GGACTAATCTGTGGGAGCAGTTTATTCCAGTATCACCCAGGGTGCAGCCACCACCAGGACTGT $\tt GTTGAAGGGTGTTTTTTTTTTTTTAAATGTAATACCTCCTCATCTTTTCTTCTTACACAGTG$ TCTGAGAACATTTACATTATAGATAAGTAGTACATGGTGGATAACTTCTACTTTTAGGAGGA $\tt CTACTCTTCTGACAGTCCTAGACTGGTCTTCTACACTAAGACACCA\mathbf{TG}AAGGAGTATGTG$ ATGATGATGAGGACAACTCTCTTTTTCCAACAGAGAGCCAAGAAGCCATTTTTTTCCA TTTGATCTGTTTCCAATGTGTCCATTTGGATGTCAGTGCTATTCACGAGTTGTACATTGCTC AGATTTAGGTTTGACCTCAGTCCCAACCAACATTCCATTTGATACTCGAATGCTTGATCTTC AAAACAATAAAATTAAGGAAATCAAAGAAAATGATTTTAAAGGACTCACTTCACTTTATGGT CTGATCCTGAACAACAACAAGCTAACGAAGATTCACCCAAAAGCCTTTCTAACCACAAAGAA GTTGCGAAGGCTGTATCTGTCCCACAATCAACTAAGTGAAATACCACTTAATCTTCCCAAAT CATTAGCAGAACTCAGAATTCATGAAAATAAAGTTAAGAAAATACAAAAGGACACATTCAAA GGAATGAATGCTTTACACGTTTTGGAAATGAGTGCAAACCCTCTTGATAATAATGGGATAGA GCCAGGGGCATTTGAAGGGGTGACGGTGTTCCATATCAGAATTGCAGAAGCAAAACTGACCT CAGTTCCTAAAGGCTTACCACCAACTTTATTGGAGCTTCACTTAGATTATAATAAAATTTCA ACAGTGGAACTTGAGGATTTTAAACGATACAAAGAACTACAAAGGCTGGGCCTAGGAAACAA CAAAATCACAGATATCGAAAATGGGAGTCTTGCTAACATACCACGTGTGAGAGAAATACATT TGGAAAACAATAAACTAAAAAAAATCCCTTCAGGATTACCAGAGTTGAAATACCTCCAGATA ATCTTCCTTCATTCTAATTCAATTGCAAGAGTGGGAGTAAATGACTTCTGTCCAACAGTGCC AAAGATGAAGAAATCTTTATACAGTGCAATAAGTTTATTCAACAACCCGGTGAAATACTGGG AAATGCAACCTGCAACATTTCGTTGTGTTTTTGAGCAGAATGAGTGTTCAGCTTGGGAACTTT AGTGGTAAGTCCACTGACTTATTTTATGACAAGAAATTTCAACGGAATTTTGCCAAACTATT GATACATAAGGGGTTGAGAGAAACAAGCATCTATTGCAGTTTCCTTTTTGCGTACAAATGAT $\tt CTTACATAAATCTCATGCTTGACCATTCCTTTCTTCATAACAAAAAGTAAGATATTCGGTA$ TTTAACACTTTGTTATCAAGCACATTTTAAAAAGAACTGTACTGTAAATGGAATGCTTGACT TAGCAAAATTTGTGCTCTTTCATTTGCTGTTAGAAAAACAGAATTAACAAAGACAGTAATGT GAAGAGTGCATTACACTATTCTTATTCTTTAGTAACTTGGGTAGTACTGTAATATTTTTAAT CATCTTAAAGTATGATTTGATATAATCTTATTGAAATTACCTTATCATGTCTTAGAGCCCGT CTTTATGTTTAAAACTAATTTCTTAAAATAAAGCCTTCAGTAAATGTTCATTACCAACTTGA ACCTGATTTAAAAATCTCTGTAAAAACGTGTAGTGTTTCATAAAATCTGTAACTCGCATTTT AATGATCCGCTATTATAAGCTTTTAATAGCATGAAAATTGTTAGGCTATATAACATTGCCAC CACTAACAATTCTACACCAAATTGTCTCTTCAAATACGTATGGACTGGATAACTCTGAGAAA TATAAATGCTCAGAGTTCTTTATGTATTTCTTATTGGCATTCAACATATGTAAAATCAGAAA ACAGGGAAATTTTCATTAAAAATATTGGTTTGAAAT

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA34392
<subunit 1 of 1, 379 aa, 1 stop</pre>

<MW: 43302, pI: 7.30, NX(S/T): 1

MKEYVLLLFLALCSAKPFFSPSHIALKNMMLKDMEDTDDDDDDDDDDDDDDDDDDDSNSLFPTREPR
SHFFPFDLFPMCPFGCQCYSRVVHCSDLGLTSVPTNIPFDTRMLDLQNNKIKEIKENDFKGL
TSLYGLILNNNKLTKIHPKAFLTTKKLRRLYLSHNQLSEIPLNLPKSLAELRIHENKVKKIQ
KDTFKGMNALHVLEMSANPLDNNGIEPGAFEGVTVFHIRIAEAKLTSVPKGLPPTLLELHLD
YNKISTVELEDFKRYKELQRLGLGNNKITDIENGSLANIPRVREIHLENNKLKKIPSGLPEL
KYLQIIFLHSNSIARVGVNDFCPTVPKMKKSLYSAISLFNNPVKYWEMQPATFRCVLSRMSV
OLGNFGM

Signal sequence.

amino acids 1-15

N-glycosylation site. amino acids 281-285

N-myristoylation sites.

amino acids 129-135, 210-216, 214-220, 237-243, 270-276, 282-288

Leucine zipper pattern. amino acids 154-176

GGCCCGCCGGCCCGCTGCTCCTCGGGCTGCTGCTGCTCGGCCCGGCCGGCCGGCCGGCCGGCCCAGA GAAGGTCTATGCCTTGGACGAGACGTGGCACCCGGACCTAGGGCAGCCATTCGGGGTGATGCGCTGCTGTG CGCCTGCGAGGCGCCTCAGTGGGGTCGCCGTACCAGGGGCCCTGGCAGGGTCAGCTGCAAGAACATCAAACCAGA GTGCCCAACCCCGGCCTGTGGGCAGCCGCCAGCTGCCGGGACACTGCTGCCAGACCTGCCCCAGGAGCGCAG $\tt CGGGGAGCCAGGCGTGAGGAGCGGGCCCGTGGTGACGGCCACACGGACTTCGTGGCGCTGACAGGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCAGGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCAGGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCGAGGCCAGGCCGAGGCCAGGCCGAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCGAGGCCGAGGCCGAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCCAGGGCCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCCGAGGCCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCC$ $\tt GTCGCAGGCGGTGGCACGAGCCCGAGTCTCGCTGCTGCGCTCTAGCCTCCGCTTCTCTATCTCCTACAGGCGGCTCTGCTACAGGCGGCTTCTCTCTACAGGCGGCTCTGCTACAGGCGGCTTCTCTCTACAGGCGGCTCTGCTACAGGCGGCTCTGCTACAGGCGGCTCTGCTACAGGCGGCTCTGCTACAGGCGGCTCTGCTACAGGCGGCTCTGCTACAGGCGGCTCTACAGGCCTCCGCTTCTACAGGCGGCGGCTCTACAGGCGGCTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCGGCGGCTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTACAGGCGGCGGCTCTACAGGCCTCCGCTTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCGGCGGCTCTAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCGCTTCTACAGGCCTCCTACAGGCCTCCTAGGCCTCTAGGCCTCCTAGGCCTCTAGGCCTCCTAGGCCTCTAGGCCTCTAGGCCTCCTAGGCCTCTAGGCCTCTAGGCCTCTAGGCCTCTAGGCCTCTAGGCCTCTAGGCCTCTAGGCCTCCTAGGCCTCTAGGCTAGGCTCTAGGCTCTAGGCTCTAGGCTCTAGGCTCTAGGCTTAGGCTTAGGCTCTAGGCT$ AGATGGCCTGGTCTGTGGGGTGTGGCGGGCAGTGCCTCGGTTGTCTCTGCGGCTCCTTAGGGCAGAACAGCTGCA TGTGGCACTTGTGACACTCACCCTTCAGGGGGGGTCTGGGGGGCCTCTCATCCGGCACCGGGCCCTGGCTGC AGAGACCTTCAGTGCCATCCTGACTCTAGAAGGCCCCCCACAGCAGGGCGTAGGGGGCATCACCCTGCTCACTCT ${\tt CAGTGACAGAGGACTCCTTGCATTTTTTGCTGCTCTTCCGAGGGCTGCTGGAACCCAGGAGTGGGGGACTAAC}$ $\tt CCAGGTTCCCTTGAGGCTCCAGATTCTACACCAGGGGCAGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGCCCAGGCTACTGCGCAGAACTTCAGGCCCAATGTCTCAGCCCAGGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAGGCTACTGCGAGAACTTCAGGCCAATGTCTCAGCCCAATGTCTCAGCCCAATGTCTCAGCCCAATGTCTCAGCCCAATGTCTCAGCCCAATGTCTCAGCCCAATGTCTCAGGCCAATGTCTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCTCAGCCCAATGTCTCAGCCCAATGTCAGCCCAATGTCTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGCCCAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAGAATGTCAATGTCAGAATGTCAGAATGTCAGAATGTCAATGTCAGAATGTCAA$ GCTGCTAGGAAATGGCTCCCTGATCTATCAGGTGCAAGTGGTAGGGACAAGCAGTGAGGTGGTGGCCATGACACT GGCCGTGGGTATCTGCCCTGGGCTGGGTGCCCGAGGGGCTCATATGCTGCTGCAGAATGAGCTCTTCCTGAACGT GGGCACCAAGGACTTCCCAGACGGAGAGCTTCGGGGGCACGTGGCTGCCCTGCCCTACTGTGGGCATAGCGCCCG CACTGTCACTGCCCACCTCCTTGGGCCTCCTGGAACGCCAGGGCCTCGGCGGCTGCTGAAGGGATTCTATGGCTC AGAGGCCCAGGGTGTGGAAGGACCTGGAGCCGGAACTGCTGCGGCACCTGGCAAAAGGCATGGCCTCCTGAT ACTGCGCCTGGAGGCGGCCGAGGGGGTGCGGGGCGCTGGGGGGCTCCGGATACAGCCTCTGCTGCGCCGCC TGTGGTGCCTGGTCTCCCGGCCCTAGCGCCCGCCAAACCTGGTGGTCCTGGGCGCCCCGAGACCCCAACACATG CTTCTTCGAGGGGCAGCAGCGCCCCCACGGGGCTCGCTGGGCGCCCAACTACGACCCGCTCTGCTCACTCTGCAC $\tt CTGCCAGAGACGGACGGTGATCTGTGACCCGGTGGTGTGCCCACCGGCCCAGCTGCCCACACCCGGTGCAGGCTCC$ CGACCAGTGCTGCCCTGTTTGCCCTGAGAAACAAGATGTCAGAGACTTGCCAGGGCTGCCAAGGAGCCGGGACCC CTTTGGCTTAATTAAGTGTGCTGCTGCACCTGCAAGGGGGGCACTGGAGAGGTGCACTGTGAGAAGGTGCAGTG TCCCCGGCTGGCCTGTGCCCAGCCTGTGCGTGTCAACCCCACCGACTGCTGCAAACAGTGTCCAGTGGGGTCGGG GGCCCACCCCAGCTGGGGGACCCCATGCAGGCTGATGGGCCCCGGGGCTGCCGTTTTGCTGGGCAGTGGTTCCC $\underline{\underline{G}} GGAGCAGCCAGAGGGCCAAGTGACCAAGAGGATGGGCCTGAGCTGGGGAAGGGGTGGCATCGAGGACCTTCTT$ GCATTCTCCTGTGGGAAGCCCAGTGCCTTTGCTCCTCTGTCCTGCCTCTACTCCCACCCCCACTACCTCTGGGAA ${\tt TCGGCCTCTGTCCTGGAAGCCCCACCCCTTTCCTCCTGTACATAATGTCACTGGCTTGTTGGGATTTTTAATTAATTA$ TCTTCACTCAGCACCAAGGGCCCCCGACACTCCACTCCTGCTGCCCCTGAGCTGAGCAGAGTCATTATTGGAGAG

