Regressions- och tidsserieanalys Föreläsning 2 - Enkel linjär regression

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Enkel linjär regression
- Minsta-kvadratmetoden för att skatta regression.
- Korrelation
- Variansanalys
- Inflytelserika observationer
- Extrapolation

Skattad regressionslinje hälsobudget $(x) \rightarrow$ livslängd (y)

$$livs längd = 76.035 + 1.03757 \cdot h\"{a}ls obudget$$

$$y = \underbrace{76.035}_{a} + \underbrace{1.038}_{b} \cdot x$$

- Förväntade livslängden är ca 76 år om hälsobudget = 0.
- Livslängden ökar med 1.038 år om hälsobudgeten ökar med 1 (tusen US dollar per capita).

Cykeluthyrningar

Regressionsekvation antal uthyrningar $= 1214.64 + 6640.71 \cdot \text{temperatur}$

Mattias Villani ST123G

Interceptet a - värdet på y när x=0

Mattias Villani

Lutningen b - hur ändras y när x ändras en enhet?

Mattias Villani

Lutningen b - hur ändras y när x ändras en enhet?

Mattias Villani

Skattning av regressionslinjen - minsta kvadrat

■ Prediktion för den *i*:te observationen i stickprovet:

$$\hat{y}_i = a + b \cdot x_i$$

■ Prediktionsfel (residualer)

$$e_i = y_i - \hat{y}_i$$

■ Välj a och b som minimerar residualkvadratsumman

$$Q = \sum_{i=1}^{n} e_i^2$$

■ Sum of Squared Errors (SSE).

- Kalkylark (Excel) kan beräkna residualer och kvadrater etc.
- Orange cell är residualkvadratsumman Q för a och b i blå cell.
- Notera att t ex $\hat{y}_1 = 77 + 1 \cdot 3.357 = 80.357$.
- Se länk på kurssida till kalkylarket.

	A	В	С	D	E	F	
1	country	spending (x)	lifespan (y)	yHat	e = y-yHat	e ²	
2	Australia	3.357	81.4	80.357	1.043	1.087849	
3	Austria	3.763	80.1	80.763	-0.663	0.439569	
4	Belgium	3.595	79.8	80.595	-0.795	0.632025	
5	Canada	3.895	80.7	80.895	-0.195	0.038025	
6	Czech	1.626	77	78.626	-1.626	2.643876	
7	Denmark	3.512	78.4	80.512	-2.112	4.460544	
8	Finland	2.84	79.5	79.84	-0.34	0.1156	
9	France	3.601	81	80.601	0.399	0.159201	
10	Germany	3.588	80	80.588	-0.588	0.345744	
11	Greece	2.727	79.5	79.727	-0.227	0.051529	
12	Hungary	1.388	73.3	78.388	-5.088	25.887744	
13	Iceland	3.319	81.2	80.319	0.881	0.776161	
14	Ireland	3.424	79.7	80.424	-0.724	0.524176	
15	Italy	2.686	81.4	79.686	1.714	2.937796	
16	Japan	2.581	82.6	79.581	3.019	9.114361	
17	Korea	1.688	79.4	78.688	0.712	0.506944	
18	Luxembourg	4.162	79.4	81.162	-1.762	3.104644	
19	Mexico	0.823	75	77.823	-2.823	7.969329	
20	Netherlands	3.837	80.2	80.837	-0.637	0.405769	
21	N.Zealand	2.454	80.2	79.454	0.746	0.556516	
22	Norway	4.763	80.6	81.763	-1.163	1.352569	
23	Poland	1.035	75.4	78.035	-2.635	6.943225	
24	Portugal	2.15	79.1	79.15	-0.05	0.0025	
25	Slovakia	1.555	74.3	78.555	-4.255	18.105025	
26	Spain	2.671	81	79.671	1.329	1.766241	
27	Sweden	3.323	81	80.323	0.677	0.458329	
28	Switzerland	4.417	81.9	81.417	0.483	0.233289	
29	Turkey	0.618	73.4	77.618	-4.218	17.791524	
30	UK	2.992	79.5	79.992	-0.492	0.242064	
31	USA	7.29	78.1	84.29	-6.19	38.3161	
32	Summa				-25.58	146.968268	
13							
34	Regressionscor	efficienter					
35	a	77					
36	h	1					

