1. Researchers studying a gypsy moth population make the following estimates: The average reproductive female lays 300 eggs; 60% of these eggs are female; 10% of eggs hatch into larvae; 20% of larvae mature into pupae; 50% of pupae mature into adults; 60% of adults survive to reproduce. What is the correct value of fecundity f for this population?

- A. 0.9
- B. 1.08
- C. 1.8
- D. 2.16
- E. There is not enough information to answer this question
- 2. For a population to grow exponentially,
 - A. Its absolute birth and death rates must remain constant
 - B. Its per capita birth rate must decrease with population size
 - C. The death rate must be greater than the birth rate
 - D. It must have no competing species
 - E. R must be > 1
- 3. If we are thinking about a simple, continuous-time model, then for a population to be regulated:
- A. The average reproductive number \mathcal{R} must be low at high density and higher at either low or intermediate density
- B. The birth rate b must be low at high density and higher at either low or intermediate density
- C. The death rate d must be high at high density and lower at either low or intermediate density
 - D. All of the above
 - E. None of the above
- 4. The carrying capacity for an organism in an environment is the density at which crowding reduces the average of _______ to zero:
 - A. The birth rate
 - B. The death rate
 - C. The reproductive number \mathcal{R}
 - D. The instantaneous growth rate r
 - E. The finite-time growth rate λ

5. An ecologist is studying several small lakes with small populations of bass (a predatory fish). After several unusually cold years, the bass in all of these populations go extinct. A nearby, similar population in a warmer valley does not go extinct. This outcome is most likely the result of:

- A. Allee effects
- B. Competition
- C. Demographic stochasticity
- D. Environmental stochasticity

See the picture above.

- 6. The panel on the ______ shows population on a log scale. Compared to the other panel, it shows _____.
 - A. left; individual density instead of total density
 - B. left; the same numbers, but from a different perspective
 - C. right; individual density instead of total density
 - D. right; the same numbers, but from a different perspective
- 7. The values in the 'f' column of a life table
 - A. Reflect birth rates but not survival probabilities
- B. Incorporate the survival of newborns between birth and the first census
 - C. Reflect cumulative survival up to each age class
 - D. Are usually measured in units of total offspring per female

8. When would it be *necessary* to use a stage-structured rather than an age-structured population model?

- A. For a long-lived organism
- B. For an organism that can shrink (regress) as well as grow
- C. For a population that experiences regulation
- D. For a population with stochastic variation in the life table over time
- E. For a population with lower fecundity in very old organisms

a stage-structured model might be convenient for a long-lived organism (to collapse a bunch of age classes with similar f and p values), but not *necessary*

Use this information for the next 4 questions. In a population of squirrels, newborn females have a 20% probability of surviving to reproduce in the next breeding season. One-year-old females have a 50% chance of surviving the next year, and older females have a 80% chance of surviving each year. We census after reproduction (we call the first group we count, the newborns, x = 1; thus the one-year-olds correspond to x = 2).

In a population of squirrels, newborn females have a 20% probability of surviving to reproduce in the next breeding season. One-year-old females have a 50% chance of surviving the next year, and older females have a 80% chance of surviving each year. We census *after* reproduction (we call the first group we count, the newborns, x = 1; thus the one-year-olds correspond to x = 2).

We also measure fecundity in this population, to complete our after-reproduction life table, and find that the reproductive number $\mathcal{R} = 0.8$.

- 9. What is the value of p_2 in this population?
 - A. 0.08
 - B. 0.16
 - C. 0.4
 - D. **0.5**
 - E. 0.8

This is the probability that the group we label as "2" survives.

- 10. What is the value of ℓ_3 in this population?
 - A. 0.08
 - B. **0.1**
 - C. 0.4
 - D. 0.5
 - E. 0.8

This is the probability of survival from first being counted, through the first two years after that: $p_1 \times p_2$.

