Logika dla informatyków

	0	v		
	Egzamin końo	cowy (pierwsza cz	zęść)	
		lutego 2018 pisania: 90 min		
Zadanie 1 (2 punkty). V które są równoważne formu				
$(p\Rightarrow (q\wedge r))\vee (p\Rightarrow p)$		$\neg p \lor (\neg q \lor \neg r) \lor p$		
$(p \Rightarrow (q \lor r)) \lor (p \Rightarrow p)$		Т		
Zadanie 2 (2 punkty). I	Podaj formułę równ	oważną formule $p \Rightarrow (q / q)$	$\ \ r)$ i mającą:	
(a) koniunkcyjną postać	normalną			
(b) dysjunkcyjną postać	normalną			
Zadanie 3 (2 punkty). I eśli jest postaci $Q_1x_1Q_n$ $z=1,,n$), a formuła ψ i	$Q_n x_n \psi$, gdzie x_i są z	zmiennymi, Q_i są kwanty	fikatorami (czy	yli $Q_i \in \{ \forall, \exists \} $ dla
$(\exists d \; x \cdot d = w) \; \land \;$	$(\exists d \ y \cdot d = w) \land \forall w$	$'\left((\exists d\ x\cdot d=w')\wedge(\exists d\ y\right)$	$g \cdot d = w') \Rightarrow w$	$\leq w'$).
Jeśli istnieje formuła w pre poniżej wpisz dowolną taką				w), to w prostokąt
Zadanie 4 (2 punkty). I				m=0 $n=m$
ousty, to w prostokąt poniż ego zbioru.	żej wpisz słowo "PU	JSTY". W przeciwnym p	rzypadku wpis	z dowolny element
Zadanie 5 (2 punkty). S wpisz dowolne takie zbiory stnieją.				

	(y,y) jest tautologią rachunku zdań, to w prostokąt turalnej dedukcji. W przeciwnym przypadku wpiszwa.
	na R na zbiorze A jest $silnie$ $antysymetryczna$, jeśli $,b\rangle\in R\Rightarrow\langle b,a\rangle\not\in R.$ W prostokąt poniżej wpisz $\{0,1\}.$
7-1:	l; ., (
	elacje równoważności na zbiorze $\{1,2,3,4,5\}$, których, to w prostokąt poniżej wpisz dowolne takie dwie nie, dlaczego takie relacje nie istnieją.
	relacje binarne na zbiorze liczb naturalnych, które stokąt poniżej wpisz dowolne takie dwie relacje. W o takie relacje nie istnieją.
tematycznych) uzupełnij poniższy tekst tak, aby ot Jeśli \sim jest relacją równoważności na zbiorze A oraz	
	że \sim jest relacją równoważności na zbiorze A oraz mia, że \sim jest relacją równoważności wiemy, że jest
ona zwrotna. Ze zwrotności \sim mamy $b\sim$, a stąd i z definicji klasy abstrakcji
wynika . Z założenia	dostajemy $b \in $, co z definicji
klasy abstrakcji daje	i kończy dowód.

		$\langle n/2,0\rangle$	jeśli n je	est parzyste,	
		$f(n) = \begin{cases} \langle n/2, 0 \rangle, \\ \langle (n-1)/2, \rangle \end{cases}$	$1\rangle$, w przeci	wnym przypadku.	
				iżej wpisz wyrażenie definiu kcja odwrotna nie istnieje.	ıjące tę funkcję.
Zadanie 12	(2 punkty)). Rozważmy funkcje	:		
		$: (A^C \times B^C) \to (A \times B)$ $: A \times B \to (A \times C)$	$(A \times B)^C$, $(C)^B$,	$g_A : C \to A,$ $g_B : C \to B$	
użytej w nin Np. wyrażen jest poprawn Np. typem w poprawne, w	n funkcji (i d ie $g_A(b)$ nie je ie, to przez je vyrażenia g_A	lla dowolnych zbiorów est poprawne, bo nie o go typ rozumiemy zbio (c) jest A . W prostol edni typ wyrażenia.	(A, B i C) jedla wszystkich for do którego r kąty obok tyc	amy wyrażenie za poprawne ej argument należy do dziec a zbiorów A, B i C jest $b \in C$ należy element oznaczany prah spośród podanych niżej w prostokąty wpisz słowo "N	lziny tej funkcji. '. Jeśli wyrażenie zez to wyrażenie. yrażeń, które są
$g_A(c)$	$\boxed{ A }$	$h(g_A(c),g_B(c))$		$\left(h(g_A(c),g_B(c))\right)\circ g_B$	3
$g_A(b)$	NIE	$(h(a,g_B(c)))(b)$		$\bigg[h(a,b) \circ g_B \bigg) (c$)
Zadanie 13	(2 punkty)). Rozważmy funkcję	$F:\mathbb{N}^{\mathbb{N}}\to\mathcal{P}($	(N) zdefiniowaną wzorem	
		F(f) =	${n \in X \mid f(n)}$	=0.	
		[d] jest zbiorem pusty dowolny element teg		okąt poniżej wpisz słowo "P	USTY". W prze-
niż ℵ ₀ to w p co najmniej •	orostokąt por continuum, t	niżej wpisz dowolną fu	ınkcję różnowa j wpisz dowol	$\{2,3,4,5\}\}$. Jeśli zbiór \mathcal{F} ma artościową $F:\mathcal{F}\to\mathbb{N}$. Jeśli ną funkcję różnowartościowa "NIE".	zbiór \mathcal{F} ma moc

