(step 0: retrieve data)

http://archive.stsci.edu/hst/search.php

Proposal IDs:

12679, 12879, 13101, 13334, 13335, 13344, 13678, 13686, 13928, 14062, 14206

Filters/Gratings:

F160W*

Got 248 entries returned.

query_result.csv

- (1) Select the Cepheids in our sample and convert the calendar dates to Julian dates.
- (2) If the same object was observed several times within two hours, take them as only one epoch. Derive the phase of each epoch.
- (3) Calculate three types of sigma:
 - (3.1.1) Uncertainty from the model:

The model reads

$$m_t = M + L \cdot [A_0 + \sum_{i=1}^7 A_i \cos(2\pi i (\phi_t + \psi) + \Phi_i)] + \sigma_t \epsilon$$

which yields

$$\sigma_{1} = \frac{\partial m}{\partial M} \cdot \sigma_{M} + \frac{\partial m}{\partial L} \cdot \sigma_{L} + \frac{\partial m}{\partial \psi} \cdot \sigma_{\psi}$$

$$= \sigma_{M} + \sigma_{L} \cdot |[A_{0} + \sum_{i=1}^{7} A_{i} \cos(2\pi i (\phi_{t} + \psi) + \Phi_{i})]| + L \cdot \sigma_{\psi} \cdot |\sum_{i=1}^{7} A_{i} \sin(2\pi i (\phi_{t} + \psi) + \Phi_{i}) \cdot 2\pi i|$$

• (3.1.2) Uncertainty from model fit residuals (since template is not the true light curve)

 $\sigma_2 = \sigma$ where σ is the model-measurement scatter from <u>Table 4 of Inno+ (2015)</u>, or maybe better, take σ as the standard deviation of our model fit residuals, since we fit the model for individual Cepheids and have some freedom in the template to reduce σ .

(3.1.3) Uncertainty from the uncertainty of the period

$$\sigma_{3} = \frac{\partial m}{\partial \phi} \cdot \frac{\partial \phi}{\partial P} \cdot \sigma_{P}$$

$$= L \cdot |\sum_{i=1}^{7} A_{i} \sin(2\pi i (\phi_{t} + \psi) + \Phi_{i}) \cdot 2\pi i \cdot \frac{N_{cyc}}{P} |\cdot \sigma_{P}|$$

Where N_{cyc} is the number of cycles between HST and ground-based observatiosn, and it can be negative if the HST observation is prior to the ground-based observation.

(3.2.1) If there is only one HST observation, then
$$\sigma = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}$$
 .

(3.2.2) If there are multiple HST observations:

$$\sigma_{1,total} = \sigma_{M} + \frac{\sigma_{L}}{N} \cdot |\sum_{j=1}^{N} \{A_{0} + \sum_{i=1}^{7} A_{i} \cos(2\pi i (\phi_{t,j} + \psi) + \Phi_{i})\}| + \frac{L \cdot \sigma_{\psi}}{N} \cdot |\sum_{j=1}^{N} \{\sum_{i=1}^{7} A_{i} \sin(2\pi i (\phi_{t,j} + \psi) + \Phi_{i}) \cdot 2\pi i\}|$$

The $\sigma_{1,total}$ denotes the total model uncertainty. It does not go down with the square root of number of observations N, but the differences in phase might beat the last two terms down.

$$\sigma_{2,total} = \frac{\sigma_2}{\sqrt{N}}$$

This assumes that the model residuals of ground-based measurements are the same as that of HST-based measurements. This is true if the residuals of the model fit of true light curves are relatively large. If not, $\sigma_{2,total}$ would over estimate the residual uncertainty.

$$\sigma_{3,total} = \frac{L}{N} \cdot |\sum_{i=1}^{N} \sum_{i=1}^{7} \{A_i \sin(2\pi i (\phi_{t,j} + \psi) + \Phi_i) \cdot 2\pi i \cdot \frac{N_{cyc}}{P}\}| \cdot \sigma_P$$

Similar to $\sigma_{1,total}$, $\sigma_{3,total}$ does not go down with N substantially. It decrease only when the HST observations distribute

both before and after the ground-based observations.

Finally, the total phase correction uncertainty of multiple HST observations should be

