Introduction to Embedded System Design using Zynq

Objectives

> After completing this module, you will be able to:

- >> Define a Zynq SoC processor component
- >> Enumerate the key aspects of the Zynq SoC processing system
- >> Describe the embedded design flow
- >> Understand the function of the IP Integrator tool
- >> Indicate how the hardware design is linked to the software development environment

Outline

- > Embedded Processor Component
- > Overview of Vivado for Embedded System Design
- > Embedded System Development Flow
- > Hardware Platform Creation
- > SDK Software Platform
- > Summary

Embedded Design Architecture in Zynq

> Embedded design with Zynq is based on:

- >> Processor and peripherals
 - Dual ARM® Cortex™ -A9 processors of Zynq-7000 SoC
 - AXI interconnect
 - AXI component peripherals
 - Reset, clocking, debug ports
- >> Software platform for processing system
 - Bare Metal Applications or OS's (e.g. Linux, FreeRTOS)
 - C language support
 - Processor services
 - C drivers for hardware
- User application
 - Interrupt service routines (optional)

EXILINX

The PS and the PL

- > The Zynq-7000 SoC architecture consists of two major sections
 - >> PS: Processing system
 - Dual ARM Cortex-A9 processor based
 - Single core versions available
 - Multiple peripherals
 - Hard silicon core
 - >> PL: Programmable logic
 - Uses the same 7 series programmable logic
 - Artix[™]-based devices: Z-7010, Z-7015 and Z-7020 (high-range I/O banks only)
 - Kintex[™]-based devices: Z-7030, Z-7035, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)

PS Components

- > The Zynq SoC processing system consists of the following blocks
 - >> Application processing unit (APU)
 - > I/O peripherals (IOP)
 - Multiplexed I/O (MIO), extended multiplexed I/O (EMIO)
 - Memory interfaces
 - PS interconnect
 - >> DMA
 - > Timers
 - Public and private
 - General interrupt controller (GIC)
 - On-chip memory (OCM): ROM and RAM
 - >> Debug controller: CoreSight

Zynq Architecture Built-in Peripherals

- > Two USB 2.0 OTG/Device/Host
- > Two Tri- Mode GigE (10/100/1000)
- > Two SD/SDIO interfaces
 - >> Memory, I/O and combo cards
- > Two CAN 2.0Bs, SPIs , I2Cs, UARTs
- > Four GPIO 32bit Blocks
 - >> 54 available through MIO; other available through EMIO
- > Multiplexed Input/Output (MIO)
 - >> Multiplexed pinout of peripherals and static memories
- > Extended MIO
 - Maps PS peripheral ports to the PL

Outline

- > Embedded Processor Component
- > Overview of Vivado for Embedded Design
- > Embedded System Development Flow
- > Hardware Platform Creation
- > SDK Software Platform
- > Summary

Vivado

> What are Vivado, IP Integrator and SDK?

- Vivado is the tool suite for Xilinx FPGA design and includes capability for embedded system design
 - IP Integrator, is part of Vivado and allows system level design of the hardware part of an Embedded system
 - Integrated into Vivado
 - Vivado includes all the tools, IP, and documentation that are required for designing systems with the Zynq-7000 SoC hard core and/or Xilinx MicroBlaze soft core processor
 - Vivado + IPI replaces ISE/EDK
- >> SDK is an Eclipse-based software design environment
 - Enables the integration of hardware and software components
 - Links from Vivado
- Vivado is the overall project manager and is used for developing non-embedded hardware and instantiating embedded systems
 - >> Vivado/IP Integrator flow is recommended for developing Zynq embedded systems

Vivado Components

> Vivado/IP Integrator

- Design environment for configuration of PS, and hardware design for PL
- >> Hardware Platform (xml)
- >> Platform, software, and peripheral simulation
- >> Vivado logic analyzer integration

> Software Development Kit (SDK)

- >> Project workspace
- >> Hardware platform definition
- Board Support Package (BSP)
- Software application
- >> Software debugging

Embedded System Tools: Hardware

> Hardware and software development tools

- >> IP Integrator
- >> IP Packager
- >> Hardware netlist generation
- >> Simulation model generation
- >> Xilinx Microprocessor Debugger (XMD)
- >> Hardware debugging using Vivado logic analyzer

Embedded System Tools: Software

> Eclipse IDE-based Software Development Kit (SDK)

- >> Board support package creation
- >> GNU software development tools
- >> C/C++ compiler for the MicroBlaze and ARM Cortex-A9 processors (gcc)
- >> Debugger for the MicroBlaze and ARM Cortex-A9 processors (gdb)
- >> TCF framework multicore debug

> Board support packages (BSPs)

- >> Stand-alone BSP
 - Free basic device drivers and utilities from Xilinx
 - NOT an RTOS

Vivado View

> Customizable panels

> A: Project Management

> B: IP Integrator

> C: FPGA Flow

> D: Project view/Preview Panel

> E: Console, Messages, Logs

Zynq Customization Processing System

- > Zynq Block Design
- > PS-PL Interface Configuration
- > Peripheral I/O Pins
- > MIO Configuration/Table View
- > Clock Configuration
- > DDR Configuration
- > SMC Timing Calculation
- > Interrupts

MIO Configuration

Peripheral I/O Pins

Project Files

> Top level Directory

>> .xpr Vivado Project File (xml file), log files, journal

> .srcs

>> Project source files, IP Integrator files

> .sim

>> Simulation related files

> .runs

>> Synthesis, Implementation runs

> .sdk

>> SDK Export directory, Hardware Platform (xml)

