

Basic differentiation

You should know the meaning of the terms limit, differentiable at a point,

differentiate, derivative, differentiable over an interval, derived function.

Rule of thumb:

Multiply by the power and reduce the power by 1.

$$f(x) = 3x^{5}$$

$$\Rightarrow f'(x) = 5 \times 3x^{5-1}$$

$$\Rightarrow f'(x) = 15x^{4}$$

$$f(x) = 2x^{3} + 4x^{2} - 3x + 4$$

$$\Rightarrow f(x) = 2x^{3} + 4x^{2} - 3x^{1} + 4x^{0}$$

$$\Rightarrow f'(x) = 6x^{2} + 8x^{1} - 3x^{0} + 0x^{-1}$$

$$\Rightarrow f'(x) = 6x^{2} + 8x - 3$$

$$f(x) = 4\sqrt{x} - 5$$

$$\Rightarrow f(x) = 4x^{\frac{1}{2}} - 5x^{0}$$

$$\Rightarrow f'(x) = 2x^{-\frac{1}{2}}$$

$$\Rightarrow f'(x) = \frac{2}{\sqrt{x}}$$

$$y = f(x)$$

$$\Rightarrow \frac{dy}{dx} = f'(x)$$

$$y = 5x^{2} + \frac{3}{x}$$

$$\Rightarrow y = 5x^{2} + 3x^{-1}$$

$$\Rightarrow \frac{dy}{dx} = 10x - 3x^{-2}$$

$$\Rightarrow \frac{dy}{dx} = 10x - \frac{3}{x^{2}}$$

$$y = \frac{x+5}{\sqrt{x}}$$

$$\Rightarrow y = \frac{x^{1}}{x^{\frac{1}{2}}} + \frac{5}{x^{\frac{1}{2}}}$$

$$\Rightarrow y = x^{\frac{1}{2}} + 5x^{-\frac{1}{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{5}{2}x^{-\frac{3}{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}} - \frac{5}{2\sqrt{x^{3}}}$$

A straight line has a gradient $m_{AB} = \frac{y_B - y_B}{x_B - x_A}$

The chord PQ has a gradient

$$m_{PQ} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{f(x+h) - f(x)}{x+h-x} = \frac{f(x+h) - f(x)}{h}$$

As *h* tends to zero, Q tends towards P and the chord PQ becomes the tangent at P.

The gradient of the tangent at $P = f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$

To find the gradient of the tangent to the curve y = f(x) at x = a we need to evaluate f'(a).

Test Yourself? The Waverley can reach its top speed in 5 minutes. During that time its distance from the start can be calculated using the formula $D = t + 50t^2$ where t is the time in minutes and D is measured in metres.

What is the Waverley's top speed?

Speed, v m/min, is the rate of change of *distance* with time.

How fast is it accelerating?

$$v = 1 + 100t$$

$$\Rightarrow a = \frac{dv}{dt} = 100$$

Acceleration, a m/min/min, is the rate of change of speed with time.

The signs indicate where the gradient of the curve is:

positive ... the function is increasing negative ... the function is decreasing zero ... the function is stationary

A function is strictly increasing in a region where f'(x) > 0

A function is strictly increasing in a region where f'(x) < 0

A function is stationary where f'(x) = 0

$$f(x) = 2x^3 - 3x^2 - 12x + 1.$$

Identify where it is (i) increasing (ii) decreasing (iii) stationery

A sketch of the derivative shows us that

$$f'(x) < 0$$
 for $0 < x < 2 \dots f(x)$ decreasing

$$f'(x) > 0$$
 for $x < 0$ or $x > 2$... $f(x)$ increasing

$$f'(x) = 0$$
 for $x = 0$ or $x = 2$... $f(x)$ stationary

Test Yourself?

When a function is defined on a closed interval, $a \le x \le b$, then it must have a maximum and a minimum value in that interval.

These values can be found either at

- a stationary point [where f'(x) = 0]
- an end-point of the closed interval. [f(a) and f(b)]

All you need do is find these values and pick out the greatest and least values.

