# Dian Wang

 $\square +1$  (617)-602-2921  $| \square \square \square \square \square$  wang.dian@northeastern.neu.edu  $| \square \square \square \square \square \square \square \square$ 

### **EDUCATION**

Northeastern University

Ph.D. in Computer Science

M.S. in Computer Science; GPA: 4.00/4.00

Sichuan University

B.Enq. in Computer Science and Engineering; GPA: 3.56/4.00

Boston, MA, USA

Jan. 2020 – Present

Sept. 2017 – Dec. 2019

Chengdu, China

Sept. 2013 – June 2017

### EXPERIENCE

# The Helping Hands Lab, Northeastern University

Boston, MA, USA

Research Assistant

Jan. 2018 - Present

### Equivariant reinforcement learning in robotic manipulation

- Defined the symmetric properties of reinforcement learning in robotic manipulation.
- Proposed neural network architectures for improving training efficiency in robotic manipulation tasks.

### BulletArm reinforcement learning environments

- Implemented an open-sourced robotic reinforcement learning environment library using PyBullet.
- Built a real-world experimental platform using a UR5 arm.

## Policy learning in SE(3) action spaces

- Designed a reinforcement learning framework for robotic manipulation tasks.
- Proposed an imitation learning algorithm for large action spaces.

#### Assistive robotic pick-and-place system

- Built an assistive robotic system to assist people with disabilities in household manipulation tasks.
- Conducted pick-and-place experiments in an open world environment.

# Institute of Computing Technology, Chinese Academy of Sciences

Beijing, China

Research Intern

July. 2016 - Aug. 2026

• Led team of 4 interns to implement a user dynamic detection app based on data from gravity sensor.

#### **Publications**

- 18 **Dian Wang**, Xupeng Zhu, Jung Yeon Park, Robert Platt, and Robin Walters. A general theory of correct, incorrect, and extrinsic equivariance. Under review. <u>Link</u>
- 17 Hai Huu Nguyen, David Klee, Andrea Baisero, **Dian Wang**, Robert Platt, and Christopher Amato. Equivariant reinforcement learning under partial observability. Under review
- 16 Haojie Huang, **Dian Wang**, Arsh Tangri, Robin Walters, and Robert Platt. Leveraging pick and place symmetries. Under review
- 15 Xupeng Zhu, **Dian Wang**, Guanang Su, Ondrej Biza, Robin Walters, and Robert Platt. On robot grasp learning using equivariant models. Under review
- 14 **Dian Wang**, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin Walters, and Robert Platt. The surprising effectiveness of equivariant models in domains with latent symmetry. In *International Conference on Learning Representations (ICLR)*, 2023. **Spotlight**. Acceptance Rate 8%. <u>Link</u>
- 13 Mingxi Jia\*, **Dian Wang**\*, Guanang Su, David Klee, Xupeng Zhu, Robin Walters, and Robert Platt. Seil: Simulation-augmented equivariant imitation learning. In *International Conference on Robotics and Automation (ICRA)*, 2023. \*Equal contribution. Acceptance Rate: 43%. Link
- 12 Haojie Huang, **Dian Wang**, Xupeng Zhu, Robin Walters, and Robert Platt. Edge grasp network: A graph-based SE(3)-invariant approach to grasp detection. In *International Conference on Robotics and Automation (ICRA)*, 2023. Acceptance Rate: 43%. <u>Link</u>
- 11 **Dian Wang**, Mingxi Jia, Xupeng Zhu, Robin Walters, and Robert Platt. On-robot learning with equivariant models. In *Conference on Robot Learning (CoRL)*, 2022. Acceptance Rate: 39%. <u>Link</u>
- 10 Hai Huu Nguyen, Andrea Baisero, **Dian Wang**, Christopher Amato, and Robert Platt. Leveraging fully observable policies for learning under partial observability. In *Conference on Robot Learning (CoRL)*, 2022. Acceptance Rate: 39%. Link

