Relatório Massa-Mola

FISA75 - 2023.1

Kaio Carvalho; Vinícius Pinto; Matheus Rheinschmitt; Elias Neto Entregue a Eliel Gomes da Silva Neto, professor da disciplina Elementos de Eletromagnetismo e Circuitos Elétricos

I.	Introdução
II.	Experimentos
Exp	erimento 1:
Exp	erimento 2:

Experimento 3:

Para ambos experimentos 1 e 2, que são dependentes da massa, foram medidas as massas do suporte e de cada cilindro rotulado (1), de acordo com a tabela:

Objeto	Massa (kg)	Objeto	Massa (kg)
Suporte	0,0127	Cilindro 1	0,0101
Cilindro I	0,0501	Cilindro 2	0,0102
Cilindro II	0,0502	Cilindro 3	0,0102
Cilindro III	0,0498	Cilindro 4	0,0100

Todas as massas foram medidas numa balança digital com precisão de 0,0001 kg.

III. RESULTADOS

III.A. Experimento 1

Foi medida posição da extremidade livre da mola apenas com o suporte pendurado e para cada combinação de cilindros pendurados na mola, foi medida a nova posição da extremidade livre da mola.

Posição da extremidade livre da mola apenas com o suporte pendurado (2) = **0,210** m. A posição foi medida utilizando uma régua milimetrada. Pela dificuldade de medição, consideramos precisão de **0,002** m.

O objetivo do experimento é obter a constante elástica K da mola. Uma abordagem é obter um K_i para cada medida i feita no experimento e calcular a média dos seus valores. Isso é possível já que $F_{el} = -Kx$ e portanto precisamos apenas da força exercida na mola (força peso) e do seu deslocamento com relação a posição de relaxamento, ambas grandezas calculáveis a partir de uma única medida.

Considere uma única medida, com m sendo a massa total anexada à mola, p a posição da extremidade livre da mola carregando a massa m e p_0 a posição de relaxamento da mola. O deslocamento x é dado por $x = p - p_0$ e a força peso

 $F_n = mg$, onde g é a aceleração da gravidade. E portanto:

$$F_{el} = -Kx \implies -F_p = -Kx \implies F_p = Kx \implies mg = K(p - p_0) \implies K = \frac{mg}{p - p_0}$$

Propagando os desvios, temos:

$$\Delta K = \left| \frac{\partial K}{\partial m} \middle| \Delta m \right. + \left. \left| \frac{\partial K}{\partial g} \middle| \Delta g \right. + \left. \left| \frac{\partial K}{\partial p} \middle| \Delta p \right. + \left. \left| \frac{\partial K}{\partial p_0} \middle| \Delta p_0 \right. = \frac{g}{p - p_0} \Delta m \right. + \left. \frac{m}{p - p_0} \Delta g \right. + \left. \frac{mg}{(p - p_0)^2} \Delta p \right. + \left. \frac{mg}{(p - p_0)^2} \Delta p_0 \right. + \left. \frac{mg}{(p - p_0)^2}$$

Observe que m e x são proporcionais, já que $m = \frac{K}{g}x$. Desta forma, podemos considerar a posição de relaxamento da mola como sendo a própria medida (2), desconsiderando a massa do suporte já anexada. Entretanto, perceba que como cada medida de massa foi feita utilizando uma combinação de cilindros, m é a soma das massas dos cilindros envolvidos, e portanto $\Delta m = n \times 0$, 0001 kg, onde n é a quantidade de cilindros utilizados na combinação.

Utilizamos $g = 9,7836 \text{ m/s}^2$ para os cálculos, de acordo com a referência [1], com altitude 50m e latitude 15°, valores aproximados para o local do experimento com base na ferramenta Google Earth (disponível em https://www.google.com.br/intl/pt-BR/earth/). Devido às aproximações feitas, consideramos $\Delta g = 0,003 \text{ m/s}^2$.

A tabela seguinte mostra os valores de F_p , x e K obtidos. São constantes $p_0 = 0$, 210 m; $\Delta p_0 = \Delta p = 0$, 002 m e $\Delta x = 0$, 004 m.

