APPUNTI DI ANALISI 3

MANUEL DEODATO

Indice

1 Teoria della misura			
	1.1	Introduzione	
	1.2	Misura esterna	4
	1.3	Misurahilità	

1 Teoria della misura

1.1 Introduzione

L'obiettivo è arrivare a costruire una funzione che permetta di misurare i sottoinsiemi di \mathbb{R}^d , o quantomeno la maggior parte, e una conseguente teoria dell'integrazione che abbia un buon comportamento rispetto al passaggio al limite.

Per ottenere il volume di generici sottoinsiemi di \mathbb{R}^d è opportuno partire da oggetti la cui geometria sia nota e *rivestire* tali sottoinsiemi con questi oggetti in modo tale da approssimarne arbitrariamente bene la misura. A questo scopo, si definisce il seguente oggetto fondamentale.

Definizione 1.1 (Plurintervallo). Si definisce plurintervallo un sottoinsieme di $I \subseteq \mathbb{R}^d$ tale per cui esistono degli intervalli $I_k \subseteq \mathbb{R}$ tali che

$$I = \prod_{k=1}^d I_k$$

dove il prodotto è il prodotto cartesiano. In altri termini, un plurintervallo I è della forma

$$I = \prod_{k=1}^d (a_k, b_k)$$

 $\mathrm{con} \ -\infty < a_k < b_k < +\infty, \ \forall k.$

Osservazione 1.1. Fondamentalmente, un plurintervallo è un rettangolo per d=2, un parallelepipedo per d=3, eccetera.

La geometria di questi oggetti è nota perché la loro misura¹ è nota ed è data da:

$$|I| = \prod_{k=1}^d (b_k - a_k) = \prod_{k=1}^d |I_k|$$

 $[\]overline{^{1}\text{Cioè}}$ il loro volume per d=3, la loro area per d=2, eccetera.

1.2 Misura esterna

Per definire una misura, si parte col definire una misura esterna, cioè una funzione $\mu^*:\mathcal{P}(\mathbb{R}^d)\to [0,+\infty]$ tale che

- (a). $\mu^*(\emptyset) = 0;$
- (b). se $A \subseteq B \subseteq \mathbb{R}^d$, allora $\mu^*(A) \le \mu^*(B)$;
- (c). data $\{E_i\}_{i=1}^{+\infty}$ famiglia numerabile di insiemi, vale

$$\mu^*\left(\bigcup_{i=1}^{+\infty}E_i\right)\leq \sum_{i=1}^{+\infty}\mu^*(E_i)$$

Inoltre, si richiede che se $I \subseteq \mathbb{R}^d$ è un plurintervallo, allora $\mu^*(I) = |I|$. Si dà, allora, la seguente definizione e se ne verificano le proprietà.

Definizione 1.2 (Misura esterna di Lebesgue). Sia $E \subseteq \mathbb{R}^d$ e sia S un suo ricoprimento, tale che

$$E\subseteq \bigcup_{k=1}^{+\infty}I_k$$

con $I_k \subseteq \mathbb{R}^d$ plurintervalli. Sia, inoltre

$$\sigma(S) = \sum_{k=1}^{+\infty} |I_k|$$

il volume totale 1 del ricoprimento; allora si definisce la $\it misura~esterna$ di $\it E$ come:

$$\mu^*(E) := \inf_S \sigma$$

Ai fini della teoria, si assume che la frontiera degli insiemi sia a misura nulla, cioè si dice che due plurintervalli $I_k,I_j\subseteq\mathbb{R}^d$ non sono sovrapposti se

$$\mathring{I}_k \cap \mathring{I}_i = \emptyset$$
, per $k \neq j$

Teorema 1.1. Sia $I \subseteq \mathbb{R}^d$ un plurintervallo; allora $\mu^*(I) = |I|$.

¹Cioè si conta anche il volume condiviso tra più plurintervalli.

Dimostrazione. Evidentemente I è il più piccolo ricoprimento di se stesso che, quindi, minimizza $\sigma(S)$, pertanto, per definizione, si ha $\mu^*(I) = |I|$. \square

Teorema 1.2. Siano $A, B \subseteq \mathbb{R}^d$ tali che $A \subseteq B$; allora $\mu^*(A) \leq \mu^*(B)$.

Dimostrazione. Applicando direttamente la definizione, si nota che:

$$\mu^*(A) = \inf_{S_A} \sigma(S_A) \leq \inf_{S_B} \sigma(S_B) = \mu^*(B)$$

visto che ogni ricoprimento S_B di B ricopre anche A.

Corollario 1.2.1. Siano $E \subseteq E' \subseteq \mathbb{R}^d$, con $\mu^*(E') = 0$; $\mu^*(E) = 0$.

