Mutation taster

http://www.mutationtaster.org/

Принцип работы

• MutationTaster использует классификатор Байеса, чтобы в конечном итоге предсказать потенциальный риск изменения. Классификатор Байеса получает результат всех тестов и особенностей изменений и вычисляет вероятность патогенности.

Используются 3 модели, нацеленные на различные типы изменений

- 1 (without_aae (amino acid модели) не синонимичные и интронные изменения, которые не приводят к изменению аминокислоты;
- 2 (simple_aae модели) те, которые ведут к замене / вставке / удалению одной аминокислоты;
- 3 (complex_aae модель) более сложных изменений аминокислотной последовательности например, мутации внесения преждевременного стоп-кодона и сдвиги рамки считывания.
- Для обучения классификатора и для того, чтобы программа могла оценить замену были проанализированы данные более чем 390 000 известных мутаций из базы HGMD Professional и более 6 800 000 безвредных SNP и полиморфизмов Indel из проекта 1000 геномов.

Gene

Transcript

Position / snippet refers to Alteration

mutation tosting

enter positions of

and the inserted bases

..last wild type base before alteration ..first wild type base after alteration

npc1 HGNC gene symbol, NCBI Gene ID, Ensembl gene ID show available transcripts | clear input ENST00000269228 Ensembl transcript ID Choose the transcript: ENST00000269228 (protein coding, 5157 bases) NM 000271 ENST00000412552 (protein coding, 3171 bases) ENST00000540608 (processed transcript, 2790 bases) ENST00000588867 (retained intron, 2000 bases) ENST00000591075 (retained intron, 809 bases) ENST00000587223 (processed transcript, 590 bases) ENST00000586718 (retained intron, 574 bases) ENST00000591955 (retained intron, 561 bases) ENST00000587163 (retained_intron, 431 bases) ENST00000590301 (retained_intron, 410 bases) coding sequence (ORF) transcript (cDNA sequence) gene (genomic sequence) all types by sequence TATGGAG[a/t]GTGT options show nucleotide alignment enter a few bases around your alteration Format: ACTGTC[A/7] GTGTF A substituted by 7 ACTGTC[AG/7] GTGTF AG substituted by 7 ACTGTC[ACGT/-] GTGTF ACGT deleted ACTGTC[-/AA] GTGTF AA inserted single base exchange by position enter position and new base insertion or deletion by position

- documentation | FAQs
- single query
- · query chromosomal positions
- QueryEngine
- MutationDistiller (public beta)
- · Regulation Spotter (public beta)
- other applications | team
- slides ESHG2017 Copenhagen

2 варианта прогноза.

Polymorphism — полиморфизм

Disease causing — вызывает заболевание

continue

if you would like to have a name for this alteration in the output later on, please type in here

(if applicable)

Prediction

disease causing

Model: simple_aae, prob: 0.999999997312517

<u>hyperlink</u>

(explain)

Summary

· amino acid sequence changed

· protein features (might be) affected

splice site changes

analysed issue	analysis result				
name of alteration	no title				
alteration (phys. location)	chr18:21153507T>A st	now variant in	all transcripts IGV		
HGNC symbol	NPC1				
Ensembl transcript ID	ENST00000269228				
Genbank transcript ID	NM 000271				
UniProt peptide	O15118				
alteration type	single base exchange				
alteration region	CDS				
DNA changes	c.89A>T cDNA.644A>T g.13356A>T				
AA changes	E30V Score: 121 explai	in score(s)			
position(s) of altered AA If AA alteration in CDS	30				
frameshift	no				
known variant	A	us (A/A) het	erozygous allele carriers		
	1000G -	-	-		
	ExAC 0	1	1		
regulatory features	H3K36me3, Histone, H H3K27ac, Histone, His H4K20me1, Histone, H	tone 3 Lysin			
phyloP / phastCons	PhyloP Ph		,		
,	*	astouris			
	(flanking) 0.627 1				
	3.954 1				
	(flanking) 4.769 1				
	, 0,		esition(s) in in HCSC Conomo Browner		
anlina aitaa			osition(s) in in UCSC Genome Browser	ut detection converse	
splice sites	effect	gDNA position	score	wt detection sequence	exon-intron border
	Acc increased	13346	wt: 0.55 / mu: 0.67	wt: TGTTTTCACAGTCCTGTGTTTGGTATGGAGAGTGTGGAAT	gttt GGTA
				mu: TGTTTTCACAGTCCTGTGTTTTGGTATGGAGTGTGTGGAAT:	ī
	Acc increased	13347	wt: 0.70 / mu: 0.78	wt: GTTTTCACAGTCCTGTGTTTGGTATGGAGAGTGTGGAATT	tttg GTAT
				mu:	
	Danas maninalli	42250	0 2705 / 0 2020 /	GTTTTCACAGTCCTGTGTTTTGGTATGGAGTGTGTGGAATT(
	Donor marginally increased	13358	wt: 0.2785 / mu: 0.3029 (marginal change - not	wt: GAGAGTGTGGAATTG mu: GAGTGTGTGGAATTG	GAGT gtgg
		13349	scored) 0.73	mu: GAGIGIGIGGAAIIG mu: TTTGGTATGGAGTGT	TCCTISE
	Donor gained 32	13349	U.13	mu. IIIGGIAIGGAGIGI	TGGT atgg
distance from splice site					

Prediction polymorphism

Model: simple_aae, prob: 0.970101697530678 (explain)

