姓名:_

大连理工大学

学号:

课程名称 : <u>电路理论 A1, B</u> 试卷: <u>A</u>

考试形式: 闭卷

院系:

授课院(系): 电信学部

考试日期: 2018.5.2

试卷共6页

级	班
---	---

		=	11	四	五		总分
标准分	56	10	12	12	10		100
得 分							

-. 求解下列各题(共 56 分, 每题 7 分)

1. 求图示电路中 $a \times b$ 端的等效电阻。

解: 化简电路如图所示。

则: $R_{ab} = 32.5\Omega$

装

2. 将图示电路a、b端化简成最简单形式。

解: 化简电路如图所示。

线

订

- 3. 用网孔法求图示电路的1。
- 解:设三个网孔电流为: I_1 、 I_2 、 I_3 则网孔电流方程为:

$$\begin{cases} I_1=5\\ -5I_1+(5+6)I_2-6I_3=-4\\ -6I_2+(6+8)I_3=5I\\ I=I_3 \end{cases}$$

解方程, 得: I=2A

4.请列出图示电路的节点电压方程。

解: 设三个节点电压为: U_1 、 U_2 、 U_3 则节点电压方程为:

$$\begin{cases} (\frac{1}{2} + \frac{1}{5} + \frac{1}{10})U_1 - \frac{1}{5}U_2 - \frac{1}{10}U_3 = 0.5I - \frac{U_{S1}}{10} \\ -\frac{1}{5}U_1 + (\frac{1}{2} + \frac{1}{5})U_2 - \frac{1}{2}U_3 = -I_S \\ U_3 = U_{S2} \\ I = \frac{U_2 - U_3}{2} \end{cases}$$

- 5. 求图示电路在 $a \times b$ 端的戴维南等效电路。已知 $u_S(t)=10\sqrt{2}\cos 3t$ V 。
- 解: (1)开路电压: 相量模型如图(a)所示。

$$\dot{U}_{OC} = \frac{-j}{1 - j} \dot{U}_{S} = \frac{-j}{1 - j} *10 \angle 0^{\circ} = 5\sqrt{2} \angle (-45^{\circ}) \text{ V}$$

(2)输入阻抗:相量模型如图(b)所示。

$$Z_0 = j3 + \frac{-j*1}{1-j} = j3 + 0.5 - j0.5$$

$$= 0.5 + j2.5 = 2.55 \angle 78.69^{\circ} \Omega$$

戴维南等效电路如图(c)所示。

6. 电路如图所示, N_R 为无源电阻网络,求图(b)中的电流 I。

- 解:以 5Ω 电阻为外电路,求其戴维南等效电路。
 - (1)短路电流:如图(c)所示,与图(a)互易。

则:
$$I_{SC} = \frac{12}{5 \cdot 1 \cdot 1} \cdot 2 = 6 \text{ A}$$

(2)输入电阻:如图(d)所示,与图(a)对比。

则:
$$R_{\text{eq}} = \frac{5-1*1}{1} = 4 \Omega$$

得, 戴维南等效电路如图(e)所示。

$$I = \frac{R_{eq}}{5 + R_{eq}} I_{SC} = \frac{4}{5 + 4} 6 = \frac{8}{3} A$$

解: 电路如图所示。

(1)设备2额定电流: $I_2 = 480/24 = 20 \text{ mA}$

(2)设备1额定电流:

 $I_1 = 45/9 = 5 \text{ mA}$

则:两个设备并联电流: I=I₁₊I₂=25 mA

总电流小于保险丝的额定电流(60mA)

设备1需要R1分压。

所以: $R_1 = (24-9)/I_1 = (24-9)/5 = 3000 \Omega$

8. 图示电路中, N_A 、 N_B 均为含源线性电阻电路, 求电路中的电压 U.

解: 化简电路如图所示。

则:

$$U = 3*\frac{2*6-6}{6+3} = 2 \text{ V}$$

二. (10分) 用叠加定理,求图示电路中的电压U和电流I.

解: (1) 电压源单独作用时: 如图所示。

$$U_1 = 2 \text{ V}$$
 $I_1 = -0.5U_1 = -1 \text{ A}$

(2) 电流源单独作用时: 如图所示。

$$U_2 = -0.5*0.5*2 = -0.5 \text{ V}$$

$$I_2 = 2 - 0.5U_2 = 2.25 \text{ A}$$

电压源与电流源共同作用时:

$$U = U_1 + U_2 = 2-0.5 = 1.5 \text{ V}$$

$$I = I_1 + I_2 = -1 + 2.25 = 1.25 A$$

三、 $(12 \ f)$ 电路如图所示, R_L 为何值时可获得最大功率?并求此最大功率。

解: (1)开路电压电路如图所示。

由节点电压方程,得:

$$(1 + \frac{1}{4} + \frac{1}{2+3})U_{\text{oc}} = \frac{12}{1} + \frac{8I_1}{2+3}$$

且 Uoc = $4I_1$

得:
$$U_{\text{oc}} = \frac{80}{7}$$
 V

(2)输入电阻电路如图所示。 由节点电压方程,得:

$$(1 + \frac{1}{4} + \frac{1}{2+3})U = \frac{8I_1}{2+3}$$

且 $U = 4I_1$

得:
$$R_{\text{eq}} = \frac{20}{21} \Omega$$

则: $R_{L}=R_{eq}$ 时,可获得最大功率。

$$P_{\text{max}} = \frac{U_{\text{oc}}^2}{4R_{\text{L}}} = \frac{(\frac{80}{7})^2}{4*\frac{20}{21}} = \frac{240}{7} \text{ W}$$

 $0.5U_{2}$

四、(12分) 图(a)有源二端网络N接入电阻R后,当 $R=R_1$ 时,U=5V,I=0.1A;当 $R=R_2$ 时,U=4V,I=0.2A;将N接入图(b)电路中,求电压U。

解:设网络N的戴维南等效电路如图所示。

由题意,得:
$$\begin{cases} U_{\rm OC} - 5 = 0.1 R_{\rm eq} \\ U_{\rm OC} - 4 = 0.2 R_{\rm eq} \end{cases}$$

解方程,得: $U_{OC}=6$ V, $R_{eq}=10\Omega$ 求图(b)网络N右边电路的开路电压 U_1 .

由KVL, 得: 12=20*I*₁+4 *I*₁

则: $I_1 = 0.5 \text{ A}$

得: $U_1 = 4I_1 = 2V$

求图(b)网络N右边电路的等效电阻R1.

由KVL, 得: 20I₁+4 I₁=0

则: $I_1 = 0$ A

得: $U = 10I + 4I_1 = 10I$

则: $R_1 = U/I = 10\Omega$

图(b)电路的等效电路如图所示:

$$U = \frac{U_{\text{OC}} - U_1}{R_{\text{eq}} + R_1} * R_1 + U_1 = \frac{6 - 2}{10 + 10} * 10 + 2 = 4V$$

五、(10分) 给定一个电路的节点电压方程组可以用下列矩阵方程来表示,请画 出该电路的电路图。

$$\begin{bmatrix} \frac{1}{R_1} + G_2 + G_6 & -G_2 & -G_6 \\ -G_2 & G_2 + G_3 + G_4 & -G_3 \\ g - G_6 & -G_3 & G_3 + G_6 + \frac{1}{R_5} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix} = \begin{bmatrix} I_S \\ 0 \\ 0 \end{bmatrix}$$

解: 电路图如图所示。

