Verjetnostne metode v računalništvu - zapiski s predavanj prof. Marca

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

1	Introduction		
	1.1	Probability	1
	1.2	Random variables	2
2	Qui	cksort, min-cut	4
	2.1	Quicksort	4
	2.2	Min-cut	6
3	Cor	mplexity classes	9
4	Che	ernoff bounds	11
5	Monte Carlo methods		
	5.1	Example 1	16
	5.2	Example 2	16
	5.3	(ϵ, δ) -approximation	17
	5.4	DNF counting	18
6	Pol	ynomials	20
7	Rar	ndom graphs	24
	7.1	G(n,p) model	24

Introduction

1.1 Probability

```
\begin{split} &(\Omega, F, P_r): \\ &\circ \ \emptyset \in F, \\ &\circ \ A \in F \implies A^c \in F, \\ &\circ \ A_1, A_2 \cdots \in F \implies \cup_{i=1}^\infty A_i \in F. \\ &P_r(A) \geq 0, \\ &P_r\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P_r(A_i) \text{ if } A_i \text{ disjoint,} \\ &P_r\left(\bigcup_{i=1}^\infty A_i\right) \leq \sum_{i=1}^\infty P_r(A_i), \\ &\Omega = \left\{\omega_1, \omega_2 \dots\right\} - \text{countable case.} \\ &\left(\omega_1 \quad \omega_2 \quad \dots \right) \\ &Primer. \\ &\text{Alg():} \\ &\text{while True:} \\ &\text{B = sample as random from } \{0,1\} \quad \text{\# 1 with probability p} \\ &\text{if B = 1:} \end{split}
```

return

$$\Omega = \{1, 01, 001, 0001 \dots\}$$

$$\begin{pmatrix} 1 & 01 & 001 & 0001 & \dots \\ p & (1-p)p & (1-p)^2p & (1-p)^3p & \dots \end{pmatrix}.$$

1.2 Random variables

 $X:\Omega\to\mathbb{Z}.$

 $E[X] = \sum_{c \in \mathbb{Z}} c \cdot P_r(X = c)$ expected value of X.

Properties:

$$\circ E[f(X)] = \sum_{c \in \mathbb{Z}} f(c) \cdot P_r(X = c),$$

$$\circ \ E[aX + bY] = aE[X] + bE[Y],$$

$$\circ E[X \cdot Y] = E[X] \cdot E[Y]$$
 if X, Y independent,

$$\circ P_r(X \ge a) \le \frac{E[X]}{a} \, \forall a > 0 \, X \ge 0 \, \text{Markov inequality.}$$

Primer. (Continuing from before).

X = number of trials before return.

$$X:\Omega\to\mathbb{Z}.$$

Trditev 1.2.1. $E[X] = \frac{1}{p}$.

Dokaz 1.2.2. $X = \sum_{i=1}^{\infty} X_i$.

$$X_i = \begin{cases} 1 & \text{if trial } i \text{ is executed} \\ 0 & \text{else} \end{cases}$$

$$E[X] = E[\sum_{i=1}^{\infty} X_i] = \sum_{i=1}^{\infty} E[X_i] =$$

$$= \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{i=0}{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

$$E[X] = \frac{1}{p}.$$

 $P_r(X \ge 100 \cdot \frac{1}{p}) \le \frac{E[X]}{\frac{1}{p}} = \frac{1}{100}.$

Definicija 1.2.3.
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{i=1}^{\infty} \frac{1}{i}$$
.

Izrek 1.2.4. $H_n \le 1 + \ln(n)$.

Dokaz 1.2.5.

$$H_n = 1 + \sum_{i=2}^n \frac{1}{i} \stackrel{\text{integral}}{\leq} 1 + \int_1^n \frac{dx}{x} = 1 + \ln(x)|_1^n = 1 + \ln(n).$$

Quicksort, min-cut

2.1 Quicksort

```
Input: set (no equal element) (unordered list) S \in \mathbb{R}
      (or whatever you can compare linearly)

Output: ordered list

Code:
    def Quicksort(S):
    if |S| = 0 or 1:
      return S

    else:
      a = uniformly at random from S

      S^- = {b \in S | b < a}
      S^+ = {b \in S | a < b}
      return Quicksort(S^-), a, Quicksort(S^+)</pre>
```

C(n) - random variable, the number of comparisons in evaluation of Quicksort with |S|=n.

Izrek 2.1.1.
$$E[C(n)] = O(N \log(n))$$
.

