Package 'camtrapHawkes'

May 31, 2023

Title Analyze camera trap data with Hawkes processes

Version 1.0.0

Description Helper functions to infer a Hawkes process from camera trap data. This code relies heavily on the UnitEvents package (https://sourcesup.renater.fr/frs/?group_id=3267) for Hawkes process simulation and inference but implements helper functions for formatting and plotting.

```
License GPL (>= 2)
Encoding UTF-8
Roxygen list(markdown = FALSE)
RoxygenNote 7.2.3
Imports dplyr,
     ggplot2,
     ggraph,
     ggtext,
     graphics,
      grDevices,
      grid,
     gridExtra,
     igraph,
     lubridate,
     magrittr,
     pammtools,
      patchwork,
     rlang,
      stats,
     stringr,
      tibble,
     tidygraph,
     tidyr,
     tidyselect,
      UnitEvents,
      viridis
```

R topics documented:

add_stamps	3
compute_box	3
compute_intervals	4
compute_intervals_permute	4
compute_pos_neg	5
compute_pos_neg_list	5
compute_rate	6
compute_sensi	6
compute_speci	7
compute_TN_TP	7
create_funcshape	8
create_interactions	8
create_spont_rates	9
df_to_matrix	9
filter_inactive_cameras	10
$format_data_perf \ \dots $	10
get_bins_sum	11
get_bins_sum_list	11
get_ids	12
$get_models_df \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	12
get_sampling_info	13
infer	13
$mlist_to_df \dots $	14
name_dataneur	15
plot_background_rate	15
plot_background_rate_simu	16
plot_bias	17
plot_graph	17
plot_interactions	18
plot_interactions_simu	19
plot_observed_rate	20
plot_perf	21
reinfer	22
require	22
shift_duplicates	23
$ue_model_to_df \ldots \ldots$	23
ue_to_df	24
ue_to_graph	24
unpack_inf	25

add_stamps 3

add_stamps	Add timestamps
------------	----------------

Description

Add a timestamps column to df.

Usage

```
add_stamps(df, origin = NULL, unit = "days")
```

Arguments

df a dataframe with datetime column of type date.

origin optional origin (for which stamp is zero)
unit time unit to use for the stamps (delay in ...)

Value

A dataframe with one more column (named stamp)

compute_box Compute box

Description

Compute time windows covering the whole dataset for a given dataset d.

Usage

```
compute_box(d, use_stamps = FALSE)
```

Arguments

d dataframe with columns stamp, datetime and cameraID

use_stamps use timestamps or dates?

Value

Returns the extimated box (matrix) line 1: Camera number line 2: start time line 3: stop time line 4: comportment ID each column corresponds to one camera.

compute_intervals

Compute inter-event times

Description

Compute the inter-event times between two species. Function adapted from Murphy et al 2021 (http://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2656.13548)

Usage

```
compute_intervals(sp_from, sp_to)
```

Arguments

sp_from species that is observed first

sp_to following species

Value

Returns the median of the time interval between the 2 species occurrences

```
compute_intervals_permute
```

Compute permuted inter-event times

Description

Compute the permuted inter-event times between species. Function adapted from Murphy et al 2021 (http://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2656.13548)

Usage

```
compute_intervals_permute(sp_from, sp_to)
```

Arguments

sp_from species that is observed first

sp_to following species

Value

Returns the median of the permuted time interval between the 2 species occurrences

compute_pos_neg 5

compute_pos_neg

Compute true/false positives/negatives

Description

Compute: TP (true positives) FP (false positives) TN (true negatives) FN (false negatives)

Usage

```
compute_pos_neg(Msimul, Mtrue)
```

Arguments

Msimul a K*K*Ncomp array (K species Ncomp different comportments (often Ncomp

=1))

Mtrue true array (K*K*Ncomp array)

Value

Returns a named vector with four elements named TP, FP, TN, FN

```
compute_pos_neg_list Compute several true/false positives
```

Description

Evaluates several inferred models (in Msim_list) compared to the true model used to generate data (Mtrue). Computes: TP (true positives) FP (false positives) TN (true negatives) FN (false negatives)

Usage

```
compute_pos_neg_list(Msim_list, Mtrue, est = "BL")
```

Arguments

Msim_list a list, each element has elements \$BL and \$BOL and in each there are \$S (spon-

taneous part) and \$I (interaction coefficients, lists.)

