Ajuste mínimo cuadrático de curvas

Métodos Numéricos

Prof. Juan Alfredo Gómez Conferencia 21

Conferencia 21

- Recordatorio
 - Motivación
 - Ajuste lineal
 - Ajuste polinomial
- 2 Ajuste exponencial
- Descomposición QR

Puntos de una función sujetos a perturbaciones

Polinomio de interpolación de Lagrange

Función linal con perturbaciones aleatorias

Comparación de ambas metodologías

Problema de mínimos cuadrados

Definición en el caso de una recta

Dada una colección de datos $\{(x_i, y_i)\}_{i=1}^m$ encontrar los coeficientes de la recta $y = a_0 + a_1 x$ que mejor aproxima esos datos de acuerdo a la norma cuadrática:

$$\min \to E_2(a_0, a_1) = \sum_{i=1}^m [y_i - (a_0 + a_1 x_i)]^2$$

De las condiciones de optimalidad

$$2\sum_{i=1}^{m}(y_i-(a_0+a_1x_i)(-1))=0$$

$$2\sum_{i=1}^{m}(y_i-(a_0+a_1x_i)(-x_i)=0$$

obtenemos la ecuación normal

$$\begin{bmatrix} \sum_{i=1}^{m} 1 & \sum_{i=1}^{m} x_i \\ \sum_{i=1}^{m} x_i & \sum_{i=1}^{m} x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y_i \\ \sum_{i=1}^{m} x_i y_i \end{bmatrix}$$

Problema de mínimos cuadrados

Definición en el caso de una polinomios

Dada una colección de datos $\{(x_i,y_i)\}_{i=1}^m$ encontrar los coeficientes de una función polinomial

$$P_n(x) = a_0 + a_1x + \cdots + a_nx^n$$

con grado n < m-1 que mejor aproxima los datos de acuerdo a la norma cuadrática:

$$\min \to E_2 = \sum_{i=1}^m [y_i - P_n(x_i)]^2 = \sum_{i=1}^m y_i - 2\sum_{i=1}^m P_n(x_i)y_i + \sum_{i=1}^m (P_n(x_i))^2$$

Condiciones de optimalidad de primer orden:

$$0 = \frac{\partial E_2}{\partial a_i} = -2 \sum_{i=1}^m y_i x_i^j + 2 \sum_{k=0}^n a_k \sum_{i=1}^m x_i^{j+k}, \quad j = 0, \dots, n$$

Ecuaciones Normales

Reescribiendo las condiciones de optimalidad

$$-2\sum_{i=1}^{m} y_i x_i^j + 2\sum_{k=0}^{n} a_k \sum_{i=1}^{m} x_i^{j+k} = 0, \quad j = 0, \dots, n$$

obtenemos las Ecuaciones normales

$$\begin{bmatrix} \sum_{i=1}^{m} x_i^0 & \sum_{i=1}^{m} x_i^1 & \cdots & \sum_{i=1}^{m} x_i^n \\ \sum_{i=1}^{m} x_i^1 & \sum_{i=1}^{m} x_i^2 & \cdots & \sum_{i=1}^{m} x_i^{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{m} x_i^n & \sum_{i=1}^{m} x_i^{n+1} & \cdots & \sum_{i=1}^{m} x_i^{2n} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} y_i x_i^0 \\ \sum_{i=1}^{m} y_i x_i^1 \\ \vdots \\ \sum_{i=1}^{m} y_i x_i^n \end{bmatrix}$$

Observación

Las ecuaciones normales en el caso de ajuste polinomial tienen solución única siempre que los x_i sean distintos.

Aspectos generales

Motivación

En ciertos casos es apropiado asumir que los datos tienen una dependencia exponencial del tipo $y = be^{ax}$ o del tipo $y = bx^a$.

El problema de mínimos cuadrados asociado

Se minimizan en cada caso las funciones

$$E = \sum_{i=1}^{m} [y_i - b e^{ax_i}]^2;$$
 $E = \sum_{i=1}^{m} [y_i - bx_i^a]^2$

Ecuaciones normales no lineales!

