

SECTION 2 TECHNICAL PART

2.1 Immunological screening

MODE OPÉRATOIRE

Codification: M-AN-08

Version: J

Date :27/02/2006

1/5

ANALYSES IMMUNOLOGIQUES SUR L'AXSYM

Objet

Description du mode opératoire pour la recherche par immunofluorescence des hormones peptidiques LH et β-

Il concerne toute personne impliquée dans les analyses de dépistage rapide et de vérification.

CONFIDENTIEL

SPECIMEN

Documents cités

M-E-04 ; M-V-13 ; M-TE-05 ; I-TE-03 ; I-CONF-06 ; I-LEC-06 ; I-LEC-06B ; E-Remis-06 ; E-Remisconf-01 ; I-M-11

Au cours de l'analyse, renseigner l'enregistrement de suivi des aliquotes : E-TE-02C pour une analyse de screening, E-TE-03G pour une analyse de vérification.

APPLICABLE le

0 2 MARS 2006

Contenu du mode opératoire

Toute personne utilisant l'AXSYM doit faire figurer à l'écran son code opérateur :

- Sélectionner "F6 Niveau d'accès"

- Saisir son code opérateur.
- Sélectionner "Accepter"

ASSURANCE QUALITÉ LNDD

Les dosages immunologiques de dépistage rapide sont effectués sur les aliquotes échantillons issus de la mise en tube I-TE-03.

Les dosages immunologiques de vérification sont effectués sur les aliquotes mis en tube selon I-CONF-06.

Préalablement à toute analyse, s'assurer que la calibration et le contrôle journaliers de l'appareil ont été effectués et validés selon les modes opératoires M-E-04 et M-V-13.

Les aliquotes du dépistage rapide ne sont sortis de la chambre froide à 4°C que lorsque l'automate est prêt. Si l'analyse ne peut être effectuée dans un délai de 5 jours suivant la mise en tube, les aliquotes sont bouchés et placés à -20°C; il seront décongelés selon le mode opératoire M-TE-05. Ces étapes de congélation / décongélation sont consignées dans l'enregistrement de suivi des aliquotes E-TE-02C.

La vérification n'est commencée que lorsque l'automate est prêt.

MODE OPÉRATOIRE

Codification: M-AN-08

Version: J

Date: 27/02/2006

2/5

ANALYSES IMMUNOLOGIQUES SUR L'AXSYM

Lancement des dosages

Les échantillons à analyser ont été préalablement homogénéisés au vortex, et sont centrifugés 10 minutes à 1370 g (température ambiante) avant de procéder à l'analyse.

Dosages à effectuer

Pour le blanc urinaire et les prélèvements issus de sujets de sexe masculin ou dont on ignore le sexe, les dosages à effectuer sont LH et β hCG; ces analyses sont sélectionnées par le panel M-An08.

Séquence à respecter (dépistage rapide)

- Blanc urinaire
- Echantillons
- Contrôle LH de fin de séquence de l'appareil
- Contrôle β hCG de fin de séquence de l'appareil

SPECIMEN CONFIDENTIEL

- Sélectionner "Liste des demandes"
- Sélectionner "F6 Patient"
- Saisir l'identité "IDE" et un "commentaire" pour le blanc urinaire, puis sélectionner le panel M-An08.

"IDE" = BIU

"Commentaire" = jjmm-n-BIU-j'j'm'm'-n'

avec:

ijmm = date d'analyse

n = numéro de séquence de la date d'analyse considérée

j'j'm'm' = date de mise en tube

n' = numéro de mise en tube de la journée considérée

(Ex: "Commentaire" = 0603-1-BIU-0503-2

Blanc urinaire aliquoté lors de la deuxième mise en tube du 5 mars et analysé lors de la première séquence du 6 mars)

<u>Notes</u>

S'il s'agit dune vérification, ajouter "vérif" à la suite du commentaire. De même s'il s'agit d'une contre-expertise, ajouter "CE" à la suite du commentaire.

Sélectionner "F6 Ajouter"

Saisir l'identité "IDE" de l'échantillon, puis sélectionner le panel M-An08.

"IDE" = Numéro de laboratoire + Numéro de l'échantillon

(Ex: 123/12 123456)

Notes

MODE OPÉRATOIRE

Codification: M-AN-08

Version: J

Date: 27/02/2006

3/5

ANALYSES IMMUNOLOGIQUES SUR L'AXSYM

S'il s'agit d'un échantillon "Remis", l'indiquer par "R" devant le numéro échantillon (Ex : R 123/12 123456) S'il s'agit d'une vérification, renseigner la partie "commentaire" : numéro de laboratoire + numéro échantillon + vérif + lettre différenciant chacun des aliquotes (a, b, c, d) De même si'il s'agit d'une contre-expertise, renseigner la partie "commentaire" : numéro de laboratoire + numéro échantillon + CE + lettre différenciant chacun des aliquotes (a, b, c, d)

Sélectionner "F6 Ajouter"

Répéter les étapes 5 et 6 pour chaque échantillon.

Saisir l'identité "IDE" et un "commentaire" pour le contrôle LH de fin de séquence de l'appareil, puis sélectionner le panel CQ-LH.

"IDE" = CQ LH

"Commentaire" = jjmm-n-CQ LH

SPECIMEN

avec:

jjmm = date d'analyse

n = numéro de séquence de la date d'analyse considérée

(Ex: "Commentaire" = 0603-1-CQ LH

Contrôle LH de fin de séquence de l'appareil pour la première séquence du 6 mars)

S'il s'agit dune vérification, ajouter "vérif" à la suite du commentaire. De même s'il s'agit d'une contre-expertise, ajouter "CE" à la suite du commentaire CONFIDENTIEL

Sélectionner "F6 Ajouter"

10 Saisir l'identité "IDE" et un "commentaire" pour le contrôle β hCG de fin de séquence de l'appareil, puis sélectionner le panel CQ-HCG.

"IDE" = CQ HCG

"Commentaire" = jjmm-n-CQ hCG

avec:

jimm = date d'analyse

n = numéro de séquence de la date d'analyse considérée

(Ex: "Commentaire" = 0603-1-CQ hCG

Contrôle β hCG de fin de séquence de l'appareil pour la première séquence du 6 mars)

Notes

S'il s'agit dune vérification, ajouter "vérif" à la suite du commentaire. De même s'il s'agit d'une contre-expertise, ajouter "CE" à la suite du commentaire.

11 Sélectionner "F6 Ajouter"

12 Sélectionner "F1 Sortir" pour revenir à l'écran "liste des demandes"

13 Imprimer la liste des demandes et l'archiver à la date du jour dans le classeur C-MA-Axsym Echantillons.

- Sortir les portoirs désignés par l'appareil du carrousel échantillons. Distribuer dans les cuves échantillons, placées sur les portoirs selon la liste des demandes :

MODE OPÉRATOIRE

Codification: M-AN-08

Version: J

Date: 27/02/2006

4/5

ANALYSES IMMUNOLOGIQUES SUR L'AXSYM

- Pour le blanc urinaire et les échantillons : 300 µL minimum de chaque urine, à la micro-pipette ou avec les liquipettes, en évitant de remettre en suspension le culot de centrifugation.

