Linked Open Data per un Content-based Recommender System

Luciano Quercia Simone Rutigliano

Accesso intelligente alle informazioni ed elaborazione del linguaggio naturale

Corso di Laurea in Informatica Magistrale

7 maggio 2013

Outline

- Obiettivi
- 2 Progetto
 - Sorgente dati
 - Realizzazione
 - Fattori
 - Output
- Sperimentazione
 - Dataset
 - Protocollo Sperimentale
 - Risultati
- Conclusioni e sviluppi futuri
 - Document Image Understanding

Obiettivi Progetto Sperimentazione Conclusioni e sviluppi futuri

Obiettivi

Realizzazione di un content-based recommender system basato sulla Linked Open Data Cloud

Content-based Recommender System

Il sistema stabilisce a priori la distanza trai film al fine di raccomandare i più simili alle preferenze dell'utente

Linked Open Data Cloud

Collezione (Cloud) di dataset:

- descritti attraverso RDF
- fortemente interconnessi fra loro (Linked)
- fruibili liberamente e gratuitamente (Open)

Linked Open Data Cloud

Resource Description Framework

Strumento base proposto da *W3C* per la codifica, lo scambio e il riutilizzo di metadati strutturati.

L'RDF Data Model si basa su tre principi chiave:

- qualunque cosa può essere identificata da un (URI)
- utilizzare il linguaggio meno espressivo per definire qualunque cosa
- 3 qualunque cosa può dire qualunque cosa su qualunque cosa

Esempio - Resource Description Framework

Considerando la frase:

Tarantino is the director of the Django Unchained.

L'affermazione può essere suddivisa come:

Soggetto (Risorsa) | Django Unchained Predicato (Proprietà) | director Oggetto (Risorsa) | Tarantino

DBPedia

- Centro della Linked
 Open Data Cloud
- Dump di Wikipedia trasformato in RDF

Proprietà estratte

Per la raccomandazione di film, abbiamo estratto le seguenti proprietà

- studio
- music
- music composer
- writer
- editing
- director

- subject
- starring
- productor
- writer
- cinematography

Grafo delle Risorse

Attraverso query SPARQL sono state estratte tutte le triple che avevano proprietà nota e un film come soggetto è stato generato il grafo delle risorse

```
PREFIX dbpedia:http://dbpedia.org/resource/
PREFIX prop:http://dbpedia.org/ontology/
SELECT ?name
WHERE {
dbpedia:Django_Unchained prop:director ?name.
}
```

risultato:

http://dbpedia.org/resource/Quentin_Tarantino

Grafo delle Risorse

Grafo dei Film

Tutte le risorse non film sono state epurate ed inglobate all'interno degli archi.

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
 - Com insted
 - Direct Weighted
 - Combinated Weighted

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated

Direct Weighted
Combinated Weighter

Sorgente dati Realizzazione Fattori Output

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated
- Direct Weighted

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated
- Direct Weighted
- Combinated Weighted

Rappresentazione del profilo

Il profilo è stato rappresentato in 2 modi:

• SIMPLE - Insieme di film positivi per l'utente

nega ivamente, alle raccomandazioni, cono il v

$$P_{NORM}(f_a) = V_0$$

Rappresentazione del profilo

Il profilo è stato rappresentato in 2 modi:

- SIMPLE Insieme di film positivi per l'utente
- WEIGHTED Ogni film influisce, positivamente o negativamente, alle raccomandazioni, secondo il voto ricevuto

$$P_{NORM}(f_a) = Voto(f_a) - Voto_M^{1}$$

Sorgente dati Realizzazione Fattori Output

Esempio di profilazione

considerati i film con le relative votazioni:

VOTAZIONE
5
4
2

I profili creati saranno:

Simple	Titanic		
	Titanic	2	
Weighted	Django Unchained		
	Bastardi senza gloria	-:	

Diango Unchained

Obiettivi Progetto Sperimentazione Conclusioni e sviluppi futuri Sorgente dati Realizzazione Fattori Output

Raccomandazioni

Obiettivi Progetto Sperimentazione Conclusioni e sviluppi futuri

Dataset Protocollo Sperimentale Risultati

MovieLens

Protocollo Sperimentale

Obiettivi Progetto Sperimentazione Conclusioni e sviluppi futuri

Dataset Protocollo Sperimentale Risultati

Metriche

Risultati

	6	minSup (%)			
	minGR	30	40	50	
	1	528032	344798	254805	
	2	523274	341534	252355	
	8	516958	336733	248658	
	64	513503	334292	246843	
Dataset TPAMI					

MAG	minSup (%)			
minGR	10	20	30	
1	386996	176407	114492	
2	382639	173372	112476	
8	376645	169406	109814	
64	374736	167742	108595	

Dataset ICML

	minSup (%)			
minGR	10	20	30	
1	128327	88684	58603	
2	126840	87644	58091	
8	122591	84208	55718	
64	121363	82980	54490	

Dataset BG

Conclusioni e sviluppi futuri

TEPaC

TEPaC

Transductive Emerging Pattern based Classifier

- classificatore di strutture logiche
- basato su pattern emergenti
- utilizza un approccio trasduttivo

Document Image Understanding

 Comprensione automatizzata di documenti cartacei

> a miggior parte della conoscenza andi le si trova su supporti

- (Libr
 - Document
 - Giornali

La digitalizzazione offre

Document Image Understanding

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Documenti
 - Giornali

La digitalizzazione offre innumerevoli vantaggi

Document Image Understanding

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Documenti
 - Giornali
- La digitalizzazione offre innumerevoli vantaggi

Grazie per l'attenzione.

LOD CB-RS