

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungstitel: Transformator							
Betreuer:				_			
Gruppennun	nmer:	41	Vorbereitung Durchführung Protokoll				
Name:	Tanja Maier, Johannes Winkler						
Kennzahl:	033 678	Matrikelnummer:	11778750, 00760897				
Datum:	23. Oktober 2020		WS _ 20				

1 Aufgabenstellung

2 Grundlagen und Versuchsaufbau

Abbildung 1: Versuchsaufbau Transformator. Tr
1 Regeltrenntrafo, Tr 2 Messtrafo, R_s Shunt (0.5 Ω), I_1 Primärstrom, I_2 Sekundärstrom, U_1 Primärspannung, U_2 Sekundärspannung, N_{1W} Leistungsmessung

3 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

Kürzel	Bezeichnung	Hersteller	Gerätenummer	Unsicherheit
DM	Digitalmultimeter	Leybold		
TF	Transformator	Ruhstrat		
A1	Amperemeter 1	Norma		$\pm 1.5\%$
A2	Amperemeter 2	Norma		$\pm 1.5\%$
V1	Voltmeter 1	Norma		$\pm 0.5\%$
V2	Voltmeter 2	Norma	VII/1121/3	$\pm 0.5\%$
SP	Spule			
WS	Widerstand		VII/695	
LWS	Lastwiderstand			
os	Oszilloskop	Rigol		
TT	Trenntrafo	Ruhstrat		

4 Durchführung und Messwerte

4.1 Leerlauf

Zuerst wurde die Schaltung gemäß Abbildung 1 aufgebaut, jedoch ohne das Amperemeter für den Sekundärstrom. Dan wurde eine Primärspannung von $U_1=160~{\rm V}$ angelegt. Die Unsicherheit bei Voltmetern sind 0.5%, bei Am-

peremetern 1.5%. Daher gilt insgesamt

$$U_1 = (160 \pm 1.2) \text{ V}$$

 $U_2 = (17.6 \pm 0.12) \text{ V}$
 $I_1 = (0.2 \pm 0.009) \text{ A}$
 $P_1 = (6.9 \pm 0.1) \text{ W}$

Da der Transformator im Leerlauf war, ist $I_2 = 0$ zu setzen.

4.2 Ohm'sche Last

Hier wird derselbe Aufbau verwendet, jedoch zusätzlich mit einem Verbraucher an der Sekundärseite. Es wird hier zusätzlich zur Sekundärspannung auch der Sekundärstrom I_2 gemessen. Der variable Widerstand wurde so gewählt, dass $I_2 < 1$ A ist. Es gilt

$$\begin{split} U_1 &= (160 \pm 1.2) \text{ V} \\ U_2 &= (16.6 \pm 0.12) \text{ V} \\ I_1 &= (0.24 \pm 0.009) \text{ A} \\ I_2 &= (0.68 \pm 0.02) \text{ A} \\ P_1 &= (19.3 \pm 0.1) \text{ W} \end{split}$$

5 Auswertung

5.1 Leerlauf

Für die Scheinleistung auf der Primärseite ergibt sich

$$S_1 = U_1 \cdot I_1 = 32 \text{ W}$$

Die Fehlerrechnung ergibt

$$\Delta S_1 = \Delta U_1 \cdot I_1 + U_1 \cdot \Delta I_1 = 1.68 \text{ W} \approx 2 \text{ W}$$

Die Blindleistung ist

$$Q_1 = \sqrt{S_1^2 - P_1^2} = 31.25 \text{ W}$$

Für die Fehlerrechnung gilt

$$\Delta Q_1 = \frac{S_1 \cdot \Delta S_1}{\sqrt{S_1^2 - P_1^2}} + \frac{P_1 \cdot \Delta P_1}{\sqrt{S_1^2 - P_1^2}} \approx 1.75 \text{ W} \approx 2 \text{ W}$$

Der Leistungsfaktor ist

$$\cos(\phi) = \frac{P_1}{S_1} = 0.22$$

Für die Fehlerrechnung gilt

$$\Delta\cos(\phi) = \frac{\Delta P_1}{S_1} + \frac{P_1}{S_1^2} \cdot \Delta S_1 = 0.01$$

5.2 Ohm'sche Last

Analog zum Leerlauf gilt hier für die Scheinleistung

$$S_1 = 37.6 \text{ W}$$
$$\Delta S_1 = 1.7 \text{ W}$$

Die Blindleistung ergibt

$$Q_1 = 37 \text{ W}$$
$$\Delta Q_1 = 1.8 \text{ W}$$

Der Leistungsfaktor ist

$$\cos(\phi) = 0.18$$
$$\Delta\cos(\phi) = 0.01$$

Zusätzlich kann man jetzt die Sekundärseitige Wirkleistung berechnen (unter Annahme der Ohm'schen Last)

$$P_2 = U_2 \cdot I_2 = 11.3 \text{ W}$$

Die Fehlerrechnung ergibt

$$\Delta P_2 = \Delta U_2 \cdot I_2 + U_2 \cdot \Delta I_2 = 0.4 \text{ W}$$

Der Wirkungsgrad kann folgend berechnet werden

$$\eta = \frac{P_2}{P_1} = 0.58$$

$$\Delta \eta = \frac{\Delta P_2}{P_1} + \frac{P_2}{P_1^2} \cdot \Delta P_2 = 0.02$$

