Contents

1	Problem		. 2
2	Problem		. 3
3	Problem		. 4
4	Problem		. 5
5.7	Theorem		. 5
5.8	Theorem		. 6
	Lemma		. 7
5.9	Theorem		. 8
5.10	Theorem		. 9
	Corollary		. 10
	Definition		. 11
	Definition		. 11
5.11	Theorem		. 12
5.12	Theorem		. 14
	Definition		. 15
5.21	Theorem		. 16
5.22			
5.23	Theorem (Cayley-Hamilton)		. 18
	Corollary (Cayley-Hamilton Theorem for Matrices)		
5.24			
	Definition		
5.25	Theorem		. 21

5.2 Diagonalizability

Problem 1. For each of following matrices $A \in M_{n \times n}(R)$, test A for diagonalizability, and if A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

- (a) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$
- (d) $\begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$
- (e) $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$
- $\begin{array}{cccc}
 (g) & \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{pmatrix}
 \end{array}$

D.	1 •	1	1 • .
Diagona	1179	hı	1117
Diagona	1120	VI.	шоу

Problem 2. For each of the following linear operator T on a vector space V, test T for diagonalizability, and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

- (a) $V = P_3(R)$ and T is defined by T(f(x)) = f'(x) + f''(x), respectively.
- (b) $V = P_2(R)$ and T is defined by $T(ax^2 + bx + c) = cx^2 + bx + a$.
- (c) $V = R^3$ and T is defined by

$$\mathsf{T} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_2 \\ -a_1 \\ 2a_3 \end{pmatrix}.$$

- (d) $V = P_2(R)$ and T is defined by $T(f(x)) = f(0) + f(1)(x + x^2)$.
- (e) $V = C^2$ and T is defined by T(z, w) = (z + iw, iz + w).
- (f) $V = M_{2\times 2}(R)$ and T is defined by $T(A) = A^T$.

Problem 3. Prove the matrix version of corollary to **Theorem 5.5**: If $A \in M_{n \times n}(F)$ has n distinct eigenvalues, then A is diagonalizable.

Problem 4. State and prove the matrix version of Theorem 5.6

Theorem 5.6. The characteristic polynomial of any diagonalizable linear operator splits.

Problem 5.

- (a) Justify the test for diagonalizability and the method for diagonalization stated in this section.
- (b) Formulate the results in (a) for matrices.

Problem 6. For

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \in \mathsf{M}_{2 \times 2}(R),$$

find an expression for A^n , where n is an arbitrary positive integer.

Problem 7. Suppose that $A \in \mathsf{M}_{n \times n}(F)$ has two distinct eigenvalues, λ_1 and λ_2 , and that $\dim(\mathsf{E}_{\lambda_1}) = n - 1$. Prove that A is diagonalizable.

Problem 8. Let T be a linear operator on a finite-dimensional vector space V, and suppose there exists an ordered basis β for V such that $[T]_{\beta}$ is an upper triangular matrix

- (a) Prove that the characteristic polynomial for T splits.
- (b) State and prove an analogous result of matrices.

The converse of (a) is treated in **Problem 32** of **Section 5.4.**

Problem 9. Let T be a linear operator on a finite-dimensional vector space V with the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ and corresponding multiplicities m_1, m_2, \ldots, m_k . Suppose that β is a basis for V such that $[\mathsf{T}]_\beta$ is an upper triangular matrix. Prove that the diagonal entries of $[\mathsf{T}]_\beta$ are $\lambda_1, \lambda_2, \ldots, \lambda_k$ and that each λ_i occurs m_i times $(1 \le i \le k)$.

Problem 10. Let A be an $n \times n$ matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ with corresponding multiplicities m_1, m_2, \ldots, m_k . Prove the following statements.

(a)
$$\operatorname{tr}(A) = \sum_{i=1}^{k} m_i \lambda_i$$

(b)
$$\det(A) = (\lambda_1)^{m_1} (\lambda_2)^{m_2} \cdots (\lambda_k)^{m_k}$$
.

