UNCLASSIFIE	JUN 61	PHIC MEASUREN D A BURNS, M -86	A GOVE, N	V LOMB	ARD BASIN	F SOUTHEAS	TERN CA	·ETC(U)
1 or 3	· in v							

Naval Ocean Research and Development Activity NSTL Station, MS 39529

VORDA-TN-86

Hydrographic Measurements in the Grenada Basin, Southeastern Caribbean Sea, January 1980

Norman V.Aombard

Janice D. Boyd Stanley E. Raffa

Oceanography Division

Ocean Science and Technology Laboratory

392773

DISTRIBUTION STATEMENT A

Approved for public release Distribution Unlimited

ABSTRACT

As part of a study on mesoscale variability in the south-eastern Caribbean Sea, we occupied 117 conductivity-temperature-depth (CTD) stations and made 235 expendable bathythermograph (XBT) drops during 12-27 January 1980. We present the cruise track of the ship and also the tracks of three aircraft XBT (AXBT) flights made concurrently. We discuss data editing and quality control procedures that were used for CTD (but not for XBT and AXBT) data and present vertical profiles and TS diagrams for each station. In addition to the four water types that have long been known to be present (surface water, subtropical water, Antarctic intermediate water, and North Atlantic deep water) the profiles show many features at vertical scales of order 10 meters.

ACKNOWLEDGMENTS

We wish to thank Adolph Klein of the Naval Oceanographic Office for equipment preparation. Zachariah Hallock and William Teague, also of the Oceanographic Office, created most of the software used for data processing. The officers and men of the USNS BARTLETT, E. Weckstrom commanding, expended much energy and enthusiasm in our behalf. Aside from potable water, there is nothing further we could have asked of them. Paul Mazeika supervised the aircraft flights, and Jim Allender contributed insightfully to cruise planning.

N.V. Lombard works for the Ocean Acoustics Division at NORDA, and S. Raffa works for the Naval Oceanographic Office.

CONTENTS

	Page
ILLUSTRATIONS AND TABLES	iv
INTRODUCTION	1
CRUISE PLAN	1
DATA COLLECTION AND PROCESSING	2
REFERENCES	5
APPENDIX: FILE CATALOG OF CTD DATA	6

ILLUSTRATIONS

		Page
Figure 1.	Southeastern Caribbean Sea	23
Figure 2.	Ship and aircraft coverage during January 1980	24
Figure 3.	Dominica Section	25
Figure 4.	Square Grid	26
Figure 5.	St. Vincent Inflow I	27
Figure 6.	St. Vincent Inflow II	28
Figure 7.	Straight Line	29
Figure 8.	AXBT Flight 1	30
Figure 9.	AXBT Flight 2	31
Figure 10.	AXBT Flight 3	32
Figures 11	- 241, odd numbers: Vertical Profiles, (less 23) Stations 1-117	34
Figures 12	- 242, even numbers: TS Diagrams, (less 23) Stations 1-117	35
	TABLES	
Table 1.	Stations	7
Table 2.	Salinity Calibration	15
Table 3.	Sensor Comparison	19
Table 4.	Data Problems	21
Table 5	Station FED File Index	22

1. INTRODUCTION

As part of a study on mesoscale variability west of the southern Lesser Antilles, we took hydrographic measurements using a Neil Brown conductivity-temperature-depth profiler (CTD) and expendable bathythermographs (XBT's) during January 1980. Here we describe the cruise plan, the data collection, and the data processing. Plots of temperature, salinity, and density (as sigma-t) with pressure and of temperature with salinity are shown for each CTD station.

2. CRUISE PLAN

During 12-27 January 1980, USNS BARTLETT occupied 117 CTD stations and made 235 XBT drops between the southern Lesser Antilles and Aves Ridge (Fig. 1). This coverage was coordinated with airborne XBT (AXBT) flights made on 24, 27, and 29 January. Figure 2 shows the coverage of the ship (CTD/XBT) and the aircraft (AXBT). Table 1 lists all CTD and shipborne XBT positions. Each segment of the cruise and AXBT flight was directed toward some segment of flow that we believed important. Dominica Section (12-13 January). Numerical modeling had suggested that there might be a cyclonic mean flow in Grenada Basin, perhaps below the sill depth of the straits in the Lesser Antilles (i.e. 1000 m and deeper). Mazeika et al. (1980) reported a cyclonic circulation overlying Tobago Basin east of the Antilles, and we suspected a similar but weaker circulation above Grenada Basin. The Dominica section (Fig. 3) was one of two deep (CTD casts within 50 m of the bottom) east-west sections across Grenada Basin. Throughout the cruise XBT's were used to increase the horizontal resolution of the survey grid.

Square Grid (14-17 January). Satellite-tracked drifting buoys, which measure shallow currents, had been deployed in Grenada Basin by NOAA (Molinari, 1980). Several tracks of these drifters revealed an eddy with about 50 km diameter centered near 14°30'N and 62°30'W. A square grid (Fig. 4) was designed to reveal any similar

feature.

St. Vincent Inflow (17-27 January). Stalcup and Metcalf (1972) believed that up to

10 x 10^6 m³/sec flow through St. Vincent Passage, and an AXBT flight in January 1979 showed a strong thermal gradient near $13^{\circ}30$ N. The two St. Vincent Inflow grids were designed to measure this flow and any downstream variability. The first grid (17-21 January) extended across Grenada Basin to the foot of Aves Ridge (Fig. 5). The northernmost CTD stations extended within 50 m of the bottom to be consistent with the Dominica Section. The grid was repeated during 22-27 January to examine temporal variability. The second grid also extended westward over the crest of Aves Ridge (Fig. 6).

Straight Line (21 January). Between the end of the first and the beginning of the second St. Vincent Inflow grid, 37 XBT's were dropped (Fig. 7). An XBT was dropped every ten minutes with the ship underway at full speed: XBT spacing was about 3 km. Because our closest spacing on other grids was about 9 km (5 nm) and because 28 km (15 nm) often separated lines within a grid, we wanted to sample on a closer spacing

to see if our more coarse sampling was adequate.

AXBT Flight 1 (27 January). This flight was planned to survey Grenada Passage and St. Lucia Passage inflows, and to extend the St. Vincent Inflow grid (Fig. 8). Stalcup and Metcalf (1972) believed that transport through Grenada Passage was equal to that through St. Vincent Passage, and that St. Lucia was the third largest source. Brooks (1978) measurements in St. Lucia Passage supported this ranking. Preliminary shipboard results showed large thermal gradients along the northern border of our St. Vincent Inflow grid, so we desired increased coverage north of this grid.

this grid.

AXBT Flight 2 (29 January). This flight was designed to overlap the St. Vincent

Inflow grid across St. Lucia Passage (Fig. 9).

AXBT Flight 3 (24 January). This flight was designed to emulate Flight 1 (which it preceded), but a navigation failure terminated the flight early.

The positions in Figure 10 are, therefore, in some doubt, but the temperature patterns inferred from the AXBT data are reasonable and resemble comparable data such as from St. Vincent Inflow CTD and XBT stations.

3. DATA COLLECTION AND PROCESSING

We used a Neil Brown CTD with recording on audio magnetic tapes. A rosette sampler was used to gather salinity calibration samples, which were analyzed on an AUTOSAL induction salinometer on board ship. Reversing thermometers were used to verify the collection point (i.e., CTD and thermometer temperatures were compared) for each water sample. Various equipment malfunctions limited the number of salinity samples obtained.

The first CTD sensor used, serial 01-2276-04, became noisy at station 18, and was replaced by serial 01-2127-03 following station 22. Only three calibration samples were obtained with the first sensor. Many early stations, prior to station 23, contained anomalies or gaps in the original recorded data. The manufacturer claims an accuracy (resolution) of 0.005 mmho (0.001 mmho), 0.005° C $(0.0005^{\circ}$ C), and 6.5 dbar (0.1 dbar) for conductivity, temperature and depth (Brown and Morrison, 1978). Based on our calibration, we claim an accuracy of 0.005 g/kg for salinity and 0.005° C for temperature (Table 2). Salinity was calculated from Bennett (1976) and other variables from Fofonoff (1962).

There may be a bias in salinity below 2500 dbar, however. Five water samples taken at these depths showed that the CTD values were 0.005 g/kg too high. These differences had a range of only 0.002 g/kg and were nearly two standard deviations from the mean difference (Table 2).

Because only three samples were obtained while the first sensor was in use, we compared values of ten casts made just before and just after sensors were changed. We compared pressure, salinity, and density at a potential temperature of 5.000° C. This temperature occurs near 1000 dbar between Antarctic Intermediate water above and North Atlantic deep water below (Wust, 1964). Our assumption was that the TS correlation at this temperature was nearly constant throughout the basin, so that significant biases in the first sensor would be revealed. Table 3 shows that mean salinity and density between the two sets of ten stations differed by about one standard deviation. We conclude that the accuracy of the first sensor was at least 0.01 g/kg and 0.01° C in salinity and temperature.

Data originally recorded on audio tapes were translated to digital form with about a 0.1% data loss. Large spikes were replaced by interpolated values and any gaps in the series were then filled by linear interpolation. Each series (conductivity, temperature, and pressure) was then filtered separately to match sensor time responses. Finally, these series were filtered to average values at one meter intervals; derived parameters (e.g., density) were calculated and results were plotted. The original sampling rate was about 30 Hz and the lowering rate between 30 and 60 m/min, so the original data series had about one sample every 3 cm.

Some problems remained after processing. The lower portion of station 10 was improperly recorded, so that this station extends only to 477 dbar instead of 1500 dbar as planned. Station 23 was entirely lost by a similar recording error. Stations 2, 4, 6, 7, 44, and 74 had gaps caused by loss of signal synchronization. We attribute these gaps to poor cable termination at the sensors and to improper adjustment of the equipment (by us). The failure of the first sensor was manifested by occasional "outliers" or "spikes": discontinuous jumps in temperature and salinity (temperature and salinity were displayed on an x-y plotter during each cast).

The occurrence of these spikes became more frequent until the sensors were changed after station 22. Data from stations 19-21 still have some spikes after processing (nearly 5% of the samples at station 21 were clearly anomalous). Table 5 lists data problems. Figures 11 through 242 show the vertical profiles of temperature, salinity, and density and the TS correlation. Each six digit number refers to station and cast numbers, e.g., 072001 is cast one of station 72 (all our stations had one cast). All plots begin at 14 dbar (sometimes referred to as the "surface"); this peculiar convention increases our processing efficiency and the discarded data were from a usually homogeneous layer between 3 and 14 dbar.

