Listing of claims:

The following listing of claims will replace all prior versions and listings of claims in the application.

1. (Currently Amended) A compound of the formula I:

$$R_N$$
 OH R_{20} R_2 R_3

or a pharmaceutically acceptable salt or ester thereof, wherein R_{20} is H;

 R_1 is

aryl, heteroaryl, heterocyclyl, $-C_1-C_6$ alkyl-aryl, $-C_1-C_6$ alkyl-heteroaryl, or $-C_1-C_6$ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, $-C\equiv N$, $-NR_{105}R'_{105}$, $-CO_2R$, -N(R)COR', $-N(R)SO_2R'$, $-C(=O)-(C_1-C_4)$ alkyl, $-SO_2$ -amino, $-SO_2$ -mono or dialkylamino, -C(=O)-amino, -C(=O)-mono or dialkylamino, $-SO_2-(C_1-C_4)$ alkyl, or $-C_1-C_6$ alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from

R and R' independently are hydrogen, C_1-C_{10} alkyl, C_1-C_{10} alkylaryl or C_1-C_{10} alkylheteroaryl;

halogen;

 $- [C(R_{255})(R_{260})]_{1-3} - CO-N-(R_{255})_2, \quad -CH(aryl)_2, \quad -CH(heteroaryl)_2, \\ -CH(heterocyclyl)_2, \quad -CH(aryl)(heteroaryl), \quad -(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH((CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH(-CH_2)_{0-6}-OH-(CH_2)_{0-1}-CH(-CH_2-OH)_2, \quad -CH(-aryl)_2, \quad -CH(-CH_2-OH)_2 - CH(OH)_2 - CH(OH)_2$

cyclopentyl, cyclohexyl, or cycloheptyl ring fused to aryl, heteroaryl, or heterocyclyl wherein one, two or three carbons of the cyclopentyl, cyclohexyl, or cycloheptyl is optionally replaced with a heteroatom independently selected from NH, NR₂₁₅, O, or $S(=0)_{0-2}$, and wherein the cyclopentyl, cyclohexyl, or cycloheptyl group can be optionally substituted with one or two groups that are independently R_{205} , =0, $-CO-NR_{235}R_{240}$, or $-SO_2-(C_1-C_4$ alkyl),

wherein

each aryl and heteroaryl is optionally substituted with 1, 2, or 3 R_{200} , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 R_{210} ;

R₂₀₀ at each occurrence is independently selected from -OH, -NO₂, halogen, -CO₂H, C=N, -(CH₂)₀₋₄-CO-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-CO-(C₁-C₁₂ alkyl), -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl), -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl), -(CH₂)₀₋₄-CO-(C₃-C₇ cycloalkyl), -(CH₂)₀₋₄-CO-aryl, -(CH₂)₀₋₄-CO-heteroaryl, -(CH₂)₀₋₄-CO-heterocyclyl, -(CH₂)₀₋₄-CO-R₂₁₅, -(CH₂)₀₋₄-SO₂-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-SO-(C₁-C₈ alkyl), -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl), -(CH₂)₀₋₄-SO₂-(C₃-C₇ cycloalkyl), -(CH₂)₀₋₄-N(H or R₂₁₅)-CO-N(R₂₁₅)₂, -(CH₂)₀₋₄-N(CH or R₂₁₅)-CO-R₂₂₀, -(CH₂)₀₋₄-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-N(-H or R₂₁₅)-CO-R₂₂₀, -(CH₂)₀₋₄-NR₂₂₀R₂₂₅, -(CH₂)₀₋₄-O-CO-(C₁-C₆ alkyl), -(CH₂)₀₋₄-O-CS-N(R₂₁₅)₂, -(CH₂)₀₋₄-O-CS-N(R₂₁₅)₂, -(CH₂)₀₋₄-O-CS-N(R₂₁₅)₂, -(CH₂)₀₋₄-O-(CS-N(R₂₁₅)₂, -(CH₂)₀₋₄-O-(CS-N(

