Kelvin-Helmholtz setup

We consider a shear layer and assume that there is some characteristic total velocity difference $2V_0$, with characteristic shear-layer depth $2d_0$, and total density difference $2\rho_0$. Choosing the length-scale d_0 , density-scale ρ_0 and time-scale d_0/V_0 the governing equations are

$$egin{aligned} rac{Doldsymbol{u}}{Dt} &= -
abla p - Ri
ho\hat{oldsymbol{z}} + rac{1}{Re}\Deltaoldsymbol{u}, \ rac{D
ho}{Dt} &= rac{1}{RePr}\Delta
ho, \
abla \cdot oldsymbol{u} &= 0, \end{aligned}$$

where $Re=d_0V_0/\nu, Pr=\nu/\kappa$ and the bulk Richardson number $Ri=\frac{g\delta\rho d_0}{\rho_0V_0^2}$. Consider a horizontally periodic box of length $[0,4\pi]$ in the spanwise/streamwise directions and height $[-\pi,\pi]$ in the vertical. Following (Winters et al., 1995) we set $Pr=1, Re=10^4$ and Ri=0.1 while boundary conditions in the vertical are stress-free for velocity and Dirichlet for the density field. As initial conditions we choose:

$$u(z) = \tanh(z/d), \qquad \rho(z) = \tanh(Rz/d),$$

to which we add the velocity perturbation

$$\psi = exp(-z^2/d^2)[\cos(8\pi x) + \cos(20\pi x)]$$

such that

$$oldsymbol{u} = u(z)\hat{oldsymbol{x}} + \epsilon \left(\partial_z \psi, -\partial_x \psi\right)$$

In computations we choose d=1/28 and $\epsilon=0.05$. The system is solved in two dimensions using a Fourier-Chebyshev psuedo-spectral method on a $N_x,N_z=1024,512$ grid with 3/2 dealiasing. A stiffly stable RK443 time-stepper is used with $\Delta t_{max}=5e-03$