	Contents	
UNIT#	Title	Page #
1	Functions and Limits	3
2	Differentiation	5
3	Integration	10
4	Introduction to Analytic Geometry	12
5	Linear Inequalities and Linear Programming	14
6	Conic Sections	15
7	Vectors	17

UNIT # 01 Functions and Limits

Each question has four possible answer. Tick the correct answer.

1.	The function $I(x) = x$ i	s called :		
	(a) A linear function (b)	🗸 An identity functio	n (c) A quadratic fun	ction (d) A cubic function
2.	If y is expressed in term	ns of a variable $oldsymbol{x}$ as $oldsymbol{y}$ =	= f(x), then y is called	ed:
	(a) 🗸 An explicit functi	on (b) An implicit function	on (c) A linear functio	n (d) An identity function
3.	$Cosh^2x - Sinh^2x =$			
	(a) -1	(b) 0	(c) 🗸 1	(d) None of these
4.	cosechx is equal to	1	2	2
	(a) $\frac{2}{e^x + e^{-x}}$	(b) $\frac{1}{e^x - e^{-x}}$	(c) $\sqrt{\frac{2}{e^x - e^{-x}}}$	(d) $\frac{2}{e^{-x}+e^x}$
5.	$\lim_{x\to a}\frac{x^3-a^3}{x-a}=$			
	(a) Undefined	(b) $\checkmark 3a^2$	(c) a^2	(d) 0
_	1	(5) • 54	(0) 4	(0) 0
6.	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} =$	(1.)	(.) .2	/ d\ 11 - d - C d
_	(a) $\frac{1}{e}$		(c) e^2	(d) Undefined
7.	The notation $y = f(x)$			/ W ·
_	(a) Lebnitz		(c) Newton	(d) Lagrange
8.	$\operatorname{lf} f(x) = x^2 - 2x + 1$			/ N 2
0	(a) -1	(b) 0	(c) 1	(d) 2
э.	When we say that f is f (a) \checkmark Domain of f			
10				endence of one quantity to
10.	another.	as recognized by	to describe the depe	endence of one quantity to
		(b) Euler	(c) Newton	(d) Lagrange
11.	If $f(x) = x^2$ then the ra		(6)	(0) = 0.0.0
	(a) ✓ [0,∞)		(c) $(0, \infty)$	(d) None of these
12.	If $f(x) = \frac{x}{x^2 - 4}$ then dor			
	~ 1		(c) $\checkmark R - \{\pm 2\}$	(4) O
13.	If a graph express a fun	1		, , ,
	(a) One point only	and the second s	(c) More than one p	
1/1	If $f(x) = \begin{cases} x, & whe \\ x-1, & whe \end{cases}$	$n0 \le x \le 1$ then dom		
	(a) / [0,2]		(c) [1,2]	(d) all real numbers
15.	The graph of linear equ		, , , , ,	/ D
16	(a) Straight line	` ' '		(d) cube
10.	The domain and range (a) ✓ <i>X</i>	(b) +iv real numbers		(d) intogers
17	The linear function $f(x)$			(d) integers
	(a) $a \neq 0, b = 1$			(d) $a = 0$
18.	The linear function $f(x)$			(-)
	$a \neq 0, b = 1$ (b) $a =$	1, $b = 0$ (c) $a =$	1, b = 1 (d)	$\checkmark a = 0$
19.	If $y = cosx$, $domain$	= R then range is		
		(b) 🗸 [-1,1]		
20.	If $y = tanx$, $domain = tanx$	$= \{x x \in R, x \neq (2n +$	$1)\frac{\pi}{2}$, n interger} t	hen range is
	(a)]-1,1[
21.	If $y = secx$, domain			
	(a)]-1,1[(c) R -[-1,1] (d)	
22.	If $y = cotx$, domain			
				(d) 🗸 all real numbers
23.	If $y = cosecx$, domai			
	(a) $\bigvee y \ge 1, y \le -1$		-	
24.	If $x = a^y$, then $y = lo$	ga^x is called logarithm	ic function if	
	(a) $a < 0$		(c) $a = 0$	(d) $\checkmark a > 0$, $a \neq 1$
25.	If $coshx = \frac{e^x + e^{-x}}{2}$, the	n its domain is set of re	al numbers and rang	e is
	(a) Set of all real numb			

these

	•	$sh^{-1}x$ can be written a				
	•) (b) $\ln(x + \sqrt{x^2 - 1})$	(c) $\ln(x)$	$(x - \sqrt{x^2 + 1})$	(d) $\ln(x -$	$\sqrt{x^2 - 1}$
	_	$n sinh^{-1}x$ is written as				
		(b) $\ln(x + \sqrt{x^2 - 1})$		$(x - \sqrt{x^2 + 1})$	(d) $\ln(x -$	$\sqrt{x^2 - 1}$
		$anh^{-1}x$ can be written a			_	
(a)	$\sqrt{\frac{1}{2}}\ln\left(\frac{x+1}{x+1}\right), x < \infty$	< 1 (b) $\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$,	x < 1	(c) $\ln(\frac{1}{x} + \frac{\sqrt{1-x^2}}{x})$	$(\frac{2}{3}), 0 \le x \le $	1
	(d) $\ln \left(\frac{1}{x} + \frac{\sqrt{1-x^2}}{ x } \right)$	<u> </u>		X X		
	(* *)					
29. In		oth^{-1} can be written as				
	(a) $\frac{1}{2} \ln \left(\frac{x+1}{x+1} \right)$, $ x $	< 1 (b) $\checkmark \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	x < 1	1 (c) $\ln(\frac{1}{n} + \frac{\sqrt{1-n}}{n})$	$\left(\frac{x^2}{x^2}\right)$, $0 \le x$	≤ 1
	2 (X 1/			x x		
	(d) $\ln\left(\frac{1}{x} + \frac{\sqrt{1-x}}{ x }\right)$	1 /				
30. In	_	ech^{-1} can be written as		_		
	(b) $\frac{1}{2} \ln \left(\frac{x+1}{x-1} \right), x $	< 1 (b) $\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$, $ x $	< 1 (c) $\ln(\frac{1}{x} + \frac{\sqrt{1-x}}{x})$	$\left(\frac{x^2}{x^2}\right)$, $0 \le x$	≤ 1
	(d) $\ln \left(\frac{1}{r} + \frac{\sqrt{1-r}}{r} \right)$			x x		
	(>c >r	1 /				
31. In	•	osech ⁻¹ can be written				
	(c) $\frac{1}{2} \ln \left(\frac{x+1}{x-1} \right), x $	< 1 (b) $\frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$, $ x $	< 1 (c) $\ln(\frac{1}{x} + \frac{\sqrt{1-x^2}}{x})$	$0 \le x \le 1$	
	(d) $\sqrt{\ln \left(\frac{1}{2} + \frac{1}{2}\right)}$	$-\frac{\sqrt{1-x^2}}{ x }$, $x \neq 0$				
222	**	1201 /				
	$+xy + y^2 = 2$ is an		(a) avea	l: a:t f a at: a . a	(al) 4 l l l l l l l l l l l l l l l l l l l	. l: a:+ f a+: a
		(b) quadratic function the parametric equation		licit function	(a) V Imp	Dilcit function
		(b) 🗸 Parabola	S 01	(a) Ellinga	(م)	Llunarhala
٠,	Circle $aCos\theta$ $y = aSig$	$\imath heta$ are parametric equat	ions of	(c) Ellipse	(u)	Hyperbola
	– <i>ucoso</i> , <i>y – usti</i> Circle	(b) Parabola		Ellipse	(d) Hyperb	ola
		n heta are parametric equat		Ellipse	(u) nyperb	Old
	-	(b) Parabola		250	(d) / Hype	orhola
	e function , $f(x) = $		(c) Ellip)SE	(u) V Hype	Elbola
			(c) Neit	thor	(d) None o	f thoso
	e function , $f(x) =$	(b) Odd Sinr + Cosr is	(c) Nei	ulei	(u) None o	i tilese
		(b) Odd	(0)	Neither	(d) None o	f these
		$x(t) = x^2 - 1$, then $(f \circ g)$		Neither	(u) None o	i tilese
-		(b) $4x^2 + 4x$		+ 3	(d) $x^4 - 2x^4 - 2x^2 - 2x^4 - 2x^2$	x ²
39. If <i>i</i>	$f(x) = 2x + 3. \ a(x)$	$= x^2 - 1, \text{ then } (gof)$	(x) =		(4) 10 21	•
		(b) $\checkmark 4x^2 + 4x$		(c) $4x + 3$	(d)	$x^4 - 2x^2$
	W. E. W.	$(x) = x^2 - 1$, then $(f \circ f)$		(-,	(- /	
_	- · ·	(b) $4x^2 + 4x$		4x + 3	(d) $x^4 - 2x^4 - 2x^2 - 2x^4 - 2x^2$	χ^2
٠,		$(x) = x^2 - 1$, then $(g \circ g)$	` '		(-7	
_	$2x^2 - 1$			+ 3	(d) 🗸 x ⁴	$-2x^{2}$
٠,		on exists only if it is	` ,		` '	
(a)	an into function	(b) an onto function	(c) 🗸	(1-1) and into fu	nction (d) N	lone of these
43. If <i>j</i>	$f(x)=2+\sqrt{x-1},$	then domain of $f^{-1} =$				
(a)]2,∞[(b) ✓ [2,∞[(c) [1,∘	∞ [(d)]1,∞[
44. If <i>j</i>	$f(x)=2+\sqrt{x-1},$	then range of $f^{-1} =$				
(b)]2,∞[(b) [2,∞[(c) 🗸	[1,∞[(d)]1,∞[
45 . lin	$n_{x\to 0}\frac{Sinx}{x}=1 if an$	nd only if				
	A	(b) x is right angle	(c) 0 <	$x < \frac{\pi}{2}$	(d) √ x∈(-	$-\frac{\pi}{2}$, $\frac{\pi}{2}$)
	_	e continuous at $x = c$ if	(0) 0	2	(4) • 200	2'2'
	$\lim_{x\to c} f(x)$ exists		(c) lim	f(x) = f(c)	(d) 🗸 📶	of these
	(x) = ax + b with (a)		(0) 11111	x→c / (~/ - / (c)	(w) ♥ / till	
•	•	n (b) A quadratic function	n (c) A co	onstant function	(d) An ider	ntity function
		on then the subset of Y co				,
-		(b) \checkmark range of f				Subset of X
	e graph of $2x - 10$	= 0 is a line s (b) \checkmark Parallel to $y - a$		(c) inclined at a		

