Richard Nakka's Experimental Rocketry Web Site

Technical Notepad – KNSU Ideal Performance Calculations

Potassium Nitrate-Sucrose 65/35 O/F ratio @ 1000 psi chamber pressure

From **Propep** results, for 100 gram mixture:

		te-Sucrose 6 Nov					une 1988	Version	of PEP,
CODE					WEIGHT	D-H	DENS	COMPOS	SITION
821 P	OTASSIU	M NITRATE (TABLE SUG			65.000	-1169	0.07670	1N	30 1K
897 S	UCROSE	(TABLE SUG	AR)		35.000	-1550	0.05740	22H 1	12C 110
		DENSITY IS				1.8995 G	M/CC		
NUMBER 0	F GRAM	ATOMS OF E	ACH ELE	MENT PR	ESENT IN	INGREDI	ENTS		
	436 H 877 K	1.22696	5 C	0.6428	77 N	3.05334	9 0		
******	******	******	***CHAP	BER RES	ULTS FOL	LOW****	*******	******	*****
T(K) T	(F) P(ATM) P(F	SI) ENT	HALPY	ENTROPY	CP/CV	GAS	RT/V	
1720. 26	36. 6	8.02 1000	1.00 -1	30.24	165.92	1.1331	2.382	28.559	
NUMBER M	OLS GAS	MOLAR) OF AND CONDE	NSED=	2.3819	0.306	6			
0.7969	3 H20	0.53 0.30 2 1.01E	225 CO		0.38810	C02	0.32	136 N2	
0.3134	4 H2	0.30	654 K20	03*	0.02797	KHO	0.00	147 K	
1.54E-0	4 K2H20	2 1.01E	-04 NH3		1.86E-05	H	1.31E	-05 KH	
1.04E-0 2.63E-0	5 KUN	6.92E	-06 CH4	i I	3.48E-06	CH20	3.33E	-06 CNH	
THE MOLE	CULAR W	EIGHT OF T	HE MIXT	TURE IS	37.196				
*********PERFORMANCE: FROZEN ON FIRST LINE, SHIFTING ON SECOND LINE********									
IMPULSE	IS EX	T*	P*	C*	ISP*	OPT-EX	D-ISP	A*M	EX-T
153.2	1.1380	1609.	39.24	3005.5		10.10	291.0	0.09344	1031.
155.0	1.1101	1633.	39.63	3066.8	116.0	10.69	294.4	0.09534	1142.

Mole fractions and mass fractions for each significant combustion product are calculated in the table below:

Phase	Product	MW		mole	mass	mass fraction		
	12	g/mole	moles	fraction	grams	gas/cond.	mixture	
condensed	K2CO3	138.21	0.3065	1.000	42.367	1.000	0.424	
gas	кон	56.11	0.028	0.0118	1.569	0.0273	0.0157	
gas	со	28.01	0.5322	0.2236	14.908	0.2590	0.1491	
gas	CO2	44.01	0.3881	0.1631	17.080	0.2968	0.1708	
gas	H2	2.02	0.3134	0.1317	0.633	0.0110	0.0063	
gas	H2O	18.02	0.7969	0.3348	14.361	0.2495	0.1436	
gas	N2	28.02	0.3214	0.1350	9.004	0.1564	0.0900	
	to	tal (gas) =	2.38	1.0000			1.00	
	tot	al (mix) =	2.6866		42.367	<= total mas	s condensed	
					57.556	<= total mas	s gases	

The specific heat at constant pressure for gas products (Cp) and for condensed-phase products (Cs) are shown in the table below. From these, the specific heats are calculated for gas-only products and for the gas/condensed-phase mixture.

To (K)	Ср						Ср	Cs	Cs	Cp_mix	
1720	кон	со	CO2	H2	H2O	N2	gases	K2CO3	condensed	(g+c)	Units
	57.86	35.75	59.394	32.419	49.102	35.422	43.853	209.2	209.2	70.7974	J/mol-K
	1.031	1.276	1.350	16.049	2.725	1.264	1.813	1.514	1.514	1.68501	J/g-K
							1813.4	43	1513.6	1685.0	J/kg-K

The table below provides a summary of the thermochemical properties and ideal performance characteristics:

Specific heat ratio, mixture	kmix	1.133	
Specific heat ratio, gases	kgas	1.234	
Specific heat ratio, 2-ph flow	k"	1.133	
Condensed fraction	X	0.424	
Molecular mass, 2-ph mixture	M"	42.02	kg/kmol
Molecular mass, gases	M	24.18	kg/kmol
Specific gas constant, 2-ph mixture	R"	197.89	J/kg-K
Specific gas constant, gases	R	343.82	J/kg-K
Pressure ratio exponent, 2-ph mixture	m	0.1174	
Characteristic velocity	C*	918.5	m/sec.
Specific Impulse	Isp	153.5	sec.

<u>Note</u>: calculation details for all thermochemical properties and performance parameters shown above are found in the <u>Theory, 2-phase Flow</u> web page.

Originally posted March 8, 2023

Last updated March 8, 2023

Back to Home Page