UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA Microeconometria – 2015/3

NOTAS DE AULA

Autor: Paulo Ferreira Naibert Professor: Hudson Torrent

Porto Alegre 30/06/2020 Revisão: 1 de julho de 2020

1 Regressão MQO Clássico

(Wooldridge, 2010, C.4 – The Single-Equation Linear Model and OLS Estimation)

Modelo de equações lineares

O modelo populacional que estudamos é linear em seus parâmetros,

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + u$$

onde

- y, x_1, \ldots, x_K são escalares aleatórios e observáveis (i.e., conseguimos observá-los em uma amostra aleatória da população);
- u é o random disturbance não observável, ou erro;
- $\beta_0, \beta_1, \dots, \beta_K$ são parâmetros (constantes) que gostaríamos de estimar.

Por conveniência, escrevemos a equação populacional em forma de vetor:

$$y = x\beta + u$$

onde

- $\boldsymbol{x} \equiv (x_1, \dots, x_K)$ é um vetor $1 \times K$ de regressores;
- $\beta \equiv (\beta_1, \dots, \beta_K)'$ é um vetor $K \times 1$;
- Uma vez que a maioria das equações contém um intercepto, assumiremos que $x_1 \equiv 1$, visto que essa hipótese deixa a interpretação mais fácil.

Amostra Aleatória

Assumimos que conseguimos obter uma amostra aleatória de tamanho N da população para estimarmos $\boldsymbol{\beta}$. Dessa forma, $\{(\boldsymbol{x}_i,y_i); i=1,2,\ldots,N\}$ são tratados como variáveis aleatória independentes, identicamente distribuídas, onde \boldsymbol{x}_i é $1\times K$ e y_i é escalar. Para cada observação i, temos:

$$y_i = \boldsymbol{x}_i \boldsymbol{\beta} + u_i.$$

onde x_i é um vetor $1 \times K$ de regressores.

Empilhando as N observações, obtemos a **notação matricial**:

$$y = X\beta + u$$

- y é um vetor $N \times 1$;
- X é uma matriz $N \times K$ de regressores, com N vetores, x_i , de dimensão $1 \times K$ empilhados;
- β é um vetor $K \times 1$;
- \boldsymbol{u} é um vetor $N \times 1$;

$$m{y} = egin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}; \quad X = egin{bmatrix} m{x}_1 \\ \vdots \\ m{x}_N \end{bmatrix} = egin{bmatrix} x_{11} & x_{12} & \dots & x_{1K} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{NK} \end{bmatrix}; \quad m{u} = egin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix}.$$

Hipóteses

H1 Estamos usando o modelo correto:

$$y_i = \boldsymbol{x}_i \boldsymbol{\beta} + u_i, \quad i = 1, \dots, N;$$

H2 X é **não** estocástica;

H3 $\{u_i\}_{i=1}^N$ é *iid* com e para cada $i=1,\ldots,N$:

$$E(u_i) = 0$$
$$Var(u_i) = E(u_i^2) = \sigma^2$$

 $\mathbf{H2}$, X é estocástica;

H3'

$$E(u_i|X) = 0$$

$$Var(u_i|X) = E\left\{ [u_i - E(u_i|X)]^2 | X \right\} = E(u_i^2|X) = \sigma^2.$$

 $E(u_i|X)=0$ implica que u_i é **não correlacionado** com todos os regressores x_k para $k=1,\ldots,K$. Exogeneidade estrita.

Estimação

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y} \tag{1.1}$$

Valor Esperado

$$E(\widehat{\boldsymbol{\beta}}) = E\left[(X'X)^{-1}X'\boldsymbol{y} \right]$$

$$= E\left[(X'X)^{-1}X'(X\boldsymbol{\beta} + \boldsymbol{u}) \right]$$

$$= E\left[(X'X)^{-1}X'X\boldsymbol{\beta} + (X'X)^{-1}X'\boldsymbol{u} \right]$$

$$= E(\boldsymbol{\beta}) + E[(X'X)^{-1}X'\boldsymbol{u}]$$

$$E(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + E[(X'X)^{-1}X'\boldsymbol{u}]$$

Viés

$$\boxed{\begin{aligned} B(\widehat{\boldsymbol{\beta}}) &= E(\widehat{\boldsymbol{\beta}}) - \boldsymbol{\beta} \\ B(\widehat{\boldsymbol{\beta}}) &= E[(X'X)^{-1}X'\boldsymbol{u}] \end{aligned}}$$

Sob **H2**' e **H3**':

$$\begin{split} E[(X'X)^{-1}X'\boldsymbol{u}] &= E\left\{E\left[(X'X)^{-1}X'\boldsymbol{u}|X\right]\right\} \\ &= E\left\{(X'X)^{-1}X'\underbrace{E(\boldsymbol{u}|X)}_{=\mathbf{0}}\right\} = 0 \end{split}$$

ou seja, $B(\widehat{\beta}) = 0$, logo $\widehat{\beta}$ é **não viciado**. O que também é equivalente a $E(\widehat{\beta}) = \beta$.

Variância Supondo H2' e H3':

$$\begin{split} Var(\widehat{\boldsymbol{\beta}}|X) &= E\left\{\left[\widehat{\boldsymbol{\beta}} - E(\widehat{\boldsymbol{\beta}}|X)\right]^2|X\right\} \\ &= E\left\{\left[\widehat{\boldsymbol{\beta}} - E(\widehat{\boldsymbol{\beta}}|X)\right]\left[\widehat{\boldsymbol{\beta}} - E(\widehat{\boldsymbol{\beta}}|X)\right]'|X\right\} \\ &= E\left\{\left[(X'X)^{-1}X'\boldsymbol{u}\right]\left[(X'X)^{-1}X'\boldsymbol{u}\right]'|X\right\} \\ &= E\left[(X'X)^{-1}X'\boldsymbol{u}\boldsymbol{u}'X(X'X)^{-1}|X\right] \\ \hline \\ Var(\widehat{\boldsymbol{\beta}}|X) &= (X'X)^{-1}X'E\left[\boldsymbol{u}\boldsymbol{u}'|X\right]X(X'X)^{-1} \end{split}$$

Supondo homocedasticidade e ausência de correlação serial: $E\left[\boldsymbol{u}\boldsymbol{u}'|X\right] = \sigma^2 I_N$. Assim,

$$Var(\widehat{\beta}|X) = \sigma^{2}(X'X)^{-1}X'I_{N}X(X'X)^{-1} = \sigma^{2}(X'X)^{-1}X'X(X'X)^{-1}$$
$$Var(\widehat{\beta}|X) = \sigma^{2}(X'X)^{-1}.$$

Ausência de Exogeneidade Estrita

Nem sempre poderemos supor **exogeneidade estrita**. Por exemplo, no modelo com variável defasada mostrado abaixo,

$$y_{t} = \beta_{0} + \beta_{1}y_{t-1} + \beta_{2}x_{1t} + u_{t}$$

$$y_{t-1} = \beta_{0} + \beta_{1}y_{t-2} + \beta_{2}x_{1t-1} + u_{t-1}$$

$$y_{t} = \beta_{0} + \beta_{1} (\beta_{0} + \beta_{1}y_{t-2} + \beta_{2}x_{1t-1} + u_{t-1}) + \beta_{2}x_{1t} + u_{t},$$

o erro é correlacionado com o regressor y_{t-1} . Nesse caso, tentaremos obter apenas consistência e variância assintótica do estimador.

