

DOCUMENT RESUME

ED 061 955

LI 003 620

AUTHOR Vickery, Brian C.; And Others
TITLE Classification in Science Information; A Comparative Study Undertaken by ASLIB for the International Council of Scientific Unions as a Contribution to the ICSU/UNESCO Study of the Feasibility of a World Science Information System (UNISIST).
INSTITUTION Aslib, London (England).
SPONS AGENCY International Council of Scientific Unions, Paris (France).
PUB DAT. Jun 69
NOTE 121p.; (38 References)
EDRS PRICE MF-\$0.65 HC-\$6.58
DESCRIPTORS Abstracts; Bibliographies; Catalogs; *Classification; *Documentation; Indexes (Locaters); Information Processing; Information Retrieval; Information Systems; *Standards; *Subject Index Terms; Surveys; *Thesauri
IDENTIFIERS *Scientific and Technical Information; Secondary Services

ABSTRACT

The main objective of this comparative survey of the use of classification in science information is to explore the possibility of adopting a standard general classification in this field. Classification is defined as the grouping, division and/or sequencing according to meaning, of subject representations such as catalogue or index terms, descriptors, etc. Classification is used in "intermediate" documents (bibliographies, abstracts, indexes, etc.) to arrange entries in a meaningful sequence and to structure the relations between subject terms. Classificatory arrangements used in a number of secondary publications are compared with general classifications and with each other. Classificatory relations used in some major thesauri are also compared with general classifications and with each other. The general classifications differ from the intermediate documents with which they were compared in two ways: they lack some of the subject terms used by the documents, and differ in some of their classificatory relations (grouping, decision and sequencing). The overall picture is that, although classification schemes do not occur in all intermediate documents, the use of classificatory relations for both arrangement and thesauric information retrieval is widespread. (Author/NH)

ED 061955

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

CLASSIFICATION IN SCIENCE INFORMATION

A comparative study undertaken by

ASLIB

for the International Council of Scientific Unions

as a contribution to

the ICSU/UNESCO study of the feasibility of

a World Science Information System (UNISIST)

Study carried out by: Brian C. Vickery
Margaret Slater
Alexandra Presanis
Rose Reynolds

Aslib
3 Belgrave Square
London, S.W.1.

June 1969.

LI 003 620

Contents

SUMMARY	page 1
A. INTRODUCTION	
A1. Terms of reference	3
A2. The meaning of "classification" in documentation	3
A3. Subject representations in science information	5
A4. The possible role of a standard classification	6
A5. The surveys undertaken	8
B. CLASSIFICATION IN SECONDARY PUBLICATIONS	
B1. General survey of intermediate documents	11
B2. The classifications surveyed	11
B3. Comparison of classifications	16
C. CLASSIFICATION IN THESAURI	
C1. The development of thesauri	23
C2. Classification in TEST	23
C3. Classification in MESH	25
C4. Euratom Thesaurus and UDC	26
C5. Comparisons between thesauri	28
D. GENERAL DISCUSSION	
D1. Summary of the survey results	30
D2. The uses of classification in information	31
D3. Classification in science	32
D4. Current scientific research	34
D5. The needed level of standardisation	36
D6. Recent work on faceted classification	39
D7. Conclusion	40
E. REFERENCES	43
APPENDIXES	
1. Guides uses to identify intermediate documents	
2. COSATI subject category list	
3. Tabulations (Tables 3-27)	
4. Survey of UDC editions	
TABLES	
1. Analysis of intermediate documents to show use of classification	(page 12)
2. Bulletin signalétique - main divisions considered	(page 18)
3. Bulletin signalétique - second level headings	
4. Astronomy and astrophysics	
5. Physics of earth	
6. Physics	
7. Structure of matter	
8. Solid state physics	
9. Chemistry	

Continued overleaf

TABLES (continued)

10. General and physical chemistry
11. Biology
12. Biochemistry
13. General and physical chemistry
14. Sample comparison with TEST
15. Summary of comparisons with TEST
16. Sample comparisons with MESH
17. Summary of comparisons with MESH
18. Summary of comparisons with Euratom
19. Biochemistry in MESH and TEST
20. Physiology in TEST and MESH
21. Viruses in MESH and TEST
22. Outline of Farradane's facets
23. Objects and phenomena in physics (A.I.P.)
24. Ensembles and associated phenomena in physics (A.I.P.)
25. Properties, processes and phenomena in chemical physics (A.I.P.)
26. Thermodynamic and thermal properties (A.I.P.)
27. Classification of fundamental sciences (Auger)

FIGURES

1. A sample hierarchy
2. Alphabetical subject index
3. Classified bibliography
- 4/5. Dewey Decimal Classification
- 6/7. Universal Decimal Classification
- 8/10. Bliss Bibliographic Classification
11. Colon Classification
12. Subject heading list
- 13/15. Thesaurus of Engineering and Scientific Terms
- 16/17. Medical Subject Headings
18. Euratom Thesaurus chart.

SUMMARY

This report presents a comparative survey of the use of classification in science information. Its main objective is to explore the possibility of adopting a standard general classification in this field.

Classification is defined in section A2 as the grouping, division and/or sequencing according to meaning, of subject representations. Such representations (catalogue or index terms, descriptors, etc.) occur mainly in the intermediate documents of science (bibliographies, abstracts, indexes, directories, terminologies, etc.). The report compares samples of classifications used in these documents with various published classifications. These include four general classifications (Dewey, UDC, Bliss, Colon), and special classifications prepared by COSATI, the American Institute of Physics, and others.

Classification can be used in intermediate documents (a) to arrange entries such as abstracts in a meaningful sequence, (b) to structure the relations between subject terms. A preliminary survey, reported in section B1, shows that in many of these documents no such use is made of classification. Among those that do use it, there is very little agreement on classification. Insofar as there is a standard classification used by a minority of documents for arrangement, it is the Universal Decimal Classification (UDC).

Classificatory arrangements used in a number of secondary publications (abstracts) are compared with general classifications and with each other in section B3. It appears unlikely that any of the general schemes examined could serve as an adequate source of classificatory arrangement for secondary publications, and also questionable whether any general classification would adequately cater for all special interests.

Classificatory relations used in some major thesauri (word-lists for indexing) are compared with general classifications and with each other in section C. Once again, none of the general schemes examined could serve as an adequate source of terms and relations for the thesauri studied. Considerable differences also occur among thesauri, as illustrated in sections C4 and C5.

The general classifications differ from the intermediate documents with which they were compared in two ways: they lack some of the subject terms used by the documents, and differ in some of their classificatory relations (grouping, division and sequencing). As far as term content is concerned, UDC is the least inadequate. Of the terms used in the classificatory arrangements of secondary publications, the following percentages were found in the general classifications: Dewey 68%, UDC 79%, Bliss 68%, Colon 55%. Of the terms sampled from the thesaurus "TEST", the following percentages were found: Dewey 26%, UDC 51%, Bliss 21%, Colon 14%. As far as classificatory relations are concerned, no one scheme is noticeably closer to those found in intermediate documents. This is illustrated in sections B3, C2 and C3.

The overall picture is that, although formal classification schemes do not occur in all intermediate documents, the use of classificatory relations for both arrangement and thesauric information retrieval is widespread. The classifications so used are very diverse, and could not readily be drawn from one of the general schemes examined. The causes of this situation, and its implications for standardisation, are discussed in section D of the report.

General classifications are particularly concerned to stabilise the higher levels of their hierarchy, relations between broad fields of knowledge. Yet, with the growing interdependence of science and technology, and the development of new interdisciplinary subjects, it is these relations that become inadequate for newly emerging special interests. This is discussed and illustrated in sections D3 and D4. The report therefore considers the possibility of standardisation at a lower level - at the level of facets (homogeneous sets of terms) that may occur in a number of fields. Recent developments of this kind are discussed in section D6. The concluding section briefly discusses work to be done if standardisation at some level were to be attempted.

The report is supplemented by 27 tables, 18 figures, and references to some relevant literature.

A. INTRODUCTION

A1. Terms of reference

To assist the ICSU/UNESCO study of the feasibility of a World Science Information System (UNISIST), Aslib was commissioned to prepare "a comparative study of classifications".

The UNISIST project was not then at the stage where it could identify the needed uses of classification in a world science information system. To help towards the elucidation of this problem it seemed useful to explore:

- (a) at what points in world science information is subject specification required?
- (b) to what extent has classification been found useful at each of these points, and what classifications have been used?
- (c) to what extent could these classifications be derived from a single standard classification of science?
- (d) what are the relative advantages of some existing general classifications for this purpose?

"Science" was taken broadly to include the fields under the aegis of the International Council of Scientific Unions - including astronomy, biology, biochemistry, biophysics, chemistry, crystallography, geology, geodesy, geophysics, mathematics, mechanics, physics and physiology - but in the course of the survey it has at times been necessary to take into consideration material more properly the concern of the Union of International Engineering Organisations and the Council for International Organisations of Medical Sciences.

This report presents the results of our exploration. Because of the volume of world science information, and our restricted knowledge of languages, the material studied was only a sample of the whole. We believe it to be sufficiently representative to illustrate the main features of the current situation.

A.2 The meaning of "classification" in documentation

It is as well to be precise about the object of study. The "classification" of a universe of entities - whether they be animals,

plants, chemicals, institutions, books, articles, or words - may involve two operations:

- (a) grouping and division : putting together entities that are alike in some way, and keeping apart those that are unlike,
- (b) sequencing : arranging the entities of a group in a meaningful sequence.

Either the first or the second operation is essential - without one of them no classification has taken place. If either is used, the other is optional: entities may be sequenced without grouping, and grouped entities may be arranged in a sequence not related to meaning. A third operation is also optional - assigning to each group and each entity a code (notation) that fixes its position in the whole system.

In documentation we are concerned with two types of entity: the physical documents themselves (books, reports, patents, etc.), and words or other symbols that represent other entities (catalogue or index terms, descriptors, class numbers, etc.). Classification is widely used in the physical arrangement of documents, but we have not explicitly examined this (though we have explored the relevance to our problems of library classification schemes). We have studied the application of classification to representations.

Representations themselves are of two kinds - those concerned with the origin of a document (author, publisher, source, etc.), and those concerned with its subject content. Only in the case of the second is meaningful grouping and sequencing relevant. Our study, therefore, has been concerned with the role of classification in subject representations.

The structure of a fully developed classification can be technically described in the following way:

- (1) The whole collection (universe) of entities (in this case subject terms) may be divided into a series of fields (for example, Physics into Mechanics, Optics, Heat, Electricity, etc.). Each field is therefore a broad grouping. The fields may be arranged in some meaningful sequence (ref.1).
- (2) Each field may be divided into a series of facets (for example,

Chemistry into Substances, Properties, Reactions, etc.). Each facet is therefore a grouping. The facets within each field may be arranged in some meaningful sequence (ref.2).

- (3) Each facet may be structured into a hierarchy, subdivided stage by stage by the application of a series of characteristics (such as terms in italics in Figure 1)*. The characteristics are applied in an ordered sequence. Any sequence of terms generated by successive subdivision is a chain (for example, the chain Machines - Mechanical and thermal machines - Nuclear reactors - Heterogeneous reactors - Thermal heterogeneous reactors - Graphite moderated - Gas cooled, in Figure 1). Any one level of subdivision gives rise to a group of terms that constitute an array (for example, the array Bismuth, Lithium, Mercury, Potassium, Sodium, in Figure 1). The terms in each array may be arranged in some meaningful sequence (ref.2).
- (4) Rules may be provided for combining (co-ordinating) terms from the same array, from different arrays in the same facet, from different facets in the same field, and from different fields. These rules may involve the use of special relational operators or role indicators. This aspect will not be explored in this report - we draw attention to references 24 and 25.
- (5) Each field, facet and term may be coded to fix its position in the whole system, and to facilitate unambiguous combination with other codes.
- (6) An alphabetical index to the terms may be provided, showing the code of each.

Where it is necessary to give a technical description of any classification studied, we will use this terminology.

A.3 Subject representations in science information

Scientific communication is concerned ultimately with transmitting information from person to person, from source to user. Interpersonal communication is as important in science as in other areas of social life, much goes on, and some of it is susceptible to organisation (seminars, conferences, etc.). But even where it is organised, the act of organising it usually generates documents

* All figures are together at the end of the report.

(conference programmes and proceedings, lists of future or past conferences), and in practice the world science information system with which we are concerned is a documentation system. Much scientific communication cannot be other than documentary, because source and user are separated from each other in space and time.

It should be stressed here that we do not restrict the term "document" to mean words printed on paper. Any graphic record can carry information. The physical carrier may be paper or any substitute for it, a photographic medium, a magnetic medium, or any other suitable material. The information may be recorded as words, diagrams, illustrations, in digital form, or in any other way. The only essential features of a document are that it is a record of information, fit for preservation through time, and transmittable in some manner through space.

Documents serve to mediate communication between persons. Because of personal separation in time and space, documentary communication is typically multi-stage. Before a potential user can sit down to study a set of documents providing information (say, scientific papers) he may have to use, perhaps, four intermediate documents: (a) a word-list (terminology, thesaurus, etc.) to help him identify terms under which the needed information may be indexed, (b) an index to published papers, (c) a list of current papers, (d) a guide to libraries that may stock the required papers.

It is these intermediate documents that typically use subject representations - to represent the subject content of a library, a journal, a paper; or to display subject relations between words. Consequently, it is such intermediate documents that we have sampled to explore what part classification plays in their arrangement.

Before reporting on the results of the study, one further aspect of our terms of reference should be discussed.

A.4 The possible role of a standard classification

Classification is not used in all forms of subject representation - for example, an alphabetical subject index may use no grouping or division, and no sequencing other than A to Z (Figure 2). At the other extreme, there are intermediate documents displaying all

three operations of classification - division, sequencing and coding (Figure 3). In between, all levels of use of classification are found - some documents use grouping alone, some sequencing alone, some both, but not coding. If current practice is a valid guide, the need for classification varies greatly according to circumstances.

Thinking of a world science information system, we may ask whether all classificatory groupings, sequencings and codings - wherever the need is felt for them - could be drawn from a single standard classification of science. The possible advantages of taking this step might be:

- (a) The overall intellectual effort put into constructing classifications might be reduced. The subject areas covered by intermediate documents overlap extensively, and what is approximately the same field is classified - in ways that may differ slightly or greatly - a number of times.
- (b) If the same groupings, sequences and codings were employed wherever needed, users might grow familiar with them and find it easier to search in diverse documents.
- (c) Integration of or exchange between materials in different subject fields might be facilitated.

Arguments against the use of a standard classification are easy to find. They all rest on the belief that the viewpoint of each specialist group is unique, and that it cannot be expressed adequately by classificatory relations developed for other groups or for the non-existent "general user". We know, indeed, that the mental structure of each individual user is unique, but when one is making publicly available information aids one cannot cater for the individual. Some erosion of uniquely tailored service there must be. The gains achieved at each level of standardisation must be balanced against the losses.

Our remit did not include the making of such a balance, but our intercomparison of classifications throws light on the scale of the standardisation problem that would have to be tackled.

It has been suggested (for example, by G.A. Lloyd of the F.I.D. Classification Department) that "the many proponents of special

classifications and thesaurus-type subject lists, which may be excellent and efficient in their own areas, cannot be expected to abandon these in favour of one standard classification ... but they may well agree ... to accept one standard 'switch' language, with which they can establish (a) concordance" (ref. 3).

We will come back to concordances in section D7, but will make one comment here. A classification consists of subject terms and classificatory relations between them. Work has been done on establishing a concordance between terms in two or more classifications (ref. 16) - to show that a term coded PBH in one classification is coded 621-8 in another (many illustrations of this will be given later in our study). But if the relation between PB and PBH represents one subject grouping, and that between 621 and 621-8 represents another, all that we can do is to report a lack of concordance as far as classificatory grouping is concerned (and illustrations of this will also be given later). In this case, all that the "switch" is doing is to link terms with the same meaning, their classificatory relations being ignored. The same task could be performed by a comprehensive dictionary whose entries were numbered (coded) from 1 onwards. The classificatory relations of the standard classification would serve only the "dictionary" function of elucidating, by context, the meaning of each included term. This may be a useful function, but we do not consider it to be the whole point at issue.

To compare two classifications we must, of course, start by discovering terms that they have in common - discovering, in fact, whether their subject fields overlap. But to compare them as classifications we must go beyond this, to examine the grouping and sequencing of the terms in each, and the extent to which these classificatory relations are in accord. It is both these aspects that we have explored in the comparisons to be reported below.

A.5 The surveys undertaken

The first step was to identify the types of intermediate document to be surveyed. For this purpose, several guides to such documents were consulted (these guides are listed in Appendix 1). From descriptions in these, a sample of 1265 intermediate documents

that appeared to use subject representations was selected. For each document selected we recorded any classification that was used (grouping or sequencing), and noted whether it was a widely used scheme. The results of this analysis are reported in section B1.

The selected items included indexes and current awareness services, abstracts, journals, bibliographies and a few classified dictionaries. About 100 items were looked at in detail. The diversity of the classifications used suggested that it would be difficult to present meaningful comparisons if too many items were included. The next stage of the survey therefore concentrated on some of the major indexing and abstracting services. The arrangements used in these were compared with each other and with several general library classifications that might be considered as candidates for a standard scheme. The results of this are reported in the remainder of Section B.

It was necessary to restrict the number of general classifications so compared. Library classification has a long history (ref. 4), and many schemes have been produced. We decided to concentrate on (a) the first modern bibliographic scheme, that of Melvil Dewey, which has been continuously revised and developed from its first publication in 1876 to date (ref. 5); (b) the most detailed scheme extant, based on Dewey but expanded and developed by Paul Otlet and Henri La Fontaine into the Universal Decimal Classification (UDC), further development being the care of the International Federation for Documentation (ref. 6); (c) schemes developed by two eminent theoreticians of classification - H.E. Bliss (ref. 7) and S.R. Ranganathan (ref. 8).

We are conscious that this is apparently biased towards English language schemes. Partly this is due to our own linguistic background, but mainly it is because the active development of general classification - outside the UDC - has mostly been carried out in English. Recent schemes in other languages have been restricted as to detail (e.g. Kutter, ref. 9, or Clavier, ref. 10). Many special classifications have been produced (ref. 11).

One type of intermediate document is quite different from the secondary publications mentioned above - word lists such as thesauri that may include thousands of terms, many of which are very specific in connotation. Many thesauri have now been published (ref. 12), but

most are in the field of technology rather than science. We wished to examine in some detail the role that classification plays in large thesauri, and therefore concentrated on the study of three examples of major importance but of very different coverage and structure:

(a) the Thesaurus of Engineering and Scientific Terms (TEST), developed jointly by the U.S. Office of Naval Research and the Engineers Joint Council (ref. 13); (b) the Medical Subject Headings (MESH) of the U.S. National Library of Medicine (ref. 14); and (c) the Euratom thesaurus developed for the European Atomic Energy Community (ref. 15). Again we must admit to an English language bias, but for the same reasons as already advanced for classifications - it is in English that most thesaurus development has been undertaken. Comparisons of the classificatory relations of these thesauri with those of the library classifications are presented in Section C.

Our survey results are thus reported in Sections B and C, supplemented by material in appendixes. In Section D we give a general discussion of the current state of classification in the documentation of science.

B. CLASSIFICATION IN SECONDARY PUBLICATIONS

B.1 General Survey of intermediate documents

The preceding section has noted that a sample of 1265 intermediate documents was selected from the guides listed in Appendix 1. We mainly included in the selection documents that were formally published or otherwise publicly available, and that listed other publications as their main function. Within these limits, documents covering only a small range were excluded.

The purpose of this operation was to sample the extent to which classification is actually used in intermediate documents and, where used, the extent to which general library classifications occur. This information was obtained about each document selected - either from descriptions given in the source guides, or by actual examination of the documents. The results are summarised in Table 1 on the next page.

Over half the sample used no classification, relying instead on alphabetical, geographical or form arrangements. Of the 44.4% using a classification, 37.4% used one privately devised, and only 7% of the sample used a general library classification (usually the Universal Decimal Classification, UDC).

This general survey therefore illustrates, first, that many intermediate documents in science make no use of classification; second, that among those that do use it there is very little agreement on a standard classification; and third, that insofar as there is a standard in minority use, it is the UDC.

The next question to be asked was, to what extent do the private classifications match general library classifications? Do they show merely minor divergences, or do their structures differ markedly both among themselves and as compared with general schemes? In order to reduce this problem to manageable size, it was necessary to make a much narrower selection of items for survey in detail. The classifications chosen for study are presented in the next section.

B.2 The classifications surveyed

We wished to compare classifications in some typical intermediate documents with some general library classifications, and

TABLE 1**ANALYSIS OF INTERMEDIATE DOCUMENTS TO SHOW USE OF CLASSIFICATION**

Type of Library
Classification Used

	Total (100%)	No Classification*	Own Classification	Library Classification	UDC	Dewey	Other
Total	1265 (100%)	703 (55.6%)	473 (37.4%)	89 (7.0%)	75	9	5
Sci/Tech (General)	436	298 (68.3%)	97 (22.3%)	41 (9.4%)	32	7	2
Maths & Nat.Sci.	38	19 (50.0%)	15 (39.5%)	4 (10.5%)	4	-	-
Astronomy	30	21 (70.0%)	7 (23.3%)	2 (6.7%)	2	-	-
Physics	54	20 (37.0%)	32 (59.3%)	2 (3.7%)	1	1	-
Chemistry	47	26 (55.3%)	19 (40.4%)	2 (4.3%)	1	-	1
Geology (inc.Geog.)	64	35 (54.7%)	21 (32.8%)	8 (12.5%)	8	-	-
Palaeontology	2	1	1	-	-	-	-
Anthropology	21	11 (52.4%)	9 (42.9%)	1 (4.7%)	-	-	1
Biology	30	15 (50.0%)	15 (50.0%)	-	-	-	-
Botany	18	12 (66.7%)	5 (27.8%)	1 (5.5%)	1	-	-
Zoology	24	13 (54.2%)	10 (41.6%)	1 (4.2%)	1	-	-
Applied Sci. (Gen)	45	19 (42.3%)	24 (53.3%)	2 (4.4%)	1	-	1
Medicine (inc.Vet.)	183	106 (57.9%)	75 (41.0%)	2 (1.1%)	2	-	-
Engineering & Technology	185	73 (39.5%)	92 (49.7%)	20 (10.8%)	19	1	-
Chemical Industry	88	34 (38.6%)	51 (58.0%)	3 (3.4%)	3	-	-

Notes:

(1) Percentages given horizontally
(2)* Alphabetic arrangement; alpha-classed arrangement; geographical or form arrangement; no discernible arrangement

selection in both groups was necessary. Among intermediate documents we concentrated on classifications used for arrangement in major abstracting and indexing services in science, namely:

Bulletin Signalétique, of the Centre Nationale de Recherche Scientifique, Paris (BS)

Referativnyi Zhurnal, of the Institute for Scientific Information, Moscow (RZ)

Mathematical Reviews, of the American Mathematical Society, Providence, R.I.

Zentralblatt für Mathematik und ihre Grenzgebiete, Berlin
Astronomischer Jahresbericht, Berlin.

Physics Abstracts, London

Physikalische Berichte, Braunschweig

Solid State Abstracts, Cambridge, Mass.

Chemical Abstracts, Columbus, Ohio.

Current Chemical Papers, London

Chemisches Zentralblatt, Berlin and Weinheim

Biological Abstracts, Philadelphia

Berichte über die gesamte Biologie, Abt. A, Berlin.

International Abstracts of Biological Sciences, Oxford.

The classifications in these documents all show a fully hierarchical structure. They have been compared with four general classifications. All four cover the whole field of knowledge. Three (those of Dewey, Bliss and Ranganathan) were designed for the classification of books on shelves and the cards corresponding to them in catalogues, while the fourth (UDC) was envisaged from the start as a tool for information indexing (though it has also been widely applied in shelf arrangement). Detailed descriptions can be found in works already cited (ref. 4) and in prefaces to the schemes themselves. Here we present a brief technical analysis of each scheme, using the terminology introduced in section A2.

The Dewey Decimal Classification (ref. 5) was first published in 1876. It is now in its 17th edition, prepared by the Decimal Classification Office at the U.S. Library of Congress. It is - at any rate on the surface - a hierarchical division of all knowledge on a decimal basis. There are 9 main classes, of which number 5 is Science; there are 9 sciences, of which number 5 is Earth science; there are 9

areas of earth science, of which number 1 is Physical and dynamic geology; this in turn is divided into 9 parts, and so on in successive subdivisions. A sample page is shown in Figure 4.

There is no clear demarcation of fields, since any class at any level can be regarded as the "field" in which its sub-classes are included. There are occasional but unsystematic formulations of facets that can be combined - an example is seen in Figure 5: in the facet "Dynamics of the sea", Ocean currents can be "divided like" (combined with) the facet "Specific oceanic bodies". Most arrays at each level are arranged in a sequence believed to be meaningful and helpful, though the sequencing principle may not be obvious (consider the "specific oceanic bodies" in Figure 5). Each chain of classes may be represented by subdivisions of the notation, for example: 550 Earth sciences, 551 Gross structure and properties of the earth, 551.4 Geomorphology, 551.47 Dynamics of the sea, 551.471 Dynamics (currents) of the North Atlantic Ocean (e.g. the Gulf Stream). We may note, however, that a missing link in the chain, Oceans and Seas, is coded 551.46, and this deviation from consistent hierarchical notation is fairly common. Moreover, many chains end with an uncoded array of more specific terms (such as Heat, Temperature ranges, Isostasy at class 551.12 in Figure 4).

The Universal Decimal Classification (UDC, ref. 6), originally based upon Dewey's scheme, was first published in French in 1905. It is continually being developed and expanded by international co-operation, the work being co-ordinated by the International Federation for Documentation. In broad outline its structure corresponds to the Dewey scheme - for example, 551.4 is Geomorphology in UDC as well as in Dewey - but it diverges in two respects: first, in many of its detailed subdivisions, and second, in its more complex classificatory structure. This can be illustrated more readily by an extract from technology rather than from science (Figure 6).

The fields into which the UDC is divided are signalled by the appearance of distinctively coded facets. Class 66, Chemical industry and technology, is divided into three notational blocks : those in which the code is followed by a hyphen, those in which it is followed by a zero, and those (not shown in Figure 6), in which it is followed by another numeral. The first block is a facet covering general attributes

of chemical products, plant and processes; the second covers specific operations, unit processes and plant used in chemical industry; the third lists specific types of chemical product (e.g. 661.72 Alcohols, 667.2 Dyestuffs). These facets can be combined, for example 661.721 - 932 Methanol : continuous processes; or 667.212.31.067.4 Acridine dyestuffs : pressure filtration. As hinted at in classes 66.022, 66.023 and elsewhere, any class can be combined with any other in the classification by means of a linking colon; thus 66.023:621.642.1 represents (somewhat clumsily) Containers, portable. Sometimes, within a field, a sub-field has its own display of facets - for example, a sub-field within 66 Chemistry is 669 Metallurgy (see Figure 7). There are other combinatory devices available in the scheme. As to arrays and chains, the same remarks apply as for Dewey, though there are fewer chains ending with uncoded arrays.

The Bibliographic Classification of Bliss (ref. 7) was published in outline in 1935, its expanded form began to appear in 1940, and a second edition in 1952. Additions and corrections have since been provided by an informal group of users, and a third edition is planned. Once again, on the surface it is a hierarchical division of all knowledge, but using as a notational base the letters of the alphabet rather than numerals. The hierarchy differs considerably from Dewey and the UDC, even at the higher levels - particularly in that it draws in applied sciences as subdivisions of the pure sciences (for example, CT Applied Chemistry, is part of C Chemistry, whereas in Dewey, 54 Chemistry and 66 Chemical Industry are in separate main classes).

