Solid State Structural Studies of Some New Derivatives of HN(SO₂CF₃)₂ and HOTeF₅

Vandana Vij, Air Force Research Laboratory/ PRSP vandana.vij@edwards.af.mil (661) 275-5656

14th European Symposium on Fluorine Chemistry, Poznan, Poland, July 11-16, 2004

Distribution A statement: Approved for public release; distribution unlimited

	Report Docume	Form Approved OMB No. 0704-0188					
maintaining the data needed, and including suggestions for reducing	llection of information is estimated completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding a OMB control number.	tion of information. Send comments uarters Services, Directorate for Info	s regarding this burden estimat ormation Operations and Repo	te or any other aspect of orts, 1215 Jefferson Dav	this collection of information, is Highway, Suite 1204, Arlington		
1. REPORT DATE 07 JUN 2004			3. DATES COVERED				
	ural Studies of Some	New Derivatives of	ř	5a. CONTRACT NUMBER F04611-99-C-0025			
HN(SO2CF3)2 and	d HOTEF5			5b. GRANT NUMBER			
				ELEMENT NUMBER			
6. AUTHOR(S) Vandana Vij; Ash	wani Vij; Jerry Boa	tz		5d. PROJECT NU DARP	UMBER		
				5e. TASK NUMBER A205			
				NUMBER			
	IZATION NAME(S) AND AI ATED,555 Sparkma L,35816-0000	` '		8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITO	DRING AGENCY NAME(S)	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)		
				ONITOR'S REPORT			
12. DISTRIBUTION/AVAI Approved for pub	LABILITY STATEMENT lic release; distribut	ion unlimited					
13. SUPPLEMENTARY NO	OTES						
štransiodŠ form od cation-anion intera	is less common. In tecurs in 15 remainin action šCisoidŠ obseominates in structur nsoidŠ geometry	ng structures The šc erved exclusively wh	isoidŠ conforma ien anion is chela	tion results fa ated to the m	rom stronger etal center The		
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF		
a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified			OF ADSTRACT	OF PAGES 40	RESPONSIBLE PERSON		

Coworkers & Collaborators

Dr. Ashwani Vij and Dr. Jerry A. Boatz

Air Force Research Laboratory, PRSP, Bldg 8451, 10 E. Saturn Blvd. Edwards Air Force Base, CA 93524

Dr. Fook S. Tham

Department of Chemistry, University of California, Riverside CA 92521

Coordination & isomerism in $N(SO_2CF_3)_2$ (NTf)

"Cisoid"

C-S--S-C "torsion"

"Transoid"

- The "cisoid" form is less common. In the CCDC, only 6 structures show this conformation whereas the "transiod" form occurs in 15 remaining structures
- **✓** The "cisoid" conformation results from stronger cation-anion interaction
- **√** "Cisoid" observed exclusively when anion is chelated to the metal center
- **✓** The "transoid" form dominates in structures containing a "free" anion
- **✓** NO structure known containing both "cisoid" AND "transoid" geometry

DesMarteau, Pennington et al., Soild State Sciences, 2002, 4, 1535-

<u> 1545</u>

Synthesis of metal(I) derivatives

These salts are colorless crystalline materials. Some turn amorphous with time

nTe-O (cm⁻¹): IR (Ra) at ~865 (860) n_{as}SO2 (cm⁻¹): IR (Ra) at ~1320(~1328) ¹H NMR: C₆H₆ peak at 7.6-7.7 ppm Uncoordinated benzene: 7.3 ¹⁹F NMR: ~-78 ppm (CF₃)

- **✓** These salts are colorless and crystalline.
- ✓ Recrystallization from iso-propylalcohol gave anhydrous salts.
- **✓** Some of these salts turn amorphous with time

