1 LMFDB Workshop at AIM — May 10th, 2016 George J. Schaeffer

1.1 Labels for Dirichlet characters modulo ℓ

In order to tabulate entries for modular forms and Galois representations mod ℓ we need a commonly accepted labeling scheme for characters $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \overline{\mathbb{F}}_{\ell}^{\times}$. Such a scheme has already been developed by Conrey (and implemented by LMFDB) for Dirichlet characters $(\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. Our aim here is to adapt the Conrey scheme to mod ℓ Dirichlet characters.

Just to get an idea of what needs to be done, here is how the Conrey scheme over \mathbb{C} works for Dirichlet characters with odd prime power moduli: Let p^e be an odd prime power and let g be the least positive integer whose residue class is a generator of $(\mathbb{Z}/p^e\mathbb{Z})^{\times}$. Then

$$\chi_{p^e}(m,n) = \exp\left(\frac{2\pi i}{\varphi(p^e)}\log_g(m)\log_g(n)\right) \text{(Z/p^f Z)^x for every f >= 1}$$
 (equivalently, for f = 2)

where \log_g is the discrete logarithm with base g modulo p^e . This definition depends on two choices: (1) The choice of the "least" primitive root g, and (2) The choice of $\varphi(p^e)$ th root of unity $e^{2\pi i/\varphi(p^e)}$. It is this second choice that we need to adapt to the mod ℓ setting.

Compatible roots of unity mod ℓ

To adapt the Conrey scheme to mod ℓ Dirichlet characters, we need a *compatible* system of roots of unity in $\bar{\mathbb{F}}_{\ell}$. That is, for every ℓ we want a sequence $\{\zeta_{\ell,n}\}_n \subseteq \bar{\mathbb{F}}_{\ell}^{\times}$ where for each n,

- a. If $\ell \nmid n$, $\zeta_{\ell,n}$ is a primitive nth root of unity;
- b. $\zeta_{\ell,n}$ is an *n*th root of unity;
- c. For all m, $\zeta_{\ell,mn}^m = \zeta_{\ell,n}$.

The Conway polynomials can be used to build a system of roots of unity with these properties (and Conway polynomials are at least partially impmlemented in SAGE and Magma). Let $\alpha_{\ell,r}$ be a root of the Conway polynomial $F_{\ell,r}$ so that $\alpha_{\ell,r}$ is a primitive (ℓ^r-1) th root of unity in $\bar{\mathbb{F}}_{\ell}^{\times}$ and $\alpha_{\ell,r}^{(\ell^r-1)/(\ell^s-1)}=\alpha_{\ell,s}$ for all $s\mid r$.

So long as our choice of ℓ is clear, let r(n) be the least positive integer so that $n \mid \ell^r - 1$, let $v(n) = v_\ell(n)$, and let $\alpha_r = \alpha_{\ell,r}$. Note: r(n) only defined for n prime to ell.

Definition 1. We define $\{\zeta_{\ell,n}\}_n \subseteq \bar{\mathbb{F}}_{\ell}^{\times}$ as follows:

- If $\ell \nmid n$ let $\zeta_{\ell,n} = \alpha_{r(n)}^{(\ell^{r(n)}-1)/n}$.
- If $\ell \mid n$, let σ be the inverse of $\beta \mapsto \beta^{\ell}$ and set $\zeta_{\ell,n} = \sigma^{v(n)}(\zeta_{\ell,n/\ell^{v(n)}})$.

Proposition 2. If $\ell \nmid n$, then $\zeta_{\ell,n} = \alpha_R^{(\ell^R - 1)/n}$ for any R divisible by r(n).

Proof. This follows from the properties of the Conway roots. If $r \mid R$, we have

$$\alpha_R^{(\ell^R - 1)/(\ell^r - 1)} = \alpha_r$$

so
$$\zeta_{\ell,n} = \alpha_r^{(\ell^r - 1)/n} = (\alpha_R^{(\ell^R - 1)/(\ell^r - 1)})^{(\ell^r - 1)/n} = \alpha_R^{(\ell^R - 1)/n}$$
 as claimed.

Proposition 3. The system $\{\zeta_{\ell,n}\}_n$ as described in the definition above has properties (a-c).

