B2B17TBK

Technika bezdrátové komunikace

Pavel Pechač FEL ČVUT v Praze Katedra elektromagnetického pole

ZÁKLADNÍ ANTÉNNÍ PARAMETRY

ÚVOD DO ŠÍŘENÍ VLN PRO RÁDIOVÉ SPOJE

Slidy byly vytvořeny jako podpora při sledování výkladu přednášky. Proto je jejich využití pro samostudium či jako podklad k přípravě na zápočtový text velmi omezené, neboť některé klíčové poznatky a ukázkové příklady jsou vysvětlovány na tabuli a většina obrázků vyžaduje slovní doprovod. Pro samostudium je na Moodlu k dispozici samostatný učební text.

Frekvenční spektrum

Číslo pásma	Mezinárodní zkratka	Frekvence	Vlnová délka	Český ekvivalent	Metrické označení
3	ULF	300 Hz – 3 kHz	1000 km-100 km	EDV, extrémně dlouhé v.	hkm, hektokilometrické,
4	VLF	3 kHz – 30 kHz	100 km-10 km	VDV, velmi dlouhé vlny	Mam, myriametrové v.
5	LF	30 kHz – 300 kHz	10 km-1 km	DV, dlouhé vlny	km, kilometrové vlny
6	MF	300 kHz – 3 MHz	1 km-100 m	SV, střední vlny	Hm, hektometrové v.
7	HF	3 MHz – 30 MHz	100 m-10 m	KV, krátké vlny	Dm, dekametrové v.
8	VHF	30 MHz – 300 MHz	10 m-1 m	VKV, velmi krátké vlny	m, metrové vlny
9	UHF	300 MHz – 3 GHz	1 m-10 cm	UKV, ultra krátké vlny	dm, decimetrové vlny
10	SHF	3 GHz – 30 GHz	10 cm-1 cm	SKV, super krátké vlny	cm, centimetrové vlny
11	EHF	30 GHz- 300 GHz	1 cm-1 mm	EKV, extrémně krátké vlny	mm, milimetrové vlny

Označení frekvenčních pásem pro rádiový přenos dle ČSN IEC 60050-713 a ITU-R V.431

Radiokomunikační služby

- Pevná služba (pevný spoj "bod-bod")
- Pozemní pohyblivá službu (mobilní spoj)
- Rozhlasová službu (spoj "bod-plocha")
- Družicové služby pevná, pohyblivá, rozhlasová
- **•** ...

Správa frekvenčního spektra

- ITU, www.itu.int
- ČTÚ, www.ctu.cz

Způsoby šíření vln pro pozemní rádiové spoje

- Přízemní povrchová vlna ground wave – surface w.
- Přízemní prostorová vlna ground wave – space w.
- (šíření vlnovodným kanálem ducting)
- Troposférická vlna tropospheric wave
- Ionosférická vlna
- sky wave, (ionospheric w.)

Základní anténní parametry

2.4 - 2.5 GHz Parabolic Subscriber Antennas

FEATURES

- Lightweight and rugged design
- Low windload
- Easily installed.
- RF Connector Interface: Type "N" female
- Standard antenna mount (NS) provides fine adjustment for both azimuth and elevation.
 Accommodates a 1.0". to 4.5" diameter pipe
- NL Series removes the fine adjustment feature for both azimuth and elevation. Accommodates a 1.0" to 2.25 " pipe
- Optional mounting kit available for NL Series to mount to a 2.5" to 4.5" diameter pipe
- Standard color white; other colors available on request
- Radome standard on 1' model, optional on 2'model
- Polarization: Single

ELECTRICAL SPECIFICATIONS (typical performance)

Model Number	Frequency, GHz	Gain dBi (nomInal)	Beamwidth ° -3dB	X-Pol. Rejection, dB	F/B Ratio dB	VSWR, Max (R.L., dB)
SP1-2.4	2.4 - 2.5	14.0	28.0	17	25	1.5:1 (14.0)
SP2-2.4	2.4 - 2.5	21.3	14.0	28	28	1.5:1 (14.0)

[&]quot; All specifications subject to change without notice.

Radio Waves, Inc.

