Class	:	BE - 8
Roll No	:	42410
Assignment No	:	2
Assignment Name	:	4-Bit USR
Date of Performance	:	19-9 to 3-10

BLOCK DIAGRAM

R37 ->		,
cix-		-> Sout
Sin->	USR	4
Pin#		Pout
rode >		
* Power hier	rarchy	
Highest		
3	CIK	
lowest	Mothe	
(equal)	sin, Pin	

TRUTH TABLE:

RST	CIK	Mode	Outputs / Mode
1	*	×	Sout = 0 Pout = 0000
. 0	T	00	SISO
. D	T	01	SIPO
Ø	7	10	P1 SP
0	74	11	bt bd

1 3	+ Mode L	atev	ney C	14.	0.0	cyclis)
12, 1	5950		444	4	8	V 2 (1)
- 1 150	SIPD	٠,	4+1	ે-	5	- V A
	PISO	1	1+4	2	5	
	PIPD	,2	1+1	:	2	

MAIN VHDL PROGRAM

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC STD.ALL;
entity USR is
  Port (rst:in STD_LOGIC;
     clk: in STD LOGIC;
     mode: in STD_LOGIC_VECTOR (1 downto 0);
     Sin: in STD_LOGIC;
     Pin: in STD_LOGIC_VECTOR (3 Downto 0);
     Sout: out STD LOGIC;
     Pout: out STD_LOGIC_VECTOR (3 downto 0));
end USR;
architecture USR_arch of USR is
  SIGNAL temp: STD LOGIC VECTOR(3 DOWNTO 0):="0000";
     SIGNAL flag: STD_LOGIC:='0';
    begin
    PROCESS(rst, clk, mode, Sin, Pin)
    BEGIN
         IF rst='1' THEN
             Sout <= '0';
             Pout <= "0000";
             flag <= '0';
         ELSIF falling_edge(clk) THEN
             CASE MODE IS
                 WHEN "00" => -- SISO
                      temp(3 DOWNTO 1) <= temp(2 DOWNTO 0);
                      temp(0) \le Sin;
                      Sout \leq temp(3);
                      Pout <="0000";
                      flag <= '0';
                 WHEN "01" =>
                                 --SIPO
                      temp(3 DOWNTO 1) <= temp(2 DOWNTO 0);
                      temp(0) \le Sin;
                      Pout<=temp;
                      Sout <= '0';
                      flag <= '0';
                 WHEN "10" =>
                                                --PISO
                      IF flag='0' THEN
                        temp <= Pin;
                      ELSE
                        temp(3 DOWNTO 1) <= temp(2 DOWNTO 0);
                           Sout \leq temp(3);
                      END IF;
                 flag <= '1';
```

