MODULE 16

1-SAMPLE T-TEST

Contents

16.1	t-distribution
16.2	1-Sample t-Test Specifics
16.3	Examples

PRIOR TO THIS MODULE, hypothesis testing methods required knowing σ , which is a parameter that is seldom known. When σ is replaced by its estimator, s, the test statistic follows a Student's t rather than a standard normal (Z) distribution. In this module, the t-distribution is described and a 1-Sample t-Test for testing that the mean from one population equals a specific value is discussed.

16.1 t-distribution

A t-distribution is similar to a standard normal distribution (i.e., N(0,1)) in that it is centered on 0 and is bell shaped (Figure 16.1). The t-distribution differs from the standard normal distribution in that it is heavier in the tails, flatter near the center, and its exact dispersion is dictated by a quantity called the degrees-of-freedom (df). The t-distribution is "flatter and fatter" because of the uncertainty surrounding the use of s rather than σ in the standard error calculation. The degrees-of-freedom are related to n and generally come from the denominator in the standard deviation calculation. As the degrees-of-freedom increase, the t-distribution becomes narrower, taller, and approaches the standard normal distribution (Figure 16.1).

¹Recall that the sample standard deviation is a statistic and is thus subject to sampling variability.

Figure 16.1. Standard normal (black) and t-distributions with varying degrees-of-freedom.

Proportional areas on a t-distribution are computed using distrib() similar to what was described for a normal distribution in Modules 6 and 10. The major exceptions for using distrib() with a t-distribution is that distrib="t" must be used and the degrees-of-freedom must be given in df= (how to find df is discussed in subsequent sections). For example, the area right of t = -1.456 on a t-distribution with 9 df is 0.9103 (Figure 16.2).

```
> ( distrib(-1.456,distrib="t",df=9,lower.tail=FALSE) )
[1] 0.9103137
```


Figure 16.2. Depiction of the area to the right of t = -1.456 on a t-distribution with 9 df.

Similarly, the t with an upper-tail area of 0.95 on a t-distribution with 19 df is -1.729 (Figure 16.3).²

```
> ( distrib(0.95,distrib="t",type="q",df=19,lower.tail=FALSE) )
[1] -1.729133
```


Figure 16.3. Depiction of the value of t with an area to the right of 0.95 on a t-distribution with 19 df.

16.2 1-Sample t-Test Specifics

A 1-Sample t-Test is similar to a 1-Sample Z-test in that both test the same H_0 . The difference, as discussed above, is that when σ is replaced by s, the test statistic becomes t and the scaling factor for confidence regions becomes a t^* . Other aspects are similar between the two tests as shown in Table 16.1.³

Table 16.1. Characteristics of a 1-Sample t-Test.

- Hypothesis: $H_0: \mu = \mu_0$
- Statistic: \bar{x}
- Test Statistic: $t = \frac{\bar{x} \mu_0}{\frac{s}{\sqrt{n}}}$
- Confidence Region: $\bar{x} + t^* \frac{s}{\sqrt{n}}$
- **df**: *n* − 1
- Assumptions:
 - 1. σ is UNknown
 - 2. $n \ge 40$, $n \ge 15$ and the **sample** (i.e., histogram) is not strongly skewed, OR the **sample** is normally distributed.
- Use with: Quantitative response, one group (or population), σ UNknown.

²This "reverse" calculation would be t^* for a 95% lower confidence bound.

³Compare Table 16.1 to Table 15.1.

16.3 Examples

16.3.1 Purchase Catch of Salmon?

Below are the 11-steps (Section 15.1) for completing a full hypothesis test for the following situation:

A prospective buyer will buy a catch of several thousand salmon if the mean weight of all salmon in the catch is at least 19.9 lbs. A random selection of 50 salmon had a mean of 20.1 and a standard deviation of 0.76 lbs. Should the buyer accept the catch at the 5% level?