- 11. What can you say about λ based on this information?
 - A. $\lambda < 0.8$
 - B. $\lambda = 0.8$
 - C. $0.8 < \lambda < 1$
 - D. $\lambda = 1$

ANS: C

- 12. We infer from our measurements that this population is currently:
 - A. increasing
 - B. decreasing
 - C. stable
 - D. oscillating
- 13. Which of the following cases would be the most appropriate situation for using a structured, unregulated population model?
 - A. An endangered population of annual plants
 - B. An endangered population of perennial plants
 - C. A population of bacteria in stable phase
 - D. A forest where strong competition for light occurs
 - E. An invading population of annual plants
- 14. In an environment where seed survival is highly variable from year to year, we expect that semelparous plants (reproducing only once) are likely to invest relatively ______ than iteroparous plants in ______.
 - A. more; mechanisms for seed dispersal
 - B. less; mechanisms for seed dispersal
 - C. more; each individual seed
 - D. less; each individual seed
- 15. A species of annual plant produces an average of 80 seeds per reproductive adult. Half of these seeds, on average, land in forest clearings these seeds have a 4% chance of surviving to be reproductive adults. The other half land in the forest, and have only a 1% chance of surviving. What is the finite rate of increase λ for these plants?
 - A. 1
 - B. 1.6
 - C. **2**
 - D. 2.5
 - E. 4

- 16. Which of the following is *not* an example of a tradeoff?
- A. Birds with heavier beaks that allow them to access more kinds of food take longer to reach maturity
- B. Bushes which produce more defensive chemicals live longer, and have higher seed survival.
 - C. Trees that grow quickly in full sunlight are more likely to die when shaded
- D. Rabbits which need less food to survive produce fewer offspring when food is plentiful
- 17. Which of the following is an advantage of dispersal?
- A. Averaging across patches within years allows for a geometric average, which is always greater than or equal to the arithmetic average
 - B. Increased carrying capacity K
 - C. Improved competitive ability
 - D. Less competition with relatives
 - E. Increased inbreeding
- 18. Which of the following is *not* a life-history tradeoff?
 - A. Reproduction vs. longevity
 - B. Many offspring vs. large investment per offspring
 - C. Rapid maturation vs. large final size
 - D. Offspring that grow quickly vs. offspring that disperse well
 - E. High r vs. low r
- 19. Which trait below would be most characteristic of a K-strategist?
 - A. Rapid maturation
 - B. Good dispersal
 - C. Production of many inexpensive offspring
 - D. Short lifespan
 - E. Iteroparity
- 20. Which of the following would you expect to evolutionarily favor a greater number of males being produced in a population?
 - A. Increased cost of producing females
 - B. Increased cost of producing males
 - C. Higher population density
 - D. Increased mortality rate of males
 - E. Increased mortality rate of females

- 21. Which of the following best describes bet hedging?
 - A. Avoiding inbreeding
 - B. Avoiding competition between your own offspring
- C. Making sure that your own offspring are not all exposed to the same risk
 - D. Making sure your offspring have the chance to find good places to reproduce
- 22. In theory, if two species are competing only for a single resource, we expect
 - A. The species with the larger value of K (indiv/ha) to dominate
- B. The species with the larger value of α (measuring its impact on the other species) to dominate
 - C. A tendency for co-existence
 - D. A tendency for mutual exclusion
 - E. Balanced competition (neither of the above two tendencies)
- 23. The growth rate of species 1 in the presence of species 2 is given by $\frac{dN_1}{dt} = r(N_1 + \alpha_{21}N_2)N_1$. If species 1 is counted in units of indiv₁, species 2 in units of indiv₂, and time is counted in units of years, then the units of α_{21} are:
 - A. $indiv_1/indiv_2$
 - B. $indiv_2/indiv_1$
 - C. indiv₁/year
 - D. $indiv_2/year$
 - E. 1/year

ANS: A

Use the picture above for the next 3 questions. These are plots from a simple model of two competing species.

- 24. The picture shows:
 - A. Dominance by species 1
 - B. Dominance by species 2
 - C. Mutual exclusion
 - D. Coexistence
- 25. Which of the time plots below matches the *upper path* from the phase plot above?

- A. **A**
- В. В
- C. C
- D. D