qda_linear_solver 模块文档

i 我们基于 QPanda (C++) 实现了 3 个线性求解器函数

```
// 理想的绝热演化求解器
VectorXcd linear_solver_ideal(MatrixXcd A, VectorXcd b);
// 严格符合赛题诸多要求限制的求解器
VectorXcd linear_solver_contest(MatrixXcd A, VectorXcd b);
// 为精度做了各种优化的求解器
VectorXcd linear_solver_ours(MatrixXcd A, VectorXcd b);
```

ideal

linear_solver_ideal 实现了基于理想哈密顿模拟的绝热演化求解器,其中时间演化算子 e^{-iHt} 直接由数学计算得到,通过 matrix_decompose() 来获取对应的量子逻辑门线路实现。基本程序结构如下:

```
// 绝热演化参数
 1
     const int S = 200; // 总演化阶段步数
 2
                        // 单步哈密顿量模拟时间
    const int T = 10;
 3
    // 制备系统初态 |b>
 4
     qcir << amplitude encode(qv, amplitude);</pre>
 5
     // 制备含时哈密顿量 H s
 6
    H s = (1 - s) * H0 + s * H1
 7
     // 绝热演化
 8
     for (int s = 1; s <= S; s++) {
9
      // 含时哈密顿量近似为不含时
10
      MatrixXcd H = H_s(float(s) / S);
11
      // 时间演化算子的矩阵形式
12
      MatrixXcd iHt = dcomplex(0, -1) * H * T;
13
      MatrixXcd U iHt = iHt.exp();
14
      // 矩阵形式转化为量子逻辑门线路
15
      qcir << matrix_decompose(U_iHt, qv);</pre>
16
17
     // 概率测量读取振幅,解出 |x>
18
     QProg qprog = createEmptyQProg() << qcir;</pre>
19
     qvm.directlyRun(qprog);
20
```

contest

linear_solver_contest 实现了基于近似哈密顿模拟的绝热演化求解器,其中时间演化算子 e^{-iHt} 通过一阶近似为 $e^{-iHt} \approx I - iHt$,通过 BlockEncoding 技术获得其酉矩阵版本,再通过 matrix_decompose() 来获取对应的量子逻辑门线路实现。基本程序结构如下,与 linear_solver_ideal 的主要差别是 12 ~ 16 行的近似。

```
// 绝热演化参数
 1
    const int S = 200; // 总演化阶段步数
 2
    const int T = 1;
                      // 单步哈密顿量模拟时间
 3
    // 制备系统初态 |b>
 4
    qcir << amplitude_encode(qv, amplitude);</pre>
 5
    // 制备含时哈密顿量 H s
 6
    H_s = (1 - s) * H0 + s * H1
 7
    // 绝热演化
 8
    for (int s = 1; s <= S; s++) {
9
      // 含时哈密顿量近似为不含时
10
      MatrixXcd H = H s(float(s) / S);
11
      // 时间演化算子的一阶近似
12
      MatrixXcd iHt = exp iHt approx(H, T);
13
      // 谱范数规范化 & 进行块编码
14
      iHt = normalize QSVT(iHt);
15
      MatrixXcd U iHt = block encoding QSVT(iHt);
16
      // 近似的时间演化算子转化为量子逻辑门线路
17
      qcir << matrix_decompose(U_iHt, qv);</pre>
18
19
    }
    // 概率测量读取振幅,解出 |x>
20
    QProg qprog = createEmptyQProg() << qcir;</pre>
21
    qvm.directlyRun(qprog);
22
```

ours

linear_solver_ours 基于 linear_solver_contest 迭代改造而成,引入了大量 trick 来提升结果的保真度,探索绝热演化线性求解器的能力上限,主要包含下列 trick:

- 更多的演化阶段步数 S, 更长的物理演化时间 T (第 2 ~ 3 行)
- AQC(P) 调度函数 (第 7 行)
- e^{-iHt} 二阶近似 (第 13 行)
- 特征滤波 EF (第 20 ~ 24 行)

```
// 绝热演化参数
 1
                       // 总演化阶段步数
 2
    const int S = 300;
    3
 4
    // 制备系统初态 |b>
    qcir << amplitude_encode(qv, amplitude);</pre>
 5
    // 制备含时哈密顿量 H_s, 使用 AQC(P=2) 调度函数 f(s)
 6
    H_s = (1 - f(s)) * H0 + f(s) * H1
 7
    // 绝热演化
 8
    for (int s = 1; s <= S; s++) {
 9
      // 含时哈密顿量近似为不含时
10
      MatrixXcd H = H_s(float(s) / S);
11
      // 时间演化算子的二阶近似
12
      MatrixXcd iHt = exp_iHt_approx(H, T, 2);
13
      // 谱范数规范化 & 进行块编码
14
      iHt = normalize QSVT(iHt);
15
      MatrixXcd U iHt = block encoding QSVT(iHt);
16
      // 近似的时间演化算子转化为量子逻辑门线路
17
      qcir << matrix decompose(, U iHt, qv);</pre>
18
    }
19
    // 制作特征滤波矩阵 & 进行块编码
20
    MatrixXcd EF = EF R l(H1);
21
    MatrixXcd U_EF = block_encoding_QSVT(EF);
22
    // 特征滤波矩阵转化为量子逻辑门线路
23
    qcir << matrix_decompose(U_EF, qv);</pre>
24
25
    // 概率测量读取振幅,解出 |x>
    QProg qprog = createEmptyQProg() << qcir;</pre>
26
27
    qvm.directlyRun(qprog);
```

