

Accelerating XOR-Based Erasure Coding using Program Optimization Techniques **Yuya Uezato**

DWANGO, Co., Ltd.

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A \times B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.

- lacksquare Byte Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacksquare Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.

Optimizing

What we need to know about $\mathbb{F}[2^8]$ and $\mathbb{F}[2]$.

 $\mathbb{F}[2^8]$ is a field with $2^8 = 256$ elements.

- ★ 1-byte (8-bits) data can be seen as an element of $\mathbb{F}[2^8]$.
- ► The definition is complex.

(We will see it in the later page).

Bit Fi

Byte

Optimizing

What we need to know about $\mathbb{F}[2^8]$ and $\mathbb{F}[2]$.

 $\mathbb{F}[2^8]$ is a field with $2^8=256$ elements.

- ★ 1-byte (8-bits) data can be seen as an element of $\mathbb{F}[2^8]$.
- ► The definition is complex. (We will see it in the later page).

Byte

▶ *Bit* Fi

- $\mathbb{F}[2] = \{0, 1\}$ is a field of bits.
 - ▶ Its addition is XOR \oplus .
 - ► Its multiplication is AND &.
 - ▶ 0 and 1 satisfy the following:

$$x \oplus 0 = 0 \oplus x = x, \quad y \& 1 = 1 \& y = y.$$

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A imes B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C imes D$ over $\mathbb{F}[2]$.

- lacksquare Byte Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacksquare Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits. A is small. B is large.

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A \times B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.

- **Byte** Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacktriangleright $\mathcal{F}[2]=\{0,1\}$ is a field with the two bits.

A is small. B is large. In this talk, as an example, we consider:

Optimizing matrix multiplication over two finite fields:

(for Standard EC)
$$A \times B$$
 over $\mathbb{F}[2^8]$, (for XOR-based EC) $C \times D$ over $\mathbb{F}[2]$.

- **Byte** Finite Field $\mathbb{F}[2^8]$ is a field with 256 elements.
- lacktriangleright Bit Finite Field $\mathbb{F}[2]=\{0,1\}$ is a field with the two bits.

 ${\cal A}$ is small. ${\cal B}$ is large. In this talk, as an example, we consider:

This setting comes from *erasure coding*.

What are Erasure Coding (EC) and XOR-Based EC

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - $\blacktriangleright \ 14 \cdot 20 200 = 80 \mathrm{TB}$ can be used for data redundancy.

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes ≤ 4 are down.
- 3. The total capacity of our server = 200TB.
 - $\blacktriangleright~14\cdot20-200=80{\rm TB}$ can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathbf{RS}(d=10,p=4)$.

- \blacktriangleright d: we can assume d-nodes are living. (d = 14 p = 10).
- ightharpoonup p: we can permit nodes $\leq p$ go down. (p=4).

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes < 4 are down.
- 3. The total capacity of our server = 200TB.
 - $\blacktriangleright \ 14 \cdot 20 200 = 80 \text{TB}$ can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC $\mathbf{RS}(d=10,p=4)$.

- \blacktriangleright d: we can assume d-nodes are living. (d = 14 p = 10).
- ightharpoonup p: we can permit nodes $\leq p$ go down. (p=4).

		10	10	10			
D	encode \Longrightarrow	f_1	f_2	 f_{14} $\stackrel{\scriptscriptstyle{10}}{\circ}$	put	f_i to	node n_i .

Example (Building a streaming media server with criteria)

- 1. We have 14 nodes. Each node has a 20TB disk.
- 2. We can load data even if nodes < 4 are down.
- 3. The total capacity of our server = 200TB.
 - ▶ $14 \cdot 20 200 = 80$ TB can be used for data redundancy.

For this criteria, we can employ Reed-Solomon EC RS(d = 10, p = 4).

- \rightarrow d: we can assume d-nodes are living. (d = 14 p = 10).
- \triangleright p: we can permit nodes $\leq p$ go down. (p=4).

$$\text{collect 10} \ \boxed{f_i} \ \overset{\circ}{\circ} \quad \boxed{f_{i_1}} \ \boxed{f_{i_2}} \ \cdots \ \boxed{f_{i_{10}}} \ \overset{\frac{N}{10}}{\Longrightarrow} \ \overset{N-\text{bytes}}{ }$$

▶ \mathcal{V} : Vandermonde matrix

$$\begin{array}{c|c}
N\text{-bytes} & \text{split} & \frac{\frac{N}{10}}{d_1} & \frac{\frac{N}{10}}{d_2} & \cdots & \frac{\frac{N}{10}}{d_{10}} \\
\hline
D & & & & & & & & & \\
\hline
D & & & & & & & & \\
\hline
D & & & & & & & & \\
\hline
D & & & & & & & \\
\hline
D & & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & & \\
\hline
D & & & & & \\
D & & & & & & \\
\hline
D & & & & & \\
D & & & & & \\
\hline
D & & & & & \\
\hline
D & & & & & \\
D & & & & \\
D & & & & & \\
D$$

How large is N in a real application?

In my company, D is a short video whose size is 10MB–40MB:

- ▶ The size of 10 secs videos of 1080p & 30fps $\sim 12 \mathrm{MB}$.
- ▶ The size of 5 secs videos of 4K & 30fps $\sim 35 \mathrm{MB}$.

 $\mathcal V$ We have $\mathcal W^{-1}$ since f_{i_1} is a Vandermonde matrix. f_{i_2} f_{i_2} \dots $f_{i_{10}}$

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]}D$

Q. What is the heaviest operation on $\overline{\mathcal{V}} \times_{\mathbb{F}[2^8]} D$?

A. Multiplication of $\mathbb{F}[2^8]$:

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]}D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?

A. Multiplication of $\mathbb{F}[2^8]$:

▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7x^7 + b_6x^6 + \dots + b_1x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]} D$

Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?

- A. Multiplication of $\mathbb{F}[2^8]$:
 - ▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

 $p_1 + p_2$ of $\mathbb{F}[2^8]$ is the polynomial addition. Easy because just componentwise XOR:

$$(b_7 \oplus b_7')x^7 + (b_6 \oplus b_6')x^6 + \dots + (b_0 \oplus b_0').$$

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]} D$

- Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?
- A. Multiplication of $\mathbb{F}[2^8]$:
 - ▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

 $p_1 + p_2$ of $\mathbb{F}[2^8]$ is the polynomial addition. Easy because just componentwise XOR:

$$(b_7 \oplus b_7')x^7 + (b_6 \oplus b_6')x^6 + \dots + (b_0 \oplus b_0').$$

- ▶ On the other hand, $p_1 \cdot p_2$ of $\mathbb{F}[2^8]$ is CPU-heavy and slow:
 - 1. We do the 7-degree polynomial multiplication $p_1 \times p_2$.
 - 2. We take the modulo by a special polynomial $(p_1 \times p_2) \mod p$.

