COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

January 12, 2023

Lecture 5: Nondeterminism: Subset Construction

Lemma

Let A be an NFA. Then L(A) is a regular language.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

$$\begin{array}{c} \text{a,b} \\ \\ \text{start} \longrightarrow \overbrace{q_0} \quad \text{a} \longrightarrow \overbrace{q_1} \quad \text{a,b} \longrightarrow \overbrace{q_2} \end{array}$$

$$\varnothing$$
 {0} {1} {2} {0,1} {0,2} {1,2} {0,1,2}
a \varnothing {0,1} {2} \varnothing {0,1,2} {0,1,2}

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

	Ø	{0}	{1}	$\{2\}$	$\{0, 1\}$	$\{0,2\}$	$\{1,2\}$	$\{0, 1, 2\}$
a	Ø	$\{0, 1\}$	{2}	Ø	$\{0, 1, 2\}$	$\{0, 1\}$	{2}	$\{0, 1, 2\}$
b	Ø	{0}	{2}	Ø	$\{0, 2\}$	{0}	{2}	$\{0, 2\}$

Lemma

Let A be an NFA. Then L(A) is a regular language.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Proof.

Let $A = (Q, \Sigma, q_0, F, \delta)$. We will construct a DFA $A' = (Q', \Sigma, q'_0, F', \Delta)$ such that L(A') = L(A).

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Proof.

Let $A = (Q, \Sigma, q_0, F, \delta)$. We will construct a DFA $A' = (Q', \Sigma, q'_0, F', \Delta)$ such that L(A') = L(A).

Subset construction

$$Q'$$
 = 2^Q

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Proof.

Let $A = (Q, \Sigma, q_0, F, \delta)$. We will construct a DFA $A' = (Q', \Sigma, q'_0, F', \Delta)$ such that L(A') = L(A).

Subset construction

$$Q' = 2^Q$$
,

$$q_0'=\{q_0\}$$

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Proof.

Let $A = (Q, \Sigma, q_0, F, \delta)$. We will construct a DFA $A' = (Q', \Sigma, q'_0, F', \Delta)$ such that L(A') = L(A).

Subset construction

$$Q' = 2^{Q},$$

 $q'_{0} = \{q_{0}\},$

$$F' = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}.$$

For each
$$S \subseteq Q, \Delta(S, a) = \bigcup_{p \in S} \delta(p, a)$$
.

We will prove the following first.

Lemma

For any NFA A, there is an equivalent DFA A' such that L(A') = L(A).

We will prove the following first.

Lemma

For any NFA A, there is an equivalent DFA A' such that L(A') = L(A).

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Let $\hat{\delta}: Q \times \Sigma^* \subseteq Q$ be defined as follows:

We will prove the following first.

Lemma

For any NFA A, there is an equivalent DFA A' such that L(A') = L(A).

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Let $\hat{\delta}: Q \times \Sigma^* \subseteq Q$ be defined as follows:

We will prove the following first.

Lemma

For any NFA A, there is an equivalent DFA A' such that L(A') = L(A).

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Let $\hat{\delta}: Q \times \Sigma^* \subseteq Q$ be defined as follows:

$$\hat{\delta}(q,\epsilon) \coloneqq q$$

We will prove the following first.

Lemma

For any NFA A, there is an equivalent DFA A' such that L(A') = L(A).

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Let $\hat{\delta}: Q \times \Sigma^* \subseteq Q$ be defined as follows:

$$\hat{\delta}(q,\epsilon) \coloneqq q$$

$$\hat{\delta}(q,xa) \coloneqq \{ p \mid \exists q' \in \hat{\delta}(q,x) \text{ s.t. } p \in \delta(q',a) \}$$

We will prove the following first.

Lemma

For any NFA A, there is an equivalent DFA A' such that L(A') = L(A).

