Sampling Concepts

Data Science for Quality Management: Data and Measurement

with Wendy Martin

Learning objectives:

Recall the approaches to sampling
Discern between population and sample statistics

Populations and Samples

Population (Target Population)

- •The entire group of objects, all with one characteristic of interest in common, and about which we want to make decisions
- Infinite, or finite but relatively huge

Populations and Samples

Research Population

 That portion of the Target Population available for sampling

Populations and Samples

Sample

- A subgroup of the population of interest, usually selected randomly.
- Random sampling is a prerequisite to using any type of inferential statistics!

General Approaches to Sampling

- Nonrandom or judgment sampling
- Random or probability sampling
 - Simple random Sampling
 - Systematic random sampling
 - Stratified random sampling
 - Cluster sampling

Nonrandom or Judgment Sampling

 Specimens or items are selected using personal judgment, reasoning, opinion, or convenience

Random or probability sampling

•All specimens or items have a probability of being included in the sample

Simple Random Sampling

•Every possible sample of size n has an equal chance of being selected

Systematic Random Sampling

Specimens or items are selected at an interval

Stratified Random Sampling

Specimens or items are divided into

homogenous subsets, or strata

Cluster Sampling

Specimens or items are divided into groups

that are homogenous between each other, but heterogeneous within

Statistics and Variation

A statistic is a measure calculated from sample data that may be used to make inferences about a population

- The average is a "statistic"
- The range is another "statistic"
- There are many more...

Statistics and Parameters

Descriptive Statistics

- Describe a characteristic of a sample
- Frequently used to make inferences about population parameters
- Represented by letters in English

Statistics and Parameters

Population parameters

- Describes a characteristic of the population
- Represented by Greek letters (with few exceptions)

Statistics and Parameters

Sample Statistics	Population Parameters	Description
$ar{X}$	μ	Mean
$ ilde{X}$	M	Median
S	σ	Standard Deviation
s ²	σ^2	Variance
R	NT'	Range / Natural Tolerance
р	π	Count Per Unit
g_3	γ_3	Skewness
94	γ_4	Kurtosis

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI. 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005