	Experimento 1 (constante elástica)									
m (kg)	Δm (kg)	p (m)	x (m)	$F_p(N)$	$\Delta F_p(N)$	K (N/m)	Δ <i>K</i> (N/m)			
0,0101	0,0001	0,221	0,011	0,099	0,002	9	4			
0,0203	0,0002	0,229	0,019	0,199	0,003	10	3			
0,0305	0,0003	0,239	0,029	0,298	0,004	10	2			
0,0405	0,0004	0,250	0,040	0,396	0,005	10	2			
0,0501	0,0001	0,260	0,050	0,490	0,002	9,8	0,9			
0,0602	0,0002	0,270	0,060	0,589	0,003	9,8	0,7			
0,0704	0,0003	0,279	0,069	0,689	0,004	10,0	0,7			
0,0806	0,0004	0,291	0,081	0,789	0,005	9,7	0,6			
0,0906	0,0005	0,299	0,089	0,886	0,006	10,0	0,6			
0,1003	0,0002	0,309	0,099	0,981	0,003	9,9	0,5			
0,1104	0,0003	0,318	0,108	1,080	0,004	10,0	0,5			
0,1206	0,0004	0,329	0,119	1,180	0,005	9,9	0,4			
0,1308	0,0005	0,339	0,129	1,280	0,006	9,9	0,4			
0,1408	0,0006	0,348	0,138	1,378	0,007	10,0	0,4			
0,1501	0,0003	0,356	0,146	1,469	0,004	10,1	0,3			

Fazendo a média das constantes elásticas, obtemos K = 9,914448412 N/m, com desvio padrão de 0,3153015796 N/m. Majorando o desvio, $K = 9,9 \pm 0,4$ N/m.

Outra abordagem para se encontrar K é obter a curva de ajuste *linear* do gráfico **Força** × **Deslocamento** dos pontos medidos e obter K como o coeficiente angular desta reta. Neste caso obtemos $K = 9,95333804 \pm 0,02521452$ N/m. Majorando o desvio, $K = 9,95 \pm 0,03$ N/m.

Utilizando o teste Z, vamos comparar os dois valores de K obtidos. Seja K_t e K_c as constantes encontradas na tabela e na curva, respectivamente. Obtemos

$$Z = \frac{\left|K_t - K_c\right|}{\sqrt{\Delta K_t^2 + \Delta K_c^2}} = \frac{\left|9.914448412 - 9.95333804\right|}{\sqrt{0.3153015796^2 + 0.02521452^2}} = \frac{0.038889628}{0.3163081695} = 0,1229485412$$

Como Z < 1, as medidas são equivalentes.

III.B. EXPERIMENTO 2

Para cada valor de massa (combinação de cilindros), foi gravado um vídeo da oscilação efetuada pela mola. Posteriormente, cada vídeo foi analisado, medindo-se o frame inicial e o frame final referente ao tempo de 10 oscilações.

A identificação de cada frame tem um erro associado, devido à compressão associada ao formato, além da precisão do programa utilizado. Observando e manipulando o programa, concluímos que há uma variação de até 3 frames. A frequência de frames do vídeo foi identificada pelo programa como 30,029 fps (frames por segundo). Como se trata de uma medida digital, consideramos o desvio como 0,001 fps.

O objetivo do experimento é observar a relação da massa total m com período de oscilação T, além de calcular a constante elástica da mola K utilizando estes dados. Considere uma única medida, sendo f_0 o frame inicial, f o frame final e fq a frequência de frames (fps). Para se obter o tempo t de um grupo de oscilações em segundos, realizamos a conversão $t=\frac{f-f_0}{fq}$. E então obtemos $T=\frac{t}{n}$, onde n é a quantidade de oscilações observadas. Propagando os desvios, temos:

