

CSI 436/536 (Spring 2025) Machine Learning

Lecture 3: Review of Calculus and Optimization

Chong Liu

Department of Computer Science

Jan 29, 2025

Announcement

- Enroll in Gradescope ASAP if you haven't done yet
- Participation points
 - Come to me to claim 1 point after each lecture, if
 - You asked a question, or
 - You showed/explained your solutions to in-class exercise problems
 - Maximum 4 points this semester
- Study group registration due next Monday!
- HW 1 will be released next Monday

Recap: linear algebra review

- Vector:
 - Norm (one vector):
 - l_p norm (l_1, l_2, l_∞)
 - Distance and angle (two vectors)
 - Linear (in)dependence
 - Orthogonality: $x^Ty = 0$
- Matrix:
 - Matrix-vector multiplication, matrix-matrix multiplication

Properties of a matrix

- General matrix
 - Rank: max number of independent column vectors / row vectors
 - Transpose: switch rows and columns

$$A \in \mathbb{R}^{m \times n} \qquad A^T \in \mathbb{R}^{n \times m}$$

- Square matrix
 - Trace: Sum of diagonal elements
 - Determinant:

$$tr\left(\begin{bmatrix} 5 & 3 & 5 \\ 4 & -1 & 2 \\ 2 & 0 & 7 \end{bmatrix}\right) = 5 - 1 + 7 = 11.$$
 $\det\left(\begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}\right) = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} = ad - bc$

Invertible matrix

$$A^{-1}A = I$$

Orthogonal matrix

$$A^{-1} = A^T$$

Symmetric matrix

$$A^T = A$$

Eigenvalues and eigenvectors of a (square) matrix

Let A be a $n \times n$ matrix. The vector $v \neq 0$ that satisfies

$$Av = \lambda v$$

for some scalar λ is called the eigenvector of A and λ is the eigenvalue corresponding to the eigenvector v.

- **1** A is symmetric, then $\lambda \in \mathbb{R}$.
- 2 *A* is symmetric and positive semi-definite, then $\lambda \geq 0$
- **3** A is symmetric and positive definite, then $\lambda > 0$

Positive (semi)-definite matrix

Very important property for optimization, kernel methods

- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite, if and only if $x^T A x \geq 0$, for any $x \in \mathbb{R}^n$.
 - All eigenvalues of A are non-negative.
 - X^TAX for any $X \in \mathbb{R}^{n \times m}$ is positive semi-definite.
- A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite, if and only if $x^T A x > 0$, for any $0 \neq x \in \mathbb{R}^n$.
 - All eigenvalues of A are positive.
 - All diagonal entries of A are positive.

In class exercise: prove $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ is a positive semi-definite matrix

• Solution 1: prove $x^T A x \ge 0$ for any vector x.

- Solution 2: prove all eigenvalues of A are all non-negative.
 - Hint: solve $det(A \lambda I) = 0$ to find eigenvalues.

Today's agenda

- Multi-variate calculus
 - Partial derivative and gradient
 - Chain rule
 - Multiple integrals
 - Jacobian matrix and Hessian matrix
- Optimization
 - Convex set and convex function
 - Optimization problem formulation
 - Properties of convex optimization
 - Lagrange Multipliers

Multi-variate function

• Definition:

- A function of two or more variables takes multiple inputs and produces a single output.
- Examples: $f(x,y) = e^{x+y} + e^{3xy} + e^{y^4}$

• Domain:

- Set of all possible inputs
- Range:
 - Set of possible output values.

Partial derivative

- Definition:
 - The rate of change of a function with respect to one variable, holding other variables constant.
- Notations:
 - $\frac{\partial f}{\partial x}$ or $\nabla_x f(x, y)$
- Example:
 - $f(x,y) = e^{x+y} + e^{3xy} + e^{y^4}$ • $\frac{\partial f}{\partial x} = e^{x+y} + 3ye^{3xy}$
 - $\frac{\partial f}{\partial y} = e^{x+y} + 3xe^{3xy} + 4y^3e^{y^4}$

Gradient

- Definition:
 - A vector that points in the direction of the steepest change.
 - Consist of multiple partial derivatives

- Example of f(x, y):
 - $\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$

Chain rule

- To compute derivative of a composite function
- Example:
 - z = f(g(t))
- In-class exercise:
 - $f(x) = e^{2x}$, $g(x) = \sin(x)$. Find $\nabla f(g(x))$.

