Nguyễn Quang Ngọc

Chương 2. Đường đi ngắn nhất

- 2.1 Biểu diễn đồ thị bằng ma trận:
- 2.1.1 Biểu diễn bằng ma trận kề:
- **2.1.1.1 Định nghĩa:** Cho G=(V, E), tập các đỉnh V={0, ..., n-1} . **Ma trận kề A của G** là ma trận vuông, cấp n có a_{ii} được định nghĩa:

a_{ij} số cạnh kề giữa đỉnh i và đỉnh j.

Nếu G có hướng thì

a_{ij} là số cạnh hướng từ đỉnh i đến đỉnh j.

Chú ý : A cho ta biết cặp đỉnh có cạnh song song, đỉnh có vòng.

2.1.2 Biểu diễn bằng ma trận liên kết:

2.1.2.1 Định nghĩa : Cho G=(V, E), có $V=\{0, 1,...,n-1\}$ và $E=\{e_i: i=1,..., m\}$. **Ma trận liên kết A** là ma trận có a_{ii} được định nghĩa:

 $a_{ij} = 1$ nếu e_j *liên kết* (kề) với đỉnh i và $a_{ij} = 0$ nếu ngược lại.

Nếu G có hướng thì

 $a_{ij} = 1$, nếu e_j hướng ra từ đỉnh i và $a_{ij} = -1$ nếu e_i hướng vào đỉnh i.

- > Vòng ở đỉnh i được xem là hướng ra từ i.
- \rightarrow $a_{ij} = 0$, nếu e_j không liên kết với v_i .

2.1.3 Biểu diễn bằng ma trận trọng số:

2.1.3.1 Định nghĩa:

 Đồ thị G=(V, E) có hướng, V = {0, 1, 2, . ., n-1}, có trọng số, không cạnh song song cùng hướng, không vòng. Ma trận trong số W được định nghĩa :

$$-W = (w_{ij}) = \begin{cases} 0 & \text{n\'eu i=j,} \\ \text{trọng số của cạnh có hướng (i, j)} \in E \\ \infty & \text{n\'eu i} \neq j \ và (i, j) \not\in E. \end{cases}$$

Nếu G vô hướng thì . . .

2.2 Đường đi ngắn nhất:

2.2.1 Định nghĩa:

Cho G=(V, E), có trọng số, có hướng.

- Trọng số của một đường đi từ đỉnh v đến w là tổng trọng số các cạnh của đường đi đó.
- Đường đi ngắn nhất giữa 2 đỉnh v, w là đường đi trọng số bé nhất.

2.3 Thuật toán Dijkstra:

2.3.1 Yêu cầu:

- Đồ thị G=(V, E) có hướng, có trọng số, không cạnh song song cùng hướng, không vòng.
- $W = (w_{ij})$, $w_{ij} \ge 0$ hoặc $w_{ij} = \infty$.
- Thuật toán tìm đường đi ngắn nhất từ đỉnh s đến tất cả các đỉnh .
- Giả sử có đường đi từ s đến tất cả các đỉnh.

2.3.2 Thuật toán:

Bước 1:

- -i = 0
- Với mọi v , d[v]=∞;
- -d[s]=0;
- -p[s]=-1;
- T=V;

```
Bước 2:
   i = 1 // Bước lặp thứ i.
   While T \neq \emptyset
        1. Chọn u \in T với d[u] bé nhất.
        2. T=T-{u};
        3. Với mỗi v \in T kề với u ((u,v) \in E) thực hiện (if . . .):
                 if (d[v] > d[u] + w_{uv})
                         31. d[v] = d[u] + w_{uv}
                         32. p[v] = u
        4, i = i + 1
   } (Kết thúc While)
Bước 3:
   Viết d, p.
```

$\overline{\text{Dinh s}} = 0$

Lời giải:

i	d[0]	d[1]	d[2]	d[3]	d[4]
0	0	8	8	8	8
1					
2					
3					

i	p[0]	p[1]	p[2]	p[3]	p[4]
0	-1				
1					
2					
3					

Qui tắc tính với ∞:

- 1) Với mọi $a \in R$, $a < \infty \Rightarrow a + \infty = \infty$
- 2) $\infty + \infty = \infty$
- 3) $\infty = \infty$ (phép so sánh)
- 4) Với mọi $a \in R$ không phải là ∞ thì $a < \infty$ (phép so sánh)
- ➤ Trong cài đặt chương trình, ∞ có thể được thay thế bởi bất ký hiệu nào miễn là ký hiệu đó thỏa 4 tính chất trên.

2.4 Thuật toán Bellman-Ford:

Thuật toán tìm đường đi ngắn nhất từ s đến các đỉnh.

2.4.1 Yêu cầu:

- Đồ thị G=(V, E) có hướng, có trọng số (ma trận W).
- Không có cạnh song song cùng hướng, không có vòng.

2.4.2 Thuật toán:

Bước 1:

- -i = 0
- Với mỗi $v \in V$ thực hiện :

$$d[v] = \infty$$

- -d[s]=0
- -p[s] = -1

Bước 2: for $(i = 1; i \le |V|-1; i++)$ Với mỗi cạnh $(u,v) \in E$ thực hiện : if $(d[v] > d[u] + w_{uv})$ $d[v] = d[u] + w_{uv}$ p[v] = u

Bước 3:

```
Với mỗi cạnh (u,v) \in E thực hiện : if (d[v] > d[u] + w_{uv}) { Thông báo có chu trình âm Kết thúc thuật toán }
```

Bước 4:

Viết d, p

Ví dụ:

Lời giải:

i	d[0]	d[1]	d[2]	d[3]	d[4]
0	0	8	8	8	8
1					
2					
3					

i	p[0]	p[1]	p[2]	p[3]	p[4]
0	-1				
1					
2					
3					

2.5 Thuật toán Floyd-Warshall:

2.5.1 Yêu cầu:

- Đồ thị G=(V, E) có hướng, có trọng số. Không cạnh song song cùng hướng, không vòng, không chu trình âm.
- n : số đỉnh.
- $D^{(k)} = (d_{ij}^{(k)})$. $D^{(n)} = (d_{ij}^{(n)})$ là kết quả của đường đi ngắn nhất từ đỉnh i đến đỉnh j.

$$-P=(p_{ij}),\,p_{ij}=\left\{\begin{array}{l} -1\ ,\,n\acute{e}u\;i=j\;hay\;w_{ij}=\infty\\ \\ i\ ,\qquad n\acute{e}u\;i\neq j\;v\grave{a}\;w_{ij}<\infty\end{array}\right.$$

```
2.5.2 Thuật toán:
Bước 1:
  D^{(0)} = W. P^{(0)} = P
Bước 2:
  for (k = 1; k \le n; k++) {
        for (i=1; i<=n; i++) {
              for (j=1; j<=n; j++){
                     If (d_{ii}^{(k-1)} > d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
                      \{d_{ij}^{(k)} = d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}
                         p_{ij}^{(k)} = p_{kj}^{(k-1)};
                      else { d_{ii}^{(k)} = d_{ii}^{(k-1)}; p_{ii}^{(k)} = p_{ii}^{(k-1)}}
              } End For i
        } End For i
  } End For k
```

```
Thuật toán in đường đi từ i đến j.
Print-Path(i, j)
 If (i==j) printf(i);
 Else If (P_{ii} == -1) printf("Khong co duong di i, j.")
       Else {
               Print-Path(i, P<sub>ii</sub>);
               printf(j);
```

Ví dụ:

$$k=1, 2, 3, 4.$$

D⁽⁰⁾:

	1	2	3	4
1	0	5	1	5
2	VC	0	VC	-1
3	VC	3	0	5
4	VC	VC	VC	0

$D^{(1)}$:

	1	2	3	4
1				
2				
3				
4				

P⁽⁰⁾:

	1	2	3	4
1	-1	1	1	1
2	-1	-1	-1	2
3	-1	3	-1	3
4	-1	-1	-1	-1

P⁽¹⁾:

	1	2	3	4
1				
2				
3				
4				

Bài tập:

Bài tập:

$$D^{(0)} = ?$$
, $P^{(0)} = ?$, $D^{(5)} = ?$, $P^{(5)} = ?$, **Print-Path**(3, 4) = ?.

$D^{(4)} =$	0	3	-1	4	-4
	3	0	-4	1	-1
	7	4	0	5	3
	2	-1	-5	0	-2
	8	5	1	6	0

-1	1	4	2	1
4	-1	4	2	1
4	3	-1	2	1
4	3	4	-1	1
4	3	4	5	-1

Bài giải:

Print-Path(3, 4) = ?.

$$D^{(5)} = \begin{bmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{bmatrix}$$

$$P^{(5)} = \begin{bmatrix} -1 & 3 & 4 & 5 & 1 \\ 4 & -1 & 4 & 2 & 1 \\ 4 & 3 & -1 & 2 & 1 \\ 4 & 3 & 4 & -1 & 1 \\ 4 & 3 & 4 & 5 & -1 \end{bmatrix}$$

(Hoặc chỉ tính các phần tử dòng i).

Tài liệu tham khảo:

- 1. Discrete Mathematics, Richard Johnsonbaugh
- 2. Algorithms, Thomas h. Cormen
- 3. Toán Rời Rạc Nâng Cao, Trần Ngọc Danh, ĐHQG TP HCM
- 4. Lý Thuyết Đồ Thị, Đặng Trường Sơn, Lê văn Vinh, ĐHSP Kỹ Thuật TP HCM