高二物理竞赛教程

目录

图位	例	ix
表征	例	xi
1	普通物理学概论 阅读本书前需要明白的资料 1.1 范畴与方法论	1 1 2 3
Ι	力学	7
2	运动学 认识与描述物质的世界 2.1 时空与物质	9 11 12 13
3	动力学 从牛顿力学的视角来看世界的规律 3.1 牛顿定律 3.2 动量定律 3.3 角动量定律 3.4 能量定律 3.5 动力学问题求解 3.6 碰撞	18 19 20 21 22 23
4	静力学 矢量力学的局限,分析力学的预备 4.1 约束 4.2 力系的简化 4.3 平衡问题求解 I 4.4 平衡问题求解 II 4.5 * 分析力学基础 4.6 稳定性问题	28 29 30 31 32 33

#连几百年物理学发展的谐振子模型的经典力学讨论 5.1 谐振子	iv		目录
5.2 简谐振动的拓广 39 5.3 简单的多自由度小振动 40 5.4 * 摄动理论 41 5.5 * 可数无穷自由度情况 42 6 万有引力 45 探索宇宙与星辰运动的奥妙 6.1 万有引力定律 45 6.2 有心力问题 46 6.3 开普勒问题 47 6.4 * 潮汐 48 7 刚体 51 质点概念修改为质元,建立新的理想模型:讨论刚体的动力学 7.1 刚体的邻理描述 51 7.2 刚体的平面平行运动 52 7.3 * 刚体的空间运动 53 8 * 弹性体 35 8 * 弹性体 35 8 * 弹性模型 59 8.3 弹性波 60 9 流体 45 9.2 定常流体动力学 65 9.3 黏滞流体动力学 65 9.3 黏滞流体动力学 65 9.3 黏滞流体动力学 65 9.4 * 流体中的波 67 9.5 * 波的傅里叶分析 68 II 热学 71 10 热力学第一定律 57 10.3 理想气体的过程 76	5	串连几百年物理学发展的谐振子模型的经典力学讨论	
5.3 简单的多自由度小振动 40 5.4 * 摄动理论 41 5.5 * 可数无穷自由度情况 42 6 万有引力		5.1	
5.4 * 提动理论			
5.5 * 可数无穷自由度情况 42 6 万有引力			-
6 万有引力 探索宇宙与星辰运动的奥妙 6.1 万有引力定律			
6.1 万有引力定律 45 6.2 有心力问题 46 6.3 开普勒问题 47 6.4 *潮汐 48 7 刚体 51 质点概念修改为质元,建立新的理想模型:讨论刚体的动力学 7.1 刚体的物理描述 51 7.2 刚体的平面平行运动 52 7.3 * 刚体的空间运动 53 8 *弹性体 57 当连续介质的内相互作用力正比于其形变 8.1 弹性体的物理描述 57 8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 10.1 热力学系统的状态 74 10.2 热力学系统的状态 74 10.3 理想气体的过程 76	6	万有引力	45
6.2 有心力问题 46 6.3 开普勒问题 47 6.4 * 潮汐 48 7 刚体 51 质点概念修改为质元,建立新的理想模型: 讨论刚体的动力学 7.1 刚体的物理描述 51 7.2 刚体的平面平行运动 52 7.3 * 刚体的空间运动 53 8 * 弹性体 57 当连续介质的内相互作用力正比于其形变 8.1 弹性体的物理描述 57 8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 65 9.3 黏滞流体动力学 66 9.4 * 流体中的波 67 9.5 * 波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 10.1 热力学系统的状态 74 10.2 热力学系统的状态 74 10.3 理想气体的过程 76			45
6.3 开普勒问题 47 6.4 *潮汐 48 7 刚体 51 质点概念修改为质元,建立新的理想模型:讨论刚体的动力学 7.1 刚体的物理描述 51 7.2 刚体的平面平行运动 52 7.3 *刚体的空间运动 53 8 *弹性体 57 当连续介质的内相互作用力正比于其形变 8.1 弹性体的物理描述 57 8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 10.1 热力学第一定律 75 10.3 理想气体的过程 76			-
6.4 * 潮汐			-
7 刚体			
		0.4 例2	40
	7	刚体	51
7.1 刚体的物理描述 51 7.2 刚体的平面平行运动 52 7.3 * 刚体的空间运动 53 8 * 弹性体 57 当连续介质的内相互作用力正比于其形变 57 8.1 弹性体的物理描述 57 8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 63 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76			
7.2 刚体的平面平行运动 52 7.3 * 刚体的空间运动 53 8 * 弹性体 57 当连续介质的内相互作用力正比于其形变 57 8.1 弹性体的物理描述 57 8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 63 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 10.1 热力学系统的状态 10.2 热力学第一定律 75 10.3 理想气体的过程 76			51
8 * 弹性体 57 当连续介质的内相互作用力正比于其形变 57 8.1 弹性体的物理描述 59 8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 63 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76		7.2 刚体的平面平行运动	52
当连续介质的内相互作用力正比于其形变578.1 弹性体的物理描述578.2 弹性模型598.3 弹性波609 流体63当连续介质不再具有恢复形变的能力639.1 流体的物理描述639.2 定常流体动力学659.3 黏滞流体动力学669.4 *流体中的波679.5 *波的傅里叶分析68II 热学7110 热力学第一定律73宏观体系与它的能量守恒7410.1 热力学系统的状态7410.2 热力学第一定律7510.3 理想气体的过程76		7.3 * 刚体的空间运动	53
8.2 弹性模型 59 8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 63 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76	8	当连续介质的内相互作用力正比于其形变	
8.3 弹性波 60 9 流体 63 当连续介质不再具有恢复形变的能力 63 9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76			
9 流体			
当连续介质不再具有恢复形变的能力639.1 流体的物理描述639.2 定常流体动力学659.3 黏滞流体动力学669.4 *流体中的波679.5 *波的傅里叶分析68II 热学7110 热力学第一定律73宏观体系与它的能量守恒7410.1 热力学系统的状态7410.2 热力学第一定律7510.3 理想气体的过程76		8.3 彈性波	60
9.1 流体的物理描述 63 9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 *流体中的波 67 9.5 *波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76	9		63
9.2 定常流体动力学 65 9.3 黏滞流体动力学 66 9.4 * 流体中的波 67 9.5 * 波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76		. =	63
9.4 * 流体中的波 67 9.5 * 波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76			65
9.4 * 流体中的波 67 9.5 * 波的傅里叶分析 68 II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76		9.3 黏滯流体动力学	66
II 热学 71 10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76		9.4 * 流体中的波	67
10 热力学第一定律 73 宏观体系与它的能量守恒 74 10.1 热力学系统的状态 74 10.2 热力学第一定律 75 10.3 理想气体的过程 76		9.5 * 波的傅里叶分析	68
宏观体系与它的能量守恒 10.1 热力学系统的状态	II	热学	71
10.2 热力学第一定律	10	宏观体系与它的能量守恒	73
10.3 理想气体的过程			74
		10.2 热力学第一定律	75
10.4 告日与休村刑 77			76
10.4 市元(仲侯至		10.4 常见气体模型	77

目录	v
11 热力学第二定律 破镜难重圆,自然界写下如是之深刻规律	81
11.1 循环过程	82
11.2 理想气体的熵	83 84
11.3 然刀子第一定律	85
11.5 * 热力学函数及其特性	86
11.0 然为于西奴及共行任	00
12 固体与液体性质 面对复杂多体问题, 我们唯象地描述背后的物理	89
12.1 固体晶格论	90
12.2 * 固体电子论	91
12.3 * 液体的彻体性质	92
12.4 液体的表面性质	93
12.5 * 其他物态的性质	94
13 相与相变	97
就像雪山上植被的分壤, 宏观性质迥异的物质可以共存与转化	
13.1 相平衡	97
13.2 相变	99
13.3 * 朗道相变理论	100
14 统计物理概述	103
好的数学工具让还原论发挥其强大的威力	
14.1 概率统计, 信息论与随机过程	104
14.2 统计假设	105
14.3 麦克斯韦分布律	106
14.3 麦克斯韦分布律	106 107
14.3 麦克斯韦分布律	106
14.3 麦克斯韦分布律	106 107
14.3 麦克斯韦分布律	106 107 108
14.3 麦克斯韦分布律	106 107 108 .11
14.3 麦克斯韦分布律	106 107 108 .11
14.3 麦克斯韦分布律	106 107 108 .11 113 114 115
14.3 麦克斯韦分布律	106 107 108 . 11 113
14.3 麦克斯韦分布律	106 107 108 .11 113 114 115
14.3 麦克斯韦分布律	106 107 108 .11 113 114 115 116
14.3 麦克斯韦分布律	106 107 108 11 113 114 115 116 117
14.3 麦克斯韦分布律	106 107 108 11 113 114 115 116 117 121
14.3 麦克斯韦分布律	106 107 108 11 113 114 115 116 117

vi		目录
当 17 17 17 17 17	全恒电流 指电荷受到驱动力而开始在介质中定向漂移 7.1 稳恒电流描述与形成	130 131 132 133 134 135
18 18 18	#磁场 術磁现象逐渐开始用电现象的术语来解释 8.1 电流与磁场	140 141 142 143
电 19 19 19	L磁感应 L磁之间的联系隐藏于黑暗中, 电磁感应将光芒照亮于其发展的道路 9.1 磁生电	147 147 149 150 151
集 20 20 20	E克斯韦方程组 基齐电磁理论拼图的最后一块, 经典电磁学发展到了其最高峰 0.1 电生磁	155 157 158 159
如 21 21 21	流电路1果电磁波是河水,那么导引其能量流动的河道就是交流电路1.1 交流电网1.2 交流元件特性1.3 交流电路解法1.4 常见电路	163 164 165 166 167
IV	光学	17 1
光 22 22 22	法波与光线 出的确是电磁波, 光线模型是历史遗产, 两者不是不可调和 2.1 波动光学引论	173 174 175 176 177

