Module 10. Variation, Quality, Monitoring

Part I

QUALITY:

Reality:

- One day someone will design and make a better quality part for less.
- Customers want more (better quality, faster delivery, lower cost)

https://www.youtube.com/watch?v=AktHnnA9QIM

https://www.youtube.com/watch?v=D4qnl19axAU

THIS MODULE REVIEWS:

- > Statistical Process Control
 - > Control Chart
 - Process Capability Index
- > Six-Sigma
- Kaizen
- > Lean Manufacturing
- Monitoring (an Example)

STATISTICAL PROCESS CONTROL

Quality, Variation, Tolerance

STATISTICAL PROCESS CONTROL

Quality, Variation, Tolerance

STATISTICAL PROCESS CONTROL

Quality, Variation, Tolerance

Diameter of 100 bolts were measured.

Number of Observation vs Diameter (Histogram)

NORMAL DISTRIBUTION

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}~e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})}$$

 μ = mean

σ = standard deviation

 σ^2 = variance

Assumptions for a normal distribution:

- 1. Small errors are more likely than large errors.
- 2. Positive and negative errors are equally likely.
- 3. The most likely of several measurements is their average.

NORMAL DISTRIBUTION

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}~e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x})}$$

 μ = mean

 σ = standard deviation

 σ^2 = variance

Assumptions for a normal distribution:

- 1. Small errors are more likely than large errors.
- 2. Positive and negative errors are equally likely.
- 3. The most likely of several measurements is their average.

SOURCE OF VARIATION:

- The process: change of setting
- Material: raw material variation, defects
- Equipment: tool wear, maintenance, calibration, vibration
- Operator: distraction, new operator with less skill, tiredness
- Environment: Humidity, temperature
- Measurement: Capability of measurement tool

If we change the Setup from climb to counter in a side milling operation, do we get a smaller or larger part?

If we change the Setup from climb to counter in a side milling operation, do we get a smaller or larger part?

Resultant forces on the tool are bigger, so The tool deflects more, as a result The output dimension might be larger!

100 parts were produced during a day-work by machining. Below is the inner diameter of the parts. What might have been gone wrong in each case?

100 parts were produced during a day-work by machining. Below is the inner diameter of the parts. What might have been gone wrong in each case?

Step 1. Choose a frequency of sampling, it depends on:

Cost of measurement, Importance of defects, Likelihood of unexpected disturbance, Experience

Step 1. Choose a frequency of sampling, it depends on:

Cost of measurement, Importance of defects, Likelihood of unexpected disturbance, Experience

- Average Chart
- Range Chart

Step 1. Choose a frequency of sampling, it depends on:

Cost of measurement, Importance of defects, Likelihood of unexpected disturbance, Experience

- Average Chart
- Range Chart

Step 1. Choose a frequency of sampling, it depends on:

Cost of measurement, Importance of defects, Likelihood of unexpected disturbance, Experience

- Average Chart
- Range Chart

Step 1. Choose a frequency of sampling, it depends on:

Cost of measurement, Importance of defects, Likelihood of unexpected disturbance, Experience

- Average Chart
- Range Chart

Step 1. Choose a frequency of sampling, it depends on:

Cost of measurement, Importance of defects, Likelihood of unexpected disturbance, Experience

- Average Chart
- Range Chart

PROCESS CAPABILITY:

PROCESS CAPABILITY:

A process capability index is defined by:

$$C_p = \frac{USL - LSL}{6\sigma}$$

Setting C_p is not an easy task! It depends on judging what is good enough! Also, it depends on the knowledge of the "cost of defects" in our product.

PROCESS CAPABILITY:

Lower control limit (LSL)

Upperspecification limit (USL)

Uppercontrol limit (UCL)

In Control and Capable (Variation from common cause reduced)

In Control but not Capable (Variation from common cause excessive)

A process capability index is defined by:

$$C_p = \frac{USL - LSL}{6\sigma}$$

Setting C_p is not an easy task! It depends on judging what is good enough! Also, it depends on the knowledge of the "cost of defects" in our product.