Navigation on BARTLETT was mostly by satellite, and reconstructed positions (using fixes after as well as before stations) are accurate to about 2 km. Relative position accuracy is probably better. Aircraft positions were also accurate to about 2 km, except for AXBT flight 3. The accuracy for this flight was unknown but may be as accurate as 2 km. Temperature patterns constructed from the flight suggest an accuracy of at least 20 km and much better relative accuracy.

4. DISCUSSION

There were four water types (or their remnants) present (nomenclature varies in the literature; e.g., Sverdrup et al., 1942, and Wust, 1964): surface water (the surface mixed layer, about 27°C and 35.7 g/kg), subtropical water (salinity maximum, 20-27°0 and greater than 36 g/kg), Antarctic intermediate water (salinity minimum, about 34.8 g/kg), and finally North Atlantic deep water (about 35 g/kg). Station 50, occupied during the first St. Vincent inflow grid (Fig. 5) illustrates these types clearly. The surface layer was 27.02°C and salinity was 35.82 g/kg. The water column was isothermal (within 0.1°C) to 50 dbar and isohaline (within 0.1 g/kg) to 47 dbar. Subtropical water was manifest as a single salinity maximum at 97 dbar (23.60°C, 36.89 g/kg). Antarctic intermediate water caused a broad salinity minimum between 600 and 730 dbar, with two local minima at 624 dbar $(6.38^{\circ}\text{C} \text{ and } 34.72 \text{ g/kg})$ and at 710 dbar $(5.85^{\circ}\text{C} \text{ and } 34.71 \text{ g/kg})$. Salinity then increased towards the bottom, reaching 34.977 g/kg (4.181°C in situ; 3.914°C potential) at 2862 dbar; these values represent North Atlantic deep water. The deepest 1000 dbar was nearly homogeneous: values at 1862 dbar were 34.969 g/kg and 4.125°C (3.965°C potential temperature). While this station illustrates clearly the hydrographic features that have been known for more than forty years (Sverdrup et al. 1942), smaller scale features also exist that were not evident in earlier Nansen bottle data.

Surface isothermal and isohaline layers usually were not coincident. Station 1, where the isothermal layer was 10 dbar deeper than the isohaline layer, is a good illustration. Temperature, which was 27.23° C at the surface, remained constant (within 0.1°C) to 67 dbar. Salinity, which was 35.72 g/kg (density, expressed as sigma-t: 23.21 kg/m³) at the surface was constant (within 0.1 g/kg) to 55 dbar (27.24°C, 35.79 g/kg, 23.26 kg/m³), but then increased to 36.64 g/kg (27.13°C, 23.93 kg/m³) at 67 dbar. Nearly all stations had a deeper isothermal layer than isohaline layer, so these data forcefully illustrate the inadequacy of defining the surface mixed layer with temperature data alone.

Many stations also had a local temperature maximum, always density-compensated by increasing salinity, at the base of the isothermal layer. Station 11 had such a temperature maximum of about 10 dbar thickness. Temperature was 27.02° C at the surface, isothermal to 39 dbar, and decreased to 26.91° C at 49 dbar. It then increased to 27.36° C, the maximum temperature in the profile, at 57 dbar and thereafter decreased with pressure.

Finestructure, "stepiness" in the temperature and salinity profiles on scales of a few meters, was evident at most stations. It was most strongly expressed near the high salinity core of the subtropical water and at stations near strong bathymetric gradients, such as occur near the islands and near seamounts on Aves Ridge. Stations 26-28, taken east of St. Vincent Passage, and station 112, taken above Aves Ridge, illustrate finestructure both as steps in monotonic temperature and salinity profiles and as intrusions of water causing temperature and salinity inversions. All but one of the intrusions was density-compensated so that static stability was maintained. At station 26, however, an apparent density inversion was recorded between 81 and 92 dbar. Temperature was nearly constant within this layer, decreasing from 27.06°C at 81 dbar to 27.02°C at 87 dbar and then increasing to 27.07°C at 91 dbar. Salinity decreased strongly over this same interval from 36.65 g/kg at 81 dbar (density: 23.96 kg/m^3) to a minimum of 36.54 g/kg (23.90 kg/m^3) at 87 dbar, and then it increased to 36.66 g/kg (23.97 kg/m^3) at 92 dbar.

Several stations that were not generally rich in finestructure had well-developed multiple salinity maxima in the subtropical water. For example, station 18 had three distinct maxima. The shallowest extended from 72 to 83 dbar with a maximum salinity of 36.73 g/kg, the next layer extended from 84 to 117 dbar with a maxima of 36.85 g/kg and the deepest layer extended from 118 to 158 decibars with a maxima of 36.87 g/kg. Data such as these cast doubt on the efficacy of tracing the salinity maximum using data from widely-spaced sample bottles (e.g., Wust, 1964).

If the smooth TS curve for station 50 (used above to illustrate the water types present) is taken as a standard, then many stations display large deviations from this curve in the subtropical water, either toward lower or higher salinity. Station 18, for example, showed two low-salinity deviations, which produced the three salinity maxima which were discussed in the preceding paragraph. Stations 51 and 54 on the other hand, each had a single high salinity deviation. While the maximum salinity at station 50 was 36.89 g/kg (110 dbar, 23.60°C), at station 51 it was 37.12 g/kg (124 dbar, 24.49°C) and at station 54 it was also 37.12 g/kg (121 dbar, 24.39°C). These deviations from the gross TS curve illustrate the multiple origins of the subtropical water and suggest strong variations within this stratum of such derived parameters as sound speed.

REFERENCES

- Bennett, A. S. (1976). Conversion of In Situ Measurements of Conductivity to Salinity. Deep Sea Res. 23 (2):157-165.
- Brooks, I. H. (1978). Transport and Velocity Measurements in St. Lucia Passage of the Lesser Antilles. EOS 59:1102 (abstract).
- Brown, N. L. and G. K. Morrison (1978). W.H.O.I./Brown Conductivity, Temperature and Depth Microprofiler. Woods Hole Oceanographic Institution. Technical Report WHOI-78-23, Unpublished manuscript.
- Fofonoff, N. P. (1962). The Physical Properties of Sea Water. In: The Sea, M.N. Hill, editor. Wiley, Interscience, New York pp. 3-28.
- Hallock, Zachariah R. (1980). The Fast and Easy Binary (FEB) File. TN 7210-12-80. Naval Oceanographic Office, NSTL Station, Mississippi.
- Mazeika, P. A., D. A. Burns, and T. H. Kinder (1980). Mesoscale Circulation East of the Southern Lesser Antilles. J. Geophys. Res. 85 (C5):2743-2758.
- Molinari, R. L. (1980). Current Variability and Its Relation to Sea-surface Topography in the Caribbean Sea and Gulf of Mexico. Marine Geodesy 3:409-436.
- Stalcup, M. C. and W. G. Metcalf (1972). Current measurements in the Passages of the Southern Lesser Antilles. J. Geophys. Res. 77 (6):1032-1049.
- Sverdrup, H. U., M. W. Johnson, and R. H. Fleming (1942). The Oceans. Prentice-Hall. 1087 pp.
- Wust, G. (1964). Stratification and Circulation in the Antillean Caribbean Basin. Columbia University Press, New York. 130 pp.

APPENDIX

Digital data are stored in a format called FEB files (Fast and Easy Binary files; Hallock, 1980). These files were designed for repeated access using mass storage (e.g., magnetic disc), and are the format in which data are archived. Each file is a series of variable length records grouped into segments; stations may consist of one or of several segments. Within each segment, data consist of a sries of cycles, each cycle being a value of conductivity, pressure, temperature, and time. Table 5 shows the sequence in which the CTD data are archived.

TABLE I STATIONS

}	CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	(2) DEFTH (M)	() ()
	DOMINICA S	SECTION				
	€ î	1723 12 Jan 80	15-22.4	63-32.5	j.2()	231 f m
}	X1 X2	1908 1949	15-22.9 15-23.4	63-30.4 63-24.5	1597 1825	2
	32 X3	2033 2230	15 - 23.8 15 - 23.5	63-19.4 63-14.5	2066 2217	Botton.
•	13 X4 X5	0030 13 Jan 80 0229 0259	15-24.0 15-23.2 15-23.0	63-05.8 62-57.8 62-53.4	0.5 67 2403 7400	rattor,
	34 X6	0342 0648	15 - 22 . 5 15 - 22 . 0	62-51.8 62-44.8	294. 2215	Botto.
	X7 X8	0737 0822 1102	15-22.1 15-22.1 15-21.7	62-38.6 62-35.8 62-31.0	2217 2059 2165	Entton
-]	X9 C6 X10	1154 1252 1544	15-21.7 15-21.7 15-21.9 15-22.0	62-24.7 62-18.4 62-14.1 62-09.0	2156 2250 2360	Bottom
, 	X11 X12 X13 X14	1630 1712 1751 1930	15-22.2 15-22.3 15-23.6	62-04.5 62-00.5 61-47.2	2520 2514 2381 2049	
1	X15 C7 X16	2014 2030 2237	15-24.1 15-24.1 15-24.2	61-40.6 61-39.7 61-35.0	2360 2323 1940	Botitio
, 	. 6	2324	15-22.5	61 - 29.6	1353	Batter
•	CQUARE GR			4		
	39 417	0356 14 Jan 80 0608	15-11.0 15-10.6	61-58.0 62-08.3	2000 2000	1500M
	C10 X18 C11	0726 0945 1109	15-10.8 15-10.6 15-10.2	62-18.1 62-30.1 62-38.8	2635 2405 560	1500h 1500h
5	X19 C12	1304 1415	15 - 09.8 15-10.8	62 - 50.8 63 - 00.4	2232 1862	1500M
	X20 X21 X22 X23	1649 1803 1940 2233	14-58.8 15-00.0 15-00.3 14-59.7	63-00.2 62-50.7 62-39.3 62-18.9	1515 1917 2265 2626	1 500%
	X24 X25	0010 15 Jan 80 0133	15-00.5 15-00.7	62-07.7 61-58.0	2725 2641	
•	C13 X26	0254 0449	14-51.8 14-50.7	61-57.3 62-08.6	7717 761	1500M
J	C14 X27	0547 0750	14-49.5 14-50.2	62-19.0 62-29.8	2715 2432	1500M

