Latent Variable Models and Expectation Maximization

Piyush Rai

Introduction to Machine Learning (CS771A)

September 27, 2018

Recap: Latent Variable Models

• Assume each observation x_n to be associated with a "local" latent variable z_n

- Parameters of $p(x|z,\theta)$ and $p(z|\phi)$ are collectively referred to as "global" parameters
- For brevity, we usually refer to the global parameters θ and ϕ as $\Theta = (\theta, \phi)$
- A Gaussian mixture model is an example of such a model
 - $z_n \in \{1, ..., K\}$ with $p(z_n | \phi) = \text{multinoulli}(\pi_1, ..., \pi_K)$
 - $\mathbf{x}_n \in \mathbb{R}^D$ with $p(\mathbf{x}_n | \mathbf{z}_n, \theta) = \mathcal{N}(\mathbf{x} | \mu_{\mathbf{z}_n}. \Sigma_{\mathbf{z}_n})$
 - Here $\Theta = (\phi, \theta) = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$
- Given data $\mathbf{X} = \{x_1, \dots, x_N\}$, the goal is to estimate the parameters Θ or latent variable \mathbf{Z} or both (note: we can usually estimate Θ given \mathbf{Z} , and vice-versa)

Why Estimation is Difficult in LVMs?

• Suppose we want to estimate parameters Θ . If we knew both x_n and z_n then we could do

$$\Theta_{MLE} = \arg \max_{\Theta} \sum_{n=1}^{N} \log p(\mathbf{x}_n, \mathbf{z}_n | \Theta) = \arg \max_{\Theta} \sum_{n=1}^{N} [\log p(\mathbf{z}_n | \phi) + \log p(\mathbf{x}_n | \mathbf{z}_n, \theta)]$$

- Simple to solve (usually closed form) if $p(\mathbf{z}_n|\phi)$ and $p(\mathbf{x}_n|\mathbf{z}_n,\theta)$ are "simple" (e.g., exp-fam. dist.)
- However, in LVMs where z_n is "hidden", the MLE problem will be the following

$$\Theta_{MLE} = \arg \max_{\Theta} \sum_{n=1}^{N} \log p(\mathbf{x}_{n}|\Theta) = \arg \max_{\Theta} \log p(\mathbf{X}|\Theta)$$

• The form of $p(x_n|\Theta)$ may not be simple since we need to sum over unknown z_n 's possible values

$$p(\mathbf{x}_n|\Theta) = \sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n|\Theta)$$
 ... or if \mathbf{z}_n is continuous: $p(\mathbf{x}_n|\Theta) = \int p(\mathbf{x}_n, \mathbf{z}_n|\Theta) d\mathbf{z}_n$

• The summation/integral may be intractable + may lead to complex expressions for $p(\mathbf{x}_n|\Theta)$, in fact almost never an exponential family distribution. MLE for Θ won't have closed form solutions!

An Important Identity

- Define $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$ and let $q(\mathbf{Z})$ be some distribution over \mathbf{Z}
- Assume discrete **Z**, the identity below holds for any choice of the distribution $q(\mathbf{Z})$

 $\mathrm{KL}(q||p)$ $\mathcal{L}(q,oldsymbol{ heta})$ $\ln p(\mathbf{X}|oldsymbol{ heta})$

(Exercise: Verify the above identity)

• Since $\mathsf{KL}(q||p_z) \geq 0$, $\mathcal{L}(q,\Theta)$ is a lower-bound on $\log p(\mathbf{X}|\Theta)$

$$\log p(\mathbf{X}|\Theta) \geq \mathcal{L}(q,\Theta)$$

• Maximizing $\mathcal{L}(q,\Theta)$ will also improve $\log p(\mathbf{X}|\Theta)$. Also, as we'll see, it's easier to maximize $\mathcal{L}(q,\Theta)$

