Asset price prediction

using Python, NumPy, Deep Learning and Tensorflow

The Plan

- Obtain and prepare the Dataset
- Basic forecasting implementation
 - Naive
 - Moving Average
- Deep Learning implementation
 - Dataset preparation
 - Intro to Deep Learning and Tensorflow
 - Creating the model
 - Training hyperparameters
 - Training the model & forecasting
- Summary & feedback

Disclaimer

This is not a financial advice nor a promotion of trading or any asset. Just sharing my interests, knowledge and experience

Dataset: Timeseries

Exercise: download and explore dataset

- Check you are a member of Workshops chat
- Fork & clone <u>Github repo</u>, or use:
- <u>Exercises colab notebook</u>
- Answers colab notebook

- Pick the asset to work with:
 - o Heineken, Bitcoin, Dogecoin, Gold, Starbucks, Tesla...
- Go to <u>finance.yahoo.com</u> and download its trading history csv file
- Place it under "sample_data" directory
- Explore the dataset
 - 'Date' & 'Close' columns

Exercise 1: read and prepare data

1	Date	0pen	High	Low	Close	Adj Close	Volume
2	2014-09-17	465.864014	468.174011	452.421997	457.334015	457.334015	21056800
3	2014-09-18	456.859985	456.859985	413.104004	424.440002	424.440002	34483200
4	2014-09-19	424.102997	427.834991	384.532013	394.795990	394.795990	37919700
5	2014-09-20	394.673004	423.295990	389.882996	408.903992	408.903992	36863600

Read data from CSV:

Split into training and validation set:

```
split_time = time_len * 0.8

time_train = time[:split_time]

x_train = ...

time_valid = time[split_time:]

x valid = ...
```


Dataset: plot results

Basic forecasting

Exercise 2: Naive implementation & metrics

- Used as a baseline to compare against other models
- Often is hard to beat
- Basic idea: today's forecast = yesterday's data

```
forecast = series[start - 1:end]
```

- Metrics to evaluate performance:
 - o MSE Mean Squared Error

```
keras.metrics.mean_squared_error(validation, forecast)
```

MAE - Mean Absolute Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

Naive implementation: results

MSE:

1567890.9365762253

MAE:

668.2866531270491

Exercise 3: Moving Average

- Simple forecasting method
- Calculates average of values over a fixed period of time (averaging window)
- Usually performs worse than Naive Forecast
- Using window of 30 days:

```
for time in range(series_range - 30):
    mean = series[time:time + 30] mean()
    forecast.append(mean)

return forecast.
```

Moving Average: results

Moving Average:

MSE:

17180985.74535265

MAE:

2472.22143907015

Naive:

MSE:

1567890.9365762253

MAE:

668.2866531270491

Deep Learning time!

Exercise 1: Prepare dataset for training

- As before:
 - Use Github repo, or:
 - Use colab <u>exercises</u> and <u>answer</u> notebooks
 - Specify and load CSV file
 - Split into training and validation sets

Normalize training and validation sets

```
max_val = np.max(np.abs(my_arr), axis=0)
my_arr /= max_val
```

*Split dataset into smaller windows of 20 items (input size)

- *Shuffle the windows
- *Group in **batches** of 32 windows for parallel training

*See def windowed_dataset for more details

Intro to Deep Learning and TensorFlow

Subset of ML based on Artificial Neural Networks

- Applied in many fields:
 - Computer vision
 - Natural language processing
 - Sequence models

Intro to Deep Learning and TensorFlow

- Open source framework to easily create, train & use DL models
- Easy prototyping, deploy & use in Production
- Ecosystem:
 - TensorFlow.js
 - TensorFlow Lite
 - TensorFlow Extended (TFX)
 - TensorFlow Hub
 - TensorFlow Datasets
 - Colab
 - And <u>many more</u>

Deep Learning model: Perceptron

$$Y = f(WX + b)$$

Deep Learning model: Architecture

Rectified Linear Unit

- Easy to implement and optimize
- Outputs [0; ∞]

Exercise 2: Create a DL model

- Do not forget to specify your dataset file
- We will use Tensorflow Sequential API to construct our model
- Example: a simple two-layer network with 10-1 neurons:

```
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(0, input_shape=[input_size], activation="relu"),
    tf.keras.layers.Dense()
])
model.summary()
```

Create a DL model: results

Model: "sequential 12"

Layer (ty	rpe)	Output	Shape	Param #
dense_36	(Dense)	(None,	100)	2100
dense_37	(Dense)	(None,	10)	1010
dense_38	(Dense)	(None,	1)	11

Total params: 3,121

Trainable params: 3,121

Non-trainable params: 0

Training the model

Compile model params:

- Loss function
- Optimizer function
 - Learning rate
 - Momentum


```
model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(r=1e-6, momentum=0.9))
```

Fit the model on a dataset:

- Dataset to train on
- # of Epochs to train

```
model.fit(dataset,epochs=500,verbose=2)
```

Exercise 3: train the model

Example: compile & train for 50 epochs:

```
model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(lr=1e-5, momentum=0.95))
model.fit(dataset,epochs=50,verbose=2)
```

Training the model: results

```
Epoch 1/500

61/61 - 0s - loss: 0.0372

Epoch 2/500

61/61 - 0s - loss: 0.0364

...

Epoch 499/500

61/61 - 0s - loss: 0.0020

Epoch 500/500
```

61/61 - 0s - loss: 0.0020

Forecasting: results

MSE:

43001720.0

MAE:

4110.766

Summary

- Which model performed better for your data?
- Possible improvements:
 - Play around with **hyperparameters**:
 - # of epochs
 - Adjust learning rate
 - # of neurons/layers
 - Use more **advanced** techniques:
 - Dropout regularization
 - LSTM (Long short-term memory) layers
 - Convolution layers

Feedback

Please <u>let me know</u> what you think about the topic

Thanks!

