

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ESTATÍSTICA E CIÊNCIAS ATUARIAIS

Disciplina: Probabilidade para Ciências Atuariais I

Docente: Amanda Lira

UNIDADE I

Sumário

Experimento (determinístico/não determinístico)
Espaço Amostral
Operações com Conjuntos
Eventos
Probabilidade (Axiomática/Frequentísta/Clássica)
Probabilidade da Independência e Equiprovável
Probabilidade Condicional
Teorema do Produto
Partição Amostral
Teorema de Bayes

1. Espaços de Probabilidade

Dentre as tantas definições do que seria um fenômeno, um acontecimento observável é aquela que melhor se adéqua ao caso probabilístico, em que, existem na natureza dois tipos de fenômenos: os determinísticos e os aleatórios.

Os fenômenos determinísticos são aqueles em que os resultados são sempre os mesmos, qualquer que seja o número de ocorrências verificadas. Por exemplo: ao tomar um determinado sólido, sabe-se que a certa temperatura haverá a passagem para o estado líquido.

Nos fenômenos aleatórios (ou não-determinísticos), os resultados não serão previsíveis, mesmo que haja um grande número de repetições do mesmo fenômeno. Para investigá-los faz-se necessário associar diferentes modelos, ditos estocásticos1. Por exemplo: se considerarmos um pomar com centenas de laranjeiras, as produções de cada planta serão diferentes e não previsíveis, mesmo que as condições de temperatura, pressão, umidade, solo, etc..., sejam as mesmas para todas as árvores. Ou ainda, considere que se deseja determinar qual a precipitação de chuva que cairá como resultado de uma tempestade particular, que ocorra em dada localidade. Observações meteorológicas podem até fornecer considerável informação a relativa à tempestade que se avizinhe: pressão barométrica em vários pontos, variações de pressão, velocidade do vento, origem e direção da tormenta, e variais leituras referentes a altitudes elevadas, contudo, ainda não é possível dizer quanta chuva irá cair. Podemos, assim, definir fenômenos aleatórios como segue:

Observação 1 É dito estocástico porque não é possível controlar os fatores de variação.

Definição 2: Experimentos aleatórios (ε)

Todo e qualquer experimento (com mais de um possível resultado) que, repetido em "idênticas" condições, pode vir a apresentar resultados distintos e não previsíveis.

Exemplos:

O lançamento de uma moeda não viciada;

O lançamento de um dado honesto;

A retirada de uma carta de um baralho com 52 cartas;

Observação da temperatura em um determinado local e hora;

A determinação do tempo de vida útil de um componente eletrônico;

Definição 3: Espaço Amostral

O conjunto de todos os possíveis resultados de um experimento é chamado espaço amostral sendo representado por Ω - ou S.

Exemplo:

```
\begin{split} \Omega &= \{ \text{Cara, Coroa} \} \\ \Omega &= \{ 1, 2, 3, 4, 5, 6 \} \\ \Omega &= \{ \text{AO,..., KO, AE,..., KE, AP,..., KP, AC,..., KC} \} \\ \Omega &= \{ \text{t à Te } (..., -10,..., 0, ..., 20, ...) \} \\ \Omega &= \{ \text{t } \in \Re \mid \text{t } \geq 0 \} \end{split}
```

Os elementos do espaço amostral são chamados pontos amostrais.

EXERCÍCIO EM SALA

1) Lança-se um moeda duas vezes. Enumerar o espaço amostral e os eventos A = "faces iguais"; B = "cara na primeira moeda"; C = "nenhuma cara".

2. Revisão da Teoria dos Conjuntos

Definição 1: Conjuntos

O conjunto é uma coleção ou lista de objetos. São representados por letras maiúsculas (A,B,...) e as unidades que compõem os conjuntos são chamados elementos, então:

- ✓ Se p é um elementos de A \Rightarrow p ∈ A
- ✓ Se todo elemento de A também pertence ao conjunto B, então A é chamado de subconjunto de B ou diz-se que A está contido em B, ou seja:

$$\forall p \in A e p \in B \Rightarrow A \subset B \text{ ou } B \subset A$$

✓ Dois conjuntos são ditos iguais se cada um deles está contido no outro, isto é:

$$A = B \Rightarrow A \subset B \in B \subset A$$

- ✓ As negações de $p \in A$, $A \subset B$ e A = B são, respectivamente: $p \notin A$, $A \not\subset B$ e $A \neq B$
- ✓ Denotamos por o conjunto vazio (ou nulo). Este conjunto não contém nenhum elemento.

$$\emptyset \subset A, \forall A \subset U$$

✓ U é o conjunto Universo.

√ Relações de Pertinência

Relacionam elemento com conjunto. E a indicação de que o elemento pertence ou não pertence a um conjunto é feita pelos símbolos: \in (pertence) e \notin (não pertence). Exemplo 1: a) $2 \in \{0, 1, 2\}$ b) $4 \notin \{0, 1, 2\}$

√ Relações de Inclusão

Exemplo 2: a) $\{2, 5\} \subset \{0, 1, 2, 5\}$ b) $\{2, 7\} \not\subset \{0, 1, 2, 5\}$ c) $\{0, 1, 2, 5\} \supset \{2, 5\}$ d) $\{0, 1, 2, 5\} \{2, 7\}$

√ Subconjunto

Diz-se que A é subconjunto de B se todo elemento de A é também elemento de B.

Exemplo 3: a) {2} é subconjunto de {1, 2, 3}

b) {1, 3} é subconjunto de {1, 3, 5}

EXEMPLO:

- 1. Seja A = $\{1, \{2\}, \{1,2\}\}$. Considere as afirmações:
- (I) $1 \in A$
- (II) $2 \in A$
- (III) $\varnothing \subset A$
- (IV) $\{1,2\} \subset A$

Estão corretas as afirmações:

- A) I e II
- B) I e III
- C) III e IV
- D) III
- E) I

RESOLUÇÃO:

Um ponto importante para chegar a resposta correta desta questão é ter em mente o que é relação de pertinência e sobre a relação entre um subconjunto e conjunto.

A **relação de pertinência** é usada somente para relacionar o elemento e seu conjunto. Utilizamos para isso o símbolo \in (lê-se: pertence).

Para **relacionar subconjunto e conjunto**, usamos o símbolo ⊂ (lê-se: está contido), ou seja, sempre que um conjunto está contido em outro, utilizamos tal símbolo.

Claro que o contexto envolvendo a questão deve ser analisado antes, como veremos a seguir na resolução

Analisaremos item por item.

- (I) Veja que 1 é elemento de A e o símbolo usado (pertence) para relacionar está correto, então o item I é verdadeiro.
- (II) Repare que 2 não é elemento do conjunto A, então ele não pertence a A, logo o item II não está correto. Observe que $\{2\}$ é elemento de A. Nesse ponto, chamamos a atenção para o fato de que $\{2\}$ é um conjunto, já que está entre chaves, que é um elemento de A.

Há uma diferença entre 2 e {2}, espero que tenha percebido. O item IV é semelhante.

- (III) Uma das propriedades de inclusão (por definição de subconjunto) diz o seguinte: o ∅ (vazio) está contido em qualquer conjunto. Portanto, o item III está correto.
- (IV) Mais uma vez temos que {1,2} é um elemento de A e não um subconjunto, logo a afirmação não está correta, pois deveria ser usado o símbolo de pertence. Neste caso, o símbolo estaria correto se, ao invés de {1,2} tivéssemos {{1,2}} (subconjunto 1,2). Temos que somente os itens I e III estão corretos.

Exercícios em Sala:

1. Classificar em falsa (F) ou verdadeira (V) cada uma das seguintes afirmações:

a)
$$0 \in \{0\}$$

b)
$$\{5\} \subset \{\emptyset, \{1\}, \{5\}, \{1,5\}\}$$

c)
$$\{x\} \in \{x, \{x, y\}\}$$

d)
$$\emptyset = \{\emptyset\}$$

Operações com Conjuntos (Eventos Aleatórios)

Considere um espaço amostral finito Ω e sejam A e B eventos de ε . Assim, é possível definir as seguintes operações:

• UNIÃO (A U B)

O evento união é formado pelos pontos amostrais que pertencem a, <u>pelo menos um</u> dos eventos. Usando o Diagrama de Venn:

IINTERSEÇÃO (A ∩ B)

O evento interseção é formado pelos pontos amostrais que pertencem, <u>simultaneamente</u>, aos eventos A \underline{e} B. Usando o Diagrama de Venn:

CASO ESPECIAL:

Se A \cap B = \emptyset , A e B são ditos eventos mutuamente excludentes (exclusivos).

• COMPLEMENTAÇÃO (A^c ou Ā)

O evento complementação é formado pelos pontos amostrais que $\underline{n\~ao}$ pertencem ao evento A (de interesse). Usando o Diagrama de Venn:

LEIS DE ÁLGEBRA DOS CONJUNTOS					
Idempotentes: i. A U A = A	Associativas: iii. (A U B) U C = A U (B U C)	Identidade: v. A U Ø = A	vii. A U Ω = Ω		
ii. $A \cap A = A$ Comutativas:	iv. $(A \cap B) \cap C = A \cap (B \cap C)$ <u>Distributivas</u> :	vi. $A \cap \emptyset = \emptyset$ <u>Complementares</u> :	viii. $A \cap \Omega = A$		
ix. $A \cup B = B \cup A$ x. $A \cap B = B \cap A$, , , , , , ,	xiii. A U $A^c = \Omega$ xiv. $A \cap A^c = \emptyset$	xvi. $(A^c)^c = A$ xvii. $\Omega^c = \emptyset$		
		$xv. \varnothing^C = \Omega$			
<u>Leis de Morgan</u> :	xviii. $(\overline{A \cap B}) = A^c \cup B^c$	$xix. (\overline{A U B}) = A^c$	∩ B ^c		

Exercícios em Sala

1. Dados A =
$$\{0, 1, 3, 4\}$$
, B = $\{2, 3, 4, 5\}$, C = $\{4, 5\}$ e D = $\{5, 6, 7\}$, calcule:

- a) $(A \cup C) \cap B$
- b) (BNC) U D

Definição 4: Eventos

Qualquer subconjunto do espaço amostral é chamado de evento, ou seja, se E $\subset \Omega$.

então E é um evento de Ω .

Tipos de eventos

- Se $E = \Omega$, E é chamado evento certo;
- Se $E \subset \Omega$ e E é um conjunto unitário, E é chamado evento elementar;
- Se $E = \emptyset$, E é chamado evento impossível.

Exemplo 1:

Seja ε : lançamento de um dado e os eventos: A=resultado do dado é par; B= Resultado do dado é >1 e <6 e C=Resultado do dado é>=1 e <=6. Defina o espaço amostral do experimento e os eventos A, B e C.

Exemplo 2:

Ao lançar 2 dados, é possível classificar como evento:

A: Saída de faces iguais;

B: Saída de faces cuja soma seja menor que 3;

C: Saída de faces em que uma face é o dobro da outra;

D: Saída de faces cuja soma seja menor que 2;

E: Saída de faces cuja soma seja menor que 15;

F: Saída de faces cuja soma seja igual a 10;

Solução:

O evento D é dito impossível, o evento E é dito certo, o evento B é dito elementar e os demais, A, C e F são apenas eventos.

Já que o espaço amostral é:

e os eventos são:

```
\Omega = \{(1,1); (1,2); (1,3); (1,4); (1,5); (1,6) \\ (2,1); (2,2); (2,3); (2,4); (2,5); (2,6) \\ (3,1); (3,2); (3,3); (3,4); (3,5); (3,6) \\ (4,1); (4,2); (4,3); (4,4); (4,5); (4,6) \\ (5,1); (5,2); (5,3); (5,4); (5,5); (5,6) \\ (6,1); (6,2); (6,3); (6,4); (6,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (5,5); (6,6)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (3,6); (4,2); (6,3)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (3,6); (4,2); (6,3)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (3,6); (4,2); (6,3)\} \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (4,2); (4,3); (4,4); (4,5); (4,6) \\ \Omega = \{(1,1); (2,2); (2,3); (2,4); (2,4); (3,6); (4,2); (4,3); (4,4); (4,5); (4,6) \\ \Omega = \{(1,1); (2,2); (3,3); (4,4); (4,2); (4,3); (4,4); (4,5); (4,6) \\ \Omega = \{(1,1); (2,2); (2,2); (2,2); (2,4); (2,2); (2,4); (2,2); (2,4);
```

EXERCÍCIOS EM SALA

1)Sejam A, B, C três eventos de um espaço amostral. Exprima os eventos abaixo usando as operações união, interseção e complementação:

a)Somente A ocorre; b) A e C ocorrem, mas B não; c) A, B e C ocorrem; d) Pelo menos um ocorre; e) Exatamente um ocorre; f) Nenhum ocorre

2) Seja o experimento: lançamento de um dado e observação da face superior. Considere os eventos:

A: o número da face é impar

B: o número da face é um número entre 1 e 6

a) Qual a listagem do evento A, B? b) A complementar, e B complementar; c) AUB d) $A \cap B$

3. Probabilidade

PESQUISA DA PREFERENCIA DAS CORES EM SALA DE AULA:

DENTRE AS 5 CORES A SEGUIR ESCOLHA APENAS UMA COR PREFERIDA:

- ✓ VERDE
- ✓ VERMELHO
- ✓ MARROM
- ✓ ROSA
- ✓ AZUL

Ou seja,

$$P(A) = \frac{n^{\circ} \ de \ casos \ favoraveis \ ao \ evento \ A}{n^{\circ} \ total \ de \ ocorrencias \ do \ \varepsilon}$$

Suponha que se repita um experimento ϵ n vezes. Sejam A e B dois eventos associados ao espaço amostral resultante. Admita que n_A e n_B representem, respectivamente, o número de vezes que os eventos A e B ocorrem nas n repetições.