Mtrue true model: array (K*K*Ncomp array)
est estimator to use (BL, BVL or BOL)

Value

Returns a df with columns TP, FP, TN, FN and as many rows as there are models in Msim_list.

6 compute_sensi

compute_rate	Compute rates
compute_rate	Compute rates

Description

Compute the rate corresponding to data with a given model.

Usage

```
compute_rate(model, data, timestep = 0.01)
```

Arguments

model a dataframe corresponding to the model estimated with UnitEvents. This dataframe

can be obtained with the function "ue_model_to_df". Must have columns time,

excitefunc, to, from and spont.

data occurrence data. Must have one column stamp and one column species. Cur-

rently only one camera is supported.

timestep timestep for the function discretisation (days). Should be smaller than delta used

in the model for good results. Defaults to 0.01.

Value

A dataframe with columns time, lambda and species. time: the time. lambda: the intensity function at time t. species: the species for which the intensity is computed.

compute_sensi	Computes sensitivity	
---------------	----------------------	--

Description

Computes sensitivity from true positives and false negatives

Usage

```
compute_sensi(TP, FN)
```

Arguments

TP true positives vector
FN false negatives vector

Value

The sensitivity (true positive rate)

compute_speci 7

compute_	cnaci
Compare_	SPECI

Computes specificity

Description

Computes specificity from true negatives and false positives

Usage

```
compute_speci(TN, FP)
```

Arguments

TN true negatives vector
FP false positives vector

Value

The specificity (true negative rate)

compute_TN_TP

Compute TP/TN

Description

Compute true positive and true negative rates from p-values.

Usage

```
compute_TN_TP(pval, true, alpha)
```

Arguments

pval a vector of p-values

true the ground truth vector (must be in the same order as pval)

alpha the significance threshold (defaults to 0.05)

Value

A named vector TP, FP, TN, FN with the values.

8 create_interactions

create_funcshape

Create function shape

Description

Create a function shape.

Usage

```
create_funcshape(funcshape, times, t = 0.5, strength)
```

Arguments

funcshape exp, gamma or linear

times times vector

t half-life (time value for which the function reaches strength/2). only used when

funcshape == "exp"

strength function max strength coefficient

Value

A numeric vector of the same length as the times vector containing function values computed for each time.

create_interactions

Create interactions

Description

Create an array of null interaction functions

Usage

```
create_interactions(spp_names, times)
```

Arguments

spp_names names of species times times vector

Value

A (nspecies, nspecies, 1) array containing in each cell a (2, length(times)) matrix: top row is a vector of zero (null) interaction function), borrom row is the times vector.

create_spont_rates 9

create_spont_rates

Create background rates

Description

Create a background rates vector.

Usage

```
create_spont_rates(spont, spp_names)
```

Arguments

spont spontaneous coefficient if unique value will be repeated else will be in the order

provided

spp_names names of species

Value

Returns a matrix of dim (nspecies, 1) containing named spont rates

df_to_matrix

Transform dataframe to matrix

Description

Transforms the dataframe into a matrix ready for Lasso inference.

Usage

```
df_to_matrix(df)
```

Arguments

df

A dataframe with columns cameraID stamp species count

Value

an array (nspecies, ncameras, nmax+1) in the same format as the output of HawkesMulti from the UnitEvents package). nmax is the maximum number of occurrences for one species on one camera.

