WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

PCT

PCT WORL	D INTELLECTUA Interna	ational Bureau	TON TREATY (PCT)
PCT INTERNATIONAL APPLICATION	PUBLISHED ((11) International Publication Number	WO 00/67470
(51) International Patent Classification 7:	t t	(43) International Publication Date:	9 November 2000 (09.11.00)
H04N 5/00			CA, CN, JP, KR, NZ, ZA.
(21) International Application Number:	PCT/US00/110	(81) Designated States: AU, BR, European patent (AT, BE, C	CH, CY, DE, DK, ES, FI, FK,

(21) International Application Number:

(22) International Filing Date:

24 April 2000 (24.04.00)

(30) Priority Data: 09/304,908

4 May 1999 (04.05.99)

US

(71) Applicant: UNISYS CORPORATION [US/US]; Township Line and Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424-0001 (US).

(72) Inventors: SIPPLE, Ralph, E.; 4410 Cumberland Court, Shoreview, MN 55126 (US). MCBREEN, James, R.; 484 Wabasso Court, Shoreview, MN 55126 (US). STANTON, Michael, F.; 1157 Main Street, Lino Lakes, MN 55014-2123 (US).

(74) Agents: STARR, Mark, T. et al.; Unisys Corporation, Township Line and Union Meeting Roads, P.O. Box 500, Blue Bell, PA 19424-0001 (US).

signated States: AU, BR, CA, CN, JP, KR, NZ, ZA, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: VIDEO ON DEMAND SYSTEM

A method of and apparatus for efficiently providing video on demand services to a cable television subscriber. The provider system (57) Abstract consists of two major subsystems. The first subsystem, called a video server (20, 22, 24), streams video to video on demand subscribers through the cable television network. The second subsystem, called the transaction server (12), performs virtually all remaining provider functions including security, accounting, storage and spooling of video data, etc. The video server (20, 22, 24) is preferably implemented using a plurality of personal computers. The transaction server (12) preferably uses a large scale mainframe computer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

WO 00/67470

VIDEO ON DEMAND SYSTEM

BACKGROUND OF THE INVENTION

5

10

15

20

- 1. <u>Field of the Invention</u>: The present invention generally relates to digital data transmission of video information and more particularly to the delivery of user selected video information to subscribing users.
- 2. <u>Description of the Prior Art:</u> The mass distribution of video programming signals (i.e., television) was originally accomplished primarily by the broadcasting of a very high frequency (i.e., VHF) carrier containing an amplitude modulated video signal and a frequency modulated audio signal. Through the addition of more broadcasting transmitters, a modest number of different programming signals could be simultaneously distributed to a large number of potential users with a modest capital commitment. Using this technique, the capital commitment increases almost linearly with number of different programming channels within the limits of the available spectrum space for separate and independent carriers.

Within a couple of decades, most of the scarce VHF spectrum space had been committed, and increasing demand for additional programming channels resulted in the allocation of spectrum space in the ultra-high frequency (i.e., UHF) region. Whereas virtually all receivers became UHF compatible, as a matter of policy, and UHF channels

were assigned to requesters, it was appreciated that there were no economies of scale through the addition of more broadcast programming channels.

5

10

15

The cable television channel era was the result, wherein a capital commitment was required to wire each user home within a service area. As a result, about one hundred separate programming channels became readily available at a lesser cost than providing the same number of channels using conventional broadcast means. Initially, cable television was simply an analog system in which low power modulated carriers were transferred over a coaxial cable rather than being broadcast into the ether at substantially higher power levels. The cost saving was realized because the broadcasting was accomplished at substantially lower power.

With approximately one hundred different programming channels, it is typical to charge cable service user fees in accordance with a hierarchy of programming channels. The least expensive channels tend to be the preexisting broadcast channels and those cable channels supported primarily by advertisers which are intended for the most general audiences. The subscriber fees to access other channels increase as the programming becomes more specialized, advertising revenue becomes less likely to pay the programming costs, and the programming materials tend to have substantial economic value through other distribution channels. The so-called "premium channels" which show current and/or near current movies without advertising are typical of the higher cost programming options.