Definição 5: Frequência Relativa

Representa o número de vezes em que ocorre(m) o(s) evento(s) de interesse nas n repetições do experimento. Ou ainda, $f_A = n_A$ é a frequência relativa do evento nas n repetições do experimento que apresenta as seguintes propriedades:

Propriedades:

- i. $0 \le f_a \le 1$;
- ii. $f_a = 1$, se o evento de interesse ocorrer todas as vezes;
- iii. $f_a = 0$, se o evento de interesse nunca todas as vezes;
- iv. Se A e B forem mutuamente excludentes

$$f(A \cup B) = f(A) + f(B)$$

v. Com base nas n repetições $f_a \rightarrow P(A)$ quando $n \rightarrow \infty$.

Definição 6: Probabilidade

Seja ε um experimento e Ω o espaço amostral associado a ele. A cada evento A associamos um número real P(A), denominado probabilidade de A, que satisfaça as seguintes condições:

- 1. $P(A) \le 0$; 2. $P(\Omega) = 1$;
- 3. Se A_1 , A_2 , ..., A_i ,... forem eventos mutuamente excludentes 02 a 02, ou seja, se $A_i \cap A_j = \emptyset$, i,j = 1,2,...,k; $i \neq j$, então

$$P(A_1 \cup A_2 \cup ... \cup A_i \cup ...) = P(A_1) + P(A_2) + + P(A_i) + ...$$

ou seja,

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Propriedades:

- i. Para todo $A \subset \Omega$, $P(A^c) = 1 P(A)$;
- ii. Se \emptyset é o evento impossível $\Rightarrow P(\emptyset) = 0$;
- iii. Se os eventos A e B são, tais que, $A \subset B \Rightarrow P(A) \leq P(B)$;
- iv. Para cada evento $A \Rightarrow 0 \le P(A) \le 1$;
- v. Se A e B são dois eventos quaisquer, então:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

vi. Se A, B e C são eventos quaisquer, então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Usando o Diagrama de Venn para representar os itens v. e vi., respectivamente, tem-se que:

**** TEOREMAS:**

- 1. Se \emptyset for o conjunto vazio $\rightarrow P(\emptyset) = 0$.
- 2. Se A^c for um evento complementar de $A \rightarrow P(A) = 1 P(A^c)$
- 3. Se A e B forem dois eventos quaisquer, então: $P(A \cup B) = P(A) + P(B) P(A \cap B)$

EXERCÍCIOS EM SALA

1) Suponha que A e B sejam eventos tais que P(a)=2/5, P(B)=2/5 e P(AUB)=1/2. Determine $P(A\cap B)$.

- 2) Você esta planejando uma viagem de dois dias para Campina Grande-PB em junho. Use o diagrama de arvore a seguir para responder:
- a) liste o espaço amostral dos dias de chuva e sol na sua viagem;
- b) liste o(s) resultado(s) do evento "irá chover nos três dias"
- c) liste o(s) resultado(s) do evento "irá chover exatamente em um dia"
- d)) liste o(s) resultado(s) do evento "irá chover pelo menos em um dia"
- e) calcule a probabilidade dos eventos e do espaço amostral?
- 3) Consideremos um experimento aleatório e os eventos A e B associados, tais que P(A)=1/2, P(B)=1/3 e $P(A\cap B)=1/4$. Calcule:
- a) $P(A^c)$ b) $P(B^c)$ c) P(AUB) d) $P(A^c \cap B^c)$ e) $P(A^c \cup B^c)$
- 4) Sejam A, B e C eventos tais que P(A) = P(B) = P(C) = 1/5, $A \cap B = \emptyset$, $A \cap C = \emptyset$ e $P(B \cap C) = 1/7$. Calcule a probabilidade de que pelo menos um dos eventos A, B ou C ocorra.

Definição 7: Espaços Amostrais Equiprováveis (Eventos equiprováveis)

Seja Ω um espaço amostral finito, Ω = {w₁, w₂,..., w_n}. A₁, A₂, ..., A_n são ditos equiprováveis quando apresentam a mesma probabilidade de ocorrência, ou seja,

$$P(A_1) = P(A_2) = ... = P(A_n) = 1/n$$

Exemplo:

O lançamento de uma moeda, sendo A: A face é cara e B: A face é coroa. P(A) = P(B) = 1/2.

Definição 8: Espaços Amostrais Infinitos Enumeráveis

Neste caso, Ω um espaço amostral infinito enumerável, $\Omega = \{w_1, w_2, ..., w_n, ...\}$, no qual obtemos um espaço de probabilidade de forma análoga ao caso finito, ou seja:

$$\begin{array}{ll} i. \ 0 \leq p_i \leq 1; & \forall i = 1, \, ..., \, n \\ ii. \ \sum_{i=1}^{\infty} p_i = 1 & \end{array}$$

Exemplo:

Considere o espaço amostral relativo ao lançamento de uma moeda até aparecer o resultado cara. Se for considerado o nº de lançamentos necessários para observar cara, então: Ω = 1, 2, 3... Solução:

Seja n o nº de lançamentos, n = 1,2,... então:

$$P(n = 1) = (1/2)^1 = 1/2$$

$$P(n = 2) = (1/2)^2 = 1/4$$

$$P(n = 3) = (1/2)^3 = 1/8$$

$$P(n = i) = (1/2)^i = (1/2)^i$$

OBS: Nos exemplos vistos foi fácil associar o espaço amostral (Ω) ao experimento realizado. Mas isto nem sempre é possível, por isso precisamos de técnicas para auxiliar a enumerar os possíveis resultados. Seria o princípio fundamental da contagem, composto pela regra da multiplicação, permutação e arranjos, combinação e análise combinatória.

Eventos Independentes:

Sejam A e B eventos de Ω . Diz-se que A e B são eventos independentes se:

$$P(A \cap B) = P(A)P(B)$$

Sejam A, B e C eventos de Ω . Diz-se que A, B e C são eventos independentes se:

i. $P(A \cap B \cap C) = P(A)P(B)P(C)$

ii. $P(A \cap B) = P(A)P(B)$

 $P(A \cap C) = P(A)P(C)$

 $P(B \cap C) = P(B)P(C)$

Generalizando:

Diz-se que n eventos $A_1, A_2, ..., A_n$ são independentes se:

 $\begin{array}{lll} P(A_i \cap A_j) = P(A_i)P(A_j) & \forall \ i \neq j & i,j = 1,2,...,n \\ P(A_i \cap A_j \cap A_k) = P(A_i)P(A_j)P(A_k) & \forall \ i \neq j \neq k & i,j,k = 1,2,...,n \\ P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2) \, ... \, P(A_n) & \forall \ i \neq j \neq k & i,j,k = 1,2,...,n \end{array}$

...

 $P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i)$ $\forall i$ i = 1, 2, ..., n

OBS: Se A e B são eventos independentes então A^c e B^c também o são.

Tente Você 1: Provar observação acima

Seja $\Omega = \{1,2,3,4\}$ cada ponto amostral com probabilidade de ocorrência de 1/4. Seja $A = \{1,2\}$; $B = \{1,3\}$ e $C = \{1,4\}$. É possível afirmar que A, B e C são eventos independentes?

Solução:

$$(A \cap B) = \{1\}$$
 $P(A \cap B) = P(A)P(B) = 1/4$
 $(A \cap C) = \{1\}$ $P(A \cap C) = P(A)P(C) = 1/4$
 $(B \cap C) = \{1\}$ $P(B \cap C) = P(B)P(C) = 1/4$

Mas

$$(A \cap B \cap C) = \{1\}$$
 $P(A \cap B \cap C) \neq P(A)P(B)P(C)$ $1/4 \neq (1/2) (1/2) (1/2)$ $1/4 \neq 1/8$

Logo, os eventos A, B e C não são independentes, pois apesar de serem independentes 2 a 2 a condição i. $P(A \cap B \cap C) = P(A)P(B)P(C)$ é violada.

OBS: Para que os eventos A, B e C sejam independentes, tanto a condição i. quanto a ii. Devem ser atendidas, caso um item não seja satisfeito, não é possível classificar os eventos como independentes.

Tente Você

A probabilidade de que um homem esteja vivo daqui a 30 anos \pm 2/5; a de sua mulher \pm de 2/3. Determine a probabilidade de que daqui a 30 anos:

a) Ambos estejam vivos;

- d) Nenhum esteja vivo;
- b) Somente o homem esteja vivo;
- e) Pelo menos um esteja vivo.
- c) Somente a mulher esteja viva;

EXERCÍCIO EM SALA

- 1) Sejam A e B eventos tais que P(A)=0,2, P(B)=p e P(AUB)=0,6. Calcule **p** considerando A e B:
 - a) A e B são mutuamente excludentes;
 - b) A e B são independentes
- 2) O seguinte grupo de pessoas está numa sala: 5 rapazes com mais de 21 anos, 4 rapazes com menos de 21 anos, 6 moças com mais de 21 anos e 3 moças com menos de 21 anos. Uma pessoa é escolhida ao acaso dentre 18. os seguintes eventos são definidos:

A: a pessoa tem mais 21 anos

B: a pessoa tem menos de 21 anos

C: a pessoa é um rapaz

D: a pessoa é uma moça

Calcular: a) $P(B \cup D)$; b) $P(A^c \cap C^c)$.

EXERCÍCIOS MOTIVAÇÃO PARA PROB. CONDICIONAL

Uma amostra de 6800 pessoas de uma determinada população foi classificada quanto a cor dos olhos e a cor dos cabelos. Os resultados foram:

Cor dos Olhos\Cabelos	Loiro (L)	Castanho (K)	Escuros (E)	Ruivo (R)	Total
Azul (A)	1768	807	189	47	2811
Verde (V)	946	1387	746	53	3132
Castanho (C)	115	438	288	16	857
Total	2829	2632	1223	116	6800

Determine:

- a) Defina o experimento, espaço amostral e eventos
- b) Qual a probabilidade de uma pessoa ter olhos azuis E cabelos loiros?
- c) Qual a probabilidade de uma pessoa ter olhos azuis OU cabelos loiros?
- d) Qual a probabilidade de uma pessoa ter olhos azuis DADO que possui cabelos loiros?

Definição 9: Probabilidade Condicional

Sejam A e B dois eventos associados a um espaço amostral (Ω) em que P(A) > 0. A probabilidade de um evento B ocorrer dado/sabendo/tendo conhecimento que o evento A ocorreu, é dita probabilidade condicional. De um modo geral, estamos interessados na probabilidade condicional de um evento B, havendo certeza da ocorrência de um evento A (de probabilidade não nula) sendo denotada e expressa por:

$$P(B | A) = P(A \cap B)$$

P(A)

Observações:

- 1) Se P(A) = 0, nada pode-se afirmar sobre P(B|A);
- 2) Se A e B forem mutuamente exclusivos (A \cap B = \emptyset), então:

$$P(B \mid A) = \underbrace{P(A \cap B)}_{P(A)} = \underbrace{P(\emptyset)}_{P(A)} = 0$$

3) Sempre que for calculada P(B|A) se está calculando, essencialmente, P(B) em relação ao espaço amostral reduzido a A, ao invés de fazê-lo em relação ao espaço amostral original Ω.

$$P(A) = \# A$$
 e $P(B | A) = \#(A \cap B)$
 $\#B$

Na prática, o que fazemos é considerar uma restrição do Espaço Amostral ao conjunto A, já que temos a certeza de que o mesmo ocorreu. Ou seja,

Exemplo:

Dois dados honestos são lançados, registrando-se o par de resultados como (x_1, x_2) , onde x_i é o resultado do i-ésimo dado, i = 1, 2. Considere os seguintes eventos: A = $\{(x_1, x_2)/ x_1 + x_2 = 10\}$ e B = $\{(x_1, x_2)/ x_1 > x_2\}$. Determine: P(A), P(B), P(A \cap B), P(A/B) e P(B/A).

