CSC320 A3 PatchMatch

Slides by Yawen Ma

Based on Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman(2009), PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Goal

• Find patch correspondences Image A

Image B

Intuitions

- Neighboring pixels/patches are correlated
- One of many random guesses is likely to be a good guess

Nearest-neighbor field (NNF)

- A mapping: f: $A \rightarrow \mathbb{R}^2$
- "A": every patch center (pixel) on image A
- \mathbb{R}^2 : the offset (differences between coordinates) of patches that has the smallest L_p distance
 - For a pixel at (x, y) in A, let $v=(\Delta x, \Delta y)=f(x, y)$ denote the current offset of the patch (x, y) in A.
 - Then the patch in B at (x, y)+v is the nearest patch of patch (x, y) in A

Approximate nearest-neighbor algorithm

- 1. Initialization
- 2. Iteration
 - Propagation
 - Random search

Initialization

- Fill NNF with
 - Random offsets
 - Or prior information

Iteration

- Propagation
- Random Search

(Order: P1, S1, P2, S2, ..., Pn, Sn)

Iteration - propagation

- For a pixel at (x, y) in A, let $v=(\Delta x, \Delta y)=f(x, y)$ denote the current offset of the patch (x, y) in A. Then the patch in B at (x, y)+v is the nearest patch of patch (x, y) in A
- Let D(v) denote the distance
- Odd # iterations:
 - argmin(D(f(x, y)), D(f(x-1, y)), D(f(x, y-1)))
- Even # iterations:
 - argmin(D(f(x, y)), D(f(x+1, y)), D(f(x, y+1)))

Exercise

Given 2 identical images A and B both of size (2n+1)*(2m+1). If it is known after some initialization the pixel at the center has f(n+1, m+1)=(0, 0), and for all the other pixels $f(x, y)\neq(0, 0)$

- What will happen after P1?
- What will happen after P1, P2 (skipping S1 for now)?

P1

P2

Iteration - random search

- Improve f(x, y) with several candidates:
- $u_i = v_0 + wa^i R_i$
 - $v_0 = f(x, y)$ from last propagation
 - w: maximum image dimension
 - a: fixed ratio between search window sizes
 - *R* _{*i*}: uniform random in [-1, 1]*[-1, 1]
- Update f(x, y) with argmin{D(u_1),D(u_2),...,D(u_n)}

Questions?