><subunit 1 of 1, 954 aa, 1 stop ><MW: 101960, pI: 8.21, NX(S/T): 5

MPSLPAPPAPLLLLGLLLLGSRPARGAGPEPPVLPIRSEKEPLPVRGAAGCTFGGKVYALDE TWHPDLGQPFGVMRCVLCACEAPQWGRRTRGPGRVSCKNIKPECPTPACGQPRQLPGHCCOT CPQERSSSERQPSGLSFEYPRDPEHRSYSDRGEPGAEERARGDGHTDFVALLTGPRSQAVAR ARVSLLRSSLRFSISYRRLDRPTRIRFSDSNGSVLFEHPAAPTQDGLVCGVWRAVPRLSLRI. LRAEQLHVALVTLTHPSGEVWGPLIRHRALAAETFSAILTLEGPPQQGVGGITLLTLSDTED SLHFLLLFRGLLEPRSGGLTQVPLRLQILHQGQLLRELQANVSAQEPGFAEVLPNLTVOEMD WLVLGELQMALEWAGRPGLRISGHIAARKSCDVLQSVLCGADALIPVQTGAAGSASLTLLGN GSLIYQVQVVGTSSEVVAMTLETKPQRRDQRTVLCHMAGLQPGGHTAVGICPGLGARGAHML LQNELFLNVGTKDFPDGELRGHVAALPYCGHSARHDTLPVPLAGALVLPPVKSQAAGHAWLS LDTHCHLHYEVLLAGLGGSEQGTVTAHLLGPPGTPGPRRLLKGFYGSEAQGVVKDLEPELLR HLAKGMASLMITTKGSPRGELRGQVHIANQCEVGGLRLEAAGAEGVRALGAPDTASAAPPVV ${\tt PGLPALAPAKPGGPGRPRDPNTCFFEGQQRPHGARWAPNYDPLCSLCTCQRRTVICDPVVCP}$ PPSCPHPVQAPDQCCPVCPEKQDVRDLPGLPRSRDPGEGCYFDGDRSWRAAGTRWHPVVPPF GLIKCAVCTCKGGTGEVHCEKVQCPRLACAQPVRVNPTDCCKQCPVGSGAHPQLGDPMQADG PRGCRFAGQWFPESQSWHPSVPPFGEMSCITCRCGAGVPHCERDDCSLPLSCGSGKESRCCS RCTAHRRPPETRTDPELEKEAEGS

Signal sequence.

amino acids 1-23

N-glycosylation sites.

amino acids 217-221, 351-355, 365-369, 434-438

Tyrosine kinase phosphorylation sites.

amino acids 145-153, 778-786

N-myristoylation sites.

amino acids 20-26, 47-53, 50-56, 69-75, 73-79, 232-238, 236-242, 390-396, 422-428, 473-479, 477-483, 483-489, 489-495, 573-579, 576-582, 580-586, 635-641, 670-676, 773-779, 807-813, 871-877, 905-911

Amidation site.

amino acids 87-91

Cell attachment sequence.

amino acids 165-168

Leucine zipper pattern.

amino acids 315-337

 ${\tt GCAGCAGCGATGGCTACCTCTGCATTGCAATGAAGGCTATGAAGGTCCCAACTGTGAACAGGCACTTCCCAGTCCCAGTCCCCAACTGTCAACTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAACTGTCAACTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAACTTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAACTTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAACTTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAACTTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCAGTCCCAGTCCCCAGTCCCAGTCCCAGTCCCAGTCCCAGTCCCAGTCCCAGTCCCCAGTCCCAGTCCCCAGTCCCCAGTCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCAGTCCCCCAGTCCCCCAGTCCCCAGTCCCCAGTCCCCCAGTCCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCCAGTCCCCAGTCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCCCAGTCCCAGTCCCCCAGTCCAGTCCCCAGTCCCCAGTCCAGTCCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCAGTCCCCAGTCCCCAGTCCCCAGTCCCCAGTCCAGTCCAGTCCAGTCCAGTCCCCAACTCCAGTCCA$ AAATCCTGCCTCGCTCTCAGGCAACGGTGACACTGCCTACCTGGCAGCCGAAAACAGGGCAGAAAGTTGTAGAAA $\tt TGAAATGGGATCAAGTGGAGGTGATCCCAGATATTGCCTGTGGGAATGCCAGTTCTAACAGCTCTGCGGGTGGCC$ GCCTGGTATCCTTTGAAGTGCCACAGAACACCTCAGTCAAGATTCGGCAAGATGCCACTGCCTCACTGATTTTGC $\tt CAAATGACTTGGAGTGTTCAGGAAAAGGAAAATGCACCACGAAGCCGTCAGAGGCAACTTTTTCCTGTACCTGTG$ AGGAGCAGTACGTGGGTACTTTCTGTGAAGAATACGATGCTTGCCAGAGGAAACCTTGCCAAAACAACGCGAGCT $\tt GTATTGATGCAAATGAAAAGCAAGATGGGAGCAATTTCACCTGTGTTTGCCTTCCTGGTTATACTGGAGAGCTTT$ GCCAGTCCAAGATTGATTACTGCATCCTAGACCCATGCAGAAATGGAGCAACATGCATTTCCAGTCTCAGTGGAT GCCAGAACAACGGCACCTGCTATGTGGACGGGGTACACTTTACCTGCAACTGCAGCCCGGGCTTCACAGGGCCGA $\tt CCTGTGCCCAGCTTATTGACTTCTGTGCCCTCAGCCCCTGTGCTCATGGCACGTGCCGCAGCGTGGGCACCAGCT$ ${\tt ACAAATGCCTCTGTGATCCAGGTTACCATGGCCTCTACTGTGAGGAGGAATATAATGAGTGCCTCTCCGCTCCAT}$ TCAGCCGCATTGAATACCAGGGTTCTTCCAGGCCAGCCTATGAGGAGTTCTACAACTGCCGCAGCATCGACAGCG $\tt GCCCCATCGCCTATGAAGATTACAGTCCTGATGACAAACCCTTGGTCACACTGATTAAAACTAAAGATTTG{\tt TAA}{\tt T$ $\tt CTTTTTTTGGATTATTTTCAAAAAGATGAGATACTACACTCATTTAAATATTTTTAAGAAAATAAAAAGCTTAA$ GAAATTTAAAATGCTAGCTGCTCAAGAGTTTTCAGTAGAATATTTAAGAACTAATTTTCTGCAGCTTTTAGTTTG ${\tt GAAAAAATTTTTAAAAACAAAATTTGTGAAACCTATAGACGATGTTTTAATGTACCTTCAGCTCTCTAAACTGT}$ ${\tt GAATAAGTCTAATCAAGGAGAAGTTTCTGTTTGACGTTTGAGTGCCGGCTTTCTGAGTAGAGTTAGGAAAACCAC}$ ${\tt TCGAACTAGGCCTCAAAAAACATACGTAACGAAAAGGCCTAGCGAGGCAAATTCTGATTGAATCTATATTT}$ AAGTCA