To some extent, fields are recognisable as two-letter classes, as for example in the summary of main class D (Figure 8). There is usually no clear division into facets, although a number of "special auxiliary schedules" are provided which are combinable with other classes. For example, codes from Figure 9 are combinable with codes for specific plants, thus FTLV, I represents Onion : physiology. Clear representation of chains has been sacrificed in order to provide a brief notation. Figure 10 illustrates two aspects of this: classes ENE and ENF would appear, semantically, to be subdivisions of END, but this is not shown by the notation; and all their possible subdivisions are not coded, but listed en bloc. For the same reason, arrays are not clearly distinguishable, but where they exist are arranged in a

meaningful sequence.

The Colon Classification (ref. 8) was first published in 1933, and is now in its 6th edition. It is still under the direct control of its Indian author, S.R. Ranganathan, who has been most active in exploring classificatory structure. Colon covers the whole of knowledge, and displays structure explicitly. It is divided first into main classes such as C Physics, and these into "canonical divisions" (Figure 11). These are its fields, and the facet structure of each is immediately stated in symbolic form. Thus C3(P) : (E) (2P) implies that there are two facets in Sound, symbolised as (P) and (E) cum (2P), that can be combined. The terms ("foci") included in each facet are then listed in hierarchical form. Arrays are usually in some meaningful sequence. Chains are usually clearly represented by hierarchical notation - e.g. C Physics, C3 Sound, C33 Ultra sound, C33:3 Ultra sound frequency, C33:38 Ultra sound frequency analysis. However, as Ranganathan has begun to develop detailed expansions he is sacrificing hierarchy to brevity in his notation. These expansions are occurring piecemeal, and in general Colon's classification of science and technology is very unevenly developed.

One last classification will be mentioned. In 1964, the Committee on Scientific and Technical Information of the U.S. Federal Council for Science and Technology issued the COSATI Subject Category List (ref. 22). It was put forward as a suggested uniform subject arrangement for the announcement and distribution by U.S. agencies of scientific and technical reports. An extract from the list - concentrating on fields related to science rather than technology - is presented in Appendix 2. Dewey, UDC, Bliss and Colon class numbers are shown against each listed group. The COSATI list displays classificatory grouping, but not meaningful sequence - both levels of array are alphabetical.

B.3 Comparison of Classifications

Even with the sample for study reduced to the size reported in the last section, it is not easy to display a comparison of classifications. The method we have adopted is as follows. As a "reference base" we have mainly used the classification used for arrangement in one of the large multi-disciplinary abstracts journals,

Bulletin Signalétique. (The choice of this, rather than another such as Referativnyi Zhurnal, was arbitrary.) Against the classes of BS, we placed corresponding class numbers from Referativnyi Zhurnal, the four general library classifications, the COSATI list (where appropriate) and from other schemes examined. In some cases, we used RZ or other schemes as a "reference base", so as not to rely exclusively on comparison with BS. In the case of RZ and some other journals, class numbers had to be devised by ourselves to represent the uncoded classification used. In all such cases, the journal titles are asterisked in the tabulations. As an illustration, we give in Table 2 on the next page an analysis of the main fields of science considered in the survey.

The field names in this table are extracted direct from BS (in all other tables they are in English). The fields are given in the order in which they occur in BS, as shown by the notation on the left. On the right are corresponding class numbers from other classifications. Thus Mathematics may be coded A in RZ, 510 in Dewey, 51 in UDC, AM/AY in Bliss, B in Colon, and 12A in COSATI. Even at this very general subject level, there is considerable difficulty in assigning class numbers. We would not wish to defend all our code assignations against detailed criticism from those more expert in the subject, but we believe them to be adequate to illustrate the situation.

What can be learnt from such a tabulation? (a) In a column, there may be gaps - we have found no codes in the classification readily assignable to some subjects (the only possible example of this in Table 2 is an apparent gap in the COSATI column for 214 Géologie Appliquée). The number of gaps is indicated at the foot of each column. (b) In a column, the sequence of codes may diverge from the alphanumeric, indicating that the sequence in that classification differs from the sequence in the reference base. For example, in the Bliss column of Table 2, we see inversions of alphabetical sequence as B follows D, BE follows BT/BL, C follows CH, and so on. The number of inversions is indicated at the foot of each column. (c) Any one coding in a column may be multiple - for example, in the UDC column we have 52 + 551 and 549 + 55. (We have not treated consecutive classes, such as 531/536, 537/538, B + C or E5 + 6, as multiple coding.) This indicates that a subject treated as a single class in the reference base is spread over

TABLE 2BULLETIN SIGNALÉTIQUE - MAIN DIVISIONS CONSIDÉRÉE

	<u>Ref. Zh.*</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>COSATI</u>
110	Mathématiques pures et appliquées	A	510	51	AM/AY	B
120	Astronomie, astrophysique, physique de globe	B+C	520+551	52+551	CD	B9
130	Physique mathématique, mécanique, acoustique optique, chaleur, thermodynamique	D+E	530/536	531/536	B	03+08 20A+D+F +K+N
140	Électricité	EE	537/538	537/538	BJ/BL	C6
150	Physique et technologie nucléaires	EJ	539.7	539.1	BE	09B3
160	Structure de la matière	E5+6	539.1	539	BE	C2
161	Cristallographie	F1a3	548	548	CH	20L
170	Chimie	F	540	54	C	E1.8
210	Minéralogie, géochimie, géologie, pétrographie	GG	549/552	549+55	CG+CD	E
214	Géologie appliquée	GG	553	553	DO	H7
216	Géologie, paléontologie	GG	550/560	55/56	DG/DY+EP	H
320	Biochimie, Biophysique, etc.	H+I	574.19	577/578	EE	08G
360	Biologie et physiologie animales	II	590	59	GD/GF	K
361	Endocrinologie, reproduction, génétique	II	570	575/577	GE+EN	K:6
370	Biologie et physiologie végétales	I4+5	580	58	F	I
740	Metallurgie	J	669	669	CK	E191
	Gaps	0	0	0	0	1?
	Inversions	1	4	4	6	7
	Multiple codings	0	1	2	3	1
	16 BS classes					4

Note: Since COSATI's fields and groups are only alphabetically sequenced, inversions are not significant.

two or more separate classes in another classification. This is often brought out more adequately in the detailed schedules to be discussed later, where it occurs as "scatter". (d) Some codes in an array of a general classification may be much more specific than others, indicating that these subjects are of less relative importance in the classification than in the reference base. This is true of code 574.19 in the Dewey column of Table 2, and many examples may be found in subsequent tables.

This first glimpse at the situation that Table 2 provides immediately suggests differences between the four general classifications and BS. Fifteen steps lie in the sequence from BS code 110 to 740, and inversions occur on average at five of these steps. In contrast, there is only one inversion in RZ, which in this table appears much more compatible with BS.

In Appendix 3 we present tables showing further comparisons between classifications. In the first of these, Table 3, we break down the main fields of Table 2 to a second level, and once again class by RZ, Dewey, UDC, Bliss, Colon and COSATI. The number of inversions is much the same for all columns (even including RZ). In addition, we see gaps developing in all columns. This is to be expected in COSATI, which is a relatively brief list of main fields and their groups, not going into the detail of the other classifications. Some of the gaps in Colon can be similarly explained - particularly those in BS code 740, Metals, since Colon's technology classes are very inadequately developed.

However, gaps can also develop for two other reasons:
(a) Classifications may structure a field differently, laying emphasis on different aspects - thus the BS grouping "Crystalline rocks" at 210E does not appear to be used in the other classifications. (b) One classification may be out of date, not stressing modern developments that others have incorporated - this appears to be the case for BS classes 320D Biological and medical engineering, and 740 IV Lattice defects, which three of the general library classifications do not seem to incorporate.

In Appendix 3, there next follow samples of detailed tables for particular fields of science. COSATI is dropped from the comparison, since it is too general, but abstracting journals other than BS and RZ are brought in. Table 8 uses Physics abstracts as a reference base in

the field of Solid state physics, and Table 6 uses RZ as a base for physics as a whole. From all the detailed comparisons we have made, both the samples shown in Appendix 3 and others, the following summary has been compiled (total classes in reference base = 796):

	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
A. Gaps	253	168	251	338
B. Inversions	188	218	176	143
C. Base minus gaps	543	628	545	458

In this comparison, gaps - indicating the apparent absence of a term in a classification - were greatest for Colon (45%), least for UDC (21%). Since only codes that were present could be inverted, inversions are best reported as a percentage of row C: Dewey 35%, UDC 35%, Bliss 32%, Colon 31% - a fairly uniform picture.

It is of interest to consider how the general classifications as a whole compare with the reference base for each particular field of science. For example, in Table 4 (Astronomy and Astrophysics), we have the following analysis:

	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>Mean</u>
Gaps	12	8	7	11	9.5
Inversions	12	11	10	12	11.25
49 BS classes					

The average number of gaps per classification is 9.5, of inversions 11.25. The average percentage of gaps is $100 \times 9.5/49 = 19\%$, and of inversions is $100 \times 11.25/(49-9.5) = 28\%$. Similar calculations have been made for a dozen fields of science. The percentage of inversions is fairly uniform, the range being $34 \pm 7\%$. Percentage of gaps varies more widely, with a range of $32 \pm 21\%$. Fields with a high percentage of gaps - indicating considerable difference between the reference base and the general classifications - were Mathematics, Electricity, Structure of matter (Table 7), Solid state (Table 8) and Physical chemistry (Table 10). Fields with a low percentage of gaps (indicating relatively little difference) were Astronomy (Table 4) and the broad groupings Chemistry (Table 9) and Biology (Table 11).

If we look in more detail at inversions of sequence we find that many are due to the fact that a grouping, used by a secondary publication such as BS, brings together classes that are scattered in the general classifications. Consider, for example, the group 120aIIII in Table 5, Physics of the terrestrial globe. The classes in this group are scattered as follows:

Dewey	-	551	Physical and dynamic geology
		525	Earth (astronomical geography)
		526	Mathematical geography
UDC	-	525	Earth (astronomically considered)
		526	(528 in 1960) Geodesy, etc.
		550	Geology and meteorology
Bliss	-	DQ	General geography
		DFT	Earth as a planet
		DH	Physical geology
		AW	Mensuration
Colon	-	U1/2	Mathematical and physical geography
		B91	Earth (astronomy)
		D:2	Surveying
		H4	Dynamic geology

Scatter of this kind is particularly noticeable in Table 7 (Structure of matter) and Table 8 (Solid state physics). The groupings developed by the secondary publications cut right across the traditional groupings of general classification.

In several tables we have compared the selected "reference base" with classifications in other secondary publications - not only RZ, but also Astronomischer Jahresbericht (Table 4), Physics abstracts (Tables 6,7 & 8), Physikalische Berichte (Tables 6 & 8), Solid state abstracts (Table 8), Chemical abstracts (Table 9), Chemisches Zentralblatt (Table 9), Current Chemical Papers (Table 9), Biological abstracts (Table 11), Berichte über die gesamte Biologie (Table 11), International abstracts of biological sciences (Table 11) and, in tables not presented, Mathematical reviews and Zentralblatt für Mathematik. The classifications used by these publications are less detailed than BS or RZ, sometimes amounting to no more than a sequence

of fields. As the gaps and inversions in the tables show, the classes selected by these publications, and the sequences used, diverge considerably from those of our "reference bases", and from each other. As further illustration of this, in Table 13 we reproduce the sequences of classes used by four secondary publications in the field of general and physical chemistry, comparing them with those of the four general classifications.

What general conclusions can be drawn from the comparisons reported in this section? We should expect that secondary publications, coping issue by issue with newly published scientific literature, able to change their classification to keep pace with changing emphases in science, will give a reasonable picture of the classificatory relations required by current science. Where a general classification differs from such a "reference base", we would expect the former to be defective. Our comparisons have shown that differences do occur, and detailed study of the tables indicates that in many instances this is because the general classifications are out of date - modern terms are missing, some of their low-level terms have become highly important, they do not provide the classificatory groupings currently of interest. In these respects, UDC is less defective in content of terms (covering 79% of those in our reference bases), but not noticeably better in other respects.

We might therefore conclude that none of the general classifications examined could serve as an adequate source of classificatory arrangement for secondary publications. The fact that arrangements in these publications also differ a good deal among themselves suggests that no general classification, even if up-to-date, would necessarily provide satisfactory arrangements for all the special interests served by secondary publications.

C. CLASSIFICATION IN THESAURI

C.1 The development of thesauri

The general classifications described in section B2, and the many special library classifications that exist (ref. 11), represent one line of development of aids to information search. Parallel with this there has been another line of development, emphasising the use of natural language terms in alphabetical sequence. This too has a long history, less well documented than classification (ref. 17), but as far as the English language is concerned its modern phase was begun in the same year as Dewey first published his classification, 1876, with a guide to alphabetical subject indexing prepared by another American, C.A. Cutter (ref. 18).

Alphabetic lists of terms and subject phrases to be used in indexing have been prepared for many fields (examples of these too are cited in ref. 11). A sample page of such a "subject heading list" is shown in Figure 12. About ten years ago, the word "thesaurus" crept into documentation to label another kind of alphabetical word list (ref. 19). A sample page of the TEST thesaurus is shown in Figure 13. The main difference is that whereas the Figure 12 subject heading "Aeroelasticity - electromechanical analogies" is designed to be complete in itself, usable as a topic description, the thesaurus term "Chemical etching" is designed to be used in co-ordination with others to describe a topic (e.g. Chemical etching of aluminium). (The usage of the word "thesaurus" is now somewhat eroded - there are even "classified thesauri").

During the last decade, many thesauri have been prepared (ref. 12), for use with manual or mechanical "co-ordinate" retrieval systems. Some, particularly those covering a narrow field, are bare lists of allowed indexing terms. But as lists of wider coverage have developed, they have been structured by an elaborate system of cross-references between terms. It is this cross-reference structure with which we will be concerned here, for it is in this form that classificatory relations are encountered in thesauri.

C.2 Classification in TEST

TEST, a Thesaurus of Engineering and Scientific Terms (ref.13),

was published in 1967, but is related to an earlier thesaurus of engineering terms published in 1964. A collective work and the joint product of the U.S. Office of Naval Research and the Engineers Joint Council, it includes over 17,000 index terms (and over 5,000 USE references) in science and technology. The main sequence is alphabetical (Figure 13) - each term is listed independently. Italicised terms are USE references. Below each allowed term are cross-references: UF (used for) referring to a term not allowed in indexing, BT (broader term) to a term higher in a hierarchy; NT (narrower term) to a term lower in a hierarchy; and RT (related term) to a term having a close but non-hierarchical relation. A dash against any term in the NT or RT lists implies that it too has narrower terms associated with it.

A second sequence in the thesaurus lists 22 major fields (such as Physics) and sub-fields within each (such as Acoustics), and lists terms that occur within them (Figure 14). A third sequence extracts all broad terms that have at least two levels of narrower terms associated with them, and presents each hierarchy (Figure 15). As can be seen, there is no explicit indication of facets, chains are clearly displayed in each hierarchy, all arrays are in alphabetical sequence, and there is no coding. By linking the second and third parts of the thesaurus, longer chains can be derived, for example: Chemistry - Physical and General chemistry - Chemical reactions - Decomposition reactions - Solvolysis - Hydrolysis - Saponification.

From the third part of TEST, we extracted 54 hierarchies in science rather than technology, and coded them by four general classifications. A single example is presented in Table 14 (Appendix 3). It will be seen that (a) of the 49 terms in the hierarchy, we located only 19 in Dewey, 11 in Bliss, 8 in Colon, and 29 in UDC; (b) some of the locations were not specific, e.g. more than the topic Thermal expansion is covered by Dewey 536.41 or Bliss BHQ, and is indicated by the < signs preceding these codes in the table; (c) the topics in a hierarchy may be scattered in a general classification, e.g. Thermo-dynamic properties as listed by TEST occur in Dewey classes 536.7, 536.4, 536.2, 541.3 and 537.65.

In Table 15 (Appendix 3) a summary of the comparison is presented showing the hierarchies examined, the number of terms in each,

the numbers located in each general scheme, and comments on specificity and scattering. In some cases, the highest term in the hierarchy (recorded on the left) could not be found, and this is signalled by an asterisk: for example, it appears not to be possible to pull together a hierarchy "Body fluids" from any of the four classifications. The overall result of examining 54 hierarchies containing 1893 terms is:

	<u>Dewey</u>	<u>Bliss</u>	<u>Colon</u>	<u>UDC</u>
Terms found in	493	402	256	961
Highest term not found	21	20	26	6
Comment "not specific"	24	30	6	1
Comment "scattered"	20	20	13	17

As far as term content is concerned, even in the best performer, UDC, only 961 (51%) were located, with Dewey (26%), Bliss (21%) and particularly Colon (14%) being even more inadequate. Scattering was a common occurrence in all four classifications, but UDC was rarely "not specific" and usually contained the highest term of the hierarchy. The sample suggests, nevertheless, that none of the four classifications would be adequate as a source of TEST terms and hierarchies.

C.3 Classification in MESH

MESH, a list of Medical Subject Headings, was first issued by the U.S. National Library of Medicine in 1960. It is used in indexing for the published Index Medicus, and for the Library's computer-based information system (MEDLARS), and is continuously revised (ref. 14). The main sequence is alphabetical (Figure 16). An italic entry (such as *Stelazine*) is a not-allowed term with a see reference to the term used for it. The large-type entries are index terms, e.g. STARVATION. Against each are coded references to categorised lists in which they appear (A1, A2, etc.). Against each may also be cross-references: "see also related" (and its reference back, XR); "see also specific" (and its reference back, XS); "see under" (and its reference back, XU); and X, which is a reference back to a non-allowed term. The second part of the thesaurus is a collection of categorised lists (for an example, Figure 17). Each list can be reorganised into hierarchical form (some examples will be given in section C5). From them we can also extract chains, for example: Diseases - Cardiovascular diseases - Heart

diseases - Coronary disease - Angina pectoris. There is no explicit division into fields or facets, though each list may be regarded as a facet. All arrays are in alphabetical sequence.

From each of 15 different categorised lists, we constructed a sample chain and compared it to the four general classifications. Sample comparisons are shown in Table 16 (Appendix 3). In Table 17, we report (a) the most specific term in each chain, (b) the length of the chain, i.e. the number of terms from the most general to the most specific, (c) the number of chain terms found in each classification, and (d) a note if the most specific term was not found. The table summary is as follows:

	<u>MESH</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
Terms found	79	50	59	49	38
Lowest terms not found	-	11	7	10	13

In no classification were all the MESH terms found - the highest percentage was UDC (75%), the lowest Colon (48%). The most specific terms in the 15 MESH chains appeared to be missing in 7 instances even in UDC, and in 13 instances in Colon. In all classifications, there were cases of scattering - as in example 1 of Table 16, where the MESH hierarchy is not mirrored by the notation of any classification examined. The sample suggests, in fact, that none of the four classifications would be adequate as a source of MESH terms and hierarchies.

C.4 Euratom Thesaurus and UDC

The Euratom Thesaurus was first published in 1964, and is an authority list developed for subject control in the Euratom computer-based information system (ref. 15).

It includes about 1200 keywords used in indexing, and another 14,000 non-keywords that are "lead-in" terms, for which the indexer is directed to use an appropriate keyword.

The whole set of over 15,000 terms is listed alphabetically, interrelated by "use", "see", and "see also" cross-references. The keywords are also grouped into 57 clusters or fields, within each of

which relations are displayed in a "terminology chart". An example (chart 52) is illustrated in Figure 18.

Each box encloses a keyword, displayed in bold capitals. Within a box, italicised terms are forbidden synonyms, and the other items are related non-keywords. Relations between keywords are shown by lines between boxes, the thickness of the line varying with the strength of the relation. Along the edges of the chart are more distantly related keywords, that will be found in other charts (for example, "Coolants" figures in chart 51, Reactor materials).

Although relations within and between boxes are not explicitly classificatory (hierarchical), we can regard the contents of a chart as a set of terms that it should be possible to draw together from a classification. In order to ascertain whether Euratom charts could be derived from a classification, we compared 13 of them (lying more specifically in the nuclear field) with the UDC special subject edition for nuclear science and technology (ref. 20).

Each keyword and non-keyword in the 13 charts was sought in the UDC schedules, and if present its class number was noted. The results are given in Table 18.

For each chart examined the table shows (a) the number of Euratom keywords it contains, (b) how many of these appear in the UDC schedules, (c) the number of Euratom non-keywords, (d) how many in UDC, (e) how many of the UDC numbers lie within the central core of the field - i.e. within the class corresponding to the chart name. This class is underlined in the final column, which also gives the other classes in which UDC numbers lie. Of the 247 keywords in the 13 charts, 181 (73%) were found in the UDC schedules examined; of the 784 non-keywords, only 84 (11%). Of the 265 UDC numbers noted, 139 (52%) lay within central core classes.

The implication of these figures is that if one used these central core classes as a way of deriving from UDC relations for display in Euratom fashion, one would extract for display only 139 (13%) of the total 1031 keywords and non-keywords that Euratom find it useful to bring together. Some 126 of the terms not extracted are in the UDC schedules, but not in the core classes; the remaining 766 terms are not in the UDC schedules examined.

C.5 Comparisons between thesauri

The incompatibilities between thesauri and classifications, illustrated in preceding sections, can be matched by similar incompatibilities between thesauri. Two illustrations of this will be given.

(a) Euratom and TEST

For each of the Euratom charts previously examined, the core keyword was studied. Each is listed in the following tabulation.

Chart	Core Keyword	A Assoc: non- keywords	B Assoc: in TEST*	C Linked keywords	D Assoc: in TEST*	E Total Assoc: in TEST*
44	Energy	6	1	23	1	11
45	Nuclear reactions	12	0	22	14	58
46	Radiations	8	3	25	8	76
47	Elementary particles	9	2	19	7	58
48	Protons and neutrons	17	1	19	13	63
49	Leptons and hyperons	5	3	16	10	29
50	Reactors	11	10	4	4	62
51(a)	Reactor fuels	3	2	8	6	42
51(b)	Coolants	-	-	5	3	15
51(c)	Moderators	3	1	5	4	9
52	Fuel elements	5	4	5	1	13
53	Reactivity	7	1	25	4	16
54	Radiation detectors	6	3	22	18	57
55	Plasma	16	6	13	8	57
56	Accelerators	6	1	9	9	23
<u>Totals</u>		114	38	220	107	589

* either as subsidiary terms (e.g. Accelerators, NT Betatrons) or alphabetically (e.g. Accelerators, Accelerator targets).

In its box on the chart, the core keyword was associated with non-keywords, the number being shown in column A of the table. Each core keyword was then consulted in TEST, and the number of the non-keywords that could be associated with it via TEST is shown in column B. In the Euratom charts, each core keyword is linked to other keywords, whose number is shown in column C. The number of these associated with the core keyword via TEST is shown in column D.

The Picture is as follows: in the EURATOM thesaurus, the 15 core keywords examined were associated with 114 non-keywords and linked to 220 other keywords. Via TEST only 38 (33%) of the non-keywords and 107 (49%) of the other keywords were so linked. On the other hand, core keywords in TEST were linked to many other terms not linked in the Euratom charts. The total numbers of terms linked in TEST to core terms are shown in column E, 589 in all. So overall we have:

Links common to Euratom and TEST (38 + 107)	=	145
Links found only in Euratom (114 + 220 - 145)	=	189
Links found only in TEST (589 - 145)	=	444

(b) TEST and MESH

Three fields were selected, representing scientific subjects common to these two thesauri - namely, Biochemistry, Physiology and Viruses. The hierarchical links within each field were traced out for each thesaurus, and are presented in Tables 19 to 21.

The overall picture is as follows:

	<u>Biochem</u>	<u>Physiol</u>	<u>Viruses</u>
Terms common to TEST and MESH	8	8	28
Terms only in TEST hierarchy	26	52	28
Terms only in MESH hierarchy	44	> 98	17

The way that each thesaurus emphasises different aspects of a field can be seen. In Biochemistry, MESH stresses the details of human metabolism and nutrition, whereas TEST stresses links with Physiology. Neither makes links with biochemical compounds in detail. In Physiology (which overlaps with Biochemistry) MESH again stresses human aspects, and in addition links it with Psychology, whereas TEST's main contribution is to bring in a detailed list of Hormones. The two Virus hierarchies are much more alike, but differ in detail.

D. GENERAL DISCUSSION

D.1 Summary of the survey results

The surveys reported in sections B and C have led us to the following conclusions.

- (1) Subject specification is required in many of the intermediate documents used in science information. We have particularly explored its use in the arrangement of secondary publications (section B) and in thesauri used for indexing (section C).
- (2) In many of these documents, no use is made of classification in any of the senses defined in section A2. This finding is illustrated in section B1.
- (3) Among those that do use it, there is very little agreement on classification. This is illustrated for secondary publications in section B3, and for thesauri in sections C4 and C5.
- (4) Insofar as there is a standard classification used by a minority of documents for arrangement, it is the UDC. This is illustrated in section B1.
- (5) Of the four general classifications surveyed, none appears to be acceptable as a standard either for subject arrangement (section B3) or indexing (section C).
- (6) As far as subject arrangement is concerned, all are lacking in term content, even UDC. Colon is somewhat worse than Dewey or Bliss in this respect. (It should be mentioned that had we explored technology in section B as well as science, this defect of Colon would have been even more marked. It comes out clearly in the comparisons of section C, which strayed more into the technical field).
- (7) Hierarchical differences, expressible as gaps, inversions and scatter in our comparison tables (section B3), are widespread - whether we compare secondary publications to general classifications or each group within itself. A particular instance is illustrated in Table 13 of Appendix 3. Such differences are particularly marked in developing subjects such as solid state physics (Table 8).
- (8) As compared to thesauri, all the general classifications are inadequate in term content. Once again, at a detailed level,

whether we compare thesauri to general classifications or each group within itself, hierarchical differences are widespread (sections C2 to C5).

(9) Although UDC is more adequate than the other general classifications from the viewpoint of the terms it includes, there is no evidence that its hierarchy is any more acceptable as a standard than that of the others.

In ensuing sections we examine the problems of a standard classification in a more general context.

D.2 The uses of classification in information

The diversity of practice and the difficulty of standardisation revealed by the survey, prompt the enquiry, is there value in classification? is it necessary in science information? can one avoid the difficulties by not using classification?

The need for classification in library arrangement is self-evident. The books in a library form a linear sequence, shelf by shelf, stack by stack. For shelf search - still the most popular form of information search - a sequence based on subject content is most helpful. Library classification - as is clearly evident from the writings of its theoreticians (refs. 1 & 2) - is based on a search for meaningful subject sequence.

The case is not so clear for information search in an intermediate document, a catalogue, or an index, and still less clear for a computer retrieval system. Let us consider in turn various types of classificatory relation.

The division of a collection of items into fields is common in intermediate documents - such as an issue of an abstracts journal. The fields may follow each other in alphabetical order, but a meaningful sequence is often used - as in the examples examined in section B3. It is considered that the information searcher will be glad to find related fields near each other, to facilitate his scanning of the abstracts. In the abstracts journals of wider scope, such as Bulletin Signalétique, there is not only sequence but also classificatory grouping, with sequencing of each array of subclasses.

