In [2]:	Import Packages
±11 [2].	import random from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import numpy as np from numpy.random import randint from random import choice from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier
	<pre>import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings("ignore", category=FutureWarning)</pre> Data Preparation
In [3]: Out[3]:	0 6 148 72 35 0 33.6 0.627 50 1
	1 1 85 66 29 0 26.6 0.351 31 0 2 8 183 64 0 0 23.3 0.672 32 1 3 1 89 66 23 94 28.1 0.167 21 0 4 0 137 40 35 168 43.1 2.288 33 1 763 10 101 76 48 180 32.9 0.171 63 0
	764 2 122 70 27 0 36.8 0.340 27 0 765 5 121 72 23 112 26.2 0.245 30 0 766 1 126 60 0 0 30.1 0.349 47 1 767 1 93 70 31 0 30.4 0.315 23 0 768 rows × 9 columns
In [4]: Out[4]:	
TD [5]	SkinThickness False Insulin False BMI False DiabetesPedigreeFunction False Age False Outcome False dtype: bool
In [5]: In [6]: In [7]:	<pre>X = data.drop(['Outcome'], axis=1) y = data['Outcome'] X_train , X_test , y_train , y_test = train_test_split(X , y , test_size=0.2 , random_state=42) print("X_train", X_train.shape)</pre>
	print("X_test", X_test.shape) X_train (614, 8) X_test (154, 8) Features Scaling
In [8]: In [9]:	<pre>from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) x_train_salced = scaler.transform(X_train) x_test_salced = scaler.transform(X_test)</pre> pd.DataFrame(x_train_salced).head().style.set_caption('Data After Scaling')
Out[9]:	
	3 -1.130523 1.254179 -1.049617 -1.322774 -0.701206 -1.303720 -0.639291 2.792122 4 0.681856 0.410665 0.572222 1.076490 2.484601 1.838121 -0.686829 1.139095 Data Visualization
In [21]:	Diabetic, NonDiabetic = y.value_counts() print('Number of Diabetic: ',Diabetic) print('Number of NonDiabetic : ',NonDiabetic) Number of Diabetic: 500 Number of NonDiabetic : 268
	500 - 400 - 100 - 200 -
In [25]:	100 - Outcome
Out[25]:	correlation.fig.set_figwidth(15) correlation.fig.set_figheight(8) correlation.fig.suptitle("correlation between Age and Glucose ") Tayt(0.5, 0.00, learnelation between Age and Glucose 1)
	200
	150 - 125 - 8 100 -
	75 - 50 -
In [100.	25 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
	<pre>bins = list(range(20,65,2)) plt.figure(figsize = (20,8)) plt.hist(data['Age'].astype(int), width = 4, align = 'mid', bins = bins, color = '#ce1414', edgecolor = 'black') plt.xticks(bins) plt.xlabel('Ages') plt.xlabel('Ages in dataset') plt.title('Ages in dataset') plt.yticks(np.arange(0,110,4)) plt.show()</pre>
	Ages in dataset
	100 - 96 - 92 - 88 - 84 - 80 - 76 - 77 - 68 - 68 - 68 - 64 - 60 - 55 - 52 -
	48 - 44 - 40 - 36 - 32 - 28 - 24 - 20 - 16 - 40 - 40 - 40 - 40 - 40 - 40 - 40 - 4
In [121	12
Out [121	correlation.fig.set_figwidth(15) correlation.fig.set_figheight(8) correlation.fig.suptitle("correlation between Skin Thickness and Blood Pressure ") Text(0.5, 0.98, 'correlation between Skin Thickness and Blood Pressure ') correlation between Skin Thickness and Blood Pressure
	120
	80 - 80 - 80 - 80 - 80 - 80 - 80 - 80 -
	40 - 20 -
In [131	plt.title("all correlations between features")
Out[131	all correlations between features
	90 - 0.129
	- 0.141 0.153 1.000 0.207 0.089 0.282 0.041 0.240
	SSELUTION
	Image: Second control of the contro
	- 40.034 0.137 0.041 0.184 0.185 0.141 1.000 0.034 - 0.034 0.137 0.041 0.184 0.185 0.141 1.000 - 0.034 - 0.034 0.137 0.041 0.184 0.185 0.141 1.000 - 0.034
	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age SVM Model Without GA
In [83]: Out[83]:	<pre>svm = SVC(random_state=1) svm.fit(x_train_salced,y_train)</pre>
In [84]: In [85]:	<pre>y_pred = svm.predict(x_train_salced) y_pred_test = svm.predict(x_test_salced)</pre>
In [86]:	0.8338762214983714 0.7337662337662337 SVM Model With GA
111 [00].	<pre>def model_SVM(C ,gamma , kernel): model = SVC(C=C ,gamma=gamma , kernel=kernel) model.fit(x_train_salced,y_train) return model Genetic Algorithm Steps</pre>
