Some basics on infectious disease and infectious disease epidemiology

Dr. Berit Lange, MSc

Learning aims

At the end of this session I would like you to be able to

- Have some understanding of the main epidemiological and clinical features that you should be able to look up for major infectious diseases
- Be able to hold a conversation with an (infectious disease) epidemiologist on common ground and give some insights on how we think
- Understand what epidemiologists mean, when they talk about a specific epidemiological study design

Agenda

- 1. Go through typical infectious disease measures using two infectious diseases with high burden of disease: TB and flu
- 2. Some further typical measures of disease transmission in infectious diseases
- 3. Main study types and infrastructures needed in infectious disease epidemiology

INTRODUCTION TO TUBERCULOSIS

Please think about the following

You have had some cough. You have been treated with antibiotics, but it did not go away.

When you are for the third time in the doctor's office, you are not let in. You are given a mask to put over your mouth (no one else is wearing one). You then need to wait in front of the doctor's office in a small room reserved for cleaning materials.

After 20 minutes you are let into the doctor's room. She tells you: "We have found out that you have tuberculosis, a special infection of the lung."

As the patient, what would your feelings and thoughts be?

Mycobacterium tuberculosis complex

Pi

Microbiology

 Acid fast (does not absorb Gram stain, can be seen with e.g. Ziehl Neelsen)

 Pathogenic Mycobacteria vs opportunistic non-tuberculous mycobacteria

- Divides every 15-20 hours (slow growing)

Transmission

- Infection with *Mycobacterium tuberculosis*
 - Airborne, Droplet nuclei (1-5 µm)
- Infectivity depends on:
 - Exposure time
 - Concentration of organisms in the sputum
 - Cavernous tuberculosis is more infectious due to direct connection of cavern with bronchial system and upper airways
 - Amount of coughing
 - Duration of effective therapy
 - Distance to the person (5 meters)

Stages of Disease

The disease ("active TB")

Usually tuberculosis is a pulmonary disease

Leading to unspecific symptoms (cough, night sweats, weight loss, fever)

Upper lobe pneumonia

Cavitation

Extensive disease

Diagnostics active TB

- Microscopy
- staining of sputum (or bronchial lavage or gastric aspirates) 60-70% sensitivity
 - acid fast, Ziel-Neelsen;
 - Fluorecsence, Auramin (faster, higher sensitivity)
- Culture classic Goldstandard
 - Liquid medium 2 weeks, otherwise 6 weeks
 - Biosaftey lab required
- Molecular methods increasingly Goldstandard
 - Increasingly used as turn around of 1 day
 - Allows detection of resistances

Active TB treatment

		Initial		Stabilisation		
Indication		Duration	Medication	Duration	Medicatio	
					n	
New microso					RMP	
culture posit						
culture nega	New short course treatment (4 months) now being established					
INH-intolerar Resistenz	https:	://www.nejm.org/o	doi/full/10.1056/NEJ	Moa2033400	ЕМВ	
RMP-Intolera					MB	
-Resistenz						
PZA-Intoleran					RMP	
-Resistenz			EMB			

Isoniazid (INH), Rifampicin (RMP), Pyrazinamide (PZA), Ethambutol (EMB), Streptomycin (SM)

Treatment success

Stages of Disease

Latent TB vs active TB very simply

"state of persistent immune response to stimulation by Mycobacterium tuberculosis antigens with no evidence of clinically manifest active TB"

WHO, Latent Tuberculosis Guideline 2018

Assessing interferon gamma release to diagnose latent infection in tuberculosis

 Interferon-Gamma-Release Assays long established tool in Tuberculosis diagnostic for diagnosis of latent tuberculosis similar to Tuberculin Skin Test

Who should be tested and treated to prevent active disease LTBI guidelines 2018, WHO

