编译原理

第一章 编译程序概述

第二章 PL/0编译程序的实现

第三章 文法和语言

第四章 词法分析

第五章 自顶向下语法分析方法

第六章 自底向上优先分析方法

第七章 LR分析方法

第八章 语法制导翻译和中间代码生成

第九章 符号表

第一〇章 代码优化

第一一章 代码生成

第5章 自顶向下语法分析方法

- 一、确定的自顶向下分析思想
- 二、LL(1)文法的判别
- 三、某些非LL(1)文法到LL(1)文法等价变换
- 四、不确定的自顶向下分析思想
- 五、确定的自顶向下分析方法

五、确定的自顶向下分析方法

1、递归子程序法:

基本思想是:对应文法中每个非终结符编写一个递归过程,每个过程的功能是识别由该非终结符推出的串。

要求文法满足LL(1)文法。是比较简单直观易 于构造的一种语法分析方法。

PL/0编译程序的语法分析部分就是采用的递归 子程序法。

例: 递归子程序实现 表达式的语法分析

表达式的EBNF

```
〈表达式〉::=[+|-]〈项〉{(+|-) 〈项〉}
〈项〉::=〈因子〉{(*|/) 〈因子〉}
〈因子〉::=ident | number | '(' 〈表达式〉
')'
```

```
〈表达式〉::=[+|-]〈项〉{(+|-) 〈项〉}
- procedure expr;
- begin
   if sym in [plus, minus] then
   begin
    getsym; term;
   end
- else term;
   while sym in [plus, minus] do
   begin
   getsym; term;
   end
- end;
```

```
〈项〉::=〈因子〉{(*//) 〈因子〉}
• Procedure term;
   begin
         factor;
         while sym in [times, slash] do
         begin
           getsym;
           factor;
         end
• end;
```

```
〈因子〉∷=ident | number | '('〈表达式〉')'

    Procedure factor;

        begin
                 if sym=ident
                 then getsym
                 else
                    if sym=number
                    then getsym
                    else
                      if sym='('
                      then begin
                          getsym;
                          expr;
if sym=')'
                           then getsym
                          else error
                       end
                  else error
        end;
```

五、确定的自顶向下分析方法

2、预测分析方法:

自顶向下分析的另一种方法

(1)预测分析器的组成:

预测分析程序

先进后出栈

预测分析表一与文法有关

表驱动的预测分析程序模型

- 预测分析表可用一个矩阵表示。
- 矩阵元素M[A,a]中的A表示非终结符, a表示终结符或句子结束符#,矩阵元素 M[A,a]中的内容是一条关于A的产生式, 表明当用非终结符A向下推导时,面临 输入符a时,所采用的候选产生式;
- 当元素内容无产生式时,表明用A为左部向下推导时遇到了不该出现的符号,因此元素内容为转向出错处理。

执行程序主要实现如下操作:

1.把#和文法开始符号S推进栈,并读入输入串的第一个符a,重复下述过程直到正常结束或出错.

2.测定栈顶符号X和当前输入符号a,执行如下操作:

- (1)若X=a=#,分析成功,停止。S匹配输入串成功.
- (2)若X=a≠#,把X推出栈,再读入下一个符号。
- (3)若X∈V_n, 查分析表M(详细步骤见下页)

- (3)若X∈Vn,查分析表M。
 - a) M[X,a]= X∷=UVW 则将X弹出栈,将UVW压入 注: U在栈顶(最左推导)
 - b) M[X, a] = error 转出错处理
 - c) M[X, a] = X::=ε ---a为X的后继符号 则将X弹出栈(不读下一符号) 继续分析。

分析算法

```
BEGIN
          #'然后把文法开始符号推入栈;把第一个输入
FLAG: =TRUE:
WHILE FLAG__DO
       把栈顶符号上托出去并放在 X 中;
      IF X ∈ Vt THEN IF X=a THEN
                         把下一个输入符号读进a
                        ELSE ERROR
            TF X='#'
                     IF X=a THEN FLAG:=FALSE
                    ELSE ERROR
       ELSE IF M[X, a] = \{X -> X_1X_2...X_K\}
                \mathbf{H}X_{K}, X_{K-1},\ldots,X_{1} 一推进栈
         THEN
         ELSE ERROR
   END OF WHILE;
STOP/*分析成功,过程完毕*/
END
```

- 预测分析表可用一个矩阵表示。矩阵元素 M[A,a]中的A表示非终结符, a表示终结符或 句子结束符#,矩阵元素M[A,a]中的内容是一 条关于A的产生式,表明当用非终结符A向下 推导时,面临输入符a时,所采用的候选产生 式,当元素内容无产生式时,表明用A为左部 向下推导时遇到了不该出现的符号,因此元素 内容为转向出错处理。
- 如何构造预测分析表?
- 如何根据预测分析表构造自动的分析程序?