Summary

- amino acid sequence changedprotein features (might be) affected

analysed issue	analysis result								
name of alteration	no title								
alteration (phys. location)	chr18:21134845G>	Α							
HGNC symbol	NPC1								
Ensembl transcript ID	ENST00000269228	NST00000269228							
UniProt peptide	<u>O15118</u>								
alteration type	single base exchan	ge							
alteration region	CDS								
DNA changes	c.1430C>T cDNA.1985C>T g.32018C>T								
AA changes	T477M Score: 81 e	xplain score(s)							
position(s) of altered AA if AA alteration in CDS	477								
frameshift	no								
dbSNP / TGP / HGMD(public) / ClinVar	no SNPs in altered	region found							
regulatory features	H3K36me3, Histone	e, Histone 3 Ly	sine 36 Tri-Methylation						
phyloP / phastCons	PhyloP	PhastCons							
	(flanking) 4.153	1							
	1.655	1							
	(flanking) 0.337	0.999							
	explain score(s) and/	or inspect you	r position(s) in in UCSC Genome Browser						
splice sites	effect	gDNA position	score	wt detection sequence	exon-intron border				
	Acc marginally increased	32008	wt: 0.6887 / mu: 0.7528 (marginal change - not scored)	wt: TCTGCTTGGCCCCTCTTTCACCGTATAACACGAACTGCACC mu: TCTGCTTGGCCCCTCTTTCACCGTATAACATGAACTGCACC					
	Donor marginally	32016	wt: 0.5908 / mu: 0.6304 (marginal change -	wt: TATAACACGAACTGC	TAAClacga				

Prediction disease causing

distance from

splice site

32

Model: complex_aae, prob: 1 (classification due to NMD, real probability is shown anyway)

(explain)

Summary hyperlink NMD · amino acid sequence changed frameshift · protein features (might be) affected splice site changes analysed issue analysis result name of alteration no title alteration (phys. chr18:21153507 21153507delT location) HGNC symbol NPC1 Ensembl ENST00000269228 transcript ID Genbank NM 000271 transcript ID UniProt peptide 015118 alteration type deletion alteration region CDS DNA changes c.89 89delA cDNA.644 644delA g.13356 13356delA AA changes TE30Gfs*29 position(s) of 30 (frameshift or PTC - further changes downstream) altered AA if AA alteration in CDS frameshift yes Variant was neither found in ExAC nor 1000G known variant Search ExAC. regulatory H3K36me3, Histone, Histone 3 Lysine 36 Tri-Methylation H3K27ac, Histone, Histone 3 Lysine 27 Acetylation features H4K20me1, Histone, Histone 4 Lysine 20 mono-methylation phyloP / PhyloP PhastCons phastCons (flanking) 0.627 - 1 3.954 (flanking) 4.769 1 explain score(s) and/or inspect your position(s) in in UCSC Genome Browser splice sites effect gDNA position score wt detection sequence exon-intron border Acc increased 13347 wt: 0.70 / mu; 0.86 wt: GTTTTCACAGTCCTGTGTTTGGTATGGAGAGTGTGGAATTG tttq | GTAT mu: GTTTTCACAGTCCTGTGTTTTGGTATGGAGGTGTGGAATTGC Acc gained 13353 0.49 mu: ACAGTCCTGTGTTTGGTATGGAGGTGTGGAATTGCATATGG atgg | AGGT Donor gained 13352 0.66 mu: GGTATGGAGGTGTGG TATG | gagg

Prediction

disease causing

Model: simple_aae, prob: 0.99999999999994966 (classification due to ClinVar, real probability is shown anyway)

Summary

- · amino acid sequence changed
- known disease mutation at this position (HGMD CM992942)
 known disease mutation: rs80358257 (pathogenic)
- · protein features (might be) affected
- splice site changes

analysed issue	<u>analysis r</u>	<u>esult</u>					
name of alteration	no title	o title					
alteration (phys. location)	chr18:2111	8528G>C show vari	ant in all transc	<u>ripts</u>			
HGNC symbol	NPC1						
Ensembl transcript ID	ENST0000	00269228					
Genbank transcript ID	NM_00027	<u>'1</u>					
UniProt peptide	O15118						
alteration type	single base	e exchange					
alteration region	CDS						
DNA changes	cDNA.3574	c.3019C>G cDNA.3574C>G q.48335C>G					
AA changes	P1007A S	core: 27 explain score	<u>(s)</u>				
position(s) of altered AA if AA alteration in CDS	1007						
frameshift	no						
known variant	Reference	ID: <u>rs80358257</u>					
	database	homozygous (C/C)	heterozygous	allele carriers			
	1000G	0	1	1			
	ExAC	0	14	14			
*					mann-Pick disease type C1) dbSNP NCBI variation viewer for details (HGMD ID CM992942)		

mutation t@sting

Gene
Transcript
Position / snippet refers to
Alteration

Name of alteration

continue

Current build: NCBI 37 / Ensembl 69

mutation t@sting

- documentation | FAQs
- single query
- · query chromosomal positions
- QueryEngine
- MutationDistiller (public beta)
- Regulation Spotter (public beta)
- other applications | team
- slides ESHG2017 Copenhagen

chromosome reference allele

position alternative allele

variant in HGVS notation

(currently only possible for SNVs)

e.g. chr15:38852120A>T

clear input

For InDels, use the VCF format, i.e. always start with the last reference base before the variant.

continue

If you use MutationTaster, please cite our publication: Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014 Apr;11(4):361-2. Current build: NCBI 37 / Ensembl 66

Submit

mutation tosting

QueryEngine

- documentation | FAQs
- single guery
- · query chromosomal positions
- QueryEngine
- MutationDistiller (public beta)
- RegulationSpotter (public beta)
- other applications | team
- slides ESHG2017 Copenhagen

We offer automated MutationTaster analysis of variants from Next Generation Sequencing projects. Variants must be in VCF format and refer to GRCh37 / hg19. After your VCF file has been analysed, the link to download the results (archived as .zip) will be send via E-mail to you. For this reason, you have to provide a valid E-mail address. Look up more details in the documentation.

