Technische Grundlagen der angewandten Informatik

LATEX Template Beispiele

Martin Miller

Konstanz, 31. März 2015

Inhaltsverzeichnis

Al	Abbildungsverzeichnis			
Ta	bellen	verzeichnis	3	
Li	stingv	erzeichnis	4	
Ał	okürzı	ungsverzeichnis	5	
1	Beisj	piele	6	
	1.1	Installation Texmaker	6	
	1.2	LATEX Hilfen	6	
	1.3	Zitieren mit LATEX	7	
	1.4	Querverweise in LATEX	7	
	1.5	Abkürzungsverwaltung in LATEX	7	
	1.6	Mathematische Formeln in LATEX	8	
	1.7	Tabellen in LATEX	10	
	1.8	Abbildungen in IAT _E X	11	
		1.8.1 Abbildung 1x1 Beispiel	11	
		1.8.2 Abbildung 1x2 Beispiel	12	
		1.8.3 Abbildung 2x2 Beispiel	13	
		1.8.4 Abbildung 3x3 Beispiel	13	
	1.9		15	
	1.10		16	
Li	teratu	rverzeichnis	17	

Abbildungsverzeichnis

1.1	Eingar	gssignal Dreiecksfunktion	11
1.2	Testfu	nktionen mit Häufigkeitsverteilung	12
	1.2a	Eingangssignal Dreiecksfunktion	12
	1.2b	Dreiecksfunktion Histogramm	12
1.3	Testfu	nktionen mit Häufigkeitsverteilung	13
	1.3a	Eingangssignal Dreiecksfunktion	13
	1.3b	Dreiecksfunktion Histogramm	13
	1.3c	Eingangssignal Sinus	13
	1.3d	Sinus Histogramm	13
1.4	3x3 Al	obildung Beispiel	14
	1.4a	Eingangssignal Dreiecksfunktion	14
	1.4b	Dreiecksfunktion Histogramm	14
	1.4c	Eingangssignal Sinus	14
	1.4d	Sinus Histogramm	14
	1.4e	Eingangssignal Sinus	14
	1.4f	Sinus Histogramm	14

Tabellenverzeichnis

1.1	Korrekturfaktoren 2	zur Schätzung	g der Messun	sicherheit[3, S.10]	10

Listingverzeichnis

1.1	Latex Befehle für Abkürzung	7
1.2	Latex Befehle für Formel 1.1	8
1.3	Mathematik modus LATEX	9
1.4	IAT _E X Tabellen Prototyp	10
1.5	IATEX Befehle Abbildung 1.1	11
1.6	IATEX Befehle Abbildung 1.2	12
1.7	Positionierung von Bildern	15
1.8	Sinus Plot	16
1.9	Latex Source Code Syntax Highlighting Prototyp	16
1.10	Source Code in Latex Dokument	16

Abkürzungsverzeichnis

TGAI Technische Grundlagen der angewandten Informatik

1

Beispiele

1.1 Installation Texmaker

Installationsanleitungen für Texmaker sind für die entsprechenden Betriebsysteme im folgenden aufgelistet:

- http://www.howtotex.com/howto/installing-latex-on-windows/ (Windows)
- http://www.howtotex.com/howto/installing-latex-on-mac-os-x/ (Mac OS X)
- https://apps.ubuntu.com/cat/applications/texmaker/ (Ubuntu)
- https://wiki.archlinux.org/index.php/LaTeX (Arch Linux)

1.2 LATEX Hilfen

- http://en.wikibooks.org/wiki/LaTeX (EN)
- http://de.wikibooks.org/wiki/LaTeX-Kompendium
- http://www.ctan.org/ (online package info)
- in Eingabeaufforderung: texdoc <Packet Name>

1.3 Zitieren mit LATEX

Das Quellenverzeichnis wird bei LATEX mit BibTeX generiert. BibTeX muss nach dem Compilieren der LATEX Datei (Texmaker F1) ausgeführt werden. Anschließend muss die LATEX Datei erneut compiliert werden (Texmaker F1) um das Quellenverzeichnis zu erzeugen. Die einzelnen Quellen werden in der Datei *references.bib* angelegt. Es wird empfohlen hierfür das Quellenverwaltungsprogramm JabRef zu verwenden.

Im LATEX Dokument werden die Zitate wie folgt angegeben.

Zitat (\cite{Franz2015}):

[1]

Zitat mit Seitenangabe:(\cite[S.7]{Franz2015a}):

[2, S.7]

Weitere Infos:

- http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management
- http://jabref.sourceforge.net/

1.4 Querverweise in LATEX

Querverweise werden mit \ref{...} auf ein entsprechendes Label (\label{...}) angegeben (hier auf Label *chap:EINL*)

 $\longrightarrow 1$

1.5 Abkürzungsverwaltung in LATEX

Abkürzungen müssen in der Datei *preface/acronym.tex* angelegt werden. Diese müssen mit dem Makro \acro{XYZ}{Langform} (siehe Listing 1.1) definiert werden.

```
\acro{TGAI}{Technische Grundlagen der angewandten Informatik}
```

Listing 1.1: Latex Befehle für Abkürzung

Im Text werden die angelegten Abkürzungen wie folgt verwendet.

