Support Vector Machines. Logistic Regression.

Radu Ionescu, Prof. PhD. raducu.ionescu@gmail.com

Faculty of Mathematics and Computer Science
University of Bucharest

XOR (Minsky & Papert, 1969)

 A linear classification method cannot solve the XOR problem

Solution 1: Neural Networks

Solution 2: Kernel Methods

- Kernel methods are based on two steps:
- ➤ 1. Embed data in a higher-dimensional Hilbert space
- 2. Search for linear relations in the embedding space
- The embedding can be performed implicitly, by specifying the scalar product among data samples
- Steps 1 and 2 can be comprised in one step!

Primal Form

Features: f₁, f₂, f₃, f₄, f₅, f₆, f₇

		f_1	f_2	f_3	f_4	f_5	f_6	f ₇				
Train samples: x ₁ , x ₂ , x ₃ , x ₄	X_1	4	0	2	5	3	0	1	= X	I_1	1	
	X ₂	0	0	1	3	4	0	2		I_2	1	
	X ₃	2	1	0	0	1	2	5		I_3	-1	-
	X ₄	1	3	0	1	0	1	2		I_4	-1	

Linear classifier: $C = (w_1, w_2, w_3, w_4, w_5, w_6, w_7, b)$ such that sign(X * W' + b) = L

		f_1	f_2	f_3	f_4	f_5	f_6	f_7				
Test samples: y ₁ , y ₂ , y ₃	y_1	1	0	2	4	2	0	2		p_1	?	
	y ₂	1	2	0	1	2	2	1	= Y	p_2	?	= P
	y_3	3	1	0	0	4	1	1		p_3	?	

Apply C to obtain predictions: P = sign(Y * W' + b)

Dual form

Kernel type: linear

		x_{1}	X_2	x_3	X_4				
Train samples: x ₁ , x ₂ , x ₃ , x ₄	X_1	55	31	16	11	= X * X' = K _X	l ₁	1	
	X_2	31	30	14	7		I_2	1	
	X_3	16	14	35	17		I_3	-1	= L
	X_4	11	7	17	16		I_4	-1	
									•

Linear classifier: $C = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, b)$ such that $sign(K_X * \alpha' + b) = L$

Apply C to obtain predictions: $P = sign(K_Y * \alpha' + b)$

Data normalization

In primal form:

$$x \longmapsto \phi(x) \longmapsto \frac{\phi(x)}{\|\phi(x)\|}$$

In dual form:

$$\hat{k}(x_i, x_j) = \frac{k(x_i, x_j)}{\sqrt{k(x_i, x_i) \cdot k(x_j, x_j)}}$$

Directly on the kernel matrix:

$$\hat{K}_{ij} = \frac{K_{ij}}{\sqrt{K_{ii} \cdot K_{jj}}}$$

Data normalization (Python)

```
% X - data (one sample per row)
% L2 norm in primal form:
norms = np.linalg.norm(X, axis = 1, keepdims = True)
X = X / norms
% L2 norm in dual form:
K = np.matmul(X, X.T)
KNorm = np.sqrt(np.diag(K))
KNorm = KNorm[np.newaxis]
K = K / np.matmul(KNorm.T, KNorm)
```

How do we separate these points optimally?

How do we separate these points optimally?

How do we separate these points optimally?

Pick the maximum margin hyperplane

Pick the maximum margin hyperplane

Support Vector Machines (SVM)

SVM (Hard Margin)

$$S = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_{\ell}, y_{\ell})\}$$
$$g(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

 $\max_{\mathbf{w},b,\gamma} \gamma$

subject to

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge \gamma$$

$$i=1,\ldots,\ell$$

$$\|\mathbf{w}\|^2 = 1$$

subject to

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$$

$$i=1,\ldots,\ell$$

Pick the maximum margin hyperplane

Support Vector Machines (SVM)

SVM Dual (Hard Margin)

- Lagrange multipliers: a way of finding the extremum of a function subject to constraints
- We want to minimize $||w||^2$ subject to $y_i(\langle w, x_i \rangle + b) 1 \ge 0$
- We define a new function and find its minimum instead

$$L(w, b, \alpha) = ||w||^2 - \sum_{i} \alpha_i [y_i(\langle w, x_i \rangle + b) - 1], \alpha_i \ge 0$$

$$\frac{\partial L}{\partial w} = w - \sum_{i} \alpha_i y_i x_i = 0 \Longrightarrow w = \sum_{i} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_i y_i = 0 \Longrightarrow \sum_{i} \alpha_i y_i = 0$$