10 format_data_perf

```
filter_inactive_cameras
```

Filter out cameras

Description

Filter out cameras that have not enough observations/not enough frequent observations

Usage

```
filter_inactive_cameras(df, thr_obs, thr_freq, plot = TRUE)
```

Arguments

df dataframe to filter. Must have columns cameraID, snapshotName, count, stamp
--

thr_obs minimal number of observations to keep camera
thr_freq minimal frequency of observations to keep camera

plot plot graphs?

Value

Returns the filtered dataframe. If plut = TRUE, ans plots camera sampling information.

format_data_perf	Format performance dataframe	
------------------	------------------------------	--

Description

Format a dataframe measuring sensitivity and specificity

Usage

```
format_data_perf(d, add_quantiles = TRUE, level = 0.05)
```

level of the quantiles.

Arguments

level

d	dataframe: must have columns TP, FP, TN, FN. additional columns possible, but they will affect quantiles computation if add_quantiles is TRUE.
add_quantiles	should quantiles for sensitivity and specificity be computed? Quantiles are computed on values grouped by all columns (except "TP", "FP", "TN", "FN").

get_bins_sum 11

Value

Returns a cleaned form of d: additional column sensi computed as TP/(TP+FN) additional column speci computed as TN/(TN+FP) the columns are pivoted to longer format so that sensi and speci are grouped into "value" column and "type" describes sensi or speci. if add_quantiles, quantile values of value (sensi/speci) will be added (quantile computed grouping according to all other columns excluding "TP", "FP", "TN", "FN").

get_bins_sum

Get bins sum

Description

Get the sum of the bins for a Hawkes model.

Usage

```
get_bins_sum(M)
```

Arguments

М

an interaction matrix (K*K*Ncomp array) (K species and Ncomp different comportments (often Ncomp =1))

Value

A K*K matrix containing 1 if the interaction was inferred, else 0

get_bins_sum_list

Get bins sums

Description

Get the sum of the bins for a list of Hawkes model.

Usage

```
get_bins_sum_list(Mlist)
```

Arguments

Mlist

Mlist: a list of interaction matrix(K*K*Ncomp array) (K species and Ncomp different comportments (often Ncomp =1))

Value

A K*K matrix containing the number of times each value was inferred

get_models_df

get_ids

Get IDs

Description

Get a unique row ID for each combination of species/camera.

Usage

```
get_ids(df, delete_missing_species = FALSE)
```

Arguments

df a dataframe that must have columns species cameraID delete_missing_species delete species not seen at all cameras?

Value

a dataframe with columns cameraID species rowid (species_cameraID) The df is arranged with all species for the same site first

get_models_df

Get models dataframe

Description

Get a list of all models in inferred_models plus the true model

Usage

```
get_models_df(inferred_models, models, est = "BL")
```

Arguments

inferred_models

a list with 2 components \$reinfer: list of models, each one inferred from a different dataset which is assumed to have been generated by the same true model.

\$reinfer_parameters: metadata about the inferred models

models a list of true models to match the true model that have been used to generate data

from which models in \$reinfer were inferred.

est estimator to use (\$BL or \$BOL)

Value

A dataframe of models

get_sampling_info

 ${\tt get_sampling_info}$

Get sampling info

Description

Get sampling info

Usage

```
get_sampling_info(df, return = TRUE)
```

Arguments

df A camera trap dataframe. Must have columns cameraID stamp

return return the summarized dataframe?

Value

prints a message summarizing sampling info for the cameras.

infer

Infer a Hawkes model

Description

Infer Hawkes model for data d.

Usage

```
infer(
   d,
   k = 12,
   delta = 2/24,
   Z = 0,
   gamma = 0.5,
   scale = 10000,
   use_stamps = FALSE
)
```

14 mlist_to_df

Arguments

d dataset to infer from. Must have columns: snapshotName cameraID stamp date-

time count

k number of bins for the inference function

delta binwidth
Z cutoff

gamma penalization LASSO parameter

scale scale for precision of calculations (defaults to 10000)

use_stamps use timestamps or dates?

