

Recommender Systems Random Walk Recommendation

Professor Robin Burke Spring 2019

Bipartite Networks

- Special kind of network
- Two types of nodes
 - Think users and items
 - But many other applications
- Edges only allowed between different types of nodes
 - User-item edges
 - No user-user or item-item edges

+

Antony and Cleopatra

User-item networks

- Rating-matrix = Incidence matrix
 - Different from adjacency matrix
 - Types of nodes on axes
- Bipartite network

	GLADIATOR	GODFATHER	BEN-HUR	GOODFELLAS	SCARFACE	SPARTACUS
U,	1			5		2
U,		5			4	
U,	5	3		1		
U ₄			3			4
U,				3	5	
U ₆	5		4			

- The incidence matrix connects users and items, each of which are types of nodes, so it is a segment of the adjacency matrix (which has rows and columns for all the nodes). What parts are not present in the incidence matrix?
- A. The rest of the adjacency matrix would just be copies of this part.
- B. The parts of the adjacency matrix that represent the similarity between items
- C. The parts of the adjacency matrix that are zero because nodes of the same type can't connect to each other.

Paths in user-item network

- Length = 3
 - User 1 Goodfellas User 6 Scarface
- Length = 5
 - User 1 Gladiator User 5 Godfather User 4 Scarface
- Other items linked to users who share an item
 - Essentially what collaborative filtering is giving us

+

Random walks

- One option is to consider all odd-length random walks
 - Rank items by how often they are encountered
 - But this does not have a nice PageRank type solution
- Katz measure
 - Number of random walks between two nodes

$$Katz(i, j) = \sum_{t=1}^{\infty} \beta^t \cdot n_{ij}^{(t)}$$

- Purpose of β < 1 is to discount longer paths
- Matrix formulation

$$K = \sum_{i=1}^{\infty} (\beta A)^{i} = (I - \beta A)^{-1} - I$$

- Has a solution as long as β is less than 1/(largest eigenvalue in A)
- But long paths are probably not good in general
 - Doesn't take bipartite nature into account

+ P³ and P³_{α}

- How many times would item j be encountered in random walks of length 3 from user i?
- Probability of moving from node i and j
 - Provided there is an edge
 - $\mathbf{a}_{ij} / \mathbf{d}_i$
- Let D = diagonal matrix with vertex degrees d_i on the diagonal
 - D^{-1} = diagonal metric with $1/d_i$ on the diagonal
- One-step of the random walk
 - D⁻¹ A
 - Probability matrix
 - $P^3 = (D^{-1}A)^3$
- \blacksquare Turns out better results come from $(a_{ij} \mathrel{/} d_i)^\alpha$
 - α = number between 1 and 2, ex. 1.5, 1.8

P³ uses length 3 random walks in the user-item bipartite network. You could create a similar algorithm P⁵ using length 5 random walks, which also end at items. The recommendations from P⁵ would be different in what way(s) from P³?

- A. They would be the same or very similar.
- B. They would be completely different and most likely completely wrong because you are no longer in the target user's neighborhood (people who rated the same items)
- C. They would be similar to the P³ recommendations, but maybe a bit more diverse and a bit less accurate.
- D. You can't get to length 5 in a random walk in a bipartite network.

Sampling

- Matrix multiplication with really large sparse matrices
 - Not very memory efficient
- In these cases, random walk problems are solved by sampling
 - Exactly what it sounds like
 - Generate a bunch of random walks and count hits
 - This can be very efficient
- Can even do selective updating
 - A user adds a new rating
 - Re-do just that user's random walks

Popularity re-ranking

- Consider a user v_L with low degree
 - Rated two items j and k
- Every path through v_L will either exit to j or k
 - These are high probability edges
- Consider user v_H with high degree
 - Rated 200 items
- A path through v_H could go to any of 200 items
- There is a bias in the algorithm towards items rated by cold-start users
 - If we hit one of these users, we will go to one of their handful of items

$$+$$
 RP³ _{β}

- Divide the score by the probability of following each path
- Probability of the path L =

$$\blacksquare \frac{1}{\prod_{i \in L} d_i}$$

- Apply this adjustment to all the resulting probabilities
 - This works better in experiments
 - Both accuracy and diversity
 - Christoffel et al., 2015

+ Some results

What punishment would be appropriate for the author who superimposed three different x-axes on top of each other in the previous figure?

- A. Having their cell phone permanently switched to Greek language mode
- B. Permanently changing the distance readout in their GPS applications to furlongs instead of miles.
- C. An eternity grading freshman math exams.

