

全国大学生数学竞赛真题集(高等数学)

作者: 李熵一

时间: July, 2022

版本: Second

b站up主:李熵一

酌贪泉而觉爽,处涸辙以犹欢。——王勃

目录

第1章	极限专题	1
1.1	函数极限	1
1.2	数列极限	4
第2章	微分学专题	8
2.1	一元微分	8
2.2	多元微分	9
第3章	积分学专题	11
3.1	不定积分	11
3.2	定积分	12
3.3	反常积分	12
3.4	二重积分	14
3.5	三重积分	15
3.6	曲线积分	16
3.7	曲面积分	18
第4章	应用题专题	20
4.1	几何应用	20
4.2	物理应用	23
第5章	证明题专题	24
5.1	中值定理证明	24
5.2	不等式证明	
第6章	微分方程专题	29
		29 31
		31
第7章	无穷级数专题	31 31
第7章 7.1	无穷级数专题 常数项级数	31 31 34

第1章 极限专题

1.1 函数极限

题目 1.1 (第九届决赛)

$$\lim_{x \to 0} \frac{\tan x - \sin x}{x \ln \left(1 + \sin^2 x\right)}$$

က

题目 1.2 (第十二届初赛)

$$\lim_{x \to 0} \frac{(x - \sin x) e^{-x^2}}{\sqrt{1 - x^3} - 1}$$

 \odot

题目 1.3 (第十届初赛)

$$\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x}}{x^2}$$

m

(题目 1.3 变式)

$$\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos 2x} \dots \sqrt[n]{\cos nx}}{x^2}$$

_

题目 1.4 (第十一届决赛)

$$\lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \sqrt{\sin x}\right) \left(1 - \sqrt[3]{\sin x}\right) \cdots \left(1 - \sqrt[n]{\sin x}\right)}{\left(1 - \sin x\right)^{n-1}}$$

 \sim

题目 1.5 (第十二届决赛)

$$\lim_{x \to 0} \frac{\sqrt{\frac{1+x}{1-x}} \cdot \sqrt[4]{\frac{1+2x}{1-2x}} \cdot \sqrt[6]{\frac{1+3x}{1-3x}} \cdots \sqrt[2n]{\frac{1+nx}{1-nx}} - 1}{3\pi \arctan x - (x^2 + 1) \arctan^3 x}$$

M

题目 1.6 (第二届决赛)

$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{1 - \cos x}}$$

题目 1.7 (第三届决赛)

$$\lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x}$$

m

题目 1.8 (第十一届初赛)

$$\lim_{x \to 0} \frac{\ln\left(e^{\sin x} + \sqrt[3]{1 - \cos x}\right) - \sin x}{\arctan\left(4\sqrt[3]{1 - \cos x}\right)}$$

 \Diamond

题目 1.9 (第一届初赛)

$$\lim_{x \to 0} \left(\frac{e^x + e^{2x} + \ldots + e^{nx}}{n} \right)^{\frac{e}{x}}$$

题目 1.10 (第二届初赛)

$$\lim_{x \to \infty} e^{-x} \left(1 + \frac{1}{x} \right)^{x^2}$$

题目 1.11 (第六届决赛)

$$\lim_{x \to \infty} \frac{\left(\int_0^x e^{u^2} du\right)^2}{\int_0^x e^{2u^2} du}$$

题目 1.12 (第十三届初赛)

$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1} \cdot \frac{x - \ln(e^x + x)}{x}$$

题目 1.13 (第三届初赛)

$$\lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^2 \left[1 - \ln(1+x)\right]}{x}$$

(题目 1.13 变式)

$$\lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^2 \left[1 - \ln(1+x)\right]}{x^2}$$

题目 1.14 (第三届决赛)

$$\lim_{x \to +\infty} \left[\left(x^3 + \frac{x}{2} - \tan \frac{1}{x} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$$

(题目 1.14 变式)

$$\lim_{x \to +\infty} \left[\left(x^3 + \frac{x}{2} - x^3 \tan \frac{1}{x} \right) e^{\frac{1}{x}} - \sqrt{1 + x^6} \right]$$

题目 1.15 (第四届决赛)

$$\lim_{x \to 0^+} \left[\ln(x \ln a) \cdot \ln\left(\frac{\ln ax}{\ln \frac{x}{a}}\right) \right], a > 1$$

题目 1.16 (第四届初赛)

$$\lim_{x \to +\infty} \sqrt[3]{x} \int_{x}^{x+1} \frac{\sin t}{\sqrt{t + \cos t}} dt$$

 \Diamond

题目 1.17 (第十届决赛)

设函数
$$y = \begin{cases} \frac{\sqrt{1 - a \sin^2 x} - b}{x^2}, & x \neq 0 \\ 2, & x = 0 \end{cases}$$
 在点 $x = 0$ 处连续, 求 $a + b$ 的值。

题目 1.18 (第六届初赛)

已知
$$\lim_{x\to 0} \left(1+x+\frac{f(x)}{x}\right)^{\frac{1}{x}}=e^3$$
,求 $\lim_{x\to 0} \frac{f(x)}{x^2}$ 。

 \sim

题目 1.19 (第八届初赛)

若
$$f(1) = 0$$
, $f'(1)$ 存在, 求极限 $\lim_{x\to 0} \frac{f(\sin^2 x + \cos x)\tan 3x}{(e^{x^2} - 1)\sin x}$.

 \sim

题目 1.20 (第九届初赛)

设
$$f(x)$$
 有二阶导数连续, 且 $f(0) = f'(0) = 0$, $f''(0) = 6$, 求 $\lim_{x \to 0} \frac{f(\sin^2 x)}{x^4}$ 。

m

题目 1.21 (第一届决赛)

设
$$f(x)$$
 在点 $x = 1$ 附近有定义,且在点 $x = 1$ 可导, $f(1) = 0$, $f'(1) = 2$ 。求极限
$$\lim_{x \to 0} \frac{f(\sin^2 x + \cos x)}{x^2 + x \tan x}$$
。

m

题目 1.22 (第十二届初赛)

设
$$f(x), g(x)$$
 在 $x = 0$ 的某一邻域 U 内有定义, 对任意 $x \in U, f(x) \neq g(x)$, 且
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = a > 0, 求 \lim_{x \to 0} \frac{[f(x)]^{g(x)} - [g(x)]^{g(x)}}{f(x) - g(x)}.$$

题目 1.23 (第十三届初赛)

设函数
$$f(x)$$
 连续, 且 $f(0) \neq 0$, 求 $\lim_{x \to 0} \frac{2 \int_0^x (x-t) f(t) dt}{x \int_0^x f(x-t) dt}$.

 \heartsuit

题目 1.24 (第二届决赛)

设函数 f(x) 在 x = 0 的某邻域内有二阶连续导数,且 f(0),f'(0),f''(0) 均不为零。证明: 存在唯一一组实数 k_1,k_2,k_3 , 使得

$$\lim_{h \to 0} \frac{k_1 f(h) + k_2 f(2h) + k_3 f(3h) - f(0)}{h^2} = 0$$

 \sim

题目 1.25 (第四届初赛)

设函数 y = f(x) 的二阶导数连续, 且 f''(x) > 0, f(0) = 0, f'(0) = 0, 求 $\lim_{x \to 0} \frac{x^3 f(u)}{f(x) \sin^3 u}$, 其中 u 是曲线 y = f(x) 在点 P(x, f(x)) 处的切线在 x 轴上的截距。

题目 1.26 (第一届决赛)

设 f(x) 在 $[0,+\infty)$ 上连续, 无穷积分 $\int_0^{+\infty} f(x) dx$ 收敛, 求 $\lim_{y \to +\infty} \frac{1}{y} \int_0^y x f(x) dx$ 。

题目 1.27 (第四届决赛)

设f(x)在 $[1,+\infty)$ 上连续可导

$$f'(x) = \frac{1}{1 + f^2(x)} \left[\sqrt{\frac{1}{x}} - \sqrt{\ln\left(1 + \frac{1}{x}\right)} \right]$$

证明: $\lim_{x \to +\infty} f(x)$ 存在。

1.2 数列极限

题目 1.28 (第二届初赛)

$$\lim_{n \to \infty} (1+a) (1+a^2) \cdots (1+a^{2^n}), |a| < 1$$

题目 1.29 (第三届初赛)

$$\lim_{n\to\infty}\cos\frac{\theta}{2}\cdot\cos\frac{\theta}{2^2}\cdots\cos\frac{\theta}{2^n}$$

题目 1.30 (第一届决赛)

$$\lim_{n \to \infty} n \left[\left(1 + \frac{1}{n} \right)^n - e \right]$$

题目 1.31 (第一届决赛)

$$\lim_{n\to\infty} \left(\frac{a^{\frac{1}{n}}+b^{\frac{1}{n}}+c^{\frac{1}{n}}}{3}\right)^n, a>0, b>0, c>0$$

题目 1.32 (第六届初赛)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{(k+1)!}$$

题目 1.33 (第十届初赛)

$$\lim_{n \to +\infty} (n+1)^{\alpha} - n^{\alpha}, \alpha \in (0,1)$$

C

题目 1.34 (第五届初赛)

$$\lim_{n\to\infty} \left[1 + \sin\left(\pi\sqrt{1 + 4n^2}\right)\right]^n$$

 \Diamond

题目 1.35 (第九届初赛)

$$\lim_{n \to \infty} \sin^2\left(\pi\sqrt{n^2 + n}\right)$$

 \Diamond

题目 1.36 (第七届决赛)

 $\lim_{n\to\infty} n\sin\left(\pi n!e\right)$

 \odot

(题目 1.36 变式)

 $\lim_{n\to\infty} n\sin\left(2\pi n!e\right)$

_

题目 1.37 (第四届初赛)

$$\lim_{n\to\infty} (n!)^{\frac{1}{n^2}}$$

 \Diamond

(题目 1.37 变式)

$$\lim_{n\to\infty} (n!)^{\frac{1}{n\ln n}}$$

题目 1.38 (第二届决赛)

$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \right)$$

m

题目 1.39 (第十二届决赛)

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} \sin^2\left(1 + \frac{k}{n}\right)$$

 \Diamond

题目 1.40 (第七届初赛)

$$\lim_{n\to\infty} n \left(\frac{\sin\frac{\pi}{n}}{n^2+1} + \frac{\sin\frac{2\pi}{n}}{n^2+2} + \ldots + \frac{\sin\pi}{n^2+n} \right)$$

 $^{\circ}$

题目 1.41 (第一届决赛)

$$\lim_{n\to\infty}\sum_{k=1}^{n-1}\left(1+\frac{k}{n}\right)\sin\frac{k\pi}{n^2}$$

 \sim

题目 1.42 (第九届决赛)

$$\lim_{n\to\infty} \left[\sqrt[n+1]{(n+1)!} - \sqrt[n]{(n)!} \right]$$

 \Diamond

题目 1.43 (第十一届决赛)

$$\lim_{n \to \infty} \sqrt{n} \left(1 - \sum_{k=1}^{n} \frac{1}{n + \sqrt{k}} \right)$$

题目 1.44 (第八届初赛)

若
$$f(x)$$
 在点 $x = a$ 可导,且 $f(a) \neq 0$,求 $\lim_{n \to \infty} \left(\frac{f\left(a + \frac{1}{n}\right)}{f(a)} \right)^n$ 。

 \odot

题目 1.45 (第十二届初赛)

设数列
$$\{a_n\}$$
 满足: $a_1 = 1$, 且 $a_{n+1} = \frac{a_n}{(n+1)(a_n+1)}$, $n \ge 1$, 求极限 $\lim_{n \to \infty} n! a_n$.

