Группа Р3208	К работе допущен
Студент Петров Вячеслав Маркович	Работа выполнена
Преподаватель Сорокина Е. К.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого промежутка времени.

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения определенного промежутка времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина – результат измерения промежутков времени между входящими/выходящими в/из коворкинг людьми.

4. Метод экспериментального исследования.

Многократное прямое измерение промежутков времени и проверка закономерностей распределения исследуемой случайной величины.

5. Рабочие формулы и исходные данные.

• Среднее арифметическое всех результатов измерений

$$\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i$$

• Дисперсия

$$D(t) = \frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2$$

• Выборочное среднеквадратичное отклонение

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

• Максимальное значение плотности распределения

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$$

• Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

• Нормальное распределение, описываемое функцией Гаусса

$$\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t - \langle t \rangle)^2}{2\sigma^2}\right)$$

• Доверительный интервал

$$\Delta_{\langle t \rangle} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	секундомер	цифровой	0 - 45 c	0,1 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Наблюдение за входящими и выходящими людьми в коворкинг ИТМО (Ломоносова, 9). Отмечается время между последними двумя людьми, проходящими через вход. Таким образом, проведено 50 измерений. Если два человека заходят вместе время регистрируется только 1 раз (разница <5 секунд).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1 Результаты прямых измерений.

Nō	t _i , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2$, c^2
1	26,6	0,71	0,50
2	21,3	-4,59	21,09
3	18,2	-7,69	59,17
4	23,9	-1,99	3,97
5	40,3	14,41	207,59
6	30,4	4,51	20,32
7	15,6	-10,29	105,93
8	21,7	-4,19	17,57
9	32,6	6,71	45,00
10	33,1	7,21	51,96
11	42,0	16,11	259,47
12	18,9	-6,99	48,89
13	19,1	-6,79	46,13
14	25,3	-0,59	0,35
15	27,8	1,91	3,64
16	24,6	-1,29	1,67
17	33,2	7,31	53,41
18	37,4	11,51	132,43
19	23,7	-2,19	4,80
20	24,6	-1,29	1,67

21	41,8	15,91	253,06
22	10,3	-15,59	243,11
23	9,1	-16,79	281,97
24	34,1	8,21	67,37
25	21	-4,89	23,93
26	37,8	11,91	141,80
27	24,3	-1,59	2,53
28	22,8	-3,09	9,56
29	26,6	0,71	0,50
30	34,7	8,81	77,58
31	15,9	-9,99	99,84
32	11,9	-13,99	195,78
33	21,3	-4,59	21,09
34	15,7	-10,19	103,88
35	31,7	5,81	33,73
36	36,6	10,71	114,66
37	26,6	0,71	0,50
38	25,7	-0,19	0,04
39	35,4	9,51	90,40
40	29,6	3,71	13,75
41	39,4	13,51	182,47
42	14,8	-11,09	123,03
43	23,8	-2,09	4,38
44	30,6	4,71	22,17
45	34,6	8,71	75,83
46	12,5	-13,39	179,35
47	20,6	-5,29	28,01
48	14,8	-11,09	123,03
49	12,8	-13,09	171,40
50	37,5	11,61	134,75
	$\langle t \rangle_N = 25,89 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0 c$	$\sigma_N = 8,93 \text{ c}$ $\rho_{max} = 0,045 \text{ c}^{-1}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Заполним подвал таблицы 1

Для начала вычислим среднее арифметическое всех измерений:

$$\langle t \rangle_N = \frac{1}{50} \sum_{i=1}^{50} t_i \approx 25,89 \text{ c}$$

Теперь используя $\langle t \rangle_N$ вычислим дисперсию и выборочное среднеквадратичное отклонение:

$$\sigma_N = \sqrt{\frac{1}{50 - 1} \sum_{i=1}^{50} (t_i - 25,89)^2} \approx 8,93 \text{ c}$$

$$D(t) = \frac{1}{50 - 1} \sum_{i=1}^{50} (t_i - 25,89)^2 \approx 79,69 \text{ c}^2$$

Используя значение σ_N вычислим максимальное значение плотности распределения:

$$\rho_{max} = \frac{1}{8,93\sqrt{2\pi}} \approx 0.045 c^{-1}$$

Теперь заполним таблицу 2

Найдём в первом столбце таблицы 1 максимальное t_{max} и минимальное t_{min} значения результатов измерений:

$$t_{max} = 42,0 \text{ c}$$
 $d_{min} = 9,1 \text{ c}$

Разобьём промежуток $[t_{min},t_{max}]$ на m равных интервалов Δt . Так как $\sqrt{N}=\sqrt{50}\approx 7$ примем m=7 откуда получаем:

$$\Delta t = \frac{t_{max} - t_{min}}{m} = \frac{42,0 - 9,1}{7} \approx 4,7 \text{ c}$$

Выделим границы интервалов, используя Δt и занесём в первый столбец таблицы 2

В общем случае:

$$t_{{\scriptscriptstyle \mathrm{H}\mathrm{H}\mathrm{3}}_i} = t_{{\scriptscriptstyle \mathrm{H}\mathrm{H}\mathrm{3}}_{i-1}}$$

$$t_{\text{верх}_i} = t_{\text{низ}_i} + \Delta d$$

Для примера рассчитаем первый интервал:

$$t_{\text{HM3}} = t_{\text{MMH}} = 9.1 \text{ c}$$

$$t_{\text{верх}} = t_{\text{низ}} + \Delta t = 9.1 + 4.7 = 13.8 \text{ c}$$

Вычислим ΔN — количество результатов измерений, попавших в каждый из интервалов, и занесём эти значение во второй столбец таблицы 2

Для примера в первый интервал [9,1; 13,8] попадает 5 значений результатов измерений.

