

Understanding the Impact of Nanoflare Heating Frequency on the Observed Emission Measure Distribution

Will T. Barnes, Peter J. Cargill, & Stephen J. Bradshaw

Department of Physics and Astronomy, Rice University Space and Atmospheric Physics, The Blackett Laboratory, Imperial College London School of Mathematics and Statistics, University of St. Andrews

Introduction

- Nanoflare model of Parker [10]: corona heated by impulsive ($\ll \tau_{cool}$), low-energy (10²⁴ erg) events produced by twisting, braiding of field lines rooted in the photosphere
- ▶ "Smoking gun" of nanoflare heating is the faint, high-temperature component of the emission measure distribution [5, 7]
- ► Fundamental question: what is the frequency of energy release in the solar corona? Two extreme cases:
- ▶ Low-frequency heating: Time between successive events is much greater than a typical loop cooling time (i.e. approaches the single pulse case) ▶ High-frequency heating: Time between successive events is much smaller than a typical loop cooling time (i.e. approaches the steady heating case)
- ► Goal: Use hydrodynamic loop models to determine the influence of heating parameters, including the heating frequency, on the emission measure distribution and associated observables.

Hydrodynamic Modeling

- ▶ Zero-dimensional Enthalpy-based Thermal Evolution of Loops (EBTEL) model of Klimchuk et al. [9], Cargill et al. [6] allows for efficient modeling of many thousands of loops
- ▶ We use a modified form of the EBTEL model to treat the electron and ion populations separately [for more details, see 1, submitted]
- ▶ Applying the "EBTEL method" to the two-fluid hydrodynamic equations [as given in 3], the modified two-fluid EBTEL equations are,

$$\frac{d}{dt}\bar{p}_{e} = \frac{\gamma - 1}{L} \left[\psi_{TR} - (\mathcal{R}_{TR} + \mathcal{R}_{C}) \right] + k_{B}\bar{n}\nu_{ei}(\bar{T}_{i} - \bar{T}_{e}) + (\gamma - 1)\bar{Q}_{e}, \tag{1}$$

$$\frac{d}{dt}\bar{p}_{i} = -\frac{\gamma - 1}{L}\psi_{TR} + k_{B}\bar{n}\nu_{ei}(\bar{T}_{e} - \bar{T}_{i}) + (\gamma - 1)\bar{Q}_{i},$$

$$\frac{d}{dt}\bar{n} = \frac{c_{2}(\gamma - 1)}{c_{3}\gamma Lk_{B}\bar{T}_{e}}\left(\psi_{TR} - F_{ce,0} - \mathcal{R}_{TR}\right),$$
(2)

where $c_1=\mathcal{R}_{TR}/\mathcal{R}_C$, $c_2=\bar{T}/T_a=0.9$, $c_3=T_0/T_a=0.6$, ψ_{TR} is a term included to maintain charge and current neutrality and ν_{ei} is the electron-ion binary Coulomb collision frequency

Assume quasi-neutrality, $n_e = n_i = n$, and closed by equations of state for both the electrons and ions: $p_e = k_B n T_e$ and $p_i = k_B n T_i$

Single-nanoflare Results

- ► Single nanoflare is the most extreme low-frequency case, loop allowed to undergo complete heating and cooling cycle
- ▶ In Barnes et al. [1, submitted], we investigated the effect of pulse duration (τ) , heat flux limiting, electron versus ion heating, and non-equilibrium ionization (NEI) on the resulting emission measure distribution, EM(T)
- ▶ We found that,
- \blacktriangleright While very short pulses ($\tau=20,40$ s) lead to significant emission above 10 MK, comparisons with field-aligned models [e.g. HYDRAD, 3] show that EBTEL gives an artifically fast rise in density and thus an excess of hot emission for these very short heating times; longer pulses $(\tau = 200, 500 \text{ s})$ show a cutoff near 10 MK.
- ullet Compared to pure Spitzer thermal conduction, heat flux limiting (using f=1/6) extends $\mathrm{EM}(T)$ to >10 MK; extreme values of f (e.g. f = 1/30) lead to significant emission > 20 MK.
- ▶ In the case in which the ions are heated, no emission is visible above 8 MK, independent of the pulse duration
- \triangleright Calculating T_{eff} due to NEI shows that, even for very short pulses, there is little to no emission visible above 10 MK, for the single-fluid, electron heating, and ion heating cases
- \triangleright Conclusion: EM(T) signature of loop plasma heated by a single nanoflare is most likely found in the temperature range $T_m < T < 10^7$ K, where the temperature of maximum emission $T_m \approx 4$ MK for active region cores [11]

