Veriopt Theories

August 31, 2022

Contents

1	Dat	ca-flow Semantics	1
	1.1	Data-flow Tree Representation	1
	1.2	Functions for re-calculating stamps	3
	1.3	Data-flow Tree Evaluation	4
	1.4	Data-flow Tree Refinement	6
	1.5	Data-flow Tree Theorems	7
		1.5.1 Deterministic Data-flow Evaluation	7
		1.5.2 Typing Properties for Integer Evaluation Functions	7
		1.5.3 Evaluation Results are Valid	10
		1.5.4 Example Data-flow Optimisations	11
		1.5.5 Monotonicity of Expression Refinement	11
	1.6	Unfolding rules for evaltree quadruples down to bin-eval level	12
	1.7	Lemmas about new_int and integer eval results	13
2	Tre	e to Graph	18
	2.1	Subgraph to Data-flow Tree	18
	2.2	Data-flow Tree to Subgraph	22
	2.3	Lift Data-flow Tree Semantics	26
	2.4	Graph Refinement	26
	2.5	Maximal Sharing	26

1 Data-flow Semantics

 $\begin{array}{c} \textbf{theory} \ IRTreeEval \\ \textbf{imports} \\ \textit{Graph.Stamp} \\ \textbf{begin} \end{array}$

We define a tree representation of data-flow nodes, as an abstraction of the graph view.

Data-flow trees are evaluated in the context of a method state (currently called MapState in the theories for historical reasons).

The method state consists of the values for each method parameter, references to method parameters use an index of the parameter within the parameter list, as such we store a list of parameter values which are looked up at parameter references.

The method state also stores a mapping of node ids to values. The contents of this mapping is calculates during the traversal of the control flow graph.

As a concrete example, as the SignedDivNode can have side-effects (during division by zero), it is treated as part of the control-flow, since the data-flow phase is specified to be side-effect free. As a result, the control-flow semantics for SignedDivNode calculates the value of a node and maps the node identifier to the value within the method state. The data-flow semantics then just reads the value stored in the method state for the node.

```
type-synonym ID = nat

type-synonym MapState = ID \Rightarrow Value

type-synonym Params = Value\ list

definition new-map-state :: MapState\ where

new-map-state = (\lambda x.\ UndefVal)
```

1.1 Data-flow Tree Representation

```
datatype IRUnaryOp =
   UnaryAbs
   UnaryNeg
   UnaryNot
   UnaryLogicNegation
   UnaryNarrow (ir-inputBits: nat) (ir-resultBits: nat)
   UnarySignExtend (ir-inputBits: nat) (ir-resultBits: nat)
  UnaryZeroExtend (ir-inputBits: nat) (ir-resultBits: nat)
datatype IRBinaryOp =
   BinAdd
   BinMul
   BinSub
   BinAnd
   BinOr
   BinXor
   BinShortCircuitOr
  BinLeftShift \\
   BinRightShift
   BinURightShift
   BinIntegerEquals
   BinIntegerLessThan
  BinIntegerBelow
datatype (discs-sels) IRExpr =
   UnaryExpr (ir-uop: IRUnaryOp) (ir-value: IRExpr)
```

```
BinaryExpr (ir-op: IRBinaryOp) (ir-x: IRExpr) (ir-y: IRExpr)
   ConditionalExpr (ir-condition: IRExpr) (ir-trueValue: IRExpr) (ir-falseValue:
IRExpr)
 | ParameterExpr (ir-index: nat) (ir-stamp: Stamp)
 | LeafExpr (ir-nid: ID) (ir-stamp: Stamp)
   ConstantExpr (ir-const: Value)
   Constant Var (ir-name: string)
   VariableExpr (ir-name: string) (ir-stamp: Stamp)
fun is-ground :: IRExpr \Rightarrow bool where
 is-ground (UnaryExpr op e) = is-ground e
 is-ground (BinaryExpr op e1 e2) = (is-ground e1 \land is-ground e2)
 is-ground (ConditionalExpr b e1 e2) = (is-ground b \wedge is-ground e1 \wedge is-ground
 is-ground (ParameterExpr\ i\ s) = True\ |
 is-ground (LeafExpr n s) = True
 is-ground (ConstantExpr\ v) = True
 is-ground (ConstantVar\ name) = False
 is-ground (VariableExpr\ name\ s) = False
typedef GroundExpr = \{ e :: IRExpr . is-ground e \}
 using is-ground.simps(6) by blast
```

1.2 Functions for re-calculating stamps

Note: in Java all integer calculations are done as 32 or 64 bit calculations. However, here we generalise the operators to allow any size calculations. Most operators have the same output bits as their inputs. But the following $fixed_32$ binary operators always output 32 bits. And the unary operators that are not $normal_unary$ are narrowing or widening operators, so the result bits is specified by the operator.

```
abbreviation fixed-32 :: IRBinaryOp set where fixed-32 \equiv {BinShortCircuitOr, BinIntegerEquals, BinIntegerLessThan, BinIntegerBelow} abbreviation normal-unary :: IRUnaryOp set where normal-unary \equiv {UnaryAbs, UnaryNeg, UnaryNot, UnaryLogicNegation} fun stamp-unary :: IRUnaryOp \Rightarrow Stamp \Rightarrow Stamp where stamp-unary op (IntegerStamp b lo hi) = unrestricted-stamp (IntegerStamp (if op \in normal-unary then b else (ir-resultBits op)) lo hi) |
```

```
stamp	ext{-}unary op -= IllegalStamp
fun stamp-binary :: IRBinaryOp \Rightarrow Stamp \Rightarrow Stamp \Rightarrow Stamp where
 stamp-binary op (IntegerStamp b1 lo1 hi1) (IntegerStamp b2 lo2 hi2) =
   (if (b1 \neq b2) then IllegalStamp else
     (if op \in fixed-32
      then unrestricted-stamp (IntegerStamp 32 lo1 hi1)
      else unrestricted-stamp (IntegerStamp b1 lo1 hi1))) |
 stamp-binary op - - = IllegalStamp
fun stamp-expr :: IRExpr \Rightarrow Stamp where
 stamp-expr (UnaryExpr op x) = stamp-unary op (stamp-expr x)
 stamp-expr\ (BinaryExpr\ bop\ x\ y) = stamp-binary\ bop\ (stamp-expr\ x)\ (stamp-expr\ x)
 stamp-expr (ConstantExpr val) = constantAsStamp val
 stamp-expr(LeafExpr(i s) = s \mid
 stamp-expr (ParameterExpr i s) = s \mid
 stamp-expr (ConditionalExpr c t f) = meet (stamp-expr t) (stamp-expr f)
export-code stamp-unary stamp-binary stamp-expr
       Data-flow Tree Evaluation
fun unary-eval :: IRUnaryOp \Rightarrow Value \Rightarrow Value where
 unary-eval UnaryAbs\ v = intval-abs\ v \mid
 unary-eval UnaryNeg\ v = intval-negate v \mid
 unary-eval\ UnaryNot\ v=intval-not\ v\mid
 unary-eval\ UnaryLogicNegation\ v=intval-logic-negation\ v\mid
 unary-eval (UnaryNarrow inBits outBits) v = intval-narrow inBits outBits v
 unary-eval (UnarySignExtend inBits outBits) v = intval-sign-extend inBits out-
Bits v \mid
 unary-eval (UnaryZeroExtend inBits outBits) v = intval-zero-extend inBits out-eval
Bits v
fun bin-eval :: IRBinaryOp \Rightarrow Value \Rightarrow Value \Rightarrow Value where
 bin-eval BinAdd\ v1\ v2 = intval-add v1\ v2
 bin-eval \ Bin Mul \ v1 \ v2 = int val-mul \ v1 \ v2
 bin-eval \ BinSub \ v1 \ v2 = intval-sub \ v1 \ v2 \ |
 bin-eval BinAnd\ v1\ v2 = intval-and v1\ v2
 bin-eval\ BinOr\ v1\ v2=intval-or\ v1\ v2
 bin-eval BinXor\ v1\ v2 = intval-xor v1\ v2
 bin-eval\ BinShortCircuitOr\ v1\ v2=intval-short-circuit-or\ v1\ v2
 bin-eval\ BinLeftShift\ v1\ v2=intval-left-shift\ v1\ v2
 bin-eval\ BinRightShift\ v1\ v2=intval-right-shift\ v1\ v2
 bin-eval\ Bin\ URightShift\ v1\ v2=intval-uright-shift\ v1\ v2
 bin-eval BinIntegerEquals \ v1 \ v2 = intval-equals v1 \ v2
```

