HAHN-BANACH THEOREM

1. Introduction

In this notes we study Hahn-Banach theorem and its consequences. Our main goal is separation theorem for normed spaces.

Throughout the notes \mathbb{K} is either topological field \mathbb{R} or topological field \mathbb{C} .

2. Hahn-Banach Theorem

We start by introducing certain notions concerning real maps defined on R-vector spaces.

Definition 2.1. Let *V* be an \mathbb{R} -vector space. A map $p: V \to \mathbb{R}$ is *subadditive* if

$$p(v_1 + v_2) \le p(v_1) + p(v_2)$$

for any vectors v_1, v_2 in V.

Definition 2.2. Let *V* be an \mathbb{R} -vector space. A map $p:V\to\mathbb{R}$ is *positive homogeneous* if

$$p(\alpha \cdot v) = \alpha \cdot p(v)$$

for every $\alpha \in \mathbb{R}_+$ and every v in V.

The following is central result of these notes.

Theorem 2.3 (Hahn-Banach). Let V be an \mathbb{R} -vector space and let $p:V\to\mathbb{R}$ be a subadditive and positive homogeneous map. Suppose that W is an \mathbb{R} -subspace of V and $f: W \to \mathbb{R}$ is an \mathbb{R} -linear map such that

$$f(w) \le p(w)$$

for every w in W. Then there exists \mathbb{R} -linear map $\tilde{f}: V \to \mathbb{R}$ such that $\tilde{f}_{|W} = f$ and $\tilde{f}(v) \leq p(v)$ for every v in V.

The heart of the proof is the following result.

Lemma 2.3.1. Let V be an \mathbb{R} -vector space and let $p: V \to \mathbb{R}$ be a subadditive and positive homogeneous map. Suppose that W is an \mathbb{R} -subspace of V and $f: W \to \mathbb{R}$ is an \mathbb{R} -linear map such that

$$f(w) \le p(w)$$

for every w in W. Then for every vector $\tilde{v} \in V \setminus W$ there exists \mathbb{R} -linear map $\tilde{f} : W + \mathbb{R} \cdot \tilde{v} \to \mathbb{R}$ such that $\tilde{f}_{|W} = f$ and $\tilde{f}(v) \le p(v)$ for every v in $W + \mathbb{R} \cdot \tilde{v}$.

Proof of the lemma. We claim that the set of $\lambda \in \mathbb{R}$ such that for every $\gamma \in \mathbb{R}$ and every $w \in W$ the following condition is satisfied

$$f(w) + \gamma \cdot \lambda \le p(w + \gamma \cdot \tilde{v})$$

is nonempty. In order to prove this we analyze this condition. Note that for $\gamma = 0$ the condition holds by assumption of the theorem. Thus we may assume that $\gamma \neq 0$. Let $\alpha = |\gamma|$. Now we consider two cases.

• For $\gamma > 0$ the condition is equivalent to

$$\lambda \le p\left(\frac{w}{\alpha} + \tilde{v}\right) - f\left(\frac{w}{\alpha}\right)$$

Since W is an \mathbb{R} -vector space, it can be equivalently stated as

$$\lambda \le p\left(w + \tilde{v}\right) - f\left(w\right)$$

for every $w \in W$.

• For γ < 0 the condition is equivalent to

$$-p\left(\frac{w}{\alpha} - \tilde{v}\right) + f\left(\frac{w}{\alpha}\right) \le \lambda$$

We invoke the fact that W is an R-vector space one again and obtain equivalent condition

$$-p(w-\tilde{v})+f(w)\leq\lambda$$

for every $w \in W$.

