Übung zur Vorlesung Berechenbarkeit und Komplexität

Lösung Blatt 7

Hausaufgabe 7.1

(2 + 2 Punkte)

Welche der folgenden Fragen über multivariate Polynome $p: \mathbb{Z}^k \to \mathbb{Z}$ (mit ganzzahligen Koeffizienten) sind entscheidbar? Beweisen Sie die Korrektheit Ihrer Antworten.

(a) Besitzt p eine Nullstelle, in der alle Variablen natürliche Werte annehmen?

Es bezeichne Dioph(\mathbb{Z}) das ursprüngliche Problem, ob ein solches Polynom p eine ganzzahlige Nullstelle besitzt, und Dioph(\mathbb{N}) die Einschränkung auf Nullstellen, die ausschließlich aus natürlichen Zahlen bestehen, wobei die Koeffizienten der Polynome natürlich weiterhin ganzzahlig sein dürfen. Indem man zeigt, dass Dioph(\mathbb{Z}) \leq Dioph(\mathbb{N}) gilt, folgt die Unentscheidbarkeit des Problems aus der Unentscheidbarkeit von Dioph(\mathbb{Z}).

Sei $p(x_1, \ldots, x_k)$ eine Instanz für das Problem Dioph(\mathbb{Z}). Wir setzen

$$f(p(x_1,\ldots,x_k)) = p'(x_1,x_1',x_2,x_2',\ldots,x_k,x_k'),$$

wobei

$$p'(x_1, x_1', x_2, x_2', \dots, x_k, x_k') = p(x_1 - x_1', x_2 - x_2', \dots, x_k - x_k')$$

und p' eine diophantische Gleichung ist. Für syntaktisch inkorrekte Eingaben x setzen wir f(x) = x.

Offensichtlich ist die Funktion f berechenbar.

Korrektheit: Sei zunächst $(a_1, \ldots, a_k) \in \mathbb{Z}^k$ eine Nullstelle von p. Für $i \in \{1, \ldots, k\}$ wähle $b_i, b_i' \in \mathbb{N}$ mit $a_i = b_i - b_i'$. Dann ist $(b_1, b_1', \ldots, b_k, b_k')$ eine Nullstelle von f(p).

Für die Rückrichtung sei nun $(b_1, b'_1, \dots, b_k, b'_k) \in \mathbb{N}^{2k}$ eine Nullstelle von p' = f(p). Wir setzen $a_i = b_i - b'_i$. Dann ist $(a_1, \dots, a_k) \in \mathbb{Z}^k$ eine Nullstelle von p.

(b) Besitzt p eine ganzzahlige Nullstelle, in der alle Variablenwerte zwischen -10^6 und 10^6 liegen?

Entscheidbar, da man nur endlich viele Nullstellenkandidaten hat: Diese $(2 \cdot 10^6 + 1)^k$ Nullstellenkandidaten kann man einfach nacheinander ausprobieren.

Zeigen Sie, dass folgende arithmetische Befehle durch ein LOOP-Programm simuliert werden können:

```
(a) x_i := x_j DIV x_k (Division ohne Rest, gegeben x_k > 0)
```

Wir suchen das kleinste x_i so dass $(x_i + 1) \cdot x_k > x_j$. Dazu probieren wir alle x_i von 0 bis x_j aus.

Wir verwenden, dass nach Vorlesung die Addition und das IF- x_i -=-0-THEN-ELSE-Konstrukt LOOP-berechenbar ist. Zudem ist nach Tutoriumsaufgabe 7.2 (b) die modifizierte Vorgängerfunktion und die Subtraktion LOOP-berechenbar. Es seien y, z, d Variablen, die sonst nicht verwendet werden: y wird verwendet, um den Wert $x_i \cdot x_k$ zu speichern. z wird nur dafür verwendet, $x_j + 1$ (statt x_j) Iterationen der LOOP-Schleife durchzuführen. d wird für den Vergleich von $y = x_i \cdot x_k$ und x_j in der IF-Abfrage verwendet.

```
y := 0;

x_i := 0;

d := x_j + 1;

d := d - y;

z := x_j + 1;

LOOP z DO

IF d = 0 THEN ELSE

y := y + x_k;

x_i := x_i + 1;

d := x_j + 1;

d := d - y

ENDLOOP;

x_i := x_i - 1
```

Der Einfachheit halber wurde hinter dem THEN eine Dummy-Anweisung ausgelassen. Für formale Korrektheit könnte man dort z. B. $x_i := x_i$ ergänzen.

