Problem Set 11 - Solutions

In
$$f(0) = \frac{1}{k} \sum_{q=0}^{\infty} (2q+1) \operatorname{Im}(e^{i\delta q}) \sin(\delta q) P_{q}(\cos q)$$

$$= \frac{1}{k} \sum_{q=0}^{\infty} (2q+1) \sin^{2}(\delta q) P_{q}(\cos q)$$
Now we use the

fact that $P_{q}(1) = 1 \ \forall \ q$

$$= \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \sin^2(\delta_{l})$$

$$=\frac{k}{4\pi}G_{TOT}$$

$$S_0 = 32.5 \cdot \frac{2\pi}{360} = 0.567$$

$$S_1 = 8.6 \cdot \frac{2\pi}{360} \approx 0.150$$

$$S_2 = 0.4 \cdot \frac{2\pi}{360} \approx 0.06698$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{K^2} \left[e^{i\delta_0} \sin \delta_0 + 3e^{i\delta_1} \sin \delta_1^{V} + 5e^{i\delta_2} \sin \delta_2 \left(\frac{1}{2} \right) \left(3 \cdot \cos^2 \theta - 1 \right) \right]^2$$

$$\delta_{\text{Tor}} \approx 186 \text{ mb} = 0.186 \text{ mb}$$

$$= (1.86 \times 10^{-29})^{2}$$

This is reasonable since

I barn is approximately the

cross-sectional area of & Vranium,

b) Reversing all phases does nothing since
$$\frac{d\sigma}{d\Omega} = |f(\theta_{rev})|^2 \quad \text{and} \quad f(\theta_{rev}) = -f(\theta)^*$$

$$= 10^{10} \cdot 2 \cdot 10^{21} \cdot \left(1.86 \times 10^{-29} \cdot \frac{5}{100^{2}} \cdot \frac{100^{12} \cdot n^{2}}{1 m^{2}}\right)$$

Senttered in the
$$=\frac{\# \text{ in beam}}{\text{cm}^2 \cdot 5}$$
 (beam coss-section). $\frac{\# \text{ nuclei}}{\text{cm}^2}$. $\frac{d\sigma}{d\Omega}\Big|_{\Theta = \frac{\pi}{2}} \cdot 2 \times 10^{-5}$

$$= \frac{31}{11.3 \times 10.2 \times 10^{-5}}$$

$$= \frac{44 \times 10^{-5}}{10.3 \times 10^{-5}} = \frac{4.4 \times 10^{-4}}{10.3 \times 10^{-5}} = \frac{4.4 \times 10^{-4}}{10.3 \times 10^{-5}} = \frac{4.4 \times 10^{-5}}{10.3 \times 10^{-5}} = \frac{4.4 \times 10^{-5$$

$$S_{2} = \sin^{2} \left[\frac{(i + k)^{2}}{\sqrt{(2l+1)} l!} \right]$$

a)
$$G_{ToT} = \frac{4\pi}{k^2} \sum_{k=0}^{\infty} (2k+1) \sin^2 \left(\sin^2 \left(\frac{(iak)^2}{\sqrt{k^2 k^2 k^2}} \right) \right)$$

$$= \frac{4\pi}{k^2} \sum_{k=0}^{\infty} (2k\pi) \cdot \frac{(iak)^2}{2k\pi(-2!)}$$

$$= \frac{4\pi}{k^{2}} \sum_{k=0}^{\infty} \frac{(-a^{2}k^{2})}{2!} = \frac{4\pi}{k^{2}} e^{-a^{2}k^{2}}$$

$$\emptyset$$
 $k = \sqrt{\frac{2mE}{t_1}} \Rightarrow k^2 = \frac{2mE}{t_1^2}$

$$\Rightarrow \quad \delta_{rot} = \frac{4\pi t^2}{2mE} \quad e \quad -a^2 \cdot \frac{2mE}{t^2} \quad = \quad \frac{2\pi t^2}{mE} \quad e$$

$$\frac{2\pi t^2}{mE} e^{-\frac{2mEa^2}{t^2}}$$

$$G_{S-blave} = \frac{4\pi}{k^2} \cdot 1 \cdot 1 = \frac{2\pi k^2}{mE}$$

This gives a good estimate when

$$\frac{2mEa^2}{t^2} \ll 1$$

$$E \ll \frac{t^2}{2ma^2}$$

So it gives a good estimate for low-energy scattering. This makes sense intuitively, because at low energies the particle does not have every to overcome the certainpetal barrier that exists for 20.

4. (Ohanian 9)

Should be 2.55

$$\frac{d\sigma}{d\Omega} = \frac{1}{k^2} \left(0.86 + 2.77 \cos^2 \theta \right)$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{k^2} \left(\sum_{k=0}^{\infty} (2k\pi)^{\frac{1}{2}} e^{2k\pi} \int_{0}^{\infty} \left(2k\pi \right) e^{2k\pi} \left(\sum_{k=0}^{\infty} (2k\pi)^{\frac{1}{2}} e^{2k\pi} \right) \left(\sum_{k=0}^{\infty} (2k\pi)^{\frac{1}{$$

Since the highest power appearing in the experimental data is $\cos^2\theta$ this implies that $S_2=0$ for 2>1. This is because

Pg (cost) contains a cost term for 2>1

Which would give cos of terms when squared.

and cos of

which would give
$$\frac{\cos^2\theta}{and\cos^4\theta}$$
 $\frac{-i\delta_0}{i\delta_0}$ $\frac{-i\delta_0}{\cos^2\theta}$ $\frac{-i\delta_0}{\sin^2(\delta_0)}$ $\frac{-i\delta_0}{\sin^2(\delta_0)}$ $\frac{-i\delta_0}{\sin^2(\delta_0)}$ $\frac{-i\delta_0}{\sin^2(\delta_0)}$ $\frac{-i\delta_0}{\cos^2\theta}$ $\frac{-i\delta_0}{\sin^2(\delta_0)}$ $\frac{-i\delta_0}{\cos^2\theta}$

$$=\frac{1}{k^2}\left[\sin^2(\delta_0)+6\right]\sin(\delta_1)\sin(\delta_0)\cos(\delta_1-\delta_0)\cos^2(\delta_1)\cos^2(\delta_$$

Check:
$$0.86 = \sin^2(8a)$$
 \Rightarrow $\begin{cases} 1.1873 & \text{or } \pi \cdot 1.1873 \\ 0.1873 & \text{or } \pi \cdot 1.1873 \end{cases}$ or $2\pi - 1.1873$

$$2.77 = 9 \sin^2(S_1) \implies S_1 = 0.59 = \pi - 0.59 = \pi - 0.59$$

$$2\pi - 0.59$$

Now need to check the middle value,

the middle value,
$$6 \sin(\delta_1) \sin(\delta_0) \cos(\delta_1 - \delta_0) = 3.07 2.55 \Rightarrow \delta_0 = 1.19 \in R=1$$

$$\nabla = 2\pi \cdot \int_{0}^{\pi} d\theta \sin \theta \frac{d\Omega}{d\theta}$$

$$= 2\pi \cdot \int_{0}^{\pi} d\theta \sin \theta \left(0.86 - 2.55 \cos \theta + 2.77 \cos^{2}\theta\right)$$

$$= \frac{22.41}{k^{2}}$$