

MISR UNIVERSITY FOR SCIENCE AND TECHNOLOGY COLLEGE OF ENGINEERING MECHATRONICS ENGINEERING DEPARTMENT MTE 408 ROBOTICS

SESSION 1 INTRODUCTION TO ROBOTICS LAB

WALEED ELBADRY MARCH 2022

AGENDA

COURSE FLOW

MATRIX ALGEBRA USING MATLAB

Laptop with dual boot (Windows/MAC) and Linux

Windows 10 64-bit

MATLAB R2021a or higher (64-bit)

Peter Croke toolbox (RTB10.4.mltbx)

Python 3.8 (optional) for bonus assignments

VS Code with Python Extension Pack for bonus assignments

Linux UBUNTU 20.04

ROS Noetic

Python 3.8 or higher and C++ compiler chain

VS Code - ROS extension, Python Extension, C++ extension

MATLAB R2021a or Higher

This is a mandatory requirements for the course. Previous releases may work but you won't be able to use any new features in your project

Peter Croke Toolbox

- 1. Go to :
 - https://petercorke.com/toolboxes/robotics-toolbox/
- 2. Scroll down to section "install from mltbx" (MATLAB toolbox plugin).
- 3. Download "RTB10.4.mltbx" to your MTE408 course folder.

Peter Croke Toolbox verification

If you move the motor with an angle of $oldsymbol{ heta}_{oldsymbol{z}}$, what is the object displacement $oldsymbol{X}$?

Driver

$$X(m) = \frac{1}{2}$$

$$\theta_z X(m) = \frac{2\pi R(m)}{360 (deg)} \theta_z(deg)$$

ROTATION

LINEAR

$$X(m) = \frac{2\pi R(m)}{360 (deg)} \theta_z(deg) \rightarrow Foward Kinematics$$

$$\boldsymbol{\theta_{z}}(deg) = \frac{360 \, (deg)}{2\pi R \, (m)} \, \boldsymbol{X}(m) \rightarrow \boldsymbol{Inverse} \, Kinematics$$

ROTATION LINEAR

Forward Kinemtaics

ROTATION

LINEAR

Inverse Kinemtaics

ROTATION LINEAR

Forward Dynamics

ROTATION LINEAR

Inverse Dynamics

For each point on the path, you need to find the appropriate angle, speed and acceleration for each joint.

LEARNING PATH

- 1. Coordinate system
- 2. Pose
- 3. Translation and Rotation
- 4. Forward Kinematics
- 5. Inverse Kinematics
- 6. Forward Dynamics
- 7. Inverse Dynamics
- 8. Path Planning
- 9. Trajectory Generation

LEARNING PATH (LAB)

- 1. Matrix Algebra
- 2. Coordinate Systems
- 3. Homogeneous Transform
- 4. Forward Kinematics
- 5. Inverse Kinematics
- 6. Forward Dynamics
- 7. Inverse Dynamics
- 8. Path planning
- 9. ROS navigation stack (AMCL + Dijkstra)

ROW VECTOR

$$A = [1234]$$

$$A = [1,2,3,4]$$

COLUMN VECTOR

$$\gg B = [1; 2; 3; 4]$$

$$\gg B = [1]$$

2

3

4|

RECTAGULAR MATRIX

$$A = [1234; 5678]$$

SQUARE VECTOR

$$\gg B = [123; 456; 789]$$

Command	Window			
>>	A = [1234	4;5,6, [~]	7,8]
A =	:			
	1	2	3	4
	5	6	7	8
>>	B = [1 2 3;	4 5 6 ;	7,8,9
В =	:			
В =	1	2	3	
В =	1 4	2 5	3 6	

DIAGONAL MATRIX

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\gg d = [121];$$

$$\gg A = diag(d)$$

IDENTITY MATRIX - I

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \gg A = eye(3)$$

Comma	nd Window		
>:	> d = [1 2 1]	;
>:	> A = d	iag(d)]
A	=		
	1	0	0
	0	2	0
	0	0	1

Command Wi	ndow	ķ	
>> A	= еуе	(3)	
A =			
	1	0	0
	0	1	0
	0	0	1

NULL MATRIX

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\gg A = zeros(3)$$

$$B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\gg B = zeros(2,3)$$

Cor	nmand Wi	ndov	V	
	>> A	=	zeros(3)	
	A =			
		0	0	0
		0	0	0
		0	0	0
	>> B	=	zeros(2,3)
	В =			
		0	0	0
		0	0	0

SCALAR MATRIX

$$A = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

$$\gg c = 6;$$

 $\gg d = ones(1,4);$
 $\gg A = diag(d) * c$

ADDITION

$$\begin{bmatrix} 7 & 3 & -1 \\ 2 & -5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -4 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 8 & 8 & 5 \\ -2 & -7 & 9 \end{bmatrix}$$
$$\gg \begin{bmatrix} 7 & 3 & -1 \\ 2 & -5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -4 & -2 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 5 & 6 \\ -2 & -7 & 9 \end{bmatrix}$$

