III homeworks.md

Homework 1.

1.1. Write a script (or function) that takes as an input two numbers width and height and prints a rectangle with specified size.

Examples:

• width=5 and height=4 should result in terminal output:

```
#####
# #
# #
#####
```

• width=7 and height=2 should result in terminal output:

```
#######
#######
```

• width=1 and height=1 should result in terminal output:

```
#
```

- **1.2.** Sum all perfect squares (numbers that are equal to the square of other number -1, 4, ..., 9, 16, 25, 36, 49, ..., 9801, 10000) in range between 0 and 10000.
- **1.3.** Write a script for setting an alarm, which ask users whether they are employed (yes / no) and whether they are currently on vacation (yes / no). User should answer typing either Y for yes or N for no. If user specify incorrect answer (anything that is not Y or N) program should warn user about incorrect answer and ask again.

The script output True if user is employed and not on vacation (because these are the circumstances under which you need to set an alarm). It should output False otherwise. Examples:

Examples:

· setting an alarm

```
> Are you employed? (Y/N):
> y
> Incorrect answer.
> Are you employed? (Y/N):
> Y
> Are you on vacation (Y/N):
> N
> True
```

· not setting an alarm

```
> Are you employed? (Y/N):
> N
> Are you on vacation (Y/N):
> N
> False
```

Homework 2.

2.1. Write a script approximating $\cos(x)$ as a first five terms of Taylor series expansion (see trigonometric functions section in Wikipedia). User should provide an input value of x and script should output calculated value for each term as well as current sum. Output should be formatted according to scheme:

```
> Calculating cos(1.0471975511965976) as Taylor expansion...
>
> Value for k=0 is +1.0000 (current sum is 1.0000)
> Value for k=1 is -0.5483 (current sum is 0.4517)
> Value for k=2 is +0.0501 (current sum is 0.5018)
> Value for k=3 is -0.0018 (current sum is 0.5000)
> Value for k=4 is +0.0000 (current sum is 0.5000)
```

Use either the .format() method or f-strings.

You might need factorial function from math module

2.2. Write two scripts coefficients.py and quadratic.py. In coefficients.py define three variables a, b and c representing coefficients of the quadratic equation $ax^2 + bx + c$. In quadratic.py import coefficients, solve the equation and output properly formatted the solution. For example in coefficients.py define:

```
a = 1
b = -10
c = 25
```

Then running quadratic.py should produce:

```
> One solution found x=5.000
```

Output for two solutions should look like this:

```
> Two solutions found x=-2.414 and x=0.414
```

Output for no solutions (when delta is less than zero):

```
> No solutions found
```

Imports will work only when these two files will be placed within the same directory

- **2.3.** Write a script that takes an input string from the user and transforms it according to three rules:
 - 1. delete all vowels,
 - 2. leave all consonants and place . (dot) after them
 - 3. transform all uppercase letters for lowercase letters

Examples:

- input Programming should be transformed into p.r.g.r.m.m.n.g.
- input ABACC should be transformed into b.c.c.
- · input aaa should be transformed into an empty string

Consider only inputs consisting of lowercase and uppercase ascii letters (a-z) and (A-Z)