><subunit 1 of 1, 737 aa, 1 stop ><MW: 78475, pI: 5.09, NX(S/T): 11

MQPRRAQAPGAQLLPALALLLLLGAGPRGSSLANPVPAAPLSAPGPCAAQPCRNGGVCTSR
PEPDPQHPAPAGEPGYSCTCPAGISGANCQLVADPCASNPCHIGNCSSSSSSSDGYLCICN
EGYEGPNCEQALPSLPATGWTESMAPRQLQPVPATQEPDKILPRSQATVTLPTWQPKTGGVV
VEMKWDQVEVIPDIACGNASSNSSAGGRLVSFEVPQNTSVKIRQDATASLILLWKVTATGFQ
QCSLIDGRSVTPLQASGGLVLLEEMLALGNNHFIGFVNDSVTKSIVALRLTLVVKVSTCVPG
ESHANDLECSGKGKCTTKPSEATFSCTCEEQYVGFFCEEYDACQRKPCQNNASCIDANEKQD
GSNFTCVCLPGYTGELCQSKIDYCILDPCRNGATCISSLSGFTCQCPEGYFGSACEEKVDPC
ASSPCQNNGTCYVDGVHFTCNCSPGFTGPTCAQLIDFCALSPCAHGTCRSVGTSXKCLCDPG
YHGLYCEEEYNECLSAPCLNAATCRDLVNGYECVCLAEYKGTHCELYKDPCANVSCLNGATC
DSDGLNGTCICAPGFTGEECDIDINECDSNPCHHGGSCLDQPNGYNCHCPHGWVGANCEIHL
QWKSGHMAESLTNMPRHSLYIIIGALCVAFILMLIILIVGICRISRIEYQGSSRPAYEEFYN
CRSIDSFSNAIASIRHARFGKKSRPAMYDVSFIAYEDYSPDDKPLVTLIKTKDL

Signal sequnce.

amino acids 1-28

Transmembrane domain.

amino acids 641-660

N-glycosylation sites.

amino acids 107-111, 204-208, 208-212, 223-227, 286-290, 361-365, 375-379, 442-446, 549-553, 564-568

Glycosaminoglycan attachment site.

amino acids 320-324

Tyrosine kinase phosphorylation sites.

amino acids 490-498, 674-682

N-myristoylation sites.

amino acids 30-36, 56-62, 57-63, 85-91, 106-112, 203-209, 373-379, 449-455, 480-486, 562-568, 565-571

Amidation site.

amino acids 702-706

Aspartic acid and asparagine hydroxylation site.

amino acids 520-532, 596-608

EGF-like domain cysteine pattern signatures.

amino acids 80-92, 121-133, 336-348, 378-390, 416-428, 454-466, 491-503, 529-541, 567-579, 605-617

CTCTGGAAGGTCACGGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAAGTGTGA
CCCCCCTTTCAGGCTTTCAGGGGGACTGGTCCTCCTGGAGGAGATGCTCGCCTTGGGGAATA
ATCACTTTATTGGTTTTGTGAATGATTCTGTGACTAAGTCTATTGTGGCTTTACC
CTGGTGGTGAAGGTCAGCACCTGTGTGCCGGGGGAGAGTCACGCAAATGACTTGGAGTGTTC
AGGAAAAGGAAAATGCACCACGAAGCCGTCAGAGGCAACTTTTTCCTGTACCTGTGAGGAG
AGTACGTGGGTACTTTCTGTGAAGAATACGATGCTTGCCAGAGGAAACCTTTGCCAAAACAAC
GCGAGCTGTATTGATGCAAATGAAAAGCAAGATGGAGCCAATTTCACCTGTGTTTGCCTTCC
TGGTTATACTGGAGAGCTTTGCCAACCGAACTGAGATTGGAGCGAACGACCTACACCGAACT
GAGATAGGGGAC

CTCTGGAAGGTCACGGCCACAGGATTCCAACAGTGCTCCCTCATAGATGGACGAAAGTGTGA
CCCCCCTTTCAGGCTTTCAGGGGGACTGGTCCTCCTGGAGGAGATGCTCGCCTTGGGGAATA
ATCACTTTATTGGTTTTGTGAATGATTCTGTGACTAAGTCTATTGTGGCTTTGCGCTTAACT
CTGGTGGTGAAGGTCAGCACCTGTGTGCCGGGGGAGAGTCACGCAAATGACTTGGAGTGTTC
AGGAAAAGGAAAATGCACCACGAAGCCGTCAGAGGCAACTTTTTCCTGTACCTGTGAGGAGC
AGTACGTGGGTACTTTCTGTGAAGAATACGATGCTTGCCAGAGGAAACCTTTGCCAAAACAAC
GCGAGCTGTATTGATGCAAATGAAAAGCAAGATGGAGCGAACTTTCACCTGTGTTTGCCTTCC
TGGTTATACTGGAGAGCTTTGCCAACCGAACTGAGATTGGAGCGAACGACCTACACCGAACT
GAGATAGGGGAG

GCTCCCTCGACCACACTCAGTAGTCCCAGCACCCAGGGCCTGCAAGAGCAGGCACGGGCCCT ${\tt GATGCGGGACTTCCCGCTCGTGGACGGCCACAACGACCTGCCCCTGGTCCTAAGGCAGGTTT}$ ACCAGAAAGGGCTACAGGATGTTAACCTGCGCAATTTCAGCTACGGCCAGACCAGCCTGGAC AGGCTTAGAGATGGCCTCGTGGGCCCCAGTTCTGGTCAGCCTATGTGCCATGCCAGACCCA GGACCGGGATGCCCTCACCCTGGAGCAGATTGACCTCATACGCCGCATGTGTGCCT $\tt CCTATTCTGAGCTGGAGCTTGTGACCTCGGCTAAAGCTCTGAACGACACTCAGAAATTGGCC$ ${\tt TGCCTCATCGGTGTAGAGGGTGGCCACTCGCTGGACAATAGCCTCTCCATCTTACGTACCTT}$ CTACATGCTGGGAGTGCGCTACCTGACGCTCACCCACACCTGCAACACCCTGGGCAGAGA AAGGTGGTGGCAGAAATGAACCGCCTGGGCATGATGGTAGACTTATCCCATGTCTCAGATGC GGGGTGTGTGCAACAGTGCTCGGAATGTTCCTGATGACATCCTGCAGCTTCTGAAGAAGAAC GGTGGCGTCGTGATGGTGTCTTTGTCCATGGGAGTAATACAGTGCAACCCATCAGCCAATGT GTCCACTGTGGCAGATCACTTCGACCACATCAAGGCTGTCATTGGATCCAAGTTCATCGGGA TTGGTGGAGATTATGATGGGGCCGGCAAATTCCCTCAGGGGCTGGAAGACGTGTCCACATAC CCGGTCCTGATAGAGGAGTTGCTGAGTCGTGGCTGGAGTGAGGAAGAGCTTCAGGGTGTCCT ${\tt TCGTGGAAACCTGCTGCGGGTCTTCAGACAAGTGGAAAAGGTACAGGAAGAAAACAAATGGC}$ AAAGCCCCTTGGAGGACAAGTTCCCGGATGAGCAGCTGAGCAGTTCCTGCCACTCCGACCTC TCACGTCTGCGTCAGAGACAGAGTCTGACTTCAGGCCAGGAACTCACTGAGATTCCCATACA $\tt CTGGACAGCCAAGTTACCAGCCAAGTGGTCAGTCTCAGAGTCCTCCCCCACATGGCCCCAGGTGGCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCAGGTGGCGCCAGGTGGCCCAGGTGGCCCCAGGTGGCGCCCAGGTGGCCCCAGGTGGCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCCCAGGTGGCGCCCAGGTGGCGCCCCAGGTGGCGCCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCGCAGGTGCGCGCAGGTGCGCCCCAGGTGGCGCCCCAGGTGGCGCCCCAGGTGGCGCCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCCAGGTGGCGCCCCAGGTGGCGCCCAGGTGGCGCCCCAGGTGGCCCCAGGTGGCGCCCAGGTGGCGCCAGGTGGCGCCAGGTGGCCCAGGTGGCGCCCAGGTGGCCCAGGTGGCGCCCAGGTGGCGCAGGTGGCCCCAGGTGGCGCCAGGTGGCCCAGGTGGCGCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCGCCAGGTGGCGCCAGGTGGCGCCAGGTGGCGCCAGGTGGCCCAGGTGGCCCAGGGCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCCCAGGTGGCGCCAGGTGGCGCCAGGTGGGCCCAGGTGGCGCCAGGTGGCGCCAGGTGGCGCCCAGGTGGCCAGGTGGCGCCCAGGTGGCGCCAGGTGGCCAGGTGCGCCCAGGTGGCGCCCAGGTGGCCCAGGTGGCCAGGTGCAGGTGCCCCAGGT$ ${\tt TCCTTGCAGTTGTGGCCACCTTCCCAGTCCTTATTCTGTGGCTC} {\tt TGA} {\tt TGACCCAGTTAGTCC}$ TGCCAGATGTCACTGTAGCAAGCCACAGACACCCCACAAAGTTCCCCTGTTGTGCAGGCACA AATATTTCCTGAAATAAATGTTTTGGACATAG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA35595</pre>

<subunit 1 of 1, 433 aa, 1 stop

<MW: 47787, pI: 6.11, NX(S/T): 5

MPGTYAPSTTLSSPSTQGLQEQARALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYG
QTSLDRLRDGLVGAQFWSAYVPCQTQDRDALRLTLEQIDLIRRMCASYSELELVTSAKALND
TQKLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTLTHTCNTPWAESSAKGVHSFYNNISGL
TDFGEKVVAEMNRLGMMVDLSHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQ
LLKKNGGVVMVSLSMGVIQCNPSANVSTVADHFDHIKAVIGSKFIGIGGDYDGAGKFPQGLE
DVSTYPVLIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQSPLEDKFPDEQLSSS
CHSDLSRLRQRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHMAPVLAVVATFPVLILWL

N-glycosylation sites.

amino acids 58-62, 123-127, 182-186, 273-277

N-myristoylation sites.

amino acids 72-78, 133-139, 234-240, 264-270, 334-340, 389-395

Renal dipeptidase active site.

amino acids 134-157

AAAACCTATAAATATTCCGGATTATTCATACCGTCCCACCATCGGGCGCGGATCCGCGGCCG CGAATTCTAAACCAACATGCCGGGCACCTACGCTCCCTCGACCACACTCAGTAGTCCCAGCA CCCAGGGCCTGCAAGAGCAGGCACGGGCCCTGATGCGGGACTTCCCGCTCGTGGACGGCCAC AACGACCTGCCCCTGGTCCTAAGGCAGGTTTACCAGAAAGGGCTACAGGATGTTAACCTGCG CAATTTCAGCTACGGCCAGACCAGCCTGGACAGGCTTAGAGATGGCCTCGTGGGCCCCAGT TCTGGTCAGCCTATGTGCCATGCCAGACCCAGGACCGGGATGCCCTGCGCCTCACCCTGGAG CAGATTGACCTCATACGCCGCATGTGTGCCTCCTATTCTGAGCTGGAGCTTGTGACCTCGGC TAAAGCTCTGAACGACACTCAGAAATTGGCCTGCCTCATCGGTGTAGAGGGTGGCCACTCGC ${\tt TGGACAATAGCCTCTCCATCTTACGTACCTTCTACATGCTGGGAGTGCGCTACCTGACGCTC}$ ACCCACACCTGCAACACCCTGGGCAGAGAGCTCCGCTAAGGGCGTCCACTCCTTCTACAA CAACATCAGCGGGCTGACTGTGTGAGAAGGTGGTGGCAGAAATGAACCGCCTGGGCA TGATGGTAGACTTATCCCATGTCTCAGATGCTGTGGCACGGCGGGCCCTGGAAGTGTCACAG GCACCTGTGATCTTCTCCCACTCGGCTGCCCGGGGTGTGTGCAACAGTGCTCGGAATGTTCC TGATGACATCCTGCAGCTTCTGAAGAAGAACGCTGGCGTCGTGATGGTGTCTTTGTCCATGG GAGTAATACAGTGCAACCCATCAGCCAATGTGTCCACTGTGGCAGATCACTTCGACCACATC AAGGCTGTCATTGGATCCAAGTTCATCGGGATTGGTGGAGATTATGATGGGGCCGGCAAATT CCCTCAGGGGCTGGAAGACGTGTCCACATACCCGGTCCTGATAGAGGAGTTGCTGAGTCGTG GCTGGAGTGAGGAAGAGCTTCAGGGTGTCCTTCGTGGAAACCTGCTGCGGGTCTTCAGACAA GTGGAAAAGGTACAGGAAGAAAACAAATGGCAAAGCCCCTTGGAGGACAAGTTCCCGGATGA GCAGCTGAGCAGTTCCTGCCACTCCGACCTCTCACGTCTGCGTCAGAGACAGAGTCTGACTT CAGGCCAGGAACTCACTGAGATTCCCATACACTGGACAGCCAAGTTACCAGCCAAGTGGTCA GTCTCAGAGTCCTCCCCCCACCTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGA ACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACC

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA35872

><subunit 1 of 1, 446 aa, 0 stop

><NX(S/T):5

MPGTYAPSTTLSSPSTQGLQEQARALMRDFPLVDGHNDLPLVLRQVYQKGLQDVNLRNFSYG
QTSLDRLRDGLVGAQFWSAYVPCQTQDRDALRLTLEQIDLIRRMCASYSELELVTSAKALND
TQKLACLIGVEGGHSLDNSLSILRTFYMLGVRYLTLTHTCNTPWAESSAKGVHSFYNNISGL
TDFGEKVVAEMNRLGMMVDLSHVSDAVARRALEVSQAPVIFSHSAARGVCNSARNVPDDILQ
LLKKNGGVVMVSLSMGVIQCNPSANVSTVADHFDHIKAVIGSKFIGIGGDYDGAGKFPQGLE
DVSTYPVLIEELLSRGWSEEELQGVLRGNLLRVFRQVEKVQEENKWQSPLEDKFPDEQLSSS
CHSDLSRLRQRQSLTSGQELTEIPIHWTAKLPAKWSVSESSPHPDKTHTCPPCPAPELLGGP
SVFLFPPKPKDT

GCCGCCCGCCGCCCCAATCCGCGCGCGCCGCCGCCGTTGCTGCCCCTGCT GCTGCTGCTCTGCGTCCTCGGGGCGCCGCGAGCCGGATCAGGAGCCCACACAGCTGTGATCA GTCCCCAGGATCCCACGCTTCTCATCGGCTCCTCCCTGCTGGCCACCTGCTCAGTGCACGGA GACCCACCAGGAGCCACCGCCGAGGGCCTCTACTGGACCCTCAACGGGCGCCGCCTGCCCCC TGAGCTCTCCCGTGTACTCAACGCCTCCACCTTGGCTCTGGCCCTGGCCAACCTCAATGGGT TCCTGCCTCTATGTTGGCCTGCCCCCAGAGAAACCCGTCAACATCAGCTGCTGGTCCAAGAA CATGAAGGACTTGACCTGCCGCTGGACGCCAGGGGCCCACGGGGAGACCTTCCTCCACACCA ACTACTCCCTCAAGTACAAGCTTAGGTGGTATGGCCAGGACAACACATGTGAGGAGTACCAC ACAGTGGGGCCCCACTCCTGCCACATCCCCAAGGACCTGGCTCTCTTTACGCCCTATGAGAT CTGGGTGGAGGCCACCAACCGCCTGGGCTCTGCCCGCTCCGATGTACTCACGCTGGATATCC TGGATGTGGTGACCACGGACCCCCGCCCGACGTGCACGTGAGCCGCGTCGGGGGCCTGGAG GACCAGCTGAGCGTGCGCTGGGTGTCGCCACCCGCCCTCAAGGATTTCCTCTTTCAAGCCAA ATACCAGATCCGCTACCGAGTGGAGGACAGTGTGGACTGGAAGGTGGTGGACGATGTGAGCA ACCAGACCTCCTGCCGCCTGGCCGGCACCGGCACCGTGTACTTCGTGCAAGTGCGC AAGAAGCACGCGTACTGCTCCAACCTCAGCTTCCGCCTCTACGACCAGTGGCGAGCCTGGAT GCAGAAGTCGCACAAGACCCGCAACCAGGACGAGGGGATCCTGCCCTCGGGCAGACGGGGCA CGCAGAGGCCGAACCCAAACTGGGGCCACCTCTGTACCCTCACTTCAGGGCACCTGAGCCAC CCTCAGCAGGAGCTGGGGTGGCCCCTGAGCTCCAACGGCCATAACAGCTCTGACTCCCACGT CTAGAACCCCTGCCAGGGCTGGGGGTGAGAAGGGGAGTCATTACTCCCCATTACCTAGGGCC

><ss.DNA38113

><subunit 1 of 1, 422 aa, 1 stop

><MW: 46302, pI: 9.42, NX(S/T): 6

MPAGRRGPAAQSARRPPPLLPLLLLCVLGAPRAGSGAHTAVISPQDPTLLIGSSLLATCSV
HGDPPGATAEGLYWTLNGRRLPPELSRVLNASTLALALANLNGSRQRSGDNLVCHARDGSIL
AGSCLYVGLPPEKPVNISCWSKNMKDLTCRWTPGAHGETFLHTNYSLKYKLRWYGQDNTCEE
YHTVGPHSCHIPKDLALFTPYEIWVEATNRLGSARSDVLTLDILDVVTTDPPDVHVSRVGG
LEDQLSVRWVSPPALKDFLFQAKYQIRYRVEDSVDWKVVDDVSNQTSCRLAGLKPGTVYFVQ
VRCNPFGIYGSKKAGIWSEWSHPTAASTPRSERPGPGGACEPRGGEPSSGPVRRELKQFLG
WLKKHAYCSNLSFRLYDQWRAWMQKSHKTRNQDEGILPSGRRGTARGPAR

Signal sequence.

amino acids 1-30

Transmembrane domain.

amino acids 44-61

N-glycosylation sites.

amino acids 92-96, 104-108, 140-144, 168-172, 292-296, 382-386

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 413-417

N-myristoylation sites.

amino acids 30-36, 37-43, 73-79, 121-127, 179-185, 218-224, 300-306, 317-323, 320-326, 347-353, 355-361, 407-413

Amidation site.

amino acids 3-7, 79-83, 411-415

Growth factor and cytokines receptors family signature 2.

