中国石油大学(北京)2022-2023学年春季学期

《高等数学 A(II)》本科期末考试试卷 (A卷) 考试方式(闭卷考试)

班级:	
姓名:	
ж п	

题号	:- <u></u> :	二	三	四	五.	六	七	八	九	总分
得分										

(试卷不得拆开,所有答案均写在题后相应位置)

一、填空题(在下列各题的横线处填写正确答案, 共 5 小题, 每小题 3 分, 共 15 分)

1、
$$z = \sqrt{\log_a(x^2 + y^2)}(a > 0)$$
的定义域为 D=_____。

2、二重积分
$$\iint_{|x|+|y|\leq 1} \ln(x^2+y^2) dxdy$$
 的符号为_____。

- 3、由曲线 $y = \ln x$ 及直线 x + y = e + 1, y = 1 所围图形的面积用二重积分表示为______,其值为_____。
- 4、设曲线 L 的参数方程表示为 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $(\alpha \le x \le \beta)$, 则弧长元素 $ds = \underline{\hspace{1cm}}$ 。

一、1、当
$$0 < a < 1$$
时, $0 < x^2 + y^2 \le 1$;当 $a > 1$ 时, $x^2 + y^2 \ge 1$;

2、负号; 3、
$$\iint_D d\sigma = \int_0^1 dy \int_{e^y}^{e+1-y} dx$$
; $\frac{3}{2}$; 4、 $\sqrt{{\varphi'}^2(t) + {\psi'}^2(t)} dt$;

 $5, 180 \pi;$

二、选择题(请将下列各题的正确答案填在题后的括号内,共5题,每小题3分,共15分)

1、设函数
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 ,则在点(0, 0)处()

- (A) 连续且偏导数存在;
- (B) 连续但偏导数不存在;
- (C) 不连续但偏导数存在;
- (D) 不连续且偏导数不存在。
- 2、设u(x,y)在平面有界区域 D上具有二阶连续偏导数,且满足

$$\frac{\partial^2 u}{\partial x \partial y} \neq 0 \quad \not \boxtimes \quad \frac{\partial^2 u}{\partial x^2} + \quad \frac{\partial^2 u}{\partial y^2} = 0 \; ,$$

则()

- (A) 最大值点和最小值点必定都在 D 的内部;
- (B) 最大值点和最小值点必定都在 D 的边界上:
- (C) 最大值点在 D 的内部,最小值点在 D 的边界上;
- (D) 最小值点在 D的内部,最大值点在 D的边界上。

2022-2023 学年春季学期 《高等数学 A(II)》本科期末考试试卷

3、设平面区域 D:
$$(x-2)^2 + (y-1)^2 \le 1$$
,若 $I_1 = \iint_D (x+y)^2 d\sigma$, $I_2 = \iint_D (x+y)^3 d\sigma$ 则有(

- (A) $I_1 < I_2$; (B) $I_1 = I_2$; (C) $I_1 > I_2$; (D) 不能比较。
- 4、设 Ω 是由曲面 z=xy,y=x,x=1 及 z=0 所围成的空间区域,则 $\iiint xy^2z^3dxdydz=($
- (A) $\frac{1}{361}$; (B) $\frac{1}{362}$; (C) $\frac{1}{363}$; (D) $\frac{1}{364}$.
- 5、设 f(x,y) 在曲线弧 L 上有定义且连续,L 的参数方程为 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $(\alpha \le t \le \beta)$,其中 $\varphi(t)$, $\psi(t)$ 在

[lpha,eta]上具有一阶连续导数,且 ${arphi'}^2(t)+{\psi'}^2(t)
eq 0$,则曲线积分 $\int_{T}f(x,y)ds=0$

- (A) $\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) dt:$ (B) $\int_{\beta}^{\alpha} f(\varphi(t), \psi(t)) \sqrt{{\varphi'}^2(t) + {\psi'}^2(t)} dt:$
- (C) $\int_{\alpha}^{\beta} f(\varphi(t), \psi(t)) \sqrt{{\varphi'}^2(t) + {\psi'}^2(t)} dt : \qquad (D) \int_{\beta}^{\alpha} f(\varphi(t), \psi(t)) dt .$

- \equiv , 1, C; 2, B; 3, A; 4, D; 5, C;

三、(本题满分10分)

求函数 $f(x,y) = x^2 y(4-x-y)$ 在由直线 x+y=6, y=0, x=0 所围成的闭区域 D 上的最大 值和最小值。

曲
$$\begin{cases} f'_x = 2xy(4-x-y) + xy(-1) = 0 \\ f_y = x^2(4-x-2y) = 0 \end{cases}$$
 得 D 内的驻点为 $M_0(2,1)$,且 $f(2,1) = 4$,

$$X f(0, y) = 0, f(x,0) = 0$$

而当
$$x + y = 6, x \ge 0, y \ge 0$$
时, $f(x, y) = 2x^3 - 12x^2$ $(0 \le x \le 6)$

$$(2x^3 - 12x^2)' = 0 \ \# \ x_1 = 0, x_2 = 4$$

于是相应 $y_1 = 6$, $y_2 = 2$ 且 f(0,6) = 0, f(4,2) = -64.

