

Лабораторная работа 5.10.1 Электронный парамагнитный резонанс

Студенты:

Панченко Наталья
Исламов Сардор
Физтех-школа физики и исследований им. Ландау
Московский Физико-Технический Институт

Аннотация. В работе исследован электронный парамагнитный резонанс. Определен g-фактор электрона, измерена ширина линии ЭПР.

Теоретическое введение

Энергетический уровень электрона в присутствии магнитного поля с индукцией В расщепляется на подуровни, расстояние между которыми равно

$$\Delta E = E_2 - E_1 = 2\mu B \tag{1}$$

где μ – абсолютная величина проекции магнитного момента на направление поля. Электрон может переходить между уровнями, будучи возбужденным внешним магнитным полем, если оно имеет нужную частоту и направление. Резонансное значение частоты определяется по формуле:

$$\Delta E = \hbar \omega_0 \tag{2}$$

При переходе с нижнего на верхний уровень энергии электрон поглощает квант электромагнитной энергии, а при обратном переходе такой же квант излучается. Возбуждение электронных переходов электромагнитным полем, имеющим частоту, определяемую формулой (2),носит название электронного парамагнитного резонанса (ЭПР). Другими словами ЭПР происходит из-за переворота спина электронов (только неспаренные) под действием высокочастотного электромагнитног поля. В настоящей работе необходимо получить сигнал ЭПР на кристаллическом дифенилпикрил- гидразиле (ДФПГ) и определить значение g-фактора для электрона. Как известно, связь между магнитным моментом μ электрона и его механическим моментом M выражается через гиромагнитное отношение γ с помощью формулы:

$$\mu = \gamma M \tag{3}$$

Если магнитный момент частицы, измеренный в магнитонах Бора, а механический - в \hbar , то их связь можно записать через q-фактор:

$$\frac{\mu}{\mu_B} = \frac{gM}{\hbar} \tag{4}$$

Эта формула справедлива для соответсвующих проекций μ и M на любое выбранное направление:

$$\frac{\mu}{\mu_B} = \frac{Sg\hbar}{\hbar} \tag{5}$$

где $S=\frac{1}{2}$ - спин электрона. Используя соотношения (1)-(5), получим выражение для g-фактора через определяемые экспериментально величины:

$$g = \frac{h\nu}{\mu_B B} \tag{6}$$

Экспериментальная установка

Рис. 1: Экспериментальная установка

Образец (порошок ДФПГ) в стеклянной ампуле помещяется внутрь катушки индуктивности, которая вместе с конденсатором образует колебательный контур. Конденсатор состоит из двух пластин, разделенных воздушным зазором. Изменять ёмкость конденсатора можно увеличия воздушный зазор с помощью поворта штока. Колебания в контуре возбуждаются антенной, соединённой с генератором частоты (ВЧ) Г4-116. Амплитуда колебаний поля в катушке индуктивности измеряется по наводимой в петле связи ЭДС индукции. Высокочастотные колебания ЭДС индукции в приёмном контуре детектируются диодом, измеряемая при помощи осциллографа низкочастотная огибающая этого сигнала пропорциональна квадрату амплитуды колебаний поля в катушке. Постоянной магнитное поле создаётся пропусканием тока от источника постоянного тока через основные катушки. При этом при помощи вольтметра измеряется падение напряжения на резисторе в цепи основных катушек. Переменное поле небольшой амплитуды создаётся подачей на модуляционные катушки напряжения с регулируемого трансформатора ЛАТР. Для измерения амплитуды колебаний переменного поля используется пробная катушка известной геометрии, подключенная к вольтметру.

Обработка результатов

Калибровка. Установим зависимость между показаниями вольтметров, чтобы далее из значений напряжения получить величину магнитной индукции (рис. 2)

V_R , мВ	54,1	61	67	73,5	80,5	90,3
V, мВ	6,7	7,5	8,3	9,15	10	11,2

Таблица 1: Калибровка

Рис. 2: Калибровка

Ход работы. Будем изменять ёмкость конденсатора и искать новые значения частот на резонансе:

Частота,МГц	V слева, мВ	V центр, мВ	V справа, мВ
147,8	113,2	107,6	102,6
80,2	65,5	58,9	54,6
100,4	76,4	71,2	63,6
110,6	86,4	81,3	76,2
117,3	91,3	86,1	80,5
131,4	101,8	96,5	90,9
144,3	110,9	105,5	100,4
151	116,4	110,9	105,6

Таблица 2: Напряжение от частоты

Запишем параметры катушек в таблицу 2:

Катушка	Количество витков	Диаметр, м	
Основная	5500	0,25	
Модуляционная	1500	0,3	
Пробная	49	14,3	

Таблица 3: параметры катушек

По формуле

$$B = \frac{4kV_R}{2\pi\nu N_{\rm npo6}\pi d_{\rm npo6}^2},$$

где k — коэффицент наклона из рис. 2, $\nu = 50$ — частота модуляционного напряжения, получим значения магнитной индукции и построим ее зависимость от частоты (рис. 3)

Рис. 3: Зависимость $B(\nu)$

Из коэффицинета наклона $k_2 = (3.67 \pm 0.11) \cdot 10^{-11}$ получим значение g по формуле

$$g = \frac{hf}{\mu_{\rm B}B} = \frac{h}{\mu_{\rm B}k_2} = 1.95 \pm 0.1$$

Ширина ЭПР. Рассчитаем ширину ЭПР на полувысоте пика.

Рис. 4: Ширина ЭПР

где $B_{\frac{1}{2}}\sim \frac{7\Delta V}{5}$, где $\Delta V=5,3$ мВ - ширина клетки (считаем для частоты 131,4 МГц). $\Rightarrow \Delta B_{\frac{1}{2}}=0,37\pm0,1$ мТл

Выводы

В результате работы было исследовано явление электронного парамагнитного резонанса в молекуле ДФПГ. Был найдет g-фактор электрона: $g=1.95\pm0.1$, что в пределах погрешности совпадает с теоретическим значением g=2. Также была определена ширина линии ЭПР $\Delta B_{1/2}=0.37\pm0.1$ мТл.