Основы теории множеств, 1 курс Математика

Виктор Львович Селиванов 1

¹ФМКН СП6ГУ

Осенний семестр, 2025

Важная дополнительная информация

Mой адрес: v.selivanov@spbu.ru

Страница курса в интернете: https://github.com/vseliv/sets-2025/tree/main

Литература:

- 1. Н.К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. ч. 1. Начала теории множеств. М.: МЦНМО, 2012.
- 2. К. Куратовский, А. Мостовский, Теория множеств. М.: Мир, 1970.
- 3. Т. Йех, Теория множеств и метод форсинга. М.: Мир, 1973.
- 4. И.А. Лавров, Л.Л.Максимова, Задачи по теории множеств, математической логике и теории алгоритмов. М.: Наука, 2001.

Теория множеств имеет двоякую природу. С одной стороны, это раздел математической логики со своими задачами, открытыми вопросами, подходами и идеями, которой занимается ограниченный круг специалистов.

С другой стороны, она является инструментом для других дисциплин. Эта её роль является особенно существенной, поскольку она выработала общий язык и стала фундаментом для всей математики.

Теория множеств имеет двоякую природу. С одной стороны, это раздел математической логики со своими задачами, открытыми вопросами, подходами и идеями, которой занимается ограниченный круг специалистов.

С другой стороны, она является инструментом для других дисциплин. Эта её роль является особенно существенной, поскольку она выработала общий язык и стала фундаментом для всей математики.

Более того, она позволила преодолеть кризис оснований математики, позникший на рубеже 19 и 20 веков, когда в математике были обнаружены противоречия (парадоксы).

Важной идеей является возможность сведения одних математических объектов к другим. Один из известнейших примеров такого сведения принадлежит Рене Декарту, который предложил отождествлять вещественные числа с точками на обычной Евклидовой прямой. Это привычное нам сейчас, но тогда совершенно революционное соображение привело к созданию метода координат, перевернувшего всё тогдашнее естествознание, и позволило считать, что геометрия, в определённом смысле, сводится к вещественной арифметике.

Важной идеей является возможность сведения одних математических объектов к другим. Один из известнейших примеров такого сведения принадлежит Рене Декарту, который предложил отождествлять вещественные числа с точками на обычной Евклидовой прямой. Это привычное нам сейчас, но тогда совершенно революционное соображение привело к созданию метода координат, перевернувшего всё тогдашнее естествознание, и позволило считать, что геометрия, в определённом смысле, сводится к вещественной арифметике.

Выяснилось, что ВСЕ математические понятия сводятся к понятию множества, т.е. (почти) все математические дисциплины можно считать разделами теории множеств. Т.о., изучая ТМ мы лучше поймем и другие разделы математики. Создание теории множеств заложило прочный фундамент для математики и показало ее единство.

Этапы развития теории множеств

1. Наивная теория множеств. Идеи, близкие к идеям ТМ, воникали у многих ученых, однако в явном виде она начала развиваться примерно полтора века назад в работах Георга Кантора и его последователей.

Этапы развития теории множеств

- 1. Наивная теория множеств. Идеи, близкие к идеям ТМ, воникали у многих ученых, однако в явном виде она начала развиваться примерно полтора века назад в работах Георга Кантора и его последователей.
- 2. Аксиоматическая ТМ (ZFC и ее варианты). Возникла как попытка преодоления противоречий, возникшихих в наивной ТМ (Цермело, Френкель, Гёдель, Бернайс, фон Нейман,...).

Этапы развития теории множеств

- 1. Наивная теория множеств. Идеи, близкие к идеям ТМ, воникали у многих ученых, однако в явном виде она начала развиваться примерно полтора века назад в работах Георга Кантора и его последователей.
- 2. Аксиоматическая ТМ (ZFC и ее варианты). Возникла как попытка преодоления противоречий, возникшихих в наивной ТМ (Цермело, Френкель, Гёдель, Бернайс, фон Нейман,...).
- 3. Альтернативы ZFC. Рассел, Мычельский, Штейнгауз, Мартин-Лёф, Ловер,...

Множества и операции над ними

Все переменные обозначают множества. Принадлежность: $a \in A$.

Равенство: A=B означает $\forall x(x\in A\leftrightarrow x\in B)$. Включение: $A\subseteq B$ означает $\forall x(x\in A\to x\in B)$.

Множества часто задаются в виде $\{x \mid \varphi(x)\}$, где $\varphi(x)$ — выражение, построенное из переменных и отношений $=, \in$ с помощью логических операций $\land, \lor, \rightarrow, \neg, \forall, \exists$. Самое популярное множество: $\emptyset = \{x \mid x \neq x\}$.

Множества и операции над ними

Все переменные обозначают множества. Принадлежность: $a \in A$.

Равенство: A=B означает $\forall x(x\in A\leftrightarrow x\in B).$

Включение: $A \subseteq B$ означает $\forall x (x \in A \rightarrow x \in B)$.

Множества часто задаются в виде $\{x \mid \varphi(x)\}$, где $\varphi(x)$ — выражение, построенное из переменных и отношений $=, \in$ с помощью логических операций $\land, \lor, \rightarrow, \neg, \forall, \exists$. Самое популярное множество: $\emptyset = \{x \mid x \neq x\}$.

Объединение: $A \cup B = \{x \mid x \in A \lor x \in B\}.$

Пересечение: $A \cap B = \{x \mid x \in A \land x \in B\}.$

Разность: $A \setminus B = \{x \mid x \in A \land x \notin B\}.$

Симметрическая разность: $A\triangle B=(A\setminus B)\cup (B\setminus A).$

Дополнение: $\overline{A}=U\setminus A$ (если все рассматриваемые множества содержатся в U).

Свойства булевых операций

$$A \cup A = A, \ A \cup B = B \cup A$$
$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$\overline{A \cup B} = \overline{A} \cap \overline{C}, \ \overline{\overline{A}} = A.$$

Все написанные выше свойства справедливы при замене объединения на пересечение и наоборот.

Свойства булевых операций

$$A \cup A = A$$
, $A \cup B = B \cup A$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$\overline{A \cup B} = \overline{A} \cap \overline{C}, \ \overline{\overline{A}} = A.$$

Все написанные выше свойства справедливы при замене объединения на пересечение и наоборот.

 \triangle коммутативна и ассоциативна, \cap дистрибутивна относительно \triangle

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

$$A \setminus (A \setminus B) = (A \cap B)$$

$$A \setminus B = (A \setminus (A \cap B)$$

Отношения

```
Декартово произведение: A \times B = \{(a,b) \mid a \in A \wedge b \in B\}, где (a,b) = \{\{a\}, \{a,b\}\} — упорядоченная пара. Подмножества R \subseteq A \times B называются отношениями между A и B. Запись (a,b) \in R иногда упрощают до aRb. Бывают также n-местные отношения (подмножества множества A_1 \times \cdots \times A_n). dom(R) := \{a \mid \exists b(aRb)\} — область определения R, rng(R) := \{b \mid \exists a(aRb)\} — область значений R, R(a) := \{b \mid aRb\} — значение R в точке A.
```

Отношения

 $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

 $(a,b) = \{\{a\}, \{a,b\}\}$ — упорядоченная пара. Подмножества $R \subseteq A \times B$ называются отношениями между Aи B. Запись $(a,b) \in R$ иногда упрощают до aRb. Бывают также n-местные отношения (подмножества множества $A_1 \times \cdots \times A_n$). $dom(R) := \{a \mid \exists b(aRb)\}$ — область определения R, $rng(R) := \{b \mid \exists a(aRb)\}$ — область значений R, $R(a) := \{b \mid aRb\}$ — значение R в точке A. Пусть $R^{-1} := \{(b, a) \mid (a, b) \in R\}$, тогда $R^{-1} \subseteq B \times A$ называется обратным отношением к R. $(R^{-1})^{-1} = R$. Композицией отношенией $R\subseteq A\times B$ и $S\subseteq B\times C$ называется отношение $S \circ R \subseteq A \times C$ такое, что $a(S\circ R)c \stackrel{\mathsf{def}}{\Longleftrightarrow} \exists b\in B(aRb\wedge bSc)$. Композиция ассоциативна

Декартово произведение: $A \times B = \{(a,b) \mid a \in A \land b \in B\}$, где

Функции

Отношение $R\subseteq A\times B$ функционально, если $\forall a,b,b'(aRb\wedge aRb'\to b=b')$. В этом случае $R(a)=\emptyset$ или $R(a)=\{b\}$ для единственного b; в последнем случае часто пишут R(a)=b. Функциональные отношения $R\subseteq A\times B$ известны также как *частичные* функции из A в B.

Функции

Отношение $R\subseteq A\times B$ функционально, если $\forall a,b,b'(aRb\wedge aRb'\to b=b')$. В этом случае $R(a)=\emptyset$ или $R(a)=\{b\}$ для единственного b; в последнем случае часто пишут R(a)=b. Функциональные отношения $R\subseteq A\times B$ известны также как *частичные* функции из A в B.

Отношение R называется ϕ ункцией, если оно функционально и dom(R)=A. В этом случае $R(a)=\{b\}$ для единственного b, которое называют значением функции R в точке a и пишут R(a)=b. Для функций используется стандартная терминолгия. Функция f из A в B часто обозначается $f:A\to B$. Композиция функций является функцией.

Функции

Отношение $R\subseteq A\times B$ функционально, если $\forall a,b,b'(aRb\wedge aRb'\to b=b')$. В этом случае $R(a)=\emptyset$ или $R(a)=\{b\}$ для единственного b; в последнем случае часто пишут R(a)=b. Функциональные отношения $R\subseteq A\times B$ известны также как *частичные* функции из A в B.

Отношение R называется ϕ ункцией, если оно функционально и dom(R)=A. В этом случае $R(a)=\{b\}$ для единственного b, которое называют значением функции R в точке a и пишут R(a)=b. Для функций используется стандартная терминолгия. Функция f из A в B часто обозначается $f:A\to B$. Композиция функций является функцией.

