Automated and Scalable Verification of Integer Multipliers

Mertcan Temel^{1,2}

Anna Slobodova²

Warren A. Hunt, Jr.¹

 1 University of Texas at Austin, Austin, TX, USA 2 Centaur Technology, Inc., Austin, TX, USA

Jul 19-24, 2020 (CAV 2020)

Wallace-tree and Booth Encoding define algorithms to design efficient integer multipliers for hardware.

- o Verification of these multipliers is a difficult problem
 - ► SAT Solvers and BDDs do not scale.
 - ▶ Equivalence checking requires structurally close specifications.
 - ► Computer algebra methods perform better but with limitations.
- We propose a more efficient, rewrite-based method that is:
 - ▶ widely applicable (tested for 75+ benchmarks).
 - ▶ scalable (1024×1024-bit multipliers proved under 10 minutes).
 - provably correct (verified using ACL2)
- o Our method works with RTL-level hierarchical designs

- Wallace-tree and Booth Encoding define algorithms to design efficient integer multipliers for hardware.
- o Verification of these multipliers is a difficult problem:
 - ► SAT Solvers and BDDs do not scale.
 - ▶ Equivalence checking requires structurally close specifications.
 - ► Computer algebra methods perform better but with limitations.
- o We propose a more efficient, rewrite-based method that is:
 - ▶ widely applicable (tested for 75+ benchmarks),
 - ▶ scalable (1024×1024-bit multipliers proved under 10 minutes),
 - provably correct (verified using ACL2)
- o Our method works with RTL-level hierarchical designs

- Wallace-tree and Booth Encoding define algorithms to design efficient integer multipliers for hardware.
- Verification of these multipliers is a difficult problem:
 - ► SAT Solvers and BDDs do not scale.
 - ▶ Equivalence checking requires structurally close specifications.
 - ► Computer algebra methods perform better but with limitations.
- We propose a more efficient, rewrite-based method that is:
 - ▶ widely applicable (tested for 75+ benchmarks),
 - ► scalable (1024×1024-bit multipliers proved under 10 minutes),
 - provably correct (verified using ACL2)
- o Our method works with RTL-level hierarchical designs

- Wallace-tree and Booth Encoding define algorithms to design efficient integer multipliers for hardware.
- o Verification of these multipliers is a difficult problem:
 - ► SAT Solvers and BDDs do not scale.
 - ▶ Equivalence checking requires structurally close specifications.
 - ► Computer algebra methods perform better but with limitations.
- We propose a more efficient, rewrite-based method that is:
 - ▶ widely applicable (tested for 75+ benchmarks),
 - ► scalable (1024×1024-bit multipliers proved under 10 minutes),
 - provably correct (verified using ACL2)
- o Our method works with RTL-level hierarchical designs

Overview

Review of Integer Multipliers

2 The Method

Seriments

a2 a2 a2 a2 a1 a0 b2 b2 b2 b2 b1 b0

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification.

```
a_2 a_2 a_2 a_2 a_1 a_0
b_2 b_2 b_2 b_2 b_1 b_0
```

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification.

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification.

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification.

Wallace-tree multiplication on 3x3-bit signed numbers

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification.

Wallace-tree multiplication on 3x3-bit signed numbers

- Goal: implement an efficient hardware module that multiplies two bit-vectors.
- o Integer multipliers have two stages:
 - Partial Product Generation (e.g., Baugh-Wooley, Booth Encoding)
 - 2. Partial Product Summation (e.g., Array, Wallace-tree, Dadda-tree)
- Even two designs following the same algorithm may have very different structures. Therefore, it is important to have an automated system for verification.

- o ACL2 is an interactive and automated theorem proving system.
- o RTL Designs are translated from System Verilog to SVL format
- We prove that the circuit implements truncated multiplication of two sign-extended (or zero-extended) numbers.
- The mechanism we implemented to prove such conjectures are completely verified in ACL2.

- o ACL2 is an interactive and automated theorem proving system.
- o RTL Designs are translated from System Verilog to SVL format
- We prove that the circuit implements truncated multiplication of two sign-extended (or zero-extended) numbers.
- The mechanism we implemented to prove such conjectures are completely verified in ACL2.

