Firewalls and VPNs

Learning Objectives

Upon completion of this material, you should be able to:

- Understand firewall technology and the various approaches to firewall implementation
- Describe the technology that enables the use of Virtual Private Networks

Firewalls

- Prevent specific types of information from moving between the outside world (untrusted network) and the inside world (trusted network)
- May be separate computer system; a software service running on existing router or server; or a separate network containing supporting devices
- A Roadmap
 - Firewall categorization
 - Firewall configuration and management

Firewall Categorization

- 1 Processing mode
- 2 Development era
- 3 Intended deployment structure
- 4 Architectural implementation

Firewalls Categorization (1): Processing Modes

- Packet filtering
- Application gateways
- Circuit gateways
- MAC layer firewalls
- Hybrids

FIGURE 6-5 Firewall Types and the OSI Model

Packet Filtering

- Packet filtering firewalls examine header information of data packets
- Most often based on combination of:
 - Internet Protocol (IP) source and destination address
 - Direction (inbound or outbound)
 - Transmission Control Protocol (TCP) or User Datagram
 Protocol (UDP) source and destination port requests
- Simple firewall models enforce rules designed to prohibit packets with certain addresses or partial addresses

Packet Filtering (continued)

- Three subsets of packet filtering firewalls:
 - Static filtering: requires that filtering rules governing how the firewall decides which packets are allowed and which are denied are developed and installed
 - Dynamic filtering: allows firewall to react to emergent event and update or create rules to deal with event
 - Stateful inspection: firewalls that keep track of each network connection between internal and external systems using a state table

	Header version (4 bits)	Header length (4 bits)	Type of service (8 bits)		Type of service (16 bits)
+		Identification	(16 bits)	Flags (3 bits)	Fragment offset (13 bits)
	Time to li	ve (8 bits)	Protocol (8 bits)		Header checksum (16 bits)
	Source IP address (32 bits) Destination IP address (32 bits)				
+			0	ptions	
				Data	

FIGURE 6-4 Packet Filtering Router

Sample Firewall Kule and Format							
Source Address	Destination Address	Service (HTTP, SMTP, FTP, Telnet)	Action (Allow or Deny)				
172.16.x.x	10.10.x.x	Any	Deny				

HTTP

FTP

Allow

Allow

10.10.10.25

10.10.10.10

192.168.x.x

192.168.0.1

Application Gateways

- Frequently installed on a dedicated computer; also known as a proxy server
- Since proxy server is often placed in unsecured area of the network (e.g., DMZ), it is exposed to higher levels of risk from less trusted networks
- Additional filtering routers can be implemented behind the proxy server, further protecting internal systems

Circuit Gateways

- Circuit gateway firewall operates at transport layer
- Like filtering firewalls, do not usually look at data traffic flowing between two networks, but prevent direct connections between one network and another
- Accomplished by creating tunnels connecting specific processes or systems on each side of the firewall, and allow only authorized traffic in the tunnels

MAC Layer Firewalls

- Designed to operate at the media access control layer of OSI network model
- Able to consider specific host computer's identity in its filtering decisions
- MAC addresses of specific host computers are linked to access control list (ACL) entries that identify specific types of packets that can be sent to each host; all other traffic is blocked

Hybrid Firewalls

- Combine elements of other types of firewalls; i.e., elements of packet filtering and proxy services, or of packet filtering and circuit gateways
- Alternately, may consist of two separate firewall devices; each a separate firewall system, but are connected to work in tandem

Firewall Categorization (2): Development Era

- First generation: static packet filtering firewalls
- Second generation: application-level firewalls or proxy servers
- Third generation: stateful inspection firewalls
- Fourth generation: dynamic packet filtering firewalls; allow only packets with particular source, destination and port addresses to enter
- Fifth generation: kernel proxies; specialized form working under kernel of Windows NT

Firewalls Categorization (3): Deployment Structure

- Most firewalls are appliances: stand-alone, selfcontained systems
- Commercial-grade firewall system consists of firewall application software running on generalpurpose computer
- Small office/home office (SOHO) or residentialgrade firewalls, aka broadband gateways or DSL/ cable modem routers, connect user's local area network or a specific computer system to Internetworking device
- Residential-grade firewall software is installed directly on the user's system

FIGURE 6-6 SOHO Firewall Devices

Firewalls Categorization (4): Architectural Implementation

- Firewall devices can be configured in a number of network connection architectures
- Four common architectural implementations of firewalls:
 - Packet filtering routers
 - Screened host firewalls
 - Dual-homed firewalls
 - Screened subnet firewalls

Packet Filtering Routers

- Most organizations with Internet connection have a router serving as interface to Internet
- Many of these routers can be configured to reject packets that organization does not allow into network
- Drawbacks include a lack of auditing and strong authentication

FIGURE 6-4 Packet Filtering Router

Screened Host Firewalls

- Combines packet filtering router with separate, dedicated firewall such as an application proxy server
- Allows router to pre-screen packets to minimize traffic/load on internal proxy
- Separate host is often referred to as bastion host; can be rich target for external attacks, and should be very thoroughly secured

FIGURE 6-11 Screened Host Firewall

Dual-Homed Host Firewalls

- Bastion host contains two network interface cards (NICs): one connected to external network, one connected to internal network
- Implementation of this architecture often makes use of network address translation (NAT), creating another barrier to intrusion from external attackers

