

US008739302B2

(12) United States Patent

Vainstein et al.

(54) METHOD AND APPARATUS FOR TRANSITIONING BETWEEN STATES OF SECURITY POLICIES USED TO SECURE ELECTRONIC DOCUMENTS

(75) Inventors: **Klimenty Vainstein**, Cupertino, CA

(US); Satyajit Nath, Cupertino, CA (US); Michael Michio Ouye, Mountain

View, CA (US)

(73) Assignee: Intellectual Ventures I LLC,

Wilmington, DE (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/404,578

(22) Filed: Feb. 24, 2012

(65) **Prior Publication Data**

US 2012/0159191 A1 Jun. 21, 2012

Related U.S. Application Data

- (63) Continuation of application No. 10/676,474, filed on Sep. 30, 2003, now Pat. No. 8,127,366.
- (51) Int. Cl. *G06F 17/30* (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,203,166 A 5/1980 Ehrsam et al. 4,238,854 A 12/1980 Ehrsam et al. (10) Patent No.: US 8,739,302 B2 (45) Date of Patent: *May 27, 2014

4,423,387 A	12/1983	Sempel	
4,734,568 A		Watanabe	
4,757,533 A	7/1988	Allen et al.	
4,796,220 A	1/1989	Wolfe	
4,799,258 A	1/1989	Davies	
	(Continued)		

FOREIGN PATENT DOCUMENTS

EP	0 672 991 A2	9/1995
EP	0 674 253 A1	9/1995
	(Cont	inued)

OTHER PUBLICATIONS

"Encrypting File System," from MSDN Oct. 2001 version, exact publication date is unknown but believed prior to Dec. 12, 2001.

(Continued)

Primary Examiner — Edward Zee (74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein & Fox P.L.L.C.

(57) ABSTRACT

Techniques for dynamically altering security criteria used in a file security system are disclosed. The security criteria pertains to keys (or ciphers) used by the file security system to encrypt electronic files to be secured or to decrypt electronic files already secured. The security criteria can, among other things, include keys that are required to gain access to electronic files. Here, the keys can be changed automatically as electronic files transition between different states of a process-driven security policy. The dynamic alteration of security criteria enhances the flexibility and robustness of the security system. In other words, access restrictions on electronic files can be dependent on the state of the process-driven security policy and enforced in conjunction with one or more cryptographic methods.

18 Claims, 13 Drawing Sheets

(56)			Referen	ces Cited	5,825,876			Peterson
		110 1	ATENT	DOCUMENTO	5,835,592			Chang et al. Shimbo et al.
		U.S. I	PALENT	DOCUMENTS	5,835,601 5,850,443			Van Oorschot et al.
	4 927 509	4	5/1000	Chan	5,857,189	A	1/1999	
	4,827,508 4,887,204	A	5/1989 12/1989	Johnson et al.	5,862,325			Reed et al.
	4,888,800	A	12/1989	Marshall et al.	5,870,468		2/1999	Harrison
	4,912,552			Allison et al.	5,870,477		2/1999	
	4,972,472			Brown et al.	5,881,287	A	3/1999	
	5,032,979			Hecht et al.	5,892,900 5,893,084			Ginter et al. Morgan et al.
	5,052,040			Preston et al.	5,898,781		4/1999	
	5,058,164 5,144,660		9/1992	Elmer et al.	5,922,073		7/1999	Shimada
	5,204,897		4/1993		5,923,754			Angelo et al.
	5,212,788			Lomet et al.	5,933,498			Schnek et al.
	5,220,657			Bly et al.	5,944,794			Okamoto et al. Lohstroh et al.
	5,235,641			Nozawa et al.	5,953,419 5,968,177			Batten-Carew et al.
	5,247,575 5,267,313		11/1993	Sprague et al.	5,970,502			Salkewicz et al.
	5,276,735			Boebert et al.	5,978,802		11/1999	
	5,301,247			Rasmussen et al.	5,987,440			O'Neil et al.
	5,319,705			Halter et al.	5,991,879		11/1999	
	5,369,702		11/1994		5,999,907 6,011,847		1/2000	Follendore, III
	5,375,169			Seheidt et al. Novorita	6,014,730		1/2000	
	5,404,404 5,406,628			Beller et al.	6,023,506			Ote et al.
	5,414,852			Kramer et al.	6,031,584	A	2/2000	
	5,434,918			Kung et al.	6,032,216		2/2000	
	5,461,710			Bloomfield et al.	6,035,404		3/2000	Zhao Harkins
	5,467,342			Logston et al.	6,038,322 6,044,155			Thomlinson et al.
	5,495,533			Linehan et al.	6,055,314		4/2000	Spies et al.
	5,497,422 5,499,297			Tysen et al. Boebert	6,058,424			Dixon et al.
	5,502,766			Boebert et al.	6,061,790			Bodnar
	5,535,375			Eshel et al.	6,069,957			Richards
	5,557,765			Lipner et al.	6,070,244			Orchier et al.
	5,570,108			McLaughlin et al.	6,085,323 6,088,717			Shimizu et al. Reed et al.
	5,584,023 5,600,722		12/1996	Yamaguchi et al.	6,088,805			Davis et al.
	5,606,663			Kadooka	6,098,056			Rusnak et al.
	5,619,576			Shaw	6,101,507			Cane et al.
	5,638,501		6/1997	Gough et al.	6,105,131		8/2000	
	5,640,388			Woodhead et al.	6,122,630 6,134,327			Strickler et al. Van Oorschot
	5,655,119		8/1997		6,134,658			Multerer et al.
	5,661,668 5,661,806			Yemini et al. Nevoux et al.	6,134,660			Boneh et al.
	5,671,412			Christiano	6,134,664		10/2000	
	5,673,316		9/1997	Auerbach et al.	6,141,754		10/2000	
	5,677,953		10/1997		6,145,084 6,148,338		11/2000	Zuili Lachelt et al.
	5,680,452		10/1997	Shanton	6,158,010			Moriconi et al.
	5,682,537 5,684,987			Davies et al. Mamiya et al.	6,161,139			Win et al.
	5.689.688			Strong et al.	6,182,142		1/2001	Win et al.
	5,689,718	A		Sakurai et al.	6,185,684			Pravetz et al.
	5,699,428			McDonnal et al.	6,192,408 6,199,070			Vahalia et al. Polo-Wood et al.
	5,708,709		1/1998 2/1998		6,205,549			Pravetz
	5,715,403 5,717,755	Α Δ		Shanton	6,212,561			Sitaraman et al.
	5,719,941			Swift et al.	6,223,285			Komuro et al.
	5,720,033	A	2/1998		6,226,618			Downs et al.
	5,729,734	A		Parker et al.	6,226,745			Wiederhold et al. Dondeti et al.
	5,732,265			Dewitt et al.	6,240,188 6,249,755			Yemini et al.
	5,745,573 5,745,750			Lipner et al. Porcaro	6,249,873			Richard et al.
	5,748,736		5/1998		6,253,193		6/2001	Ginter et al.
	5,751,287			Hahn et al.	6,260,040			Kauffman et al.
	5,757,920			Misra et al.	6,260,141		7/2001	
	5,765,152			Erickson	6,263,348 6,266,420			Kathrow et al. Langford et al.
	5,768,381 5,778,065			Hawthorne Hauser et al.	6,272,631		8/2001	Thomlinson et al.
	5,778,350			Adams et al.	6,272,632			Carmen et al.
	5,781,711			Austin et al.	6,282,649	В1	8/2001	Lambert et al.
	5,787,169			Eldridge et al.	6,289,450			Pensak et al.
	5,787,173			Seheidt et al.	6,289,458			Garg et al.
	5,787,175		7/1998		6,292,895			Baltzley
	5,790,789 5,790,790		8/1998 8/1998	Suarez Smith et al.	6,292,899 6,295,361			McBride Kadansky et al.
	5,790,790			Johnson et al.	6,293,361		10/2001	Shona
	5,821,933			Keller et al.	6,301,614			Najork et al.
	,,-==			-	, ,			

