Lifting one-dimensional Galois representations

Daniel Miller

August 7, 2016

1 Brief review of the setup

Throughout, $\Gamma = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ and, for each finite set S of primes, $\Gamma_S = \operatorname{Gal}(\mathbf{Q}_S/S)$, where \mathbf{Q}_S is the maximal extension of \mathbf{Q} unramified outside S. Let k be a finite field of characteristic p. Fix a continuous irreducible representation $\bar{\rho}: \Gamma \to \operatorname{GL}_n(k)$. For each set S of primes such that $\bar{\rho}$ factors through Γ_S , we have a formal scheme $\mathcal{X}_S = \mathcal{X}_S(\bar{\rho})$. It is given by its functor of points $\mathcal{X}_S: \mathsf{C}_{\mathrm{W}(k)} \to \mathsf{Set}$. Here, $\mathsf{W}(k)$ is the ring of Witt vectors of k and $\mathsf{C}_{\mathrm{W}(k)}$ is the category of artinian local $\mathsf{W}(k)$ -algebras with residue field k. For K such an algebra, the set $\mathcal{X}_S(A)$ consists of lifts K0: K1 of K2 of K3 up to strict equivalence. Write K3 of K4 consists of lifts K5 of K6 of K7 at K8 of K9. It is well-known that there is a natural isomorphism

$$\mathfrak{t}_{\mathcal{X}_S} = \mathrm{H}^1(\Gamma_S, \operatorname{Ad} \bar{\rho}),$$

where $\operatorname{Ad} \bar{\rho}$ is Γ_S -module $\mathfrak{gl}_n(k)$, with action $\sigma \cdot x = \operatorname{Ad}(\bar{\rho}(\sigma))(x)$. Moreover, there is a good "obstruction theory" for lifting deformations of $\bar{\rho}$. Given a surjection $A \twoheadrightarrow A_0$ in $\mathsf{C}_{\operatorname{W}(k)}$ for which the kernel I is principle and annihilated by \mathfrak{m}_A , there is associated to each $\rho_0 \in \mathcal{X}_S(A_0)$ an obstruction class $o(\rho_0) \in \operatorname{H}^2(\Gamma_S, \operatorname{Ad} \bar{\rho})$, the vanishing of which is necessary and sufficient for the existence of a lift of ρ_0 to A. If such a lift ρ exists, the set of lifts of ρ_0 admits a natural action of $\mathfrak{t}_{\mathcal{X}_S}$, which we denote $(c, \rho) \mapsto c \cdot \rho$, which makes the set of lifts a $\mathfrak{t}_{\mathcal{X}_S}$ -torsor.

For any rational prime l, write $\Gamma_l = \operatorname{Gal}(\overline{\mathbf{Q}_l}/\mathbf{Q})$. The representation $\bar{\rho}: \Gamma_S \to \operatorname{GL}_n(k)$ restricts to a representation $\bar{\rho}_l = \bar{\rho}|_{\Gamma_l}$, and we write $\mathcal{X}_l = \mathcal{X}_l(\bar{\rho})$ for the formal scheme classifying strict equivalence classes of lifts of $\bar{\rho}_l$ to representations $\rho_l: \Gamma_l \to \operatorname{GL}_n(A)$. The operation $\rho \mapsto \rho|_{\Gamma_l}$ induces a morphism $\mathcal{X}_S \to \mathcal{X}_l$ for each l. Just as above, there is a natural isomorphism $\mathfrak{t}_{\mathcal{X}_l} = \operatorname{H}^1(\Gamma_v, \operatorname{Ad} \bar{\rho})$, and obstructions to lifts live in $\operatorname{H}^2(\Gamma_v, \operatorname{Ad} \bar{\rho})$.

Put $\mathcal{X}_{\partial S} = \prod_{l \in S} \mathcal{X}_l$. Clearly $\mathfrak{t}_{\mathcal{X}_{\partial S}} = \bigoplus_{l \in S} \mathfrak{t}_{\mathcal{X}_l}$. For us, a set of local conditions is a formal subscheme $\mathcal{M} \subset \mathcal{X}_{\partial S}$. Given a set of local conditions \mathcal{M} , define $\mathcal{X}_{\mathcal{M}} = \mathcal{X} \times_{\mathcal{X}_{\partial S}} \mathcal{M}$. That is, for $A \in \mathsf{C}_{\mathsf{W}(k)}$, the set $\mathcal{X}_{\mathcal{M}}(A)$ consists of those $\rho \in \mathcal{X}_S(A)$ such that $(\rho|_{\Gamma_l})_{l \in S}$ lies in $\mathcal{M}(A)$. If, as will always be the case,

 $\mathcal{M} = \prod_{l \in S} \mathcal{M}_l$ with each $\mathcal{M}_l \subset \mathcal{X}_l$, it is clear that

$$\mathfrak{t}_{\mathcal{X}_{\mathcal{M}}} = \ker \left(\mathfrak{t}_{\mathcal{X}_{S}} \to \bigoplus_{l \in S} \mathfrak{t}_{\mathcal{X}_{l}} / \mathfrak{t}_{\mathcal{M}_{l}} \right) = \ker \left(\operatorname{H}^{1}(\Gamma_{S}, \operatorname{Ad} \bar{\rho}) \to \bigoplus_{l \in S} \frac{\operatorname{H}^{1}(\Gamma_{l}, \operatorname{Ad} \bar{\rho})}{\mathfrak{t}_{\mathcal{M}_{l}}} \right).$$

There is also an obstruction theory for $\mathcal{X}_{\mathcal{M}}$. [work this out!]