The division of a field into facets is common in thesauri, as we have seen in the examples of section C. In some cases (such as TEST and MESH) facets may be structured into hierarchies, though within the facet "boxes" of the Euratom thesaurus this is not done. The formation of homogeneous facets is a necessary step in the construction of a logically consistent hierarchy. This in turn is formed because the display of a hierarchy is considered to be an aid to indexer and searcher in choosing a term of appropriate width, and a further aid to the searcher in broadening a search that produces too little information, or narrowing one that produces too much.

The meaningful sequencing of terms in an array is not often found in the thesauri examined. Where it occurs, the justification would be the same as for the sequencing of fields, but an array is usually small, scanned at a glance, and meaningful sequence may be of little help to the searcher.

Both general argument and current practice therefore justify the use of classificatory relations in science information - meaningful sequencing of fields, and the construction of hierarchies. The first relation is used in intermediate documents containing a medium number of items - enough to structure broadly, but not enough to structure in detail. The second relation is used in wider secondary publications and in indexing aids such as thesauri, and hence in any indexes or computer retrieval systems based on the latter. We consider that the evidence of current practice - examples of which have been presented in sections B and C - justifies the use of classificatory relations in science information. The problem of whether they could be standardised, and if so, how, remains to be explored.

D.3 Classification in science

Classification plays a part in most fields of science at certain stages of their development, and is important whenever a large number of similar entities have to be distinguished (plants, animals, minerals, stars, chemicals, etc.). After an initial period of confusion and competing classifications, there is often a phase of strenuous effort to achieve standard classification, with grouping and division based on an agreed set of "essential" characteristics - "natural" rather than

"artificial", as the argument runs. Once such a standard has settled down, however, the practical development of a science and its associated technologies often leads to the recognition that other characteristics are equally useful for certain purposes.

This process, as it applies to the classification of chemical substances, has been explored (ref. 21). During the whole period up to the eighteenth century, various characteristics were used to group and divide chemicals: physical state, physical behaviour, chemical behaviour, origin, mode of production. With the developments associated with Lavoisier, constitution became firmly accepted as the basic characteristic by which chemicals should be classified. Since that time, both industry and science have begun to reintroduce earlier characteristics and add still others for certain purposes: bond type, use, scale of production.

The upshot of this is that for different purposes it may be necessary to place a given chemical in different classes: for example, Aniline might be classed as a Benzene derivative, an Amine, a Dye intermediate, a Toxic substance, an Organic base, and so on. The same is occurring in other fields. We are faced, in fact, with an increasing problem of cross-classification, in which an entity may fall into as many classes as there are special interest groups associated with it.

We can extend the argument. A homogeneous group of entities forms a facet, for example, chemical substances. In chemistry, substances are the centre of interest, and a classification will relate them to facets such as structure, physical properties, reactions, environmental conditions. In biology, chemical substances are of secondary interest, as cell constituents and reagents, and a classification will relate them to facets such as organisms, organs, tissues, biological processes. In each field, the same facet (chemical substances) will fit into a different pattern.

These features have led to the proliferation, for purposes of arrangement, of many special classifications, each structuring a field from its own point of view, and thus differing from each other in the grouping and sequencing of the same entities. This has been illustrated with respect to classifications used by intermediate documents in

section B, and a study of special library classifications (such as those listed in ref. 11) would amply confirm it. Section C4 has shown that even a single field - nuclear science and engineering - structured from two viewpoints that one would imagine to be similar, may present surprising divergence as to both choice of terms for inclusion, and grouping.

A general classification can adopt one of three ways of meeting this situation: (a) It can firmly place any given entity in only one class, according to what is believed to be its "most generally useful" characteristic. A special interest can only use such a classification as a standard by abandoning any structural relations peculiar to itself. (b) It can place each entity in as many classes as special interests may dictate. It becomes then an assembly of special classifications, held together only by its alphabetical index, and in no sense a standard. (c) It can attempt some uneasy compromise between the two extremes, failing to satisfy any special interest yet annoying the purist by inconsistency.

This last is the path chosen by most general classifications, and the comparisons reported in sections B and C illustrate yet another aspect of the situation. Each chosen compromise differs from the others. This is partly because each classification maker (whether individual or committee) responds differently to the clash of special interests. It is also because interests change with time, and a later classification will emphasise characteristics ignored by an earlier. As a result, each general classification tends to become trapped in a structural framework suitable only to the era in which it was made.

D.4 Current scientific research

The relatively outmoded character of any general classification is particularly evident if we compare it with the most recent developments in any field. In 1961, Unesco published a survey of current trends in scientific research, prepared by Pierre Auger (ref. 32). His classification of material was "based on a functional division of scientific research rather than on a purely academic classification of sciences." Scientific research was taken to include fundamental, applied and developmental research.

The overall division of the survey is as follows:

- I. Fundamental sciences (mathematical, physical, chemical, biological).
- II. Earth and space sciences.
- III. Medical sciences.
- IV. Food and agricultural sciences.
- V. Fuel and power research (thermochemical, hydroelectric, nuclear, solar and electrical energy).
- VI. Industrial research (metallurgical, chemical, textile, electro-mechanical, transport, telecommunications, automation, construction).

Science is seen as existing not only in the disciplines traditionally so labelled, but also in many areas of technology. So division III includes the science of nutrition; division IV includes nitrogen fixation, ecoclimatology, animal genetics, fish population dynamics; division V includes coal structure, radioisotopes, photosynthesis; division VI includes metallography, high polymers, acoustics of buildings. The interpenetration of science and technology is far greater than is suggested by the sharp separations of Dewey, UDC and Colon (Bliss is a little more up-to-date in this respect).

Even if we restrict our examination to the "fundamental" sciences, differences between Auger and the general classifications are immediately apparent. The differences are illustrated in Table 27, in which Auger's 1961 classification of "fundamental" sciences is coded according to the 1965 edition of Dewey. For example, in the main subdivisions of the physical sciences, the traditional disciplines of Mechanics and Acoustics are missing, and Atomic physics, Electronics and States of matter are much more emphasised. One of the six main subdivisions of the biological sciences is Radiobiology, a subject that barely figures in the general classifications.

At the detailed level, Auger is classing, not the whole of science, but its growth points. Yet it is fair to compare his classification with the general ones, because for current and future use they too must cover the growth points. For example, Auger subdivides States of matter into six sections - Fluid mechanics, Solid state, Semiconductors, Superconductors, High pressures, Low pressures. In Dewey, the terms in this array are coded 532, 530.41, 537.622, 537.623, ?

and 533.5 - at very different levels in very different hierarchies.

As a second example, consider Auger's subdivision of Inorganic chemistry. Instead of a simple division by chemical constitution, as found in the general classifications, we get: Inorganic macromolecules, Transition metal compounds, Fluorine derivatives, Compounds for electronics, Materials for astronautics, Metallurgical chemistry, Vitreous state. Again, among the 24 sections of the biological sciences are subjects that are found at a much more specific level in the general schemes - such as Chromosome biochemistry, Transport through membranes, Renal physiology, Cytobiology of radiation.

Particular areas of science rise and fall in importance, new topics continually emerge, the class relations of current interest alter, whole fields are restructured. We found great difficulty in comparing mathematical abstracts journals with the general classifications, and a series of comments by Auger makes this understandable: "modern mathematics uses techniques which were formerly utterly alien to it", "twenty or thirty years ago many good mathematicians still knew very little about vector spaces, etc., to-day they are part of any general mathematical education", "even a few years ago, the methods used in algebra were almost purely algebraic, to-day the situation is entirely different". There is little wonder that both the detail and the overall structure of Mathematics in all the long-established general classifications appears so inadequate.

It has been maintained by some writers that a science can only be properly classified when it has ceased to develop. What is certainly true is that only in a slowly developing field can current documentation continue to use an old classification. The dynamic of modern science is making outmoded the structural frameworks first laid down by Dewey (1876), UDC (1905), Bliss (1935) and Colon (1933).

D.5 The needed level of standardisation

The maker(s) of a general classification typically stand in front of the universe of information, classificatory knife in hand, and decide how to carve it up - into fields, facets, chains, arrays. Most of them spend a great deal of effort discussing the higher levels of

the scheme - what fields will be recognised? in what sequence will they be arranged? by what principles will these decisions be justified? A brief history of this aspect of the classification of science has been published elsewhere (ref. 23).

In practice, most general schemes end up by using traditional disciplines as the main fields, and this was explicitly justified by Bliss (ref. 1) as representing the "scientific and educational consensus ... an order likely to persist for centuries to come." In actual fact, although the names of traditional disciplines do persist for centuries, their content (particularly in science) changes continually and rapidly.

The inadequacy of division by traditional disciplines has been discussed by writers on physics, which is still conventionally divided into mechanics, acoustics, optics and so on. It has been noted that this classification of physics was originally based on types of sense perception, but that this method of division has lost its meaning. A century ago, these subfields were separate sciences, in very different stages of development, each following its own line of growth independently of the others. To-day the boundaries between them have almost completely gone. These comments could be illustrated from Table 8 (Appendix 3): from all the "sense-perception" fields of physics, material has been drawn together into a new field, Solid state physics.

The method adopted by makers of general classifications - successive subdivision of the universe of information, successive "expansion" of the scheme to keep pace with the growth of the libraries to which it is applied - of necessity implies an attempt to seek for permanence at the higher levels of the scheme. Bliss and many others have sought for a "permanent" set of fields, "the order of the sciences". Ranganathan has rather sought uniformity in a set of facets applicable to every field (ref. 2). Special classified arrangements, as we have noted, display great diversity. We suspect this to be inevitable.

Each particular intermediate document is (or should be) designed to serve the interests of a particular user group. Increasingly, as science and technology interpenetrate, user interests diversify. The discipline-oriented aids typical of the past give way to, or are complemented by, mission-oriented aids drawing material from many

scientific disciplines. The list of science/technology subject categories considered important by COSATI (Appendix 2) is sufficient illustration of this. Each user interest makes its own selection of subject matter, and arranges it according to its own structural pattern. There are as many arrangements of fields as there are interests.

Does this mean that attempts at standardisation must be abandoned? Before so concluding, let us consider more closely the alternative approach that has been adopted by the makers of both special classifications and thesauri designed for detailed indexing rather than arrangement. Each indexing aid, in effect, defines a field not in respect to its position in a wider universe, but by enumeration of its content. In special classifications for indexing, the field embraced can typically be expressed in a "thing-process" phrase, such as "diamond technology", "food science", "container manufacture" and so on. In each case, an enumerable group of things is selected, and from the many relations in which they subsist (their properties, processes, operations, behaviour, activities) a certain number is selected and enumerated. Every such selection can be the "field" of a classified index (ref. 26). If we examine a thesaurus such as TEST (ref. 13), we again find subject category fields defined by the terms that they include. In both cases, the term content of the field is structured hierarchically. Higher level relations between fields may not be displayed.

Essentially, therefore, both types of indexing aid contain many low-level hierarchies. Each hierarchy is usually restricted to a homogeneous set of terms - things, or their parts, constituents, structures, properties, actions or processes, or operations on things, or operating agents, and so on - each homogeneous set thus being what is called in classification theory a facet (refs. 2, 26). Facets are the building blocks out of which special classifications and thesauri may be assembled. Each special information aid may bring together a different set of facets, and arrange them in a different pattern, but the same facet may be common to many fields, and arrangement within the facet may be the same in each field. It is at this level that standardisation may be possible.

D.6 Recent work on faceted classification

In our descriptions of general classifications (section B2), the occurrence of well-defined facets within each was noted. They are distinctively coded in the UDC, which was the first classification to use the technique, but are most clearly and consciously used by Colon, whose maker Ranganathan introduced the term into classification. "Facet analysis" is now an accepted part of classification theory. Many special classifications have been devised along these lines (ref. 26). Exploratory work is going on in England towards the development of a new general faceted classification (ref. 27). Parallel ideas have been published by Farradane and colleagues (ref. 28).

Farradane sees information as representable through four basic facets of terms: entities, activities, abstracts and properties. He develops the outline of his scheme as in Table 22 (Appendix 3). Austin appears to be analysing at a more general level. These schemes are still at a preliminary stage, and cannot as yet be clearly related to the possible practical requirements of a world science information system.

It is worth looking in more detail at schemes recently drafted by the Information Division of the American Institute of Physics (ref.29). In a classification for Physics, two facets are recognised: (1) objects, (2) phenomena and associated properties. Each facet is divided into sub-facets, and each of these is fully hierarchical. The main "objects" of interest to Physics are listed as:

- Mathematical entities.
- Particles, fields, nuclei, atoms, molecules.
- Chemical elements and their compounds.
- Ensembles and aggregate matter.
- Astro- and geo-physical objects.
- Organisms, biological systems, organs.
- Artifacts, devices, instruments, systems.

The "phenomena and properties" listed are those associated with each "object" sub-facet - mathematics, particles, fields, chemicals, ensembles and so on. In illustration, Table 23 (Appendix 3) outlines the whole of each facet, and Table 24 lists Ensembles and their associated phenomena.

In a classification for Chemical physics also drafted at the A.I.P. (ref. 29) there is a shorter list of objects, a long list of "properties, processes and phenomena", and a list of "methods". These lists are divided into small groups, which may or may not be hierarchical. Arrays are usually in alphabetical sequence. An outline of the "properties" facet is presented in Table 25, and a detailed extract in Table 26.

As can be seen, in both these classifications there is no attempt to define and arrange "fields" of Physics. There is a strict concentration on homogeneous facets - objects, phenomena, methods - in each of which hierarchy is introduced to a greater or lesser extent. The "sense-perception" disciplines of physics figure only as phenomenological qualifiers (Ensemble class 47 in Table 24), or as phenomena associated with physical ensembles and chemico-physical objects.

The possibility raised at the end of section D5 is that schedules of this kind - unit facets of objects, properties, processes, methods and so on in different fields of science and technology - might well be standardised for use in intermediate documents and information aids. Similar hierarchies already exist in thesauri such as TEST (compare Table 26 with the list of thermodynamic and thermal properties in Table 14). There seems little point in each intermediate document producing its own variant hierarchy for a unit facet.

The comparisons reported in section C suggest that none of the general classifications considered could provide the necessary standard schedules. The facets of Colon are wholly inadequate in detail, although piecemeal expansion of small areas of technology is now taking place (ref. 30). There are many well-defined facets in UDC, but the frequency of scatter noted in section C2 suggests that there is still much inhomogeneity in its hierarchies, and at best we see UDC as a quarry. To create a standard, much work along lines considered in this section would be needed (ref. 31).

D.7 Conclusion

In placing a contract for a comparative study of classifications, the International Council of Scientific Unions expressed the hope that

the results would provide information that would assist in examining: "(i) the possibility of transfer of information between services using different classification systems, and (ii) the necessity for all information services to convert to a unique classification system".

This survey has indicated that, although formal classification schemes do not occur in all intermediate documents in science, the use of classificatory relations for both arrangement and information retrieval is widespread. Equally it has indicated that there is great diversity among the classifications used.

How does this affect the transfer of information between systems? We are saying, in effect, that there is a strong likelihood that the hierarchical relations of any particular topic will be different in each system. These relations are expressible in codes. The only way to get an item coded 541.34 in one system into the coding CDV, or E:22, or F1a10, or 541.8 of another system, is to recode it in each case. This could be done in advance, by compiling an (exhaustive?) list of all topics to be covered by the co-operating systems, and establishing a concordance of codes (our tables provide small samples of this). Whether this task is worth doing will depend upon the function that such transfer of information is intended to perform - a matter yet to be established in the UNISIST study.

An inconclusive answer must also be given to the second point raised by ICSU - whether it is necessary for all information services to convert to a unique classification system. The present diversity strongly suggests that, if interchange between systems is going to be important, then the use of a standard structure for arrangement and indexing is likely to be a better solution than a concordance between divergent structures. As already stated, we do not believe that any of the general classifications examined would be an adequate standard either for arrangement or for indexing. But the kind of classificatory structure needed can only be determined when the function of information transfer between systems has been settled.

Our final conclusions, therefore, can be expressed as follows: Classification has a definite role to play in science information, both in the arrangement of subject representations, and in their detailed

indexing. To the extent that the present variety of science information aids are to be integrated, the need for standard classificatory relations will increase. The form of such a standard, and the level at which standardisation should be applied (fields, facets, hierarchies, terms, codes), can only be determined when the mode of integration has been chosen. It is unlikely that any existing classification could be adopted as a standard, but both general and special schemes will be useful quarries from which classificatory relations could be drawn.

E. REFERENCES

- (1) Principles by which the fields of science may be arranged in sequence were discussed extensively by H.E. Bliss ("The organisation of knowledge and the system of the sciences", New York 1929, and "The organisation of knowledge in libraries and the subject approach to books", 2nd ed., New York 1939). More recently, principles based on the theory of integrative levels have been advanced - see, for example, D.J. Foskett in "Essays in librarianship in memory of W.C.B. Sayers", London 1961.
- (2) Principles by which fields may be divided into facets, and by which terms may be arranged in arrays, have been extensively discussed by S.R. Ranganathan, and conveniently summarised in his "Prolegomena to library classification", 3rd ed., London 1967.
- (3) G.A. Lloyd, "The UDC in its international aspects", Aslib Proceedings, vol. 21, No.5, pp. 204-8, 1969.
- (4) Sources on the history of classification include W.C. Berwick Sayers "Manual of book classification", 3rd ed., London 1955; E.I. Shamurin "Ocherki po istorii bibliotechno-bibliograficheskoi klassifikatsii", Moscow 1955-59, translated as "Geschichte der bibliographischen Klassifikation", Band 1-2, Leipzig 1964-67; E. de Grolier "Theorie et pratique des classifications documentaires", Paris 1956; M.F. Tauber and E. Wise "Classification systems" (State of the Library Art, vol.1, part 3, New Brunswick 1961); B.C. Vickery "Classification and indexing in science", 2nd ed., London 1959; and the writings of Bliss cited in reference 1.
- (5) The edition used was the "Dewey decimal classification and relative index", 17th ed., vols.1-2, New York 1965-67.
- (6) The UDC is a multilingual scheme, and the full edition has been published at various levels of completeness in different languages. The present state of publication is summarised in Appendix 4. We have used English versions published by the British Standards Institution, sometimes supplemented by German versions. Since no one language version is complete, and alphabetic indexes are

inadequate, classifying over a wide field of science proved difficult, and we have probably overlooked the existence of terms that are somewhere in the UDC schedules.

- (7) H.E. Bliss "A bibliographic classification", vols.1-4, New York 1952-53.
- (8) S.R. Ranganathan "Colon classification", 6th ed., Asia Publishing House, 1960.
- (9) F. Kutter "Koordinierte Klassifikation", Thalwil-Zurich 1951.
- (10) H. Clavier "Nouvelle classification universelle, maitre plan" The author, 1967.
- (11) See for example the U.S. Special Libraries Association bibliography "Selected materials in classification", New York 1968.
- (12) A list of thesauri currently available at Aslib has been compiled, for inclusion in a forthcoming publication.
- (13) "Thesaurus of engineering and scientific terms", issued simultaneously by the U.S. Department of Defence (as report AD 672000) and the Engineers Joint Council, 1967.
- (14) U.S. National Library of Medicine "Medical subject headings", Washington 1968.
- (15) European Atomic Energy Community "Euratom thesaurus", 2nd ed., Luxembourg 1967.
- (16) For example, the International Institute of Welding "Concordance between the classification systems of the IIW and UDC", Paris 1960. An earlier more general and more historical study was that of G. Lorphevre "La concordance entre classifications", Revue de la Documentation, vol.16, pp.8-16, 1949. G.A. Lloyd has made a "Comparison of Dewey and UDC at a minimum 3-figure level", FID publication 329, The Hague 1960.
- (17) An American study is that of J. Pettee "Subject headings: history and theory", New York 1946. A vigorous exploration of

the potentialities of alphabetical sequence is provided by J. Metcalfe "Information indexing and subject cataloging", New York 1957.

- (18) C.A. Cutter "Rules for a dictionary catalog", Washington 1876.
- (19) B.C. Vickery "Thesaurus - a new word in documentation", J. Documentation, vol.16, pp.181-9, 1960.
- (20) International Federation for Documentation "UDC special subject edition for nuclear science and technology", The Hague 1964.
- (21) B.C. Vickery "The classification of chemical substances: an historical survey", in D.J. Foskett and B.I. Palmer (ed.) "Essays in librarianship in memory of J.C.B. Sayers", London 1961.
- (22) U.S. Federal Council for Science and Technology "COSATI subject category list", Washington 1964.
- (23) B.C. Vickery, loc.cit. in ref.4, pp.158-94 on "Historical aspects of the classification of science".
- (24) E. de Grolier "A study of general categories applicable to classification and coding in documentation", Unesco, Paris 1962 (French edition 1960).
- (25) "Proceedings of the international symposium on relational factors in classification", Information Storage and Retrieval, vol.3, No.4, pp. 177-410, 1967.
- (26) B.C. Vickery "Faceted classification", London, revised reprint 1968.
- (27) A first brief public report is that of D. Austin, "The new general faceted classification", Catalogue and Index, No.14, pp.11-13, April 1969.
- (28) J.E.L. Farradane and others "Research on information retrieval by relational indexing, Part 1, Methodology", City University, London 1966.
- (29) For example, R.G. Lerner "Development of a multi-co-ordinate vocabulary: chemical physics" (March 1968); Information Division

"Draft classification scheme for physics" (November 1968) - both reports issued by the American Institute of Physics, New York.

- (30) Illustrations of Colon expansions will be found, for example, in Documentation Research and Training Centre, annual seminars 2-5, 1964-67, published by the Indian Statistical Institute, Bangalore.
- (31) We would like to draw attention to the forthcoming compilation by Jean Aitchison and others "The English Electric thesaurofacet", Leicester 1969 - a thesaurus integrated with a faceted classification, covering large areas of science and technology, with over 16,000 indexing terms.
- (32) P. Auger "Current trends in scientific research", Unesco, Paris 1961.

Appendix 1: Guides used to identify intermediate documents

- (a) A.J. Walford (ed) "Guide to reference material, vol 1, Science and Technology", 2nd ed, London 1966.
- (b) M.J. Fowler "Guides to scientific periodicals: annotated bibliography", London 1966.
- (c) NATIONAL FEDERATION OF SCIENCE ABSTRACTING AND INDEXING SERVICES
"A guide to the world's abstracting and indexing services in science and technology". Washington 1963.
- (d) H.R. Malinowsky "Science and engineering reference sources", Rochester 1967
- (e) L.N. Malclès "Sources du travail bibliographique, tome III, Sciences exactes et techniques", Geneva and Paris 1958
- (f) W. Totok and R. Weitzel "Handbuch der bibliographischen Nachschlagewerke", 2nd ed, Frankfurt 1959.

Appendix 2:

COSATI subject category list (all fields, selected groups)

		Dewey	UDC	Bliss	Colon
01	Aeronautics (5 groups)	629.13	629.13	BT	D53
02	Agriculture (6 groups)	630	63	UA	J+KZ
03	Astronomy and astrophysics	520	52	D/DF	B9
	A Astronomy	520	52	D/DF	B9
	B Astrophysics	523.013	523.03	DD	B9:6
	C Celestial mechanics	521.1	521.1	DCC	B9:7
04	Atmospheric sciences	551.5	551.5	DS	U28
	A Atmospheric physics	551.5	551.51	DSB	U286
	B Meteorology	551.5	551.5	DS	U28
05	Behavioral and social sciences (11 groups)	150	159.9	I	S+E
		300	3	K	
06	Biological and medical sciences, including	570/590	57/59		G+L
	A Biochemistry	+610	+61	E/H	
	B Bioengineering	574.192	577.1	EH	EgG
	C Biology	570	57	E	G
	D Bionics	-	-	-	-
	M Microbiology	576	576.8	FV	G91
	P Physiology	574.1	576.2	EJ	G:3
	R Radiobiology	574.1915	577.3	EAI	G:3305
07	Chemistry	540	54	C	E
	A Chemical engineering	660.2	66.0	CTE	F
	B Inorganic c.	546	546	CI	EI
	C Organic c.	547	547	CO	E5
	D Physical c.	541	541	CB	E:2
	E Radio and radiation c.	541.38	541.15	CFD	E:296
			+541.28		-
08	Earth sciences and oceanography	550	55	DF/D	
	A Biological oceanography	574.92	57(26)	EMT	G9555
	B Cartography	526.8	528.9	DQL	U11
	C Dynamic oceanography	551.46	551.465	DRS	U256
	D Geochemistry	551.9	550.4	DHC	
	E Geodesy	526	528	DQB	U18
	F Geography	910.2	911.2	DR	U
	G Geology and mineralogy	549/550	55+549	DG+CH	H
	H Hydrology and limnology	551.48/49	551.48	DRH	H422
	I Mining engineering	622	622	UDD	HZ
	J Physical oceanography	551.46	551.46	DRS	U25
	K Seismology	551.22	550.34	DHK	H413
	L Snow, ice and permafrost	551	551.32/34	DR	H421
	M Soil mechanics	624.151	624.131	-	-
	N Terrestrial magnetism	538.7	550.38	DHW	C75
09	Electronics and electrical engineering including	621.3	621.3	BME	D65/66
	B Computers	621.38195	681.14	AMU	D65,8(B)
	D Information theory	001.539	621.391	-	-
10	Energy conversion (3 groups)	621	621	UE	D6,3
11	Materials (12 groups)	660/670	66/67	-	F
12	Mathematical sciences	510	51	AM	B
	A Mathematics and statistics	510	51	AM	B
	B Operations research	001.424	519.28	-	-
13	Mechanical, etc. engineering (13 groups)	620	62	UO	D6

Appendix 2: (continued)

		<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
14	Methods and equipment (5 groups)	-	-	-	-
15	Military sciences (7 groups)	355	355	RMB	MV41
16	Missile technology (4 groups)	623.451	623.451.8	-	-
17	Navigation, etc (10 groups)				
18	Nuclear science and Technology, including	621.48	621.039	BEH	-
	B Isotopes	539.74	621.039.3	CCQ	E196
	H Radioactivity	539.752	539.16	BF	CM96
	K Reactor physics	539.75/.76	621.039.51	-	D7
19	Ordnance (8 groups)	623.4	623.4	RMG	-
20	Physics	530	53	B	C
	A Acoustics	534	534	BP	C3
	B Crystallography	548	548	CH	H1:8
	C Electricity and magnetism	537/538	537/538	BJ	C6/7
	D Fluid mechanics	532	532	BQ	B75
	E Masers and lasers	537.5+535.58		-	-
	F Optics	535	535	BI	C51
	G Particle accelerators	539.73	621.384.6	BEO	-
	H Particle physics	539.721	539.12	-	C9B
	I Plasma physics	537.16	533.9	-	-
	J Quantum theory	530.12	530.145	BFJ	CNI
	K Solid mechanics	531	531	BG	C21
	L Solid-state physics	530.41	539.2	-	-
	M Thermodynamics	536.7	536.7	BHB	C4:7
	N Wave propagation	537.12	538.56	BLR	C5:2
21	Propulsion and fuels (9 groups)	629.42	629.1.03<U	-	D5,7
22	Space technology (4 groups)	629.46/.47	629.19	-	D58

Appendix 3: Tabulations

In Tables 3 to 12 we give some examples of class codes in various classifications to schedules taken from Bulletin signalétique and elsewhere. Gaps may mean the genuine absence of a code for a particular subject, or a failure to discover the appropriate code.

