CS330 course note

Chenxuan Wei Jan 2022

Contents

1	Cor	Component of PC			
	1.1	intro	3		
	1.2	Processor	4		
	1.3	Secondary Storage	6		
2	Abo	out PC	9		
	2.1	Type of PC	9		
	2.2	Drivers of Technology	11		
	2.3	Infrastructure Components	12		
	2.4	Contemporary H/W Trends	14		
	2.5	Contemproary S/W trends	16		
	2.6	Management Issues	17		
3 DataBases		aBases	18		
	3.1	ideas	18		
	3.2	Relational Databases	19		
	3.3	Types of Databases	20		
	3.4	Database Design	21		
	3.5	Beyond	23		
4	Networking				
		Overview	24		
5	Management Information System 28				
6	Business Processes and Types of Information Systems 30				
7	Organizatios and IS				
8	Social, Ethical, and Legal Issues				
9	Security				
10	0 Managing Knowledge				

1 Component of PC

1.1 intro

1. Social engineering

is when hacker use their knowedge of psychology to trick people into divulging confidential infomation

2. Hardware Components

• Processor: CPU

where symbols, characters and numbers are manipulated

• Main Memory

where data and program instructions are stored temporarily during processing

e.g. registers, cache, ram

• Secondary storage

Store data and programs even when computer is turned off e.g. flash drives, SSD, HDD, CD, DVD

• Input devices

Covert data and instructions from the outside world into electronic form

e.g. keyboard, mouse

• Output Devices

convert electronic data produced by computer into a form understood by human or the outside world

e.g. printer, speaker, monitor

• Communication Devices

Provide connections between the computer and communications networks

e.g. WIFI, bluetooth

3. Capacity

small b is bit for single binary digit

Big B is Byte(8 bits), there are 2⁸ possible values dealing with data storage, use mutiples of 1024 dealing with frequencies, use mutiples of 1000

- KB = 1024 bytes
- $MB = 1024^2$ bytes
- $GB = 1024^3$ bytes
- $TB = 1024^4$ bytes
- Kb's or Kbps = 1024 bits/s
- Mb/s or Mbps = 1024^2 bits/s
- Gb/s or Gbps = 1024^3 bits/s

1.2 Processor

1. Processor

64 bit have backwards compatibility: still works for older program

- Build for efficiency used for small product, do not need a fan, try to minimize the number of transistors they use
- Build for speed used for large product like laptops, desktops and require large battery need a fan to keep cool they have lots of transistors

2. Processor Operations

- Arithmetic and logic
- comparisons
- Accessing data
- Flow control

3. Components of Processor

- Program Counter(PC): holdes the address of the current/next instruction
- Instruction Register(IR): holds the instruction that is being executed
- Arithmetic logic Unit(ALU): performance arithmetic and logic operations
- Registers: a small amount of temporary storage, usually a source or destination for the data
- Control Unit: reads the instruction in the instruction register and turns on and off the other components of the processor to execute the instruction
- Cache stores recently used data and instructions

4. Processing power

clock speed

Mhz: 1 million clock tick per s, or Ghz: 1 billion clock ticks per second

• millisecond: ms : $\frac{1}{10^3}$ s • microseconds: us: $\frac{1}{10^6}$ s • nanoseconds: ns: $\frac{1}{10^9}$ s • picoseconds: ns: $\frac{1}{10^{12}}$ s

5. Main Memory Hierarchy

Type	$_{\mathrm{Speed}}$	Capacity
Register	0.2 ns	100B - 300 B
caches	$1\text{-}10~\mathrm{ns}$	10KB - 10 MB
RAM	100 ns	4GB - 400GB
SSD	10 us	256GB - 1TB
hard drive	$10 \mathrm{ms}$	8TB - 12 TB
network storage		
off-site storage		

1.3 Secondary Storage

- 1. Secondary Storage
 - Hard drive
 - Flash drive
 - Optical drive

Not directly access able by the processor Slow than main memory, cheaper than main memory and non-volatile must copied into main memory before do action

- 2. How Secondary Storage works
 - Platter

Aset of disks stacked on top of each others, with smooth magnetic coating on both side

