

목차

- 1. 스토리지 트렌드
- 2. CEPH 아키텍처
- 3. CEPH Use-Cases
- 4. CEPH / OpenStack Integration
- 5. CEPH Design Guide
- 6. CEPH TECHNICAL REFERENCE

STORAGE IS EVOLVING

OPEN, SOFTWARE-DEFINED STORAGE

Standardized, unified, open platforms

Significant Advantage Over Traditional Storage

WHY THIS MATTERS

PROPRIETARY Common, Lower cost, standardized supply chain HARDWARE off-the-shelf hardware **SCALE-UP** Scale-out Increased operational flexibility ARCHITECTURE architecture HARDWARE-BASED Software-based More programmability, agility, INTELLIGENCE and control intelligence **CLOSED DEVELOPMENT** Open development More flexible, well-integrated **PROCESS** technology process

Rising tide of software-defined storage

"By 2016, server-based storage solutions will lower storage hardware costs by 50% or more."

Gartner: "IT Leaders Can Benefit From Disruptive Innovation in the Storage Industry"

"By 2020, between 70-80% of unstructured data will be held on lower-cost storage managed by SDS environments."

Innovation Insight: Separating Hype From Hope for Software-Defined Storage

"By 2019, 70% of existing storage array products will also be available as software only versions"

Innovation Insight: Separating Hype From Hope for Software-Defined Storage

Storage revenue projection

Traditional Enterprise Storage, Hyperscale Server SAN & Enterprise Server SAN Revenue Projections 2012-2027

2012 대용량 스토리지로 SDS를 채용하기 시작함

2014 전통적인 엔터프라이즈 스토리지 매출이 정점에 다다름

2015 오픈 소스 기반의 클라우드 플랫폼과 SDS가 일반화되기 시작함

2021 SDS 기반 스토리지 매출이 전통적인 엔터프라이즈 스토리지 매출을 앞서기 시작함

2023 초대용량 SDS 매출이 전통전인 엔터프라이즈 스토리지 매출을 앞서기 시작함

2025 대부분의 전통적인 엔터프라이즈 스토리지는 레거시 시스템을 지원하기 위해 존재함

wikibon.org The Rise of Server SAN, http://wikibon.org/wiki/v/The_Rise_of_Server_SAN

목차

- 1. 스토리지 트렌드
- 2. CEPH 아키텍처
- 3. CEPH Use-Cases
- 4. CEPH / OpenStack Integration
- 5. CEPH Design Guide
- 6. CEPH TECHNICAL REFERENCE

CEPH 스토리지

ASES

Cloud Storage

- OpenStack® VM lifecycle storage with Glance, Cinder, Keystone, Nova
- Persistent object and block storage for tenant apps

Media & Big Data Storage

• S3 and S3A compatible

Powerful distributed storage for the cloud and beyond

- Low-cost software-defined storage on commodity servers
- Open source
- Flexible block, object, and file storage
- Production-ready data protection and self-healing
- Massively scalable
- Leading storage for OpenStack

Cisco uses Red Hat Ceph Storage to deliver storage for next-generation cloud services

CEPH 아키텍처

CEPH 구성요소: RADOS

CEPH 구성요소 : RADOS RELIABLE AUTONOMOUS DISTRIBUTED OBJECT STORE

OSDs (Object Storage Daemons)

- 10s to 10000s in a cluster
- One per disk (or one per SSD, RAID group...)
- Serve stored objects to clients
- Intelligently peer for replication & recovery
- Minimum 3 per cluster

MONs (Monitors)

- Maintain cluster membership and state
- Track health of the cluster
- Provide consensus for distributed decision-making
- Small, odd number
- These do not serve stored objects to clients (not in the data path)
- Minimum 3 per cluster

CEPH 구성요소: RADOS OSD - OBJECT STORAGE DAEMON

CEPH 구성요소: RADOS MON - MONITORS

Monitors

- Maintain cluster membership and state
- Track health of the cluster
- Provide consensus for distributed decision-making
- Small, odd number
- These do not serve stored objects to clients (not in the data path)
- Minimum 3 per cluster

