# Lecture 17 The Real Business Cycle Model Part 4: Formal Examples

Hui-Jun Chen

The Ohio State University

July 19, 2022

Credit: Kyle Dempsey

### Overview

- Recall that in Lecture 13, there is no production in dynamic model.
- The following 5 lectures is for **Real Business Cycle** (RBC) model:
  - Lecture 14: consumer
  - Lecture 15: firm
  - Lecture 16: competitive equilibrium
  - Lecture 17: formal example
  - Lecture 18: application to bring RBC to data

Output Market

**consumer**: assume discounting factor  $\beta \in (0,1)$  and utility function is

$$\tilde{U}(C, N, C') = \ln C + \beta \ln C' + \gamma \ln(1 - N),$$

where  $\gamma > 0$ , and consumer endowed with 1 unit of time.

- we assume no dis-utility in date 1 labor supply to simplify analysis
- **firm**: assume production is Cobb-Douglas in both periods:

$$Y = zK^{\alpha}N^{1-\alpha}$$
 and  $Y' = z'K'^{\alpha}N'^{1-\alpha}$ ,

where K is initial capital, TFP z=1, and depreciation  $\delta \in (0,1)$ 

■ government: spend G and G', which is financed by lump-sum taxes T,T' and deficit B

Hui-Jun Chen (OSU) Lecture 17 July 19, 2022 3/17

### Competitive Equilibrium

Given exogenous quantities  $\{G,G',z,z',K\}$ , a competitive equilibrium is a set of (1) consumer choices  $\{C,C',N_S,N_S',l,l',S\}$ ; (2) firm choices  $\{Y,Y',\pi,\pi',N_D,N_D',I,K'\}$ ; (3) government choices  $\{T,T',B\}$ , and (4) prices  $\{w,w',r\}$  such that

 $\ensuremath{\text{1}}$  Taken  $\{w,w',r,\pi,\pi'\}$  as given, consumer chooses  $\{C',N_S,N_S'\}$  to solve

$$\max_{C',N_S,N_S'} \ln \left( wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r} \right) + \beta \ln C' + \gamma \ln(1 - N_S),$$

where we can back out  $\{C, S, l, l'\}$ .

**2** Taken  $\{w, w', r\}$  as given, firm chooses  $\{N_D, N_D', K'\}$  to solve

$$\max_{N_D,N_D',K'} zK^{\alpha}N_D^{1-\alpha} - wN_D - [K' - (1-\delta)K] + \frac{z'(K')^{\alpha}(N_D')^{1-\alpha} - w'N_D' + (1-\delta)K'}{1+r},$$

where we can back out  $\{Y,Y',\pi,\pi',I\}$ .

- 3 Taxes and deficit satisfy  $T + \frac{T'}{1+r} = G + \frac{G'}{1+r}$  and G T = B.
- **4** All markets clear: (i) labor,  $N_S=N_D$  &  $N_S'=N_D'$ ; (ii) goods, Y=C+G & Y'=C'+G'; (iii) bonds at date 0, S=B.

Hui-Jun Chen (OSU) Lecture 17 July 19, 2022 4/17

### Step 0: Result Implied by Assumptions

- **1**  $N_S' = 1$ , since consumer don't value leisure at date 1.
  - If consumer don't value leisure, then choose the highest possible  $N_S^\prime$  can expand the budget set without decreasing the utility.
- $N_D' = N_S' = 1$ , by future labor market clearing.
- **3** The future wage w' is determined by MPN':

$$MPN' = z(1 - \alpha) \left(\frac{K'}{N_D'}\right)^{\alpha},$$

where  $N_D' = 1$  leads to

$$w' = z(1 - \alpha)(K')^{\alpha}.$$

Hui-Jun Chen (OSU)

Lecture 17

### Step 1: Firm's Current Labor Demand



For date 0 labor demand,

$$MPN = z(1 - \alpha) \left(\frac{K}{N_D}\right)^{\alpha} = w$$
  

$$\Rightarrow N_D = \left(\frac{z(1 - \alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

