Session Types = Intersection Types + Union Types

Luca Padovani

Dipartimento di Informatica, Università di Torino

ITRS 2010

Behaviors versus Types

c : P

 $\overline{a}.\overline{a}.b$

 $\overline{a} \oplus \overline{b}$

a + b

Behaviors versus Types

$$\overline{a}.\overline{a}.b$$

$$\overline{a}\oplus \overline{b}$$

$$\overline{a} \wedge \overline{b}$$

$$a + b$$

$$a \lor b$$

Outline

- 1 Crash course on session types
- 2 Behaviors
- 3 Types
- 4 Conclusion

Outline

- Crash course on session types
- 2 Behaviors
- Types
- 4 Conclusion

Processes

$$P$$
 ::= end $\mid \alpha.P \mid P \oplus P \mid P + P$

$$\alpha.P \xrightarrow{\alpha} P$$
 $P \oplus Q \longrightarrow P$ $P \xrightarrow{\alpha} P'$ $P + Q \xrightarrow{\alpha} P'$

Systems

$$P$$
 channel \leftrightarrows Q

$$P \mid Q$$

System evolution

$$\overline{a} \oplus \overline{c} \mid b \longrightarrow \overline{a} \mid b$$

nternal choice

$$\overline{a}.P \mid a.Q + b \longrightarrow P \mid Q$$

communication

Systems

$$P$$
 channel \leftrightarrows Q $P \mid Q$

System evolution

$$\overline{a} \oplus \overline{c} \mid b \longrightarrow \overline{a} \mid b$$
 internal choice $\overline{a}.P \mid a.Q + b \longrightarrow P \mid Q$ communication

4D > 4A > 4B > 4B > B 900

Well-formed Systems & Subtyping

$$wf(P|Q) \stackrel{\text{def}}{\Longleftrightarrow} P|Q \longrightarrow \cdots \longrightarrow P'|Q' \longrightarrow \text{ implies } P'=Q'=\text{end}$$

Examples

$$wf(\overline{a} \oplus \overline{b} \mid a + b) \qquad \neg wf(\overline{a} \oplus \overline{b} \mid a)$$

(Semantic) Subtyping

$$\llbracket P \rrbracket = \{ Q \mid wf(P \mid Q) \}$$
 $P \leq Q \stackrel{\text{def}}{\Longleftrightarrow} \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$

Well-formed Systems & Subtyping

$$wf(P|Q) \stackrel{\text{def}}{\Longleftrightarrow} P|Q \longrightarrow \cdots \longrightarrow P'|Q' \longrightarrow \text{ implies } P' = Q' = \text{end}$$

Examples

$$wf(\overline{a} \oplus \overline{b} \mid a + b) \qquad \neg wf(\overline{a} \oplus \overline{b} \mid a)$$

(Semantic) Subtyping

$$\llbracket P \rrbracket = \{ Q \mid wf(P \mid Q) \}$$
 $P \leq Q \stackrel{\text{def}}{\Longleftrightarrow} \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$

Well-formed Systems & Subtyping

$$wf(P|Q) \stackrel{\text{def}}{\Longleftrightarrow} P|Q \longrightarrow \cdots \longrightarrow P'|Q' \longrightarrow \text{ implies } P' = Q' = \text{end}$$

Examples

$$wf(\overline{a} \oplus \overline{b} \mid a + b) \qquad \neg wf(\overline{a} \oplus \overline{b} \mid a)$$

(Semantic) Subtyping

$$\llbracket P \rrbracket = \{ Q \mid wf(P \mid Q) \}$$
 $P \preceq Q \stackrel{\text{def}}{\iff} \llbracket P \rrbracket \subseteq \llbracket Q \rrbracket$

Internal choice = intersection

$$\llbracket P \oplus Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$

External choice ≠ union

$$\alpha.P + \alpha.Q \approx \alpha.(P \oplus Q)$$

$$a.P \qquad \leq a.P + b.Q$$

Internal choice = intersection

$$\llbracket P \oplus Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$

External choice ≠ union

$$\alpha . P + \alpha . Q \approx \alpha . (P \oplus Q)$$

$$a.P \qquad \leq a.P + b.Q$$

Internal choice = intersection

$$\llbracket P \oplus Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$

External choice ≠ union

$$\alpha . P + \alpha . Q \approx \alpha . (P \oplus Q)$$

$$a.P \qquad \leq a.P + b.Q$$

Internal choice = intersection

$$\llbracket P \oplus Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$

External choice ≠ union

$$\alpha . P + \alpha . Q \approx \alpha . (P \oplus Q)$$

$$a.P + b.Q' \leq a.P + b.Q + b.Q'$$

Internal choice = intersection

$$\llbracket P \oplus Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$

External choice ≠ union

$$\alpha . P + \alpha . Q \approx \alpha . (P \oplus Q)$$

$$a.P + b.Q' \leq a.P + b.Q + b.Q' \approx a.P + b.(Q \oplus Q')$$

Internal choice = intersection

$$\llbracket P \oplus Q \rrbracket = \llbracket P \rrbracket \cap \llbracket Q \rrbracket$$

External choice ≠ union

$$\alpha . P + \alpha . Q \approx \alpha . (P \oplus Q)$$

$$a.P + b.Q'$$
 $\nearrow a.P + b.Q + b.Q' \approx a.P + b.(Q \oplus Q')$

Outline

- Crash course on session types
- Behaviors
- 3 Types
- 4 Conclusion

Syntax

$$T \ ::= \ \mathsf{end} \ \mid \ \alpha.T \ \mid \ T \wedge T \ \mid \ T \vee T$$

