

## **LOW NOISE 150mA LDO REGULATOR**

NO. EA-058-0204

# **R1121N SERIES**

## **OUTLINE**

The R1121N Series are CMOS-based voltage regulator ICs with high output voltage accuracy, extremely low supply current, low ON-resistance and high ripple rejection. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors, a current limit circuit, and a chip enable circuit. These ICs perform with low dropout voltage and a chip enable function.

The line transient response and load transient response of the R1121N Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment.

The output voltage of these ICs is fixed with high accuracy.

Since the package for these ICs is SOT-23-5 (Mini-mold) package, high density mounting of the ICs on boards is possible.

### **FEATURES**

| Ultra-Low Supply Current                                     | Typ. 35μA                                                      |
|--------------------------------------------------------------|----------------------------------------------------------------|
| Standby Mode                                                 | Typ. 0.1μA                                                     |
| Low Dropout Voltage                                          | Typ. $0.2V (I_{OUT} = 100 \text{mA})$                          |
| High Ripple Rejection                                        | Typ. 70db  (f = 1 kHz)                                         |
| • Low Temperature-Drift Coefficient of Output Voltage        | Typ. ±100ppm/°C                                                |
| Excellent Line Regulation                                    | Typ. 0.05%/V                                                   |
| High Accuracy Output Voltage                                 | ±2.0%                                                          |
| Small Package                                                | SOT-23-5 (Mini-mold)                                           |
| Output Voltage                                               | . Stepwise setting with a step of 0.1V in the range of 1.5V to |
|                                                              | 5.0V is possible.                                              |
| • Built-in Chip Enable Circuit (2 Types; A: active "L", B: a | ctive "H")                                                     |
| • Pin out                                                    | . Similar to the TK112, TK111                                  |

### **APPLICATIONS**

- Power source for cellular phones such as GSM, CDMA and various kind of PCSs.
- Power source for domestic appliances such as cameras, VCRs and camcorders.
- Power source for battery-powered equipment.

# **BLOCK DIAGRAM**





# **SELECTION GUIDE**

The output voltage, the active type, the packing type, and the taping type for the ICs can be selected at the user's request.

The selection can be made by designating the part number as shown below:

| Code | Contents                                                                                                       |
|------|----------------------------------------------------------------------------------------------------------------|
| a    | Setting Output Voltage (Vout):  Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible. |
| b    | Designation of Active Type : A : active "L" type B : active "H" type                                           |
| С    | Designation of Taping Type :  Ex. TR, TL (refer to Taping Specifications; TR type is the standard direction.)  |

# **PIN CONFIGURATION**



# **PIN DESCRIPTION**

| Pin No. | Symbol      | Description     |
|---------|-------------|-----------------|
| 1       | Vout        | Output pin      |
| 2       | GND         | Ground Pin      |
| 3       | $V_{ m DD}$ | Input Pin       |
| 4       | CE or CE    | Chip Enable Pin |
| 5       | NC          | No Connection   |

# **ABSOLUTE MAXIMUM RATINGS**

| Symbol      | Item                           | Rating                   | Unit |  |
|-------------|--------------------------------|--------------------------|------|--|
| $ m V_{IN}$ | Input Voltage                  | 9                        | V    |  |
| Vce         | Input Voltage (CE or CE Pin)   | $-0.3 \sim V_{IN} + 0.3$ | V    |  |
| Vout        | Output Voltage                 | -0.3~ VIN+0.3            | V    |  |
| Iout        | Output Current                 | 200                      | mA   |  |
| PD          | Power Dissipation              | 250                      | mW   |  |
| Topt        | Operating Temperature<br>Range | -40 ~ 85                 | °C   |  |
| Tstg        | Storage Temperature Range      | -55 ~ 125                | °C   |  |

