#42 Normal Modes Post-Class

Due: 11:00am on Monday, December 3, 2012

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

Exercise 15.37

Standing waves on a wire are described by $y(x,t) = (A_{\rm SW} \sin kx) \sin \omega t$, with $A_{\rm SW}$ = 2.10mm , ω = 989rad/s , and k = 0.800 π rad/m . The left end of the wire is at x = 0.

Part A

At what distances from the left end are the nodes of the standing wave.

ANSWER:

$$x_{\text{node}} = 0.625 + (1.25 \text{ m})n, n = 0, 1, 2, ...$$

$$x_{node} = (1.25 \text{ m})n, n = 0, 1, 2, ...$$

$$x_{\text{node}} = (0.625 \text{ m})n, n = 0, 1, 2, ...$$

$$x_{\text{node}} = (1.25 \text{ cm})n, n = 0, 1, 2, ...$$

Correct

Part B

At what distances from the left end are the antinodes of the standing wave?

ANSWER:

1 of 5 11/27/2012 6:42 PM

 $x_{\text{antinode}} = 1.25 \text{ m} + (1.25 \text{ m})n, n = 0, 1, 2, ...$

• $x_{\text{antinode}} = 0.625 \text{ cm} + (1.25 \text{ cm})n, n = 0, 1, 2, ...$

 $x_{\text{antinode}} = 0.625 \text{ m} + (1.25 \text{ m})n, n = 0, 1, 2, ...$

• $x_{\text{antinode}} = 0.625 \text{ m} + (0.625 \text{ m})n, n = 0, 1, 2, ...$

Correct

Exercise 15.40

A rope of length 1.41 m is stretched between two supports with a tension that makes the transverse waves have a speed of 47.7 m/s.

Part A

What is the wavelength of the fundamental harmonic?

ANSWER:

$$\lambda = 2.82 \text{ m}$$

Correct

Part B

What is the frequency of the fundamental harmonic?

ANSWER:

2 of 5 11/27/2012 6:42 PM

$$f = _{16.9}$$
 Hz

Correct

Part C

What is the wavelength of the second overtone?

ANSWER:

$$\lambda = 0.940$$
 m

Correct

Part D

What is the frequency of the second overtone?

ANSWER:

$$f = 50.7 \text{ Hz}$$

Correct

Part E

What is the wavelength of the fourth harmonic?

ANSWER:

$$\lambda = 0.705$$
 m

Correct

Part F

What is the frequency of the fourth harmonic?

ANSWER:

$$f = _{67.7}$$
 Hz

Correct

Exercise 15.50: Waves on a Stick

A flexible stick 5.0_{m} long is not fixed in any way and is free to vibrate.

Part A

Find the wavelengths of the first harmonic. (Hint: Should the ends be nodes or antinodes?)

Express your answer using two significant figures.

ANSWER:

$$\lambda_1 = 10 \text{ m}$$

4 of 5 11/27/2012 6:42 PM

Correct		

Part B

Find the wavelengths of the second harmonic. (Hint: Should the ends be nodes or antinodes?)

Express your answer using two significant figures.

ANSWER:

$$\lambda_2 = 5.0$$
 m

Part C

Find the wavelengths of the third harmonic. (Hint: Should the ends be nodes or antinodes?)

Express your answer using two significant figures.

ANSWER:

$$\lambda_3 = 3.3 \text{ m}$$

Score Summary:

Your score on this assignment is 100%.

You received 30 out of a possible total of 30 points.