Natural transformation

meu

July 2, 2025

Contents

1 Definition 1

2 Example 1

1 Definition

If F and G are functors between the categories C and D, then a **natural transformation** η from F to G is a family of morphisms satisfying two requirements: 1. The natural transformation must associate, to every object X in C, a morphism $\eta_X: F(X) \to G(X)$ between objects of D. The morphism η_X is called the **component** of η at X. 2. Components must be such that for every morphism $f: X \to Y$ in C the following diagram commutes

$$\begin{array}{ccc} X & F(X) \xrightarrow{\eta_X} G(X) \\ \downarrow^f & \downarrow^{F(f)} & \downarrow^{G(f)} \\ Y & F(Y) \xrightarrow{\eta_Y} G(Y) \end{array}$$

2. is called the **naturality condition**.

2 Example

In Vect we define the following morphism between a vector space V and its double dual V^{**} :

$$\mathcal{E}_V: V \to V^{**}: v \mapsto (f \in V^* \mapsto f(v))$$

Then, the family $(\mathcal{E}_V)_{V \in \text{Vect}}$ defines a natural transformation $\mathcal{E}: \mathbb{1}_{\text{Vect}} \to (\cdot)^{**}$. In this case, the naturality condition comes down to