$$\Delta t = \left| \frac{\partial t}{\partial f} \right| \Delta f + \left| \frac{\partial t}{\partial f_0} \right| \Delta f_0 + \left| \frac{\partial t}{\partial f q} \right| \Delta f q = \frac{1}{fq} \Delta f + \frac{1}{fq} \Delta f_0 + \frac{f - f_0}{fq^2} \Delta f q$$

$$\Delta T = \frac{1}{n} \Delta t$$

De acordo com a teoria, podemos utilizar a relação $T=2\pi\sqrt{\frac{m}{K}}$ para obter a constante elástica, fazendo $K=4\pi^2\frac{m}{T^2}$. Portanto, é possível obter um K_i para cada medida feita e calcular a média dos valores, como no experimento anterior. Propagando os desvios, temos:

$$\Delta K = \left| \frac{\partial K}{\partial m} \right| \Delta m + \left| \frac{\partial K}{\partial T} \right| \Delta T = 4\pi^2 \frac{1}{T^2} + 8\pi^2 \frac{m}{T^3} = 12\pi^2 \left(\frac{m}{T^3} + \frac{1}{T^2} \right)$$

Diferente do experimento anterior, aqui a massa do suporte deve ser considerada. Temos que m é a soma das massas dos cilindros e do suporte. Portanto $\Delta m = (k+1) \times 0,0001$ kg, onde k é a quantidade de cilindros utilizados na combinação.

A tabela seguinte mostra os valores de T e K obtidos. São constantes n=10, $\Delta f_0=\Delta f=3$ frames, fq=30,029 fps e $\Delta fq=0,001$ fps.

	Experimento 2 (período e constante elástica)									
$f - f_0$ (frames)	m (kg)	Δm (kg)	T (s)	ΔT (s)	K (N/m)	Δ <i>K</i> (N/m)				
95	0,0228	0,0002	0,32	0,02	9	2				
112	0,0330	0,0003	0,37	0,02	9	2				
127	0,0432	0,0004	0,42	0,02	10	1				
140	0,0532	0,0005	0,47	0,02	10	1				
195	0,0933	0,0005	0,65	0,02	8,7	0,6				
203	0,1130	0,0003	0,68	0,02	9,8	0,6				
210	0,1231	0,0004	0,70	0,02	9,9	0,6				
220	0,1333	0,0005	0,73	0,02	9,8	0,6				
226	0,1435	0,0006	0,75	0,02	10,0	0,6				
234	0,1535	0,0007	0,78	0,02	10,0	0,6				
241	0,1628	0,0004	0,80	0,02	10,0	0,6				

Fazendo a média das constantes elásticas, obtemos K = 9,614043474 N/m, com desvio padrão de 0,4251959772 N/m. Majorando o desvio, $K = 9,6\pm0,5$.

Da relação $T=2\pi\sqrt{\frac{m}{K}}$, também derivamos $m=\frac{K}{4\pi^2}T^2$. Observe que m é proporcional a T^2 . Portanto há uma outra abordagem para se encontrar K, utilizando uma curva de ajuste $Y=aX^2$ no gráfico **Massa** \times **Período**. Desta forma, temos que $a=\frac{K}{4\pi^2}$ \Rightarrow $K=4\pi^2a$.

No seguinte gráfico, gerado utilizando a ferramenta MyCurveFit (disponível em https://mycurvefit.com/), foi calculado o parâmetro de ajuste $a=0,2483591\pm0,00279$. Aplicando na equação e propagando o desvio, temos $K=4\pi^2\times0,2483591\approx9,80482426\pm0,11014478\,\mathrm{N/m}$. Majorando o desvio, obtemos $K=9.8\pm0,2\,\mathrm{N/m}$.

Chamaremos de K_{t1} e K_{t2} os valores obtidos nas tabelas, no experimento 1 e 2 respectivamente. Analogamente, sejam K_{c1} e K_{c2} os obtidos nas curvas. Utilizando o teste Z, vamos comparar esses valores obtidos dois a dois. Segue a tabela:

Medida 1	Medida 2	Valor de Z	Equivalentes?
K_{t1}	K_{t2}	0, 5675025346	Sim
K_{t1}	K _{c1}	0, 1229485412	Sim
K_{t1}	K _{c2}	0, 3282293253	Sim
K _{t2}	K _{c1}	0, 7965728069	Sim
K_{t2}	K _{c2}	0, 4343522515	Sim
K _{c1}	K _{c2}	1, 314350999	Possivelmente

O resultado das comparações mostra que os valores calculados de K são consistentes entre si.

