Voronoi decompositions of flat surfaces and origamis

熊谷 駿 (東北大学 (情報) →秋~ 九州大学 IMI)

金沢トポロジーセミナー (2023/9/13, 金沢大学)

1	Introduction/Background	2
1.1	Category	3
1.2	Quick review of Teichmüller theory & related results	5
2	Voronoi decomposition and Edwards-Sanderson-Schmidt method	8
3	Main result	14
3.1	Origami and Delaunay triangulation	14
3.2	Edwards-Sanderson-Schmidt method in terms of category	19

1 Introduction/Background

Main theme: calculation of Veech groups and its calculation process

The **Veech group** of a flat surface is the group of its *affine self-similarity*.

Strategy:

- \triangleright covering-based (monodromy, Aut $(\pi_1(\check{R}^*))$ -action; Schmithüsen '04, Freidinger '08 Shinomiya '12)
- \triangleright singularity-based (Delaunay/Voronoi; Bowman '10, Mukarel '17, Edwards-Sanderson-Schmidt [5] '22)
- ▷ tiling-based (parallelogram decomposition, cut-and-paste construction; forklore result / K. [12] '23)

Main result: for origamis (square-tiled surfaces)

- ▷ Relationship among covering, singularity, and modification of tiling
- ▷ Categorical description of singularity-based method

1.1 Category

A composable concept is regarded as an **arrow** connecting two **objects**. The system of compositions of arrows with certain axioms is called a **category**. In short, given a category, the following are assumed:

- 1. the **domain** R and the **codomain** S for every arrow $(R \xrightarrow{f} S)$
- 2. the **composition** $(R \xrightarrow{f} \xrightarrow{g} T)$ of every (composable) two arrows $(R \xrightarrow{f} S)$, $(S \xrightarrow{g} T)$
- 3. the associative law; $\left(\xrightarrow{f} \left(\xrightarrow{g} \xrightarrow{h} \right) \right) = \left(\left(\xrightarrow{f} \xrightarrow{g} \right) \xrightarrow{h} \right)$
- 4. the **identity law**; every object R admits an **identity arrow** $(R \xrightarrow{1_R} R)$; $(R \xrightarrow{1_R} \xrightarrow{f} S) = (R \xrightarrow{f} S) = (R \xrightarrow{f} S)$

A functor is a correspondence between two categories C_1, C_2

$$F = (F_{\mathcal{O}} : \mathrm{Obj}_{C_1} \to \mathrm{Obj}_{C_2}, \ F_{\mathcal{A}} : \mathrm{Arr}_{C_1} \to \mathrm{Arr}_{C_2})$$

We say that an n-arrow connects two (n-1)-arrows respecting structures of all the lower (1, 2, ..., n-1) arrows.

Example A (a group) A group is a category such that $Obj = \{\bullet\}$ and all arrows are invertible.

Figure 1 the fundamental group $\pi_1(\Sigma_2, \bullet)$ consist of arrows $\alpha_1, \beta_1, \alpha_2, \beta_2 : \bullet \to \bullet$ and their inverse arrows and compisitions.

The ribbon graph structure ordering arrows around vertices embedded on the surface is regarded as a system of 2-arrows.

Example B (category of groups) $\text{Obj} = \{G : \text{group}\}, \text{Arr} = \{(G_1 \xrightarrow{f} G_2) : \text{group homomorphism}\}.$

1.2 Quick review of Teichmüller theory & related results

Example C (Teichmüller vs Flat)

The set Arr(R, -) of arrows associated to R is called the **Teichmüller space** T(R). It is known that

- T(R) is a simply-connected complex manifold of dimension (3g 3 + n) (Ahlfors-Bers).
- The **Teichmüller distance** that measures the minimal dilatation of the natural arrow $[g \circ f^{-1}]$ between arrows [f], [g] coincide with the Kobayashi distance wrt. the complex structure of T(R).
- The set of arrows associated to R modulo 2-arrows is the moduli space M(R).