RPM: rotation per minute

- Actuator arm move across the disk to read/write change the orientation of the magnetic field
- 3. Parameters of Hard Drives Basics
 - Mean Time Between Failures (MTBF) around 100000 hours bathtub curve
 more likely to fail initially due to manufacturer error more likely to fail later due to wearing out
 - Annualized Failure Rate(AFR)
 - 0.7-0.8% for enterprise drives (what UW buys)
 - 1.25-1.89% for consumer drives 1.89% means on average roughly $(1.0-0.0189)^4 \times 100\% = 92\%$

Have over 100000 hard drives Tracks failures and make datat public

4. SSD

- Pros
 - 10x faster access data
 - last longer
 - has no moving parts
- \bullet Cons
 - More expensive
 - Can wear out snnoer than hard disk when writing a lot of data
 - data can fade
- 5. Hybird drives combine small SSD with larger HD to create more space and faster speed
- 6. Optical Drives Basics
 Similar to hard drive
 use a laser than actuator arm
 slower and have less capacity than hard drive, inexpensive and durable
 less common as cloud and streaming are more popular

7. Assesing Performance

• Price per gigabyte Best: hard drive

• Capacity

Best: hard drive

 \bullet Bandwidth(speed)

Best: SSD

• Durability

Best: DVD/SSD

2 About PC

2.1 Type of PC

- 1. Specialty Computers
 - Mainframs
 - Reliability
 - ability to hot swap
 - ability to support many users
 - Supercomputers
 - Fast floating point computations
 - Main use: calculation and simulation
 - use order of 100000 of cores
 - ullet Microcontrollers
 - Main Characteristic: simple processors with ram and I/O abilities
 - used in embedded systems

2. Evolution of IT

- (a) mainframe/minocomputer
 - Very expensive
 - One centralized system
- (b) Personal computers
 - \bullet Used by one person
 - cost \$4000
 - ullet do simple programmings
- (c) Client/Server
 - 2 machine: clients(very cheap) servers(more expensice)
 - Client: requests and user services
 - servers: runs an application and provides it to others
- (d) Enterprise computing
 - Link together different networks and applications
 - use internet to create
- (e) Cloud and mobile computing
 - is an extension of client/server but rather than a server have a shared pool of resources
 - like a cluster of computer, software, storage
- 3. Peer-to-peer (P2P)

every machine in the network consumes and provides services at the asme time

2.2 Drivers of Technology

- 1. Moore's law
 - The number of transistors that can fit on a chip doubles every 18 months
 - Trend has been true since 1959, but slow down since 2010-2013
- 2. Law of Mass Digital Storage
 - Amount of digital information is roughly doubling every year
 - Since 1990, rate become 65% year
 - Hard disk drive capacity groeing exponentially
- 3. Metcalfe's law
 - The value of a net work grows exponentially as a function of the number of network members
- 4. Declining communication Costs
 - Communication costst have been declining
- 5. Creation of Standards
 - The creation of technology standards allows competition, increase interoperability and reduces costs

2.3 Infrastructure Components

- 1. Computer Hardware Platforms
 - Client machines: desktops, laptops....
 - Server machines could be single mainfarme or large number of rack servers or blade servers
- 2. Operating System Platforms
 - OS managers a computer's hardware and software resources
 - For laptops and desktops
 - 88.6 % of PCs ran Windows
 - -9.4% ran macOS
 - 1.5 % run linux
 - For smartphones
 - -71.3% run Android
 - 28.3 % run IOS
 - For servers
 - -69.7% run Unix or linux
 - -30.3% run windows
- 3. Enterprise Applications

Computer programs used by organizations that integrate business applications and services across the many different departments

4. Data Management System and store

Role: organize and store the company's data

Use Redundant Array of Independent Disk(RAID0 to impore hard disk performance

- improve in reliability, availability, performance, capacity
- RAID 0: DIsk striping
 Split the file into different part and store in different disk
 * number of disk speed
 Decrease Reliability
- RAID 1: Disk Mirroring
 Store same data on two or more disks
 Improve Realiability, Read Performance
 Decrease Capacity
- Parity (2-6) Help Detect error

