# UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta

ÚSTAV MATEMATICKÝCH VIED



Skoro disjunktné množiny prirodzených čísel a topologické priestory

Bc. Radka Schwartzová

Vedúci práce: RNDr. Jaroslav Šupina, PhD.

## Systémy množín a disjunktnosť

Nech I je množina. Ak každému prvku  $i \in I$  priradíme nejakú množinu  $A_i$ , tak dostávame systém množín S, píšeme  $S = (A_i; i \in I)$ .

Ak  $I = \emptyset$ , tak  $\mathcal S$  je prázdny systém.

### Definícia

Množiny A a B sa nazývajú disjunktné, ak

$$A \cap B = \emptyset$$
,

t.j. ak majú prázdny prienik.

## Párujúca funkcia

### Definícia

Bijektívne zobrazenie  $\pi$  množiny  $\mathbb{N} \times \mathbb{N}$  na množine  $\mathbb{N}$  nazývame párujúca funkcia.



## Skoro disjunktné systémy

#### Definícia

Nech M je ľubovoľná nekonečná spočítateľná množina, teda  $|M|=\aleph_0$ . Množiny  $A,B\subseteq M$  nazývame **skoro disjunktné**, ak ich prienik  $A\cap B$  je konečný.

Ak  $\mathcal{A} \subseteq \mathcal{P}(M)$  je systém nekonečných podmnožín M taký, že ľubovoľné dve množiny z  $\mathcal{A}$  sú skoro disjunktné, tak hovoríme, že  $\mathcal{A}$  je **systém skoro disjunktných množín** na množine M, označujeme AD-systém.

## Skoro disjunktné systémy

#### **Tvrdenie**

Pre každú nekonečnú spočítateľnú množinu M existuje AD-systém  $\mathcal{A}\subseteq\mathcal{P}(M)$  taký, že

$$|\mathcal{A}| = \mathfrak{c}.$$

Zoberme množinu všetkých konečných postupností  $\mathbf{M} = \{0,1\}^{<\omega}$ .

Majme zobrazenie  $f\colon \omega \to \{0,1\}$  pomocou, ktorého zadefinujme množinu konečných postupností

$$A_f = \{f \upharpoonright n : n < \omega\}.$$

Položme funkcie f,  $\mathbf{g} \in \{0,1\}^{\omega}$  a najmenšie číslo k také, že  $\mathbf{f}(k) \neq \mathbf{g}(k)$ . Potom

$$A_f \cap A_g \subseteq \{f \upharpoonright n : n \leq k\},\$$

z čoho dostávame, že  $\{A_f: f \in \{0,1\}^\omega\}$  je *AD-systém* s mohutnosťou  $\mathfrak{c}.$ 

## Výsledky práce

- 1 Terminológia a potrebné poznatky
  - a Potrebné poznatky z teórie množín
  - Mohutnosť množín
  - Topológia

- Systémy množín
  - a Konečné systémy disjunktných množín
  - B Párujúca funkcia a nekonečné systémy
  - Skoro disjunktné systémy

S Konštrukcia topologických priestorov

## Konštrukcia topologických priestorov

#### Definícia

Nech  $\mathcal A$  je nekonečný AD-systém na množine  $\omega$ . Priestor  $\psi(\mathcal A)$  definujeme ako topologický priestor na množine  $\omega\cup\mathcal A$  taký, že body množiny  $\omega$  sú izolované a báza okolí v bode  $A\in\mathcal A$  je tvorená množinami tvaru  $\{A\}\cup\{A\backslash F\}$ , kde  $F\subseteq\omega$  je konečná podmnožina. Zároveň  $\psi(\mathcal A)$  budeme nazývať **Mrowkov-Isbellov priestor**.

## Vlastnosti Mrowka-Isbell priestoru

Nech  $\psi(\mathcal{A})$  je **Mrówkov** - **Isbellov priestor**, tak platia nasledovné tvrdenia:

- $\textbf{1} \ \mathsf{Mno\check{z}ina} \ \omega \subseteq \psi(\mathcal{A}) \ \mathsf{je} \ \mathsf{otvoren\'a}.$
- 2 Nekonečný AD-systém  $\mathcal{A} \subseteq \psi(\mathcal{A})$  je uzavretá množina.
- **3** Priestor  $\psi(A)$  je separabilný.
- 0 Uzáver nekonečného AD-systému  $\mathcal{A}_0\subseteq\mathcal{A}$  je nekonečný AD-systém  $\mathcal{A}_0$ , t. j.

$$\overline{\mathcal{A}_0} = \mathcal{A}_0.$$

f G Mohutnosť priestoru  $\psi(\mathcal{A})$  je rovná mohutnosti AD-systému  $\mathcal{A}.$ 

## Smerovanie ďalšej práce...

• Zhrnúť konštrukcie topologických priestorov pomocou skoro disjunktných systémov.

Aké má vplyvy existencia nejakých skoro disjunkných systémov na vlastnosti topologických priestorov?

## Zoznam použitej literatúry



BUKOVSKÝ, L.: Množiny a všeličo okolo nich., Košice: UPJŠ, 2005. ISBN 0-7097-578-4.



ENGELKING. R.: General topology.,Berlin: Heldermann, 1989. ISBN 3-88538-006-4.



BUKOVSKÝ, L.: The structure of the real line, Birkhäuser, 2011. ISBN 978-3-0348-005-1.



SLEZIAK, M.: 2-UMA-115 Teória množín.,Bratislava: Fakulta matematiky, fyziky a informatiky UK, 2014. Dostupné tiež z: https://msleziak.com/vyuka/2014/temno/temno.pdf.



SLEZIAK, M.: *Aplikácie teórie množín.*, Bratislava: Fakulta matematiky, fyziky a informatiky UK, 2017. Dostupné tiež z: https://msleziak.com/vyuka/2017/apliktm/apliktm.pdf. 29



 $\label{eq:hkusamatro} HRU\check{S}\acute{A}K,\ M.:\ \textit{Almost disjoint families and topology}, Springer\ Verlag\ 2013.\ Dostupn\'e\ tie\~z z:\ https://www.matmor.unam.mx/~michael/preprints_files/rpgt-hrusak.pdf.$ 

# UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta

ÚSTAV MATEMATICKÝCH VIED



Ďakujem za pozornosť