Example

A manufacturer is making a can to hold 250 ml of juice.

The cost of the can is dependent on its radius, x cm.

For practical reasons the radius must be between 2.5 cm and 4.5 cm.

The cost can be calculated from the formula

$$C = x^3 - 5x^2 + 3x + 15, \quad 2.5 \le x \le 4.5.$$

Calculate the maximum and minimum values of the cost function.

Test Yourself?

solving optimisation problems using calculus

Example

A box has a square base of side x cm and a height of h cm. It has a volume of 1 litre (1000 cm³) For what value of x will the surface area of the box be minimised? [... and hence the cost of production be optimised]

Example

Find the stationary points of the function $f(x) = x^5 + 5x^4 - 35x^3 + 1$ and determine their nature.

Equate to zero: $5x^4 + 20x^3 - 105x^2 = 0$ at stationary points $5x^2(x^2 + 4x - 21) = 0$ $5x^2(x^2 + 4x - 21) = 0$ $5x^2(x - 3)(x + 7) = 0$ $x = 0 \text{ (twice)}, x = 3 \text{ or } x = -7$ Make a table of signs: $x \rightarrow -7 \rightarrow 0 \rightarrow 3 \rightarrow \dots \text{ scan the critical } x\text{'s}$ $5x^2 + + + + 0 + + + + + + \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x + 7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x = 0 \text{ (a horizontal point of inflexion)}$ $x = 3 \text{ (a minimum turning point.}$ $x = 3 (a minimum$	Differentiate:		f'(x)	$)=5x^2$	$4 + 20x^3$	– 105 <i>x</i>	2							
$\Rightarrow 5x^{2}(x-3)(x+7) = 0$ $\Rightarrow x = 0 \text{ (twice)}, x = 3 \text{ or } x = -7$ Make a table of signs: $x \rightarrow -7 \rightarrow 0 \rightarrow 3 \rightarrow \dots \text{ scan the critical } x\text{'s}$ $5x^{2} + + + + + 0 + + + + + + \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 + + + + + + + \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 + + + + + + \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 + + + + + + \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x+7 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow \dots \text{ examine each factor of dy.}$ $x=0 \text{ (a horizontal point of inflexion);}$ $x=3 \text{ (a minimum turning point);}$ $x=3 \text{ (a minimum turning point);}$ $x=3 \text{ (a minimum turning point).}$	Equate to zero:		$5x^{4}$	$+ 20x^{2}$	3 - 105x	$e^2 = 0 \text{ a}$	t statio	na <mark>ry p</mark>	oints					
Make a table of signs: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(factorise)		\Rightarrow	$5x^2(x^2)$	+4x-1	(21) = 0	1							
Make a table of signs: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\Rightarrow	$5x^2(x)$	-3)(x - 3)	7) = ()							
Stationary points occur at $x = -7 \text{ (a maximum turning point);} \\ x = 0 \text{ (a horizontal point of inflexion);} \\ x = 3 \text{ (a minimum turning point).}$ The corresponding stationary values are $f(-7) = 7204$ $f(0) = 1$ $f(3) = -296$			\Rightarrow	x = 0	(twice),	x=3	or $x = -$	-7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Make a table of s	ig <mark>ns:</mark>			\rightarrow	-7	\rightarrow	0	\rightarrow	3	\rightarrow		scan the critica	l x's
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					+	+	+	0	+		_			
Stationary points occur at $x = -7 \text{ (a maximum turning point);}$ $x = 0 \text{ (a horizontal point of inflexion);}$ $x = 3 \text{ (a minimum turning point).}$ The corresponding stationary values are $f(-7) = 7204$ $f(0) = 1$ $f(3) = -296$						_	-		-	+ -	_		examine each i	factor of dy/
Stationary points occur at $x = -7 \text{ (a maximum turning point);} \\ x = 0 \text{ (a horizontal point of inflexion);} \\ x = 3 \text{ (a minimum turning point.} \\ The corresponding stationary values are } \\ f(-7) = \\ 7204 \\ f(0) = 1 \\ f(3) = -296$							+		+					
Stationary points occur at $x = -7 \text{ (a maximum turning point);}$ $x = 0 \text{ (a horizontal point of inflexion);}$ $x = 3 \text{ (a minimum turning point.}$ The corresponding stationary values are $f(-7) = 7204$ $f(0) = 1$ $f(3) = -296$ Te					/	<u> </u>			_		+ /	0	onclusions bas	ed on sign c
Stationary points occur at $x = -7$ (a maximum turning point); $x = 0$ (a horizontal point of inflexion); $x = 3$ (a minimum turning point. The corresponding stationary values are $f(-7) = 7204$ $f(0) = 1$ $f(3) = -296$					/	max		ΡĪ	\	min				_
$x = -7 \text{ (a maximum turning point);}$ $x = 0 \text{ (a horizontal point of inflexion);}$ $x = 3 \text{ (a minimum turning point.}}$														
x = 0 (a horizontal point of inflexion); $x = 3 (a minimum turning point.$ The corresponding stationary values are $f(-7) = 7204$ $f(0) = 1$ $f(3) = -296$ Te	Statio	nary po	oints occu	r at	_									
The corresponding stationary values are $f(-7) = 7204$ $f(3) = -296$ The corresponding stationary values are $f(-7) = 7204$ $f(3) = -296$ Telegraph of the corresponding stationary values are $f(-7) = 7204$						1				7 .				
The corresponding stationary values are $f(-7) = 7204$ $f(0) = 1$ $f(3) = -296$ Te										(ion);				
f(-7) = 7204 $f(0) = 1$ $f(3) = -296$ Tel	TI					1	num tu	rning	point.					
f(0) = 1 f(3) = -296	I he c	orrespo	nding stat	nonary										
f(3) = -296					f(-/) =	1 / <u>2</u> U4								
					. ,									ТД
The stationary points are: $(-7, 7204)$ a max $17, (0, 1)$ a norizontal $71, (3, -290)$ a min 17	Thor	tationa	z nointa a	ro: ('	. ,		TD: (0	1) 0	horizo	atol D	I. (2	206) a	min TD	
	The s	iational	y pomis a	16. (<u>–</u>	1, 1204)	a IIIdX	11, (0	, i j a	HUHZUI	mai P	1, (3, -	-290) a	шш 11	Tours

