Introduction to Neural Networks

Convolutional Neural Networks

jivg.org

Centro de Innovación y Desarrollo Tecnológico en Cómputo Instituto Politécnico Nacional

October 16, 2023©

Convolutional Neural Networks (CNN)

Position invariance of features

Convolutional Neural Networks (CNN)

Position invariance of features

• CNNs share their parameters across the space

Template matching

Template

Picture

Convolutional Neural Networks insight

Figure: Scheme of a convolutional neural network for classification.

CNN Input

Figure: Illustration of an input image with size $I_w \times I_h \times I_d$.

CNN Convolution

• Given two functions, I and K, the convolution produces a new function that changes the shape of the first one according the to second one.

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} K[u,v]I[i-u,j-v]$$
 (1)

• It is very useful to find patterns.

CNN Convolution (2)

Figure: Convolution: a kernel is moved inside the input to create a new volume.

CNN Kernel Size

- The kernel is usually smaller than the input
- The kernel size is $K_w \times K_h \times K_d$

$$K_d = I_d \tag{2}$$

(b) Convolution

CNN with several Kernels

Figure: Several kernels can be applied and their output is stack.

Feature map

- The feature map is the output of the convolution
- The depth of the map, G_d , is equal to the number of filters

CNN Stride

Figure: The stride is the number of pixels that are "jump" for each convolution.

CNN Stride (2)

output size

- The stride is defined by s
- The output feature width size is then:

$$G_s = \lfloor \frac{I_s - K_s}{s} \rfloor + 1 \tag{3}$$

where G_s is the output size,

• The same applies for height

CNN Padding

• Valid padding:

• Same padding adds zeros

CNN Padding

Padding output arithmetic

For any l_s , k_s , p and s:

$$G_s = \lfloor \frac{I_s + 2p - K_s}{s} \rfloor + 1 \tag{4}$$

CNN Classification

Figure: In a CNN several convolutions are applied before a classification stage.

Exercise

• Given: An input of $28 \times 28 \times 3$, 8 kernels of 3×3 , calculate the parameters of the feature maps:

Padding	Stride	Width	Height	Depth
valid	1			
same	1			
valid	2			

Max Pooling

Figure: Pooling reduces the size of the feature map.

Pooling

• Given I_s , W_s and s, the output size is

$$O_s = \lfloor \frac{I_s - W_s}{s} \rfloor + 1 \tag{5}$$

- Some characteristics
 - Weights free
 - A more accurate model
 - Forward pass more expensive
 - More hyper-parameters

1×1 convolution

Figure: A 1×1 convolution adds more parameters without modifying the structure.

Inception module (optional)

Figure: Why to choose between different operations? Let make all!.

Project - Present

20 minutes presentation

- Lenet5
- AlexNet
- GoogLeNet
- VGGNet

21 / 22

References

- Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).
- UDACITY, Computer vision nano degree.
- Skansi, S. (2018). Introduction to Deep Learning: from logical calculus to artificial intelligence. Springer.