

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

<u>Вычислительные алгоритмы.</u> <u>Лабораторная работа №4.</u>

«Построение и программная реализация алгоритма наилучшего среднеквадратичного приближения»

Студент	трошкин николаг	ГРоманович	
Группа	ИУ7-46Б		
Студент		подпись, дата	Трошкин Н.Р. фамилия, и.о.
Препода	ватель	подпись, дата	Градов В.М. фамилия, и.о.

Цель работы

Получение навыков построения алгоритма метода наименьших квадратов с использованием полинома заданной степени при аппроксимации табличных функций с весами.

Задание

Исходные данные

- Таблица функции с весами ρ с количеством узлов N. Таблица формируется со случайным разбросом точек. В интерфейсе предусмотрена удобная возможность изменения пользователем весов в таблицу.
- 2. Степень аппроксимирующего полинома n.

Требуемый результат

Графики, на которых изображены точки заданной табличной функции и кривые найденных полиномов.

Краткий алгоритм

Таблица функции хранится как массив записей с полями x, y, ρ(rho). Для степени полинома n вычисляются коэффициенты СЛАУ порядка n+1:

$$\sum_{m=0}^{n}(\varphi_{k},\varphi_{m})\,a_{m}=(y,\varphi_{k}), \qquad 0\leq k\leq n \quad .$$
 , где
$$(f,\varphi)=\sum_{i=1}^{N}\rho_{i}\,f(x_{i})\;\varphi(x_{i}), \;\;\rho_{i}>0 \; .$$

скалярное произведение таблично заданных функций. В качестве функции ϕ_k используется функция x^k . Решив СЛАУ методом Гаусса, получаем коэффициенты аппроксимирующего полинома степени n, график которого затем строится (генерируется и выполняется скрипт для утилиты gnuplot) и сохраняется в файле.

Полученный результат

1. Веса всех точек одинаковы и равны единице. Таблица:

	, оз пл. ца	-		
Cu	ırrent fu	nction:		
١	i	x	у	rho
Ī	0	0.00	0.00	1.00
Ī	1	1.00	1.00	1.00
Ī	2	2.00	4.00	1.00
١	3	3.00	9.00	1.00
Ī	4	4.00	16.00	1.00
Ī	5	5.00	25.00	1.00
١	6	6.00	36.00	1.00
Ī	7	7.00	49.00	1.00
Ī	8	8.00	64.00	1.00
Ī	9	9.00	81.00	1.00
 -	10	10.00	100.00	1.00

Графики полиномов первой и второй степеней:

2. Веса точек разные.

Табличная функция используется та же, что и в первом пункте, но распределение весов изменилось:

россир			
Current f	function:		
i	x	у	rho
0	0.00	0.00	0.50
1	1.00	1.00	1.00
2	2.00	4.00	2.00
3	3.00	9.00	4.00
4	4.00	16.00	8.00
5	5.00	25.00	3.00
6	6.00	36.00	0.80
7	7.00	49.00	0.40
8	8.00	64.00	0.25
9	9.00	81.00	0.10
10	10.00	100.00	0.01

Тогда при аппроксимации линейная функция изменит угловой коэффициент: красным показана линия при всех весах, равных единице, голубым - линия при неравномерном распределении весов

Ответы на вопросы

1. Что произойдет при задании степени полинома n=N-1 (числу узлов таблицы минус 1)?

На N различных точках можно определить единственный полином степени n-1, который будет проходить через эти точки. Тогда в выражении

$$\sum_{i=1}^{N} \rho_{i} [y(x_{i}) - \varphi(x_{i})]^{2} = min$$

выражение в скобках будет всегда нулевым для любого из N узлов, поэтому вне зависимости от весовой функции, будет построена одна и та же кривая.

2. Будет ли работать Ваша программа при n >= N? Что именно в алгоритме требует отдельного анализа данного случая и может привести к аварийной остановке?

При n >= N уравнения СЛАУ не будут линейно независимыми, что приведет к некорректному решению, так как в этом случае

определитель матрицы СЛАУ равен 0 и решения нет. При решении методом Гаусса это приводит к делению на ноль при приведении к единичной матрице, так как на главной диагонали матрицы коэффициентов СЛАУ найдется нулевой элемент. Лучше всего проверять условие n < N при вводе степени полинома пользователем.

3. Получить формулу для коэффициента полинома а0 при степени полинома n=0. Какой смысл имеет величина, которую представляет данный коэффициент?

Система состоит из одного уравнения с одной неизвестной:

$$\sum\limits_{i=0}^{N}
ho_{i} * a_{0} = \sum\limits_{i=0}^{N}
ho_{i} y_{i}$$
, откуда $a_{0} = \frac{\sum\limits_{i=0}^{N}
ho_{i} y_{i}}{\sum\limits_{i=0}^{N}
ho_{i}}$. Разделив на сумму весов,

получим выражение, равное математическому ожиданию:

$$a_0 = \sum\limits_{i=0}^N p_i y_i$$
, где p_i - отношение веса ρ_i к сумме всех весов.