目录	vii
23 光学成像 物光必将经过像, 物理上堪称完美, 数学上也不平凡	181
23.1 傍轴光成像	
23.3 理想成像系统	
25.5 垤芯风啄示儿	. 104
24 光学仪器 聚焦能量, 还原信息, 成像仪器, 信号处理, 服务于人	187
24.1 光度学	. 187
24.2 光阑	
24.3 助视仪器	. 190
24.4 观像仪器	. 191
25 光的干涉 万千花样, 只源于两相干光之前的巧遇	195
25.1 干涉引论	. 195
25.2 分波面干涉	
25.3 分振幅干涉	
25.4 相干性	
20.4 作用注:	. 199
26 光的衍射 波前中蕴藏着光学信息, 傅里叶分析恰能呈现背后规律	203
26.1 多光東干涉	. 203
26.2 衍射引论	
26.3 * 傅里叶光学	. 206
27 物理光学 历史螺旋上升, 智慧历久弥新, 真理越辩越明	209
27.1 光的本性	
27.2 * 光与物质相互作用	
27.3 发射, 传播与吸收的唯象描述	. 212
27.4 经典色散理论	. 213
V 近代物理	217
28 相对论 基于对称的理论, 极致简约的理论, 忠于现实的理论	219
28.1 时空与运动	. 219
28.2 相互作用	
28.3 连续体	
28.4 广义相对论简介	
29 量子论	227
颠覆经典图像, 重建量子对应, 将上下而求索	
29.1 光的量子性	
29.2 粒子波动性	. 229

viii	i	目录
	29.3 * 量子力学初步	230
30	尺度物理学 兼备龙象之力, 燕雀之巧, 似一条巨蟒衔住了其尾巴	233
	30.1 基本粒子与相互作用	
	30.2 核物理	_
	30.3 * 原子与分子	
	30.4 * 介观物理	_
	30.5 宇宙学	238

|

图例

表例

普通物理学概论

阅读本书前需要明白的资料...

章节目录

1.1	范畴与	方法论	
1.2	编排与	客制化	
1.3	预备知	识	
	1.3.1	力学	
	1.3.2	电磁学	
	1.3.3	近代物理	
	1.3.4	热学	
	1.3.5	光学	
	1.3.6	数学	
	总结	• • • • • • • • • • • • • • • • • • • •	
	习题	• • • • • • • • • • • • • • • • • • • •	
	索引	• • • • • • • • • • • • • • • • • • • •	

章节概述引入

1.1 范畴与方法论

self-contained: 数学知识有一定基础后不需要更多的补充 dependency-requalified:

力学 > 热学 > 电磁学 > 光学 > 近代物理

picture-oriented:由于数理基础不够而导致的有关物理原理背后的理论基础造成困难的现象,我们企图用"物理图像"帮助读者理解其结果的自然性,这样的章节用星号来标注,读者不应当忽略其重要性,应当在基础足够以后重新阅读相关章节.

1.2 编排与客制化

1.3 预备知识

 \nonnimers

1.3.1 力学

 \nonnimers

1.3.2 电磁学

 \nonnimers

1.3.3 近代物理

 $\backslash nobreak$

1.3.4 热学

 \nonnimers

1.3.5 光学

 \nonnegative

1.3.6 数学

总结

普通物理学概论 5

习题

Exercise 1.1 some

Exercise 1.2 some

索引

...: ...

第 I 部分 力学

运动学

认识与描述物质的世界...

章节目录

2.1	时空与	i物质	9
	2.1.1	时空观	9
	2.1.2	物质观	9
	2.1.3	世界观	10
2.2	运动的	1描述	11
	2.2.1	质点的运动	11
	2.2.2	刚体的运动	11
2.3	参考系	变换	12
	2.3.1	质点运动的变换	12
	2.3.2	刚体运动的变换	12
2.4	运动的]牵连	13
	2.4.1	相交系	13
	2.4.2	接触系	13
	2.4.3	纯滚系	13
	总结		14
			15
			15

章节概述引入

2.1 时空与物质

 \nonnimero

2.1.1 时空观

 $\nonnime{}$

2.1.2 物质观

 \nonnimerus

2.1.3 世界观

运动学 11

2.2 运动的描述

 $\nonnime{}$

2.2.1 质点的运动

 \nonnimers

2.2.2 刚体的运动

2.3 参考系变换

 $\nonnime{}$

2.3.1 质点运动的变换 \nobreak

2.3.2 刚体运动的变换

2.4 运动的牵连

 $\nonnime{}$

2.4.1 相交系

 \nonnimers

2.4.2 接触系

 $\nonnime{}$

2.4.3 纯滚系

总结

运动学 15

习题

Exercise 2.1 some

Exercise 2.2 some

索引

...: ...

动力学

从牛顿力学的视角来看世界的规律...

章节目录

3.1	牛顿定	:律	18
	3.1.1	牛顿第一定律	18
	3.1.2	牛顿第二定律	18
	3.1.3	牛顿第三定律	18
	3.1.4	质点系	18
	3.1.5	非惯性系	18
3.2	动量定	:律	19
	3.2.1	质点的动量	19
	3.2.2	质点系的动量	19
3.3	角动量	定律	20
	3.3.1	质点的角动量	20
	3.3.2	质点系的角动量	20
3.4	能量定	:律	21
	3.4.1	质点的动能	21
	3.4.2	质点系的动能	21
	3.4.3	势能与其他能量	21
3.5	动力学	:问题求解	22
	3.5.1	运动积分	22
	3.5.2	单坐标变量情况	22
	3.5.3	多坐标变量情况	22
3.6	碰撞		23
	3.6.1	二质点弹性正碰	23
	3.6.2	若干拓广	23
		3.6.2.1 斜碰	23
		3.6.2.2 刚体碰撞	23
		3.6.2.3 带约束的碰撞	23
		3.6.2.4 多体碰撞	23
	3.6.3	* 几个普遍定理	23
	总结		24
	习题		25
	索引		25

17

章节概述引入

3.1 牛顿定律

 \nonnimero

3.1.1 牛顿第一定律

 \nonnimers

3.1.2 牛顿第二定律

 \nonnimers

3.1.3 牛顿第三定律

 \nonnimero

3.1.4 质点系

 \nonnimers

3.1.5 非惯性系

动力学 19

3.2 动量定律

 $\nonnime{}$

3.2.1 质点的动量

 \nonnimers

3.2.2 质点系的动量

3.3 角动量定律

 \nonnegative

3.3.1 质点的角动量

 \nonnimers

3.3.2 质点系的角动量

动力学 21

3.4 能量定律

 $\nonnime{}$

3.4.1 质点的动能

 \nonnimers

3.4.2 质点系的动能

 \nonnimer

3.4.3 势能与其他能量

3.5 动力学问题求解

 $\nonnime{}$

3.5.1 运动积分

 \nonnimers

3.5.2 单坐标变量情况

 \nonnimerus

3.5.3 多坐标变量情况

动力学 23

3.6 碰撞

 \nonnimer

3.6.1 二质点弹性正碰

 \nonnimers

3.6.2 若干拓广

 \nonnimers

3.6.2.1 斜碰

 $\nonnime{}$

3.6.2.2 刚体碰撞

 \nonnegative

3.6.2.3 带约束的碰撞

 \nonnegative

3.6.2.4 多体碰撞

 \nonnegative

3.6.3 * 几个普遍定理

总结

动力学 25

习题

Exercise 3.1 some

Exercise 3.2 some

索引

...: ...

静力学

矢量力学的局限,分析力学的预备...

