Forecasting medium- and long-term peak electricity demand

Rob J Hyndman

Business & Economic Forecasting Unit MONASH University

 We want to forecast the peak electricity demand in a half-hour period in ten years time.

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
- The location is South Australia: home to the most volatile electricity demand in the world.

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
- The location is South Australia: home to the most volatile electricity demand in the world.

- We want to forecast the peak electricity demand in a half-hour period in ten years time.
- We have ten years of half-hourly electricity data, temperature data and some economic and demographic data.
- The location is South Australia: home to the most volatile electricity demand in the world.

Sounds impossible?

Demand data

Only data from November-March are shown.

Half-hourly demand data for South Australia from 1 November 2006 to 31 March 2007.

Half-hourly demand data for South Australia from 1–21 January 2007.

Demand boxplots

Temperature data

calendar effects

- calendar effects
- prevailing weather conditions (and the timing of those conditionals

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes
- economic and demographic changes

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes
- economic and demographic changes
- changing technology

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes
- economic and demographic changes
- changing technology

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes
- economic and demographic changes
- changing technology

Modelling framework

 Semi-parametric additive models with correlated errors.

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes
- economic and demographic changes
- changing technology

Modelling framework

- Semi-parametric additive models with correlated errors.
- Each half-hour period modelled separately.

- calendar effects
- prevailing weather conditions (and the timing of those conditionals
- climate changes
- economic and demographic changes
- changing technology

Modelling framework

- Semi-parametric additive models with correlated errors.
- Each half-hour period modelled separately.
- Variables selected to provide best out-of-sample predictions for 2005/06 summer.

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

• $y_{t,p}$ denotes demand at time t (measured in half-hourly intervals) during period p, p = 1, ..., 48;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- $y_{t,p}$ denotes demand at time t (measured in half-hourly intervals) during period p, $p=1,\ldots,48$;
- $h_p(t)$ models all calendar effects;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- $y_{t,p}$ denotes demand at time t (measured in half-hourly intervals) during period p, $p=1,\ldots,48$;
- $h_p(t)$ models all calendar effects;
- $f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t})$ models all temperature effects where $\mathbf{w}_{1,t}$ is a vector of recent temperatures at Kent Town and $\mathbf{w}_{2,t}$ is a vector of recent temperatures at Adelaide airport;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- $y_{t,p}$ denotes demand at time t (measured in half-hourly intervals) during period p, $p=1,\ldots,48$;
- $h_p(t)$ models all calendar effects;
- $f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t})$ models all temperature effects where $\mathbf{w}_{1,t}$ is a vector of recent temperatures at Kent Town and $\mathbf{w}_{2,t}$ is a vector of recent temperatures at Adelaide airport;
- $z_{j,t}$ is a demographic or economic variable at time t

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- $y_{t,p}$ denotes demand at time t (measured in half-hourly intervals) during period $p, p = 1, \dots, 48$;
- $h_p(t)$ models all calendar effects;
- $f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t})$ models all temperature effects where $\mathbf{w}_{1,t}$ is a vector of recent temperatures at Kent Town and $\mathbf{w}_{2,t}$ is a vector of recent temperatures at Adelaide airport;
- z_{i,t} is a demographic or economic variable at time t
- n_t denotes the model error at time t.

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

 $h_p(t)$ includes handle annual, weekly and daily seasonal patterns as well as public holidays:

$$h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p}$$

• $\ell_p(t)$ is "time of summer" effect (a regression spline);

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p}$$

- $\ell_p(t)$ is "time of summer" effect (a regression spline);
- $\alpha_{t,p}$ is day of week effect;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p}$$

- $\ell_p(t)$ is "time of summer" effect (a regression spline);
- $\alpha_{t,p}$ is day of week effect;
- $\beta_{t,p}$ is "holiday" effect;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$h_p(t) = \ell_p(t) + \alpha_{t,p} + \beta_{t,p} + \gamma_{t,p} + \delta_{t,p}$$

- $\ell_p(t)$ is "time of summer" effect (a regression spline);
- $\alpha_{t,p}$ is day of week effect;
- $\beta_{t,p}$ is "holiday" effect;
- $\gamma_{t,p}$ New Year's Eve effect;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$h_{\rho}(t) = \ell_{\rho}(t) + \alpha_{t,\rho} + \beta_{t,\rho} + \gamma_{t,\rho} + \delta_{t,\rho}$$

- $\ell_p(t)$ is "time of summer" effect (a regression spline);
- $\alpha_{t,p}$ is day of week effect;
- $\beta_{t,p}$ is "holiday" effect;
- $\gamma_{t,p}$ New Year's Eve effect;
- $\delta_{t,p}$ is millennium effect;

Fitted results (3pm)

