Correction du devoir surveillé 6.

Exercice 1

1°) a)

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} / (a, b, c) \in \mathbb{R}^3 \right\} \\
= \left\{ a. \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b. \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + c. \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} / (a, b, c) \in \mathbb{R}^3 \right\} \\
= \operatorname{Vect} \left(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$$

Donc \mathcal{N} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$

b) Soient $(N, M) \in \mathcal{N}^2$.

Il existe des réels a,b,c,a',b',c' tels que $N=\begin{pmatrix}0&a&b\\0&0&c\\0&0&0\end{pmatrix}$ et $M=\begin{pmatrix}0&a'&b'\\0&0&c'\\0&0&0\end{pmatrix}$. Calculons :

$$NM = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & a' & b' \\ 0 & 0 & c' \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & ac' \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ainsi $NM = \begin{pmatrix} 0 & a'' & b'' \\ 0 & 0 & c'' \\ 0 & 0 & 0 \end{pmatrix}$ avec a'' = c'' = 0 et b'' = ac', donc $NM \in \mathcal{N}$.

- $\mathbf{c)} \ \, \text{Soit} \ \, N = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{N}. \, \text{D'après le calcul de la question précédente}, \, N^2 = \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ $N^3 = NN^2 = \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & ac \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \, \text{donc} \, \boxed{N^3 = 0}.$
- **2°) a)** La matrice nulle n'est pas dans \mathcal{U} , puisque les éléments de \mathcal{U} sont des matrices dont tous les coefficients diagonaux sont égaux à 1. Donc \mathcal{U} n'est pas un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - b) Soient $(A, B) \in \mathcal{U}^2$, il existe des matrices N et M de \mathcal{N} telles que A = I + N et B = I + M. Donc AB = (I + N)(I + M) = I + N + M + NM. Comme \mathcal{N} est stable par produit, $NM \in \mathcal{N}$; et comme \mathcal{N} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, il est stable par somme, donc $N + M + NM \in \mathcal{N}$. Ainsi, $AB \in \mathcal{U}$. Donc \mathcal{U} est stable par produit.
 - c) Comme les matrices de \mathcal{U} sont toutes triangulaires avec tous leurs coefficients diagonaux non nuls (égaux à 1), elles sont toutes inversibles. Autrement dit, $\mathcal{U} \subset GL_3(\mathbb{R})$.

3°) a) Soit $\alpha \in \mathbb{R}$. Comme \mathcal{N} est stable par produit, $N^2 \in \mathcal{N}$. Comme \mathcal{N} est stable par combinaison linéaire (c'est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$), $\alpha N + \frac{\alpha(\alpha-1)}{2}N^2 \in \mathcal{N}$.

Comme $U^{(\alpha)} = I + \alpha N + \frac{\alpha(\alpha - 1)}{2} N^2$, cela justifie que $U^{(\alpha)} \in \mathcal{U}$

b) Soit $(\alpha, \beta) \in \mathbb{R}^2$. calculons :

$$\begin{split} U^{(\alpha)}U^{(\beta)} &= \left(I + \alpha N + \frac{\alpha(\alpha - 1)}{2}N^2\right) \left(I + \beta N + \frac{\beta(\beta - 1)}{2}N^2\right) \\ &= I + \beta N + \frac{\beta(\beta - 1)}{2}N^2 + \alpha N + \alpha\beta N^2 + \alpha\frac{\beta(\beta - 1)}{2}N^3 \\ &\quad + \frac{\alpha(\alpha - 1)}{2}N^2 + \frac{\alpha(\alpha - 1)}{2}\beta N^3 + \frac{\alpha(\alpha - 1)}{2}\frac{\beta(\beta - 1)}{2}N^4 \\ &= I + \beta N + \frac{\beta(\beta - 1)}{2}N^2 + \alpha N + \alpha\beta N^2 + \frac{\alpha(\alpha - 1)}{2}N^2 \quad \text{car } N^3 = 0 \text{ et donc } N^4 = 0 \\ &= I + (\alpha + \beta)N + \frac{\beta^2 - \beta + 2\alpha\beta + \alpha^2 - \alpha}{2}N^2 \\ &= I + (\alpha + \beta)N + \frac{(\alpha + \beta)(\alpha + \beta - 1)}{2}N^2 \end{split}$$