					(2)	
CTD/	(1) VPT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	COMMENT
CIDA	VDI	TIME	Z1121002 (11)			
				60 40 0	0057	1500M
C15		0855 15 Jan 80	14-51.0	62-40.9	2257 1847	15000
	X28	1035	14-50.7	62 – 49.3 63 – 00.3	1481	1500M
C16		1143	14-50.2 14-40.4	62-59.3	1536	1,500.1
	X29	1349	14-29.8	62-48.5	1344	
	X30	1458 1610	14-29.8	62-40.1	2988	
	X31	2022	14-41.3	62-08.3	2816	
	X32	2140	14-40.2	61-58.6	2776	
C17	X33	2251	14-29.6	62-00.0	2827	1500M
C18		0147 16 Jan 80	14-30.2	62-19.8	2838	1500M
0.10	X34	0356	14-31.3	62-32.0	2670	
C19	٠, د۸	0455	14-31.3	62-41.3	1490	1500M
017	X35	0637	14-32.0	62 - 53 . 8	1628	
C20	1.55	0729	14-30.6	63-00.3	1474	1500M
525	X36	0929	14-20.0	63-01.9	1456	
	X37	1050	14-18.8	62-49.7	1737	
	X38	1202	14-19.3	62-38.3	1560	
	X39	1207	14-19.4	62-37.5	1560	
	X40	1211	14-19.5	62-36.8	1560	1500M
C21		1303	14-19.5	62-36.7	1561	1500M
	X41	1453	14-18-8	62-29.5	2507	
	X42	1600	14-19.9	62-19.8	2860 2900	
	X43	1712	14-21.0	62 - 09.7 62 - 01.5	2845	
	X44	1809	14-21.0	62-02.6	2867	1500M
C22		1909	14-12.7 14-12.7	62-13.4	2878	1,5001.
200	X45	2121	14-10.1	62-18.4	2878	1500M
C23	VIIC	2214 0016 17 Jan 80	14-10.4	62 - 29.7	2754	.300
C24	X46	0120	14-09.2	62-37.0	1679	1500M
024	X47	0318	14-10.6	62-47.3	1917	
C25	ATI	0439	14-11.2	62-53.2	1580	1500M
رعن	X48	0709	13-58.8	62 - 57 . 9	1466	
	X49	0801	14-00.0	62-45.2	1905	
	X50	0903	14-00.6	62-38.2	1951	
	X51	1000	14-00.0	62 - 29.0	2399	
	X52	1103	13-59.3	62-18.3	2896	
	X53	1107	13-59-3	62-17.6	2896	
	X54	1204	13-59-3	62-08.5	2889	
	X55	1306	14-01.3	61-58-8	2889	
	X5 6	1443	13-54.6	61-44.2	2926 2026	
	X57	1443	13-54.6	61-44.2	2926	
St.	Vince	nt Inflow I				
C26		2037	13-38.8	60-56.4	220	Bottom
3_3	X58	2130	13 - 33•3	60-56.3	201	
	X59	2134	13-32.6	60-56.5	281	D - 4-4
C27		2213	13-27.8	61-00.0	640	Bottom
	X60	2324	13-21.5	61-01.4	476	

	(1)				(2)	
CTD/X		TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	COMMENT
C28		0030 18 Jan 80	13-15.8	61-04.0	409	Bottom
	X61	0355	13-12.5	61-26.0	2450	
C29		0453	13-16.1	61-19.7	1200	Bottom
	X62	0612	13-22.6	61-18.0	1847	
	X 63	0646	13-28.2	61-17.5	1001	
C 30		0730	13-33.7	61-17.8	2569	1500m
	X64	0857	13-39.4	61-17.4	2677	
	X65	0933	13-45.2	61-17.0	2761	
C31		1009	13-49.8	61-16.6	2743	Bottom
	X66	1218	13-49.2	61-14.5	2569	
	X67	1238	13-49.8	61-11.2	2285	
C32		1257	13-50.6	61-07.2	1766	Bottom
C33		1651	13-53.2	61-37.5	2860	Bottom
	X68	1952	13-43.0	61-34.8	2838	
	X69	2001	13-41.3	61-35.0	2825	
C 34		2040	13-35.6	61-35.1	2816	1500M
	X70	2207	13-31.5	61-34.2	2805	
	X71	2230	13-27.6	61-33.5	2780	4 - 0 0
C 35		2309	13-21.1	61-32.3	2769	1 500M
	X72	0015 19 Jan 80	13-18.1	61-31.9	2750	
	X73	0044	13-13.7	61-32.7	2772	45000
C36		0121	13-08.5	61-33.7	2772	150011
C 37		0342	13-02.9	61-45.8	2891	1500M
	X74	0513	13-09.7	61-48.7	2 89 8	
000	X75	0551	13-16.1	61-48.4	2824	15004
C 38	VIIC	0624	13-20.5	61-48.4	2889	1500M
	X76	0809	13-27.3	61-48.8	2889	
C20	X77	0844	13 - 32.7	61-49.0	2889	1500M
C 39	V70	0919	13-38.5	61-49.3 61-48.5	2889	1500M
	X78	1047	13-43.9 13-49.4	61-47.8	2 88 9 2 88 9	
Ç40	X79	1122 1200	13-55.0	61-47.9	2 889	Bottom
C41		1528	13-57.5	61-53.0	2889	Bottom
041	X80	1817	13-50.5	62-02.3	2900	150 00000
	X81	1831	13-47.7	62 - 02.8	2900	
C42	AUT	1900	13-32.2	62-03.7	2900	1500M
042	X8 2	2021	13-38.8	62-02. 3	2900	1,500,1
	X83	2045	13-33.5	62-03.1	2904	
C43	1.05	2130	13-29.4	62-03.3	2904	1500M
0.5	X84	2225	13-26.8	62-03.4	2908	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	X85	2302	13-21.7	62-03.6	2908	
C44		2336	13-17.1	62-04.0	2908	1500M
· · ·	X86	0058 20 Jan 80	13-12.0	62-04.4	2908	• • • •
	X87	0117	13-09.2	62-03.7	2908	
C45	- •	0150	13-04.5	62-02.6	2908	1500M
C46		0422	13-00.2	62-14.2	2908	1500M
- · -	X88	0552	13-02.9	62-14.2	<i>2</i> 908	
	X89	0712	13-08.1	62-14.7	2908	
C47		0726	13-13.1	62-18.0	2908	1500M
	X90	0902	13-20.0	62-18.0	2915	

(1) CTD/XBT TIME	LATITUDE (N)	LONGITUDE (W)	(2) DEPTH (M)	COMMENT
X91 0933 20 Jan 80	13-25.2	62-18.0	2908	1500M
C48 1044	13-29.6	62-18.2	2911	
X92 1135	13-25.0	62-18.2	2908	
X93 1205	13-38.0	62-18.2	2907	1500M
C49 1248	13-45.0	62-18.2	2911	
X94 1420	13-50.9	62-17.1	2907	
X95 1453	13-55.0	62-17.3	2907	
C50 1534 C51 2021 X96 2246	14-00.9 13-59.7 13-59.3	62-17.9 62-48.8 62-30.2	2911 1900 1902	Bottom Bottom
X97 2316	13-59.5	62-35.7	2487	Lattom
C52 2347	13-59.8	62-31.7	2600	
X98 0200 21 Jan 80	13-55.0	62-31.5	2743	
X99 0240	13-48.3	62-31.4	2754	
C53 0305	13-44.5	62-31.4	2644	1500M
X100 0428	13-37.9	62-30.8	2900	
X101 0447	13-33.7	62-31.8	2900	
C54 0507 X102 0645 X103 0713 C55 0752	13-28.6 13-23.9 13-18.5 13-13.8	62-32.8 62-32.7 62-33.2 62-32.8	2904 2908 2895 2909	1500M 1500M
X104 0906	13-09.6	62-32.7	2895	1500M
X105 0937	13-04.0	62-32.5	2895	
C56 1021	12-56.3	62-32.7	2911	
X106 1205	12-59.7	62-38.6	2906	1500M
X107 1228	12-59.9	62-41.7	2906	
C57 1303	12-59.6	62-47.8	2911	
X108 1429	12-59.6	62-53.3	2890	
X109 1458	12-59.6	62-58.2	2402	
C58	12-59.9	63-01.3	1490	1500M
Straight Line				
X110 1634	12 - 59.0	62 - 59.3	1518	
X111 1640	12-59.3	62 - 58.5	1582	
X112 1650	12 - 59.8	62 - 57 . 1	1793	
X113 1700	13 - 00.4	62 - 55 . 6	2233	
X114 1710	13-00.9	62 - 54 . 1	2083	
X115 1720	13-01.4	62 - 52 . 7	2525	
X116 1730	13-01.0	62 - 51.2	2880	
X117 1740	13-01.5	62 - 49.8	2988	
X118 1750	13-03.1	62 - 48.3	2906	
X119 1800	13 - 03.6	62-46.8	2906	
X120 1810	13 - 04.2	62-45.4	2906	
X121 1820	13-04.7	62-42.9	2906	
X122 1830	13 - 05.3	62-41.5	1906	
X123 1840	13 - 05.8	62-41.0	2906	
X124 1850	13-06.4	62-39.5	2906	
X125 1900	13-06.9	62 - 38.1	2906	
X126 1910	13-07.5	62 - 36.6	2906	
X127 1924	13 - 08.2	62 - 34.5	2906	
X128 1930	13 - 08.4	62 - 33.6	2906	

