Математический анализ-3 семестр

Лекция 2

Тема 2. Числовые ряды с положительными членами

- 2.1. Критерий сходимости
- 2.2. Признаки сравнения
- 2.3. Признак Даламбера
- 2.4. Радикальный признак Коши
- 2.5. Интегральный признак Коши
- 2.6. Общие рекомендации по исследованию на сходимость положительных рядов

2. Числовые ряды с положительными членами

2.1. Критерий сходимости

Определение 1. Числовой ряд $\sum_{n=1}^{\infty} a_n$, все члены которого неотрицательны: $a_n \ge 0 \ \forall n$, называется *положительным* рядом.

Последовательности частичных сумм таких рядов монотонно возрастают, т.к. $S_{n+1} = S_n + a_{n+1} \ge S_n$.

По теореме Больцано-Вейерштрасса, монотонная последовательность имеет конечный предел тогда и только тогда, когда она ограничена. Следовательно:

Теорема 1. Положительный ряд сходится тогда и только тогда, когда последовательность $\{S_n\}$ его частичных сумм ограничена.

Для непосредственного применения этого простого утверждения требуется делать оценку частичных сумм ряда, а это оказывается сложно в большинстве случаев. Как правило, судить о сходимости или расходимости ряда удается, применяя некоторые достаточные признаки, например, сравнивая данный ряд с другим, заведомо сходящимся или расходящимся.

2.2. Признаки сравнения

Теорема 2 (первый признак сравнения). Пусть даны два положительных ряда:

$$\sum_{n=1}^{\infty} a_n, a_n \ge 0 \ \forall n \quad \mathbb{R}$$
$$\sum_{n=1}^{\infty} b_n, b_n \ge 0 \ \forall n.$$

Если для всех номеров n (или для всех номеров, бо́льших некоторого номера N) выполнено неравенство $a_n \leq b_n$, то: из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$, а из расходимости ряда $\sum_{n=1}^{\infty} a_n$ следует расходимость ряда $\sum_{n=1}^{\infty} b_n$

(из сходимости большего ряда следует сходимость меньшего, из расходимости меньшего ряда следует расходимость большего).

<u>Доказательство.</u> Будем предполагать, что неравенство $a_n \le b_n$ выполнено для всех номеров n. В противном случае можно отбросить конечное число членов ряда, для которых неравенство не выполнено, что не повлияет на сходимость ряда. Тогда $a_1 + a_2 + \dots + a_n \le b_1 + b_2 + \dots + b_n$.

Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то его частичные суммы ограничены, т.е. $b_1+b_2+\dots+b_n \leq S$, где S — некоторая константа. Но тогда ограничены и частичные суммы ряда $\sum_{n=1}^{\infty} a_n$, и ряд сходится.

Если же ряд $\sum_{n=1}^{\infty} a_n$ расходится, то, предполагая, что ряд $\sum_{n=1}^{\infty} b_n$ сходится, получим противоречие с предыдущим доказанным утверждением. Теорема доказана.

Пример 1.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{2^n + \sqrt{n}}$.

Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{2^n}$, который сходится, как сумма геометрической прогрессии со знаменателем $q=\frac{1}{2}$.

Для всех номеров n верно, что $\frac{1}{2^n + \sqrt{n}} < \frac{1}{2^n}$.

Согласно первому признаку сравнения исходный ряд также сходится.

Пример 2.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

Рассмотрим для сравнения гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, который, как уже было доказано, расходится.

Для всех n > 1 верно, что $\frac{1}{\sqrt{n}} > \frac{1}{n}$, и, следовательно, исходный ряд также расходится по признаку сравнения.

Пример 3.

Исследовать на сходимость ряд $\sum_{n=2}^{\infty} \frac{1}{\ln n}$.

Рассмотрим для сравнения гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, который расходится. Для всех $n \geq 3$ верно, что

 $\ln n < n, \frac{1}{\ln n} > \frac{1}{n}$, и, следовательно, исходный ряд также расходится.

Теорема 3 (второй признак сравнения, или предельный).

Пусть даны два положительных ряда: $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, $b_n > 0$ (начиная с некоторого номера).

Если существует конечный, отличный от нуля $\lim_{n\to\infty} \frac{a_n}{b_n}$,

то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся или расходятся одновременно.

<u>Доказательство</u>. Предположим, что ряд $\sum_{n=1}^{\infty}b_n$ сходится. Обозначим $\lim_{n\to\infty}\frac{a_n}{b_n}=A$.