Maximizing $\mathcal{L}(q,\Theta)$

- Note that $\mathcal{L}(q,\Theta)$ depends on two things $q(\mathbf{Z})$ and Θ . Let's do ALT-OPT for these
- First recall the identity we had: $\log p(\mathbf{X}|\Theta) = \mathcal{L}(q,\Theta) + \mathsf{KL}(q||p_z)$ with

$$\mathcal{L}(q,\Theta) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X},\mathbf{Z}|\Theta)}{q(\mathbf{Z})} \right\} \quad \text{and} \quad \mathsf{KL}(q||p_z) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z}|\mathbf{X},\Theta)}{q(\mathbf{Z})} \right\}$$

• Maximize \mathcal{L} w.r.t. q with Θ fixed at Θ^{old} : Since $\log p(\mathbf{X}|\Theta)$ will be a constant in this case,

$$\hat{q} = rg \max_{q} \mathcal{L}(q, \Theta^{old}) = rg \min_{q} \mathsf{KL}(q || p_z) = p_z = p(\mathsf{Z} | \mathsf{X}, \Theta^{old})$$

• Maximize \mathcal{L} w.r.t. Θ with q fixed at $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old})$

$$\Theta^{\textit{new}} = \arg\max_{\Theta} \mathcal{L}(\hat{q}, \frac{\Theta}{\bullet}) = \arg\max_{\Theta} \sum_{\mathbf{Z}} p(\mathbf{Z} | \mathbf{X}, \frac{\Theta^{\textit{old}}}{\bullet}) \log \frac{p(\mathbf{X}, \mathbf{Z} | \Theta)}{p(\mathbf{Z} | \mathbf{X}, \Theta^{\textit{old}})} = \arg\max_{\Theta} \sum_{\mathbf{Z}} p(\mathbf{Z} | \mathbf{X}, \Theta^{\textit{old}}) \log p(\mathbf{X}, \mathbf{Z} | \Theta)$$

- .. therefore, $\left|\Theta^{\textit{new}} = \arg\max_{\theta} \mathcal{Q}(\Theta, \Theta^{\textit{old}})\right|$ where $\mathcal{Q}(\Theta, \Theta^{\textit{old}}) = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X}, \Theta^{\textit{old}})}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)]$
- $\bullet \ \mathcal{Q}(\Theta,\Theta^{old}) = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\Theta^{old})}[\log p(\mathbf{X},\mathbf{Z}|\Theta)] \text{ is known as } \underline{\text{expected}} \text{ complete data log-likelihood (CLL)}$

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta, \Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q},\Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta,\Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta, \Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q},\Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta,\Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q},\Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta,\Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta, \Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta, \Theta^{old})$)

- Step 1: We set $\hat{q} = p(\mathbf{Z}|\mathbf{X}, \Theta^{old}), \ \mathcal{L}(\hat{q}, \Theta)$ touches $\log p(\mathbf{X}|\Theta)$ at Θ^{old}
- Step 2: We maximize $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ (equivalent to maximizing $\mathcal{Q}(\Theta, \Theta^{old})$)

What's Going On: Another Illustration

- The two-step alternating optimization scheme we saw can never decrease $p(X|\Theta)$ (good thing)
- To see this consider both steps: (1) Optimize q given $\Theta = \Theta^{old}$; (2) Optimize Θ given this q

- Step 1 keeps Θ fixed, so $p(\mathbf{X}|\Theta)$ obviously can't decrease (stays unchanged in this step)
- Step 2 maximizes the lower bound $\mathcal{L}(q,\Theta)$ w.r.t Θ . Thus $p(\mathbf{X}|\Theta)$ can't decrease!

The Expectation Maximization (EM) Algorithm

The ALT-OPT of $\mathcal{L}(q,\Theta)$ that we saw leads to the EM algorithm (Dempster, Laird, Rubin, 1977)

The EM Algorithm

- Initialize Θ as $\Theta^{(0)}$, set t=1
- **2** Step 1: Compute posterior of latent variables given current parameters $\Theta^{(t-1)}$

$$\frac{\rho(\boldsymbol{z}_n^{(t)}|\boldsymbol{x}_n,\boldsymbol{\Theta}^{(t-1)}) = \frac{\rho(\boldsymbol{z}_n^{(t)}|\boldsymbol{\Theta}^{(t-1)})\rho(\boldsymbol{x}_n|\boldsymbol{z}_n^{(t)},\boldsymbol{\Theta}^{(t-1)})}{\rho(\boldsymbol{x}_n|\boldsymbol{\Theta}^{(t-1)})} \propto \operatorname{prior} \times \operatorname{likelihood}$$

Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{(t)} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{(t-1)}) = \arg\max_{\Theta} \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_{n}^{(t)}|\boldsymbol{x}_{n}, \Theta^{(t-1)})}[\log p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}^{(t)}|\Theta)]$$

• If not yet converged, set t = t + 1 and go to step 2.

