Hidráulica Básica [2015961]

Tema # 2: Análisis de sistemas de tuberías

Luis Alejandro Morales (Ph.D)

Profesor Asistente

Universidad Nacional de Colombia-Bogotá Facultad de Ingeniería Departamento de Ingenieria Civil y Agrícola

Contents

1	Sist	semas de tuberías simples	1
	1.1	Tipos de problema en sistemas de tuberías	1
	1.2	Ecuaciones para la solución de problemas	3
	1.3	Solucioón de la ecuación de Colebrook-White	4
		1.3.1 Metodo de punto fijo	4
		1.3.2 Metodo de Newton-Raphson	
	1.4	Comprobación de diseño	5
	1.5	Cálculo de la potencia requerida	
	1.6	Diseno de la tubería	6
2	Sist	semas de tuberías en serie	6
	2.1	Ecuaciones para la solución de problemas	6
	2.2	Comprobación de diseño	7
	2.3	Cálculo de la potencia requerida	
	2.4	Disenõ de la tubería	E
3	Sist	semas de tuberías en paralelo	10
	3.1	Ecuaciones para la solución de problemas	10
	3.2		
4	Sist	emas de tuberías ramificadas	11
5	Rec	des de distribución: Método de análisis de Cross	11
6	Rec	les de distribución: Método de análisis lineal	11

1 Sistemas de tuberías simples

Una tubería simple es aquella que tiene un diámetro y esta hecha de un solo material a lo largo de su longitud (ver figura 1). La energía que mueve el flujo dentro de la tubería es gracias a la acción de la gravedad (tanque a la entrada) o a un máquina (sistema de bombeo a la entrada). Dichas tuberías pueden tener cualquier tipo de accesorio a lo largo de su longitud lo que implica unas pérdidas menores. Las ecuaciones de Prandl, Von-Karman y Darcy-Weisbach vistas en la Unidad 1, son utilizadas para el diseño de tuberías simples. Note que existe cierta dificultad para el diseño teniendo en cuenta que la ecuación de Colebrook-White para calcular el coeficiente de rugosidad f es implicita y requiere un proceso iterativo para su solución. Los algoritmos que aquí se discutirán, constituyen las bases para el análisis y diseño de tuberías más complejos.

Figure 1: Tubería simple alimentada por un tanque de nivel constante y con descarga a la atmosfera (tomado de [?]).

1.1 Tipos de problema en sistemas de tuberías

Los problemas en sistemas de tuberías se clasifican de acuerdo con las variables desconocidas. Las variables involucradas en estos problemas se pueden clasificar como:

- Características la tubería: Diámetro (D), longitud (L), rugosidad absoluta (ε) .
- Propiedades del fluido: Densidad (ρ) y viscosidad dinámica (μ) o cinemática (ν).
- Variables relacionadas con el esquema del sistema: Coeficientes de pérdidas menores (K) de todos los accesorios en el sistema.
- Variables relacionas con la energía impulsora del sistema: Cabeza de energía (H = E1-E2), entre la energía en el embalse de entrada (E1) y la energía salida del sistema (E2), o potencia de la bomba (P).
- Propiedades del flujo: Caudal (Q) y velocidad (V) del flujo.
- Otras variables: Aceleración de la gravedad (g).

De acuerdo con las variables involucradas en sistemas de tuberías, existen tres tipos de problemas:

1. Comprobación de diseño: En este tipo de problemas la tubería existe y se conoce su longitud, su diámetro, su rugosidad absoluta (material), al igual que todos los accesorios y sus coeficiente de pérdidas menores. También se conoce la energía impulsora, ya sea una cabeza de energía (gravitacional por diferencia de niveles) o una energía mecánica (suministrada por una bomba). Las propiedades del fluido como la densidad y la viscosidad absoluta son también conocidas. La incognita es entonce el caudal o la velocidad del flujo en el sistema.