4. Записать и вычислить определитель матрицы СЛАУ для нахождения коэффициентов полинома для случая, когда n=N=2. Принять все ρ_i =1.

$$\begin{aligned} |A| &= \begin{vmatrix} \rho_{0} + \rho_{3} & \rho_{0} x_{0} + \rho_{1} x_{1} & \rho_{0} x_{0}^{2} + \rho_{1} x_{1}^{2} \\ \rho_{0} x_{0} + \rho_{1} x_{1} & \rho_{0} x_{0}^{2} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \end{vmatrix} = \\ & = \begin{vmatrix} \rho_{0} x_{0} + \rho_{1} x_{1} & \rho_{0} x_{0}^{2} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{2} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \end{vmatrix} = \\ & = \begin{vmatrix} \rho_{0} x_{0} + \rho_{1} x_{1} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{2} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{1} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{0}^{3} + \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} \\ \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{3} & \rho_{0} x_{1}^{$$

5. Построить СЛАУ при выборочном задании степеней аргумента полинома $\varphi(x) = a_0^{} + a_1^{} x^m + a_2^{} x^n$, причем степени n и m в этой формуле известны.

Имеем три линейно независимых функции x^0 , x^n , x^m По ним можно построить следующую СЛАУ:

$$a_{0}(x^{0}, x^{0}) + a_{1}(x^{0}, x^{m}) + a_{2}(x^{0}, x^{n}) = (y, x^{0});$$

$$a_{0}(x^{m}, x^{0}) + a_{1}(x^{m}, x^{m}) + a_{2}(x^{m}, x^{n}) = (y, x^{m});$$

$$a_{0}(x^{n}, x^{0}) + a_{1}(x^{n}, x^{m}) + a_{2}(x^{n}, x^{n}) = (y, x^{n});$$

Выводится из условия
$$\frac{\partial I}{\partial a_k} = 0$$
, где $I = ((y - \varphi), (y - \varphi))$

6. Предложить схему алгоритма решения задачи из вопроса 5, если степени n и m подлежат определению наравне c коэффициентами a_k , т.е. количество неизвестных равно 5.

Можно организовать перебор всех возможных комбинаций m и n, которых конечное число (m и n ограничены сверху количеством заданных узлов). Для каждого найти значение I и в итоге выбрать те m и n, при которых значение I будет наименьшим.

Код программы

Основная функция приложения:

```
int main(void)
  show_info(); // информация о программе
  size_t size = 0, bufsize = 0;
  record_t *data = NULL, *buf = NULL;
  func t func;
  do
    func = get_func();
    switch (func)
       case LOAD:
         // получение файла с данными от пользователя
         FILE *file = get_file();
         // считывание табличной функции в массив
         bufsize = 0;
         buf = export_to_array(file, &bufsize);
         fclose(file);
         if (!buf)
            return EXIT_FAILURE;
         free(data);
         // перенос данных из временного буфера
         data = buf;
         size = bufsize;
```

```
break;
    case SHOW:
       // вывод таблицы
       output_table(data, size);
       break;
    case ADJUST:
       // изменение веса узла
       size_t index = get_index(size - 1);
       double weight = get_weight();
       change_weight(data, index, weight);
       break;
    case APPROX:
       int n = 0;
       get_degree(&n); // получение степени полинома от пользователя
       double *coeffs = get_polynom_coeffs(data, size, n);
       plot(coeffs, data, n, size);
       free(coeffs);
       break;
    default: break;
} while (func);
free(data);
return EXIT_SUCCESS;
```

Функции, использованные в начинке программы:

```
// решение СЛАУ методом Гаусса: массив Y - правые части ур-ий -> столбец корней static void solve_slae(double **A, double *Y, int n) {
    // прямой ход метода Гаусса for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++)
```

```
if (i == j)
          continue;
       double mult = A[j][i] / A[i][i];
       for (int k = 0; k < n; k++)
          A[j][k] = mult * A[i][k];
       Y[j] = mult * Y[i];
    }
  }
  // обратный ход метода Гаусса
  for (int i = 0; i < n; i++)
     double mult = A[i][i];
     for (int j = 0; j < n; j++)
       A[i][j] /= mult;
    Y[i] /= mult;
  }
double *get_polynom_coeffs(record_t *data, size_t size, int n)
  n++;
  double **slae_A = malloc(n * sizeof(double *) + n * n * sizeof(double));
  double *slae_Y = malloc(n * sizeof(double));
  if (!slae_A || !slae_Y)
  {
    free(slae_A);
    free(slae_Y);
    return NULL;
  // начальная инициализация динамической матрицы
  double *split = (double *)((char *)slae_A + n * sizeof(double *));
  for (int i = 0; i < n; i++)
     slae_A[i] = split + i * n;
  // вычисление скалярных произведений - элементов матрицы СЛАУ
  for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
```

```
slae_A[i][j] = 0;
     for (size_t k = 0; k < size; k++)
        double prod = data[k].rho;
       for (int I = 0; I < i + j; I++)
          prod *= data[k].x;
       slae_A[i][j] += prod;
     }
  }
// вычисление скалярных произведений - правых частей СЛАУ
for (int i = 0; i < n; i++)
  slae_Y[i] = 0;
  for (size_t k = 0; k < size; k++)
     double prod = data[k].rho * data[k].y;
     for (int I = 0; I < i; I++)
        prod *= data[k].x;
     slae_Y[i] += prod;
}
solve_slae(slae_A, slae_Y, n);
free(slae_A);
return slae_Y;
```