第六章 信道编码

- 第六章 信道编码
 - 6.1 6.2 信道编码概念和理论
 - 差错和差错控制系统分类
 - 矢量空间与码空间
 - 矢量空间
 - 码空间
 - 译码方法
 - 信道编码定理
 - 随机编码
 - 信道编码定理
 - 联合信源信道编码定理
 - 纠错编码的基本思路
 - 6.3 线性分组码
 - 线性分组码的形成
 - 基本概念
 - 系统形式的生成矩阵与校验矩阵
 - 伴随式与标准阵列译码
 - 基本概念
 - 编译码过程
 - 码距、纠错能力、MDC码及重量谱
 - 完备码 (Perfect code)
 - 完备码定义与性质
 - 汉明码 (Hamming Code)
 - 高莱 (Golay) 码
 - 循环码
 - 基本概念与多项式描述
 - 基本定理与矩阵描述
 - 编译码方法及其实现电路
 - 高莱 (Golay) 码
 - 循环冗余校验 (Cyclic Redundancy Check, CRC)

- 信道传输会使接收信号出现差错,信道编码旨在提升传输可靠性,主要涉及两个层面的问题:
 - 如何准确接收承载信息的信号:线路编码(通信原理)
 - 怎样避免少量错误信号对信息内容产生影响: 纠错编码

6.1 6.2 信道编码概念和理论

差错和差错控制系统分类

• 差错类型

- **符号差错**:由符号发生差错引起,也叫信号差错,信号差错概率用符号差错概率表示。
- o **差错比特**:由信息比特发生差错引起,也叫信息差错,信息差错概率用误比特率表示。
- 。 对于二进制传输系统,符号差错等效于比特差错。
- 对于多进制系统,一个符号差错到底对应多少比特差错难以确定,因为一个符号由多个比特组成。
- 两种八电平线路编码方法比较

量级	自然二进码	反射二进码(格雷码)
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

- 。 格雷码可以通过普通二进制码转换得到。
- 。 以下是生成格雷码的常见方法:
 - a. 最高位保留:格雷码的最高位 (最左边) 与二进制码的最高位相同。
 - b. 逐位异或:格雷码的每一位是二进制码当前位与上一位的异或结果。
- 差错图样 (error pattern)
 - 定义:
 - 差错图样 E = 发码 C 收码 $R \pmod{q}$

■ **示例**: 8进制(q=8)码,若发码 C=(0,2,5,4,7,5,2) ,收码变为 R=(0,1,5,4,7,5,4) ,差错图样 E=C-R=(0,1,0,0,0,0,6) (模8)。

 \circ 二进制码: $E=C\oplus R$ 或 $C=R\oplus E$, 差错图样中的"1" 既是符号差错也是比特差错。

 \circ 汉明距离: 两码字之间不同的位数叫它们之间的汉明距离,记作 $d(c_i,c_j)$,即

$$d(c_i,c_j) = \sum_{k=1}^N c_{ik} \oplus c_{jk}$$

○ 差错图样类型

■ **随机差错**: 若差错图样上各码位的取值既与前后位置无关又与时间无关,即差错始终以相等的概率独立发生于各码字、各码元、各比特

■ **突发差错**:前后相关、成堆出现。突发差错总是以差错码元开头、以差错码元结尾,头尾之间并不是每个码元都错,而是码元差错概率超过了某个额定值

• 纠错码分类

○ 从功能角度: 检错码、纠错码

○ 对信息序列的处理方法:分组码、卷积码

○ **码元与原始信息位的关系**:线性码、非线性码

。 **差错类型**: 纠随机差错码、纠突发差错码、介于中间的纠随机/突发差错码

构码理论:代数码、几何码、算术码、组合码等

• 差错控制系统分类

○ **前向纠错 (FEC)** : 发端信息经纠错编码后传送,收端通过纠错译码自动纠正传递过程中的差错

○ **反馈重发 (ARQ)** : 收端通过检测接收码是否符合编码规律来判断,如判定码组有错,则通过 反向信道通知发端重发该码组

○ 混合纠错 (HEC) : 前向纠错和反馈重发的结合, 发端发送的码兼有检错和纠错两种能力

矢量空间与码空间

矢量空间

• 矢量\线性空间定义

- \circ F表示码元所在的**数域**,对于二进制码,F代表二元域 $\{0,1\}$ 。
- 。 设n重有序元素 (n重矢量) 的集合 $V=\{v_i\}$

$$v_i=(v_{i0},v_{i1},\cdots,v_{ij},\cdots,v_{i(n-1)})\quad v_{ji}\in F$$

。 若满足条件:

- a. V中矢量元素在**矢量加运算**下构成加群。
- b. V中矢量元素与数域F元素的标乘封闭在V中。

c. 分配律、结合律成立。

则称集合V是数域F上的一个n**重矢量空间**,或称n重线性空间,n重矢量又称n重(n-tuples)。

- 码字又叫码矢、n重(矢量)。
- \circ **示例**: n维实数域矢量空间 \mathbb{R}^n , n维复数域矢量空间 \mathbb{C}^n , n维有限域矢量空间 $GF(q)^n$ 等。

• 码矢的运算法则

- 。 码矢的运算法则遵从矢量的运算法则,对于矢量 $v_i=(v_{i0},v_{i1},\cdots,v_{i(n-1)})$, $v_j=(v_{j0},v_{j1},\cdots,v_{j(n-1)})$,及标量 $\alpha\in F$ (数域),定义:
 - 矢量加: $v_i+v_j=(v_{i0}+v_{j0},v_{i1}+v_{j1},\cdots,v_{i(n-1)}+v_{j(n-1)})$, 所得结果仍是矢量。
 - 标乘(标量乘矢量): $\alpha v_i=(\alpha v_{i0},\alpha v_{i1},\cdots,\alpha v_{i(n-1)})$,所得结果是矢量。
 - 点积或内积(矢量乘矢量): $v_i \cdot v_j = v_{i0} \cdot v_{j0} + v_{i1} \cdot v_{j1} + \cdots + v_{i(n-1)} \cdot v_{j(n-1)}$, 所得结果是标量。

• 矢量空间中各元素间的关系

- 。 **线性组合**: 若 $v_k=a_1v_1+a_2v_2+\cdots+a_lv_l$ ($a_i\in F$),则称 v_k 是 v_1,v_2,\cdots,v_l 的线性组合。
- 。 **线性相关**:若满足 $a_1v_1+a_2v_2+\cdots+a_lv_l=0$, $(a_i\in F$ 且不全为0),则称 v_1,v_2,\cdots,v_l 线性相关。其中任一矢量可表示为其它矢量的线性组合。
- 线性无关或线性独立:一组矢量中的任意一个都不可能用其它矢量的线性组合来代替。

• 矢量空间与基底

- 。 如果存在一组线性无关的矢量 v_1, v_2, \cdots, v_k ,这些矢量**线性组合的集合**就构成了一个k**维矢量空间**V,这组矢量就是这个矢量空间的**基底**。
- 性质:
 - **k维矢量空间应包含k个基底**,可以说: **k**个基底"张成"**k**维矢量空间。
 - 基底不是唯一的。
 - 示例: 线性无关的两个矢量(1,0)和(0,1)以及(-1,0)和(0,-1)都可张成同一个2维实数域空间(x,y)。
- 。 自然基底: 矢量元素中包含一个1而其余为0的那组基底

子空间

- \circ 若矢量空间V的一个子集 V_s 也能构成一个矢量空间,则称 V_s 是V的子空间。
- 示例:
 - 二元域GF(2)上三维三重矢量空间V的三个自然基底是(100), (010), (001) 。
 - 以(100)为基底可张成一维三重子空间 V_{s1} ,含 $2^1=2$ 个元素,即 $V_{s1}=\{(000),(100)\}$ 。
 - 以(010),(001)为基底可张成二维三重子空间 V_{s2} , 含 $2^2=4$ 个元素,即 $V_{s2}=\{(000),(001),(010),(011)\}$ 。
 - V_{s1} 和 V_{s2} 都是V的子空间。

• 矢量空间构成

- 每个矢量空间或子空间中必然包含零矢量。
- 构成矢量的有序元素的个数称为"重"数,张成矢量空间的基底的个数称为"维"数。
- \circ 一般情况下,由 $n \land n$ 重的基底张成n 维矢量空间 V_n ,维数和重数一致。
- 。 子空间的引入使维数和重数可以不一样。
- 。 **维数不可能大于重数**,而当维数小于重数时就说明这是一个子空间。