Proof. (a.) This follows directly from the fact that $\alpha_{\ell,r}$ is a primitive $(\ell^r - 1)$ th root of unity.

- (b.) By the first property, $\zeta_{\ell,n/\ell^v(\ell,n)}$ is a primitive $(n/\ell^{v(\ell,n)})$ th root of unity, so it is an nth root of unity, and its image under $\sigma^{v(\ell,n)}$ is still an nth root of unity.
 - (c.) Suppose first that $\ell \nmid m'n'$. Let R be divisible by both r(n') and r(m'n'). We have

$$\zeta_{\ell,m'n'}^{m'} = (\alpha_R^{(\ell^R - 1)/m'n'})^{m'} = \alpha_R^{(\ell^R - 1)/n'} = \zeta_{\ell,n'}$$

by the previous proposition. More generally,

$$\zeta_{\ell,mn}^{m} = \sigma^{v(mn)} (\zeta_{\ell,mn/\ell^{v(mn)}})^{m}
= \sigma^{v(m)} (\sigma^{v(n)} (\zeta_{\ell,mn/\ell^{v(mn)}})^{(m/\ell^{v(m)})})^{\ell^{v(m)}}
= \sigma^{v(n)} (\zeta_{\ell,(m/\ell^{v(m)})(n/\ell^{v(n)})}^{m/\ell^{v(m)}})
= \sigma^{v(n)} (\zeta_{\ell,n/\ell^{v(n)}}) = \zeta_{\ell,n}$$

where the last line follows from applying the $\ell \nmid m'n'$ case above to $m' = m/\ell^{v(m)}$ and $n' = n/\ell^{v(n)}$.

The label will actually be in the form ell.p^e.m instead (highlighting role of ell).

The mod ℓ Conrey scheme — odd prime powers

Let p^e be an odd prime power. The character with label $p^e \cdot m \cdot \ell$ is defined by Moreover, whenever

Note that $[Z/(p^e Z)]^x$ is a cyclic group, so that it makes sense to work $\chi_{p^e}(m,n;\ell) = \zeta_{\ell,\varphi(p^e)}^{\log_g(m)\log_g(n)}$ with zeta (cl. abit). with zeta {ell, phi(p^e)}.

$$\chi_{p^e}(m, n; \ell) = \zeta_{\ell, \varphi(p^e)}^{\log_g(m) \log_g(n)}$$

defining the same

where g is the least positive integer that generates $(\mathbb{Z}/p^e\mathbb{Z})^{\times}$ and $\zeta_{\ell,\varphi(p^e)}$ is the element of $\bar{\mathbb{F}}_{\ell}$ described in the previous section.

character — see Ex 2 below. We choose least m that works.

ell divides (p-1), we will

have multiple indices

• Example 1. There is a modular form

$$f \in \mathbf{S}_1(5^3, \chi; \mathbb{F}_{199^2})$$

that cannot be obtained by reducing a weight 1 modular form over $\mathbb C$ (see "Hecke stability and weight 1 modular forms" in Math Z.). The character $\chi:(\mathbb{Z}/5^3\mathbb{Z})^{\times}\to$ $\mathbb{F}_{199^2}^{\times}$ is described as the character that maps the least primitive root of $\mathbb{Z}/5^3\mathbb{Z}$ (which is 2) to the element β of \mathbb{F}_{199^2} whose trace is 79 and whose norm is 1; that is, the minimal polynomial of β is $X^2 + 120X + 1$. Note that this only determines β up to conjugacy.

Let us determine the Conrey label for this character. We have $\varphi(5^3) = 100$. Since $199^2 - 1 = 39600$, we set

$$\zeta = \zeta_{199,100} = \alpha^{396}$$

where $\alpha = \alpha_{199,2}$ is a root of the Conway polynomial $F_{199,2}(X)$. The roots of $X^2 +$ 120X + 1 are

$$\beta = 157 + 193\alpha = \zeta^{39}$$

and its conjugate $121 + 6\alpha = \zeta^{61}$.

