TD6 - Convergence en loi, théorème limite central

Exercice 1. (a) Calculer

$$\int_0^\infty x^n e^{-x} \, dx$$

pour tout $n \geq 0$. Faire le lien avec la loi de $X_1 + \cdots + X_n$ où $\{X_n, n \geq 1\}$ est une suite i.i.d. de v.a. exponentielles de paramètre 1.

(b) En utilisant le théorème limite central, calculer

$$\lim_{n \to \infty} \int_0^n x^n e^{-x} \, dx.$$

Exercice 2. Soit X une v.a. uniforme sur [-1,1] et $\{X_n, n \geq 1\}$ une suite i.i.d. uniforme sur $\{-1,1\}$.

(a) Montrer que X a même loi que

$$\sum_{n>1} \frac{X_n}{2^n} \cdot$$

(b) En déduire que

$$\frac{\sin x}{x} = \prod_{n>1} \cos \left(\frac{x}{2^n}\right)$$

pour tout $x \in \mathbb{R}$ (en faisant le prolongement par continuité nécessaire pour x = 0).

(c) En déduire la formule de Viète (1593) :

$$\pi = 2 \left(\frac{\sqrt{2}}{2} \frac{\sqrt{2 + \sqrt{2}}}{2} \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2} \cdots \right)^{-1}.$$

Exercice 3. (a) Soit $\{X_n, n \ge 1\}$ une suite i.i.d. de variables aléatoires de loi uniforme sur [0, 1]. Identifier la loi limite de

$$\frac{4\sum_{i=1}^{n} iX_i - n^2}{n^{3/2}}.$$

(b) Soit $\{X_n, n \geq 1\}$ une suite i.i.d. de variables aléatoires de loi $\mathcal{N}(0,1)$. Identifier des suites positives déterministes $\{a_n, n \geq 1\}$ et $\{b_n, n \geq 1\}$ tendant vers ∞ , telles que

$$a_n \max\{X_i, i \le n\} - b_n$$

converge en loi, et identifier la loi limite.

(c) Même question qu'au (b) en remplaçant $\mathcal{N}(0,1)$ par la loi exponentielle de paramètre $\lambda > 0$.

1

Exercice 4. Pour tout $\sigma > 0$ on pose

$$\varphi_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-x^2/2\sigma^2}, \quad x \in \mathbb{R},$$

qui est la densité de la loi $\mathcal{N}(0, \sigma^2)$.

(a) Soit μ une probabilité sur \mathbb{R} et $f \in \mathcal{L}_1(\mathbb{R}, dx)$. Montrer que pour tout $\sigma > 0$ on a

$$\int_{\mathbb{R}} f * \varphi_{\sigma}(x) \, \mu(dx) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-\sigma^2 t^2/2} \hat{f}(t) \bar{\hat{\mu}}(t) \, dt$$

où \hat{f} et $\hat{\mu}$ désignent les transformées de Fourier respectives de f et μ . En déduire que si $f \in \mathcal{C}_c(\mathbb{R})$ avec $\hat{f} \in \mathcal{L}_1(\mathbb{R}, dx)$, alors on a la formule de Plancherel :

$$\int_{\mathbb{R}} f(x) \, \mu(dx) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(t) \bar{\hat{\mu}}(t) \, dt.$$

(b) Soit μ une probabilité sur \mathbb{R} . Montrer la formule d'inversion de Paul Lévy :

$$\frac{1}{2\pi \mathrm{i}} \int_{\mathbb{R}} e^{-\sigma^2 t^2/2} \left(\frac{e^{-\mathrm{i}ta} - e^{-\mathrm{i}tb}}{t} \right) \hat{\mu}(t) dt \rightarrow \mu(a,b) + \frac{\mu\{a\} + \mu\{b\}}{2}$$

quand $\sigma \to 0$, pour tout a < b.

(c) En déduire la formule d'inversion de Fourier : si μ une probabilité sur \mathbb{R} ayant une densité f par rapport à la mesure de Lebesgue et telle que $\hat{\mu} \in \mathcal{L}_1(\mathbb{R}, dx)$, alors

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \hat{f}(t) dt, \qquad x \in \mathbb{R}.$$