Potenciación y radicación (en \mathbb{Z} y \mathbb{Q})

(Breve resumen para el grado séptimo)

Carlos Andrés Pérez M.

I.E. Aureliano Flórez Cardona

2018

Disclaimer

¡Importante!

Este documento NO reemplaza los apuntes de clase; su propósito es servir de apoyo y consulta rápida en caso de duda y para reafianzar los conceptos y procedimientos más relevantes de la temática vista.

Potenciación (en \mathbb{Z} y \mathbb{Q})

Introducción

La **potenciación** o elevación a potencias es una operación de composición que tiene por objeto hallar las potencias de un número.

La **potencia** de un número es el resultado de tomarlo como factor dos o más veces. Así por ejemplo, 9 es la segunda potencia de 3 (ya que $3 \times 3 = 9$), 16 es la cuarta potencia de 2 ya que $2 \times 2 \times 2 \times 2 = 16$, etc.

En términos generales la potenciación nos permite multiplicar un número dado *b* (llamado base) por sí mismo una cantidad *n* de veces (exponente):

$$b^n = \underbrace{b \times b \times b \times \cdots \times b}_{n \text{ veces}}$$

Comparación de potencias

 Si la base b cumple que b > 1 entonces cuanto mayor sea el exponente, mayor será la potencia:

$$b^0 < b^1 < b^2 < b^3 < \cdots$$

• Si la base b cumple que b = 1 entonces todas las potencias son iguales:

$$b^0 = b^1 = b^2 = b^3 = \cdots = 1$$

 Si la base b cumple que 0 < b < 1 entonces cuanto mayor sea el exponente, menor será la potencia:

$$b^0 > b^1 > b^2 > b^3 > \cdots$$

Potencias de base negativa

Para el caso de potencias con base negativa se ha de considerar que

$$(-b)^n = \begin{cases} b^n & \text{si } n \text{ es par} \\ -b^n & \text{si } n \text{ es impar} \end{cases}$$

¡Importante!

 $(-b)^n$ indica que el signo negativo forma parte de la base, mientras que $-b^n$ no; esto es, $-b^n=-(b^n)$.

5

Sean $a,b\in\mathbb{Z}$ y por ende $\frac{a}{b}\in\mathbb{Q}$ (siempre que $b\neq 0$), entonces se cumple que

· Potencia cero de un número:

$$a^{0} = 1 (a \neq 0);$$
 $\left(\frac{a}{b}\right)^{0} = 1 (a, b \neq 0)$

· Primera potencia de un número:

$$a^1 = a;$$
 $\left(\frac{a}{b}\right)^1 = \frac{a}{b} \ (b \neq 0)$

6

Sean A y B dos números cualesquiera enteros o racionales, y $m, n \in \mathbb{Z}$, se cumple para ellos que

· Producto de potencias de igual base:

$$A^m \times A^n = A^{m+n}$$

· Cociente de potencias de igual base:

$$\frac{A^m}{A^n} = A^{m-n} \ (A \neq 0)$$

· P. distributiva de la potenciación con respecto al producto y cociente:

$$(A \times B)^n = A^n \times B^n;$$
 $\left(\frac{A}{B}\right)^n = \frac{A^n}{B^n} (B \neq 0)$

· Potencias con exponente negativo:

$$A^{-n} = \frac{1}{A^n}$$

Para el caso específico de las fracciones puede decirse que $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$, siempre que $a, b \neq 0$.

· Potencia de una potencia:

$$(A^n)^m = A^{n \times m}$$

· Potencias con exponente fraccionario:

$$A^{m/n} = \sqrt[n]{A^m} \ (n \neq 0)$$

Esta última propiedad nos relaciona de manera directa a la radicación con la potenciación.

Radicación (en \mathbb{Z} y \mathbb{Q})

Introducción

La **radicación** es una operación inversa a la potenciación que consiste en que conociendo la potencia y el exponente, hallar la base. Esto es

$$\sqrt[n]{a} = b$$
 si y solo si $b^n = a$

En la radicación al símbolo $\sqrt{}$ se le conoce como **radical**, n el índice del radical, a la **cantidad subradical**, y b la **raíz**.

Introducción

A las raíces de la forma $\sqrt[3]{a}$ se les conoce como raíces cuadradas y se suelen abreviar como \sqrt{a} .

A las raíces de la forma $\sqrt[3]{a}$ se les suele llamar raíces cúbicas.

¡Importante!

Si el índice del radical es par, entonces se precisa obligatoriamente que la cantidad subradical sea positiva (si no se dice que no existe); si es impar, su signo no importa. La raíz conserva el signo de la cantidad subradical.

Propiedades de la radicación

En virtud de su relación directa con la potenciación, las propiedades de la potenciación se deducen de manera directa de las propiedades de esta.

Sean A y B dos números cualesquiera enteros o racionales, y $m,n\in\mathbb{Z}$, se cumple para ellos que

- $\sqrt[n]{A^n} = A$ (si *n* es impar)
- $\sqrt[n]{A^n} = |A|$ (si n es par)

Propiedades de la radicación

•
$$\sqrt[n]{A \times B} = \sqrt[n]{A} \times \sqrt[n]{B}$$

$$\cdot \sqrt[n]{\frac{A}{B}} = \frac{\sqrt[n]{A}}{\sqrt[n]{B}}$$

$$\boldsymbol{\cdot} \ \sqrt[m]{\sqrt[n]{A}} = \sqrt[m \times n]{A}$$

•
$$\sqrt[n]{A} = A^{1/n}$$