Dokaz 2.1.2.
$$C(0) = C(1) = 0$$
.

$$E[C(n)] = n - 1 + \sum_{i=1}^{n} (E[C(i-1)] + E[C(n-i)]) \cdot P_r(a \text{ is } i\text{-it element}) \le 1 + \frac{2}{n} \sum_{i=1}^{n-1} E[C(i)].$$

Induction:

 $n=1:\checkmark$

 $n-1 \rightarrow n$:

$$\begin{split} E[C(n)] &\leq n + \frac{2}{n} \sum_{i=1}^{n} E[C(i)] \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{n} 5i \log i \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log i + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log i \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log \frac{n}{2} + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log n \leq \\ &(\log \frac{n}{2} = \log n - 1) \\ &\leq n + \frac{2}{n} \left(\sum_{i=1}^{n} 5i \log n - \sum_{i=1}^{\frac{n}{2}} 5i \right) = \\ &= n + \frac{10}{n} \left(\frac{n(n-1)}{2} \log n - \frac{\frac{n}{2}(\frac{n}{2} + 1)}{2} \right) \leq \\ &\leq n + 5(n-1) \log n - n < \\ &< 5n \log n. \end{split}$$

$$P\left(C(n) \geq b \cdot 5n \log n\right) \overset{\text{Markov}}{\leq} \tfrac{1}{b}.$$

Dokaz 2.1.3.

2:

Let $S_1, S_2 \dots S_n$ sorted elements of S.

Define random variable $X_{ij} = \begin{cases} 1 \text{ if } S_i \text{ and } S_j \text{ are compared} \\ 0 \text{ else} \end{cases}$

$$\begin{split} &C(n) = \sum_{1 \leq i < j \leq n} E[X_{ij}]. \\ &E[X_{ij}] = P(S_i \text{ and } X_j \text{ compared}). \\ &S_{ij} \text{ - the last set including } S_i \text{ and } S_j. \\ &E[X_{ij}] = \frac{2}{|S_{ij}|} \leq \frac{2}{j-i+1}. \\ &|S_{ij}| \geq j-i+1. \\ &S_{ij} \text{ has everything in between.} \end{split}$$

$$\implies E[C(n)] \le \sum_{1 \le i < j \le n} \frac{2}{j - i + 1} = \sum_{k=j-i+1}^{n-1} \sum_{j=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le$$

$$\leq 2 \cdot n \cdot H_n \leq$$

$$\leq 2n(1+\log n).$$

2.2 Min-cut

G multigraph.

Cut: $U \subset V(G), \ U \neq \emptyset, V(g)$.

$$(U,V(G)\setminus U)=\{uv\in E(G)\mid u\in U,v\in V(G)\setminus U\}.$$

Problem min-cut:

Input: G.

Output: $\min |(U, V(G) \setminus U)|$ - cut size.

Algorithm 1:

 $x \in V(G)$

Call maxFlow(G, x, y) $\forall y \in V(G)$

Take min

maxFlow is Edmonds-Karp algorithm $O(|V||E|^2)$.

Algorithm 2 (Stoer Wagner)

Is
$$O(|E||V| + |V|log|V|)$$
.

Algorithm randMinCut:

$$\begin{split} & \texttt{G_0} = \texttt{G} \\ & \texttt{i} = \texttt{0} \\ & \texttt{while} \ | \texttt{V}(\texttt{G}_i) | > 2 \colon \\ & \texttt{e}_i = \texttt{uniformly at random from } \texttt{G}_i \\ & \texttt{G}_{i+1} = \texttt{G}_i \ / \ e_i \\ & \texttt{i} = \texttt{i} + \texttt{1} \\ & \texttt{u, v} = \texttt{V}(\texttt{G}_{n-2}) \ / / \ n = | \texttt{V}(\texttt{G}) | \\ & \texttt{U} = \{ \texttt{w} \in \texttt{V}(\texttt{G}) \ | \ \texttt{w is merged into u} \} \\ & \texttt{return (U, V(\texttt{G}) \setminus U)} \end{split}$$

Izrek 2.2.1. Algorithm randMinCut gives you a minimal cut with probability greater or equal to $\frac{2}{n(n-1)}$.

Dokaz 2.2.2.

Fact 1: $minCut(G_i) \leq minCut(G_i)$;

 \geq : minCut remains.

Fact 2: $minCut(G) < \delta(G)$.

k := minCut(G).

Let (A,B) be an optimal cut.

 ϵ_i not in (A,B).

 $P_r(Algorithm not returning (A,B))$

$$= P_r(\epsilon_0 \cap \cdots \cap \epsilon_{n-3})$$

$$= P_r(\epsilon_0 \cap \cdots \cap \epsilon_{n-4}) \cdot P_r(\epsilon_{n-3} \mid \epsilon_0 \cap \cdots \cap \epsilon_{n-4})$$

$$= P_r(\epsilon_{n-3} \mid \cap_{i=0}^{n-4} \epsilon_i) \cdot P_r(\epsilon_{n-3} \mid \cap_{i=0}^{n-4} \epsilon_i)$$

$$\dots P_r(\epsilon_1 \mid \epsilon_0) \cdot P_r(\epsilon_0).(*)$$
(2.1)

$$P_r(\overline{\epsilon_i} \mid \epsilon_{i-1} \cap \dots \cap \epsilon_0) = \frac{k}{|E(G_i)|} \stackrel{(**)}{\leq} \frac{k}{\frac{(n-i)k}{2}} = \frac{2}{n-i}$$
$$|E(G_i)| \geq \frac{(n-i)\delta(G)}{2} \geq \frac{(n-i)k}{2}.(**)$$
(2.2)

$$P_r(\epsilon_i \mid \epsilon_{i-1} \cap \dots \cap \epsilon_0) \ge 1 - \frac{2}{n-i} = \frac{n-2-i}{n-i}.$$

$$(*) \ge \frac{n-2}{n} \cdot \frac{n-3}{n-1} \dots \frac{1}{3} = \frac{2}{n(n-1)}.$$