Structure of CsN(SO₂CF₃)₂ salts

$CsN(SO_2CF_3)_2$

Monoclinic $C2/c [\beta = 91.92(1)^{\circ}]$

$$a = 22.509(12), b = 7.029(4), c = 13.519(7) [Å]$$

Volume (
$$\mathring{A}^3$$
) = 2137.5(19), Z = 8, T = 298 K

R1 = 0.0399, S = 1.024

Tetragonal I-4

$$a = 16.903(1), c = 7.8933(6) [Å]$$

Volume (
$$\mathring{A}^3$$
) = 2255.2(3), $Z = 6$, $T = 298 K$

R1 = 0.0307, S = 1.20

Coordination environment of Cs in $CsN(SO_2CF_3)_2$ salts

 $CsN(SO_2CF_3)_2$

CsN(SO₂CF₃)₂•H₂O

Octa-coordinated with a short Cs-N bond

Crystal packing in CsN(SO₂CF₃)₂ salts

 $CsN(SO_2CF_3)_2$

Hydrophobic and hydrophillic Layering

$CsN(SO_2CF_3)_2 \cdot H_2O$

"Swiss cheese" Tunnel/channel structure

Polymorphism in silver bis(trifluoromethylsulfonyl)imide

Similar trans Ag-N distances, angles = 120°

Trigonal P-3₁c

$$a = 7.510(6) \text{ Å, c} = 8.119(7) \text{ Å}$$

$$Z = 6, T = 298 K$$

Orthorhombic Pbca

$$a = 7.510(6) \text{ Å}_2 \text{ b} = 15.729(12) \text{ Å}_2 \text{ c} = 8.119(7) \text{ Å}_2$$

$$Z = 4, T = 298 K$$

Steric control of tricoordination around Ag is known in [Ag(CpPh₂P)₃]⁺ [BF₄]⁻

However, binary tricoordinated silver salts are unknown

Baiada, A; Jardine, F. H.; Willett, R.D. Inorg. Chem. 1990, 29, 4805

Structure of $[AgN(SO_2CF_3)_2(C_6H_6)_2]$

bonds (2.345-2.841 Å)

✓ N(SO₂CF₃)₂ group

(2.302 Å)

✓ N(SO₂CF₃)₂ group is "transoid"

Dimerization via

Long range for

unsymmetrical Ag-C

S-O...Ag bonding

✓ H...F bond distances observed close to sum of van der Waal

distance

Triclinic P-1

a = 7.6704(13)Å, b = 8.4295(14)Å, c = 8.8631(15)Å,

 $a = 111.673(3)^{\circ}, b = 108.479(3)^{\circ}, g = 97.798(3)^{\circ}$

 $V (Å^3) = 483.89(14), Z = 2, T = 298(2) K; R1 = 0.0432, S = 1.114$

Structure of $[AgN(SO_2CF_3)_2(C_6H_6)]_2 \cdot H_2O$

- ✓ N(SO₂CF₃)₂ group is both N- as well as Obonded to silver
- ✓ Water bridges the eigthmembered Ag-O-S-N-Ag-O-S-N ring forming two fused six-membered rings.
- ✓ Unsymmetrical Ag-C bonds (2.431-2.666 Å)
- ✓ N(SO₂CF₃)₂ group is "cisoid"

H...F bond distances observed close to sum of van der Waal stance

Monoclinic $P2_1/n$ $a = 10.372(1) \text{ Å}, b = 19.823(2) \text{ Å}, c = 12.406(1) \text{ Å}, b = 108.536(3)^{\circ},$ $V (\text{Å}^3) = 2148.5(5), Z = 8, T = 173(1) K; R1 = 0.0224, S = 1.04$

Crystal packing in $[AgN(SO_2CF_3)_2(C_6H_6)]_2 \cdot H_2O$

14th European Symposium on Fluorine Chemistry, July 11-16, Poznañ, Poland Distribution A Statement: Approved for public release; distribution unlimited

