COURSE FILE

For

Data Structures using C++ (ECSE215L)

Faculty Name Dr. Samya Muhuri

Ms. Anika

Dr. Ankur Gupta

Dr. Aditya Bhardwaj

Dr. Mohit Agarwal

Dr. Vaibhav Pandey

CourseType Foundation

Semester and Year 3rd Semester and 2ndYear

L-T-P 3-0-4

Credits 5

Department Computer Science Engineering

Course Level UG

SCHOOL OF ENGINEERING AND APPLIED SCIENCES

Department of Computer Science Engineering

Bennett University Greater Noida, Uttar Pradesh

Detailed Syllabus of the Course

ECSE102L: Data Structures using C++

CourseType:	Foundation	

L	T	P	Credits
3	0	4	5

• Pre-requisites: NA

• Course Learning Outcomes:

CLO1: Write recursive algorithms to handle all recursive data structures..

CLO2: Choose appropriate searching and sorting techniques and apply graph algorithms for various practical problems..

CLO3: Formulate new/improved solutions for programming problems using learned data structure.

Module 1 (Contact hours: 12)

Introduction to OOPS Concepts, handling Arrays, Tower of Hanoi; Binary search, Time Complexity, Asymptotic Analysis, Big –Oh notation, Solving Recurrence relations. Lists and Implementations: - Linked lists, Recursive functions on lists, Deletion, insertion, reversing, joining.

Module 2 (Contact hours: 12)

Stacks, Queues using linked lists, handling Polynomials; Tree data structure and Implementations, binary and complete binary trees; Tree traversals algorithms, Binary search trees, insertion and deletion.

Module 3 (Contact hours: 9)

Sorting Algorithms: - Merge and Quick sort; AVL trees, B-Trees, Heap Trees - Priority Queues, heap sort.

Module 4 (Contact hours: 9)

Hashing: -Chained Hash Tables, Linear Probing, Double Hashing; Disjoint Set Class: -Smart Union Algorithms, Path compression; Graph: -BFS, DFS Topologicalsort, Minimum spanning trees, Huffman coding, Shortest path, Tree data structure.

STUDIO WORK / LABORATORY EXPERIMENTS:

The laboratory of Data structures is designed to provide a practical exposure to the students about the concepts and topics taught in the classroom sessions. Implementing the learnt concepts using C++ will help the students to have a better understanding of the subject.

TEXTBOOKS/LEARNING RESOURCES:

- a) Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C++ (2 ed.), Universities Press, 2008. ISBN 978-0929306377.
- b) Langsem, Augenstein and Tenenbaum, Data Structures using C and C++Langsem, Augenstein and Tenenbaum (2 ed.), Pearson, 2015. ISBN 978-8120311770.

REFERENCE BOOKS/LEARNING RESOURCES:

- a) A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms (1 ed.), Pearson, 2002. ISBN 978-8178081021.
- b) Aaron M. Tenenbaum, Y. Langsam and Moshe J. Augenstein, Data Structures Using C (2 ed.), Pearson, 2019. ISBN 978-8131703281.

• MOOC:

1) **Udemy:** The Coding Interview Bootcamp: Algorithms + Data Structures

https://www.udemy.com/topic/data-

structures/?utm_source=adwords&utm_medium=udemyads&utm_campaign=Branded-

<u>Topic_la.EN_cc.INDIA&utm_content=deal4584&utm_term=_._ag_83677222041_._ad_536963903990_._kw_%2Bdata%20%2Bstructures%20%2Budemy__.de_c__.dm__.pl__.ti_kwd-</u>

<u>646773113456 . li 9061835 . pd . &matchtype=b&gclid=CjwKCAjw9uKIBhA8EiwAYPUS3AEhWp6w9xLKRdGmXwQt5dE8C2X0tnTExuF2FvU4Sgh1_Q57N8Ii9hoCwHIQAvD_BwE</u>

2) Coursera: Data Science Specialization

https://www.coursera.org/specializations/jhu-data-

science?utm_source=gg&utm_medium=sem&utm_campaign=03-DataScience-JHU-

IN&utm content=03-DataScience-JHU-

IN&campaignid=12034932697&adgroupid=121414562332&device=c&keyword=data%20scie nce%20course%20coursera&matchtype=b&network=g&devicemodel=&adpostion=&creativei d=490608671484&hide_mobile_promo&gclid=CjwKCAjw9uKIBhA8EiwAYPUS3C3a_56vR C2qfbFOCc77VWEc9z0vFXuw8mHgVPw2CT3bKH2SVr681RoCpDcQAvD_BwE

3) edX: Introduction to Data Structures

https://www.edx.org/course/introduction-to-data-structures

4) **NPTEL:** Data Structure and Algorithms

https://nptel.ac.in/courses/106/102/106102064/

Evaluation Component

Components of Course Evaluation	Percentage
Quiz	10
Mid Term	15
End Term	35
Lab Examination	15
Continuous Lab Evaluation	25
Total	100

