Present example x to the input layer and propagate it through the network. Let y = (y₁,..., y_m) be the output vector, and let t(x) = (t₁,...t_m) be the target vector. For each output neuron, calculate its responsibility, δ_i⁽¹⁾, for the network's error: $\delta^{(1)} = v_i(1 - v_i)(t_i - v_i)$ For each hidden neuron, calculate its responsibility, δ_i⁽²⁾, for the network's error. While doing so, use the responsibilities, $\delta_i^{(1)}$, of the output neurons as obtained in the previous step. $\delta_i^{(2)} = h_i(1 - h_i) \sum_i \delta_i^{(1)} w_{ii}$ Update the weights using the following formulas, where η is the learning rate:

output layer: $w_{ji}^{(1)} := w_{ji}^{(1)} + \eta \delta_i^{(1)} h_j$; h_j : the output of the j-th hidden neuron hidden layer: $w_{ki}^{(2)} := w_{ki}^{(2)} + \eta \delta_i^{(2)} x_k$; x_k : the value of the k-th attribute

Unless a termination criterion has been satisfied, return to step 1.