VCF file	Выберите файл Файл не выбран sample file Please zip or gzip large files!	clear input
Format: \$CHROM POS ID REF ALT QUAL FILTER INFOCENT 10199 . A C 4.77 . DP=: (tab delimited) The coordinates must refer to GRCh37 (als	2;AF1=0.5003;CI95=0.25,0.75;DP4=1,0,0,1;MQ=60;FQ=-3.1;PV4=1,1,1,1 GT:PL:DP:GQ 0/1:	
	work. We are sorry for the inconvenience and try to solve the problem as soon as possible	queue status 2018-06-04 00:24 CEST (refresh) low load - our bored server is looking forward to analysing your data 0 jobs running, 0 queued, 1566.4 millions alterations analysed. DB queries free slots (0 running, 16 of 16 available - at 0%
E-mail address		capacity) large jobs capacity) free slots (0 running, 20 of 20 available - at 0% capacity)
generate HTML files (slower) Analysis settings		
search for homozygous variants	□ yes	analyse complete VCF but only exons with 10 bases intron flanking
combine neighbouring variants	□ yes	analyse variants on chr. bases intron flanking
filter against TGP	homozygous in 4 or more TGP samples ♥	analyse custom regions (select to enter) exclude custom regions (select to enter)
	heterozygous in 20 or more TGP samples	
minimum coverage	4	

PolyPhen-2

http://genetics.bwh.harvard.edu/pph2/

PolyPhen-2

PolyPhen-2 (от слов Polymorphism «полиморфизм» и Phenotyping «фенотипирование») - программа, которая прогнозирует возможное влияние аминокислотной замены на структуру и функцию белка. Имеет высокой качество выравнивания в эволюционном ряду.

Две пары наборов данных были использованы для тестирования и прогнозирования в PolyPhen-2.

-Первая пара **HumDiv**, была составлена из всех повреждающих аллелей с известными воздействиями на функцию белка, включая заболевания, присутствующие в базе данных UniProtKB, вместе с различиями между белками человека и его близкородственными гомологами млекопитающими.

HumDiv модель следует использовать для оценки редких аллелей в локусах потенциально участвующих в сложных фенотипах, при плотной картографированности регионов, а также при анализе естественного отбора, где даже мягко вредные аллели должны быть рассмотрены как патогенные.

-Вторая пара, **HumVar**, состоял из всех патогенных мутаций человека из базы UniProtKB, вместе с общечеловеческими SNP (с частотой > 1%).

HumVar модель следует использовать в диагностике Менделевских заболеваний, поскольку требует сравнение искомых мутаций со всеми остальных человеческими изменениями патогенными или полиморфными. Именно на графу с данными HumVar необходимо обращать тщательное внимание.

PolyPhen-2

Benign – доброкачественная замена

Possibly damaging — возможно повреждающая (меньшая уверенность)

Probably damaging — вероятно повреждающая (большая уверенность)

Unknown — неизвестно

PolyPhen-2 pre	diction of function:	al effects of human nsSNPs
Home About	Help Do	ownloads Batch query WHESS.db
PolyPhen-2 (Poly morphism Phen otyping v 2) is a tool which and comparative considerations. Please, use the form below		ct of an amino acid substitution on the structure and function of a human protein using straightforward physical
Query	Data	
Protein	or SNP identifier	ENSP00000269228
,	Protein sequence in FASTA format	
	Position	477
		A R N D C E Q G H I L K M F P S T W Y V A R N D C E Q G H I L K M F P S T W Y V
	Query description	477
		Submit Query Osar Check Status Display advanced query options

Session ID:	14b20c	d0fc45a049	907da06163cd57d655da8	9459	Overwrite default
Grid Status:					
	ealth Jo 00%		ding Running		
Jobs (1 total	l):				
		Comp	leted (1)		
ID	Results	Errors	Date/Time	Delete	Description
5066075	<u>View</u>) -	2018-06-03 18:09:04		477

Shown are 75 amino acids surrounding the mutation position (marked with a black box). An interactive version of the complete alignment is also available.

SIFT+PROVEAN

http://provean.jcvi.org/index.php

SIFT

SIFT прогнозирует, влияет ли <u>замена</u> (<u>substitution</u>) аминокислоты на <u>функцию</u> (<u>function</u>) белка. Предсказание основано на степени сохранения аминокислотных остатков в эволюционных последовательностях. SIFT основан на предпосылке, что эволюция белка коррелирует с функцией белка. Программа получает запрашиваемую последовательность и использует множественную информацию выравнивания.

SIFT проверка является многоступенчатой процедурой, при которой (1) происходит поиск подобных последовательностей генов, (2) выбирается тесно связанные последовательности, которые могут имеют схожую белковую функцию, (3) получают выравнивание этих выбранных последовательностей, и (4) вычисляют вероятности, используя специальную формулу.

