W2105-01

METHOD OF PREVENTING STAIN OF PRINTED MATTER IN FLEXOGRAPHIC LETTERPRESS PRINTING SYSTEM

Patent number:

JP2002292985

Publication date:

2002-10-09

Inventor:

MATSUMIYA AKIO; MATSUMOTO KAZUHIKO

Applicant:

SAKATA INKS

"Classification: - international:

-.european:

B41M1/04; B41M1/00; (IPC1-7): B41M1/04

Application number:

JP20010137933 20010330

Priority number(s):

JP20010137933 20010330

Report a data error here

Abstract of JP2002292985

PROBLEM TO BE SOLVED: To provide a method of preventing a stain of a printed matter of waterbased printing ink which enables immediate start of printing and prevents an anilox roller from being clogged with an ink-repellent material and which can maintain the effect of preventing the stain for a long time. SOLUTION: In the manufacture of the print of water-based printing ink by the flexographic letterpress printing system using a plate roller and the anilox roller, a stain-preventing agent containing the ink-repellent material and a water-based resin in the weight ratios of 2:8-8:2 is applied to both of a projecting part and an indented part of a letterpress plate and dried before printing and then, the stainpreventing agent being removed from the projecting part of the letterpress plate, the water-based printing ink is printed, according to the method of preventing the stain of the print of the water-based printing ink.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-292985 (P2002-292985A)

(43)公開日 平成14年10月9日(2002.10.9)

(51) Int.Cl.7

觀別配号

FΙ

デーマコート (参考) 2H113

B41M 1/04

B41M 1/04

審査請求 未請求 請求項の数5 書面 (全 6 頁)

(21)出顧番号

特願2001-137933(P2001-137933)

(22) 出願日

平成13年3月30日(2001.3.30)

(71)出願人 000105947

サカタインクス株式会社

大阪府大阪市西区江戸城1丁目23番37号

(72) 発明者 松宮 昭夫

大阪市西区江戸場一丁目23番37号 サカタ

インクス株式会社内

(7%)発明者 松本 一彦

大阪市西区江戸場一丁目23番37号 サカタ

インクス株式会社内

Fターム(参考) 2H113 AA01 AA04 BA01 BB02 BB22

BO01 DA23 DA38 DA47 DA54

DA64 FA10

(54) 【発明の名称】 フレキソ凸版印刷方式における印刷物の汚れ防止方法

(57)【要約】

【課題】フレキソ凸版印刷方式による水性印刷インキ印 刷物の製造において、すぐに印刷を開始することが可能 で、アニロックスロールに揆インキ性材料が詰まる事が なく、しかも長時間汚れ防止効果を維持できる水性印刷 インキ印刷物の汚れ防止方法を提供する。

【解決手段】 版ロールとアニロックスロールを用いた フレキソ凸版印刷方式による水性印刷インキ印刷物の製 造において、印刷前に凸版の凸部と凹部の両方に、揆イ ンキ性材料:水性樹脂=2:8~8:2の重量比率で含 有する汚れ防止剤を塗布して乾燥させた後、凸版の凸部 から汚れ防止剤を除去して水性印刷インキを印刷するこ とを特徴とする水性印刷インキ印刷物の汚れ防止方法。

【特許請求の範囲】

【請求項1】版ロールとアニロックスロールを用いたフレキソ凸版印刷方式による水性印刷インキ印刷物の製造において、印刷前に凸版の凸部と凹部の両方に、揆インキ性材料:水性樹脂=2:8~8:2の重量比率で含有する汚れ防止剤を塗布して乾燥させた後、凸版の凸部から汚れ防止剤を除去して水性印刷インキを印刷することを特徴とする水性印刷インキ印刷物の汚れ防止方法。

【請求項2】前記汚れ防止剤の揆インキ性材料がシリコン系化合物および/またはフッ素系化合物である請求項1に記載の水性印刷インキ印刷物の汚れ防止方法。

【請求項3】前記汚れ防止剤の揆インキ性材料が、シリコン系化合物の水性エマルジョンおよび/またはフッ素系化合物の水性エマルジョンである請求項1または2に記載の水性印刷インキ印刷物の汚れ防止方法。

【請求項4】前記汚れ防止剤の水性樹脂が、酸価100~250mgKOH/gのロジン変性マレイン酸樹脂、アクリル系樹脂、スチレンーアクリル系樹脂、スチレンーマレイン酸系樹脂、スチレンーアクリルーマレイン酸系樹脂の群から選択される少なくとも1種である請求項1~3のいずれかに記載の水性印刷インキ印刷物の汚れ防止方法。

