Example

A host with IP address 130.23.43.20 and physical address B2:34:55:10:22:10 has a packet to send to another host with IP address 130.23.43.25 and physical address A4:6E:F4:59:83:AB. The two hosts are on the same Ethernet network. Show the ARP request and reply packets encapsulated in Ethernet frames.

Solution

Figure shows the ARP request and reply packets. Note that the ARP data field in this case is 28 bytes, and that the individual addresses do not fit in the 4-byte boundary. That is why we do not show the regular 4-byte boundaries for these addresses. Also note that the IP addresses are shown in hexadecimal.

Example

RARP

- Physical address to logical address.
- A diskless machine is usually booted from ROM. RARP is used for diskless machine which can not store the IP address.
- Request Broadcast, reply unicast by RARP server.

RARP Operation

The format of the RARP packet is the same as the ARP packet, Except that the operation field is three for RARP request message and Four for RARP reply message

Alternative Solution to RARP

- When a diskless computer is booted, it needs more information in addition to its IP address
 - like subnet mask,
 - default gateway/router,
 - DNS server,
- RARP cannot provide this extra information
- Hence we need something more than RARP i.e., DHCP.

Internet Control Message Protocol (ICMP)

Introduction

- The IP protocol has no error-reporting or error correcting mechanism.
- What happens if something goes wrong? What happens if a router must discard a datagram because it cannot find a router to the final destination, or because the time-to-live field has a zero value?
- These are examples of situations where an error has occurred and the IP protocol has no built-in mechanism to notify the original host.

Position of ICMP in the network layer

ICMP encapsulation

ICMP

- ICMP messages are divided into two broad categories:
 - error-reporting messages
 - query messages.
- The error-reporting messages report problems that a router or a host (destination) may encounter when it processes an IP packet.
- The query messages, which occur in pairs, help a host or a network manager get specific information from a router or another host.

 Table 9.1
 ICMP messages

Category	Туре	Message	
	3	Destination unreachable	
	4	Source quench	
Error-reporting	11	Time exceeded	
messages	12	Parameter problem	
	5	Redirection	
Query	8 or 0	Echo request or reply	
messages	13 or 14	Timestamp request or reply	

General format of ICMP messages

ICMP Parameter Message Format

0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31
Туре	Code	Check	csum
0	1	2	3
Pointer		Unused	
4	5	6	7
Internet Header + 8 bytes of Original Data Datagram			
8			

Type	Code	Meaning
0	0	Echo Reply
3	0	Net Unreachable
	1	Host Unreachable
	2	Protocol Unreachable
	3	Port Unreachable
	4	Frag needed and DF set
	5	Source route failed
	6	Dest network unknown
	7	Dest host unknown
	8	Source host isolated
	9	Network admin prohibited
	10	Host admin prohibited
	11	Network unreachable for TOS
	12	Host unreachable for TOS
	13	Communication admin prohibited
4	0	Source Quench (Slow down/Shut up)

Type	Code	Meaning
5	0	Redirect datagram for the network
	1	Redirect datagram for the host
	2	Redirect datagram for the TOS & Network
	3	Redirect datagram for the TOS & Host
8	0	Echo
9	0	Router advertisement
10	0	Router selection
11	0	Time To Live exceeded in transit
	1	Fragment reassemble time exceeded
12	0	Pointer indicates the error (Parameter Problem)
	1	Missing a required option (Parameter Problem)
	2	Bad length (Parameter Problem)
13	0	Time Stamp
14	0	Time Stamp Reply
15	0	Information Request
16	0	Informaiton Reply
17	0	Address Mask Request
18	0	Address Mask Reply
30	0	Traceroute (Tracert)

ICMP always reports error messages to the original source.

Error-reporting messages

Contents of data field for the error message

Destination-unreachable format

Type: 3 Code: 0 to 15 Checksum

Unused (All 0s)

Part of the received IP datagram including IP header plus the first 8 bytes of datagram data

Destination-unreachable messages with codes 2 or 3 can be created only by the destination host.