CEPH 구성요소: RADOS RADOS CLUSTER

CEPH 구성요소 : RADOS CRUSH - DYNAMIC DATA PLACEMENT / QUICK CALCULATION

CLUSTER

CRUSH

- Pseudo-random placement algorithm
 - Fast calculation, no lookup
 - Repeatable, deterministic
- Statistically uniform distribution
- Stable mapping
 - Limited data migration on change
- Rule-based configuration
 - Infrastructure topology aware
 - Adjustable replication
 - Weighting

CEPH 구성요소: LIBRADOS

CEPH 구성요소: LIBRADOS

LIBRADOS

- Direct access to RADOS for applications(C, C++, Python, PHP, Java, Erlang)
- Direct access to storage nodes
- No HTTP overhead fast, socket-based connection

CEPH 구성요소: INTERFACE

CEPH 데이터 보호

Performance-optimized

Create copies of each object or file stored within them.

Deliver optimal performance, with multiple copies available for reading. However, these back-ends can be expensive.

Fast performance and recovery.

Capacity-optimized

Corrupted or lost data is mathematically reconstructed using fragments stored elsewhere in the system.

This consumes far less space than replication, although hardware failures can affect performance.

목차

- 1. 스토리지 트렌드
- 2. CEPH 아키텍처
- 3. CEPH Use-Cases
- 4. CEPH / OpenStack Integration
- 5. CEPH Design Guide
- 6. CEPH TECHNICAL REFERENCE

CEPH storage Use Cases

- OpenStack
- Web App Storage (STaaS/Cloud Storage)
- Media Repository
- Big Data: Data Lake for Analytics
- Backup
- Enterprise File Sync and Share

OPENSTACK

FEATURES

- Full integration with Nova, Cinder and Glance
- Single storage for images and ephemeral and persistent volumes
- Copy-on-write provisioning
- Swift-compatible object storage gateway
- Full integration with Red Hat Enterprise Linux OpenStack Platform

BENEFITS

- Provides both volume storage and object storage for tenant applications
- Reduces provisioning time for new virtual machines
- Requires no data transfer of images between storage and
 - compute nodes
- Offers unified installation experience with Red Hat Enterprise Linux OpenStack Platform

OPENSTACK Survey (2017 April)

Which OpenStack block storage (Cinder) drivers are in use?

https://www.openstack.org/assets/survey/April2017SurveyReport.pdf

WEB APPLICATION STORAGE

MEDIA REPOSITORY

DATA LAKE FOR ANALYTICS

BACKUP / ARCHIVE

목차

- 1. 스토리지 트렌드
- 2. CEPH 아키텍처
- 3. CEPH Use-Cases
- 4. CEPH / OpenStack Integration
- 5. CEPH Design Guide
- 6. CEPH TECHNICAL REFERENCE

OPENSTACK WITHOUT CEPH

OPENSTACK WITH CEPH

OPENSTACK INTEGRATION WITH CEPH

SLOW INSTANCE BOOT WITHOUT CEPH

FAST INSTANCE BOOT WITH CEPH

VM HIGH-AVAILABILITY WITH CEPH AND CINDER

VM BACKUP WITH CEPH AND CINDER

GEO-REPLICATED VM STORAGE WITH CEPH

MULTI-SITE S3 STORAGE WITH CEPH RGW

FILESHARE-AS-A-SERVICE WITH CephFS (MANILA)

DATABASE-AS-A-SERVICE WITH CEPH (TROVE)

재해복구 시나리오 #1

Properties:

• Single OpenStack site

A data recovery site

재해복구 시나리오 #2

No Shared Keystone

Properties:

- Keystone on the controllers (as usual)
- Individual login on each region/site
- Both sites have each other's data
- Both sites have the same cluster FSID

Challenge:

Replicate metadata for images and volumes

How to recover?

- Promote the secondary site
- Import DB records in the survival site

재해복구시나리오#3

Shared Keystone with Region

Properties:

- Shared Keystone
- Keystone centralized and replicated DB
- Both sites have each other's data
- Works with N sites
- Both sites have with the same cluster FSID

Challenge:

- Replicate UUID tokens
- MySQL cross-replication over WAN
- Requires low latency and high bandwidth
- Fernet tokens are not ready yet

How to recover?