(56)	Referen	ices Cited		6,678,835 6,683,954		1/2004 1/2004	Shah et al. Searle et al.
U.S	. PATENT	DOCUMENTS		6,687,822			Jakobsson
				6,693,652			Barrus et al.
6,308,256 B1	10/2001	Folmsbee		6,698,022		2/2004	
6,308,273 B1		Goertzel et al.		6,711,683 6,718,361			Laczko et al.
6,314,408 B1		Salas et al.		6,735,701			Basani et al. Jacobson
6,314,409 B2		Schnek et al.		6,738,908			Bonn et al.
6,317,777 B1 6,332,025 B2	12/2001	Skarbo et al. Takahashi et al.		6,751,573		6/2004	
6,336,114 B1		Garrison		6,754,657	B2	6/2004	Lomet
6,339,423 B1		Sampson et al.		6,754,665		6/2004	Futagami et al.
6,339,825 B2		Pensak et al.		6,775,779			England et al.
6,341,164 B1		Dilkie et al	380/278	6,779,031 6,782,403			Picher-Dempsey Kino et al.
6,343,316 B1 6,347,374 B1		Sakata Drake et al.		6,801,999			Venkatesan et al.
6,349,337 B1		Parsons et al.		6,807,534			Erickson
6,351,813 B1		Mooney et al.		6,807,636			Hartman et al.
6,356,903 B1		Baxter et al.		6,810,389		10/2004	
6,356,941 B1		Cohen		6,810,479		10/2004	Barlow et al.
6,357,010 B1		Viets et al.		6,816,871 6,816,969			Miyazaki et al.
6,363,480 B1 6,366,298 B1		Perlman Haitsuka et al.		6,826,698			Minkin et al.
6,370,249 B1		Van Oorschot		6,834,333			Yoshino et al.
6,381,698 B1		Devanbu et al.		6,834,341			Bahl et al.
6,385,644 B1		Devine et al.		6,842,825			Geiner et al.
6,389,433 B1		Bolosky et al.		6,845,452 6,851,050		2/2005	Roddy et al. Singhal et al.
6,389,538 B1 6,393,420 B1		Gruse et al. Peters		6,862,103			Miura et al.
6,405,315 B1		Burns et al.		6,865,555		3/2005	
6,405,318 B1		Rowland		6,870,920	B2	3/2005	
6,408,404 B1		Ladwig		6,874,139			Krueger et al.
6,421,714 B1		Rai et al.		6,877,010 6,877,136			Smith-Semedo et al.
6,442,688 B1		Moses et al.		6,882,994			Bess et al. Yoshimura et al.
6,442,695 B1 6,446,090 B1	8/2002 9/2002	Dutcher et al.		6,889,210			Vainstein
6,449,721 B1		Pensak et al.		6,891,953			DeMello et al.
6,453,353 B1		Win et al.		6,892,201			Brown et al.
6,453,419 B1		Flint et al.		6,892,306			En-Seung et al.
6,466,476 B1		Wong et al.		6,898,627 6,907,034		6/2005	Sekiguchi Begis
6,466,932 B1 6,477,544 B1		Dennis et al. Bolosky et al.		6,909,708		6/2005	Krishnaswamy et al.
6,487,662 B1		Kharon et al.		6,915,425		7/2005	Xu et al.
6,490,680 B1		Scheidt et al.		6,915,434			Kuroda et al. Merriam
6,505,300 B2		Chan et al.		6,915,435 6,920,558		7/2005	
6,510,349 B1 6,519,700 B1		Schneck et al. Ram et al.		6,922,785			Brewer et al.
6,529,956 B1		Smith et al.		6,924,425	B2		Naples et al.
6,530,020 B1	3/2003			6,931,450			Howard et al.
6,530,024 B1		Proctor		6,931,530			Pham et al.
6,542,608 B2		Scheidt et al.		6,931,597 6,938,042			Prakash Aboulhosn et al.
6,549,623 B1 6,550,011 B1	4/2003	Scheidt et al.		6,938,156			Wheeler et al.
6,557,039 B1		Leong et al.		6,941,355			Donaghey et al.
6,567,914 B1		Just et al.		6,941,456		9/2005	Wilson
6,571,291 B1	5/2003			6,941,472			Moriconi et al.
6,574,733 B1		Langford		6,944,183 6,947,556			Iyer et al. Matyas, Jr. et al.
6,584,466 B1 6,587,878 B1		Serbinis et al. Merriam		6,950,818			Dennis et al.
6,587,946 B1		Jakobsson		6,950,936			Subramaniam et al.
6,588,673 B1		Chan et al.		6,950,941			Lee et al.
6,591,295 B1	7/2003	Diamond et al.		6,950,943			Bacha et al.
6,594,662 B1		Sieffert et al.		6,952,780 6,957,261		10/2005	Olsen et al.
6,598,161 B1		Kluttz et al.		6,959,308			Gramsamer et al.
6,601,170 B1 6,603,857 B1		Wallace, Jr. Batten-Carew et al.		6,961,849			Davis et al.
6,608,636 B1		Roseman		6,961,855			Rich et al.
6,611,599 B2	8/2003	Natarajan		6,968,060		11/2005	
6,611,846 B1		Stoodley		6,968,456			Tripathi et al.
6,615,349 B1	9/2003			6,971,018 6,976,259			Witt et al. Dutta et al.
6,615,350 B1 6,625,650 B2		Schell et al. Stelliga		6,978,366			Ignatchenko et al.
6,625,734 B1		Marvit et al.		6,978,376			Giroux et al.
6,629,140 B1		Fertell et al.		6,978,377			Asano et al.
6,629,243 B1	9/2003	Kleinman et al.		6,987,752	В1	1/2006	Falco et al.
6,633,311 B1		Douvikas et al.		6,988,133			Zavalkovsky et al.
6,640,307 B2		Viets et al.		6,988,199			Toh et al.
6,646,515 B2		Jun et al.		6,990,441 6,993,135			Bolme et al. Ishibashi
6,647,388 B2	11/2003	Numao et al.		0,393,133	DΖ	1/2000	121110/42111

(56) Referen	nces Cited	7,265,764			Alben et al.
LLC DATENT	DOCIMENTS	7,266,684 7,280,658			Jancula Amini et al.
U.S. PAIENI	DOCUMENTS	7,280,038			Rubin et al.
6,996,718 B1 2/2006	Henry et al.	7,287,055			Smith et al.
	Zunino et al.	7,287,058			Loveland et al.
	Riedel et al.	7,290,148			Tozawa et al.
7,003,117 B2 2/2006	Kacker et al.	7,308,702			Thomsen et al.
	Mullen et al.	7,313,824 7,319,752			Bala et al. Asano et al.
	Beattie et al.	7,340,600			Corella
	Matyas et al. Hori et al.	7,343,488		3/2008	
	Friedel et al.	7,359,517	В1	4/2008	
	Brown et al.	7,362,868			Madoukh et al.
	Bisbee et al.	7,380,120		5/2008	
	Bobbitt et al.	7,383,586 7,386,529			Cross et al. Kiessig et al.
	Hsiao et al. Dutta et al.	7,386,599			Piersol et al.
	Bolosky et al.	7,401,220			Bolosky et al.
	Hirano et al.	7,406,596			Tararukhina et al.
	Doonan et al.	7,415,608			Bolosky et al.
	Kobayashi et al.	7,434,048 7,454,612			Shapiro et al. Bolosky et al.
	Phillips et al.	7,461,157			Ahlard et al.
	Feuerstein et al. Peinado	7,461,405			Boudreault et al.
	Nonaka et al.	7,478,243	B2	1/2009	Bolosky et al.
	Raike et al.	7,478,418		1/2009	
7,076,312 B2 7/2006	Law et al.	7,484,245			Friedman et al.
	Schreiber et al.	7,496,959 7,509,492			Adelstein et al. Boyen et al.
	Tormasov et al. Ramamurthy et al.	7,512,810		3/2009	
	Morishita	7,539,867			Bolosky et al.
	Lewin et al.	7,555,558			Kenrich et al.
	Ims et al.	7,562,232			Zuili et al.
	Spies et al.	7,565,683 7,631,184		12/2009	Huang et al. Ryan
	Yemini et al. Arlein et al.	7,681,034			Lee et al.
	Stuart et al.	7,698,230			Brown et al.
7,113,594 B2 9/2006	Boneh et al.	7,702,909			Vainstein
7,116,785 B2 10/2006		7,703,140 7,707,427			Nath et al. Kenrich et al.
	Hochberg et al. Bhide et al.	7,729,995			Rossmann et al.
7,120,757 B2 10/2006		7,730,543	B1		Nath et al.
	Chemtob	7,748,045			Kenrich et al.
	Isukapalli et al.	8,127,366 2001/0000265			Vainstein et al 726/27 Schreiber et al.
	Ims et al. Gune et al.	2001/0000203		8/2001	
	Murray et al.	2001/0014882		8/2001	Stefik et al.
	Phillips et al.	2001/0018743			Takuya
	Zimmermann	2001/0021255			Ishibashi
7,140,044 B2 11/2006	Redlich et al.	2001/0021926 2001/0023421			Schneck et al. Numao et al.
7,145,898 B1 12/2006 7,146,388 B2 12/2006	Elliott Stakutis et al.	2001/0032181			Jakstadt et al.
	Takechi et al.	2001/0033611			Grimwood et al.
7,159,036 B2 1/2007	Hinchliffe et al.	2001/0034839			Karjoth et al.
	Fredell	2001/0042110 2001/0044903			Furusawa et al. Yamamoto et al.
	Kallahalla et al. Brownlie et al.	2001/0056541			Matsuzaki et al.
	Komuro et al.	2001/0056550		12/2001	
	Claxton et al.	2002/0003886			Hillegass et al.
	Garcia	2002/0007335 2002/0010679			Millard et al. Felsher
	Nagel et al. Knouse et al.	2002/0010079			Peinado
	Pendharkar	2002/0016921			Olsen et al.
	Squier et al.	2002/0016922			Richards et al.
7,194,764 B2 3/2007		2002/0019935 2002/0023208			Andrew et al 713/165 Jancula
	Grawrock et al.	2002/0023208			Faris et al.
	Kallahalla et al. Kallahalla et al.	2002/0027886			Fischer et al.
	Asano et al.	2002/0029340			Pensak et al.
7,219,230 B2 5/2007	Riedel et al.	2002/0031230			Sweet et al.
7,224,795 B2 5/2007		2002/0035624		3/2002	
7,225,256 B2 5/2007 7,227,953 B2 6/2007	Villavicencio	2002/0036984 2002/0041391			Chiussi et al. Bannai
	Shamoon et al.	2002/0041391			Kumar et al.
	Estrada et al.	2002/0046350			Lordemann et al.
7,249,044 B2 7/2007	Kumar et al.	2002/0050098	A1	5/2002	Chan
7,249,251 B2 7/2007		2002/0052981			Yasuda
7,260,555 B2 8/2007	Rossmann et al.	2002/0056042	Al	5/2002	Van Der Kaay et al.

