Parcial 2 algebra abstracta

Rodrigo Castillo

30 de octubre de 2020

1. Punto1 construya un campo con 7³ elementos

solucion

el Teorema de Galois visto en clase nos dice que un polinomio de grado 3 en \mathbb{Z}_p nos genera un campo de 7^3 elementos.

sea el polinomio : $x^3 + x^2 + x \in \mathbb{Z}_7$ tenemos que genera un campo de 7^3 elementos el polinomio es irreducible

supongamos que existen dos polinomios x,y tales que $x\cdot y=x^3+x^2+x$. por lo tanto, x es de grado 2 y y es de grado 1 (o el caso análogo). luego x es de la forma nx^2+nx y y es de la forma nx, luego $x\cdot y$ es un polinomio de laforma $nx^3+2nx\neq x^3+x^2+x$.

2. Punto 2: Sea G un grupo y $g \in G$, demuestre que si e, g es un grupo normal entonces g pertenece al centro de G

supongamos que $g \in G$ y que $g \neq e$, además, supongamos que e,g es un grupo normal, por lo tanto, para cualquier $h \in G$ se tiene que $hegh^{-1} = eg$, como eg = g, se tiene que $hgh^{-1} = g$, por lo tanto se tiene que gh = hg, por lo tanto $g \in Z(G)$

3. Punto 3: demuestre que el grupo Klein V4 es isomorfo a $Z_2 \times Z_2$

aclaración: , definí los elementos como a,b , sin embargo, a,b deberían ser tomados en Z_2 como a=0,b=1

3.1. existe una función biyectiva del conjunto KleinV4 hasta $Z_2 \times Z_2$ sea F una función desde K_4 hasta $Z_2 \times Z_2$ tal que a cada elemento de K_4 que es de tipo:

3.1.1. inyectividad

 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ le asigna un elemento (a,b),(b,a) por lo tanto para cada $k\in 4_4$ existe un $z\in Z_2\times Z_2$ tal que f(k)=z

3.1.2. sobreyectividad

supongamos que f(k)=f(k'), así se tiene que (a,b),(b,a)=(a',b'),(b',a') luego $k=\begin{pmatrix} a&b\\-b&-a \end{pmatrix}$ y $k'=\begin{pmatrix} a'&b'\\-b&-a' \end{pmatrix}$ y así obtenemos que k=k' por lo tanto fes sobre

3.2. la imagen de la operación es la operación de las imágines

esto es facil de ver en $\mathbb{Z}_2 \times \mathbb{Z}_2$ pues es un conjunto de 4 elementos

4. Punto 4: Sea A un anillo conmutativo

sea $a \in A$ tal que $a \neq 0$ y que a no es divisor de 0.

como A es un conjunto finito y además como a no es divisor de 0, puedo elevar a a por todos los elementos de A sabiendo que ninguno de ellos va aser divisor de 0, por lo que tengo un anillo de $[a,a^2...,a^{n+1}]$, por lo tanto... $1=a^{n+1}=ax^n$ por lo tanto existe $n\in A$ tal que $a^n=1$. luego la inversa de a es a^{n+1}