Exercices: PGCD-Gauss-Bezout

Exercice 1

Déterminer, à l'aide de l'algorithme d'Euclide, le PGCD des entiers a et b:

a.
$$a = 354$$
; $b = 20$

b.
$$a = 1456$$
; $b = 256$

c.
$$a = 17$$
; $b = 3941$

d.
$$a = 256419$$
; $b = 3866$

Exercice 2

Soit n un entier naturel inférieur à 120. Déterminer l'ensemble des valeurs de n tels que:

$$pgcd(n; 120) = 6$$

Exercice 3

On désigne par p un entier entier naturel. On considère pour tout entier naturel non nul n l'entier : $A_n = 2^n + p$.

On note d_n le PGCD de A_n et A_{n+1}

- 1. Montrer que d_n divise 2^n .
- 2. Déterminer la parité de A_n en fonction de celle de p. Justifier.

Exercice 4

Déterminer l'ensemble des couples $(m\,;n)$ d'entiers naturels tels que :

$$pgcd(m; n) = 6$$
 ; $m+n=72$

Exercice 5

Déterminer l'ensemble des couples (m;n) d'entiers naturels vérifiant le système:

$$S: \begin{cases} m^2 - n^2 = 5440 \\ \operatorname{pgcd}(m; n) = 8 \end{cases}$$

Exercice 6

Soit n un entier relatif.

- 1. On note d le pgcd des entiers 9n+4 et 2n-1. Justifier que d divise 17.
- 2. Etablir l'équivalence suivante:

$$n \equiv 9 \pmod{.17} \iff \operatorname{pgcd}(9n+4;2n-1) = 17$$

Exercice 7

On considère deux entiers naturels x et y.

Montrer que si x et y sont premiers entre eux alors il en est de même pour les entiers 2x+y et 5x+2y.

Exercice 8

Soit p et q deux entiers naturel non nuls.

- 1. En supposant que a=9p+4q et b=2p+q, démontrer que les entiers a et b d'une part; p et q d'autre part ont le même PGCD.
- 2. Démontrer que les entiers 9p+4 et 2p+1 sont premiers

entre eux.

Exercice 9

Soit k un élément de \mathbb{Z} .

- 1. Démontrer que les entiers 2k+1 et 9k+4 sont premiers entre eux.
- 2. a. Démonter que le PGCD des entiers 2k-1 et 9k+4 est nécessairement 1 ou 17.
 - b. Etablir l'affirmation suivante: $pgcd(2k-1;9k+4) = 17 \iff k\equiv 9 \pmod{17}$

Exercice 10

Etablir que, quelque soit la valeur de n, les deux entiers n+3 et $-2n^2-n+14$ sont premiers entre eux.

Exercice 11

On considère l'équation diophantienne $x^2-8\cdot y^2=1$ où x et y désignent deux entiers relatifs.

- 1. Donner deux couples d'entiers naturels inférieurs à 10 qui sont solutions de (E).
- 2. Démontrer que, si un couple d'entiers relatifs non nuls (x;y) est solution de (E), alors les entiers relatifs x et y sont premiers entre eux.

Exercice 12

Pour chaque équation, déterminer un couple de solution d'entiers (u; v):

a.
$$354 \cdot u + 49 \cdot v = 1$$

b.
$$34 \cdot u + 57 \cdot v = 1$$

Exercice 13

1. Déterminer un couple (x;y) d'entiers solution de l'équation:

$$56 \cdot x + 45 \cdot y = 1$$

2. En déduire un couple (x'; y') d'entiers relatifs vérifiant l'égalité:

$$56 \cdot x' + 45 \cdot y' = 3$$

Exercice 14

Soit n une entier naturel, on pose:

$$a = 2n + 8$$
 ; $b = 3n + 15$

On note d le PGCD de a et de b.

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, d divise 6.
- 2. On considère l'ensemble S des entiers naturels n pour lesquels d=6. C'est-à-dire que l'ensemble S est défini par:

$$S = \{ n \in \mathbb{N} \mid \text{pgcd}(2n+8; 3n+15) = 6 \}$$

- a. Montrer que si $n \in \mathcal{S}$ alors il existe un entier k tel que : $n = -4 + 3 \cdot k$.
- b. En déduire l'ensemble \mathcal{S} .

Exercice 15

A chaque lettre de l'alphabet, on associe grâce au tableau ci-dessous un entier compris entre 0 et 25:

A	В	С	D	Е	F	G	Н	Ι	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

On définit un procédé de codage de la façon suivante:

Etape 1: à la lettre que l'on veut coder, on associe l'entier x correspondant dans le tableau ci-dessus.

Etape 2: on calcule l'entier x' défini par les relations: $x' \equiv 9 \cdot x + 2 \pmod{26}$; $0 \leqslant x' \leqslant 25$

Etape 3: à l'entier x', on associe la lettre correspondante dans le tableau.

- 1. Démontrer que la lettre V est codée par la lettre J.
- 2. Citer le théorème qui permet d'affirmer l'existence de deux entiers relatifs u et v tels que $9 \cdot u + 26 \cdot v = 1$. Donner sans justifier un couple (u; v) qui convient.
- 3. Démontrer que : $x' \equiv 9 \cdot x + 2 \pmod{26}$ équivaut à $x \equiv 3 \cdot x' + 20 \pmod{26}$
- 4. Décoder la lettre R.

