Глава 3. Упражнения по работе с пользовательскими функциями Unifloc 7.7 VBA

Освоить работу с расчетными функциями Unifloc 7.7 VBAможно выполняя упражнения описанные в данном разделе и изучая устройство тестовых расчетных модулей. Упражнение демонстрируют некоторые подходы к использованию Unifloc 7.7 VBA. На основе этих подходов можно создать свои расчетные модули решающие специфические задачи пользователя.

3.1 Расчет РVТ свойств

Расчет физико химических свойств пластовых флюидов лежит в основе всех расчетов систем нефтедобычи. При решении прикладных задач редко возникает необходимость расчета PVT свойств непосредственно, однако понимание принципа их расчета, а особенно зависимости результатов расчета от исходных данных важно.

Цель упражнений по расчету PVT свойств:

- освоить принципы работы с пользовательскими функций Unifloc 7.7 VBA
- изучить влияние исходных PVT данных на результаты расчета PVT свойств
- изучить влияние выбора PVT корреляций на результаты расчета PVT свойств
- изучить механизм калибровки PVT корреляций на результаты измерений

3.1.1 Построение простых PVT зависимостей

Для выполнения упражнения используйте файл "10.PVT.xlsx"

1. Запустите файл с надстройкой Unifloc 7.7 VBA. Для того чтобы убедиться, что надстройка запущена откройте редактор VBE (Alt+F11). В дереве проектов должен отображаться файл надстройки UniflocVBA 7.xlam, рис. 3.1.

Рис. 3.1 — Окно редактора VBE с загруженной надстройкой Unifloc 7.7 VBA

2. Откройте файл с упражнением 10. PVT.xlsx (смотри рис. 3.2).

Рис. 3.2 — Открытый файл с упражнением 10. PVT.xlsx

3. Для расчета первого элемента таблицы в ячейках D23:D48 - газосодержания в нефти при давлении 1 атм и температуре 80 °C - введите в ячейку D23 строку

```
=PVT_Rs_m3m3(B23;C23;gamma_gas_;gamma_oil_; gamma_wat_; Rsb_; Rp_; Pb_; Tres_; Bob_; muob_)
```

Обратите внимание – при запущенной надстройке достаточно начать вводить в ячейку формулу, например ввести =PVT как Excel откроет

выпадающий список с подсказкой, показывающий возможные варианты названий функций (смотри рис. 3.3).

В приведенной строке B23; C23 - ссылки на соответствующие ячейки, gamma_gas_; gamma_oil_ - также ссылки на ячейки, которые предварительно были поименованы.

Рис. 3.3 — Выпадающий список с подсказками названий функции

Из выпадающего списка выберите функцию = PVT_Rs_m3m3 (после чего нажмите кнопку f_x "вставить функцию" слева от строки формул. Это вызовет окно задания параметров функции, в котором будут указаны все параметры, которые необходимо ввести. В этом окно можно ввести необходимые значения параметров или указать ссылки на соответствующие ячейки.

Рис. 3.4 — Окно ввода аргументов функции

4. После ввода всех параметров и нажатия кнопки ОК в ячейке должен отобразиться результат расчета. Воспользовавшись инструментом "Вли-

яющие ячейки"на вкладке "Формулы"можно отследить на какие ячейки ссылается введенная формула

Рис. 3.5 — Результат вызова пользовательской функции с отображение влияющих ячеек

5. Аналогично заполните все ячейки таблицы D23: D48 вызовами функции = PVT_Rs_m3m3() с соответствующими параметрами. Это можно сделать "протянув" ранее введенную функцию в ячейке D23.

Обратите внимание, что при "протягивании" поименованные ячейки оказываются закрепленными, а ссылки на значения давления и температуры съезжают вместе с протягиваемой ячейкой. Результат показан на рисунке 3.6

Рис. 3.6 — Результат расчета зависимости газосодержания от давления

6. По аналогии с зависимостью газосодержания от давления постройте графики зависимости других параметров от давления. Используйте следующие функции для проведения расчатов:

функция расчета объемного коэффициента нефти

```
=PVT_Bo_m3m3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета вязкости нефти при заданных термобарических условиях

```
=PVT_Muo_cP(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета вязкости газа при заданных термобарических условиях

```
=PVT_Mug_cP(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Pb_;Bob_;muob_)
```

функция расчета вязкости воды при заданных термобарических условиях

```
=PVT_Muw_cP(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_; Rsb_;
Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета плотности газа при заданных термобарических условиях

```
=PVT_Rhog_kgm3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_;
Rsb_; Rp_; Pb_;Tres_;Bob_;muob_)
```

функция расчета плотности воды при заданных термобарических условиях

```
=PVT_Rhow_kgm3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_;
Rsb ; Rp ; Pb ;Tres ;Bob ;muob )
```

функция расчета плотности нефти при заданных термобарических условиях