Estimação Lembrando que o estimador de OLS é:

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}X'\boldsymbol{y},$$

onde usamos o modelo

$$y_i = \boldsymbol{x}_i \boldsymbol{\beta} + u_i,$$

e definimos as variáveis

$$X_{N imes K} = egin{bmatrix} oldsymbol{x}_1 \ dots \ oldsymbol{x}_N \end{bmatrix}, \quad oldsymbol{y} = egin{bmatrix} y_1 \ dots \ y_N \end{bmatrix}, \quad oldsymbol{u} = egin{bmatrix} u_1 \ dots \ u_N \end{bmatrix}.$$

Assim, representamos $(X'X)^{-1}$ e (X'y) por meio dos seguintes somatórios: temos

$$(X'X)^{-1} = \left(\sum_{i=1}^N \boldsymbol{x}_i' \boldsymbol{x}_i\right)^{-1}, \quad (X'\boldsymbol{y}) = \sum_{i=1}^N \boldsymbol{x}_i' y_i.$$

Então,

$$egin{aligned} \widehat{eta} &= \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i
ight)^{-1} \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{y}_i
ight) \ &= \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i
ight)^{-1} \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i oldsymbol{eta} + oldsymbol{u}_i
ight) \ &= \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i
ight)^{-1} \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i oldsymbol{eta} + \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{u}_i
ight) \ &= oldsymbol{eta} + \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i
ight)^{-1} \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{u}_i
ight). \end{aligned}$$

Usando **LGN matricial** (lembrar que as dimensões dos vetores estão invertidas: $1 \times K$ e **não** $K \times 1$), temos:

$$N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i} \stackrel{p}{\longrightarrow} Q.$$

Supondo $E(\mathbf{x}_i'\mathbf{x}_i) = Q_{K\times K}$, finita e positiva definida, posto(Q) = K. Supondo $E(\mathbf{x}_i'u_i) = 0$, o que corresponde a $Cov(\mathbf{x}_i, u_i) = 0$, ou seja, o erro u_i não é correlacionado com os regressores da própria equação. Isso é bem menos que exogeneidade estrita.

Então,

$$N^{-1}\sum_{i=1}^{N} \boldsymbol{x}_{i}'u_{i} \stackrel{p}{\longrightarrow} E(\boldsymbol{x}_{i}'u_{i}) = \mathbf{0}_{K}.$$

Logo

$$\widehat{oldsymbol{eta}} = oldsymbol{eta} + \left(\sum_{i=1}^N oldsymbol{x}_i' oldsymbol{x}_i
ight)^{-1} \left(\sum_{i=1}^N oldsymbol{x}_i' u_i
ight)^{-1}$$

Então, $(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{p}{\longrightarrow} 0$ que é equivalente a $\widehat{\boldsymbol{\beta}} \stackrel{p}{\longrightarrow} \boldsymbol{\beta}$.

Definição.

$$P(|X_n - X| > \varepsilon) \to 0$$

$$X_n - X \xrightarrow{p} 0$$

$$X_n \xrightarrow{p} X$$

Definição (o_p) .

$$X_n = o_p(1) \implies X_n \stackrel{p}{\longrightarrow} 0$$

$$X_n = o_p(Y_n) \implies \frac{X_n}{Y_n} = o_p(1) \implies \frac{X_n}{Y_n} \stackrel{p}{\longrightarrow} 0$$

$$X_n = W_n + o_p(1) \implies (X_n - W_n) = o_p(1) \implies (X_n - W_n) \stackrel{p}{\longrightarrow} 0$$

Definição (Limitação em Probabilidade: O_p). Dizemos que X_n é limitado em probabilidade e denotado por $X_n = O_p(1)$, se existe M maior que zero, tal que para todo ε maior que zero, $P(|X_n| > 0) < \varepsilon$.

$$X_n = O_p(1) \implies \exists M > 0; \ \forall \varepsilon > 0, \ P(|X_n| > 0) < \varepsilon.$$

Definição. Dizemos que $X_n = O_p(Y_n)$ se existe M maior que zero, tal que para todo ε maior que zero, $P(|X_n/Y_n| > 0) < \varepsilon$.

$$X_n = O_p(Y_n) \implies \exists M > 0; \ \forall \varepsilon > 0, \ P(|X_n/Y_n| > 0) < \varepsilon.$$

Definição. Se $X_n = O_p(1)$ e $Y_n = o_p(1)$, então

$$X_n Y_n = O_n(1)o_n(1) = o_n(1).$$

Definição (Equivalência Assintótica). Seja $X_n = O_p(1)$ e $Y_n = o_p(1)$, então

$$X_n Y_n = O_n(1)o_n(1) = o_n(1).$$

Definição (Convergência em Distribuição). Seja $X_n = O_p(1)$ e $Y_n = o_p(1)$, então

$$X_n Y_n = O_p(1)o_p(1) = o_p(1).$$

Definição.

Definição (TCL – Teorema Central do Limite).

Definição (TCL – Caso Vetorial).

Definição.

Definição (Normalidade Assintótica do $\widehat{\boldsymbol{\beta}}^{OLS}$).

Definição.

Definição.

Conceitos Básicos de Convergência Estatística

Definição (Estimador Consistente). Um estimador $\hat{\theta}$ é consistente para um parâmetro θ se

$$\hat{\theta} \stackrel{p}{\longrightarrow} \theta$$
.

Definição (Convergência em Probabilidade). Uma sequência de variáveis aleatórias: $\{X_n\}_{n\geq 1}$ converge em probabilidade para uma variável aleatória X se, dado $\varepsilon > 0$,

$$P(|X_n - X| > \varepsilon) \to 0,$$

quando $n \to +\infty$. E denotamos

$$X_n \stackrel{p}{\longrightarrow} X$$
.

Definição (Desigualdade de Markov). Seja $\{X_n\}_{n\geq 1}$ uma sequência de variáveis aleatórias com $E|X_n|^K < +\infty$, K > 0. Então, dado $\varepsilon > 0$

$$P(|X_n| > \varepsilon) \le \frac{E|X_n|^K}{\varepsilon^K}$$

Definição.

$$0 \le P(|\hat{\theta} - \theta| > \varepsilon) \le \frac{E|X_n|^2}{\varepsilon^2}$$

Definição (Erro Quadrático Médio).

$$EQM(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = \left[Bias(\hat{\theta})^2 + Var(\hat{\theta})\right]$$

Então, se $Bias(\hat{\theta}) \to 0$ e $Var(\hat{\theta}) \to 0$, temos que $EQM(\hat{\theta}) \to 0$. Pelo**Teorema do Sanduíche**, $P(|\hat{\theta} - \theta| > \varepsilon) \to 0$; logo, $\hat{\theta} \xrightarrow{p} \theta$.

Definição (LGN – Lei dos Grandes Números). Seja $\{X_i\}_{i\geq 1}$ uma sequência de variáveis aleatórias iid com $E(X_i) = \mu$. Então,

$$N^{-1} \sum_{i=1}^{N} X_i \xrightarrow{p} \mu.$$

Definição (LGN – Caso Matricial). Seja $\{x_i\}_{i=1}^N$, uma sequência iid de vetores aleatórios $K \times 1$ com $E(x_i x_i') = Q_{K \times K}$ finita. Então,

$$N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_i \boldsymbol{x}_i' \stackrel{p}{\longrightarrow} Q.$$

Se Q for positiva definida, Q terá inversa.

Multiplicação de Matriz

$$A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad B_{2\times 3} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$[AB]_{2\times 3} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \end{bmatrix} + \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \begin{bmatrix} b_{21} & b_{22} & b_{23} \end{bmatrix} \implies AB = \sum_{i=1}^{2} a_i b_i$$

onde a_i é a *i*-ésima **coluna** da matriz A. b_i é a *i*-ésima **linha** da matriz B.

2 Wooldridge

Wooldridge (2010, Sec. 4.2.1 – Consistency; p.52-4)

$$y = x\beta + u \tag{2.1}$$

OLS.1 Population Orthogonality Condition: E(x'u) = 0

OLS.2 posto[E(x'x)] = K

$$\boldsymbol{\beta} = [E(\boldsymbol{x}'\boldsymbol{x})]^{-1} E(\boldsymbol{x}'\boldsymbol{y})$$

$$\widehat{\boldsymbol{\beta}} = \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' y_{i}\right)$$

$$= \boldsymbol{\beta} + \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' \boldsymbol{x}_{i}\right)^{-1} \left(N^{-1} \sum_{i=1}^{N} \boldsymbol{x}_{i}' u_{i}\right).$$

Isso pode ser escrito na forma matricial $(X'X)^{-1}X'y$, onde X é a matriz de dados $N \times K$ dos regressores com linha i igual a x_i , e y é o vetor de dados $N \times 1$ com o i=ésimo elemento de y sendo representado por y_i .

Teorema (Consistência do OLS). Sob as Hipóteses **OLS.1** e **OLS.2**, o estimado de OLS, $\widehat{\boldsymbol{\beta}}$ obtido de uma amostra aleatória seguindo o modelo populacional (2.1) é consistente para $\boldsymbol{\beta}$.

Sob as hipóteses do Teoria de consitência do OLS, $x\beta$ é uma projeção linear de y em x.

