Темы лабораторных работ по курсу «Численное моделирование»

Вычислительные методы линейной алгебры

- 1. Решение систем линейных алгебраических уравнений с квадратными матрицами общего вида.
- 2. Решение систем линейных алгебраических уравнений с квадратными ленточными матрицами общего вида.
- 3. Решение систем линейных алгебраических уравнений с квадратными симметричными ленточными положительно-определёнными матрицами.
- 4. Решение систем линейных алгебраических уравнений с квадратными разреженными матрицами общего вида.

Задание к работам 1-4

Напишите программу для решения с **обычной** (а затем и **с** двойной) точностью системы линейных алгебраических уравнений Ax = b, в которой квадратная матрица и правая часть зависят от параметра p. Параметр выбран так, что при всех его значениях существует один и тот же вектор решения x.

Матрица, вектор правой части и дополнительная информация о системе уравнений содержатся в файлах, выдаваемых преподавателем.

Для решения систем использовать программы из библиотеки **IMSL**. Инструкции по использованию библиотеки **IMSL** находятся в файле «Подключение библиотеки **IMSL** для Intel_Fortran.pdf», полное описание библиотеки **IMSL** можно открыть по ссылке Пуск -> Все программы -> VisualNumerics -> IMSL Fortran Library User's Guide.pdf (или в паке /Numerical modeling/2019/ на локальном диске).

Для решения системы в заданиях 1–3 последовательно применить 2 программы из библиотеки IMSL:

- 1 факторизация матрицы с оценкой числа **обусловленности** или его обратной величины (Factor and compute condition number);
- 2 решение системы с использованием найденной факторизации (Solve after factoring)
- В задании 4 использовать программу для решения системы непосредственно, без факторизации матрицы.

Написанная программа должна выводить в файл следующие данные:

фамилию, имя и номер группы автора программы

значение параметра p,

матрицу и правую часть системы уравнений,

оценку числа обусловленности матрицы $v_1(A)$ и оценку обратной величины числа обусловленности $1/v_1(A)$ (в заданиях 1-3) ,

найденное приближённое решение \mathfrak{I} ,

вектор невязки $r = b - A\tilde{x}$,

оценку погрешности решения
$$v_1(A) \frac{\|r\|_1}{\|b\|_1}$$
 из неравенства $\frac{\|x-\widetilde{x}\|_1}{\|x\|_1} \le v_1(A) \frac{\|r\|_1}{\|b\|_1}$, где $\|r\|_1 = \sum_{i=1}^n |r_i|$ (в

заданиях 1-3); в задании 4 оцените погрешность решения, сравнив результаты, полученные с одинарной и двойной точностью.

Дайте письменные ответы на следующие вопросы:

- 1) Как изменяется число обусловленности матрицы с уменьшением значения параметра p?
- 2) Что происходит с системой при p = 0 ?
- 3) Сравните при одних и тех же значениях p решения, найденные с обычной и двойной точностью. Почему при p=0 решения отличаются больше, чем при других значениях p? Если решения при p=0 получить не удаётся, то в чём причина?

Поиск собственных значений и собственных векторов матриц

- 5. Вычисление всех собственных чисел и собственных векторов симметричной матрицы.
- 6. Вычисление всех собственных чисел и собственных векторов несимметричной матрицы.

Задание к работам 5-6

Напишите программу для решения с обычной (а затем и с двойной) точностью задачи на собственные значения $Ax = \lambda x$, в которой квадратная матрица зависит от параметра p.

Информация о матрице содержится в файлах, выдаваемых преподавателем.

Для решения задачи использовать программы из библиотеки **IMSL**. Инструкции по использованию библиотеки **IMSL** находятся в файле «Подключение библиотеки IMSL для Intel_Fortran.pdf», полное описание библиотеки **IMSL** можно открыть по ссылке Пуск -> Все программы -> VisualNumerics -> IMSL Fortran Library User's Guide.pdf (или в паке /Numerical modeling/2019/ на локальном диске).