5. Network Platforms

Components:

- hub
 Data received by the hub is send to all connected devices
- Bridge only one input and one output, looks like destination and decides whether to forward it across the bridge or not
- switch has many ports, decide which port sent it out to
- router like switch but connectes different networks together

Use Network Interfacing Card(NIC) Network Operating System (NOS)

6. Telecom Platforms

Include telephone and cell phone services

7. Internet Platforms

- Sinternet Service Provider

 Provides the link from your home or company network to the rest of
 the internet
- Web Development Simple website use HTML and JS and static
- Web hosting need a server, domain name and web server

8. Service Platform

A collection of services that enable the infomation system of function

2.4 Contemporary H/W Trends

- 1. Mobile Digital Platform internet access happens via highly protable devices: smartphone
- 2. Consumerization of IT and BYOD BYOD = bring Your own device (to work) allow employee to bring own device and allow use software services
- 3. Grid computing

processor are idel most of the time, so simulate sa super computer by organizing the computational power of a network of PC Can be remote, different OS Broke task into smaller independent tasks (parallelized) Only benefit task can be parallelized

4. Virtualization

Creation of a virtual rather actual version of something-¿¿¿ make something look like something

In computer a computer looks like

- Application interact with hardware with OS
- Operation system
- Hardware managed by OS

To virtualization

- This is a fake Linux on Windos
 - Linux app
 - Linux OS
 - Virtual Hardware
- Operation system Wndows
- Hardware

Benefit: better resource management, test software on variety virtual configurations

5. Cloud Computing

Leasing as a service(hardware or programing tools) from another company that is accessed over the internet

• pros

- Cost: less expense way to cover peak demad
- Convinient: use as needed
- Flexible: not tied to a fixed number of computers of types of OS

• Cons

- Privacy: less control
- Liability: might went down
- Legal: must comply with canadian privacy laws
- Loss of control

6. Green Computing

Design and use of computer system in a way the minimizes their impact on the environment

- Reduce power consumption
- Reduce use of standby power
- Reuse: make parts avilable to repair older PCs
- Recycle e-waste

Sanitizing a device

Different for HD and SSD

7. Autonomic Computing

industry-wide effort to develop systems that are capable of self-management

8. Future Hardware Technology

(a) Nanotechnology

- Definition
 - using nanostructures to build devices
- ideas

a trasistor is about 14 nanometes wide minimum 5 nanometers

• Quantum Computing

use quantum property of a group of electrons to represent data n eletrons have over 2^n different states

2.5 Contemproary S/W trends

- 1. Open-Source Software (OSS) \neq Free software
 - Different stardards
 - Free software Foundation(1985): derived software must have the same freedoms
 - Open Source Initiative: make OSS more commerical
 - Many popular OSS are developed and maintained by worldwide network

may make product they don't support open source or fund an open source challenger

- pros
 - lower cost
 - more security, less bugs
 - flexibility
 - transparency
 - not reliant on single person
- cons: less likely to
 - easy to use
 - meet customer needs
 - fit your particular hardware
 - have support

2. HTML

use for website

- hypertext = text contain links
- markup language = a way to anotation and presenting text
- 3. Web services and SOA
 - XML provice a format for program to exchange informations
 - SOA service-oriented architexture cost effective way to adopt to new techs
- 4. Software Outsourcing create software outside of the company

2.6 Management Issues

- Dealing with change firms need to be able to grow scalability: ability to expand to serve a larger number of user
- Management and Governace
 Who is responsible for IT:
 each department has own IT group
 one overall IT group for who company
 mix of both

3. Infrastructure Investment:

- \bullet Total cost of ownership (TCO) the acquisition cost for hardware and software represent 20 % of TCO can break into
 - Capital expenditure: fixed, one-time cost
 - Operational expenditure: ongoing expenses

2 type of cost

- Direct IT cost: cost would pay explicity
- indirect IT cost: cost due to lost productivity
- Manangement the more a computer is managed, the less size of thhe indirect costs
- Compttitive forces model
 - Demand of services
 - Business strategy
 - IT trategy
 - IT assessment
 - Computitor's services
 - Competitor's IT investments