	Risikogruppe	Empfehlung	Evidenzgrad
Präventive Therapie	Kinder mit HIV	Strong	Low-moderate
	Kontakte < 5 Jahre	Strong	High
Testen			
	Kontakte in Niedriginzidenzländern	Strong	High-moderate
	Patienten vor Anti-TNF-alpha Therapie	Strong	low
	Dialysepatienten, Patienten vor Organtransplantationen, Patienten mit Silikose	Strong	Low-very low
Vielleicht testen	Gefangene, Gesundheitspersonal, Immigranten, Obdachlose, Drogenabusus in Niedriginzidenzländern	Conditional	Low-very low
Nicht testen	Diabetes, Alkohol, Rauchen, Untergewicht	Conditional	Very low quality

Latent TB Treatment

Rifapentin + INH für 3 Monate (wöchentlich)

Rifa Mono für 3-4 Monate

Rifa + INH für 3 Monate

INH Monotherapie für 6 Monate

Efficacy vs INH RR 0.44 (noninferior) Hepatoxizität vs INH 0.16 Therapieadhärenz deutlich besser als INH!

Efficacy vs INH RR 0.78 (0.4-1.4) Hepatoxicity vs INH 6-mo: 0.03

Efficacy vs INH 0.89(0.7-1.2) Hepatoxicity vs INH 6-mo:0.89

Efficacy 60-90% (vs Placebo) Serious adverse events 3-5% Interaktionen: u.a.
Efavirenz, Dolutegravir,
Proteaseinhibitoren,
Methadon, Cyclosporin,
Marcumar

Cave: Efavirenz, Benzodiazepine, SSRI

Getahun et al, NEJM 2015

Treatment with rifapentine....

You do not come from a biology or medicine background and did not at first know some of the words on the last slides?

 Make sure that you are up to basic microbiology, virology and immunology of the main infectious diseases

- Have at
 - Mid
 - Imr People will (very rightly so) expect you to be up to the
 - Clir microbiological, immunological, clinical and epidemiological basics of any disease you are modelling
 It is easi
- After that, unknown) infectious diseases :
 - RKI
 - CDC
 - WHO

After you have read some textbooks on a new disease, what should you know about it?

- → Do also always consider the opposite:
- → The people you will be talking to will be experts on the above subjects
 - → but not necessarily understand a lot of mathematics, modelling or infectious disease epidemiology.
 - → And they will not have read basic textbooks on these subjects.
 - → Make your reports understandable and usable to them....

FIG. 13 Estimated TB incidence rates, 2020

EIG 1/.

But 2020 was different ...

Epidemiology

FIG. 1 Global trend in case notifications of people newly diagnosed with TB, 2016–2020

The trend is across regions

FIG. 2

Trends in case notifications of people newly diagnosed with TB by WHO region, 2016–2020

African Region Region of the Americas South-East Asia Region

So with all your new knowledge on tuberculosis now:

What happened?

Why are cases going down?

What do you expect deaths to do?

The common unknown: The actual number of infections

FIG. 1 Global trend in case notifications of people newly diagnosed with TB, 2016–2020

Undercoverage using the example of tuberculosis

Infected with Mycobacterium tuberculosi

This leads to different solutions

Without additional data collection

Linking different data sources

- Capture-recapture
- Inventory studies

Inference from data on more severe courses such as hospitalisations or deaths to infections

 Only works if deaths are not also subject to significant under-reporting

Inference from data on the number of diagnostics and test positivity

 Works especially well when data are not skewed with respect to pretest probability or specific population groups

With additional data collection

- New reporting rules
- Population-based prevalence studies
- Prevalence studies in specific population groups

How WHO is measuring underdetection for tuberculosis in their reports

End TB Strategy

VISION	A WORLD FREE OF TB — zero deaths, disease and suffering due to TB				
GOAL	END THE GLOBAL TB EPIDEMIC				
INDICATORS	MILESTONES		TARGETS		
INDICATORS	2020	2025	SDG 2030*	END TB 2035	
Percentage reduction in the absolute number of TB deaths (compared with 2015 baseline)	35%	75%	90%	95%	
Percentage reduction in the TB incidence rate (compared with 2015 baseline)	20%	50%	80%	90% (approximately 10 per 100 000 population)	
Percentage of TB-affected households experiencing catastrophic costs due to TB (level in 2015 unknown)	0%	0%	0%	0%	