Izrek 2.2.3. Running $randMinCut\ n(n-1)$ times and taking best output gives correct solution with probability ≥ 0.86 .

Dokaz 2.2.4. A_i - event that *i*-th run gives sub-optimal solution.

$$\begin{split} P_r(\text{solution not correct}) &= P_r(A_1 \cap \dots \cap A_{n(n-1)}) \\ &= \prod_{i=1}^{n(n-1)} P_r(A_i) \le (1 - \frac{2}{n(n-1)})^{n(n-1)} \\ &\le e^{-\frac{2}{n(n-1)} \cdot n(n-1)} = e^{-2} \le 0.14. \end{split}$$

 $1 - x \le e^x \ \forall x \in \mathbb{R}.$

If we run n(n-1)log(n) times $\to O\left(\frac{1}{n}\right)$. $O\left(n^2 \log n \cdot n\right)$.

Improved: $O(n^2 \log^3 n)$.

Complexity classes

Decision problem - yes/no question on a set of inputs = asking $w \in \Pi$. Randomized algorithms:

- Las Vegas algorithms: always gives correct solution, example: Quicksort.
- Monte Carlo algorithms: it can give wrong answers. Monte Carlo algorithms subtypes:

$$- \text{ type}(1) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \geq \frac{1}{2} \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } = 0 \end{cases}$$

$$- \text{ type}(2) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } = 1 \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \leq \frac{1}{2} \end{cases}$$

$$- \text{ type}(3) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \geq \frac{3}{4} \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \leq \frac{1}{2} \end{cases}$$

type(1) and type(2): one-sided error, type(3): 2-sided error. $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ arbitrary numbers, can be something different (for type(3) better than coin flip).

Primer. Decisional problem: does a graph G have $minCut \leq k$?

```
Run randMinCut(G) n(n-1) times. 
 Algorithm randMinCut: 
 if one of runs gives |(A,B)| \leq k: 
 return true 
 else: 
 return false
```

Complexity classes:

- RP (randomized polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(1) with polynomial time complexity (worst case).
- co-RP: decisional problems for which there exists Monte Carlo algorithm of type(2) with polynomial time complexity (worst case).
- BRP (bounded-error probabilistic polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(3) with polynomial time complexity (worst case).
- ZPP (zero-error probabilistic polynomial time): decisional problems for which there exists Las Vegas algorithm with expected polynomial time complexity (worst case).

```
ZPP = RP \cap co-RP.
```

Chernoff bounds

Izrek 4.0.1. Let $X_1, X_2 ... X_n$ independent random variables with image $\{0, 1\}$.

Let $p_i = P_r(X_i = x_i), X = \sum_{i=1}^n X_i$ and $\mu = E(X) = p_1 + \dots + p_n$. For every $\delta \in (0,1)$:

$$P_r(X - \mu \ge \delta\mu) \le e^{-\frac{\delta^2\mu}{3}}$$

$$P_r(\mu - X \le \delta\mu) \le e^{-\frac{\delta^2\mu}{2}}$$

$$\Longrightarrow P_r(|X - \mu| \ge \delta\mu) \le e^{-\frac{\delta^2\mu}{3}}.$$

Probability falls extremely quickly after E(X).

Dokaz 4.0.2.

$$P_r(X - \mu \ge \delta \mu) = P_r(X \ge \mu(1 + \delta))$$

$$\stackrel{t \ge 0}{=} P_r(tX \ge t\mu(1 + \delta))$$

$$\stackrel{e^y > 0}{=} P_r(e^{tX} \ge e^{t\mu(1 + \delta)})$$

$$\stackrel{\text{Markov}}{\leq} \frac{E\left(e^{tX}\right)}{e^{t\mu(1 + \delta)}}$$

$$\stackrel{4.1}{\leq} \frac{e^{(e^t - 1)\mu}}{e^{t\mu(1 + \delta)}}$$

$$\stackrel{4.3}{\leq} e^{-\mu \frac{\delta^2}{3}}.$$

$$E(e^{tX}) = E(e^{tX_1 + \dots + tX_n})$$

$$= E(e^{tX_1} \dots e^{tX_n})$$

$$\stackrel{\text{independent}}{=} \prod_{i=1}^n E(e^{tX_i})$$

$$\stackrel{4.2}{\leq} \prod_{i=1}^n e^{p_i(e^t - 1)}$$

$$= e^{(e^t - 1)\sum_{i=1}^n p_i}$$

$$= e^{(e^t - 1)\mu}.$$

$$(4.1)$$

$$E(e^{tX_i}) = p_i \cdot e^t + (1 - p_i) \cdot e^0 = 1 + p_i(e^t - 1) \stackrel{1 + x \le e^x}{\le} e^{p_i(e^t - 1)}.$$
 (4.2)