	Initialization
	Fitness assignment Selection
	Crossover
	Stopping criteria = false
In [87]:	↓ ● Initialization
	<pre>parameters = {} C = randint(1,10) parameters["C"] = C gamma = choice(['auto' , 'scale']) parameters["gamma"] = gamma</pre>
In [88]:	<pre>kernel = choice(['linear', 'poly', 'rbf', 'sigmoid']) parameters["kernel"] = kernel return parameters initialization()</pre>
Out[88]:	<pre>def generate_population(n): population = [] for i in range(n): chromosome = initialization() population.append(chromosome) return population</pre>
In [90]: Out[90]:	<pre>generate_population(4) [{'C': 1, 'gamma': 'scale', 'kernel': 'sigmoid'}, {'C': 7, 'gamma': 'scale', 'kernel': 'rbf'}, {'C': 9, 'gamma': 'auto', 'kernel': 'poly'}, }</pre>
In [91]:	<pre>{'C': 6, 'gamma': 'scale', 'kernel': 'rbf'}] Fitness functions are used in genetic programming and genetic algorithms to guide simulations towards optimal design solutions def fitness_evaluation(model): y_pred_test = model.predict(x_test_salced) acc = accuracy score(y test y pred_test)</pre>
	acc = accuracy_score(y_test,y_pred_test) return acc Selection Stochastic Universal Sampling is quite similar to Roulette wheel selection, however instead of having just one fixed point, we have multiple fixed points as shown in the following image. Therefore, all the parents are chosen in just one spin of the wheel. Also, such a setup encourages the highly fit individuals to be chosen at least once.
	The region of the wheel which comes in front of the fixed point is chosen as the parent. For the second parent, the same process is repeated. Chromosome Fitness Value
	Fixed Point A 8.2 B 3.2 C 1.4 D 1.2 E 4.2 F 0.3
In [92]:	<pre>def selection(population_fitness): total = sum(population_fitness) percentage = [round((x/total) * 100) for x in population_fitness] selection_wheel = [] for pop_index, num in enumerate(percentage):</pre>
	selection_wheel.extend([pop_index]*num) parent1_ind = choice(selection_wheel) parent2_ind = choice(selection_wheel) return [parent1_ind, parent2_ind] CrossOver
	a genetic operator used to combine the genetic information of two parents to generate new offspring Types of CrossOver One Point Crossover Multi Point Crossover Uniform Crossover
	Whole Arithmetic Recombination Davis' Order Crossover Here we used One Point Crossover 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 3 5 7 5 8
In [93]:	def crossover(parent1, parent2): child1 = {}
	<pre>child2 = {} child1["C"] = parent2["C"] child2["C"] = parent1["C"] child1["gamma"] = parent1["gamma"] child2["gamma"] = parent2["gamma"] child1["kernel"] = parent2["kernel"]</pre>
	child2["kernel"] = parent1["kernel"] return [child1, child2] Mutation mutation may be defined as a small random tweak in the chromosome, to get a new solution
	Types of Mutation • Bit Flip Mutation • Random Resetting • Swap Mutation • Scramble Mutation
In [95]:	• Inversion Mutation In our code we used Bit Flip Mutation O O O O O O O O O
. [ช5] :	<pre>def mutation(chromosome): kernel = choice(['linear', 'poly', 'rbf', 'sigmoid']) if kernel == 'sigmoid': chromosome["kernel"] = 'linear' return chromosome</pre> Start GA
In [96]:	<pre>generations = 500 acc_threshold = 90 num_pop = 10 population = generate_population(num_pop) for generation in range(generations): population_fitness = []</pre>
	<pre>population_fitness = [] for chromosome in population: C = chromosome['C'] gamma = chromosome['gamma'] kernel = chromosome['kernel'] model = model_SVM(C ,gamma , kernel) acc = fitness_evaluation(model)</pre>
	<pre>print("Parameters: ", chromosome) print("Accuracy: ", round(acc,3)) population_fitness.append(acc) parents_ind = selection(population_fitness) parent1 = population[parents_ind[0]] parent2 = population[parents_ind[1]] children = crossover(parent1, parent2) child1 = mutation(children[0])</pre>