Structure of $[AgOTeF_5(C_6H_6)_2]_2$

- **✓** Dimeric structure
- ✓ Unsymmetrical Ag-C bonds
- ✓ Unsymmterical and very long Te-O bonds
- ✓ H...F bonds observed

Triclinic *P*-1 a = 7.6704(13) Å, b = 8.4295(14) Å, c = 8.8631(15) Å, $a = 111.673(3)^{\circ}, \text{b} = 108.479(3)^{\circ}, \text{g} = 97.798(3)^{\circ}$ $V (\text{Å}^3) = 483.89(14), Z = 2, T = 298(2) \text{ K}; R1 = 0.0432, S = 1.114$

Synthesis of trimethyltin(IV) derivatives: Silver salt metathesis or acidolysis

$$(CH_3)_3SnCl + AgX-C_6H_6 \xrightarrow{-AgCl} (CH_3)_3SnX + C_6H_6$$

 $X = OTeF_5 \text{ or } N(SO_2CF_3)_2$

MS shows [M-CH₃]+ peak

Trimethyltin(IV) teflate can be distilled at 50°C under vacuum (0.1 T)

nTe-O (cm⁻¹): IR (Ra) at 860 (856)

nSn-C (cm⁻¹) IR (Ra): asym: 552 (554); sym 518 (518)

n_{as}SO₂ (cm⁻¹): IR (Ra) at 1342(1327)

nSn-C (cm⁻¹) IR (Ra): asym: 558 (556); sym 520 (513)

nTe-O (cm-1) F₅TeOCl: IR (Ra) at 551 (554); nTe-O (cm-1) F₅TeOTBA: IR (Ra) at 867 (866);

$$(CH_3)_4Sn$$
 + $HX \xrightarrow{-CH_4} (CH_3)_3SnX$
 $X = OTeF_5 \text{ or } N(SO_2CF_3)_2$

Synthesis and properties of methyltin(IV) derivatives

- ✓ Tetramethyltin can be used in large excess to avoid disproportionation
- ✓ Reaction by-products can be easily removed under vacuum
- ✓ Trialkyltin(IV) derivatives are colorless viscous oils
- **✓ Highly sensitive to moisture**
- ✓ Form complexes with donor solvents.
- ✓ Potentially stronger catalysts in organic synthesis compared to TMSOTf (119Sn Chemical shift +162 ppm from TMT)

Correlating spectroscopy and crystallography

Correlation of ²*J*(¹¹⁹Sn-¹H) and C-Sn-C angle (determined from x-ray crystallography) gives the following non-linear relationship:

Lockhart, T. P.; Manders, W. F. *Inorg. Chem.* 1985, 25, 892 Lockhart, T. P.; Manders, W. F.; Zuckerman, J. J. *J. Am. Chem. Soc.* 1985, 107, 4546

 $T (C-Sn-C)^{\circ} = 0.0161 |^{2}J(^{119}Sn-^{1}H)|^{2} - 1.32 |^{2}J(^{119}Sn-^{1}H)| + 133.4$

Correlation of ¹J(¹¹⁹Sn-¹³C) and C-Sn-C angle (determined from x-ray crystallography gives the following linear relation:

 $11.4T - 875 = |^{1}J(^{119}Sn-^{13}C)|$

Multinuclear NMR Parameters

Table 1. ¹ H	. 13C NMR Sp	ectroscopic	Data ^a and c	alculatedb,c	C-Sn-C	angles for	(CH ₃) ₃ SnX	X = OTeF	and N(S	O ₂ F/CF ₃) ₂ L