$$2\sum_{i=1}^{m} (y_i - be^{ax_i})(-e^{ax_i}) = 0$$
$$2\sum_{i=1}^{m} (y_i - be^{ax_i})(-bx_ie^{ax_i}) = 0$$

y en el otro caso:

$$2\sum_{i=1}^{m}(y_{i}-bx_{i}^{a})(-x_{i}^{a}) = 0$$
$$2\sum_{i=1}^{m}(y_{i}-bx_{i}^{a})(-b(\ln x_{i})x_{i}^{a}) = 0$$

ldea alternativa

Si los datos son exponenciales, aplicar un ajuste de mínimos cuadrados **lineal** considerando el logaritmo de las ecuaciones aproximantes, o sea:

$$y = b e^{ax} \leftrightarrow \ln y = \ln b + ax$$

$$y = bx^a \leftrightarrow \ln y = \ln b + a \ln x$$

Ecuaciones Normales (caso $y = be^{ax}$)

$$\ln b = \frac{\left(\sum_{i=1}^{m} x_{i}^{2}\right)\left(\sum_{i=1}^{m} \ln y_{i}\right) - \left(\sum_{i=1}^{m} x_{i}(\ln y_{i})\right)\left(\sum_{i=1}^{m} x_{i}\right)}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

$$a = \frac{m\left(\sum_{i=1}^{m} x_i (\ln y_i)\right) - \left(\sum_{i=1}^{m} x_i\right) \left(\sum_{i=1}^{m} \ln y_i\right)}{m\left(\sum_{i=1}^{m} x_i^2\right) - \left(\sum_{i=1}^{m} x_i\right)^2}$$

ldea alternativa

Si los datos son exponenciales, aplicar un ajuste de mínimos cuadrados **lineal** considerando el logaritmo de las ecuaciones aproximantes, o sea:

$$y = be^{ax} \iff \ln y = \ln b + ax$$

$$y = bx^a \leftrightarrow \ln y = \ln b + a \ln x$$

Ecuaciones Normales (caso $y = bx^a$)

$$\ln b = \frac{\left(\sum_{i=1}^{m}(\ln x_i)^2\right)\left(\sum_{i=1}^{m}\ln y_i\right) - \left(\sum_{i=1}^{m}(\ln x_i)(\ln y_i)\right)\left(\sum_{i=1}^{m}\ln x_i\right)}{m\left(\sum_{i=1}^{m}(\ln x_i)^2\right) - \left(\sum_{i=1}^{m}\ln x_i\right)^2}$$

$$a = \frac{m\left(\sum_{i=1}^{m}(\ln x_i)(\ln y_i)\right) - \left(\sum_{i=1}^{m}\ln x_i\right)\left(\sum_{i=1}^{m}\ln y_i\right)}{m\left(\sum_{i=1}^{m}(\ln x_i)^2\right) - \left(\sum_{i=1}^{m}\ln x_i\right)^2}$$

Cálculos asociados

×i	Уi	x_i^2	∣n y _i	$x_i \ln y_i$	$r(x_i) = 3.071e^{0.5056x}i$
1.00	5.10	1.0000	1.629	1.629	5.092
1.25	5.79	1.5625	1.756	2.195	5.778
1.50	6.53	2.2500	1.876	2.815	6.556
1.75	7.45	3.0625	2.008	3.514	7.439
2.00	8.46	4.0000	2.135	4.271	8.442
7.50		11.8750	9.405	14.424	

$$a = \frac{m\left(\sum_{i=1}^{m} x_{i}(\ln y_{i})\right) - \left(\sum_{i=1}^{m} x_{i}\right)\left(\sum_{i=1}^{m} \ln y_{i}\right)}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}} = \frac{5(14.424) - 7.5(9.405)}{5(11.875) - (7.5)^{2}} = 0.5056$$

$$\ln b = \frac{\left(\sum_{i=1}^{m} x_{i}^{2}\right)\left(\sum_{i=1}^{m} \ln y_{i}\right) - \left(\sum_{i=1}^{m} x_{i}(\ln y_{i})\right)\left(\sum_{i=1}^{m} x_{i}\right)}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$$

$$\ln b = \frac{11.875(9.405) - 14.424(7.5)}{5(11.875) - (7.5)^{2}} = 1.122 \implies b = e^{1.122} = 3.071$$

Ejemplo de ajuste exponencial

En general el problema a resolver

El problema consiste en encontrar el mínimo de la suma de los cuadrados de m funciones no lineales; es decir

Minimizar
$$g(x) = \frac{1}{2} \sum_{i=1}^{m} r_i^2(x) = \frac{1}{2} ||r(x)||_2^2$$

Donde $r_i(x)$ representa el error en la predicción que hace el modelo de la observación i,

$$r_i(x) = y_i - f(x, t_i), \qquad i = 1, \ldots, m$$

Observaciones

Un sistema de ecuaciones lineales Ax = b, con $A \in \mathcal{M}_{m \times n}$, n < m, que tiene más ecuaciones que incógnitas, se dice que es superdeterminado o sobredeterminado.

Los sistemas superdeterminados aparecen en problemas que utilizan datos experimentales para aproximar una solución, debido a que es habitual tomar más datos empíricos de los necesarios, para luego ajustarlos a una solución que no verifican de modo exacto.

