Introduction to Machine Learning GBM

Sara El Bouch

February 27, 2025

Régression linéaire

Rappels

- Données : $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,d}) \in \mathbb{R}^d$
- Valeurs à prédire : $y_i \in \mathbb{R}$ (régression)
- Ensemble d'entraı̂nement : $\mathcal{D}_m = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}$

Le modèle linéaire est donné par :

$$y_i = \beta_0 + \sum_{j=1}^d \beta_j x_{i,j} + i \in \{1, \dots, m\}$$
 (1)

où:

• $\beta = (\beta_0, \beta_1, \dots, \beta_d)^{\top} \in \mathbb{R}^{d+1}$ est le vecteur des paramètres inconnus à estimer.

Choix de la fonction coût : moindres carrés

Nous cherchons β en minimisant l'erreur quadratique :

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \frac{1}{2} \sum_{i=1}^{m} \left(y_i - \beta_0 - \sum_{j=1}^{d} \beta_j x_{i,j} \right)^2$$

$$= \arg\min_{\boldsymbol{\beta}} \frac{1}{2} RSS(\boldsymbol{\beta})$$
(2)

 $\frac{\alpha \beta}{\beta} \frac{\alpha}{2} 2^{1000} (\beta)$

où $RSS(\beta)$ est la somme des erreurs quadratiques résiduelles.

Formulation matricielle

En notation matricielle, on a:

$$RSS(\boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \tag{4}$$

avec:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m, \quad \mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,d} \\ 1 & x_{2,1} & \dots & x_{2,d} \\ \vdots & \vdots & & \vdots \\ 1 & x_{m,1} & \dots & x_{m,d} \end{pmatrix} \in \mathbb{R}^{m \times (d+1)}$$

$$(5)$$

Optimisation par annulation du gradient

Nous voulons minimiser:

$$\min_{\beta} RSS(\beta) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\beta\|^2 \tag{6}$$

Théorème (condition d'optimalité) : Si $RSS(\beta)$ est convexe, alors le minimum est obtenu lorsque :

$$\nabla RSS(\widehat{\boldsymbol{\beta}}) = \mathbf{0}.\tag{7}$$

Le gradient est donné par :

$$\nabla RSS(\boldsymbol{\beta}) = -\mathbf{X}^{\top}\mathbf{y} + \mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta}$$
 (8)

Solution analytique

L'optimisation donne la solution analytique :

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y} \tag{9}$$

sous la condition que $\mathbf{X}^{\top}\mathbf{X}$ soit inversible (m > d + 1). **Remarque.** Si d est très grand, inverser $\mathbf{X}^{\top}\mathbf{X}$ devient prohibitif. (La descente du gradient, stay tuned!)

Interprétation géométrique

Projection orthogonale sur l'espace des prédictions :

$$\mathbf{y} = \mathbf{X}\widehat{\boldsymbol{\beta}} + \boldsymbol{\epsilon}$$

La minimisation revient à projeter ${\bf y}$ sur le sous-espace engendré par les colonnes de ${\bf X}$:

$$\mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\widehat{\boldsymbol{\beta}}) = 0$$

Évaluation des performances

Mesures de performance :

• Erreur quadratique moyenne (MSE):

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

• Coefficient de corrélation r :

$$r = \frac{\sum_{i=1}^{m} (y_i - \bar{y})(\hat{y}_i - \bar{\hat{y}})}{\sqrt{\sum_{i=1}^{m} (y_i - \bar{y})^2 \sum_{i=1}^{m} (\hat{y}_i - \bar{\hat{y}})^2}}$$

Attention : Toujours évaluer sur un jeu de test indépendant.

Régularisation : Ridge Regression

Pour éviter le sur-apprentissage, on ajoute une pénalisation λ :

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{y}$$
 (10)

Effet de la régularisation:

- Réduit la variance du modèle.
- Implique un compromis biais-variance.
- Empêche la singularité de $\mathbf{X}^{\top}\mathbf{X}$.

Régression Lasso (L_1)

Principe:

• Ajoute une pénalisation L_1 à la régression linéaire :

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - X_i \beta)^2 + \lambda \sum_{j=1}^{d} |\beta_j|$$

• Contrairement à Ridge, qui réduit les coefficients sans les annuler, Lasso force certains coefficients à zéro.

Pourquoi utiliser Lasso?