Solução:

Portanto,

$$P(A) = 3/36;$$
 $P(B) = 15/36;$ $P(A \cap B) = 1/36$
 $P(A \mid B) = P(A \cap B) = 1/36$
 $P(B) = 1/36$
 $P(B) = 1/36$
 $P(A \mid B) = 1/15.$

Similarmente:

$$P(B \mid A) = P(A \cap B) = 1/36$$
 \Rightarrow $P(A \mid B) = 1/3.$

Representando, assim, as probabilidades de ocorrência de cada evento (A; B), a probabilidade de ambos os eventos acontecerem (A \cap B) e, por fim, a probabilidade do evento A acontecer dado que B já aconteceu P(A \mid B) e a probabilidade de B acontecer dado que o evento A já aconteceu.

EXERCÍCIOS EM SALA

1) Considere 250 alunos que cursam o 1º período da faculdade. Destes alunos 100 são homens e 150 são mulheres, 110 são do curso de engenharia e 140 de computação. Um aluno é sorteado ao acaso. Qual a probabilidade de que ele esteja cursando computação dado que é mulher, com base na distribuição a seguir: Calcule também a probabilidade: Que seja homem dado que cursa engenharia? Que curse computação dado que é homem?

Sexo	Cursos	Cursos	
Sexo	Engenharia	Computação	Total
Homens	40	60	100
Mulheres	70	80	150
Total	110	140	250

Definição 10: Espaços Amostrais Finitos (Partição do espaço amostral)

Um espaço amostral é dito finito quando for formado por um número finito de elementos, isto é:

$$\Omega = \{w_1, w_2, ..., w_n\}$$

Para estes casos, caracteriza-se probabilidade considerando eventos formados por um único elemento (evento elementar), ou seja, $A_i = \{w_i\}$, i = 1,...,n. A cada evento simples Ai associa-se uma probabilidade p_i de ocorrência, isto é

$$P(A_i) = p_i ; i = 1, ..., n$$

Então, da definição 6 (condição 1) de probabilidade,

$$0 \le P(A_i) = p_i \le 1, \forall i = 1, ..., n$$

Prova:

$$A_1 U A_2 U ... U A_n = \Omega.$$

$$A_1 \cap A_2 \cap ... \cap A_n = \emptyset$$
 (A_i e A_j são mutuamente excludentes 02 a 02, isto é: A_i \cap A_j = \emptyset)

Daí, pela condição 2 da definição 6 de probabilidade

$$P(A_1 \ U \ A_2 \ U \ ... \ U \ A_n) = P(\Omega) = 1$$

E, pela condição 4 de probabilidade pode-se reescrever

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) \cup P(A_2) \cup ... \cup P(A_n) = 1$$

Logo,

$$\sum_{i=1}^{\infty} P(A_i) = 1 \qquad \text{ou} \qquad \sum_{i=1}^{\infty} p_i = 1$$

Portanto, para cada Ai

$$P(A_i) = p_i,$$
 $i = 1,2,...,n$

$$\begin{array}{ll} \text{Satisfaz:} & i. \ 0 \leq p_i \leq 1; \\ & ii. \ \sum_{i=1}^{\infty} p_i = 1 \end{array} \qquad i = 1, \ ..., \ n$$

Exemplo:

Quatro corredores de fórmula 1 estão realizando um treino. Qual é a probabilidade do corredor I não vencer sabendo-se que o corredor I tem duas vezes mais chances de vencer que o III, no qual este, por sua vez, tem três vezes mais chances de vencer que o IV, o qual tem duas vezes mais chances de vencer que o II.

Solução:

Sabe-se que
$$p_1 = 2p_3$$
 $p_3 = 3p_4$ e $p_4 = 2p_2$ Daí, $p_2 = 0.5p_4$ $p_3 = 3p_4$ e $p_1 = 2*(3p_4)$ $\rightarrow p_1 = 6p_4$

$$p_2 = 0.5p_4 \ p_3 = 3p_4$$
 e $p_1 = 2*(3p_4) \rightarrow p_1 = 6p_4$

Como
$$\sum_{i=1}^{\infty} p_i = 1$$
,

$$6p_4 + 0.5p_4 + 3p_4 + p_4 = 1 : 10.5p_4 = 1 : p_4 = 2/21$$

Assim,

$$p_1 = 6x(2/21) = 12/21$$
 e $p_1^c = 9/21$ prob. de ganho do piloto 1 prob. de perda do piloto 1

Em resumo: Os eventos P₁, P₂, ..., P_k formam um partição do espaço amostral, se eles não tem intersecção entre si e sua união é igual ao espaço amostral, ou seja,

i)
$$A_i \cap A_j = \emptyset$$
, para $i \neq j$;

ii)
$$\bigcup_{i=1}^{k} A_i = \Omega$$

A Figura a lado dá uma idéia de uma partição com k eventos.

#TEOREMA DA MULTIPLICAÇÃO (ou do produto):

Aplicado quando houver interesse em calcular a ocorrência simultânea de vários eventos a partir de probabilidades condicionais, ou seja,

$$P(A \cap B) = P(A)P(B \mid A)$$

Generalizando,

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \times P(A_2 \mid A_1) \times P(A_3 \mid A_1 \cap A_2) \times ... \times P(A_n \mid A_1 \cap A_2 \cap ... \cap A_{n-1})$$

OBS: Esta é a consequência mais importante da definição de probabilidade condicional.

Exemplo:

Em uma sala de aula com 12 alunos, 4 são do sexo masculino e 8 são do sexo feminino. Três alunos são escolhidos, aleatoriamente, pela professora, um após o outro, a fim de ganharem alguns pontos na disciplina, caso tenham resolvido o exercício de classe de forma correta. Sendo assim, determine a probabilidade dos três alunos serem do sexo masculino sabendo-se que a probabilidade da 1ª pessoa ser do sexo feminino é 8/12.

Solução:

Seja o evento

A_i → O i-ésimo aluno é do sexo masculino e

 $A_i \rightarrow O$ i-ésimo aluno é do sexo feminino, em que $P(A_i) = 8/12$

Logo,

 $P(A_1 \cap A_2 \cap A_3) = P(A_1)_x P(A_2 | A_1)_x P(A_3 | A_1 \cap A_2)$ $P(A_1 \cap A_2 \cap A_3) = (4/12)_x (3/11)_x (2/10)$ $P(A_1 \cap A_2 \cap A_3) = 24/1320$ $P(A_1 \cap A_2 \cap A_3) = 1/55$

Ou seja, a probabilidade de que os três alunos sorteados em sala de aula sejam do sexo feminino é de 1/55.

TEOREMA DE BAYES

Dar um palpite sobre que face da moeda vai cair para cima ou se vai chover amanhã sempre fez parte de nossas vidas. Essencialmente o que a proposta deste teorema traz de inovador é o caráter subjetivo na previsão de um evento, ou seja, a opinião do pesquisador que manipula os números entra de modo significativo nos cálculos. Essa opinião é baseada na quantidade de informação que se tem nas mãos sobre as condições de ocorrer tal evento. Então, usando esse método na previsão das chances de um time A vencer um time B, deve-se levar em conta as informações que se tem sobre resultados anteriores a essa disputa, como quantas vezes A venceu B, e as experiências e opiniões de especialistas sobre esse jogo, o campeonato e os jogadores.

Em termos numéricos, sejam A_1 , A_2 , ..., A_n eventos que formam uma partição do Ω . seja $B \subset \Omega$. Sejam conhecidas $P(A_i)$ e $P(B/A_i)$, i = 1, 2, ..., n. Então,

$$P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

Exemplo 1:

Suponha que um fabricante de sorvetes recebe 20% de todo o leite que utiliza de uma fazenda F_1 , 30% de uma outra fazenda – F_2 e 50% de F_3 . Um órgão de fiscalização inspecionou as fazendas de surpresa e observou que 20% do leite produzido por F_1 estava adulterado por adição de água, enquanto que para F_2 e F_3 , essa proporção era de 5% e 2%, respectivamente. Na indústria de sorvetes os galões de leite são armazenados em um refrigerador sem identificação das fazendas. Para um galão escolhido ao acaso, qual a probabilidade de que a amostra adulterada tenha sido obtida d leite fornecido pela fazenda F_1 ?

<u>Solução</u>:

Inicialmente denote o evento A: o leite está adulterado. Assim,

$$P(A | F_1) = 0.20$$
 $P(A | F_2) = 0.05$ $P(A | F_3) = 0.02$

Além disso, F_1 , F_2 e F_3 formam uma partição do espaço amostral, pois uma dada amostra vem, necessariamente, de uma e apenas uma das três fazendas. Desta forma, o evento A pode ser escrito em termos de intersecções de A com os eventos F_1 , F_2 e

 F_3 , conforme ilustra a figura a seguir: Em que,

$$A = (A \cap F_1) U (A \cap F_2) U (A \cap F_3)$$

Sabemos também que

$$P(F_1) = 20\%$$
 $P(F_2) = 30\%$ $P(F_3) = 50\%$

Daí,

$$P(F_1|A) = \frac{P(A|F_1)P(F_1)}{P(A|F_1)P(F_1) + P(A|F_2)P(F_2) + P(A|F_3)P(F_3)} = \frac{(0,2)(0,2)}{(0,2)(0,2) + (0,05)(0,3) + (0,02)(0,5)}$$

$$P(F_1|A) = \frac{0.04}{0.04 + 0.015 + 0.010} = \frac{0.04}{0.065} = 0.615$$

Exercícios em sala:

1. Em uma sala de aula composta por 80 alunos 34 alunos são do sexo feminino e 46 são do sexo masculino, em que metade das mulheres e 1/4 dos homens usam óculos,

respectivamente. Ao escolher um aluno ao acaso, qual a probabilidade de que ele seja do sexo masculino dado que ele usa óculos?

- **2.** As maquinas A e B são responsáveis por 60% e 40% da produção de uma empresa, respectivamente. Os índices de peças defeituosas na produção destas máquinas valem 3% e 7%, respectivamente. Se uma peça defeituosa foi selecionada da produção desta empresa, qual é a probabilidade de que tenha sido produzida pela máquina B.
- **3.** Acredita-se que numa certa população, 20% de seus habitantes sofrem de algum tipo de alergia e são classificados como alérgicos para fins de saúde publica. Sendo alérgico, a probabilidade de ter reação a um certo antibiótico é de 0,5. para os não alérgicos essa probabilidade é apenas 0,05. Uma pessoa dessa população teve reação ao ingerir o antibiótico, qual a probabilidade de:
- a. Ser do grupo de n alérgico;
- b. Ser do grupo de alérgico.

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ESTATÍSTICA E CIÊNCIAS ATUARIAIS

1º Exercícios Probabilidade I - Profa Amanda Lira - UFS

- **1ª questão**. Suponha que um conjunto seja formado pelos inteiros positivos de 1 a 10. Sejam: $A = \{2,3,4\}$; $B = \{3,4,5\}$ e $C = \{5,6,7\}$. Enumere os elementos dos seguintes conjuntos:
 - a) $A^c \cap B$

b) A^c U B

c) $(A^c \cap B^c)^c$

- d) (A \cap (B \cap C)^c)^c
- e) (A ∩ (B U C))^c
- **2ª Questão** Considere o espaço amostral S = (cobre, sódio, nitrogênio, potássio, urânio, oxigênio, zinco) e os eventos A = (cobre, sódio, zinco); B = (sódio, nitrogênio, potássio) e C = (oxigênio). Liste os elementos dos grupos correspondentes aos seguintes eventos:

(a)
$$\bar{A}$$
. (d) $\bar{B} \cap \bar{C}$.
(b) $A \cup C$. (e) $A \cap B \cap C$.
(c) $(A \cap \bar{B}) \cup \bar{C}$. (f) $(\bar{A} \cup \bar{B}) \cap (\bar{A} \cap C)$.

- **3ª questão**. Construa o Espaço Amostral associado a cada experimento apresentado a seguir:
- (a) Joga-se um dado e observa-se o número mostrado na face de cima.
- (b) Joga-se uma moeda guatro vezes e observa-se o número de caras obtidos.
- (c) O conjunto de números inteiros entre 1 e 50 divisíveis por 8.
- (d) Dois dados são lançados simultaneamente e estamos interessados na soma das faces observadas.
- 4ª Questão Com relação a tabela abaixo, responda e interprete os resultados.

Resultado do teste	O sujeito realmente usou maconha			
Resultado do teste	Sim	Não		
Positivo	119	24		
Negativo	3	154		

- a) Se 1 das 300 pessoas for escolhida ao acaso, qual a probabilidade de o teste dar positivo visto que esta pessoa realmente usou maconha. R=0,975
- b) Se 1 das 300 pessoas for escolhida aleatoriamente, qual a probabilidade de esta pessoa ter usado maconha, visto que o teste deu positivo. R=0,832
- **5ª questão.** Um grupo de 850 pessoas foi submetido a um teste para verificar o efeito de um antidepressivo em relação ao enjôo que ele pode provocar nas pessoas. O resultado da pesquisa está na tabela abaixo.