Want:

$$e^{t} - 1 - t(1+\delta) \le -\frac{\delta^{2}}{3} \,\forall \delta \in (0,1)$$
 (4.3)

$$\begin{split} t &= \ln(1+\delta) \\ f(\delta) &= 1 + \delta - 1 - (1+\delta) \ln(1+\delta) + \frac{\delta^2}{3} \stackrel{?}{\leq} 0 \\ f(0) &= 0 \\ f'(\delta) &= 1 - \ln(1+\delta) - 1 + \frac{2}{3}\delta = \frac{2}{3}\delta - \ln(1+\delta) \stackrel{?}{\leq} 0 \\ \frac{2}{3}\delta &\leq \ln(1+\delta) \\ \delta &= 1 : \frac{2}{3} \stackrel{?}{\leq} \ln(2) \approx 0.69 \checkmark \end{split}$$

$$P_r(\mu - X \le \delta \mu) = P_r(X \ge \mu(1 - \delta))$$

$$\stackrel{t \ge 0}{=} P_r(tX \ge t\mu(1 - \delta))$$

$$\stackrel{e^y \ge 0}{=} P_r(e^{tX} \ge e^{t\mu(1 - \delta)})$$

$$\le \dots \le \frac{e^{(e^t - 1)\mu}}{e^{t\mu(1 - \delta)}}.$$

Want:
$$e^t - 1 - t(1 - \delta) \le -\frac{\delta^2}{2} \ \forall \delta \in (0,1)$$
:

$$t = \ln(1 - \delta)$$

$$f(\delta) = 1 - \delta - 1 - (1 - \delta)\ln(1 - \delta) + \frac{\delta^2}{2} \stackrel{?}{\leq} 0$$

$$f(0) = 0$$

$$f'(\delta) = -1 + 1 - \ln(1 - \delta) + \delta \stackrel{?}{\leq} 0$$

$$\frac{2}{3}\delta \leq \ln(1 + \delta)$$

$$\ln(1 - \delta) \stackrel{?}{\leq} -\delta \checkmark$$

$$X_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$X = \sum_{i=1}^n X_i$$
$$\mu = \frac{n}{2}$$

$$P_r(|X - \mu| \ge \sqrt{\frac{3}{2}n\ln(n)}) = P_r(|X - \mu| \ge \frac{n}{2}\sqrt{\frac{6}{n}\ln(n)})$$

$$\mu = \frac{n}{2}, \delta = \sqrt{\frac{6}{n}\ln(n)},$$
for "big" $n\delta \in (0,1)$

$$\stackrel{\text{Chernoff}}{\le} 2e^{-\frac{n}{2}\frac{6}{n}\ln(n)} = \frac{2}{n}.$$

$$d = \sqrt{\frac{3}{2}n\ln(n)}$$

$$\implies P_r(X \in (\mu - \sqrt{\frac{3}{2}n\ln(n)}, \mu + \sqrt{\frac{3}{2}n\ln(n)})) \ge 1 - \frac{2}{n}.$$

Trditev 4.0.3.

Let $X_1, X_2 \dots$ independent random variables with image $\{0,1\}$.

$$P_r(X_i = 1) = \frac{1}{2} \ \forall i.$$

Let
$$X = \sum_{i=1}^{cm} X_i$$
 where $c \ge 4$.

Then
$$P_r(X \le m) \le e^{-\frac{cm}{16}}$$
.

Dokaz 4.0.4.

$$P_r(X \le m) = P_r(\frac{cm}{2} - X \ge \frac{cm}{2} - m)$$

$$= P_r(\frac{cm}{2} - X \ge \frac{cm}{2}(1 - \frac{2}{c}))$$

$$\stackrel{\text{Chernoff}}{\le} e^{-\frac{\frac{cm}{2}(1 - \frac{2}{c})^2}{2}}$$

$$1 - \frac{2}{c} \ge \frac{1}{2} \text{ if } c \ge 4$$

$$\le e^{-\frac{cm}{2}\frac{1}{4}} = e^{-\frac{cm}{16}}.$$

Back to Quicksort.

Izrek 4.0.5.

With probability $\geq 1 - \frac{1}{n}$ Quicksort uses at most $48n \ln(n)$ comparisons.

Dokaz 4.0.6.

For $s \in S$ define $S_1^S \dots S_{t_s}^S \neq \emptyset$ sets that include s, t_s - number of comparisons with s where s is not a pivot +1.