	Cosechx is equal to			
	(a) $\frac{e^{x}-e^{-x}}{2}$ $\frac{e^{2x}+e^{-2x}}{e^{2x}-e^{-2x}}$ equals to	(b) $\frac{e^{x}+e^{-x}}{2}$	(c) $\frac{2}{a^{x}-a^{-x}}$	(d) $\sqrt{\frac{2}{a^{x}+a^{-x}}}$
E 1	$\frac{e^{2x}+e^{-2x}}{e^{2x}}$ equals to	Z	e~-e ~	en+e n
31.			() () []	(1) . 4 (10)
		(b) $cosh2x$	(c) $tanh2x$	(d) \checkmark coth2x
52.	The function $f(x) = \frac{1}{x^2}$	$\frac{1}{x+1}$ is discontinuous at $x=$	=	
		(b) 🗸 0	(c) -1	(d) all real numbers
53.	$If f(x) = x^3 - 2x^2 + 4$	- · · · · · · · · · · · · · · · · · · ·		
(a)		(b) ✓ -8	(c) 0	(d) -6
54.		used as a variable as we		(1)
	(a) ✓ Parameter	(- /	(c) Real Numbe	er (d) None of these
55.	If $f(x) = \frac{x-1}{x+4}$, $x \neq -4$	then range of f is		
	(a) $\checkmark R - \{1\}$	(b) $R - \{-4\}$	(c) $R - \{0\}$	(d) all real numbers
56.	$\lim_{x\to\infty}e^x=$			
	(a) 1	(b) ∞	(c) 🗸 0	(d) -1
57.	$\lim_{x\to 0}\frac{\sin(x-3)}{x-3}=$			
	(a) 🗸 1	(b) ∞	(c) $\frac{\sin 3}{3}$	(d) -3
52	$\lim_{x\to 0}\frac{\sin(x-a)}{x-a}=$		3	
50.	<i>7</i> . u	<i>(</i> ()	, , sina	(N - 5
	(a) 🗸 1	(b) ∞	(c) $\frac{\sin a}{a}$	(d) -3
59.	$f(x) = x^3 + x \text{ is :}$			
	(a) Even	(b) 🗸 Odd	(c) Neither even nor od	ld (d) None
60.	$\lim_{x\to 0}(1+x)^{\frac{1}{x}}=$			
	(a) ✓ <i>e</i>	\ /	(c) 0	(d) 1
61.	•	n , then elements of $oldsymbol{x}$ a		
	(a) Images	(b) Pre-Images	(c) Constants	(d) Ranges
62.	$\lim_{x\to 0} \left(\frac{x}{1+x}\right) =$			-V17-
	(a) <i>e</i>	(b) $\checkmark e^{-1}$	(c) e^2	(d) \sqrt{e}
63.		nomial function is 1, the		
		(b) Constant function	(c) Linear function	(d) Exponential function
64.	$Cosh^2x + Sinh^2x =$	JITG		
	(a) 1	(b) C Cosh2x	(c) Sinh2x	(d) 0
65.	$\lim_{x\to 0}\frac{x}{\sin x}=$			
	(a) 0	(b) 🗸 1	(c) -1	(d) Undefined
66.	1/1 10	m x = acost; y = bsin		
	(a) Odd function	• • •	(c) Parametric functi	on(d) Even function
67.	If $f(x) = \sqrt{x+2}$ then			/ D f
	•	(b) [2,∞)	(c) $(-\infty, +\infty)$	(d) [1,∞)
68.	$\lim_{x\to-\infty}\frac{-5}{\sqrt{x}}=$			
	(a) 🗸 0	• •	(c) +∞	(d) Not exists
69.	The volume V of a cube	e as a function of the ar	ea A of its base.	
	(a) $A^{\frac{5}{2}}$	(b) \sqrt{A}	(c) $\checkmark A^{\frac{3}{2}}$	(d) $2\sqrt{A}$
70.	$\lim_{x\to 0} \frac{a^{x}-1}{x}$ is equal to	0		
	~	(b) log_{a^x}	(c) a	(d) $\checkmark log_{e^a}$
71	$\lim_{x\to 0} \frac{\sin x^{\circ}}{x} =$	$(s) t \circ g a^{\pi}$	(ο) α	(a) • 10ge
/1.	n n	180°		
	(a) $\sqrt{\frac{\pi}{180^{\circ}}}$	(b) $\frac{180^{\circ}}{\pi}$	(c) 180π	(d) 1
72.	If $f(x) = xSecx$ then			
	(a) -2π	(b) $\checkmark -\pi$	(c) π	(d) 2π
			- ·	. •
	U	INIT # 02 D	Differentia [.]	tion
	Each auestion has	s four possible answ	ver. Tick the correc	t answer.
1	$\frac{d}{dx}tan3x =$, , 5 %.	the confec	
1.	un	1 2-	/) 2	, 13 2
	(a) \checkmark 3 sec ² 3 x	(b) $\frac{1}{3} \sec^2 3x$	(c) <i>cot</i> 3 <i>x</i>	(d) $\sec^2 x$

2.	$\frac{d}{dx}2^x =$			
		(b) $\frac{ln2}{2^x}$	(c) $\checkmark 2^x ln2$	(d) 2^x
3.	If $y = e^{2x}$, then $y_2 =$	2x	(0) 0 = 000	(=) =
	(a) e^{2x}	(b) $2e^{2x}$	(c) $\checkmark 4 e^{2x}$	(d) 16 e^{2x}
4.	$\frac{d}{dx}(ax+b)^n =$			
	un	(b) $n(ax + b)^{n-1}$	(c) $n(a^{n-1}x)$	(d) $\checkmark na(ax+b)^{n-1}$
5.			fx .It is denoted by δx w	
		(b) –iv only	(c) ✓ +iv or −iv	(d) none of these
6.	The notation $\frac{dy}{dx}$ or $\frac{df}{dx}$ is	s used by		
	(a) Leibnitz	(b) Newton	(c)Lagrange	(d) Cauchy
7.	The notation $\dot{f}(x)$ is us	sed by		
	• •	(b) V Newton	(c) Lagrange	(d) Cauchy
8.	The notation $f'(x)$ or $f'(x)$	·	<i>(</i>)	/ N O
0	(a) Leibnitz The notation $Df(x)$ or	(b) Newton	(c) 🗸 Lagrange	(d) Cauchy
Э.	The notation $Df(x)$ or (a) Leibnitz	(b) Newton	(c) Lagrange	(d) 🗸 Cauchy
	(a) Leibilitz	(b) Newton	(c) Lagrange	(u) • Caucity
No	te: –The symbol $\frac{dy}{dx}$ is	used for derivative of y	w.r.tx.Here it is not t	he quotient of dy
10	$\lim_{x\to a} \frac{f(x)-f(a)}{x-a} =$			
10.	$\lambda - u$	(b) ✓ f'(a)	(c) f (0	(d) $f(x-a)$
11	$\frac{d}{dx}(x^n) = nx^{n-1} \text{ is call}$		(0))(0	(u) f(x-u)
11.	ux		() 0	
	(a) ✓ Power rule rule	(b) Product rul	e (c) Quotient ru	le (d) Constant
12		$(x+b)^{n-1}$ is valid only	when n must be	
12.	****		r (c) imaginary number	(d) Irrational number
12	1	(b) rational numbe	r (c) imaginary number	(a) irrational number
13.	$\frac{d}{dx}(Sina) =$		(1000)	(1)
		(b) <i>a</i> cos <i>a</i>	(c) 0	$(d) - a \cos a$
14.	$\frac{d}{dx}[f(x) + g(x)] =$	41116		
				f(x)g'(x) - g(x)f'(x)
15.			mber that $[f(x)g(x)]'$ =	
16.	(a) $f'(x) + g'(x)$ (b) $f'(x) = \frac{d}{dx} \left(\frac{1}{g(x)}\right) = \frac{1}{2}$	$f'(x) - g'(x)$ (c) $\checkmark f(x)$	f'(x) + g(x)f'(x) (d) f(x)g'(x) - g(x)f'(x)
	ux(g(x))	1	a'(x)	-a'(x)
	(a) $\frac{1}{[g(x)]^2}$	0 ()	(c) $\frac{g'(x)}{[g(x)]^2}$	(d) $\checkmark \frac{-g'(x)}{[g(x)]^2}$
17.	If $f(x) = \frac{1}{x}$, then $f''($	a) =		
	(a) $-\frac{2}{(a)^3}$	(b) $-\frac{1}{a^2}$	(c) $\frac{1}{a^2}$	(d) $\sqrt{\frac{2}{a^3}}$
18.	(fog)'(x) =	u-	u-	u-
	(a) $f'g'$	(b) $f'g(x)$	(c) $\checkmark f'(g(x))g'(x)$	(d) cannot be calculated
19.	$\frac{d}{dx}(g(x))^n =$			
	(a) $n[g(x)]^{n-1}$	(b) $n[(g(x)]^{n-1}g(x)$	(c) $\bigvee n[(g(x)]^{n-1}g'(x)]$	(x) (d) $[g(x)]^{n-1}g'(x)$
20.	$\frac{d}{dx}sec^{-1}x =$			()
	(a) $\sqrt{\frac{1}{ x \sqrt{x^2-1}}}$	(h) — -1	(c) $\frac{1}{ x \sqrt{1+x^2}}$	(d) $\frac{-1}{ x \sqrt{1+x^2}}$
	. ' '	$ x \sqrt{x^2-1}$	$ x \sqrt{1+x^2}$	$ x \sqrt{1+x^2}$
21.	$\frac{d}{dx}cosec^{-1}x =$	_1	1	_1
	(a) $\frac{1}{ x \sqrt{x^2-1}}$	(b) $\sqrt{\frac{-1}{ x \sqrt{x^2-1}}}$	(c) $\frac{1}{ x \sqrt{1+x^2}}$	$(d) \frac{-1}{ x \sqrt{1+x^2}}$
	-1 6	r . o . o . o . o		
22.	• • •		s any real number is call	
23.	If $a > 0$, $a \ne 1$, and x			on (d) composite function $(x>0)$ is called a

(c) 🗸 a

(d) x

logarithmic function with base

(b) e

(a) 10

```
24. log_{a^a} =
    (a) 🗸 1
                                  (b) e
                                                               (c) a^2
                                                                                            (d) not defined
25. \frac{d}{dx} log_{10^x} =
                        (b) \checkmark \frac{1}{x \log_{10}} (c) \frac{\ln x}{x \ln x}
     (a) \frac{1}{r} \log 10
26. \frac{d}{dx} ln[f(x)] =
                                                              (c) \checkmark \frac{f'(x)}{f(x)}
     (a) f'(x)
                                 (b) lnf'(x)
27. y = sinh^{-1}x if and only if x = sinhy is valid when
     (a) x > 0, y > 0
                                 (b) x < 0, y < 0
                                                               (c) x \in R, y > 0 (d) \checkmark x \in R, x > 0
28. y = cosh^{-1}x if and only if x = coshy is valid when
     (a) \checkmark x \in [1, \infty), y \in [0, \infty) (b) x \in [1, \infty), y \in (0, \infty] (c) x < 0, y < 0 (d) x \in R, y \in R
29. y = tanh^{-1}x if and only if x = tanhy is valid when
     (a) x \in R, y \in R
                                 (b) \checkmark x \in ]-1,1[,y \in R
                                                                   (c) x \in R[-1,1], y \in R (d) x > 0, y > 0
30. y = coth^{-1}x if and only if x = cothy is valid when
     (a) x \in R, y \in R (b) x \in ]-1,1[, y \in R (c) \checkmark x \in [-1,1], y \in R - \{0\} (d) x > 0, y > 0
31. y = sech^{-1}x if and only if x = sechy is valid when
     (a) x \in R, y \in R (b) x \in ]-1,1[, y \in R \text{ (c) } x \in [-1,1], y \in R-\{0\}\text{(d) } \checkmark x \in (0,1], y \in [0,\infty)
32. y = cosech^{-1}x if and only if x = cosechy is valid when
     (a) x \in R, y \in R (b) x \in ]-1,1[,y \in R (c) \checkmark x \in R-\{0\}, y \in R-\{0\}(d) x \in (0,1], y \in [0,\infty)
33. If y = sinh^{-1}(ax + b), then \frac{dy}{dx} =
(a) cos^{-1}(ax + b) (b) \frac{1}{\sqrt{1 + (ax + b)^2}}
                                                    (c) \sqrt[a]{\frac{a}{\sqrt{1+(ax+b)^2}}} (d) a \cosh^{-1}(ax+b)
34. If cosh^{-1}(secx), then \frac{dy}{dx} =
                                (b) ✓ secx
                                                            (c) -\sin(secx)
                                                                                         (d) -\sinh^{-1}(secx). tanx
     (a) cosx
(a) -ae^{ax} (b) -a^2e^{ax} (c) \checkmark a^2e^{-2ax}

(a) \checkmark -ae^{-2ax}
                                                 (c) a^2e^{-2ax}
37. If cos(ax + b), then y_2 =
     (a) a^2 \sin(ax + b) (b) -a^2 \sin(ax + b) (c) \checkmark -a^2 \cos(ax + b) (d) a^2 \cos(ax + b)
38. f(x) = f(0) + xf'(x) + \frac{x^2}{2!}f''(x) + \frac{x^3}{3!}f'''(x) + \cdots + \frac{x^n}{n!}f^n(x) \dots is called_____ series.

(a) \checkmark Machlaurin's (b) Taylor's (c) Convergent (d) Divergent

39. 1 - x + x^2 - x^3 + x^4 - \cdots =

(a) \checkmark \frac{1}{1+x} (b) \frac{1}{1-x} (c) -\frac{1}{1+x} (d) \frac{1}{x-1}
     [ Hint: Use S_{\infty} = \frac{a}{1-r}, with a = 1, r = -x]
40. \frac{dy}{dx}|_{(x_1,y_1)} represents
     (a) Increments of x_1 and y_1 at (x_1, y_1) (b) \checkmark slope of tangent at (x_1, y_1)
          (c) slope of normal at (x_1, y_1)
                                                 (d) slope of horizontal line at (x_1, y_1)
41. f is said to be increasing on ]a, b[ if for x_1, x_2 \in ]a, b[
     (a) \mathbf{V} f(x_2) > f(x_1) whenever x_2 > x_1 (b) f(x_2) > f(x_1) whenever x_2 < x_1
          (c) f(x_2) < f(x_1) whenever x_2 > x_1 (d) f(x_2) < f(x_1) whenever x_2 < x_1
       f is said to be decreasing on ]a, b[ if for x_1, x_2 \in ]a, b[
     (b) f(x_2) > f(x_1) whenever x_2 > x_1 (b) f(x_2) > f(x_1) whenever x_2 < x_1
          (c) f(x_2) < f(x_1) whenever x_2 > x_1 (d) f(x_2) < f(x_1) whenever x_2 < x_1
43. If a function f is increasing within a, b, then slope of tangent to its graph within
     ]a,b[remains
     (a) Positive
                                 (b) Negative
                                                               (c) Zero
44. If a function f is decreasing within a, b, then slope of tangent to its graph within
     a, b[remains]
                                  (b) V Negative
                                                                        (c) Zero
     (b) Positive
                                                                                            (d) Undefined
45. A point where 1<sup>st</sup> derivative of function is zero , is called
                                                              (c) point of concurrency (d) common point
     (a) Stationary point (b) corner point
46. f(x) = sinx is
                                 (b) ✓ odd function (c) even function
     (a) Linear function
                                                                                            (d) identity function
47. The maximum value of the function f(x) = x^2 - x - 2 is
```