Variables conocidas	Incógnita
D, ε , H (o P), $\sum K$, ρ , μ , g, L	Q (o V)

2. Cálculo de la potencia requerida: En este tipo de problemas, el sistema existe por lo que se conocen su longitud, su diámetro, su rugosidad absoluta (material), al igual que todos los accesorios y sus coeficiente de pérdidas menores. Las propiedades del fluido como la densidad y la viscosidad dinámica así como el caudal (o velocidad) que fluye por el sistema son también conocidas. La finalidad es determinar la potencia, ya sea mecánica o gravitacional, requerida para mover cierto caudal a través de la tubería dada.

Variables conocidas	Incógnita
D, ε , Q (o V), $\sum K$, ρ , μ , g, L	P (o H)

3. Diseño de la tubería: En este tipo de problemas se conoce el caudal o la velocidad de flujo y la potencia disponible (mecánica o gravitacional), algunas características de la tubería como la longitud, los accesorios y sus coeficientes de pérdida y las propiedades del fluido como la densidad y la viscosidad dinámica. Se desconoce el diámetro necesario para permitir el paso de el caudal demandado. En cuanto a la rugosidad absoluta, se debe cambiar el tipo de tubería (rugosidad absoluta) con el fin de obtener la mejor opción.

1.2 Ecuaciones para la solución de problemas

A continuacion se presentan las ecuaciones necesarias para resolver los tres problemas ya mencionadas. Estas ecuaciones fueron discutidas en el capitulo anterio.

Si se tiene una tubería simpre cuya entrada es en la sección 1 y cuya salida es en la sección, aplicando la ecuacion de Bernoulli entre 1 y 2, de manera general, se tiene:

$$\frac{{V_1}^2}{2g} + z_1 + \frac{p_1}{\gamma} = \frac{{V_2}^2}{2g} + z_2 + \frac{p_2}{\gamma} + h_f + \sum h_e - h_b + h_t \tag{1}$$

donde h_b es la cabeza de energía suministrada por la bomba y h_t es la cabeza de energía sustraida por la turbina. La energia total en una seccion (e.g. 1 o 2) de flujo se puede expresar como $E = \frac{V^2}{2g} + z + \frac{p}{\gamma}$, por lo tanto la ecuación 1 se puede expresar como:

$$E_1 - E_2 = h_f + h_e - h_b + h_t (2)$$

en donde h_f son las pérdidas por fricción estimadas con la ecuación de Darcy-Weisbach como:

$$h_f = f \frac{L}{D} \frac{V^2}{2g} \tag{3}$$

y h_e son las perdidas por accesorios, las cuales se pueden calcular como:

$$h_e = \sum K \frac{V^2}{2g} \tag{4}$$

El factor de fricción f en la ecuacio
ón 3, se calcula usando el diagrama de Moody o numericamente usando la ecuación Colebrook-White como:

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3.7D} + \frac{2.52}{Re\sqrt{f}}\right) \tag{5}$$

donde el número de Reynolds (Re) se calcula como

$$Re = \frac{VD}{\nu} \tag{6}$$

Si se reemplaza las ecuaciones 3 y 4 en la ecuación 2, se tiene:

$$E_1 - E_2 = f \frac{L}{D} \frac{V^2}{2a} + \sum K \frac{V^2}{2a} - h_b + h_t \tag{7}$$

despejando V en la ecuación 7, se tiene:

$$V = \sqrt{2g\frac{E_1 - E_2 + h_b - h_t}{f\frac{L}{D} + \sum K}}$$
(8)

En los tres tipos de problemas, el objetivo es usar las ecuaciones 3, 4, 5, 6 y 8 para su solución. Note que la ecuación 5 es una ecuación implicita que requiere del uso de algun método iterativo o numerico para su solución. Note que la ecuación 8 se usa en particular para la solución de problemas de comprobación de diseño y de diseño de tuberías.

1.3 Solucioón de la ecuación de Colebrook-White

1.3.1 Metodo de punto fijo

Consiste en el siguiente procedimiento:

- 1. Leer la información de entrada: ε , ρ , μ o ν , V o Q, D
- 2. Calcular el Re usando la ecuación 6
- 3. Si Re < 2000 (Flujo laminar), calcular f como:

$$f = Re/64 \tag{9}$$

y luego ir a 6. Si Re > 2000 continuar.

