Porovnanie L^1 a L^{∞} lineárnej regresie

- L¹ veľmi dobre zachytáva lineárny vzťah, môže viesť k overfittingu
- $ightharpoonup L^{\infty}$ príliš ovplyňovaná outliermi

Minimalizácia váženého súčtu noriem

- lacktriangle redukcia *overfittingu L^1* regresie váženým súčtom s L^∞ normou
- > stále implementovateľné ako úloha lineárneho programovania
- nadobúda optimum

$$\min \left(0_{k+1}^{T} \mid \omega 1_{n}^{T} \mid (1 - \omega) \right) \left(\frac{\beta}{\underline{t}} \right), \ \omega \in [0; 1]$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{-A \mid \mathbb{I}_{n} \mid 0_{n}} \right) \left(\frac{\beta}{\underline{t}} \right) \geq \left(\frac{\underline{y}}{-\underline{y}} \right)$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{-A \mid 0_{n \times n} \mid 1_{n}} \right) \left(\frac{\beta}{\underline{t}} \right) \geq \left(\frac{\underline{y}}{-\underline{y}} \right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t > 0_{n}, \ \gamma > 0$$

Minimalizácia váženého súčtu noriem

implementované ako WeightedL1LInfModel

regresia váženým súčtom noriem

porovnanie troch regresií