Функция $f:A\to B$ называется инъекцией (сюръекцией), если $\forall a,a_1\in A(a\neq a_1\to f(a)\neq f(a_1))$ ($\forall b\in B\exists a\in A(f(a)=b)$). Функция называется биекцией, если она является и инъекцией, и сюръекцией. Биекции из A на A образуют группу относительно композиции.

Предпорядки и эквивалентности

Некоторые важные свойства отношений $R \subseteq A \times A$:

 $\forall a \in A(aRa)$ рефлексивность,

 $\forall a \in A \neg (aRa)$ антирефлексивность,

 $\forall a,b \in A(aRb o bRa)$ симметричность,

 $\forall a,b \in A(aRb \wedge bRa \rightarrow a=b)$ антисимметричность,

 $\forall a,b,c \in A((aRb \wedge bRc) \rightarrow aRc)$ транзитивность

Предпорядки и эквивалентности

Некоторые важные свойства отношений $R \subseteq A \times A$:

 $\forall a \in A(aRa)$ рефлексивность,

 $\forall a \in A \neg (aRa)$ антирефлексивность,

 $\forall a,b \in A(aRb \rightarrow bRa)$ симметричность,

 $\forall a,b \in A(aRb \wedge bRa \rightarrow a=b)$ антисимметричность,

 $\forall a,b,c \in A((aRb \wedge bRc) \rightarrow aRc)$ транзитивность

Предпорядок = рефлексивность и транзитивность; типичные обозначения \leq , \preceq , \subset , \sqsubseteq .

Частичный порядок = антисимметричный предпорядок.

Линейный порядок = Частичный порядок + $\forall a,b \in A(aRb \lor bRa)$

 $\forall a, b \in A(aRb \vee bRa).$

Строгий частичный порядок = антирефлексивность и транзитивность; типичные обозначения <, \prec , \subset , \sqsubset

Эквивалентность = рефлексивность, симметричность и транзитивность; типичные обозначения =, \simeq , \equiv

Эквивалентности и фактор-множества

Пусть \equiv — эквивалентность на A. Каждому $a\in A$ сопоставим множество $[a]\stackrel{\mathsf{def}}{=} \{a'\in A\mid a'\equiv a\}$, называемое его *классом* эквивалентности. Множество $A/_{\equiv}$ всех таких классов называется фактор-множеством множества A по отношению \equiv .

Эквивалентности и фактор-множества

Пусть \equiv — эквивалентность на A. Каждому $a\in A$ сопоставим множество $[a]\stackrel{\mathsf{def}}{=} \{a'\in A\mid a'\equiv a\}$, называемое его *классом* эквивалентности. Множество $A/_\equiv$ всех таких классов называется фактор-множеством множества A по отношению \equiv .

TEOPEMA. Если \equiv — эквивалентность на A, то классы эквивалентности непусты, попарно не пересекаются и их объединение равно A.

Эквивалентности и фактор-множества

Пусть \equiv — эквивалентность на A. Каждому $a\in A$ сопоставим множество $[a]\stackrel{\mathsf{def}}{=} \{a'\in A\mid a'\equiv a\}$, называемое его *классом* эквивалентности. Множество $A/_{\equiv}$ всех таких классов называется фактор-множеством множества A по отношению \equiv .

TEOPEMA. Если \equiv — эквивалентность на A, то классы эквивалентности непусты, попарно не пересекаются и их объединение равно A.

Д-ВО. В качестве объединения классов эквивалентности множество A представляется: любой элемент $a \in A$ эквивалентен самому себе, а значит принадлежит классу [a]. Остаётся показать, что разные классы не пересекаются. Покажем, что если $a \in [b] \cap [c]$, то [b] = [c]. В самом деле, пусть $b' \in [b]$, тогда $b' \equiv b$. Но также и $a \equiv b$, что по транзитивности означает, что $b' \equiv a$. Аналогично можно показать, что если $c' \in [c]$, то $c' \equiv a$. Отсюда по транзитивности $b' \equiv c'$, т.е. $b' \equiv c$, т.е. $b' \in [c]$. Таким образом, $[b] \subseteq [c]$.

Натуральные числа в теории множеств

Пусть $\mathbb N$ — наименьшее по включению множество, содержащее \emptyset и замкнутое относительно операции $x'=x\cup\{x\}$. Можно проверить, что $(\mathbb N;\emptyset,')$ — структура Пеано (т.е. удовлетворяет условиям $x'\neq\emptyset,\ x'=y'\to x=y,$ и $[\emptyset\in P\wedge \forall x\in P(x'\in P)]\to P=\mathbb N$, для любого $P\subseteq\mathbb N$). Такая структура единственна с точностью до изоморфизма.

Натуральные числа в теории множеств

Пусть $\mathbb N$ — наименьшее по включению множество, содержащее \emptyset и замкнутое относительно операции $x'=x\cup\{x\}$. Можно проверить, что $(\mathbb N;\emptyset,')$ — структура Пеано (т.е. удовлетворяет условиям $x'\neq\emptyset,\ x'=y'\to x=y,$ и $[\emptyset\in P\wedge \forall x\in P(x'\in P)]\to P=\mathbb N$, для любого $P\subseteq\mathbb N$). Такая структура единственна с точностью до изоморфизма.

Определим на $\mathbb N$ отношение < и операции $+,\cdot$ так: $x < y \leftrightarrow x \in y$; + — единственная бинарная операция на $\mathbb N$ такая, что x+0=x и x+y'=(x+y)'; \cdot — единственная бинарная операция на $\mathbb N$ такая, что $x\cdot 0=0$ и $x\cdot y'=x\cdot y+x$.

Натуральные числа в теории множеств

Пусть $\mathbb N$ — наименьшее по включению множество, содержащее \emptyset и замкнутое относительно операции $x'=x\cup\{x\}$. Можно проверить, что $(\mathbb N;\emptyset,')$ — структура Пеано (т.е. удовлетворяет условиям $x'\neq\emptyset$, $x'=y'\to x=y$, и $[\emptyset\in P\land \forall x\in P(x'\in P)]\to P=\mathbb N$, для любого $P\subseteq\mathbb N$). Такая структура единственна с точностью до изоморфизма.

Определим на $\mathbb N$ отношение < и операции $+,\cdot$ так: $x < y \leftrightarrow x \in y$; + — единственная бинарная операция на $\mathbb N$ такая, что x+0=x и x+y'=(x+y)'; \cdot — единственная бинарная операция на $\mathbb N$ такая, что $x\cdot 0=0$ и $x\cdot y'=x\cdot y+x$.

Свойства $(\mathbb{N};+,\cdot,<,0,1)$: $+,\cdot$ ассоциативны и коммутативны; \cdot дистрибутивна относительно +;0,1 нейтральны относительно $+,\cdot;0<1<2<\cdots$ и между соседями нет других чисел; $[P(0)\wedge \forall x(P(x)\to P(x+1))]\to \forall xP(x);$ $\forall x(\forall y< xP(y)\to P(x))\to \forall xP(x).$

Целые числа в теории множеств

$$\begin{split} \mathbb{Z} &:= (\mathbb{N} \times \mathbb{N})/\sim \text{, где} \\ (a,b) \sim (c,d) &\leftrightarrow a+d=b+c. \\ [a,b] \tilde{+}[c,d] &:= [a+c,b+d], \\ [a,b] \tilde{\cdot}[c,d] &:= [ac+bd,ad+bc], \\ [a,b] \tilde{\leq}[c,d] &\leftrightarrow a+d \leq b+c, \\ \tilde{0} &:= [0,0], \ \tilde{1} := [1,0]. \end{split}$$

Целые числа в теории множеств

$$\mathbb{Z}:=(\mathbb{N}\times\mathbb{N})/\sim$$
, где $(a,b)\sim(c,d)\leftrightarrow a+d=b+c.$ $[a,b] ilde+[c,d]:=[a+c,b+d],$ $[a,b] ilde+[c,d]:=[ac+bd,ad+bc],$ $[a,b] ilde+[c,d]\leftrightarrow a+d\leq b+c,$ $0:=[0,0],$ $1:=[1,0].$ Свойства $(\mathbb{Z},\tilde{+},\tilde{\cdot},\tilde{\leq},\tilde{0},\tilde{1}):$ Это упорядоченное кольцо (т.е. $\tilde{+},\tilde{\cdot}$ ассоциативны и коммутативны; $\tilde{\cdot}$ дистрибутивна относительно $\tilde{+},\tilde{\cdot}$; $\forall x\exists y(x+y=0),$ $\forall x,y,z(x\leq y\to(x+z\leq y+z)),$ $\forall x,y,z(x\leq y\land 0< z\to(x\cdot z\leq y\cdot z))$), в котором любой элемент является разностью двух натуральных чисел.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り��

Рациональные числа в теории множеств

$$\begin{split} \mathbb{Q} &:= (\mathbb{Z} \times \mathbb{N} \setminus \{0\}) / \sim \text{, где} \\ (a,b) \sim (c,d) \leftrightarrow ad = bc. \\ [a,b] \tilde{+}[c,d] &:= [ad+bc,bd], \\ [a,b] \tilde{\cdot}[c,d] &:= [ac,bd], \\ [a,b] \tilde{\leq}[c,d] \leftrightarrow ad \leq bc, \\ \tilde{0} &:= [0,1], \ \tilde{1} := [1,1]. \end{split}$$

Рациональные числа в теории множеств

$$\mathbb{Q} := (\mathbb{Z} \times \mathbb{N} \setminus \{0\}) / \sim, \text{ где}$$
 $(a,b) \sim (c,d) \leftrightarrow ad = bc.$ $[a,b] \tilde{+} [c,d] := [ad+bc,bd],$ $[a,b] \tilde{\cdot} [c,d] := [ac,bd],$ $[a,b] \tilde{\leq} [c,d] \leftrightarrow ad \leq bc,$ $\tilde{0} := [0,1], \ \tilde{1} := [1,1].$ Свойства $(\mathbb{Q};\tilde{+},\tilde{\cdot},\tilde{\leq},\tilde{0},\tilde{1}):$ это упорядоченное поле (т.е. упорядоченное кольцо, в котором $\forall x \neq 0 \exists y (x \cdot y = 1))$ такое, что любой элемент получается делением целого числа на положительное целое.

