project_so_far

March 19, 2024

1 Performance Assessment: D208 Predictive Modeling Task 1 - Multiple Linear Regression.

1.1 Michael Hindes

Department of Information Technology, Western Governors University D208: Predictive Modeling Professor David Gagner February 11, 2024

This project aims to understanding the exact relationship between a response and predictor variables and to create a multiple regression model derived from medical raw data, targeting a business question reflective of a real-world organizational challenge. Python is employed to conduct a multiple regression analysis to explore the research question thoroughly. The analysis is supported by visual aids. The process also involves meticulous data cleaning to ensure accuracy and reliability. Additionally, the project shares the code used for the regression analysis, predictions and cleaning and wrangling. It concludes by detailing the regression equation, evaluating the statistical and practical significances, discussing limitations, and suggesting possible actions.

2 Part I: Research Question

2.1 Describe the purpose of this data analysis by doing the following::

2.1.1 A1. Research Question:

"A1. Research Question:"What factors contribute to the length of a patient's hospital stay?"

This question aims to identify key variables within the dataset that influence Initial_days, including possible financial aspects, services rendered, and patient risk factors. Understanding the primary drivers behind the length of a patient's hospital stay is crucial for multiple reasons. First, it allows healthcare providers to identify potential areas for improving operational efficiency, such as optimizing bed utilization and reducing wait times for incoming patients. Second, by recognizing which factors significantly impact hospital stay durations, healthcare professionals can tailor patient care plans more effectively, potentially leading to improved patient outcomes and satisfaction. Third, insights from this analysis can inform hospital administration decisions regarding resource allocation, staffing, and policy development, ensuring that the healthcare facility can better manage its resources while maintaining or enhancing the quality of care provided to patients. Lastly, given previous analyses on the dataset, there may be certain correlation between the number of days patient was hospitalized and his higher risk for readmission, which is costly to hospitals. Thus,

the goal of this research is not only to uncover the underlying factors affecting hospital stays but also to leverage this understanding to facilitate better hospital management practices and improve overall patient care.

2.1.2 A2. Define the goals of the data analysis.

This data analysis project is focused on developing a predictive model as a practical tool to help healthcare organizations in planning, patient care, and operational improvements. By examining a wide range of factors that potentially affect Initial_days, the project aims to understand any relationships initial_days may have with other variables. With that understanding, it seeks to build a model that supports data-driven decision-making in healthcare. The goals of the data analysis are as follows:

- Ensure Data Quality and Integrity: Prioritize data cleaning and preprocessing to ensure the dataset's accuracy, completeness, and consistency. This involves identifying and addressing missing values, outliers, and errors in the data. A clean dataset is fundamental for reliable analysis and modeling, enabling more accurate predictions and insights.
- Identify Key Predictors: Determine which variables significantly influence the length of hospital stays, considering a broad spectrum of factors, including but not limited to demographic information, medical history, financial aspects, and services received during the stay.
- Quantify Relationships: Establish how selected variables are related to Initial_days, quantifying the strength and nature of these relationships to provide actionable insights.
- Develop a Predictive Model: Create a multiple linear regression model that can accurately predict the length of a patient's hospital stay based on the identified variables, aiding in the anticipation of hospital capacity needs.
- Inform Policy Making: Provide evidence-based recommendations to healthcare administrators and policymakers for developing policies that address the key factors contributing to the length of hospital stays, with the goal of improving overall healthcare efficiency and patient satisfaction.

3 Part II: Method Justification

3.1 B. Describe multiple linear regression methods by doing the following:

3.1.1 B1. Summarize four assumptions of a multiple linear regression model:

In multiple linear regression analysis, four key assumptions are critical: linearity between variables, independence of observations, constant error variance (homoscedasticity), and normal distribution of error terms. Understanding and checking these assumptions is essential for the model's reliability and accuracy, providing a solid basis for predictive analytics.

• Linearity asserts that there is a straight-line relationship between each predictor (independent variable) and the response (dependent variable). This means that changes in a predictor variable are associated with proportional changes in the response variable.

- Independence of Observations indicates that the data points in the dataset do not influence each other. Each observation's response is determined by its predictor values, free from the effects of other observations in the dataset.
- Homoscedasticity refers to the requirement that the error terms (differences between observed and predicted values) maintain a consistent variance across all levels of the independent variables. This constant variance ensures that the model's accuracy does not depend on the value of the predictors.
- Normality of Errors involves the assumption that for any fixed value of an independent variable, the error terms are normally distributed. This normal distribution is central to conducting various statistical tests on the model's coefficients to determine their significance.

(Statology, n.d.) (Pennsylvania State University, n.d.)

3.1.2 B2. Describe two benefits of using Python for data analysis:

- Rich Libraries: While R was specifically designed with statistics and data analysis in mind, Python distinguishes itself with its comprehensive suite of libraries that cater to virtually every phase of the data analysis process. Libraries such as Pandas for data manipulation allow for efficient handling and transformation of data, NumPy for numerical computations supports complex mathematical operations with ease, and Matplotlib along with Seaborn for visualization enable the creation of insightful and high-quality graphs and charts. Moreover, Scikit-learn offers a robust platform for applying machine learning algorithms, streamlining the development of predictive models. These libraries not only facilitate a wide range of data analysis tasks but also ensure that analysts have the tools needed to tackle complex data challenges effectively.
- Versatility Python's syntax is known for its intuitive and readable nature, making it an accessible choice for professionals across various domains, from data science to web development. This versatility extends Python's utility beyond data analysis to other applications such as web development, automation, and deep learning, through frameworks and libraries like Flask, Selenium, and TensorFlow respectively. For instance, an analyst can easily switch from analyzing data to deploying a machine-learning model as a web application within the same programming environment. This seamless integration across different tasks enables a smooth workflow and promotes a holistic approach to problem-solving in today's interconnected digital landscape.