Day before

Normal

Holiday

Day after

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_p(\mathbf{w}_{1,t},\mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

x_t is ave temp across sites at time t;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_p(\mathbf{w}_{1,t},\mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

- x_t is ave temp across sites at time t;
- d_t is the temp difference between sites at time t;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_p(\mathbf{w}_{1,t},\mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

- x_t is ave temp across sites at time t;
- d_t is the temp difference between sites at time t;
- x_t^+ is max of x_t values in past 24 hours;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_p(\mathbf{w}_{1,t},\mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

- x_t is ave temp across sites at time t;
- d_t is the temp difference between sites at time t;
- x_t^+ is max of x_t values in past 24 hours;
- x_t^- is min of x_t values in past 24 hours;

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_{p}(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_{p}(x_{t}^{+}) + r_{p}(x_{t}^{-}) + s_{p}(\bar{x}_{t})$$

$$+ \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

- x_t is ave temp across sites at time t;
- d_t is the temp difference between sites at time t;
- x_t^+ is max of x_t values in past 24 hours;
- x_t^- is min of x_t values in past 24 hours;
- \bar{x}_t is ave temp in past seven days.

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_p(\mathbf{w}_{1,t},\mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{j=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

- x_t is ave temp across sites at time t;
- d_t is the temp difference between sites at time t;
- x_t^+ is max of x_t values in past 24 hours;
- x_t^- is min of x_t values in past 24 hours;
- \bar{x}_t is ave temp in past seven days.

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

$$f_p(\mathbf{w}_{1,t},\mathbf{w}_{2,t}) = \sum_{k=0}^{6} \left[f_{k,p}(x_{t-k}) + g_{k,p}(d_{t-k}) \right] + q_p(x_t^+) + r_p(x_t^-) + s_p(\bar{x}_t) + \sum_{i=1}^{6} \left[F_{j,p}(x_{t-48j}) + G_{j,p}(d_{t-48j}) \right]$$

- x_t is ave temp across sites at time t;
- d_t is the temp difference between sites at time t;
- x_t^+ is max of x_t values in past 24 hours;
- x_t^- is min of x_t values in past 24 hours;
- \bar{x}_t is ave temp in past seven days.

Each function is smooth and estimated using regression splines.

Fitted results (3pm)

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

• Other variables described by linear relationships with coefficients c_1, \ldots, c_J .

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- Other variables described by linear relationships with coefficients c_1, \ldots, c_J .
- Estimation based on annual data.

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- Other variables described by linear relationships with coefficients c_1, \ldots, c_J .
- Estimation based on annual data.

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

- Other variables described by linear relationships with coefficients c_1, \ldots, c_J .
- Estimation based on annual data.

Variable	Coefficient	Std. Error	t value	P value
Intercept	-0.13981	0.04338	-3.222	0.018094
Gross State Product	0.01684	0.00108	15.649	0.000004
Lag Price	-0.04957	0.00727	-6.818	0.000488
Cooling Degree Days	0.36300	0.01716	21.157	0.000001

Peak demand forecasting

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

Multiple alternative futures created by

 resampling residuals using a seasonal bootstrap;

Peak demand forecasting

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

Multiple alternative futures created by

- resampling residuals using a seasonal bootstrap;
- generating simulations of future temperature patterns based on seasonally bootstrapping past temperatures (with some adjustment for extremes and climate change);

Peak demand forecasting

$$\log(y_{t,p}) = h_p(t) + f_p(\mathbf{w}_{1,t}, \mathbf{w}_{2,t}) + \sum_{j=1}^{J} c_j z_{j,t} + n_t$$

Multiple alternative futures created by

- resampling residuals using a seasonal bootstrap;
- generating simulations of future temperature patterns based on seasonally bootstrapping past temperatures (with some adjustment for extremes and climate change);
- using assumed values for GSP and Price.

Peak demand distribution

Peak demand distribution

Annual maximum demand

Peak demand distribution

We have forecast the extreme upper tail in ten years time using only ten years of data!

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.
- Provides way to analyse probability of coincident peaks across different interconnected markets.

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.
- Provides way to analyse probability of coincident peaks across different interconnected markets.
- Could be extended to whole year, providing probabilistic forecasts of total energy requirements.

- We have forecast the extreme upper tail in ten years time using only ten years of data!
- This method has now been adopted for the official South Australian peak electricity demand forecasts.
- We hope to extend method to Victoria in next year.
- Method could also be used for short-term demand forecasting, if we add a model for correlated residuals.
- Provides way to analyse probability of coincident peaks across different interconnected markets.
- Could be extended to whole year, providing probabilistic forecasts of total energy requirements.
- An R package and a paper will (eventually) appear at www.robhyndman.info