> .cache

>> Temporary Files

Outline

- > Embedded Processor Component
- > Overview of Vivado
- > Embedded System Development Flow
- > Hardware Platform Creation
- > SDK Software Platform
- > Summary

Embedded System Design Flow for Zynq-7000 SoC

Embedded System Design using Vivado

- > Create a new Vivado project, or open an existing project
- > Invoke IP Integrator
- > Construct(modify) the hardware portion of the embedded design
- > Create (Update) top level HDL wrapper
- > [optional] Synthesize any non-embedded components and implement in Vivado
- > Export the hardware description, and launch SDK
- > Create a new software board support package and application projects in the SDK
- > Compile the software with the GNU cross-compiler in SDK
- > [optional] Download the programmable logic's completed bitstream
- > Use SDK to download the program (the ELF file)

Embedded System Design using Vivado

Integrator Block Diagram

- > IP Integrator Block Diagram opens a blank canvas
- > IP can be added from the IP catalog
- > Drag and drop interface
- > Intelligent Design environment
 - >> Design Assistance
 - >> Connection automation
 - Highlights valid connections
 - >> Group, create hierarchal blocks
- Can create and import custom IP using IP Packager

Configuring Hardware in IP Integrator

- > Double click blocks to access configuration options
- > Drag pointer to make connections
 - >> Highlights valid connections
- > Connection Automation
 - Automatically connect recognised interfaces
- > Automatically Redraw system

🛂 Re-customize IP

AXI Ethernet (5.0)

Documentation [IP Location

Component Name | design_1_axi_ethernet_1_0

▼ Enable statistics counters
 Statistics Counter Width

@ 32bit @ 64bit

-Frame Filter Options

Statistics Counter Options

Physical Interface MAC Features FIFO & Checksum Network Timing

Allow Statistics to be reset

Exporting to SDK

> Export hardware first

- The Hardware Description File (hdf) format file containing all the relevant information will be created and placed under the *.sdk directory
- Include bitstream if generated

> Launch SDK

- Software development is performed with the Xilinx Software Development Kit tool (SDK)
- > The SDK tool will then associate user software projects to hardware

Software Development Flow

> Create hardware platform project

Automatically performed when SDK tool is launched from Vivado project

> Create BSP

- System software, board support package
- > Create software application
- > Create linker script
- > Build project
 - compile, assemble, link output file <app_project>.elf

Configuring FPGA and Downloading Application

- > Download the bitstream
 - >> Only if PL is used
 - >> Input file <top_name>.bit
- > The bitstream can be downloaded from either
 - >> Vivado
 - >> SDK
- > Requires that the download cable is connected

Outline

- > Embedded Processor Component
- > Overview of Vivado
- > Embedded System Development Flow
- > Hardware Platform
- > SDK Software Platform
- > Summary

Zynq Configuration GUI

- > Provides a graphical view of the PS to configure
 - >> ARM cores
 - >> I/O peripherals
 - >> DDR controller
 - >> Memory systems
- I/O partitioning between dedicatedPS pins and programmable logicI/O
- > PS is configured via a set of memory-mapped configuration registers

Clock Configuration

> Clock Configuration

- Input frequency can be set
 - Processor, DDR
- All IOP clock frequencies can be set
- PL fabric clocks can be enabled and configured
- >> Set Timers

Project Settings

- > Accessed from flow navigator
- Default settings are typically used
- > Set/change target device
 - Architecture, Device size, Package, Speed grade
- > Simulation, Synthesis, Implementation, Bitstream options
- > IP repository directory
 - Provide path to custom IP not present in the current project directory structure

Outline

- > Embedded Processor Component
- > Overview of Vivado
- > Embedded System Development Flow
- > Hardware Platform Creation
- > SDK Software Platform
- > Summary

Software Development Kit (SDK)

- > Full-featured software design environment
- > Separate tool from Vivado can install standalone for SW teams
- > Based on popular Eclipse open-source IDE
- > Used for software applications only; hardware design and modifications are done in Vivado
- > Well-integrated environment for seamless debugging of embedded targets
- Sophisticated software design environment with many options and features with support for
 - >> Multiple processors
 - >> Multiple software platforms
 - >> Multiple software applications
- > Fully Featured C/C++ code editor and error navigator

SDK Workbench Views

- C/C++ project outline displays the elements of a project with file decorators (icons) for easy identification
- 2. C/C++ editor for integrated software creation
- 3. Code outline displays elements of the software file under development with file decorators (icons) for easy identification
- 4. Problems, Console, Properties views list output information associated with the software development flow

Software Management Settings

- > Software is managed in three major areas >> Compiler/Linker Options Application program
 - Software Platform Settings
 - Board support package -
 - >> Linker Script Generation
 - Assigning software to memory resources
- > Covered in more detail later

Outline

- > Embedded Processor Component
- > Overview of Vivado
- > Embedded System Development Flow
- > Hardware Platform Creation
- > SDK Software Platform
- > Summary

Summary

- > Vivado includes all the tools, documentation, and IP necessary for building embedded systems
- > IPI is a System Level design tool that increases productivity, allowing designs to be completed faster
- > The Software Development Kit (SDK) is a comprehensive software development environment for software applications
- > An embedded processing system component is built with IP provided in the IP Catalog. Designers can also add their own custom IP to this catalog
- > The PS Configuration wizard permits access to several configurable features of PS

