Computer Organization and Architecture

18 Final Review

Tongwei Ren

Dec. 24, 2019

Concept

- Computer
 - General-purpose electronic digital computer
- Architecture (visible to programmer)
 - The attributes have a direct impact on the logical execution of a program
 - Instruction set, the number of bits to represent data type, ...
 - E.g.: Is there a multiply instruction?
- Organization (transparent to programmer)
 - The operational units and their interconnections
 - Control signals, memory technology, ...
 - E.g.: Implement multiply by a hardware unit or repeated addition?

Computer Performance

- Performance evaluation
 - CPU: speed
 - Memory: capacity, speed
 - I/O: speed, capacity
- The main goal / driver is the increase of CPU speed
 - System clock
 - Instruction execution
 - Million Instructions Per Second (MIPS)
 - Million Floating Point Operations Per Second (MFLOPS)

The von Neumann machine

Idea: main memory storing programs and data

Computer Function

 Execution of a program, which consists of a set of instructions stored in memory

Instruction

- Instruction format
 - Opcode
 - Operand reference: addressing
- Instruction set design

Instruction Execution

Instruction cycle

- Micro-operations
 - Concept, different cycles

Instruction Pipelining

Concept

	_		Tim	e	—									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	со	FO	EI	wo								
Instruction 2		FI	DI	со	FO	EI	wo							
Instruction 3			FI	DI	со	FO	EI	wo						
Instruction 4				FI	DI	со	FO	EI	wo					
Instruction 5					FI	DI	со	FO	EI	wo				
Instruction 6						FI	DI	со	FO	EI	wo			
Instruction 7							FI	DI	со	FO	EI	wo		
Instruction 8								FI	DI	со	FO	EI	wo	
Instruction 9									FI	DI	со	FO	EI	wo

	Time					Branch penalty								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	со	FO	EI	wo								
Instruction 2		FI	DI	со	FO	EI	wo							
Instruction 3			FI	DI	со	FO	EI	wo						
Instruction 4				FI	DI	со	FO							
Instruction 5					FI	DI	со							
Instruction 6						FI	DI							
Instruction 7							FI							
Instruction 15								FI	DI	со	FO	EI	wo	
Instruction 16									FI	DI	со	FO	EI	wo

- Performance: speedup tactor
- Hazard
 - Structure hazard / hardware resource conflict
 - Data hazard / data dependency
 - Control hazard

Task of CPU

- The processor does the actual work by executing instructions specified in the program
- Detailed
 - Fetch instruction, Interpret instruction, Fetch data, Process data,
 Write data
- More detailed
 - ALU: algorithm and logical operations
 - Control unit: generate control signals

CPU: ALU

- Integer arithmetic
 - Integer representation: complement
 - Full adder, serial carry adder, carry look ahead adder
 - Operation
 - Addition: overflow
 - Subtraction
 - Multiplication: partial product, Booth's algorithm

• Division: recover remainder, not recover remainder

CPU: ALU (cont.)

- Floating-point arithmetic
 - Floating-point representation
 - Operation
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Precision consideration
 - Guard bits
 - Rounding

CPU: ALU (cont.)

- Decimal arithmetic
 - Decimal representation
 - Operation
 - Addition
 - Subtraction

CPU: Register

- User-visible registers
 - Enable the machine- or assembly language programmer to minimize main memory references by optimizing use of registers
 - General purpose register, data register, address register, condition codes register
- Control and status registers
 - Used by the control unit to control the operation of the processor and by privileged, operating system programs to control the execution of programs
 - Program counter (PC), instruction register (IR), memory address register (MAR), memory buffer register (MBR), program status word (PSW)

CPU: Control Unit

- Input / output of control unit
 - Control signal
- Implementation
 - Hardwired
 - Micro-programmed

CPU: Interrupt

- A mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing
- Multiple interrupts

Memory: Cache

- Principle
- Average access time
- Design elements
 - · Cache size
 - Mapping function
 - Replacement algorithm
 - Write policy
 - Line size
 - Number of caches

Memory: Main Memory

- Memory cell
- Semiconductor memory types
- Memory array

Memory: External Memory

- Magnetic disk
 - Data organization, formatting, read and write mechanism, physical characteristics, timing of a disk transfer
 - Timing of a disk transfer
 - Head scan algorithm
 - FCFS, SSTF, SCAN, C-SCAN, LOOK
- Optical memory
- Magnetic tape
 - Parallel vs. serial

Memory: Virtual Memory

- Partitioning vs. paging
- Virtual memory
 - Size of page
 - Mapping function
 - Write policy
 - TLB

Memory: Error

- Basic idea
 - Add some bits to store additional information for correction
- Process
- Type
 - Parity checking
 - Hamming code
 - Cyclic redundancy check

Memory: RAID

- Redundant Array of Independent Disks
- Basic idea
- Characteristic

Category	Level	Description	Disks Required	Data Availability	Large I/O Data Transfer Capacity	Small I/O Request Rate	
Striping	0	Nonredundant	N	Lower than single disk	Very high	Very high for both read and write	
Mirroring	1	Mirrored	2 <i>N</i>	Higher than RAID 2, 3,4, or 5; lower than RAID 6	Higher than single disk for read; similar to sin- gle disk for write	Up to twice that of a single disk for read; similar to single disk for write	
Parallel access	2	Redundant via Ham- ming code	N + m	Much higher than single disk; comparable to RAID 3, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk	
	3	Bit-interleaved parity	N + 1	Much higher than single disk; comparable to RAID 2, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk	
Independent	4	Block-interleaved parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 5	Similar to RAID 0 for read; significantly lower than single disk for write	Similar to RAID 0 for read; significantly lower than single disk for write	
	5	Block-interleaved distributed parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 4	Similar to RAID 0 for read; lower than single disk for write	Similar to RAID 0 for read; generally lower than single disk for write	
	6	Block-interleaved dual distributed parity	N + 2	Highest of all listed alternatives	Similar to RAID 0 for read; lower than RAID 5 for write	Similar to RAID 0 for read; significantly lower than RAID 5 for write	

- External device
- I/O module: function, evolution, structure
- I/O operation technique
 - Programmed I/O
 - Interrupt driven I/O
 - Direct memory access
 - Stop CPU, cycle stealing, ...
- External interface: serial vs. parallel

Bus

- A communication pathway connecting two or more devices
- Key characteristic
- Component: address, data, control
- Design elements
 - Arbitration: daisy chain, query by a counter, independently request, self selection, collision detection
 - Timing: synchronous, asynchronous, semi-synchronous, split bus transaction
 - Bus bandwidth

Thank You

rentw@nju.edu.cn