 \sim

题目 1.46 (第十三届初赛)

设
$$x_1 = 2021, x_n^2 - 2(x_n + 1)x_{n+1} + 2021 = 0 (n \ge 1)$$
。证明数列 $\{x_n\}$ 收敛, 并求 $\lim_{n \to \infty} x_n$ 。

题目 1.47 (第三届初赛)

设 $\{a_n\}_{n=0}^{\infty}$ 为数列, a, λ 为有限数, 求证:

- (1) 如果 $\lim_{n \to \infty} a_n = a$, 则 $\lim_{n \to \infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = a$.
- (2) 如果存在正整数 p, 使得 $\lim_{n\to\infty} (a_{n+p} a_n) = \lambda$, 则 $\lim_{n\to\infty} \frac{a_n}{n} = \frac{\lambda}{p}$ 。

 \sim

题目 1.48 (第六届初赛)

设 f(x) 在 [a,b] 上非负连续,严格单增,且存在 $x_n \in [a,b]$ 使得

$$[f(x_n)]^n = \frac{1}{b-a} \int_a^b [f(x)]^n dx$$

 $\not x \lim_{n \to \infty} x_n \ .$

 \odot

题目 1.49 (第十三届初赛补赛)

说
$$x_0 = 1, x_n = \ln(1 + x_{n-1}) \ (n \ge 1), \, \text{则} \lim_{n \to \infty} n x_n$$
。

 \bigcirc

题目 1.50 (第十届决赛)

设 f(x) 在区间 (-1,1) 内三阶连续可导,满足 f(0)=0,f'(0)=1,f''(0)=0,f'''(0)=-1, 又设数列 $\{a_n\}$ 满足 $a_1\in (0,1), a_{n+1}=f(a_n)$ $(n=1,2,3,\ldots),\{a_n\}$ 严格单调减少且 $\lim_{n\to\infty}a_n=0$, 计算 $\lim_{n\to\infty}na_n^2$ 。

 \Diamond

题目 1.51 (第六届初赛)

if
$$A_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2^2} + \ldots + \frac{n}{n^2 + n^2}$$
, $*$ $\lim_{n \to \infty} n \left(\frac{\pi}{4} - A_n \right)$.

题目 1.52 (第八届初赛)

设函数 f(x) 在闭区间 [0,1] 上具有连续导数, f(0) = 0, f(1) = 1。证明:

$$\lim_{n \to \infty} n \left[\int_0^1 f(x) \, \mathrm{d}x - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \right] = -\frac{1}{2}$$

题目 1.53 (第十三届初赛)

设函数 f(x) 在闭区间 [a,b] 上具有连续的二阶导数。证明:

$$\lim_{n \to \infty} n^{2} \left[\int_{a}^{b} f(x) dx - \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + \frac{2k-1}{2n} (b-a)\right) \right] = \frac{(b-a)^{2}}{24} \left[f'(b) - f'(a) \right]$$

题目 1.54 (第六届决赛)

设 D 是平面上由光滑 闭曲线围成的有界区域, 其面积为 A>0, 函数 f(x,y) 在该区域及 其边界上连续且 f(x,y)>0, 记 $J_n=\left(\frac{1}{A}\iint\limits_D f^{1/n}(x,y)\,\mathrm{d}\sigma\right)^n$, 求 $\lim\limits_{n\to+\infty}J_n$ 。

第2章 微分学专题

2.1 一元微分

题目 2.1 (第六届初赛)

设
$$y = y(x)$$
 由 $x = \int_{1}^{y-x} \sin^2\left(\frac{\pi t}{4}\right) dt$ 所确定, 求 $\frac{dy}{dx}|_{x=0}$ 。

题目 2.2 (第二届决赛)

已知
$$\begin{cases} x = \ln(1 + e^{2t}) \\ y = t - \arctan e^t \end{cases}, \\ \stackrel{\text{d}}{\times} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} .$$

题目 2.3 (第七届决赛)

设
$$f(t)$$
 二阶连续可导, 且 $f(t) \neq 0$, 若
$$\begin{cases} x = \int_0^t f(s) \, \mathrm{d}s \\ y = f(t) \end{cases}$$
 , 求 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.

题目 2.4 (第一届初赛)

设函数 y = y(x) 由方程 $xe^{f(y)} = e^y \ln 29$ 确定, 其中 f 具有二阶导数, 且 $f' \neq 1$, 求 $\frac{d^2y}{dx^2}$ 。

题目 2.5 (第一届初赛,1997 年考研数学一和 2020 年考研数学二)

设函数
$$f(x)$$
 连续, $g(x) = \int_0^1 f(xt) dt$, 且 $\lim_{x \to 0} \frac{f(x)}{x} = A$, A 为常数, 求 $g'(x)$ 并讨论 $g'(x)$ 在 $x = 0$ 处的连续性。

题型归类 题目 2.6-2.8: 高阶导数

题目 2.6 (第八届初赛)

设
$$f(x) = e^x \sin 2x$$
, 求 $f^{(4)}(0)$ 。

(题目 2.6 拓展)

设
$$f(x) = e^x \sin x$$
, 求 $f^{(n)}(x)$ 。

题目 2.7 (第十二届初赛)

设函数
$$f(x) = (x+1)^n e^{-x^2}$$
, 求 $f^{(n)}(-1)$ 。

题目 2.8 (第十一届决赛)

设
$$f(x) = (x^2 + 2x - 3)^n \arctan^2 \frac{x}{3}$$
, 其中 n 为正整数, 求 $f^{(n)}(-3)$ 。

2.2 多元微分

题目 2.9 (第二届初赛)

设函数 f(t) 有二阶连续导数, $r = \sqrt{x^2 + y^2}$, $g(x, y) = f\left(\frac{1}{r}\right)$, 求 $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$.

题目 2.10 (第九届初赛)

设 $w=f\left(u,v\right)$ 有二 阶连续偏导数, 且 u=x-cy,v=x+cy, 其中 c 为非零常数, 求 $w_{xx}-\frac{1}{c^2}w_{yy}$ 。

题目 2.11 (第四届初赛)

已知函数 $z=u\left(x,y\right)e^{ax+by}$, 且 $\frac{\partial^2 u}{\partial x\partial y}=0$ 。确定常数 a 和 b, 使函数 $z=z\left(x,y\right)$ 满足方程 $\frac{\partial^2 z}{\partial x\partial y}-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}+z=0$

题目 2.12 (第十二届初赛)

已知 $z = xf\left(\frac{y}{x}\right) + 2y\varphi\left(\frac{x}{y}\right)$, 其中 f,φ 均为二阶可微函数。

 $(1) \, \not \stackrel{\circ}{R} \, \frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y};$

(2) 当 $f = \varphi$, 且 $\frac{\partial^2 z}{\partial x \partial y}|_{x=a} = -by^2$ 时, 求 f(y)。

题目 2.13 (第十三届初赛)

设 z = z(x,y) 是由方程 $2\sin(x+2y-3z) = x+2y-3z$ 所确定的二元隐函数, 求 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ 。

题目 2.14 (第十届决赛)

设函数 $z=z\left(x,y\right)$ 由方程 $F\left(x-y,z\right)=0$ 确定, 其中 $F\left(u,v\right)$ 具有连续二阶偏导数, 求 $\frac{\partial^{2}z}{\partial x\partial y}$ 。

题目 2.15 (第三届初赛)

设 z=z(x,y) 是由方程 $F\left(z+\frac{1}{x},z-\frac{1}{y}\right)=0$ 确定的隐函数,且具有连续的二阶偏导数。求证: $x^2\frac{\partial z}{\partial x}-y^2\frac{\partial z}{\partial y}=1$ 和 $x^3\frac{\partial^2 z}{\partial x^2}+xy(x-y)\frac{\partial^2 z}{\partial x\partial y}-y^3\frac{\partial^2 z}{\partial y^2}+2=0$ 。

题目 2.16 (第三届决赛)

设函数 f(x,y) 有二阶连续偏导数,满足 $f_x^2 f_{yy} - 2 f_x f_y f_{xy} + f_y^2 f_{xx} = 0$, 且 $f_y \neq 0$, y = y(x,z) 是由方程 z = f(x,y) 所确定的函数,求 $\frac{\partial^2 y}{\partial x^2}$ 。

题目 2.17 (第七届初赛)

设 z = z(x,y) 是由方程 $F\left(x + \frac{z}{y}, y + \frac{z}{x}\right) = 0$ 所决定, 其中 F(u,v) 具有连续偏导数, 且 $xF_u + yF_v \neq 0$, 求 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ 。(结果要求不显含有 F 及其偏导数)

题目 2.18 (第六届决赛)

设 $\vec{l_j}, j = 1, 2, ..., n$ 是平面上点 P_0 处的各方向向量, $n \ge 2$, 相邻两个向量之间的夹角为 $\frac{2\pi}{n}$ 。 若函数 f(x,y) 在点 P_0 有连续偏导, 证明: $\sum_{i=1}^n \frac{\partial f(P_0)}{\partial \vec{l_i}} = 0$ 。

题目 2.19 (第十一届决赛)

设
$$F(x_1, x_2, x_3) = \int_0^{2\pi} f(x_1 + x_3 \cos \varphi, x_2 + x_3 \sin \varphi) \, d\varphi$$

其中 $f(u, v)$ 具有二阶连续偏导数。已知

$$\frac{\partial F}{\partial x_i} = \int_0^{2\pi} \frac{\partial}{\partial x_i} \left[f(x_1 + x_3 \cos \varphi, x_2 + x_3 \sin \varphi) \right] \, d\varphi$$

$$\frac{\partial^2 F}{\partial x_i^2} = \int_0^{2\pi} \frac{\partial^2}{\partial x_i^2} \left[f(x_1 + x_3 \cos \varphi, x_2 + x_3 \sin \varphi) \right] \, d\varphi, i = 1, 2, 3$$
试求 $x_3 \left(\frac{\partial^2 F}{\partial x_1^2} + \frac{\partial^2 F}{\partial x_2^2} - \frac{\partial^2 F}{\partial x_3^2} \right) - \frac{\partial F}{\partial x_3}$ 并化简。

