PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/29, C12N 15/86, A61K 31/70

(11) International Publication Number:

WO 98/16554

A1

(43) International Publication Date:

23 April 1998 (23.04.98)

(21) International Application Number:

PCT/US97/19044

(22) International Filing Date:

17 October 1997 (17.10.97)

(30) Priority Data:

08/733,230

17 October 1996 (17.10.96)

US

(71) Applicant: UNIVERSITY OF FLORIDA [US/US]; 223 Grinter Hall, Gainesville, FL 32611 (US).

(72) Inventors: BARBET, Anthony, F.; 8803 S.W. 138th Street, Archer, FL 32618 (US). GANTA, Roman, Reddy; 6519 West Newberry Road #802, Gainesville, FL 32605 (US). MCGUIRE, Travis, C.; S.W. 920 Crestview, Pullman, WA 99163 (US). BURRIDGE, Michael, J.; 10021 S.W. 67th Drive, Gainesville, FL 32608 (US). NYIKA, Aceme; House 6282, Unit J, Chitungwiza, Harare (ZW). RURANGIRWA. Fred, R.; 2065 N.W. Turner Drive, Pullman, WA 99163 (US). MAHAN, Suman, M.; 71 Olwyn Avenue, Strrathaven, Harare (ZW).

(74) Agents: SALIWANCHIK, David, R. et al.; Saliwanchik, Lloyd & Saliwanchik, Suite A-1, 2421 N.W. 41st Street, Gainesville, FL 32606-6669 (US).

(81) Designated States: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SD, SG, SI, SK, SL, TR, TT, UA, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: NUCLEIC ACID VACCINES AGAINST RICKETTSIAL DISEASES AND METHODS OF USE

(57) Abstract

Described are nucelic acid vaccines containing genes to protect animals or humans against rickettsial diseases. Also described are polypeptides and methods of using these polypeptides to detect antibodies to pathogens.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad .
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israci	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugai		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/16554 PCT/US97/19044

DESCRIPTION

NUCLEIC ACID VACCINES AGAINST RICKETTSIAL DISEASES AND METHODS OF USE

5

This invention was made with government support under USAID Grant No. LAG-1328-G-00-3030-00. The government has certain rights in this invention.

Cross-Reference to a Related Application

10

15

This is a continuation-in-part of U.S. patent application Serial No. 08/733,230, filed October 17, 1996.

Technical Field

This invention relates to nucleic acid vaccines for rickettsial diseases of animals, including humans.

Background of the Invention

20

The rickettsias are a group of small bacteria commonly transmitted by arthropod vectors to man and animals, in which they may cause serious disease. The pathogens causing human rickettsial diseases include the agent of epidemic typhus, *Rickettsia prowazekii*, which has resulted in the deaths of millions of people during wartime and natural disasters. The causative agents of spotted fever, *e.g.*, *Rickettsia rickettsii* and *Rickettsia conorii*, are also included within this group. Recently, new types of human rickettsial disease caused by members of the tribe *Ehrlichiae* have been described. *Ehrlichiae* infect leukocytes and endothelial cells of many different mammalian species, some of them causing serious human and veterinary diseases. Over 400 cases of human ehrlichiosis, including some fatalities, caused by *Ehrlichia chaffeensis* have now been reported. Clinical signs of human ehrlichiosis are similar to those of Rocky

25

Heartwater is another infectious disease caused by a rickettsial pathogen, namely Cowdria ruminantium, and is transmitted by ticks of the genus Amblyomma. The disease occurs throughout most of Africa and has an estimated endemic area of about 5 million square miles. In endemic areas, heartwater is a latent infection in indigenous breeds of cattle that have been subjected to centuries of natural selection. The problems occur where the disease contacts susceptible or naive cattle and other ruminants. Heartwater has been confirmed to be on the

Mountain spotted fever, including fever, nausea, vomiting, headache, and rash.

30

10

15

20

25

30

island of Guadeloupe in the Caribbean and is spreading through the Caribbean Islands. The tick vectors responsible for spreading this disease are already present on the American mainland and threaten the livestock industry in North and South America.

In acute cases of heartwater, animals exhibit a sudden rise in temperature, signs of anorexia, cessation of rumination, and nervous symptoms including staggering, muscle twitching, and convulsions. Death usually occurs during these convulsions. Peracute cases of the disease occur where the animal collapses and dies in convulsions having shown no preliminary symptoms. Mortality is high in susceptible animals. Angora sheep infected with the disease have a 90% mortality rate while susceptible cattle strains have up to a 60% mortality rate.

If detected early, tetracycline or chloramphenicol treatment are effective against rickettsial infections, but symptoms are similar to numerous other infections and there are no satisfactory diagnostic tests (Helmick, C., K. Bernard, L. D'Angelo [1984] *J. Infect. Dis.* 150:480).

Animals which have recovered from heartwater are resistant to further homologous, and in some cases heterologous, strain challenge. It has similarly been found that persons recovering from a rickettsial infection may develop a solid and lasting immunity. Individuals recovered from natural infections are often immune to multiple isolates and even species. For example, guinea pigs immunized with a recombinant *R. conorii* protein were partially protected even against *R. rickettsii* (Vishwanath, S., G. McDonald, N. Watkins [1990] Infect. Immun. 58:646). It is known that there is structural variation in rickettsial antigens between different geographical isolates. Thus, a functional recombinant vaccine against multiple isolates would need to contain multiple epitopes, e.g., protective T and B cell epitopes, shared between isolates. It is believed that serum antibodies do not play a significant role in the mechanism of immunity against rickettsia (Uilenberg, G. [1983] Advances in Vet. Sci. and Comp. Med. 27:427-480; Du Plessis, Plessis, J.L. [1970] Onderstepoort J. Vet. Res. 37(3):147-150).

Vaccines based on inactivated or attenuated rickettsiae have been developed against certain rickettsial diseases, for example against *R. prowazekii* and *R. rickettsii*. However, these vaccines have major problems or disadvantages, including undesirable toxic reactions, difficulty in standardization, and expense (Woodward, T. [1981] "Rickettsial diseases: certain unsettled problems in their historical perspective," In *Rickettsia and Rickettsial Diseases*, W. Burgdorfer and R. Anacker, eds., Academic Press, New York, pp. 17-40).

A vaccine currently used in the control of heartwater is composed of live infected sheep blood. This vaccine also has several disadvantages. First, expertise is required for the

10

15

20

25

30

intravenous inoculation techniques required to administer this vaccine. Second, vaccinated animals may experience shock and so require daily monitoring for a period after vaccination. There is a possibility of death due to shock throughout this monitoring period, and the drugs needed to treat any shock induced by vaccination are costly. Third, blood-borne parasites may be present in the blood vaccine and be transmitted to the vaccinates. Finally, the blood vaccine requires a cold chain to preserve the vaccine.

Clearly, a safer, more effective vaccine that is easily administered would be particularly advantageous. For these reasons, and with the advent of new methods in biotechnology, investigators have concentrated recently on the development of new types of vaccines, including recombinant vaccines. However, recombinant vaccine antigens must be carefully selected and presented to the immune system such that shared epitopes are recognized. These factors have contributed to the search for effective vaccines.

A protective vaccine against rickettsiae that elicits a complete immune response can be advantageous. A few antigens which potentially can be useful as vaccines have now been identified and sequenced for various pathogenic rickettsia. The genes encoding the antigens and that can be employed to recombinantly produce those antigen have also been identified and sequenced. Certain protective antigens identified for *R. rickettsii*, *R. conorii*, and *R. prowazekii* (e.g., rOmpA and rOmpB) are large (>100 kDa), dependent on retention of native conformation for protective efficacy, but are often degraded when produced in recombinant systems. This presents technical and quality-control problems if purified recombinant proteins are to be included in a vaccine. The mode of presentation of a recombinant antigen to the immune system can also be an important factor in the immune response.

Nucleic acid vaccination has been shown to induce protective immune responses in non-viral systems and in diverse animal species (Special Conference Issue, WHO meeting on nucleic acid vaccines [1994] *Vaccine* 12:1491). Nucleic acid vaccination has induced cytotoxic lymphocyte (CTL), T-helper 1, and antibody responses, and has been shown to be protective against disease (Ulmer, J., J. Donelly, S. Parker *et al.* [1993] *Science* 259:1745). For example, direct intramuscular injection of mice with DNA encoding the influenza nucleoprotein caused the production of high titer antibodies, nucleoprotein-specific CTLs, and protection against viral challenge. Immunization of mice with plasmid DNA encoding the *Plasmodium yoelii* circumsporozoite protein induced high antibody titers against malaria sporozoites and CTLs, and protection against challenge infection (Sedegah, M., R. Hedstrom, P. Hobart, S. Hoffman [1994] *Proc. Natl. Acad. Sci. USA* 91:9866). Cattle immunized with plasmids encoding bovine herpesvirus 1 (BHV-1) glycoprotein IV developed neutralizing antibody and were partially

10

15

20

25

30

protected (Cox, G., T. Zamb, L. Babiuk [1993] J. Virol. 67:5664). However, it has been a question in the field of immunization whether the recently discovered technology of nucleic acid vaccines can provide improved protection against an antigenic drift variant. Moreover, it has not heretofore been recognized or suggested that nucleic acid vaccines may be successful to protect against rickettsial disease or that a major surface protein conserved in rickettsia was protective against disease.

Brief Summary of the Invention

Disclosed and claimed here are novel vaccines for conferring immunity to rickettsia infection, including *Cowdria ruminantium* causing heartwater. Also disclosed are novel nucleic acid compositions and methods of using those compositions, including to confer immunity in a susceptible host. Also disclosed are novel materials and methods for diagnosing infections by *Ehrlichia* in humans or animals.

One aspect of the subject invention concerns a nucleic acid, e.g., DNA or mRNA, vaccine containing the major antigenic protein 1 gene (MAP1) or the major antigenic protein 2 gene (MAP2) of rickettsial pathogens. In one embodiment, the nucleic acid vaccines can be driven by the human cytomegalovirus (HCMV) enhancer-promoter. In studies immunizing mice by intramuscular injection of a DNA vaccine composition according to the subject invention, immunized mice seroconverted and reacted with MAP1 in antigen blots. Splenocytes from immunized mice, but not from control mice immunized with vector only, proliferated in response to recombinant MAP1 and rickettsial antigens in in vitro lymphocyte proliferation tests. In experiments testing different DNA vaccine dose regimens, increased survival rates as compared to controls were observed on challenge with rickettsia. Accordingly, the subject invention concerns the discovery that DNA vaccines can induce protective immunity against rickettsial disease or death resulting therefrom.

