# Explaining Character-Aware Neural Networks for Word-Level Prediction Do They Discover Linguistic Rules?

**Mohammad Samavatian** 

CSE-5559

# What is Paper About?

#### What?

 Character-level patterns in neural network based natural language processing algorithms

#### Why?

- Qualitative analysis is missing
- Investigate which character-level patterns neural networks learn

#### How?

- Extend the contextual decomposition technique to convolutional neural networks
- Visualizing the contributions of each character
- Allows us to compare CNN and BiLSTM

#### Motivation

- Character-level features are an essential for NLP
  - Part-of-speech (PoS) tagging
  - Morphological tagging
- Character-level features
  - Rule-based taggers
  - Easily trace back why the tagger made a certain decision
- Neural network-based generation of part-of-speech and morphological taggers
  - Not traceable

## Example: Rule-based Tagger for PoS Tagging

• Brill (1994)'s transformation-based error-driven tagger

Template

Change the most-likely tag **X** to **Y** if the last (1,2,3,4) characters of the word are **x** 



Rule

Change the tag common noun to plural common noun if the word has suffix -s

## Neural Network Based Taggers

- Words are split into individual characters
- Aggregated using a BiLSTM or CNN Shortcoming
- Unknown which character-level patterns learned?
- Coincide with our linguistic knowledge?
- Lack a qualitative analysis over different networks

### Proposed Method in Nutshell

- Present contextual decomposition (CD) for CNNs
  - Extends CD for LSTMs (Murdoch et al. 2018)
  - White box approach to interpretability
- Trace back morphological tagging decisions to the character-level
  - Which characters are important?
  - Same patterns as linguistically known?
  - Difference CNN and BiLSTM?



## NLP Neural Network Visualization

- Interpretation techniques have been proposed for images
- Not applicable because
  - NLP uses LSTMs mainly
  - Gradient-based techniques are not trustworthy when strongly saturating activation functions such as tanh and sigmoid
  - Only visualizing the LSTM hidden states
  - Provide limited local interpretations
  - Not model fine-grained interactions of groups of inputs

#### Solution:

Contextual Decomposition (CD) for LSTM

# Contextual Decomposition

- Decompose the output value of the network for a certain class
  - Relevant: contributions originating from a specific character or set of characters within a word
  - Irrelevant: contributions originating from all the other characters within the same word
- Decompose every output  $z = \beta + \gamma$



#### Decomposing CNN Layers



Decomposing the convolution



Linearizing the activation function



Max-pooling over time



Classification Layer

# Decomposing Convolution

Decompose the output of the filter  $z_t$ 

$$z_t = \beta_t + \gamma_t + b$$

$$z_{t} = \sum_{i=0}^{n-1} w_{i}.x_{t+i} + b$$

$$\beta_t = \sum_{i=0}^{n-1} w_i. x_{t+i} \ (t+i) \in S$$
relevant

irrelevant

$$\gamma_t = \sum_{i=0}^{n-1} w_i. x_{t+i} \ (t+i) \notin S$$

^economic<mark>a</mark>s\$

Indexes:

8 <mark>9</mark> 10 11

S: selected subset of characters

# Linearizing Activation Function

- Linearize activation function to be able to split output
- CNNs uses ReLU
- $\beta_{c,t}$  and  $\gamma_{c,t}$  is approximation due to the linearization

$$c_t = f_{ReLU}(z_t)$$

$$c_t = f_{ReLU}(\beta_{z,t} + \gamma_{z,t} + b)$$

$$c_t = L_{ReLU}(\beta_{z,t}) + \left[L_{ReLU}(\gamma_{z,t}) + L_{ReLU}(b)\right]$$

$$c_t = \beta_{c,t} + \gamma_{c,t}$$
relevant irrelevant

#### Linearization formula:

$$L_f(y_k) = \frac{1}{M_N} \sum_{i=1}^{M_N} \left[ f\left(\sum_{l=1}^{\pi_i^{-1}(k)} y_{\pi_i(l)}\right) - f\left(\sum_{l=1}^{\pi_i^{-1}(k)-1} y_{\pi_i(l)}\right) \right]$$

