この note では Hartshorne "Algebraic Geometry" p.61 にある sheaf property (3) を Identity Axiom と呼び、同じく (4) を Gluability Axiom と呼ぶ. これらの名称は Vakil "Foundations of Algebraic Geometry" にあるものである.

Ex1.1 Constant Sheaf is Associated to Constant Presheaf.

A:: abelian group, X:: topological space とする. 任意の空でない開集合 $U\subseteq X$ について $\mathcal{F}(U)=A$ とし, restriction map $\rho_{UV}:\mathcal{F}(U)\to\mathcal{F}(V)$ は id_A とする. この \mathcal{F} を constant presheaf と呼ぶ. \mathcal{F} に対応する sheaf を \mathcal{F}^+ としよう. 開集合 $U\subseteq X$ に対し, $\mathcal{F}^+(U)=\{f:U\to A\mid f:: \mathrm{continus.}\}$ を示す.

まず,明らかに

$$\mathcal{F}_P = \{ \langle U, s \rangle \mid U :: \text{ open in } X, s \in A \} = \{ \langle X, s \rangle \mid s \in A \} \cong A$$

なので $\bigcup_{P\in U}\mathcal{F}_P\cong A$. $\mathcal{F}^+(U)$ の元 $s(=\langle U,s\rangle)$ は,以下の条件を満たすものである.

$$\forall P \in U, \exists P \in V \subseteq U, \exists t \in \mathcal{F}(V), \forall Q \in V, t_P = s(Q).$$

これはtとしてs自身が取れるので常に成り立つ. Aに離散位相を入れているので,

$$\{f: U \to A \mid f :: \text{continus.}\} = \{f: U \to A \mid 2^A \subseteq f(\mathcal{O}_U).\} = \text{Hom}(U, A) = \mathcal{F}^+(U).$$

Ex1.2 The Image/Kernel in a Sheaf/Stalk.

- (a) $(\ker \phi)_P = \ker \phi_P, (\operatorname{im} \phi)_P = \operatorname{im} \phi_P$.
 - $\phi: \mathcal{F} \to \mathcal{G}$ と任意の点 P について $(\ker \phi)_P = \ker \phi_P, (\operatorname{im} \phi)_P = \operatorname{im} \phi_P$ を示す.
- ■ker 単なる変形である.

$$\begin{aligned} &\ker \phi_P \\ = &\{s_P \in \mathcal{F}_P \mid \phi_P(s_P) = 0.\} \\ = &\{s \in \mathcal{F}(V) \mid P \in {}^\exists V :: \text{ open in } X, \ \phi_V(s) = 0.\} \\ = &(\{s \in \mathcal{F}(V) \mid {}^\exists V :: \text{ open in } X, \ \phi_V(s) = 0.\})_P \\ = &(\ker \phi)_P \end{aligned}$$

■im 途中までは ker と同様である.

$$\begin{split} & \operatorname{im} \phi_{P} \\ = & \{t_{P} \in \mathcal{G}_{P} \mid \exists s_{P} \in \mathcal{F}_{P}, \ \phi_{P}(s_{P}) = t_{P}.\} \\ = & \{t \in \mathcal{G}(V) \mid P \in \exists V :: \text{ open in } X, \ \exists s \in \mathcal{F}(V), \ \phi_{V}(s) = t.\} \\ = & (\{t \in \mathcal{G}(V) \mid \exists V :: \text{ open in } X, \ \exists s \in \mathcal{F}(V), \ \phi_{V}(s) = t.\})_{P} \end{split}$$

最後の行の $(...)_P$ 内は presheaf $\operatorname{im}^{pre} \phi$ である. sheafification によって stalk は変わらないから, $\operatorname{im} \phi_P = (\operatorname{im}^{pre} \phi)_P = (\operatorname{im} \phi)_P$.

(b) $\phi :: inj/surj \iff {}^{\forall}P \in X, \ \phi_P :: inj/surj.$

まず、Prop1.1 を $\phi = id_{\mathcal{F}} = id_{\mathcal{G}}$ の場合について適用すれば

$$\mathcal{A} = \mathcal{B} \iff {}^{\forall}P \in X, \quad \mathcal{A}_P = \mathcal{B}_P$$

が言えることに注意する. これと (a) を合わせると主張が示せる. まず $\phi: \mathcal{F} \to \mathcal{G}:: inj$ について.

$$\ker \phi = 0 \iff (\ker \phi)_P = 0_P \iff \ker \phi_P = 0.$$

 $\phi: \mathcal{F} \to \mathcal{G} :: \text{surj}$ についても以下の通り.

$$\operatorname{im} \phi = \mathcal{G} \iff (\operatorname{im} \phi)_P = \mathcal{G}_P \iff \operatorname{im} \phi_P = \mathcal{G}_P.$$

(c) $\mathcal{F} \xrightarrow{\phi} \mathcal{G} \xrightarrow{\psi} \mathcal{H}$ is exact $\iff \mathcal{F}_P \xrightarrow{\phi_P} \mathcal{G}_P \xrightarrow{\psi_P} \mathcal{H}_P$ is exact.

示すべきは以下の命題である.

$$\operatorname{im} \phi = \ker \psi \iff \operatorname{im} \phi_P = \ker \psi_P.$$

しかしこれも Prop1.1 と (a) より明らか.

Ex1.3 Surjectivity of Morphism is Local Property.

(a) Paraphrase of Surjectivity.

 $\mathcal{F}, \mathcal{G}: X \to A, \phi: \mathcal{F} \to \mathcal{G}$ について $\phi::$ surj が以下の命題と同値であることを示す.

$$(*) \quad ^\forall U :: \text{ open in } X, \quad ^\forall s \in \mathcal{G}(U), \quad \bigcup ^\exists U_i = U, \quad ^\exists t_i \in \mathcal{F}(U_i), \quad ^\forall i, \quad \phi(t_i) = s|_{U_i}.$$

 ϕ :: surj ならば covering $\{U_i\}$ として U をとり、 $\phi(t) = s$ となる t を t_i とすれば良い.

逆を示す。Ex1.2b より、任意の $P \in U$ について ϕ_P :: surj であることを示せば良い。仮定より $P \in V \subseteq U$ となる V ((*) 中の $U_i)$ が存在し、 $\phi_P(t_P) = s|_V = s_P$ を満たす $t_P \in \mathcal{F}(V) \subseteq \mathcal{F}_P$ が存在 する。よって ϕ_P :: surj.

(b) Give an Counterexample.

以下の morphism は surjective だが $\phi(U): \mathcal{F}(U) \to \mathcal{G}(U)$ が surjective でない. sheaf $\mathcal{F}: \mathbb{C}-0 \to \mathbb{C}$ を、穴あき平面 $\mathbb{C}-0$ 全体で正則な関数全体 (Example 1.0.2) とする. $\mathcal{G}: \mathbb{C} \to \mathbb{C}$ は \mathbb{C} 全体で正則な関数全体とする. そして $\phi: \mathcal{F} \to \mathcal{G}$ を $f \mapsto \frac{d}{dx}(1/f)$ で定義する. (TODO)

Ex1.4 Induced Injective Sheaf Morphism.

(a) Injective Presheaf Morphism Induces Injective Sheaf Morphism.

以下は可換図式である.

これを stalk をとる関手 $\lim_{P \to P} \text{ CF}$ で写すと、Prop-Def1.2 の直後に言及されている $\mathcal{F}_P = \mathcal{F}_P^+$ から、以下が得られる.

$$\begin{array}{ccc}
\mathcal{F}_{P}^{+} & \xrightarrow{\phi_{P}^{+}} \mathcal{G}_{P}^{+} \\
\parallel & & \parallel \\
\mathcal{F}_{P} & \xrightarrow{\phi_{P}} \mathcal{G}_{P}
\end{array}$$

この可換図式から $\phi_P = \phi_P^+$. よって Ex1.2b から ϕ :: inj $\iff \phi^+$:: inj.

(b) Natural Induced Map $\operatorname{im} \phi \to \mathcal{G}$ is Injective.

埋め込み写像 $\operatorname{im}^{pre} \phi \hookrightarrow \mathcal{G}$ は injective なので、ここから誘導される $\operatorname{im} \phi \to \mathcal{G}$ も injective.

Ex1.5 For Morphism of Shaves, iso=inj+surj.

 $\phi: \mathcal{F} \to \mathcal{G}$ を考える. ϕ が iso であることと、任意の点 P で ϕ_P が iso であることは同値。また、 ϕ が inj+surj であることと、任意の点 P で ϕ_P が inj+surj であることは同値である。これらはそれぞれ Prop1.1 と Ex1.2 から理解る.よって ϕ_P について iso=inj+surj を確かめれば必要十分.