	Antidepressivo	Placebo	Total
Com enjôo	120	280	400
Sem enjôo	300	150	450
Total	420	430	850

Selecionando-se uma pessoa, aleatoriamente, qual a probabilidade da mesma:

- a) Ter tomado o antidepressivo; R=0,494
- b) Ter sofrido de enjôo; R=0,470
- c) Não ter enjôo ou ter ingerido placebo; R=0,858
- d) Ter tomado o antidepressivo e ter ficado com enjôo; R=0,141
- e) Ter tomado o placebo e ter ficado com enjôo. R=0,329

6ª questão. Considere 250 alunos que cursam o 1º período da faculdade. Destes alunos 100 são homens e 150 são mulheres, 110 são do curso de engenharia e 140 de computação. Um aluno é sorteado ao acaso. Qual a probabilidade de que ele esteja cursando computação dado que é mulher, com base na distribuição a seguir: R=0,933

Sexo	Cu	Total	
33,13	Engenharia Computaçã		
Homens	60	90	
Mulheres	30	40	
Total			

7ª questão. A e B jogam 12 partidas de xadrez, das quais A ganha 60, B ganha 40 e 20 terminam empatadas. A e B concordam em jogar 3 partidas. Determinar a probabilidade de:

- a) A ganhar todas as três; R=0,125
- b) Duas partidas terminarem empatadas; R=0,069
- c) A e B ganharem alternadamente. R=0,138

8^a **questão.** Sejam A, B e C eventos tais que P(A) = P(B) = P(C) = 1/5, $A \cap B = \emptyset$, A $\cap C = \emptyset$ e $P(B \cap C) = 1/7$. Calcule a probabilidade de que pelo menos um dos eventos A, B ou C ocorra. R=0,742

9ª questão. O seguinte grupo de pessoas está numa sala: 5 rapazes com mais de 21 anos, 4 rapazes com menos de 21 anos, 6 moças com mais de 21 anos e 3 moças com menos de 21 anos. Uma pessoa é escolhida ao acaso dentre 18. Os seguintes eventos são definidos:

B: a pessoa tem menos de 21 anos D: a pessoa é uma moça

Calcular b) $P(A^c \cap C^c)$. R=0,166

a) P(B U D); R=0,722

10ª questão. Um certo tipo de motor elétrico falha se ocorrer uma das seguintes situações: emperramento dos mancais, queima dos enrolamentos ou desgaste das escovas. Suponha que o emperramento seja duas vezes mais provável do que a queima, e a queima quatro vezes mais provável do que o desgaste das escovas. Qual será a probabilidade de que a falha seja devida a cada uma dessas circunstâncias?

Respostas

```
a) emperramento dos mancais é de 8/13 \approx 61,5 \%
b) queima dos enrolamentos é de 4/13 \approx 30,8 \%
c) desgaste das escovas é de ... 1/13 \approx 7,7 \%
```

- **11**^a **questão.** Sejam A e B dois eventos associados a um experimento. Suponha que P(A) = 0.4 enquanto que $P(A \cup B) = 0.7$. Seja P(B) = p.
 - a) Para que valor de p_r A e B serão mutuamente excludentes?
 - b) Para que valor de p, A e B serão independentes?
- **12ª questão.** A probabilidade de que um homem esteja vivo daqui a 30 anos é 2/5; a de sua mulher estar viva é 2/3. Determine a probabilidade de que daqui a 30 anos:
 - a) Ambos estejam vivos;
 - b) Somente o homem esteja vivo;
 - c) Somente a mulher esteja viva;
 - d) Nenhum esteja vivo;
 - e) Pelo menos um esteja vivo.
- **13ª questão.** Uma empresa de sementes fiscalizadas vende pacotes com 20 Kg cada. As máquinas A,B,C enchem 25; 35 e 40% do total produzido, respectivamente. Da produção de cada máquina 5; 4 e 2%, respectivamente, são pacotes fora do peso aceitável. Escolhe-se ao acaso um pacote e verifica-se que esta fora do peso aceitável. Qual a probabilidade de que o pacote tenha vindo da maquina A? R=
- **14ª questão.** Uma fábrica de sorvete recebe o leite que utiliza de três fazendas: 20% da fazenda 1, 30% da fazenda 2 e 50% da fazenda 3. Um órgão de fiscalização inspecionou as fazendas e constatou que 20% do leite produzido na fazenda 1 estava adulterado por adição de água, enquanto que para as fazendas 2 e 3 essa proporção era de 5% e 2%, respectivamente. A fábrica de sorvete recebe o leite em galões, que são armazenados em um refrigerador, sem identificação da fazenda de proveniência. Um galão é escolhido ao acaso e seu conteúdo é testado para verificar adulteração.
- (a) Qual a probabilidade de que o galão contenha leite adulterado; R=
- (b) Sabendo que o teste constatou que o leite do galão está adulterado, obtenha a probabilidade de que o galão seja proveniente da fazenda 1. R=

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ESTATISTICA E CIÊNCIAS ATUARIAIS

Disciplina: Probabilidade para Ciências Atuariais I **Docente:** Amanda Lira

UNIDADE II

Sumário

1. Conceitos de variáveis aleatórias unidimensionais
☐ Variável aleatória discreta
☐ Função de probabilidade (f.p)
☐ Função de distribuição acumulada
2. Esperança matemática, Variância e Desvio padrão
☐ Esperança matemática de variáveis aleatórias
□ Variância de uma variável aleatória
3. Modelos probabilísticos discretos
Distribuição de Bernoulli
Distribuição Binomial
Distribuição Geométrica
Distribuição de Poisson
Distributed uc i dissuit

1. Variáveis Aleatórias

Na prática é, muitas vezes, mais interessante associarmos um número a um evento aleatório e calcularmos a probabilidade da ocorrência desse número do que a probabilidade do evento, sendo assim, a variável aleatória fornece um meio de descrever resultados experimentais usando-se valores numéricos.

Exemplos:

- a) Número de coroas obtido no lançamento de 2 moedas;
- b) Número de itens defeituosos em uma amostra retirada, aleatoriamente, de um lote;
- c) Número de defeitos em um azulejo que sai da linha de produção;
- d) Número de pessoas que visitam um determinado site, num certo período de tempo;
- e) Volume de água perdido por dia, num sistema de abastecimento;
- f) Resistência ao desgaste de um certo tipo de aço, num teste padrão;
- g) Tempo de resposta de um sistema computacional;
- h) Grau de empeno em um azulejo que sai da linha de produção.

Definição 1: Variável aleatória

É uma função que associa um único número real a cada possível resultado do experimento.

Exemplo 1:

Lançam-se 03 vezes uma moedas. Seja X: número de ocorrências da face cara. Determinar a distribuição de probabilidade da variável aleatória X.

Solução:

O espaço amostral do experimento é:

 Ω = {(Cara,Cara,Cara);(Cara,Cara,Coroa);(Cara,Coroa,Cara);(Coroa,Cara,Cara);(Cara,Coroa,Coroa);(Coroa,Cara,Coroa);(Coroa,Cor

E sabemos que X é o número de faces caras, assim, $X = \{0,1,2,3\}$

É possível associar o número de ocorrências de cada resultado do evento como segue:

X	Evento correspondente	#n(X)
0	$A_1 = \{(Coroa, Coroa, Coroa)\}$	1
1	$A_2 = \{(Cara, Coroa, Coroa); (Coroa, Cara, Cara, Coroa); (Coroa, Cara, Cara, Cara, Coroa); (Coroa, Cara, Car$	3
	Coroa, Cara)}	
2	$A_3 = \{(Cara, Cara, Coroa); (Cara, Coroa, Cara); (Coroa, Cara, C$	3
	Cara)}	
3	$A_4 = \{(Cara, Cara, Cara)\}$	1
То	tal	8

Em termos matemáticos, observe que foi feito o seguinte tipo de associação:

Podemos também associar as probabilidades de X assumir tais valores de duas formas diferentes:

1. Esquematicamente

X	#n(X)	P(X = x)
0	1	1/8
1	3	3/8
2	3	3/8
3	1	1/8
Total	8	1

2. Graficamente

Uma variável aleatória pode ser classificada como discreta ou contínua, a depender dos valores numéricos que ela pode assumir.

Variável Aleatória Discreta

Uma variável aleatória é dita discreta se assume valores em um conjunto finito ou infinito enumerável.

Função de Probabilidade

É a função que associa uma probabilidade a cada valor assumido pela variável aleatória do evento correspondente, isto é,

$$P(X = x_i) = P(x_i); i = 1,2, ..., n$$

Ou ainda,

X	\mathbf{x}_1	\mathbf{x}_2	X ₃	•••
$P(X = x_i)$	p_1	p_2	p_3	•••

Uma função de probabilidade satisfaz as condições:

i.
$$0 \le p_i \le 1$$
;

ii.
$$\sum_{i=1}^{n} p_i = 1;$$

<u>Exemplo</u>: Suponha que um dado possui 10 faces. Seja X: Número de possíveis divisores da face sorteada. Construa a função de probabilidade para a variável aleatória X.

Solução:

Sabe-se que $\Omega = \{1,2,3,4,5,6,7,8,9,10\}$ e X: Número de divisores do número sorteado. Sendo assim

X	1	2	3	4	Total
$P(X=x_i)$	1/10	4/10	2/10	3/10	1

Função de Distribuição de Probabilidade

A função de distribuição ou função acumulada de probabilidade de uma variável aleatória discreta X é definida para qualquer número real x, pela seguinte expressão:

$$F(x) = P(X \le x)$$

A notação $\{X \leq x\}$ é usada para designar o conjunto $\{w \in \Omega : X(w) \leq x\}$, isto é, denota a imagem inversa do intervalo $(-\infty, x]$ pela variável aleatória X. Com isso, podemos observar que a função de distribuição acumulada F tem como domínio os números reais (\mathbb{R}) e imagem o intervalo [0,1].

O conhecimento da função de distribuição acumulada é suficiente para entendermos o comportamento de uma variável aleatória. Mesmo que a variável assuma valores apenas num subconjunto dos reais, a função de distribuição é definida em toda a reta. Ela é chamada de função de distribuição acumulada, pois acumula as probabilidades dos valores inferiores ou iguais a x.

Considerando o Exemplo 1. Vamos encontrar a função distribuição acumulada de *X*: "número de caras obtidas nos três lançamentos".

Os valores que X pode assumir são 0, 1, 2 e 3. Portanto,

$$\mathbb{P}(X = 0) = \mathbb{P}(\{KKK\}) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}.$$

$$\mathbb{P}(X = 1) = \mathbb{P}(\{CKK\}) + \mathbb{P}(\{KCK\}) + \mathbb{P}(\{KKC\}) = \frac{3}{8}.$$

$$\mathbb{P}(X = 2) = \mathbb{P}(\{CCK\}) + \mathbb{P}(\{CKC\}) + \mathbb{P}(\{KCC\}) = \frac{3}{8}.$$

$$\mathbb{P}(X = 3) = \mathbb{P}(\{CCC\}) = \frac{1}{8}.$$

Assim temos que a função de distribuição acumulada de X é dada por

$$F(x) = \begin{cases} 0, \text{ se } x < 0; \\ 1/8, \text{ se } 0 \le x < 1; \\ 1/2, \text{ se } 1 \le x < 2; \\ 7/8, \text{ se } 2 \le x < 3; \\ 1, \text{ se } x \ge 3. \end{cases}$$

<u>Exemplo</u>: Suponha que um número seja sorteado de 1 a 10, inteiros positivos. Seja X: Número de divisores do número sorteado. Construa a distribuição de probabilidade acumulada para a variável aleatória X.

Solução:

Sabe-se que $\Omega = \{1,2,3,4,5,6,7,8,9,10\}$ e X: Número de divisores do número sorteado. Assim,

X	1	2	3	4	Total
$P(X = x_i)$	1/10	4/10	2/10	3/10	1
$P(X \le x)$	1/10	5/10	7/10	1	-

Esperança Matemática

É um número real, também chamada média aritmética da variável aleatória, cuja definição formal é dada abaixo:

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

Propriedades da Esperança: Sejam X e Y v.a.'s definidas em um mesmo espaço amostral Ω , k um número real. Então:

- 1. E(k) = k;
- 2. E(k*X) = k*E(X);
- 3. $E(X\pm Y) = E(X)\pm E(Y)$;
- 4. $E\{\Sigma Xini=1\}=\Sigma E(Xi)ni=1;$
- 5. $E(aX\pm b) = a*E(X)\pm b$, a e b constantes;
- $6. E(X-\mu X)=0.$

Variância

Representa a medida que dá o grau de dispersão (ou concentração) de probabilidade em torno da média. É definida por:

$$Var(X) = E(X^2) - E^2(X)$$

em que

$$E(X^2) = \sum_{i=1}^{n} x_i^2 P(X = x_i)$$

Propriedades da Variância: Sejam X e Y v.a.'s definidas em um mesmo espaço amostral Ω , k um número real. Então:

- 1. Var(k) = 0;
- 2. Var(X+k) = Var(X);
- 3. $Var(k*X) = k^2 Var(X)$;
- 4. $Var(X\pm Y)=Var(X)+Var(Y)\pm 2*cov(X,Y)$. Onde $cov(X,Y)=E\{[X-E(X)]*[Y-E(Y)]\}$.

