

4차 산업혁명 신산업 기술 이해

4차 산업혁명과 스마트팩토리

- ≥ 생산시스템의 환경 변화
- 스마트팩토리의 이해
- ▶ 스마트팩토리의 구성요소

🗘 학습목표

- ₩ 생산시스템의 환경 변화에 대해 이해하고 설명할 수 있다.
- ▶ 스마트팩토리를 이해하고 설명할 수 있다.
- ▶ 스마트팩토리의 구성요소를 이해하고 설명할 수 있다.

\Omega 생산시스템의 환경 변화

1. 배경

- ① 2008년 금융위기로 전세계적으로 스마트팩토리에 주목함
- ② 제조산업이 국가경제를 지탱하는 중추로써 매우 중요하다는 것을 인식하고 제조산업의 경쟁력 강화를 위한 방안으로 스마트팩토리가 급부상하게 됨
- ③ 제조산업 경쟁력을 위해 제조산업의 대내외적인 생산환경 변화를 극복해야 함

2. 각국의 동향

독일	Industry 4.0을 통한 스마트팩토리 전략 추진(2012)
미국	금융위기 후 제조업의 생산기지를 자국으로 옮기고 다시 제조강국으로 거듭나기 위한 노력을 함
중국	독일의 모델을 참고하여 제조산업의 고도화 추진

- ① 2016년 1월 20일 스위스 다보스에서 열린 세계경제포럼에서 '4차 산업혁명의 이해'를 주요 의제로 설정함
- ② 독일이 2010년 발표한 '하이테크 전략 2020'의 10대 프로젝트 중 하나인 '인더스트리 4.0(Industry 4.0)'에서 '제조업과 정보통신의 융합'을 뜻하는 의미로 먼저 사용됨

😲 생산시스템의 환경 변화

2. 각국의 동향

\Omega 스마트팩토리의 이해

1. 정의

- ① 전세계적으로 화두가 되고 있는 4차 산업혁명을 대비하는 활동 중 독일에서 국가 전략으로 진행하는 것이 Industry 4.0이고, 그 중에서 핵심적인 부분이 스마트팩토리임
- ② 스마트제조, 스마트공장 등 국가 및 기관별로 비슷하면서도 다양한 용어와 의미로 사용되고 있음

NIST	Smart Manufacturing are systems that are "fully-integrated, collaborative manufacturing systems that respond in real time to meet changing demands are conditions in the factory, in the supply network, and in customer needs.	
SMLC	Smart Manufacturing is the ability to solve existing and future problems via an open infrastructure that allows solutions to be implemented at the speed of business while creating advantaged value.	
LG CNS	산업 / 고객 특성에 맞는 최적화된 공장 운영 설계와 이에 따른 생산 운영 시스템 및 지능형 설비 공급을 통해 Global Top 수준의 제조 경쟁력을 갖춘 공장	
Deloitte Anjin	제조공장의 리소스(Resource)를 최적화해 사람에 의한 변동 요소를 최소화하고, 데이터에 기반한 의사결정이 실시간으로 이행되는 제조 운영 환경의 공장	
시스코 코리아	자산 활용, 공급망 및 물류 혁신을 위해 만물인터넷(IoE)을 통해보다 지능적인 생산설비 설계, 생산 환경 및 설비에 대한 제어력이 향상되는 공장	

😱 스마트팩토리의 이해

1. 정의

포스코 ICT	사물인터넷(Intenet of Things) 기술을 기반으로 공장 안의 모든 요소가 유리적으로 연결되어 지능적으로 운영되는 공장	
산업통상 자원부	제품의 기획・설계, 생산, 유통・판매 등 전 과정을 IT 기술로 통합, 최소비용・시간으로 고객맞춤형 제품을 생산하는 공장. 궁극적으로는 IoT, CPS를 기반으로 제조 전단계가 자동화・정보화(디지털화)되고 가치사슬 전체가 하나의 공장처럼 실시간 연동되는 생산체계 지향	
미래창조 과학부	외부환경변화(고객주문, 설비고장 등)에 공장 내 기기들이 즉각 반응하여 자율적으로 최적솔루션을 제안하는 사이버물리시스템(CPS) 기반 지능형 생산공간	