【請求項5】前記汚れ防止剤として、シリコン系化合物の水性エマルジョンおよび/またはフッ素系化合物の水性エマルジョンと、酸価100~250mgKOH/gのアクリル系樹脂、スチレンーアクリル系樹脂、スチレンーマレイン酸系樹脂の群から選択される少なくとも1種の水性樹脂を、塩基性化合物の存在下、水中に溶解させた水性樹脂ワニスとを混合して得られた汚れ防止剤を用いる請求項1~4のいずれかに記載の水性印刷インキ印刷物の汚れ防止方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は水性印刷インキ印刷物の 汚れ防止方法に関し、より詳しくは、フレキソ凸版印刷 方式を用いた水性印刷インキ印刷物の製造において、版 面に揆インキ性材料を塗工する方法であって、すぐに印 刷を開始することが可能で、長時間汚れ防止効果を維持 でき、しかもアニロックスロールに揆インキ性材料が詰 まる事のない水性印刷インキ印刷物の汚れ防止方法に関 する。

{00021

【従来の技術】凸版印刷方式は、凹凸のある印刷版の凸部(画線部)の表面上だけにインキ供給ロールを接触させてインキを供給した後、次いで版を被印刷体に接触させて印刷を行う印刷方式である。従って、印刷版の凹部(非画線部)にインキが供給されてしまうと、本来、印刷の絵柄がない部分までインキが付着して印刷物に汚れが発生することになる。

【0003】そこで、このような原因の汚れを防止する

ために、版の全面に揆インキ性材料を塗布した後、凸部の揆インキ性材料を被印刷体に転移させて除去し、一方、四部では揆インキ性材料をそのまま残して、凸部のみにインキを付着させる方法が知られている。例えば、特開昭52-13904号公報、特開昭53-6118号公報等では、油性インキを用いる凸版印刷において、 揆油性インキ材料を上記の方法で用いて印刷物の汚れを防止する方法が開示されている。

【0004】油性インキは比較的高粘度であるため、表面がインキ皮膜で覆われたインキ供給ロールを硬質の版材に強い力で押圧して、版面に対するインキの付着力がインキ自身の凝集力より大きい部分にのみ、インキが転移するという方法が利用される。この場合、版上の凸部はインキ供給ロールと高い圧力で接触するのに対して、凹部は接触したとしても圧力が低い上に、更に接インキ性材料で覆われているためにインキの付着力が低下して、凸部のみに比較的簡単にインキを転移させることができる。

【0005】一方、本発明で対象とする印刷方式は、同 じ凸版印刷でも主に水性インキを用いて、段ボールや紙 袋などの印刷を行うフレキソ印刷方式であり、その特徴 として、利用する印刷インキが非常に低粘度であり、ま た、版材としてはゴム状の弾力性のあるものが利用され るという点が挙げられる。従って、版面に強い力でイン キ供給ロールを押圧すると、インキが版の凸部から押し 出されて排除され、転移しないという結果になる。

【0006】そこで、フレキソ印刷方式では、表面に凹凸のあるアニロックスロールと呼ばれるインキ供給ロールを用いて、凹部に溜まったインキを非常に弱い圧力で版に接触させて転移させる方法が利用されているが、この方式で揆インキ性材料を用いて印刷物の汚れを防止するために、解決しなければならない問題が数多く存在する。

【0007】例えば、油性インキを利用する印刷方式と比較して、版材が柔軟なために僅かな圧力で凸部がつぶれ、凹部がアニロックスロールと接触しやすい上に、インキが低粘度で転移し易いなどから、凹部でより高い揆インキ性が要求されるようになる。一方、揆インキ性材料として効果が高くなればなるほど、版の凸部における揆インキ性も持続されることになり、インキを転移させるためにより多くの被印刷体を通して完全に除去しなければならないという問題がある。また、フレキソ印刷方式ではアニロックスロールを利用するために、その表面の凹部に揆インキ性材料が付着すると、インキがはじかれて版へ供給することができなくなり、印刷不良の原因となるという問題もある。

【00.08】従って、現状では、市販のシリコン系化合物やフッ素樹脂等の揆インキ性のある材料のエマルジョンを用いて、スプレー方式などで版面に薄く塗工して印刷物の汚れを防止する技術が利用されているのみであ

