Material Handling Systems

Mehmet Güray Güler, ph.d.

END4650

Yıldız Technical University

- Move loads over variable (horizontal and vertical) paths within a restricted area
- Used when there is insufficient (or intermittent) flow volume such that the use of a conveyor cannot be justified
- Provide
 - more flexibility in movement than conveyors
 - less flexibility in movement than industrial trucks
- Loads handled are more varied with respect to their shape and weight than those handled by a conveyor
- Most cranes utilize hoists for vertical movement

1. Jib crane

- Horizontal boom (jib) supported from a stationary vertical support
- Hoist can move along the jib and can be used for lifting

2. Bridge crane

- Bridge mounted on tracks that are located on opposite walls of the facility
- Enables three-dimensional handling

3. Gantry crane (Liman/Kızak Vinci)

- Single leg, double leg, and mobile types
- Similar to a bridge crane except that it is floor supported at one or both ends instead of overhead (wall) supported
- Used to span a smaller portion of the work area as compared to a bridge crane
- The supports can be fixed in position or they can travel on runways

4. Stacker crane

- Similar to a bridge crane except
 - instead of a hoist (zincir), it uses a mast(direk, gönder) with forks or a platform to handle unit loads
- Considered "fork trucks on a rail"
- Used for storing and retrieving unit loads in storage racks, especially in high-rise applications in which the racks are more than 15 meters
- Can be controlled remotely or by an operator in a cab on the mast
- Can be rack supported

- Industrial trucks are trucks that are not licensed to travel on public roads
- Commercial trucks are licensed to travel on public roads.
- Industrial trucks are:
 - Used to move materials over variable (horizontal) paths with no restrictions on the area covered (i.e., unrestricted area)
 - Provide vertical movement if the truck has lifting capabilities
 - Used when there is insufficient (or intermittent) flow volume such that the use of a conveyor cannot be justified
 - Provide more flexibility in movement than conveyors and cranes

- 1. Pallet/Non-Pallet
- 2. Manual/Powered:
- 3. Walk/Ride:
- 4. Stack [lift]/No Stack: Can the truck be used to lift loads for stacking purposes?
- 5. Narrow Aisle:
- 6. Automated:

- 1. Hand truck
- Non-Pallet + Walk + No Stack + Manual
- Simplest type of industrial truck

2. Pallet jack/Pallet truck [manual/powered=pallet truck]

- Pallet + Walk + No Stack
- Front wheels are mounted inside the end of the forks and extend to the floor as the pallet is only lifted enough to clear the floor for subsequent travel

I. Transport Equipment

Industrial Trucks

3. Walkie stacker [manual/powered]

- Pallet + Walk + Stack
- Similar to a counterbalanced lift truck except the operator cannot ride on the truck

5. Platform truck

- Non-Pallet + Powered + No Stack
- Platform used to provide support for *non-palletized* loads

6. Counterbalanced (CB) lift truck

- Pallet + Ride + Stack
- Sometimes referred to as a "fork truck" (but other attachments besides forks can be used)
- Weight of vehicle (and operator)
 behind the front wheels of truck
 <u>counterbalances</u> weight of the load
 (and weight of vehicle beyond front
 wheels);

 Front wheels act as fulcrum (destek noktası) or pivot point

- Workhorses of material handling because of their flexibility:
 - indoor/outdoor operation over a variety of different surfaces;
 - variety of load capacities available;
 - variety of attachments available—
 - fork attachments can replace the forks (e.g., carton clamps) or
 - enhance the capabilities of the forks (e.g., blades for slipsheets)

7. Narrow-aisle (NA) straddle truck

 Similar to stand-up CB lift truck, except outrigger arms straddle a load and are used to support the load instead of the counterbalance of the truck

 Less expensive than stand-up CB lift truck and NA reach truck

8. Narrow-aisle (NA) reach truck

Similar to both stand-up CB lift truck and NA straddle truck

 Load rests on the outrigger arms during transport, but a scissors mechanism is used for reaching

- Reaching capability enables the use of shorter outrigger arms (arms > ½ load depth) as compared to NA straddle truck (arms = load depth)
- Counterbalance of the truck used to support the load when it extends beyond the outrigger arms
- T=136 **We were here...**

Figure 7. Narrow-aisle lift truck comparison.

9. Turret (kule) truck

- Compared to other narrow-aisle trucks
 - Greater stacking height (40 ft. vs. 25 ft.),
 - but greater investment cost
- Does not rotate during stacking
 - Forks rotate to allow for side loading

10. Order picker

- Similar to NA straddle truck,
 - except operator lifted with the load to allow for less-than-unit-load picking
- Typically has forks to allow the truck to be used for pallet stacking and to support a pallet during less-than-pallet-load picking

11. Sideloader

- Forks mounted perpendicular to direction of travel to allow for side loading
- Can be used to handle greater-than-pallet-size loads (e.g., bar stock)

12. Tractor-trailer

 Non-load-carrying tractor used to pull a train of trailers (i.e., dollies or floor hand trucks)

Advantage: Enables a single operator to transport multiple floor

hand trucks in a single move

 Disadvantage: Requires wide aisles or open spaces to operate

 Typically used at airports for baggage handling

13. Personnel and burden carrier

• Non-load-carrying vehicle used to transport personnel within a facility (e.g., golf cart, bicycle, etc.)

