

Decision Trees

- Decision trees have a long history in ML
 - First popular algorithms 1979
- Popular in real world settings
- Intuitive to understand or explain
- Easy to build

History

- Elementary Perceiver and Memorizer (EPAM)
 - Feigenbaum 1961
 - Cognitive simulation model of human concept learning
- CLS- Early algorithm for decision tree construction
 - Hunt 1966
- ID3 based on information theory
 - Quinlan 1979
- C4.5 improved over ID3
 - Quinlan 1993
- Also has history in statistics as CART (Classification and regression tree)

Motivation

- How do people make decisions?
 - Consider a variety of factors
 - Follow a logical path of checks
- Should I eat at this restaurant?
 - No wait -> Yes
 - Short wait and hungry -> Yes
 - Else -> No

Decision Tree Anatomy

- A decision tree is formed of
 - Nodes
 - Attribute tests
 - Branches
 - Results of attribute tests
 - Leaves
 - Classifications

Hypothesis Class

 $Y X_1 X_2 X_3$

0 0 0 1

1 0 1 0

- What functions can decision trees model?
 - Non-linear: very powerful hypothesis class
 - A decision tree can encode any Boolean function
 - Given a truth table for a function
 - Construct a path in the tree for each row of the table
 - Given a row as input, follow that path to the desired leaf (output)
- Problem: exponentially large trees!

Officiality 11003	Smal	ler	rees
-------------------	------	-----	------

- Can we produce smaller decision trees for functions?
 - Most of the time: Yes
 - Counter examples:
 - Parity function
 - Return 1 on even inputs, 0 on odd inputs
 - Majority function
 - Return 1 if more than half of inputs are 1
- Decision trees are good for some functions but bad for others
- Recall: tradeoff between hypothesis class expressiveness and learnability

Decision Trees

Fitting a function to data

- Fitting: ???
- Function: any boolean function
- Data: Batch: construct a tree using all the data

Building Decision Trees

What Makes a Good Tree?

- Small
 - Ockham's razor -> Simpler is better
 - Avoids over-fitting (we'll discuss more later)
- A decision tree may be human readable, but not use human logic
 - The decision tree you would write for a problem may differ from computer

Small Trees

- How do we build small trees that accurately capture data?
- Problem: Optimal decision tree learning is NP-complete
 - We can't guarantee that we'll find the optimal tree

 Constructing Optimal Binary Decision Trees is NP-complete. Laurent Hyafil, RL Rivest. Information Processing Letters, Vol. 5, No. 1. (1976), pp. 15-17.

Greedy Algorithms

- Like many NP-complete problems we can get pretty good solutions
- Most decision tree learning uses greedy algorithms
 - Adjustments usually to fix greedy selection problems
- Top down decision tree learning
 - Recursive algorithms

ID3

- function BuildDecisionTree(data, labels):
 - if all labels are the same
 - return leaf node for that label
 - else
 - let f be the best feature for splitting
 - left = BuildDecisionTree(data with f=0, labels with f=0)
 - right= BuildDecisionTree(data with f=1, labels with f=1)
 - return Tree(f, left, right)
- Poes this always terminate?

Base Cases

- All data have same label.
 - Return that label
- No examples
 - Return majority label of all data
- No further splits possible
 - Return majority label of passed data

ID3

- function BuildDecisionTree(data, labels):
 - if all labels are the same
 - return leaf node for that label
 - else
 - let f be the best feature for splitting
 - left = BuildDecisionTree(data with f=0, labels with f=0)
 - right= BuildDecisionTree(data with f=1, labels with f=1)
 - return Tree(f, left, right)

Selecting Features

- The best feature for splitting
 - The most informative feature about the labels
- Relies on *Information theory*

Information Theory

- The quantification of information
- Founded by Claude Shannon
 - Landmark paper in 1948
 - Noisy channel theorem

Information Theory

A brief introduction...

Information Theory

• Entropy
$$H(X) = -\sum_{x \in X} p(x) \log(p(x))$$

• Conditional Entropy
$$H(Y|X) = -\sum_{x \in X} p(x)H(Y|X = x)$$

• Information Gain
$$= -\sum_{x \in X} p(x) \sum_{y \in Y} p(y|x) \log p(y|x)$$

$$IG(Y|X) = H(Y) - H(Y|X)$$

Selecting Features

- Can select the feature which maximizes the <u>information gain</u>
- Measure relative to label distribution
 - X = feature of choice
 - Y = output label
- Equivalent to minimizing the conditional entropy for each leaf

Notes for Decision Trees

- We compare H(Y|X) across different choices for feature X
 - H(Y) is a constant
 - We can omit it for comparisons
- The base of the log doesn't matter as long as it is consistent

Example: Should We Play Tennis?

Play Tennis	Outlook	Temperatur e	Humidity	Windy
No	Sunny	Hot	High	No
No	Sunny	Hot	High	Yes
Yes	Overcast	Hot	High	No
Yes	Rainy	Mild	High	No
Yes	Rainy	Cold	Normal	No

[•] H(Tennis) = $-3/5 \log_2 3/5 \cdot 2/5 \log_2 2/5 = 0.97$

Example: Should We Play Tennis?

