Задача А. «Четверта вершина прямокутника»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу: 1 сек

Результати: Або екран, або output txt Обмеження пам'яті: 64 мегабайти

Знаючи координати трьох вершин прямокутника на координатній площині, визначити координати четвертої вершини. Сторони прямокутника <u>не</u> зобов'язані бути паралельні вісям координат. Три вершини <u>не</u> обов'язково задані підряд (пропущена вершина може бути як після них, так і де завгодно всере́дині).

Вхідні дані. В одному рядку записані шість чисел — координати трьох вершин прямокутника (спочатку x та y однієї вершини, потім x та y іншої, потім x та y ще однієї). Числові значення координат цілі, абсолютна величина (модуль) кожного не перевищує 100.

Результати. Виведіть в одному рядку через пропуск (пробіл) два числа́ — координати четвертої вершини прямокутника.

Aбо клавіатура, або input.txt	Або екран, або output.txt
-2 3 4 3 4 -1	-2 -1
-1 2 0 0 6 3	5 5

Задача В. «Трикутник і точка»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу: 1 сек

Результати: Або екран, або output.txt Обмеження пам'яті: 64 мегабайти

Задано (координатами вершин) трикутник ABC і точку D. Визначити розміщення точки відносно трикутника, а са́ме: вивести "In", якщо точка лежить сторого всере́дині трикутника; "Edge", якщо точка лежить на стороні; "Vertex", якщо точка лежить на вершині; "Out", якщо точка лежить поза трикутником.

Вхідні дані. Чотири рядки по 2 цілих числа, що не перевищують по модулю $10\,000\,000$.

Перші три рядки — координати вершин трикутника $A,\,B,\,C$. Четвертий — координати точки O.

Результати. Відповідь до задачі ("In", "Edge", "Vertex" aбо "Out").

Aбо клавіатура, або input.txt	Або екран, або output.txt
-2 -2	In
3 1	
0 1	
0 0	

Задача С. «Спільні дотичні-1»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу: 1 сек

Результати: Або екран, або output txt Обмеження пам'яті: 64 мегабайти

Як відомо, дотичною до кола є пряма, яка має рівно одну спільну точку з цим колом. Можлива ситуація, коли одна й та сама пряма є дотичною відразу до двох кіл. Тоді вона називається спільною дотичною. Напишіть програму, яка знаходитиме кількість різних спільних дотичних для заданих двох кіл. При виведенні врахуйте стародавню традицію приписувати числу 7 значення «багато». Тобто, коли кількість спільних дотичних строго більша 6, незалежно від справжньої кількості виводьте 7.

Вхідні дані. Шість цілих чисел, розділених пропусками (пробілами) X1, Y1, R1, X2, Y2, R2 — відповідно координати центра і радіуси 1-го і 2-го кола. Для всіх координат, абсолютна величина (модуль) не перевищує мільйон. Для обох радіусів, значення у межах від 1 до мільйона (обидві межі включно).

Результати. Програма виводить єдине число — шукану кількість, з урахуванням згаданої стародавньої традиції.

Або клавіатура, або input.t	t Або екран, або output.txt
20 0 4 50 0 10	4

Задача D. «Спільні дотичні–2»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу:

Результати: Або екран, або output.txt Обмеження пам'яті: 64 мегабайти

Як відомо, дотичною до кола є пряма, яка має рівно одну спільну точку з цим колом. Можлива ситуація, коли одна й та сама пряма ϵ дотичною відразу до двох кіл. Тоді вона називається спільною дотичною. Напишіть програму, яка знаходитиме спільні дотичні для заданих двох кіл. При виведенні врахуйте стародавню традицію приписувати числу 7 значення «багато». Тобто, коли кількість спільних дотичних строго більша 6, незалежно від справжньої кількості виводьте будь-які сім з усіх можливих спільних дотичних.

Вхідні дані. Шість цілих чисел, розділених пропусками (пробілами) X1, Y1, R1,X2, Y2, R2 — відповідно координати центра і радіуси 1-го і 2-го кола. Для всіх координат, абсолютна величина (модуль) не перевищує мільйон. Для обох радіусів, значення у межах від 1 до мільйона (обидві межі включно).

Результати. Програма виводить у першому рядку єдине число K — кількість шуканих спільних дотичних (з урахуванням згаданої стародавньої традиції); далі повинно йти рівно K рядків, кожен з яких повинен містити чотири дійсні числа́ — координати двох різних точок з відповідної дотичної (спочатку x- та y-координати однієї точки, потім x- та y-координати іншої).

