Physik 1 (PH1-B-REE1)

Michael Erhard

Thema heute

3. Mechanische Energie und Leistung

- 3.1 Potentielle Energie
 - 3.2.1 Potentielle Energie im Gravitationsfeld
 - 3.2.2 Potentielle Energie einer Feder
 - 3.2.3 Allgemeine Definition der potentiellen Energie
- 3.2 Kinetische Energie
- 3.3 Energieerhaltung
- 3.4 Leistung

2.3 Arbeit (Wiederholung)

- Was ist Arbeit im physikalischen Sinne?
- Einen schweren Gegenstand halten (Maßkrug-Stemmen) ist noch keine Arbeit...
- ullet Formelzeichen (von "work"): W
- Mechanische Arbeit ist das Produkt aus Kraft und Weg

$$W = F s$$

Einheiten (abgeleitet Einheit: Joule)

$$[W] = J = Nm = \frac{kg m^2}{s^2}$$

Winkel zwischen Kraft und Weg

Anheben einer Last

Absenken einer Last

2.3 Änderung Kraft entlang Strecke

Oft ändern sich Kraft und Winkel entlang des Weges

 \rightarrow teile in Abschnitte ΔW

Gesamte verrichtete Arbeit:

$$W_{\text{ges}} = \sum_{\text{"Weg"}} \Delta W = \sum_{\text{"Weg"}} \underline{F} \cdot \Delta \underline{s} = \int_{\text{"Weg"}} \underline{F} \cdot d\underline{s}$$

3. Mechanische Energie

3. Einführung Energie

- "Energie ist die Möglichkeit, Arbeit zu verrichten"
- Energie kann als *gespeicherte Arbeit* betrachtet werden
- 2 Arten mechanischer Energie
 - eine um eine Höhe angehobene Masse hat eine potentielle Energie

eine sich bewegende Masse hat eine kinetische Energie

3.1 Potentielle Energie

 Ein angehobener K\u00f6rper hat das Potential, Arbeit zu verrichten, in ihm ist potentielle Energie gespeichert

verrichtete Arbeit

"gespeicherte" potentielle Energie

Beispiele:

- Masse im Gravitationsfeld
- Stauchen, Strecken einer Feder
- Elektron im elektrischen Feld

Gewichtskraft auf Masse an Erdoberfläche $F_{\rm g} = m g_0$

$$F_{\rm g} = m g_0$$

mit Erdbeschleunigung $g_0 = 9.81 \frac{\text{m}}{\text{s}^2}$

$$g_0 = 9.81 \, \frac{\text{m}}{\text{s}^2}$$

Verrichtete Arbeit beim *Anheben* der Masse um Höhe h

$$W = F_{\rm g} h = m g_0 h$$

Ein Masse m wird einmal direkt auf die Höhe h angehoben, einmal über eine (reibungsfreie) schiefe Ebene geschoben.

Bei der schiefen Ebene wird

- a) weniger Arbeit verrichtet
- **b)** gleich viel Arbeit verrichtet
- c) mehr Arbeit verrichtet

Gewichtskraft auf Masse an Erdoberfläche

$$F_{\rm g} = m g_0$$

mit Erdbeschleunigung $g_0 = 9.81 \frac{\text{m}}{\text{s}^2}$

$$g_0 = 9.81 \, \frac{\text{m}}{\text{s}^2}$$

Verrichtete Arbeit beim *Anheben* der Masse um Höhe h

$$W = F_{\rm g} h = m g_0 h$$

Gespeicherte Energie $\mid E_{\rm pot} = m g_0 h \mid$

$$E_{\rm pot} = m \, g_0 \, h$$

Nur die überwundene Höhe *h* entgegen der Kraft $F_{\rm g}$ trägt zur Energie bei, der Verläuf des Weges spielt keine Rolle!

Aufgabe: (Im Skript Aufgabe 5.5) Sie schaufeln 5 t Sand auf einen LKW, dessen Ladefläche ca. 1 m höher gelegen ist. Wie viel potentielle Energie ist in dem Sand gespeichert?

Exkurs: Flaschenzüge

- Massen der Seile, Rollen und Gestänge vernachlässigbar
- Reibung vernachlässigbar
- Gewichtskraft

$$F_{\rm g} = mg_0$$

Welche Kraft benötigen Sie jeweils? Wie viel Seil müssen Sie jeweils ziehen, um die Massen um die Höhe h anzuheben? Welche Arbeit wird jeweils verrichtet?