Most commercial cable television providers package the various programming channels into programming channel groups with different prices such that a given user can

PCT/US00/11024 WO 00/67470

select a suitable programming package and pay the equivalent fee. Typically, a cable provider box, which couples the user television receiver to the coaxial cable source, is controlled by the cable television provider to give access to a given user to only those channels for which the appropriate subscriber fee has been paid.

5

10

15

The most expensive cable television channels currently available are "pay-perview" or PPV. With the PPV concept, a given user can subscribe to a given programming channel for a single individual program of up to several hours for a separate subscriber fee. Typically, PPV channels provide sporting events and almost current movies.

Perhaps the major disadvantage of the PPV concept as currently implemented, is that the programming is provided in the "broadcast" mode. That means that the programming begins and runs on a predefined schedule. As a result, programming is missed if the user receives a telephone call, for example, during the viewing. Furthermore, it ordinarily requires the user to allocate viewing time to coincide with the predefined schedule. To overcome this disadvantage, many users rent video programs as video cassette recordings (i.e., VCR) from commercial stores which provide such a rental service. This permits the viewer to watch the program in accordance with her/his own schedule, stop the program during interruptions, and replay portions of the program which may not be readily understood. The primary disadvantage of the VCR rental approach is the need to physically go to the rental store to obtain the program and return to the rental store to return the recording. 20

With the capital commitment for cable television in place, their appear to be substantial new uses for the basic coaxial pathway. Such uses include, telephone,

15

20

computer modem, facsimile, and video conferencing. To properly coordinate such diverse information transmission activities, attention is being directed to digital transmission schemes which provide for easier management of the distribution resources. U.S. Patent No. 5,570,355, issued to Dail et al., discusses the handling of a number of diverse information transmissions within a single system. U.S. Patent No. 5,673,265, issued to Gupta et al., U.S. Patent No. 5,754,773, issued to Ozden et al., and U.S. Patent No. 5,799,017, issued to Gupta et al., all discuss multi-media distribution systems. U.S. Patent No. 5,555,244, issued to Gupta et al., is directed to multimedia distribution to residential users.

The digitization of video results in a great deal of data which must be transferred at a high rate to yield acceptable performance and resolution. By current standards, 3mbits/sec. is considered to be a very acceptable rate. Such high data rates require systems which can provide high data rate transmission. U.S. Patent No. 5,724,543, issued to Ozden et al., U.S. Patent No. 5,699,362, issued to Makam, and U.S. Patent Nol. 5,826,110, issued to Ozden et al., all concern themselves with high data rate retrieval and transmission. U.S. Patent No. 5,675,573, issued to Karol et al., discusses the management of high data rate bandwidths.

In addition to retrieval and transmission of the required high data rates, there is also the need to provide high speed switching for switching as between data sources and destinations. U.S. Patent No. 5,751,704, issued to Kostic et al., and U.S. Patent No. 5,740,176, issued to Gupta et al., discuss high speed digital switching systems.

Whether it is data storage and retrieval, data transmission, or data switching, the fundamental technological problem associated with digital video results from the sheer volume of digitized video data and the tremendous rate at which it must be provided to the ultimate user for satisfactory performance. One technique for reduction of the volume problem is in reducing the resolution (and hence the volume of data) for those applications for which such reduction is acceptable. U.S. Patent No. 5,623,308 and U.S. Patent No. 5,691,768, both issued to Civanlar et al., directly address the handling of multiple resolution digitized video signals within a single system.

5

10

15

Notwithstanding attempts to reduce the resolutions to the lowest acceptable levels, the total data volume of any commercially useful system will remain high. The most common way to treat extremely high data volumes is through data compression. U.S. Patent No. 5,710,829, issued to Chen et al., U.S. Patent No. 5,742,343, issued to Haskell et al., and U.S. Patent No. 5,619,256, issued to Haskell et al., are concerned with digital compression techniques. Specific attention to compression of digitized video is found in U.S. Patent No. 5,764,803, issued to Jacquin et al. Compression of 3-dimensional images is treated by U.S. Patent No. 5,612,735, issued to Haskell et al.