TOLERATED — толерантная, допустимая, переносимая, терпимая **DAMAGING** — повреждающая замена **N/A** — нет данных/не известно

Позиции с вероятностью менее 0,05 — **DAMAGING**Позиции с вероятностью больше или равны 0,05 — **TOLERATED**

SIFT

JCVI Home	SIFT Home	Help	Team	Contact us

→ SIFT Home

→ Help

→ Contact us

Code release

License Source Code JCVI-SIFT v. 1.03 Code & exe (Sun, Linux)

FTP download

SIFT Human DB (release 63) SIFT dbSNP DB (build 132)

Related links

Human genome assembly GRCh37 Ensembl annotation release 63 NCBI dbSNP Build 132

NCBI BLink Updates

Aug 2011: SIFT Human DB updated to support GRCh37 Ensembl release 63

Apr 2011: SIFT dbSNP DB updated to support NCBI dbSNP build 132 SIFT predicts whether an amino acid substitution affects protein function. SIFT prediction is based on the degree of conservation of amino acid residues in sequence alignments derived from closely related sequences, collected through PSI-BLAST. SIFT can be applied to naturally occurring nonsynonymous polymorphisms or laboratory-induced missense mutations.

** PROVEAN project New **

Visit our new PROVEAN project to get functional predictions from multiple tools. We welcome your feedback or questions.

New features in PROVEAN Human Genome Variants DB:

- Single submission returns functional predictions from SIFT and PROVEAN. PROVEAN is a new prediction tool which
 works for both SNPs and indels. (Choi et al., 2012, PLOS ONE)
- · Updated versions of Ensembl gene annotation (GRCh37 Ensembl 66) and NCBI dbSNP database (Build 137).
- · New database structure to support fast retrieval for genome-wide analysis.

Human Genome DB	Tool Description
SIFT/PROVEAN Human SNPs	Get SIFT and PROVEAN predictions for SNPs and indels (Ensembl 66) (Sample format)
SIFT Human SNPs	Get SIFT predictions for nonsynonymous SNPs (Ensembl 63) (Sample format)
	Other human genome tools:
	Restrict to Coding Variants (Sample format) Classify Human indels (Sample format)
SIFT Human Protein DB	Tool Description (Ensembl 63)
SIFT Human Protein	Get SIFT predictions for nonsynonymous AA substitutions (Ensembl ENSP ID)
SIFT dbsnp db	Tool Description (dbSNP Build 132)
SIFT dbSNP rs IDs	Get SIFT predictions for dbSNP SNPs including non-human species (NCBI rs ID)
SIFT dbSNP Protein	Get SIFT predictions for dbSNP proteins including non-human species (RefSeq ID or GI number) $$
SIFT Single Protein Tools	Tool Description
SIFT BLink	Run SIFT analysis on single protein using precomputed BLAST from NCBI BLink (RefSeq ID or GI number)

Referencing SIFT

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc.* 2009;4(7):1073-81. PubMed PDF

Ng PC, Henikoff S. Predicting the Effects of Amino Acid Substitutions on Protein Function Annu Rev Genomics Hum Genet. 2006;7:61-80. PubMed PDF Supp

Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. *Nucleic Acids Res.* 2003 Jul 1;31(13):3812-4. PubMed

Ng PC, Henikoff S. Accounting for Human Polymorphisms Predicted to Affect Protein Function. *Genome Res.* 2002 Mar;12(3):436-46. PubMed Data

Ng PC, Henikoff S. Predicting Deleterious Amino Acid Substitutions. *Genome Res.* 2001 May;11(5):863-74. PubMed

PROVEAN (Protein Variation Effect Analyzer)

Кратко. 30 групп близкородственных последовательностей образуют опорную последовательность, которая будет использоваться для генерации прогноза. PROVEAN считает баллы внутри каждого кластера по количеству схожих аминокислот. Оценки усредняются внутри и между кластерами для генерации окончательного счета.

Счет равен или ниже -2,5 - **DELETERIOUS** — **вредный** эффект выше -2,5 — **NEUTRAL** — **нейтральный** эффект

PROVEAN

PROVEAN

19,898 disease variants

34,701 common polymorphisms

PROVEAN Tools
PROVEAN Protein
PROVEAN Protein Batch
Human
Mouse
PROVEAN Genome Variants
Human
Mouse

→ About

→ FAQ

→ News
→ Download

→ Help

→ Contact Us

→ Related Links

PROVEAN (\underline{Pro} tein \underline{V} ariation \underline{E} ffect \underline{An} alyzer) is a software tool which predicts whether an amino acid substitution or indel has an impact on the biological function of a protein.

PROVEAN is useful for filtering sequence variants to identify nonsynonymous or indel variants that are predicted to be functionally important.

The performance of PROVEAN is comparable to popular tools such as SIFT or PolyPhen-2 [1]. Read more.

A fast computation approach to obtain pairwise sequence alignment scores enabled the generation of precomputed PROVEAN predictions for 20 single AA substitutions and a single AA deletion at every amino acid position of all protein sequences in human and mouse [2].

This work is funded by the National Institutes of Health [grant number 5R01HG004701-04].

References:

- Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 7(10): e46688.
- Choi Y (2012) A Fast Computation of Pairwise Sequence Alignment Scores Between a Protein and a Set of Single-Locus
 Variants of Another Protein. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine (BCB
 '12). ACM, New York, NY, USA, 414-417.

(* This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM BCB '12. http://doi.acm.org/10.1145/2382936.2382989)

PROVEAN web server functions are currently using PROVEAN v1.1.3.

PROVEAN Tool	Species	Description
PROVEAN Protein	Any species	This tool provides PROVEAN prediction for a protein sequence from any organisms. [details]
		 Input: A protein sequence from any organism and amino acid variants of interest. See example. Output: PROVEAN scores and predictions. See example.
PROVEAN Protein Batch	- Human - Mouse	This tool provides PROVEAN and SIFT predictions for a list of protein variants. [details] Input: A list of protein variants. See example. Output: Scores and predictions from PROVEAN and SIFT. See example.
PROVEAN Genome Variants	- Human - Mouse	This tool provides PROVEAN and SIFT predictions for a list of genome variants. It is based on the assembly of the species and the Ensembl genome annotation. [details]
		 Input: A list of genomic variants. See example. Output: Changes at protein level, their scores and predictions from PROVEAN and SIFT, and accessory information (dbSNP rs IDs, gene description, PFAM domain, GO terms, etc.). See example.