Definition

Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

Let $\hat{\delta}: Q \times \Sigma^* \subseteq Q$ be defined as follows:

$$\hat{\delta}(q,\epsilon) \coloneqq q$$

$$\hat{\delta}(q,xa) \coloneqq \{ p \mid \exists q' \in \hat{\delta}(q,x) \text{ s.t. } p \in \delta(q',a) \}$$

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

Base case: Let $w = \epsilon$. $\hat{\delta}(\{q_0\}, \epsilon) = q_0 = \Delta(\{q_0\}, \epsilon) = \hat{\Delta}(\{q_0\}, \epsilon)$

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

Base case: Let $w = \epsilon$. $\hat{\delta}(\{q_0\}, \epsilon) = q_0 = \Delta(\{q_0\}, \epsilon) = \hat{\Delta}(\{q_0\}, \epsilon)$ Induction step: Let $w = x \cdot a$ where $w \in \Sigma^*$, $a \in \Sigma$

• $\hat{\delta}(q_0,x) = \hat{\Delta}(\{q_0\},x) = S$ (say) (By Induction Hypothesis)

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

- $\hat{\delta}(q_0,x) = \hat{\Delta}(\{q_0\},x) = S$ (say) (By Induction Hypothesis)
- $\hat{\delta}(q_0, xa) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\delta}$).

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

- $\hat{\delta}(q_0,x) = \hat{\Delta}(\{q_0\},x) = S$ (say) (By Induction Hypothesis)
- $\hat{\delta}(q_0, xa) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\delta}$).
- $\hat{\Delta}(\{q_0\}, xa) = \Delta(S, a) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\Delta}$).

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

- $\hat{\delta}(q_0,x) = \hat{\Delta}(\{q_0\},x) = S$ (say) (By Induction Hypothesis)
- $\hat{\delta}(q_0, xa) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\delta}$).
- $\hat{\Delta}(\{q_0\}, xa) = \Delta(S, a) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\Delta}$).
- ► Therefore, $\hat{\delta}(q_0, xa) = \hat{\Delta}(\{q_0\}, xa)$.

Lemma

For all $w \in \Sigma^*$, $\hat{\delta}(q_0, w) = \hat{\Delta}(\{q_0\}, w)$.

Proof.

- $\hat{\delta}(q_0,x) = \hat{\Delta}(\{q_0\},x) = S$ (say) (By Induction Hypothesis)
- $\hat{\delta}(q_0, xa) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\delta}$).
- $\hat{\Delta}(\{q_0\}, xa) = \Delta(S, a) = \bigcup_{q \in S} \delta(q, a)$ (By definition of $\hat{\Delta}$).
- ► Therefore, $\hat{\delta}(q_0, xa) = \hat{\Delta}(\{q_0\}, xa)$.

Complexity of Subset Construction

▶ If NFA has n states, then DFA has 2^n states.

Complexity of Subset Construction

- ▶ If NFA has n states, then DFA has 2^n states.
- But not all these states need to be reachable!

Complexity of Subset Construction

- ▶ If NFA has n states, then DFA has 2^n states.
- But not all these states need to be reachable!

Two questions

- Does this blowup really occur when only considering reachable states?
- On examples where it does not occur can we have a subset construction that is efficient?

▶ Is one NFA enough? A family of examples such that for each *n* there is an example NFA parametrized by *n*.

- ▶ Is one NFA enough? A family of examples such that for each *n* there is an example NFA parametrized by *n*.
- For each example in family show that if a smaller DFA than 2^n exists, there is a contradiction.

- ▶ Is one NFA enough? A family of examples such that for each *n* there is an example NFA parametrized by *n*.
- For each example in family show that if a smaller DFA than 2^n exists, there is a contradiction.

For each $n \in \mathbb{N}$, let

 $L_n = \{w \in \{0,1\}^* \mid n\text{-th symbol from the end is a } 1\}$

- Is one NFA enough? A family of examples such that for each n there is an example NFA parametrized by n.
- ightharpoonup For each example in family show that if a smaller DFA than 2^n exists, there is a contradiction.

For each $n \in \mathbb{N}$, let

$$L_n = \{w \in \{0,1\}^* \mid n\text{-th symbol from the end is a } 1\}$$

- Exercise: give an NFA for An which accepts L_n . How many states does it have?
- Can L_n be accepted by a DFA with less than 2^n states?

