C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor

FTHA – Finite-Time Heat Addition Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-07-21 17h37m44s UTC

- Modelagem do Motor
 - Mecanismo Biela-Manivela
 - Tempos (*Timings*) do Motor
- 2 Modelagem do Ciclo
 - Modelo de Substância
 - Procedimento de Solução
- 3 Tópicos de Leitura

O ciclo Otto ideal:

• É aquele ensinado em Termodinâmica aplicada, o qual:

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;

O ciclo Otto ideal:

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;

Gás ideal;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo de ciclo fechado para ciclo aberto;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo de ciclo fechado para ciclo aberto;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo de ciclo fechado para ciclo aberto;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros *r* e *k*, e
- Sol. analítica nas hipóteses padrão a ar frio.

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo de ciclo fechado para ciclo aberto;

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Sol. analítica nas hipóteses padrão a ar frio.

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo de ciclo fechado para ciclo aberto;
- Calores específicos constantes.

- É aquele ensinado em Termodinâmica aplicada, o qual:
- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros *r* e *k*, e
- Sol. analítica nas hipóteses padrão a ar frio.

$$\eta_t = 1 - r^{1-k}.$$

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo de ciclo fechado para ciclo aberto;
- Calores específicos constantes.

Um template de slide.

De duas colunas.

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. Termodinâmica 7ª Edição. Seções 9–3 a 9–5. AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

Naaktgeboren, C.

An air-standard finite-time heat addition Otto engine model.

Int. J. Mech. Eng. Educ. 45 (2), 2017.

DOI 10.1177/0306419016689447.

