

Spatial vs. Transform Domain Processing

Spatial Domain Input Image Output Image Processing Inverse **Transform Processing** Transform **Transform Domain**

$$F[m,n] = \sum_{y=0}^{y=(N-1)} \sum_{x=0}^{x=(M-1)} f[x,y] e^{-2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

$$f[x,y] = \frac{1}{MN} \sum_{n=0}^{n=(N-1)} \sum_{m=0}^{m=(M-1)} F[m,n] e^{2\pi j \left(\frac{mx}{M} + \frac{ny}{N}\right)}$$

Image Enhancement and Filtering

in Frequency Domain

$$I \xrightarrow{DFT} F(u,v) H(u,v) \xrightarrow{IDFT} I_{LPF}$$

$$H(u,v) = \begin{cases} 1 & \text{if } D(u,v) \le \underline{D_0} \\ 0 & \text{if } D(u,v) > \overline{D_0} \end{cases}$$

where
$$D(u,v) = [(u-M/2)^2 + (v-N/2)^2]^{1/2}$$

 $D_0 \rightarrow cut off frequency$

F (u,v) H(u,v)

Radii 10,30,60,160 and 460 \rightarrow power 87, 93.1, 95.7, 97.8 and 99..2

ILPF radius 60

ILPF radius 160

ILPF radius 30

ILPF radius 460

ILPF radius 30

Gaussian Low Pass Filters

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

Gaussian Low Pass Filters (GLPF)

...a |||||||| ||aaaaaaaa

GLPF cut off frequency 10

GLPF cut off frequency 30

GLPF cut off frequency 60

GLPF cut off frequency 160

GLPF cut off frequency 460

Comparison (ILPF, BLPF, GLPF)

Low pass filtering application

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Image Sharpening in Frequency Domain

High Pass filter can be obtained from a given low pass filter:

$$\underline{H_{hp}(u, v)} = 1 - H_{lp}(u, v)$$

Ideal High Pass Filters

$$H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \le D_0 \\ 1 & \text{if } D(u,v) > D_0 \end{cases}$$

Ideal High Pass Filters

IHPF with $D_o = 60$

IHPF with $D_0 = 160$

Gaussian High Pass Filters

$$H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

Gaussian High Pass Filters

GHPF with $D_0 = 60$

GHPF with $D_o = 160$

Laplacian in frequency domain

$$\Im\left[\frac{d^n f(x)}{dx^n}\right] = (ju)^n F(u)$$

$$\Im\left[\frac{\partial^2(f(x,y))}{\partial x^2} + \frac{\partial^2(f(x,y))}{\partial y^2}\right] = (ju)^2 F(u,v) + (jv)^2 F(u,v)$$
$$= -(u^2 + v^2) F(u,v)$$

Laplacian in frequency domain

Notch Reject filter (Notch pass filter)

Artifact removal

Filtering in frequency domain

- Band reject (Band pass filters)
- Unsharp Masking and High boost filtering
- Homomorphic filtering

$$I(x,y) = \underbrace{M(x,y)}_{L(x,y)} L(x,y)$$

$$\log I(x,y) = \underset{e}{\log M(x,y)} + \underset{e}{\log L(x,y)}$$

$$e_{I(M(x,y))}$$

Additional considerations

- - Zero padding

Recipe for transform domain processing

 $\mathsf{Given} \colon \mathsf{M} \times \mathsf{N} \mathsf{ image} \, f$

1: pad f_p to size P x Q where P = 2M, Q = 2N

2: Multiply f_p by $(-1)^{(x+y)}$

3: Compute $F_p = DFT(f_p)$

Recipe for transform domain processing

Correspondence to spatial filtering

f = rgb2gray(imread('boy.jpg'));

-1	0	1
-2	0	2
-1	0	1

 $h = [-1 \ 0 \ 1; \ -2 \ 0 \ 2; \ -1 \ 0 \ 1];$

F = fft2(double(f), 402, 402);

F_fH = fftshift(H).*fftshift(F);
ffi = ifft2(ifftshift(F fH));

H = fft2(double(h), 402, 402);

Frequency Domain vs Spatial Domain Filtering

- Any linear spatial filter
- Guide the process of spatial filter design

Related Topics

- Gabor filters
- Wavelets
- Shape descriptors

References

- G & W (4.5.1, 4.5.2, 4.5.5, 4.6 4.11)
- http://mstrzel.eletel.p.lodz.pl/mstrzel/pattern_rec/fft_ang.pdf

Binary Images $I(n,y) < \theta_1 \rightarrow 0$ the $\rightarrow 2^{55}$

Plant Phenotyping

Plant Phenotyping

Recognizing Scene Text

Document Image Analysis

Figure 2. Samples of palm leaf images

Background Subtraction

Introduction to Morphological Operators

Image – Set of Pixels

- Basic idea:
 - Object/Region = set of pixels (or coordinates of pixels)

- 0 = background
- 1 = foreground

Object = <u>set of pixels</u> (or coordinates of pixels)

Basic operations on shapes

a b c d e

FIGURE 9.1

(a) Two sets A and B. (b) The union of A and B. (c) The intersection of A and B. (d) The complement of A. (e) The difference between A and B.

From: Digital Image Processing, Gonzalez, Woods And Eddins

7255/6

Set Operations on Binary Images

Structuring Element

						15	įχ.	15						
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

shape			
pox			
disc			

se = strel(3 3, 'disc');

0	1	0
1	1	1
0	1	0

Disc

0	1	1	1	0
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
0	1	1	1	0

0	0	0	1	0	1	1	1	1	1	0	2	0	0	K
0	0	J	1	1	1	1	1	1	1	1	1	0	0	I
0	1	1	1	1	1	1	1	1	1	1	1	1	7	Ī
9	1	1	1	1	1	1	1	1	1	1	1	1	1	N
0	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	Γ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	Г
1	1	1	1	1	1	1	1	1	1	1	1	1	1	Γ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	Γ
1	1	1	1	1	1	1	1	1	1	1	1	1	1	Γ
V	1	1	1	1	1	1	1	1	1	1	1	1	1	
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	ı
0	0	1	1	1	1	1	1	1	1	1	1	7	0	ı
0	0	0	D	0	1	1	1	1	1	0	J.	0	0	Ī

Structuring Element (Kernel)

- Can have varying sizes
- Have an origin
- Usually, element values are 0,1 and none(!)
 - For thinning, other values are possible
- Empty spots in the Structuring Elements are don't care's!

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

1	$^{\circ}$	
1		0
1	1	1
1	0	1
1	1	1

Erosion

Scribe List

2018102006
2018102007
2018102008
2018102009
2018102016
2018102017