道 ... a 'way', 'path', often used to signify the true nature of the world

TAO: Two-level Atomicity for Dynamic Binary Optimizations

Edson Borin, Youfeng Wu, Cheng Wang, Wei Liu, Mauricio Breternitz Jr., Shiliang Hu, *Esfir Natanzon, *Shai Rotem, *Roni Rosner

April 26, 2010

MPR/Programming Systems Lab *MCD/Microprocessor Architecture Intel Labs

Intel Architecture Group **Intel Corporation**

Agenda

- Atomic execution support
- Optimization scope vs rollback penalty
- Two level atomicity
- Preliminary results
- Conclusions & Future Work

Atomicity and Binary Optimizations

- Binary optimizations are very limited without atomicity support
 - Many optimizations are not allowed: cannot reorder load/load, store/store, early load/later store
 - Many hard issues: memory accesses across cache line boundary, non-cacheable memory operation, precise exception, alias speculation, etc
- Atomic regions
 - Increase the optimization opportunities
 - Address many tough issues
 - Simplify the optimizations design

Atomic Region Scope

- Small atomicity scope
 - Traces, super-blocks, basic blocks, etc
 - Fast local optimizations, but small opportunities
- Large atomicity scope
 - Loops or large DAGs
 - Global optimizations, loop invariant hoisting, software pipelining, long range prefetch, etc
 - May suffer from resource overflow and large amount of work being discarded when rollback.

Optimizations: LICM + copy propagation

Optimizations: LICM + copy propagation

Large Atomicity Scope: Whole loop

Large Atomicity Scope: Whole loop

copy propagation

Rollback Penalty: Small Atomicity Scope

Execution

Rollback Penalty: Small Atomicity Scope

Execution eip: 0x8 B1 **B**1 B2₁ eip: 0x8 B2 B2₂ ckpt B2₉₉₉ Exception 2 cmit **B**3 Eip: 0x8 (B2₁₀₀₀) Resume from last checkpoint with non-opt. code eip: 0x8

Rollback Penalty: Small Atomicity Scope

Amount of work discarded by rollback = 1 loop iteration

Execution

eip: 0x8 B1 ckpt eip: 0x8 B2 ... B3 ...

Execution

Large amount of work discarded at rollbacks

Small and Large Atomicity Scopes

Small and Large Atomicity Scopes

Amount of work discarded by rollback = 1 loop iterations

Preliminary Results

- Implemented TAO in a cycle accurate simulator
- 1st level atomicity is modeled with frame
- 2nd level atomicity is modeled assuming unlimited speculative cache
- Regions consist of frames
- Global partial redundancy elimination (PRE) and dead code elimination (PDE) are implemented
 - PDSE not measured due to simulator issue
 - Global optimization overhead is not measured, although frame level HW optimizations are modeled

Region and Frame Dynamic Sizes

Region and Frame Coverage

Performance Potential

Conclusions & Future Work

- Two Level Atomicity enlarges the Optimization Scope with limited rollback costs
- Promising performance gains over frame level atomicity alone
- More optimizations can boost the performance gain
 - Global fusion, etc
- May improve in-order co-designed processor by enabling more global scheduling
- Hardware needs more investigation
 - Pipeline Buffers + Speculative Cache
 - 2-level speculative cache

Questions?