Value

Returns the output in the same form as BoxLasso() function of UnitEvents A list with 2 (if n(species) = 1) or 3 elements (if n(species) > 1) \$BL \$BVL \$BOL

mlist_to_df

List of models to dataframes

Description

Transform a list of UnitEvent models to a dataframe

Usage

```
mlist_to_df(mlist, comp = 1)
```

Arguments

mlist list of models of type UnitEvents each component of mlist must be a list with 2

named elements \$S and \$I (corresponds to a model\$BL, BOL or \$BVL output

of BoxLasso)

comp the comportment number to extract

Value

A dataframe with 4 or 5 columns: time: time for the interaction functions excitefunc: value of the excitation function from: from species to: to species spont: spontaneous rate of the "to" species rep (if mlist is a named list): name of the i-th element of mlist

name_dataneur 15

$name_dataneur \qquad \qquad N$	ame	data
----------------------------------	-----	------

Description

Attribute colnames and rownames to dataneur generated with Hawkesmulti.

Usage

```
name_dataneur(dn, species_names, cameras_names = NA)
```

Arguments

dn an array (nspecies, ncameras, nmax+1) in the same format as the output of HawkesMulti from the UnitEvents package).

species_names ordered vector of species names.

cameras_names ordered vector of cameras names.

Value

The same matrix as the input (dn) but with named rows and columns.

Description

Plot the background rate for species.

Usage

```
plot_background_rate(
   ue_df,
   title = NA,
   textsize = 10,
   silhouettes = NA,
   write_label = FALSE,
   nudge_label = 0.3
)
```

Arguments

ue_df ue df: dataframe with results of UnitEvents inference. Must have columns:

time excitefunc from to

title plot title

textsize text minimal size (for x and y axes)

silhouettes optional labels with animal silhouettes to replace default labels. If it exists, must

be a named vector with each name corresponding to a species name in ue_df. The elements are markdown codes containing a

element.

write_label write background rates values besides the points?

nudge_label if the background rates are written, by how much should they be nudged on the

x-axis?

Value

a ggplot object, representing background rates for each species.

plot_background_rate_simu

Plot background rates for simulation

Description

Plots the inferred background rates vs the real rates

Usage

```
plot_background_rate_simu(df, alpha = 0.05, title = NA)
```

Arguments

df the dataframe with true and estimated intensities. It has columns: rep: repetition

ID (s... for simul, true for true data) excitefunc: value of the excitation function

from/to: ID of the species time: time in days

alpha confidence level for plotting

title optional plot title

Value

A ggplot of the background rates where the true rate is in red and the inferred rate in blue with a confidence interval (if there were several inferred models.)

plot_bias 17

plot_bias

Plot bias

Description

Plots the bias for each interaction from several inferences.

Usage

```
plot_bias(bias_df, fill = "valprop", textsize = 12)
```

Arguments

bias_df a dataframe containing the summarized results of the inference for several repe-

titions. Must have columns: from and to (interacting species) the column speci-

fied with 'fill'

fill name of the column to use for values to fill the plot.

textsize size of the text

Value

a ggplot tile with colors corresponding to the proportion of times the corresponding interaction was inferred.

plot_graph

Plot graph

Description

Plots a graph g.

Usage

```
plot_graph(
   g,
   layout = c(),
   repel = FALSE,
   coledges = "grey",
   colnodes = "cadetblue3",
   coltext = "black",
   textsize = 5,
   s = 8,
   arrsize = 6,
   nudge_x = NA,
   parse_labels = FALSE,
   use_labels_column = FALSE
)
```

plot_interactions

Arguments

The graph to plot (tbl_graph object) g layout optional layout (defaults to layout_in_circle) repel repel node labels? coledges color of edges (a string color name) color of nodes (named vector named as species or a string color name). If it is colnodes NULL, species will be colored automatically. coltext color of text for the node labels. It can be a vector (will correspond to species alphabetical order), textsize node label size size of nodes arrsize size of arrow nudge_x optional vector to move x labels for node labels. parse_labels parse text labels? use_labels_column use column 'label' for nodes labels?

