UNIVERSITY OF DUBLIN

TRINITY COLLEGE

Faculty of Engineering and Systems Sciences Department of Computer Science

B.A.(Mod.) Computer Science Senior Sophister Examination **Trinity Term 2005**

4BA2 Systems Modelling

Wednesday 1st June 2005 Sports Hall 09:30 - 12:30

Dr. Tony Redmond & Mr. Argyroudis Patroklos,

Instructions to Candidates:

- Answer Five questions in all.
- Answer two questions from Section A and two questions from Section B.

Materials permitted for this examination:

Oueuing tables are attached to paper

With the aid of a detailed example show how Bob can verify a *signed and enveloped* message from Alice whom he has never met before. Describe the minimum Certification Authority (CA) hierarchy that is required for the correct functioning of the system.

(10 marks)

Distinguish between direct and indirect delivery of datagrams using the Internet Protocol (IP) providing examples where appropriate. Explain how the Address Resolution Protocol (ARP) scheme can be used to deliver IP datagrams using the underlying MAC layer. What are the operational assumptions of ARP? How can an attacker take advantage of these and what can he accomplish?

(10 marks)

2.

Given in the figures below are summaries of the headers of IPv4 and IPv6:

).	4	8	16	19	24	31
VERS	H, LEN	SERVICE TYPE		TOTAL	LENG	TH
IDENTIFICATION			FLAGS	FRAC	MENT	OFFSET
TIME	O LIVE	TYPE	ŀ	IEADER	CHEC	(SUM
SOURCE IP ADDRESS						
ing the second s		DESTINATION	I IP ADI)RESS		
IP OPTIONS (MAY BE ON			MITTED)		P	ADDING
BEGINNING OF DATA						
#: #:						
CONTRACTOR OF THE PROPERTY OF	***********	AND A COMPANY AND ADDRESS OF THE PARTY OF TH	eyrani ett million oblika karani ett eri	CONTRACTOR OF CO	Manager Control of the Section of th	and other transfer of the state

Figure 1: IPv4 Header

Figure 2: IPv6 Base Header

Explain the contents of the two headers and the differences between these two versions of the protocol. Discuss what is necessary to move from IPv4 to IPv6 and how can this be accomplished gradually.

(10 marks)

Describe the variation of the sliding window protocol scheme employed at the TCP layer.

(10 marks)

3.

What do you understand by the terms *mobility* and *handoff* in the context of mobile communications? An IP address specifies a node's point of attachment on the Internet and also serves as an end-point for connection-oriented protocols such as TCP. With the proliferation of small portable/handheld devices there is a growing need to support mobility procedures on the Internet. Describe the salient features of the Mobile IP protocol specifying the main entities in the system and the mobility procedures. What are the advantages and disadvantages of the scheme?

(20 marks)

(20 marks)

4.

TCP is replaced with STCP (Secure TCP) to avoid sequence number related attacks. STCP works as follows: STCP avoids sequence number attacks by encrypting the TCP sequence number using secret key cryptography. A secret key is derived using the Diffie-Hellman key exchange protocol during the three way handshake process of TCP. This session key is used to encrypt the sequence number. The session key and the IP address of the peer is stored in a table and reused in future sessions. Discuss problems with the solution listed above regarding security and cost.

(20 marks)

Section B

5.

- a. Suggest how you would approach the problem of using a queueing theory approach via a series of models of increasing complexity, for estimating the performance of a computer system. Give examples.
- b. Suggest three rules of thumb useful for using queueing theory in computer system design.
- c. Discuss what is meant by the incremental improvement of performance by the successive removal of bottlenecks, and give an example.
- d. Specify Little's Relation giving the meaning of each term. What is its importance and where can it be used?

6.

- a. Sketch the graph of system wait time for a M/ M/ 1 queueing system vs. server utilisation ρ. Indicate on your sketch how this changes for three systems each with a service distibution of one of the other three distributions mentioned in Part b (i.e. M/ D/1, M/ Ek/1, and M/ Hk/1). Indicate on your sketch the penalty for variability in terms of
 - i. increasing ρ for a given wait and
 - ii. increasing wait for a given ρ .
- b. Define the Coefficient of Variation Squared for a distribution. Why is this parameter used?