Proposition 4 (Teichmüller's theorem [1]) For any arrow $(R \xrightarrow{[f]} S)$ in <u>Teich</u>, there uniquely exists an arrow $((R, \phi) \xrightarrow{F_{[f]}} (S, \psi))$ in <u>Flat</u> (defined next) such that

- 1. $F:(R,\phi)\to(S,\psi)$ is an affine deformation of the form $z_{\psi}\circ F\circ z_{\phi}^{-1}(z)=\frac{z+k\bar{z}}{1-k}$,
- 2. F attains the minimum of $K(h) := \frac{1 + \|h_{\bar{z}}/h_z\|_{\infty}}{1 \|h_{\bar{z}}/h_z\|_{\infty}}, h \in [f]$: weakly x, y-differentiable (ACL), where $K(F) = \frac{1 + k}{1 k}$.

Flat

By Teichmüller's theorem, the **forgetful functor** $\underline{\mathbf{Flat}} \to \underline{\mathbf{Teich}} : (R, \phi) \mapsto R$ embeds all arrows but rotations. For each fixed (R, ϕ) , it induces an embedding ι_{ϕ} of $\mathbb{H} = \{_{\mathrm{HTrans.}} \setminus \underline{\mathbf{rotations}}\}$ into T(R).

$$\underbrace{\iota_{\phi}(\mathbb{H})}_{(R,\phi)} \xrightarrow{f_{[\gamma]}} \underbrace{(R_{t},\phi_{t})}_{(R_{t},\phi_{t})} \longrightarrow \cdots$$

$$\begin{cases}
\text{obj: Flat surfaces} \\
\text{arr: }_{\text{HTrans.}} \setminus \text{affine deformation}/_{\text{rotation}} \\
\text{arr}^{2} : \text{ pullback of } \text{Arr}((R,\phi),(R,\phi)) \\
\text{= M\"obius transformation of } \Gamma(R,\phi)^{*}
\end{cases}$$

The group $\Gamma(R,\phi) := D(\operatorname{Arr}(R,\phi;R,\phi)) < PSL(2,\mathbb{R})$ that acts on $\mathbb{H} = \operatorname{Arr}(R,\phi;-) \hookrightarrow T(R)$ as 2-arrows is called the **Veech group** of (R,ϕ) . It is the group of matrices of affine self-symmetry.

Arrows of **Teich** (=higher arrows of **Riemann**) are understood as follows.

Proposition 6 (Benirschke-Serván [3], 2023) In case $2g - 2 + n \ge 3$, any d_T -isometric embedding $T(R) \hookrightarrow T(\hat{R})$ arises from a covering construction up to pre-/post- compositions of MCGs. It is given by a map

$$h^*: T(R) \to T(\hat{R}): [R \xrightarrow{f} S] \mapsto [\hat{R} \xrightarrow{\hat{f}} \hat{S}] \text{ s.t. } (\hat{S} \xrightarrow{\hat{f}^{-1}} \hat{R} \xrightarrow{h} R \xrightarrow{f} S): \text{holomorphic}$$

for some holomorphic covering $h: \hat{R} \to R$ of totally marked surfaces $(\partial R \subset \operatorname{Crit}(h), \, \partial \hat{R} = h^{-1}(\partial R))$, in combination with forgetting marked points $\left(T(S \setminus B) \xrightarrow{h^*} T(\hat{S} \setminus h^{-1}(B))\right) \mapsto \left(T(S) \xrightarrow{h_F^*} T(\hat{S})\right)$.

Proposition 7 (Haiden-Katzarkov-Kontsevich [9], 2017) For a marked surface of finite type, the moduli space of marked flat structures is bianalytically embedded into the set of stability conditions of the Fukaya category of S.

