Quesito 1. Si consideri la funzione $f(x) = \sqrt[4]{x^7} - 6\sin x$.

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area (con segno) sottesa alla funzione f nell'intervallo [0,1].

Risposta

$$\int f(x)dx = \frac{4}{11}x^{4/11} + 6\cos x + C.$$

Risposta 1

Il valore dell'area è $6\cos 1 - \frac{62}{11}$.

Risposta 2

Quesito 2. Si consideri la funzione $f(x) = \cos(8x)$.

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area (con segno) sottesa alla funzione f nell'intervallo $\left[-\frac{\pi}{2}, \frac{\pi}{4}\right]$.

Risposta

$$\int f(x)dx = \frac{\sin(8x)}{8} + C.$$

Risposta 1

Il valore dell'area è 0.

Risposta 2

Quesito 3. Si consideri la funzione $f(x) = e^{7x}$.

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area (con segno) sottesa alla funzione f nell'intervallo [0,5].

Risposta

$$\int f(x)dx = \frac{e^{7x}}{7} + C.$$

Risposta 1

Il valore dell'area è $e^{35}/7 - 1/7 = (e^{35} - 1)/7$.

Risposta 2

Quesito 4. Si consideri la funzione $f(x) = (2x + 6)^2$.

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area (con segno) sottesa alla funzione f nell'intervallo [0,1].

Risposta

$$\int f(x)dx = \frac{(2x+6)^3}{6} + C.$$

Risposta 1

Quesito 5. Si consideri la funzione $f(x) = 3x^2$ nell'intervallo [0, 4].

- 1. Suddividere tale intervallo in 8 parti e scrivere gli intervalli in cui è stato diviso. Calcolare la funzione f nel punto medio di ciascuno di tali intervalli.
- 2. Calcolare la somma di Riemann della funzione f relativa alla suddivisione e ai punti di campionamento trovati al punto precedente.

Risposta

Gli intervalli sono [0,0.5], [0.5,1], [1,1.5], [1.5,2], [2,2.5], [2.5,3], [3,3.5], [3.5,4]. Inoltre, f(0.25)=0.1875, f(0.75)=1.6875, f(1.25)=4.6875, f(1.75)=9.1875, f(2.25)=15.1875, f(2.75)=22.6875, f(3.25)=31.6875, f(3.75)=42.1875. Risposta 1

La somma di Riemann vale 96.5625.

Risposta 2

Quesito 6. Si consideri la funzione $f(x) = x^2 - 4x$.

- 1. Determinare l'area (con segno) sottesa da tale funzione nell'intervallo [0, 10].
- 2. Determinare l'area (con segno) sottesa dalla funzione |f(x)| nell'intervallo [0, 10].

Risposta

L'area è
$$\int_0^{10} x^2 - 4x dx = \left[\frac{x^3}{3} - 2x^2\right]_0^{10} = \frac{1000}{3} - 200 = 133.33.$$
 Risposta 1

L'area è
$$\int_0^{10} |x^2 - 4x| dx = \int_0^4 -x^2 + 4x dx + \int_4^{10} x^2 - 4x dx = -\frac{24^3}{3} + 4^3 + \frac{1000}{3} - \frac{4}{2} \cdot 100$$

= 154.67 Risposta 2

Quesito 7. Si consideri la funzione definita a tratti

$$f(x) = \begin{cases} 3 & 1 \le x < 4 \\ -5 & 4 \le x \le 7 \end{cases}$$

- 1. Determinare l'area (con segno) sottesa da tale funzione.
- 2. Determinare l'area (con segno) sottesa dalla funzione f(2x+4).

Risposta

Il valore dell'area è -6

Il valore dell'area è -3 Risposta 2

Quesito 8. Si consideri la funzione $f(x) = e^x - 6$

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra la funzione f e le due rette di equazioni x=0 e x=3.

Risposta

 $e^x - 6x + C$. Risposta 1

Il valore dell'area è $e^3 - 17$. Risposta 2

Quesito 9. Si consideri la funzione $f(x) = x^3 + 2$

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra la funzione f e le due rette di equazioni x=-1 e x=3.

Risposta

$$\frac{x^4}{4} + 2x + C.$$
 Risposta 1

Il valore dell'area è 28.

Quesito 10. Si consideri la funzione $f(x) = 4\sin(x)$

- 1. Calcolare l'integrale indefinito $\int f(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra la funzione f e le due rette di equazioni $x = \pi/2$ e $x = 2\pi$.

Risposta

L'integrale indefinito è $-4\cos x + C$. Risposta 1

Il valore dell'area è 12. Risposta 2

Quesito 11. Si considerino le funzioni f(x) = 7x e $g(x) = 5x^3 + 2x$

- 1. Calcolare gli integrali indefiniti $\int f(x)dx$ e $\int g(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra le funzioni f e g.

Risposta

$$\int f(x)dx = \frac{7x^2}{2} + C, \int g(x)dx = \frac{5x^4}{4} + \frac{2x^2}{2} + C.$$
 Risposta 1

Il valore dell'area è $\frac{5}{2}$.

Risposta 2

Quesito 12. Si considerino le funzioni $f(x) = x^2$ e $g(x) = -x^3 - x^2$

- 1. Calcolare gli integrali indefiniti $\int f(x)dx$ e $\int g(x)dx$.
- 2. Determinare l'area della parte di piano compresa tra le due funzioni nell'intervallo [-2,0].

Risposta

$$\int f(x)dx = \frac{x^3}{3} + C, \int g(x)dx = -\frac{x^4}{4} - \frac{x^3}{3} + C.$$
 Risposta 1

Il valore dell'area è . Risposta 2

Quesito 13. Si consideri la funzione $v(t) = 3t^2 - t + 3$ che descrive la velocità di un corpo ad ogni istante di tempo t.

- 1. Determinare lo spostamento netto di tale corpo nell'intervallo di tempo [1,4].
- 2. Determinare lo spostamento netto di un corpo la cui velocità è descritta dalla funzione v(t/2).

Risposta

Lo spostamento netto è
$$\frac{129}{2}$$
. Risposta 1

Lo spostamento netto è 21. Risposta 2

Quesito 14. Si consideri una funzione f(x) tale che $\int_2^8 f(2x)dx = 2$

- 1. Determinare l'area sottesa dalla funzione f(x) nell'intervallo [4, 16].
- 2. Determinare l'area sottesa dalla funzione f(4x) nell'intervallo [1, 4].

Risposta

L'area vale 4. Risposta 1

L'area vale 8. Risposta 2