3. Suche als Problemlöseverfahren

- 1. Was ist KI?
- 2. Logik und Inferenz

- 3.1 Uninformierte Suche
- 3.2 Heuristische Suche
- 3.3 Suche in Spielbäumen
- 3.4 Constraint Satisfaction
- 3. Suche als Problemlöseverfahren
- 4. Schließen unter Unsicherheit
- 5. Maschinelles Lernen
- 6. Ausblick: "Rationale" Roboter

Suche in der Informatik

Typische Problemstellung

"Ist ein Datensatz in einer Datenbank vorhanden?"

Naive Lösung

Alle Datensätze der Reihe nach durchsuchen.

Zeit: O(n) für n Datensätze in der DB Info A, Kap. 6

Bessere Lösung (wie in Informatik A gelernt)

Datensätze clever sortiert speichern (z.B. Baum); Sortierung beim Suchen nutzen. → D.E. Knuth, Bd.3:

Zeit: $O(\log n)$

Suche in der KI

Typische Problemstellung

Ziele verfolgender Agent überlegt den nächsten Schritt, und den Folgeschritt, und den — bis zum Ziel

Lösungsweg konstruieren, nicht Ziel nachschlagen!

Naive Lösung

Alle Sequenzen von Schritten der Reihe nach durchprobieren.

Zeit: ...

Exkurs über Knoten und Blätter in Bäumen

Verzweigungsfaktor *b*=3

Tiefe

$$d=0$$

$$d=1$$

$$d=2$$

$$d=3$$

d

$$O(b^d)$$
 # Knoten der Tiefe $d: b^d$

$$O(b^d)$$
 # alle Knoten bis einschl. Tiefe d :

$$\sum_{i=0}^{d} b^{i} = \frac{b^{d+1} - 1}{b - 1}$$

Komplexität der naiven Suche

Alle Sequenzen von Schritten der Reihe nach durchprobieren.

Zeit: $O(b^d)$ bei "erster" Lösung in Tiefe d

Speicher: dito (alle Knoten im Speicher)

Bessere/Andere Lösungen ... folgen!

Beispielproblem I: Verschiebespiel

Aktionen

Left, Right, Up, Down (Verschiebung des Leerfelds, wenn's geht)

Kosten

Konstant (1) pro Aktion

Suchproblem

Definition 6.2 Ein Suchproblem wird definiert durch folgende Größen

Zustand: Beschreibung des Zustands der Welt, in dem sich ein Suchagent befindet.

Startzustand: der Initialzustand, in dem der Agent gestartet wird.

Zielzustand: erreicht der Agent einen Zielzustand, so terminiert er und gibt (falls gewünscht) eine Lösung aus.

Aktionen: Alle erlaubten Aktionen des Agenten.

Lösung: Der Pfad im Suchbaum vom Startzustand zum Zielzustand.

Kostenfunktion: ordnet jeder Aktion einen Kostenwert zu. Wird benötigt, um kostenoptimale Lösungen zu finden.

Zustandsraum: Menge aller Zustände.

6.1

Suchbaum: Zustände sind Knoten, Aktionen sind Kanten.

Problemraum und Suchraum

... kann strukturell unterschiedlich gewählt werden

Traversiere **Graph** als **Baum**Zyklen werden zu unendlichen Pfaden!

Zustände und Knoten

- Zustände: "Schnappschüsse" der Welt
- Knoten: Datenobjekte, die Zustände repräsentieren und weitere Information enthalten, z.B.:
 - Vorgängerknoten (im Baum 1)

3.1 Uninformierte Suche

- Alle Baum-Suchalgorithmen folgen dem Zyklus
 - 1. Ist die "Suchfront" leer, terminiere ("keine Lösung")
 - 2. Sonst nimm vordersten Knoten *n* aus aktueller Suchfront
 - 3. Ist *n* Zielknoten, terminiere ("Lösung gefunden")
 - 4. Sonst erzeuge die Nachfolger von n ("expandiere n"), sortiere sie in die Suchfront ein, mach weiter bei 1.
- Bei Ertel erst als Algorithmenschema für Heuristische Suche eingeführt passt aber für viele Such-Arten (<u>nicht</u> Spiele mit Gegner, s.3.3!)
- "Uninformierte" Suche verwendet in Schritt 4 schematische Sortierung (z.B. FIFO, LIFO);
- "heuristische" Suche (3.2) versucht, das schlauer zu machen

Breitensuche

Siehe Vorlesung Informatik A!

Sortierung der Suchfront implementiert als Warteschlange (FIFO *queue*)

- $igoreal{f Zeitbedarf:} O(b^{d+1})$ (Exponent d falls Zieltest beim Einfügen konstante Aktionskosten!)
- $egin{array}{c} {\bf Speicherbedarf:} \ O(b^{d+1}) \ \ ({\bf Exponent} \ d \ {\bf falls} \ {\bf Zieltest} \ {\bf beim} \ {\bf Einfügen} {\bf konst.} \ {\bf Aktionskosten}) \end{array}$
- Vollständig: Wenn Lösung existiert, wird sie gefunden
- Optimal: Wenn Lösung gefunden, dann ist es eine beste

Tiefensuche

Siehe Vorlesung Informatik A!

Sortierung der Suchfront implementiert

als Keller (LIFO stack)

- $igorplus Zeitbedarf: O(b^m)$, wenn m Maximaltiefe des Baums
- © Speicherbedarf: O(bm)
- Unvollständig
- Nicht optimal

Tiefensuche "taucht ab" auf unendlichen Suchpfaden!