Give values (or ranges) for this parameter for

- i. a deterministic distribution
- ii. an exponential (Poisson) distribution
- iii. a hypo-exponential distribution
- iv. a hyper-exponential distribution
- c. Jobs finish at a user-accessible CD-Rom bank with an average time interval between them of 5 minutes. Use the information in a. and Takacs' formula below to estimate a value or range for the average time E[Wt] a user should expect to wait for use of the bank (where $E[\tau]$ is the expected transaction time) if
 - i. the jobs transaction times take exactly five minutes?
 - ii. the job transaction times follow a Poisson distibution?
 - iii. the job transaction times follow a hypo-exponential distribution (also known as an Erlangian-k distribution)?
 - iv. the job transaction times follow a hyper-exponential distribution?

Takacs' formula for this "inspection paradox", with the usual notation is:

$$E[W_t] = \frac{1}{2} \left[E[\tau] + \frac{Var[\tau]}{E[\tau]} \right]$$

7.

a. The formula for the normalised response time of an interactive computer system using the machine repairman model is as follows with the usual notation:

$$\mu W = \frac{N}{(1 - p_0)} - \frac{\mu}{\alpha}$$

(W, the average response time, p0 (the probability the CPU-I/O system is idle), r the CPU-I/O system utilisation and I the system throughput) and

$$p_0 = \frac{1}{\sum_{n=0}^{N} \frac{N!}{(N-n)!} \left(\frac{\alpha}{\mu}\right)^n}$$

p0 may be calculated using the above equation where there are N active users in the system.

- Sketch two separate diagrams each giving the mean response time (non-normalised) vs. load (number of active users) for the above system. On the first diagram sketch the affect of doubling CPU speed and on the second sketch the affect of halving think time.
- ii. What are the practical difficulties in the use of this formula.?
- iii. What is the significance of a "Normalised" versus a non-Normalised response?
- iv. Derive a formula for n* the number of users at which saturation begins? Why is this not very useful?
- v. Would this be a useful model of the College Internet Server why or why not? What is a better model and why?

b.

- Give 3 queueing rules of thumb and briefly explain their importance in each case.
- ii. Give briefly 6 underlying assumptions of Buzen's Central Server model
- iii. Give 6 extensions of the model explaining briefly their importance in each case.
- iv. Give 2 definitions of a balanced situation in a queueing network.

8.

a. The following sequence of random numbers was generated using the equation: r(n) = a * r(n-1) (modulo 10) where r(0) = 123456789.
 Comment on the randomness of the numbers.
 How would you simply improve the randomness of these numbers?

n	un
1	0.60492 70367
2	0.51845 11101
3	0.66636 33303
4	0.33211 99909
5	0.99544 99727
6	0.98361 94181
7	0.94266 97543
8	0,80343 92629
9	0.33660 77887
10	0.78869 33661
11	0.70269 00983
12	0.11790 02949
13	0.38319 08847
14	0.23804 26541
15	0.97953 79623
16	0.73484 38869
17	0.59322 16607
18	0.94573 49821
19	0.33541 49463
20	0.50087 48389

- b. Sketch the two basic time increment modes in simulation using diagrams.
- c. Sketch how the inverse transform method is used for simulating random numbers drawn from an exponential distribution.
- d. Give an example of a variance reduction technique and explain how it works. Apart from variance reduction what other main advantages does it have?

Appendix C

QUEUEING THEORY DEFINITIONS AND FORMULAS

most of the queueing models. APL functions are displayed in Appendix B to implement the formulas for compendium of the queueing theory definitions and notation used in this elements and random variables used in queueing theory models. Table 1 is a formulas for the most useful models and figures to help with the calculations. book. The remainder of Appendix C consists of tables of queueing theory In Figs. 5.1.1 and 5.1.2, reproduced from Chapter 5, we indicate the

QUEUEING THEORY DEFINITIONS AND FORMULAS

361

Fig. 5.1.1 Elements of a queueing system.

Fig. 5.1.2 Some random variables used in queueing theory models.

