Controlli Automatici T Progetto gruppo AO — Traccia 3A

Giacomo Romanini

Guglielmo Palaferri

Luca Tacinelli

Pietro Girotti

6 luglio 2021

1 Linearizzazione nell'intorno di (x_e, u_e)

Il sistema del motore ad elica assegnato è descritto dalle seguenti equazioni:

$$\dot{\theta} = \omega$$

$$(m_i e_i^2 + I_e) \dot{\omega} = -\beta \omega - \mu_d m_i \omega^2 e_i^2 + \tau$$

Si considerano

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \theta(t) \\ \omega(t) \end{bmatrix}$$
$$u(t) = \tau(t)$$
$$y(t) = \omega(t)$$

Sostituendo i parametri è possibile ottenere le equazioni di stato:

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{\beta}{(m_i e_i^2 + I_e)} x_2(t) - \frac{\mu_d m_i e_i^2}{(m_i e_i^2 + I_e)} x_2^2(t) + \frac{1}{(m_i e_i^2 + I_e)} u(t)$$

Inoltre, poiché la dinamica di θ è ininfluente per l'evoluzione del sistema, si conosce $x_e = \begin{pmatrix} 0 \\ 10000/2\pi \end{pmatrix}$ e $y_e = \omega_e = 10000/2\pi$. u_e può essere calcolato ponendo $f_2(x_e, u_e) = 0$:

$$-\beta x_{2e} - \mu_d m_i e_i^2 x_{2e}^2 + u_e = 0 \implies u_e \approx 1110.7222$$

Si procede a questo punto calcolando le matrici del sistema linearizzato:

$$\delta \dot{x}(t) = A\delta x(t) + B\delta u(t)$$

$$A = \frac{\partial f(x,u)}{\partial x} \Big|_{\substack{x=x_e \\ u=u_e}} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{\beta}{m_i e_i^2 + I_e} - \frac{\mu_d m_i e_i^2}{m_i e_i^2 + I_e} 2\omega_e \end{bmatrix} \quad B = \frac{\partial f(x,u)}{\partial u} \Big|_{\substack{x=x_e \\ u=u_e}} = \begin{bmatrix} 0 \\ \frac{1}{m_i e_i^2 + I_e} \end{bmatrix}$$

$$C = \frac{\partial h(x,u)}{\partial x} \Big|_{\substack{x=x_e \\ u=u_e}} = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad D = \frac{\partial h(x,u)}{\partial u} \Big|_{\substack{x=x_e \\ u=u_e}} = \begin{bmatrix} 0 \end{bmatrix}$$

2 Funzione di trasferimento

Per calcolare la funzione di trasferimento, si utilizza l'espressione

$$G(s) = C(sI - A)^{-1}B + D$$

dove

$$(sI - A)^{-1} = \frac{adj(sI - A)}{det(sI - A)} = \begin{bmatrix} 1/s & \frac{1}{s(s+1.4139)} \\ 0 & \frac{1}{s+1.4139} \end{bmatrix}$$

Ottenendo quindi la funzione di trasferimento:

$$G(s) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1/s & \frac{1}{s(s+1.4139)} \\ 0 & \frac{1}{s+1.4139} \end{bmatrix} \begin{bmatrix} 0 \\ 1.2903 \end{bmatrix} + 0 = \frac{1.2903}{s+1.4139}$$

Avendo un polo in s = -1.4139, è possibile constatare con certezza che il sistema sia BIBO stabile.

Di seguito il diagramma di Bode della funzione di trasferimento, ricavato tramite MATLAB.