- o ACL2 is an interactive and automated theorem proving system.
- o RTL Designs are translated from System Verilog to SVL format
- We prove that the circuit implements truncated multiplication of two sign-extended (or zero-extended) numbers.
- The mechanism we implemented to prove such conjectures are completely verified in ACL2.

- o ACL2 is an interactive and automated theorem proving system.
- o RTL Designs are translated from System Verilog to SVL format
- We prove that the circuit implements truncated multiplication of two sign-extended (or zero-extended) numbers.
- The mechanism we implemented to prove such conjectures are completely verified in ACL2.

- o ACL2 is an interactive and automated theorem proving system.
- o RTL Designs are translated from System Verilog to SVL format
- We prove that the circuit implements truncated multiplication of two sign-extended (or zero-extended) numbers.
- The mechanism we implemented to prove such conjectures are completely verified in ACL2.

- 1. Before working on this conjecture, we reason about the adder modules
- 2. Then we submit the above event and
 - ▶ Replace instantiations of adder modules with their specification from Step 1
 - ► Simplify terms from summation tree algorithms
 - Simplify terms from partial product generation algorithms
 - Rewrite RHS to a form that syntactically matches the simplified form in LHS

- 1. Before working on this conjecture, we reason about the adder modules
- Then we submit the above event and:
 - Replace instantiations of adder modules with their specification from Step 1
 - Simplify terms from summation tree algorithms.
 - Simplify terms from partial product generation algorithms
 - Rewrite RHS to a form that syntactically matches the simplified form in LHS

- 1. Before working on this conjecture, we reason about the adder modules
- 2. Then we submit the above event and:
 - ▶ Replace instantiations of adder modules with their specification from Step 1.
 - ► Simplify terms from summation tree algorithms.
 - ► Simplify terms from partial product generation algorithms.
 - ▶ Rewrite RHS to a form that syntactically matches the simplified form in LHS.

- 1. Before working on this conjecture, we reason about the adder modules
- 2. Then we submit the above event and:
 - ▶ Replace instantiations of adder modules with their specification from Step 1.
 - Simplify terms from summation tree algorithms.
 - ▶ Simplify terms from partial product generation algorithms.
 - ▶ Rewrite RHS to a form that syntactically matches the simplified form in LHS.

- 1. Before working on this conjecture, we reason about the adder modules
- 2. Then we submit the above event and:
 - ▶ Replace instantiations of adder modules with their specification from Step 1.
 - ► Simplify terms from summation tree algorithms.
 - ► Simplify terms from partial product generation algorithms.
 - ▶ Rewrite RHS to a form that syntactically matches the simplified form in LHS.

- 1. Before working on this conjecture, we reason about the adder modules
- 2. Then we submit the above event and:
 - ▶ Replace instantiations of adder modules with their specification from Step 1.
 - ► Simplify terms from summation tree algorithms.
 - ► Simplify terms from partial product generation algorithms.
 - ▶ Rewrite RHS to a form that syntactically matches the simplified form in LHS.

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out ₀
Half-adder			c(a+b)	s(a+b)
Full-adder			$c(a+b+c_{in})$	$s(a+b+c_{in})$
Vector adders				

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left| \frac{x}{2} \right|$

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out ₀
Half-adder			c(a+b)	s(a+b)
Full-adder			$c(a+b+c_{in})$	$s(a+b+c_{in})$
Vector adders				

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left\lfloor \frac{x}{2} \right\rfloor$

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out ₀
Half-adder	-	-	c(a+b)	s(a+b)
Full-adder	-	-	$c(a+b+c_{in})$	$s(a+b+c_{in})$
Vector adders	$s(a_3 + b_3 + c(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0))$	$s(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0)))$	$s(a_1 + b_1 + c(a_0 + b_0))$	$s(a_0+b_0)$

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left\lfloor \frac{x}{2} \right\rfloor$

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out_0
Half-adder	-	-	c(a + b)	s(a + b)
Full-adder	-	-	$c(a+b+c_{in})$	$s(a+b+c_{in})$
Vector adders	$s(a_3 + b_3 + c(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0)))$	$s(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0)))$	$s(a_1 + b_1 + c(a_0 + b_0))$	$s(a_0+b_0)$

