HW3 435

```
set.seed(435)
y <- rnorm(100)
x <- matrix(rnorm(10000*100), ncol=10000)
# Part 1civ)
set.seed(435)
train <- sample(100, 50)</pre>
validation_y <- y[-train]</pre>
(test_error <- mean(validation_y^2))</pre>
## [1] 0.8158012
# Part 1d)
train_y <- y[train]</pre>
train_x <- x[train, ]</pre>
validation_x <- x[-train, ]</pre>
fit <- lm(train_y ~ train_x)</pre>
values <- predict(fit, data.frame(validation_x))</pre>
## Warning in predict.lm(fit, data.frame(validation_x)): prediction from a rank-
## deficient fit may be misleading
(test_error1 <- mean((values - validation_y)^2))</pre>
```

[1] 1.660356

- 1civ) The expected test error 0.8158012
- 1cv) The expected prediction error for this procedure is 1, while the estimated test error of this procedure is 0.8158012 which is close to 1.
- 1d) The expected test error is 1.660356.
- 1e) part c) has a smaller estimated test error. Part c) also has a smaller bias and smaller variance because they are both zero since the procedure just predicts 0 for every observation. Therefore, it also makes sense that part c) has a smaller estimated test error.

```
# Part 2a
cor_values <- data.frame(cor_values = cor(x, y), index = seq(1, 10000, 1))</pre>
cor_values_sort <- cor_values %>% arrange(desc(abs(cor_values)))
(largest <- abs(cor_values_sort[0:10, ]))</pre>
##
      cor_values index
## 1
       0.4581637
                  1298
## 2
       0.3476051
                  3673
## 3
       0.3458173
                  5512
## 4
       0.3457527
                   2455
## 5
       0.3399391
                    491
## 6
       0.3387277
                   7542
## 7
       0.3365027
                  2036
## 8
       0.3355233
                  9240
## 9
       0.3345952
                  5388
## 10 0.3286617
                   3447
hist(cor_values[,1],
     main = "Histogram of correlations", xlab = "correlation values")
```

Histogram of correlations


```
# Part 2b
indices <- largest[, 2]</pre>
(fit1 <- lm(train_y ~ train_x[, indices]))</pre>
##
## lm(formula = train_y ~ train_x[, indices])
##
## Coefficients:
             (Intercept)
                            train_x[, indices]1
                                                    train_x[, indices]2
##
                0.274093
                                        0.160772
                                                               0.246239
##
    train_x[, indices]3
                            train_x[, indices]4
                                                    train_x[, indices]5
##
               -0.255160
                                       -0.001556
                                                               0.203308
##
                            train_x[, indices]7
                                                    train_x[, indices]8
##
    train_x[, indices]6
##
                0.207197
                                        0.116454
                                                               0.115369
##
    train_x[, indices]9
                           train_x[, indices]10
##
               -0.233546
                                       -0.193885
values1 <- predict(fit1, data.frame(validation_x))</pre>
(test_error2 <- mean((values1 - validation_y)^2))</pre>
```

```
# Part 2c
cor_values1 <- data.frame(cor_values1 = cor(train_x, train_y),</pre>
                           index = seq(1, 10000, 1)
cor_values_sort1 <- cor_values1 %>% arrange(desc(abs(cor_values1)))
(largest1 <- cor_values_sort1[0:10, ])</pre>
##
      cor_values1 index
## 1
       -0.5417270 5157
## 2
        0.4786239 9457
## 3
       -0.4775034 9017
        0.4709132 9715
## 4
## 5
       -0.4654072
                   9492
## 6
        0.4624135 2023
## 7
        0.4614542 3673
## 8
       -0.4605599
                   6960
## 9
       -0.4594087
                    3283
## 10
        0.4582407
                   6812
indices1 <- largest1[, 2]</pre>
(fit2 <- lm(train_y ~ train_x[, indices1]))</pre>
##
## Call:
## lm(formula = train_y ~ train_x[, indices1])
##
## Coefficients:
##
              (Intercept)
                            train_x[, indices1]1
                                                     train_x[, indices1]2
                  0.19011
                                         -0.25205
                                                                   0.26962
##
##
   train_x[, indices1]3
                            train_x[, indices1]4
                                                     train_x[, indices1]5
##
                 -0.30675
                                         -0.10118
                                                                  -0.21047
    train_x[, indices1]6
                            train_x[, indices1]7
                                                     train_x[, indices1]8
##
                                                                  -0.09753
##
                  0.18218
                                          0.27933
##
    train_x[, indices1]9
                           train_x[, indices1]10
##
                 -0.03380
                                          0.29935
values2 <- predict(fit2, data.frame(validation_x))</pre>
(test_error3 <- mean((values2 - validation_y)^2))</pre>
```

```
## [1] 1.41439
```