- Pour les contrôles de fin de séquence de l'appareil : après homogénéisation et élimination de la première goutte, 6 gouttes du niveau "moyen" du contrôle LH (réf interne : AXR05-AB) et 6 gouttes du niveau "bas" du contrôle β hCG (réf interne : AXR06-AB).

Ex: « B04 : 123/12 123456 » = Cuve échantillon n°4 ; portoir B, échantillon 123456 de numéro de laboratoire 123/12

Replacer le portoir sur son carrousel.

- S'assurer que l'appareil dispose de suffisamment de cartouches de réaction pour effectuer les analyses demandées. Sinon, en ajouter.
- Lancer l'analyse au moyen de la touche verte "Lancer"

SPECIMEN

- Placer les tubes contenant le reste d'urine et les contrôles à +4°C.

Lorsque les analyses demandées sont terminées, l'AXSYM imprime automatiquement un rapport de résultats pour chaque échantillon ; ceux-ci sont dépouillés selon les instructions de lecture I-LEC-06 (dépistage rapide) ou I-LEC-06B (vérification).

Lorsque l'automate refuse de rendre un résultat :

- Imprimer l'exception, puis l'effacer de façon à ce que le résultat de l'autre dosage soit imprimé.
- "Remettre" l'échantillon concerné : renseigner l'enregistrement "E-Remis-06" ou "E-Remisconf-01"
- Lors de la nouvelle analyse de cet échantillon, celui-ci est dilué 2 fois :
 - Analyse LH: dilution avec le calibrateur A (0 UI/L) AXR11-AB.
 - Analyse β hCG : dilution $% \left(1\right) =\left(1\right) +\left(1\right$

Si un résultat est obtenu, ne pas oublier de le multiplier par 2. Si l'analyse est de nouveau impossible, imprimer l'exception.

A l'issue des analyses :

- Jeter les godets échantillons dans un container jaune.

- Effectuer les maintenances nécessaires selon l'instruction I-M-11.

CONFIDENTIEL

MODE OPÉRATOIRE

Codification: M-AN-08

Version: J

Date :27/02/2006 5 / 5

ANALYSES IMMUNOLOGIQUES SUR L'AXSYM

Action	Personne concernée	Date	Signature
rédigé par	Nathalie CREPIN	15/02/2006	and_
vérifié par	Francoise LASNE	17/02/2006	NU
vérifié par	Aurélie LAURENT	27/02/2006	TITLE
approuvé par	Jacques DE CEAURRIZ	27/02/2006	1000

EVO	JL	TIO	NS

N° Version	Motif	Date
H	- Modification du paragraphe concernant les analyses non rendues par	07/01/2005
	l'automate.	
I	- Préciser que le lancement de l'analyse se fait dans la foulée de la	03/02/2006
	centri.	
. •	- Lors d'une vérif, préciser "verif" devant le numéro d'échantillon	
J	Il existe un mode op de décongélation des aliquos, mais il n'étati écrit	27/02/2006
	nulle part à quel moment il était nécessaire de les congeler.	

SPECIMEN

CONFIDENTIEL

ENREGISTREMENT

Codification: E-TE-02C

Version: H

Date: 10/12/2004

1/1

DEPISTAGE RAPIDE IMMUNOLOGIE : FICHE DE SUIVI DES ALIQUOTES

More opératoire M	-An-08	Version	7			
Lot calibrateurs LH 36	613 210	2	Lot calibrateurs β-	hcg 36 44	67 QJ00	
	612210		Lot contrôles β-hC	og 35 3	30 2,100	
Lot réactifs LH 40	622 6.10	0	Lot réactifs β-hCC	39.	246 gra	
Series 177 07	118/01					
Remis						
Keins						
Mise en tube : date et n°	21.01.06	. ①	Code blanc urinaire	104_1-6	3lu-2101	.1
_						
opération	≱ Date:	Heure	identification	n dumatenelli	tillse	Paraphe
Congélation éventuelle		h h	Congel. o	cH	-FR.	
Décongélation		, h .		<u>; ;</u>		
Prise en charge de la mise en tube	210706	10 ° 0	.s	Sans objet		IR
Vortex et centrifugation	20106	10 HO	Centri. 8			IR
Lancement de l'analyse, stockage des tubes à 4°C	210406	10 h20	Refrig. (3 o	u CH	FR.	IR
Destruction des tubes	20406	12 n 00	8	Sans objet		IR
			. •			
Remarques						

L'original de cet enregistrement est à conserver dans le classeur C-Fiches suivi-lmm, une copie est fournie avec le dossier de la série.

LABORATOIRE NATIONAL DE DEPISTAGE DU DOPAGE 143 avenue ROGER SALENGRO 92290 CHATENAY MALABRY IDENTIFICATION APPAREIL: AXSYM

RAPPORT ECHANTILLON

.IDE: 178/07 995474

IDP: Nom: Date: 21/07/06

DOGACE	RESULTATS UNITES	INTERPRETATION	DILUTION	LIMITES
DOSAGE			UNDILUTED	0.00 - 12.00
BhCG 21/07/06	1.45 IU/L 10:59			
LH 21/07/06	1.09 IU/L 11:09		UNDILUTED	0.00 - 40.00

Date :210,106 Opérateur :41 Résultats: Dans les normes ☐ A vérifier

SECTION 2 TECHNICAL PART

2.2 Natural hormone screening

ENREGISTREMENT (LISTE)

Codification: L-SCREENING

Date: 31/03/2006

1/1

SPECIMEN

LISTE DES ESSAIS DE DEPISTAGE RAPIDE

ASSURANCE QUALITÉ
LNDD

ODE de l'Essai	MATRICE analysée	ABREGE de la famille recherchée		MODE OPERATOIRE DE PREPARATION	MODE OPERATOIRE D'ANALYSE
S02	Urine		Recherche par CG/SM de molécules basiques extractibles par SPE échangeuse de cations-Méthode de semi-quantification de la Morphine	M-EX-02	M-AN-04
2000	Urine	EPH	Recherche et semi-quantification des éphédrines	M-EX-02	M-AN-02C
ES02C ES03	Urine	CD	Recherche par CLHP/UV/SM de diurétiques et corticostéroïdes	M-EX-03G	M-AN-32
ES03B	Urine	LCH	Recherche par CLHP/SM multiétage d'anabolisants	M-EX-03D	M-AN-31
ES03C	Urine	LCHQ	Recherche par CLHP/SM d'anabolisants	M-EX-03D	M-AN-31B
ES04	Urine	ANABO (ou H)	Recherche CG/SM de molécules à effet anabolisant et autres molécules extractibles par SPE apolaire avec semi-quantification des stéroïdes endogènes et des molécules à seuil de positivité	M-EX-04	M-AN-06B
ES05	Urine	ANABO (ou MS2)	Recherche CG/SM/SM de molécules à effe anabolisant		M-AN-07E
ES06	Urine	IMM (ou Immunologie	Dosage par immunofluorescence des hormone peptidiques LH et β-hCG	M-AN-08	M-AN-08
ES07	Urine	EPO	Analyse par focalisation et doublimmunoblotting d'isoformes des erythropoiétines	M-EX-25	
ES08	Urine	HES ou HEA	Recherche de l'hydroxyéthylamidon par CG/SM	M-EX-22	
ES08E		PS	Recherche de polysaccharides par colorimétrie	M-EX-50	M-AN-5

