Hi Paige, you commented last time that my font size was small - I have increased it. Please let me know before the last homework is due if you want me to make the font on that homework even larger. \sim Tighe

1. (a) Density is immediate, lemma 2.56 of notes states that simple functions (with finite support) are dense in L^p , any simple function with finite support is in $L^1 \cap L^{\infty}$. To see that $L^1 \cap L^{\infty} \subset L^p$ for every $p \ge 1$, we first fix p > 1 and $f \in L^1 \cap L^{\infty}$, since $f \in L^1$ it follows that $\mu\{x \in X | |f(x)| \ge 1\} = m < \infty$, so that

$$\int_{X} |f|^{p} \le \int_{\{x \in X | |f(x)| \ge 1\}} ||f||_{\infty}^{p} + \int_{\{x \in X | |f| < 1\}} |f|^{p}$$

$$\le m |f|_{\infty}^{p} + \int_{\{x \in X | |f| < 1\}} |f|$$

$$\le m ||f||_{\infty}^{p} + ||f||_{1} < \infty$$

Implying that $f \in L^p$.

(b) Convergence in L^p implies that $\lim_{n\to\infty} ||f-f_n||_p^p = 0$. For $k, n \in \mathbb{Z}_{>0}$ define

$$E_{n,k} := \{ x \in X | \mid |f(x) - f_n(x)| > 2^{-k} \}$$

By L^p convergence we find that $\lim_{n\to\infty}\mu(E_{n,k})=0$ (See below), and hence there exists some N_k such that for any $n\geq N_k$, $\mu(E_{n,k})<2^{-k}$. Consider the set $F:=\bigcap_{j=1}^{\infty}\bigcup_{k=j}^{\infty}E_{N_k,k}$, for any point in $x\in F^c$ there exists some j, such that $x\not\in\bigcup_{k=j}^{\infty}E_{N_k,k}$, it follows that $|f(x)-f_{N_k}(x)|\leq 2^{-k}$ for any $k\geq j$ and hence $f_{N_k}(x)\to f(x)$ on F^c , since for any j we have

$$\mu(F) \le \mu\left(\bigcup_{k=j}^{\infty} E_{N_k,k}\right) \le \sum_{k=j}^{\infty} 2^{-k} = 2^{1-j}$$

it follows that $\mu(F) = 0$, hence $f_{N_k} \to f$ almost everywhere.

L^p convergence implies $\lim_{\mathbf{n}\to\infty} \mu(\mathbf{E}_{\mathbf{n},\mathbf{k}}) = \mathbf{0}$: Suppose for contradiction that for some k we have some $\epsilon > 0$, such that for any $N \in \mathbb{Z}_{>0}$ there is some n > N with $\mu(E_{n,k}) \ge \epsilon$, then we have for any $N \in \mathbb{Z}_{>0}$ there is some larger n, such that

$$||f - f_n||_p^p \ge \int_{E_{n,k}} |f - f_n|^p \ge \mu(E_{n,k}) 2^{-k} \ge \epsilon 2^{-k}$$

contradicting $\lim_{n\to\infty} ||f - f_n||_p^p = 0$.

(c) Define the set in the problem description as S, now suppose that $f \in L^p$, such that a sequence $(f_n)_1^{\infty}$ in S converges to f in L^p , by part (b) there is a subsequence f_{n_k} converging pointwise almost everywhere. We apply Fatou's lemma to conclude the following,

$$\int |f|^q = \int \liminf |f_{n_k}|^q \le \liminf \int |f_{n_k}|^q \le 1 \implies f \in S \quad \Box$$

2. (a) By the closed graph theorem, it will suffice to show that the graph of T is closed. Suppose that $T(f_n) \to h$ in L^q , where $f_n \to f$ in L^p , we want to show that h = fg. Since $f_n g \to h$ in L^q , by 1(b) there is a pointwise almost everywhere convergent subsequence $f_{n_k}g \to h$, but $f_{n_k}g \to fg$ pointwise, so that fg = h a.e. equivalently [fg] = [h] as desired.