Для каждого из интервалов вычислим опытное значение плотности вероятности и заполним третий столбец таблицы 2:

Для первого интервала получим:

$$\frac{\Delta N}{N\Delta t} = \frac{5}{50 \cdot 4.7} = 0.021 \text{ c}^{-1}$$

Теперь для каждого интервалов вычислим значение t, соответствующее середине данного интервала и заполним четвертый столбец таблицы 2. Вычислять t будем как среднее арифметическое верхней и нижней границы интервала

Для первого интервала получим:

$$t = \frac{9.1 + 13.8}{2} = 11.45 c$$

Наконец для каждого интервала вычислим значение ho(t) нормального распределения функции Гаусса и заполним последний столбец таблицы 2.

Для первого интервала получим

$$\rho(t) = \frac{1}{8,93 \cdot \sqrt{2\pi}} exp\left(-\frac{(11,45 - 25,89)^2}{2 \cdot 8,93^2}\right) = 0.012 \text{ c}^{-1}$$

Таблица 2 Данные для построения гистограммы

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	ρ , c ⁻¹
9,10	5	0,021	11,45	0,012
13,80		0,021	11,10	0,012
13,80	6	0,026	16,15	0,025
18,50		0,026	10,15	0,025
18,50	8	0,034	20,85	0,038
23,20	•	0,034	20,65	0,036
23,20	12	0.051	25.55	0.045
27,90	12	0,051	25,55	0,045
27,90	E	0.001	20.25	0.040
32,60	5	0,021	30,25	0,040
32,60	0	0.024	24.05	0.007
37,30	8	0,034	34,95	0,027
37,30		0.000	00.05	0.044
42,00	6	0,026	39,65	0,014

Заполним таблицу 3

Вычислим границы стандартных интервалов

Для первого интервала получим:

От:
$$\langle t \rangle_N - \sigma = 25,89 - 8,93 = 16,96$$
 с

До:
$$\langle t \rangle_N + \sigma = 25,89 + 8,93 = 34,82$$
 с

Теперь определим количество результатов измерений, попавших в каждый из интервалов, и вычислим вероятность попадания в каждый из интервалов.

Например, для первого интервала получим $\Delta N = 31$. Получаем:

$$\frac{\Delta N}{N} = \frac{31}{50} \approx 0,620$$

Таблица 3 Стандартные доверительные интервалы

	Интер	вал, с	A N/	$\frac{\Delta N}{N}$	Р
	ОТ	до	ΔN		
$\langle t \rangle N \pm \sigma_{\rm N}$	16,96	34,82	31	0,62	0,683
$\langle t \rangle N \pm 2\sigma_{\rm N}$	8,04	43,75	50	1,00	0,954
$\langle t \rangle N \pm 3\sigma_{\rm N}$	-0,89	52,67	50	1,00	0,997

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Рассчитаем среднеквадратичное отклонение среднего значения:

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{50(50-1)} \sum_{i=1}^{50} (t_i - 25,89)^2} = 1,26 c$$

Табличное значение коэффициента Стьюдента $t_{\alpha,N}$ для доверительной вероятности $\alpha=0.95$:

$$t_{\alpha N} = 2.01$$

Рассчитаем доверительный интервал:

$$\Delta_{\langle t \rangle} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 2.01 \cdot 1.26 = 2.54 \text{ c}$$

Определим абсолютную погрешность измерения с учетом доверительного интервала $\Delta_{\langle t \rangle}$ и инструментальной погрешности $\Delta_{ut} = 0.1~c$:

$$\Delta_t = \sqrt{{\Delta_{\langle t \rangle}}^2 + {\left(\frac{2}{3} \cdot \Delta_{\text{M}t}\right)}^2} = \sqrt{2,54^2 + {\left(\frac{2}{3} \cdot 0,1\right)}^2} \approx 2,54 \text{ c}$$

Вычислим относительную погрешность измерения:

$$\varepsilon_t = \frac{\Delta_t}{\langle t \rangle_N} \cdot 100\% = \frac{2,54}{25,89} \cdot 100\% \approx 9,8\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1 Гистограмма и функция плотности распределения

12. Окончательные результаты.

Среднее арифметическое всех результатов измерений с учетом погрешности:

$$t = (25.89 \pm 2.54) c$$
; $\varepsilon_t = 9.8\%$ $\alpha = 0.95$

13. Выводы и анализ результатов работы.

В ходе работы было исследовано распределение случайной величины на примере многократных замеров временного отрезка, получена выборка из 50 измерений. После были вычислены среднее значение, среднеквадратичное отклонение и дисперсия полученной выборки. Результаты прямых измерений, данные для построения гистограммы, стандартные доверительные интервалы были занесены в соответствующие таблицы. Кроме того, я сравнил полученные вероятности для стандартных интервалов с табличными значениями для нормального распределения: видно сходство, что подтверждает случайность измеряемой величины.

На основе заполненных таблиц была построена гистограмма и функция Гаусса. При одинаковых начальных параметрах отмечается их сходство кроме одного промежутка. Также вид функции Гаусса похож на нормальное распределение.

Также, определил значение коэффициента Стьюдента для доверительной вероятности и рассчитал доверительный интервал. И на основе полученных данных произвёл вычисление абсолютной и относительной погрешности измерений.