Value

A ggplot object representing the graph.

Description

Plot UnitEvents interaction functions

Usage

```
plot_interactions(
  ue_df,
  scale = "days",
  title = NA,
  relative = FALSE,
  silhouettes = NA,
  timestep = NA,
  ystep = NA,
  textsize = 10,
  linesize = 0.5,
  separate_self = FALSE
)
```

plot_interactions_simu 19

Arguments

ue_df dataframe with results of UnitEvents inference. Must have columns: time ex-

citefunc from to

scale days or hours, following whether we want the time axis graduated in days or

hours

title plot title

relative plot intensity absolute or relative (divided by spont) value?

silhouettes optional labels with animal silhouettes to replace default labels. If it exists, must

be a named vector with each name corresponding to a species name in ue_df. The elements are markdown codes containing a

element.

timestep optional timestep for x-axis.

ystep optional step for y-axis (function values).
textsize text minimal size (for x and y axes)

linesize linewidth

separate_self whether to separate auto-interactions and plot them above

Value

ggplot object, a plot with the pairwise interaction functions between species.

plot_interactions_simu

Plot interaction function for simulation

Description

Plots the inferred interaction functions vs the real function

Usage

```
plot_interactions_simu(df, title = NA, level = 0.05)
```

Arguments

df a dataframe containing values for the inferred function(s) and the true function.

It has columns: rep: repetition ID (s... for simul, true for true data) excitefunc: value of the excitation function from/to: ID of the species time: time in days

title optional plot title

level confidence level to use around simulations

Value

A ggplot of the interaction functions where the true function is in red and the inferred function in blue with a confidence interval (if there were several inferred models.)

20 plot_observed_rate

plot_observed_rate Plot rates

Description

Plot the rate of an observed sequence of events.

Usage

```
plot_observed_rate(
  rates,
  data,
  timestep = 2,
  textsize = 20,
  ptsize = 1,
  lwd = 1,
  t1,
  t2,
  hlambda,
  hpoints,
 minor_spacing,
 major_spacing,
 max_lambda,
 ybreaks,
 cols,
 ylabel = TRUE,
 xlab = "Time (days)"
)
```

Arguments

rates	a dataframe with pre-computed rates. Must have columns: time lambda species
data	the corresponding occurrence data. Must have columns: stamp species
timestep	timestep to plot
textsize	base text size (axes text, axes labels are a 2 units bigger)
ptsize	point sizes for the events
lwd	linewidth for intensities
t1	minimal time bounds for subsetting data. If missing, then all data will be plotted.
t2	maximal time bounds for subsetting data. If missing, then all data will be plotted.
hlambda	plot relative heights for intensity panels
hpoints	plot relative heights for points panels
minor_spacing	space between the intensity function and the correponding points.
major_spacing	space between points and the following intensity.

plot_perf 21

max_lambda	max value for y-axis for rates
ybreaks	breaks for y-axis (for lambda plots)
cols	named vector for colors: names are species names and contain colors
ylabel	display labels ?
xlab	xlabel to display (optional)

Value

A ggplot object generated with patchwork. Multiple plots in the same column, where all plots are paired, the top plot representing the intensity and the bottom plot the actual occurrences for one species.

plot_perf	Plots performance	

Description

Plots the performance of the inference.

Usage

```
plot_perf(d, xaxis = "trapping_days", thr, vline, psize = 1)
```

Arguments

d	the dataframe of observed sensitivity and specificity. It has columns: value (sensitivity or specificity value) type (sensitivity or specificity as "sensi" or "speci") "xaxis" (a measure of trapping days) possibly qinf, qsup (then quantiles are plotted arould sensitivity and specificity values.)
xaxis	name of the x-axis to choose for plotting (must be present in d)
thr	optional threshold where to plot a horizontal line
vline	optional vline to plot to draw attention to a specific time
psize	point sizes

Value

a ggplot object with the sensitivity and specificity displayed along xaxis.