る。

[0009]

【発明が解決しようとする課題】しかしながら、上記のシリコーンオイルやフッ素樹脂等のエマルジョンを、版面に薄く塗工する方法では、効果の持続性が乏しく、すぐに印刷物に汚れが発生する様になる。また、効果を持続させるために版面に厚く塗工すると、凸部に塗工されたそれらエマルジョンを除去するために多くの時間と被印刷体を要する上に、アニロックスロールの凹部が詰まってしまい、インキの供給ができなくなるという問題がある。

【0010】そこで、本発明が解決しようとする課題は、フレキソ凸版印刷方式による水性印刷インキ印刷物の製造において、すぐに印刷を開始することが可能で、アニロックスロールに揆インキ性材料が詰まる事がなく、しかも長時間汚れ防止効果を維持できる水性印刷インキ印刷物の汚れ防止方法を提供することである。【0011】

【課題を解決するための手段】すなわち、本願発明は、版ロールとアニロックスロールを用いたフレキソ凸版印刷方式による水性印刷インキ印刷物の製造において、印刷前に凸版の凸部と凹部の両方に、揆インキ性材料:水性樹脂=2:8~8:2の重量比率で含有する汚れ防止剤を塗布して乾燥させた後、凸版の凸部から汚れ防止剤を除去して水性印刷インキを印刷することを特徴とする水性印刷インキ印刷物の汚れ防止方法に関するものである。

【0012】また、本願発明は、前記汚れ防止剤の揆インキ性材料がシリコン系化合物および/またはフッ素系化合物である水性印刷インキ印刷物の汚れ防止方法。また、本願発明は、前記汚れ防止剤の揆インキ性材料が、シリコン系化合物の水性エマルジョンおよび/またはフッ素系化合物の水性エマルジョンである水性印刷インキ印刷物の汚れ防止方法に関するものである。

【0013】また、本願発明は、前記汚れ防止剤の水性 樹脂が、酸価100~250mgKOH/gのロジン変 性マレイン酸樹脂、アクリル系樹脂、スチレンーアクリ ル系樹脂、スチレンーマレイン酸系樹脂、スチレンーア クリルーマレイン酸系樹脂の群から選択される少なくと も1種である水性印刷インキ印刷物の汚れ防止方法に関 するものである。

【0014】また、本願発明は、前記汚れ防止剤として、シリコン系化合物の水性エマルジョンおよび/またはフッ素系化合物の水性エマルジョンと、酸価100~250mgKOH/gのアクリル系樹脂、スチレンーアクリル系樹脂、スチレンーマクリル系樹脂、スチレンーマクリル系樹脂、スチレンーマレイン酸系樹脂の群から選択される少なくとも1種の水性樹脂を、塩基性化合物の存在下、水中に溶解させた水性樹脂ワニスとを混合して得られた汚れ防止剤を用いる請求項1から4のいずれかに記載の水性印刷インキ印刷物の汚れ防止方法に関する

ものである。以下に本発明について詳細に説明する。

【0015】本発明は、揆インキ性材料と水性樹脂とを含有する汚れ防止剤を凸版の凹部のみに残して、印刷物の汚れを防止するものである。ここで、利用可能な揆インキ性材料としては、水性印刷インキに対して揆インキ性を有する材料であって、水性樹脂と混合可能な材料であればいずれのものも利用可能であるが、より高い効果を得るという点から、シリコン系化合物やフッ素樹脂などの水性分散体が好適に利用できる。

【0016】更に、シリコン系化合物としては、乳化剤 の存在下に水中に分散の可能なシリコーンオイル、ある いはポリオキシエチレン等で変性された自己乳化型変性 シリコーンオイルであって、特に揆水剤、消泡剤、離型 剤用途のものがより好適に利用できる。このシリコーン オイルの良好な態様として、エマルジョンの形態を有す。 るものとしては、例えば、KM70、KM71、KM7 2シリーズ、KM73シリーズ、KM-722A、KM -740、KM-780、KM-782、KM-785 等(いずれも商品名、信越化学工業(株)社製)、TS M7341、TSM7343、TSM730、TSM7 32、TSM770、TSM775等(いずれも商品 名、GE東芝シリコーン(株)社製)、FSアンチフォ -ム013B、FSアンチフォーム1233、FSアン チフォーム1254等(いずれも商品名、東レ・ダウコ ーニングシリコーン(株)社製)といった永性タイプの ものを挙げることができる。

