Оглавление

Ι	Or	писание конструктора	3					
1 Релейная логика								
II	Л	абораторные работы	7					
2	Калькулятор							
	2.1	Тумблеры	9					
		2.1.1 Практикум	9					
	2.2	Регистр	10					
		2.2.1 Практикум	10					
	2.3	Шина и регистровый файл	12					
		2.3.1 Практикум	12					
	2.4	Унарные логические операции	13					
		2.4.1 Практикум	13					
	2.5 Бинарные логические операции							
		2.5.1 Практикум	15					
	2.6	Сложение	16					
		2.6.1 Практикум	16					
	2.7	Вычитание	17					
	2.8	Целый калькулятор	17					
	2.9	Восьмибитный калькулятор	17					
3	Эле	ементы компьютера	19					
4	Kon	мпьютер	21					

OГЛAВЛЕНИE

Часть I Описание конструктора

Релейная логика

Часть II Лабораторные работы

Калькулятор

2.1 Тумблеры

Модуль с тумблерами используется для ручного включения и выключения реле. Присоединяя его к разным разъёмам, можно задавать четырёхбитное число, либо переключать до четырёх управляющих сигналов.

Проще всего проверить работу тумблеров, подключив их к управляющей шине регистрового модуля, в который вставлены только 4 реле.

2.1.1 Практикум

- 1. Переключать тумблеры. Убедиться, что положение одного тумблера меняет состояние одного реле.
- 2. Запомнить включенное и выключенное состояния тумблера, чтобы позднее не было проблем с управлением другими схемами.

2.2 Регистр

Модуль четырёхбитного регистра состоит из четырёх реле-триггеров, одного реле для обнуления регистра и трёх реле для подключения к шинам данных.

Модуль «Регистр» имеет следующие разъёмы:

- Слева и справа: управляющие сигналы сброса и выборки. Можно подключить тумблеры для ручного включения сигналов. Также можно соединить несколько модулей регистра, чтобы управлять одним набором сигналов сразу для 8, 12 . . . бит.
- Сверху и снизу: три шины данных. Реле регистра могут подключаться к шинам для записи или чтения данных.
- Дополнительные разъёмы с битами 0-3 и 2-3 для чтения или записи значения без подключения к шине.

2.2.1 Практикум

Протестировать работу регистра можно собрав следующую схему:

2.2. РЕГИСТР 11

- \bullet Тумблеры слева управляют работой регистра. Бит 0 обнуление, бит 1 выборка на шину 1.
- Тумблеры сверху нужны для ввода значения регистра. Когда он подключается к шине 1, значения, набранное на тумблерах, записывается в регистр.

Регистр без шины

- 1. Подключить тубмлеры проводом к битам 0-3 вместо шины.
- 2. Набирать значение, убедиться, что биты переключаются в 1, но не возвращаются в 0.
- 3. Обнулить тумблеры с данными.
- 4. Включить и выключить сигнал сброса. Убедиться, что значения всех битов теперь 0.

Регистр с шиной

1. Отключить все управляющие сигналы.

- 2. Набрать значение на тумблерах для данных. Убедиться, что это не влияет на регистр.
- 3. Включить и выключить сигнал выборки на шину 1. Убедиться, что данные записались в регистр.
- 4. Включить и выключить сигнал сброса. Убедиться, что значения всех битов теперь 0.

2.3 Шина и регистровый файл

Несколько регистров можно соединить в регистровый файл. У каждого из регистров есть сигналы выборки на одну из трёх шин.

Если два регистра подключены к одной шине одновременно, то значения одного будут копироваться в другой. Если точнее, включённые биты включают аналогичные в другом регистре, то есть копирование возможно в обе стороны одновременно.

Нулевые биты при этом копироваться не могут. Для записи нулей регистр необходимо сбросить.

2.3.1 Практикум

Запись в регистры:

- 1. Отключить все управляющие сигналы.
- 2. Набрать значение на тумблерах, подключённых к шине данных 1.
- 3. Подключить с помощью тумблера регистр к шине 1. Убедиться, что в него записалось набранное значение.
- 4. Отключить регистр от шины.

5.	Подключить	другой	регистр	к шине	1.	Убедиться,	ОТР	в него	записалось	набранное
	значение.									

1. Отключить все управляющие сигналы.

Копирование значения:

- 2. Подключить регистр с ненулевыми битами к шине 2.
- 3. Подключить пустой регистр к шине 2. убедиться, что он получил такое же значение, что и в первом регистре.
- 4. Отключить все управляющие сигналы.
- 5. Аналогично проверить шину 3.

2.4 Унарные логические операции

Модуль для унарных операций выполняет действия над 4-битным числом: сдвиг вправо и инверсия битов.

Может каскадироваться для сдвига 8-битных чисел.

2.4.1 Практикум

На вход модуля унарных операций подключается модуль с тумблерами. Выходы подключаются к шинам регистра.

Схема:

- 1. Отключить все управляющие сигналы.
- 2. Набрать на тумблерах со входными данными значение 1100.
- 3. Подключить выходной регистр к шине 1. Убедиться, что в него записалось значение 0011 (инверсия).
- 4. Отключить регистр от шины, сбросить его значение.
- 5. Подключить выходной регистр к шине 2. Убедиться, что в него записалось значение 0110 (сдвиг вправо).

2.5 Бинарные логические операции

Модуль логических операций поддерживает вычисление AND, OR и XOR. У модуля есть два четырёхбитных входа и три выхода. Каждый выход отвечает за одну операцию.

2.5.1 Практикум

Ко входам модуля подключаются два модуля с тумблерами, а к выходам — регистр, куда будет записываться результат.

- 1. Отключить все управляющие сигналы.
- 2. Набрать на тумблерах первого операнда значение 1100.
- 3. Набрать на тумблерах второго операнда значение 1010.
- 4. Подключить выходной регистр к шине 1. Убедиться, что в него записалось значение 1000 (AND).
- 5. Отключить регистр от шины, сбросить его значение.
- 6. Подключить выходной регистр к шине 2. Убедиться, что в него записалось значение 1110 (OR).
- 7. Отключить регистр от шины, сбросить его значение.
- 8. Подключить выходной регистр к шине 3. Убедиться, что в него записалось значение 0110 (XOR).

2.6 Сложение

Сумматор складывает два четырёхбитных числа, один бит переноса и выдаёт четырёхбитное число и бит переноса. У модуля есть два четырёхбитный вход и один выход. Каждый выход отвечает за одну операцию.

2.6.1 Практикум

Ко входам модуля подключаются два модуля с тумблерами, а к выходам — регистр, куда будет записываться результат.

- 1. Отключить все управляющие сигналы.
- 2. Установить перемычку для подачи сигнала на CY.
- 3. Набрать на тумблерах первого операнда значение 0011.
- 4. Набрать на тумблерах второго операнда значение 1010.
- 5. Подключить выходной регистр к шине 3. Убедиться, что в него записалось значение 1101.
- 6. Отключить регистр от шины, сбросить его значение.
- 7. Установить перемычку для подачи сигнала на CY.
- 8. Подключить выходной регистр к шине 3. Убедиться, что в него записалось значение 1110.

2.7. ВЫЧИТАНИЕ 17

2.7 Вычитание

Вычитание через сложение с дополнительным обратным кодом

Собрать схему для сложения.

Вычитание с помощью инвертора

2.8 Целый калькулятор

2.9 Восьмибитный калькулятор

Элементы компьютера

Компьютер