CSI 5V93

Sequence Alignment

Young-Rae Cho

Associate Professor

Department of Computer Science

Baylor University

BAYLOR

Sequence Alignment

- > Definition
 - Arranging two or more sequences by inserting gaps to maximize their similarity score
- ➤ Usage
 - To measure similarity between two sequences
 - To identify regions of high similarity between two sequences
- > Applications in Bioinformatics
 - Given gene sequences, infer their evolutionary distance
 - Given gene sequences of known functions, predict the functions of newly sequenced genes

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- > Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

BAYLOR

Manhattan Tourist Problem (MTP)

- > Problem Definition
 - A tourist seeks a path to travel with the most attractions in Manhattan road map (grid structure)
 - Restrictions
 - A path from a source to a sink
 - · A path only eastward and southward

Formulation of MTP

- ➤ Goal
 - Finding the strongest path from a *source* to a *sink* in a weighted grid
 - The weight of an edge is defined as the number of attractions
 - The path strength is measured by summing the weights on the path
- ➤ Input
 - A weighted grid G with two distinct vertices, source and sink
- ➤ Output
 - A strongest path in *G* from the *source* to the *sink*

BAYLOR

Example of MTP

> Example

Solving by Exhaustive Search

- > Algorithm
 - (1) Enumerate all possible paths from the source to the sink
 - (2) Compute the path strength for all possible paths
 - (3) Find the strongest path
- ➤ Problems ?

BAYLOR

Solving by Greedy Algorithm

- > Algorithm
 - (1) Start from the source
 - (2) Select the edge having the highest weight
 - (3) Repeat (2) until it reaches the sink
- ➤ Problems ?
- > Runtime ?

Solving by Recursive Algorithm

> Algorithm

```
\begin{aligned} & \text{MTP}(m,n) \\ & if \ \ m=0 \ \ and \ \ n=0 \\ & else \ \ if \ \ m=0 \ \ and \ \ n\neq 0 \\ & else \ \ if \ \ m=0 \ \ and \ \ n\neq 0 \\ & else \ \ if \ \ m\neq 0 \ \ and \ \ n=0 \\ & return \ \ \text{MTP}(m,n-1)+w((m-1,n),(m,n)) \\ & else \\ & x \leftarrow \text{MTP}(m-1,n)+w((m-1,n),(m,n)) \\ & y \leftarrow \text{MTP}(m,n-1)+w((m,n-1),(m,n)) \\ & return \ \ max(x,y) \end{aligned}
```

- ➤ Problems ?
- > Runtime ?

BAYLOR

Solving by Dynamic Programming

> Recursive Formula

$$S_{i,j} = \max \left(S_{i-1,j} + w((i-1,j),(i,j)), S_{i,j-1} + w((i,j-1),(i,j)) \right)$$

> Algorithm

```
\begin{split} & \text{MTP}(m,n) \\ & S_{0,0} \leftarrow 0 \\ & \text{for } i \leftarrow 1 \text{ to } m \\ & S_{i,0} \leftarrow S_{i-1,0} + w((i-1,0),(i,0)) \\ & \text{for } j \leftarrow 1 \text{ to } n \\ & S_{0,j} \leftarrow S_{0,j-1} + w((0,j-1),(0,j)) \\ & \text{for } i \leftarrow 1 \text{ to } m \\ & \text{for } j \leftarrow 1 \text{ to } n \\ & S_{i,j} \leftarrow \max \left( S_{i-1,j} + w((i-1,j),(i,j)), S_{i,j-1} + w((i,j-1),(i,j)) \right) \\ & \text{return } S_{m,n} \end{split}
```


Traversing Strategies

- > Three Different Strategies
 - Column by column
 - Row by row
 - Along diagonals

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- > Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

BAYLOR

Longest Common Subsequences (1)

- > Subsequence of x
 - An ordered sequence of letters from x
 - Not necessarily consecutive
 - e.g., x="ATTGCTA", "AGCA"?, "TCG"?, "ATCT"?, "TGAT"?
- > Common Subsequence of x and y
 - e.g., x="ATCTGAT" and y="TGCATA", "TCTA"?, "TGAT"?, "TATA"?
- ➤ Longest Common Subsequence (LCS) of x and y ?