 $U^{(\alpha)}U^{(\beta)} = U^{(\alpha+\beta)}$

$$U^{(\alpha)} = I + M$$
 avec $M = \alpha N + \frac{\alpha(\alpha - 1)}{2} N^2$ donc :

$$(U^{(\alpha)})^{(\beta)} = I + \beta M + \frac{\beta(\beta - 1)}{2} M^{2}$$

$$= I + \alpha \beta N + \frac{\alpha(\alpha - 1)}{2} \beta N^{2} + \frac{\beta(\beta - 1)}{2} \left(\alpha N + \frac{\alpha(\alpha - 1)}{2} N^{2}\right)^{2}$$

$$= I + \alpha \beta N + \frac{\alpha(\alpha - 1)}{2} \beta N^{2} + \frac{\beta(\beta - 1)}{2} \left(\alpha^{2} N^{2} + 2\frac{\alpha^{2}(\alpha - 1)}{2} N^{3} + \frac{\alpha^{2}(\alpha - 1)^{2}}{2^{2}} N^{4}\right)$$

par la formule du binôme car N et N^2 commutent

$$= I + \alpha \beta N + \frac{\alpha \beta (\alpha - 1) + \beta (\beta - 1) \alpha^2}{2} N^2 \qquad \text{car } N^3 = N^4 = 0$$

$$= I + \alpha \beta N + \frac{-\alpha \beta + \beta^2 \alpha^2}{2} N^2$$

$$= I + \alpha \beta N + \frac{\alpha \beta (\alpha \beta - 1)}{2} N^2$$

$$U^{(\alpha)} = U^{(\alpha\beta)}$$

- c) Posons, pour tout $n \in \mathbb{N}^*$, $P_n : U^{(n)} = U^n$.
 - $U^{(1)} = I + 1.N + \frac{1(1-1)}{2}N^2 = I + N = U = U^1$, donc P_1 est vraie.
 - Supposons P_n vraie pour un $n \in \mathbb{N}^*$ fixé. D'après la question précédente,

$$U^{(n+1)}=U^{(n)}U^{(1)}\\ =U^nU^1$$
 d'après l'hypothèse de récurrence, et parce que P_1 est vraie
$$=U^{n+1}$$

Donc P_{n+1} est vraie.

• Conclusion : pour tout $n \in \mathbb{N}^*$, $U^{(n)} = U^n$

d) Comme I et N commutent, par la formule du binôme de Newton, pour tout $n \geq 2$,

$$U^{n} = (I+N)^{n} = \sum_{k=0}^{n} \binom{n}{k} I^{n-k} N^{k}$$

$$= \sum_{k=0}^{2} \binom{n}{k} N^{k} \quad \text{car si } k \ge 3, \ N^{k} = 0$$

$$= \binom{n}{0} N^{0} + \binom{n}{1} N^{1} + \binom{n}{2} N^{2}$$

$$= I + nN + \frac{n(n-1)}{2} N^{2}$$

$$\boxed{U^{n} = U^{(n)}}$$

Par ailleurs, $U^0 = I$ et $U^{(0)} = I + 0.N + \frac{0(0-1)}{2}N^2 = I$, donc <u>le résultat est encore vrai pour n = 0</u>, également <u>pour n = 1</u> comme vu à la question précédente (c'était P_1).

- e) On a: $U^{(-1)} = I N + \frac{(-1)(-1-1)}{2}N^2 = I N + N^2$. Calculons: $U^{(-1)} \times U = (I - N + N^2)(I + N) = I + N - N - N^2 + N^2 + N^3 = I$ (puisque $N^3 = 0$). De même, on trouve $U \times U^{(-1)} = I$, donc $U^{-1} = U^{(-1)}$.
- **4°) a)** D'après la question 3, $U=U^{(1)}=U^{(\frac{1}{2}+\frac{1}{2})}=U^{(\frac{1}{2})}U^{(\frac{1}{2})}=\left(U^{(\frac{1}{2})}\right)^2$, donc $C=U^{(\frac{1}{2})}$ convient.