		Solute	Solvent ^d	δ(¹ H) ppm	² J(¹¹⁹⁽¹¹⁷⁾ Sn- ¹ H) Hz	θ(C-Sn-C) (°)) ^b δ(¹³ C) ppm	¹ J(¹¹⁹⁽¹¹⁷⁾ Sn- ¹³ C) Hz	θ(C-Sn-C) ^c (°)	
		(CH ₃) ₃ SnOTeF ₅	neat	0.84	59.2°	111.7	0.84	376.9(360.3)	109.8	
			$\mathrm{CH_2Cl_2}$	0.79	58.5(55.9)	111.3	0.90	374.0(357.4)	109.6	
¹ H or	13 C		acetone	0.69	68.8(65.8)	118.8	1.55	480.4(459.3)	118.9	
			$\mathrm{CH_{3}CN}$	0.66	69.2(66.2)	119.2	1.49	484.6(463.1)	119.3	
			DMSO	0.50	69.5(66.6)	119.4	1.05	511.4(490.0)	121.6	
		(CH ₃) ₃ SnOTeF ₅	AN/H_2O	0.46	69.6(66.7)	119.5	0.10	508.5(486.0)	121.4	
		:	DMSO/H ₂ O	0.43	70.1(68.5)°	120.0	0.84	515.5(492.5)	122.0	
		$(CH_3)_3SnN(SO_2F)_2$	neat	0.91	63.8(61.6)	114.7	1.6	416.8(400.3)	113.3	
			$\mathrm{CH_2Cl_2}$	0.96	62.3(59.9)	113.6	1.4	404.1(387.7)	112.2	
¹⁹ Sn			DMSO	0.83	72.4(70.0)	122.2	-0.2	528.3(509.9)	123.1	
1170		$(CH_3)_3SnN(SO_2CF_3)_2$	neat	0.84	64.2(61.6)	115.0	2.1	412.6(394.1)	113.0	
117 S n			$\mathrm{CH_{2}Cl_{2}}$	0.81	64.4(61.8)	115.2	0.8	414.8(395.2)	113.0	
1/	1		$\mathrm{CH_{3}CN}$	0.82	70.2(67.1)	120.1	-1.7	489.5(467.6)	119.7	
			DMSO	0.48	69.0(67.4)	119.0	0.7	512.2(499.0)	121.6	
		$[({\rm CH_3})_3{\rm Sn}({\rm H_2O})_2][{\rm N}({\rm SO_2CF_3})_2]$	$\mathrm{CH_{3}CN}$	0.61	69.7(66.7)	119.6	0.10	491.8(470.0)	120.0	
			DMSO	1.18	69.8(66.7)	119.7	0.92	512.9(497.2)	121.8	

^a NMR spectroscopic data were recorded at 300 K.

^b Calc from relation: $\theta = 0.0161 |^2 J(^{119}Sn^{-1}H)|^2 - 1.32 |^2 J(^{119}Sn^{-1}H)| + 133.4.$

^c Calc from relation: $|{}^{1}J({}^{119}\text{Sn-}{}^{13}\text{C})| = 11.4 \ \theta - 875.$

^d Acetone = $(CD_3)_2CO$, DMSO = $(CD_3)_2SO$.

^e Calculated from center of unresolved ¹¹⁹Sn, ¹¹⁷Sn satellites (|J_{obs}| x 1.023)