In all codes we have used the stroke (/) to mean "all intervening codes" (thus AM/AY means "all codes from AM to AY inclusive"); the plus (+) to mean "and"; and "less than" (<) to mean "included in" (Thus < 523.85 means that the subject classed is included in the class represented by code 523.85). In Colon, the symbol O has been used in an unorthodox way as a generalised link between fields (thus GOC = G related to C = Biology related to Physics = Biophysics).

In all columns headed by an asterisk (e.g. Ref.Zh.*) the notation used is our own, constructed so as to display the hierarchy of the classification. Thus in Table 3, for RZ, B6c Clusters is an entity in the class B6 Stars, and this in turn lies in class B Astronomy; the sequence of classes into which Astronomy is divided is shown by the codes B1, B2, B3, etc.

In Table 13 we compare eight classifications of General and physical chemistry.

In Tables 14 to 18 we report the results of assigning class codes to terms in thesauri, giving samples and summaries. Tables 19 to 21 compare hierarchies in TEST and MESH.

Finally, Tables 22 to 27 give samples of recent faceted classifications.

Bulletin signalétique - second level heading.

Ref.Zh.*		Dewey	UDC	Bliss	Colon	Cosati
110	I Mathematics	A	510	51	AM/AY	B
	II History	A1	510.9	51(09)	AM3	Bv
	III Logic, axioms	A2	510.1	-	AM4/AFB	RL
	IV Groups	A4	512.86	-	AGG	B27
	IV Arithmetic	-	511	511	AN	BI
	V Algebra	A4	512	512	AO/AQ	B2
	VI Topology	A5	513.83	513.83	ATQ	B316
	VII Analysis	A7	-	-	AR	B3
	VIII Geometry	A6	513/516	513/516	AT/AV	B6
	IX Numerical analysis	A7 ^g	517.6	518	AOD	-
	X Information, documentation	-	029.7	002	-	05B
				+	+	
				510.78	518.5	-
				519	519.2	AY
				510.07	51:37	AMD
				B	521/526	D/DF
				B1	520.9	D3
				B3c	522.7	522.7
					521	DA
					523.013	DC
					523.03	DB
					522	DB
					523.7	DE
					523.2	DF
					523.8	DD
					523.85	DU
					523.112	DU
					550/	DU
					551	D
					551	DG
					551	DE
					551.31	DRD
					551.46/.47	DRS
					551.5	<DS
					551.5/.6	DS
					551.5	U2
					551	08
					551	U21
					551.32	08F
					551.46	U421
					551.51	08L
					551.5	U25
					551.5	08A+C+J
					551.5	-
					551.5	U4A
					551.5	U28
					551.5	04B

Table 3

Continued overleaf

Table 3(continued)

			Ref.Zh.*	Dewey	UDC	Bliss	Colon	COSATI
			Cla	551.514	551.510.5	DSP	W294+296	-
			C1	538.7	550.38	DHW	C75	08W
			E	530	53	B	C	< 20
			E	530.1	530.1	B	C	< 20
			-	530.15	-	BAM	B8	-
			D	531	531/533	BC/BD	B7	20D+K
			E7c	534	534	BP	C3	20A
			E5	535	535	BI	C5	20F
			E	536	536	BH	C4	20M
			E	537	537/538	BJ/BL	C6	20C+09
			E3	539.7	539.1	BE	C9B3	20G/I+18
			E5+6	539.1	539	BE	C2	-
			E6	-	539	-	C2	20L
			E	539.1	539.18/19	BE	C9A	-
			E5c	535.84	535.33	BN	C5:3	-
			Fla3	548	548	CH	H1:8	20B
			F	540	54	C	E	07
			F1	541	541	C1/CF	E:1+2	07D
			-	546	546	CI/CN	EL	07B
			F2	543/545	543	CG	E:3	-
			F3	547	547	CO/CR	E5	07C
			G	549+550	549+55	D	CH	08
			G4b	549	549	CH	H1	08G
			G4a	551.9	550.4	DHC	-	08D
			-	551.701	550.93	-	-	-
			-	-	523.04	-	B9:68	-
			-	-	-	-	-	-
			552.5	552.5	DNJ	H23		
			55					

Table 3 (continued)

Continued overleaf

Table 3 (continued)

			Ref. Zh. *	Dewey	UDC	Bliss	Colon	COSATI
214	A	Applied geology	G	553	553	DO	H7	-
	B	Economic minerals	G5+6+7	553	553	DO	H7	-
	C	Mining	-	622	622	UD	H2	08I
	D	Applied Geophysics	G8c	622.15	550.8	DR	-	-
	E	Hydrogeology	G10a	-	551.48	-	H422	08H
	F	Engineering geology	G10b	-	550.8	-	-	-
216	A	Earth sciences III	G	550+560	550+56	D	H3	08G
	B	Structural geology	G1b	551.8	551.2	DR	H3	-
	C	Regional geology	G1d	554/559	555	DL	H3	-
	D	Palaeontology	G2b	560	56	EP	H6	-
320	A	Biological sciences I	H	570	577/578	EE	G	06
	B	Biochemistry	H	574.192	577.1	EH/EI	E9G	06A
	C	Biophysics	I2	574.191	577.3	E4	GOC	-
	D	Biological and medical engineering	-	-	578	FB	-	-
360	A	Zoology	I	590	59	-	-	06B
	B	Animal biology	I	591	591	G4/GI	K	06C
	C	Protozoa and invertebrates	I6b	592/595	592/595	GL/GT	K1/8	-
	D	Vertebrates	I8	596/599	596/599	GT/GY	K9	-
361	A	Vitamins growth factors	H4	574.1926	591.13	GIP/GDQ	E97	-
	B	Reproduction, etc.	I	574/575	575/577	GE	K:6	06P
	C	Sexual reproduction	I12j	574.166	577.8	GEO	K:675	-
	D	Hormones, endocrinology	-	574.1927	577.17	GEK/GEL	E986	-
370	A	Genetics	I1c	575.1	575	IN	K:6	-
	B	Botany	I4+5	580	58	F	I	-
	C	General	I4	581	581	FA	I	-
	D	Cytology	I1b3	581.87	576.3	EC	I:11	-
	E	III Morphology	-	581.4	581.4	FA+FC	I:1	-
	F	IV Physiology	I5	581.1	581.1	FD/FE	I:3	-
	G	V Reproduction	I4	581.3	581.16	FER/FEU	I:67	-
	H	VI Embryology	I5g	581.33	581.3	FDI	I:7	-
	I	VII Parasitism and symbiosis	-	581.55	576.6	FF	I:56	-

Continued overleaf

Table 3 (continued)

Table 3 (continued)

		Ref.Zn.*	Dewey	WDC	Bliss	Colon	COSATI
		Id	581.38	576.1	E0	I:66	-
		-	581.5	581.5	FT	I:5	-
		J	669	669	CK	E191	11F
	I	J1	669.0	669.01	CK	E191	
740	II	E6c	669.9	669.017	CKB/CKG	E191OC21	11F
	III	E6c7	669.95	548	CKG	E191OC21:8	-
	IV	-	-	548.4	-	-	-
	V	-	-	-	CKD	-	-
	VI	J7a1	-	-	669.018.4	-	-
	VII	J7b,c	-	-	669.018	CKE	
	VIII/IX	J2+3+4	6669	669.04/.09	CKJ/CKO	E191OC	-
	X	J3+4	622.7	622.7	CKQ	-	-
	XI/XII	J2+3+4	6669	669.054	CK	-	-
	XIII	J2+3+4	671.2	621.74	URE	-	-
	XIV	J4+5	671.37	621.76	-	-	-
	XV	J8	669.92	669.9	CKT		-
	XVI	J7d	671.36	621.78	CKL		-
	XVII	J5+6	671.3	621.77	CKL		-
	XVIII	-	620.162	620.19	CKT	E191:895	-
	XIX	-	-	669.004	-	-	-
			Gaps	21	12	12	70
			Inversions	31	28	34	21
			Multiple codings	0	0	30	28
			111 BS classes	2	2	1	1

Bulletin signalétique - 120. Astronomy and astrophysics

120		Astronomy and astrophysics		Ref.Zh.*	UDC	Bliss	Colon	Astro.Jb.
I	II	III	IV	B	520	D/DF	B9	-
			1	B1	520.1	D	-	
			2	B3c	522.7	AO	B9:5	
			3	-	522.71	DAT	39:51	
			4					I/II
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
			1					
			2					
			3					
			4					
		</						

Table 4 (continued)

Table 4 (continued)

<u>Ref.Zh*</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>Astro.Jb.</u>
3 Photosphere	-	523.741	DEP	CB93:6358	VII64
4 Chromatosphere	523.75	523.752	DER	CB93:6358	VII66
5 Corona	523.75	523.755	DET	CB93:6358	VII67
6 Radioastronomy	523.016	523.7:523.162	-	CB93:95	
7 Activity cycle	-	523.745	-	-	
8 Relation to earth	523.73	-	-	-	
9 Internal structure	523.76	523.76	DEB	CB93:68	VII62
10 Eclipses	523.78	523.78	DEM	CB93:57	
VII Planets and solar system	523.2/6	523.2/6	DF	B94/95	VIII/X
VIII Stars	523.8	523.8	DD	B96	XI/XIII
1 Catalogues	523.8908	523.89	DDH	-	IV32
2 Movement	523.83	523.83	DDP/Q	B96:511	XI 102
3 Parallax	523.81	523.813	DDJ	B96:522	
4 Photometry and colorimetry	522.62	523.821	DDK+DDM	B96:64	XI 103
5 Classification and spectrum-	523.87	523.87	DDL+DDO	B96:653	XI 104
6 Atmospheres	-	-	ED,J	B96:6358	
7 Global properties	-	-	-	B96:6	XI 105/107
8 Variables	523.844	523.841	DDS	-	XIII
9 Novae, supernovae	523.8446	523.841.1	DDP	-	XIII 126
10 Binaries	523.841/.843	523.842	DDR	B962	XII
11 Pulsating variables	-	-	DDS	-	XIII 122
12 Eruptive variables	-	-	DDS	-	XIII 124
IX Clusters	523.85	523.85	DDU	B964	XV 141/144
X Galaxies	523.112	523.855	DDU	CB964	XV 145
	Gaps	12	8	7	11
	Inversions	12	11	10	12
	49 BS classes				

Bulletin signalétique - 120 a: Physics of earth

		Dewey	UDC	Colon
			<u>550</u>	<u>U+H4</u>
120a	Physics of earth			
I/II	General			
III	Terrrestrial globe	551.1	525	U21
a	Weighing	<525.1	525.11	B91:622
b	Triangulation	526.33	526.3	U112
c	Measure of distance	-	526.2	U114
d	Levelling	526.36	526.95	D:21
e	Shape of the earth	<525.1	526.1	B91:621
f	Cartography	526.8	526.8	U11
g	Aerial photography	526.9823	526.9185	D:28
h	Photogrammetry	526.982	526.918	
i	Internal composition	551.11	551.1	-
j	Geothermy	<551.12	550.836	DHE
k	Radioactivity	525.2	550.378	DFT,N
l	Vulcanology	551.21	551.21	-
m	Slow crust movements	<551.14	<551.14	H411
n	Seismology	551.22	550.34	H413
o	Geophysical observations	<551	550.3	H4132
IV	Glaciology	551.31	551.32	-
a	Ice	551.3134	<551.32	DRD
b	Glaciers	551.31	551.324	<DRY
c	snow	-	<551.322	DRG
d	icebergs	551.342	551.326	-
V	Oceanography	551.46/47	551.46	-
a	Bathymetry, ridges	<551.46084	551.462	DPS
b	Sea floor and shore	<551.46084	551.462	DRS
c	Sea Water	551.4601	551.463	DRU
d	Ocean Level	-	551.461.2	-
e	Currents	551.4701	551.465	<DFT
f	Tides	551.4708	525.6	<DFT
g	Swell	-	-	U252
h	Internal waves etc.	551.4702	-	U255
i	Technique	-	-	U2562

Table 5

Continued overleaf

Table 5 (continued)

Table 5 (continued)

Continued overleaf

Table 5 (continued)

		Dewey	UDC	Bliss	Colon
VIII	a	<u>551.514</u>	<u>551.510.3</u>	<u>551</u>	<u>U29</u>
b	Density, composition	-	551.510.3	-	-
c	Displacement, turbulence	551.557	-	-	-
d	Ionisation	551.561	551.594.12	-	-
e	Electromagnetic waves	-	-	551.594.13	-
f	Magnetic field	-	-	551.594.13	-
g	Ionospheric conductivity, trapped particles	538.767	551.510.535	-	-
h	Ionospheric layers	-	551.590.21	-	-
i	Ionospheric perturbations	-	551.594.5	DSY	-
j	Solar eruptions	538.768	-	-	-
k	Polar aurorae	-	-	-	-
l	Luminous emissions	-	-	-	-
IX	a	538.7	550.38	DHW	C75
b	Geomagnetism	538.79	550.382	DHW	-
c	Observations	-	550.389	-	-
d	Distribution	-	550.382	-	-
e	Magnetism of rocks	549.127	550.384.3	DHW	H20C7
f	Palaemagnetism, secular	(538.72	-	-	-
g	variations	-	-	-	-
h	Periodic variations	538.74	550.384.4	DSW	-
i	Telluric currents	538.748	550.387	-	-
j	Magnetic perturbations	538.744	550.385/.386	DSW	-
	Gaps	-	-	-	-
	Inversions	18	7	29	40
	83 ES classes	21	26	13	13

Referativnyi Zhurnal - E Physics

Table 6

E*	Physics	Bull.sig.	Dewey	UDC	Bliss	Colon	Phys.Abs.	Phys.Ber.
1	General, methods	130/160	530	53	B	C	PA	PB
2	Theoretical	130A	-	530.08	BB	-	01.00	I
		130B	530.1	530.1	BA	C1	02.00	II
a	Quantum mechanics	130BV	530.123	530.145	BFJ	CNI	10.00	IIa
b	Statistical physics	130BII	530.13	531.19	BEV	CN2	02.40	IIb
c	Irreversible processes	130FII	-	530.161	-	-	-	-
d	Special relativity	130BV	530.11	530.12	BCL	CN	02.30	IIIc
e	General relativity	130BV	530.11	530.12	BAR	CN	02.30	IIIc
f	Quantum electrodynamics	140XII	-	535.14	-	C68	-	-
g	Field theory	-	530.14	-	-	-	-	IIIc
h	Elementary particles	150III	539.721	539.12	-	-	-	V
		150	539.7	539.14/.17	BEH	C9B3	12.00	CV
		140XIII	537.16	533.9	-	-	13.00	VIIa
		160B	539.1	539.18/.19	BE	C9B1/2	14.60	VI
i	Nuclear physics	160BIIa	539.14	539.184	BED	-	14.00	VIA
j	Plasma physics	160BIIa	539.14	-	-	-	14.20	VIA
k	Atoms and molecules, etc.	-	-	-	-	-	-	-
l	Atomic electron shells	-	-	-	-	-	-	-
m	Atomic spectra	-	-	-	-	-	-	-
1	2	Electrical, magnetic props.	-	-	-	-	-	-
2	3	Interatomic forces collisions	-	-	-	-	-	-
b	Molecules (subdivide as e)	160BIIb	539.12	539.186	-	-	-	-
c	Spectroscopy	160C	535.84	539.19	BER	-	14.30	VIB
1	1	Individual atoms	160CIC	-	535.33	05.3	08.35	-
2	2	Individual molecules	160CIA	-	535.333	-	-	-
3	3	Intermolecular interactions	-	-	-	-	-	-
4	4	Plasma, flames	-	-	535.343.1	-	-	-
5	5	Crystals	-	-	535.343.2	-	-	-
6	6	Methods	160CIB	-	535.33.03	-	08.35	-

Table 6

Continued overleaf

Table 6 (continued)

	Bull.sig.	Dewey	DDC	Bliss	Colon	Phys.Abs.	Phys.Ber.
d	1	Magnetic resonance	-	-	-	14.32	-
	2	Nuclear	-	-	-	-	-
e	2	Electron	130EIIe	535.35	353.37	BIC	17.95
f		Luminiscence	130EVI	535.2	535	QI	08.40
g		Physical optics	130EVIII	535.32	535.31	BTK	08.20
h		Geometrical optics	130EVa	-	535.89	BIC	-
		Light sources, etc.			536.52	C51:1	-
		Pyrometry			535.24+.65	-	-
		Photometry	130EIV	535.22	535.24+.65	BIG	08.10
		Physiological optics	130EIIa	612.84	535.7	HWB	1185:3
		Photography	130EXIV	770	77	CFP	08.60
i	2	Gases, liquids, solids, polymers	130C+160A	530.4	-	BG	15/17
j		Gases, vapour, liquids	160AIII	530.42/.43	532/533	BGG	15.00
a		Macromolecular and	160AIf	-	539.213	C25/28	-
b		vitreous			-	C215	17.10
c		Solids	130C+160AI	530.41	539.21	BGP	17.00
	1	Theory		-	-	C21	VIII
	2	Structure		-	-	-	-
	3	Elastic properties	130CV	531.38	539.2	C21,8	17.05
	4	Diffusion		-	539.3	BGE	17.50
	5	Phase equilibria		-	539.378.3	C21,2	VIII3
	6	Crystallisation and melting		-	-	C21,93	17.37
	7	Real crystal		-	-	-	-
	8	Mechanical properties	130CVI	536.42	536.421	C4:51	17.34
	9	Effect of radiation		548.8	548.7	BGE	17.15
		Solid dielectrics and semiconductors		-	-	C21:2	VIII 1
		Solid metals	160AIC	669.9	537.311.33	C2105	VIII 3
		Radiophysics, electronics, acoustics		-	537.311.31	C21E191	VIII 2
	a	Radiophysics	140XTIV	537.12	-	-	-
b		Physical electronics	140IX+XI	537.5	538.56	C5	07.00
c		Acoustics	130D	534	937.533.7	C935	11.00
		Gaps		-	534	C3	03.30
	a	Inversions		23	13	26	IVg
	b	56 RZ classes		13	15	13	IV
	c						IIIe

Table 6 (continued)

Bulletin signalétique - 160: Structure of matter

Table 7

		<u>Ref.Zh.*</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>Phys.Abs</u>
160	A	Structure of matter	E5/6	530+539	539	BG	C2
		Condensed state		-	-	-	-
I	a	Solids, general	E6c	530.41	539.2/.8	BGP	C21
b		Superconductivity		537.623	537.312.62	BEF	-
c		Magnetism	<E6d/e	538	538.22	BL	17.00
d		Semiconductors, dielectrics	E6d	537.24+.622	537.226+.311	BJH	-
e		Metals and alloys	E6e	669.9	537.311.31	CKB	17.63
f		Vitreous and amorphous	<E6b	-	539.213	-	17.80
II		Mesomorphic state		-	548-15	BGN	-
III		Liquids	<E6a	530.42	539.266	BGL	17.10
B		Atomic and molecular physics	E5	539.1	539.18/.19	BE	-
I	a	Theoretical, general	E5a	-	539.1.01	-	-
b		Classical theories		-	-	BEF	-
c		Quantum theories		-	530.12	BFJ	CNI
d		Electron wave functions		-	530.145	-	10.00
e		Methods of calculation		-	-	-	-
II		Particular systems		-	-	-	-
a		Levels, electron structure and atomic spectra	E5a1	539.14	539.184	BED	-
b		Ditto, molecular spectra	E5b1	539.12	539.194	BER	14.20
c		Molecular assemblies		-	-	-	-
d		Structural studies	<E5c	-	539.2	-	14.31
III		Diffusion and collisions	<E5a/b	-	533.72	-	-
a		Elastic and inelastic		-	-	-	-
b		Reactive		-	-	-	-
c		Ionisation, electron capture		-	-	BEQ	-
d		Excitation, lifetime		-	539.186+.196	-	14.50

Table 7

Continued overleaf

Table 7 (continued)

Table 7 (continued)

	<u>Ref.Zh.*</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>Phys.Abs.</u>
C						
I						
a	Spectroscopy	E5c	535	BFN	E:3E5	08.35
b	Structures determined optically	E5c6	535.84	(535.33	-	-
c	Apparatus, techniques	E5c1	539.14	535.33	BFN	-
d	Atomic spectra	E5c2	539.12	535.33	-	-
e	Molecular spectra			-	-	14.31
f	Raman spectra				E:3E7	
	Electro-magneto-optics				C51:38	
g	Faraday effect, optical	535.524	535.56	BIV	C51:6	
	rotation					
h	Molecular refraction	535.324	535.32	BFN	C51:23	
II						
a	Structures determined by Hertzian		-	-	-	07.20
b	waves and multipolar moments					
c	Apparatus, techniques					
d	Magnetic moments					
e	Electric moments					
f	Quadrupole moments					
	Cyclotron resonance					
III						
IV	Structures determined by Mossbauer effect					
V						
a	Structures determined by mass spectrometry					
b	Structures determined by					
	mechanical waves					
	Elastic constants	E6c3	-	-	-	
	Relaxation time		-	-	-	
	Gaps	25	18	26		
	Inversion	9	10	7		
	46 BS classes				31	3

Table 8

Physics abstracts - 17. Solid state physics

	<u>Dewey</u>	<u>WDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>Solid State Abs.</u>	<u>Phys. Ber.</u>	<u>Ref.Zh*</u>
17.05 Structure of solids	530.41	539.2	BGP	C21,8	< A2		E6c2
06 Phase transformations	-	-	BGW	-	< A5+B1		E6c5
07 Surfaces	-	539.211	-	C21,4		VIII.17	
08 Films	-	539.23	-	-	< A5+B2	VIII.16	
09 Adsorption	-	-	< BGQ	-			
10 Non-crystalline state	-	539.213	-	C215			
15 Crystallography	548	548	CHC	H1:8			
20 Microstructure	-	539.24	-	-			
25 Crystal lattice structures	-	548.1	CHH	-			
30 Lattice mechanics	-	-	-	-	A5	VIII.1	
32 Acoustical properties	534.22	539.21:534	CHI	C210C3	< C3	VIII.4	
34 Thermal properties	548.86	539.21:536	CHI	C210C4	C4	VIII.5	E7c
37 Diffusion	531.7	539.378.3	< BGQ	C21,93	A4d	VIII.2	E6c3+d3+e3
40 Defect properties	-	548.4	-	-	A6	VIII.2	E6c4+d4+e4
42 Colour centres	-	539.21:535.21	-	C210C5	< B3	VIII.2	E6c7
45 Radiation effects	-	-	-	-			
50 Mechanical properties	548.84	539.3	< BGQ	C210B7	A7+C3	VIII.3	E6c9+d7+e7
55 Electron states	-	-	-	C2D			E6c1+d1+e1

Continued overleaf

Table 8

Table 8 (continued)

Table 8 (continued)

		<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>	<u>Solid State Abs. Phys. Ber.</u>	<u>Ref. Zn*</u>
60	Electrical properties	548.85	539.21:537	CHK	C210C6	65/8	E6d5+e5
61	Metals, conductors	548.85	537.311.31	BKT	C210C6:21	C7	E6e5
63	Superconductivity	537.623	537.312.62	BKF	-	C8	VIII.10
64	Superconducting materials and devices	-	-	-	-	C8i	VIII.9
66	Semiconductors	548.85	537.311.33	-	-	C7	VIII.II
67	Semiconducting materials	-	537.311.33	-	-	C7	E6d
68	Semiconducting devices	-	621.382	-	-	-	-
69	Dielectrics	548.85	537.226	BJH	C210C6:211	C6	VIII.6
70	Thermoelectric properties	537.65	537.323	BKP	C210C6:44	C4e	VIII.12
73	Photo-conductive,-voltaic effects	537.54	535.215	-	C210C6:45	C5e	VIII.13
77	Electron and ion emission	537.533	537.58	BKT	C210C6:25	C7e	E7b1
80	Magnetic properties	538	538.22	BLC	C210C7	C9	VIII.7
81	Paramagnetic	538.43	538.222	BLC	C210C73	C9b	E6d6+e6
82	Ferromagnetic	538.44	538.221	BLC	C210C74	-	E5e2
83	Ferrimagnetic	538.45	-	-	-	-	-
84	Antiferromagnetic	-	-	-	-	-	-
85	Magnetic resonances	-	-	-	-	-	-
90	Optical properties	535.2	539.21:535	BI	C210C51	C1	E5d
95	Luminescence	535.35	535.37	BIG	C210C51:73	C5	E6d5+e5
	Gaps	17	9	16	17		
	Inversions	7	10	5	6		

Table 9

1170 A		General and physical						
I/II	General							
III	Determination of atomic and molecular weights							
IV	Structure							
V	Equilibria							
VI	Solutions							
VII	Diffusion							
VIII	Rheology, viscosity, adherence, cohesion							
IX	Chemical kinetics							
X	Catalysis							
XI	Combustion							
XII	Termochemistry							
XIII	Activity and fugacity							
XIV	Radiation chemistry							
XV	Electrochemistry							
XVI	Surfaces							
XVII	Colloidal and dispersed states							
B		Inorganic						
I	History and general							
II	Kinetics and reaction mechanism							
III	Apparatus							
IV	Preparations and properties							

Table 9

Continued overleaf

Table 9 (continued)

Table 9 (continued)

			Ref.Zh.*	Dewey	UDC	Bliss	Colon	Chem.Abs.Chem.Zentr.CurrChemPap.
C	I/IV	Analytical	F2	543/545	543	CG	E:3	
	V	General	F2a	543/545	543.2/.5	CG	-	
	VI	Inorganic	F2b	543/545	543.7	CI,G	E1:3	61
D	—	Organic	F2c	547.3	543.8	CO,G	E5:3	62
	I/IV	General	F3	547	547	CO/CR	E5	63
V		Preparations and properties	F3a	547.1	547.1	CO	21/30	12c
a		Synthesis		547	547	COT	-	
b		Organometallics	F3b1	547.2	-	COM	E5:4	
c		Aliphatics	F3b6	-	547	COV	E5191	10
d		Benzene compounds	F3b2	547.4	547.2/.4	CPA	E6	11a
e		Aromatics condensed	F3b4	547.611	547.5	COH	E7.1	23
f		Cyclanes, terpenes, steroids	F3b3+F3c2	547.615	547.6	COJ	E7	25
				547.5+.7	547.51+	CQA+	E79+996	CC2
					547.59+	CRN	24+30+32	CC2
					547.92			11e
g		Heterocyclics	F3b5	547.59	547.7/.8	CR	E8	11b
h		Carbohydrates	F3c1	547.78	547.45	CRO	E68	11c
i		Amino-acids and peptides	F3c7	-	547.96	CPM	E922	11b
		Gaps		4	3	2	9	
		Inversions		13	10	11	8	
		38 BS classes						

