APWeb-WAIM 2019

Efficient Distributed Knowledge Representation Learning for Large Knowledge Graphs

Lele Chai¹ Xin Wang^{1,2,*} Baozhu Liu¹ Yajun Yang^{1,2}

1 School of Computer Science and Technology, Tianjin University, China

2 Tianjin Key Laboratory of Cognitive Computing and Application, China lelechai@tju.edu.cn

August 2, 2019

Contents

- Introduction
- Preliminaries
- The DKRL Algorithm
- Experiments
- Conclusion

Contents

- Introduction
- Preliminaries
- The DKRL Algorithm
- Experiments
- Conclusion

Motivation

- With the massive growth of linked Web data, the scale of knowledge graphs has been growing dramatically
- The traditional triple representations can behave well in maintaining the KG structures and expressiveness
- Oifficulties in executing the downstream tasks, such as link prediction
- Low computing performance and high sparsity issue

Motivation

- The existing knowledge embedding algorithms cannot be applied efficiently to large-scale KG datasets
- 2 Lacking a unified framework to integrate current KRL models to facilitate the realization of embeddings for various applications

```
\begin{bmatrix}
S_{1}, & P_{1}, & O_{1} \\
S_{1}, & P_{1}, & O_{4}
\end{bmatrix}

\begin{bmatrix}
S_{2}, & P_{2}, & O_{2} \\
S_{2}, & P_{3}, & O_{3}
\end{bmatrix}

\begin{bmatrix}
S_{3}, & P_{4}, & O_{1}
\end{bmatrix}

\begin{bmatrix}
S_{4}, & P_{4}, & O_{3} \\
S_{5}, & P_{1}, & O_{3}
\end{bmatrix}
```

```
(S1, 000000)
           (S_2, \boxed{\bigcirc}, \boxed{\bigcirc}
     (S_3, \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
     (S_4, 000000)
(S_5, \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
(01, 000000)
(0_2, \boxed{00000})
(03, 000000)
     (0_4, 00000)
           ( O5, OOOO O
```

Related Work

The existing research work on representative KRL models:

Traditional KRL Models

The Uniform Training Framework

Related Work

The existing research work on representative KRL models:

- Traditional KRL Models
 - Structured Embedding, distance based [AAAI 2011]
 - Neural Network Model, nonlinear operation is adopted [NIPS 2013]
 - Semantic energy Model, projection matrices are defined [ML 2013]
 - Translational Model, translation based [NIPS 2013]
- The Uniform Training Framework
 - KB2E, single machine based [AAAI 2015]
 - OpenKE, high efficiency of a GPU depended [EMNLP 2015]
 - SANSA, low accuracy and efficiency [ISWC 2017]

Related Work

The existing research work on representative KRL models:

- Traditional KRL Models
 - Structured Embedding, distance based [AAAI 2011]
 - Neural Network Model, nonlinear operation is adopted [NIPS 2013]
 - Semantic energy Model, projection matrices are defined [ML 2013]
 - Translational Model, translation based [NIPS 2013]
- The Uniform Training Framework
 - KB2E, single machine based [AAAI 2015]
 - OpenKE, high efficiency of a GPU depended [EMNLP 2015]
 - SANSA, low accuracy and efficiency [ISWC 2017]

However, the existing approaches have not been completely to take full advantage of the distributed learning scenario of the uniform training framework

Contributions

- A distributed algorithm template framework for knowledge representation learning by using Spark.
- The training process in the DKRL framework can meet large-scale datasets and high dimensional requirement for the translational models
- The extensive experiments for verifying the efficiency of the proposed method

Contents

- Introduction
- Preliminaries
- The DKRL Algorithm
- Experiments
- Conclusion

Preliminaries

• An example representation learning for embedding

Contents

- Introduction
- Preliminaries
- The DKRL Algorithm
- Experiments
- Conclusion

• Traditional KRL embedding methods

• Traditional KRL embedding methods

• Traditional KRL embedding methods

• The framework function signatures

Function	Description
dataPrepare(S)	To load data, where S is the input
	triple set.
dataInit(DR,X)	To initialize DR according to the
	model type X .
$trainRun(\gamma, \alpha, X)$	To start to train model X , γ is the
	loss function parameter, and $lpha$ is
	the learning rate.
sample(IS, seed)	To generate positive samples from
	the dataset IS, IS denotes that its
	data type is <i>Integer</i> , <i>seed</i> represents
	the random seed.
negative(IS, V, seed)	To generate negative samples from
	the dataset <i>IS</i> .
D(T)	To calculate the distance of those
	triples T .

