Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

Claims 1-2 (canceled).

3. (currently amended) A compound of Claim 2 having the formula I

$$R^{1} - \underset{H}{\overset{N}{\bigvee}} \underset{N}{\overset{N}{\bigvee}} \underset{R^{2}}{\overset{N}{\bigvee}} O$$

or a pharmaceutically acceptable salt thereof, wherein:

R¹ and R² are independently selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N⁺(O)R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy, T(CH₂)_mQR⁴,

 $\frac{\text{C(O)T(CH}_2)_m\text{QR}^4, \text{NHC(O)T(CH}_2)_m\text{QR}^4, \text{T(CH}_2)_m\text{C(O)NR}^4\text{NR}^5, \text{ or T(CH}_2)_m\text{CO}_2\text{R}^4 \text{ wherein}}{\text{each m is independently 1-6, T is O, S, NR}^4, \text{N}^+\text{(O)R}^4, \text{N}^+\text{R}^4\text{R}^6\text{Y}^-, \text{ or CR}^4\text{R}^5, \text{ and Q is O, S, NR}^4, N}^+\text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^+\text{N}^5, \text{N}^5, \text{N}^5,$

 $\frac{R^4 \text{ and } R^5 \text{ are each independently selected from the group consisting of hydrogen, } C_1 - C_6 \text{ alkyl},}{\text{substituted alkyl, } C_2 - C_6 \text{ alkenyl, } C_2 - C_6 \text{ alkynyl, } N(C_1 - C_6 \text{alkyl})_1 \text{ or } 2. \text{ (CH}_2)_n Ar.}$

<u>C3-C10</u> cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$, $(CH_2)_mNR^4R^5$, $T-(CH_2)_mQR_4$, $CO-T-(CH_2)_mQR^4$, $NH(CO)T(CH_2)_mQR^4$, $T-(CH_2)_mCO_2R^4$, or $T(CH_2)_mCONR^4R^5$;

R⁶ is alkyl; and

Y is a halo counter-ion.

- 4. (currently amended) [[A]] <u>The</u> compound <u>or pharmaceutically acceptable salt thereof</u> of Claim 3 wherein R¹ is phenyl or substituted phenyl, pyridyl or substituted pyridyl.
- 5. (currently amended) [[A]] <u>The</u> compound <u>or pharmaceutically acceptable salt thereof</u> of Claim 4 wherein R² is an alkyl, substituted alkyl, or cycloalkyl unsubstituted or substituted.
- 6. (original) A compound selected from:
- 1-Methyl-7-[4-(pyrazol-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Methyl-7-[4-(4-methylpiperazin-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Methyl-7-[4-(4-hydroxypiperidin-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Methyl-7-{4-[4-(dimethylamino)piperidin-1-yl]phenylamino}pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Isopropyl-7-[4-(pyrazol-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-lsopropyl-7-[4-(4-methylpiperazin-1-yl)phenylamino] pyrimido [4,5-d] pyrimidin-2(1H)-one;
- 1-lsopropyl-7-[4-(4-hydroxypiperidin-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Isopropyl-7-{4-[4-(dimethylamino)piperidin-1-yl]phenylamino}pyrimido[4,5-d]pyrimidin-2(1H)-one:
- 1-Bicyclo[2.2.1]hept-2-yl-7-[4-(pyrazol-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one (exo);
- 1-Bicyclo[2.2.1]hept-2-yl-7-[4-(4-methylpiperazin-1-yl)phenylamino]pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one (exo);
- 1-Bicyclo[2.2.1]hept-2-yl-7-[4-(4-hydroxypiperidin-1-yl)phenylamino]pyrimido[4,5-d]pyrimidin-2(1H)-one (exo);
- $1-Bicyclo[2.2.1] hept-2-yl-7-\{4-[4-(dimethylamino)piperidin-1-yl]phenylamino\} pyrimido[4,5-a] pyrimidin-2(1H)-one (exo);\\$

- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-1-cyclopentyl-pyrimido[4,5-d]pyrimidin-2(1H)-one:
- 7-{4-[4-(2-Amino-4-methyl-pentanoyl)-piperazin-1-yl]-phenylamino}-1-cyclopentyl-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 1-Methyl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 1-Isopropyl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 1-Cyclopentyl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- $1-Bicyclo[2.2.1]hept-2-yl-7-\{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino\}pyrimido[4,5-a]pyrimidin-2(1H)-one (exo);\\$
- 1-Cyclopentyl-7-(4-methanesulfonyl-phenylamino)-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 1-Cyclopentyl-7-(4-fluoro-3-methyl-phenylamino)-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 7-[4-(3-Amino-pyrrolidin-1-yl)-phenylamino]-1-cyclopentyl-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Cyclopentyl-7-(4-piperazin-1-yl-phenylamino)-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Cyclopentyl-7-[4-(5-methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-phenylamino]-pyrimido[4,5-a]pyrimidin-2(1H)-one;
- 7-[4-(4-Acetyl-piperazin-1-yl)-phenylamino]-1-cycloheptyl-pyrimido[4,5-d]pyrimidin-2(1H)-one; and 1-Cyclopentyl-7-(pyridin-4-ylamino)pyrimido[4,5-d]pyrimidin-2(1H)-one.

Claims 7-8 (canceled).