ESS01	Sang	Recherche d' Hemoglobin-Based Oxygen Carriers par éléctrophorèse	WITH THE
ESS02	Sang	Recherche des transfusions sanguines homologues par cytométrie en flux	-MIET

N.B: Les codes des essais sont inscrits en gras lorsqu'ils sont dans la portée d'accréditation valide

STATE OF THE PROPERTY OF THE PARTY OF THE PA

	Motif	Date diffusion
Date de création 02/2006	 Le mode opératoire de préparation dans l'ESO3 a changé ce n'est plus le M-EX-03B mais le M-EX-03G Cf. E-INFO n°56. Dans l'ESSO1 le mode opératoire d'analyse n'est plus le M-AN-53. Ajout de l'ES08B. Ajout de l'ES02B. Suppression de l'essai ES10 (Mésocarb par GC/MS) 	16/03/2006
03/2006	Madification de l'ESO2R en ESO2C	17/03/2006
J	Modification du Mode Opératoire d'analyse de l'ESO4 (M-AN-06B au lieu de M-AN-06).	31/03/2006

MODE OPÉRATOIRE

Codification: M-EX-04

Version: D Date:03/11/2005

1/3

METHODE DE PREPARATION DES ALIQUOTES - DEPISTAGE RAPIDE ANABO

Documents utilisés: M-P-03B, I-N-25, I-M-01, I-TRAC-01.

Remplir l'enregistrement E-TE-02J

SPECIMEN

OPÉRATIONS

MATÉRIEL

RÉACTIFS ET PRODUITS

Prise d'essai = 2 mL

Tubes 16x100

Pipette 1-5 mL, cônes de 5 mL

Ajouter 100 µL de SIm02

Pipette Eppendorf à déplacement positif

Combitips

Solution de 17amethyltestostérone + Androstérone D4-glucuronide +

salbu D3 (CH-FR.1)

Agiter au vortex

Vortex

Ajuster à pH = 7 en agitant au vortex

Papier pH 0-14

Vortex

Flacons compte gouttes K2CO3,

CH3COOH

Ajouter 1mL de tampon pH=6.5

Dispensette

Solution tampon pH 6.5

(CH-FR.1)

Agiter au vortex

Vortex

Ajouter une goutte de β-glu

Flacon compte goutte

β-glu: β-glucuronidase (CH-FR.1)

Agiter au vortex Boucher les tubes Vortex **Bouchons** CONFIDENTIEL

Hydrolyser 1h à 55°C

Etuve

ASSURANCE QUALITÉ LNDD

Laisser refroidir à température ambiante

Ajouter 100 µL de tampon pH=11

Pipette Eppendorf à déplacement positif

Combitips

Solution tampon pH 11

Agiter au vortex

Vortex

Ajuster à pH = 9 en agitant au vortex

Papier pH 7-14 Vortex

Flacons compte gouttes K2CO3, СН3СООН

Centrifuger 5 min

Centrifugueuse à 4000 tr/min

APPLICABLE le

Tubes à hémolyse 12,5x100

0 3 NOV. 2005

Transvaser le surnageant

Gilson ASPEC XL4 Cartouches Bond Elut C18, 200mg/3mL

Bouchons d'étanchéité

Tubes à hémolyse 12,5x75

Extraire par SPE selon la méthode ANABO Cf I-N-25 et I-M-01

MODE OPÉRATOIRE

Codification: M-EX-04

Version: D

Date:03/11/2005

2/3

METHODE DE PREPARATION DES ALIQUOTES - DEPISTAGE RAPIDE ANABO

SI L'APPAREIL N'EST PAS PRET: BOUCHER ET STOCKER LES TUBES A +4°C

(temps de conservation max : 3 jours)

Bouchons pour tubes à hémolyse 12,5x75

CH-FR-1

Evaporer jusqu'à séchage complet (de 20 à 30 min)

Bain à sec à 60 °C + Soufflettes

Azote

Sous la hotte et à température ambiante Ajouter 50 µL de réactif H et boucher les tubes

Seringue

Solution de réactif H (CH-FR.1)

Bouchons pour tubes à hémolyse 12,5x75 Cf M-P-03B

Agiter au vortex

Dériver 20 min à 60°C

Vortex

Bain à sec Tubes fermés

Conditionner en vials préalablement identifiés selon I-TRAC-01 En prélevant d'abord $\sim 21~\mu L$ pour la MS2 puis ~ 20 µL pour les H

Vial polypropylène à insert 200 μL Capsule à sertir

SI L'APPAREIL N'EST PAS PRET: CONSERVER LES VIALS A TEMPERATURE AMBIANTE (temps de conservation max: 24 h)

wy.

SPECIMEN

CONFIDENTIEL

D

l'échantillon.

avec l'azote qu'avec l'air).

MODE OPÉRATOIRE

Syrin 2. Pasjonie gingang - Dag

Codification: M-EX-04

Version: **D**Date:03/11/2005
3/3

,

METHODE DE PREPARATION DES ALIQUOTES - DEPISTAGE RAPIDE ANABO

		Statement Mariante Commission of the control of the	The same of the sa		
rédigé par	Marjorie CARIOU	02/11/2005	algariet.		
vérifié par	Nathalie MECHIN	02/11/2005	phing		
vérifié par	Aurélie LAURENT	03/11/2005	A CONTRACTOR OF THE PARTY OF TH		
approuvé par	Jacques DE CEAURRIZ	03/11/2005	1000		
			7 80 1		
	D.V(0)1	HEADKODDE:			
Nº Version	M	Date			
В	rassemblement de M-EX-04, M-EX-04F, G et H, ne plus mettre dans le titre le critère "hydrolyse" .Ajouter ce critère ainsi que celui du réactif utilisé dans le contenu du doc.				
С	- Ajout d'une étape pour la préparation des échantillons lorsqu'ils doivent être repréparés pour Salbutamol>500ng/ml - Précision sur l'homogénéisation de l'échantillon (vortex) (E-INFO du 17/03/04) - Ajout de l'étape de remplissage de la fiche de préparation E-TE-02J (action 7, audit 26) - L'évaporation des phases organiques se fait maintenant sous azote (E-INFO du 10/05/04) - Mode opératoire concernant uniquement les échantillons et non plus le recal et mix (création de M-EXMIX-04).				

SPECIMEN

Réajustement du temps de séchage : 20 à 30 min (séchage plus rapide

Précision d'une étape : vortexer les tubes après ajout du réactif H.

Note d'information N°38: si salbutamol >500ng/mL, ne plus remettre 03/11/2005

CONFIDENTIEL

MODE OPÉRATOIRE

Codification: M-EXMIX-04

Version: B

Date:03/11/2005

1/2

METHODE DE PREPARATION DU RECAL ET DU MIX - DEPISTAGE RAPIDE ANABO

Documents utilisés: I-N-25, I-M-01, M-P-03B, I-TRAC-01.