Teorema 1.3. Sia $E \subseteq \mathbb{R}^d$; allora $\forall \varepsilon > 0$, $\exists G \subseteq \mathbb{R}^d$ aperto tale che $E \subset G$ e $\mu^*(G) < \mu^*(E) + \varepsilon$.

Dimostrazione. Sia $\left\{I_k\right\}_{k=1}^{+\infty}$ una famiglia numerabile di plurintervalli chiusi di \mathbb{R}^d tali che

$$E \subset \bigcup_{k=1}^{+\infty} I_k \qquad \quad \sum_{k=1}^{+\infty} |I_k| \leq \mu^*(E) + \varepsilon$$

Allora si costruiscono dei nuovi intervalli I_k^* tali che $I_k \subset \mathring{I}_k^*$ e $|I_k^*| \leq |I_k| + \varepsilon/2^k$; allora il relativo insieme G aperto è dato da

$$G = \bigcup_{k=1}^{+\infty} \mathring{I}_k^*$$

Infatti

$$\mu^*(G) = \sum_{k=1}^{+\infty} |I_k^*| \le \sum_{k=1}^{+\infty} \left(|I_k| + \frac{\varepsilon}{2^k} \right) \le \mu^*(E) + \varepsilon$$

Osservazione 1.2. Relativamente al teorema precedente, si notano due cose: intanto fa uso della topologia di \mathbb{R}^d e poi afferma che un generico insieme $E \subseteq \mathbb{R}^d$ è approssimabile arbitrariamente bene tramite un aperto G.

Teorema 1.4. Sia $E \subseteq \mathbb{R}^d$; allora $\exists H = \bigcap_{j=1}^{+\infty} G_j$, con G_j aperti, tale che $E \subset H$ e $\mu^*(E) = \mu^*(H)$.

Dimostrazione. Dalla definizione di misura esterna di E, si sa che

$$\mu^*(E) = \inf \{ \mu^*(F) \mid F \text{ aperto e } E \subseteq F \}$$

Di conseguenza, per definizione di estremo inferiore, devono esistere degli aperti $G_n\supseteq E$ tali per cui

$$\mu^*(G_n) < \mu^*(E) + \frac{1}{n}$$

con $n \in \mathbb{N}$. Allora si vede che, preso

$$H = \bigcap_{n=1}^{+\infty} G_n$$

si ha $E\subset H$ perché ogni G_n contiene E, quindi $\mu^*(H)\geq \mu^*(E),$ ma, allo stesso tempo

$$\mu^*(H) \le \mu^*(E) + \frac{1}{n}, \ \forall n$$

quindi, passando al limite per $n \to +\infty$, si rimane con la disuguaglianza

$$\mu^*(E) \leq \mu^*(H) \leq \mu^*(E)$$

da cui
$$\mu^*(H) = \mu^*(E)$$
.

Gli insiemi che sono intersezione numerabile di aperti sono detti G_{δ} , mentre quelli che sono unione numerabile di chiusi sono detti F_{σ} ; in questo caso, l'H del teorema è un G_{δ} .

Teorema 1.5. Se $\{E_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^d$, allora

$$\mu^*\left(\bigcup_{n=1}^{+\infty}E_n\right)\leq \sum_{n=1}^{+\infty}\mu^*(E_n)$$

 $\label{eq:linear_problem} \begin{array}{l} \textit{Dimostrazione}. \text{ Se la somma diverge, la tesi è verificata, quindi si assume} \\ \text{che } \sum_n \mu^*(E_n) < +\infty. \text{ Visto che } \mu^*(E_n) \text{ è definita come l'estremo inferiore} \\ \text{sulla somma delle misure dei plurintervalli di un ricoprimento, } \forall \varepsilon > 0 \text{ si può} \end{array}$

trovare un ricoprimento $\left\{Q_{n,k}\right\}_{k\in\mathbb{N}}$ di E_n tale che

$$\sum_{k=1}^{+\infty} |Q_{n,k}| \le \mu^*(E_n) + \frac{\varepsilon}{2^n}$$

Visto che l'unione di questi ricoprimenti al variare di n forma un ricoprimento anche di $\bigcup_{n\in\mathbb{N}} E_n$, allora

$$\mu^*\left(\bigcup_{n=1}^{+\infty}E_n\right)\leq \sum_{n=1}^{+\infty}\sum_{k=1}^{+\infty}|Q_{n,k}|\leq \sum_{n=1}^{+\infty}\left(\mu^*(E_n)+\frac{\varepsilon}{2^n}\right)=\sum_{n=1}^{+\infty}\mu^*(E_n)+\varepsilon$$

Per l'arbitrarietà di ε , si ha la tesi.

