LECTURER: BONG H. LIAN

This homework offers warm-up exercises on sets: you will work with various set notions like memberships, subsets, intersections, unions, disjointness, and partitions. You will also work with maps of various kinds: injective, surjective, and bijective.

Exercise 0.1. WRITE UP This exercise will show that 'fractions' is a way to break up a particular set \mathcal{P} into smaller sets – namely fractions. Two fractions will either be disjoint or the same. For this reason, we say that the fractions form a partition of \mathcal{P} .

Recall that for $a, b \in \mathbb{Z}$, $a \neq 0$, the fraction b/a is defined to be the set \mathcal{P} of all pairs

$$(n,m), n,m \in \mathbb{Z}, n \neq 0, such that am = bn.$$

(Recall that you can also think of this set as the set of all equations m = nx, $n, m \in \mathbb{Z}$, $n \neq 0$, s.t. am = bn, which obviously contains the same information as the pairs above.)

- (1) Prove that two such sets b/a = b'/a' iff ab' = ba'.
- (2) Prove that $b/a \cap b'/a' = \emptyset$ (i.e. the two sets have no members in common) iff $ab' \neq ba'$.
- (3) Prove that the map $\iota : \mathbb{Z} \to \mathbb{Q}$, $n \mapsto n/1$ is injective. Therefore, we can treat \mathbb{Z} as a subset of \mathbb{Q} by treating set n/1 as the integer n.
- (4) Prove that this map is not surjective, i.e. there is a fraction $b/a \in \mathbb{Q}$ which is not $\iota(c)$ for any $c \in \mathbb{Z}$.

Exercise 0.2. Verify that the multiplication rule given by

$$\times: \mathbb{Q}^2 \to \mathbb{Q}, \ (b/a, b'/a') \mapsto b/a \times b'/a' := (bb')/(aa')$$

is well-defined. Note that this rule generalizes the usual rule for multiplying integers, i.e. grouping apples. Therefore, the multiplication rule for \mathbb{Z} remains the same after we treat it as a subset of \mathbb{Q} . (See next exercise.)

- (1) Prove using this multiplication rule, that b/a is a solution to the equation ax = b. That is, $a \times b/a = b$.)
- (2) Prove that this is the only solution. That is, if b'/a' is another solution, then b'/a' = b/a.

Exercise 0.3. Write For $n \in \mathbb{Z}$, put $\iota(n) = n/1$. Verify the identities

$$\iota(1) = 1/1, \quad \iota(nn') = \iota(n)\iota(n'), \quad n, n' \in \mathbb{Z}.$$

Also express $\iota(n+n')$ in terms of $\iota(n)$, $\iota(n')$.

Exercise 0.4. Let F be a field. For $X, Y, Z \in F^2$ and $\lambda, \mu \in F$, verify that

$$V1. \ (X + Y) + Z = X + (Y + Z)$$

$$V2. X + Y = Y + X$$

$$V3. X + 0 = X$$

$$V4. X + (-X) = 0$$

$$V5. \ \lambda(X+Y) = \lambda X + \lambda Y$$

V6.
$$(\lambda + \mu)X = \lambda X + \mu X$$

$$V$$
7. $(\lambda \mu)X = \lambda(\mu X)$

$$V8. \ 1X = X.$$

The same holds true for F^n .

Suggestion: Think about exactly what facts about F you need to use to prove each of these statements.

Exercise 0.5. WRITE UP Recall that for a given field F, we have a characteristic map defined by

$$\iota_F: \mathbb{Z} \to F, \quad n \mapsto n \cdot 1_F.$$

We say that F has characteristics p if there exists a smallest positive integer p such that $\iota_F(p) = 0_F$. If such a p does not exists, we say that F has characteristics 0.

- (1) What is the characteristics of the field \mathbb{Q} ? Prove your answer.
- (2) Prove that if F is finite then p exists and it must be a prime number.
- (3) Fix a prime number p. For each integer, put

$$\bar{a} = a + p\mathbb{Z} := \{a + pn | n \in \mathbb{Z}\} = \{..., a - p, a, a + p, a + 2p, ...\}.$$

Define the set

$$\mathbb{Z}/p := \{a + p\mathbb{Z} | a \in \mathbb{Z}\}.$$

Consider the map

$$f_p:[p]:=\{0,1,...,p-1\}\to \mathbb{Z}/p,\ a\mapsto \bar{a}:=a+p\mathbb{Z}.$$

Show that f_p is a bijection, hence $\#\mathbb{Z}/p = p$.