Table 10

Bulletin signalétique - 170A: General and physical chemistry

		Ref.Zh*	Dewey	UDC	Bliss	Colon
170A	General & physical chemistry	Fla	541	541	CA/CF	E:1/2
I	General and history		-	541(09)	CA	-
II	Apparatus & techniques		542	-	CAL	-
III	Determination of atomic and molecular weight		541.222 +225	541.23/.24	CCC	E:14
IV	Chemical structure	Fla1	541.22	541.6	CBD	E:218
V a	Equilibria	Fla7	541.392	541.121	CDD	E:2133
b	Homogeneous		-	541.122	-	-
c	Heterogeneous		-	541.123	-	-
VI a	Solutions	Fla10	541.34	541.8	CDV	E:22
b	Properties		541.341	-	-	-
c	Solubility curves		541.342	532.739	CCK	E:2201
d	Dissociation constants		541.3722	541.132	CEH	-
e	Solvents		541.3482	-	-	-
VII	Diffusion		532.7	532.7	-	-
VIII	Rheology, viscosity, adherence, cohesion		532.58	532.13	BGG	C2,9
IX a	Chemical kinetics	Fla8	541.39	541.124	CDE	E:213
b	Analysis of reactions		-	-	CDG	-
c	Chain reactions		541.393	541.124.7	-	-
d	Reaction rate measurement		541.394	541.127.1	CDH	-
X a	Catalysis	Fla8	541.395	541.128	CDI	E:88
b	Homo-and hetero-geneous		-	541.128.1	-	-
XI	Combustion and flames	Fla8	541.361	536.46	CDG	E:2131
a	Explosions		-	541.126	-	-
b	Deflagrations		-	-	-	-
c	Detonations		-	-	-	-
d	Heats of combustion		541.362	536.662	-	-
XII	Thermochemistry	Fla7	541.36	541.11	CDP	E:24
a	Theories		-	-	-	-
b	Thermodynamic properties		541.369	536.7	CDN	-
XIII	Activity and fugacity		-	-	CDW	-
XIV a	Radiation chemistry	Fla9	541.35	541.15	CF	-
b	Chemical changes		-	-	CFD	-
c	Chemi-luminescence		-	535.379	-	-
d	Photochemistry of sensitive layers		-	541.14	CFI	E:25
XV a	Electrochemistry	Fla11	541.37	541.13	CF	E:26
b	Electrolytic solutions		541.372	541.13	CEE	-
c	Interfaces		-	-	-	-
d	Electrochemical kinetics		-	-	-	-
e	Electrodeposition		545.34	621.357.7	-	-
f	Anodic solution and oxidation		-	541.138.2	CER	-
g	Corrosion, cathodic and anodic protection		620.162	541.138.2	CKI	-
h	High temperatures		541.3687	541.136.86	CDR	-
i	Electrochemical generators		621.35	541.136	CEK	-
j	Surface treatment		-	621.357.8	CKV	-
k	Electrochemical preparations		-	542.8	CFT	E:86

Table 10 (continued)

			<u>Ref.</u>	<u>Zh*</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
XVI	a	Surfaces	Flal2	541.3453	541.183	CDU	E:232	
	b	Surface tension and capillarity		<ditto	532.6	BGU	C2,4	
	c	Interfaces, liquid gas and liquid-liquid		ditto	532.613.4	-	-	
	d	ditto, solid-liquid		ditto	532.613.2	-	-	
	e	ditto, solid-gas		ditto	532.613.3	-	-	
	f	ion exchange, selective adsorption		541.3723	541.183	-	-	
	g	Adsorbents		-	<541.183	-	-	
	h	Surface-active substances		668.1	-	-	-	
XVII	a	Colloidal and dispersed states	FLal3	541.3451	541.18	CDT	E:235	
	b	Apparatus and techniques		-	541.18.05	-	-	
	c	Granulometry		-	-	-	-	
	d	Physical & chemical studies		-	-	-	-	
	e	Micelles		-	-	-	-	
	f	Thin films		<541.3453	-	BGU	-	
	g	Electrokinetic phenomena		-	-	-	-	
	h	Constitution and structure		-	541.18.02	-	-	
	i	Emulsions, suspensions, gels, aerosols		<541.3451	541.182	BGR	E:236+238	
	j	Porosity		531.7	539.217.1	-	-	
	k	Permeability		<532.7	539.217.3	-	-	
		Gaps		25	16	30	45	
		Inversions		14	19	12	5	
		65 BS classes						

Bulletin signalétique - 320/370: Biology, main divisions

Table 11

		Ref.	Zh.*	Dewey	UDC	Bliss	Colon	Biol. Abs.	Ber. Res. Biol.*	Int. Abs. Biol. Sci.*
320	A I	Biochemistry, biophysics etc.		574.19	577/578	-	-	14-32	C	C
	II	Chemical constituents	H	574.192	577.1	EH/EE	E93	-		
	III	Body fluids and tissues	IIIe/f	574.1921	577.11	EHF	-	25	F11	F6
	IV	Enzymes	H3	574.1925	577.15	EIP	E982	16	D	D
	V	Metabolism	-	-	-	-	-			
	B I	Analytical biochemistry		574.13	576.343	EJM	G33E			
	II	Physical methods		543/545	578	EIG	E96:3			
	III	Chemical methods		543.08	578.088	EHB	E96:3B			
	IV	Biological methods		-	578.088.1	EHG	E96:3J			
	C I	Biophysics	I2	574.191	577.3	EAB	E96:3X			
	II	Physical properties	-	-	-	-	60C	15-32		
	III	Physical Agents		574.191	-	-	-			
	IV	Physical phenomena		-	-	-	-	10		
	D	Biological and medical engineering		-	-	-	-			
360	A I	Zoology	I6	590	59	G	K			
	II	Animal biology		591	591	GA/GI	-			
	III	Geographical distribution	I6a4	591.9	591.9	GH	KOU		J	
	IV	Ecology	I6a3	591.5	591.5	GG	K:5	13	I	
	V	Ethology	-	591.5	-	-	-			
	VI	Cytology	I1b4	591.8	591.81	EC	G11	<4	H	
	VII	Morphology & histology	I6a2	591.4	591.4+8	GA	K:2	17	F1	
	VIII	Embryology	I10b	591.33	591.3	EE	K:7		A	
	B	Protozoa & invertebrates	I6b	592/595	592/595	GL/GT	K1/8	42+43	F3	
	C I	Vertebrates		596/599	596/599	GU/GV	K9	44		
	II	Cellular physiology		574.876	576.3	ECT	G11:3	<4		
	III	Tissue culture, etc.		636.08	578.	EBC	085.23			
	IV	Development		591.3	591.3	GDQ	K9:7	20	D	F4
	V	Metabolism	IIIc	<591.13	591.13	GDH	K9:33			F2

Table 11

Continued overleaf

Table 11 (continued)

		Ref.Zh* Dewey	UDC	Bliss	Colon	Biol.Abs. ^a Ber.ges.Biol int.Abs.Biol.Sci. ^b
VI	Nutrition	IIIj <591.13	591.13	GDK	K9:573	21
VII	Respiration	IIIi 591.12	591.12	GEE	K9:36	27
VIII	Communication	III2d 591.59	591.59	GTV	-	F6
IX	Excretion	IIIk 591.14	591.149	GEI	K9:35	F7
X	Circulation	IIIg 591.11	591.112	GEA	93	F8
XI	Nervous system	II2a/c 591.48	591.18	GF	97	F9/10
XII	Integument	II0j <591.47	591.47	GEW	G87	F9/10
XIII	Skeleton	II10e <591.47	591.471.3	GCT	G82	
XIV	Muscular system	II10e 591.47	591.473	GER	G83	
XV	Movement	II10e 591.18	591.17	GEP	-	
XVI	Applied physiology	-	-	-	-	
D	Vitamins, growth factors Reproduction, endocrinology, genetics	H4a	574.1926	577.16	GDP	E97
A	Sexual reproduction	H4b	574.166	577.8	-	E:6
B	Hormones	II1c1	574.1927	577.17	GEO	G:675
C	Genetics	I4	575.1	575.1	GEL	E:986
I	Botany, plant biology	II1b3	580	580	EN	G:6
II	Cytology	I4	581.8	576.3	F	I:7
III	Morphology and systematics	II1d	581.5	581.5	EC	E8/11
IV	Physiology	581.1	581.1	FD/FF	I:3	
V	Reproduction	581.16	581.16	FER	I:67	
VI	Development	15g	581.3	581.14	FDI	I:7
VII	Parasitism & symbiosis	581.55	581.55	581.557	FF	I:56
VIII	Evolution	581.38	581.38	576.12	ENZ	I:66
IX	Plant and environment	581.5	581.5	581.5	FF	I:5
	Gaps	9	8	9	12	
	Inversions	18	18	20	14	
	54 BS classes					

Table 11 (continued)

Table 12

Bulletin signalétique ~ 320 A Biochemistry

			<u>Ref.Zh.*</u>	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
320 A	I	Biochemistry	H	574.192	577.1	EH/EI	E9G
	II	Chemical constituents		574.1921	577.11	EHF	-
a		Inorganic, mineral		574.19214	:546	EHI	EI
b		Glucides		-	:547918	EIR	E6898
c		Lipoids		574.19293	:547.915	EIT	E96
d		Steroids, terpenes		-	:547.92	EIU	E996
e		Protides	H2b	574.19296	:547.96	EID	E922
f		Alkaloids		-	:547.94	EIL	E92
g		Nucleic acids	H2c	-	-	EII	-
h		Pigments		574.19297	:547.97	EIV	E95
i		Natural substances, plant		581.192	:547.992	-	-
j		ditto, animal		591.192	-	-	-
k		Vitamins, hormones	H4	574.1926	577.16/.17	ELO	E97+986
III		Body Fluids and tissues		-	-	GCW	-
a		Blood		612.11	612.12	GEB	G35
b		Urine		612.461	612.46	GEI	G515
c		Tissues		574.82	576.72	GC	G12
d		Cellular biochemistry		574.876	576.311.1	ECU	E9G11
IV	a	Enzymes	H3	574.1925	577.15	EIP	E982
b		Hydrolases		-	577.152	-	E9822
c		Oxidases reductases		574.19258	577.158	-	E9821
d		Desmolases		-	577.158	-	-
e		Transfer, isomerising and synthesising		-	-	-	-
V		Metabolism		574.13	591.133	EJM	G:33
a		Inorganic, mineral		581.1335	591.133	EHJ	G:33E1
b		Intermediate		-	-	-	-
c		Glucides		-	-	EIR	G:33E68 98
d		Nitrogen		-	581.133.1	EHL	G:33E150
e		Lipids and steroids		581.13346	-	EIT/ EIU	G:33E96+ 996
f		Other plant substances		-	-	-	-
g		Photosynthesis		581.13342	581.132	EAJ	G:33E981
		Gaps		12	7	8	8
		Inversions		5	6	8	6
		31 BS classes					

Classifications of general and physical chemistry
(see also the Bulletin signale^tique classification in Table 8)

Table 13

<u>Chem.abs.</u>	<u>Ref.zh.*</u>
65 General phys. chem.	0 General
66 Surface chem., colloids	1 Theory of molecular structure and chemical bonding
67 Catalysis, reaction kinetics	2 Experimental structure determination
68 Equilibria, solutions	3 Crystal chem. and crystallography
69 Thermo-dynamics, - chem.	4 Chem. of solids
70 Crystallisation and crystal structure	5 Gases, liquids, amorphous
71 Electric phenomena	6 Radiochem., isotopes
72 Magnetic phenomena	7 Thermo-dynamics, -chem., equilibria
73 Spectra, optical props.	8 Kinetics, combustion, explosions, topochem., catalysis
74 Radiation and photochem.	9 Photo-, radiation and plasma chem.
75 Nuclear phenomena	10 Solutions, acids and bases
76 Nuclear technology	11 Electrochem.
77 Electrochem.	12 Surface chem.
	13 Colloid chem.
<u>Chem.zentr.</u>	
A General, physical inorganic chem.	
A1 Atomic nuclei	1 Curr.chem.pap.
A2 Atoms, molecules	2 Subatomics
A3 Solids, liquids	3 Atomic and molecular structure
A4 Thermodynamics, equilibrium gases, liquids	4 Phases
A5 Electrochem	5 Surface props
A6 Colloid chem, interfaces	6 Colloids and macromolecules
A7 Kinetics, catalysis	7 Electrochem.
B Physical organic chem.	8 Thermodynamics
B1 Optical, electric, magnetic props, spectra	9 Kinetics, mechanism
B2 Structure determination	
B3 Thermodynamics	
B4 Equilibria	
B5 Electrochem.	
B6 Kinetics, catalysis	

Dewey

541.2 Theoretical chem.	
.22 Molecular structure	
.24 Atomic structure	
.26 Stoichiometry	
.28 Quantum chem.	
.3 Physical chem.	
.34 Solutions, colloids	
.35 Photochem	
.36 Thermo-chem.,-dynamics	
.37 Electro-magnets-chem	
.38 Radiochem.	
.39 Kinetics, mechanism	
.7 Optical activity	

Bliss

CB	Physical chem.
D	Chem. constitution
E	Constitution and props.
G	Stereochem.
J	Chem. combination
O	Isomerism, etc
S	Adsorption
T	Polarization
CC	Stoichiometry
C/G	Atomic, molec. weights
H/J	Thermal props.
K	Solubilities

Table 13 (continued)

<u>UDC</u>		<u>Bliss (continued)</u>
541.1	Physical chem.	CD Chemical dynamics
.11	Thermochem.,-dynamics	C Statics
.12	Chem. mechanics	D Equilibria
.13	Electrochem.	I Catalysis
.14	Photochem.	L Piezochem
.15	Radiation chem.	M Valency
.17	Topochem	N Thermodynamics
.18	Colloid chem.	P Thermochem
.2	Atomic theory	T Colloids
.5	Valency, affinity, bonds	U Surface chem
.6	Structure in relation to properties	V Solutions
.7	Allotropy	CE Electrochem
.8	Solutions	CF Radio-,photo-chem

Colon

E:2	Physical chem.
21	Chem.combination (incl:Molec.structure)
22	Solution
23	Mixture (incl. Surface, colloid)
24	Thermodynamics
25	Photochem
26	Electrochem
27	Magnetochem
28	Stereochem
296	Radiochem.

Sample comparison with TEST

Table 14

	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
Thermodynamic properties	<u>536.7</u>	<u>536.7</u>		<u>C4:7</u>
Dissociation energy		-		
Enthalpy		-		
Entropy	536.73	536.75	BHE	
Free energy		536.77		
Gibbs free energy		536.775		
Helmholtz free energy		536.775		
Solidification points	536.42	536.421.4	BGV	
Thermal expansion	536.41	536.41	BHQ	
Thermochemical	541.362		CDP	
Heat of ablation		-		
absorption		-		
activation		-		
adsorption		536.658		
crystallization		-		
mixing		-		
Heat of reaction	541.362	536.66		
Calorific value		-		
Combustion	541.362	536.662		
Dissociation		536.657		
Formation	541.362	-		
Hydration		536.664		
Heat of solution	541.362	536.653		
transformation		536.656		
Latent heat		536.65		
of fusion	536.42	536.652		C4:514
of sublimation	536.445	536.654		
of vaporisation	536.443	536.655		C4:554
Thermophysical				
Boiling point	536.443	536.423.1	BGV	C4:552
Critical point	536.443	536.44	BGV	C4:582
pressure		-	BGJ	
temperature		-	BGV	
volume		-		
Emissivity			BHW	
Melting point	536.42	536.421.1	BGV	C4:512
Peltier effect		537.322		
Pyroelectricity	537.65	537.227	BKW	
Seebeck effect		-		
Sensible heat		-		
Softening points		536.421.2		
Specific heat	536.63	536.63	BHJ	C4283
Sublimation pressure		536.422.15		
Surface energy		-		
Thermal conductivity	536.2012	536.2.022	BHU	C424
Thermal diffusivity	536.2014	-		
Thermal stability		-		
Vapour pressure		536.423.15		
Volatility		536.423.16		

Table 15

Summary of comparisons with TEST

Hierarchy	Terms	Dewey	Bliss	Colon	UDC	Comments
Acid halides	6	1	1	1	6	B and C not specific
Acyclic alcohols	9	1	6	6	9	B not specific
Aerodynamic characteristics	14	10	1	0	11	B not specific
Aldehydes	10	5	1	6	10	B and D not specific, D scattered
Algebra	54	15	19	18	23	B,D,C not specific & scattered, U scattered
Alkaloids	26	1	1	1	24	
Alkene compounds	32	2	3	9	32	B not specific; C scattered
Aluminum alloys	16	1	1	1	16	
Aluminum inorganic compounds	13	3	1	13	13	Some B not specific C scattered
Amides	43	6	1	4	35	B,D,C not specific, D scattered
Analysis (maths)	90	19*	42	40	42	B often not specific; B,C,D scattered
Aquatic animals	49	45	45	7*	16	D and U often not specific, B sometimes; B,C,D,U scattered; U has few vernacular names in schedule.
Bacteria	180	24	38	1	48	D often not specific.
Beams(radiation)	12	2*	1*	1*	6	B scattered
Body fluids	13	8*	10*	4*	8*	B,C,U scattered, B and D not specific
Bosons	9	4*	2*	1*	3*	B not specific, U scattered
Capacitors	12	1	1	0*	11	B not specific
Carbides	18	18	0*	18	18	B scattered
Carbohydrates	33	6	20	13	30	
Cardiovascular system	13	10	8*	8	12	B and D not specific
Celestial bodies	32	25	25	20	24	B and D scattered
Cements	26	3*	2	1	7	
Chemical properties	27	9*	3*	2*	12*	D not specific and scattered, U scattered
Chemical reactions	92	27*	4*	4*	32	B,C,D scattered and not specific
Chemical tests	30	21*	14*	11*	25	B and D not specific, B,C,D,U scattered
Circuits	48	2	1	0*	8	B not specific, U scattered
Computer systems hardware	37	2	0*	1	13	C not specific
Congenital abnormalities	37	1	10	0*	30*	D not specific, B U scattered
Crystal defects	10	0*	0*	0*	1	
Crystals	13	1	2	1	6	
Diodes	12	2	0*	0*	6	

Continued overleaf

Table 15 (continued)

<u>Hierarchy</u>	<u>Terms</u>	<u>Dewey</u>	<u>Bliss</u>	<u>Colon</u>	<u>UDC</u>	<u>Comments</u>
Dispersions	16	7*	3*	3*	6	B scattered, D not specific
Drugs	89	22*	20*	1	54	Band D not specific
Earth atmosphere	36	12	6	1	5	D scattered, B not specific
Electrical properties	32	10*	11*	1*	15*	B and D scattered and not specific, U scattered
Electric current	18	4*	4	3	12	B, U scattered
Electromagnetic interference	23	0*	1	0*	17	B not specific
Electromagnetic properties	23	15*	11	11*	14	B, C, D scattered, some not specific, U scattered
Electromagnetic radiation	63	12*	12	14	26	B, C, D, U scattered
Electron tubes	46	14*	5	0*	27	B and D not specific; D scattered
Enzymes	76	12	5	3	27	D scattered
Magnetic properties	22	12	7*	5	12	
Mechanical properties	118	20*	6*	0*	53	B and D scattered and not specific
Mechanical tests	37	12	0*	0*	19	D not specific
Mechanical waves	22	6*	4*	2*	11	B, D, U scattered
Number theory	23	8*	9	4	14	B and D not specific, B, C and D scattered
Numerical analysis	25	4	7	4*	8	B and D not specific; B, C, D, U scattered
Operations research	22	2	0*	0*	1	
Particle accelerators	17	8	3	0*	12	B and D not specific
Spectra	29	8	8	4	23	B and D not specific, B scattered
Statistical analysis	38	1	1	0*	6	
Stochastic processes	5	0*	0*	0*	0*	
Thermodynamic properties	49	19	11	8	29	B and D not specific; B, C, D scattered
Welding	48	10	5	0*	33	D not specific
 Totals	1893	493	402	256	961	
Asterisks	-	21	20	26	6	
Not specific	-	24	30	6	1	
Scattered	-	20	20	13	17	
Hierarchies	54	-	-	-	-	

* Highest term not in schedules

Sample comparisons with MESH

Table 16

	<u>Dewey</u>	<u>UDC</u>	<u>Bliss</u>	<u>Colon</u>
1) Parts of body	611	611.9	6HD	6-
Head	611.91	-	6HDO	L18
Face	611.92	611.92	-	L181
Mouth	611.31	611.31	6HFC	L21
Tongue	611.313	611.313	6HFC	L213
Taste buds	611.313	611.87	6HGW	-
2) Nervous system	611.8	611.8	6HG	L7
Peripheral nerves	611.83	611.83	6HGI	L75
Cranial nerves	"	611.831	6HGW	L7518
Acoustic nerves	612.858	611.831.8	6HXG	L76183
Cochlear nerve	-	611.831.81	-	-
3) Cells	574.87	576.3	6EC	G11
Cytoplasm	574.8734	576.311	6CH	G112
Organoids	-	-	-	-
Endoplasmic reticulum	-	-	-	-
Ribosomes	-	-	-	-
4) Animals	592/599	592/599	6GK	K
Invertebrates	592	592	6GL	K1
Arthropods	595.2	595.2	6GP	K8
Insects	595.7	595.7	6GQ	K86
Diptera	595.77	595.77	6GQV	K871
Mosquitoes	611.91/96	-	6GQVC	-
Anopheles	-	-	"	-
5) Bacteria	589.9	576.85	6FLD	6I21
Actinomycetales	589.92	576.852	6FLDN	-
Mycobacterium	611.92	576.852.21	6HQJ	-
M. tuberculosis	-	576.852.211	6HQK	-
6) Infectious diseases	616.91/96	616.9	6HQ	-
Virus diseases	616.92	616.988	6HQQ	L:423
Myxovirus	-	-	-	-
Influenza	616.203	616.921.5	6HTB	L4:4241
Asian	616.203	-	-	-
7) Hypersensitivity	-	616.056.3	6HQAP	-
H, immediate	-	-	"	-
Anaphylaxis	616.97	612.017.3	"	-
Drug h.	616.975	-	-	-
Dermatitis medicamentosa	-	616.5.056.3	-	-
Epidermal necrolysis	-	-	-	-

Summary of comparisons with MESH

Table 17

<u>Hierarchy</u>	<u>Length</u>	<u>Dewey</u>	<u>Bliss</u>	<u>Colon</u>	<u>UDC</u>	<u>Comments</u>
Taste buds	6	6	5	4*	5	B,C,D,U scattered
Elbow joint	6	6	5	3*	5	B,C scattered
Anus	6	5	6	5	5	U scattered
Cochlear vein	5	4*	4*	4*	5	E,C,D scattered
Ribosomes	5	2*	2*	2*	2*	
Anopheles	7	6*	7	5*	5*	
Mycobacterium tuberculosis	4	3*	4	1*	4	B scattered
Asian influenza	5	4	3*	2*	3*	C,D,U scattered
Melorheostosis	4	2*	2*	1*	3*	
Ochronosis	5	1*	1*	1*	3	U scattered
Epidermal necrolysis	6	2*	3*	0*	3*	U scattered
Calcium phosphates	5	4*	2*	5	5	C scattered
Uropepsin	6	2*	2*	2*	4*	
Glucosamine	4	1*	1*	1*	4	
Splenoportography	5	2*	2*	2*	3*	
<hr/>						
Totals	79	50	49	38	59	
Asterisks	-	11	10	13	7	

* lowest term not found in classification

Summary of comparisons with Euratom

Table 18

Chart. No.	Name	Keywords Eur. UDC.		Non-keywords Eur. UDC.		UDC core	Keywords + terms Class distribution
44	Energy & matter	24	9	152	8	13	<u>539.1</u> 541.5
45	Nuclear reactions	23	16	134	9	12	<u>539.17</u> 539.16 <u>539.12</u> 539.18 <u>539.19</u> 623.45 <u>535.34</u>
46	Radiations	26	21	80	7	8	<u>539.12</u> 539.17 <u>537.5</u> 538.56 <u>535</u> 621.3 <u>616</u>
47	Particles	20	13	101	4	9	<u>539.12</u> 539.18 <u>539.19</u> 537.5
48	Protons and neutrons	21	15	51	1	13	<u>539.125</u> 539.17 <u>621.039</u>
49	Leptons and hyperons	19	12	75	15	8	<u>539.126</u> 539.124 <u>539.123</u> 539.18 <u>539.16</u> 537.5 <u>621.384</u>
50	Reactor types	5	4	13	8	7	<u>621.039.52</u> <u>621.039.57</u> <u>621.039.51</u>
51	Reactor materials	23	22	8	3	23	<u>621.039.53</u> <u>621.039.54</u> <u>621.039.52</u> <u>621.039.51</u> <u>546.212</u>
52	Reactor parts	13	10	14	4	10	<u>621.039.53</u> <u>621.039.54</u> <u>621.039.55</u> <u>621.039.56</u> <u>621.039.51</u>
53	Reactor operation	26	22	41	10	8	<u>621.039.56</u> <u>621.039.55</u> <u>621.039.54</u> <u>621.039.58</u> <u>621.03951</u> <u>621.398</u> 62-519 <u>614.8</u> 697.9 <u>542.1</u> 004
54	Radiation detectors	23	18	26	2	12	<u>539.1.074</u> <u>539.1.073</u> 539.12 <u>539.073</u>
55	Plasma physics	14	10	66	8	4	<u>533.9</u> 537.5 <u>538.4</u> 621.039.6
56	Accelerators	10	9	23	5	12	<u>621.384.6</u> 539.1
	Totals	247	181	784	84	139	

Table 19

Biochemistry in MESH and TEST

<u>MESH</u>	<u>TEST</u>
Biochemistry	Biochemistry
Blood coagulation	Cytochemistry
B.c. factors	RT Cytology
Calcium	
Fibrin	
Fibrinogen	
Prothrombin	
Thrombin	
Thromboplastin	
B.c. Tests	RT Bacteriology
Thromboelastography	
Fibrinolysis	Metabolism
Prothrombin time	Carbohydrate m.
Metabolism	Lipid m.
Basal m.	Mineral m.
Body temperature	Nitrogen m.
B.t. regulation	Oxygen consumption
Sweating	Protein m.
Hypothermia	Nutrition
Calcification	Animal n.
Dentition	Human n.
Ossification	Infant n.
Carbohydrate m.	Plant n.
Krebs cycle	Pharmacology
Energy m.	Psychoneuropharmacology
Hematopoiesis	Physiology
Erythropoiesis	Animal p.
Lipid m.	Comparative p.
Mineral m.	Electro p.
Iron m.	Patho p.
Photosynthesis	Physiological psychology
Pigmentation	Plant metabolism
Protein m.	Plant
Tissue m.	Plant reproduction
Water-electrolyte balance	Biochemical cycles
Nitrogen fixation	Carbon dioxide c.
Nutrition	Iodine c.
Digestion	Nitrogen c.
Defecation	Phosphorus c.
Deglutition	Silicon c.
Eruption	Biochemical oxygen demand
Mastication	
Salivation	
Urination	
Diuresis	
Natruresis	
Infant n.	
Breast feeding	
Lactation	
N.surveys	
Respiration	
Pulmonary circulation	

Table 20

Physiology in TEST and MESH

TEST

Physiology

- Animal
- Comparative p.
- Electro p.
- Patho p.
- Physiological psychology
- Plant metabolism
- Plant p.
 - Plant reproduction
- RT Biochemistry (q.v.)
 - Endocrinology
 - Homeostatis
 - Hormones
 - Adrenal cortex h.
 - Aldosterone
 - Corticosterone
 - Cortisone
 - etc
 - Androgens
 - Androsterone
 - Testosterone
 - Corpus luteum h.
 - Progesterone
 - Relaxin
 - Estrogens
 - Estradiol
 - Estriclol
 - Estrone
 - Gastrointestinal h.
 - Gastrin
 - Secretin
 - Gonadotropins
 - Prolactin
 - Pituitary h.
 - Corticotropin
 - Intermedin
 - Oxytocin
 - etc
 - Plant h.
 - Gibberellins
 - Progestational h.
 - Pregnanediol
 - etc
 - Thyroid h.
 - Thyroxine
 - etc.
 - Metabolism (see Biochemistry)
 - Neurology
 - Nutrition (see Biochemistry)
 - Pathology
 - Plant p.
 - Peristalsis
 - Physical anthropology
 - Psychology

Continued overleaf

Table 20 (continued)

Abnormal psychology
Clinical p.
Criminal p.
etc.
Regeneration
Responses
 Avoidance r.
 Conditioned r.
 Dynamic r.
 etc.
Stress
 Heat stress

MESH

Physiology
 Adaptation
 Acclimatisation
 Accommodation, ocular
 Hibernation
 Weightlessness
Aging
 Adolescence
 Puberty
Geriatrics
Growth
 Body constitution
 Body height
 Body weight
Longevity
 Life expectancy
Middle age
 Climacteric
 Menopause
Pediatrics
 Child
 Infant
 Newborn
 Premature
Rejuvenation
Blood circulation
 B. pressure
 B. viscosity
 B. volume
 Capillary permeability
 Capillary resistance
 Maternal-foetal interchange
 Pulmonary
 Pulse
 Plethysmography
Blood coagulation (see Biochemistry)
Death
 Cadaver
 Sudden d.
 Drowning
 Fetal d.