- Sélectionne automatiquement les variables importantes.
- Produit des modèles plus interprétables.
- Utile quand beaucoup de variables sont inutiles.

Comparaison Lasso vs Ridge

Effet des régularisations :

${f M\acute{e}thode}$	Effet sur les coefficients
Sélection de variables	
Ridge (L_2)	Réduit l'amplitude mais ne les annule pas
Lasso (L_1)	Peut annuler certains coefficients

Qu'est-ce que la régression logistique?

- La régression linéaire est utilisée pour une variable dépendante **continue**.
- On va s'intéresser à la classification au travers de la régression logistique = Le modèle → coût → entrainement.

Figure: y and $\hat{y} \in \{benign, malignant\}$

Classification simple

- On suppose que x est un nombre et $y \in \{0,1\}$
- \bullet On suppose que les différentes valeurs de x sont linéairement séparables.

Figure: On choisit un seuil (ligne rouge) qu'on note s

$$\widehat{y}_i = \begin{cases} 0 \text{ si } s \times x \le 0\\ 1 \text{ sinon} \end{cases}$$
 (11)

De manière générale

$$\widehat{y}_i = \begin{cases} 0 \text{ si } a \times x + b \le 0\\ 1 \text{ sinon} \end{cases}$$
 (12)

• On veut interpréter \hat{y}_i comme une probabilité On introduit la fonction sigmoide:

$$\sigma(x) = \frac{1}{1 + \exp^{-x}} \tag{13}$$

$$\hat{y}_i = p(y = 1|x) = \sigma(ax + b) \in [0, 1].$$
 (14)

Fonction coût: L'entropie croisée

On définit le coût de l'entropie pour une donnée i comme:

$$J^{i} = -\log p_{\beta}(y = y_{i}|x_{i}) \tag{15}$$

• Pour une classification **binaire** on a 2 cas, $y_i = 0$ ou $y_i = 1$

$$J^{i} = \begin{cases} -\log p_{\beta}(y = 1|x_{i}), & y_{i} = 1\\ -\log p_{\beta}(y = 0|x_{i}), y_{i} = 0 \end{cases}$$
 (16)

En notant $\hat{y}_i = p(y = 1|x)$ (c'est un choix arbitraire, on peut choisir $\hat{y}_i = p(y = 0|x)$, on peut réecrire J^i comme:

$$J^{i} = -y_{i} \log(\widehat{y}_{i}) - (1 - y_{i}) \log(1 - \widehat{y}_{i})$$
 (17)

Comment optimiser cette fonction coût?

On peut utiliser l'algorithme de descente du gradient pour trouver les paramètres a et b optimaux.

Figure: Descente du gradient

Evaluation des performances

	Prédit Positif	Prédit Négatif
Réel Positif	VP (Vrais Positifs)	FN (Faux Négatifs)
Réel Négatif	FP (Faux Positifs)	VN (Vrais Négatifs)

Table: Matrice de confusion

$$Pr\'{e}cision = \frac{VP}{VP + FP}$$
 (18)

Interprétation : Proportion des prédictions positives qui sont réellement positives.

$$Rappel = \frac{VP}{VP + FN} \tag{19}$$

Interprétation: Proportion des cas positifs correctement identifiés.

F1-score

Formule:

$$Sp\'{e}cificit\'{e} = \frac{VN}{VN + FP}$$
 (20)

Interprétation: Proportion des cas négatifs bien classés.

Formule:

$$F1 = 2 \times \frac{\text{Pr\'ecision} \times \text{Rappel}}{\text{Pr\'ecision} + \text{Rappel}}$$
 (21)

Interprétation : Mesure équilibrée entre précision et rappel.

Quelques remarques

- Ce modèle peut être étendu au cas multi-classe, où $y \in \{1, ..., K\}$, ce qui donne lieu à la régression logistique multinomiale (on utilise plus la fonction sigmoide mais plutôt la fonction **softmax**).
- Bien que ce modèle soit utilisé pour la classification, on l'appelle un "régresseur" car la fonction $\sigma(ax+b)$ produit des valeurs réelles comprises entre 0 et 1. C'est l'interprétation de ces valeurs (par exemple, en appliquant un seuil à 0.5) qui permet de prendre des décisions de classification.
- On peut également utiliser la régularisation comme dans la régression linéaire pour éviter le sur-apprentissage.