Feuille d'exercices 5 : Calcul algébrique

1 Sommes

Exercice 1. Soit (y_k) une suite de nombres complexes telle que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} y_k = n(n+1)$.

Soit $n \in \mathbb{N}$, déterminer les valeurs de :

$$S_1 = \sum_{k=0}^{3} y_k$$
 $S_2 = \sum_{k=0}^{n+2} y_k$ $S_3 = \sum_{k=0}^{2n} y_k$ $S_4 = \sum_{k=0}^{n} 3y_k$ $S_5 = \sum_{k=n+4}^{2n} y_k$

Exercice 2. Soit $n \in \mathbb{N}$ et $x \in \mathbb{R}$. Calculer les sommes suivantes :

$$A_n = \sum_{k=0}^{n} (-1)^k \qquad B_n = \sum_{i=2}^{n} \frac{2^i}{3^{i+1}} \qquad C_n = \sum_{k=0}^{n} (2k+1) \qquad D_n = \sum_{k=0}^{n} 2^{2k} \qquad E_n = \sum_{k=4}^{n} 3^{2k} = \sum_{k=1}^{n} 3^{2k} = \sum_{k=1}^{n$$

$$F_n = \sum_{k=0}^{n} (2^k + 4k + n - 3) \qquad H_n(x) = \sum_{k=1}^{n} kx^{k-1} \qquad I_n = \sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right) \qquad J_n = \sum_{k=0}^{n} \frac{k}{(k+1)!}$$

Exercice 3. Soit $n \geq 2$.

1. Pour tout $p \in \mathbb{N}$, simplifier l'expression : $(p+1)^2 - p^2$

2. En déduire une expression plus simple de $\sum_{n=1}^{n} \frac{2p+1}{(p^2+p)^2}$

Exercice 4. Soit $n \in \mathbb{N}^*$.

1. (a) Déterminer $(a, b, c) \in \mathbb{R}^3$ tels que : $\forall k \in \mathbb{N}^*$, $\frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$

(b) Exprimer
$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$$

1. Montrer que pour tout $x \in \mathbb{R}^*$, $\operatorname{ch}(x) = \frac{\operatorname{sh}(2x)}{2\operatorname{sh}(x)}$

2. Soit $x \in \mathbb{R}$. Simplifier $u_n = \prod_{n=1}^{n} \operatorname{ch}\left(\frac{x}{2^k}\right)$ pour $n \in \mathbb{N}$.

3. En déduire la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 6. Soit $a \in \mathbb{R}$ telle que les quantités ci-dessous existent :

1. Calculer $\frac{1}{\tan a} - \frac{2}{\tan 2a}$ en précisant l'ensemble de validité.

2. Simplifier $\sum_{k=1}^{n} 2^k \tan(2^k a)$, avec $n \in \mathbb{N}$.

Exercice 7. Calculer par regroupement de termes les sommes suivantes :

$$A_n = \sum_{k=0}^{2n} \min(k, n)$$
 $B_n = \sum_{k=0}^{2n} (-1)^k k^2$

Exercice 8. Montrer que : 1. $\forall n \in \mathbb{N}^*, 2^{n-1} \leq n! \leq n^n$

2.
$$\forall n \in \mathbb{N}^*, (n+1)! \ge \sum_{k=1}^{n} k!$$

3.
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k \cdot k! = (n+1)! - 1$$

2 **Produits**

Exercice 9. Soit $n \in \mathbb{N}$. Calculer :

$$\prod_{k=-1000}^{1000} k \ln(1+|k|) \qquad \prod_{k=0}^{n} 2^{k} \qquad \prod_{k=1}^{n} \left(1+\frac{1}{k}\right) \qquad \prod_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} (i \times j) \qquad \prod_{k=2}^{n} \left(1-\frac{1}{k^{2}}\right)$$

Exercice 10. Soit $n \in \mathbb{N}^*$.

- 1. Exprimer $\prod_{k=1}^{n} (2k)$ et $\prod_{k=1}^{n} (2k-1)$ en fonction de n.
- 2. Montrer que : $\forall n \in \mathbb{N}^*$, $\prod_{k=1}^{n} (n+k) = 2^n \prod_{k=1}^{n} (2k-1)$
- **Exercice 11.** Soit $n \ge 2$. Simplifier l'expression : $\prod_{p=1}^{n} \frac{(2p+1)(2p-1)}{(2p+3)(2p+5)}$
- **Exercice 12.** Montrer que pour tout $n \in \mathbb{N}^*$, $\prod_{k=1}^n (k^k \times k!) = (n!)^{n+1}$.