Дополнительно вычислить индекс выполнения (performance index), используя программу из библиотеки IMSL.

Написанная программа должна выводить в файл следующие данные:

фамилию, имя и номер группы автора программы

значение параметра p,

матрицу,

найденные собственные числа матрицы $\widetilde{\lambda}$,

найденные собственные векторы \hat{x} ,

индекс выполнения (performance index)

векторы невязок $r = \widetilde{\lambda} \widetilde{x} - A \widetilde{x}$,

проверку ортогональности собственных векторов

Дайте письменные ответы на следующие вопросы:

- 1) Как изменяется наименьшее по модулю собственное число матрицы с уменьшением значения параметра p?
- 2) Что происходит с матрицей при p = 0 ?
- 3) Сравните при одних и тех же значениях p решения, найденные с обычной и двойной точностью.
- 4) Что такое индекс выполнения (performance index) в библиотеке IMSL и каков его смысл?

Аппроксимация функций, численное дифференцирование и интегрирование

- 7. Аппроксимация функций интерполяционным кубическим сплайном с помощью программы CSIEZ.
- **8.** Аппроксимация функций и их производных интерполяционным кубическим сплайном с помощью CSINT и CSDER.
- 9. Аппроксимация функций интерполяционными B-сплайнами программой DBSINT.

Задание к работе 7

Напишите программу с одинарной точностью для аппроксимации заданной функции f(x) $x \in [a,b]$ интерполяционным кубическим сплайном s(x), используя программу CSIEZ из библиотеки **IMSL**.

Оцените погрешность аппроксимации функции сплайном для числа разбиений интервала N=10, 20, 40, 80, 160. Погрешность аппроксимации оцените по формуле $\varepsilon = \max_i |f(x_i) - s(x_i)|$, где

 $x_i = a + ih, \, h = \frac{b-a}{4N}, \, i = 0,1,...,4N$. Покажите, что в узлах интерполяции значения функции и сплайна совпадают.

Написанная программа должна выводить в файл следующие данные: фамилию, имя и номер группы автора программы,

$$f(x)$$
, a , b , N , ε ,

отношения погрешностей є для двух соседних разбиений.

Дайте письменные ответы на следующие вопросы:

- 1) Что такое условие интерполяции?
- 2) Как изменятся погрешность $\varepsilon = \max_{i} |f(x_i) s(x_i)|$ с увеличением числа разбиений? Сравните полученные результаты для двух соседних разбиений с теоретической оценкой: $\varepsilon = \max_{i} |f(x_i) s(x_i)| < Ch^4$.

Задание к работе 8

Напишите программу с одинарной точностью для аппроксимации заданной функции f(x), $x \in [a,b]$ и её первых трёх производных интерполяционным кубическим сплайном s(x), используя программы CSINT и CSDER из библиотеки **IMSL**. Вычислите $I = \int_a^b f(x) dx$, используя CSITG.

Оцените погрешность аппроксимации функции, производных и интеграла сплайном для числа разбиений интервала N=10, 20, 40, 80, 160. Погрешность аппроксимации функции и её производных оцените по формуле $\varepsilon = \max_i \left| f^{(\nu)}(x_i) - s^{(\nu)}(x_i) \right|, \ \nu = 0,1,2,3 \,, \qquad \text{где}$ $x_i = a + ih, \ h = \frac{b-a}{4N}, \ i = 0,1,...,4N \,. \ \text{Погрешность вычисления интеграла} \ \varepsilon = \int_0^b f(x) dx - \int_0^b s(x) dx$

Написанная программа должна выводить в файл следующие данные: фамилию, имя и номер группы автора программы

f(x), a, b, N, ε и отношения погрешностей для двух соседних разбиений для функции, производных и интеграла.