2. 필요성

- ① 외부적으로 글로벌 경쟁체제에서 다양한 고객의 요구에 신속하게 대응해야 하고, 내부적으로 원가는 절감하고 품질은 향상시키면서 다품종제품을 짧은 납기에 맞추어야 함
 - → 제조산업이 다양한 ICT기술과 융합하면서 생산시스템의 패러다임을 변화시킴
- ② 제조업 전반의 위기를 극복하고 지속 가능한 제조업 경쟁력 확보를 위한 새로운 돌파구가 '스마트팩토리'임
 - 스마트팩토리: 생산성향상을 통한 기업 경쟁력 강화

3. 주요 기술

■ IoT, Big Data, AI, CPS 등의 신기술 분야와 ERP, MES, SCM과 같은 공장을 운영하는 기간시스템이 어우러져 효율적으로 운영됨

\Omega 스마트팩토리의 이해

4. 구분

민관합동 스마트공장추진단 주관으로 중소기업 대상 스마트팩토리 구축지원사업을 진행하고 있음

5. 운영

■ IoT는 생산현장의 환경정보, 생산정보를 수집하여 클라우드상에 빅데이터로 저장하게 되며, 빅데이터를 인공지능이 분석하고 CPS를 통해 최적화된 공장운영을 하게 됨

1. IoT(사물인터넷)

- ① 각종 사물에 센서와 통신 기능을 내장하여 인터넷에 연결하는 기술
- ② 사물이 인터넷에 연결되어 그 정보를 활용하여 사물 본연의 기능을 더 충실히 행하도록 하는 기술
- ③ 생산시스템에서는 주로 생산환경 중심의 정보를 수집하고 연결하는 것으로 활용하고 있음

2. Big Data

- ① 기존 데이터베이스 관리도구의 능력을 넘어서는 대량의 정형 또는 비정형의 데이터 집합조차 포함한 데이터로부터 가치를 추출하고 결과를 분석하는 기술
- ② 다양한 종류의 대규모 데이터에 대한 생성, 수집, 분석, 표현을 특징으로 함
- ③ 빅데이터 기술의 발전
 - 다변화된 현대 사회를 더욱 정확하게 예측하여 효율적으로 작동하게 함
 - 개인화된 현대 사회 구성원마다 맞춤형 정보의 제공·관리 분석을 가능하게 함
 - 과거에는 불가능했던 기술을 실현시킴

3. AI(인공지능)

- ① 인간의 지능으로 할 수 있는 사고, 학습, 자기 개발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터 공학 및 정보기술의 한 분야로 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것
- ② 생산시스템 분야에서 수집된 엄청난 양의 데이터를 컴퓨터가 인간과 비슷한 방법으로 지능적인 행동을 모방할 수 있는 인공지능을 이용하여 처리함

4. Digital Twin

① 물리적인 시스템을 소프트웨어 모델로 구성한 것

② 단가가 비싼 제품 혹은 생산·사용 현장이 멀고 접근하기 어려운 제품의 경우 효과가 더 높아짐

5. CPS(가상물리시스템)

'사물과 사물(IoT)'에서 '사람과 사물, 공간(IoE)'를 넘어 '현실 사이버 공간이 연결되어 지능화(Intelligent IoE)' 되는 초연결 사회가 가시화 되고 있음

스마트팩토리의 구성요소

5. CPS(가상물리시스템)

■ 사람의 개입 없이 사이버상의 정보(데이터) 처리 결과로 현실의 움직임을 제어할 수 있는 사이버물리시스템(CPS)을 현실화 하고 있음

단계	발전 단계	시기
레벨 I	개별 ICT 기기를 독립적으로 활용 (Stand Alone)	~1990년대 후반
레벨표	일부 ICT 기기가 네트워크에 접속되고, 디지털 데이터 유통 개시(네트워크화)	~2000년대 전반
레벨표	데이터 수집·축적·처리 기능이 개별 단말에서 네트워크상의 데이터센터로 이행(클라우드화)	~2000년대 후반
레벨 IV	현실세계를 디지털 데이터로 변환·처리한 후, 현실 세계로 다시 피드백 하는 루프 발생(CPS)	~2010년 무렵
레벨 V	인공지능(AI)에 의한 가치 창출과 완전 자율·자동화	향후

