Introduction to Compiler Design

Intermediate-Code Generation

Professor Yi-Ping You
Department of Computer Science
http://www.cs.nctu.edu.tw/~ypyou/

Recall: The Structure of a Compiler

Details of source language

Details of target machine

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

A Sequence of Intermediate Representations

Intermediate Representation

- High-level representations
 - Syntax trees (graphical representations)
 - Closer to source language
 - Suitable for static type checking
- Low-level representations
 - Three-address code
 - Closer to target machine
 - Suitable for machine-dependent tasks like register allocation and instruction selection

Recall: Syntax Trees

- A syntax tree shows the structure of a program by abstracting away irrelevant details from a parse tree
 - Each node represents a computation to be performed
 - The children of the node represents what that computation is performed on

Introduction to Compiler Design

Variant of Syntax Trees

- Directed acyclic graph (DAG)
 - Commons to syntax trees
 - Leaves: atomic operands
 - Interior nodes: operators
 - Differences to syntax trees
 - Common subexpressions are not replicated

• E.g.,
$$a + a * (b - c) + (b - c) * d$$

Construction of DAG: An Example

Production	Semantic Rules		
$1) E \rightarrow E_1 + T$	$E.node = $ new $Node(`+`, E_1.node, T.node)$		
$2) E \rightarrow E_1 - T$	$E.node = \mathbf{new} \ Node(`-`, E_1.node, T.node)$		
$3) E \rightarrow E_1 * T$	$E.node = \mathbf{new} \ Node(`*`, E_1.node, T.node)$		
$4) E \to T$	E.node = T.node		
$5) T \rightarrow (E)$	T.node = E.node		
6) $T \rightarrow id$	T.node = new Leaf(id , id .entry)		
7) $T \rightarrow \mathbf{num}$	T.node = new Leaf(num, num.entry)		

Before creating a new node, we check whether the node exists

- Steps for constructing the DAG for a + a * (b-c) + (b-c) * d
 - p1=Leaf(id, entry-a)
 - p2=Leaf(id, entry-a)=p1
 - p3=Leaf(id, entry-b)
 - p4=Leaf(id, entry-c)
 - p5=Node('-',p3,p4)

- p6=Node('*',p1,p5)
- p7=Node('+',p1,p6)
- p8=Leaf(id,entry-b)=p3
- p9=Leaf(id,entry-c)=p4
- p10=Node('-',p3,p4)=p5

Value-Number Method for Constructing DAG's

Nodes of syntax trees or DAG's are stored in an array of records op

- The integer index of the record: value number
- ◆ Signature of an interior node: <op, l, r>
 - ◆ op: label
 - ♦ l: left child's value number
 - \diamond r: right child's value number (0 for unary operators)

Algorithm for Value-Number Method

Input

 \bullet Label op, node l, and node r

Output

The value number of a node in the array with signature <op, l, r>

Method

- ullet Search the array for a node M with label op, left child l, and right child r
- If there is such a node, return the value number of M
- Create a new node if not found, and return its value number
- For efficiency, we use a hash table to implement the array structure

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

Three-Address Code

- In three-address code, there is at most one operator on the right side of an instruction
 - At most three address (operands)
 - One destination operand
 - Two source operands
- E.g., three-address code for x + y * z: $t_1 = y * z$ $t_2 = x + t_1$

$$t_1 = b - c$$
 $t_2 = a * t_1$
 $t_3 = a + t_2$
 $t_4 = t_1 * d$
 $t_5 = t_3 + t_4$

Three-address code

Three-Address Code: Addresses and Instructions

- Three-address code is built from two concepts
 - Addresses
 - Instructions
- Three-address code can be implemented using records (data structures or objects) with fields for operations and addresses
 - E.g., quadruples or triples
- Addresses can be
 - A name
 - source-program name stored in the symbol table
 - A constant
 - A compiler-generated temporary

Three-Address Code: Instructions

- Symbolic labels will be used by instructions that alter the flow of control
 - A symbolic label represents the index of a threeaddress instruction in the sequence of instructions
- 8 common three-address instructions forms:
 - Assignment instructions with a binary operation

$$\diamond x = y \ op \ z$$

Assignment instructions with a unary operation

$$\diamond x = op y$$

Copy instructions

$$> x = y$$

Three-Address Code: Instructions (Cont'd)

- Unconditional jumps
 - \diamond goto L (L: a label)
- Conditional jumps
 - \diamond if x goto L or ifFalse x goto L
 - \diamond if $x \, relop \, y \, goto \, L$
 - Relational operators: <, ==, >=, etc.
- Procedure calls and returns
 - $> p(x_1, x_2, ..., x_n)$
 - param x_1 param x_2
 - param x_n call p, n

Three-Address Code: Instructions (Cont'd)

Indexed copy instructions

Sets x to the value in the location
 i memory unit beyond location y

Sets the contents of the location
 i units beyond x to the value of y

Three-Address Code: Instructions (Cont'd)

Address and pointer assignments

- $\diamond x = \& y$
 - -y is a name or temporary
 - -x is a pointer or temporary
 - Sets the *r*-value of *x* to be the location (*l*-value) of *y*

- -y is a pointer or temporary
- Sets the r-value of x to be the r-value of the object z pointed by of y₀

Sets the r-value of the object z
 pointed by x to be the r-value of y

Three-Address Code: An Example

do
$$i = i + 1;$$
 while $(a[i] < v);$

- Two possible three-address code
- Using symbolic labels

L:
$$t_1 = i + 1$$

 $i = t_1$
 $t_2 = i * 8$
 $t_3 = a [t_2]$
if $t_3 < v$ goto L

Using position numbers

```
100: t_1 = i + 1

101: i = t_1

102: t_2 = i * 8

103: t_3 = a [t_2]

104: if t_3 < v goto 100
```

 Each subexpression typically get its own, new temporary to hold its result, and we learn where to put the value only when the assignment operator is processed

Suppose each element of the array take 8 units of space

Notes on Three-Address Code

- The choice of allowable operators is important in the design of the IR
- Allow operators that are close to machine instructions
 - Easier to implement the IR on a target machine
 - However, if the front end must generate long sequences of instructions for some source-language operations
 - The optimizer and code generator may have to work harder to
 - Rediscover the structure
 - Generate good code for these operations

Data Structures for Three-Address Code

- Quadruples (or just "quad")
 - Has four fields: op, arg1, arg2, and result
 - Temporary names are used explicitly

Triples

- \bullet Has only three fields: op, arg_1 , and arg_2
- Temporaries are not used and instead references to instructions are made (by positions)
- Indirect triples
 - In addition to triples we use a list of pointers to triples

