

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>	

Лабораторная работа № 4

Дисциплина: Моделирование

Тема: Программно-алгоритмическая реализация моделей на основе дифференциальных уравнений в частных производных с краевыми условиями II и III рода.

Студент: Гасанзаде М.А.
Группа ИУ7-66Б
Оценка (баллы)
Преподаватель : Градов В.М.

СОДЕРЖАНИЕ

І. АНАЛИТИЧЕСКАЯ ЧАСТЬ	3
Цель работы	3
Исходные данные	
Физический смысл задачи	
II. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ	
Листинг	
ІІІ. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	8
IV. ОТВЕТЫ НА ВОПРОСЫ	10
ЗАКЛЮЧЕНИЕ	11
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	12

І. АНАЛИТИЧЕСКАЯ ЧАСТЬ.

Цель работы

Получение навыков разработки алгоритмов решения смешанной краевой задачи при реализации моделей, построенных на квазилинейном уравнении параболического типа.

Исходные данные

1. Задана математическая модель.

Уравнение для функции T(x,t)

$$c(T)\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k(T)\frac{\partial T}{\partial x} \right) - \frac{2}{R}\alpha(x)T + \frac{2T_0}{R}\alpha(x)$$
 (1)

2. Краевые условия:
$$\begin{cases} t = 0, & T(x,0) = T_0, \\ x = 0, & -k(T(0)) \frac{\partial T}{\partial x} = F_0, \\ x = l, & -k(T(l)) \frac{\partial T}{\partial x} = \alpha_N(T(l) - T_0) \end{cases}$$

3. Разностная схема с разностным краевым условием при x=0

$$\widehat{A}_{n}\widehat{y}_{n-1} - \widehat{B}_{n}\widehat{y}_{n} + \widehat{D}_{n}\widehat{y}_{n+1} = -\widehat{F}_{n}$$
(2)

$$\left(\frac{h}{8}\widehat{c_{1/2}} + \frac{h}{4}\widehat{c_0} + \widehat{\chi_{1/2}}\frac{\tau}{h} + \frac{\tau h}{8}p_{1/2} + \frac{\tau h}{4}p_0\right)\widehat{y_0} + \left(\frac{h}{8}\widehat{c_{1/2}} - \widehat{\chi_{1/2}}\frac{\tau}{h} + \frac{\tau h}{8}p_{1/2}\right)\widehat{y_1} = \\
= \frac{h}{8}\widehat{c_{1/2}}(y_0 + y_1) + \frac{h}{4}\widehat{c_0}y_0 + \widehat{F}\tau + \frac{\tau h}{4}(\widehat{f_{1/2}} + \widehat{f_0})$$
(3)

Разностный аналог краевого условия при x=l интегро-интерполяционным методом, интегрируя на отрезке $[x_{N-1/2}, x_N]$ уравнение (1), учитывая, что по-

ток
$$\widehat{F}_{\scriptscriptstyle N} = \alpha_{\scriptscriptstyle N} (\widehat{y_{\scriptscriptstyle N}} - T_{\scriptscriptstyle 0})$$
 ,а $\widehat{F}_{\scriptscriptstyle N-1/2} = \widehat{\chi_{\scriptscriptstyle N-1/2}} \frac{\widehat{y_{\scriptscriptstyle N-1}} - \widehat{y_{\scriptscriptstyle N}}}{h}$:

newformul

Физический смысл задачи.

- 1. Сформулированная в данной работе математическая модель описывает **нестационарное** температурное поле T(x,t), зависящее от координаты x и меняющееся во времени.
- 2. Свойства материала стержня привязаны к температуре, т.е. теплоемкость и коэффициент теплопроводности c(T), k(T) зависят от T, тогда как в работе №3 k(x) зависит от координаты, а c = 0.
- 3. При x = 0 цилиндр нагружается тепловым потоком F(t), в общем случае зависящим от времени, а в работе №3 поток был постоянный.

Если в настоящей работе задать поток постоянным, т.е. F(t) = const, то будет происходить формирование температурного поля от начальной температуры T_0 до некоторого установившегося (стационарного) распределения T(x,t). Это поле в дальнейшем с течением времени меняться не будет и должно совпасть с температурным распределением T(x), получаемым в лаб. работе №3, если все параметры задач совпадают, в частности, вместо k(T) надо использовать k(x) из лаб. работы №3. Это полезный факт для тестирования программы.

