Numa de Montmollin Le 2 septembre 2014

Le Web des Objets, de la théorie à la pratique

Implémentation de plusieurs cas d'utilisation, utilisation et création d'outils pour développer des applications RESTful du Web des Objets

Plan

- 1. Bases théoriques
- 2. Objectifs
- 3. Réalisation
- 4. Cas d'utilisation
- 5. Implémentation du rideau de fer
- 6. Conclusions

1. Bases théoriques 1/2

- Le Web des Objets et ses technologies
 - Protocole HTTP
 - Applications REST
 - Différents formats d'échange de données
 - XML
 - JSON
 - HTML
 - etc

1. Bases théoriques 2/2

- Le xWoT méta-modèle
 - Développé par A. Ruppen
 - Un méta-modèle, définition
 - Trois niveau d'abstraction pour représenter une réalité
 - Le xWoT est composé de deux parties
 - La partie physique
 - La partie virtuelle

2. Objectifs

- Utiliser le xWot méta-modèle pour implémenter plusieurs objets connectés au Web
- Faciliter la création de futures applications du WoT

3. Réalisation de la partie physique

Arduino

Raspberry PI

Meccano

3. Réalisation de la partie virtuelle

- Plugins Eclipse et scripts Python pour la modélisation
- Framework Jersey pour le service Web
- Maven pour la gestion du projet et la génération automatique de code
- Ruby, Rubygems et Ruby on Rails pour le code côté client

4. Cas d'utilisation

Système d'aquaponie

Machine à caramels

Rideau de fer

5. Rideau de fer – Modélisation

Modélisation

- Composé de deux sous-devices (ouverture/ fermeture et verrouillage/déverrouillage)
- Forme deux ressources de contexte avec publishers
- Données échangées modélisées grâce au langage
 XSD

5. Diagramme d'utilisation

5. Rideau de fer – Arduino et service Web

- Programmer un Arduino
 - Contrôle de la porte
 - Communication avec le service Web
- Implémentation du service Web en trois parties:
 - Interagir avec l'Arduino en fonction de la requête du client
 - Ecriture de tests et donc simulation de l'Arduino
 - Gestion des notifications

5. Bibliothèque créée et utilisée pour l'implémentation du rideau de fer

5. Rideau de fer - Communication

- Communication entre l'Arduino et le service Web
 - Utilisation de JSON pour structurer les données
 - Un composant Arduino est représenté par un élément JSON
 - Un composant est identifié par le numéro du pin auquel il est branché sur l'Arduino
 - JSON transformé en objet Java et inversement getComponent(Tinkershield.i_0, LinearPotentiomenter.class);
- Semblable à l'utilisation d'une bdd traditionelle

5. Rideau de fer – Tests unitaires et d'intégration

- Développement plus aisé et plus rapide
- Nécessité de simuler l'Arduino
 - Utilisation de socat
 - Deux niveaux d'abstraction :
 - Simuler la lecture et l'écriture de chaînes de caractères
 - Simuler l'envoi d'informations représentant des composants de l'Arduino

5. Diagramme de simulation de l'Arduino

5. Rideau de fer - Clients

- Une interface graphique pour contrôler le rideau de fer
- Un outil en ligne de commande pour recevoir des notifications, appelé icwot (Inversion of Control for Web Of Things). Principe de l'inversion de contrôle

5. Rideau de fer - Conclusions

- Deux bibliothèques créées et utilisables comme dépendances Maven
- Définition d'un nouvel archétype Maven
- Un service Web avec Jersey
- Un client Web
- Un serveur pour recevoir les notifications (icwot)

6. Conclusions du travail

- Le méta-modèle offre de belles possibilités de développement
- Basé sur des technologies open-source, facilite l'implémentation de futurs applications du Web des Objets
- Plusieurs possibilités d'améliorations
 - Meilleure communication Arduino <-> Serveur
 - Langage de gestion des événements
 - Modélisations de composants matériels
 - Meilleure bibliothèque de tests