Soutenance de mémoire

Méthodes d'analyse des processus métier pour le choix d'une architecture Big Data adaptée

Ludwig SIMON 3 Juillet 2019

Université Paris Nanterre Tuteur : Mcf. Emmanuel HYON

Sommaire

- 1. Introduction
- 2. Architectures Big Data
- 3. Sélection
- 4. Perspectives d'évolution
- 5. Conclusion

Soutenance de mémoire

Introduction

Introduction

Objectif: Proposer une architecture Big Data correspondant à des besoins spécifiques.

Problématique : Domaine très vaste.

Contexte : Explosion du nombre de données à traiter/stocker

Questions:

- · De quoi est constitué une architecture Big Data?
- · Ouelles sont les architectures existantes?
- · Quels outils permettent de constitué une architecture Big Data?

Soutenance de mémoire Introduction

Architectures Big Data

Architecture générale

FIGURE 1 - Composants d'une architecture Big Data

Soutenance de mémoire Architectures Big Data 6

Architecture Lambda

FIGURE 2 – Schéma de l'architecture Lambda

Soutenance de mémoire Architectures Big Data

Architecture Kappa

FIGURE 3 – Schéma de l'architecture Kappa

Soutenance de mémoire Architectures Big Data

Sélection

Comment choisir?

- · Analyse des cas d'utilisation.
- · Définition de critères de choix.
- · L'approche de sélection en entreprise.

Critère	Architecture
Prédiction d'évènement entrant à l'aide de modèle	Lambda
d'apprentissage automatique	
Traitement des données en temps réel et par lots	lambda
radicalement différents	
Traitement des données par lots complexe	lambda
Très faible latence entre récupération et affichage	Карра
des données	
Traitement des données par lots et en temps réel	Карра
similaires	
Stockage permanent des données batch avant le	Lambda/Kappa
traitement	

TABLE 1 – Table des critères pour le choix de l'architecture

Critère	Solution
Garantir la consommation d'un message par un seul	RabbitMQ
consommateur	
Nécessité d'ingérer rapidement une grande quan-	Kafka
tité de messages	
Ordre des messages primordial	Kafka
Nécessité de conserver les messages à plus au	Kafka
moins long terme	
Utilisation de protocoles spécifiques (MQTT, AMQP,	RabbitMQ / Ac-
)	tiveMQ
Règles de routage des messages complexe	RabbitMQ / Ac-
	tiveMQ

TABLE 2 – Table des critères pour le choix du logiciel d'agent de messages

Ingestion des données

Critère	Solution
Manque de connaissances pour la réalisation de	ETL/ELT
programmes personnalisés	
Nécessité d'extraire de nombreuses sources de	ETL/ELT
données	
Peu de sources de données	Programme
	personnalisé
Nécessité d'avoir des performances élevées	Programme
	personnalisé

TABLE 3 – Table des critères pour le choix d'une solution complète ou d'un programme personnalisé pour l'ingestion des données.

Traitement des données : Batch

Critère	Solution
Nécessité d'utiliser des librairies autres que l'ap-	Spark
prentissage automatique	
Nécessité d'avoir des performances accrues	Spark
Nécessité d'avoir une tolérance à la panne exem-	MapReduce
plaire	
Les performances ne sont pas la priorité	MapReduce

TABLE 4 – Table des critères pour le choix de la solution de traitement par lots.

Traitement des données : Temps réel

Critère	Solution	
Source de données en micro batch	Spark	Strea-
	ming	
Source de données en streaming	apaches	Storm

TABLE 5 – Table des critères pour le choix de la solution de traitement en temps réel.

Stockage des données

- · Clés/Valeurs.
- · Grandes colonnes.
- · Séries temporelles.
- · Orientée graphe.
- · Orientée documents.
- · Moteur d'indexation.

Visualisation et analyse des données

Critère	Solution
Monitoring	Grafana
Visualisation complexe	D3.js
Visualisation simple	Kibana/Solr

TABLE 6 – Table des critères pour le choix de la solution de visualisation et analyse des données.

Orchestration des données

Critère	Solution
Nécessité d'effectuer une action spécifique en cas	Apache Oozie
d'erreur	
Nécessité de lancer une succession de tâche	Apache Oozie
Exécution de tâche simple	Cron

TABLE 7 – Table des critères pour le choix de la d'orchestration.

Perspectives d'évolution

Perspectives d'évolution

- · Benchmarks des solutions logicielles
- · Augmenter le nombre de critères/solutions logicielles
- Évaluer le résultat

Soutenance de mémoire Perspectives d'évolution 20

Conclusion

Conclusion

- · Domaine très vaste.
- · Enrichir les critères de choix.
- · Enrichir le nombre de solution logicielle traitée.
- · Évaluer le résultat obtenu.

Soutenance de mémoire Conclusion