TABLE 1 Queueing Theory Notation and Definitions

A(t)	Distribution of interarrival time, $A(t) = P[\tau \le t]$.
B(c, u)	Estang's B formula or the probability all c servers one beauty
Cla	
C(c, u)	Erlang's C formula or the probability all c servers are busy in an $M/M/c$ queueing system.
c	queueing system.
D	Symbol for the number of servers in the service facility of a queueing system.
E[N]	
_[-1.]	· · · · · · · · · · · · · · · · · · ·
$E[N_{\downarrow}]$	t == 0 = J ====== 1 MO ICHCI I. IX XIXA DEGA IA= CI XII
- 4	Expected (average or mean) number of customers in the queue (waiting line)
$E[N_{i}]$	The state of the s
	Expected (average or mean) number of customers receiving service when the system is in the steady state.
E[q]	Expected (average or mean) queveing time (days
	Expected (average or mean) queueing time (does not include service time) when the system is in the steady state. The symbol W_q is also used for $E[q]$. Expected (average or mean) service time for one analysis.
E[s]	Expected (average or mean) service time for one customer. The symbol W_q is also used for $E[q]$, also used for $E[s]$.
PC 1	also used for $E[s]$.
E[au]	Expected (average or mean) interarrival time. $E[\tau] = 1/\lambda$, where λ is average arrival rate.
Erf1	
<i>E</i> [w]	Expected (average or mean) waiting time in the system (this includes both queueing time and service time) when the
	The cyclem is in the case of t
E.	
$E[N \mid N > 0]$	Symbol for Erlang-k distribution of interarrival or service time.
$E_{k} \\ E[N_{q} N_{q} > 0]$	arciage of mean) queue length of nonempty
$E[q \mid q > 0]$	5:000, 5:2[6.
22,12	Expected (average or mean) waiting time in queue for customers delayed when the system is in the steady state.
FCFS	when the system is in the steady state. Same as $W_{q q>0}$. Symbol for, "first come, first served," queue discipline.
FIFO	Symbol for "first in, first out," queue discipline which is identical with
_	FCFS. quene discipline which is identical with
G	Symbol for general probability distribution of service time. Independence usually assumed
6 7	
GI	Symbol for general independent interarrival time distribution.
K	
	Those receiving service Also size of
L	· (
2	E[N], expected (average or mean) number in the queueing system when the system is in the steady state
ln (·)	The same of the sa
$\overline{L_{q}}$	The natural logarithm function or the logarithm to the base e.
٦٠	-1. Or expected (average of mean) number in the group was a second
LCFS	State System
LIFO	Symbol for "last come, first served," queue discipline. Symbol for "last in first out" queue discipline.
ì	Symbol for "last in, first out," queue discipline which is identical to LCFS. Average (mean) arrival rate to queueing system. $\lambda = 1/E[\tau]$, where $E[\tau] =$
	average interarrival time. $\lambda = 1/E[\tau]$, where $E[\tau] = 1/E[\tau]$
	

TABLE 1 (Continued)

