# **Crime Data Analytics**

Capstone Project Presentation by Karan Jain- 210491



## **Objectives and Scope**

- Clean and prepare district data (2001–2012).
- Apply exponential smoothing to forecast 2013–2020 crime figures.
- Validate forecasts against cleaned 2013–2014 data.
- Compute PCA, means & standard deviations, trend slopes.

# **Data Preparation**

- Raw NCRB tables cleaned in Excel using Pivot Tables & Power Query.
- Exported for Python-based analysis.

| STATE/UT       | <b>▼</b> DISTRICT | ▼ YEAR ▼ | CrimeType                                           | Count 💌 |
|----------------|-------------------|----------|-----------------------------------------------------|---------|
| A & N ISLANDS  | ANDAMAN           | 2001     | MURDER                                              | 13      |
| A & N ISLANDS  | ANDAMAN           | 2001     | ATTEMPT TO MURDER                                   | 0       |
| A & N ISLANDS  | ANDAMAN           | 2001     | CULPABLE HOMICIDE NOT AMOUNTING TO MURDER           | 0       |
| A & N ISLANDS  | ANDAMAN           | 2001     | RAPE                                                | 3       |
| A & N ISLANDS  | ANDAMAN           | 2001     | KIDNAPPING & ABDUCTION                              | 2       |
| A & N ISLANDS  | ANDAMAN           | 2001     | DACOITY                                             | 0       |
| A & N ISLANDS  | ANDAMAN           | 2001     | ROBBERY                                             | 4       |
| A & N ISLANDS  | ANDAMAN           | 2001     | BURGLARY                                            | 62      |
| A & N ISLANDS  | ANDAMAN           | 2001     | THEFT                                               | 65      |
| A & N ISLANDS  | ANDAMAN           | 2001     | RIOTS                                               | 13      |
| A & N ISLANDS  | ANDAMAN           | 2001     | CRIMINAL BREACH OF TRUST                            | 10      |
| A & N ISLANDS  | ANDAMAN           | 2001     | CHEATING                                            | 8       |
| A & N ISLANDS  | ANDAMAN           | 2001     | COUNTERFIETING                                      | 2       |
| A & N ISLANDS  | ANDAMAN           | 2001     | ARSON                                               | 4       |
| A & N ISLANDS  | ANDAMAN           | 2001     | HURT/GREVIOUS HURT                                  | 113     |
| A & N ISLANDS  | ANDAMAN           | 2001     | DOWRY DEATHS                                        | 0       |
| A & N ISLANDS  | ANDAMAN           | 2001     | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 18      |
| A & N ISLANDS  | ANDAMAN           | 2001     | INSULT TO MODESTY OF WOMEN                          | 1       |
| A & N ISLANDS  | ANDAMAN           | 2001     | CRUELTY BY HUSBAND OR HIS RELATIVES                 | 9       |
| A & N ISLANDS  | ANDAMAN           | 2001     | IMPORTATION OF GIRLS FROM FOREIGN COUNTRIES         | 0       |
| A & N ISLANDS  | ANDAMAN           | 2001     | CAUSING DEATH BY NEGLIGENCE                         | 0       |
| A & N ISLANDS  | ANDAMAN           | 2001     | OTHER IPC CRIMES                                    | 310     |
| A & N ISLANDS  | ANDAMAN           | 2001     | TOTAL IPC CRIMES                                    | 637     |
| A & N ISLANDS  | NICOBAR           | 2001     | MURDER                                              | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | ATTEMPT TO MURDER                                   | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | CULPABLE HOMICIDE NOT AMOUNTING TO MURDER           | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | RAPE                                                | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | KIDNAPPING & ABDUCTION                              | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | DACOITY                                             | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | ROBBERY                                             | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | BURGLARY                                            | 2       |
| A & N ISLANDS  | NICOBAR           | 2001     | THEFT                                               | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | RIOTS                                               | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | CRIMINAL BREACH OF TRUST                            | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | CHEATING                                            | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | COUNTERFIETING                                      | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | ARSON                                               | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | HURT/GREVIOUS HURT                                  | 5       |
| A & N ISLANDS  | NICOBAR           | 2001     | DOWRY DEATHS                                        | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 1       |
| A & N ISLANDS  | NICOBAR           | 2001     | INSULT TO MODESTY OF WOMEN                          | 0       |
| A & N ISLANDS  | NICOBAR           | 2001     | CRUELTY BY HUSBAND OR HIS RELATIVES                 | 0       |
| A & N ISI ANDS | NICORAR           | 2001     | IMPORTATION OF GIRLS FROM FORFIGN COLINTRIES        | 0       |

