Probability and Statistics: Lecture-25

Monsoon-2020

```
by Pawan Kumar (IIIT, Hyderabad)
on October 9, 2020
```

» Online Quiz

- 1. Please login to gradescope
- 2. Attempt Quiz-6
- 3. You may use calculator if necessary
- 4. Time for the quiz is mentioned in the quiz

» Checklist for online class

- 1. Turn off your microphone, when you are listening
- 2. Turn on microphone only when you have question
- 3. Attend tutorials to practice problems or to discuss solutions or doubts
- 4. Chat is not always reliable, I may not look at chat

» Table of contents

- 1. Continuous Distributions
- * Gamma Distribution
- $\ast\,$ Properties of Gamma Function
- * Solved Problems

2. Mixed Random Variable

* Widely used distribution

- * Widely used distribution
- * Related to exponential and normal

- » Gamma Distribution...
 - * Widely used distribution
 - * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers.

- * Widely used distribution
- * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

- * Widely used distribution
- * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

$$\Gamma(\mathbf{n}) = (\mathbf{n} - 1)!$$

- * Widely used distribution
- * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

$$\Gamma(\mathbf{n}) = (\mathbf{n} - 1)!$$

Generally, for any positive number $\alpha, \Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx, \quad \text{for } \alpha > 0.$$

- * Widely used distribution
- * Related to exponential and normal

Gamma Function: Extension of Factorial Function

The Gamma function denoted by $\Gamma(x)$ is an extension of the factorial function to real numbers. Recall: If $n \in \{1, 2, 3, \dots\}$, then

$$\Gamma(\mathbf{n}) = (\mathbf{n} - 1)!$$

Generally, for any positive number $\alpha, \Gamma(\alpha)$ is defined as

$$\Gamma(lpha) = \int_0^\infty { extbf{x}}^{lpha-1} { extbf{e}}^{- extbf{x}} \, d extbf{x}, \quad ext{for } lpha > 0.$$

Gamma function for positive real values

$$\checkmark$$
. $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$ (Definition of Gamma Function!)

1.
$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$$
 (Definition of Gamma Function!)

2.
$$\int_0^\infty x^{\alpha-1} e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}, \quad \text{for } \lambda > 0$$

1.
$$\Gamma(\alpha)=\int_0^\infty {\it x}^{\alpha-1}e^{-{\it x}}\,d{\it x}$$
 (Definition of Gamma Function!)

2.
$$\int_0^\infty { extbf{x}}^{lpha - 1} { extbf{e}}^{-\lambda extbf{x}} \, d extbf{x} = rac{\Gamma(lpha)}{\lambda^lpha}, \quad ext{for } \lambda > 0$$

3.
$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

1.
$$\Gamma(\alpha)=\int_0^\infty {\it x}^{\alpha-1}e^{-{\it x}}\,d{\it x}$$
 (Definition of Gamma Function!)

2.
$$\int_0^\infty { extbf{x}}^{lpha - 1} { extbf{e}}^{-\lambda { extbf{x}}} \, d{ extbf{x}} = rac{\Gamma(lpha)}{\lambda^lpha}, \quad ext{for } \lambda > 0$$

3.
$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

4.
$$\Gamma(n) = (n-1)!$$
, for $n = 1, 2, 3, ...$

1.
$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$$
 (Definition of Gamma Function!)

2.
$$\int_0^\infty { extbf{x}}^{lpha - 1} { extbf{e}}^{-\lambda extbf{x}} \, d extbf{x} = rac{\Gamma(lpha)}{\lambda^lpha}, \quad ext{for } \lambda > 0$$

3.
$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

4.
$$\Gamma(n) = (n-1)!$$
, for $n = 1, 2, 3, ...$

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

» Proof of Properties of Gamma Function... 2. $\int_0^\infty x^{\alpha-1}e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}, \text{ for } \lambda > 0$ In $\Gamma(x)$, do change of variable: $x = \lambda y = 0$ dx = λdy Limit: x = 0 = 0 y o f(x) = 0 = f(x) = 0 $\Gamma(\alpha) = \int_{0}^{\infty} (\lambda y)^{\alpha-1} e^{-\lambda y} \lambda dy = \lambda^{\alpha} \int_{0}^{\infty} y^{\alpha-1} e^{-\lambda y} dy = \lambda^{\alpha} \left(c \cdot H \cdot S \right)$ =) [yd-1 = 7 dy = (d) change book y = x to get the result.