 $\overline{a} \wedge \overline{b}$

Q

P a∨b (

Syntax

$$T \ ::= \ \mathsf{end} \ \mid \ \alpha.T \ \mid \ T \wedge T \ \mid \ T \vee T$$

 $\overline{a} \wedge \overline{b}$

Q

P a∨b (

Syntax

$$T ::= \text{end} \mid \alpha.T \mid T \wedge T \mid T \vee T$$

Р

 $\overline{a} \wedge \overline{b}$

Q

P

 $a \lor b$

Q

(Tentative) type semantics

$$\begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{a\} \cap \{b\} = \emptyset \\
 \begin{bmatrix} a \vee b \end{bmatrix} = \{\overline{a}\} \cup \{\overline{b}\} = \{\overline{a}, \overline{b}\} \\
 \hline
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{b}\} \\
 \hline
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{b}\} \\
 \hline
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \hline
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \hline
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \hline
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b}\} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b} \} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b} \} \\
 \begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{\overline{a}, \overline{b} \} \\
 \begin{bmatrix}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ で 。

(Tentative) type semantics

$$\begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{a\} \cap \{b\} = \emptyset \\
 \begin{bmatrix} a \vee b \end{bmatrix} = \{\overline{a}\} \cup \{\overline{b}\} = \{\overline{a}, \overline{b}\} \\
 \hline a \oplus \overline{b}?
 \end{bmatrix}$$

(ロ) (部) (書) (書) 書 り(で)

(Tentative) type semantics

$$\begin{bmatrix} \overline{a} \wedge \overline{b} \end{bmatrix} = \{a\} \cap \{b\} = \emptyset \\
 \begin{bmatrix} a \vee b \end{bmatrix} = \{\overline{a}\} \cup \{\overline{b}\} = \{\overline{a}, \overline{b}\} \\
 \hline a \oplus \overline{b}?
 \end{bmatrix}$$

Orthogonal set

Q channel \leftrightarrows (): T P

Orthogonal set

Orthogonal set

Closure = bi-orthogonal

Proposition $((\cdot)^{\perp\perp}$ is a closure)

- **2** $X \subseteq Y$ implies $X^{\perp \perp} \subseteq Y^{\perp \perp}$
- $X^{\perp\perp\perp\perp}=X^{\perp\perp}$

$$\{a\}^{\perp \perp} = \{\overline{a}\}^{\perp} = \{a, a+b, \ldots\}$$

$$\{\overline{a}, \overline{b}\}^{\perp \perp} = \{a+b, a+b+c, \ldots\}^{\perp} = \{\overline{a} \oplus \overline{b}, \overline{a}, \overline{b}\}$$

Type semantics

$$T \leq S \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \llbracket T \rrbracket \subseteq \llbracket S \rrbracket$$

Type semantics

$$T \leq S \quad \stackrel{\mathrm{def}}{\Longleftrightarrow} \quad \llbracket T \rrbracket \subseteq \llbracket S \rrbracket$$

Behaviors versus types: subtyping

$$\alpha.P + \alpha.Q \approx \alpha.(P \oplus Q)$$

$$\alpha.T \vee \alpha.S \approx \alpha.(T \vee S)$$

 \leq is not a pre-congruence

On combining incompatible behaviors

$$\llbracket a \vee \overline{b} \rrbracket = (\llbracket a \rrbracket \cup \llbracket \overline{b} \rrbracket)^{\perp \perp} = \{\overline{a}, b, \dots\}^{\perp \perp} = \emptyset^{\perp} = \mathcal{F}$$

$$T ::= 0 \mid 1 \mid \cdots$$

- 0 can be implemented, cannot be consumed
- 1 cannot be implemented, can be consumed

- 4 ロ ト 4 個 ト 4 直 ト 4 直 ・ 夕 Q ()

On combining incompatible behaviors

$$\llbracket a ee \overline{b}
rbracket = (\llbracket a
rbracket \cup \llbracket \overline{b}
rbracket)^{\perp \perp} = \{\overline{a}, b, \dots\}^{\perp \perp} = \emptyset^{\perp} = \mathcal{P}$$

$$T ::= \mathbb{O} \mid \mathbb{1} \mid \cdots$$

- 0 can be implemented, cannot be consumed
- 1 cannot be implemented, can be consumed

4□ > 4□ > 4□ > 4□ > 4□ > 4□

On combining incompatible behaviors

$$\llbracket a \lor \overline{b} \rrbracket = (\llbracket a \rrbracket \cup \llbracket \overline{b} \rrbracket)^{\perp \perp} = \{\overline{a}, b, \dots\}^{\perp \perp} = \emptyset^{\perp} = \mathcal{P}$$

$$T ::= 0 \mid 1 \mid \cdots$$

- 0 can be implemented, cannot be consumed
- 1 cannot be implemented, can be consumed

Theory validation

Proposition (correctness)

For every $T \neq 0, 1$ there exists P such that [T] = [P]

Proposition (completeness)

For every P there exists T such that $[\![P]\!] = [\![T]\!]$

$$\alpha.P + \alpha.Q$$
 $\alpha.(T \wedge S)$

Outline

- Crash course on session types
- Behaviors
- 3 Types
- 4 Conclusion

The lattice of session types

- intersection types and union types for branching
- advantages over behavioral interpretation
- the bounds are "misbehaving processes"

Future work

infinite behaviors

refined actions

$$!T \wedge !S \approx !(T \vee S)$$
 $!T \vee !S \approx !(T \wedge S)$