Optimizing $\mathcal{V} imes_{\mathbb{F}[2^8]} D$

- Q. What is the heaviest operation on $\mathcal{V} \times_{\mathbb{F}[2^8]} D$?
- A. Multiplication of $\mathbb{F}[2^8]$:
 - ▶ Internally, $p \in \mathbb{F}[2^8]$ is a 7-degree polynomial over $\mathbb{F}[2]$:

$$b_7 x^7 + b_6 x^6 + \dots + b_1 x + b_0$$
 where $b_i \in \mathbb{F}[2]$.

 $p_1 + p_2$ of $\mathbb{F}[2^8]$ is the polynomial addition. Easy because just componentwise XOR:

$$(b_7 \oplus b_7')x^7 + (b_6 \oplus b_6')x^6 + \dots + (b_0 \oplus b_0').$$

- ightharpoonup On the other hand, $p_1 \cdot p_2$ of $\mathbb{F}[2^8]$ is CPU-heavy and slow:
 - 1. We do the 7-degree polynomial multiplication $p_1 \times p_2$.
 - 2. We take the modulo by a special polynomial $(p_1 \times p_2) \mod p$.

XOR-based EC is one way to vanish \cdot of $\mathbb{F}[2^8]$.

▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.
 - There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}[2^8] o 8$ $\mathbb{F}[2]$ | I.e.,

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.
- lacksquare There is an injective ring homomorphism $\mathcal{B}:\mathbb{F}[2^8] o 8$ $\mathbb{F}[2]$ | I.e.,

$$\forall x, y \in \mathbb{F}[2^8]. \begin{cases} x + y = \mathcal{B}^{-1}(\mathcal{B}(x) + \mathcal{B}(y)), \\ x \cdot y = \mathcal{B}^{-1}(\mathcal{B}(x) \times \mathcal{B}(y)) \end{cases}$$

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in \mathbb{F}[2]$.
- lacksquare There is an injective ring homomorphism $\mathcal{B}:\mathbb{F}[2^8] o 8$ $\mathbb{F}[2]$ l.e.,

$$\forall x, y \in \mathbb{F}[2^8]. \left\{ \begin{array}{l} x + y = \mathcal{B}^{-1}(\mathcal{B}(x) + \mathcal{B}(y)), \\ x \cdot y = \mathcal{B}^{-1}(\mathcal{B}(x) \times \mathcal{B}(y)) \end{array} \right.$$

Prop: Emulate $\mathcal{W}^{-1} \times (\mathcal{W} \times D) = D$ in the $\mathbb{F}[2]$ world

$$\mathcal{B}(\mathcal{W}^{-1}) \overset{\mathbb{F}[2]}{\times} (\mathcal{B}(\mathcal{W}) \overset{\mathbb{F}[2]}{\times} \widetilde{D}) = \mathcal{B}(\mathcal{W}^{-1} \times \mathcal{W}) \times \widetilde{D} = \widetilde{D}.$$

- ▶ 1-byte and 8-bits are isomorphic: $x \in \mathbb{F}[2^8] \cong \widetilde{x} \in 8$ $\mathbb{F}[2]$.
- There is an injective ring homomorphism $\mathcal{B}: \mathbb{F}[2^8] \to 8$ $\boxed{\mathbb{F}[2]}$ $\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \times_{\mathbb{F}[2^8]} \begin{pmatrix} d_1 & \cdots \\ d_2 & \cdots \end{pmatrix} = \begin{pmatrix} x_1 \cdot d_1 + x_2 \cdot d_2 & \cdots \\ x_3 \cdot d_1 + x_4 \cdot d_4 & \cdots \end{pmatrix}$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 1 & 1 & \cdots \\ 0 & 1 & 1 & 0 & \cdots \\ 1 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vec{x}_3 \\ \vec{x}_4 \\ \vdots \end{pmatrix} = \begin{pmatrix} \vec{x}_1 \oplus \vec{x}_2 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_3 \oplus \vec{x}_4 \oplus \cdots \\ \vec{x}_2 \oplus \vec{x}_3 \oplus \cdots \\ \vec{x}_1 \oplus \vec{x}_4 \oplus \cdots \\ \vdots \\ \vdots \end{pmatrix}$$

 \oplus is byte-array XOR.

Comparing MM over $\mathbb{F}[2^8]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$ ightharpoonspice \mathbf{RS}(10,4)$ by $\mathbb{F}[2^8]$	$oxed{\mathbf{RS}(10,4)}$ by $\mathbb{F}[2]$
Number of Core Operation	\mathcal{V} : 14 $\boxed{\mathbb{F}[2^8]}$	$\mathcal{B}(\mathcal{V})$: 112 $oxed{\mathbb{F}[2]}$
Speed of Core Operation	$+$ of $\mathbb{F}[2^8]$ is fast \cdot of $\mathbb{F}[2^8]$ is slow	bytevec-XOR ⊕ is fast (SIMDable)

Comparing MM over $\mathbb{F}[2^8]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$ ightharpoonup \mathbf{RS}(10,4)$ by $\mathbb{F}[2^8]$	$oxed{\mathbf{RS}(10,4)}$ by $\mathbb{F}[2]$
Number of Core Operation	\mathcal{V} : 14 $\boxed{\mathbb{F}[2^8]}$	$\mathcal{B}(\mathcal{V})$: 112 $oxed{\mathbb{F}[2]}$
Speed of Core Operation	$+$ of $\mathbb{F}[2^8]$ is fast \cdot of $\mathbb{F}[2^8]$ is slow	bytevec-XOR ⊕ is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB/s	$\mid ISA ext{-}L^{\clubsuit} \ \mathbb{F}[2^8]$	State-of-the-art $\P[2]$	
RS(10, 4)	6.79	4.94	
RS(10, 3) RS(9, 3)	6.78	6.15	
RS(9, 3)	7.31	6.17	

- ISA-L: Intel's EC library https://github.com/intel/isa-l
- T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques.

Comparing MM over $\mathbb{F}[2^8]$ and MM over $\mathbb{F}[2]$ for Encoding

Trade-off in Matrix Multiplication	$ ightharpoonup \mathbf{RS}(10,4)$ by $\mathbb{F}[2^8]$	$oxed{\mathbf{RS}(10,4)}$ by $\mathbb{F}[2]$
Number of Core Operation	\mathcal{V} : 14 $\boxed{\mathbb{F}[2^8]}$	$\mathcal{B}(\mathcal{V})$: 112 $oxed{\mathbb{F}[2]}$
Speed of Core Operation	$+$ of $\mathbb{F}[2^8]$ is fast \cdot of $\mathbb{F}[2^8]$ is slow	bytevec-XOR ⊕ is fast (SIMDable)

Encoding Throughput Comparison (on Intel CPU):

GB/s	$\mid ISA\text{-}L^{\clubsuit} \ \mathbb{F}[2^8]$	State-of-the-art $\P[2]$	$ig $ Ours(New!) $\mathbb{F}[2]$ $ig $
RS(10, 4)	6.79	4.94	8.92
RS(10, 3) RS(9, 3)	6.78	6.15	11.78
RS(9, 3)	7.31	6.17	11.97

- ISA-L: Intel's EC library https://github.com/intel/isa-l
 - T. Zhou & C. Tian. 2020. Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques.