Longest Common Subsequences (2)

- > Definition of LCS
 - Given two sequences, $v = \langle v_1 v_2 ... v_m \rangle$ and $w = \langle w_1 w_2 ... w_n \rangle$, LCS of v and w is a sequence of positions in

$$\mathsf{v} \colon 1 \leq i_1 < i_2 < \dots < i_t \leq \mathsf{m}$$

and a sequence of positions in

w:
$$1 \le j_1 < j_2 < ... < j_t \le n$$

such that i_t -th letter of v equals to j_t -letter of w, and t is maximal

BAYLOR

LCS in 2-Row Representation (1)

- > Example
 - x="ATCTGATG" (m=8), y="TGCATAC" (n=7)

- Position in x: 2 < 3 < 4 < 6
- Position in y: 1 < 3 < 5 < 6
- LCS: "TCTA"

LCS in 2-Row Representation (2)

- > Example Continued
 - x="ATCTGATG" (m=8), y="TGCATAC" (n=7)

	1	2		3		4	5	6	7	8	
x	Α	Т	_	С	_	Т	G	Α	Т	G	I
у	I	Т	G	С	Α	Т	_	Α	I		С
		1	2	3	4	5		6			7

x A T C T G — A T G — —
y — T — G C A T — A C

BAYLOR

LCS in 2-D Grid Representation

- ➤ Edit Graph
 - 2-D grid structure having diagonals on the position of the same letter
- > Example
 - x="ATGTTAT" (m=7)
 - y="ATCGTAC" (n=7)
 - Strongest path in edit graph

$$(0,0)\rightarrow (1,1)\rightarrow (2,2)\rightarrow$$

$$(2,3) \to (3,4) \to (4,5) \to$$

$$(5,5)\rightarrow (6,6)\rightarrow (7,6)\rightarrow$$

(7,7)

Formulation of LCS Problem

Goal

- Finding the longest common subsequence (LCS) of two sequences (length-m, length-n)
- Finding the strongest path from a *source* to a *sink* in a weighted edit graph
 - The path strength is measured by summing the weights on the path

➤ Input

• A weighted edit graph G with source (0,0) and sink (m,n)

➤ Output

• A strongest path in *G* from the *source* to the *sink*

BAYLOR

Solving by Exhaustive Search

> Algorithm

- (1) Enumerate all possible paths from the source to the sink
- (2) Compute the path strength for all possible paths
- (3) Find the strongest path
- ➤ Problems ?

Solving by (Iterative) Greedy Algorithm

- > Algorithm
 - (1) Start from the source
 - (2) Select the edge having the highest weight(i.e., if there is a diagonal edge, select it.Otherwise, select one of the other edges.)
 - (3) Repeat (2) until it reaches the sink
- ➤ Problems ?
- ➤ Runtime ?

BAYLOR

Solving by Dynamic Programming

> Recursive Formula

$$S_{i,j} = \max \begin{cases} S_{i-1,j} + 0 \\ S_{i,j-1} + 0 \\ S_{i-1,j-1} + 1 & if \ x_i = y_j \end{cases}$$

> Algorithm

$$\begin{aligned} &\operatorname{LCS}(x,y) \\ &for \ i \leftarrow 0 \ to \ m \\ &S_{i,0} \leftarrow 0 \\ &for \ j \leftarrow 1 \ to \ n \\ &S_{0,j} \leftarrow 0 \\ &for \ i \leftarrow 1 \ to \ m \\ &for \ j \leftarrow 1 \ to \ n \\ &if \ x_i = y_j \\ &S_{i,j} \leftarrow \max\left(S_{i-1,i}, \ S_{i,j-1}, \ S_{i-1,j-1} + 1\right) \\ &else \\ &S_{i,j} \leftarrow \max\left(S_{i-1,i}, \ S_{i,j-1}\right) \\ &return \ S_{m,n} \end{aligned}$$

Example of LCS

- > Example
 - x="ATGTTAT" (m=7), y="ATCGTAC" (n=7)

BAYLOR

Finding LCS

> Storing Directions

$$D_{i,j} \leftarrow \begin{cases} \text{``j''} & \text{if } S_{i,j} = S_{i-1,j} \\ \text{``\to''} & \text{if } S_{i,j} = S_{i,j-1} \\ \text{``_''} & \text{if } S_{i,j} = S_{i-1,j-1} + 1 \end{cases}$$