Es genügen $x_j + 1$ Iterationen der LOOP-Schleife, da $(x_j + 1) \cdot x_k > x_j$ gilt. Im Fall $x_k = 1$ ist diese Anzahl auch tatsächlich notwendig.

```
(b) x_i \coloneqq x_j \text{ MOD } x_k \text{ (Modulo, gegeben } x_k > 0)
```

Wir benutzen, dass wir in (a) gezeigt haben, dass es ein LOOP-Programm gibt, das die Division ohne Rest berechnet. Zudem ist nach Vorlesung die Multiplikation LOOP-berechenbar und nach Tutoraufgabe 7.2 (b) auch die Subtraktion.

```
y := x_j \text{ DIV } x_k;

y := y \cdot x_k;

x_i := x_i - y
```

Hausaufgabe 7.3 (2 Punkte)

Die Programmiersprache LOOP-WHILE ist eine Kombination der beiden Programmiersprachen LOOP und WHILE. Die syntaktischen Komponenten von LOOP-WHILE sind genau die Komponenten von LOOP zusammen mit den Komponenten von WHILE: LOOP-WHILE-Programme sind Zuweisungen, die Hintereinanderausführung von zwei LOOP-WHILE-Programmen, das LOOP-Konstrukt um ein LOOP-WHILE-Programm oder das WHILE-Konstrukt um ein LOOP-WHILE-Programm. In einem LOOP-WHILE-Programm darf allerdings das WHILE-Konstrukt nur höchstens einmal benutzt werden.

Beweisen oder widerlegen Sie: Die Programmiersprache LOOP-WHILE ist Turing-mächtig.

Der in der Vorlesung gezeigte Beweis für die Turing-Mächtigkeit von WHILE verwendet nur eine einzige WHILE-Schleife: Die IF-Abfragen und die MOD-Befehle in dieser WHILE-Schleife können über LOOP-Schleifen realisiert werden, vgl. Folien und Hausaufgabe 7.2 (b). Mit diesem Wissen folgt die Aussage direkt.

Hausaufgabe 7.4

(3 + 3 Punkte)

Bestimmen Sie die Wachstumsfunktionen $F_P: \mathbb{N} \to \mathbb{N}$ für die folgenden LOOP-Programme. Bestimmen Sie für jedes dieser LOOP-Programme P eine natürliche Zahl m_P , sodass $F_P(n) < A(m_P, n)$ für alle $n \in \mathbb{N}$ gilt. Beachten Sie, dass die folgenden LOOP-Programme Kurzschreibweisen verwenden, z. B. ist $x_2 \coloneqq x_3 + 2$ Kurzschreibweise für $x_2 \coloneqq x_3 + 1$; $x_2 \coloneqq x_2 + 1$.

(a)
$$x_3 \coloneqq x_2 + 3;$$

 $x_1 \coloneqq x_2 + 1;$
 $x_2 \coloneqq x_3 + 2$

Langschreibweise:

$$x_3 \coloneqq x_2 + 1;$$

 $x_3 \coloneqq x_3 + 1;$
 $x_3 \coloneqq x_3 + 1;$
 $x_1 \coloneqq x_2 + 1;$
 $x_2 \coloneqq x_3 + 1;$
 $x_2 \coloneqq x_2 + 1$

P übersetzt den Eingabevektor (a_1, a_2, a_3) in den Ausgabevektor (a_2+1, a_2+5, a_2+3) . Folglich gilt $f_P(a_1, a_2, a_3) = 3a_2 + 9$, was

$$F_P(n) = \max \{3a_2 + 9 \mid a_1, a_2, a_3 \in \mathbb{N} \text{ mit } a_1 + a_2 + a_3 \le n\}$$

= $3n + 9$

liefert.