Definición

Sea el sistema de ecuaciones lineales Ax = b, superdeterminado. Entonces, se dice que $\alpha \in \mathbb{R}^n$ es una solución en mínimos cuadrados del sistema Ax = b, si se verifica

$$||A\alpha - b||_2^2 = Min\{||Ax - b||_2^2 : x \in \mathbb{R}\}$$

Además

Continuación Definición

- Si $A\alpha b = 0$, el sistema de ecuaciones Ax = b es compatible.
- ② Si $A\alpha b \neq 0$, el sistema Ax = b es incompatible y la norma $\|A\alpha b\|_2$ es llamada a veces error de la solución en mínimos cuadrados

Observación

Si resolvemos el problema de mínimos cuadrados tenemos que buscar el mínimo de

$$f(x) = (Ax - b)^t(Ax - b) \Longrightarrow f'(x) = (A^tA)x - A^tb = 0$$

Obtenemos un sistema de ecuaciones llamados ecuaciones normales

$$A^t A x = A^t b$$

Descomposición QR

Teorema

Sea V un espacio vectorial con producto interno y $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V. Entonces existe $\mathcal{B}'=\{y_1,\ldots,y_n\}$ tal que \mathcal{B} es una base ortonormal de V y $[v_1, \ldots, v_k] = [y_1, \ldots, y_k], \forall k = 1, \ldots, n$.

Observaciones

- Es claro que basta encontrar $\{u_1, \ldots, u_n\}$ base ortogonal de V tal que $[v_1,\ldots,v_k]=[y_1,\ldots,y_k],\ \forall k=1,\ldots,n$ ya que basta definir luego $y_i = \frac{u_i}{\|u_i\|}$.
- Para encontrar estos ui ortogonales se puede seguir el siguiente esquema:

•
$$u_1 = v_1$$
; $u_2 = v_2 - \frac{u_1^t v_2}{u_1^t u_1} u_1$

$$\begin{array}{ll} \bullet \ u_1 = v_1; & u_2 = v_2 - \frac{u_1^t v_2}{u_1^t u_1} u_1 \\ \\ \bullet \ u_i = v_i - \sum_{k=1}^{i-1} c_{i,k} u_k, \ \text{donde} \ c_{i,j} = \frac{v_i^t u_j}{u_j^t u_j} \end{array}$$

Observaciones

- El esquema anterior se conoce como el método de Gram-Schmidt.
- Se puede construir la siguiente matriz:

$$\mathcal{B} = \begin{pmatrix} \|u_1\| & c_{21}\|u_1\| & c_{31}\|u_1\| & \cdots & c_{m1}\|u_1\| \\ 0 & \|u_2\| & c_{32}\|u_2\| & \cdots & c_{m2}\|u_2\| \\ 0 & 0 & \|u_3\| & \cdots & c_{m3}\|u_3\| \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \|u_m\| \end{pmatrix}$$

donde ${\cal B}$ es una matriz triangular superior con diagonal positiva.

Teorema

Sea $A \in \mathcal{M}_{n \times m}(\mathbb{R})$ de rango m, entonces existe una matriz $Q \in \mathcal{M}_{n \times m}(\mathbb{R})$ que verifica $Q^tQ = I_{n \times n}$ y una matriz triangular superior $R \in \mathcal{M}_{n \times m}(\mathbb{R})$ tal que A = QR

Ejemplo

Hallar la descomposición
$$QR$$
 de la matriz $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

Desarrollo

Sea $\mathcal{B} = \{v_1, v_2, v_3\} = \{(1, 0, 1), (0, 2, 1), (1, 1, 0)\}$ las columnas de A. Aplicaremos el método de Gram-Schmidt a la base \mathcal{B} . Entonces

•
$$u_1 = v_1 = (1,0,1)$$

•
$$u_2 = v_2 - \frac{v_2^t u_1}{u_1^t u_1} u_1 = \left(-\frac{1}{2}, 2, \frac{1}{2}\right)$$

•
$$u_3 = v_3 - \frac{v_3^{\frac{1}{4}}u_2}{v_2^{\frac{1}{4}}u_2}u_2 - \frac{v_3^{\frac{1}{4}}u_1}{u_1^{\frac{1}{4}}u_1}u_1 = \left(-\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$$

normalizando se obtiene:

$$y_1 = \frac{u_1}{\|u_1\|} = \frac{1}{\sqrt{2}}(1,0,1) \quad y_2 = \frac{u_2}{\|u_2\|} = \frac{\sqrt{2}}{3} \left(-\frac{1}{2},2,\frac{1}{2}\right)$$
$$y_3 = \frac{u_3}{\|u_3\|} = \frac{1}{1} \left(-\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right)$$