bin-eval $BinIntegerLessThan\ v1\ v2 = intval$ -less-than $v1\ v2$

```
lemmas eval-thms =
  intval-abs.simps\ intval-negate.simps\ intval-not.simps
  intval	ext{-}logic	ext{-}negation. simps intval	ext{-}narrow. simps
  intval\mbox{-}sign\mbox{-}extend.simps intval\mbox{-}zero\mbox{-}extend.simps
  intval-add.simps intval-mul.simps intval-sub.simps
  intval-and.simps intval-or.simps intval-xor.simps
  intval\text{-}left\text{-}shift.simps\ intval\text{-}right\text{-}shift.simps
  intval-uright-shift.simps intval-equals.simps
  intval-less-than.simps intval-below.simps
inductive not-undef-or-fail :: Value \Rightarrow Value \Rightarrow bool where
  \llbracket value \neq UndefVal \rrbracket \implies not\text{-}undef\text{-}or\text{-}fail\ value\ value}
notation (latex output)
  not-undef-or-fail (- = -)
inductive
  evaltree :: MapState \Rightarrow Params \Rightarrow IRExpr \Rightarrow Value \Rightarrow bool ([-,-] \vdash - \mapsto -55)
  for m p where
  Constant Expr:
  \llbracket valid\text{-}value\ c\ (constantAsStamp\ c) 
bracket
    \implies [m,p] \vdash (ConstantExpr\ c) \mapsto c
  ParameterExpr:
  [i < length p; valid-value (p!i) s]
    \implies [m,p] \vdash (ParameterExpr \ i \ s) \mapsto p!i \mid
  Conditional Expr:
  \llbracket [m,p] \vdash ce \mapsto cond;
    branch = (if \ val\ -to\ -bool \ cond \ then \ te \ else \ fe);
    [m,p] \vdash branch \mapsto v;
    v \neq UndefVal
    \implies [m,p] \vdash (ConditionalExpr\ ce\ te\ fe) \mapsto v \mid
  UnaryExpr:
  \llbracket [m,p] \vdash xe \mapsto v;
    result = (unary-eval \ op \ v);
    result \neq UndefVal
    \implies [m,p] \vdash (UnaryExpr \ op \ xe) \mapsto result \mid
  BinaryExpr:
  \llbracket [m,p] \vdash xe \mapsto x;
    [m,p] \vdash ye \mapsto y;
    result = (bin-eval \ op \ x \ y);
```

```
result \neq UndefVal
    \implies [m,p] \vdash (BinaryExpr\ op\ xe\ ye) \mapsto result
  LeafExpr:
  \llbracket val = m \ n;
    valid-value val s
    \implies [m,p] \vdash \textit{LeafExpr } n \ s \mapsto \textit{val}
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ evalT)
  [show\text{-}steps, show\text{-}mode\text{-}inference, show\text{-}intermediate\text{-}results]
  evaltree \ .
inductive
  evaltrees :: MapState \Rightarrow Params \Rightarrow IRExpr\ list \Rightarrow Value\ list \Rightarrow bool\ ([-,-] \vdash - \mapsto_L
  for m p where
  EvalNil:
  [m,p] \vdash [] \mapsto_L [] \mid
  EvalCons:
  \llbracket [m,p] \vdash x \mapsto xval;
    [m,p] \vdash yy \mapsto_L yyval
    \implies [m,p] \vdash (x \# yy) \mapsto_L (xval \# yyval)
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ evalTs)
  evaltrees.
definition sq\text{-}param\theta :: IRExpr where
  sq\text{-}param0 = BinaryExpr\ BinMul
    (Parameter Expr\ 0\ (Integer Stamp\ 32\ (-\ 2147483648)\ 2147483647))
    (ParameterExpr 0 (IntegerStamp 32 (- 2147483648) 2147483647))
values \{v. \ evaltree \ new-map-state \ [Int Val \ 32 \ 5] \ sq-param 0 \ v\}
declare evaltree.intros [intro]
declare evaltrees.intros [intro]
```

1.4 Data-flow Tree Refinement

We define the induced semantic equivalence relation between expressions. Note that syntactic equality implies semantic equivalence, but not vice versa.

definition equiv-exprs ::
$$IRExpr \Rightarrow IRExpr \Rightarrow bool (- \doteq -55)$$
 where $(e1 \doteq e2) = (\forall m \ p \ v. (([m,p] \vdash e1 \mapsto v) \longleftrightarrow ([m,p] \vdash e2 \mapsto v)))$

We also prove that this is a total equivalence relation (equivp equiv-exprs)

(HOL.Equiv_Relations), so that we can reuse standard results about equivalence relations.

```
lemma equivp equiv-exprs
apply (auto simp add: equivp-def equiv-exprs-def)
by (metis equiv-exprs-def)+
```

We define a refinement ordering over IRExpr and show that it is a preorder. Note that it is asymmetric because e2 may refer to fewer variables than e1.

instantiation IRExpr :: preorder begin

```
notation less-eq (infix \sqsubseteq 65)

definition
le-expr-def [simp]:
(e_2 \le e_1) \longleftrightarrow (\forall \ m \ p \ v. (([m,p] \vdash e_1 \mapsto v) \longrightarrow ([m,p] \vdash e_2 \mapsto v)))

definition
lt-expr-def [simp]:
(e_1 < e_2) \longleftrightarrow (e_1 \le e_2 \land \neg (e_1 \doteq e_2))

instance proof
fix x \ y \ z :: IRExpr
show x < y \longleftrightarrow x \le y \land \neg (y \le x) by (simp add: equiv-exprs-def; auto)
show x \le x by simp
show x \le x \Rightarrow y \Rightarrow y \le z \Rightarrow x \le z by simp
qed

end
```

abbreviation (output) Refines :: $IRExpr \Rightarrow IRExpr \Rightarrow bool$ (infix $\supseteq 64$) where $e_1 \supseteq e_2 \equiv (e_2 \leq e_1)$

end

1.5 Data-flow Tree Theorems

```
\begin{array}{c} \textbf{theory} \ IRTreeEvalThms \\ \textbf{imports} \\ Graph. \ ValueThms \\ IRTreeEval \\ \textbf{begin} \end{array}
```