• α_i are called Lagrange multipliers

SVM Dual (Hard Margin)

$$L = ||w||^2 - \sum_i \alpha_i [y_i(\langle w, x_i \rangle + b) - 1]$$

$$w = \sum_i \alpha_i y_i x_i$$

$$\sum_i \alpha_i y_i = 0$$

$$L = \sum_i \alpha_i - \sum_i \sum_j \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

- Note: The optimization depends only on the scalar product of training sample pairs
- α_i will be non-zero only for support vectors
- Our decision rule (in primal form) was: x is positive if $\langle w, x \rangle + b \ge 0$
- In dual form, it becomes: $\sum_i \alpha_i y_i \langle x_i, x \rangle + b \ge 0$
- Note: The decision also depends on the scalar product
- Note: b can be computed from $\sum_i \alpha_i y_i \langle x_i, x_+ \rangle + b = 1$, for some positive support vector x_+

SVM Dual (Hard Margin)

The decision rule (in dual form) is:

$$x$$
 is positive if $\sum_{i} \alpha_{i} y_{i} \langle x_{i}, x \rangle + b \geq 0$

• In order to obtain α_i and b, we have to:

$$\min \sum_{i} \alpha_{i} - \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle$$

subject to $\alpha_i \geq 0$, $\forall i$

SVM (Hard Margin)

Primal form

Decision rule:

$$\langle w, x \rangle + b \ge 0$$

Optimization problem:

$$min\|w\|^2$$

subject to
$$y_i(\langle w, x_i \rangle + b) - 1 \ge 0$$

Dual form

Decision rule:

$$\sum_{i} \alpha_{i} y_{i} \langle x_{i}, x \rangle + b \ge 0$$

Optimization problem:

$$min \sum_{i} \alpha_{i} - \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle$$

subject to
$$\alpha_i \geq 0$$

- Primal has as many params as features (n)
- Dual has as many params as samples (l)
- It is more efficient to optimize primal if $l \gg n$

What happens when we train a hard-margin SVM on this data set?

- What happens when we train a hard-margin SVM on this data set?
- It succeeds at separating the training samples, but with a very tight margin

What happens when we train a hard-margin SVM on this data set?

- What happens when we train a hard-margin SVM on this data set?
- It fails, because the samples are not linearly separable

What would the more "reasonable" solutions be?

• What would the more "reasonable" solutions be?

 Allow some training samples to be misclassified, at a cost.

- Allow some training samples to be misclassified, at a cost.
- We introduce slack variables $\xi_i \ge 0$ (how much example x_i is allowed to cross the border):

$$y_i(\langle w, x_i \rangle + b) - 1 \ge 0$$
 becomes
$$y_i(\langle w, x_i \rangle + b) - 1 \ge -\xi_i$$

The optimization problem becomes:

$$\begin{aligned} \min \|w\|^2 + C \sum_i \xi_i \\ subject\ to\ y_i(\langle w, x_i \rangle + b) - 1 \geq -\xi_i \end{aligned}$$

- Trade-off between making the margin wide and allowing training mistakes
- C controls the weight of the mistakes

When the examples are non-linearly separable:

$$\min_{\mathbf{w},b,\gamma,\xi} - \gamma + C \sum_{i=1}^{\ell} \xi_{i}$$

$$\text{subject to}$$

$$y_{i}(\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \ge \gamma - \xi_{i}$$

$$\xi_{i} \ge 0 \quad i = 1, \dots, \ell$$

$$\|\mathbf{w}\|^{2} = 1$$

$$\min_{\mathbf{w},b,\gamma,\xi} \mathbf{w}_{i} = \mathbf{w}_{i}$$

$$\mathbf{w}_{i} = \mathbf{w}_{i} = \mathbf{w}_{i}$$

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{\ell} \xi_i$$

bject to

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 - \xi_i$$

 $\xi_i \ge 0$ $i = 1, ..., \ell$

Hinge Loss

$$\begin{aligned} \min \|w\|^2 + C \sum_i \xi_i \\ \text{subject to } y_i(\langle w, x_i \rangle + b) - 1 \ge -\xi_i \\ \xi_i \ge 0 \end{aligned} \qquad \begin{cases} \xi_i = \max \bigl(0, 1 - y_i(\langle w, x_i \rangle + b)\bigr) \end{aligned}$$

