Output:

- 1.https://colab.research.google.com/drive/1chM 96EfpXtRBLPgsns-gcKtQ0DjJQvCD
- 2.https://colab.research.google.com/drive/1ki0chl6qm01JWFk0_sUftZ_e372jSsmc
- 3.https://colab.research.google.com/drive/1phfceJYvH6R4uV-dCEvK9sl0sm1QkiQw
- 4.https://lookerstudio.google.com/reporting/b9b 058f8-df07-4f8f-ac71-63d985fb2455/page/XDzTD

Final Project Presentation

Nomor Kelompok: 30

Nama Mentor: Erwin Fernanda

Data Analytics Class

Program Studi Independen Bersertifikat Zenius Bersama Kampus Merdeka

KELOMPOK 30

Dinny Meilinda Sari Universitas Komputer Indonesia

Christ Jordan Baeha Universitas Katolik Santo Thomas

Zulfa Nabilah Nurvitasari Universitas Brawijaya

Fiqih Imanul Haq Universitas Muhammadiyah Purwokerto

Sania Salsabila Agustin Universitas Negeri Semarang

Data Analysis Home Credit Default Risk

- 1. Latar Belakang
- 2. Explorasi Data dan Visualisasi
- 3. Modelling
- 4. Kesimpulan

Latar Belakang

Karena adanya pemohon yang tidak mengembalikan peminjaman sebanyak 8,1% maka dibutuhkan analisis bagi penyedia Pinjaman untuk mengetahui pemohon Pinjaman yang kemungkinan besar akan membayar kembali pinjaman tersebut. Dengan cara ini perusahaan dapat menghindari kerugian dan mendatangkan keuntungan besar.

Exploratory Data Analysis

Bussines Understanding

Mengelola risiko gagal bayar pada pinjaman Home Credit

Mengurangi risiko kerugian

Meningkatkan kualitas portofolio pinjaman

Menyediakan pinjaman kepada individu tanpa akses ke sistem perbankan tradisional

Data Collection

Sumber Data: Home Credit Default Risk

https://www.kaggle.com/competitions/home-credit-default-risk/data

Dataset	Jumlah Record	Jumlah Kolom	Missing Values
application_train.csv	307.511	122	67 kolom, > 50%
bureau.csv	1.716.428	17	7 kolom, > 50%
previous_application.c sv	1.670.214	37	16 kolom, >55%

Data Preparation

- Melakukan encoding dan mendapat 4 kolom yang berhasil di encoding.
- Menambahkan 4 kolom baru sebagai Domain Knowledge Features yaitu:

Nama Kolom	Keterangan
CREDIT_INCOME_PERCENT	persentase jumlah kredit relatif terhadap pendapatan klien. ('AMT_CREDIT' / 'AMT_INCOME_TOTAL')
ANNUITY_INCOME_PERCENT	persentase anuitas pinjaman relatif terhadap pendapatan klien. ('AMT_ANNUITY' / 'AMT_INCOME_TOTAL')
CREDIT_TERM	lamanya pembayaran dalam beberapa bulan (karena anuitas adalah jumlah bulanan yang jatuh tempo). ('AMT_ANNUITY' / 'AMT_CREDIT')
DAYS_EMPLOYED_PERCENT	persentase hari bekerja relatif terhadap usia klien. ('DAYS_EMPLOYED' / 'DAYS_BIRTH')

Data Preparation

- Mengubah seluruh isi Missing Value/Nilai yang hilang menjadi Median kolom tersebut.
- Membuat dataset yang telah diencoding, dan ditambahkan Domain Knowledge Features dan diisi nilai Missing Value nya menjadi cleandata.csv

Persentase pinjaman yang dilunasi

Ket :

0 = pinjaman dilunasi

1 = pinjaman tidak dilunasi

Persentase pinjaman (berdasarkan jenis kelamin klien)

Tabel Kontingensi						
TARGET 0 1						
CODE_GENDER						
F	188278	14170				
M	94404	10655				
XNA	4	0				

Ket.:

0 = pinjaman dilunasi

1 = pinjaman tidak dilunasi

Persentase pinjaman (berdasarkan status keluarga)

Kategori klien tertinggi yang melakukan peminjaman adalah sudah menikah, diikuti "Single/belum menikah" dan "civil marriage".

Dalam hal persentase tidak dilunasi pinjaman, "civil marriage" memiliki persentase tidak dilunasi tertinggi (10%), dengan "Janda" yang terendah (pengecualian "unknown").

Persentase pinjaman (berdasarkan pekerjaan)

Kategori klien tertinggi pinjaman diambil oleh "Buruh", diikuti oleh "Staf Penjualan". "Staf IT" mengambil jumlah pinjaman terendah.