1.5.1 Deterministic Data-flow Evaluation

```
\mathbf{lemma}\ \mathit{evalDet} \colon
```

```
[m,p] \vdash e \mapsto v_1 \Longrightarrow

[m,p] \vdash e \mapsto v_2 \Longrightarrow

v_1 = v_2

apply (induction arbitrary: v_2 rule: evaltree.induct)
```

```
by (elim EvalTreeE; auto)+

lemma evalAllDet:
[m,p] \vdash e \mapsto_L v1 \Longrightarrow
[m,p] \vdash e \mapsto_L v2 \Longrightarrow
v1 = v2
apply (induction arbitrary: v2 rule: evaltrees.induct)
apply (elim EvalTreeE; auto)
using evalDet by force
```

1.5.2 Typing Properties for Integer Evaluation Functions

We use three simple typing properties on integer values: $is_IntVal32$, $is_IntVal64$ and the more general is_IntVal .

```
lemma unary-eval-not-obj-ref:

shows unary-eval op x \neq ObjRef v

by (cases op; cases x; auto)

lemma unary-eval-not-obj-str:

shows unary-eval op x \neq ObjStr v

by (cases op; cases x; auto)
```

```
lemma unary-eval-int:
 assumes def: unary-eval op x \neq UndefVal
 shows is-IntVal (unary-eval op x)
 unfolding is-IntVal-def using def
 apply (cases unary-eval op x; auto)
 \mathbf{using} \ \mathit{unary-eval-not-obj-ref} \ \mathit{unary-eval-not-obj-str} \ \mathbf{by} \ \mathit{simp} +
lemma bin-eval-int:
 assumes def: bin-eval of x y \neq UndefVal
 shows is-IntVal (bin-eval op x y)
 apply (cases op; cases x; cases y)
 unfolding is-IntVal-def using def apply auto
              apply presburger+
         apply (meson bool-to-val.elims)
        apply (meson bool-to-val.elims)
       apply (smt (verit) new-int.simps)+
 by (meson\ bool-to-val.elims)+
lemma IntVal\theta:
  (IntVal 32 0) = (new-int 32 0)
 unfolding new-int.simps
```

```
by auto
lemma IntVal1:
 (Int Val \ 32 \ 1) = (new-int \ 32 \ 1)
 unfolding new-int.simps
 by auto
lemma bin-eval-new-int:
  assumes def: bin-eval op x y \neq UndefVal
 shows \exists b \ v. \ (bin\text{-}eval \ op \ x \ y) = new\text{-}int \ b \ v \ \land
             b = (if \ op \in fixed-32 \ then \ 32 \ else \ intval-bits \ x)
 apply (cases op; cases x; cases y)
 unfolding is-IntVal-def using def apply auto
 apply presburger+
 apply (metis take-bit-and)
 apply presburger
 apply (metis take-bit-or)
 apply presburger
 apply (metis take-bit-xor)
 apply presburger
 using IntVal0\ IntVal1
 apply (metis bool-to-val.elims new-int.simps)
 apply presburger
 apply (smt (verit) new-int.elims)
 apply (smt (verit, best) new-int.elims)
 apply (metis IntVal0 IntVal1 bool-to-val.elims new-int.simps)
 apply presburger
 apply (metis IntVal0 IntVal1 bool-to-val.elims new-int.simps)
 apply presburger
 apply (metis IntVal0 IntVal1 bool-to-val.elims new-int.simps)
 by meson
lemma int-stamp:
 assumes i: is-IntVal\ v
 shows is-IntegerStamp (constantAsStamp v)
 using i unfolding is-IntegerStamp-def is-IntVal-def by auto
\mathbf{lemma}\ validStampIntConst:
 assumes v = IntVal \ b \ ival
 assumes 0 < b \land b \le 64
 shows valid-stamp (constantAsStamp v)
proof -
  have bnds: fst (bit-bounds b) \leq int-signed-value b ival \wedge int-signed-value b ival
\leq snd \ (bit\text{-}bounds \ b)
   \mathbf{using}\ assms\ int\text{-}signed\text{-}value\text{-}bounds
   by presburger
```

```
have s: constant AsStamp \ v = Integer Stamp \ b \ (int-signed-value \ b \ ival) \ (int-signed-value \ b)
b ival
   using assms(1) constantAsStamp.simps(1) by blast
 then show ?thesis
   unfolding s valid-stamp.simps
   using assms(2) assms bnds by linarith
qed
\mathbf{lemma}\ validDefIntConst:
 assumes v: v = IntVal \ b \ ival
 assumes 0 < b \land b \le 64
 assumes take-bit b ival = ival
 shows valid-value v (constantAsStamp v)
proof -
 have bnds: fst (bit-bounds b) \leq int-signed-value b ival \wedge int-signed-value b ival
\leq snd \ (bit\text{-}bounds \ b)
   using assms int-signed-value-bounds
   by presburger
 have s: constant AsStamp \ v = Integer Stamp \ b \ (int-signed-value \ b \ ival) \ (int-signed-value \ b)
   using assms(1) constantAsStamp.simps(1) by blast
 then show ?thesis
   unfolding s unfolding v unfolding valid-value.simps
   using assms validStampIntConst
   by simp
qed
        Evaluation Results are Valid
A valid value cannot be UndefVal.
lemma valid-not-undef:
 assumes a1: valid-value val s
 assumes a2: s \neq VoidStamp
 shows val \neq UndefVal
 apply (rule valid-value.elims(1)[of val s True])
 using a1 a2 by auto
lemma valid-VoidStamp[elim]:
 shows valid-value val VoidStamp \Longrightarrow
     val = UndefVal
 using valid-value.simps by metis
lemma valid-ObjStamp[elim]:
 shows \ valid-value \ val \ (ObjectStamp \ klass \ exact \ nonNull \ alwaysNull) \Longrightarrow
     (\exists v. val = ObjRef v)
 using valid-value.simps by (metis val-to-bool.cases)
lemma valid-int[elim]:
```

```
shows valid-value val (IntegerStamp b lo hi) \Longrightarrow
      (\exists v. val = IntVal b v)
  using valid-value.elims(2) by fastforce
lemmas valid-value-elims =
  valid-VoidStamp
  valid-ObjStamp
  valid-int
lemma evaltree-not-undef:
  fixes m p e v
  shows ([m,p] \vdash e \mapsto v) \Longrightarrow v \neq UndefVal
  apply (induction rule: evaltree.induct)
  \mathbf{using}\ \mathit{valid}\text{-}\mathit{not}\text{-}\mathit{undef}\ \mathbf{by}\ \mathit{auto}
lemma leafint:
  assumes ev: [m,p] \vdash LeafExpr\ i\ (IntegerStamp\ b\ lo\ hi) \mapsto val
 shows \exists b \ v. \ val = (IntVal \ b \ v)
proof -
  have valid-value val (IntegerStamp b lo hi)
   using ev by (rule LeafExprE; simp)
  then show ?thesis by auto
qed
\mathbf{lemma} \ \textit{default-stamp} \ [\textit{simp}]: \ \textit{default-stamp} \ = \ \textit{IntegerStamp} \ 32 \ (-2147483648)
2147483647
 using default-stamp-def by auto
lemma valid-value-signed-int-range [simp]:
  assumes valid-value val (IntegerStamp b lo hi)
  assumes lo < \theta
  shows \exists v. (val = IntVal \ b \ v \land a)
            lo \leq int-signed-value b \ v \ \land
             int-signed-value b \ v \leq hi)
  using assms valid-int
  by (metis\ valid-value.simps(1))
```

