

# Capstone Project Mobile Price Range Prediction

Kiran Mamtani



### Content

- Summary of Data
- Exploratory Data Analysis
- Feature Engineering
- Machine Learning Models
- Conclusion
- Challenges



## **Summary of Data**

**About Data** - The dataset is based on sales data of mobile phones and factors which drive the prices

Size of Data

**Rows -** 2000 **Columns -** 21



Source: https://www.freepik.com/



#### **Univariate Analysis**



In all the above graphs, the values is almost equal. So we can say that Bluetooth, Dual sim, 4G is distributed almost equal in our data set



#### **Univariate Analysis**



Touch screen & WIFI is distributed in almost equal values in our dataset whereas 76% mobile phone has 3G technology and 24% does not have 3G. We can assume that the remaining 24% who don't have 3G may have 2G



#### **Univariate Analysis**



As seen in graph, our target variables i.e. price range is distributed equally. It means in our data, price range column as equal number of values (0,1,2 & 3)



#### **Univariate Analysis**















#### **Bivariate Analysis**

Let's visualize all the features with our target feature price range









All these 5 graphs are almost same like price range is directly proportional to these features



#### **Bivariate Analysis**

Here the price range is not changing vastly





#### **Bivariate Analysis**



The line trend is increasing order. When ram is increasing the price range is also increasing. We can say that both are directly related to each other



#### **Multivariate Analysis**



We can see the highest correlation between ram and price range. The two other correlations are between 3G and 4G, pc & fc



## **Machine Learning Models**

#### **Applied 6 classifications models**

- 1. Logistic Regression
- 2. Decision Tree Classifier
- 3. Random Forest Classifier
- 4. K-Nearest Neighbours (KNN)
- 5. Naive Bayes Classifier
- 6. Support Vector Machines



## **Machine Learning Models**



As we can see support vector machine model is best for our dataset with 96% of accuracy



## **Support Vector Machines (SVM)**

Applied Grid Search to find out the best hyperparameter

|              | lataset   |        |          | Result of train dataset |              |           |        |          |         |  |
|--------------|-----------|--------|----------|-------------------------|--------------|-----------|--------|----------|---------|--|
| F            | precision | recall | f1-score | support                 |              | precision | recall | f1-score | support |  |
|              | 0.07      |        | 0.00     | 466                     | 0            | 0.99      | 0.99   | 0.99     | 334     |  |
| 0            | 0.97      | 0.99   | 0.98     | 166                     | 1            | 0.97      | 0.98   | 0.97     | 353     |  |
| 1            | 0.94      | 0.93   | 0.94     | 147                     | 2            | 0.98      | 0.97   | 0.97     | 335     |  |
| 2            | 0.95      | 0.94   | 0.94     | 165                     | 3            | 0.99      | 0.98   | 0.99     | 318     |  |
| 3            | 0.98      | 0.98   | 0.98     | 182                     | 3            | 0.99      | 0.90   | 0.99     | 310     |  |
|              |           |        |          |                         | accuracy     |           |        | 0.98     | 1340    |  |
| accuracy     |           |        | 0.96     | 660                     | macro avg    | 0.98      | 0.98   | 0.98     | 1340    |  |
| macro avg    | 0.96      | 0.96   | 0.96     | 660                     | _            |           |        |          |         |  |
| weighted avg | 0.96      | 0.96   | 0.96     | 660                     | weighted avg | 0.50      | 0.50   | 0.50     | 1340    |  |
| _            |           |        |          |                         |              |           |        |          |         |  |
|              |           |        |          |                         |              |           |        |          |         |  |
| weighted avg | 0.96      | 0.96   | 0.96     | 660                     | weighted avg | 0.98      | 0.98   | 0.98     | 1340    |  |

Test and train, in both we are getting almost similar result and SVM has highest accuracy



## Conclusion

- All the important libraries was imported
- Data set was imported and understood all the features
- Exploratory Data Analysis was done to investigate dataset patterns and outliers
- From EDA, we got to know that there is zero null values
- Visualizes each feature in Univariate analysis.
- ➤ In Bivariate analysis, compared target feature (price\_range) with all the features and got to know that RAM is directly proportional to price range. As RAM increases, price range also increases
- Also formed multivariate graphs. In correlation of every columns with each other, we can say that RAM is highly corelated to each other
- So our data is linear



## Conclusion

- Applied different classification models like 'Logistic Regression', 'Decision Tree', 'Random Forest', 'KNN', 'Naive Bayes Classifier' and 'Support Vector Machine'
- ➤ The accuracy score of Logistic Regression is 91.96%
- ➤ The accuracy score of Decision Tree is 83.03%%
- The accuracy score of Logistic Regression is 87.27%
- ➤ The accuracy score of Logistic Regression is 47.87%
- ➤ The accuracy score of Logistic Regression is 81.96%
- ➤ The accuracy score of Logistic Regression is 96.06%
- ➤ We conclude that SVM (Support Vector Machine) is best model for our dataset (with the highest accuracy score = 96%)



## Challenges

- > The most difficult thing I faced in this project is to choose the hyperparameter
- Also got afraid of if I am not missing any other classification technique which can give me more better accuracy
- Some of by coding was taking a lot of time to run so with the help of few websites I has revised my code to get implement faster



# **Thank You!**