Euler's Formula and the Complex Unit Circle

Matt McCarthy

March 2016

We want to show the following.

Theorem. Let $x \in \mathbb{R}$ and i be the positive root of $x^2 + 1$. Then $e^{ix} = \cos x + i \sin x$.

Theorem. The set $U = \{z \in \mathbb{C} | |z| = 1\}$ forms a group under complex multiplication.

1 Complex Numbers

We begin by defining the complex numbers.

Definition 1. The set of *complex numbers* is the set $\mathbb{C} = \{a+bi|a,b \in \mathbb{R}\}$ where $i^2 = -1$. Complex addition is defined component wise, that is (a+bi) + (c+di) = (a+c) + (b+d)i and complex multiplication is defined as

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i.$$

Suppose $z \in \mathbb{C}$, then there exist $a, b \in \mathbb{R}$ such that z = a + bi. We can plot this on a plane as follows.

When we plot it, we get a triangle with vertices 0, a, z. If we consider the line az, we see that it is parallel to the iy axis, which is in turn perpendicular to the x axis. Thus, $\triangle 0az$ is right and $r = \sqrt{a^2 + b^2}$ by Pythagorean theorem. We also define $|z| = \sqrt{a^2 + b^2}$, or the Euclidean distance between z and 0.

Furthermore, consider the angle θ . If we use the change of variables $a = r \cos \theta$ and $b = r \sin \theta$, we get that $\theta = \arctan(b/a)$. Thus, we can write z = a + bi as $r(\cos \theta + i \sin \theta)$, which gives us a polar representation of z. Moreover, we call r the modulus of z and θ the argument of z; note that both the modulus and argument are real numbers.

2 Euler's Formula

In the 1740's Leonhard Euler noted that

$$e^{ix} = \cos x + i\sin x.$$

We provide a proof of that.

Theorem 1. Let $x \in \mathbb{R}$ and i be the positive root of $x^2 + 1$. Then $e^{ix} = \cos x + i \sin x$.

Proof. We know e^{ix} is a complex number thus, $e^{ix} = r \cdot (\cos \theta + i \sin \theta)$, where r = r(x) and $\theta = \theta(x)$. Therefore

$$\frac{d}{dx}e^{ix} = \frac{d}{dx}\left(r\cdot(\cos\theta + i\sin\theta)\right)$$

and

$$-r\sin\theta + ir\cos\theta = ie^{ix} = (\cos\theta + i\sin\theta)\frac{dr}{dx} + r\cdot(-\sin\theta + i\cos\theta)\frac{d\theta}{dx}.$$

Thus, when we match real and imaginary parts, we get the following linear system of equations.

$$\cos \theta \frac{dr}{dx} - r \sin \theta \frac{d\theta}{dx} = -r \sin \theta$$
$$\sin \theta \frac{dr}{dx} + r \cos \theta \frac{d\theta}{dx} = r \cos \theta$$

Solving the system yields the differential equations dr/dx = 0 and $d\theta/dx = 1$.

Consider e^{i0} .

$$r(0)(\cos(\theta(0)) + i\sin(\theta(0))) = e^{i0} = 1 = 1(\cos 0 + i\sin 0)$$

Matching terms gives us, r(0) = 1 and $\theta(0) = 0$. When combined with our differential equations, this yields the following initial value problems.

$$\begin{cases} \frac{dr}{dx} = 0 \\ r(0) = 1 \end{cases} \qquad \begin{cases} \frac{d\theta}{dx} = 1 \\ \theta(0) = 0 \end{cases}$$

The solutions to these initial value problems are r(x) = 1 and $\theta(x) = x$ respectively. Thus,

$$e^{ix} = \cos x + i\sin x.$$

We can quickly extend this result to any complex number.

Corollary 2. For any $z \in \mathbb{C}$, $z = re^{i\theta}$ where $\theta = \arg z$ and r = |z|.

Proof. Since $z \in \mathbb{C}$, $z = r(\cos \theta + i \sin \theta)$ where $\theta = \arg z$ and r = |z|. Thus by Euler's formula,

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}.$$

3 The Unit Circle

Consider $e^{i\theta}$ where θ is real. We know that $|e^{i\theta}| = 1$ by the corollary to Euler's formula. Thus $e^{i\theta}$ lies on the unit circle of the complex plane.

Definition 2. The unit circle of the complex plane is the subset of \mathbb{C} whose elements all have a modulus of one.

$$U = \{ z \in \mathbb{C} | |z| = 1 \}.$$

Conversely, all points on the unit circle also have the form $e^{i\theta}$ for some $\theta \in [0, 2\pi)$.

Our goal is to show that U is a group under complex multiplication, but before we do so, let us consider \mathbb{C} . Most notably, \mathbb{C} is a field, which implies that $\mathbb{C} \setminus \{0\}$ is an abelian group under complex multiplication. Thus, in order to show that (U, \cdot) forms a group, it is sufficient to show that U is a *subgroup* of $\mathbb{C} \setminus \{0\}$. In short, a subset of a group is a subgroup if it is also a group under the group operation in its own right. Additionally, we have a quick test to determine whether or not a subset is a subgroup.

Proposition 3 (One step test). Let (G,*) be a group and H a non empty subset of G. Then H is a subgroup of G if for all $a,b \in H$,

$$a * b^{-1} \in H$$
.

With the Euler's formula and the one step subgroup test in our toolbox, we are now ready to show that U is a group.

Theorem 4. The set $U = \{z \in \mathbb{C} | |z| = 1\}$ forms a group under complex multiplication.

Proof. We know that |1| = 1, therefore $1 \in U$ and U is nonempty. Furthermore, $U \subset \mathbb{C} \setminus \{0\}$ by definition of U.

Proceed via one step subgroup test. Let $z, w \in U$. Therefore |z| = |w| = 1 and $z = e^{i\theta}$ and $w = e^{i\phi}$ where $\theta, \phi \in \mathbb{R}$ by corollary to Euler's formula.

Consider zw^{-1} .

$$\gamma w^{-1} = e^{i\theta}e^{-i\phi} = e^{i\theta-i\phi} = e^{i(\theta-\phi)}$$

We know that for any $x \in \mathbb{R}$, $|e^{ix}| = 1$ therefore $|zw^{-1}| = |e^{i(\theta - \phi)}| = 1$ and $zw^{-1} \in U$. Thus, U is a subgroup of $\mathbb{C} \setminus \{0\}$ under multiplication by the one step subgroup test. Therefore (U, \cdot) is a group.

A neat corollary to this is that the roots of unity in the complex plane are closed under multiplication.

Definition 3. Let $n \in \mathbb{N}$. Then the *nth roots of unity* are solutions to the equation

$$z^n = 1.$$