Skattning av regressionslinjen - minsta kvadrat

Residualkvadratsumman beror på a och b:

$$Q(a,b) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - a - b \cdot x_i)^2$$

Q(a, b) minimeras när partialderivatorna är noll:

$$\frac{\partial Q}{\partial a} = -2\sum_{i=1}^{n} (y_i - a - b \cdot x_i) = 0$$
$$\frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - b \cdot x_i) x_i = 0$$

- Derivatan av en summa: $\frac{d}{dx}(f(x) + g(x)) = \frac{df(x)}{dx} + \frac{dg(x)}{dx}$
- Potensregeln för derivator: $\frac{dx^p}{dx} = px^{p-1}$, t ex $\frac{dx^2}{dx} = 2x$
- Kedjeregeln för derivator (specialfall): $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$, där $f'(x) = \frac{d}{dx}f(x)$ är ett alternativt sätt att uttrycka derivatan.

Minsta kvadrat - alternativa formler

Minstakvadratskattningar

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Alternativ formel för b för handberäkning:

$$b = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

Bevis

$$\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}=\sum_{i=1}^{n}(x_{i}^{2}+\bar{x}^{2}-2\bar{x}x_{i})=\sum_{i=1}^{n}x_{i}^{2}+n\bar{x}^{2}-2\bar{x}\sum_{i=1}^{n}x_{i}=\sum_{i=1}^{n}x_{i}^{2}+n\bar{x}^{2}-2\bar{x}n\bar{x}=\sum_{i=1}^{n}x_{i}^{2}-n\bar{x}^{2}$$

Hälsobudgetdata

$$b = \frac{7151.8229 - 30 \cdot 2.989333333 \cdot 79.13666667}{320.944068 - 30 \cdot 2.989333333^2} \approx 1.03757$$