【0017】また、フッ素樹脂系としては、シリコン系化合物と同様に、乳化剤の存在下に水中に分散の可能なポリフッ化エチレン化合物、ポリ(エチレンープロゼレン)化合物等を挙げることができる。このフッ素系水性樹脂エマルジョンとしては、例えば、ユニダインTG-4.00、TG-490、TG-500、TG-590(いずれも商品名、ダイキン工業(株)社製)、ルミフロン(商品名、旭硝子(株)社製)、フルオネートFEM-500、FEM-600(いずれも商品名、大日本インキ化学工業(株)社製)といった水性タイプのものを挙げることができる。

【0018】一方、本発明の汚れ防止剤で利用可能な水性樹脂としては、通常、水性フレキソ凸版用印刷インキで使用されるもので、塩基性化合物の存在下、水に可溶な樹脂が利用可能であり、ロジン変性マレイン酸樹脂、アクリル系樹脂、スチレンーアクリル系樹脂、スチレンーマレイン酸系樹脂の群から選択される少なくとも1種の共重合体樹脂が好適に使用できる。なお、ここで、アクリル系樹脂とはアクリル系単量体を、スチレンーアクリル系増脂とはスチレン系単量体とアクリル系単量体を、スチレンマレイン酸系樹脂とはスチレン系単量体とマレイン酸系樹

脂とはスチレン系単量体、マレイン酸系単量体およびアクリル系単量体を共重合成分とする共重合体樹脂である。

【0019】さらに、アクリル系単量体としては、塩基 性化合物の存在下、水中に樹脂を溶解させるために必要 なカルボキシル基を樹脂の分子内に導入する成分とし て、アクリル酸、メタクリル酸が利用でき、また、他の 共重合可能なアクリル系単量体としては、メチル (メ タ) アクリレート、エチル (メタ) アクリレート、プロ ピル (メタ) アクリレート、ブチル (メタ) アクリレー ト、ヘキシル(メタ)アクリレート、2-エチルヘキシ ル(メタ)アクリレート、ラウリル(メタ)アクリレー ト、ステアリル (メタ) アクリレートなどの (メタ) ア クリル酸アルキルエステル化合物、ベンジル (メタ) ア クリレート、ナフチル (メタ) アクリレートなどの芳香 族環を含む(メタ)アクリル酸エステル化合物、2-ヒ ドロキシエチル (メタ) アクリレート、2-ヒドロキシ プロピル (メタ) アクリレート、3-ヒドロキシプロピ ル (メタ) アクリレートなどの (メタ) アクリル酸ヒド ロキシアルキルエステル化合物が利用できる。

【0020】スチレン系単量体としては、スチレン、αーメチルスチレン、ビニルトルエンとそれらの誘導体を挙げる事ができる。また、マレイン酸系単量体としては、塩基性化合物の存在下、水中に樹脂を溶解させるために必要なカルボキシル基を樹脂の分子内に導入する成分として、(無水)マレイン酸、および、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、マレイン酸モノブチル、マレイン酸モノブチル、マレイン酸モノフチルへキシル、マレイン酸モノラウリル、マレイン酸モノステアリルなどのマレイン酸モノアルキルエステルを挙げる事ができ、さらに、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどのマレイン酸ジアルキルエステル化合物が利用できる。

【0021】さらに、これらの共重合体樹脂は、必要に応じて、(メタ)アクリルアミド、クロトン酸とそのエステル化合物、イタコン酸とそのエステル化合物、シトラコン酸とそのエステル化合物、アクリロニトリル、オレフィン化合物等の他の共重合可能な単量体を共重合成分としてもよい。

【0022】以上の単量体成分を重合させて得られる水性樹脂の酸価としては、100~250mgKOH/g、より好ましくは120~250mgKOH/gである。樹脂の酸価が100mgKOH/gより低くなると、汚れ防止剤として利用したときに凸部から除去することが困難となり、また、アニロックスロールに詰まりやすくなる傾向があり好ましくない。一方、酸価が250mgKOH/gより高くなると汚れ防止効果の持続性が低下する傾向があり好ましくない。

【0023】さらに、上記の水性樹脂は塩基性化合物の

存在下、水中に溶解させて利用されるが、利用可能な塩 基性化合物としては、アンモニア水、水酸化ナトリウ ム、水酸化カリウム、水酸化アンモニウム等の無機塩基 性化合物、トリエチルアミン、モノエタノールアミン、 トリエタノールアミンなどの有機アミン化合物を挙げる 事ができる。

