FUENTES DE CORRIENTE CONTINUA NO REGULADAS

TRABAJO PRÁCTICO Nº 1.1

Videos relacionados:

https://www.youtube.com/playlist?list=PLwKJrE8LSnfTwrPmFydwl3-gWt4auZ4ET

Capacidades de los estudiantes al terminar esta práctica:

- Analizar y cuantificar las magnitudes sobre los componentes de una fuente no regulada de CC.
- Estimar valores y seleccionar componentes utilizando el método aproximado de cálculo de fuentes de CC a capacitor de entrada.
- Calcular fuentes de CC a capacitor de entrada utilizando el método de Schade y seleccionar componentes considerando situaciones de peor caso, tolerancias y valores límite.
- Identificar en las hojas de datos y utilizar parámetros significativos para el diseño de fuentes de CC en diodos, capacitores, etc.
- Seleccionar componentes comerciales atendiendo a valores máximos, mínimos y tolerancias, situaciones de caso peor, administrando márgenes de seguridad para el diseño.

URL: http://www.ing.unlp.edu.ar/electrotecnia/electronicos2/

Trabajo Práctico Nº 1.1:

FUENTES DE CORRIENTE CONTINUA NO REGULADAS

Trabajo previo sugerido:

- ¿Cómo es la forma de onda de la tensión y de la corriente de un rectificador de media onda sobre una carga resistiva pura?
- ¿Qué ventajas se obtienen al trabajar con un rectificador de onda completa?
- Calcular la potencia media en la carga utilizando un rectificador de media onda y comparar con uno de onda completa.
- Para un rectificador de onda completa, determinar la relación entre la corriente eficaz del secundario de un transformador con punto medio y la de un transformador con rectificador puente.
- Calcular el valor eficaz de la tensión sobre una resistencia, para un rectificador de media onda y para uno de onda completa.

Problema 1.

Para el siguiente circuito rectificador de onda completa tipo puente:

- a) Termine de definir con claridad las tensiones y corrientes en el diagrama esquemático y grafique cada una de ellas en función del tiempo indicando tiempos y amplitudes importantes como valores pico, etc.
- b) A partir de los gráficos realizados obtenga:
 - valores medios: Idc_I, Vdc_I, Idc_{D1}, Vdc_{D1}, Idc_O, Vdc_O (el subíndice i se refiere al secundario del transformador (de aquí en más "trafo")
 - valores eficaces: Irms_I, Vrms_I, Irms_{D1}, Vrms_{D1}, Irms_O, Vrms_O

- c) Determine la relación entre: Irms_I e Irms_{D1}
- d) Calcule el factor de zumbido a la salida del rectificador

Problema 2:

Para el siguiente circuito rectificador de onda completa con punto medio:

- a) Defina tensiones y corrientes sobre el diagrama circuital.
- b) Realice los ítems b), c) y d) del problema anterior sobre este circuito.
- c) Analice comparativamente los circuitos vistos.

Problema 3

Un esquema de un secador de pelo se muestra en la figura siguiente:

a) Dibuje los diodos del puente que alimenta el motor y detalle cómo circula la corriente por cada uno de ellos para las posiciones de la llave conmutadora.

- b) Diseñe las resistencias de balasto (RM) y calefactora (RH) considerando que la tensión nominal del motor es 30V y, a carga nominal, éste consume 300mA (se trata de un motor de corriente continua) y además la potencia calefactora máxima de RH es 2kW.
- c) Especifique los diodos del circuito y elija dos diodos comerciales distintos que cumplan las especificaciones por usted definidas.
- d) ¿qué potencia disipa RH en la posición 1 de la llave conmutadora?¿qué potencia total se consume desde la red eléctrica en las posiciones 1 y 2 de la llave?
- e) Simule y verifique.

Problema 4:

Diseñe por el método aproximado un circuito rectificador con filtro a capacitor de entrada que tome energía de la red eléctrica y que entregue una tensión media de salida de 15V para una corriente nominal de 0.6A.

El diseño implica determinar:

- a) La relación de vueltas del transformador.
- b) El valor del capacitor de filtrado para que, a la corriente nominal, el ripple sea 2V pico a pico (considere un tiempo de conducción para los diodos de 2 milisegundos).
- c) ¿Qué corriente no repetitiva máxima deben soportar los diodos?
- d) Estime la regulación del circuito.
- e) Seleccione capacitor y diodos de un catálogo de manera que dichos componentes cumplan los requerimientos solicitados.
- f) Verificar mediante simulación los cálculos realizados.

Se puede ver la capacidad de mantener la tensión de un transformador como el del problema (regulación) en el siguiente video:

https://www.youtube.com/watch?v=crsbfD0ydp8&ab channel=SantiagoAndr%C3%A9sVerne

Problema 5:

a) Calcule una fuente no regulada, a capacitor de entrada, cuyos datos son:

$$Vdc = 18V$$

$$r\% \leq 1,5\%$$

$$Idc = 0.5 A$$

$$R \leq 15\%$$

Estimar:
$$rs = 1\Omega$$

- b) Calcule la corriente eficaz sobre el capacitor de filtrado y verifique si el capacitor elegido la soporta.
- c) Simular y verificar los resultados.