III.c. Experimento 3

Utilizando uma combinação de cilindros fixa, foi gravado um vídeo da oscilação efetuada pela mola. O vídeo foi analisado, medindo-se para cada frame, a posição da extremidade livre da mola.

Houve maior dificuldade de medição da posição em um dado frame, causada por fatores como borrão de movimento e o ângulo da câmera. Portanto, consideramos um desvio maior, de 0.01 m. E assim como no experimento anterior, a medida do frame pode variar em até 3 unidades e a frequência de frames é 30.029 ± 0.001 fps.

Vamos obter um gráfico **Deslocamento** × **Tempo**, para que se possa calcular a velocidade e aceleração em cada ponto, além de obter os parâmetros da oscilação **amplitude**, **velocidade angular** (ω) e a **fase** (ϕ).

Para uma dada medida, sejam f o frame, x a posição e fq a frequência de frames. Como o vídeo foi analisado frame a frame, os valores de f são sequenciais: $f_0=0$, ..., $f_n=n$, portanto omitiremos seus valores na tabela. O tempo é dado por $t=\frac{f}{fq}$, e portanto $\Delta t=\frac{1}{fq}\Delta f+\frac{f}{fq^2}\Delta fq$. São constantes $fq=30,029\pm0,001$ fps, $\Delta f=3$ frames e $\Delta x=0,02$ m. Segue a tabela com os valores obtidos, com desvios majorados:

Experimento 3							
<i>x</i> (m)	<i>t</i> (s)	Δt (s)					
0,38	0,0	0,1					
0,37	0,0	0,1					
0,35	0,1	0,1					
0,33	0,1	0,1					
0,32	0,1	0,1					
0,29	0,2	0,1					
0,28	0,2	0,1					
0,26	0,2	0,1					
0,26	0,3	0,1					
0,25	0,3	0,1					

0,25	0,3	0,1
0,26	0,4	0,1
0,27	0,4	0,1
0,29	0,4	0,1
0,30	0,5	0,1
0,33	0,5	0,1
0,34	0,5	0,1
0,36	0,6	0,1
0,37	0,6	0,1
0,37	0,6	0,1
0,37	0,7	0,1
0,36	0,7	0,1
0,35	0,7	0,1
0,33	0,8	0,1
0,32	0,8	0,1
0,30	0,8	0,1
0,28	0,9	0,1
0,26	0,9	0,1
0,25	0,9	0,1
0,25	1,0	0,1
0,25	1,0	0,1
0,25	1,0	0,1
0,27	1,1	0,1
0,28	1,1	0,1
0,30	1,1	0,1
0,31	1,2	0,1
0,34	1,2	0,1
0,35	1,2	0,1
0,37	1,3	0,1
0,37	1,3	0,1
0,38	1,3	0,1
0,37	1,4	0,1
0,36	1,4	0,1
0,34	1,4	0,1
0,32	1,5	0,1
0,30	1,5	0,1
0,28	1,5	0,1
0,27	1,6	0,1
0,26	1,6	0,1

0,25	1,6	0,1
0,25	1,7	0,1
0,26	1,7	0,1

Segue o gráfico **Deslocamento** × **Tempo**:

De acordo com a teoria, a função que descreve o movimento da oscilação da mola ao longo do tempo é dada por $x(t) = A\cos(\omega t + \varphi) + c$, A é a amplitude, ω é a velocidade angular, φ é a fase e c uma constante que desloca o eixo onde a oscilação ocorre. Obtemos os seguintes parâmetros para uma curva de ajuste $Y = A\cos(\omega X + \varphi) + c$.