The DKRL framework

The DKRL uniform algorithm framework

The DKRL framework

The DKRL uniform algorithm framework

The DKRL framework

The DKRL uniform algorithm framework

Functions of the Framework

$Trans(X) \setminus Function$	dataInit()	negative()	D (<i>T</i>)
TransE [NIPS 2013]	\vec{t} : tail vector \vec{h} : head vector \vec{r} : relation vector	• Uniform	$-\ \vec{h}+\vec{r}-\vec{t}\ _{L_1/L_2}$
TransH [AAAI 2014]	\vec{t} : tail vector \vec{h} : head vector $\vec{n_r}$: norm vector \vec{r} : relation vector	Uniform Bernoulli	$\vec{h}_p = \vec{n}_r^{\top} \cdot \vec{h} \cdot \vec{n}_r$ $\vec{t}_p = \vec{n}_r^{\top} \cdot \vec{t} \cdot \vec{n}_r$ $- \vec{h}_p + \vec{r} - \vec{t}_p _{L_1/L_2}$
TransR [AAAI 2015]	\vec{t} : tail vector \vec{h} : head vector \vec{r} : relation vector M_r : projection matrix	Uniform Bernoulli	$-\ \vec{M}_r \cdot \vec{h} + \vec{r} - \vec{M}_r \cdot \vec{t}\ _{L_1/L_2}$
TransD [ACL 2015]	$ec{t}$: tail vector $ec{h}$: head vector $ec{r}$: relation vector $ec{W}_h$: mapping vector $ec{W}_t$: mapping vector $ec{W}_r$: mapping vector $ec{W}_r$: mapping vector	Uniform Bernoulli	$ec{h}_p = ec{W}_r \cdot ec{W}_t^ op \cdot ec{h}$ $ec{t}_p = ec{W}_r \cdot ec{W}_t^ op \cdot ec{t}$ $ec{h}_p + ec{r} - ec{t}_p ert_{L_1/L_2}$

DKRL Algorithm

Algorithm 1: DKRL-Traning /*train in each site in parallel*/

```
: RDF triple Sets S = \{(h, r, t)\}, where h, t \in V and r \in E
     Input
     Parameter: max training iterations epo, embedding dimension k, learning
                       rate \alpha, margin \gamma
                     : Embedding results of S: Vec(S) = \{(h, r, t)\}
 1 Vec(S) \leftarrow \emptyset:
 2 Function dataPrepare (S)
          rdd: RDD[DT] \leftarrow load S:
 3
          DR(Ih, Ir, It) \leftarrow \text{convert RDD to } DR;
 5 dataInit (DR(Ih, Ir, It), Trans(X));
                                                                                /* X \in \{E, H, R, D\} */
   Function trainRun (\gamma, \alpha, Trans(X))
          foreach computing site s<sub>i</sub> do
                                                                           The training type Trans(X)
               repeat
                                                                          is regarded as a parameter
                    T_n \leftarrow \mathsf{sample}(IS, rand\_seed[s_i]);
                    T_n \leftarrow \mathsf{negative}(IS, V, rand\_seed[s_i])
10
                    t \leftarrow |T_p|;
11
                    while t > 0 do
12
                         T \leftarrow T \setminus DR(Ih, Ir, It);
                                                                                       /* T \in \{T_p, T_n\} */
13
                          map(\emptyset, DR) s.t. DR \in T;
14
                          \mathsf{D}(T) \leftarrow \mathsf{reduce}(\emptyset, (N_1, N_2))
                                                                 : /* N<sub>1</sub>, N<sub>2</sub> ⊂ T ∧ N<sub>1</sub> ∩ N<sub>2</sub> = ∅ */
15
                    Loss \leftarrow \gamma + D(T_p) - D(T_n);
16
                    if Loss > 0 then
17
                          \{(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t})\} \leftarrow \text{update } \{(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t})\} \text{ w.r.t. GD};
18
                    else
19
                      \{(h, r, t)\};
20
               until epo:
21
22 Vec(S) \leftarrow Vec(S) \cup \{(\boldsymbol{h}, \boldsymbol{r}, \boldsymbol{t})\};
23 return Vec(S);
```

