

Subject Name: Information System

Unit No:02 Unit Name: Access Control Models

Faculty: Mrs. Bhavana Alte

Mr. Prathmesh Gunjgur

Discretionary Access
Control (DAC), Mandatory
Access Control (MAC)

What is Discretionary Access Control (DAC)?

- •DAC is an access control model where the **owner** of a resource (e.g., file, system, database) has full discretion over who can access it and what actions they can perform on it (read, write, execute).
- •The owner has the ability to grant or revoke access permissions to other users, making DAC more flexible but potentially less secure.
- **Definition**:In DAC, the owner of the object (such as a file or folder) determines who can access the object and what operations they can perform (e.g., read, write, delete).

Key Characteristics of DAC

•Owner Control:

•The **owner** has control over the resource and can decide who is allowed to access it.

•Flexible Permissions:

•Permissions can be set for individuals or groups, and these permissions can be dynamically changed by the owner.

Access Control List (ACL):

• It is a list of users (or groups of users) associated with an object (e.g., a file, folder, database) and the permissions granted to them. ACLs define who can access the resource and what actions they can perform on it.

•Folder: Project Files

•-----

•User: Alice - Read, Write, Execute

•User: Bob - Read

•User: Carol - Read, Write

•Group: Managers - Read, Write

•User: Dave - No Access

How DAC Works...

- **□** Resource Owner:
- •The owner is the person who creates or controls the resource.
- •Example: A file created by a user in a system.
- □ Permissions:
- •The owner defines permissions for other users, which could include **read**, write, or **execute** access.
- •Permissions can be set as follows:
 - •Read (R): Allows viewing the content.
 - •Write (W): Allows modifying the content.
 - •Execute (X): Allows running the file if it's an executable or script.

How DAC Works...

- □ Access Control List (ACL): Each object (e.g., file) has an associated ACL that specifies which users or groups have access to it and what actions they can perform.
- Example of an ACL for a file
- File: report.txt
- User: Alice Read, Write
- User: Bob Read
- Group: Managers Read, Write
- □ Permission Propagation: In some cases, permissions are inherited from parent directories or objects.
- For example, if you set permissions on a folder, the same permissions can be propagated to all files within that folder.

Example of DAC in Action

- Scenario: Personal File System on a Computer
- Owner: John creates a text document named "Budget Plan" on his personal computer.
- Owner Control: John decides that he wants to share the document with his colleague, Alice, but not with anyone else.
- Action: John gives Alice read-only access, while he retains full control (read, write, execute) over the document.
- ACL for "Budget Plan":
- File: Budget Plan.txt
- User: John Read, Write, Execute
- User: Alice Read
- **Dynamic Changes**: Later, John may decide to give Alice write access if they decide to collaborate on the document.

Advantages of DAC

•Flexibility:

- •Users have control over their resources and can modify access permissions dynamically.
- •Useful for small systems or personal use where strict access control is not required.

•Ease of Implementation:

•Simple to implement in environments where users are responsible for managing their own access rights.

•User-Friendly:

•Users with access to resources can easily manage and modify permissions for others, which simplifies user management.

Disadvantages of DAC

•Security Risks:

- •Since the owner has control over permissions, there is a risk that users might grant excessive permissions, potentially compromising security.
- •Example: A user might accidentally share a sensitive file with others or give write access to a file they shouldn't.

Lack of Centralized Control:

•There is no centralized authority enforcing access control. This can be problematic in larger organizations or systems with many resources.

•Scalability Issues:

•In large systems with thousands of users and resources, manually managing permissions can become cumbersome and error-prone.

Disadvantages of DAC

- Inconsistent Enforcement:
- Since each resource is controlled individually, enforcing consistent security policies across the system can be challenging

DAC in Real-World Applications

- 1. File System Permissions (Windows/Linux)
- Windows OS: DAC is used in NTFS file systems where the file owner determines who has access to the files and directories. Permissions such as Full Control, Modify, Read & Execute, and Write are commonly used.
- 2. Shared Network Folders
- In a company network, DAC is used to grant access to shared network folders. A user can decide who in their department or team has access to their shared files.
- 3. Personal Cloud Storage
- Many personal cloud storage services (e.g., Google Drive, Dropbox) implement
 DAC. The owner of a file can decide who has view or edit access.