- or 5 -F), C_3-C_7 cycloalkyl, $-(CH_2)_{0-4}-N(H$ or $R_{215})-SO_2-R_{220}$, $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl, or
- $C_1\text{-}C_{10}$ alkyl optionally substituted with 1, 2, or 3 R_{205} groups, or
- C_2 - C_{10} alkenyl or C_2 - C_{10} alkynyl, each of which is optionally substituted with 1 or 2 R_{205} groups, wherein
- the aryl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or
 - C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein
- the heterocyclyl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{210} ;
- R_{205} at each occurrence is independently selected from C_1 - C_6 alkyl, halogen, -OH, -O-phenyl, -SH, -C \equiv N, -CF $_3$, C_1 - C_6 alkoxy, NH $_2$, NH(C_1 - C_6 alkyl) or N-(C_1 - C_6 alkyl) (C_1 - C_6 alkyl);
- R_{210} at each occurrence is independently selected from halogen, $C_1\text{--}C_6 \text{ alkoxy, } C_1\text{--}C_6 \text{ haloalkoxy, } -NR_{220}R_{225}\text{, OH, } C\equiv N\text{, } -\text{CO-}(C_1\text{--}C_4 \text{ alkyl})\text{, } -\text{SO}_2\text{--}NR_{235}R_{240}\text{, } -\text{CO--}NR_{235}R_{240}\text{, } -\text{SO}_2\text{--}(C_1\text{--}C_4 \text{ alkyl})\text{, } =\text{O, or } C_1\text{--}C_6 \text{ alkyl, } C_2\text{--}C_6 \text{ alkenyl, } C_2\text{--}C_6 \text{ alkynyl or } C_3\text{--}C_7 \text{ cycloalkyl, } \text{ each of which is optionally substituted with 1, 2, or 3 } R_{205} \text{ groups;}$
- R_{215} at each occurrence is independently selected from C_1-C_6 alkyl, $-(\text{CH}_2)_{\,0-2}-(\text{aryl})$, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_3-C_7 cycloalkyl, and $-(\text{CH}_2)_{\,0-2}-(\text{heteroaryl})$, $-(\text{CH}_2)_{\,0-2}-(\text{heterocyclyl})$, wherein
 - the aryl group at each occurrence is optionally substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein
 - the heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 R_{210} ;

- R₂₂₀ and R₂₂₅ at each occurrence are independently selected from -H, $-C_3-C_7$ cycloalkyl, $-(C_1-C_2 \text{ alkyl})-(C_3-C_7 \text{ cycloalkyl})$, $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, $-C_2-C_6 \text{ alkenyl}$, $-C_2-C_6$ alkynyl, and $-C_1-C_6 \text{ alkyl}$ chain with one double bond and one triple bond, -aryl, -heteroaryl, and -heterocyclyl, or $-C_1-C_{10}$ alkyl optionally substituted with -OH, $-\text{NH}_2$ or halogen; -wherein
 - the aryl, heterocyclyl and heteroaryl groups at each occurrence are optionally substituted with 1, 2, or 3 $$R_{\rm 270}$$ groups
- R_{235} and R_{240} at each occurrence are independently H, or $C_1\text{--}C_6$ alkyl;
- R_{245} and R_{250} at each occurrence are independently selected from -H, C_1 - C_4 alkyl, C_1 - C_4 alkylaryl, C_1 - C_4 alkylheteroaryl, C_1 - C_4 hydroxyalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, -(CH₂)₀₋₄- C_3 - C_7 cycloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, and phenyl; or
- R_{245} and R_{250} are taken together with the carbon to which they are attached to form a carbocycle of 3, 4, 5, 6, or 7 carbon atoms, where one carbon atom is optionally replaced by a heteroatom selected from -O-, -S-, -SO₂-, and -NR₂₂₀-;
- R₂₅₅ and R₂₆₀ at each occurrence are independently selected from H, $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl})$, $-(C_1-C_4 \text{ alkyl})-\text{aryl}$, $-(C_1-C_4 \text{ alkyl})$ -heteroaryl, $-(C_1-C_4 \text{ alkyl})$ -heterocyclyl, -aryl, -heteroaryl, -heterocyclyl, $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-\text{aryl}$, $-(CH_2)_{1-4}-R_{265}-(CH_2)_{0-4}-\text{heterocyclyl}$, or
 - C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or -(CH₂)₀₋₄- C_3 - C_7 cycloalkyl, each of which is optionally substituted with 1, 2, or 3 R_{205} groups, wherein
 - each aryl or phenyl is optionally substituted with 1, 2, or 3 groups that are independently R_{205} , R_{210} , or C_1 - C_6 alkyl substituted with 1, 2, or 3 groups that are independently R_{205} or R_{210} , and wherein