Problem 11. Let T be an invertible linear operator on a finite-dimensional vector space $\mathsf{V}.$

- (a) Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of $\mathsf{T}^{-1}(\mathbf{Exericse}\ \mathbf{8}\ \text{of}\ \mathbf{Section}\ \mathbf{5.1})$. Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .
- (b) Prove that if T is diagonalizable, then T^{-1} is diagonalizable.

Problem 12. Let $A \in \mathsf{T}_{n \times n}(F)$. Recall form **Problem 14** of **Section 5.1** that A and A^T have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^T , let E_{λ} and E'_{λ} denote the corresponding eigenspaces for A and A^T , respectively.

- (a) Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.
- (b) Prove that for any eigenvalue λ , $\dim(\mathsf{E}_{\lambda}) = \dim(\mathsf{E}'_{\lambda})$.
- (c) Prove that if A is diagonalizable, then A^T is also diagonalizable.

Problem 20. Let $W_1, W_2, ..., W_k$ be subspaces of a finite-dimensional vector space V such that

$$\sum_{i=1}^k \mathsf{W}_i = \mathsf{V}.$$

Prove that V is the direct sum of $W_1,\,W_2,\,\ldots,\,W_k$ if and only if

$$\dim(\mathsf{V}) = \sum_{i=1}^k \dim(\mathsf{W}_i).$$

Problem 21. Let V be a finite-dimensional vector space with a basis β , anad let $\beta_1, \beta_2, \ldots, \beta_k$ be a partition of β (i.e., $\beta_1, \beta_2, \ldots, \beta_k$ are subsets of β such that $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_k$ and $\beta_i \cap \beta_j = \emptyset$ if $i \neq j$). Prove that $V = \operatorname{span}(\beta_1) \oplus \operatorname{span}(\beta_2) \oplus \cdots \oplus \operatorname{span}(\beta_k)$.

Problem 22. Let T be a linear operator on a finite-dimensional vector space V, and suppose that the distinct eigenvalues of T are $\lambda_1, \lambda_2, \ldots, \lambda_k$. Prove that

 $\mathrm{span}\left(\{x\in\mathsf{V}\,:\,x\;\mathrm{is\;an\;eigenvector\;of\;}\mathsf{T}\}\right)=\mathsf{E}_{\lambda_1}\oplus\mathsf{E}_{\lambda_2}\oplus\cdots\oplus\mathsf{E}_{\lambda_k}.$ *Proof.*

Problem 23. Let W_1 , W_2 , K_1 , $|mathsfK_2$, ..., K_p , M_1 , M_2 , ..., M_q be subspaces of a vector space V such that $W_1 = K_1 \oplus K_2 \oplus \cdots \oplus K_p$ and $W_2 = M_1 \oplus M_2 \oplus \cdots \oplus M_q$. Prove that if $W_1 \cap W_2 = \{\theta\}$, then

$$\mathsf{W}_1 + \mathsf{W}_2 = \mathsf{W}_1 \oplus \mathsf{W}_2 = \mathsf{K}_1 \oplus \mathsf{K}_2 \cdots \oplus \mathsf{K}_p \oplus \mathsf{M}_1 \oplus \mathsf{M}_2 \oplus \cdots \oplus \mathsf{M}_q.$$

5.6 Invariant subspaces and the Cayley–Hamilton Theorem

Problem 2. For each of the following linear operatos T on the vector space V, determine whether the given subspace W ia a T-invariant subspace of V.

(a)
$$V = P_3(R)$$
, $T(f(x)) = f'(x)$, and $W = P_2(R)$

(b)
$$V = P(R), T(f(x)) = xf(x), \text{ and } W = P_2(R)$$

- (c) $V = R^3$, T(a, b, c) = (a + b + c, a + b + c, a + b + c), and $W = \{(t, t, t) : t \in R\}$
- (d) $V = C([0, 1]), T(f(t)) = \left[\int_0^1 f(x)dx\right]t$, and $W = \{f \in V : f(t) = at + b \text{ for some } a \text{ and } b\}$

(e)
$$V = M_{2\times 2}(R)$$
, $T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A$, and $W = \{A \in V : A^T = A\}$

Problem 3. Let T be a linear operator on a finite-dimensional vector space V, Prove that the following subspaces are T-invarinat.

