recursos_humanos_uni_barplot

October 15, 2018

1 Cálculo promedio de remuneración UNRC

Según datos oficiales extraídos del sistema de información de la UNRC y declaraciones públicas varias.

Se extrae de **Recursos humanos UNRC**: Estadísticas Sireh la cantidad de personal clasificados según *categoría* y *horas semanales*:

AUTORIDADES

Dedicación	Exclusiva	Simple	Tiempo Completo	Tiempo Parcial
Cantidad personas	41	39	2	1
Horas semanales	40	20	40	20

DOCENTES

Dedicación	Exclusiva	Otra	Semi-Exclusiva	Simple
Cantidad personas	705	171	581	418
Horas semanales	40	20	20	10

NO DOCENTES

Categoría	C1	C2	C3	C4	C5	C6	C7
Cantidad personas	16	45	110	104	144	49	122
Horas semanales	40	40	40	40	40	40	40

```
plt.xlim(-1, 10)
plt.xlabel('Cantidad de horas semanales', fontsize=14)
plt.ylabel('Cantidad de personas', fontsize=14)
plt.title('Recursos humanos UNRC', fontsize=20)
plt.legend([bars[0], bars[2], bars[-1]], ['Docente', 'Autoridad', 'No docente'])
#plt.hlines(40, -1, 7.6, linestyles='--', alpha=0.3)
plt.grid(axis='y')

plt.savefig('../content/img/rrhh_unrc.png', dpi=100, bbox_inches='tight')
```

Recursos humanos UNRC

El sitio oficial de la UNRC **no publica** presupuesto para 2018, la última publicación al respecto data de 2016 (*Presupuesto UNRC*). Una noticia de puntal informa el monto de \$1.478 millones para el presupuesto 2018.

Según declaraciones públicas de autoridades de la UNRC en una nota en el sitio oficial: "Los gastos de funcionamiento, que insumen entre el 10 y el 15 por ciento del presupuesto de la UNRC (el resto es para sueldos) fueron otro de los tópicos."

Para un 85% del presupuesto destinado a sueldos (aproximadamente \$1200 millones), se calcula un promedio por hora y así la supuesta remuneración por personal según su dedicación:

```
In [16]: pago_hora
Out[16]: 330.274988169725
In [17]: pago_semana = []
        pago_mes = []
         horas = [10, 20, 30, 40]
         for hora in horas:
             semana = round(hora * pago_hora, 2)
             pago_semana.append(semana)
             mes = round(4 * hora * pago_hora, 2)
             pago_mes.append(mes)
In [18]: print(pago_semana)
        print(pago_mes)
[3302.75, 6605.5, 9908.25, 13211.0]
[13211.0, 26422.0, 39633.0, 52844.0]
In [32]: x = [10, 20, 30, 40]
        y1 = pago_semana
         y2 = pago_mes
         #colors = ['green', 'green', 'blue', 'green', 'blue', 'orange']
         bars = plt.bar(x, y1, width=4)#, color=colors)
         #plt.xlim(-1, 45)
         plt.xlabel('Cantidad de horas semanales', fontsize=14)
         plt.ylabel('Remuneración en $', fontsize=14)
        plt.title('Pago por semana', fontsize=20)
         #plt.legend([bars[0], bars[2], bars[-1]], ['Docente', 'Autoridad', 'No docente'])
        plt.xticks([10, 20, 30, 40])
        plt.yticks([3000, 6500, 9500, 13000])
         plt.grid(axis='y')
         plt.savefig('../content/img/pago_semanal.png', dpi=100, bbox_inches='tight')
```