Data Structures for Three-Address Code: Examples

• Example: a = b * - c + b * - c

Point to symboltable entry

				Cittiy
	op (arg_1	arg_2	result
0	minus	C	I I I	t ₁
1	*	b	t ₁	t ₂
2	minus	C	 	t ₃
3	*	b	t ₃	$t_{\scriptscriptstyle 4}$
4	+	t_2	$t_{\scriptscriptstyle{4}}$	t ₅
5	=	t ₅		a

Quads

Value number

	Value Hullie			
		op	arg_1	arg_2
Cyptay Troo	(0)	minus	C	
Syntax Tree	1	*	b	(0)
	2	minus	С	
* _ *	3	*	b	(2)
minus b minus	4	+	(1)	(3)
	5	=	a	(4)
\mathcal{C}				•

signature

Triples

Quadruples v.s. Triples

- A benefit of quadruples over triples can be seen in an optimizing compiler
 - Instructions are often moved around
 - With quadruples, we can move an instruction without changing the instructions
- With triples, moving an instruction may require us to change all references to that result
 - Use indirect triples to solve the problem

Indirect Triples

in	struction	pointer	op	arg_1	arg_2
35	(0)	> 0	minus	C	
36	(1)		*	b	(0)
37	(2)	> 2	minus	U	
38	(3)	3	*	b	(2)
39	(4)	> 4	+	(1)	(3)
40	(5)	> 5	=	a	(4)
	•••			•••	

An optimizing compiler can move an instruction by reordering the instruction list, without affecting the triples themselves

Static Single-Assignment (SSA) Form

- A variant of three-address code
- All assignments are to variables with distinct names
 - Each variable is only defined once
 - Hence the term static single-assignment
 - E.g.,

$$p_1 = a + b$$
 $q_1 = p_1 - c$
 $p_2 = q_1 * d$
 $p_3 = e - p_2$
 $q_2 = p_3 + q_1$

SSA Form

• E.g.,

if (flag)
$$x_1 = -1;$$

else $x_2 = 1;$
 $x_3 = \phi(x_1, x_2);$
 $y = x_3 * a;$

Facilitates certain code optimizations

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

Types and Declarations

- Two important things about types and declarations in the intermediate-code generation
 - Type checking
 - Ensures that the types of the operands match the type expected by an operator
 - E.g., the and operator in P language expects its two operands to be bool
 - The storage layout for names
 - A compiler determines the storage that will be needed for that name at run time
 - Relative address of the name in the memory

Recall: von Neumann Architecture

Imperative languages are abstractions of von Neumann architecture

- Memory
- Processor

Recall: Storage Layout

Typical memory layout of a program

Type Expressions

- Types have structure
 - We shall represent them using type expressions
 - Basic types
 - Formed by applying an operator, type constructor, to a type expression
 - E.g., the array type int[2][3] can be read as "array of 2 arrays of 3 integers each" and written as a type expression array(2, array(3, integer))

DAG

Definitions of Type Expressions

- A basic type is a type expression
 - E.g., boolean, char, integer, float, void, ...
- A type name is a type expression
 - # E.g., typedef (int *[5]) newtype
 (an array of 5 pointers to int)
- A type expression can be formed by applying the array type constructor to a number and a type expression
 - E.g., array(3, integer)
- A record is a data structure with named fields
 - E.g., structures in C

Definitions of Type Expressions (Cont'd)

- A type expression can be formed by using the type constructor → for function types
 - \bullet E.g., $s \rightarrow t$ (function from type s to type t)
- If s and t are type expressions, then their Cartesian products $s \times t$ is a type expression
 - Represents a list of types
 - ◆ Left associative, higher precedence than →
- Type expressions may contain variables whose values are type expressions
 - Compiler-generated type variables

Type Expressions (Cont'd)

- A convenient way to represent a type expression is to use a graph
- E.g., the array type int[2][3]

- Interior nodes
 - Type constructors
- Leaves
 - Basic types, type names, and type variables

Type Equivalence

- When type expressions are represented by graphs, two types are structurally equivalent iff
 - They are the same basic type, or
 - They are formed by applying the same type constructor to structurally equivalent types, or

```
E.g., int A[10];
int B[10];
```

- One is a type name that denotes the other
 - E.g., typedef int dollars;
- If type names are treated as standing for themselves, two types are name equivalent iff one of the first two conditions above is true

Name Declarations

A simplified grammar that declares just one name at a time

```
D \rightarrow T \text{ id} ; D \mid \varepsilon

T \rightarrow B C \mid \text{record} ` \{ ` D ` \} '

B \rightarrow \text{int} \mid \text{float}

C \rightarrow \varepsilon \mid [\text{num}] C
```

Legal inputs:

```
int a;
float[3][5] b;
record {int a; int b;} c;
```

Storage Layout for Names

- Suppose that storage comes in blocks of contiguous bytes
- From the type of a name, we can determine the amount of storage that will be needed for the name at run time
 - At compile time, we can use these amounts to assign each name a relative address (saved in the symbol table)
 - The width of a type is the number of storage units needed for objects of that type
 - E.g., width of integer: 4 (bytes) width of float: 8 (bytes)

Storage Layout: An Example

```
int a;
float[3][5] b;
record {int a; int b;} c;
```

Memory Space

Start address of local names

Symbol Table

name	• • •	location
a	• • •	0x00
b	• • •	0x04
C		0x7c

Address Alignment

The storage layout for data objects is strongly influenced by the addressing constraints of the target machine

Data should be aligned (e.g., divisible by 4 bytes)

 E.g., suppose the width of a character is 1 byte. For an array A of 10 characters, 12 bytes are allocated for

the array

Preview: Code Generation

```
int a;
float[3][5] b;
record {int a; int b;} c;
...
a = c.b;
```


. . .

- Load the value of c.b from memory to a temporary (e.g,. a register);
- Store the value of the temporary to the address of a;

Memory Space

•••		
	а	
	b[1][1]	
b	b[1][2]	
	•••	
	b[3][5]	
	a	
С	b	
•••		

SDT: Computing Types and Their Width

```
T \rightarrow B \qquad \{t = B.type; w = B.width;\}
C \qquad \{T.type = C.type; T.width = B.width;\}
B \rightarrow \textbf{int} \qquad \{B.type = integer; B.width = 4;\}
B \rightarrow \textbf{float} \qquad \{B.type = float; B.width = 8;\}
C \rightarrow \epsilon \qquad \{C.type = t; C.width = w;\}
C \rightarrow [\textbf{num}] C_1 \qquad \{C.type = array(\textbf{num}.value, C_1.type);
C.width = \textbf{num}.value \times C_1.width;\}
```