(1) CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	(2) DEPTH (M)	COMMENT
X129 X130 X131 X132 X133 X134 X135 X136 X137 X138 X139 X140 X141 X142 X144 X145 X146	1940 21 Jan 80 1950 2000 2010 2020 2030 2040 2050 2100 2110 2120 2130 2140 2150 2200 2210 2220	13-08.7 13-09.0 13-09.3 13-09.6 13-09.9 13-10.5 13-10.7 13-10.8 13-11.3 13-11.7 13-12.2 13-12.6 13-13.1 13-13.5 13-14.0 13-14.4 13-14.9	62-32.1 62-30.5 62-29.0 62-27.4 62-25.9 62-24.3 62-22.8 62-20.8 62-19.9 62-18.0 62-16.5 62-15.1 62-15.1 62-13.6 62-12.2 62-10.7 62-09.3 62-07.8 62-06.4	2906 2906 2906 2910 2910 2910 2910 2910 2910 2910 2910	
ST. VINCEN	IT INFLOW II				
C59 C60 C61 C62 C63 X147 X148 C64 X149 X150 C65 X151 X152 C66 X153 X154 C67 C68 X155 X156 X157 C69 X158 X159 C70 X160 X161 C71 X162 X163	0548 22 Jan 80 0715 0280 0926 1130 1247 1307 1339 1453 1522 1632 1731 1800 1830 1942 2004 2034 0003 23 Jan 80 0115 0130 0204 0230 0410 0432 0508 0630 0700 0733 0855	13-42.7 13-26.7 13-20.7 13-25.3 13-19.3 13-25.0 13-28.3 13-22.5 13-37.2 13-41.8 13-47.0 13-51.8 13-56.5 14-00.4 13-59.8 14-00.0 14-00.4 13-56.5 13-4.2 13-49.0 13-45.9 13-25.1 13-29.6 13-24.9 13-20.0 13-15.7 13-09.8 13-05.4	61-03.1 61-05.0 61-07.3 61-09.2 61-17.9 61-17.7 61-18.2 61-18.2 61-18.2 61-18.2 61-17.5 61-17.	824 417 787 1329 1289 2160 2278 2542 2640 2757 2749 2765 2706 1692 2465 1221 1046 2853 2816 2816 2838 2834 2816 2825 2849 2807 2787 2743 2761 2663	Bo' tom Bottom Bottom 1200M 1200 1200 1200 1200 1200