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left\lfloor \frac{x}{2} \right\rfloor$

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out ₀
Half-adder	-	-	c(a+b)	s(a+b)
Full-adder	-	-	$c(a + b + c_{in})$	$s(a+b+c_{in})$
Vector adders	$s(a_3 + b_3 + c(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0))$	$s(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0)))$	$s(a_1 + b_1 + c(a_0 + b_0))$	$s(a_0+b_0)$

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left\lfloor \frac{x}{2} \right\rfloor$

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out ₀
Half-adder	=	-	c(a+b)	s(a+b)
Full-adder	-	-	$c(a+b+c_{in})$	$s(a+b+c_{in})$
Vector adders	$\begin{array}{l} s(a_3+b_3\\+c(a_2+b_2\\+c(a_1+b_1\\+c(a_0+b_0))\end{array}$	$\begin{array}{c} s(a_2 + b_2 \\ + c(a_1 + b_1 \\ + c(a_0 + b_0))) \end{array}$	$s(a_1 + b_1 + c(a_0 + b_0))$	$s(a_0+b_0)$

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left|\frac{x}{2}\right|$

Before the multiplier proof, a lemma for each adder module is proved:

Adder	out ₃	out ₂	out_1	out ₀
Half-adder	-	-	c(a+b)	s(a+b)
Full-adder	-	-	$c(a+b+c_{in})$	$s(a+b+c_{in})$
Vector adders	$s(a_3 + b_3 + c(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0))$	$s(a_2 + b_2 + c(a_1 + b_1 + c(a_0 + b_0)))$	$s(a_1 + b_1 + c(a_0 + b_0))$	$s(a_0+b_0)$

where
$$s(x) = mod_2(x)$$
 and $c(x) = \left\lfloor \frac{x}{2} \right\rfloor$

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier:

out ₃	out ₂	out_1	out ₀
$\begin{array}{c} s(a_0b_3+a_1b_2+a_2b_1+a_3b_0\\ +c(a_0b_2+a_1b_1+a_2b_0\\ +c(a_1b_0+a_0b_1\\ +c(a_0b_0)))\end{array}$	$s(a_0b_2 + a_1b_1 + a_2b_0 + c(a_1b_0 + a_0b_1 + c(a_0b_0)))$	$s(a_1b_0 + a_0b_1 + c(a_0b_0))$	s(a ₀ b ₀)

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier:

out ₃	out ₂	out_1	out ₀
$\begin{array}{c} s(a_0b_3+a_1b_2+a_2b_1+a_3b_0\\ +c(a_0b_2+a_1b_1+a_2b_0\\ +c(a_1b_0+a_0b_1\\ +c(a_0b_0)))\end{array}$	$s(a_0b_2 + a_1b_1 + a_2b_0 + c(a_1b_0 + a_0b_1 + c(a_0b_0)))$	$s(a_1b_0 + a_0b_1 + c(a_0b_0))$	$s(a_0b_0)$

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier:

out ₃	out ₂	out_1	out ₀
$s(a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 \\ + c(a_0b_2 + a_1b_1 + a_2b_0 \\ + c(a_1b_0 + a_0b_1 \\ + c(a_0b_0)))$	$s(a_0b_2 + a_1b_1 + a_2b_0 + c(a_1b_0 + a_0b_1 + c(a_0b_0)))$	$s(a_1b_0 + a_0b_1 + c(a_0b_0))$	s(a ₀ b ₀)

Step 2: Multiplier Module Proofs

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier:

out ₃	out ₂	out_1	out_0
$s(a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 \\ + c(a_0b_2 + a_1b_1 + a_2b_0 \\ + c(a_1b_0 + a_0b_1 \\ + c(a_0b_0)))$	$s(a_0b_2+a_1b_1+a_2b_0\ +c(a_1b_0+a_0b_1\ +c(a_0b_0)))$	$s(a_1b_0 + a_0b_1 + c(a_0b_0))$	$s(a_0b_0)$

Step 2: Multiplier Module Proofs

Prove this conjecture:

Both LHS and RHS should be rewritten to the same final form.