Відповідь зараховуватиметься, коли виконуватимуться всі вимоги:

- 1. Кількість спільних дотичних знайдено правильно (з урахуванням вказаної стародавньої традиції).
- 2. Кожна дотична описується двома помітно різними точками (відстань між двома точками, що задають одну дотичну, не менша 1).
- 3. Пряма, що проходить через кожну з пари точок, або справді є дотичною (має рівно одну спільну точку з колом), або є добрим наближенням до дотичної (або проходить поза колом на відстані не більш як 10^{-6} від нього, або заходить всере́дину кола так, що довжина частини цієї прямої всере́дині цього кола не перевищує однієї мільйонної від радіуса цього кола).
- 4. Кожен з K рядків, що описують дотичні, описує свою власну дотичну, відмінну від інших; формально кажучи, якщо взяти j-й та k-й рядки $(j \neq k)$, де дотичні задані точками A_j , B_j та A_k , B_k , то повинно виконуватися

$$((dist(A_j, A_k B_k) \geqslant 0.1) \text{or}(dist(B_j, A_k B_k) \geqslant 0.1))$$

$$((dist(A_k, A_iB_i) \geqslant 0.1) \text{or}(dist(B_k, A_iB_i) \geqslant 0.1))$$

 $((dist(A_k,A_jB_j)\geqslant 0.1) {\tt or}(dist(B_k,A_jB_j)\geqslant 0.1))$ де dist — відстань від точки до прямої, що рахується уздовж перпендикуляру; смисл усього виразу разом узятого — хоча б одна з двох точок, які задають пряму, знаходиться на відстані хоча б 0,1 від іншої прямої.

•	
Вхідні дані	Результати
20 0 4 50 0 10	4
	48 -9.79795897113 19.2 -3.91918358845
	48 9.79795897113 19.2 3.91918358845
	45.333333333 -8.84433277428 21.8666666667 3.53773310971
	45.333333333 8.84433277428 21.8666666667 -3.53773310971

Задача Е. «Годинник на сканері»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу: 1 сек

Результати: Або екран, або output.txt Обмеження пам'яті: 64 мегабайти

Секундна стрілка годинника переміщуєтся стрибками, тобто протягом секунди нерухома, а потім дуже швидко повертає на $\frac{1}{60}$ повного оберту. Стрілка являє собою тонкий відрізок довжини d мм, що виходить з центру годинника. Годинник поклали на сканер, орієнтувавши звичайним чином (позначка "12" згори) й підібрали параметри сканування так, що:

- 1. Сканування запускається відразу після того, як секундна стрілка виконала черговий стрибок і почала показувати s секунд.
- 2. Область сканування вибрана як квадрат розмірами 2d мм \times 2d мм, так, що вона в точності охоплює круг, який покриває секундна стрілка.
- 3. Сканер за (кожну) 1 с встигає отримати прямокутне зображення висотою рівно k мм (та шириною 2d мм, тобто в усю область сканування).
- 4. Роздільча здатність сканера досить висока, щоб можна було знехтувати дискретністю зображень всере́дині кожної k-міліметрової смужки й рахувати відстані за звичайними геометричними формулами.

Знайдіть сумарну довжину зображень секундної стрілки в отриманій картинці (зображення інших елементів годинника не створюють проблем, бо секундна стрілка має зовсім інший колір).

Вхідні дані. Три цілі числа: k (висота області, яку сканують за 1 с), d (довжина стрілки) та s (скільки секунд почала показувати стрілка у момент початку сканування.

 $1\leqslant k\leqslant 50$, $0.75k\leqslant d\leqslant 100k$, відношення $\frac{d}{k}$ гарантовано не є цілим числом, $0\leqslant s<60$.

Результати. Єдине дійсне число l — сумарну довжину зображень секундної стрілки.

Відповідь буде зарахована, якщо відносна або абсолютна похибка (хоча б одна з них) не перевищить 10^{-6} .

Або клавіатура, або input.txt	Aбо екран, або output.txt
36 90 10	103.994544

Задача F. «Відстань від точки до відрізка»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу:

Результати: Або екран, або output.txt Обмеження пам'яті: 64 мегабайти

Дано точку P з координатами $Px\ Py$ та відрізок AB, кінці якого мають координати $Ax\ Ay$ та $Bx\ By$. Відрізок гарантовано не вироджений, тобто A та B — різні точки.

Напишіть програму, яка знаходитиме відстань між точкою P та відрізком AB.

