Cross-Sectional Household Heterogeneity in Responses to Macroeconomic Shocks

[Click Here for the Latest Version]

 $\label{eq:Gavin Engelstad*} Gavin \ Engelstad^*$ $\ gengelst@macalester.edu.$

Last Updated: February 19, 2025

Abstract

 $^{{\}rm ^*Replication\ code\ available\ at\ https://github.com/GavinEngelstad/HANK-Honors.}$

Table 3.1: Computational Parameters

Parameter	Value	Description
n_b	501	Number of asset gridpoints
\underline{b}	0	Borrowing constraint
\overline{b}	50	Maximum asset gridpoint
n_z	7	Number of productivity gridpoints
T	300	Sequence space perturbation time horizon

Figure 5.1: Variance Decomposition: Aggregates

(a) General Aggregates

Output Inflation

0 25 50 75 100 0 25 50 75 100

Notes: Forecast error variance decomposition calculated at a 4 quarter time horizon.

1 Introduction

2 Literature Review

3 Model

3.1 Households

3.2 Unions

3.3 Firms

3.4 Government

3.5 Equilibrium

3.6 Computational Methods

3

Consumption Savings 99%99%Fow Income 50% 90%50%0%0%20 40 60 80 100 0 20 40 60 80 100 0 99%99%Middle Income 90%90%50%50%0%0%100 40 60 80 20 40 60 80 20 100 99%99%High Income 50% 90% 50%0% 0% Ó 20 40 60 100 Ó 20 40 80 80 60 100 TFP Wage Markup Mon. Pol. Transfers Markup Govt. Spending Tax Prog. No Variance

Figure 5.2: Variance Decomposition: Household Decision Rules

Notes: Forecast error variance decomposition calculated at a 4 quarter time horizon. Subplot y-axis is the household position on the wealth distribution.

References

Auclert, Adrien, Matthew Rognlie, and Ludwig Straub. 2024. "The intertemporal keynesian cross."

Journal of Political Economy 132 (12): 4068–4121.

Figure 7.1: Historical Decomposition: Household Aggregates

Chetty, Raj. 2012. "Bounds on elasticities with optimization frictions: A synthesis of micro and macro evidence on labor supply." *Econometrica* 80 (3): 969–1018.

Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L Violante. 2017. "Optimal tax progressivity: An analytical framework." The Quarterly Journal of Economics 132 (4): 1693–1754.

Kaplan, Greg, Benjamin Moll, and Giovanni L Violante. 2018. "Monetary policy according to HANK." American Economic Review 108 (3): 697–743.

Storesletten, Kjetil, Chris I Telmer, and Amir Yaron. 2004. "Cyclical dynamics in idiosyncratic labor market risk." *Journal of political Economy* 112 (3): 695–717.

Table 4.1: Model Parameters

Parameter	Value	Description	Target
Preferences			
β	0.945	Discount rate	2% annual interest rate
γ	4	Risk aversion	Kaplan, Moll, and Violante (2018)
$1/\chi$	1/2	Frisch elasticity	Chetty (2012)
ϕ	3.16	Disutility of labor	$\overline{N} = 1$
\underline{b}	0	Borrowing constraint	
Productivity			
$ ho_z$	0.963	Productivity persistence	Storesletten, Telmer, and Yaron (2004)
σ_z	0.134	Productivity STD	Cross-sectional STD of 0.5
Unions			
κ_W	0.1	Wage Philips Curve	
Firms			
κ	0.1	Philips Curve	
Government			
$ ho_B$	0.93	Debt persistence	Auclert, Rognlie, and Straub (2024)
\overline{B}	0.577	Govt. debt target	57.7% debt to GDP steady state
ω_{π}	1.5	Taylor inflation	
ω_Y	0	Taylor output	
$\overline{\pi}$	1	Inflation target	0% inflation steady state
Shock SS			
\overline{A}	1	TFP	
$egin{array}{c} \overline{A} \ \overline{\psi} \ \overline{\psi}_W \ \overline{g} \ \overline{\eta} \ \overline{ au}^P \ \overline{\xi} \end{array}$	1.2	Markup	20% markup
$\overline{\psi}_W$	1.2	Wage markup	20% markup
\overline{g}	0.202	Govt. spending	20.1% govt. spending
$\overline{\eta}$	0.081	Transfers	8.1% transfers
$\overline{ au}^P$	1.18	Tax progressivity	Heathcote, Storesletten, and Violante (2017)
ξ	1	Monetary shock	

