Practicalities of analysing biosignals

August 18, 2015

```
In [9]: import IPython.display as display
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib as mpl
    %matplotlib inline
```

1 Practicalities of analysing biosignals

1.1 Dr. Emlyn Clay Head of Software Development Viditeck AG, Director of OpenVivo ltd.

2 Who am I?

- Undergraduate Pharmacology (~2009) and doctorate of Pharamcology (2015)
- Developing software since I was 18, ~10 years
- Web stuff (PHP), then VBscript, then MATLAB, then Python, then C ... etc
- I spend most of my time programming and distributing biomedical equipment.

```
In [5]: display.Image(filename='images/emlyn.jpg')
Out[5]:
```


3 Committee member of PyData London!

- Monthly meetup for data science peoples using Python.
- ~1800 members, regular 200 people meetups.
- Yearly conference.
- Advocate the Python community.

In [22]: display.Image(filename='images/pydata_logo.png')

Out[22]:

4 Emlyn said ...

To: dgorissen@gmail.com

CC: "london@pydata.org" <london@pydata.org>

Subject: PyData London Call for Proposal - mind circulating?

Hello Dirk,

Do you mind forwarding the following call for proposal, below, for our PyData London Conference 2015 on

Thanks Dirk,

Emlyn

Hello Big Omegas,

. . .

5 Dirk said ...

Date: Fri, 8 May 2015 22:00:53 +0100

Subject: Re: PyData London Call for Proposal - mind circulating?

To: Emlyn Clay <eclay101@gmail.com>

On the condition you come do a talk ;) I have a slot week of 17 August :)

Dr. Dirk Gorissen

Research - Tech4Good - Flying Robots

Skype: dirk.gorissen
Mob: +44-7763-806-809

Twitter : https://twitter.com/dirkgor

LinkedIn: http://www.linkedin.com/in/dirkgorissen

Bribery!

6 Biosignals

Definitvely -

A biosignal is any signal in living organisms that can be measured and monitored, continually or intermittently. Some are bioelectrical, but it may refer to both electrical and non-electrical signals.

Analysing them can be used to assess:

- Healthy "normative" states
- Disease states
- Fundamental understanding

6.1 Blood pressure

```
In [10]: display.Image(filename='images/signal_blood-pressure.png')
```

Out[10]:

6.2 ECG

```
In [12]: display.Image(filename='images/signal_ECG.jpeg')
Out[12]:
```


6.3 EEG

In [13]: display.Image(filename='images/signal_EEG.png')

Out[13]:

7 What are we looking at today?

Practicalities.

- Record biosignals
- Storing them
- Process them
- Analyse them

8 Recording biosignals

Things you are going to need -

- Sensor
- Amplifier
- Analogue to Digital Convertor
- Storage media

8.1 Sensors

- A thing that attaches to the person,
- Possibly a box that is powering and conditioning the signal
- Something that connects to your amplifier

In [18]: display.Image(filename="images/sensors.png")

Out[18]:

8.2 Amplifier and data acquisition

Often they are in the same box.

In [19]: display.Image(filename="images/gusbamp.png")

Out[19]:

8.3 Storage media

Often it's a laptop or sometimes some embedded storage like a flash disk

In [20]: display.Image(filename="images/digital_storage.jpg")

Out[20]:

9 Salient points on equipment

Sensors + Calibrated + Sensitive, but not noisy

Amplifier/DAQ + Certified for use (CE, FDA) — not strictly necessary for hobbyist use, + Don't connect hobby tech to mains! Use a battery. + High raw sampling rate — oversampling. + Low noise, high input impedance.

Storage + Make sure it can handle your bandwidth + Get lots of it - one minute of ECG uncompressed, $^{\sim}120 \text{Mb}$ (2 x 1024 x 60)

10 Storing Biosignals

Effectively; large vectors of doubles and some metadata about what we've recorded.

11 HDF5!

12 HDF5

- Portable
- Bindings to everything (C, Fortran, Python, Matlab, Java . . .)
- Supports contiguous or chunked datasets
- Performant.

13 HDF5 in Python

```
In [3]: import h5py
    import numpy as np

f = h5py.File("ecg.h5", "w")
    dset = f.create_dataset("ECG", (1024,), dtype='f')
```

14 HDF5 datasets

Store the raw signal in one dataset, store a processed signal in another.

```
In [6]: normal_ECG = f.create_dataset("normal_ECG", (65772,), dtype='f')
```

15 HDF5 attributes

You can store metadata right next to the data it describes! Yay!

16 Processing biosignals

Essentially, Digital Signal Processing — same rules apply. Biosignals tends to be continuous, periodic and complex waveforms.

16.1 Basic a.ka. cleaning the signal

- Filtering noise
- Correct the baseline
- Smoothing

16.2 Advanced a.k.a feature detection

- Wavelet convolution
- Peak detection
- Morphology analysis

17 Filtering noise

The signal you are looking for is usually between a specific wavelength so you can apply bandpass filters to just focus on the region of interest.

```
... you can do this with analogue electronics
```

```
In [18]: display.Image(filename='images/lowpass_filter.png', width='400px')
Out[18]:
```


 \dots but, then you have to worry about all sorts of compromises due to frequency responses and cut-off definition.

Filtering noise with the FFT

The grand conceit of Fourier's work was that all sinusoids can be described as a series of sinusoids superimposed on one another.

Normal ECG

1.2

Noisy ECG

... zero the numbers of the frequencies you don't want and you filter them from the signal.

18 Correct a baseline

18.1 ... for quiet signals (ECG)

• Substract the modal value away from the signal

• FFT and filter lower frequency components

18.2 ... for noisy signals (EEG)

- Substract the mean away from the signal
- Substract a window mean also.

19 Smoothing

Noise is often random so a moving-average moving-exponential window are good, but there are caveats. There is a tradeoff between:

- How smooth the signal is
- How precise the peaks (and troughs) are

... I often use the Savitzky-Golay smooth with biosignals because it favours maintaining the shape of the signal.

19.1 Intro. to Signal Processing: Smoothing - University of Maryland

```
In [51]: display.IFrame('http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html', width="100%", height
Out[51]: <IPython.lib.display.IFrame at 0x10b9ce590>
```