201822195 邵方承 3.1-1 ヨハ、ハ2>0、当ハンハ、町、有 f(n)>0 直内>内2时,有g(n)>0 ikno-max(n,n2),则自n>n。对, 右 f (n) { max (f (n), g (n)) g(n) < max (f(n), g ch)) $\Rightarrow \frac{f(n) + g(n)}{2} \leq max(f(n), g(n)) \leq f(n) + g(n)$ 围地 max (fcn), gcn)) = 0 (fcn) + gcn)) 3.1-7 x t V C1. C2 >0. ∃ N1, N2 >0. 多 n > n, 社, 有 0 ≤ f(n) < c,g(n) 当 n > n2 n分 板 0 ≤ C2 g(n) と f(n) 则当nsmax(n,n) 好 友 C,g(n) <f(n) < C,g(n) 这里然不成是。 ph ~ o (g m)) / w (g cn)) = Ø

- 艺人 即 () 0 ()
- a. 若 $k \geqslant d$,则 $p(n) = O(n^k)$ 。
- b. 若 $k \leq d$, 则 $p(n) = \Omega(n^k)$ 。
 - c. 若 k=d, 则 $p(n)=\Theta(n^k)$ 。
 - d. 若 k>d,则 $p(n)=o(n^k)$ 。
 - e. 若 k < d,则 $p(n) = \omega(n^k)$ 。
- 3-2 (相对新近增长) 为下表中的每对表达式(A, B)指出 A 是否是 B 的 O、o、 Ω 、 ω 或 Θ 。 假设 $k \geqslant 1$ 、 $\epsilon > 0$ 且 $\epsilon > 1$ 均为常量。回答应该以表格的形式,将"是"或"否"写在每个空格中。

		7	Land Address of	1, 5, 5, 5, 10, 10, 10,	一个一个一个	Litter March	V 48 1/10 PO POP
	A	В	0	正照10世界	Ω	左世代 心 美种	Θ
a.	$\lg^k n$	n^{ϵ}	E.	是	为	da	爱
b.	n^k	C^n	DI J	E C	友	3	麦
c.	\sqrt{n}	$n^{\sin n}$	入	1/2	15	3-2	Ta
d.	2"	$2^{n/2}$	型上社	是及	er.	EH)	4
e.	$n^{\lg c}$	$c^{\lg n}$	2	1/2	2	32	2
f.	lg(n!)	$\lg(n^n)$	ALD.	戏	是	32	是

3-3 (根据渐近增长率排序)

a. 根据增长的阶来排序下面的函数,即求出满足 $g_1 = \Omega(g_2)$, $g_2 = \Omega(g_3)$,…, $g_{29} = \Omega(g_{30})$ 的函数的一种排列 g_1 , g_2 ,…, g_{30} 。把你的表划分成等价类,使得函数 f(n)和 g(n)在相同类中当且仅当 $f(n) = \Theta(g(n))$ 。

$$\lg(\lg^* n) \quad 2^{\lg^* n} \quad (\sqrt{2})^{\lg n} \quad n^2 \quad n! \quad (\lg n)!$$