

Ameba-Z WAKEUP ON ADC

Table of Contents

1.	SUMMARY	. 3
•	ADC WAKEUP	2
4.	ADC WAREUP	. J
3.	EXAMPLE	. 4
4	POWER CONSUMPTION	4

1. Summary

ADC can receive data under sleep mode periodically, and wakeup CPU when the number of entries in the FIFO is more than or equal to the FIFO threshold value

2. ADC Wakeup

You should configure SDK like following:

```
const PWRCFG_TypeDef sleep_pwrmgt_config[]=
           Module
                                                                                                                                  / * ADC power save use it */
/ * ADC power save use it */
/* if X can wakeup dsleep, it can wakeup dstandby & sleep */
/* if X can wakeup dstandby, it can wakeup sleep */
const PWRCFG_TypeDef sleep_wevent_config[]=
                                                                                                                                                                             wakepin 0~3 wakeup */
REGU A33 Timer(1K low precision timer) & A33 wakepin wakeup*/
             {BIT_SYSON_WEVT_GPIO_DSTBY_MSK,
                                                                                                                                                                              ADC Wakeup
SDIO Wakeup
           {BIT_SYSON_WEVI_SDIO_MSK,

{BIT_SYSON_WEVT_RTC_MSK,

{BIT_SYSON_WEVT_UART1_MSK,

{BIT_SYSON_WEVT_UART0_MSK,

{BIT_SYSON_WEVT_I2C1_MSK,

{BIT_SYSON_WEVT_I2C1_MSK,

{BIT_SYSON_WEVT_WLAN_MSK,

{BIT_SYSON_WEVT_I2C1_ADDRMATCH_MSK,

{BIT_SYSON_WEVT_I2C0_ADDRMATCH_MSK,

{BIT_SYSON_WEVT_USB_MSK,

{BIT_SYSON_WEVT_USB_MSK,

{BIT_SYSON_WEVT_OVER_CURRENT_MSK,

{BIT_SYSON_WEVT_OVER_CURRENT_MSK,

{BIT_SYSON_WEVT_SYSTIM_MSK,
                                                                                                                                                                             RTC Wakeup */
UART1 Wakeup
                                                                                                                       ON}
ON}
                                                                                                                                                    sleep:
                                                                                                                                                                             UARTO Wakeup */
I2C1 Wakeup */
I2C0 Wakeup */
                                                                                                                                                    sleep:
                                                                                                                                                                             12C0 Wakeup */
WLAN Wakeup */
I2C1 Slave RX address Wakeup */
I2C0 Slave RX address Wakeup */
USB Wakeup */
GPIO Wakeup */
REGU OVER_CURRENT Wakeup */
                                                                                                                                                    sleep:
                                                                                                                                                    sleep:
                                                                                                                                                    sleep:
                                                                                                                       ON},
                                                                                                                                               * dstandby: 250K SYS Timer(ANA Timer) Wakeup */
            {OxFFFFFFF,
                                                                                                                       OFF},
                                                                                                                                             /* Table end */
```


3. Example

```
void ADC_Handler(void *Data)
      u32 buf[30];
      u32 isr = 0;
u32 i = 0;
     isr = ADC_GetISR();

if (isr & BIT_ADC_FIFO_THRESHOLD) {

    for(i = 0; i < 30; i++) {

        buf[i] = (u32)ADC_Read();
      ADC_INTClear();
DBG_8195A("ADC BUF: %08x \n", buf[0]);
VOID ADC_Init(VOID)
      ADC_InitTypeDef ADCInitStruct;
      /* ADC Interrupt Initialization */
      InterruptRegister((IRQ_FUN)&ADC_Handler, ADC_IRQ, (u32)NULL, 5);
      InterruptEn(ADC_IRQ, 5);
      /* To release ADC delta sigma clock gating */
PLL2_Set(BIT_SYS_SYSPLL_CK_ADC_EN, ENABLE);
      /* Turn on ADC active clock */
RCC_PeriphClockCmd(APBPeriph_ADC, APBPeriph_ADC_CLOCK, ENABLE);
      ADC_InitStruct(&ADCInitStruct);
      ADCInitStruct.ADC_BurstSz = 8;
ADCInitStruct.ADC_oneShotTD = 8; /* means 4 times */
ADC_Init(&ADCInitStruct);
      ADC_SetOneShot(ENABLE, 100, ADCInitStruct.ADC_OneShotTD); /* 100 will take 200ms */
     ADC_INTClear();
ADC_Cmd(ENABLE);
} ? end ADC_Init ?
```

4. Power Consumption

ADC catches data every 100ms and wakeup CPU every 400ms.