An example final form for the first 4 output bits of a multiplier:

out ₃	out ₂	out_1	out ₀
$\begin{array}{c} s(a_0b_3+a_1b_2+a_2b_1+a_3b_0\\ +c(a_0b_2+a_1b_1+a_2b_0\\ +c(a_1b_0+a_0b_1\\ +c(a_0b_0)))\end{array}$	$s(a_0b_2 + a_1b_1 + a_2b_0 + c(a_1b_0 + a_0b_1 + c(a_0b_0)))$	$s(a_1b_0 + a_0b_1 + c(a_0b_0))$	s(a ₀ b ₀)

The 4th LSB of the Wallace-tree multiplier with simple partial products:

$$s(s(s(a_3b_0 + a_2b_1 + a_1b_2) + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2)) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Goal: Simplify such terms with a set of lemmas

Nested instances of s can be cleared with the following lemma.

Lemma
$$\forall x, y \in \mathbb{Z} \ s(s(x) + y) = s(x + y)$$

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 +c(a_2b_0 + a_1b_1 + a_0b_2) +c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

The 4th LSB of the Wallace-tree multiplier with simple partial products:

$$s(s(s(a_3b_0 + a_2b_1 + a_1b_2) + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2)) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Goal: Simplify such terms with a set of lemmas.

Nested instances of s can be cleared with the following lemma.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s(s(x) + y) = s(x + y)$

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

The 4th LSB of the Wallace-tree multiplier with simple partial products:

$$s(s(s(a_3b_0 + a_2b_1 + a_1b_2) + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2)) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Goal: Simplify such terms with a set of lemmas.

Nested instances of s can be cleared with the following lemma.

Lemma
$$\forall x, y \in \mathbb{Z} \ s(s(x) + y) = s(x + y)$$

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 +c(a_2b_0 + a_1b_1 + a_0b_2) +c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

The 4th LSB of the Wallace-tree multiplier with simple partial products:

$$s(s(s(a_3b_0 + a_2b_1 + a_1b_2) + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2)) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Goal: Simplify such terms with a set of lemmas.

Nested instances of s can be cleared with the following lemma.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s(s(x) + y) = s(x + y)$

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

The current term:

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2) + c(s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Define $d(x) = \frac{x}{2}$. Summation of two or more c instances can be merged with the following set of lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $c(x) + c(y) = d(x + y - s(x) - s(y))$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x) + d(y) = d(x + y - s(x))$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x) + d(y) = d(x + y)$
Lemma $\forall x \in \mathbb{Z}$ $d(-s(x) + x) = c(x)$

When these lemmas are applied to the example above, we get:

$$(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_1 + c(a_2b_0 + a_1b_1 + a_0b_2 + c(a_1b_0 + a_0b_1)))$$

The current term:

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c (a_2b_0 + a_1b_1 + a_0b_2) + c (s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Define $d(x) = \frac{x}{2}$. Summation of two or more c instances can be merged with the following set of lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $c(x) + c(y) = d(x + y - s(x) - s(y))$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x) + d(y) = d(x + y - s(x))$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x) + d(y) = d(x + y)$
Lemma $\forall x \in \mathbb{Z}$ $d(-s(x) + x) = c(x)$

When these lemmas are applied to the example above, we get:

$$(a_3b_0 + a_2b_1 + a_1b_2 + a_0 +c(a_2b_0 + a_1b_1 + a_0b_2 +c(a_1b_0 + a_0b_1)))$$

The current term:

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c (a_2b_0 + a_1b_1 + a_0b_2) + c (s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Define $d(x) = \frac{x}{2}$. Summation of two or more c instances can be merged with the following set of lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $c(x) + c(y) = d(x + y - s(x) - s(y))$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x) + d(y) = d(x + y - s(x))$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x) + d(y) = d(x + y)$
Lemma $\forall x \in \mathbb{Z}$ $d(-s(x) + x) = c(x)$

When these lemmas are applied to the example above, we get:

$$(a_3b_0 + a_2b_1 + a_1b_2 + a_0 +c(a_2b_0 + a_1b_1 + a_0b_2 +c(a_1b_0 + a_0b_1)))$$

The current term:

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c (a_2b_0 + a_1b_1 + a_0b_2) + c (s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Define $d(x) = \frac{x}{2}$. Summation of two or more c instances can be merged with the following set of lemmas.