Kategori dengan persentase pinjaman tidak dilunasi tertinggi adalah "Buruh Keterampilan Rendah" (di atas 17%), diikuti oleh "Pengemudi" dan "Staf Pelayan/Barmen", "Staf Keamanan", "Buruh" dan "Staf Memasak".

Persentase pinjaman (berdasarkan pendidikan)

Mayoritas klien berpendidikan menengah/menengah khusus, diikuti oleh klien berpendidikan tinggi. Hanya sedikit sekali yang bergelar sarjana.

Kategori menengah bawah, meskipun jarang, memiliki tingkat tidak mengembalikan pinjaman terbesar (11%). Orang-orang dengan gelar Akademik memiliki tingkat tidak membayar kurang dari 2%.

Persentase pinjaman (berdasarkan jenis tempat tinggal)

Lebih dari 250.000 pemohon kredit mendaftarkan rumah mereka sebagai Rumah/apartemen.

Kategori berikut memiliki jumlah klien yang sangat kecil (bersama orang tua, apartemen Kota).

Dari kategori ini, *Apartemen* sewaan dan bersama orang tua memiliki tingkat tidak dapat dilunasi lebih dari 10%.

Correlation Heatmap

Ketiga kolom EXT_SOURCE memiliki korelasi negatif dengan target, yang menunjukkan bahwa seiring dengan peningkatan nilai EXT_SOURCE, klien cenderung membayar kembali pinjamannya.

Most Positive Values

No.	Nama Kolom	Correlation Value
1.	TARGET	1.000000
2.	DAYS_EMPLOYED	0.074958
3.	REGION_RATING_CLIENT_W_CITY	0.060893
4.	REGION_RATING_CLIENT	0.058899
5.	DAYS_LAST_PHONE_CHANGE	0.055218
6.	DAYS_ID_PUBLISH	0.051457
7.	REG_CITY_NOT_WORK_CITY	0.050994
8.	FLAG_EMP_PHONE	0.045982
9.	REG_CITY_NOT_LIVE_CITY	0.044395
10.	FLAG_DOCUMENT_3	0.044346

Most Negative Values

No.	Nama Kolom	Correlation Value
1.	FLOORSMAX_MEDI	-0.043768
2.	FLOORSMAX_MODE	-0.043226
3.	AMT_GOODS_PRICE	-0.039645
4.	REGION_POPULATION_RELATIVE	-0.037227
5.	ELEVATORS_AVG	-0.034199
6.	ELEVATORS_MEDI	-0.033863
7.	FLOORSMIN_AVG	-0.033614
8.	FLOORSMIN_MEDI	-0.033394
9.	LIVINGAREA_MEDI	-0.032739
10.	LIVINGAREA_AVG	-0.032997

Modelling

BAGAN

Logistic Regression Balancing Class SMOTETomek

Random Forest

Random Over Sampler

Logistic Regression

Classification Report

	precision	recall	f1-score	support
0	0.92	1.00	0.96	56507
1	0.00	0.00	0.00	4996
accuracy			0.92	61503
macro avg	0.46	0.50	0.48	61503
weighted avg	0.84	0.92	0.88	61503

Random Forest

Classification Report

	precision	recall	f1-score	support
0	0.92	1.00	0.96	56507
1	0.65	0.00	0.01	4996
accuracy			0.92	61503
macro avg	0.79	0.50	0.48	61503
weighted avg	0.90	0.92	0.88	61503

Balancing class - using SMOTETomek (Logistic Regression)

Classification Report

	precision	recall	f1-score	support
0	0.79	0.84	0.82	89
1	0.87	0.82	0.84	111
accuracy			0.83	200
macro avg	0.83	0.83	0.83	200
weighted avg	0.83	0.83	0.83	200

Balancing class - using SMOTETomek (Random Forest)

Classification Report

	precision	recall	f1-score	support
0	0.84	0.90	0.87	89
1	0.91	0.86	0.89	111
accuracy			0.88	200
macro avg	0.88	0.88	0.88	200
weighted avg	0.88	0.88	0.88	200

Balancing class - using Random Over Sampler (Logistic Regression)

Classification Report

	precision	recall	f1-score	support
0	0.80	0.83	0.81	89
1	0.86	0.83	0.84	111
accuracy			0.83	200
macro avg	0.83	0.83	0.83	200
weighted avg	0.83	0.83	0.83	200

Confusion Matrix

Nilai ROC AUC sebesar 0.83.

Balancing class - using Random Over Sampler (Random Forest)

Classification Report

		•		
	precision	recall	f1-score	support
0	0.84	0.91	0.87	89
1	0.82	0.86	0.89	111
accuracy			0.88	200
macro avg	0.88	0.88	0.88	200
weighted avg	0.88	0.88	0.88	200

Confusion Matrix

Nilai ROC AUC sebesar 0.88.

Terima kasih!

Ada pertanyaan?

