Computer Organization and Design

Chapter 3 Part 3
Arithmetic for Computers

(Ch. 3 – Section 3.5)

Floating-Point Representation and Operations

IEEE-754

- Defines the rules for representing floating-point numbers (called the IEEE-754 Floating-Point Standard)
- Standard has been implemented by computer manufacturers since the mid-1980s
- Purpose:
 - make it easier to port computer programs that performed floating-point arithmetic across different architectures
 - improve the quality (accuracy) of computer arithmetic
- Revision adopted in 2008 extends the standard with new features.

IEEE-754 Standard

- A technical standard for floating-point arithmetic
 - Established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE)
 - The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and portably.
 - Most hardware floating-point units use the IEEE-754 standard.
 - IEEE rules ask for standards be revisited periodically for updating.
 - 2000 committee drafted revised standards that were approved in 2008 to include additional features
 - Most recent revision in 2019 defined additional requirements

IEEE-754 Standard

The standard defines:

- arithmetic formats: sets of binary and decimal floating-point data, which consist of finite numbers (including signed zeros and subnormal numbers), infinities, and special "not a number" values (NaNs)
- interchange formats: encodings (bit strings) that may be used to exchange floating-point data in an efficient and compact form
- rounding rules: properties to be satisfied when rounding numbers during arithmetic and conversions
- operations: arithmetic and other operations (such as trigonometric functions) on arithmetic formats
- exception handling: indications of exceptional conditions (such as division by zero, overflow, etc.)

Binary Floating-Point Representation

```
RISC-V F (Single-Precision) and D (Double-Precision) Extensions
```

- Also called real number representation
- Numbers consist of an integer and fractional component
- General form for floating-point numbers is (-1)^S x F x 2^E

Where S = sign bit

E = significant (also called r

F = significand (also called mantissa)

E = exponent

Storage of Floating-Point Numbers

- Floating-point numbers are a 32-bit or 64-bit value
- In most architectures, there is single precision and double precision representation
 - 32-bit single precision, 64-bit double precision

Floating-Point Characteristics

- Increasing the number of bits in the exponent increases the range of numbers that can be represented
- Increasing the number of bits in the significand increases the accuracy of numbers
- Thus there is a tradeoff between range and accuracy requiring a compromise between these two factors
 - Single precision range: $\sim 2.0_{10} \times 10^{-38}$ to $2.0_{10} \times 10^{+38}$
 - Approximately 5 digit accuracy
 - Double precision range: ~ 2.0₁₀ x 10⁻³⁰⁸ to 2.0₁₀ x 10⁺³⁰⁸
 - Approximately 15 digit accuracy

Floating-Point Characteristics (continued)

 Overflow and underflow refer to issues that arise when the value being represented exceeds the range that can be handled by the floating-point format.

Overflow

 Values exceed the maximum representable limit, resulting in infinity or an error.

Underflow

- Values fall below the minimum representable limit (in absolute value), resulting in rounding to zero or representation as a subnormal number.
- Both phenomena can affect calculations, leading to loss of precision or incorrect results in numerical computations.

Normalized Representation

- Floating-point numbers are stored in a computer in normalized form – no leading zeros in the significand
- In binary, the form that represents normalized numbers is 1.nnnnnn₂ x 2^{eeee}
- The MSB of the significand is always 1
- This fact allows the computer to consider the MSB an implied 1 thus extending the actual number of bits of the significand in single precision to 24 bits (53 bits for double precision)

Normalization Example

Original binary floating-point value:

$$0.00010010 \times 2^{0}$$

 Shift the bits left until there is a 1 on the left side of the binary point and adjust the base 2 exponent (4-bit left shift: decrement exponent)

The resulting floating-point value with the implied 1 omitted

Normalized Representation (continued)

- Since the value zero does not have a leading 1, it is given the reserved exponent value of zero so the hardware won't automatically insert the leading 1
 - Significand bits are usually also all zeros
- The representation of floating-point for all numbers except zero is of the form

