

ANALYSE DE PERFORMANCES BASSE CONSOMMATION DE CONTROLEURS AUTOMOBILES

END OF INTERNSHIP PRESENTATION 22.09.2016

Prerana SHAMSUNDAR PUNJABI

Advanced Masters in Embedded Systems (2015-2016)

Company Supervisor: Mr. LAFUENTE Romain

: Mr. MULLER Yann : Mr. LIBAUD Romain

School Supervisor: Dr. HUGUES Jérôme Heads of Program: Dr. HUGUES Jérôme
: Dr. SCHARBARG Jean-Luc

Academic Tutor: Mr. Arnaud DION

AGENDA

- 1 Project Context
- 2 Objective Of Internship
- 3 Debug Feature In Low Power
- 4 Dual Core Prototype Development
- 5 Deliverables
- 6 Improvements
- 7 Merits Obtained
- 8 Conclusion

TEAM ORGANIZATION

>AUTOSAR Layered Architecture

> Mode **Management Team**

PROJECT CONTEXT

OBJECTIVE OF INTERNSHIP

Profiling and Debugging in LPM

In a Representative Environment
Implementation of Debug Feature in LPM

Dual Core Prototype Development

Implementation of Synchronization between two cores for entering and exiting the LPM

Process Followed - Agile Process

Small deliverables with evolving requirements

- ❖Features to be delivered →User Story
- Team determine the complexity and time required to deliver a user story
- ❖User Story are broken down into task
- Frequent small stand-up meetings are conducted to be inline with the goals

Delivered User Stories

DEBUG FEATURE IN LOW POWER

Before Implementation of this feature Logs were obtained only in High Power

- Unavailability of this feature in LPM
 - OS is Paused → APIs used in HP can not be used in LP
 - Unavailability of communication buses in LP
 - Consumes more power

HARDWARE SETUP

- Set-up [Master Slave]
 - Renesas F1L: Microcontroller → Master
 - DioLAN board → Slave
 - E1 → Emulator used to flash
 - SPI communication → Light weight bus

Configuration Tools and Initial Trials

00E0 0505 0505 0517 00E0 0505 0505 0517

IMPLEMENTATION AND RESULTS

LOGS OBTAINED

- Interrupts received
- Resource activation and de-activation
- Execution duration of LP Task

	Time (in CPU Ticks)	Event Occurred (Task / ISR)	Event Details
>	4609	SPI_CSIH3_TIC_CAT2_ISR	START
	5112	SPI_CSIH3_TIC_CAT2_ISR	STOP
>	35195	DBGF_EXECPOINT_TEST_32B	START
>	35233	LpmTask_LpmTask20ms	START
	37706	DBGF_EXECPOINT_TEST_32B	STOP
>	37738	LpmTask_LpmTask20ms	STOP

LP TASK

Task LpmTask20ms LpmTaskWithoutDelay	Avg T	Max	Min Ti	AvgP
LpmTask20ms	2186	2740	1737	80725
LpmTaskWithoutDelay	197	545	158	80724

INT	Avg T	Ma
Fts_IT	302	128
SPI_CSIH3_TIC_C	562	563
Lpm_Api_Notification	61	62

Avg T	Max	Min Ti
2217	2248	2162
3019	5081	2395
	2217	2217 2248

DUAL CORE PROTOTYPE

Challenge: To achieve Effective Communication

To obtain synchronization for entering and exiting LPM

DESIGN GUIDELINES – MASTER SLAVE MODEL

HARDWARE CONSTRAINT

- ❖ Microcontroller has [1] Source Clock →
- Master Slave Model [If Master is Off, Slave is Off]

DESIGN CONSTRAINT

❖ HIGH POWER Task executed Independently on both Cores → Idle task is executed Independently

*** ARCHITECTURAL CONSTRAINT FROM AUTOSAR**

- ❖ [1] Basic software module → all BSW activities are done by Master
 - [1] LP Module → Slave Core has no activity in LP
- [1] OS Counter is available → All task triggered by Master Core

PROJECT CONTEXT

POWER MODES - II

- Application Task Execute in HP
- On Key Off Idle Task is executed
- When Ecu State = SLEEP
- Enter LP
- In LP:
- Pause OS, Start LPM Scheduler
- Start Periodic Activity in LP
- Enter Hardware Low Power
- On Key On Enter HP

PROTOYPE HIGH LEVEL DESIGN

DETAIL DESIGN [Synchronization Mechanism]-I

DETAIL DESIGN [Synchronization Mechanism]-II

If Slave is Busy

- Reset the readyToEnterIntoLowPower flag in CrossCoreISR Call Back
- Execute the Application task

HARDWARE SET-UP & IMPLEMENTATION

- Renesas F1H Dual Microcontroller
- Lauterbach as the Emulator and Nexus debugger
- Saleae Logic Analyzer as the Scope

RESULTS

Current Drain – STOP Mode

DELIVERABLES

DEBUGGING FEATURE TO BE INTRODUCED IN LOW POWER MODE

- Implemented the code
- Tested in various Power modes
- Documented in a User Manual
- Currently the feature is being utilized by the Software Platform Team

DUAL CORE PROTOTYPE DEVELOPMENT (SYNCHRONIZATION TO BE DONE TO ENTER AND EXIT LPM)

- Implemented the code
- Tested with various design scenarios
- Documented in a Design Document and User Guide
- The feature will form the base for future implementations on customer demand

IMPROVEMENTS

- ❖ Debug Feature in LPM:
 - Calibration of the Timers
 - Test with smallest LPM Period
 - Test in different Power modes on other variants
- ❖ Dual Core Prototype Development:
 - Simulation for different possible scenarios
 - Test in different Power modes
 - To test the performance of the Dual Core system

MERITS OBTAINED

- ► Concept of **△UT**(**②S△R**
- POWER MODES in an ECU
- Programming of Microcontrollers
- Usage of debug tools -

- Usage of Configuration tools IMS, CESSAR-CT, SPARC
- Designing using UMLs
- Dual Core Technology
- Development process

VS

Other module concepts like Bootloaders and their working

CONCLUSION

- Interesting Topics
- Proposed solution was satisfactory
- Implementation of my courses
- Confirmation of my interest in Embedded Systems
- Opportunity to work on Hardware
- To understand and work in different cultural environment

Questions

THANK YOU

Modes of Operation

DESIGN

- Master Core wakes up Slave Core in case a wake event is received
- Master Core & Slave Core should be in Idle Loop to enter LP
- If Wake-up = TRUE → Master Core sends CrossCoreISR to Slave Core