 $\blacksquare \phi_P :: \text{iso} \implies \phi_P :: \text{inj+surj.} \quad \phi_P :: \text{iso } \text{$\texttt{$a$}$} \text{$\texttt{$b$}$} \text{$\texttt{$i$}$},$

$$\forall x_1, x_2 \in \mathcal{F}_P, \ \phi_P(x_1) = \phi_P(x_2) \implies \phi_P^{-1} \circ \phi_P(x_1) = x_1 = x_2 = \phi_P^{-1} \circ \phi_P(x_2)$$

すなわち ϕ_P :: inj. 同時に

$$\forall y \in \mathcal{G}_P, \ \phi_P(\phi_P^{-1}(y)) = y$$

すなわち $φ_P$:: surj.

 $\blacksquare \phi_P$:: iso $\iff \phi_P$:: inj+surj. まず ϕ_P :: surj から以下が成り立つ.

$$\forall y \in \mathcal{G}_P, \quad \exists x \in \mathcal{F}_P, \quad \phi_P(x) = y.$$

この命題を満たす $x \in \mathcal{F}_P$ は ϕ_P :: inj からただひとつである.

$$\forall y \in \mathcal{G}_P, \quad \exists_1 x \in \mathcal{F}_P, \quad \phi_P(x) = y.$$

なので $\phi_P^{-1}(y)=x$ と定めればこれは写像になる. なお, ϕ_P でなく ϕ で議論をすると,構成した ϕ の naturality を示す必要がある.

Ex1.6 Short Exact Sequence of Sheaves.

(a) Natural Map $q: \mathcal{F} \to \mathcal{F}/\mathcal{F}'$ Has $\operatorname{im} q = \mathcal{F}/\mathcal{F}'$ and $\ker q = \mathcal{F}'$.

quotient sheaf の定義 (p.65) より,任意の点 P について $(\mathcal{F}/\mathcal{F}')_P = \mathcal{F}_P/\mathcal{F}'_P$ †1. よって q から誘導される q_P は $\mathcal{F}_P \to \mathcal{F}_P/\mathcal{F}'_P$ の自然な写像である.im $q_P = \mathcal{F}_P/\mathcal{F}'_P$, ker $q_P = \mathcal{F}'$ となるから,Ex1.2a より主張が得られる.

^{†1} これは sheafification functor $sh_X: \mathbf{PSh}(X,\mathfrak{C}) \to \mathbf{Sh}(X,\mathfrak{C})$ が forgetful functor の left adjoint functor であること,及び left adjoint functor は colimit を保つことからも得られる.

(b) If $0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}'' \to 0$ is Exact, ...

仮定より、 $0 = \ker f$ 、im $f = \ker g$, im $g = \mathcal{F}''$. よって f は inj で、 $f|^{\operatorname{im} f}: \mathcal{F}' \to \operatorname{im} f$ は surj+inj. なので $\operatorname{Ex} 1.5$ よりこれは iso であり、 \mathcal{F}' は im $f \subset \mathcal{F}$ と同型である.続けて $g: \mathcal{F} \to \mathcal{F}''$ から誘導される $g_P: \mathcal{F}_P \to \mathcal{F}_P''$ を考える.定義より $\mathcal{F}_P, \mathcal{F}_P''$ は abelian group (abelian group の圏での colimit) で、 g_P は その morphism. だから abelian group の準同型定理からの帰結として $\mathcal{F}_P/\ker g_P = (\mathcal{F}/\ker g)_P \cong \mathcal{F}_P''$ が得られる. Prop1.1 より $\mathcal{F}'' \cong \mathcal{F}/\ker g = \mathcal{F}/\ker f \cong \mathcal{F}/\mathcal{F}'$.

Ex1.7 $\operatorname{im} \phi \cong \mathcal{F} / \ker \phi$, and $\operatorname{coker} \phi \cong \mathcal{G} / \operatorname{im} \phi$.

 $\phi: \mathcal{F} \to \mathcal{G}$ について考える. im $\phi \cong \mathcal{F}/\ker \phi$ は以下の完全列に Ex1.6b を用いて得られる.

$$0 \to \ker \phi \xrightarrow{i} \mathcal{F} \xrightarrow{\phi} \operatorname{im} \phi \to 0.$$

ただしi は埋め込み写像である. $\operatorname{coker} \phi \cong \mathcal{G} / \operatorname{im} \phi$ は同様に以下の完全列から得られる.

$$0 \to \operatorname{im} \phi \xrightarrow{\phi} \mathcal{G} \xrightarrow{q} \operatorname{coker} \phi \to 0.$$

ただし q は $q^{pre}: \mathcal{G} \to \operatorname{coker} \phi = \mathcal{G}/\operatorname{im} \phi$ から誘導される写像. これが完全列であることは次のように示される. まず Ex1.6a を用いて stalk の完全列を得る.

$$0 \to \operatorname{im} \phi_P \xrightarrow{\phi_P} \mathcal{G}_P \xrightarrow{q_P} \operatorname{coker} \phi_P = \mathcal{G}_P / \operatorname{im} \phi_P \to 0.$$

Ex1.2a,c を用いて元の列が完全であることが示される.

Ex1.8 $\forall U \subset X, \quad \Gamma(U, -) ::$ left exact functor

以下を $X \to A$ の sheaves がなす完全列とする.

$$0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}''$$
.

完全列なので $0=\ker f, \operatorname{im} f=\ker g.$ $A\mapsto \mathcal{A}(U)$ で定義される functor $\Gamma(U,-)$ により、この完全列は以下の列になる。

$$0 \to \mathcal{F}'(U) \xrightarrow{f_U} \mathcal{F}(U) \xrightarrow{g_U} \mathcal{F}''(U).$$

これが完全列であることは $0 = \ker f_U, \operatorname{im} f_U = \ker g_U$ と同値.

まず $\ker f$ を考えると、定義より $0=(\ker f)(U)=\ker f_U$. よって f_U :: inj. また、 $\Gamma(U,-)$ は functor だから

$$0 = \Gamma(U, g \circ f) = \Gamma(U, g) \circ \Gamma(U, f) = 0.$$

 $\forall x h \land g_U \circ f_U = 0, \text{ im } f_U \subseteq \ker g_U.$

残るは逆の包含関係である。まず $s \in \ker g_U \subseteq \mathcal{F}(U)$ を取る。Ex1.2a より、任意の $P \in U$ について $\inf_P = \ker g_P$ なので任意の点 P について $s_P \in \inf_P = \ker g_P$ であり、 $f_P(t_P) = s_P$ となる $t_P \in \mathcal{F}'_P$ が存在する。そこで s_P, t_P の代表元 $\langle V_P, s|_{V_P} \rangle$ 、 $\langle V_P, t^P|_{V_P} \rangle$ をとると $f_{V_P}(t^P|_{V_P}) = s|_{V_P}$ となる。同様に別の点 $Q \in U, t_Q = \langle V_Q, t^Q|_{V_Q} \rangle$ をとると, $W_{PQ} := V_P \cap V_Q$ について

$$f_{W_{PQ}}(t^P|_{W_{PQ}}) = s|_{W_{PQ}} = f_{W_{PQ}}(t^Q|_{W_{PQ}}).$$

 $0=(\ker f)(W_{PQ})=\ker f_{W_{PQ}}$ より $f_{W_{PQ}}$ は inj. したがって $t^P|_{W_{PQ}}=t^Q|_{W_{PQ}}$ が得られる. $(P\in W_{PQ})$ は U を被覆するから,Gluability Axiom より, $t|_{W_{PQ}}=t^P|_{W_{PQ}}=t^Q|_{W_{PQ}}$ なる $t\in \mathcal{F}'(U)$ が存在する.morphism と restriction の naturality により,

$$f_U(t)|_{W_{PQ}} = f_{W_PQ}(t|_{W_{PQ}}) = f_{W_{PQ}}(t^P|_{W_{PQ}}) = s|_{W_{PQ}}$$

となるから、Identity Axiom より $f_U(t) = s$. 以上より im $f_U \supseteq \ker q_U$.

Ex1.9 Direct Sum.

sheaves $\mathcal{F}, \mathcal{G}: X \to \mathfrak{C}$ について, $\mathcal{F} \oplus \mathcal{G}$ を以下で定める.

$$\mathcal{F} \oplus \mathcal{G} : U \mapsto \mathcal{F}(U) \oplus \mathcal{G}(U).$$

ただし U :: open in X. これが presheaf であることは自明なので、sheaf であることを示す. 以下、U :: open in X とその開被覆 $\{U_i\}$ を固定する.

■ $\mathcal{F} \oplus \mathcal{G}$ Satisfies Identity Axiom. $s \oplus t \in \mathcal{F}(U) \oplus \mathcal{G}(U)$ が $(s \oplus t)|_{U_i} = 0 \oplus 0 = 0$ を満たすとする.この仮定を論理式で書下すと,

$$\forall P \in U_i, (s \oplus t)(P) = s(P) \oplus t(P) = 0 \oplus 0.$$

abelian group の coproduct は product と同型だから、これは以下のように書き換えられる.

$$\forall P \in U_i, \quad s(P) = 0 \land t(P) = 0.$$

これは $s|_{U_i}=t|_{U_i}=0$ と同値.なので \mathcal{F},\mathcal{G} は sheaf であることから s=t=0. すなわち $s\oplus t=0$.