OBS: Para minimizar unidades de medidas "incoerentes" aplica-se o conceito de desvio padrão, em que

$$DP(X) = \sqrt{Var(X)}$$

Ex: A altura média de um grupo de pessoas é 1,70m e variância 25cm². (cm²) fica esquisito em altura.

Exercício:

Num jogo de dados, A paga R\$ 20,0 a B e lança 3 dados. Se sair face 1 em um dos dados apenas, A ganha R\$ 200,0. Se sair face 1 em dois dados apenas A ganha R\$ 50,0 e se sair face 1 nos três dados, A ganha R\$ 80,0. Calcular o lucro líquido médio de A em uma jogada. Há alta variabilidade?

DISTRIBUIÇÕES DE PROBABILIDADE DE VARIÁVEIS ALEATÓRIAS DISCRETAS

(ou Modelos Discretos de Probabilidade)

A Estatística como parte essencial do método científico lida com aspectos muito mais profundos do que o da etapa, não menos importante, de descrição amostral dos dados observacionais de uma investigação científica. Esses aspectos envolvem a modelagem teórica de variáveis aleatórias ao realizar experimentos aleatórios. Essa modelagem envolve modelos probabilísticos. O conhecimento desses modelos permite ao investigador científico ter uma clara visão de como usá-los adequadamente, da escolha do modelo mais adequado para se estudar um fenômeno aleatório e da escolha daquele que mais se aproxima de uma situação real. Nesta unidade, serão abordados 4 modelos probabilísticos, ou distribuições de probabilidade, com foco em variáveis aleatórias discretas. São eles: Bernoulli, Binomial, Geométrica e Poisson. Nesse caso, os modelos são denominados de modelos discretos de probabilidade.

As distribuições de probabilidade ficam completamente definidas conhecendo-se os diversos valores que a variável pode assumir, dentro de um intervalo de definição, e as respectivas probabilidades. Pode-se afirmar, de um modo geral, que os modelos probabilísticos formam a base da teoria estatística já que influenciam fortemente em teorias de decisão.

1. Distribuição de Bernoulli

Originada da amostragem de um elemento dessa população, a distribuição de Bernoulli é usada para descrever fenômenos que apresentem características de interesse do investigador como possível resultado do experimento, em que é possível associar uma probabilidade especifica de ocorrência.

Suponha que realizamos um experimento, cujo resultado pode ser classificado como *sucesso ou fracasso*, a depender do evento de interesse ocorrer ou não, respectivamente.

Sendo assim, p será a probabilidade de ocorrência de sucesso (o evento de interesse ocorreu) e, consequentemente, l - p será a probabilidade de fracasso (o evento de interesse não ocorreu).

Na Bernoulli,

X: Número de sucessos em uma única tentativa do experimento. Ou Ainda,

$$X = \begin{cases} 1, \text{ se ocorrer sucesso} \\ 0, \text{ se ocorrer fracasso} \end{cases}$$

A função de probabilidade para este tipo de variável aleatória é dada por:

$$P(X = x) = p^{x} (1 - p)^{1 - x}$$

Em que:

$$E(X) = p$$
$$Var(X) = p(1 - p)$$

Exemplos:

- Uma peça produzida por uma companhia ser perfeita ou defeituosa;
- O fruto de uma árvore estar maduro ou verde;
- Um aluno tirar nota superior ou inferior a 5 na 2ª avaliação de estatística;
- Um jogador de futebol não fez gol durante uma partida;
- Uma pessoa selecionada em um grupo ter olhos verdes;
- O sexo de um indivíduo;
- Incidência de certa doença em uma população. X indica se a doença está presente (X=1) ou ausente (X=0) num indivíduo da população (selecionado ao acaso).
- O fator Rh do sangue de um individuo (ou é positivo ou é negativo).

Exemplo prático 1: Suponha que se esteja interessado em lançar um dado e observar a face superior. Defina o evento: o número é múltiplo de 3 e a variável X é definida como o número de sucesso. Determine a função de probabilidade de X, calcule a esperança e a variância.

Solução:

Note que o evento já foi aqui definido,

A: O número é múltiplo de 3 (neste caso, $A = \{3,6\}$)

B: O número não é múltiplo de 3 (neste caso, $B = \{1,2,4,5\}$)

P(A) = 2/6 (refere-se a probabilidade de sucesso)

$$P(B) = 1 - 2/6 = 4/6$$
 (refere-se a probabilidade de fracasso)

Assim

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P(X = x) & 4/6 & 2/6 \end{array}$$

A partir daí,

$$E(X) = p = 2/6$$

 $Var(X) = p(1 - p) = 2/6 \times 4/6 = 8/36$ (ou 2/9)
 $DP(X) = 0.47$.

Exemplo prático 2: Um aluno é escolhido ao acaso em uma sala de aula composta por 12 alunas e 18 alunos. O sucesso ocorre quando o aluno selecionado for do sexo masculino. Sendo assim, qual a probabilidade de sucesso? Calcule ainda a E(X) e DP(X).

Solução:

Neste caso,

$$X = \begin{cases} 1, \text{ o aluno \'e do sexo masculino} \\ 0, \text{ o aluno \'e do sexo feminino} \end{cases}$$

Sendo assim,

$$P(X = 1) = 18/30$$

 $P(X = 0) = 12/30$

Então

$$E(X) = p = 18/30$$

 $Var(X) = p(1 - p) = 18/30 \times 12/30 = 216/900$
 $DP(X) = 0,24$.

<u>Exemplo prático 3</u>: Suponha que se esteja interessado no nascimento de um bovino. O sucesso ocorre quando se verifica que o bovino é fêmea. Calcule a probabilidade de ocorrência de sucesso, a E(X) e a Var(X).

Solução:

Neste caso, X: O bovino é fêmea, então,

$$P(X = 1) = 1/2$$
.

$$E(X) = p = 1/2$$

$$Var(X) = p(1 - p) = 1/2 \times 1/2 = 1/4$$

DP(X) = 1/2.

Em resumo, a probabilidade de nascer uma fêmea ao avaliar o nascimento de 1 bovino é de 50,0%.

2. <u>Distribuição Binomial</u>

A distribuição de uma variável obtida pela contagem do número de sucessos em uma amostra maior que 1 realizada em uma população, sendo as n tentativas independentes, ou seja, o resultado de uma tentativa não tem influencia alguma sobre a outra, e que a probabilidade de se obter sucesso permanece constante e igual a *p* é denominada Binomial.

Em outras palavras, n tentativas independentes de um mesmo experimento são avaliadas e, assim como no modelo de Bernoulli, cada tentativa admite apenas dois resultados: *sucesso*, com probabilidade p, e *fracasso*, com probabilidade l-p.

Na Binomial

X: Número de sucessos em n tentativas do experimento.

E a sua função de probabilidade é dada por:

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n-x}$$

Em que E(X) = npVar(X) = np(1 - p)

Exemplos:

- Número de sementes germinadas;
- Respostas de testes com questões do tipo V ou F;
- Escolha entre um produto defeituoso ou perfeito;
- Sexo de crianças nascidas em determinada maternidade;
- Fumantes ou não fumantes em um grupo de adultos.

Exemplo prático 1: Suponha que se esteja interessado no nascimento de três bezerros. O sucesso ocorre quando se verifica que o bezerro é macho. Qual a probabilidade de que dois desses três bezerros sejam machos? Calcule também a E(X) e a Var(X).

Solução:

Neste caso, X: O bezerro é macho, então,

$$P(X = 2) = {3 \choose 2} \times 1/2 \times 1/2 = 0.75$$

$$E(X) = np = 3 \times 1/2 = 3/2 = 1,5$$

 $Var(X) = np(1 - p) = 3 \times 1/2 \times 1/2 = 3/4 = 0,75$
 $DP(X) = 0,87$

Em resumo, a probabilidade de nascerem 2 machos ao avaliar o nascimento de 3 bezerros é de 75,0%. Espera-se que a cada 2 bovinos que nasçam 1 seja macho, podendo este número variar em 1 filhote.

Exemplo prático 2: Numa fábrica de bombons, 10% apresentam algum tipo de problemas ao fim do processo de fabricação. Qual a probabilidade de que exatamente 2 bombons apresentem problemas num lote com 50 bombons? Obter E(X) e DP(X).

Solução:

X: Número de coelhos machos

e

$$P(X = 2) = {50 \choose 2} \times (0,10)^2 \times (1 - 0,10)^{50 - 2} = 0,078$$

Ou seja, a probabilidade de que dois bombons apresentem problemas na fabricação é de 7,8%.

Além disso,

$$E(X) = np = 50 \times 0,1 = 5 \text{ bombons}$$

 $Var(X) = np(1 - p) = 20 \times 0,4 \times 0,6 = 4,8$
 $DP(X) = 2,2 \text{ bombons}$

Em suma, espera-se que dentre os 50 bombons que compõem o lote, apenas 5 apresentem problemas durante o processo de fabricação, podendo este número variar em 2 bombons.

3. <u>Distribuição Geométrica</u>

Para este modelo, tentativas sucessivas e independentes de um mesmo experimento aleatório são realizadas. Cada tentativa admitindo *sucesso* com probabilidade p ou *fracasso* com probabilidade l-p.

Na Geométrica

X: Número de tentativas necessárias até a ocorrência do primeiro sucesso.

e a sua função de probabilidade é dada por:

$$P(X = x) = p(1 - p)^{x-1}$$

Em que,

$$E(X) = 1/p$$

$$Var(X) = (1 - p)/p^2$$

Exemplo prático 1:

A probabilidade de que um sinal de trânsito esteja aberto numa esquina é 0,20. Qual a probabilidade de que seja necessário passar pelo local 5 vezes, para encontrar o sinal aberto pela 1ª vez. Obter E(X) e DP(X).

Solução:

X: Número de vezes necessárias para encontrar o sinal aberto.

$$P(X = 5) = (0.20) \times (0.80)^{5-1} = 0.082$$

Ou seja, a probabilidade de ser necessário passar pelo sinal 5 vezes para encontrá-lo aberto pela primeira vez é de 8,2%.

Ainda.

$$E(X) = 1/p = 1/0,20 = 5$$

$$Var(X) = (1 - p)/p^2 = 20$$

$$DP(X) = 4.5.$$

Assim, espera-se que seja necessário passar pelo sinal 5 vezes para encontrálo aberto. O número de tentativas ate encontrar o sinal aberto pela primeira vez pode variar em 4,5 vezes.

Exemplo prático 2:

Suponha que se esteja interessado no nascimento de bezerros até que nasça o primeiro macho. O sucesso ocorre quando se verifica que o bezerro é macho. Qual a probabilidade de que o 3 bezerro seja macho? Calcule também a E(X) e a Var(X).

Solução:

X: Número de vezes necessárias até o nascimento do primeiro bezerro macho.

e
$$P(X = 3) = (1/2) \times (1/2)^{3-1} = 1/8 = 0,125$$

$$E(X) = 1/p = 1 \div (1/2) = 2$$

$$Var(X) = (1 - p)/p^2 = 1/2 \div (1/2)^2 = 2$$

$$DP(X) = 1,4$$

Em suma, a probabilidade do primeiro bezerro macho ser o terceiro filhote ao nascer é de 12,5%. Espera-se que o primeiro bezerro macho seja o segundo a nascer, podendo este nascimento variar de 1 ao 3 nascimento.

4. Distribuição de Poisson

Neste caso, trabalha-se com a probabilidade de ocorrência de sucessos em um determinado intervalo. Cada tentativa admite *sucesso* com probabilidade p ou *fracasso* com probabilidade l-p. Em suma, aplica-se a dados de contagem.

Na Poisson,

X: Número de sucessos no intervalo

e a sua função de probabilidade é dada por:

$$P(X = x) = \frac{e^{-\lambda} \lambda^{x}}{x!}$$

Em que

$$E(X) = Var(X) = \lambda$$
.

Exemplos:

- Erros tipográficos por página, em um material impresso;

- Carros que passam por um cruzamento, por minuto, num intervalo de 1 hora;
- Defeitos por unidade (m²,m³, m, etc.) por peça fabricada;
- mortes por ataque do coração por ano, numa cidade;

Exemplo prático:

Numa central telefônica chegam 300 telefonemas por hora. Qual a probabilidade de que em um minuto não haja nenhum chamado. Obter E(X) e DP(X).

Solução:

X: Número de chamadas por minuto

60 minutos \rightarrow 300 chamadas 1 minuto $\rightarrow \lambda$ chamadas

então, $\lambda = 5$. Assim,

$$P(X=0) = \frac{e^{-5} \lambda^0}{0!} = 0.0067$$

Ou seja, a probabilidade de não chegarem chamadas a uma central telefônica num intervalo de 1 hora é de 6,7%.