- 9 Dian Wang\*, Colin Kohler\*, Xupeng Zhu, Mingxi Jia, and Robert Platt. Bulletarm: An open-source robotic manipulation benchmark and learning framework. In *The International Symposium on Robotics Research (ISRR)*, 2022. \*Equal contribution. Acceptance Rate 49%. <u>Link</u>
- 8 Haojie Huang, **Dian Wang**, Robin Walters, and Robert Platt. Equivariant transporter network. In *Robotics: Science and Systems (RSS)*, 2022. Acceptance Rate 32%. <u>Link</u>
- 7 Xupeng Zhu, **Dian Wang**, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. Sample efficient grasp learning using equivariant models. In *Robotics: Science and Systems (RSS)*, 2022. Acceptance Rate 32%. <u>Link</u>
- 6 **Dian Wang**, Robin Walters, and Robert Platt. SO(2)-equivariant reinforcement learning. In *International Conference on Learning Representations (ICLR)*, 2022. **Spotlight**. Acceptance Rate 5%. <u>Link</u>
- 5 **Dian Wang**, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant Q learning in spatial action spaces. In Conference on Robot Learning (CoRL), 2021. Acceptance Rate: 34%. Link
- 4 Alexander Wilkinson, Michael Gonzales, Patrick Hoey, David Kontak, **Dian Wang**, Noah Torname, Sam Laderoute, Zhao Han, Jordan Allspaw, Robert Platt, and Holly Yanco. Design guidelines for human-robot interaction with assistive robot manipulation systems. *Paladyn, Journal of Behavioral Robotics*, 2021. <u>Link</u>
- 3 Ondrej Biza, **Dian Wang**, Robert Platt, Jan-Willem van de Meent, and Lawson LS Wong. Action priors for large action spaces in robotics. In *International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*, 2021. Acceptance Rate: 25%. <u>Link</u>
- 2 **Dian Wang**, Colin Kohler, and Robert Platt. Policy learning in SE(3) action spaces. In *Conference on Robot Learning (CoRL)*, 2020. Acceptance Rate: 34.7%. <u>Link</u>
- 1 Dian Wang, Colin Kohler, Andreas ten Pas, Alexander Wilkinson, Maozhi Liu, Holly Yanco, and Robert Platt. Towards assistive robotic pick and place in open world environments. In *The International Symposium on Robotics Research (ISRR)*, 2019. <u>Link</u>

### Presentations

| Boston, MA, USA        |
|------------------------|
| Mar. 2023              |
| Auckland, New Zealand  |
| Dec. 2022              |
| Auckland, New Zealand  |
| Dec. 2022              |
| Auckland, New Zealand  |
| Dec. 2022              |
| Providence, RI, USA    |
| June 2022              |
| New York City, NY, USA |
| June~2022              |
| Philadelphia, PA, USA  |
| May~2022               |
| Online                 |
| Apr. 2022              |
| Online                 |
| Nov. 2021              |
| Online                 |
| Nov. 2020              |
| Boston, MA, USA        |
| Dec. 2019              |
| Hanoi, Vietnam         |
| Dec. 2019              |
|                        |

### Teaching

# Mentoring

| Mingxi Jia  | M.S. Student at Northeastern University          | Dec. 2021 - Present    |
|-------------|--------------------------------------------------|------------------------|
| Guanang Su  | M.S. Student at Northeastern University          | Dec. 2021 - Present    |
| Neel Sortur | Undergraduate Student at Northeastern University | May 2021 - Oct. 2022   |
| Zhengyi Ou  | M.S. Student at Northeastern University          | Sept. 2020 - Dec. 2021 |
| Yida Niu    | M.S. Student at Northeastern University          | Sept. 2020 - Aug. 2021 |

# PROFESSIONAL SERVICE

Lead Organizer, RSS 2023 Workshop on Symmetries in Robot Learning

Reviewer: ICRA 2023, CoRL 2022, RAL 2022, T-RO 2022, ICRA 2022, IROS 2021, ICRA 2019

# Honers & Awards

| Best Paper Award Finalist                    | ICRA 2022 Workshop on Scaling Robot Learning | May 2022     |
|----------------------------------------------|----------------------------------------------|--------------|
| Khoury College Graduate Research Fellowship  | Northeastern University                      | Aug. 2019    |
| First Place of Outstanding Bachelor's Thesis | Sichuan University                           | $June\ 2017$ |

# $S{\scriptstyle KILLS}$

**Programming:** Python, Java, C++

Tools: PyCharm, IntelliJ IDEA, Git, LaTeX, Final Cut Pro

Robotics: UR5, Baxter, Robotic Operating System (ROS), PyBullet, OpenRave

Machine Learning: PyTorch, NumPy