Differentiate

(a)
$$3x^5 + 4x^3 - x - 3$$

(b)
$$3x^2 + 2\sqrt{x}$$

(c)
$$4 + \frac{3}{x}$$

$$(d) \quad \frac{2x + \sqrt{x}}{x^2}$$

Differentiate

(a)
$$3x^5 + 4x^3 - x - 3$$

(b)
$$3x^2 + 2\sqrt{x}$$

(c)
$$4 + \frac{3}{x}$$

(d)
$$\frac{2x + \sqrt{x}}{x^2}$$

(b)	$3x^2$	+ 2√£	x = 3	$x^{2} + 2$	$x^{\frac{1}{2}}$		
	a	ly – 6	r⊥ r	$\frac{-\frac{1}{2}}{=6}$	(r ⊥ _	1	
	a	\int_{x}^{∞}	лтл	(1	\sqrt{x}	

You must make each term take the shape ax^n

(c)
$$4 + \frac{3}{x} = 4 + 3x^{-1}$$

 $\Rightarrow \frac{dy}{dx} = -3x^{-2} = -\frac{3}{x^2}$

(d)
$$\frac{2x + \sqrt{x}}{x^2} = \frac{2x}{x^2} + \frac{x^{\frac{1}{2}}}{x^2} = 2x^{-1} + x^{-\frac{3}{2}}$$
$$\Rightarrow \frac{dy}{dx} = -2x^{-2} - \frac{3}{2}x^{-\frac{5}{2}}$$

Gradient at a Point

 $H = 0.1(x^3 - 5x^2 + 6x)$ where H is the height and x is the distance from the origin.

What is the gradient of the curve when x = 2?