SDT: Computing the Relative Addresses

SDT:

```
\begin{array}{ll} P \rightarrow & \{o\textit{ffset} = 0;\} \\ D \rightarrow T \ \textbf{id} \ ; & \{top.put(\textbf{id}.lexeme, T.type, o\textit{ffset}); \\ o\textit{ffset} = o\textit{ffset} + T.width;\} \\ D \rightarrow \varepsilon & \end{array}
```


name	type	•••	location
a	float	•••	0x00
name	type	• • •	location
a	int	• • •	0x00
b	float	• • •	0x04

SDT: Handling of Field Names in Records

SDT:

■ E.g.,

```
float x;
record {float x; float y;} p;
int q;
```

name	type	record fields			•••	location	
Х	float	N/A			•••	0x00	
		name	type	•••	location		
р	record	Х	float		0x00	•••	80x0
		У	float		80x0		
đ	int	N/A			•••	0x18	

Storage Layout for Names (Cont'd)

- Dynamic data is handled by reserving a known fixed amount of storage for a pointer to the data (will be discussed in Chapter 7)
 - Data of varying length, such as strings
 - Data whose size cannot be determined until run time, such as dynamic arrays

Storage layout of a program

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

SDD: Translation of Expressions

Production	Semantic Rules	<pre>gen(x '=' y '+' z): the three-address instruction</pre>
$S \rightarrow id = E$;	$S.code = E.code \parallel$ $gen(top.get(\mathbf{id}.lexe))$	(x = y + z) (me) '=' $E.addr$)
$E \rightarrow E_1 + E_2$	$E.addr = \mathbf{new} \ Temp()$ $E.code = E_1.code \mid\mid E_2.code \mid\mid$ $gen(E.addr `=`E_1.addr)$	$addr$ '+' $E_2.addr$)
$ -E_1 $	$E.addr = \mathbf{new} \ Temp()$ $E.code = E_1.code \mid \mid$ $gen(E.addr '=' \mathbf{me})$	inus' E_1 . addr)
(E ₁)	$E.addr = E_{1}.addr$ $E.code = E_{1}.code$	•code: three-address code
id	E.addr = top.get(id.lexeme) E.code = ``	 E.addr: the address that holds the value of E (a name, a constant, or a temporary)

Translation of Expressions: An Example

- An assignment statement: a = b + -c;

Production	Semantic Rules
$S \rightarrow id = E$;	$S.code = E.code \parallel$ $gen(top.get(\mathbf{id}.lexeme) '=' E.addr)$
$E \to E_1 + E_2$	$E.addr = \mathbf{new} \ Temp()$ $E.code = E_1.code \parallel E_2.code \parallel $ $gen(E.addr `=`E_1.addr `+` E_2.addr)$
$ -E_1 $	$E.addr = \mathbf{new} \ Temp()$ $E.code = E_1.code \mid $ $gen(E.addr '=' '\mathbf{minus}' \ E_1.addr)$
$\mid (E_1)$	$E.addr = E_1.addr$ $E.code = E_1.code$
id	E.addr = top.get(id .lexeme) E.code = "

Incremental Translation

- On-the-fly code generation
- SDT:

```
S \rightarrow \text{id} = E; { gen(top.get(\text{id}.lexeme) \text{`=`} E.addr); } 
 E \rightarrow E_1 + E_2 { E.addr = \text{new } Temp(); gen(E.addr \text{`='} E_1.addr \text{`+'} E_2.addr); } 
 | -E_1| { E.addr = \text{new } Temp(); gen(E.addr \text{`='} \text{`minus'} E_1.addr); 
 | (E_1)| { E.addr = E_1.addr; } 
 | \text{id}| { E.addr = top.get(\text{id}.lexeme); }
```

Addressing Array Elements

- Array elements can be accessed quickly if they are stored in a block of consecutive locations
 - In C, array elements are numbered 0, 1, ..., *n*-1 for an array with *n* elements
- The i-th element of array A begins in location

$$base + i \times w$$

- \bullet base: relative address of A[0]
- w: width of each element

• For a two-dimension array (row-major), the relative address of $A[i_1][i_2]$ can be calculated by

base
$$+i_1 \times w_1 + i_2 \times w_2$$

- \bullet w_1 : width of a row
- \bullet w_2 : width of an element

A[0][0]	A[0][1]	A[0][2]	A[0][3]	•••
A[1][0]				
				$A[i_1][i_2]$

Row-Major v.s. Column-Major Layouts

- Row major
 - Row-by-row

<i>A</i> [1][1]	<i>A</i> [1][2]	<i>A</i> [1][3]
<i>A</i> [2][1]	<i>A</i> [2][2]	<i>A</i> [2][3]

- Column major
 - Column-by-column

A[1][1]	<i>A</i> [1][2]	<i>A</i> [1][3]
A[2][1]	<i>A</i> [2][2]	<i>A</i> [2][3]

Addressing Array Elements (Cont'd)

In a two-dimension array, the formula is

base
$$+i_1 \times w_1 + i_2 \times w_2$$

$$= base + (i_1 \times n_2 + i_2) \times w$$

A[0][0]	A[0][1]	A[0][2]	A[0][3]
A[1][0]			
A[2][0]			A[2][3]

- n_j : number of elements along dimension j
- \blacksquare In k dimensions, the formula is

base
$$+i_1 \times w_1 + i_2 \times w_2 + \dots + i_k \times w_k$$

=
$$base + ((...((i_1 \times n_2 + i_2) \times n_3 + i_3)...) \times n_k + i_k) \times w$$

- Array elements need not be numbered starting at 0
 - In a one-dimension array, array elements can be numbered low, low +1, ..., high
 - \bullet A[i] then can be addressed by base $+(i-low) \times w$

SDT: Translation of Array References

```
S \rightarrow id = E;
                      { ... }
                      { gen(L.array.base '[' L.addr ']' '= ' E.addr); }
     L = E;
  E \rightarrow E_1 + E_2
                      { ... }
                      \{ E.addr = top.get(id.lexeme); \}
      id
                      \{ E.addr = \mathbf{new} \ Temp(); 
                        gen(E.addr '= 'L.array.base '['L.addr ']'); }
                      {L.array = top.get(id.lexeme);}
  L \rightarrow id [E]
                        L.type = L.array.type.elem;
A pointer to the
                        L.addr = \mathbf{new} \ Temp(); Element type
symbol-table entry for
                        gen(L.addr '=' E.addr '*' L.type.width); }
the array name
        L_1 [ E ]
                       \{L.array = L_1.array;
                                                      A temporary, used while
                        L.type = L_1.type.elem;
Type of the subarray
                                                      computing the offset
                        t = \mathbf{new} \ Temp();
                                                      for the array reference
generated by L
                        L.addr = \mathbf{new} \ Temp();
                        gen(t'='E.addr'*'L.type.width);
```

