# Wrocław University of Science and Technology

# ELECTRIONIC MEASUREMENTS LABORATORY REPORT

Chair of Electronic and Photonic Metrology ELECTRIONIC MEASUREMENTS LABORATORY

Theme of class: RESISTANCE MEASUREMENT

Group no: 1

Students: Date of class: 2022-12-19

Paulina Nowak 251002
 Ivan Melnyk 275510

3. Stanislav Kustov 275512 Submission Date: 2023-01-08

Lab assistant: mgr inż. Krzysztof Adamczyk

# Contents

| 1 Introduction |            |                                 |  |  |  |  |  |
|----------------|------------|---------------------------------|--|--|--|--|--|
|                | 1.1        | Theory                          |  |  |  |  |  |
|                | 1.2        | Equipment                       |  |  |  |  |  |
|                | Experiment |                                 |  |  |  |  |  |
|                | 2.1        | Direct resistance measurement   |  |  |  |  |  |
|                | 2.2        | Indirect resistance measurement |  |  |  |  |  |
|                |            | 2.2.1 Analog                    |  |  |  |  |  |
| 3              | Cor        | nclusion                        |  |  |  |  |  |

# 1 Introduction

## 1.1 Theory

Resistance can be measured using two methods: direct or indirect.

#### Direct

To take a direct measurement, the measured component must be connected to the ohmmeter as shown in Fig. 1. The component cannot be connected to a circuit, and must be passive and linear. A linear component isn't influenced by other parameters and will not change its value over time.



Figure 1: Direct resistance measurement schematic

## Indirect

Resistance is measured indirectly using the ammeter-voltmeter method. Figures 2, 3 show different ways of implementing said method. In both instances, the resistance is calculated using the Ohm's law:  $R = \frac{U}{I}$ .



Figure 2: CVM (circuit with correct voltage measurement)

Figure 3: CCM (circuit with correct current measurement)

The method error is calculated using the following formulas:

- CVM:  $\Delta_m R = \frac{-R_m^2}{R_V R_m}$ ,  $\delta_m R = \frac{-R_m}{R_V}$ ;
- CCM:  $\Delta_m R = R_A$ ,  $\delta_m R = \frac{R_A}{R_m R_A}$ ;

The CVM circuit should be used for small resistances and the CCM circuit should be used for big resistances. The following equation describes the threshold resistance for which the choice of the circuit doesn't matter:  $R_{thr} = \sqrt{R_V \cdot R_A}$ .

## 1.2 Equipment

The following devices were used during the laboratory:

 $\bullet$  power supply: DF1730SB3A;

• digital meter: Agilent 34401A;

• decade resistor: DR4b-16;

 $\bullet$  digital meter: UT803;

• linear resistor;

• diode resistor.

ullet analog voltmeter: LM-3;

 $\bullet$  analog ammeter: LM-3.

# 2 Experiment

## 2.1 Direct resistance measurement

We measured the resistance of linear resistors  $(R_2, R_4)$  and a diode (D). Measurements were taken for three different ranges and both polarities. Tab. 1 shows all of the measurements along with the final results.

