

www.vishay.com

Vishay Siliconix

P-Channel 60 V (D-S) 175 °C MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The sub-circuit model is extracted and optimized over the -55 °C to +125 °C temperature ranges under the pulsed 0 V to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Sub-circuit model)
- Level 3 MOS
- · Apply for both Linear and Switching Application
- Accurate over the -55 °C to +125 °C Temperature Range
- · Model the Gate Charge

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model SQP100P06-9m3L

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	2	2	V
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -30 \text{ A}$	0.0072	0.0072	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -20 \text{ A}$	0.0103	0.0102	
Forward Transconductance a	9 _{fs}	$V_{DS} = -15 \text{ V}, I_D = -30 \text{ A}$	81	82	S
Diode Forward Voltage	V_{SD}	I _S = -80 A	-0.96	-0.95	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = -25 V, V _{GS} = 0 V, f = 1 MHz	9500	9605	pF
Output Capacitance	C _{oss}		1030	1030	
Reverse Transfer Capacitance	C _{rss}		748	750	
Total Gate Charge	Qg	V _{DS} = -30 V, V _{GS} = - 10 V, I _D = -100 A	193	189	nC
Gate-Source Charge	Q _{gs}		30	30	
Gate-Drain Charge	Q _{gd}		54	54	

Notes

- a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25~^{\circ}\text{C}$, unless otherwise noted)

Note

· Dots and squares represent measured data. Copyright: Vishay Intertechnology, Inc.