 $gen(L.addr '= L_1.addr '+ 't);$


```
L \rightarrow L_1 [ E ] { L.array = L_1.array;
                                                     es: An Example
                L.type = L_1.type.elem;
                t = \mathbf{new} \ Temp();
                                                              c+a[i][j]
                L.addr = \mathbf{new} \ Temp();
                gen(t'='E.addr'*'L.type.width);
                gen(L.addr '= L_1.addr '+' t); \}
                  L.type = L.array.type.elem;
                  L.addr = \mathbf{new} \ Temp();
  E \rightarrow id \{ E.addr = top.get(id.lexeme); \}  type.width); }
E \rightarrow L \ \{E.addr = \mathbf{new} \ Temp();
                                                               r = \dot{j}
           gen(E.addr '=' L.array.base '[' L.addr ']'); }
                L.type = array(3, integer)
                        L.addr = t_1
                                                             t_1 = i * 12
                                                             t_2 = j * 4
                               E.addr = i
                                                             t_3 = t_1 + t_2
  a.type
                                                             t_4 = a[t_3]
  = array(2, array(3, integer))
                                                             t_5 = c + t_4
                                           Three-address code
    Introduction to Compiler Design
                                                                           Page 50
```

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

Type Checking

- A compiler needs to assign a type expression to each component of the source program
 - Type system
 - The compiler determines that these type expressions conform to a collection of logical rules
 - In principle, any check can be done dynamically
 - A sound type system eliminates the need for dynamic checking for type errors
 - No type errors occur at run time
 - An implementation of a language is strongly typed if a compiler guarantees that the programs it accepts will run without type errors

Rules for Type Checking

- Two forms of type checking
 - Type synthesis
 - Type inference
- Type synthesis

if f has type $s \to t$ and x has type s, then expression f(x) has type t

- \bullet E.g., $E_1 + E_2$ can be viewed as a function application $add(E_1, E_2)$ int \times int \rightarrow int
- E.g., **if** (E) S can be viewed as a function application *if* to E and S. Then function *if* expects to be applied to a boolean and a void, and the result is a void boolean \times void \rightarrow void

Rules for Type Checking (Cont'd)

Type inference

if f(x) is an expression, then for some α and β , f has type $\alpha \to \beta$ and x has type α

- \bullet α , β : type variables
- Needed for languages that do not require names to be declared
 - E.g., ML language (strongly typed)
 - Type inference ensures that names are used consistently

Type Conversions

- The representation of two data types, such as integer and float, is different within a computer
 - Different machine instructions are used for operations on integers and floats
 - Compilers may need to do type conversions to ensure that both operands are of the same type
- E.g., an expression 2 + 3.14

$$t_1 = (float) 2$$

 $t_2 = t_1 + 3.14$

Production	Semantic Rules
$E \rightarrow E_1 + E_2$	if $(E_1.type = integer $ and $E_2.type = integer) E.type = integer $ else if $(E_1.type = float $ and $E_2.type = integer) $

Widening and Narrowing Conversions

- Widening conversion
 - Intended to preserve information
- Narrowing conversion
 - Can lose information

Type Conversions (Cont'd)

- Implicit type conversion (coercion)
 - Done automatically by the compiler
 - Limited to widening conversion in many languages
- Explicit type conversion (cast)
 - The programmer must write something to cause the conversion

Type Checking: An Example

```
E \rightarrow E_1 + E_2 { E.type = max(E_1.type, E_2.type); a_1 = widen(E_1.addr, E_1.type, E.type); a_2 = widen(E_2.addr, E_2.type, E.type); E.addr = \mathbf{new} \ Temp(); gen(E.addr `=` a_1 `+` a_2); }
```

max(t₁, t₂) returns the maximum of the two types in the widening hierarchy, and it declares an error if either t₁ or t₂ is not in the hierarchy

```
Addr widen(Addr a, Type t, Type w) {
    if ( t = w) return a;
    else if ( t = integer and w = float) {
        temp = new Temp();
        gen(temp '=' '(float)' a);
        return temp;
    } else error;
}
```

Overloading of Functions and Operators

- An overloaded symbol has different meanings depending on its context
 - Overloading is resolved when a unique meaning is determined for each occurrence of a name
 - Assume we can resolve overloading by looking at the arguments of a function or the operands of an operator

 - Type-synthesis rule for overloaded functions

if f can have type $s_i \to t_i$, for $1 \le i \le n$, where $s_i \ne s_j$ for $i \ne j$ and x has type s_k , for some $1 \le k \le n$ then expression f(x) has type t_k

Polymorphic Functions

- Polymorphic
 - Refers to any code fragment that can be executed with arguments of different types
- An example for polymorphic functions
 - Length of a list xTests whether a list is empty

 fun length(x) =if null(x) then 0 else length(tl(x)) + 1;
 - \bullet E.g., length(["sun", "mon", tue"]) + <math>length([10,9,8,7])
 - The type of length can be described as
 - lacktriangledown for any type lpha, length maps a list of elements of type lpha to an integer
 - $\forall \underline{\alpha}. \underline{\textit{list}}(\alpha) \rightarrow \textit{integer}$ polymorphic type expression type variable type constructor

Polymorphic Functions (Cont'd)

```
fun length(x) =

if null(x) then 0 else length(tl(x)) + 1;
```

- $\forall \alpha. \ list(\alpha) \rightarrow integer$ (type expression)
- We can use type inference rules to infer a type for length

if f(x) is an expression, then for some α and β , f has type $\alpha \to \beta$ and x has type α

- Since null expects to be applied to lists, x must be a list
- Suppose x has type "list of α ", where α is a type variable
- The type of length must be "function from list of α to integer"

Inferring a Type for the Polymorphic Function

LINE	EXPRESSION:	Түре	UNIFY
1)	length:	$\beta \rightarrow \gamma$	
2)	x:	β	$\forall \alpha. boolean \times \alpha \times \alpha \rightarrow \alpha$
3)	if :	boolean $\times \alpha_i \times \alpha_i \rightarrow \alpha_i$	
4)	null:	$list(\alpha_n) \rightarrow boolean$	$\forall \alpha. \ list(\alpha) \rightarrow boolean$
5)	null(x):	boolean	$list(\alpha_n) = \beta$
6)	0:	integer	α_i = integer
7)	+:	$integer \times integer \rightarrow integer$	
8)	tl:	$list(\alpha_t) \rightarrow list(\alpha_t)$	
9)	tl(x):	$list(\alpha_t)$	$list(\alpha_t) = \beta = list(\alpha_n)$
10)	length(tl(x)):	γ	γ = integer
11)	1:	integer	fun
12)	length(tl(x)) + 1:	integer	length x if
13)	if ():	integer	$\begin{array}{c c} & x & \\ \hline & \\ apply & 0 \end{array}$