Continued overleaf

Table 20 (continued)

Digestion (see Biochemistry)
 Electrophysiology
 Endocrinology
 Metabolism (see Biochemistry)
 Movement
 Exertion
 Sweating
 Gait
 Kinesthesia
 Locomotion
 Nutrition (see Biochemistry)
 Comparative physiology
 Psychophysiology
 Adaptation
 Homeostasis
 Orientation
 Laterality
 Mental processes
 Cognition
 Learning
 (subdivisions)
 Perception
 Body image
 Equilibrium
 Hearing
 Illusions
 Sensations
 (subdivisions)
 Smell
 Taste
 Touch
 Visual
 (subdivisions)
 Thinking
 (subdivisions)
 Emotions
 (subdivisions)
 Volition
 Reflex
 (subdivisions)
 Stress
 Regeneration
 Convalescence
 Wound healing
 Reproduction
 Biogenesis
 Breeding
 Fertilization
 Insemination
 Artificial
 Cell division
 Coitus
 Ejaculation
 Embryology
 Metamorphosis

Continued overleaf

Table 20 (continued)

Estrus
Fertility
Labor
 Delivery
Menstruation
Ovulation
Parthenogenesis
Pregnancy
 (subdivisions)
Puerperium
 Lactation
 Sterility
Respiration
Sneezing
Vision
 Visual fields
 Perimetry

Viruses in MESH and TEST

Table 21

<u>MESH</u>	<u>TEST</u>
Viruses	Viruses
Animal v.	Adeno v.
Adeno v.	Oncogenic v.
Arbor v.	Polyoma v.
Encephalitic v.	Acute respiratory disease v.
Yellow fever v.	
Enterov.	Arbo v.
Coxsackie v.	Apen v.
Echo v.	Chikungunya v.
Polio v.	Colorado tick fever v.
Herpes v.	Dengue v.
H. hominis v.	Equine encephalo v.
Varicella v.	Japanese encephalitis v.
Myxov.	Kyasanur forest v.
Fowl plague v.	Louping ill v.
Influenza v.	Marituba v.
Mumps v.	Mayaro v.
Newcastle v.	Omsk v.
Para-influenza v.	Oriboca v.
Pox v.	Rift Valley v.
Ectromelia v.	Semliki forest v.
	West Nile v.
Smallpox v.	Yellow fever v.
Vaccinia v.	
Tumor v.	Bacteriophages
Avian leukosis v.	Coli p.
Myxoma v.	
Papilloma v.	
Polyoma v.	
Rous sarcoma v.	
Bacteriophage	Measles v.
Coli p.	Rubella v.
Mycobacterio p.	
Salmonella p.	Myxov.
Staphylococcal p.	Influenza v.
Insect v.	Mumps v.
Plant v.	Newcastle v.
Tobacco mosaic v.	Para-influenza v.
Common cold v.	Sendai v.
Distemper v.	Swine influenza v.
Equine v.	Popova v.
Foot-and-mouth v.	Papilloma v.
Hepatitis v.	Picornavirus
Measles v.	Enterov.
Rabies v.	Coxsackie v.
Vesicular stomatitis v.	Echo v.
	Polio v.
	Foot-and-mouth v.
	Rhino v.
	Pox v.
	Vaccinia v.
	varicella v.
	Colorado tick fever v.

Continued overleaf

Table 21 (contind)

TEST

Hepatitis v.
Herpetic v.
Hog cholera v.
Miyagawanella v.
Monkey B v.
Plant v.
Rabies v.
Reo v.
Rividerpest v.
Vesicular v.

Table 22

Outline of Farradane's facets

Entities

Physical

- Elementary particles
- Atomic
- Molecular
 - Molecular assemblage (e.g. liquid)
 - Ordered assembly (e.g. Mineral)
 - Complex aggregate (e.g. Rock)

Chemical

- Elements
- Radicals, ions
- Compounds
- Complexes (e.g. Resin)
- Aggregates (e.g. Milk)

Living

- Self-reproducing compounds or complexes (e.g. Virus)
- Cell components (e.g. Chromosome)
- Cells (e.g. Cell, Amoeba)
- Tissues (e.g. Blood)
- Organs (e.g. Lung)
- Organ system (e.g. Digestive)
- Living entity (e.g. Cat)
- Living group (e.g. Lichen)

Artefacts

- Separated natural materials (e.g. Cane juice)
- Derived single products (e.g. Screw, Sugar)
- Assemblies (e.g. Machine)
- Complex assemblies (e.g. Factory)

Activities

Physical

- Simple (e.g. Vibrating)
- Complex (e.g. Grinding)
- Complex series (e.g. Manufacturing)

Living

- Simple physiological (e.g. Breathing)
- Complex physiological (e.g. Digesting)
- Combined complex (e.g. Reproducing)
- Physiological with mental (e.g. Remembering)

Physical abstract

- Simple (e.g. Increasing)
- Complex (e.g. Deteriorating)
- Combined complex

Mental abstract

- Simple (e.g. Counting)
- Combined (e.g. Calculating)
- Complex (e.g. Planning)

Abstracts

Physical (e.g. Light)

Symbolic

- Unit level (e.g. Number)
- Combination (e.g. Formula)
- Complex (e.g. Circle)
- Higher level (e.g. Mechanism)

Continued overleaf

Table 22 (continued)

	Behavioural
	Space
	Time
Properties	
	Pre-concept
	Physical
	Simple (e.g. Viscous)
	Comparative (e.g. Hot)
	Interactive (e.g. Acid)
	Interactive with change (e.g. Soluble)
	Behavioural and physiological
	Abstract
Measurable	
	Physical
	Simple (e.g. Viscosity)
	Comparative (e.g. Temperature)
	Interactive (e.g. Acidity)
	Interactive with change (e.g. Solubility)
	Behavioural and physiological
	Abstract

Objects

- 1 Mathematical entities
 - 11 Numerical computational and conceptual aid
 - 12 Geometrical entities
 - 13 Algebraic entities
 - 14 State functions and equations
 - 15 Transition matrices and equations
- 2 Particles, fields, nuclei, atoms and molecules
 - 21 Particles and fields in general
 - 22 Gravitational fields
 - 23 Electromagnetic fields
 - 24 Leptons
 - 25 Hadrons
 - 26 Cosmic rays and fields
 - 27 Complex nuclei
 - 28 Atoms and molecules
- 3 Chemical elements and their compounds
- 4 Ensembles and aggregate matter (see Table 25)
- 5 Astrophysical and geophysical objects
 - 51 Solar system
 - 52 Stars, clusters
 - 53 Interstellar medium
 - 54 Milky Way
 - 55 Galaxies
 - 56 Quasars, pulsars
 - 57 Universe
 - 59 Other extraterrestrial objects
- 6 Organisms, biological systems, organs
- 7 Artifacts, devices, instruments, systems
 - 71 Sources
 - 72 Transmission-handling
 - 73 Detection
 - 74 Containment and control
 - 75 Measuring
 - 76 Computing
 - 77 Energy conversion
 - 78 Environmental probes
 - 79 Architectural
- 8 Conditions of object
 - e.g. Low temperature

Phenomena and associated properties

- 1 Mathematical
 - e.g. Solution of equations
- 2 Particle, field, etc
 - 21 Mass, energy, frequency, wavelength
 - 22 Velocity, momentum
 - 23 Polarisation
 - 24 Quantum numbers
 - 25 Functions
 - 26 Chemical bond type
 - 27 Geometrical structure
 - 28 Level structure, spectra
 - 29 Interactions

Continued overleaf

Table 23 (continued)

3	Chemical
4	Ensemble (see Table 25)
5	Astrophysical and geophysical
6	Psychological and physiological
7	Artifacts
71	Precision, resolution, noise level, signal/noise ratio
72	Sensitivity, dynamic range
73	Output level, intensity, power, gain
74	Accuracy, stability, etc.
75	Feasibility, efficiency, cost
76	Safety,
77	Design, fabrication
78	Testing
79	Operating instructions and parameters

Table 24

Ensembles and associated phenomena in Physics (A.I.P.)

Ensembles and aggregate matter

41 Ensembles of particles, molecules, etc

411 Obeying non-quantum statistics

412 Obeying quantum statistics

42 Excitations in aggregate matter

421 Heat

422 Mechanical, elastic and acoustic waves and oscillations

423 Spin waves

424 Quasiparticles

425 Carriers

43 Imperfections

432 Impurities

433 Point defects

434 Dislocations

435 Stacking faults

436 Associated defects

437 Color centers

44 Fluids

441 Plasmas

442 Gases

443 Liquids

446 Quantum fluids

447 Disperse systems

448 Fluid surfaces and interfaces

45 Fluid/solid systems

451 Condensed phases in general

452 Solid/gas

453 Solid/liquid

46 Solids

461 Crystals

462 Films, membranes

463 Amorphous, vitreous, fibrous

464 Solid/solid

47 Phenomenological descriptions of materials

471 Elastic

472 Plastic

473 Viscous

474 Optical

475 e.g. Luminiscent, photoconductive, laser

476 Electric and magnetic

477 e.g. Semiconductors, ferromagnetic

478 Alloys

479 Solutions

480 Technological (e.g. refractory)

Phenomena associated with ensembles

41 Structure-related

411 Size, shape, etc

412 Crystal structure

413 Electronic structure

414 Potential barriers, work functions

42 Thermal, thermodynamic and statistical

421 Thermodynamic (e.g. temperature, entropy)

422 Specific heats, heat capacities

Continued overleaf

Table 24 (continued)

423	Correlation and collective phenomena
4231	Order parameters, coherence lengths
4232	Stability, instability
424	Heat flow, conduction
425	Diffusion
426	Phase and state
4261	Solubility, miscibility
4262	Phase transitions
4263	Thermal expansion
4264	Equation of state parameters
43	Mechanical and rheological
431	Density
432	Elasticity, compression, expansion
433	Hardness, fracture
434	Strength, fatigue, aging
435	Friction, abrasion, wear
436	Flow, creep, viscosity
437	Plasticity, deformation
438	Technological (e.g. ductility)
44	Electrical and magnetic
441	Charge density, etc
442	Electrical polarization, dielectric constant
443	Magnetization, etc
444	Electromagnetic transport
450	Interaction of particles and waves
451	Wave propagation
	e.g. Refraction, dispersion, diffraction
452	Resonances and relaxation
453	Fluorescence, etc.
455	Transmission, absorption, etc
46	Emission
461	Spontaneous
462	Stimulated or induced

Table 25

Properties, processes and phenomena in chemical physics (A.I.P.)

Acoustic and ultrasonic
Bond Structure
Charge distribution
Chemical
Collision processes and scattering
Scattering
Colloidal
Detonation and shock wave
Electric and dielectric
Electron
Electronic states
Energy transfer
Energy and potentials
Fluid
Ionic
Isotope effects
Laser and maser
Liquid crystal
Luminescence
Macromolecular
Magnetic
Mass spectra
Mossbauer spectra
Molecular structure
Nuclear
Nuclide
Optical
Quantum mechanical
Radiation effects
Radiochemical
Relaxation
Rotational
Solid state
Solutions
Spin
Surface and film
Thermodynamic and thermal
Vibrational
XRay

Table 26

Thermodynamic and thermal properties (A.I.P.)

- Accommodation Coefficients
- Activity
- Compressibility
- Critical Properties
 - Critical Point
- Density
- Energy
 - Configurational Energy
 - Energy of Activation
 - Energy of Formation and Dissociation
 - Energy of Fusion
 - Energy of Hydration
 - Energy of Mixing
 - Energy of Solution
 - Energy of Transition
 - Energy of Vaporisation
 - Energy of Evaporation
 - Energy of Sublimation
 - Zero-point Energy
- Enthalpy
 - Enthalpy of Activation
 - Enthalpy of Formation and Dissociation
 - Enthalpy of Fusion
 - Enthalpy of Hydration
 - Enthalpy of Mixing
 - Enthalpy of solution
 - Enthalpy of Transition
 - Enthalpy of Vaporisation
 - Enthalpy of Evaporation
 - Enthalpy of Sublimation
- Entropy
 - Entropy of Activation
 - Entropy of Formation and Dissociation
 - Entropy of Fusion
 - Entropy of Hydration
 - Entropy of Mixing
 - Entropy of Solution
 - Entropy of Transition
 - Entropy of Vaporisation
 - Entropy of Evaporation
 - Entropy of Sublimation
- Equation of State
 - Virial Coefficients
- Formation Constant; Association Constant
- Free Energy
 - Free Energy of Activation
 - Free Energy of Formation and Dissociation
 - Free Energy of Fusion
 - Free Energy of Hydration
 - Free Energy of Mixing
 - Free Energy of Solution
 - Free Energy of Transition
 - Free Energy of Vaporization
 - Free Energy of Evaporation
 - Free Energy of Sublimation

Continued overleaf

Table 26 (continued)

Heat Capacity
Partition Functions
Phase Transition
Phase Diagram
Pressure
 Partial Pressure
 Vapor Pressure
Temperature
Thermal conductivity
Thermal Diffusion
Thermal Expansion Coefficient
Volume
 Free Volume
 Partial Molar Volume
Work Function

Table 27

Classification of fundamental sciences (Auger)	<u>Dewey</u>
<u>Mathematics: Pure and applied</u>	510
Mathematics	510
Algebra	512
Topology	513.83
Differential geometry	516.7
Theory of functions and functional analysis	517.5
Probability and statistics	519
Automatics	510.78
Analogue computers	510.782
Digital computing	510.783
The physical sciences	530
Theoretical physics	530.1
Asymptotic behaviour as starting point of the theory	-
The non-linear spinor theory	-
Mathematical methods and quantum field theory	530.143
Possibilities of a geometric theory of pure field	530.14
Recent Research on the gravitational field	521.12
Atomic physics	539.1
Quantum mechanics of the atom	530.123
Atomic and physical constants	539.14
Elementary atomic particles	539.721
Simple atomic systems	539.14
Complex composite atomic systems	539.14
Externally perturbed atoms	539.14
Internally perturbed complex atomic systems	539.14
Collisions of atomic particles	-
Plasma	537.16
Radiation and its interaction with matter	535/537
Nuclear physics and high energy particle physics	539.7
High energy particle physics	539.7
Medium and low energy nuclear physics	-
Experimental technique	539.73+.77
Radiant energy	535/537
Optics	535
Image formation	-
Optical materials	535.33
Optical receptors	-
Electronics	537.5
Vacuum tubes	537.53*
Gas discharge tubes	537.53
Electron microscopy	537.56
Solid state devices	621.38152
Masers	537.5344
Parametric amplifiers	621.381535
Principles of circuitry	537.5353
Electronic instruments	621.38133
Computers	621.38195
Telecommunications	621.38
Radar	621.3848
Heat transfer and low temperatures	536

* or 621.381512

Table 27 (continued)

	<u>Dewey</u>
Heat transfer and insulators	536.2
Very low temperature physics	536.56
Magnetism and electricity	537/538
Electrostatics	537.2
Magnetism	538
Electrodynamics	537.64
The states of matter	530.4
Fluid mechanics	532
Mechanics of conventional fluids	532
Mechanics of non-conventional fluids	-
High pressures	-
Thermodynamic properties - The molecular theory of dense fluids	536.71
The physics of solids at high pressures	-
Dynamics of crystal lattices	-
The physics of solids at very high pressures- Allotropic transformations	541.7
Electronic transformations and ionization by compression at extremely high pressures	-
Very high dynamic pressures in shock waves	-
Chemical reactions at high pressures	-
Low pressures	533.5
Production of the vacuum	533.54
Measurement of low pressures	-
Composition of gases. Leaks	544.4
Solid state physics	530.41
Experimental methods	-
Structure analysis	548.8
Mechanical properties	548.84
Optical properties	548.9
Semiconductors	537.622
Work on germanium and silicon	546.68
Fundamental devices	621.381.52
Alloys	546.37
Superconductors	537.623
Superconductivity	537.623
Quantum theory of the conductivity of crystals	548.85
The chemical sciences	540
General chemistry	541
Thermochemistry and chemical thermodynamics	541.36
Electrochemistry	541.37
Chemical kinetics and combustion	541.39
Catalysis and catalysts	541.395
Analytical chemistry	543/545
Nuclear chemistry	541.38
Chemical effects of radiation	ditto
Radiochemistry	ditto
Inorganic chemistry	546
Inorganic macromolecules	541.2254
Compounds of the transition metals	546.62/64
Fluorine derivatives	546.731
Compounds for the electronics industry	-
Non-metallic materials for astronautical purposes	-

Continued overleaf

Table 27 (continued)

	Dewey
Metallurgical chemistry	669.92
The vitreous state	-
Organic chemistry	547
Organo-metallic chemistry	547.05
Silicon compounds	547.08
Organic fluorine compounds	547.02
<u>The biological sciences</u>	570/590
<u>Biochemistry and biophysics</u>	574.19
Intermediary metabolism	-
Photosynthesis	581.13342
Enzyme biocatalysis (enzymology)	574.1925
Chromosome biochemistry	574.8732
Cell biology	574.87
Ultra-microscopic structure	-
Transport through membranes	574.875
Excitability and contractility	-
Differentiation and ageing	574.8765
General physiology	574.1 or 612
Microphysiology	574.876
Renal physiology	612.463
Synthetic physiology	-
Neurophysiology	612.8
Plant biology	580
The organization of the plant cell	581.872
Growth and development	581.3
Genetics and taxonomy	581.15
Animal biology	590
Invertebrates	592/595
Vertebrates	596/599
Radiobiology	574.1915
The cytobiology of radiation	-
Somatic effects of whole-body irradiation	612.01448
on multicellular organisms	575.131
Genetic effects of radiation	52+55
<u>The earth and space sciences</u>	551.1/.2
The land mass	551.13/.14
The earth crust	551.11/.12
The internal structures	551.4
The hydrosphere	551.46/.47
The oceans	551.48/.49
Hydrology	551.5/.6
The atmosphere. Meteorology	-
The very high atmosphere and outer space	523.111
Aeronomics	520
Space	523.8
Astronomy - Astrophysics	523.112
Stars	
Galaxies	

Appendix 4

Survey of UDC Editions* authorized by the Fédération Internationale de Documentation [FID]

FULL EDITIONS

English

Universal Decimal Classification (Fourth International Edition) (FID No. 179). London, British Standards Institution. Each part contains an alphabetical subject index unless otherwise stated.

BS 1000: Vol. 1, Part 1: 1943

General introduction. Auxiliary tables.

UDC 0 Generalities.

60 pp. 4to. 15/-.

Without alphabetical subject index.

UDC 50 General works on pure science.

UDC 51 Mathematics.

UDC 52 Astronomy, geodesy.

UDC 53 Physics.

104 pp. 4to. 15/-.

UDC 54 Chemistry [crystallography, mineralogy].

UDC 55 Geology, geophysics.

UDC 56 Palaeontology.

UDC 57 Biology.

UDC 58 Botany.

UDC 59 Zoology.

124 pp. 4to. 15/-.

Alphabetical subject index also available separately if required, 3/6.

BS 1000: Vol. 2, Part 1: 1943

BS 1000: Vol. 2, Part 2: 1943

BS 1000: Vol. 2, Part 3: 1943

Since sections of BS 1000 are not issued in consecutive UDC order, the use of volume and part numbers was abandoned after 1943 and replaced by the UDC number itself in brackets after the designation BS 1000.

BS 1000 [611]: 1968

UDC 611 Anatomy.

26 pp. A4. 20/-.

UDC 612 Physiology.

40 pp. A4. 25/-.

UDC 613 Hygiene.

16 pp. A4. 15/-.

UDC 615 Pharmaceutics.

Therapeutics. Toxicology.

20 pp. 4to. 15/-.

UDC 617 Orthopaedics. Surgery. Ophthalmology.

20 pp. A4. 15/-.

UDC 621.3 Electrical engineering.

68 pp. A4. 40/-.

UDC 622 Mining and mineral dressing.

UDC 623 Military and naval engineering, ordnance, arms production.

52 pp. 4to. 15/-.

UDC 624 Civil and structural engineering in general.

24 pp. A4. 20/-.

UDC 65/651 Business and industrial organization and management. Communication.

39 pp. A4. Price to be determined.

UDC 669 Metallurgy.

44 pp. 4to. 15/-.

UDC 678 Macromolecular materials (rubbers and plastics).

UDC 679 Industries based on stone and other processable materials.

36 pp. 4to. 15/-.

UDC 681.3 Data processing machines, etc.

12 pp. A4. 15/-.

UDC 684 Furniture and allied trades.

11 pp. A4. 15/-.

BS 1000 [69]: 1958

UDC 69 Building. Materials, construction, trades.

40 pp. 4to. 15/-, Amendment PD 5996, March 1967.

UDC 73/76 Fine and applied arts.

16 pp. A4. 15/-.

UDC 77 Photography.

33 pp. A4. 20/-.

BS 1000 [73/76]: 1968

BS 1000 [77]: 1968

French (3rd edition)

Classification Décimale Universelle. (Se édition internationale.) Brussels, Editiones Mundaneum.

UDC 0: 1951 (*out of print*). UDC 61: 1940 (*out of print*).

UDC 2: 1951 (*out of print*). UDC 62: 1941 (*out of print*).

UDC 3: 1952 (*out of print*). UDC 65: 1942 (*out of print*).

German (1st and 2nd editions)

DK Dezimalklassifikation. Deutsche Gesamtausgabe. (Dritte und achte Internationale Ausgabe.)

Berlin, Deutscher Normenausschuss.

UDC 0/2: 1934 (repr. 1948).

UDC 3/4: 1935 (repr. 1948) (*out of print*).

UDC 5: 1958 2nd ed., (repr. 1964).

UDC 6/61: 1951 (repr. 1964).

UDC 62: 1964 2nd, loose leaf ed.

UDC 63/65: 1965 2nd, loose leaf ed.

UDC 66: 1965 2nd, loose leaf ed.

UDC 67/9: 1948 (*out of print*).

Supplement sheets incorporating latest extensions are published in 'DK Mitteilungen' (FID No. 304).

Japanese

Kokusai Zyussin Bunruihō (FID No. 253).

Tokyo, Nippon Dokumentēyon Kyōkai.

UDC 5: 1951.

UDC 6/61: 1955.

UDC 62: 1952.

UDC 63: 1957.

UDC 6b: 1952.

Polish

Uniwersalna Klasyfikacja Dziesiętna. Pełne Wydanie Polskie Dziesiąte Wydanie Międzynarodowe (FID No. 327). Warsaw, Centralny Instytut Informacji Naukowo-technicznej Ekonomicznej.

UDC 0: 1962.

UDC 51: 1965.

UDC 528/529: 1964.

UDC 53: 1959.

UDC 541/547: 1965.

UDC 55: 1966.

UDC 56/57: 1965.

UDC 58: 1966.

UDC 59: 1965.

UDC 620/621: 1966.

UDC 622: 1965.

UDC 623: 1964.

UDC 624/628: 1964.

UDC 669: 1965.

UDC 671/676: 1965.

UDC 677: 1964.

UDC 678/679: 1964.

UDC 681: 1963.

UDC 682/685: 1964.

UDC 686/689: 1963.

UDC 69: 1963.

Portuguese

Classificação Decimal Universal. Edição Desenvolvida em Língua Portuguesa (FID No. 342). Lisbon, Centro de Documentação Científica do Instituto de Alta Cultura (CDC).

and

Rio de Janeiro, Instituto Brasileiro de Bibliografia e Documentação (IBBD).

UDC 0: 1961.

UDC 1: 1963.

UDC 2: 1963.

Spanish

Clasificación Decimal Universal. Tablas Completas. Edición en español (UNE 50 002) (FID No. 243).

Madrid, Instituto Nacional de Racionalización del Trabajo.

UDC 0: 1955.

UDC 1: 1964.

UDC 2: 1959.

UDC 3: 1959 (*out of print*).

UDC 3: 1963 (*out of print*).

UDC 57/59: 1966.

UDC 61: 1958 (*out of print*).

UDC 62/621.398: 1959.

(*out of print*) (2nd ed. in preparation).

UDC 621.4/624.972: 1965.

UDC 63: 1966.

UDC 7: 1957.

(*out of print*).

* For residents in the U.K. only, obtainable through BSI, 101 Pentonville Road, London, N.1. For residents in other countries, obtainable through FID, 7 Holweg, The Hague, Netherlands.

A simple hierarchy

Figure 1

D

MACHINES AND SYSTEMS

MECHANICAL AND THERMAL PLANT AND MACHINES (cont'd.)

Dlc Nuclear Reactors* (cont'd.):

Dkb/v Heterogeneous Reactors (cont'd.)

Dkb/g Thermal (cont'd.)

By moderator:

Dkc	Graphite
Dkcb	Beryllium
Dkd	Water, light
Dkdb	Boiling water
Dkdd	Pressurised water
Dke	Water, heavy
Dkeb	Boiling water
Dked	Pressurised water
Dkf	Hydrogen, hydrides
Dkg	Organic compounds

By coolant:

m	Gas
n	Air
p	Hydrogen
q	Carbon dioxide
r	Helium
rn	Nitrogen and other gases
s	Water, light
sb	Boiling, steam
sd	Pressurised
t	Water, heavy
tb	Boiling, steam
td	Pressurised
u	Organic
v	Liquid metals
vb	Bismuth
vl	Lithium
vm	Mercury
vp	Potassium
vs	Sodium

Dkeqb Advanced gas cooled reactors

Dker High temperature reactor

21

cont'd. . .

Figures 5

ALPHABETICAL SUBJECT INDEX (cont'd.)