 $A = 0,06443257 \pm 0,001138 \,\mathrm{m}$

 $\varphi = 0,3343957 \pm 0,05695$

 $\omega = 9,12335 \pm 0,181$

 $c = 0,3132908 \pm 0,001464 \,\mathrm{m}$

Sejam x_i e t_i o deslocamento e o tempo no ponto i. Utilizando o método de derivação numérica, calculamos a velocidade

$$v_i = \frac{x_{i+\varepsilon} - x_{i-\varepsilon}}{t_{i+\varepsilon} - t_{i-\varepsilon}}$$

Para $i < \varepsilon$, substitui-se $i - \varepsilon$ por i e para $i > n - \varepsilon$, substitui-se $i + \varepsilon$ por i. No relatório anterior (Queda Livre) discutimos em mais detalhes o papel do parâmetro ε , que está relacionado com a precisão e acurácia dos valores finais. Basicamente, quanto maior é o valor de ε , maior é a precisão, porém menor é a acurácia.

É importante comentar que os valores de tempo aqui mostrados são de acordo com o desvio majorado, e não os dados originais obtidos. Como o cálculo da velocidade usou os dados originais, podem haver valores diferentes para um mesmo instante de tempo (aproximado). Variamos o valor de ε entre 2 e 5, obtendo os seguintes valores para velocidade:

t (s)	ε = 2		ε =	= 3	ε =	: 4	ε =	5
	υ	Δυ	v	Δυ	v	Δv	v	Δυ
0,0	0	2	0	2	-0,4	0,9	-0,5	0,8
0,0	-1	3	-1	2	-0,6	2	-0,6	0,8
0,1	-0,4	0,9	-1	2	-0,6	1	-0,5	0,8

0,1	-1	2	-0,5	0,6	-0,5	1	-0,4	0,7
0,1	-1	1	-0,5	0,7	-0,4	0,5	-0,4	0,7
0,2	-1	1	-0,5	0,6	-0,5	0,5	-0,4	0,3
0,2	-0,5	0,9	-0,4	0,6	-0,4	0,4	-0,3	0,3
0,2	-0,3	0,7	-0,3	0,5	-0,3	0,2	-0,2	0,3
0,3	-0,2	0,5	-0,2	0,3	-0,2	0,3	-0,1	0,2
0,3	0,0	0,3	0,0	0,2	0,0	0,1	-0,04	0,09
0,3	0,1	0,4	0,1	0,3	0,1	0,2	0,1	0,2
0,4	0,3	0,6	0,2	0,4	0,2	0,3	0,2	0,2
0,4	0,4	0,8	0,4	0,6	0,3	0,4	0,3	0,3
0,4	1,	1	0,4	0,6	0,4	0,4	0,3	0,3
0,5	1	1	0,5	0,7	0,4	0,5	0,4	0,3
0,5	1	2	0,5	0,7	0,4	0,5	0,4	0,3
0,5	1	1	0,4	0,6	0,4	0,4	0,3	0,3
0,6	0,3	0,8	0,3	0,5	0,3	0,3	0,2	0,3
0,6	0,2	0,6	0,2	0,3	0,2	0,3	0,1	0,2
0,6	0,0	0,3	0,0	0,2	0,0	0,1	0,04	0,09
0,7	-0,2	0,5	-0,1	0,3	-0,1	0,2	-0,1	0,2
0,7	-0,3	0,7	-0,3	0,4	-0,2	0,3	-0,2	0,2
0,7	-0,4	0,9	-0,4	0,6	-0,3	0,4	-0,3	0,3
0,8	-1	1	-0,5	0,6	-0,4	0,5	-0,4	0,3
0,8	-1	1	-0,5	0,7	-0,5	0,5	-0,4	0,3
0,8	-1	1	-0,5	0,6	-0,4	0,5	-0,4	0,3
0,9	-1	1	-0,4	0,6	-0,4	0,4	-0,3	0,3
0,9	-0,4	0,8	-0,3	0,5	-0,3	0,4	-0,2	0,3
0,9	-0,2	0,6	-0,2	0,4	-0,2	0,3	-0,2	0,2
1,0	-0,1	0,3	0,0	0,2	0,0	0,2	-0,05	0,09
1,0	0,1	0,4	0,1	0,3	0,1	0,2	0,1	0,1
1,0	0,3	0,5	0,2	0,4	0,2	0,3	0,2	0,2
1,1	0,4	0,8	0,3	0,5	0,3	0,4	0,3	0,3
1,1	0,4	0,9	0,5	0,6	0,4	0,4	0,3	0,3
1,1	0	1	0,5	0,7	0,4	0,5	0,4	0,3
1,2	0	1	0,5	0,7	0,5	0,5	0,4	0,3
1,2	0	1	0,5	0,6	0,4	0,4	0,3	0,3
1,2	0,5	0,9	0,4	0,5	0,3	0,4	0,3	0,3
1,3	0,3	0,7	0,3	0,4	0,2	0,3	0,2	0,2
1,3	0,1	0,4	0,1	0,2	0,1	0,2	0,1	0,2
1,3	-0,1	0,4	-0,1	0,2	-0,1	0,2	-0,02	0,08
1,4	-0,3	0,6	-0,2	0,4	-0,2	0,3	-0,2	0,2