第3章 积分学专题

3.1 不定积分

题目 3.1 (第九届初赛)

$$\int \frac{e^{-\sin x} \sin 2x}{\left(1 - \sin x\right)^2} \mathrm{d}x$$

\sim

题目 3.2 (第十届初赛)

$$\int \frac{\ln\left(x + \sqrt{1 + x^2}\right)}{\left(1 + x^2\right)^{\frac{3}{2}}} \mathrm{d}x$$

\sim

(题目 3.2 变式)

$$\int \frac{x \ln\left(x + \sqrt{1 + x^2}\right)}{\left(1 + x^2\right)^2} \mathrm{d}x$$

题目 3.3 (第三届决赛)

$$\int \left(1 + x - \frac{1}{x}\right) e^{x + \frac{1}{x}} \mathrm{d}x$$

题目 3.4 (第四届决赛)

$$\int x \arctan x \ln \left(1 + x^2\right) dx$$

题目 3.5 (第六届决赛)

$$\int \frac{x^2 + 1}{x^4 + 1} \mathrm{d}x \,.$$

(题目 3.5 变式)

$$\int \frac{x^2 \pm 1}{1 + kx^2 + x^4} \mathrm{d}x$$

题目 3.6 (第一届决赛)

$$\int \frac{1}{\sin^3 x + \cos^3 x} \mathrm{d}x$$

题目 3.7 (第十一届初赛)

设隐函数
$$y = y(x)$$
 由方程 $y^2(x - y) = x^2$ 所确定, 求 $\int \frac{\mathrm{d}x}{y^2}$ 。

3.2 定积分

题目 3.8 (第十三届初赛补赛)

$$\int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + \tan x} \mathrm{d}x$$

 $^{\circ}$

题目 3.9 (第十一届初赛)

$$\int_0^{\frac{\pi}{2}} \frac{e^x \left(1 + \sin x\right)}{1 + \cos x} \mathrm{d}x$$

 \Diamond

题目 3.10 (第五届初赛)

$$\int_{-\pi}^{\pi} \frac{x \sin x \cdot \arctan e^x}{1 + \cos^2 x} \mathrm{d}x$$

 \sim

题目 3.11 (第六届初赛)

设
$$n$$
 为正整数, 计算 $I = \int_{e^{-2n\pi}}^{1} \left| \frac{\mathrm{d}}{\mathrm{d}x} \cos\left(\ln\frac{1}{x}\right) \right| \mathrm{d}x$ 。

 \sim

题目 3.12 (第七届决赛)

设
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$$
, 其中 n 为正整数, 若 $n \ge 2$, 计算 $I_n + I_{n-2}$ 。

0

题目 3.13 (第一届初赛)

设
$$f(x)$$
 是连续函数, 且满足 $f(x) = 3x^2 - \int_0^2 f(x) dx - 2$, 求 $f(x)$ 。

 \sim

题目 3.14 (第七届决赛)

设
$$f(x)$$
 在 $[a,b]$ 上连续, 证明: $2\int_a^b f(x)\left(\int_x^b f(t)\,\mathrm{d}t\right)\mathrm{d}x = \left(\int_a^b f(x)\,\mathrm{d}x\right)^2$

3.3 反常积分

题目 3.15 (第四届初赛)

计算
$$\int_0^{+\infty} e^{-2x} |\sin x| dx$$
.

 \sim

(题目 3.15 类题: 2019 年考研数学一真题)

求曲线 $y = e^{-x} \sin x \ (x \ge 0)$ 与 x 轴之间图形的面积。

题目 3.16 (第十届决赛)

$$\int_0^{+\infty} \frac{\ln x}{x^2 + a^2} \mathrm{d}x, a > 0$$

 \Diamond

题目 3.17 (第六届决赛)

$$I = \int_0^{+\infty} \frac{u}{1 + e^u} \mathrm{d}u$$

 \Diamond

题目 3.18 (第二届初赛)

设
$$s > 0$$
, 求 $I_n = \int_0^{+\infty} e^{-sx} x^n dx (n = 1, 2, ...)$ 。

 \sim

题目 3.19 (第五届初赛)

证明广义积分
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 不是绝对收敛的。

 \sim

题目 3.20 (第十二届初赛)

已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
,则 $\int_0^{+\infty} \int_0^{+\infty} \frac{\sin x \sin(x+y)}{x(x+y)} dx dy$ 。

(题目 3.20 拓展)

计算
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 , $\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$, $\int_0^{+\infty} \left(\frac{\sin x}{x}\right)^4 dx$ 的值。

•

题目 3.21 (第三届决赛)

讨论
$$\int_0^{+\infty} \frac{x}{\cos^2 x + x^{\alpha} \sin^2 x} dx$$
 的敛散性, 其中 α 是一个实常数。

...

题目 3.22 (第七届初赛)

设区间
$$(0,+\infty)$$
 上的函数 $u(x)$ 定义为 $u(x)=\int_0^{+\infty}e^{-xt^2}\mathrm{d}t$, 求 $u(x)$ 的初等函数表达式。

题目 3.23 (第十三届初赛补赛)

设
$$f(x) = \int_0^x \left(1 - \frac{[u]}{u}\right) du$$
, 其中 $[x]$ 表示小于等于 x 的最大整数, 试讨论

$$\int_{1}^{+\infty} \frac{e^{f(x)}}{x^{p}} \cos\left(x^{2} - \frac{1}{x^{2}}\right) \mathrm{d}x$$

的敛散性, 其中 p > 0。

 \heartsuit

3.4 二重积分

题目 3.24 (第五届决赛)

$$\int_0^{2\pi} x \int_x^{2\pi} \frac{\sin^2 t}{t^2} \mathrm{d}t \mathrm{d}x$$

 \odot

题目 3.25 (第四届决赛)

$$\iint\limits_{x^2+y^2\leqslant 1} \left| x^2 + y^2 - x - y \right| \mathrm{d}x \mathrm{d}y$$

 \sim

题目 3.26 (第十一届初赛)

$$\int_0^{2\pi} d\phi \int_0^{\pi} e^{\sin\theta(\cos\phi - \sin\phi)} \sin\theta d\theta$$

 \sim

题目 3.27 (第七届决赛)

说
$$D: 1 \le x^2 + y^2 \le 4$$
,求 $I = \iint_D (x + y^2) e^{-(x^2 + y^2 - 4)} dx dy$ 。

 \Diamond

题目 3.28 (第三届初赛)

求
$$\iint_{D} \operatorname{sgn}(xy - 1) \, dx dy$$
, 其中 $D = \{(x, y) | 0 \le x \le 2, 0 \le y \le 2\}$ 。

_

题目 3.29 (第十三届初赛)

ič
$$D=\left\{(x,y)\left|x^2+y^2\leqslant\pi\right.\right\}$$
, $\mathbb{N}\int\limits_{D}\sin x^2\cos y^2+x\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y$.

 \sim

题目 3.30 (第一届初赛)

$$\iint\limits_{D} \frac{(x+y)\ln\left(1+\frac{y}{x}\right)}{\sqrt{1-x-y}}\mathrm{d}x\mathrm{d}y, 区域 D 是由直线 x+y=1 与两坐标轴所围三角形区域。$$

 \sim

题目 3.31 (第十三届初赛补赛)

设函数
$$f(x,y)$$
 在闭区域 $D = \{(x,y) | x^2 + y^2 \leqslant 1\}$ 上具有二阶连续偏导数, 且 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = x^2 + y^2$, 求 $\lim_{r \to 0^+} \frac{\iint_{x^2 + y^2 \leqslant r^2} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) \mathrm{d}x \mathrm{d}y}{\left(\tan r - \sin r \right)^2}$ 。

题目 3.32 (第六届决赛)

设
$$f(x,y)$$
 为 R^2 上的非负的连续函数,若 $I=\lim_{t\to +\infty}\iint\limits_{x^2+y^2\leqslant t^2}f(x,y)\,\mathrm{d}\sigma$ 存在极限,则称广义积分 $\iint\limits_{R^2}f(x,y)\,\mathrm{d}\sigma$ 收敛于 I 。若 $\iint\limits_{R^2}f(x,y)\,\mathrm{d}\sigma$ 收敛于 I ,证明极限 $\lim\limits_{t\to +\infty}\iint\limits_{-t\leqslant x,y\leqslant t}f(x,y)\,\mathrm{d}\sigma$ 存在且收敛于 I 。

3.5 三重积分

题目 3.33 (第九届初赛)

记曲面
$$z^2=x^2+y^2$$
 和 $z=\sqrt{4-x^2-y^2}$ 围成空间区域 V , 求三重积分 $\iiint\limits_V z \mathrm{d}x \mathrm{d}y \mathrm{d}z$ 。

题目 3.34 (第十届初赛)

计算三重积分
$$\iint_V x^2 + y^2 dv$$
, 其中 V 是由 $x^2 + y^2 + (z-2)^2 \ge 4$, $x^2 + y^2 + (z-1)^2 \le 9$ 及 $z \ge 0$ 所围成的空间图形。

题目 3.35 (第十一届初赛)

计算三重积分
$$\iint\limits_{\Omega} \frac{xyz}{x^2+y^2} \mathrm{d}x\mathrm{d}y\mathrm{d}z$$
, 其中 Ω 是由曲面 $(x^2+y^2+z^2)^2=2xy$ 围成的区域 在第一卦限部分。

题目 3.36 (第八届初寨)

某物体所在的空间区域为
$$\Omega: x^2+y^2+2z^2 \leq x+y+2z$$
, 密度函数为 $x^2+y^2+z^2$, 求质量 $M=\iiint\limits_{z} \left(x^2+y^2+z^2\right) \mathrm{d}x\mathrm{d}y\mathrm{d}z$ 。

题目 3.37 (第四届初赛)

$$F(x)$$
 为连续函数, $t>0$, 区域 Ω 是由椭圆抛物面 $z=x^2+y^2$ 和球面 $x^2+y^2+z^2=t^2$ $(t>0)$ 所围起来的部分。定义三重积分 $F(t)=\iiint_{\Omega}f\left(x^2+y^2+z^2\right)\mathrm{d}v$, 求 $F(t)$ 的导数 $F'(t)$ 。

题目 3.38 (第十届决赛)

计算三重积分
$$M=\iiint_{\Omega}\frac{1}{(1+x^2+y^2+z^2)^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z$$
, 其中 $\Omega:0\leqslant x\leqslant 1,0\leqslant y\leqslant 1,0\leqslant z\leqslant 1$ 。

题目 3.39 (第八届决赛)

设函数
$$f(x,y,z)$$
 在区域 $\Omega = \{(x,y,z) | x^2 + y^2 + z^2 \leq 1\}$ 上具有连续的二阶偏导数, 且满足 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \sqrt{x^2 + y^2 + z^2}$, 计算 $I = \iiint_{\Omega} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z$.