Projected incidence reduction required

FIG. 2.1

Projected incidence and mortality curves that are required to reach End TB Strategy targets and milestones, 2015–2035

Unfortunately – not only – due to the pandemic we are far from that

Trends in the estimated absolute number of TB deaths (HIV-positive and HIV-negative) by WHO region, 2000–2020

Shaded areas represent uncertainty intervals. The horizontal dashed line shows the 2020 milestone of the End TB Strategy.

Summary

Tuberculosis is ...

... after COVID the infectious disease that kills most people around the world

.... Labelled LTBI if IGRA or TST is positive and no sign of active disease

.... Around ¼ of the global population has LTBI but most of these (90%) will never have active TB disease

.... Diagnosed via either microscopy/culture or molecular methods in pulmonary (e.g. sputum) or extrapulmonary samples if active and via TST/IGRA if latent

.... Well treatable if DS, less well (and more expensive) if DR

.... Hopefully being eliminated as planned in the WHO endTB strategy (but with caveats...)

Back to being the patient at the beginning

You have had some cough. You have been treated with antibiotics, but it did not go away.

be?

As the doctor, what is your next sentence?

INTRODUCTION TO INFLUENZA

One day...

In February of 2015 – into the third month of an until that point in time smoothly-running A&E rotation...

Unhappy VAASCR

a very anonymous averagely skilled clinical resident (VAASCR) suddenly felt ...

What had happened?

https://ecdc.europa.eu/en/seasonal-influenza/surveillance-and-disease-data
Vestergaard LS et al *Euro Surveill*. 2017

Influenza burden in comparison to other Infectious disease burdens - ECDC

www.ecdc.eu

So how what should influenza surveillance tell to whom?

What?

- When to start/continue vaccinating
- When to start planning for influenza season
- When to expect an extraordinarily severe influenza season
- What burden to expect in what region

To whom?

- Health providers
- Public health system
- Schools/Universities
- The general public

Basic facts about influenza

- RNA Virus
- Seasonal variation of strains and subtypes
- Incomplete / non lasting immunity after exposure /vaccination
- Vaccines need to be given every season
- Transmission primarily via droplets
- 8 44 excess deaths per 100.00 population per season (ECDC 2014)

Influenza Viruses

Classified into types A, B, and C

- Types A and B cause significant disease worldwide
- Types B and C limited to humans
- Type A viruses

More virulent
Wild waterfowl reservoir
Affect many species

Photo: Cynthia Goldsmith, CDC

Nomenclature of Influenza Viruses

Influenza Vaccination

Developed from 3 circulating strains (2 Type A and 1 Type B strain)

Seasonal "flu shot" only works for 3 influenza subtypes and will not work on pandemic strains

Inactivated, intramuscular vaccine injection for persons 6 months and older

Live, intranasal spray vaccine for healthy non-pregnant persons (2 – 49 years old)

Vaccine efficacy varies with season and population in between 20-50%

U.S. Centers for Disease Control and Prevention

Definitions

ARI = acute respiratory illness

ILI = Influenza-like-Illness

- Acute illness with fever > 38°C AND
- cough or sore throat

SARI = Severe Acute Respiratory Infection

- Temperature > 38°C *AND*
- Cough or sore throat AND
- Shortness of breath or difficulty breathing AND
- Requiring hospitalization

Distribution of influenza within the population

Influenza surveillance systems

Global Influenza Surveillance and Response System (GISRS)

Joint ECDC/WHO Europe surveillance

Flu News Europe

Surveillance in Germany

Arbeitsgemeinschaft Influenza

Timely, by region info

Pandemic

The Great Pandemic

THE UNITED STATES IN 1918-1919

Seasonal

http://www.pandemicflu.gov/ http://www.cdc.gov/flu/weekl

Influenza is

- An RNA virus with seasonal variation of strains and subtypes
- Has seasonally varying moderately effective vaccination
- comes with high but seasonally varying morbidity, direct and non-direct mortality as well as capacity to overburden health care systems

