

EECI Course on

Nonlinear and Data-based Model Predictive Control

Matthias Müller¹⁾ and Frank Allgöwer²⁾

- 1) Institute of Automatic Control Leibniz University Hannover, Germany
- ²⁾ Institute for Systems Theory and Automatic Control University of Stuttgart, Germany

The Lecturers of this Module

Prof. Dr.-Ing. Frank Allgöwer

Institute for Systems Theory and Automatic Control
University of Stuttgart
allgower@ist.uni-stuttgart.de

Prof. Dr.-Ing. Matthias Müller

Institute of Automatic Control Leibniz University of Hannover mueller@irt.uni-hannover.de

Main Goals of the Course

- Give an introduction to Model Predictive Control (MPC) and in particular to Nonlinear MPC (NMPC)
- Focus of course is on systems theoretic properties and issues
- Show how to achieve a stable closed loop system
- Give an introduction to data-based MPC
- Give an introduction to economic MPC
- Give an introduction to robust MPC
- Give a feeling and some insight into selected current trends in the MPC field (Explicit MPC, Moving Horizon Estimation, Output feedback MPC, Distributed MPC)

An Introduction to Model Predictive Control

Analytical vs. Numerics-based Control Methods

Analytical controllers

- Control law is synthesized off-line
- Control action is analytical function of present and past measurements

Numerics-based controllers

- Controller not implemented as an analytical function of past and present measurements
- On-line numerical computations take, at least, partly role of off-line controller design

A numerics-based control technique:

Model Predictive Control (MPC)

A VERY GENERAL Control Problem !!!

 $\dot{x} = f(x, u), \quad x(0) = x_0$

General nonlinear

Find stabilizing control strategy that

• minimizes objective functional

$$J = \int_{t}^{\infty} F(x(\tau), u(\tau)) d\tau$$

$$Objective functional$$

satisfies constraints

$$u(au) \in \mathcal{U}$$
 on $a_{input_{s}}^{Additio}$ $a_{input_{s}}^{Co}$ $a_{input_{s}}^{Co}$ $a_{int_{s}}^{Co}$

A Possible Solution - Model Predictive Control

MPC= repeated open-loop optimal control

ullet Solve open-loop optimization problem all δ sampling instances

$$\min_{u(\cdot)} J(u(\cdot); x(t)) = \int_{t}^{T_{P}} F(x(\tau), u(\tau)) d\tau$$

- \bullet Apply optimal open-loop input for $\tau\!\in\![t,t+\delta]$
- Use finite Prediction horizon T_p

$\frac{\mathsf{MPC}}{\mathsf{point}}$ state x $\frac{\mathsf{ne}\ t + \delta}{\delta + T_P}$

ist^o

Characteristics of MPC

- Moving horizon implementation
- Performance oriented time domain formulation
- Incorporation of constraints
- Explicit system model used to predict future plant dynamics

MPC: Open-Loop Optimization Problem

(to be solved at each time step)

Finite horizon optimal control problem

$$\begin{split} & \min_{u(t)} & \sum_{k=0}^{N-1} \ell \big(x(k|t), u(k|t) \big) \\ & \text{s.t. } x(k+1|t) = f \big(x(k|t), u(k|t) \big), \ x(0|t) = x(t) \\ & \quad \big(x(k|t), u(k|t) \big) \in \mathbb{Z}, \quad \forall k \in \mathbb{I}_{[0,N-1]}, \end{split}$$

- Dynamics/model of the system
- Stage cost function
- Hard constraints on states and inputs

•

ist

Linear MPC - Nonlinear MPC

Linear MPC

- Uses linear model: $\dot{x} = Ax + Bu$
- Quadratic cost function $F = x^T R x + u^T R u$
- Linear constraints Hx + Gu < 0
- ullet \Rightarrow Quadratic program

Nonlinear MPC (NMPC)

- Nonlinear model: $\dot{x} = f(x, u)$
- Cost function can be nonquadratic F(x, u)
- Nonlinear constraints h(x, u) < 0
- => Nonlinear program

A Brief History of MPC

Idea is rather old:

"One technique for obtaining a **feedback controller synthesis from knowledge of open-loop controllers** is to measure the current control process state and then compute vary rapidly for this the open-loop control function. The first portion of this function is then used during a short time interval, after which a new value of the function is computed for this measurement, The process is then repeated."

(Lee & Marcus, 1967)

A Brief History of early MPC

Early industrial MPC applications:

- Model Predictive Heuristic Control (IDCOM)
 Richalet et al. 1976 ...
 Adersa
- Dynamic Matrix Control (DMC)
 Cutler & Ramaker 1979 . . .
 Shell Oil

Academic research:

- Few early theoretical investigations: Kleinmann 1970, Thomas 1975, Chen & Shaw 1982, ...
- Predictive control theory:

 Keerthi & Gilbert 1988, Mayne & Michalska 1990, ...

Issues in Nonlinear MPC

- System theoretic formulation and investigation: stability, performance, robustness, ...
- Implementation issues: efficient and reliable real-time optimization, modeling, ...