Table 6-4 Reserved Non-Routable Address Ranges						
Class	From	То	CIDR Mask	Decimal Mask		
Class "A" or 24 Bit	10.0.0.0	10.255.255.255	/8	255.0.0.0		
Class "B" or 20 Bit	172.16.0.0	172.31.255.255	/12 or /16	255.240.0.0 or 255.255.0.0		
Class "C" or 16 Bit	192.168.0.0	192.168.255.255	/16 or /24	255.255.0.0 or 255.255.255.0		

FIGURE 6-12 Dual-Homed Host Firewall

Screened Subnet Firewalls (with DMZ)

- Dominant architecture used today is the screened subnet firewall
- Commonly consists of two or more internal bastion hosts behind packet filtering router, with each host protecting trusted network:
 - Connections from outside (untrusted network) routed through external filtering router
 - Connections from outside (untrusted network) are routed into and out of routing firewall to separate network segment known as DMZ
 - Connections into trusted internal network allowed only from DMZ bastion host servers

Screened Subnet Firewalls (with DMZ) (continued)

- Screened subnet performs two functions:
 - Protects DMZ systems and information from outside threats
 - Protects the internal networks by limiting how external connections can gain access to internal systems
- Another facet of DMZs: extranets

FIGURE 6-13 Screened Subnet (DMZ)

Selecting the Right Firewall

- When selecting firewall, consider a number of factors:
 - What firewall offers right balance between protection and cost for needs of organization?
 - What features are included in base price and which are not?
 - Ease of setup and configuration? How accessible are staff technicians who can configure the firewall?
 - Can firewall adapt to organization's growing network?
- Second most important issue is cost

Configuring and Managing Firewalls

- Each firewall device must have own set of configuration rules regulating its actions
- Firewall policy configuration is usually complex and difficult
- Configuring firewall policies both an art and a science
- When security rules conflict with the performance of business, security often loses

Best Practices for Firewalls

- All traffic from trusted network is allowed out
- Firewall device never directly accessed from public network
- Simple Mail Transport Protocol (SMTP) data allowed to pass through firewall
- Internet Control Message Protocol (ICMP) data denied
- Telnet access to internal servers should be blocked
- When Web services offered outside firewall, HTTP traffic should be denied from reaching internal networks

Firewall Rules

- Operate by examining data packets and performing comparison with predetermined logical rules
- Logic based on set of guidelines most commonly referred to as firewall rules, rule base, or firewall logic
- Most firewalls use packet header information to determine whether specific packet should be allowed or denied

FIGURE 6-14 Example Network Configuration

TABLE 6-16	External Filtering Firewall Rule Set						
Rule #	Source Address	Source Port	Destination Address	Destination Port	Action		
1	Any	Any	10.10.10.0	>1023	Allow		
2	Any	Any	10.10.10.1	Any	Deny		
3	Any	Any	10.10.10.2	Any	Deny		
4	10.10.10.1	Any	Any	Any	Deny		
5	10.10.10.2	Any	Any	Any	Deny		
6	10.10.10.0	Any	Any	Any	Allow		
7	Any	Any	10.10.10.6	25	Allow		
8	Any	Any	10.10.10.0	7	Deny		
9	Any	Any	10.10.10.0	23	Deny		
10	Any	Any	10.10.10.4	80	Allow		
11	Any	Any	Any	Any	Deny		

Internal rutering rirewan kule s	TABLE 6-17	Internal Filtering Firewall Rule S	et
----------------------------------	------------	------------------------------------	----

Rule#	Source Address	Source Port	Destination Address	Destination Port	Action
1	Any	Any	10.10.10.0	>1023	Allow
2	Any	Any	10.10.10.3	Any	Deny
3	Any	Any	192.168.2.1	Any	Deny
4	10.10.10.3	Any	Any	Any	Deny
5	192.168.2.1	Any	Any	Any	Deny
6	192.168.2.0	Any	Any	Any	Allow
7	10.10.10.5	Any	192.168.2.0	Any	Allow
8	Any	Any	Any	Any	Deny

Virtual Private Networks (VPNs) (1)

- Private and secure network connection between systems; uses data communication capability of unsecured and public network
- Securely extends organization's internal network connections to remote locations beyond trusted network

Virtual Private Networks (VPNs) (2)

- VPN must accomplish:
 - Encapsulation of incoming and outgoing data
 - Encryption of incoming and outgoing data
 - Authentication of remote computer and (perhaps) remote user as well

Transport Mode

- Data within IP packet is encrypted, but header information is not
- Allows user to establish secure link directly with remote host, encrypting only data contents of packet
- Two popular uses:
 - End-to-end transport of encrypted data
 - Remote access worker connects to office network over Internet by connecting to a VPN server on the perimeter

FIGURE 6-18 Transport Mode VPN

Tunnel Mode

- Organization establishes two perimeter tunnel servers
- These servers act as encryption points, encrypting all traffic that will traverse unsecured network
- Primary benefit to this model is that an intercepted packet reveals nothing about true destination system
- Example of tunnel mode VPN: Microsoft's Internet Security and Acceleration (ISA) Server

FIGURE 6-19 Tunnel Mode VPN

FIGURE 6-20 VPN Client in Windows XP

Summary

- Firewall technology
 - Four methods for categorization
 - Firewall configuration and management
- Virtual Private Networks
 - Two modes