Instituto Tecnológico de Buenos Aires

22.93 - Control Automático

Trabajo práctico $N^{\circ}1$

 $\begin{array}{cc} Grupo \ 1 \\ \\ \text{MECHOULAM, Alan} & 58438 \\ \\ \text{LAMBERTUCCI, Guido Enrique} & 58009 \end{array}$

Profesores
GHERSIN, Alejandro
RODRIGUES, Reurison

Presentado: 25/11/21

22.93 - Control Automático

${\bf \acute{I}ndice}$

1.	Simulación del Carro con Péndulo Simple	2
2.	Carro con Péndulo Simple: Control en Cascada por Loop Shaping	2
3.	Carro con Péndulo Simple: Control por realimentación de estados.	7
	3.1. Perturbaciones	
	3.2. Parámetros	
	3.3. Realimentación de estados	7
	3.4. Realimentación de estados con observadores: continuo y discreto	7
	3.5. Realimetración de estados con control integral	7
		_

1. Simulación del Carro con Péndulo Simple

Para la simulación del carro con péndulo simple se creó un modelo de este utilizando Simscape de Simulink, utilizando una máscara para poder modificar posteriormente los siguientes parámetros:

- Masa del carro
- Masa del péndulo
- Longitud del Péndulo

Figura 1: Modelo de Simscape utilizado como planta.

2. Carro con Péndulo Simple: Control en Cascada por Loop Shaping

Para el control del sistema por loop shaping, como primer paso, se asignaron las variables del modelo de la siguiente forma:

- Masa del carro = 1 kg
- Masa del péndulo = $0.25 \ kg$
- Longitud del Péndulo = 8 m

Luego, se utilizó el Model Linearizer de Simulink para linealizar la planta alrededor de q = 0, p = 0 y f = 0; siendo q el ángulo del péndulo, p la posición del carrito y f la fuerza aplicada al carrito.

Figura 2: Punto de equilibrio de linealización.

De esta manera, se obtuvo la siguiente transferencia desde la fuerza aplicada al carrito al ángulo del péndulo:

$$\frac{Q(s)}{F(s)} = \frac{0.1763}{(s - 1.47)(s + 1.47)} \tag{1}$$

donde se nota la presencia de un polo en el semiplano derecho.

Se cierra un lazo de realimentación, tomando el valor de q e inyectándolo a la entrada con una ganancia de valor -1 y se grafica la respuesta en frecuencia del sistema viendo solamente el ángulo q, obteniendo:

Figura 3: Respuesta en frencuencia del sistema entre la fuerza aplicada al carrito y el ángulo del péndulo.

donde se observa, como se esperaba, que el sistema es inestable. Notando el polo en el semiplano derecho en $1.47 \frac{rad}{s}$, se decide utilizar un controlador que agregue adelanto de fase para obtener una frecuencia de cruce en $w_{cruce} > 1.7 * w_{rhp} = 2.5 \frac{rad}{s}$, eligiendo entonces agregar un cero de $10 \frac{rad}{s}$, quedando entonces:

$$C_2(s) = \frac{s - 10}{s - 100} \tag{2}$$

Cabe notar que se agregó un polo rápido que no afecte la dinámica del sistema en $100\frac{rad}{s}$ para lograr un controlador propio.

Luego, se graficó nuevamente la respuesta en frecuencia, obteniendo:

Figura 4: Respuesta en frencuencia del sistema entre la fuerza aplicada al carrito y el ángulo del péndulo con controlador.

Se busca un margen de fase de 60 grados, por lo que se agrega una ganancia de 86dB al controlador, calculado como se observa en la Figura (4). Finalmente, se tiene que

$$C_2(s) = 1.9953e + 04 \cdot \frac{s - 10}{s - 100} \tag{3}$$

Se valida el control graficando una última vez la respuesta en frencuencia quedando:

Figura 5: Respuesta en frencuencia del sistema entre la fuerza aplicada al carrito y el ángulo del péndulo con controlador y frecuencia de cruce ajustada.

donde se observa que el margen de fase es de ≈ 68 grados.

En este punto del diseño, si se simula el carrito con un disturbio de ruido blanco de un segundo de frecuencia de muestreo, se puede observar que el ángulo es correctamente estabilizado, sin embargo el carrito presenta drift al no ser controlada la posición de este.

Figura 6: Simulación de la planta controlando únicamente el ángulo del péndulo.

A continuación, se cierra otro lazo de realimentación por afuera del anterior utilizando la posición del carrito y se grafica la respuesta en frecuencia entre la fuerza aplicada al carrito y la posición de este, obteniendo el siguiente resultado:

Figura 7: Respuesta en frecuencia entre la fuerza aplicada al carrito y la posición de este, cerrando el lazo con realimentación unitaria.

Figura 8: Simulación final de la planta controlando el ángulo del péndulo y la posición del carrito.

3. Carro con Péndulo Simple: Control por realimentación de estados.

3.1. Perturbaciones

3.2. Parámetros

Para la realimentación de estados se tomaron al igual que en loop shaping las matrices producto de la linealizacion de la planta. Se probo que esta sea controlable y observable teniendo como salida el ángulo y posición del carrito. Se noto que no era observable el sistema teniendo únicamente como salida el angulo del carrito. Por lo que se optó por conocer tanto la posición como el ángulo.

3.3. Realimentación de estados

Teniendo en cuenta que es controlable se realizo una realimetración de estados colocando los polos del sistema de la siguiente manera:

- Polo doble en -3
- Polo doble en -2

utilizando el comando acker. FOTOS DEL SISTEMA CON REALMENTACION DE ESTADOS

3.4. Realimentación de estados con observadores: continuo y discreto

Finalmente se diseño un observador de estados para el sistema. Haciendo a este tanto continuo como discreto. FOTOS SISTEMA REALIMENTACION DE ESTADOS CONTINUO OBSERVADOR

ELECCION TS XDDDD

FOTOS SISTEMA REALIMENTACION DE ESTADOS discreto OBSERVADOR

3.5. Realimetración de estados con control integral

Adicionalmente se hizo una realimentación de estados con control integral, teniendo como salida la posición del carrito. Esto trae un problema el cual es que deja de ser observable el sistema. FOTOS CONTROL INTEGRAL

3.6. Conclusiones