- 9. (original) A compound selected from:
- 1-Methyl-7-[4-(pyrazol-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Methyl-7-[4-(4-methylpiperazin-1-yl)phenylamino]-3, 4-dihydro-pyrimido [4,5-d]pyrimidin-2(1H)-one;
- 1-Methyl-7-[4-(4-hydroxypiperidin-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Methyl-7-{4-[4-(dimethylamino)piperidin-1-yl]phenylamino}-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 1-lsopropyl-7-[4-(pyrazol-1-yl)phenylamino]-3, 4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Isopropyl-7-[4-(4-methylpiperazin-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 1-Isopropyl-7-[4-(4-hydroxypiperidin-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

- 1-Isopropyl-7-{4-[4-(dimethylamino)piperidin-1-yl]phenylamino}-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 1-Bicyclo[2.2.1]hept-2-yl-7-[4-(pyrazol-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one (exo);
- 1-Bicyclo[2.2.1]hept-2-yl-7-[4-(4-methylpiperazin-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5- α]pyrimidin-2(1H)-one (exo);
- 1-Bicyclo[2.2.1]hept-2-yl-7-[4-(4-hydroxypiperidin-1-yl)phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one (exo);
- 1-Bicyclo[2.2.1]hept-2-yl-7-{4-[4-(dimethylamino)piperidin-1-yl]phenylamino}-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one (exo);
- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-1-cyclopentyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-{4-[4-(2-Amino-4-methyl-pentanoyl)-piperazin-1-yl]-phenylamino}-1-cyclopentyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 1-Methyl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 1-lsopropyl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 1-Cyclopentyl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 1-Bicyclo[2.2.1]hept-2-yl-7-{4-[4-(3-morpholin-4-ylpropyl)piperidin-1-yl]phenylamino}-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one (exo);
- 1-Cyclopentyl-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Cyclopentyl-7-(4-methanesulfonyl-phenylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1- Cyclopentyl-7- (4-fluoro-3-methyl-phenylamino)-3, 4-dihydro-pyrimido [4,5-d] pyrimidin-2 (1 H)-one;
- 7-[4-(3-Amino-pyrrolidin-1-yl)-phenylamino]-1-cyclopentyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 7-[4-(4-Acetyl-piperazin-1-yl)-phenylamino]-1-cyclopentyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 1-Cyclopentyl-7-(4-piperazin-1-yl-phenylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 1-Cyclopentyl-7-[4-(5-methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-3-(3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-3-(2-chloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;

- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-3-(2-methyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 7-[4-(4-Aminoacetyl-piperazin-1-yl)-phenylamino]-3-(2,6-dimethyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(2-chloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-<math>d]pyrimidin-2(1H)-one;
- 7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(2,6-dichloro-3,5-dimethoxy-phenyl)-l-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(2-methyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(2,6-dimethyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 7-(4-Diethylamino-butylamino)-3-(3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 7-(4-Diethylamino-butylamino)-3-(2-chloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-(4-Diethylamino-butylamino)-3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;
- 7-(4-Diethylamino-butylamino)-3-(2-methyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-(4-Diethylamino-butylamino)-3-(2,6-dimethyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one;
- 7-(Pyridin-4-ylamino)-3-(3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 7-(Pyridin-4-ylamino)-3-(2-chloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;
- 7-(Pyridin-4-ylamino)-3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7-(Pyridin-4-ylamino)-3-(2,6-dimethyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;
- 7- (Pyridin-4-ylamino)-3- (2-methyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido [4,5-d] pyrimidin-2(1 H)-one;

7-(Pyridin-4-ylamino)-3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-cyclopentyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(2-Chloro-3,5-dimethoxy-phenyl)-7-(4-diethylamino-butylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;

3-(2-Chloro-3,5-dimethoxy-phenyl)-7-[4-(2-diethylamino-ethoxy)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(2-Chloro-3,5-dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(3,5-Dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one; 7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(3,5-dimethoxy-phenyl)-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;

3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one; and

3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-7-[4-(2-diethylamino-ethoxy)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimido[4,5-d]pyrimidin-2(1H)-one.

10. (currently amended) A compound of Claim 2 having the formula II

$$\mathbb{R}^{1} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N$$

or a pharmaceutically acceptable salt thereof, wherein:

R¹ is selected from the group consisting of H, (CH₂)_nAr, COR⁴, (CH₂)_nheteroaryl, (CH₂)_nheterocyclyl, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₂-C₁₀ alkenyl, and C₂-C₁₀ alkynyl, wherein n is 0, 1, 2, or 3, and the (CH₂)_nAr, (CH₂)_nheteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N⁺(O)R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, (CH₂)_nheteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy, T(CH₂)_mQR⁴,

 $\underline{\mathsf{T}(\mathsf{CH}_2)_{\mathsf{m}}\mathsf{C}\text{-}(\mathsf{CH}_2)_{\mathsf{m}}\mathsf{QR}^4}$

 $\frac{\text{C(O)T(CH}_2)_m\text{QR}^4, \text{NHC(O)T(CH}_2)_m\text{QR}^4, \text{T(CH}_2)_m\text{C(O)NR}^4\text{NR}^5, \text{ or T(CH}_2)_m\text{CO}_2\text{R}^4 \text{ wherein}}{\text{each m is independently 1-6, T is O, S, NR}^4, \text{N}^+\text{(O)R}^4, \text{N}^+\text{R}^4\text{R}^6\text{Y}^-, \text{ or CR}^4\text{R}^5, \text{ and Q is O, S, NR}^5, N}^+\text{(O)R}^5, \text{ or N}^+\text{R}^5\text{R}^6\text{Y}^-;}$