	(a) $-\frac{3}{2}$	(b) $\sqrt{-\frac{3}{4}}$	(c) -1	(d) 0
48.	$\frac{d}{dx}(\cos x) - \frac{d^2}{dx^2}(\sin x)$) =		
	(a) $2sinx$		(c) 🗸 0	(d) -2sinx
49.	If $f(x) = x^3 + 2x + 9$		(-)	(-,
	(a) $3x^2 + 2$	(b) $3x^2$	(c) 4 6x	(d) 2x
50	If $f(x) = sinx$ then f'	$(\cos^{-1}3x) =$		
	(a) cosx	(b) $\frac{-3}{\sqrt{1-9x^2}}$	(c) $\frac{3}{\sqrt{1-9r^2}}$	(d) 🗸 3 <i>x</i>
51.	$\frac{d}{dx}(10^{sinx}) =$	VI JX	VI JA	
	(a) $10^{\cos x}$	(b) $\checkmark 10^{sinx}.cosx.ln$	10 (c) 10^{sinx} . $ln10$	(d) 10^{cosx} . $ln10$
- 2	$\frac{d}{dx}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2=$	(5) • 15 100551111	10 (0) 10 10010	(0) 10 10010
52.	un (vn)	1	1	
	21	(b) $\checkmark 1 - \frac{1}{x^2}$	(c) $1 + \frac{1}{x^2}$	(d) 0
53.	At $x = 0$, the function			
	,	(b) minimum value	(c) point of inflexion	(d) no conclusion
54.	If $Sin \sqrt{x}$, then $\frac{dy}{dx}$ is eq	jual to		
	(a) $\checkmark \frac{\cos \sqrt{x}}{2\sqrt{x}}$	(b) $\frac{\cos\sqrt{x}}{\sqrt{x}}$	(c) $\cos\sqrt{x}$	(d) $\frac{\cos x}{\sqrt{x}}$
55.	2 4 %	function in neighborhoo		V 20
	maxima at $oldsymbol{c}$ if			
		(b) $f''(c) < 0$	(c) f''(c) = 0	$(d)f^{\prime\prime}(c)\neq 0$
56.	$y = x^x$ has the value			1
		(b) Maximum at $x = e$	(c) \checkmark Minimum at $x =$	$=\frac{1}{e}(d)$ Maximum at $x=$
57	$\frac{d}{dx}\left(\frac{1}{\cot x}\right) =$			
		(b) $\checkmark \sec^2 x$	(c) tan^2x	(d) $-\sec^2 x$
58	If $f(x) = e^{2x}$, then f'''	4		~0
	(a) $6e^{2x}$	(b) $\frac{1}{6}e^{2x}$	(c) $\checkmark 8e^{2x}$	(d) $\frac{1}{8}e^{2x}$
59.	$\frac{d}{dx}e^{tanx}$ is equal to			1/1/1/
		(b) e^{tanx}	(c) e^{tanx} $lnsec^2x$	(d) $e^{tanx} \ln tanx$
60.	$x^3 \frac{d}{dx}(\ln 2x) =$		atev	
	(a) x^2	(b) ✓ 2x ²	(c) $3x^2$	(d) $6x^2$
61.	$\frac{d}{dx}(5^x)$ equal			
	$\frac{dx}{(a)} \frac{5^x}{\ln 5}$	(b) $\frac{ln5}{5^x}$	(c) $\checkmark 5^x ln5$	(d) 5^x
63	If $y = e^{2x}$, then $y_4 = e^{2x}$	$(0) \frac{1}{5^x}$	(c) V 5 1115	(u) 5
02	(a) $\checkmark 16e^{2x}$	(b) $8e^{2x}$	(c) $4e^{2x}$	(d) $2e^{2x}$
63.	` '	s relative maximum valu	` '	(d) 20
			(c) f''(c) = 0	(d) None
64.	$\frac{d}{dx}(Cosecx)$ is equal to	0		
	(a) cosecxtanx		(c) ✓ – cosecxcotx	(d) tanx
65.	• •	increasing nor decreasing		
	point , then it is called:	_		
	•	(b) v stationary point	(c) maximum point	(d) minimum point
66	$\frac{d}{dx}(x^{-2}) =$			
	(a) $-2x^3$	(b) $-2x^2$	(c) $\checkmark -2x^{-3}$	(d) $-2x$
67	$\frac{d}{dx}(\cos^{-1}x) =$			
	(a) $\frac{1}{\sqrt{1-x^2}}$	(b) $\frac{-1}{\sqrt{x^2-1}}$	(c) $\frac{1}{\sqrt{x^2-1}}$	(d) $\frac{1}{\sqrt{1-x^2}}$
68.	V 1 20	$x^2 + bx + c$ has minimum	VA 1	$\sqrt{1-x^2}$
		(b) $a < 0$	(c) $a = 0$	(d) $a = -1$
69	$\lim_{\delta_x \to -0^-} \frac{ \delta_x }{\delta_x}$ is equal	to		
(a)	ο _χ	(b) not exist	(c) 🗸 -1	(d) zero
		$+\cdots + (-1)^n x^n + \cdots$ is		()
	4	(b) $\sqrt{\frac{1}{1+x}}$	(c) $\frac{1}{\sqrt{1-x}}$	(d) $\frac{1}{\sqrt{1+x}}$
	Derivative of $y = \frac{3}{4}x^4$	171	$\sqrt{1-x}$	$\sqrt{1+x}$
		(b) $\checkmark 3x^3 + 2x^2$	/a\ 23	(d) None of the
(a)	$\frac{3}{4}(4x^4)$	(D) \checkmark $3x^{\circ} + 2x^{\circ}$	(c) $3x^3$	(d) None of these