amino acids 325-331

CCCACGCGTCCGCTGTTTAGATCGAGCAACCCTCTAAAAGCAGTTTAGAGTGGTAAAAAA AAAAAAAACACACCAAACGCTCGCAGCCACAAAAGGGATGAAATTTCTTCTGGACATCCTC CTGCTTCTCCCGTTACTGATCGTCTCCCTAGAGTCCTTCGTGAAGCTTTTTATTCCTAA GAGGAGAAAATCAGTCACCGGCGAAATCGTGCTGATTACAGGAGCTGGGCATGGAATTGGGA CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGGTGCCAAGGTTCATACCTTTGT GGTAGACTGCAGCAACCGAGAAGATATTTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG CAAGATCCTCAGATTGAAAAGACTTTTGAAGTTAATGTACTTGCACATTTCTGGACTACAAA GGCATTTCTTCCTGCAATGACGAAGAATAACCATGGCCATATTGTCACTGTGGCTTCGGCAG TTTCATAAAACTTTGACAGATGAACTGGCTGCCTTACAAATAACTGGAGTCAAAACAACATG TCTGTGTCCTAATTCGTAAACACTGGCTTCATCAAAAATCCAAGTACAAGTTTGGGACCCA CCTGGCAGTTTTAAAACGAAAAATCAGTGTTAAGTTTGATGCAGTTATTGGATATAAAATGA AAGCGCAATAAGCACCTAGTTTTCTGAAAACTGATTTACCAGGTTTAGGTTGATGTCATCTA TCATTTTTGAGGCTTTGGCAGTCTTCATTTACTACCACTTGTTCTTTAGCCAAAAGCTGATT ACATATGATATAAACAGAGAAATACCTTTAGAGGTGACTTTAAGGAAAATGAAGAAAAAGAA TGAAGGACTATATCTAGTGGTATTTCACAATGAATATCATGAACTCTCAATGGGTAGGTTTC ATCCTACCCATTGCCACTCTGTTTCCTGAGAGATACCTCACATTCCAATGCCAAACATTTCT GCACAGGGAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCACTGGGATTTAAG

</usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA34436

<subunit 1 of 1, 300 aa, 1 stop

<MW: 32964, pI: 9.52, NX(S/T): 1

MKFLLDILLLPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK
LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVKAEIGDVSILVNNAGVV
YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLLAYC
SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH
GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence.

amino acids 1-19

Transmembrane domain.

amino acids 170-187

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 30-34, 283-287

N-myristoylation sites.

amino acids 43-49, 72-78, 122-128, 210-216

GGGTGACGGCAGGGCAGGGGCCCTGGCCGGGGAGAAGCGCGGGGGCTGGAGCACCAA $\tt CTGGAGGGTCCGGAGTAGCGAGCGCCCCGAAGGAGGCCATCGGGGAGCCGGGAGGGGGGACT$ $\tt GCGAGAGGACCCCGGCGTCCGGGGCTCCCGGTGCCAGCGCT{\color{blue}ATGAGGCCACTCCTCGTCCTGC}$ TGCTCCTGGGCCTGGCGGCCGGCTCGCCCCCACTGGACAACAAGATCCCCAGCCTCTGC CCGGGGCACCCCGGCCTTCCAGGCACGCCGGGCCACCATGGCAGCCAGGGCTTGCCGGGCCG GGCCGGGACTGCCGGGACCTCGAGGGGACCCCGGGCCGCGAGGAGAGGCGGGACCCGCGGGG CCCACCGGGCCTGCCGGGGAGTGCTCGGTGCCTCCGCGATCCGCCTTCAGCGCCAAGCGCTC $\tt CGAGAGCCGGGTGCCTCCGCCGTCTGACGCACCCTTGCCCTTCGACCGCGTGCTGGTGAACG$ $\texttt{CTGGCACAGCTCCCCAGTCTTTGCT} \underline{\textbf{TAG}} \\ \texttt{TGCCCACTGCAAAGTGAGCTCATGCTCACTCC}$ ${\tt TAGAAGGAGGGTGTGAGGCTGACAACCAGGTCATCCAGGAGGGCTGGCCCCCTGGAATATT}$ ${\tt AGTGGCTGTCTGCGATCAGGTCTGGCAGCATGGGGCAGTGGCTGGATTTCTGCCCAAGACCA}$ ${\tt GAGGAGTGTGCTGGCAAGTGTAAGTCCCCCAGTTGCTCTGGTCCAGGAGCCCACGGT}$ ${\tt GGGGTGCTCTTCCTGGTCCTCTGCTTCTCTGGATCCTCCCACCCCCTCCTGCTCCTGGG}$ AAAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA40592

><subunit 1 of 1, 243 aa, 1 stop

><MW: 25298, pI: 6.44, NX(S/T): 0

MRPLLVLLLLGLAAGSPPLDDNKIPSLCPGHPGLPGTPGHHGSQGLPGRDGRDGRDGAPGAP GEKGEGGRPGLPGPRGDPGPRGEAGPAGPTGPAGECSVPPRSAFSAKRSESRVPPPSDAPLP PDRVLVNEQGHYDAVTGKFTCQVPGVYYFAVHATVYRASLQFDLVKNGESIASFFQFFGGWP KPASLSGGAMVRLEPEDQVWVQVGVGDYIGIYASIKTDSTFSGFLVYSDWHSSPVFA

Signal sequence.

amino acids 1-15

N-myristoylation sites.

amino acids 11-17, 68-74, 216-222

Cell attachment sequence.

amino acids 77-80

AAACAAGCCGGGTGGCTGAGCCAGGCTGTGCACGGAGCACCTGACGGGCCCAACAGACCCAT $\underline{\mathbf{G}}\mathtt{CTGCATCCAGAGACCTCCCCTGGCCGGGGGCATCTCCTGGCTGTGCTCCTGGCCCTCCTTG}$ GCACCACCTGGGCAGAGGTGTGGCCACCCCAGCTGCAGGAGCAGGCTCCGATGGCCGGAGCC CTGAACAGGAAGGAGAGTTTCTTGCTCCTCTCCCTGCACAACCGCCTGCGCAGCTGGGTCCA GCCCCTGCGGCTGACATGCGGAGGCTGGACTGGACTGACAGCCTGGCCCAACTGGCTCAAG CCAGGGCAGCCCTCTGTGGAATCCCAACCCCGAGCCTGGCATCCGGCCTGTGGCGCACCCTG CAAGTGGGCTGGAACATGCAGCTGCTGCCCGCGGGCTTGGCGTCCTTTGTTGAAGTGGTCAG CCTATGGTTTGCAGAGGGGCAGCGGTACAGCCACGCGGCAGGAGAGTGTGCTCGCAACGCCA CTGTGCTCTGCAGGCCAGACAGCGATAGAAGCCTTTGTCTGTGCCTACTCCCCCGGAGGCAA $\tt CTGGGAGGTCAACGGGAAGACAATCATCCCCTATAAGAAGGGTGCCTGGTGTTCGCTCTGCA$ CAGCCAGTGTCTCAGGCTGCTTCAAAGCCTGGGACCATGCAGGGGGGCTCTGTGAGGTCCCC AGGAATCCTTGTCGCATGAGCTGCCAGAACCATGGACGTCTCAACATCAGCACCTGCCACTG CCACTGTCCCCCTGGCTACACGGGCAGATACTGCCAAGTGAGGTGCAGCCTGCAGTGTGTGC ACGGCCGGTTCCGGGAGGAGGAGTGCTCGTGCGTCTGTGACATCGGCTACGGGGGAGCCCAG TGTGCCACCAAGGTGCATTTTCCCTTCCACACCTGTGACCTGAGGATCGACGGAGACTGCTT CATGGTGTCTTCAGAGGCAGACACCTATTACAGAGCCAGGATGAAATGTCAGAGGAAAGGCG GGGTGCTGGCCCAGATCAAGAGCCAGAAAGTGCAGGACATCCTCGCCTTCTATCTGGGCCGC $\tt CTGGAGACCACCAACGAGGTGACTGACATTCGAGACCAGGAACTTCTGGATCGGGCT$ CACCTACAAGACCGCCAAGGACTCCTTCCGCTGGGCCACAGGGGAGCACCAGGCCTTCACCA $\tt GTTTTGCCTTTGGGCAGCCTGACAACCACGGGCTGGTGTGGCTGAGTGCTGCCATGGGGTTT$ GGCAACTGCGTGGAGCTGCAGGCTTCAGCTGCCTTCAACTGGAACGACCAGCGCTGCAAAAC CGAAACGTTACATCTGCCAGTTTGCCCAGGAGCACATCTCCCGGTGGGGCCCCAGGGTCCT**GA**GGCCTGACCACATGGCTCCCTCGCCTGCCCTGGGAGCACCGGCTCTGCTTACCTGTCTGC CCACCTGTCTGGAACAAGGGCCAGGTTAAGACCACATGCCTCATGTCCAAAGAGGTCTCAGA CCTTGCACAATGCCAGAAGTTGGGCAGAGAGAGGCAGGGAGGCCAGTGAGGGCCAGGGAGTG AGTGTTAGAAGAAGCTGGGGCCCTTCGCCTGCTTTTGATTGGGAAGATGGGCTTCAATTAGA TGGCGAAGGAGGACACCGCCAGTGGTCCAAAAAGGCTGCTCTCTTCCACCTGGCCCAGAC CCTGTGGGGCAGCGGAGCTTCCCTGTGGCATGAACCCCACGGGGTATTAAATTATGAATCAG CTGAAAAAAAAAAAAAA

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44176

<subunit 1 of 1, 455 aa, 1 stop

<MW: 50478, pI: 8.44, NX(S/T): 2

MLHPETSPGRGHLLAVLLALLGTTWAEVWPPQLQEQAPMAGALNRKESFLLLSLHNRLRSWV
QPPAADMRRLDWSDSLAQLAQARAALCGIPTPSLASGLWRTLQVGWNMQLLPAGLASFVEVV
SLWFAEGQRYSHAAGECARNATCTHYTQLVWATSSQLGCGRHLCSAGQTAIEAFVCAYSPGG
NWEVNGKTIIPYKKGAWCSLCTASVSGCFKAWDHAGGLCEVPRNPCRMSCQNHGRLNISTCH
CHCPPGYTGRYCQVRCSLQCVHGRFREEECSCVCDIGYGGAQCATKVHFPFHTCDLRIDGDC
FMVSSEADTYYRARMKCQRKGGVLAQIKSQKVQDILAFYLGRLETTNEVTDSDFETRNFWIG
LTYKTAKDSFRWATGEHQAFTSFAFGQPDNHGLVWLSAAMGFGNCVELQASAAFNWNDQRCK
TRNRYICOFAQEHISRWGPGS

Signal sequence.

amino acids 1-26

Transmembrane domain.

amino acids 110-124

N-glycosylation sites.

amino acids 144-148, 243-247

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 45-49

N-myristoylation sites.

amino acids 22-28, 99-105, 131-137, 201-207, 213-219, 287-293, 288-294, 331-337, 398-404

Prokaryotic membrane lipoprotein lipid attachment site.

