# **Examples** *Tiny***FEM**



Version: 1.0.0

Authors: Elias Perras, Marius Mellmann

# **Heat Equation**

## Example 1

• Walls: k = 1 W/mK

• Round filling: k = 0.5 W/mK

• Outside: T = 0 °C h = 25 W/m<sup>2</sup>K

• Inside: T = 25°C h = 5 W/m<sup>2</sup>K





Metal rod through insulation

• Outside: T = 0 °C h = 25 W/m<sup>2</sup>K

• Inside: T = 20°C h = 4 W/m<sup>2</sup>K





• Some wall structure with embedded double pane window and different materials





Insulated outer wall





• Heatsink



• Effect of convex and concave corners on efficiency of insulation





# **Helmholtz Equation**

## **Example 1: Hallway**

• Sound propagation in hallway (medium air)







#### **Example 2: Phononic Crystal**

- A phononic crystal is a material or structure designed to control the propagation of sound waves in a way that allows certain frequencies of sound to be blocked or allowed to pass through.
- https://en.wikipedia.org/wiki/Acoustic\_metamaterial



delta SPL B-1 - B-3



#### Blocked frequency:



#### Bandgap frequency:



## Blocked frequency:



## **Example 3: Sound propagation through different materials**

Varying values for speed of sound and density for regions





**Example 4: Sound barrier** 





