	AMAIAH citute of Technology
--	--------------------------------

USN	1	М	S				

(Autonomous Institute, Affiliated to VTU)

(Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

CS45

SEMESTER END EXAMINATIONS - AUGUST 2024

B.E:-Computer Science and Program Semester **Engineering**

Course Name Finite Automata and Formal Languages Max. Marks 100 : **Duration** 3 Hrs

Course Code CS45

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

- Define DFA. Design a DFA which accepts all strings with a substring 01. (06)1. CO1
 - Prove that language L is accepted by some ε -NFA if and only if L is CO1 (06)accepted by some DFA.
 - Convert the following ε -NFA to DFA. CO1 (80)

2. Convert the following NFA to DFA. CO1 (80)

- $\mathsf{D} = (Q_D, \sum, \phi_D, \{q_0\}, F_D)$ the **DFA** constructed from NFA CO₁ (06)is by the subset construction. Then show that $N = (Q_N, \Sigma, \phi_N, \{q_0\}, F_N)$ $L_D = L_N$.
- Obtain a DFA to accept

CO1 (06)

- i. L= $\{n_a(w) \mod 5=0\}$ on $\Sigma = \{a,b\}$
- ii. L= $\{n_a \text{ (w)} \mod 3 \neq 0\}$ on $\Sigma = \{a\}$

UNIT - II

- Obtain the regular expressions to describe the following languages. CO₂ 3. (06)
 - (i) Strings of a's and b's whose first and last symbols are the same.
 - (ii) L= $\{a^nb^n, n>=1\}$
 - (iii) Strings of 0's and 1's whose lengths are multiples of 3.
 - Prove that every language defined by a regular expression is also CO₂ (07)defined by a finite automaton.
 - Convert the following into a regular expression by eliminating states. CO2 (07)

CS45

- 4. a) Prove that regular languages are closed under union, complementation CO2 (06) and difference operations.
 - b) State the pumping lemma for regular languages. Prove that the set of CO2 (05) strings of 0's and 1's of the form www is not a regular language.
 - c) Minimize the DFA given below. CO2 (09)

UNIT - III

- 5. a) Define PDA. Construct DPDA to accept strings with L= $\{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$. Show the moves for the input string abbaba.
 - b) Define ambiguous grammar. Verify whether the grammar CO3 (05) $S \rightarrow aB / bA, S \rightarrow aS / bAA / a, B \rightarrow bS / aBB / b, is ambiguous?$
 - c) Prove that if there is a PDA P_N which accepts strings from a language L CO3 (08) by empty stack, then there also exists a PDA P_F that accepts L by final state.
- 6. a) Consider the following grammar: CO3 (06) $S \rightarrow ABC$, $A \rightarrow aA$, $A \rightarrow \epsilon$, $B \rightarrow bB$, $B \rightarrow \epsilon$, $C \rightarrow \epsilon$. Give the leftmost derivation, rightmost derivation and the parse tree for the string aabbba.
 - b) Design a PDA for accepting a language $\{ww^R | wE(0+1)^*\}$. Trace the CO3 (08) moves made by the PDA for the string w = abbab.
 - c) Convert the following PDA to CFG. List the rules for conversion. CO3 (06)

$$\delta(q, 1, Z_0) = \{(q, XZ_0)\}
\delta(q, 1, X) = \{(q, XX)\}
\delta(q, 0, X) = \{(p, X)\}
\delta(q, \epsilon, X) = \{(q, \epsilon)\}
\delta(p, 1, X) = \{(p, \epsilon)\}
\delta(p, 0, Z_0) = \{(q, Z_0)\}$$

UNIT-IV

- 7. a) Obtain the grammar in CNF: CO4 (07)
 - S →0A|1B
 - $A \rightarrow 0AA|1S|1$
 - $B\rightarrow 1BB|0S|0$
 - b) Prove that if L and M are regular languages, then so is L \cap M. CO4 (07)
 - c) Eliminate all unit production for the given grammar: CO4 (06)
 - $S \rightarrow AB$
 - $A \rightarrow a$
 - $B \rightarrow C|b$
 - $C \rightarrow D$
 - D→E| bC
 - E→d|Ab

CS45

8.	a)	Eliminate all ϵ production for the given grammar: S \rightarrow ABC bD	CO4	(06)
	b)	$\begin{array}{l} A \to BC \mid b \\ B \to b \mid \ \epsilon \\ C \to c \mid \epsilon \\ D \to d \\ \hline \text{For the given grammar:} \\ S->ABC \mid BaB \\ A->aA \mid BaC \mid aaa \\ B->bBbla \mid D \\ C->CA \mid AC \\ \end{array}$	CO4	(10)
	c)	 D->E i) Eliminate E-productions ii) Eliminate unit productions in the resulting grammar. iii) Eliminate any useless symbols in the resulting grammar. Define the following: Unit production CNF Null-able production Reachable Symbol. 	CO4	(04)
9.	a)	UNIT - V Write the properties of recursive & recursively enumerable languages.	CO5	(05)
٠.	b)	Obtain a Turing machine to accept the language containing strings of 0's and 1's ending with 011.	CO5	(10)
	c)	Define a Turing Machine. With a neat diagram explain the working of a Turing Machine.	CO5	(05)
10. a) b)	Explain in detail about variations of the TM? Obtain a Turing machine to accept the language L= { w w is odd and	CO5	(08) (06)	
		∑ € { a , b, c }		` ,
	c)	Define PCP. Verify whether the following lists have a PCP solution. $\binom{abab}{ababaaa}, \binom{aaabbb}{bb}, \binom{aab}{baab}, \binom{ba}{baa}, \binom{ab}{ba}, \binom{aa}{a}.$	CO5	(06)