Barium	Nba	Bend Testing	Xtbg
Barometers	Zgk	Bending	Ppg
Barometric Partial Systems	Xgcc	Bending: Mechanical Working	Vhr
Guidance: Guided Missiles		Bending Properties	Pbcn
Barrel Windings	Htv	Bending Stress	Ppg
Barrelling, Cleaning	Vvc	Bends	Ksly
Barrettters	Icc	Benson Boilers	Dbzs
Bars: Commutators	Hqy	Bent	aly
Bars: Flat Springs	Kelb	Bent Tube Boilers	Dbzq
Bars: Manufactured Form	ait	Benzene	Mggk
Bars: Structural Parts	Kwg	Berkelium	Nbk
Base Cut: Receivers	Ck Flm	Beryllium	Nbe
Base Rise: Receivers	Ck Flh	Beryllium Canned CO ₂ Graphite	Dkcqb
Basic Bessemer Steel	Ns.bj	Reactors	
Basic Open Hearth Steel	Ns.bf	Beryllium Moderated Reactors	Dkcqb
Baskets	Kcw		
Batteries	Hn	Bessel Function	Ymg
Bauschinger Effect	Pgcb	Bessemer Furnaces	Zrj
Beacon System Externally Aided	Xgcd	Bessemer Steel	Ns.bg
Guidance: Guided Missiles		Beta Particles	Sbe
Beacon Transponders: Radio	Ccr	Beta Phase: Metals	N. β
Navigational Aids		Bevel Gauges	Zck
Beam Approach: Radio	Ccf	Bevel Gears	Jmf
Navigational Aids		Bevelled Tooth Shape: Gears	Jmr
Beam Plates: Electrodes	Itf	Beverages	Lt
Beam Switches	Hhh	Bibliographies	21
Beam Riding Guidance: Guided	Xgci	Bibliographies of Bibliographies	2
Weapons, Spacecraft		Bicycles	Elv
Beams	Kwb	Bifurcate	anw
Beams, Atomic	Szwx	Big Ends	Jkcn
Beams, Molecular	Szyx	Billets	ait
Beams, Deflection: Electrodes	Itl	Bills of Exchange	Wehe
Bearings	Jt	Bills of Lading	Wehf
Beat Frequency Oscillators	Gdt	Bills Discounting	Wehn
Beats: Sound, Vibrations	Ty	Biochemical Operations:	Uky
Bechuanaland	681	Chemical Engineering	
Bedplates	Kbb	Biographies	383
Beforehand	ayb	Biological Corrosion	Opv
Beilby Layer: Grain Structure,	Odc	Biological Shielding: Nuclear	Dk Fkc
Microstructure		Reactors	
Belgian Congo	675	Biology	TA[57]
Belgium	493	Biplanes	Ebg 2
Bell X 15 Aircraft	Efc	Bismuth	Nbi
Bellini Toziaerial Antennas	Cm.fw	Bismuth Cooled Reactors	Dkbvb
Bellows	Kybm		Dkkvb
Below	ast		Dklvb
Belt Conveyors	Zse	Bituminous Coal	Mml
Belt Transmissions	Jpb		

Classified Bibliography Figure 5.

BIBLIOGRAPHY OF SOIL SCIENCE

368.2 : 22—Tardieu, N.; Fauché, J. 1962. [Contribution to the study of cultural techniques with manioc.] *Ann. Cent. Rech. agron. Bamby* 1958, 14-23. [F.]
 368.5 : 2—Ingram, J. S.; Greenwood-Barton, L. H. 1962. The cultivation of yams for food. *Trop. Sci.* 4, 82-86.
 368.5 : 22—Sawada, E.; Yakuwa, T. 1959. [Studies on the cultivation of Chinese yam. (3). Malformation of the tuberous roots resulting from fertilizer placement.] *Mem. Fac. Agric. Hokkaido Univ.* 3, No. 2, 27-34. [J.e.] [xxiii, 1431]
 368.9 : 22—Izawa, G.; Okamoto, S. 1961. Effect of mineral nutrition on contents of organic constituents in taro plants during growth. *Soil & Plant Food* 6, 127-135.
 368.9 : 241.21—Bull, R. A. 1960. Macronutrient deficiency symptoms in the cocoyam. (*Xanthosoma* sp.) *J. W. Afr. Inst. Oil Palm Res.* 3, 181-186. [xxiii, 2329]

37 STIMULANTS

371 : 116 : 819—Kitipov, A. A. 1959. [The special nature of the "Dzhobel-Basma" type of tobacco in relation to the soils of the tobacco region of the Dzhobel region.] *Izv. pochv. Inst. Sofiya* 6, 117-162. [Bulg.r.g.] [xxiii, 2833]
 371 : 116 : 819—Merker, J.; Pyriki, C. 1960. [Factors which determine the alkaloid content of *Nicotiana tabacum*.] *Ber. Inst. Tabakforsch. Dresden* 7, 187-197. [G.I. C.A. 55 (11736).]
 371 : 116.32 : 819—Chouteau, J.; Renier, A. 1959. [The relation between the total potassium content of the leaves of tobacco plants and the content of exchangeable or available potassium in the soils in which they are cultivated.] *Ann. Inst. exp. Tabac Bergerac* 3, 227-238. [F.e.]
 371 : 132.2 : 819—Parups, E. V.; Nielsen, K. F.; Bourget, S. J. 1960. The growth, nicotine and phosphorus content of tobacco grown at different soil temperature, moisture and phosphorus levels. *Canad. J. Plant Sci.* 40, 516-523. [xxiii, 2834]
 371 : 132.2 : 819—Avundzhyan, E. S. 1962. [Effect of moisture regime on content of alkaloids in roots and leaves of tobacco according to phases of development.] *Izv. Akad. Nauk armyan. SSR, Biol. Nauki* 15, No. 6, 65-75. [R.armen.] [xxv, 3630]
 371 : 132.22 : 846—Higase, S. 1959. [Physiological studies on flower formation in tobacco. 2. The effect of the duration of waterlogging on the developmental responses of tobacco.] *Proc. Crop Sci. Soc. Japan* 28, 101-104. [J.e.] [xxiii, 942]
 371 : 135 : 819—Pearse, H. L. 1961. Growth conditions and the characteristics of cured tobacco leaves. IV. Growth and composition of leaves from plants grown in media of different fineness. *S. Afr. J. agric. Sci.* 4, 473-477. [E.afr.i.] [xxv, 2427]
 371 : 136—Parups, E.-V.; Nielsen, K. F. 1960. The growth of tobacco at certain soil temperatures and nutrient levels in greenhouse. *Canad. J. Plant Sci.* 40, 281-287. [xxiii, 2331]
 371 : 161.511—Vočinova-Rařkova, Zh. 1960. [The importance of azotobacter in the rhizosphere of tobacco.] *Bulgar. Tyulyun* 5, 241-245. C.A. 55 (19087). [xxv, 2988]
 371 : 162—Merker, J. 1960. [The influence of soil disinfection on the microbiological properties and on the development, yield and chemical composition of tobacco.] *Ber. Inst. Tabakforsch. Dresden* 7, 7-39. [G.r.o.] RAM 40 (384).
 371 : 164—Kalekenov, Zh. 1960. The effect of bacterial fertilizers on the growth of tobacco. *Vestn. Akad. Nauk kazakh. SSR* 16, No. 1, 76-82. [Kazakh.] [xxiii, 1432]
 371 : 181.7—Chouteau, J. 1959. [The weight distribution of the root system of Paraguay tobacco in a deep alluvial soil.] *Ann. Inst. exp. Tabac Bergerac* 3, 265-274. [F.e.] [xxiii, 943]
 371 : 2—Tobacco Research Board of Rhodesia and Nyasaland. 1960. The production of Turkish tobacco. *Tob. Res. Bd Rhod. Nyasaland Bull.* 8, pp 27.
 371 : 2—Whitty, E. B.; Clark, F. 1960. Tobacco plant production as affected by plantbed management practices. *Soil Crop Sci. Soc. Fla Proc.* 20, 74-93.

371 : 21—Sh
interculturing in
371 : 212—D
tobacco growth,

371 : 22—Bo
and developmen
371 : 22—Ch
nitrogen, phospho
Soil Sci. 7, 107

371 : 22—Mc
fertilizer applica
Maryland tobacco

371 : 22—Nic
tobacco plant be

371 : 22—Vol
ammonia and ni
Trudy vsesoyuz.
C.A. 55 (3907).
371 : 22—Dir

rates of mineral
rustica L. *Zbo*

371 : 22—Fer
cured tobacco. C
content of green
20-25. C.A. 54 (

371 : 22—Ric
Quebec. *Lighter*

371 : 22—Sig
No. 8, 16-19.

371 : 22—Wei
in relation to pe
(25470-25471).

371 : 22—Dor
Bilgar. Tyulyun

371 : 22—Bé
and quality of c

371 : 220.62—
ties of cured tob
growth stages on
603-611.

371 : 220.636—
boron and mang
tobacco plants.]

371 : 221—Te
C. K. 1959. G
absorption of nu
J. agric. Sci. 29,

371 : 221—Me
ments of tobacco
quality.] *Rozn.*

371 : 221—Ta
in the nutrient a
culture solution
and magnesium.]

371 : 221—We
of flue-cured Vi
first fed. *Sci. Cor*

371 : 221—Ve
on the nutrition
cations accumula

Decimal Classification

551

550 Earth sciences

.1 Philosophy and theory

Class geologic time [formerly 550.1] in 551.701

551 Physical and dynamic geology

Scope: geophysics and geochemistry of lithosphere, hydrosphere, atmosphere

For astronomical geography, see 525

SUMMARY

- 551.1 Gross structure and properties of the earth
- .2 Plutonic phenomena
- .3 Exogenous processes and their agents
- .4 Geomorphology
- .5 Descriptive and dynamic meteorology
- .6 Climatology and weather
- .7 Historical geology (Stratigraphy)
- .8 Structural geology (Tectonophysics)
- .9 Geochemistry

.1 Gross structure and properties of the earth

For geomagnetism, see 538.7

551.11-551.12 Earth's interior

.11 Structure

Core, mantle, mohorovicic discontinuity

.12 Properties

Heat, temperature ranges, isostasy

551.13-551.14 Earth's crust

.13 Structure

.14 Properties

Heat, temperature ranges, thermal conductivity, elasticity, deformation

.2 Plutonic phenomena

.21 Volcanoes

.22 Earthquakes

.23 Fumaroles, hot springs, geysers

552

Figure 5

Dewey Decimal Classification
Earth sciences

.460 7	Deep-sea surveys and explorations
.460 8	Submarine geology
.460 83	Deposits and sedimentation
.460 84	Topography Ridges, canyons, mountains of ocean floor
.460 9	Special oceanographic forms Salt-water lagoons, inland seas, coastal pools
►	551.461-551.469 Specific oceanic bodies
.461	North Atlantic Ocean
.462	Mediterranean and Black Seas
.463	Caribbean Sea and Gulf of Mexico
.464	South Atlantic Ocean
.465	West Pacific Ocean
.466	East Pacific Ocean
.467	Indian Ocean
.468	Arctic Ocean
.469	Antarctic waters
.47	Dynamics of the sea
	Use 551.470 01 - 551.470 09 for standard subdivisions
.470 1	Ocean currents Theories, circulation, observational methods Class specific ocean currents in 551.471-551.479
.470 2	Waves
.470 22	Ocean waves
.470 23	Seiches
.470 24	Tidal waves
.470 8	Tides [formerly 551.46] and tidal currents
.471-479	Specific ocean currents Divide like 551.461-551.469, e.g., Gulf Stream 551.471
.48	Surface waters
.482	Lakes, ponds, fresh-water lagoons

555

66 Chemical Industry. Chemical Technology

116

66-2/-8	<i>As 621-2/-8 plant, process, product details</i>	
.-4	Shape and form of products	.3
.-5	Plant operation and control	.4
.-7	Plant servicing, safety, etc.	.5
.-9	Process and plant characteristics	.8
-932	Continuous processes	.047
-934	Discontinuous, intermittent, batch	.3
-944	Counterflow processes	.35
-951	Simple (one-stage) processes	.8
-954	Complex (multi-stage) processes	.048
-97	Thermal: temperature level or range	.3
-973/-974	Very low. Low temperature	.5
-975/-976	Normal (atmospheric). Moderate temp.	.6
-977/-978	High temperature. Very high	.7
-98	Pressure level or range. <i>As</i> -97	.8
-982	Vacuum	.9
66.0	CHEMICAL ENGINEERING	.049
	Operations, (unit) processes and plant	.1
66.01	Engineering, processing, plant and services	.2
.011	Process design	.4
.012	Process control and efficiency. <i>Cf.</i> 658.5	.5
.2	Consumption of raw and auxiliary materials	.6
.3	Heat and power consumption	
.4	Capacity. Throughput	
.5	Yield. Output	
.7	Process efficiency, engineering economics	
.013	Chemical works: plant, power, services	
.6/.7	Power supply. Processing services	.061
.017	Material properties. <i>Cf.</i> 620.1/.2	.4
.019	Material defects, spoilage, etc. <i>As</i> 620.19	.5
66.02	Chemical processes and plant generally	.062
.022	Pre-treatment, preparation. <i>By</i> :621.9	.6
.023	Containers. Reaction vessels. <i>By</i> :621.642	.72
.024	Mountings. Stands. Supports, etc.	.93
.025	Fittings for vessels. Closures and seals.	
	Manholes and windows. Inlets. Outlets	
.026	Pipes, valves, connections. <i>By</i> :621.64	
.028	Introduction of material. Correct quantities	
66.03	Plant, processes for specific industries (at 664, 666, 667, etc.)	
66.04	Heat transfer treatments. Furnaces. <i>Cf.</i> 662.9	
.041	Furnaces	
.042	Furnace operation and equipment. Charging	
.043	Furnace materials. Linings	
.044	Furnace upkeep and repair	
.045	Heat transfer, exchangers and coolers	
	66.046	Thermal processing and plant
		Cooling processes. <i>Cf.</i> 621-71
		Heating of solids. Roasting, calcination
		Fusion. Melting. Smelting
		Pressure heating. Autoclave treatment
		Drying: air (vacuum, freeze) drying
		High-temp. drying (heat alone)
		Radiation (high-frequency, infra-red)
		Chemical drying. Desiccation
		Distillation, fractionation: stills, columns
		Fractional distillation. Fractionation
		Vacuum distillation or evaporation
		Steam distillation
		Pressure distillation
		Molecular distillation
		Products, stages: tops, middles, bottoms
		Other thermal methods of separation
		Concentration by evaporation
		Solid separation by distillation of solution
		Phase separation by partial fusion
		Solid/liquid separation. Sweating
		Sublimation
	66.05	Plant, processes for specific industries (at 664, 666, 667, etc.)
	66.06	Working with liquids: handling, treatment
		Solution. Extraction
		From solids
		From liquids. Liquid-liquid extraction
		Solvents. <i>By</i> :546 and :547
		Mixing. Maceration. Homogenization
		Dispersions: Emulsification, etc.
		Softening, plasticizers, etc.
		Dilution and diluents
		Dialysis. Dialysers
		Solidification. Precipitation. Crystallization
		Crystallization
		Clarification. Decantation. Separation
		Refining. Purification. Filtration
		Filter apparatus: papers, funnels, etc.
		Pressure filtration. Filter presses
		Centrifuging. Centrifuges
		Decolorizing. Deodorizing
		Expressing. Presses
		Washing
		Treatment of liquids with gases. Gasification
		Degassing of liquids. Degasification

Figure 7

669	METALLURGY. Cf. 622.7; 661.8
.5/..8	Specific metal alloys, etc. As 669.2/.8...5/8
-1	State and form of the metal(s)
-11	Natural state
-12/-13	Rolled, drawn, extruded. Forged, pressed
-14/-15	Cast. Heat treated, hardened
-4	Shape and form of metal products. As 621-4
-9	Process and plant characteristics. As 66-9
669.01	General and theoretical metallurgy
.014	Reactions. Behaviour of elements, etc.
.015	Products (intermediate, crude, pure)
.017	Physical metallurgy generally. Cf. 620.18
.018	Alloys. Metals according to properties. Cf. 669.2/.8...5
.2	Mechanical: machinable, deformable
.25	Extra-hard metals, hard metals
.29	Structural, constructional
.4	Thermal: m.pt., expansion, etc.
.5	Electrical and magnetic properties
.6	Acoustic, optical, density properties
.7/.8	Chemical. Corrosion-resistant
.9	Pseudo-alloys generally. Cer(a)mets
669.04	Heating processes, equipment. As 66.04, e.g.
.041	Metallurgical furnaces. Cf. 669.162.2
.042	Furnace accessories, charging devices, etc.
.046	Heating processes
.5	Melting: oxidation, carburization, etc.
669.05	General, fundamental metallurgical processes
.051	Combined studies on ores and metallurgy
.052	Treatment of mixed ores. Cf. 622.7
.053	Metal extraction. Cf. 669.2/.8...3
.054	Metal refining generally. Cf. 669.2/.8...4
.8	Recovery from scrap and waste products
.056	Metal fabrication generally. By 621.7-.9
.9	Specific metals, use 669...6
.058	Coating, finishes on metal. Cf. 669...69
* .083	Metal plating(s) generally. Cf. 669...8
669.09	Pressure treatments, vacuum metallurgy; use 669-98
	Various metallurgical processes. As 66.09
669.1	FERROUS METALS. IRON. STEEL
.11	Iron and iron-carbon alloys
.12	Pure iron (chemically and technically pure)
669.13	Cast iron
.018	According to properties. As 669.018
.138	Coating(s). As 669.2/.8...8
669.14	Steel generally. Carbon steels
.018	According to properties. As 669.018
.148	Coating(s). As 669.2/.8...8
669.15	Alloys of iron (except with carbon). Alloy steels (-194). Ferro-alloys (-198)
	Elements by '2/'8 as 669.2/.8, e.g.
	669.15-'24-'194 Nickel steel—
	-198 Ferro-nickel
	'24-'26 Nickel-chromium steel

Bliss Classification

Figure 5

CLASS D

ASTRONOMY, GEOLOGY, GEOGRAPHY, AND NATURAL HISTORY

SECTIONS

D₁ - D₉, assigned to Astronomy, are consistent with Schedule 1.

- D General, Elementary.
- DA General, Descriptive, and Spherical Astronomy.
- DB Practical, and Observational, Astronomy.
- DC Theoretical Astronomy. Celestial Mechanics.
- DD Cosmology, Astrophysics, and the Stars.
Nebulae, Meteors, and Comets.
- DE The Sun.
- DF Planets, the Solar System.
- DG Geology, General:
Elementary, Astronomical relations, Geognosy.
- DH Physical Geology:
Geochemistry.
Dynamical Geology.
- DI Historical Geology:
Paleontological Geology.
Stratigraphical Geology.
- DJ Mesozoic and Cenozoic Eras.
- DK Physiographical Geology.
- DL Geographical Geology.
- DM Geology of the United States.
- DN Petrology and Petrography.
- DO Economic Geology.
Economic Geology of the United States (or of America).
- DQ Geography, General.
Mathematical and Cartographical.
- DR Physical Geography (Physiography).
- DS Meteorology.
- DT Regional Geography.
- DU Natural History.
- DV Natural History of the Several Countries.
- DW Microscopy.
- DY Geology and Biology.

Botanical Classification

Figure 4

SCHEDULE 11

FOR SUB-CLASSIFICATION UNDER ANY BOTANIC CLASS,
ORDER, FAMILY, OR GENUS, THIS SPECIAL AUXILIARY SCHEDULE

may be requisite, entire or in part, more often under the higher taxonomic classes, to which its specifications are more readily applicable, than under the lower classes, to which, however, some of its subdivisions may be adapted. The letters for the specifications of this schedule, whether applied under sections or under sub-sections, should be prefixed by the component name, to distinguish these from ordinary subdivisions of sub-sections, as is done elsewhere to indicate specification from a relevant systematic schedule. This composite sub-classification would be antecedent to the taxonomic subdivisions.

The numeral subdivisions would be consistent with Schedule 1.

- ,A Morphology, Anatomy, and Histology.
- ,B Special, Distinctive, F peculiar Organs, Structures, or Tissues. Transformations.
- ,C Roots, Root-systems, of Cormophytes (vascular plants); or Mycelium of Thallophyta.
- ,D Stems, or analogous, or homologous, structures.
- ,E Leaves, Foliage, Venation, Phyllotaxis.
 - Modified Leaves,
 - Fronds, Thallus, or analogous, or homologous, structures.
- ,F Reproduction, Reproductive Organs, Sexual, or Asexual.
 - Flowers, Floral Parts, Inflorescence.
 - Antheridia, Oogonia, Archegonia; or analogous, or homologous structures.
- ,G Fruits, and Seeds;
 - or Spores, and Sporangia.
- ,H Embryology of the class, or order, etc.
- ,I Physiology " " " "
 - Chemical composition, properties, actions, etc.
 - Metabolism, Growth, Duration of life, etc.
- ,J Food, Assimilates, Commensalism, etc.
- ,K Special Physiology: special Processes, Functions, Reactions; Habits, Tropisms, etc.
- ,L Secretions, Excretions, Extracts, Special substances, or Products.
- ,M Ecology of the class, or order, etc.
- ,N Special Ecological subjects: Photographic studies.
 - Relations to Humidity, to Light, etc.
 - Temperature-range, and other Relations to Temperature.
- ,O Ecological Adaptation, Variation, and Isolation.
 - See also Geographical Adaptation, Isolation, ,S.

Blue Classification

Figure 10

EN Genetics: Inheritance (Heredity) and Variation.

The science of inheritance and variation in organisms, Genetics, is distinct, tho rooted in Cytology (EC), which is basic not only to Genetics but also to Histology, Development and Embryology, and not only to those branches of Morphology, but to the interrelated branches of Physiology. Genetics on the other hand extends into Phylogeny, &c. Cytology and Genetics, or Genetics with a special regard to Cytology, may be placed in EN or in EHD. Genetics and Phylogeny would be distinct in EN. Ontogeny is in EDE, Morphogenesis in EDN.

EN1 - EN9 should be consistent with Schedule 1.

EN8 Problems of, or in, Genetics.

ENA Theoretical, Comprehensive works and general discussions.

Principles, Theories, Laws of Inheritance and Variation.

Inheritance and Variation in relation to Development.

See also Ontogeny, EDE, and Variation, ENG.

ENB Experimental studies:

Methods,

Laboratories, Stations.

ENC Statistical and Biometrical studies.

Mathematical treatment. See also Biometrics, Probability in. Statistical Biophysics, EBR, and Statistical Methods in Biology, EBB.

END Genetics including Cytology. (If this is to be distinguished from the general subject)

ENE Cytological Basis of Genetics.

Germ-cells, Gametes, Sexual cells.

Germ-plasm, Continuity of; See the alternative under Cytology, Weismann's theory of, Weismannism. Genotypes.

Fertilization, Spermatogenesis, and Oogenesis; Zygotes.

Nucleus, Karyology; Maturation. See also Reproduction and Sex,

EBR and EKS, under Physiology.

ENF Chromosomes, Chromosomology.

Chromatin, Chromosomes; Chromosome Changes: Inversion, Translocations, Deficiency. Chromosome theory of Inheritance; Genes, The; Chromosome numbers:

Haploid, Diploid, Triploid, Tetraploid; Ploidy, Polyploidy, Heteroploidy.

ENG Variation, Genetic; Diversity. See also FAD, FKB, GKB.

Ecological, Adaptive Variation, Causes, Factors; these see under Adaptation, EBT and Hereditary Differences; EHD. Autogenous Variations in Gametes, in Somatic Tissues.

Gene Mutations. But for Gene Mutations see rather EHP.

Racial Variability, Races:

Racial Genotypes. See also EOG.

Genetic Equilibrium, Extinction of Races.

Hardy's Formula.

ENH Isolation, Genetic.

Phylogenetic Isolation see in EOI,

Sexual Selection, Physiological, and Psychological, Incompatibility.

Isolating Mechanisms. Ecological Isolation in EHL.

Class Classification

CHAPTER C

PHYSICS

<i>Canonical divisions</i>		8	Structure
C1	Fundamentals		C3 Sound
C2	Properties of matter		C3 [P]: [E] [2P]
C3	Sound		<i>Foci in [P]</i>
C4	Heat	1	Audible sound
C5	Light, Radiation	2	Infra sound
C6	Electricity	5	Ultra sound
C7	Magnetism		<i>Foci in [E] cum [2P]</i>
C8	Cosmic hypotheses	1	Generation
		2	Propagation
C13	Fundamentals	21	Velocity
C13	Matter	22	Reflection
C11	Weight	23	Refraction
C18	Gravitation	28	Intensity
C14	Energy	3	Frequency
C15	Space	31	Pitch
C166	Time	33	Musical scale
		35	Resonance
C2	Properties of Matter	358	Resonator
	C2 [P], [P2]	38	Analysis
	<i>Foci in [P]</i>	5	Interference (beat, diffraction)
1	Solid		
15	Glass	7	Acoustics
16	71	Absorption	
5	Liquid		
8	Gas	8	Nature
	<i>Foci in [P2]</i>		
13	Density		C4 Heat
2	Elasticity		C4: [E] [2P]
21	Linear	1	<i>Foci in [E] cum [2P]</i>
22	Areal		Generation
23	Volume	2	Transference
25	Shape	23	Convection
251	Bending	24	Conduction
		25	Radiation
4	Surface tension	27	Absorption
47	Capillarity		
6	Plasticity	28	Calorimetry etc.
91	Friction	281	Calorimetry
92	Viscosity	282	Quantity of heat
93	Diffusion	283	Specific heat
7	Pressure	3	Thermometry
76	Vacuum	4	Expansion of body

2-37

AVIATION SUBJECT HEADINGS

Aerodynamics, Hypersonic
 —*sa* Aerodynamics, Supersonic
 —*xx* Aerodynamics, Supersonic

Aerodynamics, Supersonic
 —*sa* Aerodynamics, Hypersonic
 —Aerodynamics, Transonic
 —Shock waves
 —*xx* Aerodynamics, Hypersonic
 —Aerodynamics, Transonic

Aerodynamics, Transonic
 —*sa* Aerodynamics, Supersonic
 —*xx* Aerodynamics, Supersonic

Aerelasticity
 —Electromechanical analogies
 —*xx* Electromechanical analogies

Aerographs. *See* Meteorographs.

Aeronautical Center. *See* U.S. Federal Aviation Agency. Aeronautical Center.

Aeronautical charts. *See* Cartography; Maps and charts.

Aeronautical engineering
 —*xx* Engineering

Aeronautical engineers
 —*sa* Flight engineers
 —*xx* Engineers
 —Flight engineers

—Training
 —*xx* Training

Aeronautical instruments. *See* Instruments.

Aeronautical research. *See* Aeronautics—Research.

Aeronautics [For general material on the science of aeronautics]

—*sa* Aerodynamics
 —Airplanes
 —Civil aviation
 —Flight
 —Rockets
 —*xx* Aviation
 —*x* High-speed aeronautics
 —Abbreviations. *See* Abbreviations.
 —Addresses, essays, etc.
 —Alaska
 —Bibliog. *See* Bibliography.
 —Biog. *See* Biography.

Aeronautics (Continued)

—Canada
 —Competitions. *See* Competitions.
 —Directories
 —Education. *See* Study and teaching.
 —Examinations, question, etc.
 —Exhibitions. *See* Exhibitions.
 —Fiction
 —*x* Fiction
 —Military aviation—Fiction
 —Military aviation—Korean War—
 —Fiction
 —Military aviation—World War, 2d—
 —Fiction
 —Gt. Brit.
 —Handbooks, manuals, etc. *See* Handbooks, manuals, etc.
 —History. *See* History.
 —Manuals
 —Nomenclature. *See* Terminology.
 —Outlines, syllabi, etc.
 —Pictorial works
 —Periodicals
 —*xx* Periodicals
 —Bibliography
 —Indexes
 —*xx* Indexes
 —Poetry
 —Research
 —*xx* Research
 —*x* Aeronautical research
 —Societies. *See* Organizations.
 —Statistics
 —Terminology. *See* Terminology.
 —Textbooks
 —*xx* Education
 —*x* Textbooks
 —U.S.

Aeronautics, Commercial. *See* Commercial aviation.

Aeronautics, Military. *See* Military aviation.

Aeronautics and civilization

Aeronautics and state

—*sa* Administrative and political divisions
 —State aeronautics
 —U.S.

Aeronautics as a profession. *See* Occupations.

Aeronautics in agriculture. *See* Agriculture.

