AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method, comprising:

exposing a photo-sensitive medium to an optical intensity pattern under conditions that inhibits inhibit or prevents prevent the optical intensity pattern from producing refractive index changes in the medium; and

then, heating the exposed medium to stimulate a pattern of refractive index changes that is responsive to the optical intensity pattern during the exposing.

wherein the medium comprises acid neutralizer molecules and a material capable of undergoing a refractive index changing chemical reaction.

- 2. (Original) The method of claim 1, wherein the condition includes that a temperature of the medium is lower than a temperature of the medium during the heating.
- 3. (Original) The method of claim 1, further comprising: exposing one or more points or lines in the medium with light that causes photochemical reactions in the medium via multiple-photon absorption events.
- 4. (Currently Amended) The method of claim 1, wherein the heating produces the pattern of refractive index changes by causing the [[a]] chemical reaction selected from the group consisting of polymerization of oligomers, stimulating deprotection of portions of polymers, and stimulating crosslinking of polymers.

Appl. No. 10/040,017 Reply to Examiner's Action dated 12-07-05

- 5. (Previously presented) The method of claim 1, wherein the medium includes—a concentration of acid neutralizer molecules that are able to neutralize photo-chemical reaction products produced by the exposing, the products being able to stimulate the chemical reaction that produces the pattern of refractive index changes.
- 6. (Original) The method of claim 1, wherein the optical intensity pattern is produced by interfering at least three mutually coherent light beams.
- 7. (Original) The method of claim 6, wherein the pattern of refractive index changes tracks the optical intensity pattern.
- 8. (Original) The method of claim 6, wherein the heating causes refractive index changing reactions in regions of the medium where the exposing activated photo-sensitizer molecules dispersed in the medium.
- 9. (Original) The method of claim 6, wherein the heating includes heating the medium to a temperature of a rubber-like phase.
- 10. (Original) The method of claim 6, wherein the heating produces a pattern of refractive index changes that is periodic and non-constant in three independent directions.

11. (Currently Amended) A photo-sensitive composition, comprising:

a medium <u>comprising a material</u> capable of undergoing a refractive index changing chemical reaction, the medium further comprising:

photo-acid generator molecules dispersed therein:

photo-sensitizer molecules dispersed in the medium, the photo-sensitizer molecules to stimulate photo-chemical reactions in response to being exposed to light, products of the photo-chemical reactions being able to stimulate the refractive index changing chemical reaction; and neutralizer molecules dispersed in the medium, the neutralizer molecules being able

to neutralize a portion of the products of the photo-chemical reactions.

- 12. (Previously presented) The composition of claim 11, wherein one of the products and the neutralizer molecules is an acid and the other of the products and the neutralizer molecules is a base.
- 13. (Previously presented) The composition of claim 11, wherein the medium is a photoresist having a rubber-like phase, the index changing reactions being inhibited or prevented at temperatures below a transition temperature for the phase.
- 14. (Currently Amended) A method for making crystalline structures and devices, comprising:

providing a medium <u>comprising acid neutralizer molecules</u>, a material capable of undergoing a refractive index changing chemical reaction and

Appl. No. 10/040,017

Reply to Examiner's Action dated 12-07-05

with photo-sensitizer molecules dispersed therein, the photo-sensitizer molecules to catalyze

photo-chemical reactions in response to being activated by light of a wavelength, products of the

photo-chemical reactions being able to stimulate the refractive index changes in the medium; and

exposing the medium to an optical interference pattern that is produced by combining

a plurality of mutually coherent beams of light of the wavelength, the exposing being done under

conditions that inhibits or prevents the products of the photo-chemical reactions from causing the

refractive index changes.

15. (Currently Amended) The method of claim 14, wherein the acid neutralizer molecules

providing a medium includes providing a medium with a concentration of molecules to neutralize a

portion of the products, the neutralized portion of the products being unable to cause refractive index

changes in the medium.

16. (Original) The method of claim 14, further comprising: heating the exposed medium

to stimulate the products to cause refractive index changes in the medium.

17. (Original) The method of claim 16, wherein the photo-sensitizer molecules are visible

dye molecules and the products cause polymerization, deprotection, or crosslinking reactions in the

medium in response to the heating.

18. (Original) The method of claim 16, wherein the heating produces an interconnected

open polymerized structure.

-5-

Appl. No. 10/040,017 Reply to Examiner's Action dated 12-07-05

- 19. (Currently Amended) The method of claim 1, wherein the <u>photo-sensitive</u> photo-sensitive photo-sensitive medium comprises both photo-sensitizer molecules and photo-acid generator molecules dispersed therein.
- 20. (Previously presented) The method of claim 14, wherein the medium further comprises photo-acid generator molecules dispersed therein.

Claim 21 (canceled).

- 22. (Previously presented) The method of claim 1, wherein the optical intensity pattern is produced by exposing the medium to visible light.
- 23. (Previously presented) The method of claim 1, wherein the optical intensity pattern is produced by exposing the medium to visible light ranging from 470 nm to 560 nm.
- 24. (Previously presented) The composition of claim 11, wherein the photo-sensitizer molecules are activatable by visible light.
- 25. (Previously presented) The composition of claim 11, wherein the photo-sensitizer molecules are activatable by visible light ranging from 470 nm to 560 nm.
- 26. (Previously presented) The method of claim 14, wherein the light is of a visible wavelength.

Appl. No. 10/040.017 Reply to Examiner's Action dated 12-07-05

- 27. (Currently Amended) The <u>method composition</u> of claim 14, wherein the wavelength of light ranges from 470 nm to 560 nm.
- 28. (New) The method of claim 1, wherein the acid neutralizer molecules comprise a base that neutralizes an acid that catalyzes the chemical reaction.
- 29. (New) The method of claim 1, wherein the acid neutralizer molecules comprise triethyl amine or N,N,2,4,6-pentamethylaniline.