The character χ is determined by $g \mapsto \zeta^{39}$ with g = 2, so since $2^{39} \equiv 13 \mod 125$, we have for all $n \in (\mathbb{Z}/5^3\mathbb{Z})^{\times}$

$$\chi(n) = \chi(g^{\log_g(n)}) = \chi(g)^{\log_g(n)} = \zeta^{39\log_g(n)} = \zeta^{\log_g(13)\log_g(n)} = \chi_{5^3}(13, n; 199).$$

The label for this character would therefore be 125.13.199. Its conjugate would be 125.77.199. 199.125.77

• Example 2. When $\ell \mid \varphi(p^e)$ a single character $\chi = \chi_{p^e}(m, -; \ell)$ may have multiple labels $m \in (\mathbb{Z}/\varphi(p^e)\mathbb{Z})^{\times}$. This may seem like a drawback to our scheme, possibly requiring us to make a further decision (either always take the least index or create duplicate pages for labels picking out the same character), but it actually allows for extra compatibility with reduction modulo ℓ (details later).

Here is an example. Let $\chi: (\mathbb{Z}/43\mathbb{Z})^{\times} \to \mathbb{F}_7^{\times}$ be the character determined by $3 \mapsto 3$ (q = 3 is the least primitive root mod 43). We have See last page for field of definition

$$\zeta_{7,42} = \sigma(\zeta_{7,6}) = \sigma(3) = 3$$

So

$$\chi(n) = \zeta_{7,42}^{\log_g(n)} = \chi_{43}(3, n; 7)$$

characters are already defined over $\chi(n)=\zeta_{7,42}^{\log_g(n)}=\chi_{43}(3,n;7)$ F7.

but also

$$\chi_{43}(37, n; 7) = \zeta_{7,42}^{\log_g(37)\log_g(n)} = (\zeta_{7,42}^{\log_g(n)})^7 = \zeta_{7,42}^{\log_g(n)} = \chi_{43}(3, n; 7)$$

So the exact same character would be labeled by 43.3.7 and 43.37.7.

So both m = 37 and m = 3 work. For the purpose of LMFDB labels, we choose the *least* m that gives this chi. The mod ℓ Conrey scheme — general moduli In this case, any m in $\{3, 5, 12, 19, 20, 33, 37\}$ gives this chi, so chi = 7.43.3.

As in the characteristic zero case, if M and N are relatively prime odd moduli, we take

$$\chi_{MN}(m, n; \ell) = \chi_{M}(m, n; \ell) \cdot \chi_{N}(m, n; \ell)$$

Now, let

$$\chi_2(1, n; \ell) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$$

and

$$\chi_4(1,n;\ell) = \chi_2(1,n;\ell)$$

See last page for more about determining the m in the label given a particular character, or for "reducing" a particular character from characteristic zero to characteristic ell.

of mod-ell Dirichlet characters with

modulus N. In this case (N = 43) all

and

$$\chi_4(3,n;\ell) = \begin{cases} 0 & \text{if } n \text{ is even, and} \\ (-1)^{(n-1)/2} & \text{if } n \text{ is odd.} \end{cases}$$

Finally, suppose $f \ge 3$. There exist a, b such that $m \equiv \epsilon_a 3^a \mod 2^f$ and $n \equiv \epsilon_b 3^b \mod 2^f$ where $1 \le a, b \le 2^{f-2}$ and $\epsilon_a, \epsilon_b = \pm 1$. We define

$$\chi_{2f}(m,n;\ell) = \zeta_{\ell,8}^{(1-\epsilon_a)(1-\epsilon_b)} \zeta_{\ell,2^{f-2}}^{ab}$$

Note: we have

$$\zeta_{\ell,8}^{(1-\epsilon_a)(1-\epsilon_b)} = \left\{ \begin{array}{ll} \zeta_{\ell,2} = -1 & \text{if } \epsilon_a = \epsilon_b = -1, \text{ and} \\ 1 & \text{otherwise.} \end{array} \right.$$

To complete the labeling scheme, if $N = 2^f M$ with M odd, then

$$\chi_N(m, n; \ell) = \chi_{2f}(m, n; \ell) \cdot \chi_M(m, n; \ell).$$

We now can find the character attached to a particular label.

• What is the character with label 168.19.71? It is the product of the characters with labels 8.19.71 = 8.3.71, 3.19.71 = 3.1.71, and 7.5.71.

I'll stop correcting the labels here, but you get the idea.

