(2) Prepare a data quality plan for the cleaned CSV file

data quality plan:

Feature	Data Quality Issue	Handling Strategy	
RiskPerformance	none	Do nothing	
ExternalRiskEstimate	Missing value(4 rows)	Imputation	
MSinceOldestTradeOpen	Outliers(high)&MissingValues(34rows)	Imputation	
MSinceMostRecentTradeOpen	Outliers (high)	Bring closer to bounds	
AverageMInFile	Outliers (high)	Bring closer to bounds	
NumSatisfactoryTrades	Outliers (high)	Bring closer to bounds	
NumTrades60Ever2DerogPubRec	none	Do nothing	
NumTrades90Ever2DerogPubRec	No new info	Remove column	
PercentTradesNeverDelq	Outliers (low)	Do nothing	
MSinceMostRecentDelq	none	Do nothing	
MaxDelq2PublicRecLast12M	none	Do nothing	
MaxDelqEver	none	Do nothing	
NumTotalTrades	Outliers (high)	Bring closer to bounds	
NumTradesOpeninLast12M	Outliers (high)	Bring closer to bounds	
PercentInstallTrades	Outliers (high)	Bring closer to bounds	
MSinceMostRecentInqexcl7days	none	Do nothing	
NumInqLast6M	none	Do nothing	
NumInqLast6Mexcl7days	No new info	Remove column	
NetFractionRevolvingBurden	MissingValues(18rows)	Imputation	
NetFractionInstallBurden	Missing Value(34.5%)	Remove Column	
NumRevolvingTradesWBalance	Outliers(high)&MissingValues(17rows)	Imputation	
NumInstallTradesWBalance	none	Do nothing	
NumBank2NatlTradesWHighUtilization	Outliers(high)&MissingValues(54rows)	Imputation	
PercentTradesWBalance	Missing value(5 rows)	Imputation	

Apply your solutions

```
In [88]: #Delete features
         try:
             mySample cleaned1 = mySample cleaned1.drop(['NumTrades90Ever2DerogPubRec'
         ], axis=1)
             print(mySample cleaned1.shape)
         except:
             print("NumTrades90Ever2DerogPubRec already deleted")
             print(mySample cleaned1.shape)
         (944, 23)
In [89]:
         #Delete features
         try:
             mySample cleaned1 = mySample cleaned1.drop(['NumInqLast6Mexcl7days'], axis
         =1)
             print(mySample cleaned1.shape)
             print("NumInqLast6Mexcl7days already deleted")
             print(mySample cleaned1.shape)
         (944, 22)
In [90]:
         try:
             mySample_cleaned1 = mySample_cleaned1.drop(['NetFractionInstallBurden'], a
         xis=1)
             print(mySample_cleaned1.shape)
         except:
             print("NetFractionInstallBurden already deleted")
             print(mySample_cleaned1.shape)
         (944, 21)
In [91]:
         #Setting upper limit for outliers for MSinceOldestTradeOpen
         UpperBound = 450 #Upper limit from boxplot
         mySample_cleaned1.loc[mySample_cleaned1['MSinceOldestTradeOpen'] > UpperBound,
         'MSinceOldestTradeOpen'] = UpperBound
         #mySample cleaned1['MSinceOldestTradeOpen'].plot(kind='box')
In [92]:
         #Setting upper limit for outliers for MSinceMostRecentTradeOpen
         UpperBound = 25 #Upper limit from boxplot
         mySample_cleaned1.loc[mySample_cleaned1['MSinceMostRecentTradeOpen'] > UpperBo
         und, 'MSinceMostRecentTradeOpen'] = UpperBound
         #mySample cleaned1['MSinceMostRecentTradeOpen'].plot(kind='box')
In [93]:
         #Setting upper limit for outliers for AverageMInFile
         UpperBound = 150 #Upper limit from boxplot
         mySample_cleaned1.loc[mySample_cleaned1['AverageMInFile'] > UpperBound, 'Avera
         geMInFile'] = UpperBound
         #mySample cleaned1['AverageMInFile'].plot(kind='box')
```

```
In [94]: #Setting upper limit for outliers for NumSatisfactoryTrades
         UpperBound = 53 #Upper limit from boxplot
         mySample_cleaned1.loc[mySample_cleaned1['NumSatisfactoryTrades'] > UpperBound,
         'NumSatisfactoryTrades'] = UpperBound
         #mySample cleaned1['NumSatisfactoryTrades'].plot(kind='box')
```