## Methodology

- Exponential Smoothing (Holt-Winters without seasonality):
- Smoothing parameters  $\alpha$  (level) and  $\beta$  (trend) optimised via grid search.
- Implemented in Python using statsmodels library.

```
from statsmodels.tsa.holtwinters import ExponentialSmoothing
import warnings
warnings.filterwarnings("ignore")
# V Step 1: Load Excel File and NormalizedData sheet
file_path = "/kaggle/input/crime-data-district-wise/Crime_Data_District_Wise.xlsx"
sheet_name = "NormalizedData"
df = pd.read_excel(file_path, sheet_name=sheet_name)
# V Step 2: Clean Data
df = df[['DISTRICT', 'CrimeType', 'YEAR', 'Count']]
df = df.dropna()
df = df[df['YEAR'] <= 2012] # Use only historical data for forecasting</pre>
# 🗸 Step 3: Forecast Setup
forecast_years = list(range(2013, 2021)) # Forecasting for 2013-2020
forecast_data = []
# 

✓ Step 4: Forecasting loop per (District, CrimeType)
for (district, crime), group in df.groupby(['DISTRICT', 'CrimeType']):
    group = group.sort_values(by='YEAR')
   if group['Count'].sum() == 0 or len(group) < 3:</pre>
```

### Validation (2013-2014)

- Mean Absolute Percentage Error (MAPE) ≈ 8.7%.
- Over 85% of districts achieved MAPE below 10%.
- Larger errors in districts with low or volatile crime counts.

## **Forecasts for 2015–2020**



#### crime\_forecast\_2013\_2020-2

| DISTRICT          | CrimeType                                           | YEAR | Count |
|-------------------|-----------------------------------------------------|------|-------|
| 24 PARGANAS NORTH | ARSON                                               | 2013 | 32    |
| 24 PARGANAS NORTH | ARSON                                               | 2014 | 35    |
| 24 PARGANAS NORTH | ARSON                                               | 2015 | 38    |
| 24 PARGANAS NORTH | ARSON                                               | 2016 | 42    |
| 24 PARGANAS NORTH | ARSON                                               | 2017 | 45    |
| 24 PARGANAS NORTH | ARSON                                               | 2018 | 48    |
| 24 PARGANAS NORTH | ARSON                                               | 2019 | 51    |
| 24 PARGANAS NORTH | ARSON                                               | 2020 | 54    |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2013 | 217   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2014 | 230   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2015 | 242   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2016 | 255   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2017 | 267   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2018 | 280   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2019 | 292   |
| 24 PARGANAS NORTH | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY | 2020 | 305   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2013 | 217   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2014 | 234   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2015 | 252   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2016 | 269   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2017 | 286   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2018 | 303   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2019 | 320   |
| 24 PARGANAS NORTH | ATTEMPT TO MURDER                                   | 2020 | 338   |
| 24 PARGANAS NORTH | BURGLARY                                            | 2013 | 14    |
| 24 PARGANAS NORTH | BURGLARY                                            | 2014 | 12    |

# **PCA Insights**

- Reduced 20+ crime categories to 3 components (≈98% variance).
- PC1 (~86%): Overall crime volume.
- PC2 (~9%): Property vs. violent crime mix.
- PC3 (~3%): Niche crimes (arson, kidnapping).

