Differential- und Integralrechnung, Wintersemester 2024-2025

10. Vorlesung

Die geometrische Interpretation der partiellen Ableitungen

Partielle Differenzierbarkeit und Stetigkeit

Differenzierbarkeit und Stetigkeit

Seien $M \subseteq \mathbb{R}$, $f: M \to \mathbb{R}$ und $\alpha \in M \cap M'$. Ist f differenzierbar in α , dann ist f stetig in α .

Bemerkung

Partielle Differenzierbarkeit in einem Punkt \Rightarrow Stetigkeit in dem betreffenden Punkt

Partielle Differenzierbarkeit und Stetigkeit

Beispiel: Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2. \end{cases}$$

Man kann (mit Hilfe der Definition) zeigen, dass f partiell differenzierbar in 0_2 ist; f ist jedoch nicht stetig in 0_2 : Es sei $(a^k)_{k \in \mathbb{N}^*}$ mit

$$a^k = \left(\frac{1}{k}, \frac{1}{k}\right), k \in \mathbb{N}^*.$$

Dann ist

$$\lim_{k \to \infty} a^k = 0_2, \text{ während } \lim_{k \to \infty} f(a^k) = \lim_{k \to \infty} \frac{\frac{1}{k} \cdot \frac{1}{k}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2} \neq f(0_2).$$

Th3 in der 8. Vorlesung $\Rightarrow f$ ist nicht stetig in 0_2 .

Theorem (Schwarz)

Seien $\emptyset \neq M \subseteq \mathbb{R}^n$ offen und $f \in C^2(M)$. Dann ist

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}, \ \forall \ i, j \in \{1, ..., n\}.$$

Bemerkung

Ist $f \notin C^2(M)$, so gilt i. A. das obige Theorem nicht.

Beispiel: Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2. \end{cases}$$

f ist auf \mathbb{R}^2 zweimal partiell differenzierbar sowohl nach (x,y) als auch nach (y,x).

Die partiellen Ableitungen zweiter Ordnung $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial x \partial y}$: $\mathbb{R}^2 \to \mathbb{R}$ sind

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = \begin{cases} \frac{y^2 (5y^2 - 3x^2)(x^2 + y^2) - 4y^4 (y^2 - x^2)}{(x^2 + y^2)^3}, & (x,y) \neq 0_2 \\ 1, & (x,y) = 0_2 \end{cases}$$

und

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \begin{cases} \frac{y^2(9x^2 + y^2)(x^2 + y^2) - 4x^2y^2(3x^2 + y^2)}{(x^2 + y^2)^3}, & (x,y) \neq 0_2 \\ 0, & (x,y) = 0_2. \end{cases}$$

Man beachte

$$\frac{\partial^2 f}{\partial y \partial x}(0_2) \neq \frac{\partial^2 f}{\partial x \partial y}(0_2).$$

Die Funktionen $\frac{\partial^2 f}{\partial y \partial x}$ und $\frac{\partial^2 f}{\partial x \partial y}$ sind in 0_2 nicht stetig:

$$\lim_{k\to\infty}\frac{\partial^2 f}{\partial y\partial x}\left(\frac{1}{k},0\right)=0\neq\frac{\partial^2 f}{\partial y\partial x}(0,0)$$

und

$$\lim_{k\to\infty} \frac{\partial^2 f}{\partial x \partial y} \left(0, \frac{1}{k} \right) = 1 \neq \frac{\partial^2 f}{\partial x \partial y} (0, 0).$$

Th3 in der 8. Vorlesung $\Rightarrow \frac{\partial^2 f}{\partial y \partial x}$ und $\frac{\partial^2 f}{\partial x \partial y}$ sind in 0_2 nicht stetig.

Graphen von Funktionen in 2 Variablen → Sattelpunkte

