the improbable, yet elementary, case: making sense of an incoherent species, by deriving, and applying, the common primitives, of a coherent universe - @causalmechanics 1 - 2023-03-09

paradigm, measure, common measures, incom-1 mensurability

$$(\,Pa\;,Me\;,\;\mathop{\cap}_{Me}^{\,\,\cap}\;,\;\mathop{\cap}_{Me}^{\,\,\cap\varnothing}\;)$$

A reinterpretation of Thomas Kuhn's 'On The Structure of Scientific Revolutions', through the lens of set-theory(-ish) mathematics.

note: consider all set-theory as pseudo-set-theory; a means for a novice mathematician to express ideas in less time and fewer words than a similarly novice writer might, in prose ².

a gentle introduction

(Pa, Me) introducing paradigm and measure

Let us consider a paradigm Pa, as a set of measures Me:

 $Pa = \{Me, \ldots\}$

or 3 :

 $Pa = \{\ldots\}_{Me}$

1.2 totality, commonality

 (\cup, \cap) introducing all, and common

 $Pa_1 = \{Me_1, Me_2, Me_3\}$

If paradigm Pa_1 , contains measures $Me_{1,2,3}$:

And paradigm Pa_2 , contains measures $Me_{2,3,4}$: $Pa_2 = \{Me_2, Me_3, Me_4\}$

The set-of-all measures \bigcup_{Me} , across Pa_1 and Pa_2 , can be found by union \cup :

$$_{Me}^{\cup_{1,2}} = Pa_1 \cup Pa_2 = \{Me_1, Me_2, Me_3, Me_4\}$$

The set-of-common measures \bigcap_{Me} , between Pa_1 and Pa_2 , can be found by intersection \cap :

note: remember, this is a simplification, and an introduction

(n) counting elements

The cardinality of any set, refers to the number of contained elements,

cardinality

expressed $|\{\ldots\}| = n$. So where: $A = \{a, b, c\}$

cardinality is:

1.3

|A| = 3

$(\cap \varnothing)$ introducing incommensurable paradigms ⁴ Consider paradigms Pa_3 and Pa_4 , whereby:

incommensurability

 $Pa_3 = \{Me_1, Me_2, Me_3\}$

$$Pa_4 = \{Me_4, Me_5, Me_6\}$$
...
When paradigms Pa_3 and Pa_4 , do not share common measures, then $^{\cap}_{Me}$, is an empty set $(\{\}\ or\ \varnothing\)$:

 $_{Me}^{\cap} = Pa_3 \cap Pa_4 = \varnothing$ $_{Me}^{\cap_{3,4}}=\varnothing$

and paradigms
$$Pa_3$$
 and Pa_4 , can be said to be incommensurable $\stackrel{\cap}{Me}$:
$$\stackrel{\cap}{Me} = Pa_3 \cap Pa_4 = \varnothing : \stackrel{\cap}{Me} \to \stackrel{\cap}{Me}$$

$$|Pa_3 \cap Pa_4| = |\varnothing| = |^{\bigcap \varnothing_{3,4}}_{Me}| = 0$$

note: while any two paradigms may appear incommensurable as an isolated pair ⁵, we will later discover that there exists a universally special paradigm, which by analysis or composition, renders all paradigms