Закон распределения (Үлестірілім заңы)

Пусть задано конечное пространство $\Omega=\{\omega_1,\omega_2,...,\omega_n\}$, состоящее из n элементарных событий (исходов), и заданы вероятности наступления этих событий $P(\omega_1)=p_1,P(\omega_2)=p_2,...,P(\omega_n)=p_n$ так, что $p_1+p_2+\cdots+p_n=1$.

Например, если стрелок будет стрелять три раза конечное пространство будет состоят из таких элементов $\Omega=\{0,1,2,3\}$. Это означает что стрелок стреляя три раза может попасть в цель 0 раз, 1 раз, 2 раза или 3 раза. p_1,p_2,\dots,p_n — вероятности наступления каждого события из заданного конечного пространства.

Обозначим через ω переменную величину, принимающую значения из Ω .

ω	ω_1	ω_2	 ω_n
$P(\xi)$	p_1	p_2	 p_n

которая называется рядом распределения исходов или законом распределения. Если n=2, то ряд называется схемой Бернулли. Если $n\geq 3$, то ряд называется схемой независимых испытаний с несколькими исходами.

Пусть в результате опыта могут возникнуть только два события: «успех», который обозначается единицей – 1 и наступает с вероятностью з, и неудача, которая обознается нулем – 0 и наступает с вероятностью й=1-з; ... Такой опыт называется схемой Бернулли и имеет ряд распределения

Вероятность каждого события $P(\omega_n)$ можно найти с помощью формулы Бернулли

$$P_n(k) = C_n^k p^k q^{n-k}$$

Пример

Баскетболист бросает три независимых штрафных мяча. В корзину при каждом броске вероятность выпадения-0,7. каждый бросок считается самостоятельным. Мишени мячаугадайте вероятное количество выпадений и соответствующую вероятность.

ω		1	2	3
$P(\xi)$	$P_3(0) = C_3^0 \cdot 0.7^0 \cdot 0.3^3$	$P_3(1) = C_3^1 \cdot 0.7^1 \cdot 0.3^2$	$P_3(2) = C_3^2 \cdot 0.7^2 \cdot 0.3^1$	$P_3(3) = C_3^3 \cdot 0.7^3 \cdot 0.3^0$

Формула Бернулли