Lemma
$$\forall x,y \in \mathbb{Z}$$
 $c(x)+c(y)=d(x+y-s(x)-s(y))$
Lemma $\forall x,y \in \mathbb{Z}$ $c(x)+d(y)=d(x+y-s(x))$
Lemma $\forall x,y \in \mathbb{Z}$ $d(x)+d(y)=d(x+y)$
Lemma $\forall x \in \mathbb{Z}$ $d(-s(x)+x)=c(x)$

When these lemmas are applied to the example above, we get:

$$5(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_1 + c(a_2b_0 + a_1b_1 + a_0b_2 + c(a_1b_0 + a_0b_1)))$$

The current term:

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c (a_2b_0 + a_1b_1 + a_0b_2) + c (s(a_2b_0 + a_1b_1 + a_0b_2) + c(a_1b_0 + a_0b_1)))$$

Define $d(x) = \frac{x}{2}$. Summation of two or more c instances can be merged with the following set of lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $c(x) + c(y) = d(x + y - s(x) - s(y))$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x) + d(y) = d(x + y - s(x))$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x) + d(y) = d(x + y)$
Lemma $\forall x \in \mathbb{Z}$ $d(-s(x) + x) = c(x)$

When these lemmas are applied to the example above, we get:

$$s(a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 + c(a_2b_0 + a_1b_1 + a_0b_2 + c(a_1b_0 + a_0b_1)))$$

Booth Encoding creates more complicated terms for partial products.

For example:

$$s([\neg b_1b_0a_1 \vee b_1 \neg b_0 \neg a_0 \vee b_1b_0 \neg a_1] \\ +c([b_1b_0 \vee b_1 \neg b_0] \\ +[b_1 \neg b_0 \vee \neg b_1b_0a_0 \vee b_1b_0 \neg a_0]))$$

First, we perform algebraic rewriting to get rid of \oplus , \vee and \neg .

Lemma
$$\forall x \in \{0,1\} \ \neg x = 1 - x$$

Lemma $\forall x, y \in \{0,1\} \ x \lor y = x + y - xy$
Lemma $\forall x, y \in \{0,1\} \ x \oplus y = x + y - xy - xy$

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

Booth Encoding creates more complicated terms for partial products.

For example:

$$s([\neg b_1b_0a_1 \vee b_1 \neg b_0 \neg a_0 \vee b_1b_0 \neg a_1] \\ +c([b_1b_0 \vee b_1 \neg b_0] \\ +[b_1 \neg b_0 \vee \neg b_1b_0a_0 \vee b_1b_0 \neg a_0]))$$

First, we perform algebraic rewriting to get rid of \oplus , \vee and \neg .

Lemma
$$\forall x \in \{0,1\} \ \neg x = 1 - x$$

Lemma $\forall x, y \in \{0,1\} \ x \lor y = x + y - xy$
Lemma $\forall x, y \in \{0,1\} \ x \oplus y = x + y - xy - xy$

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

Booth Encoding creates more complicated terms for partial products.

For example:

$$s([\neg b_1b_0a_1 \vee b_1 \neg b_0 \neg a_0 \vee b_1b_0 \neg a_1] \\ +c([b_1b_0 \vee b_1 \neg b_0] \\ +[b_1 \neg b_0 \vee \neg b_1b_0a_0 \vee b_1b_0 \neg a_0]))$$

First, we perform algebraic rewriting to get rid of \oplus , \vee and $\neg.$

Lemma
$$\forall x \in \{0,1\} \ \neg x = 1-x$$

Lemma $\forall x,y \in \{0,1\} \ x \lor y = x+y-xy$
Lemma $\forall x,y \in \{0,1\} \ x \oplus y = x+y-xy-xy$

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

Booth Encoding creates more complicated terms for partial products.

