Physics II (PH 102) Electromagnetism (Lecture 11)

Udit Raha

Indian Institute of Technology Guwahati

Feb 2020

Method of Images: Avoids solving PDEs in Boundary Valued Problems

Method of Images: Invented by Lord Kelvin in 1848, commonly used to determine V, \mathbf{E} and σ (surface charge density) due to static charge configurations in the presence of a system of conductors.

- 1. Central idea: Map the original hard problem to another easier problem, but satisfying the same boundary conditions. Then Uniqueness Theorem guarantees the correctness of the solution.
- 2. Use Fact: All conducting surfaces are represented by equipotentials.
- Strategy: All Real charge configurations and conducting surfaces are replaced by the same Real charges, equipotential surfaces and some additional fictitious charges or charge distributions in the conducting region, called *Image Charges*.

The Classic Image Problem

Example

Suppose a point charge q is held at a distance d above a infinite grounded conducting plane. What is the Electrostatic Potential at point P in the non-conducting region $\mathcal D$ above the conducting plane?

- ▶ The Electrostatic Potential V at point $P \equiv (x, y, z)$ will be due to point charge q and the induced surface charges.
- Problem is, we do not know $\sigma(x,y)$ a priori! How to determine V(x,y,z) without directly knowing $\sigma(x,y)$ on the conducting plane?

Infinite grounded conducting plane

Set up a co-ordinate system with xy-plane as the given infinite conducting plane and q lies on the z-axis:

- ► Sol. Domain: $\mathcal{D} = \{\mathbf{r} \mid \mathbf{z} > 0\}$
- ▶ Boundary Surfaces of D:

$$S = \{xy\text{-plane}\} \cup S_{\infty+}$$

Point Charge density: $\rho(\mathbf{r}) = q\delta^{3}(\mathbf{r} - \mathbf{r}_{0}); \mathbf{r}_{0} = (0, 0, d)$

▶ V(x, y, z) satisfies **Poisson's Equation** $\forall r \in \mathcal{D}$:

$$abla^2 V(\mathbf{r}) = rac{1}{\epsilon_0}
ho(\mathbf{r})$$

Boundary Condition on V in the original problem:

$$V(\mathbf{S}) = 0, \forall \mathbf{S} \in S.$$

Infinite grounded conducting plane (contd.)

Real System is mapped on to the Fictitious System satisfying the same b.c.

Potential V(x, y, z) is ONLY needed in non-conducting region \mathcal{D}

The Real System

Potential V'(x, y, z) defined in the whole of \mathbb{R}^3

The Fictitious System

Infinite grounded conducting plane (contd.)

Consider the Fictitious System:

- ► Charge distribution: $\rho'(\mathbf{r}) = q\delta^3(\mathbf{r} \mathbf{r}_0) + (-q)\delta^3(\mathbf{r} + \mathbf{r}_0); \quad \mathbf{r}_0 = (0, 0, d)$
- lacktriangle Electrostatic Potential in all of $\mathbb{R}^3 o \mathsf{Trivial}$ to calculate!

$$V'(x,y,z) = \frac{1}{4\pi\epsilon_0} \left[\frac{q}{\sqrt{x^2 + y^2 + (z-d)^2}} + \frac{(-q)}{\sqrt{x^2 + y^2 + (z+d)^2}} \right]$$

▶ V'(r) satisfies Poisson's Equation $\forall r \in \mathbb{R}^3$:

$$abla^2 V'(\mathbf{r}) = rac{1}{\epsilon_0}
ho'(\mathbf{r})$$

- ▶ Boundary Condition: V'(S') = 0, $\forall S' \in S' = \{xy\text{-plane}\} \cup S_{\infty}$
 - 1. Real charge configuration in the common region \mathcal{D} is identical:

$$\rho'(\mathbf{r})|_{\mathcal{D}} \xrightarrow{z>0} \rho(\mathbf{r})$$

2. Boundary conditions in the common region $\mathcal D$ are identical:

$$\begin{split} \nabla^2 V' &= \frac{1}{\epsilon_0} \rho' \quad \text{over } \mathbb{R}^3 \quad \xrightarrow{z>0} \quad \nabla^2 V = \frac{1}{\epsilon_0} \rho \quad \text{over } \mathcal{D} \subset \mathbb{R}^3, \\ V' &= 0 \quad \text{on } S' \quad \xrightarrow{z>0} \quad V = 0 \quad \text{on } S \subset S' \end{split}$$

Infinite grounded conducting plane: Potential

- ▶ Uniqueness Theorem guarantees unique solution in \mathcal{D} , i,e., V = V'
- ▶ Thus, we found the solution to the original problem!