\ac{TGAI} gibt bei der ersten Verwendung die Langform in der Fußzeile aus, ab dann stets die Kurzform (empfohlen).

```
\longrightarrow TGAI<sup>1</sup>
```

¹Technische Grundlagen der angewandten Informatik

\acs{TGAI} gibt die Abkürzung aus.

 \longrightarrow TGAI

\acl{TGAI} gibt die Langform aus.

→ Technische Grundlagen der angewandten Informatik

\acf{TGAI} gibt immer die Langform in der Fußzeile und die Kurzform im Text an.

 $\longrightarrow TGAI^2$

1.6 Mathematische Formeln in LAT_EX

Vorzugsweise sollen Formeln im Bericht wie folgt dargestellt werden.

Formel 1.1:

$$T[k] = C - A \cdot \cos\left[\frac{\pi \cdot H_C[k-1]}{S}\right] \text{ für } k = 1, 2, ..., (2^N - 1)$$
 (1.1)

Dabei bedeuten:

C: Offset Faktor

A: Gain Faktor

S: Sample Anzahl

Die für Formel 1.1 verwendeten LATEX Befehle sind in Listing 1.4 aufgelistet.

```
begin{equation}\label{eq:MATH_FORM}

T[k] = C - A \cdot \cos \left[ \frac{\pi \cdot H_{C}[k-1]}{S} \right]

mbox{ für } k = 1,2,...,\left(2^{N}-1\right)

end{equation}

Dabei bedeuten:
begin{itemize}[label=]
  \item $C$: Offset Faktor
  \item $A$: Gain Faktor
  \item $S$: Sample Anzahl

end{itemize}
```

Listing 1.2: Latex Befehle für Formel 1.1

Alternativ können Formeln auch mithilfe des Mathematik Modus (\$...\$) direkt eingegeben werden.

$$T[k] = C - A \cdot \cos\left[\frac{\pi \cdot H_C[k-1]}{S}\right]$$
 für $k = 1, 2, ..., (2^N - 1)$

²Technische Grundlagen der angewandten Informatik

LATEX Befehle Listing 1.3:

Listing 1.3: Mathematik modus LATEX

Weitere Infos:

- http://en.wikibooks.org/wiki/LaTeX/Mathematics
- http://en.wikibooks.org/wiki/LaTeX/Advanced_Mathematics
- ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf

1.7 Tabellen in LATEX

```
begin{table}[H]
begin{tabular}{||1||1||1||}

cutoff (aption { Korrekturfaktoren zur Schätzung der Messunsicherheit \ cite[S.10] { Fra 2014b} }

label{tab:KORREKTURFAKTUREN}

end{table}
```

Listing 1.4: LATEX Tabellen Prototyp

Anzahl Messungen	Sicherheit P = 68,26%	Sicherheit P = 95%	Sicherheit P = 99%
2	1,84	12.71	63.66
3	1.32	4.3	9.93
4	1.2	3.18	5.84
5	1.15	2.78	4.6
6	1.11	2.57	4.03
7	1.09	2.45	3.71
8	1.08	2.37	3.5
9	1.07	2.31	3.36
10	1.06	2.26	3.25
15	1.04	2.15	2.98
20	1.03	2.09	2.86
30	1.02	2.05	2.76
50	1.01	2.01	2.68
80	1.0	1.99	2.64
100	1.0	1.98	2.63
unendlich	1.0	1.96	2.58

Tabelle 1.1: Korrekturfaktoren zur Schätzung der Messunsicherheit[3, S.10]

Weitere Infos:

- http://en.wikibooks.org/wiki/LaTeX/Tables
- http://www.tablesgenerator.com/latex_tables

1.8 Abbildungen in LATEX

1.8.1 Abbildung 1x1 Beispiel

Abbildung 1.1: Eingangssignal Dreiecksfunktion

```
begin{figure}[H]

centering\small

includegraphics[width=\textwidth]{
 media/matlab/HISTOGRAM/ramp_fkt_samples_5000.eps}

caption{Eingangssignal Dreiecksfunktion}

label{fig:GRUNDL_RAMP_SIN_HIST_1X1}

end{figure}
```

Listing 1.5: LATEX Befehle Abbildung 1.1

1.8.2 Abbildung 1x2 Beispiel

Abbildung 1.2: Testfunktionen mit Häufigkeitsverteilung

```
\begin { figure } [H]
    \begin { subfigure } { .499\textwidth }
      \centering\small
      \includegraphics[width=\textwidth]{
        media/matlab/HISTOGRAM/ramp_fkt_samples_5000.eps}
      \caption { Eingangssignal Dreiecksfunktion }
      \label{fig:GRUNDL_RAMP_RAMP_1X2}
    \end{ subfigure }
    \begin { subfigure } { .499 \ textwidth }
      \centering\small
      \includegraphics [width = \textwidth]{
        media/matlab/HISTOGRAM/ramp_hist_samples_5000.eps}
      \caption { Dreiecksfunktion Histogramm }
      \label { fig:GRUNDL_RAMP_HIST_1X2}
    \end{ subfigure }
 \caption { Testfunktionen mit Häufigkeitsverteilung }
 \label { fig : GRUNDL_RAMP_SIN_HIST_1X2 }
18 \ end { figure }
```