Horas semanales	10	20	30	40
Pago mensual	\$13211.0	\$26422.0	\$39633.0	\$52844.0


```
In [267]: # Cantidad de personas por dedicación exclusiva, semi-exclusiva, simple
          autoridades = [43, 1, 40]
          docentes = [705, 581, 418+171]
          no_docentes = [16, 45, 110, 104, 144, 49, 122]
          # Remuneración por dedicación/categoría
          exclusiva_max = 77_410
          exclusiva_promedio = (77_410 + 42_335) / 2
          semi_exclusiva_max = 38_689
          semi_exclusiva_promedio = (38_689 + 21_152) / 2
          simple_max = 19_326
          simple_promedio = (19_326 + 10_557) / 2
          cat_no_docentes_max = [
              52699 + 3074 + 10540 + 13175 + 527 + 5270 + 3649
              43916 + 3074 + 8783 + 10979 + 439 + 4391 + 6148,
              36538 + 3074 + 7307 + 9134 + 365 + 3653 + 5164,
              30390 + 3074 + 6078 + 7597 + 607 + 3039 + 4304
              25296 + 500 + 3074 + 5059 + 6324 + 505 + 2529 + 3566,
              21079 + 2500 + 3074 + 4216 + 5270 + 421 + 2108 + 2951,
              17566 + 2500 + 3074 + 3513 + 4391 + 351 + 1756 + 2459
```

```
cat_no_docentes_promedio = [
              52699 + 3074 + 10540 + 13175 + 527 + 5270 + ((13649 + 1949)/2),
              43916 + 3074 + 8783 + 10979 + 439 + 4391 + ((6148 + 878)/2),
              36538 + 3074 + 7307 + 9134 + 365 + 3653 + ((5164 + 737) / 2),
              30390 + 3074 + 6078 + 7597 + 607 + 3039 + ((4304 + 614) / 2),
              25296 + 500 + 3074 + 5059 + 6324 + 505 + 2529 + ((3566 + 509) / 2),
              21079 + 2500 + 3074 + 4216 + 5270 + 421 + 2108 + ((2951 + 421) / 2),
              17566 + 2500 + 3074 + 3513 + 4391 + 351 + 1756 + ((2459 + 351) /2)
          1
In [184]: remuneracion_autoridades_max = []
          remuneracion_autoridades_promedio = []
          remuneracion_docentes_max = []
          remuneracion_docentes_promedio = []
          remuneracion_no_docentes_max = []
          remuneracion_no_docentes_promedio = []
In [185]: # Aproximación para remuneración mensual promedio
          remuneracion_autoridades_promedio.append(autoridades[0] * exclusiva_promedio * 12)
          remuneracion_autoridades_promedio.append(autoridades[1] * semi_exclusiva_promedio *
          remuneracion_autoridades_promedio.append(autoridades[2] * simple_promedio * 12)
          remuneracion_docentes_promedio.append(docentes[0] * exclusiva_promedio * 12)
          remuneracion docentes promedio.append(docentes[1] * semi exclusiva promedio * 12)
          remuneracion_docentes_promedio.append(docentes[2] * simple_promedio * 12)
          for i, cant in enumerate(no_docentes):
              remuneracion_no_docentes_promedio.append(cant * cat_no_docentes[i] * 12)
          total_autoridades = sum(remuneracion_autoridades_promedio)
          total_docentes = sum(remuneracion_docentes_promedio)
          total_no_docentes = sum(remuneracion_no_docentes_promedio)
          print('Total autoridades: $', total_autoridades)
          print('Total docentes: $', total_docentes)
          print('Total no docentes: $', total_no_docentes)
          total_sueldos = total_autoridades + total_docentes + total_no_docentes
          print('Total sueldos: $', total_sueldos)
          presupuesto_2018 = 1_478_000_000
          presupuesto_sueldos_2018 = presupuesto_2018 * 0.85
          print(f'Presupuesto sueldos 2018: $ {presupuesto_sueldos_2018}')
          resto = presupuesto_sueldos_2018 - total_sueldos
          print('Resto: $', resto)
```

```
Total autoridades: $ 38425176.0
Total docentes: $ 820733598.0
Total no docentes: $ 360699192.0
Total sueldos: $ 1219857966.0
Presupuesto sueldos 2018: $ 1256300000.0
Resto: $ 36442034.0
In [186]: def div(a):
              return a/1_000_000
In [208]: y0 = [total_autoridades, total_docentes, total_no_docentes, resto]
          y1 = [presupuesto_sueldos_2018]
          y0 = list(map(div, y0))
          y1 = list(map(div, y1))
          #y_millones = list(map(div, y))
          #y_millones
In [265]: import numpy as np
          y0_cum = np.cumsum(y0)
          y0_cum_shift = np.zeros_like(y0_cum)
          y0_cum_shift[1:] = y0_cum[:-1]
          colors = ['b', 'g', 'orange', 'r']
          bars0 = plt.bar(x=0, height=y0, width=0.7, bottom=y0_cum_shift, color=colors)
          bars1 = plt.bar(x=1, height=y1, color=['purple'])
          plt.xlim(-3.25, 1.5)
          plt.xlabel('Balance', fontsize=14)
          plt.ylabel('Monto en millones de $', fontsize=14)
          plt.title('Balance de sueldos con salario promedio', fontsize=20)
          plt.yticks(y0_cum)
          plt.xticks([])
          plt.grid(axis='y')
          plt.legend([bars[0], bars[1], bars[2], bars[3], bars[4]],
                     ['Autoridad', 'Docente', 'No docente', 'Presupuesto para sueldos 2018', 'I
          plt.show()
          plt.savefig('../content/img/balance_promedio.png', dpi=100, bbox_inches='tight')
```

