DeepLearning.AI

Machine Learning Overview

What is Machine Learning?

Machine learning

"Field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel (1959)

Question

If the checkers program had been allowed to play only ten games (instead of tens of thousands) against itself, a much smaller number of games, how would this have affected its performance?

- Would have made it better
- Would have made it worse

Machine learning algorithms rapid advance ments

used most in real-world applications

- Supervised learning (course 1, 2
- Unsupervised learning —
- Recommender systems
- Reinforcement learning

course 3

Practical advice for applying learning algorithms

DeepLearning.AI

Machine Learning Overview

Supervised Learning Part 1

Supervised learning

Learns from being given "right answers"

Input (X)	Output (Y)	Application
email	spam? (0/1)	spam filtering
audio ———	text transcripts	speech recognition
English ———	Spanish	machine translation
ad, user info	click? (0/1)	online advertising
image, radar info —	position of other cars	self-driving car
image of phone —	defect? (0/1)	visual inspection

Regression: Housing price prediction

DeepLearning.AI

Machine Learning Overview

Supervised Learning Part 2

Classification: Breast cancer detection

Classification: Breast cancer detection

- benign
- malignant type 1
- malignant type 2

Classification

predict categories cat day benign malignant 0,1,2

small number of possible outputs

Two or more inputs

Supervised learning

Learns from being given "right answers"

Regression
Predict a number
infinitely many possible outputs

Classification
predict categories
small number of possible outputs

DeepLearning.AI

Machine Learning Overview

Unsupervised Learning
Part 1

Previous: Supervised learning

Now: Unsupervised learning

Supervised learning Learn from data labeled with the "right answers"

Clustering: Google news

Clustering: DNA microarray

Clustering: Grouping customers

with AI

DeepLearning.AI

Machine Learning Overview

Unsupervised Learning
Part 2

Unsupervised learning

Data only comes with inputs x, but not output labels y. Algorithm has to find structure in the data.

<u>Clustering</u> Group similar data points together.

<u>Dimensionality reduction</u> Compress data using fewer numbers.

Anomaly detection Find unusual data points.

Question

Of the following examples, which would you address using an unsupervised learning algorithm?

- Given a database of customer data, automatically discover market segments and group customers into different market segments.
 - Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not

DeepLearning.AI

Machine Learning Overview

Jupyter Notebooks