Surface	Triangulated category
mapping class group	group of autoequivalences
simple curve c	spherical object C
intersection number $i(c_1, c_2)$	$\dim \operatorname{Arr}^*(C_1, C_2)$
flat metric μ	stability condition σ
μ -geodesic	σ -semistable object
$\operatorname{length}_{\mu}(c)$	$\operatorname{mass}_{\sigma}(C)$

Table 1 (Heng [10]) stability condition theory: categorical version of Teichmüller theory

2 Voronoi decomposition and Edwards-Sanderson-Schmidt method

Definition 8 We denote by Q_g the set of flat surfaces of genus g. We denote by \mathcal{A}_g (resp. $\mathcal{Q}_g := Q_g \setminus \mathcal{A}_g$) the subset of abelian (resp. non-abelian) flat surfaces in Q_g . For $\mathcal{H} = Q, \mathcal{A}, \mathcal{Q}$, the **stratum** $\mathcal{H}_g(k_1, ..., k_n) \subset \mathcal{H}$ is defined by assigning singular orders $k_1, ..., k_n$ satisfying the Riemann-Hurwitz formula $\sum k_i = 4g - 4$.

(Hubbard-Masur, Veech[6]) The stratum $A_g(k_1,...,k_n)$ is a complex (2g-1+n)-dimensional orbifold locally parametrized by the **period map**

$$\Pi(R,\omega) := ([c] \mapsto \int_c \omega) \in H^1(R,\mathrm{Sing}(R,\omega);\mathbb{C}) \cong \mathbb{C}^{2g-1+n}.$$

For each $(R, \phi) \in \mathcal{Q}_g(k_1, ..., k_n)$, an analytic continuation of $\sqrt{\phi}$ defines a **canonical double** $\pi : \hat{R} \to R$ and an abelian flat surface $(\hat{R}, \hat{\phi} = \pi^* \phi) \in \mathcal{A}_{\hat{g}}(\hat{k}_1, ..., \hat{k}_{\hat{n}})$. The Riemann-Hurwitz formula implies $2\hat{g} - 1 + \hat{n} = 4g - 3 + 2n$, and every local image of Π splits into two eigenspaces $\Pi(\mathcal{A})_{\text{local}} \oplus \Pi(\mathcal{Q})_{\text{local}} \subset \mathbb{C}^{2g-1+n} \oplus \mathbb{C}^{2g-2+n}$ w.r.t. the linear involution $\sigma : \sqrt{\phi} \mapsto -\sqrt{\phi}$. In particular, the non-abelian stratum $\mathcal{Q}_g(k_1, ..., k_n)$ is a complex (2g - 2 + n)-dimensional orbifold.

flat surface	stability condition
direction in the canonical trivialization	grading
local 2π -rotation z	shift functor [1]
geodesics of direction θ ; $\xrightarrow{z} \theta + 2\pi$	semistable objects of phase $\frac{\theta}{2\pi}$; $\frac{[1]}{2\pi}$ $\frac{\theta}{2\pi}$ + 1
period map Π	central charge Z
return to canonical double	base change $\mathbb{Z} \mapsto \mathbb{Z} \otimes_{\mathbb{Z}_2} \sigma$

Definition 9 A geodesic connecting two singularities is called a saddle connection. A geometric triangulation (i.e. all edges are geodesics) is called **Delaunay** if no circumcircle contains a vertex in its interior. Delaunay triangles sharing common circumcircle are called **degenerate**. We say that a flip replaces two triangles pqr, rsp by qrs, spq.

Figure 2 Delaunay triangulation and flip. Voronoi decomposition is obtained by prependicular bisectors of edges.

The **Voronoi decomposition** of a flat surface (R, ϕ) with $Sing(R, \phi) = \{p_1, ..., p_n\}$ is the cell decomposition whose 2-cells C_{p_i} , i = 1, ..., n are given by

$$C_{p_i} := \Big\{ x \in R \mid \exists ! \text{ shortest saddle connection from } x \text{ to } \operatorname{Sing}(R, \phi) \text{ with terminus } p_i \Big\}.$$

It is combinatorially dual to the Delaunay triangulation of (R, ϕ) .

Definition 10 The canonical surface of the stratum $Q_g(k_1,...,k_n)$ is the infinite flat surface

$$\Delta = \Delta(k_1, ..., k_n) = \bigsqcup_{i=1}^n \Delta_i := \bigsqcup_{i=1}^n (\mathbb{C}, z^{k_i} dz^2).$$

We have $\operatorname{Htrans}(\Delta) \cong \prod_{i=1}^n C_{2(k_i+1)} \times \prod_{t=1}^\infty \operatorname{Sym}\{i \mid k_i = t\}$, where each $C_{2(k_i+1)}$ acts on Δ_i by π -rotation and each $\operatorname{Sym}\{i \mid k_i = t\}$ permutates Δ_i 's of the same degree.