Comme
$$U = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = I + N \text{ avec } N = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}. \text{ On a } N^2 = \begin{pmatrix} 0 & 0 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

donc on obtient
$$C = I + \frac{1}{2}N + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2}N^2 = I + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Ainsi,
$$C = \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
 vérifie $C^2 = U$.

b) Comme la matrice C telle que $C^2 = U$ proposée à la question 4a est unipotente, elle est non nulle, donc $C \neq -C$, et -C est une autre matrice solution, puisque $(-C)^2 = C^2 = U$. Donc il n'y a pas une unique solution à l'équation $C^2 = U$.

Exercice 2

- $\mathbf{1}^{\circ}$) On note, pour $n \in \mathbb{N}, H_n : F_n \in \mathbb{N}$.
 - \star H_0 et H_1 sont vraies.
 - ★ On suppose que H_n et H_{n+1} sont vraies pour un rang n fixé dans $\mathbb{N}: F_n \in \mathbb{N}$ et $F_{n+1} \in \mathbb{N}$. $F_{n+2} = F_{n+1} + F_n$ est élément de \mathbb{N} comme somme de deux éléments de \mathbb{N} . Donc H_{n+2} est vraie.
 - \bigstar On a montré par récurrence double que : $\forall n \in \mathbb{N}, F_n \in \mathbb{N}$
- **2**°) On pose, pour $n \in \mathbb{N}^*$, $H_n : A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$.
 - ★ Pour $n = 1: \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = A = A^1$. Donc H_1 est vraie.

 \star On suppose H_n vraie pour un rang n fixé dans \mathbb{N}^* .

$$\begin{split} A^{n+1} &= A^n \times A = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} F_{n+1} + F_n & F_{n+1} \\ F_n + F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix} \end{split}$$

Donc H_{n+1} est vraie.

 \bigstar On a montré par récurrence que : $\forall n \in \mathbb{N}^*, A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$.

3°)
$$A^0 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. Donc, en posant $F_{-1} = 1$, on a bien $A^0 = \begin{pmatrix} F_1 & F_0 \\ F_0 & F_{-1} \end{pmatrix}$.

4°) **a**) Soit $n \in \mathbb{N}, m \in \mathbb{N}$.

$$A^{n+m} = A^n \times A^m \text{ donc } \begin{pmatrix} F_{n+m+1} & F_{n+m} \\ F_{n+m} & F_{n+m-1} \end{pmatrix} = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \times \begin{pmatrix} F_{m+1} & F_m \\ F_m & F_{m-1} \end{pmatrix}.$$

En considérant par exemple le coefficient d'indice $(2,1): \overline{F_{n+m} = F_n F_{m+1} + F_{n-1} F_m}$

b) Soit $p \in \mathbb{N}$. $F_{2p+1} = F_{(p+1)+p}$.

On pose : n = p + 1 et m = p. On a bien $n \in \mathbb{N}$ et $m \in \mathbb{N}$.

Donc, par la question précédente : $F_{2p+1} = F_{p+1}^2 + F_p^2$.

De plus, par 1, F_{p+1} et F_p sont entiers.

Ainsi, pour tout $p \in \mathbb{N}$, F_{2p+1} est la somme de deux carrés d'entiers

Exemple : On calcule les premières valeurs de la suite (F_n) .

$$89 = F_{11} = F_{2 \times 5 + 1} \text{ donc } 89 = F_6^2 + F_5^2 \text{ ie } \boxed{89 = 8^2 + 5^2}$$

5°) **a)**
$$A^2 = \begin{pmatrix} F_3 & F_2 \\ F_2 & F_1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
. Donc $A^2 = A + I$

b) Soit $n \in \mathbb{N}$. $A^2 = A + I$. $A^{2n} = (A^2)^n = (A+I)^n$.

Or A et I commutent donc, par la formule du binôme de Newton :

$$A^{2n} = \sum_{k=0}^{n} \binom{n}{k} A^k I^{n-k} = \sum_{k=0}^{n} \binom{n}{k} A^k.$$
Ainsi, $\begin{pmatrix} F_{2n+1} & F_{2n} \\ F_{2n} & F_{2n-1} \end{pmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{F_{k+1} & F_k}{F_k & F_{k-1}}.$

En évaluant par exemple le coefficient d'indice (2,1) : $F_{2n} = \sum_{k=0}^{n} \binom{n}{k} F_k$

 6°) a) On effectue 2 calculs :

$$(I-A)\times (-A)=-A+A^2=-A+A+I=I$$
 en utilisant 5a $(-A)\times (I-A)=-A+A^2=I$

On en déduit que I - A est inversible et $(I - A)^{-1} = -A$

b) Soit $n \in \mathbb{N}$. $(I - A)(I + A + A^2 + \dots + A^n) = I + A + A^2 + \dots + A^n - (A + A^2 + \dots + A^{n+1})$. Par téléscopage, $(I - A)(I + A + A^2 + \dots + A^n) = I - A^{n+1}$. c) Soit $n \in \mathbb{N}$.