1,4	-0,4	0,8	-0,4	0,5	-0,3	0,4	-0,3	0,3
1,4	-1	1	-0,5	0,6	-0,4	0,4	-0,3	0,3
1,5	-1	1	-0,5	0,7	-0,5	0,5	-0,4	0,3
1,5	-1	1	-0,5	0,7	-0,4	0,6	-0,4	0,3
1,5	-1	1	-0,4	0,6	-0,4	0,4	-0,3	0,3
1,6	-0,4	0,8	-0,4	0,5	-0,3	0,4	-0,5	0,8
1,6	-0,2	0,6	-0,2	0,4	-0,5	1	-0,5	0,8
1,6	-0,1	0,4	-0,3	0,9	-0,4	0,8	-0,4	0,7
1,7	-0,1	0,6	-0,2	0,6	-0,2	0,6	-0,3	0,6
1,7	0,0	0,5	0,0	0,1	-0,1	0,4	-0,2	0,4

Derivando $x(t) = A\cos(\omega t + \varphi) + c$, obtemos $v(t) = -A\omega\sin(\omega t + \varphi)$. Seguem os gráficos de v, ajustados pela curva de ajuste correspondente, para cada valor de ε .

Para $\epsilon = 2$, obtemos A = 0, 06444896 \pm 0, 002484, $\varphi = 0$, 5508229 \pm 0, 0801 e $\omega = 8$, 760964 \pm 0, 2085.

Segue a tabela comparando os valores encontrados no gráfico do deslocamento:

	Valor no deslocamento	Valor na veloc. com $\epsilon = 2$	Z	Equivalentes?
Α	$0,06443257 \pm 0,001138$	0,06444896 ± 0,002484	0,0059986748	Sim
φ	0,3343957 ± 0,05695	0,5508229 ± 0,0801	2, 202108598	Possivelmente
ω	9, 12335 ± 0, 181	8,760964 ± 0,2085	1, 312499642	Possivelmente

Para $\varepsilon = 3$, obtemos A = 0, 0625272 \pm 0, 002797, $\varphi = 0$, 650559 \pm 0, 09526 e $\omega = 8$, 559148 \pm 0, 2474.

Segue a tabela comparando os valores encontrados no gráfico do deslocamento:

	Valor no deslocamento	Valor na veloc. com $\epsilon = 3$	Z	Equivalentes?
Α	$0,06443257 \pm 0,001138$	$0,0625272 \pm 0,002797$	0,6309914926	Sim
φ	0,3343957 ± 0,05695	0,650559 ± 0,09526	2, 848691429	Possivelmente
ω	9, 12335 ± 0, 181	8,559148 ± 0,2474	1,840539677	Possivelmente

Para $\epsilon = 4$, obtemos A = 0, 05793608 \pm 0, 003277, $\varphi = 0$, 7017956 \pm 0, 1212 e $\omega = 8$, 490238 \pm 0, 3132.