Figure 1: Equilibrium and non-equilibrium (red) ionization results for a single nanoflare lasting 20 s (blue) and 500 s (purple) in the single-fluid case (solid) as well as the case in which the only the elctrons (dashed) or only the ions (dot-dashed) are heated. Fig. 1(a) shows the electron temperature as a function of time for a 20 s pulse (left) and a 500 s pulse (right). Fig. 1(b) shows the resulting EM(T) for the equilibrium (left, blue and right, purple) and NEI (red) cases.

Energy Budget and Heating Statistics

Figure 2: Top (Middle) panel shows Uniform heating amplitudes for $t_N = 1000$ $(t_N = 5000)$ s. Bottom panel shows Heating amplitudes drawn from a power-law distribution with $\alpha = -1.5$ and mean wait time $t_N = 2000$ s; the events shown in red (blue) have wait times that depend on the previous event energy (uniform wait times).

Figure 3: Heating function parameter space. We consider a range of waiting times $250 < t_N < 5000$ s, in increments of 250 s. In the power-law case, a sufficiently large number of runs, N_R is required to sample the distribution. For example, when $t_N = 5000$ s, $N_R = 625$ such that for each $(\alpha, \beta, t_N = 5000)$, we run the model 625 times.

- ▶ Loop of half-length L=40 Mm heated by N triangular pulses with duration $\tau=200$ s over $t_{total}=8\times10^4$ s.
- ▶ Each event has maximum heating rate H_i and followed by a waiting time of $t_{N,i}$; static background heating $H_{bg} = 3.5 \times 10^{-5} \text{ erg cm}^{-3} \text{ s}^{-1}$
- ▶ H_i can either be uniform such that $H_i = H_0$ for all i or chosen from a power-law distribution with $\alpha = -1.5, -2.0, -2.5$
- ► The total energy injected into the loop is constrained by

$$H_{eq} = \frac{1}{t_{total}} \sum_{i=1}^{N} \int_{t_i}^{t_i + \tau} dt \ Q(t) = \frac{\tau}{2t_{total}} \sum_{i=1}^{N} H_i, \tag{4}$$

- ho $H_{eq} pprox 3.6 imes 10^{-3}$ erg cm $^{-3}$ s $^{-1}$ is the time-averaged heating rate such that $T_{peak} pprox$ 4 MK, consistent with AR core observations [11].
- ▶ Treat $t_{N,i}$ as time needed for the field to "unwind", consistent with the Parker [10] nanoflare picture
- $\beta = 0$: $t_{N,i} = t_N$ for all i, no dependence on H_i
- $\beta = 1$: $\varepsilon = LA\tau H_i/2 \propto t_{N,i}$ (see bottom panel of Fig. 2)
- ▶ Total number of events dependent on t_N , $N=t_{total}/(t_N+\tau)$ such that N=16 when $t_N=5000$ s
- For the power-law cases, require $NN_R \sim 1 \times 10^4$, where N_R is the number of runs for each unique point in the parameter space, (α, β, t_N)

Emission Measure Distribution

- \triangleright Compute solutions to Eqs. 1, 2, and 3 for all N_R runs for each point in the multidimensional heating parameter space. (Note: for the events of uniform magnitude, $N_R = 1$)
- ▶ To account for NEI, we use the numerical code described in Bradshaw [2] to calculate the fractional ionization states for Fe IX through Fe XXVII and calculate T_{eff} , a temperature that would be measured based on the actual ionization states
- ▶ Given a temperature range $4 \le \log T_e \le 8.5$ with bin widths $\Delta \log T_e = 0.01$, at each time t_i , add $n_i^2(2L)$ to every bin that falls in the range $[T_{0e,j}, T_{ae,j}]$; time-averaging over the entire run gives EM(T)
- ▶ To calculate $EM(T_{eff})$, we use the same procedure, but using T_{eff} instead of T_e .