> Backtracking

$$\begin{aligned} & \text{Backtracking}(D,x,i,j) \\ & if \ i>0 \ and \ j>0 \\ & if \ D_{i,j}=\text{``j''} \\ & \text{Backtracking}(D,x,i-1,j) \\ & else \ if \ D_{i,j}=\text{``-j''} \\ & \text{Backtracking}(D,x,i,j-1) \\ & else \\ & \text{Backtracking}(D,x,i-1,j-1) \\ & print \ x_i \end{aligned}$$

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- > Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

BAYLOR

Edit Distance (1)

- > Definition
 - Edit distance between two sequences x and y: the minimum number of editing operations (insertion, deletion, substitution) to transform x into y
- > Example
 - x="TGCATAT" (m=7), y="ATCCGAT" (n=7)

Edit Distance (2)

- > Example
 - x="TGCATAT" (m=7), y="ATCCGAT" (n=7)

- Can it be done in 3 steps?
- > Features
 - Allows comparison of two sequences of different lengths

BAYLOR

Edit Distance in 2-Row Representation

- > Example in 2-row representation
 - x="ATCTGATG" (m=8), y="TGCATAC" (n=7)

- 4 matches
- 4 deletions3 insertions
- 3 macri

- 4 matches
- 3 deletions
- 2 insertions
- 1 substitution

Edit distance = #insertions + #deletions + #mismatches

	Edit Distance in 2D Grid Representation	
> Edit G	ph	
		BAYLO

Solving by Exhaustive Search or Greedy Algorithm

> Exhaustive Search Algorithm

➤ Greedy Algorithm

Solving by Dynamic Programming

> Recursive Formula

> Dynamic Programming Algorithm

BAYLOR

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- > Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

from LCS and Edit Distance to Sequence Alignment

- > LCS problem
 - Allows only insertions and deletions no substitutions
 - Scores 1 for a match and 0 for an insertion or deletion
- > Edit Distance problem
 - Allows insertions, deletions, and substitutions
 - Score 1 for an insertion or deletion or substitution and 0 for a match
- > Sequence Alignment Problem
 - Allows gaps (insertions and deletions) and mismatches (substitutions)
 - Uses any scoring schemes

BAYLOR

Formulation of Global Alignment Problem

- ➤ Goal
 - Finding the best alignment of two sequences under a given scoring schema
- ➤ Input
 - Two sequences x (length-m) and y (length-n), and a scoring schema
- ➤ Output
 - An alignment of x and y with the maximal score

Basic Scoring Scheme

- > Simplest Scoring Scheme
 - Match premium: $+\alpha$
 - Mismatch penalty: -μ
 - Insertion and deletion (gap) penalty: $-\sigma$

Score = α #matches – μ #mismatches – σ (#insertions + #deletions)

> Recursive Formula

$$S_{i,j} = \max \left\{ \begin{array}{l} S_{i-1,j} - \sigma \\ \\ S_{i,j-1} - \sigma \\ \\ S_{i-1,j-1} - \mu \quad if \ x_i \neq y_j \\ \\ S_{i-1,j-1} + \alpha \quad if \ x_i = y_j \end{array} \right.$$

BAYLOR

Example of Sequence Alignment

- > Example
 - x="ATGTTAT" (m=7), y="ATCGTAC" (n=7)

All horizontal and vertical edges: $-\sigma$

Solving by Dynamic Programming

> Algorithm

```
\begin{aligned} & \text{GLOBALALIGNMENT}(x,y) \\ & S_{0,0} \leftarrow 0 \\ & \text{for } i \leftarrow 1 \text{ to } m \\ & S_{i,0} \leftarrow S_{i-1,0} - \sigma \\ & \text{for } j \leftarrow 1 \text{ to } n \\ & S_{0,j} \leftarrow S_{0,j-1} - \sigma \\ & \text{for } i \leftarrow 1 \text{ to } m \\ & \text{for } j \leftarrow 1 \text{ to } n \\ & \text{if } x_i = y_j \\ & S_{i,j} \leftarrow \max(S_{i-1,j} - \sigma, S_{i,j-1} - \sigma, S_{i-1,j-1} + \alpha) \\ & else \\ & S_{i,j} \leftarrow \max(S_{i-1,j} - \sigma, S_{i,j-1} - \sigma, S_{i-1,j-1} - \mu) \\ & \text{return } S_{m,n} \end{aligned}
```

BAYLOR

Advanced Scoring Schemes

- > Percent Identity
 - Percentage of identical matches
- ➤ Percent Similarity
 - Percentage of nucleotide pairs with the same type
 - Percentage of similar amino acid pairs in biochemical structure
- ➤ Advanced Scoring Schemes
 - Varying scores in similarity
 - Varying, strong penalties for mismatches
 - Relative likelihood of evolutionary relationship
 - → Probability of mutations
 - Define scoring matrix for DNA or protein sequences