3.1.3 B3. Explain why multiple linear regression is an appropriate technique for analyzing the research question summarized in part I:

Multiple linear regression is particularly suited for addressing the research question at hand, as it facilitates the exploration of how several independent variables collectively influence a single continuous dependent variable, in this case, Initial_days. This analytical technique is adept at not only identifying but also quantifying the strength and nature of the relationships between Initial_days and various predictors, such as financial aspects, services rendered, and patient risk factors. By accounting for multiple factors simultaneously, multiple linear regression can provide nuanced insights into their combined effects on the length of a hospital stay. This comprehensive understanding is crucial for building robust predictive models that can inform decision-making processes.

4 NEEDS EDIT

Part III: Data Preparation

- 4.1 C. Summarize the data preparation process for multiple linear regression analysis by doing the following:
- 4.1.1 *C1. Describe your data cleaning goals and the steps used to clean the data to achieve the goals that align with your research question including your annotated code.**
 - Importing the Data: Usepd.read_csv() to import data into a Pandas DataFrame.
 - Initial Data Examination: Using df.head() provides a quick snapshot of the dataset, including a view of the first few rows. This helps in getting a preliminary understanding of the data's structure and content.
 - Checking Data Types: The df.info() method is used for assessing the dataset's overall structure, including the data types of each column and the presence of non-null values.
 - Identifying Duplicate Rows: Utilizing df.duplicated() to find duplicate rows is an essential cleaning step. Duplicates can skew your analysis and lead to inaccurate models. Once identified, you can decide whether to remove these rows with df.drop_duplicates() depending on their relevance to your research question.
 - Detecting Missing Values: The df.isnull().sum() command is instrumental in identifying missing values across the dataset. Understanding where and how much data is missing is critical for deciding on imputation methods or if certain rows/columns should be excluded from the analysis.
 - Outlier Management Strategy:: In this dataset, outliers are important to detect and be aware of. Particularly when creating predictive regression models. For example outliers can have a detrimental effect on our regression assumption and the model itself(MIDDLETON VIDEO) If there are outliers present, make sure that they are real is important. However, in the context of medical data, outliers can have an extra level of nuance. This is because in medical data, outliers are often the very things that we are interested in. For example, a patient with a very high cholesterol level or a very low blood pressure. These values are not errors, but rather important indicators of health conditions.
 - Therefore, in this analysis, we will look for outliers and pay close attention to the details of the variables themselves. Outliers will be noted, but not necessarily treated unless they are obvious data entry errors or if they hinder our model.
 - Reviewing Unique Values: Although df.unique() is used to explore unique values in a Series, for dataframes, you might consider df.nunique() to see the number of unique values in each column or use df['column_name'].unique() to check unique values in specific columns. This step is valuable for understanding the diversity of information within your dataset, particularly for categorical data.

-Wrangling

• Drop Unnecessary Columns: Any columns that are not relevant to the research question or the predictive model will be dropped from the dataset.

• Categorical variable conversion: Categorical variables will be transformed into numerical formats. Demographic data, which represents static information about patients and cannot be altered by the hospital, will be excluded from the analysis. We will identify and address any missing data, ensuring its proper mitigation. Additionally, any duplicate records identified in the dataset will be eliminated."

follow the slides here: https://westerngovernorsuniversity.sharepoint.com/:p:/r/sites/DataScienceTeam/_layouts/8089-4758-9ABE-29976D079B56%7D&file=Dr.%20Sewell%20D208_Predictive_Modeling_Webinar_Episode%20

```
[]: # Import packages and libraries
           %pip install scikit-learn
           %pip install Jinja2
           %matplotlib inline
           import pandas as pd
           import numpy as np
           import matplotlib.pyplot as plt
           import scipy.stats as stats
           import seaborn as sns
           from pandas import DataFrame
           from sklearn import preprocessing
         Requirement already satisfied: scikit-learn in
         c:\users\hinde\appdata\local\programs\python\python312\lib\site-packages
          (1.4.1.post1)
         Requirement already satisfied: numpy<2.0,>=1.19.5 in
         c:\users\hinde\appdata\local\programs\python\python312\lib\site-packages (from
         scikit-learn) (1.26.4)
         Requirement already satisfied: scipy>=1.6.0 in
         c:\users\hinde\appdata\local\programs\python\python312\lib\site-packages (from
         scikit-learn) (1.12.0)
         Requirement already satisfied: joblib>=1.2.0 in
         \verb|c:\users\hinde=appdata=local=programs=python=python=2lib=packages| (from local=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=python=pyt
         scikit-learn) (1.3.2)
         Requirement already satisfied: threadpoolctl>=2.0.0 in
         c:\users\hinde\appdata\local\programs\python\python312\lib\site-packages (from
         scikit-learn) (3.3.0)
         Note: you may need to restart the kernel to use updated packages.
          [notice] A new release of pip is available: 23.3.2 -> 24.0
          [notice] To update, run: python.exe -m pip install --upgrade pip
         Requirement already satisfied: Jinja2 in
         c:\users\hinde\appdata\local\programs\python\python312\lib\site-packages
          (3.1.2) Note: you may need to restart the kernel to use updated packages.
         Requirement already satisfied: MarkupSafe>=2.0 in
         c:\users\hinde\appdata\local\programs\python\python312\lib\site-packages (from
          Jinja2) (2.1.3)
```

[notice] A new release of pip is available: 23.3.2 -> 24.0 [notice] To update, run: python.exe -m pip install --upgrade pip

• Display variable description and data types with examples.