3 DataBases

3.1 ideas

- 1. Flat files
 - Pros simple to create all data in one place good for one person processing a small amount of data
 - lack of security
 lack of concurrent access
 lack of data integrity
 lack of sacality
 program-data dependence
 lack of custom formats
- 2. Database Management System
 - integrity
 - data independence
 - sharing and high availablity
 - ullet have standard software packages
- 3. Common type of databases
 - Hierarachy model: like a tree
 - Network model: as a network
 - Relational model: as a table
 - Object-oriented model: as a object

3.2 Relational Databases

1. Structure

- entities row in a table
- Attributes or field a column of the table, information of entity Domain: set of allowed values
- Record collection of attributes

2. Keys

- Parmary keys a unique attribute
- Composite two or more attributes that are combined unique
- canadiate more than two key that are unique(each unique individualy)
- Foreign keys an attribute in a table that is primary key in another table

3. Schema Architecture

- External Schema (logical view) displayed to a particular user
- Conceptual Schema (global view) can see the entire database
- Physical Schema (physical view) can see how dat is physically stored and organized

4. SQL operation

- Select finds the row that match a certain attributes
- join adds relevaant columns from another table
- Project display the data with only those columns

3.3 Types of Databases

- 1. Hierarchical Database tree captures the relationship among the data a parent have many children
- 2. Network database child can have multiple parents
- 3. OO database like a OOP program
 - Inheritance (jicheng) a children have the attributes of a parent
 - Polymorphism(duotai) a children and it's parent can use the same function
 - Limitation of relational Databasese
 - Multimedia graphs are hard to store
 - Arrays of data
 - Unstructured text like email...
 - Hierarchical data maps

3.4 Database Design

- 1. Good design
 - \bullet Correctness
 - Completness
 - Minimum redundancy

2. Steps

- Identify the entities and the relationship between them use a ER diagram to do it
- Convert the ER diagram into table
- Fine-tune your design apply normalization to remove redundancy

3. ER diagram

- Rectangle are entities
- diamonds are relationships
- oval are attributes underline \rightarrow primary keys
- Relationships
 - 1:1 one entity have only one attributes
 - 1:N one entity have many this type of attributes
 - N:M many entity can have many this type of attributes
- Relationships connection
 - single line not every entity participate
 - double line every entity participate

4. Map ER to table

- Entity from ER is represented a table
- Relationships are one of
 - Foreign keys
 - own table
- 1;1 relationships place the primary key from one entity and any attributes of that relationship into the other entity's table should include: own attributes, other's primary key, attributes for relationship
- 1:N relationships place primary key from the "1" side into "N" 's table N should include: own attributes, 1's parmary key
- N: m relationship create a new table with composite key new table: primary key from both entites, own attributes
- Boyce-Codd Normal Form every attribute fro an entity only
- Functional Dependency A → (B, C)
 A determines the value of B and C
 B, C depend on A

3.5 Beyond

1. Data Warehouse

A decision support database that is maintained separately from otganization's operational database used to find relationships between datas

- $\begin{tabular}{ll} 2. & Data Marts \\ & departmental subsets that focus a selected subjects \\ \end{tabular}$
- 3. Online Analytical Processing suports multidimensional data analysis

4 Networking

4.1 Overview

1. Definition

A coumputer network is two or more computers connected together so that they can share resources

2. Components

- Network Interface Card allowed computer to connect to netork
- Network Operation system routes and manages communications on the network and coordinates network resources
- Connection medium eg. wire, cable, radio waves
- Dedicated servers e.g. file server, email server, databse
- Hubs, bridges and switches connect machines on the same network and forward data from one to another
- Rounters connect two or more different networks
- Firewall hardware or software put between the internal network

3. Switching

- Circuit Switching create connection using wires like telephones
- Packet Switching

 Data is broken down to 1KB size
 sent it from source to destination

4. Topologies

Start, ring, bus start most popular, others are rare

5. Geographical Scale

- NFC near field communication up to 4 cm : apple pay and google pay
- PAN personal area network up to 10cm: Bluetooth
- LAN local area network within a small building: Wi-Fi
- WAN wide area network internet