The evolving techniques of digitized video transmission have resulted in a transmission standard, called Asynchronous Transfer Mode (ATM). U.S. Patent No. 5,668,841, issued to Haskell et al., describes data transmission using the ATM standard.

An ATM converter is discussed in U.S. Patent No. 5,809,022, issued to Byers et al. U.S. Patent No. 5,724,349, issued to Cloonan et al., suggests an approach to packet switching

within an ATM system. An ATM architecture is discussed in U.S. Patent No. 5,781,320, issued to Byers. Interfacing to ATM systems is addressed in U.S. Patent No. 5,842,111, issued to Byers.

A solution to the PPV problems noted above utilizing digitized video has been termed, Video on Demand (or VOD). In a VOD system, digitized video programming is made available to individual cable television subscribers in response to specific requests made by the user. U.S. Patent No. 5,867,155, issued to Williams, describes the use of VOD for a very specialized application. Sea Change, International, has proposed a VOD approach for cable television subscribers. U.S. Patent No. 5,583,561, issued to Baker et al., assigned to the assignee of the present invention and incorporated herein by reference, discloses and teaches a complete, modern VOD system employing a centralized architecture utilizing an enterprise server developed by Unisys Corporation.

SUMMARY OF THE INVENTION

15

20

10

5

The present invention overcomes many of the disadvantages found within the prior art by providing a video on demand system which separates the tasks of supplying video to subscribers from the tasks associated with managing the subscriber interface. The key to this approach is to provide an architecture in which the necessary functions are divided into two separate portions. A first hardware and software subsystem, called a video server, is specifically dedicated to retrieving and transmitting the stream of video information. Virtually no other functions are performed by the video server. A second hardware and

PCT/US00/11024 WO 00/67470

software subsystem, called the transaction server, handles virtually all other functions including control interface with the subscribers, digitized video data storage, subscriber accounting, etc.

5

10

15

20

The video server has two primary design criteria. First, it must be highly optimized to handle the extremely high input/output data rates. In essence, this is the sole function of the video server, and therefore, the design of the video server hardware and software are most directed towards this characteristic. Because the role of the video subsystem is simplified and single dimensional, video subsystems utilizing current technology can be produced at a surprisingly low cost.

The second major design criterion of the video server subsystem involves modularity. The addition of active subscribers, each viewing individual video programs (or the same program at different times), tends to increase the total input/output load of the video server subsystem linearly. Therefore, there is great economic incentive to design the video server subsystem in such a manner that the hardware resources to implement the video subsystem may be linearly increased in relatively small (and inexpensive) increments. In the preferred mode of the present invention, the video server subsystem consists of one or more input/output data rate optimized, industry compatible computers operating under a readily available, commercial operating system, such as Windows NT.

3 mbits/second per video stream as a standard, each such device can effectively service thousands of different and independent video streams. Within each video server, storage can be added to handle more video programs and communication interfaces can be added to provide more video streams. Therefore, the same design architecture and

15

20

components are suitable for a wide range of system sizes, and the capital cost to the video programming supplier can be readily determined as further subscribers are added to the system.

Unlike the video server subsystem which is optimized to provide a low cost, highly modular approach to a single function, the transaction server is optimized to provide a low cost approach to a wide and highly expandable variety of functions. In fact, all of the functions of the video on demand system, except for the video streaming function performed by the video server, are accomplished by the transaction server. Typical tasks include: transactional interface with the subscribers, subscriber fee accounting, requested program storage, video server subsystem control, receiving video from a satellite and storing it in an archive, etc. Thus, the ideal hardware/software platform for implementation of the transaction server is a readily expandable, highly flexible, high availability, highly recoverable, realtime oriented mainframe system. In the preferred mode of the present invention, the Unisys 2200 is used to host the transaction server.

