

0

覃雄派

提纲

- 为什么要Fold in
- Fold in实例

- · 为什么要Fold in
 - 假设我们有一个文集,已经进行SVD分解
 - 得到文档的降维表示
 - 也得到单词的降维表示
 - 现在有一个新的查询,可以把该查询看作一个新文档
 - 如何对这个查询进行降维?
 - 如何计算和这个查询相似的文档?
 - 办法有
 - (1) 新查询加入文档集,重新进行SVD,重新对所有文档、单词进行降维
 - (2) Fold in这个新查询

• 假设有5个文档

- d1: Romeo and Juliet.
- d2 : Juliet: O happy dagger!
- d3: Romeo died by dagger.
- d4: "Live free or die", that' s the New-Hampshire' s motto.
- d5: Did you know, New-Hampshire is in New-England.
- 有一个新的查询search query: dies, dagger

参考文献<u>https://www.engr.uvic.ca/~seng474/svd.pdf</u> https://manuel.midoriparadise.com/public_html/svd-lsi-tutorial.pdf

- 假设有5个文档
 - 构造词项-文档矩阵
 - 注意,已经去掉停用词
 - 红色为词汇表的词汇

d1: Romeo and Juliet.

d2: Juliet: O happy dagger!

d3: Romeo died by dagger.

d4: "Live free or die", that's

the New-Hampshire's motto.

d5 : Did you know, New-

Hampshire is in New-England.

	d_1	d_2	d_3	d_4	d_5
romeo	1	0	1	0	0
juliet	1	1	0	0	0
happy	0	1	0	0	0
dagger	0	1	1	0	0
live	0	0	0	1	0
die	0	0	1	1	0
free	0	0	0	1	0
$new\hbox{-}hampshire$	0	0	0	1	1

- 假设有5个文档
 - 进行奇异值分解
 - 请用jupyter打开如下python notebook进行实验

名称	修改日期	类型	大小
test_svd_romeo_juliet.ipynb	2021/11/29 20:15	IPYNB 文件	78 KB

 π

• 假设有5个文档

- 进行奇异值分解

```
u [[-0.396  0.280 -0.571  0.450 -0.102 -0.078  0.280  0.376]
[-0.314  0.450  0.411  0.513  0.204  0.078 -0.280 -0.376]
[-0.178  0.269  0.497 -0.257  0.043  0.414  0.243  0.591]
[-0.438  0.369  0.013 -0.577 -0.220 -0.493  0.037 -0.215]
[-0.264 -0.346  0.146  0.047  0.417 -0.491 -0.404  0.456]
[-0.524 -0.246 -0.339 -0.273  0.155  0.571 -0.317 -0.161]
[-0.264 -0.346  0.146  0.047  0.417 -0.079  0.721 -0.295]
[-0.326 -0.460  0.317  0.237 -0.725 -0.000  0.000  0.000]]
```

```
s [[ 2.285 0.000 0.000 0.000
 [ 0.000 2.010 0.000 0.000
                                     [0.000]
           0.000
                    1.361
                                     [0.000]
 [0.000]
                            0.000
 \begin{bmatrix} 0.000 & 0.000 \end{bmatrix}
                    0.000
                            1.118
                                     0.000
 \begin{bmatrix} 0.000 & 0.000 \end{bmatrix}
                    0.000
                            0.000
                                     0.797
                                     [0.000]
 [0.000]
           0.000
                    0.000
                            0.000
 [0.000]
           0.000
                    0.000
                            0.000
                                     [0.000]
 [0,000]
           0.000
                    0.000
                            0.000
                                     [0.000]
```

```
vh [[-0.311 -0.407 -0.594 -0.603 -0.143]

[ 0.363     0.541     0.200 -0.695 -0.229]

[-0.118     0.677 -0.659     0.198     0.233]

[ 0.861 -0.287 -0.358     0.053     0.212]

[ 0.128     0.034 -0.209     0.333 -0.910]]
```


- 假设有5个文档
 - 进行奇异值分解,选择K=2进行降维

```
\lceil \lceil -0.396 \quad 0.280 \quad -0.571 \quad 0.450 \quad -0.102 \quad -0.078 \quad 0.280 \quad 0.376 \rceil
-0. 314 0. 450 0. 411 0. 513 0. 204 0. 078 -0. 280 -0. 376]
-0. 178 0. 269
                 0.497 - 0.257
                                  [0.043 \quad 0.414 \quad 0.243 \quad 0.591]
-0. 438 0. 369
                 [0.013 -0.577 -0.220 -0.493 0.037 -0.215]
-0.264 - 0.346
                 0. 146
                          [0.047 \quad 0.417 \quad -0.491 \quad -0.404 \quad 0.456]
-0.524 -0.246 -0.339 -0.273
                                  0. 155 0. 571 -0. 317 -0. 161
-0. 264 -0. 346 0. 146
                          0.047
                                  0.417 - 0.079 0.721 - 0.295
-0.326 -0.460 0.317
                          0. 237 -0. 725 -0. 000 0. 000 0. 000]]
```

```
2. 285 0. 000
                  0.000
                         0.000
               0.000
 0.000 2.010
                       0.000
                               [0.000]
                       0.000
                               [0.000]
                1.361
         0.000
 0.000
        0.000
                0.000
                       1.118
                               [0.000]
        0.000
                0.000
                       0.000
                               0.797
 0.000
                               [0.000]
 0.000
         0.000
                0.000
                       0.000
[0.000]
        0.000
                0.000
                       0.000
                               [0.000]
[0.000]
        0.000
                0.000
                       0.000
                               [0.000]
```