Вещественные числа в теории множеств

```
\mathbb{R}:=S/\sim, где S — множество всех последовательностей Коши \{q_i\} рациональных чсел (т.е. \forall n \exists m \forall i,j>m(|q_i-q_j|<2^{-n})), \{q_i\}\sim \{r_i\} \leftrightarrow \lim_i (q_i-r_i)=0. [\{q_i\}]\tilde{+}[\{r_i\}]:=[\{q_i+r_i\}], [\{q_i\}]\tilde{\cdot}[\{r_i\}]:=[\{q_i\cdot r_i\}], [\{q_i\}]\tilde{\circ}[\{r_i\}] \leftrightarrow \exists n,m \forall i>m(q_i-r_i<-2^{-n}), \tilde{0}:=[0,0,\ldots],\ \tilde{1}:=[1,1,\ldots].
```

Вещественные числа в теории множеств

 $\mathbb{R}:=S/\sim$, где S — множество всех последовательностей Коши $\{q_i\}$ рациональных чсел (r.e. $\forall n \exists m \forall i, j > m(|q_i - q_j| < 2^{-n})$), $\{q_i\} \sim \{r_i\} \leftrightarrow \lim_i (q_i - r_i) = 0.$ $[\{q_i\}] + [\{r_i\}] := [\{q_i + r_i\}],$ $[\{q_i\}] \tilde{\cdot} [\{r_i\}] := [\{q_i \cdot r_i\}],$ $[\{q_i\}] \in [\{r_i\}] \leftrightarrow \exists n, m \forall i > m(q_i - r_i < -2^{-n}),$ $\tilde{0} := [0, 0, \ldots], \ \tilde{1} := [1, 1, \ldots].$ СВОЙСТВА (\mathbb{R} ; $\tilde{+}$, $\tilde{\cdot}$, $\tilde{<}$, $\tilde{0}$, $\tilde{1}$):

Это полное упорядоченное поле (т.е. упорядоченное поле, в котором любое непустое ограниченное сверху множество имеет супремум).

Комплексные числа в теории множеств

$$\mathbb{C} := \mathbb{R} \times \mathbb{R},
(x, y) + (x_1, y_1) := (x + x_1, y + y_1),
(x, y) + (x_1, y_1) := (xx_1 - yy_1, xy_1 + yx_1),
\tilde{0} := (0, 0), \tilde{1} := (1, 0), \tilde{i} := (0, 1),$$

Комплексные числа в теории множеств

$$\mathbb{C} := \mathbb{R} \times \mathbb{R},$$
 $(x,y) + (x_1,y_1) := (x+x_1,y+y_1),$ $(x,y) + (x_1,y_1) := (xx_1-yy_1,xy_1+yx_1),$ $\tilde{0} := (0,0), \; \tilde{1} := (1,0), \; \tilde{i} := (0,1),$ СВОЙСТВА $(\mathbb{C} : +, \tilde{\cdot}, \tilde{0}, \tilde{1})$:

Это поле, содержащее копию поля вещественных чисел $\tilde{\mathbb{R}}:=\{(x,0)\mid x\in\mathbb{R}\}$), в котором есть квадратный корень i из -1, и в котором каждый элемент представим в виде $x+i\cdot y,\ x,y\in\tilde{\mathbb{R}}.$

Мощность множества

О мощности множества можно думать, как о количестве его элементов. Однако непонятно, как быть с бесконечными множествами.

Мощность множества

О мощности множества можно думать, как о количестве его элементов. Однако непонятно, как быть с бесконечными множествами.

ОПРЕДЕЛЕНИЕ. 1. A и B равномощны $(A \sim B)$, если существует биекция $f:A \to B$.

- 2. A не превосходит по мощности B ($A \preceq B$), если существует инъекция $f: A \to B$.
- 3. A меньше по мощности B ($A \prec B$), если $A \leq B$ и $A \not\sim B$.

Мощность множества

О мощности множества можно думать, как о количестве его элементов. Однако непонятно, как быть с бесконечными множествами.

ОПРЕДЕЛЕНИЕ. 1. A и B равномощны $(A \sim B)$, если существует биекция $f:A \to B$.

- 2. A не превосходит по мощности B ($A \preceq B$), если существует инъекция $f:A \to B$.
- 3. A меньше по мощности B ($A \prec B$), если $A \leq B$ и $A \not\sim B$.

СВОЙСТВА. 1. Отношение \sim рефлексивно, симметрично и транзитивно.

2. Отношение \leq рефлексивно и транзитивно.

Мощность множества

О мощности множества можно думать, как о количестве его элементов. Однако непонятно, как быть с бесконечными множествами.

ОПРЕДЕЛЕНИЕ. 1. A и B равномощны $(A \sim B)$, если существует биекция $f:A \to B$.

- 2. A не превосходит по мощности B ($A \preceq B$), если существует инъекция $f:A \to B$.
- 3. A меньше по мощности B $(A \prec B)$, если $A \preceq B$ и $A \not\sim B$.

СВОЙСТВА. 1. Отношение \sim рефлексивно, симметрично и транзитивно.

2. Отношение \leq рефлексивно и транзитивно.

Заметим, что \sim "неформально" является отношением эквивалентности, но ввести фактор-множество нельзя, так как множества всех множеств не существует (покажем позже).

Теорема Шрёдера-Бернштейна

ТЕОРЕМА. Если $A \preceq B$ и $B \preceq A$, то $A \sim B$.

Теорема Шрёдера-Бернштейна

ТЕОРЕМА. Если $A \leq B$ и $B \leq A$, то $A \sim B$.

Д-во. Пусть $f:A \to B$ и $g:B \to A$ — инъекции. Тогда $h=g\circ f:A \to A$ — инъекция.

Пусть $A_1=g(B), A_2=h(A)$. Заметим, что $A_2\subseteq A_1\subseteq A$ и $A_1\sim B$, потому что $g:B\to A_1$ — биекция. Аналогично $h:A\to A_2$ — биекция. Достаточно доказать, что $A\sim A_1$.

Теорема Шрёдера-Бернштейна

ТЕОРЕМА. Если $A \leq B$ и $B \leq A$, то $A \sim B$.

Д-во. Пусть $f:A \to B$ и $g:B \to A$ — инъекции. Тогда $h=g\circ f:A \to A$ — инъекция.

Пусть $A_1=g(B), A_2=h(A).$ Заметим, что $A_2\subseteq A_1\subseteq A$ и $A_1\sim B$, потому что $g:B\to A_1$ — биекция. Аналогично $h:A\to A_2$ — биекция.

Достаточно доказать, что $A \sim A_1$.

Множество $X\subseteq A$ назовем хорошим, если $X\supseteq (A\setminus A_1)\cup h(X)$ (например, A хорошее). Пересечение хороших множеств — хорошее.

Пусть C — пересечение всех хороших множеств. Тогда C хорошее, $C=(A\setminus A_1)\cup h(C)$, и $h(C)\subseteq A_2$.

Поэтому $id_{A\setminus C}\cup h|_C$ — биекция из A на $A_1.$

Теорема Кантора

TEOPEMA. Для любого множества A справедливо $A \prec P(A)$, т.е. $A \preceq P(A)$ и $A \not\sim P(A)$.

Теорема Кантора

ТЕОРЕМА. Для любого множества A справедливо $A \prec P(A)$, т.е. $A \preceq P(A)$ и $A \not\sim P(A)$.

ДОКАЗАТЕЛЬСТВО. $A \preceq P(A)$, поскольку $a \mapsto \{a\}$ — инъекция из A в P(A).

Теперь докажем, что $A \not\sim P(A)$. Предположим противное: $A \sim P(A)$, тогда есть биекция $g:A \to P(A)$.

Рассмотриим множество $B=\{a\in A\mid a\not\in g(a)\}.$ Поскольку $B\in P(A),\ B=g(a)$ для некоторого $a\in A.$ Но тогда

 $a \in B \leftrightarrow a \in g(a) \leftrightarrow a \notin B$,

противоречие.

Конечные множества

Множество называется конечным, если оно равномощно n для некоторого $n \in \mathbb{N}$. Множества, не являющиеся конечными, называются бесконечными.

Конечные множества

Множество называется конечным, если оно равномощно n для некоторого $n\in\mathbb{N}.$ Множества, не являющиеся конечными, называются бесконечными.

TEOPEMA. Для множества A равносильны условия:

- $1. \ A$ конечно.
- 2. Любое непустое подмножество булеана P(A) имеет максимальный элемент по включению.
- 3. Любая инъекция $f:A \to A$ является биекцией.

Конечные множества

Множество называется конечным, если оно равномощно n для некоторого $n \in \mathbb{N}$. Множества, не являющиеся конечными, называются бесконечными.

TEOPEMA. Для множества A равносильны условия:

- $1. \ A$ конечно.
- 2. Любое непустое подмножество булеана P(A) имеет максимальный элемент по включению.
- 3. Любая инъекция $f:A \to A$ является биекцией.

ТЕОРЕМА. Если A конечно и B бесконечно, то $A \prec B$.

равномощно $P(\mathbb{N})$.

Множество называется счетным, если оно равномощно \mathbb{N} . Множества, не являющиеся конечными или счетными, называются несчетными. Множество называется континуальным, если оно

Множество называется счетным, если оно равномощно \mathbb{N} . Множества, не являющиеся конечными или счетными, называются несчетными.

Множество называется континуальным, если оно равномощно $P(\mathbb{N})$.

