一、实验目的

- 1. 熟悉 pluto 的使用方法。在发送端产生信号,并采用多种调制方法对发送信号进行调制处理。
 - 2. 接收机进行信号的接收,并对所获信号进行调制方式的自动识别。

二、实验原理

本实验实现的调制方式识别有单音信号、FM 调制、BPSK 调制、QPSK 调制、2FSK 调制、4FSK 调制,通过信号调制后频谱的变化来判断调制方式。单音信号只有一个频率即频谱只有一个尖峰;由 2FSK 调制和 4FSK 调制原理可知,2FSK 调制信号对应 01 序列有两个不同的频率,调制后有频谱会出现两个尖峰,而 4FSK 信号调制后出现 4 个尖峰。FM 调制、BPSK 调制、QPSK 信号调制后信号频谱均会有一定带宽,因此判断 FM、BPSK、QPSK 调制方式需要有进一步的处理如下。

1. FM 调制方式识别方法

FM 线性调频后信号可以表示为

$$x_1(t) = A \cdot e^{j\pi kt^2 + 2j\pi f_c t + \varphi_0}$$
(2.1)

其中k为调频率,k = B/T,(B为带宽,T为时宽),将x(t)平方后可以得到新的信号

$$x_2(t) = A^2 \cdot e^{2j\pi kt^2 + 4j\pi f_c t + 2\phi_0}$$
 (2.2)

可以看到,经过平方后信号由原信号 $x_1(t)$ 调频率k、中心频率 f_c 变化为 $x_2(t)$ 的2k调频率、 $2f_c$ 中心频率,所以信号频谱会发生搬移并且带宽变大。

2. BPSQ 调制方式识别

BPSQ 调制原理为,对于一段 01 序列,信号遇到 1 时会产生大小为 pi 的相位变化。原信号为

$$x_1(t) = A \cdot e^{2j\pi f_c t + \varphi_0} \tag{2.3}$$

若接收到的码元为 0 信号不发生变化,若码元为 1,则原信号相位加π变成

$$x_2(t) = A \cdot e^{2j\pi f_c t + \pi + \varphi_0}$$
 (2.4)

此时产生的信号频谱有一定带宽 f_w ,旁瓣带宽较大。若将 BPSK 调制后的信号平方,码元为 0 所对应的信号:

$$y_1(t) = A^2 \cdot e^{4j\pi f_c t + 2\varphi_0} \tag{2.5}$$

码元为1对应的信号为:

$$y_2(t) = A^2 \cdot e^{4j\pi f_c t + 2\pi + 2\varphi_0} \tag{2.6}$$

将该信号欧拉变换后可以得到,信号 $y_1(t)$ 与 $y_2(t)$ 相位相差 2π ,所对应的值不变,即 $y_2(t)$ 与 $y_1(t)$ 可认为是相同信号,因此,BPSK 调制后的信号平方,信号由原来两个信号 $y_1(t)$, $y_2(t)$ 的叠加,变成可视为同一信号的 $y_1(t)$ 或者 $y_2(t)$ 。带宽由平方前的信号 f_w 转为一个尖峰,带宽变小。

3. QPSK 调制方式识别:

根据 QPSK 调制原理,两列 01 码元序列分两路输入,每一路一个码元相加后形成 2bit 的码元组,对于接收到的码元组 00,01,10,11 分别对应相位为 $0,\frac{\pi}{2},\pi,\frac{3\pi}{2}$,中心频率为 f_c 的 信号 $y_1(t)$,此时带宽为 f_w 。将 QPSK 调制后的信号平方之后可以得到中心频率为 $2f_c$,相位为 $0,\pi,2\pi,3\pi$ 的信号 $y_2(t)$,此时的信号运用欧拉公式展开,可以认为是相位相差 π 的两个信号结合,即 BPSK 调制后的信号,旁瓣带宽较大。再将 $y_2(t)$ 平方即 BPSK 信号平方,原理同上述 BPSK 信号调制识别,最终信号 QPSK 调制后的信号 $y_1(t)$ 经过四次方后信号频谱变为一个

尖峰,中心频率变成4倍。

综上所述,区别 FM、BPSK、QPSK 信号调制方式, FM 调制后的信号平方后带宽变宽, BPSQ 调制后信号的频谱有一定带宽, 旁瓣带宽较大, 信号平方后频谱的带宽变窄只有一个尖峰; QPSK 调制的信号平方后有一定带宽, 旁瓣较大, 四次方后变成一个尖峰。

三、实现过程

本项目通过平方等一系列操作观察信号频谱来识别信号,目前可实现单音、线性调频、2FSK、4FSK、BPSK、QPSK等六种信号。并通过 ADALM-PLUTO 作为发射机和接收机实现信号的收发。

