# CORRELATION AND REGRESSION

## STATISTICAL MODELS DALE BARR PSYCHOLOGY, UNIVERSITY OF GLASGOW

Created: 2020-10-05 Mon 09:34

## **TODAY'S LECTURE**

- 1. correlations and correlation matrices
- 2. simulating correlational data
- 3. relationship between correlation and regression

## **CORRELATIONS**

### **RELATIONSHIPS**



## **MULTIPLE RELATIONSHIPS**



#### THE PERFECT RELATIONSHIP





## THE CORRELATION COEFFICIENT

Typicaly denoted as ho (Greek symbol 'rho') or r

$$-1 \ge r \le 1$$

- r > 0: positive relationship
- r < 0: negative relationship
- r=0: no relationship

 $r^2$ : coefficient of determination (shared variance)

Estimated using Pearson or Spearman (rank) method. In R: cor(), cor.test()

#### **ASSUMPTIONS**

- ullet relationship between X and Y is linear
- deviations from line of best fit are normally distributed

#### **MULTIPLE CORRELATIONS**

For n variables, you have

$$n! \ 2(n-2)!$$

unique pairwise relationships, where n! is the **factorial** of n.

In R: choose(n, 2).

### **CORRELATION MATRICES**

|                | IQ   | verbal fluency | digit span |
|----------------|------|----------------|------------|
| IQ             | 1.00 | 0.56           | 0.43       |
| verbal fluency | 0.56 | 1.00           | -0.23      |
| digit span     | 0.43 | -0.23          | 1.00       |

In R: corrr::correlate()

#### **CORRELATION MATRICES**

IQ verbal fluency digit span

IQ

verbal fluency 0.56

digit span 0.43 -0.23

## SIMULATING CORRELATIONAL DATA

To simulate bivariate (or multivariate) data in R, use MASS::mvrnorm().

mvrnorm(n, mu, Sigma, ...)

You need the following information:

- ullet means of X and Y,  $\mu_x$  and  $\mu_y$
- standard deviations of X and Y,  $\sigma_x$  and  $\sigma_y$ .
- correlation coefficient  $\rho_{xy}$ .

## THE bivariate APP

https://shiny.psy.gla.ac.uk/Dale/bivariate

#### **REVIEW: STANDARD DEVIATION**

a measure of how much some quantity varies

"standard deviation of x":  $\sigma_x$ 

"variance of x":  $\sigma_x^2$ 

• estimating  $\sigma_x$  from a sample:

$$\hat{\sigma}_x = \sqrt{rac{\Sigma \left(X - \hat{\mu}_x
ight)^2}{N-1}}$$

#### LET'S MAKE SYNTHETIC HUMANS

height and weight measurements for 435 people, taken from here



## **LOG-TRANSFORMED DATA**



#### **SUMMARY STATISTICS**



$$\hat{\mu}_x$$
 4.11

$$\hat{\mu}_x$$
 4.11  $\hat{\mu}_y$  4.74

$$\hat{\sigma}_x$$
 .26

$$\hat{\sigma}_y$$
 .65  $\hat{
ho}_{xy}$  .96

$$\hat{\rho}_{xy}$$
 .96

#### **COVARIANCE MATRIX**

 $\mathbf{\Sigma}$ 

A square matrix that characterizes the variances and their interrelationships (covariances).

$$egin{pmatrix} \sigma_x^{\ 2} & 
ho_{xy}\sigma_x\sigma_y \ 
ho_{yx}\sigma_y\sigma_x & \sigma_y^{\ 2} \end{pmatrix}$$

Must be symmetric and positive definite

#### **CALCULATIONS**

## SIMULATING WITH MASS::mvrnorm()

```
height weight
[1,] 4.254209 5.282913
[2,] 4.257828 4.895222
[3,] 3.722376 3.759767
[4,] 4.191287 4.764229
[5,] 4.739967 6.185191
[6,] 4.058105 4.806485
```

#### TRANSFORM BACK TO RAW UNITS

The exp() function is the inverse of log().

```
height weight
[1,] 70.40108 196.94276
[2,] 70.65632 133.64963
[3,] 41.36254 42.93844
[4,] 66.10779 117.24065
[5,] 114.43045 485.50576
[6,] 57.86453 122.30092
```

## **OUR SYNTHETIC HUMANS**



## RELATIONSHIP BETWEEN CORRELATION AND REGRESSION

$$Y_i = eta_0 + eta_1 X_i + e_i \ e_i \sim N\left(0, \sigma^2
ight)$$

$$eta_1 = 
ho_{xy} rac{\sigma_y}{\sigma_x} \ eta_0 = \mu_y - eta_1 \mu_x$$

#### **IMPLICATIONS**

$$egin{align} Y_i &= eta_0 + eta_1 X_i + e_i & eta_1 &= 
ho_{xy} rac{\sigma_y}{\sigma_x} \ e_i &\sim N\left(0,\sigma^2
ight) & eta_0 &= \mu_y - eta_1 \mu_x \ \end{pmatrix}$$

- $eta_1>0$  implies ho>0, since standard deviations can't be negative.
- $\beta_1 < 0$  implies  $\rho < 0$ , for the same reason.
- ullet Rejecting  $H_0:eta_1=0$  is the same as rejecting  $H_0:
  ho=0$ .
  - also, same p-values for  $\beta_1$  in lm() as for r in cor.test().

#### **REGRESSION FROM CORRELATION**

A study of student performance obtains a correlation of .16 between final exam score and number of lectures attended. The mean score on the final exam was 70 (SD=10), and the mean number of courses attended was 6 (SD=2).

Write the regression equation predicting exam score from attendance.

$$egin{aligned} Y_i &= eta_0 + eta_1 X_i + e_i \ e_i &\sim N\left(0,\sigma^2
ight) \ eta_1 &= 
ho_{xy}rac{\sigma_y}{\sigma_x} \ eta_0 &= \mu_y - eta_1 \mu_x \end{aligned}$$

#### **CORRELATION FROM REGRESSION**

A study on the relationship between wellbeing and hours spent on social media (per week) yields the following regression:

with 5 for the standard deviation of wellbeing and .1 for the standard deviation of number of hours.

What is the correlation?

$$egin{aligned} Y_i &= eta_0 + eta_1 X_i + e_i \ e_i &\sim N\left(0,\sigma^2
ight) \ eta_1 &= 
ho_{xy}rac{\sigma_y}{\sigma_x} \ eta_0 &= \mu_y - eta_1 \mu_x \end{aligned}$$

