B38DB: Digital Design and Programming ALU Examples

Mustafa Suphi Erden

Heriot-Watt University
School of Engineering & Physical Sciences
Electrical, Electronic and Computer Engineering

Room: EM 2.01

Phone: 0131-4514159

E-mail: m.s.erden@hw.ac.uk

Example 1:

Design an ALU (Arithmetic and Logical Unit) with two 8-bit inputs A and B, and control signals x, y, and z. The ALU should support the operations described in the Table below. Use an 8-bit adder and an arithmetic/logic extender. Treat these as blocks with no internal structural details required.

Inputs			Operation
Х	У	z	
0	0	0	S = A - B
0	0	1	S = A + B
0	1	0	S = A * 8
0	1	1	S = A / 8
1	0	0	S = A NAND B (bitwise NAND)
1	0	1	S = A XOR B (bitwise XOR)
1	1	0	S = Reverse A (bit reversal)
1	1	1	S = NOT A (bitwise complement)

Solution 1:

Inputs			Operation
х	У	Z	
0	0	0	S = A - B
0	0	1	S = A + B
0	1	0	S = A * 8
0	1	1	S = A / 8
1	0	0	S = A NAND B (bitwise NAND)
1	0	1	S = A XOR B (bitwise XOR)
1	1	0	S = Reverse A (bit reversal)
1	1	1	S = NOT A (bitwise complement)

XYZ	100	bo	Co	'
000	9	6	1	
001	1 a	6	0	
010	9553	0	0	Shifts a by 3 to left
011	9>>3	0	0	shifts as by 3 to right
100	a NANO b	0	0	,
101	a XORb	0	0	
	a reversed		0	
111	NOT a	0	0	

Example 2:

Design a 3-bit Arithmetic Logic Unit (ALU) with two inputs (A, B), select signals (S1, S0), Output (O), and carry out (Cout). The ALU performs the following operations.

S1	S0	Operation
0	0	F = A - B
0	1	F = A + B
1	0	F = A - B - 1
1	1	F = -A + B - 1

Implement this ALU using a minimum number of 2-to-1 multiplexers, one single 3-bit adder (with a carry-in input), and a minimum number of aditional gates. Overflow bit is NOT necessary to be considered.

Solution 2:

S1	S0	Operation
0	0	F = A - B
0	1	F = A + B
1	0	$\mathbf{F} = \mathbf{A} - \mathbf{B} - 1$
1	1	F = -A + B - 1

51 50	
	A-B
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	A+8
1000	A-8-1
11	-A+13-1
For Del:	A-B = A+(-B)
10.00.	= A + B'+1
FOR OI: A	1+6+0
FOT A- B-	1 = (A - B) - 1
	= A + 6'+1-1
	= A+B'+0
For: 11: -	A+B-1 = B-A-1
	= B+(A)-1
	= G+A'+1-1
	= A'+B+0

