Langages formels

Introduction: résumé

/!\ Définition des automates finis non déterministes avec un seul état initial.

 ε -NFAs = NFAs (Non-deterministic Finite Automatas = AFND) en ajoutant des transitions gratuites

• DFA \iff NFA \iff ε -NFA

La construction d'un ε -NFA à partir d'une expression régulière est inductivement assez claire, beaucoup plus que l'algorithme de Glushkov.

Dans l'autre sens on utilise des ε -transitions pour standardiser facilement l'automate puis on enlève un a un les états en créant les transitions avec les nouvelles expressions régulières associées.

Les regex (donc langages reconnaissables) sont stables par toutes les opérations ensemblistes finies, par mirroir, et par image directe et réciproque d'homomorphismes (morphismes pour la concaténation).

Minimisation des automates en déterminant les classes d'états équivalents comme complémentaires des états distinguables.