- 4. Asumir un valor inicial de f_i (e.g. f = 0.01).
- 5. Usando la siguiente forma de la ecuación 5, calcular un valor f_{i+1} :

$$f_{i+1} = \left[-2\log\left(\frac{\varepsilon}{3.7D} + \frac{2.52}{Re\sqrt{f_i}}\right) \right]^{-2} \tag{10}$$

- 6. Si $|f_i f_{i+1}| \le \eta$, donde η es un error (e.g. $\eta = 1 \times 10^{-6}$), ir a 6. Si $|f_i f_{i+1}| > \eta$, hacer $f_i = f_{i+1}$ e ir a 6, para calcular un nuevo valor f_{i+1} .
- 7. Imprimir f

1.3.2 Metodo de Newton-Raphson

El método de Newton-Rapson es un método númerico para la solución de ecuaciones implicitas. Converge más rápido que el método de punto fijo. Algunas condiciones para poder aplicar el método son para un intervalo l del dominio:

- f(x) debe estar definida en l.
- La función de iteración de f(x) deber ser continua en l.
- La función implicita f(x) debe ser diferenciable (f'(x)) en l.

En general la ecuación de Colebrook-White cumple estas condiciones. El método consiste en el siguiente procedimiento:

- 1. Leer la información de entrada: ε , ρ , μ o ν , V o Q, D
- 2. Calcular el Re usando la ecuación 6
- 3. Si Re < 2000 (Flujo laminar), calcular f como:

$$f = Re/64 \tag{11}$$

y luego ir a 6. Si Re > 2000 continuar.

4. Asumir un valor inicial de f_i (e.g. f = 0.01).

5. Calcular

$$x_i = \frac{1}{\sqrt{f}} \tag{12}$$

6. Calcular

$$f(x_i) = -2\log\left(\frac{\varepsilon}{3.7D} + \frac{2.52x_i}{Re}\right) \tag{13}$$

7. Calcular

$$f'(x_i) = \left[\frac{-2}{\ln 10}\right] \left[\frac{\frac{2.52}{Re}}{\frac{\varepsilon}{3.7D} + \frac{2.52x_i}{Re}}\right]$$
(14)

8. Calcular el nuevo valor de x_{i+1} como:

$$x_{i+1} = x_i - \frac{f(x_i) - x_i}{f'(x_i) - 1} \tag{15}$$

- 9. Si $|x_i x_{i+1}| \le \eta$, donde η es un error (e.g. $\eta = 1 \times 10^{-6}$), ir a 6. Si $|x_i x_{i+1}| > \eta$, hacer $x_i = x_{i+1}$ e ir a 6, para calcular un nuevo valor x_{i+1} .
- 10. Imprimir f, donde:

$$f = \frac{1}{x_{i+1}^2} \tag{16}$$

1.4 Comprobación de diseño

A continuación se describe el proceso para solucionar este tipo de problemas que consiste en determinar el valor de V o Q.

- 1. Leer la información de entrada: ε , ρ , μ o ν , L, D, $\sum K$, E1, E2, h_b y h_t .
- 2. Aplicar el procedimiento descrito en la sección 1.3.1 o en la sección 1.3.2. Note que lo único que cambia dentro de estos procedimientos es que la velocidad V es calculada usando la ecuación 8; ya no es un dato de entrada.
- 3. Imprimir V y f.

1.5 Cálculo de la potencia requerida

A continuación se describe el proceso para solucionar este tipo de problemas que consiste en determinar la cabeza de energía de la bomba (h_b) y su potencia (P).

- 1. Leer la información de entrada: ε , ρ , μ o ν , L, D, $\sum K$, Q, E1, E2, h_t y η .
- 2. Calcular la velocidad como V = Q/A.
- 3. Aplicar el procedimiento descrito en la sección 1.3.1 o en la sección 1.3.2 para calcular f.
- 4. Calcular h_f usando la ecuación 3.
- 5. Calcular h_e usando la ecuación 4.
- 6. Calcular la cabeza de energía de la bomba (h_b) despejandola de la ecuación 2.
- 7. Calcular la potencia P como:

$$P = \frac{\rho Q g h_b}{\eta} \tag{17}$$

donde η es la eficiencia de la bomba.