Multinuclear NMR parameters ...continued

Table 2. ¹⁹F, ¹¹⁹Sn and ¹²⁵Te NMR Spectroscopic Data^a of (CH₃)₃SnX [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent ^b		δ(19F), p	pm	$^{2}J(^{19}F_{ax}-^{19}F_{eq})$	$\delta(^{119}\mathrm{Sn})$	δ(125 Te)	$\delta(^{13}\mathrm{CF_3})$	¹J(¹25T	e- ¹⁹ F), Hz	¹√(¹³C-¹9F)
		F_{ax}	\mathbf{F}_{eq}	CF ₃ /SO ₂ F	Hz	ppm	ppm	ppm	F _{ax}	\mathbf{F}_{eq}	Hz
(CH ₃) ₃ SnOTeF ₅	neat	-32.9	-41.9		182.5	270.8°	569.5		3112	3540	
	$\mathrm{CH_2Cl_2}$	-30.3	-38.5		183.0	272.4	564.6		3188	3550	
	acetone	-29.1	-40.6		180.0	96.0	574.9		3020	3558	
	$\mathrm{CH_{3}CN}$	-29.2	-40.8		179.0	84.2	575.0		3032	3556	
	DMSO	-16.2	-33.8		170.0	40.0	598.7		2712	3666	
$(CH_3)_3SnN(SO_2F)_2$	neat		•	55.5		242.5					
	$\mathrm{CH_2Cl_2}$			55.6		248.6					
	DMSO			52.5		32.9					
$(\mathrm{CH_3})_3\mathrm{SnN}(\mathrm{SO_2CF_3})_2$	neat			-78.5		240.2		118.7			320.4
	$\mathrm{CH_2Cl_2}$			-78.8		251.0		118.1			319.8
	$\mathrm{CH_{3}CN}$			-78.9		44.9		119.4			320.7
	DMSO			-78.6		37.4		120.0			321.7
$[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$	$\mathrm{CH_{3}CN}$			-79.0		59.0					
	DMSO			-79.1		42.8					

 $^{^{\}mathrm{a}}$ NMR spectroscopic data were recorded at 300 K

¹¹⁹Sn NMR shows a peak at 300.7 ppm in HOTeF₅

 19 F_{ax} NMR for TEAOTeF₅ = -25.4 ppm B(OTeF₅)₃ = -46.2 (Strauss et al., 1986)

^b Acetone = $(CD_3)_2CO$, DMSO = $(CD_3)_2SO$

119Sn chemical shifts and anion basicity

d (¹¹⁹Sn) values lower (more downfield) than +200 ppm show a highly deshielded tin nuclei. Sometimes stronger acids results in relatively higher (upfield) chemical shifts due to close contacts even in solution state:

Compound (Me ₃ SnX)	d (119Sn)
$X = ClO_4$ (unidentate)	245
$X = SO_3CF_3$ (bidentate)	162

For trimethyltin(IV) derivates in dichloromethane solution the relative anion basicity can be ordered as:

 $OTeF_5 < N(SO_2F)_2$ $\sim N(SO_2CF_3)_2 < ClO_4 < SO_2CF_3$

Coordination complex formation with donor solvents

Formation of the hydrated trimethylstannyl cation

$$H_3C$$
 H_3C
 $Sn-X$ + H_2O
 H_3C
 CH_3
 CH_3
 CH_3
 CH_3

The hydrated salt can be isolated with $N(SO_2CF_3)_2$ anion but NOT for OTeF₅ anion. The compound isolated after hydrolysis is $[Me_3Sn(OH_2)_2]_2SiF_6$

$$OTeF_5^- + 5H_2O \longrightarrow 5HF + OTe(OH)_5^-$$

$$4 HF + SiO_2 \longrightarrow 2 H_2O + SiF_4$$

$$2F^- + SiF_4 \longrightarrow SiF_6^{2-}$$

The hydrolysis of trimethyltin teflate results in the decomposition of the OTeF₅ group

Hydrated trimethyltin(IV) cation

Unit cell dimensions (Å) Monoclinic ($P2_1/c$) a = 7.3072(1), b = 13.4649(2), c = 16.821(2) $\beta = 98.705(1)$ ° Volume (ų) = 1636.0(3) , Z = 4 T = 213(2)

= 0.0367

= 1.233

wR2 = 0.0736

Hydrogen bonding in hydrated trimethyltin(IV) cations

14th European Symposium on Fluorine Chemistry, July 11-16, Poznañ, Poland Distribution A Statement: Approved for public release; distribution unlimited

Sn-C versus Sn-Cl bond cleavage

$XN(SO_2CF_3)_2$ (X = H, Cl) shows a preferential Sn-Cl bond cleavage

$XOTeF_5(X = H, Cl)$ shows a preferential Sn-C bond cleavage

$$(CH_3)_3SnCl + HOTeF_5 \xrightarrow{-CH_4} (CH_3)_2Sn \xrightarrow{Cl} OTeF_5$$

$$(CH_3)_3SnCl + ClOTeF_5 \xrightarrow{-CH_3Cl} (CH_3)_2Sn \xrightarrow{Cl} OTeF_5$$

According to Sladky and Kropshofer (JCS Chem. Commun., 1973, 600), reaction of (CH₃)₃SnCl with HOTeF₅ gives trimethyltin(IV) teflate exclusively!