3 System OLS (SOLS)

Wooldridge (2010, C.7 – The Single-Equation Linear Model and OLS Estimation) Wooldridge (2010, C.10 – The Single-Equation Linear Model and OLS Estimation)

Hipóteses

Para implementarmos o estimador de GLS precisamos das seguintes hipótese:

- 1. $E(X_i \otimes u_i) = 0$.

 Para SGLS ser consistente, precisamos que u_i não seja correlacionada com nenhum elemento de X
- 2. Ω é positiva definida (para ter inversa). $E(X_i'\Omega^{-1}X_i)$ é **não** singular (para ter invesa). Onde, Ω é a seguinte matriz **simétrica**, positiva-definida:

$$\Omega = E(\boldsymbol{u}_i \boldsymbol{u}_i').$$

Estimação

Agora, transformamos o sistema de equações ao realizarmos a pré-multiplicação do sistema por $\Omega^{-1/2}$:

$$\Omega^{-1/2} \boldsymbol{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \boldsymbol{u}_i$$
$$\boldsymbol{y}_i^* = X_i^* \boldsymbol{\beta} + \boldsymbol{u}_i^*$$

Estimando a equação acima por SOLS:

$$\begin{split} \beta^{SOLS} &= \left(\sum_{i=1} X_i^{*'} X_i^*\right)^{-1} \left(\sum_{i=1} X_i^{*'} \boldsymbol{y}_i^*\right) \\ &= \left(\sum_{i=1} X_i' \Omega^{-1/2} \Omega^{-1/2} X_i\right)^{-1} \left(\sum_{i=1} X_i' \Omega^{-1/2} \Omega^{-1/2} \boldsymbol{y}_i\right) \\ &= \left(\sum_{i=1} X_i' \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1} X_i' \Omega^{-1} \boldsymbol{y}_i\right) \end{split}$$

FSGLS: SGLS Factivel

Para obtermos β^{SGLS} precisamos conhecer Ω , o que não ocorre na prática. Então, precisamos estimar Ω com um estimador consistente. Para tanto usamos um procedimento de dois passos:

- 1. Estimar $y_i = X_i \beta + u_i$ via **SOLS** e guardar o resíduo estimado \hat{u}_i .
- 2. Estimar Ω com o seguinte estimador $\widehat{\Omega}$:

$$\widehat{\Omega} = N^{-1} \sum_{i=1}^{N} \boldsymbol{u}_{i} \boldsymbol{u}_{i}'$$

Com a estimativa $\widehat{\Omega}$ feita, podemos obter β^{FSGLS} pela fórmula do β^{SGLS} :

$$eta^{FGLS} = \left[\sum_{i} X_i' \widehat{\Omega}^{-1} X_i \right]^{-1} \left[\sum_{i} X_i' \widehat{\Omega}^{-1} \boldsymbol{y}_i \right]$$

Empilhando as N observações:

$$\beta^{FGLS} = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) \boldsymbol{y} \right]$$

Reescrevendo a equação acima:

$$\beta^{FGLS} = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) (X\beta + u) \right]$$

$$= \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left\{ \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) X\beta \right] + \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}$$

$$= \beta + \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Valor Esperado

$$E(\beta^{FGLS}) = \beta + \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right]$$

Concluímos que, se $\widehat{\Omega} \xrightarrow{\ p\ } \Omega,$ então, $\beta^{FSGLS} \xrightarrow{\ p\ } \beta,$

Variância

$$Var(\beta^{FGLS}) = \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \left\{ \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u \right] \right\}'$$

$$= \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1} \left[X' \left(I_N \otimes \widehat{\Omega}^{-1} \right) u u' \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right] \left[X \left(I_N \otimes \widehat{\Omega}^{-1} \right) X \right]^{-1}$$

Tirando o valor Esperado e supondo que:

$$E(X_i\Omega^{-1}u_iu_i'X_i) = E(X_i\Omega^{-1})$$

temos:

$$E\left[X'\left(I_N\otimes\widehat{\Omega}^{-1}\right)uu'\left(I_N\otimes\widehat{\Omega}^{-1}\right)'X\right]=E(X'\Omega^{-1}X)$$

e temos:

$$Var(\beta^{FSGLS}) = \left[E(X'\Omega^{-1}X\right]^{-1}.$$

4 Endogeneity and GMM

Modelo

No seguinte modelo cross-section:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \varepsilon_i \; ; \quad i = 1, \dots, N.$$
 (4.1)

A variável explicativa x_k é dita **endógena** se ela for correlacionada com erro. Se x_k for não correlacionada com o erro, então x_k é dita **exógena**.

Endogeneidade surge, normalmente, de três maneiras diferentes:

- 1. Variável Omitida;
- 2. Simultaneidade;
- 3. Erro de Medida.

No modelo (4.1) vamos supor:

- x_1 é exógena.
- x_2 é endógena.

Hipóteses

Assim, precisamos encontrar um instrumento z_i para x_2 , uma vez que queremos estimar β_0 , β_1 e β_2 de maneira consistente. Para z_i ser um bom instrumento precisamos que z tenha:

- 1. $Cov(z, \varepsilon) = 0 \implies z$ é exógena em (4.1).
- 2. $Cov(z, x_2) \neq 0 \implies$ correlação com x_2 após controlar para outras vaariáveis.

Estimação

Indo para o problema de dados de painel, temos:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + \mathbf{u}_i \; ; \quad i = 1, \dots, N. \tag{4.2}$$

onde \mathbf{y}_i é um vetor $T \times 1$, X_i é uma matriz $T \times K$, $\boldsymbol{\beta}$ é o vetor de coeficientes $K \times 1$, \mathbf{u}_i é o vetor de erros $T \times 1$.

Se é verdade que há endogeneidade em (4.2), então:

$$E(X_i' \mathbf{u}_i) \neq 0$$

Definimos Z_i como uma matriz $T \times L$ com $L \geq K$ de variáveis exógenas (incluindo o instrumento). Queremos acabar com a endogeneidade, ou seja:

$$E(Z_i' u_i) = 0$$

Supondo L = K (apenas substituímos a variável endógena por um instrumento).

$$E[Z'_{i}(\mathbf{y}_{i} - X_{i}\boldsymbol{\beta})] = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) - E(Z'_{i}X_{i})\boldsymbol{\beta} = 0$$

$$E(Z'_{i}\mathbf{y}_{i}) = E(Z'_{i}X_{i})\boldsymbol{\beta}$$

$$\boldsymbol{\beta} = \left[E(Z'_{i}X_{i})\right]^{-1} \left[E(Z'_{i}\mathbf{y}_{i})\right]$$

Se Usarmos estimadores amostrais:

$$\hat{\boldsymbol{\beta}} = \left[N^{-1} \sum_{i=1}^{N} Z_i' X_i \right]^{-1} \left[N^{-1} \sum_{i=1}^{N} Z_i' \boldsymbol{y}_i \right]$$
$$\hat{\boldsymbol{\beta}} = (Z'X)^{-1} (Z'\boldsymbol{y})$$

Se L > K, vamos considerar:

$$\min_{\boldsymbol{\beta}} E(Z_i \boldsymbol{u}_i)^2$$

onde:

$$E(Z_i u_i)^2 = E[(Z_i u_i)'(Z_i u_i)] = (Z' y - Z' X \beta)'(Z' y - Z' X \beta)$$

= $y' Z Z' y - y' Z Z' X \beta - \beta' X' Z Z' y + \beta' X' Z Z' X \beta$

Derivando em relação em $\boldsymbol{\beta}$ e igualando a zero:

$$-2\mathbf{y}'ZZ'X + 2\boldsymbol{\beta}'X'ZZ'X = 0$$
$$\boldsymbol{\beta}'X'ZZ'X = \mathbf{y}'ZZ'X$$
$$\boldsymbol{\beta}' = (\mathbf{y}'ZZ'X)(X'ZZ'X)^{-1}$$
$$\boldsymbol{\beta} = (X'ZZ'X)^{-1}(X'ZZ'\mathbf{y})$$

Um estimador mais eficiente pode ser encontrado fazendo:

$$\operatorname{Min}_{\boldsymbol{\beta}} E[(Z_i'\boldsymbol{y} - Z'X\boldsymbol{\beta})'W(Z_i'\boldsymbol{y} - Z'X\boldsymbol{\beta})].$$