■ $\mathcal{F} \oplus \mathcal{G}$ Satisfies Gluability Axiom. $s_i \oplus t_i \in \mathcal{F}(U_i) \oplus \mathcal{G}(U_i)$ が存在し、以下を満たすとする.

$$\forall i, j, \quad (s_i \oplus t_i)|_{U_i \cap U_j} = (s_j \oplus t_j)|_{U_i \cap U_j}.$$

前段落と同様に書き換えて,以下が得られる.

$$\forall i, j, \quad s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \wedge t_i|_{U_i \cap U_j} = t_j|_{U_i \cap U_j}.$$

 \mathcal{F}, \mathcal{G} は sheaf であることから、以下を満たす $s \in \mathcal{F}(U_i), t \in \mathcal{G}(U_i)$ が存在する.

$$\forall i, \ s|_{U_i} = s_i \wedge t|_{U_i} = t_i.$$

この s,t について $(s\oplus t)|_{U_i}=(s|_{U_i})\oplus (t|_{U_i})=s_i\oplus t_i$.

■ $\mathcal{F} \oplus \mathcal{G}$ is Coproduct in $\mathbf{Sh}(X)$. 以下の図式を考える.

ただし Z,f,g は任意で、i,j はそれぞれ $s\mapsto s\oplus 0,t\mapsto 0\oplus t$ とする。 すると \mathcal{F},\mathcal{G} から \mathcal{Z} へ至る二つのパスをたどることで、この図式を可換にする [f,g] は以下のものしか無い事が理解る.

$$[f,g]: s \oplus t \mapsto f(s) + g(t).$$

f,g は morphism of abelian group で f(s),g(t) は element of abelian group. だから、例えば $\mathcal{F}\to\mathcal{Z}$ の二つのパスは次の計算の通り可換になる.

$$[f,g] \circ i : s \mapsto s \oplus 0 \mapsto f(s) + g(0) = f(s) \longleftrightarrow s : f$$

よって $\mathcal{F} \oplus \mathcal{G}$ は coproduct.

Ex1.10 Direct Limit.

Ex1.8 の functor $\Gamma(-,-)$, sheafification functor sh_X と abelian category の direct limit $\lim_{\to i} \mathcal{E}$ 用いて、 $\lim_{\to i} \mathcal{F}_i$ を以下で定める.

$$\Gamma(-, \lim_{i \to i} \mathcal{F}_i) = sh_X \lim_{i \to i} \Gamma(-, \mathcal{F}_i).$$

ただし $\{\mathcal{F}_i\}_{i\in I}$ は direct system である. これが $\mathbf{Sh}(X)$ の direct limit であることを示す.

まず、 $\mathcal{L}: U \mapsto \lim_{\to i} \mathcal{F}_i(U)$ とおく、これは明らかに $\mathbf{PSh}(X)$ における direct limit $\sigma^{\dagger 2}$ 、 $\mathcal{L}^+ = \lim_{\to i} \mathcal{F}_i$ を満たす、よって sheafification functor sh_X が direct limit を保つことを見れば良い、次の可換図式は \mathcal{L} の UMP を表す、

ただし \mathcal{G}, f_i は任意. sheafification の UMP を $\bar{f}_i : \mathcal{L} \to \mathcal{G}$ に用いて、次の可換図式が得られる.

よって $f_i: \mathcal{F}_i \to \mathcal{G}$ に対して一意に $\bar{f_i}: \mathcal{L}^+ \to \mathcal{G}$ が存在する.これで $\mathcal{L}^+ = \lim_{\to i} \mathcal{F}_i$ の UMP が示せた. $\mathcal{F}_i \to \mathcal{F}_j$ との可換性は morphism を結合すれば容易に分かる.

(i) Another Proof.

sheafification functor $sh_X : \mathbf{PSh}(X) \to \mathbf{Sh}(X)$ が Forgetful Functor $F : \mathbf{Sh}(X) \to \mathbf{PSh}(X)$ の left adjoint functor であることを用いる。これは R.Vakil "Foundations of Algebraic Geometry" Part I, 2.4.L などにある事実である。direct limit が colimit であることと,"Left Adjoint Preserves Colimits" より,

$$sh_X \lim_{\to i} \mathcal{F}_i \cong \lim_{\to i} sh_X \mathcal{F}_i \cong \lim_{\to i} \mathcal{F}_i.$$

Ex1.11 Pre-Direct Limit on Noetherian Top.Sp. is Already a Sheaf.

sheaves $\{\mathcal{F}^i\}_{i\in I}$ with morphisms $f^{ij}:\mathcal{F}^i\to\mathcal{F}^j$:: direct system とし、 $\mathbf{PSh}(X)$ における direct limit を \mathcal{L} で書く、X :: noetherian topological space であるとき、 \mathcal{L} が予め sheaf であることを示す、以下、U :: open in X と開被覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を任意にとり、固定する。

X:: noetherian より、X:: quasi-compact. なので集合 $\{U_{\lambda}\}$ から有限被覆 $\{U_{j}\}_{j\in J}$ が出来る.

 $^{^{\}dagger 2}$ $\mathbf{PSh}(X)$ が direct limit を持つことは abelian category $\mathfrak C$ が direct limit を持つことによる.

Ex1.12 Inverse Limit.

sheaves $\{\mathcal{F}^i\}$ with morphisms $f^{ij}: \mathcal{F}^i \to \mathcal{F}^j$:: inverse system とし, $\mathbf{PSh}(X)$ における inverse limit $U \mapsto \lim_{i \leftarrow} \mathcal{F}^i(U)$ を \mathcal{L} で書く、このとき \mathcal{L} は $\mathbf{Sh}(X)$ においても inverse limit であることを示す。

sheafification functor を $Sh: \mathbf{PSh}(X) \to \mathbf{Sh}(X)$, forgetful functor を $Fgt: \mathbf{Sh}(X) \to \mathbf{PSh}(X)$ で書く. Fgt は Sh の right adjoint functor($Sh \dashv Fgt$.) なので, $\lim_{i \leftarrow}$ と可換^{†3}. inverse limit は limit なので以下が得られる.

$$\lim_{i \leftarrow} Fgt\mathcal{F}^i \cong Fgt \lim_{i \leftarrow} \mathcal{F}^i \cong \lim_{i \leftarrow} \mathcal{F}^i.$$

最後の \cong はFが forgetful functor, すなわち object を変化させないことによる. したがって $\mathbf{PSh}(X)$ における inverse limit は $\mathbf{Sh}(X)$ における inverse limit と一致する. まったく同様の議論で $\mathbf{PSh}(X)$ における limit は $\mathbf{Sh}(X)$ における limit に一致する.

(i) Proof of $Sh \dashv Fgt$.

adjoint の定義にはいくつか同値なものがあるが、ここでは Steve Awodey "Category Theory" p.214 にある Cor9.5 を用いる.

F は object を変えない埋め込み写像なので、直ちに全単射 $\tilde{\eta}_{(-)}:(-)\leftrightarrow F(-):\tilde{\epsilon}_{(-)}$ がとれる.これに sheafification の UMP を用いると以下の可換図式が得られる.

こうして unit $\eta: \mathrm{id}_{\mathbf{PSh}(X)} \to FgtSh$ と counit $\epsilon: ShFgt \to \mathrm{id}_{\mathbf{Sh}(X)}$ が得られる. さらに、この二つの 可換図式を組み合わせて、以下の可換図式が作れる.

$$id_{\mathbf{PSh}(X)} \xrightarrow{\theta} Sh$$

さて, $\mathcal{F} \in \mathbf{PSh}(X)$, $\mathcal{G} \in \mathbf{Sh}(X)$ と $g: Sh\mathcal{F} \to \mathcal{G}$ を任意に取る. この時の可換図式は以下の (1) で

 $^{^{\}dagger 3}$ "Right Adjoints Preserves Limits."

ある.

コの字型の部分をたどることで,(2) の $\bar{g}: \mathcal{F} \to Fgt\mathcal{G}$ が得られる.Ex1.4 における ϕ^+ の作り方をなぞると, $Sh(\bar{g})$ は (2) の波矢印 $\theta_{Fgt\mathcal{G}} \circ \bar{g}$ から sheafification の UMP で得られるものである.sheafification をしたあとの可換図式が (3) である.UMP から, $\theta_{Fgt\mathcal{G}}$ および $\theta_{Fgt\mathcal{G}} \circ \bar{g}$ と共に可換な三角形をなす射は $Sh(\bar{g})$ に等しい.よって $Sh(\bar{g}) = \theta_{Fgt\mathcal{G}} \circ \tilde{\epsilon}_{\mathcal{G}}^{-1} \circ g$.こうして $g = \epsilon_{\mathcal{G}} \circ Sh(\bar{g})$ が得られる.