8. Imprimir h_b y P.

1.6 Diseno de la tubería

A continuación se describe el proceso para solucionar este tipo de problemas que consiste en determinar el diametro óptimo comercial de la tubería.

- 1. Leer la información de entrada: ε , ρ , μ o ν , L, D, $\sum K$, Q, E1, E2, h_t y η .
- 2. Asumir un diámetro comercial inicial D_i para la tubería. El D_i inicial debe ser pequeño (e.g. 1 pulg.) pero no tan pequeño ya que el procedimiento no converge.
- 3. Aplicar el procedimiento descrito en la sección 1.3.1 o en la sección 1.3.2. Note que lo único que cambia dentro de estos procedimientos es que la velocidad V es calculada usando la ecuación 8; ya no es un dato de entrada. De aqui sale un valor de f y V.
- 4. Calcular el nuevo caudal $Q_n = VA$ usando D_i , donde $A = \frac{\pi D_i^2}{4}$.
- 5. Si $Q_n >= Q$ ir a 5. Si $Q_n < Q$ tomar el siguiente diámetro comercial superior D_{i+1} e ir a 4a.
- 6. Imprimir D.

El diseño óptimo busca, en la mayoria de los casos, la solución más económica. Por lo tanto es necesario muchas veces diseñar con otros materiales (diferente valor de ε) para encontrar la mejor solución.

2 Sistemas de tuberías en serie

Las tuberías en serie son dos o mas tuberías conectadas una tras de otra con diferente diámetro o rugosidad (material) o ambos (ver figura 2). Estas tuberías son muy comunes en sistemas de riego localizado de alta frequencia o en líneas de coducción para acueductos veredales. Al igual que en la sección 1, aquí se describirán las ecuaciones generales para resolver problemas relacionados con tuberías en serie y se explicarán los procedimientos para resolver los tres problemas en tuberías: 1) Comprobación de diseño, 2) cálculo de la potencia y 3) diseño de las tuberías.

Figure 2: Tres tuberías en serie conectando dos tanques en donde Q_{L_i} representa un caudal lateral de salida al final de la tubería i (tomado de [?]).

2.1 Ecuaciones para la solución de problemas

Teniendo en cuenta las tuberias en serie de la figura 2, se plantean las siguientes ecuaciones:

• Conservación de la energía

$$\Delta E = E1 - E2 = H_T = z_1 - z_2 = h_e + h_{f_1} + h_{m_1} + h_{f_2} + h_{m_2} + h_{f_3} + h_{m_3} + h_s$$
(18)

donde H_T es la diferencia de niveles entre los dos tanque; la energía total disponible en el sistema, h_e pérdidas menores de entrada, h_{f_i} pérdidas por fricción en el tubo i, h_{m_i} pérdidas menores (por válvulas, uniones, etc) en la tubería i y h_s pérdidas por salida.

Para un numero n de tuberías en series la ecuación 18 se puede excribir como:

$$H_T = h_e + \sum_{i=1}^n h_{f_i} + \sum_{i=1}^n \sum_{j=1}^m h_{m_{i,j}} + h_s$$
(19)

donde m es numero de accesorios en la tubería i; m puede ser variable. La ecuación 19 establece que la energía disponible en el sistema se disipa en pérdidas a lo largo de la tubería. Puede haber el caso en el cual tengamos, por ejemplo, una tubería horizontal por lo cual una bomba sería necesaria para impulsar el flujo por lo que en la parte izquierda de la ecuación 18 tendríamos $H_T + h_b$. También se puede dar el caso de una turbina en alguna sección de la tubería por lo que habria que sumarle a la derecha de la ecuación h_t .