Lemma 1.5.1. Siano $E_1, E_2 \subseteq \mathbb{R}^d$ tali che $d(E_1, E_2) > 0,$ con

$$d(E_1,E_2) = \inf_{\substack{x \in E_1 \\ y \in E_2}} d(x,y)$$

Allora $\mu^*(E_1 \cup E_2) = \mu^*(E_1) + \mu^*(E_2).$

 $\begin{array}{ll} \textit{Dimostrazione.} \text{ Per la proprietà di sub-additività della misura esterna, la disuguaglianza } \mu^*(E_1 \cup E_2) \leq \mu^*(E_1) + \mu^*(E_2)$ è già verificata, quindi si verifica la disuguaglianza inversa. Sia $\delta = d(E_1, E_2)$ e sia $\left\{Q_k\right\}_{k \in \mathbb{N}}$ una famiglia di plurintervalli di \mathbb{R}^d che ricopre $E_1 \cup E_2$, con

$$\sum_{k=1}^{+\infty} \lvert Q_k \rvert \leq \mu^*(E_1 \cup E_2) + \varepsilon$$

Si può spezzare ciascun plurintervallo Q_k in sotto-plurintervalli $Q_{k,n}$ di diametro $\delta/2$. La loro unione ricostruire ciascun Q_k e, quindi, ricopre $E_1 \cup E_2$:

$$Q_k = \bigcup_n Q_{k,n} \qquad E_1 \cup E_2 \subset \bigcup_{k=1}^{+\infty} Q_k = \bigcup_{k=1}^{+\infty} \bigcup_n Q_{k,n}$$

Si indica questo nuovo ricoprimento con $\left\{Q_k'\right\}_{k\in\mathbb{N}}$ e soddisfa

$$\sum_{k=1}^{+\infty} \lvert Q_k' \rvert = \sum_{k=1}^{+\infty} \lvert Q_k \rvert \leq \mu^*(E_1 \cup E_2) + \varepsilon$$

con il vantaggio che ogni Q'_k è spesso $\delta/2$. Questo significa che la somma $\sum |Q'_k|$ si può spezzare nel volume che contiene punti di E_1 e nel volume che contiene punti di E_2 ; chiaramente non ci potrà essere alcun Q'_k che contenga punti di entrambi per la condizione sullo spessore. Così facendo, si nota che:

$$\sum_{k=1}^{+\infty} |Q_k'| = \sum_{i: Q_i' \cap E_1 \neq \emptyset} |Q_i'| + \sum_{i: Q_i' \cap E_2 \neq \emptyset} |Q_i'| \geq \mu^*(E_1) + \mu^*(E_2)$$

Unendo le disuguaglianze, si trova che

$$\mu^*(E_1) + \mu^*(E_2) \le \mu^*(E_1 \cup E_2) + \varepsilon$$

Visto che ε è arbitrario, allora si ottiene che $\mu^*(E_1) + \mu^*(E_2) \leq \mu^*(E_1 \cup E_2)$ che, insieme alla disuguaglianza opposta trovata prima, permette di concludere l'uguaglianza e, quindi, la tesi.

1.3 Misurabilità

La misura esterna è definita su tutti i possibili sottoinsiemi di \mathbb{R}^d , cioè $\mu^*: \mathcal{P}(\mathbb{R}^d) \to [0, +\infty]$; adesso si introduce il concetto di misurabilità e la nuova funzione misura sarà definita sulla classe degli insiemi misurabili di \mathbb{R}^d .

Definizione 1.3 (Insieme misurabile). Sia $E \subseteq \mathbb{R}^d$; si dice che E è misurabile se $\forall \varepsilon > 0$, si trova un $G \subseteq \mathbb{R}^d$ aperto, con $E \subset G$, tale che $\mu^*(G \setminus E) < \varepsilon$.

Per definizione, se $E\subseteq \mathbb{R}^d$ è misurabile, allora la sua misura è definita da:

$$\mu(E) := \mu^*(E)$$

dove $\mu: \mathscr{L} \to [0, +\infty]$ è definita sulla classe degli insiemi misurabili secondo Lebesgue, indicata con $\mathscr{L} \subseteq \mathscr{P}(\mathbb{R}^d)$. Da questa definizione, discendono le seguenti proprietà.

Proposizione 1.1. Se $A \subseteq \mathbb{R}^d$ è un aperto, allora A è misurabile.

Dimostrazione. Per definizione diretta di misurabilità, si può prendere proprio A come aperto, per cui $\mu^*(A \setminus A) = \mu^*(\emptyset) = 0 < \varepsilon, \ \forall \varepsilon > 0.$

Proposizione 1.2. Se $E \subseteq \mathbb{R}^d$ tale che $\mu^*(E) = 0$, allora E è misurabile.