Brief Description of the Drawings

Figures 1A-1C show a comparison of the amino acid sequences from alignment of the three rickettsial proteins, namely, *Cowdria ruminantium* (C.r.), *Ehrlichia chaffeensis* (E.c.), and *Anaplasma marginale* (A.m.).

Figures 2A-2C shows the DNA sequence of the 28 kDa gene locus cloned from *E. chaffeensis* (Fig. 2A-2B) and *E. canis* (Fig. 2C). One letter amino acid codes for the deduced protein sequences are presented below the nucleotide sequence. The proposed sigma-70-like promoter sequences (38) are presented in bold and underlined text as -10 and -35 (consensus -35).

10

15

and -10 sequences are TTGACA and TATAAT, respectively). Similarly, consensus ribosomal binding sites and transcription terminator sequences (bold letter sequence) are identified. G-rich regions identified in the *E. chaffeensis* sequence are underlined. The conserved sequences from within the coding regions selected for RT-PCR assay are identified with italics and underlined text.

Figure 3A shows the complete sequence of the MAP2 homolog of *Ehrlichia canis*. The arrow (→) represents the predicted start of the mature protein. The asterisk (*) represents the stop codon. Underlined nucleotides 5' to the open reading frame with -35 and -10 below represent predicted promoter sequences. Double underlined nucleotides represent the predicted ribosomal binding site. Underlined nucleotides 3' to the open reading frame represent possible transcription termination sequences.

Figure 3B shows the complete sequence of the MAP2 homolog of Ehrlichia chaffeensis. The arrow (-) represents the predicted start of the mature protein. The asterisk (*) represents the stop codon. Underlined nucleotides 5' to the open reading frame with -35 and -10 below represent predicted promoter sequences. Double underlined nucleotides represent the predicted ribosomal binding site. Underlined nucleotides 3' to the open reading frame represent possible transcription termination sequences.

Brief Description of the Sequences

20

SEQ ID NO. 1 is the coding sequence of the MAP1 gene from *Cowdria ruminantium* (Highway isolate).

SEQ ID NO. 2 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 1.

SEQ ID NO. 3 is the coding sequence of the MAP1 gene from Ehrlichia chaffeensis.

SEQ ID NO. 4 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 3.

25

30

SEQ ID NO. 5 is the Anaplasma marginale MSP4 gene coding sequence.

SEQ ID NO. 6 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 5.

SEQ ID NO. 7 is a partial coding sequence of the VSA1 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 8 is the coding sequence of the VSA2 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 9 is the coding sequence of the VSA3 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 10 is the coding sequence of the VSA4 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 11 is a partial coding sequence of the VSA5 gene from *Ehrlichia chaffeensis*, also shown in Figures 2A-2B.

SEQ ID NO. 12 is the coding sequence of the VSA1 gene from *Ehrlichia canis*, also shown in Figure 2C.

5

SEQ ID NO. 13 is a partial coding sequence of the VSA2 gene from *Ehrlichia canis*, also shown in Figure 2C.

SEQ ID NO. 14 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 7, also shown in Figures 2A-2B.

SEQ ID NO. 15 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 8, also shown in Figures 2A-2B.

SEQ ID NO. 16 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 9, also shown in Figures 2A-2B.

SEQ ID NO. 17 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 10, also shown in Figures 2A-2B.

15

20

10

SEQ ID NO. 18 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 11, also shown in Figures 2A-2B.

SEQ ID NO. 19 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 12, also shown in Figure 2C.

SEQ ID NO. 20 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 13, also shown in Figure 2C.

SEQ ID NO. 21 is the coding sequence of the MAP2 gene from *Ehrlichia canis*, also shown in Figure 3A.

SEQ ID NO. 22 is the coding sequence of the MAP2 gene from *Ehrlichia chaffeensis*, also shown in Figure 3B.

25

SEQ ID NO. 23 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 21, also shown in Figure 3A.

SEQ ID NO. 24 is the polypeptide encoded by the polynucleotide of SEQ ID NO. 22, also shown in Figure 3B.

30

Detailed Disclosure of the Invention

In one embodiment, the subject invention concerns a novel strategy, termed nucleic acid vaccination, for eliciting an immune response protective against rickettsial disease. The subject invention also concerns novel compositions that can be employed according to this novel strategy for eliciting a protective immune response. According to the subject invention,

10

15

20

25

30

recombinant plasmid DNA or mRNA encoding an antigen of interest is inoculated directly into the human or animal host where the antigen is expressed and an immune response induced. Advantageously, problems of protein purification, as can be encountered with antigen delivery using live vectors, can be virtually eliminated by employing the compositions or methods according to the subject invention. Unlike live vector delivery, the subject invention can provide a further advantage in that the DNA or RNA does not replicate in the host, but remains episomal with gene expression directed for as long as 19 months or more post-injection. See, for example, Wolff, J.A., J.J. Ludike, G. Acsadi, P. Williams, A. Jani (1992) *Hum. Mol. Genet.* 1:363. A complete immune response can be obtained as recombinant antigen is synthesized intracellularly and presented to the host immune system in the context of autologous class I and class II MHC molecules.

In one embodiment, the subject invention concerns nucleic acids and compositions comprising those nucleic acids that can be effective in protecting an animal from disease or death caused by rickettsia. For example, a nucleic acid vaccine of the subject invention has been shown to be protective against *Cowdria ruminantium*, the causative agent of heartwater in domestic ruminants. Accordingly, DNA sequences of rickettsial genes, *e.g.*, MAP1 or homologues thereof, can be used as nucleic acid vaccines against human and animal rickettsial diseases. The MAP1 gene used to obtain this protection is also present in other rickettsiae including *Anaplasma marginale*, *Ehrlichia canis*, and in a causative agent of human ehrlichiosis, *Ehrlichia chaffeensis* (van Vliet, A., F. Jongejan, M. van Kleef, B. van der Zeijst [1994] *Infect. Immun.* 62:1451). The MAP1 gene or a MAP1-like gene can also be found in certain *Rickettsia* spp. MAP1-like genes from *Ehrlichia chaffeensis* and *Ehrlichia canis* have now been cloned and sequenced. These MAP-1 homologs are also referred to herein as Variable Surface Antigen (VSA) genes.

The present invention also concerns polynucleotides encoding MAP2 or MAP2 homologs from *Ehrlichia canis* and *Ehrlichia chaffeensis*. MAP2 polynucleotide sequences of the invention can be used as vaccine compositions and in diagnostic assays. The polynucleotides can also be used to produce the MAP2 polypeptides encoded thereby.

Compositions comprising the subject polynucleotides can include appropriate nucleic acid vaccine vectors (plasmids), which are commercially available (e.g., Vical, San Diego, CA). In addition, the compositions can include a pharmaceutically acceptable carrier, e.g., saline. The pharmaceutically acceptable carriers are well known in the art and also are commercially available. For example, such acceptable carriers are described in E.W. Martin's Remington's Pharmaceutical Science, Mack Publishing Company, Easton, PA.

WO 98/16554 PCT/US97/19044

The subject invention also concerns polypeptides encoded by the subject polynucleotides. Specifically exemplified are the polypeptides encoded by the MAP-1 and VSA genes of *C. rumimontium*, *E. chaffeensis*, *E. canis* and the MP4 gene of *Anaplasma marginale*. Polypeptides uncoded by *E. chaffeensis* and *E. canis* MAP2 genes are also exemplified herein.

5

10

15

20

25

30

Also encompassed within the scope of the present invention are fragments and variants of the exemplified polynucleotides. Variants include polynucleotides and/or polypeptides having base or amino acid additions, deletions and substitutions in the sequence of the subject molecule so long as those variants have substantially the same activity or serologic reactivity as the native molecules. Also included are allelic variants of the subject polynucleotides. The polypeptides and peptides of the present invention can be used to raise antibodies that are reactive with the polypeptides disclosed herein. The polypeptides and peptides can also be used as molecular weight markers.

Another aspect of the subject invention concerns antibodies reactive with MAP-1 and MAP2 polypeptides disclosed herein. Antibodies can be monoclonal or polyclonal and can be produced using standard techniques known in the art. Antibodies of the invention can be used in diagnostic and therapeutic applications.

In a specific embodiment, the subject invention concerns a DNA vaccine (e.g., VCL1010/MAP1) containing the major antigenic protein 1 gene (MAP1) driven by the human cytomegalovirus (HCMV) enhancer-promoter injected intramuscularly into 8-10 week-old female DBA/2 mice after treating them with 50 µl/muscle of 0.5% bupivacaine 3 days previously. Up to 75% of the VCL1010/MAP1-immunized mice seroconverted and reacted with MAP1 in antigen blots. Splenocytes from immunized mice, but not from control mice immunized with VCL1010 DNA (plasmid vector, Vical, San Diego) proliferated in response to recombinant MAP1 and C. ruminantium antigens in in vitro lymphocyte proliferation tests. These proliferating cells from mice immunized with VCL1010/MAP1 DNA secreted IFNgamma and IL-2 at concentrations ranging from 610 pg/ml and 152 pg/ml to 1290 pg/ml and 310 pg/ml, respectively. In experiments testing different VCL1010/MAP1 DNA vaccine dose regimens (25-100 µg/dose, 2 or 4 immunizations), survival rates of 23% to 88% (35/92 survivors/total in all VCL1010/MAP1 immunized groups) were observed on challenge with 30LD50 of C. ruminantium. Survival rates of 0% to 3% (1/144 survivors/total in all control groups) were recorded for control mice immunized similarly with VCL1010 DNA or saline. Accordingly, the subject invention concerns the discovery that the gene encoding the MAP1 protein can induce protective immunity as a DNA vaccine against rickettsial disease.