R³ has the meanings of R¹, wherein R¹ is as defined above, as well as OH, NR⁴R⁵, COOR⁴, ONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, T(CH₂)_mQR⁴,

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 or 2}, $(CH_2)_nAr$,

<u>C3-C10</u> cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴,

 $\frac{(\text{CH}_2)_m \text{NR}^4 \text{R}^5, \text{T-(CH}_2)_m \text{QR}_4, \text{CO-T-(CH}_2)_m \text{QR}^4, \text{NH(CO)T(CH}_2)_m \text{QR}^4, \text{T-(CH}_2)_m \text{CO}_2 \text{R}^4, \text{or}}{\text{T(CH}_2)_m \text{CONR}^4 \text{R}^5;}$

R⁶ is alkyl; and

Y is a halo counter-ion.

- 11. (original) A compound selected from:
- 1-[7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(3,5-dimethoxy-phenyl)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl]-3-ethyl-urea;
- 1-{3-(2-Chloro-3,5-dimethoxy-phenyl)-7-[4-(2-diethylamino-ethoxy)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl}-3-ethyl-urea;
- 1-*tert*-Butyl-3-[7-[4-(2-diethylamino-ethoxy)-phenylamino]-3-(3,5-dimethoxy-phenyl)-3,4-dihydropyrimido[4,5-d]pyrimidin-2-yl]-urea;

1-*tert*-Butyl-3-{3-(2-chloro-3,5-dimethoxy-phenyl)-7-[4-(2-diethylamino-ethoxy)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl}-urea;

1-*tert*-Butyl-3-[3-(3,5-dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2-yl]-urea;

1-[3-(3,5-Dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2-yl]-3-ethyl-urea;

1-*tert*-Butyl-3-[3-(2-chloro-3,5-dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl]-urea;

1-[3-(2-Chloro-3,5-dimethoxy-phenyl)-7-(pyridin-4-ylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl]-3-ethyl-urea;

1-[3-(2-Chloro-3,5-dimethoxy-phenyl)-7-(4-diethylamino-butylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl]-3-ethyl-urea;

3-Methyl-N-{7-[4-(5-methyl-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl}-butyramide;

1-{7-[4-(4-Acetyl-piperazin-1-yl)-phenylamino]-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl}-3-isopropyl-urea; and

1-*tert*-Butyl-3-[3-(2-chloro-3,5-dimethoxy-phenyl)-7-(4-diethylamino-butylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2-yl]-urea.

12. (currently amended) A compound of Claim 2 having the formula III

$$\mathbb{R}^{1} \longrightarrow \mathbb{N} \longrightarrow \mathbb{N$$

or a pharmaceutically acceptable salt thereof, wherein:

 $\begin{array}{l} R^1 \text{ is selected from the group consisting of H, } (CH_2)_{\underline{n}} \text{Ar, } COR^4, \\ (CH_2)_{\underline{n}} \text{heteroaryl, } \\ (CH_2)_{\underline{n}} \text{heterocyclyl, } C_1 \text{-} C_{\underline{10}} \text{ alkyl, } C_3 \text{-} C_{\underline{10}} \text{ cycloalkyl, } C_2 \text{-} C_{\underline{10}} \text{ alkenyl, and } C_2 \text{-} C_{\underline{10}} \text{ alkynyl, } \\ \text{wherein n is 0, 1, 2, or 3, and the } (CH_2)_{\underline{n}} \text{Ar, } (CH_2)_{\underline{n}} \text{heteroaryl, alkyl, cycloalkyl, alkenyl, and} \\ \text{alkynyl groups are optionally substituted by up to 5 groups selected from } NR^4R^5, N^+(O)R^4R^5, \\ N^+R^4R^5R^6Y^-, \text{alkyl, phenyl, substituted phenyl, } (CH_2)_{\underline{n}} \text{heteroaryl, hydroxy, alkoxy, phenoxy, thiol, } \\ \end{array}$

thioalkyl, halo, COR⁴, CO₂R⁴, CONR⁴R⁵, SO₂NR⁴R⁵, SO₃R⁴, PO₃R⁴, aldehyde, nitrile, nitro, heteroaryloxy, T(CH₂)_mQR⁴,

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)₁ or 2. $(CH_2)_nAr$.

C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$,

 $\frac{(\text{CH}_2)_m \text{NR}^4 \text{R}^5, \text{T-(CH}_2)_m \text{QR}_4, \text{CO-T-(CH}_2)_m \text{QR}^4, \text{NH(CO)T(CH}_2)_m \text{QR}^4, \text{T-(CH}_2)_m \text{CO}_2 \text{R}^4, \text{or}}{\text{T(CH}_2)_m \text{CONR}^4 \text{R}^5;}$

R⁶ is alkyl; and

Y is a halo counter-ion.