Structure of (CH₃)₂Sn(CI)OTeF₅

Unit cell dimensions (Å)

Monoclinic $P2_1/n$

a = 5.8204(8), b = 10.782(1),

c = 15.493(2)

B = 99.59(1) °

Volume $(\mathring{A}^3) = 971.7(2)$

Z = 4

T = 218(2) K

R1 = 0.0282

wR2 = 0.0712

S = 1.088

Te-O (Å) $(X=OTeF_5)$: $B(X)_3 = 1.874(6)$; $[TBA][H(X)_2] = 1.800(4)$ av; $[Au(X_3)]_2 = 1.91(2)$

Strauss et al., Inorg. Chem., 1986, 25, 2806 and references therein

 $n(TeO) = 856 \text{ cm}^{-1} \text{ in IR and Ra; } n(SnO) = 427 \text{ (IR)}/424 \text{ (Ra) cm}^{-1}; n(SnCl) = 313 \text{ (Ra) cm}^{-1}$

Tetra- or pentacoordinated tin???

The C-Sn-C angle calculated using ${}^2J({}^{119}Sn-{}^{1}H)$ (67.9 Hz) and ${}^1J({}^{119}Sn-{}^{13}C)$ (472 Hz) coupling constants for (CH₃) ${}_2SnCl(OTeF_5)$ dissolved in CD ${}_2Cl_2$ is approximately ~118°. The $d({}^{119}Sn)$ value of ~142.7 ppm indicates that tin is present in a five-coordinate environment. The fifth coordination site can be occupied by a bridging chlorine, fluorine or oxygen from a neighboring Me ${}_2SnCl(OTeF_5)$ molecule .

¹¹⁹Sn NMR show the presence of another broad peak at ~127 ppm, which is due to an equilibrium. In VT NMR studies using toluene- d_8 as a solvent, this peak disappears at -80 °C.

$$F_5$$
Te Cl
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

OTeF₅

Cl—Sn—CH₃

$$H_3C$$
—Sn—Cl

 H_3C

OTeF₅

$$F_4$$
TeO $-Sn$
 CH_3
 F
 F
 F
 F
 H_3C
 Sn
 O TeF $_4$

Coordination environment around tin

 $Sn\text{-}Cl\ contact = 3.201(1)\ \mathring{A}$ Much shorter than the sum of van der Waal radii of tin and chlorine.

A longer Sn-Cl contact is also present at 3.904(2) Å. S(vdWSn + vdWCl) = 2.17 + 1.75 = 3.92 Å

One Sn-F contact is also found in the crystal lattice 3.140(4) Å, which is much shorter than the sum of van der Waal radii of tin and fluorine.

S(vdWSn + vdWF)= 2.17 + 1.47 = 3.64 Å

Hydrolysis of the Sn-Cl bond in $(CH_3)_2Sn(Cl)OTeF_5$

Structure of the dimethyloxotin(IV) teflate

Unit cell dimensions (Å)

