Week 2 - Combinatorial optimization in Al, combinatorial explosion and computational complexity

Knowledge

▼ Set

A set is **nothing more than an unordered collection of elements with absolutely no duplicates**

$$A = [2, 21, 42, 856]$$

▼ Relation

co-domain

▼ Function - Math

One input maps one output

▼ content

Polynomial

 x^n

Exponential

 2^x

Quadratic Equation

$$ax^2 + bx + c$$

▼ Symbolic AI (GOFAI) → Optimization

Neighborhood \Rightarrow give a range for x of F(x), depending on constraints like computation power to find a local minimum.

In general: **polynomial** and better are considered "practical", whereas

exponential and worse are considered "impractical", when taking into account realistic computational resources

▼ Approximate method

Doesn't guarantee a globally optimal solution, but finds a decent solution (convergence) within a neighborhood.

• Important summations

$$1+2+3+\cdots+n=rac{1}{2}n(n+1)$$

$$1+b+b^2+\cdots+b^n=rac{b^{n+1}-1}{b-1}$$

• Time complexity:

 $\circ \quad \text{Worst case: upper bond} \leftarrow \text{what Big O Notation normally stands for} \\$

Best case: lower bond

Average case: expected cost