À _T	Average throughput of a computer system measured in jobs or interactions per unit time.
М	Symbol for exponential interarrival or service time distribution.
μ	Average (mean) service rate per server. Average service rate $\mu = 1/E[s]$,
	where $E[s]$ is the average (mean) service time.
N	Random variable describing number in queueing system when system is in
	the steady state.
N_{σ}	Random variable describing number of customers in the steady state queue.
N_{\bullet}	Random variable describing number of customers receiving service when the
-	system is in the steady state.
0	Operating time of a machine in the machine repair queueing model (Sections 5.2.6 and 5.2.7). O is the time a machine remains in operation after repair before repair again is necessary.
$p_n(t)$	Probability that there are n customers in the queueing system at time t.
p_n	Steady state probability that there are n customers in the queueing system.
PRI	Symbol for priority queueing discipline.
PS	Abbreviation for "processor-sharing queue discipline." See Section 6.2.1.
$\pi_{\mathbf{q}}(r)$	Symbol for rth percentile queueing time; that is, the queueing time that r
	percent of the customers do not exceed.
$\pi_{\mathbf{w}}(r)$	Symbol for rth percentile waiting time in the system; that is, the time in the
	system (queueing time plus service time) that r percent of the customers do not exceed.
q	Random variable describing the time a customer spends in the queue (wait-
	ing line) before receiving service.
RSS	Symbol for queue discipline with "random selection for service."
ρ	Server utilization = traffic intensity/ $c = \lambda E[s]/c = (\lambda/\mu)/c$. The probability
	that any particular server is busy.
S	Random variable describing service time for one customer.
SIRO	Symbol for queue discipline, "service in random order" which is identical with RSS. It means that each waiting customer has the same probability of being served next.
τ	Random variable describing interarrival time.
и	Traffic intensity = $E[s]/E[\tau] = \lambda E[s] = \lambda/\mu$. Unit of measure is the erlang.
W	Random variable describing the total time a customer spends in the
	queueing system, including both service time and time spent queueing for
	service.
W(t)	Distribution function for w , $W(t) = P[w \le t]$.
W	E[w], expected (average or mean) time in the steady state system.
$W_{\mathbf{q}}(t)$	Distribution function for time in the queue, $W_q(t) = P[q \le t]$.
$W_{\mathbf{q}}$	E[q], expected (average or mean) time in the queue (waiting line), excluding
	service time, for steady state system.
W _{q q>0}	Expected (average or mean) queueing time for those who must queue. Same as $E[q \mid q > 0]$.
$W_{\rm s}(t)$	Distribution function for service time. $W_s(t) = P[s \le t]$.
W_{i}	$E[s]$, expected (average or mean) service time, $1/\mu$.

TABLE 2
Relationships Between Random Variables of Queueing Theory Models

$u = E[s]/E[\tau] = \lambda E[s] = \lambda/\mu$	Traffic intensity in erlangs.
$\rho = u/c = \lambda E[s]/c = \lambda/c\mu$	Server utilization. The probability any particular server is busy.
w=q+s	Total waiting time in the system, including
$W = E[w] = E[q] + E[s] = W_q + W_s$	waiting in queue and service time. Average total waiting time in the steady state system.
$N = N_{q} + N_{s}$	Number of customers in the steady state
$L = E[N] = E[N_{q}] + E[N_{s}] = \lambda E[w] = \lambda W$	system. Average number of customers in the steady state system. $L = \lambda W$ is known as "Little's
$L_{q} = E[N_{q}] = \lambda E[q] = \lambda W_{q}$	formula." Average number in the queue for service for steady state system. $L_q = \lambda W_q$ is also called "Little's formula."

TABLE 3
Steady State Formulas for M/M/1 Queueing System

$$p_{n} = P[N = n] = (1 - \rho)\rho^{n}, \qquad n = 0, 1, 2,$$

$$P[N \ge n] = \sum_{k=n}^{\infty} p_{k} = \rho^{n}, \qquad n = 0, 1, 2,$$

$$L = E[N] = \rho/(1 - \rho), \qquad \sigma_{N}^{2} = \rho/(1 - \rho)^{2}.$$

$$L_{q} = E[N_{q}] = \rho^{2}/(1 - \rho), \qquad \sigma_{N_{q}}^{2} = \rho^{2}(1 + \rho - \rho^{2})/(1 - \rho)^{2}.$$

$$E[N_{q}|N_{q} > 0] = 1/(1 - \rho), \qquad Var[N_{q}|N_{q} > 0] = \rho/(1 - \rho)^{2}.$$

$$W(t) = P[w \le t] = 1 - e^{-t/W}, \qquad P[w > t] = e^{-t/W}.$$

$$W = E[w] = E[s]/(1 - \rho), \qquad \sigma_{w} = W.$$

$$\pi_{w}(90) = W \ln 10 \approx 2.3W, \qquad \pi_{w}(95) = W \ln 20 \approx 3W.$$

$$\pi_{w}(r) = W \ln [100/(100 - r)].$$

$$W_{q}(t) = P[q \le t] = 1 - \rho e^{-t/W}, \qquad P[q > t] = \rho e^{-t/W}.$$

$$W_{q} = E[q] = \rho E[s]/(1 - \rho).$$

$$\sigma_{q}^{2} = (2 - \rho)\rho E[s]^{2}/(1 - \rho)^{2}.$$

$$E[q|q > 0] = W, \qquad Var[q|q > 0] = W^{2}.$$

$$\pi_{q}(90) = W \ln(10\rho), \qquad \pi_{q}(95) = W \ln(20\rho).$$

$$\pi_{q}(r) = W \ln \left(\frac{100\rho}{100 - r}\right).$$

All percentile formulas for q will yield negative values when ρ is small; all negative values should be replaced by zero. For example, if ρ is 0.02, then 98 percent of all customers do not have to queue for service so the 95th percentile value of q is zero; so are the 90th and 95th percentile values.