CONCLUSION

•Summary of DAC:

- •DAC allows owners to control access to their resources, providing flexibility and ease of use.
- •Ideal for small systems or environments where users need control over their own data.
- •Risks: It may introduce security vulnerabilities if permissions are not carefully managed.

•Use Cases:

- Personal file sharing.
- •Small business file management.
- Cloud-based systems where users control sharing.

Introduction to Mandatory Access Control (MAC)

- What is MAC?
- Mandatory Access Control (MAC) is a type of access control model in which
 access to resources is governed by policies set by the system administrator, not the
 resource owner.
- Key Feature: Access decisions are based on predefined security policies and security labels rather than user discretion.
- Primary Focus: Security and confidentiality of resources.
- Why MAC?
- Used in environments where high security is required, such as military, government, and financial institutions, where unauthorized access to sensitive data must be strictly controlled.

Core Principles of MAC

1. System-Enforced Policies:

- Access control is enforced by the system based on predefined rules.
- Example: In a military system, a document labeled as Top Secret can only be accessed by users with Top Secret clearance.

2. No User Discretion:

- Users cannot modify or alter access permissions. Permissions are strictly controlled by the system.
- Example: A user with Top Secret clearance cannot share or alter access to a Top Secret file without system authorization.
- 3. Levels of Security:
- Security levels are hierarchical (e.g., Top Secret, Secret, Confidential, Unclassified),
 and users are granted access based on these levels.
- Example: A Secret user can read Secret and Confidential documents but cannot access Top Secret documents.

How MAC Works

- •Subjects: Entities (users or processes) requesting access to resources.
- •Objects: Resources (files, documents, or other data) being requested.
- •Security Labels: These are assigned to both subjects and objects and dictate the level of access.
- **Example of MAC in Action:**
- **Subject**: A user with **Top Secret** clearance.
- **Object**: A file labeled **Secret**.
- Policy:
 - The user with Top Secret clearance can access the Secret file, but a user with **Secret** clearance cannot access the **Top Secret** file

Advantages of MAC

•High Security:

•Provides tight control over access to sensitive data, ensuring that only authorized individuals can access critical resources.

•Centralized Control:

•Centralized control by system administrators reduces the risks of unauthorized access or errors from resource owners.

•Prevention of Data Leaks:

•Policies like **No Read Up** and **No Write Down** prevent sensitive data from leaking to unauthorized users.

Disadvantages of MAC

•Lack of Flexibility:

•Users cannot modify access policies themselves, making the system rigid and difficult to adapt to changes in organizational needs.

•Complex Management:

•Setting up and managing security labels and access policies can be complex and timeconsuming.

•Scalability Issues:

•As the organization grows, managing numerous security labels and access control policies becomes increasingly difficult.

When to Use MAC

- **Military**: MAC is ideal for protecting highly sensitive information, such as military intelligence, classified documents, and secure communications.
- **Government**: Ensuring compliance with regulations that require strict control over sensitive government data.
- Healthcare: Protecting patient health records and complying with privacy regulations like HIPAA.
- **Financial Institutions**: Safeguarding sensitive financial data and ensuring that only authorized personnel can access certain financial records.

MAC in Practice – Case Study Example

•Scenario:

- •A government organization uses MAC to secure its classified documents.
- •Top Secret files are accessible only by senior officials with Top Secret clearance.
- •Secret files are accessible by mid-level officials with Secret clearance.
- •Each user's ability to access certain files is strictly based on their clearance level.

·Result:

•The system prevents accidental data leaks and ensures that only authorized individuals access classified materials, preserving national security.

Thank You