Orthorhombic

Space Group: Pnnm

$$a = 12.574(6)$$
, $b = 12.667(6)$,

$$c = 11.682(5)$$

Volume
$$(\mathring{A}^3) = 1860.6(1)$$

$$Z = 2$$

$$T = 243 K$$

$$R1 = 0.0376$$

$$wR2 = 0.1021$$

$$S = 1.04$$

$$S(vdWSn + vdWO) = 2.17 + 1.52$$

$$= 3.69 \text{ Å}$$

Reaction of the hydrated silver salt with $(CH_3)_2SnCl_2$

 $(CH_3)_2SnCl_2 + AgN(SO_2CF_3)_2.C_6H_6.H_2O \longrightarrow$

 $(CH_3)_2Sn(Cl)N(SO_2CF_3)_2 + C_6H_6 + H_2O$

14th European Symposium on Fluorine Chemistry, July 11-16, Poznañ, Poland Distribution A Statement: Approved for public release; distribution unlimited

Formation of Me₂Sn(OH)N(SO₂CF₃)₂

Solvolysis of Me₄Sn in excess acid: Synthesis of dimethyltin(IV) teflate

✓ Dimethyltin(IV) teflate is formed when tetramethyltin is reacted with excess teflic acid

$$\frac{(\text{CH}_3)_4\text{Sn} + \text{xs HOTeF}_5}{60 \, ^\circ\text{C}, 40\text{h}} = \frac{\text{-2 CH}_4}{60 \, ^\circ\text{C}, 40\text{h}}$$
(CH₃)₂Sn(OTeF₅)₂

MS shows [M-CH₃]+ peak

V Upon sublimation ~75 °C/0.01T a polymeric species is formed, probably due to the loss of O(TeF₅)₂

$$\frac{\text{CH}_3)_2\text{Sn}(\text{OTeF}_5)_2}{75 \text{ °C}, 0.01T} \xrightarrow{\text{F}_5\text{TeOTeF}_5} (\text{CH}_3)_2\text{SnO} \frac{\text{OTeF}_5}{\text{n}}$$

 $n(TeO) = 877 \text{ cm}^{-1}$; $n(SnO) = 434 (IR) \text{ cm}^{-1}$; $n_{as} (SnC) = 591 \text{ cm}^{-1}$, $n_{s} (SnC) = 531 \text{ cm}^{-1}$

Structure of dimethyltinooxteflate

Unit cell dimensions (Å)

Monoclinic $P2_1/n$

Rotational TWIN

$$a = 7.510(6)$$
, $b = 15.729(12)$,

$$c = 8.119(7)$$

$$B = 115.1(1)$$
 °

Volume $(\mathring{A}^3) = 876.7(12)$

$$Z = 4$$

$$T = 233(2) K$$

R1 = 0.1028

S = 1.84

BASF = 0.256

C1-Sn-O1 = $110.2(5)^{\circ}$; C2-Sn-O1 = $103.3(6)^{\circ}$, <equi. X-Sn-X (av)= 120° ; O2-Sn-O2* = $169.9(5)^{\circ}$

Crystal packing showing tin and tellurium polyhedra

$$S (vdWSn + vdWF) = 2.17 + 1.47$$

= 3.64 Å

Sn-F distance in the crystal packing = 3.107(16) Å

The structure shows polymeric Sn-O chains bridged by a fluorine atom of the OTeF₅ group.

$$<$$
Sn-O2-Sn* = 167.2°

$$(Sn* = \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z)$$

Conclusions

- Silver salts containing the teflate and NTf form stable arene complexes. NTf conformation varies!
- ➤ ¹¹⁹Sn NMR chemical shifts can reflect the "electrophilic strength" and relative anion basicity for a Me₃Sn (IV) compound.
- During the solvolysis of trimethyltin chloride in HOTeF₅, there is a preferential cleavage of the Sn-C bond versus Sn-Cl bond
- Trimethyltin(IV) teflates/F-imides are highly electrophilic in nature and form 1:1 or 1:2 complexes with donor solvents
- Chlorodimethyltin(IV) teflate hydrolyzes to form a Sn-O ladder compound and sublimation of dimethyltin(II) bis(teflate) results in the formation of an oxobridged species.
- Use of hydrated silver salt to prepare methyltin derivatives results in the hydrolysis of trimethyltin derivative to form hydrated tin cation.
- Chlorodimethyltin NTf hydrolyzes to form the μ -(hydroxo) species, where NTf is in a *trans* orientation

