Correction

d'après INA ENSA 1993

Partie I

- 1. C'est une équation différentielle linéaire d'ordre 1 homogène de solution générale $y(x) = \frac{C}{1+x^2}$ avec $C \in \mathbb{R}$.
- 2.a φ est paire, il suffit donc de l'étudier sur \mathbb{R}^+ . φ est dérivable et $\varphi'(x) = -\frac{2x}{(1+x^2)^2}$ donc φ décroît sur \mathbb{R}^+ de $\varphi(0) = 1$ à $\lim_{x \to \infty} \varphi = 0$.
- 2.b $\varphi''(x) = \frac{6x^2 2}{(1 + x^2)^3}$ s'annule en changeant de signe sur \mathbb{R}^+ en $x_0 = 1/\sqrt{3}$.

Pour étudier la position relative de (Γ) et de (T) , on étudie le signe de $\psi(x) = \varphi(x) - \left(-\frac{3\sqrt{3}}{8}x + \frac{9}{8}\right)$.

 ψ est dérivable, $\psi'(x) = \varphi'(x) + \frac{\sqrt{3}}{8}$, $\psi''(x) = \varphi''(x)$.

On en déduit : $\frac{x}{\psi''(x)}$ $\frac{\sqrt{3}}{-0}$ + , $\frac{x}{\psi'(x)}$ $\frac{\sqrt{3}}{+0}$ +

puis
$$\frac{x}{\psi(x)} \begin{vmatrix} \sqrt{3} \\ -0 \end{vmatrix}$$
.

La courbe traverse sa tangente au point d'abscisse $x = \sqrt{3}$, elle d'abord en dessous, ensuite au-dessus.

3.

4.
$$\int_0^1 \varphi(t) dt = \frac{\pi}{4}$$

Partie II

1. Sur $I =]0, +\infty[$ ou $]-\infty, 0[$, $(E) \Leftrightarrow y' + \frac{1}{x}y = \frac{1}{x(1+x^2)}$.

C'est une équation différentielle linéaire d'ordre 1.

Equation homogène $y'+\frac{1}{x}y=0$ de solution $y_0(x)=\frac{C'}{|x|}=\frac{C}{x}$.

Par variation de la constante, $y_1(x) = \frac{\arctan x}{x}$ est solution particulière.

Solution générale de (E): $y(x) = \frac{C + \arctan x}{x}$.

2.a $\lim_{x \to 0} \frac{\arctan x}{x} = \left(\arctan\right)'(0) = 1 \cdot \ell = 1.$

 f_0 est dérivable sur \mathbb{R}^* et $f_0'(x) = \frac{x - (1 + x^2) \arctan x}{x^2 (1 + x^2)}$ du signe de $g(x) = x - (1 + x^2) \arctan x$.

g est dérivable et $g'(x) = -2x \arctan x \le 0$ donc $\frac{x}{g(x)} \begin{vmatrix} 0 \\ + 0 \end{vmatrix}$ puis

$$\begin{array}{c|cccc} x & -\infty & 0 & +\infty \\ \hline f_0(x) & 0 & \nearrow & 1 & \searrow & 0 \\ \end{array}$$

2.b Pour tout $x \in \mathbb{R}^*$, $f_{-\lambda}(-x) = f_{\lambda}(x)$.

Les courbes $(C_{-\lambda})$ et (C_{λ}) sont symétriques par rapport à l'axe (Oy) .

- $\begin{aligned} \text{2.c} & \quad \text{Pour tout } \ x > 0 \ , \ f_{\lambda_1}(x) < f_{\lambda_2}(x) \ \text{ et pour tout } \ x < 0 \ , \ f_{\lambda_1}(x) > f_{\lambda_2}(x) \ . \\ & \quad \text{A droite de } (Oy) \ , \ (C_{\lambda_1}) \ \text{ est en dessous de } (C_{\lambda_2}) \ . \ \text{C'est l'inverse à gauche de } (Oy) \ . \end{aligned}$
- 2.d f_{λ} est dérivable et $f'_{\lambda}(x) = \frac{g_{\lambda}(x)}{x^2}$ avec $g_{\lambda}(x) = \frac{x}{1+x^2} \lambda \arctan x$.

 $g_{\scriptscriptstyle \lambda} \ \ \text{est d\'erivable et} \ \ g_{\scriptscriptstyle \lambda}'(x) = -\frac{2x^2}{(1+x^2)^2} \leq 0 \ \ \text{d'où} \ \frac{x}{g_{\scriptscriptstyle \lambda}(x)} \ \frac{-\infty}{|-\lambda + \pi/2|} \ \ \frac{+\infty}{-\lambda - \pi/2} \ \ (\text{et} \ \ g_{\scriptscriptstyle \lambda}(0) = -\lambda < 0 \)$

Si
$$\lambda \geq \pi/2$$
 alors $\frac{x}{f_{\lambda}(x)} \begin{vmatrix} -\infty & 0^- & 0^+ & +\infty \\ 0 & \sqrt{-\infty} & +\infty & \sqrt{0} \end{vmatrix}$.

