INDIAN SIGN LANGUAGE RECOGNITION USING COMPUTER VISION AND CONVOLUTIONAL NEURAL NETWORK

PREPARED BY:

AKHILA RAVEENDRAN AMANA ABDUL JALEEL K A HAJIRA P NAMITHA MOHAN SAMYUKTHA SUBODH V P SANDRA SREEBI VARSH ANNA GEORGE

OUTLINE

- PROBLEM STATEMENT
- INTRODUCTION
- USE CASE DIAGRAM
- SOFTWARE
- METHODOLOGY
- CNN MODULE
- WIRE FRAME
- RESULT
- CONCLUSION
- FUTURE SCOPE

PROBLEM STATEMENT

- Inorder to convey feelings or information within the hearing impaired community.
- Aims to create a computer application and train a model which when shown a real time video of hand gestures of Indian Sign Language shows the output for that particular sign in text format on the screen.
- For static isolated two-handed signs using Python platform and CNN

INTRODUCTION

- Indian Sign Language system contains standard handbased gestures used by speech impaired people for communication purposes in India.
- Sign Language Recognition (SLR) Developing algorithms and techniques to correctly recognize a sequence of produced signs and understand their meaning.

- A hybrid research area involving pattern recognition, natural language processing, computer vision and linguistics.
- Used as an interface between human being and computer systems.
- Convolutional Neural Network (CNN) A type of neural network with a unique architecture applied for deep learning. CNN can directly learn the image, good for recognition of results and can be easily re-trained for new recognition purposes.
- 2 approaches
 - i. Computer vision based method
 - ii. Sensor-based technique

USE CASE DIAGRAM

SOFTWARE

- Python 3.6.6
- OpenCV 3.4.3.18
- TensorFlow I.II.0
- NumPy 1.15.3
- Matplotlib 3.0.0
- Keras 2.2.1

METHODOLOGY

CONVOLUTIONAL NEURAL NETWORK (CNN OR CONVNET)

- A class of deep neural network most commonly applied to analysing visual imagery in deep learning.
- Very effective in areas such as image recognition and classification.
- Compares the images piece by piece.
- Four main operations
 - i. Convolution layer
 - ii. Non-Linearity ReLU layer
 - iii. Pooling or Sub Sampling
 - iv. Fully Connected Layer

WIRE FRAME

Sign Up Form		000
E. E.	ate a New Account set up your account. Already have one? Sign in here	
You can also sign in with these:	User Name:	
Facebook	johndoe Email:	
Twitter	inbox@email.com Password:	
Google	By submitting the form you agree to our Terms of Service	
	Join	

WIREFRAME

R E S U L T

ARISE ADVANCE BRING

CONCLUSION

- A functional real time vision based Indian sign language recognition for Deaf and mute people have been developed.
- This work with convolutional neural networks helps to accurately recognize different signs.
- Alphabets, numbers and words advance, arise, bring were recognized.

FUTURE SCOPE

- More words and gestures.
- Dynamic recognition of gestures using advanced 3-D imaging camera.
- Audio output also.

THANK YOU