[]: # original data variable description and data types with examples.

from IPython.display import Image
Image(filename='variable_description.png')

[]:

Variable name	Data type	Variable Type	Description	Example
CaseOrder	int64	Numerical - Discrete	A variable to maintain the original sequence of the raw data file.	1
Customer_id	object	Categorical - Nominal	Distinct ID for each patient.	C412403
Interaction	object	Categorical - Nominal	Unique identifiers associated with patient interactions, operations, and hospitalizations.	8cd49b13-f45a-4b47-a2bd-173ffa932c2f
UID	object	Categorical - Nominal	Distinct identifiers linked to patient transactions, operations, and hospitalizations.	3a83ddb66e2ae73798bdf1d705dc0932
City	object	Categorical - Nominal	The city where the patient resides.	Mobile
State	object	Categorical - Nominal	The state where the patient resides.	AL
County	object	Categorical - Nominal	The county where the patient resides.	Morgan
Zip	int64	Categorical - Nominal	The zip code of the patient's residence.	35621
Lat	float64	Numerical - Continuous	Lattitudinal coordinates of the patient's home.	34.3496
Lng	float64	Numerical - Continuous	Longitudinal coordinates of the patient's home.	-86.72508
Population	int64	Numerical - Discrete	Number of people within a one-mile radius of the patient, as per census data.	2951
Area	object	Categorical - Nominal	Classification of area (suburban, urban, rural) according to unofficial census data.	Suburban
Timezone	object	Categorical - Nominal	Time zone of the patient's residence based on their registration information.	America/Chicago
Job	object	Categorical - Nominal	Occupation of the patient (or the primary insurance holder).	Psychologist, sport and exercise
Children	float64	Numerical - Discrete	Count of children in the patient's home.	1
Age	float64	Numerical - Discrete	Patient's age.	53
Education	object	Categorical - Ordinal	Patient's highest level of education achieved.	Some College, Less than 1 Year
Employment	object	Categorical - Nominal	Patient's current employment status.	Full Time
Income	float64	Numerical - Continuous	Yearly income of the patient (or the primary insurance holder).	86575.93
Marital	object	Categorical - Nominal	Patient's marital status (or the primary insurance holder).	Divorced
Gender	object	Categorical - Nominal	Patient's self-identified gender as male, female, or nonbinary.	Male
ReAdmis	object	Categorical - Binary	Indication of whether the patient was readmitted within a month of discharge (Yes. No).	No
VitD_levels	float64	Numerical - Continuous	Measurement of the patient's vitamin D levels in ng/mL.	17.80233049
Doc_visits	int64	Numerical - Discrete	Count of primary physician's visits to the patient during the first hospital stay.	6
Full_meals_eaten	int64	Numerical - Discrete	Count of complete meals consumed by the patient during hospitalization (partial meals are counted as 0).	0
VitD_supp	int64	Numerical - Discrete	Frequency of supplemental vitamin D administration to the patient.	0
Soft_drink	object	Categorical - Binary	Indication of whether the patient regularly consumes three or more sodas per day (Yes, No).	Yes
Initial_admin	object	Categorical - Nominal	The method of initial hospital admission for the patient (emergency admission, elective admission, observation).	Emergency Admission
HighBlood	object	Categorical - Binary	Indication of whether the patient has hypertension (Yes, No).	Yes
Stroke	object	Categorical - Binary	Indication of whether patient has experienced a stroke in past (Yes, No).	No
Complication_risk	object	Categorical - Ordinal	Patient's risk level for complications as determined by a primary patient assessment (high, medium, low).	Medium
Overweight	float64	Categorical - Binary	Specifies if patient is deemed overweight based on age, gender, and height (Yes, No).	0
Arthritis	object	Categorical - Binary	Specifies if patient has arthritis (Yes, No).	Yes
Diabetes	object	Categorical - Binary	Specifies if patient has diabetes (Yes. No).	Yes
Hyperlipidemia	object	Categorical - Binary	Specifies if patient has hyperlipidemia (Yes, No).	No
BackPain	object	Categorical - Binary	Specifies if patient suffers from chronic back pain (Yes, No).	Yes
Anxiety	float64	Categorical - Binary	Specifies if patient has an anxiety disorder (Yes, No).	1
Allergic_rhinitis	object	Categorical - Binary	Specifies if patient has allergic rhinitis (Yes, No).	Yes
Reflux_esophagitis	object	Categorical - Binary	Specifies if patient has reflux esophagitis (Yes, No).	No
Asthma	object	Categorical - Binary	Specifies if patient has asthma (Yes, No).	Yes
Services	object	Categorical - Nominal	Main service provided to the patient during hospitalization (blood work, intravenous, CT scan, MRI).	Blood Work
Initial_days	float64	Numerical - Continuous	Duration of the patient's initial hospital stay in days.	10.58576971
TotalCharge	float64		Daily charge to the patient. Figure represents the usual charges billed to patients, excluding specialized treatments.	3191.048774
Additional_charges		Numerical - Continuous	Average charge to the patient for additional procedures, treatments, medications, anesthesiology, etc.	17939.40342
Item1	int64	Categorical - Ordinal	Prompt admission.	3
Item2	int64	Categorical - Ordinal	Timely care.	3
Item3	int64	Categorical - Ordinal	Regular visits.	2
Item4	int64	Categorical - Ordinal	Dependability.	2
Item5	int64	Categorical - Ordinal	Choices.	4
Item6	int64	Categorical - Ordinal	Choices. Treatment hours.	3
	int64	-	Polite staff.	3
Item7	int64	Categorical - Ordinal Categorical - Ordinal	Polite start. Doctor's demonstration of active listening.	4
item8	Into4	Categorical - Ordinal	Doctor's demonstration of active listening.	4

```
[]: # import the data and read it into a dataframe, setting the first column

CaseOrder as the index

df = pd.read_csv('D208_templates/medical_clean.csv', index_col=0)
