

Soluzioni fondamentali per equazioni di tipo onda su varietà curve

Rubens Longhi

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio P appaiono in molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = 0$$

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio P appaiono in molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = 0$$

Equazioni di tipo ondulatorio

Gli operatori di tipo ondulatorio P appaiono in molti sistemi fisici

• Operatore d'onda: il d'Alembertiano

$$\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$

Equazioni di Maxwell

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = 4\pi J^{\mu}$$

• Equazione di Klein-Gordon

$$(\Box + m^2)\psi = 0$$

 Vogliamo risolvere su una varietà M una qualsiasi equazione differenziale non omogenea

$$Pf = \psi$$

nell'incognita f con generica sorgente ψ .

 La studiamo nel caso di una sorgente elementare deltiforme nel punto x

$$Pu_{x} = \delta_{x}$$

e cerchiamo soluzioni distribuzionali $u_x \in \mathcal{D}'(M)$.

• Troviamo una soluzione a $Pf = \psi$ integrando opportunamente la soluzione fondamentale su tutti i punti $x \in \text{supp } \psi$.

$$\bullet$$
 Vogliamo risolvere su una varietà M una qualsiasi equazione differenziale non omogenea

$$Pf = \psi$$

nell'incognita f con generica sorgente ψ .

 La studiamo nel caso di una sorgente elementare deltiforme nel punto x

$$Pu_{x} = \delta_{x}$$

e cerchiamo soluzioni distribuzionali $u_x \in \mathcal{D}'(M)$.

• Troviamo una soluzione a $Pf = \psi$ integrando opportunamente la soluzione fondamentale su tutti i punti $x \in \text{supp } \psi$.

Un metodo costruttivo

 Vogliamo risolvere su una varietà M una qualsiasi equazione differenziale non omogenea

$$Pf = \psi$$

nell'incognita f con generica sorgente ψ .

 La studiamo nel caso di una sorgente elementare deltiforme nel punto x

$$Pu_x = \delta_x$$

e cerchiamo soluzioni distribuzionali $u_x \in \mathcal{D}'(M)$.

• Troviamo una soluzione a $Pf = \psi$ integrando opportunamente la soluzione fondamentale su tutti i punti $x \in \text{supp } \psi$.

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

Spaziotempo piatto di Minkowski $\mathbb{M}^n \to 1$ dimensione temporale e n dimensioni spaziali

La simmetria per traslazione ci consente di limitare il problema per
all'origine:

$$\exists u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

Spaziotempo piatto di Minkowski $\mathbb{M}^n \to 1$ dimensione temporale e n dimensioni spaziali

La simmetria per traslazione ci consente di limitare il problema per \square all'origine:

$$\Box u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

L'operatore d'onda in Minkowski

Il caso dello spaziotempo piatto

Spaziotempo piatto di Minkowski $\mathbb{M}^n \to 1$ dimensione temporale e n dimensioni spaziali

La simmetria per traslazione ci consente di limitare il problema per \square all'origine:

$$\Box u_0 = \delta_0$$

e di utilizzare la tecnica della trasformata di Fourier.

Le soluzioni fondamentali ritardata e avanzata

La PDE in (t, \mathbf{x}) diventa l'equazione algebrica nello spazio delle fasi (ω, \mathbf{k})

$$(|\mathbf{k}|^2 - \omega^2)\widehat{u} = 1$$

Troviamo due soluzioni **indipendenti**, che danno luogo a due soluzioni fondamentali G^+ e G^- dette **ritardata** e **avanzata**

supp G^+ è nel **futuro causale**

supp G^- è nel passato causale

Il caso n = 1 - onde su una corda

Le soluzioni fondamentali in Minkowski

La soluzione fondamentale ritardata

$$G^+(t,x) = \frac{\Theta(t-|x|)}{2}$$

supp G^+ è il cono luce futuro

La soluzione fondamentale avanzata

$$G^{-}(t,x) = -\frac{\Theta(t+|x|)}{2}$$

supp G^- è il cono luce passato

Il caso n = 2 - onde su una superficie

Le soluzioni fondamentali in Minkowski

Un insieme di livello della soluzione fondamentale **ritardata**

$$G^+(t, \mathbf{x}) = rac{\Theta(t)}{2\pi} rac{\Theta(t^2 - |\mathbf{x}|^2)}{\sqrt{t^2 - |\mathbf{x}|^2}}$$

supp G⁺ \subset cono luce **futuro**

Il caso n = 2 - onde su una superficie

Le soluzioni fondamentali in Minkowski

Un insieme di livello della soluzione fondamentale avanzata

$$G^{-}(t,\mathbf{x}) = \frac{\Theta(-t)}{2\pi} \frac{\Theta(t^2 - |\mathbf{x}|^2)}{\sqrt{t^2 - |\mathbf{x}|^2}}$$

supp $G^- \subset \text{cono luce } \mathbf{passato}$

Le soluzioni fondamentali in Minkowski

Il supporto della soluzione fondamentale ritardata

$$G^+(t, \mathbf{x}) = rac{\Theta(t)}{4\pi} rac{\delta(t - |\mathbf{x}|)}{|\mathbf{x}|}$$

supp G^+ è il **bordo** del cono luce **futuro**

Le soluzioni fondamentali in Minkowski

Il supporto della soluzione fondamentale avanzata

$$G^-(t,\mathbf{x}) = rac{\Theta(-t)}{4\pi} rac{\delta(t+|\mathbf{x}|)}{|\mathbf{x}|}$$

supp G^- è il **bordo** del cono luce **passato**

Il Principio di Huygens

Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 1 è dispari.

In 2D l'effetto dell'onda viene percepito **anche dopo** che il segnale è arrivato.

Le onde 3D si propagano solo sulla **superficie sferica** del fronte d'onda.

Il Principio di Huygens

Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n > 1 è dispari.

In 2D l'effetto dell'onda viene percepito **anche dopo** che il segnale è arrivato.

Le onde 3D si propagano solo sulla superficie sferica del fronte d'onda.

Il Principio di Huygens

Le soluzioni fondamentali in Minkowski

Il supporto di G^{\pm} coincide con il bordo del cono luce solo se n>1 è dispari.

In 2D l'effetto dell'onda viene percepito **anche dopo** che il segnale è arrivato.

Le onde 3D si propagano solo sulla superficie sferica del fronte d'onda.

Lo spaziotempo come varietà differenziabile

Una varietà differenziabile M è localmente omeomorfa allo spaziotempo piatto

Il tangente è Minkowski

Gli spazitempi fisici possiedono **un'orientazione temporale** ben definita

Lo spaziotempo come varietà differenziabile

Una varietà differenziabile M è localmente omeomorfa allo spaziotempo piatto

Il tangente è Minkowski

Gli spazitempi fisici possiedono un'orientazione temporale ben definita

Operatori d'onda in ambiente curvo

Gli operatori di tipo ondulatorio si generalizzano in base alla $\frac{\text{metrica}}{\text{locale }g}$

Operatore generalizzato di d'Alembert

$$P = -g^{ij}(x)\frac{\partial^2}{\partial x^i \partial x^j} + a^j(x)\frac{\partial}{\partial x^j} + b(x)$$

Cade la simmetria traslazionale. La soluzione fondamentale

$$Pu_{x} = \delta_{x}$$

deve essere cercata punto per punto senza poter usare Fourier

Operatori d'onda in ambiente curvo

Gli operatori di tipo ondulatorio si generalizzano in base alla metrica locale g

Operatore generalizzato di d'Alembert

$$P = -g^{ij}(x)\frac{\partial^2}{\partial x^i \partial x^j} + a^j(x)\frac{\partial}{\partial x^j} + b(x)$$

Cade la simmetria traslazionale. La soluzione fondamentale

$$Pu_{x} = \delta_{x}$$

deve essere cercata punto per punto senza poter usare Fourier

Operatori d'onda in spazitempi di interesse fisico

Lo spaziotempo cosmologico

$$M_c = \mathbb{R} \times \mathbb{R}^n$$

con metrica $g_c = -\mathrm{d}t^2 + f^2(t)\,\mathrm{d}\mathbf{x}^2$ e operatore d'onda

$$P_c = \frac{\partial^2}{\partial t^2} - \frac{1}{f^2(t)} \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2},$$

descrive un universo con fattore di espansione f(t)

Operatori d'onda in spazitempi di interesse fisico

Lo spaziotempo di Schwartzschild

$$M_s = \mathbb{R} \times (2m, +\infty) \times S^2$$

con operatore d'onda

$$P_{s} = \left(1 - rac{2m}{r}
ight)^{-1} rac{\partial^{2}}{\partial t^{2}} - \left(1 - rac{2m}{r}
ight) rac{\partial^{2}}{\partial r^{2}} + \Delta_{\vartheta, \varphi}$$

descrive l'esterno di un **buco nero** non rotante di massa m e raggio 2m

La soluzione fondamentale locale

Troviamo la soluzione fondamentale sul tangente sfruttando le **distribuzioni di Riesz** $R_{\pm}(\alpha)$, con $\alpha \in \mathbb{C}$, trasportabili in un intorno Ω di $x \in M$.

La soluzione fondamentale locale **ritardata** G^+ in X per P è trovata combinando opportunamente

$$R^{\Omega}_{\perp}(2+2k,x)$$

La soluzione fondamentale locale

Troviamo la soluzione fondamentale sul tangente sfruttando le **distribuzioni di Riesz** $R_{\pm}(\alpha)$, con $\alpha \in \mathbb{C}$, trasportabili in un intorno Ω di $x \in M$.

La soluzione fondamentale locale avanzata G^- in x per P è data combinando opportunamente

$$R^{\Omega}_{-}(2+2k,x)$$

Poniamo il problema ai dati iniziali in un sottoinsieme $\Omega \subset M$ nel quale possiamo trovare un'ipersuperficie a **tempo fissato** $t=t_0$.

Problema ai dati iniziali

$$\left\{egin{aligned} Pu &= \psi \ & \ u(t_0,\cdot) = u_0 \ & \ rac{\partial}{\partial t} u(t_0,\cdot) = u_1. \end{aligned}
ight.$$

Il problema in avanti è risolto in Ω propagando i dati iniziali con G^+ . Se sorgente e dati iniziali (ψ, u_0, u_1) sono regolari, la soluzione è **liscia** e **unica**

 Nonostante l'orientazione temporale, non è sempre possibile trovare un tempo comune globale per impostare il problema

Uno spaziotempo con tempo globale e senza paradossi è detto globalmente iperbolico

 Nonostante l'orientazione temporale, non è sempre possibile trovare un tempo comune globale per impostare il problema

Se lo spaziotempo è avvolto su se stesso, un evento può corrispondere a tempi diversi

 Paradossi spaziotemporali

Uno spaziotempo con tempo globale e senza paradossi è detto **globalmente iperbolico**

 Se lo spaziotempo è globalmente iperbolico, combinando opprotunamente le soluzioni fondamentali locali si ottiene una soluzione globale al problema di Cauchy

• La soluzione esiste, è unica e si propaga solo nel **futuro causale** del supporto dei dati iniziali

 Se lo spaziotempo è globalmente iperbolico, combinando opprotunamente le soluzioni fondamentali locali si ottiene una soluzione globale al problema di Cauchy

• La soluzione esiste, è unica e si propaga solo nel **futuro causale** del supporto dei dati iniziali