Other destination-unreachable messages can be created only by routers.

Source-quench format

Type: 4 Code: 0 Checksum

Unused (All 0s)

Part of the received IP datagram including IP header plus the first 8 bytes of datagram data

A source-quench message informs the source that a datagram has been discarded due to congestion in a router or the destination host.

The source must slow down the sending of datagrams until the congestion is relieved.

One source-quench message is sent for each datagram that is discarded due to congestion.

Time-exceeded message format

Type: 11 Code: 0 or 1		Checksum	
Unused (All 0s)			
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

Whenever a router decrements a datagram with a time-to-live value to zero, it discards the datagram and sends a time-exceeded message to the original source.

When the final destination does not receive all of the fragments in a set time, it discards the received fragments and sends a time-exceeded message to the original source.

In a time-exceeded message, code 0 is used only by routers to show that the value of the time-to-live field is zero.

Code 1 is used only by the destination host to show that not all of the fragments have arrived within a set time.

Parameter-problem message format

Type: 12	Code: 0 or 1 Checksum		
Pointer	Unused (All 0s)		
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data			

A parameter-problem message can be created by a router or the destination host.

Redirection concept

A host usually starts with a small routing table that is gradually augmented and updated.

One of the tools to accomplish this is the redirection message.

Redirection message format

Type: 5	Type: 5 Code: 0 to 3 Checksum			
IP address of the target router				
Part of the received IP datagram including IP header plus the first 8 bytes of datagram data				

A redirection message is sent from a router to a host on the same local network.

 Table 9.1
 ICMP messages

Category	Туре	Message	
	3	Destination unreachable	
	4	Source quench	
Error-reporting	11	Time exceeded	
messages	12	Parameter problem	
	5	Redirection	
Query	8 or 0	Echo request or reply	
messages	13 or 14	Timestamp request or reply	

An echo-request message can be sent by a host or router.

An echo-reply message is sent by the host or router that receives an echo-request message.

Echo-request and echo-reply messages can be used by network managers to check the operation of the IP protocol.

Echo-request and echo-reply messages can test the reachability of a host.

This is usually done by invoking the ping command.

Echo-request and echo-reply message

Type 8: Echo request Type 0: Echo reply

Type: 8 or 0	Code: 0	Checksum		
Iden	tifier	Sequence number		
Optional data Sent by the request message; repeated by the reply message				

Timestamp-request and timestamp-reply message format

Type 13: request Type 14: reply

Type: 13 or 14	Code: 0	Checksum		
Iden	tifier	Sequence number		
Original timestamp				
Receive timestamp				
Transmit timestamp				

Timestamp-request and timestamp-reply messages can be used to calculate the round-trip time between a source and a destination machine even if their clocks are not synchronized.

The timestamp-request and timestamp-reply messages can be used to synchronize two clocks in two machines if the exact one-way time duration is known.

Example of checksum calculation

Figure shows an example of checksum calculation for a simple echorequest message. We randomly chose the identifier to be 1 and the sequence number to be 9. The message is divided into 16-bit (2-byte) words. The words are added together and the sum is complemented. Now the sender can put this value in the checksum field.

DEBUGGING TOOLS

We introduce two tools that use ICMP for debugging: ping and traceroute.