Verwende die "Regeln" aus dem Induktionsbeweis aus der Vorlesung. Es wird ignoriert, wie genau die Befehle durch die Hintereinanderausführung verschachtelt sind; dies spielt offensichtlich für die berechnete Funktion keine Rolle.

$$\left. \begin{array}{l} x_3 \coloneqq x_2 + 1; \, \} < A(2, n) \\ x_3 \coloneqq x_3 + 1; \, \} < A(2, n) \\ x_3 \coloneqq x_3 + 1; \, \} < A(2, n) \\ x_1 \coloneqq x_2 + 1; \, \} < A(2, n) \\ x_2 \coloneqq x_3 + 1; \, \} < A(2, n) \\ x_2 \coloneqq x_3 + 1; \, \} < A(2, n) \\ x_2 \coloneqq x_2 + 1; \, \} < A(2, n) \\ \end{array} \right\} < A(3, n) \le A(4, n)$$

Also gilt $F_P(n) < A(5, n)$.

(b)
$$x_3 := x_2;$$

LOOP x_1 DO

LOOP x_3 DO $x_2 \coloneqq x_2 + 1$ ENDLOOP ENDLOOP

P übersetzt den Eingabevektor (a_1, a_2, a_3) in den Ausgabevektor $(a_1, a_2 + a_1 \cdot a_2, a_2)$ Folglich gilt $f_P(a_1, a_2, a_3) = a_1 + 2a_2 + a_1 \cdot a_2$, was

$$F_P(n) = \max \{ a_1 + 2a_2 + a_1 \cdot a_2 \mid a_1, a_2, a_3 \in \mathbb{N} \text{ mit } a_1 + a_2 + a_3 \le n \}$$

liefert. Dieses Maximum muss nun berechnet werden. Da das Polynom $a_1+2a_2+a_1\cdot a_2$ nur positive Koeffizienten hat, wählt man a_1 und a_2 stets möglich groß, um den Wert zu maximieren, d. h., für gegebenes a_1 wählt man $a_2 = n - a_1$. Damit erhält man

$$a_1 + 2(n - a_1) + a_1(n - a_1) = -a_1^2 + (n - 1)a_1 + 2n.$$

Die Ableitung lautet $-2a_1 + n - 1$ und hat die Nullstelle $\frac{n-1}{2}$; da es sich bei der Funktion um eine gespiegelte Parabel handelt, wird an diesem Punkt das Maximum angenommen. Für den Fall, dass n gerade ist, muss man allerdings $\frac{n}{2}$ (oder alternativ $\frac{n}{2} - 1$, dann aber nur für $n \geq 2$) betrachten. Damit erhält man

$$F_P(n) = \begin{cases} \frac{1}{4}n^2 + \frac{3}{2}n + \frac{1}{4} & \text{falls } n \text{ ungerade} \\ \frac{1}{4}n^2 + \frac{3}{2}n & \text{falls } n \text{ gerade} \end{cases}.$$

Verwende die "Regeln" aus dem Induktionsbeweis aus der Vorlesung:

$$\left. \begin{array}{l} x_3 \coloneqq x_2; \, \} < A(2,n) \le A(4,n) \\ \text{LOOP } x_1 \text{ DO} \\ \text{LOOP } x_3 \text{ DO} \\ x_2 \coloneqq x_2 + 1 \} < A(2,n) \\ \text{ENDLOOP} \end{array} \right\} < A(3,n) \\ \left. \begin{array}{l} < A(4,n) \\ < A(4,n) \end{array} \right\} < A(5,n)$$

Also gilt $F_P(n) < A(5, n)$.