## GPT 모델의 이해와 활용 chatGPT와 함께하는 미래 소재 개발의 시작! day 1

최재웅 박사 한국과학기술연구원 계산과학연구센터 2023.08.16





#### **About Me**

- 최재웅 (Jaewoong Choi)
  - ✓ 산업공학 박사 (2022, SCL@konkuk university, advisor: Janghyeok Yoon)
  - ✓ (Past) Development of machine learning (ML) and natural language processing (NLP)-based system for patent analytics
    - Computer Science, applications; Information science & management 분야 SCI 논문 10건 이상 게재, 국내 특허 등록 2건/ 출원 5건, …
    - Projects: 기술가치 평가모델 (KIBO), 특허인용추천모델, 특허유지기간 예측모델 (KISTI), 자동이슈 탐지모델 (KISTI), 노이즈 특허 필터링 시스템, 데이터 자동수집 파이프라인 및 데이터베이스 설계 (LX)
  - ✓ Techniques: data science; machine learning; natural language processing; relational database; ···





#### **About Me**

- ❖ 최재웅(jwchoi95@kist.re.kr)
  - ✓ 박사후 연구원 (2022 ~ 현재), KIST 계산과학연구센터 (advisor: Byungju Lee)
  - ✓ (Now) Applying ML & NLP for materials science literature to extract information such as materials, properties, and synthesis with regard to battery, catalysts, and so on.







#### **About Me**

#### Current works

- Quantitative topic analysis of materials science literature using natural language processing (under review; 1st author)
- ✓ Deep Learning of Electrochemical CO2
   Conversion Literature Reveals
   Research Trends and Directions
   (published in JMCA (2023); co-author)
- ✓ Accelerated materials language processing enabled by GPT (submitted; 1st author)



#### 개체명 인식





### **Today Contents**

\* Natural Language Processing (NLP) 소개

❖ Language Model (LM) 방법

❖ Transformers의 등장

❖ BERT & GPT의 비교





## 1장 Natural Language processing 소개

GPT 모델의 이해와 활용 chatGPT와 함께하는 미래 소재 개발의 시작 day 1





1. Definition of NLP I. NLP 소개

#### Natural Language Processing (NLP; 자연어처리)

- ✓ NLP는 언어학, 통계학, 그리고 컴퓨터 사이언스(기계학습, 빅데이터 처리, …)를 포함한다!
- ✓ Layers of
  - Phoneti
  - Morphol
  - Syntax
  - Semanti
  - Pragmat
  - Discour:





### 2. Importance of NLP

#### I. NLP 소개

#### NLP 뭘 할 수 있는가

✓ 기계번역, 텍스트 분류, 감성 분석, 음성 인식, 자동 요약, 질의응답 시스템, 챗봇, 정보 추출, 텍스트 생성 등의 다양한 task에서 높은 성능을 보임

#### NLP 응용 분야 예시



#### GPT가 제공하는 기능





#### 3. Development of NLP

#### I. NLP 소개

#### \* NLP 기술의 발전

- 소기: 규칙 기반과통계적 접근 방식 →복잡성 다양성 해결 X
- ✓ Deep learning 발전:
  Word2vec 과 같이,
  dense embedding
  시도
- ✓ Transformer 등장:
   RNN 계열 모델 한계
   해결 + Attention
   mechanism





## 2장 Language model

GPT 모델의 이해와 활용 chatGPT와 함께하는 미래 소재 개발의 시작 day 1





#### 1. Language Model 소개

#### II. Language Model

- 언어모델은 주어진 단어(토큰)들의 시퀀스(문장 혹은 문서)에 대한 임베딩 (벡터) 표현을 통해, 주제 찾기, 감성 분류, 개체명 인식, 기계 번역, 요약 등의 문제를 풀 수 있음
  - ✓ 아래와 같은 텍스트 생성의 경우, 주어진 문장에서, 다음 단어가 얼마나 자연스러운지 확률적으로 계산하여, 출현하기 적합한 단어를 예측할 수 있음