Scoring Matrices (1)

- \succ Scoring Matrix δ
 - Also called substitution matrix
 - 4 × 4 array representation for DNA sequences or (4+1) × (4+1) array
 - 20 × 20 array representation for protein sequences or (20+1) × (20+1) array
 - Entry of δ (*i,j*) has the score between *i* and *j*, i.e., the rate at which *i* is substituted with *j* over time
- > Recursive Formula

Ha
$$S_{i,j} = \max \left\{ \begin{array}{l} S_{i-1,j} + \delta(x_i,-) \\ \\ S_{i,j-1} + \delta(-,y_j) \\ \\ S_{i-1,j-1} + \delta(x_i,y_j) \end{array} \right.$$

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- > Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

BAYLOR

Local Sequence Alignment (1)

- > Example
 - x = "TCAGTGTCGAAGTTA"
 - y = "TAGGCTAGCAGTGTG"
- ➤ Global Alignment

> Local Alignment

Global vs. Local Alignment

- ➤ Global Alignment Problem
 - Finds the path having the largest weight between vertices (0,0) and (m,n) in the edit graph
- ➤ Local Alignment Problem
 - Finds the path having the largest weight between two arbitrary vertices, (i,j) and (i',j'), in the edit graph
- > Score Comparison
 - The score of local alignment must be greater than (or equal to) the score of global alignment

Formulation of Local Alignment Problem

- ➤ Goal
 - Finding the best local alignment between two sequences
- ➤ Input
 - Two sequences x and y, and a scoring matrix δ
- ➤ Output
 - An alignment of substrings of x and y with the maximal score among all possible substrings of them

Solving by Exhaustive Search (1)

> Process

- (1) Enumeration of all possible pairs of substrings
- (2) Global alignment for each pair of substrings

> Process re-written

- (1) Enumeration of all possible pairs of start position (i,j) and end position (i',i')
- (2) Global alignment from each position (i,j) to each position (i',j')

> Runtime

- Suppose two sequences have the same length n
- Global alignment :
- Total runtime :

BAYLOR

Solving by Exhaustive Search (2)

> Process improved

- (1) Enumeration of all possible starting positions (i,j)
- (2) Global alignment from each (i,j)

> Runtime

- Suppose two sequences have the same length n
- Global alignment :
- Total runtime :

> Solution

• Free ride!

Solving by Dynamic Programming

- ➤ Free Ride
 - Assigns 0 weights from (0,0) to any other nodes (i,j)

> Recursive Formula

huia
$$S_{i,j} = \max \left\{ \begin{array}{l} 0 \\ S_{i-1,j} + \delta(x_i,-) \\ S_{i,j-1} + \delta(-,y_j) \\ S_{i-1,j-1} + \delta(x_i,y_j) \end{array} \right.$$

> Runtime ?

BAYLOR

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

Scoring Insertions/Deletions

- > Naïve Approach
 - $-\sigma$ for 1 insertion/deletion,
 - -2σ for 2 consecutive insertions/deletions
 - -3σ for 3 consecutive insertions/deletions, etc.
 - → too severe penalty for a series of 100 consecutive insertions/deletions
- > Example
 - x="ATAGC", y="ATATTGC"

single event

x="ATAGGC", y="ATGTGC"

ATAG_GC AT_GTGC

BAYLOR

Scoring Gaps of Insertions/Deletions

- ➤ Gap
 - Contiguous sequence of spaces in one of the rows
 - Contiguous sequence of insertions or deletions in 2-row representation
- ➤ Linear Gap Penalty
 - Score for a gap of length $x : -\sigma x$ (Naïve approach)
- ➤ Constant Gap Penalty
 - Score for a gap of length $x : -\rho$
- > Affine Gap Penalty
 - Score for a gap of length $x : -(\rho + \sigma x)$
 - $-\rho$: gap opening penalty / $-\sigma$: gap extension penalty ($\rho \rangle \sigma$)

Solving Constant/Affine Gap Penalty

> Edit Graph Update

Add "long" horizontal or vertical edges to the edit graph

Runtime ?