Desarrollando la ecuación 19, se tiene:

$$H_T = K_e \left(\frac{V^2}{2g}\right)_1 + \sum_{i=1}^n \left(f\frac{L}{D}\frac{V^2}{2g}\right)_i + \sum_{i=1}^n \left(\frac{V^2}{2g}\right)_i \sum_{j=1}^m K_j + K_s \left(\frac{V^2}{2g}\right)_n$$
(20)

• Conservación de la masa o ecuación de continuidad:

$$Q_T = Q_1 = Q_2 + Q_{L_1} = Q_3 + Q_{L_1} + Q_{L_2} (21)$$

Donde Q_i es el caudal que viaja por la tubería i y Q_{L_i} es el caudal derivado de la tubería i. La ecuación 21 se puede expresar de forma mas compacta como:

$$Q_T = Q_i + \sum_{j=1}^{i-1} Q_{L_j}$$
 (22)

En caso de que no existiera derivaciones $(Q_{L_i} = 0)$ la ecuación 22 queda como:

$$Q_T = Q_1 = \dots = Q_i = \dots = Q_n$$
 (23)

2.2 Comprobación de diseño

Se desea calcular el valor de $Q_T = Q_1$. Antes de describir el proceso de cálculo, deduciremos una ecuación que se utilizará para resolver este tipo de problemas.

De la ecuación de Darcy-Weisbach, despejando el factor de fricción se tiene que:

$$f = \frac{h_f D2g}{LV^2} \tag{24}$$

Sacando raíz cuadrada e invirtiendo los términos a ambos lados se tiene:

$$\frac{1}{\sqrt{f}} = \frac{V\sqrt{L}}{\sqrt{h_f D2g}} \tag{25}$$

Igualando a la ecuación de Colebrook-White, se tiene:

$$\frac{V\sqrt{L}}{\sqrt{h_f D2q}} = -2\log\left(\frac{\varepsilon}{3.7D} + \frac{2.52}{Re\sqrt{f}}\right) \tag{26}$$

Reemplazando $Re = \frac{VD}{\nu}$ y la ecuación 25 en la ecuación 26 y despejando la velocidad, se tiene:

$$V = \frac{-2\sqrt{2gDh_f}}{\sqrt{L}}\log\left(\frac{\varepsilon}{3.7D} + \frac{2.52\nu\sqrt{L}}{D\sqrt{2gDh_f}}\right)$$
 (27)

Note que la ecuación 27 es explicita para la velocidad V.

A continuación se describe el proceso para solucionar este tipo de problemas que consiste en determinar $Q_T = Q_1$.

- 1. Leer: ρ , μ o ν , K_e (coef. de pérdidas a la entrada), K_s (coef. de pérdidas a la salida), E1 y E2. También, para cada tubería i, leer: ε_i , L_i , D_i , $\sum K_i$, Q_{L_i} , h_{b_i} , h_{t_i} y η_i (eficiencia de la bomba o turbina). Esta lectura se debe hacer para las n tuberías del sistema.
- 2. Para llevar a cabo este proceso es necesario, para la primera iteración, asumir un valor inicial de h_{f_1} . Se ha encontrado que $h_f \propto \frac{L}{D^5}$, de acuerdo con esto, [?] ha establecido que este valor inicial de h_{f_1} se puede expresar como:

$$h_{f_1} = E1 - E2 = H_T \frac{L_1/D_1^5}{\sum_{i=1}^n L_i/D_i^5}$$
(28)

- 3. Para la tubería i=1: calcular el valor de V_1 usando la ecuación 27, calcular el caudal $Q_T=Q_1=V_1A_1$, calcular el valor de f_1 usando uno de los dos procedimientos descritos en la secciones 1.3.1 y 1.3.2, calcular h_{f_1} utilizando la ecuación 3 y h_{m_1} utilizando la ecuación 4.
- 4. Para el resto de tuberías i=2...n: calcular el caudal Q_i usando la ecuación 22, calcular la velocidad $V_i=Q_i/A_i$, f_i usando uno de los dos procedimientos descritos en la secciones 1.3.1 y 1.3.2, calcular h_{f_i} utilizando la ecuación 3 y h_{m_i} utilizando la ecuación 4.
- 5. Calcular la pérdida de energía total estimada $\hat{H_T}$ usando la ecuación 19. Si $|\hat{H_T} H_T| \le \eta$ donde η es un error (e.g. $\eta = 1 \times 10^{-6}$), ir a 6. Si $|\hat{H_T} H_T| > \eta$, actualizar el valor de h_{f_1} , como:

$$h_{f_1}^t = h_{f_1}^{t-1} + \Delta h_{f_1} \tag{29}$$

donde Δh_{f_1} , se calcula como

$$\Delta h_{f_i} = (H_T - \hat{H_T}) \frac{L_1/D_1^5}{\sum_{i=1}^n L_i/D_i^5}$$
(30)

Una véz calculado el nuevo h_{f_1} ir a 3.

