

Progress meeting

Yutong Zhao

University of Manitoba Department of Physics and Astronomy April 25th 2019

Progress outline

Coursework

1.	PHYS 7720	Quantum Mechanics 1	(A+)
2.	PHYS 7510	Condensed Matter Physics 2	(A)
3.	PHYS 7590	Electromagnetic Theory	(In progress)
4.	ECE 7440	Microwave Materials Measurement Techniques	(Fall 2019)

• Experiment:

- 1. Level attraction in metamaterials
- 2. Level attraction in coupled mechanical oscillators

• Publications:

• 2 Coauthor: New Journal of Physics (under review), Nature Communication (under review)

Coherent coupling and Level repulsion

Equation of motion:

$$\ddot{x}_1 + \alpha \dot{x}_1 + \omega_1^2 x_1 + \kappa x_2 = F e^{i\omega t}$$

$$\ddot{x}_2 + \beta \dot{x}_2 + \omega_2^2 x_2 + \kappa x_1 = 0$$

Coupling terms

Matrix form:

$$\begin{pmatrix} \omega_1^2 - \omega^2 + i\omega\alpha & \kappa \\ \kappa & \omega_2^2 - \omega^2 + i\omega\beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} \text{Oscillator1} & \text{Coupling} \\ \text{Coupling} & \text{Oscillator2} \end{pmatrix}$$

Neglecting the damping terms (α , $\beta \approx 0$), the eigenvalues of the coupled system:

$$\omega_{\pm} = \frac{1}{2} \left[(\omega_1 + \omega_2) \pm \sqrt{(\omega_1 - \omega_2)^2 + 4\kappa^2} \right]$$

Coupled mechanical oscillator

Dispersion relation

Repulsion behavior

Dissipative coupling and Level attraction

Equation of motion:

$$\ddot{x}_1 + \alpha \dot{x}_1 + \omega_1^2 x_1 + \kappa \dot{x}_2 = F e^{i\omega t}$$

$$\ddot{x}_2 + \beta \dot{x}_2 + \omega_2^2 x_2 + \kappa \dot{x}_1 = 0$$

Dissipative

Matrix form:

$$\begin{pmatrix} \omega_1^2 - \omega^2 + i\omega\alpha & i\kappa \\ i\kappa & \omega_2^2 - \omega^2 + i\omega\beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} F \\ 0 \end{pmatrix}$$

Coupling is depend on the relative speed rather than the position of the oscillators! Dissipative coupling of two oscillators

Emergence of level attraction

optomechanical circuit

Bernier, N. R., et al. Physical Review A 98.2 (2018): 023841.

Bhoi, Biswanath, et al. arXiv preprint arXiv:1901.01729 (2019).

Cavity magnon system

Harder, M., et al. Physical review letters 121.13 (2018): 137203.

Yang, Y., et al. arXiv preprint arXiv:1901.07633 (2019).

Level attraction in metamaterials?

Metamaterials:

Material designed that have special properties.

Applications:

Negative refraction

Absorber

Cloaking devices

. . .

Now comes the question:

Level attraction in metamaterials?

Split-ring resonator

Liu, Xianliang, et al. Physical review letters 107.4 (2011): 045901. Shelby, Richard A., David R. Smith, and Seldon Schultz. science 292.5514 (2001): 77-79.

Level repulsion in metamaterials

Baraclough, Milo, Ian R. Hooper, and William L. Barnes. Physical Review B 98.8 (2018): 085146.

Characterize cross cavity resonator

RLC circuits model for the cross cavity

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1/Z & 1 \end{pmatrix}$$

$$S_{21} = 1 - \frac{i\Delta\omega_e}{\omega - \omega_c + i(\Delta\omega_e + \Delta\omega_i)}$$

 $\omega_c=1/\sqrt{LC}$ - resonant frequency $\Delta\omega_e=Z_0/2L$ - extrinsic damping $\Delta\omega_i=R/2L$ - intrinsic damping

(d)

Characterize split ring resonator

The Split ring resonators

Resonant frequency

$$\omega_{SRR} = \frac{c'}{\lambda} = \frac{c'}{2\pi r} \propto \frac{a}{r}$$

Intrinsic damping

$$\Delta\omega_{in}=\beta\omega_c$$

Level attraction with different SRRs

Level attraction with tunable SSRs

Tunable SSR can be made by a varactor.

Capacitance : C = C(V)

V – applied voltage on the diode

$$\omega = \frac{1}{\sqrt{LC}}$$

Proposed work

Level attraction in coupled mechanical oscillators

- Explore the level attraction in mechanical system.
- Study the time domain behavior of level attraction experimentally.

Coherent coupling

Dissipative coupling of two oscillators

Dissipative coupling

Summary

Two work for master program:

- 1. Level attraction in metamaterials.
 - Expand the level attraction to metamaterials.
- 2. Level attraction in mechanical oscillators.
 - Get a result for level attraction in time domain.