### R 데이터 분석 입문

Chapter 13

# 데이터 마이닝 기초 [2]

오세종

DANKOOK UNIVERSITY

### **Contents**

- 1. 군집화, 분류
- 2. k-means clustering
- 3. KNN classification
- 4. k-fold cross validation

- 군집화(Clustering)
  - Grouping target data into some category (class)
  - Data in same group has similar characteristics
  - Group points into clusters based on how "near" they are to one another
  - 비지도 학습 (Unsupervised learning)



- 분류(Classification)
  - Classify new data into one of known category.
  - The category has "label"
  - 현실에서는 예측(prediction)문제에 적용
  - 지도 학습 (Supervised learning)



- 군집화 예제
  - 차량의 특성을 가지고 grouping 을 해 보자



| Vehicle | Top speed | Color | Air        | Weight |
|---------|-----------|-------|------------|--------|
|         | km/h      |       | resistance | Kg     |
| V1      | 220       | red   | 0.30       | 1300   |
| V2      | 230       | black | 0.32       | 1400   |
| V3      | 260       | red   | 0.29       | 1500   |
| V4      | 140       | gray  | 0.35       | 800    |
| V5      | 155       | blue  | 0.33       | 950    |
| V6      | 130       | white | 0.40       | 600    |
| V7      | 100       | black | 0.50       | 3000   |
| V8      | 105       | red   | 0.60       | 2500   |
| V9      | 110       | gray  | 0.55       | 3500   |

• 군집화 예제



## • 분류 예제

| No | Height | Weight | running hour | working hour | Category |
|----|--------|--------|--------------|--------------|----------|
| 1  | 0.41   | 0.36   | 0.27         | 0.65         | Patient  |
| 2  | 0.23   | 0.37   | 0.34         | 0.68         | patient  |
| 3  | 0.38   | 0.38   | 0.46         | 0.95         | patient  |
| 4  | 0.45   | 0.31   | 0.37         | 0.75         | patient  |
| 5  | 0.37   | 0.45   | 0.48         | 0.75         | patient  |
| 6  | 0.28   | 0.26   | 0.36         | 0.86         | patient  |
| 7  | 0.66   | 0.44   | 0.51         | 0.98         | patient  |
| 8  | 0.55   | 0.43   | 0.43         | 0.91         | patient  |
| 9  | 0.23   | 0.44   | 0.28         | 0.78         | patient  |
| 10 | 0.41   | 0.53   | 0.46         | 0.86         | patient  |
| 11 | 0.65   | 0.38   | 0.74         | 0.51         | normal   |
| 12 | 0.89   | 0.53   | 0.67         | 0.46         | normal   |
| 13 | 0.58   | 0.54   | 0.56         | 0.43         | normal   |
| 14 | 0.78   | 0.55   | 0.67         | 0.34         | normal   |
| 15 | 0.89   | 0.56   | 0.81         | 0.56         | normal   |
| 16 | 0.65   | 0.57   | 0.81         | 0.43         | normal   |
| 17 | 0.75   | 0.67   | 0.76         | 0.35         | normal   |
| 18 | 0.46   | 0.48   | 0.65         | 0.42         | normal   |
| 19 | 0.89   | 0.69   | 0.78         | 0.23         | normal   |
| 20 | 0.78   | 0.81   | 0.88         | 0.26         | normal   |

Disease A

Patient or Normal?

| Height | Weight | running hour | working hour |
|--------|--------|--------------|--------------|
| 0.5    | 0.44   | 0.45         | 0.61         |

분류 예제: image classification



(2) Search similar image and shows detail information about it

- 분류분석 절차
  - 1. Prepare target dataset that has label (class) information.
  - 2. Divide target dataset into training data and test data
    - assume we don't know class labels of test data
  - 3. Training model using training data
  - 4. Predict class labels of test data using learning model
  - 5. Evaluate prediction performance

#### 모델 평가 기준



- Binary vs. multiple classification
  - Binary classification
    - # of class is two

Male Female

Patient Normal

Yes No

multiple classification

# of class over two

Well-done | medium | rare

university High school

Middle Elementary school school



Fact (실제값)

predict (예측치)

|                  | Fact is True | Fact is False |
|------------------|--------------|---------------|
| Predict as True  | TP           | FP            |
| Predict as False | FN           | TN            |