ТЕОРЕМА. Если A счетно и B бесконечно, то $A \leq B$.

Множество называется счетным, если оно равномощно \mathbb{N} . Множества, не являющиеся конечными или счетными, называются несчетными.

Множество называется континуальным, если оно равномощно $P(\mathbb{N}).$

ТЕОРЕМА. Если A счетно и B бесконечно, то $A \leq B$.

Шкала мощностей: 0,1,2,..., счетные, несчетные.

Множество называется счетным, если оно равномощно \mathbb{N} . Множества, не являющиеся конечными или счетными, называются несчетными.

Множество называется континуальным, если оно равномощно $P(\mathbb{N}).$

ТЕОРЕМА. Если A счетно и B бесконечно, то $A \leq B$.

Шкала мощностей: 0,1,2,..., счетные, несчетные.

Континнум-гипотеза (первая проблема Гильберта): если A несчетно, то $P(\mathbb{N}) \preceq A$.

Более простая, но нетривиальная задача: верно ли, что $\forall A, B(A \preceq B \lor B \preceq A)$?

Противоречия наивной теории можеств

Пусть $V=\{x\mid x=x\}$ — множество всех множеств. Тогда $P(V)\subseteq V$, поэтому $P(V)\preceq V$. Однако по теореме Кантора $V\prec P(V)$ — противоречие.

Противоречия наивной теории можеств

Пусть $V=\{x\mid x=x\}$ — множество всех множеств. Тогда $P(V)\subseteq V$, поэтому $P(V)\preceq V$. Однако по теореме Кантора $V\prec P(V)$ — противоречие.

Рассмотрим множество $Y=\{x\mid x\not\in x\}.$ Имеем $Y\in Y\leftrightarrow Y\not\in Y$ — противоречие.

Противоречия наивной теории можеств

Пусть $V=\{x\mid x=x\}$ — множество всех множеств. Тогда $P(V)\subseteq V$, поэтому $P(V)\preceq V$. Однако по теореме Кантора $V\prec P(V)$ — противоречие.

Рассмотрим множество $Y=\{x\mid x\not\in x\}.$ Имеем $Y\in Y\leftrightarrow Y\not\in Y$ — противоречие.

Из каждого из этих противоречий (известных также как парадоксы) можно вывести вообще все возможные утверждения, и истинные, и ложные. Звучит неприятно.

Можно было бы, конечно, разочароваться в самой идее построения оснований математики, но мыслители начала XX века всё-таки не сдались и придумали ряд выходов из положения, предполагающих создание аксиоматической теории множеств, учитывающей ошибки наивного подхода и дающей надежные основания математики.

Множества и классы

Формулы аксиоматической теории множеств строятся так же, как и раньше: с помощью логических операций из простейших формул $x=y,x\in y$; переменные в формулах обозначают множества. Разница с наивной теорией множест состоит в ограничении способов построения множеств. Например, парадоксы показывают, что выражение $\{x\mid \varphi(x)\}$ для некоторых формул не может задавать множества.

Множества и классы

Формулы аксиоматической теории множеств строятся так же, как и раньше: с помощью логических операций из простейших формул $x=y,x\in y$; переменные в формулах обозначают множества. Разница с наивной теорией множест состоит в ограничении способов построения множеств. Например, парадоксы показывают, что выражение $\{x\mid \varphi(x)\}$ для некоторых формул не может задавать множества.

Удобно считать, что такие выражения задают классы $C_{\varphi} = \{x \mid \varphi(x)\}$, т.е. совокупности объектов x, для которых $\varphi(x)$ истинно. Любое множество является классом, но обратное неверно (например, классы V,Y с предыдущего слайда не являются множествами). Элемент класса всегда является множеством.

Множества и классы

Формулы аксиоматической теории множеств строятся так же, как и раньше: с помощью логических операций из простейших формул $x=y,x\in y$; переменные в формулах обозначают множества. Разница с наивной теорией множест состоит в ограничении способов построения множеств. Например, парадоксы показывают, что выражение $\{x\mid \varphi(x)\}$ для некоторых формул не может задавать множества.

Удобно считать, что такие выражения задают классы $C_{\varphi} = \{x \mid \varphi(x)\}$, т.е. совокупности объектов x, для которых $\varphi(x)$ истинно. Любое множество является классом, но обратное неверно (например, классы V,Y с предыдущего слайда не являются множествами). Элемент класса всегда является множеством.

Для классов можно определить булевские операции $A \cup B, A \cap B, A \setminus B$, что на самом деле просто модифицирует задающие классы формулы. Так, $A \cap B = \{x \mid \phi_A(x) \wedge \phi_B(x)\}$.

Аксиомы ZFC

- $0. \ \exists x(x=x).$
- 1. $\forall u(u \in X \leftrightarrow u \in Y) \to X = Y$.
- 2. $\forall u \forall v \exists x \forall z (z \in x \leftrightarrow z = u \lor z = v)$.
- 3. $\forall X \exists Y \forall u (u \in Y \leftrightarrow u \in X \land \varphi(u)).$
- **4.** $\forall X \exists Y \forall u \forall z (u \in z \land z \in X \rightarrow u \in Y).$
- 5. $\forall X \exists Y \forall u (u \in Y \leftrightarrow u \subseteq X)$.
- 6. $\forall x \forall y \forall y' (\varphi(x, y) \land \varphi(x, y') \rightarrow y = y')$
- $\to \forall X \exists Y \forall x \forall y (x \in X \land \varphi(x, y) \to y \in Y).$
- 7. $\exists Y (\emptyset \in Y \land \forall y (y \in Y \to y \cup \{y\} \in Y)).$
- 8. $\forall X(X \neq \emptyset \rightarrow \exists x(x \in X \land \forall u(u \in x \rightarrow u \notin X))).$
- 9. $\forall X \exists f((f:(P(X) \setminus \{\emptyset\}) \to X) \land \forall Y(Y \subseteq X \land Y \neq \emptyset \to f(Y) \in Y)).$

Примеры следствий аксиом ZFC

- 1. Существует упорядоченная пара любых двух множеств.
- 2. Существует пустое множество.
- 3. Существует объединение всех элементов любого множества,
- а также пересечение всех элементов данного непустого множества.
- 4. Существуют объединение, пересечение и разность любых двух данных множеств.

Примеры следствий аксиом ZFC

- 1. Существует упорядоченная пара любых двух множеств.
- 2. Существует пустое множество.
- 3. Существует объединение всех элементов любого множества,
- а также пересечение всех элементов данного непустого множества.
- 4. Существуют объединение, пересечение и разность любых двух данных множеств.
- 5. Теорема о фактор-множестве.
- 6. Существует декартово произведение любых двух данных множеств.
- 7. Теоремы Кантора и Шрёдера-Бернштейна.
- 8. Существует наименьшее по включению индуктивное множество.
- 9. Существуют изоморфные копии всех числовых структур.

Фундированные порядки

- ОПР. 1. Частичный порядок $\mathbb{A}=(A;<_A)$ называют фундированным, если любое непустое подмножество его элементов содержит минимальный элемент.
- 2. Фундированные линейные порядки называют также вполне упорядоченными множествами.
- 3. Начальным сегментом $\mathbb{A}=(A;<_A)$ называют любое подмножество A, замкнутое вниз относительно $<_A$. Пример множество $\hat{a}=\{x\mid x<_Aa\}$ для любого $a\in A$.

Фундированные порядки

- ОПР. 1. Частичный порядок $\mathbb{A}=(A;<_A)$ называют фундированным, если любое непустое подмножество его элементов содержит минимальный элемент.
- 2. Фундированные линейные порядки называют также вполне упорядоченными множествами.
- 3. Начальным сегментом $\mathbb{A}=(A;<_A)$ называют любое подмножество A, замкнутое вниз относительно $<_A$. Пример множество $\hat{a}=\{x\mid x<_Aa\}$ для любого $a\in A$.
- ОПР. 1. Изоморфизмом $\mathbb A$ на $\mathbb B$ называется биекция $f:A\to B$ такая, что $a<_Aa_1\leftrightarrow f(a)<_Bf(a_1)$ для любых $a,a_1\in A$. Инъекция с таким свойством называется вложением $\mathbb A$ в $\mathbb B$.
- 2. Частичные порядки $\mathbb A$ и $\mathbb B$ называются изоморфными ($\mathbb A\simeq \mathbb B$), если существует изоморфизм $\mathbb A$ на $\mathbb B$.
- 3. Запись $\mathbb{A} \sqsubseteq \mathbb{B}$ ($\mathbb{A} \sqsubset \mathbb{B}$) означает, что \mathbb{A} изоморфно некоторому (собственному) начальному сегменту \mathbb{B} .

Свойства вполне упорядоченных множеств

- 1. Отношение \simeq рефлексивно, симметрично и транзитивно.
- 2. Отношение \sqsubseteq рефлексивно и транзитивно.
- 3. Для любого вложения $f:\mathbb{A} \to \mathbb{A}$ верно: $\forall a(a \leq_A f(a)).$
- 5. $\mathbb{A} \sqsubseteq \mathbb{B}$ или $\mathbb{B} \sqsubseteq \mathbb{A}$.
- 6. $\mathbb{A}\simeq\mathbb{B}$ или $\mathbb{A}\sqsubset\mathbb{B}$ или $\mathbb{B}\sqsubset\mathbb{A}$, причем выполняется ровно одно из условий.
- 7. Если $\mathbb{A} \sqsubseteq \mathbb{B}$ и $\mathbb{B} \sqsubseteq \mathbb{A}$, то $\mathbb{A} \simeq \mathbb{B}$.

Доказательства свойств в.у.м.

- 3. Пусть нет: $f(a)<_A a$ для некоторого $a\in A$, и возьмем наименьшее a. Тогда $f(f(a))<_A f(a)<_A a$ противоречие.
- 4. Пусть \sqsubseteq не антирефлексивно, т.е. $\mathbb{A} \sqsubseteq \mathbb{A}$ для некоторого \mathbb{A} . Тогда $f: \mathbb{A} \simeq \hat{a}$ для некоторых $a \in A$ и f. Тогда $f(a) <_A a$ противоречие.

