Hybrid Energy Storage System Optimization Model

Nomenclature

Sets

```
t \in \mathcal{T} Set of time periods, \mathcal{T} = \{1, ..., T\}
i \in \{A, B, C\} Index for Electrical Energy Storage Systems (ESS)
```

Decision Variables — Electrical

```
pBt_{i,t}
               Net basepoint power of ESS i at time t
pBtch_{i,t}
               Charging power of ESS i at time t
pBtdis_{i,t}
               Discharging power of ESS i at time t
zch_{i,t}
               Binary variable: 1 if ESS i is charging at t
zdis_{i,t}
               Binary variable: 1 if ESS i is discharging at t
               State of charge of ESS i at time t
et_{i,t}
et0_i
               Initial state of charge of ESS i
E_t^{Imp}
E_t^{Exp}
E_t^{Exp}
P_t^{Imp}
P_t^{Exp}
P_t^{Grid}
               Energy imported from the grid at time t
               Energy exported to the grid at time t
               Power imported from the grid at time t
               Power exported to the grid at time t
P_t^{Grid}
P_t^{RC}
P_t^{Gen}
P_t^{Load}
P_t^{Cbu}
P_t^{Cebu}
P_t^{EV}
P_t^{Pelletizer}
P_t^{PV}
               Power exchanged with grid at time t
               Power generated from Rankine cycle at time t
               Total power generation at time t
               Total electrical load at time t
               Electrical load of controllable building units at time t
               Electrical load of controllable equipment building units at time t
               EV charging/discharging power at time t
               Power consumption of pelletizer at time t
               Power from photovoltaics at time t
P_t^{\stackrel{\iota}{W}ind}
               Power from wind at time t
CostESS_{i}
               Operation and management cost for the ESS i
```

Parameters — Electrical

 CI_t^{el} CO_2 intensity of imported electricity at time t $EnPrice_t$ Energy price at time tPower capacity limit of ESS i δ_i Static energy loss rate for ESS i η_i^{ch} Charging efficiency of ESS i η_i^{dis} Discharging efficiency of ESS i E_i Energy capacity of ESS i $aEmin_i$ Minimum state of energy ratio for ESS i $aEmax_i$ Maximum state of energy ratio for ESS iTime step duration (typically 1 hour) dtEfficiency of the Rankine cycle for converting heat to electricity $\eta_{\rm Rankine}$

Thermal Energy Storage (TES)

Decision Variables — Thermal

 Qt_t State of thermal energy at time tQt0Initial state of thermal energy qBt_t Net thermal basepoint power at time t $qBtch_t$ Charging power into TES at time t $qBtdis_t$ Discharging power from TES at time t $HeatPrice_t$ Heat price at time t CI_t^{heat} CO_2 intensity of imported thermal energy at time t Binary variable: 1 if TES is charging at time t $zqch_t$ $zqdis_t$ Binary variable: 1 if TES is discharging at time t $q_t^{TES \xrightarrow{\iota} Elec}$ Thermal energy used in Rankine cycle at time tHeat generated by tower solar plant at time t q_t^{CSP} Heat generated by concentrated solar power at time t Q_{t}^{Imp} Imported thermal energy at time t Q_t^{Export} Exported thermal energy at time t $q_t^{Imp} \\ q_t^{Export} \\ q_t^{Export}$ Imported thermal power at time tExported thermal power at time t q_t^{Gen} Total thermal generation at time t q_t^{Grid} q_t^{Demand} Thermal power exchanged with grid at time tTotal thermal demand at time t q_t^{Ctbu} Electricity-driven thermal load of buildings at time t $P_t^{Imp,\max}$ Maximum allowed power import from the electrical grid at time t $P_{t}^{Exp,\max}$ Maximum allowed power export to the electrical grid at time t

Parameters — Thermal

 δ^{th} Static energy loss rate for TES Charging efficiency of TES Discharging efficiency of TES Energy capacity of TES

aQminMinimum state of energy ratio for TES aQmaxMaximum state of energy ratio for TES

 q_{th}^{\max} c^{th} Power capacity of TES

Cost coefficient for TES charging

 $HeatValue_t$ Heat discharging value per unit at time t

 $q_t^{Imp,\max} \ q_t^{Exp,\max}$ Maximum allowed heat import from the thermal grid at time tMaximum allowed heat export to the thermal grid at time t

Parameters — General

Weighting factor between cost and emissions CO2Price Cost of CO_2 emissions per unit

Objective Function

$$\begin{aligned} & \min \quad w \cdot \bigg(\sum_{t \in \mathcal{T}} EnPrice_t \cdot E_t^{Grid} + \sum_{t \in \mathcal{T}} HeatPrice_t \cdot Q_t^{Grid} \\ & \quad + \sum_i \sum_{t \in \mathcal{T}} CostESS_i \cdot (pBtch_{i,t} + pBtdis_{i,t}) \cdot dt \bigg) \\ & \quad + (1-w) \cdot \sum_{t \in \mathcal{T}} CO2Price \cdot \underbrace{ CI_t^{el} \cdot E_t^{Imp} }_{CO_2 \text{ from grid electricity}} + \underbrace{ CI_t^{heat} \cdot Q_t^{Imp} }_{CO_2 \text{ from imported heat}} \bigg) \end{aligned}$$