Table 4.2: Estimation Results

Parame	$\overline{\mathrm{ter}}$]	Prior			Post	erior	
Shock	Statistic	Distribution	Mean	Std. Dev.	Mode	Mean	5%	95%
TED	ρ	Beta	0.50	0.15	0.952	0.952	0.934	0.969
111	σ	Inv. Gamma	0.20	2.00	0.152	0.154	0.142	0.166
Marleys	ρ	Beta	0.50	0.15	0.987	0.983	0.970	0.991
Markup Wage Markup Govt. Spend Mon. Pol. Tax Prog.	σ	Inv. Gamma	0.20	2.00	0.549	0.558	0.511	0.611
Waga Markup	ρ	Beta	0.50	0.15	0.997	0.997	0.996	0.997
wage markup	σ	Inv. Gamma	0.20	2.00	1.761	1.765	1.621	1.921
Court Spond	ρ	Beta	0.50	0.15	0.850	0.856	0.807	0.906
Govt. Spend	σ	Inv. Gamma	0.20	2.00	0.648	0.856	0.807	0.906
Mon Dol	ρ	Beta	0.50	0.15	0.634	0.627	0.574	0.678
Mon. For.	σ	Inv. Gamma	0.20	2.00	0.440	0.444	0.409	0.481
Tora Duon	ρ	Beta	0.50	0.15	0.914	0.905	0.874	0.934
rax Prog.	σ	Inv. Gamma	0.20	2.00	1.707	1.852	1.512	2.242
Tax Prog. Transfers	ρ	Beta	0.50	0.15	0.834	0.851	0.791	0.918
11ansiers	σ	Inv. Gamma	0.20	2.00	2.460	2.409	2.050	2.784

Table 5.1: Household Steady State Behavior

	L	ow Inco	me (10%	(b)	Mi	ddle Inc	ome (50	%)	Н	High Income (90%)			
	0%	50%	90%	99%	0%	50%	90%	99%	0%	50%	90%	99%	
States													
Productivity	0.444	0.444	0.444	0.444	1.000	1.000	1.000	1.000	2.252	2.252	2.252	2.252	
Assets	0.000	0.040	1.874	5.896	0.000	0.040	1.874	5.896	0.000	0.040	1.874	5.896	
Decisions													
Consumption	0.483	0.507	0.696	0.896	0.744	0.754	0.898	1.079	1.109	1.111	1.200	1.352	
Savings	0.000	0.016	1.670	5.512	0.000	0.030	1.730	5.591	0.173	0.211	1.965	5.855	
Income													
Wages	0.327	0.327	0.327	0.327	0.737	0.737	0.737	0.737	1.660	1.660	1.660	1.660	
	(67.79)	(62.60)	(13.83)	(5.11)	(99.00)	(93.95)	(28.05)	(11.05)	(129.54)	(125.62)	(52.45)	(23.03)	
Interest	0.000	0.040	1.883	5.926	0.000	0.040	1.883	5.926	0.000	0.040	1.883	5.926	
	(0.00)	(7.66)	(79.60)	(92.47)	(0.00)	(5.10)	(71.67)	(88.83)	(0.00)	(3.03)	(59.51)	(82.22)	
Transfers	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	0.248	
	(51.30)	(47.37)	(10.47)	(3.86)	(33.27)	(31.57)	(9.42)	(3.71)	(19.33)	(18.74)	(7.83)	(3.44)	
Taxes	-0.092	-0.092	-0.092	-0.092	-0.240	-0.240	-0.240	-0.240	-0.626	-0.626	-0.626	-0.626	
	(19.09)	(17.63)	(3.89)	(1.44)	(32.27)	(30.62)	(9.14)	(3.60)	(48.86)	(47.38)	(19.79)	(8.69)	
Total	0.483	0.523	2.366	6.408	0.744	0.785	2.628	6.670	1.282	1.326	3.165	7.207	
	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	(100.00)	

Notes: Income share in parenthesis. Column percentiles correspond to the 0th, 50th, 90th, and 99th wealth percentiles.