(b) Since T is bounded, let M such that $||T(f)||_q \leq M||f||_p$ for any $f \in L^p$. First suppose that $p = \infty$, then $||g||_q \leq M||1||_{\infty} = M < \infty$, so that $g \in L^q$. Now suppose that $p < \infty$ and q < p, since $|f|^q |g|^q \in L^1$ for any $f \in L^p$, it follows that for any $h \in L^{p/q}$ we have $|h|^{1/q} \in L^p$, and hence $|h||g|^q \in L^1$, where

$$\phi_g(h)^{1/q} = \left(\int |h| |g|^q\right)^{1/q} = \left(\int \left(|h|^{1/q}\right)^q |g|^q\right)^{1/q} \le M \left(\int |h|^{p/q}\right)^{1/p} = M||h||_{p/q}^{1/q}$$

$$\implies \phi_g(h) \le M||h||_{p/q}$$

This implies that $\phi_{|g|^q}(h) \in (L^{p/q})^*$, and hence by theorem 2.57 of notes, $|g|^q \in L^{(1-\frac{q}{p})^{-1}}$, so that

$$\int |g|^{q(\frac{p}{p-q})} < \infty \implies g \in L^{\frac{pq}{p-q}}$$

Finally if $q = p < \infty$, the solution is the same as the previous case up until $\phi_{|g|^q} \in (L^1)^*$, which implies that (once again by Theorem 2.57) $|g|^q \in L^{\infty}$, it follows immediately from this fact that $g \in L^{\infty}$.

3. (a) We first show linearity which is clear from limit laws, let $a \in \mathbb{C}$ and $x, x' \in \ell^{\infty}$, then

$$\lim_{n \to \infty} ax_n + x'_n = a \lim_{n \to \infty} x_n + \lim_{n \to \infty} x'_n$$

The equality and existence of these limits follows from limit laws (Rudin- Principles of Mathematical Analysis 3.3). To see that it is bounded, note that for any n, $|x_n| \leq ||x_n||_{\infty}$, and hence $|f(x)| = |\lim_{n \to \infty} x_n| = \lim_{n \to \infty} |x_n| \leq ||x_n||_{\infty}$. To see that the operator norm is one, it will suffice to show there is some $x \in \ell^{\infty}$ with norm 1, such that |f(x)| = 1, but this is immediate since $\mathbf{1} := (1, 1, \ldots) \in \ell^{\infty}$, and $f(\mathbf{1}) = \lim_{n \to \infty} 1 = 1$.

- (b) Since F is an extension of f, it will suffice to show that there is no $a \in \ell^1$, such that $\phi_a|_M = f$. Suppose for contradiction that such an a exists, if a = 0, then we are done since in that case $\phi_a(\mathbf{1}) = 0 \neq 1 = f(\mathbf{1})$. If $a \neq 0$, then there is some $n \geq 1$, such that $a_n \neq 0$, then consider $x \in M$ where $x_j = \begin{cases} 1 & j = n \\ 0 & \text{else} \end{cases}$, then $\phi_a(x) = a_n \neq 0$, but $f(x) = \lim_{j \to \infty} x_j = 0$, hence $f(x) \neq \phi_a(x)$.
- **4.** (a) Assume that $R_f \neq \emptyset$, otherwise we are done. Now suppose that $z \in \mathbb{C}$, such that there is a sequence of points $(x_n)_1^{\infty} \subset R_f$, such that $x_n \to z$. Now let $\epsilon > 0$, then by convergence, there is some N, such that $|z x_N| < \epsilon/2$, furthermore, for any $y \in N_{\epsilon/2}(x_N)$, we have that $|y z| \leq |y x_n| + |x_n z| < \epsilon$, so we can conclude that

$$\{w \in X \mid |f(w) - x_N| < \epsilon/2\} \subset \{w \in X \mid |f(w) - z| < \epsilon\}$$

and hence

$$\mu\{w \in X \mid |f(w) - z| < \epsilon\} \ge \mu\{w \in X \mid |f(w) - x_N| < \epsilon/2\} > 0$$

since ϵ was arbitrary this suffices to show that $z \in R_f$ implying that the set is closed.

