Lecture 22: Transient

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Calendar

- Plan for remaining lectures
 - IEDM business trip

Mon	Tue	Wed	Thu	Fri	Sat	Sun
			17	18	19	20
	22		24		26	27
28 (No lecture)	29	30 (L22)	Dec.1	2 (L23)	3	4
5 (No lecture)	6	7 (No lecture)	8	9	10	11
12 (L24)	13	14 (L25)	15	16 (Final)	17	18

Transient

Continuity equation

$$\frac{\partial}{\partial t}n + \nabla_r \cdot \mathbf{F}_n = 0$$

- Previously, we neglected the time derivative term.
 - Mostly we are interested with the DC simulation.
 - In general cases, we must include the time derivative term.
- Direct discretization with another dimension, t?
 - A straightforward method, but it is computationally heavy.
 - Instead, in many cases, we adopt the "time-marching" method.

Implicit and explict methods

- There are two different types of the time-marching method.
 - Implicit: Time derivative is calculated by using the previous time points and the current time point.
 - For a uniform time spacing, the implicit Euler (backward Euler) reads:

$$\left. \frac{\partial n}{\partial t} \right|_{t} \approx \frac{n(t) - n(t - \Delta t)}{\Delta t}$$

- Explicit: Time derivative is calculated by using the previous time points only.
- For a uniform time spacing, the explicit Euler (forward Euler) reads:

$$\left. \frac{\partial n}{\partial t} \right|_{t+\Delta t} \approx \frac{n(t) - n(t - \Delta t)}{\Delta t}$$

In computational electronics,

- Implicit methods are adopted.
 - The reason is its stability.
 - Rule of thumb:
 - Implicit methods are stable.
 - Explicit methods are unstable.
- Exceptional cases
 - Monte Carlo
 - Finite-Difference Time-Domain (FDTD)

Implicit methods

- In practise, only implicit methods are used.
 - Backward Euler

$$\left. \frac{\partial n}{\partial t} \right|_{t} \approx \frac{n(t) - n(t - \Delta t)}{\Delta t}$$

Gear's second order method

$$\frac{\partial n}{\partial t}\Big|_{t} \approx \frac{3n(t) - 4n(t - \Delta t) + n(t - 2\Delta t)}{2\Delta t}$$

Trapezoidal rule

$$\left. \frac{\partial n}{\partial t} \right|_{t=0.5\Delta t} \approx \frac{n(t) - n(t - \Delta t)}{\Delta t}$$

TRBDF (which is used in the S-device)