Table 6.1: Direct Effects Decomposition: Consumption

	Total		Low I	ncome			Middle	Income		High Income				
		0th	$50 \mathrm{th}$	$90 \mathrm{th}$	99 th	0th	$50 \mathrm{th}$	$90 \mathrm{th}$	99 th	0th	$50 \mathrm{th}$	$90 \mathrm{th}$	$99 \mathrm{th}$	
Variance Com	ponents													
Var(L)	0.57	0.14	0.13	0.14	0.17	0.71	0.52	0.43	0.45	1.25	1.24	1.15	1.12	
. ,	(70.8)	(130.0)	(1,048.1)	(66.8)	(135.2)	(912.6)	(77.4)	(24.8)	(39.2)	(13.5)	(13.4)	(13.8)	(19.6)	
Var(W)	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.01	$0.03^{'}$	0.02	$0.02^{'}$	$0.05^{'}$	$0.07^{'}$	
, ,	(0.0)	(2.6)	(22.8)	(1.7)	(12.4)	(18.2)	(0.7)	(0.8)	(3.1)	(0.3)	(0.3)	(0.6)	(1.3)	
Var(R)	0.25	0.00	0.02	0.20	0.10	0.00	0.24	0.75	0.35	2.62	2.63	2.30	1.13	
. ,	(31.6)	(0.0)	(150.7)	(94.3)	(78.6)	(0.0)	(36.2)	(43.0)	(30.5)	(28.3)	(28.4)	(27.6)	(19.7)	
Var(T)	0.09	0.08	0.06	0.09	0.13	0.08	0.06	0.11	0.14	0.12	0.12	0.15	0.15	
, ,	(11.3)	(77.6)	(460.0)	(41.9)	(98.2)	(107.3)	(8.2)	(6.3)	(12.2)	(1.3)	(1.3)	(1.7)	(2.7)	
$Var(\tau)$	0.00	0.13	0.10	0.01	0.00	0.04	0.01	0.00	0.00	0.26	0.26	0.22	0.19	
	(0.6)	(120.7)	(769.9)	(6.0)	(2.7)	(54.7)	(1.7)	(0.1)	(0.3)	(2.9)	(2.8)	(2.7)	(3.2)	
Covariance Co	mponents	3												
Cov(L, W)	0.00	-0.02	-0.02	0.02	0.05	-0.10	-0.05	0.08	0.12	0.17	0.17	0.24	0.29	
	(0.1)	(-17.5)	(-153.8)	(10.2)	(40.8)	(-123.0)	(-6.8)	(4.3)	(10.9)	(1.8)	(1.9)	(2.8)	(5.0)	
Cov(L, R)	0.36	0.00	0.05	0.15	0.03	0.00	0.35	0.55	0.33	1.80	1.80	1.61	1.06	
	(44.9)	(0.0)	(382.5)	(71.5)	(25.1)	(0.0)	(52.3)	(31.6)	(28.8)	(19.4)	(19.4)	(19.2)	(18.6)	
Cov(L, T)	-0.23	-0.11	-0.08	-0.11	-0.15	-0.24	-0.17	-0.22	-0.25	-0.39	-0.39	-0.41	-0.42	
	(-28.2)	(-98.3)	(-686.4)	(-52.9)	(-115.2)	(-306.4)	(-25.2)	(-12.5)	(-21.9)	(-4.2)	(-4.2)	(-4.9)	(-7.3)	
$Cov(L, \tau)$	-0.03	-0.13	-0.11	-0.04	-0.02	-0.16	-0.07	0.02	0.03	0.57	0.57	0.51	0.46	
	(-3.8)	(-124.5)	(-890.2)	(-19.5)	(-18.4)	(-204.8)	(-9.7)	(1.1)	(3.0)	(6.2)	(6.2)	(6.0)	(8.0)	
Cov(W, R)	0.00	0.00	-0.01	0.02	0.01	0.00	-0.03	0.09	0.09	0.24	0.24	0.32	0.26	
	(0.1)	(0.0)	(-55.1)	(9.9)	(5.8)	(0.0)	(-4.8)	(5.3)	(7.6)	(2.5)	(2.6)	(3.9)	(4.6)	
Cov(W, T)	-0.00	0.01	0.01	-0.02	-0.04	0.03	0.02	-0.04	-0.07	-0.05	-0.05	-0.08	-0.11	
	(-0.1)	(12.4)	(99.9)	(-8.1)	(-34.8)	(38.7)	(2.2)	(-2.2)	(-6.1)	(-0.6)	(-0.6)	(-1.0)	(-1.9)	
$Cov(W, \tau)$	-0.00	0.02	0.02	-0.01	-0.01	0.02	0.01	0.00	0.01	0.08	0.08	0.10	0.12	
	(-0.0)	(16.3)	(130.2)	(-2.8)	(-5.4)	(24.1)	(1.0)	(0.2)	(0.9)	(0.8)	(0.9)	(1.2)	(2.0)	
Cov(R, T)	-0.15	0.00	-0.03	-0.12	-0.03	0.00	-0.11	-0.28	-0.18	-0.56	-0.56	-0.57	-0.39	
	(-18.4)	(0.0)	(-261.1)	(-56.2)	(-20.9)	(0.0)	(-17.2)	(-15.9)	(-16.0)	(-6.1)	(-6.1)	(-6.8)	(-6.9)	
$Cov(R, \tau)$	-0.03	0.00	-0.04	-0.05	-0.01	0.00	-0.05	0.02	0.02	0.82	0.82	0.70	0.43	
	(-3.5)	(0.0)	(-336.2)	(-22.7)	(-6.2)	(0.0)	(-7.2)	(1.1)	(1.9)	(8.9)	(8.9)	(8.4)	(7.6)	
$Cov(T, \tau)$	0.01	0.10	0.07	0.03	0.02	0.06	0.02	-0.01	-0.02	-0.18	-0.18	-0.18	-0.17	
	(1.7)	(96.2)	(594.4)	(15.3)	(15.7)	(74.9)	(3.3)	(-0.6)	(-1.7)	(-1.9)	(-1.9)	(-2.1)	(-3.0)	
Total														
Var(c)	0.80	0.11	0.01	0.21	0.13	0.08	0.67	1.74	1.14	9.27	9.27	8.35	5.72	
	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	