Remplir l'enregistrement E-PMIX-04

MATÉRIEL

CONFIDENTIFI

RÉACTIFS ET PRODUITS

OPÉRATIONS

RECAL H	MIX MS2
Prise d'essai = 3 mL de tampon pH 6,5	Prise d'essai = 2 mL de blanc urinaire + 1 mL de tampon pH 6,5

Ajouter 50 μL de	Ajouter 50 μL de Mix	
Recal H	MS2	

Ajouter	100	μL de
TH	C-M	1

Agiter	ลแ	vortex	
Agitui		, 01,00	

Ajouter	100	μL	de	SIm02	

Agiter au vortex

Ajouter 100 μL de tampon pH=11

Agiter au vortex

Ajuster à pH = 9 en agitant au vortex

Centrifuger 5 min

Transvaser le surnageant

Extraire par SPE selon la méthode ANABO Cf I-N-25 et I-M-01

Evaporer jusqu'à séchage complet (de 20 à 30 min)

Sous la hotte et à température ambiante Ajouter 50 µL de réactif H et boucher les tubes

Agiter au vortex

Dériver 20 min à 60°C

Conditionner en vials préalablement identifiés selon I-TRAC-01

Pipette 1-5 mL Cônes SPECIMEN

Seringues de 50 µL

Seringues de 50 µL

Vortex

Pipette Eppendorf à déplacement positif et combitips

Vortex

Pipette Eppendorf à déplacement positif et combitips

Vortex

Papier pH7-14 Vortex

Centrifugueuse à 4000 tr/min

Tubes à hémolyse 12,5x100

Gilson ASPEC XL4, cartouches Bond Elut C18, 200mg/3mL, bouchons d'étanchéité, tubes à hémolyse 12,5x75

Bain à sec à 60 °C + Soufflettes

Seringue Bouchons pour tubes 12,5x75

Vortex

Bain à sec Tubes fermés

Vial polypropylène à insert 200 μL Capsule à sertir

Pipette, cônes 200 µL

Blanc urinaire < 5 jours (CH-FR.1) Solution tampon pH 6,5 (CH-FR.1)

Solution de Recal H (CH-FR.1) Solution de mix MS2 (CH-FR.1)

Solution de THC-M: STUP 32 (CH-FR.1)

Solution de 17a méthyltestostérone + Androstérone D4-glucuronide + salbu D3 (CH-FR.1)

Solution tampon pH 11

Flacons compte gouttes K2CO3, CH3COOH

URANCE QUALITÉ LNDD

Solution de réactif H Cf M-P-03B (CH-FR.1)

APPLICABLE le

Azote

0 3 NOV. 2005

MODE OPÉRATOIRE

Codification: M-EXMIX-04

Version: B

Date :03/11/2005 2/2

METHODE DE PREPARATION DU RECAL ET DU MIX - DEPISTAGE RAPIDE ANABO

	Pasaning which fits	This	Salutaines .
rédigé par	Marjorie CARIOU	02/11/2005	or Cariot.
vérifié par	Nathalie MECHIN	02/11/2005	Checkin
vérifié par	Aurélie LAURENT	03/11/2005	
approuvé par	Jacques DE CEAURRIZ	03/11/2005	
approuve pur			//()

	Motif	Date
Nº Version		03/12/2004
В	Création du document. Réajustement du temps de séchage : 20 à 30 min (séchage à l'azote plus rapide qu'avec de l'air). Précision d'une étape : vortexer les échantillons après avoir ajouté le réactif H.	1

SPECIMEN

CONFIDENTIEL

ENREGISTREMENT

Codification: E-INFO

Version: C

Date: 09/07/2004

1/1

COMPLEMENT TRANSITOIRE D'UN DOCUMENT QUALITE

Cet enregistrement n'est à utiliser que si la modification est URGENTE et majeure et/ou conséquente et/ou applicable à plusieurs documents

Référence(s) du(des document(s) qualité concerné(s): M_EXMIX_O4

Durée d'application de la modification:

- ☐ TEMPORAIRE, date de début d'application:..... date de fin d'application:
- DEFINITIVE (modification à apporter dans la prochaine version du(des)doc.concerné(s))

date de début d'application: 19/15

Modification apportée:

Lors de la préparation du Mix MS2, apouter: . 50 pl de Mix MS2 (comme undiquer dans le made operatione) + 10 pl de MIX bis

SPECIMEN

CONFIDENTIEL

PRSUBANCE QUALITÉ **PR**SUBANCE QUALITÉ

ASSURANCE QUALITÉ LNDD

VISA DU RESPONSABLE TECHNIQUE:

Identification par un NUMERO..4.O.
et validation de cet enregistrement par l'Assurance Qualité (tampon)

L'original de cet enregistrement est à archiver vivant au Département Assurance Qualité

ENREGISTREMENT

Codification: E-TE-02J

Version: B

Date: 18/07/2006

1/1

DEPISTAGE RAPIDE ANABO - FICHE DE SUIVI DES ALIQUOTES

Mode opératoire d'extraction : M-EX-04 Version: D	
Date et n° de la mise en tube: 211071000 Code du CQ H: 0280	
CO*, densité et pH du BLU**: 45 d: 1005 Code du CQ MS2:	
n° Séries ou Echantillons: R 159107 994077; 2160107 994183 - 994181;	

Opération Date		Date Heure de début ré		Identification du matériel utilisé	CO*+ paraphe	
Stockage à + 4°C					E 0	
Ajout du SIm02	216764	Sh.W		Code du SIm02 : 31+	35	
Mise à pH 7	21102104	9R45		Code du tampon pH 6.5: TOGO 6-11 DLU*** de la figlu: 16 18 108	35.	
Hydrolyse	21676	9850	Johns	Etuve nº: S	€035	
Mise à pH 9	216764	12/25		Code du tampon pH 11:	35	
Extraction	216766	MR30	13R30	Gilson n°:	35	
Stockage à +4°C					 E D	
Evaporation	21676	13830	Juhas	Bain à sec n°: 1 DLU *** du réactif H: 0108	35	
Dérivation	2110915	Juh23	Juku3		35 40	
Mise en vial	216766	- JURU	5	te Limite d'Utilisation	35	

^{*} CO : Code Opérateur - ** BLU : Blanc Urinaire - ***DLU : Date Limite d'Utilisation

L'original de cet enregistrement est à archiver dans le classeur C- Fiche de suivi ANABO et une photocopie est à mettre dans le dossier de

ENREGISTREMENT

Codification: E-PMIX-04

Version: C

Date: 18/07/2006

1/1

DEPISTAGE RAPIDE ANABO - FICHE DE SUIVI DU MIX ET RECAL

Mode opératoire de préparation : M-EXMIX-04	Version: B
Préparation n°: CO*, densit	ié, pH du BLU**: 45 d: 1,005 pH: 7
Code du RECAL H: 028	Code du THC-M: 574932-019-10
Code du MIX MS2: 0 6 B Kup Bis	Code du tampon pH 6,5 : O 6 0 6 0 6 - 1 1

Opération	Date	ate Heure de Heure de début récupération		Identification du matériel utilisé	CO*+ paraphe	
Ajout du SIm 02	206166	ARD		Code du SIm 02: 03/1	€D 35	
	2010-106	AR15		Code du tampon pH 11 :	£0 ₃₅	
Extraction	20107106	17R30	\$ 3000 \$1000 \$1000	Gilson n°:	€0 35	
Evaporation	216766	9ROS	9830	Bain à sec n°: 18	ED 35	
Dérivation	2164106	9R 31	9R5-1	DLU *** du réactif H: 02686 Bain à sec n°: 1	€D 35	
Mise en vial	24107106	9R51			35	

* CO: Code Opérateur

** BLU : Blanc Urinaire

*** DLU : Date Limite d'Utilisation

L'original de cet enregistrement est à archiver dans le classeur C-PMIX.

