

Chapter 10.
Cluster Analysis: K-Partitioning

Meng Jiang

Data Science

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

Review: Clustering Task

Let D denote a dataset containing N data objects

$$D = \{x_i \mid i = 1, 2, ..., N\}$$

where each \mathbf{x}_i corresponds to the set of **features** of the *i*-th **data object**. **Clustering** is the task of learning a mapping of each **feature** set \mathbf{x} into a previously undefined grouping.

Basic Concepts

 Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions

Basic Concepts

- Partitioning method: Discovering the groupings in the data by optimizing a specific objective function and iteratively improving the quality of partitions
- K-partitioning method: Partitioning a dataset D of n objects into a set of K clusters so that an objective function is optimized (e.g., the sum of squared distances is minimized, where c_k is the centroid or medoid of cluster C_k)

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

Centroid

Given a cluster of data objects C_k , the centroid c_k is the mean position of all C_k 's objects in all of the features.

Suppose the cluster has 4 data objects:

So the centroid point is ((3+3+6+7)/4, (5+4+4+4)/4) = (4.75, 4.25)

Medoid

Given a cluster of data objects C_k , the medoid c_k is the object of C_k whose average distance/dissimilarity in the cluster is minimal.

We use Manhattan distance. Distance

matrix:

	(3,5)	(3,4)	(6,4)	(7,4)
(3,5)	0	1	4	5
(3,4)	1	0	3	4
(6,4)	4	3	0	1
(7,4)	5	4	1	0

Average distance:

$$(3,5): (0+1+4+5)/4 = 2.5$$

 $(3,4): (1+0+3+4)/4 = 2 \rightarrow minimal medoid$

 $(6,4): (4+3+0+1)/4 = 2 \rightarrow minimal$

(7,4):(5+4+1+0)/4=2.5

Median

Given a cluster of data objects C_k , the median point c_k is the median position of all C_k 's objects in all of the features.

Suppose the cluster has three data objects:

Sorted feature values:

3, 3, 6, 7 4, 4, 4, 5 So the median point is (4.5, 4)

Mode

Given a cluster of data objects C_k , the mode point c_k is the "mode" (most frequent) position of all C_k 's objects in all of the features.

Suppose the cluster has three data objects:

Sorted feature values:

3, 3, 6, 7 4, 4, 4, 5 So the mode point is (3, 4)

Problem Definition

- Given K, find a partition of K clusters that optimizes the chosen partitioning criterion
 - Global optimal: Needs to exhaustively enumerate all partitions

$$SSE(C) = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} ||x_i - c_k||^2$$

 Heuristic methods (i.e., greedy algorithms): K-Means, K-Medoids, K-Medians, K-Modes, etc.

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

K-Means Clustering

- Given K, the number of clusters, the K-Means clustering algorithm is outlined as follows
 - Select K points as initial centroids
 - Repeat
 - Form K clusters by assigning each data object to its nearest centroid using a distance metric
 - Move each centroid to the mean of its assigned data objects (i.e., re-compute the centroid of each cluster)
 - Until convergence
 - Change in cluster assignment less than a threshold

Distance Metrics

Given two points (3, 4) and (6, 8)

Manhattan distance (L₁ norm)

$$|3-6| + |4-8| = 3+4 = 7$$

Euclidean distance (L₂ norm)

$$((3-6)^2 + (4-8)^2)^{1/2} = 5$$

Supreme distance or Chebyshev distance (L_∞ norm)

$$\max\{|3-6|, |4-8|\} = 4$$

1 - Cosine similarity

normalized: (3/5, 4/5) = (0.6, 0.8), (6/10, 8/10) = (0.6, 0.8)

$$1 - (0.6*0.6+0.8*0.8) = 0$$

Data Objects

X1	3	5
X2	3	4
X3	2	8
X ₄	2	3
X5	6	2
X6	6	4
X ₇	7	3
X8	7	4
X9	8	5
X10	7	6

Q: Suppose we want two clusters... What are they?

Initialize Centroids

- K = 2
- (4, 6)*
 (5, 4)*

Manhattan distance

			(4, 6)	(5, 4)
X1	3	5	2	3
X2	3	4	3	2
X3	2	8	4	7
X ₃	2	3	5	4
X5	6	2	6	3
X6	6	4	4	1
X ₇	7	3	6	3
X8	7	4	5	2
X9	8	5	5	4
X10	7	6	3	4

Move the Centroids

X1	3	5
X3	2	8
X10	7	6
(4, 6)	4	6.33

X ₂	3	4
X ₄	2	3
X5	6	2
X6	6	4
X7	7	3
X8	7	4
X9	8	5
(5, 4)	5.57	3.57

Manhattan distance

			1	,
			(4, 6.33)	(5.57, 4.57)
X1	3	5	2.33	4
X2	3	4	3.33	3
X3	2	8	3.67	8
X ₄	2	3	5.33	4.14
X5	6	2	6.33	2
X6	6	4	4.33	o.86
X7	7	3	6.33	2
X8	7	4	5.33	1.86
X9	8	5	5.33	3.86
X10	7	6	3-33	3.86

Q: Will the centroids move?

