Homework 1: graph signal processing

EE 771: Recent Topics in Analytical Signal Processing, Spring 2018

Instructor: Animesh Kumar, EE, IIT Bombay

Instructions: The homeworks are to be submitted in class on 13/02/18. Please do not copy. Copied homework (in full or part) will attract -5 marks for the entire submission. The negative marking is without a warning.

1. Consider a graph \mathcal{G} with 7 nodes $\{1, 2, \dots, 7\}$, and a weight matrix given by

$$W = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}. \tag{1}$$

Let $\vec{f} = \{3, 1, 2, 2, 2, 1, 1\}$ be a signal defined on \mathcal{G} . Answer the following questions.

- (a) Find the orthonormal eigenvector basis $\vec{u}_1, \dots, \vec{u}_7$, ordered by their eigenvalues, corresponding to the Laplacian $\mathcal{L} = D W$.
- (b) Find the coordinates of \vec{f} in this basis of eigenvectors.
- (c) Plot the number of zero-crossings of $\vec{u}_1, \dots, \vec{u}_7$ as a function of their index.
- (d) Emulate ideal lowpass filtering of \vec{f} by retaining only first four coefficients in $\vec{u}_1, \dots, \vec{u}_7$ basis. Compare \vec{f} against its filtered version.
- 2. Generate a 100 node Erdos-Renyi graph and attach a weight of 1 to every edge. (Pick the probability in ER graph as p = 0.1 and p = 0.2.) Let $\mathcal{L} = D W$ be the Laplacian matrix. Find the orthonormal eigenvectors and corresponding (ordered) eigenvalues for the Laplacian matrix. Plot the number of zero crossings as a function of 1 to 100. Comment on the obtained result.
- 3. For the graph generated in the previous question, plot the eigenvalues for the normalized Laplacian $\tilde{\mathcal{L}} = I D^{-1/2}WD^{-1/2}$. Comment on the result.
- 4. Consider the images in the file denoise.zip. For gull-noise.jpg and sfo-noise.jpg, use the graph signal processing based image denoising algorithm (using Tikhonov regularization) to find a denoised version of the images. Compare the PSNR before and after denoising, with respect to the provided original.
- Use $\theta = 0.1$, and two different values of $\kappa = 0, 1$.
- 5. Consider a bipartite graph with nodes $\{1, 2, ..., 6\}$ where the nodes $\{1, 2, 3\}$ and $\{4, 5, 6\}$ form the bipartitions. The weight matrix is given by

$$W = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}.$$
 (2)

Let $\vec{f} = \{1, 2, 3, 1, 2, 3\}$ defined on this graph. Verify the symmetry properties of the eigenvalues and eigenvectors of \tilde{L} . Then, find the downsampled versions of the signal \vec{f}_L and \vec{f}_H .