발표자: 박성은

발표일자: 2023년 7월 11일

목차

- 1. 워드 임베딩
- 2. 원-핫 인코딩
 - 케라스(Keras)
- 3. 카운트 기반 단어 표현
 - 1. Bag of Words(BoW)
 - 2. Document-Term Matrix(DTM)
 - 3. TF-IDF(Term Frequency-Inverse Document Frequency)
- 4. 예측 기반 단어 표현
 - 1. Word2Vec(워드투벡터)
 - 2. FastText(패스트텍스트)
- 5. 카운트와 예측 기반 단어 표현
 - GLOVE

1. Word Embedding?

- : 각 단어를 인공 신경망 학습을 통해 벡터화하는 방법으로 현재 가장 많이 사용되고 있는 방법
- : 문자(텍스트)를 컴퓨터가 이해 및 효율적으로 처리할 수 있도록 숫자로 변환하기 위함, 단어 표현 방법에 따라서 자연어 처리 성능이 변함
 - 단어를 벡터로 표현하는 방법
 - 단어를 밀집 표현으로 변환하는 것
 - ① 희소 표현(Sparse Representation)
 - :벡터 또는 행렬(matrix)의 값이 대부분이 0으로 표현되는 방법
 - ex) 원-핫 벡터(One-Hot vector)는 희소 벡터(sparse vector), DTM은 희소 행렬
 - 문제점: 메모리 낭비
 - 원-핫 벡터의 경우, 단어집합이 클수록 고차원 벡터가 됨
 - DTM에서 등장하지 않는 단어가 많은 경우, 0이 행렬의 많은 부분을 차지

② 밀집 표현(Dense Representation)

- 사용자가 모든 단어에 대한 벡터 표현의 차원을 설정
- 벡터의 값은 실수값
- 단어를 밀집 벡터(dense vector)의 형태로 표현하는 방법
 - → 단어를 실수값의 벡터로 변환하는데 벡터의 차원을 사용자가 설정하는 것
- 워드 임베딩을 통해 표현된 밀집 벡터를 임베딩 벡터(embedding vector)라고도 함
- 방법: LSA, Word2Vec, FastText, Glove

2. 원-핫 인코딩(One-Hot Encoding)

- 텍스트 전처리 방법 중 하나
- 단어 집합의 크기를 벡터의 차원으로 하고, 표현하고 싶은 단어의 인덱스에 1의 값을 부여하고, 다른 인덱스에는 0을 부여하는 단어의 벡터 표현 방식
 - 이렇게 생성된 벡터를 원-핫 벡터(One-Hot vector)라 칭함

단어 집합(vocabulary)

: 서로 다른 단어들의 집합, 텍스트의 모든 단어 중복 없이 모은 것, 단어의 변형 형태도 다른 단어로 간주 ex) book과 books

과정

- 1. 단어 집합 생성
 - 단어의 개수로 단어집합의 크기 결정
- 2. 정수 인코딩

:단어 집합의 각 단어에 고유한 정수를 부여하는 것

- 단어 집합의 단어들마다 인덱스를 부여함
 - ex) 5000개의 단어 존재 \rightarrow 단어 집합 단어들에 1부터 5000번까지 인덱스 부여 \rightarrow 150번째의 단어인 book은 150을 부여받음
- 3. 원-핫 인코딩
 - 표현하고 싶은 단어의 고유한 정수를 인덱스로 간주하고 해당 위치에 1을 부여하고. 다른 단어의 인덱스의 위치에는 0을 부여

예제) 문장: 나는 자연어 처리를 배운다

해당 문장에 대해 ① 문장 토큰화 수행(단어 집합 생성); ② 토큰 정수 인코딩; ③ 인덱스별 0과 1 부여;하여 원-핫 벡터를 생성해본다.

