ICS 2020 Problem Sheet #6:

Problem 6.1:

We know that { AND, NOT } is a complete set of connectives (universal) so (nor) \downarrow and (nand) \uparrow are universal too. We can simply prove that \rightarrow (implication) and \neg (negation) are universal by expressing \downarrow or \uparrow with \rightarrow and \neg .

р	q	p→q	٦p	¬q	p↓q	p↑q
F	F	Т	Т	Т	Т	Т
F	Т	Т	Т	F	F	Т
Т	F	F	F	Т	F	Т
Т	Т	Т	F	F	F	F

From the table we deduce that:

$$(p\uparrow q)\equiv (p\rightarrow (\neg q))$$

$$(p\downarrow q) \equiv (\neg((\neg p)\rightarrow q))$$

Thus, implication and negation are universal.

Problem 6.2:

a)
$$\phi(A, B) = (\neg A \lor \neg B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$\phi(A, B) = (\neg A \lor \neg B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$\phi(A, B) = \neg A \lor (\neg B \land B) \land (A \lor \neg B) \text{ (distributivity)}$$

$$\phi(A, B) = \neg A \lor (0) \land (A \lor \neg B)$$
 (identity)
 $\phi(A, B) = \neg A \land (A \lor \neg B)$ (distributivity)

$$\phi(A, B) = (\neg A \land A) \lor (\neg A \land \neg B)$$

$$\phi(A, B) = 0 \lor (\neg A \land \neg B) \text{ (identity)}$$

$$\phi(A, B) = (\neg A \land \neg B)\text{(de Morgan's laws)}$$

$$\phi(A, B) = \neg(A \land B)$$

b)
$$\phi(A, B, C) = (A \land \neg B) \lor (A \land \neg B \land C)$$

$$\phi(A, B, C) = (A \land \neg B) \lor (A \land \neg B \land C)$$

$$\phi(A, B, C) = (A \land \neg B) \lor ((A \land \neg B) \land C) \text{ (associativity)}$$

$$\phi(A, B, C) = (A \land \neg B) \text{ (absorption laws)}$$

c)
$$\phi(A, B, C, D) = (A \lor \neg(B \land A)) \land (C \lor (D \lor C))$$

d)
$$\phi(A, B, C) = (\neg(A \land B) \lor \neg C) \land (\neg A \lor B \lor \neg C)$$

e)
$$\phi(A, B) = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B)$$

$$\phi(A, B) = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B) \land (\neg A \lor \neg B)$$

Problem 6.3:

a)
$$\phi(P, Q, R, S) = (\neg P \lor Q) \land (\neg Q \lor R) \land (\neg R \lor S) \land (\neg S \lor P)$$

Р	Q	R	S	(¬P VQ)	(¬Q VR)	(¬R VS)	(¬S VP)	ф
F	F	F	F	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	F	F
F	F	Т	F	Т	Т	F	Т	F
F	F	Т	Т	Т	Т	Т	F	F
F	Т	F	F	Т	F	Т	F	F
F	Т	F	Т	Т	F	Т	F	F
F	Т	Т	Т	Т	Т	Т	F	F
F	Т	Т	Т	Т	Т	Т	F	F
Т	F	F	F	F	Т	Т	Т	F
Т	F	F	Т	F	Т	Т	Т	F
Т	F	Т	F	F	Т	F	Т	F
Т	F	Т	Т	F	Т	Т	Т	F
Т	Т	F	F	Т	F	Т	Т	F

Т	Т	F	Т	Т	F	Т	Т	F
Т	Т	Т	F	Т	T	F	Т	F
Т	Т	Т	Т	Т	Т	Т	Т	Т

From the truth table we see that 2 interpretation satisfy $_{\boldsymbol{\varphi}}$

b)

The two interpretations that satisfies φ require that P,Q,R,S are all TRUE or ALL false

$$\mathsf{DNF} = (\mathsf{P} \ \land \mathsf{Q} \ \land \ \mathsf{R} \ \land \mathsf{S}) \ \lor \ (\neg \mathsf{P} \land \neg \mathsf{Q} \neg \mathsf{R} \land \neg \mathsf{S})$$