## DMA 2021

## - Ugeopgave 3 -

- Hele ugeopgaven skal besvares.
- Ugeopgaven skal afleveres onsdag den 29. september klokken 21:59 på Absalon.
- Ugeopgaven skal laves i **grupper** af 2-3 personer.
- Ved bedømmelsen lægges vægt på, at det overalt fremgår klart hvilke formler, regneregler og sætninger fra det udleverede notesæt der benyttes ved argumentation.
- Del 1 Lad X være et array, der indeholder n heltal. Lad algoritmen DETECTREPEAT(X, n) være givet ved:

```
function DetectRepeat(X, n)

val \leftarrow \text{FALSE}

for i \leftarrow 0 to n-1 do

target \leftarrow X[i]

for j \leftarrow i+1 to n-1 do

if X[j] = target then

val \leftarrow \text{TRUE}

return val
```

Lad  $T_n$  betegne køretiden, d.v.s. det antal simple operationer som DETECTREPEAT(X,n) foretager. Udregn først  $T_n$ . Udregn dernæst  $k \in \mathbb{Z}^+$  sådan, at  $T_n = \Theta(n^k)$ . Husk at angive mellemregninger samt at begrunde dine konklusioner!

Frivilligt: Find en asymptotisk hurtigere algoritme, der kan detektere gentagne elementer i X. Kan du finde en endnu hurtigere algoritme, hvis du ved, at alle heltal i X er skarpt mindre end n?

Del 2 Vi betragter tre følger givet ved henholdsvis

$$a_0 = 2, a_1 = 200, a_n = a_{n-2} \text{ for } n \ge 2$$
  
 $b_0 = 1, b_n = 3b_{n-1} \text{ for } n \ge 1$   
 $c_0 = 1, c_n = c_{n-1} + 2^n \text{ for } n \ge 1$ 

- (a) For hver af de 3 rekursive følger  $(a_n)$ ,  $(b_n)$  og  $(c_n)$ , find et eksplicit udtryk for det n't led. Det vil sige, find funktioner  $f_a(n)$ ,  $f_b(n)$ ,  $f_c(n)$  således, at  $a_n = f_a(n)$ ,  $b_n = f_b(n)$ ,  $c_n = f_c(n)$ .
- (b) List de tre følger  $(a_n)$ ,  $(b_n)$  and  $(c_n)$  fra mindste til største størrelsesorden. Argumentér for konklusionerne ud fra notesættets sætninger og regler (R1–R8) som kan benyttes uden bevis.

Del 3 Bestem et eksplicit udtryk for sumfølgen givet ved

$$\sum_{k=0}^{n} (3 \cdot 2^k + 1)$$

- Del 4 Når vi benytter Euklids algoritme på to tal a, b for at bestemme GCD(a, b), foretager vi et antal divisioner med rest, indtil vi opnår resten 0 og dermed har bestemt den største fælles divisor som den næstsidst beregnede rest. Vi siger, at antallet af **trin**, der skal benyttes, er antallet af divisioner. Således er antallet af trin, der skal benyttes for at bestemme GCD(273, 98) netop 5, jf. gennemregningen i KBR Example 1.4.5 (side 23). Antallet af trin for alle valg af a, b med  $15 \ge a \ge b > 0$  på nær to sådanne valg er illustreret i figur 1.
  - (1) Beregn GCD(3,2), GCD(5,3), GCD(8,5) samt GCD(13,8) og bestem de fire manglende tal i figur 1.
  - (2) Lad  $t_n$  være det højeste (worst-case) antal trin, der skal benyttes til at bestemme GCD(a, b), når  $n \ge a \ge b > 0$ . Benyt figur 1 til at bestemme  $t_1, t_2, \ldots, t_{15}$ .
  - (3) For k = 2, 3, 4, 5, 6, find par  $(a_k, b_k)$  således, at hver  $GCD(a_k, b_k)$  har netop k divisioner, og  $max\{a_k, b_k\}$  bliver mindst mulig (*Hint: Du kan med fordel benytte tabellen i Figur 1*). Du kan antage, at  $(a_6, b_6) = (21, 13)$ .
  - (4) Kan du gennemskue mønstret og forudsige  $(a_7, b_7)$  og  $(a_8, b_8)$ ? Betragt nu følgen defineret ved  $F_0 = 1$ ,  $F_1 = 2$ , og  $F_k = \max\{a_k, b_k\}$  for k > 1. Kan du genkende følgen  $(F_k)$  fra forelæsningen? Hvad hedder den?
  - (5) Vis, at  $t_n$  er O(n). Note: grafen for  $t_n$ , for n mellem 1 og 200, er vist i figur 2. Bemærk, at  $t_n$  ikke ser ud til at være  $\Theta(n)$  ud fra grafen.

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1  | 1  | 1  | 1  | 1  | 1  |
| 2  |   | 1 |   | 1 | 2 | 1 | 2 | 1 | 2 | 1  | 2  | 1  | 2  | 1  | 2  |
| 3  |   |   | 1 | 2 |   | 1 | 2 | 3 | 1 | 2  | 3  | 1  | 2  | 3  | 1  |
| 4  |   |   |   | 1 | 2 | 2 | 3 | 1 | 2 | 2  | 3  | 1  | 2  | 2  | 3  |
| 5  |   |   |   |   | 1 | 2 | 3 |   | 3 | 1  | 2  | 3  | 4  | 3  | 1  |
| 6  |   |   |   |   |   | 1 | 2 | 2 | 2 | 3  | 3  | 1  | 2  | 2  | 2  |
| 7  |   |   |   |   |   |   | 1 | 2 | 3 | 3  | 4  | 4  | 3  | 1  | 2  |
| 8  |   |   |   |   |   |   |   | 1 | 2 | 2  | 4  | 2  |    | 3  | 3  |
| 9  |   |   |   |   |   |   |   |   | 1 | 2  | 3  | 2  | 3  | 4  | 3  |
| 10 |   |   |   |   |   |   |   |   |   | 1  | 2  | 2  | 3  | 3  | 2  |
| 11 |   |   |   |   |   |   |   |   |   |    | 1  | 2  | 3  | 4  | 4  |
| 12 |   |   |   |   |   |   |   |   |   |    |    | 1  | 2  | 2  | 2  |
| 13 |   |   |   |   |   |   |   |   |   |    |    |    | 1  | 2  | 3  |
| 14 |   |   |   |   |   |   |   |   |   |    |    |    |    | 1  | 2  |
| 15 |   |   |   |   |   |   |   |   |   |    |    |    |    |    | 1  |

Figur 1: Antal trin i beregningen af  $\mathrm{GCD}(a,b)$ 



Figur 2: Grafen for  $t_n$