Bancos de Dados

Deborah Ribeiro Carvalho 2019

Álgebra Relacional Operações básicas

Básicas

- Seleção (σ) seleciona um subconjunto de linhas de uma relação
- Projeção (π) apaga colunas desnecessárias de uma relação
- Produto cartesiano (X) permite combinar duas relações
- União (U) tuplas na relação 1 e na relação 2
- Diferença (-) tuplas na relação 1 mas não na relação 2
- Renomeação (ρ) renomeia tabela
- Atribuição (←) Atribui valores a variaveis

Derivadas

Junção, interseção, divisão

 Produz uma nova relação contendo um subconjunto vertical da relação argumento, sem duplicações

select nome_professor from PROFESSOR;

 Seleciona tuplas da relação argumento que satisfaçam à condição de seleção

 $\sigma_{\text{condição_seleção}}$ (relação argumento)

- pode envolver operadores de comparação (=, <, ≤, >, ≥, ≠)
- pode combinar condições usando-se ∧, ∨, ¬

- relação
- resultado de alguma operação da álgebra relacional

.... Where nome_professor = ' joao das coves';

Álgebra Relacional Atribuição

- associa uma relação argumento a uma relação temporária
- permite o uso da relação temporária em expressões subseqüentes

relação temporária ← relação argumento

 resultado de alguma operação da álgebra relacional relação

Álgebra Relacional Atribuição

```
select a.nome_aluno, p.nome_professor

from

(select ad.codigo_aluno, d.codigo_professor, count(*) as qtas

from alunos_disciplinas ad

inner join disciplinas d on d.codigo_disciplina = ad.codigo_disc

group by ad.codigo_aluno, d.codigo_professor) as consulta

inner join ALUNOS a on a.codigo_aluno = consulta.codigo_aluno
inner join PROFESSOR p on p.codigo_professor = consulta.codigo_professor

where consulta.qtas > 1;
```

 Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} \left( \sigma_{\text{saldo\_dev} \, < \, 200,00 \, ^{\land} \, \text{end\_cli} \, = \, \text{``Rua X''}} \left( \text{cliente} \right) \right)
```

- Usando atribuição
 - temp ← $\sigma_{\text{saldo_dev} < 200,00 ^ end cli = "Rua X"}$ (cliente)
 - $-\pi_{\text{nro cli, nome cli}}$ (temp)

Renomeia

- nome da relação
- nomes dos atributos da relação
- nome da relação e nomes dos atributos

select f.fun_nome as funcionario, g.fun_nome as gerente
from tbl_funcionarios as f, tbl_funcionarios as g
where f.cod_gerente = g.fun_id;

- Notação: ρ_S (R) ou ρ_{S(A1,A2,...)} (R)
 - Renomeia R para S ou renomeia R para S com atributos renomeados A1, A2, ...
- Entrada: Tabela (R)
- Propósito: redefinir nome tabelas / ou colunas num contexto
- Saída: Tabela renomeada com mesmas linhas de R
- Usada para
 - Útil para auto-relacionamentos, onde precisamos fazer a junção de uma tabela com ela mesma, e nesse caso cada versão da tabela precisa receber um nome diferente da outra.
 - Cria colunas idênticas numa junção natural

Álgebra Relacional

- Unárias
 - seleção
 - projeção
 - renomear

operam sobre uma única relação

- Binárias
 - produto cartesiano
 - união
 - diferença de conjuntos
 - intersecção de conjuntos
 - junção natural
 - divisão

operam sobre duas relações

Álgebra Relacional Produto cartesiano

- Notação: R X S
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera combinações de linhas das duas tabelas
- Saída: Para cada linha r em R e cada linha sem S, gerar a tupla rs

Álgebra Relacional Produto cartesiano

select p.nome_professor, d.nome_disciplina from PROFESSORES p, DISCIPLINAS d, PROFESSORES_DISCIPLINAS r where r.cod_prof = p.codigo_professor and r.cod_disc = d.codigo_disciplina;

Álgebra Relacional Produto cartesiano

•	nro_cli	nome_cli	end_cli	saldo	cliente. cod_vend	vendedor. cod_vend	nome_vend
	1	Márcia	Rua X	100,00	1	1	Adriana
	1	Márcia	Rua X	100,00	1	2	Roberto
	2	Cristina	Avenida 1	10,00	1	1	Adriana
	2	Cristina	Avenida 1	10,00	1	2	Roberto
	3	Manoel	Avenida 3	234,00	1	1	Adriana
	3	Manoel	Avenida 3	234,00	1	2	Roberto
	4	Rodrigo	Rua X	137,00	2	1	Adriana
	4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor número de tuplas: número de tuplas de cliente * número de tuplas de vendedor

- Notação: R

 S

 S

 S

 Notação: R

 Notação: R
- Entrada: Tabela (R) e Tabela (S)
- Propósito: relaciona linhas das tabelas
 - Reforça a igualdade de seus atributos
 - Elimina 1 cópia dos atributos comuns
- Saída: Para cada linha r em R e cada linha sem S, gerar a tupla rs se, e somente se,atenderem a condição p

- -- nome do professor e disciplina
- -- sem inner join