• 正交与对偶空间

- \circ 若两个矢量点积为0,即 $v_1 \cdot v_2 = 0$,则称 v_1 和 v_2 **矢量正交**。
- 若某矢量空间中的任意元素与另一矢量空间中的任意元素正交,则称这两个矢量空间正交。
 - 若两个矢量空间的基底正交,则这两个矢量空间一定正交。
- \circ 正交的两个子空间 V_1 、 V_2 互为**对偶空间** (Dual Space),其中一个空间是另一个空间的**零空间** (null space,也称零化空间)。

码空间

码空间

消息k长 (n,k) 码字n长 q^k 种 分组编码器 q^n 种 k维k重矢量

- i. 码字 c_i 是n个码元的有序排列,是n维n重矢量空间 V_n 的元素之一。
- ii. 然而,矢量空间 V_n 的元素不一定是码字。
- iii. 将码字 c_i 写作 $(c_{i0}, c_{i1}, \cdots, c_{i(n-1)})$, 将码字的集合写成C, 称为码集。
- iv. 码集不一定能构成 V_n 的一个子空间,但对线性分组码而言,码集C一定是 V_n 的一个子空间。

• 分组编码的任务

- 。 通常 $q^n >> q^k$,分组编码的任务是要在n维n重矢量空间的 q^n 种可能组合中选择其中的 q^k 个构成一个码空间,其元素就是许用码的码集。
- 。 因此分组编码的任务就是:
 - a. 选择一个k维n重子空间作为码空间。
 - b. 确定由k维k重信息空间到k维n重码空间的映射方法。
- 码空间的不同选择方法,以及信息组与码组的不同映射算法,就构成了不同的分组码。

译码方法

• 译码的任务

译码器的任务是从受损的信息序列中尽可能正确地恢复出原信息。

- 。 译码算法的已知条件是:
 - 实际接收到的码字序列 $\{r\}$, $r=(r_1,r_2,\cdots,r_N)$ 。
 - 发端所采用的编码算法和该算法产生的码集 X^N ,满足 $c_i=(c_{i1},c_{i2},\cdots,c_{iN})\in X^N$
 - 信道模型及信道参数。
- 信道模型:

- 译码规则: 见译码规则
- 最大后验概率译码
 - 最佳译码,也叫最大后验概率译码(MAP):

$$\hat{c}_i = rg\max_{1 \leq i \leq M} P(c_i|r)$$

• 最大联合概率译码

$$P(c_i/r) = rac{P(c_i)P(r/c_i)}{P(r)} \quad i=1,2,\cdots,2^K$$

- 。 $P(c_i/r)$ 最大等效于 $P(c_i)P(r/c_i)$ 最大。
- 最大联合概率译码:

$$\hat{c}_i = rg\max_{1 \leq i \leq M} P(c_i) P(r|c_i)$$

- 最大似然译码
 - 。 如果 构成码集的 2^K 个码字以相同概率发送,满足 $P(c_i)=1/2^K$, $i=1,2,\cdots,2^K$,在此前提下最佳译码等效于如下最大似然译码。
 - **最大似然译码**(MLD): 码字等概率发送时:

$$\hat{c}_i = rg\max_{1 \leq i \leq M} P(r|c_i)$$

- 最小汉明距离译码
 - 。 对于无记忆信道:

$$\max P(r/c_i) = \max \prod_{j=1}^N P(r_j/c_{ij})$$

○ 对BSC信道:

$$P(r_j|c_{ij}) = egin{cases} p, & c_{ij}
eq r_j \ 1-p, & c_{ij} = r_j \end{cases} \ P(r|c_i) = \prod_{j=1}^N P(r_j|c_{ij}) = p^d (1-p)^{N-d} = (rac{p}{1-p})^d (1-p)^N \end{cases}$$

其中d为r与 c_i 的汉明距离,可见,d**越小,** $P(r|c_i)$ **越大**。

。 BSC信道的最大似然译码可以简化为最小汉明距离译码。

$$\hat{c}_i = rg\min_{1 \leq i \leq M} d(r, c_i)$$

- 只要在接收端将收码r与发码 c_i 的各码元逐一比较,选择其中汉明距离最小的码字作为译码估值 \hat{c}_i 。
- 由于BSC信道是对称的,只要发送的码字独立、等概,汉明距离译码也就是最佳译码。

信道编码定理

• 信道编码定理研究的问题:

随机编码

- ullet 所有可能的编码:平均错误概率 \overline{P}_e
 - 。 若 $\overline{P}_e o 0$,必存在一种编码 $P_e o 0$ 。
 - 用这种方法不能得知最优码是如何具体编出来的;却能得知最优码可以好到什么程度,并进而 推导出有扰离散信道的编码定理,对指导编码技术具有特别重要的理论价值。
- ullet 在(N,K)分组编码器中随机选定的码集有 q^{NM} 种。第m个码集(记作 $\{c\}_m$)被随机选中的概率是

$$P(\{c\}_m) = q^{-(NM)}$$

- \circ 设与这种选择相对应的条件差错概率是 $P_e(\{c\}_m)$ 。
- 全部码集的平均差错概率是

$$\overline{P}_e = \sum_{m=1}^{q^{NM}} P(\{c\}_m) P_e(\{c\}_m) = q^{-NM} \sum_{m=1}^{q^{NM}} P_e(\{c\}_m)$$

- 。 必定存在某些码集 $P_e(\{c\}_m)>\overline{P}_e$,某些码集 $P_e(\{c\}_m)<\overline{P}_e$ 。
- 。 若 $\overline{P}_e o 0$,就必然存在一批码集 $P_e(\{c\}_m) o 0$,即差错概率趋于零的好码一定存在。
- 码集点数 $M=q^K$ 占N维矢量空间总点数 q^N 的比例是 $F=q^K/q^N=q^{-(N-K)}$
 - 。 当K和N的差值拉大即冗余的空间点数增加时,平均而言码字的分布将变得稀疏,码字间的平均距离将变大,平均差错概率将变小。
 - \circ 当F o 0即 $(N-K) o \infty$ 时,能否让平均差错概率 $\overline{P}_e o 0$?
 - Gallager在1965年推导了 \overline{P}_e 的上边界,并证明这个上边界是按指数规律收敛的。

信道编码定理

- $\overline{P}_e < e^{-NE(R)}$
 - \circ E(R)为可靠性函数,也叫误差指数。
 - \circ 码率: $R = rac{\log M}{N} = rac{\log q^K}{N}$ 。
 - 。 M是可能的信息组合数, $M=q^K$; N是每码字的码元数; R表示每码元携带的信息量(bit /码元)。
- E(R)可靠性函数
 - 。 R在 $[0,R_0]$ 区间时,E(R)-R曲线是斜率为-1 (-45°) 的直线,E(R)反比于R
 - \circ $R_0 < C$, 临界速率
 - \circ 而当R=C时E(R)=0即可靠性为零。

• 噪声信道的信道编码定理

- \circ **正定理**:只要传输率 R 小于信道容量 C ,总存在一种信道码(及解码器),在码长 N 足够长的情况下,能够以所要求的任意小的差错概率实现可靠的通信。
- 。 **逆定理**:信道容量 C 是可靠通信系统传输率 R 的上边界,如果 R>C ,就不可能有任何一种编码能使差错概率任意小。

联合信源信道编码定理

• 两步编码处理方法:

- **信源编码**:针对各自信源的不同特点,进行不同的数据压缩,用最有效的二元码来表达这些不同的信源。
- **信道编码**:对于共同传输的数字信道而言,输入端只看成是一系列二元码。信道编码只针对信道特性来进行,不考虑不同信源的不同特性。
- 信源压缩编码只考虑信源的统计特性; 信道编码只考虑信道的统计特性。

特点:

- 优点:设计简单、通用性好,可以分别形成标准。
- 缺点:没有充分利用各自的优势,因而不是最佳的。

• 信源 - 信道编码定理内容:

- \circ 若信源 S 极限熵 H_{∞} 小于信道容量 C ,则存在信源信道编码,使得 $P_e o 0$
- 。 反之,对于任意平稳随机序列,若极限熵 $H_{\infty}>C$,则错误概率远离零,即不可能在信道中以任意小的错误概率发送这随机序列

总结:

- 。 当且仅当信源极限熵小于信道容量,在信道上能够无错误地传输平稳遍历信源。H < C 是信源通过信道有效和可靠传输的充要条件。
- 。 如果信道的容量 C>R(D) ,则在信源和信道处用足够复杂的处理后,总能以失真度 $D+\varepsilon$ 再现信源的消息。

纠错编码的基本思路

思路一:

$$\overline{P}_e < e^{-NE(R)}$$

- \circ **R不变**,信道容量大者其可靠性函数E(R)也大
 - 增大信道容量C的方法:

- 扩展带宽。
- 加大功率。
- 降低噪声。
- \circ C**不变**,码率减小时其可靠性函数E(R)增大
 - 减小码率 R的方法:
 - Q、N不变而减小K。
 - Q、K不变而增大N。
 - N、K不变而减小Q。
- \circ 增大码长N
- 思路二: 纠错能力的获取途径:
 - 利用冗余度: 时间、频带、功率、设备复杂度。
 - 噪声均化(随机化、概率化): 增加码长、卷积、交错。

6.3 线性分组码

- 构造一个k维n重子空间(码空间),使 q^k 个信息元组——对应映射到码空间。
- 码率(编码效率): $R_c=k/n$

线性分组码的形成

基本概念

- 码空间
 - \circ **码空间**: 所有元素 (即码字) 都可以写成k个基底的线性组合,表达式为

$$\mathbf{c} = m_{k-1}\mathbf{g}_{k-1} + \dots + m_1\mathbf{g}_1 + m_0\mathbf{g}_0$$

- \circ $\mathbf{m}=(m_{k-1},\cdots,m_1,m_0)$ 是k维k重信息组
- \circ **c** = $(c_{n-1}, \cdots, c_1, c_0)$ 是码字。
- $\mathbf{g}=(\mathbf{g}_{k-1},\cdots,\mathbf{g}_1,\mathbf{g}_0)$ 是在n维n重空间V中,从n个基底中选取出来的k个矢量作为码空间的**基底**

- 映射规律:信息元作为基底线性组合的系数。
- 生成矩阵:

$$\circ$$
 生成矩阵 $\mathbf{G}_{k imes n} = egin{bmatrix} \mathbf{g}_{k-1} \ dots \ \mathbf{g}_1 \ \mathbf{g}_0 \end{bmatrix} = egin{bmatrix} g_{(k-1)(n-1)} & \cdots & g_{(k-1)1} & g_{(k-1)0} \ dots & \ddots & dots & dots \ g_{1(n-1)} & \cdots & g_{11} & g_{10} \ g_{0(n-1)} & \cdots & g_{01} & g_{00} \end{bmatrix}$

 \circ 码字 \mathbf{c} 、消息 \mathbf{m} 与生成矩阵 \mathbf{G} 的关系为:

$$\mathbf{c_{1 imes n}} = \mathbf{m_{1 imes k}} \mathbf{G_{k imes n}}$$

- 其中 $\mathbf{c}_{1\times n}$ 是n维码字, $\mathbf{m}_{1\times k}$ 是k维信息组, $\mathbf{G}_{k\times n}$ 是 $k\times n$ 生成矩阵。
- 因为k个基底即 \mathbf{G} 的k个行矢量线性无关,矩阵 \mathbf{G} 的秩一定等于k。
- 当信息元确定后,码字仅由 \mathbf{G} 矩阵决定,所以称这 $k \times n$ 矩阵 \mathbf{G} 为该(n,k)线性分组码的生成矩阵。

特点:

- 想要保证(n,k)线性分组码能够构成k维n重子空间,G的k个行矢量 g_{k-1},\cdots,g_1,g_0 必须是线性无关的,只有这样才符合作为基底的条件。
- 由于基底不是唯一的,所以*G*也就不是唯一的。
- 不同的基底有可能生成同一码集,但因编码涉及码集和映射两个因素,码集一样而映射方 法不同也不能说是同样的码。
- **基底的选择**:构造(3,2)线性分组码示例

- 。 需要构造2维3重码空间。
- 3维3重空间的3个自然基底为100,010,001。
- 。 选择其中2个基底010, 001构成码空间, 对应码集为(000,010,001,011)
- 。 2个基底的线性组合010, 011也可以张成码空间 , 对应码集为(000,010,011,001) 。
- 码集一样,对应关系不一样

示例:

。 对于(6,3)线性分组码,k=3, $2^k=8$ (消息数量)

■ 基底
$$\mathbf{g}_2 = 111010$$
, $\mathbf{g}_1 = 110001$, $\mathbf{g}_0 = 011101$.

$$\blacksquare \ \mathbb{M}\mathbf{G} = \begin{bmatrix} \mathbf{g}_2 \\ \mathbf{g}_1 \\ \mathbf{g}_0 \end{bmatrix} = \begin{bmatrix} 111010 \\ 110001 \\ 011101 \end{bmatrix}.$$

$$\mathbf{c} = m_{k-1}\mathbf{g}_{k-1} + \dots + m_1\mathbf{g}_1 + m_0\mathbf{g}_0$$

$$=(m_{k-1}\cdots m_0)_{1 imes k} imes egin{bmatrix} \mathbf{g}_{k-1}\ dots\ \mathbf{g}_0 \end{bmatrix}_{k imes n}$$

$$=\mathbf{m}_{1 imes k}\mathbf{G}_{k imes n}$$

信息 $\mathbf{u}=m_2m_1m_0$	码字 $\mathbf{c}=c_5c_4c_3c_2c_1c_0$
000	000000
001	011101
010	110001

信息 $\mathbf{u}=m_2m_1m_0$	码字 $\mathbf{c}=c_5c_4c_3c_2c_1c_0$
011	101100
100	111010
101	100111
110	001011
111	010110

系统形式的生成矩阵与校验矩阵

• 系统形式的生成矩阵

 \circ (n,k)码的任何生成矩阵都可以通过行运算(以及列置换)简化成"系统形式"

$$\mathbf{G_S} = [I_k|P] = egin{bmatrix} 1 & 0 & \cdots & 0 & p_{(k-1)(n-k-1)} & \cdots & p_{(k-1)1} & p_{(k-1)0} \ 0 & 1 & \vdots & 0 & p_{(k-2)(n-k-1)} & \cdots & p_{(k-2)1} & p_{(k-2)0} \ dots & \vdots & \ddots & \vdots & dots & \ddots & dots & dots \ 0 & 0 & 0 & 1 & p_{0(n-k-1)} & \cdots & p_{01} & p_{00} \end{bmatrix}$$

其中 I_k 是 $k \times k$ 单位矩阵, P是 $k \times (n-k)$ 矩阵。

• 系统码

 \circ **码字结构**: 码字c包含信息位 (k位) 和校验位 (n-k位)

○ 特点:

- 前k位由单位矩阵 I_k 决定,等于把信息组m原封不动搬到码字的前k位
- 其余的n-k位叫**冗余位**或**一致校验位**,是前k个信息位的线性组合。
- \circ **定义**:具备以上系统形式的(n,k)码叫做**系统码**。若生成矩阵G不具备系统形式,则生成的码叫做非系统码。
- 系统化不改变码集,只是改变了映射规则。
- 性质:
 - 等效矩阵:若通过行运算和列置换能将两个生成矩阵G互等,则称这两个G等效。
 - **形式转换**: 非系统码的G可通过运算转变为系统码的G。

- **等效码**: 等效的两个G生成的两个(n,k)线性码也是等效的。
- 因此,每个(n,k)线性码都可以和一个系统的(n,k)线性码等效

• 线性分组码空间构成

- \circ n维n重空间 V_n 有相互正交的n个基底。
- \circ 选择k个基底构成码空间G 。
- \circ 选择另外的(n-k)个基底构成空间H。
- \circ G和H是对偶的,满足 $GH^T=0$, $HG^T=0$ 。

• 码空间与对偶空间

- \circ 将H空间的n-k个基底排列起来可构成一个 $(n-k) \times n$ 矩阵,称为**校验矩阵**H,用于校验接收到的码字是否正确。
- 。 G是(n,k)码的生成矩阵,H是其校验矩阵。
- \circ H是(n,n-k)对偶码的生成矩阵,它的每一行是一个基底,G则是其校验矩阵。
- \circ 满足 $GH^T=0$,且 $H=\lceil -P^T|I_{n-k}
 ceil$,在二进制情况下,负号可省略。

