Mice Protein Expression Classification

-- Internship Project Report

Project Overview

- Multiclass classification of mice using brain protein expression data
- Dataset: 1080 samples, 82 features (77 proteins)
- Target: 8 experimental groups (based on genotype, treatment, behavior)
- Domain: Biomedical research (e.g., Down syndrome, drug effects)

Objective

- Classify mice into 8 experimental groups
- Understand which proteins contribute to group differences
- Enable biomedical insights through ML-based classification
- Model used: Random Forest + comparisons

Dataset Description

- Source: Data_Cortex.csv
- Rows: 1080 mice samples
- Features:
- 77 Protein expression levels (continuous)
- 5 categorical features: MouseID, Genotype, Treatment, Behavior, class
- Target: Class (e.g., c-CS-m, t-SC-s)

Sample Proteins

- DYRK1A_N: Down syndrome biomarker
- BDNF_N: Brain-derived neurotrophic factor
- GFAP_N: Glial activation
- APP_N: Alzheimer's protein
- pAKT_N: Cell signaling marker

Data Preprocessing

- Missing values: Mean imputation
- Label encoding for categorical data
- Standardization applied to protein features
- No major class imbalance detected

Exploratory Data Analysis

Distribution of protein values: Mostly normal

Boxplot insights: Class-specific expression variation (e.g., DYRK1A)

Correlation heatmap: Many proteins highly correlated

Modeling Approach

- Models Used:
- scikit-learn used for implementation
 - Random Forest (best)
 - SVM
 - Logistic Regression
 - o KNN
- Train/test split: 80-20
- Hyperparameter tuning for Random Forest

Model Evaluation

- Random Forest Accuracy: 93%
- Other Models:
 - SVM: 88%
 - KNN: 86%
 - Logistic Regression: 85%
- Metrics: Accuracy, Precision, Recall, F1-Score

Feature Importance

- Top proteins influencing prediction:
 - DYRK1A, BDNF, GFAP, APP
- Feature importance extracted from Random Forest
- Aligns with domain knowledge (e.g., Alzheimer's & Down syndrome)

SOD1_N 0.049059 pERK_N 0.042561 BRAF_N 0.040231 pPKCG_N 0.033584 CaNA_N 0.029513 Tau_N 0.028471 DYRK1A_N 0.027245 P38_N 0.025977 pCAMKII_N 0.025186 AKT_N 0.023511

Challenges Faced

- #Handling missing values for multiple proteins
- Wigh dimensionality of protein data
- Binterpretability of models for non-technical stakeholders
- Potential overlap among classes

Conclusion

- Machine Learning successfully classified mice into 8 experimental groups using protein expression data from the brain cortex.
- Random Forest Classifier delivered the best performance with ~93% accuracy.
- Feature importance analysis revealed biologically relevant proteins like:
 - SOD1 (oxidative stress)
 - DYRK1A (linked to Down syndrome)
 - Tau (associated with Alzheimer's)
- The project pipeline integrates:
 - Data preprocessing
 - Exploratory Data Analysis (EDA)
 - Model training, evaluation, and interpretation

Future Scope

- • Feature Optimization
- Apply PCA, Lasso Regression, or Recursive Feature Elimination (RFE) for dimensionality reduction and interpretability.
- Advanced Modeling
- Explore Deep Learning models (e.g., MLPs, CNNs) for learning complex, non-linear patterns in high-dimensional protein data.
- Dataset Expansion
- Extend the model to human protein datasets for translational research in Alzheimer's, Down syndrome, etc.
- III Biological Insight
- Perform individual protein impact studies to understand their biological significance and validate with literature.

Thank You

Kindly, Give some suggetion or feedback.

If you have any question, you can ask freely.

abhishekgp20004@gmail.com