Дайте письменные ответы на следующие вопросы:

- 1) Как изменятся погрешность аппроксимации функции, производных и интеграла с увеличением числа разбиений? Сравните, полученные результаты с теоретической опенкой.
- 2) Как будет вести себя погрешность аппроксимации функции при дальнейшем увеличении N?

Задание к работе 9

Напишите программу с **двойной** точностью для аппроксимации заданной функции f(x), $x \in [a,b]$ интерполяционными В-сплайнами $s(x) = \sum_i \alpha_i B_i^{(k)}$, где k-степень сплайна, используя программы DBSINT из библиотеки **IMSL**.

Оцените погрешность аппроксимации функции сплайном для числа разбиений интервала N=10, 20, 40, 80 при k=1, 2, 3, 4, 5. Погрешность аппроксимации функции оцените по формуле $\varepsilon = \max_i \left| f(x_i) - s \left(x_i \right) \right|$, где $x_i = a + ih$, $h = \frac{b-a}{8N}$, i = 0,1,...,8N. Написанная программа должна выводить в файл следующие данные:

фамилию, имя и номер группы автора программы,

$$f(x)$$
, a , b , N , ε ,

отношения погрешностей для двух соседних разбиений для функции для всех к.

Дайте письменные ответы на следующие вопросы:

- 1) Что такое В-сплайн? Как строится интерполяционный В-сплайн?
- 2) Анализируя полученные результаты, выведите формулу для оценки погрешности аппроксимации функции в зависимости от степени сплайна κ .

Таблица 1. Вид функций для одномерной интерполяции

No	Вид функции	Интервал	№	Вид функции	Интервал
	f(x)	[a,b]		f(x)	[a,b]
1	$\sin^2(x)$	$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$	12	$e^x \cos(x)$	$\left[-\pi,\pi\right]$
2	$x\sin^2(x)$	$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$	13	$\frac{1}{\sin^2(x)}$	$\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$
3	$10xe^{-x}$	[0,2]	14	$\frac{1}{1+\sin(x)}$	$[0,\pi]$
4	$10x^2e^{-x}$	[0,2]	15	$\frac{1}{1-\sin(x)}$	$[-\pi,0]$
5	$x\sin(x)$	$[0,\pi]$	16	$\frac{1}{\left(1+\sin(x)\right)^2}$	$\left[0,\frac{\pi}{2}\right]$
6	$x\cos(x)$	$[0,\pi]$	17	$\frac{1}{(1-\sin(x))^2}$	$\left[\frac{-\pi}{2},0\right]$
7	$x^2 \sin(x)$	$\left[-\pi,\pi\right]$	18	$\frac{\sin(x)}{1+\sin(x)}$	$[0,\pi]$
8	$x^2\cos(x)$	$\left[-\pi,\pi ight]$	19	$\frac{\sin(x)}{1-\sin(x)}$	$[-\pi,0]$
9	$e^{-x}\sin(x)$	$\left[-\pi,\pi\right]$	20	$\frac{\cos(x)}{1+x}$	$[0,\pi]$
10	$e^{-x}\cos(x)$	$\left[-\pi,\pi\right]$	21	$\frac{x\sin(x)}{1+\sin(x)}$	$[0,\pi]$
11	$e^x \sin(x)$	$\left[-\pi,\pi\right]$	22	$\frac{x\cos(x)}{1+\cos(x)}$	$\left[0,\frac{\pi}{2}\right]$

Решение нелинейных уравнений и систем нелинейных уравнений

- 10. Вычисление корней нелинейных уравнений
- 11. Решение систем нелинейных уравнений

Задание к работе 10

Напишите программу для нахождения корня нелинейного уравнения с точностью 1.0e-5 и 1.0e-6, используя программу ZBREN из библиотеки IMSL.

Напечатайте точность, значение корня, значение невязки и количество итераций (количество вычислений функции), выполненных программой.