In accordance with the present invention, a subscribing user transfers a programming request to the transaction server. The transaction server makes the required subscriber accounting entry and notifies the corresponding preloaded video server platform of the new subscriber request. If the asset is not preloaded, in addition to the subscriber accounting, the transaction server must access the request video program and spool it for the video server. Depending upon the rate of use of the requested video program, the data

might be stored in memory (for high volume use), on a disk or other mass storage device (for medium volume use), or in some other medium (for low volume use).

In the preferred mode of the present invention, the user is permitted to pause, reverse, or fast forward the requested video program though commands entered from the on-set subscriber box. These functions are intended to appear similar to normal VCR commands to the user. These commands are sent to the transaction server which utilizes them to control the corresponding video stream output of the video server subsystem. Thus the user is provided with all of the advantages of VCR rental without the need to physically transport the medium (i.e., cassette tape) back and forth between the rental store and the user site.

5

10

15

20

In view of the power and flexibility of the transaction server, other diverse but somewhat related functions may be provided. For example, a user might order a pizza delivery via the on-set subscriber box to transaction server interface, or the user might access the internet, e-mail, or faxes via the transaction server. If this interface is implemented over a readily available, publically accessible, network, such as the internet, many additional functions are possible.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects of the present invention and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the

accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof and wherein:

- Fig. 1 is a schematic diagram showing the operation of the overall video on demand system of the present invention;
- Fig. 2 is a schematic diagram showing spooling of the video programming data from typical mass storage devices;
 - Fig. 3 is a schematic diagram showing the generation of a video stream from spooled data within a memory subsystem;
- Fig. 4 is a schematic diagram showing video streaming as synchronized on one minute boundaries;
 - Fig. 5 is a schematic diagram showing operation of a video server platform;
 - Fig. 6 is a schematic diagram showing video streaming of multiple programs from a single video server platform;
- Fig. 7 is a schematic diagram showing video streaming from video programming data spooled on disk drive mass storage units;
 - Fig. 8 is a schematic diagram showing video streaming from video programming data stored on both disk drive mass storage units and memory subsystems;
 - Fig. 9 is a block diagram of a maximum configuration video server; and
 - Fig. 10 is a detailed diagram of the operation of the transaction server of the preferred mode of the present invention.

20

WO 00/67470

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig. 1 is a schematic diagram 10 showing the overall video on demand system of the present invention. A subscribing user (not shown) is positioned adjacent standard television receiver 34. Through this television receiver, the user is capable of viewing video programming material transferred to his location via coaxial cable 30 from network 26 in the fashion currently known in the cable television industry. The interface between coaxial cable 30 and standard television receiver 34 is provided by subscriber box 32, which provides the conversion between MPEG-2 digitized video format and the analog video signal required by television receiver 34.

5

10

15

20

In many respects, subscriber box 32 is similar to the subscriber boxes utilized with existing cable television systems with the slight functional differences described in more detail below. The basic reason for these slight differences is to permit a subscribing user to communicate with transaction server 12 in a two directional manner. Not only does subscriber box 32 receive video programming data via coaxial cable 30 and present it to television receiver 34, but subscriber box 32 is capable of transferring user requests via coaxial cable 30 and network 26 to transaction server 12 via path 28. The most important requests in accordance with the present invention are those which initiate and control the individualized video on demand programming.

When the user is interested in viewing a particular video program, a request is made from subscriber box 32 and transferred to transaction server 12 via coaxial cable 30, network 26, and path 28. Transaction server 12, a Unisys 2200 system in the preferred embodiment, is provided access to video programming information from satellite receiver 14, from analog video storage 16 and digital mass storage 18. In each instance, the video programming data is either received in digital form or converted to digital form.

According to the preferred embodiment of the present invention, the MPEG-2 standardized format is utilized.