1.5.4 Example Data-flow Optimisations

1.5.5 Monotonicity of Expression Refinement

We prove that each subexpression position is monotonic. That is, optimizing a subexpression anywhere deep inside a top-level expression also optimizes that top-level expression.

Note that we might also be able to do this via reusing Isabelle's mono opera-

tor (HOL.Orderings theory), proving instantiations like mono(UnaryExprop), but it is not obvious how to do this for both arguments of the binary expressions.

```
lemma mono-unary:
 assumes e \ge e'
 shows (UnaryExpr\ op\ e) \geq (UnaryExpr\ op\ e')
 using UnaryExpr assms by auto
lemma mono-binary:
 assumes x \geq x'
 assumes y \geq y'
 shows (BinaryExpr\ op\ x\ y) \ge (BinaryExpr\ op\ x'\ y')
 using BinaryExpr assms by auto
\mathbf{lemma}\ never\text{-}void:
 assumes [m, p] \vdash x \mapsto xv
 assumes valid-value xv (stamp-expr xe)
 shows stamp-expr \ xe \neq VoidStamp
 using valid-value.simps
  using assms(2) by force
lemma compatible-trans:
  compatible x \ y \land compatible \ y \ z \Longrightarrow compatible \ x \ z
 by (smt\ (z3)\ compatible.elims(2)\ compatible.simps(1))
lemma compatible-refl:
  compatible \ x \ y \Longrightarrow compatible \ y \ x
 using compatible.elims(2) by fastforce
lemma mono-conditional:
 assumes ce \geq ce'
 assumes te \geq te'
 assumes fe > fe'
 shows (ConditionalExpr ce te fe) \geq (ConditionalExpr ce' te' fe')
proof (simp only: le-expr-def; (rule allI)+; rule impI)
  \mathbf{fix} \ m \ p \ v
  assume a: [m,p] \vdash ConditionalExpr ce te fe \mapsto v
 then obtain cond where ce: [m,p] \vdash ce \mapsto cond by auto
 then have ce': [m,p] \vdash ce' \mapsto cond using assms by auto
 define branch where b: branch = (if \ val\ -to\ -bool \ cond \ then \ te \ else \ fe)
  define branch' where b': branch' = (if \ val\ -to\ -bool \ cond \ then \ te' \ else \ fe')
  then have beval: [m,p] \vdash branch \mapsto v using a b ce evalDet by blast
```

```
from beval have [m,p] \vdash branch' \mapsto v using assms b b' by auto then show [m,p] \vdash ConditionalExpr ce' te' fe' \mapsto v using ConditionalExpr ce' b' using a by blast qed
```

1.6 Unfolding rules for evaltree quadruples down to bin-eval level

These rewrite rules can be useful when proving optimizations. They support top-down rewriting of each level of the tree into the lower-level bin_eval / $unary_eval$ level, simply by saying $unfoldingunfold_evaltree$.

```
lemma unfold-const:
 shows ([m,p] \vdash ConstantExpr \ c \mapsto v) = (valid-value \ v \ (constantAsStamp \ c) \land v
 by blast
lemma unfold-binary:
  shows ([m,p] \vdash BinaryExpr \ op \ xe \ ye \mapsto val) = (\exists \ x \ y.
         (([m,p] \vdash xe \mapsto x) \land \\
          ([m,p] \vdash ye \mapsto y) \land
          (val = bin-eval \ op \ x \ y) \land
          (val \neq UndefVal)
       )) (is ?L = ?R)
proof (intro iffI)
  assume 3: ?L
  show ?R by (rule\ evaltree.cases[OF\ 3];\ blast+)
next
  assume ?R
  then obtain x y where [m,p] \vdash xe \mapsto x
       and [m,p] \vdash ye \mapsto y
       and val = bin-eval \ op \ x \ y
       and val \neq UndefVal
   by auto
  then show ?L
    by (rule BinaryExpr)
lemma unfold-unary:
 shows ([m,p] \vdash UnaryExpr \ op \ xe \mapsto val)
        = (\exists x.
            (([m,p] \vdash xe \mapsto x) \land
             (val = unary-eval \ op \ x) \land
             (val \neq UndefVal)
```

)) (is ?L = ?R)

```
\begin{array}{l} \textbf{lemmas} \ unfold\text{-}evaltree = \\ unfold\text{-}binary \\ unfold\text{-}unary \end{array}
```