# **ELECTRICAL CHARACTERISTICS**

• R1121Nxx1A Topt =  $25^{\circ}$ C

| Symbol                                     | Item                                   | Conditions                                                                                 | Min.                   | Тур. | Max.                   | Unit       |
|--------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|------------------------|------|------------------------|------------|
| Vout                                       | Output Voltage                         | $V_{\rm IN} = {\rm Set} \ V_{\rm OUT} + 1V$<br>$1 {\rm mA} \le {\rm Iout} \le 30 {\rm mA}$ | V <sub>OUT</sub> ×0.98 |      | V <sub>OUT</sub> ×1.02 | V          |
| Іоит                                       | Output Current                         | refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE                                  |                        |      |                        |            |
| $\Delta 	ext{V}$ out/ $\Delta 	ext{I}$ out | Load Regulation                        | $V_{\rm IN} = \text{Set Vout} + 1V$<br>$1\text{mA} \le \text{Iout} \le 80\text{mA}$        |                        | 12   | 40                     | mV         |
| $ m V_{DIF}$                               | Dropout Voltage                        | refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE                                  |                        |      |                        | PUT        |
| Iss                                        | Supply Current                         | $V_{IN} = Set V_{OUT} + 1V$                                                                |                        | 35   | 70                     | μΑ         |
| Istandby                                   | Supply Current (Standby)               | $V_{IN} = V_{CE} = Set V_{OUT} + 1V$                                                       |                        | 0.1  | 1.0                    | μΑ         |
| $\Delta V_{ m OUT}/\Delta V_{ m IN}$       | Line Regulation                        | $Set \ V_{\rm OUT} + 0.5 V \le V_{\rm IN} \le 8V$ $I_{\rm OUT} = 30 mA$                    |                        | 0.05 | 0.20                   | %/V        |
| RR                                         | Ripple Rejection                       | f = 1kHz, Ripple 0.5Vp-p<br>$V_{IN} = Set\ V_{OUT} + 1V$                                   |                        | 70   |                        | dB         |
| $V_{\mathrm{IN}}$                          | Input Voltage                          |                                                                                            | 2                      |      | 8                      | V          |
| $\Delta V$ out/ $\Delta T$                 | Output Voltage Temperature Coefficient | $I_{OUT} = 30 \text{mA}$ $-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$      |                        | ±100 |                        | ppm<br>/°C |
| Ilim                                       | Short Current Limit                    | $V_{OUT} = 0V$                                                                             |                        | 50   |                        | mA         |
| Rpu                                        | CE Pull-up Resistance                  |                                                                                            | 2.5                    | 5.0  | 10.0                   | ΜΩ         |
| Vсен                                       | CE Input Voltage "H"                   |                                                                                            | 1.5                    |      | $V_{\rm IN}$           | V          |
| VCEL                                       | CE Input Voltage "L"                   |                                                                                            | 0.00                   |      | 0.25                   | V          |
| en                                         | Output Noise                           | $BW = 10Hz \sim 100kHz$                                                                    |                        | 30   |                        | μVrms      |

• **R1121Nxx1B** Topt=25°C

| Symbol                         | Item                                      | Conditions                                                                             | Min.                      | Тур. | Max.                   | Unit       |
|--------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|---------------------------|------|------------------------|------------|
| Vout                           | Output Voltage                            | $V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 30\text{mA}$           | V <sub>оит</sub><br>×0.98 |      | V <sub>ОUТ</sub> ×1.02 | V          |
| Iout                           | Output Current                            | refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE                              |                           |      |                        |            |
| $\Delta V$ out/ $\Delta I$ out | Load Regulation                           | $V_{IN} = \text{Set Vout} + 1V$ $1\text{mA} \le \text{Iout} \le 80\text{mA}$           |                           | 12   | 40                     | mV         |
| $ m V_{DIF}$                   | Dropout Voltage                           | refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE                              |                           |      |                        |            |
| Iss                            | Supply Current                            | V <sub>IN</sub> = Set V <sub>OUT</sub> +1V                                             |                           | 35   | 70                     | μΑ         |
| Istandby                       | Supply Current (Standby)                  | $V_{IN} = \text{Set Vout} + 1V$ $V_{CE} = \text{GND}$                                  |                           | 0.1  | 1.0                    | μΑ         |
| $\Delta V$ out/ $\Delta V$ in  | Line Regulation                           | $Set \ V_{\text{OUT}} + 0.5V \le V_{\text{IN}} \le 8V$ $I_{\text{OUT}} = 30 \text{mA}$ |                           | 0.05 | 0.20                   | %/V        |
| RR                             | Ripple Rejection                          | f = 1kHz, Ripple 0.5Vp-p<br>$V_{IN} = Set V_{OUT}+1V$                                  |                           | 70   |                        | dB         |
| Vin                            | Input Voltage                             |                                                                                        | 2                         |      | 8                      | V          |
| $\Delta V$ out/ $\Delta T$     | Output Voltage<br>Temperature Coefficient | $I_{OUT} = 30 \text{mA}$ $-40^{\circ}\text{C} \le \text{Topt} \le 85^{\circ}\text{C}$  |                           | ±100 |                        | ppm<br>/°C |
| Ilim                           | Short Current Limit                       | $V_{OUT} = 0V$                                                                         |                           | 50   |                        | mA         |
| R <sub>PD</sub>                | CE Pull-down Resistance                   |                                                                                        | 2.5                       | 5.0  | 10.0                   | ΜΩ         |
| Vсен                           | CE Input Voltage "H"                      |                                                                                        | 1.5                       |      | $V_{\rm IN}$           | V          |
| Vcel                           | CE Input Voltage "L"                      |                                                                                        | 0.00                      |      | 0.25                   | V          |
| en                             | Output Noise                              | $BW = 10Hz \sim 100kHz$                                                                |                           | 30   |                        | μVrms      |



#### • ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE

 $Topt = 25^{\circ}C$ 

| Outrout Valtage                         | Output Current                              |      |  |
|-----------------------------------------|---------------------------------------------|------|--|
| Output Voltage<br>Vουτ (V)              | loυτ (r                                     | nA)  |  |
| • • • • • • • • • • • • • • • • • • • • | Conditions                                  | Min. |  |
| $1.5 \le V_{OUT} \le 1.7$               | - V <sub>IN</sub> - V <sub>OUT</sub> = 1.0V | 100  |  |
| $1.8 \le V_{OUT} \le 5.0$               |                                             | 150  |  |