 $Notes: \ \ Forecast\ error\ variance\ decomposition\ calculated\ at\ a\ 4\ quarter\ time\ horizon.\ Variance\ percent\ share\ in\ parenthesis.$ Column percentiles correspond to the 0th, 50th, 90th, and 99th wealth percentiles.

Table 6.2: Direct Effects Decomposition: Savings

	Total		Low I	ncome			Middle	Income		High Income				
		0th	$50 \mathrm{th}$	$90 \mathrm{th}$	99 th	0th	$50 \mathrm{th}$	$90 \mathrm{th}$	99 th	0th	$50 \mathrm{th}$	$90 \mathrm{th}$	99 th	
Variance Com	ponents													
Var(L)	0.34	0.00	0.00	0.00	0.00	0.00	0.02	0.04	0.03	0.61	0.61	0.68	0.71	
· /	(12.2)	(0.0)	(0.4)	(0.0)	(0.0)	(0.0)	(4.6)	(0.4)	(0.0)	(837.3)	(772.3)	(10.8)	(1.2)	
Var(W)	$0.12^{'}$	0.00	0.00	0.01	0.03	0.00	0.00	0.06	0.09	0.18	0.18	$0.24^{'}$	0.29	
, ,	(4.4)	(0.0)	(0.3)	(0.2)	(0.0)	(0.0)	(1.3)	(0.6)	(0.1)	(243.5)	(226.6)	(3.8)	(0.5)	
Var(R)	5.05	0.00	0.02	7.16	64.35	0.00	0.26	8.69	$\hat{67.51}$	2.62	2.70	11.72	71.98	
,	(182.6)	(0.0)	(43.7)	(87.9)	(95.8)	(0.0)	(76.9)	(92.0)	(97.3)	(3,599.0)	(3,398.3)	(185.9)	(118.0)	
Var(T)	0.00	0.00	0.00	0.01	$0.01^{'}$	0.00	0.01	0.01	$0.02^{'}$	0.01	0.01	0.02	0.02	
. ,	(0.1)	(0.0)	(5.2)	(0.1)	(0.0)	(0.0)	(1.6)	(0.1)	(0.0)	(16.5)	(15.4)	(0.3)	(0.0)	
$Var(\tau)$	0.12°	0.00	0.00	0.06	0.09	0.00	0.01	0.05	0.06	0.89	0.89	0.97	1.05	
. ,	(4.4)	(0.0)	(4.6)	(0.8)	(0.1)	(0.0)	(2.9)	(0.5)	(0.1)	(1,215.6)	(1,118.6)	(15.4)	(1.7)	
Covariance Co	$\overline{mponents}$													
Cov(L, W)	-0.20	0.00	0.00	0.00	0.01	0.00	-0.00	-0.04	-0.05	-0.31	-0.31	-0.38	-0.43	
,	(-7.2)	(0.0)	(0.2)	(0.0)	(0.0)	(0.0)	(-1.3)	(-0.4)	(-0.1)	(-419.6)	(-389.0)	(-6.0)	(-0.7)	
Cov(L, R)	-1.24	0.00	-0.00	0.05	0.32	0.00	-0.06	-0.28	-0.41	-1.26	-1.29	-2.00	-3.28	
