Szegedi Tudományegyetem Informatikai Intézet

Terhelés-kiegyenlítés AP-asszisztált roaming segítségével OpenWrt-en

Szakdolgozat

Készítette: Südi Tamás

programtervező informatikus szakos hallgató *Témavezető:*???????
egyetemi docens

Szeged 2023

Tartalomjegyzék

ι.	. OpenWrt		
	1.1.	Telepítés fizikai eszközre	
	1.2.	Telepítés virtuális környezetbe	
		1.2.1. Virtuális környezet Linux alatt	
		1.2.2. Virtuális környezet Windows alatt WSL2 segítségével	
		1.2.3. Virtuális környezet Windows alatt Oracle VirtualBox segítségével	
	1.3.	Hálózat beállítása OpenWrt rendszeren	
	1.4.	A WAN port beállítása	
	1.5.	A WLAN beállítása	
	1.6.	A program forráskódja	

Feladatkiírás

A témavezető által megfogalmazott feladatkiírás. Önálló oldalon szerepel.

Tartalmi összefoglaló

A dolgozat célja az AP-asszisztált roaming megvalósítása OpenWrt alapú rendszerekre. A dolgozat célja továbbra, hogy bemutassa az OpenWrt rendszert, a roaming technikákat és a szükséges 802.11 protokollokat.

A dolgozat első fejezete az OpenWrt rendszer bemutatásával és telepítésével foglalkozik. Összehasonlítja a virtuális fejlesztői környezet előnyeit és hátrányait a fizikai környezettel, telepítés, használat, sebesség és konfigurálhatóság szempontjából. A dolgozat második fejezete a hálózati topológiákkal, a roaming technikákkal és a szükséges 802.11 protokollok bemutatásával foglalkozik, ismerteti az AP-asszisztált roamingot. A dolgozat harmadik fejezete a terhelés-kiegyenlítési algoritmusokkal foglalkozik. A dolgozat negyedik részében az éles környezetben történő tesztelésről és a kapott eredményekről szól. A dolgozat utolsó fejezete a szakirodalmat és a kapcsolódó projekteket mutatja be.

1. OpenWrt

Az OpenWrt egy Linux-alapú, nyílt forráskódú, hálózati eszközökhöz készült operációs rendszer.

Az OpenWrt a gyártói firmware helyett telepíthető a támogatott eszközökön. Ahhoz képest számos előnyt kínál a felhasználóknak, beleértve a letisztultságot, a nagyobb testreszabhatóságot, több funckiót és jobb biztonságot.

A legtöbb komponens és a build rendszer a GNU General Public License Version 2 licensz alatt érhető el, azonban néhány, elsősorban a nem OpenWrt-ben létrehozott részek más licensek alatt állnak. [3] [4] [5]

1.1. Telepítés fizikai eszközre

Egyes eszközök már rendelkeznek OpenWrt vagy OpenWrt alapú firmwarrel, azonban legtöbbször ennek telepítése a felhasználó feladata.

A telepítés folyamata eszközönként eltérő lehet, de általában az alábbi módokon történhet: az eszköz webes kezelőfelületen keresztül, FTP-n keresztül, SD-kártya vagy USB-meghajtó segítségével, soros port használatával.

A támogatott eszközök listája a https://openwrt.org/toh/start oldalon található. Itt az eszköz támogatottságától és népszerűségétől függően megtalálhatóak annak specifikációi, a hozzá tartozó firmwarek letöltési linkje és a telepítési, visszaállítási útmútatók.

[6][7]

1.2. Telepítés virtuális környezetbe

A virtuális környezet egy olyan szoftveres megoldás, ami lehetővé teszi azt, hogy a felhasználó egyszerre futtasson több, akár különböző operációs rendszert is a számítógépén.

A virtuális környezet rengeteg előnnyel járhat egy fejlesztő számára, mint például az extra eszköz használatának elkerülése, az egyszerűbb fájlátvitel, a kijelző és a billentyűzet használata, a gyorsabb hardver, mentések készítése és visszaállítása és ezek megosztása más fejlesztőkkel. Azonban az ilyen környezeteknek is lehetnek hátrányai, mint például, hogy a hálózati kártya nem rendelkezik a szükséges hardveres támogatással és nem olyan megbízható a teljesítménye, mint egy erre tervezett eszköznek.

1.2.1. Virtuális környezet Linux alatt

A Linux-alapú operációs rendszerek népszerűek a fejlesztők körében, mivel ingyenesek és számos olyan funkcióval rendelkeznek, amelyek lehetővé teszik a hatékony és kényelmes munkavégzést.

Ezen a platformon több virtuális környezet is elérhető, mint például a VirtualBox, a VMware Workstation vagy a KVM.

A nyílt forráskódú Kernel-based Virtual Machine (KVM) egyik előnye, hogy képes átadni PCI csatlakozású eszközöket is virtuális gépnek, így alacsony szintű hozzáférést biztosít a hardverhez. [2] [8]

Több virtuális környezet kezelő is támogatja mind az USB, mind a PCI csatlakozású eszközök átadását. Én ezek közül a virt-manager nevű programot választottam.

Hogy egyszerűsítsem a telepítési folyamatot gpu-passthrough-manager nevű szoftvert használtam, amely segítségével felkészítettem a rendszeremet a PCI csatornán keresztül csatlakoztatott WLAN-vezérlő átadására.

Ezután már csak meg kellett adnom a grub rendszerbetöltőnek, hogy a rendszert a vfio-pci.ids=8086:06f paraméterrel indítsa el, amely a WLAN-vezérlő azonoítóját jelöli.

