

DICE FOR ML

Diverse Counterfactual Explanations for ML

LT3 - Barajas, Fuentebella, Gaspar, Jayme, Ramos, & Tanjangco

because of your BIZ GRD..."

Background: Imagine you are at high risk of failing your Term 3 Grades...

What should you do next to graduate on time?

"You will graduate on time if you

increase your BIZ GRD by 80%..."

Background: Imagine you are at high risk of failing your Term 3 Grades...

Counterfactual examples show how to obtain a different prediction

examples

Counterfactual explanations should satisfy two properties:

feasibility of choices

relative ease of doing the actions (e.g. education, loan, years of work experience)

diversity in choices

it can provide/recommend different actions/scenarios depending on constraint

Counterfactual Engine

Can We Access the Model?

YES

MODEL SPECIFIC

PAPER(SHORTENED NAME)	AUTHORS
CFs Without opening the Blackbox	Watcher et. al.
Contransive Explanation Model	Dhurandar et. al.
Contransive Adversarial Examples	Moore et. al.
Diverse CounterFactual Explanations	Mothial et. al.

PAPER(SHORTENED NAME)	AUTHORS
Mod. Agnostic CFs (MACEM)	Dhurandar et. al.
CertifAl	Sharma et. al.
Foil Trees	Van der Waa et. al.

Counterfactual Engine: how are counterfactuals generated?

Model-Agnostic

Counterfactual Engine

The Rashomon Effect

Counterfactuals: desirable properties

Actionability:

Users should be able to make the changes indicated by counterfactuals

- Feasibility
 - Proximity
 - User constraints
 - Sparsity
 - Causal constraints

Diversity

Russell(2017)

Mixed linear programming

Wachter et. al $C = \underset{c}{\operatorname{arg min}} yloss(f(c), y) + |x - c|$ (2017)

General Optimization Framework

Diverse counterfactual explanations

$$C(x) = \arg\min_{C_1, \dots, C_k} \frac{1}{k}$$

Loss to get the desirable outcome

Loss to ensure proximity to the original input

$$+\frac{\lambda_1}{k}\frac{\mathbf{dist}(c_i,x)}{\mathbf{dist}(c_i,x)}$$

Loss to provide diverse explanation

$$dpp_diversity = \det\left(\frac{1}{1 + dist(c_i, c_j)}\right)$$

k – number of counterfactuals

 λ_1 and λ_2 — loss — balancing hyperparameter

Practical considerations

$$C(x) = \arg\min_{C_1, \dots, C_k} \frac{1}{k} \sum_{i=1}^k yloss(f(c_i), y) + \frac{\lambda_1}{k} dist(c_i, x) - \lambda_2 dpp_diversity(c_1, \dots, c_k)$$

- Incorporate additional feasibility properties
 - Sparsity
 - User Constraint
- Choice of yloss hinge loss
- Binary classification only

Mothilal, R. K., Sharma, A., & Tan, C. (2019). Diverse Counterfactual Explanations (DiCE) for ML. GitHub Repository. Retrieved 15 November 2021 from https://github.com/interpretml/DiCE

Evaluation: Quantitative

Validity - # of valid CFs (should be high)

Proximity - ease of adopting a change (should be high)

Diversity - suggested changes (should be high)

Evaluation: Qualitative

Adult	HrsWk	Education	Occupation	WorkClass	Race	AgeYrs	MaritalStat	Sex
Original input (outcome: <=50K)	45.0	HS-grad	Service	Private	White	22.0	Single	Female
	922	Masters	_	<u></u>	100	65.0	Married	Male
Counterfactuals	_	Doctorate	_	Self-Employed	_	34.0	-	_
(outcome: >50K)	33.0	0-0	White-Collar	_	_	47.0	Married	_
3.27.202-0 327 43	57.0	Prof-school	_	(S==1)	-	_	Married	_

Counterfactuals can be evaluated one-by-one

Demonstration: UPCAT College Exam Prediction

```
#prepare the data
dataset = X new
target = dataset["Target"]
train dataset, test dataset, y train, y test = train test split(dataset,
                                            target, test size=0.25,
                                            random state=0)
x_train = train_dataset.drop('Target', axis=1)
x test = test dataset.drop('Target', axis=1)
# setup the data
d = dice ml.Data(dataframe=train dataset,
                 continuous features=['Eng7', 'Eng8', 'Eng9', 'Math7',
                                    'Math8', 'Math9', 'Sci7', 'Sci8', 'Sci9',
                                    'GWA7', 'GWA8', 'GWA9', 'UP', 'SA', 'C1',
                                    'C2'], outcome name='Target')
#define the algorithm
clf = Pipeline(steps=[('classifier', RandomForestClassifier())])
model = clf.fit(x train, y train)
#run dice
m = dice ml.Model(model=model, backend="sklearn")
# Using method=random for generating CFs
exp = dice ml.Dice(d, m, method="random")
#generate and visualize the counterfactuals
e1 = exp.generate_counterfactuals(x_test[0:10], total_CFs=3,
                                  desired class="opposite")
e1.visualize as dataframe(show only changes=True)
```

We ran the code using the UPCAT College Exam Prediction dataset...

Demonstration: UPCAT College Exam Prediction Example

9	Eng7	Eng8	Eng9	Math7	Math8	Math9	Sci7	Sci8	Sci9	UP	IQ	Target
0	77	73.0	79	85	80	71.0	73	88	78	1	55.0	0

For this individual to pass, they can do any of the following:

Diverse Counterfactual set (new outcome: 1.0)

	Target	IQ	UP	Sci9	Sci8	Sci7	Math9	Math8	Math7	Eng9	Eng8	Eng7	
- Increase	1.0			-			76.3	-				-	0
- Lower S	1.0	100	0.70		55	59.0		-		35	0.70	-	1
- Increase	1.0	- 2	-	-	10	2	ū	2	-	89.0	89.9	-	2

Increase Math9 grade to 76.3

- Lower Sci7 grade to 59.0

Increase Eng8 grade to 89.9
 and Eng9 grade to 89.0

Summary: Contribution to the field

Counterfactual explanations should satisfy two properties:

feasibility of choices

diversity in choices

and was demonstrated and evaluated:

Adult	HrsWk	Education	Occupation						
Original input (outcome: <=50K)	45.0	HS-grad	Service						
0	*—	Masters	_						
Counterfactuals	_	Doctorate	_						
(outcome: >50K)	33.0	_	White-Collar						
	57.0	Prof-school	_						
qualitatively									

Summary: Further work

Limitation

Areas for extension

"Do DiCE-produced counterfactuals provide better explanations than past ML interpretability approaches?"

Behavioral study

DICE FOR ML

Diverse Counterfactual Explanations for ML

LT3 - Barajas, Fuentebella, Gaspar, Jayme, Ramos, & Tanjangco