Analytics & Machine Learning in Data Systems (Part 2)

Course Textbook Chapters 26

Newer Material:

- Data Lake: https://en.wikipedia.org/wiki/Data-lake
- K-Means: https://en.wikipedia.org/wiki/K-means clustering

Joseph E. Gonzalez <u>jegonzal@cs.berkeley.edu</u>

Multidimensional Data Model

Sales Fact Table

pid	timeid	locid	sales
11	1	1	25
11	2	1	8
11	3	1	15
12	1	1	30
12	2	1	20
12	3	1	50
12	1	1	8
13	2	1	10
13	3	1	10
11	1	2	35
11	2	2	22
11	3	2	10
12	1	2	26

Locations

locid	city	state	country
1	Omaha	Nebraska	USA
2	Seoul		Korea
5	Richmond	Virginia	USA

Dimension Tables

Products

pid	pname	category	price
11	Corn	Food	25
12	Galaxy 1	Phones	18
13	Peanuts	Food	2

Multidimensional "Cube" of data

Time

Date	Day
3/30/16	Wed.
3/31/16	Thu.
4/1/16	Fri.
	3/30/16 3/31/16

Machine Learning Lifecycle

- Typically a time consuming iterative batch process
 - Feature engineering
 - Validation

- Focus is on making fast robust predictions
 - Monitoring and tracking feedback
 - Materialization + fast model inference

Supervised Learning Reinforcement & Bandit Learning

Unsupervised Learning

Regression

Classification

Clustering

➤ Given a collection of images cluster them into meaningful groups.

Given a collection of images cluster them into meaningful groups.

"Mountains"

"Beaches"

➤ Given a collection of images cluster them into meaningful groups.

- ➤ Unsupervised: The labels of the groups are not given in the training data
- >Exploratory: overlaps with data mining

➤ Given a collection of images cluster them into

meaningful groups.

Simplified Illustration

Image Id	Average Red	Average Green
1	123	200
2	212	103
3	55	35

- How many clusters?
- Where are the clusters?

➤ Given a collection of images cluster them into

meaningful groups.

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

- Where are the clusters?
- How many clusters?

➤ Given a collection of images cluster them into

meaningful groups.

		_
,		2
		3
Average Red		
	Average Green	•

 Image Id
 Average Red
 Average Green

 1
 123
 200

 2
 212
 103

 3
 55
 35

What makes a good clustering?

- All points are near the cluster center
- Spread between clusters > spread within clusters

➤ Given a collection of images cluster them into

meaningful groups.

1110	ariirigiui gioups.	Image Id	Average Red	Average Green
		1	123	200
1		2	212	103
		3	55	35
Average Red			What hap when a n arrives?	pens ew point
'	Average Green			

➤ Given a collection of images cluster them into

meaningful groups.

		Red	Green
	1	123	200
1	2	212	103
	3	55	35

What happens when a new point arrives?

Average Green Predict "label" hased on existi

Image Id Average

based on existing clusters (Yellow)

Average

➤ Given a collection of images cluster them into

meaningful groups.

J	Red	Green
1	123	200
2	212	103
3	55	35

How do we automatically cluster data?

Average

Average

How do we Compute a Clustering?

Many different clustering models and algorithms:

- Feature Based Clustering: Points in Rd
 - K-Means: EM on Symmetric Gaussians ← We will learn this one
 - Mixture Models: Generalized k-means
 - ...
- Spectral Methods: Similarity Function Between Items
 - Similarity based clustering: A and B are co-purchased
 - Graph clustering: Cities based on road network
 - ...
- ➤ Hierarchical Clustering: clustering nested items
 - Latent Dirichlet Allocation: Documents based on words
 - Developed at Berkeley and widely used!
 - ...

- ➤ Input K: The number of clusters to find
- ➤ Pick an initial set of points as cluster centers

For each data point find the cluster nearest center

For each data point find the cluster nearest center

➤ Compute mean of points in each "cluster"

➤ Adjust cluster centers to be the mean of the cluster

➤ Adjust cluster centers to be the mean of the cluster

- ➤Improved?
- **≻**Repeat

K-Means Clustering: Intuition >Assign Points

K-Means Clustering: Intuition >Assign Points

➤ Compute cluster means

➤ Update cluster centers

➤ Update cluster centers

- ➤ Repeat?
 - Yes to check that nothing changes → Converged!

centers ← pick k initial Centers

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg ← [(x, nearest(centers, x)) for x in data]
```

What do we mean by "nearest":

A: Euclidean Distance

$$\arg\min_{c \in \text{centers}} ||c - x||_2^2 = \sum_{i=1}^a (c_i - x_i)^2$$

```
centers ← pick k initial Centers
                                              Compute the
                                           "Expected" Assignment
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
                           Find centers that maximize the
      centers[i] =
                                data "likelihood"
         mean([x for (x, c) in asg if c == i])
```

```
centers ← pick k initial Centers
```

```
while (centers are changing) {
   // Compute the assignments (E-Step)
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   // Compute the new centers (M-Step)
   for i in range(k):
      centers[i] =
         mean([x for (x, c) in asg if c == i])
                                                Depends on
     Guaranteed to
                                   To a local
                    ... to what?
                                  optimum. 🕾
       converge!
                                               Initial Centers
```

```
centers ← pick k initial Centers
```

How do we pick initial centers?