Our Contribution:

Optimizing Bitmatrix Multiplication

as

Program Optimization Problem

MM over $\mathbb{F}[2] = \mathsf{Running} \ \mathsf{Straight} \ \mathsf{Line} \ \mathsf{Program}$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix}$$

$$P(a, b, c, d)$$

$$v_1 \leftarrow a \oplus b;$$

$$v_2 \leftarrow a \oplus b \oplus c;$$

$$v_3 \leftarrow b \oplus c \oplus d;$$

$$\mathsf{return}(v_1, v_2, v_3)$$

MM over $\mathbb{F}[2] = \text{Running Straight Line Program}$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \vec{a} \oplus \vec{b} \\ \vec{a} \oplus \vec{b} \oplus \vec{c} \\ \vec{b} \oplus \vec{c} \oplus \vec{d} \end{pmatrix}$$

MM over $\mathbb{F}[2] = \mathsf{Running} \ \mathsf{Straight} \ \mathsf{Line} \ \mathsf{Program}$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \vec{a} \oplus \vec{b} \\ \vec{a} \oplus \vec{b} \oplus \vec{c} \\ \vec{b} \oplus \vec{c} \oplus \vec{d} \end{pmatrix}$$

$$\begin{array}{ll} P(a,b,c,d) & & \\ \hline v_1 \leftarrow a \oplus b; & & \\ v_2 \leftarrow a \oplus b \oplus c; & & \\ v_3 \leftarrow b \oplus c \oplus d; & & \\ return(v_1,v_2,v_3) & & \\ \end{array}$$

★ "Bitmatrix as SLP" is not a new idea (See. Boyar+ 2008)

MM over $\mathbb{F}[2] = \text{Running Straight Line Program}$

We identify bitmatrix multiplication as straight line program (SLP):

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \times_{\mathbb{F}[2]} \begin{pmatrix} \vec{a} \\ \vec{b} \\ \vec{c} \\ \vec{d} \end{pmatrix} = \begin{pmatrix} \vec{a} \oplus \vec{b} \\ \vec{a} \oplus \vec{b} \oplus \vec{c} \\ \vec{b} \oplus \vec{c} \oplus \vec{d} \end{pmatrix}$$

$$\begin{array}{c} P(a,b,c,d) \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow b \oplus c \oplus d; \\ \text{return}(v_1,v_2,v_3) \end{array} = \begin{bmatrix} P \end{bmatrix} = \mathsf{return}(v_1,v_2,v_3) \\ = \left\langle a \oplus b, \\ a \oplus b \oplus c, \\ b \oplus c \oplus d \right\rangle \\ \mathsf{return}(v_1,v_2,v_3) \end{array}$$

- ★ "Bitmatrix as SLP" is not a new idea (See. Boyar+ 2008)
- ▶ SLP only allow assignments with one kind *binary* operator \oplus .
- SLP do not have functions, if-branchings, and while-loop, etc.

$$\frac{P \quad \#_{\oplus} = 8}{v_1 \leftarrow a \oplus b;} \\
v_2 \leftarrow a \oplus b \oplus c; \\
v_3 \leftarrow a \oplus b \oplus c \oplus d; \\
v_4 \leftarrow b \oplus c \oplus d;$$

$$return(v_1, v_2, v_3, v_4)$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array} \Longrightarrow \\ \text{return}(v_1, v_2, v_3, v_4)$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array} \Longrightarrow \begin{array}{c} Q \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow v_1 \oplus c; \\ \hline \end{array}$$

$$return(v_1, v_2, v_3, v_4)$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array} \Longrightarrow \begin{array}{c} Q \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow v_1 \oplus c; \\ v_3 \leftarrow v_2 \oplus d; \\ \hline \text{return}(v_1, v_2, v_3, v_4) \end{array}$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \\ \end{array} \qquad \Longrightarrow \begin{array}{c} Q \quad \#_{\oplus} = 4 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow v_1 \oplus c; \\ v_3 \leftarrow v_2 \oplus d; \\ v_4 \leftarrow v_3 \oplus a; \\ \hline \vdots (a \oplus b \oplus c \oplus d) \oplus a = b \oplus c \oplus d. \\ \hline \text{return}(v_1, v_2, v_3, v_4) \end{array}$$

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \\ \end{array} \qquad \Longrightarrow \begin{array}{c} Q \quad \#_{\oplus} = 4 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow v_1 \oplus c; \\ v_3 \leftarrow v_2 \oplus d; \\ v_4 \leftarrow v_3 \oplus a; \\ \hline \vdots (a \oplus b \oplus c \oplus d) \oplus a = b \oplus c \oplus d. \\ \hline \text{return}(v_1, v_2, v_3, v_4) \end{array}$$

- ightharpoonup P and Q are equivalent: $[\![P]\!] = [\![Q]\!].$
- ▶ Intuitively, Q ($\#_{\oplus}(Q) = 4$) runs faster than P ($\#_{\oplus}(P) = 8$).

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \\ \end{array} \Rightarrow \begin{array}{c} Q \quad \#_{\oplus} = 4 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow v_1 \oplus c; \\ v_3 \leftarrow v_2 \oplus d; \\ v_4 \leftarrow v_3 \oplus a; \\ \hline \vdots \quad (a \oplus b \oplus c \oplus d) \oplus a = b \oplus c \oplus d. \\ \hline \text{return}(v_1, v_2, v_3, v_4) \\ \end{array}$$

- ightharpoonup P and Q are equivalent: $[\![P]\!] = [\![Q]\!].$
- Intuitively, Q ($\#_{\oplus}(Q) = 4$) runs faster than P ($\#_{\oplus}(P) = 8$). Question. For a given SLP P, can we quickly find the most efficient equivalent SLP Q?

Optimization Metric $\#_{\oplus}(_{-})$: the number of XORs.

$$\begin{array}{c} P \quad \#_{\oplus} = 8 \\ \hline v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ \hline v_4 \leftarrow b \oplus c \oplus d; \\ \end{array} \implies \begin{array}{c} Q \quad \#_{\oplus} = 4 \\ \hline v_1 \leftarrow a \oplus b; \\ \hline v_2 \leftarrow v_1 \oplus c; \\ \hline v_3 \leftarrow v_2 \oplus d; \\ \hline v_4 \leftarrow v_3 \oplus a; \\ \hline \vdots \quad (a \oplus b \oplus c \oplus d) \oplus a = b \oplus c \oplus d. \\ \hline \text{return}(v_1, v_2, v_3, v_4) \\ \end{array}$$

- ightharpoonup P and Q are equivalent: $[\![P]\!] = [\![Q]\!].$
- Intuitively, Q ($\#_{\oplus}(Q) = 4$) runs faster than P ($\#_{\oplus}(P) = 8$).