2d) We can see here from part 2b and 2c that option 2 has smaller estimated test error, which gives option 2 a better approach than option 1. The validation set should be independent of the selection of feature, and therefore, using it to select our features ruins our model. So, in option 2, we do not use our validation set for our training model.

```
## chr (2): short_name, long_name
## dbl (51): value_eur, potential, overall, wage_eur, age, height_cm, weight_kg...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.

players_22 <- na.omit(players_22)
y <- as.matrix(players_22[3])
x <- as.matrix(players_22[4:53])

train <- sample(17040, 8520)
validation_y <- y[-train]
train_y <- y[train]
train_x <- x[train, ]
validation_x <- x[-train, ]

fit_data <- lm(train_y train_x)
values <- predict(fit_data, data.frame(validation_x))
(test_error4 <- mean((values - validation_y)^2))</pre>
```

[1] 1.057054e+14

```
# Part 3c
grid <- 10^seq(10, -2, length=100)
ridge.mod <- glmnet(x, y, alpha=0, lambda=grid)
plot(ridge.mod, xvar="lambda")</pre>
```



```
# Part 3d
set.seed(1)
cv.out <- cv.glmnet(x, y, alpha=0)
plot(cv.out)</pre>
```



```
(bestlam <- cv.out$lambda.min)

## [1] 636643.6

min(cv.out$cvm)

## [1] 1.67049e+13

# Part 3e
lasso.mod <- glmnet(x, y, alpha=1, lambda=grid)
plot(lasso.mod, xvar="lambda")</pre>
```



```
# Part 3f
set.seed(1)
cv.out <- cv.glmnet(x, y, alpha=1)
plot(cv.out)</pre>
```



```
(bestlam <- cv.out$lambda.min)
## [1] 4929.301
```

min(cv.out\$cvm)

coef(cv.out, s=bestlam)

[1] 1.644897e+13

```
## 51 x 1 sparse Matrix of class "dgCMatrix"
##
                                           s1
## (Intercept)
                                -1.010488e+07
## potential
                                -1.102053e+04
## overall
                                 2.369276e+05
                                 2.423559e+02
## wage_eur
## age
                                -3.059835e+05
## height_cm
                                -1.252694e+04
## weight_kg
## weak_foot
                                 2.986567e+04
## skill_moves
                                 3.605657e+06
## international_reputation
                                 1.432056e+04
## pace
## shooting
```

```
## passing
## dribbling
## defending
## physic
## attacking_crossing
                               -9.010350e+03
## attacking finishing
                                2.170369e+04
## attacking_heading_accuracy -2.497318e+04
## attacking_short_passing
## attacking_volleys
## skill_dribbling
                               -2.521498e+04
## skill_curve
                               -1.499645e+03
## skill_fk_accuracy
                                2.979962e+03
## skill_long_passing
## skill_ball_control
                               -3.272458e+04
## movement_acceleration
                                1.946115e+03
## movement_sprint_speed
## movement_agility
                               -9.910176e+03
## movement reactions
                                3.153321e+04
## movement_balance
                                1.313725e+04
## power_shot_power
                               -1.957412e+04
## power_jumping
                               -6.132188e+03
## power_stamina
                                2.631103e+04
## power_strength
                                2.170723e+04
## power long shots
                               -2.341379e+03
## mentality_aggression
                               -4.798604e+03
## mentality_interceptions
## mentality_positioning
                                3.355849e+03
## mentality_vision
                                1.849199e+04
## mentality_penalties
                               -9.158218e+03
## mentality_composure
                               -2.151701e+03
## defending_marking_awareness
## defending_standing_tackle
                               -5.569143e+03
## defending_sliding_tackle
## goalkeeping_diving
## goalkeeping handling
                               -6.983702e+03
## goalkeeping_kicking
                                7.331828e+03
## goalkeeping_positioning
                               -4.356605e+03
## goalkeeping_reflexes
                                1.107176e+04
## league_level
                               -1.681288e+04
```