Comme I-A est inversible, en multipliant l'égalité précédente à gauche par $(I-A)^{-1}$: $I+A+\cdots+A^n=(I-A)^{-1}(I-A^{n+1})$.

Or
$$(I - A)^{-1} = -A$$
 par 6a donc $\sum_{k=0}^{n} A^k = -A(I - A^{n+1}) = A^{n+2} - A$.

Ainsi,
$$\sum_{k=0}^{n} \begin{pmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{pmatrix} = \begin{pmatrix} F_{n+3} & F_{n+2} \\ F_{n+2} & F_{n+1} \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

En explicitant le coefficient d'indice (2,1) : $\sum_{k=0}^{n} F_k = F_{n+2} - 1$.

Exercice 3

1°) Soit $u = (x, y, z) \in \mathbb{R}^3, v = (x', y', z') \in \mathbb{R}^3, \lambda \in \mathbb{R}$.

$$f(\lambda u + v) = f(\lambda x + x', \lambda y + y', \lambda z + z')$$

$$= (\lambda x + x' + \lambda y + y + 2(\lambda z + z), \lambda x + x', \lambda y + y')$$

$$= (\lambda (x + y + 2z) + x' + y' + 2z', \lambda x + x', \lambda y + y')$$

$$= \lambda (x + y + 2z, x, y) + (x' + y' + 2z', x', y')$$

$$= \lambda f(u) + f(v)$$

Donc f est linéaire. De plus, f va de \mathbb{R}^3 dans \mathbb{R}^3 donc $f \in \mathcal{L}(\mathbb{R}^3)$.

 2°) Soit $u = (x, y, z) \in \mathbb{R}^3$.

$$u \in \operatorname{Ker} f \iff f(x, y, z) = (0, 0, 0)$$

$$\iff \begin{cases} x + y + 2z = 0 \\ x = 0 \\ y = 0 \end{cases}$$

$$\iff x = y = z = 0$$

Donc $Ker(f) = \{(0,0,0)\}\$. On en déduit que f est injective

3°) a) Pour tout $(x, y, z) \in \mathbb{R}^3$,

$$f^{2}(x, y, z) = f(f(x, y, z)) = f(x + y + 2z, x, y)$$

$$= (x + y + 2z + x + 2y, x + y + 2z, x)$$

$$f^{2}(x, y, z) = (2x + 3y + 2z, x + y + 2z, x)$$

$$f^{3}(x, y, z) = f(f^{2}(x, y, z))$$

$$f^{3}(x, y, z) = (5x + 4y + 4z, 2x + 3y + 2z, x + y + 2z)$$

b) Pour tout $(x, y, z) \in \mathbb{R}^3$,

$$(f^{2} + f + 2id)(x, y, z) = f^{2}(x, y, z) + f(x, y, z) + 2(x, y, z)$$

$$= (2x + 3y + 2z, x + y + 2z, x) + (x + y + 2z, x, y) + (2x, 2y, 2z)$$

$$= (5x + 4y + 4z, 2x + 3y + 2z, x + y + 2z)$$

$$= f^{3}(x, y, z),$$

$$donc f^3 = f^2 + f + 2id.$$

c) On en déduit que $f^3 - f^2 - f = 2id$, ce qui peut s'écrire :

$$f \circ \left(\frac{1}{2}\left(f^2 - f - \mathrm{id}\right)\right) = \left(\frac{1}{2}\left(f^2 - f - \mathrm{id}\right)\right) \circ f = \mathrm{id}$$

On en tire que f est bijective et que $f^{-1} = \frac{1}{2} (f^2 - f - id)$

4°) a)

$$g^{2} = (f^{2} + f + id) \circ (f^{2} + f + id)$$

$$= f^{2} \circ f^{2} + f \circ f^{2} + f^{2} \circ id + f \circ f^{2} + f \circ id + id \circ f^{2} + id \circ f + id \circ id$$

$$= f^{4} + 2f^{3} + 3f^{2} + 2f + id$$

$$= (f^{3} + f^{2} + 2f) + 2(f^{2} + f + 2id) + 3f^{2} + 2f + id \quad \text{car } f^{3} = f^{2} + f + 2id$$

$$= (f^{2} + f + 2id) + 6f^{2} + 6f + 5id$$

$$= 7f^{2} + 7f + 7id$$

Ainsi $g^2 = 7g$.