立土	士	\Box	\exists
早	IJ	Ħ	沤

4.1	约束		28
	4.1.1	约束的类型	28
	4.1.2	广义坐标	28
	4.1.3	主动力与被动力	28
4.2	力系的	简化	29
	4.2.1	静力学的公理体系	29
	4.2.2	力系简化原理	29
		4.2.2.1 若干结论	29
		4.2.2.2 平面力系简化的最终结果	29
		4.2.2.3 空间力系简化的最终结果	29
4.3	平衡问	题求解 I	30
	4.3.1	平衡条件与平衡判据	30
	4.3.2	平衡问题的提法	30
	4.3.3	平衡问题的分类	30
	4.3.4	矢量力学的解决方案	30
4.4	平衡问	题求解 II	31
	4.4.1	理想约束	31
	4.4.2	再论保守力	31
	4.4.3	分析力学的解决方案	31
4.5	* 分析	力学基础	32
	4.5.1	力学的几何化	32
	4.5.2	拉格朗日方程	32
	4.5.3	再论冲击问题	32
4.6	稳定性	:问题	33
	4.6.1	单自由度体系的平衡稳定性	33
	4.6.2	多自由度体系的平衡稳定性	33
	4.6.3	动力学稳定性	33
	总结		34
	习题		35
	索引		35

章节概述引入

4.1 约束

 \nonnimer

4.1.1 约束的类型

 \nonnimerus

4.1.2 广义坐标

 \nonnimerus

4.1.3 主动力与被动力

4.2 力系的简化

 $\nonnime{}$

4.2.1 静力学的公理体系

 \nonnimers

4.2.2 力系简化原理

 $\nonnime{}$

4.2.2.1 若干结论

 \nonnimers

4.2.2.2 平面力系简化的最终结果

 \nonline

4.2.2.3 空间力系简化的最终结果

4.3 平衡问题求解 I

 \nonnimers

4.3.1 平衡条件与平衡判据

 \nonnimers

4.3.2 平衡问题的提法

 \nonnimers

4.3.3 平衡问题的分类

 \nonnimers

4.3.4 矢量力学的解决方案

静力学 31

4.4 平衡问题求解 II

 $\nonnime{}$

4.4.1 理想约束

 \nonnimers

4.4.2 再论保守力

 $\nonnime{}$

4.4.3 分析力学的解决方案

4.5 * 分析力学基础

 $\nonnime{}$

4.5.1 力学的几何化

 \nonnimers

4.5.2 拉格朗日方程

 \nonnimer

4.5.3 再论冲击问题

4.6 稳定性问题

 $\nonnime{}$

4.6.1 单自由度体系的平衡稳定性

 \nonnimers

4.6.2 多自由度体系的平衡稳定性

 \nonnimer

4.6.3 动力学稳定性

总结

静力学 35

习题

Exercise 4.1 some

Exercise 4.2 some

索引

...: ...

简谐振动

串连几百年物理学发展的谐振子模型的经典力学讨论...

章节目录

5.1	谐振子		37
	5.1.1	简谐振动的定义	37
	5.1.2	简谐振动的运动学性质	38
	5.1.3	简谐振动的判定	38
	5.1.4	谐振子模型	38
5.2	简谐振	动的拓广	39
	5.2.1	阻尼振动	39
	5.2.2	受迫振动	39
5.3	简单的	多自由度小振动	40
	5.3.1	位形空间中的振动	40
		5.3.1.1 通过特征方程求解	40
		5.3.1.2 * 通过坐标变换求解	40
		5.3.1.3 * 通过对称性求解	40
	5.3.2	相空间中的振动	40
5.4	* 摄动:	理论	41
	5.4.1	线性情况	41
	5.4.2	非线性情况	41
5.5	* 可数:	无穷自由度情况	42
	5.5.1	格波	42
	总结		43
	习题		44
	索引		44

章节概述引入

5.1 谐振子

 \nonnimers

5.1.1 简谐振动的定义

 \nonnimers

5.1.2 简谐振动的运动学性质

 \nonnimerus

5.1.3 简谐振动的判定

 \nonnimers

5.1.4 谐振子模型

简谐振动 39

5.2 简谐振动的拓广

 $\nonnime{}$

5.2.1 阻尼振动

 \nonnimers

5.2.2 受迫振动

5.3 简单的多自由度小振动

 \nonnimers

5.3.1 位形空间中的振动

 \nonnimers

5.3.1.1 通过特征方程求解

 \nonnimers

5.3.1.2 * 通过坐标变换求解

 \nonnimero

5.3.1.3 * 通过对称性求解

 \nonnimero

5.3.2 相空间中的振动

简谐振动 41

5.4 * 摄动理论

 $\nonnime{}$

5.4.1 线性情况

 \nonnimers

5.4.2 非线性情况

5.5 * 可数无穷自由度情况

 $\nonnime{}$

5.5.1 格波

简谐振动 43

总结

习题

Exercise 5.1 some

Exercise 5.2 some

索引

...: ...

6

万有引力

探索宇宙与星辰运动的奥妙...

章节目录

6.1	万有引	力定律	45
6.2	有心力	问题	46
	6.2.1	一般结论	46
	6.2.2	几个易求解的模型	46
6.3	开普勒	问题	47
	6.3.1	轨道分类	47
	6.3.2	动力学量的计算	47
	6.3.3	摄动	47
	6.3.4	二体问题	47
6.4	* 潮汐		48
	6.4.1	引潮力	48
	6.4.2	若干应用	48
	总结		49
	习题		50
	索引		50

章节概述引入

6.1 万有引力定律

6.2 有心力问题

 $\nonnime{}$

6.2.1 一般结论

 \nonnimers

6.2.2 几个易求解的模型

万有引力 47

6.3 开普勒问题

 $\nonnime{}$

6.3.1 轨道分类

 \nonnimers

6.3.2 动力学量的计算

 \nonnimer

6.3.3 摄动

 $\backslash nobreak$

6.3.4 二体问题

6.4 *潮汐

 $\nonnime{}$

6.4.1 引潮力

 \nonnimers

6.4.2 若干应用

万有引力 49

总结

习题

Exercise 6.1 some

Exercise 6.2 some

索引

...: ...

刚体

质点概念修改为质元,建立新的理想模型:讨论刚体的动力学...

章节目录

7.1	刚体的	物理描述	51
	7.1.1	刚体的运动	51
	7.1.2	质量几何	51
7.2	刚体的	平面平行运动	52
	7.2.1	整体牛顿定律	52
	7.2.2	动力学定律	52
7.3	* 刚体	的空间运动	53
	7.3.1	惯量张量	53
	7.3.2	欧拉运动学方程	53
	7.3.3	欧拉动力学方程	53
	总结		54
	习题		55
	索引		55

章节概述引入

7.1 刚体的物理描述

 \nonnegative

7.1.1 刚体的运动

 \nonnimers

7.1.2 质量几何

7.2 刚体的平面平行运动

 $\nonnime{}$

7.2.1 整体牛顿定律

 \nonnimers

7.2.2 动力学定律

列体 53

7.3 * 刚体的空间运动

 \nonnimers

7.3.1 惯量张量

 \nonnimers

7.3.2 欧拉运动学方程

 \nonnime

7.3.3 欧拉动力学方程

总结

列体 55

习题

Exercise 7.1 some

Exercise 7.2 some

索引

...: ...

* 弹性体

当连续介质的内相互作用力正比于其形变...

章节目录

8.1	弹性体	的物理描述	57
	8.1.1	应变	57
	8.1.2	应力	57
8.2	弹性模	型	59
	8.2.1	弹性棒	59
	8.2.2	弹性绳	59
	8.2.3	弹性膜	59
	8.2.4	弹性体	59
8.3	弹性波		60
	8.3.1	分离变量法	60
	8.3.2	变量代换法	60
	8.3.3	弹性模型的解	60
	8.3.4	再论格波	60
	总结		61
			62
	索引		62

章节概述引入

8.1 弹性体的物理描述

 \nonnimero

8.1.1 应变

 \nonnimers

8.1.2 应力

* 弹性体 59

8.2 弹性模型

 \nonnimers

8.2.1 弹性棒

 \nonnimers

8.2.2 弹性绳

 \nonnimers

8.2.3 弹性膜

 $\backslash nobreak$

8.2.4 弹性体

8.3 弹性波

 \nonnimers

8.3.1 分离变量法

 \nonnimers

8.3.2 变量代换法

 \nonnimer

8.3.3 弹性模型的解

 $\backslash nobreak$

8.3.4 再论格波

* 弹性体 61

总结

习题

Exercise 8.1 some

Exercise 8.2 some

索引

...: ...

流体

当连续介质不再具有恢复形变的能力...

章节目录

9.1	流体的	物理描述	63
	9.1.1		63
	9.1.2	应变率	64
	9.1.3		64
9.2	定常流	体动力学	65
	9.2.1		65
	9.2.2		65
9.3	黏滞流		66
	9.3.1		66
	9.3.2		66
	9.3.3		66
9.4	* 流体		67
	9.4.1		67
	9.4.2		67
	9.4.3		67
9.5	* 波的		68
	9.5.1		68
	9.5.2		68
	9.5.3		68
			69
	75.77		70
			70

章节概述引入

9.1 流体的物理描述

 \nonnimerus

9.1.1 连续性方程

 $\normalfont{$\operatorname{\operatorname{Nobreak}}$}$

9.1.2 应变率

 \nonnimers

9.1.3 压强与黏滞

流体 65

9.2 定常流体动力学

 $\nonnime{}$

9.2.1 欧拉方程

 \nonnimers

9.2.2 伯努利方程

9.3 黏滞流体动力学

 \nonnimero

9.3.1 牛顿黏滞定律

 \nonnimers

9.3.2 * 两个常用定律

 \nonnimero

9.3.3 * 纳维-斯托克斯方程

9.4 * 流体中的波

 $\nonnime{}$

9.4.1 浅水波

 \nonnimers

9.4.2 深水波

 \nonnimerus

9.4.3 表面波

9.5 *波的傅里叶分析

 \nonnimers

9.5.1 波的群速度

 \nonnimers

9.5.2 波的方向性

 \nonnimer

9.5.3 波的展宽

总结

习题

Exercise 9.1 some

Exercise 9.2 some

索引

...: ...

第 II 部分 热学

10

热力学第一定律

宏观体系与它的能量守恒...

