Planning and Acting under Uncertainty

Dra. Mª Dolores Rodríguez Moreno

Objectives

Specific Objectives

- Nondeterministic models
- Techniques to plan and act under uncertainty

Source

- Stuart Russell & Peter Norvig (2009). Artificial Intelligence: A Modern Approach. (3rd Edition). Ed. Pearsons
- Dana Nau's slides for Automated Planning. Licensed under https://creativecommons.org/licenses/by-nc-sa/2.o/

- Motivation
- Introduction
- Replanning
- Contingency Planning
- Probabilistic Planning
- Conclusions

Motivation (I)

- Deterministic models assume complete knowledge
 - Initial State
 - Effects of actions
- Nondeterministic models predict alternative options
 - An action when applied in a state may result in one among several possible states
- Real problems
 - Unexpected events can occur
 - Actions can have unexpected outcomes
 - State of the world may not be known with certainty
- Which model to use? Design choice

Motivation (II)

- i.e: the execution of an action may fail
- A deterministic model:
 - Model the nominal case (in which failure does not occur)
 - Monitor execution
 - Detect failure when it occurs
 - Recover by replanning or re-acting with some failure-recovery mechanism
- Non deterministics model:
 - Take into account all the different possible outcomes
 - May become much more complicated (conceptually & computationally)

Motivation (III)

- i.e. throw of a dice or in the toss of a coin or in a sensing action of a robot?
- Model the nominal case in not an option
- Only non-determinism is posible and can consider all possibilities
- Models may not be perfect
 - Even if we model the six outcomes of the throw of a dice the tossed dice might run off the playing board, and end up under the table
 - The robot spills water breaking its own circuit

- Motivation
- Introduction
- Replanning
- Contingency Planning
- Probabilistic Planning
- Conclusions

Introduction (I)

- Planning and acting with nondeterministic models is more challenging:
 - The search space is no longer represented as a graph, is an And/Or graph
 - 2. Plans cannot be restricted to sequences of actions, need to generate conditional plans
 - 3. The definition of solution plan is not trivial: chances of achieving a goal

Introduction (II)

- Online planning and replanning for unknown environments
- Contingency planning for partially observable and nondeterministic environments
- Sensorless planning (also known as conformant planning) for environments with no observations

- Motivation
- Introduction
- Replanning
- Contingency Planning
- Probabilistic Planning
- Conclusions

Replanning (I)

- Interleaving deliberation & execution is effective strategy to tackle nondeterminism and incomplete knowledge but needs replanning
- How carefully to monitor the environment?
 - Action monitoring: before executing an action, the agent verifies that all the preconditions still hold
 - Plan monitoring: before executing an action, the agent verifies that the remaining plan will still succeed
 - Goal monitoring: before executing an action, the agent checks to see if there is a better set of goals it could be trying to achieve

Replanning (II): action monitoring

- Motivation
- Introduction
- Replanning
- Contingency Planning
- Probabilistic Planning
- Conclusions

Contingency Planning (I)

- Construct a conditional plan \neq with branches for \neq contingencies
- Partially observable and nondeterministic environments
- Classical approach
 - Produce plans even if the initial conditions and the outcomes of some of the actions are not known
 - A plan contains actions that may or may not actually be executed, depending on the circumstances that hold at the time
 - Each time an action with an uncertain outcome is added to the plan the planner tries to achieve the goal for each different outcome of the action
 - Expensive if not simple domain

Contingency Planning (II)

- Precautionary Planning
 - Generate a high probability seed plan, which is then augmented with contingency branches to handle the most critical action outcomes
 - Any remaining outcomes will be handled by runtime replanning
 - The resulting contingent plan achieves at least a given probability threshold
 - Interleave planning and execution
 - Takes the advantage of the speed of replanning but considers the potencial unrecoverable failures and attemps to avoid them

- Motivation
- Introduction
- Replanning
- Contingency Planning
- Probabilistic Planning
- Conclusions

Probabilistic Planning

- Describes uncertainty by probability distributions
- Assumes results of actions fully observable
- Representation: PPDDL
 - Action: same as PDDL with probabilistic outcomes on actions
 - Probabilities on initial conditions

Techniques (I)

- Solving Markov Decision Processes (MDP)
 - Construction of a policy using value or policy iteration or
 - Heuristically guided forward state space search
 - Take into account all potential actions
 - Robust plans but expensive
- 2. Using planning graph models
 - To compute estimates of probability of propositions and actions
 - Guide a planner toward the most likely plan for achieving the goals

Techniques (II)

- 3. Translation into deterministic planning problems
 - Translate the problem into a classical one, then solved by classical planner
 - Deal with uncertainty in the initial state, not in the actions' outcomes
 - Deal with disjunctive uncertainty not probabilistic uncertainty
- 4. Determinization
 - Transform the given probabilistic problem into a deterministic one
 - Use heuristic based on relaxed plans to guide a deterministic planner
 - Generate solution executed until observed state differs from what's expected
 - If this happens, then re-planning

Determinization (I)

- Generate a deterministic action for each probabilistic effect
- The probability of its outcomes is transformed into an additive cost
 - $C_i = -Ln(P_i)$
 - Use a numeric planner

Determinization (II)

- Use heuristic functions based on relaxed plans to guide a deterministic planner in the search for a deterministic plan
- Do not make use of probabilistic information
- Figure shows Single-outcome determinization

- Motivation
- Introduction
- Replanning
- Contingency Planning
- Probabilistic Planning
- Conclusions

Conclusions

- Dropped the unrealistic assumption of determinism
- Presented different ways to handle with uncertainty
- FF-Replan won IPC'04 & 06 in Probabilistic track