+ -× ÷

SCALAR MULTIPLICATION

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} \quad k = 4$$

$$>> A = [3 - 1; 2, 1; 2 - 3; 4 1];$$

 $>> k = 4;$

+ -× ÷

MULTIPLICATION OF MATRICES

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \\ 2 & -3 \\ 4 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & 3 & 4 \\ 6 & -1 & 0 \end{bmatrix}$$

$$\gg A = [3 - 1; 2, 1; 2 - 3; 4 1];$$

$$\gg size(A)$$

$$\gg B = [2 \ 3 \ 4; \ 6 \ -1 \ 0];$$

$$\gg size(B)$$

$$\gg A * B$$

Comman	d Window			
>>		-1;2,1 A)	;2 -3	;4 1];
an	s =			
	4	2		
	B = [size(2 3 4; B)	6 -1	0];
an	s =			
	2	3		
>>	A * B			
an	s =			
	0	10	12	
	10 -14	5 9	8 8	
	14	11	16	

MULTIPLICATION OF MATRICES

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\gg A = [3 - 1; 2, 1];$$

$$\gg size(A)$$

$$\gg I = eye(2);$$

$$\gg size(I)$$

$$\gg A * I$$

Comman	d Window		
	A=[3 size(.];
an	s =		
	2	2	
	I = e size(
an	s =		
	2	2	
>>	A * I]	
an	s =		
	3	-1	
	2	1	

MATRIX TRANSPOSE

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$$

$$\gg A = [3 - 1; 2, 1];$$

$$\gg B = A'$$

$$\gg B = transpose(A)$$

EXERCISE

Prove using **MATLAB**

$$(A + B)^T = A^T + B^T$$
$$(AB)^T = B^T A^T$$

$$A = \begin{bmatrix} 1 & 7 & 13 \\ 3 & 9 & 15 \\ 5 & 11 & 17 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 8 & 14 \\ 4 & 10 & 16 \\ 6 & 12 & 18 \end{bmatrix}$$

MATRIX INVERSE

An invertible matrix must be:

- Square M_{nxn}
- Linearly independant (no column is related to other columns singularity
- The result of $M_{nxn} \cdot M^{-1} = I$ (Identity)

MATRIX INVERSE

$$A = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$

 $\gg inv(A)$

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$
 Cofactors and Adjoint method

1. Matrix of minors (1strow)

$$\begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} (0*1) - (-2*1) & (2*1) - (-2*0) & (2*1) - (0*0) \\ (0*1) - (2*1) & (3*1) - (2*0) & (3*1) - (0*0) \\ (0*-2) - (2*0) & (3*-2) - (2*2) & (3*0) - (0*2) \end{bmatrix}$$

Cofactors and Adjoint method

1. Matrix of minors

$$M = \begin{bmatrix} 2 & 2 & 2 \\ -2 & 3 & 3 \\ 0 & -10 & 0 \end{bmatrix} \to \{1\}$$

2. Matrix of cofactors (Chekboard method)

$$Sign = \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix} \rightarrow M = \begin{bmatrix} 2 & 2 & 2 \\ -2 & 3 & 3 \\ 0 & -10 & 0 \end{bmatrix} \rightarrow \mathbf{C} = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 3 & -3 \\ 0 & 10 & 0 \end{bmatrix}$$

Cofactors and Adjoint method

3. Adjoint matrix (Transpose cofactor matrix)

$$\mathbf{Adj} = \begin{bmatrix} 2 & 2 & 0 \\ -2 & 3 & 10 \\ 2 & -3 & 0 \end{bmatrix} \to \{3\}$$

4. Find the determinant

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 3 & -3 \\ 0 & 10 & 0 \end{bmatrix} \quad \det(\mathbf{A}) = (3)(2) + (0)(-2) + (2)(2)$$

+ -× ÷

Cofactors and Adjoint method

4. Find the determinant

$$det(A) = 6 + 0 + 4 = 10$$

5. Find the inverse

$$A^{-1} = \frac{1}{det} [Adj] = \frac{1}{10} \begin{bmatrix} 2 & 2 & 0 \\ -2 & 3 & 10 \\ 2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} 0.2 & 0.2 & 0 \\ -0.2 & 0.3 & 1 \\ 0.2 & -0.3 & 0 \end{bmatrix}$$

Check
$$\rightarrow AA^{-1} = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.2 & 0.2 & 0 \\ -0.2 & 0.3 & 1 \\ 0.2 & -0.3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

MATRIX INVERSE

$$A = \begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\gg A = [3\ 0\ 2; 2\ 0\ -2; 0\ 1\ 1];$$

- $\gg inv(A)$
- $\gg A * inv(A)$

Comman	d Window				
₽>	A= [3	0 2;2	2 0 -2;	0 1 1]
Α :	=				
	2	0	0		
	3	0	2		
	2	0	-2		
	0	1	1		
	÷ (7)	7			
>>	inv(A)				
an	s =				
an	5 –				
	0.200	00	0.2000	ı	0
			0.3000		.0000
			-0.3000		0
>>	A * ir	nv(A)			
		` '			
an	s =				
	1.000	00	0	ı	0
	-0.000	00	1.0000	ı	0
		0	0	1	.0000

SHEET WILL BE SOLVED NEXT SECTION

