Inverse distribution function and random number simulation.

Let X be a random variable with continuous distribution function $F(x) = P\{X \le x\}$.

$$P\{X \leq 2c\}$$

$$y = F(x)$$

$$y = F(x)$$

$$y = F'(x)$$

$$y = F'$$

Random variable $F(X): P\{F(X) \le x\} = P\{X \le F^{-1}(x)\}$ $= F(F^{-1}(x)) = x$

What distribution has $F(x) = P\{X \le x\} = \infty$?

Unis(0,1)

Y.Balasanov (University of Chicago, MScA)

Math Challenge

© Y. Balasanov, 2014

```
Simulation.
```

We need to simulate random variable X~F(x), where F(x)=P{X \(\infty\) is an arbitrary distribution.

Step 1. Simulate U~Unif (0,1).

Step 2. Set $X = F^{-1}(U)$.

Then $P\{X \leq x\} = P\{f^{-1}(U) \leq x\} = P\{U \leq f(x)\} = f(x)$ Need $F^{-1}(x)$! $\{f(f^{-1}(U)) \leq f(x)\} = \{U \leq f(x)\}$

Example.

Exponential distribution $Exp(\lambda)$. $f(x;\lambda) = \{e^{-\lambda x}, x \in [0,\infty), F(x) = 1 - e^{-\lambda x}, x \in [-\infty,\infty].$ Solve for $x \in e^{-\lambda x} = 1 - F(x)$

$$f(x;\lambda) = \{e^{-x}, x \in [0,\infty), \{o, x \in (-\infty, \infty)\}.$$

$$lne^{-\lambda x} = -\lambda x = ln(1-F(x)); x = -\frac{ln(1-F(x))}{\lambda}$$

Balasanov (University of Chicago, MScA)

Math Challenge

Balasanov, 2014