Lemma 11 There exists a unque embedding $\iota = \iota_{(R,\phi)}$ of Voronoi 2-cells C_{p_i} into Δ_i modulo $\operatorname{Htrans}(\Delta)$. The embedding ι extends to any star-like region in R^* , and it follows that $(R,\phi) \cong \left(\bigsqcup_{i=1}^n \overline{\iota(C_{p_i})} \right) /_{\sim}$ for a suitable edge identification \sim .

Figure 3 Voronoi decomposition and embedded image of C_{p_i} in Δ_i .

Definition 12 Fix an embedding $\iota = \iota_{(R,\phi)}$ in Lemma 11. For each oriented saddle connection $s(p_i \to p_j)$, let $\iota(s) \in \Delta_i$ be the extension of $\iota \mid_{C_{p_i}}$ along s. The inverse is denoted by $s^{-1}(p_j \to p_i)$ where $\iota(s^{-1}) \in \Delta_j$. We define

$$\begin{split} \widehat{\mathcal{M}}(R,\phi) &:= \Big\{ (\iota(s),\iota(s^{-1})) \in \Delta \times \Delta \ \big| \ s : \text{ori. saddle conn. on } (R,\phi) \Big\}, \\ \widehat{\mathcal{S}}(R,\phi) &:= \Big\{ (\iota(s),\iota(s^{-1})) \in \widehat{\mathcal{M}}(R,\phi) \ \big| \ s : \text{prep. bisector of a Voronoi 1-cell} \Big\}. \end{split}$$

The finite set $\widehat{\mathcal{S}}(R,\phi)$ is called the set of **Voronoi staples** of (R,ϕ) .

Each $(\iota(s), \iota(s^{-1})) \in \widehat{\mathcal{M}}(R, \phi), (p_1 \xrightarrow{s} p_2)$ consists of the following data modulo HTrans(Δ)-action.

- the domain p_1 and the codomain p_2
- the passing sheets of Δ_1 and Δ_2 ; in $\mathbb{Z}/(k+2)\mathbb{Z}$
- the holonomy vector $hol(s) = \int_s \sqrt{\phi} \in \mathbb{C}$

Lemma 13 $(R_1, \phi_1), (R_2, \phi_2)$ are equal in <u>Flat</u> if and only if $\widehat{\mathcal{S}}(R_1, \phi_1), \widehat{\mathcal{S}}(R_2, \phi_2)$ are HTrans(Δ)-equivalent.

Proposition 14 (Edwards-Sanderson-Schmidt [5], 2022) A matrix $A \in PSL(2,\mathbb{R})$ belongs to $\Gamma(R,\phi)$ if and only if

$$\exists \gamma \in \operatorname{Htrans}(\Delta) \text{ s.t. } \gamma(A \cdot \widehat{\mathcal{S}}(R, \phi)) \subset \widehat{\mathcal{M}}(R, \phi). \tag{1}$$

Furthermore, for $\|\begin{bmatrix} a & b \\ c & d \end{bmatrix}\|_{\text{Frob}} := \sqrt{a^2 + b^2 + c^2 + d^2}$ and $\operatorname{Sys}(R, \phi) := \min\{l(s) | s : \text{saddle conn. of } (R, \phi)\}$ we have

$$\operatorname{diam}(A \cdot \widehat{\mathcal{S}}(R, \phi)) < ||A||_{\operatorname{Frob}} \cdot \operatorname{Sys}(R, \phi). \tag{2}$$

Example D (Cathedral polygon [McMullen-Mukarel-Wright, 2017]) The cathedral polygon $\hat{C}(a,b)$, a,b>0 is a flat surface in $\mathcal{A}_4(4^3,0^3)$. It is the canonical double of the flat surface C(a,b) in $\mathcal{Q}_1(-1^3,1^3)$ shown below.

Figure 4 Voronoi decomposition of C(a,b). There are just n staples emanating from an n-gon Voronoi 2-cell.