Escolhendo \widehat{W} , a priori, temos:

$$\underset{\boldsymbol{\beta}}{\operatorname{Min}} \left\{ \boldsymbol{y}' Z \widehat{W} Z' \boldsymbol{y} - \boldsymbol{y}' Z \widehat{W} Z' X \boldsymbol{\beta} - \boldsymbol{\beta}' X' Z \widehat{W} Z' \boldsymbol{y} + \boldsymbol{\beta}' X' Z \widehat{W} Z' X \boldsymbol{\beta} \right\}$$

Derivando em relação em $\boldsymbol{\beta}$ e igualando a zero:

$$-2\mathbf{y}'Z\widehat{W}Z'X + 2\mathbf{\beta}'X'Z\widehat{W}Z'X = 0$$

$$\mathbf{\beta}'X'Z\widehat{W}Z'X = \mathbf{y}'Z\widehat{W}Z'X$$

$$\mathbf{\beta}' = (\mathbf{y}'Z\widehat{W}Z'X)(X'Z\widehat{W}Z'X)^{-1}$$

$$\mathbf{\beta}^{GMM} = (X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\mathbf{y})$$

Valor Esperado

$$E(\boldsymbol{\beta}^{GMM}) = \boldsymbol{\beta} + E[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u})]$$

Variância

$$\begin{split} Var(\boldsymbol{\beta}^{GMM}) &= E\left\{ \left[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right] \left[(X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'\boldsymbol{u}) \right]' \right\} \\ &= E\left\{ (X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'Z'\boldsymbol{u}\boldsymbol{u}'Z\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1} \right\}. \end{split}$$

Definindo $\Delta = E(Z'uu'Z)$ com $\Delta = W^{-1}$:

$$\begin{split} Var(\pmb{\beta}^{GMM}) &= E\left\{ (X'Z\widehat{W}'Z'X)^{-1}X'Z\widehat{W}'W^{-1}\widehat{W}Z'X(X'Z\widehat{W}Z'X)^{-1}\right\} \\ &= E\left\{ (X'Z\widehat{W}'Z'X)^{-1}(X'Z\widehat{W}'Z'X)(X'Z\widehat{W}Z'X)^{-1}\right\}. \\ \\ \overline{Var(\pmb{\beta}^{GMM})} &= E\left[(X'Z\widehat{W}Z'X)^{-1}\right]. \end{split}$$

Se tivéssemos definido $W=(Z'Z)^{-1},$ teríamos $\beta^{2SLS}.$

5 Random Effects (RE, EA)

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{5.1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo c_i . Abordamos esse componente como parte do erro, não como parâmetro a ser estimado. Para a análise de **Efeitos Aleatórios**, (**EA**) ou (**RE**), supomos que os regressões x_{it} são **não correlacionados** com c_i , mas fazemos hipóteses mais restritas que o **POLS**; pois assim exploramos a presença de **correlação serial** do erro composto por GLS e garantimos a consitência do estimador de FGLS.

Podemos reescrever (5.1) como:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \tag{5.2}$$

onde t = 1, ..., T, i = 1, ..., N e $v_{it} = c_i + u_{it}$ é o erro composto.

Agora, vamos empilhar os t's $\overline{\text{e reescrever } (5.2)}$ como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + \mathbf{v}_i, \tag{5.3}$$

onde $i = 1, \ldots, N$ e $v_i = c_i \mathbf{1}_T + u_i$

Hipóteses de $\widehat{oldsymbol{eta}}^{RE}$

As Hipóteses que usamos para $\hat{\beta}^{RE}$ são:

- 1. Usamos o modelo correto e c_i não é endógeno.
 - a) $E(u_{it} | x_{i1}, \dots, x_{iT}, c_i) = 0, i = 1, \dots, N.$
 - b) $E(c_{it} | x_{i1}, \dots, x_{iT}) = E(c_i) = 0, i = 1, \dots, N.$
- 2. Posto completo de $E(X_i'\Omega^{-1}X_i)$.

Definindo a matriz $T \times T$, $\Omega \equiv E(v_i v_i')$, queremos que $E(X_i \Omega^{-1} X_i)$ tenha posto completo (posto = K).

A matriz Ω é simétrica $\Omega' = \Omega$ e positiva definida $\det(\Omega) > 0$. Assim podemos achar $\Omega^{1/2}$ e $\Omega^{-1/2}$ com $\Omega = \Omega^{1/2}\Omega^{1/2}$ e $\Omega^{-1} = \Omega^{-1/2}\Omega^{-1/2}$.

Estimação

Premultiplicando (5.3) port $\Omega^{-1/2}$ do dois lados, temos:

$$\Omega^{-1/2} \boldsymbol{y}_i = \Omega^{-1/2} X_i \boldsymbol{\beta} + \Omega^{-1/2} \boldsymbol{v}_i$$

$$\boldsymbol{y}_i^* = X_i^* \boldsymbol{\beta} + \boldsymbol{v}_i^*,$$
 (5.4)

Estimando o modelo acima por POLS:

$$\boldsymbol{\beta}^{POLS} = \left(\sum_{i=1}^{N} X_i^{*\prime} X_i^*\right)^{-1} \left(\sum_{i=1}^{N} X_i^{*\prime} \boldsymbol{y}_i^*\right)$$

$$= \left(\sum_{i=1}^{N} X_i^{\prime} \Omega^{-1} X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i^{\prime} \Omega^{-1} \boldsymbol{y}_i\right)$$

$$= \left(X^{\prime} (I_N \otimes \Omega^{-1}) X\right)^{-1} \left(X^{\prime} (I_N \otimes \Omega^{-1}) \boldsymbol{y}\right). \tag{5.5}$$

O problema, agora, é estimar Ω . Supondo:

- $E(u_{it}u_{it}) = \sigma_u^2$;
- $E(u_{it}u_{is})=0.$

Como $\Omega = E(\boldsymbol{v}_i \boldsymbol{v}_i') = E[(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)(c_i \boldsymbol{1}_T + \boldsymbol{u}_i)']$, temos que:

$$E(v_{it}v_{it}) = E(c_i^2 + 2c_iu_{it} + u_{it}^2) = \sigma_c^2 + \sigma_u^2$$

$$E(v_{it}v_{is}) = E[(c_i + u_{it})(c_i + u_{is})] = E(c_i^2 + c_iu_{is} + u_{it}c_i + u_{it}u_{is}) = \sigma_c^2.$$

Assim,

$$\Omega = E(\mathbf{v}_i \mathbf{v}_i') = \sigma_u^2 I_T + \sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$$

onde $\sigma_u^2 I_T$ é uma matriz diagonal, e $\sigma_c^2 \mathbf{1}_T \mathbf{1}_T'$ é uma matriz com todos os elementos iguais a σ_c^2 . Agora, rodando POLS em (5.3) e guardando os resíduos, temos:

$$\hat{v}_{it}^{POLS} = \hat{y}_{it}^{POLS} - \boldsymbol{x}_{it} \boldsymbol{\hat{\beta}}^{POLS}$$

e conseguimos estima
r σ_v^2 e σ_c^2 por estimadores amostrais:

• como $\sigma_v^2 = E(v_{it}^2)$:

$$\hat{\sigma}_v^2 = (NT - K)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \hat{v}_{it}^2$$

• como $\sigma_c^2 = E(v_{it}v_{is})$:

$$\hat{\sigma}_c^2 = \left[N \frac{T(T-1)}{2} - K \right]^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T-1} \sum_{c=t+1}^{T} \hat{v}_{it} \hat{v}_{is}$$

- N indivíduos;
- \bullet T elementos da diagonal principal de Ω
- \bullet $\frac{T(T-1)}{2}$ elementos da matriz triangular superior dos elementos fora da diagonal.
- K regressores.