**TP:** true positive **FP:** false positive

**FN**: false negative **TN**: true negative

$$Accuracy = \frac{(TP + TN)}{(TP + TN + FP + FN)}$$
  
(정확도)

Binary Classification Error

Specificity = 
$$TN/(TN+FP)$$
 (≒0|⊊)

- Sensitivity
  - Fraction of all Class1 (True) that we correctly predicted at Class 1
  - How good are we at finding what we are looking for
- Specificity
  - Fraction of all Class 2 (False) called Class 2
  - How many of the Class 2 do we filter out of our Class 1 predictions

어떤 평가기준이라도 값이 클수록 좋다



### • 금이간 타일과 정상 타일 군집화

https://www.slideshare.net/picasso544/clustering-tutorial



| 475Hz | 557Hz |
|-------|-------|
|       |       |
| 0.958 | 0.003 |
| 1.043 | 0.001 |
| 1.907 | 0.003 |
| 0.780 | 0.002 |
| 0.579 | 0.001 |
| 0.003 | 0.105 |
| 0.001 | 1.748 |
| 0.014 | 1.839 |
| 0.007 | 1.021 |
| 0.004 | 0.214 |

Table 1: frequency intensities for ten tiles.

Tiles are made from clay moulded into the right shape, brushed, glazed, and baked. Unfortunately, the <u>baking may produce invisible cracks</u>. Operators can detect the cracks by hitting the tiles with a hammer, and in an automated system the response is recorded with a microphone, filtered, Fourier transformed, and normalised. A small set of data is given in TABLE 1 (adapted from MIT, 1997).



Plot of tiles by frequencies (logarithms). The whole tiles (o) seem well separated from the cracked tiles (\*). The **objective** is to find the two clusters.

Before logarithms





- 1. Place two cluster centres (x) at random.
- 2. Assign each data point (\* and o) to the nearest cluster centre (x)



- 1. Compute the new centre of each class
- 2. Move the crosses (x)



Iteration 2



Iteration 3



Iteration 4 (then stop, because no visible change)
Each data point belongs to the cluster defined by the nearest centre

| 475Hz | 557Hz |          |
|-------|-------|----------|
|       | ++    | Result = |
| 0.958 | 0.003 | 1        |
| 1.043 | 0.001 | 1        |
| 1.907 | 0.003 | 1        |
| 0.780 | 0.002 | 1        |
| 0.579 | 0.001 | 1        |
| 0.003 | 0.105 | 2        |
| 0.001 | 1.748 | 2        |
| 0.014 | 1.839 | 2        |
| 0.007 | 1.021 | 2        |
| 0.004 | 0.214 | 2        |

#### 군집화 결과:

- 1. The last five data points (rows) belong to the first cluster
- 2. The first five data points (rows) belong to the second cluster

### ● 거리계산

$$p = (p_1, p_2, p_3, ..., p_n), q = (q_1, q_2, q_3, ..., q_n)$$

#### Euclidean distance

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}.$$

scolar

vector

#### Euclidean norm measure

$$\|\mathbf{p}\| = \sqrt{p_1^2 + p_2^2 + \dots + p_n^2} = \sqrt{\mathbf{p} \cdot \mathbf{p}}$$

#### Distance using Euclidean norm measure

$$\|\mathbf{p}-\mathbf{q}\| = \sqrt{(\mathbf{p}-\mathbf{q})\cdot(\mathbf{p}-\mathbf{q})} = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 - 2\mathbf{p}\cdot\mathbf{q}}.$$

$$(p \cdot q = p_1 q_1 + p_2 q_2 + ... + p_n q_n)$$



R function: kmeans

```
kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
"MacQueen"))
```