10

15

20

25

The nucleic acid sequences described herein have other uses as well. For example, the nucleic acids of the subject invention can be useful as probes to identify complementary sequences within other nucleic acid molecules or genomes. Such use of probes can be applied to identify or distinguish infectious strains of organisms in diagnostic procedures or in rickettsial research where identification of particular organisms or strains is needed. As is well known in the art, probes can be made by labeling the nucleic acid sequences of interest according to accepted nucleic acid labeling procedures and techniques. A person of ordinary skill in the art would recognize that variations or fragments of the disclosed sequences which can specifically and selectively hybridize to the DNA of rickettsia can also function as a probe. It is within the ordinary skill of persons in the art, and does not require undue experimentation in view of the description provided herein, to determine whether a segment of the claimed DNA sequences is a fragment or variant which has characteristics of the full sequence, e.g., whether it specifically and selectively hybridizes or can confer protection against rickettsial infection in accordance with the subject invention. In addition, with the benefit of the subject disclosure describing the specific sequences, it is within the ordinary skill of those persons in the art to label hybridizing sequences to produce a probe.

It is also well known in the art that restriction enzymes can be used to obtain functional fragments of the subject DNA sequences. For example, *Bal*31 exonuclease can be conveniently used for time-controlled limited digestion of DNA (commonly referred to as "erase-a-base" procedures). See, for example, Maniatis *et al.* (1982) *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, New York; Wei *et al.* (1983) *J. Biol. Chem.* 258:13006-13512.

In addition, the nucleic acid sequences of the subject invention can be used as molecular weight markers in nucleic acid analysis procedures.

Following are examples which illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1

30

A nucleic acid vaccine construct was tested in animals for its ability to protect against death caused by infection with the rickettsia *Cowdria ruminantium*. The vaccine construct tested was the MAP1 gene of *C. ruminantium* inserted into plasmid VCL1010 (Vical, San Diego) under control of the human cytomegalovirus promoter-enhancer and intron A. In this study, seven groups containing 10 mice each were injected twice at 2-week intervals with either 100, 75, 50,

or 25 µg VCL1010/MAP1 DNA (V/M in Table 1 below), or 100, 50 µg VCL1010 DNA (V in Table 1) or saline (Sal.), respectively. Two weeks after the last injections, 8 mice/group were challenged with 30LD50 of *C. ruminantium* and clinical symptoms and survival monitored. The remaining 2 mice/group were not challenged and were used for lymphocyte proliferation tests and cytokine measurements. The results of the study are summarized in Table 1, below:

			Tab	le 1			
	100 μg V/M	75 μg V/M	50 μg V/M	25 μg V/M	100 μg V	50 μg V	Sal.
Survived	5	7	5	3	0	0	0
Died	3	1	3	5	8	8	8

The VCL1010/MAP1 nucleic acid vaccine increased survival on challenge in all groups, with a total of 20/30 mice surviving compared to 0/24 in the control groups.

15

10

5

This study was repeated with another 6 groups, each containing 33 mice (a total of 198 mice). Three groups received 75 µg VCL1010/MAP1 DNA or VCL1010 DNA or saline (4 injections in all cases). Two weeks after the last injection, 30 mice/group were challenged with 30LD50 of *C. ruminantium* and 3 mice/group were sacrificed for lymphocyte proliferation tests and cytokine measurements. The results of this study are summarized in Table 2, below:

20

			Table 2			
	V/M 2 inj.	V 2 inj.	Sal. 2 inj.	V/M 4 inj.	V 4 inj.	Sal. 4 inj.
Survived	7	0	0	8	0	1
Died*	23	30	30	22	30	29

25

*In mice that died in both V/M groups, there was an increase in mean survival time of approximately 4 days compared to the controls (p<0.05).

30

Again, as summarized in Table 2, the VCL1010/MAP1 DNA vaccine increased the numbers of mice surviving in both immunized groups, although there was no apparent benefit of 2 additional injections. In these two experiments, there were a cumulative total of 35/92 (38%) surviving mice in groups receiving the VCL1010/MAP1 DNA vaccine compared to 1/144 (0.7%) surviving mice in the control groups. In both immunization and challenge trials

10

15

20

25

30

described above, splenocytes from VCL1010/MAP1 immunized mice, but not from control mice, specifically proliferated to recombinant MAP1 protein and to *C. ruminantium* in lymphocyte proliferation tests. These proliferating splenocytes secreted IL-2 and gamma-interferon at concentrations up to 310 and 1290 pg/ml respectively. These data show that protection against rickettsial infections can be achieved with a DNA vaccine. In addition, these experiments show MAP1-related proteins as vaccine targets.

Example 2

The MAP1 protein of *C. ruminantium* has significant similarity to MSP4 of *A. marginale*, and related molecules may also be presenting other rickettsial pathogens. To prove this, we used primers based on regions conserved between *C. ruminantium* and *A. marginale* in PCR to clone a MAP1-like gene from *E. chaffeensis*. The amino acid sequence derived from the cloned *E. chaffeensis* MAP1-like gene, and alignment with the corresponding genes of *C. ruminantium* and *A. marginale* is shown in Figure 1. We have now identified the regions of MAP1-like genes which are highly conserved between *Ehrlichia*, *Cowdria*, and *Anaplasma* and which can allow cloning of the analogous genes from other rickettsiae.

Example 3 – Cloning and sequence analysis of MAP1 homologue genes of E. chaffeensis and E. canis

Genes homologous to the major surface protein of *C. ruminantium* MAP1 were cloned from *E. chaffeensis* and *E. canis* by using PCR cloning strategies. The cloned segments represent a 4.6 kb genomic locus of *E. chaffeensis* and a 1.6 kb locus of *E. canis*. DNA sequence generated from these clones was assembled and is presented along with the deduced amino acid sequence in Figures 2A-2B (SEQ ID NOs. 7-11 and 14-18) and Figure 2C (SEQ ID NOs. 12-13 and 19-20). Significant features of the DNA include five very similar but nonidentical open reading frames (ORFs) for *E. chaffeensis* and two very similar, nonidentical ORFs for the *E. canis* cloned locus. The ORFs for both *Ehrlichia* spp. are separated by noncoding sequences ranging from 264 to 310 base pairs. The noncoding sequences have a higher A+T content (71.6% for *E. chaffeensis* and 76.1% for *E. canis*) than do the coding sequences (63.5% for *E. chaffeensis* and 68.0% for *E. canis*). A G-rich region -200 bases upstream from the initiation codon, sigma-70-like promoter sequences, putative ribosome binding sites (RBS), termination codons, and palindromic sequences near the termination codons are found in each of the *E. chaffeensis* noncoding sequences. The *E. canis* noncoding sequence has the same feature except for the G-rich region (Figure 2C; SEQ ID NOs. 12-13 and 19-20).

WO 98/16554

5

10

15

20

25

Sequence comparisons of the ORFs at the nucleotide and translated amino acid levels revealed a high degree of similarity between them. The similarity spanned the entire coding sequences, except in three regions where notable sequence variations were observed including some deletions/insertions (Variable Regions I, II and III). Despite the similarities, no two ORFs are identical. The cloned ORF 2, 3 and 4 of E. chaffeensis have complete coding sequences. The ORF1 is a partial gene having only 143 amino acids at the C-terminus whereas the ORF5 is nearly complete but lacks 5-7 amino acids and a termination codon. The cloned ORF2 of E. canis also is a partial gene lacking a part of the C-terminal sequence. The overall similarity between different ORFs at the amino acid level is 56.0% to 85.4% for E. chaffeensis, whereas for E. canis it is 53.3%. The similarity of E. chaffeensis ORFs to the MAP1 coding sequences reported for C. ruminantium isolates ranged from 55.5% to 66.7%, while for E. canis to C. ruminantium it is 48.5% to 54.2%. Due to their high degree of similarity to MAP1 surface antigen genes of C. ruminantium and since they are nonidentical to each other, the E. chaffeensis and E. canis ORFs are referred to herein as putative Variable Surface Antigen (VSA) genes. The apparent molecular masses of the predicted mature proteins of E. chaffeensis were 28.75 kDa for VSA2, 27.78 for VSA3, and 27.95 for VSA4, while E. canis VSA1 was slightly higher at 29.03 kDa. The first 25 amino acids in each VSA coding sequence were eliminated when calculating the protein size since they markedly resembled the signal sequence of C. ruminantium MAP1 and presumably would be absent from the mature protein. Predicted protein sizes for E. chaffeensis VSA1 and VSA5, and E. canis VSA2 were not calculated since the complete genes were not cloned.

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

Applicant Name(s):

University of Florida

Street Address:

223 Grinter Hall

City:

Gainesville

State/Province:

Florida

Country:

US

Postal Code/Zip:

32611

Phone number:

(352) 392-8929

Fax: (352) 392-6600

- (ii) TITLE OF INVENTION: Nucleic Acid Vaccines Against Rickettsial Diseases and Methods of Use
- (iii) NUMBER OF SEQUENCES: 24
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Saliwanchik, Lloyd & Saliwanchik
 - (B) STREET: 2421 N.W. 41st Street, Suite A-1
 - (C) CITY: Gainesville
 - (D) STATE: FL
 - (E) COUNTRY: USA
 - (F) ZIP: 32606
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT
 - (B) FILING DATE: 17 October 1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Pace, Doran R.
 - (B) REGISTRATION NUMBER: 38,261
 - (C) REFERENCE/DOCKET NUMBER: UF-167C1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 352-375-8100
 - (B) TELEFAX: 352-372-5800
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 864 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii)	MOLECULE	TYPE:	DNA	(genomic)
------	----------	-------	-----	-----------

