数学

高 2023 级 1 班 谢宇轩

2025年10月17日

1 习题

1.1 例一

已知 k 次方和的通项公式为

$$\sum_{i=0}^{n} i^{k} = \frac{1}{k+1} \sum_{i=0}^{k} {k+1 \choose i} B_{i}(n+1)^{k+1-i}$$

其中 B_k 是 Bernoulli 数。它的部分结果如下:

k	0	1	2	3	4	5	6	7	8	9	10	11	12
B_k	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{30}$	0	$\frac{1}{42}$	0	$-\frac{1}{30}$	0	$\frac{5}{66}$	0	$-\frac{691}{2730}$

问题: 给出 Bernoulli 数的求解方式。

提示: 对于 n > 0,有 $\sum_{i=0}^{n} ?B_i = 0$,其中 ? 处是某个表达式。

1.2 例二

n 是任意正整数,证明:

$$\sum_{i=1}^{n} \sum_{j=1}^{i} j^2 \le n^4$$

1.3 例三

对于任何正整数 n, m, 证明:

$$\sum_{i=0}^{m} \frac{n}{2^i} \le 2n$$

1.4 例四

证明等式:

$$\sum_{k=\max(-m,n-s)}^{l-m} (-1)^k \binom{l}{m+k} \binom{s+k}{n} = (-1)^{l+m} \binom{s-m}{n-l}$$

1.5 例五

化简式子:

$$f(n) = \sum_{i=1}^{n} \frac{(-1)^{i}}{i} \binom{n-1}{i-1}$$

1.6 例六

证明等式:

$$\sum_{i=0}^{m} (-1)^{i} (n-i+1) \binom{n-i}{m-i} = (n-m+1) \sum_{i=0}^{n-m+1} \frac{(-1)^{i}}{2^{i+1}} \binom{n+2}{n-m+1-i}$$

1.7 例七

求出通项公式

$$\sum_{i=1}^{n} i^3$$

1.8 例八

求出通项公式

$$\sum_{i=1}^{n} i^3 2^i$$

1.9 例九

将 n 个不同的球放入 r 个相同的盒子里,假设没有空盒,则放球的方案数记做 S(n,r)。这个数被称为第二类 Stirling 数。

例如将 a,b,c,d 四个球放到 2 个盒子里,不允许有空盒,则有以下 7 种放法:a|bcd,b|acd,c|abd,d|abc,ab|cd,ac|bd,ad|bc。

把球看成集合元素,这也是把 n 个元素划分成 r 个集合的方案数。

它的部分结果如下:

$n\downarrow r \rightarrow$	1	2	3	4	5	6	7	8	9
1	1	0	0	0	0	0	0	0	0
2	1	1	0	0	0	0	0	0	0
3	1	3	1	0	0	0	0	0	0
4	1	7	6	1	0	0	0	0	0
5	1	15	25	10	1	0	0	0	0
6	1	31	90	65	15	1	0	0	0
7	1	63	301	350	140	21	1	0	0
8	1	127	966	1701	1050	266	28	1	0
9	1	255	3025	7770	6951	2646	462	36	1

- 1. 除容斥原理的方法外,请再给出一个第二类 Stirling 数递推的形式。
- 2. Bell $_n$ 表示把 $_n$ 个元素划分成集合的方案数。显然 Bell 数是第二类 Stirling 数的和 Bell $_n=\sum_{i=0}^n S(n,i)$ 。请给出 Bell 数的求解方式。

1.10 例十

E(n,m) 表示 n 的排列中,有 m 处 "上升"的情况数。"上升"是指后一个数比前一个数大,例如 1,3,2,4,5 有 3 处 "上升",分别是 1,3 之间,2,4 之间和 4,5 之间。它的部分结果如下:

$\boxed{ \downarrow n \ m \rightarrow}$	0	1	2	3	4	5	6	7
0	1							
1	1	0						
2	1	1	0					
3	1	4	1	0				
4	1	11	11	1	0			
5	1	26	66	26	1	0		
6	1	57	302	302	57	1	0	
7	1	120	1191	2416	1191	120	1	0

1.11 例十一

n 个相同的球排成一行,从中取出 m 个两两不相邻的球的方案数。

1.12 例十二

求包含 k 个逆序对的长度为 n 的排列个数, $n \leq 300$ 。

1.13 例十三

s(n,m) 表示将 n 个物体排成 m 个非空循环排列的方法数。用方括号表示一个循环,s(7,3) 的一个方案例如 [1,4,7,5], [2,3], [6]。该方案与 [4,7,5,1], [6], [3,2] 算同一种排列,与 [1,4,5,7], [2,3], [6] 算不同的排列。它的部分结果如下:

$\downarrow n \ m \rightarrow$	0	1	2	3	4	5	6	7
0	1							
1	0	1						
2	0	1	1					
3	0	2	3	1				
4	0	6	11	6	1			
5	0	24	50	35	10	1		
6	0	120	274	225	85	15	1	
7	0	720	1764	1624	735	175	21	1

给出该式的求解方式。

1.14 例十四

$$a_n = a_{n-1} + a_{n-3} + n^3 \, .$$

1.15 例十五

$$a_n = \sum_{i=1}^n 3^i (2i+1)^3$$
.

1.16 例十六

$$\begin{cases} a_n = a_{n-1} + 2b_{n-1} \\ b_n = 2a_{n-1} + b_{n-1} \end{cases} , \ \, \mathring{\mathbb{R}} \, a_n, b_n \, \circ \,$$

2 答案

2.1 例一

$$\sum_{i=0}^{k} {k+1 \choose i} B_i = 0 \quad (k \ge 1)$$