装订线

本试卷适应范围 机制、农机、车辆、 材控、交运 19 级

南京农业大学试题纸

2020-2021 学年 一 学期 课程类型: 必修 (√) 试卷类型: A (√)

		2020-	·2021 字	年 一	子别	保程尖	型: 少1	多(7)	以 苍	尖型: A	(\forall)
课程号	MEEN3			理论力学		_	学分	3 学分			
学号 _				姓名				班纫	·		
题号	_	二	三	四	五.	总分	签名				
得分											
备注: (允许使用计算器)											
一、填空题(10分,每空1分)。											
1、图示结构受矩为 10KN·m 的力偶作用, 若 a=1m, 各杆自重不计。则固定铰支座 D 的约束力											
大小为,方向。 2、											
2、直角杆自重不计,其上作用一力偶矩为 M 的力偶,图 (a) 中 B 点的约束力为,图 (1) 中 D 与 (2)											
(b)中B点的约束力为。											
3 、机构如图所示, $O_1A=3m$, $O_2B=5m$, $\omega_{0_2B}=3$ rad/s,则杆 O_1A 的角速度 $\omega_{0_1A}=$,C											
点 ν c=。 4、点作曲线运动,加速度一般由和和组成。											
$\begin{bmatrix} 4 & \text{点作曲线运动,加速度一般日}$											
5、如图所示,已知圆环的丰径为 R,弹簧的刚度系数 为 R,弹簧的原长为 R,弹簧的一端与圆 环上的 O 点铰接,当弹簧从 A 端移动到 B 端时弹簧所做的功为,当弹簧从 A 端											
移动到 C 端时弹簧所作的功为。											
1949111	C 20041 12	F與 <i>//</i> IIIF	µ3 <i>-</i> 94733_			°					
4	M	0				—	2L	→	, ←	_2L	H
^_	- 	₹"		T	1		(_ ≪	B	(7 \top
							M			M	L
			Å		_	B				A	À [▼]
						((a)			(b)	
题 1-1 图								题 1-2	图		
	c						A				
			В				"hum				
	A					0	<i>\(\)</i>		В		
		ω_{o2B}	\uparrow								
	o A	O									
		,	<i>innn</i>								
		-3 图					题 1-5	5 图			
二、作图题(16分)											

1、 如图所示, 所有接触均为光滑接触, 画出杆 AB 与球 O 的受力图 (明确每点受力方向) (4

1

2、在图示机构中, 试选择动点、动系, 并画出动点的速度合成图和加速度矢量合成图。(6分)

速度矢量图

加速度矢量图

3、图示平面机构的构件均在同一平面内运动,画出作平面运动刚体的在图示位置的速度瞬心,画出角速度的转向,并画出 M 点的速度方向。(6 分)

三、简算题(14分)

1、如图所示的悬臂梁结构,在图中受力情况下,固定端 A 处的约束力为多大? (4分)

2、已知正方形板 ABCD 作定轴转动,转轴垂直于板面,A 点的速度 v_A =10cm/s,加速度 a_A =100 $\sqrt{2}$ cm/s²,方向如图。求该板转动的角速度 ω 和角加速度 α 。(4分)

3、质量为 2m 的均质 T 形杆在铅直平面内以角速度 ω 绕水平轴 O 转动,已知 OA=2r,BA=AC=r,求图示位置 T 形杆的动能,动量以及对轴 O 的动量矩。(6 分)

四、分析题(10分)

1、 等腰直角三角形板 ABC 的斜边 AB 长 $\sqrt{2}$ a,在其顶点 A、B、C 分别作用力 F_1 、 F_2 、 F_3 ,方向如图。若 F_1 = F_2 =F, F_3 = $\sqrt{2}$ F,写出该力系向 A 点简化的结果。(5 分)

2、如图所示,在铅垂面内,杆 OA 可绕轴 O 自由转动,均质圆盘可绕其质心轴 A 自由转动。如杆 OA 水平时系统静止,试问自由释放后圆盘作什么运动?为什么? (5分)

五、计算题(50分)

1、 多跨静定梁, 左端为固定端约束, 机构尺寸如图所示, 受力如图。求 A、B 的约束力。(10分)

2、 平面结构由直杆 AB,直角杆 BC 和 CD 铰接而成,在集中力偶 M 和集中力 F_1 、 F_2 作用下处于平衡。已知 M=Fa, $F_1=F_2=F$,试求支座 A 和 D 的约束反力。(10 分)

3、图示平面机构,AB//CD,且 AB=CD=l,CD 杆以匀角速度ω转动。当φ=60°时,OEG,垂直且 OE=EG=a,GM=a,试求此瞬时:OGM 杆的角速度和角加速度。 (10 分)

4、如图所示平面机构中,曲柄 AB 和圆盘 CD 分别绕定轴 A 和 D 转动。BCE 为三角板,B、C 处为铰链连接。若圆盘以等速 $\omega=\frac{4\pi}{3}$ 顺时针转动,图中长度单位为mm,试求图示位置时 AB 杆的角速度和角加速度。(10 分)

5、A和B两轮的质量均为m,内外径均为r和R,且R=2r,对其质心轴的回转半径均为 ρ ,物块的质量为m,在常力偶 M作用下轮 B沿固定斜面向下只滚动而不滑动,如果不计小定滑轮 O及绕在两轮上的细绳质量,绳的倾斜段与斜面平行,求轮 B的轮心 D的加速度及轮 B与固定面的静滑动摩擦力。(10分)

系主任 _____

出卷人 材料工程系