Markov Chain Monte Carlo Methods

- provide an extremely flexible way to sample from many potentially complicated densities
- revolve around the simulation of a class of stochastic processes known as Markov chains
- under a set of easily satisfiable regularity conditions, relatively straightforward algorithms exist for efficiently generating Markov chains whose elements can (eventually) be considered a sample from a specified distribution

$$\lim_{M\to\infty}\frac{1}{M}\sum_{m}\phi(X_{B+m})\to \mathsf{E}[\phi(X)]\ \mathrm{wp.}\ 1$$

A Motivating Problem: - the Travelling Salesman Problem

Suppose that a salesman must visit each of n cities, once only, in some order to be determined.

n! possible routes, so a direct search for the 'best route' not feasible for large n.

Let

$$x_i = i$$
th city visited

Let $x = (x_1 ... x_n)$ be a particular route and $c(x) = \cos t$ of route x. e.g. total distance travelled

Then, we seek: $arg \min_{x} c(x)$, where x can take n! possible values.

A Motivating Problem: - the Travelling Salesman Problem

Trick: Define

$$p_{\lambda}(x) = \frac{\exp(-\lambda c(x))}{\sum_{x} \exp(-\lambda c(x))}$$
$$= \operatorname{const} \times \exp(-\lambda c(x))$$

Then $p_{\lambda}(x)$ is a probability distribution over $\underbrace{1,2,\ldots,n!}_{\text{each possible route}}$.

Notes:

- If λ is large then:
 - large $c(x) \Rightarrow$ low probability associated with this x small $c(x) \Rightarrow$ high probability associated with this x.
- As λ increases, only x's which nearly minimise c(x) get any probability.
- $\lambda \to \infty \Rightarrow$ spike at the x which minimizes c(x).

A Motivating Problem: - the Travelling Salesman Problem

In order to find the most likely x, we could simulate from $p_{\lambda}(x)$. But how do we simulate a "state" from a discrete probability distribution with a large but finite number of states? If n! is large we can't evaluate the normalizing constant so inversion is not an option.

One way of doing this is to design a Markov Chain whose 'stationary distribution' matches $p_{\lambda}(x)$ - we can then simulate a realisation of this stochastic process until it converges to this stationary distribution.

Markov Chains

A Markov Chain is a discrete time stochastic process

$$\{X_t, t=0,1,2,\ldots\}$$

with a <u>finite</u> or <u>countable</u> state space, which satisfies the following properties:

(1) Markov Property

$$P(X_n = j | X_0 = i_0, X_1 = i_1, \dots, X_{n-1} = i_{n-1}) = P(X_n = j | X_{n-1} = i_{n-1})$$

"Future depends on the present, but not on the past"
"Lack of memory property"

(2) Time Homogeneity

$$P(X_{n+1} = j | X_n = i)$$
 is the same for all n

As a result of these two properties, a Markov chain can be completely characterised by: i.e. the distribution of X_n , $n \ge 1$ is completely specified by its initial state, X_0 and its transition probabilities

Markov Chains

For a discrete state space, the transition probabilities are specified through a transition matrix:

$$P = \left(\begin{array}{ccc} p_{00} & p_{01} & \dots \\ p_{10} & p_{11} & \dots \\ \vdots & \vdots & & \\ & & p_{ij} \end{array}\right) \qquad \begin{array}{c} \text{state space } \{0, 1, 2, \dots\} \\ \text{may be finite or infinite} \\ \text{rows sum to 1} \end{array}$$

with

$$p_{ij} = P(X_{n+1} = j | X_n = i)$$

= $P(X_1 = j | X_0 = i)$ by time homogeneity

(Note that, in general, $p_{ii} \neq p_{ii}$).