• 假设有5个文档

- 进行奇异值分解,选择K=2进行降维

```
0. 280]
                     u2 [[-0.396]
u [[-0.396 0.280
                                             0.280 0.376]
                                0.450
                       [-0.314]
 -0.314 0.450
                                             280 -0.376]
                       [-0.178]
                                0. 269]
 -0.178 0.269
                                             243 0.591]
                       [-0.438]
                                0.369
                                             037 - 0.215
 -0.438 0.369
                                             404 0.456]
 -0.264 - 0.346
                       [-0.264 -0.346]
 -0.524 - 0.246
                                             317 - 0.161
                       [-0.524 -0.246]
 [-0.264 - 0.346]
                                             721 -0.295]
                                                                0.000
                       [-0.264 -0.346]
 -0.326 - 0.460
                                             000 0.000]]
                                                                 [0,000]
                       [-0.326 -0.460]]
```


- 假设有5个文档
 - 进行奇异值分解,选择K=2进行降维
 - 单词的低维表示

概念空间的坐标

u2 [[-0.396 0.280] [-0.314 0.450] [-0.178 0.269] [-0.438 0.369] [-0.264 -0.346] [-0.524 -0.246] [-0.264 -0.346] [-0.326 -0.460]]

概念空间的强度

 $rightharpoonup D = U \Sigma V^T$

1, 词项表示: UΣ的各个行向量

2,文档表示: ΣV^T 的各个列向量

- 假设有5个文档
 - 进行奇异值分解,选择K=2进行降维
 - 单词的低维表示, 文档的低维表示

概念空间的强度

s2 [[2. 285 0. 000] [0. 000 2. 010]]

概念空间的坐标

d1 d2 d3 d4 d5

docs [[-0.710 -0.931 -1.359 -1.378 -0.326] [0.730 1.087 0.402 -1.398 -0.460]]

 $rightarrow D = U \Sigma V^T$

1, 词项表示: **V**Σ的各个行向量

2, 文档表示: ΣV^T 的各个列向量

 π

 π

- 假设有5个文档
 - 现在,新来一个查询,包含两个单词dagger, die
 - 如何对其进行降维?
 - Fold In
 - 推导
 - $A \approx U_k S_k V_K^T$
 - $[d_1d_2d_3d_4d_5] \approx U_kS_k[\hat{d}_1\hat{d}_2\hat{d}_3\hat{d}_4\hat{d}_5]$
 - $d_1 \approx U_k S_k \hat{d}_1$
 - $S_k^{-1}U_k^Td_1 \approx \hat{d}_1$
 - $S_k^{-1} U_k^T q \approx \hat{q}$

• $S_k \hat{\mathbf{q}} \approx S_k S_k^{-1} U_k^T q = \mathbf{U}_k^T q$

q 低维空间的坐标

 S_k **q**为低维空间向量表示

- 假设有5个文档
 - 新来一个查询,包含两个单词dagger, die
 - 如何对其进行降维?
 - Fold In $U_k^T \mathbf{q}$

- 新来的查询,可以看作一个文档, 用此公式进行Folding in
- 与原有文档进行相似度计算,找 出相似文档

```
u2 [[-0.396 0.280]
 [-0.314 \quad 0.450]
 [-0.178 \quad 0.269]
 [-0.438 0.369]
 [-0.264 - 0.346]
 [-0.524 -0.246]
 [-0.264 - 0.346]
 [-0.326 - 0.460]
```

```
q = [0],
      [0],
      \lceil 0 \rceil,
      [1], #dagger
      [0],
     [1], #die
      [0],
      [0]
```


q2 [[-0.962] [0.122]]

- 假设有5个文档
 - 计算q的低维表示,和d1,d2,d3,d4,d5的低维表示的
 - 夹角余弦
 - · 夹角

```
cos_list [ 0.782  0.741  0.987  0.607  0.472]
```

```
degree list [ 38.532 42.194 9.259 52.639 61.856]
```

from most similar to least [3 1 2 4 5]

SVD (Fold in)

from most similar to least [3 1 2 4 5]

- 假设有5个文档
 - 进行可视化
 - · q的低维表示
 - d1,d2,d3,d4,d5的低维表示
 - 各个单词的低维表示

d1: Romeo and Juliet.

d2 : Juliet: O happy dagger! d3 : Romeo died by dagger.

d4: "Live free or die", that's the New-

Hampshire's motto.

d5 : Did you know, New-Hampshire is in New-England.

有一个新的查询search query: dies, dagger

与query最相似的文档依次为d3,d1,d2,d4,d5

BENNY OR CHINA IN THE PROPERTY OF CHINA IN THE

• 假设有5个文档

- 进行可视化
 - q的低维表示
 - d1,d2,d3,d4,d5的低维表示
 - 各个单词的低维表示

d1: Romeo and Juliet.

d2 : Juliet: O happy dagger! d3 : Romeo died by dagger.

d4: "Live free or die", that's the New-

Hampshire's motto.

d5 : Did you know, New-Hampshire is in New-England.

有一个新的查询search query: dies, dagger

- d3之外,d1为什么和query也很相似呢?甚至比d2还要相似?
- 1.这里我们看到的降维把语义相关的文档和单词聚拢在一起
- 2.可以针对每个文档,看看文档由哪些单词构成,对照 右图讲行理解

from most similar to least [3 1 2 4 5]

与query最相似的文档依次为d3,d1,d2,d4,d5