(56)		Referen	ces Cited	2003/0081790			Kallahalla et al.
	HS	PATENT	DOCUMENTS	2003/0088517 2003/0088783			Medoff DiPierro
	0.5.	IZILZIVI	DOCOMENTS	2003/0093457			Goldick
2002/0062240	A1	5/2002	Morinville	2003/0095552			Bernhard et al.
2002/0062245	A1		Niu et al.	2003/0099248		5/2003	Speciner
2002/0062451			Scheidt et al.	2003/0101072 2003/0110169		6/2003	Dick et al.
2002/0069077 2002/0069272			Brophy et al. Kim et al.	2003/0110165			Rollins et al.
2002/0069363			Winburn	2003/0110280		6/2003	Hinchliffe et al.
2002/0073320			Rinkevich et al.	2003/0110397			Supramaniam
2002/0077986			Kobata et al.	2003/0115146			Lee et al. Bobbitt et al.
2002/0077988			Sasaki et al.	2003/0115218 2003/0115570			Bisceglia
2002/0078239 2002/0078361			Howard et al. Giroux et al.	2003/0120601		6/2003	
2002/0070301			Malcolm	2003/0120684			Zuili et al.
2002/0089602		7/2002	Sullivan	2003/0126434			Lim et al.
2002/0091532			Viets et al.	2003/0132949 2003/0154296			Fallon et al. Noguchi et al.
2002/0091745			Ramamurthy et al. Bouchard et al.	2003/0154381		8/2003	
2002/0091928 2002/0093527			Sherlock et al.	2003/0154396			Godwin et al.
2002/0099947		7/2002		2003/0154401			Hartman et al.
2002/0112035	A1		Carey et al.	2003/0159048			Matsumoto et al.
2002/0112048			Gruyer et al.	2003/0159066 2003/0163704		8/2003	Staw et al. Dick et al.
2002/0120851 2002/0124180		8/2002	Clarke Hagman	2003/0165117			Garcia-Luna-Aceves et al.
2002/0124180			Zhang et al.	2003/0172280		9/2003	
2002/0129235			Okamoto et al.	2003/0177070			Viswanath et al.
2002/0133500	A1	9/2002	Arlein et al.	2003/0177378			Wittkotter
2002/0133699			Pueschel	2003/0182310 2003/0182579			Charnock et al. Leporini et al.
2002/0138571			Trinon et al.	2003/01825/9		9/2003	Banes et al.
2002/0138726 2002/0138762		9/2002	Sames et al.	2003/0191938			Woods et al.
2002/0143710		10/2002		2003/0196096		10/2003	
2002/0143906		10/2002	Tormasov et al.	2003/0197729			Denoue et al.
2002/0150239			Carny et al.	2003/0200202 2003/0204692			Hsiao et al. Tamer et al.
2002/0152302			Motoyama et al. Kleckner et al.	2003/0204092			Castellanos
2002/0156726 2002/0157016			Russell et al.	2003/0217264			Martin et al.
2002/0162104			Raike et al.	2003/0217281		11/2003	
2002/0165870	A1	11/2002	Chakraborty et al.	2003/0217282		11/2003	
2002/0166053		11/2002		2003/0217333 2003/0220999			Smith et al. Emerson
2002/0169963 2002/0169965			Seder et al. Hale et al.	2003/0222141		12/2003	Vogler et al.
2002/0109903			Mulder et al.	2003/0226013			Dutertre
2002/0174030			Praisner et al.	2003/0233650			Zaner et al.
2002/0174109			Chandy et al.	2004/0022390 2004/0025037		2/2004	McDonald et al.
2002/0174415		11/2002 11/2002		2004/0023037			LaVallee et al.
2002/0176572 2002/0178271			Graham et al.	2004/0041845		3/2004	Alben et al.
2002/0184217			Bisbee et al.	2004/0049702		3/2004	Subramaniam et al.
2002/0184488	A1		Amini et al.	2004/0064507		4/2004	Sakata et al.
2002/0194484		12/2002	Bolosky et al.	2004/0064710 2004/0068524			Vainstein Aboulhosn et al.
2002/0198798 2003/0005168		1/2002	Ludwig et al. Leerssen et al.	2004/0068664			Nachenberg et al.
2003/0009108			Choo et al.	2004/0073660		4/2004	Toomey
2003/0014391			Evans et al.	2004/0073718			Johannessen et al.
2003/0023559			Choi et al.	2004/0088548			Smetters et al. DeTreville
2003/0026431			Hammersmith	2004/0098580 2004/0103202			Hildebrand et al.
2003/0028610 2003/0033528			Pearson Ozog et al.	2004/0103280			Balfanz et al.
2003/0033920			Holenstein et al.	2004/0117371	A1		Bhide et al.
2003/0037133		2/2003	Owens	2004/0131191			Chen et al.
2003/0037237			Abgrall et al.	2004/0133544 2004/0158586		8/2004	Kiessig et al.
2003/0037253		2/2003 3/2003	Blank et al.	2004/0138380		9/2004	
2003/0046176 2003/0046238			Nonaka et al.	2004/0193602			Liu et al.
2003/0046270			Leung et al.	2004/0193905			Lirov et al.
2003/0050919	A1	3/2003	Brown et al.	2004/0193912			Li et al.
2003/0051039			Brown et al.	2004/0199514			Rosenblatt et al. Chikirivao et al.
2003/0056139 2003/0061482			Murray et al. Emmerichs	2004/0205576 2004/0215956			Venkatachary et al.
2003/0061482			Cooper	2004/0215962			Douceur et al.
2003/0074580			Knouse et al.	2004/0243853		12/2004	Swander et al.
2003/0078959			Yeung et al.	2004/0254884			Haber et al.
2003/0079175		4/2003	Limantsev	2005/0021467			Franzdonk
2003/0081784			Kallahalla et al.	2005/0021629			Cannata et al.
2003/0081785			Boneh et al.	2005/0028006			Leser et al.
2003/0081787	AI	3/2003	Kallahalla et al.	2005/0039034	AI	2/2005	Doyle et al.

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0050098	A1	3/2005	Barnett
2005/0071275	A1	3/2005	Vainstein et al.
2005/0071657	A1	3/2005	Ryan
2005/0071658	A1	3/2005	Nath et al.
2005/0081029	A1	4/2005	Thornton et al.
2005/0086531	A1	4/2005	Kenrich
2005/0091289	A1	4/2005	Shappell et al.
2005/0091484	A1	4/2005	Thornton et al.
2005/0097061	A1	5/2005	Shapiro et al.
2005/0120199	A1	6/2005	Carter
2005/0138371	A1	6/2005	Supramaniam
2005/0138383	A1	6/2005	Vainstein
2005/0168766	A1*	8/2005	Troyansky et al 358/1.14
2005/0177716	A1	8/2005	Ginter et al.
2005/0177858	A1	8/2005	Ueda
2005/0198326	A1	9/2005	Schlimmer et al.
2005/0223242	A1	10/2005	Nath
2005/0223414	$\mathbf{A}1$	10/2005	Kenrich et al.
2005/0235154	A1	10/2005	Serret-Avila
2005/0256909	$\mathbf{A}1$	11/2005	Aboulhosn et al.
2005/0268033	$\mathbf{A}1$	12/2005	Ogasawara et al.
2005/0273600	A1	12/2005	Seeman
2005/0283610	A1	12/2005	Serret-Avila et al.
2005/0288961	A1	12/2005	Tabrizi
2006/0005021	A1	1/2006	Torrubia-Saez
2006/0075258	A1	4/2006	Adamson et al.
2006/0075465	A1	4/2006	Ramanathan et al.
2006/0093150	A1	5/2006	Reddy et al.
2006/0101285	A1	5/2006	Chen et al.
2006/0149407	A1	7/2006	Markham et al.
2006/0168147	A1	7/2006	Inoue et al.
2006/0184637	A1	8/2006	Hultgren et al.
2006/0230437	A1	10/2006	Alexander Boyer et al.
2006/0277316	A1	12/2006	Wang et al.
2007/0006214	A1	1/2007	Dubal et al.
2007/0067837	A1	3/2007	Schuster
2007/0083575	A1	4/2007	Leung et al.
2007/0192478	A1	8/2007	Louie et al.
2007/0193397	A1	8/2007	Corenthin et al.
2007/0294368	A1	12/2007	Bomgaars et al.
	A1	3/2008	Yang
2009/0254843	A1	10/2009	Van Wie et al.
2010/0047757	A1	2/2010	McCurry et al.
2010/0199088	A1	8/2010	Nath

FOREIGN PATENT DOCUMENTS

EP	0 809 170 A1	11/1997
EP	0 913 966 A2	5/1999
EP	0 913 967 A2	5/1999
EP	0 950 941 A2	10/1999
EP	0 950 941 A3	10/1999
EP	1 107 504 A2	6/2001
EP	1 107 504 B1	6/2001
EP	1 130 492 A2	9/2001
EP	1 154 348 A2	11/2001
EP	1 324 565 A1	7/2003
GB	2 328 047 A	2/1999
JР	2001-036517	2/2001
JP	2006-244044 A	9/2006
JР	2009-020720 A	1/2009
WO	WO 96/41288 A	12/1996
WO	WO 00/56028 A2	9/2000
WO	WO 01/61438 A2	8/2001
WO	WO 01/63387 A2	8/2001
WO	WO 01/63387 A3	8/2001
WO	WO 01/77783 A2	10/2001
WO	WO 01/78285 A1	10/2001
WO	WO 01/84271 A2	11/2001

OTHER PUBLICATIONS

"Features of EFS" from MSDN Oct. 2001 version, exact publication date is unknown but believed prior to Dec. 12, 2001.

"Windows 2000 EFS" in the Apr. 1999 issue of Windows NT magazine.

"How EFS work," from MSDN Oct. 2001 version, exact publication date is unknown but believed prior to Dec. 12, 2001.

"Inside Encryping file system," from MSDN Oct. 2001 version, exact publication date is unknown but believed prior to Dec. 12, 2001.

"Inside Encryping file system," Part 2, from MSDN Oct. 2001 version, exact publication date is unknown but believed prior to Dec. 12, 2001

"Security with Encryping File System," from MSDN Oct. 2001 version, exact publication date is unknown but believed prior to Dec. 12, 2001.

Crocker, Steven Toye, "Effectuating access policy changes to designated places for secured files," U.S. Appl. No. 10/259,075, filed Sep. 27, 2002.

Crocker, Steven Toye, "Multi-level cryptographic transformations for securing digital assets," U.S. Appl. No. 10/404,566, filed Mar. 31, 2003.

Expiration Mechanism for Chipcards, IBM Technical Disclosure Bulletin, Oct. 1, 2001, UK.

Kenrich, Michael Frederick, "Multi-Level File Digest", U.S. Appl. No. 10/894,493, filed Jul. 19, 2004.

Kinghorn, Gary Mark, "Method and system for protecting electronic data in enterprise environment," U.S. Appl. No. 10/159,220, filed May 31, 2002.

McDaniel et al. "Antigone: A Flexible Framework for Secure Group Communication," Proceedings of the 8th USENIX Security Symposium, Aug. 23, 1999.

Nath, Satyajit, "Method and system for securing digital assets using content type designations," U.S. Appl. No. 10/405,587, filed Apr. 1, 2003.

Prakash, Nalini J., "Method and apparatus for securing/unsecuring files by file crawling," U.S. Appl. No. 10/325,102, filed Dec. 20, 2002

Rossmann, Alain, "Hybrid systems for securing digital assets," U.S. Appl. No. 10/325,013, filed Dec. 20, 2002.

Stallings, William, "Cryptography and Network Security: Principles and Practice," 1999, pp. 333-337, Second Edition, Prentice Hall, Upper Saddle River, New Jersey.

"Affect," The American Heritage Dictionary of the English Langaage, Fourth Edition, Houghton Mifflin Company, 2002. Retrieved May 4, 2006 from http://dictionary.reference.com/search?q=affect.

Microsoft Windows 200 server. Windows 2000 Group Policy White Paper, 2000.

Symantec. Norton Antivirus Corporate Edition Implementation Guide, 1999.

A Real-Time Push-Pull Communications Model for Distributed Real-Time and Multimedia Systems, Jan. 1999, School of Computer Sciences Carnegie Mellon University, Kanaka Juvva, Raj Rajkumar. U.S. Appl. No. 10/889,685, entitled "Method and Apparatus for Controlling the Speed Ranges of a Machine" inventor Thomas, Jul. 13, 2004, 18 pgs.

U.S. Appl. No. 10/028,397, entitled "Method and system for restricting use of a clipboard application," inventor Zuili, Dec. 21, 2001, 38 pgs.

