Differential estimation:

O Find tix) it'(x) (4) teath) 2+(a) +f(a) · h

(2) pick up a

Print Test

Find h by "a" & "ath"

VERSION

Jiren

Quiz 20

Question 1

Use differentials to estimate the value $\sqrt[3]{25}$.

a) $\sqrt{\frac{185}{54}}$ (1) f(x) = 3[x], $f(x) = \frac{1}{3} \times \frac{2}{3} = \frac{1}{3} (3[x])^2$ b) $\sqrt{\frac{1}{3}}$ (2) $\sqrt{\frac{2}{3}} = 27$. (1) f(27) = 3).

b)
$$=1$$
 (2) $A=27$ (" $f(z7)=3$)

$$a > \frac{83}{27}$$
 (3) ath=25. a=27 ⇒ h=-2

a)
$$\frac{79}{27}$$
 (4) $3\sqrt{25} = f(25) \approx f(27) + f(27) \cdot h$

e)
$$=\frac{131}{54}$$

$$=3+\frac{1}{3}\frac{1}{3^2}\frac{1}{79}$$

Ouestion 2

$$= 3 - \frac{2}{27} = \frac{79}{27}$$
15.5)^{1/4}

Use differentials to estimate the value
$$(15.5)^{1/4}$$
.

a) $\frac{127}{64}$ (1) $\frac{127}{64}$ (2) $\frac{127}{64}$ (3) $\frac{127}{64}$ (4) $\frac{127}{64}$ (3) $\frac{127}{64}$ (6) $\frac{127}{64}$ (7) $\frac{127}{64}$ (8) $\frac{3}{64}$ (7) $\frac{3}{64}$ (8) $\frac{3}{64}$ (8) $\frac{3}{64}$ (9) $\frac{3}{64}$ (9) $\frac{3}{64}$ (10) $\frac{3}{64}$ (11) $\frac{3}{64}$ (12) $\frac{3}{64}$ (13) $\frac{3}{64}$ (13) $\frac{3}{64}$ (13) $\frac{3}{64}$ (13) $\frac{3}{64}$ (14) $\frac{3}{64}$ (15) $\frac{3}{64}$ (15) $\frac{3}{64}$ (15) $\frac{3}{64}$ (17) $\frac{3}{64}$ (17) $\frac{3}{64}$ (17) $\frac{3}{64}$ (17) $\frac{3}{64}$ (18) $\frac{3}{64}$ (19) $\frac{3}{64}$ (19

b)
$$\frac{3}{2}$$
 (3) $\alpha + n = 15.5$, $\alpha = 16$ $\Rightarrow n = -0.5 = -\frac{1}{2}$.

$$\frac{159}{64}$$
 (15.5) = $f(15.5)$ × $f(16)$ + $f(16)$ · h

$$= 2 + \frac{1}{4} \cdot \frac{1}{2^3} \cdot \left(-\frac{1}{2}\right)$$

$$= 2 - \frac{1}{64} = \frac{03/23/201501.27 \text{ PM}}{64} = 2065$$

Q3. Change to radians, Then

a)
$$=\frac{95}{64}$$
 $\Omega + 1 = 62^\circ = 62 \cdot \frac{17}{180}$

e)
$$\frac{129}{64}$$
 (1) $f(x) = \cos(x)$, $f(x) = -\sin(x)$

(2) a= I (1 cos(I) is known)

Use differentials to estimate the value
$$\cos(62^{\circ})$$
.

a) $\frac{\sqrt{3}}{2} + \frac{1}{180} \pi$

(3) $0 + N = \frac{6217}{180}$, $0 = \frac{17}{3} = \frac{6017}{180} \Rightarrow N = \frac{217}{180} = \frac{7}{90}$

b) $\frac{1}{2} - \frac{\sqrt{3}}{180} \pi$

b)
$$=$$
 $\frac{1}{2} = \frac{\sqrt{3}}{180} \pi$

$$c_{1} = \frac{1}{2} - \frac{\sqrt{3}}{90}\pi$$

$$= \cos(\frac{1}{3}) - \sin(\frac{11}{3}) \cdot \frac{11}{90}$$

$$= \frac{1}{3} - \frac{\sqrt{3}}{3} \cdot \frac{11}{90}$$

$$= \frac{1}{3} - \frac{\sqrt{3}}{3} \cdot \frac{11}{90}$$

d)
$$= \frac{\sqrt{3}}{2} - \frac{1}{90}\pi$$

e)
$$=\frac{1}{2} + \frac{\sqrt{3}}{180}\pi$$
 $=\frac{1}{2} - \frac{811}{180}$

Ouestion 4

a)
$$0.740$$
 $2 Q = Z$

$$=0.69+0.05=0.74$$

Print Test

https://assessment.casa.uh.edu/Assessment/Print

 $= \beta e^{x} \cos(x) \rightarrow e^{x} \sin(x) \Delta x$

Find the differential dy for $y = 3e^{\pi}\cos(x)$ (use $h = \Delta x$)