ATIONAL SCIENCE
CH CENTER
of Science and Technology

#### 1. Language Model 소개

#### II. Language Model

- 통계적 언어모델(Statistical Language Model; SLM)
  - ✓ 자연어를 모델링하기 위해, 단어 시퀀스(문장)에 확률을 할당
    - 가장 일반적인 모델링은 이전 단어들을 주고, 다음 단어를 예측

$$P(w_1, w_2, w_3, w_4, w_5, \dots w_n) = \prod_{n=1}^n P(w_n | w_1, \dots, w_{n-1})$$

P(미래 소재 개발의 시작)

= P(미래) × P(소재I미래) × P(개발의I미래 소재) × P(시작I미래 소재 개발의)

⇒ 희소성 문제 (sparsity problem): 코퍼스에 없으면 풀 수 없다.





#### 1. Language Model 소개

#### II. Language Model

#### How to Model Language

- ✓ 단어의 임베딩을 목표: Bag of words에서 Neural Network 기반으로
  - Word2vec, FastText ~ Glove
  - CNN 계열:TextCNN, TextCapsulNet, ··· 주로 텍스트 분류를 목표
- ✓ sequence 데이터 처리 목표: seq2seq 단방향/양방향 ~ 번역 문제!
  - 통계(조건부 확률) 기반 언어모델 (아주 옛날)
  - RNN, LSTM series ~ BiLSTM
  - Transformer 기반: Autoencoding, Autoregressive, Seq2Seq
    - BERT series, GPT series, BART, ELECTRA, …





#### 2. 단어의 임베딩

#### II. Language Model

#### Skip-gram/CBOW Model (Word2Vec)

✓ 중심 단어로 주변단어를 예측하거나(Skip-gram), 주변 단어로 중심단어를 예측(CBOW)하는 Neural Networks 모델 기반

#### **CBOW**



Skip-Gram target word context word



I like natural language processing





#### 2. 단어의 임베딩

#### II. Language Model

### Skip-gram/CBOW Model (Word2Vec)



유사한 위치에 있는 단어는 비슷한 의미를 가질 것이다!

벡터 간 연산(Subtraction)은 단어 간의 관계를 나타낼 수 있음!!





#### 3. Seq2Seq 모델

#### II. Language Model

- \* Seq2Seq (단방향/양방향) 언어 모델링
  - ✓ 번역 문제처럼, Input sequence를 넣으면 output sequence가 산출되는 형태

You like natural language processing



✓ Sequential한 데이터 형태를 반영하는 모델 필요! → RNN, LSTM, GRU 등등 사용







#### 3. Seq2Seq 모델

#### II. Language Model

### \* Seq2Seq (단방향/양방향) 언어 모델링

- ✓ Seq2Seq 모델은 크게 encoder와 decoder로 구성
  - Encoder는 입력 문장의 모든 단어들을 sequential 하게 입력 받은 뒤에, 압축하여 하나의 Context vector로 만듦
  - Decoder는 Context vector로부터 번역된 단어를 하나씩 순차적으로 출력함







#### 3. Seq2Seq 모델

#### II. Language Model

#### \* Seq2Seq (단방향/양방향) 언어 모델링

- ✓ RNN, LSTM, GRU 계열 모델 문제점
  - 하나의 고정된 크기의 벡터(context vector)에 모든 정보를 압축 ~ 정보 손실
     → seq2seq with attention (2014, 조경현 교수님 bb)
  - RNN 모델 구조 특성 상 연속적인 tanh 연산에 따른 Vanishing gradient 문제
    - → LSTM, GRU 등의 모델 등장



Advances in neural information pro입력 시퀀쇼의 모든 정보를 하나의 벡터로 (2015). 표현 → Information Loss





## 3장 Transformer

GPT 모델의 이해와 활용 chatGPT와 함께하는 미래 소재 개발의 시작 day 1





#### Ⅲ. Transformer 소개

- ❖ RNN 계열의 모델들을 대체하자!
  - ✓ 왜냐면 병렬 처리가 어렵기 때문!
    - 이전 state의 계산 결과를 다음 state에서 사용하는 RNN 구조 때문 (Sequential computation)

