Introduction to High Performance Scientific Computing

Autumn, 2016

Lecture 11

Today

Further comments on f2py and timing code

Compiling and profiling fortran code

Introduction to parallel computing

Fortran timing functions

See midpoint_time.f90: timers placed around *do-loop* which computes areas of rectangles

Can use timing results to check of code is behaving "properly."

```
!timing variables
    real(kind=8) :: cpu t1,cpu t2,clock time
    integer(kind=8) :: clock_t1,clock_t2,clock_rate
call system clock(clock t1)
call cpu_time(cpu_t1)
    !loop over intervals computing each interval's contribution to
integral
... Midpoint quadrature ...
call cpu time(cpu t2)
print *, 'elapsed cpu time (seconds) =',cpu t2-cpu t1
call system clock(clock t2,clock rate)
print *, 'elapsed wall time (seconds)= ',
                          dble(clock t2-clock t1)/dble(clock rate)
```

Fortran timing functions

Run midpoint_time with N=20000 and N=40000

```
$ /midpoint_time.exe
elapsed cpu time (seconds) = 4.4400000000000038E-004
elapsed wall time (seconds) = 5.30000019E-04
N = 20000
```

 We can see the cpu time doubles (as we would hope). The wall-time shows more complicated behavior – could be related to what other background processes are running, or just the very short computation time.

- Profilers give detailed information about time spent in different parts of code
- In python: run –p filename gives profiling info
- With fortran (or c), can use gprof utility (not available on Macs)
- Steps:
 - 1. Compile code with -pg flag

```
$ gfortran -pg -o mt2.exe midpoint_time2.f90
```

- Profilers give detailed information about time spent in different parts of code
- In python: run –p filename gives profiling info
- With fortran (or c), can use gprof utility (not available on Macs)
- Steps:
 - 1. Compile code with -pg flag

```
$ gfortran -pg -o mt2.exe midpoint_time2.f90
```

2. Run code (this will generate gmon.out):

```
$ ./mt2.exe
```

3. Finally, run gprof

```
$ gprof ./mt2.exe
```

Output looks like:

```
Each sample counts as 0.01 seconds.
     cumulative
 %
                 self
                                 self
                                          total
 time
       seconds seconds
                          calls
                                 s/call s/call
                                                 name
                   6.25
                                   6.25
63.67
          6.25
                                           9.85
                                                 MAIN
36.75
          9.85
                   3.61 512000000
                                    0.00
                                            0.00
                                                  integrand_
```

and:

index % time		self	children	called	name	: n [2]	
[1]	100.0	6.25 6.25 3.61	3.61 3.61	1/1 1 2000000/5120	MAIN	in [2] [1] integrand	[2]
						3 _	[3]
[2]	100.0	0.00	9.85		sې main [2	oontaneous> 2]	
		6.25 	3.61 	1/1	MA] 	IN [1]	
		3.61	0.00 51	2000000/5120	00000	MAIN [1]	
[3]	36.6	3.61	0.00 51	2000000	integ	grand_ [3]	

- Can get line-by-line information from other tools like, oprof
- The more complicated the code, the more useful profiling becomes

Notes on compiling

• Up to now:

\$ gfortran -o program.exe program.f90 -llapack

But typically want to turn on optimization -O flag:

```
$ gfortran -03 -c program.f90
```

-O3 is highest level of optimization (can also use -O1, -O2)

Notes on compiling

Look at midpoint_time.f90 compiled with and without -O3:

```
$ ./mt2.exe
elapsed cpu time (seconds) = 0.32510499999999998
elapsed wall time (seconds) = 0.326231003
N= 25600
sum= 3.1415926537169634
error= 1.2717027431108363E-010
$ ./mt2 03.exe
elapsed wall time (seconds) = 0.144617006
N= 25600
sum= 3.1415926537169634
error= 1.2717027431108363E-010
```

- Optimization can make a substantial difference
- f2py uses -O3 by default

Notes on compiling

- Many other useful compiler flags, e.g.:
 - -Wall: "warn about all" generates warnings about common sources of bugs
 - -fbounds-check: checks that array index is within bounds of an array (common problem)
- Comprehensive list at: https://gcc.gnu.org/onlinedocs/gfortran/Invoking-GNU-Fortran.html

Moore's law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

"Transistor Count and Moore's Law - 2011" by Wgsimon - Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg#/media/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

Algorithms and hardware

Why parallelize a code?