• By replacing ξ_i in the minimization problem, we get:

$$\min \|w\|^2 + C \sum_i \max (0, 1 - y_i(\langle w, x_i \rangle + b))$$

Hinge Loss

$$\min \|w\|^2 + C \sum_i \max \bigl(0, 1 - y_i(\langle w, x_i \rangle + b)\bigr)$$

The hinge loss is defined as follows:

$$L(x_i) = \max(0, 1 - y_i(\langle w, x_i \rangle + b))$$

 We can rewrite the minimization problem as follows:

$$min\left(C\sum_{i}L(x_{i})+\|w\|^{2}\right)$$

 Note: The soft-margin SVM is actually minimizing the hinge loss with regularization

- Allow some training samples to be misclassified, at a cost.
- We introduce slack variables $\xi_i \ge 0$ (how much example x_i is allowed to cross the border):

$$y_i(\langle w, x_i \rangle + b) - 1 \ge 0$$
 becomes
$$y_i(\langle w, x_i \rangle + b) - 1 \ge -\xi_i$$

The optimization problem becomes:

$$\begin{aligned} \min \|w\|^2 + C \sum_i \xi_i \\ subject\ to\ y_i(\langle w, x_i \rangle + b) - 1 \geq -\xi_i \end{aligned}$$

- Trade-off between making the margin wide and allowing training mistakes
- C controls the weight of the mistakes

The decision rule (in primal form) is:

$$x$$
 is positive if $\langle w, x \rangle + b \geq 0$

In order to obtain w and b, we have to:

$$\begin{aligned} \min \|w\|^2 + C \sum_i \xi_i \\ subject\ to\ y_i(\langle w, x_i \rangle + b) - 1 &\geq -\xi_i \\ \text{Or} \\ \min \|w\|^2 + C \sum_i \max \bigl(0, 1 - y_i(\langle w, x_i \rangle + b)\bigr) \end{aligned}$$

SVM Dual (Soft Margin)

The decision rule (in dual form) is:

$$x$$
 is positive if $\sum_{i} \alpha_{i} y_{i} \langle x_{i}, x \rangle + b \geq 0$

• In order to obtain α_i and b, we have to:

$$\min \sum_{i} \alpha_{i} - \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle x_{i}, x_{j} \rangle$$

subject to
$$0 \le \alpha_i \le C$$
, $\forall i$

Note: we add an upper bound on the Lagrange multipliers

SVM (Python)

Scikit-learn:

https://scikit-learn.org/stable/modules/svm.html#svm-classification

```
from sklearn import svm

clf = svm.SVC(C = 1.0)

clf.fit(X_train, T_train)

Y_test = clf.predict(X_test)
```

Plus many other classifiers (based on same use pattern)

Support Vector Regression

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$
- Flat function = does not change much with parameters, i.e. small ||w||
- We need to find the smallest ||w||
 for which the prediction error is at
 most ε:

 $min||w||^2$

subject to $|y_i - (\langle w, x_i \rangle + b)| \le \epsilon$

Extreme case: we can fit all data points with a function that does not change at all, i.e. ||w|| = 0.

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$
- Flat function = does not change much with parameters, i.e. small ||w||
- We need to find the smallest ||w||
 for which the prediction error is at
 most ε:

$$min||w||^2$$

subject to
$$|y_i - (\langle w, x_i \rangle + b)| \le \epsilon$$

When ϵ is small, w and b need to be adjusted in order to fit all data points.

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$
- Flat function = does not change much with parameters, i.e. small ||w||
- We need to find the smallest ||w||
 for which the prediction error is at
 most ε:

$$min||w||^2$$

subject to
$$|y_i - (\langle w, x_i \rangle + b)| \le \epsilon$$

When ϵ is small, w and b need to be adjusted in order to fit all data points.

