Outline

- Interpretable models in general
 - Pros/cons of models with built in interpretability vs post-hoc methods
- What the data looks like
- Overview of the datasets
- In depth overview of the Bokulich 2016 study
- Selecting interpretable features
 - MDITRE model as an example
- Example MDITRE results for Bokulich 2016 study

Interpretability in general

- Notion of interpretability difficult to define in general, is domain specific
- Qualitative metrics: can a human understand why prediction was made
- Why it's important

https://christophm.github.io/interpretable-ml-book/terminology.html

Interpretability in time-series microbiome data

- High stakes medical applications
- Specificity over sensitivity
- For many microbiome applications, the critical tasks are discovering relationships between the microbiome and the host or finding clinically useful biomarkers, rather than pure prediction, care more about model interpretability than predictive power

interpretability in models

- Want features that are easier to understand/use:
 - Grouping together relevant sets of taxa
 - Focusing on relevant time windows
- Human interpretable model output...
 - Models with interpretability baked-in
 - Regression models: linear, logistic, GLM, GAM
 - Decision trees
 - Rule lists/sets
 - Model agnostic post-hoc methods
 - LIME

https://christophm.github.io/interpretable-ml-book/terminology.html

Interpretable models vs post-hoc interpretability

- Pros and cons of each
- Post-hoc pro, more general model can maybe pick out weaker signals, con, might be false positive, or not sure why its being picked out

Abundance data (16S amplicon)

Abundance data

A CSV file containing the microbial abundances, formatted with the first row providing OTU IDs and the first column providing sample IDs.

abundances = pd.read_csv(os.path.join(dataset_path, "abundance.csv"), index_col=0)

abundances

	Otu000001	Otu000002	Otu000003	Otu000004	Otu000005	Otu000006	Otu000007	Otu000008	Otu000009	Otu000010	 Otu017301	Otu017302
DD10	5629	0	623	0	291	0	0	1263	1961	515	 0	0
DD102	5194	0	218	0	674	0	0	2307	560	0	 0	0
DD104	5292	0	81	634	2518	0	1938	2009	0	691	 0	0
DD106	1780	0	164	0	384	0	0	934	1798	865	 0	0
DD107	6046	0	811	0	69	3	0	0	234	459	 0	0
ID92	5963	0	815	0	29	0	2458	674	386	8999	 0	0
ID95	11834	0	1650	467	1184	0	0	0	1327	0	 0	0
ID97	538	30569	179	60	396	19910	0	0	1398	20	 0	0
ID98	9981	0	5211	0	1602	0	7275	0	0	898	 5	0
ID99	32485	0	2763	0	395	7	6	409	3999	464	 0	0

Will probably want to do some data cleaning before hand; remove otus with low counts or that are only present in a few samples/time points;

might want to only focus on some time periods (e.g. if most subjects do not have samples outside of a given time window) Discard subjects with too few samples, etc...

Abundance (shotgun metagenomics)

MetaPhlAn abundance tables

Note that MetaPhlAn outputs organism relative abundances (out of 100%), listed as one clade per line. The first column lists clades, ranging from taxonomic kingdoms (Bacteria, Archaea, etc.) through species. The taxonomic level of each clade is prefixed to indicate its level: Kingdom: k__, Phylum: p__, Class: c__, Order: o__, Family: f__, Genus: g__, Species: s__. The total sum of relative abundances for each clade should then sum to 100.0.

abundances = pd.read_csv(os.path.join(dataset_path, "diabimmune_t1d_metaphlan_table.txt"), sep="\t")

abundances

	Taxonomy	G35421	G35451	G35893	G35464	G35465	G35474	G35488	G35906	G35951	 G36267	G36268
0	kBacteria	100.00000	100.00000	100.00000	100.00000	100.00000	100.00000	100.00000	100.00000	100.00000	 100.00000	100.00000
1	k_Bacteria p_Actinobacteria	36.48375	3.45029	0.97899	46.08772	17.65351	72.96490	59.17006	2.76232	0.49062	 46.72820	1.95127
2	k_Bacteria p_Actinobacteria c_Actinobacteria	36.48375	3.45029	0.97899	46.08772	17.65351	72.96490	59.17006	2.76232	0.49062	 46.72820	1.95127
3	k_Bacteria p_Actinobacteria c 🗣 tinobacteri	0.00941	0.00000	0.00000	0.00000	0.00000	0.00000	0.00895	0.07594	0.00000	 0.02479	0.00000
4	$k_Bacteria p_Actinobacteria c_Actinobacteri$	0.00941	0.00000	0.00000	0.00000	0.00000	0.00000	0.00895	0.00000	0.00000	 0.02479	0.00000
375	local-loc	4.62994	0.00000	0.08629	0.00000	0.02831	0.01743	0.00000	4.35279	0.00000	 3.32411	0.00000
376	local-loc	4.62994	0.00000	0.08629	0.00000	0.02831	0.01743	0.00000	4.35279	0.00000	 3.32411	0.00000
377	local-loc	4.62994	0.00000	0.08629	0.00000	0.02831	0.01743	0.00000	4.35279	0.00000	 3.32411	0.00000
378	local-loc	4.62994	0.00000	0.08629	0.00000	0.02831	0.01743	0.00000	4.35279	0.00000	 3.32411	0.00000
379	k_Bacteria p_Verrucomicrobia c_Verrucomicro	4.62994	0.00000	0.08629	0.00000	0.02831	0.01743	0.00000	4.35279	0.00000	 3.32411	0.00000