TABLE 4

Steady State Formulas for M/M/1/K Queueing System

 $(K \ge 1 \text{ and } N \le K)$

$$p_n = P[N = n] = \begin{cases} \frac{(1-u)u^n}{1-u^{K+1}} & \text{if } \lambda \neq \mu \text{ and } n = 0, 1, ..., K \\ \frac{1}{K+1} & \text{if } \lambda = \mu \text{ and } n = 0, 1, ..., K. \end{cases}$$

 $p_{\kappa} = P[N = K]$. Probability an arriving customer is lost.

 $\lambda_a = (1 - p_K)\lambda$. λ_a is the actual arrival rate at which customers enter the system.

$$L = E[N] = \begin{cases} \frac{u[1 - (K+1)u^{K} + Ku^{K+1}]}{(1-u)(1-u^{K+1})} & \text{if } \lambda \neq \mu \\ \frac{K}{2} & \text{if } \lambda = \mu. \end{cases}$$

$$L_{q} = E[N_{q}] = L - (1 - p_{0})$$

$$q_n = \frac{p_n}{1 - p_r}, \quad n = 0, 1, 2, ..., K - 1.$$

 q_n is the probability that there are n customers in the system just before a customer enters.

$$W(t) = P[w \le t] = 1 - \sum_{n=0}^{K-1} q_n \sum_{k=0}^{n} e^{-\mu t} \frac{(\mu t)^k}{k!}.$$

$$W = E[w] = L/\lambda_a.$$

$$W_{q}(t) = P[q \le t] = 1 - \sum_{n=0}^{K-2} q_{n+1} \sum_{k=0}^{n} e^{-ut} \frac{(\mu t)^{k}}{k!}.$$

$$W_{\rm q} = E[q] = L_{\rm q}/\lambda_{\rm a}$$
.

$$E[q | q > 0] = W_a/(1 - p_0).$$

$$\rho=(1-p_{K})u.$$

 ρ is the true server utilization (fraction of time the server is busy).

TABLE 5
Steady State Formulas for M/M/c Queueing System

$$u = \lambda/\mu = \lambda E[s], \qquad \rho = u/c.$$

$$p_0 = P[N = 0] = \left[\sum_{n=0}^{c-1} \frac{u^n}{n!} + \frac{u^c}{c! (1-\rho)} \right]^{-1} = c! (1-\rho)C(c, u)/u^c.$$

$$p_0 = P[N = 0] = \left[\sum_{n=0}^{c-1} \frac{u^n}{n!} + \frac{u^c}{c! (1-\rho)} \right]^{-1} = c! (1-\rho)C(c, u)/u^c.$$

$$p_0 = \frac{u^n p_0}{n!} \quad \text{if } n = 0, 1, \dots, c$$

$$\left[\frac{u^n p_0}{c! c^{n-c}} \quad \text{if } n \geq c. \right]$$

$$L_q = E[N_q] = \lambda W_q = \frac{uC(c, u)}{c(1-\rho)}. \qquad \sigma_{N_q}^2 = \frac{\rho C(c, u)[1+\rho-\rho C(c, u)]}{(1-\rho)^2}.$$

$$\text{where } C(c, u) = P[N \geq c] = \text{probability all } c \text{ servers are busy is called Erlang's } C \text{ formula.}$$

$$C(c, u) = \frac{u^c}{c!} \int \frac{u^c}{c!} + (1-\rho) \sum_{n=0}^{c-1} \frac{u^n}{n!}.$$

