# 37181: WEEK 3: EUCLIDEAN ALGORITHM, SET THEORY

A/Prof Murray Elder, UTS Wednesday 7 August 2019

## PLAN

- · introduction to set theory notation
- · Division and remainder lemma
- Euclidean algorithm
- power set

# **SET THEORY**

A set is a well-defined collection of objects. <sup>1</sup> The objects are called elements of the set, or members of the set.

We can represent a set using brackets, for example

$$A = \{1, 2, a, 5, c, 3\}.$$

The elements are the five symbols you see listed inside the brackets. We could also describe a set using variables satisfying some 

A = 
$$\{x \mid ((x \in \mathbb{N}) \land (1 \leqslant x \leqslant 5) \land (x \neq 4)) \lor (x = a) \lor (x = c)\}$$
.

The set  $\{1, 5, 3, c, \underline{a, 1, 2}\}$  is the same as the set A, since a set is defined only by the elements it contains, no matter how they are listed or displayed.

<sup>&</sup>lt;sup>1</sup>Carefully defining what well-defined means will take us beyond the scope of this 3/26 course, into axiomatic set theory and foundations of mathematics.

# SET THEORY

belongs to in

The notation  $x \in A$  means x is an element of A and  $x \notin A$  means  $\neg (x \in A)$ .

Formally, if A, B are sets we define A = B if



## **SET THEORY**

Eg:

- $A = \{x \mid x \in \mathbb{Q}, x < 0\}$   $B = \{y \mid y \in \mathbb{R}, y^2 = 2\}$ Test: where does  $-\sqrt{2}$  live?

#### Definition A,B sets.

- $A \cap B = \{x \mid x \in A \land x \in B\} \text{ (intersection)}$
- $\cdot A \cup B = \{x \mid x \in A \lor x \in B\}$  (union)

Note the similarity of notation for  $\cap$  and  $\wedge$ , and  $\cup$  and  $\vee$ .

In our Eg: 
$$A \cap B = \emptyset$$

## YOUR TURN



Let  $A = \{a, b, c, d, e\}, B = \{b, d, e\}, C = \{f, g, a\}.$  Find

1.  $(A \cup B) \cap (A \cup C) = \{a, b, d\}$ 2.  $A \cap (B \cup C) = \{a, b, d\}$ 



A pictorial way to do this exercise is to draw a Venn diagram.



## SETMINUS

If A, B are sets then  $A \setminus B = \{x \mid x \in A \land x \notin B\}$ .

Eg: 
$$A = \{a, b, c, d, e\}, B = \{b, d, e\}, C = \{f, g, a\}.$$
 Find

1.  $A \setminus B$ 

C

- 2. *A* \ *C*



#### MORE NOTATION

If 
$$A, B$$
 are sets we say  $A$  is a subset of  $B$  if  $\forall x \in A, x \in B$  or  $(x \in A) \rightarrow (x \in B)$ . Notation  $A \subseteq B$ .

The notation  $A \subsetneq B$  means strictly contains:



Let  $\mathscr{U}$  be some large "universal" set, so we assume all sets we speak about are subsets of  $\mathscr{U}$ . Then  $\overline{A} = \{x \mid x \notin A\} = \mathscr{U} \setminus A$  means the set of elements in  $\mathscr{U}$  that are not in A.



## LOGIC VS. SET THEORY

There is a <u>strong connection</u> to the logic we covered before. We have three operations on sets:  $\cap$ ,  $\cup$ , which we can use to build new sets from old ones, and in logic we have three connectives  $\wedge$ ,  $\vee$ ,  $\neg$ .

Recall the tautologies in logic such as

$$(p \land q) \leftrightarrow \neg p \lor \neg q$$
 DeMorga

In set theory we could consider sets

$$\overline{A \cap B}$$
 and  $\overline{A} \cup \overline{B}$ .

How do we show two sets are the same? We show they contain exactly the same elements.

Formally, if A, B are sets we define A = B if

$$\forall x ((x \in A \rightarrow x \in B)) \land (x \in B)$$

# DE MORGAN (SET VERSION)

ANB SAU

## Lemma

 $\overline{A \cap B} = \overline{A} \cup \overline{B}.$ 

The proof goes: pick some arbitrary element of the LHS.

Show it belongs to the RHS.

Since we picked an arbitrary thing, this shows everything in the LHS  $\times \in \mathcal{B}$  is also in the RHS, so LHS $\subseteq$ RHS.  $\longrightarrow \times \in \overline{\mathcal{A}} \cup \overline{\mathcal{B}}$ 

Repeat to get RHS $\subseteq$ LHS, then LHS=RHS.

## DE MORGAN (SET VERSION)

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
.

**Proof.** Suppose  $x \in \overline{A \cap B}$ .

Then x is not in  $A \cap B$ .

Now either  $x \in A$  or not. If  $x \in A$  then since  $x \notin A \cap B$  we must have x is not in B.

So either  $x \in \overline{A}$  or  $x \in \overline{B}$ , so  $x \in \overline{A} \cup \overline{B}$ .

Thus

$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$
.

#### YOUR TURN

Next, start over and suppose  $x \in \overline{A} \cup \overline{B}$ .

Thus

$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$
.

Since each set is contained in the other, they are equal.



# YOUR TURN



#### **VENN DIAGRAMS ARE NOT PROOFS**

Note: a *Venn diagram* can be useful to check if a statement about sets looks correct, or to find a counterexample.

But drawing a picture of a Venn diagram does not constitute a proof – you must do the LHS, RHS proof.

Eg: check if you think  $A \cup (B \cap C) = (A \cup B) \cap C$  is true or not.

