Avances en las medidas de actividad de estrellas jóvenes en el Complejo molecular de Orión

T Tauris

Estrellas jóvenes de tipo tardío asociada con sus nubes moleculares parentales, pero no incrustadas en ellas.

Sus tipos espectrales típicos son: F, G, K, M.

Tienen mayor concentración de Litio que una estrella de Secuencia Principal.

Tipos de T Tauris

Su clasificación está basada en la interacción con las envolturas gruesas de gas y polvo, siendo Clase 0 e I las que aun están dentro de la envolvente, Clase II las que tienen discos circunestelares (CTTs) y las de Clase II las que no tienen discos de acreción (WTTs).

Por sus bajas temperaturas superficiales, son mayoritariamente estudiadas el IR.

Para las T Tauris de Clase II se espera mayor emisiones de Rx que en el caso de las WTTs, producto del proceso de acreción.

Class I

Class II (classical T Tauri star)

Class III (weak-lined T Tauri star)

Actividad estelar

Actividad Magnética es un término colectivo utilizado para todos los fenómenos causados por la acción de un dínamo estelar: Manchas fotosféricas, emisión cromosférica y coronal.

La actividad magnética es una función de la edad y del tipo espectral.

Actividad estelar

$$R'_{\rm HK} = \frac{F'_{\rm H} + F'_{\rm K}}{\sigma T_{\rm eff}^4}$$

HK Call

IRT Call

Región de estudio

- 35 campos
- 1 grado circular
- Regiones: Sigma Ori,

Lambda Ori, 25 Ori,

OMC.

Correlación con otros parámetros

Espectros con HECTOSPEC

Datos analizados

Base datos Briceño + Calvet

Sample_GAIA_2MASS_massage.cat

1780 espectros 5477 espectros

1208 espectros

Parámetros de Massage

- RA

- CBT

- Dec

- MemFl

- Log g

- Parallax

- SpN

- Masa + Me

- T + Te

Luminosidad

- Edad + error

Adicionalmente, se calcularon las columnas de Radio y color B-V (a partir de la interpolación de la T en la tabla de Esplin & Luhman).

EW línea H obs vs T_massage + log g

No hay mucha variación entre los EWs teóricos para los rangos de log g simulados en Phoenix.

Los valores de |EW| aumentan a menor T.

Los cálculos de EW' se harán usando el log g de Phoenix más cercano.

Falta evaluar cuántos de estos objetos son de campo.

Membresía de los objetos observados

A menor temperatura, aparentemente los |EWs| de los objetos de campo son menores a las TTs confirmadas por el catálogo de B19.

Mayores valores de |EW'| se asocian con mayor actividad.

$$W = \int_{\lambda_1}^{\lambda_2} \frac{F_c - F_{\lambda}}{F_c} d\lambda$$

Mayores valores de |EW'| se asocian con mayor actividad.

Las estrellas de campo sistemáticamente tienen menor |EW'| que las TTs

EW línea K obs vs T_massage + log g

No hay mucha variación entre los EWs teóricos para los rangos de log g simulados en Phoenix.

Los valores de |EW| aumentan a menor T.

Falta evaluar cuántos de estos objetos son de campo.

Membresía de los objetos observados

A menor temperatura, aparentemente los |EWs| de los objetos de campo son menores a las TTs confirmadas por el catálogo de B19.

EW línea K obs [TTs] vs T_massage

Mayores valores de |EW'| se asocian con mayor actividad.

Mayores valores de |EW'| se asocian con mayor actividad.

Las estrellas de campo sistemáticamente tienen menor |EW'| que las TTs

Comparación entre los EWs de las líneas HK

Método seleccionado para calcular el continuo en las líneas HK

Method 2: from standard magnitudes

** this method does not take into account the non photospheric excess at the continuum of the line

1- Correct by extinction the magnitude:

Example: a K5 star (VIc_o=1.44; Teff=4140K) with EW_K=-6.03.

V= 14.269, Ic=12.573 (Hsu+2012) . → Av=0.66

Vo=13.61

- 2- Choose a standard color table that includes U, B and V band: e.g. Kenyon & Hartmann 1995.
- 3- From the visual magnitude and the standard table, estimate the $\bar{B}o$ and the Uo for the star. For K5 star UB=2.22 and BV=1.16 \rightarrow Bo=14.77, Uo=16.99
- 4- Estimate the flux at U, B band: F_3600 and F_4400

 $\begin{array}{lll} FV_obs=363.1*10^{(-0.4"Vo)}=> & 1.30625e-14 \ (erg/cm^2.s.A) \ at \ 0.55 \ microns \\ FB_obs=632*10^{(-0.4"Bo)}=> & 7.81118e-15 \ (erg/cm^2.s.A) \ at \ 0.44 \ microns \\ FU_obs=417.5*10^{(-0.4"Uo)}=> & 1.94382e-15 \ (erg/cm^2.s.A) \ at \ 0.36 \ microns \\ \end{array}$

5.- By interpolation and using the F_3600 and F_4400, estimate the flux at 3933A. Assume this value as the flux of the continuum if the K-line

Fcont=4.4e-15 (erg/cm².s.A)

Se interpola el Fcont para la línea H y para la línea K.

Conversión de los colores Gaia a Johnson

Table 5.8: Coefficients of the polynomials in common with 2MASS and GSC2.3 for sources observed in Gaia DR2.

		Johnson-Cou	sins relationships		
		V - I	$(\mathbf{V} - \mathbf{I})^2$	$(\mathbf{V} - \mathbf{I})^3$	σ
G-V	-0.01746	0.008092	-0.2810	0.03655	0.04670
$G_{ m BP}-V$	-0.05204	0.4830	-0.2001	0.02186	0.04483
$G_{ m RP}-V$	0.0002428	-0.8675	-0.02866		0.04474
$G_{ m BP}-G_{ m RP}$	-0.04212	1.286	-0.09494		0.02366
		V - R	$(\mathbf{V} - \mathbf{R})^2$	$\left(\mathbf{V}-\mathbf{R}\right)^3$	σ
G - V	-0.02269	0.01784	-1.016	0.2225	0.04895
		$\mathbf{B} - \mathbf{V}$	$(\mathbf{B} - \mathbf{V})^2$	$(\mathbf{B} - \mathbf{V})^3$	σ
G-V	-0.02907	-0.02385	-0.2297	-0.001768	0.06285
		$\mathbf{G}_{\mathrm{BP}}-\mathbf{G}_{\mathrm{RP}}$	$\left(\mathbf{G}_{\mathrm{BP}}-\mathbf{G}_{\mathrm{RP}}\right)^{2}$		σ
G - V	-0.01760	-0.006860	-0.1732		0.045858
G-R	-0.003226	0.3833	-0.1345		0.04840
G-I	0.02085	0.7419	-0.09631		0.04956

$$F_{-}H = EW' H * F_{-}cont(H) * (d/R)^{2}$$

$$logR = logL*/L_{-}sun + logL_{-}sun - log(4*Pi*sigma) - 4*log(T))/2$$

$$Radio de la estrella$$

$$Massage$$

Actividad respecto a la temperatura efectiva

Actividad respecto a la masa

Análisis de Flares

Futuros pasos en el trabajo

- Medir la actividad en la región infrarroja, usando las líneas del triplete infrarrojo del Calcio (IRT). Correlacionar estas medidas con la actividad medida en HK.
- Medir la actividad en función de bandas fotométricas y su relación con el tiempo del Turn Over convectivo.
- Correlacionar las medidas de actividad "espectroscópicas" con el índice de actividad "fotométrico".
- Estudiar las emisiones en Rx de los objetos WTTs de la muestra y relacionarlo con las diferentes medidas de actividad.
- Estudiar las medidas de flares relacionarlo con las diferentes medidas de actividad.

iMuchas gracias!