This code creates a graphical user interface (GUI) using the Dear PyGui library to control an ODrive motor, monitor its position and applied force, and perform sinusoidal force modulation based on user inputs.

Code Structure Overview:

1. Motor Initialization:

- The ODrive motor is located at the beginning using odrive.find any().
- Functions for motor control, such as calibration, turning on/off, setting force, and moving to a specific position, are defined as follows:
 - o calibrate(): Calibrates the motor.
 - o turn_on(): Toggles the motor's state between on (closed-loop control) and off.
 - o set_force_kg(): Sets the force applied by the motor in kilograms.
 - o move_to(position): Moves the motor to a specified position.

2. SineModulation Class:

- This class defines a sine wave function used to modulate values, such as the applied force, over time.
- It takes two main parameters:
 - Frequency: Determines how fast the sine wave oscillates.
 - Amplitude: Controls the range of the oscillation.
- The modulate() method returns the dynamically modulated set point based on time, enabling smooth force adjustments.
 - The function to modulate the set point based on position is not yet implemented.

3. Graph and Data Logging:

- The script records and logs motor data, such as position and applied force, which are plotted in real-time.
- The graph is updated dynamically using **Dear PyGui's** plotting features.
- **Graph Update Rate**: Set to 60 Hz (**graph_update_rate** = **1.0** / **60.0**), ensuring smooth updates on the plotted data. Worth noting is that this can't be higher than the screen's update ratio.

• When data logging is enabled, it records the position, force, and time into a CSV file for later analysis.

4. User Interface (UI):

The GUI allows the user to interact with the motor control system through several components:

• Buttons:

 Controls for motor calibration, turning the motor on/off, clearing errors, and setting weight.

• Input Fields:

- Users can input their desired force (in kilograms), and configure sine wave modulation settings such as:
 - Frequency
 - Minimum and maximum force.

• Modulation Options:

 Checkboxes allow users to toggle between time-based or position-based sine wave modulation of force.

5. Main Loop:

- The primary loop continuously checks if the GUI is running and performs several operations:
 - Updates the graphs with the motor's current position and applied force.
 - If logging is active, it records data into a CSV file.
 - Applies the sine modulation when the respective checkbox (time-based) is checked.

6. Key Functions:

• Motor Control:

- o calibrate(): Calibrates the ODrive motor.
- o turn_on(): Toggles between enabling and disabling the motor.
- o set_force_kg(kg): Sets the motor force to the specified value in kilograms.
- o move_to(position): Moves the motor to the desired position.
- o get current position(): Retrieves and returns the motor's current position.

• Graph and Data Updates:

- o update_graphs(): Updates the plots with the latest motor position and applied force data.
- o start recording(): Starts or stops the data logging process.
- move_increment(): Allows the user to move the motor by a specified increment (e.g., for fine adjustments).

7. How it Works:

- The GUI offers real-time feedback, displaying the motor's position and the force being applied.
- Users can manually input desired weights to apply to the motor or enable sine wave modulation to automatically adjust the applied force over time.
- Data (position, force, and time) is logged and dynamically plotted in real-time. This is managed
 efficiently by the main event loop, ensuring continuous operation while applying user-defined
 motor controls.

In summary, this script integrates motor control, data logging, and real-time feedback through a GUI. It enables users to adjust the force applied by an ODrive motor and visualize the effects through dynamic graphs. The sine modulation feature adds flexibility in controlling the motor's behavior.