

INSTRUCTION DIVISION FIRST SEMESTER 2016-2017 Course Handout (Part-II)

Date: 02/08/2016

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F211

Course Title : MATHEMATICS - III
Instructor-in-charge : SURESH KUMAR

Instructors : Ashish Tiwari, Balram Dubey, Devendra Kumar,

J. N. Bandyopadhyay, Krishnendra Shekhawat, Pradeep Kr H Keskar, Rakhee, Sangita Yadav, Sumanta Pasari

1. Scopes and Objectives of the Course:

This Course reviews and continues the study of differential equations with the objective of introducing classical methods for solving boundary value problems. This course serves as a basis of the applications for differential equations, Fourier series and Laplace transform in various branches of engineering and sciences. This course emphasizes the role of orthogonal polynomials in dealing with Sturm-Liouville problems.

2. **Text Book:** Simmons G.F., Differential Equations with Applications and Historical Notes, Tata McGraw Hill, 2nd ed., 1991.

Reference Books:

- 1. Zill, Differential Equations, Thomson Learning, 5th ed., 2004
- 2. Shepley L. Ross: Differential Equations, John Willy & Sons, 3rd ed., 1984.
- **3**. Edwards & Penney: Differential Equation and Boundary Value Problems, Pearson Education, 3rd ed., 2009.
- 3. Course Plan: (Sections/Articles refer to Text-Book)

Lect	Learning	Topic	Sections	Home work
No.	Objectives			(Questions-Pages)
		First order equations	1-7,	(Revision & self
				study)
1	To introduce the	Exact differential	8, 9	All, page 53,
	classical methods to	equations.		1-4, page 59
	solve 1 st order			
2	ordinary differential	Linear differential	10	1 to 4, page 61
	equations	equation.		
3		Reduction of order.	11	1 to 3, page 65

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus

4-5		Second order	14, 15	4 to 8, page 86
73	To introduce the	equations.	14, 13	1 to 9, page 91
6	classical methods to	Use of a known	16	All, page 94
	solve 2 nd order	solution.	10	7 m, page 54
7-12	ordinary differential	Various methods to	17, 18,	1-2, page 97 & 5-7,
, 12	equations	solve differential	19, 23	page 98
	1	equations.	15, 25	All, page 103, All,
		quarisis		page 106
				1-25, page 135-136
				, 1 . 6
	Properties of	Sturm Separation		
13-14	solutions	Theorem and Sturm	24, 25	2-4, page 161
		Comparison Theorem.		All, page 164
				1-2, page 175
15-17		Series solutions.	26 to 30	All, page 182
	To introduce Series			1- 5, page 191
	solutions method to			1–5, page 198
18-19	solve 2 nd order	Hypergeometric	31	All, page 203
	Linear differential	equation.		
20-22	equation with	Legendre polynomials	44, 45	1-2, & 4, 341
	variable coefficients			1-5, page 347
23-25		Bessel functions	46, 47	1- 6, page 356
				1- 5, page 363
26-29	Use of Laplace	Laplace transforms.	48, 49,	All, page 384
	Transform to solve		50, 51, 53	All, page 388
	Differential			All, page 394
	Equations and			1- 4, page 397
	Integral Equations			2,3,4, page 410
30-31	To introduce system	Systems of equations.	54, 55, 56	1,2, page 420
	of differential			5-9, page 426
22.5=	equations	- · ·	22.21	1 and 5, Page 433
32-35	To introduce Fourier	Fourier series.	33, 34,	1-6, page 256
	series		35, 36	1-5, page 263
				All, page 269
26.27		D' 1 1 '		1-7, page 274
36-37		Eigenvalues and eigen	40. 42	1 200
	TT 1 1	functions, Sturm	40, 43	1, page 308
20. 10	To introduce	Liouville problems.	40	
38-40	classical methods to	One dimensional wave	40	5 210
	solve Partial	equation	4.1	5, page 310
	Differential Equations	One dimensional heat	41	
	Equations	equation	40	
		Laplace's equation	42	
		(Self Study)		

4. **Practice Problems**: All problems listed above are for practice only.

5. Evaluation Scheme:

EC No.	Evaluation Component	Duration	Weightage (in %)	Date	& Time	Nature of Component
1.	Mid-Sem	90 min.	30	4/10	8:00 -	Close Book
	Exam.			9:30	AM	
2.	Comprehensive	180 min.	40	3/12	AN	Close Book &
	Exam.					Open Book
3.	One Quiz	90 min.	30	TBA		Close Book
	(Announced)					

6. Make-up: Make-up will be given only in genuine cases.

7. Chamber consultation hour: To be announced in the class.

8. Notices: All notices regarding MATH F211 will be displayed on NALANDA and the notice board of the Department of Mathematics.

Instructor-In-Charge MATH F211