Varianten von Tiefensuche I: Backtracking

- Erzeuge immer nur 1 Nachfolgeknoten bei Expansion
- Merke je Knoten, welche Nachfolger schon erzeugt sind
- Bei Scheitern an Knoten k erzeuge nächsten Nachfolger des k-Vorgängers

- Erhält das qualitative Verhalten von Tiefensuche
- \bigcirc Speicherbedarf: O(m)! (m Maximaltiefe des Baums)
- Technik der Wahl bei hohem Verzweigungsfaktor

Varianten II: Tiefenbeschränkung

Gib ein globales Tiefenlimit l vor

- Erhält das qualitative Verhalten von Tiefensuche
- Speicher: O(bl) (bzw. O(l) bei Backtracking); Zeit $O(b^l)$
- ⊗ Findet keine Lösung in Tiefen *d>l*
- Terminiert sicher bei endlichem Verzweigungsfaktor

Natürlich auch bei Breitensuche anwendbar!

Var. III: Iterierte beschränkte Tiefensuche

- Mach Tiefensuche bis Tiefe 1;
- mach erneut Tiefensuche bis Tiefe 2;
- mach <u>erneut</u> Tiefensuche bis Tiefe 3;

... usw., bis Lösung gefunden

- Vollständig
- Optimal bei konstanten Aktionskosten
- © Speicherbedarf: O(bd)

... aber ist das nicht **riesige** Zeitverschwendung?

Zeitkomplexität der Iterierten Tiefensuche

... oder: Wie oft muss man schlimmstenfalls einen Knoten anpacken, wenn eine "erste" Lösung in Tiefe d liegt?

$$\sum_{i=0}^{d} \sum_{j=0}^{i} b^{j} - \text{mal!}$$

Wir erinnern uns:
$$\sum_{j=0}^{i} b^j = \frac{b^{i+1} - 1}{b - 1}$$

$$\sum_{i=0}^{d} \sum_{j=0}^{i} b^{j} = \sum_{i=0}^{d} \frac{b^{i+1} - 1}{b - 1}$$

$$= \frac{1}{b - 1} \left[b \sum_{i=0}^{d} b^{i} - \sum_{i=0}^{d} 1 \right]$$

$$= \frac{1}{b - 1} \left[b \frac{b^{d+1} - 1}{b - 1} - (d+1) \right] = \frac{b^{d+2} - b}{(b-1)^{2}} - \frac{d+1}{b-1} \quad \in \mathcal{O}(b^{d})$$

Eigenschaften der Iterierten Tiefensuche

- Vollständig
- Optimal bei konstanten Aktionskosten
- © Speicherbedarf: O(bd)
- \cong Zeitbedarf: $O(b^d)$ wie Breitensuche (akzeptabel für vollständiges und optimales Verfahren mit realistischem Speicherbedarf)

Iterierte Tiefensuche oder Varianten ist oft die Methode der Wahl!

3.2 Heuristische Suche

... führt zu informierten Suchverfahren!

Bisher (3.1): Reihenfolge der Bearbeitung hängt ab von Wert eines Knotens g(n): Knotentiefe bzw. Pfadkosten

Jetzt: Berücksichtige (zusätzlich) für Knoten <u>Schätzung</u>, wie weit es noch zu einem Ziel ist ("Mama, wie weit müssen wir 'n noch!?")

Wert h(n): Schätzung der Kosten von n bis zu einem Ziel (Voraussetzung immer: h(n)=0 für Zielknoten n.)

Aktionskosten

Voraussetzung bisher:

Alle Aktionen verursachen gleiche Kosten bei Ausführung

→ Tiefe eines Knotens im Suchbaum entspricht "Herstellungskosten" des entspr. Zustands

Nun:

Aktionen verursachen möglicherweise unterschiedliche Kosten

Pfadkosten eines Knotens im Suchbaum/Suchgraphen entspricht "Herstellungskosten" des entspr. Zustands

Beispiele

Route planen (TSP!), Computer konfigurieren, Stundenplan erstellen

Beispielproblem II: Das Reiseproblem

Zustand: Merkmal in(x) für Ort x

Startzustand: *in*(*Arad*)

Zielzustand: *in*(*Bucuresti*)

Aktionen: go(x,y): fahre von Ort x nach Ort y

Wirkung: vorher galt in(x); danach gilt in(y)

Kosten: Straßenkilometer zwischen x und y für Aktion go(x,y)

Nebenbedingung

Finde Weg vom Start zum Ziel mit minimalen Pfadkosten!

Reiseproblem, Fortsetzung

Standard-Suche nach Kosten (uniform-cost)

- Geh vor wie bei Breitensuche,
- aber bewerte Knoten durch ihre Pfadkosten ab Wurzel g(n)
- sortiere in Suchfront nach Knotenwerten (billigste vor)
- ende erst, wenn ein Zielknoten expandiert werden müsste

Eigenschaften der uniform-cost Suche

- Aktionskosten mindestens ε>0!
- Breitensuche ist Spezialfall von uniform-cost (bei Einheitskosten)
 - Vollständig
 - Optimal
 - Speicherbedarf: $O(b^{(1+\lfloor C^*/\varepsilon \rfloor)})$ (für Kosten C^* des optimalen Pfads)
 - \otimes Zeitbedarf: $O(b^{(1+\lfloor C^*/\varepsilon \rfloor)})$

Billige Schritte in die falsche Richtung erhöhen die Suchkosten:

$$1 + \lfloor C^*/\varepsilon \rfloor >> d$$