Ex1.13 Espace Étalé of a Presheaf.

(i) Definition of Espace Étalé.

 $\mathcal{F} \in \mathbf{PSh}(X)$ に対し、espace étalé of \mathcal{F} Spé(\mathcal{F}) を以下のように定義する。まず、集合として Spé(\mathcal{F}) = $\bigsqcup_{P \in X} \mathcal{F}_P$ とおく、projection map π とその "section" \bar{s} を以下で定める。まず、 π は以下のもの。

$$\pi: \operatorname{Sp\acute{e}}(\mathcal{F}) \to X$$

 $s \in \mathcal{F}_P \mapsto P.$

任意の U :: open in X と $s \in \mathcal{F}(U)$ に対して $\bar{s}: U \to \operatorname{Spé}(\mathcal{F})$ を以下で定める.

$$\bar{s}: U \to \operatorname{Sp\acute{e}}(\mathcal{F})$$
 $P \mapsto s_{P}.$

この時, $\pi \circ \bar{s} = \mathrm{id}_U$. すなわち, \bar{s} は U 上で π の "section"である.そして $\mathrm{Sp\'e}(\mathcal{F})$ に以下のような位相を入れる:任意の U と任意の s について \bar{s} が連続であるような最強の位相.これはつまり $\{\bar{s}\}$ についての終位相である.

(ii) More References for Espace Étalé.

Wikipedia の Sheaf のページ https://www.wikiwand.com/en/Sheaf_(mathematics)#/The_.C3. A9tal.C3.A9_space_of_a_sheaf (2017年3月30日参照) に概略が書かれている。詳細についての資料は以下の通り、まず、一般の espace étalé(étalé space)の categorical な定義が https://ncatlab.org/nlab/show/etale+space にある。Étalé space の圏と sheaf の圏が圏同値であることの証明は Saunders Mac Lane, Ieke Moerdijk "Sheaves in Geometry and Logic"の §5-6, pp.83-90 にある。(この命題はこの本の p.90 Cor3 である。) 同様のことが "Etale cohomology course notes" http://math.colorado.edu/~jonathan.wise/teaching/math8174-spring-2014/notes.pdf の 7 Etale spaces and sheaves (p.24) にあるが、この note はミスが多いしわかりにくいのでおすすめしない。

(iii) Proposition and Proof.

X 上の étalé space をとって、その連続な section 全体をとる関手を $Sec: \mathbf{Et}(X) \to \mathbf{Sh}(X)$ とする. 逆に presheaf から étalé space を作る関手を $\acute{E}t: \mathbf{PSh}(X) \to \mathbf{Et}(X)$ とする。sheafification functor が $Sh = Sec \acute{E}t$ で定義できることを示す.

■Plan of Proof. 二つの写像を定める.

$$\alpha: \quad \mathrm{id}_{\mathbf{Sh}(X)} \qquad \rightarrow \qquad Sec\acute{E}t$$

$$s \in \mathcal{F}(U) \qquad \mapsto \quad [\bar{s}: P \mapsto s_P]$$

$$\beta: \qquad \acute{E}tSec \qquad \rightarrow \quad \mathrm{id}_{\mathbf{Et}(X)}$$

$$P \times [\sigma: U \to \mathrm{id}_{\mathbf{Et}(X)}] \quad \mapsto \quad \sigma(P)$$

ただし U は任意の X の開集合で,P は U の任意の点である.この α,β が natural map かつ isomorphism であることが証明できるので,圏同値 $\mathbf{Et}(X) \simeq \mathbf{Sh}(X)$ が示せる.しかし我々の目的は sheafification の UMP であり,これには α についてさえ示せれば十分である.この証明は Saunders Mac Lane, Ieke Moerdijk "Sheaves in Geometry and Logic" pp.85-86 にある^{†4}.

 $\blacksquare \alpha$:: natural. $\mathcal{F}, \mathcal{G} \in \mathbf{PSh}(X)$ とする.

$$\mathcal{F} \xrightarrow{\alpha_{\mathcal{F}}} Sec \acute{E}t \mathcal{F}$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{Sec \acute{E}t \phi}$$

$$\mathcal{G} \xrightarrow{\alpha_{\mathcal{C}}} Sec \acute{E}t \mathcal{G}$$

 $Sec\acute{E}t\phi$ は次のような, section を section へ写す写像である.

$$Sec\acute{E}t\phi: [P \mapsto *_P] \mapsto [P \mapsto *_P \mapsto \phi_P(*_P)].$$

したがって $\mathcal{F} \to Sec\acute{E}t\mathcal{G}$ のどちらのパスでも $s \mapsto [P \mapsto \phi_P(s_P) = (\phi(s))_P]$ と section を section へ写 す写像になる. ただし P は X の点である. これで α :: natural が示せた.

 $\blacksquare \alpha$:: iso. まず α :: inj は Indentity Axiom から容易に示されるので略す. α :: surj の証明は長い. まず U :: open in $X,s\in (Sec\acute{E}t\mathcal{F})(U)$ を任意に取る. すると $Sec\acute{E}t$ の定義から,以下が成り立つ.

$$\forall P \in U, (P \in)^{\exists} V :: \text{ open in } U, \exists \sigma \in \mathcal{F}(V), s(P) = \sigma_P.$$

ÉtF の位相は像位相であり、かつ $\bar{\sigma}$ は明らかに単射.なので $\alpha(\sigma)(V) = \bar{\sigma}(V)$ は open である $^{\dagger 5}$.しかも s:: continuous だから、 $s(S) \subseteq \alpha(\sigma)(V)$ なる $(P \in S)$:: open が存在する $^{\dagger 6}$.直ちに以下が成り立つ.

$$\forall Q \in S, \exists Q' \in V, \mathcal{F}_Q \ni s(Q) = \sigma_{Q'}.$$

明らかに Q=Q',すなわち $s|_S=\alpha(\sigma)|_S$ が成り立つ.点 P を様々に取ることで,S で U を被覆できることがわかる. $\sigma\&S$ と $\tau\&T$ の二組について

$$\alpha(\sigma)|_{S \cap T} = s|_{S \cap T} = \alpha(\tau)|_{S \cap T}.$$

したがって α :: inj から $\sigma|_{S\cap T}=\tau|_{S\cap T}$. こうして Gluability Axiom から, $\alpha(\sigma)|_S=\alpha(\Sigma)|_S=s|_S$ なる $\Sigma\in\mathcal{F}(U)$ の存在が示せる.最後に Identity Axiom を用いて $\alpha(\Sigma)=s$. これで α :: iso が示せた.

 $^{^{\}dagger 4}$ この本では α は η と書かれている。また,この本でいう cross-section は $\pi \circ \sigma = \mathrm{id}_U$ なる section のこと。 \dot{s} は \bar{s} のことである。その他,germ の記法などがだいぶ違うので注意。

 $^{^{\}dagger 5}$ σ の像位相において,開集合 V の像が開集合であることは $\sigma^{-1}\circ \sigma(V)$ が開集合であることと同値だが,単射性から,この集合は V に等しい.

 $^{^{\}dagger 6}$ これは ϵ - δ 論法に似ている. $s^{-1}(\alpha(\sigma)(V))$ が開集合であるから,任意の点,特に P はこの集合の内点である.このことから開集合 S が存在することは自明である.

■UMP of Sheafification. $Sh = Sec \acute{E}t$ とすると、これが sheafification functor となる。その UMP を 見よう。 $\mathcal{F} \in \mathbf{PSh}(X), \mathcal{G} \in \mathbf{Sh}(X)$ とする。 $\alpha : \mathrm{id}_{\mathbf{Sh}(X)} \to Sh$ の naturality から、次の可換図式が得られる。

$$\begin{array}{ccc}
\mathcal{F} & \longrightarrow Sh\mathcal{F} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\mathcal{G} & \stackrel{\sim}{\longrightarrow} Sh\mathcal{G}
\end{array}$$

 $\alpha_{\mathcal{G}}:\mathcal{G}\to\mathit{Sh}\mathcal{G}::$ iso だから, $\mathcal{F}\to\mathcal{G}$ から $\mathit{Sh}\mathcal{F}\to\mathcal{G}$ が得られた. 次に, 以下で示す可換図式 (1) が与えられたとしよう. 全体を Sh で写し, $\mathit{Sh}|_{\mathbf{Sh}(X)}\cong\mathrm{id}_{\mathbf{Sh}(X)}$ を用いて可換図式 (2) が得られる.

したがって f = g. 以上で existence & uniqueness が示せた.

Ex1.14 Support.

 $\mathcal{F} \in \mathbf{Sh}(X), U$:: open in $X, s \in \mathcal{F}(U)$ をとる. $\mathrm{Supp}\, s = \{P \in U \mid s_P \neq 0\}$ としたとき,これが closed in U であることを示そう.そのために $T = (\mathrm{Supp}\, s)^c = \{P \in U \mid s_P = 0\}$ として,これが open であることを示す.

