1. Diseñe un circuito que eleve al cuadrado un número de tres bits, e implemente mediante compuertas lógicas.

Α	В	С	а	b	С	d	е	f
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0	1

Numero bin	ario		
Numero	binario		
elevado al cuadrado			

Para el bit mas significativo (a).

AB C	00	01	11	10
0			1	
1			1	

$$a = AB$$

Para b.

AB C	00	01	11	10
0				1
1			1	1

$$b = AB' + AC$$

Para c.

AB C	00	01	11	10
0				
1		1		1

$$c = A'BC + AB'C$$

$$c = C(A'B + AB')$$

Para d.

AB C	00	01	11	10
0		1	1	
1				

d = BC'

Para e.

$$e = 0$$

Para f el LSB.

AB C	00	01	11	10
0				
1	1	1	1	1

f = C

2. Diseñar un circuito combinacional que tenga como entrada dos números de 2 bits A=A0A1 y B=B0B1, cada uno y que encienda una salida cada vez A sea el doble de B, e implemente mediante compuertas lógicas.

mediante compuertas logicas.						
A1	A0	B1	B0	SALIDA		
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	0		
0	1	1	0	0		
0	1	1	1	0		
1	0	0	0	0		
1	0	0	1	1		
1	0	1	0	0		
1	0	1	1	0		
1	1	0	0	0		
1	1	0	1	0		
1	1	1	0	0		
1	1	1	1	0		

A1A0				
AIAO	00	01	11	10
B1B0				
00				
01				1
11				
10				

f(A1A0B1B0) = A1A0'B1'B0

3. Diseñar un circuito combinacional que tiene como entrada un número de 4 bits y que se encienda una salida cada vez que el número sea múltiplo de 3, incluido el cero, e implemente mediante compuertas lógicas.

Α	В	O	D	S(A,B,C,D)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

$$S(A, B, C, D) = A'B'C'D' + A'B'CD + A'BCD' + AB'C'D + ABC'D' + ABCD$$

 $S(A, B, C, D) = (A + B + C + D)' + A'C(B'D + BD') + AC'(B'D + BD') + ABCD$
 $S(A, B, C, D) = (A + B + C + D)' + (B'D + BD')(A'C + AC') + ABCD$

4. Un circuito Lógico tiene cinco entradas y una salida. Cuatro de las entradas A,B,C y D representan un dígito decimal en BCD. la quinta entrada es de control, cuando el control esté en 0 lógico, la salida está en 1 lógico si el número decimal es par y en 0 lógico si es impar. Cuando el control está en 1 lógico, la salida es 1 cuando la entrada es un múltiplo de 3 y en 0 lógico cuando no es múltiplo de 3. Diseñar el circuito utilizando puertas lógicas.

El numero 0 cuenta como numero par y como múltiplo de tres.

cuando
$$E = 0$$
 { S $\begin{cases} 1 \text{ cuando el } \#BCD \text{ es par} \\ 0 \text{ cuando el } \#BCD \text{ no es par} \end{cases}$ }
cuando $E = 1$ { S $\begin{cases} 1 \text{ cuando el } \#BCD \text{ es multiplo de } 3 \\ 0 \text{ cuando el } \#BCD \text{ no es multiplo de } 3 \end{cases}$ }

Α	В	C	D	Е	S(A,B,C,D,E)
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	0	1	0	0	X
1	0	1	0	1	X
1	0	1	1	0	X
1	0	1	1	1	X
1	1	0	0	0	X
1	1	0	0	1	X
1	1	0	1	0	X
1	1	0	1	1	X
1	1	1	0	0	Х
1	1	1	0	1	X
1	1	1	1	0	X X X X X X X X X
1	1	1	1	1	X

		A=0		
BC DE	00	01	11	10
00	1	1	1	1
01	1		1	
11		1		
10				

BC DE	00	01	11	10			
00	(-)	х	Х	Χ			
01		х	Х	Χ			
11	1	X	Х	Х			
10		Х	Х	Χ			

A=1

S(A,B,C,D,E) = D'E' + A'B'C'D' + BCD' + B'CDE + AB'DE

- 5. Emplear un diagrama de Karnaugh para simplificar las siguientes funciones:
 - a. f(A,B,C,D) = AB'C' + A'D + B'D + C'D + A'C + A'B

AB CD	00	01	11	10
00	1	1		(<u>_</u>
01	1	1	1	1
11	1/	1		1
10	1	1		

La nueva función será:

$$f(A,B,C,D) = A' + B'D + C'D + B'C'D'$$

b. f(A,B,C,D) = AB'CD' + B'C'D + A'C + A'

AB CD	00	01	11	10
00	1	1		
01	1	1		1
11	1	1		
10	1)	1		1

La nueva función será:

$$f(A,B,C,D) = A' + B'C'D + B'CD'$$

c.
$$f(A,B,C,D) = \Sigma m(0,1,4,5,9,11,14,15)$$

AB CD	00	01	11	10
00	1	1		
01	1	1		1
11			1	1
10			1	

La función será:

$$f(A,B,C,D) = A'C' + AB'D + ABC$$

d.
$$f(A,B,C,D) = \Sigma m(1,4,7,10,13)$$

AB CD	00	01	11	10
00		1		
01	1		1	
11		1		
10				1

La función será:

$$f(A,B,C,D) = A'BC'D' + A'C'B'D + AC'BD + A'CBD + AB'CD'$$

$$f(A,B,C,D) = A'C'(BD' + DB') + BD(AC' + A'C) + ACB'D'$$

$$f(A,B,C,D) = A'C'(B \oplus D) + BD(A \oplus C) + ACB'D'$$

e. $F(A,B,C,D,E,F) = \Sigma m(0,1,4,5,11,16,17,20,21,24,28,32,33,35,36,37,39,42,49,51,58,60,62)$ Además de los términos no importa, d (2,3,6,7,10,18,30,26,48,52,55,61,63)

ABC	000	001	011	010	110	111	101	100
DEF				(1)				(1)
000			1)	V.)	X)			
001	1			1	1			\int_{1}^{1}
011	X	1			1			7)
010	X	Х	x	х		1	1	
110	х		(x)			1		
111	\times			_	х	х		1
101	1			1		х		1
100	1		1		х	1		1

F(A,B,C,D,E,F): =A'B'C'+A'BCF'+E'F'C'+B'C'F+ABCD+CD'EF'+ABC'D'F+A'BC'E'+A'B'D'E