

A Simple Expression for Mill's Ratio of the Student's t -Distribution

Francesco Orabona
 Yahoo! Labs
 New York, NY, USA
 francesco@orabona.com

February 6, 2015

Abstract

I show a simple expression of the Mill's ratio of the Student's t -Distribution. I use it to prove Conjecture 1 in Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Mach. Learn.*, 47(2-3): 235–256, May 2002.

We first need the following technical lemma.

Lemma 1. *For all $x > 0$ we have*

$$x \frac{e^{\frac{x^2}{2}}}{\sqrt{e^{x^2} - 1}} \leq x + 1$$

Proof. Denote by $y = e^{x^2}$, with $y > 1$. We have

$$\frac{\sqrt{y}}{\sqrt{y-1}} - 1 = \frac{\sqrt{y} - \sqrt{y-1}}{\sqrt{y-1}} = \frac{1}{\sqrt{y-1}(\sqrt{y} - \sqrt{y-1})} \leq \frac{1}{\sqrt{y-1}}. \quad (1)$$

Hence we have

$$x \left(\frac{e^{\frac{x^2}{2}}}{\sqrt{e^{x^2} - 1}} - 1 \right) \leq x \frac{1}{\sqrt{e^{x^2} - 1}} \leq 1, \quad (2)$$

where in the last inequality we used $\exp(z) - 1 \geq z$. \square

The following theorem provides simple upper bounds to the Mill's ratio of a t -Student.

Theorem 1. *Let $f_\nu(x)$ the pdf of a Student's t -distribution with ν degrees of freedom. Then, for any $\nu \geq 0$, we have*

$$\frac{\int_a^{+\infty} f_\nu(x) dx}{f_\nu(a)} \leq \sqrt{1 + \frac{a^2}{\nu}} \left(\frac{1}{2} + \frac{1}{\sqrt{\nu}} \right), \text{ if } a \geq 0$$

$$\frac{\int_a^{+\infty} f_\nu(x)dx}{f_\nu(a)} \leq \sqrt{1 + \frac{a^2}{\nu}} \left(1 + \frac{1}{\sqrt{\nu}}\right), \text{ if } a < 0$$

Proof. The first stated inequality holds for $a = 0$, for the symmetry of the t -Student distribution, hence we can safely assume $a \neq 0$. We have that

$$P[X \geq a] = C_\nu \int_a^{+\infty} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx,$$

where $C_\nu = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})}$. With the change of variable $z = \sqrt{\nu \log(1 + \frac{x^2}{\nu})}$, we have

$$\begin{aligned} P[X \geq a] &= C_\nu \int_{\sqrt{\nu \log(1 + \frac{a^2}{\nu})}}^{+\infty} e^{-\frac{z^2}{2}} \frac{ze^{\frac{z^2}{2\nu}}}{\sqrt{\nu(e^{\frac{z^2}{\nu}} - 1)}} dz \\ &\leq C_\nu \int_{\sqrt{\nu \log(1 + \frac{a^2}{\nu})}}^{+\infty} e^{-\frac{z^2}{2}} \left(\frac{z}{\sqrt{\nu}} + 1\right) dz \\ &= C_\nu \left(\frac{1}{\sqrt{\nu}} \left(1 + \frac{a^2}{\nu}\right)^{-\frac{\nu}{2}} + \int_{\sqrt{\nu \log(1 + \frac{a^2}{\nu})}}^{+\infty} e^{-\frac{z^2}{2}} dz \right), \end{aligned}$$

where in the inequality we used Lemma 1. We now use the facts that $\int_a^{+\infty} e^{-\frac{x^2}{2}} dx \leq \frac{1}{2}e^{-\frac{a^2}{2}}$ for $a \geq 0$ and $\int_a^{+\infty} e^{-\frac{x^2}{2}} dx \leq e^{-\frac{a^2}{2}}$ for $a \leq 0$ to have the stated bounds. \square

The following Corollary is a slightly better version of Conjecture 1 in Auer et al. [2002]. I could not find a proof of it in any paper so I decided to give a simple proof for it.

Corollary 1. *Let X be a Student's t random variable with ν degrees of freedom. Then, for $0 \leq a \leq \sqrt{2(\nu + 1.22)}$ and $\nu \geq 0$, we have*

$$P[X \geq a] \leq e^{-\frac{a^2}{4}}.$$

Proof. First observe that $C_\nu \left(\frac{1}{2} + \frac{1}{\sqrt{\nu}}\right) \leq K = 0.543$, as it can be verified numerically. Using the first result of Theorem 1 we have

$$P[X \geq a] \leq K e^{-\frac{\nu}{2} \log(1 + \frac{a^2}{\nu})} = e^{\log(K) - \frac{\nu}{2} \log(1 + \frac{a^2}{\nu})} \leq e^{\log(K) - \frac{a^2 \nu}{a^2 + 2\nu}},$$

where in the last inequality we used the fact that $\log(x+1) \geq \frac{2x}{x+2}$. Hence the statement of the theorem is equivalent to find the upper bound on a^2 such that

$$\log(K) - \frac{a^2 \nu}{a^2 + 2\nu} \leq -\frac{a^2}{4},$$

that in turn is equivalent to

$$a^4 + 2a^2(2\log(K) - \nu) + 8\nu \log(K) \leq 0$$

Solving the quadratic equation we have

$$a^2 \leq \nu - 2\log(K) + \sqrt{\nu^2 + 4\log^2(K) - 12\nu\log(K)} \quad (3)$$

Hence, the condition $a^2 \leq 2\nu - 4\log(K)$ satisfies the inequality above. Using the value of K we have the stated bound. \square

References

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-armed bandit problem. *Mach. Learn.*, 47(2-3):235–256, May 2002.