Lecture-33

Hashing Functions

Choosing a good hashing function, h(k), is essential for hash-table based searching. h should distribute the elements of our collection as uniformly as possible to the "slots" of the hash table. The key criterion is that there should be a minimum number of collisions.

If the probability that a key, \mathbf{k} , occurs in our collection is $\mathbf{P}(\mathbf{k})$, then if there are \mathbf{m} slots in our hash table, a *uniform hashing function*, $\mathbf{h}(\mathbf{k})$, would ensure:

$$\sum_{k|h(k)=0} P(k) = \sum_{k|h(k)=1} P(k) = \dots = \sum_{k|h(k)=m-1} P(k) = \frac{1}{m}$$

Sometimes, this is easy to ensure. For example, if the keys are randomly distributed in $(0,\mathbf{r}]$, then,

h(k) = floor((mk)/r)

will provide uniform hashing.

Mapping keys to natural numbers

Most hashing functions will first map the keys to some set of natural numbers, say (0,r]. There are many ways to do this, for example if the key is a string of ASCII characters, we can simply add the ASCII representations of the characters mod 255 to produce a number in (0,255) - or we could **xor** them, or we could add them in pairs mod 2^{16} -1, or

. . .

Having mapped the keys to a set of natural numbers, we then have a number of possibilities.

1. Use a **mod** function:

$h(k) = k \mod m$.

When using this method, we usually avoid certain values of \mathbf{m} . Powers of 2 are usually avoided, for \mathbf{k} mod $\mathbf{2}^{\mathbf{b}}$ simply selects the \mathbf{b} low order bits of \mathbf{k} . Unless we know that all the $\mathbf{2}^{\mathbf{b}}$ possible values of the lower order bits are equally likely, this will not be a good choice, because some bits of the key are not used in the hash function.

Prime numbers which are close to powers of 2 seem to be generally good choices for **m**.

For example, if we have 4000 elements, and we have chosen an overflow table organization, but wish to have the probability of collisions quite low, then we might choose $\mathbf{m} = 4093$. (4093 is the largest prime less than $4096 = 2^{12}$.)

- 2. Use the multiplication method:
 - \circ Multiply the key by a constant **A**, 0 < A < 1,
 - Extract the fractional part of the product,
 - Multiply this value by m.

Thus the hash function is:

h(k) = floor(m * (kA - floor(kA)))

In this case, the value of **m** is not critical and we typically choose a power of 2 so that we can get the following efficient procedure on most digital computers:

- \circ Choose **m** = 2^p .
- Multiply the w bits of k by floor(A * 2w) to obtain a 2w bit product.
- Extract the **p** most significant bits of the lower half of this product.
 It seems that:

A = (sqrt(5)-1)/2 = 0.6180339887

is a good choice (see Knuth, "Sorting and Searching", v. 3 of "The Art of Computer Programming").

3. Use universal hashing:

A malicious adversary can always chose the keys so that they all hash to the same slot, leading to an average **O(n)** retrieval time. Universal hashing seeks to avoid this by choosing the hashing function randomly from a collection of hash functions (*cf* Cormen *et al*, p 229-). This makes the probability that the hash function will generate poor behaviour small and produces good average performance.