Progetto - Fondamenti di informatica

Francesco Andreuzzi IN0500630

Anno 2018-2019

1 Calcolo della funzione

Ricavo i valori assunti dalla funzione f(x,y,z,k) dal resto della divisione del numero di matricola (0500630) per 2^{16} :

 $\begin{array}{ccc} (500630 \mod & 65536) = 41878 \\ 41878_{10} = 1010001110010110_2 \end{array} \longrightarrow$

	\mathbf{x}	\mathbf{y}	\mathbf{z}	k	f(x,y,z,k)
	0	0	0	0	1
	0	0	0	1	0
	0	0	1	0	1
	0	0	1	1	0
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	0
ĺ	1	1	0	1	1
ĺ	1	1	1	0	1
	1	1	1	1	0

Minterm

Per ottenere la prima forma canonica della funzione, riscrivo le combinazioni (x, y, z, k) in cui la funzione assume valore 1:

x	\mathbf{y}	\mathbf{z}	\mathbf{k}	f(x,y,z,k)
0	0	0	0	1
0	0	1	0	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

La funzione f(x,y,z,k) si può esprimere come somma di prodotti nel seguente modo:

$$f(x, y, z, k) = (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot y \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{z} \cdot \overline$$

Maxterm

Per ottenere la seconda forma canonica della funzione, riscrivo le combinazioni (x,y,z,k) in cui la funzione assume valore 0:

x	y	\mathbf{z}	k	f(x,y,z,k)
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

La funzione f(x,y,z,k) si può esprimere come prodotto di somme nel seguente modo:

$$f(x, y, z, k) = (x + y + z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + \overline{y} + z + k) \cdot (x + \overline{y} + z + \overline{k}) \cdot (\overline{x} + y + z + \overline{k}) \cdot (\overline{x} + y + \overline{z} + \overline{k}) \cdot (\overline{x} + \overline{y} + z + \overline{k}) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$$

2 Semplificazione

Semplificazione algebrica

Minterm

$$f(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z},\boldsymbol{k}) = \underline{(\overline{x}\cdot\overline{y}\cdot\overline{z}\cdot\overline{k})} + (\overline{x}\cdot\overline{y}\cdot z\cdot\overline{k}) + (\overline{x}\cdot y\cdot z\cdot\overline{k}) + (\overline{x}\cdot y\cdot z\cdot\overline{k}) + (\underline{x}\cdot\overline{y}\cdot\overline{z}\cdot\overline{k}) + (x\cdot\overline{y}\cdot z\cdot\overline{k}) + (x\cdot\overline{y$$

Maxterm

$$f(x,y,z,k) = \underbrace{(x+y+z+\overline{k}) \cdot (x+y+\overline{z}+\overline{k}) \cdot (x+\overline{y}+z+k) \cdot (x+\overline{y}+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (x+y+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+\overline{y}+z+\overline{k}) \cdot (\overline{x}+y+z+\overline{k}) \cdot (\overline{x$$

 $(\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$

$$f(x,y,z,k) = \dots$$

$$= \frac{TS}{S} [x + y \cdot (x + z + \overline{k}) + \overline{k}] \cdot (y + z + \overline{k}) \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k}) }{ = \frac{A6}{S} [x + x \cdot y + y \cdot z + k] \cdot (\overline{y} + z + k) \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k}) }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y + z + \overline{k}) \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + \overline{k}) }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{y} + z + k) + z \cdot (\overline{y} + z + k) + \overline{k} \cdot (\overline{y} + z + k) \cdot (\overline{x} + y + \overline{z} + k) }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{y} + z + k) + z \cdot \overline{k} \cdot (\overline{y} + z + k) + \overline{k} \cdot \overline{k} + y \cdot \overline{z} + \overline{k} }{ = \frac{A6}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{y} + y \cdot z + y \cdot \overline{k} + z + \overline{k} \cdot \overline{k} + \overline{k} \cdot \overline{k} + y \cdot \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{z} + \overline{k} \cdot \overline{k} + \overline{k} \cdot \overline{k} + \overline{y} + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{k} + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{x} + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{k} + \overline{y} \cdot \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (y \cdot \overline{k} + z + \overline{y} \cdot \overline{k} + y \cdot \overline{k} + \overline{y} \cdot \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x + y \cdot z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k} }{ = \frac{A7}{S} (x \cdot y \cdot k + x \cdot z + x \cdot y \cdot \overline{k} + y \cdot z \cdot k + y \cdot z \cdot \overline{k} + y \cdot z \cdot \overline{k} + y \cdot \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + y + \overline{z} + \overline{$$

$$f(x,y,z,k) = \dots$$

$$^{1} \stackrel{A6}{=} (x \cdot y \cdot \overline{z} \cdot k + x \cdot \overline{y} \cdot z \cdot k + \overline{x} \cdot y \cdot z + y \cdot z \cdot \overline{k} + \overline{x} \cdot z \cdot \overline{k} + \overline{x} \cdot \overline{y} \cdot z \cdot \overline{k} + \overline{x} \cdot z \cdot$$

