Konvolúciós Neurális Hálók és Vision Transformer architektúrák összehasonlítása felhőosztályozási feladatokra

Beszámoló a Deep Learning a gyakorlatban Python és LUA alapokon c. tárgyból

Kássa Kristóf kassak@edu.bme.hu Barancsuk Lilla
barancsuk.lilla@vik.bme.hu

Bevezetés

- ► Felhőképek osztályozása www napelemek termelésének előrejelzése
- Neurális hálók képfeldologzásra: Konvolúciós Neurális Hálók (CNN) vs Vision Transfromerek (ViT)

► CNN

- Konvolúciós és pooling rétegek halmaza
- Minták keresése "csúszó" szűrők alkalmazásával
- A kimeneti feature mapet az utolsó réteg osztályozza
- Hagyományosan hang, kép, videó feldolgozásra

▶ ViT

- A bemeneti képet pixelsorozatként kezeli
- ▶ Pixelek közti kapcsolat w self-attention mechanizmus
- Hagyományosan szövegbányászatra alkalmazták (NLP)

Célkitűzés

- Felhőkép klasszifikálás CNN és ViT modellekkel
- A két architektúra tulajdonságainak és korlátainak megismerése
- Felépítésbeli és működésbeli különbségek vizsgálata
- Elvárt (korábbi kutatások) és saját eredmények összehasonlítása új adathalmazon
 - Számítási kapacitás igényeik
 - Futási idejük
 - Pontosságuk

Korábbi kutatások

- Transzformerek alkalmazása képfeldolgozási feladatokra
- CNN memória és számításigény szempontjából hatékonyabb (konvolúciós és pooling rétegek)
- A ViT modell "adatéhesebb", de pontosabb
- A CNN tanult jellemzőit könnyebb megérteni a szűrők vizualizálásával

Model	Layers	${\rm Hidden\ size\ } D$	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Table 1: Details of Vision Transformer model variants

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21K (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	-
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	-
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	-
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	-
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Forrás: Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale."

Felhasznált adatsor

- Adathalmaz forrás: Swimcat-extend dataset (nyílt adatbázis)
- ▶ 2100 különböző kép, 6 különböző típusú égbolt, figyelembe véve a felhőzetet
- Kategóriánként 350 db kép
- A tanítás előtt a képeket normalizáltuk és 224x224 méretűre formáztuk
- Egyszerű statisztikai tulajdonságok alapján nem megkülönböztethető kategóriák

A–Clear sky

B–Patterned

C–Thin white clouds

D-Thick white clouds

E-Thick dark clouds

F–Veil clouds

A hálók felépítése

- Bemeneti réteg
- Opcionális adatdúsítás (augmentation layer)
 - Nincs adatdúsítás
 - Véletlen forgatás
 - Véletlen forgatás, tükrözés és zoom
- ► Előtanított model (CNN vagy ViT, tanítható vagy rögzített súlyok)¹
- Dropout réteg
- Kimeneti réteg

Konvolúciós neurális háló (CNN)

- ▶ EfficientNetB1²
- ▶ ResNet18D²

Vision Transformer (ViT)

- vit_tiny_patch16_224²
- vit_tiny_r_s16_p8_224_in21k²

¹ A hálókat az ImageNet-21k adatbázison előtanították

² Tensorflow Image Models

Vizsgált modellkonfigurációk, kísérleti módszertan

	Paraméterek száma	Háló taníthatósága	Adatdúsítás	CNN modell	ViT modell
1	$5 \cdot 10^{6}$	rögzített	nincsen	cnn_5m_f_na	vit_5m_f_na
2	3.10	rogzitett	alacsony	cnn_5m_f_la	vit_5m_f_la
2			magas	cnn_5m_f_ha	vit_5m_f_ha
4	$5 \cdot 10^6$	tanítható	magas	cnn_5m_t_ha	vit_5m_t_ha
5	10^{7}	tanítható	magas	cnn_10m_t_ha	vit_10m_t_ha

Kísérleti módszertan

- 5-szörös keresztvalidáció minden modellre
- 400 epoch tanítás + validáció
- Adam optimizer, $lr = 3 \cdot 10^{-5}$
- ► Early stopping 20 epoch után

Eredmények értékelése: pontosság alakulása a tanítás során

Eredmények értékelése: maximális elért validációs pontosság

Eredmények értékelése: független tesztadatsor

Model neve	Pontosság [%]	Veszteség	
vit_10m_ha_t	77	1,52	
cnn_5m_ha_t	74	1,12	
vit_5m_ha_t	72	1,67	
cnn_10m_ha_t	63	1,20	
vit_5m_ha_f	56	1,60	
vit_5m_la_f	50	2,56	
vit_5m_na_f	43	3,42	
cnn_5m_na_f	42	1,60	
cnn_5m_ha_f	39	1,60	
cnn_5m_la_f	37	1,61	

Modellek performanciájának összehasonlítása

Modell	FLOPS (gigaFLOPS)	Paraméterek száma (millió)	Maximum pontosság [%]
vit_5m_ha_t	162	5,7	1,0
vit_10m_ha_t	56	10,5	0,99
cnn_5m_ha_t	75	7,8	0,98
cnn_10m_ha_t	263	11,7	0,98
vit_5m_na_f	162	5,7	0,97
vit_5m_la_f	162	5,7	0,96
vit_5m_ha_f	162	5,7	0,92
cnn_5m_na_f	75	7,8	0,87
cnn_5m_la_f	75	7,8	0,81
cnn_5m_ha_f	75	7,8	0,76

Összefoglalás

- Cél: képfeldolgozási célú neurális háló architektúrák összehasonlítása
- Probléma: felhőképek osztályozása
- Változatos paraméterű modellek
- Modellek értékelése 5-szörös keresztvalidációval
- Performancia és pontosság vizsgálata

Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems 30* (2017) - cited more than 62000 times

Veszteség alakulása a tanítás során

Különböző modellek veszteségének összehasonlítása