BAYLOR

Improved Solution for Constant/Affine Gap Penalty

- ➤ 3-Layer Grid Structure
 - Middle layer (Main layer) for diagonal edges
 - Extends matches and mismatches
 - Upper layer for horizontal edges
 - Creates/extends gaps in a sequence x
 - Lower layer for vertical edges
 - Creates/extends gaps in a sequence y
 - Gap opening penalty (-ρ) for jumping from middle layer to upper/lower layer
 - Gap extension penalty $(-\sigma)$ for extending on upper/lower layer

Example of 3-Layer Grid

upper layer (gaps in x)

main layer (matches/mismatches)

lower layer (gaps in y)

BAYLOR

Solving by Dynamic Programming

- > Recursive Formula
 - Dynamic programming with recursion

$$S_{i,j} = \max \left\{ \begin{array}{l} S_{i-1,j-1} + \delta(x_i,y_j) & \longrightarrow \text{ match / mismatch } \\ S_{i,j}^{lower} & \\ S_{i,j}^{upper} & \end{array} \right.$$

$$S_{i,j}^{lower} = \max \left\{ egin{array}{ll} S_{i-1,j}^{lower} - \sigma &
ightarrow & o & ext{continuing gap in } y \ \\ S_{i-1,j} - (
ho + \sigma) &
ightarrow & ext{starting gap in } y \end{array}
ight.$$

$$S_{i,j}^{upper} = \max \left\{ \begin{array}{ll} S_{i,j-1}^{upper} - \sigma & \longrightarrow \text{ continuing gap in } \mathbf{x} \\ \\ S_{i,j-1} - (\rho + \sigma) & \longrightarrow \text{ starting gap in } \mathbf{x} \end{array} \right.$$

Runtime ?

Overview

- > Manhattan Tourist Problem
- > Longest Common Subsequence Problem
- > Edit Distance
- > Global Sequence Alignment
- > Local Sequence Alignment
- > Alignment with Gap Penalty
- > Multiple Sequence Alignment

BAYLOR

Pairwise Alignment vs. Multiple Alignment

- > Pairwise Alignment
 - Alignment of two sequences
 - Sometimes two sequences are functionally similar or have common ancestor although they have weak sequence similarity
- > Multiple Alignment
 - Alignment of more than two sequences
 - Finds invisible similarity in pairwise alignment

Alignment of 3 Sequences

- > Alignment of 2 Sequences
 - Described in a 2-row representation
 - Best alignment is found in a 2-D matrix by dynamic programming
- ➤ Alignment of 3 Sequences
 - Described in a 3-row representation
 - x="ATGTG", y="ACGTA", z="ATCTG"

x: A T - G T G -

/: A - C G T - A

:: A T C - T G -

• Best alignment is found in a 3-D matrix by dynamic programming

BAYLOR

Alignment in 3-D Grid

- ➤ 3-D Edit Graph
 - 3-D grid structure (cube) with diagonals in each cell
- > Example

0 1 2 2 3 4 5 5 x: A T - G T G -0 1 1 2 3 4 4 5 y: A - C G T - A

source

Path in 3-D grid :

 $(0,0,0) \to (1,1,1) \to (2,1,2) \to (2,2,3) \to (3,3,3) \to (4,4,4) \to (5,4,5) \to (5,5,5)$

3-D Grid Unit

- > 2-D Grid Unit
 - Maximum 3 edges in each unit of 2-D grid

> 3-D Grid Cell

Maximum 7 edges in each unit of 3-D grid

BAYLOR

Solving by Dynamic Programming

> Recursive Formula

$$S_{i,j,k} = \max \left\{ \begin{array}{l} S_{i-1,j,k} + \delta(x_i, -, -) \\ \\ S_{i,j-1,k} + \delta(-, y_i, -) \\ \\ S_{i,j,k-1} + \delta(-, -, z_k) \\ \\ S_{i-1,j-1,k} + \delta(x_i, y_j, -) \\ \\ S_{i-1,j,k-1} + \delta(x_i, -, z_k) \\ \\ S_{i,j-1,k-1} + \delta(-, y_j, z_k) \\ \\ S_{i-1,j-1,k-1} + \delta(x_i, y_j, z_k) \end{array} \right.$$

- $\delta(x, y, z)$ is the entry of 3-D scoring matrix
- > Runtime ?

from 3-D Alignment to Multiple Alignment

\triangleright Alignment of k Sequences

- Able to be solved by dynamic programming in k-D grid
- Runtime ?

> Conclusion

- Dynamic programming for pairwise alignment can be extended to multiple alignment
- However, computationally impractical
- How can we solve this problem?

