> Integral Methods B) Thwartis Method

4.5) Dissipation méthods (2 cgn methods.

feading: handon's

B) himitation of Amartis rection

 $\frac{d\theta}{dx}$: $\frac{g}{1/2} - \frac{(H+2)\theta}{u_e} \frac{due}{dx} = \frac{1}{2} \frac{(0, u_e, due)}{dx}$ by recently

"upon cal G and H relations limited to fines. of D, ve, alle In general, los restrictios, macconsti: Docont allow effects of upstream history, since H & to g depend bocally on 2

=7 à discoulinous => H & q discoulinous.

(Du - 00 near wall)

exact quivales unstantaneously separates when $\lambda < 0$

H general of (mental log) de

H - kni molic J weak

due, 2 - dynamie Jamens

One equation methods uniquely the H, G & due dix 308° in allowed are unaccurate when due changes rapidly.

Better approach - knimatic & knewski grantitis

= go & 2 equation methods.

4.57 Integral K. E Equation

Benc diff. so G & H do not depend explicitly on due (unhooked from local)

numme gradient

Introduce K. E equation as 2 nd equation (u^2-ue2). Continuity + 2u [momentum]

 $\left(u^{2}-ue^{2}\right)\left[\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right]+2u\left[\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}-ne\frac{\partial u}{\partial x}-\frac{1}{\rho}\frac{\partial t}{\partial y}\right]=0$ $\left(note^{2}-u^{2}\right)u\right]+\frac{\partial}{\partial y}\left[\left(ue^{2}-u\right)v\right]+\frac{1}{\rho}\frac{\partial t}{\partial y}2u=0$ $\left(note^{2}-u^{2}\right)u\right]+\frac{\partial}{\partial y}\left[\left(ue^{2}-u\right)v\right]+\frac{1}{\rho}\frac{\partial t}{\partial y}2u=0$

Integraling in y gives $\frac{d}{dx} \int_{0}^{g_{c}} \left[\left(u_{0}^{2} - u_{0}^{2} \right) u \right] dy - 2 \int_{0}^{g_{c}} \frac{dy}{dy} = 0$ Integraling in y gives $\frac{d}{dx} \int_{0}^{g_{c}} \left[\left(u_{0}^{2} - u_{0}^{2} \right) u \right] dy - 2 \int_{0}^{g_{c}} \frac{dy}{dy} = 0$

=D $\frac{d}{dx}(u_e^3\theta^*) = \frac{\partial D}{\rho}$ — dimensional form

$$\frac{d\theta^*}{dx} + \frac{3\theta^*}{4\theta} \frac{d\theta}{dx} = 260 \Rightarrow non-deni form.$$

+ also known K. E spape powent

B) Dissipation Methods.

Hypotheris is:

Reo
$$G = f(H)$$
 only; Reo = $\frac{HeO}{D}$ (note Therentis Reo $G = f(A)$)

 $f = f(H)$
 $f = f(H)$

=>
$$\frac{\alpha\theta}{dx} = \frac{1}{9/2} - \frac{(2HH)}{2H} \frac{\partial}{\partial ue} \frac{\partial ue}{\partial x}$$

 $\frac{\partial H}{\partial x} = \frac{1}{4H^*/4H} \cdot \frac{H^*}{0} \frac{3}{9} \frac{260}{H^*} - \frac{9}{12} + \frac{(H^{-1})}{ue} \frac{\partial}{\partial x} \frac{\partial ue}{\partial x} \frac{3}{9}$.

have 2 moultaneous ODES for can be uitegrali gwen uc(x)

(H-1) multiplies premu gradurt lein - H duve itseff. → laye H => b·l is more sensitive to premue gradurets

Final Commit;

governs evolution of B.L. Huckness Scale

dt : --- governs evolution of profile shape.

Contrast between 1 & 2 egs melhod

Reo G = f(0, ne due)

H= f(0, ne, due)

Kinemalic Quant. = f (Ogn. Duant)

Two

Reo & = f(H)

Reo Go = f(H) $H^* = f(H)$

Kur Overt: f (Kur Overt)

.