$$a = 79.13666667 - 1.03757 \cdot 2.989333333 \approx 76.03502$$

2.00,0,0

Minsta kvadrat i kalkylark

		В	С	D	E	F	G	Н
cour	try spe	nding (x)	lifespan (y)	yHat	e = y-yHat	e²	X ²	xy
Australia		3.357	81.4	79.5181466	1.881853403	3.541372231	11.269449	273.2598
Austria		3.763	80.1	79.93940005	0.1605999533	0.02579234501	14.160169	301.4163
Belgium		3.595	79.8	79.76508827	0.03491172565	0.001218828588	12.924025	286.881
Canada		3.895	80.7	80.0763593	0.6236407037	0.3889277273	15.171025	314.3265
Czech		1.626	77	77.7221128	-0.7221128002	0.5214468962	2.643876	125.202
Denmarl		3.512	78.4	79.67896996	-1.278969958	1.635764154	12.334144	275.3408
Finland		2.84	79.5	78.98172287	0.5182771309	0.2686111845	8.0656	225.78
France		3.601	81	79.77131369	1.228686305	1.509670037	12.967201	291.681
German	,	3.588	80	79.75782528	0.2421747162	0.05864859315	12.873744	287.04
1 Greece		2.727	79.5	78.86447745	0.6355225492	0.4038889106	7.436529	216.7965
2 Hungary		1.388	73.3	77.47517112	-4.175171123	17.4320539	1.926544	101.7404
3 Iceland		3.319	81.2	79.47871893	1.721281066	2.962808508	11.015761	269.5028
4 Ireland		3.424	79.7	79.58766379	0.1123362082	0.01261942367	11.723776	272.8928
5 Italy		2.686	81.4	78.82193708	2.578062922	6.646408431	7.214596	218.6404
6 Japan		2.581	82.6	78.71299222	3.88700778	15.10882948	6.661561	213.1906
7 Korea		1.688	79.4	77.78644214	1.613557855	2.603568952	2.849344	134.0272
8 Luxemb	urg	4.162	79.4	80.35339051	-0.9533905059	0.9089534567	17.322244	330.4628
9 Mexico	-	0.823	75	76.88894403	-1.888944031	3.568109554	0.677329	61.725
0 Netherla	nds	3.837	80.2	80.01618023	0.1838197679	0.03378970708	14.722569	307.7274
1 N.Zealar	d	2.454	80.2	78.58122082	1.618779179	2.620446031	6.022116	196.8108
2 Norway		4.763	80.6	80.97697012	-0.3769701199	0.1421064713	22.686169	383.8978
3 Poland		1.035	75.4	77.10890889	-1.708908887	2.920369584	1.071225	78.039
4 Portugal		2.15	79.1	78.26579952	0.8342004815	0.6958904433	4.6225	170.065
5 Slovakia		1.555	74.3	77.64844532	-3.348445325	11.21208609	2.418025	115,5365
6 Spain		2.671	81	78.80637353	2.193626473	4.811997104	7.134241	216.351
7 Sweden		3.323	81	79.48286921	1.517130786	2.301685821	11.042329	269.163
8 Switzerla	nd	4.417	81.9	80.61797087	1.282029125	1.643598679	19.509889	361.7523
9 Turkey		0.618	73.4	76.67624217	-3.276242166	10.73376273	0.381924	45,3612
0 UK		2.992	79.5	79.13943352	0.3605664798	0.1300081864	8.952064	237.864
1 USA		7.29	78.1	83.59890969	-5.498909695	30.23800783	53.1441	569.349
2 Summa					0	125.0824413	320.944068	7151.8229
3 Medelvä	rde 2.9	989333333	79.13666667					· LOZIOLE
4								
5 Minsta-k	Minsta-kvadratskattningar							
6 a		J						
6 a		76	vadratskattningar 76.03502386 1.037570073	76.03502386	76.03502386	76.03502386	76.03502386	76.03502386

Mattias Villani

gif-time!

På webbsidan ligger en animerad gif som visar hur olika regressionlinjer ger olika SSE. gif

Regression i R

```
library(SUdatasets) # läser in datamaterialen
library(regkurs) # läser in funktionen regsummary
fit = lm(lifespan \sim spending, data = healthbudget) # skattar regression
regsummary(fit) # skriver ut sammanfattning av regressionsresultat
              Analysis of variance - ANOVA
                   df SS MS F Pr(>F)
              Regr 1 56.907 56.9072 12.739 0.0013164
              Frror 28 125,082 4,4672
              Total 29 181,990
              Measures of model fit
              Root MSE R2 R2-adj
               2.11358 0.31269 0.28815
              Parameter estimates
                        Estimate Std. Error t value Pr(>|t|)
              (Intercept) 76.0350 0.95084 79.9663 1.3416e-34
              spending 1.0376 0.29071 3.5691 1.3164e-03
```

Residualvarians

Residualvariansen - hur bra regressionslinjen passar data:

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

Kom ihåg: stickprovsvariansen delar med n-1 eftersom vi måste beräkna \bar{y} först:

$$s_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}$$

- Residualvariansen delar med n-2 eftersom vi måste beräkna både a och b först. Väntevärdesriktig. Se F3.
- Residualstandardavvikelsen (residualspridningen):

$$s_e = \sqrt{s_e^2}$$

Hälsobudgetdata

$$s_e^2 = rac{125.0824413}{30-2} pprox 4.467 \qquad \qquad s_e = \sqrt{4.467} pprox 2.11 \, {
m ar}$$

Mattias Villani ST123

Regression i R

```
Analysis of variance - ANOVA
     df SS MS F Pr(>F)
Regr 1 56.907 56.9072 12.739 0.0013164
Error 28 125.082 4.4672
Total 29 181,990
Measures of model fit
Root MSE R2 R2-adi
2.11358 0.31269 0.28815
Parameter estimates
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 76.0350 0.95084 79.9663 1.3416e-34
spending 1.0376 0.29071 3.5691 1.3164e-03
```