(b) Ion Heating

Figure 4: Emission measure distributions for waiting-times $t_N = 250,750,1500,2500,3750,5000$ s in the electron heating case. The three types of heating functions shown are uniform heating rates (red), heating rates chosen from a power-law distribution of $\alpha = -2.5$ (blue), and heating rates chosen from a power-law distribution of $\alpha = -2.5$ where the time between successive events is proportional to the heating rate of the preceding event (green). The solid lines in the two power-law cases show the mean EM(T) over N_R runs and the shading indicates 1σ from the mean. The dashed lines denote the corresponding $EM(T_{eff})$ distribution. The standard deviation is not included in the NEI results.

Hot Plasma Diagnostics

- lacktriangle Well-known cool emission measure scaling ${
 m EM}(T) \propto T^a$; similar scaling claimed for the hot part of the emission measure distribution, EM(T) $\propto T^{-b}$ over a temperature range $T_m \lesssim T \lesssim 10^{7.2}$
- lacktriangle Observations have shown $7 \lesssim b \lesssim 10$ [11] though measurements of b are poorly constrained due to lack of spectroscopic data in this temperature range.
- lacksquare Brosius et al. [4] find the ratio of Fe XIX (formed at $Tpprox 10^{6.95}$ K) to Fe XII (formed at $Tpprox 10^{6.2}$ K) intensity to be \sim 0.59 inside AR core compared to \sim 0.076 outside, providing possible evidence for impulsive heating
- \blacktriangleright As a proxy for this intensity ratio and an alternative to b,compute an emission measure ratio $EM(T_{hot})/EM(T_{cool})$, with $T_{hot}=10^{6.95}~{
 m K}$ and $T_{cool}=10^{6.3}pprox 2 imes 10^6~{
 m K}$

(c) Ion heating, grouped by (α, β) Figure 5: Histograms of emission measure ratios for the entire multidimensional heating parameter space (see Fig. 3). Each histogram is normalized such that for each distribution P(x), $\int_{-\infty}^{\infty} dx P(x) = 1$ and the bin widths are calculated using the well-known Freedman-Diaconis formula [8]. The top panels show the electron heating cases and the bottom panels show the ion heating cases. In the left panels, each histogram (denoted by linestyle and color) corresponds to a unique heating function (α, β) . The uniform case has not been included here. In the right panels, the emission measure ratios are grouped by t_N . Here we show only five values of t_N for aesthetic reasons.

Conclusions

- ▶ While cool part of EM(T) more elongated for $\beta = 1$, hot part of emission measure distribution independent of β .
- ightharpoonup Compared to single-nanoflare results, ion heating results show $\mathrm{EM}(T)$ extending to hotter temperatures (> 10^7 K) for intermediate to low heating frequencies
- ▶ Effects due to NEI only important for uniform heating in electron heating case, no visible differences in ion heating case
- \blacktriangleright Emission measure ratio seems to be largely independent of α , weakly dependent on β .
- ▶ In ion heating case, lower t_N required for consistency with Brosius et al. [4] results as compared to electron heating case.

References

- [1] Barnes, W. T., Cargill, P. J., & Bradshaw, S. J. 2016, submitted
- [2] Bradshaw, S. J. 2009, Astronomy and Astrophysics, 502, 409
- [3] Bradshaw, S. J., & Cargill, P. J. 2013, The Astrophysical Journal, 770, 12 [4] Brosius, J. W., Daw, A. N., & Rabin, D. M. 2014, The Astrophysical Journal, 790, 112
- [5] Cargill, P. J. 1994, The Astrophysical Journal, 422, 381 [6] Cargill, P. J., Bradshaw, S. J., & Klimchuk, J. A. 2012, The Astrophysical Journal, 752, 161
- [7] Cargill, P. J., & Klimchuk, J. A. 2004, The Astrophysical Journal, 605, 911 [8] Freedman, D., & Diaconis, P. 1981, Zeitschrift fr Wahrscheinlichkeitstheorie und Verwandte Gebiete,
- 57, 453 [9] Klimchuk, J. A., Patsourakos, S., & Cargill, P. J. 2008, The Astrophysical Journal, 682, 1351
- [10] Parker, E. N. 1988, The Astrophysical Journal, 330, 474 [11] Warren, H. P., Winebarger, A. R., & Brooks, D. H. 2012, The Astrophysical Journal, 759, 141
- This work was supported in part by the Big-Data Private-Cloud Research Cyberinfrastructure MRI-award funded by NSF under grant CNS-1338099 and by Rice University.

Mail: will.t.barnes@rice.edu