C:\MSDCHEM\1\METHODS\MAN06B_B.M

ontrol Information -----

Sample Inlet : GC Injection Source : GC/ALS Injection Location : ALS Use MS : Yes

6890 GC METHOD ______

Maximum temp: 325 'C. Equilibration time: 0.50 min

Initial temp: 170 'C (On) Initial time: 0.00 min

Ramps: # Rate Final temp Final time 1 3.00 230 0.00 2 30.00 300 4.67

3 0.0(Off) Post temp: 0 'C Post time: 0.00 min Run time: 27.00 min

BACK INLET (UNKNOWN) RONT INLET (SPLIT/SPLITLESS)

Mode: Split

Initial temp: 280 'C (On) Pressure: 170.0 kPa (On) Split ratio: 10:1

Split flow: 13.2 mL/min Total flow: 17.8 mL/min

Gas saver: Off Gas type: Helium

LUMN 1 Capillary Column Model Number: Agilent 19091Z-008

Max temperature: 325 'C Nominal length: 17.0 m Nominal diameter: 200.00 um

Nominal film thickness: 0.11 um Mode: constant pressure Pressure: 170.0 kPa

Nominal initial flow: 1.3 mL/min Average velocity: 59 cm/sec

Inlet: Front Inlet

Outlet: MSD

Outlet pressure: vacuum

MONT DETECTOR (NO DET)

GNAL 1 Data rate: 20 Hz

Type: test plot Save Data: Off Zero: 0.0 (Off)

Range: 0 Fast Peaks: Off Attenuation: 0

DLUMN COMP 1 (No Detectors Installed)

IERMAL AUX 2 Use: MSD Transfer Line Heater BACK DETECTOR (NO DET)

SIGNAL 2

COLUMN 2

(not installed)

Data rate: 20 Hz Type: test plot Save Data: Off Zero: 0.0 (Off) Range: 0

Fast Peaks: Off Attenuation: 0

COLUMN COMP 2 (No Detectors Installed)

USADA 0045

```
Initial temp: 300 'C (On)
  Initial time: 0.00 min
    # Rate Final temp Final time
     1 0.0(Off)
                                    POST RUN
                                       Post Time: 0.00 min
TABLE
                                        Parameter & Setpoint
           Specifier
 Time
                            GC Injector
   Front Injector:
                                  0
       Sample Washes
                                  3
       Sample Pumps
      Injection Volume 2.00 microliters
      Syringe Size
      PreInj Solvent A Washes
     PreInj Solvent B Washes
      PostInj Solvent A Washes
      PostInj Solvent B Washes
                                  0 seconds
      Viscosity Delay
                                Fast
      Plunger Speed
      PreInjection Dwell
                               0.00 minutes
       PostInjection Dwell
                               0.00 minutes
   Back Injector:
) parameters specified
Column 1 Inventory Number : hp
  Column 2 Inventory Number:
                             MS ACQUISITION PARAMETERS
 eneral Information
-----
                       : atune.u
ine File
                       : Scan/SIM
 equistion Mode
: Information
  . -----
                        : 3.00 min
  lvent Delay
                        : False
 . 4 Absolute
                        : 200
 1 Offset
                        : 1964.7
Pasulting EM Voltage
Raw Scan Parameters]
                        : 50.0
  ow Mass
                        : 800.0
 igh Mass
                        : 150
  nreshold
                         : 1
                                A/D Samples
  ample #
  "Sim Parameters]
 ∴ROUP 1
                         : 1
  oup ID
                       : Low
  solution
                        ( Mass, Dwell) ( Mass, Dwell) ( Mass, Dwell) ( 71.00, 10) (86.00, 10) (100.10, 10)
                        : 86.00
 ot 1 Ion
                                                                  10)
  ns/Dwell In Group
                                                  10) (266.20,
10) (333.30.
                                                                     10)
                         (294.20, 10) (295.20, (348.30, 10) (356.30
                                    10) (223.20,
                                                                     10)
                                                                    10)
                                                     10) (369.30,
                                                             USADA 0046
```

Description:

, - , ;; t

```
10) (377.30,
                                                                                                                                                                                       10)
                                                                                                10) (372.30,
                                                                 (371.30,
                                                                                                                                                                                       10)
                                                                                                                                           10) (440.40,
                                                                                                 10) (426.40,
                                                                 (392.30,
                                                                 (441.40,
                                                                                                 10)
    ROUP 2
                                                               : 2
    roup ID
                                                          : Low
esolution
                                                              : 4.00
   roup Start Time
                                                                : 86.00
                                                              ( Mass, Dwell) ( Mass, Dwell) ( Mass, Dwell)
     lot 1 Ion
                                                                (86.00, 10) (178.10, 10) (266.20, (300.30, 10) (333.30, 10) (335.30, (348.30, 10) (369.30, 10) (371.30, (372.30, 10) (440.40, 10) (441.40,
    ons/Dwell In Group
                                                                                                                                                                                      10)
    ROUP 3
                                                                : 3
  oup ID
                                                                  : Low
    solution
                                                                 : 5.00
 oup Start Time
                                                                  : 86.00
                                                               ( Mass, Dwell) ( Mass, Dwell) ( Mass, Dwell)

      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Mass, Dwell)
      ( Dwell)
      <td
      ons/Dwell In Group
 `. <sub>'</sub>.
  ROUP 4
                                                                   : 4
     coup ID
                                                                    : Low
  esolution
                                                                   : 10.00
 Ooup Start Time
                                                                    : 86.00
                                                                    ( Mass, Dwell) ( Mass, Dwell) ( Mass, Dwell)
                                                                    (86.00, 10) (143.10, 10) (194.10, (235.20, 10) (272.20, 10) (358.30, (362.30, 10) (405.40, 10) (417.40, (420.40, 10) (422.40, 10) (432.40, (436.40, 10) (448.40, 10) (491.40, (505.50, 10) (520.50, 10)
     ns/Dwell In Group
                                                                                                                                                                                             10)
      1.50
                                                                                                                                                                                             10)
   ROUP 5
                                                                  : 5
      esolution
                                                                 : Low
: 11.50
       coup Start Time
                                                                   : 169.10
                                                                    ( Mass, Dwell) ( Mass, Dwell) ( Mass, Dwell)
                                                                    ( mass, Dwell) ( mass, Dwell) ( Mass, (169.10, 10) (225.20, 10) (241.20, (275.20, 10) (315.30, 10) (329.30, (341.30, 10) (405.40, 10) (417.40, (419.40, 10) (420.40, 10) (422.40, (431.40, 10) (432.40, 10) (433.40, (434.40, 10) (438.40, 10) (446.40, (448.40, 10)
   ons/Dwell In Group
                                                                                                                                                                                       10)
                                                                                                                                                                                              10)
                                                                                                                                                                                             10)
     1.33
                                                                                                                                                                                             10)
       . . .
                                                                                                                                                                                            10)
        100
        44
                                                                                                                                                                                             10)
    i_{i,A}
                                                                                                       10)
                                                                       (448.40,
        <u>.</u>..
   OUP 6
                                                                   : 6
       oup ID
      solution
                                                                    : Low
                                                                   : 13.00
       coup Start Time
                                                                   : 91.00
    ot 1 Ion
                                                                      ( Mass, Dwell) ( Mass, Dwell) ( Mass, Dwell)
                                                                      ( Mass, Dwell) ( Mass, Dwell) ( Mass, ( 91.00, 10) (144.10, 10) (169.10, (194.10, 10) (209.20, 10) (220.20, (225.20, 10) (241.20, 10) (270.20, (275.20, 10) (310.30, 10) (315.30, (326.30, 10) (329.30, 10) (341.30, (343.30, 10) (345.30, 10) (353.30, (393.30, 10) (395.30, 10) (405.40, 10) (417.40, 10) (419.40, 10) (431.40, IISAD
         ons/Dwell In Group
                                                                                                                                                                                              10)
                                                                                                                                                                                                  10)
                                                                                                                                                                                                  10)
       15.
                                                                                                                                                                         USADA 0047
```

```
10) (433.40,
                         (432.40,
                                                                         10)
                                                       10) (446.40,
                                      10) (443.40,
                         (435.40,
                                                                         10)
                                                       10) (485.40,
                                      10) (482.40,
                         (448.40,
 COUP 7
                         : 7
oup ID
                         : Low
solution
                         : 14.00
oup Start Time
                         : 130.10
                                   Dwell) ( Mass, Dwell) ( Mass, Dwell)
bt 1 Ion
ons/Dwell In Group
                         ( Mass,
                                                                          10)
                                                        10) (194.10,
                                      10) (130.10,
                          (129.10,
                                                                          10)
                                                        10) (209.20,
                                       10) (208.20,
                          (206.20,
                                                                          10)
5
                                                        10) (234.20,
                                       10) (221.20,
                          (220.20,
                                                                          10)
f_{1,2} \approx
                                                        10) (307.30,
                                       10) (275.20,
                          (270.20,
                                                                          10)
                                                        10) (339.30,
                                       10) (326.30,
                          (322.30,
                                                                          10)
                                                        10) (345.30,
                                       10) (343.30,
                          (341.30,
                                                                          10)
                                                         10) (368.30,
                                       10) (360.30,
                          (353.30,
                                                                          10)
                                                         10) (415.40,
                                       10) (413.40,
                          (412.40,
                                                         10) (430.40,
                                                                          10)
                                       10) (428.40,
                          (417.40,
                                                         10) (433.40,
                                                                           10)
                                       10) (432.40,
                          (431.40,
                                                                           10)
                                                         10) (437.70,
                                        10) (435.40,
                          (434.40,
                                                                           10)
                                                         10) (446.40,
                                        10) (444.40,
                          (443.40,
                                                                           10)
                                                         10) (485.40,
                                        10) (452.40,
                          (448.40,
SOUP 8
                          : 8
  Toup ID
                          : Low
solution
                          : 15.00
 oup Start Time
                           : 130.10
                           ( Mass, Dwell) ( Mass, Dwell) ( Mass,
                                                                       Dwell)
 tot 1 Ion
ons/Dwell In Group
                                                                           10)
                                                       10) (143.10,
                                    10) (130.10,
                           (129.10,
                                                                            10)
                                                        10) (206.20,
                                        10) (195.10,
                           (157.10,
                                                                            10)
                                                        10) (270.20,
                                       10) (234.20,
                           (208.20,
                                                        10) (331.30,
                                                                            10)
                                        10) (301.30,
                           (284.20,
                                                                            10)
                                                         10) (415.40,
                                        10) (360.30,
                           (343.30,
                                                                            10)
                                                        10) (430.40,
                                        10) (421.40,
                           (417.40,
                                                          10) (437.40,
                                                                            10)
                                        10) (432.40,
                           (431.40,
                                                          10) (449.40,
                                                                            10)
                                        10) (448.40,
                           (446.40,
                                     10) (452.40,
                                                          10) (466.40,
                                                                            10)
                           (451.40,
                                                          10)
                                        10) (522.50,
                           (468.40,
  ROUP 9
                           : 9
 oup ID
                           : Low
  solution
                           : 16.50
 Froup Start Time
                           : 246.20
                            ( Mass, Dwell) ( Mass, Dwell) ( Mass,
                                                                          Dwell)
  ot 1 Ion
                                        10) (301.30, 10) (355.30,
  ans/Dwell In Group
                            (246.20,
                                                                             10)
                                                           10) (424.40,
                                         10) (393.30,
                            (371.30,
                                                                             10)
                                                           10) (441.40,
                                         10) (439.40, 10) (441.40, 10) (446.40, 10) (473.40, 10) (488.40, 10)
                            (431.40,
                                                                             10)
                            (445.40,
                                                                             10)
                            (460.40,
                                                           10)
                                          10) (522.50,
                            (507.20,
  12.1
   ROUP 10
                            : 10
 coup ID
                            : Low
  coup Start Time
                            : 17.40
                                       Dwell) ( Mass, Dwell) ( Mass, Dwell)
                             : 117.10
 lot 1 Ion
                            ( Mass,
    ons/Dwell In Group
                                                           10) (267.20,
                                                                              10)
                                          10) (205.20,
                             (117.10,
                                                                              10)
                                                            10) (301.30,
                                          10) (282.20,
                             (279.20,
                                                                              10)
  lag
                                                            10) (371.30,
                                          10) (355.30,
                             (319.30,
                                                                              10)
                                                            10) (445.40,
   * 1
                                          10) (441.40,
                             (413.40,
                                                                              10)
                                                            10) (473.40,
   \frac{1}{2} \leq
                                          10) (460.40,
                             (456.40,
                                                                              10)
                                                            10) (501.50,
                                          10) (489.40,
                             (488.40,
                                                                              10)
                                                           10) (516.50,
                                          10) (504.50,
  1 14
                             (503.50,
                                          10)
                             (518.50,
   1 ROUP 11
                            : 11
    coup ID
                             : Low
    esolution
```