Define: iteration i is successful if $|S_{i+1}| \leq \frac{3}{4}|S_i|$ ($\frac{1}{2}$ is too strict).

$$X_i = \begin{cases} 1 \text{ if iteration } i \text{ is successful} \\ 0 \text{ else} \end{cases}$$

$$P_r(X_i = 1) \ge \frac{1}{2}$$

$$S_i : n \to \frac{3}{4}n \to (\frac{3}{4})^2 n \to \cdots \to 1.$$

Notice: max number of iteration is $\log_{\frac{4}{3}}(n) = \frac{\ln(n)}{\ln(4) - \ln(3)}$.

Probability that we haven't succeeded in $\log_{\frac{4}{3}}(n)$ steps:

$$P_r(\sum_{i=1}^{c \log_{\frac{4}{3}}(n)} X_i < \log_{\frac{4}{3}}(n)) \le P_r(\sum_{i=1}^{c \log_{\frac{4}{3}}(n)} Y_i < \log_{\frac{4}{3}}(n))$$
(4.4)

$$\stackrel{\text{Chernoff}}{<} e^{-\frac{c \log_{\frac{4}{3}}(n)}{24}} \tag{4.5}$$

$$=e^{-\frac{c\ln(n)\log_{\frac{4}{3}}(e)}{24}}\tag{4.6}$$

$$=\frac{1}{n}\frac{c\log_{\frac{4}{3}}(e)}{24}\tag{4.7}$$

$$\log_{\frac{4}{3}}(e) \approx 3.4, \ c = 14$$
 (4.8)

$$\leq \left(\frac{1}{n}\right)^2\tag{4.9}$$

4.4 because X_i not independent, $Y_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ independent.

 $P_r(t_s \ge c \log_{\frac{4}{3}}(n)) \ge \left(\frac{1}{n}\right)^2$ for one s.

 $c = 14 \implies$ at least $48 \ln(n)$ iterations with probability $\leq \left(\frac{1}{n}\right)^2$.

With probability as least $1 - \frac{1}{n}$ for all $s \in S$ it holds that s has $\leq 48 \ln(n)$ comparisons with a pivot.

 \implies total number of comparisons $n \cdot 48 \ln(n)$ with probability as least $1 - \frac{1}{n}$.

Monte Carlo methods

5.1 Example 1

Area of circle $= \frac{\pi}{4}$. $X_i = \begin{cases} 1 \text{ if you hit the area of circle} \\ 0 \text{ else} \end{cases}$ $P_r(X_i = 1) = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{4}.$ $E(X_i) = \frac{\pi}{4}.$ $X = \frac{\sum_{i=1}^n X_i}{n}.$ $E(X) = \frac{n \cdot E(X_i)}{n} = E(X_i).$

5.2 Example 2

$$I = \int_{\Omega} f(x)dx - \text{volume.}$$

$$X_i = \begin{cases} 1 \ F(x_i, y_i) \le z_i \\ 0 \ \text{otherwise} \end{cases}$$

$$v \cdot E\left(\frac{\sum_{i=1}^n X_i}{n}\right) = I.$$

5.3 (ϵ, δ) -approximation

Definicija 5.3.1 ((ϵ, δ) -approximation). A random algorithm gives a (ϵ, δ) -approximation for value v if the output X satisfies:

$$P_r(|X - v| \le \epsilon v) \ge 1 - \delta.$$

Izrek 5.3.2. Let $X_1
ldots X_n$ be independent and identically distributed indicator variables. Let $\mu = E(X_i)$, $Y = \frac{\sum_{i=1}^m X_i}{m}$. If $m \ge \frac{3 \ln(\frac{2}{\delta})}{\epsilon^2 \mu}$, then $P_r(|Y - \mu| \ge \epsilon \mu) \le \delta \implies Y$ is (ϵ, δ) -approximation for μ .

Dokaz 5.3.3.

$$X = \sum_{i=1}^{n} X_i$$

$$E(X) = mE(x_i) = m\mu$$

$$m \ge \frac{3\ln(\frac{2}{\delta})}{\epsilon^2 \mu}$$

$$P_r(|Y - \mu| \ge \epsilon \mu) = P_r(\left|\frac{X}{m} - \mu\right| \ge \epsilon \mu)$$

$$= P_r(\frac{1}{m}|X - E(X)| \ge \frac{1}{m}\epsilon E(x))$$

$$\stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\epsilon^2 E(x)}{3}}$$

$$= 2e^{-\frac{\epsilon^2 \mu m}{3}}$$

$$\le 2e^{-\frac{\epsilon^2 \mu}{3} \cdot \frac{3\ln(\frac{2}{\delta})}{\epsilon^2 \mu}} = \delta.$$

Back to example 1:

$$E(Y) = \frac{\pi}{4}, \delta = \frac{1}{1000} \text{ (99.9\% sure)}, \epsilon = \frac{1}{10000}$$