BAYLOR

Heuristics of Multiple Alignment

> Intuition

 Implementing pairwise alignment (2-D alignment) many times is better than implementing k-D multiple alignment once

> Heuristic Process

- (1) Implementing all possible pairwise alignments
- (2) Combining the most similar pair iteratively

Pairwise Alignment to Multiple Alignment

ightharpoonup Pairwise Alignments ightarrow Multiple Alignment

• Can we construct a multiple alignment that induces pairwise alignments?

BAYLOR

Multiple Alignment Projection

> Projection

- Conclusion
 - Can't infer optimal multiple alignment from all optimal pairwise alignments
 - Example?

Greedy Approach (1)

- > Process
 - (1) Implement pairwise alignment for all possible pairs of sequences
 - (2) Choose the most similar pair of sequences
 - (3) Merge them into a new sequence
 - (4) Choose the most similar sequence to the new sequence
 - (5) Repeat (3) and (4) until choosing all sequences
- > Example
 - Step 1

s1: GATTCAs2: GTCTGA

s3: GATATT s4: GTCAGC

s2 GTCTGA s4 GTCAGC

s1 GAT-TCA s2 G-TCTGA

s1 GAT-TCA s3 GATAT-T

T-TCA s3

s2 G-TCTGAs3 GATAT-T

s1 GATTCA--

s4 G-T-CAGC

s3 GAT-ATT s4 G-TCAGC

BAYLOR

Greedy Approach (2)

- > Example continued
 - Step 2

s2 GTCTGA s4 GTCAGC $s_{2,4}$ GTCt/aGa/c (called profile or consensus sequence)

Step 3

 $egin{array}{ll} s_1 & {\sf GATTCA} \ s_3 & {\sf GATATT} \ s_{2,4} & {\sf GTCt/aGa/c} \end{array}$

- > Features
 - k-way alignment (alignment of k sequences) \rightarrow Runtime ?
 - Greedy algorithm → Not optimal multiple alignment

Scoring Schemes

- > Number of Matches
 - Multiple longest common subsequence score
 - A column is a "match" if all the letters in the column are the same

AAA AAG AAT ATC

- Only good for very similar sequences
- > Sum-of-Pair Scoring
- ➤ Entropy-Based Scoring

BAYLOR

Sum-of-Pair Scoring

- ➤ Sum-of-Pairs Scoring in Multiple Alignment
 - Consider pairwise alignment of sequences, a_i and a_j , imposed by a multiple alignment of k sequences
 - Denote the score of the pairwise alignment as $S^*(a_i, a_j)$
 - Sum up the pairwise scores for a multiple alignment:

$$S(a_1, a_2, \cdots, a_k) = \sum_{i,j} S * (a_i, a_j)$$

- > Example
 - Aligning 4 sequences, a_1 , a_2 , a_3 , and a_4 , by

$$S(a_1, a_2, a_3, a_4) = S * (a_1, a_2) + S * (a_1, a_3) + S * (a_1, a_4)$$
$$+S * (a_2, a_3) + S * (a_2, a_4) + S * (a_3, a_4)$$

Entropy-Based Scoring (1)

- > Entropy in Information Theory
 - A measure of the uncertainty associated with a random variable
 - $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$
- > Entropy-Based Scoring in Multiple Alignment
 - (1) Define frequencies for the occurrence of each letter on each column
 - (2) Compute entropy of each column
 - (3) Sum all entropies over all columns

BAYLOR

Entropy-Based Scoring (2)

> Example AAA

AAG

AAT

ATC

- Frequency
 - 1st column: p(A) = 1, p(T) = p(G) = p(C) = 0
 - 2^{nd} column: p(A) = 0.75, p(T) = 0.25, p(G) = p(C) = 0
 - 3rd column: p(A) = 0.25, p(T) = 0.25, p(C) = 0.25, p(G) = 0.25
- Entropy

$$H \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0 \qquad H \begin{pmatrix} A \\ A \\ A \\ T \end{pmatrix} = -\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4} = 0.244 \qquad H \begin{pmatrix} A \\ G \\ T \\ C \end{pmatrix} = \left(-\frac{1}{4} \log \frac{1}{4}\right) \times 4 = 0.602$$

■ Entropy-based score in multiple alignment: 0 + 0.244 + 0.602

Questions?

Lecture Slides are found on the Course Website, web.ecs.baylor.edu/faculty/cho/5330