(b) Suppose that μ is a nonzero measure, then $\mu(X) = m > 0$, let $S_k := \{x + iy \in \mathbb{C} | -k \le x, y \le k\}$ denote the rectangle of sidelength 2k centered at the origin in \mathbb{C} , by continuity from

above, $\lim_{k\to\infty} \mu f^{-1}(S_k) = \mu(X)$, hence for some k we have $\mu f^{-1}(S_k) \ge m/2 > 0$. Now given a rectangle S centered at a point $(p_x + ip_y)$, define rectangles S^1, S^2, S^3, S^4 , such that

$$S^{1} = S \cap \{x + iy \mid x - p_{x} \ge 0 \text{ and } y - p_{y} \ge 0\}$$

$$S^{2} = S \cap \{x + iy \mid x - p_{x} \le 0 \text{ and } y - p_{y} \ge 0\}$$

$$S^{3} = S \cap \{x + iy \mid x - p_{x} \le 0 \text{ and } y - p_{y} \le 0\}$$

$$S^{4} = S \cap \{x + iy \mid x - p_{x} \ge 0 \text{ and } y - p_{y} \le 0\}$$

Now construct a sequence of rectangles as follows, define $S_1 = S$, for each n, if $\mu f^{-1}(S_n) > 0$, then

$$\sum_{i=1}^{4} \mu f^{-1}(S_n^i) \ge \mu(S_n)$$

so that for some i, we once again have $\mu f^{-1}(S_n^i) > 0$, then define $S_{n+1} = S_n^i$. Since each S_i is compact, we may apply the finite intersection property to find that $\bigcap_{1}^{\infty} S_n \neq \emptyset$, and hence we have some $z \in \bigcap_{1}^{\infty} S_n$, I claim that $z \in R_f$. Let $\epsilon > 0$, then since $z \in S_n$ for every n, and $\lim_{n \to \infty} \operatorname{diam} S_n = 0$ there is some n, such that $S_n \subset N_{\epsilon}(z)$, so that

$$\{w \in X \mid |f(w) - z| < \epsilon\} \supset f^{-1}(S_n) \implies \mu\{w \in X \mid |f(w) - z| < \epsilon\} \ge \mu f^{-1}(S_n) > 0$$

since $\epsilon > 0$ was arbitrary, we know that $z \in R_f$.

(c) Since R_f is closed, it will suffice to show that it is bounded, so we may show that $R_f \subset F := \{z \in \mathbb{C} \mid |z| \leq ||f||_{\infty}\}$, suppose that $y \in \mathbb{C}$, such that $|y| > ||f||_{\infty}$, then since F is closed, there is some $\epsilon > 0$, such that $N_{\epsilon}(y) \subset F^c$. By definition of $||\cdot||_{\infty}$ we have $\mu f^{-1}(F^c) = 0$, and hence

$$\mu(\{w \in X \mid |y - f(w)| < \epsilon\}) \le \mu f^{-1}(F^c) = 0$$

and hence $y \notin R_f$ so that $R_f \subset F$ is bounded. The fact that $\sup_{R_f} |z| = \max_{R_f} |z|$ is immediate from compactness, so it suffices to show that $||f||_{\infty} = \sup_{R_f} |z|$, let $\epsilon > 0$, then

$$E:=f^{-1}\{z\in\mathbb{C}\mid ||f||_{\infty}-\epsilon\leq |z|\},\quad \mu(E)>0 \text{ by definition of } ||f||_{\infty}$$

Since a measurable subset of a measure space defines a measure space, i.e. $(E, \mathcal{M}|_E, \mu|_E)$ is a measure space with $\mu|_E(E) = \mu(E) > 0$ we can simply apply part (b) to this second measure space to conclude that $\emptyset \neq R_{f|_E} \subset R_f$ (where the subset relation is obvious by definition of the essential range), and hence there is some $z \in R_f$ with $|z| \geq ||f||_{\infty} - \epsilon$, since ϵ was arbitrary and the opposite inequality $\sup_{R_f} |z| \leq ||f||_{\infty}$ was proven above. We conclude that $||f||_{\infty} = \sup_{R_f} |z|$, and by compactness we can pass the supremum to the maximum over the set as stated previously.

5. (a) Let Y denote the collection of linear independent subsets of X, such that for any $e \in Y$ we have ||e|| = 1 ordered by inclusion. If X = 0, then we can take $Y = \emptyset$ and we are done trivially so assume not. It follows that there is some nonzero vector $u \in X$, then $\{\frac{u}{||u||}\} \in Y \neq \emptyset$. Now suppose that C is a chain in Y, I claim that $\bigcup_{E_{\alpha} \in C} E_{\alpha}$ is an upper bound for C in Y. To check this it will suffice to show that indeed $\bigcup_{E_{\alpha} \in C} E_{\alpha} \in Y$. First let $e \in \bigcup_{E_{\alpha} \in C} E_{\alpha}$, then $e \in E_{\alpha}$ for some α implies that ||e|| = 1, now suppose that for $\{a_i\}_1^n \subset K$, $\{e_i\}_1^n \subset \bigcup_{E_{\alpha} \in C} E_{\alpha}$