CTD/XBT TIME LATITUDE (N) LONGITUDE (W) DEPTH (M) COMMENT C72 1066 23 Jan 80 12-59.7 61-32.8 1761 1200 C73 1219 13-00.1 61-47.9 2880 1200 X165 1409 13-10.0 61-47.7 2897 1200 X166 1603 13-20.0 61-47.8 2889 1200 X167 1633 13-15.0 61-47.8 2889 1200 X168 1847 13-26.4 61-49.0 2891 1200 X169 1908 13-39.8 61-48.8 2889 1200 X170 2055 13-48.3 61-48.8 2889 1200 X171 2137 13-55.3 61-48.8 2889 1200 X171 2137 13-55.3 61-48.5 2889 1200 X172 2219 14-01.3 51-48.5 2889 1200 X173 0234 13-48.3 61-48.5 2889		(1)				(2)	ı
C72	CTD/			LATITUDE (N)	LONGITUDE (W)		
C73 1219 13-00.1 61-47.9 2880 1200 X165 1409 13-10.0 61-47.7 2897 C74 1409 13-10.0 61-47.7 2897 X166 1603 13-20.0 61-47.8 2889 X167 1633 13-15.0 61-47.8 2889 X168 1847 13-29.9 61-47.8 2889 X169 1908 13-39.8 61-49.0 2891 X169 1908 13-39.8 61-48.8 2889 C76 1942 13-44.1 61-48.8 2889 X170 2055 13-48.3 61-48.5 2889 1200 X171 2137 13-55.3 61-48.6 2889 1200 X172 2020 13-53.6 62-02.2 2897 X173 0234 13-48.6 62-02.5 2900 1200 X173 0234 13-34.6 62-02.5 2900 1200 X172 0440							
C73 1219 13-00.1 61-\(\mathrm{H}^2\)? 2880 1200 X165 1409 13-05.0 61-\(\mathrm{H}^2\)? 2897 C74 1409 13-10.0 61-\(\mathrm{H}^2\)? 2890 1200 X166 1603 13-15.0 61-\(\mathrm{H}^2\)? 2889 1200 X167 1633 13-15.0 61-\(\mathrm{H}^2\)? 2889 1200 X168 1847 13-29.9 61-\(\mathrm{H}^2\)? 2889 1200 X169 1908 13-39.8 61-\(\mathrm{H}^4\).8 2889 1200 X170 2055 13-\(\mathrm{H}^4\).1 61-\(\mathrm{H}^4\).8 2889 1200 X171 2137 13-55.3 61-\(\mathrm{H}^4\).8 2889 1200 X172 202.00 13-53.6 62-02.2 2897 1200 X173 0234 13-\(\mathrm{H}^4\).0 62-02.2 2897 1200 X173 0234 13-\(\mathrm{H}^4\).0 62-02.5 2900 1200 X175							
X164							
X165 1409 13-10.0 61-47.7 2897 C74 1447 13-15.2 61-47.7 2890 1200 X166 1603 13-20.0 61-47.8 2889 1200 X167 1633 13-15.0 61-47.8 2889 1200 X168 1847 13-29.9 61-47.6 2889 1200 X169 1908 13-39.8 61-48.8 2889 1200 X170 2055 13-48.3 61-48.8 2889 1200 X171 2137 13-55.3 61-48.5 2889 1200 X171 2219 14-01.3 61-48.6 2889 1200 X172 0200 13-53.6 62-02.2 2897 1200 X172 0220 13-53.6 62-02.2 2897 1200 X173 0234 13-43.3 62-02.5 2900 1200 X173 0313 13-43.3 62-02.5 2910 1200 X174<	C73						1200
C74 1447 13-15.2 61-47.7 2890 1200 X166 1603 13-20.0 61-47.8 2889 X167 1633 13-25.0 61-47.8 2889 X169 1908 13-26.4 61-49.0 2891 X169 1908 13-39.8 61-48.8 2889 X170 2055 13-48.3 61-48.3 2889 X171 2137 13-55.3 61-48.5 2889 X171 2219 14-01.3 61-48.5 2889 1200 X172 2000 24 Jan 80 14-00.1 61-58.0 2889 1500 X172 0200 24 Jan 80 14-00.1 61-58.0 2889 1500 X173 0234 13-48.6 62-02.5 2900 1200 X175 0460 13-49.3 62-02.5 2900 1200 X174 0440 13-40.0 62-02.5 2910 X175 0459 13-31.6 62-02.5							
X166	20214	X165					1200
X167 1633 13-15.0 61-47.6 2889 1200 X168 1847 13-26.4 61-47.6 2889 1200 X169 1908 13-39.8 61-48.8 2889 X170 2955 13-48.3 61-48.4 2889 1200 X171 2055 13-48.3 61-48.4 2889 1200 X171 2137 13-55.3 61-48.5 2889 C77 2219 14-01.3 51-48.6 2889 1200 X172 0000 24 Jan 80 14-01.3 51-48.6 2889 1500 X173 0234 13-48.6 62-02.5 2900 2900 X173 0234 13-48.6 62-02.5 2900 2900 X175 0440 13-43.3 62-02.5 2900 1200 X176 0460 13-24.5 62-03.2 2911 1200 X177 0719 13-18.0 62-03.3 2907 C81 0	C74	v.4.6.6					1200
C75							
X168	er cru =	X167					1200
X169 1908 13-39.8 61-48.8 2889 C76 1942 13-44.1 61-48.4 2889 1200 X170 2055 13-48.3 61-48.5 2889 X171 2137 13-55.3 61-48.5 2889 1200 C77 2219 14-01.3 61-48.6 2889 1200 C78 0000 24 Jan 80 14-00.1 61-58.0 2889 1500 X172 0200 13-53.6 62-02.5 2900 1200 X173 0234 13-43.3 62-02.5 2900 1200 X174 0440 13-40.0 62-02.5 2900 1200 X176 0459 13-33.6 62-02.8 2910 1200 X176 0640 13-24.5 62-03.5 2911 1200 X176 0640 13-24.5 62-03.2 2907 1200 X178 0853 13-10.0 62-03.3 2907 1400 X1	675	V160					1200
C76 1942 13-44.1 61-48.4 2889 1200 X170 2055 13-48.3 61-48.3 2889 C77 2219 14-01.3 61-48.5 2889 C78 0000 24 Jan 80 14-00.1 61-58.0 2889 1500 X172 0200 13-53.6 62-02.2 2397 231 13-48.6 62-02.5 2900 1200 X173 0234 13-48.6 62-02.5 2900 1200 X174 0440 13-49.0 62-02.5 2900 1200 X175 0459 13-33.6 62-02.5 2910 1200 X175 0459 13-31.0 62-03.5 2911 1200 X176 0640 13-24.5 62-03.0 2908 1200 X177 0719 13-18.0 62-03.2 2911 1200 X178 0853 13-10.0 62-03.2 2912 1200 X178 0853 13-16.7 <							
X170 2055	C76	X 109					1200
X171	Clo	V170					1200
C77 2219 14-01.3 51-48.6 2889 1200 C78 0000 24 Jan 80 14-00.1 61-58.0 2889 1500 X172 0200 13-53.6 62-02.2 2897 X173 0234 13-48.6 62-02.5 2900 X174 0440 13-40.0 62-02.5 2900 X175 0459 13-33.6 62-02.8 2910 C80 0522 13-31.0 62-03.5 2911 1200 X176 0640 13-24.5 62-03.0 2908 2907 C81 0730 13-16.7 62-03.3 2907 2907 C82 0955 12-59.6 62-03.2 2907 2907 C82 0955 12-59.6 62-03.2 2913 1200 X180 1333 13-02.8 62-18.0 2910 X181 1358 13-06.0 62-18.0 2910 C84 1443 13-15.9 62-18.0							
C78 0000 24 Jan 80 14-00.1 61-58.0 2889 1500 X172 0200 13-53.6 62-02.2 2897 X173 0234 13-48.6 62-02.5 2900 C79 0313 13-43.3 62-02.5 2900 X174 0440 13-40.0 62-02.8 2910 X175 0459 13-33.6 62-02.8 2910 X176 0640 13-24.5 62-03.5 2911 1200 X177 0719 13-18.0 62-03.3 2907 2908 X178 0853 13-10.0 62-03.3 2907 290 X178 0853 13-10.0 62-03.2 2907 200 X179 0921 13-05.0 62-03.2 2913 1200 X180 1333 13-02.8 62-18.0 2910 X180 1333 13-02.8 62-18.0 2910 X181 1358 13-00.0 62-18.0 2910	C77	AIII					1200
X172 0200							
X173 0234 13-48.6 62-02.5 2900 X174 0440 13-40.0 62-02.5 2900 1200 X175 0459 13-33.6 62-02.8 2910 0 X176 0640 13-24.5 62-03.5 2911 1200 X177 0719 13-18.0 62-03.3 2907 0 X178 0853 13-10.0 62-03.3 2907 0 X178 0853 13-10.0 62-03.3 2907 0 C82 0955 12-59.6 62-03.2 2907 0 C83 1210 12-58.4 62-17.3 2909 1200 X180 1333 13-02.8 62-18.0 2910 2910 X181 1358 13-06.0 62-18.0 2910 290 X181 1363 13-20.0 62-18.0 2910 1200 X182 1603 13-25.0 62-18.3 2908 1200 X183	C 10	¥172					1500
C79 0313 13-H3.3 62-02.5 2900 1200 X174 0440 13-H0.0 62-02.5 2910 X175 0459 13-33.6 62-02.8 2910 C80 0522 13-31.0 62-03.5 2911 1200 X176 0640 13-24.5 62-03.0 2908 2908 X177 0719 13-18.0 62-03.3 2907 2908 X178 0853 13-10.0 62-03.3 2906 2907 2908 X179 0921 13-05.0 62-03.2 2907 2907 2908 2909 1200 2909 1200 2913 1200 2909 1200 2913 1200 2910 2909 1200 2910 2909 1200 2910 2909 1200 2909 1200 2909 1200 2909 1200 2909 1200 2909 1200 2909 1200 2909 2909 2900 2909 2900							
X174	C79	K11)					1200
C80 X175 0459 13-33.6 62-02.8 2910 X176 0522 13-31.0 62-03.5 2911 1200 X177 0719 13-18.0 62-03.3 2907 C81 0730 13-16.7 62-03.3 2912 1200 X178 0853 13-10.0 62-03.3 2907 62-03.2 2907 C82 0955 12-59.6 62-03.2 2913 1200 C83 1210 12-58.4 62-17.3 2909 1200 X180 1333 13-02.8 62-18.0 2910 2910 X181 1358 13-06.0 62-18.0 2910 2910 2910 C84 1443 13-15.9 62-18.3 2910 1200 2910 2908 2910 200 2910 2908 2908 2908 2908 2908 2908 2908 2908 2900 2900 2900 2900 2908 2908 2908 2908	017	X174					,200
C80 0522 13-31.0 62-03.5 2911 1200 X177 0719 13-18.0 62-03.0 2907 C81 0730 13-16.7 62-03.3 2907 X178 0853 13-10.0 62-03.3 2906 X179 0921 13-05.0 62-03.2 2907 C82 0955 12-59.6 62-03.2 2913 1200 C83 1210 12-58.4 62-17.3 2909 1200 X180 1333 13-02.8 62-18.0 2910 X181 1358 13-06.0 62-18.0 2910 X181 1358 13-06.0 62-18.0 2910 X182 1603 13-15.9 62-18.3 2908 X184 1706 13-25.0 62-17.3 2908 X184 1706 13-25.0 62-18.1 2908 1200 X185 1907 13-25.0 62-18.7 2904 120 X186 1942 </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>				_			
X176	C80	, 5					1200
X177 0719 13-18.0 62-03.3 2907 X178 0730 13-16.7 62-03.3 2912 1200 X178 0853 13-10.0 62-03.3 2906 X179 0921 13-05.0 62-03.2 2907 C82 0955 12-59.6 62-03.2 2913 1200 C83 1210 12-58.4 62-17.3 2909 1200 X180 1333 13-02.8 62-18.0 2910 X181 1358 13-06.0 62-18.0 2910 C84 1443 13-12.1 62-18.3 2908 X182 1603 13-15.9 62-18.3 2908 X184 1706 13-25.0 62-17.7 2908 X185 1907 13-25.0 62-18.0 2904 X185 1907 13-25.0 62-18.0 2904 X186 1942 13-40.5 62-18.2 2904 C86 2017 13-47.0 62-18.7 2904 1200 X187 2126 13-55.5 6		X176					
C81 0730 13-16.7 62-03.3 2912 1200 X178 0853 13-10.0 62-03.3 2996 K179 0921 13-05.0 62-03.2 2907 C82 0955 12-59.6 62-03.2 2913 1200 C83 1210 12-58.4 62-17.3 2909 1200 X180 1333 13-02.8 62-18.0 2910 2910 K181 1358 13-06.0 62-18.0 2910 2910 C84 1443 13-15.9 62-18.3 2908 2910 1200 X182 1603 13-15.9 62-18.3 2908							
X178	C81						1200
X179 0921 13-05.0 62-03.2 2907 C82 0955 12-59.6 62-03.2 2913 1200 C83 1210 12-58.4 62-17.3 2909 1200 X180 1333 13-02.8 62-18.0 2910 2910 X181 1358 13-06.0 62-18.0 2910 2900 X181 1358 13-06.0 62-18.3 2910 1200 X182 1603 13-12.1 62-18.3 2908 2910 1200 X182 1603 13-15.9 62-18.3 2908		X178					
C82				13-05.0	62-03.2		
X180	C82		0955	12 - 59 . 6		2913	1200
X181 1358 13-06.0 62-18.0 2910	C83		1210				1200
C84 1443 13-12.1 62-18.3 2910 1200 X182 1603 13-15.9 62-18.3 2908 X183 1632 13-20.0 62-17.7 2908 X184 1706 13-25.0 62-17.3 2908 C85 1753 13-31.3 62-18.1 2908 1200 X185 1907 13-25.0 62-18.1 2908 1200 X186 1942 13-40.5 62-18.2 2904 K187 2126 13-47.0 62-18.7 2904 1200 X187 2126 13-50.3 62-18.6 2900			1333				
X182		X181					
X183	C84						1200
X184 1706 13-25.0 62-17.3 2908 C85 1753 13-31.3 62-18.1 2908 1200 X185 1907 13-25.0 62-18.0 2904 X186 1942 13-40.5 62-18.2 2904 C86 2017 13-47.0 62-18.7 2904 1200 X187 2126 13-50.3 62-18.6 2900 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
C85 1753 13-31.3 62-18.1 2908 1200 X185 1907 13-25.0 62-18.0 2904 X186 1942 13-40.5 62-18.2 2904 C86 2017 13-47.0 62-18.7 2904 1200 X187 2126 13-50.3 62-18.6 2900							
X185 1907 13-25.0 62-18.0 2904 X186 1942 13-40.5 62-18.2 2904 C86 2017 13-47.0 62-18.7 2904 1200 X187 2126 13-50.3 62-18.6 2900 2910	- 0-	X184			62-17.3		4000
X186 1942 13-40.5 62-18.2 2904 C86 2017 13-47.0 62-18.7 2904 1200 X187 2126 13-50.3 62-18.6 2900 X188 2156 13-55.5 62-18.7 2891 C87 2230 14-00.4 62-18.5 2897 1200 C88 0036 25 Jan 80 13-59.9 62-31.8 2615 1200 X189 0212 13-52.9 62-31.5 2754 27	C85				62-18.1		1200
C86 2017 13-47.0 62-18.7 2904 1200 X187 2126 13-50.3 62-18.6 2900 X188 2156 13-55.5 62-18.7 2891 C87 2230 14-00.4 62-18.5 2897 1200 C88 0036 25 Jan 80 13-59.9 62-31.8 2615 1200 X189 0212 13-52.9 62-31.5 2754 2807 2754 2807 2807 2807 2807 2807 2807 2807 2807 2808 2808 2808 2808 2808 2808 2808 2808 2808 2808 2808 2808 2808 2808 28							
X187 2126 13-50.3 62-18.6 2900 X188 2156 13-55.5 62-18.7 2891 C87 2230 14-00.4 62-18.5 2897 1200 C88 0036.25 Jan.80 13-59.9 62-31.8 2615 1200 X189 0212 13-52.9 62-31.5 2754 X190 0246 13-48.8 62-31.6 2807 C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.8 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	006	X186					1200
X188 2156 13-55.5 62-18.7 2891 C87 2230 14-00.4 62-18.5 2897 1200 C88 0036 25 Jan 80 13-59.9 62-31.8 2615 1200 X189 0212 13-52.9 62-31.5 2754 X190 0246 13-48.8 62-31.6 2807 C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	C86	V 4 07					1200
C87 2230 14-00.4 62-18 5 2897 1200 C88 0036 25 Jan 80 13-59.9 62-31.8 2615 1200 X189 0212 13-52.9 62-31.5 2754 X190 0246 13-48.8 62-31.6 2807 C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911							
C88 0036 25 Jan 80 13-59.9 62-31.8 2615 1200 X189 0212 13-52.9 62-31.5 2754 X190 0246 13-48.8 62-31.6 2807 C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	C97	Y 199					1200
X189 0212 13-52.9 62-31.5 2754 X190 0246 13-48.8 62-31.6 2807 C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911							
X190 0246 13-48.8 62-31.6 2807 C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	C00	¥180					1200
C89 0326 13-43.2 62-31.8 2593 1200 X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911							
X191 0441 13-39.5 62-31.5 2904 X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	C80	V 1 20					1200
X192 0514 13-32.9 62-30.8 2906 C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	UU7	¥101					100
C90 0614 13-22.0 62-30.3 2910 1200 X193 0723 13-18.3 62-32.0 2899 C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911							
X193 0723 13–18.3 62–32.0 2899 C91 0753 13–14.0 62–24.6 2909 1200 X194 0901 13–10.0 62–34.5 2911	C90	73 · 76					1200
C91 0753 13-14.0 62-24.6 2909 1200 X194 0901 13-10.0 62-34.5 2911	0,0	X193					-
X194 0901 13-10.0 62-34.5 2911	C91	11.73					1200
	~ <i>)</i> ,	X194					. –
X195 U924 15=U5+0 02=54+2 2911		X195	0924	13-05.8	62-34.2	2911	