Play Tennis	Outlook	Temperatur e	Humidity	Windy
No	Sunny	Hot	High	No
No	Sunny	Hot	High	Yes
Yes	Overcast	Hot	High	No
Yes	Rainy	Mild	High	No
Yes	Rainy	Cold	Normal	No

- H(Tennis|Outlook=Sunny) = $\cdot 2/2 \log_2 2/2 0/2 \log_2 0/2 = 0$
- H(Tennis|Outlook=Overcast) = $\cdot 0/1 \log_2 0/1 1/1 \log_2 1/1 = 0$
- H(Tennis|Outlook=Rainy) = -0/2 log₂ 0/2 2/2 log₂ 2/2 = 0
- H(Tennis|Outlook) = 2/5 * 0 + 1/5 * 0 + 2/5 * 0 = 0

Example: Should We Play Tennis?

Play Tennis	Outlook	Temperatur e	Humidity	Windy
No	Sunny	Hot	High	No
No	Sunny	Hot	High	Yes
Yes	Overcast	Hot	High	No
Yes	Rainy	Mild	High	No
Yes	Rainy	Cold	Normal	No

- IG(Tennis | Outlook) = 0.97 0 = 0.97
- If we knew the Outlook we'd be able to perfectly predict Tennis!
- Outlook is a great feature to pick for our decision tree

Base Cases

- All data have same label
 - Return that label
- No examples
 - Return majority label of all data
- No further splits possible
 - Return majority label of passed data
- If max IG = 0?

IG=0 As a Base Case

Consider the following

Y	$\mathbf{X_1}$	X_2
0	0	0
1	0	1
1	1	0
0	1	1

- Both features give 0 IG
- Once we divide the data, perfect classification!

Training vs. Test Accuracy

- Consider a similar tree built for tennis data:
 - Non-binary branches
- 100% training accuracy
- 30% testing accuracy
- Why?

Over-fitting

- X₅ perfectly predicts Y
- Let's randomly flip Y with probability ¼
- X₅ will be the first split
- But tree will keep going
 - Duplicate training data into train/test
 - Train accuracy will be 100%
 - Test accuracy will be 62.5% (5/8)
 - 1/16 examples are doubly corrupted
 - 9/16 are uncorrupted
 - 6/16 will be bad
 - Single node test accuracy: 75%

Y	X_1	X_2	X³	X_4	X_5
0	0	0	0	0	0
1	0	0	0	0	1
0	0	0	0	1	0
1	0	0	0	1	1
0	0	0	1	0	0
1	0	0	1	0	1
0	0	0	1	1	0
1	0	0	1	1	1

32 examples total ··

Bias/Variance Tradeoff

- Complete trees have no bias
 - But can over-fit badly
 - Lots of variance
- 0 depth trees (return most likely label) have no variance
 - Totally biased towards majority label
- A good tree balances between these two
 - How do we learn balanced trees?

Pruning: New Base Cases

- Stop when too few examples in the branch
- Stop when max depth reached
- Stop when my classification error is not much more than the average of my children
 - Requires first computing then removing
- X² pruning- stop when remainder is no more likely than chance

Parameters

- All of these are parameters
- How do you select parameter values?
 - Train data?
 - Test data?
 - Development data!

Decision Trees

Fitting a function to data

- Fitting: greedy algorithm to find a good tree
 - Extra heuristics to help with over-fitting
 - Optimal decision tree learning: NP-complete
- Function: any boolean function
- Data: Batch: construct a tree using all the data

Extensions

- Non-binary attributes
 - Categorical
 - Continuous (real valued)
 - Handle by thresholding on splitting the range of values
 - Regression trees
- Missing attributes
- Alternatives to information gain
 - Gini index
 - Miss-classification rate
- Non-greedy algorithms?

Continuous Parameters

- How do we handle continuous inputs?
 - We make them categorical!
 - But how?
- Thresholding!

Alternatives to Information Gain

- Misclassification rate
 - Label by most probable class in training data at each leaf
 - Error rate is fraction of test cases with wrong predicted label
 - Simple to evaluate
- Gini Index
 - Expected error rate based on distribution of classes at each leaf

$$\pi_c = \frac{1}{|D|} \sum_{i \in D} I(y_i = c) \quad G = \sum_{c=1}^{C} \pi_c (1 - \pi_c) = \sum_c \pi_c - \sum_c \pi_c^2 = 1 - \sum_c \pi_c^2$$

Regression Trees

- We can perform regression with trees as well
- At each leaf, predict either:
 - 1) Mean of response variable for data points at leaf
 - 2) Fit a linear model for the data points at the leaf
- #1 is faster. but #2 is more precise
- Cost function is typical least-squares-error
- Constructs piecewise linear function

Pros and Cons of Decision Trees

- Pros
 - Easy to interpret
 - Easily handle mixed continuous and discrete data types
 - Insensitive to monotonic transformations of inputs
 - Perform variable selection automatically
 - Scalable
 - Can handle missing inputs

Pros and Cons of Decision Trees

- Cons
 - Not as accurate as other models, partly due to greedy training
- Unstable
 - Small changes in training data can have large effects on tree structure
 - Errors at the top propagate down due to hierarchical nature