Euclidean distance

			(4, 6)	(5, 4)
X1	3	5	1.41	2.24
X2	3	4	2.24	2.00
X3	2	8	2.83	5.00
X4	2	3	3.61	3.16
X5	6	2	4.47	2.24
X6	6	4	2.83	1.00
X7	7	3	4.24	2.24
X8	7	4	3.61	2.00
X9	8	5	4.12	3.16
X10	7	6	3.00	2.83

Move the Centroids

X1	3	5
X3	2	8
(4, 6)	2.5	6.5

X ₂	3	4
X ₄	2	3
X5	6	2
X6	6	4
X7	7	3
X8	7	4
X9	8	5
X10	7	6
(5, 4)	5.75	3.88

Euclidean distance

			(2.5, 6.5)	(5.75, 3.88)
Xı	3	5	1.58	2.97
X2	3	4	2.55	2.75
X3	2	8	1.58	5.57
X4	2	3	3-54	3.85
X5	6	2	5.70	1.90
X6	6	4	4.30	0.28
X7	7	ന	5.70	1.53
X8	7	4	5.15	1.26
X9	8	5	5.70	2.51
X10	7	6	4.53	2.46

Q: Will the centroids move?

Move the Centroids

X1	3	5
X ₂	3	4
X3	2	8
X ₄	2	3
(2.5, 6.5)	2.5	5

X5	6	2
X6	6	4
X ₇	7	3
X8	7	4
X9	8	5
X10	7	6
(5.75, 3.88)	6.83	4

Euclidean distance

			(2.5, 5)	(6.83, 4)
Хı	3	5	0.50	3.96
X2	3	4	1.12	3.83
X3	2	8	3.04	6.27
X ₄	2	M	2.06	4.93
X5	6	2	4.61	2.17
X6	6	4	3.64	0.83
X7	7	M	4.92	1.01
X8	7	4	4.61	0.17
X9	8	5	5.50	1.54
X10	7	6	4.61	2.01

Q: Will the centroids move?

Observations

• Different distance metrics may find different K-means clustering!

Try Another Initialization

- K = 2
- (3, 3)*
 (8, 3)*

Manhattan distance

			(3, 3)	(8, 3)
X1	3	5	2	7
X2	3	4	1	6
X3	2	8	6	11
X ₃ X ₄ X ₅	2	3	1	6
X5	6	2	4	3
X6	6	4	4	3
X ₇	7	3	4	1
X8	7	4	5	2
X9	8	5	7	2
X10	7	6	7	4

Move the Centroids

X1	3	5
X ₂	3	4
X3	2	8
X ₄	2	3
(3, 3)	2.5	5

X5	6	2
X6	6	4
X7	7	3
X8	7	4
X9	8	5
X10	7	6
(8, 3)	6.83	4

Manhattan distance

			(2.5, 5)	(6.83, 4)
Х1	3	5	0.5	4.83
X2	3	4	1.5	3.83
X3	2	8	3-5	8.83
X4	2	3	2.5	5.83
X5	6	2	6.5	2.83
X6	6	4	4.5	0.83
X7	7	3	6.5	1.17
X8	7	4	5.5	0.17
X9	8	5	5.5	2.17
X10	7	6	5.5	2.17

Q: Will the centroids move?

Observations

- Different distance metrics may find different K-means clustering!
- Different initialized centroids may find different clustering and may save your time!

Try One More Initialization

- K = 2
- (3, 2)*
 (4, 8)*

Manhattan distance

			(3, 2)	(4, 8)
X1	3	5	3	4
X2	3	4	2	5
X3	2	8	7	2
X ₃ X ₄ X ₅	2	3	2	7
X5	6	2	3	8
X6	6	4	5	6
X7	7	3	5	8
X8	7	4	6	7
X9	8	5	8	7
X10	7	6	8	5

Move the Centroids

X1	3	5
X2	3	4
X ₄	2	3
X5	6	2
X6	6	4
X7	7	3
X8	7	4
(3,2)	4.86	3.57

X3	2	8
X9	8	5
X10	7	6
(4,8)	5.67	6.33

Manhattan distance

			(4.86, 3.57)	(5.67, 6.33)
Хı	3	5	3.29	4
X2	3	4	2.29	5
X3	2	8	7.29	5.34
X ₄	2	3	3-43	7
X5	6	2	2.71	4.66
X6	6	4	1.57	2.66
X7	7	3	2.71	4.66
X8	7	4	2.57	3.66
X9	8	5	4-57	3.66
X10	7	6	4.57	1.66

Q: Will the centroids move?