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 1..861

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	(202	., 01	1000		Loci		.014.	DEQ	ID N	0:1:						
ATG Met 1	Asn	TG(AAC Lys	AAA Lys 5	Ile	TTT Phe	ATC	ACA Thr	AGT Ser 10	Thr	CTA Leu	ATA	TCA Ser	TTZ Let	A GTG 1 Val	48
TCA Ser	TTT	TTA Leu	CCT Pro 20	Gly	GTG Val	TCC Ser	TTT Phe	TCT Ser 25	Asp	GTA Val	ATA Ile	CAG Gln	GAA Glu 30	Asp	AGC Ser	96
AAC Asn	CCA Pro	GCA Ala 35	Gly	AGT Ser	GTT Val	TAC Tyr	ATT Ile 40	AGC Ser	GCA Ala	AAA Lys	TAC Tyr	ATG Met 45	Pro	ACT Thr	GCA Ala	144
TCA Ser	CAT His 50	TTT Phe	GGT Gly	AAA Lys	ATG Met	TCA Ser 55	ATC Ile	AAA Lys	GAA Glu	GAT Asp	TCA Ser 60	AAA Lys	AAT Asn	ACT Thr	CAA Gln	. 192
ACG Thr 65	GTA Val	TTT Phe	GGT Gly	CTA Leu	AAA Lys 70	AAA Lys	GAT Asp	TGG Trp	GAT Asp	GGC Gly 75	GTT Val	AAA Lys	ACA Thr	CCA Pro	TCA Ser 80	240
GAT Asp	TCT Ser	AGC Ser	AAT Asn	ACT Thr 85	AAT Asn	TCT Ser	ACA Thr	ATT Ile	TTT Phe 90	ACT Thr	GAA Glu	ААА Lys	GAC Asp	TAT Tyr 95	TCT Ser	288
TTC Phe	AGA Arg	TAT Tyr	GAA Glu 100	AAC Asn	AAT Asn	CCG Pro	TTT Phe	TTA Leu 105	GGT Gly	TTC Phe	GCT Ala	GGA Gly	GCA Ala 110	ATT Ile	GGG Gly	336
TAC Tyr	TCA Ser	ATG Met 115	AAT Asn	GGA Gly	CCA Pro	AGA Arg	ATA Ile 120	GAG Glu	TTC Phe	GAA Glu	GTA Val	TCC Ser 125	TAT Tyr	GAA Glu	ACT Thr	384
TTT Phe	GAT Asp 130	GTA Val	AAA Lys	AAC Asn	Leu	GGT Gly 135	GGC Gly	AAC Asn	TAT Tyr	AAA Lys	AAC Asn 140	AAC Asn	GCA Ala	CAC His	ATG Met	432
TAC Tyr 145	TGT Cys	GCT Ala	TTA Leu	GAT Asp	ACA Thr 150	GCA Ala	GCA Ala	CAA Gln	AAT Asn	AGC Ser 155	ACT Thr	AAT Asn	GGC Gly	GCA Ala	GGA Gly 160	480
TTA Leu	ACT Thr	ACA Thr	Ser	GTT . Val 1 165	ATG Met	GTA Val	AAA Lys	AAC Asn	GAA Glu 170	AAT Asn	TTA Leu	ACA Thr	AAT Asn	ATA Ile 175	TCA Ser	528
TTA . Leu 1	ATG Met	Leu	AAT Asn 180	GCG '	TGT '	TAT (Asp	ATC Ile 185	ATG Met	CTT Leu	GAT Asp	Gly	ATA Ile 190	CCA Pro	GTT Val	576

TCT Ser	CCA Pro	TAT Tyr 195	Val	TGT Cys	GCA Ala	GGT Gly	ATT Ile 200	GGC Gly	ACT Thr	GAC Asp	TTA Leu	GTG Val 205	TCA Ser	GTA Val	ATT Ile	(624
AAT Asn	GCT Ala 210	ACA Thr	AAT Asn	CCT Pro	AAA Lys	TTA Leu 215	TCT Ser	TAT Tyr	CAA Gln	GGA Gly	AAG Lys 220	CTA Leu	GGC Gly	ATA Ile	AGT Ser	6	572
TAC Tyr 225	TCA Ser	ATC Ile	AAT Asn	TCT Ser	GAA Glu 230	GCT Ala	TCT Ser	ATC Ile	TTT Phe	ATC Ile 235	GGT Gly	GGA Gly	CAT His	TTC Phe	CAT His 240	7	20
AGA Arg	GTT Val	ATA Ile	GGT Gly	AAT Asn 245	GAA Glu	TTT Phe	AAA Lys	GAT Asp	ATT Ile 250	GCT Ala	ACC Thr	TTA Leu	AAA Lys	ATA Ile 255	TTT Phe	7	68
ACT Thr	TCA Ser	AAA Lys	ACA Thr 260	GGA Gly	ATA Ile	TCT Ser	AAT Asn	CCT Pro 265	GGC Gly	TTT Phe	GCA Ala	TCA Ser	GCA Ala 270	ACA Thr	CTT Leu	8	16
GAT Asp	Val	TGT Cys 275	CAC His	TTT Phe	GGT Gly	ATA Ile	GAA Glu 280	ATT Ile	GGA Gly	GGA Gly	AGG Arg	TTT Phe 285	GTA Val	TTT Phe		8	61
TAA																8	64

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 287 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Cys Lys Lys Ile Phe Ile Thr Ser Thr Leu Ile Ser Leu Val 1 5 10 15

Ser Phe Leu Pro Gly Val Ser Phe Ser Asp Val Ile Gln Glu Asp Ser 20 25 30

Asn Pro Ala Gly Ser Val Tyr Ile Ser Ala Lys Tyr Met Pro Thr Ala 35 40 45

Ser His Phe Gly Lys Met Ser Ile Lys Glu Asp Ser Lys Asn Thr Gln 50 55 60

Thr Val Phe Gly Leu Lys Lys Asp Trp Asp Gly Val Lys Thr Pro Ser 65 70 75 80

Asp Ser Ser Asn Thr Asn Ser Thr Ile Phe Thr Glu Lys Asp Tyr Ser 85 90 95

- Phe Arg Tyr Glu Asn Asn Pro Phe Leu Gly Phe Ala Gly Ala Ile Gly 100 105 110
- Tyr Ser Met Asn Gly Pro Arg Ile Glu Phe Glu Val Ser Tyr Glu Thr 115 120 125
- Phe Asp Val Lys Asn Leu Gly Gly Asn Tyr Lys Asn Asn Ala His Met 130 135 140
- Tyr Cys Ala Leu Asp Thr Ala Ala Gln Asn Ser Thr Asn Gly Ala Gly 145 150 155 160
- Leu Thr Thr Ser Val Met Val Lys Asn Glu Asn Leu Thr Asn Ile Ser 165 170 175
- Leu Met Leu Asn Ala Cys Tyr Asp Ile Met Leu Asp Gly Ile Pro Val 180 185 190
- Ser Pro Tyr Val Cys Ala Gly Ile Gly Thr Asp Leu Val Ser Val Ile 195 200 205
- Asn Ala Thr Asn Pro Lys Leu Ser Tyr Gln Gly Lys Leu Gly Ile Ser 210 215 220
- Tyr Ser Ile Asn Ser Glu Ala Ser Ile Phe Ile Gly Gly His Phe His 225 230 235 240
- Arg Val Ile Gly Asn Glu Phe Lys Asp Ile Ala Thr Leu Lys Ile Phe 245 250 255
- Thr Ser Lys Thr Gly Ile Ser Asn Pro Gly Phe Ala Ser Ala Thr Leu 260 265 270
- Asp Val Cys His Phe Gly Ile Glu Ile Gly Gly Arg Phe Val Phe 275 280 285
- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 842 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..840
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATG Met	raa nea	TAC Tyr 290	Lys	A AAA B Lys	AGI Ser	TTC Phe	ATA Ile 295	Thr	A GCG Ala	ATT Ile	GAT Asp	300	: Ile	C AA'	T ATC	48
CTT Leu	Leu 305	Leu	CCT Pro	GGA Gly	GTA Val	Ser 310	Phe	TCC Ser	GAC Asp	CCA Pro	AGG Arg 315	Glr	GTA Val	A GTO	GTC Val	96
ATT Ile 320	AAC Asn	GGT Gly	AAT Asn	TTC Phe	TAC Tyr 325	Ile	AGT Ser	GGA Gly	AAA Lys	TAC Tyr 330	GAT Asp	GCC	AAG Lys	GCT Ala	TCG Ser 335	144
CAT His	TTT Phe	GGA Gly	GTA Val	TTC Phe 340	TCT Ser	GCT Ala	AAG Lys	GAA Glu	GAA Glu 345	AGA Arg	AAT Asn	ACA Thr	ACA Thr	GTT Val	GGA Gly	192
Val	Phe	Gly	Leu 355		Gln	Asn	Trp	Asp 360	Gly	Ser	Ala	Ile	Ser 365	Asn	Ser	240
Ser	Pro	Asn 370	Asp	GTA Val	Phe	Thr	Val 375	Ser	Asn	Tyr	Ser	Phe 380	Lys	Tyr	Glu	288
Asn	Asn 385	Pro	Phe	TTA Leu	Gly	Phe 390	Ala	Gly	Ala	Ile	Gly 395	Tyr	Ser	Met	Asp	336
Gly 400	Pro	Arg	Ile	GAG Glu	Leu 405	Glu	Val	Ser	Tyr .	Glu 410	Thr	Phe	Asp	Val	Lys 415	384
Asn	Gln	Gly	Asn	AAT Asn 420	Tyr	Lys	Asn	Glu	Ala 425	His	Arg	Tyr	Сув	Ala 430	Leu	432
Ser	His	Asn	Ser 435	GCA Ala	Ala	Asp	Met	Ser 440	Ser	Ala	Ser	Asn	Asn 445	Phe	Val	480
Phe	Leu	Lys 450	Asn	GAA Glu	Gly	Leu	Leu 455	Asp	Ile	Ser	Phe	Met 460	Leu	Asn	Ala	528
Сув	Tyr 465	Asp	Val		Gly	Glu 470	Gly	Ile	Pro	Phe	Ser 475	Pro	Tyr	Ile	Cys	576
GCA Ala 480	Gly	Ile	Gly	Thr	Asp 485	Leu	Val :	Ser	Met	Phe 490	Glu	Ala	Thr	Asn	Pro 495	624
AAA . Lys	ATT Ile	TCT Ser	Tyr	CAA Gln 500	GGA .	AAG ' Lys :	TTA (Leu (Gly	TTA : Leu : 505	AGC ' Ser '	TAC Tyr	TCT Ser	Ile	AGC Ser 510	CCA Pro	672