6. Internet Protocal Suite

is a set of rules governing how data is exchanged in a network including Transmission Control Protocol(TCP), Internet Protocol(IP) each computer have unique IP

7. Different Layer

- Application Layer
 Defines protocol forapplicationes to exhanges data
- Transport Layer set up and manages the connection
- Internet Layer address and routes a packet throught the network
- Network Interface Layer Transporting a bit in the network medium

8. Physical Tansmission Media

- Twisted pair
- Coaxial cable
- Fiber optic cable
- Wirrless transmission

Bandwidth: the number of bits that can transmitted per second Latency: how long it takes to receive the first byte of data

9. Wireless communication

- Bluetooth for PAN, 10 metres or less
- Wifi for WLAN
- Wimax secure remote wireless access for longer distances (up to 50 kilometres)

- Generation Cellular Networks 1G voice only, 2G text, 3G-5G internet access 3G = 1-2mb/s, 4G = 4-200Mb/s, 5G 1Gb/s
- Cell towers 35km

10. WWW

- HyperText transfer Protocol (HTTP) strucutres the communication between the web browser
- Hypertext Markup Language (HTML) is the file type that a browser understands
- Uniform resoure locator (URL) webpage's address

11. IP addresses

away

every device have one when connected to internet with a domain name is the english like name

12. Voice Over IP

is a way of making telephone calls using the internet

13. VPN virtual private network provide ability to work remotely and scurely access files

14. Radio Frequency Identification (RFID) passive cost a few pennies, don't need battrry active: cost a few dollars, need a battery, can be red from over 100 feet

5 Management Information System

1. Key definition

- Data: raw facts
- Infromation: Data shaped into a form that is meaningful, to human
- Information technology all hardware and software that a firm needs to use inorder to achieve its business obejctives
- Information System IS:

 A set of interrelated component that connect, process, store and dsitribute information to support decision making and control

2. Demension of an information System

- Technical like processor, memory ...
- Organization(next topic) different group in a firm have different information needs rules are embedding in the information system
- Management make decision, furmulate action plans

3. Mission of MIS

To improve the performance of people

have automate data gathering, to convert business data into information with business intelligence

Business Interlligence: is IT to help user make better business decisions

4. Stargic objectives of an IS

- Create or main a competitive advantage
 - Oberational excellence, improved efficiency
 - Help develop new products
 - Understand customer and suppliers
 - Improved decision making
 - Survival
- Adapt to internal or external change

focused on the future, incremental improvement is guarantedd to make you obsolete

Creative Destruction

• Cost/Benefit Analysis

Need complementary assets: assets required to derive value from a primary investment

5. Contemporary Approaches: from IS to mIS

- Technical Approaches
 - Computer Science: methods of computation, storage and access
 - Operation Research: optimizing selected parameteres such as transportations costs, inverntory levels
 - Management Science: Models for decision making and manafaement practices
- Behaviour Approaches
 - Sociology: How IS affect individuals
 - Economics: production of digital goods, dynamics of digital marktes
 - Psychology: how humans decision makers use formal information
- Sociotechnical Approach optimal organizational performance is achieved by jointly optimizing both the social and technical systems consider both

6 Business Processes and Types of Information Systems

1. Business Processes

Are the collection of activities required to produce a product or service how they might be improved by using information technology use IS to automated BP

2. Business function

each business is a collection of business functions

- Manufacturing and production producing and delivering products and services
- sales and marketing selling the organization's products and services
- Finance and accounting

 Managing the organization's financial assets and records
- Human resources attracting, developing and maintaining the organization's labour force

3. Type of IS

(a) Sales and Market

- Which business process can be automated ordering process, order fulfillment...
- What data can be gather individual order: what, when, where customer data: name, contact info, purchases, return
- WHat info can help improve business purchase habits, promotion stategy Terminology: called Customer relationship management(CRM)

(b) Manufacturing and production

- Which business processes can be automated? making of individual parts, assembling testing, stocking/shelving
- what data can be gather? inventory of parts, products
- What imformation can help improve business? efficiency of the production process
 Called Supply Chain management(SCM)

