Cryptography Lecture 10

Arkady Yerukhimovich

September 30, 2024

Outline

Lecture 8 Review

Chosen-ciphertext Attack (CCA) Security (Chapter 3.7)

③ Importance of CCA Security (Chapter 3.7)

Lecture 8 Review

- Proof of CPA-security for PRF+OTP
- Modes of operations

Outline

Lecture 8 Review

Chosen-ciphertext Attack (CCA) Security (Chapter 3.7)

3 Importance of CCA Security (Chapter 3.7)

ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf

Arkady Yerukhimovich Cryptography September 30, 2024 5/11

- ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf
- But what if A can also trick parties to decrypt (some) ciphertexts for him.

- ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf
- But what if A can also trick parties to decrypt (some) ciphertexts for him.
 - May be enough to just get partial decryptions
 - Security against such an attack is not addressed by CPA security

- ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf
- But what if A can also trick parties to decrypt (some) ciphertexts for him.
 - May be enough to just get partial decryptions
 - Security against such an attack is not addressed by CPA security
- Want undecrypted messages to remain secure

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0, 1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Is this CCA Secure?

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

• \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$
- $\operatorname{Dec}_k(\overline{c})$ returns $\overline{m} = F_k(r^*) \oplus 0^n = F_k(r^*)$

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$
- $\operatorname{Dec}_k(\overline{c})$ returns $\overline{m} = F_k(r^*) \oplus 0^n = F_k(r^*)$
- ullet ${\cal A}$ can now use $F_k(r^*)$ to decrypt c

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$
- $\operatorname{Dec}_k(\overline{c})$ returns $\overline{m} = F_k(r^*) \oplus 0^n = F_k(r^*)$
- \mathcal{A} can now use $F_k(r^*)$ to decrypt c

Takeaway

PRF+OTP is not CCA-Secure

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{cca}_{\mathcal{A},\Pi}(n)$

• The challenger chooses $k \leftarrow \text{Gen}(1^n)$

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{cca}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.

8 / 11

Let $\Pi =$ (Gen, Enc, Dec) be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{cca}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{cca}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}$ outputs a guess bit b' (\mathcal{A} may not query $\mathsf{Dec}_k(c)$)

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{cca}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}$ outputs a guess bit b' (\mathcal{A} may not query $\mathsf{Dec}_k(c)$)
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{cca}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{\mathit{cca}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}$ outputs a guess bit b' (\mathcal{A} may not query $\mathsf{Dec}_k(c)$)
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{cca}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi=$ (Gen, Enc, Dec) with message space $\mathcal M$ is CCA-secure if for all PPT $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{cca}_{\mathcal{A},\Pi}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

Outline

Lecture 8 Review

Chosen-ciphertext Attack (CCA) Security (Chapter 3.7)

3 Importance of CCA Security (Chapter 3.7)

ullet This assumes that |m| is a multiple of block-length L.

- This assumes that |m| is a multiple of block-length L.
- ullet If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.
 - To identify padding, pad value indicates number of Bytes of padding

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.
 - To identify padding, pad value indicates number of Bytes of padding
 - Example: m' = m||0x2||0x2 if need 2 Bytes of padding

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.
 - To identify padding, pad value indicates number of Bytes of padding
 - Example: m' = m||0x2||0x2 if need 2 Bytes of padding
- ullet Decryption can then remove padding and return m
 - If padding incorrect, return "bad padding" error

Consider encryption of a 2-block message m

Quiz

You will now develop an attack on this mode of operations.

Arkady Yerukhimovich Cryptography September 30, 2024 11/11