5. Отношение $I = \{(a,b) \mid \hat{a} \simeq \hat{b}\}$, а также обратное отношение

 I^{-1} , функциональны. Поэтому I — биекция из D = dom(I) на R = rng(I). Если $a_1 <_A a \in D$, то существует $f: \hat{a} \simeq \widehat{I(a)}$, откуда $\hat{a_1} \simeq \widehat{f(a_1)}$, а значит $I(a_1) = f(a_1) <_B I(a)$. Поэтому D — начальный сегмент \mathbb{A} , R — начальный сегмент \mathbb{B} , и ограничение $I|_D$ — изоморфизм из \mathbb{D} на \mathbb{R} . Заметим, что D = A или R = B (в противном случае $D = \hat{d}$ и $R = \hat{r}$ для некоторых $d \in A$ и $r \in B$, откуда I(d) = r и $d \in D$ — противоречие). В случае D = A получаем $A \subseteq B$, а в случае $A \subseteq B$ получаем $A \subseteq B$ получаем $A \subseteq B$

Фундированность и индукция

ТЕОРЕМА. Фундированность порядка (X;<) равносильна правилу индукции в (X;<), утверждающему, что для любого свойства P(x) элементов множества X выполняется условие $\forall x (\forall y < x P(y) \to P(x)) \to \forall x P(x)$.

Фундированность и индукция

ТЕОРЕМА. Фундированность порядка (X;<) равносильна правилу индукции в (X;<), утверждающему, что для любого свойства P(x) элементов множества X выполняется условие $\forall x (\forall y < x P(y) \to P(x)) \to \forall x P(x).$

Теорема справедлива для произвольных фундированных отношений. Отношение $\rho\subseteq X\times X$ называется фундированным, если любое непустое множество $A\subseteq X$ имеет минимальный элемент $a\in A$ (т.е. не существует $b\in A$ такого, что $b\rho a$). Это верно и для случая, когда X является классом (например, это верно для фундированного отношени \in на классе V всех множеств).

Фундированность и индукция

ТЕОРЕМА. Фундированность порядка (X;<) равносильна правилу индукции в (X;<), утверждающему, что для любого свойства P(x) элементов множества X выполняется условие $\forall x (\forall y < x P(y) \to P(x)) \to \forall x P(x)$.

Теорема справедлива для произвольных фундированных отношений. Отношение $\rho\subseteq X\times X$ называется фундированным, если любое непустое множество $A\subseteq X$ имеет минимальный элемент $a\in A$ (т.е. не существует $b\in A$ такого, что $b\rho a$). Это верно и для случая, когда X является классом (например, это верно для фундированного отношени \in на классе V всех множеств).

Нетрудно показать, что на фундированных множествах и классах можно также определять функции по рекурсии; важный частный случай рассмотрим ниже.

Ординалы

ОПРЕДЕЛЕНИЕ. 1. Множество S называется транзитивным, если $\bigcup S \subseteq S$, т.е. $x \in y \in S \to x \in S$.

Ординалы

ОПРЕДЕЛЕНИЕ. 1. Множество S называется транзитивным, если $\bigcup S \subseteq S$, т.е. $x \in y \in S \to x \in S$.

2. Множество S называется ординалом, если оно транзитивно и линейно упорядочено (эквивалентно, вполне упорядочено) отношением \in , т.е. $\forall x,y \in S(x \in y \lor y \in x \lor x = y)$.

Ординалы

ОПРЕДЕЛЕНИЕ. 1. Множество S называется транзитивным, если $\bigcup S \subseteq S$, т.е. $x \in y \in S \to x \in S$.

- 2. Множество S называется ординалом, если оно транзитивно и линейно упорядочено (эквивалентно, вполне упорядочено) отношением \in , т.е. $\forall x,y \in S(x \in y \lor y \in x \lor x = y)$.
- 3. Ординалы обозначаем $\alpha, \beta, \gamma, \ldots$, класс всех ординалов обозначаем Ord, сужение отношения \in на Ord обозначаем <.

Свойства ординалов

- 1. $x \in \alpha \to x \in Ord$.
- 2. $\alpha = \{\beta \mid \beta < \alpha\}.$
- 3. $(\alpha; <) \simeq (\beta; <) \iff \alpha = \beta$.
- 4. $\alpha < \beta \lor \beta < \alpha \lor \alpha = \beta$.
- 5. $\alpha \subseteq \beta \iff \alpha \leq \beta$.
- 6. $\alpha+1=\alpha\cup\{\alpha\}$ наименьший ординал, больший $\alpha.$
- 7. Для любого множества A ординалов, (A;<) есть в.у.м., а $\bigcup A$ ординал, являющийся супремумом этого множества.
- 8. Класс Ord не является множеством.
- 9. Любое в.у.м. А изоморфно единственному ординалу.

Доказательства свойств ординалов

3. Проверим, что $\alpha \simeq \beta \to \alpha = \beta$. Пусть $f:\alpha \simeq \beta$; достаточно показать $\alpha \subseteq \beta$, а для этого достаточно $\forall x \in \alpha (x = f(x))$. Пусть нет, т.е. $x \neq f(x)$ для некоторого (наименьшего) $x \in \alpha$. Тогда $x = \{z \mid z < x\}$. С другой стороны, $f(x) = \{f(z) \mid z < x\}$, откуда x = f(x), противоречие.

Доказательства свойств ординалов

- 3. Проверим, что $\alpha\simeq\beta\to\alpha=\beta$. Пусть $f:\alpha\simeq\beta$; достаточно показать $\alpha\subseteq\beta$, а для этого достаточно $\forall x\in\alpha(x=f(x))$. Пусть нет, т.е. $x\neq f(x)$ для некоторого (наименьшего) $x\in\alpha$. Тогда $x=\{z\mid z< x\}$. С другой стороны, $f(x)=\{f(z)\mid z< x\}$, откуда x=f(x), противоречие.
- 7. Первое по аксиоме фундирования. Для второго достаточно транзитивности $\bigcup A$. Пусть $x \in y \in \bigcup A$. Тогда $\exists \alpha \in A(y \in \alpha)$. Тогда $x \in \alpha$ по транзитивности, откуда $x \in \bigcup A$. $\bigcup A$ верхняя граница A по отношению <, поскольку $\forall \alpha \in A(\alpha \leq \bigcup A)$ и $\leq = \subseteq$. Остается д-ть, что $\bigcup A \leq \beta$ для любой верхней границы β для A. Это так, поскольку $\forall \alpha \in A(\alpha \subseteq \beta)$.

Доказательства свойств ординалов

- 3. Проверим, что $\alpha \simeq \beta \to \alpha = \beta$. Пусть $f:\alpha \simeq \beta$; достаточно показать $\alpha \subseteq \beta$, а для этого достаточно $\forall x \in \alpha (x=f(x))$. Пусть нет, т.е. $x \neq f(x)$ для некоторого (наименьшего) $x \in \alpha$. Тогда $x = \{z \mid z < x\}$. С другой стороны, $f(x) = \{f(z) \mid z < x\}$, откуда x = f(x), противоречие.
- 7. Первое по аксиоме фундирования. Для второго достаточно транзитивности $\bigcup A$. Пусть $x \in y \in \bigcup A$. Тогда $\exists \alpha \in A(y \in \alpha)$. Тогда $x \in \alpha$ по транзитивности, откуда $x \in \bigcup A$. $\bigcup A$ верхняя граница $x \in A$ по отношению $x \in A$ 0 поскольку $x \in A$ 1 и $x \in A$ 2 по отношению $x \in A$ 4 по отношению $x \in A$ 5 для любой верхней границы $x \in A$ 6 для $x \in A$ 7 по так, поскольку $x \in A$ 8 для $x \in A$ 9.
- 9. Рассмотрим $I=\{(a,\alpha)\mid \hat{a}\simeq\alpha\}$. Как для в.у.м., I- изоморфизм $\mathbb D$ на $\mathbb R$ для начальных сегментов $D\subseteq A$, $R\subseteq Ord$ причем D=A или R=Ord. Последнее невозможно (поскольку Ord было бы множеством), значит D=A и I- искомый изоморфизм на ординал R.

Рекурсия по ординалам

ТЕОРЕМА. Для любой функции-класса $G:V \to V$ существует единственная функция-класс $F:Ord \to V$ такая, что $F(\alpha) = G\left(F\big|_{\alpha}\right)$, где $F\big|_{\alpha}$ — ограничение F на α , т.е. $F\big|_{\alpha} = \{(\beta,y) \in F \mid \beta < \alpha\}.$

Рекурсия по ординалам

ТЕОРЕМА. Для любой функции-класса $G:V \to V$ существует единственная функция-класс $F:Ord \to V$ такая, что $F(\alpha) = G\left(F\big|_{\alpha}\right)$, где $F\big|_{\alpha}$ — ограничение F на α , т.е. $F\big|_{\alpha} = \{(\beta,y) \in F \mid \beta < \alpha\}.$

Д-ВО. Единственность: пусть есть две такие функции F,F', проверим $\forall \alpha \in Ord: F(\alpha) = F'(\alpha)$. Предположим, что это не так и возьмём наименьшее α такое, что $F(\alpha) \neq F'(\alpha)$. Тогда $F\big|_{\alpha} = F'\big|_{\alpha}$, откуда $F(\alpha) = G\left(F\big|_{\alpha}\right) = F'(\alpha)$ — противоречие.

