## Arrays 2: Two Dimensional

Sun hou !

Civer a row-wise & column-wise sorted matrix,

find out whether element K is present or not.

|    |   | 9          | 1  | 2 | 3  |
|----|---|------------|----|---|----|
|    | 0 | 5          | -2 |   | 13 |
| A= | 1 | <b>-</b> Y | O  | 3 | 14 |
|    | 2 | 3          | 2  | G | 12 |

$$K=13$$
 am = frue  
 $K=0$  am = frue  
 $K=-1$  aw = false

Bouteforce > fi,j check ali)[j]

TC: O(NxM)

|   | ð   | 1  | 2 | 3  |
|---|-----|----|---|----|
| 0 | -5  | -2 |   | 13 |
| 1 | - Y | Ø  | 3 | 14 |
| 2 | -3  | 2  | G | 12 |

K=0

optional

If binary search

TC: O(NlogM)

O(MlogN)

-5 -> increasing increasing

decreasing 18

1870 1) go la smaller clement

|   | 9   | 1  | 2 | 3           |
|---|-----|----|---|-------------|
| 0 | -5  | -2 | * | - 13        |
| 1 | - Y | 0  | 3 | <b>y4</b> \ |
| 2 | -3  | 2  | G | 12          |

13 > 0 => 90 to left

|   | · U        | I  |
|---|------------|----|
| 0 |            | 24 |
| 1 | - <b>y</b> | ۵۶ |
| 2 | - 3        | 2  |

-2 < D => go to down

|     |   | <b>3</b>   | 1   |       |
|-----|---|------------|-----|-------|
|     | 0 | -5         | -24 | - 14/ |
| K=0 | 1 | - <b>y</b> | 0   | 3     |
|     | 2 | - 3        | 2   | 6     |

1>0 => go to left

| 1 | - <b>\</b> | <b>V</b> |
|---|------------|----------|
| 2 | -3         | 2        |

FOUND!!

Code

$$i=0, j=m-1$$
 $forming to the property of the property$ 

Question 2

Cuiven a bingy matrix sorted row-wix. 000... III....

Find the smallest row index with max #1's.

|    |   | 0 | 1 | 2 |         |         |          |
|----|---|---|---|---|---------|---------|----------|
|    | 0 | 0 |   |   | am = 1  | Canamer | is index |
| A= | t | 0 | O |   | 000) 22 | Lamina  |          |
|    | 2 | 1 | 1 | 1 |         |         |          |

Bruktoru - count #1's in each row TC:0(N\*M) SC:0(1)



(ode

am = i

i++ 11 down

T(: O(N+M)

SC:0(1)

reform aw

Bushon-3

Clock wish.



output: 12 > 45 10 15 20 25 24 23 22 2/ 16 11 6

| 1 | 2 | 3 |
|---|---|---|
| 5 | S | 6 |
| 7 | 8 | 9 |

output: 123 G

Code

$$i=0,j=0$$

$$for (K = 0 \text{ to } m-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } m-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{ to } n-2) = m-1 \text{ times}$$

$$for (K = 0 \text{$$

tor 
$$(K=0 \text{ to } m-L) \in \mathbb{R}$$

print  $(a \text{ (i)} \text{ (j)})$ 
 $j-1/(1cf4)$ 

for  $(K=0 \text{ to } n-2) \in \mathbb{R}$ 
 $(K=0 \text{ to } n-2) \in \mathbb{R}$ 

print  $(a \text{ (i)} \text{ (j)})$ 
 $(E=n-1, j=m-1)$ 

print  $(a \text{ (i)} \text{ (j)})$ 
 $(E=n-1, j=0)$ 

print  $(a \text{ (i)} \text{ (j)})$ 

Buestiony

Print elements in spiral order in clock wisk direction. ( square matrix ) NAN

| -  | 2  | 3   | 4  | 7  |
|----|----|-----|----|----|
| 6  | 7  | 8   | A  | 10 |
| /1 | 12 | *** | 2  | 15 |
| 16 | 17 | 18  | 15 | 20 |
| 2  | n  | 23  | 24 | 15 |

output: 123 45 10 15 20 25
24 23 22 21 16 11 6
7 8 9 14 19 18 17
12 13

A=2

| N=5 |    |     |                |    |  |
|-----|----|-----|----------------|----|--|
| -   | 2  | 3   | 4              | N  |  |
| 6   | 7  | 8   | Se Contraction | 10 |  |
| /11 | 12 | *** | 14             | 15 |  |
| 16  | 17 | 18  | 15             | 20 |  |
| 2   | 22 | 23  | 24             | 15 |  |
|     |    | *3  |                | -5 |  |

ALS.

because square prostrix, prostrix, no M

TC: O(N<sup>2</sup>)

S(:O(1)



## Sub matrix

A-

| ı  | 2  | 3  | 4  | 5  |  |
|----|----|----|----|----|--|
| 6  | 4  | 8  | 9  | 10 |  |
| 11 | 12 | 13 | 14 | 15 |  |
| 16 | 17 | 18 | 15 | 20 |  |
| 21 | 22 | 23 | 24 | 5  |  |

submatrix



find the # submatrix in which ali)(j) is present for given ij.

|   | Ð | 1 | 2 |
|---|---|---|---|
| 0 | 1 | 2 | 3 |
| ı | 4 | 5 | 6 |
| ) | 7 | 8 | 9 |

$$2 \times 3 \times (3-1) \times (3-2)$$
  
 $2 \times 3 \times 2 \times |$   
= |2

| ı   |   | ଚ  | 1  | 2 ( | Jj. | 3  |
|-----|---|----|----|-----|-----|----|
| ć   | ) | 1  | 2  | 3   | 4   | 5  |
| t   |   | 6  | 7  | 8   | 9   | 10 |
| i=2 |   | 11 | 12 | 13  | 14  | 15 |
| 3   |   | 16 | 17 | 18  | اح  | 20 |
| Ч   |   | 21 | 22 | 23  | 24  | 5  |
|     |   |    | •  | 1   | T   | 1  |

# submatrix containing a (i)) =
$$= (i-1)^{n}(j+1) \times (m-i)^{n}(m-j)$$

find sum of all submaining sum

am=0

aus += (i+1)r(j+1) ~ (n-i) ~ (m-j) xau)(j)

3

riturn am

TC: O(Nxm)

Sc: 0(1)



1×1×2×2=4
contribution

= 1x4+2x4 +3x4 + 4x4 = 40