Design of wind energy systems SS 2016

Tutorial 2: Blade Element Momentum Theory

Prof. Dr. Martin Kühn Davide Trabucchi Juan José Trujillo

ForWind – Wind Energy Systems

Outline

- Class exercise
 - Blade design
 - BEM (partial load)
- Home exercise
 - Distributed soon

Assignment

Data

- Consider the turbine defined in the table as an actuator disk
- Consider the disk evenly subdivided in 10 annular rings

Task

- Design a blade following Schmitz and using a NACA 63-215 profile (see C_L in tables of CIP-Tutorial)
- Evaluate the axial induction factor of the designed blade by means of BEM for an inflow speed 10 m/s

Turbine specification

Rotor diameter [m]	100
Number of blade [-]	3
Electrical conversion efficiency [-]	0.95
Design wind speed [m/s]	10
Design tip-speed-ratio [-]	7
Design lift coefficient * [-]	0.65

Air density [kg/m3]

1.225

^{*} Based on max. gliding factor

r = (rout+rin)/2

BEM approximation/extension

During this tutorial the following assumptions are taken in order to implement the blade element momentum method

- No wake rotation
- No drag on blade element
- No tip-loss correction
- Wake separation, turbulent wake state (see next slide)

[Fig.: www.windpower.org]

Wake separation

Turbulent wake state:

high tip-speed-ratio/induction-factor rotor ~ impermeable disk

CThrust increases

Spera (1994) empirical correction

$$a = \frac{1}{2} \left(2 + K(1 - 2a_c) - \sqrt{(K(1 - 2a_c) + 2))^2 + 4(Ka_c^2 - 1)} \right)$$

$$K = \frac{4\sin^2(\alpha)}{\sigma C_{Thrust}}$$

$$a_c \approx 0.2 \; ; \sigma = \frac{Nc}{2\pi r}$$

$$C_T = C_L \cos(\alpha) + C_D \sin(\alpha)$$

BEM Algorithm

- **CD=0**
- if ai+1>acai+1 accordingto Spera

$$K = \frac{4sin^{2}(\alpha)}{\sigma C_{Thrust}}$$

$$a_{c} \approx 0.2$$

$$\sigma = \frac{Nc}{2\pi r}$$

$$a = \frac{1}{2} \left(2 + K(1 - 2a_c) - \sqrt{(K(1 - 2a_c) + 2)^2 + 4(Ka_c^2 - 1)} \right)$$

[from lecture 02, slide 13]

Annex I: BEM algorithms

Initialize a and a' to 0

- $\alpha = \arctan\left(\frac{V_1(1-a)}{\Omega r(1+a')}\right)$ Evaluate the inflow angle α
- 3. Evaluate the angle of attack of the profile αA $\alpha_{A} = \alpha - \alpha_{twist}$
- Interpolate the CL,D- αA curves at the angle of attack αA
- Compute CThrust, Torque $C_{Torque} = C_L \sin \alpha C_D \cos \alpha$ $C_{Thrust} = C_L \cos \alpha + C_D \sin \alpha$
- Evaluate a and a' $a = \left(\frac{4\sin^2\alpha}{\sigma C_{Thyust}} + 1\right)^{-1}$ $a' = \left(\frac{4\sin\alpha\cos\alpha}{\sigma C_{Torque}} 1\right)^{-1}$ $\sigma = \frac{Nc}{2\pi} r$ N: number of the difference between the computed induction factors (a,a') and their initialization values is out of
- tolerance reinitialize a and a' with the newly evaluated values and restart the process from point 2.
- Evaluate the local torque and the power generated $dT = \frac{1}{2}\rho N \frac{V_1^2(1-a)^2}{\sin^2\alpha} c \ C_{Thrust} dr \qquad dQ = \frac{1}{2}\rho N \frac{V_1(1-a)\Omega r(1+a')}{\sin\alpha\cos\alpha} c \ C_{Torque} dr$
- $F_{Tip} = \frac{2}{\pi} \cos^{-1} \left[\exp \left\{ \frac{-N/2(1-r/R)}{(r/R)\sin \alpha} \right\} \right] \qquad a = \left(\frac{4F_{Tip}\sin^2 \alpha}{\sigma C_{Thrust}} + 1 \right)^{-1} \qquad a' = \left(\frac{4F_{Tip}\sin \alpha\cos \alpha}{\sigma C_{Torque}} 1 \right)^{-1}$ Prandtl Correction
- 11. Blade geometry description

Aerodynamic profile (NACA 63-215)

- Use C_L table in Excel-sheet of CIP-Tutorial or use the approximations below to interpolate data for BEM
- C_L,C_D curve extended to α_A
 -180°,180°
- Linear approximation of C_L(α_A)

•
$$\alpha_A \ge -20^\circ$$
, $C_L = -0.98 + 0.056 \alpha_A$

■
$$\alpha_A \ge -10^\circ$$
, $C_L = 0.2 + 0.062 \alpha_A$

•
$$\alpha_{A} \ge 0^{\circ}$$
, $C_{L} = 0.2 + 0.095 \alpha_{A}$

•
$$\alpha_{A} \ge 15^{\circ}$$
, $C_{L} = 1.6$

•
$$\alpha_{A} \ge 22^{\circ}$$
, $C_{L} = 2 - 0.02 \alpha_{A}$