- 매개변수
  - x : 수치형 데이터 matrix
  - centers : 몇 개의 그룹으로 나눌 것인가
  - iter.max : 그룹 중심점을 찾기 위한 최대 반복 횟수
  - nstart : 초기에 그룹 중심점을 임의로 잡을 때 몇 개의 점을 이용할 것인가
  - algorithm : 사용 알고리즘.

```
require (graphics)
# create a 2-dimensional example
x \leftarrow rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
           matrix(rnorm(100, mean = 1, sd = 0.3),
           ncol = 2)
colnames(x) \leftarrow c("x", "y")
cl <- kmeans(x, 2)
cl # show clustering result
plot(x, col = cl$cluster)
points(cl$centers, col = 1:2, pch = 8, cex=2)
# random starts do help here with too many clusters
cl <- kmeans(x, 5, nstart = 25)
plot(x, col = cl$cluster)
points(cl$centers, col = 1:5, pch = 8)
```



## [연습문제 1]

- (1) iris 데이터셋에 대해 kmeans 클러스터링을 하고 결과를 그래프로 보이시오
  - iris 데이터셋에서 품종(Species) 컬럼은 제외하시오
  - 클러스터 수는 3 으로 하시오
- (2) state.x77 데이터셋에 대해 kmeans 클러스터링을 하고 결과를 그래프 로 보이시오
  - 클러스터 수는 5로 하시오
  - state.x77 은 각 컬럼의 값들의 단위가 많이 차이가 나기 때문에 이를 적절히 맞추어줄 필요가 있다.

new.data = scale(state.x77)

### 분류(classification)

| No | running<br>hour | working<br>hour | Category |
|----|-----------------|-----------------|----------|
| 1  | 0.27            | 0.65            | Patient  |
| 2  | 0.34            | 0.68            | patient  |
| 3  | 0.46            | 0.95            | patient  |
| 4  | 0.37            | 0.75            | patient  |
| 5  | 0.48            | 0.75            | patient  |
| 6  | 0.36            | 0.86            | patient  |
| 7  | 0.51            | 0.98            | patient  |
| 8  | 0.43            | 0.91            | patient  |
| 9  | 0.28            | 0.78            | patient  |
| 10 | 0.46            | 0.86            | patient  |
| 11 | 0.74            | 0.51            | normal   |
| 12 | 0.67            | 0.46            | normal   |
| 13 | 0.56            | 0.43            | normal   |
| 14 | 0.67            | 0.34            | normal   |
| 15 | 0.81            | 0.56            | normal   |
| 16 | 0.81            | 0.43            | normal   |
| 17 | 0.76            | 0.35            | normal   |
| 18 | 0.65            | 0.42            | normal   |
| 19 | 0.78            | 0.23            | normal   |
| 20 | 0.88            | 0.26            | normal   |

Given
Classified
Data

Patient or Normal?

| running | working |
|---------|---------|
| hour    | hour    |
| 0.45    | 0.61    |

- Idea of KNN
  - Find K nearest neighbor for new point (\*\*)
  - Decide new point belongs to major class (class A)
    - # of neighbor of Class A > # of neighbor of Class B





- Algorithm
  - Calculate distance between new point and every point of given classes
  - Choose K nearest points by the distance
  - Choose major class from K points (the class is for the new point)



- How to calculate the distance between two element?
  - Using Euclidean distance

$$\mathbf{p} = (p_1, p_2, ..., p_n)$$

$$\mathbf{q} = (q_1, q_2, ..., q_n)$$

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}....$$

- K 를 얼마로 하는 것이 좋은가
  - 크게 할 때와 작게 할 때 각각 장단점이 있다
  - 데이터 수가 N 이라고 할 때 K < sqrt(N) 을 권장

### 1NN vs kNN



- 장점
  - 통계적 가정 불필요 (비모수적 방법)
  - 단순하다
  - 성능이 좋다
  - 모델을 훈련(학습)하는 시간이 필요 없다
- 단점
  - 데이터가 커질수록 많은 메모리 필요, 처리시간(분류시간) 증가



R function: knn

```
knn(train, test, cl, k = 1, l = 0,
    prob = FALSE, use.all = TRUE)
```

### • 매개변수

- o train : 훈련 데이터셋 (matrix or data frame)
- test : 테스트 데이터셋 (matrix or data frame)
- cl: 훈련 데이터셋의 그룹(class) 정보 (factor)
- k: 이웃(neighbour)의 수
- I: minimum vote for definite decision, otherwise doubt.
- prob: If this is true, the proportion of the votes for the winning class are returned as attribute prob.
- use.all: controls handling of ties. If true, all distances equal to the kth largest are included. If false, a random selection of distances equal to the kth is chosen to use exactly k neighbours



