VI. Sistemul de întreruperi

Ce este o întrerupere?

- procesorul poate suspenda execuţia programului curent
- scop tratarea unor situații neprevăzute
- după tratare se reia programul întrerupt
- scopul inițial comunicarea cu perifericele
- procesorul nu "așteaptă" perifericele
 - acestea îl solicită când este necesar

Întreruperi hardware

- dezactivabile (*maskable*)
 - procesorul poate refuza tratarea lor
 - depinde de valoarea bistabilului IF (*Interrupt* Flag): 1 acceptare, 0 refuz
 - IF poate fi modificat prin program
- nedezactivabile (non-maskable)
 - procesorul le tratează întotdeauna

Controllerul de întreruperi (1)

- circuit specializat
- preia cererile de întrerupere de la periferice
- le trimite procesorului
- rezolvă conflictele (mai multe cereri simultane) arbitrare
 - fiecare periferic are o anumită prioritate

Controllerul de întreruperi (2)

- inițial Intel 8259
 - se pot folosi mai multe (cascadare)

• astăzi - integrat în chipset

Tratarea întreruperilor - etape (1)

- dispozitivul periferic generează o cerere de întrerupere pe linia sa IRQ_i
- controllerul trimite un semnal pe linia INT
- procesorul verifică valoarea bistabilului IF
 - numai pentru întreruperi dezactivabile
 - dacă este 0 refuză cererea; stop
 - dacă este 1 răspunde cu un semnal INTA

Tratarea întreruperilor - etape (2)

- se întrerupe execuția programului curent
- se salvează în stivă regiștrii (inclusiv PC)
- se şterge bistabilul IF
 - se blochează execuţia altei întreruperi în timpul execuţiei programului pentru întreruperea în curs
 - poate fi repus pe 1 prin program

Tratarea întreruperilor - etape (3)

- identificare periferic (sursa cererii)
 - controllerul depune pe magistrala de date un octet type
 - indică perifericul care a făcut cererea
 - maximum 2⁸=256 surse de întrerupere
 - fiecare sursă are rutina proprie de tratare
 - periferice diferite tratări diferite

Tratarea întreruperilor - etape (4)

- determinarea adresei rutinei de tratare
 - adresa fizică 0 tabelul vectorilor de întreruperi
 - conţine adresele tuturor rutinelor de tratare
 - dimensiune: 256 adrese × 4 octeți = 1 Ko
 - octet type = n → adresa rutinei de tratare: la adresa $n \times 4$

Tratarea întreruperilor - etape (5)

- salt la rutina de tratare a întreruperii
- execuția rutinei de tratare
- revenire în programul întrerupt
 - restabilire valoare bistabil IF
 - restabilire valoare regiştri (din stivă)
 - reluarea execuţiei programului de unde a fost întrerupt

Extindere

- sistem puternic și flexibil
- poate fi extins utilizare mai largă
- programele trebuie întrerupte și în alte situații (nu doar pentru comunicarea cu perifericele)
- util mai ales pentru sistemul de operare

Tipuri de întreruperi

- hardware generate de periferice
- excepţii (traps) generate de procesor
 - semnalează o situație anormală
 - exemplu: împărțire la 0
- software generate de programe
 - folosite pentru a solicita anumite servicii sistemului de operare

VII. Sistemul de operare

Rolul sistemului de operare (1)

- program cu rol de gestiune a sistemului de calcul
- face legătura între hardware și aplicații
- pune la dispoziția aplicațiilor diferite servicii
- supraveghează buna funcționare a aplicațiilor
 - poate interveni în cazurile de eroare

Rolul sistemului de operare (2)

- pentru a-şi îndeplini sarcinile, are nevoie de suport hardware
 - cel mai important sistemul de întreruperi
- componente principale
 - nucleu (*kernel*)
 - drivere

VII.1. Nucleul sistemului de operare

Nucleul sistemului de operare

- în mare măsură independent de structura hardware pe care rulează
- "creierul" sistemului de operare
- gestiunea resurselor calculatorului hardware şi software
 - funcționare corectă
 - alocare echitabilă între aplicații

Moduri de lucru ale procesorului

- utilizator (user mode)
 - restricţionat
 - accesul la memorie numai anumite zone
 - accesul la periferice interzis
- nucleu (kernel mode)
 - fără restricții

Modul de rulare al programelor

- sistemul de operare în mod nucleu
 - poate efectua orice operație
- aplicațiile în mod utilizator
 - nu pot realiza anumite acțiuni
 - apelează la nucleu

Trecerea între cele două moduri

- prin sistemul de întreruperi
- utilizator \rightarrow nucleu
 - apel întrerupere software
 - generare excepţie (eroare)
- nucleu → utilizator
 - revenire din rutina de tratare a întreruperii

