

Computer Fundamentals

Dr. Safdar Nawaz Khan Marwat DCSE, UET Peshawar

Lecture 13

How Networks are Structured

- > Server based network
 - □ Node is any network device
 - ☐ Servers control what the node accesses
 - Users gain access by logging in
 - ☐ Server is the most important computer
 - □ E.g. file server, application server, web server, network server

How Networks are Structured (cont.)

- Client/Server network
 - ☐ Type of server-based network
 - □ Nodes and servers share processing and storage workloads
 - Nodes are called clients
 - Servers are used to control access
 - □ Database software
 - Access to data controlled by server
 - Server is the most important computer

How Networks are Structured (cont.)

How Networks are Structured (cont.)

- > Peer to peer networks (P2PN)
 - ☐ All nodes are equal
 - □ Nodes connected and share resources without going through server
 - E.g. ad-hoc network
 - □ Nodes access resources on other nodes
 - ☐ Each node controls its own resources
 - Most modern OS allow P2PN
 - ☐ Distributed computing is a form
 - Use processing power of other computers

Network Topologies

- > Topology
 - ☐ Layout of wires and equipment
 - ☐ Choice affects
 - Network performance
 - Network size
 - Network collision detection
 - Several different types
 - Logical
 - Physical

- > Packets
 - ☐ Pieces of data transmitted over a network
 - o Packets are created by sending node
 - Data is reassembled by receiving node
 - □ Packet header
 - Sending and receiving address
 - Packet payload
 - Number and size of data
 - o Actual data
 - Packet error control
 - Optional

- Bus topology
 - ☐ Also called linear bus
 - ☐ One wire connects all nodes
 - ☐ Terminator ends the wires
 - Advantages
 - Easy to setup
 - Small amount of wire
 - Disadvantages
 - Slow
 - Easy to crash

- > Star topology
 - ☐ All nodes connect to a hub
 - Packets sent to hub
 - Hub sends packet to destination
 - Advantages
 - Easy to setup
 - One cable can not crash network
 - Disadvantages
 - One hub crashing downs entire network
 - Uses lots of cable
 - Most common topology

- > Ring topology
 - □ Nodes connected in a circle
 - Tokens used to transmit data
 - Nodes must wait for token to send
 - Advantages
 - Time to send data is known
 - No data collisions
 - Disadvantages
 - Slow
 - Lots of cable

- > Mesh topology
 - ☐ All computers connected together
 - o n(n-1)/2 full duplex links required¹
 - Advantage
 - o Data will always be delivered
 - Disadvantages
 - Lots of cable
 - Hard to setup

- > Tree topology
 - Combination of characteristics of star and bus topology

Network Media

- > Network links
 - ☐ Connect network nodes
- Choice of media impacts
 - □ Speed
 - Security
 - ☐ Size

Wire Based Media

- Twisted-pair cabling
 - Most common LAN cable
 - ☐ Called Cat5 or 100BaseT
 - □ Four pairs of copper cable twisted
 - ☐ May be shielded from interference
 - ☐ Speeds range
 - o 1 Mbps to 1,000 Mbps

Wire Based Media (cont.)

- > Coaxial cable
 - ☐ Similar to cable TV wire
 - ☐ One wire runs through cable
 - ☐ Shielded from interference
 - ☐ Speeds up to 10 Mbps
 - ☐ Nearly obsolete

Wire Based Media (cont.)

- > Fiber-optic cable
 - □ Data is transmitted with light pulses
 - ☐ Glass strand instead of cable
 - ☐ Immune to interference
 - ☐ Very secure
 - ☐ Hard to work with
 - ☐ Speeds up to 100 Gbps

Wireless Media

- > Data transmitted through air
- > LANs use radio waves
- > WANs use satellites and microwave signals
- > Easy to setup
- > Difficult to secure

History

- Light for communication
 - □ Torches, flags (semaphore), ...
 - □ Signaling towers of Han-Dynasty in China (206 BC 24 AD)
 - \square Smoke signals for communication in Greece (150 BC)
 - □ Optical telegraph of Claude Chappe (1794 esp. French Revolution)

Frequency Spectrum

1. The electromagnetic frequency spectrum ranges from dc to light. The lower radio frequencies are designated mainly by frequency. The optical ranges are referred to by wavelength.

ELF = Extremely Low Frequency, VF = Voice Frequency, VLF = Very Low Frequency, LF = Low Frequency,

MF = Medium Frequency, HF = High Frequency, VHF = Very High Frequency, UHF = Ultra High Frequency,

SHF = Super High Frequency, EHF = Extremely High Frequency

Frequency and wavelength: $\lambda = c/f$

With wavelength λ , speed of light $c = 3 \times 10^8 \text{m/s}$, frequency f

 $\textbf{Source}: \ http://electronic design.com/communications/understanding-solutions-crowded-electromagnetic-frequency-spectrum and the solution of the solution$

Mobile Networks

- > Cellular principle
 - Segmentation of coverage area in smaller areas (Bell Labs patent 1972)
- > Spatial frequency reuse
 - Modelling of cells as hexagons
 - ☐ Every cell uses a particular frequency
 - \square Frequency reuse factor, k (also called cluster size)
 - Adjacent cells should use a different frequency
 - \square Frequency reuse separation, D

Source: Dr. U. Türke, UMTS-3G Mobile Communication Systems, University of Bremen

Mobile Networks (cont.)

- > Handover
 - ☐ Handoff to another base station
- > Mandatory handover
 - Distance too large
 - ☐ Receive level too low
- > Handover for performance improvement
 - Better receive level of adjacent cell
 - ☐ High traffic load
- Threshold for handover
 - Avoid ping-pong effect

