EE16B Discussion

Cirant elements.

 $\frac{kCL, kVL}{l}$ $\frac{kCL, kVL}{l}$ $\frac{1}{l}$ $\frac{1}{l}$

op-amp

if $V_{+} > V_{-} \rightarrow V_{0}$ is a large + value otherwise if $V_{+} < V_{-} \rightarrow V_{0}$ is a large - value.

Negative feedback

Nivi lov

10 P

1 KCL

Consider the circuit shown below:

Figure 1: Adapted from Ulaby, Maharbiz, Furse. Circuits. Third Edition

Determine the voltage V_x at steady state.

IA

2 KVL

Consider the circuit shown below:

Figure 2: Adapted from Ulaby, Maharbiz, Furse. Circuits. Third Edition.

Using KVL, determine the amount of power supplied by the voltage source. Do not use superposition.

3 Op-Amp Review

Consider the circuit below?

a) Calculate V_o if V_i if $V_i \neq 0.5 \text{ V}$.

$$\frac{100}{\sqrt{0}} - \left(-\frac{1}{\sqrt{0}}\right) = 0$$

$$\Rightarrow \frac{V_0}{100} \approx -\frac{V_1^0}{10}$$

peak-peak

c) Use **superposition** to sketch V_o if V_i is a 1 V_{pp} square wave with a $0.5 \, V$

0 - 10 V -6V

d) Consider the non-inverting input. What value could we replace ground

e) Suppose we only have a 1 V source, but still wish to center the output from (c) about 0 V. What circuit block should we place at the noninverting input to accomplish this goal?