a)
$$dy = (3e^x \sin(x) - e^x \cos(x))\Delta x$$
 $dy = y' \cdot \Delta x$

b)
$$dy = (-3 e^x \sin(x)) \Delta x$$

d)
$$dy = (3e^x \cos(x) - 3e^x \sin(x))\Delta x$$

e)
$$dy = (-3 e^x \sin(x) - 3 e^x \cos(x)) \Delta x$$

Consider the function $f(x)=x^{3/4}$. Approximate the change in f as x

es from 80 to 81.

$$\uparrow (X) = \frac{3}{4} \chi^{4}$$

$$\uparrow (X) = \frac{3}{4} \chi^{4}$$

Change from 80 to 81 =
$$f(80) - f(81)$$

c)
$$\frac{1}{4}$$
 $\approx df = f(8|) + 1 = \frac{3}{4} + \frac{1}{48} (-1)$

$$=\frac{3}{4}\cdot\frac{1}{3}\cdot(-1)$$

vall

A spherical ball bearing will be coated by 0.06 cm of protective coating. If the radius of this ball bearing is 10 cm, approximately how much coating will be required? (use $\pi \approx 3.14$)

(Df(x)= 4Tr3 (Volume of ball)

a) 4262.026 cm³

b) 75.360 cm³

 $\sim 4111.306~{\rm cm}^3$

d) $\sqrt{74.360}$ cm³

e) 76.360 cm^3

$$=4\pi,10^{3},0,063$$

= $75,360$ cm³

Question 8

Give the derivative of $f(x) = e^{\arcsin(2x)}$ at the point where $x = \frac{1}{4}$.

a)
$$\frac{\sqrt{3}}{3}e^{\pi/3}$$
 $f(x) = \frac{2}{1-(2x)^2} \cdot e^{arc.sin(2x)}$

$$f(z) = \frac{2}{\sqrt{1-z}} e^{avcsin(z)}$$

d)
$$= \frac{4\sqrt{3}}{3} e^{\pi/6}$$

b)
$$= 1$$

c) $= 4$
d) $= \frac{4\sqrt{3}}{3}e^{\pi/6}$
e) $= \frac{2\sqrt{3}}{3}e^{\pi/6}$
e) $= \frac{2\sqrt{3}}{3}e^{\pi/6}$
Consection 9

Ouestion 9

Find the derivative of $(3x+4)^{5x}$.

Print Test

Q9, lot y= (3x+4)32.

a)
$$15x(3x+4)^{5x-1}$$

b)
$$3x+4^{5x}\left(5\ln(3x+4)+\frac{15x}{3x+4}\right)$$

c)
$$\approx (3x+4)^5 x \left(5 \ln(3x+4) - \frac{5}{3x+4}\right)$$

d)
$$= \left(5\ln(3x+4) - \frac{15x}{3x+4}\right)$$

e)
$$5x(3x+4)^{5r-1}$$

Question 10

Given $f(x) = 3x^3 + x - 7$ verify that f(x) is invertible and, if so, find the equation of the tangent line to $f^{-1}(x)$ at the point where x=-33. Note

that f(-2) = -33.

a)
$$f(x)$$
 is not invertible.

b)
$$y + 33 = -\frac{1}{37}(x - 2)$$

c)
$$y+2=\frac{1}{37}(x+33)$$

d)
$$y + 33 = \frac{1}{37}(x+2)$$

e)
$$y-2=-\frac{1}{37}(x-33)$$

$$\frac{3}{9} = 5 \cdot \ln(3x + 4) + 5x \cdot \frac{3}{3x + 4}$$

(3)
$$y = (3x+4)^{5x} [5-9n(3x+4) + \frac{15x}{3x+4}]$$

Oslope:
$$(f^{+})(-33) = f^{-}(-33) = \frac{1}{9(-33)^{2}} = \frac{1}{37}$$

(2) point: $f^{-}(-33) = 2 \Rightarrow (-33,2)$

$$9700$$
 $(412) = $\frac{1}{37}$ (X+33)$