6. Imprimir Q_i donde i = 1...n.

2.3 Cálculo de la potencia requerida

A continuación se describe el proceso para solucionar este tipo de problemas que consiste en determinar la cabeza de energía de la bomba (h_b) y su potencia (P).

- 1. Leer: ρ , μ o ν , K_e (coef. de pérdidas a la entrada), K_s (coef. de pérdidas a la salida), E1, E2 y $Q_T = Q_1$. También, para cada tubería i, leer: ε_i , L_i , D_i , $\sum K_i$, Q_{L_i} , h_{t_i} y η_i (eficiencia de la bomba o turbina). Esta lectura se debe hacer para las n tuberías del sistema.
- 2. Utilizando la ecuación 22, calcular el valor de Q_i para i=2...n.
- 3. Para cada una de las tuberías i=1...n, calcular: la velocidad como $V_i=Q_i/A_i$, f_i usando uno de los dos procedimientos descritos en la secciones 1.3.1 y 1.3.2, calcular h_{f_i} utilizando la ecuación 3 y h_{m_i} utilizando la ecuación 4.
- 4. Calcular la cabeza de energía de la bomba (h_b) despejandola de la ecuación 2. Note que en esta ecuación, h_f es la sumatoria de todas h_{f_i} y h_m es la sumatoria de todas las h_{m_i} .
- 5. Calcular la potencia ${\cal P}$ usando la ecuación 17.
- 6. Imprimir h_b y P.

2.4 Diseno de la tubería

Como se habia mencionado anteriormente, el diseño, y en este caso, de tuberías en serie es un problema complejo por que eso implica buscar, en la mayoria de los casos, la solución optima desde el punto de vista economico. Por esto, no solo basta con determinar el diametro si no tambien el material de la tubería. A esto hay que sumarle que los coeficiente de perdida dependen del material de la tubería, esta es otra variable que hay que tener en cuenta. Esto quiere decir que pueden existir multiples soluciones para un mismo problema.

A continuación se describe el proceso para solucionar este tipo de problemas que consiste en determinar el diametro óptimo comercial D_i de la tubería para i = 1...n. En este proceso se asume que el material es un dato dado.

- 1. Leer: ρ , μ o ν , K_e (coef. de pérdidas a la entrada), K_s (coef. de pérdidas a la salida), E1, E2 y $Q_T = Q_1$. También, para cada tubería i, leer: ε_i , L_i , $\sum K_i$, Q_{L_i} , h_{b_i} , h_{t_i} y η_i (eficiencia de la bomba o turbina). Esta lectura se debe hacer para las n tuberías del sistema.
- 2. Utilizando la ecuación 22, calcular el valor de Q_i para i = 2...n.
- 3. Inicializar h_{f_i} para cada tubería i = 1...n. I-pai Wu en 1975 encontró la siguiente ecuación para inicializar h_{f_i} antes de iniciar las iteraciones:

$$h_{f_i} = H_T \frac{L_i \cos \theta_i}{\sum_{i=1}^n L_i \cos \theta_i} \tag{31}$$

donde θ_i es el angulo formado entre la horizontal y la tubería. Usualmente este angulo es el mismo para todas las tuberías ya que todas tienen la misma pendiente, por lo tanto $\theta = \frac{z_1 - z_2}{/} \sum_{i=1}^n L_i$, donde z_1 es la altura a la entrada del sistema y z_2 es la altura a la salida del sistema.

