Department of Industrial & Systems Engineering Indian Institute of Technology, Kharagpur

Mid-Semester Examination – Spring 2016 Operations Research (IM41082)

Time: 2 Hrs

(Attempt ALL questions)

Full Mark: 30

Question 1 (5 Marks)

A small refinery blends five raw gasoline types to produce two grades of motor fuel: regular and premium. The number of barrels per day of each raw gasoline type available, the performance rating, and cost per barrel are given in the following table:

Raw Gasoline Type	Performance Rating	Available(Barrels /Day)	Cost/Barrel (₹)
1	70	2000	80
2	80	4000	90
3	85	4000	95
4	90	5000	115
5	99	5000	200

Regular motor fuel must have a performance rating of at least 85 and premium at least 95. The refinery's contract requires that at least 8,000 barrels/day of premium be produced; at the same time, the refinery can sell its entire output of both premium and regular for ₹375/barrel and ₹285/barrel, respectively. Assume the performance rating of a blend is proportional, i.e., a 50–50 mixture of raw gasoline types 1 and 2 has a performance of 75. Formulate a linear program to maximize the refinery's profit. Be sure to define all of your variables and constraints.

Question 2 (5 Marks)

For the following LP

Maximize
$$Z = x_1 + 3x_2$$

$$x_1 + x_2 \le 2$$

$$-x_1 + x_2 \le 4$$

 x_1 unrestricted and $x_2 \ge 0$

- a) Determine all the basic solutions of the problem, and classify them as feasible and infeasible.
- b) Show the feasible region and find the optimal solution of the problem using graphical method.

Question 3 (5 Marks)

Consider the following problem, where the value of c_1 has not yet been ascertained.

Maximize
$$Z = c_1 x_1 + 2x_2$$
, s.t.
$$4x_1 + x_2 \le 12$$

$$x_1 - x_2 \ge 2$$

$$x_1 \ge 0$$
, $x_2 \ge 0$

Use graphical analysis to determine the optimal solution(s) for (x_1, x_2) for $c_1 \in (-\infty, \infty)$.

Question 4 (5 Marks)

The feasible region of a liner programming problem is defined by the following constraints

$$3x_1 + x_2 + x_3 = 5$$
$$2x_1 + x_4 = 3$$

$$4x_1 + 3x_2 + x_5 = 6$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Identify with brief justification which of the solutions (0, 0, 5, 3, 6); (0, 5, 0, 3, -9); (1.5, 0, 0.5, 0, 0); (0.5, 1, 0, 1, 2); (1, 0.5, 1.5, 1, 0.5) are

- a) Feasible solution
- b) Basic solution
- c) Basic feasible solution
- d) Infeasible solution

Question 5 (5 Marks)

Solve the following LP using Simplex algorithm. In case of alternative/degenerate/unbounded solution, specify the nature of the solution with suitable reason.

Minimize
$$Z = -x_1 - 3x_2$$

s.t.
$$x_1 - 2x_2 \le 4$$

 $-x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

Question 6 (5 Marks)

Consider the following problem

$$Minimize Z = 4x_1 + x_2 + x_3$$

s.t.
$$2x_1 + x_2 + 2x_3 = 4$$
$$3x_1 + 3x_2 + x_3 = 3$$
$$x_1, x_2, x_3 \ge 0$$

Using the two-phase method

- a) Construct the complete first simplex tableau for phase 1 and identify the corresponding initial basic feasible solution. Also identify the initial entering basic variable and the leaving basic variable.
- b) Work through phase I step by step.
- c) Construct the complete first simplex tableau for phase II and identify the corresponding initial basic feasible solution. Also identify the initial entering basic variable and the leaving basic variable.
- d) Work through phase II step by step to solve the problem.
