Process scheduling algorithm

- **"Process scheduling** is the set of polices and mechanisms supported by OS, that control the order in which the work to be done is completed".
- The primary object of scheduling to optimize system performance of the system because it determines which processes will wait and which will progress.
- > A Process Scheduler schedules different processes to be assigned to the CPU based on particular scheduling algorithms.
- > These algorithms are either **non-preemptive** or **preemptive**.
 - i) Non-preemptive algorithms are designed so that once a process enters the running state, it cannot be preempted until it completes its allotted time
 - ii) The preemptive scheduling is based on priority where a scheduler may preempt a low priority running process anytime when a high priority process enters into a ready state.
- There are six popular process scheduling algorithms which we are going to discuss:
 - 1. First-Come, First-Served (FCFS) Scheduling
 - 2. Shortest-Job-Next (SJN) Scheduling
 - 3. Priority Scheduling
 - 4. Shortest Remaining Time
 - 5. Round Robin(RR) Scheduling
 - 6. Multiple-Level Queues Scheduling

1. First Come, First Served (FCFS):

- ✓ Jobs are executed on first come, first served basis.
- ✓ It is a **non-preemptive** scheduling algorithm.
- ✓ Easy to understand and implement.
- ✓ Its implementation is based on FIFO gueue.
- ✓ Poor in performance, as average wait time is high.

Process	Burs	t Time	waiting time	turnaround time
P1	24	(min/ms)	00	24
P2	3	(min/ms)	24	27
Р3	3	(min/ms)	27	30

GANTT chart using FCFS:

Average waiting time =
$$\frac{0+24+27}{3} = \frac{51}{3} = 17$$
min

Av. turnaround time = $\frac{24+27+30}{3} = \frac{81}{3} = 27$ min

Throughput = $\frac{3}{3} = 0.1$ min

2. Shortest Job Next (SJN)

- ✓ This is also known as shortest job first, or SJF.
- ✓ This is a non-preemptive scheduling OR Preemptive scheduling algorithm.
- ✓ Best approach to minimize waiting time.
- ✓ Shortest time to completion first.
- ✓ Impossible to implement in interactive systems where the required CPU time is not known.
- ✓ The processer should know in advance how much time a process will take.

Process	Arrival time	Burst Time	Completion	TAT=CT-AT	W.T.=TAT-BT
	(AT)	(BT)	time(CT)		(non preemptive)
P1	0.0	07 (min/ms)	07	07-00 = 07	(07-07) = 00
P2	2.0	04 (min/ms)	12	12-02 = 10	(10-04) = 06
Р3	4.0	01 (min/ms)	08	08-04 = 04	(04-01) = 03
P4	5.0	04 (min/ms)	16	16-05 = 11	(11-04) = 07

GANTT chart Non- preemptive scheduling:

Average waiting time =
$$\frac{0+6+3+7}{4} = \frac{16}{4} = 4$$
min

$$A.TAT = 8min$$

3. Shortest Remaining Time

- ✓ **Shortest remaining time** (SRT) is the preemptive version of the SJN algorithm.
- ✓ The processor is allocated to the job closest to completion but it can be preempted by a newer ready job with shorter time to completion.
- ✓ Impossible to implement in interactive systems where required CPU time is not known.
- ✓ It is often used in batch environments where short jobs need to be given preference.

Process	Arrival time	Burst	Time	Completion	TAT=CT-AT	W.T.=TAT-BT
	(AT)	(BT)		time(CT)		(preemptive)
P1	0	7	/5	16	16	9
P2	2	4	/2	7	5	1
P3	4	1	done	5	1	0
P4	5	4		11	6	2

GANTT chart Preemptive scheduling:

Average waiting time =
$$\frac{9+1+0+2}{4} = \frac{12}{4} = 3$$
min

$$A.TAT = 7min$$

4. Priority based Scheduling:

- ✓ Priority scheduling is a **non-preemptive algorithm** and one of the most common scheduling algorithms in **batch systems**.
- ✓ Each process is assigned a priority.
- ✓ Process with highest priority is to be executed first and so on.
- ✓ Processes with same priority are executed on first come first served (FCFS) basis.
- ✓ Priority can be decided based on memory requirements, time requirements or any other resource requirement.

Process	Burst Time (BT)	Priority	TAT	W.T
P1	10	3	16	6
P2	1	1	1	0
P3	2	4	18	16
P4	1	5	19	18
P5	5	2	6	1

GANT	T chart	Priority	Based	<u>schedulin</u>	<u>g:</u>	
P2	P5	P1	P3	P4		Average waiting
0	1	6	16	18	19	

Average waiting time =
$$\frac{6+0+16+18+1}{5} = \frac{41}{5} = 8.2 \text{min}$$

5. Round Robin Scheduling:

- ✓ Round Robin is a preemptive process scheduling algorithm.
- ✓ Each process is provided a fix time to execute; it is called a quantum or time slice.
- ✓ Once a process is executed for a given time period, it is preempted and other. Process executes for a given time period.
- ✓ **Context switching** is used to save states of preempted processes.

Process	Burst Time (BT)	Priority	TAT	W.T
P1	23	3	29	(10-4)=6
P2	3	1	7	4
Р3	3	4	10	7

GANTT chart	Round	Robin sc	heduling:

	P1	P2		Р3	P1		P1		P1		P1		P1		
,	0	4	7	1	0	1	4	18	3	2	2	26	ŝ	29	9

Average waiting time = 6+4+7/3 = 5.6

UNIT-2 PROCESS SCHEDULING ALGORITHM

Process	Burst Time	(BT)	Explaination	TAT	W.T
P1	53		53-20= 33	134	(121-40)=81
			33-20=13		
P2	17		0	37	20
Р3	68		68-20=48	162	134-40=94
			48-20=28		
			28-20=8]	
P4	24		24-20=4	121	117-20=97

TQ = 20