Указание. Если программа не выдаёт количество вычислений функций, то организуйте подсчёт «вручную». Для этого создайте модуль

module counter

integer count_f
end module counter

В головной программе и подпрограмме вычисления функции после заголовка добавьте оператор

use counter

Задайте начальное значение $count_f=0$ В подпрограмме вставьте оператор count f=count f+1

Дайте письменные ответы на следующие вопросы:

- 1) Какое условие необходимо для поиска корня данной подпрограммой и каков его смысл?
- 2) Какова идея поиска корня нелинейного уравнения методом бисекции?

1	$2^x + 5x - 3 = 0$	16	$tg(x)-x=0, x \le \frac{\pi}{2}$
2	$2^{-x} + 1 - (x - 2)^2 = 0$	17	$5^x - 6x - 3 = 0$
3	$(x-3)\cos(x)-1=0, x \le 2\pi$	18	$2x^2 - 2^{-x} - 3 = 0$
4	$5\sin(x) - x - 2 = 0$	19	$x\lg(x+1)-1=0$
5	$e^{-2x} - 2x + 1 = 0$	20	2arctg(x) - x + 3 = 0
6	$x^2\cos(2x)+1=0$	21	$2\sin\left(x+\frac{\pi}{3}\right)-\frac{x^2}{2}+1=0$
7	arctg(x-1) + 2x = 0	22	$2\lg(x) - \frac{x}{2} + 1 = 0$
8	$(x-2)^2 2^x - 1 = 0$	23	$3^x + 2x - 2 = 0$
9	$x^2 - 20\sin(x) = 0$	24	$(x-2)^2 - 1 2^x - 1 = 0$
10	$arctg(x) - \frac{1}{3x^3} = 0$	25	$3^x + 2x - 5 = 0$
11	$\sin\left(x + \frac{\pi}{3}\right) - \frac{x}{2} = 0$	26	$(x-2)^2 \lg(x+11)-1=0$
12	$2e^x + 5x = 0$	27	$3^{x-1} - x + 4 = 0$
13	$\cos(x+0.5) - x^3 = 0$	28	$e^x + x + 1 = 0$
14	$2arctg(x) - \frac{1}{2x^3} = 0$	29	$\sin(x - 0.5) - x + 0.5 = 0$
15	$x^2 2^x - 1 = 0$	30	$2e^x - 3x + 1 = 0$

Таблица 2. Вид нелинейных уравнений.

Задание к работе 11

Напишите программу для нахождения корней системы нелинейных уравнений с точностью 1.0e-5 и 1.0e-6, используя программы NEQNF и NEQNJ из библиотеки IMSL.

Напечатайте точность, значение корней, значение невязки (одно число) и количество итераций, выполненных программой (количество вычислений функции правой части), а для программы NEQNJ дополнительно количество вычислений матрицы Якоби.

Указание. Если программа не выдаёт количество вычислений функций и матрицы Якоби, то организуйте подсчёт «вручную». Для этого создайте модуль

module counter integer count_fun, count_jac

В головной программе и подпрограммах добавьте оператор

use counter

Задайте начальные значения $count\ fun=0$ и $count\ jac=0$

В подпрограммах вычисления функции правой части и матрицы Якоби вставьте в соответствующие места операторы

count_fun= count_fun+1
count jac= count jac +1

Дайте письменные ответы на следующие вопросы:

- 1) В чем заключается принципиальное отличие программ NEQNF и NEQNJ?
- 2) Что такое матрица Якоби, и с какой целью она используется для решения нелинейных систем?
- 3) Как должно различаться количество вычислений функций в программах NEQNF и NEQNJ и почему?

Таблица 3. Вид систем нелинейных уравнений.