		at a point P, then P is o	Janea	
			(c) point of inflexion	
/3.	If f be a real valued fur	nction , continuous in in	terval $]x,x_1[\in D_f$ and i	$f \lim_{x_{1} \to x} \frac{f(x_1) - f(x)}{x_1 - x}$
	exists, then the quotien	nt is called		-
	Derivative of f (b) Differential Derivative of f (b) Differential Derivative of f (c) Differential Derivative of f (d) Differential Derivative of f (e) Differential Derivative of f (f) Differential Derivative of		rage rate of change of f	(d) Actual change of f
(a)		(b) v 0	(c) -4	(d) 1
			$\operatorname{d} \overset{\cdot}{f}$ is differentiable at p	• •
	$(f \circ g)'(x) \circ r \frac{d}{dx}(f \circ g)$			
(a)	f'(x)g'(x)	(b) $(f \circ g)'(x)$	(c) $\checkmark f'(g(x))g'(x)$	(d) $f'(g'(x))$
76.	If $y = sinh^{-1}(x^3)$ the	$n\frac{dy}{dx} =$,	
(a)	1	(b) $\frac{3x^2}{}$	(c) $\frac{1}{\sqrt{1+x^6}}$	(d) $\sqrt{\frac{3x^2}{}}$
77.	$\sqrt{1+x^2}$ A function $f(x)$ is such	that, at a point $x = c$.	f'(x) > 0 at $x = c$, the	$\sqrt{1+x^6}$ en f is said to be
			(c) constant	
	_		f'(x) < 0 at $x = c$, the	
			(c) constant	
	•	` '	f'(x) = 0 at $x = c$, the	• •
	Increasing		(c) ✓ constant	
79.	A stationary point is ca		r a maximum point or a	
			(c) critical point	
80.	If $f'(c) = 0$ or $f'(c)$ is	undefined , then the nu	umber $oldsymbol{c}$ is called critical	value and the
	corresponding point is			
			(c) 🗸 critical point	
			$oldsymbol{c}$, then this point is call	
(a)	Stationary point	(b) turning point	(c) critical point	d) point of inflexion
81-4			The second secon	
NOT	e:- Every stationary poir	nt is also called critical po	oint but then converse m	nay or may not be true.
	Let f be a differentiab	le function such that f^\prime	f'(c) = 0 then if $f'(x)$ characteristics	anges sign from +iv to
82.	Let f be a differentiab –iv i.e., before and after	le function such that f' er $x = c$, then it occurs	f'(c) = 0 then if $f'(x)$ chartened at $x = 0$	anges sign from +iv to c
82. (a)	Let f be a differentiab —iv i.e., before and after ✓ Maximum	le function such that $f'(x)$ or $x=c$, then it occurs (b) minimum	f(c) = 0 then if $f'(x)$ charter at $f'(x)$ at $f'(x)$ at $f'(x)$ contains $f'(x)$ at $f'(x)$ contains $f'(x)$ at $f'(x)$ contains $f'(x)$ and $f'(x)$ contains $f'(x)$ and $f'(x)$ contains	anges sign from +iv to c (d) none
82. (a)	Let f be a differentiab —iv i.e., before and after Maximum Let f be a differentiab	le function such that f' (er $x=c$, then it occurs (b) minimum	f'(c) = 0 then if $f'(x)$ characteristics at $x = 0$ (c) point of inflexion $f'(x)$ characteristics	anges sign from +iv to c (d) none anges sign from -iv to
82. (a) 83.	Let f be a differentiab —iv i.e., before and after ✓ Maximum Let f be a differentiab +iv i.e., before and after	le function such that $f'(c)$ er $x=c$, then it occurs (b) minimum le function such that $f'(c)$ er $x=c$, then it occurs	f(c) = 0 then if $f'(x)$ charged at $f'(x)$ at $f'(x)$ charged $f'(x)$ charged $f'(x)$ charged at $f'(x)$ charged $f'(x)$ charged $f'(x)$ at $f'(x)$ charged $f'(x)$ charge	anges sign from +iv to c (d) none anges sign from -iv to c
82. (a) 83. (b)	Let f be a differentiab —iv i.e., before and after Maximum Let f be a differentiab +iv i.e., before and after Maximum	le function such that $f'(c)$ er $x = c$, then it occurs (b) minimum le function such that $f'(c)$ er $x = c$, then it occurs (b) \checkmark minimum	f'(x) = 0 then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $f'(x) = 0$ then if $f'(x$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none
82. (a) 83. (b)	Let f be a differentiab —iv i.e., before and after Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab	le function such that f' (er $x = c$, then it occurs (b) minimum le function such that f' (er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (le function such that f')	f'(x) = 0 then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $f'(x) = 0$ then if $f'(x$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none
82. (a) 83. (b) 84.	Let f be a differentiab —iv i.e., before and after Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab before and after $x = c$	le function such that $f'(x)$ er $f'(x)$ er $f'(x)$ le function such that $f'(x)$ er $f'(x)$ er $f'(x)$ le function such that $f'(x)$ minimum le function such that $f'(x)$, then it occurs	(c) = 0 then if $f'(x)$ charge at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charge at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none des not change sign i.e.,
82. (a) 83. (b) 84. (c)	Let f be a differentiab —iv i.e., before and after f be a differentiab +iv i.e., before and after f be a differentiab Maximum Let f be a differentiab before and after f before and after f before and after f before a differentiable f before and f before a differentiable f before and f before a differentiable f before and f before a differentiable f before a differentiable f before and f before f before and f before f befor	le function such that $f'(x)$ er $f'(x)$ er $f'(x)$ le function such that $f'(x)$ er $f'(x)$ er $f'(x)$ le function such that $f'(x)$ minimum le function such that $f'(x)$, then it occurs	f'(x) = 0 then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $f'(x) = 0$ then if $f'(x$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none des not change sign i.e.,
82. (a) 83. (b) 84. (c) 85.	Let f be a differentiab —iv i.e., before and after Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab before and after $x = c$	le function such that $f'(x)$ er $f'(x)$ er $f'(x)$ le function such that $f'(x)$ er $f'(x)$ er $f'(x)$ le function such that $f'(x)$ minimum le function such that $f'(x)$, then it occurs	(c) = 0 then if $f'(x)$ charge at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charge at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none des not change sign i.e., (d) none
82. (a) 83. (b) 84. (c) 85. (a)	Let f be a differentiab -iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after f Maximum Let f be a differentiab before and after f f Maximum If $f(f) = e^{\sqrt{x}-1}$ then f f f	le function such that f' (er $x = c$, then it occurs (b) minimum le function such that f' (er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (, then it occurs (b) minimum $f'(0) = f'(0) = f'(0)$	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion	anges sign from +iv to c (d) none anges sign from -iv to c (d) none des not change sign i.e.,
82. (a) 83. (b) 84. (c) 85. (a)	Let f be a differentiab -iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab before and after $x = c$ Maximum If $f(x) = e^{\sqrt{x}-1}$ then f e^{-1} $\frac{d}{dx}(tan^{-1}x - cot^{-1}x)$	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' of the it occurs (b) minimum $f'(0) = f'(0) $	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion	anges sign from +iv to c (d) none anges sign from -iv to c (d) none es not change sign i.e., (d) none
(a) 83. (b) 84. (c) 85. (a) 86. (a)	Let f be a differentiab –iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab before and after $x=c$ Maximum If $f(x)=e^{\sqrt{x}-1}$ then f e^{-1} $\frac{d}{dx}(tan^{-1}x-cot^{-1}x)$ $\frac{2}{\sqrt{1+x^2}}$	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (\checkmark , then it occurs (b) minimum $f'(0) = f'(0) = f'(0)$ (b) $f'(0) = f'(0)$ (c) $f'(0) = f'(0)$ (d) $f'(0) = f'(0)$ (e) $f'(0) = f'(0)$ (f) $f'(0) = f'(0)$ (g) $f'(0) = f'(0)$ (h) $f'(0) = f'(0)$	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion $(c) \checkmark$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none des not change sign i.e., (d) none
82. (a) 83. (b) 84. (c) 85. (a) 86. (a)	Let f be a differentiab –iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab before and after $x=c$ Maximum If $f(x)=e^{\sqrt{x}-1}$ then f e^{-1} $\frac{d}{dx}(tan^{-1}x-cot^{-1}x)$ $\frac{2}{\sqrt{1+x^2}}$ If $f\left(\frac{1}{x}\right)=tanx$, then	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (\checkmark , then it occurs (b) minimum $f'(0) = f'(0) = f'(0)$ (b) $f'(0) = f'(0)$ (c) $f'(0) = f'(0)$ (d) $f'(0) = f'(0)$ (e) $f'(0) = f'(0)$ (f) $f'(0) = f'(0)$ (g) $f'(0) = f'(0)$ (h) $f'(0) = f'(0)$	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion $(c) \checkmark$	anges sign from +iv to c (d) none anges sign from -iv to c (d) none es not change sign i.e., (d) none (d) $\frac{1}{2}$ (d) $\frac{-2}{1+x^2}$
(a) 83. (b) 84. (c) 85. (a) 86. (a)	Let f be a differentiab –iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after Maximum Let f be a differentiab before and after $x=c$ Maximum If $f(x)=e^{\sqrt{x}-1}$ then f e^{-1} $\frac{d}{dx}(tan^{-1}x-cot^{-1}x)$ $\frac{2}{\sqrt{1+x^2}}$ If $f\left(\frac{1}{x}\right)=tanx$, then	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (i.e., then it occurs (b) minimum $f'(0) = f'(0) = f$	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion (c) \checkmark ∞	anges sign from +iv to c (d) none anges sign from -iv to c (d) none es not change sign i.e., (d) none
(a) 83. (b) 84. (c) 85. (a) 86. (a)	Let f be a differentiab –iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after f Maximum Let f be a differentiab before and after f with f Maximum If $f(x) = e^{\sqrt{x}-1}$ then f	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (i.e., then it occurs (b) minimum $f'(0) = f'(0) = f$	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion (c) \checkmark ∞	anges sign from +iv to c (d) none anges sign from -iv to c (d) none es not change sign i.e., (d) none (d) $\frac{1}{2}$ (d) $\frac{-2}{1+x^2}$
82. (a) 83. (b) 84. (c) 85. (a) 86. (a) 87. (a) 88. (a)	Let f be a differentiab –iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after f Maximum Let f be a differentiab before and after f with f Maximum If $f(x) = e^{\sqrt{x}-1}$ then f	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (in a particular of the function such that f' (in a	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion (c) \checkmark ∞	anges sign from +iv to c (d) none anges sign from -iv to c (d) none (d) none (es not change sign i.e., (d) none (d) $\frac{1}{2}$ (d) $\frac{-2}{1+x^2}$ (d) $\frac{-1}{\pi^2}$
82. (a) 83. (b) 84. (c) 85. (a) 86. (a) 87. (a) 88. (a) 89.	Let f be a differentiab –iv i.e., before and after f Maximum Let f be a differentiab +iv i.e., before and after f Maximum Let f be a differentiab before and after f with f Maximum If $f(x) = e^{\sqrt{x}-1}$ then f	le function such that f' er $x = c$, then it occurs (b) minimum le function such that f' er $x = c$, then it occurs (b) \checkmark minimum le function such that f' (in a particular of the function such that f' (in a	$(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ charelative at $x = 0$ (c) point of inflexion $(c) = 0$ then if $f'(x)$ do at $x = c$ (c) \checkmark point of inflexion (c) \checkmark ∞	anges sign from +iv to c (d) none anges sign from -iv to c (d) none (d) none (es not change sign i.e., (d) none (d) $\frac{1}{2}$ (d) $\frac{-2}{1+x^2}$ (d) $\frac{-1}{\pi^2}$

UNIT # 03 Integration

(b) $\checkmark dy = f'(x)dx$ (c) dy = f(x)dx

Each question has four possible answer. Tick the correct answer.

1. If y = f(x), then differential of y is

(a) dy = f'(x)

(a) $\checkmark Sec^{-1}x + c$

```
2. If \int f(x)dx = \varphi(x) + c, then f(x) is called
                                                                   (c) derivative
                                                                                                 (d) integrand
                                   (b) differential
3. If n \neq 1, then \int (ax + b)^n dx =
(a) \frac{n(ax+b)^{n-1}}{c} + c
                                   (b) \frac{n(ax+b)^{n+1}}{n} + c (c) \frac{(ax+b)^{n-1}}{n+1} + c (d) \checkmark \frac{(ax+b)^{n+1}}{a(n+1)} + c
4. \quad \int \sin(ax+b) \, dx =
(a) \sqrt{\frac{-1}{a}}\cos(ax+b) + c (b) \frac{1}{a}\cos(ax+b) + c (c) a\cos(ax+b) + c (d) -a\cos(ax+b) + c
5. \int e^{-\lambda x} dx =
                                  (b) -\lambda e^{-\lambda x} + c (c) \frac{e^{-\lambda x}}{\lambda} + c (d) \checkmark \frac{e^{-\lambda x}}{\lambda} + c
(a) \lambda e^{-\lambda x} + c
6. \int a^{\lambda x} dx =
                                   (b) \frac{a^{\lambda x}}{lna}
                                                                  (c) \checkmark \frac{a^{\lambda x}}{alna}
7. \int [f(x)]^n f'(x) dx =
                                                                 (c) \checkmark \frac{f^{n+1}(x)}{n+1} + c
(a) \frac{f^n(x)}{x} + c
                                   (b) f(x) + c
                                                                                                (d) n f^{n+1}(x) + c
(a) f(x) + c
                                   (b) f'(x) + c (c) | \mathbf{v} \ln |x| + c
                                                                                                 (nd) \ln |f'(x)| + c
9. \int \frac{dx}{\sqrt{x+a}+\sqrt{x}} can be evaluated if
(a) \checkmark x > 0, a > 0
                                    (b) x < 0, a > 0 (c) x < 0, a < 0
                                                                                                  (d) x > 0, a < 0
(a) \sqrt{x^2 + 3} + c (b) -\sqrt{x^2 + 3} + c
11. \int e^{x^2} \cdot x dx =
(a) \frac{a^{x^2}}{\ln a} + c (b) 
12. \int e^{ax} [af(x) + f'(x)] dx =
                                                                   (c) ae^{ax}f(x) + c
                                                                                                  (d) ae^{ax}f'(x) + c
(a) \checkmark e^{ax}f(x) + c
                                    (b) e^{ax}f'(x) + c
13. \int e^x [\sin x + \cos] dx =
(a) \checkmark e^x sinx + c
                                   (b) e^x \cos + c
                                                                   (c) -e^x \sin x + c
                                                                                                  (d) -e^x cos x + c
14. To determine the area under the curve by the use of integration, the idea was given by
                                    (b) ✓ Archimedes
                                                                   (c) Leibnitz
                                                                                                  (d) Taylor
(a) Newton
15. The order of the differential equation : x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 2 = 0
                                                                   (c) 🗸 2
                                    (b) 1
                                                                                                  (d) more than 2
16. The equation y = x^2 - 2x + c represents ( c being a parameter )
(a) One parabola
                                   (b) family of parabolas (c) family of line
                                                                                                  (d) two parabolas
17. \int e^{\sin x} \cdot \cos x dx =
                                                                                                  (d) \frac{e^{\cos x}}{\sin x}
                                   (b) e^{\cos x} + c
(a) \checkmark e^{sinx} + c
18. \int (2x+3)^{\frac{1}{2}} dx =
                                   (b) \frac{1}{3}(2x+3)^{-\frac{1}{2}} (c) \frac{1}{3}(2x+3)
(a) \frac{1}{2}(2x+3)^{\frac{3}{2}}
                                                                                                  (d) None
19. \int x^n dx = \frac{x^{+1}}{n+1} + c is true for all values of n except
                                    (b) n = 1
                                                  (c) \checkmark n \neq -1
                                                                            (d) n = any fractional value
20. \int_{1}^{2} a^{x} dx =
                                   (b) \checkmark \frac{(a^2-a)}{\ln a} (c) \frac{(a^2-a)}{\log a}
(a) (a^2 - a)lna
                                                                                              (d) (a^2 - a)lna
21. \int \frac{e^{Tan^{-1}x}}{1+x^2} dx =
                                  (b) \frac{1}{2} e^{Tan^{-1}x} + c (c) x e^{Tan^{-1}x} + c (d) \checkmark e^{Tan^{-1}x} + c
(a) e^{Tanx} + c
22. \int \frac{dx}{x\sqrt{x^2-1}} =
```