Dual-band A-Panel
Dual Polarization
Half-power Beam Width
Integrated Combiner

	870-960	1710-1880
	Х	X
า	65°	65°
		C

KATHREIN Antennen · Electronic

XXPol A-Panel 870-960/1710-1880 C 65°/65° 12.5/13dBi

Type No.	741 316		
Frequency range	870-960 870 - 960 MHz	1710-1880 1710 - 1880 MHz	
Polarization	+45°, -45°	+45°, -45°	
Gain	2 x 12.5 dBi	2 x 13 dBi	
Half-power beam width Copolar +45°/-45°	Horizontal: 65° Vertical: 28°	Horizontal: 60° Vertical: 19°	
Front-to-back ratio, copolar	> 30 dB	> 30 dB	
Isolation, between ports	> 30 dB	> 30 dB	
Impedance	50 Ω	50 Ω	
VSWR	< 1.5	< 1.5	
Intermodulation IM3 (2 x 43 dBm carrier)	< -150 dBc	< -150 dBc	
Max. power per input	250 Watt (at 50 °C ambie	150 Watt ent temperature)	
Integrated combiner	The insertion loss is	included in the given	

antenna gain values.

Mechanical specifications				
Input	2 x 7-16 female			
Connector position*	Е	lottom or top		
Weight		7 kg		
Wind load	Frontal: Lateral: Rearside:	110 N (at 150 km/h) 60 N (at 150 km/h) 240 N (at 150 km/h)		
Max. wind velocity		200 km/h		
Packing size	782	x 287 x 165 mm		
Height/width/depth	656	/ 262 / 116 mm		

* Inverted mounting: Connector position top: Change drain hole screw.

Mounting accessories are not included in the scope of delivery (see page 159 - 164)

Vstupní impedance antény

$$Z_{\rm A} = R_{\rm A} + jX_{\rm A}$$

$$R_{\rm A} = R_{\rm vyz} + R_{\rm ztr}$$

$$I_{g} = \frac{U_{g}}{Z} = \frac{U_{g}}{Z_{A} + Z_{g}} = \frac{U_{g}}{\left(R_{vyz} + R_{ztr} + R_{g}\right) + j\left(X_{A} + X_{g}\right)}$$

$$P_{\text{vyz}} = \frac{1}{2} \left| I_{\text{g}} \right|^{2} R_{\text{vyz}} = \frac{\left| U_{\text{g}} \right|^{2}}{2} \left[\frac{R_{\text{vyz}}}{\left(R_{\text{vyz}} + R_{\text{ztr}} + R_{\text{g}} \right)^{2} + \left(X_{\text{A}} + X_{\text{g}} \right)^{2}} \right]$$

$$P_{\text{ztr}} = \frac{1}{2} |I_{g}|^{2} R_{\text{ztr}} = \frac{|U_{g}|^{2}}{2} \left[\frac{R_{\text{ztr}}}{\left(R_{\text{vyz}} + R_{\text{ztr}} + R_{g}\right)^{2} + \left(X_{A} + X_{g}\right)^{2}} \right]$$

$$R_{\text{vyz}} + R_{\text{ztr}} = R_{\text{g}}$$

$$X_{\text{A}} = -X_{\text{g}}$$

$$R_{\text{vyz}} + R_{\text{ztr}} = R_{\text{g}}$$

$$X_{\text{A}} = -X_{\text{g}}$$

$$P_{\text{vyz}} = \frac{\left|U_{g}\right|^{2}}{2} \left[\frac{R_{\text{vyz}}}{(2(R_{\text{vyz}} + R_{\text{ztr}}))^{2}}\right] = \frac{\left|U_{g}\right|^{2}}{8} \left[\frac{R_{\text{vyz}}}{(R_{\text{vyz}} + R_{\text{ztr}})^{2}}\right]$$

$$\eta = \frac{P_{\text{vyz}}}{P_{\text{vst}}} = \frac{\frac{\left|U_{g}\right|^{2}}{8} \frac{R_{\text{vyz}}}{(R_{\text{vyz}} + R_{\text{ztr}})^{2}}}{\frac{\left|U_{g}\right|^{2}}{8} \frac{R_{\text{vyz}}}{(R_{\text{vyz}} + R_{\text{ztr}})^{2}}} = \frac{R_{\text{vyz}}}{R_{\text{vyz}} + R_{\text{ztr}}} = \eta_{c} \eta_{d}$$

$$\eta = \frac{P_{\text{vyz}}}{P_{\text{vst}}} = \frac{\frac{|U_g|^2}{8} \frac{R_{\text{vyz}}}{(R_{\text{vyz}} + R_{\text{ztr}})^2}}{\frac{|U_g|^2}{8} \frac{R_{\text{vyz}} + R_{\text{ztr}}}{(R_{\text{vyz}} + R_{\text{ztr}})^2}} = \frac{R_{\text{vyz}}}{R_{\text{vyz}} + R_{\text{ztr}}} = \eta_c \eta_d$$