- **b)** p est un endomorphisme de \mathbb{R}^3 et $p^2 = \frac{1}{7^2}g^2 = \frac{1}{7}g = p$, donc p est un projecteur.
- c) On a $f^3 = f^2 + f + 2id$, donc $g = f^3 id$. Ainsi, pour tout $(x, y, z) \in \mathbb{R}^3$, g(x, y, z) = (4x + 4y + 4z, 2x + 2y + 2z, x + y + z). On sait que p est la projection sur Im(p) parallèlement à Ker(p). Soit $(x, y, z) \in \mathbb{R}^3$:

$$(x, y, z) \in \text{Ker}(p) \iff p(x, y, z) = 0$$

 $\iff g(x, y, z) = 0$
 $\iff x + y + z = 0$
 $\iff x = -y - z$

Donc $\operatorname{Ker}(p) = \{ (-y - z, y, z) / (y, z) \in \mathbb{R}^2 \} = \{ y(-1, 1, 0) + z(-1, 0, 1) / (y, z) \in \mathbb{R}^2 \}$ $\left[\operatorname{Ker}(p) = \operatorname{Vect}((-1, 1, 0), (-1, 0, 1)) \right]$

Pour tout $(x, y, z) \in \mathbb{R}^3$, $p(x, y, z) = \frac{x + y + z}{7} (4, 2, 1)$. $\frac{x + y + z}{7}$ décrit \mathbb{R} donc $[\operatorname{Im}(p) = \operatorname{Vect}((4, 2, 1))]$.

- d) q est la projection associée à p, autrement dit la projection sur Ker(p) parallèlement à Im(p)
- **5°) a)** $p \circ q = p \circ (\mathrm{id} p) = p p^2 \text{ donc } \boxed{p \circ q = 0}$. De même, $\boxed{q \circ p = 0}$. $f^3 = g + \mathrm{id} = 7p + \mathrm{id} \text{ donc } \boxed{f^3 = 8p + q}$.
 - **b)** On pose, pour tout $n \in \mathbb{N}$, $H_n : f^{3n} = 8^n p + q$.
 - $f^0 = id$, et $8^0 p + q = p + q = id$. Donc H_0 est vraie.
 - On suppose H_n vraie pour un rang $n \in \mathbb{N}$ fixé.

$$f^{3(n+1)} = f^{3n+3} = f^{3n} \circ f^3$$

$$= (8^n p + q) \circ (8p + q)$$

$$= 8^{n+1} p^2 + 8^n p \circ q + 8q \circ p + q^2$$

$$= 8^{n+1} p + q$$

Donc H_{n+1} est vraie.

• On a montré par récurrence que, pour tout $n \in \mathbb{N}$, $f^{3n} = 8^n p + q$.

c) Soit
$$n \in \mathbb{N}$$
. Comme $p = \frac{1}{7}g$ et $q = id - p$, $f^{3n} = \frac{8^n}{7}g + id - \frac{1}{7}g$ donc $f^{3n} = \frac{8^n - 1}{7}g + id$.