									10								
GAA Glu	GCT Ala	TC1	GTG Val 515	. Phe	'ATI	GGT Gly	Gly GGG	CAC His	Phe	CAT His	AAG Lys	GTA Val	ATA Ile 525	Gly	AAC Asn	720	
GAA Glu	TTT Phe	AGA Arg 530	Asp	'ATT	CCT Pro	ACT Thr	ATA Ile 535	Ile	CCT Pro	ACT Thr	GGA Gly	TCA Ser 540	ACA Thr	CTI	GCA Ala	768	
GGA Gly	AAA Lys 545	Gly	AAC Asn	TAC	CCT Pro	GCA Ala 550	ATA Ile	GTA Val	ATA Ile	CTG Leu	GAT Asp 555	GTA Val	TGC Cys	CAC His	TTT Phe	816	
	Ile					AGG Arg		AA								842	
(2)	INF		SEQU (A	ENCE	CHA:	ID 1 RACTI : 280 amino	ERIS'	rics ino a		5							
						GY:]											
						E: pi CRIPI			. TD	NO							
Met						Phe						Tla	T] ^	>	71.		
1		-1-	-,-	5	002			*****	10	116	wap	TIC	116	15	116		
Leu	Leu	Leu	Pro 20	Gly	Val	Ser	Phe	Ser 25	Asp	Pro	Arg	Gln	Val 30	Val	Val		
Ile	Asn	Gly 35	Asn	Phe	Tyr	Ile	Ser 40	Gly	Lys	Tyr	Asp	Ala 45	Lys	Ala	Ser		
His	Phe 50	Gly	Val	Phe	Ser	Ala 55	Lys	Glu	Glu	Arg	Asn 60	Thr	Thr	Val	Gly		
Val 65	Phe	Gly	Leu	Lys	Gln 70	Asn	Trp	Asp	Gly	Ser 75	Ala	Ile	Ser	Asn	Ser 80		
Ser	Pro	Asn	Asp	Val 85	Phe	Thr	Val	Ser	Asn 90	Tyr	Ser	Phe	Lys	Tyr 95	Glu		
Asn	Asn	Pro	Phe 100	Leu	Gly	Phe	Ala	Gly 105	Ala	Ile	Gly		Ser 110	Met	Asp		
Gly	Pro	Arg 115	Ile	Glu	Leu	Glu	Val 120	Ser	Tyr	Glu		Phe . 125	Asp	Val	Lys		
Asn	Gln 130	Gly	Asn	Asn	Tyr	Lys 135	Asn	Glu	Ala	His	Arg 140	Tyr	Cys	Ala	Leu		

Ser 145		Asn	Ser	Ala	Ala 150		Met	Ser	Ser	Ala 155		Asn	Asr	Phe	Val 160	
Phe	Leu	Lys	Asn	Glu 165	Gly	Leu	Leu	Asp	Ile 170		Phe	Met	Leu	175	ı Ala	
Сув	Tyr	Asp	Val 180	Val	Gly	Glu	Gly	Ile 185		Phe	Ser	Pro	Tyr 190		Cys	
Ala	Gly	Ile 195		Thr	Asp	Leu	Val 200	Ser	Met	Phe	Glu	Ala 205		Asn	Pro	
Lys	Ile 210	Ser	Tyr	Gln	Gly	Lys 215	Leu	Gly	Leu	Ser	Tyr 220		Ile	Ser	Pro	
Glu 225	Ala	Ser	Val	Phe	Ile 230	Gly	Gly	His	Phe	His 235	Ьув	Val	Ile	Gly	Asn 240	
Glu	Phe	Arg	Asp	Ile 245	Pro	Thr	Ile	Ile	Pro 250	Thr	Gly	Ser	Thr	Leu 255	Ala	
Gly	Lys	Gly	Asn 260	Tyr	Pro	Ala	Ile	Val 265	Ile	Leu	Asp	Val	Cys 270	His	Phe	
Gly	Ile	Glu 275	Met	Gly	Gly	_	Phe 280									
(2)	INF	RMAT	rion	FOR	SEQ	ID N	0:5:									
	(i)	(<i>P</i> (E	QUENC A) LE B) TY C) ST O) TO	NGTH PE: RAND	: 84 nucl EDNE	9 ba eic SS:	se p acid sing	airs l	ı							
	(ii)	MOL	ECUL	Е ТҮ	PE:	DNA	(gen	omic	:)							
	(ix)	(A	TURE NA LO	ME/K			46									
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	d No	:5:						
ATG [°] Met	TAA Asn	TAC Tyr	AGA (GAA ' Glu 1 285	TTG Leu	TTT 1	ACA Thr	Gly	GGC Gly 290	CTG Leu	TCA Ser	GCA Ala	Ala	ACA Thr 295	GTC Val	4.8
GC Cys	GCC Ala	Сув	TCC (Ser)	CTA (Leu)	CTT (Leu '	GTT A	Ser (GGG Gly 305	GCC Ala	GTA (Val	GTG Val	Ala	TCT Ser 310	CCC Pro	ATG Met	96
GT Ser	His	GAA Glu 315	GTG (GCT :	rcT (Ser (3lu (GG (GGA (GTA :	ATG (Gly (GGT . Gly .	AGC Ser	TTT Phe	TAC Tyr	144

GTC Val	GG1 Gly 330	/ Ala	G GCC	TAC Tyr	AGC Ser	CCA Pro	Ala	TT"	r cc	T TC	r GT' r Val	l Th	C TC	G TT r Ph	C GAC e Asp	192
ATO Met 345	Arg	GAC	TCA Ser	AGC Ser	Lys 350	Glu	ACC Thr	TC#	A TAC	GTT Val 355	l Arg	A GG	С ТА' у Ту	r As _l	C AAG D Lys 360	240
Ser	Ile	: Ala	Thr	11e 365	Asp	Val	Ser	Val	9rc 370	Ala	Asn) Phe	e Sei	375		288
Gly	Tyr	Thr	9he 380	Ala	Phe	Ser	Lys	Asn 385	Leu	Ile	Thr	Sei	390	Asp	GGC Gly	336
Ala	Val	Gly 395	Tyr	Ser	Leu	Gly	Gly 400	Ala	Arg	Val	Glu	Leu 405	Glu	Ala	AGC Ser	384
Tyr	Arg 410	Arg	Phe	Ala	Thr	Leu 415	Ala	Asp	Gly	Gln	Tyr 420	Ala	Lys	Ser	GGT	432
Ala 425	Glu	Ser	Leu	Ala	Ala 430	Ile	Thr	Arg	Asp	Ala 435	Asn	Ile	Thr	Glu	440	480
Asn	Tyr	Phe	GTA Val	Val 445	Lys	Ile	Asp	Glu	Ile 450	Thr	Asn	Thr	Ser	Val 455	Met	528
Leu	Asn	Gly	TGC Cys 460	Tyr	Asp	Val	Leu	His 465	Thr	Asp	Leu	Pro	Val 470	Ser	Pro	576
Tyr	Val	Cys 475	GCC Ala	Gly	Ile	Gly	Ala 480	Ser	Phe	Val	Дар	Ile 485	Ser	Lys	Gln	624
Vai	Thr 490	Thr	AAG Lys	Leu	Ala	Tyr 495	Arg	Gly	Lys	Val	Gly 500	Ile	Ser	Tyr	Gln	672
Phe 505	Thr	Pro	GAA Glu	Ile	Ser 510	Leu	Val	Ala	Gly	Gly 5 15	Phe	Tyr	His	Gly	Leu 520	720
Phe	Asp	Glu		Tyr 525	Lys .	Asp	Ile	Pro	Ala 530	His	Asn	Ser	Val	Lys 535	Phe	768
TCT Ser	GGA Gly	GAA Glu	GCA Ala 540	AAA Lys .	GCC '	TCA (Ser	Val :	AAA Lys 545	GCG Ala	CAT His	ATT Ile	GCT Ala	GAC Asp 550	TAC Tyr	GGC Gly	816

WO 98/16554 PCT/US97/19044

21

TTT AAC CTT GGA GCA AGA TTC CTG TTC AGC TAA
Phe Asn Leu Gly Ala Arg Phe Leu Phe Ser
555 560

849

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 282 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Asn Tyr Arg Glu Leu Phe Thr Gly Gly Leu Ser Ala Ala Thr Val 1 5 10 15

Cys Ala Cys Ser Leu Leu Val Ser Gly Ala Val Val Ala Ser Pro Met
20 25 30

Ser His Glu Val Ala Ser Glu Gly Gly Val Met Gly Gly Ser Phe Tyr 35 40 45

Val Gly Ala Ala Tyr Ser Pro Ala Phe Pro Ser Val Thr Ser Phe Asp 50 55 60

Met Arg Glu Ser Ser Lys Glu Thr Ser Tyr Val Arg Gly Tyr Asp Lys 65 70 75

Ser Ile Ala Thr Ile Asp Val Ser Val Pro Ala Asn Phe Ser Lys Ser 85 90 95

Gly Tyr Thr Phe Ala Phe Ser Lys Asn Leu Ile Thr Ser Phe Asp Gly
100 105 110

Ala Val Gly Tyr Ser Leu Gly Gly Ala Arg Val Glu Leu Glu Ala Ser 115 120 125

Tyr Arg Arg Phe Ala Thr Leu Ala Asp Gly Gln Tyr Ala Lys Ser Gly 130 135 140

Ala Glu Ser Leu Ala Ala Ile Thr Arg Asp Ala Asn Ile Thr Glu Thr 145 150 155 160

Asn Tyr Phe Val Val Lys Ile Asp Glu Ile Thr Asn Thr Ser Val Met 165 170 175

Leu Asn Gly Cys Tyr Asp Val Leu His Thr Asp Leu Pro Val Ser Pro 180 185 190

Tyr Val Cys Ala Gly Ile Gly Ala Ser Phe Val Asp Ile Ser Lys Gln 195 200 205 WO 98/16554