【0024】以上の揆インキ性材料と水性樹脂材料を含 有する汚れ防止剤において、その含有比率は、揆インキ 性材料:水性樹脂=2:8~8:2、好ましくは3:7 ~7:3の重量比率となる量である。 揆インキ性材料の 含有比率が上記の範囲より少なくなると、汚れ防止効果 が低下する傾向があり好ましくない。一方、揆インキ性 材料の含有比率が多くなると、汚れ防止剤として利用し たときに凸部から除去することが困難となり、また、ア ニロックスロールに詰まりやすくなる傾向があり好まし くない。そして、版面でより厚く塗工できるという点か ら、汚れ防止剤における両方の材料を合わせた含有量は 高い方が有利であり、少ない塗工量あるいは塗工回数で 効果を得るために10重量%以上である事が好ましい。 【0025】さらに、本発明の汚れ防止剤としては、そ の他の任意成分として、水混和性有機溶剤、消泡剤、転 移性向上剤、レベリング剤などの各種添加剤を添加する 事もできる。

【0026】以上の材料を含有する汚れ防止剤において、凸版の凹部の深度や面積などによって、必要な汚れ防止効果を長時間持続させるための条件が異なる場合は、汚れ防止剤の塗工量、水性樹脂の酸価、および揆インキ性材料と水性樹脂との含有比率等により調整することが可能となる。

【0027】次に、汚れ防止剤をフレキソ凸版の表面に 塗工する方法としては、凸版の版面に汚れ防止剤皮膜を 形成できる方法であればいずれの方法でも利用できる。 例えば、低粘度の汚れ防止剤であればスプレー方式が、 また、高粘度の汚れ防止剤であればハケ塗りや、布やスポンジ等を用いて版表面に付着させる方法が利用でき、 版のそのままの状態でも、版胴に装着した状態でも塗工が可能という点から好適である。また、版のそのままの 状態であれば、版面に汚れ防止剤を盛ってからバーやブレードを用いて均一に塗工する方法なども利用でき、この方法では、版の凸部表面の汚れ防止剤をかき取って塗工量を少なくし、凹部表面を厚く被覆することが比較的 簡単であり、すぐに印刷が可能で効果が持続できるようになるという点から好適である。

【0028】本発明では、最初は版の全面に汚れ防止剤が被覆された状態であり、版の凸部表面の汚れ防止剤を被印刷体に転移させて、完全に除去されてから印刷が可能になる。そして、汚れ防止剤を厚い皮膜としても、揆インキ性材料のみを塗工した場合に比べて、早くから印刷が可能となるばかりではなく、揆インキ性材料がアニロックスロールの凹部に詰まってインキの供給を妨げる

という問題も発生せず、長時間に渡って効果を持続する ことができるという特徴を有するものである。

[0029]

【表2】

【実施例】以下、実施例でもって本発明をより具体的に 説明するが、本発明はこれら実施例に限定されるもので はない。なお、特に断りのない限り、本実施例において 「部」および「%」は「重量部」および「重量%」を表 す。

【0030】1. 汚れ防止剤の調製

表1の単量体組成からなる混合物を共重合して得られ る、スチレンーメタクリル酸ーアクリル酸ブチル共重合 体(水性樹脂A)、スチレンーメタクリル酸ーアクリル 酸ブチル共重合体(水性樹脂B)、スチレンーマレイン

酸モノブチル共重合体(水性樹脂C)、スチレンー無水 マレイン酸-マレイン酸モノブチル共重合体(水性樹脂 D) の各々について、モノエタノールアミンの中和量を 溶解させたアミン水溶液に溶解させて固形分38%の水 性樹脂ワニスを得た。さらにシリコーンエマルジョンと して、КМ740 (信越化学工業 (株) 社製、固形分3 8%) と各々の前記水性樹脂ワニスを表2の重量組成比 率となる量で撹拌混合し、汚れ防止剤1~10を調製し た。また、シリコーンエマルジョンКM740のみを汚 れ防止剤11、さらに水により5倍に希釈したものを汚 れ防止剤12として使用した。