Рекурсия по ординалам

ТЕОРЕМА. Для любой функции-класса $G:V \to V$ существует единственная функция-класс $F:Ord \to V$ такая, что $F(\alpha) = G\left(F\big|_{\alpha}\right)$, где $F\big|_{\alpha}$ — ограничение F на α , т.е. $F\big|_{\alpha} = \{(\beta,y) \in F \mid \beta < \alpha\}.$

Д-ВО. Единственность: пусть есть две такие функции F,F', проверим $\forall \alpha \in Ord: F(\alpha) = F'(\alpha)$. Предположим, что это не так и возьмём наименьшее α такое, что $F(\alpha) \neq F'(\alpha)$. Тогда $F\big|_{\alpha} = F'\big|_{\alpha}$, откуда $F(\alpha) = G\left(F\big|_{\alpha}\right) = F'(\alpha)$ — противоречие.

Существование: рассмотрим класс функций $C=\{f: \alpha \to V \mid \alpha \in Ord, \forall \beta < \alpha(f(\beta)=G(f|_{\beta}))\}.$ Заметим, что если $f,f' \in C$, то $f \subseteq f' \lor f' \subseteq f.$ Утверждается, что $F=\bigcup C$ годится, в частности, dom(F)=Ord. В самом деле, если $\alpha \not\in dom(F)$ для наименьшего α , то $f=F\big|_{\alpha} \in C$, откуда $\tilde{f}=f \cup \{(\alpha,G(f))\} \in C$ — противоречие.

Эквиваленты аксиомы выбора

Пусть ZF — множество аксиом 0-8 (т.е. все аксиомы, кроме аксиомы выбора AC).

ЛЕММОЙ ЦОРНА (ZL) называется утверждение: Если любое линейно упорядоченное подмножество частичного порядка $\mathbb X$ имеет верхнюю границу, то в $\mathbb X$ есть максимальный элемент.

ТЕОРЕМОЙ ЦЕРМЕЛО (ZT) называется утверждение: Любое множество можно вполне упорядочить, т.е. на любом множестве A существует фундированный линейный порядок.

Эквиваленты аксиомы выбора

Пусть ZF — множество аксиом 0-8 (т.е. все аксиомы, кроме аксиомы выбора AC).

ЛЕММОЙ ЦОРНА (ZL) называется утверждение: Если любое линейно упорядоченное подмножество частичного порядка $\mathbb X$ имеет верхнюю границу, то в $\mathbb X$ есть максимальный элемент.

ТЕОРЕМОЙ ЦЕРМЕЛО (ZT) называется утверждение: Любое множество можно вполне упорядочить, т.е. на любом множестве A существует фундированный линейный порядок.

TEOPEMA. Из аксиом ZF следует эквивалентность аксиомы выбора, леммы Цорна, и теоремы Цермело.

Эквиваленты аксиомы выбора

Пусть ZF — множество аксиом 0-8 (т.е. все аксиомы, кроме аксиомы выбора AC).

ЛЕММОЙ ЦОРНА (ZL) называется утверждение: Если любое линейно упорядоченное подмножество частичного порядка $\mathbb X$ имеет верхнюю границу, то в $\mathbb X$ есть максимальный элемент.

ТЕОРЕМОЙ ЦЕРМЕЛО (ZT) называется утверждение: Любое множество можно вполне упорядочить, т.е. на любом множестве A существует фундированный линейный порядок.

TEOPEMA. Из аксиом ZF следует эквивалентность аксиомы выбора, леммы Цорна, и теоремы Цермело.

Доказательство по схеме $AC \Longrightarrow ZL \Longrightarrow ZT \Longrightarrow AC$.

Аксиома выбора влечет лемму Цорна

Пусть АС истинна, а ZL ложна, тогда существует чум \mathbb{X} , в котором любое л.у.м. $L\subseteq X$ имеет верхнюю границу, и $\forall x\exists y(x<_Xy)$. Тогда $\forall L\exists y(L<_Xy)$, т.е. $B(L)=\{y\in X\mid L<_Xy\}\neq\emptyset$ для любого л.у.м. $L\subseteq X$. Пусть f — функция выбора на X, и g(L)=f(B(L)). Тогда $L<_Xq(L)$ для любого л.у.м. $L\subseteq X$.

Аксиома выбора влечет лемму Цорна

Пусть АС истинна, а ZL ложна, тогда существует чум \mathbb{X} , в котором любое л.у.м. $L\subseteq X$ имеет верхнюю границу, и $\forall x\exists y(x<_Xy)$. Тогда $\forall L\exists y(L<_Xy)$, т.е. $B(L)=\{y\in X\mid L<_Xy\}\neq\emptyset$ для любого л.у.м. $L\subseteq X$. Пусть f — функция выбора на X, и g(L)=f(B(L)). Тогда $L<_Xg(L)$ для любого л.у.м. $L\subseteq X$.

Определим функцию-класс $F:Ord \to X$ рекурсией: $F(\alpha) = g(rng(F\big|_{\alpha}))$ и заметим, что F — вложение частичных порядков (поскольку $\beta < \alpha \to F(\beta) <_X F(\alpha)$), в частности инъекция. По аксиоме выделения, $R = rng(F) \subseteq X$ — множество. Поскольку F^{-1} — биекция из R на Ord, Ord по аксиоме замены есть множество. Противоречие.

Лемма Цорна влечет теорему Цермело

Пусть лемма Цорна верна, надо проверить, что на любом множестве A существует фундированный линейный порядок. Рассмотрим класс X всех инъекций $f:\alpha \to A$, $\alpha \in Ord$. Любому $f \in X$ сопоставим в.у.м. $\mathbb{A}_f = (f(\alpha); \square)$, $a \sqsubset a_1 \leftrightarrow f^{-1}(a) < f^{-1}(a_1)$. По аксиоме выделения $\mathcal{X} = \{\mathbb{A}_f \mid f \in X\}$ — множество. Поскольку $\alpha \simeq \mathbb{A}_f$ и X — область значений функции $\mathbb{A}_f \mapsto f$, определенной на \mathcal{X} , X есть множество по аксиоме замены.

Лемма Цорна влечет теорему Цермело

Пусть лемма Цорна верна, надо проверить, что на любом множестве A существует фундированный линейный порядок. Рассмотрим класс X всех инъекций $f:\alpha \to A$, $\alpha \in Ord$. Любому $f \in X$ сопоставим в.у.м. $\mathbb{A}_f = (f(\alpha); \square)$, $a \sqsubset a_1 \leftrightarrow f^{-1}(a) < f^{-1}(a_1)$. По аксиоме выделения $\mathcal{X} = \{\mathbb{A}_f \mid f \in X\}$ — множество. Поскольку $\alpha \simeq \mathbb{A}_f$ и X — область значений функции $\mathbb{A}_f \mapsto f$, определенной на \mathcal{X} , X есть множество по аксиоме замены.

В чуме $(X;\subseteq)$ всякое л.у.м. $L\subseteq X$ имеет верхнюю границу $\bigcup L$. По лемме Цорна $(X;\subseteq)$ имеет максимальный элемент $f:\alpha\to A$. Заметим, что rng(f)=A (иначе, $f\cup\{(\alpha,a)\}$, где $a\in A\setminus rng(f)$, — собственное расширение f, противоречие). Поскольку $\alpha\simeq \mathbb{A}_f$, \square — фундированный линейный порядок на A.

Теорема Цермело влечет аксиому выбора

Предполагая теорему Цермело, покажем, что на любом множестве A существует функция выбора $f:P(A)\setminus\{\emptyset\}\to A,\ f(X)\in X.$ По теореме Цермело, существует фундированный линейный порядок $<_A$ на A. Для непустого $X\subseteq A$ определим f(X) как $<_A$ -наименьший элемент множества X. Иными словами, $f=\{(X,x)\mid x\in X\subseteq A\land \forall y<_Ax(y\not\in X)\}.$

Теорема Цермело влечет аксиому выбора

Предполагая теорему Цермело, покажем, что на любом множестве A существует функция выбора $f:P(A)\setminus\{\emptyset\}\to A,\ f(X)\in X.$ По теореме Цермело, существует фундированный линейный порядок $<_A$ на A. Для непустого $X\subseteq A$ определим f(X) как $<_A$ -наименьший элемент множества X. Иными словами, $f=\{(X,x)\mid x\in X\subseteq A\land \forall y<_Ax(y\not\in X)\}.$

Теперь можем легко доказать, что в теории ZFC доказуема сравнимость любых двух множеств по мощности.

TEOPEMA. Для любых множеств A и B имеем: $A \preceq B \lor B \preceq A$.

Д-ВО. По теореме Цермело, существуют фундированные линейные порядки $<_A$ на A и $<_B$ на B. По свойству в.у.м., $\mathbb{A} \sqsubseteq \mathbb{B} \vee \mathbb{B} \sqsubseteq \mathbb{A}$. Отсюда следует заключение теоремы.

Числа, измеряющие мощность множеств

- ОПРЕДЕЛЕНИЕ. 1. Мощность множества A наименьший ординал |A|, равномощный A.
- 2. Кардинал ординал, не равномощный никакому меньшему ординалу. Класс всех кардиналов обозначается Card.
- 3. Шкала ординалов упорядоченный класс (Ord;<).
- 4. Шкала кардиналов упорядоченный класс (Card; <).
- 5. Для любого кардинала \varkappa существует наименьший кардинал, больший \varkappa ; он обозначается \varkappa^+ .

Числа, измеряющие мощность множеств

ОПРЕДЕЛЕНИЕ. 1. Мощность множества A — наименьший ординал |A|, равномощный A.

- 2. Кардинал ординал, не равномощный никакому меньшему ординалу. Класс всех кардиналов обозначается Card.
- 3. Шкала ординалов упорядоченный класс (Ord;<).
- 4. Шкала кардиналов упорядоченный класс (Card; <).
- 5. Для любого кардинала \varkappa существует наименьший кардинал, больший \varkappa ; он обозначается \varkappa^+ .

Любое в.у.м. $\mathbb A$ изоморфно единственному ординалу $o(\mathbb A)$, а любое множество равномощно единственному кардиналу. Ординалы — числа, измеряющие в.у.м., а кардиналы — числа, измеряющие мощность множества. Заметим, что каждый кардинал является ординалом, но не наоборот.