 - $\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\mathrm{d}f}{\mathrm{d}g}\frac{\mathrm{d}g}{\mathrm{d}t} = 2e^{2\sin(x)}\cos(x)$

Multiple Integrals

- Double integral: compute the volume under a surface in two dimensions.
- Example: a function f(x, y) over a region R
 - $\iint_R f(x,y) dx dy$
- In-class exercise: find double integral of the function $f(x,y) = x^2 + y^2$ over $0 \le x \le 2$ and $1 \le y \le 3$.
 - $\int_0^2 x^2 dx = 8/3$
 - $\int_0^2 y^2 dx = 2y^2$
 - $\int_{1}^{3} \left(\frac{8}{3} + 2y^2 \right) dy = 16/3 + 52/3 = 68/3$

Jacobian matrix – first order

$$\mathbf{J}_{ij} = rac{\partial f_i}{\partial x_j} \qquad \qquad \mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \
abla^{\mathrm{T}} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

- In-class exercise:
 - $f(x,y) = (f_1, f_2, f_3)$
 - $f_1 = x^2y$, $f_2 = y^3$, $f_3 = 4xy + 5$

$$J_{3x2} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & x^2 \\ 0 & 3y^2 \\ 4y & 4x \end{bmatrix}$$

Hessian matrix – second order

$$(\mathbf{H}_f)_{i,j} = rac{\partial^2 f}{\partial x_i \, \partial x_j} \qquad \mathbf{H}_f = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \, \partial x_n} \ rac{\partial^2 f}{\partial x_2 \, \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ rac{\partial^2 f}{\partial x_2 \, \partial x_n} & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ \end{pmatrix}$$

Quadratic approximation of a function

•
$$f(x + y) = f(x) + y^T \nabla f(x) + \frac{1}{2} y^T \nabla^2 f(x) y$$

Hessian matrix – second order

- Hessian matrix is symmetric
- Hessian matrix and local curvature of the function
 - Minimum: Hessian is positive definite
 - Maximum: Hessian is negative definite
 - Saddle point: Hessian is indefinite (not positive/negative definite)

Quadratic Function

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

- Gradient: $\nabla f(x) = Ax + b$
- Hessian: $\nabla^2 f(x) = A$

•
$$\min f(x) = \frac{1}{2}x^T A x + b^T x + c$$

- Key: check Hessian matrix!
 - Hessian is positive (semi)definite: minimum (local or global)
 - Hessian is negative (semi)definite: maximum (local or global)
 - Hessian is indefinite: undetermined, changing curvature

Today's agenda

- Multi-variate calculus
 - Partial derivative and gradient
 - Chain rule
 - Multiple integrals
 - Jacobian matrix and Hessian matrix
- Optimization
 - Convex set and convex function
 - Optimization problem formulation
 - Properties of convex optimization
 - Lagrange Multipliers

Convex Sets

- Definition:
 - A set $C \subseteq R^n$ is convex if for any two points $x_1, x_2 \in C, \theta x_1 + (1 \theta)x_2 \in C$ for all $\theta \in [0,1]$.
- Interpretation:
 - A set $C \subseteq \mathbb{R}^n$ is convex if, for any two points $x_1, x_2 \in C$, the line segment connecting them is also entirely within C.
- Discussion: are they convex sets?
 - (1) [0,1]
 - (2-3)

Convex functions

Definition:

- A function $f: C \to R$ is convex if C is a convex set and for all x_1 , $x_2 \in C$ and $\theta \in [0,1]$:
- $f(\theta x_1 + (1 \theta)x_2) \le \theta f(x_1) + (1 \theta)f(x_2)$
- Interpretation:
 - A convex function lies below the line segment connecting any two points on its graph.
- Discussion: propose some convex functions
- Example: linear functions, quadratic functions, exponential functions.

Convex optimization problem formulation

- $\min f(x)$,
- s. t. $g(x) \le 0$, h(x) = 0.
- f(x) is the convex objective function
- g(x) is convex inequality constraint
- h(x) is equality constraint

Review of 1-dimensional optimization

•
$$f(x) = x^3 + 3x^2 - 24x + 2$$

- First, solve f'(x) = 0 to get all solutions $f'(x) = 3x^2 + 6x 24 = 0$, $x_1 = -4$, $x_2 = 2$.
- Second, for each solution, check f''(x): f''(x) = 6x + 6
 - f''(x) > 0: minimum (local or global) x = 2
 - f''(x) < 0: maximum (local or global) x = -4
 - f''(x) = 0: undetermined, changing curvature

Hessian matrix and convex function

- $\nabla^2 f(x) \ge 0$, then f(x) is convex
 - No local minimum
- $\nabla^2 f(x) > 0$, then f(x) is strongly convex
 - Unique global minimum
- $-\nabla^2 f(x) \ge 0$, then f(x) is concave
 - No local maximum
- $-\nabla^2 f(x) > 0$, then f(x) is strongly concave
 - Unique global maximum

Lagrange multipliers to handle constraints

- The Lagrangian function combines the objective function with the constraints using multipliers.
- Example: $\max xy$, s. t. x + y = c
 - Solution 1: use y = c x, then objective problem is $\max x(c x)$, so x = y = c/2 is the optimal solution.
 - Solution 2 (Lagrange multiplier):
 - $L(x, y, \lambda) = xy \lambda(x + y c)$
 - Differentiate with regards to x and y, we have $x = y = \lambda$