Agora que temos $\hat{\sigma}_v^2$ e $\hat{\sigma}_c^2$ podemos achar $\hat{\sigma}_u^2$ pela equação $\hat{\sigma}_u^2 = \hat{\sigma}_v^2 - \hat{\sigma}_c^2$. Dessa forma, achamos os T^2 elementos de $\hat{\Omega}$, e podemos escrever:

$$\widehat{\Omega} = \widehat{\sigma}_u^2 I_T + \widehat{\sigma}_c^2 \mathbf{1}_T \mathbf{1}_T'$$

Com $\widehat{\Omega}$ estimado, reescrevemos (5.5) como:

$$\boldsymbol{\beta}^{RE} = \left[X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{y} \right]. \tag{5.6}$$

Valor Esperado

$$E(\boldsymbol{\beta}^{RE}) = \boldsymbol{\beta} + \left[X'(I_N \otimes \widehat{\Omega}^{-1}) X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1}) \boldsymbol{v} \right].$$

Variância

$$Var(\boldsymbol{\beta}^{RE}) = E\left\{ \left[X'(I_N \otimes \widehat{\Omega}^{-1})X \right]^{-1} \left[X'(I_N \otimes \widehat{\Omega}^{-1})\boldsymbol{v}\boldsymbol{v}'(I_N \otimes \widehat{\Omega}^{-1})'X \right] \left[X'(I_N \otimes \widehat{\Omega}^{-1})X \right] \right\},$$
como $E(\boldsymbol{v}_i\boldsymbol{v}_i') = \Omega,$

$$Var(\boldsymbol{\beta}^{RE}) = E\left[X'(I_N \otimes \widehat{\Omega}^{-1})X\right].$$

6 Fixed Effects (EF, FE)

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \boldsymbol{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{6.1}$$

onde t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado que não varia no tempo c_i . Abordamos esse componente como parte do erro, não como parâmetro a não observado. No caso da análise de **Efeitos Fixos (EF, FE)**, permitimos que esse componente c_i seja correlacionado com x_{it} . Assim, se decidíssemos estimar o modelo (6.1) por POLS, ignorando c_i , teríamos problemas de inconsistência devido a **endogeneidade**.

As T equações do modelo (6.1) podem ser reescritas como:

$$\mathbf{y}_i = X_i \boldsymbol{\beta} + c_1 \mathbf{1}_T + \mathbf{u}_i, \tag{6.2}$$

com $\mathbf{v}_i = c_i \mathbf{1}_T + \mathbf{u}_i$ sendo os erros compostos.

Matriz M^0

Definimos a matriz M^0 como:

$$M^0 = I_T - T^{-1} \mathbf{1}_T \mathbf{1}_T' = I_T - \mathbf{1}_T (\mathbf{1}_T' \mathbf{1}_T)^{-1} \mathbf{1}_T'.$$

A matriz M^0 é idempotente e simétrica.

$$M^0 \boldsymbol{x} = \boldsymbol{x} - \overline{\boldsymbol{x}} \mathbf{1}_T = \ddot{\boldsymbol{x}}.$$

Podemos transformar o modelo (6.3) ao premultiplicarmos todo o modelo por M^0 .

$$M^0 \mathbf{u}_i = M^0 X_i \boldsymbol{\beta} + M^0 (c_1 \mathbf{1}_T) + M^0 \mathbf{u}_i, \quad i = 1, \dots, N.$$

$$M^{0}(c_{1}\mathbf{1}_{T}) = (I_{T} - T^{-1}\mathbf{1}_{T}\mathbf{1}_{T}')c_{i}\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - T^{-1}c_{i}\mathbf{1}_{T}\mathbf{1}_{T}'\mathbf{1}_{T} = c_{i}\mathbf{1}_{T} - c_{i}\mathbf{1}_{T} \implies \boxed{M^{0}(c_{1}\mathbf{1}_{T}) = 0}$$

$$\ddot{\boldsymbol{y}}_i = \ddot{X}_i \boldsymbol{\beta} + \ddot{\boldsymbol{u}}_i, \quad i = 1, \dots, N.$$
(6.3)

Estimação POLS

Aplicando POLS no modelo (6.3)

$$\beta^{FE} = \left[\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{X}_{i}\right]^{-1} \left[\sum_{i=1}^{N} \ddot{X}_{i}' \ddot{\boldsymbol{y}}_{i}\right]$$

$$(6.4)$$

Hipóteses

As Hipóteses que usamos para $\hat{\beta}^{FE}$ são:

FE.1: Exogeneidade Estrita: $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$, para $t = 1, \dots, T$ e $i = 1, \dots, N$.

FE.2: Posto completo de $E(X_i'\Omega^{-1}X_i)$ (para inverter a matriz). $posto[E(X_i'\Omega^{-1}X_i)] = K$.

FE.3: Homoscedasticidade: $E(\boldsymbol{u}_i \boldsymbol{u}_i' | X_i, c_i) = \sigma_u^2 I_T$.

Valor Esperado

Usando FE.1 e FE.2, apenas.

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \ddot{X}_{i}'\ddot{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N} \ddot{X}_{i}'\ddot{\boldsymbol{u}}_{i}\right)\right]$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left[(\ddot{X}'\ddot{X})^{-1}(\ddot{X}'\ddot{\boldsymbol{u}})\right]$$

Sabendo que $\ddot{X} = (I_N \otimes M^0)X$ e $\ddot{\boldsymbol{u}} = (I_N \otimes M^0)\boldsymbol{u}$, definimos:

$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[X'(I_N \otimes M^0)(I_N \otimes M^0)X \right]^{-1} \left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$
$$E(\boldsymbol{\beta}^{FE}) = \boldsymbol{\beta} + E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \left[X'(I_N \otimes M^0)\boldsymbol{u} \right] \right\}$$

Variância

Usamos a variância do estimador para inferência. Usando FE.1 e FE.2, apenas:

$$Var(\boldsymbol{\beta}^{FE}) = E\left[(\ddot{X}'\ddot{X})^{-1} (\ddot{X}'\ddot{\boldsymbol{u}}) (\ddot{\boldsymbol{u}}'\ddot{X}) (\ddot{X}'\ddot{X})^{-1} \right]$$

Pão:

$$E\left[(\ddot{X}'\ddot{X})^{-1}\right] = E\left\{\left[X'(I_N \otimes M^0)(I_N \otimes M^0)X\right]^{-1}\right\}$$
$$= E\left\{\left[X'(I_N \otimes M^0)X\right]^{-1}\right\}$$

Recheio:

$$E\left[(\ddot{X}'\ddot{\boldsymbol{u}})(\ddot{\boldsymbol{u}}'\ddot{X})\right] = E\left[X'(I_N \otimes M^0)(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)(I_N \otimes M^0)X\right]$$
$$= E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X\right]$$

 $Var(\boldsymbol{\beta}^{FE}) =$ Pão Recheio Pão

$$Var(\boldsymbol{\beta}^{FE}) = E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\} E\left[X'(I_N \otimes M^0)\boldsymbol{u}\boldsymbol{u}'(I_N \otimes M^0)X \right] E\left\{ \left[X'(I_N \otimes M^0)X \right]^{-1} \right\}$$

Variância sob Homocedasticidade

Usando FE.3, temos

Recheio':

$$E\left[X'(I_N \otimes M^0)\right] \sigma_u^2 I_{NT} E\left[(I_N \otimes M^0)X\right] = \sigma_u^2 E\left[X'(I_N \otimes M^0)X\right]$$

 $(I_N \otimes M^0)$ é uma matrix de dimensão $NT \times NT$, visto que I_N é $N \times N$ e M^0 é $T \times T$.

$$Var(\boldsymbol{\beta}^{FE}) = \text{Pão Recheio' Pão}$$

$$= E\left\{ \left[X'(I_N \otimes M^0) X \right]^{-1} \right\} \sigma_u^2 E\left[X'(I_N \otimes M^0) X \right] E\left\{ \left[X'(I_N \otimes M^0) X \right]^{-1} \right\}$$

$$= E\left\{ \left[X'(I_N \otimes M^0) X \right]^{-1} \right\} \sigma_u^2 I_{NT}$$

$$\boxed{Var(\boldsymbol{\beta}^{FE}) = \sigma_u^2 \cdot E\left[X'(I_N \otimes M^0) X \right]}$$

7 First Difference (FD, PD)

Modelo

O modelo linear de efeitos não observados:

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}, \tag{7.1}$$

para t = 1, ..., T e i = 1, ..., N.

O modelo contém explicitamente um componente não observado, c_i , que não varia no tempo. Tratamos o componente não observado como parte do erro, não como parâmetro a ser estimado. Aqui permitimos que c_i seja correlacionado com x_{it} . Deste modo, não podemos ignorar a sua presença e estimar (7.1) por POLS, visto que isso resultaria num estimador inconsistente devido a **endogeneidade**.