```
while (centers are changing) {
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
  for i in range(k):
      centers[i] =
        mean([x for (x, c) in asg if c == i])
                   ... to what?
```

Picking the Initial Centers

- \triangleright Simple Strategy: select k points at random
 - What could go wrong?

Picking the Initial Centers

- **≻Better Strategy:** kmeans++
 - Randomized approx. algorithm
 - Intuition select points that are not near existing centers

K-Means++ Algorithm

```
centers ← set(randomly select a single point)
while len(centers) < k:</pre>
  # Compute the distance of each point
  # to its nearest center dSq = d^2
  dSq \leftarrow [(x, dist_to_nearest(centers, x)^2) for x in data]
  # Sample a new point with probability
  # proportional to dSq
  c ← sample_one(data, prob = dSq / sum(dSq))
  # Update the clusters
  centers.add(c)
```

How do we choose K?

- ➤ Basic Elbow Method (Easy and what you do in HW)
 - Try range of K-values and plot average distance to centers
- Cross-Validation (Better)
 - Repeatedly split the data into training and validation datasets
 - Cluster the training dataset
 - Measure Avg. Dist. To Centers on validation data

K-Means +

How do we run k-means on the data warehouse / data lake?

Interacting With the Data

Good for smaller datasets

Faster more natural Request Data Sample interaction

Lots of tools!

Compute Locally

 $\Sigma = \bigoplus$ $f_{\theta}(r)$ $r \in Data$

Learning Algorithm

Sample of Data

Can we send the computation to Computation the data?

Yes!

Statistical Query Pattern Common Machine Learning Pattern

➤ Computing aggregates of user defined functions

Interacting With the Data

Can we express K-Means in the Statistical Query Pattern?

```
centers ← pick k initial Centers
                                                          Merge with M-Step
                                          Query returns all
while (centers are changing):
                                            the data ...
                                                           Statistical Query
   // Compute the assignments (E-Step)
                                                               Pattern
   asg \leftarrow [(x, nearest(centers, x)) for x in data]
   for i in range(k): // Compute the new centers (M-Step)
       centers[i] = mean([x for (x, c) in asg if c == i])
centers ← pick k initial Centers
while (centers are changing):
   for i in range(k):
       new centers[i] =
           mean([x for x in data if nearest(centers, x) == i])
   centers = new centers
```

Can we express K-Means in the Statistical Query Pattern?

```
centers ← pick k initial Centers
while (centers are changing):
    for i in range(k):
        new_centers[i] =
            mean([x for x in data if nearest(centers, x) == i])
    centers = new_centers
```

Group by query:

```
SELECT nearest_UDF(centers, x) AS cid, mean_UDA(x)
FROM data GROUPBY cid
```

```
> UDFs and UDAs are implemented varies across systems.
You can implement this in pure SQL (for two dimensions):
CREATE TABLE points (x double precision, y double precision);
COPY points FROM '~/toy_data.csv' DELIMITER ',' CSV;
CREATE TABLE centers (
 id INTEGER,
 x double precision, y double precision,
 ver INTEGER);
INSERT INTO centers VALUES
 (0, 0.1, 2.3, 0), (1, -0.2, 1.1, 0), (2, 1.4, -2.2, 0), (3, -.2, -3.0, 0);
CREATE TEMP VIEW maxVer AS
SELECT max(ver) FROM centers;
```

CREATE TEMP VIEW dist AS

SELECT p.x as x, p.x as y, MIN((p.x - c.x) * (p.x - c.x) + (p.y - c.y) * (p.y - c.y)) as min_d

FROM points as p, centers as c

WHERE (c.ver) in (select * from maxVer)

GROUP BY p.x, p.y;

Repeatedly invoke the following until convergence

INSERT INTO centers

SELECT c.id, AVG(d.x) as x, AVG(d.y) AS y, max(c.ver) + 1 as ver

FROM dist as d, centers as c

WHERE (c.ver) in (select * from maxVer)

AND d.min_d >= (d.x - c.x) * (d.x - c.x) + (d.y - c.y) * (d.y - c.y)

GROUP BY c.id;

K-Means in Map-Reduce

- ➤ MapFunction(old_centers, x)
 - Compute the index of the nearest old center
 - Return (**key** = *nearest_centers*, **value** = (x, 1))
- > ReduceFunction combines values and counts
 - For each cluster center (Group By)
- ➤ Data system returns aggregate statistics:

$$s_i = \sum_{x \in \text{Cluster } i} x_i \quad \text{and} \quad n_i = \sum_{x \in \text{Cluster } i} 1$$

 \blacktriangleright ML algorithm computes new centers: $\mu_i = s_i/n_i$

Can we express K-Means++ in the Statistical Query Pattern?

- > Yes, however there is a better version: K-Means | |
 - More complex but much faster
- ➤ Or you can parallelize **K-Means++** directly
 - Requires more passes
- ➤ Challenging Step?
 - Parallel weighted sampling:

```
sample_one(data, prob = dSq / sum(dSq))
```

How do you select one point uniformly at random?

Res-A: weighted reservoir sampling

ightarrow Goal: Sample k records from a stream where record i is included in the sample with probability proportional to w_i

How would we normally sample k records?

Draw a random number uniformly between 0 and 3.7

Sample the corresponding record and remove the weight.

Draw a random number uniformly between 0 and 3.1

We want to do this in **one pass** without ever knowing the **sum** of the weights!

Res-A: weighted reservoir sampling

ightarrow Goal: Sample k records from a stream where record i is included in the sample with probability proportional to w_i

>Algorithm:

For each record i draw a uniform random number:

$$u_i \sim \mathbf{Unif}(0,1)$$

ullet Select the top-k records ordered by: u_i^{1/w_i}

≻Common ML Pattern?

- Query Function: [pow(rand(), 1 / record.w), record]
- Agg. Function: top-k heap

Illustrating Res-A Algorithm

Basic Analysis Behind Res-A

- \blacktriangleright Define the random variable: $X_i = u_i^{1/w_i}$
- ➤Then:

$$\mathbf{P}(X_i < \alpha) = \mathbf{P}\left(u_i^{1/w_i} < \alpha\right) = \mathbf{P}\left(u_i < \alpha^{w_i}\right) = \alpha^{w_i}$$

$$\mathbf{p}(X_i = \alpha) = w_i \alpha^{w_i - 1}$$
Derivative of CDF \rightarrow PDF

- ➤ Suppose we want to pick just one element (k=1)
 - Probability of selecting X_i is:

$$\int_0^1 \mathbf{p} \left(X_i = \alpha \right) \prod_{j \neq i} \mathbf{P} \left(X_j < \alpha \right) d\alpha = \int_0^1 (w_i \alpha^{w_i - 1}) \prod_{j \neq i} \alpha^{w_j} d\alpha$$

$$= \frac{w_i}{\sum_j w_j}$$
on this derivation

People who like Res-A also like...

- ➤ Algorithm R
 - Another reservoir filtering algorithm (recitation?)
- ➤ Bloom Filters
 - Efficient set membership with limited memory
- >Count-Min
 - Efficient key-counting with limited memory
- ➤ Heavy Hitters Sketch
 - Top-k Elements with limited memory

Algebra details from integration:

$$\int_{0}^{1} \mathbf{p} (X_{i} = \alpha) \prod_{j \neq i} \mathbf{P} (X_{j} < \alpha) d\alpha = \int_{0}^{1} (w_{i} \alpha^{w_{i}-1}) \prod_{j \neq i} \alpha^{w_{j}} d\alpha$$

$$= w_{i} \int_{0}^{1} (\alpha^{w_{i}-1}) \alpha^{\sum_{j \neq i} w_{j}} d\alpha$$

$$= w_{i} \int_{0}^{1} \alpha^{-1+\sum_{j} w_{j}} d\alpha$$

$$= \frac{w_{i}}{\sum_{j} w_{j}} \alpha^{\sum_{j} w_{j}} \Big|_{\alpha=0}^{\alpha=1}$$

$$= \frac{w_{i}}{\sum_{j} w_{j}}$$

Implementation Details: Statistical Query Pattern

- ➤ Iterative ML → Data caching is important
 - Motivation behind Spark project

Map Reduce Dataflow View

Spark Opt. Dataflow

10-100 X faster than network and disk 63

Spark Opt. Dataflow View

What happened to map-reduce?

Implementation Details: Common Machine Learning Pattern

- ➤ Iterative ML → Data caching is important
 - Motivation behind Spark project
- \triangleright Need to watch out for large θ and Σ

Summary of Clustering

SELECT nearest_UDF(centers, x) AS cid, mean_UDA(x)

FROM data GROUPBY cid

Rec. 1 Rec. 2 Rec. 3 Rec. 4 Rec. 5

Supervised Learning Reinforcement & Bandit Learning Unsupervised Learning

Regression

Classification

Dimensionality Reduction

Clustering