```
select p.nome_professor, d.nome_disciplina
from PROFESSORES p, DISCIPLINAS d, PROFESSORES_DISCIPLINAS r
where r.cod_prof = p.codigo_professor
and r.cod_disc = d.codigo_disciplina;
```

- -- nome do professor e disciplina
- -- com inner join

```
select p.nome_professor, d.nome_disciplina
from PROFESSORES p
inner join PROFESSORES_DISCIPLINAS r on r.cod_prof = p.codigo_professor
inner join DISCIPLINAS as d on d.codigo_disciplina = r.cod_disc;
```


Álgebra Relacional Operações da teoria dos conjuntos

A álgebra relacional empresta da teoria de conjuntos quatro operadores: União, Intersecção, Diferença e Produto Cartesiano

Sintaxe da União: <tabela> 1 ∪ <tabela> 2

Sintaxe da Intersecção: <tabela> 1 ∩ <tabela> 2

Sintaxe da **Diferença**: <tabela> 1 – <tabela> 2

Nos três casos, a operação possui duas tabelas como operando. E as tabelas devem ser compatíveis:

- possuir o mesmo número de colunas;
- o mesmo domínio para cada posição da lista de atributos;
- quando os nomes das colunas forem diferentes, adota- se os nomes das colunas da primeira tabela.

- Notação: R U S
 - R e S devem ter o mesmo esquema
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Contém todas as linhas de R e de S
 - O esquema é o mesmo das tabelas de entrada
 - Duplicidade é eliminada

select * from TABLE_A UNION select * from TABLE_B

Álgebra Relacional diferença

- Notação: R S
 - R e S devem ter o mesmo esquema
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Contém todas as linhas de R e que não são encontradas em S
 - O esquema é o mesmo das tabelas de entrada

Álgebra Relacional diferença

select A_KEY from TABLE_A
where A_KEY not in (select A_KEY from TABLE_B)

Álgebra Relacional Interseção

- Notação: R ∩ S
 - R e S devem ter o mesmo esquema
- Entrada: Tabela (R) e Tabela (S)
- Propósito: gera linhas de acordo com um critério
- Saída: Contém todas as linhas de R que são encontradas em S também
 - O esquema é o mesmo das tabelas de entrada
 - R − (R − S) ou S − (S − R) ou R ⋈ S

Álgebra Relacional Interseção

select KEY from TABLE_A where TABLE_A.KEY in (select TABLE_B.KEY from TABLE_B)

Álgebra Relacional divisão

- Notação: R ÷ S
- Entrada: Tabela (R) e Tabela (S)
 - Seja grau a medida de atributos de mesmo nome
 - ▶ R tem grau ("m"+"n")
 - ▶ S tem grau "n"
- Propósito: gera linhas de acordo com um critério
- Saída: atributos de S cujos valores associam-se com todos os valores de R
 - Grau "m"

Álgebra Relacional divisão

Álgebra Relacional Funções Agregadas

- Para aquelas consultas que não podem ser resolvidas simplesmente através da álgebra relacional, introduz-se um conjunto de funções agregadas
- Funções comumente aplicadas a conjuntos de dados são: Média, Máximo, Mínimo, Soma, Contador

Álgebra Relacional Funções Agregadas

 Funções agregadas: são aquelas que, quando aplicadas, tomam uma coleção de valores e retornam um valor simples como resultado.

14505

 função sum: descobrir a soma total dos salários de todos os empregados de tempo integral.

sum _{salario} (trabalhador_integral) sum salario

-função count: descobrir o número de agências existentes

na tabela de tempo integral.

count nome acencia (trabalhador_integral)

count-distinct nome_agencia (trabalhador_integral)

- função avg: descobrir a média dos salários.

avg _{selario} (trabalhador_integral)

- função min: descobrir o menor salário.

min sakin (trabalhador_integral)

função max: descobrir o maior salário.

max salario (trabalhador_integral)

Álgebra Relacional Resumo

Símbolo	Operação	Sintaxe	Tipo
σ	Seleção / Restrição	σ _{condição} (Relação)	Primitiva
π	Projeção	π _{expressões} (Relação)	Primitiva
U	União	Relação1 ∪ Relação2	Primitiva
0	Intersecção	Relação1 ∩ Relação2	Adicional
-	Diferença de conjuntos	Relação1 - Relação2	Primitiva
X	Produto cartesiano	Relação1 x Relação2	Primitiva
x	Junção	Relação1 x Relação2	Adicional
÷	Divisão	Relação1 ÷ Relação2	Adicional
ρ	Renomeação	ρ _{nome} (Relação)	Primitiva
←	Atribuição	variável ← Relação	Adicional

Álgebra Relacional Resumo

SÍMBOLO	OPERAÇÃO	SINTAXE	TIPO
<	Atribuição	Variável < Relação	Primitiva
σ	Seleção (Select)	σ <condicao de="" elecao="">(Relação)</condicao>	Primitiva
π	Projeção (Project)	π <lista atributos="" de="">(Relação)</lista>	Primitiva
U	União (Union)	(Relação 1) ∪ (Relação 2)	Primitiva
\cap	Interseção (Intersection)	(Relação 1) ∩ (Relação 2)	Adicional
_	Diferença (Difference)	Sintaxe: (Relação 1) - (Relação 2)	Primitiva
X	Produto Cartesiano (Product)	(Relação 1) X (Relação 2)	Primitiva
x	Junção (Join)	(Relação 1) X <condição de<br="">junção> (Relação 2)</condição>	Adicional
•	Divisão (Divide)	(Relação 1) ⊕ (Relação 2)	Adicional

Álgebra Relacional Seleção

- Formato: RelResultado = $\sigma_{\text{predicado}}$ (RelEntrada)
- Ex.:Selecione as tuplas da relação
 EMPRÉSTIMOS para quais o nome da agência é "Perryridge"

$$R = \sigma_{\text{e-agência='Perryridge'}}(\text{EMPRÉSTIMOS})$$

