U19EC046 LAB 2

Aim

Develop a Transmission Line of given determinations and figure its Characteristic Impedance for 100 MHz and 300 MHz utilizing AN-SOF Software.

Theory

Transmission Lines convey phone signals, PC information in LANs, TV frameworks, and signs from a transmitter to an antenna or from a antenna to a receiver. They are otherwise called circuits.

The two essential prerequisites of a transmission lines are:

- 1. The line ought to acquaint least weakening with the sign.
- 2. The line ought not emanate any of the signs as radio energy.

Types of Transmission Lines

- Parallel Wire Line is made of two parallel conductors separated by a space of 0.5 inch to several inches.
- The most widely used is the **Coaxial Cable**. It consists of a solid centre conductor surrounded by a dielectric material, usually a plastic such as a Teflon.
- **Twisted Pair Cable** uses two insulated solid copper wires covered with insulation and loosely twisted together.

Balanced Versus Unbalanced Transmission Lines

- Transmission Lines can be balanced or unbalanced.
- A balanced line is one in which neither wire is connected to ground.
- The signal on each wire is referenced to ground.
- In an unbalanced line, one conductor is connected to ground.
- Open wire line has a balanced configuration.

Formulas Used

The Specifications of the Transmission Line are:

Length of the Wire = 1 = 500 mm

Cross Section Radius of the Wire = a = 2 mm

Now,
$$Z_{in} = Z_0 \left(\frac{z_l \cos \beta l + j \sin \beta l}{\cos \beta l + j z_l \sin \beta l} \right) = Z_0 \left(\frac{z_l + j \tan \beta l}{1 + j z_l \tan \beta l} \right)$$

$$Z_{in}^{sc} = \frac{V_{sc}(l)}{I_{sc}(l)} = j Z_0 \tan \beta l \quad \text{by putting} \quad z_l = 0 \quad \text{for short circuit}$$

$$Z_{in}^{oc} = \frac{V_{oc}(l)}{I_{sc}(l)} = -j Z_0 \cot \beta l \quad \text{by putting} \quad z_l = \infty \quad \text{for open circuit}$$

On the other hand, the relation for the Characteristic Impedance of a line above a ground plane is given by :

$$Z_c = 138 \log(\frac{2h}{a}) = 138 \log(\frac{2*40}{2}) = 221.084 \Omega$$

where h is the height of the wire from the ground, whose value for our experiment is 40 mm.

AN-SOF Model

Short Circuit Configuration

Open Circuit Configuration

AN-SOF Output and Plots

No.	Frequency	Real (Zin)	Imag (Zin)
	MHz	Ohm	Ohm
1	100	1.61803	511.816
2	150	33.0358	-1256.14
3	200	4.6018	-237.875
4	250	3.37284	-57.5138
5	300	4.14814	72.4372
6	350	11.5757	281.182
7	400	1338.81	2909.16
8	450	37.5496	-373,468

Short Circuit Output

No.	Frequency MHz	Real (Zin) Ohm	Imag (Zin) Ohm
2	150	0.972716	26.3514
3	200	3.22702	180.884
4	250	29.3436	682.064
5	300	53.3258	-832.483
6	350	8.4624	-205.938
7	400	6.38472	-45.0189
8	450	9.11431	79.7296

Open Circuit Output

Calculations

For 100 MHz : $Z_{in}^{sc}=$ j511.816 Ω $Z_{in}^{oc}=-j$ 105.357 Ω

$$Z_c = \sqrt{Z_{sc}Z_{oc}} = 232.1412\Omega$$

For 150 MHz : $Z_{in}^{sc}=j$ 1256.14 Ω $Z_{in}^{oc}=-j$ 26.35 Ω

$$Z_c = \sqrt{Z_{sc}Z_{oc}} = 181.93\Omega$$

For 200 MHz : $Z_{in}^{sc}=-j237.875~\Omega~Z_{in}^{oc}=-j180.884\Omega$

$$Z_c = \sqrt{Z_{sc}Z_{oc}} = 207.43\Omega$$

For 250 MHz : $Z_{in}^{sc}=$ j57.514 Ω $Z_{in}^{oc}=-$ j682.064 Ω

$$Z_c = \sqrt{Z_{sc}Z_{oc}} = 198.061\Omega$$

For 300 MHz :
$$Z_{in}^{sc}=$$
 $j72.4372~\Omega~Z_{in}^{oc}= j832.483\Omega$

$$Z_c = \sqrt{Z_{sc}Z_{oc}} = 245.566\Omega$$

Conclusion

In the above Practical we executed a Transmission Line Wire utilizing ANSOF Software and determined its Characteristic Impedance from the resultant plots which is extremely shut to the theoretical value of 221 Ω .