Electrostatic Potential in \mathcal{D} : $V(x,y,z)=V'(x,y,z\geq 0)$, i.e.,

$$V(x,y,z) = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{x^2 + y^2 + (z-d)^2}} - \frac{1}{\sqrt{x^2 + y^2 + (z+d)^2}} \right]$$

Note: We needn't bother that V = V' yields wrong result for z < 0!

Infinite grounded conducting plane: Electric Field

Electrostatic Field in
$$\mathcal{D}$$
: $\mathbf{E}(x, y, z) = \mathbf{E}'(x, y, z \ge 0) = -\nabla V(x, y, z)$, i.e.,
$$\mathbf{E}(x, y, z) = \frac{q}{4\pi\epsilon_0} \left[\frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (z - d)\hat{\mathbf{k}}}{(x^2 + y^2 + (z - d)^2)^{3/2}} - \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (z + d)\hat{\mathbf{k}}}{(x^2 + y^2 + (z + d)^2)^{3/2}} \right]$$

Note: Again we needn't bother that $\mathbf{E}(\mathbf{r}) = \mathbf{E}'(\mathbf{r})$ yields wrong result for z < 0!

Infinite grounded conducting plane: Surface Charge Density

Figure shows $|\sigma|$, for d=1 and d=0.1

⇒ Maximum induced charge density is right below the point charge

Infinite grounded conducting plane: Total Induced Charge

► Total induced surface charge: (with $dA = dx dy = s ds d\phi$)

$$Q_{\text{induced}} = \iint_{xy \cdot \text{plane}} \sigma(x, y) dA = -\int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \frac{qd}{2\pi} \frac{1}{(x^2 + y^2 + d^2)^{3/2}}$$

$$= -\frac{qd}{2\pi} \int_{0}^{\infty} \frac{s ds}{(s^2 + d^2)^{3/2}} \int_{0}^{2\pi} d\phi$$

$$= -\frac{qd}{2\pi} \left[-\frac{1}{(s^2 + d^2)^{1/2}} \right]_{s=0}^{s=\infty} (2\pi)$$

$$Q_{\text{induced}} = -q$$

Infinite grounded conducting plane: Force on Real Charge q

Electric Field at P(x, y, z) in \mathcal{D} , that we have already calculated:

$$\mathbf{E}(x,y,z) = \frac{1}{4\pi\epsilon_0} \left[q \left(\frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (z-d)\hat{\mathbf{k}}}{(x^2 + y^2 + (z-d)^2)^{3/2}} \right) + (-q) \left(\frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (z+d)\hat{\mathbf{k}}}{(x^2 + y^2 + (z+d)^2)^{3/2}} \right) \right]$$

- ▶ The first (second) term is the field due to the Real Charge q (Image Charge -q).
- ▶ Electric Field \rightarrow Induced charges \equiv Electric Field \rightarrow Image charge:

$$\mathsf{E}_{\rm induced}(x,y,z) \equiv \mathsf{E}_{\rm image}(x,y,z) = \frac{(-q)}{4\pi\epsilon_0} \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (z+d)\hat{\mathbf{k}}}{(x^2 + y^2 + (z+d)^2)^{3/2}}$$

▶ Force on q due to conducting plane \equiv Force on q due to Image charge:

$$egin{array}{lll} {\sf F}_q &=& q {\sf E}_{
m induced}(0,0,d) \equiv q {\sf E}_{
m image}(0,0,d) \ &=& -rac{q^2 \hat{\sf z}}{4\pi\epsilon_0(2d)^2}
ightarrow {
m Attractive force} \end{array}$$

*QUESTION: Is there any difference in calculated physical quantities in non-conducting region \mathcal{D} , between those obtained from the *Fictitious System* (charge-image) and those from the *Real System* (charge-conductor)?