Type of length

 $\forall \alpha_n$. $list(\alpha_n) \rightarrow integer$

Substitution and Unification

- Since variables can appear in type expressions, we have to re-examine the notion of equivalence of types
 - Suppose E_1 (type: $s \rightarrow s'$) is applied to E_2 (type: t)
 - Instead of simply determining the equality of s and t, we must "unify" them
 - We determine whether s and t can be made structurally equivalent by replacing the type variable in s and t by type expressions
- A substitution is a mapping from type variables to type expressions
 - \bullet E.g., a mapping from α to *integer*

Substitution and Unification (Cont'd)

- Suppose t is a type and S is a substitution
- We write S(t) for the result of consistently replacing all occurrences of each type variable α in t by S(α); S(t) is called an instance of t
 - \bullet E.g., if $list(\alpha)$ is a type expression and a mapping from α to integer is a substitution, then list(integer) is an instance of $list(\alpha)$
 - \bullet E.g., integer \rightarrow float is not an instance of $\alpha \rightarrow \alpha$
- Substitution S is a unifier of type expressions t_1 and t_2 if $S(t_1) = S(t_2)$
 - Two expressions t_1 and t_2 unify where exists some substitution S such that $S(t_1) = S(t_2)$

Unification

- Unification is the problem of determining whether two expressions s and t can be made identical by substituting expressions for the variables in s and t
- Testing equality of expressions is a special case of unification
 - If s and t have no type variables, then s and t unify iff they are identical
- Unification algorithm
 - To test structural equivalence of types via a graphtheoretic formulation
 - Type expressions are represented by DAG

Unification Algorithm

Unification of two nodes, m and n, in a type graph

```
Returns the representative node of
boolean unify(Node m, Node n) {
                                      the equivalence class currently
    s = find(m); t = find(n);
                                      containing node n
    if (s = t) return true;
    else if (nodes s and t represent the same basic type ) return true;
    else if (s is an op-node with children s_1 and s_2 and
             t is an op-node with children t_1 and t_2 and
             they have the same op) {
          union(s, t);
          return unify(s_1, t_1) and unify(s_2, t_2);
                                              Merges the equivalence classes
    else if (s or t represents a variable) {
                                              containing nodes s and t
          union(s, t);
          return true;
    else return false;
```


Unification: An Example

Consider the two type expressions

$$((\alpha_1 \to \alpha_2) \times list(\alpha_3)) \to list(\alpha_2)$$
$$((\alpha_3 \to \alpha_4) \times list(\alpha_3)) \to \alpha_5$$

Use unify(1, 9) to check if the two type expressions can be unified

Unification: An Example (Cont'd)

```
boolean unify(Node m, Node n) {
      s = find(m); t = find(n);
      if (s = t) return true;
      else if (nodes s and t represent the same basic type ) return true;
      else if (s is an op-node with children s_1 and s_2 and
                       t is an op-node with children t_1 and t_2) {
              union(s, t);
              return unify(s_1, t_1) and unify(s_2, t_2);
      else if (s or t represents a variable) {
              union(s, t);
               return true;
      else return false;
```

- $\blacksquare unify(1,9)$ true
 - +unify(2, 10) true
 - \diamond *unify*(3, 11) true
 - -unify(4,7) true
 - -unify(5, 12) true
 - \bullet unify(6, 13) true
 - -unify(4,4) true
 - # unify(8, 14) true

x	S(x)
α_1	$lpha_1$
α_2	$lpha_2$
α_3	$lpha_1$
$lpha_4$	$lpha_2$
α_5	$list(\alpha_2)$

Unification: An Example (Cont'd)

$$((\alpha_1 \to \alpha_2) \times list(\alpha_3)) \to list(\alpha_2)$$
$$((\alpha_3 \to \alpha_4) \times list(\alpha_3)) \to \alpha_5$$

Substitution S, the most general unifier for the expressions

x	S(x)
$lpha_1$	$lpha_1$
$lpha_2$	$lpha_2$
α_3	$lpha_1$
$lpha_4$	$lpha_2$
$lpha_5$	$list(\alpha_2)$

The substitution maps the two type expressions to

$$((\alpha_1 \rightarrow \alpha_2) \times list(\alpha_1)) \rightarrow list(\alpha_2)$$

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

Boolean Expressions

- Boolean expressions are often used to
 - Alter the flow of control
 - Flow-of-control statements are tied to boolean expressions
 - If-statements or if-else-statements
 - While-statements
 - Compute logical values
 - E.g., x = a < b
- Grammar for boolean expressions

 $B \rightarrow B \mid\mid B \mid\mid B \&\& B \mid\mid B \mid\mid (B) \mid\mid E \text{ rel } E \mid\mid \text{true} \mid\mid \text{false}$

More on Boolean Expressions

- Short-Circuit Code
 - Given the expression $B_1 \mid\mid B_2$
 - \bullet If B_1 is true \Rightarrow the entire expression is true
 - No need to evaluate B_2
 - \bullet Given the expression $B_1 \&\& B_2$
 - If B_1 is false \Rightarrow the entire expression is false
 - No need to evaluate B₂
- Unless either B1 or B2 is an expression with side effects (e.g., it contains a function that changes a global variables)
 - An unexpected answer may be obtained
 - \bullet E.g., (a > b) | | (b++ / 3)

Flow-of-Control Statements

Grammar for flow-of-control statements

$$S \rightarrow \mathbf{if} (B) S_1$$

 $S \rightarrow \mathbf{if} (B) S_1 \mathbf{else} S_2$
 $S \rightarrow \mathbf{while} (B) S_1$

SDD for Flow-Of-Control Statements

Production	Semantic Rules statement		if-statement	
$P \rightarrow S$	S.next = newlabel()	.code	I B CODE I	o B.true o B.false
	$P.code = S.code \mid\mid label(S.next) \mid S.next:$		B.true: $S_1.code$	J
$S \rightarrow \mathbf{assign}$	$S.code = \mathbf{assign}.code$		B.false:	
$S \rightarrow \mathbf{if} (B) S_1$	B.true = newlabel()		if-else-statement	
	$B.false = S_1.next = S.next$			o B.true
	$S.code = B.code \mid\mid label(B.true) \mid\mid S_1.code$	2	b.code t	o B.false
$S \rightarrow \mathbf{if} (B) S_1 \mathbf{else} S_2$	B.true = newlabel()		B.true: $S_1.code$ goto S.next	
() 1 2	B.false = newlabel()		B.false: $S_2.code$	
	$S_1.next = S_2.next = S.next$		S.next:	
	$S.code = B.code \mid label(B.true) \mid S_1.code$	e		
	gen('goto' S.next) label	(B.false)	$ S_2.code $	
$S \rightarrow $ while $(B) S_1$	begin = newlabel()		while-statement	
. , ,	B.true = newlabel()			to <i>B.true</i>
	B.false = S.next		B.true: S_1 .code	to <i>B.false</i>
	$S_1.next = begin$		goto begin B.false:	
	$S.code = label(begin) \mid\mid B.code \mid\mid label(B)$	e.true)	D.Jaise . 1 1	
	$ S_1.code $ gen('goto' begin		multiple-statement	
$S \rightarrow S_1 S_2$	$S_1.next = newlabel()$		$S_1.code$	
1 4	$S_2.next = S.next$		$S_1.next$: $S_2.code$	
	$S.code = S_1.code \mid label(S_1.next) \mid S_2.code$	de	S.next:	