• (4) Show that the set \mathbb{Z}/p can be made a field with distinguished members $\overline{0}, \overline{1}$, by giving it 4 operations $+, \times, -, 1/\cdot$. Therefore, for every prime number p, you have constructed a finite field \mathbb{F}_p with p members.

LECTURER: BONG H. LIAN

While you should always try all assigned problems, you should write up only the ones you are asked to write up.

Assume U, V, W are F-vector spaces.

Exercise 0.1. If $f: U \to V$ and $g: V \to W$ are linear maps, verify that their composition $gf \equiv g \circ f: U \to W$ is also linear.

Exercise 0.2. Let Iso(V, V) be the set of isomorphisms (i.e. linear bijections) $\phi: V \to V$, and Iso(V, W) the set of isomorphisms $f: V \to W$. Suppose $f_0 \in Iso(V, W)$. Show that the map

$$T: \operatorname{Iso}(V, V) \to \operatorname{Iso}(V, W), \ \phi \mapsto f_0 \circ \phi$$

bijects, by writing the inverse map.

Exercise 0.3. Describe sol(E) to the following system E in \mathbb{R}^4 , using row reduction and then giving an isomorphism $f: \mathbb{R}^\ell \to \ker L_A$ (including specifying the appropriate ℓ), where A is the coefficient matrix of the system:

$$x + y + z + t = 0$$

$$E_0: x + y + 2z + 2t = 0$$

$$x + y + 2z - t = 0.$$

Replace the 0 on the right side of first equation by 1 to get a new inhomogeneous system E_1 , and then describe its solution set $sol(E_1)$ by writing down an explicit translation map.

Exercise 0.4. WRITE UP Let E be an n-variable F-linear system. Prove that

E is homogenous

$$\Leftrightarrow 0 \in sol(E)$$

 \Leftrightarrow sol(E) is F-subspace of F^n .

Try to make your proof as simple as possible, say less than half a page.

Exercise 0.5. WRITE UP Let $F[x]_d$ be the F-subspace of F[x] consisting of all polynomials p(x) of degree at most d, i.e. the highest power

 x^n appearing in p(x) is at most x^d . Consider the map

$$L_{n,d} := (1 - x^2)(\frac{d}{dx})^2 - 2x\frac{d}{dx} + n(n+1)id : F[x]_d \to F[x]_d$$

for integer $n \geq 0$. Verify that $L_{n,d}$ is F-linear. Describe $\ker L_{n,d}$ by solving the linear equation

$$L_{n,d}(f) = 0$$

for n = 0, 1, 2, say by giving a basis of $\ker L_{n,d}$. Equivalently, find $k \in \mathbb{Z}_{\geq 0}$ (which can depend on n, d) such that you can construct an F-isomorphism

$$f: F^k \to \ker L_{n,d}$$
.

LECTURER: BONG H. LIAN

F denotes a field. Assume U, V, W are F-vector spaces, and all dimensions are F-dimensions.

Exercise 0.1. Let V be a F-subspace of F^n . Decide whether each of the following is TRUE of FALSE. Justify your answer. For (a)-(e), assume that $\dim V = 3$.

- (a) Any 4-tuple of V is linearly dependent.
- (b) Any 2-tuple of V is linearly independent.
- (c) Any 3-tuple of V is a basis.
- (d) Some 3-tuple of V is a basis.
- (e) V contains a linear subspace W with dim W=2.
- (f) $(1,\pi)$, $(\pi,1)$ form a basis of \mathbb{R}^2 . You can assume that $|\pi-3.14| < 0.01$.
- (g) (1,0,0), (0,1,0) do not form a basis of the plane x-y-z=0.
- (h) (1,1,0), (1,0,1) form a basis of the plane x-y-z=0.
- (i) If A is a 3×4 matrix, then the subspace V of F^4 generated by the rows of A is at most 3 dimensional.
- (j) If A is a 4×3 matrix, then the subspace V of F^3 generated by the rows of A is at most 3 dimensional.

Exercise 0.2. WRITE UP Let

$$V = \{(a + b, a, c, b + c) | a, b, c \in F\} \subset F^{4}.$$

Verify that V is an F-subspace of F^4 . Find a basis of V.