	<pre>child2 = mutation(children[1]) population.append(child1) population.append(child2) print("Generation ", generation+1," Outcome: ") if max(population_fitness) >= acc_threshold: print("Obtained desired accuracy: ", max(population_fitness)) break else:</pre>
	<pre>else: print("Maximum accuracy in generation {} : {}".format(generation+1, max(population_fitness))) first_min = min(population_fitness) first_min_ind = population_fitness.index(first_min) population.remove(population[first_min_ind]) second_min = min(population_fitness)</pre>
	<pre>second_min_ind = population_fitness.index(second_min) population.remove(population[second_min_ind]) Parameters: {'C': 4, 'gamma': 'auto', 'kernel': 'sigmoid'} Accuracy: 0.649 Parameters: {'C': 1, 'gamma': 'scale', 'kernel': 'sigmoid'}</pre>
	Accuracy: 0.643 Parameters: {'C': 9, 'gamma': 'auto', 'kernel': 'rbf'} Accuracy: 0.708 Parameters: {'C': 6, 'gamma': 'scale', 'kernel': 'poly'} Accuracy: 0.766 Parameters: {'C': 9, 'gamma': 'scale', 'kernel': 'poly'} Accuracy: 0.753 Parameters: {'C': 1, 'gamma': 'scale', 'kernel': 'poly'} Accuracy: 0.747
	Parameters: {'C': 8, 'gamma': 'auto', 'kernel': 'rbf'} Accuracy: 0.701 Parameters: {'C': 9, 'gamma': 'auto', 'kernel': 'sigmoid'} Accuracy: 0.643 Parameters: {'C': 7, 'gamma': 'scale', 'kernel': 'rbf'} Accuracy: 0.708 Parameters: {'C': 8, 'gamma': 'scale', 'kernel': 'sigmoid'} Accuracy: 0.636 Generation 1 Outcome:
	Maximum accuracy in generation 1 : 0.7662337662337663

```
best_acc = round(max(population_fitness),2)
          print("SVM without GA: " , svm_acc)
          print("SVM with GA: " , best_acc)
         SVM without GA: 0.73
         SVM with GA: 0.77
          acc = {"SVM without GA" : svm_acc, "SVM with GA" : best_acc}
          models = list(acc.keys())
          values = list(acc.values())
          fig = plt.figure(figsize = (5, 5))
          # creating the bar plot
          plt.bar(models, values, color ='#6ff27d')
          plt.xlabel("Models")
          plt.ylabel("Accuracy")
          plt.grid(axis='y')
          plt.axhline(y=0.77, color='#ff0000', linestyle='-')
          plt.title("SVM Performance")
          plt.show()
                         SVM Performance
           0.8
           0.7
           0.6
           0.5
           0.4
           0.3
           0.2
           0.1
                  SVM without GA
                                     SVM with GA
                              Models
         KNN without GA
         When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2
          knn =KNeighborsClassifier(p=1)
          knn.fit(x_train_salced,y_train)
Out[76]: ▼ KNeighborsClassifier
         KNeighborsClassifier(p=1)
          y_pred_knn = knn.predict(x_train_salced)
          y_pred_test_knn = knn.predict(x_test_salced)
          print(accuracy_score(y_train,y_pred_knn))
          print(accuracy_score(y_test,y_pred_test_knn))
         0.8061889250814332
         0.6623376623376623
        KNN with GA
          def model_KNN(n_neighbors , p):
              knn_GA =KNeighborsClassifier(n_neighbors=n_neighbors , p=p )
              knn_GA.fit(x_train_salced,y_train)
              return knn_GA
In [51]:
          def initialization_KNN():
              parameters = {}
              n_{neighbors} = randint(5,50)
              parameters["n_neighbors"] = n_neighbors
              p = choice([2,1])
              parameters["p"] = p
              return parameters
          def generate_population_KNN(n):
              population_KNN = []
              for i in range(n):
                  chromosome = initialization_KNN()
                  population_KNN.append(chromosome)
              return population_KNN
In [39]
          generate_population_KNN(4)
Out[39]: [{'n_neighbors': 20, 'p': 2},
           {'n_neighbors': 34, 'p': 2},
           {'n_neighbors': 12, 'p': 2},
           {'n_neighbors': 16, 'p': 2}]
          def fitness_evaluation_KNN(model):