1. 문장 토큰화 수행

• Okt 형태소 분석기를 이용

```
['나', '는', '자연어', '처리', '를', '배운다']
```

2. 각 토큰에 정수 인코딩

```
단어 집합: {'나': 0, '는': 1, '자연어': 2, '처리': 3, '를': 4, '배운다': 5}
```

3. 표현하고 싶은 단어의 고유 정수 위치 인덱스에 1을 부여하고 다른 단어의 인덱스는 0을 부여함'자연어'는 인코딩한 정수가 2이므로 원-핫 벡터는 인덱스 2의 값이 1이며, 나머지 값은 0인 벡터임 → 자연어 = [0, 0, 1, 0, 0, 0]

+) 원-핫 인코딩 - 케라스(Keras)를 이용

- 원-핫 인코딩을 수행하는 방법 중 하나
- 케라스(Keras)가 지원하는 to_categorical()로 원-핫 인코딩 수행

예제) 문장: "나랑 점심 먹으러 갈래 점심 메뉴는 햄버거 갈래 갈래 햄버거 최고야"

- 1. 단어 집합 생성
 - 케라스 토크나이저를 이용

```
단어 집합 : {'갈래': 1, '점심': 2, '햄버거': 3, '나랑': 4, '먹으러': 5, '메뉴는': 6, '최고야': 7}
```

- 2. 정수 인코딩
- 단어 집합에 있는 단어들로만 구성된 텍스트(sub text)가 있다면, texts to sequences()를 통해서 정수 인코딩 가능

sub_text = "점심 먹으러 갈래 메뉴는 햄버거 최고야"

```
[2, 5, 1, 6, 3, 7]
```

- 3. 원-핫 인코딩
- 케라스가 지원하는 to categorical() 이용
- 정수 인코딩된 결과로부터 수행

```
[[0. 0. 1. 0. 0. 0. 0.] # 인덱스 2의 원-핫 벡터 [0. 0. 0. 0. 0. 0. 0.] # 인덱스 5의 원-핫 벡터 [0. 1. 0. 0. 0. 0. 0.] # 인덱스 1의 원-핫 벡터 [0. 0. 0. 0. 0. 1. 0.] # 인덱스 6의 원-핫 벡터
```

```
[0. 0. 0. 1. 0. 0. 0. 0.] # 인덱스 3의 원-핫 벡터 [0. 0. 0. 0. 0. 0. 0. 1.]] # 인덱스 7의 원-핫 벡터
```

원-핫 인코딩의 한계

- 단어의 개수 증가에 따라 벡터 차원 증가 → 벡터 저장을 위한 공간 필요
- 단어의 유사도 표현 불가 → 검색의 어려움 발생
- → 단어의 잠재 의미를 반영하여 다차원 공간에 벡터화 하는 기법 두가지: <mark>카운트 기반</mark> 벡터화 방법, <mark>예측 기반</mark> 벡터화 방법
 - 1. 카운트 기반의 벡터화 방법: LSA(잠재 의미 분석), HAL
 - 2. 예측 기반 벡터화 방법: NNLM, RNNLM, Word2Vec, FastText
 - 3. 카운트 기반과 예측 기반 두 가지 방법을 모두 사용하는 방법: GloVe

3. 카운트 기반의 단어 표현(Count based word Representation)

- 정보 검색과 텍스트 마이닝 분야에서 주로 사용되는 카운트 기반의 텍스트 표현 방법
 - DTM(Document Term Matrix)
 - TF-IDF(Term Frequency-Inverse Document Frequency)
- 문서의 핵심어 추출, 검색 엔진에서 검색 결과의 순위 결정, 문서들 간의 유사도를 구하는 등의 용도로 사용 가능

3-1. Bag of Words

: 단어들의 가방(직역)

- 단어들의 등장 순서는 전혀 고려하지 않고, 단어들의 출현 빈도(frequency)에만 집중하는 텍스트 데이터의 수치화 표현 방법
 - → 분류 문제나 여러 문서 간의 유사도를 구하는 문제에 주로 쓰임
- BoW 생성 과정
 - 1. 단어 집합 생성
 - 2. 각 단어에 고유한 정수 인덱스를 부여
 - 3. 각 인덱스의 위치에 단어 토큰의 등장 횟수를 기록한 벡터 생성

