add (%) for identification.
- **Note 6-2:** For RoHS compatible products, AUO will add RoHS for identification.
- Note 6-3: For China RoHS compatible products, AUO will add 6 for identification.
- **Note 6-4:** The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

8 Packing Specification

8.1 Packing Flow

8.2 Pallet and shipment information

Item	Q'ty	Dimension	Weight (kg)	Remark
Panel	I	721.88(H)mm × 417.87(V)mm × 40.61(D)mm	4.76	
Cushion	-	-	2.39	
Вох	I	806(L)mm x 281(W)mm x 514(H)mm	1.83	without Panel & cushion
Packing Box	4 pcs/Box	806(L)mm x 281(W)mm x 514(H)mm	23.26	with panel & cushion
Pallet	I	1150(L)mm x 840(W)mm x 132(H)mm	13.60	
Pallet after Packing	8 boxes/pallet	1150(L)mm x 840(W)mm x 1160(H)mm	199.68	

- 9 Design Guide for System
- 9.1 The gap between LCM and system rear bracket should be bigger than 0.5mm.
- 9.2 The system bracket should be fixed on back cover firmly.

9.3 The EMI gasket should be uniform and not push panel strongly.

9.4 For stable assembly, the system bracket should use 4 screws to fix system and panel by dual sides.

9.5 The system bracket and panel should be in parallel with having no gap after inserting screws.

Proper and Parallel gap

0 gap and no mechanical damage

9.6 Avoid scratching LCM, the rib on system front-cover should not exceed the bottom edge of LCM's front-bezel.

