5.2.3 Design of general functions in CMOS Complementary Logic (1)

General case:

- NMOS and PMOS blocks are dual

```
Series structures \rightarrow \cdot (AND)
Parallel structures \rightarrow + (OR) Intermediate function G
```

NMOS block connected to ground

PMOS block connected to VDD

F = G, but inverted inputs

(use direct function)

CMOS complementary logic

5.2.3 Design of general functions in CMOS Complementary Logic (2)

- Any inverted function can be implemented
- Ex: Y = (A.B) + (C.D) (AND-OR-INVERT-22)

Chip area and power reduction

16 transistors (double /)

5.2.3 Design of general functions in CMOS Complementary Logic (3)

$$Y = \overline{(A+B+C)\cdot D}$$
 — Take 6- $(A+B+C)\cdot D$
and draw first was retwork

5.2.3 Design of general functions in CMOS Complementary Logic (4)

5.2.3 Design of general functions in CMOS Complementary Logic (5)

- If the function is not inverted:
- We have two solutions:
 - Transform it to an equivalent inverted function, applying involution and De Morgan laws:
 - NMOS block design
 - PMOS block design with dual structure of NMOS block.
 - Design from PMOS block, inverting the inputs. NMOS block is designed with the dual structure of the PMOS.
- Example: design the carry out function of a full-adder:

$$F = AB + AC + BC$$

5.2.3 Design of general functions in CMOS Complementary Logic (3)

$$Y = \overline{(A+B+C)\cdot D}$$

5.2.3 Design of general functions in CMOS Complementary Logic (4)

5.2.3 Design of general functions in CMOS Complementary Logic (5)

- If the function is not inverted:
- We have two solutions:
 - Transform it to an equivalent inverted function, applying involution and De Morgan laws:
 - NMOS block design
 - PMOS block design with dual structure of NMOS block.
 - Design from PMOS block, inverting the inputs. NMOS block is designed with the dual structure of the PMOS.
- Example: design the carry out function of a full-adder:

$$F = AB + AC + BC$$

Y= AB+AC+BC; G= AB+AC+BC and draw first prios net inverting inputs Note: Applying de Morgan Laws: Y= AB + AC + BC = AB · AC · BC = (A+B)·(A+C)·(B+C) and we can design before NMOS net

5.2.4 Transmission gates (1): **NMOS**

- Bi-directional switch that opens or closes controlled by an external signal
 - NMOS transmission gate:
 - TON => • If $V_G = 0V \rightarrow Open Switch \rightarrow V_O = 0V$
 - If V_G = V_{DD} → Closed Switch V_G = V_T? The transmission of "1" degrades V_T volts VS ~ V6-VT The transmission of "0" is not degraded

5.2.4 Transmission gates (2): NMOS

5.2.4 Transmission gates (3): PMOS

- PMOS transmission gate
 - If $V_G = V_{DD}$ → Open Switch → $V_O = 0V$ If $V_G = 0V$ → Closed Switch The transmission of "1" is not degraded The transmission of "0" is degraded VT

5.2.4 Transmission gates (4): PMOS

5.2.4 Puertas de transmisión (5): CMOS

- They join the characteristics of the two gates (NMOS and PMOS), not degrading the output
 - If $V_G = 0V$ →NMOS and PMOS **OFF** → $V_O = 0V$
 - If V_G = V_{DD} → NMOS and PMOS **ON** The NMOS transmits the "0" without degradation
 The PMOS transmits the "1" without degradation

5.2.4 Transmission gates (6): Multiplexer

- Analog multiplexer
 - Inputs V_A, V_B, selection Sel, output V_F

5.2.4 Transmission gates (7): Multiplexer

5.2.4 Transmission gates (8): Multiplexer

Digital multiplexer: CMMOS inverter at the output

5.2.4 Transmission gates (9): Multiplexer

- Design of the multiplexer with basic gates:
- How many transistors do we need? (exercise) $F = B \cdot Sel + A \cdot \overline{Sel}$

Total: 20 transistors/