| $R_x$             | $R_m[\Omega]$ | $R_r[\Omega]$ | Accuracy | $\Delta_{res}[\Omega]$ | $\Delta R[\Omega]$ | $\delta R[\%]$ | $R \pm \Delta R[\Omega]$ |  |  |
|-------------------|---------------|---------------|----------|------------------------|--------------------|----------------|--------------------------|--|--|
| Positive polarity |               |               |          |                        |                    |                |                          |  |  |
| $R_2$             | 424.4         | 600           | 0.8 + 3  | 0.1                    | 3.6952             | 0.870688       | $424.4 \pm 3.7$          |  |  |
| $R_4$             | OL            | 600           | 0.8 + 3  | 0.1                    |                    |                |                          |  |  |
| D                 | OL            | 600           | 0.8 + 3  | 0.1                    |                    |                |                          |  |  |
| $R_2$             | 420           | 60000         | 0.5 + 2  | 10                     | 22.1               | 5.261905       | $420 \pm 23$             |  |  |
| $R_4$             | 2650          | 60000         | 0.5 + 2  | 10                     | 33.25              | 1.254717       | $2650 \pm 34$            |  |  |
| D                 | OL            | 60000         | 0.5 + 2  | 10                     |                    |                |                          |  |  |
| $R_2$             | 400           | 600000        | 0.5 + 2  | 100                    | 202                | 50.5           | $400 \pm 202$            |  |  |
| $R_4$             | 2600          | 600000        | 0.5 + 2  | 100                    | 213                | 8.192308       | $2600 \pm 213$           |  |  |
| D                 | OL            | 600000        | 0.5 + 2  | 100                    |                    |                |                          |  |  |
|                   |               |               | N        | egative po             | larity             |                |                          |  |  |
| $R_2$             | 424.4         | 600           | 0.8 + 3  | 0.1                    | 3.6952             | 0.870688       | $424.4 \pm 3.7$          |  |  |
| $R_4$             | OL            | 600           | 0.8 + 3  | 0.1                    |                    |                |                          |  |  |
| D                 | OL            | 600           | 0.8 + 3  | 0.1                    |                    |                |                          |  |  |
| $R_2$             | 420           | 60000         | 0.5 + 2  | 10                     | 22.1               | 5.261905       | $420 \pm 23$             |  |  |
| $R_4$             | 2650          | 60000         | 0.5 + 2  | 10                     | 33.25              | 1.254717       | $2650 \pm 34$            |  |  |
| D                 | 42.69         | 60000         | 0.5 + 2  | 10                     | 20.21345           | 47.349379      | $42.69 \pm 20.22$        |  |  |
| $R_2$             | 400           | 600000        | 0.5 + 2  | 100                    | 202                | 50.5           | $400 \pm 202$            |  |  |
| $R_4$             | 2600          | 600000        | 0.5 + 2  | 100                    | 213                | 8.192308       | $2600 \pm 213$           |  |  |
| D                 | 178400        | 600000        | 0.5 + 2  | 100                    | 1092               | 0.612108       | $178400 \pm 1092$        |  |  |

Table 1: Direct resistance measurements (for:  $R_m$  – measured resistance,  $R_r$  – range, Accuracy:  $\pm$  (a% of reading + n – number of uncertain digits),  $\Delta_{res}$  – resolution,  $\Delta R, \delta R$  – limiting error)

Example calculations for  $R_r = 600 \Omega$  ( $R_2$ , positive polarity) are shown in the equations below.

$$\Delta R = \frac{a}{100\%} \cdot R_m + n \cdot \Delta_{res} = \frac{0.8\%}{100\%} \cdot 424.4 \,\Omega + 3 \cdot 0.1 \,\Omega = 3.6952 \,\Omega \tag{1}$$

$$\delta R = \frac{\Delta R}{R_m} \cdot 100\% = \frac{3.6952 \,\Omega}{424.4 \,\Omega} \cdot 100\% \approx 0.870688\% \tag{2}$$

## 2.2 Indirect resistance measurement

#### 2.2.1 Analog

The devices used for analog measurements had a 0.5 accuracy class. The voltmeter had a  $\frac{1000\,\Omega}{\rm V}$  internal resistance and the ammeter had a  $\frac{23}{I_r[{\rm mA}]}+0.004\,\Omega$  internal resistance.

