

Project Motivations

- Canadians are feeling more in debt than ever, with 90% claiming to have more debt today than they did five years ago [1].
- Only 47% of Canadians plan their spending based on actual budgets due to how tedious bookkeeping could be [1].
- Accounting is an essential method to enhance the personal experience of financial management.

Project Objectives

- Implement a mobile application that optimizes the process of expense management by automating tedious aspects of bookkeeping.
- Provide a personalized experience and an overview of the user's financial situations by conducting statistical analysis.
- Apply Computer Vision techniques to recognize details of the receipts to record purchase history.

Major Advantages

- Provide a single source of user purchase history and robust yet scalable data security.
- Display overviews of expenses over arbitrary periods of time to help users monitor their financial status.
- Accessible from multiple platforms including websites and android applications.
- Provide the solution to longer-than-usual receipts by allowing taking multiple pictures and stitching them together.

Acknowledgements & References

[1] Visa Canada, "Budgeting," *Practical Money Skills*, Jun. 2019; https://practicalmoneyskills.ca/personalfinance/savingspending/budgeting/

[2] H. Saleh, "MVVM architecture, ViewModel and LiveData (Part 1)," Medium, 13-Oct-2018: https://proandroiddev.com/mvvm-architecture-viewmodel-and-livedata-part-1-604f50cda1.

Block Diagram

Design Alternatives

Subsystem	Option 1	Option 2	Reasoning
User Interface	MVVM	MVC	High degree of decoupling [2].Easy to reuse.
Database	MySQL	PostgreSQL	 Lightweight and memory-efficient. Excellent scalability.
Receipt Recognition Engine	DNN	CNN	 More suitable for image processing. Higher accuracy and stability.
Backend	Node.js	Ruby on Rails	Lower difficulty of deployment.Better performance.

Implementations

- User interface uses the Model-View-ViewModel architecture to ensure high maintainability and extensibility.
- Backend is written in Node.JS and APIs are implemented according to the requirements of REST architecture. All access to APIs are required to contain a valid JSON Web Token to prevent hacking attempts.
- The imagine recognition engine uses artificial neural network that applies convolutional operations for image processing tasks, applied to character classification to transfer images to text.
- Transformation functions such as Gaussian are applied to detect edges and locate characters.

Analysis Results

90%+ Recognition Accuracy

Data processing finished	
Train on 50596 samples, validate on 5622 samples	
Epoch 1/100	
50596/50596 [====================================	98
Epoch 2/100	
50596/50596 [====================================	ð3
Epoch 3/100	
50596/50596 [====================================	Э6
Epoch 4/100	
50596/50596 [====================================	83
Epoch 5/100	
50596/50596 [====================================	55
Epoch 6/100	
50596/50596 [====================================	91
Epoch 7/100	
50596/50596 [====================================	16
Epoch 8/100	

< 10s Recognition Time

Experiment No.	Total Character Count	Total Recognition Time (s)
1	385	6.5
2	277	4.38
3	482	10.3
4	420	9.8
5	318	6.7
Average	N/A	7.536

99% Segmentation Accuracy

Experiment No.	Total Character Count	Segmented Count	Segmenting Accuracy
1	385	381	0.9896
2	277	277	1.0000
3	482	479	0.9938
4	420	417	0.9929
5	318	310	0.9748
Average	1882	1864	0.9904