Lista 02 de ATC

Turma do 3° ano

 $2^{\underline{0}}$ Período de 2023

Definição de um Autômato Finíto Determinístico (AFD)

$$A = (\mathcal{Q}, \Sigma, \delta, q_0, F)$$

- Um conjunto de estados finito, Q
- $\bullet\,$ Um conjunto de símbolos de entrada $\Sigma\,$
- Uma função de transição $\delta: \mathcal{Q} \times \Sigma \to \mathcal{Q}$.
- Um estado inicial q_0
- Um conjunto de estados finais $F \subseteq \mathcal{Q}$

Um AFD a partir de um AFN Para encontrar um AFD $D = (\mathcal{Q}_D, \Sigma, \delta_D, \{q_0\}, F_D)$ a partir de um AFN $N = (\mathcal{Q}_N, \Sigma, \delta_N, \{q_0\}, F_N)$.

- \mathcal{Q}_D é o conjunto de subconjuntos de \mathcal{Q}_N
- F_D é o conjunto de subconjuntos S de Q_N tal que $S \cap F_N \neq \emptyset$
- Para cada conjunto $S \subseteq \mathcal{Q}_N$ e para cada símbolo de entrada em Σ

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$

- 1. Forneça autômatos finitos determinísticos que aceitam as seguintes linguagens no alfabeto $\Sigma = \{0, 1\}$. Pode ser desenhando um diagrama de transições (o grafo) ou desenhando a tabela de transições.
 - (a) Linguagem das strings que terminam em 00
 - (b) Linguagem das strings que têm três 0's consecutivos
 - (c) Linguagem das strings que têm 011 como substring
 - (d) têm 0101 como substring
 - (e) têm 01 e 10 como substring
 - (f) têm um número par de 1's e um número par de 0's
 - (g) têm um número ímpar de 1's e um número par de 0's
 - (h) têm um número ímpar de 1's e um número ímpar de 0's
 - (i) Depois de cada 0 tem um 1
 - (j) strings que terminam em 01:
 - (k) não têm 00 como substring
 - (l) não têm 00 nem 11 como substring
 - (m) é construído concatenando 01's e 010's e nenhum outra string
- 2. Explique informalmente qual linguagem que as seguintes tabelas de transição geram

(a)
$$\begin{array}{c|c|c}
 & \parallel 0 & 1 \\
\hline
 \rightarrow A & A & B \\
 *B & B & A
\end{array}$$

(b)
$$\begin{array}{c|c|c}
 & \parallel 0 & 1 \\
\hline
 & \rightarrow *A & B & A \\
 *B & C & A \\
 & C & B & A
\end{array}$$

- 3. Forneça autômatos finitos não-determinísticos que aceitam as seguintes linguagens no alfabeto $\{a,b\}$. Transforme o autômato em um Autômato Finito Determinístico.
 - (a) Tem 3k + 1 b's, para algum $k \in \mathbb{N}$
 - (b) O terceiro último símbolo é a.
- 4. Converta os seguintes AFN em AFD.

		a	b
	$\rightarrow p$	$\{p,q\}$	{ <i>p</i> }
(a)	q	$ \{r\}$	$\{r\}$
	r	$\{s\}$	Ø
	*8	$\{s\}$	$\{s\}$
		a	b
	$\rightarrow p$	$\begin{array}{ c c } \hline a \\ \hline \{q,s\} \\ \hline \end{array}$	$\frac{b}{\{q\}}$
(b)	$\begin{array}{c} \longrightarrow p \\ *q \end{array}$		
(b)	-	$\{q,s\}$	$\{q\}$