Exercise 0.3. Fix 0 < k < n and consider the decomposition

$$F^{n} \equiv F^{k} \oplus F^{n-k}, \quad x = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \equiv \begin{bmatrix} \begin{bmatrix} x_{1} \\ \vdots \\ x_{k} \end{bmatrix} \\ \begin{bmatrix} x_{k+1} \\ \vdots \\ x_{n} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} u_{k} \\ \ell_{n-k} \end{bmatrix}.$$

Show if $A \in M_{n,n}$, then A also 'decomposes' into a corresponding block form

$$A \equiv \begin{bmatrix} P_{k,k} & Q_{k,n-k} \\ R_{n-k,k} & S_{n-k,n-k} \end{bmatrix}$$

so that the column vector Ax can be expressed in terms of the column vectors $Pu, Q\ell, Ru, S\ell$. If you are confused, do the special case n = 3, k = 1 first.

Exercise 0.4. WRITE UP In 1 line, prove that every matrix $A \in M_{n,n}$ satisfies a nontrivial polynomial equation of the form

$$a_0I_n + a_1A + \dots + a_kA^k = 0.$$

Exercise 0.5. Find a basis of sol(E) in F^4 for

$$E: x - y + 2z + t = 0.$$

Exercise 0.6. Find a basis for each of the subspaces $\ker L_A$ and $\operatorname{im} L_A$ of F^4 , where A is the matrix

$$\begin{bmatrix} -2 & -3 & 4 & 1 \\ 0 & -2 & 4 & 2 \\ 1 & 0 & 1 & 1 \\ 3 & 4 & -5 & -1 \end{bmatrix}.$$

Exercise 0.7. We know that $V^2 = V \times V$ form a vector space. Define an F-vector space structure on $U \times V$ a vector space. Let's call it the **direct sum** $U \oplus V$ of U, V. If dim U = k and dim V = n, what is dim $(U \oplus V)$? Prove your assertion in 5 lines.

Exercise 0.8. (Revisit MMC) We specialize to the case $V = F^2$. Let $(v_1, v_2) \in V^2$, put $A = [v_1, v_2] \in M_{2,2}$, and write $v_1 = \begin{bmatrix} a_{11} \\ a_{12} \end{bmatrix}$, $v_2 = \begin{bmatrix} a_{21} \\ a_{22} \end{bmatrix}$.

(a) (A numerical test for isomorphism) Show that v_1, v_2 are 'parallel', i.e. one a scalar multiple of the other, iff they are dependent, iff

$$a_{11}a_{22} - a_{12}a_{21} = 0$$

iff L_A is not an isomorphism, iff (v_1, v_2) is not a basis of V.

(b) Now suppose L_A is an isomorphism. Can you find the matrix B corresponding to (under MMC) to the inverse isomorphism $L_A^{-1}: F^2 \to F^2$?

LECTURER: BONG H. LIAN

Assume U, V, W are F-vector spaces. Put End V = Hom(V, V).

Exercise 0.1. Find the dimension of $M_{2,2}$ by giving a basis of this vector space. Generalize your result to $M_{k,l}$.

Exercise 0.2. Let $f, g: V \to V$ be two given maps such that $f \circ g = id_V$.

- (a) Show that g is injective and f is surjective.
- (b) Assume in addition that $\dim V < +\infty$ and f is linear. Show that f is injective, hence g is surjective. (Hint: Use COD.)
- (c) Conclude that g is bijective, and that $f = g^{-1}$ and $g \circ f = id_V$.
- (d) Let $A, B \in M_{n,n}$. Show that if AB = I, then BA = I.

Exercise 0.3. Another proof. Show that if $\ker(BA) = (0)$ then $\ker A = (0)$, hence A is an isomorphism. Conclude that $B = A^{-1}$. (Hint: COD.)

Exercise 0.4. WRITE UP Prove that for $A \in M_{n,n}$, det $A^t = \det A$. You will need the fact that $\operatorname{sgn} \sigma^{-1} = \operatorname{sgn} \sigma$ for any bijection of $\{1, 2, ..., n\}$.

Exercise 0.5. Decide if $A = [e_3, e_1 + e_2, e_2] \in M_{3,3}$ is invertible. If so, compute A^{-1} . Here e_i are the standard unit vectors if F^3 .

Exercise 0.6. WRITE UP Let $U \subset V$ be a subspace and $x \in \text{End } V$ such that $xU \subset U$. In 5 lines, prove that there is a canonical map

$$\bar{x}: V/U \to V/U, \ v+U \mapsto xv+U.$$

That is check that this is well-defined. Show it satisfies the following: if $p(t) \in F[t]$, and p(x) = 0 in End V then $p(\bar{x}) = 0$ in End V/U.