EGF-like domain cysteine pattern signature.

amino acids 249-261, 280-292

C-type lectin domain signature.

amino acids 417-442

CGCCCCGCCATGCTCCTGCTGCGGGCTGTGCCTGGGGCTGTCCCTGTGTGTGGGGTCGCA GGAAGAGGCGCAGAGCTGGGGCCACTCTTCGGAGCAGGATGGACTCAGGGTCCCGAGGCAAG TCAGACTGTTGCAGAGGCTGAAAACCAAACCTTTGATGACAGAATTCTCAGTGAAGTCTACC ATCATTTCCCGTTATGCCTTCACTACGGTTTCCTGCAGAATGCTGAACAGAGCTTCTGAAGA CCAGGACATTGAGTTCCAGATGCAGATTCCAGCTGCAGCTTTCATCACCAACTTCACTATGC GTAAAAGAGAAAAGGAATAAAACCACAGAAGAAAATGGAGAGAAGGGGACTGAAATATTCAG AGCTTCTGCAGTGATTCCCAGCAAGGACAAAGCCGCCTTTTTCCTGAGTTATGAGGAGCTTC TGCAGAGGCGCCTGGGCAAGTACGAGCACAGCATCAGCGTGCGGCCCCAGCAGCTGTCCGGG AGGCTGAGCGTGGACGTGAATATCCTGGAGAGCGCGGGCATCGCATCCCTGGAGGTGCTGCC GCTTCACAACAGCAGGCAGAGGGGCAGTGGGCGCGGGGAAGATGATTCTGGGCCTCCCCCAT CTACTGTCATTAACCAAAATGAAACATTTGCCAACATAATTTTTAAACCTACTGTAGTACAA CAAGCCAGGATTGCCCAGAATGGAATTTTGGGAGACTTTATCATTAGATATGACGTCAATAG AGAACAGAGCATTGGGGACATCCAGGTTCTAAATGGCTATTTTGTGCACTACTTTGCTCCTA AAGACCTTCCTCCTTTACCCAAGAATGTGGTATTCGTGCTTGACAGCAGTGCTTCTATGGTG GGAACCAAACTCCGGCAGACCAAGGATGCCCTCTTCACAATTCTCCATGACCTCCGACCCCA GGACCGTTTCAGTATCATTGGATTTTCCAACCGGATCAAAGTATGGAAGGACCACTTGATAT CAGTCACTCCAGACAGCATCAGGGATGGGAAAGTGTACATTCACCATATGTCACCCACTGGA GGCACAGACATCAACGGGGCCCTGCAGAGGGCCATCAGGCTCCTCAACAAGTACGTGGCCCA TCGGGGAGACGCACACCCTCAAGATCCTCAACAACACCCGAGAGGCCGCCCGAGGCCAAGTC TGCATCTTCACCATTGGCATCGGCAACGACGTGGACTTCAGGCTGCTGGAGAAACTGTCGCT GGAGAACTGTGGCCTCACACGGCGCGTGCACGAGGAGGAGGACGCAGGCTCGCAGCTCATCG GGTTCTACGATGAAATCAGGACCCCGCTCCTCTCTGACATCCGCATCGATTATCCCCCCAGC TCAGTGGTGCAGGCCACCAAGACCCTGTTCCCCAACTACTTCAACGGCTCGGAGATCATCAT TGCGGGGAAGCTGGTGGACAGGAAGCTGGATCACCTGCACGTGGAGGTCACCGCCAGCAACA GTAAGAAATTCATCATCCTGAAGACAGATGTGCCTGTGCGGCCTCAGAAGGCAGGGAAAGAT CTGGAGCTACCTCACCACAAAGGAGCTGCTGAGCTCCTGGCTGCAAAGTGACGATGAACCGG AGAAGGAGCGGCTGCGGCAGCGGGCCCAGGCCCTGGCTGTGAGCTACCGCTTCCTCACTCCC CATGTCGGCTGCCATGGGACCCGAACCGGTGGTGCAGAGCGTGCGAGGAGCTGGCACGCAGC CATGGGAGAGATGGTGTTTTTCCTCTCCACCACCTGGGGATACGA<u>TGA</u>GAAGATGGCCACCT GCAAGCCAGGAAGACGGCCCTCACCAGACACCATGTCTGCTGGCACCTTGATCTTGGACCTC

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44192

<subunit 1 of 1, 694 aa, 1 stop

<MW: 77400, pI: 9.54, NX(S/T): 6

MLLLLGLCLGLSLCVGSQEEAQSWGHSSEQDGLRVPRQVRLLQRLKTKPLMTEFSVKSTIIS
RYAFTTVSCRMLNRASEDQDIEFQMQIPAAAFITNFTMLIGDKVYQGEITEREKKSGDRVKE
KRNKTTEENGEKGTEIFRASAVIPSKDKAAFFLSYEELLQRRLGKYEHSISVRPQQLSGRLS
VDVNILESAGIASLEVLPLHNSRQRGSGRGEDDSGPPPSTVINQNETFANIIFKPTVVQQAR
IAQNGILGDFIIRYDVNREQSIGDIQVLNGYFVHYFAPKDLPPLPKNVVFVLDSSASMVGTK
LRQTKDALFTILHDLRPQDRFSIIGFSNRIKVWKDHLISVTPDSIRDGKVYIHHMSPTGGTD
INGALQRAIRLLNKYVAHSGIGDRSVSLIVFLTDGKPTVGETHTLKILNNTREAARGQVCIF
TIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIGFYDEIRTPLLSDIRIDYPPSSVV
QATKTLFPNYFNGSEIIIAGKLVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTG
SPRPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQRAQALAVSYRFLTPFTS
MKLRGPVPRMDGLEEAHGMSAAMGPEPVVQSVRGAGTQPGPLLKKPNSVKKKQNKTKKRHGR

Signal sequence.

amino acids 1-14

N-glycosylation sites.

amino acids 97-101, 127-131, 231-235, 421-425, 508-512, 674-678

Glycosaminoglycan attachment sites.

amino acids 213-217, 391-395

N-myristoylation sites.

amino acids 6-12, 10-16, 212-218, 370-376, 632-638, 638-644

CACTGATCCCCACAGGTGATGGGCAGAATCTGTTTACGAAAGACGTGACAGTGATCGAGGGA GAGGTTGCGACCATCAGTTGCCAAGTCAATAAGAGTGACGACTCTGTGATTCAGCTACTGAA TCCCAACAGGCAGACCATTTATTTCAGGGACTTCAGGCCTTTGAAGGACAGCAGGTTTCAGT TGCTGAATTTTTCTAGCAGTGAACTCAAAGTATCATTGACAAACGTCTCAATTTCTGATGAA GGAAGATACTTTTGCCAGCTCTATACCGATCCCCCACAGGAAAGTTACACCACCATCACAGT CCTGGTCCCACCACGTAATCTGATGATCGATATCCAGAAAGACACTGCGGTGGAAGGTGAGG GGGAACACAGAGCTAAAAGGCAAATCGGAGGTGGAAGAGTGGTCAGACATGTACACTGTGAC AGCACCCTGCGGTCACTGGAAACCTGCAGACCCAGCGGTATCTAGAAGTACAGTATAAGCCT CAAGTGCACATTCAGATGACTTATCCTCTACAAGGCTTAACCCGGGAAGGGGACGCGCTTGA GTTAACATGTGAAGCCATCGGGAAGCCCCAGCCTGTGATGGTAACTTGGGTGAGAGTCGATG ATGAAATGCCTCAACACGCCGTACTGTCTGGGCCCAACCTGTTCATCAATAACCTAAACAAA ACAGATAATGGTACATACCGCTGTGAAGCTTCAAACATAGTGGGGAAAGCTCACTCGGATTA CCACCACCACCACCACCACCATCCTTACCATCATCACAGATTCCCGAGCAGGTGAAGAAGGC TCGATCAGGGCAGTGGATCATGCCGTGATCGGTGGCGTCGTGGCGGTGGTGGTGTTCGCCAT GCTGTGCTTGCTCATCATTCTGGGGCGCTATTTTGCCAGACATAAAGGTACATACTTCACTC ATGAAGCCAAAGGAGCCGATGACGCAGCAGACGCAGACACAGCTATAATCAATGCAGAAGGA GGACAGAACAACTCCGAAGAAAAGAAGAGTACTTCATCGAGGTGTCCAACTGGCCCTATTTAGATGATAAAGAGACAGTGATATTGG

</usr/segdb2/sst/DNA/Dnaseqs.min/ss.DNA39518

<subunit 1 of 1, 440 aa, 1 stop

<MW: 48240, pI: 4.93, NX(S/T): 7

MASVVLPSGSQCAAAAAAAAPPGLRLLLLLFSAAALIPTGDGQNLFTKDVTVIEGEVATISC
QVNKSDDSVIQLLNPNRQTIYFRDFRPLKDSRFQLLNFSSSELKVSLTNVSISDEGRYFCQL
YTDPPQESYTTITVLVPPRNLMIDIQKDTAVEGEEIEVNCTAMASKPATTIRWFKGNTELKG
KSEVEEWSDMYTVTSQLMLKVHKEDDGVPVICQVEHPAVTGNLQTQRYLEVQYKPQVHIQMT
YPLQGLTREGDALELTCEAIGKPQPVMVTWVRVDDEMPQHAVLSGPNLFINNLNKTDNGTYR
CEASNIVGKAHSDYMLYVYDPPTTIPPPTTTTTTTTTTTTTILTIITDSRAGEEGSIRAVDH
AVIGGVVAVVVFAMLCLLIILGRYFARHKGTYFTHEAKGADDAADADTAIINAEGGQNNSEE

