中山大学计算机院本科生实验报告

(2025学年春季学期)

课程名称: 并行程序设计

批改人:

实验	3-Pthreads并行矩阵乘法与数组求和	专业(方向)	计算机科学与技术
学号	22336087	姓名	胡瑞康
Email	hurk3@mail2.sysu.edu.cn	完成日期	2025.4.2

1 并行矩阵乘法

1.1 代码介绍

本实验实现了两种使用 Pthreads 实现的并行矩阵乘法方案,分别为"行划分"(row_pthread.cpp)和"块划分"(block_pthread.cpp)。两种方法都遵循如下基本流程:

- 1. 读取输入参数(线程数与矩阵维度);
- 2. 动态分配内存, 随机初始化矩阵 A(m×n)和B(n×k);
- 3. 创建若干线程,分别并行计算结果矩阵 C的不同部分;
- 4. 等待所有线程完成后,统计运行时间;
- 5. 若矩阵较小,则输出计算结果矩阵 C;
- 6. 释放所有内存资源。

1.1.1 公共部分

• 矩阵存储与索引宏:

```
// 行优先存储的矩阵索引宏
#define IDX(i, j, cols) ((i) * (cols) + (j))

// 全局矩阵指针
double *A, *B, *C;
int thread_count, m, n, k;

采用一维数组模拟二维矩阵, IDX 宏实现行优先访问, 避免多维数组的内存不连续问题。

基础输入处理:

printf("请输入线程数 m n k (线程数范围1-16, 矩阵维度范围128~2048): \n");
if (scanf("%d %d %d %d", &thread_count, &m, &n, &k) != 4) {
    printf("输入格式错误! \n");
    return 1;
}

统一输入格式校验, 确保参数合法性。
```

• 内存管理:

```
// 分配内存
  A = (double*)malloc(m * n * sizeof(double));
  B = (double*)malloc(n * k * sizeof(double));
  C = (double*)malloc(m * k * sizeof(double));
  // 释放内存 (最后执行)
  free(A); free(B); free(C);
  使用 malloc 动态分配内存, 避免栈溢出风险。
• 矩阵初始化:
  srand((unsigned)time(NULL));
  for (int i = 0; i < m * n; i++) A[i] = (double)(rand() % 10);
  for (int i = 0; i < n * k; i++) B[i] = (double)(rand() % 10);
  使用时间种子生成0-9的随机数,保证每次运行数据不同但范围可控。
• 线程参数结构体:
  typedef struct {
      int start_row; // 起始行 (两种方案共用)
      int end_row;
                  // 结束行 (不包括)
     // 块划分特有字段...
  } ThreadArg;
  基础结构体包含行划分信息,块划分版本扩展了列坐标字段。
• 时间统计:
  struct timeval start, end;
  gettimeofday(&start, NULL);
  /* ...并行计算... */
  gettimeofday(&end, NULL);
  double time_consumed = (end.tv_sec - start.tv_sec) +
                      (end.tv_usec - start.tv_usec) / 1e6;
  使用 gettimeofday 获取微秒级计时,包含系统时间开销。
• 结果验证输出:
  if (m \le 10 \&\& n \le 10 \&\& k \le 10) {
      printf("矩阵A:\n");
     for (int i = 0; i < m; i++) {
         for (int j = 0; j < n; j++)
             printf("%6.2f ", A[IDX(i,j,n)]);
         printf("\n");
      // 类似输出B和C...
  }
```

小矩阵时打印完整内容, 便于调试验证正确性。

1.1.2 行划分版本([row_pthread.cpp])

本方案按行粒度将矩阵 A 的多行划分给不同线程,每个线程计算其负责的所有行在结果矩阵 C 中的对应值。

• 线程任务划分

通过如下逻辑将 A 的所有行尽可能均匀地划分给多个线程,每个线程记录其 start row 和 end row:

```
int rows_per_thread = m / thread_count;
int remainder = m % thread_count;
```