Thus in order to prove our claim it suffices to prove that

$$\sup_{w \in W} -p(w-\tilde{v}) + f(w) \le \inf_{w \in W} p(w+\tilde{v}) - f(w)$$

Therefore, it suffices to prove that

$$p(w_1 - \tilde{v}) + f(w_1) \le p(w_2 + \tilde{v}) - f(w_2)$$

for any $w_1, w_2 \in W$. Fix arbitrary $w_1, w_2 \in W$. The inequality

$$p(w_1 - \tilde{v}) + f(w_1) \le p(w_2 + \tilde{v}) - f(w_2)$$

is equivalent to

$$f(w_1 + w_2) \le p(w_2 + \tilde{v}) + p(w_1 - \tilde{v})$$

which holds according to

$$f(w_1 + w_2) \le p(w_1 + w_2) = p(w_2 + \tilde{v} + w_1 - \tilde{v}) \le p(w_2 + \tilde{v}) + p(w_1 - \tilde{v})$$

Thus the claim is proved. We infer the statement from the claim as follows. Pick $\lambda \in \mathbb{R}$ such that

$$f(w) + \gamma \cdot \lambda \le p(w + \gamma \cdot \tilde{v})$$

for every $\gamma \in \mathbb{R}$ and every $w \in W$. Then define $\tilde{f}: W + \mathbb{R} \cdot \tilde{v} \to \mathbb{R}$ by $\tilde{f}(w + \gamma \cdot \tilde{v}) = f(w) + \gamma \cdot \lambda$ for every $w \in W$ and $\gamma \in \mathbb{R}$. Then \tilde{f} satisfies the assertion.

Proof of the theorem. Consider the family \mathcal{G} which consists of \mathbb{R} -linear maps $g: U \to \mathbb{R}$ such that U is a \mathbb{R} -subspace of V containing W, $g_{|W} = f$ and $g(u) \le p(u)$ for every $u \in U$. For $g_1: U_1 \to \mathbb{R}$ and $g_2: U_2 \to \mathbb{R}$ in \mathcal{G} we define $g_1 \le g_2$ if and only if $U_1 \subseteq U_2$ and $(g_2)_{|U_1} = g_1$. Clearly ≤ is a partial order on \mathcal{G} . By Zorn's lemma there exists element $\tilde{f}: \tilde{V} \to \mathbb{R}$ in \mathcal{G} maximal with respect to ≤. If $\tilde{V} \not\subseteq V$, then by Lemma 2.3.1 there exists element of \mathcal{G} greater than \tilde{f} with respect to ≤. This is a contradiction. Hence $\tilde{V} = V$ and \tilde{f} satisfies the assertion of the theorem.

We note here an immediate consequence of Hahn-Banach theorem.

Corollary 2.4. Let \mathbb{K} be either \mathbb{R} or \mathbb{C} . Let V be a \mathbb{K} -vector space and let $\|-\|$ be a seminorm on V. Suppose that $f: W \to \mathbb{K}$ is a \mathbb{K} -linear functional defined on some \mathbb{K} -vector subspace W of V. Assume that there exists $c \in \mathbb{R}_+$ such that

$$|f(w)| \le c \cdot ||w||$$

for every $w \in W$. Then there exists a \mathbb{K} -linear map $\tilde{f}: V \to \mathbb{K}$ such that $\tilde{f}_{|W} = f$ and

$$|\tilde{f}(v)| \le c \cdot ||v||$$

for every $v \in V$.

For the proof we need the following notation. Let V be a \mathbb{C} -vector space and let $f:V\to\mathbb{C}$ be a \mathbb{C} -linear map. For each v in V we define

$$(\operatorname{Re} f)(v) = \operatorname{Re}(f(v))$$

Clearly $Ref: V \to \mathbb{R}$ is an \mathbb{R} -linear map. The following result shows that f is determined by Ref.