#### pca\_loadings

| pod_oddings                                              |                      |                        |                       |  |  |
|----------------------------------------------------------|----------------------|------------------------|-----------------------|--|--|
|                                                          | PC1                  | PC2                    | PC3                   |  |  |
| ARSON_mean                                               | 0.18571516222233400  | -0.18547638622055000   | -0.410777305439517    |  |  |
| ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY_mean | 0.2313519784293790   | -0.02544856915434770   | -0.23074225546447100  |  |  |
| ATTEMPT TO MURDER_mean                                   | 0.22570591166612700  | -0.1684323570778130    | 0.08300679283606130   |  |  |
| BURGLARY_mean                                            | 0.2257822934567350   | 0.3079784296044050     | -0.0582745221925344   |  |  |
| CAUSING DEATH BY NEGLIGENCE_mean                         | 0.21370528071424300  | -0.01894684827030150   | -0.21622979337072800  |  |  |
| CHEATING_mean                                            | 0.21627193240959000  | 0.26682348995553200    | 0.04796171386672040   |  |  |
| COUNTERFIETING_mean                                      | 0.18581579922593100  | 0.3313506693015190     | 0.0960099724079664    |  |  |
| CRIMINAL BREACH OF TRUST_mean                            | 0.22074208508627000  | 0.17281635277429800    | 0.19581327713557600   |  |  |
| CRUELTY BY HUSBAND OR HIS RELATIVES_mean                 | 0.20320856800372400  | -0.1913375868977720    | -0.055433428632862100 |  |  |
| CULPABLE HOMICIDE NOT AMOUNTING TO MURDER_mean           | 0.17865103863568900  | -0.3126729814980510    | 0.31608836295399000   |  |  |
| DACOITY_mean                                             | 0.1921862874497860   | -0.1475212701381140    | 0.11364866188725900   |  |  |
| DOWRY DEATHS_mean                                        | 0.20951940975117700  | -0.27763478741897400   | 0.21452368050579700   |  |  |
| HURT/GREVIOUS HURT_mean                                  | 0.2173790646328030   | 0.020343284363593100   | -0.3402283055546490   |  |  |
| IMPORTATION OF GIRLS FROM FOREIGN COUNTRIES_mean         | 0.042705248465692400 | -0.2536376614704450    | 0.3392612297279820    |  |  |
| INSULT TO MODESTY OF WOMEN_mean                          | 0.17092750347995000  | 0.11472312570742500    | -0.239314667372666    |  |  |
| KIDNAPPING & ABDUCTION_mean                              | 0.21977424381388300  | -0.05610171793873900   | 0.25715280160579800   |  |  |
| MURDER_mean                                              | 0.24264456833791400  | -0.1659347725321430    | 0.09529681408275390   |  |  |
| OTHER IPC CRIMES_mean                                    | 0.23065202553847400  | -0.0031362076265708100 | -0.11610298564531900  |  |  |
| RAPE_mean                                                | 0.23248263394977200  | -0.12889957896451300   | -0.024341078548382400 |  |  |
| RIOTS_mean                                               | 0.18188591581749900  | -0.26366662342371200   | -0.1971359370889010   |  |  |
| ROBBERY_mean                                             | 0.20757697042254100  | 0.2602581484420660     | 0.18269122823679700   |  |  |
| THEFT_mean                                               | 0.21352877499081800  | 0.3538630746950490     | 0.2387196560947800    |  |  |
| TOTAL IPC CRIMES_mean                                    | 0.2565909742112370   | 0.09804418552188720    | -0.05063845547833780  |  |  |

## **Trend Slope**

- Calculated per district for 2001–2012 using least-squares regression.
- Represents average annual increase or decrease in crime incidents.
- Helps identify rising, stable, or improving districts.

