Higher Order Functions

COMPUDE Functional Programming

https://eduassistpro.github.io/
Combin ons
Add WeChat edu_assist_pro

Contents

Assignment Project Exam Help Combinators

- Definition
- Examples : S, K, I

- Higher Order Functions
 - Definition
 - Add WeChat edu_assist_pro Example : composition
- Capturing common forms of recursion on lists
 - Examples : map and filter

Combinators

- Definition
 - A combinator is a function that contains no free variables
- Examples : Assignment Project Exam Help

$$A_{cancel\ x\ y}^{id\ x}$$
 WeChatedu_assist,_pro

swap f x y = f y x ||"C"

distribute f g x = f x (g x) ||"S"

Combinators (2)

Assignment Project Exam Help

- S & K computationally complete https://eduassistpro.github.io/
- All required data available via Arghherts (Calified code state) ist pro bindings

stant

Higher Order Functions

- Definition :
 - A Higher Order Function is a function as a result, or (iii) Both.

Add
$$\underset{p}{\overset{h}{\underset{g}}} \underset{g}{\overset{=}{\overset{+}{\underset{f}}}} \underset{edu_assist_pro}{\text{edu_assist_pro}}$$

= $(+ (g p))$, otherwise

Higher Order Functions: types

```
f :: (* -> **) -> * -> **
f g x = Assignment Project Exam Help

h :: num -> (nu https://eduassistpro.github.io/hx = (+ x) Add WeChat edu_assist_pro

<math>j :: (bool -> num) -> bool -> (bool -> num) -> (num -> num)
j f p g = (+ (f p)), if p
= (+ (g p)), otherwise
```

Higher Order Functions

Function composition

compose ::
$$(**->***)->(*->**)->*->***$$

compose f g x = f (g x)

Assignment Project Exam Help

Can partially apply "compose'https://eduassistpro.github.io/

Built-in operator "."

$$fred = ((+1) . abs)$$

Function composition (2)

Assignment Project Exam Help

- twice x = x * 2
- many x = twice (twice (twice https://eduassistpro.github.io/
- mymany = (twice . twice . twice . twice)

Example HOF

• "myiterate" repeatedly applies its second parameter to its final parameter; the final parameter is an accumulator for the result. The first parameter is an accumulator for the result.

```
https://eduassistpro.github.io/

myiter Act We Chate edu_assist_pro

myiterate n f state = my ( - ) f (f state)
```

Example HOF

• printdots $n = myiterate \ n \ ((++)".")$ ""

Assignment Project Exam Help

```
printdots 3
```

```
→ myiterate 3 ((+https://eduassistpro.github.io/
                                                              ((++)"""")
\rightarrow myiterate 2 ((++)".")
\rightarrow myiterate 1 ((+Add) WeChat edu_assist_(pro) "." ((++) "." "")
                             ((++)"."((++)"."((++)"."")))
\rightarrow myiterate 0 ((++)".")
\rightarrow ((++)"." ((++)"." ((++)"."")))
\rightarrow "..."
```

Recursion on lists: capturing common forms

Mapping a function across the values of a list :

```
Assignment Project Exam Help

t xs))

https://eduassistpro.github.io/

i [] = []

iAdd(xWxe)Chat edu_assist_)pro

abslist [] = []

abslist (x : xs) = ((abs x) : (abslist xs))
```

Recursion on lists: map

Built-in function "map" makes life easier :

```
Assignment Project Exam Help
```

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

• Or, simply:

```
notlist = map(\sim)
inclist = map(+1)
abslist = map abs
```

Definition of map

Assignment Project Exam Help
$$(f \times f) = (f \times$$

- So, what is the type of map? Add WeChat edu_assist_pro
- Write it here (don't "cheat" yourself by asking Miranda work it out for yourself!) :

Recursion on lists: capturing common forms

Filtering some elements out of a list :

```
Assignment Project Exam Help

firsts (
https://eduassistpro.github.io/

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

not34 (x : xs) = (x : (not34 xs)), if (x ~= 34)

= not34 xs, otherwise
```

Recursion on lists: filter

Recursion on lists: filter

https://eduassistpro.github.io/

• Or, simply: Add WeChat edu_assist_pro

firsts = filter (>= 70)
not34 = filter (
$$\sim$$
= 34)

Definition of filter

filter p [] = []

Aissignment ProjecteExam iHelp

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- So, what is the type of filter?
- Write it here (don't "cheat" yourself by asking Miranda work it out for yourself!) :

Challenge

- Can you write a function that takes a list of numbers (containing only the values 1, 2 and 0, where at least one 0 must occur) and returns a three-tuple containing :
 - ► The number of 1s bearing first Project Exam Help

 The number of 2s before the first 0

 - The length of the longest sequence https://eduassistpro.github.io/
- Notes :
 - ► The value of this challenge is NOT in knowing the answer the val answer! So please don't "checledon to the first of the contraction of answer.

ing the mebody else's

- Start by writing down the type of the function (always!)
- ▶ Be prepared to write small "helper" functions, or look in the online manual (Section 28) for built-in operators.
- If you find this easy, try designing the program a different way so that it makes use of higher order functions (e.g. filter, dropwhile, takewhile)

COMP0020: Functional Programming

Higher Order Functions

Summary

Summary

Combinators

Assignment Project Exam Help

Definition

► Example : S, K, I

https://eduassistpro.github.io/

Higher Order Functions

Definition

Add WeChat edu_assist_pro

Example : composition

- Use of example HOF
- Capturing common forms of recursion on lists
 - ► Examples : map and filter

COMP0020: Functional Programming

Higher Order Functions

Summary

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro