CLIMATE CHANGE, AIR POLLUTION, AND PERINATAL HEALTH: THE COMBINED EFFECTS OF TEMPERATURE AND AIR POLLUTION IN SENSITIVE POPULATIONS

PhD Research Proposal

Ian Hough

2018-10-24

Advisors Itai Kloog & Johanna Lepeule

OUTLINE

- 1. Context
 - 1. Overview
 - 2. Adverse birth outcomes
 - 3. Ambient temperature & particulate matter
- 2. Proposed research
 - 1. Objectives
 - 2. Exposure models
 - 3. Birth outcomes study

CONTEXT

OVERVIEW

ADVERSE BIRTH OUTCOMES

Preterm birth (<37 weeks gestation)

- Leading cause of child mortality (Liu et al., 2016)
- 11% of all births and increasing (Harrison and Goldenberg, 2016)
- Sequalae in childhood and adulthood (e.g. asthma, cerebral palsy, behavioural problems) (McCormick et al., 2011)

Term low birth weight (<2500 g)

 Increased morbidity and mortality in childhood and adulthood (Barker, 2004; Belbasis et al., 2016)

AMBIENT TEMPERATURE (TA)

- Heat, cold, or variable Ta can increase risk (Zhang et al., 2017)
- Response may depend on local population & climate
- Hard to synthesize findings

	Preterm birth	Birth weight	Term low birth weight
Exposure	Cold (<10th %ile)	IQR Ta increase	Heat (>95th %ile)
Window	Weeks 1–7	Last 30 days	Trimester 3
Statistic	Relative risk	Decrease	Odds ratio
Effect	1.09 [1.04–1.15]	16.6 g [5.9–27.4]	1.31 [1.15–1.49]
Study	(Ha, D. Liu, et al., 2017)	(Kloog et al., 2015)	(Ha, Y. Zhu, et al., 2017)

PARTICULATE MATTER (PM)

$PM_{10} \wedge 10 \ \mu g/m^3$ entire pregnancy

	Preterm birth	Birth weight	Term low birth weight
Statistic	Pooled odds ratio	Pooled decrease	
Effect	0.97 [0.86–1.08]	10.3 g [7.1–13.6]	Too few studies
Study	(Lamichhane et al., 2015)	(Lamichhane et al., 2015)	

$PM_{2.5} \uparrow 10 \ \mu g/m^3$ entire pregnancy

	Preterm birth	Birth weight	Term low birth weight
Statistic	Pooled odds ratio	Pooled decrease	Pooled odds ratio
Effect	1.13 [1.03–1.24]	15.9 g [5.0–26.8]	1.09 [1.03–1.15]
Study	(Sun et al., 2015)	(Sun et al., 2016)	(Sun et al., 2016)

PROPOSED RESEARCH

OBJECTIVES

- 1. Model daily min, mean, and max T_a in France 2000–2016
 - 1 km estimates entire area
 - 200 m estimates for urban areas
- 2. Model daily PM₁₀ and PM_{2.5} in France
 - 1 km estimates entire area
 - 200 m estimates for urban areas
- 3. Study associations between Ta, PM, and birth outcomes
 - Windows of susceptibility
 - Acclimatization to T_a
 - Interactions between T_a and PM

EXPOSURE MODELS

WHY MODEL TA AND PM?

Sparse monitoring networks

- → Error in exposure estimate
- → May bias effect estimates towards null

MODELLING APPROACHES

Physical models

- Numerical weather prediction → complex
- Dispersion / chemical transport → complex

Statistical models

- Inverse distance weighting → poor performance
- Land use regression → low temporal variability
- Hybrid models

HYBRID STATISTICAL MODELS

1. Satellite data (& other spatial predictors)

- T_a ← land surface temperature (LST)
- PM ← aerosol optical depth (AOD)

MODIS (Terra + Aqua)

- 1 km spatial resolution
- LST 2x / day + 2x / night
- AOD 2x / day
- Free ready-to-use products (LST and AOD)

HYBRID STATISTICAL MODELS

2. Statistical model

- Linear regression
- Geographically weighted regression
- Spatiotemporal regression-kriging
- Linear mixed models (Just et al., 2015; Kloog et al., 2014, 2017; Shtein et al., 2018)
- Random forest, gradient boosting, elastic net, etc.

LINEAR MIXED MODEL APPROACH

Station

1 km LST / AOD

STAGE 1: CALIBRATION

$$T_a = (\alpha + \mu_{jr}) + (\beta_1 + \nu_{jr}) \cdot LST + \beta_2 \cdot Emissivity + \ eta_3 \cdot NDVI + eta_4 \cdot Elevation + eta_5 \cdot Population + \ eta_6 \cdot LandCover + e$$

j = day

r = climatic region

STAGE 2: PREDICTION

1 km predicted

STAGE 3: GAP FILLING

1 km gap-filling

$$T_{a\ predicted} = (\alpha + \mu_{ip}) + (\beta_1 + \nu_{ip}) \cdot T_{IDW} + e$$

i = grid cell

p = two-month period

MODEL PERFORMANCE

Cross-validated 1 km predictions

2000–2016	R ²	RMSE	Spatial R ²	Temporal R ²	Spatial RMSE
T _a min	0.92		0.83	0.93	0.97
T _a mean	0.97	1.29	0.95	0.97	0.57
T _a max	0.95	1.81	0.89	0.96	0.99

Improvement over previous model (Kloog et al., 2017)

2000–2011	R ²	RMSE	Spatial R ²	Temporal R ²	Spatial RMSE
T _a mean	0.02	0.25	0.04	0.01	0.09

URBAN 200 M PREDICTIONS

Landsat 5 / 7 / 8 (ETM+ / TIRS)

- 60 m / 120 m spatial resolution
- One overpass every 16 days (sometimes 8 days)
- No precalculated LST (at-satellite brightness temperature)

Building footprints + height

Skyview factor

TA MODEL STATUS

Complete

• T_a 1 km estimates

In progress

- Ta 200 m urban estimates
- Ta paper

PM MODEL STATUS

In progress

PM data preparation

Forthcoming

- PM 1 km estimates
 - Estimate PM_{2.5} at PM₁₀-only stations
 - Reduce MAIAC error using AERONET data (Just et al., 2018)
- PM 200 m urban estimates
- PM paper

BIRTH OUTCOMES STUDY

UNRESOLVED QUESTIONS

Windows of susceptibility

- Mixed results to date
- PM exposure tends to be correlated across trimesters

Acclimatization

Suggested for mortality (Gasparrini et al., 2015; Lee et al., 2014)

Interactions between T_a and PM

• Synergy suggested for mortality (Kioumourtzoglou et al., 2016; Li et al., 2017)

STUDY DESIGN

- 5923 mother-child pairs from three prospective cohorts
- Birth weight, term low birth weight, preterm birth
- High, low, and variable T_a and PM
- Windows of susceptibility
 - Day, up to 7 days, week, 4 weeks, trimester, entire pregnancy
- Acclimatization
- Interactions
- Linear / logistic / Cox models
 - Distributed non-linear lags

THANK YOU!

REFERENCES

Barker, D.J.P., 2004. The Developmental Origins of Adult Disease. Journal of the American College of Nutrition 23, 588S–595S. https://doi.org/10.1080/07315724.2004.10719428

Belbasis, L., Savvidou, M.D., Kanu, C., Evangelou, E., Tzoulaki, I., 2016. Birth weight in relation to health and disease in later life: An umbrella review of systematic reviews and meta-analyses. BMC Medicine 14. https://doi.org/10.1186/s12916-016-0692-5

Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., Tobias, A., Tong, S., Rocklöv, J., Forsberg, B., Leone, M., De Sario, M., Bell, M.L., Guo, Y.-L.L., Wu, C.F., Kan, H., Yi, S.M., De Sousa Zanotti Stagliorio Coelho, M., Saldiva, P.H.N., Honda, Y., Kim, H., Armstrong, B., 2015. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. The Lancet 386, 369–375. https://doi.org/10.1016/S0140-6736(14)62114-0

Ha, S., Liu, D., Zhu, Y., Kim, S.S., Sherman, S., Mendola, P., 2017. Ambient temperature and early delivery of Singleton Pregnancies. Environmental Health Perspectives 125, 453–459. https://doi.org/10.1289/EHP97

Ha, S., Zhu, Y., Liu, D., Sherman, S., Mendola, P., 2017. Ambient temperature and air quality in relation to small for gestational age and term low birthweight. Environmental Research 155, 394–400. https://doi.org/10.1016/j.envres.2017.02.021

Harrison, M.S., Goldenberg, R.L., 2016. Global burden of prematurity. Seminars in Fetal and Neonatal Medicine 21, 74–79. https://doi.org/10.1016/j.siny.2015.12.007

Just, A., De Carli, M., Shtein, A., Dorman, M., Lyapustin, A., Kloog, I., 2018. Correcting Measurement Error in Satellite Aerosol Optical Depth with Machine Learning for Modeling PM2.5 in the Northeastern USA. Remote Sensing 10, 803. https://doi.org/10.3390/rs10050803

Just, A.C., Wright, R.O., Schwartz, J., Coull, B.A., Baccarelli, A.A., Tellez-Rojo, M.M., Moody, E., Wang, Y., Lyapustin, A.,