M413-Fall 2013-HW5-Enrique Areyan (9) Let E° denote the set of all interior points of a set E. (a) Prove that E' is always open. Pt: Let us prove that (E°) is closed. Let x be a limit point of (E°), and r70. By definition, Nr(x) \hx}n(E°)c + I. In particular, pick y such that d(x,y)< \frac{1}{2}. Then YENr(x)/\x\n(E)c, so that YENr(x), y = x, y \((E^c)^c. Since y \((E^c)^c =) y \(E^c)^c =) \(y \) and so y is not an interior point of E. By definition, $\forall r_1 > 0 : N_{r_2}(y) \not = E$. Let o<r1< =. Picx. teNr1(4) such that t & E. then, teny(y) => d(t,y)<r1<= => d(t,y) < = $d(t,x) \leq d(t,y) + d(x,y) = \frac{1}{2} + \frac{1}{2} = r = 0$ d(t,x) < r, By triangular inequality: So te N_r(x) but t & E. therefore, given 170; N_r(x) & E, which men that x is not an interior point of E & X & E° E X & (E°). thus, (E°) contains all of its limit points => (E°) is closed => E° is of (b) Prove that E is open if and only if E=E Pt: (=) Suppose that E is open. Want to prove E=E. (E) Let $x \in E^{\circ}$. By definition of E° , x is an interior point of E. So, there exists r70, such that Nr(x) CE. Pick such an r. then, XENr(x), since (2) Let X & E. Smce E is open, all of its points are interior. In particular x is interior to E, which by definition means that $x \in E^\circ$. (E) and (2) means that E°= E. (€) Suppose that E°= E. Want to prove that E is open. Let $x \in E$. By hypothesis $x \in E \Rightarrow x \in E^\circ$. So we know that $x \in E^\circ$. Therefore x is interior to E. So any point xOE is interior to E, which by definit means that E is open. (continue on back page)

) If GCE and G is open, prove that GCE". f: Suppose that GCE and G is open. et XEG. Since G is open, there exists 170 such that Nr(x) CG, but GCE, Nr(x)CGCE=> Nr(x)CE; so there exists r'70 (r'=r,pick r that ones for G), such that Nr(x) CE, which means that x is interior to E. t XEG, interior to E, i.e., XEE => GCE. Prove that the complement of E° is the closure of the complement of E.

We want to prove $(E^{\circ})^{\circ} \stackrel{?}{=} (E^{\circ}) \Leftrightarrow (E^{\circ})^{\circ} \stackrel{?}{=} (E^{\circ} \cup (E^{\circ})^{\circ})$. =) Let $x \in (E^{\circ})^{\circ}$. Then, $x \notin E^{\circ}$, by definition means that x is NOT an intentor point of E f x & E then X & E', and so X & E'U(E') (=) X & E'. herwise, if x & E. Let 170 so that NrCx) & E. Since X & E, we know that (x)\1x { \(\xi \) \(\xi follows that x is a limit point of E. So, XEE' -> XEE'UE' XEE' us final statement in pictures looks like: Nr(x)//x/nec (x) let XEE°. By definition XEE°UE°. XEE then X & E. Let 170. Consider Nr(x). In particular XE Nr(x) since (1x)=0<r. therefore, Nr(x) & E, so x is not interior to E, =) x & E & X & E) perwise, if $x \in E^{c}$, then x is a limit point of E^{c} . Let r > 0. Then, -(x) lixin = + \$\pi\$. Using the same arguments and picture as in (E), we can clude that NryTE. Hence, x is not interior EE x & E & (x & (E°))) and (2) Means that (E°) = (E°) Do E and E always have the same interiors? which: No. Consider $E = (-1,0) \cup (0,1)$. Then, by (b) $E^0 = E$, since E is open. t, E = [-1, 1], since $\{0, 1, -1\} = E'$, however $(E)^0 = (-1, 1) \neq (-1, 0) \cup (0, 1) = E^0$. Do E and E' always have the same closures? thion: No. Consider E=10,1]. then E=E, since E is closed (theorem 2.27 b) E°= \$\P\$ (there are no interior points to E). Moreover, E°= E°UE°', but 車 (E has no limit points). thus E= 中山東 車 + 10,15= E.