- 3a) This dataset was found from Kaggle. This dataset is about the FIFA 2022 players where it shows all the stats of the players. The response that I chose is the value of the player in Euros, and the predictors are the other quantitative data that relates to each players, such as his/her dribbling skills, height, weight, wage, etc.
- 3b) We are using the validation set approach and then calculate the MSE on the validation set to estimate the test error. The test error is expected to be 1.057054e+14.
- 3d) We are using the 10-fold cross validation. Our value of lambda is 636643.6 and the expected test error is 1.67049e+13.
- 3e) We are using the 10-fold cross validation. Our value of lambda is 4929.301 and the expected test error is 1.644897e+13.
- 3f) The features that are not included are the height in cm, moves skill, shooting, passing, dribbling, defending, physic, attacking short passing, attacking volleys, skill long passing, movement sprint speed, mentality

interceptions, defending sliding tackle and goalkeeping diving.

```
# Part 4a
x <- Auto$horsepower
y <- Auto$mpg
n <- length(y)</pre>
mat <- data.frame(matrix(rep(0, 110), nrow=10))</pre>
colnames(mat)[11] <- "polydegree"</pre>
for(i in 1:10) {
  train <- sample(n, n/2)
  mat[i, 11] <- i
  for(j in 1:10) {
    model <- lm(y ~ poly(x, j), subset = train)</pre>
    pred <- predict(model, as.data.frame(y))</pre>
    mat[j,i] <- mean((pred-y)[-train]^2)</pre>
}
plot(mat$polydegree, mat[,1], col=1, type="b",
  ylim=range(min(mat[,1:10]), max(mat)),
  xlab="Polynomial Degree", ylab="MSE",
  main="Polynomial Regression Error with Validation Approach")
for(i in 2:10) {
  points(mat$polydegree, mat[,i], col=i, type="b")
```

Polynomial Regression Error with Validation Approach


```
# Part 4b
mat1 <- data.frame(matrix(rep(0, 20), nrow=10))
colnames(mat1)[2] <- "polydegree"

for (i in 1:10) {
    glm.fit <- glm(mpg ~ poly(horsepower, i), data = Auto)
    mat1[i, 1] <- cv.glm(Auto, glm.fit)$delta[1]
    mat1[i, 2] <- i
}

plot(mat1$polydegree, mat1[,1], col=1, type="b",
    xlab="Polynomial Degree", ylab="MSE",
    main="Polynomial Regression Error with LOOCV Approach")</pre>
```

Polynomial Regression Error with LOOCV Approach


```
# Part 4c
mat2 <- data.frame(matrix(rep(0, 110), nrow=10))</pre>
colnames(mat2)[11] <- "polydegree"</pre>
for(i in 1:10) {
  mat2[i, 11] <- i
  for(j in 1:10) {
    glm.fit <- glm(mpg ~ poly(horsepower, j), data = Auto)</pre>
    mat2[j,i] <- cv.glm(Auto, glm.fit, K = 10)$delta[1]</pre>
  }
}
plot(mat2$polydegree, mat2[,1], col=1, type="b",
  ylim=range(min(mat2[,1:10]), max(mat2)),
  xlab="Polynomial Degree", ylab="MSE",
  main="Polynomial Regression Error with 10-fold CV Approach")
for(i in 2:10) {
  points(mat2$polydegree, mat2[,i], col=i, type="b")
```