we have $\sum_{1}^{n}a_{i}e_{i}=0$, it follows that each $e_{i}\in E_{\alpha_{i}}$, and since C is a chain we can pick $E_{\alpha_{j}}=\max\{E_{\alpha_{i}}\}_{i=1}^{n}$, then $\sum_{1}^{n}a_{i}e_{i}=0$ in the linearly independent set $E_{\alpha_{j}}$ implying that $a_{i}=0$ for each i, this suffices to show that $\bigcup_{E_{\alpha}\in C}E_{\alpha}\in Y$. Now we may apply Zorn's lemma to conclude that Y has a maximal element, suppose for contradiction the maximal element $E\in Y$ is not a basis, then there must be some $u\in X\setminus \langle E\rangle$, $0\in \langle E\rangle$ specifies $u\neq 0$, so we can consider $E\cup\{\frac{u}{||u||}\}$, it is clear that all elements of this new set have norm 1. Since $E\cup\{\frac{u}{||u||}\}\supset E$ which is maximal, it must not be linearly independent, so there exist $\{a_{i}\}_{1}^{n}\subset K$ not all zero and $\{e_{i}\}_{1}^{n-1}\subset E$, such that $a_{n}\frac{u}{||u||}+\sum_{1}^{n-1}a_{i}e_{i}=0$, linear independence of E implies $a_{n}\neq 0$, hence $u=\sum_{1}^{n-1}||u||a_{n}^{-1}a_{i}e_{i}$, so that $u\in \langle E\rangle$ a contradiction. Thus we may conclude that E is an algebraic basis with all elements having norm 1.

(b) Using part (a), let $\{e_{\alpha}\}_A$ be an algebraic basis for X such that for each $\alpha \in A$ we have $||e_{\alpha}|| = 1$. Choose some countable subset $\{e_i\}_1^{\infty}$. Now we can use the universal property of the basis to define f on basis elements and extend linearly, define f as follows:

$$f: \begin{cases} e \mapsto 0 & e \in \{e_{\alpha}\}_{A} \setminus \{e_{i}\}_{1}^{\infty} \\ e_{i} \mapsto i \end{cases}$$

Then it is clear that f is unbounded since for any $M \in \mathbb{R}$, we can pick some $N \in \mathbb{N}$, such that N > M, it follows that $f(e_N) = N > M||e_N||$ and since M was arbitrary f is unbounded and hence not continuous.

(c) Assume for the contradiction that I is countable, then by part (b), we have some linear functional f on X which is not continuous, hence not bounded. Define $E_n = \{x \in X \mid |f(x)| \le n||x||\}$, to see that $\bigcup_{n=1}^{\infty} E_n = X$, we first note that $0 \in E_1$, now let $x \in X \setminus \{0\}$, then ||x|| = r > 0, then choosing $n \ge \frac{|f(x)|}{r}$ we have $x \in E_n$. Now fix $M \in \mathbb{Z}_{>0}$, and assume that E_M contains a non-empty open set U. Let $x \in U$, since U is open we know that U - x is an open set containing the origin, hence there is some $\epsilon > 0$, such that for any w with ||w|| = 1 we have $\epsilon w \in U - x$. Now let $v \in X$, then $\epsilon \frac{v}{||v||} \in U - x$, hence $x + \epsilon \frac{v}{||v||} \in U$, it follows that

$$\frac{\epsilon}{||v||}|f(v)| - |f(x)| \le \left| f(x + \epsilon \frac{v}{||v||}) \right| \le M||x + \epsilon \frac{v}{||v||}|| \le M||x|| + \epsilon M$$

$$\implies |f(v)| \le ||v|| \left(M \frac{||x||}{\epsilon} + M + \frac{|f(x)|}{\epsilon} \right)$$

since v was arbitrary and $\left(M\frac{||x||}{\epsilon} + M + \frac{|f(x)|}{\epsilon}\right)$ is independent of v, this implies that f is bounded which is a contradiction, hence E_M does not contain any non-empty open sets, and since M was arbitrary this implies that E_n is nowhere dense for any n. This implies that $\bigcup_{1}^{\infty} E_n$ is a countable union of nowhere dense sets, so that $\bigcup_{1}^{\infty} E_n = X$ contradicts the Baire Category theorem, thus I cannot be countable.