Bayes' Theorem

Let A and B_1, \ldots, B_k be events in a sample space Ω .

Inversion problem: given $\mathbb{P}(A|B_j)$ (and $\mathbb{P}(B_j)$) find $\mathbb{P}(B_j|A)$

Bayes' Theorem:

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(A|B_j)\,\mathbb{P}(B_j)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B_j)\,\mathbb{P}(B_j)}{\sum_{i=1}^k \mathbb{P}(A|B_i)\,\mathbb{P}(B_i)}$$

For continuous random variables X and Y, Bayes' Theorem is formulated in terms of densities:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x) f_X(x)}{f_Y(y)} = \frac{f_{Y|X}(y|x) f_X(x)}{\int f_{Y|X}(y|x) f_X(x) dx}$$

Application to statistical inference:

- \circ Probabilistic model: $f(y|\theta)$ distribution of Y for fixed θ
- \circ Statistical problem: given data y make statements about θ
- \circ Likelihood: $l(\theta|y) = f(y|\theta)$ (reflects inversion problem)

Bayesian approach:

A Bayesian statistical (parametric) model consists of

- \circ $f(y|\theta)$, a parametric statistical model (likelihood function), and
- $\circ \pi(\theta)$, a prior distribution on the parameters.

The posterior distribution of the parameter θ is

$$\pi(\theta|y) = \frac{f_{Y|\theta}(y|\theta) \,\pi(\theta)}{\int_{\Theta} f_{Y|\theta}(y|\theta) \,\pi(\theta) \,d\theta} \sim f_{Y|\theta}(y|\theta) \,\pi(\theta)$$

The Bayesian modelling approach can be summarized by

posterior \sim likelihood \times prior.

Bayesian interpretation of probability

probability = (subjective) uncertainty

Bayesian Inference

Example: Binomial distribution

• Likelihood function

$$Y|\theta \sim \text{Bin}(n,\theta)$$

• Prior distribution

$$\theta \sim U(0,1) = \text{Beta}(1,1)$$

• Posterior distribution

$$\theta | Y \sim \text{Beta}(1 + Y, 1 + n - Y)$$

Uncertainty about parameter can be updated repeatedly when new data are available:

- take current posterior distribution as prior
- o compute new posterior distribution conditional on new data

- 3 -

The posterior distribution is used for inference about θ :

o posterior mean

$$\mathbb{E}(\theta|Y)$$

o posterior variance

$$var(\theta|Y) = \mathbb{E}((\theta - \mathbb{E}(\theta|Y))^2|Y)$$

o posterior confidence interval (credibility interval)

$$Bayesian\ Infere \int_{ heta_l}^{ heta_r} \pi(heta_l) Y_2 d heta = 1 - lpha$$

Conjugate Priors

A mathematical convenient choice are conjugate priors: The posterior distribution belongs to the same parametric family as the prior distribution with different parameters:

Likelihood	Prior	Posterior
f(y heta)	$\pi(heta)$	$\pi(heta y)$
Normal	Normal	Normal
$\mathcal{N}(heta,\sigma^2)$	$\mathcal{N}(\mu, au^2)$	$\mathcal{N}\!\left(rac{\sigma^2\mu + au^2y}{\sigma^2 + au^2}, rac{\sigma^2 au^2}{\sigma^2 + au^2} ight)$
Poisson	Gamma	Gamma
$Poisson(\theta)$	$\Gamma(lpha,eta)$	$\Gamma(\alpha+y,\beta+1)$
Gamma	Gamma	Gamma
$\Gamma(u, heta)$	$\Gamma(lpha,eta)$	$\Gamma(\alpha+\nu,\beta+y)$
Binomial	Beta	Beta
$Bin(n, \theta)$	$\mathrm{Beta}(\alpha,\beta)$	$Beta(\alpha + y, \beta + n - y)$
Multinomial	Dirichlet	Dirichlet
$M_k(\theta_1,\ldots,\theta_k)$	$\mathrm{D}(lpha_1,\ldots,lpha_k)$	$D(\alpha_1+y_1,\ldots,\alpha_k+y_k)$
Normal	Gamma	Gamma
$\mathcal{N}(\mu, 1/ heta)$	$\Gamma(lpha,eta)$	$\Gamma(\alpha + \frac{1}{2}, \beta + \frac{1}{2}(\mu - y)^2)$