章节目录

10.1	热力学	系统的状态	74
	10.1.1	热力学系统的宏观描述	74
	10.1.2	热力学第零定律与温度	74
	10.1.3	状态方程	74
	10.1.4	微观态与宏观态	74
10.2	热力学	第一定律	75
	10.2.1	状态与过程	75
	10.2.2	内能	75
	10.2.3	功	75
	10.2.4	热量	75
	10.2.5	热力学第一定律	75
	10.2.6	* 耗散	75
10.3	理想气	体的过程	76
	10.3.1	理想气体模型	76
	10.3.2	四类准静态过程	76
		10.3.2.1 等体过程	76
		10.3.2.2 等压过程	76
		10.3.2.3 等温过程	76
		10.3.2.4 绝热过程	76
	10.3.3	多方过程类	76
	10.3.4	几个非准静态过程	76
		10.3.4.1 自由膨胀	76
		10.3.4.2 外界等压膨胀	76
		10.3.4.3 节流过程	76
10.4	常见气		77
	10.4.1	混合理想气体	77
	10.4.2	范德瓦尔斯气体	77
	10.4.3	重力场中的大气	77
	10.4.4	再论流体的定常流动	77
		10.4.4.1 欧拉方程	77
		10.4.4.2 伯努利方程	77
			73

74		高二物理竞赛教	(程
	24 A-b	* 传导形式与守恒形式	
			78 79
	索引	 	79
章节	方概述引入		

10.1 热力学系统的状态

 $\nonnime{}$

10.1.1 热力学系统的宏观描述 \nobreak

10.1.2 热力学第零定律与温度 \nobreak

10.1.3 状态方程

 \nonnimero

10.1.4 微观态与宏观态

10.2 热力学第一定律

 \nonnimers

10.2.1 状态与过程

 \nonnimers

10.2.2 内能

 \nonnimers

10.2.3 功

 $\backslash nobreak$

10.2.4 热量

 $\nonnime{}$

10.2.5 热力学第一定律

 \nonnimero

10.2.6 * 耗散

10.3 理想气体的过程

\nobreak

10.3.1 理想气体模型

 \nonnimero

10.3.2 四类准静态过程

 \nonnimero

10.3.2.1 等体过程

 \nonnimer

10.3.2.2 等压过程

 \nonnimers

10.3.2.3 等温过程

\nobreak

10.3.2.4 绝热过程

\nobreak

10.3.3 多方过程类

 \nonnimers

10.3.4 几个非准静态过程

 \nonnimers

10.3.4.1 自由膨胀

\nobreak

10.3.4.2 外界等压膨胀

 \nonnimero

10.3.4.3 节流过程

77

10.4 常见气体模型

 \nonnimers

10.4.1 混合理想气体

 \nonnimers

10.4.2 范德瓦尔斯气体

 \nonnimer

10.4.3 重力场中的大气

 \nonnimers

10.4.4 再论流体的定常流动

 $\nonnime{}$

10.4.4.1 欧拉方程

 \nonnimero

10.4.4.2 伯努利方程

 \nonnimero

10.4.4.3 * 传导形式与守恒形式

总结

习题

Exercise 10.1 some

Exercise 10.2 some

索引

...: ...

11

热力学第二定律

破镜难重圆,自然界写下如是之深刻规律...

<u> </u>	-	п	=
章	l1	Ħ	沤

11.1	循环过	程	82
	11.1.1	热机与热泵	82
	11.1.2	热机循环	82
		11.1.2.1 勒鲁瓦循环	82
		11.1.2.2 奥托循环	82
		11.1.2.3 迪塞尔循环	82
		11.1.2.4 布莱顿循环	82
		11.1.2.5 卡诺循环	82
11.2	理想气	体的熵	83
	11.2.1	态函数熵	83
	11.2.2	初涉卡诺定理	83
	11.2.3	局限性	83
11.3	热力学	第二定律	84
	11.3.1	熵增原理	84
	11.3.2	两种等效表述	84
	11.3.3	再论卡诺定理	84
	11.3.4	克劳修斯不等式	84
11.4	熵的计	算	85
	11.4.1	宏观与微观	85
	11.4.2	理想气体的熵	85
	11.4.3	熵变与热容	85
	11.4.4	混合熵产生	85
	11.4.5	传热熵产生	85
11.5	* 热力:	学函数及其特性	86
	11.5.1	热力学函数	86
	11.5.2	麦克斯韦关系	86
	11.5.3	若干重要定理	86
		11.5.3.1 能态定理	86
		11.5.3.2 物性函数关系	86
	11.5.4	最小能原理	86
	11.5.5	化学势	86
			81
			01

82

高二物理竞赛教程

87 88 88

11.2 理想气体的熵

 $\nonnime{}$

11.2.1 态函数熵

 \nonnimers

11.2.2 初涉卡诺定理

 \nonnimers

11.2.3 局限性

11.3 热力学第二定律

 $\nonnime{}$

11.3.1 熵增原理

 \nonnimers

11.3.2 两种等效表述

 \nonnimers

11.3.3 再论卡诺定理

 \nonnimers

11.3.4 克劳修斯不等式

11.4 熵的计算

 $\nonnime{}$

11.4.1 宏观与微观

 \nonnimers

11.4.2 理想气体的熵

 $\nonnime{}$

11.4.3 熵变与热容

 \nonnegative

11.4.4 混合熵产生

 $\nonnime{}$

11.4.5 传热熵产生

11.5 * 热力学函数及其特性

 \nonnimers

11.5.1 热力学函数

\nobreak

11.5.2 麦克斯韦关系

 \nonnimers

11.5.3 若干重要定理

\nobreak

11.5.3.1 能态定理

 \nonnimero

11.5.3.2 物性函数关系

\nobreak

11.5.4 最小能原理

 \nonnegative

11.5.5 化学势

总结

习题

Exercise 11.1 some

Exercise 11.2 some

索引

...: ...

12

固体与液体性质

面对复杂多体问题, 我们唯象地描述背后的物理...

章节目录				
12.1	固体晶格论			
	12.1.1	经典晶格论 90		
	12.1.2	* 量子晶格论 90		
12.2	* 固体	固体电子论		
	12.2.1	线性输运现象9		
	12.2.2	热电耦合现象9		
	12.2.3	德鲁特模型 9		
	12.2.4	能带模型与半导体 9		
12.3	* 液体	的彻体性质 9:		
	12.3.1	稠密的范氏气体 99		
	12.3.2	濒临瓦解的晶格 99		
	12.3.3	液体宏观性质的描述99		
12.4	液体的	表面性质		
	12.4.1	表面与界面的热学性质 93		
	12.4.2	附加压强99		
	12.4.3	接触角 95		
12.5	5 * 其他物态的性质			
	12.5.1	弱关联: 玻色气体 9-		
	12.5.2	强关联: 超流 9.		
	12.5.3	强关联: 超导9		
	12.5.4	等离子体9		
	12.5.5	白矮星与中子星 9.		
	12.5.6	夸克-胶子-等离子体 9-		
	台结	Q		

12.1 固体晶格论

 $\nonnime{}$

12.1.1 经典晶格论

 \nonnimers

12.1.2 * 量子晶格论

12.2 * 固体电子论

 $\nonnime{}$

12.2.1 线性输运现象

 \nonnegative

12.2.2 热电耦合现象

 \nonnimers

12.2.3 德鲁特模型

 \nonnimero

12.2.4 能带模型与半导体

12.3 *液体的彻体性质

 \nonnimers

12.3.1 稠密的范氏气体

 \nonnimers

12.3.2 濒临瓦解的晶格

 \nonnegative

12.3.3 液体宏观性质的描述

固体与液体性质 93

12.4 液体的表面性质

 $\nonnime{}$

12.4.1 表面与界面的热学性质

 \nonnimers

12.4.2 附加压强

 $\nonnime{}$

12.4.3 接触角

12.5 * 其他物态的性质

 \nonnimers

12.5.1 弱关联: 玻色气体

 \nonnimers

12.5.2 强关联: 超流

 \nonnimers

12.5.3 强关联: 超导

 \nonnegative

12.5.4 等离子体

 $\nonnime{}$

12.5.5 白矮星与中子星

 \nonnimero

12.5.6 夸克-胶子-等离子体

总结

习题

Exercise 12.1 some

Exercise 12.2 some

索引

...: ...

13

相与相变

就像雪山上植被的分壤, 宏观性质迥异的物质可以共存与转化...