For example:

$$s([\neg b_1b_0a_1 \vee b_1 \neg b_0 \neg a_0 \vee b_1b_0 \neg a_1] \\ +c([b_1b_0 \vee b_1 \neg b_0] \\ +[b_1 \neg b_0 \vee \neg b_1b_0a_0 \vee b_1b_0 \neg a_0]))$$

First, we perform algebraic rewriting to get rid of \oplus , \vee and \neg .

Lemma
$$\forall x \in \{0,1\} \ \neg x = 1-x$$

Lemma $\forall x,y \in \{0,1\} \ x \lor y = x+y-xy$
Lemma $\forall x,y \in \{0,1\} \ x \oplus y = x+y-xy-xy$

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

The current term:

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

We try to get rid of repeated and/or negative minterms with the following lemmas.

Lemma
$$\forall x,y \in \mathbb{Z}$$
 $s((-x)+y)=s(x+y)$
Lemma $\forall x,y \in \mathbb{Z}$ $c((-x)+y)=(-x)+c(x+y)$
Lemma $\forall x,y \in \mathbb{Z}$ $d((-x)+y)=(-x)+d(x+y)$
Lemma $\forall x,y \in \mathbb{Z}$ $s(x+x+y)=s(y)$
Lemma $\forall x,y \in \mathbb{Z}$ $c(x+x+y)=x+c(y)$
Lemma $\forall x,y \in \mathbb{Z}$ $d(x+x+y)=x+d(y)$

When these lemmas are applied to the example above, we get:

$$s(b_0a_1 + b_1a_0 + c(b_0a_0))$$

The current term:

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

We try to get rid of repeated and/or negative minterms with the following lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s((-x) + y) = s(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c((-x) + y) = (-x) + c(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d((-x) + y) = (-x) + d(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $s(x + x + y) = s(y)$

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s(x+x+y) = s(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x+x+y) = x + c(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x+x+y) = x + d(y)$

When these lemmas are applied to the example above, we get:

$$s(b_0a_1 + b_1a_0 + c(b_0a_0))$$

The current term:

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

We try to get rid of repeated and/or negative minterms with the following lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s((-x) + y) = s(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c((-x) + y) = (-x) + c(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d((-x) + y) = (-x) + d(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $s(x + x + y) = s(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x + x + y) = x + c(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x + x + y) = x + d(y)$

When these lemmas are applied to the example above, we get:

$$s(b_0a_1+b_1a_0+c(b_0a_0))$$

The current term:

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

We try to get rid of repeated and/or negative minterms with the following lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s((-x) + y) = s(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c((-x) + y) = (-x) + c(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d((-x) + y) = (-x) + d(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $s(x + x + y) = s(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x + x + y) = x + c(y)$

Lemma $\forall x, y \in \mathbb{Z}$ d(x+x+y) = x + d(y)

When these lemmas are applied to the example above, we get:

$$s(b_0a_1 + b_1a_0 + c(b_0a_0))$$

The current term:

$$s(b_1 + b_0a_1 - b_1a_0 + b_1b_0a_0 - b_1b_0a_1 - b_1b_0a_1 + c(b_1 + b_1 + b_0a_0 - b_1b_0a_0 - b_1b_0a_0))$$

We try to get rid of repeated and/or negative minterms with the following lemmas.

Lemma
$$\forall x, y \in \mathbb{Z}$$
 $s((-x) + y) = s(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c((-x) + y) = (-x) + c(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d((-x) + y) = (-x) + d(x + y)$
Lemma $\forall x, y \in \mathbb{Z}$ $s(x + x + y) = s(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $c(x + x + y) = x + c(y)$
Lemma $\forall x, y \in \mathbb{Z}$ $d(x + x + y) = x + d(y)$

When these lemmas are applied to the example above, we get:

$$s(b_0a_1 + b_1a_0 + c(b_0a_0))$$

Our method is tested for various integer multipliers with:

- o Signed/unsigned simple or Booth Encoded partial products
- o Summation trees such as Wallace-tree, Dadda-tree, 4:2 compressor trees...
- o Final stage adders such as Brent-Kung, Ladner-Fischer, Carry-lookahead...