Assim, transformamos o modelo para eliminar c_i e conseguirmos fazer uma estimação consistente de β . A trasnformação a ser feita é a primeira diferença. Para tanto, seguimos os seguintes passos:

• Reescrevemos (7.1) defasado:

$$y_{it-1} = x_{it-1}\beta + c_i + u_{it-1}$$
(7.2)

• Tiramos a diferença entre (7.2) e (7.1):

$$y_{it} - y_{it-1} = (\boldsymbol{x}_{it} - \boldsymbol{x}_{it-1})\boldsymbol{\beta} + c_i - c_i + u_{it} - u_{it-1}$$
$$\Delta y_{it} = \Delta \boldsymbol{x}_{it}\boldsymbol{\beta} + \Delta u_{it}. \tag{7.3}$$

para t = 2, ..., T e i = 1, ..., N.

Reescrevendo (7.3) no formato matricial empilhando T:

$$\Delta \mathbf{y}_i = \Delta X_i \boldsymbol{\beta} + \mathbf{e}_i \tag{7.4}$$

 $com e_{it} = \Delta u_{it}$

- Δy_i vetor $(T-1) \times 1$
- ΔX_i matriz $(T-1) \times K$
- β vetor $K \times 1$
- e_i vetor $(T-1) \times 1$

Estimação POLS

O estimador $\widehat{\beta}^{FD}$ é o POLS da regressão no modelo (7.4), assim:

$$\beta^{FD} = \left[\sum_{i=1}^{N} \Delta X_i' \Delta X_i \right]^{-1} \left[\sum_{i=1}^{N} \Delta X_i' \Delta \mathbf{y}_i \right]$$
 (7.5)

Hipóteses

As Hipóteses que usamos para $\widehat{\boldsymbol{\beta}}^{FD}$ são:

FD.1: Exogeneidade Estrita: $E(u_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}, c_i) = 0$, para $t = 1, \dots, T$ e $i = 1, \dots, N$.

FD.2: Posto completo de $E(\Delta X_i' \Delta X_i)$ (para inverter a matriz). $posto[E(\Delta X_i' \Delta X_i)] = K$.

FD.3: Homoscedasticidade: $E(e_i e'_i | X_i, c_i) = \sigma_e^2 I_{T-1}$.

Valor Esperado

Usando apenas FD.1 e FD.2:

$$E(\boldsymbol{\beta}^{FD}) = \boldsymbol{\beta} + E\left[\left(\sum_{i=1}^{N} \Delta X_i' \Delta X_i\right)^{-1} \left(\sum_{i=1}^{N} \Delta X_i' \boldsymbol{e}_i\right)\right]$$
$$E(\boldsymbol{\beta}^{FD}) = \boldsymbol{\beta} + E\left[\left(\Delta X' \Delta X\right)^{-1} (\Delta X' \boldsymbol{e}\right]$$

Variância

Usando apenas FD.1 e FD.2:

$$\boxed{Var(\boldsymbol{\beta}^{FD}) = E\left[(\Delta X' \Delta X)^{-1} (\Delta X' \boldsymbol{e} \boldsymbol{e}' \Delta X) (\Delta X' \Delta X)^{-1} \right]}$$

Variância sob Homocedasticidade

Usando FD.3, temos

$$\begin{split} Var(\pmb{\beta}^{FD}) &= \sigma_e^2 E\left[(\Delta X' \Delta X)^{-1} (\Delta X' \Delta X) (\Delta X' \Delta X)^{-1} \right] \\ \hline \\ Var(\pmb{\beta}^{FD}) &= \sigma_e^2 E\left[(\Delta X' \Delta X)^{-1} \right] \end{split}$$

com

$$\sigma_e^2 = [N(T-1) - K]^{-1} \left[\sum_{i=1}^N \sum_{t=1}^T \hat{e}_{it}^2 \right],$$

que é a média de todos \hat{e}^2_{it} contando K regressores.

8 Exogeneidade Estrita e FDIV

Modelo

No seguinte modelo

$$y_{it} = \boldsymbol{x}_{it}\boldsymbol{\beta} + u_{it},$$

para t = 1, ..., T e i = 1, ..., N.

- y_{it} escalar;
- \boldsymbol{x}_{it} vetor $1 \times K$;
- β vetor $K \times 1$;
- u_{it} escalar.

 $\{x_{it}\}$ é estritamente **exógeno** se valer:

$$E(u_{it} | \mathbf{x}_{i1}, \dots, \mathbf{x}_{iT}) = 0, \qquad t = 1, \dots, T$$

ou seja:

$$E(y_{it} | \boldsymbol{x}_{i1}, \dots, \boldsymbol{x}_{iT}) = \boldsymbol{x}_{it}\boldsymbol{\beta}, \qquad t = 1, \dots, T$$

o que é equivalente a hipótese de que utilizamos o modelo linear correto.

Para o seguinte modelo:

$$y_{it} = \boldsymbol{z}_{it}\boldsymbol{\gamma} + \rho y_{it-1} + c_i + u_{it}.$$
, $t = 2, \dots, T$

é **impossível** termos exogeneidade estrita. Isso porque, nesse modelo, de efeitos não observados temos:

$$E(y_{it} | \mathbf{z}_{i1}, \dots, \mathbf{z}_{iT}, y_{it-1}, c_i) \neq 0.$$

Isso ocorre porque, y_{it} é afetado por y_{it-1} que contribui para y_{it} com, pelo menos, ρc_i .

$$y_{it} = z_{it} \gamma + \rho y_{it-1} + c_i + u_{it}$$

$$y_{it-1} = z_{it-1} \gamma + \rho y_{it-2} + c_i + u_{it-1}$$

$$\implies y_{it} = z_{it} \gamma + \rho (z_{it-1} \gamma + \rho y_{it-2} + c_i + u_{it-1}) + c_i + u_{it}.$$

Para eliminarmos este efeito, podemos tirar a primeira diferença do modelo:

$$y_{it} - y_{it-1} = (z_{it} - z_{it-1})\gamma + \rho(y_{it-1} - y_{it-2}) + (c_i - c_i) + (u_{it} - u_{it-1})$$

$$\Delta y_{it} = \Delta z_{it}\gamma + \rho \Delta y_{it-1} + \Delta u_{it}, \qquad t = 3, \dots, T$$
(8.1)

Estimação

Não podemos estimar o modelo (8.1) por POLS, uma vez que $Cov(\Delta y_{it-1}, \Delta u_{it}) \neq 0$. Como saída, podemos estimar por P2SLS, usando instrumentos para Δy_{it-1} (alguns intrumentos para Δy_{it-1} são $y_{it-2}, y_{it-3}, \dots, y_{i1}$).

P2SLS

$$y_{it} = \boldsymbol{x}_{it}'\boldsymbol{\beta} + u_{it}$$

- i = 1, ..., N
- t = 1, ..., T
- y_{it} escalar;
- \boldsymbol{x}_{it} vetor $K \times 1$;
- β vetor $K \times 1$;
- u_{it} escalar.

$$\beta^{P2SLS} = (X'P_ZX)^{-1}(X'P_Z\boldsymbol{y})$$

com

$$P_Z = Z'(Z'Z)^{-1}Z$$

onde P_Z é a matriz de projeção em Z.

FDIV

$$y_{it} = \boldsymbol{x}'_{it}\boldsymbol{\beta} + c_i + u_{it}, \quad i = 1, \dots, N, \quad t = 1, \dots, T$$

$$\Delta y_{it} = \Delta \boldsymbol{x}'_{it}\boldsymbol{\beta} + \Delta u_{it}, \quad i = 1, \dots, N, \quad t = 2, \dots, T$$

Vamos supor $\Delta x'_{it}$ tem variável endógena $(y_{it}, \text{ no caso})$. \boldsymbol{w}_{it} é um vetor $1 \times L_t$ de instrumentos, onde $L_t \geq K$. Se os instrumentos forem diferentes:

$$W_i = diag(\boldsymbol{w}_{i2}', \boldsymbol{w}_{i3}', \dots, \boldsymbol{w}_{iT}')$$

onde W_i é uma matriz $(T-1) \times L$

$$L = L_2 + L_3 + \dots + L_T$$

Hipóteses

FDIV.1: $E(w_{it}\Delta u'_{it})$ para i = 1, ..., N, t = 2, ..., T.

