Двойное лучепреломление. Работа 4.7.1

Каспаров Николай, Б01-304

April 5, 2025

Цель работы: Изучение зависимости показателя преломления необыкновенной волны от направления в двоякопреломляющем кристалле; определение главных показателей преломления n_0 – обыкновенной и n_e – необыкновенной волны в кристалле наблюдение эффекта полного внутреннего отражения.

В работе используются: Гелий-неоновый лазер, вращающийся столик с неподвижным лимбом, призма из исландского шпата, поляроид.

1 Ход работы

Первым делом отъюстируем установку, согласно рекомендациям.

Рисунок 1: Экспериментальная установка

Затем определим зависимость преломленного угла от катета и гипотинузы от наклона призмы:

Также определим угол A как разница положений рисок в положениях, когда луч отраженный от катета и гипотинузы попадают обратно в 0:

$$A = 180 - \phi_1 - \phi_2 = (38.0 \pm 0.5)^{\circ} \tag{1}$$

Показатель преломления призмы может быть найден как

$$n = \frac{1}{\sin A} \sqrt{\sin^2 \varphi_1 + \sin^2 \varphi_2 + 2\sin \varphi_1 \sin \varphi_2 \cos A}.$$
 (2)

Для призмы из изотропного матреиала в случае, когда $\varphi_1 = \varphi_2$, показатель преломления может быть рассчитан по формуле

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)},\tag{3}$$

где ψ_m – угол наименьшего отклонения.

Далее снимем зависимость углов отклонения на выходе из призмы для обыкновенной и необыкновенной волны от угла падения луча на призму. Результаты этих измерений представлены в таблице 3.

Из таблицы 3 также видим, что минимальные значение $\psi_o = 27.0^{\circ}$, минимальное значение $\psi_e = 20.3^{\circ}$. По этим величинам проведем вычисления показателся преломления, используя формулу:

Рисунок 2: Сравнение отражений от катета и гипотенузы

α	$2\phi_1$
10°	64.5°
20°	69.4°
30°	74.5°
40°	79.2°
50°	84.4°
60°	89.4°
70°	94.5°
80°	99.5°
90°	104.0°
100°	109.0°
110°	114.2°
120°	120.0°
130°	124.0°
140°	129.0°

 $2\phi_2$ 10° 282° 20° 287.8° 30° 292.8° 40° 298° 50° 303° 60° 307.5° 70° 312° 80° 318° 90° 323° 100° 328° 110° 333° 120° 338° 130° 343° 140° 347.5°

Отражение от катета

Отражение от гипотенузы

2ϕ	$(180 + \psi_0)$	$(180 + \psi_e)$
10°	216.0°	203.5°
20°	211.5°	201.8°
30°	209.2°	200.8°
40°	208.0°	200.5°
50°	207.1°	200.3°
60°	207.0°	200.3°
70°	207.0°	201.2°
80°	207.5°	202.0°
90°	208.0°	203.0°
100°	209.5°	204.0°
110°	211.0°	206.0°
120°	213.0°	208.2°
130°	215.5°	210.5°
140°	218.5°	213.5°

Таблица 1: Зависимость углов отклонения от угла падения

$$n = \frac{\sin\left(\frac{\psi_m + A}{2}\right)}{\sin\left(\frac{A}{2}\right)} \tag{4}$$

$$n_e = 1.65 \pm 0.05 \tag{5}$$

$$n_o = 1.50 \pm 0.05 \tag{6}$$

Теперь построим график зависимости показателя преломления от $\cos(\theta)^2$:

2 Вывод

В работе были изучена зависимость показателся преломления необыкновенной волны от направления ее распространения в двоякопреломляющем кристалле. Несколькими способами были определены значения главных показателей преломления обыкновенной и необыкновенной волны.

Рисунок 3: Результаты