It is natural to ask whether the morphism $\mathcal{X}_S \to \mathcal{X}_{\mathcal{M}}$ is (formally) smooth. This is true if and only if, for each square-zero extension $A \to A_0$, an element $\rho_0 \in \mathcal{X}_S(A_0)$ lifts to A if and only if $(\rho_0|_{\Gamma_l})_{l \in S} \in \mathcal{M}(A_0)$ lifts to a $(\rho_l)_{l \in S} \in \mathcal{X}_{\mathcal{M}}(A)$. It is easy to check that this holds if and only if

$$\mathrm{H}^1_{\mathcal{M}^{\perp}}(\Gamma_S, \operatorname{Ad} \bar{\rho}^*) = \ker \left(\mathrm{H}^1(\Gamma_S, \operatorname{Ad} \bar{\rho}^*) \to \left(\bigoplus_{l \in S} \mathrm{H}^1(\Gamma_l, \operatorname{Ad} \bar{\rho}^*) \right) / \mathfrak{t}^{\perp}_{\mathcal{M}} \right).$$

Here, $\mathfrak{t}_{\mathcal{M}}^{\perp} \subset \bigoplus_{l \in S} H^{1}(\Gamma_{l}, \operatorname{Ad} \bar{\rho}^{*})$ is the orthogonal complement of $\mathfrak{t}_{\mathcal{M}}$ under the pairing $\mathfrak{t}_{\mathcal{M}} \times \bigoplus_{l \in S} H^{1}(\Gamma_{l}, \operatorname{Ad} \bar{\rho}^{*}) \to \mathbf{Q}/\mathbf{Z}$ induced by the cup-products

$$\smile$$
: $\mathrm{H}^1(\Gamma_l, \mathrm{Ad}\,\bar{\rho}) \times \mathrm{H}^1(\Gamma_l, \mathrm{Ad}\,\bar{\rho}^*) \to \mathrm{H}^2(\Gamma_l, \mu_p) \hookrightarrow \mathbf{Q}/\mathbf{Z}$.

2 The one-dimensional case

Let Γ , k be as above. Fix a continuous character $\bar{\chi}:\Gamma\to k^{\times}$. For each appropriate S, write $\mathcal{X}_S=\mathcal{X}_S(\bar{\chi})$. Note that $\operatorname{Ad}\bar{\chi}=k$ (the trivial representation). Because of this, a number of things can be computed using various duality theorems. First, note that for any profinite group G, we have $\operatorname{H}^{\bullet}(G,k)=\operatorname{H}^{\bullet}(G,\mathbf{Z}/p)\otimes k$. Thus by [NSW08, 8.6.9], there is a natural isomorphism

$$\mathrm{H}^2(\Gamma_l,k) = \mathrm{H}^0(\Gamma_l,\boldsymbol{\mu}_p)^\vee \otimes k = \begin{cases} k & \text{if } l \equiv 1 \pmod{p} \\ 0 & \text{otherwise} \end{cases},$$

that is, \mathcal{X}_l is singular if and only if $l \equiv 1 \pmod{p}$. We can compute tangent spaces:

$$\begin{split} \mathfrak{t}_{\mathcal{X}_l} &= \operatorname{H}^1(\Gamma_l, k) \\ &= \operatorname{H}^1(\Gamma_l, \boldsymbol{\mu}_p)^{\vee} \otimes k \\ &= \operatorname{hom}(\widehat{\mathbf{Z}} \times \mathbf{Z}/(l-1) \times \mathbf{Z}_l, k) \\ &= \begin{cases} k^2 & \text{if } l = p \text{ or } l \equiv 1 \pmod{p} \\ k & \text{otherwise} \end{cases} \end{split}$$

In other words, \mathcal{X}_p is smooth and two-dimensional, and the \mathcal{X}_l $(l \neq p)$ are singular with $\dim(\mathfrak{t}_{\mathcal{X}_l}) = 2$ $(l \equiv 1)$ or smooth and one-dimensional $(l \not\equiv 1)$.

Let K/\mathbb{Q}_p be a finite extension with ring of integers \mathcal{O} and residue field k. Write $\mathcal{O}_n = \mathcal{O}/\mathfrak{m}^{n+1}$. Given $\bar{\chi}: \Gamma \to \mathcal{O}_0^{\times}$ and a lift $\chi_n: \Gamma \to \mathcal{O}_n^{\times}$ $(n \geq 2)$, we are interested in the existence (possibly after enlarging S) of a lift of χ_n to \mathcal{O} . This will be accomplished by making

$$\mathrm{III}^1_S(\boldsymbol{\mu}_p) = \ker \left(\mathrm{H}^1(\Gamma_S, \boldsymbol{\mu}_p) \to \bigoplus_{l \in S} \mathrm{H}^1(\Gamma_l, \boldsymbol{\mu}_p) \right)$$

vanish, which should be possible via adding nice primes.

References

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields. Second. Vol. 323. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 2008.