- $lacksquare N_D\downarrow \mbox{in current wage } w$
- $N_D \uparrow$  in current TFP z (dotted line)
- $lacksquare N_D$  invariant to interest rate

i-Jun Chen (OSU) Lecture 17 July 19, 2022 6 / 17

# Step 2: Consumer & Current Labor Supply

■ labor supply at date 0:

$$MRS_{l,C} = -MRS_{N,C} = -\frac{D_N U(\cdot)}{D_C \tilde{U}(\cdot)}$$
$$= -\frac{-\gamma/(1 - N_S)}{1/C} = \frac{\gamma C}{1 - N_S} = w$$

■ Saving at date 0:

$$MRS_{C,C'} = \frac{1/C}{\beta/C'} = \frac{C'}{\beta C} = 1 + r \Rightarrow C' = \beta(1+r)C$$

lacktriangledown Recall  $N_S'=1$ , we can denote the x notation to be the part of the income that is NOT directly affected by consumer choice:

$$x = \pi - T$$
 and  $x' = w' + \pi' - T'$ 

ıi-Jun Chen (OSU) Lecture 17 July 19, 2022 7 / 17

# Step 2: Consumer & Current Labor Supply (Cont.)

Recall consumer budget constraint,

$$C + \frac{C'}{1+r} = wN_S + \pi - T + \frac{w'N'_S + \pi' - T'}{1+r}$$

$$C + \frac{\beta(1+r)C}{1+r} = wN_S + x + \frac{x'}{1+r}$$

$$C = \frac{1}{1+\beta} \left( wN_S + x + \frac{x'}{1+r} \right)$$

plug back to labor supply condition:

$$w(1 - N_S) = \gamma C$$

$$w(1 - N_S) = \frac{\gamma}{1 + \beta} \left( wN_S + x + \frac{x'}{1 + r} \right)$$

$$wN_S \left( \frac{\gamma}{1 + \beta} + 1 \right) = w - \frac{\gamma}{1 + \beta} \left( x + \frac{x'}{1 + r} \right)$$

$$N_S = \frac{1 + \beta}{1 + \beta + \gamma} - \frac{1}{w} \frac{\gamma}{1 + \beta + \gamma} \left( x + \frac{x'}{1 + r} \right)$$

ui-Jun Chen (OSU) Lecture 17 July 19, 2022 8 / 17

9/17

### Check: Labor Supply Assumptions

yellow dotted line is supposed to label as "low x"



### Recall N1-N3 assumptions,

- N1: labor supply  $\uparrow$  in wage,  $dN_S/dw>0$  (all lines)
- N2: labor supply  $\uparrow$  in real interest rate,  $dN_S/dr>0$  (red v.s. blue)
- N3: labor supply  $\downarrow$  in lifetime wealth,  $dN_S/d(x+x') < 0$  (yellow v.s. blue)

ui-Jun Chen (OSU) Lecture 17 July 19, 2022

yellow dotted line is supposed to label as "low x"



higher interest rate (N2), lower lifetime wealth (N3) both shifts out labor supply curve:

- wage  $w^*(r)$  decreases
- lacksquare equilibrium quantity of labor  $N^*(r)$  increases

Next: construct output supply curve

Hui-Jun Chen (OSU) Lecture 17 July 19, 2022 10 / 17

# Step 3: Output Supply Curve

Labor market clearing requires:

$$N_S = \frac{1+\beta}{1+\beta+\gamma} - \frac{1}{w} \frac{\gamma}{1+\beta+\gamma} \left( x + \frac{x'}{1+r} \right) = \left( \frac{z(1-\alpha)}{w} \right)^{\frac{1}{\alpha}} K = N_D.$$