- each heterocyclyl is optionally substituted with 1, 2, 3, or $4~R_{210}$;
- R_{265} at each occurrence is independently -O-, -S- or -N(C_1 - C_6 alkyl)-;

- R₁₀₀ and R'₁₀₀ independently represent aryl, heteroaryl, —aryl—W—aryl, —aryl—W—heteroaryl, —aryl—W—heteroaryl, —heteroaryl—W—heteroaryl, —heteroaryl—W—heteroaryl, —heteroaryl—W—heteroaryl, —heterocyclyl—W—aryl, —heterocyclyl—W—heterocyclyl—W—heterocyclyl, —CH[(CH₂)₀₋₂-O-R₁₅₀]—(CH₂)₀₋₂-aryl, —CH[(CH₂)₀₋₂-O-R₁₅₀]—(CH₂)₀₋₂-heterocyclyl or —CH[(CH₂)₀₋₂-O-R₁₅₀]—(CH₂)₀₋₂-heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from
 - -OR, -NO₂, halogen, -C=N, -OCF₃, -CF₃, -(CH₂)₀₋₄-O-P (=O) (OR) (OR'), -(CH₂)₀₋₄-CO-NR₁₀₅R'₁₀₅, -(CH₂)₀₋₄-O-(CH₂)₀₋₄-CO-(C₂-C₁₂ alkyl), -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkenyl), -(CH₂)₀₋₄-CO-(C₂-C₁₂ alkynyl), -(CH₂)₀₋₄-CO-(CH₂)₀₋₄-CO-(CH₂)₀₋₄-CO-(CH₂)₀₋₄-CO-(CH₂)₀₋₄-R₁₁₀, -(CH₂)₀₋₄-R₁₂₀, -(CH₂)₀₋₄-R₁₃₀, -(CH₂)₀₋₄-CO-R₁₁₀, -(CH₂)₀₋₄-CO-R₁₂₀, -(CH₂)₀₋₄-CO-R₁₃₀, -(CH₂)₀₋₄-CO-R₁₄₀, -(CH₂)₀₋₄-CO-O-R₁₅₀, -(CH₂)₀₋₄-SO₂-(C₁-C₁₂ alkyl), -(CH₂)₀₋₄-SO₂-(CH₂)₀₋₄-CO-O-R₁₅₀, -(CH₂)₀₋₄-SO₂-(CH₂)₀₋₄-N(R₁₅₀)-CO-N(R₁₅₀)₂,