Infinite grounded conducting plane: Electrostatic Energy??

Configuration energy of Real System: Work done by external agent to assemble the charge-conductor system is

$$W_1^{ ext{ext}}(ext{Real}) = -\int_{z=\infty}^{z=d} \mathbf{F}_q(z) \cdot d\mathbf{z} = \int_{\infty}^d rac{q^2 dz}{4\pi\epsilon_0 (2z)^2} = -rac{1}{2} \left(rac{q^2}{8\pi\epsilon_0 d}
ight)$$

Configuration energy of Fictitious System:
Work done by external agent to assemble the charge-image system is

$$W_2^{\text{ext}}(\text{Fictitious}) = -\frac{q^2}{4\pi\epsilon_0(2d)} = -\frac{q^2}{8\pi\epsilon_0 d}!$$

⇒It takes only half the amount of energy to assemble the Real System!!

Intuitive way of understanding this difference is to use the integral formula:

$$U_E(\text{Fictitious}) = \frac{\epsilon_0}{2} \iiint_{\mathbb{R}^3} E^2 dv = 2 \cdot \frac{\epsilon_0}{2} \iiint_{\mathcal{D}} E^2 dv = 2 U_E(\text{Real}).$$

 \Longrightarrow The true domain of integration $\mathcal D$ is only half the domain $\mathbb R^3$ for the Fictitious System.

Another classic image problem: Grounded Conducting Sphere

Example

Consider a grounded conducting sphere of radius a and a charge q held at a distance of d from the center. What is the potential in region $\mathcal D$ outside the conducting sphere?

Set up co-ordinate system with z-axis along the line joining the center and q

$$ightharpoonup$$
 Domain: $\mathcal{D} \subset \mathbb{R}^3 = \{ \mathbf{r} \mid r > a \}$

► Surface/s:
$$S = \{r \mid r = a\} \cup S_{\infty}$$

► Point charge density:

$$\rho(\mathbf{r}) = q\delta^3 \left(\mathbf{r} - d\hat{\mathbf{k}}\right)$$

► V(r) satisfies Poisson's Equation:

$$\nabla^2 \textit{V}(\textbf{r}) = \frac{1}{\epsilon_0} \rho(\textbf{r}), \ \, \forall \textbf{r} \in \mathcal{D}$$

Potential V(x,y,z) is needed in $\mathcal D$

The Real System

Boundary Condition for Potential:

$$V(S) = 0, \forall S \in S$$

Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q' & Equipotential surface $\implies V'(\mathbf{r})$ in \mathbb{R}^3 is identical to $V(\mathbf{r})$ in \mathcal{D} .

Note: You should never put the Image charge in \mathcal{D} where you want to calculate the potential. It should not mater if V' yields the wrong answer outside \mathcal{D} !

- ▶ Location of q' is (0,0,d') with d' < a
- Point charge densities:

$$\rho'(\mathbf{r}) = \left. \left[q \delta^{\mathbf{3}}(\mathbf{r} - d\hat{\mathbf{k}}) + q' \delta^{\mathbf{3}}(\mathbf{r} - d'\hat{\mathbf{k}}) \right] \right|_{\mathcal{D}} \xrightarrow{r > a} \rho(\mathbf{r})$$

▶ V'&V satisfy Poisson's Eqns. in $\mathbb{R}^3\&\mathcal{D}$:

$$abla^2 V' = rac{
ho'}{\epsilon_0} \xrightarrow{r>a}
abla^2 V = rac{
ho}{\epsilon_0}$$

ightharpoonup V'&V satisfy BC in $\mathbb{R}^3\&\mathcal{D}$:

$$V'(\mathbf{a}, \theta, \phi) = V(\mathbf{a}, \theta, \phi) = 0$$

 $V'(\mathbf{S}) = V(\mathbf{S}) = 0$

Potential V'(x, y, z) defined in \mathbb{R}^3

The Fictitious System

If such a q' and d' can be found, then we have nailed the problem!

