Homework

Problems on UD

2.1

(a) antecedent: it's raining conclusion: I'll stay home(b) antecedent: the baby cries conclusion: I wake up

(c) antecedent: I wake up conclusion: the fire alarm goes off

(d) antecedent: x is odd conclusion: x is prime(e) antecedent: x is prime conclusion: x is odd

(f) antecedent: you can come to the party conclusion: you have an invitation

(g) antecedent: the bell rings conclusion: I leave the house

2.5

Truth Table:

Р	Q	R	¬R	(¬R∨Q)	$P \rightarrow (\neg R \lor Q)$	$(P \to (\neg R \!\vee\! Q)) \!\wedge\! R$
Т	Т	Т	F	Т	Т	Т
Т	Т	F	Т	Т	Т	F
Т	F	Т	F	F	F	F
F	Т	Т	F	Т	Т	Т
Т	F	F	Т	Т	Т	F
F	Т	F	Т	Т	Т	F
F	F	Т	F	F	Т	Т
F	F	F	F	Т	Т	F

This statement form is neither a tautology nor a contradiction.

- (a) I won't do my homework or I won't pass this class.
- **(b)** Seven isn't an integer or seven isn't even.

- (c) T is continuous and T isn't bounded.
- (d) I can neither eat dinner nor go to the show.
- (e) x is odd and x isn't prime.
- **(f)** x is prime and x isn't odd.
- **(g)** I am not home and Sam won't answer the phone or I am not home and Sam won't tell you how to reach me.
- **(h)** The stars are green and the world isn't eleven feet wide or the white horse is shining and the world isn't eleven feet wide.

2.7

- **(a)** ¬(¬P)↔P
- **(b)** $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$
- (c) $\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$
- (d) $P \rightarrow Q \leftrightarrow \neg P \lor Q$

2.8

Answer: (P∧Q)∨R

Process: There are only two situations. The first one is $P \land (Q \lor R)$, which contradicts the 5_{th} row of the truth table, so it's obvious that the correct answer is $(P \land Q) \lor R$.

2.10

- (a) If it is sunny, then it snows.
- **(b)** If it is sunny,then it doesn't snow and it is sunny.

- (a) Suppose that A means Arnie is a truth-teller,B means each person living on this island is either a truth-teller or a liar.Because B is true,so $A \rightarrow B$ is a tautology,which means that no matter A is true or false,what Arnie says is always true,so Arnie must be a truth-teller.
- **(b)** Suppose that *A* means Arnie is a truth-teller, *B* means Barnie is a truth-teller. So we can paraphrase Arnie's sentence into $A \rightarrow B$. Then we can write down the truth table.

Α	В	A→B	A↔(A→B)
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	F

Α	В	$ extsf{A}{ ightarrow} extsf{B}$	A↔(A→B)
F	F	Т	F

So Arnie and Barnie are both truth-tellers.

3.2

(a) contrapositive: If you don't live in a white house, then you aren't the President of the United States.

converse: If you live in a white house, then you are the President of the United States.

(b) contrapositive: If you don't need eggs, then you are not going to bake a souffle.

converse: If you need eggs, you are going to bake a souffle.

(c) contrapositive: If x isn't an integer,then x isn't a real number.

converse: If x is an integer, then x is a real number.

(d) contrapositive: If $x^2 \ge 0$, then x isn't a real number.

converse: If $x^2 < 0$, then x is a real number.

3.6

С	В	Y	B∨C	C∧B	(C∧B)→ (C∧B)∧Y	B∨Y	(B∨Y)→ (B∨Y)∧C	¬(C^Y)	BvCvY
Т	Т	Т	Т	Т	Т	Т	Т	F	Т
Т	Т	F	Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	F	Т	Т	Т	F	Т
F	Т	Т	Т	F	Т	Т	F	Т	Т
Т	F	F	Т	F	Т	F	Т	Т	Т
F	Т	F	Т	F	Т	Т	F	Т	Т
F	F	Т	F	F	Т	Т	F	Т	Т
F	F	F	F	F	Т	F	Т	Т	F

All the highlighted statement forms must be true, so Matilda eats only cereal on Monday.

3.7

(a) A="the coat is green";B="the moon is full";C="the cow jumps over the moon" $A \rightarrow (B \lor C)$

(b) $(\neg B \land \neg C) \rightarrow \neg A$

If the moon isn't full and the cow doesn't jump over it, then the coat isn't green.