Problema 6

Diseñar por el método de Schade un rectificador directo a línea con los siguientes requerimientos:

$$Vdc = 280V$$

$$r\% \leq 10\%$$

$$Idc = 0.3 A$$

$$R \leq 15\%$$

Estimar: $rs = 50m\Omega$

Evalúe la problemática de la corriente pico no repetitiva. Calcule. ¿cómo podría solucionar esto? Googlee en la web...y recalcule si fuera necesario.

Fig. 18: Relación entre la corriente pico repetitiva y la corriente media por rectificador, en función de n ω R_{CARGA} C.

Cen F, y R_{CARGA} en Ω . $\omega = 2 \pi f$

f = frecuencia de línea n = 1 para media onda

n = 2 para onda completa

n = 0,5 para doblador de tensión

1N4001...1N4007, EM513

Silicon Rectifiers

Nominal current

100 ... 1600 V Repetitive peak reverse voltage

The type 1N4004 is also available according British Telecom Specification D 7206.

These rectifiers are delivered taped. Details see "Taping".

Plaslic case 58 A 2 according to DIN 41883

Weight approx. 0.4 g Dimensions in mm

Absolute Maximum Ratings

		Symbol	Value	Unit
Repetitive Peak Reverse Voltage and	1N400Ï	V _{DRM} , V _{DSM}	50	V
Surge Peak Reverse Voltage	1N4002	V _{nnm} , V _{nsm}	100	V
	1N4003	V _{RRM} , V _{RSM}	200	V
	1N4004	V _{RDM} , V _{DSM}	400	V
	1N4005	V _{RRM} , V _{RSM}	600	\ V
	1N4006	V _{nnm} , V _{nsm}	800	\ \ \
	1N4007	V _{RRM} , V _{RSM}	1000	V
	EM513	V _{RRM} , V _{RSM}	1600	
Nominal Current at Halfe Wave Rectification wi	th Resistive Load			
at $T_{amb} = -65 \text{ to } +75 ^{\circ}\text{C}$		IFAV	11)	A
at T _{amb} = 100 °C		IFAV	0.751)	A
Repetitive Peak Forward Current at Θ <40 °, 1 > 15 Hz, T _{amb} = 25 °C		I _{FNM}	101)	Λ
Surge Forward Current, Half Cycle 50 Hz, starting from T _I = 25 °C		Irsm	50	Α
Junction Temperature		T _j	175	~
Ambient Operating Temperature Range		Tamb	– 65 lo + 175	°C
Storage Temperature Range		Ts	-65 to +175	°C

1N4001 . . . 1N4007, EM513

Characteristics

	Symbol	Min.	Тур.	Max.	Unit
Forward Voltage at $I_F = 2 \Lambda$, $T_j = 25 ^{\circ}C$	V _F	-	_	1.3	V
Leakage Current at V _{nnm} T _j = 25 °C T _j = 100 °C	l _{ti}		-	5 50	μΛ μΛ
Thermal Resistance Junction to Ambient Air	Flux	-	-	60')	k/w

¹⁾ Valid provided that leads are kept at ambient temperature at a distance of 10 mm from case.

'General Purpose 105°C

technical specification Capacitance tolerance

100V 200V

400V

A range of general purpose aluminium electrolytic capacitors featuring extended temperature range for power supply applications. Electrical connections via PCB snap-in terminals on a unified 10mm pitch. Recommended PCB hole size 2mm diameter.

± 20%

Temperature range Leakage current Life expectancy at 105°C		5°C	-25°C to + 105°C 1 = 0.02CV or 3m/ whichever is gree 2000 hours	
	Value	Ripple (A) rms	
	μF	120Hz	٤.	Dia.
16V	10,000	2·9	35	22
	15,000	2.92	50	22
	22,000	3.75	50	25
35 V	4700	1.62	30	22
	6800	2:07	35	22
	10,000	2.6	50	22
	15,000	3.25	40	30
35 V	4700	1.89	35	22
	6800	2.45	45	22
	10,000	3.43	50	25
63V	1000	1-1	25	22
	2200	1-6	35	22
	3300	2:15	50	22
	4700	2.75	50	25

	Value	stock no.
	μF	• • •
- 16V	10,000	118-460
	15,000	118-476
i	22,000	118-482
25V	4700	118-498
	6800	118-505
	10,000	118-511
	15,000	118-527
35V	4700	118-533
	G800	118-549
	10,000	118-555
63V	1000	118-561
	2200	118-577
	3300	118-583
	4700	118-599
	6800	118-606
	10,000	118-612
100V	1000	118-628
	2200	118-634
200V	220	118-640
	330	118-656
	470	118-662
	680	118-678
400V	68	
4004	100	118-684
		118-690
l	220	118-707

Compact size 105°C

A range of general purpose compact size aluminium electrolytic capacitors ideal for switch mode power supply applications. Features include extended temperature range and PCB snap-fit in terminals on a unified 10mm pitch.