1.7 Lemmas about new_int and integer eval results.

```
lemma unary-eval-new-int:
 assumes def: unary-eval op x \neq UndefVal
 shows \exists b \ v. \ unary-eval \ op \ x = new-int \ b \ v \ \land
             b = (if \ op \in normal-unary \ then \ intval-bits \ x \ else \ ir-resultBits \ op)
proof (cases op \in normal-unary)
 case True
 then show ?thesis
  by (metis def empty-iff insert-iff intval-abs.elims intval-bits.simps intval-loqic-negation.elims
intval-negate.elims\ intval-not.elims\ unary-eval.simps(1)\ unary-eval.simps(2)\ unary-eval.simps(3)
unary-eval.simps(4))
next
 case False
 consider ib \ ob where op = UnaryNarrow \ ib \ ob
         ib\ ob\ \mathbf{where}\ op = \mathit{UnaryZeroExtend}\ ib\ ob\ |
         ib\ ob\ {\bf where}\ op={\it UnarySignExtend}\ ib\ ob
   by (metis False IRUnaryOp.exhaust insert-iff)
  then show ?thesis
  proof (cases)
   case 1
   then show ?thesis
   by (metis\ False\ IRUnaryOp.sel(4)\ def\ intval-narrow.elims\ unary-eval.simps(5))
 \mathbf{next}
   case 2
   then show ?thesis
   by (metis\ False\ IRUnaryOp.sel(6)\ def\ intval-zero-extend.elims\ unary-eval.simps(7))
 next
   case 3
   then show ?thesis
   by (metis\ False\ IRUnaryOp.sel(5)\ def\ intval-sign-extend.elims\ unary-eval.simps(6))
 qed
qed
lemma new-int-unused-bits-zero:
 assumes IntVal\ b\ ival = new\text{-}int\ b\ ival0
 shows take-bit b ival = ival
 using assms(1) new-int-take-bits by blast
lemma unary-eval-unused-bits-zero:
 assumes unary-eval of x = IntVal\ b\ ival
```

```
shows take-bit b ival = ival
 using assms unary-eval-new-int
 by (metis Value.inject(1) Value.simps(5) new-int.elims new-int-unused-bits-zero)
lemma bin-eval-unused-bits-zero:
 assumes bin-eval op x y = (IntVal \ b \ ival)
 shows take-bit b ival = ival
 using assms bin-eval-new-int
 by (metis Value.distinct(1) Value.inject(1) new-int.elims new-int-take-bits)
lemma eval-unused-bits-zero:
 [m,p] \vdash xe \mapsto (IntVal\ b\ ix) \Longrightarrow take-bit\ b\ ix = ix
proof (induction xe)
 case (UnaryExpr x1 xe)
 then show ?case
   using unary-eval-unused-bits-zero by force
next
 case (BinaryExpr x1 xe1 xe2)
 then show ?case
   using bin-eval-unused-bits-zero by force
 case (ConditionalExpr xe1 xe2 xe3)
 then show ?case
   by (metis (full-types) EvalTreeE(3))
next
 case (ParameterExpr i s)
 then have valid-value(p!i) s
   by fastforce
 then show ?case
  by (metis ParameterExprE Value.distinct(7) intval-bits.simps intval-word.simps
local.ParameterExpr\ valid-value.elims(2))
 case (LeafExpr x1 x2)
 then show ?case
  by (smt (z3) EvalTreeE(6) Value.simps(11) valid-value.elims(1) valid-value.simps(1))
next
 case (ConstantExpr(x))
 then show ?case
   by (metis\ EvalTreeE(1)\ constantAsStamp.simps(1)\ valid-value.simps(1))
next
 case (ConstantVar x)
 then show ?case
   by fastforce
\mathbf{next}
 case (VariableExpr x1 x2)
 then show ?case
   by fastforce
qed
```

```
\mathbf{lemma}\ unary\text{-}normal\text{-}bit size:
 assumes unary-eval op x = IntVal\ b\ ival
 assumes op \in normal-unary
 shows \exists ix. x = IntVal b ix
 apply (cases op)
      prefer 7 using assms apply blast
     prefer 6 using assms apply blast
    prefer 5 using assms apply blast
 using Value.distinct(1) Value.sel(1) assms(1) new-int.simps unary-eval.simps
    intval-abs. elims\ intval-negate. elims\ intval-not. elims\ intval-logic-negation. elims\ intval-not.
    apply metis+
 done
lemma unary-not-normal-bitsize:
 assumes unary-eval op x = IntVal\ b\ ival
 assumes op \notin normal\text{-}unary
 shows b = ir-resultBits op \land 0 < b \land b \le 64
 apply (cases op)
 using assms apply blast+
  apply (metis\ IRUnaryOp.sel(4)\ Value.distinct(1)\ Value.sel(1)\ assms(1)\ int-
val-narrow.elims intval-narrow-ok new-int.simps unary-eval.simps(5))
  apply (smt (verit) IRUnaryOp.sel(5) Value.distinct(1) Value.sel(1) assms(1)
intval-sign-extend.elims new-int.simps order-less-le-trans unary-eval.simps(6))
 apply (metis IRUnaryOp.sel(6) \ Value.distinct(1) \ assms(1) \ intval-bits.simps \ int-
val-zero-extend.elims linorder-not-less neq0-conv new-int.simps unary-eval.simps(7)
 done
lemma unary-eval-bitsize:
 assumes unary-eval of x = IntVal\ b\ ival
 assumes 2: x = IntVal bx ix
 assumes 0 < bx \land bx \le 64
 shows \theta < b \land b \leq 64
proof (cases op \in normal\text{-}unary)
 case True
 then obtain tmp where unary-eval of x = new-int bx tmp
   by (cases op; simp; auto simp: 2)
 then show ?thesis
   using assms by simp
next
 case False
 then obtain tmp where unary-eval op x = new-int b \ tmp \land 0 < b \land b \leq 64
   apply (cases op; simp; auto simp: 2)
  apply (metis\ 2\ Value.inject(1)\ Value.simps(5)\ assms(1)\ intval-narrow.simps(1)
intval-narrow-ok new-int.simps unary-eval.simps(5)
  apply (metis 2 Value.distinct(1) Value.inject(1) assms(1) bot-nat-0.not-eq-extremum
diff-is-0-eq intval-sign-extend.elims new-int.simps unary-eval.simps(6) zero-less-diff)
```

```
by (smt (verit, del-insts) 2 Value.simps(5) assms(1) intval-bits.simps int-
val-zero-extend.simps(1) new-int.simps order-less-le-trans unary-eval.simps(7))
 then show ?thesis
   by blast
qed
lemma bin-eval-inputs-are-ints:
 assumes bin-eval of x y = IntVal b ix
 obtains xb yb xi yi where x = IntVal xb xi \land y = IntVal yb yi
proof -
 have bin-eval op x y \neq UndefVal
   by (simp add: assms)
 then show ?thesis
   using assms apply (cases op; cases x; cases y; simp)
   using that by blast+
qed
lemma eval-bits-1-64:
  [m,p] \vdash xe \mapsto (IntVal\ b\ ix) \Longrightarrow 0 < b \land b \leq 64
proof (induction xe arbitrary: b ix)
 case (UnaryExpr op x2)
  then obtain xv where
      xv: ([m,p] \vdash x2 \mapsto xv) \land
          IntVal\ b\ ix = unary-eval\ op\ xv
   using unfold-binary by auto
 then have b = (if \ op \in normal-unary \ then \ intval-bits \ xv \ else \ ir-resultBits \ op)
   using unary-eval-new-int
   by (metis\ Value.disc(1)\ Value.discI(1)\ Value.sel(1)\ new-int.simps)
  then show ?case
   by (metis xv UnaryExpr.IH unary-normal-bitsize unary-not-normal-bitsize)
 case (BinaryExpr\ op\ x\ y)
 then obtain xv yv where
      xy: ([m,p] \vdash x \mapsto xv) \land
          ([m,p] \vdash y \mapsto yv) \land
          IntVal\ b\ ix = bin-eval\ op\ xv\ yv
   \mathbf{using} \ \mathit{unfold-binary} \ \mathbf{by} \ \mathit{auto}
 then have def: bin-eval op xv yv \neq UndefVal and xv: xv \neq UndefVal and yv \neq
UndefVal
   using evaltree-not-undef xy by (force, blast, blast)
  then have b = (if \ op \in fixed-32 \ then \ 32 \ else \ intval-bits \ xv)
   by (metis xy intval-bits.simps new-int.simps bin-eval-new-int)
  then show ?case
  by (metis BinaryExpr.IH(1) Value.distinct(7) Value.distinct(9) xv bin-eval-inputs-are-ints
intval-bits.elims le-add-same-cancel1 less-or-eq-imp-le numeral-Bit0 xy zero-less-numeral)
```

```
next
 case (ConditionalExpr xe1 xe2 xe3)
 then show ?case
   by (metis (full-types) EvalTreeE(3))
  case (ParameterExpr x1 x2)
 then show ?case
  using ParameterExprE intval-bits.simps valid-stamp.simps(1) valid-value.elims(2)