예제1) 문서1: 정부가 발표하는 물가상승률과 소비자가 느끼는 물가상승률은 다르다.

```
vocabulary : {'정부': 0, '가': 1, '발표': 2, '하는': 3, '물가상승률': 4, '과': 5, '소비자': 6, '느끼는': 7, '은': 8,
'다르다': 9}
```

입력된 문서에 대해서 단어 집합(vocaburary)을 만들고 각 단어에 정수 인덱스를 할당함

```
bag of words vector : [1, 2, 1, 1, 2, 1, 1, 1, 1, 1]
```

각 인덱스의 위치에 단어 토큰의 등장 횟수를 기록함

인덱스 4에 해당하는 물가상승률은 두 번 언급됨 → 인덱스 4에 해당하는 값이 2

• BoW는 여러 문서의 단어 집합을 합친 뒤에. 해당 단어 집합에 대한 각 문서의 BoW를 구하기도 함

예제3) 문서3: 정부가 발표하는 물가상승률과 소비자가 느끼는 물가상승률은 다르다. 소비자는 주로 소비하는 상품을 기준으로 물가상승률을 느낀다.

문서3 = 문서1+문서2

문서1: 정부가 발표하는 물가상승률과 소비자가 느끼는 물가상승률은 다르다.

문서2: 소비자는 주로 소비하는 상품을 기준으로 물가상승률을 느낀다.

```
vocabulary : {'정부': 0, '가': 1, '발표': 2, '하는': 3, '물가상승률': 4, '과': 5, '소비자': 6, '느끼는': 7, '은': 8,
'다르다': 9, '는': 10, '주로': 11, '소비': 12, '상품': 13, '을': 14, '기준': 15, '으로': 16, '느낀다': 17}
```

문서3의 단어 집합은 문서1과 문서2의 단어들을 모두 포함하고 있음

문서3에 대한 단어 집합을 기준으로 문서1. 문서2의 BoW를 생성

```
문서3 단어 집합에 대한 문서1 BoW : [1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
문서3 단어 집합에 대한 문서2 BoW : [0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1]
```

문서3 단어 집합에서 인덱스 4에 해당하는 "물가상승률"은 문서1에서는 2회 등장하며, 문서2에서는 1회 등장함

불용어를 제거한 BoW 만들기

- 불용어: 자연어 처리에서 별로 의미를 갖지 않는 단어들
- BoW를 만들때 불용어를 제거하여(전처리) 자연어 처리의 정확도를 높일 수 있음

: BoW: 텍스트 내의 중요 단어를 확인하려는 목적으로 문서에서 각 단어 빈도수 확인을 위해 사용 → 불용어 제거 필요

CountVectorizer: 영어 불용어 제거 기능 지원

- 영어의 BoW를 만들기 위해 사용하는 CountVectorizer는 지정한 불용어를 제외하고 BoW를 만들 수 있음
- (1) 사용자가 직접 정의한 불용어 사용

```
text = ["Family is not an important thing. It's everything."]
vect = CountVectorizer(stop_words=["the", "a", "an", "is", "not"])
bag of words vector : [[1 1 1 1 1]]
vocabulary : {'family': 1, 'important': 2, 'thing': 4, 'it': 3, 'everything': 0}
```

(2) CountVectorizer에서 제공하는 자체 불용어 사용

```
text = ["Family is not an important thing. It's everything."]
vect = CountVectorizer(stop_words="english") #영어 불용어 지원
bag of words vector : [[1 1 1]]
vocabulary : {'family': 0, 'important': 1, 'thing': 2}
```

3-2. DTM(Document-Term Matrix, 문서 단어 행렬)

- 서로 다른 문서들의 BoW를 하나의 행렬로 결합한 표현 방법 즉, BoW 표현을 다수의 문서에 대해서 행렬로 표현하고 부르는 용어
- 다수의 문서에서 등장하는 각 단어들의 빈도를 행렬로 표현한 것 \rightarrow 문서간 비교 가능
- 행과 열을 반대로 선택하면 TDM

