Les données sont D¹

Étude de méthodes de compression sans pertes

Thomas BAGREL

Lycée Henri Poincaré, Nancy

TIPE session 2018

Aperçu

Régularités et gains Théorie zip recursif

Composantes de la compression

Codage

Problème résolu Inefficacité de HUFFMAN - pourquoi

Théorie

Compression des données sans pertes

Théorie

Compression des données sans pertes

exploiter les régularités des données

Théorie

Compression des données sans pertes

- exploiter les régularités des données
- données aléatoires : pas de gain

Théorie

Compression des données sans pertes

- exploiter les régularités des données
- données aléatoires : pas de gain

Théorème. (Entropie de Shannon)

$$H(S) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

H(S) : nb. de bits moyen par symbole de la source

Théorie

Compression des données sans pertes

- exploiter les régularités des données
- données aléatoires : pas de gain

Théorème. (Entropie de Shannon)

$$H(S) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

H(S): nb. de bits moyen par symbole de la source

 une fois les données compressées (dérivées) une fois, plus aucune régularité

zip recursif

Expérience : compresser récursivement un fichier avec le même algorithme (zip)

zip recursif

Expérience : compresser récursivement un fichier avec le même algorithme (zip)

Composantes de la compression

(Transformée)

Composantes de la compression

Composantes de la compression

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

ightharpoonup Si les p_i sont connus, la limite de compression théorique est donnée par Shannon

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

- Si les p_i sont connus, la limite de compression théorique est donnée par Shannon
- ► Huffman permet d'approcher cette limite

Problème résolu

Le codage, contrairement aux apparences, est un problème résolu

- Si les p_i sont connus, la limite de compression théorique est donnée par Shannon
- ► Huffman permet d'approcher cette limite
- ► Le codage arithmétique l'atteint

Problème résolu

Problème résolu

Problème résolu

Problème résolu

Problème résolu

Inefficacité de HUFFMAN - pourquoi

En pratique, efficacité de 30 %

Inefficacité de HUFFMAN - pourquoi

En pratique, efficacité de 30 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

Inefficacité de HUFFMAN - pourquoi

En pratique, efficacité de 30 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

▶ un symbole n'est pas indépendant des précédents

Inefficacité de HUFFMAN - pourquoi

En pratique, efficacité de 30 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

- un symbole n'est pas indépendant des précédents
- ▶ par exemple, en Français, q→u est plus fréquent que q→z

Inefficacité de HUFFMAN - pourquoi

En pratique, efficacité de 30 %

En appliquant directement Shannon aux fréquences d'apparition, on commet des erreurs

- un symbole n'est pas indépendant des précédents
- ▶ par exemple, en Français, q→u est plus fréquent que q→z
- en quelque sorte, on oublie le caractère lipschitzien de nos données

Il faut donc un modèle