valid-value.simps(17)
   by (metis (no-types, lifting))
\mathbf{next}
 case (LeafExpr x1 x2)
 then show ?case
  by (smt\ (z3)\ EvalTreeE(6)\ Value.distinct(7)\ Value.inject(1)\ valid-stamp.simps(1)
valid-value.elims(1))
next
 case (ConstantExpr(x))
 then show ?case
  by (metis\ Eval\ Tree\ E(1)\ constant\ As\ Stamp.simps(1)\ valid-stamp.simps(1)\ valid-value.simps(1))
 case (Constant Var x)
 then show ?case
   by blast
next
 case (VariableExpr x1 x2)
 then show ?case
   by blast
qed
end
\mathbf{2}
     Tree to Graph
{\bf theory} \ {\it TreeToGraph}
 imports
   Semantics.IRTreeEval
   Graph.IRGraph
begin
       Subgraph to Data-flow Tree
2.1
fun find-node-and-stamp :: IRGraph \Rightarrow (IRNode \times Stamp) \Rightarrow ID option where
 find-node-and-stamp g(n,s) =
    find (\lambda i. kind g \ i = n \wedge stamp \ g \ i = s) (sorted-list-of-set(ids g))
export-code find-node-and-stamp
```

```
fun is-preevaluated :: IRNode \Rightarrow bool where
  is-preevaluated (InvokeNode\ n - - - - ) = True\ |
  is-preevaluated (InvokeWithExceptionNode n - - - - -) = True
  is-preevaluated (NewInstanceNode n - - -) = True
  is-preevaluated (LoadFieldNode n - - -) = True
  is-preevaluated (SignedDivNode\ n - - - -) = True\ |
  is-preevaluated (SignedRemNode\ n - - - -) = True
  is-preevaluated (ValuePhiNode n - -) = True
  is-preevaluated - = False
inductive
  rep :: IRGraph \Rightarrow ID \Rightarrow IRExpr \Rightarrow bool (- \vdash - \simeq - 55)
  for q where
  ConstantNode:
  \llbracket kind\ g\ n = ConstantNode\ c 
Vert
   \implies g \vdash n \simeq (ConstantExpr c) \mid
  ParameterNode:
  [kind\ g\ n = ParameterNode\ i;
   stamp \ g \ n = s
   \implies g \vdash n \simeq (ParameterExpr \ i \ s) \mid
  Conditional Node:\\
  \llbracket kind\ g\ n = ConditionalNode\ c\ t\ f;
   g \vdash c \simeq ce;
   g \vdash t \simeq te;
   g \vdash f \simeq fe
    \implies g \vdash n \simeq (ConditionalExpr \ ce \ te \ fe) \mid
  AbsNode:
  \llbracket kind\ g\ n = AbsNode\ x;
   g \vdash x \simeq xe
   \implies g \vdash n \simeq (UnaryExpr\ UnaryAbs\ xe)
  NotNode:
  [kind\ g\ n = NotNode\ x;]
   g \vdash x \simeq xe
   \implies g \vdash n \simeq (UnaryExpr\ UnaryNot\ xe) \mid
  NegateNode:
  \llbracket kind\ g\ n = NegateNode\ x;
   g \vdash x \simeq xe
   \implies g \vdash n \simeq (UnaryExpr\ UnaryNeg\ xe) \mid
  LogicNegationNode:
```

```
\llbracket kind\ g\ n = LogicNegationNode\ x;
 g \vdash x \simeq xe
 \implies g \vdash n \simeq (UnaryExpr\ UnaryLogicNegation\ xe) \mid
AddNode:
[kind\ g\ n = AddNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinAdd\ xe\ ye) \mid
MulNode:
[kind\ g\ n=MulNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinMul\ xe\ ye) \mid
SubNode:
\llbracket kind\ g\ n = SubNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinSub\ xe\ ye) \mid
AndNode:
[kind\ g\ n = AndNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinAnd\ xe\ ye) \mid
OrNode:
\llbracket kind\ g\ n = OrNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinOr\ xe\ ye) \mid
XorNode:
\llbracket kind\ g\ n = XorNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinXor\ xe\ ye) \mid
ShortCircuitOrNode:
[kind\ g\ n = ShortCircuitOrNode\ x\ y;]
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinShortCircuitOr\ xe\ ye) \mid
LeftShiftNode:
\llbracket kind\ g\ n = LeftShiftNode\ x\ y;
```

```
g \vdash x \simeq xe;
 g \vdash y \simeq ye
\implies g \vdash n \simeq (BinaryExpr\ BinLeftShift\ xe\ ye) \mid
RightShiftNode:
\llbracket kind\ g\ n = RightShiftNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
\implies g \vdash n \simeq (BinaryExpr\ BinRightShift\ xe\ ye) \mid
UnsignedRightShiftNode:
[kind\ g\ n = UnsignedRightShiftNode\ x\ y;]
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
\implies g \vdash n \simeq (BinaryExpr\ BinURightShift\ xe\ ye)
IntegerBelowNode:
\llbracket kind\ g\ n = IntegerBelowNode\ x\ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinIntegerBelow\ xe\ ye)
Integer Equals Node:
[kind\ g\ n = IntegerEqualsNode\ x\ y;]
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinIntegerEquals\ xe\ ye) \mid
IntegerLessThanNode:
\llbracket \mathit{kind} \ g \ n = \mathit{IntegerLessThanNode} \ x \ y;
 g \vdash x \simeq xe;
 g \vdash y \simeq ye
 \implies g \vdash n \simeq (BinaryExpr\ BinIntegerLessThan\ xe\ ye) \mid
NarrowNode:
\llbracket kind\ g\ n = NarrowNode\ inputBits\ resultBits\ x;
 g \vdash x \simeq xe
 \implies g \vdash n \cong (UnaryExpr\ (UnaryNarrow\ inputBits\ resultBits)\ xe)
SignExtendNode:
\llbracket kind\ g\ n = SignExtendNode\ inputBits\ resultBits\ x;
 g \vdash x \simeq xe
 \implies g \vdash n \simeq (UnaryExpr\ (UnarySignExtend\ inputBits\ resultBits)\ xe) \mid
ZeroExtendNode:
\llbracket kind \ g \ n = ZeroExtendNode \ inputBits \ resultBits \ x;
 g \vdash x \simeq xe
 \implies g \vdash n \simeq (UnaryExpr\ (UnaryZeroExtend\ inputBits\ resultBits)\ xe) \mid
```

```
LeafNode:
  [is-preevaluated (kind g n);
     stamp \ g \ n = s
     \implies g \vdash n \simeq (\textit{LeafExpr} \ n \ s) \mid
  RefNode:
  \llbracket kind\ g\ n = RefNode\ n';
     g \vdash n' \simeq e
     \implies g \vdash n \simeq e
code-pred (modes: i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ exprE) rep.
inductive
  replist :: IRGraph \Rightarrow ID \ list \Rightarrow IRExpr \ list \Rightarrow bool \ (-\vdash -\simeq_L - 55)
  for g where
  RepNil:
  g \vdash [] \simeq_L [] \mid
  RepCons:
  \llbracket g \vdash x \simeq xe;
     g \vdash xs \simeq_L xse
     \implies g \vdash x \# xs \simeq_L xe \# xse
\mathbf{code\text{-}pred}\ (\mathit{modes}:\ i \Rightarrow i \Rightarrow o \Rightarrow \mathit{bool}\ \mathit{as}\ \mathit{exprListE})\ \mathit{replist}\ .
definition wf-term-graph :: MapState \Rightarrow Params \Rightarrow IRGraph \Rightarrow ID \Rightarrow bool where
  wf-term-graph m p g n = (\exists e. (g \vdash n \simeq e) \land (\exists v. ([m, p] \vdash e \mapsto v)))
values \{t. \ eg2\text{-}sq \vdash 4 \simeq t\}
2.2
          Data-flow Tree to Subgraph
```

```
fun unary-node :: IRUnaryOp \Rightarrow ID \Rightarrow IRNode where
 unary\text{-}node\ UnaryAbs\ v=AbsNode\ v\mid
 unary-node UnaryNot \ v = NotNode \ v \mid
 unary-node\ UnaryNeg\ v=NegateNode\ v\mid
 unary-node UnaryLogicNegation \ v = LogicNegationNode \ v \mid
 unary-node (UnaryNarrow\ ib\ rb) v=NarrowNode\ ib\ rb\ v
 unary-node (UnarySignExtend\ ib\ rb) v=SignExtendNode\ ib\ rb\ v
 unary-node (UnaryZeroExtend ib rb) v = ZeroExtendNode ib rb v
```

```
fun bin-node :: IRBinaryOp \Rightarrow ID \Rightarrow ID \Rightarrow IRNode where
  bin-node BinAdd\ x\ y = AddNode\ x\ y
  bin-node BinMul\ x\ y = MulNode\ x\ y
  bin-node BinSub \ x \ y = SubNode \ x \ y \mid
  bin-node BinAnd \ x \ y = AndNode \ x \ y \mid
  bin-node BinOr \ x \ y = OrNode \ x \ y \mid
  bin-node BinXor \ x \ y = XorNode \ x \ y \mid
  bin-node BinShortCircuitOr \ x \ y = ShortCircuitOrNode \ x \ y \ |
  bin-node BinLeftShift \ x \ y = LeftShiftNode \ x \ y