, ,	(-45.0)	(0.0)	(-3.5)	(0.6)	(0.5)	(0.0)	(-18.3)	(-3.0)	(-0.6)	(-1,735.0)	(-1,616.9)	(-31.7)	(-5.4)	
Cov(L,T)	0.01	0.00	-0.00	-0.00	-0.01	0.00	-0.01	0.01	0.01	0.05	0.05	0.07	0.09	
, ,	(0.5)	(0.0)	(-1.5)	(-0.0)	(-0.0)	(0.0)	(-2.2)	(0.1)	(0.0)	(63.1)	(59.5)	(1.2)	(0.1)	
$Cov(L, \tau)$	0.20	0.00	-0.00	0.00	0.01	0.00	-0.01	-0.04	-0.04	0.72	0.72	0.79	0.84	
	(7.2)	(0.0)	(-1.3)	(0.0)	(0.0)	(0.0)	(-3.7)	(-0.4)	(-0.1)	(985.0)	(907.5)	(12.6)	(1.4)	
Cov(W, R)	0.77	0.00	-0.00	0.22	0.82	0.00	0.02	0.55	1.56	0.64	0.66	1.46	3.08	
	(28.0)	(0.0)	(-0.5)	(2.7)	(1.2)	(0.0)	(7.1)	(5.9)	(2.2)	(879.8)	(832.5)	(23.2)	(5.1)	
Cov(W,T)	-0.01	0.00	-0.00	-0.00	-0.02	0.00	-0.00	-0.02	-0.03	-0.04	-0.04	-0.06	-0.07	
	(-0.4)	(0.0)	(-0.8)	(-0.1)	(-0.0)	(0.0)	(-0.1)	(-0.2)	(-0.0)	(-51.3)	(-48.1)	(-0.9)	(-0.1)	
$Cov(W, \tau)$	-0.12	0.00	-0.00	0.03	0.05	0.00	0.00	0.05	0.07	-0.39	-0.40	-0.48	-0.55	
	(-4.4)	(0.0)	(-0.3)	(0.3)	(0.1)	(0.0)	(1.0)	(0.5)	(0.1)	(-537.0)	(-497.1)	(-7.6)	(-0.9)	
Cov(R, T)	-0.08	0.00	0.01	-0.17	-0.76	0.00	0.03	-0.24	-0.86	-0.10	-0.11	-0.41	-1.00	
	(-3.0)	(0.0)	(12.3)	(-2.1)	(-1.1)	(0.0)	(7.4)	(-2.6)	(-1.2)	(-136.6)	(-134.6)	(-6.5)	(-1.6)	
$Cov(R, \tau)$	-0.77	0.00	0.01	0.34	0.92	0.00	0.05	0.33	0.60	-1.50	-1.53	-2.77	-5.32	
	(-28.0)	(0.0)	(14.0)	(4.1)	(1.4)	(0.0)	(14.5)	(3.5)	(0.9)	(-2,054.4)	(-1,922.9)	(-43.9)	(-8.7)	
$Cov(T, \tau)$	0.01	0.00	0.00	-0.00	-0.02	0.00	0.01	-0.01	-0.02	0.07	0.07	0.11	0.12	
	(0.4)	(0.0)	(4.4)	(-0.0)	(-0.0)	(0.0)	(1.8)	(-0.1)	(-0.0)	(100.0)	(93.7)	(1.7)	(0.2)	
Total														
Var(a)	2.76	0.00	0.06	8.15	67.17	0.00	0.34	9.45	69.36	0.07	0.08	6.31	61.02	
	(100.0)	(0.0)	(100.0)	(100.0)	(100.0)	(0.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	(100.0)	