Impedanční přizpůsobení antény

Stav výkonového přizpůsobení

$$R_{vyz} + R_{ztr} = R_A = R_g$$
$$X_A = -X_g \quad (=0)$$

Přizpůsobení k napájecímu vedení

$$R = \frac{Z_A - Z_o}{Z_A + Z_o}$$

$$PSV = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{1 + |R|}{1 - |R|}$$

$$|R| = \frac{PSV - 1}{PSV + 1}$$

$$RL = 10 \log \frac{P_{vst}}{P_{odr}} = 10 \log \left(\frac{1}{|R|^2}\right) = -20 \log |R|$$

$$L_I = -10 \log \left(1 - |R|^2\right)$$

Šířka frekvenčního pásma

Šířka frekvenčního pásma

Resolution: 130

Závislost přizpůsobení trychtýře R32 na jeho umístění

Mechanizmus vyzařování

Vzdálená zóna (Fraunhoferova oblast)

Směrové vlastnosti antén

Isotropický zářič

$$P_{\text{vyz}} = \oint_{\Omega} U \, d\Omega = U_0 \oint_{\Omega} d\Omega = 4\pi U_0$$

$$\vec{E} = E_0 e^{j\psi} \vec{a}_o \frac{e^{-jkd}}{d}$$

Směrová/vyzařovací charakteristika

$$\vec{E} = E_0 e^{j\psi} \vec{a}_o F(\theta, \varphi) \frac{e^{-jkd}}{d}$$

Směrová/vyzařovací charakteristika

$$\vec{E} = E_0 e^{j\psi} \vec{a}_o F(\theta, \varphi) \frac{e^{-jkd}}{d}$$

$$P_{vyz} = B_0 \int_{0}^{2\pi\pi} \int_{0}^{\pi} |F^2(\theta, \varphi)| \sin \theta \, d\theta \, d\varphi$$

$$|F_{n}(\vartheta,\varphi)| = \frac{|F(\vartheta,\varphi)|}{\max |F(\vartheta,\varphi)|}$$

$$10 \log \left| |F_{n}(\vartheta,\varphi)|^{2} \right|$$

šířka svazku na 1/2 výkon

Směrová charakteristika - pojmy

- hlavní maximum (lalok, svazek)
- vedlejší maxima
- postranní maxima
- zpětný svazek
- šířka svazku na 1/2 výkon, HPBW
- š. sv. mezi prvními nulami, FNBW
- odstup postranních laloků,
- činitel zpětného vyzařování,

Základní řezy směrovou charakteristikou

kartézské x polární souřadnice

Směrová charakteristika - zobrazení

- směrová / vyzařovací
- napěťová (*E, U*)
- výkonová (P, E^2, U^2)

- normovaná $F_{n}(\vartheta,\varphi) = F(\vartheta,\varphi)/F_{max}$
- kartézské / polární souřadnice
- lineární / **logaritmické** (**dB**) měřítko

Příklad výstupů měření směrové charakteristiky (vertikální a horizontální řez) panelové antény GSM 900 MHz

Základní anténní parametry

- Vstupní impedance
- Šířka pásma / imp. přizpůsobení
- Vyzařovací účinnost

- Směrová/vyzařovací charakteristika
 - Šířka svazku
 - Předozadní poměr
 - Odstup vedlejších laloků
 - **•** ..
- Směrovost
- Zisk
- Efektivní plocha
- Polarizace (odstup křížové pol.)