Note: If we can take the MAP estimate $\hat{\pmb{z}}_n$ of \pmb{z}_n (not full posterior) in Step 1 and maximize the CLL in Step 2 using that estimate, i.e., do $\arg\max_{\Theta}\sum_{n=1}^N\log p(\pmb{x}_n,\hat{\pmb{z}}_n^{(t)}|\Theta)$, this will be identical to ALT-OPT

Writing Down the Expected CLL

• Deriving the EM algorithm for any model requires finding the expression of the expected CLL

$$Q(\Theta, \Theta^{old}) = \sum_{n=1}^{N} \mathbb{E}_{p(\mathbf{z}_{n}|\mathbf{x}_{n}, \Theta^{old})} [\log p(\mathbf{x}_{n}, \mathbf{z}_{n}|\Theta)]$$

$$= \sum_{n=1}^{N} \mathbb{E}_{p(\mathbf{z}_{n}|\mathbf{x}_{n}, \Theta^{old})} [\log p(\mathbf{x}_{n}|\mathbf{z}_{n}, \Theta) + \log p(\mathbf{z}_{n}|\Theta)]$$

- If $p(x_n|z_n,\Theta)$ and $p(z_n|\Theta)$ are exp-family distributions, expected CLL will have a simple form
- Finding the expression for the expected CLL in such cases is fairly straightforward
 - First write down the expressions for $p(x_n|z_n,\Theta)$ and $p(z_n|\Theta)$ and simplify as much as possible
 - In the resulting expressions, replace all terms containing z_n 's by their respective expectations, e.g.,
 - z_n replaced by $\mathbb{E}_{p(z_n|x_n,\Theta^{old})}[z_n]$, i.e., the posterior mean of z_n
 - ullet $z_n z_n^ op$ replaced by $\mathbb{E}_{p(z_n|x_n,\Theta^{old})}[z_n z_n^ op]$
 - .. and so on..
 - The expected CLL may not always be computable and may need to be approximated

EM for Gaussian Mixture Model

EM for Gaussian Mixture Model

• Let's first look at the CLL. Similar to generative classification with Gaussian class-conditionals

$$\log p(\mathbf{X}, \mathbf{Z}|\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)] \qquad \text{(we've seen how we get this)}$$

• The expected CLL $\mathcal{Q}(\Theta, \Theta^{old})$ will be

$$\mathcal{Q}(\Theta, \Theta^{old}) = \mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}][\log \pi_k + \log \mathcal{N}(\mathbf{x}_n|\mu_k, \Sigma_k)]$$

.. where the expectation is w.r.t. the current posterior of z_n , i.e., $p(z_n|x_n, \Theta^{old})$

• In this case, we only need $\mathbb{E}[z_{nk}]$ which can be computed as

$$\mathbb{E}[z_{nk}] = \gamma_{nk} = 0 \times p(z_{nk} = 0 | x_n, \Theta^{old}) + 1 \times p(z_{nk} = 1 | x_n, \Theta^{old}) = p(z_{nk} = 1 | x_n)$$

$$\propto p(z_{nk} = 1)p(x_n | z_{nk} = 1) \qquad \text{(from Bayes Rule)}$$
Thus $\mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$ (Posterior prob. that x_n is generated by k -th Gaussian)

• Note: We can finally normalize $\mathbb{E}[z_{nk}]$ as $\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ since $\sum_{k=1}^K \mathbb{E}[z_{nk}] = 1$