For each a>0, the set $\Gamma^a(R,\phi):=\{A\in PSL(2,\mathbb{R})\mid \exists \gamma\in \operatorname{Htrans}(\Delta) \text{ s.t. } \gamma(A\cdot\widehat{\mathcal{S}}(R,\phi))\subset\widehat{\mathcal{M}}(R,\phi) \text{ and } \|A\|_{\operatorname{Frob}}< a\}$ is a computable, finite subset in $\Gamma(R,\phi)$. Denote its convex hull by $\Omega(\Gamma^a)=\bigcap_{A\in\Gamma^a}\{\tau\in\mathbb{H}\mid d_{\mathbb{H}}(i,\tau)\leq d_{\mathbb{H}}(\gamma_A(i),\tau)\}.$

Proposition 6 (Edwards-Sanderson-Schmidt [5], 2022) If $a \ge \sqrt{2}$ satisfies

$$\mu_{\mathbb{H}}(\Omega(\Gamma^a)) < 2\mu_{\mathbb{H}}\left(\Omega(\Gamma^a) \cap B\left(i, \log\sqrt{\frac{a^2 - \sqrt{a^4 - 4}}{2}}\right)\right)$$
(3)

then, $\Gamma^a(R,\phi)$ generates $\Gamma(R,\phi)$. In particular, $\Gamma(R,\phi)$ is a lattice in this case.

Figure 5 Lattice test (3): cited from Edwards-Sanderson-Schmidt [5, Fig. 7]

3 Main result

3.1 Origami and Delaunay triangulation

Fix $d \in \mathbb{N}$ and let $\Lambda := \{\pm 1, \dots, \pm d\}$, $\mathfrak{S} := \operatorname{Sym}(\Lambda)$. A flat surface obtained by gluing d unit square cells at edges by half-translations is called an **origami** of degree d. The Veech group of an origami is a lattice in $PSL(2,\mathbb{Z})$. Möller [16] showed that the $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ -action respects the Teichmüller embedding of the arithmetic curve $\mathbb{L}/\Gamma(\mathcal{O}) \hookrightarrow M_{g,n}$.

Example D For $x, y \in S_d$, an abelian origami (x, y) is defined by the gluing rule (right edge of $i \leftrightarrow$ left edge of x(i)) and (upper edge of $i \leftrightarrow$ lower edge of y(i)), where the d squares are labelled by i = 1, ..., d. Its Veech group is a stabilizer under the following $SL(2, \mathbb{Z}) \cong \text{Out}^+(F_2)$ -action (Schmithüsen[17]).

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} (x, y) = (x, xy), \ \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} (x, y) = (y, x^{-1}),$$

Figure 6 Abelian origami (x, y) where x = (1)(2 3 4), y = (1 2)(3 4).

Example E (K. 2023 [12]) All possible patterns of origamis are obtained by considering the cut-and-paste construction with respect to the origami (x, y) and all the negative cells, where $x, y \in S_d < \mathfrak{S}_{\mathrm{odd}}$, $\varepsilon \in \{\pm 1\}_{\mathrm{odd}}^{\Lambda}$. In the construction, The canonical double is represented by the abelian origami $(x^{\mathrm{sign}}, \varepsilon y^{\varepsilon} \varepsilon (y^{\varepsilon})) \in \mathfrak{S} \times \mathfrak{S}$.

Figure 7 Cut-and-paste construction for the case $x=(1)(2\ 3\ 4),\ y=(1\ 2)(3\ 4),\ \varepsilon=(+,+,+,-).$

- In the step (i), the upper side s of the 4th cell is paired with the lower side s' of the 3rd cell.
- In the step (ii), the vertical reflection ι is applied to the 4th cell.
- In the step (iii), the sides $\iota(s)$ and s' are glued by a half-translation.

