	TP1 SAD - Marin Mrabet	Pt		АВС	D Note	
ı	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	С		0,7	7
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	5
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	5
4	Quelle est la grandeur réglante ?	1	В		0,375	5
5	Donner une grandeur perturbatrice.	1	С		0,175	5
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	L'ordre des connecteurs n'est pas respecté
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	Ī
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	L
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	D	_	0,05	La formule est à l'envers. Il faut utiliser des %.
4	En déduire le sens d'action à régler sur le régulateur.	1	Α			L
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	В		2,25	5
III.	Etude du régulateur			_		
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	D		0,075	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	С		0,525	Avec ce Kr, c'est une régulation proportionnelle uniquement
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	D		0,05	5
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	D		0,075	5
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	5
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	5
			Not	e sur : 20	9,4	

TP1 SAD

I. Préparation du travail

1/ Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.

2/ Quel est le nom de la grandeur réglée ?

Grandeur réglée : La pression dans le réservoir

3/ Quel est le principe utilisé pour mesurer la grandeur réglée ?

Le principe utilisée pour mesurée la grandeur réglée est le capteur PIT, il mesure la déformation de ces membranes.

4/ Quelle est la grandeur réglante ?

Grandeur réglante : Ouverture de la vanne PV

5/ Donner une grandeur perturbatrice.

Grandeur perturbatrice : Pression en sortie du réservoir Ps

6/ Établir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.

II. Étude du procédé

1/ Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.

2/ Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).

X.Pv	kPa
0	0
20	47
40	150
60	185
80	196
100	200

3/ En déduire le gain statique du procédé autour du point de fonctionnement.

$$K = (DELTA X) / (DELTA Y)$$

$$K = 100 / 200$$

$$K = 0.5$$

4/ En déduire le sens d'action à régler sur le régulateur.

Lorsque Y augmente on a X qui augmente donc le régulateur est inverse et le procédé est direct.

5/ Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

$$T0 = 10:53:02 = 0s$$

 $t1 = 10:53:07 = 5s$
 $t2 = 10:53:10 = 8s$ 7s, c'est mieux

Le retard
$$T = 2,8(5-0)-1,8(8-0) = 0,4$$
 Unités ?
La constante de temps $t = 5,5(8-5) = 16,5$

$$K = 16/10 = 1,6$$

 $Kr = 0,4/16,5 = 0,024$

III. Etude du régulateur

1/ Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.

C'est un PID MIXTE.

2/ En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.

$$0.83/K * (1/Kr+0.4) = 0.83/1.6 * (1/0.024+0.4) = 21.822$$

 $Ti = K*T/0.75 = 1.6*0.4/0.75 = 0.853$
 $Td = 0.35t / K = 0.35*16.5 / 1.6 = 3.609$

IV. Performances et optimisation

- 1. Programmer votre régulateur pour assurer le fonctionnement de la régulation. Je ne sais pas
- 2. Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.

 Je ne sais pas

- 3. Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés. Je ne sais pas
- 4. Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.

Je ne sais pas