Theorem (Boyar+ 2013)

Unless $\mathbf{P} = \mathbf{NP}$, for a given SLP P, in polynomial time, we cannot find Q such that $[\![P]\!] = [\![Q]\!]$ and minimizes $\#_{\oplus}(Q)$.

Originally, RePAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

Originally, RePAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePAIR =**Repeat** PAIR. The key operation is PAIR:

$$\begin{array}{c} v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow \mathbf{a} \oplus b \oplus c; \\ v_3 \leftarrow \mathbf{a} \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \\ \#_{\oplus} = 8 \end{array} \xrightarrow{\text{PAIR}(\mathbf{a}, \mathbf{c})} \begin{array}{c} \underline{t_1} \leftarrow \mathbf{a} \oplus c; \\ v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow t_1 \oplus b; \\ v_3 \leftarrow t_1 \oplus b \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array}$$

Originally, RePair is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- ▶ Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePAIR =**Repeat** PAIR. The key operation is PAIR:

$$\begin{array}{c} v_{1} \leftarrow a \oplus b; \\ v_{2} \leftarrow a \oplus b \oplus c; \\ v_{3} \leftarrow a \oplus b \oplus c \oplus d; \\ v_{4} \leftarrow b \oplus c \oplus d; \\ \#_{\oplus} = 8 \end{array} \xrightarrow{PAIR(\mathbf{Q}, \mathbf{C})} \begin{array}{c} t_{1} \leftarrow a \oplus c; \\ v_{1} \leftarrow a \oplus b; \\ v_{1} \leftarrow a \oplus b; \\ v_{2} \leftarrow t_{1} \oplus b; \\ v_{2} \leftarrow t_{1} \oplus b \oplus d; \\ v_{3} \leftarrow t_{1} \oplus b \oplus d; \\ v_{4} \leftarrow b \oplus c \oplus d; \end{array}$$

How do we choose a pair of terms to do pairing?

Our Heuristic: Grammar Compression Algorithm RePAIR

Originally, RePair is an algorithm to compress context-free grammars.

We use it identifying SLPs as commutative CFGs.

- ▶ Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePair =**Repeat** Pair. The key operation is Pair:

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow a \oplus b \oplus c;$$

$$v_{3} \leftarrow a \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

$$\#_{\oplus} = 8$$

$$v_{1} \leftarrow a \oplus c;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{1} \leftarrow a \oplus b;$$

$$v_{2} \leftarrow t_{1} \oplus b;$$

$$v_{2} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{3} \leftarrow t_{1} \oplus b \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

How do we choose a pair of terms to do pairing? *Greedy*.

$$v_{1} \leftarrow \mathbf{a} \oplus b;$$

$$v_{2} \leftarrow \mathbf{a} \oplus b \oplus c;$$

$$v_{3} \leftarrow \mathbf{a} \oplus b \oplus c \oplus d;$$

$$v_{4} \leftarrow b \oplus c \oplus d;$$

Originally, RePAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- ▶ Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePAIR =**Repeat** PAIR. The key operation is PAIR:

$$\begin{array}{c} v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \\ \#_{\oplus} = 8 \end{array} \xrightarrow{\text{PAIR}(\mathbf{C}, \mathbf{C})} \begin{array}{c} \underline{t_1} \leftarrow a \oplus c; \\ v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow t_1 \oplus b; \\ v_3 \leftarrow t_1 \oplus b \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array}$$

$$\begin{array}{c|c} \underline{t_1 \leftarrow \mathbf{a} \oplus b;} \\ \hline v_2 \leftarrow t_1 \oplus c; \\ v_3 \leftarrow t_1 \oplus c \oplus d; \\ \hline v_4 \leftarrow b \oplus c \oplus d; \end{array} \xrightarrow{\text{PAIR}(t_1,c)} \begin{array}{c} t_1 \leftarrow a \oplus b; \\ \hline t_2 \leftarrow t_1 \oplus c; \\ \hline v_3 \leftarrow t_2 \oplus d; \\ \hline v_4 \leftarrow b \oplus c \oplus d; \end{array} \xrightarrow{\text{PAIR}(b,c)} \begin{array}{c} t_1 \leftarrow a \oplus b; \\ t_2 \leftarrow t_1 \oplus c; \\ \hline v_3 \leftarrow t_2 \oplus d; \\ \hline v_4 \leftarrow b \oplus c \oplus d; \end{array} \xrightarrow{\text{PAIR}(b,c)} \begin{array}{c} t_1 \leftarrow a \oplus b; \\ t_2 \leftarrow t_1 \oplus c; \\ \hline v_3 \leftarrow b \oplus c; \\ \hline v_4 \leftarrow t_3 \oplus d; \\ \hline v_4 \leftarrow t_3 \oplus d; \end{array}$$

Our Heuristic: Grammar Compression Algorithm RePAIR

Originally, RePAIR is an algorithm to compress context-free grammars. We use it identifying SLPs as commutative CFGs.

- Larsson & Moffat. 1999. Offline dictionary-based compression
- ▶ Paar. 1997. Optimized arithmetic for Reed-Solomon encoders

RePAIR =**Repeat** PAIR. The key operation is PAIR:

$$\begin{array}{c} v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow a \oplus b \oplus c; \\ v_3 \leftarrow a \oplus b \oplus c \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \\ \#_{\oplus} = 8 \end{array} \xrightarrow{\text{PAIR}(\mathbf{0}, \mathbf{C})} \begin{array}{c} \underline{t_1} \leftarrow a \oplus c; \\ v_1 \leftarrow a \oplus b; \\ v_2 \leftarrow t_1 \oplus b; \\ v_3 \leftarrow t_1 \oplus b \oplus d; \\ v_4 \leftarrow b \oplus c \oplus d; \end{array}$$

The commutative version of REPAIR accommodates

Commutativity:
$$x \oplus y = y \oplus x$$
, Associativity: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$.

In the paper, we extend it to XORREPAIR by accommodating Cancellativity: $x \oplus x \oplus y = y$.

Optimization Metric: $\#_{mem}(_{-})$ = the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}}\Big(\quad v \leftarrow A \oplus B \oplus C \oplus D \quad\Big) = ?$$

Optimization Metric: $\#_{mem}(_{-})$ = the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}}\Big(\quad v \leftarrow A \oplus B \oplus C \oplus D \quad\Big) = 9$$

because each \oplus issues two read and one write:

$$t_1 \leftarrow A \oplus B; \quad t_2 \leftarrow t_1 \oplus C; \quad v \leftarrow t_2 \oplus D;$$

Optimization Metric: $\#_{mem}(_{-})$ = the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}} \left(v \leftarrow A \oplus B \oplus C \oplus D \right) = 9$$

because each \oplus issues two read and one write:

$$t_1 \leftarrow A \oplus B; \quad t_2 \leftarrow t_1 \oplus C; \quad v \leftarrow t_2 \oplus D;$$

 t_1 and t_2 are wasteful: they are released immediately after allocated.