# Max-Pooling Over Time

- Max-pooling operation is executed over the time dimension
  - Resulting in a fixed-size representation that is independent of the sequence length
- Not applying a max operation over the  $\beta_{c,t}$  and  $\gamma_{c,t}$  contributions separately

#### Instead

- Determine the position t of the highest  $c_t$  value
- Propagate the corresponding  $\beta_{c,t}$  and  $\gamma_{c,t}$

$$\beta_c + \gamma_c = \max_t (\beta_{c,t} + \gamma_{c,t})$$

# Contextual Decomposition classification Layer

- $p_j$  of predicting class j:
- $p_{j} = \frac{e^{w_{j}.x + b_{j}}}{\sum_{i=1}^{C} e^{w_{j}.x + b_{j}}}$

- The input x is either:
  - CNN output or
  - LSTM  $h_t$
- Decompose x into  $\beta$  and  $\gamma$  contributions
- Only consider the pre-activation and decompose it:

$$\dot{w_j}$$
.  $x + b_j = W_j$ .  $\beta + W_j$ .  $\gamma + b_j$ 

#### Relevant contribution to class j

Contribution of a set of characters with indexes
 S to the final score of class j.

# Validation of Contextual Decomposition

- Given a word w and a corresponding binary label t
- Add a synthetic character c to the beginning of word w
  - Probability  $p_{syn}$  if class t = 1
  - Probability  $1 p_{syn}$  if class t = 0
- $p_{syn} = 1$ 
  - Model should predict the label with a 100% accuracy
  - C has high contribution
- $p_{syn} = 0.5$ :
  - Synthetic character does not provide any additional information about the label t
  - c has a small contribution

#### Validation Result

- Singular/Plural class (0/1)
- varying  $p_{syn}$  from 1 to 0.5
- Measure the impact of  $p_{syn}$ 
  - Add a synthetic character
  - Calculate the contribution of each character
  - The attribution is correct if the contribution of the synthetic/GT character is the highest contribution of all character contributions



# Experiments Setup

- Morphological tagging (gender, tense, singular/plural,..)
  - Finnish, Spanish and Swedish
- Universal Dependencies 1.4 (UD) dataset
  - Morphological features for sentences
  - +manually-annotated character-level morphological segmentations and labels for test set (300 words)
    - Economicas -> lemma=económico
    - Economicas → gender=feminine
    - Economicas → number=plural

#### Model Architecture: CNN vs BiLSTM

- Split every word into characters:
  - Start(^), End(\$)
- Use CNN and BiLSTM
- Multinomial Logistic Regression
  - Classify word-level representation generated by either the CNN or BiLSTM
- Train a single model for all classes at once

#### CNN

#### **BILSTM**

Gender = feminine





^ e c o n o m i c <mark>a</mark> s \$



|               | Finnish | Spanish | Swedish |
|---------------|---------|---------|---------|
| Maj. Vote     | 82.20%  | 72.39%  | 69.79%  |
| CNN           | 94.81%  | 88.93%  | 90.09%  |
| <b>BiLSTM</b> | 95.13%  | 89.33%  | 89.45%  |

Average accuracy

All = every possible combination of characters Cons = all consecutive character n-grams Finnish Swedish Spanish 100% 100%100% 75% 75% 75% 50% 50% 50% CNN all CNN all CNN all BiLSTM all BiLSTM all BiLSTM all 25% 25% 25% CNN cons CNN cons CNN cons BiLSTM cons BiLSTM cons BiLSTM cons 0 0 Top Top

Top

Do the NN Patterns **Follow Manual** Segmentations?