Numer indeksu:

elację.	***	ie jej klasy al	bstrakcji nie	e są 1	ówno	oliczn	e, to w	prostoką		vpisz do	
	W przeciw:	nym przypad	ku wpisz uz	zasad	nieni	e, dla	czego t	aka relacj	a nie istnie	eje.	
		unkty). W po mocy 0, 1, 3		poniż	ej wr	oisz te	e spośre	ód liter A	$1,\ldots,M,$ k	tóre oz	naczają o
\overline{A}	B	C	D	E	F	G	H	J	K	L	M
$\mathcal{P}(\mathbb{R})$	$\bigcup_{n=1}^{\infty} \mathbb{Q}^n$	$\{1,2,3,4\}^{\emptyset}$	$\mathcal{P}(\mathbb{N} \times \mathbb{Q})$	$\emptyset^{\mathbb{N}}$	\mathbb{N}^{\emptyset}	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\emptyset)$	$\{1,2\}^{\mathbb{R}}$	$\mathbb{N}^{\{1,2,3,4\}}$	$\{0\}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{N} \times \emptyset)$
:		1:				ℵ₀:			c:		
		unkty). W							ędzy porzą	dkami	$\langle \mathbb{N}, \leq \rangle$ or
0} × #	$0,1,2\},\leq_{lex}$	\rangle lub uzasadr	nienie, ze ta	.K1 1Z0	omori	ızm r	nie istni	ieje.			
adam:	10 (0										
oniżej	wpisz słow	unkty). Jeśl o "REGULA									
oniżej	wpisz słow										
oniżej	wpisz słow										
oniżej n regu zadani	wpisz słow larny.		RNY". W	przec	ciwny	m pr	zypadk	u wpisz u	ızasadnieni	e dlacz	ego nie je
oniżej n regu Zadani	wpisz słow larny.	o "REGULA unkty). W p	RNY". W	przec	ciwny	m pr	zypadk	u wpisz u	ızasadnieni	e dlacz	ego nie je
oniżej n regu Zadani	wpisz słow larny.	o "REGULA unkty). W p	RNY". W	przec	ciwny	m pr	zypadk	u wpisz u	ızasadnieni	e dlacz	ego nie je
oniżej n regu Zadani	wpisz słow larny.	o "REGULA unkty). W p	RNY". W	przec	ciwny	m pr	zypadk	u wpisz u	ızasadnieni	e dlacz	ego nie je
oniżej n regu Zadani adne d	wpisz słow larny. ie 19 (2 pulwa nie są iz	unkty). W p	orostokąt po	przec	wpis	z przy	zypadk ykład tr	u wpisz u	zasadnieni ządków reg	e dlacz	ego nie je
oniżej n regui Zadani adne d Zadani atomia nifikow	ie 19 (2 pulwa nie są ir ie 20 (2 pulwa st u, x i y valne, wpis	o "REGULA unkty). W p	orostokąt po cym zadanie mi. W pros sze unifikat	przeconiżej u f i stoką	wpis g sa tty ol	z przy	zypadk ykład tr bolami ych spo	rzech porz funkcyjn pśród pod	zasadnieni ządków reg $^{\prime}$ ymi, a jes lanych par	ularnych	h, z który blem stał w, które
oniżej n regui Zadani adne d Zadani atomia nifikow nifikow	ie 19 (2 pulwa nie są ir ie 20 (2 pulwa st u, x i y valne, wpis	unkty). W pzomorficzne. unkty). W pzomorficzne. unkty). W pzomorficzne.	orostokąt po cym zadanie mi. W pros sze unifikat	przeconiżej u f i stoką	wpis g sa tty ol	z przy z sym pok ty termó	zypadk ykład tr bolami ych spo ww. W	rzech porz funkcyjn pśród pod	ządków reg ymi, a jes lanych par y obok ter	ularnych	h, z który blem stałow, które