              y_pred_test_KNN_GA = model.predict(x_test_salced)
              acc_KNN = accuracy_score(y_test,y_pred_test_KNN_GA)
              return acc_KNN
          def selection_KNN(population_fitness_KNN):
              total = sum(population_fitness_KNN)
              percentage = [round((x/total) * 100) for x in population_fitness_KNN]
              selection_wheel = []
              for pop_index, num in enumerate(percentage):
                  selection_wheel.extend([pop_index]*num)
              parent1_ind_KNN = choice(selection_wheel)
              parent2_ind_KNN = choice(selection_wheel)
              return [parent1_ind_KNN, parent2_ind_KNN]
          def crossover_KNN(parent1_KNN, parent2_KNN):
              child1_KNN = {}
              child2_KNN = {}
              child1_KNN["n_neighbors"] = parent2_KNN["n_neighbors"]
              child2_KNN["n_neighbors"] = parent1_KNN["n_neighbors"]
              child1_KNN["p"] = parent2_KNN["p"]
              child2_KNN["p"] = parent1_KNN["p"]
              return [child1_KNN, child2_KNN]
          def mutation_KNN(chromosome):
              flag = randint(1,50)
              if flag >= 40:
                  chromosome["n_neighbors"] = 20
              return chromosome
          generations = 500
          acc\_threshold = 90
          num\_pop = 10
          population_KNN = generate_population_KNN(num_pop)
          for generation in range(generations):
              population_fitness_KNN = []
              for chromosome in population_KNN:
                  n_neighbors = chromosome['n_neighbors']
                  p = chromosome['p']
                  model_KNN_GA = model_KNN(n_neighbors , p)
                  acc_KNN_GA = fitness_evaluation_KNN(model_KNN_GA)
                  print("Parameters: ", chromosome)
                  print("Accuracy: ", round(acc_KNN_GA,3))
                  population_fitness_KNN.append(acc_KNN_GA)
              parents_ind_KNN = selection_KNN(population_fitness_KNN)
              parent1_KNN = population_KNN[parents_ind_KNN[0]]
              parent2_KNN = population_KNN[parents_ind_KNN[1]]
              children_KNN = crossover_KNN(parent1_KNN, parent2_KNN)
              child1_KNN = mutation_KNN(children_KNN[0])
              child2_KNN = mutation_KNN(children_KNN[1])
              population_KNN.append(child1_KNN)
              population_KNN.append(child2_KNN)
              print("Generation ", generation+1," Outcome: ")
              if max(population_fitness_KNN) >= acc_threshold:
                  print("Obtained desired accuracy: ", max(population_fitness_KNN))
                  break
              else:
                  print("Maximum accuracy in generation {} : {}".format(generation+1, max(population_fitness_KNN)))
              first_min_KNN = min(population_fitness_KNN)
              first_min_ind_KNN = population_fitness_KNN.index(first_min_KNN)
              population_KNN.remove(population_KNN[first_min_ind_KNN])
              second_min_KNN = min(population_fitness_KNN)
              second_min_ind_KNN = population_fitness_KNN.index(second_min_KNN)
              population_KNN.remove(population_KNN[second_min_ind_KNN])
         Parameters: {'n_neighbors': 36, 'p': 2}
         Accuracy: 0.753
         Parameters: {'n_neighbors': 48, 'p': 1}
         Accuracy: 0.773
         Parameters: {'n_neighbors': 16, 'p': 2}
         Accuracy: 0.747
         Parameters: {'n_neighbors': 42, 'p': 2}
         Accuracy: 0.753
         Parameters: {'n_neighbors': 43, 'p': 1}
         Accuracy: 0.786
         Parameters: {'n_neighbors': 46, 'p': 1}
         Accuracy: 0.773
         Parameters: {'n_neighbors': 12, 'p': 2}
         Accuracy: 0.721
         Parameters: {'n_neighbors': 28, 'p': 2}
         Accuracy: 0.753
         Parameters: {'n_neighbors': 31, 'p': 1}
         Accuracy: 0.766
```