3.6 曲线积分

题目 3.40 (第六届决赛)

求曲线积分 $I = \oint_L \frac{x \mathrm{d}y - y \mathrm{d}x}{|x| + |y|}$,其中 L 是以 (1,0),(0,1),(-1,0),(0,-1) 为顶点的正方形的边界曲线,方向为逆时钟方向。

题目 3.41 (第四届初赛)

设函数 $u=u\left(x\right)$ 连续可微, $u\left(2\right)=1$,且 $\int_{L}\left(x+2y\right)u\mathrm{d}x+\left(x+u^{3}\right)u\mathrm{d}y$ 在右半平面与路径无关,求 $u\left(x\right)$ 。

题目 3.42 (第一届初赛)

已知平面区域 $D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, L为 D的正向边界, 试证:

(1)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx = \oint_L xe^{-\sin y} dy - ye^{\sin x} dx$$

(2)
$$\oint_{L} xe^{\sin y} dy - ye^{-\sin x} dx \geqslant \frac{5}{2}\pi^{2}$$

(题目 3.42 类题: 2003 年考研数学一真题)

已知平面区域 $D = \{(x,y) | 0 \le x \le \pi, 0 \le y \le \pi\}$, L为 D的正向边界, 试证:

(1)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx = \oint_L xe^{-\sin y} dy - ye^{\sin x} dx$$

(2)
$$\oint_L xe^{\sin y} dy - ye^{-\sin x} dx \geqslant 2\pi^2$$

题目 3.43 (第二届初赛)

设函数 $\varphi(x)$ 具有连续的导数, 在围绕原点的任意光滑的简单闭曲线 L 上, 曲线积分 $\oint_L \frac{2xy\mathrm{d}x + \varphi(x)\mathrm{d}y}{x^4 + y^2}$ 的值为常数。

(1) 设
$$L$$
 为正向闭曲线 $(x-2)^2 + y^2 = 1$ 。证明: $\oint_L \frac{2xydx + \varphi(x)dy}{x^4 + y^2} = 0$ 。

(2) 求函数 $\varphi(x)$ 。

(3) 设
$$C$$
 是围绕原点的光滑简单正向闭曲线, 求 $\oint_C \frac{2xy\mathrm{d}x + \varphi(x)\,\mathrm{d}y}{x^4 + y^2}$ 。

(题目 3.43 类题: 2005 年考研数学一真题)

设函数 $\varphi(y)$ 具有连续导数, 在围绕原点的任意分段光滑简单闭曲线 L 上, 曲线积分 $\oint_{L} \frac{\varphi\left(y\right) \, \mathrm{d}x + 2xy \mathrm{d}y}{2x^2 + y^4} \ \mathrm{的值恒为同一常数。}$ (1) 证明: 对右半平面 x > 0 内的任意分段光滑简单闭曲线 C , 有

$$\oint_{C} \frac{\varphi(y) \, \mathrm{d}x + 2xy \, \mathrm{d}y}{2x^{2} + y^{4}} = 0$$

(2) 求函数 $\varphi(y)$ 的表达式。

题目 3.44 (第十二届决赛)

记空间曲线
$$\Gamma$$
:
$$\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x + y + z = 0 \end{cases} \quad (a > 0), 求积分 \oint_{\Gamma} (1+x)^2 ds.$$

题目 3.45 (第九届初赛)

设曲线 Γ 为曲线 $x^2 + y^2 + z^2 = 1, x + z = 1, x \ge 0, y \ge 0, z \ge 0$ 从点 A(1,0,0) 到点 B(0,0,1) 的一段, 求曲线积分 $I = \int_{-\infty}^{\infty} y dx + z dy + x dz$ 。

题目 3.46 (第十二届初赛)

计算
$$I=\oint_{\Gamma}\left|\sqrt{3}y-x\right|\mathrm{d}x-5z\mathrm{d}z$$
,曲线 $\Gamma:\left\{\begin{array}{c}x^2+y^2+z^2=8\\x^2+y^2=2z\end{array}\right.$,从 z 轴正向往坐标原点看去取逆时针方向。

题目 3.47 (第十届决赛)

设曲线 L 是空间区域 $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ 的表面与平面 $x + y + z = \frac{3}{2}$ 的交 线, 求 $\left| \oint_{\Gamma} (z^2 - y^2) dx + (x^2 - z^2) dy + (y^2 - x^2) dz \right|$ 。

题目 3.48 (第五届初赛)

设
$$I_a(r)=\int_C \frac{y\mathrm{d}x-x\mathrm{d}y}{(x^2+y^2)^a}$$
, 其中 a 为常数, 曲线 C 为椭圆 $x^2+xy+y^2=r^2$, 取正向, 求极 限 $\lim_{r\to+\infty}I_a(r)$ 。

题目 3.49 (第三届决赛)

设连续可微函数 $z=z\left(x,y\right)$ 由方程 $F\left(xz-y,x-yz\right)=0$ (其中 $F\left(u,v\right)$ 有连续的偏导 数) 唯一确定,L 为正向单位圆周, 试求:

$$\oint_L (xz^2 + 2yz) \, \mathrm{d}y - (2xz + yz^2) \, \mathrm{d}x$$

题目 3.50 (第十届初赛)

设函数 f(t) 在 $t\neq 0$ 时一阶连续可导,且 f(1)=0,求函数 $f(x^2-y^2)$,使得曲线积分 $\int_L y\left[2-f\left(x^2-y^2\right)\right]\mathrm{d}x+xf\left(x^2-y^2\right)\mathrm{d}y$ 与路径无关,其中 L 为任一不与直线 $y=\pm x$ 相交的分段光滑曲线。

3.7 曲面积分

题目 3.51 (第一届决赛)

题目 3.52 (第五届初赛)

设 Σ 是一个光滑封闭曲面, 方向朝外。给定第二型的曲面积分

$$I = \iint_{\Sigma} (x^3 - x) \, dy dz + (2y^3 - y) \, dz dx + (3z^3 - z) \, dx dy$$

试确定曲面 Σ , 使得积分 I 的值最小, 并求该最小值。

(题目 3.52 类题: 2021 年考研数学一真题)

设 $D \subset \mathbf{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D \left(4 - x^2 - y^2\right) dxdy$ 取得最大值的积分区域为 D_1 , 求 $I(D_1)$ 的值。

题目 3.53 (第五届决赛)

设函数 f(x) 连续可导, $P=Q=R=f((x^2+y^2)z)$, 有向曲面 Σ_t 是圆柱体 $x^2+y^2\leqslant t^2, 0\leqslant z\leqslant 1$ 的表面,方向向外,记第二型的曲面积分

$$I_t = \iint_{\Sigma_t} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y$$

求极限 $\lim_{t\to 0^+} \frac{I_t}{t^4}$ 。

题目 3.54 (第三届初赛)

设函数 f(x) 连续,a,b,c 为常数, Σ 是单位球面 $x^2+y^2+z^2=1$, 记第一型曲面积分 $I=\iint\limits_{\Sigma} f\left(ax+by+cz\right)\mathrm{d}S \text{ . 求证: } I=2\pi\int_{-1}^1 f\left(\sqrt{a^2+b^2+c^2}u\right)\mathrm{d}u \text{ .}$

题目 3.55 (第二届决赛)

已知 S 是空间曲线 $\begin{cases} x^2 + 3y^2 = 1 \\ z = 0 \end{cases}$ 绕 y 轴旋转形成的椭球面的上半部分 $(z \ge 0)$ (取

上侧), Π 是 S 在点 P(x,y,z) 处的切平面, $\rho(x,y,z)$ 是原点到切平面 Π 的距离, λ,μ,ν 表示 S 的正法向的方向余弦, 计算:

(1)
$$\iint_{S} \frac{z}{\rho(x,y,z)} dS \quad (2) \quad \iint_{S} z \left(\lambda x + 3\mu y + \nu z\right) dS$$

 \Diamond

题目 3.56 (第六届初赛)

设球体 $(x-1)^2 + (y-1)^2 + (z-1)^2 \le 12$ 被平面 P: x+y+z=6 所截的小球缺为 Ω 。 记球缺上的球冠为 Σ , 方向指向球外, 求第二型曲面积分

$$I = \iint\limits_{\Sigma} x \mathrm{d}y \mathrm{d}z + y \mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y$$

 \Diamond

题目 3.57 (第七届决赛)

设 P(x,y,z) 和 R(x,y,z) 在空间上有连续偏导数,设上半球面

$$S: z = z_0 + \sqrt{r^2 - (x - x_0)^2 - (y - y_0)^2}$$

方向向上, 若对任何点 (x_0,y_0,z_0) 和 r>0,第二型曲面积分 $\iint\limits_S P\mathrm{d}y\mathrm{d}z + R\mathrm{d}x\mathrm{d}y = 0$,证

明:
$$\frac{\partial P}{\partial x} \equiv 0$$
。

 \odot

题目 3.58 (第十三届初赛)

对于 4 次齐次函数

$$f\left(x,y,z\right)=a_{1}x^{4}+a_{2}y^{4}+a_{3}z^{4}+3a_{4}x^{2}y^{2}+3a_{5}y^{2}z^{2}+3a_{6}x^{2}z^{2}$$
 计算曲面积分 $\iint f\left(x,y,z\right)\mathrm{d}S$,其中 $\Sigma:x^{2}+y^{2}+z^{2}=1$ 。

 \mathcal{C}

题目 3.59 (第十三届初赛补赛)

若对于 R^3 中半空间 $\{(x,y,z)\in R^3\,|x>0\}$ 内任意有向光滑封闭曲面 S , 都有

$$\iint_{S} xf''(x) dydz + y (xf(x) - f'(x)) dzdx - xz (\sin x + f'(x)) dxdy = 0$$

其中
$$f$$
 在 $(0,+\infty)$ 上二阶导数连续且 $\lim_{x\to 0^+}f\left(x\right)=\lim_{x\to 0^-}f'\left(x\right)=0$, 求 $f\left(x\right)$ 。

C

第4章 应用题专题

4.1 几何应用

题型归类 题目 4.1-4.12: 求解直线方程和平面方程

题目 4.1 (第八届初赛)

曲面
$$z = \frac{x^2}{2} + y^2$$
 平行于平面 $2x + 2y - z = 0$ 的切平面方程。

题目 4.2 (第一届初赛)

曲面
$$z = \frac{x^2}{2} + y^2 - 2$$
 平行于平面 $2x + 2y - z = 0$ 的切平面方程。

题目 4.3 (第六届初赛)

