Trevor J. Chan

□(+1) 510-999-2031 | Trevorjacksonchan@gmail.com | # https://trevor-chan.github.io/ | □ trevor-chan | □ linkedin.com/in/trevor-chan-328323157

Education

Yale University New Haven, CT

BACHELOR OF SCIENCE, ENGINEERING SCIENCES MECHANICAL | BACHELOR OF ARTS, ARCHITECTURE

Philadelphia, PA

University of Pennsylvania PHD CANDIDATE, BIOENGINEERING

2021 - Present

2016 - 2020

Selected Publications

CT super-resolution enables accurate estimation of trabecular structure and mechanical strength in the proximal femur †

10.1148/ryai.220251

RADIOLOGY ARTIFICIAL INTELLIGENCE

Sep 2023

Jul 2024

Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models †

10.1109/ISBI56570.2024.10635304

SAM3D: Zero-Shot Semi-Automatic Segmentation in 3D Medical Images with the Segment

10.48550/arXiv.2405.06786

Anything Model[†]

ARXIV

PNAS

Aug 2024

Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses

10.1038/s41563-024-02019-3

NATURE MATERIALS

Sep 2024

Biophysical informatics reveals distinctive phenotypic signatures and functional diversity of single cell lineages[†]

10.1093/bioinformatics/btac833

BIOINFORMATICS Compression drives diverse transcriptomic and phenotypic adaptations in melanoma

10.1073/pnas.2220062120

Jan 2023

Mar 2021

Sep 2023

Morphodynamic signatures of MDA-MB-231 single cells and cell doublets undergoing invasion in confined microenvironments

10.1038/s41598-021-85640-5

NATURE: SCIENTIFIC REPORTS

A microfluidic-informatics assay for quantitative physical occlusion measurement in sickle cell disease

10.1039/D2LC00043A

LAB ON A CHIP

Feb 2022

Experience _____

Penn Image Computing and Science Lab, Laboratory for Structural, Physiological, and **Functional Imaging**

Philadelphia, PA

RESEARCHER

Sep 2021 - Present

· Conducting doctoral research on the use of generative AI to solve inverse problems in medical imaging. Advised by Alison Pouch, PhD. and Chamith Rajapakse, PhD.

Multiscale Mechanobiology Lab

New Haven, CT

RESEARCH TECHNICIAN

Jun 2020 - Jun 2021

• Developed code and experimental methods to analyze cancer cell network behavior. Utilized computer vision and bioinformatics to characterize metastatic behavior of single-cells and cell-collectives. Advised by Michael Mak, PhD.

IvyTech Designs New Haven CT

CHIEF TECHNOLOGY OFFICER

Jan. 2020 - Present

• Designing novel surgical implements for orthopedic and neurological surgery

†First Author

Honors & Awards

2023	NSF Graduate Research Fellowship , Recipient of the National Science Foundation Graduate Research Fellowship	Philadelphia
2022	Mission Brain Neurosurgical Hackathon 1st place , Winner of the international neurosurgical hackathon hosted by Mission Brain NGO, Harvard Medical School, and MIT	Cambridge
2020	Connecticut Bioscience Pipeline Fund, Winner of the Bioscience pipeline award funding the continued development of a novel biomedical device	Connecticut
2020	Rothberg Catalyzer Prototype Fund , Winner of the Prototype Fund for development of a novel biomedical device	Connecticut
2019	Solar Decathlon Design Challenge Finalist , Author of the finalist submission to the Solar Decathlon Design Challenge 2019 conference	Golden, CO
2018	Dean's Fellowship in the Sciences , Recipient of the Dean's Research Fellowship in the Sciences funding Summer research at Yale University	New Haven, CT
2017	Light Fellowship Recipient, Recipient of the Richard U. Light Fellowship funding language study in Beijing	New Haven, CT