章节目录

相平衡		97
13.1.1	相平衡与相	97
13.1.2	相平衡条件	97
13.1.3	相稳定条件	98
相变		99
13.2.1	一级相变特性	99
13.2.2	气液相变	99
13.2.3	* 溶解与沉积	99
13.2.4	* 顺磁-铁磁相变	99
13.2.5	* 二级相变特性	99
* 朗道	相变理论	100
13.3.1	序参量与自由能	100
13.3.2	对称性自发破缺	100
总结		101
习题		102
索引		102
	13.1.1 13.1.2 13.1.3 相变 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 * 朗道 13.3.1 13.3.2 总结	13.1.1 相平衡与相 13.1.2 相平衡条件 13.1.3 相稳定条件 相变 13.2.1 一级相变特性 13.2.2 气液相变 13.2.3 *溶解与沉积 13.2.4 *顺磁-铁磁相变 13.2.5 *二级相变特性 * 朗道相变理论 13.3.1 序参量与自由能

章节概述引入

13.1 相平衡

 \nonnimers

13.1.1 相平衡与相

 \nonnimer

- **13.1.2** 相平衡条件 \nobreak
- 13.1.3 相稳定条件

相与相变 99

13.2 相变

 \nonnimero

13.2.1 一级相变特性

 \nonnimero

13.2.2 气液相变

 $\backslash nobreak$

13.2.3 * 溶解与沉积

 $\backslash nobreak$

13.2.4 * 顺磁-铁磁相变

 \nonnimero

13.2.5 * 二级相变特性

13.3 * 朗道相变理论

 $\nonnime{}$

13.3.1 序参量与自由能

 \nonnegative

13.3.2 对称性自发破缺

相与相变 101

总结

习题

Exercise 13.1 some

Exercise 13.2 some

索引

...: ...

14

统计物理概述

好的数学工具让还原论发挥其强大的威力...

章节目录

14.1	概率统	计, 信息论与随机过程	103
	14.1.1	统计模型	104
		14.1.1.1 样本空间与随机事件	104
		14.1.1.2 随机变量及其数字特征	104
	14.1.2	信息熵	104
	14.1.3	马尔科夫过程	104
14.2	111110	设	105
	14.2.1	统计方法	105
	14.2.2	等概率原理	105
14.3	麦克斯	韦分布律	106
	14.3.1	麦克斯韦速度分布律	106
	14.3.2	压强与泻流	106
	14.3.3	* 输运系数的计算	106
14.4	麦克斯	韦-玻尔兹曼统计	107
	14.4.1	分布律	107
	14.4.2	压强与内能的计算	107
	14.4.3	功, 热, 熵的微观解释	107
14.5		物理统计模型	108
11.0	14.5.1	玻色-爱因斯坦统计	108
	14.5.2	费米-狄拉克统计	108
	14.5.3	涨落与关联	108
			109
			110
	安引		110

章节概述引入

14.1 概率统计,信息论与随机过程

 \nonnimers

14.1.1 统计模型

 \nonnimers

14.1.1.1 样本空间与随机事件

 \nonnimero

14.1.1.2 随机变量及其数字特征

 \nonnimero

14.1.2 信息熵

\nobreak

14.1.3 马尔科夫过程

统计物理概述 105

14.2 统计假设

 $\nonnime{}$

14.2.1 统计方法

 \nonnegative

14.2.2 等概率原理

14.3 麦克斯韦分布律

 $\nonnime{}$

14.3.1 麦克斯韦速度分布律

 \nonnimers

14.3.2 压强与泻流

 \nonnimers

14.3.3 * 输运系数的计算

统计物理概述 107

14.4 麦克斯韦-玻尔兹曼统计

 $\nonnime{}$

14.4.1 分布律

 \nonnimers

14.4.2 压强与内能的计算

 $\nonnime{}$

14.4.3 功, 热, 熵的微观解释

14.5 * 其他物理统计模型

 $\nonnime{}$

14.5.1 玻色-爱因斯坦统计

 \nonnegative

14.5.2 费米-狄拉克统计

 \nonnimers

14.5.3 涨落与关联

统计物理概述 109

总结

习题

Exercise 14.1 some

Exercise 14.2 some

索引

...: ...

第 III 部分 电磁学

15

静电学

电荷阴阳激荡, 时空激起涟漪, 我们称之为场...

章节目录

15.1	电荷与	电场	113
	15.1.1	电荷	114
	15.1.2	库仑定律	114
	15.1.3	电场	114
15.2	两个定	律与电势	115
	15.2.1	电场通量定律	115
	15.2.2	电势与电场环量定律	115
	15.2.3	* 高速运动电荷的电场	115
15.3	静电能		116
	15.3.1	静电势能	116
	15.3.2	自能与相互作用能	116
	15.3.3	电场能	116
15.4	电荷体	系	117
	15.4.1	电偶极子	117
	15.4.2	电荷密度分布	117
	15.4.3	极化强度	117
	15.4.4	若干对称电荷分布	117
		15.4.4.1 球壳与球体	117
		15.4.4.2 平面与厚层	117
		15.4.4.3 直线与圆柱	117
		15.4.4.4 * 带电圆环	117
		15.4.4.5 均匀极化的球	117
			118
			119
	李引		110

章节概述引入

15.1 电荷与电场

 $\nonnime{}$

15.1.1 电荷

 \nonnimers

15.1.2 库仑定律

 $\backslash nobreak$

15.1.3 电场

静电学 115

15.2 两个定律与电势

 \nonnimers

15.2.1 电场通量定律

 \nonnimers

15.2.2 电势与电场环量定律

 \nonnime

15.2.3 * 高速运动电荷的电场

15.3 静电能

 $\nonnime{}$

15.3.1 静电势能

 \nonnimers

15.3.2 自能与相互作用能

 $\nonnime{}$

15.3.3 电场能

静电学 117

15.4 电荷体系

 \nonnimers

15.4.1 电偶极子

\nobreak

15.4.2 电荷密度分布

 \nonnimers

15.4.3 极化强度

\nobreak

15.4.4 若干对称电荷分布

 $\nonnime{}$

15.4.4.1 球壳与球体

 \nonnimers

15.4.4.2 平面与厚层

\nobreak

15.4.4.3 直线与圆柱

 \nonnimero

15.4.4.4 * 带电圆环

 \nonnimero

15.4.4.5 均匀极化的球

总结

静电学 119

习题

Exercise 15.1 some

Exercise 15.2 some

索引

...: ...

16

导体与介质

静电学在很大程度上决定物质微观层面的结合,从而影响宏观属性...

章节目录

16.1	导体与	静电平衡.		122
	16.1.1	绝缘体与	导体综述	122
	16.1.2		部分结果	122
	16.1.3	简单体系		122
		16.1.3.1	导体平板	122
		16.1.3.2	导体球壳	122
		16.1.3.3	导体柱壳	122
16.2	电像法			123
	16.2.1		空间的电像法	123
	16.2.2		球面外的电像法	123
	16.2.3	*静电场	边值问题的相关结论	123
		16.2.3.1	问题的提出	123
		16.2.3.2	几个引理	123
		16.2.3.3	叠加原理	123
		16.2.3.4	唯一性定理	123
16.3	电介质			124
	16.3.1	微观角度	理解极化	124
		16.3.1.1	位移极化	124
		16.3.1.2	取向极化	124
	16.3.2	宏观角度	理解极化	124
		16.3.2.1	电位移	124
		16.3.2.2	简单体系的静电平衡	124
		16.3.2.3	介质中的静电平衡	124
	16.3.3	宏观与微	观的联系	124
16.4	再论静	电能		125
	16.4.1	极化能		125
	16.4.2	普遍的静	电能	125
	16.4.3	再论电容	模型	125
	总结			126
	习题			127
	索引			127
				121

章节概述引入

16.1 导体与静电平衡

 \nonnimers

16.1.1 绝缘体与导体综述

\nobreak

16.1.2 静电平衡部分结果

 \nonnimers

16.1.3 简单体系

 \nonnimers

16.1.3.1 导体平板

 \nonnimer

16.1.3.2 导体球壳

 \nonnimero

16.1.3.3 导体柱壳

导体与介质 123

16.2 电像法

 \nonnimers

16.2.1 半无限大空间的电像法

 \nonnimers

16.2.2 球面内与球面外的电像法

 \nonnimers

16.2.3 * 静电场边值问题的相关结论

 $\normalfont{$\operatorname{\operatorname{Nobreak}}$}$

16.2.3.1 问题的提出

 \nonnimers

16.2.3.2 几个引理

\nobreak

16.2.3.3 叠加原理

 \nonnimero

16.2.3.4 唯一性定理

16.3 电介质

 \nonnimers

16.3.1 微观角度理解极化

 \nonnimers

16.3.1.1 位移极化

 \nonnimero

16.3.1.2 取向极化

 \nonnimero

16.3.2 宏观角度理解极化

\nobreak

16.3.2.1 电位移

\nobreak

16.3.2.2 简单体系的静电平衡

 \nonnimers

16.3.2.3 介质中的静电平衡

 \nonnimers

16.3.3 宏观与微观的联系

导体与介质 125

16.4 再论静电能

 $\nonnime{}$

16.4.1 极化能

 \nonnimers

16.4.2 普遍的静电能

 \nonnimers

16.4.3 再论电容模型

总结

导体与介质 127

习题

Exercise 16.1 some

Exercise 16.2 some

索引

...: ...

17

稳恒电流

当电荷受到驱动力而开始在介质中定向漂移...