Korrelation

Korrelationskoefficienten mäter graden av linjärt samband

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$$

Alternativ formel för handräkning

$$r = \frac{n\sum x_i y_i - (\sum x_i) (\sum y_i)}{\sqrt{\left(n\sum x_i^2 - (\sum x_i)^2\right) \left(n\sum y_i^2 - (\sum y_i)^2\right)}}$$

Korrelationskoefficienten är ett normerat mått:

$$-1 \le r \le 1$$

Korrelation

Mattias Villani

Korrelation hälsobudget vs livslängd

Korrelation mäter linjärt samband

Regression är korrelation, inte kausalitet

- Regression handlar om korrelation. Samvariation.
- Korrelation kan användas för prediktion.
- **Kausala samband** (orsak \rightarrow verkan):
 - ▶ Studietimmar → Tentaresultat.
 - $Sm\ddot{a}rtstillande \rightarrow Sm\ddot{a}rtlindring.$
 - Marknadsföring \rightarrow Försäljning.

Eller kan det också vara tvärtom?

David Hume Filosof

Donald Rubin Statistiker

Judea Pearl Datavetare

Korrelation innebär inte kausalitet $\hat{\rho} = 0.952$

People who drowned after falling out of a fishing boat correlates with

Marriage rate in Kentucky

tylervigen.com

Korrelation innebär inte kausalitet $\hat{\rho} = 0.666$

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

tylervigen.com

Variansanalys (Analysis of Variance - ANOVA)

ANOVA-uppdelningen:

$$\underbrace{\sum_{i=1}^{n} (y_i - \bar{y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{\text{SSE}} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{\text{SSR}}$$

Total variation i y = Oförklarad variation i y + Förklarad variation

$$SST = SSE + SSR$$

- Hälsobudgetdata:
 - \triangleright SSE = 125.082 (Excelark ovan)
 - ► SST = 181.990 (kan beräknas med liknande Excelark)
 - ightharpoonup SSR = SST SSR = 56.908.

ANOVA i R

```
Analysis of variance - ANOVA
     df SS MS F Pr(>F)
Regr 1 56.907 56.9072 12.739 0.0013164
Error 28 125.082 4.4672
Total 29 181.990
Measures of model fit
Root MSE R2 R2-adi
2.11358 0.31269 0.28815
Parameter estimates
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 76.0350 0.95084 79.9663 1.3416e-34
spending 1.0376 0.29071 3.5691 1.3164e-03
```

Variansanalys (ANOVA)

Mattias Villani

Andel förklarad variation - R²

ANOVA:

$$SST = SSE + SSR$$

Andel förklarad variation (determinationskoefficienten)

$$R^2 = \frac{\text{SSR}}{\text{SST}}$$

För regression med en förklarande variabel gäller att

$$R^2 = r^2$$
 (r är korrelationskoefficienten)

Hälsobudgetdata:

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{56.908}{181.990} \approx 0.313.$$

R^2 i R

```
Analysis of variance - ANOVA
     df SS MS F Pr(>F)
Regr 1 56.907 56.9072 12.739 0.0013164
Error 28 125.082 4.4672
Total 29 181,990
Measures of model fit
Root MSE R2 R2-adj
2.11358 | 0.31269 | 0.28815
Parameter estimates
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 76.0350 0.95084 79.9663 1.3416e-34
spending 1.0376 0.29071 3.5691 1.3164e-03
```

Samma regression på väldigt olika data 🐨

- Samma linjära regression trots väldigt olika samband.
- Se upp för:
 - icke-linjära samband
 - outliers (både i x och y)
 - **observationer med stor påverkan** på anpassningen.

Inflytelserika observationer

Med USA

 $livs l\ddot{a}ngd = 76.035 + 1.038 \cdot h\ddot{a}ls obudget$

Utan USA

 $\mathsf{livsl"angd} = \mathsf{74.164} + 1.763 \cdot \mathsf{h"alsobudget}$

Mattias Villani ST123G

Extrapolering

Extrapolering

- Rymdfärjan Challenger exploderade strax efter start.
- Gummi-packningar (O-rings) hade skadats av kylan.

