COMS 331: Theory of Computation Summer 2023

Homework Assignment 3

Due: 11:59PM, June 9 (Friday).

Problem 1 (90 points)

1. Give an English description of the language generated by the grammar $G = (\{S, A\}, \{a, b\}, S, P)$, where the productions P are:

$$S \to aA, A \to abS, S \to \epsilon.$$

2. Give an English description of the language generated by the grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$, where the rules P are:

$$S \to b, S \to Aa, A \to B, B \to Aa$$

3. Give an English description of the language generated by the grammar $G = (\{S, A, B\}, \{a\}, S, P)$, where the rules P are:

$$S \to Aa, A \to B, B \to Aa.$$

4. Give the derivation of string aabab using the grammar $G = (\{S,Y\},\{a,b\},S,P)$, where P:

$$P: S \to aSb|aY|bY, Y \to aY|bY|a|b$$

5. Give the parse tree of string abbab using the grammar $G=(\{S,Y\},\{a,b\},S,P),$ where P:

$$P:S\to aSb|aY|bY,Y\to aY|bY|a|b$$

Problem 2 (20 points)

Let the context-free grammar $G=(\{S,Y\},\{a,b\},S,P),$ where P:

$$S \to YS \mid \epsilon, Y \to ab \mid aYb \mid Yb$$

- 1) Prove G is ambiguous.
- 2) What is the language generated by G?

Problem 3 (20 points)

Define a context-free grammar for the language

$$L = \{a^n b^m c^{n-m} \mid n \ge m\}$$

.

Problem 4 (20 points)

Consider the alphabet $\Sigma = \{a, b, (,), +, *, \emptyset\}$. Construct a CFG G that generates all strings in Σ^* that are (correctly parenthesized) regular expressions over $\{a, b\}$.

Problem 5 (25 points)

Define a context-free grammar for the language

$$L = \{xyzy^Rx^R \mid x \in \{a,b\}^*, y \in \{c,d\}^*, z \in \{a\}^*\}$$

Problem 6 (25 points)

The truth value of a logical expression is defined recursively as:

- The truth value of t is t.
- The truth value of f is f.
- The truth value of $(x_1 \wedge x_2)$ is t if both x_1 and x_2 have truth value t, it is f otherwise.
- The truth value of $(x1 \lor x2)$ is f if both x_1 and x_2 have truth value f, it is t otherwise.
- The truth value of $\neg(x)$ is f if x has truth value t, it is t otherwise.

Define a CFG that generates the following language over $\{t, f, \land, \lor, \neg, (,), =\}$:

 $L = \{w = x \mid w \text{ is a logical expression over } \{t, f\}, x \in \{t, f\}, \text{ and } x \text{ is the truth value of } w\}$

Thus, "t = t", " $((t \land f) \lor f) = f$ ", and " $\neg(((t \land f) \lor f)) = t$ " are in L, but " $((t \land f) \lor f) = t$ " and " $(t \land f) \lor f = f$ " are not: the former because $((t \land f) \lor f)$ is false and not true, the latter because the expression lacks the outermost set of parentheses.