Oblig 1 mat2400-Reelanalyse

Elsie Mestl

March 9, 2016

Oppgave 1

$$s(x) = \sum_{n=1}^{\infty} v_n(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}$$

a)

Hvis x = 0 så er:

$$\sum_{n=1}^{\infty}\frac{1}{1+n^2x}=\sum_{n=1}^{\infty}1\rightarrow\infty$$

Hvis x > 0

For hver x > 0 finnes konstanter $c_x \in \mathbb{R}$, $c_x = x$ slik at. $|v_n(x)| < M_n(x) = \frac{1}{cn^2}$ for alle n. Vet at $\sum_{n=1}^{\infty} \frac{1}{c_x n^n}$ konvergerer for alle c_x . Har da at for hver x finnes en c_x slik at:

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2 x} < \sum_{n=1}^{\infty} \frac{1}{c_x n^2}$$

Etter samme argumentasjon som i beviset til Weierstrass' M-test, men hvor uniformbiten har blitt sløyfet, får vi da at $\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ konvergere punktvis.

b)

Vi har allerede punktvis konvergens må nå vise at rekken konvergerer uniformt på intervallet $[a,\infty),\ a>0$

Har at

$$\frac{1}{1+n^2x} \le \frac{1}{1+n^2a}, \quad \text{for alle } x \neq [a, \infty)$$

Dermed ser vi at:

$$\frac{1}{1+n^2x} \le \frac{1}{1+n^2a} < \frac{1}{n^2a}$$

Og siden $\sum_{n=1}^{\infty} \frac{1}{n^2 a}$ konvergerer, har vi etter Weierstrass' M-test at rekken $\sum_{n=1}^{\infty} \frac{1}{1+n^2 x}$ konvergerer uniformt på $[a,\infty)$

c)

For å vise at f er kontinuerlig må vi vise at for enhver $\epsilon > 0$ finnes en $\delta > 0$ slik at når $d_X(a,b) < \delta$ så er $d_Y(f(a),f(b)) < \epsilon$. Hvor X,Y respektivt ugjør $(0,\infty)$ og \mathbb{R} . Og metrikkene $d_X,d_Y=d$ er standard metrikken til \mathbb{R}

Anta at a < b (kan bare bytte om hvis motsatt er tilfellet). Det betyr at $a, b \in [a, \infty)$ og vi viste i forrige deloppgave at $\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ konvergerer uniformt på $[a, \infty)$.

Altså har vi fra forrige deloppgave at følgen bestående av delsummer s_n konvergerer mot f og at dette er en uniform konvergens på et intervall $[a, \infty)$, og dermed er f konvergent på $[a, \infty)$.

Men f skulle være konvergent på hele $(0, \infty)$. Ideen bak hvordan fikse dette er at vi velge a > 0 så liten vi vil. På denne måten kan vi alltid velge en litt mindre a for å få angitt et større område hvor f er kontinuerlig.

La $x \in (0, \infty)$ være et vilkålig punkt, men hvor x < a så vet vi at $x \notin [a, \infty)$ da utvider vi bare intervallet fra $[a, \infty)$ til $[c, \infty)$ på hvilket vi vet at f fremdeles er kontinuerlig.

Altså er f kontinuerlig på x, og siden x var et vilkårlig punkt så er f er kontinuerlig på hele $(0, \infty)$.

 \mathbf{d}

Da vi viste den uniforme konvergensen i oppgave 1b så belaget vi oss på at intervallet var nedre begrenset og lukket på det nedre av intervallet. Vi kunne altså velge dette nedre randpunktet og dermed ha at $v_n(x) \le v_n(a)$ for alle x.

Siden vi har mistet den lukkede egenskapen kan vi nå alltids finne en a' som er litt mindre enn a. Vi kan altså lage en følge $\{x_n\}$ som konvergerer mot 0 men hvor mengden ikke inneholder elementet. Og vi får dermed at følgen $\{v_n(x_n)\}$ som er funksjonsverdien brukt på denne følgen divergerer. Vi kan dermed ikke finne noen N som gjelder for alle x slik at $d(f(a), f(x)) < \epsilon$ siden vi alltid kan få x litt nærmere 0 og dermed f(x) litt større, og dermed avstanden litt større. Altså konvergerer ikke f uniformt på intervallet $(0, \infty)$.

Oppgave 2

a)

A er lukket hvis og bare hvis A inneholder alle randpunktene. Siden $A \cup \partial A$ inneholder alle randpunktene til A så er $A \cup \partial A$, etter definisjonen, lukket. Og siden $\overline{A} = A \cup \partial A$ er dermed \overline{A} lukket.

b)

⇒ Hvis A er prekompakt så vil alle følger i A ha en konvergent delfølge.