(b) $Tan^{-1}x + c$ (c) $Cot^{-1}x + c$ (d) $Sin^{-1}x + c$

23. $\int sin 3x dx$ is equal to (a) $\frac{\cos 3x}{3} + c$ (b) $\sqrt{-\frac{\cos 3x}{3}} + c$ (c) $3\cos 3x + c$ (d) $2\cos 3x + c$ (e) $3\cos 3x + c$ (e) $3\cos 3x + c$ (f) $3\cos 3x + c$ (f) $3\cos 3x + c$ (e) $3\cos 3x + c$ (f) $3\cos 3x + c$ (d) $-3 \cos 3x + c$ **25.** $\int e^{f(x)} \cdot f'(x) dx =$ (b) $e^{f(x)} + c$ (d) $e^{f(x)} + c$ (c) lnf'(x) + c(a) lnf(x) + c**26.** $\int cosxdx =$ (c) $-\cos x + c$ (a) $\sqrt{-\sin x} + c$ (b) sinx + c(d) cosx + c**27.** If a > 0 and $a \neq 1$ then, $\int a^x dx =$ (c) $\checkmark \frac{a^x}{lna} + c$ (a) $a^x + c$ (b) $a^x lna + c$ $28. \int \frac{dx}{1+x^2} =$ (a) tanx + c(b) $\checkmark \tan^{-1} + c$ (c) $\cot x + c$ (d) $\cot^{-1} x$ $29. \int \frac{f'(x)}{f(x)} dx =$ (b) $\checkmark lnf(x) + c$ (a) lnx + c(c) lnf'(x) + c(d) f'(x)lnf(x) + c $30. \int \frac{dx}{x \ln x} =$ (a) $\checkmark lnx + c$ (b) x + c(c) lnf'(x) + c (d) f'(x)lnf(x)31. $\int secxdx$ equal to (a) $| \ln |secx + tanx | + c$ (b) $\ln|\cos ecx - \cot x| + c$ (c) $-\ln|\sec x + \tan x| + c$ (d) $-\ln|cosecx - cotx| + c$ $32. \int \frac{\cos x}{\sin x \ln \sin x} dx =$ (b) $\checkmark \ln \ln(\sin x) + c$ (c) $\ln \sin x + c$ (a) $\ln(\ln(\cos x)) + c$ 33. The solution of differential equation $\frac{dy}{dx} = sec^2x$ is (a) y = cosx + c(b) $\checkmark y = tanx + c$ (c) y = sinx + c(d) y = cot x + c34. $\int_0^2 2x dx$ is equal to (b) 7 35. $\int e^{ax} sinbx$ is equal to (b) $\frac{e^x}{a^2+b^2}(bsinbx + acosbx) + c$ (a) $\checkmark \frac{e^x}{a^2+b^2}(asinbx-bcosbx)+c$ (d) $\frac{e^x}{a^2+b^2}(bsinbx-acosbx)+c$ (c) $\frac{\epsilon}{a^2+b^2}(asinbx+bcosbx)+c$ **36.** $\int_{a}^{a} f(x) =$ (c) $\int_{b}^{a} f(x) dx$ (d) $\int_a^a f(x) dx$ 37. $\int \frac{1}{ax+b} dx \ equal:$ (c) $\frac{(ax+)^2}{2} + c$ (a) $\sqrt{\frac{1}{a}} \ln |ax + b| + c$ (b) $\ln |ax + b| + c$ (d) $\ln|x+b|+c$ 38. In $\int (x^2-a^2)^{\frac{1}{2}}dx$, the substitution is (a) $x = atan\theta$ (b) $\checkmark x = asec\theta$ (c) $x = a sin \theta$ (d) $x = 2asin\theta$ **39.** $\int x \cos x dx =$ (a) sinx + cosx + c(b) cos x - sin x + c(c) $\checkmark x sin x + cos x + c$ (d) None 40. $\int_{\pi}^{\overline{3}} costdt =$ (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}$ 41. Solution of differential equation $\frac{dv}{dt} = 2t - 7$ is: (b) $v = t^2 + 7t + c$ (c) $v = t - \frac{7t^2}{2} + c$ (d) $\mathbf{v} = t^2 - 7t + c$ (a) $v = t^2 - 7t^3 + c$ **42.** Inverse of $\int \dots dx$ is: (b) $\frac{dy}{dx}$ 43. The suitable substitution for $\int \sqrt{2ax - x^2} dx$ is: (d) $x + a = a sin \theta$ (a) $x - a = a\cos\theta$ (b) $\checkmark x - a = asin\theta$ (c) $x + a = acos\theta$ 44. $\int udv$ equals:

(b) $uv + \int vdu$

(b) 0

(a) $udu - \int vu$

(a) -2

45. $\int_0^{-\pi} \sin x dx$ equals to:

(c) $\checkmark uv - \int vdu$

(c) 🗸 2

(d) $udu + \int vdu$

(d) 1

46. The general solution	of differential equation	$\frac{dy}{dy} = -\frac{y}{1}$ is	
		$dx = x$ (c) $\checkmark xy = c$	$(d)x^2y^2=c$
(a) $\frac{x}{y} = c$	(b) $\frac{y}{x} = c$	(c) $\mathbf{V} xy = c$	$(\mathbf{u})x \ y = c$
47. $\int \frac{x+2}{x+1} dx =$			
(a) $ln(x + 1) + c$	(b) $\ln(x+1) - x + c$	(c) $\checkmark x + \ln(x+1) + \ln(x+1)$	- <i>c</i> (d) None
48. $\int \sin^3 x \cos x dx =$			
(a) $\sin^3 \frac{x}{3} + c$	(b) $\sqrt{\frac{1}{4}}\sin^4 x + c$	(c) $-\frac{1}{4}\sin^4 x + c$	(d) $\sin^4 \frac{x}{4} + c$
$49. \int x e^x dx =$	•	•	•
(a) $x e^x + x + c$	(b) $\checkmark x e^x - x + c$	(c) $e^{x} - x$	(d) None of these
50. $\int_0^3 \frac{dx}{x^2+9} =$			
(a) $\frac{\pi}{4}$	(b) $\sqrt{\frac{\pi}{12}}$	(c) $\frac{\pi}{2}$	(d) None of these
T	12	2	(4)
$51. \int e^x \left[\frac{1}{x} + lnx \right] =$	1		
(a) $e^x \frac{1}{x} + c$	$(b) - e^x \frac{1}{x} + c$	(c) $\checkmark e^x lnx + c$	$(d) - e^x lnx + c$
$52. \int_{\pi}^{-\pi} \sin x dx =$			
(a) \checkmark 2	(h) 2	(a) 0	(4) 1
` ' -	(b) -2	(c) 0	(d) -1
53. $\int_{-1}^{2} x dx =$	1	5	. 2
(a) $\frac{1}{2}$	(b) $-\frac{1}{2}$	(c) $\frac{5}{2}$	(d) $\checkmark \frac{3}{2}$
$54. \int_0^1 (4x+k) dx = 2 t$	hen k =		
(a) 8	(b) -4	(c) 🗸 0	(d) -2
55. $\int e^{x} \left[\frac{1}{x} - \frac{1}{x^{2}} \right] =$			
(a) $e^{x} \frac{1}{x} + c$	(b) $-e^{x}\frac{1}{c}+c$	(c) $e^x lnx + c$	(d) $-e^{x} \frac{1}{x^{2}} + c$
56. Solution of the differ			x ²
(a) $\checkmark y = \sin^{-1} x + c$	V -	1	(d) None
		metry	
ach question has four	possible answer. T	ick the correct ans	wer.
1. If $x < 0, y < 0$ then	the point $P(x, y)$ lies in	the quadrant	
(a) I	(b) II	(c) 🗸 III	(d) IV
2. The point P in the pla	ane that corresponds to	the ordered pair (x,y) i	s called:
(a) \checkmark graph of (x, y)	• • •		(d) ordinate of x , y
3. If $x < 0$, $y > 0$ then			
(a) I	(b) II	(c) III	(d) 🗸 IV
4. The straight line which side is called:	ch passes through one vo	ertex and though the mi	a-point of the opposite
(a) V Median	(b) altitude	(c) perpendic	ular bisector (d) normal
5. The straight line whi	ch passes through one ve		to opposite side is called:
(a) Median	(b) 🗸 altitude	(c) perpendicular bise	ctor (d) normal
6. The point where the	medians of a triangle in	tersect is called	of the triangle.
(a) 🗸 Centroid	(b) centre	(c) orthocenter	
7. The point where the	altitudes of a triangle in	ntersect is called	of the triangle.
(a) Centroid	(b) centre	• •	(d) circumference
8. The centroid of a tria			
(a) 2 :1	(b) 1:2	(c) 1:1	(d) None of these
9. The point where the	=		
(a) Centroid10. If x and y have oppo	` '	(c) orthocenter $P(x, y)$ lies the quadrate	` '
(a) &	(b) &	(c) ✓ II & IV	(d) I & IV
11. A line bisecting 2 nd a	• •	• •	\/ · · ·
(a) 0°	(b) 45°	(c) ✓ 135°	(d) ∞
12. $y = x$ is the straight	line		

13.	If all the sides of four s then it is a	ided polygon are eq	ual but the four angles are I	not equal to 90° each
	Kite If α is the inclination o	(b) rhombus	. ,	(d) trapezoid
	_		(c) $\checkmark 0 \le \alpha \le \pi$	(d) $0 \le \alpha \le 2\pi$
	4	4		$(u) \ 0 \le u \le 2\pi$
	The slope-intercept for			/ D
	$\checkmark y = mx + c$			(d) $x\cos\alpha + y\cos\alpha = p$
	The two intercepts for			
	y = mx + c			(d) $x\cos\alpha + y\cos\alpha = p$
	The Normal form of th	•	_	
			$(-x_1)$ (c) $\frac{x}{a} + \frac{y}{b} = 1$ (d) $\checkmark x$	$acos\alpha + ycos\alpha = p$
18.	In the normal form xc	$os\alpha + ycos\alpha = p t$	he value of p is	
	✔ Positive			negative (d) Zero
19.	If $lpha$ is the inclination o	f the line l then $\frac{x-x_1}{cose}$	$\frac{1}{a} = \frac{y - y_1}{\sin a} = r(say)$	
			(c) ✓ symmetric form	(d) none of these
	The slope of the line a		(-,,	(-,
(a)		(b) $\checkmark -\frac{a}{b}$	$(c)^{\frac{b}{-}}$	$(d) - \frac{b}{a}$
	The slope of the line po			a
	~	(b) $-\frac{a}{b}$		(d) $-\frac{b}{a}$
(a)	D	ν	u	$(a) - \frac{a}{a}$
		_	two variables x and y is	2 . 2
		- · · · · · · · · · · · · · · · · · · ·	$= 0 (c) ax + by^2 + c = 0$	$(d) ax^2 + by^2 + c = 0$
	The x – intercept $4x$	-	4.5	
(a)		(b) 6	(c) 🗸 3	(d) 2
	The lines $2x + y + 2 =$			
			(c) neither	(d) non coplanar
	The point $(-2,4)$ lies			and the City
	Above	(b) below	(c) on	(d) none of these
			oint then the lines are called	
(a)	Parallel $2x + y + k$ (k being a	(b) coincident	(c) c oncurrent	(d) congruent
				(4)
	One line		(c) family of linesre given then the intersection	
20.	pairs gives the		re given then the intersection	on of any two lines in
(2)	✓ Vertices		(c) mid-points of sides	(d) contriod
	A. H. W. E.	N2 P	g two parallel and non-paral	
	Square		(c) ✓ trapezium	
	Equation of vertical lin		• •	(u) [[grain
	-	(b) $\checkmark x + 5 = 0$		(d) $v + 3 = 0$
٠,	Equation of horizontal	` '	1 7 2	(a, y + 3 - 0)
	x - 5 = 0	•	(c) $\checkmark y - 3 = 0$	(d) $y + 3 = 0$
	Equation of line throug			(a, y + 3 - 0)
		(b) $x + 5 = 0$		(d) $y + 5 = 0$
		· •	$oldsymbol{l_2}$ when slopes $oldsymbol{m_1}$ and $oldsymbol{m_2}$	
			$\frac{1}{m_2 m_1}$ (c) $tan\varphi = \frac{m_1 + m_2}{1 + m_1 m_2}$	
			1 2	- 2
34.	-	between two lines ι	$_{1}$ and l_{2} when slopes m_{1} ar	nd m_2 , then acute angle
, ,	from l_1 to l_2	m_2	m_1+m_2	m_2+m_1
(a)	$ tan\varphi = \frac{1}{1+m_{1m_2}} $	(b) $\mathbf{V} \mid tan\varphi = \frac{1}{1+n}$	$\frac{e^{-m_1}}{m_2 m_1}$ (c) $ \tan \varphi = \frac{m_1 + m_2}{1 + m_1 m_2}$	$ (d) tan \varphi = \frac{1}{1 + m_1 m_2} $
35.	Two lines $oldsymbol{l}_1$ and $oldsymbol{l}_2$ wit	th slopes m_1 and m_2	2 are parallel if	
(a)	$\checkmark m_1 - m_2 = 0$	(b) $m_1 + m_2 = 0$	(c) $m_1 m_2 = 0$	(d) $m_1 m_2 = -1$
36.	Two lines $oldsymbol{l}_1$ and $oldsymbol{l}_2$ wit	th slopes m_1 and m_2	₂ are perpendicular if	
(b)	$m_1 - m_2 = 0$	(b) $m_1 + m_2 = 0$	(c) $m_1 m_2 = 0$	(d) $\ensuremath{\checkmark} m_1 m_2 = -1$
37.	For a homogenous equ	lation of degree n , r	\imath must be	
٠,	an integer	` '		(d) real number
38.	The equation $10x^2 - 2$	$23xy - 5y^2 = 0$ is I	nomogeneous of degree	
(a)		(b) 🗸 2	(c) 3	(d) more than 2
39.	Every homogeneous ed	quation of 2 nd degre	e in two variables represent	ts
(2)	A line	(b) two lines	(c) ✓ two line through origin	n (d) family of lines