По определению предела:

$$\forall \varepsilon > 0 \; \exists \; N(\varepsilon) : \; \forall n \geq N(\varepsilon) : \; \left| \frac{a_n}{b_n} - A \right| < \varepsilon$$

$$-\varepsilon < \frac{a_n}{b_n} - A < \varepsilon,$$

$$a_n < (A + \varepsilon) \cdot b_n$$

Т.к. ряд $\sum_{n=1}^{\infty} b_n$ сходится, то согласно свойству сходящихся рядов сходится и ряд $\sum_{n=1}^{\infty} (A + \varepsilon) \cdot b_n$, а, значит, по первому признаку сравнения сходится и ряд $\sum_{n=1}^{\infty} a_n$.

Пусть $\sum_{n=1}^{\infty} a_n$ сходится. По условию теоремы существует $\lim_{n\to\infty} \frac{b_n}{a_n}$, конечный и отличный от нуля. Аналогично придем к выводу, что из сходимости ряда $\sum_{n=1}^{\infty} a_n$ следует сходимость ряда $\sum_{n=1}^{\infty} b_n$.

Итак, если один из рядов сходится, то другой также сходится.

Далее, предполагая, что один из рядов расходится, а другой сходится, получим противоречие с уже доказанным утверждением. Теорема доказана.

<u>Следствие 1.</u> Если $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, то из сходимости $\sum_{n=1}^\infty b_n$ следует сходимость $\sum_{n=1}^\infty a_n$.

<u>Следствие 2.</u> Если $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$, то из расходимости $\sum_{n=1}^\infty b_n$ следует расходимость $\sum_{n=1}^\infty a_n$.

Пример 4.

Докажем еще раз расходимость гармонического ряда $\sum_{n=1}^{\infty} \frac{1}{n}$, сравнивая его

с рядом
$$\sum_{n=1}^{\infty} ln\left(1+\frac{1}{n}\right)$$
, общий член которого $a_n = ln\left(1+\frac{1}{n}\right) = ln\frac{n+1}{n} = \ln(n+1) - lnn$,

а частичная сумма

$$S_n = (\ln 2 - \ln 1) + (\ln 3 - \ln 2) + \dots + (\ln(n+1) - \ln n) =$$

 $= \ln(n+1) \to \infty$ при возрастании n. Следовательно, этот ряд расходится.

Вычислим

$$\lim_{n\to\infty} \frac{\ln\left(1+\frac{1}{n}\right)}{\frac{1}{n}} = \lim_{n\to\infty} \left(n \cdot \ln\left(1+\frac{1}{n}\right)\right) = \lim_{n\to\infty} \left(\ln\left(1+\frac{1}{n}\right)^n\right) = \ln e = 1.$$

Согласно предельному признаку сравнения гармонический ряд расходится.

Пример 5.

Пользуясь определением сходимости, т.е. рассматривая предел частичных сумм, мы уже доказали, что ряд $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ сходится. Значит, сходится ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$, т.к. предел отношения общих членов этих рядов конечен и отличен от нуля:

$$\lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n(n+1)}} = \lim_{n \to \infty} \frac{n(n+1)}{n^2} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = 1.$$

Пример 6.

Исследуем на сходимость ряд $\sum_{n=1}^{\infty} tg \frac{\pi}{5n}$. Выберем ряд для сравнения:

 $\lim_{n\to\infty} tg \frac{\pi}{5n} = \lim_{n\to\infty} \frac{\pi}{5n} = 0$, из равенства нулю предела общего члена ряда вывод о сходимости или расходимости сделать нельзя, но можно выбрать ряд для сравнения — гармонический.

 $\lim_{n\to\infty} \frac{tg\frac{\pi}{5n}}{\frac{1}{n}} = \frac{\pi}{5}$. Предел конечен и отличен от нуля, исходный ряд расходится.

2.3. Признак Даламбера

При применении признаков сравнения необходимо подбирать известные сходящиеся или расходящиеся ряды. Признак Даламбера позволяет решить вопрос о сходимости ряда, проделав некоторые действия с самим рядом.

Теорема 4. Пусть дан положительный ряд $\sum_{n=1}^{\infty} a_n$ и существует конечный $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = D$. Тогда:

если D < 1, то ряд сходится,

если D > 1, то ряд расходится.

Если D = 1, то признак Даламбера не дает ответа на вопрос о сходимости.

Доказательство.