(1) CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	(2) DEPIH (M)	COMMENT
092	1000 25 Jan 80	13-00.4	62- 32 . 3	2910	1200
C 93	1217	13-00.2	62-47.6	29 08	1200
X196	1355	13-05.0	62-48.2	29 02	
X197	1417	13-10.5	62-47.9	2377	
0.94	1502	13-15.2	62–48. 0	1965	1200
X198	1654	13-20.0	62-48. <i>2</i>	2001	
X199	1729	13 - 25.0	62-49.1	187 8	
C 9 5	1804	13-29.8	62-47. 8	1783	1200
X200	1925	13-25.0	62-48.4	1829	
X201	1957	13-40.0	62-48.4	1994	
C96	2037	13-45.2	62-48.6	1975	1200
X202	2158	13-50.0	62-48.0	2001	
X203	2232	13-55.5	62-47.6	2001	•000
C97	2302	13-58.7	62-47. 9	1895	1200
C98	0126 26 Jan 80	13-57.4	63-03.8	1177	120.1
X204	0248	13-49.3	63-04.0	1141	
X205	0325	13-44.2	63-04.0	1108	4.50 (2.5
C99	0400	13-39.8	63-04.3	1072	12 0.0
X206	0513	13 - 24.4 13 - 29.8	63 - 02.9 63 - 03.2	1079 1140	1200
C100 X207	0543 0652	13-29.0	63-02.9		12
X207 X208	0719	13-24.7	63-02.9	1157 1170	
C101	0753	13-14.8	63-03.1	1175	1200
X209	0905	13-10.0	63-03.6	1.134	12.77
X210	0924	13-04.8	63 - 03.5	1361	
C102	1020	12-59.7	63-03.5	1478	1.76
C103	1229	12-59.6	63-17.9	1110	• •
X211	1351	13-05.0	63-18.1	1057	•
X212	1425	13-10.0	63-18.0	1030	
C104	1500	13-15.6	63-18.4	1006	1.70
X213	1613	13-21.2	63-18. 0	1101	
X214	1639	13-25.2	63-17.5	91	
C105	1715	13-20.0	63-16.9	79:	1.296
X215	1830	13-35.6	63–16.	·)()·	
X216	1900	13-40.0	63-16.5	58°	
C106	1936	13-44.4	63-18.0	414	i20.
X217	2051	13-51.8	63–18. 6	3.5	
X218	2126	13-56.7	63-18.8	1154	4.00.
C107	2200	14-00.3	63-19.1	1.17 /	1200
C108	0006 27 Jan 80	14-00.4	63-32.5	308	1200
X219	0139	13-54.2 12-50.0	63-33.6 63-34.0	1547	
X220	0205	13-46.0	63-34.0	13.28 12+0	1200
C109	0157 0402	13-40.2	63-34.0	1269 1146	1200
X221 X222	0433	13-25.1	63-34.2	1134	
C110	0 4 33 0513	13-30.2	63-33.6	1145	1200
X223	0632	13-25.0	63-32.8	1180	(ECN)
x224	0704	13-19.3	63-33. 5	1211	
C111	0739	13-14.8	63-33.8	116	12.30
X225	0856	13-09.9	63-34. 0	1015	112-777
X226	0927	13-05.0	63-34. 0	457	
ALLU	J)_[., 5,50	٠,٠٠٠		

(1)				(2)	
CTD/XBT	TIME	LATITUDE (N)	LONGITUDE (W)	DEPTH (M)	COMMENT
C112	1000 27 Jan 80	13-00.3	63-33.7	567	1200
C113	1144	13-00.6	63-48.0	2222	1200
X227	1308	13-05.0	63-48.0	2317	
X228	1337	13-10.0	63-48.0	1920	
C114	1430	13-14.1	63-48.0	1984	1200
X229	1537	13-21.6	63-47.0	1744	
X230	1603	13-26.0	63-47.1	1492	
C115	1630	13-30.3	63-47.5	1529	1200
X231	1737	13-34.9	63-48.0	1744	
X232	1807	13-40.0	63-47.9	1558	
X233	1812	13-40.9	63-47.9	1598	
C116	1837	13-44.7	63-47.9	1856	1200
X234	1948	13-49.9	63-48.1	1679	
X235	2016	13-54.7	63~48.5	2012	
C117	2050	14-00.2	63-47.6	2347	1500

- (1) CTD Stations have a C prefix, XBT drops an X prefix.
- (2) Water depth at location of CTD cast or XBT drop

⁽³⁾ Planned depth. XBT's last until approximately 700M depth. CTD casts were to the depth indicated or close to the bottom; close varied from 5 to 50M depending on the water depth, bottom steepness, and weather.

TABLE 2 SALINITY CALIBRATION
Sensor 01-2276-04

STATION	PRESSURE	CTD	AUTOSAL	DIFFERENCE
	(dbar)	(g/kg)	(g/kg)	(g/kg)
1	928	34.837 <u>+</u> 0.001	34.836 <u>+</u> 0.005	+0.001
2	2034	34.976 <u>+</u> 0.0005	34.975 ± 0.002	+0.001
22	1528	34.974 <u>+</u> 0.002	34.960	+0.014
		Sensor 01-2	127-03	
25	1518	34.964	34.968	-0.004
33	2831	34.976	34.971	+0.005
34	1531	34.962	34.958	+0.004
35	1516	34.961	34.960	+0.001
36	1508	34.961	34.964	-0.003
37	1517	34.960	34.960	0.000
38	1526	34.960	34.962	-0.002
40	2847	34.976	34.970	+0.006
41	2856	34.976	34.971	+0.005
42	1540	34.963	34.963	0.000
43	1508	34.957	34.956	+0.001
44	1514	34.959	34.958	+0.001
46	1507	34.962	34.964	-0.002
47	1506	34.964	34.964	0.000
48	1512	34.962	34.963	-0.001
50	2863	34.976	34.972	+0.004
51	1883	34.971	34.969	+0.002

TABLE 2 SALINITY CALIBRATION

Sensor 01-2127-03

STATION	PRESSURE	CTD	AUTOSAL	DIFFERENCE
	(dbar)	(g/kg)	(g/kg)	(g/kg)
52	2571	34.975	34.970	+0.005
53	1527	34.964	34.903	+0.001
54	1512	34.964	34.964	0.000
11	10	35.778	35.779	-0.001
55	1508	34.964	34.965	-0.001
19	9	35.793	35.792	+0.001
56	1506	34.962	34.961	+0.001
11	9	35.740	35.738	+0.002
57	1512	34.964	34.963	+0.001
11	8	35.762	35.761	+0.001
58	1500	34.962	34.961	+0.001
11	9	35.655	35.654	+0.001
63	1209	34.943	34.948	-0.005
64	1217	34.942	34.941	+0.001
65	1211	34.946	34.947	-0.001
66	1248	34.948	34.948	0.000
67	1026	34.899	34.900	-0.001
68	1214	34.950	34.954	-0.004
69	1213	34.947	34.948	-0.001
70	1207	34.945	34.946	-0.001
71	1206	34.945	34.966	-0.021
72	1213	34.941	34.939	+0.002

TABLE 2 SALINITY CALIBRATION

Sensor 01-2127-03

STATION	PRESSURE	CTD	AUTOSAL	DIFFERENCE
	(dbar)	(g/kg)	(g/kg)	(g/kg)
74	1211	34.948	34.947	+0.001
75	1213	34.942	34.939	+0.003
76	1219	34.945	34.943	+0.002
77	1207	34.944	34.941	+0.003
79	1211	34.945	34.942	+0.003
80	1208	34.942	34.942	0.000
81	1205	34.942	34.943	-0.001
82	1207	34.944	34.945	-0.001
83	1207	34.950	34.950	0.000
84	1209	34.944	34.945	-0.001
85	1210	34.945	34.949	-0.004
86	1212	34.951	34.951	0.000
87	1210	34.950	34.951	-0.001
88	1210 ·	34.950	34.950	0.000
89	1209	34.949	34.947	+0.002
90	801	34.787	34.788	-0.001
91	803	34.784	34.789	-0.005
92	504	34.971	34.964	+0.007
93	602	34.805	34.806	-0.001
94	1211	34.946	34.945	+0.001
95	1208	34.942	34.941	+0.001
96	1204	34.956	34.955	+0.001

TABLE 2 SALINITY CALIBRATION

Sensor 01-2127-03

STATION	PRESSURE	CTD	AUTOSAL	DIFFERENCE
	(dbar)	(g/kg)	(g/kg)	(g/kg)
98	1153	34.938	34.937	+0.001
99	1040	34.915	34.916	-0.001
100	129	36.881	36.889	-0.008
101	1151	34.945	34.944	+0.001
102	1208	34.949	34.950	0.001
103	1069	34.902	34.903	-0.001
104	960	34.871	34.872	-0.001
105	761	34.760	34.745	+0.015
106	887	34.868	34.867	+0.001
107	1208	34.950	34.947	+0.003
109	1214	34.947	34.946	+0.001
110	1108	34.926	34.924	+0.002
111	1119	34.922	34.921	+0.001
SUMMARY		SAMPLES	MEAN DIFFERENCE	STAIDARD DEVIATION
Sensor 01	-2276-04	3	+0.005	0.008
Sensor 01	-2127-03*	72	+0.0004	0.003

^{*}Stations 71 and 105 are excluded, although reversing thermometer and CTD temperatures agreed within 0.02°C.

AUTOSAL Serial Number 42070.

TABLE 3 SENSOR COMPARISON

Potential Temperature = 5.000°C

Sensor	01-22	76-04
--------	-------	-------

STATION	PRESSURE	SALINITY	DEMSITY
	(dbar)	(g/kg)	$(kg/m^3)*$
13	1006	34.875	27.587
14	1004	34.881	27.592
15	970	34.888	27.598
16	925	34.888	2 7. 599
17	1034	34.882	27.592
18	965	34.884	27.595
19	992	34.887	27.597
20	962	34.886	2 7. 596
21	956	34.889	27.599
22	<u>992</u>	34.896	27.604
	981 <u>+</u> 31	34.886 <u>+</u> 0.006	27.596 <u>+</u> 0.005
Sensor 01-2	127-03		
24	. 928	34.878	27.590
25	959	34.884	27.594
29	953	34.876	27.588
30	948	34.883	27.594
31	964	34.885	27.596
32	953	34.870	27.583
33	1015	34.883	27.593
34	1013	34.882	27.593

TABLE 3 SENSOR COMPARISON

Potential Temperature = 5.000CO

Sensor	01-	21.27_	33
2611201	(x -	~	`)

STATION	PRESSURE	SALINITY	DENSITY
	(dbar)	(g/kg)	(kg/m ³)*
35	971	34.882	27.593
36	1008	34.882	27.593
	981 <u>+</u> 30	34.880 <u>+</u> 0.005	27.592 <u>+</u> 0.004

*in situ

TABLE 4
DATA PROBLEMS

Station Number	Problem
2	Gaps: 18-29, 1559-1561, 1712-1717,
	1972-1974 dbar. (1)
4	Gaps: 2149-2165 dbar. (1)
6	Gaps: 748-807, 1223-1235 dbar. (1)
10	Data below 477 dbar are missing.
19, 20, 21	Data are noisy, especially in
	salinity and density.
23	All data are missing.
44	Gap: 592-600 dbar. (1)
74	Gap: 809-819 dbar. (1)
99	Salinity spike: 485 dbar.