```
WHEN OTHERS => -- PIPO

temp <= Pin;
Pout <= temp;
flag <= '0';
END CASE;
END IF;
END PROCESS;
end USR_arch;
```

RTL SCHEMATIC

Pout_mux0000<0>_imp

TECHNOLOGY SCHEMATIC

SYNTHESIS REPORT

A)Device Utilisation Summary

______ Final Report ______ **Final Results** RTL Top Level Output File Name : USR.ngr Top Level Output File Name **Output Format** : NGC **Optimization Goal** : Speed Keep Hierarchy : No **Design Statistics** # IOs : 14 Cell Usage: # BELS : 16 # INV : 1 # LUT2 : 1 LUT2 D : 1 : 1 LUT3 # LUT3 L : 1 # LUT4 : 10 MUXF5 : 1 # FlipFlops/Latches : 10 FDC 1 : 6 FDE_1 : 4 # Clock Buffers : 1 BUFGP : 1 # IO Buffers : 13 **IBUF** : 8 OBUF : 5 ______ Device utilization summary: _____ Selected Device: 3s250epq208-5 Number of Slices: 8 out of 2448 0% Number of Slice Flip Flops: 10 out of 4896 0% Number of 4 input LUTs: 15 out of 4896 0% Number of IOs: 14 Number of bonded IOBs: 14 out of 158 Number of GCLKs: 1 out of 24 4%

Partition Resource Summary:

No Partitions were found in this design.

B) <u>TIMMING REPORT</u>

TIMING REPORT

	E TIMING INFO	RMATION PL	SYNTHESIS ESTIMATE. EASE REFER TO THE TRACE REPORT			
Clock Information	:					
	-					
Clock Signal						
	BUFGP	10	l			
Asynchronous Cor						
Control Signal	+ rol Signal Buffer(FF name) Load					
rst	IBUF	6				
Timing Summary:						
 Speed Grade: -5						
Minimum period Minimum input Maximum outpu Maximum comb	arrival time be it required tim	fore clock: 3.9 e after clock:	4.063ns			
All values displayed in nanoseconds (ns)						
TIMING REPORT						
	E TIMING INFO	RMATION PL	SYNTHESIS ESTIMATE. EASE REFER TO THE TRACE REPORT			
Clock Information	:					
Clock Signal	•	· ·				
clk	BUFGP	10	l			
Asynchronous Cor	ntrol Signals In	formation:				

	+	+	+
Control Signal	Buffe	Load	
	+	+	+
rst	IBUF	6	
	· +	·+	+
Timing Summary:			

Speed Grade: -5

Minimum period: 2.957ns (Maximum Frequency: 338.192MHz)

Minimum input arrival time before clock: 3.993ns Maximum output required time after clock: 4.063ns Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

TEST BENCH PROGRAM

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE ieee.numeric_std.ALL;
ENTITY USR_tb IS
END USR_tb;
ARCHITECTURE usr_arch OF USR_tb IS
  -- Component Declaration for the Unit Under Test (UUT)
  COMPONENT USR
  PORT(
    rst: IN std_logic;
    clk: IN std_logic;
    mode : IN std_logic_vector(1 downto 0);
    Sin: IN std_logic;
    Pin: IN std_logic_vector(3 downto 0);
    Sout : OUT std_logic;
    Pout: OUT std_logic_vector(3 downto 0)
    );
  END COMPONENT;
 --Inputs
 signal rst : std logic := '0';
 signal clk : std_logic := '0';
 signal mode : std_logic_vector(1 downto 0) := (others => '0');
 signal Sin : std_logic := '0';
 signal Pin: std_logic_vector(3 downto 0) := "1001";
    --Outputs
 signal Sout : std_logic;
 signal Pout : std_logic_vector(3 downto 0);
 -- Clock period definitions
 constant clk_period : time := 10 ns;
BEGIN
    -- Instantiate the Unit Under Test (UUT)
 uut: USR PORT MAP (
     rst => rst,
     clk => clk,
     mode => mode,
     Sin => Sin,
     Pin => Pin,
     Sout => Sout,
     Pout => Pout
    );
 -- Clock process definitions
 clk_process :process
 begin
         clk <= '0';
```

```
wait for clk_period/2;
         clk <= '1';
         wait for clk_period/2;
 end process;
 -- Stimulus process
 stim_proc_rst: process
 begin
         rst<='1';
         wait for 300 ns;
         rst<='0';
         wait for 10 ns;
 end process;
-- Stimulus process
 stim_proc_mode: process
 begin
   mode <= "00";
    wait for 80 ns;
    mode <= "01";
    wait for 50 ns;
    mode <= "10";
    wait for 50 ns;
    mode <= "11";
    wait for 20 ns;
 end process;
 stim proc Sin: process
 begin
   wait for 10 ns;
         Sin <= '1';
         wait for 10 ns;
         Sin <= '0';
         wait for 10 ns;
         Sin <= '1';
         wait for 10 ns;
         Sin <= '0';
         wait for 10 ns;
         Sin <= '0';
         wait for 50 ns;
         Sin <= '1';
         wait for 10 ns;
         Sin <= '0';
         wait for 10 ns;
         Sin <= '1';
         wait for 10 ns;
         Sin <= '0';
         wait for 10 ns;
         Sin <= '0';
         wait;
 end process;
END;
```

ISIM WAVEFORMS

PIN-LOCKING REPORT

PlanAhead Generated physical constraints

```
NET "CLK" LOC = P132;

NET "RST" LOC = P204;

NET "mode[1]" LOC = P205;

NET "mode[0]" LOC = P206;

NET "Sin" LOC = P203;

NET "Pin[3]" LOC = P202;

NET "Pin[2]" LOC = P197;

NET "Pin[1]" LOC = P199;

NET "Pin[0]" LOC = P196;

NET "Sout" LOC = P193;

NET "Pout[3]" LOC = P186;

NET "Pout[3]" LOC = P187;

NET "Pout[1]" LOC = P187;

NET "Pout[1]" LOC = P185;

NET "Pout[0]" LOC = P181;
```

Conclusion:

Thus, we have:

- 1) Modeled a 4-bit USR using Behavioral Modeling Style.
- 2) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 3) Interpreted <u>Device utilization Summary</u> in terms of <u>LUTs, SLICES, IOBs, Multiplexers & D FFs</u> used out of the available device resources.
- 4) Interpreted the <u>TIMING Report</u> in terms of <u>Maximum combinational delay</u> as indicative of the <u>Maximum Operating Frequency</u>.
- 5) Written a TESTBENCH to verify the functionality of 4-bit USR & verified the functionality as per the TRUTH-TABLE, by observing ISIM <u>Waveform</u>.
- 6) Used Plan Ahead Editor for pin-locking.
- 7) Prototyped the FPGA **XC3S250EPQ208-5** to realize 4-bit USR & verified its operation by giving suitable input combinations