Московский Авиационный Институт (Национальный Исследовательский Университет)

Институт информационных технологий и прикладной математики

Лабораторная работа

По курсу «Методы оптимизации»

Студент: Махмудов О.С.

Группа: М80-305Б-18

Преподаватель: Пантелеев А.В.

Москва

Цель работы - изучение методов безусловной минимизации на примере квадратичной функции, не имеющей ярко выраженной овражной структуры.

Постановка задачи

Дано: $f(X)=x^2+xy+2y^2+10y$

Требуется найти: $f(X) \rightarrow min$

 $X \in \mathbb{R}^n$

Аналитическое решение задачи с использованием аппарата необходимых и достаточных условий экстремума

$$\nabla f(z) = \begin{pmatrix} 2z + y \\ 4y + z + p \end{pmatrix}$$

3) Temente

$$\begin{cases} 2x + y = 0 \\ 4y + x + 10 = 0 \end{cases} \Rightarrow \begin{cases} y = -2x \\ -8x + x + 10 = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{10}{7} \\ y = -\frac{20}{7} \end{cases}$$

4) M-ya Tecce!

$$H(x) = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$$
 $D_1 = 2 > 0$ of u-ya novem. onjegenera \Rightarrow

Численное решение задачи с точностью $\epsilon=0.01$ из начальной точки, $\mathrm{X0}=(-1.1;2.5)$

Методы 1-го порядка

Метод градиентного спуска (предельное число итераций N = 5)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+0x_1+10x_2+0$

Метод градиентного спуска

Точность метода: 0.01, $N_{max} = 5$, Количество итераций: 5

N _{ит}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f' _{x1}	f' _{x2}	$ \nabla f(x_1,x_2) $
0	0.23	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0.5	-1.169	-1.847	-8.12148	-4.185	1.443	4.42679
2	0.24	0.9235	-2.5685	-14.00977	-0.7215	0.6495	0.97078
3	0.62	1.09666	-2.72438	-14.18436	-0.53106	0.19914	0.56717
4	0.24	1.42592	-2.84785	-14.28556	0.00399	0.03453	0.03476
5	0	1.42496	-2.85613	-14.2857	-0.00621	0.00042	0.00623

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00375$$

$$|f(x) - f(x^*)| = 1.0E-5$$

Метод градиентного наискорейшего спуска (предельное число итераций N = 10)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод градиентного наискорейшего спуска

Точность метода: 0.01, $N_{max} = 10$, Количество итераций: 7

N _{ит}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f' _{x1}	f'_{x_2}	$\ \nabla f(x_1,x_2)\ $
0	0.24806	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0.49997	-1.17442	-2.18826	-8.35645	-4.53709	0.07255	4.53767
2	0.25212	1.094	-2.22453	-13.58503	-0.03652	2.19588	2.19619
3	0.49179	1.10321	-2.77816	-14.19308	-0.57173	-0.00942	0.57181
4	0.25212	1.38438	-2.77353	-14.27347	-0.00476	0.29028	0.29032
5	0.49162	1.38558	-2.84671	-14.2841	-0.07554	-0.00126	0.07556
6	0.25218	1.42272	-2.84609	-14.2855	-0.00064	0.03836	0.03837
7	0	1.42289	-2.85576	-14.28569	-0.00999	-0.00017	0.00999

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00585$$

$$|f(x) - f(x^*)| = 3.0E-5$$

Метод покоординатного спуска (предельное число итераций N=5)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+0x_1+10x_2+0$

Метод покоординатного спуска

Точность метода: 0.01, $N_{max} = 5$, Количество итераций: 4

N _{ит}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f'x1	f'x2	$\ \nabla f(x_1,x_2)\ $
0	0.25	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0.57	-1.1	-2.225	-8.69125	-4.425	0	4.425
2	0.25	1.42225	-2.225	-13.49046	0.6195	2.52225	2.59721
3	0.05	1.42225	-2.85556	-14.28568	-0.01106	0	0.01106
4	0	1.4228	-2.85556	-14.28569	-0.00996	0.00055	0.00997

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00598$$

$$|f(x) - f(x^*)| = 3.0E-5$$

Метод Гаусса-Зейделя (предельное число итераций N = 10)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод Гаусса-Зейделя

Точность метода: 0.01, $N_{max} = 10$, Количество итераций: 9

N _{ит}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f'x1	f' _{x2}	$\ \nabla f(x_1,x_2)\ $
0	0.24998	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0.24998	-1.1	-2.2246	-8.69125	-4.4246	0.00161	4.4246
2	0.49997	-1.1	-2.225	-8.69125	-4.425	0	4.425
3	0.49992	1.11238	-2.225	-13.58641	-0.00024	2.21238	2.21238
4	0.24998	1.1125	-2.225	-13.58641	-0	2.2125	2.2125
5	0.49997	1.1125	-2.77808	-14.1983	-0.55308	0.00019	0.55308
6	0.24998	1.38902	-2.77808	-14.27477	-3.0E-5	0.27671	0.27671
7	0.49997	1.38902	-2.84725	-14.28435	-0.0692	2.0E-5	0.0692
8	0.24998	1.42362	-2.84725	-14.28554	-0	0.03462	0.03462
9	0	1.42362	-2.85591	-14.28569	-0.00866	0	0.00866

$$||\mathbf{x} - \mathbf{x}^*|| = 0.0051$$

$$|f(x) - f(x^*)| = 2.0E-5$$

Метод сопряжённых градиентов (предельное число итераций N=2)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+0x_1+10x_2+0$

