Non Uniform Mechanical Properties for Hexahedron FEM

The SOFA team (Matthieu Nesme)

2008

Abstract

This document explains how using the NonUniformHexahedronFEMForceFieldAndMass that permits to animate a mesh embedded into a coarse mechanical grid by taking into account matter distribution into element.

It implements the article

@InProceeding	gs{	NPF06,
author	=	"Nesme, Matthieu and Payan, Yohan and Faure, Fran\c{c}ois",
title	=	"Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness",
booktitle	=	"Eurographics Workshop in Virtual Reality Interaction and Physical Simula
month	=	"nov",
year	=	"2006",
organization	=	"Eurographics",
address	=	"Madrid",
url	=	"http://www-evasion.imag.fr/Publications/2006/NPF06"}

Contents

1	${\bf Non Uniform Hexahedron FEMForce Field And Mass}$					
	1.1	Concepts	2			
	1.2	Data Fields	2			
	1.3	Example	3			

1 NonUniformHexahedronFEMForceFieldAndMass

1.1 Concepts

This force field implement the article:

The basic idea, illustrated in figure 1, is:

- the use of finer virtual levels of SparseGrid
- the computation of classical mechanical matrices (mass and stiffness) at the finest resolution and the condensation of theses matrices to the current coarse mechanical resolution

Warning: actually the NonUniformHexahedronFEMForceFieldAndMass is only working with SparseGridTopology, and need enough finer virtual levels to compute the condensation.

1.2 Data Fields

- $\bullet \ \ From \ Hexahedron FEMForce Field And Mass$
 - method (char): large/polar, the corotationnal method (default = large)
 - poissonRatio, youngModulus, density (float) : mechanical properties (density = volumetric mass in english $kq.m^{-3}$)
 - assembling (bool): assembling the global system matrix? (default = false)
- Specific to NonUniformHexahedronFEMForceFieldAndMass
 - nbVirtualFinerLevels (int): how many finer virtual levels are employed in the condensation stage? (default = 0)
- A hack on masses (for debugging)
 - useMass (bool): do the condensated mass matrices are used? (if not, scalar masses concentrated on particles are used) (default = 0)
 - totalMass (float): if useMass=false, the scalar mass of the object

1.3 Example

Important: note that the SparseGrid has nbVirtualFinerLevels=2 in order to built enough finer virtual levels. This SparseGrid—>nbVirtualFinerLevels has to be greater or equal to the NonUniformHexahedronFEMForceFieldAndMass—>nbVirtualFinerLevels.

A more complex example can be found in : examples/Components/forcefield/NonUniformHexahedronFEMForceFieldAndMass.scn where a comparaison with a classical HexahedronFEMForceFieldAndMassForceField is done.

Figure 1: The condensation principle