SDD for Boolean Expressions

Production	Semantic Rules	$B_1 \parallel B_2$		-
$B \to B_1 \parallel B_2$	$B_1.true = B.true$ $B_1.false = newlabel()$ $B_2.true = B.true$ $B_2.false = B.false$ $B.code = B_1.code \mid label(B_1.false) \mid label(B_2.code)$	B ₁ .false : B.true : B.false :	$B_1.code$ $B_2.code$	to B_1 .true to B_1 .false to B_2 .true to B_2 .false
$B \rightarrow B_1 \&\& B_2$	$B_1.true = newlabel()$ $B_1.false = B.false$ $B_2.true = B.true$ $B_2.false = B.false$ $B.code = B_1.code \mid label(B_1.true) \mid B_2.code$	B_1 && B_2 B_1 .true: B .true: B .false:	$B_1.code$ $B_2.code$	to B_1 .true to B_1 .false to B_2 .true to B_2 .false
$B \rightarrow ! B_1$	$B_1.true = B.false$ $B_1.false = B.true$ $B.code = B_1.code$			
$B \to E_1 \text{ rel } E_2$	$B.code = E_1.code \mid\mid E_2.code \mid\mid gen(`if' E_1.addr rel.op E_2.addr \mid\mid gen(`goto' B.false)$	'`goto	o' B.true))
$B \rightarrow \mathbf{true}$	B.code = gen(`goto' B.true)			5
$B \rightarrow \mathbf{false}$	B.code = gen(`goto' B.false)			

Translating If-Statements: An Example

Consider the following statement

```
if (x < 100 | | x > 200 && x != y) x = 0;

+ | and & are left-associative
```

- ◆ Precedence: ! > && > | |
- Translation

```
if x < 100 goto L<sub>2</sub>
goto L<sub>3</sub>
L<sub>3</sub>: if x > 200 goto L<sub>4</sub>
goto L<sub>1</sub>
L<sub>4</sub>: if x != y goto L<sub>2</sub>
goto L<sub>1</sub>
L<sub>2</sub>: x = 0
L<sub>1</sub>:
```

- The code is not optimal
- \bullet goto L₃ is redundant
- goto L₄ can be
 eliminated by using
 ifFalse instead of if
 instructions

Avoiding Redundant Gotos

The ifFalse instruction takes advantage of the natural flow from one instruction to the next in sequence

```
if x > 200 goto L_4 goto L_1: ...
```



```
if False x > 200 goto L_1 L_4: ...
```

• Control simply "falls through" to label L_4 if x > 200, thereby avoiding a jump

	Production	Semantic Rules Rewriting SDDs Using ifFalse		
	$S \rightarrow \mathbf{if} (B) S_1$	$B.true = \frac{newlabel()}{fall}$		
		$B.false = S_1.next = S.next$		
		$S.code = B.code + label(B.true) S_1.code$		
	•••	•••		
	$B \rightarrow B_1 \parallel B_2$	$B_1.true = \frac{B.true}{B.true}$ if $B.true \neq fall$ then $B.true$ else $newlabel()$		
		$B_1.false = \frac{newlabel()}{fall}$		
		B_2 .true = B .true		
		B_2 .false = B.false		
		$B.code = B_{\downarrow}.code label(B_{\downarrow}.false) B_{\downarrow}.code$		
		if B.true \neq fall then B_1 .code $ B_2$.code		
		else $B_1.code \mid\mid B_2.code \mid\mid label(B_1.true)$		
	$B \rightarrow E_1 \text{ rel } E_2$	$test = E_1.addr$ rel.op $E_2.addr$		
		$s = \mathbf{if} \ B.true \neq fall \ \mathbf{and} \ B.false \neq fall \ \mathbf{then}$		
		<pre>gen('if' test'goto' B.true) gen('goto' B.false)</pre>		
		else if $B.true \neq fall$ then $gen('if' test')goto' B.true)$		
		<pre>else if B.false ≠ fall then gen('ifFalse' test'goto' B.false)</pre>		
		$B.code = E_1.code \mid\mid E_2.code$		
		$\# gen(\ \ \ \ \ \ E_{rac{1}{2}}.addr\ \ \ rel.op\ \ E_{rac{1}{2}}.addr\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
				
W		s		
1				

Translating If-Statements: An Example (Cont'd)

Consider the following statement

```
if (x < 100 | x > 200 \&\& x != y) x = 0;
```

```
if x < 100 goto L<sub>2</sub>
    goto L<sub>3</sub>
L<sub>3</sub>: if x > 200 goto L<sub>4</sub>
    goto L<sub>1</sub>
L<sub>4</sub>: if x != y goto L<sub>2</sub>
    goto L<sub>1</sub>
L<sub>2</sub>: x = 0
L<sub>1</sub>:
```

```
if x < 100 goto L_2 ifFalse x > 200 goto L_1 ifFalse x != y goto L_1 L_2: x = 0 L_1:
```

Using ifFalse instructions

Boolean Expressions for Computing Values

$$S \rightarrow \text{id} = E$$
; | if $(E) S$ | while $(E) S$ | $S = E \rightarrow E$ | $E + E = E$ | $E + E = E$ | id | true | false

- When E appears in $S \rightarrow id = E$;
 - If E has the form $E_1 + E_2$
 - Already discussed in Section 6.4 (<u>slide 43</u>)
 - \bullet If E has the from $E \mid\mid E$ or E && E
 - Similar to the translation in Section 6.6.4 (slide <u>76</u>)
- Needs two passes to translate E
 - Build the syntax tree
 - Walk the tree

Boolean Assignment: An Example

Consider a boolean-assignment statement

```
x = a < b \& c < d
```

```
ifFalse a < b goto L<sub>1</sub>
ifFalse c < d goto L<sub>1</sub>
t = true
goto L<sub>2</sub>
L<sub>1</sub>: t = false
L<sub>2</sub>: x = t
```

- First generate jumping code for E
- Assign true or false to a new temporary t at the true and false exists

Remark of Section 6.6

- The key problem when generating code for boolean expression and flow-of-control statements is
 - Matching a jump instruction with the target of the jump
- Solution:
 - Passing labels as inherited attributes to where the relevant jump instructions were generated