M413 : Fall 2013 - HW5 - Enrique Areyon (13) Construct a compact set of real numbers whose limit points form a Countable set Solution: Consider the set: E=1++== P, q = IN) Uho). Pf: Clearly, o is a limit point of E, since we can make p and q as large claim: E= 21 neIN; Uho). as we want so that \frac{1}{p} + \frac{1}{q} > 0 , as \frac{p}{2} > \infty \text{ and } \quad \frac{q}{2} > \infty. Moreover, if you fix P and let 2 > 00, then p+ 4 > p as 2 > 00. this shows that we can get as close as we want to 1; PCIN, with number from E. More concretely, Let E70, and PEIN. Pick geIN, such that 9+P, 2 then: 978 => \frac{1}{2} < \frac{1}{6} < \epsilon => \frac{1}{2} < \epsilon = \frac{1}{2} < \eps Hence, $|\frac{1}{4}-\frac{1}{p}| < \epsilon =$ $|\frac{1}{4}-\frac{1}{p}| < \epsilon =$ $|\frac{1}{4}-\frac{1}{p}| < \epsilon =$ therefore, $|\frac{1}{4}-\frac{1}{p}| < \epsilon =$ $|\frac{1}{4}-\frac{1}{p}| < \epsilon =$ therefore, NE(+)/1+) NE+++; so + is a limit point of E: for any PC the argument is symmetric if we reverse the roles of P and q. What's more, Any other point in E other than th: new juhoy is not o Qimit point of E. let XEE such that X+h for new ord X+0. Let d be the distance from x to the neavest point e E E. then, let $\mathcal{E} < \frac{d(x,e)}{2}$ so that d70 (since x + e) and $N_{\mathcal{E}}(x)/hx$ $\cap E = \Phi$. Hence Claim: E is countable. Pf: this is obvious from the bijection non; neIN Pt: For this let us show that E is closed and bounded @ claim: E is compact. (i) It is closed since E'CE, because in can be written as $\frac{1}{n} = \frac{2}{2n} = \frac{1}{2n} + \frac{1}{2n} =$ choose p = q = 2n; for $n \in \mathbb{N}$. (ii) It is bounded. Pick R=10; X=0; then cleary Np(x)=No(0)=(-5) and ECNIO(x). Note that 2 is an upper bound for Earld o a Rower bour Since E is closed and bounded, ECIR = E is compact by theorem 2.41.

7) Let E be the set of all XECOIL whose decimal expansion contains. my the digits 4 and 7. Q Is E countable? Solution: NO. this results follows from the fact nat we proved in class that two valued sequences are uncountable. theorem 2.14). Regard the decimal expansion as a two valued sequence, and the the bijection $f: E \rightarrow \{0-1 \text{ sequences}\}$; by $f(e)=\{x_i\}$, where $x_i = \{0 \text{ if } e_i = 4\}$ $E \leftarrow \{b \text{ inary sequences}\} = \} E \text{ is uncountable.}$ b) Is E dense in [011]? Solution: NO. First note that a number in Emust be at least 7 = 0.444... Any number below 4 will contain a digit less than in its decimal expansion. therefore, look at 0 ∈ [011]. Certainly, E (by the previous argument or just looking at its decimal expossion 0000. (E). Take a neiborhood of o with a radius r< 9 (or to Sure take $r < \frac{4/a}{1000}$ just on arbitrary bis number) so that r(0)/10! NE=0, in pictures (5) (6) (6) (6) (6) (6) (6) (6) (6) (7) (7) (7) (7) (7) (8) (7) (9)· limit point of E. So, E is not dense in [0,1]. plution: YES. Clearly E is bounded take R=2, X=0, $N_2(0)=(-2,2)$ CEOITICE-ZIZ] => ECE-ZIZ]. preover, E is closed. To prove this, let us show that E' is open. XEEC => X & E; so x has at least one digit in its decimal expansion ing not 4 or 7. X = XiXzX3... Xm Xm+1". Let Xm be the first such play, tr= 10m+1. then Nr(x) CE° = x x is interior to E° =) E° is open E is closed. Since E is closed, bounded and EC112 => E is compact. ution: yes. We already proved that E is blased. It remains to prove at all points in E are limit points of E, in other words E has no lated and and lated points. let r70, and XEE. then Nr(x) MX's NE + \$\pi\$, because osing in so that 17 10m; then numbers in NrW will agree with x least on the first m decimal places; so NrCX) has contains points in E ony 170, ony XEE is a limit point of E. thus, E is perfect.