 $P \in T$ を任意に取る。すると s_P の代表元として $\langle V_P, s \rangle$ $(P \in V_P \subset U)$ が取れる。今 $s_P = 0$ なので, $s|_{V_P} = 0$. したがって $V_P \subset T$ となる。任意の $P \in T$ についてこのように V_P が取れるので,T は open covering $\{V_P\}_{P \in T}$ を持つ。よって $T = \bigcup_{P \in T} V_P$:: open in U.

Supp \mathcal{F} は $\{P \in X \mid \mathcal{F}_P \neq 0\}$ と定義される。これは closed とは限らない。実際, \mathcal{F} の元を, なめらかな 実関数に $bump(x) = [x > 0]e^{-1/x \dagger 7}$ をかけたものとすると, Supp $bump(x) = [0, \infty)$, Supp $\mathcal{F} = (0, \infty)$ となる。後者は明らかに閉集合でない。

Ex1.15 Sheaf $\mathcal{H}om$.

 $\mathcal{F},\mathcal{G} \in \mathbf{Sh}(X),U$:: open in X とし, \mathcal{F} の U への restrction(p.65) を $\mathcal{F}|_U$ で書く. $U \mapsto \mathrm{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$ で定まる presental $\mathcal{H}om(\mathcal{F},\mathcal{G})$ が sheaf であることを示そう.以下では U とその開被 覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を任意にとって固定する.

■ $\mathcal{H}om(\mathcal{F},\mathcal{G})(U)$:: Abelian Group. $s,t\in\mathcal{H}om(\mathcal{F},\mathcal{G})(U)$ について, s+t を以下で定める.

$$(s+t)(\sigma) = s(\sigma) + t(\sigma)$$
 where V :: open in U , $\sigma \in (\mathcal{F}|_U)(V)$.

単位元は $\operatorname{im} \mathcal{F}|_U$ の単位元を返す定値写像である. 単位元を以下では 0 と書く.

■ $\mathcal{H}om(\mathcal{F},\mathcal{G})$:: Presheaf. U,V :: open かつ $V\subseteq U$ とする. $\overline{\mathrm{res}}_U^V$: $\mathcal{H}om(\mathcal{F},\mathcal{G})(U)$ → $\mathcal{H}om(\mathcal{F},\mathcal{G})(V)$ を以下のように定める.

$$\{\mathcal{F}|_U \ni \sigma|_U \mapsto \tau|_U \in \mathcal{G}|_U\} \mapsto \{\mathcal{F}|_V \ni \sigma|_V \mapsto \tau|_V \in \mathcal{G}|_V\}$$

これは $\operatorname{res}(\mathcal{F})_U^V:\mathcal{F}(U)\to\mathcal{F}(V)$ と $\operatorname{res}(\mathcal{G})_U^V:\mathcal{G}(U)\to\mathcal{G}(V)$ の自然性から誘導される.

 $^{^{\}dagger 7}$ [True]=1,[False]=0 とした. Iverson の記法である. bump(x) がなめらかであることは次の PDF を参照せよ: https://andromeda.rutgers.edu/~loftin/difffal03/bump.pdf.

■Identity Axiom. $s \in \mathcal{H}om(\mathcal{F},\mathcal{G})(U) = \operatorname{Hom}(\mathcal{F}|_U,\mathcal{G}|_U)$ をとる。この s が任意の λ について $s|_{U_\lambda} = 0$ を満たすとする。さて,V :: open in U と $\sigma \in \mathcal{F}(V)$ を任意に取る。 $\{V_\lambda\}$ を $V_\lambda = V \cap U_\lambda$ で定めると,これは V の開被覆になる。仮定より, $s|_{V_\lambda}(\sigma) = s(\sigma)|_{V_\lambda} = 0$.よって $s(\sigma) \in \mathcal{G}(V)$ に Indentity Axiom を用いることで $s(\sigma)|_V = 0$ が示される。 V,σ は任意なので,結局以下が得られた。

$$\forall V :: \text{ open in } U, \quad \forall \sigma \in \mathcal{F}(V), \quad s(\sigma) = 0.$$

すなわち, s は定値写像 0 である. 以上で Indentity Axiom の成立が示された.

■Gluability Axiom. sections $s_{\lambda} \in \mathcal{H}om(\mathcal{F},\mathcal{G})(U_{\lambda})$ をとる. これが任意の $\lambda,\mu \in \Lambda$ について $s_{\lambda}|_{U_{\lambda}\cap U_{\mu}} = s_{\mu}|_{U_{\lambda}\cap U_{\mu}}$ を満たすとしよう. この仮定は以下のように書ける.

$$\forall \lambda, \mu \in \Lambda, \quad \forall \sigma \in \mathcal{F}(U_{\lambda} \cap U_{\mu}), \quad s_{\lambda}(\sigma) = s_{\mu}(\sigma).$$

そこで λ をひとつ取って固定し, $\sigma \in \mathcal{F}(U_{\lambda})$ とする. さらに $\{V_{\mu}\}_{\mu \in \Lambda}$ を $V_{\mu} = U_{\lambda} \cap U_{\mu}$ で定める. この $\{V_{\mu}\}$ は U_{λ} の開被覆である. すると最初の仮定と $V_{\mu} \cap V_{\nu} = U_{\lambda} \cap (U_{\mu} \cap U_{\nu}) \subseteq U_{\mu} \cap U_{\nu}$ から以下が成り立つ.

$$\forall \mu, \nu \in \Lambda, \quad s_{\mu}(\sigma)|_{V_{\mu} \cap V_{\nu}} = s_{\nu}(\sigma)|_{V_{\mu} \cap V_{\nu}}.$$

sections $s_{\mu}(\sigma) \in \mathcal{G}(U_{\lambda})$ に対して Gluability Axiom を用いて, $s(\sigma)|_{V_{\mu}} = s_{\mu}(\sigma)|_{V_{\mu}}$ なる $s(\sigma)$ の存在が言える.Indentity Axiom から $s(\sigma)|_{U_{\lambda}} = s_{\mu}(\sigma)|_{U_{\lambda}}$.こうして,以下を満たす $s \in \mathcal{H}om(\mathcal{F},\mathcal{G})(U)$ の像が各点 $\sigma \in \mathcal{F}(U_{\lambda})$ ごとに定義できる.

$$\forall \lambda \in \Lambda, \quad \forall \sigma \in \mathcal{F}(U_{\lambda}), \quad s(\sigma)|_{U_{\lambda}} = s_{\lambda}(\sigma)|_{U_{\lambda}}.$$

簡潔にかけば、 $s|_{U_{\lambda}} = s_{\lambda}|_{U_{\lambda}}$. よって Gluability Axiom の成立が示せた.

Ex1.16 Flasque Sheaves.

U,V: open in $X,\ V\subseteq U$ とする. restriction map res_U^V が surjective であるような $\mathcal{F}\in\mathbf{Sh}(X)$ を flasque $^{\dagger 8}$ sheaf と呼ぶ.

(a) Constant Sheaf on Irreducible Top.Sp is Flasque.

X:: irreducible, A:: abelian group, U,V:: open in $X,V\subseteq U$ とする. A を X から A への constant sheaf とすると,定義より $A(V)=\{s:V\to A\mid s:: \text{continuous.}\}$. そこで $s\in A(V)$ を一つ とって固定する。s:: continuous という条件は次と同値

$$\forall a \subseteq A, \ s^{-1}(a) :: \text{ open in } V.$$

X:: irreducible であるとき, $s \in \mathcal{F}(V)$ がどのようなものか考えよう.

■Case: #A=1. まず #A=1, すなわち A が自明な abelian group $\{e\}$ であったとする. この時, 明らかに $\mathcal{F}(V)$ は定値写像 $x\mapsto e$ のみからなる. $\mathcal{F}(U)$ も同じ定値写像からなるので, この時 constant sheaf は flasque.

^{†8} フランス語. フラスコのこと. 軟弱という意味. 発音は https://ja.forvo.com/word/flasque/.

■Case #A>1. $a\neq b$ が成り立つような $a,b\in A$ を任意に取る. すると以下が成り立つ.

$$s^{-1}(\{a\}) \cap s^{-1}(\{b\}) = s^{-1}(\{a\} \cap \{b\}) = s^{-1}(\emptyset) = \emptyset.$$

したがって X :: irreducible から $s^{-1}(\{a\})$ or $s^{-1}(\{b\}) = \emptyset$. 仮に任意の $a \in A$ について $s^{-1}(\{a\}) = \emptyset$ であったとすると s が写像にならない. したがって $s^{-1}(\{a_s\}) \neq \emptyset$ となる $a_s \in A$ がただひとつ存在する. s は写像なので $s^{-1}(A) = V$ が成り立ち,したがって s はこのような a_s への定値写像である事が分かる.すると容易に s は U へ拡張できるので,この時も constant sheaf は flasque.

(b) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is Exact and \mathcal{F}' is Flasque, then...