22

Val Thr Thr Lys Leu Ala Tyr Arg Gly Lys Val Gly Ile Ser Tyr Gln 210 215 220

Phe Thr Pro Glu Ile Ser Leu Val Ala Gly Gly Phe Tyr His Gly Leu 225 230 235 240

Phe Asp Glu Ser Tyr Lys Asp Ile Pro Ala His Asn Ser Val Lys Phe 245 250 255

Ser Gly Glu Ala Lys Ala Ser Val Lys Ala His Ile Ala Asp Tyr Gly
260 265 270

Phe Asn Leu Gly Ala Arg Phe Leu Phe Ser 275 280

<u>Claims</u>

1	1. A composition comprising a polynucleotide which encodes a polypeptide having the
2	characteristic of eliciting an immune response protective against disease or death caused by a
3	rickettsial pathogen.
1	2. The composition, according to claim 1, wherein said rickettsial pathogen is selected
2	from the group consisting of <i>Rickettsia</i> spp., <i>Ehrlichia</i> spp., <i>Anaplasma</i> spp., and <i>Cowdria</i> spp.
2	nom the group consisting of Alexensia spp., Enricenta spp., Anaptasma spp., and Cowaria spp.
1	3. The composition, according to claim 1, wherein said polypeptide has an amino acid
2	sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6,
3	SEQ ID NO. 14, SEQ ID NO. 15, SEQ ID NOS. 16-20, SEQ ID NO. 23, and SEQ ID NO. 24,
4	or a fragment thereof.
1	4. The composition, according to claim 1, wherein said polynucleotide has a nucleic
2	acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO.
3	5, SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NOS. 9-13, SEQ ID NO. 21, and SEQ ID NO. 22,
4	or a fragment thereof.
1	5. The commercial according to this A. I.
1	5. The composition, according to claim 4, wherein said polynucleotide has a nucleic
2	acid sequence of SEQ ID NO. 3, or a fragment thereof.
1	6. The composition, according to claim 1, wherein said polynucleotide further
2	comprises a nucleic acid vaccine vector.
1	7. The composition, according to claim 1, further comprising a pharmaceutically
2	acceptable carrier.
	•
1	8. A polynucleotide encoding a polypeptide having an amino acid sequence selected
2	from the group consisting of SEQ ID NO. 4, SEQ ID NOS. 14-20, SEQ ID NOS. 23-24, and
3	fragments thereof.

1	9. The polynucleotide, according to claim 8, said polynucleotide having a nucleic acid
2	sequence selected from the group consisting of SEQ ID NO. 3, SEQ ID NOS. 7-13, and SEQ
3	ID NOS. 21-22.
1	10. A method for protecting a susceptible animal host against disease or death caused
2	by a rickettsial pathogen, said method comprising administering an effective amount of a
3	polynucleotide encoding polypeptide having the characteristic of eliciting an immune response
4	protective against said rickettsial pathogen.
1	11. The method, according to claim 10, wherein said rickettsial pathogen is selected
2	from the group consisting of Rickettsia spp., Ehrlichia spp., Anaplasma spp., and Cowdria spp.
1	12. The method, according to claim 10, wherein said polypeptide has an amino acid
2	sequence selected from the group consisting of SEQ ID NO. 2, SEQ ID NO. 4, SEQ ID NO. 6,
3	SEQ ID NO. 14, SEQ ID NO. 15, SEQ ID NOS. 16-20, SEQ ID NO. 23, and SEQ ID NO. 24,
4	or a fragment thereof.
1	13. The method, according to claim 10, wherein said polynucleotide has a nucleic acid
2	sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5,
3	SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NOS. 9-13, SEQ ID NO. 21, and SEQ ID NO. 22.
1	14. The method, according to claim 13, wherein said polynucleotide has the nucleic acid
2	sequence of SEQ ID NO. 1.
1	15. The method, according to claim 13, wherein said polynucleotide has the nucleic acid
2	sequence of SEQ ID NO. 3.
i	16. The method, according to claim 13, wherein said polynucleotide has the nucleic acid
2	sequence of SEQ ID NO. 5.
1	17. The method, according to claim 10, wherein said nucleic acid further comprises an
2	appropriate nucleic acid vector.
2	

WO 98/16554 PCT/US97/19044

25

1	. 18. The method, according to claim 10, wherein said composition further comprises
2	pharmaceutically acceptable carrier.
1	19. A method for detecting, in a human or animal, antibodies associated with infection
2	by Ehrlichia, wherein said method comprises contacting a biological fluid from said human or
3	animal with a polypeptide selected from the group consisting of SEQ ID NO. 4, SEQ ID NOS
4	14-20, SEO ID NOS. 23-24, and fragments thereof

FIG. 1A

				•	
ATGAATTGCAAGAAATTTTTATCACAAGTACACTAATATCATTAGTG ATGAATTACAAAAAAGTTTCATAACAGCG-ATTGATATCATTAATA ATGAATTACAGAAATTGTTTACAGGGGCCTG-TCAGCAGCC-ACAGTCTGCGCCTGCT *************************		GCAGTGTTTACATTAGCGCAAATACATGCCAACTGCATCACATTTTGGTAAAATGTCAA GTAATTTCTACATCAGTGGAAAATACGATGCCAAGGCTTCGCATTTTGGAGTATCTCTG 1. GGGGAGTAATGGGAGGTAGCTTTTACGTGGGTGCGGCCT-ACAGCCCAGCATTTCCTTCT 2. * * * * * * * * * * * * * * * * * * *	TCAAAGAAGATTCAAAAATACTCAAACGGTATTTGGTCTAAAAAAAA	TTAAAACACCATCAGATTCTAGCAATACTAATTCTACAATTTTTTACTGAAAAAGACTATTTGCGCAATATTTTACTGAAAAAGACTATTTACTGCAATTTTACTCAAATTATTGCGCAAATATTATTATTACTGCCAAACGATGTGTGTG	CTTTCAGATATGAAAACAATCCGTTTTTTAGGTTTTCGCTGGAGCAATTGGGTACTCAATGA CATTTAAATATGAAAACAACCCGTTTTTTAGGTTTTTGCAGGAGCTATTGGTTACTCAATGG CTTTTGCCTTCTCTAAAAACTTAATCACGTCTTTCGACGGCGCTGTGGGATATTCTCTGG
C.r. E.c. A.m.	C.r. E.c. A.m.	C.r. E.c. A.m.	C.r. E.c. A.m.	C.r. E.c. A.m.	C.r. E.c. A.m.

FIG. 1E

FIG. 10

C. 7.	GTGGACATTTCCATAGAGTTATAGGTAATGAATTTAAAGATATTGCTACCTTAAAAATAT GTGGGCACTTTCATAAGGTAATAGGGAACGAATTTAGAGATATTCCTACTATAATACCTA
<i>A.m.</i>	GTGGGTTCTACCACGGGCTATTTGATGAGTCTTACAAGGACATTCCCGCACACAACAGTG ****
C.r.	TTACTTCAAAAACAGGAATATCTAATCCTGGCTTTGCATCAGCAACACTTGATGTTTGTC
E.c. A.m.	CTGGATCAACATTGCAGGAAAAGGAAACTACCCTGCAATAGTAATACTGGATGTATGCC TAAAGTTCTCTGGAGAAGCAAAA—————————————————
	* * * * * * * * * * * * * * * * * * * *
C.r.	ACTTTGGTATAGAAATTGGAAGGTTTGTATTTTAA
E.c.	ACTTTGGAATAGAAATGGGAGGAAGGTTTAA
A.m.	ACTACGGCTTTAACCTTGGAGCAAGATTCCTGTTCAGCTAA

1 ggaatgaattcagggacatttctactcttamagcgtttgctacaccatcatctgcagcta NEFRDISTLKAFATPSSAAT 61 etccagaettagcaacagtaacactgagtgtgtcactttggagtagaacttggaggaa PDLATVTLSVCHFGVELGGR 121 gatttaacttctaattttattattgccacatgttaaaaataatctaaacttgttttcatt PNF * 241 ctaattactatetgecatatecettactaccacttacactaaataatetgacaaatacaa 301 cagettetggagaaataaacaatatttaaatttttettettaeaaaaaccatttatatetettgt -35 361 actaaaaactaget<u>tataac</u>ttgtttttacattgtaggtttactactgttaatttgtttt -10 421 cactatttc<u>aggtg</u>taatatgaactgcgaaaaattttttataacaactgcattaacatta MNCEKFFITTALTL 481 ctaatgtccttcttacctggaatatcactttctgatccagtacaggatgacaacattagt LMSPLPGISLSDPVQDDNIS 541 ggtaatttetacateagtggaaagtatatgccaagcgcttcgcattttggagtttttet G N F Y I S G K Y M P S A S H P G V F S 601 gccaaggaagaaagaaatacaacagttggagtatttggaatagagcaagattgggatága A K E E R N T T V G V F G I E Q D W D R 661 tgtgtaatatctagaaccactttaagegatatattcaccgttccaaa<u>ttattcatttaac</u> C V I S R T T L S D I F T V P N Y S F K 781 agaatagagettgaagtatetTatgaageattegatgttaaaaatcaaggtaacaattat RIELEVSYEAPDVKNQGNNY 841 aagaacgaagcacatagatattatgototgtoccatottotoggcacagagacacagata KNEAHRYYALSHLLGTETQI 901 garggtgcaggcagtgcgtctgtctttctaataaatgaaggactacttgataaatcattt DGAGSASVPLINEGLLDKSP 961 atgctgaacgcatgttatgatgtaataagtgaaggcatacctttttctccttatatatgt MLNACYDVISEGIPPSPYIC 1021 gcaggtattggtattgatttagtatccatgcttcgaagctataaatcctaaaatttcttat A G I G I D L V S M F E A I N P K I S Y 1081 caaggaaattaggettaagttaceetataageeeagaagettetgtgtttattggtgga Q G K L G L S Y P I S P E A S V F I G G 1141 cattttcataaggtgataggaaacgaatttagagatattcctactatgatacctagtgaa H F H K V I G N E F R D I P T M I P S 1201 tragegettgeaggaaaaggaaactaccetgcaatagtaacaetggacgtgttctacttt SALAGKGNYPAIVTLDVFYP GIELGGRFNPQL + 1321 atagtggcassagaatgtagcaataagaggggggaaggggggaactaaattattatttgec 1441 aaacaattottaaatttgtottatgagaacca<u>ttgata</u>tottatattaaaaactagotta -35 -10 1561 atatgaattgcaaaaattttttataacaactgcattagtatcactaatgtcctttctac M N C K K P P I T T A L V S L M S F L P 1621 crggaatatcattttctgatccagtgcaaggtgacaatattagtggtaatttctatgtta G I S F S D P V Q G D N I S G N F Y V S 1681 gtggcaagtatatgccaagtgcttcgcattttggcatgttttctgccaaagaagaaaaa GKYMPSASHFGMPSAKEEKN PTVALYGLKQDWEGISSSSH 1801 acaatgataatcatttcaataacaaggg<u>ttattcatttaaatatgaa</u>aataacccatttt NDNHPNNKGYSFKYENNPFL 1861 tagggtttgcaggagctattggttattcaatgggtggtccaagagtagagtttgaagtgt G F A G A I G Y S M G G P R V E F E V S 1921 cctatgaaacatttgacgttaaaaatcagggtaataactataaaaatgatgctcacagat YETPDVKNQGNNYKNDAHRY 1981 actgtgctttaggtcaacaagacaacagcggaatacctaaaactagtaaatacgtactgt CALGQQDNSGIPKTSKYVL K S E G L L D I S F M L N A C Y D I I N 2101 acgagagcatacctttgtctccttacatatgtgcaggtgttggtActgatttaatatcca ESIPLSPYICAGVGTDLISM 2161 to the state of the second contract of 2221 taaacccagaagettetgtatttattggtggacattttcataaggtgataggaaacgaat NPEASVFIGGHFHKVIGNEF 2281 tragggacattectactetgaaageatttgttaegteatcagetacteeagatetageaa RDIPTLKĀFVTSSĀTPĒLĀI