#### crime\_trends

| DISTRICT Trend_Slope |                    |  |  |  |
|----------------------|--------------------|--|--|--|
| THRISSUR RURAL       | 2969.7             |  |  |  |
| CHENNAISUBURBAN      | 2606.5000000000000 |  |  |  |
| SILIGURI_PC          | 2152.000000000000  |  |  |  |
| TOTAL                | 2132.301555012380  |  |  |  |
| OUTER                | 1534.1428571428600 |  |  |  |
| CHENGAI              | 1476.7             |  |  |  |
| TRIVANDRUM           | 1322.0000000000000 |  |  |  |
| KOLKATA              | 1286.5054945054900 |  |  |  |
| ERNAKULAM COMMR.     | 1220.1223776223800 |  |  |  |
| ERNAKULAM RURAL      | 1191.1608391608400 |  |  |  |
| SOUTH-EAST           | 1183.785714285710  |  |  |  |
| MURSHIDABAD          | 1065.3252747252700 |  |  |  |
| 24 PARGANAS SOUTH    | 989.5659340659340  |  |  |  |
| SURAT COMMR.         | 988.8516483516480  |  |  |  |
| KOLLAM COMMR.        | 958.7000000000000  |  |  |  |
| CYBERABAD            | 892.286713286713   |  |  |  |
| MALAPPURAM           | 870.123076923077   |  |  |  |
| NORTH-EAST           | 860.430303030303   |  |  |  |
| ERNAKULAM            | 830.0000000000000  |  |  |  |
| JAIPUR WEST          | 810.6              |  |  |  |
| MUMBAI               | 810.5              |  |  |  |
| NADIA                | 808.3472527472530  |  |  |  |
| MUMBAI COMMR.        | 785.0333333333340  |  |  |  |
| 24 PARGANAS NORTH    | 772.9120879120880  |  |  |  |
| CHENNAI              | 710.2175824175820  |  |  |  |
| PATNA                | 707.9340659340660  |  |  |  |

### **District Wise Statistics**

| DISTRICT          | ARSON_mean         | ARSON_std          | ASSAULT ON WOMEN WITH INTENT TO OUTRAGE HER MODESTY_mean | ASSAULT ON WOR |
|-------------------|--------------------|--------------------|----------------------------------------------------------|----------------|
| 24 PARGANAS NORTH | 13.0               | 13.638181696985900 | 171.23076923076900                                       |                |
| 24 PARGANAS SOUTH | 11.538461538461500 | 6.552548926631330  | 126.92307692307700                                       |                |
| ADILABAD          | 33.0               | 6.883648406522180  | 159.0                                                    |                |
| AGAR              | 12.0               | 0.0                | 48.5                                                     |                |
| AGRA              | 9.714285714285710  | 4.427685129319340  | 128.42857142857100                                       |                |
| AHMEDABAD COMMR.  | 7.923076923076920  | 6.70151150191182   | 76.92307692307690                                        |                |
| AHMEDABAD RURAL   | 14.5               | 17.403580533459600 | 22.642857142857100                                       |                |
| AHMEDNAGAR        | 43.07142857142860  | 7.518840803805270  | 127.85714285714300                                       |                |
| AHWA-DANG         | 1.3846153846153800 | 1.192927878405450  | 2.769230769230770                                        |                |
| AIZAWL            | 10.5               | 6.83599072781475   | 32.642857142857100                                       |                |
| AJMER             | 15.928571428571400 | 8.042811273852770  | 97.85714285714290                                        |                |
| AKOLA             | 34.714285714285700 | 6.329765719671940  | 109.14285714285700                                       |                |
| ALAPUZHA          | 21.0               | 7.942098153317110  | 194.57142857142900                                       |                |
| ALIGARH           | 30.5               | 21.306373188826400 | 114.35714285714300                                       |                |
| ALIRAJPUR         | 11.0               | 1.6329931618554500 | 23.571428571428600                                       |                |
| ALLAHABAD         | 13.928571428571400 | 11.67814715094480  | 84.92857142857140                                        |                |
| ALMORA            | 2.2857142857142900 | 2.0164161440372500 | 4.857142857142860                                        |                |
| ALWAR             | 27.285714285714300 | 10.64409241301030  | 144.5                                                    |                |
| AMBALA            | 7.636363636363640  | 2.3354968324845700 | 21.363636363636400                                       |                |
| AMBALA RURAL      | 3.5                | 0.7071067811865480 | 22.0                                                     |                |
| AMBALA URBAN      | 5.5                | 0.7071067811865480 | 35.5                                                     |                |
| AMBEDKAR NAGAR    | 4.0                | 4.69041575982343   | 14.642857142857100                                       |                |
| AMETHI            | 7.0                | 9.899494936611670  | 80.5                                                     |                |
| AMRAVATI COMMR.   | 13.142857142857100 | 4.521013209399020  | 51.142857142857100                                       |                |
| AMRAVATI RURAL    | 60.92857142857140  | 16.438530187497700 | 164.07142857142900                                       |                |
| AMRELI            | 9.142857142857140  | 5.332875438219090  | 22.071428571428600                                       |                |
| AMRITSAR          | 3.3                | 2.5407785333546000 | 12.9                                                     |                |