 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ が exact かつ \mathcal{F}' が flasque であったとする.この時,任意の open set U について $0 \to \mathcal{F}'(U) \to \mathcal{F}(U) \to \mathcal{F}''(U) \to 0$ は exact であることを示す.

写像に $0 \to \mathcal{F}' \xrightarrow{f} \mathcal{F} \xrightarrow{g} \mathcal{F}'' \to 0$ と名前をつけ、U:: open in X と $s'' \in \mathcal{F}''(U)$ をとる。Ex1.8 より、 $0 \to \mathcal{F}'(U) \xrightarrow{f_U} \mathcal{F}(U) \xrightarrow{g_U} \mathcal{F}''(U)$ は exact. なのであとは g_U が surjective であることを示せば良い、元の exact sequence から g:: surj が言える。Ex1.3 より、以下が成り立つ。

(*)
$$\bigcup \exists U_i = U, \exists t_i \in \mathcal{F}(U_i), \forall i, g(t_i) = s''|_{U_i}.$$

任意に i,j をとり、以下の可換図式で diagram chase をする。ただし $U=U_i\cap U_j$ とした。

 $s'' \in \mathcal{F}''(U)$ と、(*) から存在が示される $t_i \in \mathcal{F}(U_i), t_j \in \mathcal{F}(U_j)$ から diagram chasing を始める.

- (1) naturality $b \circ g(t_i|_{U_{ij}}) = s''|_{U_{ij}} = g(t_j|_{U_{ij}}).$
- (2) よって列の完全性から $t_i t_j \in \ker g|_{U_{ij}} = \operatorname{im} f|_{U_{ij}}$.
- (3) したがって $f(u'_{ij}) = t_i t_j$ なる $u'_{ij} \in \mathcal{F}'(U_{ij})$ が存在する.
- (4) $\operatorname{res}_{U}^{U_{ij}}$:: surj から $s'_{ij}|_{U_{ij}} = u'_{ij}$ なる $s'_{ij} \in \mathcal{F}'(U)$ が存在する.
- (5) $s_i = f(s'_{ij})|_{U_i} + t_j \in \mathcal{F}(U_i)$ とおく. (足すのは t_j であることに注意.)
- (6) 構成より, $g(s_i)|_{U_{ij}} = g(t_i|_{U_{ij}}) = s''|_{U_{ij}}$.
- (7) i を固定して j を動かすことで、Identity Axiom により $g(s_i) = s''|_{U_i}$ が得られる.
- (8) $g(s_i) \in \text{im } g$ に Gluability Axiom を用いて、 $g(s)|_{U_i} = g(s_i) = s''|_{U_i}$ なる $s \in \mathcal{F}(U)$ がとれる (?).
- (9) Identity Axiom から g(s) = s''.

(i) Another Proof

次の PDF の Lemma2.12(p.10) がこの演習問題と同じ命題である: http://www.math.mcgill.ca/goren/SeminarOnCohomology/Sheaf_Cohomology.pdf. 次の PDF の Lemma0.3(p.12) も同じ:

http://www.uio.no/studier/emner/matnat/math/MAT4215/v15/notes1.pdf. どちらの証明でも Zorn's Lemma が用いられている.

(c) If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is Exact and $\mathcal{F}', \mathcal{F}$ is Flasque, then \mathcal{F}'' also.

U,V: open in $X,V\subseteq U$ とする. (b) より,以下の完全列が得られる.

証明は diagram chasing による.

- (1) $s'' \in \mathcal{F}''(V)$ を任意に取る.
- (2) $\mathcal{F}(U) \to \mathcal{F}(V) \to \mathcal{F}''(V)$:: surj から, $g(\tilde{s})|_{V} = s''$ なる $\tilde{s} \in \mathcal{F}(U)$ が取れる.
- (3) naturality から $g(\tilde{s}|_V) = s'' = g(\tilde{s})|_V$.

 $s := g(\tilde{s}) \in \mathcal{F}''(U)$ とおけば $s|_V = s''$.

(d) If $f: X \to Y$ is Conti. and \mathcal{F} is Flasque, then $f_*\mathcal{F}$ is Flasque.

U,V :: open in Y, $V \subseteq U$ とする. このとき $f^{-1}(V) \subseteq f^{-1}(U)$. なので $\mathcal{F}(U) \to \mathcal{F}(V)$:: surj より $\mathcal{F}(f^{-1}(U)) \to \mathcal{F}(f^{-1}(V))$:: surj. $f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U))$ だから、 $f_*\mathcal{F}$:: flasque.

(e) Discontinuous Sections.

 $\mathcal{F} \in \mathbf{Sh}(X)$ とする. これに対し、discontinuous sections of \mathcal{F} と呼ばれる sheaf \mathcal{G} が以下のように作れる. π は Ex1.13 の $s_P \mapsto P$ なる写像である.

$$\mathcal{G}: U \mapsto \left\{ s: U \to \bigsqcup_{P \in U} \mathcal{F}_P \mid \pi \circ s = \mathrm{id}_U \right\}$$

 \mathcal{G} が flasque sheaf であることと, $\mathcal{F} \to \mathcal{G}$ の自然な単射が存在することを示す.

- ■ \mathcal{G} :: sheaf. \mathcal{G} :: presheaf は明らか. sheaf であることを示すため、U:: open in X とその open cover $\{U_i\}_{i\in I}$ をとり、固定する。任意の $i\in I$ について $s|_{U_i}=0$ であるような $s\in \mathcal{G}(U)$ が存在したとする。 $\bigcup U_i=U$ より、任意の点 $P\in U$ に対して s(P)=0. これは Identity Axiom の成立を意味する。同様に" $\forall i,j,$ "を" $\forall P\in U_i\cap U_j,$ "を" $\forall P\in U,$ "に書き換えるだけで、Gluability Axiom の成立が証明できる。
- $\blacksquare \mathcal{G}$:: flasque. $V \subset U$ とする. $s \in \mathcal{G}(V)$ をとる. これは例えば以下のように拡張できる.

$$\bar{s}(P) = \begin{cases} s(P) & (P \in V) \\ 0 & (P \in U \setminus V) \end{cases}$$

■ α in Ex1.13 is injective. Ex1.13 の $\alpha:s\mapsto [P\mapsto s_P]$ が injective であることは以下のように示される. ある $s,t\in \mathcal{F}(U)$ について $\alpha(s)=\alpha(t)$ が成立するとしよう. すると十分小さい open set $(P\in)V_P(\subset U)$ が存在して、 $s|_{V_P}=t|_{V_P}$ となる. 明らかに $\{V_P\}_{P\in U}$ は U の open cover なので、 $s-t\in \mathcal{G}$ に Identity Axiom を用いて s=t が得られる.

Ex1.17 Skyscraper Sheaves.

X:: topological space, $P \in X$, A:: abelian group とする. sheaf $i_P(A)$ を以下で定める.

$$i_P(A)(U) = \begin{cases} A & (P \in U) \\ 0 & (\text{otherwise}) \end{cases}$$

点 P を含む最小の閉集合を $\{P\}^-$ と書く.

(a) $(i_P(A))_Q = A$ is A if $Q \in \{P\}^-$, otherwise 0.

U を Q を含む極小の開集合とした時, $(i_P(A))_Q$ は集合として $\mathcal{F}(U)$ と一致する.したがって以下が成立する.

$$(i_P(A))_Q = A$$

$$\iff {}^\forall U \subset X, \ Q \in U \implies P \in U$$

$$\iff {}^\forall U \subset X, \ P \in U^c \implies Q \in U^c.$$

最後の行は対偶として得られた.一方,点 P を含む最小の閉集合 $\{P\}^-$ は以下を満たす唯一の集合として特徴づけられる.

$${}^\forall U\subset X,\ P\in U^c\implies \{P\}^-\subseteq U^c$$

よって $(i_P(A))_Q = A \iff Q \in \{P\}^-$. 他の場合は明らかに $(i_P(A))_Q = 0$ となる。また,この特徴付けの対偶から $U \cap \{P\}^- \neq \emptyset$ ならば $P \in U$. $P \in U$ ならば $P \in U \cap \{P\}^-$ なので逆も成立する.

(b) $i_P(A)$ can be described as direct image.

abelian group A に伴う $\{P\}^-$ 上の constant sheaf を A とする. すると $i_P(A)$ は埋め込み写像 $i:\{P\}^-\hookrightarrow X$ の direct image $i_*(A)$ に等しい.実際,開集合 U について $i_*(A)(U)=A(i^{-1}(U))=A(U\cap\{P\}^-)$ であるから以下のようになる.

$$i_*(\mathcal{A})(U) \cong \begin{cases} A & (U \cap \{P\}^- \neq \emptyset) \\ 0 & (\text{otherwise}) \end{cases}.$$

(a) で見たとおり $U \cap \{P\}^- \neq \emptyset$ と $P \in U$ は同値.よって $i_*(A) = i_P(A)$.特に, $\{P\}^-$ はその最小性から irreducible なので,Ex1.16a,d と合わせれば $i_P(A)$ は flasque であることが分かる.

