메타버스융합대학원 중앙대학교

MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization

Hyung Kyu Kim, Sangmin Lee, Hak Gu Kim

INTRODUCTION

- Speech-driven 3D Facial Animation
 - · Animating 3D facial motion from speech using a template mesh.
- Personalization Issue in Speech-driven 3D Facial Animation
 - Personalization is a challenging in this task [1].
 - Common articulatory patterns exist across speakers.
 (e.g., /a/ mouth opening)
 - Same phoneme can be pronounced with distinct styles.
 (e.g., Large / Small)
 - Realistic animation requires to model shared phonetic cues and speaker-specific styles from audio with rich information [2].

Figure 1. The intuition of MemoryTalker for personalized speech-driven 3D facial animation

Novel Personalization Method

Figure 2. Unlike prior methods that require explicit speaker labels or mesh sequences, MemoryTalker models speaking style implicitly from speech only.

- · One-hot encoding methods cannot generalize to unseen speakers.
- Mesh-based methods are resource-intensive.
- · Our method generates personalized 3D facial motion using only audio.

EXPERIMENTS

Quantitative Evaluation

Method	FVE	LVE	FID	LDTW	Lip-max
FaceFormer [CVPR`22]	0.639	0.413	3.583	0.507	0.452
CodeTalker [CVPR`23]	0.721	0.498	3.713	0.554	0.484
SelfTalk [ACM MM`23]	0.593	0.382	3.279	0.475	0.416
Imitator [ICCV`23]	0.686	0.456	3.918	0.554	0.472
ScanTalk [ECCV`24]	0.609	0.375	3.623	0.457	0.420
UniTalker [ECCV`24]	0.570	0.382	3.256	0.507	0.407
MemoryTalker	0.506	0.293	3.045	0.418	0.331

Table 1. Performance Comparisons on VOCASET.

Competitors	Lip Sync (%)	Realism (%)	Speaking Style (%)
vs. FaceFormer	83.9	85.5	80.6
vs. CodeTalker	85.5	83.9	71.8
vs. Imitator	87.1	87.1	78.2
vs. ScanTalk	94.4	91.1	92.8
vs. UniTalker	79.8	80.6	86.3

Table 2. User study: our method vs. competitor on VOCASET.

PROPOSED METHOD

Illustration of the proposed our MemoryTalker

Figure 3. MemoryTalker's architecture: a two-stage framework that (a) memorizes general motion and (b) stylizes general motion

- Stage1: Generalized facial motion features are stored in memory and retrieved using text representations to model common articulatory patterns across speakers.
- Stage2: Motion memory is refined per speaker by modulating slot-wise features using audio, enabling the model to capture speaker-specific speaking styles.
- Together, our two-stage training strategy allows disentangling shared and personalized dynamics from speech for realistic facial animation.
- Qualitative Evaluation

Figure 4. Visual Comparisons with state-of-the-art methods.

Figure 6. Comparison "w/o 2-stage" and "w/ 2-stage"

IV. REFERENCE

- [1] A linear model of acoustic-to-facial mapping: Model parameters, data set size, and generalization across speakers, JASA, 2008
- [2] Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron, ICML, 2018.