

C. Sopsug

Nazwa zadania	Sopsug
Limit czasu	5 sekund
Limit pamięci	1 GB

Grushög to niedokończone osiedle na przedmieściach Lund. Obecnie budowana jest cała konieczna infrastruktura włącznie z najważniejszym elementem: pozbywaniem się śmieci. Inżynierowie, wzorując się na rozwiązaniu używanym w znacznej części Szwecji, planują użyć sopsug (zautomatyzowanego systemu odbioru odpadów). Ten system opiera się na podziemnym transportowaniu odpadów przez rury przy pomocy regulacji ciśnienia powietrza.

W Grushög jest N budynków ponumerowanych od 0 do N-1. Twoim zadaniem jest połączenie pewnych par budynków rurami. Jeśli zbudujesz rurę z budynku u do pewnego innego budynku v, to u będzie wysyłać wszystkie swoje odpady do v (ale nie w przeciwnym kierunku). Twoim celem jest stworzenie sieci N-1 rur, takiej że wszystkie odpady wylądują w jednym budynku. Innymi słowy, chcesz stworzyć sieć w formie ukorzenionego drzewa, w którym krawędzie są skierowane w stronę korzenia.

Jednakże M rur zostało już umieszczonych pomiędzy budynkami. Muszq one zostać użyte w Twojej sieci. Te rury są skierowane, więc mogą być używane tylko w jednym kierunku.

Ponadto jest K par budynków, pomiędzy którymi nie można umieścić rury. Te pary są uporządkowane, więc nawet jeśli nie można umieścić rury z u do v, to wciąż może być możliwe umieszczenie rury z v do u.

Wejście

Pierwsza linia wejścia zawiera trzy liczby całkowite N, M i K.

Każda z kolejnych M linii zawiera po dwie różne liczby całkowite a_i,b_i oznaczające, że istnieje już rura z a_i do b_i .

Każda z kolejnych K linii zawiera po dwie różne liczby całkowite c_i,d_i oznaczające, że nie można umieścić rury z c_i do d_i .

Wszystkie M+K uporządkowane dwójki liczb na wejściu są parami różne. Zauważ, że pary (u,v) oraz (v,u) są traktowane jako różne.

Wyjście

Jeśli nie istnieje rozwiązanie spełniające warunki zadania, wypisz "NO".

W przeciwnym przypadku wypisz N-1 linii, a w każdej z nich po dwie liczby całkowite u_i , v_i oznaczające, że powinna istnieć rura z u_i do v_i . Rury mogą być wypisane w dowolnej kolejności. Jeśli istnieje wiele poprawnych rozwiązań, możesz wypisać dowolne z nich. Pamiętaj, że wszystkie spośród M istniejących już rur muszą być uwzględnione w Twoim rozwiązaniu.

Ograniczenia i ocenianie

- $2 \le N \le 300\,000$.
- $0 \le M \le 300\,000$.
- $0 \le K \le 300\,000$.
- $0 \le a_i, b_i \le N-1$ dla $i = 0, 1, \dots, N-1$.
- $0 \le c_i, d_i \le N-1$ dla $i=0,1,\ldots,K-1$.

Twoje rozwiązanie będzie sprawdzane na zbiorze grup testowych, każda z grup jest warta określoną liczbę punktów. W każdej grupie znajduje się zbiór testów. Aby rozwiązanie otrzymało punkty za grupę testową, musi wypisać poprawną odpowiedź dla każdego testu w tej grupie.

Grupa	Punktacja	Limity
1	12	M=0 i $K=1$
2	10	M=0 i $K=2$
3	19	K = 0
4	13	$N \leq 100$
5	17	Jest zagwarantowane, że istnieje rozwiązanie, w którym 0 jest korzeniem
6	11	M=0
7	18	Brak dodatkowych ograniczeń

Przykład

Poniższe ilustracje ukazują pierwszy i drugi test przykładowy. Niebieskie krawędzie reprezentują rury, które już zostały umieszczone, a przerywane czerwone krawędzie reprezentują rury, których nie można zbudować.

Obrazek po lewej ilustruje pierwszy przykład oraz rozwiązanie z przykładowego wyjścia - rury zostały oznaczone czarnymi krawędziami (oprócz uprzednio skonstruowanej rury z 4 do 1, która jest niebieska). W tej sieci wszystkie odpady będą zbierane w budynku 0. To nie jest jedyne rozwiązanie - na przykład rura z 1 do 3 może być zastąpiona przez rurę z 0 do 1 i będzie to również poprawne rozwiązanie.

Obrazek po prawej ilustruje drugi przykład. Możemy zauważyć, że skonsturowanie rozwiązania jest niemożliwe z powodu cyklu (2,3,4).

Wejście	Wyjście
5 1 8 4 1 3 1 3 4 3 2 0 2 0 4 2 4 1 0 2 0	4 1 3 0 1 3 2 3
5 4 0 1 0 2 3 3 4 4 2	NO
3 0 1 0 1	1 0 2 0
4 0 2 0 1 1 0	2 0 3 0 1 3