Decomposition Algorithms

- It is always possible to find a dependency-preserving, lossless-join decomposition of a relation such that all relations in the decomposition are in 3NF.
- It is always possible to find a lossless-join decomposition of a relation into BCNF relations.
- It is **not** always possible to find a dependency-preserving, lossless-join decomposition of a relation into BCNF relations.

Algorithm for finding a dependency-preserving, lossless-join decomposition into 3NF relations:

- 1. Group together all FDs that have the same left-hand side (e.g. if we have the FDs $X \rightarrow Y1, X \rightarrow Y2, X \rightarrow Y3$, we group them together as $X \rightarrow Y1Y2Y3$)
- 2. For each FD $X \rightarrow Y$ in step 1, form the relation (XY) in the decomposition.
- 3. If any X'Y' is a subset of any XY, then remove the relation (X'Y') from the decomposition.
- 4. If none of the relations obtained after step 3 contains a candidate key of the original relation, form a relation for K in the decomposition, where K is one of the candidate keys for the original relation.

Example:

Given the relation R(A, B, C, D, E) and the FDs F= $\{A \rightarrow B, A \rightarrow C, C \rightarrow A, BD \rightarrow E\}$, find a decomposition of R into 3NF relations that is lossless-join and dependency-preserving.

Solution:

Step 1: $F' = \{A \rightarrow BC, C \rightarrow A, BD \rightarrow E\}$

Step 2: R1(A, B, C); R2(A, C); R3(B, D, E)

Step 3: We remove R2, as it is a subset of R1 -> R1(A, B, C); R3(B, D, E)

Step 4: R has two candidate keys: AD and CD, none of them is contained in R1 or R3, so we form R4(A, D)

The final decomposition is: R1(A, B, C); R3(B, D, E); R4(A, D)

Algorithm for finding a lossless-join decomposition into BCNF relations:

- 1. Group together all FDs that have the same left-hand side (e.g. if we have the FDs $X \rightarrow Y1, X \rightarrow Y2, X \rightarrow Y3$, we group them together as $X \rightarrow Y1Y2Y3$)
- 2. Compute F^+ : The set of all functional dependencies that can be inferred from F
- 3. while there are relations R_i , which are not in BCNF:

Let $X \rightarrow Y$ be a non-trivial FD in F^+ that holds on R_i such that $X \rightarrow R_i$ is not in F^+ Decompose R_i into two relations R_i -Y and XY

Example:

Given R(A, B, C, D, E, G, H) and $F=\{B\rightarrow E, B\rightarrow H, E\rightarrow A, E\rightarrow D, AH\rightarrow C\}$, find a lossless-join decomposition of R into BCNF relations.

Solution:

 $F: \{AH \rightarrow C, E \rightarrow AD, B \rightarrow EH\}$

The only candidate key for R is BG, hence R is not in BCNF as all FDs fail the check for BCNF.

For AH \rightarrow C, AH \rightarrow ABCDEGH is not in F⁺, therefore we break R into R1(A, H, C) and R2(A, B, D, E, G, H)

R1 is in BCNF, but R2 is not (the only candidate key for R2 is BG and $E \rightarrow AD$ violates BCNF). For $E \rightarrow AD$, $E \rightarrow ABDEGH$ is not in F+, therefore we break R2 into R3(E, A, D) and R4(B, E, H, G).

R4 is not in BCNF (the only candidate key for R4 is BG and B \rightarrow EH violates BCNF). For B \rightarrow EH, B \rightarrow BEGH is not in F+, therefore we break R4 into R5(B, E, H) and R6(B, G).

The final decomposition is: R1(A, H, C); R3(E, A, D); R5(B, E, H); R6(B, G).