- **6°) a)** Pour tout $n \in \mathbb{N}$, $X_{n+1} = (x_{n+3}, x_{n+2}, x_{n+1}) = (x_{n+2} + x_{n+1} + 2x_n, x_{n+2}, x_{n+1})$. Done, $X_{n+1} = X_n$.
 - **b)** Montrons par récurrence sur n que pour tout $n \in \mathbb{N}$, $X_n = f^n(X_0)$.
 - C'est vrai au rang 0 car $f^0 = id$ donc $f^0(X_0) = X_0$.
 - Si c'est vrai au rang $n \in \mathbb{N}$, alors $X_{n+1} = f(X_n) = f(f^n(X_0)) = f^{n+1}(X_0)$.
 - Conclusion : pour tout $n \in \mathbb{N}$, $X_n = f^n(X_0)$.
 - c) On a donc, pour tout $n \in \mathbb{N}$:

$$(x_{3n+2}, x_{3n+1}, x_{3n}) = X_{3n} = f^{3n}(X_0)$$

$$= \frac{8^n - 1}{7} g(x_2, x_1, x_0) + id(x_2, x_1, x_0)$$

$$= \frac{8^n - 1}{7} (4x_2 + 4x_1 + 4x_0, 2x_2 + 2x_1 + 2x_0, x_2 + x_1 + x_0) + (x_2, x_1, x_0)$$

D'où, pour tout
$$n \in \mathbb{N}$$
:
$$\begin{cases} x_{3n+2} = \frac{8^n - 1}{7} (4x_2 + 4x_1 + 4x_0) + x_2 \\ x_{3n+1} = \frac{8^n - 1}{7} (2x_2 + 2x_1 + 2x_0) + x_1 \\ x_{3n} = \frac{8^n - 1}{7} (x_2 + x_1 + x_0) + x_0 \end{cases}$$

Exercice 4

 $\mathbf{1}^{\circ}$) Supposons que P soit solution de (*) et que a soit racine de P. Évaluons (*) en a+1:

$$P((a+1)^2 - 1) = P(a+1-1)P(a+1+1) = P(a)P(a+2) = 0 \text{ car } P(a) = 0.$$

Ainsi $(a+1)^2 - 1$ est racine de P.

De même, en évaluant en a-1, on trouve que $(a-1)^2-1$ est racine de P.

- **2°) a)** On suppose a > 0. On note, pour $n \in \mathbb{N}, H_n : u_n > 0$.
 - On a $u_0 = a > 0$ par hypothèse donc H_0 est vraie.
 - Supposons que H_n est vraie pour pour un $n \in \mathbb{N}$ fixé, alors $u_{n+1} = u_n^2 + 2u_n > 0$ comme somme de deux réels strictement positifs. Donc H_{n+1} est vraie.
 - Conclusion : on a montré par récurrence que, pour tout $n \in \mathbb{N}$, $u_n > 0$.

Pour tout $n \in \mathbb{N}$, $u_{n+1} - u_n = u_n^2 + u_n$, donc $u_{n+1} - u_n > 0$ comme somme de deux réels strictement positifs.

Donc la suite $|(u_n)|$ est strictement croissante .

- **b)** Pour $n \in \mathbb{N}$, on pose $H_n : u_n + 1 = (a+1)^{2^n}$.
 - H_0 est vraie car $u_0 + 1 = a + 1 = (a+1)^{2^0}$
 - Supposons H_n vraie pour un $n \in \mathbb{N}$ fixé. On a alors

$$u_{n+1} + 1 = u_n^2 + 2u_n + 1 = (u_n + 1)^2 = ((a+1)^{2^n})^2 = (a+1)^{2^{n+1}}.$$

Ainsi, H_{n+1} est vraie.

- On a montré par récurrence que, pour tout $n \in \mathbb{N}$, $u_n + 1 = (a+1)^{2^n}$
- **3°)** Supposons P solution de (*) et a racine de P. Posons, $\forall n \in \mathbb{N} : H_n : u_n$ est racine de P.
 - H_0 est vraie par hypothèse car $u_0 = a$.