Proposition 7 (K. [13]) Let $\mathfrak{S}^i := \{ \sigma \in \mathfrak{S} : \text{fixed-point-free, order 2} \}$. There is one-to-one correspondence between HTrans-classes of origamis and \mathfrak{S} -conjugacy classes of tuples of $\mu, \nu, \tau \in \mathfrak{S}^i$ with the relationships in the following table. The canonical double of \mathcal{O} is the abelian origami $(x_{\mathcal{O}}, y_{\mathcal{O}})$. We have $\mu = z_{\mathcal{O}}y_{\mathcal{O}}, \nu = x_{\mathcal{O}}^{-1}z_{\mathcal{O}}, \tau = x_{\mathcal{O}}^{-1}z_{\mathcal{O}}y_{\mathcal{O}}$, and $z_{\mathcal{O}}^2 = x_{\mathcal{O}}y_{\mathcal{O}}x_{\mathcal{O}}^{-1}y_{\mathcal{O}}^{-1}$.

$\lambda \in \Lambda$	$\operatorname{half-square}({\scriptstyle \trianglerighteq \triangledown})$	μ, ν, au	reflection along edges
$\lambda \cdot \langle \mu \rangle$	horiz. λ -edge	$x_{\mathcal{O}} := \mu \tau$	horiz. translation
$\lambda \cdot \langle \nu \rangle$	vert. λ -edge	$y_{\mathcal{O}} := \nu \tau$	vert. translation
$\lambda \cdot \langle \tau \rangle$	λ -cell	$z_{\mathcal{O}} := \mu \tau \nu$	π -rotation arr. cone
$\lambda \cdot \langle x_{\mathcal{O}} \rangle$	horiz. λ -cylinder	$\#(\lambda \cdot \langle x_{\mathcal{O}} \rangle)$	cylinder width
$\lambda \cdot \langle y_{\mathcal{O}} \rangle$	vert. λ -cylinder	$\#(\lambda \cdot \langle y_{\mathcal{O}} \rangle)$	cylinder width
$\lambda \cdot \langle z_{\mathcal{O}} \rangle$	$\lambda ext{-cone}$	$\#(\lambda \cdot \langle z_{\mathcal{O}} \rangle)$	deg(cone)+2

Figure 8 (x, y, z) for the origami (x, y, z): $\mu \tau \nu(1) = \nu \mu \tau(1)$ in this case.

Let $\Theta := \mathfrak{S}^i \times \mathfrak{S}^i \times \mathfrak{S}^i / \mathfrak{S}^{\mathrm{conj}}$ and $\tau = -1 := (\lambda \mapsto -\lambda) \in \mathfrak{S}^i$. Then, we have $(\mu, \nu, \tau) = (x\tau, y\tau, \tau) = (-x, -y, -1)$.

Figure 9 The ($\triangle \neg$)-Delaunay triangulation of origami (μ, ν, τ). The flip at the square (1(κ), $\tau(\kappa)$) is represented by the ($\triangle \neg$)-Delaunay triangulation of the origami given by the cut-and-paste construction in Example E.

Proposition 9 The universal Veech group $PSL(2,\mathbb{Z}) = \langle T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rangle$ acts on $\mathcal{O} = (\mu, \nu, \tau) \in \Theta$ as follows.

$$\begin{cases} T(\mu, \nu, \tau) = (\mu^* \tau, \nu, \mu) \\ S(\mu, \nu, \tau) = (\tau^* \nu, \mu, \tau) \\ TS(\mu, \nu, \tau) = (\nu, \tau, \mu) \end{cases} \begin{cases} T(x, y, z) = (x, yx^{-1}, z) \\ S(x, y, z) = (y, x, y^{-1}zy) \\ TS(x, y, z) = (yx^{-1}, x^{-1}, z^{-1}) \end{cases}$$

outline of proof) One gets the formulae for $(\triangle \neg)$ -Delaunay triangulation of $T\mathcal{O}, S\mathcal{O}$ from a local picture below.

Figure 10 T (resp. S)-affine deformation of (μ, ν, τ) is the mirror of (τ, ν, μ) (resp. (ν, μ, τ)).

The simulatenous flip of (μ, ν, τ) at all cells gives the $(\nabla \Delta)$ -Delaunay represented by the mirror image of the origami $(\tau^*\mu, \nu, \tau)$. The formulae for x, y, z follows from $\mu = zy$, $\nu = x^{-1}z$, $\tau = x^{-1}zy$.