  bin-node BinRightShift \ x \ y = RightShiftNode \ x \ y
  bin-node BinURightShift \ x \ y = UnsignedRightShiftNode \ x \ y \ |
  bin-node BinIntegerEquals \ x \ y = IntegerEqualsNode \ x \ y \ |
  bin-node\ BinIntegerLessThan\ x\ y = IntegerLessThanNode\ x\ y\ |
  bin-node BinIntegerBelow \ x \ y = IntegerBelowNode \ x \ y
inductive fresh-id :: IRGraph \Rightarrow ID \Rightarrow bool where
  n \notin ids \ g \Longrightarrow fresh-id \ g \ n
code-pred fresh-id.
fun get-fresh-id :: IRGraph \Rightarrow ID where
  get-fresh-id g = last(sorted-list-of-set(ids g)) + 1
export-code get-fresh-id
value get-fresh-id eg2-sq
value get-fresh-id (add-node 6 (ParameterNode 2, default-stamp) eg2-sq)
inductive
  unrep :: IRGraph \Rightarrow IRExpr \Rightarrow (IRGraph \times ID) \Rightarrow bool (- \oplus - \leadsto - 55)
  where
  ConstantNodeSame:
  \llbracket find-node-and-stamp\ g\ (ConstantNode\ c,\ constantAsStamp\ c) = Some\ n \rrbracket
    \implies g \oplus (ConstantExpr\ c) \rightsquigarrow (g,\ n)
  ConstantNodeNew:
  \llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ConstantNode\ c,\ constantAsStamp\ c) = None;
   n = get\text{-}fresh\text{-}id g;
   g' = add-node n (ConstantNode c, constantAsStamp c) g
   \implies g \oplus (ConstantExpr\ c) \rightsquigarrow (g',\ n)
  ParameterNodeSame:
  \llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ParameterNode\ i,\ s) = Some\ n \rrbracket
```

```
\implies g \oplus (ParameterExpr \ i \ s) \rightsquigarrow (g, n) \mid
ParameterNodeNew:
\llbracket find\text{-}node\text{-}and\text{-}stamp\ g\ (ParameterNode\ i,\ s) = None;
  n = get-fresh-id g;
 g' = add-node n (ParameterNode i, s) g
 \implies g \oplus (ParameterExpr \ i \ s) \leadsto (g', \ n) \mid
Conditional Node Same:
\llbracket g \oplus ce \leadsto (g2, c);
 g2 \oplus te \leadsto (g3, t);
 g3 \oplus fe \leadsto (g4, f);
 s' = meet (stamp \ g4 \ t) (stamp \ g4 \ f);
 find-node-and-stamp g4 (ConditionalNode c t f, s') = Some n
  \implies g \oplus (ConditionalExpr \ ce \ te \ fe) \rightsquigarrow (g4, n)
Conditional Node New:\\
\llbracket g \oplus ce \leadsto (g2, c);
 g2 \oplus te \rightsquigarrow (g3, t);
 g3 \oplus fe \rightsquigarrow (g4, f);
 s' = meet (stamp \ g4 \ t) (stamp \ g4 \ f);
 find-node-and-stamp g4 (ConditionalNode c t f, s') = None;
 n = get-fresh-id g4;
 g' = add-node n (ConditionalNode c \ t \ f, \ s') g4
 \implies g \oplus (ConditionalExpr \ ce \ te \ fe) \leadsto (g', n)
UnaryNodeSame:
\llbracket g \oplus xe \rightsquigarrow (g2, x);
 s' = stamp\text{-}unary \ op \ (stamp \ g2 \ x);
 find-node-and-stamp g2 (unary-node op x, s') = Some n
  \implies g \oplus (UnaryExpr \ op \ xe) \rightsquigarrow (g2, n)
UnaryNodeNew:\\
\llbracket g \oplus xe \leadsto (g2, x);
 s' = stamp\text{-}unary \ op \ (stamp \ g2 \ x);
 find-node-and-stamp q2 (unary-node op x, s') = None;
 n = get-fresh-id g2;
 g' = add-node n (unary-node of x, s') g2
 \implies g \oplus (UnaryExpr \ op \ xe) \leadsto (g', n)
BinaryNodeSame:
\llbracket g \oplus xe \rightsquigarrow (g2, x);
 g2 \oplus ye \rightsquigarrow (g3, y);
 s' = stamp-binary op (stamp g3 x) (stamp g3 y);
 find-node-and-stamp g3 (bin-node op x y, s') = Some n
  \implies g \oplus (BinaryExpr \ op \ xe \ ye) \leadsto (g3, n) \mid
BinaryNodeNew:
\llbracket g \oplus xe \leadsto (g2, x);
```

```
g2 \oplus ye \leadsto (g3, y);
s' = stamp\text{-}binary \ op \ (stamp \ g3 \ x) \ (stamp \ g3 \ y);
find\text{-}node\text{-}and\text{-}stamp \ g3 \ (bin\text{-}node \ op \ x \ y, \ s') = None;
n = get\text{-}fresh\text{-}id \ g3;
g' = add\text{-}node \ n \ (bin\text{-}node \ op \ x \ y, \ s') \ g3]
\implies g \oplus (BinaryExpr \ op \ xe \ ye) \leadsto (g', \ n) \mid

AllLeafNodes:
[stamp \ g \ n = s;
is\text{-}preevaluated \ (kind \ g \ n)]
\implies g \oplus (LeafExpr \ n \ s) \leadsto (g, \ n)

\operatorname{code-pred} \ (modes: \ i \Rightarrow i \Rightarrow o \Rightarrow bool \ as \ unrepE)
unrep \ .
```

```
unrepRules
 find-node-and-stamp g (ConstantNode c, constantAsStamp c) = Some n
                           g \oplus ConstantExpr c \leadsto (g, n)
  find-node-and-stamp g (ConstantNode c, constantAsStamp c) = None
                                   n = get-fresh-id g
           g' = add-node n (ConstantNode c, constantAsStamp c) g'
                          g \oplus ConstantExpr \ c \leadsto (g', n)
           \mathit{find}\text{-}\mathit{node}\text{-}\mathit{and}\text{-}\mathit{stamp}\ g\ (\mathit{ParameterNode}\ i,\ s) = \mathit{Some}\ n
                         g \oplus ParameterExpr \ i \ s \leadsto (g, \ n)
             find-node-and-stamp g (ParameterNode i, s) = None
       n = get-fresh-id g g' = add-node n (ParameterNode i, s) g
                        g \oplus ParameterExpr i s \leadsto (g', n)
                    g \oplus ce \leadsto (g2, c) g2 \oplus te \leadsto (g3, t)
         g3 \oplus fe \rightsquigarrow (g4, f) s' = meet (stamp g4 t) (stamp g4 f)
       find-node-and-stamp g4 (ConditionalNode c t f, s) = Some n
                    g \oplus ConditionalExpr \ ce \ \overline{te \ fe} \leadsto (g4, n)
                    g \oplus ce \leadsto (g2, c) g2 \oplus te \leadsto (g3, t)
         g3 \oplus fe \rightsquigarrow (g4, f) s' = meet (stamp g4 t) (stamp g4 f)
         find-node-and-stamp g4 (ConditionalNode c t f, s') = None
  n = get-fresh-id g4 g' = add-node n (ConditionalNode c t f, s') g4
                     g \oplus ConditionalExpr \ ce \ te \ fe \leadsto (g', n)
                            g \oplus xe \leadsto (g2, x)
s' = stamp\text{-}binary\ op\ (stamp\ g3\ x)\ (stamp\ g3\ y)
 g2 \oplus ye \leadsto (g3, y)
           find-node-and-stamp g3 (bin-node op x y, s') = Some n
                       g \oplus BinaryExpr \ op \ xe \ ye \leadsto (g3, \ n)
                                  g \oplus xe \leadsto (g2, x)
                               s' = stamp\text{-}binary\ op\ (stamp\ g3\ x)\ (stamp\ g3\ y)
 g2 \oplus ye \leadsto (g3, y)
             find-node-and-stamp g3 (bin-node op x y, s') = None
                                   g' = add-node n (bin-node op x y, s') g3
      n = get-fresh-id g3
                       q \oplus BinaryExpr \ op \ xe \ ye \leadsto (q', n)
          g \oplus xe \leadsto (g2, x)
                                    s' = stamp\text{-}unary \ op \ (stamp \ g2 \ x)
          find-node-and-stamp g2 (unary-node op x, s') = Some n
                         g \oplus UnaryExpr \ op \ xe \leadsto (g2, n)
                                    s' = stamp\text{-}unary \ op \ (stamp \ g2 \ x)
          g \oplus xe \leadsto (g2, x)
            find-node-and-stamp g2 (unary-node op x, s') = None
     n = get-fresh-id g2
                                g' = add-node n (unary-node op x, s') g2
                         g \oplus UnaryExpr \ op \ xe \leadsto (g', n)
                 stamp \ g \ n = s is-preevaluated \ (kind \ g \ n)
                            g \oplus LeafExpr \ n \ s \leadsto (g, n)
```

```
values \{(n, g) : (eg2\text{-}sq \oplus sq\text{-}param0 \leadsto (g, n))\}
```