10) (434.40,

TOI

```
: 18.50
roup Start Time
                         : 143.10
                                   Dwell) ( Mass, Dwell) ( Mass,
lot 1 Ion
                                                                      Dwell)
                         ( Mass,
ons/Dwell In Group
                                                       10) (143.10,
                                      10) (72.00,
                         (58.00,
                                                                         10)
                                                       10) (319.30,
                                      10) (307.30,
                         (294.20,
                                                       10) (393.30,
                                                                         10)
                                      10) (387.30,
                         (335.30,
                                                                         10)
                                                       10) (429.40,
                                      10) (405.40,
                          (402.40,
                                                       10) (433.40,
                                                                         10)
                                      10) (431.40,
                          (430.40,
                                                                         10)
                                                       10) (462.40,
                                      10) (454.40,
                          (445.40,
                                                                         10)
                                                       10) (503.50,
                                      10) (470.40,
                          (469.40,
                                                        10) (517.50,
                                                                         10)
                                      10) (507.50,
                          (505.50,
                                                                         10)
                                      10) (520.50,
                                                       10) (522.50,
                          (518.50,
                                                       10) (627.60,
                                                                         10)
                                      10) (552.50,
                          (532.50,
 ROUP 12
                         : 12
...oup ID
                          : Low
solution
                          : 20.00
 oup Start Time
                          : 143.10
lot 1 Ion
                                   Dwell) ( Mass, Dwell) ( Mass,
                                                                      Dwell)
                          ( Mass,
'ons/Dwell In Group
                                                        10) (143.10,
                                       10) (72.00,
                          (58.00,
A_{i}=
                                                        10) (308.30,
                                                                          10)
                                       10) (301.30,
                          (294.20,
                                                        10) (349.30,
 1
                                       10) (343.30,
                          (322.30,
                                                                          10)
                                                        10) (387.30,
                                       10) (383.30,
                          (370.30,
                                                                          10)
                                                        10) (403.40,
                                       10) (402.40,
                          (393.30,
                                                                          10)
                                                        10) (460.40,
                                       10) (422.40,
                          (405.40,
                                                                          10)
                                                        10) (489.40,
                                       10) (484.40,
                          (462.40,
                                                                          10)
1.
                                                         10) (517.50,
                                       10) (512.50,
                          (507.50,
                                                                          10)
                                                         10) (532.50,
                                       10) (522.50,
                          (519.50,
                                                      10) (543.50,
                                                                          10)
                                       10) (536.50,
10) (552.50,
                           (534.50,
                                                         10) (558.50,
                           (545.50,
 COUP 13
                          : 13
oup ID
solution
                          : Low
                          : 21.00
 coup Start Time
                          : 58.00
                                    Dwell) ( Mass, Dwell) ( Mass,
                                                                        Dwell)
                          ( Mass,
 Cons/Dwell In Group
                                                     10) (143.10,
                                                                           10)
                                        10) ( 72.00,
                           (58.00,
                                                                           10)
                                                         10) (308.30,
                                        10) (301.30,
                           (243.20,
                                                         10) (334.30,
                                                                           10)
                                        10) (322.30,
                           (315.30,
                                                         10) (370.30,
                                                                           10)
                                        10) (349.30,
                           (335.30,
                                                         10) (424.40,
                                                                           10)
                                        10) (403.40,
                           (383.30,
                                                         10) (460.40,
                                                                           10)
                                        10) (440.40,
                           (425.40,
                                                          10) (489.40,
                                                                           10)
                                        10) (484.40,
                           (462.40,
                                                                           10)
                                                          10) (536.50,
                                        10) (534.50,
                           (519.50,
                                                                           10)
                                                          10) (548.50,
                                        10) (545.50,
                           (543.50,
                                                          10) (558.50,
                                                                           10)
                                        10) (552.50,
                           (550.50,
 ROUP 14
                         . 14
  oup ID
                           : Low
 solution
                           : 21.50
  coup Start Time
                           : 58.00
  tot 1 Ion
                                     Dwell) ( Mass, Dwell) ( Mass,
                                                                         Dwell)
                           ( Mass,
  ns/Dwell In Group
                                                       10) (86.00,
                                                                            10)
                                        10) (72.00,
                            (58.00,
                                                                            10)
                                                          10) (243.20,
                                         10) (143.10,
                            (100.10,
                                                          10) (334.30,
                                                                            10)
                                         10) (315.30,
                            (308.30,
                                                                            10)
                                                          10) (425.40,
                                         10) (424.40,
                            (335.30,
                                                          10) (489.40,
                                                                            10)
                                         10) (460.40,
                            (440.40,
                                                                            10)
                                                          10) (550.50,
                                         10) (548.50,
                            (493.40,
                                         10)
                            (636.60,
   ROUP 15
                            : 15
  coup ID
                            : Low
  solution
                            : 22.30
  ...oup Start Time
                            : 254.20
   Lot 1 Ion
                                      Dwell) ( Mass, Dwell) ( Mass,
                                                                         Dwell)
                           ( Mass,
  ens/Dwell In Group
                                                                             10)
                                                        10) (254.20,
                                      10) (100.10,
                            (86.00,
  1:00
                                                                             10)
                                                           10) (369.30,
                                         10) (368.30,
                            (262.20,
  10) (468.40,
                                                                             10)
                                         10) (450.40,
                            (396.30,
                                                                        USADA 0049
  13.3
```

L

(493.40, (527.50, (560.50, (632.60,	10) (506.50, 10) (545.50, 10) (572.50, 10) (636.60,	10) (524.50, 10) 10) (554.50, 10) 10) (616.60, 10)
: 150 C : 230 C	maximum 200 C maximum 250 C	

END OF MS ACQUISITION PARAMETERS

TUNE PARAMETERS for SN: US10340332

EMISSION :
ENERGY :
CREPELLER :
CONFOCUS : 34.610 69.922 34.814 90.157 9.500 ENTRANCE_LE : 1764.706 1829.000 AMUGAIN :
MUOFFSET :
TIAMENT :
DCPOLARITY : 136.000 2.000 0.000 17.318 ENTLENSOFFS : -179.000 MASSGAIN : MASSOFFSET : -12.000

::SZones]

S Quad S Source

END OF TUNE PARAMETERS

END OF INSTRUMENT CONTROL PARAMETERS

C:\MSD18\JUILLET06\2107\21blu01.D

Data File Path C:\MSD18\JUILLET06\2107\
Data File Name 21blu01.D
Operator m37p35
Acq. Method File MAN06B_B.M
Sample Name 2107 blu 2107 H1

Misc Info Vial Number 3

Instrument Name GC MSD

Calibration Title Calibration des stéroides endogènes

Last Calibration Update Fri Jul 21 13:26:58 2006

Fichier recal utilise 21rcl03.D

Date:92.1.0 Opérateur:8	7106	
C[]	HC[]	7,
Résultats :	Négatif A vérifier	[]
Remarques :	E	
		'