```
=PVT_Rhoo_kgm3(B23;C23;gamma_gas_;gamma_oil_;gamma_wat_;
Rsb_; Rp_; Pb_;Tres_;Bob_;muob_)
```

Результаты приведены на рисунке 3.7

- 7. Ответьте на вопросы по упражнению приведенные в рабочей книге.
 - а) Можно ли глядя на графические зависимости определить параметры нефти? Если да, то какие?
 - б) Всегда ли заданное значение давления насыщения совпадает со значением давления насыщения считанным с графиков?

Рис. 3.7 — Результат расчета зависимости свойств пластовых флюидов от давления

- в) Чему равно значение объемного коэффициента при P=1 атма? Есть ли разница между исходным значением и значением определенным по графическими зависимостями?
- г) Как изменятся построенные зависимости если не вводить значения калибровочных параметров давления насыщения, объемного коэффициента при давлении насыщения, вязкости при давлении насыщения?

3.2 Расчет производительности скважины

Модель притока к скважине является достаточно простой и одновременно полезной, позволяя оперативно оценивать добычные возможности скважины. Для

индикаторной диаграммы Вогеля зависимость забойного давления от дебита ниже давления насыщения перестает быть линейной.

Для выполнения упражнения необходимо задать:

- 1. PVT свойства флюидов
- 2. Параметры работы скважины на установившемся режиме
- 3. Пластовое давление

Рис. 3.8 — Исходные данные для построения индикаторной кривой

Коэффициент продуктивности PI скважины рассчитывается в ячейке C25 по замеренным данным с помощью функции

```
=IPR PI sm3dayatm(qltest; Pwftest; Pres; fw; Pb)
```

А максимальный дебит Q_{max} при максимальной депрессии с забойным давлением равным нулю

```
=IPR Qliq sm3Day(PI ;Pres ;0;fw ;Pb )
```

После задания всех необходимых параметров перейдем к построению индикаторной кривой.

Для расчета забойного давления в зависимости от дебита введите в ячейку D40 строку

```
=IPR Pwf atma(PI ;Pres ;C40;fw ;Pb )
```

Для вычисления дебита в зависимости от давления Вы можете воспользоваться функцией

Рис. 3.9 — Результат построения индикаторной кривой

Применяя функции, строя дополнительные графики, ответьте на вопросы по упражнению, приведенные в рабочей книге.

- 1. Как можно оценить продуктивность скважины?
- 2. Зависит ли вид индикаторной кривой от газового фактора?

3.3 Расчет свойств многофазного потока

Расчет характеристики потока, состоящего из двух или более фаз, является более сложным, чем вычисление параметров однофазного потока. Вследствие разности плотностей и вязкостей, поведение фаз в потоке может существенно различаться. Расчет параметров газожидкостной смеси необходим для прогнози-

рования распределения давления в скважине, анализа работы погружного оборудования и т.д.

Аналогично предыдущим упражнениям сперва необходимо задать:

- 1. PVT свойства флюидов
- 2. Параметры потока флюида Q_l расход жидкости и f_w обводненность. После этого в ячейке C20 для удобства использования все PVT свойства сгруппируются в единую строку с помощью функции

=PVT encode string(gamma gas ;gamma oil ;gamma wat ;Rsb ;Rp ;Pb ;Tre

4 A	В	С	D	F	F	G	н	1 1	J	K	1 1	M	N	0	Р	Q	R	S	
1 Упраж	кнения по работе с макросами	Unifloc VBA			версия	7.7			•	- 1			- "				- "		_
	г свойств многофазного потока																		
3																			
4																			
5 6 dhuann	ко - химические свойства флю	DVT																	
O WHOMA		0.87		870	кг/м³				ость расхода					гуры					
1	Υo	0.07							ость доли газ				ы						
8	Yw	1		1000	KF/M ³				ость вязкости ость давления				0.00 5000 0	DOTOUG DO		oŭ.			
9	Yg	0.8		0.976	KF/M ³		· Hocipor	пе зависим	ость давления	TOT TABOBOTO Q	актора пр	т котором д	оля газа в	потоке ра	зна заданн	ЮИ			
10	R _{sb}	80	м ³ /м ³	92	м ³ /т		Вопросы п	о упражени	Ю										
11	R _p	80	м ³ /м ³	92	м ³ /т		1.11		FWC				C 100 C	0					
12	Pbcal	120	атма	122	МПа		расчета	ко изменит	ся расход ГЖС	при изменен	ии темпера	пуры от зо	с до 100 с	. Оцените :	в уме и про	оверьте се	он на осно	se	
13	T _{res}	100	С	212	Φ		2. Может л	и в потоке	появиться сво	бодный газ пр	и давлени	и выше дав	ления нас	ыщения? Е	сли да то п	ри каких	условиях?		
14	B _{ob cal}	1.2	M3/M3						ость ГЖС при і	одъеме на по	верхность	в скважине	? Оцените	степень и	зменения і	в уме и пр	оверьте се	бя на	
15	H _{ob cal}	1	сП				основе рас	чета											
16 Парам	етры потока флюида																		
17	Qı	50	м ³ /сут																
18	f _w	10	%																
19																			

Рис. 3.10 — Исходные данные для расчета параметров многофазного потока

Для расчета параметров смеси при разных термобарических условиях вставьте следующие функции в таблицу и "протяните" их для полного заполнения.

Для расчета Q_{mix} - объемного расхода смеси воспользуйтесь в ячейке Е28 функцией

