REVIEW SESSION STABLE MATCHING

YIFEI HUANG
YIFEIH@USC.EDU

FEBRUARY 6, 2024

When talking about matching, we usually talk about 2 sets ${\bf A}$ and ${\bf B}$ of the same size n

■ Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.

When talking about matching, we usually talk about 2 sets **A** and **B** of the same size *n*

- Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.
- **Perfect Matching:** A matching S is perfect if it is of size n. In other word, every $a \in A$ and $b \in B$ is matched with something.

When talking about matching, we usually talk about 2 sets **A** and **B** of the same size *n*

- Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.
- **Perfect Matching**: A matching S is perfect if it is of size n. In other word, every $a \in A$ and $b \in B$ is matched with something.
- Unstable Matching: A matching S is unstable if there exist 2 pairs (a_1, b_1) and (a_2, b_2) such that a_1 prefers b_2 than b_1 and b_2 prefers a_1 than a_2 .

When talking about matching, we usually talk about 2 sets ${\bf A}$ and ${\bf B}$ of the same size n

- Matching: A matching S is a set of pairs (a, b) where $a \in A$ and $b \in B$, and no two pairs share the same a or b.
- **Perfect Matching**: A matching S is perfect if it is of size n. In other word, every $a \in A$ and $b \in B$ is matched with something.
- Unstable Matching: A matching S is unstable if there exist 2 pairs (a_1, b_1) and (a_2, b_2) such that a_1 prefers b_2 than b_1 and b_2 prefers a_1 than a_2 .
- **Stable Matching Problem**: Given the preference list of *A* and *B*, find a perfect matching *S* that is not unstable.

G-S ALGORITHM

Termination

G-S algorithm terminates in $O(n^2)$ iterations as each man can only propose at most n times.

G-S ALGORITHM

Termination

G-S algorithm terminates in $O(n^2)$ iterations as each man can only propose at most n times.

Uniqueness

G-S algorithm returns a unique solution. But the problem instance might have multiple solutions.

QUESTION 1

Find an instance of stable matching problem where there are multiple solutions and point out the solution that G-S algorithm will return.

QUESTION 2

Find an instance of statble matching problem of size n, such that G-S algorithm terminates in O(n) iteration.

QUESTION 3

If every man has identical preference list, how many iteration does it take for G-S algorithm to terminate, give the precise answer in *n*.