Characteristic Class and	epsilon factor of an estale shoot
Whai-viers	Joint with Omezaki and Zhao.
	h for his invitation, also thank the organizers.
When I say "CC", I mean characte	eritic cycle
"SS", I mean sityule smaller" cc", I mean chourd	evi support.
Notation Let k be a finite field of ch	araxtextic p>0
Let Λ be a finite extension	of E or Oz.
All schemes/k are assumed- local trait	to be separated of finite type over k, excep fo-
X/k smooth projective, purely	of dimension d.
$\mathcal{F} \in \mathcal{D}_c^b(X, \Lambda)$	
rush-forward of characteristic class	shall epsilon factor, and apply it to Study the
Swen class 31 Introduction	
1) The global epsilon factor of f is de	fined to be E(X,F) = det(-Frobp'RT(XF,F)
where Frobe is the geometric Frobenius, i.e., $x \mapsto x^{\#k}$ on K .	the huebe of the Frobenius substitution
1 The characteristic class of 3 is th	
x = 0	$CF, T_X^*X>_{T*X} \in CH_0(X).$
By $katos Saito's unraunified classifield$ $CH_0(X) \xrightarrow{Sk} \cdot$	
123	Trobs] geo Frob. Conjugation, but in Trab(X), it is
Which is injective with dense image.	well defined.

The following global twit formula was comjectured by kato-Daito around 2004?
Theorem A (Umezaki-Y-Z,2017)
For any Smooth sheaf GEDOXN, we have
E(X, FOG) = E(X, F) the object of Px (-ccx F))
$\mathcal{E}(X,\mathcal{F}\otimes\mathcal{G}) = \mathcal{E}(X,\mathcal{F})^{k\mathcal{G}} \cdot \det\mathcal{G}(\mathcal{F}_X \in \mathcal{C}(x,\mathcal{F}))$ $C(\mathcal{H}_0(X) \xrightarrow{\mathcal{G}_X} \pi^{ab}(X) \xrightarrow{\det\mathcal{G}_Y} \Lambda^X.$ $\mathcal{C}(X,\mathcal{F})^{ab} \cdot \det\mathcal{G}(X,\mathcal{F})$
Remark In Kato-T. Salfo's paper, they defined the Swan Class Sw8(9) ECHL(XV)(860)
for a smooth sheaf FEDE(U,N) on UEX by usy alteration and losarithmic blow-
The global twist formula was written in terms of SwCF) in that time
Conjecture B (T. Saito, 2016, weak form) For any smooth sheef F on UcisX,
Signature B (1 Secto, 2016, Deak form) for any smooth sheef F on UCSX,
we have $S_{\omega}^{\text{les}}(\mathcal{F}) = S_{\omega}^{\text{cc}}(\mathcal{F})$
where $S_{ij}^{CC}F = \langle T_{X}^{*}X, \text{ rank}F.CCji,N-CCji,F.>_{T_{X}} \text{ in } CH_{o}(XU).$
— Both Sw and Sw are sotisfies the higher GOS formula:
$\mathcal{X}_{c}(\mathcal{O}_{R},\mathcal{F}) = \text{tank}\mathcal{F} \cdot \mathcal{X}_{c}(\mathcal{O}_{R},\mathcal{F}) - \text{dog Swif}.$
We proved Conjecture B if X is a proj smooth surface over a finite field
proper push-forward of Susce (or CC or Scx7) by generically
filitte and surjective map.
I will back to this part if I have more time.
Some known results of twist formula 1981
D local twist formula, (Deligne + Henniart), globalization?
2) If f is smooth (how no transflation),
FIRST COLL LAND ON MATICE COUNTY

1984 Hemiart: explicit formula for local epsilon factor mo	lula roots of unity of
4) 2016, Tomoyuki Abe and Deepam Pattel, twist formula 7 factor (assy microlocal geometry.	for de Rham eps
It is still open for microlocal description of SS for Q-ac	dic cohomology.
Application of twist-formula (proper push-forward)	
-total characteristic class	
Let K(X,N) be the Gnothendeek group of Deb(X,N),	
$K(X,\Lambda) \longrightarrow CH_0(IP(T*X\oplus I)) \xrightarrow{\simeq} CH_0$	$x_1 = \Phi CH/x_1$
5 + → CCF = (CCF (DI) + → T*(
We have $cc_{X,0} f = cc_X f$ grenent rank $cc_{X,0} f = c-1)^d$ rank f	(-)P(T*/+®()
crxd-17 = artil distritors - costal dimensional insor where & is the universal of tank of on TIX(TXX)	protent bundle of
If k=C, by a theorem of V. Ahsburg, the followy diagram	is commitative
for any projective morphism f: X-> in Smlk	
$K(X,N) \xrightarrow{CC_{X,\bullet}} CH_{\bullet}(X)$	
(f _* C**) \f	riest for the
$k(\gamma, \Lambda) \xrightarrow{c_{\alpha_{1}}} CH.(\gamma_{1})$	except for the zero degree part.
But in chark >0, (**) is not commitative by a philosophy of	Grothendlede.
Counter example The Frobenius map X=17n => X is radio	bl and surjective