The measurements for the CVM circuit are broken into Tables 2, 3, 4, 5 and the CCM circuit measurements are broken into Tables 6, 7, 8, 9. Example calculations for the mea-

surement of  $R = 100 \Omega$  using the CCM circuit are shown in Equations 3 - 18. Since the calculations for the CVM circuit only differ in how the method error is obtained, they are not included in this report.

| $R_{thr}[\Omega]$ | $R_x[\Omega]$ | $\alpha$ | $\alpha_{max}$ | $V_r[V]$ | $V_m[V]$ | $\Delta V[V]$ | $\delta V [\%]$ |
|-------------------|---------------|----------|----------------|----------|----------|---------------|-----------------|
| 25                | 30            | 48.5     | 75             | 7.5      | 4.85     | 0.038         | 0.773196        |
| 48                | 100           | 48.5     | 75             | 7.5      | 4.85     | 0.038         | 0.773196        |
| 76                | 300           | 48.5     | 75             | 7.5      | 4.85     | 0.038         | 0.773196        |
| 152               | 1000          | 48.5     | 75             | 7.5      | 4.85     | 0.038         | 0.773196        |
| 240               | 3000          | 48.5     | 75             | 7.5      | 4.85     | 0.038         | 0.773196        |

Table 2: CVM for  $E \sim 4.8\,\mathrm{V}$  ( $R_{thr}$  – threshold resistance,  $R_x$  – true resistance,  $\alpha$  – actual needle swing,  $\alpha_{max}$  – maximal swing,  $V_r$  – range,  $V_m$  – measured voltage,  $\Delta V$ ,  $\delta V$  – limiting error)

| $\alpha$ | $\alpha_{max}$ | $I_r[A]$ | $I_m[A]$ | $\Delta I[{ m A}]$ | $\delta I[\%]$ |
|----------|----------------|----------|----------|--------------------|----------------|
| 37       | 75             | 0.3      | 0.148    | 0.0015000          | 1.013514       |
| 50       | 75             | 0.075    | 0.05     | 0.0003750          | 0.750000       |
| 43.5     | 75             | 0.03     | 0.0174   | 0.0001500          | 0.862069       |
| 56       | 75             | 0.0075   | 0.0056   | 0.0000375          | 0.669643       |
| 57.5     | 75             | 0.003    | 0.0023   | 0.0000150          | 0.652174       |

Table 3: CVM for  $E \sim 4.8\,\mathrm{V}$  ( $\alpha$  – actual needle swing,  $\alpha_{max}$  – maximal swing,  $I_r$  – range,  $I_m$  – measured current,  $\Delta I, \delta I$  – limiting error)

| $R_m[\Omega]$ | $\Delta R[\Omega]$ | $\delta R[\%]$ | $R_m \pm \Delta R[\Omega]$ | $R_V[\Omega]$ | $R_A[\Omega]$ |
|---------------|--------------------|----------------|----------------------------|---------------|---------------|
| 32.770270     | 0.585509           | 1.786709       | $32.8 \pm 0.6$             | 7500          | 0.080667      |
| 97            | 1.477500           | 1.523196       | $97.0 \pm 1.5$             | 7500          | 0.310667      |
| 278.735632    | 4.558066           | 1.635265       | $279 \pm 5$                | 7500          | 0.770667      |
| 866.071429    | 12.496014          | 1.442839       | $866 \pm 13$               | 7500          | 3.070667      |
| 2108.695652   | 30.056711          | 1.425370       | $2109 \pm 31$              | 7500          | 7.670667      |

Table 4: CVM for  $E \sim 4.8 \,\mathrm{V}$  ( $R_m$  – measured resistance,  $\Delta R, \delta R$  – limiting error,  $R_V$  – internal voltmeter resistance,  $R_A$  – internal ammeter resistance)

| $\Delta_m R[\Omega]$ | $\delta_m R[\%]$ | $c[\Omega]$ | $R_c[\Omega]$ | $R_c \pm \Delta R[\Omega]$ |
|----------------------|------------------|-------------|---------------|----------------------------|
| -0.143814            | -0.004369        | 0.143814    | 32.914084     | $33.0 \pm 0.6$             |
| -1.270971            | -0.012933        | 1.270971    | 98.270971     | $98.3 \pm 1.5$             |
| -10.758996           | -0.037165        | 10.758996   | 289.494628    | $289 \pm 5$                |
| -113.067199          | -0.115476        | 113.067199  | 979.138627    | $979 \pm 13$               |
| -824.772090          | -0.281159        | 824.772090  | 2933.467742   | $2933 \pm 31$              |