• 生成矩阵与校验矩阵的关系

。 对于任何一个码字c, 有

$$\mathbf{c}_{1 imes n}\mathbf{H}_{n imes(n-k)}^T=\mathbf{0}_{1 imes(n-k)}$$

○ 因为生成矩阵的每个行矢量是一个码字, 所以必有

$$\mathbf{G}_{k imes n} \mathbf{H^T}_{n imes (n-k)} = \mathbf{0}_{k imes (n-k)}$$

 \circ 对于系统码的生成矩阵 $\mathbf{G}_{\mathbf{S}_{k \times n}} = [\mathbf{I}_k | \mathbf{P}_{k \times (n-k)}]$,有:

$$\begin{aligned} \mathbf{G}_{\mathbf{S}k\times n}[-\mathbf{P}_{(n-k)\times k}^T|\mathbf{I}_{n-k}]^T &= [\mathbf{I}_k|\mathbf{P}_{k\times (n-k)}][-\mathbf{P}_{(n-k)\times k}^T|\mathbf{I}_{n-k}]^T \\ &= [-\mathbf{I}_k\mathbf{P}_{k\times (n-k)}] + [\mathbf{P}_{k\times (n-k)}\mathbf{I}_{n-k}] \\ &= [-\mathbf{P}] + [\mathbf{P}] \\ &= \mathbf{0}_{k\times (n-k)} \end{aligned}$$

 \circ 由此可得 $\mathbf{H}=[-\mathbf{P}^T|\mathbf{I}_{n-k}]=[\mathbf{P}^T|\mathbf{I}_{n-k}]$,二进制码省略负号

• 示例:

。 同上例:
$$G = \begin{bmatrix} 111010 & \textcircled{1} \\ 110001 & \textcircled{2} \\ 011101 & \textcircled{3} \end{bmatrix} \Rightarrow G_s = \begin{bmatrix} 100111 & \textcircled{1} + \textcircled{3} \\ 010110 & \textcircled{1} + \textcircled{2} + \textcircled{3} \\ 001011 & \textcircled{1} + \textcircled{2} \end{bmatrix}$$

0	信息	码字	系统码字
	000	000000	000000
	001	011101	001011
	010	110001	010110
	011	101100	011101
	100	111010	100111
	101	100111	101100
	110	001011	110001
	111	010110	111010

○ 一致校验位

•
$$\mathbf{c}=(c_5c_4c_3c_2c_1c_0)=(m_2m_1m_0)G_S=(m_2m_1m_0)\begin{bmatrix}100111\\010110\\001011\end{bmatrix}$$
 , 可得: $\begin{cases}c_5=m_2\\c_4=m_1\end{cases}$

因此,校验位可按下面方程组计算:

$$\left\{egin{aligned} c_2 &= m_2 + m_1 = c_5 + c_4 \ c_1 &= m_2 + m_1 + m_0 = c_5 + c_4 + c_3 \ c_0 &= m_2 + m_0 = c_5 + c_3 \end{aligned}
ight.$$

由于校验位和信息元之间是线性运算关系,所以叫**线性分组码**。

■ 编码器

○ 校验矩阵

• 由
$$\begin{cases} c_2=c_5+c_4 \\ c_1=c_5+c_4+c_3$$
在模2加法下可转化为 $\begin{cases} c_5+c_4+0+c_2+0+0=0 \\ c_5+c_4+c_3+0+c_1+0=0 \\ c_5+0+c_3+0+0+c_0=0 \end{cases}$ [111]

• 令
$$\mathbf{c}_{1 \times n} = (c_5 c_4 c_3 c_2 c_1 c_0)$$
 , $\mathbf{0}_{1 \times (n-k)} = (000)$, 有 $(c_5 c_4 c_3 c_2 c_1 c_0)$ $\begin{vmatrix} 110 \\ 011 \\ 100 \\ 010 \\ 001 \end{vmatrix} = [000]$

,校验矩阵
$$\mathbf{H} = egin{bmatrix} 110100 \\ 111010 \\ 101001 \end{bmatrix}_{(n-k) imes n}$$

- 满足 $\mathbf{c}_{1 imes n} \mathbf{H}_{n imes (n-k)}^T = \mathbf{0}_{1 imes (n-k)}$, \mathbf{H} 为校验矩阵,**上式用来验证一个**n**重矢量是否为码** 字。
- \circ **综上**: 对于(6,3)线性分组码,其中k=3, $2^k=8$ (消息数量) :

■ 原始生成矩阵
$$G = \begin{bmatrix} 111010 \\ 110001 \\ 011101 \end{bmatrix}$$

■ 原始生成矩阵
$$G = \begin{bmatrix} 111010 \\ 110001 \\ 011101 \end{bmatrix}$$
■ 系统形式的生成矩阵 $G_s = \begin{bmatrix} 100111 \\ 010110 \\ 001011 \end{bmatrix} = [I_k|P]$

• 校验矩阵
$$H = [P^T | I_{n-k}] = egin{bmatrix} 110100 \\ 111010 \\ 101001 \end{bmatrix}$$

伴随式与标准阵列译码

基本概念

•

• 定义差错图案

$$\mathbf{E} = (e_{n-1}, \cdots, e_1, e_0) = \mathbf{R} - \mathbf{C} = (r_{n-1} - c_{n-1}, \cdots, r_1 - c_1, r_0 - c_0)$$

○ 在二进制码中,模2加与模2减等同,因此有

$$\mathbf{E} = \mathbf{R} + \mathbf{C}$$
 $\mathbf{R} = \mathbf{C} + \mathbf{E}$

• 定义伴随式S

$$\mathbf{S} = (s_{n-k-1}, \cdots, s_1, s_0) = \mathbf{R}\mathbf{H}^T = \mathbf{E}\mathbf{H}^T$$

- \circ 因为 $\mathbf{C}\mathbf{H}^T=0$,所以 $\mathbf{R}\mathbf{H}^T=(\mathbf{C}+\mathbf{E})\mathbf{H}^T=\mathbf{C}\mathbf{H}^T+\mathbf{E}\mathbf{H}^T=\mathbf{E}\mathbf{H}^T$
 - $lacksymbol{\bullet}$ 若收码无误:则 $\mathbf{R}=\mathbf{C}$ 即 $\mathbf{E}=0$,此时 $\mathbf{C}\mathbf{H}^T=\mathbf{E}\mathbf{H}^T=\mathbf{R}\mathbf{H}^T=0$
 - 若收码有误: 即 $\mathbf{E} \neq \mathbf{0}$, 则 $\mathbf{R}\mathbf{H}^T = \mathbf{E}\mathbf{H}^T \neq \mathbf{0}$
- \circ 在 \mathbf{H}^T 固定的前提下, $\mathbf{R}\mathbf{H}^T$ 仅与差错图案 \mathbf{E} 有关,而与发送码 \mathbf{C} 无关。

编译码过程

• 编译码过程

。 差错图案**E**是n重矢量,共有 2^n 个可能的组合,而伴随式**S**是(n-k)重矢量,只有 2^{n-k} 个可能的组合,因此不同的差错图案可能有相同的伴随式。

• 差错图案E的求解

○ 可以通过解线性方程求解**E**:

$$egin{aligned} \mathbf{S} &= (s_{n-k-1}, \cdots, s_1, s_0) = \mathbf{E}\mathbf{H}^T \ &= (e_{n-1}, \cdots, e_1, e_0) egin{bmatrix} h_{(n-k-1)(n-1)} & \cdots & h_{(n-k-1)1} & h_{(n-k-1)0} \ dots & \ddots & dots & dots \ h_{1(n-1)} & \cdots & h_{11} & h_{10} \ h_{0(n-1)} & \cdots & h_{01} & h_{00} \end{bmatrix}^T \end{aligned}$$

得到线性方程组:

$$egin{cases} s_{n-k-1} = e_{n-1}h_{(n-k-1)(n-1)} + \cdots + e_1h_{(n-k-1)1} + e_0h_{(n-k-1)0} \ dots \ s_1 = e_{n-1}h_{1(n-1)} + \cdots + e_1h_{11} + e_0h_{10} \ s_0 = e_{n-1}h_{0(n-1)} + \cdots + e_1h_{01} + e_0h_{00} \end{cases}$$

上述方程组中有n个未知数 e_{n-1} , \cdots , e_1 , e_0 , 却只有n-k个方程,可知方程组有多解。 在有理数或实数域中,少一个方程就可能导致无限多个解,而在二元域中,少一个方程导致两个解,少两个方程四个解,以此类推,少n-(n-k)=k个方程导致每个未知数有 2^k 个解。

因此,由上述方程组解出的 \mathbf{E} 可以有 2^k 个解。到底取哪一个作为附加在收码 \mathbf{R} 上的差错图案 \mathbf{E} 的估值呢?