Segue a tabela comparando os valores encontrados no gráfico do deslocamento:

	Valor no deslocamento	Valor na veloc. com $\epsilon = 4$	Z	Equivalentes?
A	$0,06443257 \pm 0,001138$	$0,05793608 \pm 0,003277$	1,872741639	Possivelmente
φ	0,3343957 ± 0,05695	0,7017956 ± 0,1212	2,743567677	Possivelmente
ω	9, 12335 ± 0, 181	8,490238 ± 0,3132	1,750189145	Possivelmente

Para $\varepsilon = 5$, obtemos A = 0, 05246612 \pm 0, 00391, $\varphi = 0$, 800575 \pm 0, 1613 e $\omega = 8$, 271158 \pm 0, 4176.

Segue a tabela comparando os valores encontrados no gráfico do deslocamento:

	Valor no deslocamento	Valor na veloc. com $\epsilon = 5$	Z	Equivalentes?
A	$0,06443257 \pm 0,001138$	0,05246612 ± 0,00391	0, 123480152	Sim
φ	0,3343957 ± 0,05695	0,800575 ± 0,1613	2,725263245	Possivelmente
ω	9, 12335 ± 0, 181	8,271158 ± 0,4176	1,872380836	Possivelmente

Com os valores de velocidade, vamos calcular a aceleração usando o mesmo método de derivação numérica:

$$a_{i} = \frac{v_{i+\varepsilon} - v_{i-\varepsilon}}{t_{i+\varepsilon} - t_{i-\varepsilon}}$$

Como os resultados de equivalência não variaram muito com os diferentes valores de ϵ , vamos utilizar as velocidades obtidas com $\epsilon=5$ para calcular as acelerações, com o objetivo de manter a melhor precisão. Para a aceleração, mantemos variando ϵ entre 2 e 5.

t (s)	ε =	= 2	ε =	= 3	ε =	: 4	ε =	: 5
	а	Δa	а	Δa	а	Δa	а	Δα
0,0	0	30	0	20	0	20	1	7
0,0	0	30	0	20	0	20	1	8
0,1	0	20	0	20	0	20	2	9
0,1	0	20	1	6	1	9	2	8
0,1	0	10	2	7	1	5	2	7
0,2	1	9	2	7	2	5	2	4
0,2	2	9	2	6	2	6	2	5
0,2	3	7	3	7	2	5	3	5
0,3	3	9	3	6	3	6	2	5
0,3	3	8	3	6	3	5	2	5
0,3	3	8	3	6	3	5	2	4
0,4	3	7	3	5	2	4	2	3

0,4	2	7	2	4	2	3	1	3
0,4	1	6	1	5	1	2	1	2
0,5	0	4	0	5	0	2	0,2	0,7
0,5	-1	5	-1	5	-1	2	-1	2
0,5	-2	6	-2	4	-1	3	-1	2
0,6	-2	7	-2	5	-2	4	-2	3
0,6	-3	8	-3	6	-3	4	-2	3
0,6	-3	8	-3	6	-3	5	-2	4
0,7	-3	8	-3	6	-3	5	-2	4
0,7	-3	8	-3	5	-2	4	-2	3
0,7	-2	7	-2	4	-2	3	-1	3
0,8	-1	6	-1	4	-1	2	-1	2
0,8	0	5	0	3	0	2	-0,3	0,7
0,8	1	5	1	3	1	2	0,5	1
0,9	2	6	2	4	1	3	1	2
0,9	2	7	2	5	2	4	2	3
0,9	3	7	3	6	2	4	2	3
1,0	3	8	3	6	3	5	2	4
1,0	3	8	3	6	3	5	2	4
1,0	3	8	3	5	2	3	2	3
1,1	2	7	2	5	2	3	2	3
1,1	2	6	1	4	1	3	1	2
1,1	1	5	0	3	0	2	0,4	0,8
1,2	-1	5	-1	3	0	2	-0,2	0,7
1,2	-2	6	-1	4	-1	3	-1	2
1,2	-2	7	-2	4	-2	4	-2	3
1,3	-3	7	-3	6	-2	4	-2	3
1,3	-3	8	-3	6	-3		-2	4
1,3	-3	8	-3	6	-3	5	-2	4
1,4	-3	8	-3	5	-2	4	-2	3
1,4	-3	7	-2	5	-2	4	-2	5
1,4	-2	6	-2	4	-2	5	-2	4
1,5	-1	5	-2	7	-2	5	-1	4
1,5	0	10	-1	6	-1	4	-1	3
1,5	-1	9	0	5	0	3	0	2
1,6	0	8	0	5	1	3	-2	8
1,6	0	7	1	5	0	10	-1	8
1,6	0	20	0	20	0	8	0	6
1,7	0	30	0	20	0	7	0	6