```
=MF Qmix m3day(Q ;fw ;C28;D28;PVRstr1 )
```

Вычисление β_{gas} - объемной доли газа в потоке в ячейке F28 производится с помощью функции

```
=MF gas fraction d(C28;D28;fw ;PVRstr1 )
```

А вязкости газожидкостной смеси μ_{mix} в G28

```
=MF Mumix cP(Q;fw;C28;D28;PVRstr1)
```

Для вычисления давления в зависимости от газового фактора и объемного содержания газа в потоке β_{aas}

Поместите в ячейку J28 строку:

```
=PVT_encode_string(gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;I28;Pb_;Tre
```

А в ячейки K28, L28, M28 функцию для вычисления давления

4	Α	В	С	D	E	F	G	н	1 1	J	K	L	М	N	0	
21					_	-	_			-						
22																
23																
24																
25																
26											0.25	0.5	0.75			
											Рпри	Рпри	Рпри			
27			Р	Т	Q _{mix}	β_{gas}	μ_{mix}		ГΦ	PVT	βgas =0,25	βgas =0,5	βgas =0,75			
28			1	80	4392	0.99	0.04		10	gamma gas:0,8	21	9	3			+
29			5	80	904	0.94	0.19		50	gamma_gas:0,8	64	33	13			+
30			10	80	467	0.89	0.35		100	gamma_gas:0,8	93	54	25			+
31			20	80	249	0.78	0.58		150	gamma_gas:0,8	123	76	36			$^{+}$
32			40	80	140	0.61	0.84		200	gamma gas:0,8	168	95	46			
33			60	80	104	0.46	0.96		250	gamma_gas:0,8	300	111	56			
34			80	80	87	0.34	1.00		300	gamma_gas:0,8	300	124	65			
35			100	80	77	0.24	1.01		350	gamma gas:0,8	300	136	74			
36			120	80	71	0.15	1.01		400	gamma_gas:0,8	300	151	82			
37			140	80	67	0.08	0.99		450	gamma_gas:0,8	300	175	90			
38			160	80	64	0.01	0.97		500	gamma_gas:0,8	300	238	97			
39			180	80	64	0.00	0.99		550	gamma_gas:0,8	300	300	103			
40			200	80	64	0.00	1.01		600	gamma_gas:0,8	300	300	109			
41			220	80	63	0.00	1.04		650	gamma_gas:0,8	300	300	114			
42			240	80	63	0.00	1.07		700	gamma_gas:0,8	300	300	119			
43			260	80	63	0.00	1.11		750	gamma_gas:0,8	300	300	124			
44			280	80	63	0.00	1.14		800	gamma_gas:0,8	300	300	128			
45			300	80	63	0.00	1.18		850	gamma_gas:0,8	300	300	132			
46			320	80	63	0.00	1.22		900	gamma_gas:0,8	300	300	137			
47			340	80	63	0.00	1.26		950	gamma_gas:0,8	300	300	142			
48			360	80	63	0.00	1.31		1000	gamma_gas:0,8	300	300	146			
49			380	80	63	0.00	1.36		1050	gamma_gas:0,8	300	300	152			
50			400	80	63	0.00	1.40		1100	gamma_gas:0,8	300	300	158			1
51			420	80	63	0.00	1.45		1150	gamma_gas:0,8	300	300	166			4
52			440	80	63	0.00	1.50		1200	gamma_gas:0,8	300	300	178			\perp
53			460	80	63	0.00	1.55		1250	gamma_gas:0,8	300	300	196			+
54																
55		Pa	ісход ГЖС				Доля га:	за в пото	ке (расхо	дная)			Вязко	сть сме	еси от да	ав,
56 57		5000				1.20						1.80				

Рис. 3.11 — Расчет параметров многофазного потока

=MF_p_gas_fraction_atma(X;20;fw_;J28)

где X соответствующие ссылки на ячейки с β_{gas} - K26, L26, M26

Рис. 3.12 — Графики для параметров многофазного потока

Далее для расчета вязкости отдельных фаз потока при различных P,T аналогично воспользуйтесь функциями.

Вязкость смеси μ_{mix} в Е98

=MF_Mumix_cP(Q_;fw_;C98;D98;PVRstr1_)

Вязкость газа μ_{gas} в F98

=PVT_Mug_cP(C98;D98;gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tr

Вязкость нефти μ_o в G98

=PVT_Muo_cP(C98;D98;gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tr И вязкость воды μ_w в H98

=PVT_Muw_cP(C98;D98;gamma_gas_;gamma_oil_;gamma_wat_;Rsb_;Rp_;Pb_;Tr

Рис. 3.13 — Разложение вязкости смеси на отдельные компоненты

Для самопроверки ответьте на следующие вопросы

- 1. Насколько изменится расход ГЖС при изменении температуры от 30 С до 100 С? Оцените в уме и проверьте себя на основе расчета
- 2. Может ли в потоке появиться свободный газ при давлении выше давления насыщения? Если да то при каких условиях?
- 3. Как изменится вязкость ГЖС при подъеме на поверхность в скважине? Оцените степень изменения в уме и проверьте себя на основе расчета

3.4 Расчет штуцера

Для контроля дебита и/или давления на добывающих скважинах вблизи устья может устанавливаться штуцер.

Расчет потока через данное гидравлическое сопротивление начинается с предварительного задания PVT свойств, параметров потока и конструкции элементов.

В упражнении предлагается рассчитать

1. Линейное давление

				_	F					1.0								
_ A	⊔ кнения по работе с макросами Unif	C	D	E		7.7	Н		J	K	L	M	N	0	Р	Q	R	5
	кнения по работе с макросами опп т характеристики штуцера	OC VDA			версия	1.1												
3	т характеристики штуцера																	
4																		
5																		
6 Физик	ко - химические свойства флюида	PVT																
