S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet MF08

Mathematical Finance: MF

Exercises (for discussion on Monday, 08.01.2023)

Exercise 1. (8 points)

- (a) Let $f:[0,\infty)\to\mathbb{R}$ be a convex (continuous) function that is bounded from below. Show that there is a non-decreasing convex function $f_1:[0,\infty)\to\mathbb{R}$ with $f_1(0)=0$ and a non-increasing convex function $f_2:[0,\infty)\to\mathbb{R}$ with $\lim_{x\to\infty}f_2(x)=0$ and an $a\in\mathbb{R}$ such that for all $x\geq 0$ we have $f(x)=f_1(x)+f_2(x)+a$.
- (b) Let $f:[0,\infty)\to\mathbb{R}$ be a convex (continuous) function with right-hand derivative $f':[0,\infty)\to\mathbb{R}$, i.e. $f'(x):=\lim_{y\searrow x}\frac{f(x)-f(y)}{x-y}$ for all $x\in[0,\infty)$. Show
 - (i) If f is non-decreasing with f(0) = 0. Then

$$f(x) = \int_{[0,\infty)} (x-z)^+ df'(z) \quad \forall x \ge 0.$$

(ii) If f is non-increasing with $\lim_{z\to\infty} f(z) = 0$. Then

$$f(x) = \int_{[0,\infty)} (z - x)^+ df'(z) \quad \forall x \ge 0.$$

Remark: The measure df' is defined by $df'(\{0\}) = f'(0)$, df'((a,b]) = f'(b) - f'(a) for all $a, b \ge 0$ with a < b. If you are not familiar with Stieltjes-integration, you may additionally assume that f is twice continuously differentiable, in that case one can use the density $\frac{df'(z)}{dz} = f''(z)$ in $(0, \infty)$.

(c) Let $S=(S^0,...,S^d)$ be a market with end time N such that S^0 is deterministic and $S^0,...,S^d>0$. We assume that for each $z\in\mathbb{R}$ there are strategies $\varphi_{c,z},\,\varphi_{p,z}$ for hedging the call option with payoff $(S_N^1-z)^+$ and the put option with payoff $(z-S_N^1)^+$. Let $f:[0,\infty)\to\mathbb{R}$ be convex (continuous) and bounded from below such that $\int_{(0,\infty)}|\varphi_{c,z}(\omega)|+|\varphi_{p,z}(\omega)|df'(z)<\infty$ for P-almost all $\omega\in\Omega$. Show that there is a hedge for $f(S_N^1)$.

Exercise 2. Suppose $|\Omega| < \infty$, consider a one period arbitrage-free market (S^0, S^1) with $S^1 > 0$. Suppose that for all $K \geq 0$ European call options $(S_N^1 - K)^+$ are attainable. Show that assets with payoff $f(S_N^1)$ are attainable for measurable functions $f: \mathbb{R} \to (0, \infty)$.

Exercise 3. Let $X = (X_n)_{n \in \{0,...,N\}}$ be a stochastic process with $X_0 = 0$. Assume that X_1, \ldots, X_N are independent and uniformly distributed on [0,1]. Let $(\mathcal{F}_n)_{n \in \{0,...,N\}}$ be the filtration generated by X and let \mathcal{T} denote the set of $\{0,...,N\}$ -valued stopping times associated to the filtration. Find a $\tau \in \mathcal{T}$ such that $E(X_\tau) = \sup_{\tau \in \mathcal{T}} E(X_\tau)$ (in the sense that you give the most explicit characterization of τ can find) and for $n \in \{N-3, N-2, N-1\}$ calculate the threshold values of X_n such that τ calls for stopping.