 $(-1)^S \times (1 + significand) \times 2^E$

where the bits of the significand represent the fraction between 0 and 1 and E represents the exponent which can be positive or negative

Positive-Negative

- Floating-point numbers can be positive or negative
- Bit 31 (single precision) and bit 63 (double precision) represents the sign of the number just like for signed integers
- Exponents can also be positive or negative
- Desirable to have a floating-point representation in which the numbers can be easily processed in comparisons, for example sorting
- Having the exponent located before the significand makes comparisons seem simple since the larger the exponent, the larger the number

Negative Exponents

- If we adopt the convention of using the MSB of the exponent as a sign bit for the exponent, a problem arises when the exponent is negative
 - Since the significand is treated as unsigned, a fraction between 0 and 1, the exponent would become a 2's complement value
 - This complicates the certain operations, such as comparisons
 - Also would have two sign bits to deal with:
 - One for the number
 - One for the exponent

Exponent Bias

- The floating-point standard includes a convention by the which the most negative exponent is represented as one and the most positive exponent is represented as all ones
- This is called biased notation
 - Also called excess notation
 - Biased notation forces the exponent to be an unsigned value when represented in hardware
- The bias is a number that is added to the value of the exponent when it is defined in the hardware.
 - To obtain the original exponent value, the bias must be subtracted from the stored exponent value

Exponent Bias

- Bias values
 - For single precision, the bias = 127
 - Also called excess-127
 - For double precision, the bias = 1023
 - Also called excess-1023
 - Bias value is automatically added to exponent when stored in hardware
- New floating-point representation:
 - (-1)^S x (1 + significand) x 2^(Exponent Bias)
- Example: from previous normalization example, the exponent of -4 would be stored as the unsigned value 123.

Floating-Point Accuracy

- For integers, given a specific number of bits, you can represent the exact value for a number
- With floating-point numbers, there is an infinite number of values but the hardware is limited to a finite number of bits to represent them
- In reality, floating-point numbers are approximations of some numbers that can't be exactly represented
- At best, we can only get so close to the actual value of a number

Floating-Point Accuracy (continued)

- Normalization is an attempt to improve accuracy
- Example using decimal numbers:
- .12288 x 10⁴
 .012288 x 10⁵
 .0012288 x 10⁶

Each of these numbers is the same value, just different representations.

 If we only allow max 5 digits to use for the mantissa, we can see how this limitation affects the accuracy

 $.12288 \times 10^4$

 $.01228 \times 10^{5}$

 $.00122 \times 10^6$

These numbers are no longer equal values due to truncation of the least significant digits of the Mantissa.

Floating-Point Accuracy (continued)

- If you don't normalize the binary significand, you lose significant bits resulting in reduced accuracy
- Allowing an implied 1 as the MSB of the significand (not actually having to store it) gives us one extra bit of accuracy
 - With 23 bits, we actually can represent a 2-bit significand
- Round off errors are representational errors caused by attempting to represent a real number in a finite number of significant digits

Round Off Errors

- Example: $1/5 = .2_{10} = 0.001100110011..._2$
- Representing .2₁₀ in a finite number of bits may result in the value .1999999₁₀ (not exactly .2)
- This small rounding error can lead to errors due to propagation:

$$1/5 + 1/5 + 1/5 + 1/5 + 1/5 \neq 1$$

 IEEE-754 standard includes specifications for rounding to assist the programmer (compiler) achieve the highest accuracy

IEEE-754 Rounding (1)

- Five methods of rounding divided into two groups
- Rounding to nearest
 - Round to nearest, ties to even
 - Rounds to the nearest value; if the number falls midway, it is rounded to the nearest value with an even least significant digit
 - This is the default for binary floating-point per the standard
 - Round to nearest, ties away from zero
 - Rounds to the nearest value; if the number falls midway, it is rounded to the nearest value above (for positive numbers) or below (for negative numbers)