Směrovost

$$D\!\!\left(\mathcal{G},\varphi\right) = \frac{U\!\!\left(\mathcal{G},\varphi\right)}{U_0} = \frac{4\pi U\!\!\left(\mathcal{G},\varphi\right)}{P_{\mathrm{vyz}}}$$

$$P_{\rm vyz} = 4\pi U_0$$

$$D_{\text{max}} = \frac{U_{\text{max}}}{U_0} = \frac{4\pi U_{\text{max}}}{P_{\text{vyz}}}$$

$$U_{\text{max}} = B_0 \left| F_{\text{max}}^2 \left(\mathcal{S}_0, \varphi_0 \right) \right|_{2\pi\pi}$$

$$U_{\text{max}} = B_0 | F_{\text{max}}^2(\mathcal{G}_0, \varphi_0) |$$

$$P_{\text{vyz}} = \oint_{\Omega} U(\mathcal{G}, \varphi) d\Omega = B_0 \int_{0}^{2\pi\pi} \int_{0}^{2\pi\pi} |F^2(\mathcal{G}, \varphi)| \sin \mathcal{G} d\mathcal{G} d\varphi$$

$$D(\theta_0, \varphi_0) = 4\pi \frac{\left| F^2(\theta_0, \varphi_0) \right|}{\int\limits_0^{2\pi\pi} \int\limits_0^{\pi} |F^2(\theta, \varphi)| \sin \theta d\theta d\varphi}$$

$$D_{\max} = 4\pi \frac{\left| F_{\max}^{2}(\vartheta_{0}, \varphi_{0}) \right|}{\int_{0}^{2\pi\pi} \int_{0}^{\pi\pi} \left| F^{2}(\vartheta, \varphi) \right| \sin \vartheta d\vartheta d\varphi} = \frac{4\pi}{\int_{0}^{2\pi\pi} \int_{0}^{\pi} \left| F_{n}^{2}(\vartheta, \varphi) \right| \sin \vartheta d\vartheta d\varphi}$$

$$D_{dB} = 10 \log D \quad [dB (dBi)]$$

Zisk antény

$$G = \eta_{vyz} D = \frac{4\pi U}{P_{v}}$$

Anténa	G (-)	G (dBi)	HPBW (°)
Izotropický zářič	1	0	360
Elementární dipól	1,5	1,75	90/360
Půlvlnný dipól	1,64	2,15	78/360
Parabolická refl. ant. ø 1 m, 1 GHz	60	18	26
Parabolická refl. ant. ø 2 m, 1 GHz	250	24	13
Parabolická refl. ant. ø 5 m, 1 GHz	1 580	32	5
Parabolická refl. ant. ø 1 m, 2 GHz	250	24	26
Parabolická refl. ant. ø 1 m, 10 GHz	6 300	38	2,5
Parabolická refl. ant. ø 1 m, 50 GHz	158 000	52	0,5

Efektivní plocha (apertura) antény

$$P_p = S_{dop} A_{ef}$$
 S_{dop} ...dopadající výkonová hustota [W/m 2]

 P_{v} ... výkon antény dodaný na zátěá [W]

 A_{ef} ... efektivní plocha (effective aperture/area) [m²]

$$A_{ef\,\text{max}} = \left(\frac{\lambda^2}{4\pi}\right) G_{\text{max}}$$

$$G = \frac{4\pi}{\lambda^2} \eta A$$

G... zisk plošné antény

 $G = \frac{4\pi}{2^2} \eta A$ η ... účinnost využití apertury (u reflektorových antén co (u reflektorových antén cca 0,45-0,65)

A ... fyzická plocha/apertura ústí antény

Polarizace

Lineární

□ Kruhová ($E_z = E_y$ a φ = ±π/2)

Polarizace

- Kruhová
 - pravotočivá
 - levotočivá
- Lineární (liniová, přímková)
 - vertikální
 - horizontální
- Eliptická
- Polarizační nepřizpůsobení ztráty
 - Pro lineární polarizaci:

$$L_{pol} = \left| \cos \psi \right|^2$$

z = konst.