Ex1.18 Adjoint Property of f^{-1} .

 $f: X \to Y$:: continuous map について、 f^{-1} が f_* の left adjoint functor であることを示す. left adjoint の定義としては Hom についての定義を用いる.

unit $\eta: \mathrm{id}_{\mathbf{Sh}(Y)} \to f_* f^{-1}$ と counit $\epsilon: f^{-1} f_* \to \mathrm{id}_{\mathbf{Sh}(X)}$ を構成する.

■Construction of Unit η . $\mathcal{G} \in \mathbf{Sh}(Y)$ をとると, U :: open in Y について次の等式が成り立つ.

$$(f_*f^{-1}\mathcal{G})^{pre}(U) = (f^{-1}\mathcal{G})^{pre}(f^{-1}(U)) = \lim_{V \supseteq f \circ f^{-1}(U)} \mathcal{G}(V).$$

 $U \supset f \circ f^{-1}(U)$ (全射と等号成立は同値) だから, cocone の「母線」として

$$(\eta_{\mathcal{G}}^{pre})_U:\mathcal{G}(U)\to (f_*f^{-1}\mathcal{G})^{pre}(U)$$

が得られる. これを sheafification functor Sh で写して, $\eta: \mathrm{id}_{\mathbf{Sh}(Y)} \to f_*f^{-1}$ が得られる. η の自然性 は容易に示される.

■Construction of Counit ϵ . $\mathcal{F} \in \mathbf{Sh}(X)$ をとると, U:: open in X について次の等式が成り立つ.

$$(f^{-1}f_*\mathcal{F})^{pre}(U) = \varinjlim_{V \supseteq f(U)} \mathcal{F}(f^{-1}(V)).$$

 $V\supseteq f(U)$ であるとき, $f^{-1}(V)\supseteq f^{-1}\circ f(U)\supseteq U$ (単射と等号成立は同値). したがって colimit の UMP により $(\epsilon_{\mathcal{F}}^{pre})_U$ が得られる.

ただし V_- は $V \supseteq f^{-1} \circ f(U)$ なる開集合 V の中で極小のものである. ϵ^{pre} を sheafification functor Sh で写して, $\epsilon: f^{-1}f_* \to \mathrm{id}_{\mathbf{Sh}(X)}$ が得られる. ϵ の自然性は res の自然性から誘導される.

- ■Preparation of Unit-Counit Equations. まず $f \circ f^{-1}(B) \subseteq B$ に B = f(A) を代入すると $f \circ f^{-1} \circ f(A) \subseteq f(A)$. 続いて $f^{-1} \circ f(A) \supseteq A$ の両辺を f で写すと $f \circ f^{-1} \circ f(A) \supseteq f(A)$. 二つを合わせて $f \circ f^{-1} \circ f = f$ が得られる. 双対的に $f^{-1} \circ f \circ f^{-1} = f^{-1}$ が得られる.
- ■Unit-Counit Equations. 以下の可換図式を見よ.

$$(f_*f^{-1}f_*\mathcal{F})^{pre}(U) \xrightarrow{f_*(\epsilon^{pre})_{\mathcal{F}}} (f_*\mathcal{F})(U)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

よって $\mathrm{id}_{f_*}=f_*\epsilon\circ\eta_{f_*}$ が得られた. 次に $\mathcal{G}\xrightarrow{\eta_{\mathcal{G}}}f_*f^{-1}\mathcal{G}$ と $f_*f^{-1}\mathcal{G}$ の下にある cocone を f^{-1} で写し, ϵ を図式に追加することで,以下の図式が得られる.

 $f^{-1}\mathcal{G}$ が持つ (colimit の) UMP から, $\mathrm{id}_{f^{-1}} = \epsilon_{f^{-1}\mathcal{G}} \circ f^{-1}\eta_{\mathcal{G}}$.

■Hom-set Definition. 以下のように写像を定義する.

$$\phi(-) = f_*(-) \circ \eta_{\mathcal{G}}, \quad \psi(-) = \epsilon_{\mathcal{F}} \circ f^{-1}(-).$$

すると unit-counit equations からこれらが互いに逆写像であることが分かる。こうして所期の同型 $\phi: \operatorname{Hom}(f^{-1}\mathcal{F},\mathcal{G}) \xrightarrow{\cong} \operatorname{Hom}(\mathcal{F},f_*\mathcal{G})$ が得られる。自然性は η,ϵ の自然性から誘導される。

Ex1.19 Extending a Sheaf by Zero.

X :: topological space, Z :: closed subset in X, $U=X\setminus Z$ とする. さらに $i:Z\hookrightarrow X, j:U\hookrightarrow X$ を埋め込み写像とする.

(a) $i_*\mathcal{F}$: Extending $\mathcal{F} \in \mathbf{Sh}(Z)$ by Zero Outside Z.

 $\mathcal{F} \in \mathbf{Sh}(Z)$ とする. i は埋め込み写像なので、開集合 U について $(i_*\mathcal{F})(U) = \mathcal{F}(U \cap Z)$. 点 P の開近傍を考える.

■Case: $P \in Z^c$. Z^c は開集合だから, $P \in Z^c$ ならば,開近傍 V が存在して $P \in V \subseteq Z^c$ となる. このとき, $\mathcal{F}(Z \cap V) = \mathcal{F}(\emptyset) = 0$ となる.しかも $\mathcal{F}(Z \cap V) = 0$ は十分小さいすべての U について成り立つ.したがって P の任意の開近傍 V について次の図式が可換.

よって $\mathcal{F}(Z \cap V) \to (i_*\mathcal{F})_P$ はゼロ写像しかなく, $(i_*\mathcal{F})_P$ の UMP から $(i_*\mathcal{F})_P = 0$.

- ■Case: $P \in Z$. 逆に $P \in Z$ ならば,点 P の X における開近傍 U から作られる $Z \cap U$ は,常に空でない P の開近傍.いつでも埋め込み射 $\mathcal{F}(V) \to \mathcal{F}(Z \cap V)$ が存在するので,結局 $\mathcal{F}(V)$ $(P \in V)$ なるabelian group 全てから $(i_*\mathcal{F})_P$ に射がのびている.よって $(i_*\mathcal{F})_P = \mathcal{F}_P$.
- ■Conclusion. まとめると,以下が成り立つ.

$$(i_*\mathcal{F})_P = \begin{cases} \mathcal{F}_P & (P \in Z) \\ 0 & (P \notin Z) \end{cases}$$

(b) $j_!\mathcal{F}$: Extending $\mathcal{F} \in \mathbf{Sh}(U)$ by Zero Outside U

 $\mathcal{F} \in \mathbf{Sh}(U)$ とし、 $j_1\mathcal{F}$ を以下で定まる presheaf の sheafification とする.

$$(j_! \mathcal{F})^{pre}(V) = \begin{cases} \mathcal{F}(V) & (V \subseteq U) \\ 0 & (\text{otherwise}) \end{cases}$$

sheafification で stalk は変わらないから, $(j_!\mathcal{F})_P = (j_!\mathcal{F})_P^{pre}$ 点 P の開近傍を考えよう.

- ■Case: $P \in U$. U:: open なので、ある V:: open が存在して $P \in V \subseteq U$ となる.このような V について $(j_!\mathcal{F})^{pre}(V) = \mathcal{F}(V)$. U より小さい任意の開近傍 V については $(j_!\mathcal{F})^{pre}(V) = \mathcal{F}(V)$ となる上,U より大きい任意の開近傍 V から射 $\operatorname{res}_V^{U \cap V}: \mathcal{F}(V) \to \mathcal{F}(U)$ が生えている.よって $(j_!\mathcal{F})_P^{pre} = \mathcal{F}_P$.
- ■Case: $P \in U^c$. このとき、どのように P の開近傍 V をとっても、 $P \in V$ かつ $P \notin U$ なので $V \nsubseteq U$. したがって $(j_!\mathcal{F})_P^{pre} = 0$ となる.
- ■Conclusion. まとめると,以下が成り立つ.

$$(j_!\mathcal{F})_P = \begin{cases} \mathcal{F}_P & (P \in U) \\ 0 & (P \notin U) \end{cases}$$

(c) $0 \to j_!(\mathcal{F}|_U) \to \mathcal{F} \to i_*(\mathcal{F}|_Z) \to 0$ is Exact.

Ex1.2c を応用する. $P \in X$ を任意の点とする. $P \in U$ exor Z なので、それぞれの場合について考える.

16

■Case: $P \in Z$. この時, $(j_!(\mathcal{F}|_U))_P = \mathcal{F}_P$, $(i_*(\mathcal{F}|_Z))_P = 0$ となる. よって $0 \to (j_!(\mathcal{F}|_U))_P \to \mathcal{F}_P \to (i_*(\mathcal{F}|_Z))_P \to 0$ は $0 \to \mathcal{F}_P \to \mathcal{F}_P \to 0 \to 0$ に等しく,これは完全列.

