第一章 点集拓扑

1.1 可数性公理与分离公理

1.1.1 流形的嵌入

定义 1.1.1. 一个 m-维流形为一个具有可数基的 Hausdorff 空间 X, 其每一点 x 都有一邻域同胚于 \mathbb{R}^m 中的开子集。

曲线为1-维流形,曲面为2-维流形。

定义 1.1.2. $\phi: X \to \mathbb{R}$ 的支撑为使其非零的定义域子集的闭包。

定义 1.1.3. 设 $\{U_1, \dots, U_n\}$ 为 X 的加标有限开覆盖. 连续函数加标族 $\phi: X \to [0,1]$ 称为由 $\{U_i\}$ 控制的单位分拆 (partition of unity), 如果 ϕ_i 的支撑在 U_i 内且 $\sum \phi_i(x) = 1$ 。

定理 1.1.1 (有限单位分拆的存在性 (existence of finite partitions of unity)). 正规空间的有限开覆盖存在单位分拆。

证明. 首先注意,通过正规性条件,闭集 $A = X - (U_2 \cup \cdots)$ 内可以选择满足 $\overline{V}_1 \subset U_1$ 的开集 V_1 。归纳可将诸 U_k 均缩小为 V_k 且含其闭包在内。

再将 V_k 同样缩小为覆盖 X 的 W_k ,借助 Urysohn 定理对诸 i 存在 $\psi(W) = 1$ 且 $\psi(X - U) = 0$ 的 ψ ,注意 $\phi_i = \psi_i / \sum \psi_i$ 满足条件即可。 \square

定理 1.1.2. 若 X 为 m-维流形,则存在 N 使之得嵌入 \mathbb{R}^N 。

证明. 设有限开覆盖 $\{U_i\}$ 可各由 \mathbf{g}_i 嵌入 \mathbb{R}^m ,又设 ϕ_i 为相应单位分拆。似可径以 $(\mathbf{g}_1, \cdots, \mathbf{g}_n)$ 映入 \mathbb{R}^{mn} ,然而诸 \mathbf{g} 虽在 U 内连续,在 X 上则会"突然"归零,故不可采,应采用 $(\phi_1\mathbf{g}_1, \cdots)$ 将之平滑化。此则不得保证单射性,盖不等之 \mathbf{g} 可由不等之 ϕ 相乘后相等。是故复以

$$F: X \to \mathbb{R}^{n+mn} = (\phi_1, \cdots, \phi_n, \phi_1 \mathbf{g}_1, \cdots, \phi_n \mathbf{g}_n)$$