

Machine Learning for High-Dimensional Data

Sparse Regression

Charlotte Laclau

General Setting: Linear Regression

We consider the following regression model

$$Y = X\theta^* + \epsilon$$

- ▶ $Y \in \mathbb{R}^n$ is the target vector
- ▶ $X \in \mathbb{R}^{n \times d}$ is a matrix of predictors
- $m hinspace heta^* \in \mathbb{R}^d$ are the ground truth parameters of the model
- $ightharpoonup \epsilon \in \mathbb{R}^n$ is some noise
- ▶ We assume that X and Y are normalized

General Setting: Linear Regression

$$X = [\mathbf{x}_1, \dots, \mathbf{x}_d] = \begin{pmatrix} x_{1,1} & \dots & x_{1,d} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \dots & x_{n,d} \end{pmatrix} \in \mathbb{R}^{n \times d}, \boldsymbol{\theta}^* \in \mathbb{R}^d$$
$$\mathbf{y} = [y_1, \dots, y_n]$$
$$\boldsymbol{\theta}^* = [\theta_1, \dots, \theta_d]$$

Objective

For a new observation $x^{(n+1)}$ predict the associated $y^{(n+1)}$

Learn $\hat{\theta}$ such that $\hat{y}^{(n+1)} = x^{(n+1)T} \hat{\theta} \approx y^{(n+1)T}$

Linear Regression: an example

Let's consider the following problem

- ▶ We have a population of n = 120 patients
- ▶ For each patient i we have a list of d = 6 physiological index
 - ► Age, in years
 - ► Weight, in kg
 - ► Body surface area (BSA), in m²
 - ▶ Duration of hypertension (Dur), in years
 - ▶ Basal Pulse (Pulse), in beats per minute
 - ► Stress index (Stress)
- ► For each patient we want to **predict** the Blood pressure (BP) expressed in mm Hg

We assume that BP (Y) is the result of a linear combination of each of the index (X) and our objective is to learn their weight θ .

Solving Linear Regression

Theorem: Fermat's rule

If f is differentiable, then at a local minimum x^* the gradient of f vanishes at x^* , i.e. $\nabla f(x^*) = 0$.

Solving Linear Regression

Theorem: Fermat's rule

If f is differentiable, then at a local minimum x^* the gradient of f vanishes at x^* , i.e. $\nabla f(x^*) = 0$.

Rem: sufficient condition when f is convex!

Solving Linear Regression

Theorem: Fermat's rule

If f is differentiable, then at a local minimum x^* the gradient of f vanishes at x^* , i.e. $\nabla f(x^*) = 0$.

Rem: sufficient condition when f is convex!

Back to least squares: 1D case

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

For least squares, minimize the function of two variables:

$$f(\theta_0, \theta_1) = f(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

First order condition / Fermat's rule:

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0\\ \frac{\partial f}{\partial \theta_1}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

Calculus continued

Usual mean notation:
$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 and $\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$

With that, Fermat's rule states (dividing by n):

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\theta}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0 \\ \frac{\partial f}{\partial \theta_1}(\widehat{\theta}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \widehat{\theta}_0 = \overline{y}_n - \widehat{\theta}_1 \overline{x}_n & (CNO1) \\ \widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2} & (CNO2) \end{cases}$$

Penalized Linear Regression: Initial Motivation

▶ Prevent overfitting: sacrifies bias to reduce the variance

► Numerical (in)stability - colinearity

Intermediate objective - shrink the values of heta

Penalized Linear Regression: Initial Motivation

▶ Prevent overfitting: sacrifies bias to reduce the variance

► Numerical (in)stability - colinearity

Intermediate objective - shrink the values of heta

$$\widehat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \mathrm{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \phi(\boldsymbol{\theta})}_{\text{regularisation}} \right)$$

7

Penalized Linear Regression: Initial Motivation

▶ Prevent overfitting: sacrifies bias to reduce the variance

► Numerical (in)stability - colinearity

Intermediate objective - shrink the values of heta

$$\widehat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \mathrm{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\lambda \phi(\boldsymbol{\theta})}_{\text{regularisation}} \right)$$

How to choose ϕ ?

