Rules to Answer Answer supported by evidence, and reasoning links answer and evidence. Response is specific and detailed. Presence of keywords and scientific terminology. User defined data types	Rules to Answer Refer content if unable to recall after 15-30sec of trying, then again retrieve from memory without help. User defined data types	Primitive Data Types Free Recall Data Structures	Primitive Data Types Data types that are defined by the sytem. e.g. int, float, double, bool Data structure
Example	Most programming languages allow the users to define their own datatypes. e.g. struct in C	Explain	A particular way of storing and orgainizing data in a computer so that it can be used efficiently
Abstract Data Types (ADTs) Free Recall	Abstract Data Types are of two parts 1. Declaration of data 2.Declaration of operation	Asymptotic Notation Elaborate	Asymptotic Notation or Algorithm's growth rate are languages that allow us to analyze an algorithm's running time by identifying its behavior as the input size for the algorithm increases.
Big-O (O) vs Big-Omega (Ω)	Big-O	Big-O	Big-O
Main idea	Asymptotic Notation for the worst case, or ceiling of growth for a given function. Analogy: At most	Provides us with an asymptotic upper bound for the growth rate of runtime of an algorithm	Say f(n) is your algorithm runtime, and g(n) is an arbitary time complexity you are trying ot relate to your algorithm
Big-O	Big-O Examples	Big-O Examples	Big-Omega
f(n) is $O(g(n))$, if for some constants c ($c > 0$) and n_0 , $f(n) < = c *g(n)$ for every input size $n(n > n_0)$		$f(n) = 3\log n + 100$ $g(n) = \log n$	Best case Floor growth rate Asymptotic lower bound Analogy: At least
Big O and Big-Omega	Small-o and Small-omega (ω)	Small-o and Small-omega	Theta Θ
Give the mathematical defination	Elaborate	Both are not asymptotically tight (no equal to sign)	Explain
Theta	Recurrence	Recurrence	Recursion vs Recurrence
Asymptotical tight bound	Main idea	An equation that recursively	Explain
c1*g(n) < f(n) < c2*g(n)		defines a sequence once one or more initial terms are given: each further term of the sequence or array is defined as a function of the preceding terms.	
Recursion vs Recurrence	Recursion	Recurrence	Recurrence
A recurrence relation uses recursion to create a sequence. Recursion is not limited to generation of sequences.	Recursion is the repeated use of a procedure or action	In fact, a recurrence relation uses recursion to define a sequence.	This sequence is built in such a way that each term is defined as a combination of previous terms. The generation of such a sequence is a requirement in the definition

hecurrence	binary Search	billary Search	binary Search
Recurrence is analyzed by telescoping	Main Idea	Search algorithm that finds the position of a target value within a sorted array	Elements are already sorted in ascending order Divide and Conquer algorithm is used
Binary Search Element x is either in the left half of the array or in the right half or not there at all	Binary Search Compare x to middle element k, x>k (x not in left half), x <k (x="" half)<="" in="" not="" right="" td=""><td>Running time of Binary Search Explain</td><td>Running time of Binary Search \lg_2N binary search runs in O($\lg N$)</td></k>	Running time of Binary Search Explain	Running time of Binary Search \lg_2N binary search runs in O($\lg N$)
[
One word answer	In computer science you use	Merging	Merging
In computer science you use \lg_2N or $\lg_{10}N$	lg_2N or $lg_{10}N$ lg_2N	Elaborate	Merging is not a divide and conquer algorithm, but part of mergesort algorithm
Merge Sort	Merging	Merge Sort	Merge Sort
Merge Sort is a divide and conquer algorithm	Take two sorted arrays of numbers and make a single array which is sorted of all of those numbers	Type of Algorithm	Explain the complete algorithm
Morgoport	Pun time for marganest	Dun time for marganert	Incertion part vo Marganart
Mergesort First divide the list into smallest unit (1 element), then compare each element with the adjacent list to sort and merge two adjacent lists. Finally all the elements are sorted and merged.	Run time for mergesort	Run time for mergesort $O(n*lgn)$	Insertion sort vs Mergesort Which one is better and why?
Insertion sort vs Mergesort	Algorithm runtime	Insertion and bubble sort	
Insertion sort vs inergesort Insertion sort is O(n ²). Mergesort is O(n*logn). So, merge-sort is a superior algorithm in terms of its running time on large datasets.	Insertion sort and Bubble sort	Runtime Both has Best: Ω(n) Worst: O(n^2)	

Binary Search

Binary Search

Binary Search

Recurrence