本项目的架构分为用于收发的主函数 main.m,集成信号生成器函数 Signal_generation.m,其中引用了生成单音信号的函数 Single_Signal.m、生成单音信号的函数 Single_Signal.m、生成单音信号的函数 Single_Signal.m、生成线性调频信号的函数 LFM_Signal.m、生成 2FSK 信号的函数 FSK2_Signal.m、生成 4FSK 信号的函数 FSK4_Signal.m、生成 BPSK 信号的函数 BPSK_Signal.m、生成 QPSK 信号的函数 Single_Signal.m,以及信号识别函数 SignalRecognition.m,其中引用了计算带宽的函数 calc_B.m 和峰值检测函数 FindPeakNum.m。

单音信号我们通过将信号进行平方后,对平方前后信号的带宽进行比较,若带宽的变化不大,即在我们设置的动态范围之内,可以认为该信号为单音信号。

LFM 信号我们通过将信号进行平方后,对平方前后信号的带宽进行比较,若带宽的变宽,即大于我们设置的动态范围,可以认为该信号为 LFM 信号。但是此方法误差较大,容易与其他信号混淆,因此本项目还结合了频谱的阈值,即在 LFM 信号带宽范围内所有频率的峰值都大于阈值,以及 DFT 算法,即将原信号与延时信号共轭卷积后只剩下一个单音信号,即可认为该信号为 LFM 信号。

2FSK 信号与 4FSK 信号我们都是通过检测信号发峰值来进行检测的,当检测出来有两个峰值时,我们认为该信号为 2FSK 信号,当检测出来有四个峰值时,我们认为该信号为 4FSK 信号。

BPSK 信号和 QPSK 信号我们通过将信号进行平方后,对平方前后信号的带宽进行比较,若带宽的变窄,即大于我们设置的动态范围,可以认为该信号为 BPSK 信号。但是该检测方法易与 QPSK 信号混淆,因此我们还对信号进行四次方处理,QPSK 信号在平方后变为一个单音信号,再次平方后信号频谱带宽几乎没什么变化,而 QPSK 信号平方后变为 BPSK 信号,再次平方后变为单音信号,四次方后信号频率带宽还是会变窄。通过比较原信号、平方后信号,四次方后信号的频谱带宽的变化来识别,若平方后带宽变窄,但是四次方后与平方后带宽变化不大,则该信号为 BPSK 信号,若平方后带宽变窄,且四次方后与平方后带宽依旧变窄,则该信号为 BPSK 信号。

四、结论成果

我们生成了上述的六种信号了,通过 ADALM-PLUTO 进行数据传输和接受,并将接收到的数据进行了识别,最终得到的六种信号的结果如下图所示:

图 4.1 单音信号接受频谱

图 4.3 LFM 信号接受频谱

图 4.5 2FSK 信号接受频谱

单音信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

单音信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

单音信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

单音信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

单音信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

单音信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

单音信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

图 4.2 单音信号识别结果

FM信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

 $\hbox{\it \#\# Waveform transmission has started successfully and will repeat indefinitely}.$ ## Call the release method to stop the transmission.

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

FM信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

FM信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

FM信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

FM信号

图 4.4 单音信号识别结果

2FSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

2FSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

2FSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

2FSK信号 ## Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission. ## Waveform transmission has started successfully and will repeat indefinitely.

2FSK信号

Call the release method to stop the transmission.

Waveform transmission has started successfully and will repeat indefinitely.

2FSK信号

Call the release method to stop the transmission.

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

图 4.6 2FSK 信号识别结果

图 4.7 4FSK 信号接受频谱

图 4.9 BPSK 信号接受频谱

图 4.11 QPSK 信号接受频谱

4FSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

4FSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

函数 findpeaks>findLocalMaxima 末尾。

4FSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

4FSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

4FSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

4FSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission. 4FSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

图 4.8 4FSK 信号识别结果

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission. BPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

BPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

BPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission. BPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

BPSK信号 ## Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission. BPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

BPSK信号

Waveform transmission has started successfully and will repeat indefinitely.

图 4.10 BPSK 信号识别结果

OPSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission. QPSK(前号 ## Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission. QPSK(育号 ## Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission. QPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

QPSK信号

Waveform transmission has started successfully and will repeat indefinitely.

Call the release method to stop the transmission.

QPSK信号

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission

Waveform transmission has started successfully and will repeat indefinitely. ## Call the release method to stop the transmission.

QPSK信号 ## Waveform transmission has started successfully and will repeat indefinitely.

图 4.12 QPSK 信号识别结果