- $(CH_2)_{0-4} N (R_{150}) CS N (R_{150})_2, \qquad (CH_2)_{0-4} N (R_{150}) CO R_{105}, \\ (CH_2)_{0-4} NR_{105}R'_{105}, \qquad (CH_2)_{0-4} R_{140}, \qquad (CH_2)_{0-4} O CO (C_1 C_6)_1, \\ (CH_2)_{0-4} O CS P (O) (O R_{110})_2, \qquad (CH_2)_{0-4} O CO N (R_{150})_2, \\ (CH_2)_{0-4} O CS N (R_{150})_2, \qquad (CH_2)_{0-4} O (R_{150}), \qquad (CH_2)_{0-4} O R_{150}' COOH, \qquad (CH_2)_{0-4} S (R_{150}), \qquad (CH_2)_{0-4} N (R_{150}) SO_2 R_{105}, \\ (CH_2)_{0-4} C_3 C_7 \quad \text{cycloalkyl}, \qquad (\underline{C_1 C_6})_{alkyl}, \qquad (C_2 C_{10})_{alkenyl}, \\ \text{or} \quad (C_2 C_{10})_{alkynyl}, \quad \text{or}$
- R_{100} is $C_1\text{-}C_{10}$ alkyl optionally substituted with 1, 2, or 3 R_{115} groups, or
- R_{100} is $-(C_1-C_6-alkyl)-O-C_1-C_6-alkyl)$ or $-(C_1-C_6-alkyl)-S-(C_1-C_6-alkyl)-S-(C_1-C_6-alkyl)$ alkyl), each of which is optionally substituted with 1, 2, or 3 R_{115} -groups, or
- R_{100} is C_{3} - C_{6} cycloalkyl optionally substituted with 1, 2, or 3 R_{115} -groups;
- W is $-(CH_2)_{0-4}$, -O, $-S(O)_{0-2}$, $-N(R_{135})$, -CR(OH) or -C(O); R_{102} and R_{102} ' independently are hydrogen, or C_1 - C_{10} alkyl optionally substituted with 1, 2, or 3 groups that are independently halogen, aryl or $-R_{110}$;
- R₁₀₅ and R'₁₀₅ independently represent -H, -R₁₁₀, -R₁₂₀, C₃-C₇ cycloalkyl, -(C₁-C₂ alkyl)-(C₃-C₇ cycloalkyl), -(C₁-C₆ alkyl)- O-(C₁-C₃ alkyl), C₂-C₆ alkenyl, C₂-C₆ alkynyl, or C₁-C₆ alkyl chain with one double bond and one triple bond, or C₁-C₆ alkyl optionally substituted with -OH or -NH₂; or, C₁-C₆ alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, or
- R_{105} and R'_{105} together with the atom to which they are attached form a 3 to 7 membered carbocylic ring, where one member is optionally a heteratom selected from -O-, -S(O) $_{0-2}$ -, -N(R_{135})-, the ring being optionally substituted with 1, 2 or three R_{140} groups;

- alkyl), -NH-C(=O)-OH, -NH-C(=O)-OR, -NH-C(=O)-O-phenyl, $-O-C(=O)-(C_1-C_6)$ alkyl), -O-C(=O)-amino, -O-C(=O)-mono- or dialkylamino, -O-C(=O)-phenyl, $-O-(C_1-C_6)$ alkyl)- $-CO_2H$, $-NH-SO_2-(C_1-C_6)$ alkyl), $-C_1-C_6$ alkoxy or $-C_1-C_6$ haloalkoxy;
- R_{135} is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_7 cycloalkyl, $-(CH_2)_{0-2}$ -(aryl), $-(CH_2)_{0-2}$ -(heterocyclyl);
- R_{140} is heterocyclyl optionally substituted with 1, 2, 3, or 4 groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, hydroxy, cyano, nitro, amino, mono(C_1 - C_6) alkylamino, di(C_1 - C_6) alkylamino, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, amino(C_1 - C_6) alkyl, mono(C_1 - C_6) alkylamino(C_1 - C_6) alkyl, and =0;
- R_{150} is hydrogen, C_3 - C_7 cycloalkyl, $-(C_1$ - C_2 alkyl)- $(C_3$ - C_7 cycloalkyl), C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkyl with one double bond and one triple bond, $-R_{110}$, $-R_{120}$, or C_1 - C_6 alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH₂, C_1 - C_3 alkoxy, R_{110} , and halogen;
- $R_{150}\prime$ is C_3-C_7 cycloalkyl, $-(C_1-C_3$ alkyl)- $(C_3-C_7$ cycloalkyl), C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_1-C_6 alkyl with one double bond and one triple bond, $-R_{110}$, $-R_{120}$, or
 - C_1 - C_6 alkyl optionally substituted with 1, 2, 3, or 4 groups independently selected from -OH, -NH₂, C_1 - C_3 alkoxy, R_{110} , and halogen;
- R_{180} is selected from morpholinyl, thiomorpholinyl, piperazinyl, piperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S-oxide, homothiomorpholinyl S,S-dioxide, pyrrolinyl and pyrrolidinyl, each of which is optionally substituted with 1, 2, 3, or 4 groups independently selected from C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogen, hydroxy, cyano, nitro, amino, mono(C_1 -