<u>ist</u>

Systems Theory for Predictive Controllers

Predictive controllers differ from most other control schemes in that

- no explicit control law is given
 - => no standard system theoretic analysis is possible

Are MPC Controllers Generically Stabilizing the Closed Loop?

Unstable closed loop for academic example

Example [Primbs '00]: Stabilize the nonlinear system

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 \left(\frac{\pi}{2} + \arctan(5x_1) \right) - \frac{5x_1^2}{2(1+25x_1^2)} + 4x_2 + 3u$$

via NMPC without stability constraints and the cost function $\int_{t_i}^{t_i+T} x_2^2 + u^2 d\tau$.

- -T = 0.2: unstable trajectory
- -- T = 0.3: stable trajectory
- -T = 0.4: unstable trajectory
- -- T=1.0: unstable trajectory

Experimental stability study of NMPC

Four tank system at the IST laboratory

Four tank system:

- Nonlinear system
- Input constraints
- State constraints
- "Slow" dynamics

Four tank system is suited for an experimental stability study of NMPC

ist

NMPC of a Four Tank System

NMPC setup:

- $F(x,u) = (x_1 x_{1s})^2 + (x_2 x_{2s})^2 + 0.001((u_1 u_{1s})^2 + (u_2 u_{2s})^2)$
- State constraints:
 - $x_{min} = [7.5cm \ 7.5cm \ 7.5cm \ 4.5cm]^T$
 - $-x_{max} = [28cm\ 28cm\ 28cm\ 28cm\]^T$
- Input constraints:
 - $u_{min} = [0ml/s \ 0ml/s]^T$
 - $-u_{max} = [60ml/s \ 60ml/s]^T$
- Control input is piecewise constant
- Sampling time is $\Delta = t_{i+1} t_i = 3s$
- NMPC implementation based on OptCon toolbox [Nagy'05]

Simulation and Experiment (1)

- Sim.—, Exp. —
- Setpoint:

$$-x_{1,2s} = 14cm$$

$$- \gamma_{1,2} = 0.4$$

• Prediction horizon:

$$- T = 60s$$

Input constraints

Closed-loop is unstable

istŶ

Simulation and Experiment (2)

- Only simulations
- Setpoint:

$$-x_{1,2s} = 14cm$$

$$- \gamma_{1,2} = 0.4$$

Prediction horizon:

$$- - -T = 60s$$
: unstab.

$$- - -T = 75s$$
: unstab.

$$-T = 90s$$
: unstab.

$$- -T = 135s$$
: stable

Input constraints

Systems Theory for Predictive Controllers

Another idea:

use predicted trajectories to assess closed loop properties

eist

An Important Fact in (N)MPC Theory

Even in nominal case:

- no model plant mismatch
- no disturbances

Predicted open-loop trajectories

Closed-loop trajectories

An Important Fact in (N)MPC Theory

Even in nominal case:

- no model plant mismatch
- no disturbances

Predicted open-loop trajectories

 \neq

Closed-loop trajectories

- **Performance?** Goal: $\min \int_0^\infty \!\! F(x(\tau),u(\tau))d\tau$. What is achieved by repeatedly minimizing $\int_t^{t+T_p} \!\! F(\mathbf{x}(\tau),u(\tau))d\tau$?
- Stability? Why should the closed-loop be stable?

Approaches to Achieve Stability

Two possible approaches:

- a) Choose T_p , F, ... such that closed loop is stable
- b) Alter problem setup (cost functional, constraints) such that closed loop is stable independent of the choice of T_p , ...

⇒ "guaranteed stability" NMPC scheme

Many schemes that guarantee stability exist:

- Infinite horizon NMPC
- Zero terminal constraint NMPC
- Expanding the horizon quasi to infinity
- Unconstraint NMPC
- . . .

Learning Outcomes of Introduction to MPC

- MPC solves very general Optimal Control Problem.
- In particular: **Constraints** on inputs and states can be considered.
- MPC requires repeated online solution of finite-horizon open-loop optimal control problem in real time.
- Finite horizon is not a feature, but an (unwanted) computational necessity.
- "Plain vanilla" MPC is not a stabilizing control approach !!!
- Relationship between MPC solution and infinite horizon optimal control solution is not clear for "plain vanilla" MPC.
- Stability analysis of MPC cannot be done using standard methods, because we have no control law u(x).
- "Plain vanilla" MPC is not a good control approach: We need better MPC formulations -> goal of this course

\(\)

Structure of Course: Focus is on MPC Theory

- The principle of model predictive control (MPC)
- Systems theoretic background material
- Stability of the nominal closed loop
 - Zero-terminal-constraint NMPC
 - Quasi-infinite horizon NMPC
 - Unconstrained NMPC
- Data-based MPC
- Economic MPC
- Robust MPC
- Current trends in MPC
 - Explicit MPC
 - Receding Horizon Estimation
 - Output feedback MPC
 - Distributed MPC
- Exercises