svm_acc = round(accuracy_score(y_test,y_pred_test),2)

Parameters: {'n_neighbors': 25, 'p': 2}

Maximum accuracy in generation 1 : 0.7857142857142857

Accuracy: 0.74

Generation 1 Outcome:

After Chosing Best Parameter

```
knn_GA_last =KNeighborsClassifier(n_neighbors=43, p=1)
         knn_GA_last.fit(x_train_salced,y_train)
         y_pred_knn_last = knn_GA_last.predict(x_train_salced)
         y_pred_test_knn_last = knn_GA_last.predict(x_test_salced)
         print("KNN without GA: ",accuracy_score(y_test,y_pred_test_knn))
         print("KNN with GA: " , accuracy_score(y_test,y_pred_test_knn_last))
         KNN without GA: 0.6623376623376623
         KNN with GA: 0.7857142857142857
In [99]:
         KNN_acc = accuracy_score(y_test,y_pred_test_knn)
         best_knn_acc = accuracy_score(y_test,y_pred_test_knn_last)
In [114...
         acc = {"SVM without GA" : svm_acc,
                 "SVM with GA" : best_acc ,
                "KNN without GA" : KNN_acc,
                "KNN with GA" : best_knn_acc
         models = list(acc.keys())
         values = list(acc.values())
         fig = plt.figure(figsize = (10, 10))
         # creating the bar plot
         plt.bar(models, values, color ='#ffbb00')
         plt.axhline(y=0.785, color='#ff0000', linestyle='-')
         plt.xlabel("Models")
         plt.ylabel("Accuracy")
         plt.grid(axis='y')
         plt.title("Models Performance")
         plt.show()
```


This Part for explanation only for how selection function work

```
In [182 total = sum(test_population_fitness)
percentage = [round((x/total) * 100) for x in test_population_fitness]
selection_wheel = []
for pop_index,num in enumerate(percentage):
selection_wheel extend([pop_index]*num)
parent1_ind_KNN = choice(selection_wheel)
parent2_ind_KNN = choice(selection_wheel)

In [189 percentage

Out[189 [23, 16, 29, 32]

In [198 mylabels = [23, 16, 29, 32]
```

selection wheel

plt.figure(figsize=(20,8))

plt.show()

plt.title("selection wheel")

plt.pie(percentage, labels=mylabels)