设有曲面
$$S: z=x^2+2y^2$$
 和平面 $\pi: 2x+2y+z=0$, 求与 π 平行的 S 的切平面方程。

题目 4.4 (第十届初赛)

若曲线
$$y=f(x)$$
 由
$$\begin{cases} x=t+\cos t \\ e^y+ty+\sin t=1 \end{cases}$$
 确定, 求此曲线在 $t=0$ 对应点处的切线方程。

题目 4.5 (第十二届初赛)

设
$$y=f(x)$$
 是由方程 $\arctan\frac{x}{y}=\ln\sqrt{x^2+y^2}-\frac{1}{2}\ln2+\frac{\pi}{4}$ 确定的隐函数, 且满足 $f(1)=1$, 求曲线 $y=f(x)$ 在点 $(1,1)$ 处的切线方程。

题目 4.6 (第十一届决赛)

设函数
$$y=f(x)$$
 由方程 $3x-y=2\arctan(y-2x)$ 所确定, 求曲线 $y=f(x)$ 在点 $P\left(1+\frac{\pi}{2},3+\pi\right)$ 处的切线方程。

题目 4.7 (第四届决赛

过直线
$$\left\{ \begin{array}{ll} 10x + 2y - 2z = 27 \\ x + y - z = 0 \end{array} \right.$$
 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面, 求此切平面的方程。

题目 4.8 (第五届决赛)

设
$$F(x,y,z)$$
 和 $G(x,y,z)$ 有连续偏导数, $\frac{\partial (F,G)}{\partial (x,z)} \neq 0$ 。曲线 $\Gamma: \left\{ egin{align*} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{array} \right.$ 过点 $P_0(x_0,y_0,z_0)$ 。记 Γ 在 xOy 平面上的投影曲线为 S ,求 S 上过点 (x_0,y_0) 的切线方程。

题目 4.9 (第九届决赛)

设一平面过原点和点
$$(6, -3, 2)$$
, 且与平面 $4x - y + 2z = 8$ 垂直, 求此平面方程。

题目 4.10 (第四届初赛)

通过直线 $L: \left\{ \begin{array}{ll} 2x+y-3z+2=0 \\ 5x+5y-4z+3=0 \end{array} \right.$ 的两个相互垂直的平面 π_1 和 π_2 ,使其中一个平面过点 (4,-3,1) 。

题目 4.11 (第八届决赛)

过单叶双曲面 $\frac{x^2}{4}+\frac{y^2}{2}-2z^2=1$ 和球面 $x^2+y^2+z^2=4$ 的交线且与直线 $\begin{cases} & x=0\\ & 3y+z=0 \end{cases}$ 垂直的平面方程。

题目 4.12 (第十三届初赛补赛)

已知直线 $L: \left\{ egin{array}{ll} 2x-4y+z=0 \\ 3x-y-2z=9 \end{array}
ight.$ 和平面 $\pi: 4x-y+z=1$,则直线 L 在平面 π 上的投影直线方程。

题型归类 题目 4.13-4.14: 求解锥面方程和柱面方程

题目 4.13 (第七届初赛)

设 M 是以三个正半轴为母线的半圆锥面, 求其方程。

题目 4.14 (第十三届初赛)

过三条直线 L_1 : $\left\{\begin{array}{c} x=0\\ y-z=2\end{array}\right., L_2: \left\{\begin{array}{c} x=0\\ x+y-z+2=0\end{array}\right., L_3: \left\{\begin{array}{c} x=\sqrt{2}\\ y-z=0\end{array}\right.$ 的圆柱面方程。

题型归类 题目 4.15-4.19: 面积、体积问题

题目 4.15 (第七届初赛)

曲面 $z=x^2+y^2+1$ 在点 M(1,-1,3) 的切平面与曲面 $z=x^2+y^2$ 所围区域的体积。

题目 4.16 (第三届决赛)

求曲面 $x^2 + y^2 = az$ 和 $z = 2a - \sqrt{x^2 + y^2} (a > 0)$ 所围立体的表面积。

题目 4.17 (第八届决赛)

曲线 $L_1: y = \frac{1}{3}x^3 + 2x \ (0 \le x \le 1)$ 绕直线 $L_2: y = \frac{4}{3}x$ 旋转所生成的旋转曲面的面积。

题目 4.18 (第五届初赛)

过曲线 $y = \sqrt[3]{x} (x \ge 0)$ 上的点 A 作切线, 使该切线与曲线及 x 轴所围成的平面图形的面积为 $\frac{3}{4}$, 求 A 点的坐标。

题目 4.19 (第六届初赛)

设一球缺高为 h , 所在球半径为 R 。证明该球缺的体积为 $\frac{\pi}{3}(3R-h)h^2$, 球冠的面积为 $2\pi Rh$ 。

题型归类 题目 4.20-4.26: 极值、最值问题

题目 4.20 (第五届初赛)

设函数 y = y(x) 由 $x^3 + 3x^2y - 2y^3 = 2$ 所确定, 求 y(x) 的极值。

\sim

题目 4.21 (第十二届决赛)

函数
$$u = x_1 + \frac{x_2}{x_1} + \frac{x_3}{x_2} + \frac{2}{x_3} (x_i > 0, i = 1, 2, 3)$$
 的所有极值点。

$^{\circ}$

题目 4.22 (第二届决赛)

设 $\Sigma_1: \overline{\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}} = 1$, 其中 a > b > c > 0, $\Sigma_2: z^2 = x^2 + y^2$, Γ 为 Σ_1 和 Σ_2 的交线, 求 椭球面 Σ_1 在 Γ 上各点的切平面到原点距离的最大值和最小值。

题目 4.23 (第一届初赛)

设抛物线 $y=ax^2+bx+2\ln c$ 过原点, 当 $0\leqslant x\leqslant 1$ 时, $y\geqslant 0$,又已知该抛物线与 x 轴及直线 x=1 所围图形的面积为 $\frac{1}{3}$,试确定 a,b,c ,使此图形绕 x 轴旋转一周而成的旋转体的体积 V 最小。

题目 4.24 (第一届决赛)

现要设计一个容积为V的圆柱体的容器,已知上下两底的材料费为单位面积a元,而侧面的材料费为单位面积b元,试给出最节省的设计方案,即高与上下底的直径之比为何值时所需费用最少?

\Diamond

(题目 4.24 类题: 2018 年考研数学一真题)

将长为 2m 的铁丝分成三段, 依次围成圆、正方形与正三角形, 三个图形的面积之和是否存在最小值?若存在, 求出最小值。

题目 4.25 (第十一届决赛)

设平面 L 的方程为 $Ax^2+By^2+Cxy+Dx+Ey+F=0$,且通过五个点 $P_1\left(-1,0\right),P_2\left(0,-1\right),P_3\left(0,1\right),P_4\left(2,-1\right),P_5\left(2,1\right)$,计算 L 上任意两点之间的直线距离 最大值。

题目 4.26 (第九届初赛)

设二元函数 f(x,y) 在平面上有连续的二阶偏导数,对任意角度 α ,定义一元函数 $g_{\alpha}(t) = f(t\cos\alpha, t\sin\alpha)$,若对任何 α 都有 $\frac{\mathrm{d}g_{\alpha}(0)}{\mathrm{d}t} = 0$ 且 $\frac{\mathrm{d}^{2}g_{\alpha}(0)}{\mathrm{d}t^{2}} > 0$ 。证明: f(0,0) 是 f(x,y) 的极小值。

题目 4.27 (第二届初赛)

求直线
$$l_1: \begin{cases} x-y=0 \\ z=0 \end{cases}$$
 与直线 $l_2: \frac{x-2}{4} = \frac{y-1}{-2} = \frac{z-3}{-1}$ 的距离。

题目 4.28 (第十一届初赛)

设
$$a,b,c,\mu>0$$
,曲面 $xyz=\mu$ 与曲面 $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ 相切,求 μ 。

m

题目 4.29 (第十二届决赛)

设 $P_0(1,1,-1)$, $P_1(2,-1,0)$ 为空间的两点, 计算函数 $u=xyz+e^{xyz}$ 在点 P_0 处沿 P_0P_1 方向的方向导数。

题目 4.30 (第七届决赛)

设 f(u,v) 在全平面上有连续的偏导数,证明: 曲面 $f\left(\frac{x-a}{z-c},\frac{y-b}{z-c}\right)=0$ 的所有切平面都交于点 (a,b,c)。

 \sim

4.2 物理应用

题目 4.31 (第三届初赛)

在平面上, 有一条从点 (a,0) 向右的射线, 其线密度为 ρ 。在点 (0,h) 处 (其中 h>0) 有一质量为 m 的质点, 求射线对该质点的引力。

题目 4.32 (第四届决赛)

设曲面 $\Sigma: z^2 = x^2 + y^2, 1 \le z \le 2$, 其面密度为常数 ρ 。求在原点处的质量为 1 的质点和 Σ 之间的引力(记引力常数为 G)。

题目 4.33 (第二届初赛)

设 l 是过原点、方向为 (α, β, γ) (其中 $\alpha^2 + \beta^2 + \gamma^2 = 1$) 的直线, 均匀椭球 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ (其中 0 < c < b < a, 密度为 1) 绕 l 旋转。

- (1) 求其转动惯量;
- (2) 求其转动惯量关于方向 (α, β, γ) 的最大值和最小值。

 \sim

题目 4.34 (第三届决赛)

设 D 为椭圆形 $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ (a > b > 0), 面密度为 ρ 的均质薄板; l 为通过椭圆焦点 (-c,0) (其中 $c^2 = a^2 - b^2$) 垂直于薄板的旋转轴。

- (1) 求薄板 D 绕 l 旋转的转动惯量 J 。
- (2) 对于固定的转动惯量, 讨论椭圆薄板的面积是否有最大值和最小值。

C

第5章 证明题专题

5.1 中值定理证明

题目 5.1 (第一届决赛)

设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 内可微, 且 f(0) = f(1) = 0, $f\left(\frac{1}{2}\right) = 1$ 。证明:

- (1) 存在 $\xi \in \left(\frac{1}{2}, 1\right)$, 使得 $f(\xi) = \xi$ 。
- (2) 存在 $\eta \in (0,\xi)$, 使得 $f'(\eta) = f(\eta) \eta + 1$ 。

题目 5.2 (第十二届决赛)

设函数 f(x) 在 [a,b] 上连续, 在 (a,b) 内二阶可导, 且 f(a) = f(b) = 0, $\int_a^b f(x) dx = 0$.