SIFT+PROVEAN

	PROVEAN HUMAN PROTEIN BAT	CH						
→ PROVEAN Tools PROVEAN Protein	PROVEAU HOMAIN PROTEIN BATCH							
PROVEAN Protein Batch Human	This tool provides PROVEAN prediction for all human proteins and variants. It also shows SIFT predictions when precomputed scores are available. • Input: A list of human protein variants. See example. • Output: PROVEAN scores and predictions along with available SIFT predictions. See example.							
Mouse PROVEAN Genome Variants Human								
Mouse	Enter a list of human protein va	riants						
→ About <pre> <pre> <pre> </pre></pre></pre>	in ID>, <position>,<reference an<="" td=""><td>nino acids>,<variant acids="" amino="">,<comment></comment></variant></td></reference></position>	nino acids>, <variant acids="" amino="">,<comment></comment></variant>						
→FAQ	Paste in your protein variants: [format]	Example (upload example)						
→ News	ENSP00000269228 477 T M ENSP00000269228 558 A S	ENSP00000224605 63 A S						
→ Download	ENSP00000269228 181 A T	ENSP00000224605 55 D G ENSP00000443112 651 T .						
→ Help		ENSP00000359240 59 Q QA NP_000483.3 508 F .						
→ Contact Us		P13569 508 F .						
→ Related Links								
	Or upload a file containing variants (1MB limit): Выберите файл Файл не выбран							
	Email (optional)							
	If provided, results will also be sent via email.							
	Отправить							

EAN Protein Batch Result (Download)

	PROTEIN SEQUENCE CHANGE				PROVEAN PREDICTION SIF				SIFT PR	SIFT PREDICTION			
INPUT	PROTEIN_ID	POSITION	RESIDUE_REF	RESIDUE_ALT	SCORE			#CLUSTER	SCORE	PREDICTION (cutoff=0.05)	MEDIAN_INFO	#SEQ	
ENSP00000269228 477 T M	ENSP00000269228	477	Т	М	-2.37	Neutral	95	30	0.182	Tolerated	2.82	79	
ENSP00000269228 558 A S	ENSP00000269228	558	А	S	-2.40	Neutral	95	30	0.034	Damaging	2.82	80	
ENSP00000269228 181 A T	ENSP00000269228	181	А	Т	-2.67	Deleterious	95	30	0.042	Damaging	2.82	77	
	ENSP00000269228 477 T M ENSP00000269228 558 A S		INPUT PROTEIN_ID POSITION ENSP00000269228 477 T M ENSP00000269228 477 ENSP00000269228 558 A S ENSP00000269228 558	INPUT PROTEIN_ID POSITION RESIDUE_REF ENSP00000269228 477 T M ENSP00000269228 477 T ENSP00000269228 558 A S ENSP00000269228 558 A	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT ENSP00000269228 477 T M ENSP00000269228 477 T M ENSP00000269228 558 A S ENSP00000269228 558 A S	INPUT	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT SCORE PREDICTION (cutoff=-2.5) ENSP00000269228 477 T M ENSP00000269228 477 T M -2.37 Neutral ENSP00000269228 558 A S ENSP00000269228 558 A S -2.40 Neutral	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT SCORE PREDICTION (cutoff=-2.5) #SEQ ENSP00000269228 477 T M ENSP00000269228 477 T M -2.37 Neutral 95 ENSP00000269228 558 A S ENSP00000269228 558 A S -2.40 Neutral 95	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT SCORE PREDICTION (cutoff=-2.5) #SEQ #CLUSTER ENSP00000269228 477 T M ENSP00000269228 477 T M -2.37 Neutral 95 30 ENSP00000269228 558 A S ENSP00000269228 558 A S -2.40 Neutral 95 30	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT SCORE PREDICTION (cutoff=-2.5) #SEQ #CLUSTER SCORE ENSP00000269228 477 T M ENSP00000269228 477 T M -2.37 Neutral 95 30 0.182 ENSP00000269228 558 A S ENSP00000269228 558 A S -2.40 Neutral 95 30 0.034	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT SCORE PREDICTION (cutoff=-2.5) #SEQ #CLUSTER SCORE PREDICTION (cutoff=0.05) ENSP00000269228 477 T M ENSP00000269228 477 T M -2.37 Neutral 95 30 0.182 Tolerated ENSP00000269228 558 A S ENSP000000269228 558 A S ENSP0000000269228 558 A S ENSP0000000269228 558 A S ENSP0000000269228 558 A S ENSP000000000000000000000000000000000000	INPUT PROTEIN_ID POSITION RESIDUE_REF RESIDUE_ALT SCORE PREDICTION (cutoff=-2.5) #SEQ #CLUSTER SCORE PREDICTION (cutoff=0.05) MEDIAN_INFO (cutoff=0.05) #SEQ ENSP00000269228 477 T M ENSP00000269228 477 T M ENSP00000269228 558 A S ENSP000000269228 558 A S ENSP0000000269228 558 A S ENSP0000000269228 558 A S ENSP0000000269228 558 A S ENSP000000000000000000000000000000000000	

Доп.

- #CLUSTER Количество кластеров используемое для предсказания (по умолчанию 30)
- #SEQ Количество последовательностей используемое для предсказания, у которых в положении имеется искомая аминокислота (чем больше, тем лучше)
- MEDIAN_INFO. Диапазон от 0 до 4,32, в идеале число будет между 2,75 и 3,5. Применяется для измерения разнообразия последовательностей, используемых для прогнозирования.
- Предупреждение, если больше, чем 3,25, это указывает, что прогноз был основан на тесно связанных последовательностях без необходимого разнообразия.

