The Big Picture Herstellung Startup Workflow Aufgaben

Kernel

Hans Buchmann FHNW/IME

3. November 2015

Ziele

Neuer kernel auf BeagleBoneBlack

- Download
- ► Setup
- Konfiguration
- Kompilation
- Installation

The Big Picture grosses Projekt

Gegeben Eine grosse Anzahl source Files Gesucht ein einziger File: das Image Lösung Ähnlich wie in 4-devel

- ► Toolchain
- Makefile

Die Schichten

Kernel Grosses Projekt

Was ist einfach?

- kernel hängt nicht von anderen Software Komponenten ab
 - stand alone
- Braucht nur make und toolchain

Was ist schwierig?

- Konfiguration
 - Wahl der richtigen source Files für das Image

https://github.com/beagleboard/linux Mehrere Möglichkeiten

- das ganze git repository
- ▶ nur die letzten *n* Versionen --depth=*n*
- zip File

Tools Siehe 4-devel

toolchain https://sourceforge.net/projects/fhnw-tinl/files

- beaglebone-black-toolchain-64bit.tar.bz2
- Prefix: arm-linux-gnueabihf
 - beschreibt:
 - Architektur: armv7
 - ► Application Binary Interface: gnueabihf

make Normales make

- kernel Herstellung:
 - make cmd

Wo ist was ?

Erste Konfiguration

sh kernel.sh help

- ▶ sh tools/kernel.sh bb.org_defconfig
 - Vordefinierte Konfiguration
- sh tools/kernel.sh.sh menuconfig
 - Anpassung der Konfiguration

Kompilation

- ▶ sh tools/kernel.sh zImage
 - erzeugt build/arch/arm/boot/zImage
- sh tools/kernel.sh dtbs
 - erzeugt build/arch/arm/boot/dts/am335x-boneblack-wl1835mod.dtb Devicetree

Remark: Devicetree später behandelt

Installation auf SD-Card

Kopiere

```
Image build/arch/arm/boot/zImage
Devicetree build/arch/arm/boot/dts/am335x-boneblack.dtb
auf
```

► SD-Card boot-partition

Startup Bootloaders bei eingebetteten Systemen

$Reset \to$	fbl	first stage bootloader
	sbc	ev. weitere bootloader second stage bootloader
	u-boot	Hier haben wir Zugriff
	kernel	Konfiguration/Parametrisierung
	linux	_ ,

Startup Bootloader beim *Host*

http://www.denx.de/wiki/U-Boot/WebHome ein typischer Bootloader für eingebettete Systeme

- Kommandozeilen
- Verbindung zum Host via RS232/USB
 - ▶ Host: minicom -D /dev/ttyUSBN, N = 0, 1...
 - ▶ 115200 Baud 8N1
 - no Handshaking
- Kopiert Daten von
 - SD-Karten
 - Netz

in das Memory vom BBB

Ein paar typische Befehle

- help
- printenv Zeigt die Umgebung
- md addr Memory display
- ▶ fatls mmc p vfat sd-card partition p
- fatload mmc p memAddr file
- tftpboot [loadAddress] [[hostIPaddr:]bootfilename]
- bootz kernelAddr fdt

U-Boot Bedienung Siehe 5-kernel/tools/u-boot.cmd

copy paste

Remark: kann sich ändern

Übergang U-Boot-Kernel Bootargs

bootargs

'root=/dev/mmcblk0p2 rw rootdelay=1 init=linuxrc console=tty00,115200n8'

▶ kernel-source/Documentation/kernel-parameters.txt

Die Kernel messages

Starting kernel ...

```
Booting Linux on physical CPU 0x0
Initializing cgroup subsys cpuset
Initializing cgroup subsys cpu
Initializing cgroup subsys cpuacct
...
Kernel command line: root=/dev/mmcblk0p2 rw rootdelay=1 init=linuxrc console=tt
...
Waiting 1 sec before mounting root device...
EXT4-fs (mmcblk0p2): couldn't mount as ext3 due to feature incompatibilities
EXT4-fs (mmcblk0p2): couldn't mount as ext2 due to feature incompatibilities
EXT4-fs (mmcblk0p2): mounted filesystem with ordered data mode. Opts: (null)
VFS: Mounted root (ext4 filesystem) on device 179:2.
```

Workflow schrittweise Herstellung

- 0 Setup der Toolchain
- 1 Default Konfiguration (falls vorhanden)
 - sh tools/kernel.sh bb.org_defconfig
- 2 Herstellung
 - tools/kernel.sh zImage
- 3 Transfer/Start/Test auf BeagleBoneBlack
 - ▶ U-Boot
- 4 (Re)Konfiguration
 - ▶ sh tools/kernel.sh menuconfig
- \rightarrow 2 eV. cp build/.config config/kernel.config

Workflow

- ▶ BeagleBoneBlack default Konfiguration
 - herstellen
 - auf SD-Karte
 - ausprobieren
- ▶ Die *default* Konfiguration ändern:
 - nur eine CPU
 - keine ALSA Soundkarte
 - **.**..