Ainda, $E(X) = Var(X) = \lambda = 5$ chamadas DP(X) = 2.2 chamadas

Então, espera-se que nesta central telefônica cheguem 5 telefonemas a cada hora, podendo variar em 2 chamadas para mais ou para menos.

Exercícios em Sala

1 Você esta planejando uma viagem de dois dias para a maior festa de São João do mundo na cidade de Campina Grande-PB. Se a variável aleatória X é o número de dias chuvosos; qual é a distribuição de probabilidade de X?

- a) Defina o experimento e o espaço amostral.
- b) Sendo o evento: A= irá chover nos dois dias de viagem; B= irá chover exatamente em um dia de chuva e C= irá chover em pelo menos um dia de chuva. Calcule as probabilidades
- c) Calcule a média de ocorrência dos dias de chuva nesta viagem.
- d) Calcule a variância e o desvio padrão dos dias de chuva nesta viagem.

2: Um lote contém 20 unidades de um componente, sendo quatro defeituosos. São retiradas quatro peças e X representa o número de unidades defeituosas entre as quatro retiradas. Neste caso a variável X assume seus valores no conjunto $\Omega = \{0, 1, 2, 3, 4\}$, com o espaço de probabilidades P, dado na tabela seguinte, calcule a média, variância e desvio padrão.

х	0	1	2	3	4	Total
P(X=x)	0,3756	0,4623	0,1486	0,0132	0,0002	1

- **3** Uma moeda é lançada 20 vezes. Qual a probabilidade de saírem 8 caras? Calcule também a E(x) e Dp(X)? Interprete (Resposta 0,12)
- **4 Numa** criação de coelhos 40% são machos. Qual a probabilidade de que nasçam pelo menos 2 coelhos machos num dia em que nasceram 20 coelhos? Calcule também a E(x) e Dp(X)? Interprete (Resposta 0,99)
- **5** Lança-se um dado e observa-se a ocorrência da face 6. Qual a probabilidade do sucesso do experimento e qual o fracasso? Calcule também a E(x) e Dp(X)? Interprete (Resposta 0,166)
- 6 Qual a probabilidade de que um dado ser lançado 15 vezes para que na 15^a vez ocorra a face 6 pela primeira vez? Calcule também a E(x) e Dp(X)? Interprete (Resposta 0,01298)
- 7 Numa estrada hà 2 acidentes para cada 100 km. Qual a probabilidade de que em:
- a) 250 km ocorram pelo menos 3 acidentes? (Resposta 0,87)
- b) 300km ocorram 5 acidentes? (Resposta 0,16)
- **8:** Uma urna tem 30 bolas brancas e 20 verdes. Retira-se uma bola dessa urna. Seja X o número de bolas verdes. Determinar P(x) e calcular E(X) e Var(X).
- **9:** Numa criação de coelhos, 40% são machos. Qual a probabilidade de que nasçam pelo menos 2 coelhos machos num dia em que nasceram 20 coelhos?
- **10:** Qual a probabilidade de que um dado deva ser lançado 15 vezes para que na 15ª ocorra a face 6 pela primeira vez?
- 11: Num livro de 800 páginas há 800 erros de impressão. Qual a probabilidade de que uma página contenha pelo menos 3 erros?

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ESTATÍSTICA E CIÊNCIAS ATUARIAIS

2ª Lista de Exercícios da II Unidade

- 1ª Questão Construa o Espaço Amostral associado a cada experimento apresentado a seguir:
- (a)Joga-se um dado e observa-se o numero mostrado na face de cima.
- (b)Joga-se uma moeda quatro vezes e observa-se o numero de caras obtidos.
- (c)O conjunto de números inteiros entre 1 e 50 divisíveis por 8.
- (d)Dois dados são lançados simultaneamente e estamos interessados na soma das faces observadas.
- 2ª Questão Para um grupo de 4 homens, a distribuição de probabilidade para o nº de homens que viverão durante o próximo ano é apresentada abaixo:

Х	0	1	2	3	4
P(X = x)	0,0000	0,0001	0,0006	0,0387	0,9606

Tal distribuição pode realmente ser dita de probabilidade? Justifique. Em caso afirmativo, obtenha E(X) e DP(X). Interprete. Resp. E(X) = 3,96 e Var(X) = 0,04.

3ª Questão Consumidores compram uma determinada marca de automóvel, com uma variedade de opções. A função de probabilidade do no de opções selecionadas e

X	7	8	9	10	11	12	13
P(X = x)	0,040	0,130	0,190	0,300	0,240	0,050	0,050

Com base na distribuição de probabilidade, responda:

- a) Qual e a probabilidade de um consumidor escolher menos de 9 opções? Resp. 0,17
- b) Qual e a probabilidade de um consumidor escolher mais de 11 opções? Resp. 0,10
- c) Qual e a probabilidade de um consumidor escolher entre 8 e 12 opções, inclusive? Resp. 0,91
- d) Qual e o no esperado de opções escolhidas e a variabilidade entre elas? Resp. E(X) = 9.92; Var(X) = 1.954.

- 4ª Questão Urna contem 5 bolas brancas, 4 vermelhas e 3 azuis. Extraem-se simultaneamente 3 bolas. Achar a probabilidade de
- a) Nenhuma ser vermelha R.02545
- b) Todas sejam da mesma cor R. 0681
- 5^{a} Questão Sabe-se que uma determinada moeda apresenta cara três vezes mais frequentemente que coroa. Seja a variável aleatória X o nº de caras que aparece no lançamento de três vezes desta moeda viciada. Estabeleça a distribuição de probabilidade de X e, obtenha E(X) e DP(X). Resp. E(X) = 2,25; DP(X) = 0,75.
- 6ª Questão O SE TV tem sido um programa de sucesso por muitos anos. Esse telejornal tinha recentemente uma audiência de 2 pontos, significando que dentre os aparelhos de TV ligados 20% estavam sintonizados no SE TV. Suponha que um anunciante deseje verificar o valor da audiência de 20% realizando sua própria sondagem e que um teste seja feito com 10 residências com aparelhos de TV ligados no horário do telejornal.
- a) Qual a probabilidade de nenhuma pessoa assistir o SE TV na residência? Resp. 0,107.
- b) Ache a probabilidade de pelo menos uma residência estar sintonizada no SE TV. Resp. 0,893.
- c) Ache a probabilidade de, no máximo, uma residência assistir ao telejornal. Resp. 0,375.
- $7^{\rm a}$ Questão A probabilidade do pouso de um avião ser bem-sucedido usando um simulador de voo e dada por 0,70. Seis estudantes de pilotagem, escolhidos aleatória e independentemente, são convidados a tentar voar no avião usando o simulador. Qual é a probabilidade de dois dos seis estudantes pousarem com sucesso o avião usando o simulador? Calcule também a media de alunos que pousam a aeronave com sucesso. Obtenha DP(X). Interprete. Resp. 0,059; E(X) = 4,2 e DP(X) = 1,12.
- 8ª Questão Qual a probabilidade de Francisca ter um filho homem ate a 5ª Gestação? Resp.0,031.
- 9ª Questão A probabilidade de se encontrar aberto um sinal de transito em Aracaju e de 0,30. Qual a probabilidade de que seja necessário passar pelo mesmo local 6 vezes para encontrar o sinal aberto pela primeira vez? Resp. 0,0504.
- 10^a Questão O numero médio de acidentes mensais em um determinado cruzamento e igual a três. Qual e a probabilidade de que em um determinado

mês ocorram quatro acidentes no cruzamento? Qual o valor esperado de acidentes por mês? Esse número pode variar muito? Resp.0,168 E(X) = 3 e DP(X) = 2 (ou 1,7).

11ª Questão Recentemente nos Estados Unidos, o numero médio de falências por hora era 8.

Obtenha a probabilidade de que ocorram:

- a) Exatamente 4 falências em uma determinada hora; Resp. 0,0570.
- b) Pelo menos 4 falências em uma determinada hora; Resp. 0,9577.
- c) Mais do que 4 falências em uma determinada hora; Resp. 0,9004.
- 15ª Questão Determine a probabilidade de que, em uma sequencia de jogadas de um dado, o 3 apareça pela primeira vez na quinta jogada. (Resp: 625/7776)
- 12ª Questão A variável aleatória X tem distribuição binomial com n = 4 e p = 0,7. Construa a função de probabilidade de X.
- a) Qual e o valor mais provável de X? Justifique. Resp. 3
- b) Qual o valor menos provável de X? Justifique. Resp. 0

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ESTATÍSTICA E CIÊNCIAS ATUARIAIS

Disciplina: Probabilidade para Ciências Atuariais I

Docente: Amanda Lira

UNIDADE III

- 1. Variáveis Aleatórias Bidimensionais
- 2. Distribuição de probabilidade conjunta.
- 3. Distribuição de probabilidade marginal.
- 4. Distribuição de probabilidade condicionais e Esperanças Condicionais.
- 5. Momentos de uma distribuição de dados:
- 6. Momentos simples e centrais.
- 7. Momentos associados a medidas de assimetria e curtose.

1. Variáveis Aleatórias Bidimensionais

Existem situações em que há interesse por dois ou mais resultados simultâneos de um experimento. Por exemplo, a dureza H e a tensão de ruptura T de uma peça manufaturada de aço, sendo considerado (h,t) como um único resultado experimental; a estatura H e peso P de uma pessoa, o que forneceria o resultado (h,p). Para considerar situações como estas precisa-se da seguinte **definição**:

"Sejam E um experimento e Ω um espaço amostral associado a E. Sejam $X = X(\omega)$ e $Y = Y(\omega)$ duas funções, cada uma associando um número real a cada resultado $\omega \in \Omega$. Denominaremos (X,Y) uma variável aleatória bidimensional".

Figura 1: Representação gráfica de uma variável aleatória bidimensional

Tal como a variável aleatória unidimensional, (X,Y) poderá ser discreta ou contínua, valendo as mesmas considerações feitas para o caso unidimensional.

Generalização: Se $X_1=X_1(\omega), X_2=X_2(\omega), ..., X_n=X_n(\omega)$ forem n funções, cada uma associando um número real a cada resultado $\omega \in \Omega$, denominaremos $(X_1, X_2, ..., X_n)$ uma variável aleatória n-dimensional.

1.1 Distribuições Conjuntas

I) CASO DISCRETO

Seja (X,Y) uma variável aleatória bidimensional discreta. A cada resultado possível (x,y) associaremos um número f(x,y) representado por P(X=x,Y=y) e satisfazendo às seguintes condições:

(i)
$$f(x, y) \ge 0$$

(ii)
$$\sum_{x} \sum_{y} p(x, y) = 1$$

A função f definida para todo (x,y) no contradomínio de (X,Y) é denominada função de probabilidade conjunta de X e Y ou função de probabilidade de (X,Y).

1.1.1 Função de probabilidade conjunta ou função de probabilidade

A função de probabilidade de (X,Y) pode ser representada por uma tabela de probabilidade conjunta, apresentada a seguir:

X Y	\mathcal{Y}_1	y_2		\mathcal{Y}_n	Totais ↓
x_1	$f(x_1, y_1)$	$f(x_1, y_2)$	•••	$f(x_1, y_n)$	$f_1(x_1)$
x_2	$f(x_2, y_1)$	$f(x_2, y_2)$	•••	$f(x_2, y_n)$	$f_1(x_2)$
:	÷	:		÷	:
\mathcal{X}_m	$f(x_m, y_1)$	$f(x_m, y_2)$	•••	$f(x_m, y_n)$	$f_1(x_m)$
Totais →	$f_2(y_1)$	$f_2(y_2)$	•••	$f_2(y_n)$	1

A probabilidade de ser $X = x_i$ se obtém somando-se todas as entradas da linha correspondente a x_i : $P(X = x_i) = f_1(x_i) = \sum_{i=1}^n f(x_i, y_i)$

Por exemplo: Neste caso, a probabilidade de $X = x_1$ é dada por $P(X = x_1) = f_1(x_1) = f(x_1, y_1) + f(x_1, y_2) + \dots + f(x_1, y_n)$.

Analogamente, a probabilidade de ser $Y = y_j$ se obtém somando-se todas as entradas da coluna correspondente a y_j : $P(Y = y_j) = f_2(y_j) = \sum_{i=1}^m f(x_i, y_j)$.

Por exemplo: Neste caso, a probabilidade de $Y = y_1$ é dada por $P(Y = y_1) = f_1(y_1) = f(x_1, y_1) + f(x_2, y_1) + \dots + f(x_m, y_1)$.