SIFT+PROVEAN

→ PROVEAN Tools	PROVEAN HUMAN GENOME VARIANTS
PROVEAN Protein PROVEAN Protein Batch	
Human	This tool provides PROVEAN and SIFT predictions for a list of human genome variants.
Mouse	Input: A list of human genomic variants. See example.
PROVEAN Genome Variants	 Output: PROVEAN scores and predictions along with available SIFT predictions. See example.
Human	
Mouse	Step 1. Enter a list of genomic coordinates and variants
→ About <chr< b=""></chr<>	omosome>, <position>,<reference allele="">,<variant allele=""></variant></reference></position>
→ FAQ	1,100382265,C,G,user comment 1
News	1,100380997,A,G,user comment 2
Download	22,30163533,A,C X,12905093,A,T
	2,230633386,G,C
Help	1,100382265,C,A
Contact Us	7,117199641,ATCA,. — 7,117199647,TTT,.
Related Links	10,50184923,TGG,.
	12,121438957,ACC,. 1,43217995,G,GCCA
	10,102762472,G,GGCG
	9,117856130,T,G 9,117856135,C,G
	Or upload a file containing variants (5MB limit): Выберите файл Файл не выбран
	Step 2. Select gene annotation (optional)
	☐ Ensembl Gene ID ☐ UniProt/SwissProt ID ☐ RefSeq Protein ID
	Ensembl Transcript ID MIM Disease Accession
	☐ Transcript Status ☐ PFAM ID ☐ Gene Description ☐ TIGRFam ID
	☐ Gene Description ☐ TIGRFam ID ☐ Interpro ID
	Chromosome band GO Term Accession
	☐ Ensembl Protein Family ID ☐ GO Slim GOA Accession ☐ Ensembl Family Description
	Parameters
	Assembly/Annotation: Human GRCh37 Ensembl 66 ▼
	Email (optional)

GENERESEARCH

http://score.generesearch.ru/services/badmut/

GENERESEARCH	PUBLICATIONS TEAM	SERVICES -	ABOUT
	Our services require cook	ies to keep track of you	Take Note! r submissions and find your results. Submissions expire after 24 hours.
About	Process a single allele	Process a VC	F query
	ows you to submit a single alle ocess, you should consider the		can make as many of these submissions as you want, if you have more than a dozen o
Human gend	ome assembly version: 38 ▼		
Chromosom	e: 1 v		
Position (1-	based):		
Reference:	A ¥		
Substitution	: A •		
SUBMIT			

Анализ сайта сплайсинга

Human Splicing Finder

http://www.umd.be/HSF3/

Human Splicing Finder

Home

Analuse Now!

What's New?

Help & Tutorials

Credits & Publications

Our Other Tools

Contact Us

Description

With the completion of the Human Genome Project our vision of human genetic diseases has changed. Thousands of mutations are identified in diagnostic and research laboratories yearly. The knowledge of these mutations associated with clinical and biological data is essential for clinicians, geneticists and researchers.

In order to better understand intronic and exonic mutations leading to splicing defects, we decided to create the **Human Splicing Finder** website. This tool is aimed to help studying the pre-mRNA splicing [more about splicing background].

To calculate the consensus values of potential splice sites and search for branch points, new algorithms were developed. Furthermore, we have integrated all available matrices to identify exonic and intronic motifs, as well as new matrices to identify hnRNP A1. Tra2-B and 9G8.

We hope that this tool will be useful for your research. In order to improve it, please send us comments and new matrices to identify specific sequences involved in splicing.

HSF (Human Splicing Finder) is freely available for **non-commercial users**. Nevertheless it is not allowed to copy all or part of the database content without specific authorisation from us. If you are a **commercial user** please contact us to obtain a dedicated license.

For more information please contact <u>Prof. Christophe Béroud</u> or <u>Dr. David</u> Salgado

Other Splicing Tools

- MaxEntScan
- SROOGLE: Splicing Regulation Online Graphical Engine
- RegRNA: A Regulatory RNA Motifs and Elements Finder
- · EBI Splice Signal Analysis
- GeneSplicer
- · Splice Predictor (DK)
- MIT splice predictor
- ASPic

Fundings

Marseille Medical Genetics (MMG) - UMR 1251 Director: Nicolas LEVY

Bioinformatics & Genetics Team

Director: Christophe BEROUD

Home Analyse Now! What's New? Help & Tutorials Credits & Publications Our Other Tools Contact Us

Start an Analysis

▼ Sequences

Reference sequence

NPC2 Gene > ENST00000555619 Transcript > Exon number: 4 (78 bp) + 100 intronic nucleotides at exon ends

1 gaagtttgct actgtacatc taggattcat agttaaacca attatggata gaagtcaggt cctattttca tttttctcaa ttattttct ctttctccag

101 ATAAAACTGG TGGTGGAGTG GCAACTTCAG GATGACAAAA ACCAAAGTCT CTTCTGCTGG GAAATCCCAG TACAGATCgt aagtctatct gggggtgaga

201 gggcatgggt ggagggaaga aagtggagga gaaatcagac tgaaactaaa tcagtgccat aagataaaag gaatttca

Total sequence length: 278 nucleotides

Mutant sequence

1 gaagtttget actgtacate taggatteat agttaaacca attatggata gaagteaggt cetattttea ttttteteaa ttattttet ettteteeag 101 ATAAAACTGG TGGTGGAGTG GCAACTTCAG GATGACAAAA ACCAAAGTCT CTTCTGCTGG GAAATCCCAG TACAGATCat aagtetatet gggggtgaga 201 gggcatgggt ggagggaaga aagtggagga gaaatcagae tgaaactaaa teagtgecat aagataaaag gaatttea

Total sequence length: 278 nucleotides

The underlined sequences are analyzed by HSF.