Lecture and Lab Plan

WEEK	Lecture No.	Lecture Plan	Lab Plan	
W1	1	Introduction to course and C++ First Program.	Basic C++ Basic C++ Programs Programs having covering basics Classes, Objects,	
	2	Introduction to Basic OOPs Concepts [Classes, Objects, Abstraction, Encapsulation, Inheritance, Polymorphism] [Detailed Topic-wise Study with respect to C++: Self Study].	along with Abstraction and Encapsulation.	
	3	Handling Arrays: Introduction, Insertion, Deletion, Traversal, Search: Linear and Binary.		
W2	4	Recursion: Factorial and Tower of Hanoi.	Arrays Insertion, Recursive Programs:	
	5	Handling Arrays: 1D and 2D Memory and Address Calculation.	Traversal and Searching. Factorial, Tower of Hanoi, Binary Search etc.	
	6	Time Complexity: Asymptotic Analysis, Big –Oh notation.		
	7	Recurrence Relations: Substitution Method, Recursion Tree.	Programs on Pointers and	
	8	Recurrence Relations: Master Method.	Inheritance, their usage via Polymorphism. various	
W3	9	Linked Lists: Introduction Singly Linked List: Traversal, Insertion, Deletion.	programs.	
W4	10	Circular Linked List: Traversal, Insertion, Deletion.	Singly Linked List: Insertion, Circular Linked List: Insertion,	
	11	Doubly Linked List: Traversal, Insertion, Deletion.	Traversal, Traversal, Deletion. Deletion.	
	12	Linked Lists: Reversal, Polynomial Handling [Brief Introduction] [Joining of Linked Lists and Detailed Polynomial Handling: Self Study.]		
W5	13	Stacks: Introduction, Insertion, Deletion, Traversal.	Linked List: Stacks: Insertion, Polynomial Traversal,	
	14	Stacks Applications: Infix to Postfix Conversion, Post-fix Evaluation.	Handling; Deletion. Reversal and Joining.	
	15	Queues: Introduction, Simple Queue : Insertion, Deletion, Traversal.		
	16	Circular Queue: Insertion, Deletion, Traversal and Priority Queues.	Stacks: Infix to Post Fix, Simple Queues and Circular	

W6	17	Trees as Data Structures with different types, Binary Search Trees Introduction, Three Traversals. Binary Search Tree: Insertion.	Post-fix Evaluation.	Queues: Insertion, Deletion, Traversal.
W7	19	Binary Search Trees: Searching, Find Minimum, Maximum, Successor.	Priority Queues.	Binary Search Trees: Insertion.
,,,,	20	Binary Search Tree: Deletion.		
	21	AVL Trees: Introduction, Balance Factor, Rotations.		
	22	AVL Trees: Insertion.	Binary Search Trees: Traversals,	Binary Search Trees Deletion.
W8	23	AVL Trees: Deletion.	Searching,	Trees Deletion.
	24	Sorting: Bubble Sort, Seletion Sort.	Minimum, Maximum, Successor.	
	25	Sorting: Insertion Sort, Merge Sort.	Sorting: Bubble Sort, Selection	Sorting: Merge Sort.
W9	26	Sorting: Quick Sort.	Sort, Insertion	Sort.
	27	Sorting: Counting Sort.	Sort.	
	28	Sorting: Heap Sort.	Sorting: Counting Sort.	Sorting: Heap Sort.
W10	29	Priority Queues with respect to Heaps.	Soft.	Soft.
	30	Industry Talk		
	31	Graphs: Introduction, Representations.	Graphs: Implementation.	Graphs Traversal: BFS.
W11	32	Graphs Traversal: BFS.	implementation.	DIS.
	33	Graphs Traversal: DFS, Topological Sort.		
	34	Minimum Spanning Trees: Prim's Algorithm.	Graphs Traversal: DFS.	Minimum Spanning Trees: Prim's
W12	35	Disjoint Sets: Smart Union Algorithm, Path Compression.		Algorithm.
	36	Minimum Spaning Tree: Kruskal's Algorithm.		
	37	Shortest Path: Dijkstra's Algorithm	Minimum	Shortest Path:
W13	38	Shortest Path: Floyd Warshall	Spanning Trees: Kruskal's	Dijkstra's Algorithm.
	39	Hashing: Introduction	Algorithm.	
W14	40	Hashing Collision Resolution Strategies - I	Hashing Implementation.	Hashing Collision
	41	Hashing Collision Resolution Strategies - II		Resolution Strategies.
	42	Huffman Coding.		

• List of tools (teaching and lab)

- 1) Codezinger (for online coding/practical)
- 2) Mentimeter

• Tentative Date for hackathon/longathon.

Three hackathons are planned on last Saturday morning of each month (September, October, November).

• Suggest at least 3 innovations how this will enhance learning outcome of the course:

- 1. Using memtimeter to increase class engagement.
- 2. 3 hackathons are planned for helping students in placement.
- 3. Arrange industry talk to demonstrate students real-time problems.

Youtube playlist

https://www.youtube.com/channel/UCAYpK- E9y1DzyOTZewl9dQ/playlists