#### 그림 5-8 RNN 계층의 순환 구조 펼치기



• RNN 계열은 input 시퀀스와 output 시퀀스 간의 단어 대응 관계를 잘 학습하지 못함 (물리적 거리가 먼 경우) ~ Global dependency라고 논문에서 표현





#### Ⅲ. Transformer 소개

#### Transformer의 등장

- ✓ Self Attention mechanism으로 다 바꾸자
  - 병렬 처리의 어려움 해결
    - 시퀀스 데이터를 순차적으로 처리할 때 발생하는 계산 복잡도와 연산량 해결
  - 입력 시퀀스의 각 단어들이 다른 단어들과 얼마나 관련되어 있는지를 계산
- ✓ 인코더와 디코더가 텍스트 시퀀스를 이해하고 생성하는 과정
  - BERT, GPT 등 대부분의 언어모델의 전신



Attention is All You Need (2017)



#### Ⅲ. Transformer 소개

#### \* Transformer의 등장

- ✓ Global dependency를 고려하자
  - 기존 seq2seq with attention 모델은 attention을 통해 input과 output을 대응함
  - Transformer에서는 self attention을 통해 입력 시퀀스/ 출력 시퀀스 내부 단어 간 대응을 이름







#### Ⅲ. Transformer 소개

#### Transformer의 등장

- ✓ RNN 계열은 병렬 처리가 불가능했다
  - 이전 state의 결과를 다음 state에서 input으로 사용하기 때문에, sequence information을 hidden state에 반영하기 위해서 단어별로 계산해야 하기 때문
- ✓ Transformer는 병렬 처리가 가능하다
  - Self-attention으로 입력 시퀀스 내 각 단어 간의 관계를 한번에 계산
  - Position-wise FFNN 형태 (단어별로 독립적으로 적용됨)
  - Position encoding 정보 사용(순차정보 없이 단어 순서 인식)









#### 2. Attention과 Transformer 아키텍처 이해

#### Ⅲ. Transformer 소개

- Transformer consists of N modules (Encoder-Decoder)
  - ✓ Seq2Seq 구조 그대로! REMIND
    - Machine translation 예시 참고
    - Encoder의 역할: input sequence의 정보를 압축!
    - Decoder의 역할: output sequence를 생성!









#### 2. Attention과 Transformer 아키텍처 이해

#### Ⅲ. Transformer 소개

Output

**Probabilities** 

Softmax

Linear

Add & Norm

#### Transformer 내 attention의 역할

✓ Encoder: Multi-head attention ~ BERT 모델로

✓ Decoder: Masked Multi-head attention ~ GPT 모델로

✓ Encoder-Decoder Attention

KEY, VALUE는 encoder에서, QUERY는 decoder에서



Encoder Self-Attention



Masked Decoder Self-Attention







#### 2. Attention과 Transformer 아키텍처 이해

#### Ⅲ. Transformer 소개

RESEARCH CENTER Korea Institute of Science and Technology

**Transformer** I am a student <EOS> Output **Probabilities** Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed N× Forward Add & Norm  $N \times$ Masked Multi-Head Multi-Head Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs **SOS> I am a student** COMPUTATIONAL SCIENCE

나는 학생이다

(shifted right)

26



## 4장 BERT와 GPT

### GPT 모델의 이해와 활용 chatGPT와 함께하는 미래 소재 개발의 시작 day 1





### 0. Transformer를 활용한 LM

#### N. BERT & GPT

#### Transformer-based LMs

- ✓ Seq2Seq:
  - Encoder + Decoder
    - → T5, BART, Pegasus
- ✓ Autoencoding:
  - Encoder
    - → BERT series, ELECTRA
- ✓ Autoregressive
  - Decoder
    - → GPT series, XLNet



Figure 3-8. An overview of some of the most prominent transformer architectures





#### Autoencoding Model

- ✓ Trying to reconstruct the original sequence
- ✓ Examples: BERT series model, ELECTRA
- ✓ Natural Bidirectional context, Independent predictions, Artificial Noise