▼ Interpreted Data

This table shows only relevant results related to the mutation position and context.

Predicted signal	Prediction algorithm	cDNA Position	Interpretation
Broken WT Dener Site	1 - HSF Matrices	CAGATCgtaagtcta	Alteration of the WT donor site,
Broken WT Donor Site	2 - MaxEnt	74 76 78 80 82 84 86	most probably affecting splicing.

Predicted signal	Prediction algorithm	cDNA Position	Interpretation
Broken MT Depar Site	1 - HSF Matrices	CAGAT-C-g-ta-a-g-t-c-ta	Alteration of the WT donor site,
Broken WT Donor Site	2 - MaxEnt	74 76 78 80 82 84 86	most probably affecting splicing.

▼ Raw Data Tables 🕜

In the tables below, positions in sequence for the 5' intron are labeled as negative and as positive for the 3' intron. Variations in the tables below are noted in colored boxes, according to the following scale:

26% - 50% variation 51% - 75% variation 76% - 100% variation 0% - 25% variation New site<

Potential Splice Sites **Potential Branch Points** Other splicing motifs **Enhancer motifs** Silencer motifs

▼ HSF Matrices

Sequence Position	cDNA Position	Splice site type	Motif	New splice site	Wild Type	Mutant	If cryptic site use, exon length variation	Variation (%)
172	72	Acceptor	ACAGATCgtaagtc	acagatcataagTC	66.67	66.74	NA	+0.1
176	76	Donor	ATCgtaagt	ATCataagt	83.28	56.45	87	WT site broken -32.22

▼ MaxEnt

Threshold values:

5' Motif: 3 3' Motif: 3

Sequence Position	cDNA Position			5' Motif					3' Moti	f	
Sequence Position	CDNA POSITION	Ref Motif	Ref Score	Mut Motif	Mut Score	Variation (%)	Ref Motif	Ref Score	Mut Motif	Mut Score	Variation (%)
176	76	ATCgtaagt	10.44	ATCataagt	2.26	-78.35					

Identify cryptic splice mutations

De novo pathogenic mutations

Программы для оценки патогенности

Использованные в презентации

- MutationTaster http://www.mutationtaster.org
- PolyPhen2 http://genetics.bwh.harvard.edu/pph2/
- PROVEAN+SIFT http://provean.jcvi.org/index.php
- Predictsnp http://loschmidt.chemi.muni.cz/predictsnp/
- GENERESEARCH http://score.generesearch.ru/services/badmut/
- Human Splicing Finder http://www.umd.be/HSF3/
- MITOMAP https://www.mitomap.org/MITOMAP
- Mitimpact http://mitimpact.css-mendel.it/
- mt-tRNA http://structure.bmc.lu.se/PON-mt-tRNA/
- HOPE http://www.cmbi.ru.nl/hope/input
- DUET http://biosig.unimelb.edu.au/duet/stability/

Анализ сайта сплайсинга

- GeneSplicer
 http://ccb.jhu.edu/software/genesplicer/
- NetGene2
 http://www.cbs.dtu.dk/services/NetGene2/
- NNSplice http://www.fruitfly.org/seq_tools/splice.html
- FSPLICE
 http://www.softberry.com/berry.phtml?topic=fsplic
 e&group=programs&subgroup=gfind

Дополнительно

- Genetic variation databases
 https://www.humgen.nl/SNP databases.html
- Fathmm http://fathmm.biocompute.org.uk/
- MutationAssessor
 http://mutationassessor.org/r3/
- PANTHER http://www.pantherdb.org/
- PhDSNP http://snps.biofold.org/
- MutPred http://mutpred.mutdb.org/
- nsSNPAnalyzer http://snpanalyzer.uthsc.edu/

Анализ на белковом уровне

- MuPro http://mupro.proteomics.ics.uci.edu/
- PHYRE2
 http://www.sbg.bio.ic.ac.uk/phyre2/html/page
 .cgi?id=index
- 3Drefine http://sysbio.rnet.missouri.edu/3Drefine/
- SDM http://mordred.bioc.cam.ac.uk/~sdm/sdm.php

Сокращения в аннотированном файле

PROVEAN PolyPhen-2 **Benign** — **B** — доброкачественная замена **Possibly damaging** — Р — возможно повреждающая (меньшая уверенность) **Probably damaging** — **D** — вероятно повреждающая (большая уверенность) **Unknown** – **N/A** – . – нет

данных/не известно

SIFT

замена

DELETERIOUS – D – вредный эффект NEUTRAL – N – нейтральный эффект N/A — . — нет данных/не известно

MUTATION TASTER disease causing — D — вызывающий заболевание (мутация)

disease causing automatic - A — с точно установленным патогенным влиянием в базах dbSNP / TGP / ClinVar / HGMD

polymorphism — P — полиморфизм TOLERATED - T - толерантная, допустимая, переносимая, терпимая **polymorphism automatic** – N??? – с точно **DAMAGING** – **D** – повреждающая установленным НЕ патогенным влиянием в базах dbSNP / TGP / ClinVar / HGMD N/A - . - нет данных/не известно **n/a** - . – нет данных

Заключение

- 1) Пользоваться рекомендуется несколькими программами, чтобы получить более точный результат.
- 2) Необходимо искать более усовершенствованные и простые в использовании базы данных и программы.
- 3) Надо иметь в виду, что данные регулярно обновляются, то есть предсказания в некоторых случаях могут меняться с течением времени.
- 4) Необходимо дополнительно проверять данные из баз dbSNP и HGMD. Обязательно проверять статьи для ранее выявленных замен.
- 5) Оценивать замены необходимо не только в кодирующей области, а во всем гене, включая промоторные области.
- 6) Если есть возможность, то для самого точного подтверждения патогенности варианта рекомендуется проводить популяционный и функциональный тест.
- 7) Сами разработчики указывают на то, что каждый результат необходимо рассматривать самому и анализировать числовой счет самостоятельно, особенно когда результат близок к пороговому значению.