N	Система уравнений	N	Система уравнений
1	$\int \sin(x+1) - y + 1, 2 = 0,$	16	$\int tg(xy+0,4)-x^2=0,$
	$(2x + \cos(y) - 2 = 0)$		$\int (0.6x^2 + 2y^2 - 1) = 0$
2	$\int \cos(x-1) + y - 0.5 = 0,$	17	$\int \sin(x+y)-1,6x=0,$
	$(x - \cos(y) - 3 = 0)$		$\begin{cases} x^2 + y^2 - 1 = 0 \end{cases}$
3	$\int \sin(x) + 2y - 2 = 0,$	18	$\int tg(xy+0,1)-x^2=0,$
	$x + \cos(y - 1) - 0.7 = 0$		$\begin{cases} x^2 + 2y^2 - 1 = 0 \end{cases}$
4	$\int \cos(x) + y - 1,5 = 0,$	19	$\int \sin(x+y) - 1,2x - 0,2 = 0,$
	$2x - \cos(y - 0.5) - 1 = 0$		$\begin{cases} x^2 + y^2 - 1 = 0 \end{cases}$
5	$\int \sin(x+0.5) - y - 1 = 0,$	20	$\int tg(xy+0,3)-x^2=0,$
	$x + \cos(y - 2) = 0$		$\begin{cases} 0.9x^2 + 2y^2 - 1 = 0 \end{cases}$
6	$\int \cos(x+0.5) + y - 0.8 = 0,$	21	$\int \sin(x+y)-1, 3x=0,$
	$-2x + \sin(y) - 1.6 = 0$		$\int x^2 + y^2 - 1 = 0$
7	$\int \sin(x-1) + y - 1,3 = 0,$	22	$\int tg(xy)-x^2=0,$
	$x-\sin(y+1)-0.8=0$		$\begin{cases} 0.8x^2 + 2y^2 - 1 = 0 \end{cases}$
8	$\int -\cos(x+1) + 2y = 0,$	23	$\int \sin(x+y) - 1.5x - 0.1 = 0,$
	$(x + \sin(y) + 0.4 = 0$		$\int x^2 + y^2 - 1 = 0$
9	$\int \cos(x+0.5) - y - 2.0 = 0,$	24	$\int tg(xy)-x^2=0,$
	$-2x + \sin(y) - 1 = 0$		$\begin{cases} 0.7x^2 + 2y^2 - 1 = 0 \end{cases}$
10	$\int \sin(x+2) - y - 1,5 = 0,$	25	$\int \sin(x+y) - 1,2x - 0,1 = 0,$
	$(x + \cos(y - 2) - 0.5 = 0)$		$\begin{cases} x^2 + y^2 - 1 = 0 \end{cases}$
11	$\int -x + \sin(y+1) - 1,2 = 0,$	26	$\int tg(xy+0,2)-x^2=0,$
	$\cos(x) + 2y - 2 = 0$		$\begin{cases} 0.6x^2 + 2y^2 - 1 = 0 \end{cases}$

12	$\begin{cases} x + \cos(y - 1) - 0.5 = 0, \\ -\cos(x) + y - 3 = 0 \end{cases}$	27	$\begin{cases} \sin(x+y) - 1.5x + 0.1 = 0, \\ x^2 + y^2 - 1 = 0 \end{cases}$
13	$\begin{cases} 2x + \sin(y) - 2 = 0, \\ \cos(x - 1) + y - 0, 7 = 0 \end{cases}$	28	
14	$\begin{cases} x + \cos(y) - 1.5 = 0, \\ -\sin(x - 0.5) + 2y - 1 = 0 \end{cases}$	29	$\begin{cases} \sin(x+y) - 1, 2x + 0, 1 = 0, \\ x^2 + y^2 - 1 = 0 \end{cases}$
15	$\begin{cases} -x + \sin(y+0.5) - 1 = 0, \\ \cos(x-2) + y = 0 \end{cases}$	30	$\begin{cases} tg(xy+0.1) - x^2 = 0, \\ 0.9x^2 + 2y^2 - 1 = 0 \end{cases}$