Observations

- Different distance metrics may find different K-means clustering!
- Different initialized centroids may find different clustering and may save your time!
- And maybe the different clustering makes sense!

Recall: Data Objects

X1	3	5
X2	3	4
X3	2	8
X ₄	2	3
X5	6	2
X6	6	4
X ₇	7	3
X8	7	4
X9	8	5
X10	7	6

Ideal clusters + Outlier

Best K-Means Result

 The red centroid seems to be at the boundary, not the center, of the red cluster!

Observations

- Different distance metrics may find different K-means clustering!
- Different initialized centroids may find different clustering and may save your time!
- And maybe the different clustering makes sense!
- K-means clustering is sensitive to outliers!

Kmeans Demo

iPy...

			(2.5, 5)	(6.83, 4)
Х1	3	5	0.5	4.83
X2	3	4	1.5	3.83
X3	2	8	3-5	8.83
X4	2	3	2.5	5.83
X5	6	2	6.5	2.83
X6	6	4	4.5	0.83
X7	7	3	6.5	1.17
X8	7	4	5.5	0.17
X9	8	5	5.5	2.17
X10	7	6	5.5	2.17

Advantages of K-Means Clustering

- Efficiency: O(tKn), where n: # of objects, K: #
 of clusters, and t: # of iterations
 - Normally, K, t << n; thus, an efficient method!</p>

Disadvantages (from Observations) and Solutions

- O1/D1: Different distance metrics may find different K-means clustering!
 - Just try different metrics. Euclidean distance is consistent to the SSE. Highly recommended.

Disadvantages (from Observations) and Solutions

- O2/O3: Different initialized centroids may find different clustering and may save your time! And maybe the different clustering makes sense!
- D2: K-means clustering terminates at a local optimum
 - Initialization can be important to find high-quality clusters
- D3: Need to specify K, the number of clusters, in advance
 - There are ways to automatically determine the "best" K
 - In practice, one often runs a range of values and selected the "best" K value

Disadvantages (from Observations) and Solutions

- O4: K-means clustering is sensitive to outliers!
 - An object with an extremely large value may substantially distort the distribution of the data
- D4: Sensitive to noisy data and outliers
 - Variations: Using K-medians, K-medoids, etc.

Disadvantages and Solutions

- D5: K-means is applicable only to objects in a continuous n-dimensional space
 - Using the K-modes for categorical data
- D6: Not suitable to discover clusters with nonconvex shapes
 - Using density-based clustering, kernel K-means, etc.

Summarize the Disadvantages

- Need to specify K, the number of clusters, in advance
 - There are ways to automatically determine the "best" K
 - In practice, one often runs a range of values and selected the "best" K value
- K-means clustering often terminates at a local optimum
 - Initialization can be important to find high-quality clusters
- Sensitive to noisy data and outliers
 - Variations: Using K-medoids, K-medians, etc.
- K-means is applicable only to objects in a continuous ndimensional space
 - Using the K-modes for categorical data
- Not suitable to discover clusters with non-convex shapes
 - Using density-based clustering, kernel K-means, etc.

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

Choosing K in K-Means

- How to determine number of clusters in data?
 - Choice of K is often ambiguous!
 - Depends on scale and distribution of data
- Rule of thumb
 - K ≈ sqrt(n/2), where n is number of data objects
 - Average cluster size: sqrt(2n)
 - If n = 8, K = 2, size = 4. If K = 18, n = 3, size = 6.
 - Good starting point, but not very reliable.

Initialization

- There are many methods proposed for better initialization of k seeds
 - K-Means++ (Arthur & Vassilvitskii'07):
 - The first centroid is selected at random
 - The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
 - The selection continues until K centroids are obtained

Initialization (cont.)

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

K-Medoids Clustering

- Instead of taking the mean value of the objects in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster
- The K-Medoids clustering algorithm:
 - Select K initial representative **objects** (i.e., as initial K **medoids**)
 - Repeat
 - Assigning each object to the cluster with the nearest medoid
 - Randomly select a non-medoid o_i
 - » Either go through i = 1...K (recommended; why?) or randomly select an i
 - Compute the total cost S of swapping the medoid m_i with o_i
 - If S < o, then swap m_i with o_i to form the new medoid
 - Until <u>convergence</u>

K-Medoids: Example

Euclidean distance

			(2, 8)	(6, 2)
X1	3	5	3.16	4.24
X2	3	4	4.12	3.61
X3	2	8	0.00	7.21
X4	2	3	5.00	4.12
X5	6	2	7.21	0.00
X6	6	4	5.66	2.00
X7	7	3	7.07	1.41
X8	7	4	6.40	2.24
X9	8	5	6.71	3.61
X10	7	6	5.39	4.12

$$SSE = 3.16^{2} + 3.61^{2} + 4.12^{2} + 2^{2} + 1.41^{2} + 2.24^{2} + 3.61^{2} + 4.12^{2} = 81.0$$

K-Medoids: Example

Swap the red medoid (2,8) with (3, 5)?