 $Topt = 25^{\circ}C$ 

| Ocator at Malta are              | Drop                     | out Volta |      |      |
|----------------------------------|--------------------------|-----------|------|------|
| Output Voltage<br>Vουτ (V)       | V <sub>DIF</sub> (V)     |           |      |      |
| V 001 (V)                        | Conditions               | Min.      | Тур. | Max. |
| 1.5                              |                          | 0.50      |      |      |
| 1.6                              |                          | 0.40      |      |      |
| 1.7                              |                          | 0.30      |      |      |
| $1.8 \le V_{\text{OUT}} \le 1.9$ | I <sub>OUT</sub> = 100mA |           | 0.60 | 1.40 |
| $2.0 \le V_{OUT} \le 2.4$        | 1001 – 100IIIA           |           | 0.35 | 0.70 |
| $2.5 \le V_{OUT} \le 2.7$        |                          |           | 0.24 | 0.35 |
| $2.8 \le V_{\text{OUT}} \le 3.3$ |                          |           | 0.20 | 0.30 |
| $3.4 \le V_{\text{OUT}} \le 5.0$ |                          |           | 0.17 | 0.26 |

Note: When set Output Voltage is equal or less than 2.0V, VIN should be equal or more than 2.0V.

# **OPERATION**





In these ICs, fluctuation of the output voltage, Vout is detected by feed-back registers, R1 and R2, and the result is compared with a reference voltage by the error amplifier, so that a constant voltage is output.

A current limit circuit for protection at short mode and a chip enable circuit, are included.

# **TEST CIRCUITS**



Fig.1 Standard test Circuit



**Fig.2 Supply Current Test Circuit** 



Fig.3 Ripple Rejection, Line Transient Response
Test Circuit



Fig.4 Load Transient Response Test Circuit

# **TYPICAL CHARACTERISTICS**

1) Output Voltage vs. Output Current





#### R1121N401B



## Output Voltage vs. Input Voltage

#### R1121N181B



#### R1121N301B



#### R1121N501B



#### R1121N301B







#### 3) Dropout Voltage vs. Output Current









#### 4) Output Voltage vs. Temperature





#### R1121N401B VIN = 5.0VIOUT = 30mA4.10 4.08 4.06 4.04 4.02 4.00 3.98 3.96 3.94 3.92 3.90 -25 -50 0 25 50 75 100 Temperature Topt (°C)



#### 5) Supply Current vs. Input Voltage









#### 6) Supply Current vs. Temperature









#### Dropout Voltage vs. Set Output Voltage

#### R1121Nxx1B

Topt = 25°C



#### Ripple Rejection vs. Frequency

#### R1121N181B



#### R1121N181B

VIN = 2.8VDC + 0.5Vp-pCout = tantal 2.2μF



R1121N301B



#### R1121N301B

VIN = 4.0VDC + 0.5Vp-pCout = tantal  $2.2\mu F$ 



#### R1121N401B

 $V\text{IN} = 5.0 V\text{DC} + 0.5 V\text{p-p} \\ C\text{OUT} = tantal \ 1.0 \mu\text{F}$ 



#### **R1121N401B** Vin = 5.0

 $V_{\text{IN}} = 5.0 V_{\text{DC}} + 0.5 V_{\text{p-p}}$   $C_{\text{OUT}} = tantal~2.2 \mu F$ 



#### 9) Ripple Rejection vs. Input Voltage (DC bias)

#### R1121N301B

Ιουτ = 1mA Cουτ = 2.2μF



#### R1121N301B

IOUT = 10mA $COUT = 2.2\mu F$ 



#### R1121N301B

IOUT = 50mA $COUT = 2.2\mu F$ 



#### 10) Line Transient Response







#### 11) Load Transient Response





#### R1121N301B



#### R1121N301B



## **TECHNICAL NOTES**

When using these ICs, be sure to consider following points:

• In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a capacitor Cout with good frequency characteristics and ESR (Equivalent Series Resistance) in the range described as follows:



Measuring Circuit for white noise; R1121N301B

The relationship between Iout (output current) and ESR of output capacitor is shown in the graphs below. The conditions when the white noise level is under  $40\mu V$  (Avg.) are indicated by the hatched area in the graph. (note: When the additional ceramic capacitors are connected to the output pin with output capacitor for phase compensations.

sation, the operation might be unstable. Because of this, test these ICs with the same external components as the ones to be used on the PCB.)

<measuring conditions>

(1)  $V_{IN} = 4V$ 

(2) Frequency band:10Hz to 1MHz

(3) Temperature: 25°C





- Make VDD and GND lines sufficient. If their impedance is high, noise pick-up or incorrect operation may result.
- $\bullet$  Connect the capacitor with a capacitance of  $1\mu F$  or more between  $V_{DD}$  and GND as close as possible.
- Set external components, especially output capacitor, as close as possible to the ICs and make wiring as short as possible.