Exercice 13. Soit $n \in \mathbb{N}^*$, soient $a_1, \ldots, a_n \in [1, +\infty[$. Montrer que :

$$\prod_{i=1}^{n} (1 + a_i) \le 2^{n-1} (1 + \prod_{i=1}^{n} a_i).$$

3 Coefficients binomiaux et binôme de Newton

Exercice 14. Déterminer tous les $(n, p) \in \mathbb{N}^* \times \mathbb{N}^*$ avec p < n tels que :

$$\left\{ \begin{array}{l} \binom{n}{p} = \binom{n}{p+1} \\ 4\binom{n}{p} = 5\binom{n}{p-1} \end{array} \right.$$

- Exercice 15. Soit $N \in \mathbb{N}^*$. 1. En remarquant que $\sum_{n=1}^{N+1} n^3 = \sum_{n=0}^{N} (n+1)^3$, déduire la valeur de : $\sum_{n=0}^{N} n^2$.
 - 2. Par la même méthode , calculer $\sum n^3$

Exercice 16. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^{n-1} (k+1) \frac{\binom{n}{k+1}}{\binom{n}{k}}$

Exercice 17. Soit $n \in \mathbb{N}^*$. Calculer:

$$\sum_{k=0}^{n} \binom{n}{k} 2^k \qquad \sum_{k=0}^{n} \binom{n}{k} 3^{\frac{k}{2}} \qquad \sum_{k=0}^{n} \binom{n}{k} 3^{k+1}$$

Exercice 18. Soit $n \in \mathbb{N}^*$.

1. En utilisant la fonction polynomiale $f: x \mapsto (1+x)^n$, calculer les sommes suivantes :

$$\sum_{k=0}^n k \binom{n}{k} \qquad \sum_{k=0}^n (-1)^k k \binom{n}{k} \qquad \sum_{k=0}^n \frac{\binom{n}{k}}{k+1} \qquad \sum_{k=0}^n k^2 \binom{n}{k}$$

2

2. Retrouver la valeur de la première somme en utilisant une autre méthode. On pourra chercher à réécrire différemment $k\binom{n}{k}$ pour $k \in [0, n]$.

Exercice 19. Pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=0}^n \binom{2n+1}{k}$.

- 1. En effectuant le changement d'indice j = 2n + 1 k, déterminer une autre expression de S_n .
- 2. En déduire la valeur de $2S_n$, puis celle de S_n .

Exercice 20. Soit $p \in \mathbb{N}$.

- 1. En utilisant un télescopage, démontrer que pour tout entier $n \ge p$, $\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}$
- 2. A l'aide de cette formule, retrouver les valeurs des sommes classiques : $\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^2$

Exercice 21. Pour $n \in \mathbb{N}^*$, on pose $A_n = \sum_{\substack{0 \le k \le n \\ k \text{ pair}}} \binom{n}{k}$ et $B_n = \sum_{\substack{0 \le k \le n \\ k \text{ impair}}} \binom{n}{k}$

Calculer $A_n + B_n$ et $A_n - B_n$, en déduire A_n et B_n .

Exercice 22. Soient $n, p, q \in \mathbb{N}$ tels que $p \ge n + q + 1$. Montrer que :

$$\sum_{k=0}^{n} \binom{p-k}{q} = \binom{p+1}{q+1} - \binom{p-n}{q+1}.$$

Exercice 23. On considère la suite définie par :

$$S_0 = 1$$
 et : $\forall n \in \mathbb{N}, \ S_{n+1} = \sum_{k=0}^{n} \binom{n}{k} S_k$

Montrer que : $\forall n \in \mathbb{N}, S_n \leq n!$

4 Sommes doubles

Exercice 24. Soit $n \in \mathbb{N}^*$, On admettra que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$. Calculer les sommes suivantes.

On admettra que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

$$A_n = \sum_{i=0}^n \sum_{j=0}^n 2^{2i-j} \qquad B_n = \sum_{1 \le i < j \le n} 2^j \qquad C_n = \sum_{j=1}^n \sum_{i=j}^n \frac{j}{in} \qquad D_n = \sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} (i+j) \qquad E_n = \sum_{1 \le i < j \le n} (i+j)$$

$$F_n = \sum_{0 \le i < j \le n} \min(i, j) \qquad G_n = \sum_{1 \le i \le j \le n} 2^{i+j} \qquad H_n = \sum_{0 \le k \le l \le n} \binom{l}{k} \qquad I_n = \sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} ij$$

Exercice 25. Soit $n \in \mathbb{N}^*$. On admettra que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.

- 1. Calculer $\sum_{i,j\in \llbracket 1,n\rrbracket} \min(i,j)$ où $\min(i,j)$ désigne le minimum de i et j.
- 2. En déduire : $\sum_{i,j\in \llbracket 1,n\rrbracket} \max(i,j) \text{ où } \max(i,j) \text{ désigne le maximum de } i \text{ et } j.$
- 3. En déduire $\sum_{i,j\in [\![1,n]\!]}^{i,j\in [\![1,n]\!]} |i-j|$

Exercice 26. Soit $n \in \mathbb{N}$, calculer : $\sum_{k=0}^{n} \sum_{i=k}^{n} \binom{n}{i} \binom{i}{k}$.

Exercice 27. Soit $n \in \mathbb{N}$.

- 1. Vérifier que $\sum_{k=1}^n k2^k = \sum_{k=1}^n \sum_{l=1}^k 2^k.$
- 2. En déduire la valeur de $\sum_{k=1}^{n} k2^k$.