Exercise 0.7. By row reduction, compute

$$\det[e_3 + e_2 + e_1, e_1 + e_2, e_2].$$

Redo this it by using linearity of det in each column.

Exercise 0.8. Assume that $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2\times 2}$ is invertible. Find a formula for A^{-1} . That is to say, find each entry of A^{-1} in terms of the 4 entries a_{ij} of A. Be sure to check that you do get $AA^{-1} = A^{-1}A = I$. From this, can you guess the answer for 3×3 matrices.

Exercise 0.9. WRITE UP Prove that the minimal polynomial of a matrix $A \in M_{n,n}$ is conjugation invariant, i.e. $\mu_{g^{-1}Ag}(x) = \mu_A(x)$ for all $g \in \operatorname{Aut}_n$. Conclude that the algebra $F[x]/\mu_A(x)F[x]$ does not change under conjugations of A.

Exercise 0.10. Compute the
$$\mu_A(x)$$
 for $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$.

LECTURER: BONG H. LIAN

Exercise 0.1. WRITE UP Find all conjugacy classes of solutions to the matrix equation

$$X^{3} = 0$$

in $M_3(\mathbb{C})$.

Exercise 0.2. Work out the structure of the \mathbb{Z} -module $M = \mathbb{Z}^3/A\mathbb{Z}^2$ where

$$A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 3 & 4 \end{bmatrix}.$$

Namely determine its free part and torsion part of M.

Exercise 0.3. WRITE UP Take $R = \mathbb{C}[t]$, the polynomial algebra with complex coefficients. Work out the structure of the R-module $M = R^3/AR^2$ where

$$A = \begin{bmatrix} t^2 & 2t \\ 0 & t \\ t^3 - 1 & t - 2 \end{bmatrix}.$$

Namely determine its free part and torsion part of M.

Exercise 0.4. WRITE UP Show that there is a one to one correspondence between the isomorphism classes of n-dimensional F[t]-modules and the conjugacy classes of $n \times n$ matrices.

LECTURER: BONG H. LIAN

Exercise 0.1. Let $x, y \in M_{n,n}$. Recall that x, y are conjugates of each other iff there exists an invertible matrix g such that $y = g^{-1}xg$. Prove your assertions. (a) Suppose $\det x \neq \det y$. Can x, y be translates of each other, i.e. can

[x] = [y]?

(b) Suppose $\det x = \det y$. Does this imply that [x] = [y]?

Exercise 0.2. Prove that if $x \in M_{n,n}$ has characteristic polynomial $p_x(t)$ which has n distinct roots, then x is diagonalizable.

Exercise 0.3. WRITE UP Let $x_0 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, and let $[x_0]$ be its conjugation class in $M_{2,2}$. Show that there is a surjective map

$$\pi: [x_0] \to \mathbb{P}^1 := the \ set \ of \ all \ lines \ in \ F^2$$

given by $x \mapsto \ker x$. Here, a line in F^2 is a one dimensional subspace of F^2 . Can you describe the subset

$$\pi^{-1}(\ker x) = \{ y \in [x_0] | \ker y = \ker x \}$$

for each x? Prove your assertions.

Exercise 0.4. WRITE UP Let A be an F-algebra and V be a finite dimensional A-space. Show that V is a quotient A-space of a direct sum $A^{\oplus k}$ of k copies of A, regarded as an A-space. In other words, there exists a surjective A-space homomorphism

$$\pi:A^{\oplus k} \twoheadrightarrow V.$$

We say that an A-space M is semi-minimal if it decomposes into a independent sum of A-subspaces which are minimal. Show that if A is semi-minimal as an A-space, then any A-space V is semi-minimal.

2021 MATHCAMP RESEARCH PROJECTS: LINEAR ALGEBRA

LECTURER: BONG H. LIAN

This is a preliminary version of the research projects, subject to updates later.