7

Penalizing the norm of θ

Constraint interpretation

A "Lagrangian" formulation is as follows:

has for a certain T > 0 the same solution as:

$$\begin{cases} \mathop{\mathsf{argmin}}_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \\ \text{s.t. } \|\boldsymbol{\theta}\|_2^2 \leq T \end{cases}$$

<u>Rem</u>: the link $T \leftrightarrow \lambda$ is not explicit!

- ▶ If $T \to 0$ we recover the null vector: $0 \in \mathbb{R}^p$
- lackbox If $T o\infty$ we recover $\hat{m{ heta}}^{ ext{OLS}}$ (un-constrained)

Level lines and and constraints set

Optimization under ℓ_2 constraints

Solving Ridge Regression

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \mathrm{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \quad \underbrace{\boldsymbol{\lambda} \|\boldsymbol{\theta}\|_2^2}_{\text{regularisation}} \right)$$

► Computation of the solution using the necessary condition of optimality (Fermat rule), we have

$$f(\boldsymbol{\theta}) = \frac{\|Y - X\boldsymbol{\theta}\|_2^2}{2} + \frac{\lambda \|\boldsymbol{\theta}\|_2^2}{2}.$$

CNO :
$$\nabla f(\theta) = X^{\top}(X\theta - Y) + \lambda \theta = 0$$

 $\Leftrightarrow (X^{\top}X + \lambda \operatorname{Id}_p)\theta = X^{\top}Y$

▶ We recover the regularized normal equation.

Choosing λ

```
n_features = 50; n_samples = 50
X = np.random.randn(n_samples, n_features)
theta_true = np.zeros([n_features, ])
theta_true[0:5] = 2.
y_true = np.dot(X, theta_true)
y = y_true + 1. * np.random.rand(n_samples,)
```


Additional Hypothesis: Assuming Sparsity

Estimators $\hat{\theta}$ with many zero coefficients are useful:

- ▶ for interpretation
- ightharpoonup for computational efficiency if d is huge

Underlying idea: variable selection

Rem: also useful if θ^* has few non-zero coefficients

 $\underline{\mathsf{Rem}}$: quadratic penalisation shrink the values of θ

Additional Hypothesis: Assuming Sparsity

Estimators $\hat{\theta}$ with many zero coefficients are useful:

- ▶ for interpretation
- ightharpoonup for computational efficiency if d is huge

Underlying idea: variable selection

Rem: also useful if θ^* has few non-zero coefficients

Rem: quadratic penalisation shrink the values of θ

 \rightarrow Can we go further?

Variable selection overview

- **Screening**: remove the x_j 's whose correlation with y is weak
 - pros: fast (+++), i.e. one pass over data, intuitive (+++)
 - cons: neglect variables interactions \mathbf{x}_j , weak theory (- -)
- ► **Greedy** methods aka stagewise / stepwise
 - pros: fast (++), intuitive (++)
 - cons: propagates wrong selection forward; weak theory (-)
- ► Sparsity enforcing **penalized** methods (*e.g.* Lasso)
 - pros: better theory for convex cases (++)
 - cons: can be still slow (-)

The ℓ_0 pseudo-norm

Definition

The **support** of $\theta \in \mathbb{R}^d$ is the set of indexes of non-zero coordinates:

$$\operatorname{Supp}(\boldsymbol{\theta}) = \{ j \in [1, d], \theta_j \neq 0 \}$$

The ℓ_0 **pseudo-norm** of a $\theta \in \mathbb{R}^d$ is the number of non-zero coordinates:

$$\|\boldsymbol{\theta}\|_0 = \operatorname{card}\{j \in [\![1,d]\!], \theta_j \neq 0\}$$