We measure the total time for:

- o Proof events for each adder module in Step 1
- o Proof event for the multiplier module in Step 2

Our method is tested for various integer multipliers with:

- o Signed/unsigned simple or Booth Encoded partial products.
- o Summation trees such as Wallace-tree, Dadda-tree, 4:2 compressor trees...
- o Final stage adders such as Brent-Kung, Ladner-Fischer, Carry-lookahead.

We measure the total time for:

- o Proof events for each adder module in Step 1
- o Proof event for the multiplier module in Step 2

Our method is tested for various integer multipliers with:

- o Signed/unsigned simple or Booth Encoded partial products.
- o Summation trees such as Wallace-tree, Dadda-tree, 4:2 compressor trees...
- o Final stage adders such as Brent-Kung, Ladner-Fischer, Carry-lookahead..
- We measure the total time for:
 - o Proof events for each adder module in Step 1
 - o Proof event for the multiplier module in Step 2

Our method is tested for various integer multipliers with:

- Signed/unsigned simple or Booth Encoded partial products.
- o Summation trees such as Wallace-tree, Dadda-tree, 4:2 compressor trees...
- o Final stage adders such as Brent-Kung, Ladner-Fischer, Carry-lookahead...

We measure the total time for:

- o Proof events for each adder module in Step 1
- o Proof event for the multiplier module in Step 2

Our method is tested for various integer multipliers with:

- Signed/unsigned simple or Booth Encoded partial products.
- o Summation trees such as Wallace-tree, Dadda-tree, 4:2 compressor trees...
- o Final stage adders such as Brent-Kung, Ladner-Fischer, Carry-lookahead...

We measure the total time for:

- o Proof events for each adder module in Step 1
- o Proof event for the multiplier module in Step 2

Table: Average proof-time results in seconds with success rate for various multiplier designs

C:	AM ⁱ		DΚ ⁱⁱ		Our Tool	
Size	Success	Time	Success	Time	Success	Time
64×64	8/13	89.75	24/26	19.04	26/26	2.5
128×128	4/8	577.5	14/16	305	16/16	6.19
256×256	2/7	15451	12/14	4468	14/14	22.57
512×512	0/6	-	8/12	1602	12/12	152
1024×1024	0/4	-	8/8	13906	8/8	355

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK" could finish without time-out, their results are {6, 40, 222, 1602, 13906} and ours are {1, 3, 11, 68, 355}.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

Size	A	AM i		DK ⁱⁱ		Our Tool	
	Success	Time	Success	Time	Success	Time	
64×64	8/13	89.75	24/26	19.04	26/26	2.5	
128×128	4/8	577.5	14/16	305	16/16	6.19	
256×256	2/7	15451	12/14	4468	14/14	22.57	
512×512	0/6	-	8/12	1602	12/12	152	
1024×1024	0/4	-	8/8	13906	8/8	355	

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- o Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, 40, 222, 1602, 13906\}$ and ours are $\{1, 3, 11, 68, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

Size	A	AM i		DK ⁱⁱ		Our Tool	
	Success	Time	Success	Time	Success	Time	
64×64	8/13	89.75	24/26	19.04	26/26	2.5	
128×128	4/8	577.5	14/16	305	16/16	6.19	
256×256	2/7	15451	12/14	4468	14/14	22.57	
512×512	0/6	-	8/12	1602	12/12	152	
1024×1024	0/4	-	8/8	13906	8/8	355	

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- o Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, 40, 222, 1602, 13906\}$ and ours are $\{1, 3, 11, 68, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

Size	А	AM ⁱ		DK ⁱⁱ		Our Tool	
	Success	Time	Success	Time	Success	Time	
64×64	8/13	89.75	24/26	19.04	26/26	2.5	
128×128	4/8	577.5	14/16	305	16/16	6.19	
256×256	2/7	15451	12/14	4468	14/14	22.57	
512×512	0/6	-	8/12	1602	12/12	152	
1024×1024	0/4	-	8/8	13906	8/8	355	

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- o Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, 40, 222, 1602, 13906\}$ and ours are $\{1, 3, 11, 68, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