Surveillance systems of influenza aim to

- Provide isolates for identification of virus strains (for composition of vaccine)
- Report the start and end of influenza season
- Warn early of pandemics
- Monitor health service capacity to cope with epidemic situation

SOME MEASURES OF INFECTIOUS DISEASE EPIDEMIOLOGY

Measures of infectious disease epidemiology

- Modes of transmission
- Temporal measures of infection dynamics
- Indicators of transmissibility
- Underdetection and how to assess it

Modes of transmission

Direct or person-to-person transmission: sneezing, coughing, vertical transmission (e.g. from mother to child), mucosa to mucosa (sexually transmitted), blood and transplants, skin to skin

Indirect transmission: e.g. by water, food and by objects

Complex transmission cycles: e.g. parasitic diseases

Please name some examples

Temporal measures in infection dynamics

Exposure/Susceptible period

Point of infection

Incubation period

Infectious or communicable period

Temporal measures

Infectious

Incubation

Symptoms/ Clinical Disease

Temporal measures

Exposure period: Time during which an individual is exposed and susceptible to an infection

Point of infection: when an exposed individual is initially infected

Incubation period: time from point of infection to onset of clinical illness

Infectious period: period during which a person can transmit the disease

How is this for tuberculosis? How is it for the flu?

Epidemic curves

From epidemic curves you can deduce something about the disease causing the epidemic

Drawing an epidemic curve

- Select an appropriate interval
- Use squared paper and squares to represent cases

Use of epidemic curves

To determine the type of epidemic

To establish the difference between maximum and minimum incubation period

To determine the probable time of exposure, to determine the probable time and duration of exposure

To determine the incubation period when probable time of exposure is known

Secondary attack rate --- (not a rate!)

"Secondary attack rate": proportion "attacked" among (susceptible) individuals in contact with a primary case (eg in a household)

→not a rate!

Number of secondary cases / number of susceptible contacts of primary cases

What data do you need from public health authorities to under stand secondary attack rates?

UK: Secondary attack rates are available, linked to molecular surveillance (for SARS-CoV-2); not so in Germany

Variant/variant definition	Household/non- household exposure	Count of exposing cases	Count of contacts	Secondary attack rate (95% CI)
Delta	Household	60,364	147,057	10.7% (10.5%-10.8%)
Delta	Non-household	14,631	41,538	3.2% (3.1%-3.4%)
Omicron Confirmed	Household	107	227	21.6% (16.7%-27.4%)
Omicron Confirmed	Non-household	40	132	3.8% (1.6%-8.6%)

The basic reproduction number – R₀

- the average number of secondary cases that occur from a single index case in a susceptible population
 - If <1 outbreak will die out
 - If >1 outbreak will continue
- Varies from population to population

Examples of R₀

Disease	Mode of Transmission	R ₀
Measles	Airborne	15
Rubella	Airborne	6
HIV	Sexual contact	3
SARS	Airborne	3
1918 infuenza	Airborne	1.5

Adapted from Rothman 2008

Vaccine efficacy

- Is the percent reduction in incidence (of the target disease) among vaccinated individuals which is attributable to vaccination

$$V_e = [(Incidence_{unvaccinated} - Incidence_{vaccinated}) / Incidence_{unvaccinated}] x 100$$

$$V_e = (1 - RR_{v/u}) \times 100$$

Disease	Vaccine efficacy
Influenza	20-70%
Measles	95%
Varicella	85-98%

Relation between R₀, vaccine coverage and herd immunity

To have $R_t < 1$ without introducing quarantine or isolation measure:

What vaccine coverage hypothetically do we need to not have or end outbreaks/ to have herd immunity with a sterilizing vaccine?

-→ this is dependent on vaccine efficacy and R₀

Vaccine coverage > $(1-1/R_0)/V_e$

Exercise: MMR or offices?