5

10

15

Whenever a request is received, transaction server 12 checks various security parameters, makes appropriate subscriber billing entries. and generally performs all of the necessary administrative functions as described below in greater detail. Additionally, transaction server 12 stores digital video data for transmission by the video server assigned to the requesting subscriber. One of video server platforms 20, 22,, or 24 is assigned the task by transaction server 12 and the stored digital video data is supplied via the digital data bus shown. In the preferred mode of the present invention, each video server platform is a separate industry compatible, Windows NT based, computer platform. Once transfered to the selected video server, the requested video programming is transmitted via network 26 and coaxial cable 30 to subscriber box 32 and television receiver 34.

Fig. 2 is a schematic diagram showing the spooling of data from digital disk mass storage devices. For the preferred mode of the present invention, the digitized video programming data is stored in MPEG-2 format. In the spooling process, the MPEG-2 organized and placed into memory as a programming file 55. To produce commercially

WO 00/67470

acceptable video, 3mbits/second is required. That means that a two hour video program requires the about 2.7 billion bytes of data storage. Because of cost considerations, many of the programs having low and moderate usage will best be stored on mass storage disk until requested

Individual storage disks 48, 50, ..., and 52 each store a number of video programs in MPEG-2 format. As requested, this data is transferred via storage bus 46 through disk control 42 through I/O bus 38 and placed in memory 55 via path 40. A software program spools the data to the ATM interface 54 at the required speed..

5

10

15

20

Fig. 3 is a schematic diagram showing spooling of high volume digitized video program. For those programs having a high user demand, it is much more efficient to spool the program files from random access memory rather than mass storage disk systems. In this context, high volume means a high probability that the given program will be in use during high service volume periods. That means that there will need to be random access storage allocated to the storage of that given program during peak memory demand. As a result, the system should simply allocate random access storage to that given program. Very popular, recent movies are typical of such high volume programs.

If a program is a high volume program, it is preferably stored in auxiliary memory 56. Upon request, software residing in memory 36 directs the storing of data from auxiliary memory 56 and transferring it via path 40 and I/O bus 38 to ATM interface 54. It should be noted that this is significantly more efficient than the storing operation shown in Fig. 2, since the video data only needs to be read out of memory instead of having to be loaded from disk each time the data is used. Furthermore, there is no additional cost if a

10

15

program is of sufficiently high volume that the required random access memory must be allocated to the program anyway.

Fig. 4 is a schematic diagram 58 showing the synchronization of a given video program around one minute time slots. In concept, the present invention provides subscribers with video on demand. However, as a practical matter, by synchronizing multiple users around one minute time slots, the maximum number of transmissions to all users of the given video program cannot exceed 60 per hour of programming and 120 for a two hour standard video program. That means that for a given high volume program (which may be requested by hundreds or even thousands within the length of time to view the program) each requester is assigned to an appropriate time slot.

First time slot 60 provides the first minute of video programming to one or more requesters. During one minute time slot 62, the initial requesters receive the second minute of programming, and one or more requesters may be starting with the first minute of programming. At the nth time slot 64, the initial requesters are viewing the nth minute of programming, the second group of requesters is viewing the n-1 minute of programming, and the nth group of requesters is viewing the first minute of programming. At final time slot 66, the initial requesters are viewing the final minute of programming, the second group of requesters is viewing the second to last minute of programming, and a new group of requesters is viewing the initial minute of programming.

The reduction in total data requirements utilizing these one minute time slots is substantial. Commonly assigned U.S. Patent No. 5,583,561, issued to Baker et al., incorporated herein by reference, discusses this feature in greater detail. The total delay to a requester is no more than one minute and will average one half minute, making the process perfectly acceptable and barely noticeable to the subscribers.

5

10

15

20

Fig. 5 is a schematic diagram of a single industry compatible, Windows NT based video server platform. The video server subsystem is composed of a number of separate and largely independent video server platforms. Each is configured to have a maximum memory configuration and maximum I/O configuration. Digitized video programming data in the MPEG-2 format are moved from transaction server 68 via interconnect 70 into the assigned video server platform. Program 74 and program 72 are shown. These programs are place onto network 78 under control of transmission control software 80 for transfer to the requesting subscriber(s). For a given program being sent to a single user, transmission control software 80 simply retrieves the video data from memory in a sequential fashion at 3 mbits/second and places it on network 78.