Binding Labels to Addresses

A separate pass is needed to bind labels to address

if
$$(x < 100 \mid x > 200 \&\& x != y) x = 0$$

We first generate code with labels

```
if x < 100 goto L<sub>2</sub>
  goto L<sub>3</sub>
L<sub>3</sub>: if x > 200 goto L<sub>4</sub>
  goto L<sub>1</sub>
L<sub>4</sub>: if x != y goto L<sub>2</sub>
  goto L<sub>1</sub>
L<sub>2</sub>: x = 0
L<sub>1</sub>:
```

 Then we bind labels to addresses

```
100: if x < 100 goto 106
101: goto 102
102: if x > 200 goto 104
103: goto 107
104: if x != y goto 106
105: goto 107
106: x = 0
107:
```

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

Backpatching

- A technique to generate code for boolean expressions and flow-of-control statements in one pass
- For a nonterminal B, two synthesized attributes are used
 - * truelist
 - A list of jump instructions, which jump to some labels when B is true
 - # falselist
 - A list of jump instructions, which jump to some labels when B is false
- We generate instructions into an array and labels will be indices into the array

Backpatching for Boolean Expressions

```
B \rightarrow B_1 \mid\mid M B_2 \mid
                          \{ backpatch(B_1.falselist, M.instr); \}
                            B.truelist = merge(B_1.truelist, B_2.truelist);
                            B.falselist = B_2.falselist; }
                        \{ backpatch(B_1.truelist, M.instr); \}
B \rightarrow B_1 \&\& M B_2
                            B.truelist = B_2.truelist;
                            B.falselist = merge(B_1.falselist, B_2.falselist); 
                          \{ B.truelist = B_1.falselist; \}
B \rightarrow ! B_1
                            B.falselist = B_1.truelist; }
                          { B.truelist = makelist(newinstr);
B \rightarrow E_1 \text{ rel } E_2
                            B.falselist = makelist(newinstr + 1);
                            gen(`if' E_1.addr rel.op E_2.addr `goto -');
                            gen('goto -'); }
                          { B.truelist = makelist(newinstr);
B \rightarrow \text{true}
                            gen('goto -'); }
                          {B.falselist = makelist(newinstr);}
B \rightarrow \mathbf{false}
                            gen('goto -'); }
M \to \varepsilon
                          \{ M.instr = newinstr; \}
```

Backpatching for Boolean Expressions

```
B \rightarrow B_1 \mid\mid MB_2 { backpatch(B<sub>1</sub>.falselist, M.instr);
 B.truelist = merge(B<sub>1</sub>.truelist, B<sub>2</sub>.truelist);
 B.falselist = B<sub>2</sub>.falselist; }
```

- If B_1 is false \Rightarrow the target of B_1 . falselist must be the beginning of the code of B_2
- Use marker nonterminal M to obtain the target and store it to M.instr, a synthesized attribute
- The variable newinstr holds the index of the next instruction to follow
- backpatch(p, i) inserts i as the target label for each of the instructions on the list pointed to by p
 - Each instruction in B_1 . falselist will receive M. instr as its target label
- $merge(p_1, p_2)$ concatenates the list pointed to by p_1 and p_2 , and returns a pointer to the concatenated list

$$M \to \varepsilon$$
 { $M.instr = newinstr;$ }

Backpatching for Boolean Expressions

```
B \rightarrow B_1 \mid\mid MB_2 { backpatch(B<sub>1</sub>.falselist, M.instr);
 B.truelist = merge(B<sub>1</sub>.truelist, B<sub>2</sub>.truelist);
 B.falselist = B<sub>2</sub>.falselist; }
 B \rightarrow B<sub>1</sub> && MB<sub>2</sub> { backpatch(B<sub>1</sub>.truelist, M.instr);
```

 makelist(i) creates a new list containing only i, an index into the array of instructions, and returns a pointer to the newly created list

```
B \rightarrow E_1 \text{ rel } E_2
\begin{cases} B.truelist = makelist(newinstr); \\ B.falselist = makelist(newinstr + 1); \\ gen('if' E_1.addr rel.op E_2.addr 'goto -'); \\ gen('goto -'); \end{cases}
B \rightarrow \text{true}
\begin{cases} B.truelist = makelist(newinstr); \\ gen('goto -'); \end{cases}
B \rightarrow \text{false}
\begin{cases} B.falselist = makelist(newinstr); \\ gen('goto -'); \end{cases}
gen('goto -'); \end{cases}
M \rightarrow \varepsilon
\begin{cases} M.instr = newinstr; \end{cases}
```

Consider the boolean expression

```
x < 100 \mid x > 200 \&\& x != y
```

```
100: if x < 100 goto - 101: goto -
```

```
B \rightarrow E_1 rel E_2 { B.truelist = makelist(newinstr); {100} 
B.falselist = makelist(newinstr + 1); {101} 
gen(`if' E_1.addr rel.op E_2.addr `goto -'); 
gen(`goto -'); }
```


Consider the boolean expression

$$x < 100$$
 $x > 200 && x != y$

```
100: if x < 100 goto - 101: goto -
```

```
B \rightarrow B_1 \mid\mid M B_2 \quad \{ backpatch(B_1.falselist, M.instr); \\ B.truelist = merge(B_1.truelist, B_2.truelist); \\ B.falselist = B_2.falselist; \} \\ \dots \\ M \rightarrow \varepsilon \quad \{ M.instr = newinstr; \}  102
```


Consider the boolean expression

gen('goto -'); }

$$x < 100 \mid x > 200 \&\& x != y$$

Initially, newinstr = 100

```
100: if x < 100 goto -

101: goto -

102: if x > 200 goto -

103: goto -

B \rightarrow E_1 \text{ rel } E_2 \quad \{B.truelist = makelist(newinstr); \{102\} \}

B.falselist = makelist(newinstr + 1); \{103}
```

 $gen('if' E_1.addr rel.op E_2.addr 'goto -');$

B

Consider the boolean expression

$$x < 100 \mid x > 200 \& x ! = y$$

Initially, newinstr = 100

```
100: if x < 100 goto -
101: goto -
102: if x > 200 goto -
103: goto -
```

```
B \rightarrow B_1 \&\& M B_2 \ \{ backpatch(B_1.truelist, M.instr); \\ B.truelist = B_2.truelist; \\ B.falselist = merge(B_1.falselist, B_2.falselist); \} \\ ... \\ M \rightarrow \varepsilon \ \{ M.instr = newinstr; \} \ 104
```