FIG. 2A

```
2341 tagtaacactaagtgtatgtcattttggaatagaacttggaggaaggtttaacttctaat
       V T L S V C H F G I E L G G R F N F 4
 2401 tttgttattgccacatgttaaaaataatctaaacttgttttcattattgctacagtaaat
 2521 accatatecettattatacaccaettacaetaaataaettgacaaatacaacagettetgga
 2581 aaaacaaacaatacttaaatttctctttacaaaaaccatttatatcttgtactaaaaacta
                                     -35
 2641 gottataacttgttttacactgtagttctactattgttaattttttcactattttag
         -10
 2701 gtgcaatatgaattgcaaaaaattttttataacaactacattagtatcgctaatgtcctt RBS M N C K K F F I T T L V S L M S P
 2761 cttacctggaatatcattttctgatgcagtacagaacgacaatgttggtggtaatttcta
      LPGISFSDAVQNDNVGGNFY
 2821 tatcagtgggaaatatgtaccaagtgtttcacattttggcgtattctctgctaaacagga
      I S.G K Y V P S V S H F G.V F S A K O E
 2881 aagaaatacaacaatcggagtatttggattaaagcaagattgggatggcagcacaatatc
      RNTTIGVFGLKQDWDGSTIS
 2941 taaaaatteteeagaaaatacatttaaegtteeaaattattaattaattaaataataa
     KNSPENTPNVPNYSFKYENN
3061 agaaatgtcctatgaaacatttgatgtgaaaaaccagggtaataactataagaacgatgc
     E M S Y E T F D V K N Q G N N Y K N D A
3121 teacaaatattatgetttaacccataacagtgggggaaagetaagcaatgcaggtgataa
     H K, Y Y A L T H N S G G K L S N A G D K
PVFLKNEGLLDISLMLNACY
3241 tgatgtaataagtgaaggaatacetteteteettacatatgtgcaggtgttggtactga
D V I S E G I P P S P Y I C A G V G T D
3301 tttaatatccat\underline{\sigma}tttgaa\underline{\sigma}ctataaa\underline{\sigma}ctataaaatttcttatcaaggaagttaggttt L I · S M F E A I N P K I S Y Q G K L G L
3361 gagttactccataagcccagaagcttctgttttgttggtggacattttcataaggtgat
     SYSISPEASVFVGGHFHKVI
3421 agggaatgaattcagagatattcetgctatgatacccagtacctcaactctcacaggtaa G N E F R D I P A M I P S T S T L T G N
3481 teaetttaetatagtaacactaagtgtatgecactttggagtggaacttggaggaaggtt
     H F T I V T L S V C H F G V E L G G R F
3541 taacttttaattttattattgccacatgttaaaaataatctaaacttgtttttattattg
     N F: *
3721 tattacttacctgacgtaatatattaaattttccttacaaaagttaccqatactttatac
                                           -35
3781 aaaaatt<u>tatatt</u>otgaottgottttatatgacacttotactattgttaatttatttgto
          -10
3841 actactaggttatatatgaattacaaaaagttttcataacaagtgcattgatatcatta
          P.BS
                MNYKKVFITSALISL
3901 atatettetetacetggagtaceatttteegaeeeageaggtagtggtattaaeggtaat
    I S S L P G V S P S D P A G S G I N G N
3961 ttctacatcagtggaaaatacatgccaagtgcttcgcattttggagtattctctgctaag
    FYISGKYMPSASHFGVFSAK
4021 gaagaaagaaatacaacagttggagtgtttggactgaagcaaaattgggacggaagcgca
    EERNTTVGVFGLKQNWDGSA
I S N S S P N D V P T V S N Y S F K Y E
4201 gagettgaagtatettatgaaacatttgatgtaaaaaatcaaggtaacaattataagaat
    ELEVSYETPDVKNQGNNYKN
4261 gaagcacatagatattgtgctctatcccataactcagcagcagacatgagtagtgcaagt
    EAHRYCALSHNSAADMSSAS
4321 aataattttgtctttctaaaaaatgaaggattacttgacatatcatttatgctgaacgca
    N N F V P L K N E G L L D I S F M L N A
4381 tgctatgacgtagtaggcgaaggcatacctttttctccttatatatgcgcaggtatcggt
    CYDVVGEGIPFSPYICAGIG
4441 actgatttagtatccat<u>otttoaagctacaaattc</u>taaaatttcttaccaaggaaagtta
T D L V S M F E A T N P K I S Y Q G K L
4501 ggtttaagetaetetataageecagaagettetgtgtttattggtgggeaettteataag
    G L S Y S I S P E A S V F I G G H F H K
4561 gtaatagggaacgaatttagagatatteetaetataatacetaetggateaaeaettgea V I G N E F R D I P T I I P T G S T L A
4621 ggaaaaggaaactaccctgcaatagtaatactggatgtatgccactttggaatagaaatg
   GKGNYPAIVILDVCHFGIEM
4681 gga
```

FIG. 2B

```
61 ctttacacattttatacctttttatagtccagcacgtgccagtacaattcacaacttcta
F T H F I P F Y S P A R A S T I H N F Y
 121 cattagtggaaaatatatgccaacagcgtcacattttggaattttttcagctaaagaaga
      ISGKYMPTASHFGIFSAKEE
 181 acaaagttttactaaggtattagttgggttagatcaacgattatcacataatattataaa Q S F T K V L V G L D Q R L S H N I I N
 241 caataatgatacagcaaagagtottaaggttcaaaattattcatttaaatacaaaaataa
     N N D T A K S L K V Q N Y S F K Y K N N
 301 cccatttctaggatttgcaggagctattggttattcaataggcaattcaagaatagaact
     P F L G F A G A I G Y S I G N S R I E L
 361 agaagtattacatgaaatatttgatactaaaaacccaggaaacaattatttaaatgactc
     EVSHEIFDTKNPGNNYLNDS
 421 toacaaatattgegetttateteatggaagteacatatgcagtgatggaaatageggaga
     481 ttggtacactgcaaaaactgataagtttgtacttctgaaaaatgaaggtttacttgacgt
     WYTAKTDKPVLLKNEGLLDV
 541 ctcatttatgttaaacgcatgttatgacataacaactgaaaaaatgcctttttcacctta
     SFMLNACYDITTEKMPFSPY
 ICAGIGTOLISMFETTQNKI
 661 atcttatcaaggaaagttaggtttaaactatactataaactcaagagtttctgttttgc
     SYQGKLGLNYTINSRVSVFA
 721 aggtgggcactttcataaggtaataggtaatgaatttaaaggtattcctactctattacc G G H F H K V I G N E F K G I P T L L P
 781 tgatggatcaaacattaaagtacaacagtctgcaacagtaacattagatgtgtgccattt
 D G S N I K V Q Q S A T V T L D V C H F 841 cgggttagagattggaagtagatttttttttaatacttctattgtacatgttaaaaata
     GLEIGSRPFP *
 961 aagttaaatattagaaaagtcatatgtttttcattgtcattgatactcaactaaaagtag
1021 tataaatgttacttattaataattttacgtagtatattaaatttcccttacaaaagccac
1081 tagtattttatactaaaagctatactttggcttgtatttaatttgtatttttactactgt
    -35
                     -10
1141 taatttactttcactgtttctggtgtaaatatgaattgtaaaaaagttttcacaataagt
                           MNCKKVFTIS
                    RBS
1201 gcattgatatcatccatatacttcctacctaatgtctcatactctaacccagtatatggt
    A L I S S I Y P L P N V S Y S N P V Y G
1261 aacagtatgtatggtaatttttacatatcaggaaagtacatgccaagtgttcctcatttt
    N S M Y G N F Y I S G K Y M P S V P H F
1321 ggaattttttcagctgaagaagagaaaaaaaagacaactgtagtatatggcttaaaagaa
     IFSAEEEKKKTTVVYGLKE
1381 aactgggcaggagatgcaatatctagtcaaagtccagatgataattttaccattcgaaat
    N W A G D A I S S Q S P D D N F T I R
1441 tactcattcaagtatgcaagcaacaagtttttagggtttgcagtagctattggttactcg
    YSPKYASNKPLGFAVAIGYS
1501 ataggcagtccaagaatagaagttgagatgtcttatgaagcatttgatgtaaaaaatcaa
    IĞSPRIEVEMSYEAPDVKNQ
1561 ggtaacaatt
    GNN
```