7	Y _o	0.87		870	кг/м³			Какие парам Постройте за										
8	Yw	1		1000	кг/м³			Постройте за										
	- 10				_	-												
9	V _e	0.8		0.976	KE/M3			зависимость										
10	Vg R _{sb}	0.8	м ³ /м ³	0.976 92	KF/M ³ M ³ /T			Постройте ог	исанные вы					. Как изме	нится деби	т в этом с	лучае при	ı vmen
			м ³ /м ³ м ³ /м ³				:		исанные вы одель штуце					. Как изме	нится деби	ІТ В ЭТОМ С	лучае при	і умен
10	R _{sb}	80		92	м ³ /т		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измеі	нится деби	т в этом с	лучае при	і умен
10 11	R _{sb}	80 80	м³/м³	92 92	м ³ /т м ³ /т		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измеі	нится деби	т в этом с	лучае при	і умен
10 11 12	R _{sb} R _p P _{bcal}	80 80 120	м ³ /м ³ атма	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как изме	нится деби	ΙТ В ЭТОМ С	лучае при	і умен
10 11 12 13	R _{sb} R _p P _{b cal} T _{res}	80 80 120 100	м ³ /м ³ атма С	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измен	нится деби	т в этом с	лучае при	і умен
10 11 12 13 14	R _{pb} R _p P _{b cal} T _{res} B _{ob cal}	80 80 120 100	м ³ /м ³ атма С м3/м3	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как изме	нится деби	т в этом с	лучае при	і умен
10 11 12 13 14	R _{sb} R _p Ps _{cal} T _{res} Bob cal H _{ob cal}	80 80 120 100	м ³ /м ³ атма С м3/м3	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измеі	нится деби	ΙТ В ЭТОМ С	лучае при	і умен
10 11 12 13 14 15 16 Парам	R ₂₀ R _p P _{5 cal} T _{res} B _{60 cal} Hecal метры потока флюмда Г Температура на входе	80 80 120 100 1.2 1	м ³ /м ³ атма С м3/м3	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как изме	нится деби	ΙТ В ЭТОМ С	лучае при	і умен
10 11 12 13 14 15 16 Парам 17	R ₁₀ R ₅ P _{5 col} T _{res} B _{60 col} Heb col Heb col Hertpы потока флюмда Температура на входе	80 80 120 100 1.2 1	м ³ /м ³ атма С м3/м3 сП	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измен	нится деби	ІТ В ЭТОМ С	лучае при	і умен
110 111 112 113 114 115 116 Парам 117 118 119 Констр	R _{pb} R _p P _{s cal} T _{res} B _{sb c cal} H _{bb c cal} H _{bb c cal} иетры потока флюида Гемпература на входе	80 80 120 100 1.2 1	м ³ /м ³ атма С м3/м3 сП	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измен	нится деби	IT В ЭТОМ C	лучае при	і умен
10 11 12 13 14 15 16 Парам 17	R ₁₀ R ₅ P _{5 col} T _{res} B _{60 col} Heb col Heb col Hertpы потока флюмда Температура на входе	80 80 120 100 1.2 1	м ³ /м ³ атма С м3/м3 сП % С	92 92 122	м ³ /т м ³ /т МПа		:	Постройте ог Настройте мо	исанные вы одель штуце					. Как измен	нится деби	ІТ В ЭТОМ С	лучае при	і умен

Рис. 3.14 — Исходные данные для расчета потока через штуцер

- 2. Буферное давление
- 3. Дебит вместе с подстроечным параметром

C29	~	: X ✓ f _x {=MF_p_choke_i	atma(Qliq_;fw	_;d_choke;	Pbuf_;1;d_pi	pe;T_choke	;;PVTstr_)}							
1 2	(A	В	С	D	Е	F	G	Н	1	J	K	L	M	N
25		ние												
26 27		Дебит жидкости	10	м3/сут										1
28		Буферное давление	26	атм										
28 29 30 31		Рассчитать линейное давление	26.0	26.0	26.0	30.0	0.0		Перепад	давлений	0.04	30.00	0.00	1 1
30			Pout, atma	_intake_atm	p_out_atma	Tchoke_C	cfChoke_fr				dP_atm	Tchoke_C	cfChoke	J '
31		Линейное давление	1	атм										i —
33		Рассчитать буферное давление	2.3	2.3	1.0	30.0	0.0	1	Перепал	давлений	1.33	30.00	0.00	1 2
34		,	Pin, atma	intake_atm	p_out_atma	Tchoke_C	cfChoke_fr				dP_atm	Tchoke_C	cfChoke	
														_
. 36		Рассчитать подстроечный параметр												
. 37			0.91	26	1	30	0.91							_
38			cor fact	_intake_atm	p_out_atma	Tchoke_C	cfChoke_fr							-
· 39		Рассчитать дебит через штуцер												_
. 41		т ассчитать десит через штуцер	10	26	1	30	0.91							3
. 42			Qliq		p_out_atma									1 3
· 43					_									

Рис. 3.15 — Расчет давлений и дебитов через ограничитель

Стоит отметить, что некоторые функции возвращают результат в виде массивов, которые занимают несколько ячеек. (Это можно определить по наличию фигурных скобок в строке формул). Поэтому для выдачи правильного результата необходимо выделить диапазон ячеек для будущего расположения массива. (Он выделен синим цветом; если диапазон окажется большим, в лишних ячейках появится сообщение "Н/Д"). После выделения диапазона наберите необходимую формулу и нажмите сочетание клавиш Ctrl+Shift+Enter.

Пользуясь инструкцией выше, для расчета линейного давления по буферному выделите диапазон C29:G30, вставьте следующую функцию в строку формул и после нажмите сочетание клавиш Ctrl+Shift+Enter.