Es fehlt noch die Verlustleistung und die dazugehörige Fehlerrechnung

$$P_V = P_1 - P_2 = 8.0 \text{ W}$$

 $\Delta P_V = \Delta P_1 + \Delta P_2 = 0.5 \text{ W}$

6 Zusammenfassung

Für den Leerlauf gilt

$$S_1 = (32 \pm 2) \text{ W}$$

 $Q_1 = (31 \pm 2) \text{ W}$
 $\cos(\phi) = (0.22 \pm 0.01)$

Da $I_2 = 0$ ist, gilt natürlich auch $P_2 = 0$ und $\eta = 0$.

Für die Ohm'sche Last gilt

$$S_1 = (38 \pm 2) \text{ W}$$

$$Q_1 = (37 \pm 2) \text{ W}$$

$$\cos(\phi) = (0.18 \pm 0.01)$$

$$P_2 = (11.3 \pm 0.4) \text{ W}$$

$$\eta = (0.58 \pm 0.02)$$

$$P_V = (8.0 \pm 0.5) \text{ W}$$

7 Diskussion

Abbildung 2: Transformator im Leerlauf. Channel 1 ist proportional zum Primärstrom, Channel 2 ist Sekundärspannung

Abbildung 3: Transformator mit Leerlauf. Channel 1 ist proportional zum Primärstrom, Channel 2 ist Sekundärspannung

A Python Skript

```
from math import sqrt
from math import sin
from math import cos
from math import pi

print("Aufgabe 1:")

U_1 = 160
Delta_U_1 = 1.2
U_2 = 16.8
Delta_U_2 = 0.12

I_1 = 0.2
Delta_I_1 = 0.009
P_1 = 6.9
Delta_P_1 = 0.1

print("Scheinleistung:")

S_1 = U_1 * I_1
```

```
\label{eq:delta_S_1} \mbox{Delta} = \mbox{Delta}_{-}\mbox{U}_{-}\mbox{1 * I}_{-}\mbox{1 + U}_{-}\mbox{1 * Delta}_{-}\mbox{I}_{-}\mbox{1}
print(str(S_1) + " +- " + str(Delta_S_1))
print("")
print("Blindleistung:")
Q_1 = sqrt(S_1**2 - P_1**2)
Delta_Q_1 = (S_1 * Delta_S_1 + P_1 * Delta_P_1)/Q_1
print(str(Q_1) + " +- " + str(Delta_Q_1))
print("")
print("Leistungsfaktor:")
cos_phi = P_1/S_1
\label{eq:delta_cos_phi} \mbox{ = Delta_P_1/S_1 + P_1/S_1**2 * Delta_S_1}
print(str(cos_phi) + " +- " + str(Delta_cos_phi))
print("")
print("")
print("")
print("Aufgabe 2:")
U_1 = 160
Delta_U_1 = 1.2
U_2 = 16.6
Delta_U_2 = 0.12
I_1 = 0.6/120*47
Delta_I_1 = 0.009
I_2 = 0.68
Delta_I_2 = 0.02 # 0.018
P_1 = 19.3
Delta_P_1 = 0.1
print("Primaerstrom: " + str(I_1))
```

```
print("Scheinleistung:")
S_1 = U_1 * I_1
Delta_S_1 = Delta_U_1 * I_1 + U_1 * Delta_I_1
print(str(S_1) + " +- " + str(Delta_S_1))
print("")
print("Blindleistung:")
Q_1 = sqrt(S_1**2 - P_1**2)
Delta_Q_1 = (S_1 * Delta_S_1 + P_1 * Delta_P_1)/Q_1
print(str(Q_1) + " +- " + str(Delta_Q_1))
print("")
print("Leistungsfaktor:")
cos_phi = P_1/S_1
Delta\_cos\_phi = Delta\_P\_1/S\_1 + P\_1/S\_1**2 * Delta\_S\_1
print(str(cos_phi) + " +- " + str(Delta_cos_phi))
print("")
print("Wirkleistung sekundaer, P2: ")
P_2 = U_2 * I_2
Delta\_P\_2 = Delta\_U\_2 * I\_2 + U\_2 * Delta\_I\_2
print(str(P_2) + " +- " + str(Delta_P_2))
print("")
print("Wirkungsgrad, eta: ")
eta = P_2/P_1
Delta_eta = Delta_P_2/P_1 + P_2/P_1**2 * Delta_P_1
print(str(eta) + " +- " + str(Delta_eta))
```

```
print("")
print("Verlustleistung P_V: ")
print(str(P_1-P_2) + " +- " + str(Delta_P_1 + Delta_P_2))
```

Listing 1: Python Skript

B Literaturverzeichnis

- [1] https://www.chemie.de/lexikon/Elektrochemisches_quivalent.html, 22.10.2020 22:53 Uhr
- [2] bereitgestellte Unterlagen zum Versuch aus dem TeachCenter der TU Graz