(a) Desenhe a rede causalidade entre as variáveis Str, Flw, R, V, B, K e Li

(b) Insira todos os CPTs faltantes no gráfico (tabela de probabilidades condicionais).

Tabela de Probabilidade Condicional para Li

V	В	К	P(Li = True)	P(Li = False)
Т	Т	Т	0.99	0.01
Т	Т	F	0.01	0.99
Т	F	Т	0.01	0.99
Т	F	F	0.001	0.999
F	Т	Т	0.3	0.7
F	Т	F	0.005	0.995
F	F	Т	0.005	0.995
F	F	F	0	1

(c) Insira livremente valores plausíveis para as probabilidades.

Probabilidades Marginais para B, K, Str e Flw

B (Lâmpada ok):

- P(B = True) = 0.95 (95% de chance de a lâmpada estar funcionando)
- P(B = False) = 0.05

K (Cabo ok):

- P(K = True) = 0.98 (98% de chance de o cabo estar funcionando)
- P(K = False) = 0.02

Str (Condição da rua):

- P(Str = dry) = 0.6 (60% de chance de a rua estar seca)
- P(Str = wet) = 0.3 (30% de chance de estar molhada)
- P(Str = snow_covered) = 0.1 (10% de chance de estar coberta de neve)

Flw (Volante desgastado):

- P(Flw = True) = 0.2 (20% de chance de o volante estar desgastado)
- P(Flw = False) = 0.8

Tabela de Probabilidade Condicional para V dado R

R	P(V = True)	P(V = False)
Т	0.9	0.1
F	0.2	0.8

Tabela de Probabilidade Condicional para R dado Str e Flw

Str	Flw	P(R = True)	P(R = False)
dry	Т	0.7	0.3
dry	F	0.1	0.9
wet	Т	0.8	0.2
wet	F	0.4	0.6
snow_covered	Т	0.95	0.05
snow_covered	F	0.6	0.4

(d) Mostre que a rede não contém uma aresta (Str, Li).

1. Estrutura da Rede Bayesiana e Dependências Diretas

A rede bayesiana foi construída com base nas dependências e independências informadas:

- As variáveis Str, Flw, B, e K são independentes entre si.
- As dependências diretas são:
 - o Str (Condição da Rua) e Flw (Volante desgastado) influenciam R (Dínamo deslizante).
 - R influencia V (Dínamo mostra tensão).
 - V, B (Lâmpada ok), e K (Cabo ok) influenciam Li (Luz ligada).

C

Dado esse fluxo causal, Li depende de V, B, e K, mas Str não afeta diretamente Li.

2. Verificação de Independências Condicionais

Para reforçar que Str não influencia diretamente Li, analisamos as independências condicionais fornecidas no problema:

- O problema afirma que P(Li | V, R) = P(Li | V). Isso indica que, dado o conhecimento sobre a tensão V, o deslizamento R se torna irrelevante para Li.
- Além disso, sabemos que P(V | R, Str) = P(V | R), o que implica que, dado o estado de deslizamento R, a condição da rua Str não afeta V.

Essas relações sugerem que Str não tem influência direta sobre Li, pois qualquer efeito que Str possa ter sobre Li é mediado por R e V.

(e) Calcule P (V | Str = snow_covered)

1. Analisar a Estrutura de Dependência

Na rede, temos a seguinte cadeia de dependências:

- a. Str (Condição da rua) e Flw (Volante desgastado) influenciam R (Dínamo deslizante).
- b. R (Dínamo deslizante) influencia V (Dínamo mostra tensão).

Assim, para calcular P(V | Str=snow_covered), devemos passar pela variável intermediária R e usar a regra da probabilidade total.

2. Analisar a Estrutura de Dependência

Podemos expandir P(V | Str=snow_covered) em termos de **R** como:

• P(V | Str=snow_covered) = P(V | R = True) · P(R = True | Str = snow_covered) + P(V | R = False) · P(R = | Str = snow_covered)

3. Obter os Valores das Probabilidades Condicionais

A partir dos valores das tabelas:

- a. Probabilidades condicionais de V dado R:
 - P(V=True | R=True)=0.9
 - P(V=True | R=False)=0.2
- b. Probabilidades de dado Str=snow_covered:
 - Quando Flw=True: P(R=True | Str=snow_covered,Flw=True)=0.95
 - Quando Flw=False: P(R=True | Str=snow covered, Flw=False)=0.6
- c. Probabilidades marginais de Flw:
 - P(Flw=True)=0.2
 - P(Flw=False)=0.8P

(e) Calcule P (V | Str = snow_covered)

4. Calcular P(R=True | Str=snow_covered) usando a Regra da Probabilidade Total

Podemos calcular P(R=True | Str=snow_covered) considerando todas as possibilidades de Flw:

• P(R=True | Str=snow_covered) = P(R=True | Str=snow_covered,Flw=True) · P(Flw=True) + P(R=True | Str=snow_covered,Flw=False) · P(Flw=False)

Substituindo os valores:

• P(R=True | Str=snow_covered)=(0.95 · 0.2)+(0.6 · 0.8)

Calculando cada termo:

- $0.95 \cdot 0.2 = 0.19$
- $0.6 \cdot 0.8 = 0.48$

Então:

• P(R=True | Str=snow_covered)=0.19+0.48=0.67

Consequentemente:

• P(R=False | Str=snow_covered)=1-0.67=0.33

(e) Calcule P (V | Str = snow_covered)

5. Calcular P(V | Str=snow_covered)

Agora que temos P(R=True | Str=snow_covered) e P(R=False | Str=snow_covered), podemos substituir esses valores na fórmula inicial:

• P(V | Str=snow_covered)=(0.9 · 0.67)+(0.2 · 0.33)

Calculando cada termo:

- $0.9 \cdot 0.67 = 0.603$
- $0.2 \cdot 0.33 = 0.066$

Portanto:

• P(V | Str=snow_covered)=0.603+0.066=0.669