U.S. Appl. No. 10/368,277, entitled "Method and apparatus for uniquely identifying files," inventor Ouye, Feb. 18, 2003, 25 pgs.

U.S. Appl. No. 10/327,320, entitled "Security system with staging capabilities" inventor Vainstein, Dec. 20, 2002, 39 pgs.

U.S. Appl. No. 10/286,524, entitled "Security system that uses indirect password-based encrypytion," inventor Gutnik, Nov. 1, 2002, 38 pgs.

U.S. Appl. No. 10/242,185, entitled "Method and system for protecting encrypyted files transmitted over a network" inventor Ryan, Sep. 11, 2002, 33 pgs.

U.S. Appl. No. 10/642,041, entitled "Method and system for fault-tolerant transfer of files across a network" inventor Kenrich, Aug. 15, 2003, 32 pgs.

U.S. Appl. No. 10/610,832, entitled "Method and system for enabling users of a group shared across multiple file security systems to access secured files" inventors Ryan, Jun. 30, 2003, 33 pgs.

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 10/448,806, entitled "Method and System for Using Remote Headers to Secure Electronic Files" inventor Ryan, May 30, 2003, 35 pgs.

U.S. Appl. No. 10/074,194, entitled "Methods for identifying compounds that inhibit or reduce PTP1B expressions" inventor Rondinone, Feb. 12, 2002, 69 pgs.

U.S. Appl. No. 10/074,804, entitled "Secured Data Format for Access Control," inventor Garcia, Feb. 12, 2002, 108 pgs.

U.S. Appl. No. 10/075,194, entitled "System and Method for Providing Multi-location Access Management to Secured Items," inventor Vainstein et al., Feb. 12, 2002, 110 pgs.

U.S. Appl. No. 10/074,996, entitled "Method and Apparatus for Securing Electronic Data," inventor Lee et al., Feb. 12, 2002, 111 pgs. U.S. Appl. No. 10/074,825, entitled "Method and Apparatus for Accessing Secured Electronic Data Off-line," inventor Lee et al., Feb. 12, 2002, 108 pgs.

U.S. Appl. No. 10/105,532, entitled "System and Method for Providing Different Levels of Key Security for Controlling Access to Secured Items," inventor Hildebrand et al., Mar. 20, 2002, 86 pgs.

U.S. Appl. No. 10/186,203, entitled "Method and System for Implementing Changes to Security Policies in a Distributed Security System," inventor Huang, Jun. 26, 2002, 65 pgs.

U.S. Appl. No. 10/201,756, entitled "Managing Secured Files in Designated Locations," inventor Alain, Jul. 22, 2002, 121 pgs.

U.S. Appl. No. 10/206,737, entitled "Method and System for Updating Keys in a Distributed Security System," inventor Hildebrand, Jul. 26, 2002, 60 pgs.

U.S. Appl. No. 10/246,079, entitled "Security System for Generating Keys from Access rules in a Decentralized Manner and Methods Therefore," inventor Hildebrand, Sep. 17, 2002, 78 pgs.

U.S. Appl. No. 10/259,075, entitled "Effectuating Access Policy Changes to Designated Places for Secured Files," inventor Crocker, Sep. 27, 2002, 60 pgs.

U.S. Appl. No. 10/286,575, entitled "Method and Architecture for Providing Access to Secured Data from Non-Secured Clients," inventor Vainstein, Nov. 1, 2002, 46 pgs.

U.S. Appl. No. 10/295,363, entitled "Security System Using Indirect Key Generation from Access Rules and Methods Therefore," inventor Vainstein, Nov. 15, 2002, 70 pgs.

U.S. Appl. No. 11/889,310, entitled "Methods and Systems for Providing Access Control to Electronic Data," inventor Rossmann, Aug. 10, 2007, 90 pgs.

U.S. Appl. No. 11/797,367, entitled "Method and System for Managing Security Tiers," inventor Vainstein, May 2, 2007, 11 pgs.

Adobe Acrobat 5.0 Classroom in a Book, Adobe Press, Jun. 26, 2001, pp. 1-4.

Adobe Acrobat Security Settings, Acrobat 7.0, Nov. 15, 2004, pp. 1-4

"Security Options". Dec. 20, 2001. DC & Co. pp. 1-2.

Microsoft Press Computer Dictionary, 1997, Microsoft Press, Third Edition, p. 426.

Search Report, completion date May 8, 2003, for European Patent Application No. EP 02 25 8530, 2 pages.

Search Report, completion date Oct. 2, 2003, for European Patent Application No. EP 02 25 8531, 2 pages.

Search Report, completion date Apr. 14, 2005, for European Patent Application No. EP 02 25 8533, 2 pages.

Search Report, completion date Mar. 16, 2005, for European Patent Application No. EP 02 25 8534, 2 pages.

Search Report, completion date Mar. 2, 2005, for European Patent Application No. EP 02 25 8535, 2 pages.

Search Report, completion date Mar. 3, 2005, for European Patent Application No. EP 02 25 8537, 2 pages.

Search Report, completion date May 12, 2005, for European Patent Application No. EP 02 25 8539, 2 pages.

Search Report, completion date Jul. 6, 2005, for European Patent Application No. EP 02 25 8529, 4 pages.

Search Report, completion date Oct. 8, 2003, for European Patent Application No. EP 02 25 8536, 2 pages.

Search Report, completion date May 8, 2003, for European Patent Application No. EP 02 25 8540, 2 pages.

Examination Report, completion date Jun. 18, 2008, for European Patent Application No. EP 02 258 532.7-1244, 6 pgs.

Office Action, dated May 10, 2005, for European Patent Application No. 02258532.7, 5 pgs.

Office Action, dated Dec. 5, 2006, for European Patent Application No. 02258532.7, 5 pgs.

Boneh et al., "Hierarchical Identity Based Encryption with Constant Size Ciphertext," Advances in Cryptology—EUROCRYPT 2005, vol. 3493, Jun. 20, 2005, pp. 440-456.

Boneh et al., "IBE Secure E-mail," Stanford University, Apr. 8, 2002, http://crypto.stanford.edu/ibe/.

Curtis et al., "Securing the Global, Remote, Mobile User," 1999 John Wiley & Sons, Ltd., Int. J. Network Mgmt. 9, pp. 9-21.

"Columns Archives," Microsoft TechNet, Professor Windows, technet.microsoft.com/enus/library/bb878075.aspx, retrieved on Dec. 3, 2009.

"Columns," Microsoft TechNet http://web.archive.org/web/20021014225142/www.microsoft.com/techneUcolumns/default.

asp Oct. 14, 2002, Retrieved from web.archive.org on Dec. 3, 2009. "eXPeriencing Remote Assistance" Microsoft TechNet—Professor Windows Oct. 2002 Oct. 15, 2002 http://web.archive.org/web/20021015165237/www.microsoft.com/techneUcolumns/proofwin/, Retrieved from web.archive.org on Dec. 3, 2009.

"Migrating Accounts From Windows NT 4.0 Domains to Windows 2000," Microsoft TechNet—Professor Windows Apr. 2002, http://web.archive.org/web/20020415004611/www. m icrosoft.com/technetlcolu mns/profwin/, Apr. 15, 2002.

"Scripting Your Windows 2000 Network, Part 1" Microsoft TechNet—Professor Windows Jun. 2002, http://web.archive.org/web/2002062205555532/www.microsoft.com/techneUcolumns/profwin/ Retrieved from web.archive.org on Dec. 3, 2009.

"Way-Back Machine" weh.archive.org, http://web.archive.org/web/*/http://www.microsoft.com/technetlcolumns/profwin/, Retrieved on Dec. 3, 2009.

English language translation (unverified, machine-generated) of Japanese Patent Publication No. JP 2006-244044, Japanese Patent Office, Patent & Utility Model Gazette DB, 2006.

English language translation (unverified, machine-generated) of Japanese Patent Publication No. 2009-020720, Japanese Patent Office, Patent & Utility Model Gazette DB, 2009.

English language abstract for Japanese Appl. No. 2001-036517, filed Feb. 9, 2001, 1 pg.

Botha et al., "Access Control in Document-Centric Workflow Systems—An Agent-Based Approach," Computers & Security, vol. 20:6, Sep. 2001, pp. 525-532.

Botha et al., "Separation of Duties for Access Control Enforcement in Workflow Environments," IBM, 2001.

Adobe Acrobat Security Settings, Acrobat 7.0, Nov. 15, 2004; pp. 1-4.

U.S. Appl. No. 60/475,109, Leser, et al., "Method for Enforcing and Managing Usage Rights of Digital Data Objects in Dynamic, Distributed and Collaborative Contexts", filed Jun. 2, 2003.

VeriSign, Inc., "Secure Sockets Layer (SSL): How it Works" (Jan. 8, 2008), http://www.verisign.com/ssl/ssl-information-center/how-ssl-security-works, pp. 1-2.

* cited by examiner

FIG. 1

FIG. 2

FIG. 3

FIG. 4B

FIG. 4C

FIG. 5B

FIG. 5C

FIG. 5D

FIG. 6

METHOD AND APPARATUS FOR TRANSITIONING BETWEEN STATES OF SECURITY POLICIES USED TO SECURE ELECTRONIC DOCUMENTS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/676,474, filed Sep. 30, 2003, now issued as 10 U.S. Pat. No. 8,127,366 and incorporated by reference herein in its entirety, which is related to: (i) U.S. patent application Ser. No. 10/677,049, filed concurrently herewith, and entitled "METHOD AND SYSTEM FOR SECURING DIGITAL ASSETS USING PROCESS-DRNEN SECURITY POLI- 15 CIES," which is hereby incorporated herein by reference; (ii) U.S. patent application Ser. No. 10/405,587, filed Apr. 1, 2003, and entitled "METHOD AND APPARATUS FOR SECURING DIGITAL ASSETS USING CONTENT TYPE DESIGNATIONS," which is hereby incorporated herein by $\ ^{20}$ reference; (iii) U.S. patent application Ser. No. 10/159,537, filed May 5, 2002, and entitled "METHOD AND APPARA-TUS FOR SECURING DIGITAL ASSETS," which is hereby incorporated herein by reference; and (iv) U.S. patent application Ser. No. 10/127,109, filed Apr. 22, 2002, and entitled 25 "EVALUATION OF ACCESS RIGHTS TO SECURED DIGITAL ASSETS," which is hereby incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to security systems for data and, more particularly, to security systems that protect data in an inter/intra enterprise environment.