Odstup křížové polarizace

Anténní parametry - shrnutí

- zisk, gain [dB]
- \square vstupní impedance, *input impedance* [Ω]
- šířka frekvenčního pásma, frequency bandwidth [% (Hz)]
- polarizace, *polarization* L (V, H), C (CR, CL); křížová pol.
- směrová/vyz. charakteristika, radiation pattern [dB]

- šířka svazku, HPBW [°]
- odstup postranních maxim, sidelobe ratio (level) [dB]
- činitel zpětného vyzařování, front-to-back ratio [dB]

Anténa jako frekvenční a prostorový filtr

Základní typy antén

- drátové (wire antenna)
- plošné (aperture antennas)

- reflektorové (reflector antennas)
- mikropáskové, štěrbinové (microstrip, slot)
- anténní čočky (lens antennas)
- 0
- anténní řady/pole (antenna arrays)

2.4 - 2.5 GHz Parabolic Subscriber Antennas

FEATURES

- Lightweight and rugged design
- Low windload
- Easily installed
- RF Connector Interface: Type "N" female
- Standard antenna mount (NS) provides fine adjustment for both azimuth and elevation.
 Accommodates a 1.0". to 4.5" diameter pipe
- NL Series removes the fine adjustment feature for both azimuth and elevation. Accommodates a 1.0" to 2.25 " pipe
- Optional mounting kit available for NL Series to mount to a 2.5" to 4.5" diameter pipe
- Standard color white; other colors available on request
- Radome standard on 1' model, optional on 2'model
- Polarization: Single

- Accommodates a 1.0". to 4.5" diameter pipe
- NL Series removes the fine adjustment feature for both azimuth and elevation. Accommodates a 1.0" to 2.25 " pipe
- Optional mounting kit available for NL Series to mount to a 2.5" to 4.5" diameter pipe
- Standard color white; other colors available on request
- Radome standard on 1' model, optional on 2'model
- Polarization: Single

ELECTRICAL SPECIFICATIONS (typical performance)

Model Number	Frequency, GHz	Gain dBi (nominal)	Beamwidth ° -3dB	X-Pol. Rejection, dB	F/B Ratio dB	VSWR, Max (R.L., dB)
SP1-2.4	2.4 - 2.5	14.0	28.0	17	25	1.5:1 (14.0)
SP2-2.4	2.4 - 2.5	21.3	14.0	28	28	1.5:1 (14.0)

^{*} All specifications subject to change without notice.

HX10-11W

3.0m | 10ft ValuLine® High Performance, High XPD Antenna, dual-polarized, 10.000 – 11.700 GHz

Electrical Specifications

Operating Frequency Band	10.000 - 11.700 GHz
Gain, Low Band	47.2 dBi
Gain, Mid Band	47.9 dBi
Gain, Top Band	48.5 dBi
Boresite Cross Polarization Discrimination (XPD)	33 dB
Front-to-Back Ratio	76 dB
Beamwidth, Horizontal	0.7 °
Beamwidth, Vertical	0.7 °
Return Loss	26 dB

Parabola 0,35 m; 19GHz

Omnidirectional Antenna – Vertical Polarization Indoor and outdoor use 738 450

Omni 900 360° 2dBi

Type No.	738 450
Input	N female
Connector position	Bottom or top
Frequency range	870 – 960 MHz
VSWR	< 1.5
Gain	2 dBi
Impedance	50 Ω
Polarization	Vertical
Max. power	150 Watt (at 50 °C ambient temperature)
Weight	200 g
Radome diameter	20 mm
Height	180 mm

Panel Vertical Polarization Half-power Beam Width

VPol Panel 870-960 120° 16dBI

Type No.	730 382
Frequency range	870 - 960 MHz
Polarization	Vertical
Gain	16 dBl
Half-power beam width	H-plane: 120* E-plane: 6.5*
Front-to-back ratio	> 20 d8
Impedance	S0 Ω
VSWR	< 1.8
Intermodulation IMS	<-150 dBc (2 x 43 dBm carrier)
Max. power	500 W (at 50 °C amblent temperature)

870-960

120°

VPol Panel 870-960 120° 16dBi

Type No.	730 382
Frequency range	870 – 960 MHz
Polarization	Vertical
Gain	16 dBi
Half-power beam width	H-plane: 120° E-plane: 6.5°
Front-to-back ratio	> 20 dB
Impedance	50 Ω
VSWR	< 1.3
Intermodulation IM3	<-150 dBc (2 x 43 dBm carrier)
Max. power	500 W (at 50 °C ambient temperature)

