(2012 年度前期 担当:佐藤)

問題 **2.3.** $\{\vec{e_1},\vec{e_2}\}$, $\{\vec{e'_1},\vec{e'_2}\}$ を平面ベクトルの基底で

$$\vec{e'}_1 = a_1\vec{e}_1 + b_1\vec{e}_2, \quad \vec{e'}_2 = a_2\vec{e}_1 + b_2\vec{e}_2$$

を満たすとする. $\{\vec{e_1},\vec{e_2}\}$, $\{\vec{e'_1},\vec{e'_2}\}$ がともに直交座標系を定めるとき, a_1,a_2,b_1,b_2 は

$$(a_1)^2 + (b_1)^2 = 1$$
, $a_1a_2 + b_1b_2 = 0$, $(a_2)^2 + (b_2)^2 = 1$

を満たすことを示しなさい.

問題 **2.4.** 行列
$$A=\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right), \ B=\left(\begin{array}{cc} b_{11} & b_{12} \\ b_{21} & b_{22} \end{array}\right)$$
 について次の問に答えなさい.

- (1) 積 AB を計算しなさい.
- (2) 転置行列 tA , tB および ${}^t(AB)$ を書きなさい.
- (3) 積 ${}^{t}B^{t}A$ を計算し、 ${}^{t}(AB)$ に等しいことを確かめなさい。

問題 **2.5.** 行列 $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ および $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ が直交行列になることを確かめなさい。また、各行列の行列式の値を求めなさい。

問題 **2.6.** 問題 2.2 の $\{\vec{e_1},\vec{e_2}\}$, $\{\vec{e'_1},\vec{e'_2}\}$ について、行列 A を

$$(\vec{e'}_1 \vec{e'}_2) = (\vec{e}_1 \vec{e}_2) A$$

を満たす行列(基底の変換行列)とする。このとき、次の間に答えなさい。

- (1) 行列 A を書きなさい.
- (2) 行列 A が直交行列であることを示しなさい.