- (a) $\{\theta\}$ and V
- (b) N(T) and R(T).
- (c) E_{λ} , for any eigenvalue λ of T .

Problem 4. Let T be a linear operator on a vector space V, and let W be a T-invariant subspace of V. Prove that W is g(T)-invariant for any polynomail g(t).

Problem 5. Let T be a linear operator on a vector space V . Prove that the intersection of any collection of T -invariant subspaces of V is a T -invariant subspace of V .

Problem 6. For each linear operator T on the vector space V, find an ordered basis for the T-cyclic subspace generated by the vector z.

(a)
$$V = \mathbb{R}^4$$
, $T(a, b, c, d) = (a + b, b - c, a + c, a + d)$, and $z = e_1$.

(b)
$$V = P_3(R)$$
, $T(f(x)) = f''(x)$, and $z = x^3$.

(c)
$$V = M_{2\times 2}(R)$$
, $T(A) = A^T$, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(d)
$$V = M_{2\times 2}(R)$$
, $T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} A$, and $z = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Problem 7. Prove that the restriction of a linear operator T to a T-invariant subspace is a linear operator on that subspace.

Problem 8. Let T be alinear operator on a vector space with a T-invariant subspace W. Prove that if v is an eigenvector of T_W with corresponding eigenvalue λ , then the same is true for T.

Problem 9. For each linear operator T and cyclic subspace W in **Problem 6**, compute the characteristic polynomial of T_W in two ways, as in **Example 6**.

Problem 10. For each linear operator in **Problem 6**, find the characteristic polynomial f(t) of T, and verify that the characteristic polynomial of T_W (computed in **Problem 9**) divides f(t).

 ${\it Proof.}$

Problem 11. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v. Prove that

- (a) W is T-invariant.
- (b) Any T-invazriant subspace of V containing v also contains $\mathsf{W}.$

Problem 12. Prove that $A = \begin{pmatrix} B_1 & B_2 \\ O & B_3 \end{pmatrix}$ in the proof of **Theorem 5.21**. *Proof.*

Problem 13. Let T be a linear operator on a vector space V, let v be a nonzero vector in V, and let W be the T-cyclic subspace of V generated by v. For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial g(t) such that w = g(T)(v).

Problem 14. Prove that the polynomial g(t) of **problem 13** can always be chosen so that its degree is less than or equal to dim(W).

Problem 15. Use the Cayley-Hamilton theorem to prove its corollary for matrices. Warning!: If $f(t) = \det(A - tI)$ is the characteristic polynomial of A, it is tempting to prove that f(A) = O by saying $f(A) = \det(A - AI) = \det(O) = 0$. But this argument is non-sense, Why?

Problem 16. Let T be a linear operator on a finite-dimensional vector space V .

- (a) Prove that if the characteristic polynomial of T spilits, then so does the characteristic polynomial of the restriction of T to any T -invariant subspace of V .
- (b) Deduce that if the characteristic polynomial of T splits, then any non-trivial T-invariant subspace of V contains an eigenvector of T.

Problem 17. Let A be an $n \times n$ matrix. Prove that

$$\dim (\operatorname{span} (I_n, A, A^2, \ldots)) \leq n.$$

Problem 18. Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

- (a) Prove that A is invertible if and only if $a_0 \neq 0$.
- (b) Prove that if A is invertible, then

$$A^{-1} = (-1/a_0) \left[(-1)^n A^{n-1} + a_{n-1} A^{n-2} + \dots + a_1 I_n \right].$$

(c) Use (b) to compute A^{-1} for

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}.$$

Problem 19. Let A denote $K \times k$ matrix

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_{k-2} \\ 0 & 0 & \cdots & 1 & -a_{k-1} \end{pmatrix},$$

where $a_0, a_1, \ldots, a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of A is

$$(-1)^k (a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k).$$

Problem 20. Let T be a linear operator on a vector space V, and suppose that V is a T-cyclic subspace of itself. Prove that if U is a linear operator on V, then UT = TU if and only if U = g(T) for soem polynomial g(t). Hint: Suppose that V is generated by v. Choose g(t) according to **Problem 13** so that g(T)(v) = U(v).

