Homotopy constrained planning

Muhammad Suhail & Ramkumar

Trajectory Optimization with Homotopy Class Constrained Planning In 2D

Trajectory optimization finds a path restricted to the homotopy class of the initial guess.

Homotopy Class of Trajectories

Two trajectories T₁ and T₂ connecting the same start and goal are homotopic iff one can be deformed into the other without intersecting any obstacle.

Identifying Homotopy Classes

Cauchy Integral Theorem

$$\oint_{\gamma} \frac{f(z)dz}{z - z_0} = 2\pi i f(z_0)$$

H-Signature

Problem Statement

Our goal was to intelligently find paths in different homotopies and demonstrate the ability of our planner and the use of homotopy constrained planning in different application areas:

- 1. Point robot
- 2. Trajectory Optimization
- 3. Planar Arm

Bhattacharya et al

Math definition of the problem

Vinitha et al.

- H signatures are unique for trajectories of different homotopy classes and can be computed using L-values or reduced words.
- We plan on H Signature Augmented Graphs. Node in the graph is given by $\{v, \mathcal{H}_2(v_s, v)\}$
- Our graph is defined as follows:

$\mathcal{G}_L(\mathcal{G}) = \{\mathcal{V}_L, \mathcal{E}_L\}$

where,

1

$$\mathcal{V}_L = \left\{ \{z, \Lambda\} \middle| \begin{array}{l} z \in \mathcal{V}, \text{ and,} \\ \Lambda \notin \mathcal{B} \text{ (or equivalently, } \Lambda' \in \mathcal{A}) \\ \text{ if } z = z_g, \text{ and,} \\ \Lambda = L(z_s \to z) \text{ for some trajectory} \\ z_s \to z, \text{ from } z_s \text{ to } z \end{array} \right.$$

- 2. And, edge $\{\{z,\Lambda\} \to \{z',\Lambda'\}\}\$ is in \mathcal{E}_L for $\{z,\Lambda\} \in \mathcal{V}_L$ and $\{z',\Lambda'\} \in \mathcal{V}_L$, iff
 - i. $\{z \to z'\} \in \mathcal{E}$, and
 - ii. $\Lambda'=\Lambda+L(z\to z')$, where $L(z\to z')$ is the L-value of the straight line segment joining the adjacent nodes z and z'
- 3. And, the cost/weight associated with an edge $\{\{z,\Lambda\} \rightarrow \{z',\Lambda'\}\} \in \mathcal{E}_L$ is same as the cost of the edge $\{z \rightarrow z'\} \in \mathcal{E}$.

Bhattacharya et al.

Algorithms

1. Point robot:

- a. A-star Euclidean Heuristic and cost function
- b. MHA* Euclidean Heuristic (Anchor Search) and (Euclidean distance + 100* Number of mismatched variables) (Inadmissible Heuristic).
- c. For the path seen in the movie, A-star expands 36239923 states, while MHA* expands 24560948

2. Trajectory optimization:

- a. Traj Opt will converge to a global solution, only if the initial estimate is in the same homotopy as the global optimum.
- b. By providing paths from every homotopy in the environment, we can ensure that the algorithm converges to the global optimum

3. Planar Arm:

- a. Weighted A-star
- b. The h-signature is calculated using the reduced word approach using the end effector's trajectory, but the planning is in C-space.

MHA* & A* (goal signature = 123)

Costmap Input with H-signatures

A* with Gradient Descent (goal signature = NULL)

A* with Gradient Descent (goal signature = 2)

A* with Gradient Descent (goal signature = -2)

Manipulator planning with homotopy