$$L = E[N] = L_q + u = \lambda W.$$

$$W_q(0) = P[q = 0] = 1 - \frac{\rho_c}{1-\rho} = 1 - C(c, u).$$

$$W_q(t) = P[q \leq t] = 1 - \frac{\rho_c}{1-\rho} e^{-nt1-\rho n} = 1 - C(c, u)e^{-untercol}.$$

$$W_q = E[q] = \frac{C(c, u)E[s]}{c(1-\rho)^2}. \qquad \pi_q(r) = \frac{E[s]}{c(1-\rho)} \ln\left(\frac{100C(c, u)}{100-r}\right)^n.$$

$$\pi_q(90) = \frac{E[s]}{c(1-\rho)} \ln(10C(c, u)). \qquad \pi_q(95) = \frac{E[s]}{c(1-\rho)} \ln(20C(c, u)).^n.$$

$$W(t) = P[w \leq t] = \frac{1+C_1e^{-w} + C_2e^{-cun1-r}}{1-[1+C(c, u)\mu t]e^{-w}} \qquad \text{if } u \neq c-1.$$

$$\text{where } C_1 = \frac{u-c+W_q(0)}{c-1-u} \qquad \text{and} \qquad C_2 = \frac{C(c, u)}{c-1-u}.$$

$$W = E[q] + E[s].$$

$$E[w^2] = \frac{[2C(c, u)E[s]^2}{u+1-c} \frac{1-c^2(1-\rho)^2}{c^2(1-\rho)^2} + 2E[s]^2. \qquad u \neq c-1.$$

$$\frac{dC(c, u)E[s]^2}{dC(c, u)E[s]^2} + 2E[s]^2. \qquad u \neq c-1.$$

$$\frac{dC(c, u)E[s]^2}{dC(c, u)E[s]^2} + 2E[s]^2. \qquad u \neq c-1.$$

$$\frac{dC(c, u)E[s]^2}{dC(c, u)E[s]^2} + 2E[s]^2. \qquad u \neq c-1.$$

$$\frac{dC(c, u)E[s]^2}{dC(c, u)E[s]^2} + 2E[s]^2. \qquad u \neq c-1.$$

$$\frac{dC(c, u)E[s]^2}{dC(c, u)E[s]^2} + 2E[s]^2. \qquad u \neq c-1.$$

^{*} All percentile formulas for q yield negative values for low server utilization; all should be replaced by zero.

TABLE 6
Steady State Formulas for M/M/2 Queueing System

$$\rho = \lambda E[s]/2 = u/2.$$

$$p_0 = P[N = 0] = (1 - \rho)/(1 + \rho).$$

$$p_n = P[N = n] = 2p_0 \rho^n = \frac{2(1 - \rho)\rho^n}{(1 + \rho)}, \quad n = 1, 2, 3,$$

$$\pi_w(90) \approx W + 1.3\sigma_w | \text{Martin's estimate.}$$

$$L_q = E[N_q] = \frac{2\rho^3}{1 - \rho^2}, \quad \sigma_{N_q}^2 = \frac{2\rho^3[(\rho + 1)^2 - 2\rho^3]}{(1 - \rho^2)^2}$$

$$C(2, u) = P[\text{both servers busy}] = 2\rho^2/(1 + \rho).$$

$$L = E[N] = L_q + u = 2\rho/(1 - \rho^2).$$

$$U_q(0) = P[q = 0] = (1 + \rho - 2\rho^2)/(1 + \rho).$$

$$W_q(1) = P[q \le t] = 1 - [(2\rho^2)/(1 + \rho)]e^{-2\mu t(1 - \rho)}.$$

$$W_q = E[q] = \rho^2 E[s]/(1 - \rho^2). \quad E[q \mid q > 0] = E[s]/2(1 - \rho).$$

$$\sigma_q^2 = \rho^2(1 + \rho - \rho^2)E[s]^2/(1 - \rho^2)^2.$$

$$\pi_q(r) = \frac{E[s]}{2(1 - \rho)} \ln\left(\frac{20\rho^2}{(100 - r)(1 + \rho)}\right).$$

