Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital - IMD Núcleo de Pesquisa e Inovação em Tecnologia da Informação - Npitl

Programação de Microcontroladores PIC - Dia 01

Ministrantes: Fellipe Augusto

Ricardo Silva

Roteiro

- Arquitetura PIC
- Apresentação Ambiente MPLAB (antigo)
- Apresentação MPLAB X
- Apresentação Linguagem Assembly
- Apresentação da ferramenta de simulação Proteus
- Apresentação do kit Exsto

Objetivos

- Explorar a entender a arquitetura de hardware de microcontroladores;
- Desenvolver aplicações básicas em baixo nível de abstração
 - o Observar a interação entre hardware e software

PIC - Programmable Interface Controller

- Produto da Microchip Technology;
- Microcontrolador RISC de arquitetura Harvard com capacidade de processamento de dados de 8, 16 e 32 bits

PIC - Arquitetura

VER PÁGINA 13 DO DATASHEET

PIC - Instruções

VER PÁGINA 318 DO DATASHEET

Programação dos GPIOs do PIC

PORTS, TRIS e LATS Ver Página 115

Ambiente MPLAB IDE v8

- Tour pelo ambiente MPLAB IDE + Primeiro Código Assembly
 - Acionar LED via Botão

Ambiente MPLAB X

- Tour pelo Ambiente MPLAB X + Primeiro Código Assembly:
 - o BLINK com Delay

Ambiente de Simulação - PROTEUS

Configuração do Timer0

- Registrador contador/temporizador configurável de 8 ou 16 bits
- Tempo de incremento (Ti): 1/(Fosc/(4*Prescaler)), onde Fosc é a frequência do cristal e Prescaler é o fator de divisão
- Tempo de estouro: Ti * 2^n, onde n é o tamanho em bits do registrador
- Mais detalhes na página 109 do datasheet

Exemplo

- Cristal de 8MHZ \Rightarrow Fosc=8000000 \Rightarrow Fosc/4 = 2MHz
- Utilizando um prescaler arbitrário de 64 ⇒ Frequência de incremento (Fi)
 = 2MHz/64 = 31.250 kHz ⇒ Tempo de Incremnto (Ti) = 1/ Fi = 32 us.
- Ti*256 (tempo até estouro) = 8.129 ms. Para contar 1 segundo, precisaríamos de aproximadamente 122 estouros do Timer

KIT Didático EXSTO NEO201

 Ambiente de desenvolvimento para facilitar o aprendizado e desenvolvimento de projetos baseados em microcontroladores PIC, especialmente na utilização de seus periféricos.