Rem: $\|\cdot\|_0$ is not a norm, $\forall t \in \mathbb{R}^*, \|t\theta\|_0 = \|\theta\|_0$

Rem: $\|\cdot\|_0$ it is not even convex, $\theta_1 = (1, 0, 1, \dots, 0)$ $\theta_2 = (0, 1, 1, \dots, 0)$ and $3 = \|\frac{\theta_1 + \theta_2}{2}\|_0 \ge \frac{\|\theta_1\|_0 + \|\theta_2\|_0}{2} = 2$

The ℓ_0 penalty

Sparsity enforcing penalty: use ℓ_0 as a penalty (or regularization)

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^d} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\lambda \|\boldsymbol{\theta}\|_0}_{\text{regularization}} \right)$$

Combinatorial problem!!!

Exact solution: require considering all sub-models, i.e. computing OLS for all possible support; meaning one might need 2^d least squares computation!

d=10 possible: $\approx 10^3$ least squares

d = 30 impossible: $\approx 10^{10}$ least squares

<u>Rem</u>: problem "NP-hard", can be solved for small problems by mixed integer programming.

The ℓ_1 penalty as an alternative

What about $\phi = \|\boldsymbol{\theta}\|_1$?

Lasso: penalty point of view

Lasso: Least Absolute Shrinkage and Selection Operator

$$\widehat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \mathrm{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\lambda \|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

où
$$\| heta\|_1 = \sum_{j=1}^p | heta_j|$$
 sum of absolute values of the coefficients)

▶ We recover the limiting cases:

$$\begin{split} &\lim_{\lambda \to 0} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = & \hat{\boldsymbol{\theta}}^{\mathrm{OLS}} \\ &\lim_{\lambda \to +\infty} \hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = & 0 \in \mathbb{R}^{p} \end{split}$$

<u>Beware</u>: the Lasso estimator is not always **unique** for a fixed λ (consider cases with two equals columns in X)

Constraint point of view

The following problem:

$$\hat{\boldsymbol{\theta}}_{\boldsymbol{\lambda}}^{\mathrm{Lasso}} = \mathrm{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2}\|\mathbf{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2}_{\text{data fitting}} \quad + \underbrace{\boldsymbol{\lambda}\|\boldsymbol{\theta}\|_1}_{\text{regularization}} \right)$$

shares the same solutions as the constrained formulation:

$$\begin{cases} \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 \\ \text{s.t. } \|\boldsymbol{\theta}\|_1 \leq T \end{cases}$$

for some T > 0.

Rem: the link $T \leftrightarrow \lambda$ is not explicit

- ▶ If $T \to 0$ one recovers the null vector: $0 \in \mathbb{R}^d$
- lackbox If $T o\infty$ one recovers $\hat{m{ heta}}^{ ext{OLS}}$ (unconstrained)

Zeroing coefficients

Zeroing coefficients

Solving Lasso - Intuition

The function $\mathcal{L}: \theta = \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1$ is convex but **non** differentiable.

Idea: to solve the lasso we restrict ourselves to computing the subdifferential of the function |.|

<u>Rem</u>: There exist many options to do this: projected gradient, shooting method, subgradient descent, **coordinate descent** etc.

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle u, x - x^* \rangle \}.$$

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle u, x - x^* \rangle \}.$$

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

The **sub-differential** is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle u, x - x^* \rangle \}.$$

Definitions

For a convex function $f: \mathbb{R}^n \to \mathbb{R}$, $u \in \mathbb{R}^n$ is a **sub-gradient** of f at x^* , if for any $x \in \mathbb{R}^n$,

$$f(x) \ge f(x^*) + \langle u, x - x^* \rangle$$

The sub-differential is the set

$$\partial f(x^*) = \{ u \in \mathbb{R}^n : \forall x \in \mathbb{R}^n, f(x) \ge f(x^*) + \langle u, x - x^* \rangle \}.$$