14. Automatic guided vehicle (AGV)

- AGVs do not require an operator
- Good for high labor cost, hazardous, or environmentally sensitive
- AGVs good for
 - low-to-medium <u>volume</u>
 - medium-to-long *distance*

random material flow operations (e.g., transport between work cells in a flexible manufacturing system (FMS) environment)

- Two means of guidance can be used for AGV systems:
 - Fixed path:
 - Physical guidepath (e.g., wire, tape, paint) on the floor used for guidance
 - Free-ranging:
 - No physical guidepath, thus
 - easier to change vehicle path (in software),
 - but absolute position estimates (from, e.g., lasers) are needed

- Counterbalanced lift trucks (a.k.a. fork trucks) are the workhorses of material handling because of their flexibility:
 - Indoor/outdoor operation over a variety of different surfaces
 - Variety of load capacities available
 - Variety of attachments available;

SPECIFICATIONS

Specify The Model EC15 For All Your 2000-3000 lb (1000-1500 kg) Capacity Material Handling Needs

1	Manufactume					Catorpitar	
2	Model					FC15	
2	Capacity	rated load		- Ib	kg .	3000	1509
4	at load center	distance			mm	24	500
4	Power .	electric steam, gasoline, LP gas			Electric		
6	Steering control	pedestrian, stand-on, sit-down			sit-citrati		
7	Thes	cushtur, greuttatic			custion		
8	Wheels (x-driver)	number, front/rear			2x/2		
D	MENSIO	NS	Mission market and an area		- A	to a second	
9	Lift with standard fivo- stage mast	medinum fork height with rated load		in	on l	157	4006
10		maximum fork height		п	nn	130	3300
11		tree fork height		in	mire	4.1	106
12	Fork carriage	ITA Class			200	Ш	
13	Forte	Stockness undir length			mn	1.3 x 4 x 36	34x 100x 920
	Fork spacing	aut-to-cul	minimum/maximum	in.	mm.	7.9/02.3	200/800
14	Till of must	forward/back depress			5/10		
15	Overali dimensions	length to tork tace in			mm	73.2	1869
18		width	standard tiese	in	nm	37.2	945
			optional	in	mm	NA	
17		height	with invered must	it	mm	83	2110
18			with extended mast	in	mm	179.5	4560
19			to top of overtead goard	**	4000	63.7	2125
20			seat height	in	mm	45.7	1160
21	Minimum outside terming radius				mm	67	1700
22	Load moment constant, from center of front add to lork face				mm	14.2	360

• A truck's **approximate load capacity W** is given by the following:

$$W(F + L) = GB = W_0(F + L_0)$$

- Where
 - **G** = empty truck weight
 - **B** = Front axle to truck-load center dist
 - **F** = Front axle to fork-face dist.
 - **ULD** = unit load depth
 - L = Actual load center, distance from fork face to load center of gravity
 L = ULD/2 if constant density rectangular shaped load.
 - L_0 = rated load center (500mm)
 - W_0 =rated load capacity load capacity of the truck if the center of gravity of the load is 500mm away from the fork face.

- What is the maximum permissible load weight if the load's center of gravity, L, is greater than L=500mm? (De-rating)
- **Example:** Assuming a constant density rectangular-shaped load, ULD = 1250 mm, F = 250 mm, $W_0 = 1500 \text{ kg}$,

- What is the maximum permissible load weight if the load's center of gravity, L, is greater than L=500mm? (De-rating)
- Example: Assuming a constant density rectangular-shaped load, ULD = 1250 mm, F = 250 mm, $W_0 = 1500 \text{ kg}$,

$$W(F + L) = W_0(F + L_0)$$

$$W(250 + 625) = 1500(250 + 500)$$

$$W = 1285 \text{ kg}$$

 What if we add a counterbalance weight? How does the rated load capacity change?

- Example: Assume F=250 mm, $W_0 = 1500 \text{kg}$, and we add 250 kg to the back of the truck at a distance of 1500 mm from the front axle. Find new rated load capacity(W_0')? (Recall L_0 =500)
- $W_0'(F + L_0) = W_0(F + L_0) + \Delta W L_\Delta$
- $W_0'(250 + 500) = 1500(250 + 500) + (250)(1500)$
- $W_0' = 2000 \, \text{kg}$
- https://www.youtube.com/watch?v=v7Il PLezbo