3.
$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$

(a) $\Gamma(n)=(n-1)!$, for $n=1,2,3,...$

$$\Gamma(\alpha)=\chi^{2}$$

(b) χ^{2}

(c) χ^{2}

(d) χ^{2}

(d) χ^{2}

(e) χ^{2}

(g) χ^{2}

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\left(\frac{1}{2}-1\right)^{\frac{1}{2}} = \sqrt{x} = \sqrt{x}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{x}$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{x}$$

$$\sqrt{x} = \sqrt{x}$$

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

* We show this in three steps:

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

- * We show this in three steps:
 - 1. First we show a fact from calculus that $\frac{dxdy}{dx} = r \frac{dr}{d\theta}$

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

- * We show this in three steps:
 - 1. First we show a fact from calculus that $\frac{dxdy}{dx} = r \frac{dr}{d\theta}$
 - 2. Second we show that the constant in normal distribution is $1/\sqrt{2\pi}$

5.
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

- * We show this in three steps:
 - 1. First we show a fact from calculus that $\frac{dxdy}{dx} = r \frac{dr}{d\theta}$
 - 2. Second we show that the constant in normal distribution is $1/\sqrt{2\pi}$
 - 3. Finally, using above, we then show the final result stated above

 $dxdy = r dr d\theta$ » Step-1: **Proof that** $dA = r dr d\theta$ dA r+dr 0

$$\begin{array}{lll}
x = u^2 &= 1 & du = 2u du \\
T_1 &= \int (u^2)^{1/2} u \cdot e^{u^2} \cdot 2u du \\
= \int \int (u^2)^{1/2} u \cdot e^{u^2} \cdot 2u du \\
= \int \int \int (u^2)^{1/2} u \cdot e^{u^2} \cdot 2u du \\
= \int \int \int \int (u^2)^{1/2} u \cdot e^{u^2} \cdot 2u du \\
= \int \int \int \int \int \int (u^2)^{1/2} u \cdot e^{u^2} \cdot 2u du \\
= \int \partial u \cdot e^{u^2} \cdot$$

[12/28]

» Step-3: Proof of $\Gamma(1/2)=\sqrt{\pi}$

» Solved Problem on Gamma Function...

» Solved Problem on Gamma Function...

Problem on Gamma Function

$$\bullet$$
 * Find $\Gamma(7/2)$

$$I = \int_0^\infty x^6 e^{-5x} dx$$

(hma:
$$d=7, \lambda=5$$

=) $1=\frac{\Gamma(7)}{\Gamma(7)}=\frac{6!}{57}$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

$$f_{\!X}\!\left(\mathbf{\emph{x}}
ight) = egin{cases} rac{\lambda^{lpha}\mathbf{\emph{x}}^{lpha-1}\mathbf{\emph{e}}^{-\lambda\mathbf{\emph{x}}}}{\Gamma(lpha)}, & \mathbf{\emph{x}} > 0 \ 0 & ext{otherwise} \end{cases}$$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim {\sf Gamma}(\alpha,\lambda),$ if its PDF is given by

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Exponential is a special case of Gamma distribution

For $\alpha = 1$, we obtain

distribution
$$f_{X}(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Exponential is a special case of Gamma distribution

For $\alpha = 1$, we obtain

$$f_X(x) = egin{cases} \lambda e^{-\lambda x} & x > 0 \ 0 & ext{otherwise} \end{cases}$$

* That is, $\mathsf{Gamma}(1,\lambda) = \mathsf{Exponential}(\lambda)$

Definition of Gamma Distribution

A continuous random variable X is said to have a gamma distribution with parameters $\alpha>0$ and $\lambda>0$, shown as $X\sim \operatorname{Gamma}(\alpha,\lambda)$, if its PDF is given by

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} rac{\lambda^{lpha} \mathbf{x}^{lpha-1} \mathbf{e}^{-\lambda \mathbf{x}}}{\Gamma(lpha)}, & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

Exponential is a special case of Gamma distribution

For $\alpha = 1$, we obtain

$$f_{\mathcal{X}}(\mathbf{x}) = egin{cases} \lambda \mathbf{e}^{-\lambda \mathbf{x}} & \mathbf{x} > 0 \ 0 & ext{otherwise} \end{cases}$$

- * That is, $Gamma(1, \lambda) = Exponential(\lambda)$
- * Sum of n independent Exponential(λ) RVs is Gamma(n, λ) RV (proof later)