0. Basic Assumptions and Notations

Unless stated otherwise, we shall make the following assumptions and use the following notations. F will denote a field of characteristic zero (i.e. F contains \mathbb{Z} as a subset). For simplicity, you can think about the case $F = \mathbb{R}$ or \mathbb{C} , the field of real or complex numbers. A vector space means a finite dimensional F-vector space, usually denoted by U, V, W, \ldots Likewise a linear map means an F-linear, and an F-matrix means a matrix with entries in F. Put

```
 \text{Hom}(U,V) \ := \ \text{the set of all linear maps } U \to V   \text{End } V \ := \ \text{Hom}(V,V), \ \text{the algebra of linear maps } V \to V   \text{Aut } V \ := \ \{f \in \text{End } V | f \text{ is bijective}\}   \text{Aut }_n F \ := \ \text{Aut } F^n \quad \text{the set of all isomorphisms } F^n \to F^n.   (M_n,\times) \equiv M_n \equiv M_{n,n}(F) \ := \ \text{the associative algebra of } n \times n \ F\text{-matrices}  with the usual matrix product  I \ \equiv \ I_n := [e_1,..,e_n], \ \text{the identity matrix in } M_n
```

We usually denote composition of maps as $fg \equiv f \circ g$.

These objects will be quite thoroughly studied in class during the first two weeks.

2

1. Statements of Problems in Project 1

We say that two matrices $x, x' \in M_n(F)$ are **conjugate** if

$$x' = gxg^{-1}$$

for some $g \in \operatorname{Aut}_n F$.

Problem 1.1.

Solve the matrix equation

$$x^2 = I$$

in the 2×2 matrix algebra $M_2(F)$ up to conjugation. In other words, classify solutions to the equations up to conjugation by $\operatorname{Aut}_2 F$. Thus two solutions are considered equivalent if they are conjugate of each other. How would you describe a 'nice' matrix x that represent each equivalence class of solutions to the equation? This same notion of solving a matrix equation shall apply to the next two problems as well.

Do the same for the matrix equation

$$x^2 = 0$$

Problem 1.2.

Generalize Problem 1.1 by solving each of the equations

$$x^k = I, \quad k = 2, 3, \dots$$

in the matrix algebra $M_n(F)$. Do the same for

$$x^k = 0, \quad k = 2, 3, \dots$$

Can you say any thing more in these problems when F is assumed to be a finite field of prime characteristic p?

Problem 1.3.

For $F = \mathbb{C}$, solve the matrix equation

$$\exp(x) = I$$

in the 2×2 matrix algebra $M_2(F)$ up to conjugation. You may assume that exp(x) is the limit (in the sense of calculus) of the sequences of matrices:

$$I, I+x, I+x+\frac{x^2}{2!}, \cdots$$

with respective to the length function $||A|| = \max_{ij} |a_{ij}|$ on matrices.

Problem 1.4.

Generalize Problem 1.3 to the case of matrix algebra $M_n(F)$ for $F = \mathbb{C}$.

2021 MATHCAMP RESEARCH PROJECTS: LINEAR ALGEBRA

LECTURER: BONG H. LIAN

This is a *preliminary* version of the research projects, subject to updates later.

0. Basic Assumptions and Notation

Unless stated otherwise, we shall make the following assumptions and use the following notation. F will denote a field of characteristic zero (i.e. F contains \mathbb{Z} as a subset). For simplicity, you can think about the case $F = \mathbb{R}$ or \mathbb{C} , the field of real or complex numbers. A vector space means a finite-dimensional F-vector space, usually denoted by U, V, W, etc. Likewise, a linear map means an F-linear map, and an F-matrix means a matrix with entries in F. We usually denote composition of maps as $fg \equiv f \circ g$.

```
Hom(U, V) := the set of all linear maps U \to V

End V := \operatorname{Hom}(V, V), the algebra of linear maps V \to V

Aut V := \{f \in \operatorname{End} V \mid f \text{ is bijective}\}

Aut _nF := \operatorname{Aut} F^n the set of all isomorphisms F^n \to F^n.

(M_n, \times) \equiv M_n \equiv M_{n,n}(F) := \text{the associative algebra of } n \times n \text{ } F\text{-matrices}

with the usual matrix product

U_n := \{A = (a_{ij}) \in M_n \mid A \text{ is upper triangular, i.e., } a_{ij} = 0 \text{ for } i > j\}

I \equiv I_n := [e_1, \cdots, e_n] \text{ the identity matrix in } M_n
```

These objects will be quite thoroughly studied in class during the first two weeks.

1. Statements of Problems in Project II

Problem 1.1. Classify all F-algebra homomorphisms $M_n \to F[x]$.

Problem 1.2. Classify all F-algebra homomorphisms $U_n \to F[x]$.

Recall the definition of rings and ring homomorphisms. Do the following problems.

Problem 1.3. Classify all ring homomorphisms $M_n \to F[x]$.

