Singularities in mixed characteristic via Riemann-Hilbert correspondence

Jakub Witaszek

Princeton University

June 14, 2023

(work in progress with B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron)

Table of Contents

Introduction

2 Ideals measuring singularities

3 Idea of the proof

Introduction

Goal: Measure mildness of singularities.

Setting: $X = \operatorname{Spec}(R)$ - finite type normal affine scheme over a DVR

Characteristic zero: use projective birational maps; e.g.

X has rational singularities $\stackrel{\text{def}}{\Longleftrightarrow} R\pi_*\mathcal{O}_Y = \mathcal{O}_X$ for some resolution of singularities $\pi: Y \to X$.

Positive characteristic: use Frobenius; e.g.

- X is regular \iff Frobenius is flat (Kunz)
- X has mild singularities $\iff F^* \colon \mathcal{O}_X \to F_*\mathcal{O}_X$ splits.

Mixed characteristic: What to do?

Starting point:

Theorem (Hochster's direct summand conjecture (André))

Let R be a regular Noetherian local ring.

Then every finite extension $R \subseteq S$ splits as an R-module map.

Candidate for a mild singularity in mixed characteristic:

X is a *splinter* $\stackrel{def}{\iff} \mathcal{O}_X \to f_*\mathcal{O}_Y$ splits for every finite surjection $f: Y \to X$.

Caveaut: X characteristic 0, then splinter = normal

More history:

Breakthrough work of Ma-Schwede on mixed characteristic singularities after André.

Theorem (Bhatt!!!)

R Noetherian local domain of mixed characteristic. Then R^+ is Cohen-Macaulay up to p-completion

Consequence: Kodaira vanishing up to finite covers.

Geometric applications

 $Theorem\ (\hbox{\it Bhatt-Ma-Patakfalvi-Schwede-Tucker-Waldron-W.,}\ Takamatsu-Yoshikawa)$

3-dimensional mixed characteristic Minimal Model Program over $\mathbb{Z}[1/30]$

Assuming four-dimensional resolutions:

Theorem (Hacon-W., Xie-Xue)

4-dimensional semistable Minimal Model Program over $\mathbb{Z}[1/30]$

Corollary (Hacon-W.)

Let X and Y be birational Calabi-Yau 3-folds in characteristic p > 5.

Then X lifts to characteristic $0 \implies Y$ lifts to characteristic 0.

Simplifying assumption: X is Gorenstein (K_X is Cartier and X is CM).

characteristic 0	characteristic p	mixed characteristic
rational	F-rational	splinter

Characteristic 0

X rational $\iff \pi_*\omega_Y = \omega_X$ for a resolution $\pi\colon Y\to X$

Mixed characteristics

$$X$$
 splinter $\iff f_*\omega_Y \twoheadrightarrow \omega_X$ for all $f: Y \to X$ finite surjection $\underset{(\dagger)}{\overset{Bhatt}{\iff}} \underbrace{g_*\omega_Y \twoheadrightarrow \omega_X}$ for all $g: Y \to X$ alteration

General definition

X is alteration-splinter $\stackrel{def}{\Longleftrightarrow}$ (†) holds

Ideals measuring singularities

Goal 1: show that the locus of prime ideals p such that R_p is an alteration-splinter is open (cf. Datta-Tucker).

Goal 2: find an ideal $I \subseteq R$ such that

- **1** R_p is an alteration-splinter $\iff p \notin \operatorname{Supp} R/I$
- ② I is calculated using alterations of R.

We are building on the work of Blickle-Schwede-Tucker in positive characteristic (test ideals via finite maps and alterations) which in turn builds on the work of Hochster, Huneke, Smith,

Ideal measuring rational singularities in characteristic 0:

(Grauert-Riemenschneider sheaf)

$$\mathcal{I}(\omega_X) \stackrel{\text{def}}{:=} \bigcap_{\pi : Y \to X} \pi_* \omega_Y \text{ over all projective birational } \pi \colon Y \to X$$
$$= \pi_* \omega_Y \text{ for a resolution } \pi \colon Y \to X$$

Properties:

- $\mathcal{I}(\omega_X) \subseteq \omega_X$ is a coherent ideal sheaf
- $\mathcal{I}(\omega_X) = \omega_X \iff X$ has rational singularities.

Ideal measuring alteration-splinters: (test ideal)

$$\tau(\omega_X) := \bigcap_{g \colon Y \to X} \operatorname{im} (g_* \omega_Y \to \omega_X) \text{ over all alterations } g \colon Y \to X$$

By definition, $\tau(\omega_X) = \omega_X \iff X$ is alteration-splinter.

Conjecture

$$\tau(\omega_X) = \operatorname{im}(g_*\omega_Y \to \omega_X) \text{ for some alteration } g \colon Y \to X.$$

In particular, $\tau(\omega_X)$ is coherent, i.e. $\tau(\omega_R[\frac{1}{\ell}]) = \tau(\omega_R)[\frac{1}{\ell}]$.

Theorem (BMPSTWW II (in progress))

The above conjecture holds up to small p-perturbation.

Specifically, $\tau(\omega_X, p^{\epsilon})$ is coherent and calculated by a single alteration.

Applications

- openness of *almost*-splinter locus
- effective global generation, Briancon-Skoda, subadditivity, . . .
- $au(\omega_X) = au_{\mathrm{HLS}}(\omega_X)$ (ideal of Hacon-Lamarche-Schwede)
- non-archimedean Calabi-Yau problem in mixed characteristics (Fang-Gubler-Künnemann)
- . . .

Idea of the proof.

Goal: find an intrinsic definition of $\tau(\omega_X)$ using topological methods.