Gradient at a Point

 $H = 0.1(x^3 - 5x^2 + 6x)$ where H is the height and x is the distance from the origin.

What is the gradient of the curve when x = 2?

H=	• 0·1x	$^{3}-0$	5x ² +	0·6x			
			– <i>x</i> +				
 \Rightarrow	$\frac{dH}{dx}$	=2)· 3× · 6	$2^2 - 2$	2+0.	6	
		2+0	· 6				
=-	-0 · 2						

Rates of change

The radius, r cm, of a particular circular ripple is related to the time, t, in seconds since the photo was taken.

$$r = 4t + 3$$

How fast is the area of the circle growing when the radius is 10 cm?

Rates of change

The radius, r cm, of a particular circular ripple is related to the time, t, in seconds since the photo was taken.

$$r = 4t + 3$$

How fast is the area of the circle growing when the radius is 11 cm?

Increasing/decreasing functions

During what years was this a decreasing function?

Increasing/decreasing functions

During what years was this a decreasing function?

$$N(x) = x^3 - 15x^2 + 63x - 10, \quad 1 < x < 12$$

$$\Rightarrow N'(x) = 3x^2 - 30x + 63$$

$$N(x) = 0$$
 at stationary points

$$3x^2 - 30x + 63 = 0 \implies x = 3 \text{ or } 7$$

The sketch shows that $N'(x) \le 0$ for $3 \le x \le 7$.

The population was on the decrease between the 3rd and 7th years of the survey.

Curve sketching

043 3. 22

Sketch the curve with equation

$$y = x^3 - 5x^2 - 8x + 12$$

Identifying

- (i) where will it cut the *y*-axis?
- (ii) where will it cut the x-axis?
- (iii) where is it stationary?
- (iv) where it is increasing/decreasing especially in the neighbourhood of the stationary points.
- (v) how it behave as $x \to \pm \infty$

Curve sketching

Sketch the curve with equation

$$y = x^3 - 5x^2 - 8x + 12$$

Identifying

- (i) where will it cut the *y*-axis?
- (ii) where will it cut the x-axis?
- (iii) where is it stationary?
- (iv) where it is increasing/decreasing especially in the neighbourhood of the stationary points.
- (v) how it behave as $x \to \pm \infty$

(i)
$$x = 0 \Rightarrow y = 12 \dots (0, 12)$$

(ii)
$$y = 0 \Rightarrow x^3 - 5x^2 - 8x + 12 = 0$$

 $\Rightarrow (x - 1)(x + 2)(x - 6) = 0$

$$x = 1$$
 or $x = -2$ or $x = 6$... $(1, 0), (-2,0), (6, 0)$

(iii)
$$dy/dx = 3x^2 - 10x - 8$$

= 0 at S.P.s
 $3x^2 - 10x - 8 = 0 \Rightarrow (3x + 2)(x - 4) = 0$
 $\Rightarrow x = -\frac{2}{3}$ or $x = 4$... a max TP at $(+\frac{2}{3}, \frac{400}{27})$
 $\Rightarrow y = \frac{400}{37}$ or $y = +36$... a min at $(4, -36)$

(iv)

Х	\rightarrow	$-\frac{2}{3}$	\rightarrow		4	\rightarrow
3x + 2	+	0	+		+	+
x - 4	+	_	-		0	+
dy/dx	+	0	_		0	+
inc/dec	/	-	\		-	/
nature		max	<		min	

(v) When x is large and positive, y is large and positive (1st quad)

When x is large and negative, y is large and negative (3rd quad)

The suppliers are willing to make between 20 and 200 deliveries a year.

The annual cost of these deliveries can be calculated from the formula:

$$C(x) = 4x + \frac{10000}{x} + 1000$$
 ; $20 \le x \le 200$

Calculate the number of deliveries that will minimise the costs.

A shop takes x deliveries a year of cereal.

The suppliers are willing to make between 20 and 200 deliveries a year.

The annual cost of these deliveries can be calculated from the formula:

$$C(x) = 4x + \frac{10000}{x} + 1000$$
 ; $20 \le x \le 200$

What is the manager's best strategy to minimise the costs.