...Yeah, it is very difficult to solve it by hand (actually cannot), but notice

- $\blacksquare$  most of the terms are parameters:  $\alpha,\beta,\gamma,z,K$  ,
- lacktriangle or lifetime wealth that needs gov: x and x'.
- Out main goal is to solve for  $w^*(r)$ !
  - ullet solve real wage w as a function of real interest rate r
  - ullet then, back out  $N^{st}(r)$  and  $Y_S(r)$ 
    - get  $N^*(r)$  by plug  $w^*(r)$  into either  $N_D$  or  $N_S$
    - get  $Y_S(r)$  by plug  $N^*(r)$  into  $zK^{\alpha}(N^*)^{1-\alpha}$

lui-Jun Chen (OSU) Lecture 17 July 19, 2022 11/17







### Confirm our intuition:

- $\blacksquare$   $r \uparrow$  leads to  $w \downarrow$  and  $N^*(r) \uparrow$
- $\blacksquare$  given positive MPN and fixed K, more labor means more production, so output supply shifts up.

Lecture 17 July 19, 2022 12 / 17

### Step 4: Output Demand Curve

Recall that the date 0 output demand curve are composite of

- $\blacksquare$  government spending G and G': exogenous (easy!)
- lacktriangle firm's investment demand  $I_D(r)$  (next slide)
- $\blacksquare$  consumer's consumption demand  $C_D(r,Y)$ :
  - recall **income-expenditure identity**, total income = total demand,

$$C + \frac{C'}{1+r} = wN + \pi - T + \frac{w'N' + \pi' - T'}{1+r}$$

$$\therefore \pi = Y - wN - I; \pi' = Y' - w'N' + (1-\delta)K'$$

$$(1+\beta)C = Y + \frac{Y'}{1+r} - I + \frac{(1-\delta)K'}{1+r} - \left(T + \frac{T'}{1+r}\right)$$

• given r, we can solve consumption-saving problem.

ui-Jun Chen (OSU) Lecture 17 July 19, 2022 13 / 17

### Firm's Optimal Investment

### Recall

- $\blacksquare$  labor market clearing at date 1:  $N_D' = N_S' = N' = 1$ , and
- MPK at date 1:  $MPK' = z'\alpha(K')^{\alpha-1}$ .

Thus, according to optimal investment schedule,

$$MPK' - d = r$$

$$z'\alpha(K')^{\alpha - 1} = r + d$$

$$K' = \left(\frac{z'\alpha}{r + d}\right)^{\frac{1}{1 - \alpha}}$$

and we can also determine investment by capital accumulation process:

$$I_D = K' - (1 - \delta)K = \left(\frac{z'\alpha}{r+d}\right)^{\frac{1}{1-\alpha}} - (1 - \delta)K$$

Hui-Jun Chen (OSU) Lecture 17 July 19, 2022 14/17

### Check: Investment Demand Assumption



$$I_D = \left(\frac{z'\alpha}{r+d}\right)^{\frac{1}{1-\alpha}} - (1-\delta)K$$

Recall assumptions from Lecture 15:

- $\blacksquare I_D(r) \downarrow \text{in } r (\checkmark)$
- $I_D(r)$  shifts in when  $K \uparrow$ : yellow v.s. blue
- $I_D(r)$  shifts out when  $z' \uparrow$ : red v.s. blue

ui-Jun Chen (OSU) Lecture 17 July 19, 2022 15 / 17

## Constructing the Output Demand Curve



### Aggregate all three components:

- investment (red) and government (yellow) are horizontal
- consumption (blue) increase in income with slope  $\approx \frac{1}{1+\beta}$
- total output demand (green) gain the slope from consumption, and is the sum of all three

lui-Jun Chen (OSU) Lecture 17 July 19, 2022 16 / 17

# Constructing the Output Demand Curve (Cont.)

$$r \uparrow \Rightarrow I_D(r) \downarrow \Rightarrow \text{total demand} \downarrow$$





Hui-Jun Chen (OSU

Lecture 17

July 19, 2022