Примітка. Відстань між точкою та відрізком слід трактувати згідно зі стандартним означенням відстані між точкою та складним геометричним об'єктом: якщо точка належить цьому об'єкту, відстань рівна нулю; якщо не належить, відстань рівна довжині найкоротшого з можливих відрізків, для яких одним з кінців є дана точка, а інший кінець належить цьому об'єкту.

Вхідні дані. слід прочитати зі стандартного входу (клавіатури), у форматі $Px\ Py\ Ax\ Ay\ Bx\ By$ (в одному рядку). Всі координати цілі й не перевищують по модулю 10000.

Результати. Вивести єдине число — знайдену відстань від точки до відрізка. Виводити можна хоч у експоненційній формі, хоч стандартним десятковим дробом. Результат зараховується, коли похибка (абсолютна або відносна, тобто хоча б одна з них) не перевищує 10^{-6} .

Або клавіатура,	або input.txt	Або екран, або output.txt
0 4 2 3 2 5		2.0

Задача G. «Площа простого многокутника»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу: 1 сек

Результати: Або екран, або output.txt Обмеження пам'яті: 64 мегабайти

Многокутник на площині задано цілочисельними координатами N вершин. Потрібно знайти його площу.

Многокутник простий, тобто його сторони не перетинаються і не дотикаються (за винятком сусідніх, у вершинах), але він не обов'язково опуклий.

Вхідні дані. слід прочитати зі стандартного входу (клавіатури). У першому рядку задано кількість вершин N ($1 \leqslant N \leqslant 50000$). У наступних N рядках записані пари чисел — координати вершин. Сторони многокутника — відрізки між 1-ою і 2-ою, 2-ою і 3-ьою, . . . , (N-1)-ою і N-ою, N-ою і 1-ою вершинами. Значення координат — цілі числа, не перевищують по модулю мільйон.

Результати. Вивести єдине число — знайдену площу многокутника. Виводити можна хоч у експоненційній формі, хоч стандартним десятковим дробом. Результат зараховується, коли похибка (абсолютна або відносна, тобто хоча бодна з них) не перевищує 10^{-6} .

Або	клавіатура,	або	input.txt	Або	екран,	або	output.txt
4				3.5			
0 4							
0 0							
3 0							
1 1							

Задача Н. «Чи є маршрут приємним?»

Вхідні дані: Або клавіатура, або input.txt Обмеження часу: 1 сек

Результати: Або екран, або output txt Обмеження пам'яті: 64 мегабайти

Туристу набридло подорожувати уздовж координатної вісі, тому він вирішив помандрувати ще по координатній площині. Він розпочинає зі своєї бази в точці A_1 з координатами (x_1,y_1) , рухається найкоротшим маршрутом до визначної пам'ятки A_2 з координатами (x_2,y_2) , далі, не зупиняючись, рухається найкоротшим маршрутом до визначної пам'ятки A_3 з координатами (x_3,y_3) , і так далі. Дійшовши до останньої визначної пам'ятки A_n з координатами (x_n,y_n) , він, не зупиняючись, рухається до своєї бази. Турист вважає свій маршрут неприємним, якщо існує така пряма, що він уздовж неї не рухався, і разом з тим перетинав її строго більше двох разів. Якщо маршрут не є неприємним, турист вважає його приємним.

Турист вважає, що перетинав пряму, якщо в деякий момент часу перебував у одній півплощині відносно неї, а через деякий проміжок часу — в іншій півплощині (сама пряма не належить жодній з півплощин).

Напишіть програму, яка, прочитавши описи кількох маршрутів, визначить, чи приємний кожен з них.

Вхідні дані. Програма повинна прочитати спочатку кількість маршрутів K ($2 \leqslant K \leqslant 12$), потім K однотипних блоків, кожен з яких описує маршрут. Кожен блок опису маршруту починається числом n ($2 \leqslant n \leqslant 98765$), далі йдуть n пар цілих чисел, що не перевищують 10^8 за абсолютною величиною — координати $x_1 \ y_1 \ x_2 \ y_2 \dots x_n \ y_n$. Всі числа всіх маршрутів записані в одному рядку й розділені одинарними пробілами. Сумарна кількість всіх вершин усіх маршрутів, які програма має обробити за один запуск, не перевищуватиме 123456.

Результати. Програма повинна вивести у один рядок K розділених пробілами нулів та/або одиниць, які позначають, приємними (1) чи неприємними (0) були відповідні маршрути.

Г	Вхідні дані									Результати													
	2 3	0	0	4	0	4	3	7	0	3	0	0	2	0	3	1	4	0	5	0	3	4	1 0