 $\implies M = \frac{3\ln\left(\frac{2}{1000}\right)^4}{\pi\left(\frac{1}{10000}\right)^2} \approx 29106.$

Problems for MC (Monte-Carlo):

• rare events, e.g.
$$X \sim \begin{pmatrix} 0 & 10^{100} \\ 1 - 10^{-20} & 10^{-20} \end{pmatrix}$$
, $E(X) = 10^{80}$

5.4 DNF counting

CNF: $(X_{i_1} \vee \overline{X_{i_2}} \vee X_{i_4}) \wedge (X_{i_1} \vee \overline{X_{i_3}}) \wedge \dots$

DNF: $(\overline{X_{i_1}} \wedge X_{i_2} \vee \overline{X_{i_4}}) \vee \dots$ - easy to determine if solution exists.

Question: number of solutions to a given DNF?

Observation: CNF F has a solution \iff DNF $\neg F$ has less than 2^n solutions, n is number of samples.

```
\begin{array}{l} \operatorname{ALG\_1(F):} \\ x = 0 \\ \text{for i in range(1,m+1):} \\ x\_1 \ \ldots \ x\_n \ \text{uniformly random from } \{0,1\}^n \\ \text{if } F(x\_1 \ \ldots \ x\_n) = 1: \\ x += 1 \\ \text{return } \frac{x}{m} \cdot 2^n \\ Y = \frac{\sum_{i=1}^m X_i}{m} \\ (\epsilon,\delta)\text{-approximation for } Y \\ E(Y) = \frac{\text{number of solutions of } F}{2^n} = \frac{c(F)}{2^n} \\ m \geq \frac{3\ln\left(\frac{2}{\delta}\right)}{\epsilon^2 E(X)} = \frac{3\ln\left(\frac{2}{\delta}\right)}{\epsilon^2} \cdot \frac{2^n}{x(F)} \\ c(F) \ \text{very small} \rightarrow m \ \text{exponentially big} \rightarrow \text{not good (we need a lot of samples)}. \end{array}
```

Definicija 5.4.1.

Definition 3.4.1.
$$SC_i = \{(a_1 \dots a_n) \in \{0,1\}^n \text{ such that } F = F_1 \vee \dots \vee F_t, \ F_i(a_1 \dots a_n) = 1\}.$$

$$|SC_i| = 2^{n-l_i}, \ l_i \text{: number of values in } F_i$$

$$U = \{(i,a) \mid i \in \{1,2 \dots t\}, \ a \in SC_i\}$$

$$U = \sum_{i=1}^t |SC_i| - O(tn) \text{ (space smaller than } \{0,1\}^n)$$

$$S = \{(i,a) \in U \mid a \in SC_i, \ a \notin SC_j \ 1 \leq j < i\}$$

$$|S| = |SC_1| + \dots + |SC_t| = c(F).$$

$$\text{ALG_2(F):}$$

$$x = 0$$

$$\text{for i in range(1,m+1):}$$

(i, a) uniformly random from U (**)

if (i, a)
$$\in$$
 S: (*)

$$x += 1$$

 $\texttt{return} \ \tfrac{x}{m} \ \cdot \ |U|$

(*) $a \in SC_i \to O(n), \ a \notin SC_j \ j = 1 \dots i - 1 \to O(tn) \implies O(tn), m$

(**): watch for details on how to, e.g. $x_2, x_2 \wedge x_3$: x_2 is more probable than $x_2 \wedge x_3 \to O(1)$.

Izrek 5.4.2. For $m = \lceil \frac{3t \ln\left(\left(\frac{2}{\delta}\right)\right)}{\epsilon^2} \rceil$ algorithm returns (ϵ, δ) -approximation in $O\left(\frac{t^n n \ln\left(\frac{2}{\delta}\right)}{\epsilon^2}\right)$ time.

Dokaz 5.4.3. $O(t \cdot n \cdot m)$.

Insert $m = \dots$

Prove

$$P_r(Y|U| - c(F) > \epsilon c(F)) < \delta$$
:

$$c(F) = |S|, E(Y) = \frac{|S|}{|U|}$$

$$P_r(Y|U| - c(F) > \epsilon c(F)) = P_r(|U|(Y - E(Y)) > \epsilon |U|E(Y)) \le \delta$$

if

$$m \ge \frac{3\ln\left(\frac{2}{\delta}\right)}{\epsilon^2 E(Y)} \ge \frac{3\ln\left(\frac{2}{\delta}\right)t}{\epsilon^2}$$

where

$$E(Y) = \frac{|S|}{|U|} \ge \frac{1}{t}$$

(= if disjoint).

In new space E(Y) much larger $\implies m$ smaller.

Polynomials

Let \mathbb{F} be a field.

 \mathbb{F} can be $\mathbb{R}, \mathbb{C}, \mathbb{Z}_p, \mathbb{F}_{p^n}$.