Problems in choice of prior:

- $\circ~$ The conjugate priors might not reflect our uncertainty about θ correctly.
- In general, for non-conjugate priors the posterior distribution is not available in analytic form.
- \circ It is difficult to describe uncertainty about θ in form of a particular distribution. In particular, we might be uncertain about the parameters of the prior distribution (\leadsto hierarchical modelling, empirical Bayesian methods).

Bayesian Analysis with Missing Data

Bayesian statistical model:

• Data model:

$$f(Y|\theta)$$
 complete-data likelihood $f(R|Y,\xi)$ missing-data mechanism

• Prior distribution:

$$\pi(\theta,\xi)$$

The posterior distribution of θ and ξ is

$$\begin{split} \pi(\theta, \xi | Y_{\text{obs}}, R) &\sim f(Y_{\text{obs}}, R | \theta, \xi) \, \pi(\theta, \xi) \\ &= \int f(Y_{\text{obs}}, y_{\text{mis}}, R | \theta, \xi) \, \pi(\theta, \xi) \, dy_{\text{mis}} \\ &= \int f(Y_{\text{obs}}, y_{\text{mis}} | \theta) \, f(R | Y_{\text{obs}}, y_{\text{mis}}, \xi) \, \pi(\theta, \xi) \, dy_{\text{mis}} \end{split}$$

If the data are missing at random (MAR) then

$$\pi(\theta, \xi | Y_{\text{obs}}, R) \sim \int f(Y_{\text{obs}}, y_{\text{mis}} | \theta) f(R | Y_{\text{obs}}, \xi) \pi(\theta, \xi) dy_{\text{mis}}$$

$$= \int f(Y_{\text{obs}}, y_{\text{mis}} | \theta) dy_{\text{mis}} f(R | Y_{\text{obs}}, \xi) \pi(\theta, \xi)$$

$$= f(Y_{\text{obs}} | \theta) f(R | Y_{\text{obs}}, \xi) \pi(\theta, \xi)$$

Bayesian Analysis with Missing Data

For inference on θ , we consider the marginal posterior distribution of θ

$$\pi(\theta|Y_{\text{obs}}, R) = \int_{\Xi} \pi(\theta, \xi|Y_{\text{obs}}, R) d\xi$$
$$\sim \int_{\Xi} f(Y_{\text{obs}}|\theta) f(R|Y_{\text{obs}}, \xi) \pi(\theta, \xi) d\xi$$

If the parameters are distinct in the sense that

$$\pi(\theta, \xi) = \pi(\theta) \pi(\xi)$$

then the marginal posterior distribution of θ satisfies

$$\pi(\theta|Y_{\text{obs}}, R) \sim f(Y_{\text{obs}}|\theta) \,\pi(\theta) \cdot \int_{\Xi} f(R|Y_{\text{obs}}, \xi) \,\pi(\xi) \,d\xi$$

It follows that

$$\pi(\theta|Y_{\text{obs}}, R) = \frac{f(Y_{\text{obs}}|\theta) \, \pi(\theta)}{\int_{\Theta} f(Y_{\text{obs}}|\theta) \, \pi(\theta) \, d\theta}$$

and hence $\pi(\theta|Y_{\text{obs}}, R) = \pi(\theta|Y_{\text{obs}})$.

Result:

The missing data mechanism is ignorable for posterior inference about the parameter θ if

- the data are missing at random (MAR) and
- $\circ~$ the parameters θ and ξ are distinct, that is

$$\pi(\theta, \xi) = \pi(\theta) \pi(\xi).$$