예제) 4개의 문서에 대해 띄어쓰기 단위 토큰화를 수행한다 가정하고, 문서 단어 행렬로 표현

문서1: 먹고 싶은 사과

문서2: 먹고 싶은 바나나

문서3: 길고 노란 바나나 바나나

문서4: 저는 과일이 좋아요

각 문서에서 등장한 단어의 빈도를 행렬의 값으로 표기

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

문서 단어 행렬의 한계

- 많은 양의 저장 공간과 높은 계산 복잡도를 요구
 - : 희소 표현(Sparse representation): 대부분의 값이 0인 표현
- 단순 빈도 수 기반 접근
 - ex) 'the'의 빈도수가 높다고 문서가 유사항 문서라고 판단할 수 없음
- → DTM에 불용어와 중요한 단어에 대해서 가중치를 주는 아이디어를 적용한 TF-IDF

3-3. TF-IDF(Term Frequency-Inverse Document Frequency)

: 단어 빈도 역 문서 빈도(직역)

• 단어의 빈도와 <u>역 문서 빈도(</u>문서의 빈도에 특정 식을 취함)를 사용하여 DTM 내의 <mark>각 단어들마다 중요한 정도를 가중치로 주는</mark> 방법

- 기존의 DTM을 사용하는 것보다 많은 정보를 고려하여 문서를 비교할 수 있음 → 대부분 DTM보다 고성능
- 문서의 유사도를 구하는 작업, 검색 시스템에서 검색 결과의 중요도를 정하는 작업, 문서 내에서 특정 단어의 중요도를 구하는 작업 등에 사용
- 과정
 - 1. DTM 생성
 - 2. TF-IDF 가중치를 부여
- TF-IDF = TF x IDF
 - 문서: d, 단어: t, 문서의 총 개수: n

① TF

• tf(d,t): 특정 문서 d에서의 특정 단어 t의 등장 횟수

• DTM의 예제에서 각 단어들이 가진 값(해당 단어의 등장 빈도를 나타내는 값)들과 동일

② DF

• df(t): 특정 단어 t가 등장한 문서의 수

• 문서에서 특정 단어가 등장한 빈도 수와는 관련 없음

문서1 : 먹고 싶은 사과

문서2 : 먹고 싶은 바나나

문서3 : 길고 노란 바나나 바나나

문서4: 저는 과일이 좋아요

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서4	1	0	0	0	0	0	0	1	1

∴ df(바나나) = 2

: 문서2와 문서3에서 바나나가 등장, 문서3에 바나나가 두 번 등장했으나 무관함

③ IDF

• idf(d, t) : df(t)에 반비례하는 수

![image-20230711090941909](/Users/seongeun/Library/Application Support/typora-user-images/image-20230711090941909.png)

- 모든 문서에서 자주 등장하는 단어는 중요도가 낮다고 판단하며, 특정 문서에서만 자주 등장하는 단어는 중요도가 높다고 판단
- TF-IDF 값이 크면 중요도가 큼
 - the, a와 같은 불용어의 TF-IDF의 값은 다른 단어의 TF-IDF에 비해 상대적으로 낮음

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	1	0	1	1	0	0
문서2	0	0	0	1	1	0	1	0	0
문서3	0	1	1	0	2	0	0	0	0
문서4	1	0	0	0	0	0	0	1	1

- TF: DTM을 그대로 사용, 각 문서에서 각 단어의 TF
- IDF
 - 로그의 밑은 TF-IDF를 사용하는 사용자가 임의로 정할 수 있음(주로 밑이 e인 자연로그 사용)
 - 문서의 총 수: 4

• DF: 각 단어가 등장한 문서의 수

단어	IDF(역 문서 빈도)
과일이	In(4/(1+1)) = 0.693147
길고	In(4/(1+1)) = 0.693147
노란	In(4/(1+1)) = 0.693147
먹고	In(4/(2+1)) = 0.287682
바나나	In(4/(2+1)) = 0.287682
사과	In(4/(1+1)) = 0.693147
싶은	In(4/(2+1)) = 0.287682
저는	In(4/(1+1)) = 0.693147
좋아요	In(4/(1+1)) = 0.693147

- DF('먹고')= 2
 - 총 2개의 문서(문서1, 문서2)에 등장
- IDF는 여러 문서에서 등장한 단어의 가중치를 낮추는 역할
 - 문서 1개에만 등장하는 단어인 '사과'와 문서 2개에 등장하는 단어 '먹고'의 IDF 값 차이가 큼
- TF-IDF = TF x IDF