【表1】

共重合体	Α			В			.C			D			
スチレン	5 0				5 0	3 8			5 0				
メタクリル酸	:	1 0			1 7						_		
アクリル酸プチル	4 0			;	3 3	-			-				
マレイン酸プチル		-			-		(6 2			2 0		
無水マレイン酸	_				-		_			3 0			
酸価 (mgKOH/g)	(5 5		1	1 1		2 (0 3		. 3	2 .7		
汚れ防止剤	1	2	3	4	5	6	7	8	9	10	11	1 2	
K M 7 4 0	50	50	10	20	30	50	70	80	90	50	100	20	
水性樹脂Aワニス	50	_	_	_	~	-	_	-	_	_	-	_	
水性樹脂Bワニス	-	50	-	-	-	-	-	-	_	_	_	_	
水性樹脂Cワニス	-	_	90	80	70	50	30	20	10	-	_	-	
水性樹脂Dワニス	•			_	_	_	_	_	_	50		_	
小正山畑レノーハ	_	_								00			

袋/冲性材料/水性樹脂 5/5 5/5 1/9 2/8 3/7 5/5 7/3 8/2 9/1 5/5 1/0 1/0

【0031】2. 評価

フレキソ樹脂凸版 (AFP、デュポン (株) 社製) に、 長方形のベタ部を設け、ベタ部に対して版の進行方向か ら後部にあり、ベタ部に接触したアニロックスロール表 面が1回転後に接触する部分に細字部を設け、ベタ部に 対して版胴軸(横)方向にバーコードの線画部からなる 図柄を設け、凹部の深度を1mmとしたテスト用パター ンを有する印刷物評価用凸版を作成した。

【0032】この印刷物評価用凸版面に、それぞれ汚れ 防止剤1~11を、凸部における汚れ防止剤の盛りの厚

さがほぼり. 5mmとなる塗工量で塗工して版面全体を 覆って乾燥させた後、フレキソ印刷機を用いてコート紙 (CRC、レンゴー (株) 社製、230g/m²) に水 性印刷インキ (NewFK MR-10、サカタインク ス(株)社製)を印刷して下記の評価を行った。また、 汚れ防止剤12を従来より知られたスプレー方式により 版面に噴霧・乾燥させた後、上記と同一の印刷機、コー ト紙、水性印刷インキを用いて印刷し、下記の評価を行 なった。それぞれの評価結果を表3に示した。

【表3】

	実施例								比較例					
	1	2	3	4	5	6	7	1	2	3	4	5		
汚れ防止剤	2	4	5	6_	7	8	10	1	3	9_	11	12		
早期印刷性	В	Α	Λ	Α	Α_	В	A	С	Α	C	D	Α		
耐污染性	Α	В	A	Α	Α	Α	A	Α	С	Α	Α	D		
アニロックスロール表 面のつまり	Α	A	A	A	A	A	A	В	A	В	В	A		

【0033】 · 早期印刷性

印刷開始から、凸部の汚れ防止剤がコート紙に接触・除去されて、バーコードの判読ができるまでに要したコート紙の長さから早期印刷性を評価した。

A: コート紙の長さが10m以下であるもの。

B: コート紙の長さが10mを超え、100m以下であるもの。

C: コート紙の長さが100mを超え、500m以下であるもの。

D:コート紙の長さが500mを超えても正常な印刷物が得られないもの。

【0034】·耐汚染性

正常な印刷が得られてから汚れが発生して、バーコード の判読ができなくなるまでに印刷できたコート紙の長さ から耐汚染性を評価した。

A: コート紙の長さが4000m以上であるもの。

B: コート紙の長さが4000mを超え、40000m 以下であるもの。

C:コート紙の長さが500mを超え、4000m以下であるもの。

D: コート紙の長さが500m以下であるもの。

【0035】・アニロックスロール表面のつまりの有無

正常な印刷が得られてから、ベタ部と接触したアニロックス表面が1回転後に細字部に接触したときのインキ供給の有無を細字の印刷性から判断し、アニロックスロール表面のつまりの有無を評価した。

A:細字印刷部がかすれず、アニロックスロールのつまりが観察されない。

B:細字印刷部がかすれ、アニロックスロールのつまりが観察される。

[0036]

【表1】

[0037]

【表2】

[0038]

【表3】

[0039]

【発明の効果】以上、実施例を示して具体的に説明したように、本発明によれば揆インキ性防止剤を含有する汚れ防止剤を用いても、すぐに印刷を開始することが可能で、長時間汚れ防止効果を維持でき、しかもアニロックスロールに揆インキ性材料が詰まる事がない。従って、作業性と印刷品質の双方を向上させることのできる水性印刷インキ印刷物の汚れ防止方法である。