Exercises for Introduction to Mathematical Arguments

Kevin Ma

May 23, 2025
Based on notes by M. Hutchings*

2 How to prove things

- 1. Prove the following statements; what is the negation of each of these statements?
 - (a) For every integer x, if x is even, then for every integer y, xy is even.

Proof. Since x is even, choose an integer w such that x = 2w.

Then, xy = 2wy.

19

25

26

Let z = wy; then xy = 2z, so xy is even.

Negation: x is even, and there is an integer y where xy is odd.

(b) For every integer x and for every integer y, if x is odd and y is odd then x + y is even.

Proof. Since x is odd, choose an integer v such that x = 2v + 1.

Since y is odd, choose an integer w such that y = 2w + 1.

Then, x + y = 2v + 2w + 2.

Let z = v + w + 1; then x + y = 2z, so x + y is even.

Negation: There is an integer x and an integer y such that x is odd, y is odd, and x + y is odd.

(c) For every integer x, if x is odd then x^3 is odd.

Proof. Since x is odd, choose an integer w such that x = 2w + 1.

Then, $x^3 = 8w^3 + 12w^2 + 6w + 1$.

Let $z = 4w^3 + 6w^2 + 3w$; then $x^3 = 2z + 1$, so x^3 is odd.

Negation: There is an integer x such that x is odd and x^3 is even.

 $^{^*} https://math.berkeley.edu/{\sim} hutching/teach/proofs.pdf$

- 2. Prove that for every integer x, x + 4 is odd if and only if x + 7 is even.
- Proof. (\Rightarrow) Suppose x + 4 is odd.
- Choose an integer v such that x + 4 = 2v + 1.
- Then, x + 7 = 2v + 4.

35

36

38

41

43

46

49

- Let z = v + 2; then x + 7 = 2z, so x + 7 is even.
- (\Leftarrow) Suppose x + 7 is even.
- Choose an integer w such that x + 7 = 2w.
- Then, x + 4 = 2w 3 = 2(w 2) + 1.

Let
$$z = w - 2$$
; then $x + 4 = 2z + 1$, so $x + 4$ is odd.

- 3. Figure out whether the statement we negated in §1.3 is true or false, and prove it (or its negation).
- The statement from §1.3 is:

$$(\forall x \in \mathbb{Z}) \left((\exists y \in \mathbb{Z}) x = 3y + 1 \right) \Rightarrow \left((\exists y \in \mathbb{Z}) x^2 = 3y + 1 \right). \tag{1}$$

- Proof. Let x be an integer such that there exists an integer y where x = 3y + 1.
 - By squaring both sides,

$$x^2 = (3y+1)^2 (2)$$

$$=9y^2 + 6y + 1\tag{3}$$

$$= 3(3y^2 + 2y) + 1. (4)$$

- Let $z = 3y^2 + 2y$. Since z must be an integer, there exists an integer z where $x^2 = 3z + 1$.
- 4. Prove that for every integer x, if x is odd then there exists an integer y such that $x^2 = 8y + 1$.
 - *Proof.* Since x is odd, let w be an integer such that x = 2w + 1.
- By squaring both sides,

$$x^2 = (2w+1)^2 (5)$$

$$=4w^2 + 4w + 1 (6)$$

$$= 4w(w+1) + 1 (7)$$

$$=8(\frac{1}{2}w(w+1))+1\tag{8}$$

Since one of w and w+1 must be even, their product w(w+1) must also be even.

Therefore, there exists an integer y where w(w+1)=2y, meaning $y=\frac{1}{2}w(w+1)$.

Thus, by substitution, x^2 can be represented in the form 8y+1, where y is an integer.