Maschinelles Lernen

Andre Gass

Graph Based Induction

as a Unified Learning Framework

Nach KENICHI YOSHIDA, HIROSHI MOTODA Und NITIN INDURKHYA

Ablauf

- Einführung
- Begriffe
- Graphen
- Umwandlung in Graphen
- CLiP
- Ergebnisse
- Fazit

Einführung

- Die Idee hinter GBI
 - Umformen von Problemen in Graphen
 - Allgemeine Betrachtung des Graphen
 - Modifikation des Graphen
- Vorteile dabei
 - Probleme können allgemein betrachtet werden
 - Keine spezielle Lösung mehr für verschiedene Lernprobleme
 - Ein Algorithmus für möglichst viele Aufgaben

Begriffe

- Gefärbter, gerichteter Graph
 - Graph (Knoten, Kanten)
 - Knoten sind gefärbt, eventuell mit mehreren Farben
- Muster
 - Häufig auftretende Teilgraphen
- Views
 - Mengen von Mustern

CliP - Funktionsweise

- Es werden Muster im Graph gesucht
 - Muster sind Teilgraphen, die häufig auftreten
- Aus diesen Mustern werden Views generiert
- Views
 - werden erweitert
 - Es gibt nur eine begrenzte Anzahl

Finden von Teilgraphen

- Es wird nur nach identischen Mustern gesucht
- Isomorphe Teilgraphen werden nicht betrachtet
 - Spart Zeit und ist, nach den Autoren, ausreichend
 - Alle isomorphen Teilgraphen zu finden ist NP vollständig

- Der Graph wird, unter Verwendung der Views verkleinert
 - Pattern werden zu Knoten zusammengefasst
 - Neue Knoten bekommen neue Farbe
- Ergebnis sind die Views
 - Bzw. Die enthaltenen Pattern
 - Diese müssen interpretiert werden

Finden von Teilgraphen

Fig. 1. Graph contraction by finding typical patterns.

Umwandlung in Graphen

- Klassifizierung von DNS-Sequenzen
- Makros um das Lösen von Gleichungen zu beschleunigen
- Finden von höheren Elementen in elektrischen Schaltungen

- Klassifizierung von DNS-Sequenzen
 - In Promotor und nicht-Promotor

Fig. 2. Extraction of classification rules from DNA sequence data.

Makros

- Es wird nach neuen Regeln gesucht
 - Die mehrere alte Regeln zusammenfassen
- Zu einer schnelleren Abarbeitung der Probleme z.B. In Prolog führen

Fig. 4. Learning macro rules for equation solving.

- Elektrische Schaltungen
 - Hierarchisches Modell
 - Konzepte auf höheren Ebenen sollen gefunden werden
 - Es soll problemlos möglich sein, auf die detailreichen Pläne der unteren Ebenen zurückzugreifen

CLiP

- Konstruktion von sog. Views
 - Bestehen aus Pattern, die häufig gefunden wurden
 - Bilden das Ergebnis des Algorithmus
- Pattern
 - Werden gesucht um die Views zu bilden
 - Und den Graphen zu verkleinern
 - Ergeben einen neuen Knoten im Graph
 - Der eine neue Farbe bekommt

CLiP

- Im nächsten Schritt werden die Pattern modifiziert/erweitert
 - Wieder wird gesucht, wie oft die Pattern vorkommen
 - •
- Es ist wichtig, dabei eine sinnvolle Gewichtung zu verwenden
 - Üblicherweise wird dabei die Anzahl der Knoten gegen die Anzahl der neuen Farben abgewogen
 - Jedes Pattern muss mindestens zweimal vorkommen

CLiP

- Es gibt nur eine bestimmte Anzahl von Views
 - Die besten werden verwendet, der Rest verworfen
- Views enthalten immer auch die vorherigen Pattern
 - Diese werden nur durch die Neuen ergänzt

Pattern Modification

Fig. 10. Pattern modification.

CliP

```
Algorithm CLiP(G_{in}, C, L, W)
                       G_{	ext{in}} : Colored Directed Graph C : Selection Criterion
     Input
                       L, W : integer
                       Sequence of V_i where each V_i is
     Output
                                              a Set of Typical Patterns in Gin
                 B, B_{next} : Set of Views
     Variable
     begin
           V _0 \leftarrow \emptyset; B \leftarrow \{V _0\}; i \leftarrow 1
           repeat L do
                 B_{\text{next}} \leftarrow \emptyset
                 for each V_{tmp} \in B do
                       Call Pattern Modification
                 Call Pattern Combination
                 Call View Selection
                 V_i \leftarrow \text{Best view in } B_{\text{next}} \text{ according to } C
                 i \leftarrow i + 1
           return Sequence of Vi
     end
```

CliP

```
Procedure Pattern Modification
      begin
            G_{tmp} \leftarrow Graph that is contracted from <math>G_{in}
                                               according to the patterns in V_{tmp}
            for each Temporary Pattern P in G_{tmp} do
                 V_{\text{new}} \leftarrow V_{\text{tmp}} \cup \{\text{Original Pattern of } P\}
                 Append Vnew to Bnext
      end
Procedure Pattern Combination
      begin
            for each V_{tmp1} \in B do
                 for each V_{tmp2} \in B do
                        if V_{\text{tmp1}} \neq V_{\text{tmp2}} then
                             Vnew ← Vtmp1 ∪ Vtmp2
                              Append Vnew to Bnext
      end.
Procedure View Selection
      begin
            B \leftarrow \text{Top } W views in B_{\text{next}} according to C
      end
             Fig. 9. Algorithm for extracting typical patterns.
```

Ergebnisse - Klassifizierung

- Finden von Promotoren in DNA-Sequenzen
- 106 DNS-Sequenzen
 - Bestehend aus jeweils 57 Nukleotiden
- Die Hälfte davon Promotoren

Table 1. Inductive learning: comparison with other classification methods

Method	Previously reported methods			
	ID3	SWAPI	BP	CLiP
Error/106	19	14	8	14

Ergebnisse - Makros

- Lösen von
 Gleichungen erster
 Ordnung
- Vorher 100 Sekunden
- Nachher 88
 Sekunden CPU-Zeit

Fig. 12. Use of learned macro operators in equation solving.

Ergebnisse - Schaltungen

Simulation einer NMOS-Schaltung

Nach einer Anpassung der Gewichtung:

Table 3. List of generated concepts in the hierarchical knowledge base

No.	Generated Concept	Comment	
1.	Pull Up Transistor	Circuit made up of pure transistor, capacitor, and power source	
2.	Pull Down Transistor	Circuit made up of pure transistor, capacitor, and ground	
3.	Analog NOT	Circuit made up of pull up transistor and pull down transistor Inference table contains analog element	
4.	Analog NOR	Circuit made up of pull up transistor and 2 pull down transistors Inference table contains analog element	
5.	Digital NOT	Similar to Analog NOT Inference table does not contain analog element	
6.	Digital NOR	Similar to Analog NOR	
7.	Carry Chain	Inference table does not contain analog element Circuit which calculates carry	

Fazit

- GBI vereinfacht bestimmte Probleme erheblich
- Erzeugt in kurzer Zeit sinnvolle Ergebnisse
- Hat das Potential deutlich optimiert zu werden
 - Isomorphe Teilgraphen

Quellen

 Kenichi Yoshida, Hiroshi Motoda, Nitin Indurkhya: Graph-based induction as a unified learning framework. Applied Intelligence 4(3): 297-316 (1994)