IIT Jodhpur

Biological Vision and Applications Module 02-03: Motion perception

Hiranmay Ghosh

Why motion detection is important

- Distinguish objects of interest (foreground) from the background
- Determine change of location (where) of the objects of interest with time

Rigid, Elastic and Fluid Motion

- Rigid motion is where the moving object does not change shape
- Elastic motion is where the moving object changes shape with some continuity
- Fluid motion is where the continuity is not there

• We shall mostly talk about rigid motion

Continuous and Discrete Motion

- Human observers can distinguish two types of motion: Continuous and Discrete
 - For perception of continuous motion, an object need not move continuously over the retinal field
 - Examples: Alternately blinking festive lights, movie / TV
- There are two stages of motion detection
 - Short range (60 100ms, 10 15' of visual arc): Based on local intensity changes
 - Local contrasts: early vision
 - Continuous motion
 - Long range (400ms): Based on token matching
 - Object recognition: late vision
 - Discrete motion
- We shall talk about short range motion detection first

Motion is a correspondence problem

- An image in motion: I(x, y, t)
- The motion: $\vec{v}(x, y, t)$ How to estimate from values of I(x, y, t) over t?
 - Sometimes it is sufficient to detect motion

- Detecting motion
 - Same object appears at (x_1, t_1) and at (x_2, t_2)
 - If for some (t_1, t_2) , $(x_1 \neq x_2)$
- Measuring motion
 - $\blacktriangleright \ \, \mathsf{Velocity} \,\, v = \tfrac{\Delta x}{\Delta t}$

Reichardt model for motion detection

- Reichardt model
 - Eyes of house-flies
- Obvious limitations
 - Motion can be detected in one direction only
 - Motion can be detected only when $v pprox rac{\Delta x}{\Delta t}$
 - Noise may induce false positives / negatives

Reichardt model for motion detection

Addressing the limitations

Intensity based scheme

Estimating local motion

- See the contour changing and infer motion
 - ▶ Works when there is a significant intensity (or color) variation

Aperture problem: Motion can be perceived in the direction of intensity change only

Gradient model of motion estimation

$$\begin{split} I(x,t) &= I(x+\Delta x,t+\Delta t) \\ \Delta I &= I(x+\Delta x,t) - I(x,t) = \frac{\partial I}{\partial x} \Delta x \\ \Delta I &= I(x+\Delta x,t) - I(x+\Delta x,t+\Delta t) \\ &\approx I(x,t) - I(x,t+\Delta t) = -\frac{\partial I}{\partial t} \Delta t \\ v_x &= \frac{\Delta x}{\Delta t} = -\frac{\partial I/\partial t}{\partial I/\partial x} \end{split}$$

$$v(z,t)_{\nabla I} = -\frac{I_t(z,t)}{\nabla I(z,t)}$$

where

 $v(z,t)_{\nabla I}$ = the local velocity at z, in the direction of the spatial intensity gradient $I_t(z,t)$ = the temporal gradient for local illumination change

 $\nabla I(z,t)$ = the spatial gradient for local illumination change

Rigid motion in image plane

Constant velocity assumption (translation only)

Given
$$v_{\phi}, v_{\psi}, v =?, \theta =?$$

$$v_{\phi} = v.\cos(\theta - \phi)$$

$$v_{\psi} = v.\cos(\theta - \psi)$$

Solve for
$$v$$
 and θ

$$v.cos(\theta - \phi_1) = v_1$$

$$v.cos(\theta - \phi_2) = v_2$$

$$v.cos(\theta - \phi_3) = v_3$$
...
$$v.cos(\theta - \phi_n) = v_n$$

SVD through example

Ambiguity in motion estimation

More general cases

- Sources of information loss
 - Projection of 3D object to 2D image
 - Projection of movement to intensity variation
- $\vec{V} = v_{\perp} \cdot \vec{u}_{\perp} + v_{\perp} \cdot \vec{u}_{\perp}$ (v_{\perp} cannot be estimated)
- Assumption on additional constraints are needed to estimate v_{\pm}

Token based method

Motivated by higher level perception (token recognition)

- Tokens (distinctive points) are identified in the scene
 - Feature points (SIFT, SURF, etc.) can be used
- Tokens are tracked over time
 - Motion at tokens are estimated
 - Motion at other points interpolated

Token based method

(Continued)

- Depends of successful tracking of tokens
- Not an easy problem
 - Appearance of tokens may change
 - Two tokens are similar
- Tokens may be confused with each other during motion
- Additional domain-specific constraints need to be imposed
 - Relative geometry of tokens are maintained
 - Tokens have moved minimum distance
- Sometimes leads to illusion
 - A fan or a bicycle wheel appears to rotate in the opposite direction

Quiz 02-03

End of Module 02-03