LA DÉRIVATION E02C

EXERCICE N°1 Preuve pour la fonction dérivée de $x \mapsto \sqrt{x}$ (à retenir)

Soit $x \in \mathbb{R}_+^*$ (autrement dit: x est un nombre réel (\mathbb{R}), positif (+), non nul (*)) et soit $h \in \mathbb{R}_+^*$.

Nous allons simplifier l'écriture $\frac{\sqrt{x+h}-\sqrt{x}}{h}$ en utilisant une expression conjuguée (une technique à retenir : $\sqrt{x+h}-\sqrt{x}$ a pour expression conjuguée $\sqrt{x+h}+\sqrt{x}$)

1) Justifier que $\sqrt{x+h} + \sqrt{x}$ ne s'annule pas.

Pour tout
$$x \in \mathbb{R}_{+}^{*}$$
 et tout $h \in \mathbb{R}_{+}^{*}$

$$\sqrt{x+h} > 0 \text{ et } \sqrt{x} > 0$$
Donc $\sqrt{x+h} + \sqrt{x} > 0$

$$cqfd$$

2) Simplifier l'expression : $\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}$

$$\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})} = \frac{(\sqrt{x+h})^2-(\sqrt{x})^2}{h(\sqrt{x+h}+\sqrt{x})} = \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} = \frac{1}{\sqrt{x+h}+\sqrt{x}}$$

3) En déduire le nombre dérivé en x de la fonction racine carrée.

Quand
$$h$$
 tend vers zéro, $\frac{1}{\sqrt{x+h}+\sqrt{x}}$ tend vers $\frac{1}{2\sqrt{x}}$.

Donc, pour tout $x \in \mathbb{R}_+^*$, le nombre dérivé en x de la fonction racine carrée est $\frac{1}{2\sqrt{x}}$

4) À quoi servait la question 1)?

Nous avons été amenés à diviser par l'expression $\sqrt{x+h} + \sqrt{x}$, il fallait donc s'assurer que cela était toujours possible.