2. Description of Related Art

The Internet is the fastest growing telecommunications medium in history. This growth and the easy access it affords have significantly enhanced the opportunity to use advanced information technology for both the public and private sectors. It provides unprecedented opportunities for interaction and data sharing among businesses and individuals. However, the advantages provided by the Internet come with a significantly greater element of risk to the confidentiality and integrity of information. The Internet is an open, public and international network of interconnected computers and electronic devices. Without proper security means, an unauthorized person or machine may intercept information traveling across the Internet and even gain access to proprietary information stored in computers that interconnect to the Internet.

There are many efforts in progress aimed at protecting proprietary information traveling across the Internet and controlling access to computers carrying the proprietary information. Cryptography allows people to carry over the confidence found in the physical world to the electronic world, thus allowing people to do business electronically without worries of deceit and deception. Every day millions of people interact electronically, whether it is through e-mail, e-commerce (business conducted over the Internet), ATM machines, or cellular phones. The perpetual increase of information transmitted electronically has led to an increased reliance on cryptography.

One of the ongoing efforts in protecting the proprietary information traveling across the Internet is to use one or more cryptographic techniques to secure a private communication 65 session between two communicating computers on the Internet. The cryptographic techniques provide a way to transmit

2

information across an unsecure communication channel without disclosing the contents of the information to anyone eavesdropping on the communication channel. Using an encryption process in a cryptographic technique, one party can protect the contents of the data in transit from access by an unauthorized third party, yet the intended party can read the encrypted data after using a corresponding decryption process.

A firewall is another security measure that protects the resources of a private network from users of other networks. However, it has been reported that many unauthorized accesses to proprietary information occur from the inside, as opposed to from the outside. An example of someone gaining unauthorized access from the inside is when restricted or proprietary information is accessed by someone within an organization who is not supposed to do so. Due to the open nature of networks, contractual information, customer data, executive communications, product specifications, and a host of other confidential and proprietary intellectual property remain available and vulnerable to improper access and usage by unauthorized users within or outside a supposedly protected perimeter.

Many businesses and organizations have been looking for effective ways to protect their proprietary information. Typically, businesses and organizations have deployed firewalls, Virtual Private Networks (VPNs), and Intrusion Detection Systems (IDS) to provide protection. Unfortunately, these various security means have been proven insufficient to reliably protect proprietary information residing on private networks. For example, depending on passwords to access sensitive documents from within often causes security breaches when the password of a few characters long is leaked or detected. Consequently, various cryptographic means are deployed to provide restricted access to electronic data in security systems.

Various security criteria, such as encryption or decryption keys, are often used to facilitate restricted access to data in security systems. Conventional uses of security criteria provide static assignment of security criteria to electronic resources being secured. However, the assigning of security criteria in a static manner does not permit subsequent alteration of the security criteria under certain conditions. Although an administrator may be able to change the security criteria for an electronic resource that has already been secured, such alteration would be a manual process only available to the administrator. Further, given that an administrator is managing secure electronic resources (e.g., data) for many users, it is not feasible for the administrator to participate in the changing of security criteria for a large volume of electronic resources. Therefore, there is a need to provide more effective ways for security systems to permit security criteria imposed on electronic resources to be changed, thereby altering the security used to protect the electronic resources.

SUMMARY OF THE INVENTION

The invention relates to techniques for dynamically altering security criteria used in a system (e.g., a file security system for an enterprise). The security criteria pertains to keys (or ciphers) used by the file security system to encrypt electronic files to be secured, or to decrypt electronic files already secured. The security criteria can, among other things, include keys that are required to gain access to electronic files. Here, the keys can be changed automatically as electronic files transition between different states of a process-driven security policy. The dynamic alteration of secu-

rity criteria enhances the flexibility and robustness of the security system. In other words, access restrictions on electronic files can be dependent on the state of the process-driven security policy and enforced in conjunction with one or more cryptographic methods.

According to one aspect of the invention, methods and systems for securing electronic files use process-driven security policies. As an electronic file transitions through a process, access restrictions can automatically change. The process can be defined by a number of states, with each state 10 having different security policies associated therewith. The security policies control, for example, which users are permitted to access the electronic files, or how the electronic files can be accessed. In one embodiment, the access restrictions are imposed by one or more keys that are required to decrypt 15 electronic files that were previously secured. The process can also be referred to as a workflow, where the workflow has a series of states through which files (documents) can move, where different security policies can be imposed at different states

Another aspect of the invention is that process-driven security policies are enforced or controlled at a server of a file security system. A group of one or more electronic documents are bound together and progress together through states of a process specified by process-driven security policies. The 25 server can automatically and remotely enforce the process-driven security policies on the group of electronic documents.

Still another aspect of the invention is that process-driven security policies are controlled at a client of a file security system. Here, each individual electronic document can be 30 separately and independently bound to process-driven security policies. The process-driven security policies can thus operate at the client with little or no communication with a central server in most cases.

The process-driven security policies typically offer persistent states. Each state can specify a different set of users or groups of users that are permitted access to an electronic document. The states are also independent of the electronic documents themselves.

The invention can be implemented in numerous ways, 40 including as a method, system, device, and computer readable medium. Several embodiments of the invention are discussed below.

As a document security system for restricting access to documents, one embodiment of the invention includes at 45 least: a process-driven security policy that includes a plurality of states and transition rules, each of the states corresponding to one or more access restrictions, and the transition rules specify when the secured document is to transition from one state to another; and an access manager that determines 50 whether access to a secured document is permitted by a requester based on the state and the corresponding one or more access restrictions thereof for the process-driven security policy.

As a method for transitioning at least one secured document through a security-policy state machine having a plurality of states, one embodiment of the invention includes at least the acts of: receiving an event; determining whether the event causes a state transition for the at least one secured document from a former state to a subsequent state of the 60 security-policy state machine; and automatically transitioning from the former state to the subsequent state of the security-policy state machine when the determining determines that the event causes the state transition.

As a method for imposing access restrictions on electronic 65 documents, one embodiment of the invention includes at least the acts of: providing at least one process-driven security

4

policy at a server machine, the process-driven security policy having a plurality of states associated therewith, each of the states having distinct access restrictions; providing a reference to the process-driven security policy at a client machine, the reference referring to the process-driven security policy resident on the server machine; associating the reference to an electronic document; transitioning the process-driven security policy from one state to a current state; and subsequently determining at the server computer whether a requestor is permitted to access the electronic document, the access being based on a current state of the process-driven security policy, the current state being informed to the server computer by sending the reference to the server computer.

As a computer readable medium including at least computer program code for transitioning at least one secured document through a security-policy state machine having a plurality of states, one embodiment of the invention includes at least: computer program code for receiving an event; computer program code for determining whether the event causes a state transition for the at least one secured document from a former state to a subsequent state of the security-policy state machine; and computer program code for automatically transitioning from the former state to the subsequent state of the security-policy state machine when the computer program code for determining determines that the event causes the state transition.

As a computer readable medium including at least computer program code for imposing access restrictions on electronic documents, one embodiment of the invention includes at least: computer program code for providing at least one process-driven security policy at a server machine, the process-driven security policy having a plurality of states associated therewith, each of the states having distinct access restrictions; computer program code for providing a reference to the process-driven security policy at a client machine, the reference referring to the process-driven security policy resident on the server machine; computer program code for associating the reference to an electronic document; computer program code for transforming the process-driven security policy from one state to a current state; and computer program code for determining at the server computer whether a requestor is permitted to access the electronic document, the access being based on a current state of the process-driven security policy, the current state being informed to the server computer by sending the reference to the server computer.

Other objects, features, and advantages of the present invention will become apparent upon examining the following detailed description of an embodiment thereof, taken in conjunction with the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the invention will become better understood with regard to the following description, appended claims and accompanying drawings, wherein:

FIG. 1 is a diagram of an exemplary process-driven security policy (PDSP) according to one embodiment of the invention.

FIG. 2 is a flow diagram of a transition process according to one embodiment of the invention.

FIG. 3 illustrates a security policy state machine according to one embodiment of the invention.

FIG. 4A is a diagram of a document securing system according to one embodiment of the invention.

FIG. 4B is a flow diagram of a document securing process according to one embodiment of the invention.

FIG. 4C is a detailed flow diagram of an encryption process according to one embodiment of the invention.

FIG. 5A is a diagram of a document unsecuring system according to one embodiment of the invention.

FIGS. 5B and 5C are flow diagrams of a document access 5 process according to one embodiment of the invention.

FIG. 5D is a flow diagram of a decryption process according to one embodiment of the invention.

FIG. 6 is a flow diagram of a transition process according to one embodiment of the invention.

FIG. 7 shows a basic security system in which the invention may be practiced in accordance with one embodiment thereof.

FIG. **8** shows an exemplary data structure of a secured file that may be used in one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention relates to techniques for dynamically altering security criteria used in a system (e.g., a file security 20 system for an enterprise). The security criteria pertains to keys (or ciphers) used by the file security system to encrypt electronic files to be secured, or to decrypt electronic files already secured. The security criteria can, among other things, include keys that are required to gain access to electronic files. Here, the keys can be changed automatically as electronic files transition between different states of a process-driven security policy. The dynamic alteration of security criteria enhances the flexibility and robustness of the security system. In other words, access restrictions on electronic files can be dependent on the state of the process-driven security policy.

As used herein, a file may include, but not be limited to, one or more various types of documents, multimedia files, data, executable code, images and texts, and in some cases, a collection of files. Accordingly, a secured file means that an electronic file typically stored or presented in a form that is nearly impossible to read without authorization and authentication. Its purpose is to ensure privacy by keeping the content in a file hidden from anyone for whom it is not intended, 40 even those who may have a copy of the file.

According to one aspect of the invention, methods and systems for securing electronic files use process-driven security policies. As an electronic file transitions through a process, access restrictions can automatically change or remain 45 intact depending on the process. The process can be defined by a number of states, with each state having its corresponding security policies associated therewith. The security policies control, for example, which users are permitted to access the electronic files or how the electronic files can be accessed. In one embodiment, the access restrictions are imposed by one or more keys that are required to decrypt electronic files that were previously secured. The process can also be referred to as a workflow, where the workflow has a series of states through which files (documents) can move, where different 55 security policies can be imposed at different states.

Another aspect of the invention is that process-driven security policies are controlled at a server of a file security system. A group of one or more electronic documents are bound together and progress together through states of a process 60 specified by process-driven security policies. The server can automatically and remotely enforce the process-driven security policies on the group of electronic documents.

