NOME:______ LOG-IN FEUP:_____

Exame de recurso Ponto 1 22 de Julho de 2010

Duração: Duas horas. Com consulta de formulário e utilização de meios de cálculo. Note que os meios de cálculo não podem ser usados como meios de comunicação ou de consulta da matéria! A violação desta regra implica exclusão imediata. Use $g=9.8~\mathrm{m/s^2}$ para a aceleração da gravidade.

1. (4 valores). Uma esfera de 0.6 kg encontra-se inicialmente em repouso, pendurada por dois fios (ver figura). Admita que a massa dos fios é desprezável. O fio da esquerda é cortado subitamente. Desenhe o diagrama das forças que actuam sobre a esfera, após o fio ter sido cortado. Calcule a tensão no fio do lado direito e a aceleração da esfera no instante em que o fio acabou de ser cortado.

2. (4 valores). Uma partícula com massa igual a 1 kg desloca-se ao longo do eixo dos x, sob a acção de uma única força conservativa. Em qualquer ponto com coordenada x, a energia potencial da partícula é dada pela expressão $U = \frac{x^2}{2} + \frac{x^3}{3}$ (unidades SI). (a) Determine a expressão para a foça conservativa, em função de x. (b) Encontre os pontos de equilíbrio da partícula, no plano de fase (x,v), onde v é a velocidade. (c) Diga, justificando, quais dos pontos de equilíbrio são estáveis e quais instáveis. (d) Desenhe o retrato de fase do sistema. tipo de ponto é cada um dos pontos de equilíbrio.

PERGUNTAS. Cotação: Respostas certas, 0.8, erradas, -0.2, em branco, 0. Cada pergunta tem uma única resposta. Serão avaliadas apenas as respostas que apareçam na caixa de **Resposta** (e não na folha de exame ou de rascunho).

- 3. Qual dos seguintes sistemas não pode ser caótico?
 - (A) Um sistema de 4 espécies.
 - (B) Um sistema autónomo com 3 variáveis de estado.
 - (C) Um pêndulo duplo (dois pêndulos, um pendurado do outro)
 - (D) Um sistema linear com 4 variáveis de estado.
 - (E) Um sistema autónomo com 4 variáveis de estado.

Resposta:

- **4.** Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?
 - (A) $\dot{y} = 2y^2 3y$
- **(D)** $\dot{y} = 6y + xy$
- **(B)** $\dot{y} = 2y 5y^2$
- **(E)** $\dot{y} = 6y y^2$
- (C) $\dot{y} = x + xy^2$

Resposta:

5. O comando

a:rk([f,g],[y,z],[0,1],[x,0,1.5,0.1])

do Maxima foi usado para resolver numericamente um sistema de equações. Qual será o resultado do comando length(a)?

- (**A**) 2
- (C) 15
- (**E**) 16

- **(B)** 3
- **(D)** 1

Resposta:

6. Um carro avariado está a ser reboucado por um camião. Através da barra rígida que liga o carro ao camião, o camião exerce uma força \vec{F}_1 sobre o carro e o carro exerce uma força \vec{F}_2 sobre o camião. O camião começa por acelerar desde A até B, mantém velocidade constante entre B e C, e trava entre C e D. Qual das seguintes afirmações é correcta?

- (A) O módulo de $\vec{F_1}$ é sempre maior que o módulo de $\vec{F_2}$
- (B) Os sentidos de $\vec{F_1}$ e $\vec{F_2}$ são iguais entre C e D.
- (C) Os sentidos de $\vec{F_1}$ e $\vec{F_2}$ são iguais entre B e C.
- (**D**) Os módulos de \vec{F}_1 e \vec{F}_2 são iguais entre A e B.
- (E) O módulo de \vec{F}_1 é maior que o módulo de \vec{F}_2 entre A

Resposta:

- 7. Qual dos sistemas na lista é equivalente à equação diferencial $\ddot{x} x^2 2 x^2 \dot{x} + 2 x^3 = 0$?
 - (A) $\dot{x} = y$ $\dot{y} = 2y 2$
 - **(B)** $\dot{x} = y$ $\dot{y} = xy 2x^2$
 - (C) $\dot{x} = y$ $\dot{y} = 2y 2x$
 - **(D)** $\dot{x} = y$ $\dot{y} = 2y + x$
 - **(E)** $\dot{x} = y$ $\dot{y} = 4xy 2x$

Resposta:

8. Um bloco com massa m=5 kg encontra-se sobre a superfície de uma mesa horizontal. Sobre o bloco actua uma força externa \vec{F} , com módulo de 90 N e direcção que faz um ângulo $\alpha=40^\circ$ com a horizontal, tal como mostra a figura. Calcule o módulo da reacção normal entre o bloco e a mesa.

- (**A**) 79.78 N
- (C) 106.85 N
- (E) 18.22 N

- (**B**) 49.00 N
- (**D**) 8.85 N

Resposta:

9.	Um bloco de massa de um plano inclir				(A) nó repulsivo(B) centro	(D) nó atractivo
	de um plano inclinado, partindo do ponto A com valor da velocidade igual a 5 m/s e parando completamente no ponto B. As alturas dos pontos A e B, medidas na vertical desde a base horizontal do plano, são: $h_B=10~\rm cm$ e $h_A=70~\rm cm$. Calcule o trabalho realizado pela força de atrito, desde A até B.				(C) foco atractivo	(E) foco repulsivo
				14.	Resposta:	
					Um caixote de massa 0.5 kg é puxado simultâneamente por duas forças $7\vec{e}_x - 7\vec{e}_y$ (N) e $4\vec{e}_x + 2\vec{e}_y$ (N). Calcule a	
	(A) -21.3 J (B) -19.4 J	(C) -17.4 J (D) -18.4 J	(E) -20.3 J		aceleração do caixote.	, , , , , , , , , , , , , , , , , , ,
	Resposta:	(2) 10.11			(A) $5.5\vec{e}_x - 2.5\vec{e}_y \text{ (m/s}^2)$ (B) $22\vec{e}_x - 10\vec{e}_y \text{ (m/s}^2)$ (C) $11\vec{e}_x - 5\vec{e}_y \text{ (m/s}^2)$	(D) $8\vec{e}_x + 4\vec{e}_y \text{ (m/s}^2\text{)}$ (E) $14\vec{e}_x - 14\vec{e}_y \text{ (m/s}^2\text{)}$
10.	Um objecto desloca-se ao longo do eixo dos x . Em qualquer ponto com coordenada x , a aceleração do objecto é dada pela expressão $a=3x^2$ (unidades SI). Se o objecto parte do repouso no ponto $x=1$ m, com que velocidade chegará ao ponto $x=2$ m?				Resposta: \square	
					O reboque na figura, com pesso total P , está ligado no ponto A por uma trela que sai da parte posterior de um automóvel. Se o reboque estiver em repouso, e se F for o	
	(A) 4.90 m/s (B) 4.32 m/s	(C) 3.74 m/s (D) 3.10 m/s	(E) 2.45 m/s			o entre o carro e o reboque, no
	Resposta:					СМ
11.	Num sistema dinâmico conservativo, a energia potencial tem um único máximo local, $U = 4$ J, em $x = 2$ m, e um					A
	único mínimo local	l, U = 2 J, em x =	3 m. Sabendo que		73 cm	50 cm
	o sistema tem uma órbita homoclínica, qual poderá ser o valor da energia dessa órbita?				0	
	(A) 6 J	(C) 3 J	(E) 0 J			,
	(B) 4 J	(D) 2 J			(A) $P/2 < F < P$	(D) $0 < F < P/2$
	Resposta:				(B) $F = P$ (C) $F = 0$	(E) $F = P/2$
12.	Um sistema dinâmico com duas variáveis de estado tem uma curva de evolução com conjunto limite positivo num ponto P. Em relação à lista seguinte:				Resposta:	
	ponto P. Em relaça	io a lista seguinte:		16.		um foco atractivo no ponto P. es, acerca da matriz jacobiana
	1. foco atractivo.	4. nó rep	oulsivo.		no ponto P, é verdadeira?	os, accrea da macriz jacostana
	2. foco repulsivo.	5. centro			(A) o traço é negativo	
	3. nó atractivo.				(B) o determinante é nega	tivo
	Que tipo de ponto de equilíbrio pode ser o ponto P?				(C) o traço é positivo	
					(\mathbf{D}) o traço é nulo.	
	(A) 2 ou 4	(C) 5 (D) 3 ou 4	(E) 1 ou 3		(E) o determinante é nulo	
	(B) 1 ou 2	(D) 3 ou 4			Resposta:	
	Resposta:			17.	Num pântano existem 3 esp	pécies: crocodilos, sapos e pei-
13.	Um sistema dinâmico com duas variáveis de estado x e y tem um ponto de equilíbrio no ponto $x=10,\ y=5.$ O gráfico mostra a evolução da variável x em função de tempo. Que tipo de ponto é esse ponto de equilíbrio?				xes. Os crocodilos alimenta	m-se de sapos e de peixes e os xes. O sistema é aproximado
					Qual das espécies represent	a cada uma das variáveis?
	10			(A) x são sapos, y crocodi	los e z peixes.	
				(B) x são peixes, y sapos e		
			→ ,		(C) x são sapos, y peixes e	
			t		(D) x são crocodilos, y pei	
					(E) x são crocodilos, y sap	pos e z peixes.
					Resposta:	