$$\sigma = \sqrt{\sigma_{1,total}^2 + \sigma_{2,total}^2 + \sigma_{3,total}^2}$$

Results

#	id	sigma.1	sigma.2	sigma.3	sigma.total	mag.corr
	adpup	0.03144	0.02413	0.00035	0.03963	-0.14656
	aqcar	0.00745	0.00782	0.00000	0.01080	-0.03681
	aqpup	0.01110	0.01294	0.00022	0.01705	0.00957
	betad	0.03286	0.03251	0.00000	0.04622	-0.13521
	bnpup	0.06742	0.04923	0.00007	0.08348	-0.05277
	crcar	0.00987	0.01672	0.00000	0.01942	0.03029
	drvel	0.02510	0.02501	0.00017	0.03543	0.03932
	hwcar	0.00576	0.00580	0.00000	0.00818	-0.00794
	kkcen	0.00838	0.01874	0.00006	0.02053	-0.13490
	kncen	0.01871	0.01356	0.00012	0.02311	-0.04146
	lcarl	0.03923	0.03513	0.00035	0.05266	-0.10137
	rysco	0.00959	0.00966	0.00000	0.01361	-0.03411
	ryvel	0.01398	0.01742	0.00009	0.02234	-0.01858
	s-nor	0.02993	0.03157	0.00000	0.04350	0.03132
	sscma	0.01817	0.01313	0.00056	0.02243	-0.00256
	svvel	0.01919	0.01125	0.00000	0.02225	0.11542
	synor	0.01760	0.01638	0.00000	0.02404	0.02580
	t-mon	0.03821	0.02592	0.00000	0.04618	0.14277
	u-car	0.01656	0.01493	0.00035	0.02230	0.18328
	uumus	0.00838	0.00575	0.00041	0.01017	-0.07461
	vjara	0.00864	0.01437	0.00000	0.01676	0.09615
	vjcen	0.02584	0.02908	0.00004	0.03890	0.08094
	vwcen	0.00991	0.01248	0.00002	0.01594	-0.18063
	vycar	0.01417	0.00936	0.00082	0.01700	0.04012
	vzpup	0.03728	0.02650	0.00110	0.04575	-0.26534
	w-sgr	0.02044	0.03140	0.00000	0.03747	-0.00706
	wxpup	0.01431	0.01205	0.00025	0.01871	0.08612
	wzsgr	0.00513	0.00362	0.00024	0.00629	-0.01021
	x-pup	0.02486	0.01564	0.00119	0.02940	-0.03171
	xxcar	0.02473	0.02645	0.00019	0.03621	0.00050
	xycar	0.00868	0.00667	0.00000	0.01095	-0.03409
	xzcar	0.01006	0.00880	0.00012	0.01336	0.04828
	yzcar	0.02715	0.01639	0.00005	0.03171	-0.07605
	yzsgr	0.00824	0.02115	0.00001	0.02270	0.04179

(4) Update the table in the draft paper

```
\begin{deluxetable*}{Irrrrrrrrc}
\tabletypesize{\scriptsize}
\tablecaption{Light Curve Parameters \label{tbl:par}}
\tablewidth{0pt}
\tablehead{
\label{locality} $$\operatorname{C}_{C}(Object) & \operatorname{locality}_{C}(\$P\$) & \operatorname{locality}_{C}(\$\$sigma_P\$) & \operatorname{locality}_{C}(\$sigma_P\$) & \operatorname{locality}_{C}(\$sigma
icolumn{1}{c}{\$t_0} & \multicolumn{1}{c}{\$M$} & \multicolumn{1}{c}{\$\sigma_M$} & \multicolumn{1}{c}
n\{1\}\{c\}\{\$L\$\} \& \mathbb{1}\{c\}\{\$\S\} \& \mathbb{1}\{c\}\{\$\S\} \& \mathbb{1}\{c\}\}
 c_{(d)} & \mathcal{1}_{c}_{(mag)} & \mathcal{3}_{c}_{(s10^{-4})} & \mathcal{2}_{c} \\
\{([2])\} \& \mathbb{1}_{c}\{(\$10^{-4}\$mag)\}\}
\startdata
\input{tables/pars.tex}
\enddata
\t 0 \tablecomments{[1]: units of $10^{-6}}$~d; [2]: units of $10^{-4}{\m rad}/2\pi$.}
\end{deluxetable*}
```

W~Sgr		&	7.585536	&	1768	&	7187	&	2.886	&	97	&	2902	&	365 &	677
5 &	153	&	375 \\													
WX~Pup		&	8.935991	&	422	&	6967	&	6.690	&	48	&	2571	&	224 &	330
8 &	83	&	187 \\													
HW~Car		&	9.199488	&	39	&	6759	&	6.753	&	35	&	1501	&	234 &	659
7 &	113	&	82 \\													
V339~Ce	n	&	9.466540	&	76	&	6961	&	5.809	&	108	&	2649	&	329 &	682
0 &	194	&	389 \\													
YZ~Sgr		&	9.553551	&	290	&	6900	&	4.941	&	44	&	2558	&	116 &	597
7 &	71	&	227 \\													
S~Nor		&	9.754615	&	122	&	7416	&	4.384	&	170	&	2292	&	446 &	482
5 &	243	&	435 \\													
CR~Car		&	9.758552	&	119	&	7179	&	8.211	&	43	&	2079	&	121 &	905
1 &	95	&	194 \\													
AQ~Car		&	9.769427	&	119	&	6762	&	6.704	&	44	&	2023	&	138 &	23
4 &	169	&	108 \\													
\$\beta\$	~Dor	&	9.842865	&	3365	&	6910	&	1.974	&	116	&	2661	&	337 &	102
9 &	194	&	462 \\													
DR~Vel		&	11.199240	&	86	&	6996	&	5.983	&	94	&	2759	&	258 &	290
4 &	147	&	354 \\													
UU~Mus		&	11.636093	&	156	&	7038	&	6.959	&	27	&	3109	&	91 &	112
4 &	31	&	102 \\													
KK~Cen		&	12.182794	&	135	&	7042	&	8.106	&	30	&	2714	&	& 08	451
0 &	58	&	205 \\													
SS~CMa		&	12.353912	&	571	&	6958	&	6.836	&	106	&	2463	&	374 &	812
7 &	150	&	224 \\													
XY~Car		&	12.436119	&	23	&	6735	&	6.425	&	60	&	3104	&	174 &	122
1 &	74	&	110 \\													
SY~Nor		&	12.645111	&	94	&	7181	&	6.009	&	76	&	3163	&	265 &	378
9 &	79	&	240 \\													

AD~Pup	&	13.597026 &	414 &	6957 &	7.320 &	96 &	3258 &	281 &	290
2 &	150 &	396 \\							
BN~Pup	&	13.672693 &	42 &	6971 &	7.080 &	196 &	3654 &	481 &	228
8 &	231 &	835 \\							