

Dimah Albunayyih Tarfah Alabbad

INTRODUCTION

AIMS AND OBJECTIVES

- To preform web scraping on buyot website
- To create a dataset from the scraped data and preform EDA on it
- To choose the best regression model for our data by comparing scores to avoid over/under fitting
- To see if our train score close to the test and reach the goal of generalization

TOOLS

REALESTATEDATASET

		neighborhood	regions	RealEstateType	square_meters	rooms_number	baths_number	prices	Real E state Type Code	RegionsCode
	3	Al Nuzhah	North Riyadh	Villa	450	4	5	2500000.0	0	0
	7	Al Sahafah	North Riyadh	Apartment	123	2	4	1750000.0	1	0
	8	Al Sahafah	North Riyadh	Apartment	177	3	5	2092454.0	1	0
	9	Al Munsiyah	East Riyadh	Villa	261	3	3	1900050.0	0	1
	11	Al Munsiyah	East Riyadh	Villa	254	3	5	2004300.0	0	1
		***		***	***		***	***		
2	121	Al Rimal	South Riyadh	Villa	250	4	3	1040000.0	0	2
2	122	Al Dar Al Baida	North Riyadh	Villa	250	6	4	800000.0	0	0
2	124	Al Mahdiyah	West Riyadh	Villa	200	6	6	1150000.0	0	3
2	125	Laban	North Riyadh	Villa	450	4	6	1700000.0	0	0
2	128	Dhahrat Laban	North Riyadh	Apartment	125	3	3	395000.0	1	0

1041 rows × 9 columns

Square meters column before and after removing outliers

Prices column before and after removing outliers

KING KHALID NTERNATIONAL 550 AIRPORT مطار الملك حالد الدولا 535 AL AARID AR RIMAL الرمال 80 North Riyadh 537 L MUNSIYAH الرياض East Riyadh شرق الرياض Ad Diriyah AN NASIM الدرعية AL GHARBI adh huma الغربي Central Riyadh وسط الرياض الرياض West Riyadh NEW INDUST 509 جنوب الرياض (4976) South Riyadh

Counts of real estates sales for each region

Counts of real estates sales for each real estate type

After cleaning the data we transform the categorical features into dummies then we use the heat map to see the correlation between the target and the features

Linear regression assumptions

Baseline model

We split our data into train validate and test we choose to preform the cross validation on our data to make sure to have the best result and the score was R^ 0.638

Now we want to improve our model so we are going to preform feature engineering on the data we exclude some of the features also we are going to use lasso for feature selection since the coefficients we have is high

Feature engineering R[^] score: 0.648

LASSO R[^] score: 0.362

Test to see if our model is generalized or not so the result is on the test set is R^ score=0.590

CONCLUSION

- The linear assumptions is valid on our data
- Linear model is the best model to represent our data
- The base line R[^] score is 0.638
- The LASSO R[^] score is 0.362
- The feature engineering R[^] score is 0.648
- The R[^] score of the test set is 0.590