 $\mathbb{F}[x_1 \dots x_n]$ algebra of polynomials with values $x_1 \dots x_n$.

$$f \in \mathbb{F}[x_1 \dots x_n]$$

$$deg(f[x_1 \dots x_n]) := deg(f[x \dots x]).$$

Izrek 6.0.1. Let $p(x_1 \ldots x_n) \in \mathbb{F}[x_1 \ldots x_n]$ have the degree $d \geq 0$ and $p \neq 0$. Let $s \subset \mathbb{F}$ be finite. If $(r_1 \ldots r_n)$ is uniformly at random element from S^n . Then $P_r(p(r_1 \ldots r_n) = 0) \leq \frac{d}{|S|}$.

Dokaz 6.0.2. Induction on n.

n = 1:

$$p(x) = (x - z_1)(x - z_2) \dots (x - z_j)q(z)$$

number of zeros \leq degree - fact

$$P_r(p(r_1) = 0) = \frac{\text{number of zeros}}{|S|} \le \frac{d}{|S|}.$$

 $n-1 \rightarrow n$:

rewrite p:

$$p(x_1 \dots x_n) = \sum_{i=0}^{j} x^i p_i(x_2 \dots x_n)$$

$$j \le d$$

$$P_r(p(r_1 \dots r_n) = 0) = P_r(p(r_1 \dots r_n = 0) \mid p_j(r_2 \dots r_n) = 0) \cdot P_r(p_j(r_2 \dots r_n) = 0)$$

$$+ P_r(p(r_1 \dots r_n = 0) \mid p_j(r_2 \dots r_n) \ne 0) \cdot P_r(p_j(r_2 \dots r_n) \ne 0)$$

$$\le 1 \cdot \frac{d-j}{|S|} + \frac{j}{|S|} \cdot 1,$$

because

$$P_r(p(r_1...r_n = 0) \mid p_j(r_2...r_n) \neq 0) \le \frac{d-j}{|S|}$$

 $P_r(p_j(r_2...r_n) \neq 0) \le \frac{j}{|S|}.$

<u>Problem</u>:

Let $A,B,C \in \mathbb{F}^{n \times n}$, is $A \cdot B = C$? Computing $A \cdot B$:

- school-book algorithm: $O(n^3)$,
- Strassen algorithm: $O(n^{2,807...})$,
- galactic algorithm: $O(n^{2.372...})$ has enormous constants.

RAND_ACB(A,B,C):

```
for i in range(1,k+1):  \text{x uniformly at random from } \{0,1\}^n  if A \cdot (B \cdot x) \neq x:  \text{return false}   \text{return true}
```

 $O(kn^2)$.

If $A \cdot B = C$, algorithm returns true.

If $A \cdot B \neq C$:

$$P_r(ABx = Cx) = P_r((AB - C)x = 0)$$

= $P_r(||(AB - C)x||^2 = 0) \stackrel{\text{Poly }}{\leq} \frac{2}{3}$.

 $||(AB_C)x||^2$ - polynomial in $x_1 \dots x_n$ of degree 2.

If $A \cdot B \neq C$, then algorithm return false with probability at least $1 - \left(\frac{2}{3}\right)^k$. Problem:

1-factor in bipartite graphs.

$$|V(g)| = 2n.$$

Represent G with $n \times n$ matrix $Z = (Z_{ij})_{i,j=1}^n$

$$Z_{ij} = \begin{cases} X_{ij} \text{ if } a_i b_j \in E(x) & \text{(X: variable)} \\ 0 \text{ else} \end{cases}$$

$$det Z(x_{11} \dots x_{nn}) = \sum_{\pi \in S_n} sign(\pi) z_{1,\pi(1)} \dots z_{n,\pi(n)}$$
$$= \sum_{\pi \in S_n, \pi \text{ defines 1-factor}} sign(\pi) x_{1,\pi(1)} \dots x_{n,\pi(n)}.$$

 $det Z \neq 0 \iff G \text{ has 1-factor.}$

```
Rand_1factor(G):
```

construct Z with variables x11 ... xnn

for i in range(1,k+1):

u <- uniformly at random from $1,2..2n-1^{n^2}$ (r11 ... rnn) compuze d = det Z(r11 ... rnn)

if d != 0:

return true

return false

Complexity: $k \cdot$ computing determinant: $O\left(n^3\right)$ (Gaussian elimination). or apply approximation algorithm:

- ullet if G has no 1-factor it always returns false,
- if G has 1-factor, it returns true with probability at least $1 \left(\frac{n}{2n}\right)^k = 1 \left(\frac{1}{2}\right)^k$ (k konstant, larger set \implies smaller k needed).

Random graphs

$7.1 \quad G(n,p) \mod el$

G is a random Erdös-Rény graph if it has n vertices and each pair of vertices is connected with probability p.

Primer.
$$G\left(5,\frac{1}{2}\right)$$
.

$$E(\text{ edges in } G \text{ fron } G(n,p)) = \sum_{1 \le i < j \le n} E(X_{ij}) = \binom{n}{2} p.$$

$$X_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ have edge} \\ 0 & \text{otherwise} \end{cases}$$

p can be function of n.

