Intro

The DRUNK Robot

Dusting Robot Using Nice Kinematics

Team 11: Alex Gaal, Austin Tang, Haochen Yin, Tom Wang

Motivation

- Wiping down surfaces is annoying
- Wiping hard -to-reach surfaces is super annoying
 - o Ceiling, high shelves, etc.

Motivation

Current solutions are...

...pretty lame

Our Solution

DRUNK

- P-R-R-R
- Mounted on a wall near ceiling
- Interchangeable end effectors
- Cleans high shelves, ceiling, walls

Preliminary Sketch

Forward Kinematics

Forward Kinematics

i-1	i	α_{i-1}	a_{i-1}	d_i	θ_i
0	1	0	0	d_1	0
1	2	90°	0	d_2	θ_2
2	3	-90°	0	0	θ_3
3	4	0	a_3	0	θ_4
4	f	0	a_4	0	0

$${}_{f}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T_{4}^{3}T_{f}^{4}T = \begin{bmatrix} c_{2}c_{34} - c_{2}s_{34} - s_{2} & a_{4}c_{2}c_{34} + a_{3}c_{2}c_{3} \\ s_{34} & c_{34} & 0 & a_{4}s_{34} + a_{3}s_{s} - d_{2} \\ s_{2}c_{34} - s_{2}s_{34} & s_{2} & a_{4}s_{2}c_{34} + d_{1} + a_{3}s_{2}c_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics

A Little Demo of our Forward Kinematics by changing each joint variables

Joint Variables: [d1, theta2, theta3, theta4]

Inverse Kinematics

Given
$${}^{0}_{f}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} d_1 = p_z + \frac{p_z r_{13}}{r_{33}} \\ \theta_2 = A \tan 2(-r_{13}, r_{33}) \\ \theta_3 = A \tan 2 \left[\left(p_y - a_4 r_{21} + d_2 \right) r_{33}, p_x - a_4 r_{33} r_{22} \right] \\ \theta_4 = A \tan 2(r_{21}, r_{22}) - A \tan 2 \left[\left(p_y - a_4 r_{21} + d_2 \right) r_{33}, p_x - a_4 r_{33} r_{22} \right] \end{cases}$$

Inverse Kinematics

 First, we tested inverse kinematics with a straight line trajectory and constant orientation

 However, we wanted to create a more complicated trajectory using our inverse kinematics that shows the use of all of the joints...

Inverse Kinematics

- Remember the more complicated trajectory from 2 slides ago using only the forward kinematics? We were able to reproduce the same animation using the inverse kinematics this time to prove that our inverse kinematics works!
- Now, the challenge is finding more trajectories that may be more suitable to the dusting task that are within our workspace...

Workspacewithout limitation

Reachable Workspace:

Dexterous Workspace: No.

Workspacewith limitation

Replaceable End Eff

Static Force Analysis

- Put arm in its most "mechanically disadvantaged" position
- Calculate torque on motor experiencing the greatest torque
- Compare to stall torque of motor

Force Analys@riginal

Component	M (N-m)
Link 2	0.653
Motor 4	0.272
Link 3	1.345
End Effector	0.621

Total M = 2.891 N - m > 2.5 N - m stall torque

Force Analys Redesign

Component	M (N-m)
Link 2	0.481
Motor 4	0.227
Link 3	0.792
End Effector	0.393

Total M = $1.893 \text{ N} \cdot \text{m} < 2.5 \text{ N-m stall torque}$

What's Left?

- Create simulation for desired trajectory
- Secure funding

Thank You

Questions?