

1.2 Datenverarbeitung im PC

Interne Komponenten

Netzteil	Massenspeicher	Arbeitsspeicher	CPU (Central Processing Unit)
Chipsatz	Motherboard	Cores	CPU
Controller	Mainboard	Bussysteme	

Ein Computer besitzt als Verarbeitungsgeräte verschiedene Komponenten. Diese übernehmen dabei folgende Aufgaben:

mindestens eine		zur eigentlichen Datenver-
arbeitung.		
Diese besteht häufig aus verschiedenen _	Kernen, auch als	bezeichnet. Diese
Cores können getrennte Rechenaufgaben	durchführen.	
•	zur vorübergehenden Ablage vor	n Informationen
 sowie verschiedene Schnittstellen und Per übernehmen 	ripheriegeräte, die den Informationsau	ustausch mit der Umgebung
und		
	L L G ALL	1.6 1.0
	zur dauerhaften Ablage v	on Informationen und Pro-
grammen		
Abgesehen vom Massenspeicher werden die üb	origen Komponenten üblicherweise zu	usammen auf einer gemein-
samen Leiterplatte verbaut. Diese Leiterplatte	bezeichnet man als	oder auch
Die En	ergieversorgung der verbauten Komp	onenten übernimmt das so-
genannte		

Ein weit verbreitetes Konzept für den Aufbau dieser Verarbeitungsgeräte ist die **Von-Neumann-Architektur**. Sie bündelt im wesentlichen vier Funktionseinheiten:

Eingabe/Ausgabe

Das Bussystem dient als Kommunikationsbrücke der Komponenten mit der Außenwelt.

Die Bestandteile des Mainboard

Auf dieser Leiterplatte werden die meisten Kernkomponenten des Verarbeitungsgeräts zusammengefasst.

- Prozessor mit Kühlkörper und Lüfter
- Steckplätze für den Arbeitsspeicher
- 24-poliger Anschluss für die Stromversorgung
- 4. achtpoliger EPS12V-Anschluss für zusätzliche Stromversorgung
- ATX-Anschlussfeld mit externen Anschlüssen
- 6. Heatpipe-Kühlung für Chipsatz und Spannungsregler
- 7. Kühlkörper über den Spannungsreglern
- 8. SATA-Anschlüsse für interne Laufwerke

- 9. Chipsatz
- 10. BIOS-Chip
- 11. Anschlüsse für externe USB
- 12. Anschlüsse für FireWire
- 13. Steckplatz für PCI-Express (PCIe) x4
- 14. Grafikkarten-Steckplatz PEG (PCIe x16)
- 15. PCI-Steckplätze (32 Bit, 66MHz)
- 16. Steckplätze PCI Express (PCle) x16
- 17. IDE/PATA-Anschluss

Pin-Sockel für den Prozessor

Um die Prozessoren auf dem Mainboard zu befestigen, stehen diverse Sockel-Arten zur Verfügung.

Der ZIF-Sockel (Zero Insertion Force) ermöglicht das Einsetzen des Prozessors ohne zusätzlichen Krafteinwirkung. Zu beachten ist, dass sowohl Intel wie auch AMD verschiedene Sockel mit einer unterschiedlichen Anzahl und Anordnung von Pins entwickelt.

Die derzeit verbreiteten Sockel ermöglichen die Nutzung unterschiedlicher Prozessoren mit verschiedenen Taktfrequenzen. Diese Taktfrequenz berechnet sich aus dem internen Multiplikator und der Taktfrequenz des Chipsatzes (auch Front Size Bus (FSB) genannt).

Bei aktuellen Prozessoren sind die Speichercontroller per Hyper-Transport-Verbindung an die Northbridge angebunden und somit auf dem Prozessor integriert. In solchen Fällen lässt sich die Taktfrequenz aus dem Referenztakt von 200 MHz multipliziert mit dem entsprechenden CPU-Multiplikator.

Aufgrund verschiedener Protokolle der Datenübertragung zwischen Prozessor und Hauptspeicher kann der Zugriff beschleunigt werden.

Mainboard-Formfaktor

Bei den einzelnen Mainboards gibt es Unterschiede bei den Abmessungen, auch **Formfaktor** genannt. Aus dem Formfaktor lässt sich zusätzlich zur Abmessung auch die Art und Lage der Bauteile und der Schnittstelle bestimmen.

Formfaktor	Abmessung (Breite x Länge)	Beschreibung
Extended ATX (EATX)	305 mm x 330 mm	2 Prozessorsockel, Server-Board
		für Racks
ATX	305 mm x 244 mm	sehr weit verbreitet
microATX (μATX)	244 mm x 244 mm	ebenfalls sehr gebräuchlich
Flex-ATX	229 mm x 191 mm	Thin-Clients und HTPCs (Intel
		Atom, Via Nano)

1. Lehrjahr, LF 4 - Informationstechnische Systeme bereitstellen Verarbeitungsgeräte - Intern

Formfaktor	Abmessung (Breite x Länge)	Beschreibung
Mini-ITX	170 mm × 170 mm	Thin-Clients und HTPCs
Nano-ITX	120 mm × 120 mm	Thin-Clients und HTPCs
BTX	325 mm × 267 mm	konnte sich als ATX-Nachfolger
		nicht durchsetzen
microBTS (μBT)	264 mm x 267 mm	ebenfalls selten zu finden

Durch den Formfaktor wird außerdem der Gehäusetyp und das verwendbare Netzteil bestimmt. Grundsätzlich passen ATX- bzw. microATX-Mainboards <u>nicht</u> in BTX- oder ITX-Gehäuse.