			(3, 5)	(6, 2)
X1	3	5	0.00	4.24
X2	3	4	1.00	3.61
X3	2	8	3.16	7.21
X4	2	3	2.24	4.12
X5	6	2	4.24	0.00
X6	6	4	3.16	2.00
X7	7	3	4.47	1.41
X8	7	4	4.12	2.24
X9	8	5	5.00	3.61
X10	7	6	4.12	4.12

SSE = $1^2+3.16^2+2.24^2+2^2+1.41^2+2.24^2+3.61^2+4.12^2 = 57.0$ S = 57.0-81.0 = -24 < 0, so we swap them!

K-Medoids: Complexity

- PAM (Partitioning Around Medoids: Kaufmann & Rousseeuw 1987)
 - Starts from an initial set of medoids, and
 - Iteratively replaces one of the medoids by one of the non-medoids if it improves the total sum of the squared errors (SSE) of the resulting clustering
 - PAM works effectively for small data sets but does not scale well for large data sets (due to the computational complexity)
 - Computational complexity: PAM: O(K(n K)²)
 (quite expensive!)

K-Medoids: Complexity

- Efficiency improvements on PAM
 - CLARA (Kaufmann & Rousseeuw, 1990):
 - PAM on samples; $O(Ks^2 + K(n K))$, s is the sample size
 - CLARANS (Ng & Han, 1994): Randomized resampling, ensuring efficiency + quality

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

K-Medians: Handling Outliers by Computing Medians

- Medians are less sensitive to outliers than means
 - Think of the median salary vs. mean salary of a large firm when adding a few top executives!
- K-Medians: Instead of taking the mean value of the objects in a cluster as the center point, medians are used (L1-norm as the distance measure)
- The criterion function for the K-Medians algorithm:

$$S = \sum_{k=1}^{K} \sum_{x_{i \in C_k}} |x_{ij} - med_{kj}|$$

K-Medians

- The *K-Medians* clustering algorithm:
 - Select K points as initial K medians
 - Repeat
 - Assign every point to its nearest median
 - Re-compute the median using the median of each individual feature
 - Until convergence

Outline

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

K-Modes: Clustering Categorical Data

- K-Means cannot handle non-numerical (categorical) data
 - Mapping categorical value to 1/o cannot generate quality clusters for high-dimensional data
- K-Modes: An extension to K-Means by replacing means of clusters with modes
- Dissimilarity measure between object X and the center of a cluster Z
 - $-\Phi(x_{j}, z_{j}) = 1 n_{j}^{r}/n_{l}$ when $x_{j} = z_{j}$; 1 when $x_{j} \neq z_{j}$
 - where z_j is the categorical value of attribute j in Z_l , n_l is the number of objects in cluster l, and n_j is the number of objects whose attribute value is r
- This dissimilarity measure (distance function) is frequency-based

K-Modes

- Algorithm is still based on iterative object cluster assignment and centroid update
- A fuzzy K-Modes method is proposed to calculate a fuzzy cluster membership value for each object to each cluster

Summary

- Basic Concepts of K-Partitioning Methods
- The K-Means Clustering Method
 - What are the disadvantages and solutions?
- Initialization of K-Means Clustering
- The K-Medoids Clustering Method
- The K-Medians Clustering Method
- The K-Modes Clustering Method
- The Kernel K-Means Clustering Method

References: Partitioning Methods

- J. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. In Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability, 1967
- S. Lloyd. Least Squares Quantization in PCM. IEEE Trans. on Information Theory, 28(2), 1982
- A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988
- R. Ng and J. Han. Efficient and Effective Clustering Method for Spatial Data Mining. VLDB'94
- B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural computation, 10(5):1299–1319, 1998
- I. S. Dhillon, Y. Guan, and B. Kulis. Kernel K-Means: Spectral Clustering and Normalized Cuts. KDD'04
- D. Arthur and S. Vassilvitskii. K-means++: The Advantages of Careful Seeding. SODA'07
- C. K. Reddy and B. Vinzamuri. A Survey of Partitional and Hierarchical Clustering Algorithms, in (Chap. 4) Aggarwal and Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014