IEEE-754 Rounding (2)

- Directed roundings
 - Round toward zero
 - Directed rounding towards zero, also known as truncation
 - Round toward +∞
 - Directed rounding towards positive infinity, also known as rounding up or ceiling
 - Round toward -∞
 - Directed rounding towards negative infinity, also know as rounding down or floor

IEEE-754 Rounding (3)

- The standard specifies that two extra LSB bits are to be kept during intermediate operations
- These extra bits are called the guard and round bits
- A third bit called the sticky bit is kept to indicate if there are non-zero bits to the right of the round bit.
 - Intended to guide more accurate rounding
- All of these extra bits are internal to the FPU and are not kept when storing the value into registers.

Floating-Point Hardware

- The hardware included in a computer for performing operations on floating-point numbers is generally referred to as the floating-point unit (FPU)
 - Other names include coprocessor, or math coprocessor
- Earlier computer systems, especially desktop systems, did not have coprocessor hardware; floating-point operations were handled by software
 - Only large mainframe type systems included FPUs
- In the 1980s, coprocessors were introduced as an optional separate IC (ex. Intel x87)
- Today's general-purpose processor technology incorporates FPU into the CPU circuitry

Decimal Real Numbers vs. Binary FP

Decimal Real Number Place Values

...
$$10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0$$
 . $10^{-1} \ 10^{-2} \ 10^{-3} \ 10^{-4}$... Decimal point

Binary FP Place Values

Converting Decimal Real Numbers to Binary Single-Precision Floating-Point

25.796875₁₀

1. Convert integer part

2. Convert fraction part

3. Combine binary integer & fraction and add the exponent

Converting Decimal Real Numbers to Binary Single-Precision Floating-Point

11001.110011 x 2⁰

4. Normalize the number: need to shift the bits until there is a single 1 to the left of the binary point. Shift right 4 bits. Exponent must increment by the number of bits shifted. New exponent = 4.

1.1001110011 x 2⁴

5. Determine the sign bit, 8-bit biased exponent and 23-bit stored significand (implied bit not stored)

Sign bit = 0 (for positive number)
Biased exponent = 4 + 127 = 131 = 10000011
Significand = 10011100110000000000000

Continue next slide ...

Converting Decimal Real Numbers to Binary Single-Precision Floating-Point

Sign bit = 0 Biased exponent = 10000011

5. State full 32-bit binary stored binary value and hex value.

6. Verify using RARS

	.data	
fp1:	.float	25.796875

Data Segment	
Address	Value (+0)
0x10010000	0x41ce6000

Converting Binary Single-Precision Floating-Point to Decimal Oxbe200000

1. Divide the binary value into the three FP parts: sign bit, exponent, significand

2. Determine unbiased exponent

01111100 = 124Subtract bias: 124 - 127 = -3

Continue next slide ...

Converting Binary Single-Precision Floating-Point to Decimal

3. Insert the implied 1 in the significand and place the binary point after it.

4. State the binary value of the significand with the base 2 exponent

5. Shift the significand bits in the direction to achieve an exponent of zero. The exponent must increment from -3, so the bits must be shifted right by 3 bit positions (inserting zeros from the left).

.0010100000000000000000000000 x 2⁰

Converting Binary Single-Precision Floating-Point to Decimal

6. Convert the binary value to decimal. Sum the binary place values.

$$2^{-3} + 2^{-5} = .15625$$

7. State the final value as decimal adding the sign of the number. (Original sign bit = 1 for negative value.)

8. Check using RARS.

	.data	
fp2:	.float	-0.15625

Data Segment	
Address	Value (+0)
0x10010000	0xbe200000

Floating-Point Addition

The normal path is to execute steps 3 and 4 only once, but if rounding causes the sum to become un-normalized, then step three has to be repeated.

If step 3 repeats, step 4 should have no affect on the sum the second time through.