Still another aspect of the invention is that process-driven security policies are controlled at a client of a file security system. Here, each individual electronic document can be separately and independently bound to process-driven secu6

rity policies. The process-driven security policies can thus operate at the client with little or no communication with a central server.

The process-driven security policies typically offer persistent states. Each state can specify a different set of users that are permitted access to an electronic document. The states are also independent of the electronic documents themselves.

Secured files are files that require one or more keys, passwords, access privileges, etc. to gain access to their content. The security is often provided through encryption and access rules. The files, for example, can pertain to documents, multimedia files, data, executable code, images and text. In general, a secured file can only be accessed by authenticated users with appropriate access rights or privileges. In one embodiment, each secured file is provided with a header portion and a data portion, where the header portion contains, or points to, security information. The security information is used to determine whether access to associated data portions of secured files is permitted.

In one embodiment, security information provided with an electronic document controls restrictive access to a data portion which is encrypted. The security information can employ access rules together with cipher keys (e.g., a file key and various other keys) to ensure that only those users with proper access privileges or rights can access the encrypted data portion

As used herein, a user may mean a human user, a software agent, a group of users, a member of the group, a device and/or application. Besides a human user who needs to access a secured document, a software application or agent sometimes needs to access secured files in order to proceed. Accordingly, unless specifically stated, the "user" as used herein does not necessarily pertain to a human being.

The invention is related to processes, systems, architectures and software products for providing pervasive security to digital assets (e.g., electronic documents). The invention is particularly suitable in an enterprise environment. In general, pervasive security means that digital assets are secured (i.e., secured data) and can only be accessed by authenticated users with appropriate access rights or privileges. Digital assets may include, but not be limited to, various types of documents, multimedia files, data, executable code, images and texts

In the following description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will become obvious to those skilled in the art that the invention may be practiced without these specific details. The description and representation herein are the common meanings used by those experienced or skilled in the art to most effectively convey the substance of their work to others skilled in the art. In other instances, well-known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the invention.

Reference herein to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order, nor imply any limitations in the invention.

Embodiments of the invention are discussed herein with reference to FIGS. 1-8. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.

FIG. 1 is a diagram of an exemplary process-driven security policy (PDSP) 100 according to one embodiment of the invention. The process-driven security policy 100 includes a plurality of different states. As shown in FIG. 1, the process-driven security policy 100 can include state A 102, state B 104, state C 106, and state D 108. Each of these different states can be associated with one or more access restrictions.

The process-driven security policy 100 is used by a file (document) security system to restrict access to files (documents). As files are placed in different ones of the states of the 15 process-driven security policy 100, the access restrictions being utilized to secure access to the files typically changes. More particularly, as the files move from state-to-state in accordance with a process, the access restrictions utilized by the files often changes. Indeed, the access restrictions can 20 change automatically based upon the state the file is in, and thus does not necessarily require user or administrator interaction in order to change the access restrictions. Typically, access restrictions will designate which users (or groups of users) are able to access secure documents, whether certain 25 clearance levels are needed, whether off-line access is permitted, and which of various other possible criteria or considerations are utilized. A set of access restrictions for the various states can be referred to as a security policy.

A file can transition between the various states of the process-driven security policy 100 in a controlled manner. Often, the process-driven security policy 100 defines the transitions that are permissible. In one embodiment, the state transitions are event-driven. The everts can be either internal to the file security system or external to the file security system. When 35 event-driven, the transitions between states can be automatic and thus do not require user or administrator interaction. However, some events can be triggered or initiated by user or administrator interaction.

As shown in FIG. 1, a file (document) can transition 40 between the different states 102-108 offered by the process-driven security policy 100. For example, a file currently in state A 102 can transition to state B 104 or state D 108, depending upon process-related conditions (e.g., events). Similarly, a file in state D 108, depending upon process considerations, can transition to state A 102, state B 104 or state C 106. Likewise, a file in state B 104 or state C 106 can transition to one or more other states. Additional details on states, security policies and transitions between states are discussed in additional detail below.

FIG. 2 is a flow diagram of a transition process 200 according to one embodiment of the invention. The transition process 200 can be used to transition a document (file) between different states of a process-driven security policy, such as the process-driven security policy shown in FIG. 1. The transition process 200 is typically deemed process-driven because it is driven by a process. The process is, for example, defined by transition rules. The transition rules typically rely upon events to cause transitions between states. Often user or administrator interaction is not involved when activating transitions. 60 However, the transition process 200 can permit a user or administrator to participate in activating transitions, such as by causing an event to occur which initiates a transition.

The transition process 200 begins with a decision 202 that determines whether an event relevant to the process-driven 65 security policy imposed on a document has been received. Typically, the process-driven security policy is imposed on

8

the document by a file security system. One implementation of a process-driven security policy is a security policy state machine. The process-driven security policy (or security policy state machine) has a plurality of states, and transition rules for transitioning between the various states. In any case, the transition process 200 monitors events that are relevant to the process-driven security policy (or the security policy state machine). When the decision 202 determines that an event has not yet been received, the transition process 200 awaits such an event.

On the other hand, when the decision 202 determines that an event has been received, then the transition process 200 determines 204 whether the event causes a state transition. Here, the rules by which transitions between states occur, i.e., transition rules, can be specified by the process-driven security policy. For example, an administrator for the document security system may have created the process-driven security policy and thus defined its states and its transition rules. Hence, when an event is received, it is evaluated to determine 204 whether the event causes a state transition. When the decision 206 determines that a state transition is to occur, the state transition is performed 208 to transfer one or more documents from one state to another state. Alternatively, when the decision 206 determines that a state transition is not to occur, the block 208 is bypassed so that no state transition is performed. Once the one or more documents transition to the new state, the access restrictions for the new state govern when access to the documents, which are secured, is permitted. Following the block 208 or its being bypassed, the transition process 200 is complete and ends.

FIG. 3 illustrates a security policy state machine 300 according to one embodiment of the invention. As previously noted, a security policy state machine is one implementation of a process-driven security policy. In this exemplary embodiment, the security policy state machine 300 includes four distinct states, namely, a state A ("Draft") 302, state B ("Final Draft") 304, state C ("Retain") 306, and state D ("Delete") 308. Each of these states has one or more associated access restriction for documents (files) which reside in that state. Further, the permitted transitions between the various states 302-308 are identified by transitions T1-T5. In particular, a document in the Draft state 302 can follow the transition T1 to the Final Draft state 304. A document in the Final Draft state 304 can follow the transition T2 to the Retain state 306. A document in the Retain state 306 can follow transition T3 to the Delete state 308. Further, a document in the Final Draft state 304 can follow transition T4 to the Draft state 302, and a document in the Retain state 306 can follow transition T5 to the Final Draft state 304.

A file security system can enforce the security policy state machine 300 on one or more electronic documents. In doing so, the security policy state machine 300 is typically described in a textual manner, such as in a markup language (e.g., XML), pseudo-code, and the like. One representative example of a textual description of the security policy state machine 300 is as follows.

State=DRAFT

Accessors=Finance, unrestricted

Deny off-line access

Grant audit access

State=FINAL DRAFT

Accessors=Finance, restricted; Finance Managers, unrestricted

Deny off-line access

Grant audit access

State=RETAIN

Accessors=All

Allow off-line access Deny audit access State=DELETE Accessors=None

Note that in the Draft state, the users with permission to access the electronic document (referred to as "Accessors") include those users that are members of a Finance group. The access is also unrestricted in this Draft state. Also, in the Draft state, offline access to the electronic document is not permitted, but audit access is permitted. Note, however, in the Final 10 Draft state, those users that are members of the Finance group now only have restricted access. In one embodiment, restricted access means that the data (content) of the document can be accessed but that such data cannot be further disseminated through operations such as cut, paste, print, etc. 15

Additionally, the security policy state machine 300 transitions between the various states in accordance with transition rules. Typically, the transition rules are triggered by the occurrence of events. The events can be internal or external. The external events can originate from users or from another 20 system (e.g., a document management system). In a specific case of the security policy state machine 300, a representative description of a transition rule is as follows.

On event () transition from STATE1 to STATE2

Some exemplary transition rules using internal or external 25 events are as follows.

On (time=Sep. 1, 2008), RETAIN to DELETE

On (ExtEvent=docCheckIn), FINAL DRAFT to RETAIN

On (ExtEvent==docFinalize), DRAFT to FINAL DRAFT 30

On (ExtEvent=docReject), FINAL DRAFT to DRAFT
On (period=event transition day (FINAL DRAFT)+90
days), FINAL DRAFT to RETAIN

Of these exemplary transition rules, the first and last transition rules are triggered by internal events and the others are triggered by external events. For example, the external events can be from a document management system that is separate

FIG. 4A is a diagram of a document securing system 400 according to one embodiment of the invention. The document 40 securing system 400 is, for example, performed by a computing device, such as client computer 701 or 702 shown in FIG. 7 below.

from the file (document) security system.

The document securing system 400 creates or obtains an electronic document 402 that is to be secured. The electronic 45 document 402 is then supplied to a securing engine 404. The securing engine 404 receives a designation of a classifier 406 to be associated with the electronic document 402. The classifier 406 refers to an accessor user list, and possibly other forms of access restriction. In one embodiment, the classifier 50 406 can be a label to a categorization of the electronic document with respect to a plurality of different types of content. Examples of classifiers include: External, Financial, Sales Forecast, Sales Quota, Press Release, Budget, Marketing Presentation, Marketing Planning, Engineering Planning, Engi- 55 neering Project X, Engineering Specification, and Engineering Design. In addition, the securing engine 404 can receive a process-driven security policy 407 to be used to secure the electronic document 402. In one embodiment, the processdriven security policy 407 is chosen from a plurality of pro- 60 cess-driven security policies based on the classifier 406. In another embodiment, the process-driven security policy 407 is made up of states, and each of the states correspond to one of the classifiers 406.

The securing engine **404** operates to produce a secured 65 electronic document **408**. The secured electronic document **408** includes an encrypted data portion **410** and a header

10

portion 412. The encrypted data portion 410 is the electronic document 402 after having been encrypted. The encryption can result from the use of one or more keys and encryption algorithms. For stronger security, a hierarchy of encryption may be used. The header portion 412 is also referred to as encrypted security information, because the header portion 412 includes the encrypted security information as at least a substantial component of the header portion 412. The encrypted security information can include a classifier, access rules and at least one key (e.g., file key, private state key). The access rules and the keys utilized to encrypt the electronic document 402 depend on the state of the associated processdriven security policy 407 which is indicated by the classifier. Initially, the electronic document 402 is encrypted in accordance with an initial state of the process-driven security policy 407. Typically, one of the states of the process-driven security policy 407 is designated as its initial state.