附录

基准单元测试运行结果参考 (T=1000):

case-study experiment

对比实验

在 playground/qda_linear_solver.py 和 playground/vis_eigen_filter_ls.py 中我们也实现了 Randomization Method, vanillan AQC, AQC(P), AQC(EXP) 和 Eigen Filter 作为对比参考。

解示例方程组:

$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

implementation	solution	fidelity	comment
LS_ideal	[-0.722392, -0.691484]	0.999761	S=200, T=S*10
LS_contest	[-0.777313, 0.629114]	0.104793	S=200, T=S*1
LS_contest	[-0.882665, -0.470002]	0.95648	S=200, T=S*2
LS_contest	[-0.692988, -0.720949]	0.999805	S=200, T=S*4
LS_contest	[-0.683247, -0.730187]	0.999449	S=200, T=S*10
LS_contest	[-0.6704, -0.742]	0.998718	S=300, T=S*4
LS_ours	[-0.630297, -0.776354]	0.994653	S=200, T=S*2
LS_ours	[-0.709877, -0.704326]	0.999992	S=200, T=S*4
LS_ours	[-0.706603, -0.70761]	0.999999	S=400, T=S*2
vanilla AQC	[-0.6143, -0.7846]	0.989147	S=200, T=19799
AQC(p=1.001)	[-0.6839, -0.7295]	0.999437	S=200, T=1027
AQC(p=1.5)	[-0.7174, -0.6965]	0.999745	S=200, T=1027
AQC(p=2)	[-0.7002, -0.7139]	0.999960	S=200, T=1027
AQC(exp)	[-0.655, -0.7467]	0.991093	S=200, T=12959
QDA	[0.621482, 0.783429]	0.993422	S=500
RM (algo 1)	[0.5049, 0.4860, 0.4967, 0.5120]	0.997524	S=310
RM (algo 2)	[0.5090, 0.5133, 0.4881, 0.4885]	0.999385	S=310

i Note that target solution is [0.7071, 0.7071] for all AQC-based methods (up to a global phase), while [0.5, 0.5, 0.5] for RM-based ones

对比实验: AQC 神话

implementation	solution	fidelity	comment
AQC(p=1.001)	[-0.6850, -0.7284]	0.999436	S=310, T=1027

implementation	solution	fidelity	comment
AQC(p=1.25)	[-0.7221, -0.6917]	0.999707	S=310, T=1027
AQC(p=1.5)	[-0.7162, -0.6976]	0.999745	S=310, T=1027
AQC(p=1.75)	[-0.7028, -0.7112]	0.999878	S=310, T=1027
AQC(p=2)	[-0.7007, -0.7135]	0.999959	S=310, T=1027
AQC(v-func)	[-0.7030, -0.7111]	0.999923	S=310, T=1027

消融实验

TODO: C++ 反复编译实在太烦人,再说吧......

i QSVT 与 ideal 精度持平,即使使用了 approx(-iHt) 近似;ARCSIN 比 QSVT 差在逐渐积累的浮点误差

 \bigcirc f(s) = linear

fidelity	solution	run config
0.116225	[-0.784498, 0.620131]	ideal; S=200, T=1
0.999883	[-0.696206, -0.717842]	ideal; S=200, T=10
0.999964	[-0.701095, -0.713068]	ideal; S=300, T=10
0.116241	[-0.784508, 0.620118]	QSVT; S=200, T=1
0.999527	[-0.685027 -0.728517]	QSVT; S=200, T=10
1.000000	[-0.707475, -0.706739]	QSVT; S=300, T=10
0.999998	[-0.708495, -0.705716]	QSVT; S=2000, T=1
0.640244	[0.9959, -0.090459]	ARCSIN; S=200, T=1
0.873111	[0.962113, 0.272652]	ARCSIN; S=200, T=1, norm(Imbd*iHt)
0.321988	[0.897129, -0.441769]	ARCSIN; S=2000, T=1

 \bigcirc f(s) = poly(2)

fidelity	solution	run config
0.856842	[-0.970448, -0.241309]	QSVT; S=200, T=1
0.999872	[-0.718318, -0.695715]	QSVT; S=200, T=10
0.999988	[-0.71061, -0.703587]	QSVT; S=300, T=10
1.000000	[-0.70689, -0.707324]	QSVT; S=2000, T=1
0.828373	[0.981853, 0.189643]	ARCSIN; S=200, T=1
0.489276	[0.962659 -0.270718]	ARCSIN; S=200, T=1, norm(iHt)
0.983201	[0.824295, 0.56616]	ARCSIN; S=200, T=1, norm(Imbd*iHt)
0.998871	[0.672715, 0.739901]	ARCSIN; S=2000, T=1
0.917811	[0.929724, 0.368257]	ARCSIN; S=2000, T=1, norm(Imbd*iHt)

by Armit 2024/5/30