前 remainder 个线程每人多分到 1 行,保证任务平均。

• 线程计算逻辑

每个线程调用 thread_func , 对其负责的多行执行如下乘法计算:

```
for (int i = targ->start_row; i < targ->end_row; i++) {
    for (int j = 0; j < k; j++) {
        double sum = 0.0;
        for (int l = 0; l < n; l++) {
            sum += A[IDX(i, l, n)] * B[IDX(l, j, k)];
        }
        C[IDX(i, j, k)] = sum;
    }
}</pre>
```

这段代码逻辑为经典的三重循环矩阵乘法: A的第i行与B的第i列做点积得到C的i行i列。

• 线程创建与同步

主线程负责 pthread_create() 启动多个线程,并在之后使用 pthread_join() 等待所有线程完成。计算耗时使用 gettimeofday() 记录前后时间差。

• 输出与释放资源

若矩阵规模较小(如维度均小于等于 10),则输出矩阵 A、B 与 C; 否则仅打印计算耗时。最后手动释放所有动态内存。

1.1.3 块划分版本(block_pthread.cpp)

块划分方法将结果矩阵 C 划分为若干小矩形块(二维子矩阵),每个线程负责一个块的计算。其实现主要在以下几个方面与行划分不同:

• 网格划分策略

将线程数分解为 row blocks × col blocks 的二维布局:

```
void compute_grid(...) {
  int r = sqrt(thread_count);
  while (r > 0) {
    if (thread_count % r == 0) {
        *row_blocks = r;
        *col_blocks = thread_count / r;
        return;
    }
    r--;
}
```

这确保每个线程可以独立处理一个 (block_row × block_col) 的区域。

• 任务划分方式

```
每个线程计算一个子块,其坐标范围通过 row start ~ row end 与 col start ~ col end 指定。例如:
```

```
args[thread_id].row_start = current_row;
args[thread_id].row_end = current_row + block_rows;
args[thread_id].col_start = current_col;
args[thread_id].col_end = current_col + block_cols;
```

这种二维划分方式在理论上可以更好地利用 CPU 缓存局部性,特别是在多核多级缓存系统下。

• 计算逻辑

线程内部的计算逻辑与行划分几乎相同,只是行列范围为对应的块边界:

```
for (int i = targ->row_start; i < targ->row_end; i++) {
   for (int j = targ->col_start; j < targ->col_end; j++) {
      ...
}
```

• 线程创建顺序

线程是以二维嵌套循环方式创建(每个块对应一个线程),而非按行顺序。

1.2 运行测试

使用修改版的 evaluate.py 脚本进行自动化测试,这里仅仅展示线程数和矩阵规模

```
implementations = {
    "行划分": {
        "source": "row_pthread.cpp",
        "binary": "row_exec",
        "thread_counts": [1, 2, 4, 8, 16],
        "matrix_sizes": [128, 256, 512, 1024, 2048]
    },
    "块划分": {
        "source": "block_pthread.cpp",
        "binary": "block_exec",
        "thread_counts": [1, 2, 4, 8, 16],
        "matrix_sizes": [128, 256, 512, 1024, 2048]
    }
}
```

1.3 表格展示

行划分 - 测试结果表格(单位: 秒)

线程数	128	256	512	1024	2048
1	0.002228	0.029287	0.752014	6.345801	90.402978
2	0.001246	0.013822	0.355997	3.088190	52.618956
4	0.000960	0.007432	0.178382	1.452069	27.435417
8	0.000911	0.003992	0.081713	0.696357	15.473034
16	0.001144	0.003401	0.058410	0.377127	11.676839

线程数	128	256	512	1024	2048
1	0.002073	0.026610	0.742465	7.509419	92.433633
2	0.001693	0.013117	0.347714	3.021394	51.060233
4	0.001047	0.008375	0.177453	1.452103	26.221259
8	0.000725	0.003941	0.087281	0.782877	15.235888
16	0.001166	0.003471	0.050310	0.383902	11.370524

1.4 表格分析

1.4.1 行划分趋势分析

1. 单线程表现:

• 执行时间随矩阵尺寸呈立方增长(符合矩阵乘法复杂度 O(n³))。例如,128×128 矩阵耗时 **0.0022秒**, 而 2048×2048 矩阵耗时 **90.4秒**。

2. 多线程表现:

- 加速比:
 - 线程数增加时,时间显著减少,但加速比逐渐趋缓。例如:
 - 。 **128×128**: 线程数从1增至16, 时间减少 **50%**(0.0022 → 0.0011秒)。
 - 。 2048×2048: 线程数从1增至16,时间减少 87% (90.4 → 11.68秒)。
 - 高线程数(如16线程)时,加速比低于理想线性加速(如16线程理论加速比为16倍,实际为7.7倍),因线程竞争和内存访问冲突导致效率下降。
- 线程数与性能拐点:
 - 在小矩阵(如128):线程数增加到16时,时间持续下降,无明显瓶颈。
 - 在**大矩阵**(如**2048**):线程数增至16后,时间继续下降,但加速比趋缓,可能因线程间数据竞争或调度开销增大。

3. 任务划分特点:

- 行划分:将矩阵按行均分,每个线程独立计算其负责的行。
- 劣势:
 - 缓存不友好: 单行计算时, B矩阵的列数据需频繁从内存加载, 导致缓存利用率低。
 - 任务不均衡: 若某行计算复杂度较高(如矩阵尺寸不规则),可能导致负载不均。

1.4.2 块划分趋势分析

1. 单线程表现:

- 与行划分类似,执行时间随矩阵尺寸增长呈立方关系,但单线程性能略优。
 - 例如: 128×128时, 块划分耗时 0.00207秒, 比行划分的0.0022秒快约6%。

2. 多线程表现:

- 加速比:
 - 大矩阵(如2048): 线程数16时,时间 11.37秒,比行划分的11.68秒更快(加速比提升约2.6%)。
 - 小矩阵(如128):线程数16时,时间 0.00116秒,与行划分的0.0011秒接近。
- 优势:
 - **缓存局部性**:块划分通过二维划分,使计算的A块和B块数据更可能被缓存复用,减少内存访问延迟。
 - 负载均衡:块划分任务更均匀,减少线程空闲时间。

- 3. 线程数与性能拐点:
 - 在大矩阵(如2048):线程数增至16时,时间持续下降,加速比优于行划分。
 - 在中等矩阵(如512):线程数8时,块划分耗时 0.087秒,略高于行划分的0.081秒,可能因块划分任务 粒度过细导致线程创建开销占优。

1.4.3 两者的对比

对比维度	行划分	块划分
单线程性能	较弱 (缓存效率低)	更优 (缓存友好性更好)
多线程加速比	高线程数时加速比趋缓显著	高线程数时加速比下降更平缓
大矩阵表现	高线程数下仍有效, 但效率低于块划分	更优 (缓存复用减少内存延迟)
任务划分特点	行级划分,任务简单但缓存不友好	块级划分,任务均衡且缓存利用率高
小矩阵适用性	线程数较少时表现接近块划分	单线程时更优, 但高线程时开销可能更大
关键优势	实现简单,适合小规模或低线程场景	高并行效率,适合大规模和高线程场景

2 并行数组求和

2.1 代码介绍

本实验实现了两种使用 Pthreads 实现的并行数组求和方案,分别为"**Mutex聚合**"(sum_pthread_mutex.cpp) 和"局部聚合"(sum_pthread_local.cpp)。两种方法都遵循如下基本流程:

- 1. 读取输入参数(线程数与数组长度);
- 2. 动态分配内存,随机初始化数组(取值0-9);
- 3. 创建若干线程,分别并行计算数组的不同部分和;
- 4. 聚合部分和得到最终结果;
- 5. 统计运行时间并输出结果;
- 6. 释放所有内存资源。

2.1.1 公共部分

• 输入与初始化:

程序首先会提示用户输入线程数和数组长度,具体代码如下:

```
printf("请输入线程数和数组长度 n (数组规模范围1M~128M) : \n");
if (scanf("%d %d", &thread_count, &n) != 2) {
    printf("输入格式错误! \n");
    return 1;
}
```

接着,程序会动态分配数组内存,为数组A和存储每个线程部分和的数组partial_sums (在局部聚合版本中)分配内存空间。代码如下:

```
A = (int*) malloc(n * sizeof(int));
partial_sums = (long long*) malloc(thread_count * sizeof(long long));
if (A == NULL || partial_sums == NULL) {
    printf("内存分配失败! \n");
    return 1;
}
```