| NTENT TO OUTRAGE HER MODESTY_std | ATTEMPT TO MURDER_mean | ATTEMPT TO MURDER_std | BURGLARY_mean      | BURGLARY_std       | CAUSING DEAT |
|----------------------------------|------------------------|-----------------------|--------------------|--------------------|--------------|
| 63.479857495841200               | 118.61538461538500     | 94.15903077731350     | 30.615384615384600 | 20.365569234774900 |              |
| 50.928809035197300               | 15.76923076923080      | 33.374525829724900    | 53.07692307692310  | 75.65542670386300  |              |
| 38.99112325014110                | 72.85714285714290      | 16.209480335509000    | 220.35714285714300 | 33.48388163983280  |              |
| 10.606601717798200               | 24.0                   | 9.899494936611670     | 43.5               | 14.849242404917500 |              |
| 65.46721350382990                | 151.07142857142900     | 29.155984438386400    | 266.5              | 91.14548809458420  |              |
| 35.46468087750950                | 65.07692307692310      | 24.841033051725600    | 774.3076923076920  | 97.81648175314890  |              |
| 6.957089829885690                | 20.714285714285700     | 14.274391116900300    | 104.92857142857100 | 21.225761871673000 |              |
| 62.76801873425810                | 68.57142857142860      | 22.527638702147800    | 454.2142857142860  | 110.75973898587800 |              |
| 2.27866357593825                 | 1.0769230769230800     | 0.8623164985025760    | 4.615384615384620  | 2.754948926884780  |              |
| 12.707400284008600               | 10.571428571428600     | 5.214097542893990     | 197.28571428571400 | 58.03371509658920  |              |
| 36.6728932442083                 | 53.642857142857100     | 13.669770933071200    | 291.92857142857100 | 97.91869805390300  |              |
| 44.02421910871180                | 48.07142857142860      | 12.356650565052500    | 266.14285714285700 | 47.571577071345300 |              |
| 50.28949161637020                | 28.857142857142900     | 7.862835100914670     | 196.92857142857100 | 31.059407804831300 |              |
| 93.62495323433740                | 199.14285714285700     | 39.99587890858670     | 178.0              | 72.97523289023900  |              |
| 8.202786982831770                | 37.0                   | 10.98483803552270     | 36.714285714285700 | 10.656989658033300 |              |
| 81.19157239868820                | 121.07142857142900     | 40.53766394110790     | 257.0              | 67.30641757034650  |              |
| 1.4064216928154900               | 6.571428571428570      | 4.1826433620983600    | 16.571428571428600 | 7.408044335661130  |              |
| 55.844220140287800               | 80.28571428571430      | 22.331173696904500    | 222.5              | 46.28797817011370  |              |
| 5.536654716933810                | 19.90909090909090      | 8.166450213581730     | 269.0              | 61.72195719515060  |              |
| 14.142135623731000               | 10.0                   | 7.0710678118654800    | 105.0              | 18.384776310850200 |              |
| 17.67766952966370                | 15.5                   | 0.7071067811865480    | 378.0              | 22.627416997969500 |              |
| 6.934940994226740                | 32.42857142857140      | 10.248559266207500    | 39.5               | 20.19043947401460  |              |
| 3.5355339059327400               | 55.5                   | 7.7781745930520200    | 56.0               | 7.0710678118654800 |              |
| 28.530300068138500               | 29.714285714285700     | 9.611119933370220     | 232.92857142857100 | 35.60783035257250  |              |
| 89.72561960324830                | 38.142857142857100     | 12.859340471526400    | 268.0              | 58.301603091826900 |              |

# **Key Findings**

- Simple exponential smoothing delivers reliable forecasts.
- Forecasts enable proactive resource allocation.
- PCA and trend slopes offer strategic insights.

### References

- 1. NCRB. Crime in India Reports (2001–2012).
- 2. Jolliffe, I. T. (2002). Principal Component Analysis.
- 3. Hotelling, H. (1933). Analysis of a Complex of Statistical Variables.
- 4. Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and Applications.

### **Thank You**

Special thanks to my supervisor Prof. Deepu Philip for their guidance and support throughout this project.