Behaviour of the process after a given number of iterations

<u>n-step transition probabilities</u>: the probability of moving from state i to state j in n steps.

$$p_{ij}^{(n)} = P(X_n = j \mid X_0 = i) \quad (p_{ij} = p_{ij}^{(1)})$$

<u>n</u>-step transition matrix, $P^{(n)} = \left(p_{ij}^{(n)}\right)$:

$$p_{ij}^{(n)} = P(X_n = j | X_0 = i)$$

$$= \sum_{k} P(X_n = j, X_1 = k | X_0 = 1)$$

$$= \sum_{k} P(X_n = j | X_1 = k) P(X_1 = k | X_0 = i)$$

$$= \sum_{k} p_{ik} p_{kj}^{(n-1)}$$

$$\Rightarrow P^{(n)} = P^n \text{ (nth power of P)}$$

Initial distribution

Let $\pi_i^{(0)} = P(X_0 = i)$ and use $\underline{\pi}^{(0)}$ to denote the row vector, i.e. the initial distribution over the discrete state space.

What is the distribution at iteration n, $\underline{\pi}^{(n)}$?

$$\pi_{i}^{(n)} = P(X_{n} = i) = \sum_{k} P(X_{n} = i, X_{n-1} = k)$$

$$= \sum_{k} P(X_{n} = i | X_{n-1} = k) P(X_{n-1} = k)$$

$$= \sum_{k} \pi_{k}^{(n-1)} P_{ki}$$

$$\Rightarrow \underline{\pi}^{(n)} = \underline{\pi}^{(n-1)} P$$

$$\Rightarrow \underline{\pi}^{(n)} = \underline{\pi}^{(0)} P^{n}$$

Thus, $\underline{\pi}^{(n)}$ is fully specified by P and $\underline{\pi}^{(0)}$.

Stationary Distributions

We will consider a subclass of Markov chains: those whose distribution is invariant under multiplication by the transition matrix P.

$$\underline{\pi}^{(n)} = \underline{\pi}^{(n-1)} = \underline{\pi}$$
; $\underline{\pi} = \underline{\pi}P$,

i.e. we will want the elements of the chain to be identically distributed.

Markov chains with this property are said to have a stationary distribution, $\underline{\pi}$, defined as follows:

Definition

 $\underline{\pi}$ is a stationary distribution iff

(i)
$$\pi_i \geq 0 \quad \forall i$$
.

(ii)
$$\sum_{i} \pi_{i} = 1$$
.

(iii)
$$\pi_j = \sum_i \pi_i p_{ij} \quad \forall j \ (\pi = \pi P).$$

Properties of stationary distributions

- (i) $\underline{\pi}^{(n)} = \underline{\pi} \Longrightarrow \underline{\pi}^{(m)} = \underline{\pi} \qquad \forall m \ge n \qquad (\underline{\pi}^{(n)} = \underline{\pi}^{(n-1)}P).$ "process is in equilibrium"
- (ii) Suppose state space is <u>finite</u>, and suppose $\underline{\pi}^{(n)}$ converges as $n \to \infty$. Then the limit must be a <u>stationary distribution</u>. **Proof:**

Suppose $\pi_i^{(n)} \to \pi_i \ \ \forall \ i$. Since, $\pi_i^{(n)} = \sum_i \pi_i^{(n-1)} p_{ji}$

$$\lim_{n\to\infty}: \ \pi_i = \sum_j \pi_j p_{ji}$$

(limit of a finite sum is the sum of the limits) $\Rightarrow \underline{\pi} = \underline{\pi}P$

Finding the stationary distribution

Supposing a stationary distribution exists, it can be found by solving the equations

$$\underline{\pi} = \underline{\pi}P$$
 $\sum \pi_i = 1.$

(Note: $\underline{\pi} \in [0,1]^d \implies d+1$ eqns for d unknowns... \implies at least one equation in $\underline{\pi} = \underline{\pi}P$ is redundant).

For some P, \exists a <u>unique</u> stationary distribution... ...for some P, \exists <u>more than one</u> stationary distribution... ...and for some P, \exists <u>no</u> stationary distribution when S is infinite

Finding the stationary distribution

It will be useful to us to establish the conditions under which there exists a stationary distribution.

Furthermore, we note that the existence of a stationary distribution does not, in general, guarantee the chain's convergence to that distribution. - stationary and limiting distributions are distinct, but related concepts.

We will also, therefore, establish the conditions under which a limiting distribution exists for the chain. This will allow us to build Markov chains that converge to a stationary distribution that we specify.

Definition

If a Markov chain converges to its stationary distribution, then this is also referred to as its equilibrium distribution.