To reduce such wastefulness, we extend SLP to Multi SLP, which allows n-arity XORs.

Optimization Metric: $\#_{mem}(\)=$ the number of memory access.

Quiz: How many times will this program access memory?

$$\#_{\mathsf{mem}} \left(v \leftarrow A \oplus B \oplus C \oplus D \right) = 9$$

because each \oplus issues two read and one write:

$$t_1 \leftarrow A \oplus B; \quad t_2 \leftarrow t_1 \oplus C; \quad v \leftarrow t_2 \oplus D;$$

```
 \begin{array}{lll} \oplus_4(A,\,B,\,C,\,D\colon [\mathrm{byte}]) \; \{ \\ \mathrm{var} \; v = \mathrm{Array}\colon \mathrm{new}(A.\mathrm{len}) \, ; \\ v \leftarrow \oplus_4(A,B,C,D); & \mathrm{byte} \; r = A[i] \; \widehat{} \; B[i] \\ \mathrm{r} \; = \; r \; \widehat{} \; C[i]; \\ v[i] = \; r \; \widehat{} \; D[i]; \\ \mathrm{return} \; v; \\ \} \end{array}
```

New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time) find an equivalent and most memory efficient Q w.r.t. $\#_{mem}$?

$$P: \begin{array}{c} v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(P) = 24 \end{array}$$

New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time) find an equivalent and most memory efficient Q w.r.t. $\#_{mem}$?

$$P: \begin{array}{c} v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(P) = 24 \end{array} \implies \begin{array}{c} t \leftarrow \oplus_4(a,b,c,d); \\ v_1 \leftarrow t \oplus e; \\ v_2 \leftarrow t \oplus f; \\ \#_{\mathsf{mem}}(Q) = 11 \end{array}$$

New Metric and Memory Optimization Problem

From a given P, can we quickly (= in polynomial time) find an equivalent and most memory efficient Q w.r.t. $\#_{mem}$?

$$P: \begin{array}{c} v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \\ \#_{\mathsf{mem}}(P) = 24 \end{array} \implies \begin{array}{c} t \leftarrow \oplus_4(a,b,c,d); \\ v_1 \leftarrow t \oplus e; \\ v_2 \leftarrow t \oplus f; \\ \#_{\mathsf{mem}}(Q) = 11 \end{array}$$

Unfortunately, we showed the following intractability result:

Theorem (Our NEW theoretical result)

Unless P = NP, for a given SLP P, in polynomial time, we cannot find Q that $[\![P]\!] = [\![Q]\!]$ and minimizes $\#_{mem}(Q)$.

```
\begin{array}{c} \alpha \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots \\ \beta \leftarrow \oplus(y_1,\ldots,\alpha,\ldots,y_m) \end{array} \xrightarrow{\text{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ \stackrel{}{\not \simeq} \alpha \text{ appears once in the program} \end{array}
```

$$\begin{array}{ll} \pmb{\alpha} \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots & \xrightarrow{\text{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ \Rightarrow \alpha \text{ appears once in the program} \end{array}$$

$$v_{1} \leftarrow a \oplus b \oplus c \oplus d \oplus e; v_{2} \leftarrow a \oplus b \oplus c \oplus d \oplus f; \#_{mem}(24)$$

$$t_{2} \leftarrow t_{1} \oplus c; t_{3} \leftarrow t_{2} \oplus d; v_{1} \leftarrow t_{3} \oplus e; v_{2} \leftarrow t_{3} \oplus f; v_{2} \leftarrow t_{3} \oplus f; \#_{mem}(25)$$

$$t_{3} \leftarrow t_{2} \oplus d; v_{1} \leftarrow t_{3} \oplus e; v_{2} \leftarrow t_{3} \oplus f; \#_{mem}(27)$$

$$t_{3} \leftarrow t_{2} \oplus d; v_{1} \leftarrow t_{3} \oplus e; v_{2} \leftarrow t_{3} \oplus f; \#_{mem}(27)$$

$$t_{3} \leftarrow t_{2} \oplus d; v_{2} \leftarrow t_{3} \oplus f; \#_{mem}(27)$$

$$t_{1} \leftarrow a \oplus b;$$

$$t_{2} \leftarrow t_{1} \oplus c;$$

$$t_{3} \leftarrow t_{2} \oplus d; \qquad \text{fuse}(t_{1})$$

$$v_{1} \leftarrow t_{3} \oplus e;$$

$$v_{2} \leftarrow t_{3} \oplus f;$$

$$\#_{mem}(15)$$

$$t_{2} \leftarrow \oplus_{3}(a, b, c);$$

$$t_{3} \leftarrow t_{2} \oplus d;$$

$$v_{1} \leftarrow t_{3} \oplus e;$$

$$v_{2} \leftarrow t_{3} \oplus f;$$

$$\#_{mem}(13)$$

$$\begin{array}{c} \pmb{\alpha} \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots & \xrightarrow{\text{fuse}} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ \not \stackrel{}{\Rightarrow} \alpha \text{ appears once in the program} \end{array}$$

```
t_1 \leftarrow a \oplus b:
                                                                                                                                                                   t_2 \leftarrow \oplus_3(a,b,c);
                                                                                                  t_2 \leftarrow t_1 \oplus c:
v_1 \leftarrow a \oplus b \oplus c \oplus d \oplus e; \qquad t_2 \leftarrow t_1 \oplus c, \qquad t_3 \leftarrow t_2 \oplus d; \\ v_2 \leftarrow a \oplus b \oplus c \oplus d \oplus f; \xrightarrow{\text{REPAIR}} \qquad t_3 \leftarrow t_2 \oplus d; \xrightarrow{\text{fuse}(t_1)} \qquad v_1 \leftarrow t_3 \oplus e;
                                                                           v_1 \leftarrow t_3 \oplus e;
                                        \#_{mem}(24)
                                                                                                                                                                   v_2 \leftarrow t_3 \oplus f:
                                                                                                  v_2 \leftarrow t_3 \oplus f:
                                                                                                                                                                                     \#_{mem}(13)
                                                                                                          \#_{\mathsf{mem}}(15)
                                    t_3 \leftarrow \bigoplus_4 (a, b, c, d);
                                 v_1 \leftarrow t_3 \oplus e;
v_2 \leftarrow t_3 \oplus f;
                                                             \#_{\mathsf{mem}}(11)
```

$$\begin{array}{c} \pmb{\alpha} \leftarrow \oplus(x_1,\ldots,x_n); \\ \vdots \\ \pmb{\beta} \leftarrow \oplus(y_1,\ldots,\alpha,\ldots,y_m) \\ & \stackrel{\mathsf{fuse}}{\Rightarrow} \beta \leftarrow \oplus(y_1,\ldots,x_1,\ldots,x_n,\ldots,y_m) \\ & \stackrel{}{\Rightarrow} \alpha \text{ appears once in the program} \end{array}$$

Metric $\#_{\mathsf{I/O}}(K, _)$: the total number of $\mathsf{I/O}$ transfers between memory and cache of K-capacity.

