we compute  $\nabla L_{w,\epsilon,\xi,b,\eta}$ . The gradient  $\nabla L_{w,\epsilon,\xi,b,\eta}$  is given by

$$\nabla L_{w,\epsilon,\xi,b,\eta} = \begin{pmatrix} w + X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \\ 2K_s \epsilon - \lambda \\ 2K_s \xi - \mu \\ b + \mathbf{1}_p^{\mathsf{T}} \lambda - \mathbf{1}_q^{\mathsf{T}} \mu \\ \mathbf{1}_p^{\mathsf{T}} \lambda + \mathbf{1}_q^{\mathsf{T}} \mu - \nu \end{pmatrix}.$$

By setting  $\nabla L_{w,\epsilon,\xi,b,\eta} = 0$  we get the equations

$$w = -X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}, \qquad (*_w)$$

$$2K_s \epsilon = \lambda$$

$$2K_s \xi = \mu$$

$$b = -(\mathbf{1}_p^{\top} \lambda - \mathbf{1}_q^{\top} \mu)$$

$$\mathbf{1}_p^{\top} \lambda + \mathbf{1}_q^{\top} \mu = \nu.$$

As we said earlier, both w an b are determined by  $\lambda$  and  $\mu$ . We can use the equations to obtain the following expression for the dual function  $G(\lambda, \mu, \gamma)$ ,

$$\begin{split} G(\lambda,\mu,\gamma) &= -\frac{1}{4K_s} (\lambda^\top \lambda + \mu^\top \mu) - \frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} - \frac{b^2}{2} \\ &= -\frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} \begin{pmatrix} X^\top X + \begin{pmatrix} \mathbf{1}_p \mathbf{1}_p^\top & -\mathbf{1}_p \mathbf{1}_q^\top \\ -\mathbf{1}_q \mathbf{1}_p^\top & \mathbf{1}_q \mathbf{1}_q^\top \end{pmatrix} + \frac{1}{2K_s} I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}. \end{split}$$

Consequently the dual program is equivalent to the minimization program

Dual of the Soft margin SVM (SVM<sub>s5</sub>):

minimize 
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} X^{\top}X + \begin{pmatrix} \mathbf{1}_{p}\mathbf{1}_{p}^{\top} & -\mathbf{1}_{p}\mathbf{1}_{q}^{\top} \\ -\mathbf{1}_{q}\mathbf{1}_{p}^{\top} & \mathbf{1}_{q}\mathbf{1}_{q}^{\top} \end{pmatrix} + \frac{1}{2K_{s}}I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
 subject to 
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} = \nu$$
$$\lambda_{i} \geq 0, \quad i = 1, \dots, p$$
$$\mu_{j} \geq 0, \quad j = 1, \dots, q.$$

It is shown in Section 54.16 how the dual program is solved using ADMM from Section 52.6. If the primal problem is solvable, this yields solutions for  $\lambda$  and  $\mu$ .

The constraint

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j = \nu$$