 $Notes: \ \ Forecast\ error\ variance\ decomposition\ calculated\ at\ a\ 4\ quarter\ time\ horizon.\ Variance\ percent\ share\ in\ parenthesis.$ Column percentiles correspond to the 0th, 50th, 90th, and 99th wealth percentiles.

High Income Low Income Middle Income 0.5%0 0.0 -0.550%% Deviation from SS -20-20-40366-201991 2016 19912016 1991 2016Mon. Pol. TFPWage Markup Transfers Markup Govt. Spending Tax Prog.

Figure 7.2: Historical Decomposition: Household Consumption

High Income Low Income Middle Income 5 %0 0 -550 50%% Deviation from SS -5010 -105 %66-51991 1991 2016 1991 2016 2016 TFPWage Markup Mon. Pol. Transfers Markup Govt. Spending Tax Prog.

Figure 7.3: Historical Decomposition: Household Savings

Figure 7.4: Historical Endogenous Decomposition: Household Aggregates

Figure 7.5: Historical Endogenous Decomposition: Household Consumption

Figure 7.6: Historical Endogenous Decomposition: Household Savings

A Data

B Additional Model Details

- **B.1** Household Decision Rules
- **B.2** Labor Packer Demand Function
- B.3 Wage Philips Curve
- **B.4** Final Goods Firm Conditions
- **B.5** Philips Curve
- **B.6** Aggregation
- B.7 Characterization

C Computational Error

TBD

D Estimation Results

Figure D.2: Posterior Distributions

E Aggregate IRFs

Figure E.1: TFP (A) Shock Impulse Response Functions

Figure E.2: Price Markup (ψ) Shock Impulse Response Functions

Figure E.3: Wage Markup (ψ_W) Shock Impulse Response Functions

Figure E.4: Govt. Spending (g) Shock Impulse Response Functions

Figure E.5: Monetary Policy (ξ) Shock Impulse Response Functions

Figure E.6: Tax Progressivity (τ^P) Shock Impulse Response Functions

Figure E.7: Household Transfer (η) Shock Impulse Response Functions

F Forecast Error Variance Decomposition Calculation

G Household Decision Rules

Figure G.1: Household Decision Rules

Figure G.2: Household Income Shares

H Additional Historical Decompositions

Figure H.1: Fitted Historical Decompositions