Listing 1.6: LATEX Befehle Abbildung 1.2

1.8.3 Abbildung 2x2 Beispiel

Abbildung 1.3: Testfunktionen mit Häufigkeitsverteilung

1.8.4 Abbildung 3x3 Beispiel

Abbildung 1.4: 3x3 Abbildung Beispiel

1.9 Positionierung von Bildern und Tabellen

Die Positionierung von Bildern und Tabellen wird in LaTeXnach der \begin Anweisung in eckigen Klammern angegeben (siehe Listing 1.7). Hier werden die Positionierungswünsche aufgereiht. Ist ein Positionierungs-Wunsch nicht durchführbar, so wird versucht den nächsten durchzuführen.

```
\begin{figure }[!htbp]
\includegraphics {filename }%
\caption {text}%

\end{figure}
```

Listing 1.7: Positionierung von Bildern

LATEXunterstützt folgende Positionierungsangaben.

- h bedeutet "here", also an der aktuellen Position
- H präzise Angabe "here", also genau an der aktuellen Position (package float)
- t bedeutet "top", also am Anfang der aktuellen Seite
- b bedeutet "bottom", also am Ende der aktuellen Seite
- p bedeutet "page", also auf einer eigenen Seite
- ! gibt an, dass intere Parameter überschrieben werden sollen

Leider ignoriert der LaTeX Compiler die Positionsangabe, wenn diese nicht durchgeführt werden kann. Dies kann in den meisten Fällen durch Angabe von mehreren alternativen Positionsangaben korrigiert werden (z.B. [!htb]). Wenn dies nichts hilft, kann weiterhin über \newpage der Positionierungsbereich eingeschränkt werden. Hilft selbst dies nichts, dann kann das package float, mit

```
\usepackage { float }
```

geladen werden. Hierdurch werden die Positionsangaben mit H immer an der aktuellen Position durchgeführt. Dies wird auch dann durchgeführt, wenn die aktuelle Seite keinen Platz mehr für das Bild hat. Das Bild wird dann auf der nächsten Seite dargestellt. Bei der Positionierung ist deshalb immer die Positionierungangabe H zu empfehlen.

Weitere Infos:

http://texblog.net/latex-archive/uncategorized/prevent-floating-image-figure-table/

1.10 Source-Code Listings in LATEX

Source Code Listings können in LATEX bequem mit dem *listings* eingefügt werden. In Listing 1.8 ist ein Python Listing dargestellt.

```
1
2
3
X = np.linspace(-np.pi, np.pi, 256)
4
C,S = np.cos(X), np.sin(X)

# plot sine
fig, ax = plt.subplots()
ax.plot(X,C)
ax.plot(X,S);
ax.set_xlabel('time')
print('plot done')
```

Listing 1.8: Sinus Plot

Der Source Code kann entweder direkt in das LATEXDokument kopiert werden, oder über die Source File direkt geladen werden. In Listing 1.9 ist die Befehlsfolge zur Darstellung des Python Codes im Latex Dokument dargestellt.

```
begin { lstlisting } [
    style = PYTHON,
    frame = single ,
    caption = << LISTING BEZEICHNUNG>>,
    captionpos = b ,
    label = lst : << LABEL>>]
    << PYTHON SOURCE CODE>>
    \end{ lstlisting }
```

Listing 1.9: Latex Source Code Syntax Highlighting Prototyp

Listing 1.10 zeigt den Befehl um den Source Code von einer Datei zu laden.

```
1 \lstinputlisting[
2 style=PYTHON,
5 frame=single,
6 caption=<<LISTING BEZEICHNUNG>>,
6 captionpos=b,
6 firstline=45,
1 astline=56,
8 firstnumber=45]{ scr/sinPlot.py}
```

Listing 1.10: Source Code in Latex Dokument

Literaturverzeichnis

- [1] Franz, Prof. Dr. Matthias O.: *Vorlesung 1 Einführung*. In: *Vorlesung Technische Grundlagen der angewandten Informatik*, 2015.
- [2] Franz, Prof. Dr. Matthias O.: Vorlesung 2 Sensoren und Messung: Sensoren, Messung, Messgeräte für elektrische Größen. In: Vorlesung Technische Grundlagen der angewandten Informatik, 2015.
- [3] Franz, Prof. Dr. Matthias O.: Vorlesung 3 Messfehler: Messfehler, Fehlerfortpflanzung, systematische Fehler. In: Vorlesung Technische Grundlagen der angewandten Informatik, 2015.