Exercice 16

On considère le système de congruence:

$$(S): \left\{ \begin{array}{ll} n \equiv 2 \pmod{3} \\ n \equiv 1 \pmod{5} \end{array} \right.$$

où n désigne un entier relatif.

- 1. Montrer que 11 est solution de (S).
- 2. Montrer que si n est solution de (S) alors n-11 est divisible par 3.
- 3. Montrer que les solutions de (S) sont tous les entiers de la forme $11+15 \cdot k$, où k désigne un entier relatif.

Exercice 17

Soit x et y deux entiers vérifiant l'égalité:

$$y \cdot (y - x) = x \cdot (2 - x)$$

On suppose que l'entier x est un entier premier.

- 1. Démontrer que l'entier x divise y.
- 2. On pose $y = k \cdot x$ avec $k \in \mathbb{Z}$:
 - a. Montrer que x divise 2, puis que x=2.
 - b. En déduire les valeurs possibles de k.

Exercice 18

On considère l'équation (E) définie par:

$$(E): 17x - 15y = 3$$

où l'ensemble de résolution est l'ensemble des couples (x; y) d'entiers relatifs.

Démontrer que, pour tout couple (x;y) solution de (E), x est un multiple de 3.

Exercice 19

1. a. Déterminer un couple trivial (x; y) d'entiers solution de l'équation:

$$(E): -7 \cdot x + 25 \cdot y = 1$$

- b. En déduire l'ensemble des solutions entières de cette équation.
- 2. a. Déterminer un couple trivial (x; y) d'entiers solutions de l'équation:

$$(F): 135 \cdot x + 18 \cdot y = 9$$

b. En déduire l'ensemble des solutions entières de cette équation.

Exercice 20

Déterminer l'ensemble des couples (x; y), où x et y sont deux entiers relatifs, solutions de l'équation:

$$(E): 2 \cdot x + 11 \cdot y = 7$$

Exercice 21

On considère l'équation (E): 7x-6y=1 où x et y sont des entiers naturels.

- 1. Donner une solution particulière de l'équation (E).
- 2. Déterminer l'ensemble des couples d'entiers naturels solutions de l'équation (E).

Exercice 22

Les questions 1. et 2. sont indépendantes.

Soit n un entier naturel non nul.

- 1. On considère l'équation notée (E): $3x + 7y = 10^{2n}$ x et y sont des entiers relatifs.
 - a. Déterminer un couple $(u\,;v)$ d'entiers relatifs tels que : 3u+7v=1.

En déduire une solution particulière $(u_0; v_0)$ de l'équation (E).

- b. Déterminer l'ensemble des couples d'entiers relatifs (x;y) solutions de (E).
- 2. On considère l'équation notée (G):

 $3x^2 + 7y^2 = 10^{2n}$ où x et y sont des entiers relatifs.

- a. Montrer que: $100 \equiv 2 \pmod{.7}$. Démontrer que si (x; y) est solution de (G) alors: $3x^2 \equiv 2^n \pmod{.7}$
- b. Reproduire et compléter le tableau suivant :

Reste de la division euclidienne de x par 7	0	1	2	3	4	5	6
Reste de la division euclidienne de $3x^2$ par 7							

c. Démontrer que 2^n est congru à 1, 2 ou 4 modulo 7. En déduire que l'équation (G) n'admet pas de solution.

Exercice 23

On considère l'équation (E):

$$44 \cdot x + 35 \cdot y = 2$$
 $x \in \mathbb{N}, y \in \mathbb{N}$

- 1. a. A l'aide de l'algorithme d'Euclide, montrer que les entiers 44 et 35 sont premiers entre eux.
 - b. Déterminer un couple $(x_0; y_0)$ vérifiant la relation: $44 \cdot x_0 + 35 \cdot y_0 = 1$
- 2. En déduire l'ensemble des solutions de l'équation (E).

Exercice 24

Soient a et b des entiers naturels non nuls tels que:

$$pgcd(a+b;ab) = p$$

où p est un entier premier.

- 1. Démontrer que p divise a^2 .

 (On remarquera que: $a^2 = a(a+b) ab$)
- 2. En déduire que p divise a. On constate donc, de même que p divise b.
- 3. Démontrer que: pgcd(a;b) = p.

Exercice 25

On se propose d'étudier des couples (a;b) d'entiers strictement positifs, tels que:

$$a^2 = b^3$$

Soit (a;b) un tel couple. On note $d=\operatorname{pgcd}(a;b)$ et u,v les deux entiers naturels vérifiant:

$$a = d \cdot u$$
 ; $b = d \cdot v$.

- 1. Montrer que: $u^2 = d \cdot v^3$.
- 2. En déduire que v divise u, puis que v=1.
- 3. Soit (a; b) un couple d'entiers strictement positifs. Démontrer que l'on a $a^2 = b^3$ si, et seulement si, a et b sont respectivement le cube et le carré d'un même entier.