ALU for Floating-Point Addition

Floating-Point Multiplication

Adding the exponents in step 1 generates too large a value for the exponent field because the original exponents are biased.

- doubled exponent value

To compensate, you have to subtract the bias after adding the exponents to get the correct exponent value.

Floating-Point Division

- Step 1: if divisor =0, divide by zero exception
- Step 2: Subtract the exponent of the divisor from the exponent of the dividend
- Step 3: Divide the significands
- Step 4: Normalize the quotient if necessary by shifting it right and incrementing the exponent
- Step 5: Check for overflow/underflow
- Step 6: Round significand to appropriate number of bits
- Step 7: Check if still normalized; if not, repeat step 4
- Step 8: Set the sign of the quotient to positive if the signs of the divisor and dividend are the same; otherwise set the sign of the quotient to negative.

IEEE-754

Other definitions in spec

Single Dresision

- Special symbols (bit patterns) for unusual events
 - Divide by zero replaced with $+\infty$ or $-\infty$ (programmer/compiler option)
 - NaN (not a number) to represent 0/0 or ∞ ∞
- Allows programmers to postpone some tests or decisions until later in the program

Daubla Procision

Single Precision		Double Precision		Object Represented
Exponent	Significand	Exponent Significand		
0	0	0	0	0
0	Non-zero	0	Non-zero	± denormalized number
1 – 254	Anything	1 – 2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Non-zero	2047	Non-zero	NaN

Object Depresented

RISC-V Floating-Point

- Addition: fadd.s (single) fadd.d (double)
- Subtractions: fsub.s
- Multiplication: fmul.s
- Division: fdiv.s fdiv.d
- Square root: fsqrt.s fsqrt.d
- Comparisons: feq.s feq.d
- flt.s flt.d
- fle.s
 - Comparisons set integer register to 0 (false) or 1 (true)
 - Integer branch instructions (beq, bne) used to branch
- Loads/Stores: flw fld

fsw fsd

Floating-Point Registers

- Floating-point registers are numbered f0 f31
- Floating-point register names and uses:
 - ft0 − ft11 (f0 − f7, f28 − f31): FP temporary registers (t)
 - fs0 fs11 (f8 f9, f18 f27): FP saved registers (s)
 - fa0 − fa1 (f10 − f11): FP function argument, return value registers (a)
 - fa2 fa7 (f12 f17): FP function argument registers (a)
- FP register names are used in assembly language programming
- FP registers are 64 bits (RV64I w/ F & D extensions)
 - used for both single and double precision
 - single-precision occupies lower 32 bits

RISC-V Floating-Point (continued)

- Included in instruction set are conversion instructions
 - convert integer to floating-point and vice versa
 - both signed and unsigned integer conversions
 - both 32 and 64 bit conversions

	From					
То	32b signed integer (w)	32b unsigned integer (wu)	32b FP single-precision (s)	64b FP double-precision (d)		
32b signed integer (w)	-	-	fcvt.w.s	fcvt.w.d		
32b unsigned integer (wu)	-	-	fcvt.wu.s	fcvt.wu.d		
32b FP single-precision (s)	fcvt.s.w	fcvt.s.wu	-	fcvt.s.d		
64b FP						

Operations Between Float & Double

- Operations between a float and a double cannot be directly performed due to representation
 - Float: 32-bit, 8-bit exponent, 23-bit significand
 - Double: 64-bit, 11-bit exponent, 52-bit significand
- Must convert to the same type before operation
 - Float □ Double (promotion) -or- Double □ Float
- In most HLLs, performing an operation between a float and a double causes the float value to be promoted to a double before the operation is performed.
 - This ensures that no precision is lost.
 - Result type: The result of the operation will be a double.

