Nome: Luís Felipe de Melo Costa Silva

Número USP: 9297961

Lista de Exercícios 1 - MAC0315

1 Exercícios sobre modelagem

1.1

Com os dados apresentados, fiz uma tabela:

Modelo	Valor	Demanda		Diseas de DAM	Disco Dígido	Placa de vídeo
Modelo	Value	min	max	Placas de KAIVI	Disco Kigido	Placa de video
Α	R\$ 800,00	300	700	1	1	1
В	R\$ 1.000,00	500	1200	2	2	1
С	R\$ 1.200,00	400	600	2	1	2

A empresa possui 3000 placas de RAM, 2500 discos rígidos e 2250 placas de vídeo.

Definindo como x a quantidade de modelos A a serem produzidos, como y a de modelos B e como z a de modelos C $(x, y, z \in \mathbb{Z})$, teremos o seguinte programa linear:

$$\max u = 800x + 1000y + 1200z$$

$$\sup 300 \le x \le 700$$

$$500 \le y \le 1200$$

$$400 \le z \le 600$$

$$x + 2y + 2z \le 3000$$

$$x + 2y + z \le 2500$$

$$x + y + 2z \le 2250$$

onde u é o lucro, que queremos maximizar.

1.2

Vamos definir como x_i a variável que indica se a antena i foi instalada, onde:

$$x_i = \begin{cases} 1, & \text{se a antena } i \text{ foi instalada} \\ 0, & \text{c.c.} \end{cases}$$
 (1)

Então, teremos o seguinte programa linear:

$$\min u = \sum_{i=1}^{n} x_i c_i$$
 suj $\sum_{i=1}^{n} x_i : x_i$ atende a região $1 \ge 1$
$$\vdots$$

$$\sum_{i=1}^{n} x_i : x_i \text{ atende a região } m \ge 1$$

onde u é o custo, que queremos minimizar.

1.3

Definindo como x_{ij} a váriavel que indica se o caixeiro-viajante foi da cidade i direto para a cidade j, onde:

$$x_{ij} = \begin{cases} 1, & \text{o caminho vai da cidade } i \text{ para a cidade } j \\ 0, & \text{c.c.} \end{cases}$$
 (2)

O modelo de programação linear usado para a resolução será:

$$\min u = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} x_{ij} c_{ij}$$

$$\sup \sum_{i=1, i \neq j}^{n} x_{ij} = 1 \qquad , j = 1, ..., n$$

$$\sum_{j=1, j \neq i}^{n} x_{ij} = 1 \qquad , i = 1, ..., n$$

$$u_{i} - u_{j} + nx_{ij} \le n - 1, 2 \le i \ne j \le n$$

Queremos minimizar o custo u. As primeiras duas restrições são para garantir que apenas um caminho sai de cada cidade, e apenas um entra na cidade. A última é para garantir que teremos apenas 1 caminho ligando as cidades, e não 2 ou mais caminhos disjuntos fazendo isso, com o uso das variáveis $u_i \in \mathbb{Z}$.

1.4

No período dos n meses, para cada período t, nós queremos minimizar o custo de produção u, que será dado por:

$$\max u = f_t + (p_t + h_t) \cdot (\sum_{i=1}^{n} x_i)$$

$$\sup \sum_{i=1}^{n} x_i \le d_t$$

$$\sum_{i=1}^{n} x_i \le M_t$$

onde x_i é a variável que representa quantas unidades foram produzidas no mês i.

2 Exercícios sobre a estrutura de programação linear

2.1

Vamos aplicar a definição de conjunto convexo aqui, que é:

$$A \subseteq \mathbb{R}^n$$
 é convexo se $x, y \in A \implies \alpha x + (1 - \alpha)y \in A$

Se $a^Tx \geq b$, então $\alpha a^Tx \geq \alpha b$ (I), $\forall \alpha \in [0,1]$. Seja $y \in \mathbb{R}^n$. Se $a^Ty \geq b$, então $\alpha a^Ty \geq \alpha b$, e também $(1-\alpha)a^Ty \geq (1-\alpha)b$, (II) $\forall \alpha \in [0,1]$. Somando as duas retas, temos que $\alpha a^Tx + (1-\alpha)a^Ty \geq b$, que mostra que o conjunto viável é convexo.

2.2

Seja S_i um conjunto convexo para i=1,...,n. Para todo $x,y\in\bigcap_{i=1}^n S_i$ e um $\alpha\in[0,1]$ implica que $\alpha x+(1-\alpha)y\in S_i$, já que S_i é convexo. Portanto, $\alpha x+(1-\alpha)y\in\bigcap_{i=1}^n S_i$, e então, $\bigcap_{i=1}^n S_i$ é convexo.

2.3

2.4

Na forma canônica, o programa fica assim (omitindo x_4 , x_5 e x_6 pois não estão na função objetiva e não interferem no resultado e trocando x_1 por x, x_2 por y e x_3 por z, por conveniência):

$$\label{eq:suj} \begin{aligned} \max \, u &= 10x + 12y + 12z \\ \sup \, x + 2y + 2z - 20 &= -r \\ 2x + y + 2z - 20 &= -s \\ 2x + 2y + z - 20 &= -t \\ x, y, z &\geq 0 \end{aligned}$$

Seguem os tableaux:

	X	у	Z	1
-r =	1	2*	2	-20
-s =	2	1	2	-20
-t =	2	2	1	-20
	10	12	12	u = 0
	X	r	Z	1
-y =	0,5	0,5	1	-10
-s =	1,5	-0,5	1	-10
-t =	1*	-1	-1	0
	4	-6	0	u = 120
	t	r	Z	1
-y =	-0,5	1	1,5	-10
-s =	-1,5	0	1,5*	-10
-x =	1	-1	-1	0
	-4	-2	4	u = 120
	t	r	S	1
-y =	1*	1	-1	0
-Z =	-1	0	2/3	- 20/3
-x =	0	-1	2/3	- 20/3
	0	-2	- 8/3	u = 440/3