1). Так как
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=D$$
, то

$$\forall \varepsilon > 0 \; \exists \; N(\varepsilon) \colon \; \forall \; n \geq N(\varepsilon) \colon \; \left| \frac{a_{n+1}}{a_n} - D \right| < \varepsilon,$$

$$D - \varepsilon < \frac{a_{n+1}}{a_n} < D + \varepsilon.$$

2). Пусть D < 1. Выберем ε такое, что

$$D + \varepsilon < 1$$
 и рассмотрим правую часть неравенства: $a_{n+1} < (D + \varepsilon) \cdot a_n$.

Оно выполнено, начиная с некоторого номера N.

Обозначим $D + \varepsilon = q$, q < 1.

Итак,
$$\forall n \geq N \ a_{n+1} < q \cdot a_n$$
:

$$a_{N+1} < a_N \cdot q$$

$$a_{N+2} < a_{N+1} \cdot q < a_N \cdot q^2,$$

.

$$a_{N+k} < a_N \cdot q^k, \dots$$

- т.е. члены ряда оказываются меньше, чем члены бесконечно убывающей геометрической прогрессии. Значит, согласно первому признаку сравнения, ряд сходится.
- 3). Если D > 1 или $D = \infty$, то выберем ε такое, что $D \varepsilon > 1$ и рассмотрим левую часть неравенства:

$$(D-\varepsilon)\cdot a_N < a_{N+1} ,$$

т.е. члены ряда оказываются больше, чем члены бесконечно возрастающей геометрической прогрессии, и, значит, ряд расходится.

Замечания.

- 1). При D = 1 признак Даламбера не работает.
- 2). Признак Даламбера удобно применять, если a_n содержит n! или a^n .

Пример 7.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n}{3^n}$. Вычислим предел отношения последующего члена ряда к предыдущему:

$$\lim_{n\to\infty}\frac{\frac{n+1}{3^{n+1}}}{\frac{n}{3^n}}=\lim_{n\to\infty}\frac{n+1}{3^{n+1}}\cdot\frac{3^n}{n}=\frac{1}{3}\lim_{n\to\infty}\left(1+\frac{1}{n}\right)=\frac{1}{3}<1,$$
 согласно признаку Даламбера, данный ряд сходится.

Пример 8.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. Вычислим

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \left(\frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^n} \right) = \lim_{n\to\infty} \left(\frac{(n+1)^n}{n!} \cdot \frac{n!}{n^n} \right) =$$

$$=\lim_{n o\infty}\left(rac{n+1}{n}
ight)^n=\lim_{n o\infty}\left(1+rac{1}{n}
ight)^n=e>1,$$
 и, согласно признаку Даламбера, данный ряд расходится.

Пример 9.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2}{(n+1)!}$.

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{2}{(n+2)!} \cdot \frac{(n+1)!}{2} = \lim_{n\to\infty} \frac{(n+1)!}{(n+1)! \cdot (n+2)} = \lim_{n\to\infty} \frac{1}{n+2} = 0 < 1 ,$$

ряд сходится.

2.4. Радикальный признак Коши

Теорема 5. Пусть дан положительный ряд $\sum_{n=1}^{\infty} a_n$ и существует $\lim_{n\to\infty} \sqrt[n]{a_n} = K$.

Если K < 1, то ряд сходится,

если K > 1, то ряд расходится.

<u>Доказательство.</u> Так как $\lim_{n\to\infty} \sqrt[n]{a_n} = K$, то

 $\forall \varepsilon > 0 \exists N(\varepsilon) : \forall n \geq N(\varepsilon) :$

$$\left| \sqrt[n]{a_n} - K \right| < \varepsilon$$
, или $K - \varepsilon < \sqrt[n]{a_n} < K + \varepsilon$.

Пусть K < 1. Возьмем $\varepsilon = \frac{1-K}{2} > 0$. Согласно определению предела, начиная с некоторого номера N, будет выполнено неравенство:

 $\sqrt[n]{a_n} < K + \frac{1-K}{2} = \frac{K+1}{2} = q < 1$ или $a_n < q^n$, т.е. члены ряда оказываются меньше, чем члены бесконечно убывающей геометрической прогрессии. Значит, ряд сходится.

Если K > 1 или $K = \infty$, то, рассмотрев левую часть неравенства $K - \varepsilon < \sqrt[n]{a_n}$, члены ряда оказываются больше, чем члены бесконечно возрастающей геометрической прогрессии, и, значит, ряд расходится.

3амечание. При K=1 признак Коши-радикальный не работает.

