LECTURE 27: INTRO TO LARGE LANGUAGE MODELS

Mehmet Can Yavuz, PhD.

Adapted from Julia Hockenmaier, NLP S2023 - course material https://courses.grainger.illinois.edu/cs447/sp2023/

TODAY'S CLASS

01

Recap: Using RNNs for various NLP tasks 02

From static to contextual embeddings: ELMO

03

Recap: Transformers 04

Subword tokenizations

05

Early Large Language Models (GPT, BERT)

RECAP: USING RNNs FOR DIFFERENT NLP TASKS

RNNS FOR LANGUAGE GENERATION

AKA "autoregressive generation"

AN RNN FOR MACHINE TRANSLATION

RNNS FOR SEQUENCE CLASSIFICATION

• If we just want to assign **one label** to the entire sequence, we don't need to produce output at each time step, so we can use a simpler architecture.

We can use the hidden state of the last word in the sequence as input to a feedforward

net:

BASIC RNNS FOR SEQUENCE LABELING

Sequence labeling (e.g. POS tagging):

Assign one label to each element in the sequence.

RNN Architecture:

Each time step has a distribution over output classes

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.

ELMo

EMBEDDINGS FROM LANGUAGE MODELS

Replace static embeddings (lexicon lookup) with **context-dependent embeddings** (produced by a **neural language model**)

- => Each token's representation is a function of the entire input sentence, computed by a deep (multi-layer) bidirectional language model
- => Return for each token a (task-dependent) linear combination of its representation across layers.
- => Different layers capture different information

Peters et al., NAACL 2018

ELM_O

Pre-training:

- Train a multi-layer bidirectional language model with character convolutions on raw text
- **Each layer** of this language model network computes **a vector** representation **for each token**.
 - Freeze the language model parameters.

Fine-tuning (for each

Train task-dependents of the layer-wise representations into a single vector for each token jointly with a task-specific model that uses those vectors

ELM_O'S INPUT TOKEN REPRESENTATION S

The input token representations are purely **character-based:** a character CNN, followed by linear projection to reduce dimensionality

"2048 character n-gram convolutional filters with two highway layers, followed by a linear projection to 512 dimensions"

Advantage over using fixed embeddings: no UNK tokens, any word can be represented

ELMo'S BIDIRECTIONAL LANGUAGE MODELS

Forward LM: a deep LSTM that goes over the sequence from start to end to predict token t_k based on the prefix $t_1...t_{k-1}$:

$$p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s)$$

Parameters: token embeddings Θ_x LSTM $\overrightarrow{\Theta}_{LSTM}$, softmax Θ_s

Backward LM: a deep LSTM that goes over the sequence from end to start to predict token t_k based on the suffix $t_{k+1}...t_N$:

$$p(t_k | t_{k+1}, ..., t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)$$

Train these LMs jointly, with the same parameters for the token representations and the softmax layer (but not for the LSTMs)

$$\sum_{k=1}^{N} \left(\log p(t_k | t_1, ..., t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k | t_{k+1}, ..., t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s) \right)$$

ELMO'S OUTPUT TOKEN REPRESENTATIONS

Given an input token representation x_k , each layer j of the LSTM language models computes a vector representation $h_{k,j}$ for every token k.

With L layers, ELMo represents each token as L vectors $\mathbf{h}_{k,l}^{LM}$

$$R_{k} = \{\mathbf{x}_{k}^{LM}, \overrightarrow{\mathbf{h}}_{k,j}^{LM}, \overleftarrow{\mathbf{h}}_{k,j}^{LM} \mid j = 1, \dots, L\}$$

$$= \{\mathbf{h}_{k,j}^{LM} \mid j = 0, \dots, L\},$$
where $\mathbf{h}_{k,j}^{LM} = [\overrightarrow{\mathbf{h}}_{k,j}^{LM}; \overleftarrow{\mathbf{h}}_{k,j}^{LM}]$ and $\mathbf{h}_{k,0}^{LM} = \mathbf{x}_{k}$

ELMo learns softmax weights s_j^{task} and a task-specific scalar γ^{task} to collapse these L vectors into a single task-specific token vector:

$$\mathbf{ELMo}_k^{task} = E(R_k; \Theta^{task}) = \gamma^{task} \sum_{i=0}^{L} s_j^{task} \mathbf{h}_{k,j}^{LM}.$$

RESULTS

ELMo gave improvements on a variety of tasks:

- question answering (SQuAD)
- entailment/natural language inference (SNLI)
- semantic role labeling (SRL)
- coreference resolution (Coref)
- named entity recognition (NER)

sentiment analysis (SST-5)

			· O /		INCREASE
TASK	PREVIOUS SOTA	,	OUR BASELINE	ELMO + BASELINE	(ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

ELM_O:

ELMo showed that contextual embeddings are very useful: it outperformed other models on many tasks

• ELMo embeddings could also be concatenated with other token-specific features, depending on the task

ELMo requires training a taskspecific softmax and scalar to predict how best to combine each layer

Not all layers were equally useful for each task