- #Setting upper limit for outliers for NumTotalTrades In [95]: UpperBound = 55 #Upper limit from boxplot mySample_cleaned1.loc[mySample_cleaned1['NumTotalTrades'] > UpperBound, 'NumTo talTrades'] = UpperBound #mySample cleaned1['NumTotalTrades'].plot(kind='box')
- In [96]: #Setting upper limit for outliers for NumTradesOpeninLast12M UpperBound = 6 #Upper limit from boxplot mySample_cleaned1.loc[mySample_cleaned1['NumTradesOpeninLast12M'] > UpperBound , 'NumTradesOpeninLast12M'] = UpperBound #mySample cleaned1['NumTradesOpeninLast12M'].plot(kind='box')
- In [97]: #Setting upper limit for outliers for PercentInstallTrades UpperBound = 80 #Upper limit from boxplot mySample_cleaned1.loc[mySample_cleaned1['PercentInstallTrades'] > UpperBound, 'PercentInstallTrades'] = UpperBound #mySample_cleaned1['PercentInstallTrades'].plot(kind='box')
- In [98]: #Setting upper limit for outliers for NumRevolvingTradesWBalance UpperBound = 10 #Upper limit from boxplot mySample_cleaned1.loc[mySample_cleaned1['NumRevolvingTradesWBalance'] > UpperB ound, 'NumRevolvingTradesWBalance'] = UpperBound #mySample cleaned1['NumRevolvingTradesWBalance'].plot(kind='box')
- In [99]: #Setting upper limit for outliers for NumBank2NatlTradesWHighUtilization UpperBound = 5 #Upper limit from boxplot mySample_cleaned1.loc[mySample_cleaned1['NumBank2NatlTradesWHighUtilization'] > UpperBound, 'NumBank2NatlTradesWHighUtilization'] = UpperBound #mySample cleaned1['NumBank2NatlTradesWHighUtilization'].plot(kind='box')
- In [100]: #Replace -9 and -8 with average values for ExternalRiskEstimate mean = mySample cleaned1.ExternalRiskEstimate.mean() if len(mySample[mySample['ExternalRiskEstimate'] == -8]) > 0: mySample cleaned1.ExternalRiskEstimate.replace(-8, mean, inplace=True) if len(mySample[mySample['ExternalRiskEstimate'] == -9]) > 0: mySample_cleaned1.ExternalRiskEstimate.replace(-9, mean, inplace=True)
- In [101]: #Replace -9 and -8 with average values for MSinceOldestTradeOpen mean = mySample cleaned1.MSinceOldestTradeOpen.mean() if len(mySample[mySample['MSinceOldestTradeOpen'] == -8]) > 0: mySample_cleaned1.MSinceOldestTradeOpen.replace(-8, mean, inplace=True) if len(mySample[mySample['MSinceOldestTradeOpen'] == -9]) > 0: mySample cleaned1.MSinceOldestTradeOpen.replace(-9, mean, inplace=True)

```
In [102]:
          #Replace -9 and -8 with average values for NetFractionRevolvingBurden
          mean = mySample cleaned1.NetFractionRevolvingBurden.mean()
          if len(mySample[mySample['NetFractionRevolvingBurden'] == -8]) > 0:
              mySample cleaned1.NetFractionRevolvingBurden.replace(-8, mean, inplace=Tru
          e)
          if len(mySample[mySample['NetFractionRevolvingBurden'] == -9]) > 0:
              mySample cleaned1.NetFractionRevolvingBurden.replace(-9, mean, inplace=Tru
          e)
In [103]:
          #Replace -9 and -8 with average values for NumRevolvingTradesWBalance
          mean = mySample cleaned1.NumRevolvingTradesWBalance.mean()
```

```
if len(mySample[mySample['NumRevolvingTradesWBalance'] == -8]) > 0:
   mySample cleaned1.NumRevolvingTradesWBalance.replace(-8, mean, inplace=Tru
e)
if len(mySample[mySample['NumRevolvingTradesWBalance'] == -9]) > 0:
   mySample cleaned1.NumRevolvingTradesWBalance.replace(-9, mean, inplace=Tru
e)
```

```
In [104]:
          #Replace -9 and -8 with average values for NumBank2NatlTradesWHiahUtilization
          mean = mySample cleaned1.NumBank2NatlTradesWHighUtilization.mean()
          if len(mySample[mySample['NumBank2NatlTradesWHighUtilization'] == -8]) > 0:
              mySample cleaned1.NumBank2NatlTradesWHighUtilization.replace(-8, mean, inp
          lace=True)
          if len(mySample[mySample['NumBank2NatlTradesWHighUtilization'] == -9]) > 0:
              mySample cleaned1.NumBank2NatlTradesWHighUtilization.replace(-9, mean, inp
          lace=True)
```

```
In [105]:
          #Replace -9 and -8 with average values for PercentTradesWBalance
          mean = mySample cleaned1.PercentTradesWBalance.mean()
          if len(mySample[mySample['PercentTradesWBalance'] == -8]) > 0:
              mySample cleaned1.PercentTradesWBalance.replace(-8, mean, inplace=True)
          if len(mySample[mySample['PercentTradesWBalance'] == -9]) > 0:
              mySample cleaned1.PercentTradesWBalance.replace(-9, mean, inplace=True)
```