We have $3 \equiv +1 \cdot 3^1 \mod 8$, so

$$\chi_8(3, n; 71) = \zeta_{71, 2}^b = (-1)^b$$

where b satisfies $n \equiv \pm 3^b \mod 8$. In SAGE this is the character with label

DirichletGroup(8,GF(71))[2]

The character $\chi_3(1, n; 71)$ is trivial. Its SAGE label is

DirichletGroup(3,GF(71))[0]

For the last component,

$$\chi_7(5, n; 71) = \zeta_{71,6}^{5\log_3(n)}$$

where the discrete log is modulo 7. Now,

$$\zeta_{71.6} = 39 + 68\alpha$$

where $\alpha = \alpha_{71,2}$. The character with index 1 in SAGE is given by $3 \mapsto \zeta_{71,6}$, and the character with index 5 is its 5th power, so the index of 7.5.71 is

DirichletGroup (7, GF(71**2, 'a')) [5]

So

$$\chi_{168}(19, -; 71) : (\mathbb{Z}/168\mathbb{Z})^{\times} \to \mathbb{F}_{71^{2}} = \mathbb{F}_{71}(\alpha)^{\times} : \begin{cases} 127 \mapsto 1 \\ 85 \mapsto 70 \\ 113 \mapsto 1 \\ 73 \mapsto 33 + 3\alpha \end{cases}$$

This is the character

DirichletGroup(168, GF(71**2, 'a'))[42]

in SAGE.

Going from SAGE index to label

When p is odd, the sage Character χ given by

DirichletGroup (
$$p \land e$$
, GF ($1 \land r$, 'a')) [1]

maps $g\mapsto \alpha_{\ell,r}^{(\ell^r-1)/\gcd(\varphi(p^e),\ell^r-1)}$. (Provided SAGE is using the Conway polynomial for that particular finite field. This is not guaranteed.) The character with SAGE index i in this case is χ^i . We have

$$\begin{split} \alpha_{\ell,r}^{(\ell^r-1)/\gcd(\varphi(p^e),\ell^r-1)} &= \zeta_{\ell,\gcd(\varphi(p^e),\ell^r-1)} \\ &= \zeta_{\ell,\varphi(p^e)/\gcd(\varphi(p^e),\ell^r-1)} \\ &= \zeta_{\ell,\varphi(p^e)}^{\varphi(p^e)/\gcd(\varphi(p^e),\ell^r-1)} \end{split}$$

So since

$$\chi:g\mapsto \zeta_{\ell,\varphi(p^e)}^{\varphi(p^e)/\gcd(\varphi(p^e),\ell^r-1)}$$

It is the character with Conrey label $m=g^{\varphi(p^e)/\gcd(\varphi(p^e),\ell^r-1)}$. χ^i is the character with label $g^{i\varphi(p^e)/\gcd(\varphi(p^e),\ell^r-1)}$. This is enough to retrieve the Conrey label of any mod ℓ character with odd modulus, knowing its SAGE index.

• Example 3. Let's check that this works for the SAGE character $(\mathbb{Z}/7\mathbb{Z})^{\times} \to \mathbb{F}_{71^2}$ with index 5 (from a previous example we know this is 7.5.71).

The SAGE character $(\mathbb{Z}/7\mathbb{Z})^{\times} \to \mathbb{F}_{71^2}$ with index 5 has label

$$m = 3^{5\varphi(7)/\gcd(\varphi(7),71^2-1)} \equiv 3^5 \equiv 5 \mod 7$$

• Example 4. What about the SAGE character $(\mathbb{Z}/203\mathbb{Z})^{\times} \to \mathbb{F}_5$ with index 1—this is the quadratic character with conductor 7.

The quadratic character $(\mathbb{Z}/7\mathbb{Z})^{\times} \to \mathbb{F}_5^{\times}$ has label

$$m = 3^{\varphi(7)/\gcd(\varphi(7), 5-1)} = 3^3 \equiv 6 \mod 7$$

(as expected).

The trivial character $(\mathbb{Z}/29\mathbb{Z})^{\times} \to \mathbb{F}_5^{\times}$ has SAGE index i=0 so its label is

$$m = 2^{0\varphi(29)/\gcd(\varphi(29), 5-4)} \equiv 1 \mod 29$$

So our character is

$$\chi_7(6, -; 5) \cdot \chi_{29}(1, -; 5) = \chi_{203}(146, -; 5)$$

with label 203.146.5.