```

```
# Display the first five rows of the data df.head()
```

```
[]:
               Customer_id
                                                      Interaction \
     CaseOrder
                   C412403 8cd49b13-f45a-4b47-a2bd-173ffa932c2f
     2
                   Z919181 d2450b70-0337-4406-bdbb-bc1037f1734c
     3
                   F995323 a2057123-abf5-4a2c-abad-8ffe33512562
     4
                   A879973 1dec528d-eb34-4079-adce-0d7a40e82205
     5
                   C544523 5885f56b-d6da-43a3-8760-83583af94266
                                              UID
                                                                              County \
                                                            City State
     CaseOrder
                3a83ddb66e2ae73798bdf1d705dc0932
     1
                                                             Eva
                                                                    AL
                                                                              Morgan
     2
                176354c5eef714957d486009feabf195
                                                       Marianna
                                                                    FL
                                                                              Jackson
     3
                e19a0fa00aeda885b8a436757e889bc9
                                                    Sioux Falls
                                                                    SD
                                                                           Minnehaha
     4
                cd17d7b6d152cb6f23957346d11c3f07 New Richland
                                                                    MN
                                                                              Waseca
     5
                d2f0425877b10ed6bb381f3e2579424a
                                                     West Point
                                                                    VA King William
                  Zip
                                       Lng Population ...
                                                            TotalCharge
                            Lat
     CaseOrder
     1
                35621
                       34.34960 -86.72508
                                                            3726.702860
                                                  2951
     2
                32446 30.84513 -85.22907
                                                 11303 ... 4193.190458
     3
                                                            2434.234222
                57110
                       43.54321 -96.63772
                                                 17125
     4
                56072 43.89744 -93.51479
                                                  2162 ...
                                                            2127.830423
     5
                23181 37.59894 -76.88958
                                                  5287
                                                            2113.073274
               Additional_charges Item1 Item2 Item3
                                                        Item4 Item5 Item6 Item7
     CaseOrder
     1
                     17939.403420
                                       3
                                              3
                                                      2
                                                             2
                                                                   4
                                                                         3
                                                                               3
     2
                     17612.998120
                                       3
                                              4
                                                      3
                                                             4
                                                                   4
                                                                         4
                                                                               3
     3
                     17505.192460
                                       2
                                              4
                                                     4
                                                             4
                                                                   3
                                                                         4
                                                                               3
     4
                     12993.437350
                                       3
                                              5
                                                     5
                                                             3
                                                                   4
                                                                         5
                                                                               5
     5
                      3716.525786
                                       2
                                              1
                                                     3
                                                             3
                                                                   5
                                                                         3
                                                                                4
                Item8
     CaseOrder
                    4
     2
                    3
     3
                    3
     4
                    5
                    3
     5
     [5 rows x 49 columns]
```

