Лабораторная работа N₂1.4.5

Маллаев Руслан 11 октября 2020 г. **Цель работы:** исследование зависимости частоты колебаний струны от величины натяжения, нахождение гармоник и собственных частот колебания струны, а также условий установления стоячей вол-

ны, получающейся в результате сложения волн, идущих в противоположных направлениях.

Приборы, используемые в работе: рейка со струной, генератор электрических импульсов, осциллограф, разновесы, постоянный магнит.

Соберем установку, как показано на рисунке 1:

Рисунок №1

1 Визуальное наблюдение стоячих волн

• Установим L=50 см и положим на платформу грузы массой 487.4 г и 453.4 г, тогда суммарная масса подвеса(с учетом массы платформы и крючка, равной 119.9 г) M=1060.7 г. На установке указано $\rho_l=568.4\frac{\text{мr}}{\text{m}}$, тогда:

$$u=\sqrt{rac{T}{
ho_l}}=\sqrt{rac{M\cdot g}{
ho_l}}=133.21rac{\mathrm{M}}{\mathrm{c}}$$
 $u=\sqrt{rac{T}{
ho_l}}=133.21\,\mathrm{\Gamma}$ ц

• Теперь включим генератор и посчитаем значение основной гармоники и более высоких гармоник при помощи осциллографа:

Таблица №1

$\nu_{n_{exp}}$, Γ ц	$ u_{n_{theor}}, \Gamma$ ц	n
131.58	135.3	1
246.30	270.0	2
392.16	405.0	3
533.12	541.2	4
672.31	675.0	5
798.00	810.0	6
947.96	947.1	7
1225.00	1215.0	9
1518.00	1485.0	11
1804.00	1758.9	13

Как видим, теоретические и экспериментальные результаты с некоторой точностью совпадают.

2 Регистрация стоячих волн с помощью осциллографа

Проведем измерения частот гармоник для дргуих значений $M\epsilon\{1536.6~{
m r}, 1870.9~{
m r}, 2352.7~{
m r}, 2835.1~{
m r}\}$:

Таблица №1

М, г	n	1	2	3	4	5	6	7	8	9
1536.6	$\nu_{n_{exp}}$, Гц	160	328	485	654	815	983	1146	1318	1480
	$ u_{n_{theor}}, \Gamma$ ц	163	326	489	652	815	978	1141	1304	1467
1870.9	$ u_{n_{exp}}, \Gamma$ ц	182	366	548	735	915	1103	1287	1447	1659
1010.9	$ u_{n_{theor}}, \Gamma$ ц	180	360	540	720	900	1080	1260	1440	1620
2352.7	$ u_{n_{exp}}, \Gamma$ ц	200	407	608	812	1013	1224	1428	1630	1839
2002.1	$ u_{n_{theor}}, \Gamma$ ц	201	402	603	804	1005	1206	1407	1608	1809
2835.1	$ u_{n_{exp}}, \Gamma$ ц	223	449	668	898	1121	1349	1580	1802	2025
	$ u_{n_{theor}}, \Gamma$ ц	221	442	663	884	1105	1326	1547	1768	1989

3 Наблюдение фигуры Лиссажу

Подадим на каналы осциллографа сигналы с частотой основной гармоники ν_1 и в два раза меньше $\frac{\nu_1}{2}$, тогда на экране будет наблюдаться фигура Лиссажу с одним самопересечением:

Происходит это из-за отношения частот подаваемых сигналов, равного 1:2

4 Определение добротности струны

Измерим АЧХ струны вблизи частоты ν_1 для M=1060.7 г:

Таблица №2				
ν , Гц	А, мВ			
135.0	5.5			
136.0	12.0			
136.1	18.0			
136.2	22.0			
136.3	40.0			
136.4	95.0			
136.5	105.0			
136.6	-			
136.7	80.0			
136.8	36.0			
136.9	24.0			
137.0	18.0			
138.0	12.5			

График №1

$$\Delta\nu = 0.341~\Gamma\text{ц;}~\nu_{\rm pe3} = 136.545~\Gamma\text{ц}$$

$$Q = \frac{\nu_{\rm pe3}}{\Delta\nu} = 400.43$$

5 Построение графиков зависимостей ν от п для разных значений силы натяжения T и определение скорости распространения волн u

 $\nu = \frac{n}{2L} \cdot u \Rightarrow u(T) = k(T) \cdot 2L$ (где k(T) - коэффициент наклона на графике №2)

T, H	к, Гц	ε_k	$u, \frac{M}{c}$	$\Delta u, \frac{M}{c}$
10.41	137.66	0.011	137.7	1.5
15.06	165.02	0.012	165.0	2.0
18.33	183.28	0.014	183.3	2.6
23.06	204.62	0.015	204.6	3.1
27.78	225.70	0.017	225.7	3.8

6 Определение ρ_l

$$u = \sqrt{\frac{T}{\rho_l}} \Rightarrow T = \rho_l \cdot u^2$$

$$\Delta(u^2) = u^2 \cdot \sqrt{2 \cdot \left(\frac{\Delta u}{u}\right)^2}$$

T, H	$u^2, \left(\frac{M}{c}\right)^2$	$u, \frac{M}{c}$	$\Delta(u^2), \left(\frac{M}{c}\right)^2$
10.41	18961	137.7	295
15.06	27225	165.0	462
18.33	33599	183.3	705
23.06	41861	204.6	888
27.78	50940	225.7	1225

График №3

Из графика получаем $\rho_l=k=(563.8\pm 22.4)\frac{\text{мг}}{\text{м}}$ Как видим,результат эксперимента согласуется с данными, указанными на установке.