- 4. Para cada tubería i = 1...n
 - (a) Asumir un diámetro comercial inicial D_i . El D_i inicial debe ser pequeño (e.g. 1 pulg.) pero no tan pequeño ya que el procedimiento no converge.
 - (b) Aplicar el procedimiento descrito en la sección 1.3.1 o en la sección 1.3.2. Note que lo único que cambia dentro de estos procedimientos es que la velocidad V es calculada usando la ecuación 8; ya no es un dato de entrada. De aqui sale un valor de f y V.
 - (c) Calcular el nuevo caudal $Q_{n_i} = V_i A_i$ usando D_i , donde $A_i = \frac{\pi D_i^2}{4}$.
 - (d) Si $Q_{n_i} >= Q_i$ ir a 5. Si $Q_{n_i} < Q_i$ tomar el siguiente diámetro comercial superior D_{i+1} e ir a 4a.
- 5. Para cada tubería i = 1...n, calcular la velocidad real como $V_{R_i} = Q_i/A_i$
- 6. Para cada tubería i = 1...n, y con el D_i y V_{R_i} , calcular f_i usando el procedimiento descrito en la sección 1.3.1 o en la sección 1.3.2.
- 7. Para cada tubería i = 1...n, calcular $h_{f_{Ri}}$ utilizando la ecuación 3 y $h_{m_{Ri}}$ utilizando la ecuación 4. Usar en estas ecuaciones D_i y V_{R_i} .
- 8. La energía del sistema a la salida de la tubería n suele ser superior a la energía requerida del sistema allí (E2), por lo que usualmente se utiliza una valvula para hacer caer la energía a E2. Dicha caida h_{m_n} , se calcula como:

$$h_{m_v} = H_T - \sum_{i=1}^n h_{f_{Ri}} - \sum_{i=1}^n h_{m_{Ri}}$$
(32)

9. Si $h_{m_v} > 0$ y $h_{m_v} \approx E2$, ir a 10. Si $h_{m_v} >> E2$, para cada tubería i=1...n, actualizar el valor de h_{f_i} para la siguiente iteración como:

$$h_{f_i} = h_{f_{R_i}} + h_{m_v} (33)$$

Luego ir a 4.

10. Imprimir D_i para i = 1...n.

Es importante revisar que h_{m_v} sea positivo, de lo contrario esto supondría presiones negativas que podrían generar cavitación en el sistema. El procedimiento anterior puede ser repetido para diferentes materiales de tubería (diferentes valores de ε) con el fin de escoger el diseño más económico.

3 Sistemas de tuberías en paralelo

Las tuberías en paralelo son un conjunto de dos tuberías o mas las cuales se derivan de un nodo común (nodo de entrada) y convergen hacia otro nodo (nodo de salida). Esto implica que, de acuerdo a la ley de conservación de la masa, la suma de los caudales que viajan por cada una de las tuberías debe ser igual aguas arriba del nodo de entrada y aguas abajo del nodo de salida; esto implica que el caudal de entrada y de salida de las tuberías es le mismo. En casos prácticos y cotidianos, los sistemas de tuberías en paralelo están limitados a máximo 3 o 4 tuberías, y son mas comunes los sistemas de dos tuberías. En estos sistemas, cada tuberia puede tener longitudes, diámetros, accesorios y materiales diferentes.

3.1 Ecuaciones para la solución de problemas

Teniendo en cuenta las tuberías en paralelo de la figura 3, se plantean las siguientes ecuaciones:

Figure 3: Esquema tridimensional de dos tuberías en paralelo y sus lineas de energía, con un nodo de entrada 1 y un nodo de salida 2. (tomado de [?]).

• Conservación de la energía

$$\Delta E = E1 - E2 = H_T = h_{f_1}^1 + h_{m_1}^1 + h_{f_2}^1 + h_{m_2}^1 + h_{f_3}^1 + h_{m_3}^1 + h_{f_4}^1 + h_{m_4}^1 + h_{f_5}^1$$
(34)

donde H_T es la diferencia de energía entre el node de entrada (E1) y el nodo de salida (E2); la energía total disponible en el sistema, $h_{f_i}i^j$ son las pérdidas por fricción en el tramo i = 1...5 de la tubería j = 1 y $h_{m_i}^j$ son las pérdidas menores (por válvulas, uniones, etc) en el tramo i = 1...4 de la tubería j = 1.