40. The point $P(x, y)$ in the	ne 2 nd quadrant if		
(a) $x > 0, y < 0$	(b) $x < 0, y < 0$	(c) $\checkmark x < 0, y > 0$	(d) $x > 0, y > 0$
41. The slope of $y - axis$	is		
(a) 0	(b) 🗸 undefined	(c) tan 180°	(d) tan 45°
42. The equation $y^2 - 16$	b=0 represents two line	es.	
(a) \checkmark Parallel to $x - axis$	(b) Parallel $y - axis$	(c) not $ $ to $x - axis$ (d) not $ $ to $y - axis$
43. The perpendicular dis	tance of the line $3x + 4$	y + 10 = 0 from the or	igin is
(a) 0	(b) 1	(c) ✓ 2	(d) 3
44. The lines represented	by $ax^2 + 2hxy + by^2$	= 0 are orthogonal if	
	(b) $\checkmark a + b = 0$		(d) $a - b < 0$
45. The lines lying in the s	` '	• •	. ,
(a) Collinear	-	(c) non-collinear	(d) non-coplanar
46. The distance of the po	•		. ,
(a) √ 7	(b) -7	(c) 3	(d) -3
47. Two lines $a_1 x + b_1 y$	• •	· ·	• •
(a) $\checkmark \frac{a_1}{a_2} = \frac{b_1}{b_2}$	(b) $\frac{a_1}{a_2} = -\frac{a_2}{a_2}$	(c) $\frac{a_1}{a_2} = \frac{a_2}{a_2}$	(d) $\frac{b_1}{a} = \frac{b_2}{a}$
48. Every homogenous eq	luation of second degree	$e ax^2 + bxy + by^2 = 0$	represents two straign
lines	/b\ n a t thua ab tha a ui	(ain /a) true line	(d) to
(a) Through the origin	` '	•	(d) two ⊥ar lines
49. The distance of the po	` '		(4) 2
(a) 7	(b) -7	(c) 1 3	(d) -3
50. The point-slope form	-	24 27	(4)
(a) $\checkmark y = mx + c$		u b	
51. Let $P(x_1, y_1)$ not lyin			
(a) $a_1x + b_1y + c_1 = 0$ (b)		= = = =	d) $ a_1 x + b_1 y + c_1 > $
52. If m_1 and m_2 are the			
(a) $m_1 \cdot m_2 = 1$		(c) $m_1 \cdot m_2 = 0$	
53. The lines represented			
(a) $a + b = 0$	(b) $V h^2 - ab = 0$	(c) $h^2 + ab = 0$	(d) None
		1000	
54. Equation of $x - axis$		atte	
(a) $x = 0$	(b) $\mathbf{V} y = 0$	(c) $x = 1$	(d) $y = 1$
55. Equation of $y - axis$			
(b) $\checkmark x = 0$	(b) $y = 0$	(c) $x = 1$	(d) $y = 1$
56. If line l intersects x –	W. Company of the Com		
(a) -3	(b) 0	(c) 🗸 3	(d) $\frac{1}{3}$
57. Altitudes of a triangle	are:		
(a) Parallel	(b) Perpendicular	(c) 🗸 Concurrent	(d) Non Concurrent
58. If a straight line is par	rallel to $x - axis$ its slop	pe is	
(a) -1	(b) 🗸 0	(c) 1	(d) Undefined
59. The perpendicular dis	tance of a line $12x + 5y$		
(a) $\frac{1}{13}$	(b) $\frac{13}{7}$	(c) $\sqrt{\frac{7}{12}}$	(d) 13
60. Line passes through th	/	13	
(a) $k_1 l_1 = k_2 l_2$	(b) $\checkmark l_1 + kl_2 = 0$	-	(d) None
61. The coordinate axes			
(a) 2	(b) 🗸 4	(c) 8	(d) infinity many
62. If $2x + 5y + k$ and kx	• •	` '	. , -, -, -, -, -, -, -, -, -, -, -, -, -
(a) ✓ 25	(b) -25	(c) 2	(d) 3
· ,	. ,	. ,	. ,
	Lincorla	ogualitica	and lines

UNIT # 05 Linear Inequalities and Linear Programming

Each question has four possible answer. Tick the correct answer.

1. The solution of ax + b < c is

(a) Closed half plane (b) ✓ open half plane (c) circle (d) parabola

2.	A function which is to be	maximized or minimi	zed is called fund	ction
(a)	Subjective (b) 🗸 objective	(c) qualitative	(d) quantitative
3.	The number of variables	in $ax + by \le c$ are		
(a)	1 (b) 🗸 2	(c) 3	(d) 4
4.	(0,0) is the solution of th	e inequality		
(a)	7x + 2y > 0	b) $2x - y > 0$	(c) $\checkmark x + y \ge 0$	(d) $3x + 5y < 0$
5.	(0,0) is satisfied by			•
(a)	x - y < 10	b) $2x + 5y > 10$	(c) $\checkmark x - y \ge 13$	(d) None
	The point where two box			
(a)	Boundary (b) 🗸 corner	(c) stationary	(d) feasible
7.	If $x > b$ then	•		,
(a)	-x > -b (b) - x < b	(c) $x < b$	(d) $\checkmark -x < -b$
	The symbols used for ine		. ,	,
(a)		b) 2	(c) 3	(d) 🗸 4
	A linear inequality conta	•		()
		 b) two		(d) more than three
	An inequality with one o	•	• •	(-,
		 b) two		(d) ✓ infinitely many
	ax + by < c is not a line	•	(o) times	(a) • minicely many
	$\checkmark a = 0, b = 0 $		(c) $a = 0, h \neq 0$	(d) $a \neq 0$, $b = 0$, $c = 0$
	The graph of correspond	•		
	✓ Boundary line (-		
	The graph of a linear equ	=		
	into disjoints par			airides the whole plant
(a)		b) four	(c) more than four	(d) infinitely many
	The graph of the inequal	•	(c) more than rour	(a) minicely many
	Upper half plane (-	(c) 🗸 left half nlane	(d) right half plane
	The graph of the inequal		(c) • Tereman plane	(a) right han plane
	Upper half plane (• •	(c) left half plane	(d) right half plane
	The graph of the inequal			
	✓ Origin side ((d) lower
	The graph of the inequal			
		b) ✓ non-origin side		(d) left
• •	The feasible solution wh			• •
		b) V optimal solution		(d) objective function
٠,	Solution space consisting	· · · · · · · · · · · · · · · · · · ·	` '	, , ,
	~ I / I / I / I /		•	•
	Corner point is also calle	•	(c) Feasible region	(a) General Solution
	•		(a) A Nambay	(d) Toot point
	· ·	b) Focus	(c) Vertex	(d) Test point
	For feasible region:		() (0 > 0	(1) (0)
	$\checkmark x \ge 0, y \ge 0 $	•	$(c) x \le 0, y \ge 0$	$(d)x\leq 0,y\leq 0$
	x = 0 is in the solution of	• •	() (10) (0) (0	(1)2 + 2 + 4
	•	b) $x + 4 < 0$	(c) $\checkmark 2x + 3 > 0$	(d)2x + 3 < 0
	Linear inequality $2x - 7$			(1) 4 (4 4)
	· · ·	b) (-5,-1)	(c) (0,0)	(d) 🗸 (1,-1)
	The non-negative constra			
	•	=	(c) Decision constraints	
25.	If the line segment obtai		o points of a region lies	entirely within the
, ,	region , then the region i			
(a)	Feasible region (b) 🗸 Convex region	(c) Solution region	(d) Concave region
	UN	NIT # 06 C	onic Section	on
	Each question has f			
1.	The locus of a revolving I	ine with one end fixed	d and other end on the c	ircumference of a circle
	of a circle is called:			
	•	b) a circle	(c) ✓a cone	(d) a conic
	The set of points which a	-		
(a)	✓ Circle (b) Parabola	(c) Ellipse	(d) Hyperbola