Пример 10.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\frac{n+1}{3n}\right)^n$.

Вычислим
$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{n+1}{3n}\right) = \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{3n}\right) = \frac{1}{3} < 1,$$

значит, ряд сходится по радикальному признаку Коши.

Пример 11.

Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n}\right)^{n^2}$.

Применим радикальный признак Коши:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \left(\frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)^n\right) = \frac{e}{2} > 1$$
, значит, ряд расходится.

Пример 12.

Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{2^n}{\ln^n (n+1)}$.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \frac{2}{\ln(n+1)} = 0 < 1$$
, ряд сходится.

Пример 13.

Рассмотрим ряд $\sum_{n=1}^{\infty} n \left(1 - \frac{1}{n}\right)^{n^2}$.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{n} \cdot \left(\frac{n-1}{n}\right)^n = \frac{1}{e} < 1,$$

так как:

$$\lim_{n\to\infty} \sqrt[n]{n} = \lim_{n\to\infty} n^{\frac{1}{n}} = \lim_{n\to\infty} e^{\frac{1}{n}lnn} =$$

$$=e^{\lim_{n\to\infty}\frac{lnn}{n}}=\lim_{n\to\infty}e^{\frac{1/n}{1}}=1$$
 . Ряд сходится.

(При вычислении предела показателя степени применили правило Лопиталя).

Замечания.

1).
$$\lim_{n \to \infty} \sqrt[n]{\ln n} = \lim_{n \to \infty} (\ln n)^{\frac{1}{n}} = \lim_{n \to \infty} e^{\frac{1}{n} \ln(\ln n)} = \lim_{n \to \infty} e^{\frac{1}{\ln n} \cdot \frac{1}{n}} = 1$$
.

2).
$$\lim_{n \to \infty} \sqrt[n]{P_k(n)} = 1$$
 (аналогично).

3). Признаки Даламбера и Коши не дают ответа на вопрос о сходимости ряда в случае, когда соответствующие пределы равны 1.

Например, вычислим эти пределы для гармонического ряда $\sum_{n=1}^{\infty} \frac{1}{n}$, расходимость которого была доказана:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n}{n+1} = 1, \ \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n}} = 1.$$

Такой же результат получим, рассматривая сходящийся ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^2 = 1, \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^2}} = 1.$$

2.5. Интегральный признак Коши

Теорема 6. Пусть дан положительный ряд $\sum_{n=1}^{\infty} a_n$, общий член которого можно рассматривать как функцию от n: $a_n = f(n)$. Предположим, что функция f(x) определена, положительна, непрерывна и монотонно убывает при $x \ge 1$. Тогда ряд $\sum_{n=1}^{\infty} a_n$ сходится, если сходится $\int_1^{+\infty} f(x) dx$, и расходится, если этот интеграл расходится.

Доказательство.

Рассмотрим график функции y = f(x), удовлетворяющей условиям теоремы. Рассмотрим криволинейную трапецию, ограниченную сверху графиком y = f(x), снизу осью OX, с боков прямыми x = 1, x = n. Построим ступенчатые фигуры, одна из которых вписана в криволинейную трапецию, а другая описана около этой трапеции.

Вычислим площадь вписанной и описанной ступенчатый фигур: Площадь вписанной ступенчатой фигуры равна $a_2 + a_3 + \cdots + a_n$,

площадь описанной фигуры равна $a_1 + a_2 + \cdots + a_{n-1}$. Площадь самой криволинейной трапеции равна $\int_1^n f(x) dx$ и заключена между площадями вписанной и описанной фигур:

$$a_2 + a_3 + \dots + a_n < \int_1^n f(x) dx < a_1 + a_2 + \dots + a_{n-1}.$$

Если интеграл $\int_{1}^{+\infty} f(x)dx$ сходится, т.е. имеет конечное значение:

$$\int_{1}^{+\infty} f(x) dx = I,$$

$$a_2 + a_3 + \dots + a_n < \int_1^n f(x) dx$$

тогда частичные суммы ряда S_n ограничены:

$$S_n = a_1 + a_2 + \dots + a_n < a_1 + \int_1^n f(x) dx < a_1 + I.$$

Следовательно, ряд сходится.

Если
$$\int_{1}^{+\infty} f(x) dx$$
 расходится,

$$\int_{1}^{n} f(x)dx < a_{1} + a_{2} + \dots + a_{n-1} ,$$

TC

$$S_n = a_1 + a_2 + \dots + a_n > \int_1^n f(x) dx + a_n > \int_1^n f(x) dx \to \infty$$
, $n \to \infty$, следовательно ряд расходится.

