Chapter 9, Solution 6.

(a)
$$v(t) = 10 \cos(4t - 60^{\circ})$$

 $i(t) = 4 \sin(4t + 50^{\circ}) = 4 \cos(4t + 50^{\circ} - 90^{\circ}) = 4 \cos(4t - 40^{\circ})$
Thus, **i(t) leads v(t) by 20°**.

(b)
$$v_1(t) = 4\cos(377t + 10^\circ)$$

 $v_2(t) = -20\cos(377t) = 20\cos(377t + 180^\circ)$
Thus, $v_2(t)$ leads $v_1(t)$ by 170°.

(c)
$$x(t) = 13 \cos(2t) + 5 \sin(2t) = 13 \cos(2t) + 5 \cos(2t - 90^{\circ})$$

 $X = 13\angle 0^{\circ} + 5\angle -90^{\circ} = 13 - j5 = 13.928\angle -21.04^{\circ}$
 $x(t) = 13.928 \cos(2t - 21.04^{\circ})$
 $y(t) = 15 \cos(2t - 11.8^{\circ})$
phase difference = $-11.8^{\circ} + 21.04^{\circ} = 9.24^{\circ}$
Thus, $y(t)$ leads $x(t)$ by 9.24° .