[]: # View the last 5 rows of the dataframe df.tail()

[]:		Custome	r_id					Ir	nteract	cion '	\		
	CaseOrder												
	9996				94d-032								
	9997			70711574-f7b1-4a17-b15f-48c54564b70f 1d79569d-8e0f-4180-a207-d67ee4527d26									
	9998												
	9999				e69-2a6								
	10000	156	9847 b	:482	c02-f8c	:9-4	423-9	9de-3dl	5e62a	18d5			
							UID	1	City	State	(County	\
	CaseOrder												
	9996	39184d	.c28cc038	3871	912ccc4	500	049e5	No	orlina	NC	Ī	Warren	
	9997	3cd124	ccd4314	7404	292e883	bf9	ec55c	. I	${\tt Milmay}$	NJ	At:	lantic	
	9998	41b770	aeee97a	5b9e	7f69c90	6a8	119d7	Sout	chside	TN	Mont	gomery	
	9999	2bb491	ef5b1bel	o1fe	d758cc6	885	c167a	L	${\tt Quinn}$	SD	Penn	ington	
	10000	95663a	.20233800	00ab	df7e093	311c	2a8a1	Corac	polis	PA	Alle	egheny	
		Zip	La	at	L	ng	Popu	lation	Tot	talChai	rge \		
	CaseOrder								•••				
	9996	27563	36.4288	36	-78.237	'16		4762	•••	6850.9	942		
	9997	8340	39.4360	9	-74.873	802		1251		7741.6	390		
	9998	37171	36.366	55	-87.299	88		532	•••	8276.4	181		
	9999	57775	44.103	54 -	102.015	90		271	•••	7644.4	183		
	10000	15108	40.4999	98	-80.199	59		41524		7887.5	553		
		Additio	nal_cha	rges	Item1	It	em2	Item3	Item4	Item5	Item6	Item7	\
	CaseOrder												
	9996		8927	. 642	3		2	2	3	4	3	4	
	9997		28507	. 150	3		3	4	2	5	3	4	
	9998		15281	. 210	3		3	3	4	4	2	3	
	9999		7781	678	5		5	3	4	4	3	4	
	10000		11643	. 190	4		3	3	2	3	6	4	
		Item8											
	CaseOrder												
	9996	2											
	9997	4											
	9998	2											
	9999	3											
	10000	3											
	[5 rows x	49 colu	mns]										

[]: # Check the DataFrame information df.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
Index: 10000 entries, 1 to 10000
Data columns (total 49 columns):

#	Column	Non-Null Count	Dtype
0	Customer_id	10000 non-null	object
1	Interaction	10000 non-null	=
2	UID	10000 non-null	•
3	City	10000 non-null	<u> </u>
4	State	10000 non-null	<u> </u>
5	County	10000 non-null	•
6	Zip	10000 non-null	int64
7	Lat	10000 non-null	float64
8	Lng	10000 non-null	float64
9	Population	10000 non-null	int64
10	Area	10000 non-null	object
11	TimeZone	10000 non-null	object
12	Job	10000 non-null	object
13	Children	10000 non-null	int64
14	Age	10000 non-null	int64
15	Income	10000 non-null	float64
16	Marital	10000 non-null	object
17	Gender	10000 non-null	object
18	ReAdmis	10000 non-null	object
19	VitD_levels	10000 non-null	float64
20	Doc_visits	10000 non-null	int64
21	Full_meals_eaten	10000 non-null	int64
22	vitD_supp	10000 non-null	int64
23	Soft_drink	10000 non-null	object
24	Initial_admin	10000 non-null	object
25	HighBlood	10000 non-null	object
26	Stroke	10000 non-null	object
27	Complication_risk	10000 non-null	object
28	Overweight	10000 non-null	object
29	Arthritis	10000 non-null	object
30	Diabetes	10000 non-null	object
31	Hyperlipidemia	10000 non-null	object
32	BackPain	10000 non-null	object
33	Anxiety	10000 non-null	object
34	Allergic_rhinitis	10000 non-null	object
35	Reflux_esophagitis	10000 non-null	object
36	Asthma	10000 non-null	object
37	Services	10000 non-null	object
38	Initial_days	10000 non-null	float64
39	TotalCharge	10000 non-null	float64
40	Additional_charges	10000 non-null	float64
41	Item1	10000 non-null	int64
42	Item2	10000 non-null	int64
43	Item3	10000 non-null	int64
44	Item4	10000 non-null	int64
45	Item5	10000 non-null	int64

```
10000 non-null int64
     46 Item6
     47 Item7
                             10000 non-null int64
     48 Item8
                             10000 non-null int64
    dtypes: float64(7), int64(15), object(27)
    memory usage: 3.8+ MB
[ ]: # Check for duplicate rows.
     print(df.duplicated().value_counts())
     # Display the count of duplicate rows
     print('Total Duplicated Rows: ', df.duplicated().sum())
             10000
    False
    Name: count, dtype: int64
    Total Duplicated Rows: 0
[]: # Check for null values
     df.isnull().sum()
[]: Customer_id
                           0
    Interaction
                           0
    UID
                           0
    City
                           0
    State
                           0
    County
                           0
     Zip
                           0
    Lat
                           0
                           0
    Lng
    Population
                           0
                           0
     Area
    TimeZone
                           0
     Job.
                           0
     Children
                           0
     Age
                           0
     Income
                           0
    Marital
                           0
     Gender
                           0
    ReAdmis
                           0
    VitD_levels
                           0
    Doc_visits
                           0
    Full_meals_eaten
                           0
    vitD_supp
                           0
     Soft_drink
                           0
     Initial_admin
                           0
    HighBlood
                           0
     Stroke
                           0
     Complication_risk
     Overweight
```

```
Arthritis
                       0
Diabetes
                       0
Hyperlipidemia
BackPain
Anxiety
Allergic_rhinitis
                       0
Reflux_esophagitis
                       0
Asthma
                       0
Services
                       0
Initial days
                       0
TotalCharge
Additional_charges
Item1
                       0
Item2
                       0
Item3
                       0
Item4
                       0
Item5
                       0
Item6
                       0
Item7
Item8
dtype: int64
```

