Teoría de Información y la Comunicación Clase 3

Temas de la Unidad:

- * Extensión de una fuente de memoria nula
- Fuentes con memoria: Fuentes de Markov

Consideremos una fuente de memoria nula S: $\{s_1, s_2, ..., s_q\}$, con una distribución de probabilidades P: $\{p_1, p_2, ..., p_q\}$. Se llama extensión de orden n de S o Sⁿ, a una fuente de memoria nula con un alfabeto de qⁿ símbolos: $\{\sigma_1, \sigma_2, ..., \sigma_{qn}\}$. Donde el símbolo σ_i se corresponde con una secuencia determinada de n símbolos de la fuente S.

Supongamos una fuente S: $\{s_1, s_2\}$ con probabilidad P: $\{0.4, 0.6\}$, una fuente S³ sería:

s1	s1s1	s1s1s1
s1	s1s1	s1s1s2
s1	s1s2	s1s2s1
s1	s1s2	s1s2s2
s2	s2s1	s2s1s1
s2	s2s1	s2s1s2
s2	s2s2	s2s2s1
s2	s2s2	s2s2s2

Los símbolos de Sⁿ resultan de obtener todas las combinaciones de los q símbolos de S tomados de a n.

La probabilidad de σ_i , $P(\sigma_i)$, es la probabilidad de la secuencia de símbolos $\{s_{i1}, s_{i2}, ..., s_{in}\}$ entonces la $P(\sigma i) = P_{i1} P_{i2} ... P_{in}$, ya que la aparición de cada símbolo es estadísticamente Independiente. Si volvemos al ejemplo precedente:

s1s1s1	0.4*0.4*0.4	0,064
s1s1s2	0.4*0.4*0.6	0,096
s1s2s1	0.4*0.6*0.4	0,096
s1s2s2	0.4*0.6*0.6	0,144
s2s1s1	0.6*0.4*0.4	0,096
s2s1s2	0.6*0.4*0.6	0,144
s2s2s1	0.6*0.6*0.4	0,144
s2s2s2	0.6*0.6*0.6	0,216

$$3 \times 0.096 + 3 \times 0.144 + 0.064 + 0.216 = 1$$

$$H(S^n) = \sum_{i=1}^{n} P(\sigma_i) * P(\frac{1}{\sigma_i})$$

$$H(S^n)=n*H(S)$$

Viendo nuestro ejemplo anterior:

$$H(S) = 0.4* \log_2(1/0.4) + 0.6* \log_2(1/0.6) = 0.971$$

Y la H(S³) será : $0.064*log_2(1/0.064) + 3*0.096*log_2(1/0.096) + 3*0.144*log_2(1/0.144) + 0.216*log_2(1/0.216) = 2,912 = 3 * 0.971$

Recordemos que una fuente se puede clasificar por:

Rango de valores:

Continúa: Rango continuo de valores.

Discreta: Rango finito de valores.

Relación entre sus símbolos:

Sin Memoria: el símbolo s_i es estadísticamente independiente de los símbolos anteriores.

Con Memoria de orden k: el símbolo s_i es estadísticamente dependiente de los k símbolos anteriores.

Teoría de la Información y la Comunicación

Un tipo de fuente con memoria se caracteriza porque teniendo un alfabeto de q símbolos S: $\{s_1, s_2, ..., s_q\}$ la probabilidad que se emita el símbolo s_i dependerá de los m símbolos anteriores. La fuente en cuestión se denominará una "**fuente de memoria no nula de orden m**"

Las fuentes de Markov, son fuentes de memoria no nula.

Una Fuente de Markov vendrá definida por un alfabeto $S=\{s_1, s_2, ..., s_q\}$, el conjunto de probabilidades condicionales: $P(s_i/s_{j1}, s_{j2}, ..., s_{jm})$ para i=1, 2, ..., q, jp=1,2, ..., q. Donde s_i será el símbolo a generar y $s_{j1}, s_{j2}, ..., s_{jm}$ es la secuencia de los últimos m símbolos generados, siendo s_{im} el último de ellos, es decir, que s_i iría detrás de s_{im} .

Teoría de la Información y la Comunicación

La probabilidad de emitir un símbolo depende solo del símbolo emitido en el instante anterior

Podemos graficar la fuente mediante un **diagrama de estados** donde los estados son círculos y las transiciones entre estados son arcos. Las probabilidades se colocan como etiquetas en los arcos.