Metric $\#_{I/O}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- \rightarrow $\mathcal{H}(x)$: Cache Hit for an element x. $\#_{\mathsf{I/O}} = 0$.
- $ightharpoonup \mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Metric $\#_{I/O}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- \rightarrow $\mathcal{H}(x)$: Cache Hit for an element x. $\#_{I/O} = 0$.
- \triangleright $\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

```
v_1 \leftarrow A \oplus B; *_1 *_2 *_3 *_4 v_2 \leftarrow \oplus (E, D, A); v_3 \leftarrow v_1 \oplus E; v_4 \leftarrow v_1 \oplus C; return(v_2, v_3, v_4);
```

Metric $\#_{\text{I/O}}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

 $return(v_2, v_3, v_4);$

- \rightarrow $\mathcal{H}(x)$: Cache Hit for an element x. $\#_{I/O} = 0$.
- \triangleright $\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$v_1 \leftarrow A \oplus B;$$
 $*_1 *_2 *_3 *_4 \xrightarrow{\mathcal{R}(A)} *_2 *_3 *_4 A$
 $v_2 \leftarrow \oplus (E, D, A);$
 $v_3 \leftarrow v_1 \oplus E;$
 $v_4 \leftarrow v_1 \oplus C;$

Metric $\#_{\mathrm{I/O}}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{\mathsf{I/O}} = 0$.
- \triangleright $\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$v_{1} \leftarrow A \oplus B; \qquad *_{1} *_{2} *_{3} *_{4} \xrightarrow{\mathcal{R}(A)} *_{2} *_{3} *_{4} A \xrightarrow{\mathcal{R}(B)} *_{3} *_{4} A B$$

$$v_{2} \leftarrow \oplus (E, D, A);$$

$$v_{3} \leftarrow v_{1} \oplus E;$$

 $\mathsf{return}(v_2, v_3, v_4);$

 $v_4 \leftarrow v_1 \oplus C$:

Metric $\#_{\text{I/O}}(K, _)$: the total number of I/O transfers between memory andf cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{\mathsf{I/O}} = 0$.
- \triangleright $\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{I/O}} = 2$.
- \blacktriangleright $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{\mathsf{I/O}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

$$v_1 \leftarrow A \oplus B;$$
 $*_1 *_2 *_3 *_4 \xrightarrow{\mathcal{R}(A)} *_2 *_3 *_4 A \xrightarrow{\mathcal{R}(B)} *_3 *_4 A B \xrightarrow{\mathcal{W}(v_1)} 1$

$$v_2 \leftarrow \oplus (E, D, A);$$
 $*_4 A B v_1$

$$v_3 \leftarrow v_1 \oplus E;$$

$$v_4 \leftarrow v_1 \oplus C;$$

 $\mathsf{return}(v_2, v_3, v_4);$

Metric $\#_{I/O}(K, _)$: the total number of I/O transfers between memory and cache of K-capacity.

We have three kinds of operations for cache:

- $ightharpoonup \mathcal{H}(x)$: Cache Hit for an element x. $\#_{1/Q} = 0$.
- \triangleright $\mathcal{R}(x)$: Cache miss. Evict LRU to mem. and read x from mem. $\#_{\mathsf{L}/\mathsf{O}} = 2$.
- $\mathcal{W}(x)$: Cache miss. Evict LRU to mem. and write x to cache. $\#_{1/\mathbb{Q}} = 1$.

Example: Calculate $\#_{I/O}(4, P)$ for the following example SLP P:

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{\rm I/O}.$

We do Recycling variables by Register assignment.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{I/O}$.

We do Recycling variables by Register assignment.

First approach: Register Assignment

Idea: Reducing the number of variables can relax the pressure of cache, and thus may reduce $\#_{I/O}$.

We do Recycling variables by Register assignment.

$$\begin{array}{c} \#_{\text{I/O}} \\ v_1 \leftarrow A \oplus B; \quad [5] \\ v_2 \leftarrow \oplus(E,D,A); \quad [7] \\ v_3 \leftarrow v_1 \oplus E; \quad [5] \\ \hline v_4 \leftarrow v_1 \oplus C; \quad [3] \\ \hline \\ return(v_2,v_3,\textcolor{red}{v_4}); \\ \hline \\ \frac{\mathcal{R}(v_1)}{0} v_2 E v_3 v_1 & \frac{\mathcal{R}(C)}{2} E v_3 v_1 C & \frac{\mathcal{W}(v_4)}{0} E v_3 C v_1 \\ \hline \\ \frac{\mathcal{R}(v_1)}{0} v_2 E v_3 v_1 & \frac{\mathcal{R}(C)}{2} E v_3 v_1 C & \frac{\mathcal{W}(v_1)}{0} E v_3 C v_1 \\ \hline \\ \frac{\mathcal{R}(v_1)}{0} v_2 E v_3 v_1 & \frac{\mathcal{R}(C)}{2} E v_3 v_1 C & \frac{\mathcal{W}(v_1)}{0} E v_3 C v_1 \\ \hline \end{array}$$

It works, but the effect is so limited.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

Using *Pebble Game*, we can integrate $\begin{cases} Recycling Variables and Reordering \end{cases}$

★ R. Sethi, 1975, Complete register allocation problems.

Next Approach: Reordering Statements and Arguments

No side effects on SLPs; thus, we can reorder statements and arguments.

Using *Pebble Game*, we can integrate

- ★ R. Sethi, 1975, Complete register allocation problems.
- ▶ We play the pebble game on DAGs or abstract syntax graphs.
- We aim to put pebbles in return nodes.

Recycling Variables and

 ${\it Playing} \ {\it Pebble} \ {\it Game} = {\it Deciding} \ {\it Evaluation} \ {\it Order} + {\it Variable} \ {\it Recycling}$

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

Example: Evaluating strategy based on Depth-first-search

1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.

 ${\it Playing} \ {\it Pebble} \ {\it Game} = {\it Deciding} \ {\it Evaluation} \ {\it Order} + {\it Variable} \ {\it Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote $\overline{v_2}$ is visited.

 $\textit{Playing} \ \mathsf{Pebble} \ \mathsf{Game} = \mathsf{Deciding} \ \mathsf{Evaluation} \ \mathsf{Order} + \mathsf{Variable} \ \mathsf{Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- $oldsymbol{2}$. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- **4**. Choose v_3 from 2 unvisited roots, and first visit E.