(c) $(B \lor C) \rightarrow A$

$$A \rightarrow (B \lor C)$$

If the coat is green, then the moon is full or the cow jumps over it.

(d) $A \rightarrow (\neg B \land \neg C)$

$$(\neg B \land \neg C) \rightarrow A$$

If the moon isn't full and the cow doesn't jump over it, then the coat is green.

(e) $A \rightarrow (B \lor C) \leftrightarrow (\neg B \land \neg C) \rightarrow \neg A$

3.8

(a)

P	Q	P→Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Р	٦P	Q	Q∨¬P	P→(Q∨¬P)
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	Т	Т

(b)

 $P \rightarrow Q$ and $P \rightarrow (Q \lor \neg P)$ are equivalent statement forms.

	S	G	A	F
ch	Т	Т	F	Т
fl	F	Т	Т	Т
su	Т	F	Т	Т

The French recipe.

3.10

The contrapositive of "if 3n is odd, then n is odd" is "if n isn't odd, then 3n isn't odd". To prove the original statement form, we only need to prove its contrapositive. Below is the proof.

Because n is an integer and n isn't odd,n must be even. Suppose $n=2k(k \in \mathbb{Z})$, so 3n=6k, it is obvious that 3n(6k) is divisible by 2,namely 3n is even. So "if n isn't odd, then 3n isn't odd" is proved. Thus, the original statement is proved to be true.

3.11

The contrapositive of the statement to be proved is "if $\sqrt{2x}$ is an integer,then x isn't odd". Now let's prove the contrapositive.

Since $\sqrt{2x}$ is an integer,we might as well suppose it as $n(n \in Z)$,so $2x=n^2$,namely $x=\frac{n^2}{2}$,apparently x is either even integer or a fraction,so the contrapositive proves true,namely the original statement proves true.

4.1

- (a) $\forall x, (\exists y, (x=2y))$
- (b) $\forall y, (\exists x, (x=2y))$
- (c) $\forall x, \forall y, (x=2y)$
- (d) $\exists x, (\exists y, (x=2y))$
- (e) $\exists x, \exists y, (x=2y)$

- (a) There exists an $x \in R$, such that $x^2 < 0$.
- **(b)** There exists an odd integer such that it is zero.
- (c) If I am hungry,then I won't eat chocolate.
- (d) There exists a girl such that she likes every boy.
- (e) For all $x \in R$,we have $g(x) \le 0$.
- **(f)** There exists an $x \in R$ such that $xy \neq 1$ for all $y \in R$.
- (g) For all $y \in R$ there is an $x \in R$ such that $xy \neq 0$.
- (h) If $x \neq 0$,then for all $y \in R$,we have $xy \neq 1$.
- (i) If x>0,then there exists a $y\in R$ such that $xy^2<0$.
- (j) There exists an $\epsilon>0$ and an n>N such that if x is a real number with $|x-1|<\delta,$ then $|x^2-1|\geq \epsilon$ for all $\delta>0.$
- (k) There exists a real number M such that $|f(n)| \leq M$ for all real number N.

4.7

- (a) $\exists x, ((x \in Z \land (\forall y, (y \in Z \rightarrow x \neq 7y))) \land (\forall z, (z \in Z \rightarrow x \neq 2z))).$
- **(b)** For all x, if $x\in Z$ and for all $y\in Z$ we have $x\neq 7y$,then there exists an $z\in Z$ such that x=2z.
- (c) The negation is true. For the original statement, considering that if x=5, then for all $y\in Z$ we have $x\neq 7y$, but there doesn't exist a $z\in Z$ such that 5=2z, namely x=2z, so the original statement is false.

4.9

If we put too much emphasis on some trivial details, it would be ridiculous.

4.13

- (a) true If I love Bill, I must love Sam, since I don't love Sam, so I don't love Bill
- **(b) false** Even though Susie didn't go to the ball in the red dress,it doesn't mean that I didn't stay home.
- (c) true If t is positive, then there exists a real number m such that m > t, since all the m is less than t, t is not positive.
- (d) true Since my name isn't Igor, then the first half of the statement must be true.
- **(e)false** Even though there is no blue house on the street, there still could be a black house on the street.
- (f) true If x>5, then $y\leq \frac{1}{5}$, since y=1,then $x\leq 5$.
- (g) false Even if n < M , there is still such possibility that $n^2 > M^2$.
- (h) false If y > x and $y \le 0$, it is also true that $y \le z$.

Extra Problem

Does this way lead to you knights' village?