EM for Gaussian Mixture Model

EM for Gaussian Mixture Model

- Initialize $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ as $\Theta^{(0)}$, set t=1
- 2 E step: compute the expectation of each z_n (we need it in M step)

$$\mathbb{E}[z_{nk}^{(t)}] = \gamma_{nk}^{(t)} = \frac{\pi_k^{(t-1)} \mathcal{N}(x_n | \mu_k^{(t-1)}, \mathbf{\Sigma}_k^{(t-1)})}{\sum_{\ell=1}^K \pi_\ell^{(t-1)} \mathcal{N}(x_n | \mu_\ell^{(t-1)}, \mathbf{\Sigma}_\ell^{(t-1)})} \quad \forall n, k$$

3 Given "responsibilities" $\gamma_{nk} = \mathbb{E}[z_{nk}]$, and $N_k = \sum_{n=1}^N \gamma_{nk}$, re-estimate Θ via MLE

$$\boldsymbol{\mu}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} \mathbf{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{(t)} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk}^{(t)} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}$$

$$\boldsymbol{\pi}_{k}^{(t)} = \frac{N_{k}}{N}$$

• Set t = t + 1 and go to step 2 if not yet converged

Another Example: (Probabilistic) Dimensionality Reduction

• Let's consider a latent factor model for dimensionality reduction (will revisit this later)

$$p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) = \mathcal{N}(\mathbf{W}\mathbf{z}_n, \sigma^2\mathbf{I}_D)$$
 $p(\mathbf{z}_n) = \mathcal{N}(\mathbf{0}, \mathbf{I}_K)$

- A low-dim $\mathbf{z}_n \in \mathbb{R}^K$ mapped to high-dim $\mathbf{x}_n \in \mathbb{R}^D$ via a projection matrix $\mathbf{W} \in \mathbb{R}^{D \times K}$
- The complete data log-likelihood for this model will be

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n, \mathbf{z}_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) p(\mathbf{z}_n) = \sum_{n=1}^{N} \{\log p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) + \log p(\mathbf{z}_n)\}$$

• Plugging in the expressions for $p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W},\sigma^2)$ and $p(\mathbf{z}_n)$ and simplifying (exercise)

$$CLL = -\sum_{n=1}^{N} \left\{ \frac{D}{2} \log \sigma^2 + \frac{1}{2\sigma^2} ||\mathbf{x}_n||^2 - \frac{1}{\sigma^2} \mathbf{z}_n^{\top} \mathbf{W}^{\top} \mathbf{x}_n + \frac{1}{2\sigma^2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^{\top} \mathbf{W}^{\top} \mathbf{W}) + \frac{1}{2} \operatorname{tr}(\mathbf{z}_n \mathbf{z}_n^{\top}) \right\}$$

- Expected CLL will require replacing z_n by $\mathbb{E}[z_n]$ and $z_n z_n^{\top}$ by $\mathbb{E}[z_n z_n^{\top}]$
 - These expectations can be obtained from the posterior $p(z_n|x_n)$ (easy to compute due to conjugacy)
- The M step maximizes the expected CLL w.r.t. the parameters (\mathbf{W}, σ^2 in this case)

The EM Algorithm: Some Comments

- The E and M steps may not always be possible to perform exactly. Some reasons
 - The posterior of latent variables $p(\mathbf{Z}|\mathbf{X},\Theta)$ may not be easy to find
 - Would need to approximate $p(\mathbf{Z}|\mathbf{X},\Theta)$ in such a case
 - Even if $p(\mathbf{Z}|\mathbf{X},\Theta)$ is easy, the expected CLL, i.e., $\mathbb{E}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$ may still not be tractabe

$$\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)] = \int \log p(\mathbf{X}, \mathbf{Z}|\Theta) p(\mathbf{Z}|\mathbf{X}, \Theta) d\mathbf{Z}$$

- .. which can be approximated, e.g., using Monte-Carlo expectation (called Monte-Carlo EM)
- Maximization of the expected CLL may not be possible in closed form
- EM works even if the M step is only solved approximately (Generalized EM)
- If M step has multiple parameters whose updates depend on each other, they are updated in an alternating fashion called Expectation Conditional Maximization (ECM) algorithm
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian (VB) inference

