IN2010 uke 9

Jakob Hansen

21. oktober 2020

Hva vi skal snakke om idag

- ► Repetisjon?
- ► Se litt på forrige oblig?
- ► Masse sortering
 - Litt nye begreper
 - Selection sort
 - Insertion sort
 - ▶ Bubble sort
 - Heap sort

Obligen

Figure 1: A sample directed graph of a project $\,$

Begreper

- Sortering
- ► Stabil sorteringsalgoritme
- "inplace" sorteringsalgoritme

Selection sort

- Finn minste element, plasser det først.
- ► Ytre loop: Hvor minste element skal plasseres
- ▶ Indre loop: Finner det minste elementet
- ► Kompleksitet? -> $O(n^2)$

Insertion sort

- ▶ Definer en sortert del, i starten bare elementet lengst til venstre
- ▶ Øk den sorterte delen med 1 element ved å "skyve" et element inn i den sorterte delen.
- ► Kompleksitet? -> $O(n^2)$

Bubble sort

- ► Loop over alle elementer, se på hvert par av elementer, hvis de ikke er sortert, bytt plass
- Iterer over arrayet slik n ganger
- Gir effekten at hver iterasjon flytter det største elementet bakerst
- ► Kompleksitet? -> $O(n^2)$

Heap sort

- Se på arrayet som skal sorteres som en binærheap
- Gjør om arrayet til en maxheap ved å boble "alle" elementer ned.
- ▶ Ta ut rota (det største elementet) av heapen, sett det bakerst.
- Mink heapen med 1 størrelse (ignorer det elementet vi akkurat plasserte bakerst)
- ► Kompleksitet? -> O(n * log(n))

Hvilken algoritme?

Heap sort

Selection sort

Insertion sort