Balance de sueldos con salario promedio

<Figure size 432x288 with 0 Axes>

```
In [268]: # Aproximación para remuneración mensual maximo
          remuneracion_autoridades_max.append(autoridades[0] * exclusiva_max * 12)
          remuneracion_autoridades_max.append(autoridades[1] * semi_exclusiva_max * 12)
          remuneracion_autoridades_max.append(autoridades[2] * simple_max * 12)
          remuneracion_docentes_max.append(docentes[0] * exclusiva_max * 12)
          remuneracion docentes max.append(docentes[1] * semi_exclusiva_max * 12)
          remuneracion_docentes_max.append(docentes[2] * simple_max * 12)
          for i, cant in enumerate(no_docentes):
              remuneracion_no_docentes_max.append(cant * cat_no_docentes_max[i] * 12)
          total_autoridades = sum(remuneracion_autoridades_max)
          total_docentes = sum(remuneracion_docentes_max)
          total_no_docentes = sum(remuneracion_no_docentes_max)
          print('Total autoridades: $', total_autoridades)
          print('Total docentes: $', total_docentes)
          print('Total no docentes: $', total_no_docentes)
          total_sueldos = total_autoridades + total_docentes + total_no_docentes
          print('Total sueldos: $', total_sueldos)
```

```
presupuesto_2018 = 1_478_000_000
          presupuesto_sueldos_2018 = presupuesto_2018 * 0.85
          print(f'Presupuesto sueldos 2018: $ {presupuesto_sueldos_2018}')
          resto = presupuesto_sueldos_2018 - total_sueldos
          print('Resto: $', resto)
Total autoridades: $ 49684308
Total docentes: $ 1061224476
Total no docentes: $ 371477796
Total sueldos: $ 1482386580
Presupuesto sueldos 2018: $ 1256300000.0
Resto: $ -226086580.0
In [270]: y0 = [total_autoridades, total_docentes, total_no_docentes, resto]
          y1 = [presupuesto_sueldos_2018]
          y0 = list(map(div, y0))
          y1 = list(map(div, y1))
          #y_millones = list(map(div, y))
          #y_millones
          y0_cum = np.cumsum(y0)
          y0_cum_shift = np.zeros_like(y0_cum)
          y0_cum_shift[1:] = y0_cum[:-1]
          colors = ['b', 'g', 'orange', 'r']
          bars0 = plt.bar(x=0, height=y0, width=0.7, bottom=y0_cum_shift, color=colors)
          bars1 = plt.bar(x=1, height=y1, color=['purple'])
          plt.xlim(-3.25, 1.5)
          plt.xlabel('Balance', fontsize=14)
          plt.ylabel('Monto en millones de $', fontsize=14)
          plt.title('Balance de sueldos con salario promedio', fontsize=20)
          plt.yticks(y0_cum)
          plt.xticks([])
          plt.grid(axis='y')
          plt.legend([bars[0], bars[1], bars[2], bars[3], bars[4]],
                     ['Autoridad', 'Docente', 'No docente', 'Presupuesto para sueldos 2018', '
          plt.show()
          plt.savefig('../content/img/balance_maximo.png', dpi=100, bbox_inches='tight')
```


<Figure size 432x288 with 0 Axes>