Całka Riemanna

- 1. Definicje
- 2. Twierdzenia
- 3. Zastosowanie w geometrii
- 4. Powtórka z całkowania

1. Definicje.

Definicja. Podziałem przedziału [a,b] nazywamy ciąg punktów $a=x_0 < x_1 < ... < x_n = b$, i-tym przedziałem podziału P nazywamy przedział $s_i = [x_{i-1}, x_i]$. Długość przedziału s_i oznaczamy $\Delta s_i = x_i - x_{i-1}$, a średnicą podziału $\Delta(P) = \max_{1 \le i \le n} \Delta s_i$. P([a,b]) jest rodziną wszystkich podziałów przedziału [a,b].

 $\begin{array}{llll} & \textbf{Definicja.} & \textbf{Dla} & \textbf{funkcji} & f:[a,b] \rightarrow \mathbb{R} & \textbf{i} & \textbf{dla} & \textbf{podziału} & P:a=x_0 < x_1 < \ldots < x_n = b & \textbf{definiujemy} \\ & \bigvee_{i \leq n} M_i = \sup_{x \in s_i} f(x) & \textbf{i} & m_i = \inf_{x \in x_i} f(x) & \textbf{Górną} & \textbf{suma} & \textbf{Riemanna} & \textbf{dla} & \textbf{funkcji} & f & \textbf{wzgl.} & \textbf{Podziału} & P \\ & \textbf{nazywamy liczbę} & U(f,P) = \sum_{i \leq 1} M_i \cdot \Delta s_i & \textbf{,} & \textbf{a dolną} & \textbf{sumą} & \textbf{Riemanna} & \textbf{liczbę} & L(f,P) = \sum_{i = 1}^n m_i \cdot \Delta s_i & \textbf{.} \\ & & i = 1 & & i = 1 & & & \\ \end{array}$

Definicja. Liczbę
$$S(f, s_i) = \sum_{i=1}^{n} f(\varepsilon_i) \Delta_i$$
, gdzie $\varepsilon_i \in [x_{i-1}, x_i]$.

Definicja (inna definicja całki Riemanna). Granicę (o ile istnieje) $\lim_{\substack{n \to \infty \\ \Delta s_i \to 0}} S(f, P)$ nazywamy całką oznaczoną (Riemanna).

 $\textbf{Definicja.} \ \text{Zał, \'ze} \quad F \text{ , } f : [a \text{ , } b] \rightarrow \mathbb{R} \quad \text{. M\'owimy, \'ze } F \text{ jest funkcją pierwotną dla funkcji } f \text{ , gdy}$

Wniosek. Jeżeli f jest funkcją ciągłą, to f posiada funkcję pierwotną. Funkcja pierwotna dla funkcji f jest określona wzorem $F(x) = \int_{a}^{x} f(t) \, dt$.

Uwaga:

(1) Jeżeli F jest funkcją pierwotną dla funkcji $f:[a,b] \to \mathbb{R}$, to $\bigvee_{c \in \mathbb{R}} F + c$ też jest funkcją pierwotną dla f .

(2) Jeżeli
$$F,G$$
 są funkcjami pierwotnymi dla f , $g:[a,b]\to \mathbb{R}$, to . $\exists \bigvee_{c\in \mathbb{R}} \bigvee_{x\in [a,b]} F(x) - G(x) = c$

(3) Jeżeli
$$f:[a,b] \to \mathbb{R}$$
 jest ciągła, G jest funkcją pierwotną dla f , to $\int\limits_a^b f(t)\,dt=G(b)-G(a)=G\Big|_a^b$

Całki niewłaściwe.

Definicja. Zał, że $f:[a,\infty)\to\mathbb{R}$. Jeżeli $\bigvee_{b>a}f[a,b]$ jest R-całkowalna oraz istnieje $\lim_{x\to\infty}\int_a^x f(t)\,dt$, to mówimy, że dla f istnieje całka niewłaściwa na półprostej $[a,\infty)$ i oznaczamy ją $\int_a^\infty f(t)\,dt = \lim_{x\to\infty}\int_a^x f(t)\,dt$. Dodatkowo, jeżeli $\int_a^\infty f(t)\,dt$ jest skończona, to mówimy że f jest R-całkowalna na $[a,\infty)$. Analogicznie, jeśli $f:(-\infty,b)\to\mathbb{R}$.

Definicja. Zał, że $f:[a,b) \to \mathbb{R}$ oraz $\bigvee_{x \in [a,b]}^{\forall} f$ jest R-całkowalna na [a,x]. Jeżeli $\lim_{x \to b} \int_a^x f(t) \, dt$ istnieje, to oznaczamy ją $\int_a^b f(t) \, dt$ i nazywamy całką niewłaściwą z f na [a,b). Analogicznie definiujemy całką niewłaściwą z $f:(a,b] \to \mathbb{R}$. Zał, że $f:(a,b) \to \mathbb{R}$ $c \in (a,b)$ oraz istnieją całki niewłaściwe $\int_a^c f(t) \, dt$, $\int_c^b f(t) \, dt$. Jeżeli wykonywalne jest dodawanie $\int_a^c f(t) \, dt + \int_c^b f(t) \, dt$, to sumę tę nazywamy całką niewłaściwą z f na (a,b).

2. Twierdzenia

Twierdzenie. Funkcja $f:[a,b] \to \mathbb{R}$ jest R-całkowalna $\Leftrightarrow \forall_{\varepsilon>0} \exists_{P \in P([a,b])} U(f,P) - L(f,P) < \varepsilon$ Twierdzenie Riemanna. Zał., że $f:[a,b] \to \mathbb{R}$ jest ciągła. Wtedy f jest R-całkowalna.

