Differential Topology

Nutan Nepal

August 18, 2021

1 Manifolds and Smooth Maps

Notes 1.1. Definitions

- 1. A function $f: X \to \mathbf{R}^m$ $(X \subset \mathbf{R}^n)$ is <u>smooth</u> if around each $x \in X$ there is an open set $U \subset \mathbf{R}^n$ and a smooth map $F: U \to \mathbf{R}^m$ such that F equals f on $U \cap X$.
- 2. A smooth map $f: X \to Y$ of subsets of Euclidean spaces is called <u>diffeomorphism</u> if it is bijective and if the inverse map $f^{-1}: Y \to X$ is smooth.
- 3. A set $X \subset \mathbf{R}^n$ is a k-dimensional manifold if every $x \in X$ possesses a neighborhood V which is diffeomorphic to an open set $U \subset \mathbf{R}^k$. The diffeomorphism $\varphi : U \to V$ is called a <u>parametrization</u> of the neighborhood V and the inverse diffeomorphism $\varphi^{-1} : V \to U$ is called a coordinate system on V.
- 4. (Problem 3)
 - i) For every $x \in X$, there exists an open set $U \subset \mathbf{R}^n$ and a smooth map $F: U \to Y$ such that $F|_{U \cap X} = f$.
 - ii) For every $f(x) \in Y$, there exists an open set $V \subset \mathbf{R}^m$ and a smooth map $G: V \to Z$ such that $G|_{V \cap Y} = g$.