Signal sequence.

amino acids 1-36

Transmembrane domain.

amino acids 372-393

N-glycosylation sites.

amino acids 65-69, 99-103, 111-115, 163-167, 302-306, 306-310, 430-434

Tyrosine kinase phosphorylation sites.

amino acids 233-240, 319-328

N-myristoylation sites.

amino acids 9-15, 227-233, 307-313, 365-371, 376-382, 402-408, 411-417, 427-433, 428-432

 ${\tt CCGGGACAGAAGATG}{\tt TGCTCCAGGGTCCCTCTGCTGCTGCCGCTGCTCCTGCTACTGGCCCT}$ GCACTGCCCGCCAGGGGACCACGGTGCCCCGAGACGTGCCACCCGACACGGTGGGGCTGTAC GTCTTTGAGAACGGCATCACCATGCTCGACGCAAGCAGCTTTGCCGGCCTGCCGGGCCTGCA GCTCCTGGACCTGTCACAGAACCAGATCGCCAGCCTGCGCCTGCCCCGCCTGCTGCTGCTGC ACCTCAGCCACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTGCCAACGTGGAG CAACCTCCACGACCTGGATGTCCCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAG GCCTCCGGGGCCTGACGCGCCTGCGGCTGGCCGGCAACACCCGCATTGCCCAGCTGCGGCCC GAGGACCTGGCCGGCCTGCCTGCAGGAGCTGGATGTGAGCAACCTAAGCCTGCAGGC CCTTCAACTGCGTGTGCCCCCTGAGCTGGTTTGGCCCCTGGGTGCGCGAGAGCCACGTCACA GGAGCTTGACTACGCCGACTTTGGCTGCCCAGCCACCACCACCACAGCCACAGTGCCCACCA TGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTCAATGGGGGCACATGCCACCTGG GGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACGGGCCTGTACTGTGAGAGC CAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAGGCCACCACGGTCCCT GACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGCGTGGGGCTGCAGCGCTACCTCC AGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTATCGCAACCTATCGGGCCCTGAT AAGCGGCTGGTGACGCTGCGACTGCCTGCCTCGCTGAGTACACGGTCACCCAGCTGCG AGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCACTCCAACCACGCCCCAGTCACC $\tt CCTACATC{\textbf{TAA}}GCCAGAGAGAGAGACAGGGCCAGCTGGGGCCGGGCTCTCAGCCAGTGAGATGGC$ CAGCCCCTCCTGCTGCCACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGA CAGGGCTGTGTGACCACAGCTGGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAG ATGCTGTGGCCCAGCTGACGAGCCCTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGT CCGCCCTGCCCTCCGCAACGTGCAGTCCCTGGGCACGGCGGGCCCTGCCATGTGCTGGTAAC AAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGCTTTAGGAACATGTTTTGCTTTTTAA AATATATATATATTATAAAGAGATCCTTTCCCATTTATTCTGGGAAGATGTTTTTCAAACTC AGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATGAAGGCCTTTTGTAAGAAAAA ΑΤΑΑΑΑΑΑΑΑΑΑΑ

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA44804

<subunit 1 of 1, 598 aa, 1 stop

<MW: 63030, pI: 7.24, NX(S/T): 3

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFEN
GITMLDASSFAGLPGLQLLDLSQNQIASLRLPRLLLLDLSHNSLLALEPGILDTANVEALRL
AGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDLA
GLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASP
EETRCHFPPKNAGRLLLELDYADFGCPAITTTATVPTTRPVVREPTALSSSLAPTWLSPTAP
ATEAPSPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQ
GTRPSPTPVTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLV
TLRLPASLAEYTVTQLRPNATYSVCVMPLGFGRYVPGEEACGEAHTPPAVHSNHAPVTQARE
GNLPLLIAPALAAVLLAALAAVGAAYCVRRGRAMMAAAQDKGQVGPGAGPLELEGVKVPLEP
GPKATEGGGEALPSGSECEVPLMGFPGPGLQSPLHAKPYI

Signal sequence.

amino acids 1-23

Transmembrane domain.

amino acids 501-522

N-glycosylation sites.

amino acids 198-202, 425-429, 453-457

Tyrosine kinase phosphorylation site.

amino acids 262-270

N-myristoylation sites.

amino acids 23-29, 27-33, 112-118, 273-279, 519-525, 565-571

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

EGF-like domain cysteine pattern signature.

amino acids 355-367

Leucine zipper pattern.

amino acids 122-144, 194-216

GGCACTAGGACAACCTTCTTCCCTTCTGCACCACTGCCCGTACCCTTACCCGCCCCGCCACC ${\tt TCCTTGCTACCCCACTCTTGAAACCACAGCTGTTGGCAGGGTCCCCAGCTC} {\color{red} {\bf ATG}} {\tt CCAGCCTC}$ ATCTCCTTTCTTGCTAGCCCCCAAAGGGCCTCCAGGCAACATGGGGGGCCCAGTCAGAGAGC ATGGCTCTGCTGACCCAACAAACAGAGCTGCAGAGCCTCAGGAGAGAGGTGAGCCGGCTGCA GGGGACAGGAGGCCCCTCCCAGAATGGGGAAGGGTATCCCTGGCAGAGTCTCCCGGAGCAGA GTTCCGATGCCCTGGAAGCCTGGGAGAATGGGGAGAGATCCCGGAAAAGGAGAGCAGTGCTC ACCCAAAAACAGAAGAAGCAGCACTCTGTCCTGCACCTGGTTCCCATTAACGCCACCTCCAA GGATGACTCCGATGTGACAGAGGTGATGTGGCAACCAGCTCTTAGGCGTGGGAGAGGCCTAC AGGCCCAAGGATATGGTGTCCGAATCCAGGATGCTGGAGTTTATCTGCTGTATAGCCAGGTC GGAGACTCTATTCCGATGTATAAGAAGTATGCCCTCCCACCCGGACCGGGCCTACAACAGCT GCTATAGCGCAGGTGTCTTCCATTTACACCAAGGGGATATTCTGAGTGTCATAATTCCCCGG $\tt GCAAGGGCGAAACTTAACCTCTCCACATGGAACCTTCCTGGGGTTTGTGAAACTG\underline{TGA}{TT}$ GAGCTGAGTATATAAAGGAGAGGGAATGTGCAGGAACAGAGGCATCTTCCTGGGTTTGGCTC CCCGTTCCTCACTTTTCCCTTTTCATTCCCACCCCCTAGACTTTGATTTTACGGATATCTTG CTTCTGTTCCCCATGGAGCTCCG

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52722

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27433, pI: 9.85, NX(S/T): 2

MPASSPFLLAPKGPPGNMGGPVREPALSVALWLSWGAALGAVACAMALLTQQTELQSLRREV SRLQGTGGPSQNGEGYPWQSLPEQSSDALEAWENGERSRKRRAVLTQKQKKQHSVLHLVPIN ATSKDDSDVTEVMWQPALRRGRGLQAQGYGVRIQDAGVYLLYSQVLFQDVTFTMGQVVSREG QGRQETLFRCIRSMPSHPDRAYNSCYSAGVFHLHQGDILSVIIPRARAKLNLSPHGTFLGFVKL

Signal sequence.

amino acids 1-40

N-glycosylation site.

amino acids 124-128

Tyrosine kinase phosphorylation site.

amino acids 156-164

N-myristoylation site.