각 단어의 TF는 DTM에서의 각 단어의 값과 동일 \rightarrow DTM에서 단어 별로 위의 IDF값을 곱하여 TF-IDF 도출

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서1	0	0	0	0.287682	0	0.693147	0.287682	0	0

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서2	0	0	0	0.287682	0.287682	0	0.287682	0	0
문서3	0	0.693147	0.693147	0	0.575364	0	0	0	0
문서4	0.693147	0	0	0	0	0	0	0.693147	0.693147

- 문서2에서의 바나나의 TF-IDF 가중치와 문서3에서의 바나나의 TF-IDF 가중치가 다름
- 문서3에서 '바나나'의 중요도가 큰 것

원-핫 벡터와 임베딩 벡터의 차이

	원-핫 벡터	임베딩 벡터
차원	고차원(단어 집합의 크기)	저차원
다른 표현	희소 벡터의 일종	밀집 벡터의 일종
표현 방법	수동	훈련 데이터로부터 학습함
값의 타입	1과 0	실수

4-1. 워드투벡터(Word2Vec)

- 예측 기반 단어 표현
- 단어 벡터 간 유의미한 유사도 반영 가능
 - 한국 서울 + 도쿄 = 일본
 - → 각 단어 벡터가 단어 벡터 간 유사도를 반영한 값을 가지고 있으므로 단어의 의미로 연산됨
- 은닉층이 1개인 얕은 신경망(shallow neural network)
 - 일반적인 은닉층과는 달리 활성화 함수가 존재하지 않음
 - 룩업 테이블이라는 연산을 담당함
 - 투사층(projection layer)이라 칭하기도 함
- 분산표현방법을 위한 대표적인 학습 방법임
 - : 그 단어를 표현하고자 주변을 참고하여 단어를 표현하는 방법
 - 저차원에 단어의 의미를 여러 차원에다가 분산 하여 표현
 - 단어 벡터 간 유의미한 유사도 계산 가능
- Word2Vec의 학습 방식
 - ① CBOW(Continuous Bag of Words): 주변에 있는 단어들을 입력으로 중간에 있는 단어들을 예측하는 방법
 - ② Skip-Gram: 중간에 있는 단어들을 입력으로 주변 단어들을 예측하는 방법

① CBOW(Continuous Bag of Words)

- 주변에 있는 단어들을 입력으로 중간에 있는 단어들을 예측하는 방법
 - 중심 단어(center word): 예측해야하는 단어
 - 주변 단어(context word): 예측에 사용되는 단어
- 윈도우: 중심 단어를 예측하기 위해 볼 주변 단어의 범위

• 윈도우 크기가 n이면, 실제 중심 단어를 예측하기 위해 참고하려고 하는 주변 단어의 개수는 2n

예문: "The fat cat sat on the mat"

윈도우 크기가 2일 때, ['The', 'fat', 'cat', 'on', 'the', 'mat']으로부터 sat을 예측

→ 'sat': 중심단어

→ 입력: 'fat', 'cat', 'on', 'the'

슬라이딩 윈도우(sliding window)

: 윈도우 크기에 따라 윈도우를 움직여 주변 단어와 중심 단어의 선택을 변경해가며 학습을 위한 데이터 셋을 만드는 방법

Word2Vec에서 입력은 모두 원-핫 벡터가 되어야 하는데,

- 윈도우 크기에 따른 주변 단어의 변화
- 중심 단어와 주변 단어에 따른 원-핫 벡터 결과

전체 데이터 셋:

중심 단어	주변 단어
[1, 0, 0, 0, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 1, 0, 0]	[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 1, 0]	[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 1]	[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]