Dimostrazione. Per il teorema 1.3, $\forall \varepsilon > 0$, si può prendere un aperto $G \supseteq E$ tale che $\mu^*(G) \le \mu^*(E) + \varepsilon = \varepsilon$, quindi $\mu^*(G \setminus E) \le \mu^*(G) < \varepsilon$, quindi E è misurabile.

Si nota che la proprietà di misurabilità di insieme è nettamente più forte del teorema 1.3; infatti, se $E\subseteq \mathbb{R}^d$ e $G\supset E$ è un aperto tale che $\mu^*(G)<\mu^*(E)+\varepsilon$, allora si nota che

$$G = E \cup (G \setminus E) \implies \mu^*(G) \le \mu^*(E) + \mu^*(G \setminus E)$$

cioè non è possibile dedurre che $\mu^*(G \setminus E) < \varepsilon$ dal fatto che $\mu^*(G) < \mu^*(E) + \varepsilon$.

Lemma 1.5.2. Siano $\{I_k\}_{k=1}^{+\infty}$ dei plurintervalli di \mathbb{R}^d tali che $\mathring{I}_k \cap \mathring{I}_j = 0, \ k \neq j;$ allora $\bigcup_k I_k$ è misurabile e

$$\left| \bigcup_{k=1}^{+\infty} I_k \right| = \sum_{k=1}^{+\infty} |I_k|$$

Teorema 1.6. La classe degli insiemi misurabili $\mathcal{L} \subset \mathbb{R}^d$ è una σ -algebra.

Teorema 1.7. Se $\{E_k\}_{k=1}^{+\infty}\subseteq\mathbb{R}^d$ è una famiglia di insiemi misurabili, allora $\bigcup_k E_k$ è misurabile.

 $\begin{array}{l} \textit{Dimostrazione}. \text{ Per definizione, } E_k \text{ misurabile implica l'esistenza di un aperto } G_k \text{ tale che } \mu^*(G_k \smallsetminus E_k) < \varepsilon/2^k. \text{ Allora, prendendo } G = \bigcup_k G_k, \text{ si trova} \end{array}$

che

$$\mu^* \left(\bigcup_{k=1}^{+\infty} G_k \setminus \bigcup_{k=1}^{+\infty} E_k \right) \leq \mu^* \left(\bigcup_{k=1}^{+\infty} G_k \setminus E_k \right) \leq \sum_{k=1}^{+\infty} \mu^* (G_k \setminus E_k)$$
$$< \sum_{k=1}^{+\infty} \frac{\varepsilon}{2^k} = \varepsilon$$

Teorema 1.8. Se $F \subseteq \mathbb{R}^d$ è chiuso, allora è misurabile.

Dimostrazione. Per il teorema 1.3, fissato $\varepsilon > 0$, si trova un aperto $G \supset F$ tale che $\mu^*(G) < \mu^*(F) + \varepsilon$. Si considera preliminarmente il caso in cui F è compatto. Visto che G è un aperto contenente F, che è chiuso, $G \setminus F$ è aperto e si può scrivere in termini di un ricoprimento disgiunto $\{I_k\}_{k=1}^{+\infty}$:

$$G \smallsetminus F = \bigcup_{k=1}^{+\infty} I_k \implies \mu^*(G \smallsetminus F) \leq \sum_{k=1}^{+\infty} \mu^*(I_k)$$

Allora si nota che:

$$G = F \cup \left(\bigcup_{k=1}^{+\infty} I_k\right) \supseteq F \cup \left(\bigcup_{k=1}^{N} I_k\right)$$

quindi, usando il fatto che F e $\bigcup_k I_k$ sono disgiunti, si trova che:

$$\mu^*(G) \geq \mu^*\left(F \cup \left(\bigcup_{k=1}^N I_k\right)\right) = \mu^*(F) + \mu^*\left(\bigcup_{k=1}^N I_k\right) = \mu^*(F) + \sum_{k=1}^N \mu^*(I_k)$$

Ora, usando il fatto che $\mu^*(G)<\mu^*(F)+\varepsilon,$ si trova che:

$$\sum_{k=1}^N \mu^*(I_k) \leq \mu^*(G) - \mu^*(F) < \varepsilon \implies \mu^*(G \smallsetminus F) < \varepsilon$$

Se F non fosse compatto, invece, si potrebbe scrivere

$$F = \bigcup_{k=1}^{+\infty} F_k := \bigcup_{k=1}^{+\infty} \left(F \cap \overline{B}(0,k) \right)$$

Teorema 1.9.	Se I è un plurintervallo chiuso, si ha $\mu(\partial I)=0.$	
Dimostrazione	Da scrivere	Г