```
=MF_p_choke_atma(Qliq_;fw_;d_choke;Pbuf_;1;d_pipe;T_choke;;PVTstr_)
```

Если Вы все сделали правильно, то Вы увидите массив значений из двух строк: строка названий параметров и их значения.

Аналогично для расчета перепада давления

=MF_p_choke_atma(Qliq_;fw_;d_choke;Pbuf_;1;d_pipe;T_choke;;PVTstr_)

Расчет буферного давления по линейному

=MF_p_choke_atma(Qliq_;fw_;d_choke;Plin_;0;d_pipe;T_choke;;PVTstr_)

И перепад давления для данного случая

=MF_dp_choke_atm(Qliq_;fw_;d_choke;Plin_;0;d_pipe;T_choke;;PVTstr_)

Для вычисления дебита с помощью давлений предварительно необходимо рассчитать подстроечный параметр

=MF cf choke fr(Qliq ;fw ;d choke;Pbuf ;Plin ;d pipe;T choke;PVTstr

После возможно рассчитать уже сам дебит через штуцер

=MF_qliq_choke_sm3day(fw_;d_choke;Pbuf_;Plin_;d_pipe;T_choke;C37;PVT

Чтобы построить график давления на входе штуцера от дебита при разных давлениях на выходе воспользуйтесь функцией для полного заполнения таблицы

=MF p choke atma(C\$49;fw ;d choke;\$B50;0;d pipe;T choke;0;PVTstr)

Рис. 3.16 — Давление на входе штуцера в зависимости от различных дебитов на выходе и давлений

Теперь Вы можете ответить на следующие вопросы:

- 1. Какие параметры описывают гидравлический элемент штуцер? какие надо задать, а какие можно рассчитать?
- 2. Постройте зависимость давления на входе в штуцер от дебита. Для всех ли значений дебита можно построить такую зависимость?
- 3. Настройте модель штуцера по известному дебиту и перепаду давления. Как изменится дебит в этом случае при уменьшении диаметра штуцера

3.5 Расчет распределения давления в трубе

На распределение давления в трубе среди прочих параметров влияют режим потока газожидкостной смеси и явление проскальзывание газа. Недоучет данных параметров может привести к значительным ошибкам. Методы для расчета распределения давления можно разделить на две категории: корреляции, полученные экспериментальным путем и механистические модели, в основе которых заложены физические модели.

Для выполнение упражнения задайте PVT свойства флюидов, свойства потока и параметры трубы.

		-		_											_		_	
Vanavas	В ения по работе с макросами	C Unifice V/DA	D	E	F версия	7.7	Н		J	K	L	М	N	0	Р	Q	R	S
	войств многофазного потока в				версия	1.1												
	,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
Филико	химические свойства флю	ana DVT																
Физико -	Уо Уо	0.87		870	KT/M ³		• Построй	іте зависим	ость распред	еление давле	ния в трубе	снизу ввер:	к и сверху	вниз				
-					KT/M ³	-	P	о упражени	_									
	Yw	1		1000			вопросы п	о упражени	ю									
	Y ₈	0.8		0.976	Kr/M ³		1. Какие па	раметры в	пияют на пере	пад давления	в трубе?							
	R _{sb}	80	M ³ /M ³	92	м³/т					ние ниже по г				ем выше г	по потоку (на входе)?		
	R _p	80	M ³ /M ³	92	м ³ /т					ет выбор гид		і корреляці	и?					
	Pbcal	120	атма	122	МПа		4. Насколы	ко сильно в	лияет на расч	ет температуј	oa?							
	T _{res}	100	С	212	Φ													
	B _{ob cal}	1.2	M ³ /M ³															
		1.2	сП															
Парамет	µ _{об са!} гры потока флюида		CII															
парамет	Q.	50	M ³ /cyT															
	f _w	20	%															_
Парамет																		
	L	200	М															
	ID	62	ММ															
	θ	90	•															
	PO	30	атма															
	P1	40	атма															