Copying FPR to GPR

- RISC-V includes two instructions to copy floating-point bits to integer register and vice versa
 - fmv.s.x copy bits from integer register to FPR
 - fmv.x.s copy bits from FPR to integer register
- Only needed in rare cases where the programmer needs to manipulate bits of floating-point number
 - e.g. extracting sign, exponent and significand
 - e.g. explicitly controlling how rounding is applied

RISC-V FP Rounding (1)

- RISC-V implements IEEE-754-2008 rounding modes
- The default rounding mode is RNE (Round to nearest, ties to even) specified in the fcsr register (floating-point control and status register)
- Static rounding is implemented that allows rounding modes to be defined for each floating-point computational instruction
 - An optional parameter is appended to the instruction that specifies the rounding mode

RISC-V FP Rounding (2)

Rounding mode encoding

Rounding Mode	Mnemonic	Meaning
000	RNE	Round to Nearest, ties to Even
001	RTZ	Round towards Zero
010	RDN	Round Down (towards $-\infty$)
011	RUP	Round Up (towards $+\infty$)
100	RMM	Round to Nearest, ties to Max Magnitude
101	(A)	Invalid. Reserved for future use.
110	9.	Invalid. Reserved for future use.
111	DYN	In instruction's rm field, selects dynamic rounding mode; In Rounding Mode register, Invalid.

Floating-point arithmetic instruction format

31 27	26 2	25 24 20	0 19	15 14 12 11		7 6	0
funct5	fmt	rs2	rs1	(rm)	rd	opcode	
5	2	5	5	1 3	5	7	
FADD/FSUB	S	src2	src1	RM	dest	OP-FP	
FMUL/FDIV	S	src2	src1	RM	dest	OP-FP	
FSQRT	S	0	src	RM	dest	OP-FP	
FMIN-MAX	\mathbf{S}	src2	$\operatorname{src}1$	MIN/MAX	dest	OP-FP	

RISC-V Assembly Language Rounding

- All the floating-point arithmetic and conversion instructions require specifying the rounding mode
- Rounding mode is appended to the end of the instruction as a fourth operand
- Dynamic rounding is preferred unless a different mode is required
- Example: fadd.s ft3, ft2, ft1, dyn
 - dyn specifies dynamic rounding using value of frm field in the fcsr which by default is 000 (RNE) round to the nearest even

RISC-V Example in RARS

```
      .data

      num1: .float 0.2
      0.2 is a bit

      .text
      0.2 is a bit

      main: lui s0, 0x10010
      0.2 = 0x3e

      flw ft0, 0(s0)
      0.2 = 0x3e

      fdiv.s ft1, ft0, ft0, dyn
      = 0x3e

      fsqrt.s ft3, ft1, dyn
      = 0x3e

      exit: ori a7, zero, 10
      0011 1110 010
```

0.2 is a binary repeating decimal

```
0.2 = 0x3e4cccd = 0.2 \text{ (rounded)}
\Rightarrow = 0x3d23d70b = .040000003
\Rightarrow = 0x3e4cccce = 0.20000002
\Rightarrow = 0x3e4ccccd = 0.2
```

0011 1110 0100 1100 1100 1100 1100 1110

```
0.2_{10} = .001100110011..._{2} 100. (Guard bit used to set LSB of significand) 1100. (Guard bit used to set LSB of significand) 1100. (rounded)
```

Defining Floating-Point Values in RARS

```
.data
```

```
num1: .float 123.456789
```

num2: .float 123.456789e0

num3: .float 1.23456789e2

num4: .float 123456.789e-3

num5: .float 123456789e-6 □ "implied decimal

point"

All the above definitions represent the same value.

Note: no spaces before or after the "e".

Terminology / Vocabulary

- Binary addition & subtraction
- 2's complement
- Signed integers
- Unsigned integers
- Sign extension
- Overflow
- Exception/interrupt
- Exception handler
- Arithmetic and logic unit (ALU)
- Ripple-carry adder
- Carry-lookahead adder

- Restoring division
- Binary floating-point
- Single precision
- Double precision
- Normalized form
- Implied 1
- IEEE-754
- Biased exponent
- Rounding
- Guard/round bits
- Coprocessor or FPU