X Fine-tuning discrepancy caused by [MASK] tokens (not in real data)

Assumes cat and yarn are independent, which is wrong

X No joint probability between masked entries



#### BERT (Bidirectional Encoder Representations from Transformers)

- ✓ BERT uses the encoder of Transformer.
  - base model: 12 layers, 768 dimensions, 12 heads
  - large model: 24 layers, 1024 dimensions, 16 heads
- ✓ Task:
  - MLM ~ [MASK] token, NSP ~ [SEP] token
  - Attention mask 1 for real token, 0 for padding token





(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

#### 소재문헌에서의 NLP 예시 (BERT in Materials Science)

ace-ty-lt-ran-sf-eras-e

cl-oni-dine

na-lo-xon-e

- ✓ BERT는 어떤 도메인의 데이터셋에 학습했는지에 따라, downstream works에서의 fine-tuning 모델 성능이 달라짐
- ✓ 도메인 맞춤형 BERT 모델의 필요성
  - 특정 도메인에서의 언어 이해(전문 용어, 관계, 내용); 예를 들어, biomedical 분야는 bio 전용 NLP모델 (BioBERT, PubMedBERT 등) 을 통해 의료 진단, 의약품 효능 분석을 수행함

| Biomedical Term | Category | BERT                 | SciBERT            | PubMedBERT (Ou | rs)                        |
|-----------------|----------|----------------------|--------------------|----------------|----------------------------|
| diabetes        | disease  | ✓                    | ✓                  | ✓              |                            |
| leukemia        | disease  | ✓                    | ✓                  | $\checkmark$   |                            |
| lithium         | drug     | ✓                    | ✓                  | ✓              | 유의미한 tokenizer 차이          |
| insulin         | drug     | ✓                    | ✓                  | ✓              | TEILIE LONGINZEI MOI       |
| DNA             | gene     | ✓                    | ✓                  | ✓              | +                          |
| promoter        | gene     | ✓                    | ✓                  | $\checkmark$   |                            |
| hypertension    | disease  | hyper-tension        | ✓                  | $\checkmark$   | 유의미한 downstream works      |
| nephropathy     | disease  | ne-ph-rop-athy       | ✓                  | $\checkmark$   | TEILIE GOWINGLIEGIII WOLKS |
| lymphoma        | disease  | l-ym-ph-oma          | ✓                  | $\checkmark$   | 성능 차이                      |
| lidocaine       | drug     | lid-oca-ine]         | ✓                  | ✓              | 00 1101                    |
| oropharyngeal   | organ    | oro-pha-ryn-ge-al    | or-opharyngeal     | ✓              |                            |
| cardiomyocyte   | cell     | card-iom-yo-cy-te    | cardiomy-ocyte     | ✓              |                            |
| chloramphenicol | drug     | ch-lor-amp-hen-ico-l | chlor-amp-hen-icol | ✓              |                            |
| RecA            | gene     | Rec-A                | Rec-A              | ✓              | COMPUTATIONAL SCI          |

acetyl-transferase

clon-idine

nal-oxo-ne



acetyltransferase

clonidine

naloxone

gene

drug

drug



#### 소재문헌에서의 NLP 예시 (BERT in Materials Science)

- ✓ 사례: 소재문헌에 맞춤화된 BERT 모델
  - 도메인 맞춤형 BERT 모델의 필요성 → MatBERT, MaterialsBERT, MatSciBERT, …
  - Tokenizer: Byte Pair Encoding 알고리즘에 따라 전체 데이터 셋 내에 문자열의 상대적 빈도수에 기반하여, 텍스트를 하위 단위로 분할하여 희소성을 줄이고, 효율성을 높임



원본 텍스트: "The electrolyte (Merck) was 1M LiPF6 in a 1:1 (weight ratio) ethylene carbonate: di-methyl carbonate (EC: DMC) mixture."

BERT (일반적인 텍스트(Wikipedia, news 등)로 학습한 모델):

['The', 'electro', '##ly', '##te', '(', 'Me', '##rc', '##k', ')', 'was', '1', 'M', 'Li', '##P', '##F', ...]