 C_6) alkylamino, di (C_1 - C_6) alkylamino, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, amino (C_1 - C_6) alkylamino (C_1 - C_6) alkylamino (C_1 - C_6) alkyl, di (C_1 - C_6) alkyl, and =0;

 R_{110} is anylooptionally substituted with 1 or 2 R_{125} groups;

 R_{125} at each occurrence is independently halogen, amino, mono- or dialkylamino, -OH, -C \equiv N, -SO₂-NH₂, -SO₂-NH-C₁-C₆ alkyl, -SO₂-N(C₁-C₆ alkyl)₂, -SO₂-(C₁-C₄ alkyl), -CO-NH₂, -CO-NH-C₁-C₆ alkyl, or -CO-N(C₁-C₆ alkyl)₂, or

 C_1 - C_6 alkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted with 1, 2, or 3 groups that are independently selected from C_1 - C_3 alkyl, halogen, -OH, -SH, -C \equiv N, -CF $_3$, C_1 - C_3 alkoxy, amino, and mono- and dialkylamino, or

 C_1 - C_6 alkoxy optionally substituted with one, two or three of halogen;

 R_{120} is heteroaryl, which is optionally substituted with 1 or 2 $$R_{125}$$ groups; and

 R_{130} is heterocyclyl optionally substituted with 1 or 2 R_{125} groups; and

 R_2 is H; and

 R_3 is H.

2-4. (Canceled)

5. (previously presented) A compound according to claim 1, wherein R_1 is $-C_1-C_6$ alkyl-aryl, $-C_1-C_6$ alkyl-heteroaryl, or $-C_1-C_6$ alkyl-heterocyclyl, where the ring portions of each are optionally substituted with 1, 2, 3, or 4 groups independently selected from halogen, -OH, -SH, $-C\equiv N$, $-NO_2$, $-NR_{105}R'_{105}$, $-CO_2R$, -N(R)COR', $-N(R)SO_2R'$, $-C(=O)-(C_1-C_4)$ alkyl, $-SO_2$ -amino, $-SO_2$ -mono or

dialkylamino, -C(=0)-amino, -C(=0)-mono or dialkylamino, $-SO_2-(C_1-C_4)$ alkyl, or

 C_1 - C_6 alkoxy optionally substituted with 1, 2, or 3 groups which are independently selected from halogen.