M

&&

M

B

Consider the boolean expression

```
x < 100 \mid x > 200 \&\& x != y
```


Consider the boolean expression

$$x < 100 \mid x > 200 \&\& x != y$$

```
100:
                if x < 100 goto -
         101:
                goto -
         102: if x > 200 goto 104
         103:
                goto
         104: if x != y goto
         105: goto -
                                                              B
B \rightarrow B_1 \&\& MB_2 \ \{ backpatch(B_1.truelist, M.instr) \}
                  B.truelist = B_2.truelist; {104}
                  B.falselist = merge(B_1.falselist, B_2.falselist); \}  {103,105}
   Introduction to Compiler Design
                                                              Page 94
```

Consider the boolean expression

$$x < 100 \mid x > 200 \& x != y$$

```
100:
              if x < 100 goto -
        101: goto 102
        102: if x > 200 goto 104
        103: goto -
        104: if x != y goto -
        105: goto -
B \rightarrow B_1 \mid\mid M B_2 \mid \{ backpatch(B_1.falselist, M.instr); \}
                 B.truelist = merge(B_1.truelist, B_2.truelist);
                 B.falselist = B_2.falselist;  {100}
                                                    {100, 104
 Introduction to Compiler Design
                                                             Page 95
```

Annotated Parse Tree for the Previous Example

- The entire expression is
 - true iff the gotos of instruction 100 or 104 are reached
 - false iff the gotos of instruction 103 or 105 are reached

What About the Other Labels?

Consider the flow-of-control statement

```
if (x < 100 \mid x > 200 \&\& x != y) x = 0
```

```
100: if x < 100 goto 106
101: goto 102
102: if x > 200 goto 104
103: goto 107
104: if x != y goto 106
105: goto 107
106: x = 0
107:
```


Backpatching for Flow-Of-Control Statements

 $S \rightarrow \mathbf{if}(B) M S_1$ { backpatch(B.truelist, M.instr); $S.nextlist = merge(B.falselist, S_1.nextlist);$ $S \rightarrow \mathbf{if}(B) M_1 S_1 N \mathbf{else} M_2 S_2 \{ backpatch(B.truelist, M_1.instr); \}$ $backpatch(B.falselist, M_2.instr);$ $temp = merge(S_1.nextlist, N.nextlist);$ $S.nextlist = merge(temp, S_2.nextlist);$ $S \rightarrow$ while M_1 (B) M_2 S_1 { $backpatch(S_1.nextlist, M_1.instr);$ $backpatch(B.truelist, M_2.instr);$ S.nextlist = B.flaselist; $gen(`goto' M_1.instr); \}$ $S \rightarrow \{L\}$ $\{ S.nextlist = L.nextlist; \}$ $S \to A$; $\{ S.nextlist = null; \}$ $M \to \varepsilon$ $\{ M.instr = newinstr; \}$ $N \to \varepsilon$ ${N.nextlist = makelist(newinstr);}$ gen('goto -'); } { $backpatch(L_1.nextlist, M.instr);$ $L \rightarrow L_1 M S$ L.nextlist = S.nextlist; $\{L.nextlist = S.nextlist;\}$

Backpatching for Flow-Of-Control Statements

```
S \rightarrow \mathbf{if} (B) M S_1 { backpatch(B.truelist, M.instr); 
 S.nextlist = merge(B.falselist, S_1.nextlist); }
```

 Nonterminal statement S has a synthesized attribute nextlist, which is a list of jumps to the instructions following the of code of statement S

```
S \rightarrow while M_1 (B) M_2 S_1
                                     { backpatch(S_1.nextlist, M_1.instr);
                                       backpatch(B.truelist, M_2.instr);
                                       S.nextlist = B.flaselist;
                                       gen(`goto' M_1.instr); \}
S \rightarrow \{L\}
                                     \{ S.nextlist = L.nextlist; \}
S \to A;
                                     \{ S.nextlist = null; \}
M \to \varepsilon
                                     \{ M.instr = newinstr; \}
N \to \varepsilon
                                     {N.nextlist = makelist(newinstr);}
                                       gen('goto -'); }
                                     { backpatch(L_1.nextlist, M.instr);
L \rightarrow L_1 M S
                                       L.nextlist = S.nextlist; }
                                     \{L.nextlist = S.nextlist;\}
```

Backpatching for Flow-Of-Control Statements

```
S \rightarrow \mathbf{if}(B) M S_1
                                    { backpatch(B.turelist, M.instr);
                                      S.nextlist = merge(B.falselist, S_1.nextlist); 
S \rightarrow \mathbf{if}(B) M_1 S_1 N \mathbf{else} M_2 S_2 \{ backpatch(B.truelist, M_1.instr); \}
           B.true / B.false
                                     backpatch(B.falselist, M_2.instr);
                                      temp = merge(S_1.nextlist, N.nextlist);
                                      S.nextlist = merge(temp, S_2.nextlist); 
S \rightarrow \mathbf{while} M_1 (B) M_2 S_1
                                    { backpatch(S_1.nextlist, M_1.instr);
                                      backpatch(B.truelist, M_2.instr);
                                      S.nextlist = B.flaselist;
                      goto M_1.instr
                                      gen(`goto' M_1.instr); \}
S \rightarrow \{L\}
                                     \{ S.nextlist = L.nextlist; \}
S \to A;
                                     \{ S.nextlist = null; \}
M \to \varepsilon
                                     \{ M.instr = newinstr; \}
N \rightarrow \varepsilon
                                     gen('goto -'); }
L \rightarrow L_1 M S
                                     \{ backpatch(L_1.nextlist, M.instr); \}
                                      L.nextlist = S.nextlist; 
                                     \{L.nextlist = S.nextlist;\}
```

Outline

- Overview of Intermediate Representation
- Intermediate Representation
 - Syntax Trees
 - Three-Address Code
- Intermediate-Code Generation
 - Types and Declarations
 - Translation of Expressions
 - Type Checking
 - Control Flow
 - Backpatching
 - Switch-Statements and Procedures

Translation of Switch-Statements

```
 \begin{array}{c} \textbf{switch} \; (E) \; \{ \\ \textbf{case} \; V_1 \colon S_1 \\ \textbf{case} \; V_2 \colon S_2 \\ \dots \\ \textbf{case} \; V_{n-1} \colon S_{n-1} \\ \textbf{default} \colon S_n \\ \} \end{array}
```

Break the switch-case after one case is matched

```
code to evaluate E into t
         if t != V_1 goto L_1
         code for S_1
         goto next
         if t != V_2 goto L_2
L_1:
         code for S_2
         goto next
L_2:
L_{n-2}: if t != V_{n-1} goto L_{n-1}
         code for S_{n-1}
         goto next
         code for S_n
L_{n-1}:
next:
```


Translation of Procedures

Assume that parameters are passed by value

$$n = f(a[i]);$$

$$t_1 = i * 4$$
 $t_2 = a [t_1]$
param t_2
 $t_3 = call f, 1$
 $n = t_3$

Details will be discussed in Chapter 7