5 C2. EDA

```
'S_Options', 'S_Hours_Treatment', 'S_Staff', 'S_Active_Listening'], dtype='object')
```

[]:		Data Type	Unique	Values
	Customer_id	object		10000
	UID	object		10000
	Interaction	object		10000
	Initial_days	float64		9997
	TotalCharge	float64		9997
	Income	float64		9993
	VitD_levels	float64		9976
	Additional_charges	float64		9418
	Lng	float64		8725
	Zip	int64		8612
	Lat	float64		8588
	City	object		6072
	Population	int64		5951
	County	object		1607
	Job	object		639
	Age	int64		72
	State	object		52
	TimeZone	object		26
	Children	int64		11
	Doc_visits	int64		9
	Full_meals_eaten	int64		8
	S_T_Visits	int64		8
	S_T_Admission	int64		8
	S_Options	int64		7
	S_Reliability	int64		7
	S_T_Treatment	int64		7
	S_Staff	int64		7
	S_Hours_Treatment	int64		7
	S_Active_Listening	int64		7
	vitD_supp	int64		6
	Marital	object		5
	Services	object		4
		•		

Complication_risk	object	3
Area	object	3
Gender	object	3
Initial_admin	object	3
Asthma	object	2
Reflux_esophagitis	object	2
Overweight	object	2
Diabetes	object	2
Stroke	object	2
HighBlood	object	2
Soft_drink	object	2
Allergic_rhinitis	object	2
ReAdmis	object	2
Anxiety	object	2
BackPain	object	2
Hyperlipidemia	object	2
Arthritis	object	2

6 Cardinality and Data Type Summary of Variables

6.1 Ratio Variables (Continuous with an absolute zero)

- Income: 9993 unique values (float64)
- VitD_levels: 9976 unique values (float64)
- Initial_days: 9997 unique values (float64)
- TotalCharge: 9997 unique values (float64)
- Additional_charges: 9418 unique values (float64)
- Population: 5951 unique values (int64)
- Children: 11 unique values (int64)
- Age: 72 unique values (int64)
- Doc_visits: 9 unique values (int64)
- Full_meals_eaten: 8 unique values (int64)
- vitD_supp: 6 unique values (int64)

6.2 Interval Variables (Continuous without an absolute zero)

- Lat: 8588 unique values (float64)
- Lng: 8725 unique values (float64)

6.3 Ordinal Variables

- S_T_Admission: 8 unique values (int64)
- S_T_Treatment: 7 unique values (int64)
- S_T_Visits: 8 unique values (int64)
- S_Reliability: 7 unique values (int64)
- S_Options: 7 unique values (int64)
- S_Hours_Treatment: 7 unique values (int64)
- S_Staff: 7 unique values (int64)

• S_Active_Listening: 7 unique values (int64)

6.4 Nominal Variables (Categorical)

- Customer_id: 10000 unique values (object)
- Interaction: 10000 unique values (object)
- UID: 10000 unique values (object)
- City: 6072 unique values (object)
- State: 52 unique values (object)
- County: 1607 unique values (object)
- Zip: 8612 unique values (int64)
- Area: 3 unique values (object)
- TimeZone: 26 unique values (object)
- Job: 639 unique values (object)
- Marital: 5 unique values (object)
- Gender: 3 unique values (object)
- ReAdmis: 2 unique values (object)
- Soft_drink: 2 unique values (object)
- Initial_admin: 3 unique values (object)
- HighBlood: 2 unique values (object)
- Stroke: 2 unique values (object)
- Complication risk: 3 unique values (object)
- Overweight: 2 unique values (object)
- Arthritis: 2 unique values (object)
- Diabetes: 2 unique values (object)
- Hyperlipidemia: 2 unique values (object)
- BackPain: 2 unique values (object)
- Anxiety: 2 unique values (object)
- Allergic_rhinitis: 2 unique values (object)
- Reflux_esophagitis: 2 unique values (object)
- Asthma: 2 unique values (object)
- Services: 4 unique values (object)

Given the nature of the data, there are several variables that will be excluded from the analysis. Here is a brief summary of the variables that will be excluded and the rationale for their exclusion:

6.4.1 Current Strategy Overview:

- 1. **Broad Inclusion**: Start with a wide array of variables to capture potential influences on Initial_days.
- 2. Build Initial Model: Use this extensive dataset to identify significant predictors.
- 3. Analyze & Refine: Eliminate non-contributing or highly correlated variables based on initial model insights.
- 4. **Develop Reduced Model**: Focus on key variables for a streamlined, effective model.

6.4.2 Variables Eliminated:

- TotalCharge & Additional Charges: Possible high correlation and generally a result of Initial_days not a cause of.
- Latitude & Longitude: Limited interpretive value.
- Identifiers (Customer_id, Interaction, UID): High uniqueness; ethical concerns.
- Geographic (City, State, County, Zip): Overly detailed, increasing model complexity.
- **TimeZone**: Relevance to hospital stay length is questionable.
- Job: Subjective and variable in interpretation.

