Practical examples of writing programs and proving theorems in Idris.

Donovan Crichton

January 2020

Preliminaries

Propositional Logic

- Concerned with statements of verifiable facts.
- Used daily by programmers when reasoning about Boolean values.

Symbol	Meaning	Example
T, F	True, False	Boolean values.
p, q, r,	Propositions	Let $p = $ "It is raining."
_	Negation (Not)	$\neg p$
\wedge	Conjuction (And)	$p \wedge q$
V	Disjunction (Or)	$p \lor q$
\rightarrow	Implication (If)	ho o q
\leftrightarrow	Bi Implication (Iff)	$p \leftrightarrow q$
=	Equivalence	$p\equiv q$
T	Tautology	$p \lor \lnot p \equiv \top$
	Contradiction	$p \wedge eg p \equiv ot$

Definitions of Connectives

Conjunction (And)

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction (Or)

р	q	$p \lor q$	
Т	Т	Т	
Т	F	T	
F	Т	T	
F	F	F	

Negation (Not)

TTCBULION (
р	$\neg p$		
Т	F		
F	Т		

Implication (If)

		. ,
p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

Bi Implication (Iff)

		,
p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence

р	q	$p \equiv q$
T	Т	Т
Τ .	F	F
F	Т	F
F	F	Т

Proof Techniques

By Exhaustion

Idea: Prove by enumerating all possible cases.

Prove: $(\neg p \lor q) \leftrightarrow (p \rightarrow q)$.

			.,		
p	q	$\neg p$	$\neg p \lor q$	p o q	$\mid (\neg p \lor q) \leftrightarrow (p \rightarrow q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	T
F	Т	Т	Т	Т	T
F	F	Т	Т	Т	Т

Proof Techniques

By Appeal to Lemma

Idea: Introduce pre-proven smaller proofs (called a Lemma) to prove a larger proof.

- ▶ Lemma 1. $p \lor \neg p \equiv \top$.
- ▶ Lemma 2. $(p \equiv q) \equiv (p \leftrightarrow q)$.

Prove:
$$(p \leftrightarrow q) \lor \neg (p \equiv q) \leftrightarrow \top$$
.

Premise.

Lemma 2.

Lemma 1.