(motivated by work of Bhatt-Blickle-Lyubeznik-Singh-Zhang in positive characteristic)

Topological methods over \mathbb{C} :

Singular cohomology $H^i(X, \mathbb{C})$:

- good properties when X smooth
- many things break when X is singular (e.g. Poincaré duality)

$Intersection\ cohomology\ (Goresky-MacPherson,\ Deligne)$

There exists a complex ${
m IC}_X\in D^b_{
m cons}(X)$ such that

$$I^pH^i(X,\mathbb{C}):=\mathbb{H}^i(X,\mathrm{IC}_X[-d])$$

has many good properties (e.g. Poincare duality).

Remark

- $\mathrm{IC}_{\mathrm{X}}=\mathbb{C}[d]$ if X smooth
- ullet IC $_{\mathrm{X}}$ is an example of a perverse sheaf

 $\operatorname{Perv}(X) \subseteq D^b_{\operatorname{cons}}(X)$ abelian category of *nice* complexes of cons. sheaves.

Intrinsic definition of $\mathcal{I}(\omega_X)$:

Fact

$$\mathcal{I}(\omega_X) = \operatorname{im}(H^0 \operatorname{RH}^{\operatorname{Higgs}}(\operatorname{IC}_X) \to \omega_X)$$

Higgs Riemann-Hilbert (= $GR_{\bullet}DR(-)$):

 $\mathrm{RH}^{\mathrm{Higgs}} \colon D^b_{\mathrm{HM}}(X) \to D^b_{\mathrm{coh}}(X).$

Derived category of Hodge modules:

Intuition: $D_{\mathrm{HM}}^b(X) = D_{\mathrm{cons}}^b(X)$ but with some additional structure

Example: If X smooth, then

$$\mathrm{RH}^{\mathrm{Higgs}}(\mathbb{Q}) = \mathcal{O}_X[0] \oplus \Omega^1_X[-1] \oplus \cdots \oplus \Omega^d_X[-d]$$

New *p*-adic setting:

- $V = \mathbb{Z}_p$ and $V_{\infty} = \widehat{\mathbb{Z}_p[p^{1/p^{\infty}}]}$.
- X_{∞} proper flat scheme over V_{∞} .

Theorem (p-adic Riemann-Hilbert of Bhatt-Lurie)

There exists a functor $\mathrm{RH}^{\mathrm{Higgs}}\colon D^b_{\mathrm{cons}}(X_\infty[\frac{1}{p}],\mathbb{Z}_p) o D^b_{\mathrm{coh}}(X_\infty)^a$ such that

- it commutes with pushforward and duality
- $\mathrm{RH}^{\mathrm{Higgs}}(\mathbb{Z}_p) = \mathcal{O}_{X_{\infty},\mathrm{perfd}}$
- it is left t-exact for perverse t-structures on both sides

Remark:

For X smooth, $\mathcal{O}_{X,\mathrm{perfd}}[\frac{1}{\rho}]\simeq \mathcal{O}_{X[\frac{1}{\rho}]}[0]\oplus \Omega^1_{X[\frac{1}{\rho}]}[-1]\oplus \cdots \oplus \Omega^d_{X[\frac{1}{\rho}]}[-d].$

The following theorem implies the main theorem.

Theorem (BMPSTWW II (in progress))

X – proper flat over V

$$X_{\infty} := X \otimes_{V} V_{\infty}$$

Then

(A)
$$\tau(\omega_{X_{\infty}}) = \underbrace{\operatorname{im}(H^{0}\mathrm{RH}^{\operatorname{Higgs}}(\mathrm{IC}_{X_{\infty}}) \to \omega_{X_{\infty}})}_{(\star)}$$

(B)
$$au(\omega_X) = t(au(\omega_{X_\infty}))$$
 for some special map $t \colon \mathcal{O}_{X_\infty} o \mathcal{O}_X$

For simplicity, we omit technical shifts of indices related to the fact that the perverse t-structures are relative.

Sketch of the proof of (A): After completion at \mathfrak{m} , by Matlis duality:

$$\begin{split} \tau(\omega_{X_{\infty}}) &= \operatorname{im} \left(H^d_{\mathfrak{m}}(\mathcal{O}_{X_{\infty}}) \to H^d_{\mathfrak{m}}(\pi_* \mathcal{O}^+_{X_{\infty}}) \right)^{\vee} \\ (\star) &= \operatorname{im} \left(H^d_{\mathfrak{m}}(\mathcal{O}_{X_{\infty}}) \to H^d_{\mathfrak{m}}(\operatorname{RH}^{\operatorname{Higgs}}(\operatorname{IC}_{X_{\infty}}[-d])) \right)^{\vee}, \end{split}$$

where $\pi\colon X_\infty^+ \to X_\infty$.

By Bhatt, $\mathrm{IC}_{X_\infty} o \pi_*(\mathbb{Z}_p[d])_{X_\infty^+}$ is an injection of perverse sheaves on $X_\infty[\frac{1}{p}]$.

$$\text{Apply RH: } \mathrm{RH}^{\mathrm{Higgs}}(\mathrm{IC}_{X_\infty}[-d]) \to \mathrm{RH}^{\mathrm{Higgs}}(\pi_*(\mathbb{Z}_p)_{X_\infty^+}) = \pi_*\mathcal{O}_{X_\infty}^+.$$

By perverse left t-exactness: $H^d_{\mathfrak{m}}(\mathrm{RH}^{\mathrm{Higgs}}(\mathrm{IC}_{X_\infty}[-d])) \to H^d_{\mathfrak{m}}(\pi_*\mathcal{O}_{X_\infty}^+)$ is injective.

Hence, $\tau(\omega_{X_{\infty}}) = (\star)$.