

ASLINAKLI: Unmasking Deepfakes One Click At a Time

Authors: Satvik Karan, Sargam Tyagi

Affiliation: Department of Computer Science and Engineering, Bennett University

An advanced approach to detect deepfakes by integrating text and image analysis.

Motivation & Problem Statement

Threat to Society

Fake news and deepfakes undermine democracy

Limitations

Traditional methods focus on single modality only

Goal

Develop multimodal system combining text and image

Dataset: Fakeddit

Size

20,000 labeled posts combining text + images

M

Modalities

Both textual and visual content per post

Labels

6 categories for multi-class classification

Text Preprocessing

Models

- MPNet-base-v2
- DistilRoBERTa-v1

Embedding

- 768-dimensional vectors
- Mean pooling or [CLS] token

Objective

Capture deep semantic text relationships

Image Preprocessing

Primary Model

ResNet-152 pretrained on ImageNet

Techniques

- Resizing & Normalization
- Random cropping
- Horizontal flipping

Alternative

Vision Transformer (ViT) captures global context

Model Selection Rationale

Text Encoders

- MPNet: rich semantics, high accuracy
- DistilRoBERTa: lightweight, efficient

Image Encoders

- ResNet-152: detailed CNN feature extraction
- ViT: attention-based, models long-range

Gated Fusion

Tor rurge tun-lihe yount lobosf des b.3hi gliup, spean au watical dy. dupedsint fay tyour orrpap.

Core Innovation – Gated Fusion Mechanism

Challenge

Simple concatenation ignores input quality variability

Approach

Gated fusion learns importance weights per modality dynamically

Mechanism

Sigmoid gate combines embeddings into unified vector

Full Model Architecture

Encoders

- Text: MPNet/DistilRoBERTa → 768D
- Image: ResNet-152/ViT → 300-512D

Fusion & Projection

- Projection layer aligns modalities
- Gated fusion module adapts weights

Classifier

Dense layers with dropout for 6 classes

Execution Pipeline

1

Step 1

Extract Text/Image Embeddings

2

Step 2

Project to common dimensional space

3

Step 3

Fuse via gated mechanism

4

Step 4

Classify into 6 categories

5

Step 5

Train with Adam optimizer & CrossEntropyLoss

6

Framework

PyTorch Lightning for scalable training

Results & Observations

Accuracy

Outperforms unimodal baselines significantly

Robustness

Effective across diverse fake news conditions

Adaptability

Real-time, deployable in lightweight & high-fidelity settings