[]:		Populat	ion	Area	Children	Age	Income	Marital	Gender	\
	CaseOrder									
	1	2	951	Suburban	1	53	86575.93	Divorced	Male	
	2	11	303	Urban	3	51	46805.99	Married	Female	
	3	17	125	Suburban	3	53	14370.14	Widowed	Female	
	4	2	162	Suburban	0	78	39741.49	Married	Male	
	5	5	287	Rural	1	22	1209.56	Widowed	Female	
	•••			•••	*** ***	•••	•••	•••		
	9996	4	762	Urban	2	25	45967.61	Widowed	Male	
	9997	1	251	Urban	4	87	14983.02	Widowed	Male	
	9998		532	Rural	3	45	65917.81	Separated	Female	
	9999		271	Rural	3	43	29702.32	Divorced	Male	
	10000	41	524	Urban	8	70	62682.63	Separated	Female	
		ReAdmis	Vit	D_levels	Doc_visits	•••	Service	s S_T_Admi	ssion \	
	CaseOrder					•••				
	1	No	1	9.141466	6		Blood Wor	k	3	
	2	No	1	8.940352	4		Intravenou	s	3	

```
3
                    No
                          18.057507
                                              4
                                                      Blood Work
                                                                              2
     4
                                                      Blood Work
                                                                              3
                    No
                          16.576858
                                              4
                                                                              2
     5
                    No
                          17.439069
                                              5
                                                         CT Scan
     9996
                    No
                          16.980860
                                              4
                                                     Intravenous
                                                                              3
                                                                              3
     9997
                   Yes
                          18.177020
                                              5
                                                         CT Scan
     9998
                   Yes
                          17.129070
                                              4
                                                     Intravenous
                                                                              3
     9999
                                              5
                                                      Blood Work
                                                                              5
                   Yes
                          19.910430
                          18.388620
     10000
                                              5
                                                      Blood Work
                                                                              4
                   Yes
               S_T_Treatment S_T_Visits S_Reliability S_Options S_Hours_Treatment \
     CaseOrder
                                      2
                                                     2
     1
                           3
                                                               4
                                                                                 3
     2
                           4
                                      3
                                                     4
                                                               4
                                                                                 4
     3
                           4
                                      4
                                                     4
                                                               3
                                                                                 4
     4
                           5
                                      5
                                                               4
                                                                                 5
                                                     3
     5
                           1
                                      3
                                                     3
                                                               5
                                                                                 3
                           2
                                      2
                                                     3
                                                                                 3
     9996
                                                               4
                           3
                                                     2
                                                                                 3
     9997
                                      4
                                                               5
     9998
                           3
                                      3
                                                     4
                                                               4
                                                                                 2
     9999
                           5
                                      3
                                                     4
                                                               4
                                                                                 3
     10000
                           3
                                      3
                                                     2
                                                               3
                                                                                 6
               S_Staff S_Active_Listening Initial_days
     CaseOrder
                     3
                                        4
                                             10.585770
     2
                     3
                                        3
                                              15.129562
                     3
                                        3
     3
                                              4.772177
     4
                     5
                                        5
                                              1.714879
     5
                     4
                                        3
                                              1.254807
                                        2
                                             51.561220
     9996
                     4
     9997
                     4
                                        4
                                             68.668240
                     3
                                        2
     9998
                                             70.154180
     9999
                     4
                                        3
                                             63.356900
     10000
                                        3
                                             70.850590
     [10000 rows x 36 columns]
[]: # Summary Stats For ratio and interval variables (numerical summary)
     selected_columns = df_reduced[['Population', 'Age', 'Income', 'VitD_levels', |
      selected_columns.describe()
[]:
               Population
                                    Age
                                                 Income
                                                          VitD_levels
                                                                         Doc_visits \
```

10000.000000

10000.000000

10000.000000

count

10000.000000

10000.000000

mean	9965.253800	53.511700	40490.495160	17.964262	5.012200
std	14824.758614	20.638538	28521.153293	2.017231	1.045734
min	0.000000	18.000000	154.080000	9.806483	1.000000
25%	694.750000	36.000000	19598.775000	16.626439	4.000000
50%	2769.000000	53.000000	33768.420000	17.951122	5.000000
75%	13945.000000	71.000000	54296.402500	19.347963	6.000000
max	122814.000000	89.000000 20	07249.100000	26.394449	9.000000
	Full_meals_eaten	${\tt vitD_supp}$	$Initial_days$		
count	10000.000000	10000.000000	10000.000000		
mean	1.001400	0 000000			
	1.001400	0.398900	34.455299		
std	1.001400	0.398900			
std min			26.309341		
	1.008117	0.628505	26.309341 1.001981		
min	1.008117 0.000000	0.628505 0.000000	26.309341 1.001981 7.896215		
min 25%	1.008117 0.000000 0.000000	0.628505 0.000000 0.000000	26.309341 1.001981 7.896215		

6.4.3 Initial Takeaways:

max

7.000000

• Population: Averages 9965 with a broad range (0 to 122814), suggesting varied area sizes.

71.981490

• Age: Averages 53 years, ranging from 18 to 89, with a diverse age profile.

