1	Permutations.	1
2	Cycles.	2
3	Transpositions.	3
4	Théorèmes de décomposition.	3
5	Signature.	4
Ex	Exercices	

Dans tout ce chapitre, n sera un entier naturel non nul.

1 Permutations.

Définition 1.

Une bijection de [1, n] dans lui même est appelée une **permutation** de [1, n]. L'ensemble des permutations de [1, n] sera noté S_n .

On peut représenter une permutation $\sigma \in S_n$ à l'aide du tableau

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Exemple 2.

Soient

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} \quad \text{et} \quad \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \end{pmatrix}.$$

Calculer $\sigma \circ \sigma'$, $\sigma' \circ \sigma$, σ^2 et σ^{-1} .

Proposition 3.

- 1. (S_n, \circ) est un groupe, appelé **groupe symétrique**.
- 2. S_n est fini et son cardinal vaut n!
- 3. Ce groupe n'est pas abélien dès que $n \geq 3$.

Notation multiplicative : pour $\sigma, \sigma' \in S_n$, on pourra noter $\sigma \sigma'$ la permutation $\sigma \circ \sigma'$.

Définition 4 (Un peu de vocabulaire sur les permutations).

Soit $\sigma \in S_n$.

- 1. Si $x \in [1, n]$, l'ensemble $\{\sigma^k(x), k \in \mathbb{Z}\}$ est appelé **orbite** de x.
- 2. On dit que x est un **point fixe** de σ si $\sigma(x) = x$. Les points fixes sont ainsi les éléments de [1, n] dont l'orbite est un singleton.
- 3. On appelle **support** de σ l'ensemble des éléments de [1, n] qui ne sont pas un point fixe.
- 4. Deux permutations σ et σ' sont dites **conjuguées** s'il existe $\alpha \in S_n$ tel que $\sigma' = \alpha \sigma \alpha^{-1}$.

Proposition 5.

Deux permutations dont les supports sont disjoints commutent.

2 Cycles.

Définition 6.

Soit p un entier supérieur à 2.

Une permutation γ est appelée un p-cycle s'il existe p éléments distincts a_1, \ldots, a_p de $[\![1, n]\!]$ tels que

$$a_1 \stackrel{\gamma}{\mapsto} a_2 \stackrel{\gamma}{\mapsto} a_3 \cdots \stackrel{\gamma}{\mapsto} a_p \stackrel{\gamma}{\mapsto} a_1$$

et
$$\forall b \in [1, n] \setminus \{a_1, \dots, a_p\} \quad \gamma(b) = b.$$

On note alors $\gamma = (a_1 \ a_2 \ \cdots \ a_p)$.

Notation.

Soit $\gamma = (a_1 \ a_2 \ \dots \ a_p)$ un p-cycle. Il y a p façons de décrire γ comme un p-cycle :

$$\gamma = (a_1 \ a_2 \ \dots \ a_p) = (a_2 \ \dots \ a_p \ a_1) = (a_3 \ \dots \ a_p \ a_1 \ a_2) = \dots = (a_p \ a_1 \ \dots \ a_{p-1}).$$

On peut aussi écrire les choses ainsi : pour tout entier a dans le support de γ ,

$$\gamma = (a \ \gamma(a) \ \gamma^2(a) \ \cdots \ \gamma^{p-1}(a)).$$

Exemple 7 (Conjugué d'un cycle).

Soit $\gamma = (a_1 \ldots a_p)$ un cycle et $\sigma \in S_n$. Montrer que

$$\sigma \gamma \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_p)).$$

Une conséquence de ce calcul : tous les p-cycles sont conjugués.

Exemple 8 (Calculs sur un cycle).

Soit $\gamma = (a_1 \ldots a_p)$ un p-cycle. Déterminer γ^{-1} et γ^p .

3 Transpositions.

Définition 9.

Une permutation τ qui est un 2-cycle sera appelée une **transposition**.

Une transposition est donc une permutation de la forme (a,b) où $\{a,b\}$ est une paire de [1,n].

Proposition 10 (Involutivité).

Si τ est une transposition, alors

$$\tau^2 = id$$
 et $\tau^{-1} = \tau$.

Lemme 11 (Décomposition d'un cycle en produit de transpositions).

Soit $\gamma = (a_1 \dots a_p)$ un *p*-cycle. Alors

$$\gamma = (a_1 \ a_2)(a_2 \ a_3)\dots(a_{p-1} \ a_p)$$
 ou $\gamma = (a_1 \ a_p)(a_1 \ a_{p-1})\dots(a_1 \ a_2)$

4 Théorèmes de décomposition.

Théorème 12 (Décomposition en produit de cycles à supports disjoints).