Hence, if the encrypted security information is able to be decrypted, the file key is able to be retrieved from the header portion 412 and used to decrypt the encrypted data portion 410 of the secured electronic document 408, as will be discussed in more detail below with respect to FIG. 5C. However, the encrypted security information in the header portion 412 is often secured through one or multiple layers of encryption, which can use various keys. These various keys are used to encrypt the security information. Typically, these various keys are managed by a server, but made available to client computers so that decryption can be performed locally. In one implementation, the encrypted security information within the header portion 412 can be decrypted if, and only if, the decrypting party has possession of both of the following: a group key (a private key for a group specified in the header), and a state key (a private key for the classifier specified in the header). As previously noted, the classifier is used to determine the state of the process-driven security policy 407.

Additional details on securing files or documents is provided in U.S. patent application Ser. No. 10/159,537, filed May 5, 2002, and entitled "METHOD AND APPARATUS FOR SECURING DIGITAL ASSETS," which is hereby incorporated by reference.

FIG. 4B is a flow diagram of a document securing process 440 according to one embodiment of the invention. The document securing process 440 represents processing performed by a document securing system, such as the document securing system 400 illustrated in FIG. 4A.

The document securing process 440 initially opens or creates 442 an electronic document. Next, a decision 444 determines whether the electronic document is to be secured. When the decision 444 determines that the electronic document is not to be secured, then the electronic document is saved 446 in the normal course. Here, the electronic document is not secured but simply stored in a conventional fashion

On the other hand, when the decision 444 determines that the electronic document is to be secured, then an initial policy reference for the electronic document is assigned 448. In one implementation, the policy reference is a pointer to an accessor user list. A classifier for an electronic document can be assigned in a variety of different ways. In one implementation, a user or creator of the electronic document is able to assign the classifier. For example, the user or creator of the electronic document might interact with a graphical user interface to select a classifier from a list of available classifiers.

After the policy reference is assigned **448**, the electronic document is secured **450** in accordance with a process-driven security policy associated with the policy reference. Here, the

electronic document is typically secured in accordance with the initial state of the process-driven security policy. Thereafter, the secured electronic document is saved **452**. Following the operations **452** and **446**, the document securing process **440** is complete and ends. The subsequent transitions to other states of the process-driven security policy is discussed below with reference to FIG. **6**.

FIG. 4C is a detailed flow diagram of an encryption process 460 according to one embodiment of the invention. The encryption process 460 is, for example, processing suitable 10 for being performed by the block 450 shown in FIG. 4B in which an electronic document is secured in accordance with a process-driven security policy.

According to the encryption process 460, a file key is obtained 462. In one implementation, the file key is a symmetric key used to encrypt and decrypt a data portion of a secured document. After the file key is obtained 462, the data portion of the electronic document is then encrypted 464 using at least the file key.

In one embodiment, each of the different states of the 20 process-driven security policy would include a different public state key that would be used to encrypt documents being placed into such state. An initial state of the process-driven security policy associated with the policy reference is then determined 466. Next, a public state key associated with the 25 initial state is obtained 468. Typically, the public state key is a public key of a public and private cryptography key pair that is to be utilized to encrypt documents associated with the initial state of the process-driven security policy. Once the public state key associated with the initial state has been 30 obtained 468, the file key is encrypted 470 using the public state key. Thereafter, security information is attached 472 to the encrypted data portion. The security information, for example, can include the policy reference and the encrypted file key. For example, the policy reference can be used as a 35 state indicator to identify the applicable state of the processdriven security policy.

In one embodiment, the policy reference has a key pair associated therewith. The file (document) security system (e.g., server) maintains the current state of the process-driven 40 security policy associated with the policy reference. The public key in this pair is used to encrypt the document and bind it with the process-driven security policy.

In this implementation, the electronic document has at least a data portion and a security information portion. The data 45 portion is encrypted using at least the file key. In one embodiment, the electronic document can be encrypted many times over such that a plurality of different keys are needed to encrypt (and consequently to decrypt) the electronic document. In another embodiment, a key used to encrypt the 50 electronic document can be encrypted many times over after being used to encrypt the electronic document. In other words, although the document securing process 440 refers to encryption of the data portion through use of the file key and then encryption of the file key through use of the public state 55 key, it should be understood that additional keys can be used to directly encrypt the electronic document, or indirectly encrypt the electronic document by encrypting a key used to encrypt the electronic document. For example, the additional keys might include one or more of a classifier key, a user or 60 group key, or a security clearance level key.

The security information is typically provided in a header (or header portion) of the electronic document. The header is thus typically attached to the encrypted data portion. The header together with the encrypted data portion represents a 65 secured electronic document. Typically, the security information would include access rules, a policy reference (classi-

12

fier), a private state key and at least one key (e.g., file key). The at least one key can be encrypted by a public state key that corresponds to the state, as well as possibly one or more other keys. The at least one key is often secured by encrypting either the at least one key itself, or the security information more generally, through use of one or more various other keys (e.g., group key, content type key, and/or clearance key).

FIG. 5A is a diagram of a document unsecuring system 500 according to one embodiment of the invention. The document unsecuring system 500 represents a counterpart to the document securing system 400 illustrated in FIG. 4A.

The document unsecuring system 500 cooperates to receive a secured electronic document 502. The secured electronic document typically includes an encrypted data portion 504 and a header 506. Often, but not necessarily, the header 506 is encrypted. The header 506 includes a policy reference and at least one key, e.g., a file key, that is needed to decrypt the encrypted data portion 504. The secured electronic document 502 is supplied to an unsecuring engine 508. The unsecuring engine 508 examines the header 506 of the secured electronic document 502 to determine the policy reference. The policy reference identifies a process-based security policy 510, or a state thereof, that governs the security of the secured document 502. The unsecuring engine 508 also receives at least that portion of the process-based security policy that pertains to the state of the secured electronic document 502. In other words, the unsecuring engine 508 needs the access restrictions for the current state of the process-driven security policy 510 to unsecure the secured electronic document 502, and thus gain access to its contents. The unsecuring engine 508 then evaluates whether the secured electronic document 502 is permitted to be accessed by the requestor, based on the access restrictions so retrieved. When the unsecuring engine 508 determines that the requestor is authorized to access the secured electronic document 502, then the unsecuring engine 508 can decrypt the encrypted data portion 504 of the secured electronic document 502 (and also eliminate at least significant portions of the header 506) to yield an electronic document 512 that is unsecured. In other words, the electronic document 512 is primarily (or exclusively) composed of the data portion of the encrypted data portion 504 after such has been decrypted. The decryption can involve the use of a number of keys (e.g., private keys) and decryption algorithms, one of such keys is the file key of the secured electronic document, and another of such keys is the private state key for the state of the secured electronic document.

FIGS. 5B and 5C are flow diagrams of a document access process 520 according to one embodiment of the invention. The document access process 520 operates to determine whether access to a particular document is permitted to a particular user (or group of users). The document access process 520 begins with a decision 522 that determines whether a request to access a secured electronic document has been received. When the decision 522 determines that such a request has not yet been received, the document access process 520 awaits such a request. Once the decision 522 determines that a request to access a secured electronic document has been received, the document access process 520 continues. In other words, the document access process 520 can be considered to be invoked once a request to access a secured electronic document has been received.

In any case, once a request to access a secured electronic document has been received, a policy reference for the secured electronic document to be accessed is determined **524**. In one embodiment, the security information portion of a secured electronic document contains the policy reference.

Next, a process-driven security policy associated with the policy reference is determined **526**. Then, the current state of the process-driven security policy for the secured electronic document is determined **528**. In one embodiment, the policy reference (or other indicator) can indicate the current state of 5 the state-based security policy. Next, access restriction are obtained **530** for the current state. Each of the different states of the process-driven security policy often has a different access restriction. Here, the state policy restrictions are those restrictions associated with the current state of a process-10 driven security policy.

Thereafter, a decision **542** determines whether the state policy restrictions are satisfied. In other words, the secured electronic document to be accessed is presently in the current state of the process-driven security policy. This current state 15 has the access restriction associated therewith, that must be satisfied in order to gain access to the secured electronic document. Hence, the decision **542** determines whether the access restriction is satisfied by the requestor (e.g., user or group of users) seeking access to the secured electronic document. When the decision **542** determines that the access restriction is not satisfied, access to the secured electronic document is denied **544**.

On the other hand, when the decision **542** determines that the access restriction has been satisfied, then a data portion of 25 the secured electronic document is decrypted **546**. Then, the data portion of the electronic document is returned **548** to the requestor. Following the block **548**, as well as following the block **544**, the document access process **520** ends.

FIG. 5D is a flow diagram of a decryption process 560 30 according to one embodiment of the invention. The decryption process 560 can, for example, pertain to detailed operations performed by the block 546 illustrated in FIG. 5C. In any event, the decryption process 560 initially obtains 562 an encrypted file key from the security information portion of the 35 secured electronic document. In addition, a private state key associated with the current state of the process-driven security policy for the secured electronic document is obtained 564. Normally, only authorized users would be able to gain access to the private state key. The private state key is the 40 private key of the same public and private cryptography key pair that provided the public state key that was used to encrypt the file key. Then, the encrypted file key is decrypted 566 using the private state key. Thereafter, the data portion of the secured electronic document is decrypted 568 using at least 45 the file key. Consequently, the data portion of the secured electronic document is decrypted and is in the "clear" and thus usable by the requestor. Following the block 568, the decryption process 560 is complete and ends.

FIG. 6 is a flow diagram of a transition process 600 according to one embodiment of the invention. The transition process 600 pertains to processing that can be utilized to transition between states of a process-driven security policy. More particularly, the transition process 600 is, for example, suitable for use as the processing performed by the block 208 55 illustrated in FIG. 2.

The transition process 600 initially obtains 602 an encrypted file key from the electronic document. Typically, the encrypted file key would be retrieved from the security information portion of the electronic document. Then, a private state key is obtained 604. Here, the private state key is associated with a previous state of a process-driven security policy that is imposed on the electronic document. After the private state key has been obtained 604, the encrypted file key is decrypted 606 using the private state key. At this point, the 65 file key has been decrypted and could be used to decrypt the data portion of the electronic document. However, the file key

14

is instead re-encrypted in accordance with a next (current) state. More specifically, a public state key is then obtained **608**. The public state key is associated with the next state of the state-based security policy that is to be imposed on the electronic document. Then, using the public state key, the file key can be encrypted **610**. Thereafter, the electronic document is re-saved **612**. By re-saving **612** the electronic document, the security information portion of the electronic document is updated to include the new encrypted file key in accordance with the next state (or current state). Note that the data portion of the electronic document (which is secured by the file key) advantageously need not be decrypted in the transition process **600**; instead, the encryption of the file key is changed whenever a state transition occurs. Following the block **612**, the transition process **600** is complete.