A számítógépem specifikációjának megfelelően a openwrt-22.03.2-x86-64-generic-ext4-combined.img képet használtam a virtuális gép létrehozásához. Ez nem tartalmaz semmilyen telepítőt, helyette grub rendszerbetöltő segítségével indítja el a rendszert.

1.2.2. Virtuális környezet Windows alatt WSL2 segítségével

A Windows Subsystem for Linux (WSL) egy olyan alkalmazás, amely lehetővé teszi a Linux-alapú operációs rendszerek futtatását Windows alatt. A WSL2 egy újabb verziója a WSL-nek, amely a Linux kernelt futtatja a Windows alatt, így alacsonyabb szintű hozzáférést biztosít a hardverhez. [9]

Bár a WSL2 a Hyper-V alapú virtualizáció segítségével egy tényleges Linux rendszert futtat, mégsem képes sem a PCI csatornán keresztül csatlakoztatott eszközöket, sem az USB csatlakozású eszközöket átadni a virtuális gépnek. Bár elméletileg lehetséges lenne a külső eszközök átadása a virtuális rendszernek USB over IP protokoll használatával, de a gyakorlatban ez nehezen elvégezhető, mivel ennek a protokollnak kifejlesztésekor a cél eszközök nem hálózati kontrollerek, hanem perifériák és tárolóeszközök voltak. [10]

1.2.3. Virtuális környezet Windows alatt Oracle VirtualBox segítségével

Az Oracle VirtualBox egy alternatív virtális környezet, amely használatához először ki le kell tiltani a WSL környezetet, mivel a kettő nem egyidejűleg futtatható. Ezután telepíthető a VirtualBox.

Ezt legegyszerűbben a host rendszeren futó parancsorból lehet elvégezni:

```
bcdedit /set hypervisorlaunchtype off
```

Ez a parancs letiltja a WSL indítását, így az Oracle VirtualBox is futtatható lesz a gépen. A módosítások érvényesítéséhez újra kell indítani a gépet. [1]

Ámbár az Oracle Virtualbox nem támogatja a .img kiterjesztésű képeket, de tartalmazza a VBoxManage nevű programot, amely segítségével az img kép átkonvertálható .vdi kiterjesztésű virtuális lemezzé.

```
& 'C:\Program Files\Oracle\VirtualBox\VBoxManage.exe'
convertfromraw --format VDI '.\openwrt-22.03.3-x86-64-generic-ext4
-combined.img' '.\openwrt.vdi'
```

Az újonnan létrejött openwrt.vdi kép segítségével létrehozható a virtuális gép. Alapértelmezetten a host gépről nem érhető el a virtuális gép hálózata, azonban ez megoldható port-forwarding szabályok felvétele segítségével a Virtuaális gép beállításainak Hálózat / adapter 1 / speciális / port forwarding menüpontjában.

- 1.3. Hálózat beállítása OpenWrt rendszeren
- 1.4. A WAN port beállítása
- 1.5. A WLAN beállítása

Fuggelek

1.6. A program forráskódja

A függelékbe kerülhetnek a hosszú táblázatok, vagy mondjuk egy programlista:

Nyilatkozat

Alulírott Südi Tamás, programtervező informatikus szakos hallgató, kijelentem, hogy a dolgozatomat a Szegedi Tudományegyetem, Informatikai Intézet XY Tanszékén készítettem, XY diploma megszerzése érdekében. Kijelentem, hogy a dolgozatot más szakon korábban nem védtem meg, saját munkám eredménye, és csak a hivatkozott forrásokat (szakirodalom, eszközök, stb.) használtam fel.

Tudomásul veszem, hogy szakdolgozatomat a Szegedi Tudományegyetem Diplomamunka Repozitóriumában tárolja.

Szeged, 2023. április 2.	
	aláírás

Köszönetnyilvánítás

Ezúton szeretnék köszönetet mondani X. Y-nak ezért és ezért ...

Hivatkozások

- [1] How to get VirtualBox 6.0 and WSL working at the same time. https://stackoverflow.com/questions/58031941/how-to-get-virtualbox-6-0-and-wsl-working-at-the-same-time.
- [2] KVM. https://web.archive.org/web/20230324055810/https://www.linux-kvm.org/page/Main_Page.
- [3] *OpenWrt About*. https://web.archive.org/web/20230315035827/https://openwrt.org/about.
- [4] OpenWrt FAQ. https://web.archive.org/web/20221123091403/https://openwrt.org/faq/general.
- [5] OpenWrt Home. https://web.archive.org/web/20230315035827/https://openwrt.org/start.
- [6] *OpenWrt installation*. https://web.archive.org/web/20220609112758/https://openwrt.org/docs/guide-user/installation/start.

Terhelés-kiegyenlítés AP-asszisztált roaming segítségével OpenWrt-en

- [7] OpenWrt Stock Firmware. https://web.archive.org/web/20230316170518/https://openwrt.org/docs/guide-user/installation/openwrt-as-stock-firmware.
- [8] *PCI passthrough*. https://web.archive.org/web/20230327035420/https://wiki.archlinux.org/title/PCI_passthrough_via_OVMF.
- [9] Windows Subsystem for Linux. https://web.archive.org/web/20230323193209/https://learn.microsoft.com/en-us/windows/wsl/about.
- [10] WSL2 USBIP. https://web.archive.org/web/20230310122219/https://learn.microsoft.com/en-us/windows/wsl/connect-usb.