 $\therefore f(x,y)$ 在 D 上的最大值为 f(2,1) = 4,最小值为 f(4,2) = -64.

四、(本题满分10分)

计算
$$I = \iiint_{\Omega} \frac{dv}{(1+x+y+z)^3}$$
, 其中 Ω 是由 $x = 0, y = 0, z = 0$ 及 $x+y+z=1$ 所围成的立体

域。

$$\Omega 的联立不等式组为 \Omega: \begin{cases}
0 \le x \le 1 \\
0 \le y \le x - 1 \\
0 \le z \le 1 - x - 1
\end{cases}$$
所以 $I = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} \frac{dz}{(1++x+y+z)^3}$

$$= \frac{1}{2} \int_0^1 dx \int_0^{1-x} \left[\frac{1}{(1+x+y)^2} - \frac{1}{4} \right] dy$$

$$= \frac{1}{2} \int_0^1 \left(\frac{1}{x+1} - \frac{3-x}{4} \right) dx = \frac{1}{2} \ln 2 - \frac{5}{16}$$

五、(本题满分12分)

计算
$$\iint_{\Sigma} \sqrt{R^2 - x^2 - y^2} dS$$
 , 其中 Σ 为上半球面 $z = \sqrt{R^2 - x^2 - y^2}$.
解: $dS = \sqrt{1 + {z_x}^2 + {z_y}^2} dxdy = \frac{R}{\sqrt{R^2 - x^2 - y^2}} dxdy$, $\iint_{\Sigma} \sqrt{R^2 - x^2 - y^2} dS = \iint_{D} \sqrt{R^2 - x^2 - y^2} dxdy = \frac{R}{\sqrt{R^2 - x^2 - y^2}} dxdy = \pi R^3$.

六、(本题满分12分)

计算
$$\iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$$
 , 其中 Σ 为曲面 $z = 1 - x^2 - y^2$ ($z \ge 0$) 部分的上側. 解: Σ 在 xoy 面上的投影为 D_{xy} : $x^2 + y^2 \le 1$, 补充平面 Σ_1 : $z = 0$ ($x^2 + y^2 \le 1$) 取下側,由高斯公式
$$\iint_{\Sigma} = \iint_{\Sigma_1} -\iint_{\Sigma_1} = \iiint_{\Omega} (6x^2 + 6y^2 + 6z) dv + 3 \iint_{D_{xy}} (0 - 1) dx dy$$

$$= 6 \int_0^{2\pi} d\theta \int_0^1 d\rho \int_0^{1-\rho^2} (\rho^2 + z) \rho dz - 3 \iint_{D_{xy}} dx dy = 2\pi - 3\pi = -\pi$$
.

七、(本题满分11分)

计算
$$I = \iint_{\Sigma} xyzdxdy$$
, 其中 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 的 $x \ge 0, y \ge 0$ 部分

的外侧。

将
$$\Sigma$$
 分为上半部分 $\Sigma_1: z=\sqrt{1-x^2-y^2}$ 和下半部分 $\Sigma_2: z=-\sqrt{1-x^2-y^2}$, Σ_1, Σ_2 在面 xoy 上的投影域都为: $D_{xy}: x^2+y^2 \leq 1, x \geq 0, y \geq 0$,

于是:
$$\iint_{\Sigma_{1}} xyzdxdy = \iint_{D_{xy}} \sqrt{1-x^{2}-y^{2}} dxdy$$

$$\stackrel{極學極}{=} \int_{0}^{\pi/2} d\theta \int_{0}^{1} \rho^{2} \sin\theta \cos\theta \cdot \sqrt{1-\rho^{2}} \cdot \rho d\rho = \frac{1}{15};$$

$$\iint_{\Sigma_{2}} xyzdxdy = \iint_{D_{xy}} xy(-\sqrt{1-x^{2}-y^{2}})(-dxdy) = \frac{1}{15},$$

$$\therefore I = \iint_{\Sigma_{1}} + \iint_{\Sigma_{2}} = \frac{2}{15}$$

八、(本题满分10分)

求幂级数
$$\sum_{n=1}^{\infty} \frac{x^n}{3^n \cdot n}$$
 的收敛域及和函数.

解:
$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{n3^n}{(n+1)3^{n+1}} = \frac{1}{3} \Rightarrow R = 3$$
,收敛区间为 (-3,3)

又当
$$x = 3$$
 时,级数成为 $\sum_{n=1}^{\infty} \frac{1}{n}$,发散;当 $x = -3$ 时,级数成为 $\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n}$,收敛.

故该幂级数的收敛域为[-3,3).

$$\Leftrightarrow s(x) = \sum_{n=1}^{\infty} \frac{x^n}{n3^n} \quad (-3 \le x < 3), \text{ }$$

$$s'(x) = \sum_{n=1}^{\infty} \frac{x^{n-1}}{3^n} = \frac{1}{3} \sum_{n=1}^{\infty} (\frac{x}{3})^{n-1} = \frac{1}{3} \frac{1}{1-x/3} = \frac{1}{3-x}, (|x| < 3)$$

九、(本题满分5分)

论述你所学过的积分之间的关系

提示:可以从高斯公式可以将面积分和体积分相互转化,重积分和定积分之间的关系等方面作答,言之有理即可。