- 6. (Original) A compound according to claim 1 wherein: R_N is -C (=0) $-R_{100}$; and
- $R_{\rm 100}$ represents aryl, or heteroaryl, where the ring portions of each are optionally substituted with 1, 2, or 3 groups independently selected from
 - -OR, -NO₂, C_1 - C_6 alkyl, halogen, -C \equiv N, -OCF₃, -CF₃, -(CH₂)₀₋₄-O-P (=0) (OR) (OR'), $-(CH_2)_{0-4}-CO-NR_{105}R'_{105}$, $-(CH_2)_{0-4}-O-$ (CH₂) $_{0-4}$ -CONR₁₀₂R₁₀₂', -(CH₂) $_{0-4}$ -CO-(C₁-C₁₂ alkyl), -(CH₂) $_{0-4}$ - $CO-(C_2-C_{12})$ alkenyl), $-(CH_2)_{0-4}-CO-(C_2-C_{12})$ alkynyl), $-(CH_2)_{0-4}-CO-(CH_2)_{0-4}(C_3-C_7)$ cycloalkyl), $-(CH_2)_{0-4}-R_{110}$, $-(CH_2)_{0-4}-R_{120}$, $-(CH_2)_{0-4}-R_{130}$, $-(CH_2)_{0-4}-CO-R_{110}$, $-(CH_2)_{0-4}-CO-R_{110}$ $CO-R_{120}$, $-(CH_2)_{0-4}-CO-R_{130}$, $-(CH_2)_{0-4}-CO-R_{140}$, $-(CH_2)_{0-4}-CO-O R_{150}$, $-(CH_2)_{0-4}-SO_2-NR_{105}R'_{105}$, $-(CH_2)_{0-4}-SO-(C_1-C_8 \text{ alkyl})$, $-(CH_2)_{0-4}-SO_2-(C_1-C_{12})$ alkyl), $-(CH_2)_{0-4}-SO_2-(CH_2)_{0-4}-(C_3-C_7)$ cycloalkyl), $-(CH_2)_{0-4}-N(R_{150})-CO-O-R_{150}$, $-(CH_2)_{0-4}-N(R_{150}) CO-N(R_{150})_2$, $-(CH_2)_{0-4}-N(R_{150})-CS-N(R_{150})_2$, $-(CH_2)_{0-4}-N(R_{150})-CS-N(R_{150})_2$ $CO-R_{105}$, $-(CH_2)_{0-4}-NR_{105}R'_{105}$, $-(CH_2)_{0-4}-R_{140}$, $-(CH_2)_{0-4}-O-CO (C_1-C_6 \text{ alkyl})$, $-(CH_2)_{0-4}-O-P(O)-(O-R_{110})_2$, $-(CH_2)_{0-4}-O-CO N(R_{150})_2$, $-(CH_2)_{0-4}$ -O-CS- $N(R_{150})_2$, $-(CH_2)_{0-4}$ -O- $(R_{150})_1$ $-(CH_2)_{0-4}-O-R_{150}$ '-COOH, $-(CH_2)_{0-4}-S-(R_{150})$, $-(CH_2)_{0-4}-N(R_{150}) SO_2-R_{105}$, $-(CH_2)_{0-4}-C_3-C_7$ cycloalkyl, (C_2-C_{10}) alkenyl, or (C_2-C_{10}) alkynyl.
- 7. (previously presented) A compound according to claim 1 wherein:
- $R_{\rm C}$ is hydrogen, -(CR₂₄₅R₂₅₀) $_{0-4}$ -aryl, -(CR₂₄₅R₂₅₀) $_{0-4}$ -heteroaryl, -(CR₂₄₅R₂₅₀) $_{0-4}$ -heterocyclyl, wherein

each aryl and heteroaryl is optionally substituted with 1, 2, or 3 R_{200} , and wherein each heterocyclyl is optionally substituted with 1, 2, 3, or 4 independently selected R_{210} groups.

8. (Canceled)