Find stationary point(s)

$$C(x) = 4x + \frac{10000}{x} + 1000$$

$$\Rightarrow C'(x) = 4 - \frac{10000}{x^2}$$

At stationary points C'(x) = 0

$$4 - \frac{10000}{x^2} = 0$$

$$\Rightarrow x^2 = \frac{10000}{4} = 2500$$

$$\Rightarrow x = 50$$

—Examine end-points and stationary point(s)

$$C(20) = 4 \times 20 + \frac{10000}{20} = 580$$

$$C(200) = 4 \times 200 + \frac{10000}{200} = 850$$

$$C(50) = 4 \times 50 + \frac{10000}{50} = 400$$

Optimum strategy: Order 50 times a year. This will minimise costs at £400.

Optimisation

An A4 sheet of paper, roughly 20 by 30 cm has its edges folded up to create a tray. Each crease is x cm from the edge.

What size should *x* be in order to maximise the volume of the tray?

Optimisation

An A4 sheet of paper, roughly 20 by 30 cm has its edges folded up to create a tray. Each crease is *x* cm from the edge.

What size should *x* be in order to maximise the volume of the tray?

Express volume in terms of x:

$$V = x(20 - 2x)(30 - 2x)$$

$$=4x^3-100x^2+600x$$

Differentiate

$$\frac{dV}{dx} = 12x^2 - 200x + 600$$

$$= 0$$
 at S.P.s

$$12x^2 - 200x + 600 = 0$$

$$\Rightarrow x = 200 \pm \sqrt{40000 - 4.12.600}$$

$$\Rightarrow x = 12.7 \text{ or } 3.9 \text{ (to 1 d.p.)}$$

Check nature

Х	\rightarrow	3.9	\rightarrow	1	2.7	\rightarrow
dV/dx	-	0	+		0	ı
inc/dec	\		/			\
Nature		mim		n	nax	

Conclusion

When x = 3 9, the volume is at a maximum of 1056 cm³.

Stationary points and nature

A function is defined by

$$f(x) = \frac{x^5}{5} + \frac{x^4}{4} - \frac{x^3}{3} - \frac{x^2}{2}$$

- (a) Show that its derivative has factors x, (x + 1) and (x 1)
- (b) Find the stationary points of the function and determine their nature.

Stationary points and nature

A function is defined by

$$f(x) = \frac{x^5}{5} + \frac{x^4}{4} - \frac{x^3}{3} - \frac{x^2}{2}$$

- (a) Show that its derivative has factors x, (x + 1) and (x 1)
- (b) Find the stationary points of the function and determine their nature.

differentiate

$$f'(x) = x^{4} + x^{3} - x^{2} - x$$

$$= x(x^{3} + x^{2} - x - 1)$$

$$= x[x^{2}(x+1) - (x+1)]$$

$$= x(x+1)(x^{2} - 1)$$

$$= x(x+1)(x-1)(x+1)$$

Equate to zero

$$At \$. Ps f'(x) = 0$$

i.e.
$$x = 0$$
 or $x = -1$ or $x = 1$

Make nature table

X	\rightarrow	-1	\rightarrow	0	\rightarrow	1	\rightarrow
$(x+1)^2$	+	0	+	+	+	+	+
X	_	-	_	0	+	+	+
(x-1)	_	_	_	-	-	0	+
f'(x)	+	0	+	0	-	0	+
inc/dec	/	-	/	-	\	-	/
nature		PΙ		max		min	

Find corresponding y-values.

$$f(-1) = -\frac{1}{5} + \frac{1}{4} + \frac{1}{3} - \frac{1}{2} = -\frac{7}{60}$$

$$f(1) = \frac{1}{5} + \frac{1}{4} - \frac{1}{3} - \frac{1}{2} = -\frac{23}{60}$$

$$f(0) = 0$$

Summarise findings

$$(-1, -7/_{60})$$
 point of inflexion

$$(1, \frac{23}{60})$$
 minimum turning point

(0, 0) minimum turning point