	Recommended C _p	Defects/1000000
Existing process (Okay)	1.33	63
New process (Improved)	1.5	8
Parts which safety is	1.67	6
critical		
Absolute Quality	2	3.4

Lower specification

DEFECTS IN TERMS OF NUMBER OF STANDARD DEVIATIONS:

Standard Deviation	C_p	Defective Parts/1000000
$\pm 1\sigma$	0.333	317400
$\pm 2\sigma$	0.667	45600
$\pm 3\sigma$	1.333	63
$\pm 4\sigma$	1.5	8
$\pm 5\sigma$	1.667	6
$\pm 6\sigma$	2	3.4

DEFECTS IN TERMS OF NUMBER OF STANDARD DEVIATIONS:

Standard Deviation	C_p	Defective Parts/1000000
$\pm 1\sigma$	0.333	317400
$\pm 2\sigma$	0.667	45600
$\pm 3\sigma$	1.333	63
$\pm 4\sigma$	1.5	8
$\pm 5\sigma$	1.667	6
$\pm 6\sigma$	2	3.4

DEFECTS IN TERMS OF NUMBER OF STANDARD DEVIATIONS:

Standard Deviation	C_p	Defective Parts/1000000	
$\pm 1\sigma$	0.333	317400	
$\pm 2\sigma$	0.667	45600	
±3σ	1.333	63	Traditional
$\pm 4\sigma$	1.5	8	
$\pm 5\sigma$	1.667	6	
$\pm 6\sigma$	2	3.4	Six-Sigma Quality

SIX-SIGMA

Philosophy:

- Anything less than ideal is an opportunity for improvement.
- Defects costs money.
- Identify the root causes of performance deficiencies.
- Reduce variation.

SIX-SIGMA

Philosophy:

- Anything less than ideal is an opportunity for improvement.
- Defects costs money.
- Identify the root causes of performance deficiencies.
- Reduce variation.

Approach:

Define the problem (the defects in any process must be measurable)

Measure the defect (the defects must be quantified)

Analyze the data (the cause will be identified)

Improve the process to eliminate the defect

Control and sustain the improvement

Known as **DMAIC** approach.

KAIZEN METHODOLOGY

"Change for the better"

KAIZEN METHODOLOGY

"Change for the better"

- Good processes bring good results.
- Go see for yourself to grasp the current situation.
- Speak with data, manage by facts.
- Take action to contain and correct root causes of problems.
- Work as a team
- KAIZEN is everybody's business
- Big results come from many small changes accumulated over time

LEAN MANUFACTURING

Lean thinking or **Lean manufacturing** strategy was invented by Toyota, known as T.P.S. (Toyota Production System) based on these principles:

- Only make what we need, when we need it.
- Remove waste
- Respect people

LEAN MANUFACTURING

Lean thinking or **Lean manufacturing** strategy was invented by Toyota, known as T.P.S. (Toyota Production System) based on these principles:

- Only make what we need, when we need it.
- Remove waste
- Respect people

Philosophy:

- Slow but consistent.
- Small improvements.
- Never settle for good.
- Persistence in elimination of waste.
- Eliminate any activity that adds no real value to the product.
- Respect for employee.
- Go and see what is happening at the place the work is done.
- Fail better (willing to try and fail from time to time)

LEAN TOOLS

- 5S (Sort, Straighten, Shine, Standardize, Sustain)
- Cellular Manufacturing
- Andon Lamps
- A3 thinking
- o **3P** (Production Preparation Process), What, How, Why
- Water Spider
- Kanban (pull systems),
- Poka-Yoke (error-proofing)
- TPM (Total Productive Maintenance)

	A3 Problem Solvin	Problem Solving			
Title	Start Date	Estimated Completion Dat			
Problem Description	Problem Category				
		Quality Waste and efficiency			
		Cost Health and safety			
		Delivery Customer satisfaction			
	1	Moral Other			
Goal	Expected Benefits				

Corrective Actions and Quick Wins		Team members			
		Name		Role	
Implementation Plan					
Activity	Vho?	Start Date	Due To		Status

Result Summary (Including benefits obtained)	Follow-up Actions				
	What?	Vho?	When?	Status	