Lemma 2.4.1. Let V be a \mathbb{C} -vector space and let $\|-\|$ be a seminorm on V. Suppose that $f:V\to\mathbb{C}$ is a \mathbb{C} -linear map which is continuous with respect to the topology induced by $\|-\|$. Then

$$f(v) = (\text{Re} f)(v) - i \cdot (\text{Re} f)(i \cdot v)$$

and

$$\sup_{v \in V, ||v|| \le 1} |f(v)| = \sup_{v \in V, ||v|| \le 1} ||(\text{Re}f)(v)||$$

Proof of the lemma. For every v in V we have

$$(\operatorname{Re} f)(i \cdot v) = \operatorname{Re} (f(i \cdot v)) = \operatorname{Re} (i \cdot f(v)) = -\operatorname{Im} (f(v))$$

Thus

$$\operatorname{Im}(f(v)) = -(\operatorname{Re} f)(i \cdot v)$$

and hence

$$f(v) = (\text{Re} f)(v) - i \cdot (\text{Re} f)(i \cdot v)$$

This completes the proof of the first part of the assertion. In order to prove the second part for each $v \in V$ such that $||v|| \le 1$ define $\alpha_v \in \mathbb{C}$ such that $\alpha_v \cdot f(v) = |f(v)|$. Then

$$\alpha_v \in \{z \in \mathbb{C} \mid |z| = 1\} \cup \{0\}$$

and $\alpha_v \cdot f(v) = |(\text{Re} f)(\alpha_v \cdot v)|$ for each v. We have

$$\sup_{v \in V, ||v|| \le 1} |(\operatorname{Re} f)(v)| \le \sup_{v \in V, ||v|| \le 1} |f(v)| = \sup_{v \in V, ||v|| \le 1} \alpha_v \cdot f(v) =$$

$$= \sup_{v \in V, ||v|| \le 1} f(\alpha_v \cdot v) = \sup_{v \in V, ||v|| \le 1} |(\operatorname{Re} f)(\alpha_v \cdot v)| \le \sup_{v \in V, ||v|| \le 1} |(\operatorname{Re} f)(v)|$$

Proof of the theorem. The case $\mathbb{K} = \mathbb{R}$ follows directly from Theorem 2.3. If $\mathbb{K} = \mathbb{C}$, then we apply Theorem 2.3 in order to obtain \mathbb{R} -linear map $g: V \to \mathbb{R}$ such that $g_{|W} = \operatorname{Re} f$ and

$$\sup_{v \in V, ||v|| \le 1} |g(v)| = \sup_{w \in W, ||w|| \le 1} |(\operatorname{Re} f)(w)|$$

Next we define $\tilde{f}(v) = g(v) - i \cdot g(i \cdot v)$ for every $v \in V$. Then it is easy to see that $\tilde{f}: V \to \mathbb{C}$ is \mathbb{C} -linear. Moreover, by Lemma 2.4.1 we have $\tilde{f}_{|W} = f$ and

$$\sup_{v \in V, \, ||v|| \le 1} |\tilde{f}(v)| = \sup_{v \in V, \, ||v|| \le 1} |g(v)| = \sup_{w \in W, \, ||w|| \le 1} |\left(\operatorname{Re} f \right) (w)| = \sup_{w \in W, \, ||w|| \le 1} |f(w)| \le c$$

Hence

$$|\tilde{f}(v)| \le c \cdot ||v||$$

for every $v \in V$. Thus \tilde{f} satisfies the assertion.

3. Hyperplane separation theorem

Definition 3.1. Let V be an \mathbb{R} -vector space and let K be its subset. Suppose that for every $v \in V$ there exists $r \in \mathbb{R}_+$ such that $v \in r \cdot K$. Then K is absorbent subset of V.

Definition 3.2. Let V be an \mathbb{R} -vector space and let K be its subset. For every v in V we define

$$p_K(v) = \inf \{ r \in \mathbb{R}_+ \mid v \in r \cdot K \}$$

Then $p_K: V \to [0, +\infty]$ is the Minkowski functional of K.

Minkowski functionals are extensively studied in functional analysis. Here we limit our study to the following results.

Fact 3.3. Let V be an \mathbb{R} -vector space and let K be an absorbent subset of V. Then $p_K(v)$ is finite for every v in V.

П

Proof. Left for the reader as an exercise.

Proposition 3.4. Let V be an \mathbb{R} -vector space and let K be convex and absorbent subset of V. Then the Minkowski functional $p_K: V \to [0, +\infty)$ is subadditive and positive homogeneous.