Fermat's Rule

Theorem

A point x^* is a minimum of a convex function $f:\mathbb{R}^n \to \mathbb{R}$ if and only if $0 \in \partial f(x^*)$

<u>Proof</u>: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle 0, x - x^* \rangle$

Fermat's Rule

Theorem

A point x^* is a minimum of a convex function $f:\mathbb{R}^n \to \mathbb{R}$ if and only if $0 \in \partial f(x^*)$

Proof: use the sub-gradient definition:

▶ 0 is a sub-gradient of f at x^* if and only if $\forall x \in \mathbb{R}^n, f(x) \geq f(x^*) + \langle 0, x - x^* \rangle$

Rem: Visually, it corresponds to a horizontal tangent

Absolute value sub-differential

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

Sub-differential (sign)

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Absolute value sub-differential

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

Sub-differential (sign)

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

Function (abs):

$$f: \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto |x| \end{cases}$$

$$\partial f(x^*) = \begin{cases} \{-1\} & \text{if } x^* \in]-\infty, 0[\\ \{1\} & \text{if } x^* \in]0, \infty[\\ [-1,1] & \text{if } x^* = 0 \end{cases}$$

1D Regularization: Ridge

Solve:
$$\eta_{\lambda}(z) = \operatorname{argmin}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \frac{\lambda}{2}x^2$$

$$\eta_{\lambda}(z) = \frac{z}{1+\lambda}$$

1D Regularization: Lasso

Solve:
$$\eta_{\lambda}(z) = \operatorname{argmin}_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$$

$$\eta_{\lambda}(z) = \operatorname{sign}(z)(|z| - \lambda)_{+} \text{ (Exercise)}$$

1D Regularization:

$$\ell_0$$

Solve:
$$\eta_{\lambda}(z) = \operatorname{argmin}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z - x)^2 + \lambda \operatorname{Id}_{x \neq 0}$$

$$\eta_{\lambda}(z) = z \operatorname{Id}_{|z| \ge \sqrt{2\lambda}}$$

1D Regularization: Elastic-Net

Solve:
$$\eta_{\lambda}(z) = \operatorname{argmin}_{x \in \mathbb{R}} x \mapsto \frac{1}{2} (z - x)^2 + \lambda (\gamma |x| + (1 - \gamma) \frac{x^2}{2})$$

$$\eta_{\lambda}(z) = \mathsf{Exercise}$$

Soft thresholding: closed form solution

$$\eta_{\text{Lasso},\lambda}(z) = \begin{cases} z + \lambda & \text{if } z < -\lambda \\ 0 & \text{if } |z| \le \lambda \\ z - \lambda & \text{if } z > \lambda \end{cases}$$

To do: use sub-gradients to prove the previous result

Additional Properties needed for the proof

▶ For
$$\alpha \ge 0$$
, $\partial(\alpha f)(x) = \alpha \partial f(x)$

Proof

Coordinate Descent Algorithm

Numerical example on simulated data

- $m{ heta}^{\star}=(1,1,1,1,1,0,\ldots,0)\in\mathbb{R}^d$ (5 non-zero coefficients)
- $igwedge X \in \mathbb{R}^{n imes d}$ has columns drawn according to a Gaussian distribution
- ▶ $y = X\theta^* + \epsilon \in \mathbb{R}^n$ with $\epsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$
- ▶ We use a grid of 50 λ values

For this example : $n = 60, d = 40, \sigma = 1$

Lasso properties

- ▶ Numerical aspect: the Lasso is a **convex** problem
- ▶ Variable selection / sparse solutions: $\hat{\theta}_{\lambda}^{\mathrm{Lasso}}$ has potentially many zeroed coefficients. The λ parameter controls the sparsity level: if λ is large, solutions are very sparse.

