

Wrocław University of Technology

Computational Social Science

Radosław Michalski

Data Science course, October 31st, 2019

My Areas of Interest

- Diffusion of information
 - a general idea o spreading the information within the network
- Diffusion of innovations

- ideas, products, behavior

- observing the neighborhood

- Social influence
 - direct influence
 of others on an individual

My Areas of Interest - Applications

- Social networking websites
 - finding and predicting the trends
 - finding important members (influencers)
- Marketing/social campaigns
 - how to promote products/ideas?
- Enterprises
 - maximizing the spread of information (broader/faster)
- Power grids
 - predicting and preventing failures

How to Find me?

https://www.ii.pwr.edu.pl/~michalski

radoslaw.michalski@pwr.edu.pl

https://github.com/rmhere

Wrocław University of Technology

Graph and Networks

The Story - Koenigsberg Bridges

- Koenigsberg is now a part of Russia (Калининград)
- A river Преголя has two islands there
- Is it possible to cross all seven briges once?
- Leonhard Euler proved that it is impossible in 1741 – the origins of graph theory

Graph Theory - Basics

- Graph as a basic entity
- It consists of nodes (vertices) and links (edges)
- Different (basic) scenarios:
 - vertices can be labelled or not
 - edges can be weighted or not
 - edges can be directed or not

Undirected Graph

Directed Graph

Figure 1: An Undirected Graph

Figure 2: A Directed Graph

Representing Graphs

Visual representation vs. adjacency matrix

	1	2	3	4	5
1	0	1	1	1	0
2	0	0	1	0	0
3	0	1	0	0	0
4	0	0	0	1	0
5	0	1	0	0	0

From Graphs to Networks

Graph is a mathematical representation

Network is linked to real system

- web
- human brain
- social structure
- power grids

Kinds of Networks

Social networks

- represent relationships between humans
- e.g. corporate social network, social network

of twitter users, ...

Biological networks

- -human brain
- -food web
- Communication networks
 - structure of the web

How Networks are Different from Graphs?

 Typically the vertices are labelled, since they link to real objects

Network represents a part of reality,

not the whole world:

social network of students

people using Facebook

power grid in Europe

Networks - Vertices

- Vertices typically have some more attributes than just labels
 - employees social network:
 - gender
 - position
 - work experience
 - power grids
 - load/capacity
 - location

Networks - Edges

- Edges are typically weighted:
 - volume of communication
 - length of relationship
 - -sales' value
- Different edges' kinds multilayer networks
 - type of communication (mail, phone, face to face)

Network Science I

- Graphs mathematical representation
- Networks real world objects

Network science =>
 using the knowledge
 for solving specific
 real-world problem

Network Science III

- Real world problems what are they?
 - what employees are crucial for the company?
 - can we loose this **mobile phone user**?
 - if this **brain stucture** will be damaged, will this person still conscious?
 - which banks can't bancrupt?
 - if he/she will get **infected**, who else will?
 - if this part of **power grid** will fail, which parts will fail as well?
 - who should receive an iPhone to convince the most of the classmates to buy the same phone

Network Science - Future

- Big Data huge datasets
- Computational challenges computing clusters etc.
- Confirming the models in data or finding new models in data (e.g. human behaviour)
- Summing up: data-driven approach

Wrocław University of Technology

What is a social network?

Social Network

- Typically, social network is a network where vertices are people and links represent relationships.
 - vertices: actors, people
 - links: relationships, interactions

- Formally, it is still a graph
 - $-SN = \langle V, E \rangle$

Social Network - Examples

- Examples of social networks:
 - corporate social network
 - social network of freshmens at the university
 - social network in neighbourhood
 - social network of twitter users
- Social network is not a social networking website (socia media)
 - yet, by using them, we form social networks

Social Network Analysis

This is a right time to analyse social network: **Social Network Analysis (SNA)**

SNA is a set of tools and techniques to analyse social networks giving us **deeper understanding** of the network structure.

What are the crucial methods of SNA?

Areas of SNA

Local level

- analysing nodesand links
- position, centralit

Network level

global networkcharacteristics

Group level

groups and clique

Analysing Nodes I

- What can we say about node in the network?
 - is it connected with others?
 - how well is it connected?
 - is it centrally positioned?
 - does it have common neighbours with its neighbours?

- any more ideas?

Degree and Centrality

- Node properties
 - from direct connections
 - indegree how many directed edges (arcs) are incident on a node
 - outdegree how many directed edges (arcs) originate at a node
 - total degree (in or out)/degree number of edges incident on a node
 - from the entire graph
 - centrality (betweenness, closeness)

Degree - Properties

- A node can be well connected to its neighbours but in the periphery of the network
 - information originating there is distributed slowly across whole network
 - initially it reaches many neighbours, but then it has long way to go

How to Find More Central Nodes?

Centrality is related to the whole

structure, not the node itself.

- maybe not the number of adjacent links matters?
- if located more centrally, I can spread information faster than the red node?

– how to quantify that?

Betweenness Centrality

 Compute shortest paths going from any two nodes but not b

• On how many of those b is present? $g(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$

PageRank

Areas of SNA

Local level

- analysing nodesand links
- position, centralit

Network level

global networkcharacteristics

Group level

groups and clique

Network Level

- Global characteristics:
 - diameter the longest shortest path
 - average path length the averaged shortest paths

sparsity – ratio of links and nodes (the more zeros in the adjacency matrix, the sparser the network)

Distributions in social networks

 As the network is typically like that:

 The distribution is like that:

Power law in networks

Scale-free phenomenon (log-log scale)

• Few nodes that are order of magnitude

better connected

than others

 No particular scale -> fractals

' Long tail

Preferential attachment model

- When joining a social networking website (e.g. twitter) who will be followed by you?
 - famous and popular ones
 - regular twitter users
- Rich gets richer phenomenon
- Power law works!

Small world model (Watts Strogatz)

 Some people are better connected then most of others

Areas of SNA

Local level

- analysing nodesand links
- position, centralit

Network level

global networkcharacteristics

Group level

groups and clique

Do we Form any Groups?

- If we analyse Facebook data, do you think that people contact there at random or form some communities?
 - regular contacts with the same people,
 - less random interactions,
 - stability over time.
- If so, how to detect groups?

Group Detection

 The easiest – attributes of vertices (if we have them) – same class, same town etc.

Typically, we don't have this data, so

we use algorithms

a group represents
 a structure that is
 more connected
 within than outside

What about labs?

- Software tools for SNA (and much more)
 - -R
 - Rstudio

- igraph
- Applications of network science
 - how to make use of the knowledge we have

R Studio

Courses / books

On-line courses

- Coursera: Social Network Analysis (Lada Adamic, see youtube)
- "Introduction to Network Science" Leonid Zhukov (youtube)

Books

- Albert-Laszlo Barabasi "Network Science"
- Wasserman and Faust "Social Network Analysis"

Keywords

social network analysis, network science, complex networks, network models

Materials for data sciencists

Books

- Przemysław Biecek "Przewodnik po pakiecie R"
- Grolemund and Wickham "R for Data Science")available online here: http://r4ds.had.co.nz/)
- Bruce and Bruce "Practical Statistics for Data Scientists: 50 Essential Concepts"

Courses

 Coursera data science courses: https://www.coursera.org/browse/data-science?lan guages=en