Chemical determination

Chemical detection (Con.)
—*Chemical agent detection*

BT Detection
RT Naval mine detection
—*Ordnance detectors*
—*Sea surface effects detection*
—*Submarine detection*

Chemical determinationUSE *Chemical analysis***Chemical dosimeters 0618**

BT Dosimeters
—*Measuring instruments*
—*Radiation measuring instruments*

RT Luminescent dosimeters

Chemical element 104USE *Element 104***Chemical elements 0702**

Use of a more specific term is recommended; consult the terms listed below

Actinide series
Alkali metals

Alkaline earth metals
Atoms

Halogens
Ions

Isotopes
Metalloids

Metals
Nonmetals

Precious metals
Rare earth elements

Rare gases
Refractory metals

Trace elements
Transition metals

Transuranium elements
Valence

Chemical engineering 0701

UF Unit operations

RT Agricultural chemistry

Chemurgy
Colloid chemistry

Electrochemistry
—*Material bonding*

Organic chemistry
—*Physical chemistry*

Thermochimistry

Chemical engineers 0509

BT Engineers

Personnel
Professional personnel

Chemical equilibrium 0704

UF Equilibrium constants

NT Acid-base equilibrium

RT—*Chemical reactions*

Chemical reactivity
Fugacity

Irreversible processes
Phase rule

Reaction kinetics
Thermodynamic equilibrium

Chemical etching 1308 0701

BT Chemical finishing

Etching
Metal finishing

Chemical exchange Isotope separation 1802

BT Isotope separation

Separation

NT Isotope exchange

RT—*Centrifuging*

—*Distillation*

Thermal diffusion

Chemical finishing 1308 0701

UF Chemical coating

BT Metal finishing

NT Chemical etching

—*Chemical polishing*

Electropolishing

RT—*Conversion coating*

—*Corrosion prevention*

Chemical hydroforming 0701

BT Chemical reactions

Hydrogenation

RT—*Cyclization*

Dehydrogenation

—*Oxidation*

Chemical indicators 1103

UF Indicators (chemical)

Phenolphthalein

RT Carmine acid

Congo red

Hematoxylin

Methylene blue

Methyl violet

Phloroglucinol

Chemical industry 0503 0701

BT Industries

NT Drug industry

RT Munitions industry

Chemical kinetics

UF Reaction kinetics

Chemical laboratories 1402

UF TCBR laboratories

BT Laboratories

Chemical lasers 2005

BT Lasers

Stimulated emission devices

Chemical machining 1308 0701

UF Chemical milling

Chemical marking agents 1502

RT—*Dyes*

Chemical milling

UF Chemical machining

Chemical plants 0701

BT Industrial plants

Chemical polishing 1308 0701

BT Chemical finishing

Metal finishing

Polishing

NT Electropolishing

RT—*Chemical cleaning*

Chemical porcelain 1102

BT Porcelain

Refractory materials

Vitreous whitewares

Whitewares

RT—*Electrical porcelain*

Refractory porcelain

Chemical projectiles 1502

BT Chemical ammunition

Projectiles

RT Chemical warheads

Chemical properties 0704

NT Acidity

Alkalinity

Calorific value

Chemical reactivity

Chlorinity

Heat of ablation

Heat of absorption

Heat of activation

Heat of adsorption

Heat of combustion

Heat of crystallization

Heat of dissociation

—*Heat of formation*

Heat of fusion

Heat of hydration

Heat of mixing

—*Heat of reaction*

Heat of solution

Heat of sublimation

Heat of transformation

Heat of vaporization

—*Lectent heat*

pH

Salinity

—*Thermochanical properties*

Valence

RT Adsorptivity

—*Atomic properties*

—*Chemical bonds*

—*Chemical tests*

Chromotropism

Hygroscopicity

—*Mechanical properties*

Molecular weight

Optical activity

Passivity

—*Physical chemistry*

Physicochemical properties

—*Soil properties*

Solubility

—*Thermodynamic properties*

Toxicity

Chemical propulsion 2108

RT Hybrid propulsion

Jet propulsion

—*Marine propulsion*

Missile propulsion

Rocket propulsion

Spacecraft propulsion

Chemical pulping 0701 1308

BT Pulping

Continuous pulping

Sulfate pulping

Sulfite pulping

RT—*Cooking liquors (pulping)*

Digestion (decomposition)

Chemical pulps 1112 1107

BT Pulps

Dissolving pulps

NT Dissolving pulps

Rag pulp

Sulfite pulps

Sulfite pulps

Wood pulp

Chemical radicals 0704

NT Complex ions

—*Free radicals*

RT—*Ions*

—*Molecules*

Valence

Chemical reactions 0704

UF Chemical synthesis

NT Acylation

Acidolysis

—*Acylation*

Addition polymerization

—*Addition reactions*

Alcoholysis

Alkali aggregate reactions

—*Alkylation*

Amidation

Amination

Ammonolysis

Bromination

Carbonylation

Carboxylation

—*Cement aggregate reactions*

Chelation

Chemical hydroforming

—*Chlorination*

Condensation polymerization

—*Condensation reactions*

Cyclization

Dealkylation

Decarboxylation

Dechlorination

—*Decomposition reactions*

Defluorination

Dehydrohalogenation

Denitration

Dopolymerization

Desulfurization

Diels-Alder reactions

Diene synthesis

Dimerization

Displacement reactions

Dissociation

Electrolysis

Electrophilic reactions

Elimination reactions

Endothermic reactions

Esterification

Etherification

Ethylation

Exchange reactions

Exothermic reactions

Formentation

Fluorination

Gas ionization

Glycolysis

Graft polymerization

Grignard reactions

—*Halogenation*

Hydration

Hydrochlorination

Hydrofluorination

Hydrogenation

Hydrolysis

Internal oxidation

Iodination

Isomerization

Metalation

Methylation

Nitrilation

Nitrogenation

Nitrogen fixation

Nucleophilic reactions

—*Oxidation*

Oxidation reduction reactions

Ozonization

Phosphorylation

Photochemical reactions

Photochromism

Photolysis

Photopsis

—*Polymerization*

Pyrohydrolysis

Pyrolysis

Radioysis

Rearrangement reactions

Recombination reactions

Reduction (chemistry)

Saponification

Solvolytic

—*Substitution reactions*

Sulfation

Sulfonation

Sulfurization

Xanthation

RT Accelerating (chemistry)

Activity coefficients

Arrhenius (process)

Carbonization

Catalysis

—*Chemical equilibrium*

Chemical reactivity

Chemical reactors

Chemical stabilization

Conversion

—*Cracking process*

Dehydration

Dehydration

Disproportionation

SUBJECT CATEGORY INDEX

1999 (Cont.)	Aircraft noise	Dendritic powder	Electric fields
Antisubmarine torpedoes	Aircraft propeller noise	Edge dislocations	Electricity
Antisubmarine mines	Ambient noise	Elongated structure	Electric moments
Antisubmarine missiles	Antinodes	Epitaxy	Electric potential
Antisubmarine weapon projectors	Audio frequencies	Etched crystals	Electric power demand
Antisubmarine weapons	Bandpass filters	Excitons	Electric sparks
Bottom mines	Blindstep filters	Face centered cubic lattices	Electrode potentials
Contact mines	Bellis	Face centered orthorhombic lattices	Electric syntheses
Depth bombs	Cavitation noise	Forroelectric crystals	Electrokinetics
Depth charge boosters	Coherent acoustic radiation	Fres surfaces (crystallography)	Electromagnetic absorption
Depth charges	Compressor noise	Frankel defects	Electromagnetic compatibility
Exercise mines	Doppler effect	Grain size	Electromagnetic environments
Floating mines	Echoes	Grain structure	Electromagnetic fields
Homing torpedoes	Elastic waves	Hexagonal close packed lattices	Electromagnetic induction
Influence mines	Engine noise	Hexagonal lattices	Electromagnetic interactions
Limpet mines	Color noise	Interstitials	Electromagnetic properties
Magnetic mines	High pass filters	Ionic crystals	Electromagnetic radiation
Mine anchors	Horns	Isotropy	Electromagnetic radiation control
Mine batteries	Hydrophone arrays	Lattice parameters	Electromagnetic theory
Mine boosters	Hydrophones	Lattice vibrations	Electromagnetism
Mine buoys	Input impedance	Metal crystals	Electromagnets
Mine cables	Jet aircraft noise	Metal whiskers	Electromechanics
Mine cases	Jet engine noise	Microstructure	Electron paramagnetic resonance
Mine components	Lamb waves	Monoclinic lattices	Electrons
Mine countermeasures	Low pass filters	Optical anisotropy	Electrooptics
Mine delay mechanisms	Marine biological noise	Orthorhombic lattices	Electrostatic charge
Minefield gap	Marine propeller noise	Piezoelectric crystals	Electrostatics
Minefield lanes	Mechanical waves	Piezoelectricity	Electrostriction
Minefield markers	Motor noise	Point defects	Ettingshausen effect
Minefields	Mufflers	Poly-crystalline	Extra high voltage
Mine floats	Nodes (standing waves)	Polycrystals	Far field
Mine markers	Noise (sound)	Preferred orientation	Ferrimagnetic materials
Mine neutralization	Noise reduction	Schottky defects	Ferrimagnetism
Mine parachutes	P. -inches	Screw dislocations	Ferroelectric crystals
Mine release mechanisms	Pitch (frequency)	Simple cubic lattices	Ferroelectric domains
Mines (ordnance)	Radiation pressure	Single crystals	Ferroelectricity
Mine simulation	Random noise	Spherulites	Ferroelectric materials
Mine sterilizers	Reverberation	Spin lattice relaxation	Ferromagnetism
Moored mines	Rocket engine noise	Steel constituents	Field emission
Naval mines	Ship noise	Tetragonal lattices	Field strength
Offensive minefields	Shock waves	Triclinic lattices	Flashover
Oscillating mines	Silencers	Trigonal lattices	Flux jumping
Pattern running torpedoes	Sirens	Twining	Galvanomagnetic effects
Pressure mines	Sonar background noise	Vacancies (crystal defects)	Gas discharges
Riverine mines	Sonar self noise	Vernoull process	Ginzburg-Landau theory
Rocket assisted torpedoes	Sonic boom	Whiskers (single crystals)	Glow discharges
Shallow water mines	Sound generators	Widmanstatten structure	Gunn effect
Ship counter devices	Sound pressure		Hall effect
Ship launched torpedoes	Sound systems		High voltage
Straight running torpedoes	Sound transducers		Inductance
Submarine launched torpedoes	Sound transmission		Inductive reactance
Torpedo batteries	Sound waves		Insertion loss
Torpedo boosters	Stereophonic sound		Insulation resistance
Torpedo components	Submarine noise		Ion currents
Torpedo controls	Surface waves		Ion emission
Torpedo countermeasures	Torpedo noise		Kerr electrooptical effect
Torpedo data computers	Tuning forks		Kerr magnetooptical effect
Torpedo engines	Ultrasonic frequencies		Low voltage
Torpedoes	Ultrasonic radiation		Magnet coils
Torpedo exploder mechanisms	Underwater acoustics		Magnetic alloys
Torpedo guidance	Underwater ambient noise		Magnetic anisotropy
Torpedo launchers	Underwater sound equipment		Magnetic circuits
Torpedo launching	Underwater sound reverberation		Magnetic cores
Torpedo tubes	Underwater sound sources		Magnetic dipoles
Torpedo warheads	Underwater sound transmission		Magnetic domains
Underwater ordnance			Magnetic fields
Underwater projectiles			Magnetic hysteresis
Underwater rockets			Magnetic induction
Underwater to underwater missiles			Magnetic materials
Wire guided torpedoes			Magnetic measurement
			Magnetic moments
			Magnetic permeability
			Magnetic poles
			Magnetic properties
			Magnetic relaxation
			Magnetic saturation
			Magnetization
			Magneto-optics
			Magnetoresistivity
			Magneto-statics
			Magnetostriction
			Magnets
			Magnet wire
			Microwave effect
			Mutual inductance
			Neel temperature
			Nernst effect
			Overcurrent
			Overvoltage
			Paramagnetic materials
			Paramagnetic relaxation
			Paramagnetic resonance
			Paramagnetism
			Peltier effect
			Permanent magnets
			Persistent currents
			Photoelectrets
			Photoelectric cross sections
			Photoelectric emission

2000
Physics

2001

Acoustics

- Acoustic absorption
- Acoustic fields
- Acoustic filters
- Acoustic impedance
- Acoustic insulation
- Acoustic measurement
- Acoustic properties
- Acoustic receivers
- Acoustic refraction
- Acoustic resonance
- Acoustic resonators
- Acoustics
- Acoustic scattering
- Acoustic signals
- Acoustic velocity
- Aerodynamic noise

2002

Crystallography

- Acicular structure
- Allotropy
- Anisotropy
- Asterism
- Banded structure
- Basal plane
- Base centered monoclinic lattices
- Base centered orthorhombic lattices
- Biocrystals
- Body centered cubic lattices
- Body centered orthorhombic lattices
- Body centered tetragonal lattices
- Bragg angle
- Brillouin zones
- Close packed lattices
- Color centers
- Columnar structure
- Crystal defects
- Crystal dislocations
- Crystal growth
- Crystal lattices
- Crystallites
- Crystallization
- Crystallography
- Crystals
- Crystal structure
- Crystal substructure
- Crystal symmetry
- Czochralski method
- Dendritic crystals

2003

Electricity and Magnetism

- Alternating current
- Anodic polarization
- Antiferroelectricity
- Antiferromagnetism
- Avalanche breakdown
- Barkhausen effect
- Capacitance
- Capacitive reactance
- Carbon arcs
- Cathodic polarization
- Characteristic impedance
- Charge density
- Coercive force
- Coherent electromagnetic radiation
- Core loss
- Coronas
- Coulomb friction
- Curie temperature
- Current density
- Current efficiency
- Cyclotron waves
- Degaussing
- De Haas-Van Alphen effect
- Demagnetization
- Diamagnetism
- Dielectric breakdown
- Dielectric films
- Dielectric properties
- Dielectrics
- Dipole moments
- Dipoles
- Direct current
- Dissipation factor
- Eddy currents
- Electrets
- Electrical faults
- Electrical grounding
- Electrical impedance
- Electrical phenomena
- Electrical properties
- Electrical resistance
- Electrical resistivity
- Electric arcs
- Electric charge
- Electric corona
- Electric current
- Electric discharges
- Electric double layer

Cells (biology) (Con.)

- Erythrocytes
- Leukocytes
- Eosinophils
- Lymphocytes
- Germ cells
- Nerve cells
- Phagocytes
- Plant cells

Cellulosic resins

- Cellulose esters
- Cellulose acetate
- Cellulose nitrate
- Cellulose xanthate
- Cellulose ethers
- Carboxymethyl cellulose
- Ester cellulose
- Hydroxyethyl cellulose
- Methyl cellulose

Cements

- Bituminous cements
- Ceramic cements
- Acid bonded reaction cements
- Gypsum cements
- Hydraulic cements
- Aluminate cements
- Gypsum cements
- Lime cements
- Portland cements
- Air entraining cements
- Expanding cements
- High early-strength cements
- Low heat cements
- Portland cement type 1
- Portland cement type 2
- Portland pozzolan cements
- Portland slag cements
- Sulfate resisting cements
- White portland cements
- Slag cements
- Oil well cements
- Saturated salt cements
- Silicate cements
- Masonry cements
- Resin cements

Central nervous system

- Brain
- Brain stem
- Cerebellum
- Cerebral cortex
- Cerebrum
- Cingulate gyrus
- Limbic system
- Amygdala
- Hippocampus
- Hypothalamus
- Thalamus
- Reticular activating system
- Diencephalon

Ceramics

- Ceramic pipes
- Vitreous clay pipes
- Pottery
- Chinaware
- Earthenware
- Refractories
- Acid refractories
- Silicate refractories
- Fireclay refractories
- Basic refractories
- Magnesite refractories
- Firebrick
- Neutral refractories
- Bituminous bonded refractories
- Carbon refractories
- Refractory concretes
- Castable refractories
- Refractory mortars
- Structural clay products
- Bricks
- Firebrick
- Silica brick
- Ceramic tiles
- Wall tiles
- Stoneware
- Vitreous clay pipes
- Tiles
- Ceramic tiles
- Wall tiles

Charged particles

- Anions
- Auger electrons
- Beta particles
- Cations

- Conversion electrons
- Electrons
- Muons
- Photoelectrons
- Photoprotons
- Positrons
- Stripped atoms
- Alpha particles
- Deuterons
- Protons
- Tritons

Charting

- Flow charting
- Process charting
- Multiple activity process charting

Charts

- Control charts
- Flow charts
- Gantt charts
- Graphs (charts)
- Cooling curves
- Gompertz curves
- Growth curves
- Moller diagrams
- Pearl-Reed curves
- Organization charts

Chemical properties

- Acidity
- Alkalinity
- Chemical reactivity
- Crystallinity
- pH
- Salinity
- Thermochemical properties
- Heat of ablation
- Heat of absorption
- Heat of activation
- Heat of adsorption
- Heat of crystallization
- Heat of mixing
- Heat of reaction
- Calorific value
- Heat of combustion
- Heat of dissociation
- Heat of formation
- Heat of hydration
- Heat of solution
- Heat of transformation
- Latent heat
- Heat of fusion
- Heat of sublimation
- Heat of vaporization
- Valence

Chemical radicale

- Free radicals
- Complex ions

Chemical reactions

- Acylation
- Acetylation
- Addition reactions
- Addition polymerization
- Alkylation
- Ethylation
- Methylation
- Amidation
- Amination
- Carbonylation
- Carboxylation
- Cement aggregate reactions
- Alkali aggregate reactions
- Chelation
- Condensation reactions
- Condensation polymerization
- Esterification
- Cyclization
- Diels-Alder reactions
- Doolykylation
- Decarboxylation
- Decolorization
- Decomposition reactions
- Electrolysis
- Fermentation
- Glycolysis
- Photolysis
- Pyrolysis
- Radiolysis
- Solvolysis
- Acidolysis
- Alcoholyisis
- Ammonolysis
- Hydrolysis
- Pyrohydrolysis
- Saponification
- Defluorination

Chlorine organic compounds

- Dehydrochlorination
- Denitration
- Depolymerization
- Desulfurization
- Diazotization
- Diene synthesis
- Dissociation
- Elimination reactions
- Endothermic reactions
- Etherification
- Exchange reactions
- Exothermic reactions
- Grignard reactions
- Halogenation
- Eflorination
- Chlorination
- Hydrochlorination
- Fluorination
- Hydrofluorination
- Iodination
- Hydration
- Hydrogenation
- Chemical hydroforming
- Internal oxidation
- Ionization
- Gas ionization
- Isonomerization
- Metalation
- Nitration
- Nitrification
- Nitrogen fixation
- Oxidation
- Oxidation reduction reactions
- Ozonization
- Phosphorylation
- Photochemical reactions
- Photochromism
- Photolysis
- Photosynthesis
- Polymerization
- Addition polymerization
- Condensation polymerization
- Dimerization
- Graft polymerization
- Rearrangement reactions
- Recombination reactions
- Reduction (chemistry)
- Substitution reactions
- Displacement reactions
- Electrophilic reactions
- Nucleophilic reactions
- Sulfation
- Sulfonation
- Sulfuration
- Xanthation

Chemical tests

- Acid resistance tests
- Chemical analysis
- Chromatographic analysis
- Colorimetric analysis
- Electrophotometry
- Fat analysis
- Flame photometry
- Gas analysis
- Metallurgical analysis
- Microanalysis
- Qualitative analysis
- Quantitative analysis
- Electrolytic analysis
- Gravimetric analysis
- Polarographic analysis
- Volumetric analysis
- Radioactivation analysis
- Neutron activation analysis
- Spectroscopic analysis
- Spectrochemical analysis
- Vacuum fusion analysis
- Water analysis
- Colorimetric tests
- Field corrosion tests
- Immersion tests (corrosion)
- Oxidation tests
- Pitting tests
- Salt spray tests
- Stress corrosion tests

Chlorine organic compounds

- Chlorine aliphatic compounds
- Acetyl chloride
- Chloroalkanes
- Chlorobutanes
- Chloroethanes
- Chloromethanes
- Carbon tetrachloride
- Chlreform
- Chloropropanes
- Chlorobutadienes
- Chloroprene

PRUE (C13)
 X MALABSORPTION SYNDROME (C13)
 X STEATORRHEA (C13)

PRUE, TROPICAL (C13)

PUTUM (A12)

QUALENE (D2)
quamous Bone see under TEMPORAL BONE (A2)

QUILL (B6, D4)
 XU SCILLAREN (B6, D4)

quint *see STRABISMUS (C11)*

table Factor *see FACTOR VII (D6)*

TAINS AND STAINING (E5, G1)
 see also related:
 DYES (D8)
 XR DYES (D8)

ammering *see under STUTTERING (C10, F)*

annum *see TIN (D1)*

TANOLONE (D5)
 X NEODROL (D5)

apes *see under EAR OSSICLES (A9)*

TAPES MOBILIZATION (E4)
 XR OTOSCLEROSIS (C11)

aphylocoagulase *see under HYDROLASES (D5)*

TAPHYLOCOCCAL INFECTIONS (C1)
 see also related:
 CROSS INFECTION (C1, G3)

TAPHYLOCOCCAL INFECTIONS, GASTROINTESTINAL (C1, C4)

TAPHYLOCOCCAL INFECTIONS, RESPIRATORY (C1, C5)

TAPHYLOCOCCAL PHAGES (B4)

TAPHYLOCOCCUS (B3)
 XU MICROCOCCUS PYOGENES (B3)

TARCH (D6)

TARVATION (C13)
 see also related:
 FASTING (E2)
 HUNGER (F)
 XR FASTING (E2)
 XR HUNGER (F)

TATE MEDICINE (G2)
 X SOCIALIZED MEDICINE (G2)
 XU MEDICAL CARE PLANS (G2)
 XU NATIONAL HEALTH PROGRAMS (G2)

STATISTICS (H, I)
 see also related:
 PSYCHOMETRICS (F)

Status Lymphaticus see LYMPHATISM (C7)

STEAM (G3)

STEARIC ACID (D6)

Steatorrhea see SPRUE (C13)

Steatorrhea, Childhood see CELIAC DISEASE (C13)

Steel see under METALS (D1)

STEIN-LEVENTHAL SYNDROME (C6)

STELANGIUM (B3)
Stelazine see TRIFLUOPERAZINE (D4)

STELLATE GANGLION (A8)

STERILITY (C6, G1)

STERILITY, FEMALE (C6)

STERILITY, MALE (C6)

STERILIZATION (G3)

STERILIZATION, SEXUAL (E4)

STERNOCLAVICULAR JOINT (A2)

Sternocostal Joints see under RIBS (A2)

STERNUM (A2)
 XU ENSIFORM CARTILAGE (A2)
 XU MANUBRIUM (A2)
 XU XIPHOID BONE (A2)

STERROIDS (D2, D5, D6)

STEROLS (D6)

Stethoscopy see under AUSCULTATION (E1)

STEVENS-JOHNSON SYNDROME (C12)

STIGMATIZATION (K)

STILBAMIDINES (D2, D3)

STILBENES (D2, D5, D8)
 XU BENZESTROL (D2, D5, D8)
 XU MESTILBOL (D2, D5, D8)
 XU PROMETHESTROL (D2, D5, D8)

Stilbestrol see DIETHYLSTILBESTROL (D5)

Still's Disease see ARTHRITIS, JUVENILE RHEUMATOID (C3)

C - DISEASES

C8 - Cardiovascular Diseases

HEART DISEASES
HEMORRHAGE
VASCULAR DISEASES

ANEURYSM
Aortic Aneurysm
Cerebral Aneurysm (C10)
Heart Aneurysm
ANGINA PECTORIS
Coronary Disease
ANGIOKERATOMA (C2)
ANGIOMA, SCLEROSING (C2)
ANGIOMATOSIS (C2)
ANGIONEUROTIC EDEMA
(C9,C14)
ANGIOSARCOMA (C2)
ORTIC ANEURYSM
ORTIC COARCTATION
ORTIC DISEASES
Aortic Aneurysm
Aortic Coarctation
Aortic Rupture
Aortic Stenosis
Leriche's Syndrome
ORTIC RUPTURE
ORTIC STENOSIS
ORTIC VALVE DISEASES
Aortic Stenosis
ARRHYTHMIA
Arrhythmia, Sinus
Auricular Fibrillation
Auricular Flutter
Bradycardia
Extrasystole
Heart Block
Tachycardia
Ventricular Fibrillation
ARRHYTHMIA, SINUS
ARTERIOSCLEROSIS
Arteriosclerosis Obliterans
Cerebral Arteriosclerosis (C10)
ARTERIOSCLEROSIS OBLITERANS
ARTERITIS
Endarteritis

ARTERITIS (Continued)
Periarteritis Nodosa (C3)
Temporal Arteritis (C3)
AURICULAR FIBRILLATION
AURICULAR FLUTTER
AYERZA'S SYNDROME
BRADYCARDIA
BUNDLE-BRANCH BLOCK
CARDIAC TAMPOONADE
CARDIOVASCULAR DISEASES
CAROTID ARTERY DISEASES (C10)
CEREBRAL ANEURYSM (C10)
CEREBRAL ANOXIA (C10)
CEREBRAL ARTERIOSCLEROSIS (C10)
CEREBRAL ARTERY DISEASES (C10)
CEREBRAL EMBOLISM AND THROMBOSIS (C10)
Sinus Thrombosis (C10)
CEREBRAL HEMORRHAGE (C10)
Hematoma, Epidural (C10)
Hematoma, Subdural (C10)
Subarachnoid Hemorrhage (C10)
CEREBRAL ISCHEMIA, TRANSIENT (C10)
CEREBROVASCULAR DISORDERS (C10)
Carotid Artery Diseases (C10)
Cerebral Aneurysm (C10)
Cerebral Anoxia (C10)
Cerebral Arteriosclerosis (C10)
Cerebral Artery Diseases (C10)
Cerebral Embolism and Thrombosis (C10)
Cerebral Hemorrhage (C10)
Cerebral Ischemia, Transient (C10)

CHOREA (C10)
CORONARY DISEASE
Angina Pectoris
Coronary Vessel Anomalies
Myocardial Infarct
CORONARY VESSEL ANOMALIES
DEXTROCARDIA
DIABETIC ANGIOPATHIES (C7,C13)
Diabetic Retinopathy (C11,C13)
DIABETIC RETINOPATHY (C7,C11,C13)
DYSPNEA, PAROXYSMAL (C5)
EBSTEIN'S ANOMALY
EISENMENGER COMPLEX
EMBOLISM
Coronary Disease
Embolism, Air
Embolism, Amniotic Fluid (C6)
Embolism, Fat
Pulmonary Embolism
EMBOLISM, AIR
EMBOLISM, AMNIOTIC FLUID (C6)
EMBOLISM, FAT
ENDARTERITIS
ENDOCARDIAL FIBROELASTOSIS
ENDOCARDITIS
Endocarditis, Bacteria (C1)
Endocarditis, Subacute Bacterial (C1)
ENDOCARDITIS, BACTERIAL (C1)
ENDOCARDITIS, SUBACUTE BACTERIAL (C1)
EPISTAXIS (C5)

35 HEAT TRANSFER — COOLANTS

42 ANALOG SYSTEMS

45 SHIELDING

51 FERTILE MATERIALS — 621.039.538 — 621.039.537 — 621.039.517 — 621.039.516.3 — 621.039.516.7