	T0	40	°C															
	T1	30	°C															

Рис. 3.17 — Исходные данные для расчета распределения давления

Где параметры трубы расшифровываются следующим образом:

L - длина трубы, м

ID - внутренний диаметр, мм

 θ - угол наклона трубы от горизонтали, град

P0, P1 - давление на верхнем и нижнем конце трубы соответственно, атм

T0, T1 - температура на верхнем и нижнем конце трубы соответственно, С

Расчет давления в обоих направлениях ведется с помощью одной функции, возвращающий массив из 2 значений - давления и температуры. Выделите диапазон E33:F33, вставьте функцию

и нажмите сочетание клавиш Ctrl+Shift+Enter. Далее заполните таблицу "методом протяжки" сверху-вниз

Обратите внимание, что расчет на каждом шаге основывается на значениях предыдущего вычисления, требуются так называемые граничные условия.

Расчет давления снизу-вверх выполните аналогично с помощью функции, "протянув" ее снизу-вверх

Рис. 3.18 — Распределение давления по трубе сверху-вниз и снизу-вверх

- 1. Какие параметры влияют на перепад давления в трубе?
- 2. Может ли в трубопроводе давление ниже по потоку (на выходе) быть больше чем выше по потоку (на входе)?
- 3. Насколько сильно влияет на расчет выбор гидравлической корреляции PVT свойства?
- 4. Насколько сильно влияет на расчет температуры давления?

3.6 Расчет коэффициентов сепарации

Процессы сепарации на приеме погружного оборудования значительно влияют на процесс добычи. Как при естественной, так и при искусственной сепарации (при применении газосепараторов) меняются свойства многофазного потока, уменьшается газлифтный эффект, изменяется режим работы центробежного насоса.

В данном упражнении помимо стандартного определения PVT свойств требуется задать термобарические условия на приеме погружного оборудования (в месте, где происходит сепарация) и конструктивные параметры

1	Упражне	ния по работ	е с макрос	ами Unifloc	VBA	версия	7.7			
2	Расчет к	оэффициенто	в сепараці	и						
3										
4										
5										
6	Физико -	химические	свойства ф	люида				Дополнительные вопросы по упражению (направления исследований)		
7		V o	0.875			875	Kr/M ³	дополнительные вопросы по управлению (поправления исследования)		
8		Yw	1			1000	Kr/m³	1. От каких параметров будет зависеть коэффициент сепарации?		
9		Yg	0.9			1.098	KT/M ³			
10		R _{sb}	80	m3/m3	м ³ /м ³	91	м³/т			
11		R _o	80	м3/м3	M ³ /M ³	91	м³/т			
12		Phon	120	атм	атма	122	МПа			
13		Tres	120	С	С	248	Φ			
14		B _{ob cal}	1.2	м3/м3						
15		μ _{ob cal}	1	cP						
16		f _w	1	%						
17										
18	Данные	по скважине								
19		d _{cas}	125	MM						
20		d _{intake}	100	MM						
21		P _{intake}	30	атм						
22		Tintake	80	С						
23					_					
24										_
25 26		PVI строка	gamma_gas	::0,900;gamn	na_oii:0,875;gami	ma_wat:1,000;rsb	_m3m3:80,000;rp_m3	0,000;pb_atma:120,000;tres_C:120,000;bob_m3m3:1,200;muob_cP:1,000;PVTcorr:0;ksep_fr:0,000;pksep_atma:-1,000;tks	.ep_C:-1,0	700

Рис. 3.19 — Исходные данные для сепарации

где

 d_{cas} - диаметр обсадной колонны, мм

 d_{intake} - диаметр приема погружного оборудования, мм

 P_{intake} - давление на приеме, атм

 T_{intake} - температура на приеме, С

Для вычисления коэффициента естественной сепарации в зависимости от дебита вставьте в ячейку E32 следующую формулу