概率译码: 把所有 2^k 个解的重量(差错图案 \mathbf{E} 中1的个数)作比较,选择其中最轻(1的个数最少)者作为 \mathbf{E} 的估值。

- 标准阵列译码表: 列出伴随式对应的所有差错图案
 - 标准阵列构造方法
 - a. 先将 2^k 个码字排成一行,作为标准阵列的第一行,并将全0码字 $\mathbf{C}_1=(00\dots0)$ 放在最左面的位置上。
 - b. 然后在剩下的 (2^n-2^k) 个n重中选取一个重量最轻的n重 \mathbf{E}_2 放在全0码字 \mathbf{C}_1 下面,再将 \mathbf{E}_2 分别和码字 \mathbf{C}_2 , \mathbf{C}_3 , \cdots , \mathbf{C}_{2^k} 相加,放在对应码字下面构成阵列第二行。
 - c. 在第二次剩下的n重中,选取重量最轻的n重 \mathbf{E}_3 ,放在 \mathbf{E}_2 下面,并将 \mathbf{E}_3 分别加到第一行各码字上,得到第三行。
 - d. 继续这样做下去,直到全部n重用完为止,得到给定(n,k)线性码的标准阵列。
 - 在标准阵列的同一行中没有相同的矢量,而且 2^n 个n重中任一个n重在阵列中出现一次且仅出现一次
 - 标准阵列译码表:标准阵列可能不唯一

	伴随式	陪集首			
子集头	S_1	$\mathbf{C}_1 = \mathbf{E}_1 = 0$	${f C}_2$	• • •	\mathbf{C}_{2^k}
	S_2	\mathbf{E}_2	${f C}_2 + {f E}_2$		$\mathbf{C}_{2^k} + \mathbf{E}_2$

伴随式	陪集首			
S_3	\mathbf{E}_3	$\mathbf{C}_2 + \mathbf{E}_3$	• • •	$\mathbf{C}_{2^k} + \mathbf{E}_3$
:	:	:	•	:
$S_{2^{n-k}}$	$\mathbf{E}_{2^{n-k}}$	$\mathbf{C}_2 + \mathbf{E}_{2^{n-k}}$		$\mathbf{C}_{2^k} + \mathbf{E}_{2^{n-k}}$

○ 陪集和子集

■ **陪集**:译码表中有 2^{n-k} 行,每行是一个陪集,每陪集的第一个元素(位于第一列)叫**陪集 首**。同一陪集(同一行)中的所有元素对应共同的一个伴随式。第一行陪集的陪集首是全 零伴随式 \mathbf{S}_0 所对应的全零差错图案 \mathbf{E}_0 (无差错),而第j行陪集的陪集首是伴随式 \mathbf{S}_j 所对 应的重量最小的差错图案 \mathbf{E}_i ($\mathbf{C}_0=0$, $\mathbf{R}_i=\mathbf{E}_i$)。

■ **子集**:译码表中有 2^k 列,每列是一个子集,每子集的第一个元素(位于第一行)叫**子集头**。同一子集(同一列)中的所有元素对应同一个码字,第一列子集的子集头是全零码字 \mathbf{C}_0 ,而第i列子集的子集头是码字 \mathbf{C}_i ($\mathbf{E}_0=0$, $\mathbf{R}_i=\mathbf{C}_i$)。

○ **检错纠错能力**:根据**正**在标准阵列中的位置

■ 第一行: 不可检错

■ 第一列: 可检错可纠错

■ 剩余部分: 可检错不可纠错

• 具体译码过程:

- i. 求生成矩阵G和校验矩阵H。
- ii. 通过信息组m和生成矩阵G求出各子集头码字C。
- iii. 构造标准阵列译码表。
- iv. 根据标准阵列译码表,对收到的码字 \mathbf{R} 进行译码。译码方法:
 - \circ 直接搜索码表,查得 \mathbf{R} 所在列的子集头 \mathbf{C} ,因此译码输出取为 \mathbf{C}
 - \circ 先求伴随式 $\mathbf{S} = \mathbf{R}\mathbf{H}^{\mathbf{T}}$,确定 \mathbf{S} 所在行,再沿着行对码表作一维搜索找到 \mathbf{R} ,最后顺着所在列向上找出码字 \mathbf{C}
 - 。 先求出伴随式 $\mathbf{S} = \mathbf{R}\mathbf{H}^{\mathbf{T}}$ 并确定 \mathbf{S} 所对应的陪集首(差错图案) \mathbf{E} ,再将陪集首与收码相加得到码字 $\mathbf{C} = \mathbf{R} + \mathbf{E}$

上述三种方法由上而下,查表的时间下降而所需计算量增大,实际使用时可针对不同情况选用。

• **示例**: $- \uparrow (5,2)$ 系统线性码的生成矩阵是 $G = \begin{bmatrix} 10111 \\ 01101 \end{bmatrix}$, 设收码 $\mathbf{R} = (10101)$, 构造标准阵列译码表,译出发码的估值。

。 求出校验矩阵:
$$H = [P^T|I_3] = egin{bmatrix} 11100 \\ 10010 \\ 11001 \end{bmatrix}$$

。 分别以信息组 $\mathbf{m}=(00)$ 、(01)、(10)、(11)及已知的G求得4个许用码字为 $\mathbf{C}_0=(00000)$ 、 $\mathbf{C}_1=(10111)$ 、 $\mathbf{C}_2=(01101)$ 、 $\mathbf{C}_3=(11010)$

○ 构造标准阵列译码表

伴随式	陪集首			
$S_0 = 000$	$E_0 + C_0 = 00000$	$C_1=10111$	$C_2=01101$	$C_3=11010$
$S_1 = 111$	$E_1=10000$	00111	11101	01010
$S_2 = 101$	$E_2=01000$	11111	00101	10010
$S_3 = 100$	$E_3 = 00100$	10011	01001	11110
$S_4 = 010$	$E_4=00010$	10101	01111	11000
$S_5=001$	$E_5=00001$	10110	01100	11011
$S_6=011$	$E_6=00011$	10100	01110	11001
$S_7 = 110$	$E_7 = 00110$	10001	01011	11100

- \circ 将接收码 $\mathbf{R}=10101$ 译码,可选以下三种方法之一译码:
 - a. 直接搜索码表, 查得(10101)所在列的子集头是(10111), 因此译码输出取为(10111)。
 - b. 先求伴随式 $\mathbf{R}H^T=(10101)\cdot H^T=(010)=S_4$,确定 S_4 所在行,再沿着行对码表作一维搜索找到(10101),最后顺着所在列向上找出码字(10111)。
 - c. 先求出伴随式 $\mathbf{R}H^T=(010)=S_4$ 并确定 S_4 所对应的陪集首(差错图案) $E_4=(00010)$,再将陪集首与收码相加得到码字 $\mathbf{C}=\mathbf{R}+E_4=(10101)+(00010)=(10111)$ 。

码距、纠错能力、MDC码及重量谱

• 汉明距离: 两个码字 c_i,c_j 之间对应码元位上符号取值不同的个数,称为码字 c_i,c_j 之间的汉明距离

$$d(c_i,c_j) = \sum_{k=0}^{n-1} (c_{ik} \oplus c_{jk})$$

• **最小距离**: alpha(n,k)线性码中,码字之间的最小汉明距离

$$d_{min} = min(d(c_i, c_j)), c_i, c_j \in C$$

• **定理6.1**: 任何最小距离 d_{min} 的线性分组码,其检错能力为 $(d_{min}-1)$,纠错能力t为

$$t=\left \lfloor rac{d_{min}-1}{2}
ight
floor$$

- 。 纠错能力t是指在接收码中,最多允许有t个差错图案而不致于误译的能力。 (只要不到另一个点,你就能知道出错了)
- 。 检错能力是指在接收码中,最多允许有 $d_{min}-1$ 个差错图案而不致于误译的能力。 (只要离原来的点比任何一个点都近,你就能知道原来的点)
- 纠错能力示意图:码集各码字间的距离是不同的,码距最小者决定码的特性,称之为最小距离 d_{min}

 \mathbf{C}_{5} $d_{\min}=3$ \mathbf{C}_{2} \mathbf{C}_{1} \mathbf{C}_{1} \mathbf{C}_{3} \mathbf{C}_{2} \mathbf{C}_{4}