章节目录

17.1	稳恒电	流描述与形成	130
	17.1.1	德鲁特模型	130
	17.1.2	* 费米气观点	130
	17.1.3	* 能带论观点	130
	17.1.4	惯性, 阻尼, 回复力	130
	17.1.5	稳恒电流与形成条件	130
17.2	电路与	电路方程	131
	17.2.1	电路元件	131
	17.2.2	基尔霍夫电路定律	131
17.3	电路分	析基础	132
	17.3.1	电路的整体性质	132
	17.3.2	电路求解套路	132
		17.3.2.1 支路电流法	132
		17.3.2.2 节点电势法	132
		17.3.2.3 网孔电流法	132
17.4	电路分	析方法	133
	17.4.1	叠加原理	133
	17.4.2	戴维南-诺尔顿原理	133
	17.4.3	* 特勒根原理	133
	17.4.4	* 互易原理	133
17.5	电阻等	效方法	134
	17.5.1	电阻网络的等效变换	134
	17.5.2	根据对称性简化电路	134
	17.5.3	电流分布法	134
17.6	半导体	器件	135
	17.6.1	pn 结	135
	17.6.2	二极管	135
	17.6.3	三极管	135
	总结		136
	习题		137
	索引		137
			129

章节概述引入

17.1 稳恒电流描述与形成

 \nonnimers

17.1.1 德鲁特模型

 \nonnimers

17.1.2 * 费米气观点

 \nonnimers

17.1.3 * 能带论观点

 $\backslash nobreak$

17.1.4 惯性, 阻尼, 回复力

 \nonnimero

17.1.5 稳恒电流与形成条件

稳恒电流 131

17.2 电路与电路方程

 $\nonnime{}$

17.2.1 电路元件

 \nonnegative

17.2.2 基尔霍夫电路定律

17.3 电路分析基础

 \nonnimers

17.3.1 电路的整体性质

 \nonnimers

17.3.2 电路求解套路

 \nonnimers

17.3.2.1 支路电流法

 \nonnime

17.3.2.2 节点电势法

 \nonnegation

17.3.2.3 网孔电流法

稳恒电流 133

17.4 电路分析方法

 $\nonnime{}$

17.4.1 叠加原理

 \nonnimers

17.4.2 戴维南-诺尔顿原理

 \nonnimero

17.4.3 * 特勒根原理

 $\backslash nobreak$

17.4.4 * 互易原理

17.5 电阻等效方法

 $\nonnime{}$

17.5.1 电阻网络的等效变换

 \nonnimers

17.5.2 根据对称性简化电路

 \nonnimerus

17.5.3 电流分布法

稳恒电流 135

17.6 半导体器件

 $\nonnime{}$

17.6.1 pn 结

 \nonnimers

17.6.2 二极管

 $\backslash nobreak$

17.6.3 三极管

总结

稳恒电流 137

习题

Exercise 17.1 some

Exercise 17.2 some

索引

...: ...

18

静磁场

当磁现象逐渐开始用电现象的术语来解释...

章节目录

18.1	电流与	磁场		140
	18.1.1	磁现象		140
	18.1.2	毕奥-萨伐	な 尔定律	140
	18.1.3	磁场		140
18.2	两个定			141
	18.2.1	磁场环量	定律	141
	18.2.2		场通量定律	141
18.3	电流体			142
	18.3.1	磁偶极子		142
	18.3.2			142
	18.3.3	若干对称	电荷分布	142
		18.3.3.1	平面与厚层	142
		18.3.3.2	直线与圆柱	142
		18.3.3.3	螺线圈	142
		18.3.3.4	* 载流圆环	142
		18.3.3.5	均匀磁化的球	142
18.4	磁介质	与磁能		143
	18.4.1	微观角度	理解磁化	143
		18.4.1.1	顺磁性	143
		18.4.1.2	抗磁性	143
		18.4.1.3	铁磁性	143
	18.4.2	宏观角度	理解磁化	143
		18.4.2.1	磁场强度	143
		18.4.2.2	磁路定律	143
		18.4.2.3	电感	143
	18.4.3	磁场能量		143
	总结			144
				145
				145

章节概述引入

18.1 电流与磁场

 \nonnimer

18.1.1 磁现象

 \nonnimerus

18.1.2 毕奥-萨伐尔定律

 \nonnime

18.1.3 磁场

静磁场 141

18.2 两个定律与电势

 $\nonnime{}$

18.2.1 磁场环量定律

 \nonnimers

18.2.2 矢势与磁场通量定律

18.3 电流体系

 \nonnimers

18.3.1 磁偶极子

 \nonnimers

18.3.2 磁化强度

 \nonnimers

18.3.3 若干对称电荷分布

 $\normalfont{$\operatorname{\operatorname{Nobreak}}$}$

18.3.3.1 平面与厚层

 \nonnimero

18.3.3.2 直线与圆柱

 \nonnimers

18.3.3.3 螺线圈

\nobreak

18.3.3.4 * 载流圆环

 \nonnimers

18.3.3.5 均匀磁化的球

静磁场 143

18.4 磁介质与磁能

 \nonnimers

18.4.1 微观角度理解磁化

 \nonnimero

18.4.1.1 顺磁性

 \nonnimers

18.4.1.2 抗磁性

 \nonnimers

18.4.1.3 铁磁性

 \nonnimers

18.4.2 宏观角度理解磁化

\nobreak

18.4.2.1 磁场强度

\nobreak

18.4.2.2 磁路定律

\nobreak

18.4.2.3 电感

 \nonnimers

18.4.3 磁场能量

总结

静磁场 145

习题

Exercise 18.1 some

Exercise 18.2 some

索引

...: ...

19

电磁感应

电磁之间的联系隐藏于黑暗中, 电磁感应将光芒照亮于其发展的道路...

章节目录

19.1	磁生电		147
	19.1.1	法拉第电磁感应定律	147
	19.1.2	动生电动势	148
	19.1.3	感生电动势	148
19.2	电磁感	应与电路	149
	19.2.1	例: 平行导轨	149
	19.2.2	发电机与电动机	149
	19.2.3	* 涡电流	149
19.3	自感与	互感	150
	19.3.1	自感	150
	19.3.2	互感	150
	19.3.3	变压器	150
	19.3.4	再论磁能	150
19.4	* 再论	标势与矢势	151
	19.4.1	洛伦兹力与势	151
	19.4.2	规范	151
	19.4.3	势的产生	151
			152
			153
	索引		153

章节概述引入

19.1 磁生电

 \nonnimers

- **19.1.1** 法拉第电磁感应定律 \nobreak
- **19.1.2** 动生电动势 \nobreak
- 19.1.3 感生电动势

电磁感应 149

19.2 电磁感应与电路

 $\nonnime{}$

19.2.1 例: 平行导轨

 \nonnimers

19.2.2 发电机与电动机

 \nonnimerus

19.2.3 * 涡电流

19.3 自感与互感

 $\nonnime{}$

19.3.1 自感

 \nonnimers

19.3.2 互感

 $\nonnime{}$

19.3.3 变压器

 $\backslash nobreak$

19.3.4 再论磁能

电磁感应 151

19.4 * 再论标势与矢势

 $\nonnime{}$

19.4.1 洛伦兹力与势

 \nonnimers

19.4.2 规范

 \nonnimerus

19.4.3 势的产生

总结

电磁感应 153

习题

Exercise 19.1 some

Exercise 19.2 some

索引

...: ...

20

麦克斯韦方程组

集齐电磁理论拼图的最后一块,经典电磁学发展到了其最高峰...

章节目录

20.1	电生磁		
	20.1.1	位移电流	155
	20.1.2	麦克斯韦方程组	156
20.2	电磁波解		157
	20.2.1	真空中的电磁波	157
	20.2.2	介质中的电磁波	157
	20.2.3	电磁场的能量与动量	157
	20.2.4	电磁波在界面上的反射与折射	157
20.3	* 电磁泡	波的辐射与吸收	158
	20.3.1	达朗贝尔方程	158
	20.3.2	偶极辐射	158
	20.3.3	相对论性辐射	158
	20.3.4	辐射阻尼与散射截面	158
20.4	电磁单	位制	159
	20.4.1	国际单位制	159
	20.4.2	高斯单位制	159
	20.4.3	自然单位制	159
	总结		160
	习题		161
	索引		161

章节概述引入

20.1 电生磁

 \nonnimers

20.1.1 位移电流

 $\nonnime{}$

20.1.2 麦克斯韦方程组

麦克斯韦方程组 157

20.2 电磁波解

 \nonnimers

20.2.1 真空中的电磁波

 \nonnimers

20.2.2 介质中的电磁波

 \nonnimers

20.2.3 电磁场的能量与动量

 \nonnimero

20.2.4 电磁波在界面上的反射与折射

20.3 * 电磁波的辐射与吸收

 \nonnimero

20.3.1 达朗贝尔方程

 \nonnimers

20.3.2 偶极辐射

 \nonnimers

20.3.3 相对论性辐射

 \nonnimers

20.3.4 辐射阻尼与散射截面

麦克斯韦方程组 159

20.4 电磁单位制

 $\nonnime{}$

20.4.1 国际单位制

 \nonnimers

20.4.2 高斯单位制

 $\nonnime{}$

20.4.3 自然单位制

总结

麦克斯韦方程组 161

习题

Exercise 20.1 some

Exercise 20.2 some

索引

...: ...

21

交流电路

如果电磁波是河水,那么导引其能量流动的河道就是交流电路...