Oddane zadania:		

Numer indeksu:

Logika dla informatyków

Egzamin końcowy (część druga)

6 lutego 2018 czas pisania: 120 min

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów.¹

Zadanie 21. Rozważmy taki trójargumentowy spójnik logiczny *ite* (nazwa pochodzi od angielskich słów if-then-else), że dla dowolnych formuł $\varphi_1, \varphi_2, \varphi_3$ rachunku zdań oraz dowolnego wartościowania σ zmiennych zdaniowych zachodzi

$$\hat{\sigma}(ite(\varphi_1, \varphi_2, \varphi_3)) = \begin{cases} \hat{\sigma}(\varphi_2), & \text{jeśli } \hat{\sigma}(\varphi_1) = \mathsf{T}, \\ \hat{\sigma}(\varphi_3), & \text{wpp.} \end{cases}$$

Udowodnij, że $\{ite, \top, \bot\}$ jest zupełnym zbiorem spójników.

Zadanie 22. Udowodnij, że zbiór

$$\{f \in \mathbb{N}^{\mathbb{N}} \mid f(0) = 0 \land f(1) = 1\}$$

ma moc continuum.

Zadanie 23. Mówimy, że funkcja $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ zwiększa zbiór S jeśli zachodzi inkluzja $S \subseteq f(S)$. Rozważmy następujące (fałszywe) twierdzenie i jego (niepoprawny) dowód.

Twierdzenie. Każda monotoniczna funkcja $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ zwiększa wszystkie zbiory skończone.

Przeprowadzimy dowód indukcyjny względem mocy zbioru. Niech

$$X = \{n \in \mathbb{N} \mid f \text{ zwiększa wszystkie zbiory mocy } n\}.$$

- ³ Podstawa indukcji. Zauważmy, że jedynym zbiorem o mocy 0 jest zbiór pusty. Ponieważ zbiór pusty jest
- 4 podzbiorem każdego zbioru, w szczególności mamy $\emptyset \subseteq f(\emptyset)$. Zatem $0 \in X$.
- 5 Krok indukcyjny. Weźmy dowolne $n \in \mathbb{N}$ i załóżmy, że $n \in X$. W celu pokazania, że $n+1 \in X$,
- 6 rozważmy dowolny zbiór S o mocy n+1. Ponieważ S jest skończonym i niepustym podzbiorem zbioru
- ⁷ liczb naturalnych, ma on najmniejszy element s_{min} oraz największy s_{max} . Zbiory $S \setminus \{s_{min}\}$ oraz $S \setminus$
- 8 $\{s_{max}\}$ mają po n elementów, a zatem z założenia indukcyjnego mamy $S \setminus \{s_{min}\} \subseteq f(S \setminus \{s_{min}\})$
- oraz $S \setminus \{s_{max}\} \subseteq f(S \setminus \{s_{max}\})$. Z monotoniczności funkcji f otrzymujemy $f(S \setminus \{s_{min}\}) \subseteq f(S)$ oraz
- 10 $f(S \setminus \{s_{max}\}) \subseteq f(S)$. A zatem

11

$$S = (S \setminus \{s_{min}\}) \cup (S \setminus \{s_{max}\}) \subseteq f(S \setminus \{s_{min}\}) \cup f(S \setminus \{s_{max}\}) \subseteq f(S),$$

- czyli f zwiększa zbiór S. Ponieważ S wybraliśmy jako dowolny zbiór mocy n+1, funkcja f zwiększa wszystkie zbiory mocy n+1. Zatem $n+1 \in X$.
- Na mocy zasady indukcji $X = \mathbb{N}$, a wiec f zwieksza wszystkie zbiory o skończonej mocy.

Pokaż, że powyższe twierdzenie jest fałszywe, czyli wskaż odpowiedni kontrprzykład. Następnie wskaż błąd w powyższym "dowodzie": podaj numer linii zawierającej fałszywe stwierdzenie i uzasadnij (np. wskazując odpowiedni kontrprzykład), że jest ono fałszywe.

¹Algorytm oceniania oddanych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów, a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.