- \circ 如图中 $d_{min}=3$, 纠错能力是1, 检错能力是2
- 最小距离计算:
 - **汉明重量**: 码字中非0码元符号的个数,称为该码字的汉明重量。**在二元线性码中,码字重量** 就是码字中含"1"的个数

$$w(c) = \sum_{i=0}^{n-1} c_i$$

。 定理6.2: 线性分组码的最小距离等于码集中非零码字的最小重量

- \circ **定理6.3**: (n,k)线性分组码最小距离等于 d_{min} 的**必要**条件是:校验矩阵H中任意 $(d_{min}-1)$ 列线性无关。
 - 将H写成 $H = [h_{n-1}, \cdots, h_1, h_0]$,其中 $h_{n-1}, \cdots, h_1, h_0$ 为列矢量

$$egin{aligned} cH^T &= [c_{n-1}, \cdots, c_1, c_0] egin{bmatrix} h_{n-1}^T \ dots \ h_1^T \ h_0^T \end{bmatrix} \ &= c_{n-1}h_{n-1}^T + \cdots + c_1h_1^T + c_0h_0^T = 0 \end{aligned}$$

- 若存在一个重量为 d_{min} 的码字,则必有 d_{min} 列线性相关
- \circ **定理6.4**: (n,k)线性分组码的最小距离必定小于等于(n-k+1)

$$d_{min} \leq (n-k+1)$$

- 计算校验矩阵的秩,则H的秩加1就是最小距离 d_{min} 的上限。
- **示例**: 对于(7,4)线性码, $H = \begin{bmatrix} 1110100\\0111010\\1101001 \end{bmatrix}$
 - 各列都不相同,任意2列之和不等于0,任何2列线性无关;
 - 存在2列之和等于矩阵中某一列,即存在3列线性相关
 - 。 存在重量为3的码字
 - 。 能找到的最小线性相关的列数为3
 - \circ 所以该码的最小距离为 $d_{min}=3$,小于n-k+1=4。
 - \circ 该码的纠错能力为 $t=\left | rac{d_{min}-1}{2}
 ight |=1$,检错能力为 $d_{min}-1=2$ 。
- 极大最小距离码 (MDC):
 - 。 **定义**: $d_{min} = n k + 1$ 的(n,k)线性码称为极大最小距离码 (MDC Maximized minimum Distance Code)。
 - 总体的、平均的纠错能力不但与最小距离有关,而且与其余码距或者说与码字的重量分布特性 有关。

完备码 (Perfect code)

完备码定义与性质

• 汉明限:任何一个二元(n,k)线性分组码都有 2^{n-k} 个伴随式,若该码的纠错能力是t,则对于任何一个重量小于等于t的差错图案,都应有一个伴随式与之对应,即伴随式的数目满足条件

$$2^{n-k} \geq inom{n}{0} + inom{n}{1} + inom{n}{2} + \cdots + inom{n}{t}$$

此式称作**汉明限**,任何一个纠错码都应满足该条件。

• 完备码定义:满足以下等式的二元(n,k)线性分组码

$$2^{n-k} = inom{n}{0} + inom{n}{1} + inom{n}{2} + \cdots + inom{n}{t}$$

• 完备码性质:

- i. 即该码的伴随式数目恰好和不大于t个差错的图案数目相等。
- ii. 相当于在标准译码阵列中能将所有重量不大于t的差错图案选作陪集首,且没有一个陪集首的重量大于t,此时校验位得到最充分的利用。
- iii. 这样的二元(n,k)线性分组码称为**完备码**。

汉明码 (Hamming Code)

• **定义**: 汉明码是纠错能力t=1的一类码的统称。

• 性质:

- 。 汉明码既有二进制的, 也有非二进制的。
- 二进制时,汉明码码长n和信息位k服从规律

$$(n,k) = (2^m - 1, 2^m - 1 - m)$$

其中m=n-k, 是正整数。

正整数 $m=n-k$	码长 $n=2^m-1$	信息位 $k=2^m-1-m$	汉明码 (n,k)
3	$2^3 - 1 = 7$	$2^3 - 1 - 3 = 4$	(7,4)
4	$2^4 - 1 = 15$	$2^4 - 1 - 4 = 11$	(15, 11)
5	$2^5 - 1 = 31$	$2^5 - 1 - 5 = 26$	(31, 26)
6	$2^6 - 1 = 63$	$2^6 - 1 - 6 = 57$	(63, 57)
7	$2^7 - 1 = 127$	$2^7 - 1 - 7 = 120$	(127, 120)
8	$2^8 - 1 = 255$	$2^8 - 1 - 8 = 247$	(255, 247)
	•••	•••	• • •

。 汉明码是完备码,因为满足等式

$$\binom{n}{0} + \binom{n}{1} = 1 + n = 1 + 2^m - 1 = 2^m = 2^{n-k}$$

- 校验矩阵构成:汉明码的校验矩阵H具有特殊性质,可简化构造方法。
 - 。 一个(n,k)码的校验矩阵有n-k行和n列,二进制时n-k个码元所能组成的列矢量总数是 2^{n-k} ,除去全0矢量后为 $2^{n-k}-1=2^m-1=n$,恰好和校验矩阵的列数n相等。

- \circ 只要排列所有列,通过列置换将矩阵H转换成系统形式,就可以进一步得到相应的生成矩阵G
- **示例**: 构造一个m=3的二元(7,4)汉明码。
 - \circ 先利用汉明码的特性构造一个(7,4)汉明码的校验矩阵H,再通过列置换将它变为系统形式:

。 先利用汉明码的特性构造一个
$$(7,4)$$
汉明码的校验矩阵 H ,再通过列置换将它变为系统形式。 校验矩阵 $H=\begin{bmatrix}0001111\\0110011\\1010101\end{bmatrix}$,经列置换得到 $\begin{bmatrix}1110100\\0111010\\1101001\end{bmatrix}=[P^T|I_3]$,再得生成矩阵 $G=\begin{bmatrix}I000101\\0100111\\0001011\\0001011\end{bmatrix}$

高莱 (Golay) 码

- 是二进制(23,12)线性码
- 最小距离 $d_{min}=7$
- 纠错能力t = 3
- 高莱码是完备码, 因为满足等式

$$2^{23-12} = 2048 = 1 + {23 \choose 1} + {23 \choose 2} + {23 \choose 3}$$

- 在(23,12)码上添加一位奇偶位即得二进制线性(24,12)扩展高莱码,其最小距离 $d_{min}=8$ 。
- 编码步骤见高莱码编码步骤

循环码

基本概念与多项式描述

• 循环码的定义:设一个(n,k)线性分组码C,如果它的任一码字的每一次循环移位都还是C的一个 码字,则称C是**循环码**。

$$egin{aligned} orall : & oldsymbol{c} = (c_{n-1}, c_{n-2}, \cdots, c_0) \in C \ & oldsymbol{c}_1 = (c_{n-2}, c_{n-3}, \cdots, c_0, c_{n-1}) \in C \ & oldsymbol{c}_2 = (c_{n-3}, c_{n-4}, \cdots, c_0, c_{n-1}, c_{n-2}) \in C \ & dots \ & oldsymbol{c}_{n-1} = (c_0, c_{n-1}, \cdots, c_2, c_1) \in C \end{aligned}$$

- 循环码的数学描述:
 - 循环码的特点:

- 它是线性分组码,其数学模型应具有线性特性。
- 具有循环特件。
- 码字的全体**构成了**n**维矢量空间中具有循环特性的**k**维子空间**。
- 线性分组码的多项式描述:
 - 码字

$$oldsymbol{c}=(c_{n-1},c_{n-2},\cdots,c_0)$$

■ 码多项式

$$c(x) = c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \dots + c_1x + c_0$$

■ 对于线性分组码C,可以表示成码多项式构成的集合:

$$egin{aligned} C &\leftrightarrow C(x) \ &= \{c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \dots + c_1x + c_0 \mid (c_{n-1}, c_{n-2}, \dots, c_0) \in C\} \end{aligned}$$

• 示例: (7,3)线性分组码

$$\circ$$
 校验矩阵 $H=egin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ 生成矩阵 $G=egin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$

由c=mG得码集(由两组码字循环构成的循环码):