- 1. $\alpha = 0.05$.
- 2. $H_0: \mu = 19.9$ lbs vs. $H_A: \mu > 19.9$ lbs where μ is the mean weight of ALL salmon in the catch.
- 3. A 1-Sample t-Test is required because (1) a quantitative variable (weight) was measured, (ii) individuals from one group (or population) were considered (this catch of salmon), and (iii) σ is **UN**known.⁴
- 4. The data appear to be part of an observational study with random selection.
- 5. (i) n=50 > 40 and (ii) σ is unknown.
- 6. $\bar{x} = 20.1 \text{ lbs}$ (and s = 0.76 lbs).
- 7. $t = \frac{20.1 19.9}{\frac{0.76}{\sqrt{50}}} = \frac{0.2}{0.107} = 1.87$ with df = 50-1 = 49.
- 8. p-value = 0.0337. [See R code in appendix.]
- 9. H_0 is rejected because the p-value $< \alpha$.
- 10. The average weight of ALL salmon in this catch appears to be greater than 19.9 lbs; thus, the buyer should accept this catch of salmon.
- 11. I am 95% confident that the mean weight of ALL salmon in the catch is greater than 19.92 lbs (i.e., $20.1 1.677 \frac{0.76}{\sqrt{50}} = 20.1 0.18 = 19.92$). [See R code in appendix.]

R Appendix:

```
( pval <- distrib(1.87,distrib="t",df=49,lower.tail=FALSE) )
( tstar <- distrib(0.95,distrib="t",type="q",df=49,lower.tail=FALSE) )</pre>
```

16.3.2 Body Temperature

Below are the 11-steps (Section 15.1) for completing a full hypothesis test for the following situation:

Machowiak et al. (1992) critically examined the belief that the mean body temperature is 98.6°F by measuring body temperatures in a sample of healthy humans. Use their results in Table 16.2 to determine at the 1% level if the mean body temperature differs from 98.6°F.

Table 16.2. Results from measuring the body temperature of a sample of healthy humans.

```
n mean sd min Q1 median Q3 max
130.00 98.25 0.73 96.30 97.80 98.30 98.70 100.80
```

- 1. $\alpha = 0.01$.
- 2. $H_0: \mu = 98.6^{\circ} \text{F}$ vs. $H_A: \mu \neq 98.6^{\circ} \text{F}$, where μ is the mean body temperature for ALL healthy humans. [Note that not equals was used because the researchers want to determine if the temperature is different from $98.6^{\circ} F$.]

 $^{{}^{4}}$ If σ is given, then it will appear in the background information to the question and will be in a sentence that uses the words "population", "assume that", or "suppose that."

- 3. A 1-Sample t-Test is required because (i) a quantitative variable (i.e., body temperature) was measured, (ii) individuals from one group (or population) is considered (i.e., healthy humans), and (iii) σ is unknown (i.e., not given in the background).
- 4. The data appear to be part of an observational study although this is not made clear in the background information. There is also no evidence that randomization was used.
- 5. (i) $n = 130 \ge 40$ and (ii) σ is unknown.
- 6. $\bar{x} = 98.25^{\circ}$ F.
- 7. $t = \frac{98.25 98.6}{\frac{0.73}{\sqrt{130}}} = \frac{-0.35}{0.064} = -5.469$ with df = 130-1 = 129.
- 8. p-value=0.0000002. [See R code in appendix. Note that the result of distrib() is multiplied by 2 because of the not equals H_A .]
- 9. Reject H_0 because p-value $\alpha = 0.01$.
- 10. It appears that the mean body temperature of ALL healthy humans is less than 98.6° F. [Note that the test was for a difference but because $\bar{x} < 98.6$ this more specific conclusion can be made.]
- 11. I am 99% confident that the mean body temperature (μ) for ALL healthy humans is between 98.08°C (=98.25-2.614*0.064) and 98.42°C (=98.25+2.614*0.064). [See R code in appendix. Note that the area in distrib() is $1 \frac{\alpha}{2}$ because of the not equals H_A .]

R Appendix:

```
( pval <- 2*distrib(-5.469,distrib="t",df=130) )
(tstar <- distrib(0.995,distrib="t",df=130) )</pre>
```