Seminar 1-2. Sequences and series of real numbers.

Sequences of real numbers

Definition 1

A sequence $(x_n)_{n \in \mathbb{N}} : x_0, x_1, x_2, ..., x_n, x_{n+1}, ...$ is called:

- increasing if $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$;
- decreasing if $x_{n+1} \leq x_n$ for all $n \in \mathbb{N}$.

A sequence is **monotonic** if it is either increasing or decreasing.

Remark 1

If the sequence $(x_n)_{n\in\mathbb{N}}$ has strictly positive terms then it is:

- increasing if $\frac{x_{n+1}}{x_n} \ge 1$ for all $n \in \mathbb{N}$;
- decreasing if $\frac{x_{n+1}}{x_n} \le 1$ for all $n \in \mathbb{N}$.

Definition 2

The sequence $(x_n)_{n\in\mathbb{N}}$ is **bounded** if there exist two finite numbers m and M such that

$$m \leq x_n \leq M$$
.

Remark 2

The sequence $(x_n)_{n\in\mathbb{N}}$ is **bounded** if there exists an M>0 such that $|x_n|\leq M$.

Remark 3

Any **monotonic** and **bounded** sequence is **convergent**. The reverse implication is not true.

Definition 3

The sequence $(x_n)_{n\in\mathbb{N}}$ is **convergent**(has finite limit) if there exists $x\in\mathbb{R}$ such that for all $\epsilon>0$ exist $N=N(\epsilon)\in\mathbb{N}:|x_n-x|<\epsilon$ for all $n\geq N$. In this case, we denote by $x=\lim_{n\to\infty}x_n$.

Proposition 1 - Squeezing theorem

Let be (x_n) a sequence of real numbers. If there exist two sequences $(a_n)_{n\geq n_0}$ and $(b_n)_{n\geq n_0}$ with

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x,$$

such that

$$a_n \le x_n \le b_n, \quad n \ge n_0,$$

then the sequence (x_n) has limit and

$$\lim_{n \to \infty} x_n = x.$$

Proposition 2 - Ratio test

Let be (x_n) a positive sequence of real numbers such that there exists

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=l\in[0,\infty].$$

- 1. If l < 1 then $\lim_{n \to \infty} x_n = 0$.
- 2. If l > 1 then $\lim_{n \to \infty} x_n = \infty$.

Proposition 3 - Root test

Let be (x_n) a positive sequence of real numbers. If there exists

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = x \in [0, \infty],$$

then

$$\lim_{n \to \infty} \sqrt[n]{x_n} = x.$$

Proposition 4 - Stolz-Cesaro lemma

Let be $x_n = \frac{a_n}{b_n}$ cu $a_n, b_n \in \mathbb{R}$ and $b_n \neq 0, n \in \mathbb{N}$. If:

- (b_n) is a strictly monotonically sequence,
- $b_n \to \infty$ or $a_n \to 0$, $b_n \to 0$,
- · there exists

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=x\in\mathbb{R}\cup\{\pm\infty\},$$

then

$$\lim_{n\to\infty} x_n = x.$$

Definition 4

A sequence (x_n) is a Cauchy sequence or fundamental sequence if and only if for all $\epsilon>0$ there exist $n_0=n_0(\epsilon)\in\mathbb{N}$ such that

$$|x_m - x_n| < \epsilon,$$

for all $m, n \geq n_0$.

Proposition 5

If there exist a sequence of nonnegative real numbers $(a_n)_{n\geq n_0}$ with $a_n\to 0$ such that

$$|x_{n+p} - x_n| \le a_n,$$

for all $n \ge n_0$ and $p \in \mathbb{N}^*$, then (x_n) is a Cauchy sequence.

Theorem 1 - Cauchy's general criterion for convergence of sequences

The sequence (x_n) of real numbers is convergent if and only if (x_n) is a Cauchy sequence.

Series of real numbers

Definition 1

For any sequence $(x_n)_{n\geq n_0}$ we associate a sequence $(S_n)_{n\geq n_0}$, defined by

$$S_n = x_{n_0} + x_{n_0+1} + \dots + x_n, \quad n \ge n_0.$$

The pair of sequences $((x_n), (S_n))$ is called **series** of real numbers with the **general term** of the series x_n and we denote by $\sum_{n\geq n_0} x_n$. The sequence $(S_n)_{n\geq n_0}$ is called **the sequence of partial sums** associated to the series $\sum_{n\geq n_0} x_n$.

