

Faculty of Electrical and Computer Engineering, Communications Laboratory, Deutsche Telekom Chair of Communication Networks

Compressed Compute-and-Forward with correlated audio signals

DRESDEN concept Exzellenz aus Wissenschaft und Kultur

Dresden, 14.07.2016

Table of Content

- 1. Introductiom
 - Task
 - Motivation
- 2. Underlying Theroy
 - Crosscorrelation
 - Designed characteristical values
- 3. Basics of the Octave-Tool
- 4. Signals
 - Recorded Signals
 - Examples
- 5. Conclusion

Task

- develop software to correlate stereo audio streams
- develop models for characteristic values to describe correlation
- record audio signals

Underlying theory (crosscorrelation)

time domain

frequency domain

$$\psi_{xy}^E(\tau) = \int\limits_{-\infty}^{\infty} x(t) \cdot y(t+\tau) \,\mathrm{d}t \qquad \qquad \underline{\Psi}(\omega) = \underline{X}^*(\omega) \cdot \underline{Y}(\omega)$$
 [ISV, S. 48 f] $\int\limits_{-\infty}^{\infty} x(t) \cdot y(t+\tau) \,\mathrm{d}t \qquad \qquad \underline{\Psi}(\omega) = \underline{X}^*(\omega) \cdot \underline{Y}(\omega)$

$$\underline{\Psi}(\omega) = \underline{X}^*(\omega) \cdot \underline{Y}(\omega)$$
 [ISV, S. 180]

$$\underline{\Psi}(\omega) = \int_{-\infty}^{\infty} x(-t) * y(t) \cdot e^{-j\omega t} dt$$
 [ISV, S. 180]

convolution theorem

Underlying theory

[NT]Prof. Dr.-Ing. Dr. h.c. Gerhard P. Fettweis: Einführung in die Nachrichtentechnik. Technische Universität Dresden, Fakultät Elektrotechnik, Vodafone Stiftungslehrstuhl Mobile Nachrichtensysteme, D-01062 Dresden Sommersemester 2015

Designed Characteristical Values

- Aim: check what kinds of signals are suitable for compressed-sensing
 - → classify signals
- Categories: physical information and shape of cross-correlation
- express characteristics in numbers
 - -simplify characteristics
 - -developed parameters have to stay valid

Designed Characteristical Values - ripple

Scale for energy distribution of the signal

$$ripple = \frac{\sum_{\text{der obsersten 5 Perzentile } x_i^2}{\sum_{i=1}^{N} x_i^2}$$

• $0 \le ripple \le 1$

Designed Characteristical Values - ripple

Designed Characteristical Values - sigma

Typical shape of a cross-correlation:

Find a scale for width of the peak

Designed Characteristical Values – sigma

Amplitude-demodulation to receive an envelope:

Designed Characteristical Values – sigma

• Fit a bell-shaped curve to envelope:

$$y = a \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} + b$$

Take sigma as value

Octave script

- modular and easily extendable
- processing lots of files
- concise output format

	· ·							
	A	В	С	D	E	F	G	Н
1		duration 🔻				exp ▼	area 🔻	t_diff ▼
2	lucas_bad_m_2_(4.3s)+0.1s	0,1		0,212309356				
3	lucas_von_flur_in_bad_m_(4.3s)+0.1s	0,1		0,176322991				
4	trefftz_fahrstuhl_m_(4.2s)+0.1s	0,1		0,335269505				
5	trefftz_oben_andere_seite_(4.1s)+0.1s	0,1	44100					
6	lucas_bad_m_1_(4.4s)+0.1s	0,1		0,268880279				
7	trefftz_oben_andere_seite_m_(4.4s)+0.1s	0,1		0,315810482				
8	trefftz_oben_andere_seite_(4.2s)+0.1s	0,1		0,488886935				
9	trefftz_unten_(4.2s)+0.1s	0,1		0,500751228				
10	trefftz_unten_(4s)+0.1s	0,1		0,479571512				
11	trefftz_oben_andere_seite_(4s)+0.1s	0,1		0,487005541				
12	lucas_bad_m_2_(4.1s)+0.1s	0,1		0,354844946				
13	bruecke_hsz_strasse_parallel_(4.4s)+0.1s	0,1		0,241628489				
14	trefftz_oben_andere_seite_(4.3s)+0.1s	0,1		0,410178066				
15	trefftz_unten_(4.1s)+0.1s	0,1		0,494284162				
16	trefftz_oben_andere_seite_m_(4.2s)+0.1s	0,1		0,318519645				
17	trefftz_oben_andere_seite_m_(4.3s)+0.1s	0,1		0,303908068				
18	trefftz_oben_andere_seite_(4.4s)+0.1s	0,1		0,460084415				
19	trefftz_unten_(4.3s)+0.1s	0,1		0,398273708				
20	bruecke_hsz_strasse_gegen_wand_(4.1s)+0.1s	0,1		0,266531232				
21	trefftz_fahrstuhl_m_(4.3s)+0.1s	0,1		0,409191729				
	lucas_bad_m_2_(4.2s)+0.1s	0,1		0,483991496				
	lucas_bad_m_1_(4.2s)+0.1s	0,1		0,428957288				
24	bruecke_hsz_strasse_gegen_wand_(4.3s)+0.1s	0,1		0,276695186				
25	bruecke_hsz_strasse_gegen_wand_(4.4s)+0.1s	0,1		0,286712318				
26	trefftz_fahrstuhl_m_(4.4s)+0.1s	0,1		0,339297442				
27	trefftz_oben_(4s)+0.1s	0,1		0,314482055				0,0003401
28	trefftz_oben_andere_seite_m_oben_(4.1s)+0.1s	0,1		0,308697014				0
29	trefftz_wiese_m_bewegt_(4.1s)+0.1s	0,1	44100	0,230104292	0,004263123	2,58330639	0,3708262	-0,0108617
	1 1 1 /4 4) . 6 1		44100	A 137A3EACE	0 00 43 64 503	1 7050000	0 5104100	0.000000

TU Dresden, 12.07.16

Compressed Compute-and-Forward with correlated audio signals

Folie 15 von 19

- Cardioid characteristic not omnidirectional characteristic
- Without primarily sound source low SNR
- With sound source less informations about the room characteristic
- Gauß-fit useful at ripple-factor > 0.3

Conclusion

- Octave tool for automated correlation of lots of data
- fairly simple models to classify correlation
- software can easily be extended with own models and analysis functions
- compact excel spreadsheet for easy selection of test signals

»Wissen schafft Brücken.«