章节目录

21.1	交流电网		
	21.1.1	交流电的产生	164
	21.1.2	交流电的传输	164
		21.1.2.1 良导体	164
		21.1.2.2 波导模型	164
		21.1.2.3 传输线模型	164
		21.1.2.4 拟稳条件	164
	21.1.3	市电规范	164
	21.1.4	整流, 滤波, 稳压	164
21.2	交流元	件特性	165
	21.2.1	电阻元件	165
	21.2.2	电容元件	165
	21.2.3	电感元件	165
21.3	交流电	路解法	166
	21.3.1	复数解法	166
	21.3.2	相量图解	166
	21.3.3	功率分析	166
21.4	常见电	路	167
	21.4.1	谐振电路	167
	21.4.2	* 滤波电路	167
	21.4.3	* 运算电路	167
	总结		168
			169
			169

章节概述引入

21.1 交流电网

 \nonnimers

21.1.1 交流电的产生

 \nonnimers

21.1.2 交流电的传输

 \nonnimers

21.1.2.1 良导体

\nobreak

21.1.2.2 波导模型

\nobreak

21.1.2.3 传输线模型

\nobreak

21.1.2.4 拟稳条件

 \nonnimers

21.1.3 市电规范

 \nonnimers

21.1.4 整流, 滤波, 稳压

交流电路 165

21.2 交流元件特性

 \nonnimers

21.2.1 电阻元件

 \nonnimers

21.2.2 电容元件

 \nonnimerus

21.2.3 电感元件

21.3 交流电路解法

 $\nonnime{}$

21.3.1 复数解法

 \nonnimers

21.3.2 相量图解

 $\nonnime{}$

21.3.3 功率分析

交流电路 167

21.4 常见电路

 \nonnimers

21.4.1 谐振电路

 \nonnimers

21.4.2 * 滤波电路

 $\nonnime{}$

21.4.3 * 运算电路

总结

交流电路 169

习题

Exercise 21.1 some

Exercise 21.2 some

索引

...: ...

第 IV 部分 光学

光波与光线

光的确是电磁波,光线模型是历史遗产,两者不是不可调和...

章节目录

22.1	波动光	学引论	173
	22.1.1	光波描述的三个层次	174
	22.1.2	光波的叠加	174
	22.1.3	光波的偏振	174
	22.1.4	* 光波的传播子	174
22.2	界面光	学	175
	22.2.1	斯涅耳公式	175
	22.2.2	菲涅尔公式	175
		22.2.2.1 半波损失	175
		22.2.2.2 布儒斯特角	175
		22.2.2.3 全内反射	175
	22.2.3	* 全反射与隐失波	175
22.3	光线方	程	176
	22.3.1	光线模型	176
	22.3.2	光线方程	176
	22.3.3	* 光力类比	176
22.4	从费马	到费曼	177
	22.4.1	费马原理	177
	22.4.2	惠更斯-菲涅尔原理	177
	22.4.3	*基尔霍夫衍射积分公式	177
	22.4.4	* 费曼路径积分理论	177
	22.4.5	结论	177
	总结		178
	习题		179
	索引		179

章节概述引入

22.1 波动光学引论

 $\nonnime{}$

22.1.1 光波描述的三个层次

 \nonnimers

22.1.2 光波的叠加

 \nonnegative

22.1.3 光波的偏振

 \nonnimero

22.1.4 * 光波的传播子

光波与光线 175

22.2 界面光学

 $\nonnime{}$

22.2.1 斯涅耳公式

 \nonnimers

22.2.2 菲涅尔公式

 \nonnegative

22.2.2.1 半波损失

 $\nonnime{}$

22.2.2.2 布儒斯特角

 \nonnimero

22.2.2.3 全内反射

 \nonnimers

22.2.3 * 全反射与隐失波

22.3 光线方程

 $\nonnime{}$

22.3.1 光线模型

 \nonnegative

22.3.2 光线方程

 \nonnimers

22.3.3 * 光力类比

光波与光线 177

22.4 从费马到费曼

 $\nonnime{}$

22.4.1 费马原理

 \nonnimers

22.4.2 惠更斯-菲涅尔原理

 \nonnimero

22.4.3 *基尔霍夫衍射积分公式

 $\backslash nobreak$

22.4.4 * 费曼路径积分理论

 \nonnimero

22.4.5 结论

总结

光波与光线 179

习题

Exercise 22.1 some

Exercise 22.2 some

索引

...: ...

23

光学成像

物光必将经过像,物理上堪称完美,数学上也不平凡...

章节目录

23.1	傍轴光	成像	181
	23.1.1	物与像	181
	23.1.2	球面折射与球面反射	182
	23.1.3	符号法则	182
	23.1.4	薄透镜折射成像	182
	23.1.5	几个抽象	182
	23.1.6	两个成像系统的复合	182
23.2	理想成	像系统	183
	23.2.1	作图法	183
	23.2.2	基点基面性质	183
	23.2.3	望远系统	183
	23.2.4	* 理想成像背后的数学理论	183
23.3 理想点		像系统	184
	23.3.1	作图法	184
	23.3.2	基点基面性质	184
	23.3.3	望远系统	184
	23.3.4	* 理想成像背后的数学理论	184
	总结		185
	习题		186
	索引		186

章节概述引入

23.1 傍轴光成像

 \nonnimers

182

23.1.1 物与像

 \nonnimero

23.1.2 球面折射与球面反射

 \nonnimers

23.1.3 符号法则

 \nonnimers

23.1.4 薄透镜折射成像

 \nonnegative

23.1.5 几个抽象

 \nonnimero

23.1.6 两个成像系统的复合

光学成像 183

23.2 理想成像系统

 \nonnimer

23.2.1 作图法

 \nonnimers

23.2.2 基点基面性质

 \nonnegative

23.2.3 望远系统

 $\backslash nobreak$

23.2.4 * 理想成像背后的数学理论

23.3 理想成像系统

 \nonnimer

23.3.1 作图法

 \nonnimers

23.3.2 基点基面性质

 \nonnegative

23.3.3 望远系统

 $\backslash nobreak$

23.3.4 * 理想成像背后的数学理论

光学成像 185

总结

习题

Exercise 23.1 some

Exercise 23.2 some

索引

...: ...

24

光学仪器

聚焦能量,还原信息,成像仪器,信号处理,服务于人...

章节目录

24.1	光度学		187
	24.1.1	* 色度学	187
	24.1.2	光度函数	187
	24.1.3	亮度与照度	188
	24.1.4	物与像的光度学联系	188
24.2	光阑		189
	24.2.1	孔径光阑与视场光阑	189
	24.2.2	光瞳与窗	189
24.3	助视仪	器	190
	24.3.1	人眼与眼睛	190
	24.3.2	光学显微镜	190
	24.3.3	光学望远镜	190
24.4	观像仪	焽 砶 · · · · · · · · · · · · · · · · · · ·	191
	24.4.1	数字相机	191
	24.4.2	透视仪	191
	24.4.3	电镜	191
	总结		192
	习题		193
	索引		193

章节概述引入

24.1 光度学

 $\normalfont{$\operatorname{\operatorname{Nobreak}}$}$

188

24.1.1 * 色度学

 \nonnimerus

24.1.2 光度函数

 \nonnimero

24.1.3 亮度与照度

 \nonnime

24.1.4 物与像的光度学联系

光学仪器 189

24.2 光阑

 $\nonnime{}$

24.2.1 孔径光阑与视场光阑

 \nonnegative

24.2.2 光瞳与窗

24.3 助视仪器

 $\nonnime{}$

24.3.1 人眼与眼睛

 \nonnegative

24.3.2 光学显微镜

 \nonnimers

24.3.3 光学望远镜

光学仪器 191

24.4 观像仪器

 $\nonnime{}$

24.4.1 数字相机

 \nonnimers

24.4.2 透视仪

 \nonnimers

24.4.3 电镜

总结

光学仪器 193

习题

Exercise 24.1 some

Exercise 24.2 some

索引

...: ...

25

光的干涉

万千花样,只源于两相干光之前的巧遇...

章节目录

25.1	干涉引论		195
	25.1.1	波前函数	195
	25.1.2	傍轴近似与远场近似	196
	25.1.3	相干度	196
25.2	分波面	干涉	197
	25.2.1	杨氏双孔干涉	197
	25.2.2	其他变式	197
	25.2.3	散斑干涉	197
25.3	分振幅	干涉	198
	25.3.1	薄膜干涉	198
	25.3.2	迈克尔孙干涉仪	198
	25.3.3	其他变式	198
25.4	相干性		199
	25.4.1	空间相干性	199
	25.4.2	时间相干性	199
	25.4.3	偏振相干性	199
	总结		200
	习题		201
	索引		201

章节概述引入

25.1 干涉引论

 \nonnimer

25.1.1 波前函数

 \nonnime

25.1.2 傍轴近似与远场近似

 \nonnimers

25.1.3 相干度

光的干涉 197

25.2 分波面干涉

 \nonnimers

25.2.1 杨氏双孔干涉

 \nonnegative

25.2.2 其他变式

 \nonnimers

25.2.3 散斑干涉

25.3 分振幅干涉

 $\nonnime{}$

25.3.1 薄膜干涉

 \nonnegative

25.3.2 迈克尔孙干涉仪

 $\nonnime{}$

25.3.3 其他变式

光的干涉 199

25.4 相干性

 $\nonnime{}$

25.4.1 空间相干性

 \nonnegative

25.4.2 时间相干性

 \nonnimers

25.4.3 偏振相干性

总结

光的干涉 201

习题

Exercise 25.1 some

Exercise 25.2 some

索引

...: ...