- 13. (original) A compound selected from:
- 1-[7-(4-Fluoro-phenylamino)-pyrimido[4,5-d]pyrimidin-2-yl]-3-methyl-urea;
- 1-lsopropyl-3-(7-phenylamino-pyrimido[4,5-d]pyrimidin-2-yl)-urea;
- 1-{7-[4-(3-Aminomethyl-pyrrolidin-1-yl)-phenylamino]-pyrimido[4,5-d]pyrimidin-2-yl}-3-isopropylurea:
- 1-lsopropyl-3-[7-(4-piperazin-1-yl-phenylamino)-pyrimido[4,5-d]pyrimidin-2-yl]-urea;
- 1-{7-[4-(4-Acetyl-piperazin-1-yl)-phenylamino]-pyrimido[4,5-d]pyrimidin-2-yl}-3-isopropyl-urea;
- N-{7-[4-(3-Amino-pyrrolidin-1-yl)-phenylamino]-pyrimido[4,5-d]pyrimidin-2-yl}-3-methylbutyramide;

N-[7-(4-Piperazin-1-yl-phenylamino)-pyrimido[4,5-d]pyrimidin-2-yl]-isobutyramide;

N-{7-[4-(4-Acetyl-piperazin-1-yl)-phenylamino]-pyrimido[4,5-d]pyrimidin-2-yl}-3-methyl-butyramide;

3-Methyl-N-[7-(pyridin-4-ylamino)-pyrimido[4,5-d]pyrimidin-2-yl]-butyramide;
1-Isopropyl-3-[7-(pyridin-4-ylamino)-pyrimido[4,5-d]pyrimidin-2-yl]-urea; and
N-{7-[4-(3-Aminomethyl-pyrrolidin-1-yl)-phenylamino]-pyrimido[4,5-d]pyrimidin-2-yl}-3-methyl-butyramide.

14. (currently amended) A compound of Formula IV Claim 1 wherein W is S, SO, or SO2

or a pharmaceutically acceptable salt thereof,

wherein:

the dotted line represents an optional double bond;

W is S, SO, or SO₂;

X is either O, S, or NR¹⁰;

R¹, R², and R¹⁰ are independently selected from the group consisting of H, $(CH_2)_{\underline{n}}Ar$, COR^4 , $(CH_2)_{\underline{n}}heteroaryl$, $(CH_2)_{\underline{n}}heteroaryl$, $(CH_2)_{\underline{n}}heteroaryl$, $(CH_2)_{\underline{n}}heteroaryl$, $(CH_2)_{\underline{n}}heteroaryl$, alkenyl, and C_2 - $C_{\underline{10}}$ alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_{\underline{n}}Ar$, $(CH_2)_{\underline{n}}heteroaryl$, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_{\underline{n}}heteroaryl$, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

 $\frac{C(O)T(CH_2)_mQR^4, NHC(O)T(CH_2)_mQR^4, T(CH_2)_mC(O)NR^4NR^5, or T(CH_2)_mCO_2R^4 \text{ wherein each m is independently 1-6, T is O, S, NR^4, N^+(O)R^4, N^+R^4R^6Y^-, or CR^4R^5, and Q is O, S, NR^5, N^+(O)R^5, or N^+R^5R^6Y^-;$

when the dotted line is present, R³ is absent;

otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)₁ or 2, $(CH_2)_nAr$,

<u>C3-C10</u> cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$,

 $\frac{(\text{CH}_2)_m \text{NR}^4 \text{R}^5, \text{T-(CH}_2)_m \text{QR}_4, \text{CO-T-(CH}_2)_m \text{QR}^4, \text{NH(CO)T(CH}_2)_m \text{QR}^4, \text{T-(CH}_2)_m \text{CO}_2 \text{R}^4, \text{or}}{\text{T(CH}_2)_m \text{CONR}^4 \text{R}^5}.$

R⁶ is alkyl;

 R^8 and R^9 independently are H, C_1 - C_3 alkyl, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, hydroxy, alkoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CHO, CN, or NO_2 :

when the dotted line is absent, R⁹ is additionally oxo,

Y is a halo counter-ion.

15. (currently amended) A compound of Claim 1 having the formula V

$$R^{1} \xrightarrow{N} \stackrel{O}{\underset{R^{2}}{\bigvee}} O$$

or a pharmaceutically acceptable salt thereof,

wherein:

R¹ and R² are independently selected from the group consisting of $(CH_2)_nAr$, COR^4 , $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heteroaryl, $(CH_2)_nAr$, $(CH_2)_nA$

 $\frac{\text{C(O)T(CH}_2)_m\text{QR}^4, \text{NHC(O)T(CH}_2)_m\text{QR}^4, \text{T(CH}_2)_m\text{C(O)NR}^4\text{NR}^5, \text{or T(CH}_2)_m\text{CO}_2\text{R}^4 \text{ wherein}}{\text{each m is independently 1-6, T is O, S, NR}^4, \text{N}^+\text{(O)R}^4, \text{N}^+\text{R}^4\text{R}^6\text{Y}^-, \text{or CR}^4\text{R}^5, \text{and Q is O, S, NR}^5, N}^+\text{(O)R}^5, \text{or N}^+\text{R}^5\text{R}^6\text{Y}^-;}$

 R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , $T(CH_2)_mQR^4$,

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 or 2}, $(CH_2)_nAr$,

<u>C3-C10</u> cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴,

 $\frac{(\text{CH}_2)_m \text{NR}^4 \text{R}^5, \text{T-(CH}_2)_m \text{QR}_4, \text{CO-T-(CH}_2)_m \text{QR}^4, \text{NH(CO)T(CH}_2)_m \text{QR}^4, \text{T-(CH}_2)_m \text{CO}_2 \text{R}^4, \text{or}}{\text{T(CH}_2)_m \text{CONR}^4 \text{R}^5;}$

R⁶ is alkyl; and

Y is a halo counter-ion.