Метод сопряженных градиентов

Точность метода: 0.01, $N_{max} = 2$, Количество итераций: 2

N _{ut}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f'_{x_1}	f'_{x_2}	$ \nabla f(\mathbf{x}_1,\mathbf{x}_2) $
0	0.2481	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0.57584	-1.17443	-2.18901	-8.35645	-4.53787	0.06954	4.5384
2	0	1.42871	-2.85644	-14.28571	0.00098	0.00294	0.0031

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00072$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Методы 2-го порядка

Метод Ньютона (предельное число итераций N=1)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод Ньютона

Точность метода: 0.01, $N_{max} = 1$, Количество итераций: 1

N _{ut}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f'x1	f'x2	$\ \nabla f(x_1,x_2)\ $
0	0	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0	1.42857	-2.85714	-14.28571	0	0	0

$$||\mathbf{x} - \mathbf{x}^*|| = 0$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Метод Ньютона-Рафсона (метод Ньютона с переменным шагом) при $t\neq 0$ (предельное число итераций N=5)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод Ньютона-Рафсона

Точность метода: 0.01, $N_{max} = 5$, Количество итераций: 4

N _{ut}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f' _{x1}	f'_{x_2}	$ \nabla f(x_1,x_2) $
0	0.9	-1.1	2.5	35.96	0.3	18.9	18.90238
1	0.9	1.17571	-2.32143	-13.78326	0.03	1.89	1.89024
2	0.9	1.40329	-2.80357	-14.28069	0.003	0.189	0.18902
3	0.9	1.42604	-2.85179	-14.28566	0.0003	0.0189	0.0189
4	0	1.42832	-2.85661	-14.28571	3.0E-5	0.00189	0.00189

$$||\mathbf{x} - \mathbf{x}^*|| = 0.00059$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Метод случайного поиска (предельное число итераций N = 8)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод случайного поиска

Точность метода: 0.01, $N_{max} = 8$, Количество итераций: 5

N _{ut}	радиус г	коэф-т. k	x ₁	x ₂	$f(x_1,x_2)$
0	6	1	-1.1	2.5	35.96
1	1	1	2.35405	-2.40607	-12.60483
2	0.5	1	1.68298	-3.14747	-14.12628
3	0.05	1	1.30047	-2.82546	-14.27136
4	0.01	1	1.35025	-2.83009	-14.28024
5			1.35896	-2.83501	-14.28143

$$||\mathbf{x} - \mathbf{x}^*|| = 0.07304$$

$$|f(x) - f(x^*)| = 0.00428$$

Метод конфигураций (предельное число итераций N = 8)

Протокол расчета

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод конфигураций

Точность метода: 0.01, $N_{max} = 8$, Количество итераций: 6

N _{ut}	x ₁	x ₂	$f(x_1,x_2)$	dx ₁	dx ₂	коэф-т k
0	-1.1	2.5	35.96	1	1	
1	-1.1	1.5	19.06	1	1	1
2	-0.1	-0.5	-4.44	1	1	0
3	-0.1	-1.5	-10.34	1	1	1
4	0.9	-2.5	-13.94	0.1	0.1	0.4
5	1.4	-2.8	-14.28	0.01	0.01	0.01
6	1.405	-2.813	-14.2823			

$$||\mathbf{x} - \mathbf{x}^*|| = 0.05004$$

$$|f(x) - f(x^*)| = 0.00341$$

Метод деформируемого многогранника (Метод-Мида) (предельное число итераций ${f N}={\bf 8})$

Выполнил: Махмудов, группа 80-305, 18.05.2021

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ 0x₁+ 10x₂+ 0

Метод Нелдера-Мида

Точность метода: 0.01, $N_{max} = 14$, Количество итераций: 8

N	a	операция	коэффициент	X1	x ₂	$f(x_1,x_2)$
- ПТ	u.	операция	коэффицисит	_	_	
				-2	-1	-2
0	1	растяжение	2.8	-1.1	2.5	35.96
				-4	5	96
				0.9	-3.5	-12.84
1	1	сжатие	0.5	-2	-1	-2
				-1.1	2.5	35.96
	\Box			0.9	-3.5	-12.84
2	1	сжатие	0.5	-2	-1	-2
				-0.825	0.125	1.85875
				0.9	-3.5	-12.84
3	1	растяжение	2.8	-0.6875	-1.0625	-7.16406
				-2	-1	-2
				2.2125	-3.5625	-13.22906
4	1	редукция		0.9	-3.5	-12.84
				-0.6875	-1.0625	-7.16406
				0.7625	-2.3125	-13.61156
5	1	редукция		1.55625	-3.53125	-13.44664
				2.2125	-3.5625	-13.22906
				1.4875	-2.9375	-14.27406
6	1	редукция		1.15938	-2.92188	-14.18744
				0.7625	-2.3125	-13.61156
				1.4875	-2.9375	-14.27406
7	1	редукция		1.32344	-2.92969	-14.25651
				1.125	-2.625	-14.15625
				1.4875	-2.9375	-14.27406
8				1	1 1	-14.27172
				1.30625	-2.78125	-14.26852

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.09965$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0.01165$$