这里使用 malloc 函数分别为数组 A 分配了 n 个 int 类型大小的内存空间,为 partial_sums 数组分配了 thread_count 个 long long 类型大小的内存空间。 if 语句检查内存分配是否成功,如果 A 或 partial_sums 为 NULL ,说明内存分配失败,此时会输出错误提示信息并返回1,终止程序的执行。

然后,程序使用 rand()函数生成0-9范围的随机数初始化数组 A,具体代码为:

```
srand(time(NULL));
for (int i = 0; i < n; i++) {
    A[i] = rand() % 10;
}</pre>
```

srand 函数用于设置随机数生成器的种子,这里使用当前时间 time(NULL) 作为种子,确保每次运行程序时生成的随机数序列不同。 for 循环遍历数组 A 的每个元素,使用 rand() % 10 生成0到9之间的随机整数,并将其赋值给数组 A 的对应元素,从而完成数组的初始化。

• 任务划分:

为了将数组尽可能均匀地划分给多个线程进行处理,程序采用以下逻辑进行任务划分:

```
int chunk = n / thread_count;
int remainder = n % thread_count;
```

在后续的线程创建过程中,会根据这个分配逻辑为每个线程设置其负责处理的数组元素范围。例如,在局部聚合版本中,代码如下:

```
int current = 0;
for (int i = 0; i < thread_count; i++) {
    args[i].thread_id = i;
    args[i].start = current;
    args[i].end = current + chunk + (i < remainder ? 1 : 0);
    current = args[i].end;
    pthread_create(&threads[i], NULL, thread_func, &args[i]);
}</pre>
```

这里的 current 变量用于记录当前已经分配的数组元素的位置。 for 循环遍历每个线程,为每个线程的参数结构体 args[i] 设置线程ID、负责处理的数组元素起始位置 start 和结束位置 end (不包括 end)。其中, args[i].end 的计算逻辑考虑了余数的情况,如果当前线程序号 i 小于 remainder ,则该线程会多分配一个元素。最后,使用 pthread_create 函数创建线程,并将线程参数传递给线程函数 thread func 。

2.1.2 Mutex聚合版本(sum pthread mutex.cpp)

• 关键机制

使用互斥锁 (mutex) 保护全局和变量:

```
pthread_mutex_t mutex;
long long global_sum = 0;
```

• 线程计算逻辑

每个线程先计算自己的部分和,然后通过互斥锁安全地更新全局和:

```
void* thread_func(void* arg) {
       // 计算部分和
       long long partial_sum = 0;
       for (int i = targ->start; i < targ->end; i++) {
          partial_sum += A[i];
       }
       // 加锁更新全局和
       pthread_mutex_lock(&mutex);
       global sum += partial sum;
       pthread_mutex_unlock(&mutex);
       return NULL;
   }
 • 同步机制
   主线程通过 pthread_join 等待所有线程完成,无需额外的结果聚合步骤。
2.1.3 局部聚合版本([sum_pthread_local.cpp])
 • 关键机制
   使用线程局部存储(每个线程独立的部分和数组):
   long long *partial_sums; // 每个线程一个元素
 • 线程计算逻辑
   每个线程将结果存入自己的部分和槽位:
   void* thread_func(void* arg) {
       long long sum = 0;
       for (int i = targ->start; i < targ->end; i++) {
          sum += A[i];
       partial_sums[targ->thread_id] = sum;
       return NULL;
   }
 • 结果聚合
   主线程在所有线程完成后,累加部分和数组:
   long long total_sum = 0;
   for (int i = 0; i < thread count; i++) {</pre>
       total_sum += partial_sums[i];
   }
2.2
   运行测试
使用 evaluate2.py 脚本进行自动化测试,测试配置如下:
implementations = {
    "Mutex聚合": {
       "source": "sum_pthread_mutex.cpp",
       "binary": "sum_mutex_exec",
       "thread_counts": [1, 2, 4, 8, 16],
       "array sizes": [1000000, 4000000, 8000000, 16000000, 32000000, 64000000, 128000000]
    },
    "局部聚合":{
       "source": "sum_pthread_local.cpp",
```

```
"binary": "sum_local_exec",
    "thread_counts": [1, 2, 4, 8, 16],
    "array_sizes": [1000000, 4000000, 8000000, 16000000, 32000000, 64000000, 128000000]
}
}
```