In one embodiment, to effect a state transition, the user only needs permission to effect the state transition. Additionally, users authorized to effect state changes with respect to a document, might be quite different from users authorized to access the document.

FIG. 7 shows a basic security system 700 in which the invention may be practiced in accordance with one embodiment thereof. The security system 700 may be employed in an enterprise or inter-enterprise environment. It includes a first server 706 (also referred to as a central server) providing centralized access management for the enterprise. The first server 706 can control restrictive access to files secured by the security system 700. To provide dependability, reliability and scalability of the system, one or more second servers 704 (also referred to as local servers, of which one is shown) may be employed to provide backup or distributed access management for users or client machines serviced locally. The server 704 is coupled to a network 708 and a network 710. For illustration purposes, there are two client machines 701 and 702 being serviced by the local server 704. Alternatively, one of the client machines 701 and 702 may be considered as a networked storage device.

Secured files may be stored in any one of the devices 701, 702, 704 and 706. When a user of the client machine 701 attempts to exchange a secured file with a remote destination 712 being used by an external user, one or more of the processing 300, 400, 500 and 600 discussed above are activated to ensure that the requested secure file is delivered without compromising the security imposed on the secured file.

According to one embodiment, a created document is caused to go through an encryption process that is preferably transparent to a user. In other words, the created document is encrypted or decrypted under the authoring application so that the user is not aware of the process. One or more keys, such as a state key, a user key and/or a content type key, can be used to retrieve a file key to decrypt an encrypted document. Typically, the user key is associated with an access privilege for the user or a group of users, and the content type key is associated with the type of content of the created document. For a given secured document, only a user with proper access privileges can access the secured document.

In one setting, a secured document may be uploaded via the network 710 from the client computer 701 to a computing or storage device 702 that may serve as a central repository. Although not necessary, the network 710 can provide a private link between the computer 701 and the computing or storage device 702. Such link may be provided by an internal network in an enterprise or a secured communication protocol (e.g., VPN and HTTPS) over a public network (e.g., the Internet). Alternatively, such link may simply be provided by a TCP/IP link. As such, secured documents on the computer 702 may be remotely accessed.

In another setting, the computer **701** and the computing or storage device **702** are inseparable, in which case the computing or storage device **702** may be a local store to retain secured documents or receive secured network resources (e.g., dynamic Web contents, results of a database query, or a 5 live multimedia feed). Regardless of where the secured documents or secured resources are actually located, a user, with proper access privileges, can access the secured documents or resources from the client computer **701** or the computing or storage device **702** using an application (e.g., Microsoft Internet Explorer, Microsoft Word or Adobe Acrobat Reader).

Accordingly, respective local modules in local servers, in coordination with the central server, form a distributed mechanism to provide distributed access control enforcement. Such distributed access control enforcement ensures 15 the dependability, reliability and scalability of centralized access control management undertaken by the central server for an entire enterprise or a business location.

FIG. 8 shows an exemplary data structure 820 of a secured file that may be used in one embodiment of the invention. The 20 data structure 820 includes two portions: a header (or header portion) 822 and encrypted data (or an encrypted data portion) 824. The header 822 can be generated in accordance with a security template associated with a data store and thus provides restrictive access to the data portion 824 which is an 25 encrypted version of a plain file. Optionally, the data structure 820 may also include an error-checking portion 825 that stores one or more error-checking codes, for example, a separate error-checking code for each block of encrypted data **824**. These error-checking codes may also be associated with 30 a Cyclical Redundancy Check (CRC) for the header 822 and/or the encrypted data 824. The header 822 includes a flag bit or signature 827 and security information 826 that is in accordance with the security template for the store. According to one embodiment, the security information 826 is 35 encrypted and can be decrypted with a user key associated with an authenticated user (or requestor).

The security information 826 can vary depending upon implementation. However, as shown in FIG. 8, the security information 826 includes a user identifier (ID) 828, access 40 policy (access rules) 829, a file key 830, a classifier 831 and other information 832. Although multiple user identifiers may be used, a user identifier 828 is used to identify a user or a group that is permitted to access the secured file. The access rules 829 provide restrictive access to the encrypted data 45 portion 824. The file key 830 is a cipher key that, once obtained, can be used to decrypt the encrypted data portion 824 and thus, in general, is protected. In one implementation of the data structure 820, the file key 830 is encrypted in conjunction with the access rules 829. In another implemen- 50 tation of the data structure 820, the file key 830 is encrypted with a private state key and further protected by the access rules 829. The other information 832 is an additional space for other information to be stored within the security information 826. For example, the other information 832 may be used to 55 include other information facilitating secure access to the secured file, such as version number or author identifier.

The invention is preferably implemented by software or a combination of hardware and software, but can also be implemented in hardware. The invention can also be embodied as 60 computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, 65 magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distrib-

16

uted over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion

The various embodiments, implementations and features of the invention noted above can be combined in various ways or used separately. Those skilled in the art will understand from the description that the invention can be equally applied to or used in various other settings with respect to different combinations, embodiments, implementations or features as provided in the description herein.

The invention may be practiced in two broad approaches: one, where document move asynchronously through a persistent workflow (here, the state changes are typically triggered by the users); and two, where documents move synchronously through a single-use workflow, a plurality of which however can be initiated from a workflow template (here, the state changes are typically due to administrator central command). The two approaches may be combined for use in a single enterprise. State changes due to external events may occur with both approaches.

The advantages of the invention are numerous. Different embodiments or implementations may yield one or more of the following advantages. One advantage of the invention is that file security systems are able to automatically enforce process-driven security policies on files (e.g., documents). The automatic nature of the enforcement of the processdriven security policies alleviates otherwise excessive burdens on an administrator. Another advantage of the invention is that changing of the security policies for files (e.g., documents) in accordance with a process allows greater flexibility in utilizing security policies. Still another advantage of the invention is that the process-driven security policies can be enforced centrally or locally. Still another advantage is that a workflow ordered through a centralized document management system (DMS) may be extended to a plurality of documents stored in a distributed fashion, thereby allowing a system administrator to use the well-known DMS interface.

The foregoing description of embodiments is illustrative of various aspects/embodiments of the present invention. Various modifications to the invention can be made to the preferred embodiments by those skilled in the art without departing from the true spirit and scope of the invention as defined by the appended claims. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description of embodiments.

What is claimed is:

1. A method comprising:

transitioning from a previous state to a next state in accordance with a security policy;

retrieving, responsive to the transitioning, a file key from a security information portion of a secured document, wherein the file key is encrypted by a first encryption in accordance with the previous state;

producing a decrypted file key, wherein producing the decrypted file key comprises decrypting the file key encrypted by the first encryption, wherein the decrypted file key is usable to decrypt an encrypted data portion of the secured document; and

re-encrypting the decrypted file key with a second encryption in accordance with the next state, wherein the first encryption and the second encryption are different.

2. The method of claim 1, further comprising: receiving an event; and

determining whether the event causes the transitioning.

3. The method of claim 2, wherein the event is an external event originating from outside of a file security system.

- **4**. The method of claim **1**, wherein additional states each have different access restrictions when applied to the secured document.
- 5. The method of claim 1, wherein producing the decrypted file key comprises:
 - obtaining a decryption key corresponding, to the previous state; and
 - decrypting the file key encrypted by the first encryption using the decryption key.
- **6**. The method of claim **1**, wherein re-encrypting the ¹⁰ decrypted file key comprises:
 - obtaining an encryption key corresponding to the next state; and
 - encrypting the decrypted file key with the second encryption using the encryption key.
- 7. A computer-readable storage device having instructions stored thereon, execution of which, by a computing device, causes the computing device to perform operations comprising:
 - transitioning from a previous state to a next state in accordance with a security policy;
 - retrieving, responsive to the transitioning, a file key from a security information portion of a secured document, wherein the file key is encrypted by a first encryption in accordance with the previous state;
 - producing a decrypted file key, wherein producing the decrypted file key comprises decrypting the file key encrypted by the first encryption, wherein the decrypted file key is usable to decrypt an encrypted data portion of the secured document; and
 - re-encrypting the decrypted file key with a second encryption in accordance with the next state, wherein the first encryption and the second encryption are different.
- **8**. The computer-readable storage device of claim **7**, the operations further comprising:

receiving an event; and

determining whether the event causes the transitioning.

- 9. The computer-readable storage device of claim 8, wherein the event is an external event originating from outside of a file security system.
- 10. The computer-readable storage device of claim 7, wherein additional states each have different access restrictions when applied to the secured document.
- 11. The computer-readable storage device of claim 7, wherein producing the decrypted file key comprises:
 - obtaining a decryption key corresponding to the previous state; and

18

- decrypting the file key encrypted by the first encryption using the decryption key.
- 12. The computer-readable storage device of claim 7, wherein re-encrypting the decrypted file key comprises:
 - obtaining an encryption key corresponding to the next state; and
 - encrypting the decrypted file key with the second encryption using the encryption key.
 - 13. A system comprising:
 - a memory configured to store a state machine, wherein the state machine is configured to:
 - transition from a previous state to a next state in accordance with a security policy;
 - retrieve, responsive to the transition, a file key from a security information portion of a secured document, wherein the file key is encrypted by a first encryption in accordance with the previous state,
 - produce a decrypted file key, wherein producing the decrypted file key comprises decrypting the file key encrypted by the first encryption, wherein the decrypted file key is usable to decrypt an encrypted data portion of the secured document, and
 - re-encrypt the decrypted file key with a second encryption in accordance with the next state, wherein the first encryption and the second encryption are different; and
 - one or more processors configured to process the state machine.
- 14. The system of claim 13, wherein the state machine is further configured to receive an event and determine whether the event causes the transition.
- 15. The system of claim 14, wherein the event is an external event originating from outside of a file security system.
- 16. The system of claim 13, wherein additional states each have different access restrictions when applied to the secured document.
 - 17. The system of claim 13, wherein the state machine is further configured to produce the decrypted file key by obtaining a decryption key corresponding to the previous state and decrypting the file key encrypted by the first encryption using the decryption key.
 - 18. The system of claim 13, wherein the state machine is further configured to re-encrypt the decrypted file key by obtaining an encryption key corresponding to the next state and encrypting the decrypted file key with the second encryption using the encryption key.

* * * * *