2.3 Lift Data-flow Tree Semantics

```
definition encodeeval :: IRGraph \Rightarrow MapState \Rightarrow Params \Rightarrow ID \Rightarrow Value \Rightarrow bool ([-,-,-] \vdash - \mapsto - 50) where encodeeval \ g \ m \ p \ n \ v = (\exists \ e. \ (g \vdash n \simeq e) \land ([m,p] \vdash e \mapsto v))
```

2.4 Graph Refinement

```
definition graph-represents-expression :: IRGraph \Rightarrow ID \Rightarrow IRExpr \Rightarrow bool (- \vdash - \trianglelefteq - 50) where (g \vdash n \trianglelefteq e) = (\exists e' . (g \vdash n \simeq e') \land (e' \leq e))
```

definition graph-refinement ::
$$IRGraph \Rightarrow IRGraph \Rightarrow bool$$
 where graph-refinement g_1 $g_2 = ((ids \ g_1 \subseteq ids \ g_2) \land (\forall \ n \ . \ n \in ids \ g_1 \longrightarrow (\forall \ e. \ (g_1 \vdash n \simeq e) \longrightarrow (g_2 \vdash n \trianglelefteq e))))$

lemma graph-refinement:

```
graph-refinement g1 g2 \Longrightarrow (\forall n \ m \ p \ v. \ n \in ids \ g1 \longrightarrow ([g1, \ m, \ p] \vdash n \mapsto v) \longrightarrow ([g2, \ m, \ p] \vdash n \mapsto v))
```

by (meson encodeeval-def graph-refinement-def graph-represents-expression-def le-expr-def)

2.5 Maximal Sharing

```
definition maximal-sharing:
```

```
maximal-sharing g = (\forall n_1 \ n_2 \ . \ n_1 \in true\text{-}ids \ g \land n_2 \in true\text{-}ids \ g \longrightarrow (\forall e. \ (g \vdash n_1 \simeq e) \land (g \vdash n_2 \simeq e) \land (stamp \ g \ n_1 = stamp \ g \ n_2) \longrightarrow n_1 = n_2))
```

end