3 Specifiche del regolatore

(3.1) Per ottenere un errore a regime nullo con riferimento a gradino w(t) = W1(t), L(s) deve presentare un polo nell'origine. Avendo un unico polo reale negativo, possiamo introdurre a questo scopo un regolatore statico con un polo nell'origine: $R_s(s) = \frac{1}{s}$ ricavandone quindi $G_e(s)$:

$$G_e(s) = R_s(s)G(s) = \frac{1}{s} \left(\frac{1.2903}{s + 1.4139}\right)$$

- (3.2) Come si può notare, il sistema esteso rispetta le specifiche iniziali sul margine di fase $(M_f \ge 45^\circ)$
- (3.3) La sovraelongazione percentuale massima accettabile è pari all'1%. Da questo ricaviamo un nuovo vincolo sul margine di fase, sapendo che $M_f = \xi \cdot 100$

$$\xi^* = \sqrt{\frac{(ln(0.01))^2}{\pi^2 + (ln(0.01))^2}} = 0.8261$$

$$M_f = \xi * 100 \Longrightarrow M_{f,min}^* = 0.8261 \cdot 100 = 82.61 \Longrightarrow arg(L(j\omega_c)) \ge -97.39^{\circ}$$

Il nuovo vincolo sul margine di fase introduce quindi un minimo non rispettato dal sistema esteso.

(3.4) Il tempo di assestamento all'1% deve essere mantenuto al di sotto dei 6 secondi. Posso quindi ottenere $\omega_{c,min}$

$$T_{a,1} = 6 \Longrightarrow \omega_c \ge \frac{460}{6 \cdot 82.61} \Longrightarrow \omega_c \ge 0.9281$$

(3.5) Considerando variazioni del parametro e_i di ± 0.1 , si ottiene il seguente diagramma:

4 Disturbo di misura

Il disturbo di misura presenta componenti frequenziali maggiori di 100 rad/s e deve essere abbattuto di almeno 30 volte. Di conseguenza a frequenze $\omega \geq 100 \ rad/s$, il grafico di $L(j\omega)$ non potrà avere ampiezze maggiori di -30dB.

Di seguito il diagramma di Bode del sistema esteso con i vincoli ottenuti dalle specifiche.

Come si può notare, sia le specifiche sull'ampiezza che quelle sul margine di fase non vengono rispettate. In particolare notiamo che, se anche ω_c si trovasse nel range $[\omega_{c,min}, \omega_{c,max}]$, le specifiche sul margine di fase non sarebbero rispettate. Possiamo ricondurci dunque ad uno scenario di tipo B.

Sintesi del regolatore dinamico

Poiché ci interessa un anticipo di fase minore di 90°, per soddisfare le specifiche è sufficiente introdurre una rete anticipatrice con uno zero:

$$R_d(s) = \mu_d \frac{1 + \tau s}{1 + \alpha \tau s}$$

Procedendo in maniera empirica abbiamo scelto $\omega_c^* = 1.2281 \ rad/s$, valutando poi argomento ed ampiezza di G_e in ω_c^* :

$$arg(G_e(Jw_c^*)) = -130.9762^{\circ} \qquad |G_e(Jw_c^*)|dB = -5.0201dB$$

A questo punto possiamo calcolare ϕ^* ed M^* :

$$\varphi_c^* = (M_f^* min + 5) - 180 - (-arg(G_e(Jw_c^*))) = 38.5862 \qquad M^* = 10^{\frac{-|G_e(Jw_c^*)|dB}{20}} = 1.7824$$

Ottenendo infine i valori di τ ed $\alpha\tau$ per determinare l'espressione di $R_d(s)$

$$\tau = \frac{M^* - \cos(\varphi^*)}{\omega_c^* \cdot \sin(\varphi^*)} = 1.2087 \qquad \alpha \tau = \frac{\cos(\varphi^*) - \frac{1}{M^*}}{\omega_c^* \sin(\varphi^*)} = 0.1064$$

$$R_d(s) = 1.95 \frac{1 + 1.2087s}{1 + 0.1064s}$$

L'espressione finale di L(s) sarà quindi:

$$L(s) = R_d(s)G_e(s) = 1.95 \frac{1 + 1.2087s}{1 + 0.1064s} \frac{1}{s} \left(\frac{1.2903}{s + 1.4139}\right) = \frac{28.58(s + 0.8273)}{s(s + 9.4)(s + 1.4139)}$$

5 Test del regolatore

Mediante Simulink è possibile testare il regolatore sul modello non lineare (in allegato il file simulink). Il modello è stato testato fornendo un ingresso a gradino di ampiezza W=5 al tempo t=1

Come si può osservare, la rete non lineare risponde ai test riproducendo quasi perfettamente il comportamento della rete lineare.