

EDUCATION

IP Storage

David Dale, Network Appliance

Abstract

IP Storage

This session will appeal to IT managers, administrators and storage architects interested in a broad overview of IP Storage (covering iSCSI, FCIP and iFCP).

The presentation explains what IP Storage is; compares and contrasts it to other storage technologies and topologies; highlights implementation details such as security, performance, and availability; and explains how IP Storage fits in the infrastructure of both large Enterprises, and small/medium Enterprises.

SNIA Legal Notice

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.

Contents

- IP Networking
- IP Storage Technologies
- iSCSI
 - How it Works
 - Security Considerations
 - Performance
- iFCP
- FCIP
- Summary

IP Network Bandwidth

EDUCATION

<u>Year</u>	<u>Storage</u>	<u>Network</u>	<u>Penalty</u>
1992	10 MB/s	0.1 MB/s	100-to-1
1994	20 MB/s	1 MB/s	20-to-1
1996	40 MB/s	10 MB/s	4-to-1
1998	100 MB/s	100 MB/s	1-to-1

Wires to Disk: Wires to Network:

SCSI 10bT shared (÷ 10)

Fast-Wide SCSI FDDI shared (÷ 10)

Ultra SCSI 100bT switched

Fibre Channel Gigabit switched

→ IP Networks are fast enough for storage

Advantages of IP Networking

- Ubiquitous Technology
 - Low Acquisition Costs
 - Standards-based solutions
 - Commodity economics
 - Installed in every corporation
- Low Management Costs
 - Familiar network technology and management tools
 - Proven reliable/interoperable transport infrastructure
- Wide Area Connectivity
 - Enables remote data replication and disaster recovery
- Long-term viability
 - Large R&D investment profile, strong roadmap
 - 10 Gb Ethernet emerging; 40 Gb roadmap

TCP/IP Transport

- IP Storage protocols (iSCSI, iFCP & FCIP) all use TCP/IP for transport
- TCP/IP provides:
 - Connection oriented delivery
 - Guaranteed packet delivery
 - Guaranteed order
 - End to end flow control
 - Quality of Service tagging for service differentiation

Standard Networking Capabilities Storage Stora

- IP Network Tools (ping, traceroute, etc)
- IP Traffic Shaping QoS
- IP Interoperability
 - Ethernet, ATM, Sonet, Switches, Routers, Hubs, etc
- IP Network Provisioning
- IP Routing Spanning Tree, etc…
- Familiar Auto Address Mgmt
 - DHCP, DNS
- IP Authentication, Access Control and Security
 - IPSec, CHAP, RADIUS, etc
- → Can bring improved flexibility and ease-of-use to SANs

IP Storage Security

EDUCATION

Security Levels:

- None
 - Equivalent to Fibre Channel
 - OK in controlled (private network) environments
- iSCSI Initiator and Target (RADIUS) authentication
 - Prevents unauthorized access
 - Permits only trustworthy nodes
 - Uses CHAP, SRP, Kerberos, SPKM
- IP based firewalls
- IPsec Digests and anti-Reply
 - Prevents insertion, modification and deletion
- IPsec Encryption
 - Provides privacy
 - Prevents eavesdropping

SAN Protocol Options

Fibre Channel (FCP)

- FCP works and will not disappear any time soon
- Entrenched; excellent high-performance solution

FC island connectivity across the WAN

- FCIP: Tunneled solution
- iFCP: FCP routed solution

iSCSI provides end-to-end native IP storage

- Affordable SAN solutions for cost-sensitive server environments are available today
- Native support from all OS vendors today
- Vendor platform certifications well established

The Foundation: SCSI

- A type of parallel communications cable
 - A way to control communications on the cable
- Set of commands servers use to control storage

Fibre Channel SCSI (FCP)

- A serial communications network
 - Network control standard to deliver packets
- Purpose: Deliver SCSI commands with better connectivity

iSCSI: SCSI over TCP/IP

- Uses standard network hardware
 - Relies on transports for TCP/IP and TCP/IP commands
 - Builds on top of rich features in TCP/IP
- Purpose: Deliver SCSI commands simpler and cheaper

iSCSI Operation

iSCSI Host
iSCSI Session
TCP Connection
TCP Connection
TCP Connection
iSCSI Target
iSCSI Target

- Initiators and targets can be implemented in H/W or S/W
- Session between initiator and target
 - One or more TCP connections per session
 - Login phase begins each connection
- Services (e.g., authentication, security) negotiated during login
- TCP Protocol provides
 - Delivery of SCSI commands in order
 - Recovery from lost connections

iSCSI Implementations

iSCSI & TOE Adapters

Performance Considerations

- Software iSCSI initiator + standard NIC
 - Host CPU overhead ~500MHz to saturate 1GbE
 - Pros: Low cost (free download)
 Adequate for many mid-range applications
 - Cons: Cannot implement remote boot.
- iSCSI TCP Offload (TOE) NICs
 - Pros: More than adequate performance for vast majority of applications
 - Cons: Cannot implement remote boot.
- iSCSI HBAs
 - Pros: Higher performance with CPU offload
 Optional IPSec for security and Data Digest for higher data integrity
 - Ideal for data center applications
 - Cons: More expensive than standard NIC

iSCSI – Why It's Important

- Software iSCSI initiators included with operating system make it easier to deploy SANs
- Lower cost infrastructure broadens reach of SAN solutions
- Built-in networking capabilities simplify SAN management
- Leveraging IP networking investments and knowledge base lowers total cost of ownership

→ Excellent SAN solution for smaller servers today

Fibre Channel over TCP (FCIP)

- **EDUCATION**
- A tunneling protocol that encapsulates and transports FC frames over TCP/IP
- Only FCIP Gateways need to be aware of FCIP encapsulation (iFCP requires iSNS)
- IP is unaware of the FC Payload and the FC fabric is unaware of the IP transport

Internet Fibre Channel (iFCP)

- Allows users to interconnect FC devices over a TCP/IP network at any distance (same as FCIP)
- iFCP maps each FC address to an IP address and each FC session to a TCP session
- FC messaging and routing services are terminated at the gateways so that fabrics are not merged

FCIP & iFCP Comparison

Where IP Storage Fits

IP Storage – What's Next

- Implementations
 - Broad array vendor support
 - Second generation iSCSI initiators
 - Complete open systems OS support
- Standards
 - RDMA/10GbE
 - iSER
 - SMI-S 1.1 support for iSCSI

Summary

- IP Storage is based on industry standard protocols
- IP Storage leverages current investments in IP infrastructure and expertise
- IP Storage complements and extends existing FC SAN infrastructure
- IP Storage brings SAN solutions to more environments and more price points
- IP Storage solutions are available today

Q&A / Feedback

 Please send any questions or comments on this presentation to SNIA: <u>track-networking@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

SNIA IP Storage Forum Members David Dale Peter Hunter Howard Goldstein Ahmad Zamer John Hufferd