Infering the selective pressures acting on insertions and deletions in the great tit genome

Henry Barton

The University of Sheffield

22/08/18

Insertions and deletions

- ▶ short INDELs: sections of DNA < 50bp that are deleted or inserted in a genome
- deletion bias in most organisms
- deletions more deleterious than insertions

INDELs often overlooked

- Disproportionately occur in repetitive sequence
- Hard to align
- ▶ Often occur in hotspots
- ▶ 1/8 as frequent as SNPs in humans

(Earl et al., 2014; Montgomery et al., 2013)

The importance of INDELs in genome evolution

- ► Influence genome size:
 - ▶ low deletion rate → large genomes?
 - ▶ high deletion rate → compact genomes?
 - selection on insertions to maintain minimum intron size?
- Contribute more to sequence divergence, in terms of the number of base differences, than SNPs

(Britten, 2002; Leushkin and Bazykin, 2013; Nam and Ellegren, 2012; Ometto et al., 2005; Sun et al., 2012)

INDEL mutation

- ► Deletion bias in most organisms
- ▶ Polymerase slippage can explain majority of short INDEL events

INDEL selection

- Deletions
 - lower mean allele frequency
 - more deleterious
 - two breakpoints
- ▶ Insertions may be favoured:
 - elevated fixation probability
 - biased gene conversion
 - minimum intron size
 - polarisation error

Aims

Quantify how natural selection shapes INDEL diversity in the great tit (Parus major)

- 1. within coding regions
- 2. in non-coding regions

Advantages of an avian system

- Conserved karyotype and synteny good for alignments
- Genomes consist of few large macrochromosomes and many small microchromosomes
- ▶ Results in a highly dynamic recombination landscape power to associations with recombination

(van Oers et al., 2014; Stapley et al., 2008)

Data

Sample and pipeline

- ▶ 10 european great tit males (Corcoran et al., 2017)
- ▶ high coverage (44x)
- ▶ variant calling with GATK
- ▶ multispecies alignment between zebra finch, flycatcher and great tit
- parsimony based polarisation

A novel maximum likelihood approach

- takes the unfolded site frequency spectrum
- estimates for both insertions and deletions:
 - mutation rate $(\theta = 4N_e\mu)$
 - selection:
 - either selection coefficient ($\gamma = 4N_e s$)
 - or scale and shape paramater for distribution of fitness effects
 - polarisation error
- ► Controls for demography using neutral sites (Eyre-Walker et al., 2006)

(Barton and Zeng, 2018)

Regional variation in purifying selection

For SNPs: divergence = divergence estimate / 10

INDELs predominantly strongly deleterious

Evidence for linked selection

Getting the data - recombination rate

Association between diversity and recombination

Conclusion

- ▶ INDELs in genes mostly extremely deleterious 96%
- ▶ Remainder are weakly deletrious deletions more so
- ightharpoonup α estimate at 71% and 86% for insertions and deletions
- ▶ Regions adjacent to exons have reduced INDEL diversity genetic hitch-hiking
- Extends over relatively large distance 0-100kb
- Also areas of low recombination show reduced diversity

Next steps

▶ Intersting to investigate if reduced diversity is is due to postive selection or purrifying selection