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$
- Flat function = does not change much with parameters, i.e. small ||w||
- We need to find the smallest ||w|| for which the prediction error is at most ϵ :

$$min||w||^2$$

$$subject\ to\ |y_i-(\langle w,x_i\rangle+b)|\leq \epsilon$$

 The model can be expressed only in terms of the scalar product of some training samples (support vectors), i.e. we can apply kernel functions

SVR (Soft Margin)

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$
- Sometimes it is not reasonable to find a function that fits all training samples inside a tube of radius ϵ

SVR (Soft Margin)

- Training: find the flattest function that can fit the training data inside a tube of radius ϵ
- Inference: prediction is based on: $\hat{y} = \langle w, x \rangle + b$
- Sometimes it is not reasonable to find a function that fits all training samples inside a tube of radius ϵ
- We introduce slack variables:

$$min||w||^2 + C\sum_i \xi_i$$

subject to
$$|y_i - (\langle w, x_i \rangle + b)| \le \epsilon + \xi_i$$

• We define the ϵ -insensitive loss:

$$L(x_i) = \max(0, |y_i - (\langle w, x_i \rangle + b)| - \epsilon)$$

And the optimization becomes:

$$\min\left(C\sum_{i} L(x_i) + ||w||^2\right)$$

How do we solve many class problems?

- Schemes for combining multiple binary classifiers:
- 1) One-versus-one
- 2) One-versus-all

One-versus-one

One-versus-all

How do we solve many class problems?

- Using classification methods able to handle the multi-class problem directly:
- 1) Linear (Fisher) Discriminant Analysis
- 2) Neural Networks (Lectures 7, 8, 9)
- 3) Random forests (Lecture 5)

Linear Discriminant Analysis

- Each class is approximated with a multinomial Gaussian distribution
- The optimization algoritm is based on finding a hyperplane to project the data points such that:
- > The distance among class means is maximized
- The variance of each class is minimized

Linear Discriminant Analysis

Linear Discriminant Analysis (Python)

Scikit-learn:

https://scikit-learn.org/stable/modules/svm.html#svm-classification

```
from sklearn.discriminant_analysis
    import LinearDiscriminantAnalysis

clf = LinearDiscriminantAnalysis()

clf.fit(X_train, T_train)

Y_test = clf.predict(X_test)
```

Intra-class variation

Camera angle

Illumination

Deformation

Occlusion

Confusing background

Intra-class variation

Inter-class similarity

Linear classifier for the multi-class problem

N values that indicate the scores for each class

 x_i

Linear classifier for the multi-class problem

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat **3.2**

1.3

2.2

car 5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) , where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector:

$$s = f(x_i, W)$$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat **3.2** car **5.1**

-1.7

Losses: 2.9

frog

1.3

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) , where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector:

$$s = f(x_i, W)$$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Losses: 2.9 0

Multiclass SVM loss:

Given an example (x_i, y_i) , where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector:

$$s = f(x_i, W)$$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) , where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector:

$$s = f(x_i, W)$$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$= \max(0, 2.2 - (-3.1) + 1) + \max(0, 2.5 - (-3.1) + 1)$$

$$= \max(0, 5.3) + \max(0, 5.6)$$

$$= 5.3 + 5.6$$

= 10.9

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	10.9

Multiclass SVM loss:

Given an example (x_i, y_i) , where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector:

$$s = f(x_i, W)$$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L = (2.9 + 0 + 10.9)/3$$

= **4.6**

Softmax (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

cat **3.2**

car 5.1

frog -1.7

Softmax function

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

In summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$

Softmax (Multinomial Logistic Regression)

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

unnormalized probabilities

Q: What is the min/max possible loss L_i?

cat
$$3.2$$
 exp 164.0 $normalize$ 0.13 $to L_i = -log(0.13)$ $to L_i = -log(0.13)$

unnormalized log probabilities

probabilities

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and
$$y_i = 0$$

Q: Suppose we take a datapoint and we add some small perturbations (changing its score slightly). What happens to the loss in both cases?

Binary cross-entropy loss

Binary cross-entropy (logistic) loss:

$$L_i = -(t_i \cdot log(y_i) + (1 - t_i) \cdot log(1 - y_i))$$

where t_i is the ground-truth binary label (0 or 1) of sample x_i , and y_i is the prediction for the same sample

What is the best classification method?

"No free lunch" theorem:

Any two algorithms are equivalent when their (average) performance is measured on all possible tasks

- It follows that there is no shortcut in choosing the right algorithm for you task
- Usually, you have to try several and see which one works best
- Intuition and experience will be useful

Bibliography

Advances in Computer Vision and Pattern Recognition

Radu Tudor Ionescu Marius Popescu

Knowledge Transfer between Computer Vision and Text Mining

Similarity-based Learning Approaches

John Shawe-Taylor and Nello Cristianini

for **Pattern Analysis**

CAMBRIDGE