NOTE: (1): All gaps were filled by linear interpolation.

TABLE 5 STATION FEB FILE INDEX (1 m)

	υ	1	2	3	4	5	6	7	8	9
00		4850 1	1900	4973 1	1900	4973 1	1900	1900 1	4850 1	4850
,		1-1	3-1	3-4	3-4	3-10	3-7	3-10	2-2	2-4
01 [†]	4983	4850 1	4850 1	4850 1	4850 1	4850 2	4850 2	4850 2	4850 2	1914
	1-1	2-6	2-8	2-10	2-12	2-1	2-3	2-5	2-7	2 - i
95 -	1914 1 2-3	1914 1 2-5	4850 3 2-1	NO DATA	4850 3 2-3	4850 3 2-5	4983 3 1-2	4983 3 1-3	4983 3 1-4	4850 3 2-7
03	 4მიმ 3 2-9	4973 1 3-19	4973 2 2-1	4973 2 3-3	4850 3 2-11	4850 3 2-13	4850 4 2-1	4850 4 2-3	4850 4 2-5	4850 4 2-7
04	4973	4973 2 3-9	4850 4 2-9	4850 4 2-11	1900 2 2-3	4850 5 2-1	4850 5 2-3	4850 5 2-5	4850 5 2-7	4850 5 2-9
05	4973 2 3-12	4973 2 2-15	4973 2 3-17	4850 5 2-11	4850 5 2-13	4850 6 2-1	4850 6 2-3	4850 6 2-5	4850 6 2-7	4983 3 1-5
06	4983 3 1-6	4983 3 1-7	4850 6 2-9	4850 6 2-11	4850 6 2-13	4850 7 2-1	4850 7 2-3	4850 7 2-5	4850 7 2-7	4850 7 2-9
07	4850 7 2-11	4850 7 2-13	4850 8 2-1	4850 8 2-3	1900 2 2-1	4850 8 2-7	4850 8 2-9	4850 8 2-11	4850 8 2-13	4850 9 2-1
03	4850 9 2-3	4850 9 2-5	4850 9 2-7	4850 9 2-9	4850 9 2-11	4850 9 2-13	4850 10 2-1	4850 10 2-3	4850 10 2-5	4850 10 2-7
09	4850 11 2-1	4850 11 2-3	4850 11 2-5	4850 11 2-7	4850 11 2-9	4850 11 2-11	4850 11 2-13	4850 12 2-1	4850 12 2-3	4950 12 2-5
10	4850 12 2-7	4850 12 2-9	4850 12 2-11	4850 12 2-13	4850 13 1-1	4850 13 1-2	4850 13 1-3	4850 13 2-4	4850 13 2-6	4850 13 2-8
11	4850 13 2-10	4850 14 2-1	4850 14 1-3	4850 14 2-4	4850 14 2-6	4850 14 2-8	4850 14 2-10	4850 14 2-12		

EXPLANATION: Station 064 (heavy box)
Data on Tape 4850, file 6
Data consists of 2 segments starting with segment number 13 (1 meter values)

Figure 2. Ship and aircraft coverage in January 1980.

Figure 3. Dominica section.

Figure 4. Square Grid.

Figure 6. St. Vincent Inflow II.

Figure 7. Straight Line.

Figure 8. AXBT Flight 1.

Figure 9. AXBT Flight 2.

Figure 10. AXBT Flight 3.

Vertical Profiles, Stations 1-117
Figures 11 - 241, Odd Numbers
(less 23)

and

TS Diagrams, Stations 1-117
Figures 12 - 242, Even Numbers (less 23)

GRENADA BASIN STATION 001001 JANUARY 1980

GRENADA BASIN STATION 001001 JANUARY 1980

Figure 12.

GRENADA BASIN STATION 002001 JANUARY 1980

GRENADA BASIN STATION 002001 JANUARY 1980

Figure 14.

GRENADA BASIN STATION 003001 JANUARY 1980

GRENADA BASIN STATION 003001 JANUARY 1980

Figure 16.

GRENADA BASIN STATION 004001 JANUARY 1980

GRENADA BASIN STATION 004001 JANUARY 1980

Figure 18.

GRENADA BASIN STATION 005001 JANUARY 1980

Figure 19.

GRENADA BASIN STATION 005001 JANUARY 1980

Figure 20.

GRENADA BASIN STATION 006001 JANUARY 1980

Figure 22.

GRENADA BASIN STATION 007001 JANUARY 1980

GRENADA BASIN STATION 007001 JANUARY 1980

Figure 24.

GRENADA BASIN STATION 008001 JANUARY 1980

GRENADA BASIN STATION 008001 JANUARY 1980

Figure 26.

GRENADA BASIN STATION 009001 JANUARY 1980

GRENADA BASIN STATION 009001 JANUARY 1980

Figure 28.

Figure 29.

GRENADA BASIN STATION 010001 JANUARY 1980

Figure 30.

GRENADA BASIN STATION 011001 JANUARY 1980

GRENADA BASIN STATION 011001 JANUARY 1980

Figure 32.

GRENADA BASIN STATION 012001 JANUARY 1980

GRENADA BASIN STATION 012001 JANUARY 1980

Figure 34.

GRENADA BASIN STATION 013001 JANUARY 1980

GRENADA BASIN STATION 013001 JANUARY 1980

Figure 36.

GRENADA BASIN STATION 014001 JANUARY 1980

GRENADA BASIN STATION 014001 JANUARY 1980

Figure 38.

GRENADA BASIN STATION 015001 JANUARY 1980

GRENADA BASIN STATION 015001 JANUARY 1980

Figure 40.

GRENADA BASIN STATION 016001 JANUARY 1980

GRENADA BASIN STATION 016001 JANUARY 1980

Figure 42.

GRENADA BASIN STATION 017001 JANUARY 1980

GRENADA BASIN STATION 017001 JANUARY 1980

Figure 44.

GRENADA BASIN STATION 018001 JANUARY 1980

GRENADA BASIN STATION 018001 JANUARY 1980

Figure 46.

GRENADA BASIN STATION 019001 JANUARY 1980

GRENADA BASIN CARIBBEAN SEA STATION 019001 JANUARY 1980

Figure 48.

GRENADA BASIN STATION 020001 JANUARY 1980

GRENADA BASIN STATION 020001 JANUARY 1980

Figure 50.

74

GRENADA BASIN STATION 021001 JANUARY 1980

Figure 52.

GRENADA BASIN STATION 022001 JANUARY 1980

Figure 54.

GRENADA BASIN STATION 024001 JANUARY 1980

Figure 55.

GRENADA BASIN STATION 024001 JANUARY 1980

Figure 56.

GRENADA BASIN STATION 025001 JANUARY 1980

GRENADA BASIN STATION 025001 JANUARY 1980

Figure 58.

GRENADA BASIN STATION 026001 JANUARY 1980

GRENADA BASIN STATION 026001 JANUARY 1980

Figure 60.

GRENADA BASIN STATION 027001 JANUARY 1980

GRENADA BASIN STATION 027001 JANUARY 1980

Figure 62.

GRENADA BASIN STATION 028001 JANUARY 1980

GRENADA BASIN STATION 028001 JANUARY 1980

Figure 64.

GRENADA BASIN STATION 029001 JANUARY 1980

GRENADA BASIN STATION 029001 JANUARY 1980

Figure 66.

GRENADA BASIN STATION 030001 JANUARY 1980

GRENADA BASIN STATION 030001 JANUARY 1980

Figure 68.

AD-A103 960 UNCLASSIFIED	JUN 81 D	AN RESEARCH HIC MEASURE A BURNS, M	MENIS IN	THE GREN	IADA RAS	TY NST SIN, SO	L SET UTHEAST	C F/G ERN CA	8/10 ETC(U	,
2 of 3										

GRENADA BASIN STATION 031001 JANUARY 1980

Figure 70.

GRENADA BASIN STATION 032001 JANUARY 1980

GRENADA BASIN STATION 032001 JANUARY 1980

Figure 72.

GRENADA BASIN STATION 033001 JANUARY 1980

Figure 74.

GRENADA BASIN STATION 034001 JANUARY 1980

GRENADA BASIN STATION 034001 JANUARY 1980

Figure 76.

GRENADA BASIN STATION 035001 JANUARY 1980

GRENADA BASIN STATION 035001 JANUARY 1980

Figure 78.

GRENADA BASIN STATION 036001 JANUARY 1980

Figure 80.

GRENADA BASIN STATION 037001 JANUARY 1980

GRENADA BASIN STATION 037001 JANUARY 1980

Figure 82.

GRENADA BASIN STATION 038001 JANUARY 1980

GRENADA BASIN STATION 038001 JANUARY 1980

Figure 84.

GRENADA BASIN STATION 039001 JANUARY 1980

GRENADA BASIN STATION 039001 JANUARY 1980

Figure 86.

GRENADA BASIN STATION 040001 JANUARY 1980

GRENADA BASIN STATION 040001 JANUARY 1980

Figure 88.

GRENADA BASIN STATION 041001 JANUARY 1980

GRENADA BASIN STATION 041001 JANUARY 1980

Figure 90.

GRENADA BASIN STATION 042001 JANUARY 1980

GRENADA BASIN STATION 042001 JANUARY 1980

Figure 92.

GRENADA BASIN STATION 043001 JANUARY 1980

GRENADA BASIN STATION 043001 JANUARY 1980

Figure 94.

GRENADA BASIN STATION 044001 JANUARY 1980

Figure 96.

GRENADA BASIN STATION 045001 JANUARY 1980

GRENADA BASIN STATION 045001 JANUARY 1980

Figure 98.

GRENADA BASIN STATION 046001 JANUARY 1980

GRENADA BASIN STATION 046001 JANUARY 1980

Figure 100.