Conclusions

- Trimethyltin(IV) derivates can easily be prepared by the reaction of acids with excess tetramethyltin
- Trimethyltin(IV) derivatives are highly electrophilic and coordinate with solvents giving trigonal bipyramidal geometry
- In case of water and DMSO, ionic salts are formed with two donor molecules occupying the axial position
- During the solvolysis of trimethyltinchloride in HOTeF₅, there is a preferential cleavage of the Sn-C bond versus Sn-Cl bond
- Chlorodimethyltin(IV) teflate hydrolysizes to form a Sn-O ladder compound.
- The sublimation of dimethyltin(II) bis(teflate) results in the formation of an oxo-bridged species.

Acknowledgments

Dr. Karl Christe (AFRL/USC)

Dr. Michael Berman (AFOSR)

Dr. Don Woodbury (DARPA)

Dr. Ronald Channell (AFRL)

Mr. Michael Huggins (AFRL)

FUNDING

AFOSR AFRL

BACKUP/SUPPL. SLIDES

BACKUP

Coordination environment of Cs in $CsN(SO_2CF_3)_2$ salts

 $CsN(SO_2CF_3)_2$

CsN(SO₂CF₃)₂•H₂O

Octa-coordinated with a short Cs-N bond

Nona-coordinated with a long Cs-N bond

 $\mathrm{CsN}(\mathrm{SO}_2\mathrm{CF}_3)_2$ is reported to be ten-coordinated DesMarteau, Pennington *et al.*, Soild State Sciences, 2002, 4, 1535-1545

Crystal packing in $[AgN(SO_2CF_3)_2(C_6H_6)_2]$

14th European Symposium on Fluorine Chemistry, July 11-16, Poznañ, Poland Distribution A Statement: Approved for public release; distribution unlimited

Bond distances and angles Me₂SnClOTeF₅

•	Sn(1)-C(2)	2.104(4)
•	Sn(1)-C(1)	2.115(4)
•	Sn(1)-C(3)	2.120(4)
•	Sn(1)-O(1)	2.306(3)
•	Sn(1)-O(2)	2.335(3)
•	S(1)-O(3)	1.427(2)
•	S(1)-O(4)	1.428(3)
•	S(1)-N(1)	1.573(3)
•	S(1)-C(4)	1.825(5)
•	S(2)-O(6)	1.421(3)
•	S(2)-O(5)	1.433(3)
•	S(2)-N(1)	1.589(3)
•	S(2)-C(5)	1.844(4)

C(2)-Sn(1)-C(1)	117.8(2)
C(2)-Sn(1)-C(3)	120.1(2)
C(1)-Sn(1)-C(3)	122.1(2)
C(2)-Sn(1)-O(1)	89.83(15)
C(1)-Sn(1)-O(1)	92.3(2)
C(3)-Sn(1)-O(1)	87.19(13)
C(2)-Sn(1)-O(2)	91.04(15)
C(1)-Sn(1)-O(2)	90.8(2)
C(3)-Sn(1)-O(2)	88.95(13)
O(1)-Sn(1)-O(2)	175.94(11)
O(3)-S(1)-O(4)	118.5(2)
O(3)-S(1)-N(1)	107.6(2)
O(4)-S(1)-N(1)	116.1(2)
O(3)-S(1)-C(4)	104.0(2)
O(4)-S(1)-C(4)	105.4(2)
O(6)-S(2)-O(5)	118.2(2)
O(6)-S(2)-N(1)	109.0(2)
O(5)-S(2)-N(1)	115.3(2)
O(6)-S(2)-C(5)	104.7(2)
O(5)-S(2)-C(5)	105.0(2)
S(1)-N(1)-S(2)	125.3(2)