Teoría de la Información y la Comunicación

Ingeniería Informática

Facultad de Ingeniería de la Universidad Nacional de Mar del Plata

También se puede representar mediante una matriz de transición

$$M_{j/i} = \begin{pmatrix} s_1 & s_2 & s_i & \dots \\ P_{1/1} & P_{1/2} & \cdots & P_{1/i} & \cdots \\ P_{2/1} & P_{una\ matriz} & P_{2/i} & \cdots \\ P_{j/1} & P_{j/2} & \cdots & P_{j/i} & \cdots \\ & \vdots & \ddots & \vdots & \ddots \\ P_{j/1} & P_{j/2} & \cdots & P_{j/i} & \cdots \\ \end{pmatrix} s_1$$

Donde se cumple que:

$$\sum_{j} (P(S(t+1)=s_{j}/S(t)=s_{i})) = \sum_{j} P_{j/i} = 1$$

Por ejemplo:

$$M = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} \stackrel{0}{=}$$

$$M = \begin{pmatrix} 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} \stackrel{1}{=}$$

- Es aquella que, observada durante un tiempo suficientemente largo, emite (con probabilidad 1) una secuencia "típica de símbolos".
- Si una secuencia es lo suficientemente grande, contendrá casi con toda certeza, números de símbolos y combinaciones de símbolos que son independientes de la secuencia particular.
- Esta distribución única recibe el nombre de distribución estacionaria del proceso ergódico de Markov y puede calcularse directamente a partir de las probabilidades condicionales de los símbolos.

Teoría de la Información y la Comunicación

La distribución de probabilidades en cada t (vectores de estado) va variando con la evolución del proceso de emisión de símbolos, hasta estabilizarse o estacionarse estado estacionario V*

Condiciones de existencia de V*:

- conjunto finito de estados
- fuente ergódica (todos los estados del proceso son alcanzables desde otro estado no hay estados o clases absorbentes)

Teoría de la Información y la Comunicación

Como el estado estacionario es independiente de las condiciones iniciales, puede obtenerse a partir de las probabilidades condicionales:

$$V^* = M \cdot V^*$$
, luego
 $(M - I) V^* = 0$
además, $\sum v i^* = 1$

Si una fuente $S=\{s_1, s_2, ..., s_q\}$ se modeliza como una fuente markoviana (de orden 1) mediante su matriz M de transición con probabilidades condicionales $\{pj/i\}$ y posee probabilidades estacionarias $V^*=\{p_1^*, p_2^*, ..., p_q^*\}$. La entropía de la fuente markoviana S es:

$$H_1 = \sum_{i} p_i * \sum_{j} p_{j/i} \log \frac{1}{p_{j/i}}$$

Si s_{i1} , s_{i2} ,..., s_{im} es el estado y si el símbolo recibido, la cantidad de información obtenida es:

$$I(s_i/s_{j1}, s_{j2}, s_{jm}) = \log \frac{1}{P(s_i/s_{j1}, s_{j2}, s_{jm})}$$

La cantidad media de información proporcionada por símbolo es:

$$H(S/s_{j1}, s_{j2}, s_{jm}) = \sum_{i=1}^{q} P(s_i/s_{j1}, s_{j2}, s_{jm}) \log \frac{1}{P(s_i/s_{j1}, s_{j2}, s_{jm})}$$

La cantidad media de información por símbolo, de una fuente de Markov de orden m es:

$$H(S) = \sum_{S^{m}} P(s_{j1}, s_{j2}, s_{jm}) H(S/s_{j1}, s_{j2}, s_{jm})$$

Es decir:

$$H(S) = \sum_{S^{m+1}} P(s_{j1}, s_{j2}, \dots s_{jm}, s_i) \log \frac{1}{P(s_i/s_{j1}, s_{j2}, \dots s_{jm})}$$

Teoría de la Información y la Comunicación

Problema:

La trayectoria de un coche se puede modelar como la de una pieza que se mueve a través de una retícula cuadriculada con pasos elementales, en direcciones verticales u horizontales, dando un único paso cada vez. Así, se puede representar su movimiento como una sucesión de símbolos del conjunto N, S, E, y W, que representan los sucesivos pasos en las direcciones norte, sur, este y oeste, respectivamente.

El comportamiento de este coche tiene memoria: el 50 % de las ocasiones repite el movimiento anterior y, en el resto de los casos, da un giro de 90 ° a la derecha (con probabilidad 30 %) o a la izquierda (con probabilidad del 20 %) respecto del paso anterior.

Se pide:

- a) Modelar el proceso que describe el movimiento.
- b) Calcular la probabilidad de cada uno de los símbolos.
- d) Determinar la entropía.

Teoría de la Información y la Comunicación