如何构造预测分析表?

基本思想是:

当文法中某一非终结符呈现在 栈顶时,根据当前的输入符号, 分析表应指示要用该非终结符 里的哪一条规则去匹配输入串 (即进行下一步最左推导)

根据这个思想,我们不难把构造分析表算法构造出来!

终结符号

非终结符号

预测分析表构造算法

- 1. 对文法G的每个产生式 A → α 执行第二步;
- 2. 对每个终结符a∈SELECT($A \rightarrow \alpha$), 把 $A \rightarrow \alpha$ 加至M[A, a]中,
- 3. 所有无定义的M[A, a]标上"出错标志"。可以证明,一个文法G的预测分析表不含多重入口,当且仅当该文法是LL(1)的

(3)实例分析: 给定文法,构造预测分析表,并针对输入串i+i*i#构造预测分析过程。

例: 文法为:
$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow i \mid (E)$$

步骤:

- (1) 判断文法是否为LL(1)文法。
- ✓如果文法中含有左递归,必须先消除左递归:
 - (2) 构造预测分析表: Select($A \rightarrow \alpha$)
 - (3) 列出预测分析过程

(3)实例分析: 给定文法,构造预测分析表,并针对输入串i+i*i#构造预测分析过程。

$$T \rightarrow T^*F \mid F$$

$$\mathbf{F} \rightarrow \mathbf{i} \mid (\mathbf{E})$$

$$\begin{array}{ccc} S \rightarrow Sa & \begin{cases} S \rightarrow bS' \\ S \rightarrow b \end{cases} \\ S' \rightarrow aS' | \varepsilon \rangle \end{array}$$

$$E \to E + T$$

$$E \to T$$

构造步骤有:

- ① 判断文法是否为LL(1)文法。
- ✓ 由于文法中含有左递归,所以必须先消除左递归:

$$E \rightarrow E+T \mid T$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow T^*F \mid F \qquad \longrightarrow \qquad T' \rightarrow FT' \mid \epsilon$$

$$T' \rightarrow FT' \mid \epsilon$$

E
$$\rightarrow$$
TE'
E' \rightarrow +TE'| ϵ
T \rightarrow FT'
T' \rightarrow *FT'| ϵ
F \rightarrow i|(E)

一个文法符号串的first集合计算方法:

如果文法符号串 $\alpha \in V^*$, $\alpha = X_1 X_2 ... X_n$,

- 1、 $\stackrel{*}{\Longrightarrow}$ ε,则first(α)=first(X₁)
- 2、 当对任何j($1 \le j \le i-1$, $2 \le i \le n$), $\epsilon \in first(X_j)$

则 $first(\alpha)=(first(X_1)-\{\epsilon\})$ \cup $(first(X_2)-\{\epsilon\})$

- $\cup ... \cup (first(X_i-1)-\{\epsilon\}) \cup first(X_i)$
- 3、当 $first(X_j)$ 都含有 ϵ 时 $(1 \le j \le n)$,则 $first(\alpha)=first(X_1) \cup first(X_2) \cup ... \cup first(X_j) \cup \{\epsilon\}$

构造FOLLOW集合的算法

- (1) 若S为开始符号,则把"#"加入FOLLOW(S)中
- (2) \dagger A \rightarrow αBβ (β \neq ε),则把FIRST(β)-{ε}加入FOLLOW(B)
- (3)若A→αB或A→αBβ,且β⇒ε则把FOLLOW(A)加入FOLLOW(B)

✓ 求First集合:

$$First(E') = \{ +, \epsilon \}$$

First
$$(T') = \{ *, \epsilon \}$$

✓求Follow集:

Follow
$$(E)=\{ \}$$
, $\# \}$

Follow (E')=
$$\{$$
), $\#\}$

Follow
$$(T)=\{+, \}$$

Follow
$$(T') = \{ +,), \# \}$$

Follow (F)=
$$\{*, +,), \#\}$$

$$: E \to TE'$$
T $\Rightarrow ε$, $E' \Rightarrow ε$
∴ First(E)=first(T)
=first(F)={ (, i }

$$E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow (E)T'E'$$

$$E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow (E)T'E'$$

 $\Rightarrow (TE')T'E'$

$$E \Rightarrow TE' \Rightarrow T+T'E' \Rightarrow T+T$$

 $\Rightarrow T+FT' \Rightarrow T+(E)T' \Rightarrow$
 $T+(TE')T' \Rightarrow T+(T)T'$

$$E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow FT'$$

$$\Rightarrow F^*FT' \Rightarrow F^*(E)T'$$

$$\Rightarrow F^*(TE')T' \Rightarrow F^*(FT'E')T'$$

$$\Rightarrow F^*(FT')T'$$

求Select集:

