GRIP Task 2: Prediction using Unsupervised ML

Name: Debartha Paul

July 6, 2021

Importing libraries and visualising the data

We first load the libraries required for our work and then we read the dataset

```
#Luckily, we do not need any other library for this work.
#Reading the dataset
df<-read.csv('D:\\Important Documents\\Internship\\Task-2\\Iris.csv',header=T)
dim(df)#dimensions of the dataset
## [1] 150
names(df)#column names of the dataset
## [1] "Id"
                     "SepalLengthCm" "SepalWidthCm" "PetalLengthCm"
## [5] "PetalWidthCm" "Species"
head(df) #a brief preview of the dataset
##
    {\tt Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm}\\
## 1 1
                5.1
                             3.5
                                    1.4
                                                       0.2 Iris-setosa
## 2 2
                4.9
                             3.0
                                          1.4
                                                      0.2 Iris-setosa
## 3 3
                4.7
                            3.2
                                          1.3
                                                      0.2 Iris-setosa
## 4 4
                4.6
                             3.1
                                          1.5
                                                       0.2 Iris-setosa
## 5 5
                 5.0
                             3.6
                                          1.4
                                                       0.2 Iris-setosa
                 5.4
                             3.9
                                          1.7
                                                       0.4 Iris-setosa
summary(df) #a brief summary of the dataset
##
                    {\tt SepalLengthCm}
                                   SepalWidthCm
                                                  PetalLengthCm
   Min.
        : 1.00
                   Min. :4.300
                                  Min. :2.000
                                                  Min. :1.000
## 1st Qu.: 38.25
                   1st Qu.:5.100
                                   1st Qu.:2.800
                                                  1st Qu.:1.600
## Median : 75.50
                   Median :5.800 Median :3.000
                                                  Median :4.350
## Mean : 75.50
                  Mean :5.843 Mean :3.054
                                                  Mean :3.759
## 3rd Qu.:112.75 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
```

```
## Max. :150.00
                 Max. :7.900
                                  Max.
                                         :4.400
                                                Max.
                                                       :6.900
##
   PetalWidthCm
                    Species
## Min.
        :0.100
                 Length: 150
## 1st Qu.:0.300
                  Class :character
## Median :1.300
                  Mode :character
## Mean :1.199
   3rd Qu.:1.800
##
## Max. :2.500
```

Determining the value of k

We then determine the value of k (optimum number of clusters) for the KMeans clustering. We us the Elbow Method for determining the value of k.

The Elbow Method

From the above graph, we note that the the elbow occurs at 3.

Applying to the dataset

We now apply the kmeans method to our dataset, with the number of clusters as 3.

```
#Applying the kmeans to our dataset
KMeans<-kmeans(df[,-c(1,6)],3,iter.max=300,nstart=20)
cluster<-fitted(KMeans,'classes')
centroids<-as.data.frame(unique(fitted(KMeans,'centers')))</pre>
```

Visualising the clusters

We visualise the clusters in the form of two scatterplots.

```
#1st scatterplot
par(bg='light blue')
plot(df[cluster==1,]$SepalLengthCm,
        df[cluster==1,]$SepalWidthCm,
        xlim=c(min(df$SepalLengthCm), max(df$SepalLengthCm)),
        ylim=c(min(df$SepalWidthCm), max(df$SepalWidthCm)),
        col='red',pch=16,main='Sepal Width vs. Sepal Length',
        xlab='Sepal Length',ylab='Sepal Width')
par(new=T)
plot(df[cluster==2,]$SepalLengthCm,
        df[cluster==2,]$SepalWidthCm,
        xlim=c(min(df$SepalLengthCm),max(df$SepalLengthCm)),
        vlim=c(min(df$SepalWidthCm), max(df$SepalWidthCm)),
        col='blue',pch=16,xaxt='n',yaxt='n',xlab=NA,ylab=NA)
par(new=T)
plot(df[cluster==3,]$SepalLengthCm,
        df[cluster==3,]$SepalWidthCm,
        xlim=c(min(df$SepalLengthCm), max(df$SepalLengthCm)),
        ylim=c(min(df$SepalWidthCm), max(df$SepalWidthCm)),
        col='dark green',pch=16,xaxt='n',yaxt='n',xlab=NA,ylab=NA)
par(new=T)
plot(centroids$SepalLengthCm,centroids$SepalWidthCm,
        xlim=c(min(df$SepalLengthCm),max(df$SepalLengthCm)),
        ylim=c(min(df$SepalWidthCm), max(df$SepalWidthCm)),
        col='yellow',pch=16,cex=2,xaxt='n',yaxt='n',xlab=NA,ylab=NA)
legend(x=7.1,y=4.4,c('Cluster 1','Cluster 2','Cluster 3','Centroids'),
                col=c('red','blue','dark green','yellow'),pch=16)
```


Finally, we create a table summarising the clusters.

```
#Summary Table
table(KMeans$cluster,df$Species)
##
##
       Iris-setosa Iris-versicolor Iris-virginica
                                  2
##
     1
                 0
                                                 36
     2
                50
                                  0
                                                  0
##
##
                 0
                                 48
                                                 14
```

From the table above, we find that the members of Iris-setosa were clustered correctly. However, there is some discrepancy regarding the clusters of the other two species: Iris-versicolor and Iris-virginica