本科概率论与数理统计作业卷(八)

一、填空题

- 1.设两个总体 X 和 Y 相互独立且均服从 $N(0,3^2)$, $X_1,...,X_9$ 和 $Y_1,...,Y_9$ 是分别取自总体 X 和 Y 的简单随机样本,则统计量 $\frac{X_1+\cdots+X_9}{\sqrt{Y_1^2+\cdots+Y_9^2}}$ 服从______分布,参数为_____.
- 2.在天平上重复秤量一重量为a的物品,假设各次秤量的结果相互独立且均服从正态分布 $N(a,0.2^2)$,若以 $\overline{X_n}$ 表示 n 次秤量结果的算术平均值,则为使 $P\{|\overline{X_n}-a|<0.1\}\geq 0.95$,需要秤量的次数 n 的最少次数应为
- 3.设总体X服从正态分布 $N(\mu,2^2)$, X_1,X_2,\cdots,X_7 是取自总体X的七个样本,若要求统计量 $a(X_1-2X_2+X_3)^2+b(X_4-X_5+X_6-X_7)^2\sim\chi^2(n)$,则应取 $a=___$, $b=___$, $n=___$.

二、选择题

1.设总体 $X \sim N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知, X_1 , X_2 , X_3 是取自该总体的三个样本,则不是统计量的是

(A)
$$X_1 + X_2 + X_3$$
 (B) max $\{X_1, X_2, X_3\}$ (C) $\sigma^2(X_1 + X_2 + X_3)$ (D) $\frac{1}{4}(X_1 + X_2 + X_3)$

2.设总体 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 均未知, X_1, \dots, X_n 为 X 的样本,则下列选项正确的是_____

$$(A)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1) \quad (B)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n) \quad (C)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n+1) \quad (D)\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-2)$$

3.设 $X_1,...,X_n$ 是正态总体 $N(\mu,\sigma^2)$ 的一组样本, μ 和 σ^2 均已知,则下列选项错误的是____

$$(A)\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \quad (B)\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1) \quad (C)\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n - 1) \quad (D)\frac{(n - 1)S}{\sigma^2} \sim \chi^2(n - 1)$$

4.设 n 个随机变量 $X_1, X_2, \dots, X_n, (n \ge 2)$ 为来自总体 N(0,1) 的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差, 则下列选项正确的是

(A)
$$\frac{(n-1)\overline{X}}{S} \sim t(n-1)$$
 (B) $\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$ (C) $nS^2 \sim \chi^2(n)$ (D) $n\overline{X} \sim N(0,1)$

三、计算、证明题

- 1.设总体服从正态分布 $N(0,0.3^2)$, X_1, X_2, \dots, X_{10} 为 X 的一组样本,求 $P\left\{\sum_{i=1}^{10} X_i^2 > 1.44\right\}$.
- 2.设总体 X 服从 $(0,\theta)$ 上的均匀分布, $\theta>0$ 是未知参数, $X_1,...X_n$ 是总体 X 的一组样本,记 $X_{(1)}=\min\{X_1,...,X_n\}$ 和 $X_{(n)}=\max\{X_1,...,X_n\}$ 分别是 $X_1,...X_n$ 的最小顺序统计量和最大顺序统计量,求 $X_{(1)}$ 和 $X_{(n)}$ 的概率密度函数 $f_{X_{(1)}}(x)$ 和 $f_{X_{(n)}}(x)$.
- 3.已知 $T \sim t(n)$, 证明 $T^2 \sim F(1,n)$