Figure 11 The simulatenous flip of (μ, ν, τ) is the mirror of $(\tau^*\mu, \nu, \tau)$.

3.2 Edwards-Sanderson-Schmidt method in terms of category

We will construct $\widehat{\mathcal{M}}$, $\widehat{\mathcal{S}}$ for origamis. Assume that all the corner points of squares are marked. Though singularities of order 0 should be removed with Veech groups in mind, our assumption does not matter because these marked points form a $PSL(2,\mathbb{Z})$ -invariant set. We can align the Voronoi staples with the sheet cuts in this way.

Definition 10 For an origami $\mathcal{O} = (\mu, \nu, \tau) \in \Theta$, denote $x = x_{\mathcal{O}}, y = y_{\mathcal{O}}, z = z_{\mathcal{O}}, Z := \langle z \rangle$. We define a **groupoid** $\mathcal{G}_{\mathcal{O}}$ equipped with 2-arrows (ribbon-graph structure) and 3-arrows (relabeling) as follows.

$$\begin{cases} \operatorname{Obj}_{\mathcal{G}_{\mathcal{O}}} = \Lambda/Z \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}} = \langle \lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z \mid \lambda \in \Lambda, \sigma = \mu, \nu, \tau \rangle \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}}^{2} = \{ \lambda^{\sigma} \to (\lambda z)^{\sigma} \} \\ \operatorname{Arr}_{\mathcal{G}_{\mathcal{O}}}^{3} = \mathfrak{G}\text{-conjugate} \end{cases}$$

Arrows arround vertices λZ , $\lambda \in \Lambda$ are placed as follows. We have $\# \operatorname{Arr}(\lambda Z, -) = 3 \# \lambda Z = 3(\operatorname{ord}_{\lambda Z}(\phi) + 2)$.

By $\nu = x^{-1}z$, $\mu = y^{-1}z^{-1}$, and proposition 16, arrows are regarded as local-translations.

We may define a homomorphism $h: \operatorname{Arr}(\lambda Z, -) \to (\mathbb{C}, +)$ by $h(\lambda^x) = 1$, $h(\lambda^y) = i$ and commutativity $h(\Delta) = h(\mathcal{P}) = 0$. We obtain $\widehat{\mathcal{M}}^*(\mathcal{O}) := (\mathcal{G} \times h)_{\mathcal{O}} \in \mathbf{Groupoid} \times (\mathbb{C}, +)$ as follows; vector asigned to each arrows

By replacing the arrow set with $\operatorname{Arr}_{G_{\mathcal{O}}} = \{\lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z \mid \lambda \in \Lambda, \sigma = \mu, \nu, \tau\}$, we get $\widehat{\mathcal{S}}^{*}(\mathcal{O}) := (G \times h)_{\mathcal{O}} \in \underline{\mathbf{Graph}} \times (\mathbb{C}, +)$. As explained as adjunction $\underline{\mathbf{Graph}} \rightleftharpoons \underline{\mathbf{Category}}$ [15], $\widehat{\mathcal{S}}^{*}$ is a "finite generating system" of $\widehat{\mathcal{M}}^{*}$.

Theorem 11 $\widehat{\mathcal{M}}^* = (\mathcal{G} \times h)$ is a functor $\underline{\mathbf{Flat}} \supset \Theta \ (\textit{origamis}) \to \mathbf{Groupoid} \times (\mathbb{C}, +)$ such that

1.
$$\widehat{\mathcal{M}}^*(\mathcal{O}_1 \xrightarrow{f} \mathcal{O}_2) = 1 \times (D_f)_{\text{linear}},$$

2.
$$\mathcal{O}_1 = \mathcal{O}_2 \Leftrightarrow \widehat{\mathcal{M}}^*(\mathcal{O}_1) = \widehat{\mathcal{M}}^*(\mathcal{O}_2) \Leftrightarrow \widehat{\mathcal{S}}^*(\mathcal{O}_1) \subset \widehat{\mathcal{M}}^*(\mathcal{O}_2)$$
, and

3.
$$A \in \Gamma(\mathcal{O}) \Leftrightarrow A\widehat{\mathcal{S}}^*(\mathcal{O}) \subset \widehat{\mathcal{M}}^*(\mathcal{O})$$
.