1,7	0	30	0	20	0	20	1	4,8
-----	---	----	---	----	---	----	---	-----

Derivando $v(t) = -A \omega sen(\omega t + \varphi)$, obtemos $a(t) = -A \omega^2 cos(\omega t + \varphi)$. Seguem os gráficos de a, ajustados pela curva de ajuste correspondente, para cada valor de ε .

Para $\epsilon = 2$, obtemos A = 0, 06271644 \pm 0, 007214, $\varphi = 1$, 338544 \pm 0, 1112 e $\omega = 7$, 140653 \pm 0, 3014.

	Valor no deslocamento	Valor na aceleração com $\epsilon=2$	Z	Equivalentes?
A	$0,06443257 \pm 0,001138$	0,06271644 ± 0,007214	0, 03240441789	Sim
φ	0,3343957 ± 0,05695	1,338544 ± 0,1112	8, 037368849	Não
ω	9, 12335 ± 0, 181	7, 140653 ± 0, 3014	5, 639517048	Não

Para $\epsilon = 3$, obtemos A = 0, 066643681 \pm 0, 007493, $\varphi = 1$, 535245 \pm 0, 1134 e $\omega = 6$, 735473 \pm 0, 2963.

	Valor no deslocamento	Valor na aceleração com $\epsilon=3$	Z	Equivalentes?
Α	$0,06443257 \pm 0,001138$	0,066643681 ± 0,007493	0, 04172027261	Sim
φ	0,3343957 ± 0,05695	1,535245 ± 0,1134	9, 463177081	Não
ω	9, 12335 ± 0, 181	6,735473 ± 0,2963	6,877330526	Não

Para $\epsilon = 4$, obtemos A = 0, 06551669 \pm 0, 005859, $\varphi = 1$, 626894 \pm 0, 09175 e $\omega = 6$, 542962 \pm 0, 2353.

	Valor no deslocamento	Valor na aceleração com $\epsilon=4$	Z	Equivalentes?
Α	$0,06443257 \pm 0,001138$	0,06551669 ± 0,005859	0, 02053559009	Sim
φ	0,3343957 ± 0,05695	1,626894 ± 0,09175	11,96892887	Não
ω	9, 12335 ± 0, 181	6,542962 ± 0,2353	8,692211772	Não

Para $\varepsilon = 4$, obtemos A = 0, 06843269 \pm 0, 0041, $\varphi = 1$, 792738 \pm 0, 0636 e $\omega = 6$, 192545 \pm 0, 1577.

	Valor no deslocamento	Valor na aceleração com $\epsilon=5$	Z	Equivalentes?
Α	$0,06443257 \pm 0,001138$	$0,06843269 \pm 0,0041$	0, 07601022907	Sim
φ	0,3343957 ± 0,05695	1,792738 ± 0,0636	11,96892887	Não
ω	9, 12335 ± 0, 181	6, 192545 ± 0, 1577	12,2084779	Não

IV. Conclusão

V. Referências

[1] LOPES, Wilson. **Variação da aceleração da gravidade com a latitude e altitude.** Universidade de Guarulhos - SP. 2008. 8 páginas. Disponível em: https://physika.info/site/documents/9106-27243-1-PB.pdf