Fieldbuses: FIP

Jérôme Ermont jerome.ermont@enseeiht.fr

3SN parcours E (SEMBIIOT)

${\sf Agenda}$

Introduction

FIP

${\sf Agenda}$

Introduction

FIP

Introduction

Before: a centralized topology

Advantages

Only one link between sensors or actuators and PLC

- \rightarrow no collision
- \rightarrow failures easily detected
- \rightarrow respect of real-time aspects

Disadventages

Globally a lot of links

- ightarrow increasing the costs
- ightarrow size of the system is reduced
- \rightarrow scalability ?

Introduction

- To reduce costs and to allow scalability: a shared bus
- Problem:
 - How to share a medium taking into account the respect of real-time properties?
- Different solutions exist in real-time networks domain
- Two specific solutions in the industrial domain:
 - PROFIBUS
 - o FIP

Agenda

Introduction

FIP

Briefly

Architecture

Behavior

Polling table

Variable transmission

Exercise

FIP briefly

- FIP = Factory Information Protocol
- french initiative (1980 NF)
- industrial domain: communication between
 - automation systems
 - sensors (variables)
 - actuators (commands)
 - controllers and maintenance systems

Example: LHC at CERN

Goal:

To guarantee periodic transmission deadlines taking into account the aperiodic transmission

FIP architecture

Behavior

- Bus arbitrator
 - o Controls the data transmission between producers and consumers
- · Cyclic polling of the bus to ensure determinism
- Different types of data transmission:
 - o Cyclic data transmission (sensors, commands), priority
 - Acyclic data transmission:
 - critical (alarms)
 - non critical (maintenance), no priority
- data (variables or commands) \rightarrow identifier (address length: 16 bits)
- producer: recognize the identifier of the required data and put the data on the bus
- comsumers: get data from the bus
- → transmission uses broadcast

Behavior (cont'd)

Frame format

- 2 types of frames:
 - o Frames sent by the arbitrator: identifiers
 - o Frames sent by the producer: data

FSS	Туре	Data	FCS	FES
2 bytes 1 byte			2 bytes	1 byte

· -					
Frame type	Content	Size			
Question Frame	Identifier	2 bytes (var.),			
(id_dat, id_req, id_msg)		3 bytes (msgs)			
Response with data	Data	< 128 bytes			
(rp_dat, rp_dat_rq)					
Response to request	List of identifiers	$n \times 2$ bytes (n<64)			
(rp_rq)					
Response with msg	@src, @dest, msg	3B, 3B, <256B			
$(rp_msg_[no]ack)$					
Other response	NULL	0			
(rp_ack, rp_fin)					

Polling table

- list of identifiers of periodic data
- schedules the transmissions on the bus
- elementary cycle (micro-cycle): time slot of the bus polling by the bus arbitrator
- macro-cycle: juxtaposition of several elementary cycles
- duration of micro-cycle and macro-cycle:

$$T_{mc} = \gcd\{P_i\}$$
, where $1 \le i \le p$
 $T_{MC} = \operatorname{lcm}\{P_i\}$, where $1 \le i \le p$
with P_i periods of p transmission

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- ightarrow used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- → used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)
 microcycle (20 ms)

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- ightarrow used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)

microcycle (20 ms)

macrocycle (80 ms)

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- → used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)

Periodic variables

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- ightarrow used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)

Periodic variables

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- ightarrow used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)

- duration of transmissions on the bus << micro-cycle duration
- \rightarrow it remains time
- ightarrow used to send aperiodic messages
 - Example of polling table:
 4 periodic variables v1 (20 ms), v2 (40 ms), v3 (40 ms), v4 (80 ms)

Scheduling of messages

- Out of the scope of the FIP normalization
- 2 possible methods:
 - 1. priorities associated to messages (dynamic priorities)
 - 2. priorities associated to flows (static priorities)
- Principles:
 - priority assigned to each message according to the number of messages by flow
 - 2. priority assigned to a flow of messages using a scheduling algorithm as, for ex., RM or ED

Different kinds of variable transmission

- Periodic polling of periodic variables
- Periodic (direct) polling of aperiodic variables
 - The arbitrator asks periodically to the stations if they have aperiodic variables
- Non-direct polling of aperiodic variables
 - during the periodic window, stations indicates that they have aperiodic variables to send
 - after the periodic window, the arbitrator asks for the aperiodic variables

Periodic variable transmission

tr = response time

• at 31.25Kb/s: 22.4μ s<tr< 320μ s

• at 1Mb/s: 10μ s<tr< 70μ s

• at 2.5 Mb/s: $4 \mu \text{s} < \text{tr} < 28 \mu \text{s}$

Aperiodic variable transmission: direct polling

Periodic query of the station associated to request \boldsymbol{x}

Aperiodic variable transmission: non-direct polling

Exercise: Construction of a polling table

Lets consider the different messages characteristics:

Variable	Period	Transmission
	(msec)	Duration (μ sec)
а	4	100
b	16	150
С	4	150
d	8	200
е	64	450

Questions:

- 1. Microcycle and Macrocycle values?
- 2. Construct a polling table which allows to schedule the different messages. Do messages respect their temporal constraints ?