amino acids 36-42, 40-46, 179-185, 242-248

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 34-45

CCGCCCCCACCCTCTTCTGCACTGCCGTCCTCCGGAAGACCTTTTCCCCTGCTCTGTT TCCCGTGGACAGGGACTCTTGCTGGCGTACTGCCTGCTCCTTGCCTTTGCCTCTGGCCTGGT CGTCGCCTCCGGACCATGCCGAGAGGGCTGAAGAACAACATGAAAAATACAGGCCCAGTCAG GACCAGGGGCTCCCTGCTTCCCGGTGCTTGCGCTGCTGTGACCCCGGTACCTCCATGTACCC GGCGACCGCCGTGCCCCAGATCAACATCACTATCTTGAAAGGGGAGAAGGGTGACCGCGGAG ATCGAGGCCTCCAAGGGAAATATGGCAAAACAGGCTCAGCAGGGGCCAGGGGCCACACTGGA $\tt CTTTTCGGTGGGCCGGAAGAAGCCCATGCACAGCAACCACTACTACCAGACGGTGATCTTCG$ GCACATCATGAAGAACGAGGAGGAGGTGGTGATCTTGTTCGCGCAGGTGGGCGACCGCAGCA TCATGCAAAGCCAGAGCCTGATGCTGGAGCTGCGAGAGCAGGACCAGGTGTGGGTACGCCTC TACAAGGGCGAACGTGAGAACGCCATCTTCAGCGAGGAGCTGGACACCTACATCACCTTCAG ACCTTCCACCCCTGCGCTGTGCTGACCCCACCGCCTCTTCCCCGATCCCTGGACTCCGACTC ${\tt GAGACGCGGGTGGCGGCAGGGCGTCCCAGGGTGCGGCACCGCGGCTCCAGTCCTTGGAAATA}$ ATTAGGCAAATTCTAAAGGTCTCAAAAGGAGCAAAGTAAACCGTGGAGGACAAAGAAAAAGGG ACTCTGCTTAAGAGAAGATCCAAAGTTAAAGCTCTGGGGTCAGGGGAGGGGCCGGGGGCAGG AAACTACCTCTGGCTTAATTCTTTTAAGCCACGTAGGAACTTTCTTGAGGGATAGGTGGACC $\tt CTGACATCCCTGTGGCCTTGCCCAAGGGCTCTGCTGGTCTTTCTGAGTCACAGCTGCGAGGT$ GATGGGGGCTGGGGCCCCAGGCGTCAGCCTCCCAGAGGGACAGCTGAGCCCCCTGCCTTGGC TCCAGGTTGGTAGAAGCAGCCGAAGGGCTCCTGACAGTGGCCAGGGACCCCTGGGTCCCCCA $\tt GGCCTGCAGATGTTTCTATGAGGGGCAGAGCTCCTTGGTACATCCATGTGTGGCTCTGCTCC$ $\tt TTCTGTGCCGCCTCCCACACAAATCAGCCCCAGAAGGCCCCGGGGCCTTGGCTTCTGTTTTT$ TATAAAACACCTCAAGCAGCACTGCAGTCTCCCATCTCCTCGTGGGCTAAGCATCACCGCTT TGGGTGGCAGGAGGCAATAGCCCCTGTGGCAATTGCAGGACCAGCTGGAGCAGGGTTGCG GTGTCTCCACGGTGCTCTCGCCCTGCCCATGGCCACCCCAGACTCTGATCTCCAGGAACCCC GCTGCTTAAGCTCCCCCAGCTCTTTCCAGAAAACATTAAACTCAGAATTGTGTTTTCAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA41234

><subunit 1 of 1, 281 aa, 1 stop

><MW: 31743, pI: 6.83, NX(S/T): 1

MGSRGQGLLLAYCLLLAPASGLVLSRVPHVQGEQQEWEGTEELPSPPDHAERAEEQHEKYRP
SQDQGLPASRCLRCCDPGTSMYPATAVPQINITILKGEKGDRGDRGLQGKYGKTGSAGARGH
TGPKGQKGSMGAPGERCKSHYAAFSVGRKKPMHSNHYYQTVIFDTEFVNLYDHFNMFTGKFY
CYVPGLYFFSLNVHTWNQKETYLHIMKNEEEVVILFAQVGDRSIMQSQSLMLELREQDQVWV
RLYKGERENAIFSEELDTYITFSGYLVKHATEP

Signal sequence.

amino acids 1-25

N-glycosylation site.

amino acids 93-97

N-myristoylation sites.

amino acids 7-13, 21-27, 67-73, 117-123, 129-135

Amidation site.

amino acids 150-154

Cell attachment sequence.

amino acids 104-107

GCGGAGCATCCGCTGCGGTCCTCGCCGAGACCCCCGCGCGGATTCGCCGGTCCTTCCCGCGG $\tt CTTGACTTACACTTTGGTAATAATTTGCTTCCTGACACTAAGGCTGTCTGCTAGTCAGAATT$ GACAACCCAACTGCTACCTATTTTTCTGTCCCAACGAGGAAGCCTGTCCATTGAAACCAGCA AAAGGACTTATGAGTTACAGGATAATTACAGATTTTCCATCTTTGACCAGAAATTTGCCAAG TAGCCCATCATCACACAGATTATTCAAAGCCCACCGATATCTCATGGAGAGACACACTTTCT GCTCCTTGCTTATAAGGAAAAAGGCCATTCTCAGAGTTCACAATTTTCCTCTGATCAAGAAA CATACCACCTCGGCTACTCCAAAGCCCGCCACCCTTCTACCCACCAATGCTTCAGTGACACC TTCTGGGACTTCCCAGCCACAGCTGGCCACCACAGCTCCACCTGTAACCACTGTCACTTCTC AGCCTCCCACGACCCTCATTTCTACAGTTTTTACACGGGCTGCGGCTACACTCCAAGCAATG AACCATACCGTTTACAGAAATCTCCAACTTAACTTTGAACACAGGGAATGTGTATAACCCTA AGGGAGGCCAGTCCAGGCAGTTCCTCCCAGGGCAGTGTTCCAGAAAATCAGTACGGCCTTCC ${\tt TATTTGATCAATGGGATCTATGTGGACATC} \underline{{\tt TAA}} {\tt GGATGGAACTCGGTGTCTCTTAATTCATT}$ TAGTAACCAGAAGCCCAAATGCAATGAGTTTCTGCTGACTTGCTAGTCTTAGCAGGAGGTTG GTCTCAAACTCCTGACCTAGTGATCCACCCTCCTCGGCCTCCCAAAGTGCTGGGATTACAGG CATGAGCCACCACAGCTGGCCCCCTTCTGTTTTATGTTTTGGTTTTTGAGAAGGAATGAAGTG GGAACCAAATTAGGTAATTTTGGGTAATCTGTCTCTAAAATATTAGCTAAAAACAAAGCTCT ATGTAAAGTAATAAAGTATAATTGCCATATAAATTTCAAAATTCAACTGGCTTTTATGCAAA GAAACAGGTTAGGACATCTAGGTTCCAATTCATTCACATTCTTGGTTCCAGATAAAATCAAC TGTTTATATCAATTTCTAATGGATTTGCTTTTCTTTTTATATGGATTCCTTTAAAACTTATT CCAGATGTAGTTCCTTCCAATTAAATATTTGAATAAATCTTTTGTTACTCAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA45410

><subunit 1 of 1, 431 aa, 1 stop

><MW: 46810, pI: 6.45, NX(S/T): 6

MFFGGEGSLTYTLVIICFLTLRLSASQNCLKKSLEDVVIDIQSSLSKGIRGNEPVYTSTQED
CINSCCSTKNISGDKACNLMIFDTRKTARQFNCYLFFCPNEEACPLKPAKGLMSYRIITDFP
SLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLF
KMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSATPKPATLL
PTNASVTPSGTSQPQLATTAPPVTTVTSQPPTTLISTVFTRAAATLQAMATTAVLTTTFQAP
TDSKGSLETIPFTEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGREASPGSSSQGSV
PENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRRKRYSRLDYLINGIYVDI

Signal sequence.

amino acids 1-25

Transmembrane domain.

amino acids 384-405

N-glycosylation sites.

amino acids 72-76, 222-226, 251-255, 327-331, 352-356

cAMP- and cGMP-dependent protein kinase phosphorylation site.

Tyrosine kinase phosphorylation site.

amino acids 50-57

N-myristoylation sites.

amino acids 4-10, 48-54, 315-321

 $\tt GCGGCACCTGGAAG{\color{red} ATG} CGCCCATTGGCTGGTGGCCTGCTCAAGGTGGTGTTCGTGGTCTTC$ GCCTCCTTGTGTGCCTGGTATTCGGGGTACCTGCTCGCAGAGCTCATTCCAGATGCACCCCT GTCCAGTGCTGCCTATAGCATCCGCAGCATCGGGGAGAGGCCTGTCCTCAAAGCTCCAGTCC $\tt CCAAAAGGCAAAAATGTGACCACTGGACTCCCTGCCCATCTGACACCTATGCCTACAGGTTA$ CTCAGCGGAGGTGGCAGAAGCAAGTACGCCAAAATCTGCTTTGAGGATAACCTACTTATGGG AGAACAGCTGGGAAATGTTGCCAGAGGAATAAACATTGCCATTGTCAACTATGTAACTGGGA ATGTGACAGCAACACGATGTTTTGATATGTATGAAGGCGATAACTCTGGACCGATGACAAAG TTTATTCAGAGTGCTGCTCCAAAATCCCTGCTCTTCATGGTGACCTATGACGACGGAAGCAC AAGACTGAATAACGATGCCAAGAATGCCATAGAAGCACTTGGAAGTAAAGAAATCAGGAACA TGAAATTCAGGTCTAGCTGGGTATTTATTGCAGCAAAAGGCTTGGAACTCCCTTCCGAAATT ${\tt GATCCAGATAGAAGGCTGCATACCCAAAGAACGAAGC} \underline{{\tt TGA}} {\tt CACTGCAGGGTCCTGAGTAAAT}$ GTGTTCTGTATAAACAAATGCAGCTGGAATCGCTCAAGAATCTTATTTTCTAAATCCAACA GCCCATATTTGATGAGTATTTTGGGTTTGTTGTAAACCAATGAACATTTGCTAGTTGTATCA AATCTTGGTACGCAGTATTTTATACCAGTATTTTATGTAGTGAAGATGTCAATTAGCAGGA AACTAAAATGAATGGAAATTCTTAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA46777
><subunit 1 of 1, 235 aa, 1 stop
><MW: 25982, pI: 9.09, NX(S/T): 2
MRPLAGGLLKVVFVVFASLCAWYSGYLLAELIPDAPLSSAAYSIRSIGERPVLKAPVPKRQK
CDHWTPCPSDTYAYRLLSGGGRSKYAKICFEDNLLMGEQLGNVARGINIAIVNYVTGNVTAT
RCFDMYEGDNSGPMTKFIQSAAPKSLLFMVTYDDGSTRLNNDAKNAIEALGSKEIRNMKFRS
SWVFIAAKGLELPSEIQREKINHSDAKNNRYSGWPAEIQIEGCIPKERS</pre>

Signal sequence.

amino acids 1-20

N-glycosylation sites. amino acids 120-124, 208-212

Glycosaminoglycan attachment site. amino acids 80-84

N-myristoylation sites.

amino acids 81-87, 108-114, 119-125