HANDOUT 9 (REVIEW FOR MIDTERM 1)

JIASU WANG

• How to solve systems of linear equations?

Write down the augmented matrix and do row reduction to obtain RREF. The solutions: (1) unique solution, (2) infinite solution, (3) no solution.

consistent: either (1) or (2)

- How to solve vector equation? For example, $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$. Same as before.
- How to solve matrix equation? For example, $A\mathbf{x} = \mathbf{b}$. Same as before.
- How to determine whether **b** is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$?

Solve vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$.

If consistent, **b** is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. Otherwise, No.

- How to determine the system is consistent given the echelon form of the augmented matrix?
- How to determine the system has unique solution given the echelon form of the augmented matrix?
- How to determine whether **b** is in $span\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

Same as before

• How to determine $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent?

Check whether vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ has only trivial solution.

If unique solution, linearly independent, otherwise (infinite solution), linearly dependent.

- How to determine a transformation to be a linear transformation? Verify that
 - (1) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} .
 - (2) $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} and all $c \in \mathbb{R}$.
- How to determine a linear transformation $T(\mathbf{x}) = A\mathbf{x}$ to be a one-to-one mapping? Solve matrix equation $A\mathbf{x} = 0$

If unique solution, T is one-to-one mapping, otherwise (infinite solution), No.

- How to determine a linear transformation $T(\mathbf{x}) = A\mathbf{x}$ to be an onto mapping? Check whether matrix equation $A\mathbf{x} = \mathbf{b}$ is consistent for any \mathbf{b} ? If always consistent, T is an onto. Otherwise, No.
- How to calculate the \mathcal{B} -coordinate vector of **b** given that the vector **b** is in a subspace H

with a basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}.$

Solve vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$

Some variants of problems:

1. Determine the value(s) of h such that the following is the augmented matrix of a consistent linear system:

$$\left(\begin{array}{cc|c} h & 1 & -2 \\ 4 & h & 4 \end{array}\right)$$

2. Find an equation involving q, h that makes this augmented matrix corresponding to a consistent system:

$$\left[\begin{array}{cccc}
1 & -4 & 7 & g \\
0 & 3 & -5 & 0 \\
-2 & 5 & -9 & h
\end{array}\right]$$

- 3. Find all $\mathbf{x} \in \mathbb{R}^3$ that are mapped into the zero vector by the transformation $\mathbf{x} \mapsto A\mathbf{x}$ for the given matrix $A = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 6 \end{bmatrix}$.
 - 5. Let T be a linear transform with $T\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, T\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Determine the matrix A_T of T.

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and maps $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

to $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$. use the fact that T is linear to find the images under T of $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$. 6. Find the point (x_1, x_2) that lies on the line $x_1 + 5x_2 = 7$ and the line $x_1 - 2x_2 = -2$.

- 7. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 1 \\ 6 \\ 5 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} 5 \\ 6 \\ h \end{bmatrix}$. For what value of h is \mathbf{u} in

the plane spanned by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$

- 8. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 1 \\ 6 \\ 5 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$. Does $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ span \mathbb{R}^3 ?
- 9. Given $A = \begin{bmatrix} 4 & 1 & 6 \\ -7 & 5 & 3 \\ 9 & -3 & 3 \end{bmatrix}$, observe that the first column plus the twice the second column

equals the third column. Find a nontrivial solution $A\mathbf{x} = \mathbf{0}$.

Some Takeaway

- If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent and \mathbf{v}_3 is not in $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.
- $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is different from $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- The parametric equation of the line through **a** parallel to **b**: $\mathbf{x} = \mathbf{a} + t\mathbf{b}$.
- The parametric equation of the line through **a** and **b**: $\mathbf{x} = t\mathbf{a} + (1-t)\mathbf{b}$.