- ✓ Ping
 ✓ Traceroute

Example

We use the ping program to test the server fhda.edu. The result is shown below:

```
$ ping fhda.edu
PING fhda.edu (153.18.8.1) 56 (84) bytes of data.
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp seq=0
                                                         ttl=62
                                                                  time=1.91 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=1
                                                                  time=2.04 ms
                                                         ttl=62
                                                                  time=1.90 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=2
                                                         ttl=62
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=3
                                                                  time=1.97 ms
                                                         ttl=62
                                                                  time=1.93 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp seq=4
                                                        ttl=62
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=5
                                                         ttl=62
                                                                  time=2.00 ms
                                                                  time=1.94 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp seq=6
                                                         ttl=62
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp seq=7
                                                         ttl=62
                                                                  time=1.94 ms
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=8
                                                                  time=1.97 ms
                                                         ttl=62
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp_seq=9
                                                                  time=1.89 ms
                                                         ttl=62
64 bytes from tiptoe.fhda.edu (153.18.8.1): icmp seq=10
                                                                  time=1.98 ms
                                                        ttl=62
--- fhda.edu ping statistics ---
11 packets transmitted, 11 received, 0% packet loss, time 10103 ms
rtt min/avg/max = 1.899/1.955/2.041 ms
```

Example

For the second example, we want to know if the adelphia.net mail server is alive and running. The result is shown below: Note that in this case, we sent 14 packets, but only 13 have been returned. We may have interrupted the program before the last packet, with sequence number 13, was returned.

```
$ ping mail.adelphia.net
PING mail.adelphia.net (68.168.78.100) 56(84) bytes of data.
                                                                     time=85.4 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=0
                                                             ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=1
                                                                     time=84.6 ms
                                                             ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=2
                                                                     time=84.9 ms
                                                            ttl=48
                                                                     time=84.3 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=3
                                                             ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=4
                                                                     time=84.5 ms
                                                             ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=5
                                                                     time=84.7 ms
                                                            ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=6
                                                                     time=84.6 ms
                                                            ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=7
                                                                     time=84.7 ms
                                                             ttl=48
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=8
                                                            ttl=48
                                                                     time=84.4 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=9
                                                             ttl=48
                                                                     time=84.2 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=10 ttl=48
                                                                     time=84.9 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=11 ttl=48
                                                                    time=84.6 ms
64 bytes from mail.adelphia.net (68.168.78.100): icmp_seq=12 ttl=48 time=84.5 ms
--- mail.adelphia.net ping statistics ---
14 packets transmitted, 13 received, 7% packet loss, time 13129 ms
rtt min/avg/max/mdev = 84.207/84.694/85.469
```

The traceroute program operation

Example

We use the traceroute program to find the route from the computer voyager.deanza.edu to the server fhda.edu. The following shows the result.

<pre>\$ traceroute fhda.edu</pre>						
traceroute to fhda.edu (153.18.8.1), 30 hops max, 38 byte packets						
1 Dcore.fhda.edu	(153.18.31.25) 0.995 ms 0.899 ms 0.878 ms					
2 Dbackup.fhda.edu	(153.18.251.4)	1.039 ms	1.064 ms	1.083 ms		
3 tiptoe.fhda.edu (153.18.8.1) 1.797 ms 1.642 ms 1.757 ms						

Example

In this example, we trace a longer route, the route to xerox.com. The following is a partial listing.

<pre>\$ traceroute xerox.com</pre>					
traceroute to xerox.com (13.1.64.93), 30 hops max, 38 byte packets					
1 Dcore.fhda.edu	(153.18.31.254)	0.622 ms	0.891 ms	0.875 ms	
2 Ddmz.fhda.edu	(153.18.251.40)	2.132 ms	2.266 ms	2.094 ms	
3 Cinic.fhda.edu	(153.18.253.126)	2.110 ms	2.145 ms	1.763 ms	
4 cenic.net	(137.164.32.140)	3.069 ms	2.875 ms	2.930 ms	
5 cenic.net	(137.164.22.31)	4.205 ms	4.870 ms	4.197 ms	
6 cenic.net	(137.164.22.167)	4.250 ms	4.159 ms	4.078 ms	
7 cogentco.com	(38.112.6.225)	5.062 ms	4.825 ms	5.020 ms	
8 cogentco.com	(66.28.4.69)	6.070 ms	6.207 ms	5.653 ms	
9 cogentco.com	(66.28.4.94)	6.070 ms	5.928 ms	5.499 ms	