Comment le sens se traduit en pixel?

Il est très compliqué de passer d'un tas de nombres associés à des pixels jusqu'à la détection d'un objet.

Comment le sens se traduit en pixel?

Il est très compliqué de passer d'un tas de nombres associés à des pixels jusqu'à la détection d'un objet.

D'après vous, quelles sont les facteurs de variations?

Comment le sens se traduit en pixel?

Il est très compliqué de passer d'un tas de nombres associés à des pixels jusqu'à la détection d'un objet.

L'apparence d'un objet peut varier par:

- Translation
- Rotation
- Point de vue
- Changement dans l'illumination
- variation intra-classe

Commençons donc: supposons que nous souhaitons détecter les contours sur cette image.

En particulier sur cette ligne

Les contours apparaissent aux changements brusques de valeur des pixels.

Appliquons un filtre k sur une des lignes avec:

$$k = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

Appliquons un filtre k sur une des lignes avec:

$$k = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

Appliquons un filtre k sur une des lignes avec:

$$k = \begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

Convolution 1D discrète entre un signal f et un filtre k de taille d :

$$(f\star k)(i) = \sum_{n=-rac{d-1}{2}}^{rac{d-1}{2}} f(i-n).\, k(n)$$

39 / 71

Application sur une image réelle

Application sur une image réelle

Notez que les contours ne correspondent pas exactement aux frontières des objets.

41/71

Voyons un traitement pour retirer les artefacts et adoucir les contours d'une image.

Convolution avec un filtre Moyenneur K

Position du filtre 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 - 0 0 0 0 0 0 255 255 255 255 255 0 0 4 - 0 0 0 0 0 0 255 255 255 255 5 0 0 0 0 0 0 0 0 255 255 255 255 5 0 0 0 0 0 2.5 5.0 7.5 10.0

Convolution avec un filtre Moyenneur K

Convolution avec un filtre Moyenneur K

$$(img\star k)(i,j) = \sum_{n=-rac{d-1}{2}}^{rac{d-1}{2}} \sum_{m=-rac{d-1}{2}}^{rac{d-1}{2}} img(i-n,j-m).\, k(n,m)$$

ou en python:

```
# img[i-(d-1)/2:i+(d-1)/2,j-(d-1)/2:j+(d-1)/2,] pour cropper une partie de l'image à la posi # sum.() somme toutes les valeurs du tableau result_convolution[i,j] = (k * img[i-(d-1)/2:i+(d-1)/2,j-(d-1)/2:j+(d-1)/2,]).sum()
46/71
```

Application sur une image réelle

Avec un filtre gaussien 5×5

Effet de bord

-Problème : comment traiter le pixel en (0,0)?

-Solution couramment utilisée:

padding with zéros, ou la valeur des pixels voisins.


```
# initialisation of the convolution result res = np.zeros((math.ceil((h - fh + 2*p)/s + 1)))
```

Autres convolutions célébres

Fourier, avec $k(x,\xi)=e^{-i\xi x}$

$$(f\star k)(\xi)=\int_{-\inf}^{\inf}f(x)e^{-i\xi x}dx$$

54/71

Lab : Implémentation de convolutions

Ouvrir le fichier: TPconvolutions.ipynb

Faire l'exercice 2