DESCRIPCIÓN DE LA INTERFACE

El programa debe servir como asistente y recurso didáctico para la identificación de argumentos, su diagramación y, posteriormente, evaluación (por los momentos, manual).

En principio se necesita que haga lo siguiente:

- (1) Se visualice un texto que el usuario quiera analizar (que lo pueda copiar en el programa o importar de alguna manera).
- (2) Que pueda sombrearlo o marcarlo.
- (3) Al sombrear un extracto específico del texto, el programa debe permitirle al usuario ponerle una etiqueta. ¿Qué etiquetas? Lo especificaré más abajo.
- (4) Cuando el usuario marca algo con una etiqueta, el programa va formando un diagrama. ¿Qué diagrama? Lo especificaré más abajo, también.
- (5) Cuando el usuario solo identifica premisa y conclusión (no, regla), el programa debe sugerir una reconstrucción mínima de esa regla –ver el último punto, más abajo–.

Teoría:

Argumento Simple: Un argumento simple está formado por una premisa, una regla y una conclusión.

La premisa y la regla son conjuntos, la conclusión es una proposición.

La premisa puede ser un conjunto vacío o contener una o más proposiciones.

Dos ejemplos:

E1: «el precio de este carro es el del mercado, por lo tanto, es el precio justo»

Premisa E1: {el precio de este carro es el del mercado}

Regla E1: {si el precio de este carro es el del mercado, entonces es el precio justo}

Conclusión E1: es el precio justo

E2: «mientras no se pruebe lo contrario, el techo no se derrumbará; por tanto, el techo no se derrumbará»

Premisa E2: { }

Regla E2: {mientras no se pruebe lo contrario, el techo no se derrumbará}

Figura 1 Diagramas de argumentos E1 y E2, respectivamente.

Argumentos complejos:

Es normal que los discursos tengan estructuras argumentativas que se componen de varios argumentos simples. Por los momentos, solo hablaremos de **argumentos complejos coadyuvantes** o de cooperación (que apoyan la misma conclusión).

Los argumentos complejos coadyuvantes son de dos tipos (en principio): subordinados y paralelos.

Un **argumento subordinado** es aquel formado por al menos por dos argumentos, uno de los cuales tiene como conclusión la premisa del otro.

Para distinguir premisas directas y premisas indirectas de una conclusión, las identificaremos con subíndices de la siguiente manera. Conclusión = C; premisa directa uno = P1; premisa directa dos = P2; etc. Premisa que apoya directamente a P1 = P1.1; premisa que apoya directamente a P2 = P2.1, etc. Premisa que apoya directamente a P1.1 = P1.1.1; etc.

Ejemplo:

E3: «las últimas publicaciones en tucarro.com señalan que el precio de este carro es el del mercado; de manera que el precio de este carro es el del mercado; por lo tanto, es el precio justo»

P1.1: {las últimas publicaciones en tucarro.com señalan que el precio de este carro es el del mercado}

R1.1: {si las últimas publicaciones en tucarro.com señalan que el precio de este carro es el del mercado, entonces el precio de este carro es el del mercado}

P1: {el precio de este carro es el del mercado}

R1: {si el precio de este carro es el del mercado, entonces es el precio justo}

C: es el precio justo

Los argumentos subordinados pueden ser cadenas largas, pero no infinitas (para simplificar las cosas).

Figura 2. Diagrama de argumentos subordinados. Los puntos suspensivos indican que puede seguir.

Definición de estructura paralela básica. Dos argumentos simples, A y B, están en una relación paralela si, y solo si, A y B comparten la misma conclusión.

Notemos que, a diferencia de las estructuras subordinadas, las razones contenidas en los argumentos paralelos son razones directas para la conclusión. En la estructura subordinada, las razones de A son directas para la conclusión final, pero las razones de B son razones indirectas para la conclusión de A. En cambio, en la estructura paralela, las razones de A y B son razones directas para la conclusión común.

E4: «el precio de este carro es el del mercado; además, ese precio está fijado por la ley; por lo tanto, es el precio justo»

P1: {el precio de este carro es el del mercado}

R1: {si el precio de este carro es el del mercado, entonces es el precio justo}

P2: {ese precio está fijado por la ley}

R2: {si precio está fijado por la ley, entonces es el precio justo}

C: es el precio justo

Diagramas de estructuras paralelas básicas (los cuadritos son las premisas P1 y P2):

NOTA IMPORTANTE: lo normal es que en una discusión el argumentante brinde estructuras que combinen subordinados y paralelos. Eso tiene que ser considerado en la interface.

Etiquetas:

Las etiquetas deben dividirse en premisas (P), reglas (R) y conclusiones (C).

La conclusión última del argumento (la que no es premisa de ningún otro argumento) será C.

Las premisas directas de la conclusión última (C) serán $P_1, ..., P_n$ ($1 \le n$). Es decir, si hay más de una premisa directa (el argumento es paralelo) se organizarán $P_1, P_2, ..., P_n$

Las premisas que apoyan una premisa directa agregarán un punto y otro número: por ejemplo, las premisas que apoyan a P_1 , serán $P_{1,1},...,P_{1,n}$ $(1 \le n)$.

Seguir el mismo orden con respecto a las demás premisas.

El mismo orden siguen las reglas.

Diagramas:

La forma básica de los diagramas serían los triángulos antes ilustrados.

En los triángulos, el vértice superior representa la conclusión, la base representa la premisa y los lados representan la regla.

Es importante que al pasar el cursor por un triángulo indique el contenido de la premisa y su etiqueta.

Reconstrucción mínima de reglas implícitas:

En muchas ocasiones, las reglas de los argumentos quedan implícitas al ser expresados. Cuando un usuario identifica y etiqueta una premisa y una conclusión, pero no la regla del argumento, es importante que el programa sugiera una reconstrucción mínima de dicha regla. Esa reconstrucción es absolutamente mecánica: la regla toma forma condicional (si *antecedente*, entonces *consecuente*), donde el antecedente es (exactamente) la premisa identificada y el consecuente es (exactamente) la conclusión identificada.

Por ejemplo, si alguien expresa el argumento "Juan debe ser rico, porque estudia en la UCAB", y un analista identifica de la siguiente manera:

"Juan debe ser rico (C), porque estudia en la UCAB (P₁)"

La mínima interpretación de la regla será: si estudia en la UCAB, entonces Juan debe ser rico

*Evidentemente, esa no es la mejor reconstrucción, pues debería ser más general (Si alguien estudia en la UCAB, seguramente tiene dinero); pero la mínima interpretación de la regla le permitiría al analista generalizar y darse cuenta de errores en la identificación de premisas y conclusión. Por ejemplo, si el analista erróneamente identifica "Juan debe ser rico (P₁), porque estudia en la UCAB (C)"; la regla reconstruida será algo rara: "si Juan debe ser rico, entonces estudia en la UCAB".