26

光的衍射

波前中蕴藏着光学信息,傅里叶分析恰能呈现背后规律...

章节目录

26.1	多光束	:干涉	203
	26.1.1	分振幅的多光束干涉	203
	26.1.2	分波面的多光束干涉	203
	26.1.3	X 射线晶体衍射	204
26.2	衍射引	论	205
	26.2.1	衍射积分公式	205
	26.2.2	几类菲涅尔衍射	205
	26.2.3	几类夫琅禾费衍射	205
26.3	* 傅里	叶光学	206
	26.3.1	傅里叶变换的性质	206
	26.3.2	波前分析	206
	26.3.3	光学信息处理	206
	总结		207
	习题		208
	索引		208

章节概述引入

26.1 多光束干涉

 \nonnimers

26.1.1 分振幅的多光束干涉

 \nonnimers

26.1.2 分波面的多光束干涉 \nobreak

26.1.3 X 射线晶体衍射

光的衍射 205

26.2 衍射引论

 $\nonnime{}$

26.2.1 衍射积分公式

 \nonnimers

26.2.2 几类菲涅尔衍射

 \nonnimerus

26.2.3 几类夫琅禾费衍射

26.3 * 傅里叶光学

 \nonnimero

26.3.1 傅里叶变换的性质

 \nonnimers

26.3.2 波前分析

 $\nonnime{}$

26.3.3 光学信息处理

光的衍射 207

总结

习题

Exercise 26.1 some

Exercise 26.2 some

索引

...: ...

27

物理光学

历史螺旋上升,智慧历久弥新,真理越辩越明...

章节目录

27.1	光的本	性	209
	27.1.1	光子	210
	27.1.2	* 相干态与压缩态	210
27.2	* 光与	物质相互作用	211
	27.2.1	光与晶体声波	211
	27.2.2	光与分子振动	211
	27.2.3	光与电子跃迁	211
	27.2.4	光的非弹性过程	211
	27.2.5	激光	211
27.3	发射, 化	专播与吸收的唯象描述	212
	27.3.1	发射	212
	27.3.2	色散	212
	27.3.3	散射	212
	27.3.4	吸收	212
27.4	经典色	散理论	213
	27.4.1	洛伦兹电子论	213
	27.4.2	* 散射截面	213
	27.4.3	* 磁场与色散	213
		27.4.3.1 等离子体情况	213
		27.4.3.2 法拉第效应	213
	总结		214
			215
			215

章节概述引入

27.1 光的本性

 $\nonnime{}$

27.1.1 光子

 \nonnimers

27.1.2 * 相干态与压缩态

物理光学 211

27.2 * 光与物质相互作用

 $\nonnime{}$

27.2.1 光与晶体声波

 \nonnimers

27.2.2 光与分子振动

 \nonnimero

27.2.3 光与电子跃迁

 \nonnimero

27.2.4 光的非弹性过程

 \nonnimer

27.2.5 激光

27.3 发射,传播与吸收的唯象描述

 $\nonnime{}$

27.3.1 发射

 \nonnimers

27.3.2 色散

 \nonnimers

27.3.3 散射

 $\backslash nobreak$

27.3.4 吸收

物理光学 213

27.4 经典色散理论

 \nonnimers

27.4.1 洛伦兹电子论

 \nonnimers

27.4.2 * 散射截面

 \nonnimero

27.4.3 * 磁场与色散

 $\backslash nobreak$

27.4.3.1 等离子体情况

 \nonnimero

27.4.3.2 法拉第效应

总结

物理光学 215

习题

Exercise 27.1 some

Exercise 27.2 some

索引

...: ...

第 V 部分 近代物理

28

相对论

基于对称的理论,极致简约的理论,忠于现实的理论...

章节目录

28.1	时空与	运动	219
	28.1.1	相对论时空观	219
	28.1.2	尺缩, 钟慢, 同时相对性	220
	28.1.3	洛伦兹变换	220
	28.1.4	速度变换	220
	28.1.5	转盘佯谬	220
28.2	相互作	用	221
	28.2.1	动量与能量	221
	28.2.2	* 角动量	221
	28.2.3	守恒律	221
	28.2.4	力与场	221
28.3	连续体		222
	28.3.1	四维波矢变换	222
	28.3.2	四维电流变换	222
	28.3.3	电磁场变换	222
28.4	广义相	对论简介	223
	28.4.1	度规与测地线	223
	28.4.2	弯曲的时空	223
	28.4.3	施瓦西黑洞	223
	总结		224
	习题		225
			225

章节概述引入

28.1 时空与运动

 \nonnimers

28.1.1 相对论时空观

 \nonnimero

28.1.2 尺缩, 钟慢, 同时相对性

 \nonnimer

28.1.3 洛伦兹变换

 \nonnimers

28.1.4 速度变换

 \nonnimers

28.1.5 转盘佯谬

相对论 221

28.2 相互作用

 $\nonnime{}$

28.2.1 动量与能量

 \nonnimers

28.2.2 * 角动量

 \nonnimero

28.2.3 守恒律

 $\backslash nobreak$

28.2.4 力与场

28.3 连续体

 $\nonnime{}$

28.3.1 四维波矢变换

 \nonnimers

28.3.2 四维电流变换

 \nonnimerus

28.3.3 电磁场变换

相对论 223

28.4 广义相对论简介

 $\nonnime{}$

28.4.1 度规与测地线

 \nonnimers

28.4.2 弯曲的时空

 $\nonnime{}$

28.4.3 施瓦西黑洞

总结

相对论 225

习题

Exercise 28.1 some

Exercise 28.2 some

索引

...: ...

29

量子论

颠覆经典图像,重建量子对应,将上下而求索...

章节目录

29.1	光的量子性		
	29.1.1	黑体辐射	227
	29.1.2	光电效应	227
	29.1.3	康普顿效应	228
	29.1.4	* 引力与光	228
29.2	粒子波	动性	229
	29.2.1	原子模型	229
	29.2.2	电子的两个实验	229
	29.2.3	物质波	229
29.3	* 量子	力学初步	230
	29.3.1	运动-波函数	230
	29.3.2	相互作用-算符	230
	29.3.3	波的动力学	230
	29.3.4	全同粒子与福克空间	230
	总结		231
	习题		232
	索引		232

章节概述引入

29.1 光的量子性

 $\backslash nobreak$

29.1.1 黑体辐射

 \nonnimers

29.1.2 光电效应

 $\nonnime{}$

29.1.3 康普顿效应

 \nonnimero

29.1.4 * 引力与光

量子论 229

29.2 粒子波动性

 $\nonnime{}$

29.2.1 原子模型

 \nonnegative

29.2.2 电子的两个实验

 \nonnimerus

29.2.3 物质波

29.3 * 量子力学初步

 \nonnimer

29.3.1 运动-波函数

 \nonnegative

29.3.2 相互作用-算符

 \nonnegative

29.3.3 波的动力学

 \nonnegative

29.3.4 全同粒子与福克空间

量子论 231

总结

习题

Exercise 29.1 some

Exercise 29.2 some

索引

...: ...

30

尺度物理学

兼备龙象之力, 燕雀之巧, 似一条巨蟒衔住了其尾巴...

章节目录

30.1	基本粒	子与相互作用	233
	30.1.1	标准模型	234
	30.1.2	相互作用过程	234
	30.1.3	守恒律	234
	30.1.4	* 超越标准模型	234
30.2	核物理		235
	30.2.1	核模型	235
	30.2.2	核反应	235
	30.2.3	核应用	235
30.3	* 原子	与分子	236
	30.3.1	自旋-轨道相互作用	236
	30.3.2	元素周期律	236
	30.3.3	键合	236
	30.3.4	分子谱	236
30.4	* 介观特		237
	30.4.1		237
	30.4.2	电子气	237
	30.4.3	能带论	237
	30.4.4	强关联电子体系	237
30.5	宇宙学		238
	30.5.1	宇宙膨胀的证据	238
	30.5.2	标准模型	238
	30.5.3	暗物质与暗能量	238
	总结		239
			240
	: · -		240

章节概述引入

30.1 基本粒子与相互作用

 \nonnimer

30.1.1 标准模型

 \nonnimers

30.1.2 相互作用过程

 \nonnimero

30.1.3 守恒律

 $\backslash nobreak$

30.1.4 * 超越标准模型

尺度物理学 235

30.2 核物理

 $\nonnime{}$

30.2.1 核模型

 \nonnimers

30.2.2 核反应

 $\backslash nobreak$

30.2.3 核应用

30.3 * 原子与分子

 $\nonnime{}$

30.3.1 自旋-轨道相互作用

 \nonnegative

30.3.2 元素周期律

 \nonnimers

30.3.3 键合

 $\backslash nobreak$

30.3.4 分子谱

尺度物理学 237

30.4 * 介观物理

 $\nonnime{}$

30.4.1 声子模型

 \nonnegative

30.4.2 电子气

 \nonnimero

30.4.3 能带论

 $\backslash nobreak$

30.4.4 强关联电子体系

30.5 宇宙学

 $\nonnime{}$

30.5.1 宇宙膨胀的证据

 \nonnimers

30.5.2 标准模型

 $\nonnime{}$

30.5.3 暗物质与暗能量

总结

习题

Exercise 30.1 some

Exercise 30.2 some

索引

...: ...