La $\{x_n\}$ være en følge i A da er $\{x_n\}$ også en følge i \overline{A} siden $A \subseteq \overline{A}$

Siden A er prekompakt så vet vi at \overline{A} er kompakt, dermed har vi at alle følger i \overline{A} har en konvergent delfølge. Og siden $\{x_n\}$ er en følge i \overline{A} så har den en konvergent delfølge $\{x_{n_k}\}$. Og siden $\{x_n\}$ er i A så må alle delfølgen $\{x_{n_k}\}$ nødvendigvis også være i A

Altså har vi vist at alle følger i A har en konvergent delfølge.

← Hvis alle følger i A har en konvergent delfølge så er A prekompakt.

La $\{x_n\}$ være en følge i \overline{A} da kan vi kan lage en ball $B(x_n:\frac{1}{n})$ rundt hvert elemenent i følgen hvor $A \cup B(a_n:\frac{1}{n}) \neq \emptyset$. Altså finnes den en $y_n \in B(x_n:\frac{1}{n})$ slik at $y_n \in A$. Ut av disse elementene kan vi lage følgen $\{y_n\}$ som er en følge i A.

Etter bevisantagelsen har vi at $\{y_n\}$ har en konvergent delfølge $\{y_{n_k}\}$ som konvergerer mot et punkt y. Altså at gitt en $\epsilon > 0$ finnes en N slik at når $n_k \ge N$ så er $d(y_{n_k}, y) < \frac{\epsilon_1}{2}$

Videre vet vi at siden alle $y_{n_k} \in B(x_{n_k} : \frac{1}{n_k})$ så er $d(y_{n_k}, x_{n_k}) < \frac{1}{n_k} = \frac{\epsilon_2}{2}$.

Velger $\epsilon = max(\epsilon_1, \epsilon_2)$

Ved trekantulikheten får vi da:

$$d(x_{n_k}, y) \le d(x_{n_k}, y_{n_k}) + d(y_{n_k}, y) < \frac{\epsilon}{2} + \frac{1}{n_k} \le \epsilon$$

Altså har $\{x_n\}$ en konvergent delfølge $\{x_{n_k}\}$, og siden \overline{A} er lukket må $\{x_{n_k}\}$ konvergere mot et punkt i mengden selv. Etter defenisjonen av kompakthet vet vi at \overline{A} er kompakt, altså er A prekompakt.

$\mathbf{c})$

 \Rightarrow Hvis $A \subseteq \mathbb{R}^m$ er prekompakt så er A begrenset.

La A være prekompakt. Da vet vi at $A \subseteq \overline{A}$, hvor \overline{A} er en kompakt mengde, og dermed også lukket og begrenset. Videre vet vi det finnes en M slik at $d(y',x') \leq M$ for alle $x',y' \in \overline{A}$ Og siden $A \subseteq \overline{A}$ så er alle elementer $x,y \in A$ også elementer i \overline{A} . Altså vil $d(x,y) \leq M$. Og dermed ser vi at A er begrenset.

 \Leftarrow Hvis $A \subseteq \mathbb{R}^m$ er begrenset så er A prekompakt

Siden A er bregrenset og en delmengde av R^m vil alle følger i A være begrenset. Da har vi etter Bolazo Wierstrauss teoremet at alle følger i A har en konvergent delfølge. Etter forrige deloppgave har vi da at A er prekompakt.

Oppgave 3

a)

La (X,d) være et metrisk rom hvor $X=(-1,1)\setminus\{0\}$ og d(x,y)=|x-y|

Vis a X er usammenhengende:

La O_1 og O_2 være de to åpne mengdene gitt ved $O_1 = (-1,0)$ og $O_2 = (0,1)$. Ser lett at $O_1 \cap O_2 = \emptyset$. $O_1 \cup O_2 = (-1,0) \cup (0,1) = (-1,1) \setminus 0 = X$. Altså er X usammenhengdende.

b)

La (X,d) være et metrisk rom hvor $X=\mathbb{Q}$ og d(x,y)=|x-y|

Vis at det finnes to åpne mengder O_1 , O_2 slik at $O_1 \cup O_2 = X$ og $O_1 \cap O_2 = \emptyset$.

La

$$O_1 = \{x | x < \sqrt{2}, x \in \mathbb{Q}\} \text{ og } O_2 = \{x | x > \sqrt{2}, x \in \mathbb{Q}\}$$

Ser da lett at $O_1 \cup O_2 = X$ og $O_1 \cap O_2 = \emptyset$.

