Основные теоремы дифференциального исчисления

Каширин Кирилл

22 Февраля 2021

Определение 3. Точки локального максимума и минимума называются точками *локального экс- тремума*, а значения функции в них — *локальными экстремумами функции*.

Пример 1. Пусть

$$f(x) = \begin{cases} x^2 & \text{, если } -1 \le x < 2, \\ 4 & \text{, если } 2 \le x \end{cases}$$
 (1)

Для этой функции

x = -1 — точка строгого локального максимума;

x = 0 — точка строгого локального минимума;

x = 2 — точка локального максимума;

x>2 — точки экстремума, являющиеся одновременно точками и локального максимума, и локального минимума, поскольку здесь функция локально постоянна.

Пример 2. Пусть $f(\mathbf{x}) = sin(\frac{1}{x})$ на множестве $\mathbf{E} = \mathbf{R}$ 0. Точки $\mathbf{x} = (\frac{\pi}{2} + 2k\pi)^{-1}$, $k \in Z$ являются точками строгого локального максимума, а точки $\mathbf{x} = (-\frac{\pi}{2} + 2k\pi)^{-1}$, $k \in Z$ строгого локального минимума для f(x) (см. рис. 12).

Определение 4. Точку $x_o \in E$ экстремума функции $f : E \to M$ будем называть точкой внутреннего экстремума, если x_o является предельной точкой как для множества $E_- = \{x \in E \mid x < x_o\}$, так и для множества $E_+ = \{x \in E \mid x > x_o\}$.

В примере 2 все точки экстремума являются точками внутреннего экстремума, а в примере 1 точка ${\bf x}=-1$ не является точкой внутреннего экстремума.

Лемма 1 (Ферма). Если функция $f : E \to M$ дифференцируема в точке внутреннего экстремума $x_o \in E$, то ее производная в этой точке равна нулю: $f'(x_o) = 0$.