Cleaned data results:

In [106]: mySample_cleaned1.select_dtypes(['int64', 'float64']).describe().T

Out[106]:

	count	mean	std	min	25%	
ExternalRiskEstimate	944.0	72.080459	9.713999	43.0	65.0	72.0000
MSinceOldestTradeOpen	944.0	201.985490	95.364868	2.0	138.0	189.000
MSinceMostRecentTradeOpen	944.0	8.210805	7.053578	0.0	3.0	6.00000
AverageMInFile	944.0	78.352754	31.469245	6.0	58.0	76.0000
NumSatisfactoryTrades	944.0	21.515890	11.752203	1.0	13.0	20.0000
PercentTradesNeverDelq	944.0	92.345339	11.425976	33.0	89.0	97.0000
MaxDelq2PublicRecLast12M	944.0	5.733051	1.696709	0.0	5.0	6.00000
MaxDelqEver	944.0	6.358051	1.893500	2.0	6.0	6.00000
NumTotalTrades	944.0	22.880297	12.812353	0.0	14.0	21.0000
NumTradesOpeninLast12M	944.0	1.919492	1.709521	0.0	1.0	2.00000
PercentInstallTrades	944.0	33.269068	17.228723	0.0	21.0	32.0000
NetFractionRevolvingBurden	944.0	34.375516	28.370896	0.0	8.0	31.0000
NumRevolvingTradesWBalance	944.0	3.962678	2.532658	0.0	2.0	3.7510
NumBank2NatlTradesWHighUtilization	944.0	1.025426	1.262881	0.0	0.0	1.00000
PercentTradesWBalance	944.0	66.088443	21.761848	0.0	50.0	67.0000

Cleaned categorical features:

In [107]: mySample_cleaned1.select_dtypes(['category']).describe().T

Out[107]:

	count	unique	top	freq
NumTrades60Ever2DerogPubRec	307	4	Never	183
MSinceMostRecentDelq	944	7	Unknown	460
MSinceMostRecentInqexcl7days	944	6	Never	431
NumInqLast6M	944	6	unknown	367
NumInstallTradesWBalance	944	7	1	277

Save cleaned data to new csv