CBOW의 인공 신경망 도식화

• 입력층(Input layer)에 주변 단어들의 원-핫 벡터가 입력됨

• 출력층(Output layer)에서 예측하고자 하는 중간 단어의 원-핫 벡터가 레이블로서 필요

CBOW의 인공 신경망

• 투사층의 크기: M

CBOW에서 투사층의 크기 M은 임베딩하고 난 벡터의 차원이 됨

- 입력층과 투사층 사이의 가중치 W는 V × M 행렬, 투사층에서 출력층사이의 가중치 W'는 M × V 행렬
 - V: 단어 집합의 크기(원-핫 벡터의 차원)
 - M이 5라면 가중치 W는 7 × 5 행렬, W'는 5 × 7 행렬
 - W와 W'는 동일한 행렬을 전치(transpose)한 것이 아닌 서로 다른 행렬

- 입력 벡터: 원-핫 벡터
- 입력 벡터와 가중치 W의 곱인 V는 W행렬의 i(입력 벡터에서 1이 있는 인덱스 위치)번째 행
 - 룩업 테이블(lookup table)

- 투사층에서 입력의 원-핫 벡터와 가중치 W의 곱 결과 벡터들에 대해 평균인 벡터를 구함
 - 윈도우 크기 n=2일 때, 입력 벡터의 총 개수는 4개
 - 4개의 결과 벡터에 대한 평균 구함

- 평균 벡터와 두번째 가중치 행렬 W'를 곱하여 얻은 z
 - 원-핫 벡터의 차원과 동일한 차원
- z는 소프트맥스(softmax) 함수를 지나면서 벡터의 각 원소들의 값은 0과 1사이의 실수로, 총 합은 1이 됨
 - 일종의 스코어 벡터(score vector)
 - 스코어 벡터의 j번째 인덱스가 가진 값은 j번째 단어가 중심 단어일 확률 나타냄
 - 스코어 벡터의 값은 레이블에 해당하는 벡터인 중심 단어 원-핫 벡터의 값에 가까워져야 함
- CBOW는 인공 신경망의 훈련 전에 랜덤 값을 가지던 가중치 행렬 W와 W'를 학습해가는 구조

② Skip-gram

- 중심 단어에서 주변 단어를 예측하는 방법
- CBOW보다 성능이 좋음

윈도우 크기 n = 2인 경우의 전체 데이터셋

	중심 단어	주변 단어
중심 단어 그 나이	cat	The
The fat cat sat on the mat	cat	Fat
The lat cat sat on the mat	cat	sat
	cat	on
	sat	fat
The fat cat sat on the mat	sat	cat
The fat cat sat on the mat	sat	on
	sat	the

인공 신경망을 도식화

• 중심 단어에 대해서 주변 단어를 예측하므로 투사층에서 벡터들의 평균을 구하는 과정이 없음

4-2.패스트텍스트(FastText)

- facebook에서 개발
- 내부 단어를 고려하여 학습
- Word2Vec의 확장

Word2Vec	FastText
단어를 쪼개질 수 없는 단위로 간주	하나의 단어 안에도 여러 단어들이 존재하는 것으로 간주 내부 단어(서브워드, subword)를 고려하여 학습
단어집합에 존재하지 않는 단어에 대해 유사한 단어를 찾아낼 수 없음	단어집합에 존재하지 않는 단어의 유사한 단어를 찾을 수 있음

내부 단어(subword)의 학습

- 각 단어는 글자 단위 n-gram의 구성으로 취급
 - n에 따라서 단어들이 얼마나 분리되는지 결정됨

```
# n = 3인 경우
<ap, app, ppl, ple, le>
```

- n = 3으로 트라이그램(tri-gram)
- apple은 app, ppl, ple로 분리하고, 시작과 끝을 의미하는 <, >를 도입하여 아래의 5개 내부 단어(subword) 토큰을 벡터화

```
# 특별 토큰
<apple>
```

• 기존의 단어에 <>를 붙인 특별 토큰 생성

```
# n = 3인 경우, FastText는 단어 apple에 대해서 다음의 6개의 토큰을 벡터화함 <ap, app, ppl, ple, le>, <apple>
```

- '내부 단어들을 벡터화한다' = '내부단어들에 대해서 Word2Vec을 수행한다'
- 단어 apple의 벡터값은 내부 단어들의 벡터값의 총 합으로 구성

```
apple = \langle ap + app + ppl + ppl + le \rangle + \langle apple \rangle
```