码集

- 。 任取一码字
 - 设c = 0011101,则 $c(x) = x^4 + x^3 + x^2 + 1$ 。
 - 移一位, $oldsymbol{c}_1=0111010$, $c_1(x)=x^5+x^4+x^3+x=xc(x)$ 。
 - 移两位, $m{c}_2=1110100$, $c_2(x)=x^6+x^5+x^4+x^2=x^2c(x)$ 。
 - 移三位, $m{c}_3 = 1101001$, $c_3(x) = x^6 + x^5 + x^3 + 1 = x^3 c(x) \pmod{(x^7+1)}$

0

. :

- **结论**:如果将一个循环码的某一非零码字用码多项式表示出来,那么其他的非零码字多项式就可以用这个码字多项式(或码字多项式的和)乘上x的一个幂,再求 (x^n+1) 的余得到。
- **说明**:一个码字的移位最多能得到*n*个码字,因此"循环码字的循环仍是码字"并不意味着循环码集可以从一个码字循环而得,还应包含码字的一些线性组合。

基本定理与矩阵描述

- 循环码的生成多项式:
 - \circ **定义**: 若g(x)是一个(n-k)次多项式,且是 (x^n+1) 的因式,则由g(x)可以生成一个(n,k)循环码,g(x)称为该循环码的**生成多项式**。
 - 结论:
 - a. **结论1**: GF(2)上的(n,k)循环码中,存在着一个次数为(n-k)的**首一码多项式** g(x)(首一:多项式最高幂次项系数 $g_{n-k}=1$)

$$g(x) = x^{n-k} + g_{n-k-1}x^{n-k-1} + \dots + g_2x^2 + g_1x + 1$$

使得所有码多项式都是q(x)的倍式,即

$$c(x) = m(x) \cdot g(x)$$

其中

$$m(x) = m_{k-1}x^{k-1} + \cdots + m_1x + m_0$$

且所有小于n次的g(x)的倍式都是码多项式。

故循环码完全由它的生成多项式确定。

b. **结论2**: (n,k)循环码的生成多项式g(x)一定是 (x^n+1) 的因子,即

$$g(x) \mid (x^n+1)$$
 或写成 $x^n+1=g(x)h(x)$

相反,如果g(x)是 x^n+1 的(n-k)次因子,则g(x)一定是(n,k)循环码的生成多项式。

生成多项式不唯一。

- c. 结论3: 任何码字的循环移位仍是码字,但并非由一个码字循环移位可以得到所有码字。
- d. **结论4**:当一个循环码给定其生成多项式g(x)后,根据生成多项式就可以进行编码,但编出的码不一定为系统码。
- (n,k)循环码的构造:
 - a. 对 x^n+1 做因式分解,找出(n-k)次因式。

b. 以该(n-k)次因式为生成多项式g(x)与不高于(k-1)次信息多项式m(x)相乘,即得到对应消息序列的码多项式。

• 循环码的生成矩阵:

- (n,k)循环码是n维线性空间中具有循环特性的k维子空间,其生成矩阵可由码空间中任一组k个线性无关的码字构成,这k个线性无关的码字组成(n,k)循环码的基底,且基底不唯一。
- 获得k个线性无关码字的方法

当循环码的生成多项式g(x)确定后,可取g(x)本身加上移位k-1次所得到的k-1个码字,与g(x)一起作为k个基底,即:

$$G = egin{bmatrix} x^{k-1}g(x) \ x^{k-2}g(x) \ dots \ xg(x) \ g(x) \end{bmatrix} = egin{bmatrix} g_{n-k} & g_{n-k-1} & \cdots & g_0 & 0 & 0 & \cdots & 0 \ 0 & g_{n-k} & g_{n-k-1} & \cdots & g_0 & 0 & \cdots & 0 \ dots & & \ddots & & dots \ 0 & \cdots & 0 & 0 & g_{n-k} & g_{n-k-1} & \cdots & g_0 \end{bmatrix}$$

这k个矢量线性无关,且由g(x)循环移位得到,所以都是码字,它们构成一个 $k \times n$ 的矩阵,即循环码的生成矩阵。

• 循环码的系统码

- 系统循环码的编码:
 - 码多项式

$$c(x) = x^{n-k}m(x) + r(x)$$

其中r(x)是与码字中(n-k)个校验元相对应的(n-k-1)次多项式。对等式两边取 $\operatorname{mod} g(x)$:

- 等式左边: c(x) = m(x)g(x), 所以 $c(x) \mod g(x) = 0$ 。
- 等式右边: 必有 $[x^{n-k}m(x)+r(x)] \mod g(x)=0$,由于r(x)的幂次(n-k-1)低于g(x)的幂次(n-k),要使等式右边为0,必有

$$x^{n-k}m(x) \bmod g(x) = r(x)$$

系统码的编码步骤:

- a. 将信息多项式m(x)乘以 x^{n-k} ,即左移(n-k)位
- b. 将 $x^{n-k}m(x)$ 除以g(x) ,得到余式r(x)
- c. 得到系统循环码的码多项式: $c(x) = x^{n-k}m(x) + r(x)$

- d. 将码多项式转换为码字。
- 系统码的生成矩阵
 - 系统形式的生成矩阵 G = [I|P]

$$G(x) = egin{bmatrix} x^{n-1} + p_{n-k}(x) \ x^{n-2} + p_{n-k-1}(x) \ dots \ x^{n-k+1} + p_1(x) \ x^{n-k} + p_0(x) \end{bmatrix}_{k imes r}$$

其中

$$p_i(x) = x^{i+(n-k)} mod (g(x))$$

- **示例**: 一个长度n=7的循环码的构造方法
 - i. 求一种(7,4)循环码
 - a. 对 x^7+1 作因式分解:

$$x^7 + 1 = (x+1)(x^3 + x^2 + 1)(x^3 + x + 1)$$
, 故 $x^7 + 1$ 有如下因式:

- 一次因式: x+1 (一个)
- 三次因式: $x^3 + x + 1$, $x^3 + x^2 + 1$ (两个)
- 。 四次因式: $(x+1)(x^3+x^2+1)=x^4+x^2+x+1$, $(x+1)(x^3+x+1)=x^4+x^3+x^2+1$ (两个)
- 。 六次因式: $(x^3+x^2+1)(x^3+x+1)=x^6+x^5+x^4+x^3+x^2+x+1$ (一个)
- b. 以(n-k)次因式作为生成多项式:
 - n-k=1, k=6, 生成一种(7,6)循环码;
 - \circ n-k=3, k=4, 生成两种(7,4)循环码;
 - n-k=4, k=3, 生成两种(7,3)循环码;
 - n-k=6, k=1, 生成一种(7,1)循环码。
- 。 求一种(7,4)循环码,可选n-k=3次多项式 x^3+x^2+1 或 x^3+x+1 为生成多项式。以选择 $g(x)=x^3+x^2+1$ 为例,n-k=3,k=4(信息位为4)。 设信息多项式为

$$m(x) = m_3 x^3 + m_2 x^2 + m_1 x + m_0$$

则循环码编码后的码多项式为

$$c(x) = m(x)g(x) = (m_3x^3 + m_2x^2 + m_1x + m_0)(x^3 + x^2 + 1)$$

m	m(x)	c(x)	C
0000	0	0	0000000
0001	1	$x^3 + x^2 + 1$	0001101
0010	x	$x^4 + x^3 + x$	0011010
0011	x + 1	$x^4 + x^2 + x + 1$	0010111
0100	x^2	$x^5 + x^4 + x^2$	0101100
• • •	• • •		

最终得:

信息位	码字	信息位	码字	信息位	码字	信息位	码字
0001	0001101	0011	0010111	0000	0000000	1101	1111111
0010	0011010	0110	0101110				
0100	0110100	1100	1011100				
1000	1101000	0101	0111001				
1101	1010001	1010	1110010				
0111	0100011	1001	1100101				
1110	1000110	1111	1001011				
循环	不组 1	循环	不组 2	循环组3		循环	组4

ii. 求 $g(x)=x^3+x^2+1$,k=4的循环码的生成矩阵:

$$egin{cases} x^3g(x) \leftrightarrow 1101000 \ x^2g(x) \leftrightarrow 0110100 \ xg(x) \leftrightarrow 0011010 \ g(x) \leftrightarrow 0001101 \end{cases} \Rightarrow G = egin{bmatrix} 1101000 \ 0110100 \ 0011010 \ 0001101 \end{bmatrix}$$