Reversibility

We will focus on a (further) subclass of Markov chains - those with the property of reversibility. We will see that this is a sufficient condition to guarantee the existence of a stationary distribution.

Recall our definition of a stationary distribution: we require

$$\pi_j = \sum_i \pi_i p_{ij}.$$

the probability of being in state j to be equal to the summed probability of being in each of the other states and then moving to state j.

Reversibility

It is straightforward to see that $\pi_j = \sum_i \pi_i p_{ij}$ will follow if we make the following, simpler restriction on P:

$$\pi_{j} p_{ji} = \pi_{i} p_{ij}$$
 summing over i \Rightarrow $\pi_{j} = \sum_{i} \pi_{i} p_{ij}$

This is known as the <u>detailed balance equation</u>, and a Markov chain that satisfies this property will have a stationary distribution by design.

We now consider the properties of periodicity and reducibility for Markov chains in general, and show that these are sufficient to guarantee convergence of a Markov chain to its invariant distribution $\underline{\pi}$ (assuming its existence).

Irreducibility

Definition- Classification of States

For a given Markov chain, state j communicates with state i $(i \leftrightarrow j)$ if there exists a finite path of non-zero probability from i to j and back again:

$$p_{ij}^{(n)} > 0$$
 and $p_{ji}^{(m)} > 0$ for some $n, m \ge 0$.

The state space can be divided into disjoint classes s.t.

$$i \leftrightarrow j \Leftrightarrow i, j$$
 are in the same class;

Note:

- 1. $p_{ij} = 0 \ \forall \ j \neq i \Leftrightarrow i$ is an absorbing state.
- 2. $p_{ij} = 0 \ \forall \ i \in C, \ \forall \ j \notin C \Leftrightarrow C$ is a closed class.

To determine classes, need only look at the structure of zero and non-zero elements of P.

Example:

state space $\{1, 2, 3, 4\}$.

$$P = \left(\begin{array}{cccc} + & + & 0 & 0 \\ + & + & 0 & 0 \\ 0 & + & + & + \\ 0 & 0 & 0 & + \end{array}\right)$$

"+" represents a probability > 0

Classes:

$$\{1,2\}$$
 $\{3\}$ $\{4\}$ closed open absorbing state

Irreducibility

Definition- Irreducible Chains

If the state space of a given Markov chain consists of a single class (necessarily closed) then the chain is said to be <u>irreducible</u>.

Note - Finite Irreducible Chains

If a Markov chain is defined on a $\underline{\text{finite}}$ state space and is irreducible, then there exists a $\underline{\text{unique}}$ stationary distribution satisfying

$$\underline{\pi} = \underline{\pi}P$$
 and $\sum \pi_i = 1$.

Furthermore,

$$\pi_i > 0 \quad \forall i$$

i.e. for finite state spaces, we do not require the chain to be reversible if it is irreducible - unique stationary distribution is already guaranteed

Periodicity

The period of state i is the greatest common divisor of

$${n: p_{ii}^{(n)} > 0}$$

Periodicity

Definition - Aperiodicity

- A state is said to be **aperiodic** if its period is 1. $(p_{ii} > 0 \Rightarrow \text{state } i \text{ is aperiodic})$
- A Markov chain $\{X_t\}$ is **aperiodic** if all states in the corresponding state space are aperiodic.

If $i \leftrightarrow j$ then i and j have the same period. Thus, all states of a class have the same period. So…if $\{X_t\}$ is irreducible, all states share the same periodicity

Suppose $\{X_t\}$ is an aperiodic, irreducible Markov chain with finite state space and stationary distribution $\underline{\pi}$, then

$$P(X_n = i) \to \pi_i$$
 as $n \to \infty$ $\forall i \in S$

Note that, if the chain is irreducible, we need only show that a single state is aperiodic.

Mouse in maze (see Exercises 8)...

In any room, mouse selects at random any of the possible exits, each equally likely.

$$P = \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0\\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3}\\ \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{pmatrix}$$

Key property: The MC is irreducible

State 1 $\{n: p_{11} > 0\} = \{2, 3, 4, 5, \ldots\}$, so period is 1.

State 1 aperiodic \Rightarrow all states aperiodic.

