A particle P of mass 2kg is moving on a smooth slope and is being acted on by a force of 4N that acts parallel to the slope, as shown.

The slope is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$. Work out the acceleration of the particle.

$$\tan \alpha = \frac{3}{4}$$

$$\alpha = \tan^{-1}(\frac{3}{4})$$
R

$$\sin \alpha = \frac{8}{5} \cos \alpha = \frac{4}{5}$$

$$F = ma = 2a$$

$$2g \sin \alpha - 4 = 2a$$

$$2g \times \frac{3}{5} - 4 = a$$

$$a = 3.88 \text{ m}$$

Hint: Don't find α explicitly. We can find $\cos \alpha$ and $\sin \alpha$ by forming a suitable triangle such that $\tan \alpha$ would be $\frac{3}{4}$:

A particle of mass m is pushed up a smooth slope, inclined at 30° by a force of magnitude 5g N acting at angle of 60° to the slope, causing the particle to accelerate up the slope at 0.5 ms^{-2} . Show that the mass of the particle is $\left(\frac{5g}{1+g}\right)$ kg

$$F = ma$$
 $\frac{7}{5gcos60 - mgsin30} = 0.5m$
 $\frac{2.5g}{7} - 0.5mg = 0.5m$
 $\frac{5g}{7} - mg = m$
 $\frac{5g}{7} = m + mg$
 $\frac{5g}{7} = m(1+g)$
 $\frac{5g}{7} = m = \frac{5g}{7}$

Exercise 5B

- 1 A particle of mass 3 kg slides down a smooth slope that is inclined at 20° to the horizontal.
 - a Draw a force diagram to represent all the forces acting on the particle.
 - b Work out the normal reaction between the particle and the plane.
 - c Find the acceleration of the particle.
- 2 A force of 50 N is pulling a particle of mass 5 kg up a smooth plane that is inclined at 30° to the horizontal. Given that the force acts parallel to the plane,
 - a draw a force diagram to represent all the forces acting on the particle
 - b work out the normal reaction between the particle and the plane
 - c find the acceleration of the particle.
- 3 A particle of mass 0.5 kg is held at rest on a smooth slope that is inclined at an angle α to the horizontal. The particle is released. Given that $\tan \alpha = \frac{3}{4}$, calculate:
 - a the normal reaction between the particle and the plane
 - b the acceleration of the particle.
- 4 A force of 30 N is pulling a particle of mass 6 kg up a rough slope that is inclined at 15° to the horizontal. The force acts in the direction of motion of the particle and the particle experiences a constant resistance due to friction.
 - a Draw a force diagram to represent all the forces acting on the particle. (4 marks)

Given that the particle is moving with constant speed,

b calculate the magnitude of the resistance due to friction.

(5 marks)

- (E) 5 A particle of mass m kg is sliding down a smooth slope that is angled at 30° to the horizontal. The normal reaction between the plane and the particle is 5 N.
 - a Calculate the mass m of the particle. (3 marks)
 - b Calculate the acceleration of the particle. (3 marks)
- E/P 6 A force of 30 N acts horizontally on a particle of mass 5 kg that rests on a smooth slope that is inclined at 30° to the horizontal as shown in the diagram.
 Find the acceleration of the particle.

E/P 7 A particle of mass 3 kg is moving on a rough slope that is inclined at 40° to the horizontal. A force of 6 N acts vertically upon the particle. Given that the particle is moving at a constant velocity, calculate the value of F, the constant resistance due to friction.

E/P 8 A particle of mass mkg is pulled up a rough slope by a force of 26 N that acts at an angle of 45° to the slope. The particle experiences a constant frictional force of magnitude 12 N.

Given that $\tan \alpha = \frac{1}{\sqrt{3}}$ and that the acceleration of the particle is 1 m s^{-2} , show that m = 1.08 kg (3 s.f.).