1.1.2 Função marginal de probabilidade

 $f_1(x)$ e $f_2(y)$ são chamadas de *funções marginais de probabilidade* de X e Y, respectivamente. Nota-se que: $\sum_{i=1}^m f_1(x_i) = 1$ e $\sum_{j=1}^n f_2(y_j) = 1$ o que pode ser escrito como:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i, y_j) = 1$$

1.1.3 Função de distribuição conjunta

A função de distribuição conjunta de X e Y é dada por:

$$F(x, y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_j \le y} f(x_i, y_j)$$

Exemplo: Dado o quadro a seguir, referente ao salário e tempo de serviços de dez operários, determinar a distribuição conjunta de probabilidade da variável aleatória X: salário (reais) e Y: tempo de serviço (em anos). Calcule também a partir das funções de distribuições marginais de X e Y o valor da E(x), E(y), Dp(x) e Dp(y).

Probabilidade I-Prof^a Amanda Lira Email:amandalira@ufs.br

OPERÁRIO	A	В	С	D	Е	F	G	Н	I	J
X	500	600	600	800	800	800	700	700	700	600
Y	6	5	6	4	6	6	5	6	6	5

LOGO,

DISTRIBUIÇÃO CONJUNTA:

X Y	4	5	6	Totais ↓
500	0	0	0,1	0,1
600	0	0,2	0,1	0,3
700	0	0,1	0,2	0,3
800	0,1	0	0,2	0,3
Totais →	0,1	0,3	0,6	1

DISTRIBUIÇÕES MARGINAIS

X	500	600	700	800	Total
P(Xi)	0,1	0,3	0,3	0,3	1

Y	4	5	6	Total
P(Yj)	0,1	0,3	0,6	1

Cálculo dos parâmetros (estimativas/momentos)

E(x)=

 $\mathbf{E}(\mathbf{x}^2) =$

Var(x)=

Dp(x)=

E(y)=

 $E(y^2) =$

Var(y)=

Dp(y)=

Exercício: Seja X: a renda familiar e y: nº de aparelhos de TV de cores. Encontre a distribuição conjunta de (X, Y) as distribuições marginais de X e Y e também a E(x), Dp(x), E(y) e Dp(y). Sendo que x pode variar de 1 a 3 e y pode variar de 1 a 3.

X	1	2	3	1	3	2	3	2	3
Y	2	1	3	1	3	3	2	2	3

DISTRIBUIÇÃO CONJUNTA:

X Y		Totais ↓
Totais		
\rightarrow		

DISTRIBUIÇÕES MARGINAIS

X		Total
P(Xi)		

Y		Total
P(Yj)		

Cálculo dos parâmetros (estimativas/momentos)

E(x)=

 $E(\mathbf{x}^2) =$

Var(x)=

Dp(x)=

E(y)=

 $E(y^2)=$

Var(y)=

Dp(y)=

2.2 Distribuição de Probabilidade Condicional

Como para dois eventos quaisquer E e F, a probabilidade condicional de E dado F é definida, desde que $\mathbb{P}(F) > 0$, por

$$\mathbb{P}(E|F) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)}$$

então, se X e Y são variáveis aleatórias discretas, é natural definir a função de probabilidade condicional de X dado que Y = y, por

$$p_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{p(x, y)}{p_Y(y)}$$

para todos os valores de y tais que $p_Y(y) > 0$. Similarmente, a função de distribuição acumulada da probabilidade condicional de X dado que Y = y é definida, para todo y tal que $p_Y(y) > 0$, por

$$F_{X|Y}(x|y) = \mathbb{P}(X \le x|Y \le y) = \sum_{a \le x} p_{X|Y}(a|y)$$

Se X é independente de Y, então a função de probabilidade condicional e a função de distribuição acumulada são as mesmas do caso não condicional. Isto acontece pois, se X é independente de Y, então

$$p_{X|Y}(x|y) = \mathbb{P}(X=x|Y=y) = \frac{\mathbb{P}(X=x,Y=y)}{\mathbb{P}(Y=y)} = \frac{\mathbb{P}(X=x)\mathbb{P}(Y=y)}{\mathbb{P}(Y=y)} = \mathbb{P}(X=x).$$

Em resumo:

Função de Prob. Da V.A. Y condicionada a um dado X=xi (quando desejar encontrar y, o valor de x fica fixo).

$$P(X = x_i/Y = y_j) = \frac{P(X = x_i; Y = y_j)}{P(Y = y_j)}$$
 j=fixo; i=1,...,m; $P(Y = y_j) > 0$

Função de Prob. Da V.A. X condicionada a um dado Y=y, (quando desejar encontrar x, o valor de y fica fixo).

$$P(Y = y_j/X = x_i) = \frac{P(X = x_i; Y = y_j)}{P(X = x_i)}$$
 i=fixo; j=1,...,n; $P(X = x_i) > 0$

Esperança Conjunta

$$E(X/Y = y_j) = \sum_{i=1}^{m} x_i P(x_i; y_j) = \frac{\sum_{i=1}^{m} x_i P(x_i; y_j)}{P(y_j)}$$

$$I=1,...,m \text{ e j=fixo}$$

Exemplo: Calcular o salário médio dos operários com 5 anos de serviço:

$$P(X=500;Y=5)=0,0/0,3=0$$

$$P(X=600;Y=5)=0,2/0,3=2/3$$

$$P(X=700;Y=5)=0,1/0,3=1/3$$

$$P(X=800;Y=5)=0,0/0,3=0$$

X	P(X/Y=5)	X.P(X/Y=5)	$X^{2}.P(X/Y=5)$
500	0	0	0
600	2/3	1200/3	720000/3
700	1/3	700/3	490000/3
800	0	0	0
Total	1	1900/3	1210000/3

$$E(X/Y=5)=(1200/3)+(700/3)=633,33$$

$$E(X^2/Y=5)=(1200^2/3)+(700^2/3)=403333,33$$

$$VAR(X/Y=y_j)=E(X^2/Y=5) - [E(X/Y=5)]^2$$

$$VAR(X/Y=y_j)=403.333,33 - (633,33)^2=2.226,44$$

$$DP(X/Y=y_j)=$$

Variáveis Aleatórias Independentes

Seja (X,Y) uma variável aleatória discreta bidimensional, Diremos que X e Y são variáveis aleatórias independentes se, e somente se, para todo par de valores $(X_i;Y_i)$ de X e Y, tem-se:

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Basta que nessa condição não se verifique para um par (Xi;Yj) para que X e Y não sejam independentes. Neste caso dizemos que x e y são independentes.

Obs. Se X e Y são independentes Cov(X,Y)=0

4 COVARIÂNCIA ENTRE DUAS VARIAVEIS ALEATORIAS

Covariância é uma medida de associação (relação) linear entre duas variáveis aleatórias. Se X e Y são duas v.a., a covariância entre elas é definida por:

$$Cov(X,Y) = E[(X-E(X))(Y-E(Y))]$$

Desta forma a covariância entre duas variáveis X e Y é igual a média de uma variável aleatória Z que por sua vez é o produto dos desvios de cada uma das duas variáveis X e Y em relação as suas respectivas medias.

Exemplifiquemos com o seguinte quadro de distribuição conjunta de duas variáveis aleatórias discretas X e Y:

X/Y	0	1	2	P(y)
1	3/20	3/20	2/20	8/20
2	1/20	1/20	2/20	4/20
3	4/20	1/20	3/20	8/20
P(x)	8/20	5/20	7/20	1

Para interpretar este quadro, podemos dizer que a probabilidade conjunta de X = 1 e Y = 2 é P(X=1,Y=2) = 1/20. A probabilidade marginal

de X = 1 é P(X=1) = 5/20. A probabilidade condicional de X = 2 dado que Y = 1 é

$$P(Y = 2 / X = 1) = \frac{P(X = 1, Y = 2)}{P(X = 1)} = \frac{1/20}{5/20} = \frac{1}{5}$$

A distribuição de probabilidade da variável aleatória Z = (X-E(X))(Y-E(Y)) é a própria distribuição de probabilidade conjunta dada no quadro acima para as variáveis X e Y. Como a covariância é uma esperança temos que:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = \sum (X - E(X))(Y - E(Y))p(X,Y)$$

Ou seja, a covariância é o somatório do produto da variável Z = (X-E(X))(Y-E(Y)) pelas probabilidades conjuntas. Para calcular a covariância devemos calcular as esperanças (medias) de X e Y. Estas são:

$$E(X) = 0 \times \frac{8}{20} + 1 \times \frac{5}{20} + 2 \times \frac{7}{20} = \frac{19}{20}$$
$$E(Y) = 1 \times \frac{8}{20} + 2 \times \frac{4}{20} + 3 \times \frac{8}{20} = 2$$

No exemplo do quadro acima a covariância é igual a:

$$\begin{split} &Cov(X,Y) = (0 - \frac{19}{20}) \times (1 - 2) \times \frac{3}{20} + (1 - \frac{19}{20}) \times (1 - 2) \times \frac{3}{20} + (2 - \frac{19}{20}) \times (1 - 2) \times \frac{2}{20} \\ &+ (0 - \frac{19}{20}) \times (2 - 2) \times \frac{1}{20} + (1 - \frac{19}{20}) \times (2 - 2) \times \frac{1}{20} + (2 - \frac{19}{20}) \times (2 - 2) \times \frac{2}{20} \\ &+ (0 - \frac{19}{20}) \times (3 - 2) \times \frac{4}{20} + (1 - \frac{19}{20}) \times (3 - 2) \times \frac{1}{20} + (2 - \frac{19}{20}) \times (3 - 2) \times \frac{3}{20} = 0 \end{split}$$

Um outro método (mais fácil) de se calcular a covariância é dado pela expressão:

$$Cov(X,Y) = E(XY) - E(X).E(Y)$$

Exercício: Demonstre a validade da expressão acima

Sabemos que a definição de covariância é:

$$Cov(X,Y) = E[(X-E(X))(Y-E(Y))]$$

Podemos desenvolver o segundo termo desta expressão da seguinte forma:

$$Cov(X,Y) = E(XY - E(X)Y - E(Y)X + E(X)E(Y)) =$$

 $E(XY) - E(X).E(Y) - E(Y).E(X) + E(X).E(Y) = E(XY) - E(X)E(Y)$

Apliquemos esta expressão aos dados do quadro acima para calcular a covariância:

Para isto precisamos calcular E(XY). Para fazer isto devemos para cada valor do quadro (para cada dupla de valores de X e Y) calculamos o valor do produto XY e multiplicamos pela probabilidade conjunta.

$$E(XY) = 0.1.3/20 + 1.1.3/20 + 2.1.2/20 + 0.2.1/20 + 1.2.1/20 + 2.2.2/20 + 0.3.4/20 + 1.3.1/20 + 2.3.3/20 = 1,9$$

Portanto a covariância será:

$$Cov(X,Y) = 1,9 - (0,95).(2) = 0$$

Concluímos que as duas variáveis aleatórias X e Y são não correlacionadas.

Se X e Y são duas variáveis aleatórias independentes, então Cov(X,Y) = 0 Mas a recíproca não é verdadeira. O fato de Cov(X,Y) = 0 não implica necessariamente que X e Y sejam independentes.

Para o ultimo exemplo, verificamos que Cov(X,Y) = 0. No entanto vamos verificar que estas duas variáveis não são independentes. Para que X e Y sejam independentes é estritamente necessário que P(X,Y) = P(X).P(Y) para

todos os valores de X e Y. Ou seja, para todas as células da distribuição de probabilidade conjunta, o valor da probabilidade conjunta deve ser igual ao produto das probabilidades marginais respectivas. Verifiquemos esta propriedade para o quadro de distribuição de probabilidade conjunta anterior.

X\Y	0	1	2	P(y)
1	3/20	3/20	2/20	8/20
	8/20.8/20 =	8/20.5/20 =	8/20.7/20 =	
	16/400	40/400	56/400	
2	1/20	1/20	2/20	4/20
	4/20.8/20 =	4/20.5/20 =	4/20.7/20 =	
	32/400	20/400	28/400	
3	4/20	1/20	3/20	8/20
	8/20.8/20 =	8/20.5/20 =	8/20.7/20 =	
	56/400	40/400	56/400	
P(x)	8/20	5/20	7/20	1

No quadro acima os valores em negrito são as probabilidades conjuntas e logo em seguida vem o calculo do produto das probabilidades marginais respectivas. Observe-se que para a primeira célula temos P(X=0,Y=1) = 3/20 = 0,15 e P(X=0).P(Y=1) = 16/400 = 0,04. Na segunda célula da primeira linha temos P(X=1,Y=1) = 3/20 = 0,15 e P(X=1).P(Y=1) = 40/400 = 0,1. Portanto em nenhuma destas duas células a probabilidade conjunta coincide com o produto das probabilidades marginais respectivas. Bastava que para apenas uma das células não ocorresse a igualdade de probabilidades e as variáveis aleatórias já seriam dependentes. Para que ocorra independência perfeita entre as variáveis aleatórias é necessário que para todas as células da distribuição de probabilidade conjunta ocorra a igualdade entre a probabilidade conjunta e o produto das probabilidades marginais respectivas.