Soit $\sigma \in S_n$. Il existe $\gamma_1, \ldots, \gamma_r$ r cycles à supports disjoints tels que

$$\sigma = \gamma_1 \gamma_2 \cdots \gamma_r.$$

Les γ_i commutent. Cette décomposition est unique à l'ordre des facteurs près.

Exemple 13 (Une décomposition).

On considère la permutation de S_8

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{pmatrix}.$$

3

- 1. Décomposer σ en produit de cycles à supports disjoints.
- 2. Déterminer σ^4 , σ^{12} et σ^{666}

Corollaire 14.

Toute permutation est un produit de transpositions.

La décomposition n'est pas unique et les transpositions ne commutent pas nécessairement.

Exemple 15 (une décomposition).

Décomposer en produit de transpositions la permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 1 & 2 & 4 & 6 & 3 \end{pmatrix}.$$

5 Signature.

Définition 16.

Soit $\sigma \in S_n$.

- 1. Une paire $\{i,j\}$ de $[\![1,n]\!]$ est une **inversion** pour σ si i-j et $\sigma(i)-\sigma(j)$ sont de signe opposé.
- 2. Le nombre d'inversions de σ est noté $Inv(\sigma)$.
- 3. On appelle signature de σ le nombre $\varepsilon(\sigma) = (-1)^{\text{Inv}(\sigma)}$.

Exemple 17.

Après avoir calculé son nombre d'inversions, donner la signature de

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}.$$

Proposition 18.

- 1. L'identité a pour signature 1.
- 2. Les transpositions ont pour signature -1.

Proposition 19 (La signature écrite comme un produit).

$$\forall \sigma \in S_n \quad \varepsilon(\sigma) = \prod_{\{i,j\}} \frac{\sigma(i) - \sigma(j)}{i - j},$$

4

le produit étant indexé par l'ensemble de toutes les paires $\{i, j\}$ (donc $i \neq j$) de [1, n].

Théorème 20.

La signature est l'unique application $\varepsilon: S_n \to \{-1,1\}$ telle que

- 1. $\forall \sigma, \sigma' \in S_n \quad \varepsilon(\sigma\sigma') = \varepsilon(\sigma)\varepsilon(\sigma')$.
- 2. Pour toute transposition $\tau \in S_n$, $\varepsilon(\tau) = -1$.

Corollaire 21.

La signature est l'unique morphisme de groupes non trivial de (S_n, \circ) dans (\mathbb{C}^*, \times) .

Exercices

33.1 $[\phi \Diamond \Diamond]$ Écrire explicitement S_1, S_2 et S_3 .

33.2 $[\phi \diamondsuit \diamondsuit]$ Soit n et p deux entiers naturels supérieurs à 2 tels que $p \le n$. Combien S_n contient-il de p-cycles?

33.3 [♦♦♦] Sous-groupe alterné

Notons A_n l'ensemble des permutations de signature égale à 1. Lustifier qu'il s'a git là d'un sous groupe de S, et que si $n \ge 2 + 4$

Justifier qu'il s'agit là d'un sous-groupe de S_n et que si $n \geq 2$, $|A_n| = \frac{n!}{2}$.

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}.$$

 $\boxed{\mathbf{33.5}} \ \left[\blacklozenge \blacklozenge \blacklozenge \right] \ (*) \ \mathrm{Th\'{e}or\`{e}me} \ \mathrm{de} \ \mathrm{Cayley}$

Soit G un groupe fini de cardinal n.

1. Pour $a \in G$, on pose

$$\tau_a: \left\{ \begin{array}{ccc} G & \to & G \\ x & \mapsto & ax \end{array} \right.$$

l'opérateur de translation à gauche associé à a. Vérifier que pour tout a dans G, τ_a est un automorphisme de G.

2. Vérifier que

$$\Phi: \left\{ \begin{array}{ccc} G & \to & S_G \\ a & \mapsto & \tau_a \end{array} \right.$$

est un morphisme de groupes injectif.

3. En déduire que G est isomorphe à un sous-groupe de S_n .

33.6 [$\spadesuit \spadesuit$] Centre de S_n

On note $Z(S_n)$ le centre de S_n , c'est-à-dire l'ensemble des permutations qui commutent avec toutes les autres.

5

- 1. Que vaut $Z(S_2)$?
- 2. Montrer que $Z(S_n)$ est trivial dès que $n \geq 3$.