Exercise 1: Class Prototypes (25 P)

Consider the linear model $f(x) = \mathbf{w}^{\top} \mathbf{x} + b$ mapping some input \mathbf{x} to an output $f(\mathbf{x})$. We would like to interpret the function f by building a prototype x^* in the input domain which produces a large value f. Activation maximization produces such interpretation by optimizing

$$\max_{\mathbf{x}} [f(\mathbf{x}) + \Omega(\mathbf{x})].$$

Find the prototype x^* obtained by activation maximization subject to $\Omega(x) = \log p(x)$ with $x \sim \mathcal{N}(\mu, \Sigma)$ where μ and Σ are the mean and covariance.

The mean and covariance.

$$\frac{\partial}{\partial x} \left(D^{T} \times + b - \frac{1}{2} (x - \mu) \sum_{i=0}^{n} (x - \mu) + const \right).$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

$$= \omega - \sum_{i=0}^{n} (x - \mu) = 0$$

Exercise 2: Shapley Values (25 P)

Consider the function $f(x) = \min(x_1, \max(x_2, x_3))$. Compute the Shapley values ϕ_1, ϕ_2, ϕ_3 for the prediction f(x)with x = (1, 1, 1). (We assume a reference point $\tilde{x} = 0$, i.e. we set features to zero when removing them from the coalition).

Exercise 3: Taylor Expansions (25 P) Consider the simple radial basis function

with $\theta > 0$. For the purpose of extracting an explanation, we would like to build a first-order Taylor expansion of the function at some root point \tilde{x} . We choose this root point to be taken on the segment connecting μ and x (we assume that f(x) > 0 so that there is always a root point on this segment). Show that the first-order terms of the Taylor expansion are given by

 $f(\mathbf{x}) = \|\mathbf{x} - \boldsymbol{\mu}\| - \theta$

$$\phi_i = \frac{(x_i - \mu_i)^2}{\|\mathbf{x} - \boldsymbol{\mu}\|^2} \cdot (\|\mathbf{x} - \boldsymbol{\mu}\| - \theta)$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
x - \tilde{x} &= (1 - \lambda)(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

$$\begin{aligned}
\tilde{x} &= \mu + \frac{1}{2}(x - \mu) \\
\tilde{x} &= \mu + \frac{1}{2}(x - \mu)
\end{aligned}$$

Exercise 4: Layer-Wise Relevance Propagation (25 P) We would like to test the dependence of layer-wise relevance propagation (LRP) on the structure of the neural network.

For this, we consider the function $y = \max(x_1, x_2)$, where $x_1, x_2 \in \mathbb{R}^+$ are the input activations. This function can be implemented as a ReLU network in multiple ways. Three examples are given below.

applied to both layers.

where
$$j$$
 and k are indices for two consecutive layers and where ()⁺ denotes the positive part. This propagation rule is applied to both layers.

Give for each network the computational steps that lead to the scores R_1 and R_2 , and the obtained relevance values. More specifically, express R_1 and R_2 as a function of R_3 and R_4 (and R_5), and express the latter relevances as a

function of $R_{\text{out}} = y$.

$$R_{3} = \frac{q_{3} \cdot \frac{1}{2}}{a_{1} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{5} \cdot \frac{1}{2}} R_{out}$$

$$R_{h} = \frac{q_{1} \cdot \frac{1}{2}}{a_{1} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{5} \cdot \frac{1}{2}} R_{out}$$

$$R_{5} = \frac{q_{5} \cdot \frac{1}{2}}{a_{3} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{5} \cdot \frac{1}{2}} R_{out}$$

$$R_{5} = \frac{q_{5} \cdot \frac{1}{2}}{a_{3} \cdot \frac{1}{2} + a_{1} \cdot \frac{1}{2} + a_{5} \cdot \frac{1}{2}} R_{out}$$

$$R_{7} = \frac{x_{1} \cdot 1}{x_{1} \cdot 1 + x_{1} \cdot 1} R_{3} + \frac{x_{1} \cdot 1}{x_{2} \cdot 0 + x_{1} \cdot 1} R_{1}$$

$$+ \frac{x_{1} \cdot 0}{x_{2} \cdot 1 + x_{1} \cdot 1} R_{5}$$

$$R_{out} = y$$

$$R_{3} = \frac{a_{3} \cdot \omega_{3out}^{+}}{a_{3}\omega_{3out}^{+} + a_{4}\omega_{hout}^{+}} \cdot R_{out}$$

$$= \frac{a_{3} \cdot 1}{a_{3} \cdot 1 + a_{4} \cdot 1} \cdot R_{out}$$

$$R_{1} = \frac{x_{1} \cdot \omega_{2t_{1}}^{+} + x_{1} \cdot \omega_{1t_{1}}^{+}}{x_{2} \cdot \omega_{2t_{1}}^{+} + x_{1} \cdot \omega_{1t_{1}}^{+}} \cdot R_{1}$$

$$= R_{1}$$

$$R_{1} = \frac{x_{1} \cdot \omega_{2t_{1}}^{+} + x_{1} \cdot \omega_{1t_{1}}^{+}}{x_{1} \cdot \omega_{1}^{+}} \cdot R_{1}$$

$$= R_{1}$$

$$R_{1} = \frac{x_{1} \cdot \omega_{1}^{+}}{a_{3} \cdot 1 + a_{4} \cdot 1} \cdot R_{1}$$

$$= R_{1}$$

$$= R_{2} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{2} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{2} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+} \cdot \omega_{1}^{+}$$

$$= R_{1} \cdot \omega_{1}^{+} \cdot$$