Problem 1.4. Classify all ring homomorphisms $U_n \to F[x]$.

Problem 1.5. What can you say about these problems when F is a finite field of prime characteristic p?

2021 MATHCAMP LINEAR ALGEBRA FINAL EXAM

14:00 - 15:45, JULY 31ST, 2021

Note. Do all the three problems. Please write down all the details about your arguments and computations as clear as possible; no partial credit will be given. In what follows, unless otherwise stated, F will be a field.

Problem 1. Answer the following questions.

(1) Let

$$f(x, y, z, w) = \begin{vmatrix} x & y & z & w \\ w & x & y & z \\ z & w & x & y \\ y & z & w & x \end{vmatrix}.$$

Regarding f(x, y, z, w) as a polynomial over \mathbb{C} , compute the coefficient of the following monomials in f(x, y, z, w):

- (a) x^4 .
- (b) x^2yz .
- (2) Let $X = (x_1, ..., x_n)$ be a vector in F^n with $||X||^2 := \sum_{i=1}^n x_i^2 \neq 0$. Put

$$A = (a_{ij}) := \left(\delta_{ij} - \frac{2x_i x_j}{\|X\|^2}\right) \in M_n(F).$$

Show that det(A) = -1. Here δ_{ij} denotes the Kronecker delta, i.e., $\delta_{ij} = 1$ for i = j and $\delta_{ij} = 0$ for $i \neq j$.

(3) Let $A \in M_n(F)$ such that $A^k = 0$ for some k > 0. Show that any element in F[A] of the form

$$a_0I_n + a_1A + \dots + a_mA^m, \ a_j \in F$$

with $a_0 \neq 0$ is invertible in $M_n(F)$.

Problem 2. Let V be an n-dimensional vector space over F. The set of all F-linear maps from V to itself is denoted by $\operatorname{End}_F(V)$. Let $f \in \operatorname{End}_F(V)$. The expansion

$$\det(t \cdot I_n - f) = \sum_{k=0}^n a_k(f)t^k.$$

defines maps $a_k \colon \operatorname{End}_F(V) \to F$. For $f, g \in \operatorname{End}_F(V)$, write $fg \equiv f \circ g$.

- (1) Show that $a_k(f)$ is invariant under conjugation, i.e., for any $g \in \operatorname{Aut}_F(V)$, we have $a_k(g^{-1}fg) = a_k(f)$.
- (2) Show that $a_{n-1}(fg) = a_{n-1}(gf)$ for any $f, g \in \text{End}_F(V)$.
- (3) Assume that char(F) = 0. For $f \in End_F(V)$, can we find an element $g \in End_F(V)$ such that $fg gf = id_V$? Justify your answer.

Problem 3. Recall that for F-vector spaces U and W, $\operatorname{Hom}_F(U,W)$ is the set of all F-linear maps from U to W. Let V be a finite-dimensional vector space over F. For any element $f \in \operatorname{Hom}_F(U,W)$, we define a map $\Phi(f) \colon \operatorname{Hom}_F(V,U) \to \operatorname{Hom}_F(V,W)$ via

$$\Phi(f)(x) = f \circ x, \text{ for } x \in \text{Hom}_F(V, U).$$

- (1) Show that $\Phi(f)$ is well-defined, i.e., $\Phi(f)(x)$ is an F-linear map from V to W for any $f \in \operatorname{Hom}_F(U,W)$ and any $x \in \operatorname{Hom}_F(V,U)$.
- (2) Show that the map

$$\Phi \colon \operatorname{Hom}_F(U,W) \to \operatorname{Hom}_F(\operatorname{Hom}_F(V,U),\operatorname{Hom}_F(V,W))$$

is F-linear.

(3) Given a sequence of vector spaces V_1, V_2, V_3 and linear maps f and g

$$V_1 \xrightarrow{f} V_2 \xrightarrow{g} V_3$$

such that f is injective, g is surjective, and ker(g) = im(f), show that for any vector space V, the induced sequence

$$\operatorname{Hom}_F(V, V_1) \xrightarrow{\Phi(f)} \operatorname{Hom}_F(V, V_2) \xrightarrow{\Phi(g)} \operatorname{Hom}_F(V, V_3)$$

has the following properties:

- (a) $\Phi(f)$ is injective,
- (b) $\Phi(g)$ is surjective,
- (c) $\ker(\Phi(g)) = \operatorname{im}(\Phi(f))$.