The circle whose radius is zero is called:		
Unit circle (b) ✓ point circle	(c) circumcircle	(d) in-circle
The circle whose radius is 1 is called:		
• • • • • • • • • • • • • • • • • • • •	(c) $\sqrt{g^2 + c^2 - f}$	(d) $\sqrt{g+f-c}$
	$_{t}$ π	(d) None of these
2 3	4	(d) None of these
		` '
	• •	` '
-		, ,
✓ Circle (b) Ellipse	(c) Circular cone	(d) None of these
The equation $x^2 + y^2 = 0$ then circle is		
✔ Point Circle (b) Unit Circle	(c) Real circle	(d) Imaginary Circle
The line perpendicular to the tangent at any	point $P(x, y)$ is known a	as;
		(d) None of these
	1 64 1	(d) e
Chandrad assertion of Davids late:		(u) c
$y^2 = 4a$ (b) $x^2 + y^2 = a^2$	(c) $v^2 = 4ax$	(d) $S = vt$
✓ Vertex (b) Focus	(c) Origin	(d) None of these
The curve $y^2 = 4ax$ is symmetric about		
$\checkmark y - axis$ (b) $x - axis$	(c) Both (a) and (b)	(d) None of these
Latusrectum of $x^2 = -4ay$ is		
x = a (b) x = -a	(c) $y = a$	(d) $\checkmark y = -a$
Eccentricity of the ellipse $\frac{x^2}{c^2} + \frac{y^2}{b^2} = 1$ is		
$\frac{a}{a}$ (b) ac	. <i>C</i>	
	(c) 🗸 –	(d) None of these
C	(c) $\checkmark \frac{c}{a}$	(d) None of these
Focus of $y^2 = -4ax$ is	u	
C	(c) $\sqrt[6]{a}$	(d) None of these (d) $(0,-a)$
Focus of $y^2 = -4ax$ is $(0, a) (b) \checkmark (-a, 0)$	u	
Focus of $y^2 = -4ax$ is $(0,a)$ (b) \checkmark $(-a,0)$ The midpoint of the foci of the ellipse is its	(c) (a, 0)	(d) $(0, -a)$
Focus of $y^2 = -4ax$ is $(0,a) (b) \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} (b) \checkmark \text{Centre}$	(c) (a, 0) (c) Directrix	(d) $(0, -a)$
Focus of $y^2 = -4ax$ is $(0, a)$ (b) $\checkmark (-a, 0)$ The midpoint of the foci of the ellipse is its Vertex (b) \checkmark Centre Focus of the ellipse always lies on the Minor axis (b) \checkmark Major axi	(c) (a, 0) (c) Directrix (c) Directrix	(d) $(0,-a)$ (d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \text{(b)} \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \text{(b)} \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \text{(b)} \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > 1$	(c) (a, 0) (c) Directrix (c) Directrix b is	(d) (0, -a)(d) None of these(d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad \text{(b)} \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad \text{(b)} \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad \text{(b)} \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > 2a$ $\text{(b)} 2b$	(c) $(a, 0)$ (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$	(d) $(0,-a)$ (d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad \text{(b)} \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad \text{(b)} \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad \text{(b)} \checkmark \text{Major axi}$ $\text{Length of the major axis of } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ , } a > 1$ $\text{Length of the conic that has eccentricity great}$	(c) $(a, 0)$ (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$ ter than 1 is	(d) (0, -a)(d) None of these(d) None of these(d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad \text{(b)} \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad \text{(b)} \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad \text{(b)} \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > \sqrt{2}a$ $\text{(b)} 2b$ A type of the conic that has eccentricity great An ellipse \text{(b)} A parabola	(c) $(a, 0)$ (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$	(d) (0, -a)(d) None of these(d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad \text{(b)} \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad \text{(b)} \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad \text{(b)} \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > \sqrt{2}a$ (b) $2b$ A type of the conic that has eccentricity great An ellipse (b) A parabola $x^2 + y^2 = -5 \text{ represents the}$	(c) $(a, 0)$ (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$ ter than 1 is (c) \checkmark A hyperbola	 (d) (0, -a) (d) None of these (d) None of these (d) None of these (d) A circle
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad (b) \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad (b) \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad (b) \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > \sqrt{2}a$ $\qquad \qquad (b) 2b$ A type of the conic that has eccentricity great An ellipse $\qquad \qquad (b) \text{ A parabola}$ $x^2 + y^2 = -5 \text{ represents the}$ Real circle $\qquad \qquad (b) \checkmark \text{Imaginary circle}$	(c) $(a, 0)$ (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$ ter than 1 is (c) \checkmark A hyperbola	(d) (0, -a)(d) None of these(d) None of these(d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad (b) \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad (b) \checkmark \text{ Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad (b) \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > \frac{y^2}{a^2} = 1$, $a >$	(c) (a, 0) (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$ cer than 1 is (c) ✓ A hyperbola (c) Point circle	 (d) (0, -a) (d) None of these (d) None of these (d) None of these (d) A circle (d) None of these
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad (b) \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad (b) \checkmark \text{Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad (b) \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > \sqrt{2}a$ $\qquad \qquad (b) 2b$ A type of the conic that has eccentricity great An ellipse $\qquad \qquad (b) \text{ A parabola}$ $x^2 + y^2 = -5 \text{ represents the}$ Real circle $\qquad \qquad (b) \checkmark \text{Imaginary circle}$	(c) $(a, 0)$ (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$ ter than 1 is (c) \checkmark A hyperbola	 (d) (0, -a) (d) None of these (d) None of these (d) None of these (d) A circle
Focus of $y^2 = -4ax$ is $(0,a) \qquad \qquad (b) \checkmark (-a,0)$ The midpoint of the foci of the ellipse is its $\text{Vertex} \qquad \qquad (b) \checkmark \text{ Centre}$ Focus of the ellipse always lies on the $\text{Minor axis} \qquad \qquad (b) \checkmark \text{Major axi}$ Length of the major axis of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > \sqrt{2}a$ $(b) 2b$ A type of the conic that has eccentricity great An ellipse $(b) A \text{ parabola}$ $x^2 + y^2 = -5 \text{ represents the}$ Real circle $(b) \checkmark \text{ Imaginary circle}$ Which one is related to circle $e = 1 \qquad \qquad (b) e > 1$	(c) (a, 0) (c) Directrix (c) Directrix b is (c) $\frac{2b^2}{a}$ cer than 1 is (c) ✓ A hyperbola (c) Point circle	 (d) (0, -a) (d) None of these (d) None of these (d) None of these (d) A circle (d) None of these
	The circle whose radius is 1 is called: \[\begin{align*} \lambda \text{Unit circle} & (b) point circle \end{align*} The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ (g,f) (b) $(-g,-f)$ The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ $\sqrt{g^2 + f^2 - c}$ (b) $\sqrt{g^2 + f^2 + c}$ The angle inscribed in semi-circle is: $\sqrt{\frac{\pi}{2}}$ (b) $\frac{\pi}{3}$ For any parabola in the standard form, if the $y^2 = 4ax$ (b) $y^2 = -4ax$ For any parabola in the standard form, if the $y^2 = 4ax$ (b) $y^2 = -4ax$ For any parabola in the standard form, if the $y^2 = 4ax$ (b) $y^2 = -4ax$ For any parabola in the standard form, if the $y^2 = 4ax$ (b) $y^2 = -4ax$ For any parabola in the standard form, if the $y^2 = 4ax$ (b) $y^2 = -4ax$ All lines through vertex and points on circle is \[\begin{align*} \left Point Circle	The circle whose radius is 1 is called: \[\begin{align*} \text{V} Unit circle \text{(b) point circle} \text{(c) circumcircle} \text{The equation } x^2 + y^2 + 2gx + 2fy + c = 0 \text{represents the circle with } y^2 + 2gx + 2fy + c = 0 \text{represents the circle with } y^2 + 2gx + 2fy + c = 0 \text{represents the circle with } y^2 + f^2 - c \text{(b) } \frac{\pi}{3} + f^2 + c \text{(c) } \frac{\pi}{4} + c^2 - f \end{align*} \text{the circle with } \frac{\pi}{2} + f^2 - c \text{(b) } \frac{\pi}{3} + f^2 + c \text{(c) } \frac{\pi}{4} + c^2 - f \end{align*} \text{The angle inscribed in semi-circle is: } \frac{\pi}{2} + ax \text{(b) } \frac{\pi}{3} + c^2 - 4ax \text{(c) } \frac{\pi}{4} + c^2 - f \text{(c) } \frac{\pi}{4} + c^2 - f \text{The angle inscribed in semi-circle is: } \frac{\pi}{2} = 4ax \text{(b) } \frac{\pi}{2} = -4ax \qua

	(a)	x + a = 0	(b) $x - a = 0$	(c) $y + a = 0$	(d) $\checkmark y - a = 0$	
	32.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is symmetry	tric about the:			
			(b) $x - axis$	(c) V Both (a) and (b)	(d) None of these	
		$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is symmet		(c) • Both (a) and (b)	(a) None of these	
					(1)	
				(c) Both (a) and (b)	(d) None of these	
		_	d a = 4 then the eccent		7	
		$\checkmark \frac{\sqrt{65}}{4}$	(b) $\frac{65}{16}$	(c) $\frac{\sqrt{65}}{7}$	(d) $\frac{7}{4}$	
			re $(4,1)$ and $(0,1)$ then			
		(4,2)	(b) ✓ (2,1)	(c) (2,0)	(d) (1,2)	
		The foci of hyperbola $ax - axis$	(b) 🗸 Transverse ax	a $(c) y - axis$	(d) Conjugate axis	
					(u) Conjugate axis	
	3/.	Length of transverse a	xis of the hyperbola $\frac{x^2}{a^2}$	$-\frac{5}{b^2}=1$ is		
		√ 2a	(b) 2 <i>b</i>	(c) <i>a</i>	(d) <i>b</i>	
		The parabola $y^2 = -1$		A.V. dalah sasah	(d) • 4 1• () • • • • •	
		Downwards In the cases of ellipse i	(b) Upwards	(c) rightwards	(d) 🗸 leftwards	
			•	(c) $a^2 = b^2$	(d) $a < 0, b < 0$	
	٠,		ersect each other in	· ,	(a)a < b,b < 0	
		No	(b) one	 (c) two	(d) ✔ four	
	41.	The eccentricity of ellip	$pse \frac{x^2}{1} + \frac{y^2}{1} = 1$ is			
					/ N =	
	(a)	$\checkmark \frac{\sqrt{7}}{4}$	(b) $\frac{7}{4}$	(c) 16	(d) 9	
			UNII # 0	7 Vectors		
Ec	ich d	guestion has four i	oossible answer. Ti	ck the correct answ	ver. J CM	
					1111	
		The vector whose mag		112	J)	
		Null vector		(c) free vector	(d) scalar	
			(b) \checkmark 0	ides with its initial point		
	(a)			(c) 2 her if they have the sam	(d) undefined	
	٠.	direction.	o be negative or each of	ner in they have the sum	ie magmitade and	
	(a)	Same	(b) v opposite	(c) negative	(d) parallel	
	4.	Parallelogram law of v	ector addition to descri	be the combined action	of two forces, was used	
		by				
	٠,	Cauchy		(c) Alkhwarzmi		
	5.	Null vector		and terminal point is P, (c) ✓ position vector		
	٠,		numbers, then the Carte	• • •	(u) normal vector	
					$y): x, y \in R, x = -y\}$	
	. ,	$R^2 = \{(x^2, y^2): x, y \in R\}$ (b) $\checkmark R^2 = \{(x, y): x, y \in R\}$ (c) $R^2 = \{(x, y): x, y \in R, x = -y\}$ (d) $R^2 = \{(x, y): x, y \in R, x = y\}$				
	7.	The element $(x, y) \in R^2$ represents a				
		Space	(b) v point	(c) vector	(d) line	
		If $\underline{u} = [x, y]$ in R^2 , the				
			(b) $\sqrt{x^2 + y^2}$		(d) $x^2 - y^2$	
			, then it must be true th			
			(b) $x \le 0, y \le 0$		(d) $\checkmark x = 0, y = 0$	
			can be uniquely repres			
		-	(b) $\checkmark x_{\underline{i}} + y_{\underline{j}}$		$(d) \sqrt{x^2 + y^2}$	
					sto the third side.	
	(a)	Equal	(b) 🗸 Parallel	(c) perpendicular	(d) base	
		A maint Discourse Is		_		
	12.		coordinate		(d) infinitely many	
	12. (a)	1	(b) 2	s. (c) 🗸 3	(d) infinitely many	
	12. (a) 13.		(b) 2		(d) infinitely many (d) (1,0)	