```
=MF ksep natural d(C32;wc ;Pintake ;Tintake ;Dintake ;Dcas ;PVT str
```

Для проведения экспериментов по влиянию изменения диаметра обсадной колонны воспользуйтесь в ячейке F32 формулой

```
=MF_ksep_natural_d(C32;wc_;Pintake_;Tintake_;Dintake_;Dcas_*cf_dcas_
```

При этом в ячейке F30 с помощью коэффициента Вы можете варьировать диаметр обсадной колонны

Для расчета доли газа в газосепараторе применяется функция

=MF_gas_fraction_d(Pintake_;Tintake_;0;PVT_str_)*(1-F32)

Коэффициент сепарации газосепаратора

=MF ksep gasseparator d(gassep type;G32;C32)

При этом можно менять тип газосепаратора в ячейке Н30

Общий коэффициент сепарации

=MF ksep total d(E32;H32)

Рис. 3.20 — Результаты расчета естественной и искусственной сепарации

Вопросы к упражнению

- 1. От каких параметров будет зависеть коэффициент сепарации?
- 2. Как взаимосвязана естественная и искусственная сепарация?

3.7 Анализ работы ЭЦН

Сегодня доминирующая доля нефти в РФ добывается при помощи ЭЦН. Требуется детальное знание об основных условиях эксплуатации данного оборудования, режимах работы, возможных осложнениях по причине высокой вязкости продукции, газосодержания, механических примесей и т.д.

Наиболее ценную информацию о работе насоса может дать его характеристика: зависимость параметров работы ЭЦН - напора, потребляемой мощности, перепада давления, КПД, от подачи (дебита скважины)

Для анализа работы скважины, оснащенной УЭЦН, требуются следующие исходные данные

- 1. Физико химические свойства флюида
- 2. Данные по скважине
- 3. Данные по ЭЦН
- 4. Параметры пласта

PVT свойства задаются аналогично предыдущим упражнениям, а для параметров, характеризующих скважину, приняты следующие обозначения

 H_{mes} - глубина скважины измеренная (вдоль ствола скважины), м

 $H_{mes}-H_{vert}$ - удлинение ствола скважины, м

 H_{pump} - глубина спуска насоса, м

 ID_{cas} - внутренний диаметр обсадной колонны, мм

 OD_{tub} - внешний диаметр НКТ, мм

 ID_{tub} - внутренний диаметр НКТ, мм

 D_{intake} - диаметр приемной сетки ЭЦН, мм

 P_{buf} - буферное давление, атм

 P_{intake} - давление на приеме ЭЦН, атм

 T_{intake} - температура на приеме ЭЦН, С

 P_{dis} - давление на выкиде ЭЦН, атм

 $P_{w\,f}$ - давление на забое, атм

 Q_{liq} - дебит жидкости в поверхностных условиях, м3/сут

 f_w - обводненность в поверхностных условиях, %

Параметры, описывающие ЭЦН:

ЭЦН Q_{nom} - номинальная подача ЭЦН, м3/сут

ЭЦН H_{nom} - номинальная напом ЭЦН, м

F - частота питающего тока двигателя, Γ ц

ЭЦН ID - идентификационный номер насоса (по формуле, см. ниже), находящийся в базе Unifloc 7.7 VBA

ЭЦН имя - обозначение насоса: название, габарит и номинальная подача (по формуле, см. ниже)

ЭЦН Q_{max} - максимальная производительность насоса (по формуле, см. ниже), м3/сут

Ступени - количество ступеней, исходя из общего напора ЭЦН и напора одной ступени (по формуле, см. ниже), шт

 K_{sen} - коэффициент сепарации газосепаратора, %

	Упражнения по		макросами	Unifloc VBA		версия	7.7						
	Анализ работы Э	ЦН											
3								 Дополнительны	не вопросы г	по упражению	(направлен	ия исслел	овані
5								 дополительн	bonpocon	io yripamerimo	(manpassiem	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,000
6	Физико - химиче		йотва фак	400				1. Какие парам	етры влияют	на перепад д	авления в на	acoce?	
7		Y ₀	0.87	пда	870	KI/M3							
8		Yw	1		1000	кг/м³							
			-			Kr/M ³	-						
9		Yg	8.0		0.976								
10		R _{sb}	80	m³/m³	92	м ³ /т							
11		R _p	80	m³/m³	92	м ³ /т							
12	1	bal	120	атма	122	МПа							
13		Tres	100	С	212	Φ							
14	Е	ob cal	1.2	M ³ /M ³									
15	ц	ob cal	20	сП									
16													
17	Данные по сква												
18	I	H _{mes}	2000	M									
19	H _{me}	s-H _{vert}	0	М									
20	H	pump	1500	М									
21	1	D _{cas}	125	ММ									
22	C	D _{tub}	73	ММ									
23		D _{tub}	62	ММ									
24		intake	100	ММ									
25		P _{buf}	20	атм									
26	P	intake	34	атм									
27	Т	intake	80	С									
28		P _{dis}	150	атм									
29		P _{wf}	70	атм									
30		Q _{liq}	50	м3/сут									
31		f _w	0	%									

Рис. 3.21 — Исходные данные для свойств флюида и параметров скважины

 P_{sep} - давление сепарации, атм

 T_{sep} - температура сепарации, С

Данные о пласте:

 P_{res} - пластовое давление, атм

PI - коэффициент продуктивности скважины (по формуле, см. выше в упражнении IPR), м3/сут/атм

 $\frac{dT}{dL}$ - геотермический градиент, град / $100~\mathrm{M}$

	33	эцн			
	34		ЭЦН Q _{пот}	110	м3/сут
	35		ЭЦН Н _{пот}	2000	М
-	36		F	50	Гц
	37		ЭЦН ID	737	
	38		ЭЦН имя	BHH5-125	
	39		ЭЦН Q _{max}	230	
	40		Ступени	324	шт
[.	41		K _{sep rc}	90%	
	42		P _{sep}	80.00	атм
	43		T _{sep}	80.00	С
	44				
	45	Пласт			
	46		Pres	250	атм
	47		PI	0.29	м3/сут/атм
	48		dT/dL	3	град/100 м
	49		N	20	

Рис. 3.22 — Исходные данные для ЭЦН и пласта

Для получения идентификационного номера насоса в базе была использована формула