Exkurs: Flaschenzüge

Gewichtskraft

$$F_{\rm g} = m g_0$$

Verteilung Gewichtskraft auf 1

$$F_1 = F_g$$

$$I_1 = h$$

$$W_1 = F_1 \, l_1 = m \, g_0 \, h$$

 $F_1 = F_{\mathrm{g}}$ $F_2 = \frac{F_{\mathrm{g}}}{2}$ $l_1 = h l_2 = 2h$

$$W_2 = F_2 \, l_2 = m \, g_0 \, R$$

Seil(e)

$$F_3 = \frac{F_g}{3}$$
$$l_3 = 3h$$

$$W_1 = F_1 l_1 = m g_0 h$$
 $W_2 = F_2 l_2 = m g_0 h$ $W_3 = F_3 l_3 = m g_0 h$

3.1.2 Potentielle Energie Feder

3.1.2 Hook'sches Gesetz

Betrachte *elastische*Verformung einer Feder

 $F_{
m R}$ wirkt der Auslenkung entgegen. Oft sind Kraft und Auslenkung proportional zueinander, dann gilt das **Hooksche Gesetz**

$$F_{\rm R} = -D \, \Delta l$$

D...Federkonstante

3.1.2 Potentielle Energie einer Feder

Da sich Kraft beim Dehnen ändert, müssen wir integrieren

$$E_{\text{pot}} = -\int_{0}^{\Delta l} F_{\text{R}}(l) \, dl \stackrel{\text{Hook}}{=} \int_{0}^{\Delta l} D \, l \, dl$$
$$= \left[\frac{Dl^2}{2} \right]_{l=0}^{\Delta l} = \frac{D}{2} (\Delta l)^2$$

Potentielle Energie einer Feder

$$E_{\rm pot} = \frac{D}{2} (\Delta l)^2$$

3.1.3 Allgemeine Definition potentielle Energie

Allgemein: berücksichtige Winkel zwischen Kraft und Weg

$$\Delta E_{\rm pot} = -|\underline{F}| \, |\Delta\underline{s}| \, \cos\angle(\underline{F},\Delta\underline{s}) = -\underline{F}\cdot\Delta\underline{s}$$
 Weg entgegen Kraft Skalarprodukt! verrichtete Arbeit $\Delta W > 0$

3.1.3 Allgemeine Definition potentielle Energie

Oft ändern sich Kraft und Winkel entlang des Weges

 \rightarrow teile in Abschnitte ΔW

Gesamte verrichtete Arbeit:

$$E_{\text{pot}} = \sum_{\text{"Weg"}} \Delta W = -\sum_{\text{"Weg"}} \underline{F} \cdot \Delta \underline{s} = -\int_{\text{"Weg"}} \underline{F} \cdot d\underline{s}$$

3.2 Kinetische Energie

3.2 Kinetische Energie

Betrachte konstante Kraft an Masse

$$v(t) = at$$

$$s(t) = \frac{a}{2}t^2$$

Verrichtete Arbeit: $W(t) = F s(t) \propto t^2$

Geschwindigkeit:

$$v(t) \propto t$$

Es ergibt sich ein quadratischer Zusammenhang zwischen Energie und Geschwindigkeit.

Kinetische Energie einer Masse m, die sich mit Geschwindigkeit v bewegt.

$$E_{\rm kin} = \frac{m}{2}v^2$$

3.3 Energieerhaltung

Energieerhaltungssatz gilt auch für mechanische Energien

(für abgeschlossenes System)

$$E_{\rm pot} + E_{\rm kin} = {\rm const.}$$

Beispiel/Aufgabe: Fallender Stein

Sie lassen einen Stein mit Masse 1kg von 1m Höhe fallen. Mit welcher Geschwindigkeit kommt der Stein unten an?

3.3 Versuch: verkürztes Pendel

Das verkürzte Pendel schwingt

3.3 Energieerhaltung

Beispiel Flummi

3.4 Leistung

- Formelzeichen (von "power"): P
- Leistung beschreibt Arbeit pro Zeit bzw. Energie pro Zeit

$$P = rac{\Delta W}{\Delta t} = rac{\Delta E}{\Delta t}$$
 (mittlere Leistung)

• Einheiten (abgeleitet Einheit: Watt)

$$[P] = W = \frac{J}{s} = \frac{kg m^2}{s^3}$$

Bsp: $1 \, \text{Wh} = 1 \, \text{W} \cdot 3600 \, \text{s} = 3600 \, \text{Ws} = 3600 \, \text{J}$

3.1.1 Leistung

Ein Masse m wird einmal direkt auf die Höhe h angehoben, einmal über eine (reibungsfreie) schiefe Ebene geschoben.

Bei gleicher Leistung benötigt man bei der schiefen Ebene

- a) weniger Zeit
- b) gleich viel Zeit
- c) mehr Zeit

3.4 Leistung

Kraft auf bewegte Körper (z.B. um Körper in Bewegung zu halten)

Betrachte Zeitintervall Δt zurückgelegter Weg $\Delta s = v \, \Delta t$ geleistete Arbeit $\Delta W = F \, \Delta s = F \, v \, \Delta t$

$$\bar{P} = \frac{\Delta W}{\Delta t} = \frac{F \, v \, \Delta t}{\Delta t} = F \, v$$

Gilt nur für konstante $F,\,v$, da $\,\Delta t\,$ beliebig klein gewählt werden kann auch allgemein

P = F v