14.	In space the vector \underline{j} ca					
	(1,0,0) (b) 🗸	. , , ,	(c) (0,0,1)	(d) (1,0)		
	In space the vector \underline{k} c					
(a)	(1,0,0)	(b) (0,1,0) –6 <u>i</u> – 9 <u>j</u> – 3 <u>k</u> are	(c) (0,0,1)	(d) (1,0)		
16.	$\underline{u}=2\underline{i}+3\underline{j}+\underline{k},\underline{v}=-$	-6 <u>i</u> – 9 <u>j</u> – 3 <u>k</u> are	vectors.			
		(b)perpendicular		(d) negative		
17.			or $oldsymbol{r}$ makes with $oldsymbol{x}-oldsymbol{a}oldsymbol{x} i$	s, $y - axis$ and		
	z - axis respectively a	are called	$_$ of r .			
	Direction cosines		(c) V direction angles	(d) inclinations		
	Measures of directions		π . π			
(a)	$\alpha \le 0, \beta \le 0, \gamma \le 0$	(b) $0 \le \alpha \le \frac{\pi}{2}$, $0 \le \beta \le$	$\leq \frac{\pi}{2}$, $0 \leq \gamma \leq \frac{\pi}{2}$ (c) $\alpha \geq$	$0, \beta \geq 0, \gamma \geq 0$		
	• •	π , $0 \le \beta \le \pi$, $0 \le \gamma \le \pi$				
19.	If $\underline{u} = 3\underline{i} - \underline{j} + 2\underline{k}$ the	n [3,-1,2] are called	of <u>u</u> .			
(a)	Direction cosines	(b) v direction ratios	(c) direction angles	(d) elements		
20.	Which of the following	can be the direction an	gles of some vector			
(a)	45°, 45°, 60°	(b) 30°, 45°, 60°	(c) $\checkmark 45^{\circ}, 60^{\circ}, 60^{\circ}$	(d) obtuse		
	Recall that here	$\cos^2\alpha + \cos^2\beta + \cos^2\beta$	$^{2}\nu = 1$ should hold.			
	necom marinere	200 at 1 200 p 1 200	, 10110414110141			
21	Massure of angle () has	tuvoon tuvo vootonsis olu		_		
	_	tween two vectors is alw	-	(d) obtuce		
	$0 < \theta < \pi$	(b) $0 \le \theta \le \frac{\pi}{2}$		(d) obtuse		
		vo vectors is zero, then t		(al) a aa l		
(a)	Parallel	(b) 🗸 orthogonal	(c) reciprocal	(d) equal		
23	If the cross product of	two vectors is zero, ther	n the vectors must be			
	✓ Parallel	(b) orthogonal		(d) Non coplanar		
		een two vectors \underline{a} and \underline{b}		(a) Non copiana		
		(b) $\checkmark \frac{\underline{a}.\underline{b}}{ a b }$		(d) $\frac{\underline{a.b}}{ b }$		
	I—II—	1-1:-:				
25.			, then projection of \underline{b} a			
(a)	$\frac{\underline{a} \times \underline{b}}{ \underline{a} \underline{b} }$	(b) $\frac{\underline{a}.\underline{b}}{ \underline{a} \underline{b} }$	(c) $\sqrt{\frac{a.b}{ a }}$	(d) $\frac{\underline{a}.\underline{b}}{ \underline{b} }$		
26.	If θ be the angle between	een two vectors $oldsymbol{a}$ and $oldsymbol{b}$, then projection of \underline{a} a	long <u>b</u> is		
(a)	$\frac{\underline{a} \times \underline{b}}{ a b }$	(b) $\frac{\underline{a}.\underline{b}}{ a b }$	(c) $\frac{\underline{a}.\underline{b}}{ a }$	(d) $\checkmark \frac{\underline{a.b}}{ b }$		
	I—I'—'	then projection of ${m u}$ alor	i _ i	<u>D</u>		
	✓ a	(b) <i>b</i>		(d) a.		
	. 20, 21, 70, 70	then projection of $oldsymbol{u}$ alor	(c) <i>c</i>	(d) u		
	_			(al)		
(a)		(b) $\checkmark b$	(c) <i>c</i>	(d) u		
	_	then projection of \underline{u} alor				
(a)		(b) <i>b</i>	(c) v c	(d) u		
	In any $\triangle ABC$, the law			/ I)		
			+ cCosB (c) $a.b = 0$	(a) $a-b=0$		
	In any $\triangle ABC$, the law		$C + aC \circ aD = (a) \circ ab = 0$	(d) a b = 0		
	a) $a^2 = b^2 + c^2 - 2bcCosA$ (b) $\checkmark a = bCosC + cCosB$ (c) $a.b = 0$ (d) $a - b = 0$ 32. If \underline{u} is a vector such that $\underline{u}.\underline{i} = 0$, $\underline{u}.\underline{j} = 0$, $\underline{u}.\underline{k} = 0$ then \underline{u} is called					
		-		(1)		
• •	Unit vector	(b) v null vector	(c) [<u>i</u> , <u>j</u> , <u>k</u>]	(d) none of these		
	Cross product or vecto	-	(1)	(d) to construct the		
	In plane only	(b) in space only		(d) in vector field		
	_	fors , then $\underline{u} \times \underline{v}$ is a vec		. (d)		
	Parallel to \underline{u} and \underline{v}		perpendicular to \underline{u} and \underline{u}			
			ent sides of gram then	-		
	$\underline{u} \times \underline{v}$		$(c) \frac{1}{2} (\underline{u} \times \underline{v})$	$(d) \frac{1}{2} \underline{u} \times \underline{v} $		
			ent sides of triangle ther			
	$\underline{u} \times \underline{v}$		(c) $\frac{1}{2}$ ($\underline{u} \times \underline{v}$)	(d) $\sqrt{\frac{1}{2}} \underline{u} \times \underline{v} $		
		ct of \underline{a} , \underline{b} and \underline{c} is denot				
	<u>a</u> . <u>b</u> . <u>c</u>	(b) $\checkmark \underline{a}.\underline{b} \times \underline{c}$		(d) $(\underline{a} + \underline{b}) \times \underline{c}$		
38.	The vector triple produ	ict of \underline{a} , \underline{b} and \underline{c} is denot				
(a)	<u>a</u> . <u>b</u> . <u>c</u>	(b) $\underline{a}.\underline{b} \times \underline{c}$	(c) $\checkmark \underline{a} \times \underline{b} \times \underline{c}$	(d) $(\underline{a} + \underline{b}) \times \underline{c}$		

39. Notation for scalar triple product of \underline{a} , \underline{b} and \underline{c} is						
(a) $\underline{a}.\underline{b} \times \underline{c}$	(b) $\underline{a} \times \underline{b} \cdot \underline{c}$	(c)[\underline{a} . \underline{b} . \underline{c}]	(d) 🗸 all of the			
40. If the scalar product of three vectors is zero, then vectors are						
(a) Collinear	(b) 🗸 coplanar	(c) non coplanar	(d) non-collinear			
41. If \underline{a} and \underline{b} have same of	lirection , then $oldsymbol{a}_{\cdot}oldsymbol{b}_{\cdot}=$					
(a) ✓ <u>ab</u>	(b) $-\underline{ab}$	(c) \underline{ab} sin θ	(d) $\underline{a} \underline{b} tan \theta$			
42. For a vector \underline{a} , \underline{a} . \underline{a} =						
(a) 2 <u>a</u>	(b) $\checkmark a^2$	(c) $\frac{a}{2}$	(d) $\frac{a^2}{2}$			
Z Z						
(a) <u>ab</u>	(b) ✓ − <u>a.</u> <u>b</u>	(c) $absin\theta$	(d) $abtan\theta$			
44. The angle in semi-circle is equal to:						
(a) $\sqrt{\frac{\pi}{2}}$	(b) π	(c) $\frac{\pi}{3}$	(d) 3π			
45. Two non zero vectors are perpendicular iff						
(a) $\underline{u}.\underline{v} = 1$	(b) \underline{u} . $\underline{v} \neq 1$	(c) \underline{u} . $\underline{v} \neq 0$	(d) $\checkmark \underline{u}.\underline{v} = 0$			
46. If any two vectors of scalar triple product are equal, then its value is equal to						
(a) 1	(b) 🗸 0	(c) -1	(d) 2			
47. If \widehat{n} is a unit vector perpendicular to the plane containing \underline{a} and \underline{b}						
(a) $\hat{n} = \frac{a.b}{ab}$	(b) $\hat{n} = \frac{\underline{a} \times \underline{b}}{ab}$	(c) $\checkmark \hat{n} = \frac{\underline{a} \times \underline{b}}{ a \times b }$	(d) $\hat{n} = \underline{a} \times \underline{b}$			
48. If α , β , γ are the direction angles of a vector \underline{r} , then $\cos^2\alpha + \cos^2\beta + \cos^2\gamma =$						
(a) 3	(b) 2	(c) 🗸 1	(d) 0			
49. A vector perpendicular to each of vectors $2\underline{i}$ and \underline{k} is						
(a) <u>i</u>	(b) 2 <i>j</i>	(c) \checkmark $-2j$	(d) <u>k</u>			
	(a) $\underline{a} \cdot \underline{b} \times \underline{c}$ 40. If the scalar product of (a) Collinear 41. If \underline{a} and \underline{b} have same of (a) $\checkmark \underline{ab}$ 42. For a vector \underline{a} , $\underline{a} \cdot \underline{a} = (a) 2\underline{a}$ 43. If \underline{a} and \underline{b} have the operation of (a) \underline{ab} 44. The angle in semi-circle (a) $\checkmark \frac{\pi}{2}$ 45. Two non zero vectors of (a) $\underline{u} \cdot \underline{v} = 1$ 46. If any two vectors of section in \widehat{a} is a unit vector peration of \widehat{a} is a unit vector peration of \widehat{a} . If \widehat{a} , \widehat{b} , \widehat{v} are the direct (a) 3 49. A vector perpendicular	(a) $\underline{a} \cdot \underline{b} \times \underline{c}$ (b) $\underline{a} \times \underline{b} \cdot \underline{c}$ 40. If the scalar product of three vectors is zero, the (a) Collinear (b) \checkmark coplanar 41. If \underline{a} and \underline{b} have same direction, then $\underline{a} \cdot \underline{b} = (a) \checkmark \underline{ab}$ 42. For a vector \underline{a} , $\underline{a} \cdot \underline{a} = (a) 2\underline{a}$ (b) $\checkmark \underline{a^2}$ 43. If \underline{a} and \underline{b} have the opposite direction, then \underline{a} (a) \underline{ab} (b) $\checkmark -\underline{a} \cdot \underline{b}$ 44. The angle in semi-circle is equal to: (a) $\checkmark \frac{\pi}{2}$ (b) π 45. Two non zero vectors are perpendicular iff (a) $\underline{u} \cdot \underline{v} = 1$ (b) $\underline{u} \cdot \underline{v} \neq 1$ 46. If any two vectors of scalar triple product are $a \cdot \underline{b} = a \cdot $	(a) $\underline{a} \cdot \underline{b} \times \underline{c}$ (b) $\underline{a} \times \underline{b} \cdot \underline{c}$ (c) $[\underline{a} \cdot \underline{b} \cdot \underline{c}]$ 40. If the scalar product of three vectors is zero, then vectors are (a) Collinear (b) \checkmark coplanar (c) non coplanar 41. If \underline{a} and \underline{b} have same direction, then $\underline{a} \cdot \underline{b} =$ (a) $\checkmark \underline{ab}$ (b) $-\underline{ab}$ (c) $\underline{ab} \sin \theta$ 42. For a vector \underline{a} , $\underline{a} \cdot \underline{a} =$ (a) $2\underline{a}$ (b) $\checkmark \underline{a^2}$ (c) $\frac{\underline{a}}{2}$ 43. If \underline{a} and \underline{b} have the opposite direction, then $\underline{a} \cdot \underline{b} =$ (a) \underline{ab} (b) $\checkmark -\underline{a} \cdot \underline{b}$ (c) $ab\sin\theta$ 44. The angle in semi-circle is equal to: (a) $\checkmark \frac{\pi}{2}$ (b) π (c) $\frac{\pi}{3}$ 45. Two non zero vectors are perpendicular iff (a) $\underline{u} \cdot \underline{v} = 1$ (b) $\underline{u} \cdot \underline{v} \neq 1$ (c) $\underline{u} \cdot \underline{v} \neq 0$ 46. If any two vectors of scalar triple product are equal, then its value is equal to: (a) 1 (b) $\checkmark 0$ (c) -1 47. If \hat{n} is a unit vector perpendicular to the plane containing \underline{a} and \underline{b} (a) $\hat{n} = \frac{\underline{a} \cdot \underline{b}}{ab}$ (b) $\hat{n} = \frac{\underline{a} \times \underline{b}}{ab}$ (c) $\checkmark \hat{n} = \frac{\underline{a} \times \underline{b}}{ \underline{a} \times \underline{b} }$ 48. If α , β , γ are the direction angles of a vector \underline{r} , then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \beta$ (a) 3 (b) 2 (c) $\checkmark 1$ 49. A vector perpendicular to each of vectors $2\underline{i}$ and \underline{k} is			

←-----THE END-----> WITH BEST WISHES BY:-

MUHAMMAD SALMAN SHERAZI M.Sc(Math), B.ed 03337727666/03067856232