Problem 21. Let T be a linear operator on a two-dimensional vector space V. Prove that either V is a T-cyclic subspace of itself or T = cI for some scalar c.

Problem 22. Let T be a linear operator on a two-dimensional vector space V and suppose that $T \neq cI$ for any scalar c. Show that if U is any linear operator on V such that UT = TU, then U = g(T) for some polynomial g(t).

Problem 23. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that v_1, v_2, \ldots, v_k are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_1 + v_2 + \cdots + v_k$ is in W, then $v_i \in W$ for all i.

Problem 24. Prove that the restriction of a diagonalizable linear operator T to any nontrivial T-invariant subspace is also diagonalizable.

Problem 33. Let T be alinear operator on a vector space V, and let W_1 , W_2 , ..., W_k be T-invariant subspaces of V. Prove that $W_1 + W_2 + \cdots + W_k$ is also a T-invariant subspace of V.

Problem 34. Give a direct proof of **Theorem 5.25** for the case k=2. (This result is used in the proof of **Theorem 5.24**.)

Problem 35. Prove Theorem 5.25.

 ${\it Proof.}$

Problem 36. Let T be a linear operator on a finite-dimensional vector space V. Prove that T is diagonalizable if and only if V is the direct sum of one-dimensional T-invariant subspaces.

Problem 37. Let T be alinear operator on a finite-dimensional vector space V, and let W_1, W_2, \ldots, W_k be T-invariant subspaces of V such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Prove that

$$\det(\mathsf{T}) = \det\left(\mathsf{T}_{\mathsf{W}_1}\right) \det\left(\mathsf{T}_{\mathsf{W}_2}\right) \cdots \det\left(\mathsf{T}_{\mathsf{W}_k}\right).$$

Problem 38. Let T be alinear operator on a finite-dimensional vector space V, and let W_1, W_2, \ldots, W_k be T-invariant subspaces of V such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Prove that T is diagonalizable if and only if T_{W_i} is diagonalizable for all i.

Problem 39. Let \mathcal{C} be a collection of diagonalizable linear operatos on a finite-dimensional vector space V. Prove that there is an ordered basis β such that $[T]_{\beta}$ is a diagonal matrix for all $T \in \mathcal{C}$ if and only if the operatos of \mathcal{C} commute under composition. (This is an extension of **Problem 25**.) *Hints*: The result is trivial if each operator has only one eigenvalue. Otherwise, establish the general result by mathematical induction on $\dim(V)$, using the fact that V is the direct sum of the eigenspaces of some operator in \mathcal{C} that has more than one eigenvalue.

Problem 40. Let B_1, B_2, \ldots, B_k be square matrices with entries in the smae field, and let $A = B_1 \oplus B_2 \oplus \cdots \oplus B_k$. Prove that the characteristic polynomial of A is the product of the characteristic polynomials of the B_i 's.

Problem 41. Let

$$A = \begin{pmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & & \vdots \\ n^2-n+1 & n^2-n+2 & \cdots & n^2 \end{pmatrix}.$$

Find the characteristic polynomial of A.

Hint: First prove that A has rank 2 and span($\{(1,\ 1,\ \dots,\ 1),\ (1,\ 2,\ \dots,\ n)\}$) is L_A -invariant.

Problem 42. Let $A \in M_{n \times n}(R)$ be the matrix defined by $A_{ij} = 1$ for all i and j. Find the characteristic polynomial of A.