Mathematical Statistics Assignment 3

BY YUEJIAN MO

May 13, 2018

Q3.1 Let $X_1, ..., X_n \stackrel{\text{iid}}{\sim} U[\theta_1, \theta_2]$. Find the MLEs of θ_1 and θ_2 .

Sovle: The joint desity of $\boldsymbol{x} = (X_1, ..., X_n)^T$ is

$$f(\boldsymbol{x}; \theta_1, \theta_2) = \begin{cases} \frac{1}{(\theta_2 - \theta_1)^n} & \text{, if } \theta_1 \leqslant x_i \leqslant \theta_2, i = 1, ..., n, \\ 0 & \text{, elsewhere.} \end{cases}$$

Then the likehood function is

$$L(\theta_1,\theta_2) = \prod_{i=1}^n \ f(x_i;\theta_1,\theta_2) = \left\{ \begin{array}{ll} \prod_{i=1}^n \frac{1}{(\theta_2-\theta_1)} = \frac{1}{(\theta_2-\theta_1)^n} &, \theta_1 \leqslant x_{(1)} \text{ and } \theta_2 \geqslant x_{(n)} \\ 0 &, \text{elsewhere.} \end{array} \right.$$

Because $\theta_2 - \theta_1 \geqslant x_{(n)} - x_{(1)}$, and $L(\theta_1, \theta_2)$ is a monotone and decreasing function of $\theta_2 - \theta_1$ when $\theta_2 - \theta_1 \in [x_{(n)} - x_{(1)}, \infty)$. Thus $\hat{\boldsymbol{\theta}} = \widehat{(\theta_2 - \theta_1)} = x_{(n)} - x_{(1)}$ is the MLE of θ_1 and θ_2 .

Q3.17. Suppose that X follows a geometeric distribution,

$$Pr(X = k) = p(1 - p)^{k-1}, k = 1, 2, ...$$

where $0 \le p \le 1$, and assume an i.i.d. sample fo size n.

- a) Find the moment of estimator of p
- b) Find the MLE of p.
- c) Let p have a uniform prior distribution on [0, 1]. What is the posterior distribution of p? What is the posterior mean?

Q3.18.