- Which characters contribute most to the final prediction of a certain label
- Whether those contributions coincide with our linguistic knowledge about a language

#### Contribution Visualization: One Character

Positive contributions: red Negative contributions: blue

#### Finnish:

- verb
- olivat (→ were)
- Label: Tense=Past



#### Spanish:

- adjective
- gratuita (→ free)
- Label: Gender=Feminine



#### Contribution Visualization: Two Characters

#### Swedish:

- Noun
- kronor (Swedish valuta as in dollars)
- target: Number=Plural

BiLSTM deemed the interaction between a root and suffix character more important than between two suffix characters



{o,r} for the CNN



{k,r} for the BiLSTM
{o,r} is the second

| 1                   |      | One character                       | Two characters                           | Three characters                            | Examples                               |
|---------------------|------|-------------------------------------|------------------------------------------|---------------------------------------------|----------------------------------------|
| Spanish<br>Gend=Fem | BiL. | a (69%), i (16%), d<br>(6%), e (4%) | as (23%), a\$ (13%),<br>ad (7%), ia (5%) | ia\$ (4%), ad\$ (3%), da\$ (3%), ca\$ (2%)  | toleranc <b>ia</b> ,<br>ciud <b>ad</b> |
|                     | CNN  | a (77%), ó (14%),<br>n (4%), d (3%) | a\$ (34%), as (20%),<br>da (8%), ió (7%) | dad (5%), da\$ (4%),<br>a_ió (4%), sió (2%) | firm <b>as</b> ,<br>preci <b>sió</b> n |

## Most Important Patterns: Spanish

- Linguistic rules for feminine gender:
  - Feminine adjectives often end with "a"
  - Nouns ending with "dad" or "ión" are often feminine
- Found pattern:
  - "a" is a very important pattern
  - "dad" and "sió" are import trigrams

|                      |      | One character                        | Two characters                           | Three characters                           | Examples                             |
|----------------------|------|--------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------|
| Swedish<br>Numb=Plur | BiL. | n (25%), r (19%), a<br>(14%), g (7%) | na (13%), a_r (4%),<br>or (3%), n_r (3%) | iga (5%), rna (3%), ner (1%), der (1%)     | kron <b>or</b> ,<br>perio <b>der</b> |
|                      | CNN  | n (21%), a (18%), r<br>(15%), d (5%) | rn (8%), na (5%), or (4%), er (3%)       | rna (7%), arn (3%), iga<br>(2%), n_ar (2%) | krafte <b>rna</b> ,<br>sak <b>er</b> |

## Most Important Patterns: Swedish

- Linguistic rules for plural form:
  - 5 suffixes: or, ar, (e)r, n, and no ending
- Found pattern:
  - "or" and "ar"
  - Also "na" and "rn"
    - "na" is definite article in plural forms

|                              |      | One character                       | Two characters                            | Three characters                           | Examples                                         |
|------------------------------|------|-------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------------|
| <b>Finnish</b><br>Tense=Past | BiL. | i (69%), t (22%),<br>v (4%), a (2%) | ti (13%), t_i (12%),<br>v_t (9%), ui (6%) | tti (8%), iv_t (5%),<br>tti (3%), sti (3%) | ol <b>iv</b> a <b>t</b> ,<br>näy <b>tti</b> kään |
|                              | CNN  | i (71%), t (8%), s<br>(6%), o (5%)  | ui (12%), si (11%), ti<br>(11%), oi (9%)  | aui (3%), tii (3%),<br>iv\$ (2%), uit (2%) | tie <b>si</b> ,<br>me <b>i</b> dät               |

## Most Important Patterns: Finnish

- Linguistic rules for verb tense:
  - Past tense often end with "i"
  - Sometimes "s" added → "si"
- Found pattern:
  - "i", "si", "ti", "ui"
  - "iv\_t" → third person plural

### Interactions/Compositions of Patterns

- Consider the Spanish verb "gusta"
  - Gender=Not Applicable (NA)
  - Suffix "a" is indicator for gender=feminine
- Weather the model will classify "gusta"
  - wrongly as feminine or
  - correctly as NA.
- Consider most positive/negative set of characters per class

