Машинное обучение: деревья решений и ансамбли

Эмели Драль CBR, Москва 2020

Программа курса

Курс состоит из 5ти блоков:

- 1. Базовые концепции машинного обучения
- 2. Линейные модели классификации и регрессии
- 3. **Деревья решений** в классификации и регрессии, **ансамбли моделей**
- 4. Обучение без учителя и частичное обучение
- 5. **Нейронные сети** и глубокое обучение, backpropagation, регуляризация и методы оптимизации

Деревья решений и ансамбли

- 1. Деревья решений
- 2. Ансамбли моделей
- 3. Случайный лес
- 4. Градиентный бустинг

Базовые концепты

Объекты и признаки:

- х объект
- y otbet
- (f₁, f₂ ... f_n) признаки,

описывающие объекты

- F^(l,n) матрица объектпризнак
- Х пространство объектов
- Y пространство ответов

Модель:

- a: X -> Y
- a(x) = y
- А семейство моделей

Оценка качества

• Q(a, X) – ошибки модели a(x) на группе объектов X

Как построить модель?

- 1. Подготовить набор данных $X = (x_i, y_i)_{i=1,l}$
- 2. Выбрать семейство моделей А
- 3. Минимизировать ошибки модели Q(a, X) -> за счет этого получить конкретную модель a(x) из выбранного семейства A

Как построить модель?

- 1. Подготовить набор данных $X = (x_i, y_i)_{i=1,l}$
- 2. Выбрать семейство моделей А
- 3. Минимизировать ошибки модели Q(a , X):
 - 3.1 выбрать гиперпараметры модели с помощью кросс-валидации
 - 3.2 зная гиперпараметры, подобрать параметры модели в результате минимизации Q(a, X) на всей обучающей выборке

Как построить модель?

- 1. Подготовить набор данных $X = (x_i, y_i)_{i=1,l}$
- 2. Выбрать семейство моделей А
- 3. Минимизировать ошибки модели Q(a , X):
 - 3.1 выбрать гиперпараметры модели L(a,y), 11 vs 12 с помощью кросс-валидации
 - 3.2 зная гиперпараметры, подобрать параметры модели w_1 , w_2 , ... w_n в результате минимизации Q(a, X) на всей обучающей выборке

Деревья решений

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Рассмотрим выборку объектов с одним признаком x:

Дерево решений

Как подобрать порог по признаку в задаче бинарной классификации?

Если выборка разделима, оптимальный порог - между последним объектом одного класса и первым объектом:

Часто выборка не разделима и есть несколько неплохих порогов:

Дерево решений

Часто выборка не разделима и есть несколько неплохих порогов:

Дерево решений

Часто выборка не разделима и есть несколько неплохих порогов:

Дерево решений

Вариант 1: потребовать от модели максимальной точности

Дерево решений

и не ограничивать количество порогов, чтобы разделить выборку идеально

Вариант 1: потребовать от модели максимальной точности

Дерево решений

и не ограничивать количество порогов, чтобы разделить выборку идеально

Проблема: запоминание выборки вместо обучения

Вариант 1: потребовать от модели максимальной точности

Дерево решений

Вариант 2: разрешить объединение интервалов

Вариант 1: потребовать от модели максимальной точности

Дерево решений

Вариант 2: разрешить объединение интервалов

Такие интервалы можно строить последовательно

Итак, выборка линейно не разделима

Дерево решений

Требуется выбрать оптимальный порог:

Как поставить задачу?

Дерево решений

Дерево решений

Дерево решений

Задача оптимизации

Чтобы разделить классы хорошо – нужно, чтобы и в L и в R преобладал только один класс

Дерево решений

Задача оптимизации

Пусть p_0 — доля класса 0 в R, а p_1 — доля класса 1 в R В нашем примере $p_0=\frac{1}{4}$, а $p_1=\frac{3}{4}$

Как записать, что один из классов преобладает?

Как записать, что один из классов должен преобладать в R?

Например, так:

$$p_{max} = \max\{p_0, p_1\} \to \max_t$$

Или так:

$$1 - p_{max} \to \min_t$$

Дерево решений

Дерево решений Другой вариант:

$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1 \to \min_t$$

Дерево решений Другой вариант:

$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1 \to \min_t$$
0.8
0.6
0.2
0.1
0.2
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Дерево решений

Все это разные способы задать оптимизационную задачу, которую мы можем решить, перебирая порог t

Но если смотреть только на R, можем разделить выборку так:

Дерево решений

Здесь проблема возникает только в левой части, в правой части преобладает один класс

Но если смотреть только на R, можем нечаянно разделить выборку так:

Дерево решений

Здесь проблема возникает только в левой части, в правой части преобладает один класс

Значит надо учитывать обе части: R и L

Оптимизация разбиения

Вся выборка (п объектов)

$$G(t) = H(L) + H(R) \rightarrow \min_{t}$$

H(R) - мера «неоднородности» (impurity) множества R

Оптимизация разбиения

Вся выборка (п объектов)

$$G(t) = H(L) + H(R) \rightarrow \min_{t}$$

Но что если L и R сильно разного размера? Учтем это.