• Promote the secondary site

목차

- 1. 스토리지 트렌드
- 2. CEPH 아키텍처
- 3. CEPH Use-Cases
- 4. CEPH / OpenStack Integration
- 5. CEPH Design Guide
- 6. CEPH TECHNICAL REFERENCE

STORAGE DESIGN

UNDERSTANDING YOUR WORKLOADS

OTHER FACTORS

Ceph is not just scale out capacity

IOPS Optimized

NVMe SSD in SLED chassis

Throughput Optimized

SSD, HDD in standard / dense chassis

Cost / Capacity Optimized

HDD in dense / ultra-dense chassis

High IOPS / GB Smaller, random IO Read / write mix

High MB/s throughput Large, sequential IO Read / write mix Low cost / GB Sequential IO Write mostly

Use Case: MySQL

Use Case: Rich Media

Use Case: Active Archives

BROAD SERVER SIZE TRENDS

		S	M	L
	64TB	256TB	1PB -	2PB+
IOPS Optimized	•2-4x NVMe servers (PCIe) •4-8x SAS/SATA SSDs servers			
Throughput Op timized	•12-16x 3.5"-bay servers		•24-36x 3.5"	•24-36x 3.5" b ay servers
Cost-Capacity Optimized			bay servers	•60-72x 3.5" b ay servers

SERVER CONFIGURATION RECOMMENDATIONS

	64TB	256TB	1PB -	2PB+
IOPS Optimized	 Ceph block (RBD) NVMe SSD w/ co-located SATA SSD w/ NVMe write Multiple OSDs per flash of 10 Xeon® cores per NVN SATA SSD 2x or 3x replication (with 	drive de SSD, OR 4 cores per		
Throughput O ptimized	 Ceph block or object (RE HDDs w/ NVMe or SATA 1 Xeon® core per 2 HDD Single OSD per HDD 10GbE or 40GbE with 12 3x replication 	SSD write journals s		
Cost-Capacity Optimized			 Ceph object (RGW) HDD drives with no SSD journal 1 Xeon® core per 2 HDDs Single OSD per HDD Erasure-coded 	

목차

- 1. 스토리지 트렌드
- 2. CEPH 아키텍처
- 3. CEPH Use-Cases
- 4. CEPH / OpenStack Integration
- 5. CEPH Design Guide
- 6. CEPH TECHNICAL REFERENCE

Some Technical References

RHCS Test Drive: Hands-on Lab for Ceph

★ http://bit.ly/ceph-test-drive

RHCS Hardware Selection Guide

★ http://bit.ly/RHCS-hardware-selection-guide

RHCS Hardware Configuration Guide

★ http://bit.ly/RHCS-hw-configuration-guide

MySQL on RHCS Reference Architecture

★ http://bit.ly/MySQL_DB-on-RHCS

RHCS on Intel CPUs and SSDs Config Guide

★ http://bit.ly/RHCS-on-Intel

RHCS Ready Supermicro Server SKUs

★ http://bit.ly/RHCS-SuperMicro-SKU

RHCS on CISCO UCS Servers

★ http://bit.ly/RHCS-on-Cisco-UCS

RHCS on QCT Servers Perf & Sizing Guide

★ http://bit.ly/RHCS-on-QCT

RHCS on Supermicro Servers Perf & Sizing Guide

★ http://bit.ly/RHCS-on-SuperMicro

RHCS on DELL EMC PE 730xd Servers Perf & Sizing Guide

★ http://bit.ly/RHCS-on-DellEMC-PE730xd

RHCS on DELL EMC DSS 7000 Servers Perf & Sizing Guide

★ http://bit.ly/RHCS-on-DellEMC-DSS7000

RHCS on Samsung Sierra Flash Array Perf & Sizing Guide

★ http://bit.ly/RHCS-on-Samsung-flash-array

RHCS Ready QCT Server SKUs

★ http://bit.ly/RHCS-QCT-SKU

RHCS on SanDisk Infiniflash

★ http://bit.ly/RHCS-on-Sandisk-Infiniflash

RHCS and RHOSP HCI Ref. Arch

★ http://bit.ly/RHCS-RHOSP-HCI