9. (Previously Presented) A compound according to claim 1 selected from the group consisting of:

```
N-(3,5-difluorobenzyl)-N-\{(2R)-2-hydroxy-3-[(3-1)]
iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;
                    N-[2-(3,5-difluorophenyl)] - N-[(2R)-2-hydroxy-3-[(3-1)] - N-[(3-1)] - N-[(3
iodobenzyl)amino]propyl}-5-methyl-N',N'-dipropylisophthalamide;
                     3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-
iodobenzyl)amino|propyl}amino)sulfonyl]-N,N-dipropylbenzamide;
                    N-(3,5-\text{difluorobenzyl})-N-((2R)-3-\{[(4R)-6-\text{ethyl}-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -5-methyl-N', N'-dipropylisophthalamide;
                    N-[2-(3,5-difluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-
2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl)-5-methyl-N', N'-dipropylisophthalamide;
                    3-\{[2-(3,5-difluorophenyl)ethyl]((2R)-3-\{[(4R)-6-ethyl-4]\}
2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl)amino]sulfonyl}-N, N-dipropylbenzamide;
                    N-(3,5-difluorobenzyl)-N-\{(2R)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-hydroxy-3-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[(3-kg)-2-[
iodobenzyl) amino] propyl\}-N', N', 5-trimethylisophthalamide;
                    N-[2-(3,5-difluorophenyl)] = N-\{(2R)-2-hydroxy-3-[(3-k-1)] = N-\{(2R)-2-hydroxy-3-[(3-k-1)]\}
iodobenzyl) amino]propyl}-N', N', 5-trimethylisophthalamide;
                    3-[([2-(3,5-difluorophenyl)ethyl]{(2R)-2-hydroxy-3-[(3-
iodobenzyl) amino] propyl} amino) sulfonyl] - N, N-dimethylbenzamide;
                    N-(3,5-\text{difluorobenzyl})-N-((2R)-3-\{[(4R)-6-\text{ethyl}-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -N', N', 5-trimethylisophthalamide;
```

```
N-[2-(3,5-difluorophenyl)ethyl]-N-((2R)-3-{[(4R)-6-ethyl-
2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -N', N', 5-trimethylisophthalamide;
            3-\{[[2-(3,5-difluorophenyl)ethyl]((2R)-3-\{[(4R)-6-ethyl-
2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl)amino]sulfonyl}-N, N-dimethylbenzamide;
            N-(3-chloro-5-fluorobenzyl)-N-{(2R)-2-hydroxy-3-[(3-
iodobenzyl) amino[propyl] -5-methyl-N', N'-dipropylisophthalamide;
            N-[2-(3-\text{chloro}-5-\text{fluorophenyl})] = N-[(2R)-2-\text{hydroxy}-3-
[(3-iodobenzyl)amino]propyl}-5-methyl-N', N'-
dipropylisophthalamide;
            3-[([2-(3-chloro-5-fluorophenyl)ethyl]{(2R)-2-hydroxy-3-
[(3-iodobenzyl)amino]propyl}amino)sulfonyl]-N, N-
dipropylbenzamide;
            N-(3-\text{chloro}-5-\text{fluorobenzyl})-N-((2R)-3-\{[(4R)-6-\text{ethyl}-2,2-1]\}
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -5-methyl-N', N'-dipropylisophthalamide;
            N-[2-(3-\text{chloro}-5-\text{fluorophenyl})] = N-((2R)-3-\{[(4R)-6-
ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl)-5-methyl-N', N'-dipropylisophthalamide;
            3-\{[[2-(3-chloro-5-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-\{[(4R)-6-fluorophenyl)ethyl]((2R)-3-[(4R)-6-fluorophenyl)ethyl]((2R)-3-[(4R)-6-fluorophenyl)ethyl]((2R)-4-[(4R)-6-fluorophenyl)ethyl]((2R)-4-[(4R)-6-fluorophenyl)ethyl]((2R)-4-[(4R)-6-fluorophenyl)e
ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl)amino]sulfonyl}-N, N-dipropylbenzamide;
            N-[(2R)-3-(benzylamino)-2-hydroxypropyl]-N-(3,5-
difluorobenzyl)-5-methyl-N', N'-dipropylisophthalamide;
            N-[(2R)-3-(benzylamino)-2-hydroxypropyl]-N-[2-(3,5-
difluorophenyl)ethyl]-5-methyl-N', N'-dipropylisophthalamide;
            3-(\{[(2R)-3-(benzylamino)-2-hydroxypropyl][2-(3,5-
difluorophenyl)ethyl]amino}sulfonyl)-N,N-dipropylbenzamide; and
            salts thereof.
```

10. (Previously Presented) A pharmaceutical composition comprising a compound according to claim 1, in combination with a physiologically acceptable carrier or excipient.

11-12. (Canceled)

- (Withdrawn) A method for treating a patient who has, or 13. in preventing a patient from getting, a disease or condition selected from the group consisting of Alzheimer's disease, for helping prevent or delay the onset of Alzheimer's disease, for treating patients with mild cognitive impairment preventing or delaying the onset of Alzheimer's disease in those who would progress from MCI to AD, for treating Down's syndrome, for treating humans who have Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, for treating cerebral amyloid angiopathy and preventing its potential consequences, i.e. single and recurrent lobar hemorrhages, for treating other degenerative dementias, including dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia with progressive supranuclear palsy, associated with cortical basal degeneration, or diffuse Lewy body type of Alzheimer's disease and who is in need of such treatment, comprising administering to such patient a therapeutically effective amount of a compound of claim 1.
- 14. (Withdrawn) A method for the treatment or prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease

comprising administration of a therapeutically effective amount of a compound or salt according to Claim 1, to a patient in need thereof.

15. (Withdrawn) A method for making a compound of claim 1.