Practical 1 Bisection Method

(1) Find a real root of the equation $f(x)=\log(1+x)-\cos(x)=0$ using bisection method in 10 iterations

```
In[*]:= Bisection[a0_, b0_, n_, f_] :=
     Module [{a = N[a0], b = N[b0]}],
      c = (a + b) / 2;
      i = 0 \times
        If[f[a] * f[b] > 0, Print[
          "we cannot continue with the bisection method as ",
          f, "(a).", f, "(b)>=0"];
         Return[]];
      output = {{i, a, c, b, f[c]}};
      While[i < n, If[Sign[f[b]] == Sign[f[c]], b = c, a = c;];
       c = (a + b) / 2;
       i = i + 1; output = Append[output, {i, a, c, b, f[c]}];];
      Print[NumberForm[TableForm[output, TableHeadings →
          {None, {"i", "a<sub>i</sub>", "c<sub>i</sub>", "b<sub>i</sub>", "f[c<sub>i</sub>]"}}], 16]];
      Print["Approximate root after ", i,
       " iterations is ", NumberForm[c, 16]];
      Print["Function value at approximated root, f[c]=",
       NumberForm[f[c], 16]];]
    f[x_{-}] := Log[1 + x] - Cos[x];
    Plot[f[x], {x, -2, 4}]
    Bisection[0, 1, 10, f];
    -2
Out[ • ]=
```

i	a_i	ci	$b_{\mathtt{i}}$	f[c _i]
0	0.	0.5	1.	-0.4721174537822083
1	0.5	0.75	1.	-0.1720730809383982
2	0.75	0.875	1.	-0.0123881987409511
3	0.875	0.9375	1.	0.06959340715288754
4	0.875	0.90625	0.9375	0.02843589519467271
5	0.875	0.890625	0.90625	0.007981228405989915
6	0.875	0.8828125	0.890625	-0.00221425440755807
7	0.8828125	0.88671875	0.890625	0.002880808814339719
8	0.8828125	0.884765625	0.88671875	0.000332605881430581
9	0.8828125	0.8837890625	0.884765625	-0.000940992314640399
10	0.8837890625	0.88427734375	0.884765625	-0.0003042352019027028

Approximate root after 10 iterations is 0.88427734375

Function value at approximated root, f[c] = -0.0003042352019027028

(2) Find one root of the function $g(x) = x^3 - 5x + 1$, using Bisection Method Perform 12 iterations

$$ln[*]:= g[x_{-}] := x^{3} - 5x + 1;$$

Plot[g[x], {x, 0, 1}]

The root lies in the interval [0,1] now apply Bisection Method on the interval [3,4]

In[•]:=

Bisection[0, 1, 5, g];

i	a_i	$c_{\mathtt{i}}$	$b_{\mathtt{i}}$	f[c _i]
0	0.	0.5	1.	-1.375
1	0.	0.25	0.5	-0.234375
2	0.	0.125	0.25	0.376953125
3	0.125	0.1875	0.25	0.069091796875
4	0.1875	0.21875	0.25	-0.083282470703125
5	0.1875	0.203125	0.21875	-0.007244110107421875

Approximate root after 5 iterations is 0.203125

Function value at approximated root, f[c] = -0.007244110107421875

(3) Find root of the function $f(x) = \cos[x] - xe^x$, using Bisection

Method Perform 5 iterations

$$f[x] := f[x] := Cos[x] - x Exp[x];$$
 $Plot[f[x], \{x, -1, 1\}]$
 $Bisection[0, 1, 5, f];$

i	$a_\mathtt{i}$	Ci	$b_{\mathtt{i}}$	f[c _i]
0	0.	0.5	1.	0.05322192654030866
1	0.5	0.75	1.	-0.856061143585685
2	0.5	0.625	0.75	-0.356690603889921
3	0.5	0.5625	0.625	-0.1412937453091
4	0.5	0.53125	0.5625	-0.04151221167208242
5	0.5	0.515625	0.53125	0.006475340827341247

Approximate root after 5 iterations is 0.515625

Function value at approximated root,f[c]=0.006475340827341247