- (1) 证明存在互不相同的点 $x_1, x_2 \in (a, b)$, 使得 $f'(x_i) = f(x_i)$, i = 1, 2.
- (2) 证明存在 $\xi \in (a,b), \xi \neq x_i, i = 1, 2,$ 使得 $f''(\xi) = f(\xi)$ 。

(题目 5.2 推广)

(3) 证明存在 $\xi \in (a,b)$, $\xi \neq x_i$, i = 1, 2, 使得 $f''(\xi) - 3f'(\xi) + 2f(\xi) = 0$ 。

题目 5.3 (第十一届决赛)

设函数 f(x) 在 [0,1] 上具有连续导数, 且 $\int_0^1 f(x) dx = \frac{5}{2}$, $\int_0^1 x f(x) dx = \frac{3}{2}$, 证明: 存 在 $\xi \in (0,1)$, 使得 $f'(\xi) = 3$.

题目 5.4 (第十二届初赛)

设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 上可导, 且 f(0) = 0, f(1) = 1。证明:

- (2) 存在 $\xi, \eta \in (0,1)$, 且 $\xi \neq \eta$, 使得 $[1+f'(\xi)][1+f'(\eta)]=4$ 。

题目 5.5 (第八届初赛)

设函数 f(x) 在区间 [0,1] 上连续, 且 $I = \int_0^1 f(x) dx \neq 0$ 。证明: 在 (0,1) 内存在不同的 两点 x_1, x_2 使得 $\frac{1}{f(x_1)} + \frac{1}{f(x_2)} = \frac{2}{I}$ 。

题目 5.6 (第九届决赛)

设函数 f(x) 在区间 [0,1] 上连续, 且 $\int_0^1 f(x) dx \neq 0$, 证明: 在区间 [0,1] 上存在三个不同的点 x_1, x_2, x_3 , 使得

$$\frac{\pi}{8} \int_0^1 f(x) dx = \left[\frac{1}{1 + x_1^2} \int_0^{x_1} f(t) dt + f(x_1) \arctan x_1 \right] x_3$$

$$= \left[\frac{1}{1 + x_2^2} \int_0^{x_2} f(t) dt + f(x_2) \arctan x_2 \right] (1 - x_3)$$

题目 5.7 (第三届初赛)

设函数 f(x) 在闭区间 [-1,1] 具有连续的三阶导数, 且 f(-1)=0, f(1)=1, f'(0)=0。 求证: 在开区间 (-1,1) 内至少存在一点 ξ , 使得 $f'''(\xi)=3$ 。

题目 5.8 (第二届初赛)

设函数 f(x) 在 $(-\infty, +\infty)$ 上具有二阶导数, 并且 f''(x) > 0, $\lim_{x \to +\infty} f'(x) = \alpha > 0$, $\lim_{x \to -\infty} f'(x) = \beta < 0$, 且存在一点 x_0 , 使得 $f(x_0) < 0$, 证明: 方程 f(x) = 0 在 $(-\infty, +\infty)$ 恰有两个实根。

题目 5.9 (第十三届初赛补赛)

设 $f(x) = -\frac{1}{2}\left(1 + \frac{1}{e}\right) + \int_{-1}^{1} |x - t| \, e^{-t^2} \mathrm{d}t$,证明:在区间 (-1,1) 内,f(x) 有且仅有两个实根。

题目 5.10 (第一届决赛)

设 n>1 为整数, $F(x)=\int_0^x e^{-t}\left(1+\frac{t}{1!}+\frac{t^2}{2!}+\ldots+\frac{t^n}{n!}\right)\mathrm{d}t$, 证明: 方程 $F(x)=\frac{n}{2}$ 在 $\left(\frac{n}{2},n\right)$ 内至少有一个根。

题目 5.11 (第四届决赛)

设函数 f(x) 在 [-2,2] 上二阶可导,且 |f(x)| < 1,又 $f^2(0) + [f'(0)]^2 = 4$, 试证在 (-2,2) 内至少存在一点 ξ ,使得 $f(\xi) + f''(\xi) = 0$ 。

题目 5.12 (第九届决赛)

设函数 f(x) 在区间 (0,1) 内连续, 且存在两两互异的点 $x_1,x_2,x_3,x_4\in(0,1)$, 使得 $\alpha=\frac{f(x_1)-f(x_2)}{x_1-x_2}<\frac{f(x_3)-f(x_4)}{x_3-x_4}=\beta$ 。证明:对任意 $\lambda\in(\alpha,\beta)$,存在互异的点 $x_5,x_6\in(0,1)$,使得 $\lambda=\frac{f(x_5)-f(x_6)}{x_5-x_6}$ 。

5.2 不等式证明

题目 5.13 (第八届决赛)

设 $0 < x < \frac{\pi}{2}$, 证明: $\frac{4}{\pi^2} < \frac{1}{x^2} - \frac{1}{\tan^2 x} < \frac{2}{3}$ 。

题目 5.14 (第十届初赛)

证明: 对于连续函数 f(x) > 0, 有 $\ln \int_0^1 f(x) dx \ge \int_0^1 \ln f(x) dx$ 。

题目 5.15 (第五届初赛)

设 $|f(x)| \leqslant \pi, f'(x) \geqslant m > 0$ $(a \leqslant x \leqslant b)$ 。证明: $\left| \int_a^b \sin f(x) \, \mathrm{d}x \right| \leqslant \frac{2}{m}$ 。

题目 5.16 (第七届初赛)

设函数 f(x) 在 [0,1] 上连续, 且 $\int_0^1 f(x) dx = 0$, $\int_0^1 x f(x) dx = 1$, 试证:

- (1) $\exists x_0 \in [0,1]$ 使得 $|f(x_0)| > 4$ 。
- (2) $\exists x_1 \in [0,1]$ 使得 $|f(x_1)| = 4$.

题目 5.17 (第十届初赛)

设 $f\left(x\right)$ 在区间 $\left[0,1\right]$ 上连续, 且 $1\leqslant f\left(x\right)\leqslant3$ 。证明: $1\leqslant\int_{0}^{1}f\left(x\right)\mathrm{d}x\int_{0}^{1}\frac{1}{f\left(x\right)}\mathrm{d}x\leqslant\frac{4}{3}$ 。

题目 5.18 (第六届初赛)

设函数 f(x) 在 [0,1] 上有二阶导数, 且有正常数 A,B 使得 $|f(x)| \leq A, |f''(x)| \leq B$ 。证明:对于任意 $x \in [0,1]$,有 $|f'(x)| \leq 2A + \frac{B}{2}$ 。

题目 5.19 (第五届决赛)

设当 x>-1 时, 可微函数 f(x) 满足条件 $f'(x)+f(x)-\frac{1}{1+x}\int_0^x f(t)\,\mathrm{d}t=0$,且 f(0)=1。试证: 当 $x\geqslant 0$ 时, 有 $e^{-x}\leqslant f(x)\leqslant 1$ 成立。

题目 5.20 (第十二届决赛)

设 $A_n(x,y) = \sum_{k=0}^n x^{n-k} y^k$,其中 0 < x, y < 1,证明:

$$\frac{2}{2-x-y} \leqslant \sum_{n=0}^{\infty} \frac{A_n(x,y)}{n+1} \leqslant \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1-y} \right)$$

题目 5.21 (第八届初赛)

设 f(x) 在 [0,1] 上可导,f(0) = 0,且当 $x \in (0,1)$,0 < f'(x) < 1。 试证: 当 $a \in (0,1)$ 时, 有 $\left(\int_0^a f(x) \, \mathrm{d}x\right)^2 > \int_0^a f^3(x) \, \mathrm{d}x$ 。

题目 5.22 (第十二届决赛)

设 f(x), g(x) 是 $[0,1] \rightarrow [0,1]$ 的连续函数, 且 f(x) 单调增加。求证:

$$\int_0^1 f(g(x)) dx \le \int_0^1 f(x) dx + \int_0^1 g(x) dx$$

题目 5.23 (第四届初赛)

求最小的实数 C , 使得满足 $\int_0^1 |f(x)| \, \mathrm{d}x = 1$ 的连续的函数 f(x) , 都有 $\int_0^1 f\left(\sqrt{x}\right) \, \mathrm{d}x \leqslant C$

题目 5.24 (第二届决赛)

是否存在区间 [0,2] 上的连续可微函数 f(x),满足 $f(0) = f(2) = 1, |f'(x)| \leq 1$ 和 $\left| \int_0^2 f(x) \, \mathrm{d}x \right| \leq 1$?请说明理由。

题目 5.25 (第九届初赛)

设函数 f(x)>0 且在实轴上连续, 若对任意实数 t , 有 $\int_{-\infty}^{+\infty}e^{-|t-x|}f(x)\,\mathrm{d}x\leqslant 1$ 。证明: $\forall a,b,a< b \text{ , f} \int_a^b f(x)\,\mathrm{d}x\leqslant \frac{b-a+2}{2} \ .$

题目 5.26 (第五届决赛)

设 $D=\{(x,y)\,|0\leqslant x<1,0\leqslant y\leqslant 1\}$, $I=\iint_D f\left(x,y\right)\,\mathrm{d}x\mathrm{d}y$, 其中函数 $f\left(x,y\right)$ 在 D 上有连续二阶偏导数。若对任何 x,y 有 $f\left(0,y\right)=f\left(x,0\right)=0$, 且 $\frac{\partial^2 f}{\partial x \partial y}\leqslant A$ 。证明: $I\leqslant \frac{A}{4}$ 。

题目 5.27 (第七届初赛)

设 f(x,y) 在 $x^2 + y^2 \le 1$ 上有连续的二阶导数, $f_{xx}^2 + 2f_{xy}^2 + f_{yy}^2 \le M$ 。 若 $f(0,0) = f_x(0,0) = f_y(0,0) = 0$, 证明: $\left| \iint_{x^2 + y^2 \le 1} f(x,y) \, \mathrm{d}x \mathrm{d}y \right| \le \frac{\pi \sqrt{M}}{4} \, .$

题目 5.28 (第十届初赛)

设 f(x,y) 在区域 D 内可微, 且 $\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \leqslant M$, $A(x_1,y_1)$, $B(x_2,y_2)$ 是 D 内两点, 线段 AB 包含在 D 内, 证明: $|f(x_1,y_1) - f(x_2,y_2)| \leqslant M |AB|$, 其中 |AB| 表示线段 AB 的长度。

题目 5.29 (第十一届初赛)

设 f(x) 在 $[0,+\infty)$ 上具有连续导数, 满足 $3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2}$, 且 $f(0)\leqslant 1$ 。证明: 存在常数 M>0,使得 $x\in [0,+\infty)$ 时, 恒有 $|f(x)|\leqslant M$ 。

题目 5.30 (第八届决赛)