The MMR vaccine coverage in your region is 85%, which has increased by 20% compared to 5 years ago. At a local conference a regional director explains this very proudly and says that efforts to introduce more vaccination into the community can be suspended and the resulting funding should be used for much needed renovation of regional director offices. You understand that Vaccine efficacy for Measles, Rubella and Mumps is about 95%. Discuss.

Disease	Mode of Transmission	R_0
Measles	Airborne	15
Rubella	Airborne	6
Mumps	Airborne	5

Vaccine coverage > $(1-1/R_0)/V_e$

TYPICAL STUDY TYPES IN INFECTIOUS DISEASE EPIDEMIOLOGY

MAJOR EPIDEMIOLOGICAL STUDY DESIGNS

Epidemiological studies

Exposure

Confounding, Systematic Error, Random Error, Interaction Measures of effect & population impact

Outcome

HZI HELMHULI Z
Centre for Infection Research

Study designs

Epidemiological Study Designs

Systematic Review and Observational Interventional Metaanalyses Non-Case Cross **Ecological** Randomized Cohort randomized Control sectional Individually Cluster

Study designs – intervention vs observation

Epidemiological Study Designs

Study designs – interventional studies

Epidemiological Study Designs

Interventional

Observational

Systematic Review and Metaanalyses

Individually randomized

Cluster

Cohort

Case Control

Ecological

Cross sectional

Interventional studies – Randomized controlled trial

Interventional studies – Cluster randomized trial

OBSERVATIONAL DESIGNS

Study designs – cohort study

Epidemiological Study Designs

Systematic Review and Interventional Observational Metaanalyses Non-Case Cross Randomized Cohort **Ecological** randomized Control sectional Individually Cluster

Cohort study

Study designs

Epidemiological Study Designs

Systematic Review and Observational Interventional Metaanalyses Non-Case Cross Randomized Cohort Ecological randomized Control sectional Individually Cluster

Case (Patient)-control study

Time

HELMHOLTZCentre for Infection Research

Study designs - ecological studies

Individually

Cluster

Epidemiological Study Designs Systematic Review and Observational Interventional Metaanalyses Non-Case Cross Randomized Cohort Ecological randomized Control sectional

Classical ecological study: GDP and under five mortality rate in China

Geographical grouping of populations

A regression method to show an association

Population estimates for both exposure and outcome

Study designs – cross sectional, the most simplest study design of all!

Epidemiological Study Designs

Interventional

Observational

Systematic Review and Meta-analyses

Non-randomized

Randomized

Cohort

Case Control

Cross sectional

Cross sectional

Centre for Infection Research

Individually

Cluster

Classical cross sectional study

Prevalence estimates

Analytical cohort study as the association of age and diabetes prevalence is looked at

Sample size aims to assess a certain proportion with certain magin of errors

Study designs – cross sectional

Epidemiological Study Designs

Interventional

Observational

Systematic Review and Metaanalyses

Nonrandomized

Randomized

Cohort

Case Control

Ecological

Cross sectional

Individually

Cluster

Systematic reviews and meta-analyses

Systematic reviews

protocol following PRISMA and using PICOs or similar

systematic search

data extraction

analysis in duplicate

Meta-analyses

Is the analysis when we get pooled results from several studies or datasets

INFECTIOUS DISEASE EPIDEMIOLOGY INFRASTRUCTURES NEEDED

Research infrastructures in infectious disease epidemiology needed for the next pandemic

Modelling platforms with integrated evidence synthesis hubs

To give collaborative, informative and rapid advice to scientists, the public and policy

Fast and adaptive population panels

To quickly gain information on infection dynamics, contacts and immunity in evolving epidemics

Platform for population interventions

To prepare controlled studies to test interventions in epidemics

10 years

Probability of a next pandemic

Beermann et al, Dt. Ärzteblatt

Population-based survey of infection frequency and dynamics How it was during the pandemic