Если после разогрева стержня положить поток F(t) =0, то будет происходить остывание, пока температура не выровняется по всей длине и не станет равной T_0 .

При произвольной зависимости потока F(t) от времени температурное поле будет как-то сложным образом отслеживать поток.

Замечание. Варьируя параметры задачи, следует обращать внимание на то, что решения, в которых температура превышает примерно 2000К, физического смысла не имеют и практического интереса не представляют.

II. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

ЯП был выбран Python3 из-за простоты работы с графиками и библиотеки matplotlib. Ниже на листингах будет представлена реализация программы:

Листинг

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
$egin{array}{cccccccccccccccccccccccccccccccccccc$
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
$egin{array}{cccccccccccccccccccccccccccccccccccc$
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

 $oldsymbol{a}$ $oldsymbol{a}$

Далее, в экспериментальной части, тестирование будет производиться по этим данным:

$$k(T)=a_1(b_1+c_1T^{m_1}),\;\;Bm/cMK,$$
 $c(T)=a_2+b_2T^{m_2}-\frac{c_2}{T^2},\;\;\mathcal{A}$ ж/см $^3K.$
 $lpha_1=0.0134,\;\;b_1=1,\;\;c_1=4.35\cdot10^{-4},\;\;m_1=1,$
 $lpha_2=2.049,\;\;b_2=0.563\cdot10^{-3},\;\;c_20.528\cdot10^5,\;\;m_2=1.$
 $lpha(x)=\frac{c}{x-d},\;\;$
 $lpha_0=0.05\;Bm/cM^2K,\;\;$
 $lpha_0=0.01\;Bm/cM^2K,\;\;$
 $l=10\;cM,\;\;$
 $l=10\;cM,\;$
 $l=100\;cM,\;$
 $l=1000\;cM,\;$
 $l=100$

III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ В данном разделе будет рассмотрен вывод программы и представлены графики зависимостей.

Рисунок 1. График зависимости температуры T(x) от координаты при заданных выше параметрах.

Рисунок 2. при $F_0 = -50$ Вт/см².

IV. ОТВЕТЫ НА ВОПРОСЫ

- 1. Приведите результаты тестирования программы (графики, общие соображения, качественный анализ).
- 2. Выполните линеаризацию уравнения:

$$\begin{cases} \widehat{K}_0 \, \widehat{y}_0 + \widehat{M}_0 \, \widehat{y}_1 = \widehat{P}_0, \\ \widehat{A}_n \, \widehat{y}_{n-1} - \widehat{B}_n \, \widehat{y}_n + \widehat{D}_n \, \widehat{y}_{n+1} = -\widehat{F}_n, & 1 \le n \le N-1, \\ \widehat{K}_N \, \widehat{y}_N + \widehat{M}_{N-1} \, \widehat{y}_{N-1} = \widehat{P}_N \end{cases}$$

по Ньютону, полагая для простоты, что все коэффициенты зависят только от одной переменной \widehat{y}_n . Приведите линеаризованный вариант уравнения и опишите алгоритм его решения.

ЗАКЛЮЧЕНИЕ

Его пока нет!)

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Градов В.М. Методические указания: «<u>04-05-2020-</u> <u>Задание на лаб раб 4.doc</u>» (дата обращения 05.05.2020)
- 2. Matplotlib URL: https://matplotlib.org (дата обращения 10.04.2020)
- 3. Градов В.М. Компьютерные технологии в практике математического моделирования часть 2 URL:

 http://ebooks.bmstu.ru/secret/html/bikqxzugca/files/assets/basic-html/page-1.html (дата обращения 05.05.2020)
- Градов В.М. Лекция №14 «<u>04-05-2020-</u>
 <u>Лекция 14 Модели ДУЧП Методы постр разност схем Интегро инт ерп.pdf</u>» (дата обращения 05.05.2020)
- 5. Градов В.М. Лекция №13 «<u>04-05-2020-</u>
 <u>Лекция 13 Модели ДУЧП Методы постр разност схем Разност аппр роксим.pdf</u> » (дата обращения 05.05.2020)
- Градов В.М. Лекция №8 «30-03-2020-<u>Лекция_№8_Модели_ОДУ_краевая_задача.pdf</u>» (дата обращения 05.05.2020)