Modeling Cables Events

Allison J.B. Chaney

August 25, 2015

1 Generative model

We start with a fitted LDA model where documents are represented in terms of topics (θ , a $D \times K$ matrix), and topics are represented as a distribution over words (β , a $K \times V$ matrix). This model fit, along with document metadata, are our observations. Alternatively, we can tack on the LDA generative process to the model below.

- for each day *i* with date a_i :
 - generate event occurrence/strength $\epsilon \sim \text{Poisson}(\eta_{\epsilon})$, where η_{ϵ} is a fixed, nonnegative hyperparameter for the mean event strength
 - generate the day/event's description in terms of each topic k: $\pi_{ik} \sim \text{Gamma}(\alpha_0, \beta_0)$, where α_0 and β_0 are fixed hyperparameters.
- draw the entity's base topics: $\phi_{0k} \sim \text{Gamma}(\alpha, \beta)$ (eventually for each entity, but for now, just limit data to only one entity)
- For each cable j on date c_i :
 - set cable topic parameter: $\phi_{jk} = \phi_{0k} + \sum_i f(a_i, c_j) \pi_{ik} \epsilon_i$, where f is defined below.
 - draw cable topic: $\theta_{jk} \sim \text{Gamma}(\beta_c \phi_{jk}, \beta_c)$

Note that

$$f(a,c) = \begin{cases} 1 - \frac{c-a}{d}, & \text{if } a \le c < a+d \\ 0, & \text{otherwise,} \end{cases}$$

where d is the time distance (in days) after event a at which point the event is no longer relevant.

2 Inference

For now, we assume that we know the LDA topics β and only observe the documents in terms of their topics θ ; breaking this assumption makes inference a little more complicated as the updates for θ would have new dependencies. Pending the results, we should explore that vein.

Here, we follow the structure of the DEF paper to explain inference for this model.

- As usual, inference is the central computational problem.
- Variational inference minimizes the KL divergence from an approximating distribution q to the true posterior p.

- This is equivalent to maximizing the ELBO: $\mathcal{L}(q) = \mathbb{E}_{q(\epsilon,\pi,\phi)}[\log p(\theta,\epsilon,\pi,\phi) \log q(\epsilon,\pi,\phi)]$
- we define the approximating distribution q using the mean field assumption: $q(\epsilon, \pi, \phi) = \prod_i q(\epsilon_i) \prod_k \left[q(\phi_{0k}) \prod_i q(\pi_{ik}) \right]$
- $q(\pi)$ and $q(\phi)$ are both gamma-distributed with variational parameters λ^{π} and λ^{ϕ} , respectively, where we use the softmax function $\mathcal{M}(x) = \log(1 + \exp(x))$ to constrain the free variational parameters. $q(\epsilon)$ is Poisson-distributed with variational parameter λ^{ϵ} ; the free parameter is also constrained by the softmax function.
- the expectations under *q* (needed to maximize the ELBO) do not have a simple analytic form, so we use "black box" VI techniques
- for each variable, we can write the log probability of all terms containing that variable, giving us

$$\log p_i^{\epsilon}(\theta, \epsilon, \pi, \phi) = \log p(\epsilon_i \mid \eta_{\epsilon}) + \sum_{j: f(a_i, c_i) \neq 0} \sum_k \log p(\theta_{jk} \mid \phi_{0k}, c_j, a_i, d, \beta_c, \pi_{ik}, \epsilon_i),$$

$$\log p_{ik}^{\pi}(\theta,\epsilon,\pi,\phi) = \log p(\pi_{ik} \mid \alpha_0,\beta_0) + \sum_{j:f(a_i,c_j)\neq 0} \log p(\theta_{jk} \mid \phi_{0k},c_j,a_i,d,\beta_c,\pi_{ik},\epsilon_i),$$

and

$$p_k^{\phi}(\theta, \epsilon, \pi, \phi) = \log p(\phi_{0k} | \alpha, \beta) + \sum_i \sum_j \log p(\theta_{jk} | \phi_{0k}, c_j, a_i d, \beta_c, \pi_{ik}, \epsilon_i).$$

• Then we can write the gradients with respect to the variational parameters as:

$$\begin{split} \nabla_{\lambda_{i}^{\epsilon}} \mathcal{L} &= \mathbb{E}_{q} \Big[\nabla_{\lambda_{i}^{\epsilon}} \log q(\epsilon_{i} \, | \, \lambda_{i}^{\epsilon}) \Big(\log p_{i}^{\epsilon}(\theta, \epsilon, \pi, \phi) - \log q(\epsilon_{i} \, | \, \lambda_{i}^{\epsilon}) \Big) \Big], \\ \nabla_{\lambda_{ik}^{\pi}} \mathcal{L} &= \mathbb{E}_{q} \Big[\nabla_{\lambda_{ik}^{\pi}} \log q(\pi_{ik} \, | \, \lambda_{ik}^{\pi}) \Big(\log p_{ik}^{\pi}(\theta, \epsilon, \pi, \phi) - \log q(\pi_{ik} \, | \, \lambda_{ik}^{\pi}) \Big) \Big], \\ \text{and} \\ \nabla_{\lambda^{\phi}} \mathcal{L} &= \mathbb{E}_{q} \Big[\nabla_{\lambda^{\phi}} \log q(\phi_{0k} \, | \, \lambda_{k}^{\phi}) \Big(\log p_{k}^{\phi}(\theta, \epsilon, \pi, \phi) - \log q(\phi_{0k} \, | \, \lambda_{k}^{\phi}) \Big) \Big]. \end{split}$$

Using this framework, we construct our black box algorithm below.

For Reference The gamma distribution and derivatives:

$$\log \operatorname{Gamma}(x \mid a, b) = ab \log b - \log \Gamma(ab) + (ab - 1) \log x - bx \tag{1}$$

$$\nabla_a \log \operatorname{Gamma}(x \mid \mathcal{M}(a), \mathcal{M}(b)) = \mathcal{M}'(a) \mathcal{M}(b) [\log \mathcal{M}(b) - \Psi(\mathcal{M}(a) \mathcal{M}(b)) + \log x] \tag{2}$$

$$\nabla_b \log \operatorname{Gamma}(x \mid \mathcal{M}(a), \mathcal{M}(b)) = \mathcal{M}'(b) [\mathcal{M}(a)((\log \mathcal{M}(b) + 1) - \Psi(\mathcal{M}(a) \mathcal{M}(b)) + \log x) - x] \tag{3}$$

The Poisson distribution and derivative:

$$\log Poisson(x \mid \lambda) = x \log \lambda - \log(x!) - \lambda \tag{4}$$

$$\nabla_{\lambda} \log \operatorname{Poisson}(x \mid \mathcal{M}(\lambda)) = \mathcal{M}'(\lambda) \left[\frac{x}{\mathcal{M}(\lambda)} - 1 \right]. \tag{5}$$

The softmax function and derivative:

$$\mathcal{M}(x) = \log(1 + e^{x})$$
$$\mathcal{M}'(x) = \frac{e^{x}}{1 + e^{x}}$$