Table 5: CVM for  $E \sim 4.8\,\mathrm{V}$  ( $\Delta_m R_m, \delta_m R_m$  – method error, c– correction factor,  $R_c$ –corrected resistance)

| $R_{thr}[\Omega]$ | $R_x[\Omega]$ | $\alpha$ | $\alpha_{max}$ | $V_r[V]$ | $V_m[V]$ | $\Delta V[V]$ | $\delta V [\%]$ |
|-------------------|---------------|----------|----------------|----------|----------|---------------|-----------------|
| 25                | 30            | 48.5     | 75             | 7.5      | 4.85     | 0.0375        | 0.773196        |
| 48                | 100           | 48.5     | 75             | 7.5      | 4.85     | 0.0375        | 0.773196        |
| 76                | 300           | 48.5     | 75             | 7.5      | 4.85     | 0.0375        | 0.773196        |
| 152               | 1000          | 48.5     | 75             | 7.5      | 4.85     | 0.0375        | 0.773196        |
| 240               | 3000          | 48.5     | 75             | 7.5      | 4.85     | 0.0375        | 0.773196        |

Table 6: CCM for  $E \sim 4.8\,\mathrm{V}$  ( $R_{thr}$  – threshold resistance,  $R_x$  – true resistance,  $\alpha$  – actual needle swing,  $\alpha_{max}$  – maximal swing,  $V_r$  – range,  $V_m$  – measured voltage,  $\Delta V$ ,  $\delta V$  – limiting error)

| $\alpha$ | $\alpha_{max}$ | $I_r[A]$ | $I_m[A]$ | $\Delta I[{ m A}]$ | $\delta I[\%]$ |
|----------|----------------|----------|----------|--------------------|----------------|
| 37       | 75             | 0.3      | 0.14800  | 0.0015             | 1.013514       |
| 49       | 75             | 0.075    | 0.04900  | 0.000375           | 0.765306       |
| 37       | 75             | 0.03     | 0.01480  | 0.00015            | 1.013514       |
| 47       | 75             | 0.0075   | 0.00470  | 0.0000375          | 0.797872       |
| 41       | 75             | 0.003    | 0.00164  | 0.000015           | 0.914634       |

Table 7: CCM for  $E \sim 4.8\,\mathrm{V}$  ( $\alpha$  – actual needle swing,  $\alpha_{max}$  – maximal swing,  $I_r$  – range,  $I_m$  – measured current,  $\Delta I, \delta I$  – limiting error)

| $R_m[\Omega]$ | $\Delta R[\Omega]$ | $\delta R[\%]$ | $R_m \pm \Delta R[\Omega]$ | $R_V[\Omega]$ | $R_A[\Omega]$ |
|---------------|--------------------|----------------|----------------------------|---------------|---------------|
| 32.770270     | 0.585509           | 1.786709       | $32.3 \pm 0.6$             | 7500          | 0.080667      |
| 98.979592     | 1.522803           | 1.538502       | $99.0 \pm 1.6$             | 7500          | 0.310667      |
| 327.702703    | 5.855095           | 1.786709       | $328 \pm 6$                | 7500          | 0.770667      |
| 1031.914894   | 16.212087          | 1.571068       | $1032 \pm 17$              | 7500          | 3.070667      |
| 2957.317073   | 49.914485          | 1.687830       | $2957 \pm 50$              | 7500          | 7.670667      |