Начало шкалы ординалов:

$$0,1,2,\ldots,\mathbb{N}=\omega,\omega+1,\omega+2,\ldots,\omega+\omega,\ldots$$

Начало шкалы кардиналов: $0,1,2,\ldots,\omega,\omega^+,(\omega^+)^+,\ldots$

TЕОРЕМА. Структуры (Ord;<) и (Card;<) изоморфны.

TEOPEMA. Структуры (Ord; <) и (Card; <) изоморфны.

Д-ВО. Определим функцию-класс F по индукции: F(0)=0, $F(\alpha+1)=F(\alpha)^+$, $F(\lambda)=\bigcup_{\beta<\lambda}F(\beta)$.

По индукции ясно, что $F:Ord \to Card$. Индукцией по α легко проверить $\forall \alpha_1 < \alpha(F(\alpha_1) < F(\alpha))$, т.е. F монотонна, а значит и инъективна.

TEOPEMA. Структуры (Ord; <) и (Card; <) изоморфны.

Д-ВО. Определим функцию-класс F по индукции: F(0)=0, $F(\alpha+1)=F(\alpha)^+$, $F(\lambda)=\bigcup_{\beta<\lambda}F(\beta)$.

По индукции ясно, что $F:Ord \to Card$. Индукцией по α легко проверить $\forall \alpha_1 < \alpha(F(\alpha_1) < F(\alpha))$, т.е. F монотонна, а значит и инъективна.

Остается проверить сюръективность, т.е.

 $orall \kappa \in Card \exists \alpha (\kappa = F(\alpha))$. Для некоторого α имеем $\kappa \leq F(\alpha)$ (поскольку $\kappa \leq F(\kappa)$ аналогично свойству в.у.м.). Возьмем наименьший такой ординал α и проверим $\kappa = F(\alpha)$; достаточно проверить $F(\alpha) \leq \kappa$ в случаях, когда α нулевой, последователь, или предельный ординал.

TEOPEMA. Структуры (Ord; <) и (Card; <) изоморфны.

Д-ВО. Определим функцию-класс F по индукции: F(0)=0, $F(\alpha+1)=F(\alpha)^+$, $F(\lambda)=\bigcup_{\beta<\lambda}F(\beta)$.

По индукции ясно, что $F:Ord\to Card$. Индукцией по α легко проверить $\forall \alpha_1<\alpha(F(\alpha_1)< F(\alpha))$, т.е. F монотонна, а значит и инъективна.

Остается проверить сюръективность, т.е.

 $orall \kappa \in Card \exists \alpha (\kappa = F(\alpha))$. Для некоторого α имеем $\kappa \leq F(\alpha)$ (поскольку $\kappa \leq F(\kappa)$ аналогично свойству в.у.м.). Возьмем наименьший такой ординал α и проверим $\kappa = F(\alpha)$; достаточно проверить $F(\alpha) \leq \kappa$ в случаях, когда α нулевой, последователь, или предельный ординал.

 $\{F(\alpha)\}_{\alpha\in Ord}$ — шкала всех кардиналов. Полагая $\aleph_0=\omega$, $\aleph_{\alpha+1}=\aleph_{\alpha}^+$, $\aleph_{\lambda}=\bigcup_{\beta<\lambda}\aleph_{\beta}$, получим шкалу $\{\aleph_{\alpha}\}_{\alpha\in Ord}$ всех бесконечных кардиналов. Другое обозначение: $\aleph_{\alpha}=\omega_{\alpha}$.

Арифметика ординалов

Определим сложение, умножение, и возведение в степень ординалов по индукции:

$$\begin{split} &\alpha+0=\alpha,\ \alpha+(\beta+1)=(\alpha+\beta)+1,\\ &\alpha+\lambda=\sup\{\alpha+\beta\mid\beta<\lambda\};\\ &\alpha\cdot 0=0,\ \alpha\cdot(\beta+1)=\alpha\cdot\beta+\alpha,\ \alpha\cdot\lambda=\sup\{\alpha\cdot\beta\mid\beta<\lambda\};\\ &\alpha^0=1,\ \alpha^{(\beta+1)}=\alpha^\beta\cdot\alpha,\ \alpha^\lambda=\sup\{\alpha^\beta\mid\beta<\lambda\}. \end{split}$$

Арифметика ординалов

Определим сложение, умножение, и возведение в степень ординалов по индукции:

$$\begin{split} &\alpha+0=\alpha,\ \alpha+(\beta+1)=(\alpha+\beta)+1,\\ &\alpha+\lambda=\sup\{\alpha+\beta\mid\beta<\lambda\};\\ &\alpha\cdot 0=0,\ \alpha\cdot(\beta+1)=\alpha\cdot\beta+\alpha,\ \alpha\cdot\lambda=\sup\{\alpha\cdot\beta\mid\beta<\lambda\};\\ &\alpha^0=1,\ \alpha^{(\beta+1)}=\alpha^\beta\cdot\alpha,\ \alpha^\lambda=\sup\{\alpha^\beta\mid\beta<\lambda\}. \end{split}$$

СВОЙСТВА.

- 1. Сложение и умножение ординалов ассоциативны, не коммутативны, и обладают нейтральными элементами.
- 2. Докажите, что умножение ординалов дистрибутивно слева, но не дистрибутивно справа относительно сложения.
- 3. $\alpha^{\beta}\cdot\alpha^{\gamma}=\alpha^{\beta+\gamma}$ и $(\alpha^{\beta})^{\gamma}=\alpha^{\beta\cdot\gamma}.$

Арифметика кардиналов

Определим сложение, умножение, и возведение в степень кардиналов:

$$\begin{split} \varkappa \tilde{+} \lambda &:= |(\{0\} \times \varkappa) \cup (\{1\} \times \lambda)|; \\ \varkappa \tilde{\cdot} \lambda &:= |\varkappa \times \lambda|; \ ^{\lambda} \varkappa := |\{f \mid f : \lambda \to \varkappa\}|. \end{split}$$

Арифметика кардиналов

Определим сложение, умножение, и возведение в степень кардиналов:

$$\begin{split} \varkappa \tilde{+} \lambda &:= |(\{0\} \times \varkappa) \cup (\{1\} \times \lambda)|; \\ \varkappa \tilde{\cdot} \lambda &:= |\varkappa \times \lambda|; \ ^{\lambda} \varkappa := |\{f \mid f : \lambda \to \varkappa\}|. \end{split}$$

СВОЙСТВА. 1. Сложение и умножение кардиналов ассоциативны, коммутативны и обладают нейтральными элементами;

умножение кардиналов дистрибутивно относительно сложения.

2.
$$\mu(\varkappa \tilde{\cdot} \lambda) = \mu \varkappa \tilde{\cdot} \mu \lambda \text{ in } \mu(\lambda \varkappa) = \mu \tilde{\cdot} \lambda \varkappa$$
.

3.
$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} + \aleph_{\beta} = \max{\{\aleph_{\alpha}, \aleph_{\beta}\}}.$$

Арифметика кардиналов

Определим сложение, умножение, и возведение в степень кардиналов:

$$\begin{split} \varkappa \tilde{+} \lambda &:= |(\{0\} \times \varkappa) \cup (\{1\} \times \lambda)|; \\ \varkappa \tilde{\cdot} \lambda &:= |\varkappa \times \lambda|; \ ^{\lambda} \varkappa := |\{f \mid f : \lambda \to \varkappa\}|. \end{split}$$

СВОЙСТВА. 1. Сложение и умножение кардиналов ассоциативны, коммутативны и обладают нейтральными элементами;

умножение кардиналов дистрибутивно относительно сложения.

2.
$$\mu(\varkappa \tilde{\cdot} \lambda) = \mu \varkappa \tilde{\cdot} \mu \lambda \text{ in } \mu(\lambda \varkappa) = \mu \tilde{\cdot} \lambda \varkappa$$
.

3.
$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} + \aleph_{\beta} = \max{\{\aleph_{\alpha}, \aleph_{\beta}\}}.$$

Свойство 3 нетрудно выводится из соотношения $\omega_{lpha} imes \omega_{lpha} \sim \omega_{lpha}.$

Доказательство соотношения $\omega_{lpha} imes \omega_{lpha} \sim \omega_{lpha}$

Используем ФЛП \prec на парах ординалов, определенный так: $(\alpha_1,\alpha_2) \prec (\beta_1,\beta_2)$, если $\mu_\alpha < \mu_\beta$ (где $\mu_\alpha = max\{\alpha_1,\alpha_2\}$), или $\mu_\alpha = \mu_\beta \wedge \alpha_1 < \beta_1$, или $\mu_\alpha = \mu_\beta \wedge \alpha_1 = \beta_1 \wedge \alpha_2 < \beta_2$. Заметим, что $\omega_\alpha \times \omega_\alpha$ – начальный сегмент $(Ord \times Ord; \prec)$.

Доказательство соотношения $\omega_lpha imes \omega_lpha \sim \omega_lpha$

Используем ФЛП \prec на парах ординалов, определенный так: $(\alpha_1,\alpha_2) \prec (\beta_1,\beta_2)$, если $\mu_\alpha < \mu_\beta$ (где $\mu_\alpha = max\{\alpha_1,\alpha_2\}$), или $\mu_\alpha = \mu_\beta \wedge \alpha_1 < \beta_1$, или $\mu_\alpha = \mu_\beta \wedge \alpha_1 = \beta_1 \wedge \alpha_2 < \beta_2$. Заметим, что $\omega_\alpha \times \omega_\alpha$ — начальный сегмент $(Ord \times Ord; \prec)$.