Theorem (Langlands 1970, Deligne 1972)	
Let 4 be a fixed non-trivial additive charac	fer of k.
there exists a unique map $\mathcal{E}_{\varphi} := :\mathcal{E}$	
triples (T, F, w) with closed points,	E(T, F, w) € (Se) generical pool of a bood of
of equal equi-dar p	
$F \in \mathcal{R}^{l}(T, \overline{Q})$ $\omega \in \mathcal{SL}_{k(\eta)} \setminus \{0\}.$	
Scatisfying O ECT, F, w) depends only on the ison	Chases of the triple (T. F. w)
Odditive in F Industion formula for virtual s 7, Ti	heaf of rank o
	File Politic (\mathcal{F}_{i}) In \mathcal{F}_{i} = \mathcal{F}_{i} then $\mathcal{E}(\mathcal{F}_{i}) = 0 \text{ then}$ $\mathcal{E}(\mathcal{F}_{i}) = \mathcal{E}(\mathcal{F}_{i}) + \mathcal{E}(\mathcal{F}_{i}) + \mathcal{E}(\mathcal{F}_{i})$
then $\mathcal{E}(T, i_{\mathcal{V}} \mathcal{G}, \omega) = Total \mathcal{X}, \Psi$	
tate local constant Tate $(X, \Psi) = \int X$	$I = x_{0} \times x_{1}, (ayper A)$ $I = x_{0} \times x_{1}, (ayper A)$
8-10	x-1(=) \$\frac{1}{2}\text{syd} \text{if } \times \text{log} \frac{1}{2} \text{l}
were 8 EKX is an arbitrary element of value	atim a(2) tordelw), and of de=1.
$a(x) = \int_{-\infty}^{\infty} dx dx + \frac{1}{2} $	

@ relation with det (Frob) If F is supported on a view Fig =0, then ECT, F, w) = det (-Frobs) 7)7. Local twist formula Chaby case of peligne and Hennitart If S is a smooth Top-sheaf on T, then we have E(T, F&S, W) = E(T, F, W) to det (Frob.; 6) afternative sum of severit rank where $a(\tau, f, \omega) = a(\tau, F) + vank F_{\overline{\eta}} \cdot ord_r(\omega)$ = kank Fig - rank Fig + Sw Fig + trank Fig . ords(w) is the local Hirth conductor. Deligne Laumon's product formula brog come X/k, F, an inexamorphic 1-form on X. $E(X,F) = 9^{C(Fg)} \frac{1}{\text{rank}} = \frac{1}{\text{xe}|X|} \frac{E_{g}(F)}{|I|}$ ECXal, Stxal, W/Xal) Where C= number of competed composent XOF, g=gonus of one of them. (or degru =29-2) Now we show the following Local twist formula } global twist formula if dinx=[. E(X,F&G) = TT Ex(F&G) Local twill TT dot G(Frobx) ax(F)w)
E(X,F)VKG xelx| Ex(F)VKG XEIX| dot G(Frobx) $= \frac{\det(S_{X} + \int_{x\in |X|} (l_{x}(S_{x}\omega) \cdot |X|))}{GOS + \int_{x} \int_{x\in |X|} (l_{x}(S_{x}\omega) \cdot |X|)}$ $= \det(S_{X} + \int_{x\in |X|} (l_{x}(S_{x}\omega) \cdot |X|))$ => cg2=- \(\sum_{\telexit} a_x(\hu) \sur_{\telexit}. C(x) = < C(F, TXX> can Imma

It aim X >1, we prove twist formula by industrian on the dimension of X and
Choose good percil for X. For this we need an industribut formula for coxf.
\$3 Good fibration and Maurtin formula for ccx I
Let X — f) Y be a flat morphism between projective smooth schemes
din (=1, we moromorphic 1-form
C = T*X conical closed subset.
We say that f is a good fibration with respect to Cardw if the following conditions are
Scatisfied: Of is C-transversal on X Thin, Um} finite set of doved points of X
if iti, f(ki) +(ki), each fiber has at must one isolated Char point wint. C
3 Ni and fizii) have same residue field (lift the Frob grui) on C to]
∞ whas neither poles por zeros at $\Sigma = \{f(u_1), \dots, f(u_m)\}$. The u_i on \times
To For all $v \in [7]$, if $ord_{\sigma}(\omega) \neq 0$, then χ_{σ} is smooth and $\chi_{\sigma} \stackrel{i_{\sigma}}{\sim} \chi$ is
properly C-transversal. (then we can apply pullback formula for (c)
r-fold between and oddly Land The many (note)
Remark If $k = \pi alg$, $X = p^n = p^n = p$ Casimian) $(ad : ad : ad : a : : ad)$
Salto-Tatagawa $\Rightarrow \exists good poncil L \sqsubseteq tpV of X such that$
At meets X-transpersally XDA, X probably X
C+100
13 properly C-tran.
ALTIX is away from {u, n, un}
It k = finite field, one need to take a finite extension Flk.
(Key Lemma) FEDE(X, 1). If fix -> Y is a good fibration
associated to (SSF, w), then use have
$cc_{X} = -\frac{m}{\epsilon} dhotot Rotu_{i}(F,f) \cdot [\pi_{i}] - \sum_{v \in H} conducter) \cdot cc_{X_{v}}(F _{X_{v}})$.
Devent III among the second of
Remark We can use key Lemma to give an inductible construction of cox7
Starty from GOS formula for curves.

Some wild ramification
X/k of fatte type.
N= To , μ≠p=chark.
1) Assume Xis normal and separated.
F and Fl are locally constant constructible wheaver of 1-modifies.
We say Fand I' have the same wild vamification if
I proper normal X 2X such that for all geometric I -> X, we have
Let G be a finite quotient group of the identity roup $I_{\overline{x}} = \pi_i(\overline{X}_{(\overline{x})} \times_{\overline{X}} X_{\overline{x}})$
with respect to above forth & such that the pullback: to XxXX of
Fand & correspond to G-modules M and M' respectively.
then for every element one G of prover order, we have an equality of
the dimensions of the o-fixed parts:
dimM = dim M'O
2) Let I and I be constructible complexes of A module on X
We say I and I have same wild ramification if
I fulle partition X=11 X; by locally closed normal and
Separated substitiones such that for every of and for every the
Westroctions H2(F) X; and H2(F) X; are locally
constant constructible and have the same wild hamification in
the rone of 1.