124

GRENADA BASIN STATION 047001 JANUARY 1980

Figure 102.

GRENADA BASIN STATION 048001 JANUARY 1980

Figure 104.

GRENADA BASIN STATION 049001 JANUARY 1980

Figure 106.

GRENADA BASIN STATION 050001 JANUARY 1980

GRENADA BASIN STATION 050001 JANUARY 1980

Figure 108.

GRENADA BASIN STATION 051001 JANUARY 1980

Figure 110.

BASIN 052001 GRENADA STATION JANUARY 1980

GRENADA BASIN STATION 052001 JANUARY 1980

Figure 112.

Figure 113.

GRENADA BASIN STATION 053001 JANUARY 1980

Figure 114.

GRENADA BASIN STATION 054001 JANUARY 1980

Figure 115.

GRENADA BASIN STATION 054001 JANUARY 1980

Figure 116.

GRENADA BASIN STATION 055001 JANUARY 1980

Figure 117.

GRENADA BASIN STATION 055001 JANUARY 1980

Figure 118.

GRENADA BASIN STATION 056001 JANUARY 1980

GRENADA BASIN STATION 056001 JANUARY 1980

Figure 120.

GRENADA BASIN STATION 057001 JANUARY 1980

GRENADA BASIN STATION 057001 JANUARY 1980

Figure 122.

GRENADA BASIN STATION 058001 JANUARY 1980

GRENADA BASIN STATION 058001 JANUARY 1980

Figure 124.

GRENADA BASIN STATION 059001 JANUARY 1980

GRENADA BASIN STATION 059001 JANUARY 1980

Figure 126.

GRENADA BASIN STATION 060001 JANUARY 1980

Figure 128.

GRENADA BASIN STATION 061001 JANUARY 1980

GRENADA BASIN STATION 061001 JANUARY 1980

Figure 130.

BASIN 062001 GRENADA STATION 1980

Figure 131.

GRENADA BASIN STATION 062001 JANUARY 1980

Figure 132.

GRENADA BASIN STATION 063001 JANUARY 1980

GRENADA BASIN STATION 063001 JANUARY 1980

Figure 134.

GRENADA BASIN STATION 064001 JANUARY 1980

GRENADA BASIN STATION 064001 JANUARY 1980

Figure 136.

GRENADA BASIN STATION 065001 JANUARY 1980

GRENADA BASIN STATION 065001 JANUARY 1980

Figure 138.

GRENADA BASIN STATION 066001 JANUARY 1980

GRENADA BASIN STATION 066001 JANUARY 1980

Figure 140.

GRENADA BASIN STATION 067001 JANUARY 1980

Figure 142.

GRENADA BASIN STATION 068001 JANUARY 1980

GRENADA BASIN STATION 068001 JANUARY 1980

Figure 144.

GRENADA BASIN STATION 069001 JANUARY 1980

GRENADA BASIN STATION 069001 JANUARY 1980

Figure 146.

GRENADA BASIN STATION 070001 JANUARY 1980

Figure 148.

GRENADA BASIN STATION 071001 JANUARY 1980

GRENADA BASIN STATION 071001 JANUARY 1980

Figure 150.

GRENADA STATION BASIN 072001 JANUARY 1980

GRENADA BASIN STATION 072001 JANUARY 1980

Figure 152.

GRENADA BASIN STATION 073001 JANUARY 1980

GRENADA BASIN STATION 073001 JANUARY 1980

Figure 154.

Figure 155.

GRENADA BASIN STATION 074001 JANUARY 1980

Figure 156.

GRENADA BASIN STATION 075001 JANUARY 1980

GRENADA BASIN STATION 075001 JANUARY 1980

Figure 158.

GRENADA BASIN STATION 076001 JANUARY 1980

Figure 160.

GRENADA BASIN STATION 077001 JANUARY 1980

Figure 162.

GRENADA BASIN STATION 078001 JANUARY 1980

Figure 164.

AD-A103 960

NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

UNCLASSIFIED

NORDA-TN-86

NL

BANCA OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

NORDA-TN-86

NL

END
OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENTS IN THE GRENADA BASIN, SOUTHEASTERN CA--ETC(U)

OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL S--ETC F/G 8/10
HYDROGRAPHIC MEASUREMENT ACTIVITY NSTL S--ETC

GRENADA BASIN STATION 079001 JANUARY 1980

GRENADA BASIN STATION 079001 JANUARY 1980

Figure 166.

GRENADA BASIN STATION 080001 JANUARY 1980

GRENADA BASIN STATION 080001 JANUARY 1980

Figure 168.

GRENADA BASIN STATION 081001 JANUARY 1980

GRENADA BASIN STATION 081001 JANUARY 1980

Figure 170.

GRENADA BASIN STATION 082001 JANUARY 1980

GRENADA BASIN STATION 082001 JANUARY 1980

Figure 172.

GRENADA BASIN STATION 083001 JANUARY 1980

GRENADA BASIN STATION 083001 JANUARY 1980

Figure 174.

GRENADA BASIN STATION 084001 JANUARY 1980

GRENADA BASIN STATION 084001 JANUARY 1980

Figure 176.

GRENADA BASIN STATION 085001 JANUARY 1980

Figure 178.

GRENADA BASIN STATION 086001 JANUARY 1980

GRENADA BASIN STATION 086001 JANUARY 1980

Figure 180.

GRENADA BASIN STATION 087001 JANUARY 1980

GRENADA BASIN STATION 087001 JANUARY 1980

Figure 182.

GRENADA BASIN STATION 088001 JANUARY 1980

GRENADA BASIN STATION 088001 JANUARY 1980

Figure 184.

GRENADA BASIN STATION 089001 JANUARY 1980

GRENADA BASIN STATION 089001 JANUARY 1980

Figure 186.

GRENADA BASTN STATION 090001 TANUARY 1980

Figure 188.

GRENADA BASIN SIATION 091001 JANUARY 1980

GRENADA BASIN STATION 091001 JANUARY 1980

Figure 190.

GRENADA BASTN STATION 092001 JANUARY 1980

Figure 192.

GRENADA BASTN STATLON 093001 JANUARY 1980

GRENADA BASIN STATION 093001 JANUARY 1980

Figure 194.

GRENADA BASIN STATION 094001 JANUARY 1980

Figure 196.

GRENADA BASTN STATION 095001 JANUARY 1980

GRENADA BASIN STATION 095001 JANUARY 1980

Figure 198.

GRENADA BASIN STATION 096001 JANUARY 1980

Figure 200.

GRENADA BASIN STATION 097001 JANUARY 1980

GRENADA BASIN STATION 097001 JANUARY 1980

Figure 202.

GRENADA BASIN STATION 098001 JANUARY 1980

Figure 204.

GRENADA BASIN STATION 099001 JANUARY 1980

Figure 206.

GRENADA BASIN STATION 100001 JANUARY 1980

Figure 208.

GRENADA BASIN STATION 101001 JANUARY 1980

GRENADA BASIN STATION 101001 JANUARY 1980

Figure 210.

GRENADA BASIN STATION 102001 JANUARY 1980

Figure 212.

GRENADA BASIN STATION 103001 JANUARY 1980

GRENADA BASIN STATION 103001 JANUARY 1980

Figure 214.

GRENADA BASIN STATION 104001 JANUARY 1980

GRENADA BASIN STATION 104001 JANUARY 1980

Figure 216.

GRENADA BASIN STATION 105001 JANUARY 1980

Figure 218.

GRENADA BASIN STATION 106001 JANUARY 1980

GRENADA BASIN STATION 106001 JANUARY 1980

Figure 220.

GRENADA BASIN STATION 107001 JANUARY 1980

Figure 222.

GRENADA BASIN STATION 108001 JANUARY 1980

GRENADA BASIN STATION 108001 JANUARY 1980

Figure 224.

GRENADA BASIN STATION 109001 JANUARY 1980

GRENADA BASIN STATION 109001 JANUARY 1980

Figure 226.

GRENADA BASIN STATION 110001 JANUARY 1980

GRENADA BASIN STATION 110001 JANUARY 1980

Figure 228.

GRENADA BASIN STATION 111001 JANUARY 1980

GRENADA BASIN STATION 111001 JANUARY 1980

Figure 230.

GRENADA BASIN STATION 112001 JANUARY 1980

Figure 232.

Figure 234.

GRENADA BASIN STATION 114001 JANUARY 1980

Figure 236.

GRENADA BASIN STATION 115001 JANUARY 1980

GRENADA BASIN STATION 115001 JANUARY 1980

Figure 238.

GRENADA BASIN STATION 116001 JANUARY 1980

GRENADA BASIN STATION 116001 JANUARY 1980

Figure 240.

GRENADA BASIN STATION 117001 JANUARY 1980

Figure 242.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NORDA Technical Note 86 1. REPORT NUMBER 2. GOVT ACCESSION NO. AD-A103 960	
4. TITLE (and Subtitle) Hydrographic Measurements in the Grenada Basin, Southeastern Caribbean Sea, January 1980	5. TYPE OF REPORT & PERIOD COVERED
	6. PERFORMING ORG. REPORT NUMBER
Donald A. Burns Janice D. Boyd Marvin A. Gove Stanley E. Raffa Norman V. Lombard Thomas H. Kinder	8. CONTRACT OR GRANT NUMBER(*)
Naval Ocean Research & Development Activity Ocean Science & Technology Laboratory, Code 330 NSTL Station, Mississippi 39529	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	June 1981
Same as above	13. NUMBER OF PAGES 268
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Unlimited	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different fro	om Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,)
Eddies Inflow Mesoscale Expendable Bathythermographs Antilles Aircraft Expendable Bathythermograph Caribbean Conductivity-Temperature-Depth	
As part of a study on mesoscale variability in the we occupied 117 conductivity-temperature-depth (CT expendable bathythermograph (XBT) drops during 12-cruise track of the ship and also the tracks of the flights made concurrently. We discuss data editin dures that were used for CTD (but not for XBT and cal profiles and TS diagrams for each station. In	e southeastern Caribbean Sea, D) stations and made 235 27 Jan 1980. We present the cree aircraft XBT (AXBT) and quality control proce-AXBT) data and present verti-

UNCLASSIFIED

types that have long been known to be present (surface water, Antarctic intermediate water, and North Atlantic deep water), many features at vertical scales of order 10 meters.	subtropical water the profiles show

UNCLASSIFIED

