

## **Description**

#### **Image**





#### Image caption

(1) Autoclave machine © Granta Design at TU Delft University (2) Airbus A380-800 © Joe Ravi at Wikimedia Commons (CC BY-SA 3.0)

#### The process

In AUTOCLAVE MOLDING, reinforcement is layed-up on the mold and the resin is applied by conventional hand or spray lay-up techniques. The laminate is backed with a porous film parting agent and a layer of glass-fiber cloth or paper to absorb any excess resin. A flexible bag is placed on top of the glass-fiber layer. The laminate and the mold are then placed inside an autoclave and subjected to pressures of about 0.55 MPa compressing the laminate, squeezing out air pockets to give a dense product free from porosity. The autoclave is often heated to accelerate curing and increase productivity. Autoclave molding is used extensively to fabricate high strength aircraft and aerospace components. particularly for thicker parts or where high fiber volume fraction is required.

#### **Process schematic**







### Figure caption

Autoclave molding

# **Material compatibility**

| Composites | ✓ |
|------------|---|
|------------|---|

# **Shape**

| Flat sheet   | ✓ |
|--------------|---|
| Dished sheet | ✓ |
| Hollow 3-D   | ✓ |

# **Economic compatibility**

| Relative tooling cost       | low     |
|-----------------------------|---------|
| Relative equipment cost     | high    |
| Labor intensity             | high    |
| Economic batch size (units) | 1 - 500 |

# Physical and quality attributes

| Mass range                     | 1.76     | - | 4.41e3 | lb  |
|--------------------------------|----------|---|--------|-----|
| Range of section thickness     | 78.7     | - | 1.18e3 | mil |
| Tolerance                      | * 31.5   | - | 39.4   | mil |
| Roughness                      | * 0.0197 | - | 0.126  | mil |
| Surface roughness (A=v. smooth | А        |   |        |     |

### **Process characteristics**

| Primary shaping processes | ✓ |
|---------------------------|---|
| Discrete                  | ✓ |
| Continuous                | × |
| Prototyping               | × |

## Cost model and defaults

| Relative cost index (per unit) | 211 | - | 3.53e3 |
|--------------------------------|-----|---|--------|
|--------------------------------|-----|---|--------|

Parameters: Material Cost = 3.63USD/lb, Component Mass = 2.2lb, Batch Size = 1e3, Overhead Rate = 150USD/hr, Discount Rate = 5%, Capital Write-off Time = 5yrs, Load Factor = 0.5





### **Batch Size**

| Capital cost                  | 6.56e4 | - | 8.2e5 | USD |
|-------------------------------|--------|---|-------|-----|
| Material utilization fraction | 0.8    | - | 0.95  |     |
| Production rate (units)       | 0.05   | - | 1     | /hr |
| Tooling cost                  | 820    | - | 8.2e3 | USD |
| Tool life (units)             | 100    | - | 500   |     |

# **Supporting information**

### Design guidelines

autoclave molding is limited to simple shapes with high surface area-to-thickness ratios. Ribs and bosses are possible but undercuts, inserts and foam panels should be avoided.

#### **Technical notes**

The reinforcement, typically, is glass (25-60%), carbon or aramid. Liquid polyester epoxy resins are sometimes used; but prepreg - epoxy, phenolic or polyimide are perhaps more usual.

### Typical uses

Autoclave molding is, at present almost exclusively used for aircraft and aerospace components.

#### The economics

Tooling costs are low, and the process is not particularly labor intensive, making it attractive

#### The environment

Provision must be made for the efficient extraction of solvent

### Links

MaterialUniverse

Reference