11.4. Wednesday for MAT3040

Reviewing. Unitary Operators

$$\langle Tv, Tw \rangle = \langle v, w \rangle, \ \forall v, w \in V.$$

11.4.1. Unitary Operator

■ Example 11.8 Let $V = \mathbb{R}^n$ with usual inner product. For the linear operator $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$, T is orthogonal if and only if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$.

Let $V = \mathbb{C}^n$ with usual inner product. For the linear operator $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$, T is unitary if and only if $\mathbf{A}^T\mathbf{A} = \mathbf{I}$.

Proposition 11.7 Let $T: V \to V$ be a linear operator on a vector space over \mathbb{K} satisfying T'T = I. Then for all eigenvalues λ of T, we have $|\lambda| = 1$.

Proof. Suppose we have the eigen-pair (λ, \mathbf{v}) , then

$$\langle T\mathbf{v}, T\mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle$$

$$\iff \langle \lambda \mathbf{v}, \lambda \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle$$

$$\iff \bar{\lambda} \lambda \langle \mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} \rangle$$

Since $\langle \mathbf{v}, \mathbf{v} \rangle \neq 0$ ($\mathbf{v} \neq \mathbf{0}$), we imply $|\lambda|^2 = 1$, i.e., $|\lambda| = 1$.

Proposition 11.8 Let $T: V \to V$ be an operator on a finite dimension V over \mathbb{K} satisfying T'T = I. If $U \le V$ is T-invariant, then U is also T^{-1} -invariant.

Proof. Since T'T = I, i.e., T is invertible, we imply 0 is not a root of $X_T(x)$, i.e., 0 is not a root of $m_T(x)$. Since $m_T(0) \neq 0$, $m_T(x)$ has the form

$$m_T(x) = x^m + \dots + a_1 x + a_0, \ a_0 \neq 0,$$

which follows that

$$m_T(T) = T^m + \dots + a_0 I = 0 \implies T(T^{m-1} + \dots + a_1 I) = -a_0 I$$

Or equivalently,

$$T\left(-\frac{1}{a_0}(T^{m-1}+\cdots+a_1I)\right)=I$$

Therefore,

$$T^{-1} = -\frac{1}{a_0}T^{m-1} - \dots - \frac{a_2}{a_0}T - \frac{a_1}{a_0}I,$$

i.e., the inverse T^{-1} can be expressed as a polynomial involving T only.

Sicne U is T-invariant, we imply U is T^m -invariant for $m \in \mathbb{N}$, and therefore U is T^{-1} -invariant since T^{-1} is a polynomial of T.

Proposition 11.9 Let $T: V \to V$ satisfies T'T = I (dim(V) < ∞), then $U \le V$ is T-invariant implies U^{\perp} is T-invariant.

Proof. Let $v \in U^{\perp}$, it suffices to show $T(v) \in U^{\perp}$.

For all $u \in U$, we have

$$\langle u, T(v) \rangle = \langle T'(u), v \rangle = \langle T^{-1}(u), v \rangle$$

Since *U* is T^{-1} -invaraint, we imply $T^{-1}(u) \in U$, and therefore

$$\langle u, T(v) \rangle = \langle T^{-1}(u), v \rangle = 0 \implies T(v) \in U^{\perp}.$$

Theorem 11.2 Let $T: V \to V$ be a unitary operator on finite dimension V (over \mathbb{C}), then there exists an orthonormal basis \mathcal{A} such that

$$(T)_{\mathcal{A},\mathcal{A}} = \operatorname{diag}(\lambda_1,\ldots,\lambda_n), \ |\lambda_i| = 1, \ \forall i.$$

Proof Outline. Note that $X_T(x)$ always admits a root in \mathbb{C} , so we can always find an

eigenvector $v \in V$ of T.

Then the theorem follows by the same argument before on seld-adjoint operators.

