Számítógép architektúrák alapjai

Készítette: Simon Péter 1

2021. december 21.

 $^{^1{\}rm Hallgat\'{o}i}$ jegyzet Durczy Levente előadásai alapján

Tartalomjegyzék

1.	Ala	pfogalmak	2
	1.1.	Architektúra fogalma	2
	1.2.	Számítási modellek	2
		1.2.1. A számítási modell, az architekrúra és a programnyelv kapcsolata	2
		1.2.2. Számítási modellek csoportosítása	2
		1.2.3. Adatalapú modellek közös tulajdonságai	3
		1.2.4. Neumann modell	3

1. fejezet

Alapfogalmak

1.1. Architektúra fogalma

A számítógép architektúra fogalmat először Amdahl, az IBM mérnőke használta először a 360-as család bejelentésekor. Definíciója szerint ez az a struktúra, amit a gépi kódú programozónak értenie kell, hogy helyes programot tudjon írni az adott gépre. Tehát a regiszterek, memória, utasításkészlet, címzési módok és utasításkódok összessége, mind logikai, mind hardveres szinten.

1.2. Számítási modellek

A számítási modell a számításra vonatkozó alapelvek egy absztrakciója. A számítási modelleket a következő absztrakciós jellemzőkkel írhatjuk le:

- min hajtjuk végre a számítást (általában adatokon adat alapú)
- hogyan képezzük le a számítási feladatot
- milyen módon vezéreljük a végrehajtási sorrendet

1.2.1. A számítási modell, az architekrúra és a programnyelv kapcsolata

Egy számítógép tervezését a számítási modellel kell kezdeni, ami meghatározza, hogy mit szeretnénk csinálni. Ehhez szükség van egy specifikációs eszközre, amit a programnyelv képvisel (pl. Neumann modell megvalósítási eszköze a BASIC, Fortran). Ezután jön az architektúra, ami a számítási modell implementációs eszköze, a "vas". Ez hajtja végre az adott programnyelven definiált feladatokat.

1.2.2. Számítási modellek csoportosítása

Számítási modelljük szerint

- szekvenciális
- párhuzamos

Vezérlés meghajtása szerint

- vezérlés meghajtott
- adat meghajtott
- igény meghajtott

Probléma leírása szerint

- procedurális
- deklaratív

Első sorban aszerint különböztetjük meg őket, hogy min hajtjuk végre a számítást. Az adatalapú modellek:

- Neumann modell
- adatfolyam modell
- applikatív modell (igénymeghajtott)

Az adatalapú modelleken kívül léteznek még objektum alapú, predikátum logika alapú, tudás alapú és hibrid modellek. A mai processzorokban a Neumann és az adatfolyam modellek keverednek.

1.2.3. Adatalapú modellek közös tulajdonságai

- az adatok általában típussal rendelkeznek (pl. 16 bit int) vannak elemi és összetett adattípusok
- a típus meghatározza az adat értelmezési tartományát, értékkészletét és az elvégezhető műveleteket

1.2.4. Neumann modell

A Neumann-elvű számítógépek a számításokat adatokon hajtják végre, amiket egy változó értékű változókészlet képvisel. A végrehajtási sorrend vezérlés meghajtott, tehát van egy statikus utasításszekvencia, amit egy speciális regiszter biztosít (program counter). A program counter egy inkrementálódó változó, mindig a végrehajtandó utasításra mutat. A végrehajtási sorrendtől vezérlési feladatokat ellátó utasításokkal lehet eltérni (pl. jump, if).

A Neumann elv követelményrendszere előírja változók létrehozását, adatmanipulációs és vezérlés átadási utasítások deklarálását. Az ilyen nyelveket hívjuk imperatív (parancs) programnyelveknek (pl. C, Pascal, Assembly).

Ezeket a követelményeket az architektúra kielégíti, pl. lehetővé teszi, hogy a memóriában elhelyezkedő változók korlátlan számban módosíthatók legyenek a program futása során. Ezen kívül biztosítja a megfelelő regisztereket az adatoknak és speciális regisztereket mint pl. program counter.

Az adatok és az utasítások a memóriában helyezkednek el. A számítási feladat műveletek elemi műveletek sorozataként értelmezhető. Egy számítási feladat leképezhető adat manipuláló utasítások sorozatával. Az adat manipuláló utasítások az utasítások sorrendjében vannak végrehajtva, ezért ez egy vezérlés meghajtott modell. A vezérlést a program counter biztosítja, a sorrendet a programozó határozza meg.