Consecințe

- codul unei aplicații nu poate rula în modul nucleu
- avantaj: erorile unei aplicații nu afectează alte programe
 - aplicaţii
 - sistemul de operare
- dezavantaj: pierdere de performanţă

Structura nucleului

- nu este un program unitar
- colecție de rutine care cooperează
- funcții principale
 - gestiunea proceselor
 - gestiunea memoriei
 - gestiunea sistemelor de fișiere
 - comunicarea între procese

VII.2. Apeluri sistem

Apeluri sistem (system calls)

- cereri adresate nucleului de către aplicații
- acțiuni pe care aplicațiile nu le pot executa singure
 - numai în modul nucleu al procesorului
 - motiv siguranţa sistemului
- realizate prin întreruperi software
- similar apelurilor de funcții

Etapele unui apel sistem (1)

- 1. programul depune parametrii apelului sistem într-o anumită zonă de memorie
- 2. se generează o întrerupere software
 - procesorul trece în modul nucleu
- 3. se identifică serviciul cerut și se apelează rutina corespunzătoare

Etapele unui apel sistem (2)

- 4. rutina preia parametrii apelului și îi verifică
 - dacă sunt erori apelul eşuează
- 5. dacă nu sunt erori realizează acțiunea cerută
- 6. terminarea rutinei rezultatele obținute sunt depuse într-o zonă de memorie accesibilă aplicației care a făcut apelul

Etapele unui apel sistem (3)

- 7. procesorul revine în mod utilizator
- 8. se reia execuţia programului din punctul în care a fost întrerupt
 - se utilizează informațiile memorate în acest scop la apariția întreruperii
- 9. programul poate prelua rezultatele apelului din zona în care au fost depuse

Apeluri sistem - concluzii

- comunicare între aplicație și nucleu
 - depunere parametri
 - preluare rezultate
- acţiunile critice sunt realizate într-un mod sigur
- mari consumatoare de timp
- apeluri cât mai rare lucru cu buffere

Cum folosim bufferele

Exemplu - funcția printf

- formatează textul, apoi îl trimite spre ecran
- nu are acces direct la hardware
 - se folosește de un apel sistem
 - write (în Linux)
- de fapt, *printf* depune textul formatat într-o zonă proprie de memorie (buffer)
 - doar când bufferul e plin se face un apel sistem

VII.3. Drivere

Ce sunt driverele?

- module de program care gestionează comunicarea cu perifericele
 - specializate câte un driver pentru fiecare periferic
- parte a sistemului de operare
 - acces direct la hardware
 - se execută în modul nucleu al procesorului

Utilizare

- nu fac parte din nucleu
 - dar se află sub comanda nucleului
- folosite de rutinele de tratare ale întreruperilor hardware
- înlocuire periferic → înlocuire driver
 - organizare modulară
 - nu trebuie reinstalat tot sistemul de operare

VII.4. Gestiunea proceselor

Procese (1)

- se pot lansa în execuție mai multe programe în același timp (*multitasking*)
- paralelismul nu este real
 - doar dacă sistemul are mai multe procesoare
 - altfel concurență
- un program se poate împărți în mai multe secvențe de instrucțiuni *procese*
 - se pot executa paralel sau concurent

Procese (2)

- sistemul de operare lucrează cu procese
 - nu cu programe
- la lansare, un program constă dintr-un singur proces
 - poate crea alte procese
 - care pot crea alte procese ş.a.m.d.
- un procesor poate executa la un moment dat instrucțiunile unui singur proces

Stările unui proces (1)

- în execuție (running)
 - instrucțiunile sale sunt executate de procesor
- gata de execuție (ready)
 - așteaptă să fie executat de procesor
- în așteptare (waiting)
 - aşteaptă terminarea unui apel sistem
 - nu concurează momentan pentru planificarea la procesor

Stările unui proces (2)

Stările unui proces (3)

- procesul aflat în execuţie părăseşte această stare
 - la terminarea sa
 - normală sau în urma unei erori
 - la efectuarea unui apel sistem (\rightarrow *waiting*)
 - când instrucțiunile sale au fost executate un timp suficient de lung şi este rândul altui proces să fie executat (deplanificare)

Forme de multitasking

- non-preemptiv
 - nu permite deplanificarea unui proces
 - un proces poate fi scos din execuţie doar în celelalte situaţii
 - dezavantaj erorile de programare pot bloca procesele (ex. buclă infinită)
- preemptiv

Deplanificarea

- cum ştie sistemul de operare cât timp s-a executat un proces?
- este necesară o formă de măsurare a timpului
- ceasul de timp real
 - dispozitiv periferic
 - generează cereri de întrerupere la intervale regulate de timp