当循环码的生成矩阵确定后, 编码规则为

$$c = mG$$

例如,当m=(1001)时,c=(1001)G=1100101。

这与通过生成多项式计算结果相同: $m(x)g(x)=(x^3+1)(x^3+x^2+1)=x^6+x^5+x^2+1$, 对应码字也是1100101。

- iii. 求 $g(x) = x^3 + x^2 + 1$,m = (1001)的系统码字。
 - a. 计算 $x^{n-k}m(x)$:

。 因为
$$n=7$$
, $k=4$, $m(x)=x^3+1$,所以 $x^{n-k}m(x)=x^3(x^3+1)=x^6+x^3$ 。

b. 计算 $x^{n-k}m(x)$ 除以g(x)的余式r(x): 用 x^6+x^3 除以 x^3+x^2+1 ,通过长除法:

得到
$$r(x) = x + 1$$
。

c. 得到系统循环码的码多项式c(x)并转换为码字:

$$c(x) = x^{n-k}m(x) + r(x) = x^6 + x^3 + x + 1$$
 , 转换为码字 $c = (1001011)$ 。

iv. 求(7,4)循环码 $g(x)=x^3+x^2+1$ 系统形式的生成矩阵:

设
$$G = egin{bmatrix} g_3 \ g_2 \ g_1 \ g_0 \end{bmatrix} = egin{bmatrix} 1000 p_{32} p_{31} p_{30} \ 0100 p_{22} p_{21} p_{20} \ 0010 p_{12} p_{11} p_{10} \ 0001 p_{02} p_{01} p_{00} \end{bmatrix}$$
 , $G(x) = egin{bmatrix} x^6 + p_3(x) \ x^5 + p_2(x) \ x^4 + p_1(x) \ x^3 + p_0(x) \end{bmatrix}$

分别计算:

$$\circ \ p_3(x) = x^6 mod g(x) = x^2 + x$$

$$\circ p_2(x) = x^5 \mod g(x) = x+1$$

$$p_1(x) = x^4 \mod g(x) = x^2 + x + 1$$

$$\circ \ p_0(x) = x^3 \bmod g(x) = x^2 + 1$$

最终得到
$$G = \begin{bmatrix} 1000110\\0100011\\0010111\\0001101 \end{bmatrix}$$

编译码方法及其实现电路

- 循环码的编码
 - 编码步骤:
 - a. 将信息多项式m(x)乘以 x^{n-k} ,即左移(n-k)位。
 - b. 将 $x^{n-k}m(x)$ 除以g(x) ,得到余式r(x)
 - c. 得到系统循环码的码多项式 $c(x)=x^{n-k}m(x)+r(x)$
 - d. 将码多项式转换为码字。

○ 用除法器实现(7,3)循环编码器:

用除法器实现(7,3)循环编码器

$$g(x) = x^4 + x^3 + x^2 + 1$$

对g(x)的除法:对应g(x)的系数为1的项,有一根反馈线接到移位寄存器对应位置,从左到右分别对应 $1,x,x^2,x^3$ 和 x^4

- 1. 每编一个码需n = 7拍(时钟周期)
- 2. 前3拍时开关 k_1, k_2 在位置1,三个信息元从高位 m_2 开始依次输入除法器作 $x^4m(x)/g(x)$ 运算,同时作为码元输出
- 3. 第3拍完成时,除法器移存器里的数据就是余式系数
- 4. 后4拍停止信息元输入,开关 k_1 , k_2 倒向位置2,移存器中的数据分4拍 依次移出,作为循环码第4到第7校验位码元

○ 除法器编码示例:

输入序列011

输入 (in)	时钟	C0=C3 ⊕in	C1=C 0	C2=C1 ⊕C3⊕i n	C3=C2⊕ C3⊕in	输出	
-	0	0	0	0	0	-	
0	1	0	0	0	0	0	
1	2	1	0	1	1	1	信息位输出
1	3	0	1	0	1	1) 12.0-12.0-1
-	4	-	0	1	0	1	
-	5	-	-	0	1	0	移存器输出
-	6	-	-	-	0	1	
-	7	-	-	-	-	0	J

• 循环码的译码

译码步骤:

- a. 计算接收多项式R(x)的伴随多项式S(x),伴随式为0则认为无差错
- b. 根据S(x)找出相应错误图样多项式e(x)
- c. 将e(x)和R(x)模2加,得到译码输出 $\hat{c}(x)$ 。
- 伴随式计算及错误检测:
 - 设接收多项式为R(x) ,码多项式为c(x) ,错误图样多项式为e(x) ,则

$$R(x) = c(x) + e(x)$$

用生成多项式g(x)除R(x)得伴随式

$$s(x) = R(x) \mod g(x) = e(x) \mod g(x)$$

可通过译码电路高效实现

高莱 (Golay) 码

- 二进制高莱码 (Golay (23,12)码) 的编码
 - 二进制高莱码是一种循环码,其生成多项式为:

$$g(x) = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$$

- 编码步骤:
 - a. **信息位准备**:假设有12位的信息位,记为m(x)。
 - b. **生成多项式**:使用生成多项式g(x)。
 - c. 计算校验位:
 - 将信息位m(x)左移11位(即乘以 x^{11}),得到 $x^{11}m(x)$ 。
 - 计算 $x^{11}m(x)$ 除以g(x)的余数r(x)。
 - 将余数r(x)添加到 $x^{11}m(x)$ 的末尾,得到编码后的码字 $c(x)=x^{11}m(x)+r(x)$ 。
- 扩展高莱码 (Golay (24,12)码) 的编码
 - 扩展高莱码是在二进制高莱码的基础上增加一个奇偶校验位。
 - 编码步骤:
 - a. **二进制高莱码编码**:首先使用二进制高莱码的编码方法,生成23位的码字c(x)。
 - b. **计算奇偶校验位**:
 - 计算23位码字中1的个数。
 - 如果1的个数为奇数,则添加1作为奇偶校验位;如果为偶数,则添加0。
 - c. 生成扩展码字:将奇偶校验位添加到23位码字的末尾,得到24位的扩展高莱码。

循环冗余校验 (Cyclic Redundancy Check, CRC)

- 原理:
 - \circ 把数据视作二进制数D

- \circ 确定校验序列长度r
- \circ 选择长度为r+1的生成序列G
- \circ D后面添加r个0后除以G , 余数为校验序列R
- \circ 将R附加在D后面作为实际传输数据。
- \circ 检错:接收方将接收到的数据除以G,若余数为0,则认为无出错,否则认为传输出错
- 特点: 可检测长度小于r+1 bits的所有突发错误。

• CRC示例:

• 常用CRC版本:

常用CRC版本

名称	多项式	表示法	应用举例
CRC-8	X8+X2+X+1	0X07	
CRC-12	X ¹² +X ¹¹ +X ³ +X ² +X+1	0X80F	telecom systems
CRC-16	X ¹⁶ +X ¹⁵ +X ² +1	0X8005	Bisync, Modbus, USB, ANSI X3.28, SIA DC-07, many others; also known as CRC-16 and CRC-16-ANSI
CRC-CCITT	X ¹⁶ +X ¹² +X ⁵ +1	0X1021	ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS
CRC-32	X ³² +X ²⁶ +X ²³ +X ²² +X ¹⁶ +X ¹² +X ¹¹ +X ¹⁰ +X ⁸ +X ⁷ +X ⁵ +X ⁴ + X ² +X+1	0x04C11DB7	ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP- FCS
CRC-32C	X ³² +X ²⁸ +X ²⁷ +X ²⁶ +X ²⁵ +X ²³ +X ²² +X ²⁰ +X ¹⁹ +X ¹⁸ +X ¹⁴ +X ¹ ³ +X ¹¹ +X ¹⁰ +X ⁹ +X ⁸ +X ⁶ +1	0x1EDC6F41	iSCSI, SCTP, G.hn payload, SSE4.2, Btrfs, ext4, Ceph

• CRC有效性:

Effectiveness of Cyclic Redundancy Check

Type of Error	Probability of Detection	
	16-bit CRC	32-bit CRC
Single bit error	1.0	1.0
Two bits in error (separate or not)	1.0	1.0
Odd number of bits in error	1.0	1.0
Error burst of length less than the length of the CRC (16 or 32 bits)	1.0	1.0
Error burst of length equal to the length of the CRC	$1-\frac{1}{2^{15}}$	$1-\frac{1}{2^{31}}$
Error burst of length greater than the length of the CRC	$1-\frac{1}{2^{16}}$	$1-\frac{1}{2^{32}}$