22 require

reinfer	
remiler	

Reinfer Hawkes model

Description

Reinfer Hawkes model from a dataset generated with a Hawkes model.

Usage

```
reinfer(M, Ntrial, k = 12, delta = 2/24, gamma = 0.5, scale = 10000)
```

Arguments

М	dataset to infer from, a DataNeur matrix (output of HawkesMulti from the UnitEvents package). It is an array (nspecies, ncameras, nmax+1) where nmax is the maximum number of occurrences for one species on one camera.
Ntrial	number of cameras
k	number of bins for the interaction functions
delta	binwidth
gamma	penalization LASSO parameter
scale	scale for precision of calculations (defaults to 10000)

Value

Returns the output in the same form as BoxLasso() function of UnitEvents A list with 2 (if n(species) = 1) or 3 elements (if n(species) > 1) BL BVL BOL

require

Install and load a package (if not already loaded)

Description

Install and load a package (if not already loaded)

Usage

require(x)

Arguments

,

The package name

Value

Installs the package if it was not already installed

shift_duplicates 23

shift_duplicates	Shift duplicates

Description

Shift records occuring at the same timestamp on the same camera

Usage

```
shift_duplicates(d, precision = 10^6)
```

Arguments

d a dataframe with columns row_ID (row id) cameraID (camera identifier) stamp

(timestamp, numeric)

precision precision to consider

Value

input dataframe with modified timestamps.

ue_model_to_df	Model to dataframe	

Description

Transforms the specification of a UnitEvents model to a dataframe.

Usage

```
ue_model_to_df(mod, comp = 1)
```

Arguments

mod a list of length 2 (and is the named output of the UnitEvent's function co-

eff2interac): \$S (matrix (n(species), Ncomp)). \$I (array (n(species), n(species),

Ncomp)).

comp the comportment to extract

Value

a dataframe with columns time: the time (support of interaction functions) excitefunc: values of the functions for a corresponding time t from: species "from" which the interaction is to: species "towards" which the interaction is

24 ue_to_graph

ue_to_df

Simolation to dataframe

Description

Convert output of simulation generated with HawkesMulti to a dataframe (rows must be named).

Usage

```
ue_to_df(ue)
```

Arguments

ue

an array (nspecies, ncameras, nmax+1) in the same format as the output of HawkesMulti from the UnitEvents package).

Value

Returns a dataframe with columns: species camera stamp

ue_to_graph

Model to graph

Description

Adaptation of plot_graph_Hawkes function in UnitEvents, that returns the igraph object instead of plotting it.

Usage

```
ue_to_graph(IS, neurnames)
```

Arguments

IS

a list of length 2 (the output of the UnitEvent's function coeff2interac): S (ma-1)

trix (n(species), Ncomp)). \$I (array (n(species), n(species), Ncomp)).

neurnames

species_names

Value

a tbl_graph object representing the model. nodes: 1 column: names (with species names). edge: 3 columns: from, to, weight.

unpack_inf 25

unpack_inf	Format the inference output	
------------	-----------------------------	--

Description

Transform output of inference into a list of coefficient matrices.

Usage

```
unpack_inf(inf, species_names = NA, k, delta)
```

Arguments

inf the output of the infer or BoxLasso. Must be a list with 3 elements: \$BL \$BVL

\$BOL

species_names a list of species names to rename rows and columns (optional)

k number of bins delta binwidth

Value

A list of length 3: \$BL \$BVL \$BOL Each element is a list of length 2 (and is the named output of the UnitEvent's function coeff2interac): \$S (matrix (n(species), Ncomp)). The matrix's rows are named with species_names. \$I (array (n(species), n(species), Ncomp)). The array's first and second dimensions are named with species_names.