System-Wide Balance Equations

Electricity Balance

$$P_t^{Gen} + P_t^{Grid} = \sum_i pB_{i,t} + P_t^{Load} \qquad \forall t \in \mathcal{T}$$

$$P_t^{Load} = P_t^{Cbu} + P_t^{Cebu} + P_t^{EV} + P_t^{Pelletizer} \qquad \forall t \in \mathcal{T}$$

$$P_t^{Gen} = P_t^{PV} + P_t^{Wind} + P_t^{RC} \qquad \forall t \in \mathcal{T}$$

Thermal Energy Balance

$$q_t^{Grid} + q_t^{Gen} = qBt_t + q_t^{Demand} \qquad \forall t \in \mathcal{T}$$

$$q_t^{Demand} = q_t^{TES \to Elec} + q_t^{Ctbu} \qquad \forall t \in \mathcal{T}$$

$$q_t^{Gen} = q_t^{TPS} + q_t^{CSP} \qquad \forall t \in \mathcal{T}$$

Thermal to Electrical Balance

$$p_t^{RC} = \eta_{\text{Rankine}} \cdot q_t^{TES \to Elec} \qquad \forall t \in \mathcal{T}$$

Constraints

Basepoint Power Decomposition

$$pBt_{i,t} = pBtch_{i,t} - pBtdis_{i,t}$$
 $\forall i, t$

Charging/Discharging Binary Constraints

$$\begin{aligned} pBtch_{i,t} &\leq zch_{i,t} \cdot P_i & \forall i,t \\ pBtdis_{i,t} &\leq zdis_{i,t} \cdot P_i & \forall i,t \\ zch_{i,t} + zdis_{i,t} &\leq 1 & \forall i,t \end{aligned}$$

State of Charge Dynamics

$$et_{i,1} = (1 - \delta_i) \cdot et_{0i} + \eta_i^{ch} \cdot pBtch_{i,1} \cdot dt - \frac{1}{\eta_i^{dis}} \cdot pBtdis_{i,1} \cdot dt$$

$$et_{i,t} = (1 - \delta_i) \cdot et_{i,t-1} + \eta_i^{ch} \cdot pBtch_{i,t} \cdot dt - \frac{1}{\eta_i^{dis}} \cdot pBtdis_{i,t} \cdot dt \qquad \forall t > 1$$

State of Charge Constraints

$$\begin{aligned} et0_i &= et_{i,T} \\ aEmin_i \cdot E_i &\leq et_{i,t} \leq aEmax_i \cdot E_i \end{aligned} \qquad \forall i,t$$

TES Constraints

Thermal Basepoint Power Definition

$$qBt_t = qBtch_t - qBtdis_t$$
 $\forall t \in \mathcal{T}$

Charging/Discharging Binary Constraints

$$qBtch_{t} \leq zqch_{t} \cdot q_{th}^{\max} \qquad \forall t \in \mathcal{T}$$

$$qBtdis_{t} \leq zqdis_{t} \cdot q_{th}^{\max} \qquad \forall t \in \mathcal{T}$$

$$zqch_{t} + zqdis_{t} \leq 1 \qquad \forall t \in \mathcal{T}$$

State of Thermal Energy Dynamics

$$Qt_{1} = (1 - \delta^{th}) \cdot Qt_{0} + \eta_{th}^{ch} \cdot qBt_{0} + dt_{1} \cdot dt - \frac{1}{\eta_{th}^{dis}} \cdot qBt_{0} + dt_{1} \cdot dt$$

$$Qt_{t} = (1 - \delta^{th}) \cdot Qt_{t-1} + \eta_{th}^{ch} \cdot qBt_{0} + dt_{1} \cdot dt - \frac{1}{\eta_{th}^{dis}} \cdot qBt_{0} + dt_{1} \cdot dt$$

$$\forall t > 1$$

State of Thermal Energy Constraints

$$aQmin \cdot Q \le Qt_t \le aQmax \cdot Q$$
 $\forall t \in \mathcal{T}$

Terminal Condition

$$Qt_T = Qt_1$$

Grid Import/Export Power Constraints — Electrical

$$-P_t^{Grid,\max} \le P_t^{Grid} \le P_t^{Grid,\max} \qquad \forall t \in \mathcal{T}$$

${\bf Grid\ Import/Export\ Power\ Constraints -- Thermal}$

$$-q_t^{Grid,\max} \le q_t^{Grid} \le q_t^{Grid,\max} \qquad \forall t \in \mathcal{T}$$

Appendix: Glossary of Symbols

Symbol	Description	Unit
\overline{t}	Time index	[h]
i	Index for ESS units	[A,B,C]
$pBt_{i,t}$	Net basepoint power of ESS i at time t	[kW]
$pBtch_{i,t}$	Charging power of ESS i at time t	[kW]
$pBtdis_{i,t}$	Discharging power of ESS i at time t	[kW]
$et_{i,t}$	State of charge of ESS i at time t	[kWh]
P_t^{Imp}	Power imported from the grid at time t	[kW]
$Q_t^{Imp} \ \eta_i^{ch}$	Heat imported from the thermal grid at time t	[kWh]
η_i^{ch}	Charging efficiency of ESS i	[-]
δ^{th}	Energy loss rate in TES	[1/h]
w	Weighting factor between cost and emissions	[-]
CO2Price	CO_2 emission cost per unit	$[€/ kg CO_2]$
$HeatPrice_t$	Heat price at time t	[€/kWh]
CI_t^{el}	CO_2 intensity of electricity at time t	$[kg CO_2/kWh]$
CI_t^{heat}	CO_2 intensity of heat at time t	$[kg CO_2/kWh]$