Si $0 < \lambda < \pi/2$ alors g_{λ} s'annule en un $x_{\lambda} < 0$ et

3.

- 4.a Soit M un point de coordonnées (a,b) avec $a \neq 0$. $M \in (C_{\lambda}) \Leftrightarrow b = f_{\lambda}(a) \Leftrightarrow \lambda = ab \arctan a \ .$
- 4.b Soit P un point de coordonnées (a,b) avec $a \neq 0$.

La pente en P de la tangente à la courbe (C_{λ}) passant par P est

$$f'_{\lambda}(a) = \frac{\frac{a}{1+a^2} - \lambda - \arctan a}{a^2} = \frac{\frac{1}{1+a^2} - b}{a}.$$

Cette pente est nulle ssi $b = \frac{1}{1+a^2}$ i.e. $P \in (\Gamma)$.

4.c Comme ci-dessus, la pente en M de la tangente à la courbe (C_{λ}) passant par M est $f'_{\lambda}(a) = \frac{1}{1+a^2} - b$

A droite de l'axe (Oy), cette est positive pour les points en dessous de (Γ) et positive au dessus. A gauche de l'axe (Oy), c'est l'inverse.

1.a On peut raisonner par récurrence ou exploiter la sommation géométrique :

$$\sum_{k=0}^{n} (-1)^k u^{2k} = \frac{1 - (-1)^{n+1} u^{2(n+1)}}{1 + u^2} .$$

1.b En intégrant la relation précédente pour u allant de 0 à t, on obtient :

$$\arctan t = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)} t^{2k+1} + \varphi(t) \text{ avec } \varphi(t) = (-1)^{n+1} \int_0^t \frac{u^{2(n+1)}}{1+u^2} \mathrm{d}u \,.$$

$$|\varphi(t)| \le \int_0^t u^{2(n+1)} du = \frac{1}{2n+3} t^{2n+3} \operatorname{car} \frac{1}{1+u^2} \le 1.$$

1.c $I = \int_0^1 \frac{\arctan t}{t} dt = \sum_{k=0}^n \frac{(-1)^k}{2k+1} \int_0^1 t^{2k} dt + \int_0^1 \frac{\varphi(t)}{t} dt$

donc
$$I = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)^2} + \int_0^1 \frac{\varphi(t)}{t} dt$$
 d'où

$$\left| I - \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)^{2}} \right| = \left| \int_{0}^{1} \frac{\varphi(t)}{t} dt \right| \le \int_{0}^{1} \left| \frac{\varphi(t)}{t} \right| dt \le \int_{0}^{1} \frac{t^{2n+2}}{2n+3} dt = \frac{1}{(2n+3)^{2}}.$$

Il en découle que $I=\lim_{n\to+\infty}\sum_{k=0}^n\frac{\left(-1\right)^k}{\left(2k+1\right)^2}$, on note encore $I=\sum_{k=0}^{+\infty}\frac{\left(-1\right)^k}{\left(2k+1\right)^2}$.

2. Pour n = 6, $\frac{1}{(2n+3)^2} \le 0.5.10^{-2}$ et donc $I = \sum_{k=0}^{6} \frac{(-1)^k}{(2k+1)^2}$ à $0.5.10^{-2}$ près, or $\sum_{k=0}^{6} \frac{(-1)^k}{(2k+1)^2} = 0.92$ à

 $0.5.10^{-2}$ près, donc I = 0.92 à 10^{-2} près.

L'erreur à éviter est la suivante :

Pour n=4, on observe que $I=\sum_{k=0}^{4}\frac{(-1)^k}{(2k+1)^2}$ à 10^{-2} près, mais l'obtention d'une valeur *décimale* de

cette somme va réduire la qualité de l'approximation. Par exemple, en écrivant $\sum_{k=0}^{4} \frac{(-1)^k}{(2k+1)^2} = 0.92$ à

 $0.5.10^{-2}$ près, on ne peut plus qu'affirmer I=0.92 à $1.5.10^{-2}$ près, ce qui n'est pas suffisant. C'est la raison pour laquelle ci-dessus, on comme par approchée I par une somme à $0.5.10^{-2}$ près puis la

somme par une valeur décimale à $0.5.10^{-2}$ près. Bien sûr, en observant $\sum_{k=0}^{4} \frac{(-1)^k}{(2k+1)^2} = \frac{91369}{99225}$, on peut

affirmer $I = \frac{91369}{99225}$ à 10^{-2} près, ce qui est exact mais ne répond pas à la question, à savoir obtenir une valeur décimale approchée.