Horizontal Pattern

Anténní řady (pole), Antenna Arrays

Dvojice zářičů

$$E_{g} = E_{g_1} + E_{g_2} = \mathbf{j} \cdot 60 \frac{\cos\left(\frac{\pi}{2}\cos\theta\right)}{\sin\theta} \left[I_1 \frac{e^{-\mathbf{j}kr_1}}{r_1} + I_2 \frac{e^{-\mathbf{j}kr_2}}{r_2}\right]$$

$$r_1 = r + \frac{d}{2}\sin\theta\sin\varphi; \ r_2 = r - \frac{d}{2}\sin\theta\sin\varphi$$

$$E_{\mathcal{G}} = AF_1(\mathcal{G}) \frac{e^{-jkr}}{r} \left[I_1 e^{-jk(d/2)\sin\mathcal{G}\sin\varphi} + I_2 e^{+jk(d/2)\sin\mathcal{G}\sin\varphi} \right]$$

- charakteristická funkce řady, *array factor*
 - směrová charakteristika řady izotropních zářičů

Charakteristická funkce dvojice

$$d = \frac{1}{8}\lambda \qquad d = \frac{1}{4}\lambda \qquad d = \frac{3}{8}\lambda \qquad d = \frac{1}{2}\lambda$$

$$2\psi = 0^{\circ} \qquad \qquad \bullet \qquad \bullet \qquad \bullet$$

$$2\psi = 45 \qquad \bullet \qquad \bullet \qquad \bullet$$

příčné vyz.
$$\psi = 0$$

podélné v.
$$\psi = 2\pi d / \lambda$$

jednosměrné

$$d = \lambda / 4$$

 $\psi = 2\pi d / \lambda$

$$I_1 = I_0 e^{j\psi}; \quad I_2 = I_0 e^{-j\psi};$$

$$F_2 = 2I_0 \cos \left(\frac{kd}{2} \sin \theta \sin \varphi - \psi\right)$$

Dvojice zářičů - zvětšování rozteče

Fázovaná anténní řada

Směrová charakteristika anténní řady

 součin charakteristické funkce řady a směrové charakteristiky jednoho samotného zářiče (pro řadu izotropických zářičů jsou charakteristická funkce řady a výsledná směrová charakteristika celé řady shodné)

XXPol A-Panel 900/1800 65°/60° 15/17dBi

AXPOI A-Pallel 900/100				ı X
Type No.	741	326		\ \x\
Frequency range	GSM 900:	GSM 1800:	-	
	870 – 960 MHz	1710 – 1880 MHz		
VSWR	< 1.5	< 1.5		
Gain	2 x 15 dBi	2 x 17 dBi		
Impedance	50 Ω	50 Ω	1390 1390	
Polarization	+45°, -45°	+45°, -45°	133	I ++++
Front-to-back-ratio (copolar)	> 30 dB	> 30 dB		
Half-power beam width	+45°/ -45°	+45°/ -45°		I ttt
	– Horizontal: 65°	Horizontal: 60°		存存
	– Vertical: 14°	Vertical: 8°		
Max. power per input	400 Watt	200 Watt		I
	(at 50 °C ambie	nt temperature)		!
Isolation	> 30 dB (GSM 90	00 - GSM 900)		
	> 30 dB (GSM 18	800 – GSM 1800)	58	111
	> 30 dB (GSM 90	00 - GSM 1800)		
Input	4 x 7-16	female	262	+45+45 -45 -45
Connector position	Bottom	or top		1800 900 900 1800
Weight		kg		
Wind load GSM 900:	+45%-45° Polari	N (at 150 km/h)	GSM 1800: +45%	-45° Polarization
Mє Pa He	65°	14°	115° 60°	8°
Horizontal Pattern	n Vertic	cal Pattern	Horizontal Pattern	Vertical Pattern

12-Port Antenna Frequency Range HPBW

	112		I <u>~</u>	10	1.4
698-960	698-960	1427-2690	1695-2690	1695-2690	1427-269
65°	65°	65°	65°	65°	65°

12-Port Antenna 2LB/4HB 1.5m 65° | 2x698-960 14.6dBi | 2x1427-2690 17.8dBi | 2x1695-2690 17.2dBi