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- **4**. Choose v_3 from 2 unvisited roots, and first visit E.
- 5. Visit the unvisited child v_1 of v_3 , evaluate, and pebble p_2

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling

$$v_2: p_1 \leftarrow \oplus (A, D, E);$$

$$v_1: p_2 \leftarrow A \oplus B;$$

 $v_3: p_3 \leftarrow E \oplus p_2;$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- **4**. Choose v_3 from 2 unvisited roots, and first visit E.
- 5. Visit the unvisited child v_1 of v_3 , evaluate, and pebble p_2
- **6**. Back to v_3 and pebble p_3

 ${\it Playing} \ {\it Pebble} \ {\it Game} = {\it Deciding} \ {\it Evaluation} \ {\it Order} + {\it Variable} \ {\it Recycling}$

- 1. Choose v_2 from unvisited roots: alphabetical small $v_2 \prec v_3 \prec v_4$.
- 2. Evaluate the children of v_2 in alphabetical order.
- 3. Put a pebble p_1 on v_2 to denote v_2 is visited.
- 4. Choose v_3 from 2 unvisited roots, and first visit E.
- 5. Visit the unvisited child v_1 of v_3 , evaluate, and pebble p_2
- 6. Back to v_3 and pebble p_3
- 7. Finally, we compute v_4 with moving/recycling pebble p_2 .

Playing Pebble Game = Deciding Evaluation Order + Variable Recycling $\#_{1/0}$

Example: Evaluating strategy based on Depth-first-search

Can we find the best reordering and pebbling in polynomial time?

Theorem (Sethi 1975, Papp & Wattenhofer 2020)

Unless $\mathbf{P} = \mathbf{NP}$, for a given P, in polynomial time, we cannot find a Q that $[\![P]\!] = [\![Q]\!]$ and minimizes $\#_{I/O}(Q)$.

We use DFS-based strategy as above in our evaluation.

Evaluation

Data Set & Evaluation Environment

We consider RS(10, 4) as an example data set.

- ▶ We have 1-encoding SLP P_{enc} .
- We have $\binom{14}{4} = 1001$ decoding SLPs.

We used two environments in my paper:

name	CPU	Clock	Core	RAM
intel	i7-7567U	4.0GHz	2	DDR3-2133 16GB
amd	Ryzen 2600	3.9GHz	6	DDR4-2666 48GB

In a distributed computation, our test environments correspond to single nodes.

Throughput is Avg. of 1000-runs for 10MB randomly generated data

I hroughput is Avg. of 1000-runs for 10101B randomly generated data						
Metric	Base P_{enc}	RePair	RePair + Fuse	RePair + Fuse + Pebbling		
# _⊕	755	 				
#mem	2265					

improvements by neuristics for the encouning 321 on interior						
Throughput is Avg. of 1000-runs for 10MB randomly generated data						
Metric	${\sf Base} \\ P_{\sf enc}$	 RePair	RePair + Fuse	RePair + Fuse + Pebbling		
$\#_{\oplus}$	755	 				
$\#_{mem}$	2265					
$\mathcal{B} = 512$: $\#_{I/O}(K = 64)$	570					
$\mathcal{B} = 1 K : \ \#_{I/O}(K = 32)$	1262	 				

#
$$_{\oplus}$$
 755 | # $_{mem}$ 2265 | $\mathcal{B} = 512:$ # $_{I/O}(K = 64)$ 570 | $\mathcal{B} = 1$ K:

1598

 $\mathcal{B} = 2\mathsf{K}$: $\#_{\mathsf{I/O}}(K = 16)$

Throughput is Avg. of 1000-runs for 10MB randomly generated data

B-Byte Blocking for Cache Efficiency

$$\mathcal{B} = \begin{array}{c} \text{for } i \leftarrow 0 \; .. \; (A \ldotp \mathsf{len} \, / \mathcal{B}) \; \{ \\ v_1 = \mathsf{xor}(A, B); & v_1^{[i]} = \mathsf{xor}(A^{[i]}, B^{[i]}); \\ v_2 = \mathsf{xor}(v_1, C, D); \implies v_2^{[i]} = \mathsf{xor}(v_1^{[i]}, C^{[i]}, D^{[i]}); \\ \mathsf{return}(v_1, v_2); & \} \\ \mathsf{return}(v_1, v_2); & \\ \mathcal{B} = & \text{where } A^{[i]} \; \mathsf{is the} \; i\text{-th} \; \mathcal{B}\text{-bytes block}. \end{array}$$

$$\mathcal{B}$$
 = $\mathcal{B}=2\mathsf{K}: extstyle \#_{\mathsf{I/O}}(K=16)$ 1598

Improvements by heuristics for the encoding SLP on Intel PC						
Throughput is Avg. of 1000-runs for 10MB randomly generated data						
Metric	Base $P_{\sf enc}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling		
 #⊕	755					
$\#_{mem}$	2265					
$\#_{1/0}(K=64)$	570					

#
$$_{\oplus}$$
 755 | # $_{\text{mem}}$ 2265 | $\#_{\text{I/O}}(K=64)$ 570

]	'
	#mem	2265	
$\mathcal{B}=519$.	$\#_{I/O}(K=64)$	570	
$\mathcal{D}=012$.	Throughput (GB/s)	3.10	
$\mathcal{B}=1K$.	$\#_{I/O}(K=32)$	1262	
$\mathcal{D} = IR$.	Throughput (GB/s)	4.03	
	(77	4=00	l

4.45

Throughput (GB/s)

Throughput is Avg. of 1000-runs for 10MB randomly generated data

4.45

Throughput (GB/s)

Metric	Base $P_{\sf enc}$	RePair RePair + RePair + Fuse + Why smaller blocks are slower
# _⊕	755	than the large one?
$\#_{mem}$	2265	Pros: Smaller blocks,
$\mathcal{B} = 512$:	570	More cache-able blocks $\frac{32K}{\mathcal{B}}$.
$\mathcal{B}=512:$ Throughput (GB/s)	3.10	Cons: Smaller blocks,
$\mathcal{B} = 1K: \ ^{\#_{I/O}(K=32)}$	1262	 Due to cache conflicts, using — cache identically is more
Throughput (GB/s)	4.03	difficult.
$\mathcal{B}=2K: \ ^{\#_{I/O}(K=16)}$	1598	Latency penalty becomes totally large.
 .	4 45	

Improvements by heuristics for the encoding SLP on Intel PC						
Throughput is Avg. of 1000-runs for 10MB randomly generated data						
Metric	Base	RePair RePair		RePair + Fu		
	P_{enc}	l rect un	Fuse	Pebblir		
#⊕	755	385				
$\#_{mem}$	2265	1155				
$\mathcal{B} = 512$: $\#_{\text{I/O}}(K = 64)$	570					
<i>D</i> 012.	2.10					

Metric	Base P_{enc}	¦ RePair	RePair + Fuse	RePair + Fus Pebblin
# ₀	755	385		

3.10 1262

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

 $\mathcal{B} = 1 \text{K} : \ ^{\#_{\text{I/O}}}(K = 32)$

 $\mathcal{B}=2\mathsf{K}:\ ^{\#_{\mathsf{I/O}}}(K=16)$

1598

4.45

4.03

Improvements by heuristics for the encoding SLP on Intel PC					
Throughput is Avg. of 1000-runs for 10MB randomly generated data					
Metric	Base	RePair	RePair + Fuse	RePair + Fus	
	P_{enc}	rter an		Pebbling	
#⊕	755	385			
#mem	2265	1155			
$B - 512 \cdot \#_{I/O}(K = 64)$	570	1231			

