Metodi Numerici per il Calcolo

Esercitazione 5: Interpolazione Polinomiale

A.A.2024/25

Scaricare dalla pagina web del corso l'archivio matlab_mnc2425_5.zip e scompattarlo nella propria home directory. Verrà creata una cartella con lo stesso nome contenente alcuni semplici script e function Matlab/Octave. Si svolga la seguente esercitazione che ha come obiettivo quello di sperimentare l'interpolazione polinomiale di dati e funzioni, quindi di punti e curve 2D.

A. Interpolazione polinomiale

1. Interpolazione polinomiale di dati: forma di Newton

Si completi lo script spolint_newt_dati.m, per l'interpolazione polinomiale nella base di Newton, del set di dati dataset1.txt. (Sugg. si utilizzino le function newton.m, lsolve.m e newtval.m presenti nella cartella).

2. Interpolazione polinomiale di dati: forma di Lagrange e di Bernstein

Si ripeta l'esercizio precedente completando gli script spolint_lagr_dati.m e spolint_bern_dati.m, per l'interpolazione polinomiale nelle basi di Lagrange e Bernstein. Si utilizzi la function lagrval2.m (presente nella cartella) e le function bernst_val.m e decast_val.m entrambe del toolbox anmglib_4.1.

3. Interpolazione polinomiale di funzione: base di Lagrange

Si completi lo script $spolint_lagr_fun.m$ per implementare l'interpolazione polinomiale di grado n di una funzione f(x), $x \in [a, b]$ a partire da $(x_i, f(x_i))_{i=0,\dots,n}$ utilizzando la base di Lagrange. Prevedere due differenti set di punti x_i di interpolazione (equispaziati e di Chebyshev; si utilizzi la function chebyshev2.m presente nella cartella). Eseguire più volte per sperimentare l'interpolazione di funzione all'aumentare del grado n e al variare della distribuzione dei punti (equispaziati e punti di Chebyshev):

Si consideri la funzione test di Runge (function runge.m):

$$f(x) = 1/(1+x^2)$$
 $x \in [-5, 5].$

4. Interpolazione polinomiale di funzioni: base di Bernstein

Si completi lo script spolint_bern_fun.m simile a spolint_lagr_fun.m, ma che utilizzi la forma di Bernstein.

(Sugg. per definire la matrice del sistema lineare si usi la function bernst_val.m e per valutare il polinomio interpolante si utilizzi la function decast_val.m del toolbox anmglib_4.1).

5. Sulla convergenza dell'interpolante polinomiale

Si modifichi lo script dell'esercizio A.3 (lo si chiami $spolint_lagr_fun_test.m$) per sperimentare l'interpolazione delle seguenti funzioni test all'aumentare del grado n e al variare della distribuzione di punti (equispaziati e punti di Chebyshev).

$$\begin{array}{ll} \mathtt{fun1.m} & f(x) = \sin(x) - \sin(2x) & x \in [-\pi, \pi] \\ \mathtt{fun2.m} & f(x) = \left\{ \begin{array}{ll} 0.5 & se & x \geq 0 \\ -0.5 & se & x < 0 \end{array} \right. & x \in [-2, 2] \\ \mathtt{fun3.m} & f(x) = e^x & x \in [-2, 1]. \end{array}$$
 Per ogni funzione test eseguire il codice più volte con

Per ogni funzione test eseguire il codice più volte con differenti valori del grado e tipo di distribuzione di punti; fare delle considerazioni sulla convergenza dell'interpolante alla funzione.

B. Curve di Bézier e di Bézier a tratti di interpolazione

- 1. Dato un set di punti 2D lo si vuole interpolare con una curva 2D di Bézier. Si completi lo script sbezierinterp_p2d.m per realizzare quanto richiesto; si utilizzi la function curv2_bezier_interp del toolbox anmglib_4.1.
- 2. Data una curva 2D in forma parametrica (vedi function c2_curv3_pol) la si vuole interpolare con una curva di Bézier. Si completi lo script sbezierinterp_curv2d.m utilizzando come parametri di interpolazione sia punti equispaziati che punti di Chebishev. Si determini e analizzi l'errore di interpolazione all'aumentare del numero di punti con cui si campiona la curva analitica.
- 3. Dato un set di punti 2D (vedi file paperino.txt) lo si vuole interpolare con una curva di Bézier cubica a tratti (interpolazione di Hermite). Si consideri la function curv2_ppbezierCC1_interp del toolbox anmglib_4.1 e la si utilizzi per ottenere quanto richiesto. (Sugg. si completi lo script sppbezierinterp_p2d.m)
- 4. Data una curva 2D in forma parametrica la si vuole interpolare con una curva di Bézier cubica a tratti C^1 (interpolazione di Hermite), campionando valori e valori di derivata prima.

Lo script sppbezierinterp_curve2d_circle.m vuol far questo per la curva circle (vedi function cp2_circle.m), utilizzando la function del toolbox anmglib_4.1:

ppP=curv2_ppbezierCC1_interp_der(Q,Q1,tpar)

Come argomenti sono previsti un array di punti 2D (Q), un array di vettori tangenti nei punti (Q1) e l'array dei valori parametrici (tpar); l'output consiste nella struttura della curva di Bézier a tratti di interpolazione. Si richiede di valutare l'errore fra la curva analitica e l'interpolante. Sperimentare poi lo script per interpolare altre curve in forma parametrica di cui sia nota l'espressione analitica.