Proof. Pick $\alpha \in \mathbb{R}_+$ and $v \in V$. We have

$$\alpha \cdot \{r \in \mathbb{R}_+ \mid v \in r \cdot K\} = \{r \in \mathbb{R}_+ \mid \alpha \cdot v \in r \cdot K\}$$

This implies that $p_K(\alpha \cdot v) = \alpha \cdot p_K(v)$ and hence p_K is positive homogeneous.

Next fix $v, w \in V$ and consider $r, t \in \mathbb{R}_+$ such that $v \in r \cdot K$ and $w \in t \cdot K$. Thus there exist $x, y \in K$ such that $v = r \cdot x$ and $w = t \cdot y$. Then

$$(v+w) = r \cdot x + t \cdot y = (r+t) \cdot \left(\frac{r}{r+t} \cdot v + \frac{t}{r+t} \cdot w\right)$$

and

$$\frac{r}{r+t} \cdot v + \frac{t}{r+t} \cdot w \in K$$

since *K* is convex. Therefore, we have $v + w \in (r + t) \cdot K$. This implies that

$$p_K(v+w) \le r+t$$

Since $r, t \in \mathbb{R}_+$ are arbitrary numbers such that $v \in r \cdot K$ and $w \in t \cdot K$, we infer that $p_K(v + w) \le p_K(v) + p_K(w)$. Thus p_K is subadditive.

4. Preliminaries on topological vector spaces

Definition 4.1. Let \mathfrak{X} be a vector space over \mathbb{K} equipped with some topology. Suppose that the multiplication by scalars $\mathbb{K} \times \mathfrak{X} \to \mathfrak{X}$ and the addition $\mathfrak{X} \times \mathfrak{X} \to \mathfrak{X}$ are continuous. Then \mathfrak{X} is *a topological vector space over* \mathbb{K} .

Example 4.2. \mathbb{K}^n admits a canonical structure of a topological vector space over \mathbb{K} determined by the structure of topological field \mathbb{K} .

Definition 4.3. Let \mathfrak{X} be a topological vector space over \mathbb{K} . A subset B of \mathfrak{X} is *balanced* if $\alpha \cdot B \subseteq B$ for every $\alpha \in \mathbb{K}$ such that $|\alpha| \le 1$.

Fact 4.4. Let \mathfrak{X} be a topological vector space over \mathbb{K} . Then \mathfrak{X} admits a local topological base at zero which consists of balanced sets.

Proof. Left for the reader as an exercise.

Definition 4.5. Let \mathfrak{X} be a topological vector space over \mathbb{K} . A subset B of \mathfrak{X} is *bounded* if for every open neighborhood U of zero in \mathfrak{X} there exists $r \in \mathbb{R}_+$ such that $B \subseteq r \cdot U$.

Definition 4.6. Let $\mathfrak{X},\mathfrak{Y}$ are topological vector spaces over \mathbb{K} . A map $f:\mathfrak{X}\to\mathfrak{Y}$ which is both continuous and \mathbb{K} -linear is a morphism of topological vector spaces over \mathbb{K} .

5. FINITE DIMENSIONAL HAUSDORFF TOPOLOGICAL VECTOR SPACES

We prove the following elementary but important result.

Proposition 5.1. Let $f: \mathfrak{X} \to \mathbb{K}$ be a \mathbb{K} -linear map between topological vector spaces over \mathbb{K} . Then the following are equivalent.

- (i) f is continuous.
- (ii) ker(f) is a closed subspace of \mathfrak{X} .
- (iii) Either f is the zero map or ker(f) is not dense in \mathfrak{X} .

- (iv) There exists open neighborhood U of zero in \mathfrak{X} such that f(U) is bounded subset of \mathbb{K} .
- (v) f is continuous at zero.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are obvious.

