

Sciences physiques

Classe: 4^{ème} MATH

Série: RLC Forcé (1)

Nom du prof : Mr HADJ SALAH WAJIH

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

www.takiacademy.com

73.832.000

Au cours d'une séance de travaux pratiques, deux groupes d'élèves A et B veulent étudier le phénomène de résonance d'intensité. Chaque groupe dispose d'un générateur basse fréquence, un oscilloscope, une bobine, un résistor de résistance R = $20~\Omega$ et un condensateur de capacité C = 16.10^{-6} F.

Les deux groupes réalisent des montages semblables comportant un dipôle RLC série et appliquent entre ses bornes une tension sinusoïdale $u(t) = U_m \sin(2\pi N t)$ d'amplitude U_m constante et de fréquence N, délivrée par un GBF. A l'aide d'un oscilloscope bicourbe, ils visualisent à la voie Y_1 la tension $u_R(t)$ aux bornes du résistor et à la voie Y_2 la tension u(t) aux bornes du dipôle RLC série.

et obtiennent les oscillogrammes de la figure ci-dessous, en utilisant les réglages suivants :

- * sensibilité horizontale : 2 ms/div,
- * Sensibilité verticale de la voie Y₁ : 200 mV/div.
- * Sensibilité verticale de voie Y₂: 500 mV/div,

- **1.** Faire le schéma du circuit réalisé par les élèves en indiquant les connexions nécessaires sur l'oscilloscope pour visualiser les tensions u(t) et u_R(t).
- 2. a- la fréquence N de la tension d'alimentation u(t).
 - **b-** Justifier que les oscillations de l'intensité i(t) sont qualifiées de forcées. Préciser l'excitateur et le résonateur.
 - c-Dire, en le justifiant, si les groupes A et B ont manipulé la même bobine ou non.
- 3. Etude des oscillogrammes obtenus par le groupe A :
 - a- Déterminer :
 - Les amplitudes U_m de la tension u(t) et I_m de l'intensité i(t).
 - l'impédance Z₁ du circuit ;
 - le déphasage de l'intensité i(t) du courant dans le circuit, par rapport à la tension u(t) et en déduire si le circuit, inductif, capacitif ou équivalent à un résistor.
 - b- Etablir l'équation différentielle qui régie les oscillations de l'intensité i(t).
 - **c-**Faire la construction de Fresnel relative aux amplitudes des tensions pour le circuit réalisé par ce groupe .
 - **d-** En déduire la valeur de la résistance r₁ et l'inductance L₁ de la bobine utilisée par ce groupe.
- 4. Etude des oscillogrammes obtenus par le groupe B :
 - a- Déterminer :
 - Les amplitudes U_m de la tension u(t) et I_m de l'intensité i(t).
 - l'impédance Z₂ du circuit ;
 - le déphasage de l'intensité i(t) du courant dans le circuit, par rapport à la tension u(t) et en déduire si le circuit, inductif, capacitif ou équivalent à un résistor.
 - **b-** Les élèves de ce groupe confirment qu'ils peuvent connaître rapidement la fréquence propre de leur circuit oscillant.
 - Justifier pourquoi.
 - c- Déterminer la valeur efficace I₀ de l'intensité du courant dans le circuit du groupe B et écrire l'expression numérique de l'intensité i(t).
 - d- Montrer que la bobine utilisée par ce groupe est résistive.
 - Déterminer les valeurs de sa résistance r₂ et de son inductance L₂.
 - e- Un élève de ce groupe branche un voltmètre aux bornes du dipôle (bobinecondensateur).
 - Déterminer la valeur de la tension affichée par le voltmètre.
 - f- Calculer le coefficient de surtension Q.

