

Complex Network Systems

Preferential attachment

Ilche Georgievski

2019/2020 Winter Why are hubs and power laws absent in random networks?

Why do so different systems as the WWW or the cell converge to a similar scale-free architecture?

Networks expand through the addition of new nodes

Random network model assumes that there is a <u>fixed</u> number of nodes

In real networks, the number of nodes continually grows through the addition of new nodes

Nodes prefer to link to the more connected nodes

WWW

- Nodes we know are not entirely random: Google, Facebook, Twitter
- Rarely we encounter the billions of less-prominent nodes

Citation network

- The more cited a paper is, the more likely we heard about it

Actor network

 The more movies an actor has played in, the more familiar the casting director is with their skill Random network model assumes that the interaction partners of a node are randomly chosen

Most real networks prefer to link to the more connected nodes

Preferential attachment

Preferential attachment

- Process also known as
 - Rich get richer
 - Matthew effect
 - "For whoever has will be given more, and they will have an abundance. Whoever does not have, even what they have will be taken from them."

Models

G(n,p) ?

Barabási-Albert preferential attachment model

- Nodes are in order $1, 2, \dots, n$
- At step j, let k_i be the indegree of node i < j
- A new node j arrives and creates m out-links
- Probability of j linking to a previous node i is proportional to degree k_i of node i

$$P(j \to i) = \frac{k_i}{\sum_t k_t}$$

Barabási-Albert preferential attachment model

- Nodes are in order $1, 2, \dots, n$
- At step j, let k_i be the indegree of node i < j
- A new node j arrives and creates m out-links
- Probability of j linking to a previous node i is proportional to degree k_i of node i

$$P(j \to i) = \frac{k_i}{\sum_t k_t}$$

Example

Node F arrives

$$P(F \to A) = \frac{1}{7}$$

$$P(F \to D) = 0$$

$$P(F \to B) = \frac{1}{7}$$

$$P(F \to E) = \frac{3}{7}$$

$$P(F \to C) = \frac{2}{7}$$

Each node has an equal number of edges

Probability of choosing any node is 1/3

Add a new node, it will have m edges

• Take m=2

Draw two random elements from the array

Suppose they are B and C

Probabilities of choosing A, B, C, D are 1/5, 3/10, 3/10, and 1/5

Add a new node Draw nodes from the array AABBCC

AABBBCCCDD

AABBBCCCCDDDEE

After a while

Preferential attachment (m = 2)

Random

https://vimeo.com/53071346

Degree dynamics

Degree distribution

$$P(k) = 2m^2k^{-3}$$

• Power-law degree distribution with $\alpha = 3$

Power-law indegree distribution

$$P(k) \cong k^{-(1+\frac{1}{1-p})}$$

Summary

- Is the combination of growth and preferential attachment why networks are scale free?
 - Growth and preferential attachment are jointly needed to generate scale-free networks
 - If both present, they lead to scale-free networks
- All known models and real systems that are scale-free have preferential attachment

Sources

- Leskovec, J. Analysis of Networks, CS224W, Stanford University (2018), http://web.stanford.edu/class/cs224w/
- Mateos, G. Degrees, Power Laws and Popularity, University of Rochester, 2018.
- Zafarani, R., Abbasi, M.A. and Liu, H. Social Media Mining: An Introduction, Cambridge University Press, 2014.
- Barabási, A. Network Science, http://networksciencebook.com