Contents

- Introduction
- Preliminaries
- The DKRL Algorithm
- Experiments
- Conclusion

Experiment Setting

- Our methods were implemented in Scala using Spark, which were deployed on an 8-site cluster.
 - 4-core CPU and 16GB memory
 - 64-bit CentOS Linux operating system
 - Java 1.8, Scala 2.11, Hadoop 2.7.4, and Spark 2.2.0

Dataset

• Datasets used in the experiments

Dataset	#Rel	#Ent	#Train	#Valid	#Test
FB15K	1,345	14,951	483,142	50,000	59,071
WN18	18	40,943	141,142	5,000	5,000
DBpedia	663	5,526,330	18,295,010	50,000	50,000

Evaluation Metrics

Raw Mean Rank & Hits@N

- Suppose there are *n* triples in the dataset
- Replace the head or tail entity in a triple t, generate n triples
- Calculate the energy values $\vec{h} + \vec{r} \vec{t}$, obtain *n* energy values
- Sort the *n* energy values in ascending order
- Record the sequence number of k the energy value of the triplet t
- Repeat the process for all triples
- Average out the sequence numbers of each correct triple
- \bullet Calculate the ratio of the energy sequence of the correct triples to less than N

Evaluation Metrics

Filtered Mean Rank

- Suppose there are *n* triples in the dataset
- Replace the head or tail entity in a triple t, generate n triples
- Calculate the energy values $\vec{h} + \vec{r} \vec{t}$, obtain *n* energy values
- Sort the *n* energy values in ascending order
- ullet Record the sequence number k of the energy value of the triplet t
- If m triples in the first k-1 energy corresponding to the triple are correct, the serial number of the triple t is to k-m
- Repeat the process for all triples
- Average out the sequence numbers of each correct triple
- \bullet Calculate the ratio of the energy sequence of the correct triples to less than N

Effectiveness of The Algorithms in Accuracy

Link prediction effectiveness results on WN18 and FB15K

Dataset	WN18		FB1	l5K
metrics	Mean Rank		Mean Rank	
metrics	Raw	Filt	Raw	Filt
TransE (unif)	247	254	206	117
TransE (bern)	232	302	195	102
TransH (unif)	287	295	259	127
TransH (bern)	304	382	215	94
TransR (unif)	263	245	232	106
TransR (bern)	242	238	197	89
TransD (unif)	253	241	224	84
TransD (bern)	243	218	189	96

Effectiveness of The Algorithms in Accuracy

Hits@N effectiveness results on DBpedia

Metric	Hits@10	Hits@20	Hits@50	Hits@100
Head	4.8	5.1	5.2	5.7
Tail	21.9	25.0	32.3	44.6

The methods SANSA and KB2E report out-of-memory

Effectiveness of The Algorithms in Accuracy

Raw Mean Rank effectiveness results on FB15K

Metrics	Raw Mean Rank			
Methods	Baseline	SANSA	KB2E	DKRL
TransE	243	7438	210	206
TransH	211		221	215
TransR	226	_	208	197
TransD	194	_	184	189

Efficiency of The Algorithms in Time

Time results on FB15K

Models	Time (s)
TransE (SANSA)	36596.940
TransE (DKRL)	7080.633

Contents

- Introduction
- Preliminaries
- The DKRL Algorithm
- Experiments
- Conclusion

Conclusion

- An efficient unified training distributed framework DKRL for KG embedding training
 - Incorporating various existing KRL models
 - Accelerating training under the strategy of distributed experimental settings
 - A set of primitive interface functions is defined
- The extensive experiments were conducted on both synthetic and real-world datasets, which have verified the effectiveness and efficiency of our method

THANK YOU!

Q&A