$$\pi_q(90) = \frac{E[s]}{2(1 - \rho)} \ln\left(\frac{20\rho^2}{(1 + \rho)}\right). \quad \pi_q(95) = \frac{E[s]}{2(1 - \rho)} \ln\left(\frac{40\rho^2}{1 + \rho}\right).$$

$$U(t) = P[w \le t] = \frac{(1 - \rho)}{1 - \rho - 2\rho^2} e^{-\mu} + \frac{2\rho^2}{1 - \rho - 2\rho^2} e^{-2\mu t(1 - \rho)} \text{ if } u \ne 1.$$

$$U(t) = P[w \le t] = \frac{(1 - \rho)}{(1 - \rho^2)} + 2E[s]^2. \quad u \ne 1.$$

$$U(t) = \frac{\rho^2 E[s]^2[1 - 4(1 - \rho)^2]}{(2\rho - 1)(1 - \rho)(1 - \rho^2)} + 2E[s]^2. \quad u \ne 1.$$

$$U(t) = \frac{\rho^2 E[s]^2[1 - 4(1 - \rho)^2]}{(2\rho - 1)(1 - \rho)(1 - \rho^2)} + 2E[s]^2. \quad u \ne 1.$$

$$U(t) = \frac{\rho^2 E[s]^2[1 - 4(1 - \rho)^2]}{(2\rho - 1)(1 - \rho)(1 - \rho^2)} + 2E[s]^2. \quad u \ne 1.$$

$$U(t) = \frac{\rho^2 E[s]^2[1 - 4(1 - \rho)^2]}{(2\rho - 1)(1 - \rho)(1 - \rho^2)} + 2E[s]^2. \quad u \ne 1.$$

$$U(t) = \frac{\rho^2 E[s]^2[1 - 4(1 - \rho)^2]}{(2\rho - 1)(1 - \rho)(1 - \rho^2)} + 2E[s]^2. \quad u \ne 1.$$

^a All percentile formulas for q yield negative values for low server utilization: all such should be replaced by zero.

TABLE 24

Steady State Formulas for the Finite Population Queueing Model of Interactive Computing With Processor-Sharing

Fig. 6.3.1 Finite population queueing model of interactive computer system. Special case in which the central processor system consists of a single CPU with processor-sharing queue discipline.

The CPU operates with the processor-sharing queue discipline. CPU service time is general with the restriction that the Laplace-Stieltjes transform must be rational. The same restriction holds on think time. $E[t] = 1/\alpha$ is the average think time with $E[s] = 1/\mu$ the average CPU service time. Then

$$p_{0} = \left[\sum_{n=0}^{N} \frac{N!}{(N-n)!} \left(\frac{E[s]}{E[t]} \right)^{n} \right]^{-1} = \left[\sum_{n=0}^{N} \frac{N!}{(N-n)!} \left(\frac{\alpha}{\mu} \right)^{n} \right]^{-1}.$$

The CPU utilization

$$\rho = 1 - \rho_0$$

and the average throughput

$$\lambda_{\mathrm{T}} = \frac{\rho}{E[s]} = \frac{1 - p_{\mathrm{0}}}{E[s]}.$$

The average response time

$$W = \frac{NE[s]}{1 - p_0} - E[t].$$

TABLE 27 Steady State Equations of Central Server Model of Multiprogramming

Fig. 6.3.4 Central server model of multiprogramming.

For the assumptions of the model see Section 6.3.4. Calculate G(0), G(1), ..., G(K) by Algorithm 6.3.1 (Buzen's Algorithm). Then the server utilizations are given by

$$\rho_{i} = \begin{cases} G(K-1)/G(K) & i = 1\\ \frac{\mu_{1}\rho_{1}p_{i}}{\mu_{t}} & i = 2, 3, ..., M. \end{cases}$$
(6.3.25)

The average throughput λ_T is given by

$$\lambda_{\mathsf{T}} = \mu_1 \rho_1 p_1. \tag{6.3.26}$$

If the central server model is the central processor model for the interactive computing system of Fig. 6.3.1, then the average response time W is calculated by

$$W = \frac{N}{\lambda_{T}} - E[t] = \frac{N}{\mu_{1} \rho_{1} p_{1}} - E[t]. \tag{6.3.27}$$