

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Funciones en varias variables 1 Cálculo II

- 1. Determine y grafique el dominio de las siguientes funciones.

- a) $f(x,y) = \sqrt{1-x^2-y^2}$. b) $f(x,y) = \ln(x+y)$. c) $f(x,y) = \frac{1}{x-1} + \frac{1}{1+y}$. d) $f(x,y) = \left(\sqrt{9-y^2}, \sqrt{4-x^2}\right)$ $f(x,y) = \sqrt{y\cos(x)}$.
- 2. Determine las curvas de nivel de las siguientes funciones.
 - a) $f(x,y) = x^2 + y^2$.
- c) $f(x,y) = \frac{2x}{x^2 + y^2}$. c) $f(x,y) = \frac{2x}{x^2 + y^2}$. d) $f(x,y,z) = x^2 + 2y^2$.
 - $e) f(x,y) = \sqrt{xy}$

- b) f(x, y, z) = x + y + z.
- f) $f(x, y, z) = x^2 + y^2 + z^2$.
- 3. Determinar cuáles de las siguientes superficies corresponden a la gráfica de una función z = f(x, y).
 - a) $z = x^2 + y^2$.

- c) 3x + 3y z = 0.
- $e) \ z = \frac{1}{x + y}$

- b) $z^2 = 1 x^2 \frac{y^2}{x^2}$.
- d) $6x^2 + y^2 z^2 = 1$.
- $f) 2z x^3 + y^4 + 2 = 1.$

- 4. Representar gráficamente los siguientes conjuntos.
 - a) $A = \{(x, y) \in \mathbb{R}^2 : 0 < (x 3)^2 + (y + 4)^2 < 16\} \cup \{(0, y) \in \mathbb{R}^2 : 7 < y < 8\}.$
 - b) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 25 \land 3y < 4x\}.$
 - c) $A = \{(x, y) \in \mathbb{R}^2 : (x 1)^2 < 3y 3 \land y < x + 4\}.$
 - d) $A = \{(x, y) \in \mathbb{R}^2 : |x 2| > 3 \land |y| < 2\}.$
 - e) $A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z < 1 \land x^2 + y^2 + (z+1)^2 < 1\}.$
- 5. Para los siguientes conjuntos determinar el conjunto de puntos adherentes, el conjunto de puntos de acumulación, el interior y su frontera. Además determinar si es abierto, cerrado, compacto o ninguno de los casos. Finalmente señalar si es acotado y en caso afirmativo, si es posible, indicar la cota mínima.
 - a) $A = \{(5, \frac{1}{n}) \in \mathbb{R}^2 : n \in \mathbb{N}\}.$
 - b) $A = \{(x, y, z) \in \mathbb{R}^3 : 1 < x^2 + y^2 + z^2 < 2\}$
 - c) $A = \{(x, y, z) \in \mathbb{R}^3 : z = 4 x^2 y^2 > 0\}.$
 - d) $A = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 + 2xy + y^2 \le 1 \land xy \ge 0\}.$
 - e) $A = \{(x,0) \in \mathbb{R}^2 : 0 \le x \le 1\} \cup \{(\frac{1}{n}, y) : n \in \mathbb{N} \land 0 \le y \le 1\}.$
- 6. Considere la función $f: D \subset \mathbb{R}^2 \to \mathbb{R}^4$, definida por

$$f(x,y) = \left(\frac{x}{y}, \frac{x^2 + y^2}{\sqrt{y - x^2 + 1}}, \frac{\sin(x^2 + y^2)}{\sqrt{x^2 + y^2 - 1}}, \frac{1}{\sqrt{4 - y}}\right).$$

- Represente gráficamente el dominio D de la función.
- Determine el interior, frontera, adherencia, y puntos de acumulación de D.
- ¿Es D un conjunto abierto o cerrado?
- \bullet i. Es D un conjunto acotado? Si lo es determine la menor cota.