# **PAUSE**

#### RECALL

An element s in a subset  $S \subseteq \mathbb{N}$  is called a *first element* in S if  $s \leqslant x$  for every  $x \in S$ .

Eg:  $\{5,4,6,7\}$  has a first element, 4.

#### Lemma

First elements are unique. (So we can say "the" first element).



## Axiom (Well ordering principle)

Every non-empty subset of  $\ensuremath{\mathbb{N}}$  has a first element.

axiom = fact which does not follow from other facts.

## 

Let 
$$n, d \in \mathbb{Z}$$
 with  $d > 0$ . Then there exist  $q, r \in \mathbb{Z}$  with  $0 \leqslant r < d$  such

n-100nd=n(1-100a)

that 
$$n = qd + r$$
.

Proof: Define 
$$M = \{n - qd \mid q \in \mathbb{Z}\}$$
. Then  $M \cap \mathbb{N}$  is a subset of  $\mathbb{N} = \{0, 1, 2, \dots \}$ 

It is non-empty because if  $n \ge 0$  you can take q = 0 and if n < 0 take q = 100n (which is a negative number, so -qd is a big positive

Therefore by the well ordering principle 
$$M \cap \mathbb{N}$$
 has a first element, call it  $r$ .

number).

16/26

n=50, d=7 50=7.7+1

#### APPLICATION: DIVISION AND REMAINDER

Since  $r \in M \cap \mathbb{N}$  we have  $r \geqslant 0$  and r = n - qd for some  $q \in \mathbb{Z}$ .

If  $r \ge d$  (for contradiction) then  $r - d \ge 0$  and r - d = n - (q + 1)d so belongs to  $M \cap \mathbb{N}$ , and is smaller than r, contradicting our choice of r as first element.

## APPLICATION OF DIVISION LEMMA

## Definition

Let  $a, b \in \mathbb{Z}$ . Then  $d \in \mathbb{N}$  is called the greatest common divisor of a and b if  $d \mid a, d \mid b$ , and if  $c \mid a, c \mid b$  then  $c \mid d$ .

Eg: compute

$$gcd(3,9) = 45$$
  
 $gcd(6,8) = 452$ 

$$gcd(6,8) = 4$$

The following algorithm claims to compute gcd. It is called the Euclidean algorithm. We should not believe this claim, until we know how to prove algorithms are correct (lecture 6):

1. stops 2. gives the correct output

## **EUCLIDEAN ALGORITHM**

Use the lemma to write  $187 = q_1 \cdot 54 + r_1$ .

Use the lemma to write  $54 = \frac{2}{q_2} \cdot 2 + r_2$ .

Repeat until you get 
$$r_i = 0$$
. 25 = 6.4 + 1  
4 = 4.1 + 0

$$g(\lambda(m,n)=r_{i-1})$$

## YOUR TURN



## ONE MORE PROOF

#### Lemma

Let  $n, d \in \mathbb{Z}$  with d > 0. Then there exist unique integers q, r with  $0 \le r < d$  such that n = qd + r.

## Proof.

 $r_1 - r_2 = d(q_2 - q_1).$ 

We already proved some q, r values exist. Suppose they are not unique.

Then we have  $q_1, q_2, r_1, r_2$  and  $n = q_1d + r_1 = q_2d + r_2$  so

This means d divides  $r_1 - r_2$ , but since they are both between 0 and d-1 we must have  $r_1 - r_2 = 0$ , so  $r_1 = r_2$  and then  $q_1 - q_2 = 0$  so  $q_1 = q_2$ .

## BACK TO THE DEFINITION OF "SET"

The next exercise explains why well-defined collection of objects is not quite good enough.

Let P(S) be the property (of sets) that S does not contain itself. For example,  $P(\mathbb{N})$  is true because  $\mathbb{N}$  contains numbers, it does not contain sets so it cannot contain itself.

Another example: the *empty set*  $\emptyset$  is the set that has no elements,  $\emptyset = \{\}$ . So it contains nothing so cannot contain itself.

(a) Give some more examples.

## BACK TO THE DEFINITION OF "SET"

Consider the set of all abstract concepts. Call it  $\mathscr{A}$ . Then A contains things like art, postmodernism, democracy, imaginary numbers.

(b) Which is true: 
$$\mathscr{A} \in \mathscr{A}$$
 or  $\mathscr{A} \notin \mathscr{A}$ ?

Let  $\mathcal{S} = \{S \mid P(S)\}$  be the set of all sets that do not contain themselves.

So 
$$\mathbb{N} \in \mathscr{S}$$
 and  $\mathscr{A} \notin \mathscr{S}$ .

(c) Which is true: 
$$\mathscr{S} \in \mathscr{S}$$
 or  $\mathscr{S} \notin \mathscr{S}$ ?

The moral of this story: you cannot define a set using a condition, in general. *i.e.*  $\{x \mid P(x)\}$  may not actually be a well-defined collection of objects.

## **POWER SET**

Let A be a set. Then (axiom)

$$\mathscr{P}(A) = \{B \mid B \subseteq A\}$$

is a set. Its called the *power set* of A.

Questions:

- is  $\emptyset \in \mathscr{P}(A)$ ?
- is  $A \in \mathcal{P}(A)$ ?
- is  $\mathscr{P}(A) \in \mathscr{P}(A)$ ?

Another axiom: ∅ is a set.

What can you build with just these two axioms?

## YOUR TURN

• Given  $A = \{1, 2, 3\}$  is a set, what is  $\mathcal{P}(A)$ ?

• Prove that if A is a set then  $A \subsetneq \mathscr{P}(A)$ 

## NEXT

## Next lecture:

- induction
- · correctness of computer code
- relations and functions