



Autor: Ing. Gustavo Uñapillco

Director: DsC. Camilo Argoty (FIUBA)





# TEMARIO DE PLAN DE TRABAJO

| Descripción Técnico-Conceptual  | 03 |
|---------------------------------|----|
| nteresados en proyecto          | 04 |
| Propósito del proyecto          | 05 |
| Alcance del proyecto            | 06 |
| Requerimientos                  | 07 |
| Diagrama AON (Activity on Node) | 08 |
| Diagrama de Gantt               | 09 |
| Gestión de riesgos              | 10 |
| Sestión de calidad              | 11 |
| Cierre                          | 12 |

## DESCRIPCIÓN

# TÉCNICO-CONCEPTUAL







# INTERESADOS EN PROYECTO



01

#### Responsable y Cliente

Ing. Gustavo Uñapillco (FIUBA)

02

#### Orientador

DsC. Camilo Argoty (FIUBA)

03

#### **Usuario final**

Profesionales interesados en trading algorítmico



# PROPÓSITO DEL PROPUESTO PROPUESTO

Desarrollar un modelo predictivo de inteligencia artificial que constituya la base de una herramienta de soporte para la toma de decisiones operativas en trading algorítmico.





Recolección y procesamiento de datos Ingeniería y selección de variables (features)

Diseño, entrenamiento y evaluación de modelo

Etapa futura: Integración con plataformas en línea

## REQUERIMIENTOS DEL PROYECTO





#### Req 1.1 – Carga de datos OHLCV

Permitir la carga y preprocesamiento de datos minuto a minuto del contrato MNQ.

#### Req 1.5 – Objetivo de predicción definido

Predecir el retorno futuro de la variable close a 15, 20 y 30 minutos.

#### Req 3.1 – Validación cruzada y fuera de muestra

Evaluar la capacidad de generalización del modelo más allá del entrenamiento.

#### Req 3.2 – R<sup>2</sup> mínimo aceptable

El modelo debe alcanzar al menos un R² de 0,65 en la validación fuera de muestra.

#### Req 3.3 – Evaluación operativa en trading

Simular resultados usando métricas como retorno medio y tasa de aciertos.

# DIAGRAMA AON

# ACTIVITY ON NODE





# DIAGRAMA DE GANTT





# GESTIÓN DE RIESGOS



| Riesgo                                                                        | S | 0 | RPN | <b>S</b> * | 0* | RPN* |
|-------------------------------------------------------------------------------|---|---|-----|------------|----|------|
| 1. Insuficiencia de datos históricos representativos para entrenar el modelo. | 9 | 3 | 27  | 6          | 2  | 12   |
| 2. Sobreajuste (overfitting) del modelo a los datos de entrenamiento.         | 8 | 5 | 40  | 6          | 3  | 18   |
| 3. Incompatibilidades técnicas al integrar fuentes de datos en tiempo real.   | 7 | 4 | 28  | 5          | 2  | 10   |
| 4. Dificultades para interpretar los resultados del modelo y sus decisiones.  | 6 | 6 | 36  | 4          | 3  | 12   |
| 5. Limitaciones en el hardware disponible para entrenamiento eficiente.       | 5 | 6 | 30  | 4          | 3  | 12   |

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 25.





# GESTIÓN DE CALIDAD

Los tres requerimientos más importantes para asegurar la funcionalidad, robustez y validez operativa del modelo predictivo para el MNQ son los siguientes:

El modelo debe generar predicciones sobre el retorno futuro del índice MNQ.

El modelo debe alcanzar un MAE menor a 0,4 en el conjunto de validación.

El modelo debe utilizar únicamente variables disponibles hasta el momento de la predicción.

## PROCESO DE CIERRE



#### Evaluación del cumplimiento del proyecto:

Se revisará si el modelo cumple con los objetivos y requerimientos definidos, contrastando el alcance previsto con los resultados obtenidos y verificando las métricas de desempeño.

#### Análisis de gestión y recursos:

Se compararán tiempos planificados vs. reales y se evaluará el uso de recursos, identificando desvíos y aprendizajes para mejorar la planificación futura.

#### Documentación técnica y memoria de trabajo:

Se dejará registro de las técnicas empleadas, dificultades encontradas y soluciones aplicadas, destacando lo que funcionó y lo que no aportó valor.

#### Cierre académico y lecciones aprendidas:

Se documentarán las lecciones clave del proyecto, se presentará el trabajo ante el comité académico y se incluirán agradecimientos en la memoria final.





# GRACIAS POR SU ATENCIÓN

Gracias por acompañarme. Que este proyecto sea una invitación a seguir explorando cómo la inteligencia artificial puede transformar nuestra manera de entender y anticipar los mercados.



gus.unapillco



gusunapillco@gmail.com



www.linkedin.com/in/gustavo-unapillco