La ecuación 34 puede expresarse de forma más compacta como:

$$H_T = \sum_{i=1}^{n_j} h_{f_i}^j + \sum_{i=1}^{m_j} h_{m_i}^j \tag{35}$$

donde n_j es el número de tramos de la tubería j=1 y m_j es el número de accesorios en la tubería j=1. Note que la ecuación 35 aplica también para la tubería j=2.

De acuerdo con la ley de conservación de la energía, esto implica que las pérdidas de energía en la direccón del flujo a través de la tubería 1 y 2 es la misma. De acuerdo con esto, la ecuación 35, se escribe como:

$$H_T = \sum_{i=1}^{n_1} h_{f_i}^1 + \sum_{i=1}^{m_1} h_{m_i}^1 = \sum_{i=1}^{n_2} h_{f_i}^2 + \sum_{i=1}^{m_2} h_{m_i}^2$$
(36)

• Conservación de la masa De acuerdo con la ley de conservación de la masa, el caudal que entra al nodo de entrada (Q_T) , debe ser igual a la suma de los caudales que se distribuyen en las tuberías e igual al caudal en el nodo de salida. Para el esquema de la figura 3, se tiene que:

$$Q_T = Q_1 + Q_2 \tag{37}$$

donde Q_1 es el caudal que transporta la tubería 1 y Q_2 es el caudal que transporta la tubería 2. En general para un numero n de tuberías en paralelo, se tiene:

$$Q_T = \sum_{i=1}^n Q_i \tag{38}$$

3.2 Comprobación de diseño

Para este caso se conocen las características fisicas de n tuberías, los accesorios en cada una de ellas, la energía disponible en el sistema y las propiedades del fluido circulante. Se desea entonces conocer los caudales individuales en cada tubería (Q_i) . A continuación se presenta el procedimiento de cálculo:

- 1. Leer: ρ , μ o ν , h_{b_i} , E1 y E2. También, para cada tubería i, leer: ε_i , L_i , D_i , $\sum K_i$, h_{t_i} y η_i (eficiencia de la turbina). Esta lectura se debe hacer para las n tuberías del sistema.
- 2. Para llevar a cabo este proceso es necesario, para la primera iteración, asumir un valor inicial de h_{f_1} . Se ha encontrado que $h_f \propto \frac{L}{D^5}$, de acuerdo con esto, [?] ha establecido que este valor inicial de h_{f_1} se puede expresar como:

$$h_{f_1} = E1 - E2 = H_T \frac{L_1/D_1^5}{\sum_{i=1}^n L_i/D_i^5}$$
(39)

- 3. Para la tubería i=1: calcular el valor de V_1 usando la ecuación 27, calcular el caudal $Q_T=Q_1=V_1A_1$, calcular el valor de f_1 usando uno de los dos procedimientos descritos en la secciones 1.3.1 y 1.3.2, calcular h_{f_1} utilizando la ecuación 3 y h_{m_1} utilizando la ecuación 4.
- 4. Para el resto de tuberías i=2...n: calcular el caudal Q_i usando la ecuación 22, calcular la velocidad $V_i=Q_i/A_i$, f_i usando uno de los dos procedimientos descritos en la secciones 1.3.1 y 1.3.2, calcular h_{f_i} utilizando la ecuación 3 y h_{m_i} utilizando la ecuación 4.
- 5. Calcular la pérdida de energía total estimada \hat{H}_T usando la ecuación 19. Si $|\hat{H}_T H_T| \le \eta$ donde η es un error (e.g. $\eta = 1 \times 10^{-6}$), ir a 6. Si $|\hat{H}_T H_T| > \eta$, actualizar el valor de h_{f_1} , como:

$$h_{f_1}^t = h_{f_1}^{t-1} + \Delta h_{f_1} \tag{40}$$

donde Δh_{f_1} , se calcula como

$$\Delta h_{f_i} = (H_T - \hat{H_T}) \frac{L_1/D_1^5}{\sum_{i=1}^n L_i/D_i^5}$$
(41)

Una véz calculado el nuevo h_{f_1} ir a 3.

- 6. Imprimir Q_i donde i = 1...n.
- 4 Sistemas de tuberías ramificadas
- 5 Redes de distribución: Método de análisis de Cross
- 6 Redes de distribución: Método de análisis lineal