Sejam X e Y duas variáveis quaisquer. Então

$$Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y)$$

No caso de X e Y serem independentes temos o caso particular de

$$Var(X + Y) = Var(X) + Var(Y)$$
 já que $Cov(X,Y) = 0$

Exercício: Demonstre teoricamente a expressão acima.

$$Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X,Y)$$

Para mais de duas variáveis independentes:

$$Var(X_1 + X_2 + + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n)$$

Qual é a interpretação pratica da covariância?

A covariância serve para verificar se duas variáveis aleatórias movimentam-se ou não no mesmo sentido. Por exemplo, se quando uma variável X aumenta a variável Y também aumenta e se quando X diminui, Y também diminui (as variáveis) movimentam-se, covariam no mesmo sentido, a covariância é positiva. Ao contrario, quando X aumenta, Y diminui ou quando X diminui, Y aumenta, ou seja, as variáveis covariam em sentidos opostos, a covariância é negativa.

5. Correlação de Pearson

Em <u>estatística descritiva</u>, o **coeficiente de <u>correlação</u> de <u>Pearson</u>, também chamado de "coeficiente de correlação produto-momento" ou simplesmente de " de Pearson" mede o grau da correlação (e a direcção dessa correlação - se positiva ou negativa) entre duas variáveis de <u>escala</u> métrica (intervalar ou de rácio/razão).**

Este coeficiente, normalmente representado por P assume apenas valores entre -1 e 1.

- $\rho = 1$ Significa uma correlação perfeita positiva entre as duas variáveis.
- $\rho=-1$ Significa uma correlação negativa perfeita entre as duas variáveis Isto é, se uma aumenta, a outra sempre diminui.
- ho=0 Significa que as duas variáveis não dependem linearmente uma da outra. No entanto, pode existir uma dependência não linear.

Assim, o resultado $\rho=0$ deve ser investigado por outros meios. Calcula-se o coeficiente de correlação de Pearson segundo a seguinte fórmula:

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X) \cdot \text{var}(Y)}}$$

onde x_1, x_2, \dots, x_n e y_1, y_2, \dots, y_n são os valores medidos de ambas as variáveis. Para além disso

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

e

$$\bar{y} = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$$
 são as médias ar

 $n = \sum_{i=1}^{n} s$ ão as médias aritméticas de ambas as variáveis.

- A análise de correlação indica a relação entre 2 variáveis lineares e os valores sempre serão entre +1 e -1. O sinal indica a direção, se a correlação é positiva ou negativa, e o tamanho da variável indica a força da correlação. 0.9 para mais ou para menos indica uma correlação muito forte.
- 0.7 a 0.9 positivo ou negativo indica uma correlação forte.
- 0.5 a 0.7 positivo ou negativo indica uma correlação moderada.
- 0.3 a 0.5 positivo ou negativo indica uma correlação fraca.
- 0 a 0.3 positivo ou negativo indica uma correlação desprezível.

EXERCÍCIOS EM SALA:

- 1) A função de probabilidade conjunta de duas variáveis aleatórias discretas X e Y é $f(x,y) = \frac{1}{42}(2x+y)$, onde x e y podem tomar valores inteiros tais que $0 \le x \le 2$, $0 \le y \le 3$, sendo f(x,y) = 0 em todos os outros casos.
 - a) Determine P(X = 2, Y = 1).
 - b) Determine P(X = 1 | Y = 2).
 - c) Determine as funções de probabilidade marginal de *X* e de *Y*.
 - d) As variáveis X e Y são independentes?
 - e) Existe Correlação?
- 2. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao número de bolas pretas.
- a) Obtenha a distribuição de X.
- b) Obtenha a média e a variância da v.a. X.
- c) Obtenha a média e a variância da v.a. Y = 3X + 4.
- 3. Dada a distribuição conjunta de X e Y na tabela a seguir. Pede-se: a) Distribuição marginal de x e y; b) E(x), E(y), Dp(x), Dp(y), E(X/y=2) e E(y/x=1). c) X e Y são independentes? d)Cov(X,Y), E(X+Y), E(XY), VAR(X-Y)

X/Y	0	1	2	P(y)
0	0,10	0,20	0,20	
1	0,04	0,08	0,08	
2	0,06	0,12	0,12	
P(x)				

UNIVERSIDADE FEDERAL DE SERGIPE CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA DEPARTAMENTO DE ESTATÍSTICA E CIÊNCIAS ATUARIAIS

3ª LISTA DE EXERCÍCIOS

- 1) Sejam X e Y com a distribuição conjunta da tabela abaixo. Pede-se
 - a) Encontre as probabilidades marginais de X e Y. Verifique se X e Y são Independentes?
 - b) Calcular E(X), E(Y), V(X), V(Y), Desvio Padrão (σ X), Desvio Padrão (σ Y).
 - c) E(X+Y), V(2X+3Y)
 - d) Cov(X,Y), $\sigma_{x,y}$. As duas variáveis tem correlação? Forte ou Fraca?
 - e) Obtenha a distribuição condicional de X, dado que Y=-1 e de Y, dado que X=1.

Tabela 1.

Y\X	-1	0	1	P(Y=y)
-1	1/5	0	1/5	
0	0	1/5	0	
1	1/5	0	1/5	
P(X=x)				

2) Lançam-se, simultaneamente, uma moeda e um dado.

Determine o espaço amostral correspondente a este experimento.

Obtenha a tabela da distribuição conjunta, considerando X o número de caras no lançamento da moeda e Y o número da face do dado.

Verifique se X e Y são independentes.

Calcule: P(X=1/Y=1) e P(Y=2/X=0).

- 3) Sabendo que Y=3X-5 e que E(X)=2 e V(X)=1. Calcule:
- a) E(Y) b) V(Y) c) E(X+3Y) d) V(3X+2Y)
- 4) Considere a distribuição conjunta de X e Y, parcialmente conhecida, dada na tabela abaixo.

Tabela 2.

Y\X	-1	0	1	Total
-1	1/12		1/12	1/6
0		0		1/3

1	1/4		1/4	
Total	1/2	0	1/2	1

Complete a tabela e verifique se X e Y são independentes?

Calcule as médias e variâncias de X e Y

Obtenha as distribuições condicionais de X, dado que Y=0, e de Y, dado que X=1.

5) Depois de um tratamento, seis operários submeteram-se a um teste e, mais tarde, mediu-se a produtividade de cada um deles. A partir dos resultados apresentados na tabela abaixo, calcule o coeficiente de correlação entre a nota do teste e a produtividade. Comente o resultado.

Operário	Teste	Produtividade	Probabilidade
1	9	22	
2	17	34	
3	20	29	
4	19	33	
5	20	42	
6	23	32	

- 6) A função de probabilidade conjunta de duas variáveis X e Y é dada por $P(X=x;Y=y)=\frac{1}{32}(X^2+Y^2)$; para X=0, 1, 2, 3 e Y=0 e 1.
- a) Construir a distribuição conjunta e as marginais de X e Y
- b) Calcular E (X-2Y+4) e V(X-2Y+4).
- 7) Cite e demostre as propriedades da:

Esperança Matemática; Variância e Covariância.

FORMULÁRIO:

Função Distribuição Conjunta: $P(X=x_i, Y=y_i) = P(Xi, Yj)$

Marginal: P/X $P(X=xi)=\sum_{j=1}^{n} P(X_i,Y_j)$ e P/Y $P(Y=yj)=\sum_{i=1}^{m} P(X_i,Y_j)$

Condicional: $P(X = x_i/Y = y_j) = \frac{P(X = x_i; Y = y_j)}{P(Y = y_j)}$ j=fixo; i=1,...,m; $P(Y = y_j) > 0$

Esperança Condicional: $E(X/Y = y_j) = \sum_{i=1}^m x_i P(x_i; y_j) = \frac{\sum_{i=1}^m x_i P(x_i; y_j)}{P(y_i)}$ i=1,...,m e j=fixo

Esperança e Variância Conjunta: $E(X) = \sum_{i=1}^{n} x_i P(x_i; y_j) V(x) = E(X^2) - [E(x)]^2$

Independência: P(X = x, Y = y) = P(X = x)P(Y = y).

Covariância: Cov(X,Y) = E(XY) - E(X).E(Y) em que, $E(XY) = \sum XY.P(XY)$

Correlação: $\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_{x} \cdot \sigma_{y}}$

Questão Desafio (**pontos**) M1 e M2 são duas máquinas que funcionam de forma independente. Sejam X e Y v.a. que representam respectivamente o número de avarias de M1 e de M2 por dia. Sabe-se que:

- a máquina M1 nunca avaria mais do que uma vez por dia;
 - a máquina M2 avaria no máximo duas vezes por dia;
 - a probabilidade de M1 não avariar é 0,7;
- a probabilidade de M2 não avariar é 0,5 e a de avariar 2 vezes é de 0,3.

Pede-se: Construa a tabela de probabilidade conjunta e marginal associada ao par aleatório (X,Y) e Determine a covariância, o coeficiente de correlação linear e interprete!

Momentos e Função Geratriz de Momentos

Por exemplo: a média populacional é um caso particular daquilo que chamamos de momento.

Temos usado certos estimadores de parâmetros populacionais, como média e variância, simplesmente tentando "imitar" na amostra o que acontece na população.

Em <u>Estatística</u>, a expressão genérica de <u>esperança</u>, o *n*-ésimo **momento** ou **momento de ordem** n de uma <u>variável aleatória</u> X é dado por:

$$E\left|x^{n}\right|$$

Os momentos são muito importantes em <u>Estatística</u> para caracterizar distribuições de probabilidade.

Por exemplo, a <u>distribuição normal</u> é caracterizada apenas pelo primeiro e pelo segundo momentos. Os primeiro, segundo, terceiro e quarto momentos caracterizam a <u>tendência central</u>, <u>dispersão</u>, <u>assimetria</u> e <u>curtose</u>, respectivamente, de uma distribuição de probabilidades.

Se X~N(μ ; σ^2), logo E(X)= μ e E(X²)=Var(X) + [E(x)]² = $\sigma^2 + \mu^2$ Os momentos mais importantes são os quatro primeiros, que são muito utilizados para caracterizar <u>funções densidade</u> de <u>probabilidade</u>. Entretanto, é quase sempre possível calcular <u>momentos de alta ordem</u>.

DEFINIÇÕES:

As seguintes definições são equivalentes:

• Para cada <u>número</u> inteiro n, o n -ésimo momento de uma <u>variável aleatória</u> X é definido como

$$E[X^n]$$

• O n-ésimo momento da <u>variável aleatória</u> X, Para uma <u>variável</u> aleatória discreta com <u>função massa de probabilidade</u> $p(x_i) = p_i$, o momento se escreve:

$$\mu_n(x) = \sum p_i(x_i - \mu)^n$$

 Para cada <u>número</u> inteiro n, o n-ésimo momento central de uma <u>variável aleatória</u> X é definido como

$$\mu_n = E[X - E(X)]^n$$
 $E(x^2) = Var(x) + [E(x)]^2 = \sigma^2 + \mu^2$

CALCULO DE MOMENTOS:

Por ser um cálculo de <u>valor esperado</u> (esperança), o cálculo dos momentos varia ligeiramente dependendo de a <u>variável aleatória</u> ser do tipo <u>discreta</u> ou <u>contínua</u>. Isso porque a esperança, no caso de variáveis aleatórias discretas, é calculado por uma <u>soma</u> ponderada das possíveis ocorrências.

Valor de n	Substituindo o valor de n na equação de definição de momento, temos	Substituindo o valor de <i>n</i> na equação de definição de <i>momento central</i> , temos
1° momento $(n = 1)$	$\mu_{1}^{'}=E\left(x^{1}\right)=\sum_{x}\left[f_{x}(x)x^{1}\right]$, ou seja, o primeiro momento é a média da variável X	$\mu_1 = E\left[X - E(X)\right]^1 = E(X) - E(X) = 0$. Ou seja, o primeiro momento central é sempre igual a zero.
2° momento ($n=2$)	$\mu_{2}' = E\left(x^{2}\right) = \sum_{x} \left[f_{x}(x)x^{2}\right]$	$ \mu_2 = E\left[\left[X - E(X)\right]^2\right] = Var\left(X\right) $ Ou seja, o segundo momento central de uma variável aleatória é sua variância.

EXERCÍCIO: Demostrar os momentos das distribuições discretas: binomial, Poisson e geométrica.

A tabela abaixo resume a função geradora de momentos de algumas das principais distribuições discretas já vistas acima.

Distribuição	Densidade	Média	Variância	Função Geradora de Momentos
Binomial	$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	$(1-p) + pe^t$
Poisson	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$	λ	λ	$\exp\{\lambda(e^t-1)\}$
Geométrica	$p(x) = p(1-p)^x$	$\tfrac{(1-p)}{p}$	$\frac{(1-p)}{p^2}$	$\frac{p}{1-(1-p)e^t}$