			Cimpal	Name	Target Response	Amount	Units
#	Peak Type	Ret Time	Signal	Methyltestosterone	1,788,970	200	ng/ml
- 1)	*ISTD	17.00	301.3	Andro -D4 gluc	453,060	798	ng/ml
2)		12.14	438.4		1,030,764	194	ng/ml
3)		4.13	372.3	Salbutamol -D3	3,875,172	710	ng/ml
4)		12.20	434.4	Androsterone	2,128,068	381	ng/ml
5)		12.42	434.4	Etiocholanolone	2,120,000	0	ng/ml
6)		0.00	241.2	5a3a diol	•	23	ng/ml
7)		12.77	241.2	5b3a diol	67,799	0	ng/ml
8)		0.00	117.1	Pregnanediol	0	0	ng/ml
9)		0.00	434.4	DHT	0		_
10)		13.65	432.4	DHEA	50,289	10	ng/ml
		14.22	432.4	Epitestosterone	115,169	9	ng/ml
11)		15.10	432.4	Testosterone	118,839	8	ng/ml
12)		0.00	371.3	THC -M	0	0	ng/ml
13)		0.00	369.3	Salbutamol	- O	-45	ng/ml
14)		15.83	522.5	11 bOH Etiocholanolone	223,951	43	ng/ml
15)			548.5	THS	181,600	14	ng/ml
16)		21.29	636.6	THF	4,385,482	355	ng/ml
17)		22.04		Cortisol	0	0 ·	ng/ml
18)		0.00	632.6	11 Ketoetiocholanonlone	205,105	49	ng/ml
19)		14.58	343.3	3a-5C	1,445		ng/ml
20)		10.15	432.4	38-30	.,		-

	[Surface]	[concentration]	Valeurs convention de rejet	nnelles
 	25.0	,		< 19.1
Ad4 glu / Si *100	25.3		Rapport	> 4
T / ET	1.0	8.5	Concentration	> 200
Testosterone			Concentration	> 200
Epitestosterone		9.2	Concentration	> 10000
Androsterone		710	Concentration	> 10000
Etiocholanolone		381	1	> 200
DHEA		10	Concentration	> 20
 DHT		0	Concentration	
Andro / Etio			Rapport	> 3
5a3a / 5b3a diol			Rapport	> 2
		0.0	Concentration	> 15
THC -M	•	-45.0	Concentration	> 75
 Salb/Salb D3 * 100		0.0		, ,
Cortisol / THS	1	25.8		
THF / THS	1		Pour info (R&D)
11 bOH etio / THS		3.1	Four fine (Nas	<u>'</u>
THE		355		
SI/3a50	1237.8			

C:\MSD18\JUILLET06\2107\21blu01.D\da File: Operator: m37p35 Date Acquired: 21 Jul 06 3:36 pm Instrument: GC MSD MAN06B_B.M Method File: 2107 blu 2107 H1 Sample Name: Misc Info: Vial Number Methyltestosterone Andro -D4 gluc Abundanceion 438.40 (438.10 to Abundanceion 301.30 (301.00 to TIC: 21blu01.D\datasim.ms 12/138 40000 8000 300000 30000 6000 20000 200000 4000 10000 100000 2000 17.00 Time--> 16.00 12.00 Time--> 11.50 25.00 15.00 20.00 10.00 5.00 Andro-Etio di TMS Andro-Etio mono TMS Cortisol D4 Salbutamol -D3 Abundancelon 372.30 (372.00 Abundancelon 636.60 (636.30 Abundancelon 434.40 (434.10 Abundancelon 272.20 (271.90 4.130 800 80000 40000 600 400 12.423 60000 30000 400 40000 20000 200 200 20000 10000 11.30 12.87 Time--> 10.00 Time--> 12.00 Time--> 22.50 23.37 4.50 4.00 :a3a-5b3a Diol pi 5b < trait : IRMS Epitestostérone - Testostérone THC -M bundancelon 241.20 (240.90 Abundancelon 432.40 (432.10 to 433.10): 21blu01.D\datasim.ms Abundancelon 371.30 (371.00 12.767 200 14.218 1500 2000 150 1000 100 1000 50 500 13.17 Time--> 14.00 14.20 14.40 14.60 14.80 15.00 15.20 15.40 Time--> 17.00 17.86 fime--> 12.30 11 BOH A/E THS THF Cortisol bundancelon 632.60 (632.30 Abundancelon 636.60 (636.30 Abundancelon 548.50 (548.20 Abundancelon 522.50 (522.20 8000 22,016 300000 30000 6000 4000 200000 20000 4000 2000 10000 100000 2000 15.833 o h 16.17 21.86 Time--> 15.30 22.37 Time-> 21.00 Time--> 21.50 ime--> 22.50 23.37 Page 1/16

Page 2/16

C:\MSD18\juillet06\2107\21h08.D

Data File Path c:\msp18\juillet06\2107\
Data File Name 21h08.D
Operator m37p35
Acq. Method File MAN06B_B.M
Sample Name 178/07 995474 H
Misc Info

Vial Number 11

Instrument Name GC MSD

Calibration Title Calibration des stéroides endogènes

Last Calibration Update Fri Jul 21 13:26:58 2006

Fichier recal utilise 21rcl03.D

#	Peak Type	Ret Time	Signal	Name	Target Response	Amount	Units
1)	*ISTD	17.09	301.3	Methyltestosterone	1,209,250	200	ng/ml
2)	10.0	12.27	438.4	Andro -D4 gluc	62,604	163	ng/ml
3)		4.22	372.3	Salbutamol -D3	814,633	226	ng/ml
4)		12.30	434.4	Androsterone	846,467	230	ng/ml
5)		12.52	434.4	Etiocholanolone	813,037	215	ng/ml
6)		12.70	241.2	5a3a diol	197,002	96	ng/ml
7)		12.88	241.2	5b3a diol	439,619	224	ng/ml
8)		17.85	117.1	Pregnanediol	10,142,344	1316	ng/ml
9)		0.00	434.4	DHT	0	0	ng/ml
10)		0.00	432.4	DHEA	0	0	ng/ml
11)		14.30	432.4	Epitestosterone	116,467	14	ng/mi
12)		15.20	432.4	Testosterone	575,745	61	ng/ml
13)		0.00	371.3	THC -M	0	0	ng/ml
14)		0.00	369.3	Salbutamol	0	-45	ng/ml
15)		0.00	522.5	11 bOH Etiocholanolone	0	0	ng/ml
16)		0.00	548.5	THS	0	0	ng/ml
17)		0.00	636.6	THF	0	0	ng/ml
18)		0.00	632.6	Cortisol	0	0	ng/ml
19)		14.68	343.3	11 Ketoetiocholanonlone	183,640	65	ng/ml
20)		10.25	432.4	3a-5C	23,035		ng/ml

	[Surface]	[concentration]	Valeurs conventionnelles de rejet	
Ad4 glu / Si *100	5.2			< 19.1
T/ET	4.9		Rapport	> 4
Testosterone		60.6	Concentration	> 200
Epitestosterone	1, 1	13.7	Concentration	> 200
Androsterone		230	Concentration	> 10000
Etiocholanolone		215	Concentration	> 10000
DHEA	1 I	0	Concentration	> 200
DHT		0	Concentration	> 20
Andro / Etio	1.0		Rapport	> 3
5a3a / 5b3a diol	1 1		Rapport	> 2
THC -M		0.0	Concentration	> 15
Salb/Salb D3 * 100	1 1	-45.0	Concentration	> 75
Cortisol / THS		#DIV/0!		
THF / THS		#DIV/0!		
11 bOH etio / THS	1 1	#DIV/0!	Pour info (R&D)	
THF		0		
SI/3a5c	l 1			