5.000000

- **Income**: Averages \$40,490, with wide variation (154 to 207249), indicating economic diversity.
- VitD_levels: Averages 17.96, mostly within a narrow range (9.81 to 26.39), suggesting more consistent levels across patients.
- Doc visits: Averages 5 visits, indicating a similar frequency of medical consultations.
- Full_meals_eaten: Averages slightly over 1 meal a day, with most patients having similar meal frequencies.
- vitD_supp: Averages less than 0.5 supplements, with low intake common among patients.
- Categorical nominal and ordinal variables are not included here and will include a separate summary of proportions along wit univariate and bivariate visualizations.
- Initial days: Our dependent (target) variable will be fully summarize and visualized below

```
[]: # To CSV before transform
    df_reduced.to_csv('df_reduced1.csv', index=False)

[]: # Boxplot for 'Initial_days'
    plt.figure(figsize=(6, 4))
    sns.boxplot(x=df_reduced['Initial_days'])
    plt.title('Boxplot for Initial_days')
    plt.show()
```

```
# Histogram for 'Initial_days'
plt.figure(figsize=(5, 4))
sns.histplot(data=df_reduced, x='Initial_days', kde=True)
plt.title('Histogram for Initial_days')
plt.show()

df_reduced['Initial_days'].describe()
```

Boxplot for Initial_days

[]:	count	10000.000000
	mean	34.455299
	std	26.309341
	min	1.001981
	25%	7.896215
	50%	35.836244
	75%	61.161020
	max	71.981490

Name: Initial_days, dtype: float64

- Boxplot Observations: The median appears to be above the mid-30s, suggesting that roughly half of the patients have shorter initial stays and the other half have longer. There are no visible outliers, indicating no extreme values or anomalies that fall outside the typical range. The interfertile range shows that the middle 50% of the data spans a rather large range, suggesting a concentration of data within this segment.
- **Histogram Observations**: The distribution is bimodal, with two peaks: one just under a few days and another around 70 days. This suggests there are two groups of patients with different typical hospital stay lengths. The histogram indicates that shorter initial stays are more common than longer stays, with a significant drop-off in frequency as the number of days increases towards the middle values. The spread between the two modes shows that there is variability in the data, not concentrated around a single central value. The bimodal distribution could imply two prevalent groups or clusters within the dataset for Initial_days. Understanding the reasons behind this bimodal distribution may require further investigation

into the underlying factors affecting hospital stay lengths. This distribution is important to kee in mind when interpreting the results of the regression analysis, as it may influence the model's predictive accuracy and the significance of the predictors.

Summary: Statistical measures for Initial_days across all patients in the dataset, including:

- Count: 10,000 observations. This represents the number of patients included in the analysis.
- Mean: Approximately 34 days. On average, patients spend a little over a month in the hospital.
- Standard Deviation: About 26 days. This indicates a wide variation in the length of hospital stays among patients; while some patients have short stays, others have significantly longer stays.
- Minimum: Just over 1 day. This shows that some patients are discharged almost immediately after admission.
- 25% (First Quartile): About 8 days or less. A quarter of the patients have hospital stays just over a week.
- Median (50%): Approximately 36 days. This is very close to the mean. However, the slight difference between the mean and median indicates a slight skew in the data.
- 75% (Third Quartile): About 61 days or less. Most patients are discharged within two months.
- \bullet Maximum: Nearly 72 days. Indicates that some patients have extended hospital stays.

7	C3.	Visua	lizati	ons		
			_			

7.0.1 G & H: References

- Western Governors University. (2023, December 21). D207 Medical_clean Dataset. Retrieved from https://lrps.wgu.edu/provision/227079957
- Western Governors University IT Department. (2023). R or Python? How to decide which programming language to learn. Retrieved from https://www.wgu.edu/online-it-degrees/programming-languages/r-or-python.html#
- Datacamp. (2023, December 12). D207 Exploratory Data Analysis. Retrieved from https://app.datacamp.com/learn/custom-tracks/custom-d207-exploratory-data-analysis
- Sewell, Dr. (2023). WGU D207 Exploratory Data Analysis [Webinars]. WGU Webex. Accessed December, 2023. https://wgu.webex.com/webappng/sites/wgu/meeting/info/c4aca2eac546482880f1557c938abf40?siteurl=wg

• Seaborn Developers. (2023). seaborn.scatterplot — seaborn 0.11.2 documentation. Retrieved December 22, 2023, from https://seaborn.pydata.org/generated/seaborn.scatterplot.html

OLD ABOVE DELETE? KEEP? as needed.

- Statology. (n.d.). The Five Assumptions of Multiple Linear Regression. Statology. Retrieved March 10, 2024, from www.statology.org/multiple-linear-regression-assumptions/
- Pennsylvania State University. (n.d.). 5.3 The Multiple Linear Regression Model. STAT 501. Retrieved March 10, 2024, from online.stat.psu.edu/stat501/lesson/5/5.3

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.info.html

8 Limitations

Beware of the following with your regression analysis:

Overfitting can occur due to limited data points.

Multicollinearity occurs when high association (correlation) with other IVs.

P-values can be unreliable and coefficients swing wildly

Check for pairwise correlations and high VIF (> 10)

Tune your model with as many variables as practical. Forward, backward, stepwise regression based on AIC, BIC, etc. ppoint 5 https://westerngovernorsuniversity-my.sharepoint.com/:p:/g/personal/william_sewell_wgu_edu/ERPQ0YpiQktOl-7YyAVnfLMBR5qeBh2cSv61VaJqe_aHKg?e=FjPhPz

9 Errata n notes

I'm wrapping up task 1, and my research question is 'what factors influence the total charge a patient receives'. Total charge has a bimodal distribution that I did a log transform on which helped tremendously. Regarding my final reduced model, the RSE is pretty good, both residual normality and homoscedasticity are mostly there. Both have slight variance from expectations around the tails. For fun I decided to re run my code but filtered my data for patients staying less than a month and it improved my RSE, normality and homoscedasticity. Should I change my research question or keep it broad and just explain the limitations of outlier patients?