How might the Ares V change the need for future Mirror Technology

H. Philip Stahl

For over 30 years, science mission capabilities have been constrained by launch vehicles.

Hubble and Chandra were specifically designed to match Space Shuttle's payload volume and mass capacities.

	Payload Mass	Payload Volume
Space Shuttle Capabilities	25,061 kg (max at 185 km)	4.6 m x 18.3 m
	16,000 kg (max at 590 km)	
Hubble Space Telescope	11,110 kg (at 590 km)	4.3 m x 13.2 m
Chandra X-Ray Telescope	22,800 kg (at 185 km)	4.3 m x 17.4 m
(and Inertial Upper Stage)		

Launch Vehicles Continue to Constrain Missions

Similarly, JWST is sized to the Capacities of Ariane 5

	Payload Mass	Payload Volume
Ariane 5	6600 kg (at SE L2)	4.5 m x 15.5 m
James Webb Space Telescope	6530 kg (at SE L2)	4.47 m x 10.66 m

In the 9 years I've been at NASA the over riding mantra for Space Telescope has been Areal Density.

Ares V delivers 6X more Mass to Orbit

Sun

Earth

Moon

Hubble in LEO

Current Capabilities can Deliver

23,000 kg to Low Earth Orbit 10,000 kg to GTO or L2TO Orbit

5 meter Shroud

Ares V can Deliver

~180,000 kg to Low Earth Orbit ~60,000 kg to L2TO Orbit 10 meter Shroud

L2

1.5 M km from Earth

Ares V offers a New Paradigm

The unprecedented volume and mass capabilities of an Ares V enables an entirely new design paradigm:

Simplicity

Simple high TRL technology offers:

lower mission cost and risk.

Simplicity = Cost Reduction

More Massive Missions do not need to be More Expensive.

Simple, robust, low-risk, high-TRL mission is likely to be low cost.

It is also likely to be more massive than a complex, highrisk, low TRL mission.

The challenge will be to overcome human nature.

Launch Date Constrained Missions Cost Less

Effect of Increased Complexity on Flight System Cost and Mission Success

Bearden, David, "Perspectives on NASA Mission Cost and Schedule Performance Trends", copyright Aerospace Corp., GSFC Symposium, 3 June 2008.

Cost is driven more by Complexity than Mass

Simplicity = Cost Reduction

- Cost models typically estimate that engineering design, AI&T, management, fees and program reserve is 2.5X to 3X the component costs.
- Thus, every \$1 spent at the component level = \$3.5 to \$4 at the program level.
- Consider an 8 meter (50 m2) 500 nm diffraction limited primary mirror HST's \$10M/m2 areal cost yields a \$500M 8-m primary mirror JWST's \$6M/m2 (2 μ m DL) areal cost yields a \$300M PM 8-m Ground Telescope mirrors cost \$20M to \$40M.
- A \$250M to \$450M savings in the cost of a primary mirror translates into a \$800M to \$1.8B potential total program cost savings.
- The total cost for an 8-meter observatory (excluding science instruments and operations is estimated to be \$1B to \$1.5B.

Ares V Changes Paradigms

Ares V Mass & Volume enable entirely new Mission Architectures:

8 meter class Monolithic UV/Visible Observatory

Ares V Performance Capability

(at this point in time)

Building on a Foundation of Proven Technologies - Launch Vehicle Comparisons -

Payload Capability:

62.8 mT (138.5k lbm) to TLI

~187.7 mT (413.8k lbm) to LEO

Payload Capability:

44.9 mT (99.0k lbm) to TLI

118.8 mT (262.0k lbm) to LEO

Payload Capability:

25.5 mT (56.2k lbm)

to LEO

Payload Capability:

25.0 mT (55k lbm)

to Low Earth Orbit (LEO)

Ares V Element Heritage

Ares V Elements

New POD Vehicle (51.0.48)

Ares V Elements

Initial POD Vehicle (51.00.39)

Current Ares V 10 meter Shroud - Biconic

Shroud Dimensions

5.7 m [18.0 ft] 7.5 m [24.6 ft] 9.7 m [31.8 ft] 10.0 m [33.0 ft]

Usable Dynamic Envelope

Mass: 9.1 mT (20.0k lbm)

Total Height: 22 m (72 ft)

meters [feet]

Alternative Payload Shroud Design Concept

Ogive Shroud provides more usable vertical payload height than Biconic

Both have extra space below the official volume 'Reserved' for Altair Adapter

EDS Current Design Concept

Expanded View

Notional Ares V Shroud for Other Missions

Note: The height of the shroud is limited by the height of the Vertical Assembly Building (VAB)

Ares V (51.00.39) Performance for Selected Missions Comparison of POD and Extended Shrouds

Mission Profile	Target	POD Shroud	Extended Shroud
Wildeloff F Totale	Target	Payload (mT)	Payload (mT)
Sun-Earth L2	C3 of -0.7 km ² /s ² @ 29 deg	55.8	55.1
GTO Injection	Transfer ∆V 8,200 ft/s 185 km x 35,786 km @ 27 deg	70.3*	69.7*
GEO	Transfer ∆V 14,100 ft/s 35,786 km circular @ 0 degrees	36.2	35.7
Lunar Outpost (TLI Direct)	C3 of -1.8 km ² /s ² @ 29.0 degrees	56.8	56.1

^{*} Performance impacts from structural increases due to larger payloads have not been assessed

Ares V (LV 51.00.39) LEO Performance

Ares V Payload vs. Altitude & Inclination (LV 51.00.39)

LEO performance for 51.00.48 point of departure vehicle is expected to exceed 180 mT

Ares V (LV 51.00.39) LEO Capability from VAFB

Approximate Performance – does not take into account land over-flight

Ares V (LV 51.00.39) Escape Performance

Ares V C3 allows shorter missions to Outer Planets

Ares V Launch System Mission Planner's Guide

Mission Planner Guide planned for draft release in August 2008

Interface definitions

Fairings, adapters...

Mission performance

Development timelines

Concept of operations

Potential vehicle evolution and enhancements

Need past astronomy mission data

Based on 51.00.39 concept

Ground Rules and Assumptions

All trajectories analyzed using POST3D (Program to Optimize Simulated Trajectories – 3 Dimensional)

Flight Performance Reserve (FPR) based on LEO mission

No gravity assists

Interplanetary trip times use Hohmann transfers (limited ~24 yrs max)

Payload mass estimates represent the separated spacecraft mass, and include payload adapter and any mission peculiar hardware

Ares V vehicle configuration 51.00.39, but w/ Upper Stage burnout mass from configuration 51.00.34 (propellant tanks not resized for high C3 missions)

Ground Rules and Assumptions (cont'd)

For cases incorporating a kick stage:

Use 2-engine Centaur from Atlas V Additional adapter mass of 6.4 mT No adjustments to aerodynamic data

Propellant mass for:

Ares V LEO missions are held constant at 310.0 mT C3 and LEO missions utilize maximum propellant load

No Upper Stage propellant off-loading for C3 cases

Access to Sun-Earth L2 is direct transfer w/ C3 = -0.7 km2/s2 Payload can be increased by using a lunar swing-by maneuver

All C3 cases require longer duration than J-2X 500 sec constraint

Any Questions?

