Corollaire 0.1. Soient $f = (I_n), g = (J_n) \in \mathbb{F}(A)$, tel que $f \leq g$ et A est noethérien. Si f ou g est noethérien alors g est f – bonne \iff g est fortement entière sur f.

Proposition 0.1. Soit A un anneau noethérien. Soient $f, g \in \mathbb{F}(A)$. Si f est noethérienne alors g est fortement entière sur $f \iff il$ existe un entier naturel $N \geqslant 1$ tel que $t_N g \leqslant f \leqslant g$.

Proposition 0.2. Soient $f, g \in \mathbb{F}(A)$. Alors :

q est entière sur $f \iff \forall k \in \mathbb{N}^*, q^{(k)}$ est entière sur $f^{(k)} \iff \exists k \in \mathbb{N}^*, q^{(k)}$ est entière sur $f^{(k)}$

Corollaire 0.2. Soient $f, g \in \mathbb{F}(A)$, tel que $f \leq g$. Si A est noethérien et g est fortement entière sur f. Alors f est fortement $A.P \iff g$ est fortement A.P.

Proposition 0.3. Si $f = f_I$ alors:

f est fortement $A.P \iff f$ est $A.P \iff f$ est fortement noethérienne $\iff f$ est noethérienne $\iff f$ est E.P

Corollaire 0.3. Soient $f = (I_n)_{n \in \mathbb{N}}$ et $g = (J_n)_{n \in \mathbb{N}}$ deux filtrations de A, tel que $f \leq g$. Si f ou g est noethérienne. Alors : g est f – bonne \iff g est fortement intégral sur f

Proposition 0.4. Soient $f = (I_n)_{n \in \mathbb{N}}$ et $g = (J_n)_{n \in \mathbb{N}}$ deux filtrations de A tel que f est une réduction de g alors : g est E.P et g est f – bonne.

Proposition 0.5. Lorsque f est une filtration fortement noethérienne et g est une filtration noethérienne de l'anneau noethérien A vérifiant $f = (I_n) \leq g = (J_n)$, on montre que les assertions suivantes sont équivalentes :

- (i) f est une réduction de g
- (ii) $J_n^2 = I_n J_n, \forall n >> 0$
- (iii) L'idéal I_n est une réduction de l'idéal J_n pour tout n >> 0
- (iv) Il existe un entier $k \geq 1$ tel que g^k soit I_k bonne
- $(v) \forall m \geq 1, f^{(m)}$ est une réduction de $g^{(m)}$
- (vi) $\exists m \geq 1$, tel que $f^{(m)}$ soit une réduction de $g^{(m)}$
- (vii) g est entière sur f
- (viii) q est fortement entière sur f
- (ix) q est f fine
- (xi) g est faiblement f bonne
- (x) g est f bonne
- (xii) $\exists m \geq 1$, tel que $t_m f \leq f \leq g$
- (iii) $(P_k(f)) = (P_k(g))$ pour tout $k \in \mathbb{N}$

En particulier, il résulte des équivalences ci-dessus que si f est une filtration I – adique de l'anneau noethérien A et si g est une filtration noethérienne dominée par g, les notions suivantes sont équivalentes :

- (1) f_I est une réduction de g
- (2) g est entière sur f_I .
- (3) g est fortement entière sur f_I
- (4) g est I bonne

Proposition 0.6. Soient $f = (I_n)_{n \in \mathbb{N}}$ et $g = (J_n)_{n \in \mathbb{N}}$ deux filtrations de A, tel que $f \leq g$. Nous considérons les assertions suivantes :

- (i) g est f bonne
- (ii) g est f fine
- (iii) g est fortement entière sur f
- (iv) g est faiblement f bonne
- (v) $\exists N \geqslant 1$ un entier tel que $t_N g \leqslant f \leqslant g$.

Proposition 0.7. Sous les hypothèses du théorème (0.6) en admettant que A est noethérien et f est noethérienne alors : $(i) \iff (ii) \iff (vi) \iff (v)$.