(c) Finance and accounting

- Which business processes can be automated? Everything with money
- what data can be gather? inventory, pruchase order, AP, sales order, billing, AR
- What imformation can help improve business? cash flow, financial status ...
 Called Accounting information System(AIS)

(d) HUman resources

- Which business processes can be automated? automatic deposits, tax forms, pay slips
- what data can be gather? recuriting, hiring and reassignment, payroll, time, attendance...
- What imformation can help improve business?
 high employee turnover in a certain area
 Human resources management System(HRMS) or HUman resources information System(HRIS)

4. Types of Management

- Senior Management is concerned with long range use ESS
- Middle Management concered with implementing the plans of the senior management use DSS, MIS
- Operational Management concerned with monitoring the day-to-day activities use TPS

5. IS for different management

• TPS

Automates the business process, record stuff for day-to-day stuff

MIS

provides routine repots on department's current performance to middle management $\,$

reports contain same information of each time they produced

• DSS

Supports ad-hoc(non-routine, the first time this question has been asked and this information has been created) create sattistical model

• ESS

supports ad-hoc, decision requiring judgment, evaluation, and insight by senior management provide view for entire company, sepcialized version of DSS

• Enterprise Resource Planning (ERP)
Integrates many of the existing IS into a big system
make report to all level

7 Organizatios and IS

1. Feature of organization

Behavioural View: rights and obligations apply to everyone, whereas privilieges and responsibilities depend on your role

- Rountines and Business Processes organizations become very efficient over time because they develop rountines
- Organization Politics people with different background will struggle for limited company resources
- Organizational Culture: unquestioned assumptions that organizations make about their goals and products
- Organizational Enviornment government, competitors, customers, financial institutions
- Organizational Structure different organizational sturctures would have different IS
- Other organizational features democratic/authoritarian leadership

2. Impact of IS on organizations

- reduce transactional cost cost associated with an organization buying a product or service
- reduce agency costs cost of managing employees
- IT flattens organizations management more efficient
- IT innovations cause resistance the organizational structure

3. Porter's Competitive Forces Model

- Competitors
- New market entrants
- subsitute products
- customers
- suppliers
- government

4. Competitive strategies

- decrease costs, increase quality
- differentiate products, enable new products
- focus on market niche
- develop strong ties with suppliers and customers
- 5. Business value chain model find where IS are particularly useful
 - Primary activities: directly related to create product or service automated warehouse, computer control manufacturing
 - Support activities: make primary possible electronic schuduling and messaging system...

8 Social, Ethical, and Legal Issues

1. Technology trends

- Storage costs decresing jcheaper to store lots of info about people
- Computing power increases more dependence on computers
- Big data techniques can develop profiles of people and make prediction
- Growth of internet easy to access or buy personal data
- Growth of mobile phone usage location may be tracked witout user knowledge

2. IMplications

- Personal information(PI) right and obligations
- Digital property right and obligations
- Data and system quality
- Accountability, liablility and control
- Quality of life

3. Key legal terms

- Responsibility accepting the potential cost, dutires
- Accountability provide mechanism to identify who is responsible
- Liability laws exist that permit individuals to recover damages
- Due process laws are well known and understood, can appeal to a higher authority

4. Ethical Principles

- Golden Rule

 Do unto others as you would have them do unto you
- Kant's categorical imperative if an action is not right for everyone to take, then it is not right for anyone
- Descartes rules of change
 if an action cannot be taken repeatedly, then it is not right to be
 taken at all time
- Utilitarian Principle take the action that achieves the higher or greatest value of all concrened
- Risk aversion principle take actions that do not have a high cost of failure

5. PI in canada

Personal Information Protection and Electronic Documents $\operatorname{Act}(\operatorname{PIPEDA})$ include

- demographics age, income, ethnic origin, religion, martital status
- internet email, content of email, IP
- physical age, height, weight....
- financial purchases, spending habits, banking information....