16. (original) A compound selected from:

1-Isopropyl-7-[4-(4-methylpiperazin-1-yl)phenylamino]-1*H*-pyrimido[4,5-*d*]pyrimidine-2,4-dione;

7-[4-(2-Diethylaminoethoxy)phenylamino]-1-isopropyl-1*H*-pyrimido[4,5-*d*]pyrimidine-2,4-dione;

7-(4-Diethylamino-butylamino)-3-(3,5-dimethoxy-phenyl)-1-ethyl-l*H*-pyrimido[4,5-*d*]pyrimidine-2,4-dione;

7-[4-(2-Diethylamino-ethoxy)-phenylamino]-3-(3,5-dimethoxy-phenyl)-1-ethyl-1*H*-pyrimido[4,5-*d*]pyrimidine-2,4-dione; and

7-(Pyridin-4-ylamino)-3-(3,5-dimethoxy-phenyl)-l-ethyl-1*H*-pyrimido[4,5-*d*]pyrimidine-2,4-dione.

Claims 17-25 (canceled).

26. (currently amended) A method of inhibiting a cyclin-dependent kinase comprising contacting the cyclin-dependent kinase with a compound of Formula $\underline{V}I$

or a pharmaceutically acceptable salt thereof, and the pharmaceutically acceptable salts thereof, wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

 R^1 , R^2 , and R^{10} are independently selected from the group consisting of H, $(CH_2)_n$ Ar, COR^4 , $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heterocyclyl, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_{10} alkenyl, and C_2 - C_{10} alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

$$\begin{array}{c} \text{OR}^5 \\ | \\ \text{heteroaryloxy, T(CH}_2)_m \text{QR}^4, T(\text{CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ | \\ \text{H} \end{array}$$

 $C(O)T(CH_2)_mQR^4$, $NHC(O)T(CH_2)_mQR^4$, $T(CH_2)_mC(O)NR^4NR^5$, or $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$, or $N^+R^5R^6Y^-$:

when the dotted line is present, R³ is absent;

otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

$$\begin{array}{c} \text{OR}^5 \\ | \\ \text{T(CH}_2)_m \text{QR}^4, \text{T(CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ | \\ \text{H} \end{array}$$

wherein T and Q are as defined above:

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 or 2}, $(CH_2)_nAr$,

 ${
m C_3\text{-}C_{10}}$ cycloalkyl, heterocyclyl, and heteroaryl, or ${
m R^4}$ and ${
m R^5}$ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R⁴ and R⁵ together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR⁴, NR⁴R⁵, (CH₂)_mOR⁴,

 $(\text{CH}_2)_m \text{NR}^4 \text{R}^5, \text{ T-(CH}_2)_m \text{QR}_4, \text{ CO-T-(CH}_2)_m \text{QR}^4, \text{ NH(CO)T(CH}_2)_m \text{QR}^4, \text{ T-(CH}_2)_m \text{CO}_2 \text{R}^4, \text{ or T(CH}_2)_m \text{CONR}^4 \text{R}^5;$

R⁶ is alkyl;

 R^8 and R^9 independently are H, C_1 - C_3 alkyl, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, hydroxy, alkoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CHO, CN, or NO_2 ;

when the dotted line is absent, R⁹ is additionally oxo,

Y is a halo counter-ion.

- 27. (currently amended) [[A]] <u>The</u> method of Claim 26 wherein said cyclin-dependent kinase is cdc2.
- 28. (currently amended) [[A]] <u>The</u> method of Claim 26 wherein said cyclin-dependent kinase is cdk2.
- 29. (currently amended) [[A]] <u>The</u> method of Claim 26 wherein said cyclin-dependent kinase is cdk4 or cdk6.
- 30. (currently amended) A method of inhibiting a growth factor-mediated tyrosine kinase comprising contacting said growth factor-mediated kinase with a compound of Formula $\underline{V}I$

or a pharmaceutically acceptable salt thereof, and the pharmaceutically acceptable salts thereof, wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

 R^1 , R^2 , and R^{10} are independently selected from the group consisting of H, $(CH_2)_n$ Ar, COR^4 , $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heterocyclyl, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_{10} alkenyl, and C_2 - C_{10} alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

$$\begin{array}{c} \text{OR}^5 \\ | \\ \text{heteroaryloxy, T(CH}_2)_m \text{QR}^4, T(\text{CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ | \\ \text{H} \end{array}$$

 $C(O)T(CH_2)_mQR^4, \ NHC(O)T(CH_2)_mQR^4, \ T(CH_2)_mC(O)NR^4NR^5, \ or \ T(CH_2)_mCO_2R^4 \ wherein each m is independently 1-6, T is O, S, NR^4, N^+(O)R^4, N^+R^4R^6Y^-, \ or \ CR^4R^5, \ and \ Q is O, S, NR^5, N^+(O)R^5, \ or \ N^+R^5R^6Y^-:$

when the dotted line is present, R³ is absent;

otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

$$\begin{array}{c} \operatorname{OR}^5 \\ | \\ \operatorname{T}(\operatorname{CH}_2)_m \operatorname{QR}^4, \operatorname{T}(\operatorname{CH}_2)_m \operatorname{C-}(\operatorname{CH}_2)_m \operatorname{QR}^4, \\ | \\ | \\ \operatorname{H} \end{array}$$