FDIV.2: Posto $[E(W_i'W_i)] = L$

FDIV.3: Posto $[E(W_i'\Delta X_i)] = K$

Estimação FDIV

$$\beta^{FDIV} = (\Delta X' P_W \Delta X)^{-1} (\Delta X' P_W \Delta y)$$

$$P_W = W(W'W)^{-1} W'$$

Valor Esperado

$$E(\boldsymbol{\beta}^{FDIV}) = \beta + (\Delta X' P_W \Delta X)^{-1} (\Delta X' P_W \boldsymbol{e})$$

Variância

$$Var(\boldsymbol{\beta}^{FDIV}) = E\left\{ \left[E(\boldsymbol{\beta}^{FDIV}) - \beta \right] \left[E(\boldsymbol{\beta}^{FDIV}) - \beta \right]' \right\}$$

$$= E\left\{ \left[\Delta X' P_W \Delta X \right]^{-1} \left[\Delta X' P_W \boldsymbol{e} \right] \left[\Delta X' P_W \boldsymbol{e} \right]' \left[\Delta X' P_W \Delta X \right]^{-1} \right\}$$

$$= E\left[\left(\Delta X' P_W \Delta X \right)^{-1} \left(\Delta X' P_W \boldsymbol{e} \boldsymbol{e}' P_W \Delta X \right) \left(\Delta X' P_W \Delta X \right)^{-1} \right]$$

 $e_i = \Delta u_{it}$.

9 Latent Variables, Probit and Logit

Modelo

Suponha y^* não observável (latente) seguindo o seguinte modelo:

$$y_i^* = x_i' \beta + \varepsilon_i. \tag{9.1}$$

Defina y como:

$$y_i = \begin{cases} 1 \,, & y_i^* \ge 0 \\ 0 \,, & y_i^* < 0 \end{cases}$$

temos que:

$$P(y_i = 1|\mathbf{x}) = p(\mathbf{x})$$

$$P(y_i = 0|\mathbf{x}) = 1 - p(\mathbf{x}).$$

Além disso, pela definição de y_i , equação (9.1), temos:

$$P(y_i = 1 | \mathbf{x}) = P(y_i^* \ge 0 | \mathbf{x})$$

= $P(\mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i \ge 0 | \mathbf{x})$
= $P(\varepsilon_i \ge -\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x}).$

Agora, supondo que ε_i tem FDA, G, tal que G' = g é simétrica ao redor de zero:

$$P(y_i = 1 | \mathbf{x}) = 1 - P(\varepsilon_i < -\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x})$$
$$= 1 - G(-\mathbf{x}_i' \boldsymbol{\beta} | \mathbf{x})$$
$$= G(\mathbf{x}_i' \boldsymbol{\beta}).$$

Se $G(\cdot)$ for uma distribuição:

Normal Padrão: $\hat{\beta}$ é o estimador probit.

Logística: $\hat{\beta}$ é o estimador **logit**.

Supondo $y_i | x \sim Bernoulli(p(x))$, sua fmp é dada por:

$$f(y_i \mid \boldsymbol{x}_i; \boldsymbol{\beta}) = \left[G(\boldsymbol{x}_i' \boldsymbol{\beta}) \right]^{y_i} \left[1 - G(\boldsymbol{x}_i' \boldsymbol{\beta}) \right]^{1 - y_i}, \quad y = 0, 1.$$

Para estimarmos $\hat{\beta}$ por máxima verossimilhança, temos de encontrar $\beta \in B$, onde B é o espaço paramétrico, tal que β maximize o valor da distribuição conjunta de y, ou seja:

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} \prod_{i=1}^{N} f(y_i \,|\, \boldsymbol{x}_i; \boldsymbol{\beta}).$$

Tirando o logaritmo e dividindo tudo por N (podemos fazer isso pois são transformações monotônicas e não alteram o lugar onde β ótimo irá parar):

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} \left\{ N^{-1} \sum_{i=1}^{N} \ln \left[f(y_i \, | \, \boldsymbol{x}_i; \boldsymbol{\beta}) \right] \right\}.$$

Podemos definir $\ell_i(\boldsymbol{\beta}) = \ln[f(y_i \mid \boldsymbol{x}_i; \boldsymbol{\beta})]$ como sendo a verossimilhança condicional da observação i:

$$\max_{\beta \in B} \left\{ N^{-1} \sum_{i=1}^{N} \ell_i(\beta) \right\}.$$

Dessa forma, podemos ver que o problema acima é a analogia amostral de:

$$\operatorname{Max}_{\boldsymbol{\beta} \in B} E\left[\ell_i(\boldsymbol{\beta})\right].$$

Definindo o vector score da observação i:

$$s_i(\boldsymbol{\beta}) = \left[\nabla_{\boldsymbol{\beta}} \ell_i(\boldsymbol{\beta})\right]' = \left[\frac{\partial \ell_i(\boldsymbol{\beta})}{\partial \beta_1}, \dots, \frac{\partial \ell_i(\boldsymbol{\beta})}{\partial \beta_K}\right]$$

Definindo a **Matriz Hessiana** da observação *i*:

$$H_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}} s_i(\boldsymbol{\beta}) = \nabla_{\boldsymbol{\beta}}^2 \ell_i(\boldsymbol{\beta})$$

Tendo essas definições, o **Teorema do Valor Médio** (TVM) nos diz que no intervalo [a, b], existe um número, c, tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

FAZER DESENHO

Trocando $f(\cdot)$ por $s_i(\cdot)$, a por β_0 , b por $\widehat{\beta}$ e c por $\overline{\beta}$, temos:

$$H_i(\bar{\boldsymbol{\beta}}) = \frac{s_i(\widehat{\boldsymbol{\beta}}) - s_i(\boldsymbol{\beta}_0)}{\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0},$$

tirando médias dos dois lados:

$$N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) = \frac{1}{\hat{\beta} - \beta_0} N^{-1} \sum_{i=1}^{N} \left[s_i(\hat{\beta}) - s_i(\beta_0) \right]$$

Supondo que $\widehat{\boldsymbol{\beta}}$ maximiza $\ell(\boldsymbol{\beta} | \boldsymbol{y}, \boldsymbol{x})$, temos que: $N^{-1} \sum_{i=1}^{N} s_i(\widehat{\boldsymbol{\beta}}) = 0$. E podemos reescrever a equação anterior como:

$$\widehat{\beta} - \beta_0 = (-1) \left[N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} N^{-1} \sum_{i=1}^{N} s_i(\beta_0)$$

$$\sqrt{N}(\widehat{\beta} - \beta_0) = \left[-N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} \sqrt{N} \cdot N^{-1} \sum_{i=1}^{N} s_i(\beta_0)$$

$$\sqrt{N}(\widehat{\beta} - \beta_0) = \left[-N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} N^{-1/2} \sum_{i=1}^{N} s_i(\beta_0)$$

Onde

$$\left[-N^{-1} \sum_{i=1}^{N} H_i(\bar{\beta}) \right]^{-1} \xrightarrow{p} A_0^{-1}, \qquad N^{-1/2} \sum_{i=1}^{N} s_i(\beta_0) \xrightarrow{d} N(0, B_0).$$

Assim, temos que:

$$\sqrt{N}(\widehat{\beta} - \beta_0) \to N(0, A_0^{-1} B_0 A_0^{-1})$$

A forma mais simples de achar $Var(\widehat{\beta})$ é:

$$Var(\widehat{\boldsymbol{\beta}}) = -E[H_i(\widehat{\boldsymbol{\beta}})]^{-1}$$
.

10 ATT, ATE, Propensity Score

Modelo

- $y_1 \rightarrow$ variável de interesse com tratamento
- $y_0 \rightarrow \text{variável de interesse sem tratamento}$

$$w = \begin{cases} 1 & \text{se tratam} \\ 0 & \text{se não tratam} \end{cases}$$

Idealmente, para isolarmos completamente o efeito de w = 1, gostaríamos de pode calcular:

$$N^{-1} \sum_{i=1}^{N} (y_{i1} - y_{i0}).$$

Ou seja, o efeito que o tratamento causa sobre um indivíduo com todo o resto permanecendo constante. Em outras palavras, queríamos que houvesse dois mundos paralelos observáveis onde seria possível observar o que acontece com y_i com e sem tratamento. Infelizmente, para ccada indivíduo i, observamos apenas y_{i1} ou y_{i0} , nunca ambos.

Antes de continuarmos, faremos as seguintes definições:

ATE: $E(y_1 - y_0)$

ATT: $E(y_1 - y_0 | w = 1)$ (ATE no tratado).

