ENGG 2760A / ESTR 2018: Probability for Engineers

3. Conditional Probability and Independence

Prof. Hong Xu

Credit to Prof. Andrej Bogdanov

Total probability theorem

$$\mathbf{P}(E) = \mathbf{P}(E \cap F) + \mathbf{P}(E \cap F^{c})$$
$$= \mathbf{P}(E \mid F)\mathbf{P}(F) + \mathbf{P}(E \mid F^{c})\mathbf{P}(F^{c})$$

More generally, if $F_1, ..., F_n$ partition Ω then

$$\mathbf{P}(E) = \mathbf{P}(E \mid F_1)\mathbf{P}(F_1) + \dots + \mathbf{P}(E \mid F_n)\mathbf{P}(F_n)$$

An urn has 10 white balls and 20 black balls. You draw two at random. What is the probability that their colors are different?

What is the capital of Romania?

A: Brasov B: Budapest

C: Bucharest D: Bratislava

Did you know or were you lucky?

Geography quiz

Probability model

There are two types of students:

Type *K*: Knows the answer

Type *K*^{*c*}: Picks a random answer

I choose a cup at random and then a random ball from that cup. The ball is red. You need to guess where the ball came from.

Which cup would you guess?

Cause and effect

effect: R

Bayes' rule

$$\mathbf{P}(C|E) = \frac{\mathbf{P}(E|C)\mathbf{P}(C)}{\mathbf{P}(E)} = \frac{\mathbf{P}(E|C)\mathbf{P}(C)}{\mathbf{P}(E|C)\mathbf{P}(C) + \mathbf{P}(E|C)\mathbf{P}(C')}$$

More generally, if $C_1, ..., C_n$ partition S then

$$\mathbf{P}(C_i|E) = \frac{\mathbf{P}(E|C_i) \mathbf{P}(C_i)}{\mathbf{P}(E|C_1) \mathbf{P}(C_1) + \dots + \mathbf{P}(E|C_n) \mathbf{P}(C_n)}$$

Cause and effect

$$\mathbf{P}(C_i|R) = \frac{\mathbf{P}(R|C_i)\mathbf{P}(C_i)}{\mathbf{P}(R|C_1)\mathbf{P}(C_1) + \mathbf{P}(R|C_2)\mathbf{P}(C_2) + \mathbf{P}(R|C_3)\mathbf{P}(C_3)}$$

Cause and effect

$$\Omega =$$

$$\mathbf{P}(C_i) =$$

$$\mathbf{P}(R \mid C_i) =$$

$$\mathbf{P}(R) =$$

$$\mathbf{P}(C_i \mid R) =$$

Two classes take place in Lady Shaw Building.

ENGG2430 has 100 students, 20% are girls.

NURS2400 has 10 students, 80% are girls.

A girl walks out. What are the chances that she is from the engineering class?

Summary of conditional probability

Conditional probabilities are used:

- When there are causes and effects to estimate the probability of a cause when we observe an effect
- 2 To calculate ordinary probabilities

Conditioning on the right event can simplify the description of the sample space

Independence of two events

Let E_1 be "first coin comes up H" E_2 be "second coin comes up H"

Then
$$P(E_2 | E_1) = P(E_2)$$

 $P(E_2 \cap E_1) = P(E_2)P(E_1)$

Events A and B are independent if

$$\mathbf{P}(A \cap B) = \mathbf{P}(A) \ \mathbf{P}(B)$$

Examples of (in)dependence

Let E_1 be "first die is a 4" S_6 be "sum of dice is a 6" S_7 be "sum of dice is a 7"

 E_1 and S_6 ?

 E_1 and S_7 ?

 S_6 and S_7 ?

Algebra of independent events

If A and B are independent, then A and B^c are also independent.

Parallel components

Independence of three events

Events A, B, and C are independent if

$$\mathbf{P}(A \cap B) = \mathbf{P}(A) \ \mathbf{P}(B)$$

$$\mathbf{P}(B \cap C) = \mathbf{P}(B) \mathbf{P}(C)$$

$$\mathbf{P}(A \cap C) = \mathbf{P}(A) \ \mathbf{P}(C)$$

and
$$\mathbf{P}(A \cap B \cap C) = \mathbf{P}(A) \mathbf{P}(B) \mathbf{P}(C)$$
.

(In)dependence of three events

Let E_1 be "first die is a 4" E_2 be "second die is a 3" S_7 be "sum of dice is a 7"

$$E_1$$
, E_2 ?

$$E_1, S_7$$
?

$$E_2, S_7$$
?

$$E_1$$
, E_2 , S_7 ?

(In)dependence of three events

Let \mathcal{A} be "first roll is 1, 2, or 3" B be "first roll is 3, 4, or 5" C be "sum of rolls is 9"

A, *B*?

A, C?

B, C?

A, B, C?

Independence of many events

Events $A_1, A_2, ...$ are independent if for every subset of the events, the probability of the intersection is the product of their probabilities.

Algebra of independent events

Independence is preserved if we replace some event(s) by their complements, intersections, unions

Multiple components

$$P(ER) = 70\%$$

$$P(WR) = 75\%$$

$$P(KT) = 95\%$$

$$P(TW) = 85\%$$

Conditional independence

 \mathcal{A} and \mathcal{B} are independent conditioned on \mathcal{F} if

$$\mathbf{P}(A \cap B \mid F) = \mathbf{P}(A \mid F) \mathbf{P}(B \mid F)$$

Alternative definition:

$$\mathbf{P}(A \mid B \cap F) = \mathbf{P}(A \mid F)$$

It is 🌞 on Monday. Will it 🥽 on Wednesday?

١

Conditioning does not preserve independence

Let E_1 be "first die is a 4" E_2 be "second die is a 3" S_7 be "sum of dice is a 7"

'Crazy Rich Asians' Has Soared, but It May Not Fly in China

Conditioning may destroy dependence

