Lab 6: Ciphers and Digital Certificates

In this lab we will investigate a range of ciphers and also how we can view the details within digital certificates.

A Ciphers

Use your desktop computer to complete the following:

No	Description	Result
1	Go to:	Your score:
	http://asecuritysite.com/Challenges	
	Click on the "Start Challenge" button, and see if you can score over 30 points.	
2	Using: http://asecuritysite.com/Encryption/testprime Test for the following	91: [Yes] [No] 421: [Yes] [No]
	prime numbers:	1449: [Yes] [No]
3	Using: http://asecuritysite.com/Encryption/gcd Determine the GCD for the	88, 46:
	following:	105, 35:
4	Using: http://asecuritysite.com/coding/ascii	Hello: hello:
	Determine the Base 64 and Hex values for the following strings:	HELLO:

5	Using: http://asecuritysite.com/coding/ascii	bGxveWRz
	Determine the following ASCII strings for these encoded formats:	6E6170696572
		01000001 01101110 01101011 01101100 01100101 00110001 00110010 00110011
6	Using: http://asecuritysite.com/Coding/exor	Hex: Base 64:
	Determine the EX-OR of "hello" ex-ORed with the letter 't'	Is the result printable in ASCII? [Yes][No]
7	What is the result of 53,431 mod 453?	
8	Generate a random hex number from: http://asecuritysite.com/Encryption/js01	How many hex
		characters does the
		result have?

9	Try and crack some certificates from:	bill09.pfx:
	http://asecuritysite.com/Encryption/certcrack	bill18.pfx:
	What are the passwords for 'bill09.pfx', 'bill18.pfx', and 'country04.pfx'?	country04.pfx:

10. We can also create a short **Python script** to try to crack the same certificates.

Boot up your Kali VM on your public network, and download the following archive:

http://asecuritysite.com/public/certs.zip

Extract the certificates into the /root folder, and then move into that folder. Now use openssl to try a password:

openssl pkcs12 -nokeys -in bill01.pfx -passin pass:orange

Did you manage to run the script?

What password is correct for bill01.pfx?

Now implement the Python script given below:

```
from OpenSSL import crypto
words=[]
words.append("coconut")
words.append("mango")
words.append("apples")
words.append("oranges")
words.append("oranges")
words.append("orange")
words.append("ankle")
words.append("password")
words.append("bill")
words.append("battery")
```

```
for passwd in words:
    try:
        p12 = crypto.load_pkcs12(open("fredpfx.pfx", 'rb').read(), passwd)
        certificate =p12.get_certificate()
        p12.get_privatekey()
        print certificate.get_serial_number()
        print certificate.get_issuer().get_components()
        print certificate.get_signature_algorithm()
        print ("Success: "+passwd)

    except Exception as ex:
        print (".")
```

Can adapt this script to crack some of the other certificates contained in the archive you have downloaded. Bill01.pdf to bill18.pdf are based on fruits (in lowercase), country01.pdf to country06.pdf are based on countries.

Outline the passwords of the certificates:

Can you modify the code so that it shows other details from the certificate, such as its public key, subject, version and "notBefore", and "notAfter".

Ref: https://pyopenssl.org/en/0.15.1/api/crypto.html#x509name-objects

B Frequency Analysis

Now see if you can crack the **five minute cracking challenge** for: http://asecuritysite.com/challenges/scramb

C Character Mapping

Complete the following table for each of the characters:

Char	Decimal	Binary	Hex	Oct	HTML
Char (Space)					
a					
}					
Ã					
ÿ					

D Test

- 1. Crack some Caesar codes at: http://asecuritysite.com/tests/tests?sortBy=caesar
- 2. Determine some hex conversions at: http://asecuritysite.com/tests/tests?sortBy=hex01
- 3. Determine some Base64 conversions: http://asecuritysite.com/tests/tests?sortBy=ascii01

Shifted alphabet

```
A B C D E F G H I J K L M N O P O R S T U V W X Y Z
   B C D E F G H I J K L M N O P O R S T U V W X Y Z A
   C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
   D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
   E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
   F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
   G H I J K L M N O P O R S T U V W X Y Z A B C D E F
7
   HIJKLMNOPQRSTUVWXYZABCDEFG
   IJKLMNOPQRSTUVWXYZABCDEFGH
   J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
   K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
   LMNOPORSTUVWXYZABCDEFGHIJK
12
   MNOPQRSTUVWXYZABCDEFGHIJKL
13
   N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
14
   O P O R S T U V W X Y Z A B C D E F G H I J K L M N
15
   P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
16
   ORSTUVWXYZABCDEFGHIJKLMNOP
17
   RSTUVWXYZABCDEFGHIJKLMNOPQ
   STUVWXYZABCDEFGHIJKLMNOPQR
20
   TUVWXYZABCDEFGHIJKLMNOPQRS
21
   UVWXYZABCDEFGHIJKLMNOPQRST
   V W X Y Z A B C D E F G H I J K L M N O P O R S T U
22
   WXYZABCDEFGHIJKLMNOPORSTUV
23
   X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
24
   Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
   ZABCDEFGHIJKLMNOPQRSTUVWXY
```