- ▶ Is one NFA enough? A family of examples such that for each *n* there is an example NFA parametrized by *n*.
- ightharpoonup For each example in family show that if a smaller DFA than 2^n exists, there is a contradiction.

For each $n \in \mathbb{N}$, let

$$L_n = \{w \in \{0,1\}^* \mid n\text{-th symbol from the end is a } 1\}$$

- Exercise: give an NFA for An which accepts L_n . How many states does it have?
- Can L_n be accepted by a DFA with less than 2^n states?

$$L = \{x \in \{a\}^* \mid |x| \text{ is divisible by } 3 \text{ or } 5\}$$

- ▶ Is one NFA enough? A family of examples such that for each n there is an example NFA parametrized by n.
- ightharpoonup For each example in family show that if a smaller DFA than 2^n exists, there is a contradiction.

For each $n \in \mathbb{N}$, let

$$L_n = \{w \in \{0,1\}^* \mid n\text{-th symbol from the end is a } 1\}$$

- Exercise: give an NFA for An which accepts L_n . How many states does it have?
- Can L_n be accepted by a DFA with less than 2^n states?

i divisible by 3 or 5

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

Proof.

▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

- ▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.
- ▶ Then, there exist $a_1 \dots a_n$ and $b_1 \dots b_n$ that must both end in the same state q.

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

- ▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.
- ▶ Then, there exist $a_1 \dots a_n$ and $b_1 \dots b_n$ that must both end in the same state q.
- ▶ Suppose a_i and b_i are different and wlog let $a_i = 1, b_i = 0$.

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

- ▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.
- ▶ Then, there exist $a_1 \dots a_n$ and $b_1 \dots b_n$ that must both end in the same state q.
- ▶ Suppose a_i and b_i are different and wlog let $a_i = 1, b_i = 0$.
- Consider words

$$w = a_1 \dots a_i \dots a_n 0^{i-1} \in L_n$$

$$w' = b_1 \dots b_i \dots b_n 0^{i-1} \notin L_n$$

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

Proof.

- ▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.
- ▶ Then, there exist $a_1 \dots a_n$ and $b_1 \dots b_n$ that must both end in the same state q.
- ▶ Suppose a_i and b_i are different and wlog let $a_i = 1, b_i = 0$.
- Consider words

$$w = a_1 \dots a_i \dots a_n 0^{i-1} \in L_n$$

$$w' = b_1 \dots b_i \dots b_n 0^{i-1} \notin L_n$$

▶ But A is a DFA, so starting from q on reading 0^{i-1} we reach the same state.

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

Proof.

- ▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.
- ▶ Then, there exist $a_1 \dots a_n$ and $b_1 \dots b_n$ that must both end in the same state q.
- ▶ Suppose a_i and b_i are different and wlog let $a_i = 1, b_i = 0$.
- Consider words

$$w = a_1 \dots a_i \dots a_n 0^{i-1} \in L_n$$

 $w' = b_1 \dots b_i \dots b_n 0^{i-1} \notin L_n$

▶ But A is a DFA, so starting from q on reading 0^{i-1} we reach the same state. Hence A will either accept both w and w' or reject both.

Theorem

For all $n \in \mathbb{N}$, every DFA accepting L_n has at least 2^n states.

Proof.

- ▶ Suppose not. For some $n \in \mathbb{N}$ let L_n be accepted by DFA A with less than 2^n states.
- ▶ Then, there exist $a_1 \dots a_n$ and $b_1 \dots b_n$ that must both end in the same state q.
- ▶ Suppose a_i and b_i are different and wlog let $a_i = 1, b_i = 0$.
- Consider words

$$w = a_1 \dots a_i \dots a_n 0^{i-1} \in L_n$$

$$w' = b_1 \dots b_i \dots b_n 0^{i-1} \notin L_n$$

▶ But A is a DFA, so starting from q on reading 0^{i-1} we reach the same state. Hence A will either accept both w and w' or reject both.