1. Serial (single-processor) code is too slow

or

2 Serial code is too big

Parallel computing paradigms

Shared memory

- One 4-core chip with shared memory (RAM)
- MPI can coordinate communication between cores
- OpenMP generally easier to use for shared-memory systems
- MPI = Message Passing Interface
- OpenMP = Open Multi-Processing

Parallel computing paradigms

Distributed memory

- Each (4-core) chip has its own memory
- The chips are connected by network 'cables'
- MPI coordinates communication between two or more CPUs

Parallel computing paradigms

Related approaches:

- Hybrid programming: mix of shared-memory (OpenMP) and distributed-memory (MPI) programming
- GPU's: Shared memory programming (CUDA or OpenCL)
- Coprocessors and co-array programming

Example: computing an integral

Estimate integral with midpoint rule,

$$I = \int_{x_0}^{x_6} f(x) dx$$

1. Compute:

$$f(x_1^*), f(x_2^*), \dots$$

2. Compute areas of rectangles:

$$I_1 = (x_1 - x_0) * f(x_1^*)$$

3. Sum areas:

$$I \approx I_1 + I_2 + I_3 + \dots$$

Example: computing an integral

- How to parallelize?
- With three processors, can compute areas of two rectangles on each processor
- Not practical for small calculations, but could split 1e7 rectangles across, say, 10 processors

Scaling and performance

- How do we measure performance of a parallel code?
- Serial code: Optimize the efficiency → cost required to obtain a certain level of accuracy

Scaling and performance

- How do we measure performance of a parallel code?
- Serial code: Optimize the efficiency → cost required to obtain a certain level of accuracy
- Parallel code: Also optimize *scaling* or *speedup*: how much faster is the calculation when the number of procs is increased?

Speedup

- Speedup = Computation time on one proc/time on N procs = Ts/Tp
- Ideal: N = 10 processors, speedup = N = 10

Speedup

- Speedup = Computation time on one proc/time on N procs = Ts/Tp
- Ideal: N = 10 processors, speedup = N = 10
- Real life: Speedup will be less than N (possibly much less) Why?
 - Startup costs
 - Communication
 - Only part of the algorithm parallelizes
- Typically interested in performance of large problems running on large number of processors
 - Workstation: N= 16, 32
 - Imperial HPC (cx2): N = 256+
 - UK HPC (Archer): N = 1e3, 1e4, ...
- Ahmdal's law provides guidance

- Usually only part of a computation can be parallelized
 - One processor: T(1) = s + p
 - Two processors: T(2) = s + p/2
 - N processors: T(N) = s + p/N

p is the part of the code that can be parallelized

- Usually only part of a computation can be parallelized
 - One processor: T(1) = s + p
 - Two processors: T(2) = s + p/2
 - N processors: T(N) = s + p/N

p is the part of the code that can be parallelized

So, if only half the code can be parallelized (s = p = 0.5), Then the maximum speedup $T(1)/T(N \rightarrow inf) = (s+p)/(s) = 2$

It is important for p to be much larger than s!

Speedup T(1)/T(N) = (s+p)/(s+p/N)

Example: s = 0.1, p = 0.9

Number of processors	Speedup
1	1
2	1.8
4	3.1
8	4.7
16	6.4
32	7.8
256	9.7

Speedup T(1)/T(N) = (s+p)/(s+p/N)

Example: s = 0.1, p = 0.9

Number of processors	Speedup
1	1
2	1.8
4	3.1
8	4.7
16	6.4
32	7.8
256	9.7

Waste of resources to use N=256!

Strong and weak scaling

- Strong scaling: Time needed to solve a problem of fixed size as number of processors increases
- Weak scaling: Time needed for problem with fixed size per processor