- Consider $U = \text{span}\{v\}$
- $V = U \oplus U^{\perp}$ and U^{\perp} is *T*-invariant
- Use induction on the unitary operator $T|_{U^{\perp}}: U^{\perp} \to U^{\perp}$

 (\mathbf{R})

• The argument fails for orthogonal operators

$$T : \mathbb{R} \to \mathbb{R}^2,$$
with $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$
where $\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

The matrix \mathbf{A} is not diagonalizable over \mathbb{R} . It has no real eigenvalues. However, if we treat \mathbf{A} as $T: \mathbb{C}^2 \to \mathbb{C}^2$ with $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$, then $\mathbf{A}^H \mathbf{A} = \mathbf{I}$, and therefore T is unitary. Then \mathbf{A} is diagonalizable over \mathbb{C} with eigenvalues $e^{i\theta}$, $e^{-i\theta}$

• As a corollary of the theorem, for all $\mathbf{A} \in M_{n \times n}(\mathbb{C})$ satisfying $\mathbf{A}^H \mathbf{A} = \mathbf{I}$, there exists $P \in M_{n \times n}(\mathbb{C})$ such that

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \quad |\lambda_i| = 1,$$

where $P = (\boldsymbol{u}_1, ..., \boldsymbol{u}_n)$, with $\{\boldsymbol{u}_1, ..., \boldsymbol{u}_n\}$ forming orthonormal basis of \mathbb{C}^n . In fact,

$$P^{H}P = \begin{pmatrix} \mathbf{u}_{1}^{H} \\ \vdots \\ \mathbf{u}_{n}^{H} \end{pmatrix} \begin{pmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle & \cdots & \langle \mathbf{u}_{1}, \mathbf{u}_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{u}_{n}, \mathbf{u}_{1} \rangle & \cdots & \langle \mathbf{u}_{n}, \mathbf{u}_{n} \rangle \end{pmatrix}$$

Conclusion: all matrices $\mathbf{A} \in M_{n \times n}(\mathbb{C})$ with $\mathbf{A}^H \mathbf{A} = \mathbf{I}$ can be written as

$$\mathbf{A} = \mathbf{P}^{-1} \operatorname{diag}(\lambda_1, \dots, \lambda_n) \mathbf{P},$$

with some P satisfying $P^{H}P = I$.

Notation. Let $U(n) = \{ \mathbf{A} \in M_{n \times n}(\mathbb{C}) \mid \mathbf{A}^{H}\mathbf{A} = \mathbf{I} \}$ be the unitary group, then all $\mathbf{A} \in U(n)$ can be diagonalized by

$$A = P^{-1} \operatorname{diag}(\lambda_1, \dots, \lambda_n) P, \quad P \in U(n).$$

11.4.2. Normal Operators

Definition 11.10 [Normal] Let $T: V \to V$ be a linear operator over a $\mathbb C$ inner product vector space V. We say T is **normal**, if

$$T'T = TT'$$

■ Example 11.9 • All self-adjoint operators are normal:

$$T = T' \implies TT' = T'T = T^2$$

• All unitary operators are normal:

$$T'T = TT' = I$$

Proposition 11.10 Let T be a normal operator on V. Then

1. $||T(\mathbf{v})|| = ||T'(\mathbf{v})||, \forall \mathbf{v} \in V.$ In particular, $T(\mathbf{v}) = 0$ if and only if $T'(\mathbf{v}) = 0$

- 2. $(T \lambda I)$ is also a normal operator, for any $\lambda \in \mathbb{C}$
- 3. $T(\mathbf{v}) = \lambda \mathbf{v}$ if and only if $T'(\mathbf{v}) = \bar{\lambda} \mathbf{v}$.

Proof. 1.

$$\langle Tv, Tv \rangle = \langle T'Tv, v \rangle$$

$$= \langle TT'v, v \rangle$$

$$= \overline{\langle v, TT'v \rangle}$$

$$= \overline{\langle T'v, T'v \rangle}$$

$$= \langle T'v, T'v \rangle$$

Therefore, $||T(\mathbf{v})||^2 = ||T'(\mathbf{v})||^2$, i.e., $||T(\mathbf{v})|| = ||T'(\mathbf{v})||$.

2. By hw4, $(T - \lambda I)' = T' - \overline{\lambda}I$. It suffices to check

$$(T - \lambda I)'(T - \lambda I) = (T - \lambda I)(T - \lambda I)',$$

Expanding both sides out gives the desired result, i.e.,

$$(T - \lambda I)'(T - \lambda I) = (T' - \bar{\lambda}I)(T - \lambda I) = T'T - \bar{\lambda}T - \lambda T' + \lambda \bar{\lambda}I$$

and

$$(T - \lambda I)(T - \lambda I)' = (T - \lambda I)(T' - \bar{\lambda}I) = TT' - \bar{\lambda}T - \lambda T' + \lambda \bar{\lambda}I$$

3. The proof for (3) will be discussed in the next lecture.