Example: We got 17 non-zero coefficients for LassoCV in the previous simulated example

Rem: RidgeCV has no zero coefficients

Improvement and extensions for the

Lasso

Elastic-net : ℓ_1/ℓ_2 regularization

The Elastic-Net, introduced by Zou and Hastie (2005) is the (unique) solution of

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \| \mathbf{y} - \boldsymbol{X} \boldsymbol{\theta} \|_2^2 + \lambda \left(\gamma \| \boldsymbol{\theta} \|_1 + (1 - \gamma) \frac{\| \boldsymbol{\theta} \|_2^2}{2} \right) \right]$$

<u>Motivation</u>: help selecting all relevant but correlated variable (not only one as for the Lasso)

 $\underline{\mathsf{Rem}}$: two parameters needed, one for global regularization, one trading-off Ridge vs. Lasso

Rem: the solution is unique and the size of the Elastic-Net support is smaller than min(n, p)

$$\gamma = 1.00$$

$$\gamma = 0.99$$

$$\gamma = 0.95$$

$$\gamma = 0.90$$

$$\gamma = 0.75$$

$$\gamma = 0.50$$

$$\gamma = 0.25$$

Elastic-Net: $\gamma \|\boldsymbol{\theta}\|_1 + (1 - \gamma) \|\boldsymbol{\theta}\|_2^2 / 2$

$$\gamma = 0.1$$

Elastic-Net: $\gamma \|\boldsymbol{\theta}\|_1 + (1 - \gamma) \|\boldsymbol{\theta}\|_2^2 / 2$

$$\gamma = 0.05$$

Elastic-Net: $\gamma \|\boldsymbol{\theta}\|_1 + (1 - \gamma) \|\boldsymbol{\theta}\|_2^2 / 2$

$$\gamma = 0.01$$

$$\gamma = 0.00$$

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

The Lasso bias

The Lasso is biased: it shrinks large coefficients towards 0

The Lasso bias: a simple remedy

How to rescale shrunk coefficients?

LSLasso (Least Square Lasso)

- 1. Lasso : compute $\hat{ heta}_{\lambda}^{\mathrm{Lasso}}$
- 2. Perform least squares over selected variables: $\operatorname{Supp}(\hat{\theta}_{\lambda}^{\operatorname{Lasso}})$

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{LSLasso}} = \mathrm{argmin} \sup_{\mathrm{Supp}(\boldsymbol{\theta}) = \mathrm{Supp}(\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}})} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2}$$

Rem: perform CV for the double step procedure; choosing λ by LassoCV and then performing OLS keeps too many variables

Rem: LSLasso is not coded in standard packages

De-biasing

De-biasing

Prediction: Lasso vs. LSLasso

Summary

- ► Regularisation in Machine Learning is (almost always) necessary to prevents **complex models** from overfitting
- ▶ There are mainly three types of regularisation that are used
 - \blacktriangleright ℓ_2 regularisation aka Ridge
 - $ightharpoonup \ell_1$ regularisation aka Lasso
 - \blacktriangleright ℓ_1/ℓ_2 regularisation aka ElasticNet
- ▶ Ridge allows to reduce the impact of multicolinearity
- ► Lasso is particularly adapted in high dimension (in-built variable selection)
- ► ElasticNet takes the best of both world

Summary

- ► Regularisation in Machine Learning is (almost always) necessary to prevents **complex models** from overfitting
- ▶ There are mainly three types of regularisation that are used
 - $ightharpoonup \ell_2$ regularisation aka Ridge
 - $ightharpoonup \ell_1$ regularisation aka Lasso
 - \blacktriangleright ℓ_1/ℓ_2 regularisation aka ElasticNet
- ▶ Ridge allows to reduce the impact of multicolinearity
- ► Lasso is particularly adapted in high dimension (in-built variable selection)
- ► ElasticNet takes the best of both world

These penalizations can be added to any parametric machine learning models (logistic regression, SVM, Deep Neural Networks)