Fig. 6 is a schematic diagram showing transfer of high volume program 82 into the video server platform of Fig. 5. The transfer is performed by the transaction server as discussed above. The transfered data is transferred to the video server platform via I/O bus 84. Up to ten programs can be stored and streamed from a single video server. For simplicity, only one video server is shown. For a view of multiple video servers within a system, refer to Fig. 1.. All other referenced elements are as previously described.

Fig. 7 is a schematic diagram showing the spooling of low to moderate volume digitized video program data. For lower volume programs, storage on disk storage mass memory may be appropriate. A low volume video program is one in which it is highly unlikely that more than one request is received during the runtime of the video program. Therefore, the servicing of the request is most probably an index sequential task for retrieving the data and transmitting it to the user. This is readily distinguishable from the high volume video programs for which transmissions within multiple and perhaps many of the one minute time slots is expected (see also Fig. 4). These programs are spooled to the video server platform as shown. The remaining referenced elements are as previously described.

5

10

15

20

Fig. 8 is a schematic diagram showing transfer of low and high volume video programs to the same video server platform. All referenced elements are as previously described.

Fig. 9 is a block diagram 84 of the maximum configuration of the transaction server of the preferred mode of the present invention. In this preferred mode, the video server is implemented using a current model Unisys mainframe system. In accordance with this product, the system is expandable from a single processor, single main memory, and single I/O controller to the maximum system shown.

Instruction processors 102, 104, 106, 108, 110, 112, 114, and 116 communicate with main memories 86, 88, 90, and 92 via crossbar interconnects 94, 96, 98, and 100. Each instruction processor may be coupled with up to four third-level caches, as shown.

Direct Input/Output bridges 118, 120, 122, 124, 126, 128, 130, and 132 each handle video output functions. Each of the direct Input/Output bridges may be partitioned into separate partitions as shown. Additional description of partitioning may be found in U.S. Patent Application Serial No. 08/779,472, filed January 7, 1997, commonly assigned to the present invention and incorporated herein by reference.

5

10

15

20

Fig. 10 is a detailed functional diagram 134 of the transaction server.

Communication with subscriber box 32 (see also Fig. 1) is managed by set top management module 142. Initial requests are selected by the user and honored through utilization of menu transaction module 140. After initiation of the servicing of a given request, control of the matter is given to session manager 138 for completion. Any and all communication with the transaction server are monitored by security module 148.

Administration module 136 provides overall control of the transaction server.

The transaction server may be utilized to interface with the internet. The selected hardware and software system selected for the preferred mode provide internet server facilities in a commercially usable form. Video server session management module 146 provides the detailed functions (e.g., spooling of digital video programming) associated with the primary video on demand service. These control functions are directly interfaced to the video server subsystem via video server interface 150.

Event logging module 154 journals the functions performed. This log is made available to digital network control services 152. Media directory services and asset management module 162 provides long term control and asset management. Historical storage of these data is performed by asset storage management and asset capture.

In performing the actual video on demand service, the appropriate requested digitized video program is accessed from databases 160. It is spooled by asset delivery, video streaming module 158. The transfer is made via video server interface 156 (see also Fig. 1).

Having thus describe the preferred embodiments in detail, those of skill in the art will be readily able to use the teachings found herein to make and use yet other embodiments within the scope of the claims appended hereto.

What is claimed is:

15

CLAIMS

- 1. In a video on demand system for supplying video data to a subscriber receiver, the improvement comprising:
 - a. A transaction server for storing video; and
 - b. A video server responsively coupled to said transaction server and said subscriber receiver for transferring said stored video to said subscriber receiver.
- 2. The video on demand system of claim 1 wherein said video server further comprises an industry compatible, windows based computer platform.
 - 3. The video on demand system of claim 1 wherein said video server further comprises a plurality of industry compatible, windows based computer platform.
 - 4, The video on demand system of claim 2 wherein said transaction server further comprises a Unisys mainframe computer system.
 - The video on demand system of claim 4 wherein said stored video further comprises
 MPEG-2 format.