Polynomial Regression Error with 10-fold CV Approach


```
# Part 4d
mat3 <- data.frame(matrix(rep(0, 20), nrow=10))
colnames(mat3)[2] <- "polydegree"

for (i in 1:10) {
    fit_lm <- lm(y ~ poly(x, i), data = Auto)
    value <- predict(fit_lm, as.data.frame(y))
    mat3[i, 2] <- i
    mat3[i, 1] <- mean((value-y)^2)
}

plot(mat3$polydegree, mat3[,1], col=1, type="b",
    xlab="Degree of Polynomial", ylab="Training Set Mean Squared Error",
    main="Polynomial Regression Error with Least Squares Model")</pre>
```

Polynomial Regression Error with Least Squares Model


```
fit3 <-lm(y - poly(x, 10))
summary(fit3)
##
## Call:
## lm(formula = y \sim poly(x, 10))
##
## Residuals:
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -15.7081 -2.5904
                      -0.1922
                                 2.2859
                                         14.8338
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    23.4459
                                0.2174 107.840
                                                  <2e-16 ***
## poly(x, 10)1
                 -120.1377
                                4.3046 -27.909
                                                  <2e-16 ***
## poly(x, 10)2
                                4.3046
                                       10.242
                    44.0895
                                                  <2e-16 ***
## poly(x, 10)3
                    -3.9488
                                4.3046
                                        -0.917
                                                  0.3595
## poly(x, 10)4
                   -5.1878
                                4.3046
                                        -1.205
                                                  0.2289
## poly(x, 10)5
                                4.3046
                                         3.083
                                                  0.0022 **
                   13.2722
## poly(x, 10)6
                    -8.5462
                                4.3046 -1.985
                                                  0.0478 *
## poly(x, 10)7
                    7.9806
                                4.3046
                                                  0.0645 .
                                         1.854
## poly(x, 10)8
                    2.1727
                                4.3046
                                         0.505
                                                  0.6140
## poly(x, 10)9
                    -3.9182
                                4.3046 -0.910
                                                  0.3633
## poly(x, 10)10
                   -2.6146
                                4.3046 -0.607
                                                  0.5440
## ---
```