Note that the inclusions in 2. 3. implies that the arrows are embedded modulo $\cong \operatorname{Htrans}(\Delta)$; 3-arrows preserving 2-arrows.

	,	
Edwards-Sanderson-Schmidt method	categorical version for origamis	
flat surface (R, ϕ)	origami $\mathcal{O} = (\mu, \nu, \tau)$	
singularity p	orbit λZ	
Voronoi staple $(\iota(s), \iota(s^{-1}))$	generating arrow $\lambda Z \xrightarrow{\lambda^{\sigma}} \lambda \sigma Z$	
saddle connection $(\iota(s), \iota(s^{-1}))$	arrow (piecewise line)	
sheet transition on Δ	$\operatorname{arrow}^2 \lambda^{\sigma} \to (\lambda z)^{\sigma}$	
automorphism $(Htrans(\Delta))$	arrow ³ (\mathfrak{S} -conjugate)	
combinatorial structure of $\widehat{\mathcal{M}}$, $\widehat{\mathcal{S}}$	groupoid \mathcal{G} , group G	
holonomy $(hol(s), hol(s^{-1}))$	vector $h(\lambda^{\sigma})$	
finite bound for $A\widehat{\mathcal{S}}$	finite arrows of bounded length	

Table 2 categorical version of Edwards-Sanderson-Schmidt method

参考文献

- [1] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Amer. Math. Soc., Providence, RI, 1966.
- [2] J. P. Bowman: Teichmüller geodesics, Delaunay triangulations, and Veech groups. Ramanujan Math. Soc. Lect. Notes Ser., 10 (2010), 113–129.
- [3] F. Benirschke, C. A. Serván: Isometric embeddings of Teichmüller spaces are covering constructions. arXiv.2305.04153, 2023.
- [4] C. J. Earle, F. P. Gardiner, Geometric isomorphisms between infinite dimensional Teichmüller spaces, Trans. Amer. Math. Soc., 348 (1996), 1163–1190.
- [5] B. Edwards, S. Sanderson, and T. A. Schmidt: Canonical translationsurfaces for computing Veech groups. Geom. Dedicata, 216(5): 60, 2022.
- [6] G. Forni and C. Matheus: Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, *Journal of Modern Dynamics*, 8 (2014), no. 3-4, 271–436.
- [7] F. P. Gardiner, N. Lakic: Quasiconformal Teichmüller Theory, Amer. Math. Soc., Providence, RI, 2000.
- [8] A. Hatcher: Algebraic topology, Cambridge University Press, Cambridge, 2002.
- [9] F. Haiden, L. Katzarkov, M. Kontsevich: Flat surfaces and stability structures. Publ. Math. IHES 126, 247–318 (2017).
- [10] E. X. C. Heng: Categorification and Dynamics in Generalised Braid Groups, *PhD thesis*, *Australian National University*, 2023.
- [11] F., Herrlich, G. Schmithüsen: Dessins d'enfants and origami curves, IRMA Lect. Math. Theor. Phys., 13, 767–809 (2009)

- [12] S. Kumagai: Calculation of Veech groups and Galois invariants of general origamis. *Accepted for publication of Kodai Math Journal*, arXiv.2006.00905, 2023.
- [13] S. Kumagai: General origamis and Veech groups of flat surfaces. arXiv.2111.09654, 2021.
- [14] H. Masur and J. Smillie: Hausdorff dimension of sets of nonergodic measured foliations. Ann. Math. 134, 455–543, 1991.
- [15] S. MacLane: Categories for the working mathematician. Graduate texts in mathematics 5, Springer-Verlag, 1971.
- [16] M. Möller: Teichmüller curves, Galois actions and \widehat{GT} -relations. Math. Nachr. 278, no.9, 1061–1077 (2005)
- [17] G. Schmithüsen: An algorithm for finding the Veech group of an origami. Experiment. Math. 13, no. 4, 459–472, 2004