- Supposons que H_n soit vraie pour un $n \in \mathbb{N}$ fixé. Comme u_n est racine de P, en appliquant le résultat de la question 1, on a que $(u_n+1)^2-1=$ $u_n^2 + 2u_n = u_{n+1}$ est racine de P.
- Conclusion : pour tout $n \in \mathbb{N}$, u_n est racine de P.
- 4°) a) Raisonnons par l'absurde : supposons que P admette au moins une racine réelle strictement positive a. On définit la suite (u_n) comme en question 2. D'après la question 3, tous les réels u_n sont racines de P. Par ailleurs, comme $u_0 = a > 0$, la suite (u_n) est strictement croissante par la question 2.a. Ainsi P admet une infinité de racines distinctes; donc P est nul, donc constant. Exclu par hypothèse. Donc |P| n'admet pas de racine strictement positive
 - b) Si -1 était racine de P, alors, en utilisant la question 1, le réel $(-1-1)^2-1=3>0$ serait également racine de P, ce qui est impossible d'après la question précédente. Donc |-1 n'est pas racine de P
- 5°) a) D'après ce qui précède, comme a est une racine complexe de P, les complexes u_n définis en question 2 sont des racines de P. Puisque P est non constant, il est non nul, donc il n'a qu'un nombre fini de racines. Donc la suite (u_n) ne prend qu'un nombre fini de valeurs, donc (u_n+1) aussi, donc la suite réelle $(|u_n+1|)$ aussi; ainsi $|(v_n)|$ ne prend qu'un nombre fini de valeurs
 - **b)** Notons, pour tout $n \in \mathbb{N}$, $w_n = \lambda^{2^n}$. Si $\lambda = 1$ ou $\lambda = 0$, la suite (w_n) est constante donc non strictement monotone. Supposons maintenant $\lambda \neq 0$ et $\lambda \neq 1$.

Pour tout $n \in \mathbb{N}$, $w_n > 0$, et $\frac{w_{n+1}}{w_n} = \frac{\lambda^{2^{n+1}}}{\lambda^{2^n}} = \lambda^{2^{n+1}-2^n} = \lambda^{2^n}$.

Comme $2^n > 0$, si $\lambda > 1$, $\lambda^{2^n} > 1$, et si $\lambda \in [0, 1]$, $\lambda^{2^n} < 1$.

Ainsi (w_n) est strictement croissante si $\lambda > 1$ et strictement décroissante si $\lambda \in]0,1[$.

Finalement, la suite est strictement monotone si et seulement si λ est différent de 0 et de 1

c) Reprenons la suite (v_n) définie à la question a. D'après la question 2.b, pour tout $n \in \mathbb{N}$, $v_n = |(a+1)^{2^n}| = \lambda^{2^n} \text{ avec } \lambda = |a+1|.$ D'après la question précédente, si $|a+1| \notin \{0,1\}$, alors la suite (v_n) est strictement monotone, ce qui est exclu puisqu'elle prend seulement un nombre fini de valeurs d'après la question a. On a donc nécessairement |a+1|=1 ou |a+1|=0. $|a+1|=0 \iff a=-1$, ce qui est exclu d'après la question 4.b.

Ainsi on a |a + 1| = 1.

d) Comme P est non constant, P admet au moins une racine complexe; notons a une telle racine. Écrivons a sous forme algébrique : a = x + iy, avec x et y des réels. D'après la question précédente, |a+1|=1 et |a-1|=1, d'où, en passant au carré :

$$\begin{cases} (x+1)^2 + y^2 = 1 \\ (x-1)^2 + y^2 = 1 \end{cases}$$
 i.e.
$$\begin{cases} x^2 + 2x + 1 + y^2 = 1 \\ x^2 - 2x + 1 + y^2 = 1 \end{cases}$$
 d'où
$$\begin{cases} x^2 + 2x + y^2 = 0 \\ -4x = 0 \end{cases}$$

Ainsi x = 0 et donc $y^2 = 0$, donc y = 0. Donc a = 0. Ainsi, la seule racine de P est 0.

- 6°) D'après ce qui précède, Les polynômes non constants vérifiant (*) sont des polynômes complexes n'admettant que 0 pour racine, donc de la forme αX^k avec $\alpha \neq 0$ et $k \in \mathbb{N}^*$.
 - Réciproquement, soit P un polynôme de la forme $P = \alpha X^k$, avec $\alpha \neq 0$ et $k \in \mathbb{N}^*$.

$$P \text{ v\'erifie } (*) \iff \alpha (X^2 - 1)^k = \alpha^2 (X - 1)^k (X + 1)^k$$

$$\iff (X^2 - 1)^k = \alpha \left((X - 1)(X + 1) \right)^k \text{ car } \alpha \neq 0$$

$$\iff (X^2 - 1)^k = \alpha (X^2 - 1)^k$$

$$\iff 1 = \alpha \text{ car } (X^2 - 1)^k \text{ n'est pas le polyn\^ome nul}$$

En conclusion, l'ensemble des polynômes non constants solutions de (*) est $X^k / k \in \mathbb{N}^*$