MatBERT (소재문헌으로 학습한 모델):

['The', 'electrolyte', '(', 'Merck', ')', 'was', '1', 'M', 'LiFP6', ...]

2. GPT 모델 IV. BERT & GPT

### Autoregressive model (Causal LM)

- Using the context word to predict the next word
  - by estimating the probability distribution of a text corpus
- ✓ Examples: XLNet, GPT series

Use context to predict the next word



X Only considers context in one direction





2. GPT 모델 Ⅳ. BERT & GPT

#### Autoregressive model

- ✓ GPT is N-stacked decoders of Transformer
  - (encoder-decoder attention) also removed
- ✓ GPT consists of unsupervised pre-training and supervised fine-tuning
  - 12 decoder blocks







#### GPT의 특성

- ✓ Few shot learner로써의 역할
  - 소수의 N 개 혹은 0개로 학습
  - N-shot K-way learning
- ✓ Task description, Example, Input 으로 구성
- ✓ In-context learning
  - 전체 Prompt의 내용으로, 주어진 Context를 이해하고, 답변을 생성
    - → weight update X
  - 즉, 주어진 텍스트 내 패턴을 학습해 결과를 generate하자!

The three settings we explore for in-context learning

#### Zero-shot

#### N. BERT & GPT

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
Translate English to French: ← task description