■Case: $P \in U$. この時, $(j_!(\mathcal{F}|_U))_P = 0$, $(i_*(\mathcal{F}|_Z))_P = \mathcal{F}_P$ となる. よって $0 \to (j_!(\mathcal{F}|_U))_P \to \mathcal{F}_P \to (i_*(\mathcal{F}|_Z))_P \to 0$ は $0 \to 0 \to \mathcal{F}_P \to \mathcal{F}_P \to 0$ に等しく、これは完全列.

Ex1.20 Subsheaf with Supports.

Z:: closed in $X, \mathcal{F} \in \mathbf{Sh}(X)$ とする. $\Gamma_Z(X, \mathcal{F})$ を以下で定める.

$$\Gamma_Z(X, \mathcal{F}) = \{ s \in \Gamma(X, \mathcal{F}) = \mathcal{F}(X) \mid \operatorname{Supp}(s) \subseteq Z. \}.$$

"Supp $(s)\subseteq Z$ " は " $\forall P\in Z^c,\ s(P)=0$ " と同値である。また、特に Supp $(0)=\emptyset$ より、 $0\in\Gamma_Z(X,\mathcal{F})$.

(a) Presheaf $V \mapsto \Gamma_{V \cap Z}(V, \mathcal{F}|_V)$ is a Sheaf.

Presheaf $\mathcal{H}_Z^0(\mathcal{F})$ &

$$\mathcal{H}_Z^0(\mathcal{F}): V \mapsto \Gamma_{V \cap Z}(V, \mathcal{F}|_V)$$

で定める. これが sheaf であることを示そう. 開集合 V とその開被覆 $\{V_i\}_{i\in I}$ を任意にとる.

■Identity Axiom. $s \in \mathcal{H}_Z^0(\mathcal{F})(V)$ をとる。任意の $i \in I$ について $s|_{V_i} = 0$ が成り立つとしよう。この時, $\mathcal{H}_Z^0(\mathcal{F})$ の定義から, $s \in \mathcal{F}(V)$ と $\operatorname{Supp}(s|_V) \subseteq V \cap Z$ が成り立つ。 \mathcal{F} の indentity axiom をもちいて, $s|_V = 0$ が得られる。

■Gluability Axiom. $s_i \in \mathcal{H}_Z^0(\mathcal{F})(V_i)$ をとる。任意の $i,j \in I$ について $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ が成り立つとしよう。するとやはり $s_i \in \mathcal{F}(V_i)$ なので, \mathcal{F} の gluability axiom から, $s|_{V_i} = s_i$ なる $s \in \mathcal{F}(V)$ が存在する。あとは $s \in \mathcal{H}_Z^0(\mathcal{F})(V)$,すなわち $\operatorname{Supp}(s) \subseteq V \cap Z$ を示せば良い。これは

$$\operatorname{Supp}(s_i) = \operatorname{Supp}(s|_{V_i}) = \operatorname{Supp}(s) \cap V_i \subseteq V_i \cap Z$$

から $\operatorname{Supp}(s) = \bigcup (\operatorname{Supp}(s) \cap V_i) \subseteq \bigcup (V_i \cap Z) = V \cap Z$ と計算できる.

(b) For $U = X \setminus Z$, $0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{F} \to j_*(\mathcal{F}|_U)$ is Exact.

開集合 $U=X\setminus Z$ と $j:U\hookrightarrow X$ について、 $0\to\mathcal{H}_Z^0(\mathcal{F})\to\mathcal{F}\to j_*(\mathcal{F}|_U)$ が exact であることを示す。 さらに、 $\mathcal{F}::$ flasque ならば $0\to\mathcal{H}_Z^0(\mathcal{F})\to\mathcal{F}\to j_*(\mathcal{F}|_U)\to 0$ も exact であることを示す。 定義より、 $\mathcal{H}_Z^0(\mathcal{F}),j_*(\mathcal{F}|_U)$ は以下のような集合である。

$$\mathcal{H}_Z^0(\mathcal{F}) = \{ s \in \mathcal{F}(V) \mid {}^{\forall}Q \in U \cap V, \quad s(Q) = 0. \}, \quad j_*(\mathcal{F}|_U) = \mathcal{F}(U \cap V).$$

そこで写像 $\zeta: \mathcal{F} \to j_*(\mathcal{F}|_U)$ を以下で定義する.

$$\zeta(s)(Q) = [Q \in U \cap V]s(Q)$$
 where $V :: \text{ open in } X, s \in \mathcal{F}(V), Q \in V.$

ただし $[Q \in U \cap V]$ は Iverson の記法である. (ここは指示関数を用いて $\chi_{U \cap V}(Q)$ と書いても良い.)すると既に確認した $\mathcal{H}_Z^0(\mathcal{F})$ の定義から, $\ker \zeta = \mathcal{H}_Z^0(\mathcal{F})$. よって $0 \to \mathcal{H}_Z^0(\mathcal{F}) \hookrightarrow \mathcal{F} \xrightarrow{\zeta} j_*(\mathcal{F}|_U)$ は exact. さらに \mathcal{F} :: flasque だと仮定する. すると, $s \in \mathcal{F}(U \cap V)$ に対して $s'|_{U \cap V} = s$ なる $s' \in \mathcal{F}(V)$ が存在する. 明らかに $\zeta(s') = s$ となるから,この時 ζ は全射.したがって $0 \to \mathcal{H}_Z^0(\mathcal{F}) \to \mathcal{F} \to j_*(\mathcal{F}|_U) \to 0$ も exact になる.

Ex1.21 Some Examples of Sheaves on Varieties.

k :: algebraically closed field, X :: variety over k とする. \mathcal{O}_X を the sheaf of regular functons on X (Example 1.0.1) とする.

(a) The Sheaf of Ideals \mathcal{I}_Y .

Y:: closed in X とする. 任意の U:: open in X について, $\mathcal{I}_Y(U)$ を以下で定める.

$$\mathcal{I}_Y: U \mapsto \{ f \in \mathcal{O}_X(U) \mid {}^\forall P \in Y \cap U, \ f(P) = 0. \}.$$

 $\mathcal{I}_Y(U)$ は $\mathcal{O}_X(U)$ のイデアルである. この時, $\mathcal{I}_Y(\subseteq \mathcal{O}_X)$ が sheaf であることを示す.

- (b) If Y :: subvariety, then $\mathcal{O}_X \cong i_*(\mathcal{O}_Y)$.
- (c)
- (d)
- (e)

Ex1.22 Glueing Sheaves.

X:: topological space, $\mathfrak{U}=\{U_i\}_{i\in I}$:: open cover of X, $\mathcal{F}_i\in\mathbf{Sh}(U_i)$ とする. この $\{\mathcal{F}_i\}_{i\in I}$ に付随して,同型写像 $\phi_{ij}:\mathcal{F}_i|_{U_i\cap U_j}\stackrel{\longrightarrow}{\Longrightarrow}\mathcal{F}_j|_{U_i\cap U_j}$ が存在し, $\{\mathcal{F}_i\}_{i\in I}$ with $\{\phi_{ij}\}_{i,j\in I}$ が inverse system をなすとする. この時,inverse limit \mathcal{F} の存在を示す.さらに, $\mathcal{F}|_{U_i}\equiv\mathcal{F}_i$ となることを示す.この命題は section でなく sheaf の Gluablity Axiom と言える.

Prop1.1 を用いて仮定を書き換える. $\{\mathcal{F}_i\}_{i\in I}$ について,以下の同型がある.

$$\forall i, j \in I, \quad \forall P \in U_i \cap U_i, \quad (\mathcal{F}_i)_P \cong (\mathcal{F}_i)_P.$$

この時, sheaf \mathcal{F} が存在して,

$$\forall i \in I, \quad \forall P \in U_i, \quad \mathcal{F}_P = (\mathcal{F}|_{U_i})_P \cong (\mathcal{F}_i)_P$$

となることを示す。Ex1.19b の結果が結論によく似ているので、これを参考にする。

 \mathcal{F} を以下の presheaf の sheafification と定義する.

$$\mathcal{F}^{pre}(V) = \begin{cases} \mathcal{F}_i(V) & (\exists i \in I, \ V \subseteq U_i) \\ 0 & (\text{otherwise}) \end{cases}$$

もし $V \subseteq U_i$ なる i が複数存在した時には、どれを選んでも構わない。その時 $V \subset U_i \cap U_j$ なる $i,j \in I$ が存在し、i,j どちらを選んでも $\mathcal{F}^{pre}(V)$ が ϕ_{ij} を介して同型になるからである。そして Ex1.19b の証明から分かるように、 $(\mathcal{F}|_{U_i})_P = (\mathrm{emb}_!^{U_i} \mathcal{F}_i)_P = (\mathcal{F}_i)_P$. ただし $\mathrm{emb}^{U_i} : U_i \hookrightarrow U$ は埋め込み写像である。