Rocommended PCB hole size 2mm diameter.

tochni	cal specifica	ntion			
Capacitance tolerance Temperature range Leakage current Life expectancy at 105°C			± 20% -25°C to + 105°C i < 3/Č∇ (μΛ) 2000 hours		
	Value µF		la (A) rms	L.	Din.

	Value	Ripple (A) rms		
	μF	12011z	L.	Din
16V	10,000	2-6	30	22
	22,000	3.8	45	25
35 V	6800	2.6	40	22
	10,000	3 2	45	25
63V	2200	2	35	22
	4700	3	50	25
100V	1000	1.7	35	22
	2200	2 G	50	25
200V	220	1.0	25	22
	330	1.2	30	. 55
	470	1-4	35	25
	1000	2:2	45	35
400V	68	0.36	30	22
	100	0.69	35	22
	220	1:0	50	25
	330	1.2	50	30
Ripple		x) quoted at 120H		irc Ju

TSHA	value	stock no.
series	μF.	
16V	10,000	127-773
	22,000	127-789
35V	6800	127-795
	10,000	127-802
63V	2200	127-818
	4700	127-824
100V	1000	127-830
	2200	127-846
200V	220	127-852
	330	127-868
	470	127-874
	1000	127-880
400V	68	127-919
	100	127-925
	220	127-931
	330	127-947

Wire Ended Axial 85°C

A range of fully sleeved double-ended tubular

technical specification	
Capacitance tolerance	± 20%
Temperature range	-25° to +85°C
Leakage current, hA = 0.010 10V to 100V types. IµA = less	CV or 3µA (whichever is greater) for s than 0-03CV + 10 for 450V types.

	Value	Riuple*				Lead
	μF	mΛ	Tan	L.	Dip	Dia
10V	22	40	0.19	10-5	4.5	06
	47	90	0.19	10-5	4.5	06
	100	150	0.19	10-5	63	06
	220	250	0.19	10-5	6:3	0.6
	470	400	0.19	16	8	06
	1000	630	0.19	20	10	0.6
	2200	920	0.21	25	12-5	0-8
	4700	1200	0.25	25	16	0.8
25 V	10	40	0.14	10.5	4.5	0.6
	22	60	0.14	10.5	4.5	06
	47	130	0.14	105	6.3	0.6
	100	180	0.14	10.5	6.3	06
	220	310	0.14	16	8	0.6
	470	480	0-14	20	10	0.6
	1000	850	0.14	25	12-5	0.8
	2200	1200	0.16	25	16	0.8
	4700	1500	0.2	40	18	0.8
63V	10	55	0.09	10.5	45	06
	22	109	0.09	10-5	6.3	06
	47	160	0.09	16	8	06
	100	270	0.09	20	ē	06
	220	450	0.09	25	10	06
	470	750	0.09	31-5	12-5	0.8
	1000	1100	0.09	31.5	16	08
	2200	1400	0.09	40	22.4	0.8
100V	1	16	0.08	10-5	4.5	0.6
	2.2	24	0-08	10-5	4.5	0.6
	4.7	40	0.08	105	4.5	06
	10	70	0 08	105	6.3	0.6
	22	115	0.08	16	8	06
	47	180	0.08	20	8	06
	100	350 ·	0.08	25	10	0.6
450V	220 1	550	0.08	31.5	12-5	0.8
4004	2.2	21 38	0.5	16	0	0.6
	4.7	63	0·2 0·2	20	10	0.6
	10	105	0.2	25 . 25	12-5	0.8
	22	161	0.2	40	16	0.8
	33	210	0.5	40	16 18	0 8 0-8
	47	260	0.25	50	22-4	0.8
· Rippl	o curren				05°C	0.0

SU series	value	stock no.
	μF	
10V	22	106-912
	47	106-928
	100	106-934
	220	106-940
	470	106-958
	1000	106-962
	2200	106-978
	4700	106-984
25V	10	106-990
	22	107-000
	47	107-016
	100	107-022
	220	107-038
	470	107-044
	1000	107-050
	2200	107-056
	4700	107-072
63V	10	107-088
	22	107-094
	47	107-101
	100	107-117
	220	107-123
	470	
		107-139
	1000	107-145
	2200	107-151

SU series	valuo	stock no.
	μF	
100V	1	107-167
	2.2	107-173
	4.7	107-189
	10	107-195
	22	107-202
	47	107-218
	100	107-224
	220	107-230
450V	1	107-246
	2.2	107-252
	4-7	107-268
	10	107-274
	22	107-280
	33	107-296
	47	107-656