15

6. An apparatus comprising:

- a. A subscribing cable television receiver capable of providing a service request;
- b. A transaction server responsively coupled to said subscribing cable television receiver capable of receiving said service request and supplying spooled video in response thereto; and
- c. A video server responsively coupled to said transaction server and said subscribing cable television receiver for receiving said spooled video from said transaction server and streaming said spooled video to said subscribing cable television receiver.
- 7. An apparatus according to claim 6 wherein said video server comprises an industry compatible, windows based personal computer.
 - 8. An apparatus according to claim 6 wherein said video server comprises a plurality of industry compatible ,window based personal computers.
 - 9. An apparatus according to claim 7 wherein said spooled video further comprises MPEG-2.
- 10. An apparatus according to claim 9 wherein said transaction server further comprises aUnisys computer system.

WO 00/67470

11. A video on demand system comprising:

15

- a. Means for receiving a requested video on demand signal;
- b. Means responsively coupled to said receiving means for displaying said requested video on demand signal to a subscriber;
- c. Means responsively coupled to said receiving means for spooling said requested video on demand signal;
 - d. Means responsively coupled to said spooling means and said receiving means for streaming said spooled requested video on demand signal to said receiving means.
- 12. A video on demand system according to claim 11 wherein said receiving means further comprises a subscriber box.
 - 13. A video on demand system according to claim 12 wherein said streaming means further comprises an industry standard personal computer.
 - 14. A video on demand system according to claim 13 wherein said spooling means further comprises means for processing subscriber transactions.
 - 15. A video on demand system according to claim 14 wherein said spooling means futhercomprises a Unisys mainframe computer system.

- 16. A method of providing video on demand services comprising:
 - a. Receiving a video on demand request from a subscriber at a transaction server;
 - b. Processing said video on demand request at said transaction server;
 - c. Spooling a video program corresponding to said video on demand request;
- d. Transferring said spooled video program from said transaction server to a video server; and
 - e. Streaming said spooled video program from said video server to said subscriber.
 - 17. A method according to claim 16 further comprising:
 - a. Pausing said streaming in response to a pause signal from said subscriber.
 - 18. A method according to claim 16 further comprising:
 - a. Reversing said streaming in response to a reverse signal from said subscriber.
- 15 19. A method according to claim 16 further comprising:
 - a. Fast forwarding said streaming in response to a fast forward from said subscriber.
 - 20. A method according to claim 16 wherein said processing step further comprises:
- a. Performing subscriber accounting to enable billing said subscriber for said video on demand request.

_ ...

rnational Application No PCT/US 00/11024

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04N5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ H04N$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

Category *	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 10315 A (MICROPOLIS CORP) 4 April 1996 (1996-04-04)	1,6,11, 12,16 17-20
Y	page 3 -page 6; figures 1-3	1, 20
X	EP 0 739 136 A (IBM) 23 October 1996 (1996-10-23)	11,12
Α	column 2 -column 6; figure 1	1,6,16
Y	US 5 745 710 A (CLANTON III CHARLES H ET AL) 28 April 1998 (1998-04-28)	17-20
Α	column 6, line 58 -column 7, line 67	1,6,11, 16
	column 11, line 17 - line 21	
	-/	

Further documents are listed in the continuation of box C.	Patent family members are assed in annex.		
Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
"E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-		
"O" document referring to an oral disclosure, use, exhibition or other means	ments, such combination being obvious to a person skilled in the art.		
P document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report		
15 August 2000	24/08/2000		
Name and mailing address of the ISA	Authorized officer		
European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Tito Martins, J		