- 1. Sono state omesse le combinazioni che si annullano per l'assioma ${\cal A}7$
- 2. La semplificazione può procedere come si è fatto sopra per i minterm

Mappa di Karnaugh

La funzione ottenuta è la seguente:

$$f(x,y,z,k) = \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(x \cdot y \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{x} \cdot y \cdot z)}{(\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z} \cdot \overline{k})}{(\overline{y} \cdot \overline{z} \cdot \overline{k})} + \frac{(\overline{y} \cdot \overline{z$$

Metodo tabellare di Quine - Mc Cluskey

Costruisco la tabella (ordinata secondo il numero di 1 all'interno del termine):

	Livello	Numero	Termine
\checkmark	0	0	0000
~	1	2	0010
✓	1	8	1000
~	2	6	0110
\checkmark	3	7	0111
A	3	11	1011
В	3	13	1101
✓	3	14	1110

Effettuate le semplificazioni, ottengo la seguente tabella.

	Livelli	Implicanti	Termine
С	0,1	0,2	00-0
D	0,1	0,8	-000
E	1,2	2,6	0-10
F	2,3	6,7	011-
G	2,3	6,14	-110

Non è possibile operare alcuna semplifiazione.

Costruisco il reticolo, in modo da poter valutare quali sono gli implicanti essenziali:

Per coprire il termine 2 posso scegliere l'implicante C oppure l'implicante E. Scegliendo l'implicante E mi riconduco all'espressione della funzione trovata con la mappa di Karnaugh.

Implicante	Termini implicati	Espressione
A	11	$x \cdot \overline{y} \cdot z \cdot k$
В	13	$x \cdot y \cdot \overline{z} \cdot k$
G	6,14	$y \cdot z \cdot \overline{k}$
F	6,7	$\overline{x} \cdot y \cdot z$
D	0,8	$\overline{y} \cdot \overline{z} \cdot \overline{k}$
E	0,2	$\overline{x} \cdot z \cdot \overline{k}$

La funzione ottenuta è la seguente:

$$f(x, y, z, k) = \underbrace{(\overline{y} \cdot \overline{z} \cdot \overline{k})}_{\text{D}} + \underbrace{(x \cdot y \cdot \overline{z} \cdot k)}_{\text{B}} + \underbrace{(x \cdot \overline{y} \cdot z \cdot k)}_{\text{A}} + \underbrace{(\overline{x} \cdot y \cdot z)}_{\text{F}} + \underbrace{(\overline{x} \cdot z \cdot \overline{k})}_{\text{E}} + \underbrace{(y \cdot z \cdot \overline{k})}_{\text{G}}$$

3 Schema logico

Minterm:

$$\begin{split} \boldsymbol{f(x,y,z,k)} &= (\overline{x} \cdot \overline{y} \cdot \overline{z} \cdot \overline{k}) + (\overline{x} \cdot \overline{y} \cdot z \cdot \overline{k}) + (\overline{x} \cdot y \cdot z \cdot \overline{k}) +$$

Maxterm:

$$f(x, y, z, k) = (x + y + z + \overline{k}) \cdot (x + y + \overline{z} + \overline{k}) \cdot (x + \overline{y} + z + k) \cdot (x + \overline{y} + z + \overline{k}) \cdot (\overline{x} + y + z + \overline{k}) \cdot (\overline{x} + y + \overline{z} + k) \cdot (\overline{x} + \overline{y} + z + k) \cdot (\overline{x} + \overline{y} + \overline{z} + \overline{k})$$

Funzione semplificata:

$$\boldsymbol{f(x,y,z,k)} = (\overline{y} \cdot \overline{z} \cdot \overline{k}) + (x \cdot y \cdot \overline{z} \cdot k) + (x \cdot \overline{y} \cdot z \cdot k) + (\overline{x} \cdot y \cdot z) + (\overline{x} \cdot z \cdot \overline{k}) + (y \cdot z \cdot \overline{k})$$