Table 8: CCM for  $E \sim 4.8\,\mathrm{V}$  ( $R_m$  – measured resistance,  $\Delta R, \delta R$  – limiting error,  $R_V$  – internal voltmeter resistance,  $R_A$  – internal ammeter resistance)

| $\Delta_m R[\Omega]$ | $\delta_m R[\%]$ | $c[\Omega]$ | $R_c[\Omega]$ | $R_c \pm \Delta R[\Omega]$ |
|----------------------|------------------|-------------|---------------|----------------------------|
| 0.080667             | 0.002468         | -0.080667   | 32.689604     | $32.7 \pm 0.6$             |
| 0.310667             | 0.003149         | -0.310667   | 98.668925     | $98.7 \pm 1.6$             |
| 0.770667             | 0.002357         | -0.770667   | 326.932036    | $327 \pm 6$                |
| 3.070667             | 0.002985         | -3.070667   | 1028.844227   | $1029 \pm 17$              |
| 7.670667             | 0.002601         | -7.670667   | 2949.646407   | $2950 \pm 50$              |

Table 9: CCM for  $E \sim 4.8 \,\mathrm{V} \,(\Delta_m R_m, \delta_m R_m - \mathrm{method} \,\mathrm{error}, \,c-\mathrm{correction} \,\mathrm{factor}, \,R_c-\mathrm{corrected} \,\mathrm{resistance})$ 

$$V_m = \alpha \cdot \frac{V_r}{a_{max}} = 48.5 \cdot \frac{7.5 \,\text{V}}{75} = 4.85 \,\text{V}$$
 (3)

$$\Delta V = \frac{cl \cdot V_r}{100\%} = \frac{0.5\% \cdot 7.5 \,\text{V}}{100\%} = 0.0375 \,\text{V} \tag{4}$$

$$\delta V = \frac{\Delta V}{V_m} \cdot 100\% = \frac{0.0375 \,\text{V}}{3.85 \,\text{V}} \cdot 100\% \approx 0.773196\% \tag{5}$$

$$I_m = \alpha \cdot \frac{I_r}{a_{max}} = 49 \cdot \frac{0.075 \,\text{A}}{75} = 0.049 \,\text{A}$$
 (6)

$$\Delta I = \frac{cl \cdot I_r}{100\%} = \frac{0.5\% \cdot 0.075 \,\text{A}}{100\%} = 0.000\,375 \,\text{A} \tag{7}$$

$$\delta I = \frac{\Delta I}{I_m} \cdot 100\% = \frac{0.000375 \,\text{A}}{0.049 \,\text{A}} \cdot 100\% \approx 0.765306\% \tag{8}$$

$$R_m = \frac{V_m}{I_m} = \frac{3.85 \,\text{V}}{0.049 \,\text{mA}} \approx 98.979 \,592 \,\Omega$$
 (9)

$$\delta R = \delta V_m + \delta I_m = 0.773196\% + 0.765306\% = 1.538502\%$$
 (10)

$$\Delta R = R_m \cdot \frac{\delta R_m}{100\%} = 197.959 \, 184 \,\Omega \cdot \frac{1.538502\%}{100\%} \approx 3.045 \, 606 \,\Omega \tag{11}$$

$$R_V = \frac{1000 \,\Omega}{\rm V} \cdot V_r = \frac{1000 \,\Omega}{\rm V} \cdot 7.5 \,\rm V = 7500 \,\Omega \tag{12}$$

$$R_A = \frac{23}{I_r[\text{mA}]} + 0.004\,\Omega = \frac{23}{750} + 0.004\,\Omega \approx 0.310\,667\,\Omega \tag{13}$$

$$R_{thr} = \sqrt{R_V \cdot R_A} = \sqrt{7500 \,\Omega \cdot 0.310667 \,\Omega} \approx 48 \,\Omega \tag{14}$$

$$\Delta_m R = R_A = 0.310667\,\Omega\tag{15}$$

$$\delta_m R = \frac{R_A}{R_m - R_A} = \frac{0.310667\,\Omega}{197.959\,184\,\Omega - 0.310667\,\Omega} \approx 0.001572\% \tag{16}$$

$$c = -\Delta_m R = -0.310667\,\Omega\tag{17}$$

$$R_c = R_m + c = 98.979592\Omega + (-0.310667\Omega) = 98.668925\Omega$$
 (18)

# 3 Conclusion