设 f(x) 为 $(-\infty, +\infty)$ 上连续的周期为 1 的周期函数, 且满足 $0 \le f(x) \le 1$ 与 $\int_0^1 f(x) \, \mathrm{d}x = 1$ 。证明: 当 $0 \le x \le 13$ 时, 有

$$\int_{0}^{\sqrt{x}} f(t) dt + \int_{0}^{\sqrt{x+27}} f(t) dt + \int_{0}^{\sqrt{13-x}} f(t) dt \le 11$$

并给出取等号的条件。

题目 5.31 (第九届决赛)

设函数 f(x,y) 在区域 $D=\left\{(x,y)\left|x^2+y^2\leqslant a^2\right.\right\}$ 上具有一阶连续偏导数, 且满足 $f(x,y)\left|_{x^2+y^2=a^2}=a^2\right.$ 以及 $\max_{(x,y)\in D}\left[\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2\right]=a^2$, 其中 a>0。证明:

$$\left| \iint\limits_{D} f\left(x,y\right) \mathrm{d}x \mathrm{d}y \right| \leqslant \frac{4}{3} \pi a^{2}$$

题目 5.32 (第十一届决赛)

设 Ω 是由光滑的简单封闭曲面 Σ 围成的有界闭区域, 函数 f(x,y,z) 在 Ω 上具有连续二阶偏导数, 且 $f(x,y,z)|_{(x,y,z)\in\Sigma}=0$ 。记 ∇f 为函数 f(x,y,z) 的梯度, 并令 $\Delta f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2}$ 。证明:对任意常数 C>0,恒有

$$C \iiint_{\Omega} f^{2} dx dy dz + \frac{1}{C} \iiint_{\Omega} (\Delta f)^{2} dx dy dz \geqslant 2 \iiint_{\Omega} |\nabla f|^{2} dx dy dz$$

 \Diamond

第6章 微分方程专题

题目 6.1 (第三届决赛)

微分方程
$$\left\{ \begin{array}{ll} \frac{\mathrm{d}y}{\mathrm{d}x} - xy = xe^{x^2} \\ y\left(0\right) = 1 \end{array} \right.$$
 的解。

题目 6.2 (第十三届初赛补赛)

徽分方程
$$\left\{ \begin{array}{ll} (x+1)\frac{\mathrm{d}y}{\mathrm{d}x} + 1 = 2e^{-y} \\ y\left(0\right) = 0 \end{array} \right.$$
 的解。

题目 6.3 (第六届决赛)

设实数
$$a \neq 0$$
, 求微分方程
$$\begin{cases} y'' - ay'^2 = 0 \\ y(0) = 0, y'(0) = -1 \end{cases}$$
 的解。

题目 6.4 (第七届决赛)

微分方程 $y'' - (y')^3 = 0$ 的通解。

题目 6.5 (第二届决赛)

求方程 (2x+y-4) dx + (x+y-1) dy = 0 的通解。

题目 6.6 (第六届初赛)

已知 $y_1 = e^x$ 和 $y_2 = xe^x$ 是齐次二阶常系数线性微分方程的解, 求该微分方程。

题目 6.7 (第一届初赛)

已知 $y_1 = xe^x + e^{2x}$, $y_2 = xe^x + e^{-x}$, $y_3 = xe^x + e^{2x} - e^{-x}$ 是某二阶常系数线性非齐次微分方程的三个解, 试求此微分方程。

题目 6.8 (第九届初赛)

已知可导函数
$$f(x)$$
 满足 $f(x)\cos x + 2\int_0^x f(t)\sin t dt = x + 1$, 求 $f(x)$ 。

题目 6.9 (第四届决赛)

求在
$$[0, +\infty)$$
 上的可微函数 $f(x)$,使 $f(x) = e^{-u(x)}$,其中 $u = \int_0^x f(t) dt$ 。

题目 6.10 (第九届决赛)

满足
$$\frac{\mathrm{d}u\left(t\right)}{\mathrm{d}t}=u\left(t\right)+\int_{0}^{1}u\left(t\right)\mathrm{d}t$$
 及 $u\left(0\right)=1$ 的可微函数 $u\left(t\right)$ 。

题目 6.11 (第九届决赛)

设函数 f(x,y) 具有一阶连续偏导数, 且满足 $\mathrm{d}f(x,y)=ye^y\mathrm{d}x+x(1+y)e^y\mathrm{d}y$ 及 f(0,0)=0, 求 f(x,y)。

题目 6.12 (第十一届初赛)

已知
$$du(x,y) = \frac{ydx - xdy}{3x^2 - 2xy + 3y^2}$$
,求 $u(x,y)$ 。

$^{\circ}$

题目 6.13 (第四届决赛)

设 f(u,v) 有连续偏导数,满足 $f_u(u,v)+f_v(u,v)=uv$,求 $y(x)=e^{-2x}f(x,x)$ 所满足的一阶微分方程,并求其通解。

题目 6.14 (第八届初赛)

设 f(x) 有连续导数, 且 f(1)=2。记 $z=f(e^xy^2)$,若 $\frac{\partial z}{\partial x}=z$,求 f(x) 在 x>0 的表达式。

题目 6.15 (第八届决赛)

设可微函数
$$f(x,y)$$
 满足 $\frac{\partial f}{\partial x} = -f(x,y), f\left(0,\frac{\pi}{2}\right) = 1$,且 $\lim_{n\to\infty} \left(\frac{f\left(0,y+\frac{1}{n}\right)}{f\left(0,y\right)}\right)^n = e^{\cot y}$,求 $f(x,y)$ 。

က

题目 6.16 (第十一届决赛)

设函数 f(x) 的导数 f'(x) 在 [0,1] 上连续, f(0) = f(1) = 0,且满足 $\int_0^1 [f'(x)]^2 dx - 8 \int_0^1 f(x) dx + \frac{4}{3} = 0$,求 f(x)。

题目 6.17 (第十三届初赛)

设 f(x) 在 $[0,+\infty)$ 上是有界连续函数, 证明: 方程 y''+14y'+13y=f(x) 的每一个解 在 $[0,+\infty)$ 上都是有界函数。

(题目 6.17 铺垫)

设 f(x) 在 $[0,+\infty)$ 上是有界连续函数, 证明: 方程 y'+y=f(x) 的每一个解在 $[0,+\infty)$ 上都是有界函数。

题目 6.18 (第二届初赛)

设函数
$$y=f(x)$$
 由参数方程
$$\begin{cases} x=2t+t^2 \\ y=\psi(t) \end{cases}, t>-1 \text{ 所确定, } \\ \text{且 } \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{3}{4(1+t)}, \text{ 其中} \end{cases}$$
 $\psi(t)$ 具有二阶导数, 曲线 $y=\psi(t)$ 与 $y=\int_1^{t^2} e^{-u^2} \mathrm{d} u + \frac{3}{2e}$ 在 $t=1$ 处相切, 求函数 $\psi(t)$ 。

第7章 无穷级数专题

7.1 常数项级数

题目 7.1 (第十三届初赛补赛)

计算
$$\sum_{n=1}^{\infty} \arctan \frac{2}{4n^2 + 4n + 1}$$
。

题目 7.2 (第八届决赛)

设
$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
。证明:极限 $\lim_{n \to \infty} a_n$ 存在。

(题目 7.2 铺垫: 2011 考研数学一真题)

(1) 证明
$$\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$$
。

(2) 证明
$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 收敛。

(题目 7.2 拓展: 1999 考研数学二真题)

设 f(x) 是区间 $[1,+\infty)$ 上单调减少且非负的连续函数

$$a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx (n = 1, 2, ...)$$

证明数列 $\{a_n\}$ 的极限存在。

题目 7.3 (第五届初赛)

判断级数
$$\sum_{n=1}^{\infty} \frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{(n+1)(n+2)}$$
 的敛散性, 若收敛, 求其和。

题目 7.4 (第十届决赛)

计算级数
$$\sum_{n=1}^{\infty} \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7} \cdots \frac{n}{2n+1} \cdot \frac{1}{n+1}$$
。

题目 7.5 (第五届初赛)

设
$$f(x)$$
 在 $x=0$ 处存在二阶导数 $f''(0)$,且 $\lim_{x\to 0} \frac{f(x)}{x}=0$ 。证明级数 $\sum_{n=1}^{\infty} \left|f\left(\frac{1}{n}\right)\right|$ 收敛。

题目 7.6 (第七届决赛)

设 $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$, 其中 n 为正整数, 设 p 为实数, 讨论级数 $\sum_{n=1}^{\infty} (-1)^n I_n^p$ 的绝对收敛性 和条件收敛性。

(题目 7.6 类题: 1999 考研数学一真题)

读
$$a_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d}x$$

(1)
$$x \sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$
 的值。

(2) 试证:对任意的常数 $\lambda > 0$,级数 $\sum_{n}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛。

题目 7.7 (第八届决赛)

$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln n$$
, 记 $\lim_{n \to \infty} a_n = C$, 讨论级数 $\sum_{n=1}^\infty (a_n - C)$ 的敛散性。

题目 7.8 (第九届决赛)

设
$$0 < a_n < 1, n = 1, 2, \dots,$$
且 $\lim_{n \to \infty} \frac{\ln \frac{1}{a_n}}{\ln n} = q$ (有限或 $+\infty$)

(1) 证明: 当 $q > 1$ 时, 级数 $\sum_{n=1}^{\infty} a_n$ 收敛; 当 $q < 1$ 时, 级数 $\sum_{n=1}^{\infty} a_n$ 发散。

- (2) 讨论 q=1 时级数 $\sum_{n=1}^{\infty} a_n$ 的敛散性并阐明理由。

题目 7.9 (第二届初赛)

设
$$a_n > 0, S_n = \sum_{k=1}^n a_k$$
, 证明:

- (1) 当 a > 1 时, 级数 $\sum_{n=0}^{\infty} \frac{a_n}{S_n^2}$ 收敛;
- (2) 当 $a \leq 1$, 且 $S_n \to \infty$ $(n \to \infty)$ 时, 级数 $\sum_{n=0}^{\infty} \frac{a_n}{S_n^2}$ 发散。

题目 7.10 (第二届决赛)

设 f(x) 是在 $(-\infty, +\infty)$ 内的可微函数, 且 |f'(x)| < mf(x), 其中 0 < m < 1。任取实数 a_0 , 定义 $a_n = \ln f(a_{n-1})$, $n = 1, 2, \ldots$ 。证明: $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 绝对收敛。

题目 7.11 (第四届决赛)

若对于任何收敛于零的序列 $\{x_n\}$, 级数 $\sum_{n=0}^{\infty} a_n x_n$ 都收敛, 试证明: 级数 $\sum_{n=0}^{\infty} |a_n|$ 收敛。

题目 7.12 (第四届初赛)

设 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 为正项级数,证明:

(1)
$$\not\equiv \lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}b_n} - \frac{1}{b_{n+1}} \right) > 0, \, \mathbb{N} \sum_{n=1}^{\infty} a_n \, \mathbb{V} \, \mathcal{L};$$