cheese => ← prompt
```

#### One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```



#### II. Language Model

#### ❖ 어떤 모델을 사용해야 하는가?

- ✓ Closed-domain task에서는 여전히 BERT 기반의 supervised model들이 여전히 강세
  - Closed-domain task는 question answering, sentiment analysis, machine translation, summarization, information extraction 등 전통적인 task로, 공개 데이터셋 존재







#### II. Language Model

#### 상 어떤 모델을 사용해야 하는가?

- ✓ Open-domain task에서는 생성형 모델들이 잘 해결하는 문제들이 존재
  - · Open-domain task는 simple arithmetic, fact-based question, common sense reasoning, historical facts, analogy making, visual reasoning 등 잠재적 답변이 존재하는 상황

| Dataset      | Example                                  | Article / Paragraph                                                             |
|--------------|------------------------------------------|---------------------------------------------------------------------------------|
| SQuAD        | Q: How many provinces did the Ottoman    | Article: Ottoman Empire                                                         |
|              | empire contain in the 17th century?      | Paragraph: At the beginning of the 17th century the em-                         |
|              | A: 32                                    | pire contained 32 provinces and numerous vassal states. Some                    |
|              |                                          | of these were later absorbed into the Ottoman Empire, while                     |
|              |                                          | others were granted various types of autonomy during the course of centuries.   |
| CuratedTREC  | Q: What U.S. state's motto is "Live free | Article: Live Free or Die                                                       |
|              | or Die"?                                 | Paragraph: "Live Free or Die" is the official motto of the                      |
|              | A: New Hampshire                         | U.S. state of New Hampshire, adopted by the state in 1945. It                   |
|              |                                          | is possibly the best-known of all state mottos, partly because it               |
|              |                                          | conveys an assertive independence historically found in Amer-                   |
|              |                                          | ican political philosophy and partly because of its contrast to                 |
|              |                                          | the milder sentiments found in other state mottos.                              |
| WebQuestions | Q: What part of the atom did Chadwick    | Article: Atom                                                                   |
|              | discover?†                               | Paragraph: The atomic mass of these isotopes varied by                          |
|              | A: neutron                               | integer amounts, called the whole number rule. The explana-                     |
|              |                                          | tion for these different isotopes awaited the discovery of the                  |
|              |                                          | neutron, an uncharged particle with a mass similar to the pro-                  |
|              |                                          | ton, by the physicist James Chadwick in 1932                                    |
| WikiMovies   | Q: Who wrote the film Gigli?             | Article: Gigli                                                                  |
|              | A: Martin Brest                          | Paragraph: Gigli is a 2003 American romantic comedy film                        |
|              |                                          | written and directed by Martin Brest and starring Ben Affleck,                  |
|              |                                          | Jennifer Lopez, Justin Bartha, Al Pacino, Christopher Walken, and Lainie Kazan. |



IPUTATIONAL SCIENCE EARCH CENTER

#### N. BERT & GPT

- Large Language Model (LLM)
  - ✓ 수십억개 이상의 문장, 웹페이지, 뉴스기사 등의 텍스트 학습, 즉, 사전 훈련(pre-training)을 진행한 언어모델
    - 이후에, 특정 태스크에 맞게 미세 조정(fine-tuning)하여 사용





#### N. BERT & GPT

- ❖ LLM 앞으로 어떻게 될 것인가 (낙타 농장의 서막,,,)
  - ✓ 폐쇄형 모델(Closed & Heavy) → 개방형 모델(Open Source & Light)







### LLM 모델 요약

- Autoencoding Model의 인코딩 정보로, supervised model을 개발하는 것이 여전히 SOTA이고, 필요하다
- Autoregressive Model의 생성 능력으로 open domain task를 푸는 것은 가능하다
- GPT의 in-context learning으로, 복잡한 NLP task를 풀기 위한 전략적인 prompt 설계가 필요하다





# 감사합니다. Q&A

최재웅 박사
(jwchoi95@kist.re.kr)
한국과학기술연구원 계산과학연구센터





#### Papers, websites, ...

#### References

- P4: Deep Learning of Electrochemical CO 2 Conversion Literature Reveals Research Trends and Directions. Journal
  of Materials Chemistry A (2023)
- P7: https://www.purespeechtechnology.com/text-analysis-text-analytics-text-mining/
- P8: https://openai.com/
- P8:Applications of Natural Language Processing | Data Science Dojo
- P9: https://levelup.gitconnected.com/the-brief-history-of-large-language-models-a-journey-from-eliza-to-gpt-4-and-google-bard-167c614af5af
- P13: https://wikidocs.net/21687
- P15: DL] Word2Vec, CBOW, Skip-Gram, Negative Sampling
- P16: Training Word2vec using gensim
- P17: Tshitoyan, Vahe, et al. "Unsupervised word embeddings capture latent knowledge from materials science literature." Nature 571.7763 (2019): 95-98.
- ❖ P19: Day 01 Basics of Sequential Modelling, NLP and Large Language Models(LLM)
- P20-21: Cortes, Corinna, et al. "Advances in neural information processing systems 28." Proceedings of the 29th Annual Conference on Neural Information Processing Systems, 2015.
- P22: https://velog.io/@sujeongim/NLPSeq2Seq-with-Attention
- P23: Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
- P24, P28: https://techblog-history-younghunjo1.tistory.com/481





#### Papers, websites, ...

#### References

- P25: https://huidea.tistory.com/237
- P29, P33-35: Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
- P30: <a href="https://techblog-history-vounghunio1.tistory.com/496">https://techblog-history-vounghunio1.tistory.com/496</a>
- P31: Neural machine translation with a Transformer and Keras | Text | TensorFlow
- P32: https://ratsgo.github.io/nlpbook/docs/language\_model/transformers/
- ❖ P33: 16-01 트랜스포대(Transformer) 딥 러닝을 이용한 자연어 처리 입문
- ❖ P40: Aman's Al Journal Primers Autoregressive vs. Autoencoder Models
- ❖ P41, P47: Aman's Al Journal Primers Autoregressive vs. Autoencoder Models
- P42: RUBERT: A Bilingual Roman Urdu BERT Using Cross Lingual Transfer Learning
- ❖ P43: ACM Transactions on Computing for Healthcare (HEALTH) 3, no. 1 (2021): 1-23.
- P44: Trewartha, Amalie, et al. "Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science." Patterns 3.4 (2022).
- P47: https://paperswithcode.com/method/gpt
- P48: Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
- P51-52: Wei, Jason, et al. "Finetuned language models are zero-shot learners." arXiv preprint arXiv:2109.01652 (2021).
- P53: https://github.com/hollobit/GenAl\_LLM\_timeline



