Review: Forward stagewise regression and the monotone lasso

Jieun Shin

May 24, 2023

1 Contribution

- LARS and forward stagewise algorithm for solving penalized least square regression problems
- study a condition under which the coefficient paths of lasso are monotone

2 Background

- least angle regression: the piecewise linear nature of the lasso profiles. simultaneously solving the entire set of lasso problem
 - 1. Standardize the predictors to have mean zero and variance 1. Start with the residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \beta_1, \beta_2, \dots, \beta_p = 0$.
 - 2. Find the predictor \boldsymbol{x}_j most correlated with \boldsymbol{r}
 - 3. Move β_j from 0 towards its least-squares coefficient $\langle \boldsymbol{x}_j, \boldsymbol{r} \rangle$, until some other competitor \boldsymbol{x}_k has as much correlation with the current residual as does \boldsymbol{x}_j
 - 4. Move (β_j, β_k) in the direction defined by their joint least squares coefficient of the current residual on $(\boldsymbol{x}_j, \boldsymbol{x}_k)$, until some other competitor \boldsymbol{x}_l has as much correlation with the current residual.
 - 5. Continue in this way until all p predictors have been entered. After p steps, we arrive at the full least-squares solution.

현재 residual과 가장 상관성이 높은 변수의 계수값을 더 큰 상관을 가지는 변수가 나타날 때까지 이동해간다. 모든 변수가 다 들어올 때까지 이 과정을 반복한다.

- incremental forward stagewise algorithm (FS_{ϵ}) : the lasso coefficient profile produced by a version of boosting for linear models
 - 1. Start with $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \beta_1, \beta_2, \dots, \beta_p = 0$.
 - 2. Find the predictor x_i most correlated with r.
 - 3. Update $\beta_j \leftarrow \beta_j + \delta_j$, where $\delta_j = \epsilon \cdot \text{sign}[\text{corr}(\boldsymbol{r}, \boldsymbol{x}_j)]$.
 - 4. Update $\mathbf{r} \leftarrow \mathbf{r} \delta_j \mathbf{x}_j$, and repeat steps 2 and 3 until no predictor has any correlation with \mathbf{r}

현재 residual과 가장 상관성이 높은 계수에 ϵ 을 더한다. $\epsilon \to 0$ 로 제한한 버전이 forward stagewise 알고리즘이며, 어떤 조건 하에서 LASSO path와 같아진다.

3 Forward Stagewise and the Monotone Lasso

we create an expanded data matrix $\tilde{\boldsymbol{X}} = [\boldsymbol{X}: -\boldsymbol{X}]$. The lasso problem becomes

$$\min_{\beta_0, \beta_j^+, \beta_j^-} \sum_{i=1}^n \left(y_i - \beta_0 - \left[\sum_{j=1}^p x_{ij} \beta_j^+ - \sum_{j=1}^p x_{ij} \beta_j^- \right] \right)^2$$
 (1)

subject to
$$\beta_j^+, \beta_j^- \ge 0, \forall j$$
 and $\sum_{j=1}^p (\beta_j^+ + \beta_j^-) \le s$ (2)

forward-stagewise을 더 부드러운 계수 프로파일을 가진 lasso로 푸는 방법이다. 독립변수를 확장한 것은 부스팅기법에서 tree의 binary search와 유사한 기법이다.

- 1. Start with $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}, \beta_1, \beta_2, \dots, \beta_p = 0$.
- 2. Find the predictor \boldsymbol{x}_j most correlated with \boldsymbol{r} .
- 3. Update $\beta_j \leftarrow \beta_j + \epsilon$.
- 4. Update $\mathbf{r} \leftarrow \mathbf{r} \epsilon \mathbf{x}_j$, and repeat steps 2 and 3 until no predictor has any correlation with \mathbf{r}