Предположим противное, тогда $\omega_{\alpha} \times \omega_{\alpha} \not\sim \omega_{\alpha}$ для наименьшего α , значит $\omega_{\delta} \times \omega_{\delta} \sim \omega_{\delta}$ для всех $\delta < \alpha$. По свойствам в.у.м. $\omega_{\alpha} \sqsubset (\omega_{\alpha} \times \omega_{\alpha}; \prec)$, т.е. $\omega_{\alpha} \simeq \widehat{(\alpha_{1}, \alpha_{2})}$ для некоторых $\alpha_{1}, \alpha_{2} < \omega_{\alpha}$.

Доказательство соотношения $\omega_lpha imes \omega_lpha \sim \omega_lpha$

Используем ФЛП \prec на парах ординалов, определенный так: $(\alpha_1,\alpha_2) \prec (\beta_1,\beta_2)$, если $\mu_\alpha < \mu_\beta$ (где $\mu_\alpha = max\{\alpha_1,\alpha_2\}$), или $\mu_\alpha = \mu_\beta \wedge \alpha_1 < \beta_1$, или $\mu_\alpha = \mu_\beta \wedge \alpha_1 = \beta_1 \wedge \alpha_2 < \beta_2$. Заметим, что $\omega_\alpha \times \omega_\alpha$ — начальный сегмент $(Ord \times Ord; \prec)$.

Предположим противное, тогда $\omega_{\alpha} \times \omega_{\alpha} \not\sim \omega_{\alpha}$ для наименьшего α , значит $\omega_{\delta} \times \omega_{\delta} \sim \omega_{\delta}$ для всех $\delta < \alpha$. По свойствам в.у.м. $\omega_{\alpha} \sqsubset (\omega_{\alpha} \times \omega_{\alpha}; \prec)$, т.е. $\omega_{\alpha} \simeq \widehat{(\alpha_{1}, \alpha_{2})}$ для некоторых $\alpha_{1}, \alpha_{2} < \omega_{\alpha}$.

Пусть β — бесконечный ординал такой, что $\alpha_1,\alpha_2<\beta<\omega_{\alpha}$ и $|\beta|=\omega_{\delta}$, тогда $\delta<\alpha$. Отсюда $\omega_{\alpha}\leq |\beta imes\beta|=\omega_{\delta}$ — противоречие свойствам шкалы кардиналов.

Иерархия фон Неймана

ТЕОРЕМА. Справедливо равенство $V=\bigcup_{\alpha}F(\alpha)=W$, где $F(0)=\emptyset$, $F(\alpha+1)=P(F(\alpha))$, $F(\lambda)=\bigcup_{\beta<\lambda}F(\beta)$.

Иерархия фон Неймана

ТЕОРЕМА. Справедливо равенство $V=\bigcup_{\alpha}F(\alpha)=W$, где $F(0)=\emptyset$, $F(\alpha+1)=P(F(\alpha))$, $F(\lambda)=\bigcup_{\beta<\lambda}F(\beta)$.

Д-ВО. Включение $W\subseteq V$ очевидно, остается проверить $V\subseteq W$. Проверяем по индукции $F(\alpha)\subseteq F(\alpha+1)$ (например, при предельном α для любого $\beta<\alpha$ имеем: $\beta+1<\alpha$, $F(\beta)\subseteq F(\alpha)$, и $F(\beta)\subseteq F(\beta+1)\subseteq F(\alpha+1)$, а значит, $F(\alpha)=\bigcup_{\beta<\alpha}F(\beta)\subseteq F(\alpha+1)$, ведь $F(\alpha+1)=P(F(\beta))$. Проверяем по индукции, что F — монотонна, т.е. $\forall \alpha_1(\alpha_1<\alpha\implies F(\alpha_1)\subseteq F(\alpha))$.

Иерархия фон Неймана

ТЕОРЕМА. Справедливо равенство $V=\bigcup_{\alpha}F(\alpha)=W$, где $F(0)=\emptyset$, $F(\alpha+1)=P(F(\alpha))$, $F(\lambda)=\bigcup_{\beta<\lambda}F(\beta)$.

Д-ВО. Включение $W\subseteq V$ очевидно, остается проверить $V\subseteq W$. Проверяем по индукции $F(\alpha)\subseteq F(\alpha+1)$ (например, при предельном α для любого $\beta<\alpha$ имеем: $\beta+1<\alpha$, $F(\beta)\subseteq F(\alpha)$, и $F(\beta)\subseteq F(\beta+1)\subseteq F(\alpha+1)$, а значит, $F(\alpha)=\bigcup_{\beta<\alpha}F(\beta)\subseteq F(\alpha+1)$, ведь $F(\alpha+1)=P(F(\beta))$. Проверяем по индукции, что F— монотонна, т.е. $\forall \alpha_1(\alpha_1<\alpha\implies F(\alpha_1)\subseteq F(\alpha))$.

Проверим, что любой непустой класс C имеет \in -минимальный элемент. Пусть $x \in C$. Если $x \cap C = \emptyset$, то x — искомый, иначе $TC(x) \cap C \neq \emptyset$, где TC(x) — наименьшее транзитивное множество, содержащее x (оно является множеством, поскольку $TC(x) = \bigcup_n A_n$, где $A_0 = x$ и $A_{n+1} = \bigcup A_n$). По аксиоме фундирования, $TC(x) \cap C$ имеет \in -минимальный элемент y; y будет минимален и в C.

Доказательство включения $V\subseteq W$

Предположим противное, тогда $x\in V\setminus W$ для некоторого x; возьмем такой \in -минимальный x. Тогда $\forall y\in x\exists \alpha(y\in F(\alpha))$; для любого $y\in x$ пусть α_y — наименьший ординал, для которого $y\in F(\alpha_y)$.

Доказательство включения $V\subseteq W$

Предположим противное, тогда $x\in V\setminus W$ для некоторого x; возьмем такой \in -минимальный x. Тогда $\forall y\in x\exists \alpha(y\in F(\alpha))$; для любого $y\in x$ пусть α_y — наименьший ординал, для которого $y\in F(\alpha_y)$.

По аксиоме замены, $A=\{\alpha_y\mid y\in x\}$ — множество ординалов, поэтому $\alpha=\bigcup A=\sup A$ — ординал. В силу монотонности F, $\forall y\in x(y\in F(\alpha))$, так как $\alpha_y\leq \alpha$ при любом $y\in x$. Значит, $x\subseteq F(\alpha)$, откуда $x\in P(F(\alpha))=F(\alpha+1)\subseteq W$ — противоречие.

Непротиворечивость ZFC

Основные этапы развития теории множеств: 1) Наивная теория множеств; 2) ZFC; 3) После ZFC.

Непротиворечивость ZFC

Основные этапы развития теории множеств: 1) Наивная теория множеств; 2) ZFC; 3) После ZFC.

За пределами логики и теории множеств этап 2) по-прежнему актуален, поскольку "доказуемость в математике" считается синонимом "доказуемость в ZFC". В соответствии с программой Гильберта, принципальным является вопрос о непротиворечивости ZFC.

ТЕОРЕМА (Гёдель). Если ZF непротиворечива, то ZF + AC непротиворечива.

Непротиворечивость ZFC

Основные этапы развития теории множеств: 1) Наивная теория множеств; 2) ZFC; 3) После ZFC.

За пределами логики и теории множеств этап 2) по-прежнему актуален, поскольку "доказуемость в математике" считается синонимом "доказуемость в ZFC". В соответствии с программой Гильберта, принципальным является вопрос о непротиворечивости ZFC.

ТЕОРЕМА (Гёдель). Если ZF непротиворечива, то ZF + AC непротиворечива.

После этой теоремы математики поверили в непротиворечивость ZFC, поскольку все обычные доказательства можно формализоать в ZFC, до сих пор противоречий не было, и единственной подозрительной аксиомой считалась аксиома выбора. Можно ли математически доказать непротиворечивость ZF? Ситуация была прояснена Гёделем, из общей теоремы которого следует, что если ZF непротиворечива, то доказать это в теории ZF нельзя.

Независимость АС и СН

Континуум-гипотезу (СН) можно сформулировать так: $|P(\aleph_0)|=\aleph_1$. Обобщенной континуум-гипотезой (GCH) называется утверждение: $|P(\aleph_\alpha)|=\aleph_{\alpha+1}$. Гёдель и Коэн доказали, что эти утверждения нельзя ни доказать, ни опровергнуть в следующем смысле:

Независимость АС и СН

Континуум-гипотезу (СН) можно сформулировать так: $|P(\aleph_0)|=\aleph_1$. Обобщенной континуум-гипотезой (GCH) называется утверждение: $|P(\aleph_\alpha)|=\aleph_{\alpha+1}$. Гёдель и Коэн доказали, что эти утверждения нельзя ни доказать, ни опровергнуть в следующем смысле:

ТЕОРЕМА. 1) Если ZF непротиворечива, то аксиома выбора AC, а также ее отрицание \neg AC, не доказуемы в ZF. 2) Если ZF непротиворечива, то CH, а также \neg CH, не доказуемы в ZFC; аналогично для GCH.

Независимость АС и СН

Континуум-гипотезу (СН) можно сформулировать так: $|P(\aleph_0)|=\aleph_1$. Обобщенной континуум-гипотезой (GCH) называется утверждение: $|P(\aleph_\alpha)|=\aleph_{\alpha+1}$. Гёдель и Коэн доказали, что эти утверждения нельзя ни доказать, ни опровергнуть в следующем смысле:

ТЕОРЕМА. 1) Если ZF непротиворечива, то аксиома выбора AC, а также ее отрицание \neg AC, не доказуемы в ZF. 2) Если ZF непротиворечива, то CH, а также \neg CH, не доказуемы в ZFC; аналогично для GCH.

Таким образом, аксиома выбора и континуум-гипотеза в теории множеств аналогичны пятому постулату Евклида в планиметрии (который независим от остальных аксиом планиметрии). Для математиков, уверенных в справедливости аксиом ZFC, утверждение 2) является окончательным решением континуум-гипотезы, которую нельзя ни доказать, ни опровергнуть, оставаясь в рамках ZFC.