Sketch Classification

•••

Andrew Bergman 4 November 2019

Agenda

- ❖ Game Background
- Problem Statement
- Preprocessing
- Modeling
- ❖ Evaluation
- Conclusions

Game Background

- Quick, Draw! is a game developed by Google to help with machine learning. Players are prompted to draw 6 items & they are given 20 seconds to draw each item
- Google stores the drawings & makes them open source on their Creative Lab's GitHub

Problem Statement

Image recognition has a wide variety of uses from self-driving cars to interpreting X-rays. Classifying handwritten characters is one of the most common uses & is used everyday in places like the Post Office. However, it is difficult to do correctly because nobody writes, or in our case draws, the same way & misclassification of a character can be significant.

Preprocessing

- Google offers the Quick, Draw! data in various formats
- Their raw files contain metadata we used in EDA
- We decided to use the Numpy bitmap format for modeling
 - The images were resized & centered
- Our preprocessing was minimal: we just had to scale & resize the data
- The data is stored in an S3 bucket for the modeling stage

Modeling

- Convolutional portion: 2x convolutional layers + 1 MaxPool layer
- Dense portion: 2 dense layers
- We made heavy use of regularization:
 - ightharpoonup L₂ was included at each node
 - Dropout & batch normalizing layers were added after each dense layer
 - Early stopping was included when we fit the model
- The model was run in an AWS SageMaker instance

Evaluation

- ❖ The model was evaluated in three ways: metric scores, loss, & accuracy
- ♦ We could not create an ROC curve because we have 3 classes

Evaluation

Sharp improvements but stayed relatively flat

Evaluation

Sharp decrease in loss into the third epoch which then flattened but then increased going into the eighth when the early stopping took effect.

Conclusions

- Our model had okay performance, but has room for growth
- The data is not ideal: Google does not say how to draw the animals.
- If the data were more consistent we would have better performance
- ❖ The images were also small: only 28x28 pixels
- Classifying the images is possible, but the data have to be better