

Institute of Physics and Technology

Intellectual Data Analysis

Practice 1: Data Visualization and Preprocessing

Dr. Nataliya K. Sakhnenko

Data Analysis Steps

Recap (Lc1):Tabular data

Feature is an individual measurable property or characteristic of a phenomenon being observed.

- Let X be object
- f: X -> D
- feature vector $(f_1(x), f_2(x), ..., f_n(x))$

•
$$\begin{pmatrix} f_1(x_1) & f_2(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_m) & f_2(x_m) & \dots & f_n(x_m) \end{pmatrix}$$
 is feature set

• X_{mxn} , m is number of examples(objects), n is number of features

Tabular Data:

- Rows = samples / observations
- Columns = features / variables
- Each row represents one instance / data point
- Each column stores a specific attribute / feature

Recap (Lc1): Supervised and unsupervised learning

➤ In supervised learning the training data includes the desired solutions, called labels

➤ In unsupervised learning the training data is unlabeled

Supervised Learning

Unsupervised Learning

Data Visualization and Preprocessing Tools

- > pandas data loading, cleaning, transformation
- > NumPy numerical computations, arrays & matrices
- matplotlib basic plots (line, bar, scatter, histograms)
- > seaborn statistical plots, heatmaps, pairplots
- scikit-learn (sklearn.preprocessing) scaling, normalization, encoding, missing values

Pandas lib

pandas is an open source library providing high-performance, easy-to-use data structures and data analysis tools for the Python

Read a commaseparated values (csv) file into DataFrame.

	id	iv2	rt			
count	120.000000	120.00000	120.000000			
mean	9.500000	2.00000	877.587425			
std	5.790459	0.81992	309.293048			
min	0.000000	1.00000	283.240752			
25%	4.750000	1.00000	582.630955			
50%	9.500000	2.00000	902.719888			
75%	14.250000	3.00000	1114.050194			
max	19.000000	3.00000	1472.688933			

pandas.DataFrame.head()

Return the first *n* rows

	Name	Team	Number	Position	Age	Height	Weight	College	Salary	
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0	
1	Jae Crowder	Boston Celtics	Celtics 99.0		25.0	5.0 6-6 235.0		Marquette	6796117.0	
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN	
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0	
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0	

pandas.DataFrame.describe()

Generate descriptive statistics

Tabular data

Common Issues in Tabular Data:

- ✓ **Incomplete** missing or null values in some fields
- ✓ Noisy random errors, typos, or extreme outliers
- ✓ Inconsistent conflicting or duplicated information (e.g., mismatched dates, names, or formats)
- ✓ **Imbalanced / skewed data** one group is much more frequent than others (e.g., 90% of survey answers are "Yes", only 10% are "No")
- ✓ Irrelevant or redundant features columns that don't add useful information or repeat existing ones

Data cleaning

Outliers detection

Three sigma rule

Normally data with $|x - \mu| > 3\sigma$ are considered as outliers

Data cleaning

Missing data

pandas.DataFrame.dropna()

Remove missing values.

- may be deleted
- may be filled by:
 - ✓ the attribute mean
 - ✓ the attribute mean for all samples belonging to the same class
 - ✓ or other

pandas.DataFrame.fillna() Fill missing values

-	col1	col2	col3	col4	col5			col1	col2	col3	col4	col5
0	2	5.0	3.0	6	NaN	df.fillna(0)	0	2	5.0	3.0	6	0.0
1	9	NaN	9.0	0	7.0		1	9	0.0	9.0	0	7.0
2	19	17.0	NaN	9	NaN	:	2	19	17.0	0.0	9	0.0

How to Handle Imbalanced Data

- Collect more data if possible, gather additional samples for rare cases
- > Oversampling synthetically generate more examples of the minority group
- ➤ **Undersampling** reduce the number of majority group examples
- Class weights give more importance to underrepresented groups in model training
- > Stratified sampling keep the same proportion of groups in train/test splits

Strata — groups of data formed according to a specific attribute (e.g., gender, city, age group).

Data Types in Tabular Data

- Numeric: integers, floats measurable values for calculations
- Categorical: discrete groups like gender, color, country
- Ordinal: ordered categories, e.g., education level
- > Textual/String: free-form text data
- ➤ Date/Time: timestamps, can be split into year, month, weekday, etc.

sklearn.preprocessing

Encoding Categorical Data:

- ➤ OneHotEncoder for nominal (unordered) categories
- OrdinalEncoder for ordinal (ordered) categories
- ➤ LabelEncoder for the target variable (y), sometimes for binary features

One-Hot Encoding


```
import pandas as pd
from sklearn.preprocessing import
OneHotEncoder
data = pd.DataFrame({"color": ["red",
    "green", "blue", "red"]})
encoder = OneHotEncoder(sparse_output=False)
encoded =
encoder.fit_transform(data[["color"]])
```

```
[[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]
[0. 0. 1.]]
```

```
import pandas as pd
from sklearn.preprocessing import OrdinalEncoder
data = pd.DataFrame({"size": ["small", "medium", "large", "medium"]})
encoder = OrdinalEncoder(categories=[["small", "medium", "large"]])
encoded = encoder.fit_transform(data[["size"]])
print(encoded)
```

Data Normalization

After min-max scaling, all feature values are within the [0, 1] range

After standardization, a feature has mean 0 and variance 1

Scaling & Normalization

- •StandardScaler standardization (mean = 0, std = 1)
- •MinMaxScaler scaling to range [0, 1]

from sklearn.preprocessing import StandardScaler

Data Visualization: Histogram

- A histogram is an estimate of the probability distribution of a continuous variable.
- To construct a histogram: divide the range of values into bins and draw a rectangle over each bin with a height proportional to its frequency.

seaborn.distplot()

The distributions are clearly different → this feature is informative for the model

Data Visualization: Box Plot

A boxplot is a standardized way of displaying the distribution of data based on a five number summary ("minimum", first quartile (Q1), median, third quartile (Q3), and "maximum").

seaborn.boxplot()

Iris dataset

Plot pairwise relationships in a dataset

seaborn.pairplot()

If colors are well separated \rightarrow the feature is informative.

If colors are mixed \rightarrow the feature is less useful.

Pearson correlation coefficient

$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$

Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations

seaborn.heatmap()

Wine Attributes Correlation Heatmap

- 0.9

- 0.6

- 0.3

- 0.0

- -0.3

-0.6