1. Determine	e y grafique el domin	nio de las siguiente	es funciones.		
a) f(x,	$y) = \sqrt{1 - x^2 - y^2}.$	c) f(x,y) =	$\frac{1}{x-1} + \frac{1}{1+y}.$	e) f(x,y) =	$\frac{1}{\sqrt{x}+\sqrt{y}}$.
b) f(x,	$y) = \ln(x+y).$			$f(x,y) = \int_{-\infty}^{\infty} f(x,y) = \int_{-\infty}^{\infty} f(x,y) dx$	
-				,	
a) Dom	}(x,y) = 1(x,y) &	$\mathbb{R}^2: \times^2 + y \leq 1$	•		
b) Dom	f(x,y) = 1(x,y) &	R2: x+y>0			
c) Dom	f(x,y) = 3(x,y) e	. R2: x + 1 1 y +	. q · {		
d) Dom	f(x,y) = }(x,y) e	122: -3 ≤ y ≤ 3 A	-2 ≤ x ≤ 2 {		
e) Dom	f(x,y) = 3(x,y) e	. 122 : x,y > 0 {			
f) Dom	\$(x, y) = 3(x, y) e	IP2: XERNY2	0 }		
2. Determine	e las curvas de nivel	de las siguientes fu	inciones.		
a) f(x, y)	$y) = x^2 + y^2.$	$c) \ f(x,y) = \frac{1}{2}$	$\frac{2x}{x^2 + u^2}$.	e) f(x,y) =	\overline{xy} .
b) f(x, y)	(y,z) = x + y + z.		~ 1 9	f) f(x, y, z) =	$x^2 + y^2 + z^2.$
a) f cx,y) = x2 + y2 : Corres	ponde a los circ	ulos concernos co	os concentro en el	origen y radio = 10)
L ₂ x	$2 + y^2 = 0$ Corres	c on la constan	le que derve la	curva denicel	
	on: 5+x+x = (5,				
c) frx,	y) = 2× 2:	x - c -> '	$2 \times = C(x^2 + y^2) =$	$2 \times = cx^2 + cy^2/$	$\begin{pmatrix} \frac{1}{c} = \end{pmatrix} \frac{2x}{c} - x^2 = y^2$
	$(x, 2) = x^2 + 2x^2 :$	hacia arriba y	Lucia abayo	, son parabolica un funcion de 2.	S y re extienden
L→ x²	+2y2 = K	a median que	rumenta K, la se conxaco. Son	s superficies se superficies y n	expanden y
e) P (x,	y) = Vxy : Son				
ξ) ζcx,	$(x, y) = x^{2} + y^{2} + z^{2}$: no tiene curu	as be nivel s	sino suporticiec	arnively son
3 1		er feras.			-

- $a) \ z = x^2 + y^2.$
- c) 3x + 3y z = 0.
- $e) \ z = \frac{1}{x+y}.$
- b) $z^2 = 1 x^2 \frac{y^2}{x}$. d) $6x^2 + y^2 z^2 = 1$.
- $f) 2z x^3 + y^4 + 2 = 1.$

a)
$$z = x^{2} + y^{2}$$

Circumfencia o Circulo

 $(\chi_o, \gamma_o) = (o, o)$

6. Considere la función $f: D \subset \mathbb{R}^2 \to \mathbb{R}^4$, definida por

$$f(x,y) = \left(\frac{x}{y}, \frac{x^2 + y^2}{\sqrt{y - x^2 + 1}}, \frac{\sin(x^2 + y^2)}{\sqrt{x^2 + y^2 - 1}}, \frac{1}{\sqrt{4 - y}}\right).$$

- \blacksquare Represente gráficamente el dominio D de la función.
- Determine el interior, frontera, adherencia, y puntos de acumulación de D.
- Es D un conjunto abierto o cerrado?
- ullet Es D un conjunto acotado? Si lo es determine la menor cota.

$$\begin{cases} P_{1}(x,y) = \frac{x}{y} \implies P_{1} = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : y \neq 0 \end{cases}$$

$$\begin{cases} P_{1}(x,y) = \frac{x^{2} + y^{2}}{\sqrt{y + x^{2} + 1}} \implies P_{2} = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : y = x^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{2}(x,y) = \frac{x^{2} + y^{2}}{\sqrt{y + x^{2} + 1}} \implies P_{3} = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + 1 \neq 0 \end{cases}$$

$$\begin{cases} P_{3}(x,y) = \frac{1}{3}(x,y) \in \mathbb{R}^{2} : x^{2} + y^{2} + y^$$