FIG. 2C

_	aca	LCG	cata	acat	ctat	agt	aa	caa	atgt	tac	cgt	att	tta	atto	cata	aagt	taa	igta	ıaaa	atc
61	ata	cca	atto	stat	ttc	act	:tta	atca	agaa	ıgac	ttt	tat	tta	itca	caa	act	cat	gac	:qta	ıtad
121									ctgo											
181									ata											
241									agt											
301					_	•														
	tat	M	[K	A	CIA T	X T	AAT T	T	TAC	ATT.	ATG	TCT	GCŢ	TAC	TAT	TTG	CAG	CAA!		
																			_	. 1
361	TAG	GGT	ATT	CCT	ATA'	TTA	CAA	AAC	AAG	GCA	TAT:	TTC.	AAA	CAA	AAC	ATC	ATG	ATA	CAC	СТА
	G	1	S	Y	I	T	K	Q	G	I	F	Q	T	K	H		D		P	
421	ATA T	CTA	CTA	TAC	CAA	ATG	AAG	ACG	GTA:	TTC	ልውጥ	:ጥል(ごしかい	מידים.	ر درسر	די אי איר	חרא:			
	T	T	I	P	N	E	D	G	I	Q	s	S	F	S	L.	I	N N	Q Q	AAG. D	ACG G
481	GTA/	AAA	CAG'	TAA	CCAC	GCC)	٩AG	ATT	rcci	rage	GAZ	מאמ	ימים	الريارة	מים מים	Dama	3.CM	mee	*	
	K	T	V	T	S	Q	D	F	L	G	K	Н	M	L	V	L	F	G	ATT F	CT S
541	CT.GC	CAT	GTA	AAA	CAI	TT	3CC	CTG	CAGZ	יידע	ייהפים	ייי ב	י א כיי	יזייתי	*m~ 7		· > ~ a	.m.c.c		
	A	С	K	S	I	С	P	A	E	L	G	L	V	S	E	MGC A	AC1	TGC	ACA O	AC T.
601	ጥተ ርር	מרד	ልጥ <u>ል</u> ያ	מייה כ																
	TTGG G	N	N	A	יעימיר	25. TC-47.	TAT 1	ACA	V V	:AA:I	TTT	TAT	TAC	:AA:				AAA	.TGA	TA
	-	•	•									I	T	I	D	P	K	N	D	T
661	CTGT V	'AG/	VAA	TTA/	AAA	AGA	LTA	TC	ATGA	ACA	TTT	TGA	TTC	AAG	TAAT	ጥሮል	ייממ	Стт	מממ	A C
	V	E	K	L	K	E	F	H	E	H	F	D	S	R	I	Q.	М	L		G
721	GAAA N	TAC	TGA	AGA	CAT	TAA	TCA	דמג	יתממי	ממידי	מממ	יע נענע	m n n	3 3 m						
	N	T	E	D	I	N	Q	I	I	K	aaa N	YITA	I AA K	AAT I	ATA	TGT V	TGG	ACA.		
70.														_				_	Α	_
781	ATAA	AGA	TCA	TCA	AAT	TAA	.CCA	TTC	TGC	AAT	AAT	GTA	CCT	TAT	TGA	CAA	AAA	AGG	ATC	ΑТ
	K	ט	H	Q	I	N	H	5	A	I	M	Y	L	I	D	K	K	G	S	
941	ATCT	TTC	ACA	CTT	CAT	TCC	AGA	ւրդո	AAA	∆ጥሮ	מרמ	א כייא.	N N N 1	י איי	3 Cm					
	L	S	H	F	I	P	D	L	K	S	0	rga E	maa. N	CA.	AGT.	AGA: D	ľAA(STT! T.	ACT/ L	
901	(השישים)	ልርጥ	ጥአክ	CCN	C III N I	T.COM														
	CTTTI L	V	K TWW	Q	GTA:	rcre	GTA	Att	taai	taa	ttaa	att/	<u>AAA</u>	<u>G</u> ag:	aata	agta	cac	:a <u>C'</u>]	<u>rrr</u> t	-t
	-	•	41	¥	1	ш	-													
61	ataaa	att	cat	ggaa	atac	gti	tgga	atg	agta	aggt	ttt	ttt	tac	rta!		-+=-	.+ ~ -	+	. -	
21	attg	gca	t	•		-		-	-	٠ ر ر	- 5 (;	,		- cay	rege	-caa	Laa	ıc

FIG. 3A

T	gg	aaa	ICCT	cat	gta	aac	gto	jaaa	itac	tat	att	ctt	ttt	taa	ata	cca	ata	caa	ttg	aat
61				ctt																
121	to	aca	aaa	taa	caa	aaa	tac	tat	tta	caa	aat	aca	cca	caa	ttt	cat	caa	ata	aaa	aaaa
181	ct	ata	cac	ttt	att	ata	cta	cag	tag	ata	tac	cat	aaa	aga	ttt	taa	gta	ас <u>т</u> "	IGA(<u>CA</u> ta
241				ttg		TAG	CAT												2 -	
301						_	Tυ						•							
301	으	ala	aan M	TGA, K	AAG:	TIA	TCA	AAT E	TTA	TAC	TTA	ATA:	rcr(GTT'	rat:	rat'	TTG	CAG	:AA!	TTT
			1.1	•	٧	_	v	E		L	N	1	. С	L	L	F	A	→A	I	F
361	TC	ľAG	GAT.	ATT	CCT	ACG	raa.	CAA	AAC	AAG	GCA'	بمليما	בידים	AAG	ממק	באכז	ስምሮን	מ תניים ר	(C) C	·m-c-
	L	G	Y	S	Y	v	T	K	Q	G	I	F	. 0	v	Ř	D				P
421	G3.1												•						_	_
421	CAZ N	TAIY T	CAA	ATAT	rato	:AA	ATA	AAG	CCA	GCA:	TAC	CTAC	TAC	TTT	TTC	GTI	(AG	AAA	TCA	AGA
	14	Τ.	М	I	5	N.	K	A	S	1	T	T	· s	F	S	L	V	N	Q	D
481	TG	:AA	ATA	CAGI	CAAZ	TAC	:TC	AAGI	י להילה 7	الساسات	cee	: ממתי	, ama	~~~						
	G	N	T	v	N	S	0	D	F	L	G. G	zaar K	Y	M	GC1 L	AGI	TTT			
											_		_				L	F	G	F
541	TTC	TTC	ATC	STAP	AAG	CAT	CTC	SCC0	TGC	TGA	ATI	'AGG	AAT	'AGC	:ATC	מפידי	בים	ىلىكىلەر	כידר	מסמ
	S	S	С	K	S	I	С	P	A	E	L	G	I	A	S	E	v	L	S	
601	GCT																			_
001	L	G	N	ATGA D	T	~\G# T\	K.	IGTT	ACA	AGI	'AAT	'TTT	'CAT					AAC	AAA'	TGA
		٠		D	1	ע	v	L	Q	V	1	F	I	T	I	D	P	T	N	D
661	TAC	TGI	'ACA	AAA	ATT	AAA	AAC	TTA:	TCA	ጥርል	מכמ	ىلىنلىنل	מיכיז	mcc	ma c	* * *				
	T	v	Q	K	L	K	T	F	H	E	H	# 111	ים דפע	D T	IAG.	AAT T	TCA	AAT	GCT/	
																				T
721	AGG	CAG	TGC	AGA	AGA	TAT	TGA	AAA	AAT	AAT	AAA	AAA	ŢTA	CAA	AAT.	ATA	TGT	TGG	ACAZ	AGC
	G	S	A	E	D	I	E	K	I	I	K	N	`Y	K	I	Y	v	G	0	A
781	A.C.A.	מ <i>ו</i> ניים	ת כי ת	m > >	mc »															
701	AGA	K TWW	D WGW	TAA.	TCA	AAT	TGA	TCA	CTC	TGC	CAT.	AAT	GTA	CAT'	TAT	CGA:	TAA	AAA	\GG/	AGA
		10	ט	N	v	1	D	н	S	A	Ι	M	Y	I	I	D	K	K	G	E
841	ATA	CAT	TTC	ACA	CTT	rrc	TCC	AGA'	بلململ	מממ	አ ጥ ር :		7 C 7 '			. ~				
	Y	I	S	H	F	s	P	D	L	K	S	ማማር ጥ	MGA/ F	MAA.	I CAA	AGTZ	AGA:	raac K	TTP	CT
							-													
901	ATC:	TAT.	AAT.	AAA	ACA!	ATA:	CT	CTA	Att	taai	taat	ttaa	atta	AAc	FAG:	ata	ant:	cac	-a CT	יוויטי
	S	I	I	K	Q	Y	L	*									-9 -1		.~ <u>~</u> ∠	~*
961	m			.																
021	Tata acat	ıta: rtə	aat	ccat	cgga	atai	cat	gtga	atg	ggta	agat	ttt	ettt	tgç	gtgt	tto	ctat	cgc	taa	tt
		4																		

FIG. 3B

Inte. onal Application No PCT/US 97/19044

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07K14/29 C12N15/86 A61K31/70 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K C12N A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ MCGUIRE T. C. ET AL.,: "Recombinant 1,2,6,7, vaccinia virus expression of anaplasma 10,11 marginale surface protein MSP-la:effect of promoters, leader sequences and GPI anchor sequence on antibody response" VACCINE, vol. 12, no. 5, - 1994 pages 465-471, XP002057342 Y see the whole document 3,4,12, 13,16 Y OBERLE S. M. & BARBET A.F.: "Derivation 3,4,12, of the complete msp4 gene sequence of 13,16 anaplasma marginale without cloning" GENE, vol. 136, - 1993 pages 291-294, XP002057343 see whole document; esp. p293, par. d ff Further documents are listed in the continuation of box C. Patent family members are listed in annex. X * Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but oited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(a) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled P° document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 9, 03, 1998 2 March 1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 European Falein Gillot, NL - 2280 HV Rijswijk, Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Müller, F Fax: (+31-70) 340-3016

Inte onal Application No
PCT/US 97/19044

International application No.

PCT/US 97/19044

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 10-18 because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 10-18 are directed to a method of treatment of the human/animal body the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
з. [Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rmational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Information on patent family members

inter onal Application No

, uno	rmation on patent ramily mem	2013	PCT/L	JS 97/19044
Patent document cited in search report	Publication date	Patent fami member(s)	у	Publication date
WO 9012030 A	18-10-90	AU 552149 EP 046797 JP 450442 US 554989	2 A 2 T	05-11-90 29-01-92 06-08-92 27-08-96
·				
			•	