(2)
$$\ddot{\pi} \lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}b_n} - \frac{1}{b_{n+1}} \right) < 0$$
, $\coprod \sum_{n=1}^{\infty} b_n \not \equiv b_n$, $\coprod \sum_{n=1}^{\infty} a_n \not \equiv b_n$

题目 7.13 (第五届决赛)

假设
$$\sum\limits_{n=0}^{\infty}a_nx^n$$
 的收敛半径为 $1,\lim\limits_{n\to\infty}na_n=0$,且 $\lim\limits_{x\to 1^-}\sum\limits_{n=0}^{\infty}a_nx^n=A$ 。证明 $\sum\limits_{n=0}^{\infty}a_n$ 收敛且 $\sum\limits_{n=0}^{\infty}a_n=A$ 。

题目 7.14 (第十届初赛)

已知
$$\{a_k\}$$
, $\{b_k\}$ 是正数数列, 且 $b_{k+1}-b_k \ge \delta > 0$, $k=1,2,...,\delta$ 为某常数,证明:若级数
$$\sum_{k=1}^{\infty} a_k \, \, \text{收敛,则级数} \sum_{k=1}^{\infty} \frac{k \, \sqrt[k]{(a_1 a_2 \ldots a_k) \, (b_1 b_2 \ldots b_k)}}{b_{k+1} b_k} \, \, \text{收敛}.$$

题目 7.15 (第十二届初赛)

设
$$u_n = \int_0^1 \frac{\mathrm{d}t}{(1+t^4)^n} (n \ge 1)$$

- (1) 证明数列 $\{u_n\}$ 收敛, 并求极限 $\lim_{n\to\infty} u_n$;
- (2) 证明级数 $\sum_{n=1}^{\infty} (-1)^n u_n$ 条件收敛;
- (3) 证明当 $p \ge 1$ 时级数 $\sum_{n=1}^{\infty} \frac{u_n}{n^p}$ 收敛, 并求级数 $\sum_{n=1}^{\infty} \frac{u_n}{n}$ 的和。

题目 7.16 (第六届决赛)

设
$$p > 0, x_1 = \frac{1}{4}, x_{n+1}^p = x_n^p + x_n^{2p} (n = 1, 2...),$$
 证明 $\sum_{n=1}^{\infty} \frac{1}{1 + x_n^p}$ 收敛并求其和。

题目 7.17 (第十届决赛)

设
$$\{u_n\}_{n=1}^{\infty}$$
 为单调递减的正实数列, $\lim_{n\to\infty}u_n=0$, $\{a_n\}_{n=1}^{\infty}$ 为一实数列, 级数 $\sum_{n=1}^{\infty}a_nu_n$ 收敛, 证明: $\lim_{n\to\infty}(a_1+a_2+\ldots+a_n)u_n=0$ 。

题目 7.18 (第十三届初赛)

设
$$\{a_n\}$$
 与 $\{b_n\}$ 均为正实数列,满足: $a_1=b_1=1$ 且 $b_n=a_nb_{n-1}-2, n=2,3,\ldots$ 。又设 $\{b_n\}$ 为有界数列,证明级数 $\sum_{n=1}^{\infty}\frac{1}{a_1a_2\cdots a_n}$ 收敛,并求该级数的和。

题目 7.19 (第十一届决赛)

设 $\{u_n\}$ 是正数列, 满足 $\frac{u_{n+1}}{u_n}=1-\frac{\alpha}{n}+o\left(\frac{1}{n^{\beta}}\right)$, 其中常数 $\alpha>0,\beta>1$

- (1) 对于 $v_n = n^{\alpha} u_n$, 判断级数 $\sum_{n=1}^{\infty} \ln \frac{v_{n+1}}{v_n}$ 的敛散性;
- (2) 讨论级数 $\sum_{n=1}^{\infty} u_n$ 的敛散性。

注: 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $\lim_{n\to\infty} a_n = 0$, $\lim_{n\to\infty} b_n = 0$, 则 $a_n = o(b_n) \Leftrightarrow$ 存在常数 M>0 及正整数 N, 使得 $|a_n| \leqslant M$ $|b_n|$ 对任意 n>N 成立。

题目 7.20 (第十三届初赛补赛)

设正数列 $\{a_n\}$ 单调减少且趋于零, $f(x) = \sum_{n=1}^{\infty} a_n^n x^n$, 证明: 若级数 $\sum_{n=1}^{\infty} a_n$ 发散, 则积分 $\int_{1}^{+\infty} \frac{\ln f(x)}{x^2} \mathrm{d}x \, \, \mathrm{d}x \, \mathrm{d}x$

7.2 函数项级数

题目 7.21 (第十二届决赛)

求幂级数 $\sum_{n=1}^{\infty} \left[1 - n \ln \left(1 + \frac{1}{n} \right) \right] x^n$ 的收敛域。

题目 7.22 (第七届初赛)

求幂级数 $\sum_{n=0}^{\infty} \frac{n^3+2}{(n+1)!} (x-1)^n$ 的收敛域与和函数。

(双阶乘题目)

$$\sum_{n=0}^{\infty} \frac{1}{n!!} x^n$$

题目 7.23 (第三届初赛)

求幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 的和函数, 并求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^{2n-1}}$ 的和。

题目 7.24 (第一届初赛)

求 $x \to 1^-$ 时,与 $\sum_{n=0}^{\infty} x^{n^2}$ 等价的无穷大量。

题目 7.25 (第一届初赛)

已知 $u_n(x)$ 满足

$$u'_{n}(x) = u_{n}(x) + x^{n-1}e^{x}, n = 1, 2, ...$$

且
$$u_n(1) = \frac{e}{n}$$
, 求函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 。

 \odot

7.3 傅里叶级数

题目 7.26 (第七届初赛)

函数
$$f(x) = \begin{cases} 3, & x \in [-5,0) \\ 0, & x \in [0,5) \end{cases}$$
 在 $(-5,5]$ 的傅里叶级数在 $x = 0$ 收敛的值。

~

题目 7.27 (第六届决赛)

展
$$[-\pi,\pi)$$
 上的函数 $f(x) = |x|$ 成傅里叶级数, 并证明 $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$ 。

 \sim

(题目 7.27 类题: 1991 考研数学一真题)

将函数 $f(x) = 2 + |x| (-1 \le x \le 1)$ 展开成以 2 为周期的傅里叶级数, 并求此级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和。

_

题目 7.28 (第八届初赛)

设 f(x) 在 $(-\infty, +\infty)$ 可导, 且 $f(x) = f(x+2) = f(x+\sqrt{3})$, 用 Fourier 级数理论证明 f(x) 为常数。

(

第8章 其他题目补充

题目 8.1 (第四届初赛)

求方程 $x^2 \sin \frac{1}{x} = 2x - 501$ 的近似解, 精确到 0.001。

\Diamond

题目 8.2 (第八届决赛)

求 $\sum_{n=1}^{100} n^{-\frac{1}{2}}$ 的整数部分。

\sim

题目 8.3 (第三届决赛)

证明: $\lim_{n \to \infty} \int_0^1 \frac{n}{n^2 x^2 + 1} e^{x^2} dx = \frac{\pi}{2}$.

题目 8.4 (第一届决赛)

是否存在 \mathbf{R}^1 中的可微函数 f(x) 使得 $f(f(x)) = 1 + x^2 + x^4 - x^3 - x^5$, 若存在, 请给出一个例子; 若不存在, 请给出证明。

题目 8.5 (第一届决赛)

设 f(x) 在 $[0,+\infty)$ 上一致连续, 且对于固定的 $x\in[0,+\infty)$, 当自然数 $n\to+\infty$ 时, $f(x+n)\to 0$ 。证明: 函数序列 $\{f(x+n)|n=1,2,\ldots\}$ 在 [0,1] 上一致收敛于 0 。

题目 8.6 (第七届初赛)

设 f(x) 在 (a,b) 内二次可导,且存在常数 α,β ,使得对于 $\forall x \in (a,b)$,有 $f'(x) = \alpha f(x) + \beta f''(x)$,证明 f(x) 在 (a,b) 内无穷次可导。

题目 8.7 (第十二届初赛)

证明 $f(n) = \sum_{m=1}^{n} \int_{0}^{m} \cos \frac{2\pi n [x+1]}{m} dx$ 等于 n 的所有因子(包括 1 和 n 本身)之和,其中 [x+1] 表示不超过 x+1 的最大整数,并计算 f(2021)。

题目 8.8 (第五届决赛)

设函数 f(x) 在 $(-\infty, +\infty)$ 上四阶连续可导,且满足 $f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x+\theta h)h^2$ 。其中 θ 是与 x,h 无关的常数,证明 f(x) 是不超过 3 次的多项式。

\Diamond

题目 8.9 (第十一届初赛)

设 f(x) 是仅有正实根的多项式函数,满足 $\frac{f'(x)}{f(x)} = -\sum_{n=0}^{+\infty} c_n x^n$ 。证明: $c_n > 0 \ (n \geqslant 0)$,极限 $\lim_{n \to \infty} \frac{1}{\sqrt[n]{c_n}}$ 存在,且等于 f(x) 的最小根。

题目 8.10 (第十一届初赛)

设 f(x) 在 $[0, +\infty)$ 上可微, f(0)=0 ,且存在常数 A>0,使得 $|f'(x)|\leqslant A|f(x)|$ 在 $[0, +\infty)$ 上成立,证明: 在 $(0, +\infty)$ 上有 $f(x)\equiv 0$ 。

题目 8.11 (第三届决赛)

设 f(x) 在 $(-\infty, +\infty)$ 上无穷次可微,并且满足存在 M>0, 使得 $\left|f^{(k)}(x)\right|\leqslant M\left(k=1,2,\ldots\right), \forall x\in (-\infty, +\infty)$

且
$$f\left(\frac{1}{2^n}\right) = 0 \ (n = 1, 2, \ldots)$$
。 求证: 在 $(-\infty, +\infty)$ 上, $f(x) \equiv 0$ 。

题目 8.12 (第五届决赛)

设 f(x) 是 [0,1] 上的连续函数,且满足 $\int_0^1 f(x) dx = 1$,求一个这样的函数 f(x) 使得积分 $I = \int_0^1 \left(1 + x^2\right) f^2(x) dx$ 取得最小值。

题目 8.13 (第十届决赛)

设 f(x) 在 $(-\infty, +\infty)$ 上具有连续导数,且 $|f(x)| \le 1, f'(x) > 0, x \in (-\infty, +\infty)$ 。证明:对于 $0 < \alpha < \beta$, $\lim_{n \to \infty} \int_{\alpha}^{\beta} f'\left(nx - \frac{1}{x}\right) \mathrm{d}x = 0$ 成立。