

# Report 4

CSE541 Computer Vision Section-1

# Group members:

Kushalkumar Suthar (AU2140122)

Dhruvin Prajapati (AU2140064)

Rohit Rathi (AU2140023)

Nish Parikh (AU2140039)

## **Comparison of QueryDet with RetinaNet:**

| Method    | AP[%] |
|-----------|-------|
| QueryDet  | 33.91 |
| RetinaNet | 33.95 |

**Reference:** Author links open overlay panel Onur Can Koyun a et al., "Focus-and-detect: A small object detection framework for aerial images," Signal Processing: Image Communication, https://www.sciencedirect.com/science/article/pii/S0923596522000273 (accessed Apr. 8, 2024).

>>> From the paper "Focus and detect: A small object detection framework for aerial images", we can compare QueryDet with the RetinaNet model in terms of AP values. For QueryDet, AP[%] is 33.91 and for RetinaNet, AP[%] is 33.95. So we came to the conclusion that RetinaNet will provide better results for small object detection than QueryDet, so we implemented and tested RetinaNet on the Visdrone-2019 dataset for small object detection.

### **Results of RetinaNet:**





>>> Results of RetinaNet on the Visdrone-2019 dataset, clearly show that it can only identify the objects which are not occluded or truncated. And it is not very efficient in identifying the small objects accurately.

#### **Future work:**

>>> RetinaNet's low efficiency needs to be improved. So we will try to improve its results and try to implement other more efficient models.