Пример 14.

Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$.

$$\int_{1}^{+\infty} \frac{dx}{x^2+1} = arctgx|_{1}^{+\infty} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$
. Несобственный интеграл сходится, следовательно, исходный ряд сходится.

Пример 15.

Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$.

$$\int_{1}^{+\infty} \frac{x dx}{x^2 + 1} = \frac{1}{2} \int_{1}^{+\infty} \frac{d(x^2 + 1)}{(x^2 + 1)} =$$

$$\frac{1}{2}\ln(x^2+1)|_1^{+\infty} = +\infty.$$

Ряд расходится.

Пример 16.

Рассмотрим ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$. $\int_2^{+\infty} \frac{1}{x \ln^2 x} dx = \int_2^{+\infty} \frac{d \ln x}{\ln^2 x} = -\frac{1}{\ln x} \Big|_2^{+\infty} = \frac{1}{\ln 2}$. Ряд сходится.

Пример 17.

Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$, который называют *обобщенным гармоническим рядом* или *рядом Дирихле*. Интеграл $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$ сходится при условии $\alpha > 1$ и расходится при условии $\alpha \leq 1$, следовательно, обобщенный гармонический ряд сходится, если $\alpha > 1$, и расходится, если $\alpha \leq 1$.

<u>Замечание</u>. Мы рассмотрели основные признаки сходимости положительных рядов. Есть другие, более "тонкие" признаки, дающие ответ на вопрос о сходимости рядов в тех случаях, где рассмотренные признаки "не работают".

2.6. Общие рекомендации по исследованию на сходимость положительных рядов

- 1). Для доказательства расходимости ряда удобно использовать нарушение необходимого условия сходимости: если $\lim_{n\to\infty} a_n \neq 0$, то ряд расходится.
- 2). Если общий член ряда содержит факториал, то удобно использовать признак Даламбера.
- 3). Если общий член ряда содержит степени n, n^2 , то удобно использовать признак Коши-радикальный.
- 4). При применении I признака сравнения удобно использовать оценки:

$$1 < lnn < n^p \, (p > 0)$$

$$-1 \le {sinn \choose cosn} \le 1$$

$$0 \le \binom{\sin^2 n}{\cos^2 n} \le 1$$

$$-\frac{\pi}{2} \le arctgn \le \frac{\pi}{2}$$
.

- 5). При применении предельного признака сравнения удобно:
- а) при вычислении $\lim_{n \to \infty} a_n$ применять эквивалентности

б) использовать ряды для сравнения:

ряд Дирихле:
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \alpha > 1 \text{ сходится} \\ \alpha \leq 1 \text{ расходится} \end{cases}$$

ряд геометрической прогрессии:
$$\sum_{n=1}^{\infty} q^n \left\{ |q| < 1 \text{ сходится} \right.$$

Примеры.

1.
$$\sum_{n=1}^{\infty} \frac{n!(2n+1)!}{3n}, \quad a_{n+1} = \frac{(n+1)!(2(n+1)+1)!}{3(n+1)}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!(2n+3)!3n}{3(n+1)n!(2n+1)!} =$$

$$= \lim_{n \to \infty} \frac{n!(n+1)(2n+1)!(2n+2)(2n+3)3n}{3(n+1)n!(2n+1)!} =$$

$$= \lim_{n \to \infty} (2n+2)(2n+3)n = \infty > 1$$

ряд расходится (признак Даламбера).

$$2. \sum_{n=1}^{\infty} \left(\frac{2n-1}{2n+1}\right)^{n(n-1)}.$$

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{2n-1}{2n+1}\right)^{n-1} = \lim_{n \to \infty} \left(1 + \frac{-2}{2n+1}\right)^{(n-1) \cdot \frac{2n+1}{-2} \cdot \frac{-2}{2n+1}} = \lim_{n \to \infty} e^{\frac{-2(n-1)}{2n+1}} = \frac{1}{e} < 1$$

ряд сходится (признак Коши-радикальный).

$$3. \sum_{n=1}^{\infty} \left(\frac{2n-1}{2n+1}\right)^n.$$

 $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{2n-1}{2n+1} = 1$ (?) признак Коши-радикальный не работает.

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\frac{2n-1}{2n+1}\right)^n = \frac{1}{e} \neq 0$, ряд расходится (необходимое условие сходимости).