Type No.		800482001					
Left side, lowband		R1, connector 1-2					
		698-960					
Frequency Range	MHz	698 - 806	791 – 862	824 - 894	880 - 960		
Gain at mid Tilt	dBi	13.8	14.2	14.4	14.6		
Gain over all Tilts	dBi	13.8 ± 0.4	14.1 ± 0.3	14.4 ± 0.4	14.6 ± 0.3		
Horizontal Pattern:							
Azimuth Beamwidth	0	59 ± 6.3	56 ± 3.1	53 ± 5.5	50 ± 4.9		
Front-to-Back Ratio, Total Power, ± 30°	dB	> 20	> 19	> 20	> 22		
Vertical Pattern:							
Elevation Beamwidth	0	16.1 ± 1.1	15.1 ± 0.9	14.6 ± 0.7	13.6 ± 1.2		
Electrical Downtilt continuously adjustable	0	2.0 - 12.0					
Tilt Accuracy	0	< 0.5	< 0.5	< 0.6	< 0.9		
First Upper Side Lobe Suppression	dB	> 15	> 16	> 17	> 16		
Cross Polar Isolation	dB		>	25			
Port to Port Isolation	dB		> 25 (R1 // R2	, Y1, Y2, Y3, Y4)			
Max. Effective Power per Port	w	300 (at 50 °C ambient temperature)					
Max. Effective Power Ports R1	w		600 (at 50 °C amb	pient temperature)			

Values based on NGMN-P-BASTA (version 10.0) requirements.

ht side, lowband		R2, connector 3-4						
		698-960						
quency Range	MHz	698 - 806	791 - 862	824 - 894	880 - 960			
n at mid Tilt	dBi	13.8	14.1	14.4	14.8			
n over all Tilts	dBi	13.8 ± 0.3	14.1 ± 0.3	14.3 ± 0.3	14.7 ± 0.4			
izontal Pattern:								
nuth Beamwidth	0	60 ± 5.7	56 ± 4.1	54 ± 5.8	50 ± 6.4			
nt-to-Back Ratio, al Power, ± 30°	dB	> 20	> 20	> 20	> 21			
tical Pattern:								
ation Beamwidth	0	16.1 ± 0.8	15.1 ± 0.8	14.6 ± 0.6	13.6 ± 0.9			
trical Downtilt tinuously adjustable	0		2.0	10.0				

Electrical Downtilt continuously adjustable	۰		
Tilt Accuracy	0	< 0.6	
First Upper Side Lobe Suppression	dB	> 16	
Cross Polar Isolation	dB		
Port to Port Isolation	dB		_
FULL TO FULL ISUIALIUM	ub		
Max. Effective Power per Port	w		
Max. Effective Power Ports R2	w		

Values based on NGMN-P-BASTA (version 10.0) requirements.

Left side, highband		Y1, connector 5–6					
				1427-	2690		
Frequency Range	MHz	1427 - 1518	1695 - 1880	1850 - 1990	1920 - 2180	2300 - 2400	2490 - 2690
Gain at mid Tilt	dBi	15.9	17.0	17.2	17.4	17.5	17.8
Gain over all Tilts	dBi	15.9 ± 0.6	17.0 ± 0.6	17.2 ± 0.6	17.3 ± 0.7	17.5 ± 0.8	17.8 ± 0.8
Horizontal Pattern:							
Azimuth Beamwidth	0	73 ± 3.9	67 ± 4.1	63 ± 4.8	61 ± 4.8	60 ± 4.0	55 ± 3.9
Front-to-Back Ratio, Total Power, ± 30°	dB	> 30	> 29	> 28	> 29	> 29	> 28
Vertical Pattern:							
Elevation Beamwidth	0	8.4 ± 0.5	7.0 ± 0.5	6.5 ± 0.4	6.2 ± 0.4	5.6 ± 0.3	5.2 ± 0.2
Electrical Downtilt continuously adjustable	۰			2.0 -	12.0		
Tilt Accuracy	0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.2	< 0.2
First Upper Side Lobe						> 17	> 19

Left side, center highba	and			Y2, connector 7–8		
				1695-2690		
Frequency Range	MHz	1695 - 1880	1850 - 1990	1920 - 2180	2300 - 2400	2490 - 2690
Gain at mid Tilt	dBi	17.0	17.0	17.1	17.2	17.4
Gain over all Tilts	dBi	16.9 ± 0.7	17.0 ± 0.7	17.0 ± 0.8	17.2 ± 0.7	17.4 ± 0.8
Horizontal Pattern:						
Azimuth Beamwidth	۰	61 ± 7.9	60 ± 6.5	63 ± 6.7	65 ± 4.6	60 ± 4.3
Front-to-Back Ratio, Total Power, ± 30°	dB	> 29	> 27	> 28	> 30	> 29
Vertical Pattern:						