Select
$$(E \rightarrow TE') = \{ (, i) \}$$

Select
$$(E' \rightarrow +TE') = \{+\}$$

Select
$$(E' \rightarrow \varepsilon) = \{ \}$$
, #

Select
$$(T \rightarrow FT') = \{ (, i) \}$$

Select
$$(T' \rightarrow *FT') = \{*\}$$

Select
$$(T' \rightarrow \varepsilon) = \{+, \}$$

Select
$$(F \rightarrow i) = \{i\}$$

Select
$$(F \rightarrow (E)) = \{ (\} \}$$

由上可知有相同 左部产生式的 Select集合的交 集为空,所以文 法是LL(1)

❷构造预测分析表:

方法: 对每个终结符或#用a表示。

若a∈Select(A→a),则A→a放入M[A,a]中。

	i	+	*	()	#
Е	→TE'			→TE'		
E'		→+TE'			$\rightarrow \epsilon$	→ε
T	→FT'			→FT '		
T'		$\rightarrow \epsilon$	→*FT '		$\rightarrow \epsilon$	→ ε
F	→i			→ (E)		

3对于某句子的分析过程:

下面用预测分析程序, 栈和预测分析表对输入串i+i*i#进行分析, 给出栈的变化过程如下:

步骤	分析栈	剩余输入串	所用产生式
1	#E	i+i*i#	E→TE′
2	#E'T	i+i*i#	T→FT′
3	#E'T'F	i+i*i#	F→i
4	#E'T'i	i+i*i#	i匹配
5	#E'T'	+i*i#	T'→ε
6	#E'	+i*i#	E'→+TE'

7	#E'T+	+i*i#	+匹配
8	#E'T	i*i#	T→FT '
9	#E'T'F	i*i#	$F \rightarrow i$
10	#E'T'i	i*i#	i匹配
11	#E'T'	*i#	$T' \rightarrow *FT'$
12	#E'T'F*	*i#	*匹配
13	#E'T'F	i#	$F \rightarrow i$
14	#E'T'i	i#	i匹配
15	#E'T'	#	$T' \rightarrow \varepsilon$
16	#E'	#	$E' \rightarrow \varepsilon$
17	#	#	接受

非LL(1)文法

• 二义性文法肯定不是LL(1)文法,例如:

G[S]:
$$S \rightarrow iEtSS'$$
 a $S' \rightarrow eS$ ϵ $E \rightarrow b$

- Follow(S')= $\{e,\$\}$
- 其相应的分析表如下表

	а	b	е	i	t	\$
S	S→a			S→iEtSS′		
S'			S' →eS S' →ε			S ′→ε
E		E→b				

例题分析

• P96 例题

例题 1 已知文法 $G[S]: S \rightarrow aH$

 $H \rightarrow aMd \mid d$

 $M \rightarrow Ab \mid \varepsilon$

 $A \rightarrow aM \mid e$

- 1. 判断 G[S]是否为 LL(1)文法,若是,请构造相应的 LL(1)预测分析表。
- 2. 若 G[S]是 LL(1)文法,请给出对输入串 aaabd # 的预测分析过程,并说明该输入串 是否是 G[S]的句子。

- 1. 首先计算文法中能推出'ε'的非终结符和它们的 FIRST 集和 FOLLOW 集。
- (1) 检查 G[S]的每个产生式可得到非终结符 M 能推出' ϵ '。
- (2) 非终结符的 FIRST 集和 FOLLOW 集如表 5.5 所示。

非终结符	FIRST 集	FOLLOW 集
S	{a}	{ # }
Н	$\{a,d\}$	{#}
M	{a,e,ε}	$\{d,b\}$
A	{a,e}	{ <i>b</i> }

表 5.5 FIRST 集和 FOLLOW 集

(3) G[S]是否为 LL(1)文法的判断。

检查相同左部产生式 select 集的交集是否为' \varnothing '。

由于select
$$(H \rightarrow aMd) \cap \text{select}(H \rightarrow d) = \{a\} \cap \{d\} = \emptyset$$

$$\operatorname{select}(M \to Ab) \cap \operatorname{select}(M \to \varepsilon) = \{a, e\} \cap \{d, b\} = \emptyset$$

$$\operatorname{select}(A \to aM) \cap \operatorname{select}(A \to e) = \{a\} \cap \{e\} = \emptyset$$

所以该文件是 LL(1) 文法。

(4) 构造的 LL(1)预测分析表如表 5.6 所示。

表 5.6 LL(1)分析表

	a	d	ь	e	#
S	→aH				
Н	→aMd	→ d			
М	$\rightarrow Ab$	→ε	→ε	→Ab	
Α	→aM			→ e	

2. 对输入串 aaabd # 的预测分析过程如下:

步骤	分析栈	剩余输入串	推导用产生式或匹配	
1	# S	aaabd~ #	S→aH	
2	# Ha	$aaabd~ \sharp$	'a'匹配	
3	# H	aabd #	$H \rightarrow aMd$	
4	# dMa	$aabd~ \sharp$	'a'匹配	
5	# dM	$abd~\sharp$	$M \rightarrow Ab$	
6	# dbA	abd #	$A \rightarrow aM$	
7	# dbMa	$abd \ \#$	'a'匹配	
8	# dbM	bd ♯	$M \rightarrow \epsilon$	
9	# db	bd ♯	′b′匹配	
10	# d	d #	'd'匹配	
11	#	#	分析成功	

例题分析

• P97 例题3

例题 3 判断文法 G[S]: S→Ab|Ba
A→aA|a
B→a

是 LL(1)的吗? 若不是,请改写为等价的 G'[S],证明改写后的文法是否为 LL(1)的。

表 5.7 预测分析表

	b	a	#
S		$\rightarrow Ab$	
		$\rightarrow Ab$ $\rightarrow Ba$ $\rightarrow aA'$	
A		$\rightarrow aA'$	
A'	→ε	→A	
В		→ a	

本章要求掌握的内容

- 给定文法G, 判断是否LL(1)文法
- 非LL(1)文法到LL(1)文法的转换(提取左 公因子和消除左递归)
- 构造LL(1)文法的预测分析表,写出给定输入串的预测分析过程

课后作业

- 上次作业:
- P100 第2题(1)、(2)
- P101 第7题(1)(2)(3)

• P99 1

笙四音作业

- 1. 构造下列正规式相应的 DFA:
- (1) 1(0|1) 101

解: NFA:

• P72 : 1 (1)

, 2, 5

• P73: 8, 9

NFA -> DFA:

DFA矩阵表示如下:

, K	move (K, O)	move (K, 1)	
Ko= (0)		Kı	(
K1=[1]	K,	· Kz	C
K>= {1,2}	Ks	Kz	O
K3=[1,3]	Kı	K4	
1<4= [1,2,4]	K3	Κz	

DFA状态图如下:

第四章作业

• P72 : 1 (1) 2. 已知 NFA=($\{x,y,z\}$, $\{0,1\}$,M, $\{x\}$, $\{z\}$),其中: $M(x,0)=\{z\}$, $M(y,0)=\{x,y\}$, $M(z,0) = \{x,z\}, M(x,1) = \{x\}, M(y,1) = \emptyset, M(z,1) = \{y\},$ 构造相应的 DFA。 , 2, 5

解: NFA:

• P73: 8, 9

NFA -> DFA: Ko = 1x1 $move(k_0,0) = [3]$ move (Ko, 1) = {x} K1= (2) move $(k_1, 0) = \{x, z\}$ move (Ki, 1) = { 4} K== [x,] move (k2, 0) = [x,] move $(k_2, 1) = (x, y)$ K3 = 14] move (ks, 0) = [x,y] move (K3, 1) = Ø K4 = [x,4] move (k4, 0) = {x, y, 2} move $(k_4, 1) = [x]$ K5= [x,4,2] move (ks, o) = [x, y-] move (ks, 1) = {x, y}

DFA矩阵表示如下:

K	move(K, 0)	move (K, 1)	
K0 = (x)	Kı	Kυ	0
K,= [z]	K2	K3	١
K>= [x, 2]	K2	K4	ı
K>= {y}	K4		0
K4 = [x,4]	K5	Ko	0
K5 = {x, y, 2}	K5	K¥	

第四章作业

• P72: 1 (1)

, 2, 5

• P73: 8, 9

5、拍选一个DFA,它接收 Z={O/3}上所有满足如下来件的守符中: 每一个1都有O直接跟在在边。然后再构造该语言的已规文法、

第四章作业

- P72 : 1 (1)
 - , 2, 5
- P73: 8, 9

8、经出下述文法所对应的飞机式

信用
$$S \rightarrow 0$$
 Al IB $S \rightarrow 0$ A $S \rightarrow IB$ $A \rightarrow IS \mid I$ $A \rightarrow 0$ S A

9. 将图 4.22 的 DFA 最小化,并用正规式描述它所识别的语言。

图 4.22

解: [1,2,3,4,5]为对接爱状态、, [6,7]为可接爱状态用的分割[1,2,3,4,5]. 得到[1,2,5]. 市[3,4]
用自分割[1,2,5] 得到[1,2,5]. 市(5)

全 A=[1,2] B=[3,4] C=[5] D=[6,7]

正规式为:

b* a (c) da)* b*