Metadata

Sample metadata

	sample_ID	subject_ID	time
0	DD2	Plant5	3.0
1	DD3	Plant7	4.0
2	DD4	Plant7	3.0
3	DD5	Plant4	2.0
4	DD6	Plant8	-1.0
231	ID262	Animal3	8.0
232	ID263	Animal4	10.0
233	ID264	Animal5	5.0
234	ID265	Animal1	-2.0
235	ID266	Animal8	8.0

cample ID subject ID time

A CSV file that specifies an associated subject ID and timepoint for each sample ID.

Subject metadata

	subject_ID	diet
0	Plant5	Plant
1	Plant7	Plant
2	Plant4	Plant
3	Plant8	Plant
4	Plant6	Plant
5	Plant9	Plant
6	Plant3	Plant
7	Plant1	Plant
8	Plant10	Plant
9	Plant2	Plant
10	Animal11	Animal

A CSV file that gives information about each subject, (including the value of whatever variable will be used as the host outcome for prediction (e.g., Plant-diet or Animal-diet in the David et al).

Datasets overview

Study	Subjects	Туре	Classification tasks
Bokulich 2016	Gut microbiomes of infants sampled over the first two years of life	16S	(a) Diet (breast fed vs formula)(b) Mode of birth (vaginal or c-section)
Brooks 2017	Gut microbiomes of 30 infants sampled over 75 days	MAG?	Mode of birth (vaginal versus C-section)
David 2014	Microbiomes of 20 healthy adults receiving dietary interventions	16S	Diet (plant based vs animal)
DiGiulio 2015	Vaginal microbiomes of 37 pregnant women	16 S	Delivery time (at term vs pre-term)
Kostic 2015	Gut microbiomes of 17 infants sampled over the first 3 years of life	MAG	Normal vs development of type 1 diabetes
Shao 2019	Gut microbiomes of 282 infants (after filtering for subjects with fewer than three timepoints) sampled over 424 days	MAG	Mode of birth (vaginal versus C-section)
Vatanen 2016	Gut microbiomes of 117 children sampled over the first three years of life	16S	Nationality (Russian versus Estonian/Finnish)

^{*}Shao dataset has very little time-series, may not want to use

Bokulich 2016 study

Infant fecal samples during first two years

Year 2

- Aimed to characterize early-life microbial development in the context of antibiotic use, cesarean section, and formula feeding
- total of 43 infants were enrolled for follow-up for up to the age of 2 years
- Stool samples collected and sequenced; 151-bp paired end sequencing on the Illumina MiSeq platform
- Original study: Operational taxonomic units (OTUs) were assigned using QIIME's uclust; data you have has been reprocessed with dada2 to obtain tables of OTU abundances and phylogenetic placements for each OTU on a reference tree

- Antibiotic exposure
 - Could be at any point over the 2 years
- Mode of birth
- Diet (Breast fed vs formula)
 - during the first 3 months of life

Example research question

 Can we predict which subjects were breast fed or formula fed from the microbial time series data?

- What features would be relevant predictors?
 - Groups of taxa with expected similar functions [phylogeny]
 - Relevant time windows
 - Want to focus on finding only the essential features (in this case, microbial clades and relevant time windows), for better interpretability and possibly better model performance

Selecting relevant features

- Can aggregate by taxonomic rank for example
- Can pick top abundance bugs to start; will want to do some sort of filtering in general
- Might be better to work with sequences directly
- Have access to reference trees, use distance metric
- generating time windows

MDITRE model overview

- Aggregating phylogenetically similar microbes
- Aggregating microbes over time windows

Possible features missed by mditre model

Example MDITRE prediction for Bokulich study