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 Of 2}, $(CH_2)_nAr$,

 C_3 - C_{10} cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$,

 $(\text{CH}_2)_m \text{NR}^4 \text{R}^5, \text{ T-(CH}_2)_m \text{QR}_4, \text{ CO-T-(CH}_2)_m \text{QR}^4, \text{ NH(CO)T(CH}_2)_m \text{QR}^4, \text{ T-(CH}_2)_m \text{CO}_2 \text{R}^4, \text{ or T(CH}_2)_m \text{CONR}^4 \text{R}^5;$

R⁶ is alkyl;

 R^8 and R^9 independently are H, C_1 - C_3 alkyl, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, hydroxy, alkoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CHO, CN, or NO_2 ;

when the dotted line is absent, R⁹ is additionally oxo,

Y is a halo counter-ion.

- 31. (currently amended) [[A]] <u>The</u> method of Claim 30 wherein said growth factor-mediated tyrosine kinase is platelet derived growth factor (PDGF).
- 32. (currently amended) [[A]] <u>The</u> method of Claim 30 wherein said growth factor-mediated tyrosine kinase is fibroblast growth factor (FGF).
- 33. (currently amended) [[A]] <u>The</u> method of Claim 30 wherein said growth factor-mediated tyrosine kinase is vascular endothelial growth factor (VEGF).
- 34. (currently amended) A method of inhibiting a non-receptor tyrosine kinase comprising contacting said non-receptor tyrosine kinase with a compound of Formula VI

or a pharmaceutically acceptable salt thereof, and the pharmaceutically acceptable salts thereof, wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO₂;

X is either O, S, or NR¹⁰;

 R^1 , R^2 , and R^{10} are independently selected from the group consisting of H, $(CH_2)_n$ Ar, COR^4 , $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heterocyclyl, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_{10} alkenyl, and C_2 - C_{10} alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

$$\begin{array}{c} \text{OR}^5 \\ | \\ \text{heteroaryloxy, T(CH}_2)_m \text{QR}^4, T(\text{CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ | \\ \text{H} \end{array}$$

 $C(O)T(CH_2)_mQR^4$, $NHC(O)T(CH_2)_mQR^4$, $T(CH_2)_mC(O)NR^4NR^5$, or $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$, or $N^+R^5R^6Y^-$:

when the dotted line is present, R³ is absent;

otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

$$\begin{array}{c} \text{OR}^5 \\ | \\ \text{T(CH}_2)_m \text{QR}^4, \, \text{T(CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ | \\ \text{H} \end{array}$$

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 or 2}, $(CH_2)_n$ Ar,

 C_3 - C_{10} cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$,

 $(CH_2)_mNR^4R^5$, T- $(CH_2)_mQR_4$, CO-T- $(CH_2)_mQR^4$, NH(CO)T(CH₂)_mQR⁴, T- $(CH_2)_mCO_2R^4$, or T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl;

 R^8 and R^9 independently are H, C_1 - C_3 alkyl, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, hydroxy, alkoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CHO, CN, or NO_2 ;

when the dotted line is absent, R⁹ is additionally oxo,

S NH NR
4
 NOH NOR 4 \parallel \parallel \parallel \parallel \parallel \square C- R 4 , CH, CH, CH, CH, C, and

Y is a halo counter-ion.

- 35. (currently amended) [[A]] <u>The</u> method of Claim 3[[3]]4 wherein said non-receptor tyrosine kinase is selected from a transforming gene of the Rous sarcoma retrovirus (Src) family.
- 36. (currently amended) A method of inhibiting a serine kinase in a mammal comprising administering a serine kinase inhibiting among of a compound of Claim 1 Formula VI

or a pharmaceutically acceptable salt thereof,

wherein:

the dotted line represents an optional double bond;

W is NH, S, SO, or SO2;

X is either O, S, or NR¹⁰;

 R^1 , R^2 , and R^{10} are independently selected from the group consisting of H, $(CH_2)_n$ Ar, COR^4 , $(CH_2)_n$ heteroaryl, $(CH_2)_n$ heterocyclyl, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_2 - C_{10} alkenyl, and

 $\underline{C_2}$ - $\underline{C_{10}}$ -alkynyl, wherein n is 0, 1, 2, or 3, and the $(CH_2)_{\underline{n}}Ar$, $(CH_2)_{\underline{n}}$ -heteroaryl, alkyl, cycloalkyl, alkenyl, and alkynyl groups are optionally substituted by up to 5 groups selected from NR⁴R⁵, N⁺(O)R⁴R⁵, N⁺R⁴R⁵R⁶Y⁻, alkyl, phenyl, substituted phenyl, $(CH_2)_{\underline{n}}$ -heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro,

	<u>OR⁵</u>
<u>heteroar</u>	<u>'loxy, T(CH₂)_mQR⁴, T(CH₂)_mC-(CH₂)_mQR⁴, </u>
	

 $\frac{C(O)T(CH_2)_mQR^4, NHC(O)T(CH_2)_mQR^4, T(CH_2)_mC(O)NR^4NR^5, or T(CH_2)_mCO_2R^4 \text{ wherein each m is independently 1-6, T is O, S, NR^4, N^+(O)R^4, N^+R^4R^6Y^-, or CR^4R^5, and Q is O, S, NR^5, N^+(O)R^5, or N^+R^5R^6Y^-;}$

when the dotted line is present, R³ is absent;

otherwise R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)₁ or 2. $(CH_2)_nAr$.