Part 4e

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.305 on 381 degrees of freedom
## Multiple R-squared: 0.7036, Adjusted R-squared: 0.6958
## F-statistic: 90.45 on 10 and 381 DF, p-value: < 2.2e-16</pre>
```

- 4a) We can see that there is a significant decrease from degree one to two. After that, some of the models increases but some continues to decrease until it reaches around a degree of 6 or 7. However, I would say that the best degree for most of these models is around 2 because of the significant decrease in MSE.
- 4b) As we can see from the graph, the lowest MSE is at degree of 7, and after that, it continues to increase. However, I still believe we should stick with a degree of 2 so that we will not overfit our data.
- 4c) We can see from the plot, the a degree of around 7 has the lowest MSE. However, there is a significant decrease on a degree of 2, and I still believe we should stick with a degree of 2 so that we will not overfit our data
- 4d) We can see from the plot that as the degree of polynomial increases, the training error will get smaller and smaller because our model will better fit the points, which ended up creating a model that overfits but has small errors.
- 4e) As we can see the p values are really small, which indicates that it is unlikely we will observe a relationship between the predictor (horsepower) and the response (mpg) due to chance, which means that there is actually a relationship between the predictor and the response. As we can see, as the degree of polynomials get larger, the p-value also increases. This means that it is more likely that the relationship between the predictor and the response is by chance.

Sa)	٤	(9i-	exi)2	= 3	9;2	- 20:	li Xi t	B2Xi2								
	1=1							(i +	021							
				9	ر في	yi ² -	20	ر کے الانکن ا	+ 6	₹ X;2) = 0					
				-	ع کی ا	lixi +	28	¿ Xi2			= 0					
									28 3	×i2	= 2	ر الح الحالة				
										β	- 4	yiXi				
												Xi ²	- //			
											42		"			
56)	3	(yi-	Bxi)	+ <i>\(\)</i>	32 =	3. yi2	- :	2月光	jixi -	+ B2 2	Xi2	+ λβ ²				
			9	(¿ y	42 -	20 %	yiXi	+ p2	₹x;²	+ λβ ²) = 0	,				
			96	-				ing Xi								
					47	4										
							β	(ي ٨	+	^)	-	الله الله	1			
										P	•	ર્ટ્ડ પ્રત્× ત્રા ૧+ ફ્રેટ્ડ ×	٤			
											7	۲+ گِیٰ x	12			
													"			
5C)		3X+														
	¥i =	sΧi -	· Ei													
	E[#] =	E	yixi E xi²	1											
			L	₹ X;²	-											
		-	E 2	غ (٤ Xi	+ Ei)	Xi										
				کی ناتا	Χί²											
			E S	3 Xi	2 + X	(Ei]										
			}	2	Xi2	×i] i ε i]										
								1		2 4.1	ר.	c .	7 %	C	9	
			E 15	χί²	+ E	3	×i²	2	3 E	\$ X12	+	E [½Xi	ا يِيْرِ ا	.fx: 14	-[6:]	
			-7.	, ,		T 121		-	3	121						

	Υ= 3X		C n.	1						
	£ [P]	= E	ر کی ۲۰۰۷ کو ۲۰۰۷ کو ۲۰۰۷	-						
			λ+ ξ ₁ χ;	-						
		-	3 (3 Xi	+ &i) Xi]						
		E	λ+ Z	+ Ei) Xi Xi2						
			-							
		E	121	+ XiEi						
) + E	X; 1						
	-	E	2 3X;	·]	SE Xi	٤٠٦				
			λ+ 2×	(.)2 + E	7+ 3	xi²				
			-				9			
		3 E	1 X	. *	E X+ZX	(1) <u>{</u> { E[X;]	E[&]			
			- 1=1							
	=	3 E	(& Xiz	41	Thi	s is biased	because as	λ goes	UP,	
			x+2,	42	P	decreases .				
			- 151	1						
,	= 3X + 6									
Vo	1 (4)	- Var	ر کی ابز X کی Xز2	<u>`</u>						
			₹ X;2							
		= Vor	12(3	Xi+ Ei)Xi	1					
		101	3=1	Xi+ Ei)Xi Xi²						
	-	- Var		2 + Xi Ei						
			ا کی	Xi ²	J					
	-	Vor	(& 3×i	& X18) _	Var (&	Xi Ei			
			1 3 xi2	₹ X	1	Var (& .	Xi2			
			since x	is	2	(2 x32)2	Var (& XiE.)		
			then,			1 2 2 2 2 2	· (x,2 Var(E,) + x2 var (((نع	
				1 - Was I w		(2 x; ')				
			Var (a+w)- ٧٨١ (٠٠		= -	· Exi2 Var	(٤:)		
			Var(a+w)- ٧٨١ (١٩		= (¿ × × × 2) 2	Var (\(\hat{\center}\) \(\times\) \(\times\	· (£i)	g-2	

et)	Var	(B)) =	Vo	r /	24	κx: `											
et)						λ+ ½	Xi²											
			2		/	2 (٠. ١										
				Vor		之 (3) ・ シ	(i+ Ei))xi \										
					(1	ا ا	Xi-	/										
			=	Vor	(2	3 Xi	2 + X	· Ei										
					1	۸+ کي خ=۱	Xi 2	-										
			-	Var	13	3 Xi		2×	i Ei	\								
					1 7	+ 2 x	, ,	λ+	ίει ŽΧί ²									
					'	since ×	is		٠. اع									
						consta	nt											
						(a+w												
			-	Var	1	, Xi E.	_ }	= /	1 λ+ξχ	2/2	lar (}	XiEi)					
					()	(+ 差)	(42)	(اغدا	,	•							
								- (1 λ + ξχ;	2)2.	(X12	Var (E) + x	22 Var (£2))		
								(1 λ+ξx	2)2	ک X (۱۰)	, 0						
								7	γ ² . ξ λ+ξ	\2								
								(X + 2	×i")								
						Thi	s me	ans 1	that a	λin	c rease,	. Var	(B)	decrea	ses.			
													. ,					
53)	As	we	can	se	e	from	Part	d),	when	we	incre	ose λ	, W	e are	inan	easing		
									ver, i		325370					we		
	ore	als	0 6	tecre	asi n	g th	e vo	arian ce	of B	. In	Couc	lusion	inc	reasing	λ,			
									of a	ur mod ite o							ηœ.	