Total Power, ± 30°	UB	- 25	ı
Vertical Pattern:			_
Elevation Beamwidth	0	7.2 ± 0.6	Γ
Electrical Downtilt continuously adjustable	۰		
Tilt Accuracy	0	< 0.4	Γ
First Upper Side Lobe Suppression	dB	> 16	
Cross Polar Isolation	dB		_
Port to Port Isolation	dB		
Max. Effective Power per Port	W		
Max. Effective Power	144		
Ports Y2	W		_

Values based on NGMN-P-BASTA (version 10.0) requireme

Right side, center highba	nd		1	73, connector 9-10		
				1695-2690		
Frequency Range	MHz	1695 - 1880	1850 - 1990	1920 - 2180	2300 - 2400	2490 - 2690
Gain at mid Tilt	dBi	16.9	17.1	17.0	17.2	17.2
Gain over all Tilts	dBi	16.9 ± 0.8	17.0 ± 0.7	17.0 ± 0.7	17.1 ± 0.6	17.2 ± 0.8
Horizontal Pattern:						
Azimuth Beamwidth	0	61 ± 9.2	60 ± 8.4	64 ± 8.9	64 ± 4.1	62 ± 4.6
Front-to-Back Ratio, Total Power, ± 30°	dB	> 28	> 28	> 28	> 28	> 29
Vertical Pattern:						
Elevation Beamwidth	0	7.4 ± 0.5	6.8 ± 0.3	6.5 ± 0.4	6.0 ± 0.3	5.7 ± 0.4
Electrical Downtilt continuously adjustable	0			2.0 - 12.0		
Tilt Accuracy	0	< 0.4	< 0.3	< 0.3	< 0.2	< 0.3
First Upper Side Lobe	dВ	> 14	> 17	> 18	> 19	> 20

Right side, highband		Y4, connector 11–12						
		1427-2690						
Frequency Range	MHz	1427 - 1518	1695 - 1880	1850 - 1990	1920 - 2180	2300 - 2400	2490 - 2690	
Gain at mid Tilt	dBi	15.9	17.0	17.2	17.4	17.5	17.8	
Gain over all Tilts	dBi	15.9 ± 0.5	17.0 ± 0.6	17.2 ± 0.6	17.4 ± 0.7	17.4 ± 0.7	17.8 ± 0.9	
Horizontal Pattern:								
Azimuth Beamwidth	0	74 ± 6.1	69 ± 3.5	66 ± 4.6	63 ± 5.8	63 ± 4.9	56 ± 4.4	
Front-to-Back Ratio, Total Power, ± 30°	dB	> 29	> 29	> 29	> 28	> 29	> 28	
Vertical Pattern:								
Elevation Beamwidth	0	8.3 ± 0.5	6.9 ± 0.5	6.5 ± 0.3	6.2 ± 0.5	5.6 ± 0.3	5.2 ± 0.2	
Electrical Downtilt continuously adjustable	۰			2.0 -	- 12.0			
Tilt Accuracy	0	< 0.3	< 0.3	< 0.4	< 0.3	< 0.2	< 0.2	
First Upper Side Lobe Suppression	dB	> 16	> 17	> 17	> 16	> 17	> 19	
Cross Polar Isolation	dB		> 25					
Port to Port Isolation	dB			> 25 (Y4 // R1,	R2, Y1, Y2, Y3)			
Max. Effective Power per Port	w	200 (at 50 °C ambient temperature)						
Max. Effective Power Ports Y4	w		4	100 (at 50 °C amb	pient temperatur	9)		

Values based on NGMN-P-BASTA (version 10.0) requirements

Překážky v blízkosti antény, radomy

Measurement without additional cover:

Isolation: 38.4 dB VSWR: 1.28

Vliv stožáru na směrový diagram antény

Vliv stožáru na směrový diagram antény

Způsoby výpočtu

rozložení proudů => impedanční i směrové vlastnosti

- analyticky (jen elementární struktury)
- numerické metody (MM, FDTD, ...)
- geometrická optika
- anténní řady
- empirické vztahy
- (anténní měření)