ASCII table

Char	Dec Oc	t Hex	ς 	Char	Dec	Oct	Hex	Char	Dec	0ct	Hex	Char	Dec	Oct	Hex
(nul)	0 000	0x0	0	(sp)	32	0040	0x20	@	64	0100	0x40	1 `	96	0140	0x60
(soh)	1 000	1 0x0	1	!	33	0041	0x21	A	65	0101	0x41	a	97	0141	0x61
(stx)	2 000	2 0x0	2	"	34	0042	0x22	B	66	0102	0x42	b	98	0142	0x62
(etx)	3 000	3 0x0	3	#	35	0043	0x23	C	67	0103	0x43	c	99	0143	0x63
(eot)	4 000	4 0x0	4	\$	36	0044	0x24	l D	68	0104	0x44	l d	100	0144	0x64
(enq)	5 000	5 0x0	5	용	37	0045	0x25	E	69	0105	0x45	e	101	0145	0x65
(ack)	6 000	0x0	6	&	38	0046	0x26	F	70	0106	0x46	f	102	0146	0x66
(bel)	7 000	7 0x0	7	•	39	0047	0x27	G	71	0107	0x47	l g	103	0147	0x67
(bs)	8 001	0x0	8	(40	0050	0x28	H	72	0110	0x48	h	104	0150	0x68
(ht)	9 001	1 0x0	9)	41	0051	0x29	I	73	0111	0x49	i	105	0151	0x69
(nl)	10 001	2 0x0	a	*	42	0052	0x2a	J	74	0112	0x4a	Ιj	106	0152	0x6a
(vt)	11 001	0×0	b	+	43	0053	0x2b	K	75	0113	0x4b	k	107	0153	0x6b
(np)	12 001	0x0	c	,	44	0054	0x2c	L	76	0114	0x4c	1	108	0154	0x6c
(cr)	13 001	5 0x0	d	-	45	0055	0x2d	M	77	0115	0x4d	m	109	0155	0x6d
(so)	14 001	0x0	e		46	0056	0x2e	N	78	0116	0x4e	n	110	0156	0x6e
(si)	15 001	7 0x0	f	/	47	0057	0x2f	1 0	79	0117	0x4f	10	111	0157	0x6f
(dle)	16 002	0 x 1	0	0	48	0060	0x30	P	80	0120	0x50	l p	112	0160	0x70
(dc1)	17 002	1 0x1	1	1	49	0061	0x31	I Q	81	0121	0x51	Ιq	113	0161	0x71
(dc2)	18 002	2 0x1	2	2	50	0062	0x32	R	82	0122	0x52	r		0162	0x72
(dc3)	19 002		3	3	51	0063	0x33	S	83	0123	0x53	s	115	0163	0x73
(dc4)	20 002	4 0x1	4	4	52	0064	0x34	T	84	0124	0x54	t	116	0164	0x74
(nak)	21 002	5 0x1	5	5	53	0065	0x35	U	85	0125	0x55	u	117	0165	0x75
(syn)	22 002		6	6	54		0x36	V	86	0126	0x56	v	118	0166	0x76
(etb)	23 002	7 0x1	7	7	55	0067	0x37	W	87	0127	0x57	W	119	0167	0x77
(can)	24 003		- '	8	56		0x38	X	88	0130	0x58	x	120		0x78
(em)	25 003		9	9	57	0071	0x39	Y	89	0131	0x59	lУ	121		0x79
(sub)	26 003			:	58		0x3a	Z	90	0132	0x5a	z	122		0x7a
(esc)	27 003		b	;	59		0x3b	[91	0133	0x5b	{	123	0173	0x7b
(fs)	28 003		- '	<	60		0x3c	\	92	0134	0x5c		124		0x7c
(gs)	29 003			=	61	0075	0x3d]	93	0135	0x5d	}	125		0x7d
(rs)	30 003			>	62		0x3e	^	94	0136	0x5e	~		0176	0x7e
(us)	31 003	7 0x1	f	3	63	0077	0x3f	_	95	0137	0x5f	(del)	127	0177	0x7f

Base 64

Example:

"fred" 01100110 01110010 01100101 01100100

Split into 6 bits: 011001 100111 001001 100101 011001 n J l z 00

Ζ

Val	Encoding	Val	Encoding	Val	Encoding	Val	Encoding
v ai	Encouning	v ai	Encouning		Lincouning		Encoung
0	A	16	Q	32	g	48	W
1	В	17	R	33	h	49	X
2	С	18	S	34	i	50	у
3	D	19	T	35	j	51	Z
4	Е	20	U	36	k	52	0
5	F	21	V	37	1	53	1
6	G	22	W	38	m	54	2
7	Н	23	X	39	n	55	3
8	Ι	24	Y	40	0	56	4
9	J	25	Z	41	p	57	5
10	K	26	a	42	q	58	6
11	L	27	b	43	r	59	7
12	M	28	С	44	S	60	8
13	N	29	d	45	t	61	9
14	0	30	e	46	u	62	+
15	P	31	f	47	v	63	/