Department of Computer Science and Engineering Monsoon Semester – 2020

CS3003D: Operating Systems Assignment - 4: Classnotes preparation

Group	Topic assigned
No.	Topic assigned
1	Operating systems- Definition –user view and systems view with a general block
	diagram
	Hardware structures-Processor architecture- Memory structure- role of the OS
	in the management of CPU and Memory
2	Interrupts - Hardware interrupts-software interrupts and exceptions(may use
	80x86 architecture as an example) Machines role and OS role
3	I/O devices and interfacing-Programmed I/O, Memory mapped I/O, Polling ,
	interrupt driven I/O, and DMA
4	System call- working (From application program to until IRETURN) with process
	related system calls as examples
5	Early OS, multiprogramming, time sharing, real time OS and embedded OS- Structure of the OS- Monolithic system, Layered systems, Microkernels,
	exokernel, client server systems and virtual machine
6	I/O software layers- Interrupt handlers, Device drivers (Use Linux device driver
	implementation as an example) Device independent I/O Software-Buffering-
	double buffer-circular buffer. Booting the OS and the shell
7	Memory Management- Basic concepts, address binding, Dynamic linking and
	loading
8	Contiguous Allocation- Static and dynamic partitioned allocation- Memory
	fragmentation – internal and external fragmentation
9	Paged memory management- Hardware support- TLB and protection-numerical
	examples
10	Structure of the page table- Hierarchical page table- Hashed page table and
	inverted page table
11	Segmented memory management, Swapping and swap space management
12	Virtual Memory- Basic concepts- demand paged memory management- free
	frame list, cost of demand paging, Copy on write
13	Page replacement algorithms- FIFO, LRU and optimal algorithms. LRU
	approximation algorithms
14	Allocation of frames-minimum number of frames-Allocation algorithms- global
4.5	and local allocation
15	Thrashing- working set model - page fault frequency
16	Kernel memory allocation- Buddy system - slab allocation, Other considerations
	in paged memory like prepaging etc.
17	Mass storage devices- Magnetic disk structure, HDD scheduling algorithms, RAID devices
18	Memory management – OS structure, process, process state, two state process
	model, Five state process model
19	Process control block, Process management subsystem, Process switching
	1 . 100000 Control Stock, 1 100000 management subsystem, 1 100000 switching

Department of Computer Science and Engineering Monsoon Semester – 2020

Group No.	Topic assigned
20	Process Manager- Trap and context switching, types of scheduling (long, medium, short), Scheduling criteria
21	Preemptive strategies: RR, SRT, Feedback (multilevel)
22	Nonpreemptive strategies: FCFS, SPN, HRRN
23	Threads, POSIX threads, user-level and kernel-level threads
24	Critical section and Resource sharing – Perterson solution, Bakery algorithm
25	IPC – pipes, named pipes, shared memory, message queue
26	Hardware lock – Test and Set, xchg instruction, Spinlock, Mutex
27	Semaphore: producer-consumer problem, reader-writer problem
28	Semaphore – dining philosopher problem, Complete Fair Scheduler
29	Deadlock – prevention techniques
30	Deadlock – avoidance techniques
31	File management - files - implementations - storage abstractions - memory
	mapped files - directories and their implementation
32	Protection and Security policy and mechanism, Virtual machines
33	Linux File system – a case study

Instructions:

- Deadline of Submission: 11, Dec.'20 (11:59 pm)
- Each group of students should consider the topics indicated against their group number
- Each student in the group should submit the classnote (digitally) individually
- Each topic should be described briefly going beyond the classroom understanding
- Each topic should be approached both theoretically and practically with legible diagrams. Reference of materials (books, research papers, web urls, etc.) should be included in the document.
- Each topic should be described broadly with sections and sub-sections (numbered in order, for e.g.: 1, 1.1, 1.1.1, etc.)
- Template: Times New Roman, Font size 12 with Single line spacing and justified
- A neatly arranged document should be prepared and submitted both in doc and pdf formats. Format of file: FirstName_RollNo.pdf, FirstName_RollNo.doc. Both the files can be zipped into one single compressed file with FirstName_RollNo.rar.