Vectores ortonormales

$$y_1 = \frac{1}{\sqrt{2}}(1,0,1)$$
 $y_2 = \frac{\sqrt{2}}{3}\left(-\frac{1}{2},2,\frac{1}{2}\right)$ $y_3 = \frac{u_3}{\|u_3\|} = \frac{1}{1}\left(-\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right)$

Finalmente

Recordatorio

$$Q = \begin{pmatrix} 1/\sqrt{2} & -\frac{1}{3\sqrt{2}} & 2/3\\ 0 & 2\sqrt{2}/3 & 1/3\\ 1/\sqrt{2} & 1/3\sqrt{2} & -2/3 \end{pmatrix} \qquad R = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2}\\ 0 & 3/\sqrt{2} & 1/\sqrt{2}\\ 0 & 0 & 1 \end{pmatrix}$$

Observación

• Si A posee columnas I.i. y A = QR.

$$A^{t}Ax = A^{t}b \iff R^{t}Q^{t}QRx = R^{t}Rx = R^{t}Q^{t}b \iff Rx = Q^{t}b$$

- La ultima equivalencia debido a que R^t es invertible por serlo R.
- Resolver la ecuación $Rx = Q^tb$, lo cual tiene dos ventajas, una es que R es triangular y la otra es que, en general, el error que se comete al resolver de esta manera mediante una computadora digital es menor que el que se comete empleando la ecuación normal $A^tAx = A^tb$.

Ejemplo

Encuentre la solución del sistema de ecuaciones superdeterminado

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 4 \end{pmatrix}$$

Desarrollo

Primero calculemos el sistema normal $A^tA = A^tb$,

$$\left(\begin{array}{ccc} 4 & 4 & 3 \\ 4 & 6 & 3 \\ 3 & 3 & 3 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 7 \\ 11 \\ 16 \end{array}\right)$$

Recordatorio

Calculando su descomposición QR tenemos que

$$Q = \left(\begin{smallmatrix} 0,62469 & -0,49975 & 0,6\\ 0,62469 & 0,78086 & 0\\ 0,46852 & -0,37481 & -0,8 \end{smallmatrix} \right) \quad R = \left(\begin{smallmatrix} -6,40312 & -7,65251 & -5,15373\\ 0 & -1,56173 & 0,28111\\ 0 & 0 & 0,68 \end{smallmatrix} \right)$$

Reduzcamos el sistema a la forma $Rx = Q^t b$

$$\begin{pmatrix} 6,40312 & 7,65251 & 5,15373 \\ 0 & 1,56173 & 0,28111 \\ 0 & 0 & -0,6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 14.0556 \\ 2.8424 \\ -0.6 \end{pmatrix}$$

finalmente al hacer la sustitución hacia atrás obtenemos que

$$x = -1$$
, $y = 2$, $z = 1$, y el residuo es $r(x) = Ax - b = 0$

Con lo cual el sistema tiene solución.

Ejercicios

Considere la siguiente tabla de valores:

Xi	-2	-1	0	1	2
$f(x_i)$	0.0338	0.4119	3.013	0.4240	0.0249

- Realice ajuste los datos a la función $m_1(x) = a + bx^2$.
- Realice un ajuste de datos a la función $m_2(x) = ae^{bx^2}$ y compare con el inciso anterior. ¿Cuál presenta menor error cuadrático?
- La intensidad de la luz disminuye en razón inversamente proporcional al cuadrado de la distancia x desde la fuente al detector. En la experiencia de laboratorio, se coloca un sensor (light sensor de PASCO) a una distancia x de la fuente de luz que va cambiando. Se Obtiene la siguiente tabla:

Distancia x a la fuente de luz (cm)	0.20	0.25	0.30	0.35	0.40	0.45	0.50
Intensidad I(lux)	171	106	73	52	39	30.5	24.5

Queremos ajustar m pares de datos (x_i, y_i) a la función $m(x) = a + \frac{b}{x^2}$ con a, b contantes a determinar.

Ejercicios

Considere las siguientes matrices

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 1 & -2 & 2 \\ 2 & 0 & -1 \end{array}\right), \qquad b = \left(\begin{array}{c} -1 \\ -1 \\ 3 \\ 2 \end{array}\right)$$

- Determine el sistema normal asociado a Ax = b.
- ② Obtenga la descomposición QR de A del sistema normal asociado.
- Encuentre la solución del sistema(si es que existe) usando la descomposición hallada en el inciso anterior.