C₃-C₁₀ cycloalkyl, heterocyclyl, and heteroaryl, or R⁴ and R⁵ together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$,

 $\underline{(\text{CH}_2)_m} \text{NR}^4 \text{R}^5, \text{T-}(\text{CH}_2)_m \text{QR}_4, \text{CO-T-}(\text{CH}_2)_m \text{QR}^4, \text{NH}(\text{CO}) \text{T}(\text{CH}_2)_m \text{QR}^4, \text{T-}(\text{CH}_2)_m \text{CO}_2 \text{R}^4, \text{or} \\ \underline{\text{T}(\text{CH}_2)_m} \text{CONR}^4 \text{R}^5; }$

R⁶ is alkyl;

 R^8 and R^9 independently are H, C_1 - C_3 alkyl, NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, hydroxy, alkoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , CHO, CN, or NO_2 :

when the dotted line is absent, R⁹ is additionally oxo,

S	NH	NR^4	NOH	NOR ⁴
C- R ⁴ ,	ÜН.	ÜН.	ÜН.	C. and

Y is a halo counter-ion.

Claims 37-41 (canceled).

42. (original) A compound selected from:

7-[3-(Carboxy)-phenylamino]-3-(2,6-dichloro-phenyl)-1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

7-[3-(N-Dimethylaminopropyl-carboxamide)-phenylamino]-3-(2,6-dichloro-phenyl)-1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

7-[3-(N-Dimethylaminopropyl-carboxamide)-phenylamino]-3-(2,6-dichloro-3-hydroxy-phenyl)-1-methyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;

7-[3-(Carboxy)-phenylamino]-3-(2,6-dichloro-3-hydroxy-phenyl)-1-methyl-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(2,6-Dichloro-phenyl)-7-[4-(2-ethylamino-ethoxy)-phenylamino]-1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;

3-(2,6-Dichloro-3-hydroxy-phenyl)-7-[4-(2-ethylamino-ethoxy)-phenylamino]-1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

7-[4-(Carboxamide)-phenylamino]-3-(2,6-dichloro-phenyl)-1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

7-[4-(Carboxamide)-phenylamino]-3-(2,6-dichloro-3-hydroxy-phenyl)-1-methyl-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1*H*)-one;

 $3-(2,6-Dichloro-phenyl)-7-(3-hydroxymethyl-phenylamino)-1-methyl-3,4-dihydro-pyrimido[4,5-<math>\alpha$]pyrimidin-2(1H)-one;

3-(2,6-Dichloro-phenyl)-7-(4-morpholin-4-yl-phenylamino)-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(2,6-Dichloro-3-hydroxy-phenyl)-1-methyl-7-(4-morpholin-4-yl-phenylamino)-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(2,6-Dichloro-3-hydroxy-phenyl)-7-(3-hydroxymethyl-phenylamino)-1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1H)-one;

7-[4-(3-Carboxypropyl)-phenylamino]-3-(2,6-dichloro-phenyl)-1-methyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidin-2(1*H*)-one;

7-[4-(3-Carboxypropyl)-phenylamino]-3-(2,6-dichloro-3-hydroxy-phenyl)-1-methyl-3,4-dihydropyrimido[4,5-d]pyrimidin-2(1*H*)-one;

3-(2,6-Dichloro-phenyl)-7-[4-(formyl-phenylamino]- 1-methyl-3,4-dihydro-pyrimido[4,5-d]pyrimidin-2(1*H*)-one; and

 $3-(2,6-Dichloro-3-hydroxy-phenyl)-7-[4-(formyl-phenylamino]-1-methyl-3,4-dihydro-pyrimido[4,5-<math>\alpha$]pyrimidin-2(1H)-one.

Claim 43 (canceled).

44. (original) A compound of the formula

wherein:

 R^1 is C_1 - C_{10} alkyl or $(CH_2)_nAr$;

 R^2 is H, C₁-C₁₀ alkyl, or (CH₂)_nAr; and

 R^3 is Ar.

wherein n is 0, 1, 2 or 3;

Ar is phenyl or phenyl substituted with one or two groups selected from halo, alkyl, or substituted alkyl; or a pharmaceutically acceptable salt thereof.

45. (original) A compound of the formula

wherein R^2 is $(CH_2)_nAr$, n is 0, 1, 2 or 3, and Ar is phenyl or phenyl substituted by a 2-aminoethyl group,

or a pharmaceutically acceptable salt thereof.

46. (currently amended) A pharmaceutical formulation comprising [[a]] <u>the</u> compound <u>or</u> <u>pharmaceutically acceptable salt thereof</u> of Claim 3 in combination with a pharmaceutically acceptable carrier, diluent or excipient.

Claim 47 (canceled).