• 1: 최다득표수가 1 이상이어야 유효한 예측으로 인정



use.all



이런 경우 어떻게 처리?

```
require("class")
# prepare train/test data
tr.idx < -c(1:25,51:75, 101:125)
ds.tr <- iris[tr.idx, 1:4]
ds.ts <- iris[-tr.idx, 1:4]
cl.tr <- factor(iris[tr.idx, 5])</pre>
cl.ts <- factor(iris[-tr.idx, 5])</pre>
pred <- knn(ds.tr, ds.ts, cl.tr, k = 3, prob=TRUE)</pre>
pred
acc <- mean (pred==cl.ts) # 예측 정확도
acc
```

- require == library
- o knn 을 이용하려면 "class" 라이브러리 필요

```
table(pred,cl.ts)
```

```
> acc
[1] 0.9333333
```



## [연습문제 3]

- ▶ 다음의 데이터셋을 이용하여 KNN 알고리즘을 테스트하시오
- Target dataset : Breast Cancer Wisconsin (Diagnostic) Data Set
  - http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancerwisconsin/wdbc.data
  - wdbc.csv 파일에 저장후 프로그램에서 읽어들인다
  - 첫번째 컬럼: instance ID (삭제한다)
  - 두번째 컬럼 : class 정보 (M,B)
- 홀수번째 instance는 training data 로, 짝수번째 instance는 test data 로 이용한다
- K = 3,5,7 로 하여 accuracy 를 비교한다.



Only one classification experiment is enough ?

Training data Test data

- Classification accuracy = 0.87 (???)
- 위의 예에서 Test 데이터셋을 다르게 만들면 accuracy 가 달라질 것이 다
- Test 데이터셋이 어떻게 구성되었는가에 따라 accuracy 가 원래 성능 보다 높거나 낮게 나올 수도 있다.
- 그렇다면 어떻게 해야 분류 모델 또는 분류 알고리즘의 성능을 보다 정확히 알 수 있을까?

- Create a K-fold partition of the dataset
  - For each of K experiments, use K-1 folds for training and the remaining one for testing (일반적으로 k=10 을 많이 사용)



○ 모델(or 알고리즘)의 정확도는 각 fold 의 정확도들의 평균으로 계산

$$Acc = \frac{1}{K} \sum_{i=1}^{K} Acc_i$$

- 3-fold cross validation
  - Collect test examples from all classes by even rate (33%) of samples in the classes



R code: 5-fold cross validation for iris dataset

```
require ("class")
# get fold no for each rows
group.1 <- cut(seq(1,50),breaks=5,labels=FALSE)</pre>
group.2 <- cut(seq(51,100),breaks=5,labels=FALSE)</pre>
group.3 <- cut(seq(101,150),breaks=5,labels=FALSE)</pre>
fold <- c(group.1, group.2, group.3)</pre>
acc <- c() # accuracy for each fold
for (i in 1:5) {
  ds.tr <- iris[fold != i, 1:4]
  ds.ts <- iris[fold == i, 1:4]
  cl.tr <- factor(iris[fold != i, 5])</pre>
  cl.ts <- factor(iris[fold == i, 5])</pre>
```

```
pred <- knn(ds.tr, ds.ts, cl.tr, k = 3)
acc[i] <- mean(pred==cl.ts) # 예측 정확도
}
acc  # accuracy of 5 fold
mean(acc) # mean accuracy of 5 fold
```



## [연습문제 4]

 mlbench 패키지에 포함된 유방암 데이터셋() 에 대하여 KNN 으로 예측 정확도를 알아보되 10-fold cross validation 으로 하시오

```
library(mlbench)
data(BreastCancer)
head(BreastCancer)
```

```
> head(BreastCancer)
       Id Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size
1 1000025
2 1002945
3 1015425
4 1016277
5 1017023
                              10
6 1017122
  Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses
                                                       class
                                                      benign
           10
                                                      benign
                                                       benian
                                                       benign
                                                      benign
           10
                                                 1 malignant
```

> table(BreastCancer\$Class)

Group information

```
benign malignant
458 241
양성 악성
```