ATE e ATT condicional a variáveis x

$$ATE(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x})$$
$$ATT(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}, w = 1)$$

OBS:

$$E(y_1 - y_0) = E[E(y_1 - y_0 | w)]$$

$$E(y_1 - y_0 | w) = E(y_1 - y_0 | w = 0) \cdot P(w = 0) + E(y_1 - y_0 | w = 1) \cdot P(w = 1).$$

Métodos Assumindo Ignorabilidade do Tratamento

ATE.1: Ignorabilidade.

 $w \in (y_1, y_0)$ são independentes condicionais a x.

ATE.1': Ignorabilidade da Média.

- a) $E(y_0 | w, x) = E(y_0 | x)$
- b) $E(y_1 | w, x) = E(y_1 | x)$

Vamos definir

$$E(y_0 \mid \boldsymbol{x}) = \mu_0(\boldsymbol{x})$$

$$E(y_1 \mid \boldsymbol{x}) = \mu_1(\boldsymbol{x}).$$

Sob ATE.1 e ATE.1':

$$ATE(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}) = \mu_1(\mathbf{x}) - \mu_0(\mathbf{x})$$

$$ATT(\mathbf{x}) = E(y_1 - y_0 | \mathbf{x}, w = 1) = \mu_1(\mathbf{x}) - \mu_0(\mathbf{x})$$

ATE.2: Overlap

Para todo
$$x$$
, $P(w = 1 | x) \in (0, 1)$, $p(x) = p(w = 1 | x)$.

 $p(\mathbf{x})$ é o *Propensity Score*, ele representa a probabilidade de y_i ser tratado dado o valor das covariáveis \mathbf{x} . Essa hipótese é importante visto que podemos expressar o ATE em função de $p(\mathbf{x})$.

Para o ATT vamos supor:

ATT.1': $E(y_0 | x, w) = E(y_0 | x)$

ATT.2: Overlap: Para todo x, P(w = 1|x) < 1.

Propensity Score

Como foi dito anteriormente, apenas observamos ou y_1 ou y_0 para a mesma pessoa, mas não ambos. Mais precisamente, junto com w, o resultado observado é:

$$y = wy_1 + (1 - w)y_0$$

como w é binário, $w^2 = w$, assim, temos:

$$wy = w^{2}y_{1} + (w - w^{2})y_{0} \implies \boxed{wy = wy_{1}}$$
$$(1 - w)y = (w - w^{2})y_{1} + (w^{2} - 2w + 1)y_{0} \implies \boxed{(1 - w)y = (1 - w)y_{0}}.$$

Fazemos isso para tentar isolar $\mu_0(\mathbf{x})$ e $\mu_1(\mathbf{x})$:

 $\mu_1(\boldsymbol{x})$

$$E(wy|\mathbf{x}) = E[E(wy_1|\mathbf{x}, w) | \mathbf{x}]$$
$$= E[w\mu_1(\mathbf{x})|\mathbf{x}]$$
$$= \mu_1(\mathbf{x})E(w|\mathbf{x}).$$

Como w é binaria: $E(w|\mathbf{x}) = P(w = 1|\mathbf{x}) = p(\mathbf{x})$. Assim:

$$E(wy|\mathbf{x}) = \mu_1(\mathbf{x})p(\mathbf{x})$$
$$\mu_1(\mathbf{x}) = \frac{E(wy|\mathbf{x})}{p(\mathbf{x})}$$

 $\mu_0(\boldsymbol{x})$

$$E[(1-w)y|\mathbf{x}] = E\left[E\left((1-w)y_0|\mathbf{x},w\right)|\mathbf{x}\right]$$

$$= E\left[(1-w)\mu_0(\mathbf{x})|\mathbf{x}\right]$$

$$= \mu_0(\mathbf{x})E(w|\mathbf{x})$$

$$E[(1-w)y|\mathbf{x}] = \mu_0(\mathbf{x})[1-p(\mathbf{x})] \implies$$

$$\boxed{\mu_0(\mathbf{x}) = \frac{E[(1-w)y|\mathbf{x}]}{1-p(\mathbf{x})}}$$

ATE:

$$\mu_1(\boldsymbol{x}) - \mu_0(\boldsymbol{x}) = E\left[\frac{[w - p(\boldsymbol{x})]y}{p(\boldsymbol{x})[1 - p(\boldsymbol{x})]}|\boldsymbol{x}\right]$$

$$\widehat{ATE} = N^{-1} \sum_{i=1}^{N} \frac{[w_i - p(\boldsymbol{x}_i)]y_i}{p(\boldsymbol{x}_i)[1 - p(\boldsymbol{x}_i)]}$$

ATT:

$$E(y_1|\mathbf{x}, w = 1) - E(y_0|\mathbf{x}) = \frac{1}{\hat{P}(w = 1)} E\left[\frac{[w - \hat{p}(\mathbf{x})]y}{[1 - \hat{p}(\mathbf{x})]}|\mathbf{x}\right]$$

$$\hat{P}(w = 1) = N^{-1} \sum_{i=1}^{N} w_i$$

$$\widehat{ATT} = \frac{N}{\sum_{i=1}^{N} w_i} N^{-1} \sum_{i=1}^{N} \frac{[w_i - \hat{p}(\mathbf{x}_i)]y_i}{[1 - \hat{p}(\mathbf{x}_i)]}$$

$$\widehat{ATT} = \frac{1}{\sum_{i=1}^{N} w_i} \sum_{i=1}^{N} \frac{[w_i - \hat{p}(\mathbf{x}_i)]y_i}{[1 - \hat{p}(\mathbf{x}_i)]}$$

Appêndice

Sums of Values

(Greene, 2012, p. 977, A.2.7)

$$\mathbf{1}_N'\mathbf{1}_N=N$$
 ; $\mathbf{1}_N\mathbf{1}_N'=\begin{bmatrix}1&\dots&1\\ \vdots&\ddots&\vdots\\ 1&\dots&1\end{bmatrix}_{N imes N}$

Defining \boldsymbol{x} with dimension $1 \times N$:

$$oldsymbol{x} = egin{bmatrix} x_1 \ dots \ x_N \end{bmatrix}$$

$$x'\mathbf{1}_N = \mathbf{1}'_N x = (x'\mathbf{1}_N)' = \sum_{i=1}^N x_i$$

$$\mathbf{1}_{N}\boldsymbol{x}' = \begin{bmatrix} x_{1} & \dots & x_{N} \\ \vdots & \ddots & \vdots \\ x_{1} & \dots & x_{N} \end{bmatrix}_{N \times N} ; \qquad \boldsymbol{x}\mathbf{1}'_{N} = \begin{bmatrix} x_{1} & \dots & x_{1} \\ \vdots & \ddots & \vdots \\ x_{N} & \dots & x_{N} \end{bmatrix}_{N \times N}$$

$$E(\boldsymbol{x}) = \overline{\boldsymbol{x}} = N^{-1} \sum_{i=1}^{N} x_i = N^{-1} \boldsymbol{x}' \mathbf{1}_N$$

Important Idempotent Matrices

(Greene, 2012, p. 978, A.28) Centering Matrix

$$M^0 = I_N - \mathbf{1}_N (\mathbf{1}_N' \mathbf{1}_N)^{-1} \mathbf{1}_N' = I_N - N^{-1} \mathbf{1}_N \mathbf{1}_N'$$

A Matriz M^0 é idempotente e simétrica.

Idempotência: AA = A

Simetria: A' = A

$$M^{0}\boldsymbol{x} = (I_{N} - N^{-1}\mathbf{1}_{N}\mathbf{1}_{N}')\boldsymbol{x} = \boldsymbol{x} - N^{-1}\mathbf{1}_{N}(\mathbf{1}_{N}'\boldsymbol{x}) = \mathbf{1}_{N}\overline{\boldsymbol{x}} = \begin{bmatrix} \overline{\boldsymbol{x}} \\ \vdots \\ \overline{\boldsymbol{x}} \end{bmatrix}$$

$$M^{0}\mathbf{1} = (I_{N} - N^{-1}\mathbf{1}_{N}\mathbf{1}'_{N})\mathbf{1}_{N} = \mathbf{1}_{N} - N^{-1}\mathbf{1}_{N}(\mathbf{1}'_{N}\mathbf{1}_{N}) = \mathbf{0}_{N}$$

Referências

Greene, William H. 2012. Econometric Analysis. 7 edn. Boston: Prentice Hall.

WOOLDRIDGE, JEFFREY M. 2010. Econometric Analysis of Cross Section and Panel Data. 2 edn. Boston, Massachussetts: MIT Press.