5. CPS(가상물리시스템)

주요 선진국의 동향

😱 스마트팩토리의 구성요소

5. CPS(가상물리시스템)

- CPPS 운영을 위해 해야 할 일
 - 실제 공장을 대변할 수 있는 가상 공장 구축
 - MES 및 ERP와 같은 기간시스템에서 생산에 필요한 기준 정보와 주문 정보를 받아야 함
 - POP 및 IoT 등을 통해 실시간의 생산 진도 및 장비 상태 등의 현장 정보를 받을 수 있어야 함
- 사이버팩토리는 생산시스템 운영 시뮬레이션과 유사
- 시뮬레이션을 이용하여 생산시스템을 최적 운영 하기 위한 의사결정을 돕는 것임

😲 스마트팩토리의 구성요소

5. CPS(가상물리시스템)

사이버팩토리의 구현 범위

- 스마트팩토리 전문인력을 양성하기 위해 진행되어야 할 교육 분야
 - 생산시스템의 효율적 운영
 - 네트워크 연결 및 활용
 - 다양한 센서를 이용한 장비 및 생산환경에 대한 정보를 효과적으로 수집

1. 생산시스템의 환경 변화

1) 배경

 2008년 금융위기 이후 제조산업이 국가경제를 지탱하는 중추로서 매우 중요하다는 것을 인식하고 제조산업의 경쟁력 강화를 위한 방안으로 스마트팩토리가 급부상

2) 각국의 동향

 제조산업의 대내외적인 생산환경 변화를 극복하기 위한 유연한 생산시스템 필요

3) 4차 산업혁명

 4차 산업혁명에 이르러 생산시스템의 패러다임이 바뀔 만큼의 산업구조가 급변하는 시대 도래

2. 스마트팩토리의 이해

1) 정의

 IoT, CPS 등과 같은 ICT기술을 이용하여 최적화된 공장 운영을 하는 지능형 공장

2) 필요성

- 생산제품과 생산시스템의 특성, 시장의 변동성 등을 고려한 ICT기술과 자동화 기술이 접목된 공장
- 제조업 전반의 위기를 극복하고 지속 가능한 제조업 경쟁력을 확보하기 위한 새로운 돌파구
- 스마트팩토리를 통해 얻고자 하는 것은 궁극적으로 생산성향상을 통한 기업의 경쟁력 강화

3) 4차 산업혁명

 4차 산업혁명에 이르러 생산시스템의 패러다임이 바뀔 만큼의 산업구조가 급변하는 시대 도래

4) 주요기술

■ 기간시스템과 신기술분야가 더해지는 형태

5) 각국의 동향

■ 민관합동 스마트공장추진단에서는 스마트공장의 구축수준을 ICT미적용, 기초수준, 중간수준1, 중간수준2, 고도화 5단계로 구분

6) 운영

 IoT가 생산현장의 환경정보, 생산정보를 수집하여 클라우드 상에 빅데이터로 저장하게 되며 인공지능이 분석하고 CPS를 통해 최적화된 공장운영을 하게 됨

3. 스마트팩토리의 구성요소

1) IoT

 각종 사물에 센서와 통신 기능을 내장하여 인터넷에 연결하는 기술

2) Big Data

 기존 데이터베이스 관리도구의 능력을 넘어서는 대량의 정형 또는 심지어 데이터베이스 형태가 아닌 비정형의 데이터집합 조차 포함한 데이터로부터 가치를 추출하고 결과를 분석하는 기술

3) AI

 인간의 지능으로 할 수 있는 사고, 학습, 자기 개발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터 공학 및 정보기술의 한 분야로서, 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것

4) Digital Twin

■ 물리적인 시스템을 소프트웨어 모델로 구성한 것

5) CPS

 사람의 개입 없이 사이버상의 정보(데이터) 처리 결과로 현실의 움직임을 제어할 수 있는 사이버물리시스템