 \mathbf{c}

La (X,d) være en sammenhengende mengde og la $f:X\to Y$ være en surjektiv og kontinuerlig funksjon. Vis at Y er sammenhengdende.

Anta at Y er usammenhengdene. Det betyr at det finnes to åpne mengder O_{Y_1} og O_{Y_2} slik at $O_{Y_1} \cup O_{Y_1} = Y$ og $O_{Y_1} \cap O_{Y_1} = \emptyset$

Siden f er kontinuerlig og O_{Y_1}, O_{Y_2} er åpne mengder i Y så er $f^{-1}(O_{Y_1}) = O_{X_1}, f^{-1}(O_{Y_2}) = O_{X_2}$ åpne mengder i X.

Pga surjektivitet har vi:

$$O_{x_1} \cup O_{x_2} = f^{-1}(O_{Y_1}) \cup f^{-1}(O_{Y_2}) = f^{-1}(O_{Y_1} \cup O_{Y_2}) = f^{-1}(Y) = X$$

og

$$O_{x_1} \cap O_{x_2} = f^{-1}(O_{Y_1}) \cap f^{-1}(O_{Y_2}) = f^{-1}(O_{Y_1} \cap O_{Y_2}) = f^{-1}(\emptyset) = \emptyset$$

Men da har vi at X er usammenhengende noe som er en selvmotsigelse. Altså må antagelsen om at Y er usammenhengende være feil og vi har vist at hvis X er sammenhengende og f er en kontinuerlig surjektiv funksjon så har vi at Y er sammenhengende.

d)

Vis at (\mathbb{R}^n, d) er veisammenhengende. Må altså vise at for hvert par av punkter $(x, y) \in \mathbb{R}^n$ så finnes en funksjon $r : [0, 1] \to \mathbb{R}^n$ slik at r(0) = x og r(1) = y. Vår jobb blir å konstruere denne r

La r være gitt ved $r(s) = \mathbf{x} + (\mathbf{y} - \mathbf{x})s$

Ser da at $r(0) = \mathbf{x}$ og $r(1) = \mathbf{y}$.

Må vise at r er kontinuerlig.

Gitt $\epsilon > 0$ finnes en $\delta > 0$ slik at når $|a - b| < \delta$ så er $||r(a) - r(b)|| < \epsilon$

$$||\mathbf{r}(a) - \mathbf{r}(b)|| = ||(\mathbf{x} + (\mathbf{y} - \mathbf{x})a) - (\mathbf{x} + (\mathbf{y} - \mathbf{x})b)|| = ||\mathbf{y}a - \mathbf{y}b + \mathbf{x}b - \mathbf{x}a||$$
$$= ||(a - b)\mathbf{y} - (a - b)\mathbf{x}|| = ||(a - b)(\mathbf{y} - \mathbf{x})|| = |a - b| \cdot ||\mathbf{y} - \mathbf{x}|| < \delta||\mathbf{y} - \mathbf{x}|| = \epsilon$$

e)

Anta at (X,d) er usammenhengende. La O_1 og O_2 være et ikke-tomme åpne mengder slik at $X = O_1 \cup O_2$ og $O_1 \cap O_2 = \emptyset$. Velger punkter $x \in O_1$ og $y \in O_2$ må vise at det ikke finnes en vei mellom x og y.

Anta for selvmotsigelsen skyld at en slik vei finnes. Det betyr at det finnes en kontinuerlig funksjon $r:[0,1]\to X$ slik at r(0)=x og r(1)=y

Siden r er kontinuerlig så betyr det at $r^{-1}(O_1)$ er en åpen delmengde av [0,1] og det samme gjelder for $r^{-1}(O_2)$. Og siden vi vet at $O_1 \cup O_2 = X$ og dermed også en åpen mengde så må $r^{-1}(X)$ være åpen.

Altså har vi at $r^{-1}(X) = r^{-1}(O_1) \cup r^{-1}(O_2) \subseteq [0,1]$ som gjør at $[0,1] = r^{-1}(X)$ siden $r([0,1]) \subseteq X$ og $r^{-1}(r([0,1])) = [0,1]$.

Men det stemmer ikke siden [0,1] er en lukket mengde mens $r^{-1}(X)$ er åpen.

Altså har vi en selvmotsigelse og antagelsen om at en slik vei finnes må være feil. Og ved kontrapositivitet har vi da at enhvert veisammenhengende metrisk rom er sammenhengende.