Important Concepts in Machine Learning and Deep Learning

Supervised Learning:

Training models using labeled data to predict outcomes or classify data points based on input features.

Unsupervised Learning:

Finding patterns or structures in unlabeled data, such as clustering or dimensionality reduction.

Reinforcement Learning:

Learning optimal actions through rewards and penalties by interacting with an environment.

Overfitting & Underfitting:

Overfitting: Model learns noise and performs poorly on new data. Underfitting: Model is too simple and fails to capture patterns.

Feature Engineering:

Process of selecting, transforming, and creating features to improve model performance.

Model Evaluation Metrics:

Metrics such as accuracy, precision, recall, F1-score, ROC-AUC for classification; MSE, RMSE for regression.

Regularization:

Techniques like L1/L2 penalties and dropout to prevent overfitting by constraining model complexity.

Neural Networks:

Computational models composed of layers of interconnected neurons for learning complex patterns.

Activation Functions:

Functions like ReLU, Sigmoid, and Tanh that introduce non-linearity into neural networks.

Loss Functions:

Functions such as cross-entropy and mean squared error used to quantify prediction errors during training.

Optimizers:

Algorithms like SGD, Adam, and RMSprop used to update model weights by minimizing the loss function.

Convolutional Neural Networks:

Neural networks specialized for grid-like data (images) using convolutional layers to capture spatial hierarchies.

Recurrent Neural Networks:

Neural networks for sequential data (text, time series) using recurrent connections to capture dependencies.

Transfer Learning:

Leveraging pre-trained models on large datasets and fine-tuning them for specific tasks.

Deep Learning Frameworks:

Popular libraries like TensorFlow, PyTorch, and Keras that facilitate building and training neural networks