Definition 2

A series $\sum_{n} x_n$ is called **convergent** if the sequence of partial sums (S_n) is convergent, it means that there exists a real number $S \in \mathbb{R}$ such that

$$\lim_{n \to \infty} S_n = S.$$

If a series is not convergent then it is divergent.

If there exist the limit S of the sequence $(S_n)_{n\geq n_0}$ it is called the **sum of the series** $\sum_{n\geq n_0} x_n$ and we denote

by
$$\sum_{n=n_0}^{\infty} x_n$$
.

Example 1 - Geometric series

Let be r a fixed real number. The series

$$\sum_{n>0} r^n$$

is convergent if and only if $r \in (-1,1)$. If it is convergent, then the sum of the series is

$$\sum_{n\geq 0} r^n = \frac{1}{1-r}.$$

The number r is called the **ratio** of geometric series.

Example 2 - Generalized harmonic series

The series

$$\sum_{n\geq 1} \frac{1}{n^{\alpha}}, \quad \alpha > 0$$

is divergent if $\alpha \leq 1$ and it is convergent if $\alpha > 1$.

Proposition 1 - Divergence test

If the sequence (x_n) has a nonzero limit or it does not have limit, then the series $\sum_n x_n$ is divergent.

Proposition 2 - Leibniz test

If (α_n) is a sequence of positive real numbers monotonically decreasing and convergent to zero, then the series $\sum_{n} (-1)^n \alpha_n$ is convergent.

Exercises

1. Study the monotony of the following sequences:

(a)
$$x_n = \frac{n-1}{n}, \quad n \in \mathbb{N}^*;$$

(c)
$$x_n = \frac{n+2}{3^n}, \quad n \in \mathbb{N};$$

(b)
$$x_n = \frac{5n-1}{5n}, n \in \mathbb{N}^*;$$

(d)
$$x_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n+2)}, \quad n \in \mathbb{N}.$$

- 2. Using definition show that the sequence $x_n = \frac{2n-1}{2n+1}$, $n \ge 1$ converge at x = 1.
- 3. Compute the limits of the following sequences:

(a)
$$\lim_{n\to\infty} \frac{\cos n}{4^n}$$
, $n\in\mathbb{N}$;

(d)
$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}$$
, $n\in\mathbb{N}^*$;

(b)
$$\lim_{n\to\infty} \frac{n^2}{4^n}$$
, $n\in\mathbb{N}$;

(e)
$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{\ln 2} + \frac{1}{\ln 3} + \dots + \frac{1}{\ln n} \right), \quad n \in \mathbb{N}^*;$$

(c)
$$\lim_{n \to \infty} \frac{a^n}{n!}$$
, $a \in \mathbb{N}^*$;

(f)
$$\lim_{n \to \infty} \left(\frac{n+3}{n+1}\right)^{n-2}$$
, $n \in \mathbb{N}$.

4. Use the Cauchy's general criterion for convergence to show the convergence of the sequences:

(a)
$$x_n = \frac{\sin x}{2} + \frac{\sin 2x}{2^2} + \dots + \frac{\sin nx}{2^n}, \quad n \ge 1;$$

(b)
$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$
.

5. Using the sequence of partial sums, study the convergence of the series:

(a)
$$\sum_{n>1} \frac{1}{n(n+1)}$$
;

(b)
$$\sum_{n>1} \ln(1+\frac{1}{n});$$

(c)
$$\sum_{n>0} \left[\arctan(n+1) - \arctan n \right]$$
.

6. Study the convergence of the following series:

(a)
$$\sum_{n>1} \ln \frac{3n+1}{n+1}$$
;

(e)
$$\sum_{n\geq 1} (-1)^n \frac{1}{n^2}$$
;

(b)
$$\sum_{n\geq 1} \frac{1}{\sqrt[n]{n}};$$

(f)
$$\sum_{n>1} (-1)^n \frac{1}{\ln n}$$
;

(c)
$$\sum_{n>1} \frac{n}{(n+1)!}$$
;

(g)
$$\sum_{n>1} (-1)^n \frac{1}{n^2 + (-1)^n}$$
.

(d) $\sum_{n\geq 2} \ln\left(1-\frac{1}{n^2}\right);$