```
SELECT *
FROM EMPRESTIMOS
WHERE E_AGENCIA = 'PERRYRIDGE'
```

Álgebra Relacional Projeção

- Formato: RelResult= $\pi_{\text{colunas a copiar}}$ (RelEntrada)
- Ex.: Obter uma tabela que relacione os clientes do banco com as agências onde fizeram empréstimos:

$$\mathsf{Res} {=} \pi_{\mathsf{e}\text{-agencia},\,\mathsf{e}\text{-nome}}(\mathsf{EMPR}\mathsf{\acute{E}STIMOS})$$

SELECT E_AGENCIA, E_NOME FROM EMPRESTIMOS . . .

- É possível compor operações mais complexas da álgebra relacional através do aninhamento de operações mais simples
- Exemplo: listar os nomes dos clientes que fizeram empréstimos superiores a 1200:

RelResult = $\pi_{e-\text{nome}}(\sigma_{e-\text{valor}>1200} \text{ (EMPRÉSTIMOS)})$

SELECT DISTINCT E_NOME FROM (SELECT E_NOME FROM EMPRESTIMOS WHERE E_VALOR >1200)

 A operação de seleção que gera uma relação como resultado pode ser usada como relação de entrada para a operação de projeção

Em SQL proporciona um mecanismo para renomear tanto atributos quanto relações, usando a cláusula **as**, como segue:

select Atributo **as** Novo_nome **from** relação;

Álgebra Relacional Produto cartesiano

 Exemplo: listar o nome dos clientes que moram em Rye e fizeram empréstimo de menos de 1000.

```
a)RelResult1= CLIENTES x EMPRÉSTIMOS
```

```
b)RelResult2= \sigma_{c-name = e-name} (RelResult1)
```

c)RelResult3= $\sigma_{e-valor < 1000 \text{ and } c-cidade = Rye}$ (RelResult2)

```
SELECT C_NOME
FROM CLIENTES, EMPRESTIMOS
WHERE C_NOME = E_NOME AND
E_VALOR < 1000 AND C_CIDADE = 'RYE'
```

Álgebra Relacional

Faça uma lista com todos os números de projetos nos quais esteja envolvido algum empregado cujo último nome seja 'Smith'; ou como empregado, ou como gerente do departamento que controla o projeto.

```
(select distinct pnumero
from projeto, departamento, empregado
where Dnum = Dnumero and GerSSN = ssn and
unome = 'Smith')
union
(select distinct pnumero
from trabalha_em, projeto, empregado
where pnumero = Pno and essn = SSN and
unome = 'Smith');
```

Obs: Diferença entre conjuntos → except
Interseção de conjuntos → intersect