Population-based survey of infection frequency and dynamics The vision for the future

Adaptation

concept

Advice for decision-makers Modelling Evidence synthesis Publicati **Publicati** Publicati Publicati **Publicati** Publicatio Data evaluation Survey Adaptation of logistics Adaptation data management

HELMHULI &
Centre for Infection Research

Population-based survey of infection frequency and dynamics

How we get there

PREPARED, IMMUNEBRIDGE (NUM), OPTIMagent, RESPINOW

- Joint planning and concept,e.g. also within NUM-PREPARED
- Adaptation possible for different pathogens, regions, population groups
- Regular use within the respiratory infection seasons
- Clear link to evidence synthesis, modelling and decision makers

Building MuSPAD into a fast adaptive population panel

02/20 - 08/21

Built up as a mainly
cross-sectional
seroprevalence survey with >
33.000 participants with 8
locations across Germany

05/22 ethical approval

changing MuSPAD into a longitudinal, fast, adaptive population panel

Manuela Harries

Julia Ortmann

Christina Suckel

Max Hassenstein

06-07/2022

Resampled 3000 participants from 3 locations in June/July 2022 with a preparation time of 2 months:

RESPINOW: influenza, RSV and pneumococcal dynamics

POXIMUN: Immunity after smallpox vaccination and monkeypox exposure

NUM IMMUNEBRIDGE: SARS-CoV-2 immunity

Modelling and advising decision-makers How it was

Modelling and advising decision-makers What it would ideally be like

Koordinierungsstelle für die neuen Modellierungsplattformen in Deutschland

(BMBF)
Research Consortia with coordinators
(1-3 Mio Euro/ 5-10 groups per consortium)

OptimAgent Rafael Mikolajczyk, Alex Kuhlmann, André Karch **RESPINOW** Berit Lange infoXpand Viola Priesemann **PROGNOSIS** Marcus Scholz **INSIDe** Jan Hasenauer **MODUS** Kai Nagel **SEMSAL** Ingo Timm

*public health services, RKI, etc

Linking population panels and central modelling structures in NUM-IMMUNEBRIDGE

Manuela Harries Max Hassenstein Veronika Jäger, André Karch, WWU WWU

& IMMUNEBRIDGE analysis and cohort team

Invitation of cohorts 04/22

Development minimal data set 05/22

Sampling in cohorts 06-07/22

First data cut in 25.07.22

Presentation of data to modelling consortia on 04.08.22

Model-usable dataset for modelling consortia on 08.08.22

Lange et al, doi: 10.5281/zenodo.6968574 Harries, Jäger, Rodiah et al, in

6037 participants in 6 cohorts (MuSPAD, NAKO, STAAB, Dresden) with sampling in June/July 2022

Research infrastructures in infectious disease epidemiology needed for the next pandemic

Modelling platforms with integrated evidence synthesis hubs

To give collaborative, informative and rapid advice to scientists, the public and policy

Fast and adaptive population panels

To quickly gain information on infection dynamics, contacts and immunity in evolving epidemics

Platform for population interventions

To prepare controlled studies to test interventions in epidemics

10 years

Probability of a next pandemic

Beermann et al, Dt. Ärzteblatt

Summary

- After COVID, tuberculosis is the infectious disease that kills most people globally, even though it is well treatable
- Flu surveillance systems in Europe are in principal designed to give information both for seasonal epidemics and early warning for pandemics
- In new infectious diseases you are particularly interested in the infectious period, incubation period, secondary attack rates, underdetection of notified cases or infection fatality rates
- You need to be able to find or set up appropriate epidemioogical studies and ideally be able to link to surveillance data
- Infrastructures now being built in Germany: Modelling platforms, rapid and adaptive population panels as well as infrastructures linking the two

Over to you

finding out about an infectious disease

- Designing a systematic review on the infectious period for monkeypox
- Designing a population study on immunity against monkeypox by smallpox vaccination
- Designing a study on secondary attack rates of monkeypox cases in kindergarten together with public health agencies in Germany