Treatment of PI

- Accountability: appoint someone to be resposible
- Consent: inform you purpose of collecting that info
- Limiting use: only use of the purpose you claim
- Safeguards: you PI must be protected
- Individual access: you have right to access your PI
- Identifying purposes: reason for collecting PI
- limiting collection: only gather information that is necessary
- Accuracy: should keep your info accurate
- \bullet Openness: privacy policy should be easy to find and understand
- Resources: you should provided with a complaint procedure

6. Terms of service

is the name we give to the document you consent to when you use

7. WWW challenges to privacy

Cookies

a website store a unique bit of data(like an account number) on your device

like primary key for database

• Third party cookies

companies like facebook, google, amazon, track your activity across many websites

• Web beacons

website can tell if you viewed a certain item

• spyware

that gather information about user without user's knowledge

- Internation mobile (station) equipment identity(IMEI) each smartphone has a unique one, tracks that device and can be used to blacklist a phone in case of theft
- Browser fingerprinting each pc/phone has many seeting and hardware specs the combination make a pc/phone unique

8. Stratigies of protect PI

- Use 2 browser one for dat-to-dat access one for more private access
- use a old computer for private access
- Use a public computer

9. Interllectual property (IP)

is intangible property created by individuals or corporation

• Trade secret

is intellectuall work or product belonging to a business confers economic advantage, and reasonable attempts have been made to keep it secret

• Copyright

copyright protects original literary.....

• Patent

grants the owner an exclusive monopoly on the ideas behind an invention between 17 and 20s

key: originality(you crated it), novelty(new idea), invention(useful, solve a problem)

9 Security

- 1. Secure Communication terms
 - encryption: rendern message unreadable
 - decryption: retrieve the original message
 - strength: number of possible key
 - symmetric key encryption: the same key is used for both en and de
 - Brute force search: try every possible key
 - Computationally secure: it will take attacker a very long time to solve
 - Hash function is a function that map input of anysize onto an output of a fixed size
 - Key distribution Problem use public key encryption to solve it

2. Public key encryption

for symmetric key encryption, you have a single key public key encryption use 2 key: public key and private key, and are mathematically related which must be used in pair

3. Digital signature

goal: show that message came from the sender rather than an imposter

4. Certificates

The certificate has the digital signature of a known certificate Authority (CA)

https is based on using this contain information about sender and public key

- 5. Secure Browsing steps
 - Amazon create 2 key,
 - send public key to CA, get certificates, contain info about amazon and public key
 - show certificate to pat's browser
 - browser check certificate by CA's public key, browser get public key from certificate
 - also generate a symmetric key and encrypts using Amazon's public key and send back to amazon, only amazon can decrpt it (by it's private key)
 - now use symmetric key to communicate

6. Terms

- tapping: eavesdropping on telephone lines
- sniffing: eavesdropping on computer network
- Radiation: intercept signial without damaging the wire
- web scraping

7. Classes of Threats

- Malware: malicious software software designed to cause damage to a pc
- Computer virus software that attaches to other program or data in order to be executed
- worm similar to viruese but run on their own
- Trojan horse a software that appears to be good, but does something bad behind the scenes
- Phishing an eamil or text message that pretends to come from a trusted authority ask for confidential information
- Denial of Service Attack(DOS): many computer overwhelm a website requesting service
- Sniffing eavesdropping on network communication
- Spam junk email
- Botnet a collection of PC that used together for common purpose
- Ransomware software that threatens user's information unless a ransom is paid

8. Computer Scurity

policies: password must have two special charcters procedures: eg. how to get access to eduroam technical measures: two factor authentication

9. Security Service

- Authentication: make sure the other party is the one we want
- Access Control: prevention of unauthorized use of resource
- Data confidentiality: protect data from unauthorized disclosure
- Data Integrity: assurance the data get is what they send
- Availability: assurance service is available when needed
- Non-repudiation: keep the message between partys

10. Wireless Security

- Bandwidth
- Security
- Authentication

11. Security and control framework

- Risk Assessment: Determine level of different risk to the firm
- Security Policy: identities main sentiry risks, acceptable security goals, mechanisms to achieve these goals
- Acceptable Use Policy(AUP) state the acceptable uses and users's info
- Disaster Recovery Planning get IT running after disruption: back up system/file
- Business Continuity Planning get business up and running after disaster
- Security Auditing: check current secutivy and control framework

10 Managing Knowledge

1. a