Twierdzenie. Załóżmy, że f jest R-całkowalna, $\bigvee_{x \in [a,b]} f(x) \in [m,M], g:[m,M] \to \mathbb{R}$ jest ciągła. $h = f \circ g:[a,b] \to \mathbb{R}$ jest R-całkowalna.

Wniosek. Jeżeli $f:[a,b] \to \mathbb{R}$ jest R-całkowalna, $c \in \mathbb{R}$, to funkcje $c \cdot f$, |f|, f^2 są R-całkowalne. Twierdzenie. Jeżeli $f:[a,b] \to \mathbb{R}$ jest R-całkowalna, $c \in \mathbb{R}$, to $\int_a^b c \cdot f(x) dx = c \int_a^b f(x) dx$.

Twierdzenie. Jeżeli $g, f:[a,b] \to \mathbb{R}$ są R-całkowalne, to f+g jest R-całkowalna i $\int_a^b (f \pm g)(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$

Twierdzenie. Jeżeli g, $f:[a,b] \rightarrow \mathbb{R}$ są R-całkowalne to $f\cdot g$ jest R-całkowalna.

Twierdzenie o wartości średniej. Załóżmy, że $f:[a,b] \to \mathbb{R}$ jest ciągła. Wtedy $\lim_{c \in [a,b]} \int_a^b f(x) dx = f(c)(b-a)$

Twierdzenie o podziałe przedziału całkowania. Zał, że $f:[a,b] \to \mathbb{R}$ jest R-całkowalna, a < c < b. Wtedy f jest R-całkowalna na przedziałach [a,c] i [c,b], oraz $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$

3. Zastosowanie w geometrii.

I. Pole figury.

Pole figury $A \subset \mathbb{R}^2$ to funkcja $P: A \to \mathbb{R}_{+i} = [a,\infty)$ spełniająca:

(1) jeżeli
$$A$$
 = $A_1 \cup A_2$ oraz $A_1 \cap A_2$ = \emptyset , to $P(A)$ = $P(A_1) + P(A_2)$;

(2) jeżeli zbiór B jest przesunięciem zbioru A, to P(B) = P(A).

Definicja. Jeżeli $f:[a,b] \to \mathbb{R}_{+i}$ jest R-całkowalna, $A = \{(x,y); x \in [a,b] \land y \in [0,f(x)]\}$.

Wtedy możemy określić pole zbioru A wzorem $P(A) = \int_{a}^{b} f(t) dt$.

Definicja. Obszarem normalnym wyznaczonym przez funkcje ciągłe f, $g:[a,b] \to \mathbb{R}$ $(g \ge f \ge 0)$ nazywamy zbiór $N(f,g) = \{(x,y); x \in [a,b] \land y \in [f(x),g(x)]\}$. Pole P obszaru N(f,g) obliczamy ze wzoru $P(N(f,g)) = \int_a^b (g-f)(t) \, dt$.

Wniosek. Pole P obszaru ograniczonego wykresem funkcji f z osią OX jest równe $\int_a^b |f(t)| dt$.

II. Obliczanie objętości figur obrotowych.

Objętość figury jest funkcją analogiczną do funkcji pola.

Definicja. Zał, że $f:[a,b] \to \mathbb{R}$ jest ciągła i nieujemna, B(f) to bryła otrzymana przez obrót wykresu funkcji f dookoła osi OX, V(f) to objętość bryły B(f). Wtedy $V(f) = \pi \int_{-\pi}^{b} f^{2}(x) \, dx$.

III. Obliczanie długości łuku.

Definicja. Zał, że $f:[a,b] \to \mathbb{R} \in \mathbb{C}^1$. Wykres funkcji f nazywamy łukiem o końcach

$$(a, f(a)), (b, f(b))$$
. Wtedy długość łuku f wynosi $\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$.

IV. Obliczanie pól powierzchni bocznych.

Definicja. Jeżeli $f:[a,b] \to \mathbb{R}$ jest ciągła, to pole powierzchni bocznej zakreślonej przez łuk f wynosi $2\pi \int_a^b f(x) \sqrt{1+\big(f'(x)\big)^2} dx$.

4. Powtórka z całkowania

Całkowanie przez podstawienie.

Zał, że
$$\varphi:[a,b] \to [c,d]$$
 taka, że $\varphi \in C^1$ oraz $\bigvee_{x \in [a,b]} \varphi'(x) \neq 0$, $\varphi(a) = c$, $\varphi(b) = d$. Wtedy dla dowolnej funkcji ciągłej $f:[c,d] \to \mathbb{R}$ zachodzi $\int_{c}^{d} f(t) \, dt = \int_{a}^{b} (f \circ \varphi)(t) \cdot \varphi'(t) \, dt$.

Całkowanie przez części.

Zał, że
$$f$$
, $g:[a,b] \rightarrow \mathbb{R}$ są klasy C^1 . Wtedy $\int_a^b f'(x) g(x) dx = f \cdot g \Big|_a^b - \int_a^b f(x) g(x) dx$

Inne przykłady:

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)|$$

Wzór rekurencyjny:

Niech
$$I_n = \int dx / (1+x^2)^n$$
 dla $n \ge 2$ wtedy:
 $I_n = \frac{1}{2n-2} \cdot \frac{x}{(1+x^2)^{n-1}} + \frac{2n-3}{(2n-2)} I_{n-1}$ ponadto $I_1 = arctg(x)$