2.3 表格展示

Mutex聚合 - 测试结果表格(单位: 秒)

线程数	1000000	4000000	8000000	16000000	32000000	64000000	128000000
1	0.000913	0.001601	0.003262	0.005607	0.009670	0.017735	0.035513
2	0.000718	0.000764	0.001588	0.002913	0.005058	0.008594	0.041599
4	0.000513	0.000778	0.001315	0.002692	0.004283	0.010157	0.012636
8	0.000619	0.001054	0.001604	0.002871	0.003726	0.007854	0.012716
16	0.001499	0.001137	0.001299	0.002117	0.003860	0.008178	0.013597

局部聚合-测试结果表格(单位:秒)

线程数	1000000	4000000	8000000	16000000	32000000	64000000	128000000
1	0.000645	0.001578	0.003532	0.004738	0.009468	0.017550	0.045961
2	0.000427	0.001199	0.001435	0.003286	0.004928	0.008684	0.018588
4	0.000429	0.000782	0.001241	0.001952	0.003788	0.007899	0.012680
8	0.000546	0.001032	0.001453	0.001923	0.003457	0.006891	0.013164
16	0.001171	0.001672	0.001266	0.002298	0.004447	0.007489	0.011703

2.4 表格分析

2.4.1 Mutex聚合趋势分析

1. 单线程表现:

• 单线程执行时间随数据量线性增长,符合预期(如1e6数据量耗时0.000913秒,1.28e8数据量耗时0.0355秒)。

2. 多线程表现:

- 线程数增加初期: 执行时间显著下降(例如,数据量为1e6时,线程数从1增至2,时间减少约21%)。
- 线程数增加后期: 当线程数超过一定阈值(如16线程)时,执行时间反而上升,尤其是大数据量(如 1.28e8数据量下,16线程耗时0.0136秒,高于8线程的0.0127秒)。
- 核心原因: 锁竞争导致线程频繁等待, 同步开销超过并行计算收益, 性能出现瓶颈。

3. 数据量与线程数的交互影响:

- 在较小数据量(如1e6)时,线程数过多(如16线程)反而降低效率,因线程切换和锁竞争开销超过并行收益。
- 大数据量(如1.28e8)时,线程数增至8后性能提升明显,但进一步增至16时因锁竞争导致性能下降。

2.4.2 局部聚合趋势分析

1. 单线程表现:

• 单线程性能优于Mutex聚合(如1e6数据量耗时0.000645秒 vs Mutex的0.000913秒),因无锁开销。

2. 多线程表现:

- 线程数增加初期: 执行时间显著下降(如数据量1e6时,线程数从1增至2,时间减少33%)。
- 线程数增加后期:
 - 小数据量(如1e6):线程数增至16时,时间反而上升(0.001171秒 vs 线程8的0.000546秒),因线程切换开销超过并行收益。
 - 大数据量(如1.28e8): 线程数增至16时,时间持续下降(0.0117秒 vs 线程8的0.0131秒),因局部变量减少同步开销,线程并行效率更高。

3. 稳定性与扩展性:

• 局部聚合在高线程数下表现更稳定,尤其在大数据量时性能随线程数增加持续提升,而Mutex因锁竞争导致性能波动。

2.4.3 两者对比

对比维度	Mutex聚合	局部聚合
单线程性能	较差(存在锁开销)	更优 (无锁开销)
多线程性能	线程数过多时因锁竞争导致性能下降	线程数增加在大数据量时持续提升性能
锁竞争影响	显著 (高线程数下性能瓶颈明显)	几乎无 (局部变量减少同步需求)
最佳线程数阈值	需根据数据量调整(如8线程为临界点)	更适合高线程数 (尤其在大数据量时)
小数据量表现	线程数过多时效率下降,但趋势较平滑	线程数过多时效率下降更明显