C:	AM ⁱ		DK ⁱⁱ		Our Tool	
Size	Success	Time	Success	Time	Success	Time
64×64	8/13	89.75	24/26	19.04	26/26	2.5
128×128	4/8	577.5	14/16	305	16/16	6.19
256×256	2/7	15451	12/14	4468	14/14	22.57
512×512	0/6	-	8/12	1602	12/12	152
1024×1024	0/4	-	8/8	13906	8/8	355

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- o Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, 40, 222, 1602, 13906\}$ and ours are $\{1, 3, 11, 68, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

C:	А	AM ⁱ		DK ⁱⁱ		Tool
Size	Success	Time	Success	Time	Success	Time
64×64	8/13	89.75	24/26	19.04	26/26	2.5
128×128	4/8	577.5	14/16	305	16/16	6.19
256×256	2/7	15451	12/14	4468	14/14	22.57
512×512	0/6	-	8/12	1602	12/12	152
1024×1024	0/4	-	8/8	13906	8/8	355

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK" could finish without time-out, their results are {6, 40, 222, 1602, 13906} and ours are {1, 3, 11, 68, 355}.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

Size	AM ⁱ		D	DK ⁱⁱ		Tool
	Success	Time	Success	Time	Success	Time
64×64	8/13	89.75	24/26	19.04	26/26	2.5
128×128	4/8	577.5	14/16	305	16/16	6.19
256×256	2/7	15451	12/14	4468	14/14	22.57
512×512	0/6	-	8/12	1602	12/12	152
1024×1024	0/4	-	8/8	13906	8/8	355

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- o Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, 40, 222, 1602, 13906\}$ and ours are $\{1, 3, 11, 68, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

C:	AM^i		D	DΚ ⁱⁱ		Tool
Size	Success	Time	Success	Time	Success	Time
64×64	8/13	89.75	24/26	19.04	26/26	2.5
128×128	4/8	577.5	14/16	305	16/16	6.19
256×256	2/7	15451	12/14	4468	14/14	22.57
512×512	0/6	-	8/12	1602	12/12	152
1024×1024	0/4	-	8/8	13906	8/8	355

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, 40, 222, 1602, 13906\}$ and ours are $\{1, 3, 11, 68, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

Table: Average proof-time results in seconds with success rate for various multiplier designs

C:	А	AM^i		DK ⁱⁱ		Our Tool	
Size	Success	Time	Success	Time	Success	Time	
64×64	8/13	89.75	24/26	19.04	26/26	2.5	
128×128	4/8	577.5	14/16	305	16/16	6.19	
256×256	2/7	15451	12/14	4468	14/14	22.57	
512×512	0/6	-	8/12	1602	12/12	152	
1024×1024	0/4	-	8/8	13906	8/8	355	

i. Mahzoon, A., Große, D., Drechsler, R.: RevSCA: Using Reverse Engineering to Bring Light into Backward Rewriting for Big and Dirty Multipliers. DAC '19

- o Success rate={verified}/{all benchmarks}. The other tools failed either due to time-out or some program error. Failed proofs are not included in the averages.
- o For the 8 benchmark types that DK^{ii} could finish without time-out, their results are $\{6, \, 40, \, 222, \, 1602, \, 13906\}$ and ours are $\{1, \, 3, \, 11, \, 68, \, 355\}$.

ii. Kaufmann, D., Biere, A., Kauers, M.: Incremental Column-wise Verification of Arithmetic Circuits Using Computer Algebra. FMCAD '19

- o We have proposed an efficient method to verify integer multipliers
- We work with a wide-range of different designs
- o Our method is proved correct using ACL2
- Future works
 - ► Create counterexamples
 - Support completely flattened designs

- o We have proposed an efficient method to verify integer multipliers
- o We work with a wide-range of different designs.
- o Our method is proved correct using ACL2
- Future work
 - ► Create counterexamples
 - ► Support completely flattened designs

- We have proposed an efficient method to verify integer multipliers
- We work with a wide-range of different designs.
- Our method is proved correct using ACL2
- o Future work
 - ► Create counterexamples
 - ► Support completely flattened designs

- o We have proposed an efficient method to verify integer multipliers
- o We work with a wide-range of different designs.
- o Our method is proved correct using ACL2
- o Future work:
 - ► Create counterexamples
 - ► Support completely flattened designs

The End