Interpretable Machine Learning

Individual Conditional Expectation (ICE) Plot

Learning goals

- ICE curves as local effect method
- How to sample grid points for ICE curves

MOTIVATION

Question: How does changing values of a single feature of an observation affect model prediction?

Idea: Change values of observation and feature of interest, and visualize how prediction changes

Example: Prediction surface of a model (left), select observation and visualize changes in prediction for different values of x_2 while keeping x_1 fixed \Rightarrow **local interpretation**

Partition each observation ${\bf x}$ into ${\bf x}_S$ (features of interest) and ${\bf x}_{-S}$ (remaining features)

 \leadsto In practice, \mathbf{x}_{S} consists of one or two features (i.e., $|S| \leq 2$ and $-S = S^{\complement}$).

Formal definition of ICE curves:

- Choose grid points $\mathbf{x}_S^* = \mathbf{x}_S^{*(1)}, \dots, \mathbf{x}_S^{*(g)}$ to vary \mathbf{x}_S
- For each k connect point pairs to obtain ICE curve
- \sim ICE curves visualize how prediction of *i*-th observation changes after varying its feature values indexed by S using grid points \mathbf{x}_S^* while keeping all values in -S fixed

1. Step - Grid points:

Sample grid values $\mathbf{x}_{S}^{*^{(1)}}, \dots, \mathbf{x}_{S}^{*^{(g)}}$ along feature of interest \mathbf{x}_{S} and replace vector $\mathbf{x}^{(i)}$ in data with grid

 \Rightarrow Creates new artificial points for *i*-th observation (here: $\mathbf{x}_S^* = x_1^* \in \{1, 2, 3\}$ scalar)

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,ICE}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) ext{ vs. } x_1^* \in \{1, 2, 3\}$$

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,ICE}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

2. Step - Predict and visualize:

For each artificially created data point of *i*-th observation, plot prediction $\hat{f}_{S,ICE}^{(i)}(\mathbf{x}_S^*)$ vs. grid values \mathbf{x}_S^* :

$$\hat{f}_{1,ICE}^{(i)}(x_1^*) = \hat{f}(x_1^*, \mathbf{x}_{2,3}^{(i)}) \text{ vs. } x_1^* \in \{1, 2, 3\}$$

3. Step - Repeat for other observations:

ICE curve for i=2 connects all predictions at grid values associated to i-th observation.

3. Step - Repeat for other observations:

ICE curve for i = 3 connects all predictions at grid values associated to i-th observation.

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values x_S^{*}; visualized on x-axis
- Common choices for grid values are
 - equidistant grid values within feature range
 - randomly sampled values or quantile values of observed feature values
- Except equidistant grid, the other two options preserve (approximately) the marginal distribution of feature of interest

COMMENTS ON GRID VALUES

- Plotting ICE curves involves generating grid values x_S^{*}; visualized on x-axis
- Common choices for grid values are
 - equidistant grid values within feature range
 - randomly sampled values or quantile values of observed feature values
- Except equidistant grid, the other two options preserve (approximately) the marginal distribution of feature of interest
- Correlations/interactions → unrealistic values in all three methods

Grid points for X_S (red) for highlighted observation (blue)

