Automatizační cvičení

A4	306. Cadet - Sériový přenos binární informace							
Vít Petřík		1/3	Známka:					
26. 2. 2020	4. 3. 2020		Odevzdáno:					

Zadání:

Navrhněte obvod pro sériový přenos 4bitové informace pomocí 5-ti bitového posuvného registru 7496 se záchytným obvodem z klopných obvodu D. Vysílaný i přenesený údaj zobrazte na 7-mi segmentovém displeji. Zautomatizujte přenos tak, aby nebylo nutné manuálně ovládat signál SET vysílajícího registru (pro automatické generování signálu SET navrhnete obvod s čítačem 7493) a přenesený údaj byl po dobu přenosu následující informace zadržen pomocnými obvody. Jako zdroj přenášené informace použijte čítač 7493 se zkráceným cyklem dle zadání. Čítač bude čítat od 0 do 7.

Postup:

- Registr jako vysílač paralelní vstupy A1 až A4 nebo A2 až A5 připojím ke zdroji dat = signály z logických přepínačů. Všechny nepoužité vstupy připojím na log. 0 (A0 s A5 na 0V). Paralelní výstupy pro kontrolu připojím na první čtveřici LED. Vytvořím signály SET a popřípadě i RESET. Pro signál CLOCK je vhodné použít nejdříve bezzákmitové tlačítko, které se po zautomatizování vysílání nahradí TTL generátorem.
- Registr jako přijímač použije se jen sériový vstup (spojený s prvním paralelním vstupem tj. A0 s A1) a propojím s posledním výstupem vysílače. Signály SET a RESET přijímače není nutné ovládat a stačí je připojit na klidovou logickou hodnotu). Příjem dat musí být synchronizován s vysíláním. Proto je signál CLOCK je totožný s vysílačem.
- Záchytná paměť je tvořena klopnými obvody D pro každý výstupní signál. Paralelní výstupy přijímače připojím na vstupy klopných obvodu D, které tvoří záchytný paměťový obvod. Signál, kterým se zapíší data do klopných obvodů D je vlastně totožný se signálem SET prvního registru, proto vstupy CLK klopných obvodu připojím na signál SET vysílače. Na výstupy klopných obvodu připojím druhou 7-mi segmentovku a otestuji funkci obvodu. SET a RESET obvodu D připojím na klidovou hodnotu (log. 1).
- Čítač impulsů Zapojte čítač impulsů, který počítá impulsy potřebné pro přenos informace (CLK) a vytváří automatický signál SET pro vysílací registr. Čítač impulsů tvoří čítač 7493 se zkráceným cyklem (0 až 3, nebo 0 až 4, nebo 0 až 5). Signál SET vysílače by měl být generován v okamžiku zkrácení cyklu čítače, tj. při jeho resetu kdy je přenos informace ukončen a informace se má zapsat do záchytné paměti.
- Generátor informace Nejprve odpojte logické spínače a potom připojte výstupy čítače 7493 se zkráceným cyklem dle zadání na paralelní vstupy vysílacího registru. Vstupní signál čítače generujte ručním stiskem tlačítka.

Činnost posuvného registru 7496

FUNCTION TABLE

INPUTS								OUTPUTS					
CLEAR	PRESET	PRESET					21.00						_
	ENABLE	A	В	c	D	E	CLOCK	SERIAL	QA	σ B	σc	σĐ	ΦĐ
L	L	х	х	х	Х	Х	х	х	L	L	L	L	L
L	x	L	L	L	Ł	Ł	х	×	L	L	L	L	L
н	н	н	н	н	Н	н	×	×	н	н	н	н	н
н	н	L	ι	L	L	Ł	L	x	QAO	QBO	QCO	apo	QE0
н	н	н	L	Н	L	н	L	х	н	080	н	QDO	н
н	L	х	X	X	X	х	L	×	GAO	a _{BO}	Q _{CO}	000	Q _{EO}
н	ı	X	X	X	X	x	1	н	н	QAn	QBn	a_{Cn}	QDn
н	i.	x	х	X	X	x	1	L	L	Q _{An}	Q _{Bn}	Q _{Cn}	QDn

H = high level (steady state), L = low level (steady state)

Schema:

Závěr:

Sériový přenos fungoval do té doby, než jsem do obvodu implementoval čítače. Po té se přenos zasekl na nule a dále nepokračoval. Předpokládám, že chyba byla v zapojení čítače pro generování SET signálu, protože čítač od 0-7 fungoval.

X = irrelevant (any input, including transistion)

t = transistion from low to high level

Q_{A,O}, Q_{B,O}, etc = the level of Q_A, Q_B, etc, respectively before the indicated steadystate input conditions were established.

 $[\]Omega_{An}, \Omega_{Bn}$, etc. = the level of Ω_{A}, Ω_{B} , etc., respectively before the most recent 1 transistion of the clock.