

These slides are based upon those from Dr. Vincent Ng and from the Dix et al. text.

In this lecture

- You will learn
 - Reasons for formal dialog specification
 - Be able to use STNs and Regular Expressions to specify a dialog
 - Be able to conduct checks for completeness, reversibility and dangerous states with dialogs
 - Know about other methods for dialog specifications

what is dialogue?

- conversation between two or more parties
 - usually cooperative
- in HCI:
 - syntactic level of human–computer 'conversation'
 - refers to the *structure* of the interaction
 - like a script, but have choices
- 3 levels:
 - lexical -- what shape, color of icons
 - syntactic <-- most user interfaces
 - semantic

structured human dialogue

- most human-human dialogue is unstructured
- human-computer dialogue very constrained
- some human-human dialogue formal too ...

structured human dialogue

- most human-human dialogue is unstructured
- human-computer dialogue very constrained
- some human-human dialogue formal too ...

Minister: do you *man's name* take this woman ...

Man: I do

Minister: do you woman's name take this man ...

Woman: I do

Man: With this ring I thee wed

(places ring on womans finger)

Woman: With this ring I thee wed (places ring ..)

Minister: I now pronounce you man and wife

lessons about dialogue

- wedding service
 - sort of script for three parties
 - specifies order
 - some contributions fixed "I do"
 - others variable "do you man's name ..."
 - instructions for ring concurrent with saying words "with this ring ..."
- if you say these words are you married?
 - only if in the right place, with marriage licence
 - syntax not semantics

... and more

- what if woman says "I don't"?
- real dialogues often have alternatives:

- the process of the trial depends on the defendant's response
- focus on normative responses
 - doesn't cope with judge saying "off with her head"
 - or in computer dialogue user standing on keyboard!

... and more

- what if woman says "I don't"?
- real dialogues often have alternatives:

Judge: How do you plead guilty or not guilty?

Defendant: either Guilty or Not guilty

- the process of the trial depends on the defendant's response
- focus on normative responses
 - doesn't cope with judge saying "off with her head"
 - or in computer dialogue user standing on keyboard!

why use dialogue design notations?

- In a big system can we:
 - Analyze the dialogue:
 - Can the user always get to see current shopping basket
 - Change platforms (e.g. Windows/Mac)
 - Dialogue notations helps us to
 - Analyze systems
 - Separate lexical from semantic
- ... and before the system is built
 - Notations help us understand proposed designs
- Hard to answer all that from looking at the program code!
 - Dialogue gets buried in the program logic

Dialog Designs

- Diagrammatic
 - State transition networks, JSD Diagrams, flowcharts, etc
- Textual
 - BNFs, Formal Grammars, Production Rules, CSP
- Linked to:
 - System semantics -- what it does
 - System Presentation -- how it looks

Diagrammatic Notations

- Heavily used, can see structure at a glance
- But problems with extensive or complex structures...

State Transition Networks (STNs)

- Circles: States -- where system is waiting for next input (unless we're at finish)
- Arcs: Actions/Events -- transitions between states, labelled with the user action that triggers the transition and the system response

State Transition Networks (STNs)

- Multiple choices by user can be illustrated
- Iteration --> one or more states

STNs -- Events

- Arc labels a bit cramped because:
 - Notation is "state heavy"
 - But events require most details

STNs -- States

- Labels in circles a bit uninformative
 - States are hard to name
 - But easier to visualize

Hierarchical STNs

- Really just an STN inside another STN
 - Named sub-dialogs
- Essential for managing complex dialogs

- What if several things happen simultaneously?
- e.g. Simple dialog box for text formatting

• Three toggles: Three STNs

• Concurrent means "together"...

Put all possible combinations together...

Escape/Undo

- 'back' in web, escape/cancel keys
 - Similar behavior everywhere
 - End up with spaghetti of identical behaviors!

Escape/Undo

- 'back' in web, escape/cancel keys
 - Similar behavior everywhere
 - End up with spaghetti of identical behaviors!

• How do we show this?

e.g. Use hierarchical menus

'normal' exit for each submenu

plus separate escape arc active 'everywhere' in submenu

Help Menus

- Similar Problems
 - Nearly the same everywhere
 - But return to same point in dialogue
 - Could specify on STN ... but very messy -- subdialog hanging off every state

Action Properties

Completeness

- Missed arcs -- is there a possibility that we might get to an "unknown" state?
- Unforeseen circumstances
 - e.g. what if user clicks on drawing surface while at the main menu?

Determinism

- One action, one state --> one result
- Find several arcs with the same label coming out of the same state.

Consistency

- Same action in different circumstances == same effect?
 - e.g. tab key when entering text or navigating a dialog

Completeness

- Reversibility:
 - To reverse "select line" from graphics menu

- Reversibility:
 - To reverse "select line" from graphics menu
 - Click

- Reversibility:
 - To reverse "select line" from graphics menu
 - Click

- Reversibility:
 - To reverse "select line" from graphics menu
 - Click
 - Double-click
 - Select Graphics

3 actions!

Note: this is not an undo.

State Properties

- Reachability
 - Can you get anywhere from anywhere else?
 - And how easily?
 - Basic check -- fully connected STN
 - More -- "infinite loops"
- Reversibility
 - Can you get to the previous state?
 - But NOT undo
- Dangerous States
 - Some states you don't want to get to too easily.

Dangerous States Example

- Word Processor: Two Modes, edit and command (just like vi, emacs)
 - F1: Toggles mode
 - F2: Exit (and save)

- Esc: No mode changes
- But Esc also resets autosave.

Dangerous States (ii)

- Exit with/without save ⇒ dangerous states
- Duplicate states semantic distinction

F1-F2 - exit with save

F1-Esc-F2 - exit with no save

Layout Matters

word processor - dangerous states

old keyboard - OK

Layout Matters

new keyboard layout

intend F1-F2 (save)

finger catches Esc

Layout Matters

new keyboard layout

intend F1-F2 (save)

finger catches Esc

F1-Esc-F2 - disaster!

Petri Nets

- One of the oldest notations in computing
- Flow graph:
 - Places: a bit like STN states
 - Transitions: a bit like STN arcs
 - Counters: sit on places (current state)
- Several counters are allowed for concurrent dialogue states.
- Used for UI specification

Petri Nets

Flowcharts

- Familiar to programmers
- Boxes Process/event (not state)

Jackson Structured Design (JSD) Diagrams

Hierarchical Task Analysis + Dialog Design

For tree-structured dialogs

Textual — Grammars

Regular Expressions

```
sel-line click click* dble-click
```

- Same computational cost as STNs
- Mainly deals with sequential ordering of tokens.
- Uses operators to capture patterns:
 - +: one or more
 - ?: zero or one
 - *: zero or more
- Examples:
 - The UNIX copy command: cp filename+ directory

Grammars

BNF

•symbol ::= expression

- More powerful than regular expressions or STNs
- Still cannot handle concurrent dialogs

Dialog Notations: Summary

- Diagrammatic
 - STN, JSD, Flowcharts, etc
- Textual
 - BNF, regular expressions, etc
- Some notations essentially equivalent, some more expressive
- Issues
 - Event-based vs. State-based
 - Power vs. Clarity
 - Model vs. Notation
 - Sequential vs. Concurrent