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

Learn more

Web BLAST

blastx

translated nucleotide ▶ protein

tblastn

protein ▶ translated nucleotide

BLAST Genomes

BLAST [®] ≫ blastn suite

U.S. National Library of Medicine

Home Recent Results Saved Strategies Help

Standard Nucleotide BLAST

blastn	blastp	blastx	<u>tblastn</u>	<u>tblastx</u>			
Fr	nter Quei	v Seal	ience		SLASTN programs search nucleotide databases using a nucleotide query. more	Reset page	Bookmark
Ente 20F_ ANNA AATO GCCT	r accession 27_02_20 ATCNNNNGA CTGGAGACO	on numl 018_PL3_ NAAGANG CTATTCTT	ber(s), gi(GREEN_NI GTAATGCCC CCTAACAGI	I_NI_STA CCTCANTG CCTCCCT CCCGGAAG	ASTA sequends		
Job			3723-20_ Enter a de	NPC-20F	Файл не выбран sequence exported from 3723-20_NPC-20F_27_02_2018_ title for your BLAST search		
	lign two	or more	sequenc	es 😥			
Cl	noose S	earch S	Set				
Data	base		• Human	genomic	c + transcript OMouse genomic + transcript Others (nr etc.):		
		*	Human g	genomic p	plus transcript (Human G+T) ▼		
Excl Optio			☐ Models	s (XM/XP)) Uncultured/environmental sample sequences		
Limi			Seque	nces from	n type material		
Optio Entre	ez Query				You Tube Create custom database		
Optio	nal		Enter an E	ntrez que	ery to limit search 🔞		
Pr	ogram S	Selectio	n				
	mize for			similar s	sequences (megablast)		
					r sequences (discontiguous megablast)		
					ilar sequences (blastn)		
			Choose a	BLAST al	lgorithm 🚱		
	V						
	BLAST				e Human G+T using Megablast (Optimize for highly similar sequences) na new window		
			= SHOW	results in	a new window		

+ Algorithm parameters

Note: Parameter values that differ from the default are highlighted in yellow and marked with lack sign

Bownload - GenBank Graphics

▼ Next ▲ Previous ▲ Descriptions

Homo sapiens NPC intracellular cholesterol transporter 1 (NPC1), mRNA Sequence ID: NM 000271.4 Length: 4827 Number of Matches: 1

sequence ib. INV 00027 1.4 Congui. 4027 Number of Matche

Range 1: 3183 to 3216 GenBank Graphics	
--	--

▼ Next Match ▲ Previous Match

Score 244 bi	its(132)	Expect 2e-62	Identities 133/134(99%)	Gaps 0/134(0%)	Strand Plus/Plu	JS
Query Sbjct	107 3183		CCTGCGTTCGCTGCAGGCC			166 3242
Query Sbjct	167 3243		TCATGAGATTCCTGCCCAT		CTAACCSCA	226 3302
Query		AGTGTGGCAAAGGG	240			

Related Information

Gene - associated gene details

<u>UniGene</u> - clustered expressed sequence
tags

<u>GEO Profiles</u> - microarray expression

Bownload v GenBank Graphics

▼ Next ▲ Previous ▲ Descriptions

Homo sapiens chromosome 18, GRCh38.p12 Primary Assembly Sequence ID: NC 000018.10 Length: 80373285 Number of Matches: 1

Range 1: 23538458 to 23538762 GenBank Graphics

▼ Next Match ▲ Previous Match

333 Bits(233) 36-133 302/303(3370) 0/303(070) Fidayininda	Score	Expect	Identities	Gaps	Strand
	553 bits(299)	3e-155	302/305(99%)	0/305(0%)	Plus/Minus

Next Match Previous Match

Features: NPC intracellular cholesterol transporter 1 isoform X3
NPC intracellular cholesterol transporter 1 isoform X1

Query	19	GTAATGCCCCTCANIGTCNGTATTTTAAAATGTTTTACAAAAAATCTGGAGACCTATTCT	78
Šbjct	23538762		23538703
Query	79	TCTAACAGTCCTCCCTGCATGTCTCCGCCAGTGGTTGACCCTGCCTG	138
Šbjct	23538702		23538643
Query	139	CCTCTGACTCCGGAAGGCAAACAGAGGCCTCAGGGGGGAGACTTCATGAGATTCCTGCCC	198
Šbjct	23538642		23538583
Query	199	${\tt ATGTTCCTTTCGGATAACSCTAACCCCAAGTGTGGCAAAGGGTAAGTGCTGCTGCCATTG} {\tt C}$	258
Šbjct	23538582		23538523
Query	259	CAGATAAGCATCCACTGCAACTTTAATTTGCAGTAGAAAACTAGGAGAGGACTGGGCTAA	318
Sbjct	23538522		23538463
Query	319	GACAG 323	
Sbjct	23538462	23538458	

Related Information

<u>PubChem BioAssay</u> - bioactivity screening <u>New Genome Data Viewer</u> - aligned genomic context