- 48. (currently amended) A pharmaceutical formulation comprising [[a]] <u>the</u> compound <u>or</u> <u>pharmaceutically acceptable salt thereof</u> of Claim 44 in combination with a pharmaceutically acceptable carrier, diluent or excipient.
- 49. (currently amended) A pharmaceutical formulation comprising [[a]] <u>the</u> compound <u>or</u> <u>pharmaceutically acceptable salt thereof</u> of Claim 45 in combination with a pharmaceutically acceptable carrier, diluent or excipient.

50. (original) A compound of the formula
$$\begin{array}{c} \text{OCH}_3\\ \text{OCH}_3\\ \text{OCH}_3\\ \text{N-CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}\\ \text{CHCH}_3\\ \text{CHCH}_3\\ \text{CHc}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{NH}\\ \text{OCH}_3\\ \text{CH}_2\text{CH}_3\text{ or cyclopentyl}\\ \end{array}$$

or a pharmaceutically acceptable salt thereof.

- 51. (original) The compound 7-(4-diethylamino-butylamino)-3-(2-chloro-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidine-2(1*H*)-one.
- 52. (original) The compound 7-(4-diethylamino-butylamino)-3-(2-methyl-3,5-dimethoxy-phenyl)-1-ethyl-3,4-dihydro-pyrimido[4,5-*d*]pyrimidine-2(1*H*)-one.

53. (original) The compound 7-(4-diethylamino-butylamino)-3-(3,5-dimethoxy-phenyl)-1-cyclopentyl-3,4-dihydro-pyrimido[4,5-d]pyrimidine-2(1*H*)-one.

Claims 54-55 (canceled).

56. (currently amended) A compound of Claim 55 having the formula VII

$$R^{1} - N + N + N + N + O$$

VII

or a pharmaceutically acceptable salt thereof,

wherein:

 R^1 and R^2 independently are hydrogen, C_1 - C_{10} alkyl, $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, C_3 - C_{10} cycloalkyl, or $(CH_2)_n$ heterocyclyl, wherein n is 0, 1, 2 or 3, and the $(CH_2)_n$ Ar, $(CH_2)_n$ heteroaryl, alkyl, cycloalkyl and $(CH_2)_n$ heterocyclyl groups are optionally substituted by up to 5 groups selected from NR^4R^5 , $N^+(O)R^4R^5$, $N^+R^4R^5R^6Y^-$, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ heteroaryl, hydroxy, alkoxy, phenoxy, thiol, thioalkyl, halo, COR^4 , CO_2R^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 , aldehyde, nitrile, nitro, heteroaryloxy, $T(CH_2)_mQR^4$,

OR⁵
| $T(CH_2)_m$ C- $(CH_2)_m$ QR⁴, C(O) $T(CH_2)_m$ QR⁴, NHC(O) $T(CH_2)_m$ QR⁴, $T(CH_2)_m$ C(O)NR⁴NR⁵,
|
H

or $T(CH_2)_mCO_2R^4$ wherein each m is independently 1-6, T is O, S, NR^4 , $N^+(O)R^4$, $N^+R^4R^6Y^-$, or CR^4R^5 , and Q is O, S, NR^5 , $N^+(O)R^5$, or $N^+R^5R^6Y^-$;

 R^3 has the meanings of R^2 , wherein R^2 is as defined above, as well as OH, NR^4R^5 , $COOR^4$, OR^4 , $CONR^4R^5$, $SO_2NR^4R^5$, SO_3R^4 , PO_3R^4 ,

$$\begin{array}{c} \text{OR}^5 \\ \mid \\ \text{T(CH}_2)_m \text{QR}^4, \text{T(CH}_2)_m \text{C-(CH}_2)_m \text{QR}^4, \\ \mid \\ \text{H} \end{array}$$

wherein T and Q are as defined above;

 R^4 and R^5 are each independently selected from the group consisting of hydrogen, C_1 - C_6 alkyl, substituted alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, $N(C_1$ - C_6 alkyl)_{1 or 2}, $(CH_2)_nAr$,

 C_3 - C_{10} cycloalkyl, heterocyclyl, and heteroaryl, or R^4 and R^5 together with the nitrogen to which they are attached optionally form a ring having 3 to 7 carbon atoms and said ring optionally contains 1, 2, or 3 heteroatoms selected from the group consisting of nitrogen, substituted nitrogen, oxygen, and sulfur;

when R^4 and R^5 together with the nitrogen to which they are attached form a ring, the said ring is optionally substituted by 1 to 3 groups selected from OH, OR^4 , NR^4R^5 , $(CH_2)_mOR^4$,

 $(CH_2)_mNR^4R^5$, T- $(CH_2)_mQR_4$, CO-T- $(CH_2)_mQR^4$, NH(CO)T(CH₂)_mQR⁴, T- $(CH_2)_mCO_2R^4$, or T(CH₂)_mCONR⁴R⁵;

R⁶ is alkyl; and

Y is a halo counter-ion.

Claims 57-58 (canceled).

- 59. (original) A pharmaceutical formulation comprising a compound of Claim 56 in combination with a pharmaceutically acceptable carrier, diluent or excipient.
- 60. (original) A compound of Claim 56 wherein R^1 is alkyl, pyridyl, or phenyl, each optionally substituted with hydroxy, alkoxy, NR^4R^5 , or $T(CH_2)_mQR^4$.

Claims 61-66 (not entered).

Claim 67 (canceled).

Claims 68-74 (not entered).

Claim 75 (canceled).

Claims 76-80 (not entered).