Оптимизация разбиения

Вся выборка (п объектов)

$$G(t) = \frac{|L|}{n}H(L) + \frac{|R|}{n}H(R) \to \min_{t}$$

Оптимизация разбиения

H(R) — мера «неоднородности» множества R

Дерево решений

Оптимизация разбиения

H(R) — мера «неоднородности» множества R

Варианты этой функции:

Дерево решений

1) Misclassification criteria:
$$H(R) = 1 - \max\{p_0, p_1\}$$

2) Entropy criteria:
$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1$$

3) Gini criteria:
$$H(R) = 1 - p_0^2 - p_1^2 = 2p_0p_1$$

Обобщение для N признаков

Рекурсивное построение

$$x^{(j)} < t$$

Дерево решений

Рекурсивное построение

Дерево решений

Рекурсивное построение

Процесс можно продолжать в тех узлах, в которые попадает достаточно много объектов

Рекурсивное построение

Рекурсивное построение

H(R) — мера «неоднородности» множества R

Варианты этой функции:

Дерево решений

1) Misclassification criteria:
$$H(R) = 1 - \max\{p_0, p_1\}$$

2) Entropy criteria:
$$H(R) = -p_0 \ln p_0 - p_1 \ln p_1$$

3) Gini criteria:
$$H(R) = 1 - p_0^2 - p_1^2 = 2p_0p_1$$

Критерии разбиений

Дерево решений

Дерево решений: регрессия

В каждом листе дерево отвечает некоторой константой

Деревья решений

Область применения:

- базовый алгоритм в ансамбле
- очень небольшие выборки
- алгоритм для интерпретации сложной модели

Ограничения:

- сильнейшее переобучение

Способы комбинирования моделей

- Bagging
- Stacking
- Blending
- Boosting

Bagging

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

Bagging

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

Nº	значе	ние					
1							
25							
1							
		Nº	знач	ен	И	Э	
,		67					
		24					
		13					
				Nº		значение)
				9)		
				9)		
				9)		

Bagging

Bagging = Bootstrap aggregation

Nº	значение
1	
2	
3	
N	

	Nº	значе	ние					
	1							
	25							
	1							
			Nº	знач	ені	ие)	
			67					
			24					
			13					
					Nº		значение	•
					9			
					9			
					9			
ерируем М								
і, обучаем на								

По схеме выбора с возвращением, генерируем М обучающих выборок такого же размера, обучаем на них модели и усредняем результат

. . .

Stacking

Обучающая выборка:

Stacking

Обучающая выборка:

Stacking

Обучающая выборка:

Stacking

выборке А

Обучающая выборка:

 $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$

выборке В

Обучаем другую модель (например, линейную регрессию)

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

+ веса неотрицательны и дают в сумме единицу

Blending

Смесь нескольких сильных классификаторов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

- + веса неотрицательны и дают в сумме единицу Преимущества и недостатки:
- Очень прост идейно, хорошо работает, логичен
- Иногда надо перебирать веса или использовать дискретную оптимизацию
- Не всегда композиция в виде взвешенной суммы то, что надо. Иногда нужна более сложная композиция

Blending

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

Ансамбли моделей

Blending

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

Ансамбли моделей

$$a(x) = \beta_1 h_1(x)$$

$$a(x) = \beta_1 h_1(x) + \beta_2 h_2(x)$$

. . .

Blending

Бустинг – жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

$$a(x) = \beta_1 h_1(x)$$

$$a(x) = \beta_1 h_1(x) + \beta_2 h_2(x)$$

. .

Blending

Бустинг — жадное построение взвешенной суммы базовых алгоритмов $h_k(x)$

$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

$$a(x) = \beta_1 h_1(x)$$

 $h_k(x)$ – как правило, решающие деревья небольшой глубины или линейные модели

$$a(x) = \beta_1 h_1(x) + \beta_2 h_2(x)$$

Random forest

Random Forest

Random forest

Random Forest

Random forest: построение

- 1. Генерируем М выборок на основе имеющейся
- 2. Строим на них деревья с рандомизированными разбиениями в узлах: выбираем k случайных признаков и ищем наиболее информативное разбиение по ним
- 3. При прогнозировании усредняем ответ всех деревьев

Random Forest

- Позволяет обучать модель распределено
- Умеренно интерпретируем
- Устойчив к переобучению

Random Forest

Gradient Boosting

$$h(x) = h_1(x) + \dots + h_n(x)$$

GBDT

$$h(x) = h_1(x) + \dots + h_n(x)$$

GBDT

- Каждое новое дерево $h_k(x)$ обучаем на ответы $y_i - h_i$ h_i - прогноз всей композиции на і-том объекте на предыдущей итерации

GBDT

- Коэффициент β_k перед новым деревом подбираем с помощью численной оптимизации ошибки

$$a(x) = \sum_{t=1}^{T} \beta_t h_t(x)$$

GBDT

Идея: будем каждый следующий алгоритм выбирать так, чтобы он приближал антиградиент ошибки

$$h_t(x) \approx -\frac{\partial Q(\hat{y}, y)}{\partial \hat{y}}$$

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

GBDT

- 1. Обучаем первый базовый алгоритм h_1 , $\beta_1 = 1$
- 2. Повторяем в цикле по t от 2 до T:

обучаем h_t на ответы $y_i - a_{t-1}(x_i)$

выбираем β_t

Стратегии выбора β_t :

- всегда равен небольшой константе
- как в методе наискорейшего спуска
- ullet уменьшая с ростом t

GBDT

GBDT

Gradient Boosted Decision Trees

- Позволяет очень точно приблизить восстанавливаемую функцию или разделяющую поверхность классов
- Плохо интерпретируем
- Композиции могут содержать десятки тысяч базовых моделей и долго обучаться
- Переобучение на выбросах при избыточном количестве классификаторов

Машинное обучение: деревья решений и ансамбли

Спасибо! Эмели Драль