2

INTERNATIONAL SEARCH REPORT

national Application No PCT/US 00/11024

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US 00/11024
Category •		
	аргорима, от те тенечата развадев	Relevant to claim No.
A	US 5 600 573. A (HENDRICKS JOHN S ET AL) 4 February 1997 (1997-02-04) column 9, line 31 -column 10, line 10 column 19, line 36 -column 20, line 61; claim 17; figures 1,2	1,6,11, 16
A	US 5 608 448 A (SEMENTILLI JR PHILLIP J ET AL) 4 March 1997 (1997-03-04) column 1 -column 2; figure 1	1,6,11, 16
Α .	EP 0 779 725 A (SUN MICROSYSTEMS INC) 18 June 1997 (1997-06-18) page 2; figure 1	1,6,11, 16
P,X	'Online! 15 December 1999 (1999-12-15) XP002144894 Retrieved from the Internet: <url: 12156842.asp="" 1999="" d="" ec="" http:="" news="" releases="" www.unisys.com=""> 'retrieved on 2000-08-14! the whole document</url:>	1,2,4,6, 10-12, 15-20
		

INTERNATIONAL SEARCH REPORT

P

information on patent family members

:national Application No PCT/US 00/11024

Patent document	Publication	Patent family	Publication
cited in search report	date	member(s)	date
WO 9610315 A	04-04-1996	NONE	
EP 0739136 A	23-10-1996	US 5808607 A	15-09-1998
		DE 69606790 D JP 8340508 A	06-04-2000 24-12-1996
		UF 6340306 A	
US 5745710 A	28-04-1998	US 5524195 A EP 0670652 A	04-06-1996 06-09-1995
		JP 8101756 A	16-04-1996
		EP 0626635 A	30-11-1994
		JP 7098640 A US 6020881 A	11-04-1995 01-02-2000
		US 5886697 A	23-03-1999
		US 5995106 A	30-11-1999
US 5600573 A	04-02-1997	US 5659350 A	19-08-1997
		AU 691479 B	21-05-1998
		AU 5733194 A BR 9307621 A	04-07-1994 15-06-1999
		DE 69323560 D	25-03-1999
		DE 69323560 T	23-09-1999
		EP 0673580 A JP 8506940 T	27-09-1995 23-07-1996
		RU 2138923 C	27-09-1999
		AU 691231 B	14-05-1998
		AU 1264095 A BR 9408212 A	19-06-1995 26-08-1997
		CA 2177152 A	08-06-1995
		EP 0732030 A	18-09-1996
		IL 111860 A JP 9506226 T	22-02-1998 17-06-1997
		NZ 277425 A	29-01-1997
		WO 9515657 A	08-06-1995
		AT 177277 T AT 176840 T	15-03-1999 15-03-1999
		AT 176840 T AT 192005 T	15-05-2000
		AT 190180 T	15-03-2000
		AT 183352 T AT 176841 T	15-08-1999 15-03-1999
		AT 176841 T AU 715683 B	10-02-2000
		AU 4440797 A	29-01-1998
		AU 712157 B AU 4532597 A	28-10-1999 05-02-1998
		AU 4532597 A AU 693775 B	09-07-1998
		AU 5732994 A	04-07-1994
		AU 692427 B AU 5733094 A	11-06-1998 04-07-1994
		AU 5733094 A AU 692428 B	11-06-1998
		AU 5733294 A	04-07-1994
		AU 5736394 A AU 5845894 A	04-07-1994 22-06-1994
		AU 5869894 A	04-07-1994
		AU 716184 B	24-02-2000
		AU 6066798 A AU 716182 B	04-06-1998 24-02-2000
		AU 716162 B AU 6066898 A	04-06-1998
		BR 9307619 A	15-06-1999
		BR 9307620 A	10-08-1999

Information on patent family members

national Application No PCT/US 00/11024

Patent document cited in search report	t	Publication date	Patent family member(s)	Publication date
US 5600573	A		BR 9307622 A BR 9307624 A BR 9307625 A CA 2151456 A CA 2151457 A CA 2151458 A	15-06-1999 15-06-1999 31-08-1999 23-06-1994 23-06-1994
US 5608448	Α	04-03-1997	NONE	
EP 0779725	Α	18-06-1997	US 5862450 A JP 9233063 A	19-01-1999 05-09-1997