 Y_v : degree of v.

$$E(Y_v) = (n-1)p.$$

Definicija 7.1.1.

We say that a random graph has some property almost surely (A.S.) if $P_r(G \in G(n,p))$ has property) $\stackrel{n\to\infty}{\to} 1$.

Trditev 7.1.2.

Let p be constant. Then $G \in G(n,p)$ has diameter 2 A.S.

Dokaz 7.1.3.

Let
$$u,v \in V(G)$$

$$X_w = \begin{cases} 1 \text{ if } uw \in E(G) \text{ in } vw \in E(G) \\ P_r(X_w = 1) = p^2 \end{cases}$$

$$P_r(X_w = 0 \text{ for all } w \neq u,v) = (1 - p^2)^{n-2}.$$

$$P_r(G \text{ has diameter } > 2)$$

$$= P_r(X_w = 0 \text{ for all } w \notin u,v \text{ for some } u,v)$$

$$\leq \binom{n}{2}(1 - p^2)^{n-2} \stackrel{n \to \infty}{\to} 0;$$

$$\binom{n}{2} - \text{ polynomial, } e^{\dots} - \text{ exponent.}$$

$$p = f(n)$$

$$\frac{1}{n}, \frac{1}{n^3}, \frac{\log n}{n}$$

Izrek 7.1.4. (without proof)

Let p be a function of n: let $G \in G(n,p)$:

- np < 1 G A.S. disconnected with connected components of size $O(\log n)$
- np = 1 G A.S. has 1 large component of size $O\left(n^{\frac{2}{3}}\right)$
- np = c > 1 G A.S. has giant component of size $dn, d \in (0,1)$
- $np \leq (1-\epsilon) \ln n$ G A.S. disconnected with isolated vertices
- $np > (1 \epsilon) \ln n G$ A.S. connected.

Izrek 7.1.5.

Let $np = \omega(n) \ln(n)$ for $\omega(n) \to \infty$, very slowly think of $\omega(n) = \log(\log n)$, then diam(G) in $\Theta\left(\frac{\ln n}{\ln(np)}\right)$ for G in G(n,p).

Lema 7.1.6.

Let $S \subset V(G), |S| = cn$ for $c \in (0,1]$ and $v \notin S$. then $cnp(1 - \omega^{-\frac{1}{3}}) \leq N_S(v) \leq cnp(1 + \omega^{-\frac{1}{3}})$ A.S. $(\omega^{-\frac{1}{3}} \to 0 \text{ very slowly})$.

Dokaz 7.1.7. (Lemma):

$$E(N_s(v)) = c \cdot n \cdot p, \delta = \omega^{-\frac{1}{3}}$$

$$P_r(|N_s(v) - cnp| \ge \delta cnp) \stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\omega^{-\frac{2}{3}}cnp}{3}}$$

$$= 2e^{-\frac{cnp}{3\omega(n)^{\frac{2}{3}}}} \stackrel{n \to \infty}{\to} 0.$$

For all $v: n \cdot 2e^{-\frac{cnp}{3\omega(n)^{\frac{2}{3}}}} \stackrel{n \to \infty}{\to} 0.$

Dokaz 7.1.8. (Theorem):

k be such that $\sum_{i=0}^{k-1} |N_i| \le \frac{n}{2}, \sum_{i=0}^{k} |N_i| > \frac{n}{2}$.

$$|N_0| = 1$$

$$|N_i| \le |N_{i-1}| \cdot n \cdot p \cdot (1 + \omega^{-\frac{1}{3}})$$
:

$$|S| \le n, \ np(1 + \omega^{-\frac{1}{3}}) \text{-each element.}$$

$$k = \frac{\log(\frac{n}{3})}{\log(n \cdot p \cdot (1 + \omega^{-\frac{1}{3}}))}$$

$$= \log_{np(1 + \omega^{-\frac{1}{3}})} \frac{n}{3} = \Theta\left(\frac{\ln(n)}{\ln(np)}\right).$$

$$|N_{\leq k}| = |N_1 \cup \dots \cup N_k|.$$

$$|N_{\leq k}| \leq \sum_{i=0}^{k} (np(1+\omega^{-\frac{1}{3}}))^{i}$$

$$= \frac{(np(1+\omega^{-\frac{1}{3}}))^{k+1} - 1}{np(1+\omega^{-\frac{1}{3}}) - 1}$$

$$< \frac{np(1+\omega^{-\frac{1}{3}})^{k+1}}{\frac{1}{2}np(1+\omega^{-\frac{1}{3}})}$$

$$= 2np(1+\omega^{-\frac{1}{3}})^{k}$$

$$\stackrel{k}{=} 2 \cdot \frac{n}{3} \text{ haven't covered all}$$

$$\implies diam(G) > k \text{ bound from below.}$$