```
=ESP_id_by_rate (Q_ESP_)

Для определения обозначения ЭЦН

=ESP_name (C37)

Расчет максимально возможного дебита

=esp_max_rate_m3day(Freq_; PumpID_) *1

Количество ступеней
```

=ЦЕЛОЕ(Head_ESP_/ESP head m(Q ESP ;1;;PumpID))

Также для удобства использования параметры насоса: ID, напор и рабочая частота, зашифровываются в строку с помощью функции

```
=ESP Encode string(PumpID ; Head ESP ; Freq )
```

Свободный газ негативно влияет на работу ЭЦН. В ячейке D51 вычисляется объемная доля газа на приеме сепаратора с помощью формулы

```
=MF_gas_fraction_d(Pintake_;Tintake_;fw_;PVTstr)
```

В соседней ячейке D50 для удобного расположения задается вязкость в с Π у-аз

Построение напорной характеристики данного насоса выполняется с учетом вязкости перекачиваемой продукции. Реализованный метод пересчета характеристики с воды на вязкую жидкость Института Гидравлики позволяет учитывать изменение рабочих параметров из-за данного негативного влияния.

Для вычисления напора в метрах водного столба в ячейке D54 воспользуйтесь формулой

```
=ESP_head_m(C54; NumStage_; Freq_; PumpID_; mu)
КПД ЭЦН в долях единиц

=ESP_eff_fr(C54; NumStage_; Freq_; PumpID_; mu)
Потребляемую ЭЦН мощность в Вт

=ESP Power W(C54; NumStage ; Freq ; PumpID ; mu)
```

Расчет перепада давления, развиваемого насосом, может происходить методом "сверху-вниз" и "снизу-вверх" при этом расчет перепада температур только методом "снизу-вверх". Функция расчета перепада давления и температуры возвращает массив значений, т.е. одновременно перепад давления и температуры. Кроме того, входным параметром для данной функции является направление расчета. Для вычисления выделите диапазон G54:H54, наберите формулу

```
=ESP_dP_atm(C54;fw_;Pintake_;NumStage_;Freq_;PumpID_;PVTstr;Tintake_
```


Рис. 3.23 — Напорные характеристики ЭЦН с поправкой на вязкость

и после нажмите сочетание клавиш Ctrl+Shift+Enter. Далее протяните результат до полного заполнения двух столбцов.

Зная давление на приеме и перепад давления в ЭЦН, давление на выходе ЭЦН можно легко посчитать по формуле

=G54+Pintake

Предварительно задав давление на выходе ЭЦН в ячейке L51 возможно посчитать перепад давления методом "сверху-вниз" аналогичным образом по формуле

=ESP_dP_atm(C54; fw_; Pdis_; NumStage_; Freq_; PumpID_; PVTstr; Tintake_; Ті И давление на входе, зная давление на выходе и перепад давления =Pdis-J54

Вопросы для упражнения:

- 1. Какие параметры влияют на перепад давления в насосе?
- 2. Насколько сильно влияет вязкость на напорные характерситики ЭЦН?
- 3. Как влияет на работу ЭЦН изменение частоты?

Рис. 3.24 — Расчет перепада давления и температур в ЭЦН в зависимости от дебита

3.8 Набор расчетных модулей анализа скважины

Пример использования алгоритмов Unifloc 7.7 VBAприведен в файле UF7_calc_well.xlsm.

Файл содержит набор расчетных модулей позволяющих провести анализ данных описывающих работу скважины с применением различных методов добычи.

3.8.1 Расчетный модуль анализа и настройки PVT свойств