FastText의 강점

(1) 모르는 단어(Out Of Vocabulary, OOV)에 대한 대응

FastText의 인공 신경망을 학습한 후, 데이터 셋의 모든 단어는 각 n-gram에 대해서 워드 임베딩 됨

- \rightarrow 데이터 셋만 충분한다면 내부 단어(Subword)를 통해 다른 단어와 OOV의 유사도 계산 가능
- (2) 단어 집합 내 빈도 수가 적었던 단어(Rare Word)에 대한 대응
 - Word2Vec의 경우, 등장 빈도 수가 적은 단어(rare word)에 대해서는 임베딩의 정확도가 높지 않음
 - 참고할 수 있는 경우의 수가 적어 정확하게 임베딩이 되지 않는 것
 - <mark>희귀 단어</mark>의 n-gram이 다른 단어의 n-gram과 겹치면 <mark>상대적으로 높은 임베딩 벡터값 얻음</mark>
 - 희귀 단어: 등장 빈도수가 매우 적은 단어 (':' 오타, 틀린 맞춤법 etc.)
 - → 노이즈가 많은 코퍼스에서 강점을 가진 것

5. 글로브(GloVe, Global Vectors for Word Representation)

- 카운트 기반과 예측 기반을 모두 사용하는 단어 임베딩 방법
- 기존의 카운트 기반 LSA(Latent Semantic Analysis)와 예측 기반 Word2Vec의 단점 보완 목적으로 생성됨

- LSA: 코퍼스의 전체적 통계 정보 고려하나 단어 의미 유추 작업 성능이 좋지 않음
- Word2Vec: 단어 간 유추 작업은 상대적으로 좋으나 임베딩벡터가 윈도우 크기 내의 단어만 고려하므로 코퍼스 전체의 통계 정보 반영 불가
- 동시 등장 행렬로부터 동시 등장 확률 구함

윈도우 기반 동시 등장 행렬(Window based Co-occurrence Matrix)

- 행과 열을 전체 단어 집합의 단어들로 구성
- i 단어의 윈도우 크기(Window Size) 내에서 k 단어가 등장한 횟수를 i행 k열에 기재한 행렬

예시) 동시 등장 행렬

- window size: 1
- 3개의 문서 데이터
 - I like deep learning
 - I like NLP
 - I enjoy flying

카운트	I	like	enjoy	deep	learning	NLP	flying
I	0	2	1	0	0	0	0
like	2	0	0	1	0	1	0
enjoy	1	0	0	0	0	0	1
deep	0	1	0	0	1	0	0
learning	0	0	0	1	0	0	0
NLP	0	1	0	0	0	0	0

카운트	I	like	enjoy	deep	learning	NLP	flying
flying	0	0	1	0	0	0	0

동시 등장 확률(Co-occurrence Probability)

: P(k|i)

- 동시 등장 행렬로부터 특정 단어 i의 전체 등장 횟수를 카운트하고, 특정 단어 i가 등장했을 때 어떤 단어 k가 등장한 횟수를 카운트하여 계산한 조건부 확률
- 중심 단어 i의 행의 모든 값을 더한 값을 분모로 하고 i행 k열의 값을 분자로 한 값
 - i: 중심 단어(Center Word)
 - k: 주변 단어(Context Word)
 - P(like|deep) = 1/2

예시) 동시 등장 확률 표

• GloVe 제안 논문에서 발췌

동시 등장 확률과 크기 관계 비(ratio)	k=solid	k=gas	k=water	k=fasion
P(k l ice)	0.00019	0.000066	0.003	0.000017
P(k l steam)	0.000022	0.00078	0.0022	0.000018
P(k I ice) / P(k I steam)	8.9	0.085	1.36	0.96

- P(solid I ice) = 0.00019, ice가 등장했을 때 solid가 등장할 확률
- P(solid|steam) = 0.000022, steam이 등장했을 때 solid가 등장할 확률

P(solid I ice) > P(solid|steam) → solid('단단한')은 steam('증기')보다 ice('얼음')라는 단어와 더 자주 등장하는 것이 자명