Going from character to label

• Example 5. Consider the character $\chi:(\mathbb{Z}/360\mathbb{Z})^{\times}\to\mathbb{F}_{43}^{\times}$ determined by

$$\chi: \left\{ \begin{array}{l} 271 \mapsto 42 \\ 181 \mapsto 42 \\ 281 \mapsto 37 \\ 217 \mapsto 1 \end{array} \right.$$

Restricting the character mod 8 yields the character determined by $5, 7 \mapsto -1$, which is (I think) $\chi_8(7, -; 43)$.

Mod 9 this character is determined by $2 \mapsto 37 = \zeta_{43.6}$, so $\chi_9(2, -; 43)$.

Mod 5 this character is trivial, so $\chi_5(1, -; 43)$.

To find the label of the product of these characters, we CRT up to get $191 \mod 360$ as our index. This is the character 360.191.43.

Compatibility with the characteristic 0 labeling

Let $\zeta_{0,n} = e^{2\pi i/n}$. There is a reduction map

$$\psi_{\ell}: \mathbb{Z}[\zeta_{0,n}] \to \mathbb{F}_{\ell}(\zeta_{\ell,n})$$

sending $\zeta_{0,n} \mapsto \zeta_{\ell,n}$. This reduction map can be obtained as reduction modulo a carefully chosen prime \mathfrak{l} of $\mathbb{Z}[\zeta_{0,n}]$ over ℓ such that the minimal polynomial of $\zeta_{0,n} + \mathfrak{l}$ is the same as the minimal polynomial of $\zeta_{\ell,n}$.

Now, if $\chi: (\mathbb{Z}/p^e\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ is given by the Conrey label $p^e.m.0$, then $\psi_{\ell} \circ \chi$ is the character with label $p^e.m.\ell$.

- 1. Which m do we choose? For Dirichlet characters mod N, the Conrey scheme a priori allows any prime relatively prime to N. Whenever ell divides phi(N), we have multiple values of m giving the same character. We always choose the least one.
- *** In particular, suppose $N = p^e$ is an odd prime power with Conrey generator g, and $z = zeta_{phi(p^e)}$ is in F-ellbar. Let a be the logarithm of m base g: that is, $g^a = m$. Then the characteristic ell LMFDB label becomes ell.p^e.M, where

 $M = min \{ g^{a\#} \text{ over all } a\# \text{ in } (Z/N Z)^* \text{ satisfying } z^a = z^{a\#} \text{ in } F\text{-ell-bar}.$ Indeed, the character with label ell.p^e.{m#} maps g to z^{a\#}, where a# is defined by g^(a#)= m#. (Note that g^(a#) is a priori defined modulo N, but for the purposes of defining M we view it as an integer in [0..N).)

*** In general, we want M to be the minimum m in [0..N) prime to N that defines the correct character modulo ell. The definition of the correct character should be checked separately on the generators of (Z/N)* (there will be one generator for each odd prime power dividing phi(N), one generator for 2 if 4 divides phi(N) exactly, and two generators for 2 if 8 divides phi(N).

2. The field of definition of the group of Dirichlet characters modulo N to F-ell-bar.

For each p prime not equal to ell, let the p-primary component of $(Z/NZ)^*$ be

 $(Z/p^{e_1}) \times (Z/p^{e_2}) \times \times (Z/p^{e_s}),$

where the e_i are not necessarily distinct. Let $e = max\{e_i\}$. Let r be minimal such that p^e divides (ell^r - 1). At this point, we know that zeta_{p^e} is defined over F_{ell^n}.

Finally, let R = lcm of the r's that one gets over all the primes (except ell) that divide phi(N).

Then the Dirichlet characters modulo N over F-ell-bar are defined over F_{ell} .

Example: N = 29x43, and ell = 13.

Then $(Z/(29x43)Z)^* = (Z/29)^* \times (Z/43)^* = (Z/4)x(Z/7)x(Z/2)x(Z/3)x(Z/7)$. We need to find the smallest power R of 13 so that 4*3*7 divides $13^R - 1$. R = 2 works.