If f is the zero map, then (iv) holds. Assume that f(U) is unbounded for every open neighborhood U of zero in \mathfrak{X} . Let U be a local topological base of \mathfrak{X} at zero which consists of balanced sets (Fact 4.4). For every $U \in \mathcal{U}$ the set f(U) is balanced and unbounded in \mathbb{K} . Thus $f(U) = \mathbb{K}$ for every $U \in \mathcal{U}$. Consider now an open subset W of \mathfrak{X} and pick a point x in W. Let U be a set in U such that $x + U \subseteq W$. There exists $y \in U$ such that f(y) = f(x). Since U is balanced, we have $-y \in U$ and hence $x - y \in x + U$. Therefore, we have $x - y \in W$ and f(x - y) = 0. This implies that $\ker(f)$ is dense in \mathfrak{X} . By contraposition we infer that if $\ker(f)$ is not dense in \mathfrak{X} , then (iv) holds. This completes the proof of (iii) \Rightarrow (iv).

Suppose that f(U) is bounded subset of \mathbb{K} , where U is some open neighborhood of zero in \mathfrak{X} . Let V be an open neighborhood of zero in \mathbb{K} . Then there exists $\alpha \in \mathbb{R}_+$ such that

$$f(\alpha \cdot U) = \alpha \cdot f(U) \subseteq V$$

This shows that f is continuous at zero and hence the implication (**iv**) \Rightarrow (**v**) holds. Finally suppose that f is continuous at zero. Since it is additive, we derive that it is continuous. Thus (**v**) \Rightarrow (**i**).

Fact 5.2. Let \mathfrak{X} be a topological vector space over \mathbb{K} . Suppose that $f : \mathbb{K}^n \to \mathfrak{X}$ is a \mathbb{K} -linear map for some $n \in \mathbb{N}$. Then f is continuous.

Proof. Let $\{e_1,...,e_n\}$ be the canonical basis of \mathbb{K}^n . For every i let $pr_i:\mathbb{K}^n\to\mathbb{K}$ be the projection onto i-th axis and let $m_i:\mathbb{K}\to\mathfrak{X}$ be the composition of the multiplication of scalars $\mathbb{K}\times\mathfrak{X}\to\mathfrak{X}$ with the continuous embedding $\mathbb{K}\ni\alpha\mapsto(\alpha,f(e_i))\in\mathbb{K}\times\mathfrak{X}$. Since pr_i and m_i are continuous for each i, we derive that their compositions $m_i\cdot pr_i$ are also continuous. According to the fact that the addition $\mathfrak{X}\times\mathfrak{X}\to\mathfrak{X}$ is continuous, we infer that the sum

$$\sum_{i=1}^{n} m_i \cdot pr_i$$

is continuous. This sum is equal to f. Thus f is continuous.

Corollary 5.3. Let \mathfrak{X} be a topological vector space over \mathbb{K} . If \mathfrak{X} is Hausdorff and of dimension n for some $n \in \mathbb{N}$, then \mathfrak{X} is isomorphic with \mathbb{K}^n .

Proof. There exists \mathbb{K} -linear isomorphism $f : \mathbb{K}^n \to \mathfrak{X}$. Fact 5.2 shows that f is continuous. For each $i \in \{1,...,n\}$ let $pr_i : \mathbb{K}^n \to \mathbb{K}$ be the projection. According to Proposition 5.1 we derive that $pr_i \cdot f^{-1}$

6. COMPLETENESS OF TOPOLOGICAL GROUPS

In this section we study some results concerning generalization of completeness for metric spaces to arbitrary topological groups.

Definition 6.1. Let G be a topological group and let Σ be a directed set. Suppose that $\{x_i\}_{i\in\Sigma}$ is a net in G. If for every open neighborhood V of unit in G there exists $k \in \Sigma$ such that

$$x_i \cdot x_j^{-1} \in V$$

for each $i, j \ge k$, then $\{x_i\}_{i \in \Sigma}$ is a Cauchy's net in G.

Definition 6.2. Let *G* be a topological group. Suppose that every Cauchy net in *G* is convergent. Then *G* is *a complete topological group*.

6

Fact 6.3. Let G be a complete topological group. Then G is Hausdorff.

Proof. \Box