CPS demonstrátor kialakítása

Rádai Ronald

Konzulens: Huszerl Gábor

Budapest University of Technology and Economics Department of Measurement and Information Systems ftsrg Research Group

A féléves projekt lényege, hogy...

A BeagleBone

Technikai jellemzők:

- AM335x 1GHz ARM® Cortex-A8
- 512MB DDR3 RAM
- 4GB 8-bit eMMC on-board flash
- 2x 46 pin GPIO header
- USB host
- 10/100 Ethernet / WiFi b/g/n
- micro HDMI

Röviden összefoglalva:

- Egy Raspberry Pi-hez hasonló SBC
- Saját belső flash (nem kell hozzá SD kártya)
- Analóg bemeneti lábak
- Wired és Wireless verzió
- Debian támogatás

A projekt főbb lépései

Kamion összeszerelése/felépítése

Komponensek kapcsolata

Fordítás a BeagleBone-ra

Kezdeti problémák

- Alap mozgásokra képes kód megírása
- Fordítás a boardra
 - Fordítás Windows alól Cmake-kel
 - Fordítás Windows alól Visual Studioval
 - Fordítás WSL segítségével
 - Fordítás Debiannal
 - Fordítás Ubuntu 18.04 segítségével
- Futtató batch script megírása
- Kód átírása precízebb mozgásokhoz
- Kamion összeszerelése

Deploy script működése

Kamion összeszerelése/felépítése

Félév során elért eredmények

- Vezeték nélküli BeagleBone felkészítése a kamion irányítására
- BeagleBone kamionhoz kötése
- Tápellátás a beépített akkumulátorról egy feszültség szabályzó áramkör segítségével
- Lámpa
- Duda
- Új kommunikációs modell megtervezése

Tesztelés és összeszerelés

Beaglebone Black Pinout Diagram

LEGENDPower, Ground, Reset

Shared I2C Bus

	P9			
Function	Physical Pins		Function	
DGND	1	2	DGND	
VDD 3.3 V	3	4	VDD 3.3 V	
VDD 5V	5	6	VDD 5V	
SYS 5V	7	8	Szervo táp	
PWR_BUT	9	10	SYS_RESET	
UART4_RXD	11	12	Lámpa	
UART4_TXD	13	14	⊲otor előre PW▶	
Duda	15	16	dotor hátra PW ▶	
SPIO_CSO	17	18	SPIO_D1	
12C2_SCL	19	20	I2C_SDA	
SPIO_DO	21	22	vervo kormány)	
GPIO_49	23	24	UART1_TXD	
GPIO_117	25	26	UART1_RXD	
GPIO_115	27	28	SP11_CSO	
SP11_DO	29	30	GPIO_112	
SP11_SCLK	31	32	VDD_ADC	
AIN4	33	34	GND_ADC	
AIN6	35	36	AIN5	
AIN2	37	38	AIN3	
AIN0	39	40	AIN1	
GPIO_20	41	42	ECAPWMO	
DGND	43	44	DGND	

	P8			
Function	Physical Pins		Function	
DGND	1	2	DGND	
MMC1_DAT6	3	4	MMC1_DAT7	
MMC1_DAT2	5	6	MMC1_DAT3	
GPIO_66	7	8	GPIO_67	
GPIO_69	9	10	GPIO_68	
GPIO_45	11	12	GPIO_44	
EHRPWM2B	13	14	GPIO_26	
GPIO_47	15	16	GPIO_46	
GPIO_27	17	18	GPIO_65	
EHRPWM2A	19	20	MMC1_CMD	
MMC1_CLK	21	22	MMC1_DAT5	
MMC1_DAT4	23	24	MMC1_DAT1	
MMC1_DATO	25	26	GPIO_61	
LCD_VSYNC	27	28	LCD_PCLK	
LCD_HSYNC	29	30	LCD_AC_BIAS	
LCD_DATA14	31	32	LCD_DATA15	
LCD_DATA13	33	34	LCD_DATA11	
LCD_DATA12	35	36	LCD_DATA10	
LCD_DATA8	37	38	LCD_DATA9	
LCD_DATA6	39	40	LED_DATA7	
LCD_DATA4	41	42	LCD_DATA5	
LCD_DATA2	43	44	LCD_DATA3	
LCD_DATA0	45	46	LCD_DATA1	

Komponensek kapcsolata

Triviálisnak tűnik, de nem az...

A kommunikáció modellje... ...valamikor a jövőben

A projekt főbb eredményei

Működőképes DDS demonstrátor kamion

Automatizált deploy script a fordításhoz és a BeagleBone-ra másoláshoz

Biztonságosabb kommunikációs modell megtervezése