3.10

1262

4.03

1598

4.45

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

 $\mathcal{B} = 1 \text{K} : \ ^{\#_{\text{I/O}}(K = 32)}$

 $\mathcal{B}=2\mathsf{K}$: $\#_{\mathsf{I/O}}(K=16)$

1599

ı	Improvements by heuristics for the encoding SLP on Intel PC					
	Throughput is Avg. of 1000-runs for 10MB randomly generated data					
	Metric	Base $P_{\sf enc}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling	
	$\#_{\oplus}$	755	385			
	$\#_{mem}$	2265	1155			
$\mathcal{B} = 512$.	$\mathcal{B} = 512: \#_{I/O}(K = 64)$	570	1231			
		2.10	4.10			

3.10

1262

4.03

1598

4.45

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

 $\mathcal{B} = 1 \mathsf{K}: \ ^{\#_{\mathsf{I/O}}(K=32)}$

 $\mathcal{B}=2\mathsf{K}$: $\#_{\mathsf{I/O}}(K=16)$

1231 4.18 1465

4.36

1599

4.86

improvements by neuristics for the encoding SEP on Intel PC							
	Throughput is Avg. of 1000-runs for 10MB randomly generated data						
_	Metric	Base P_{enc}	RePair	RePair + Fuse	RePair + Fuse + Pebbling		
	# _⊕	755	385	N/A			
	#mem	2265	1155	677			

570

3.10

1262

4.03

1598

4.45

1231

4.18

1465

4.36

1599

4.86

 $\mathcal{B} = 512$: $\#_{\mathsf{I/O}}(K = 64)$

 $\mathcal{B} = 1 \mathsf{K}: \ ^{\#_{\mathsf{I/O}}(K=32)}$

 $\mathcal{B}=2\mathsf{K}:\ ^{\#_{\mathsf{I/O}}}(K=16)$

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

Improvements by heuristics for the encoding SLP on Intel PC						
Throughput is Avg. of 1000-runs for 10MB randomly generated data						
Metric	Base	RePair	RePair + Fuse	RePair + Fuse + Pebbling		
IVICTIC	P_{enc}					
# _⊕	755	385	N/A			
$\#_{mem}$	2265	1155	677			
$\#_{I/O}(K = 64)$	570	1231	936			

3.10

1262

4.03

1598

4.45

4.18

1465

4.36

1599

4.86

1086

1144

B = 512:

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

 $\mathcal{B} = 1 \text{K} : \ ^{\#_{\text{I/O}}}(K = 32)$

 $\mathcal{B} = 2\mathsf{K}: \ ^{\#_{\mathsf{I/O}}}(K=16)$

improvements by neuristics for the encoding SLP on Intel PC								
Throughput is Avg. of 10	Throughput is Avg. of 1000-runs for 10MB randomly generated data							
Metric	Base $P_{\sf enc}$	RePair	RePair + Fuse	RePair + Fuse + Pebbling				
# _⊕	755	385	N/A					
$\#_{mem}$	2265	1155	677					

1231

4.18

1465

4.36

1599

4.86

936

6.98

1086

7.50

1144

7.12

3.10

1262

4.03

1598

4.45

 $\mathcal{B} = 512$: $\#_{\mathsf{I/O}}(K = 64)$ 570

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

 $\mathcal{B} = 1 \text{K} : \ ^{\#_{\text{I/O}}}(K = 32)$

 $\mathcal{B} = 2\mathsf{K}: \ ^{\#_{\mathsf{I/O}}}(K=16)$

improvements by neuristics for the encouning 321 on interior							
Throughput is Avg. of 1000-runs for 10MB randomly generated data							
Metric	Base P_{enc}	 RePair	RePair + Fuse	RePair + Fuse Pebbling			
# _⊕	755	385	N/A				
$\#_{mem}$	2265	1155	677				
$\mathcal{B} = 512$:	570	1231	936	636			

4.18

1465

4.36

1599

4.86

6.98

1086

7.50

1144

7.12

7.24

779

8.92

845

8.55

3.10

1262

4.03

1598

4.45

Throughput (GB/s)

Throughput (GB/s)

Throughput (GB/s)

 $\mathcal{B} = 1 \mathsf{K}$: $\#_{\mathsf{I/O}}(K = 32)$

 $\mathcal{B} = 2\mathsf{K}: \ ^{\#_{\mathsf{I/O}}}(K=16)$

Throughput Comparison (Intel + 1K-Blocking)

Enc	$\#_{mem}$	# _{I/O}	Ours	ISA-L v2.30	Zhou & Tian
RS(8,4)	543	585	$8.86~\mathrm{GB/s}$	$7.18~\mathrm{GB/s}$	$4.94~\mathrm{GB/s}$
RS(9,4)	611	671	8.83	6.91	N/A in their paper
RS(10,4)	677	779	8.92	6.79	4.94

$\overline{\mathsf{Throughput}\;\mathsf{Comparison}\;(\mathsf{Intel}\;+\;\mathsf{1K\text{-}Blocking})}$

Enc	$\#_{mem}$	# _{I/O}	Ours	ISA-L v2.30	Zhou & Tian
RS(8,4)	543	585	$8.86~\mathrm{GB/s}$	$7.18~\mathrm{GB/s}$	$4.94~\mathrm{GB/s}$
RS(9,4)	611	671	8.83	6.91	N/A in their paper
RS(10,4)	677	779	8.92	6.79	4.94

Dec	$\#_{mem}$	# _{I/O}	Ours	ISA-L v2.30	Zhou & Tian
RS(8,4)	747	811	$6.78~\mathrm{GB/s}$	$7.04~\mathrm{GB/s}$	$4.50~\mathrm{GB/s}$
RS(9,4)	829	968	6.71	6.58	N/A
RS(10,4)	923	1077	6.67	4.88	4.71

Conclusion (+ Other Throughput Scores)

intel 1K	Ours		ISA-L v 2.30		Zhou & Tian	
(GB/sec)	Enc	Dec	Enc	Dec	Enc	Dec
RS(8,3)	12.32	8.82	9.09	9.25	6.08	5.57
RS(9,3)	11.97	8.27	7.31	7.92	6.17	5.66
RS (10, 3)	11.78	8.89	6.78	7.93	6.15_{S}	5.90
RS(8,2)	18.79	14.59	12.99	13.34	8.13_{E}	8.07_{E}
RS(9,2)	18.93	14.27	11.85	12.03	8.34_{E}	8.04
RS(10, 2)	18.98	14.66	12.12	12.61	8.40_{E}	8.22_{E}

Conclusion

- ▶ We identified bitmatrix multiplication as straight line programs (SLP).
- ▶ We optimized XOR-based EC by optimizing SLPs using various program optimization techniques.
- ► Each of our techniques is not difficult; however, it suffices to match Intel's high performance library ISAL.
- ▶ As future work on cache optimization, I plan to accommodate multi-layer cache L1, L2, and L3 cache.