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO	
curso Mestrado Int. em Enga	Informática e Computação ata 22,07,2010 Ano 1º Semestre 2º
Nome Jaime E. Villate	Ano Semestre 2
Nome Jainie E. XIIIait	
Ponto	1
1 No instante em que	o fio é cortado:
マイ ヤ	= tensão no fio da direita
40° P	= peso da esfera
P V	= tensão no fio da direita = peso da esfera
Nos instantes sequint	es, v + 0, e actuará também
a força de resistênci vector velocidade:	les, v ≠0, e actuará também a do ar, Fr, o posta ao
Fred AT	0 ≥ 40°
"FELO	.
. 45	
No instante inicial a tangente 21	aceleração tem a direcção
	Convém portante usas
40"	Convém, portanto, usar os eixos tangente (+)
B 40 A at	e normal (n) indicados na figura
7 40'3	na figura

$$\begin{cases} \Sigma F_t = ma & \text{Pcos40}^\circ = ma \\ \Sigma F_n = o & \text{T-Psin40}^\circ = 0 \end{cases}$$

$$\Rightarrow \begin{cases} a = g\cos 40^\circ = 7.51 \frac{m}{52} \\ T = mg \sin 40^\circ = 3.78 \text{ N} \end{cases}$$

$$\Rightarrow \begin{cases} \Omega = \frac{dV}{2} = -X - X^2 \end{cases}$$

$$\begin{array}{ccc}
\textcircled{b} & F=0 & \Rightarrow & -X(1+X)=0 & \Rightarrow X=0, V, X=1 \\
ponto & 1=(0,0) & ponto & 2=(-1,0) \\
& (\times, V) & \\
\end{array}$$

Nos dois lados de X=-1, a força aponta para fora do ponto \Rightarrow (-1,0) é ponto instável (ponto de sela).

Nos dois lados de X=0, a força aponta para o ponto \Rightarrow (0,0) \in ponto estável(centro)

Também podia concluir-se o mesmo no gráfico U(x):

FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

MIEIC

Data 22/07/2010

Ano 1º Semestre 2º

Disciplina FÍSICA 1 Nome Jaime E. Villate

Perguntas

3. D

6. D

9. D

12. E

15. D

4. D5. E

7. C8. C

10. C11. B

13. E14. B

16. A17. D