

NOA – NAMUR Open Architecture

Demonstrator der OvGU Magdeburg

Christian Diedrich Otto-von-Guericke-Universität Magdeburg

Tizian Schröder Otto-von-Guericke-Universität Magdeburg

Kernfrage – Was wird gezeigt?

Wie schafft NOA die Voraussetzungen für neue digitale Dienste?

Use Case: VBS-Tool "as planned/as built - Comparison"

- Planungsdaten (Typ) und Gerätedaten (Instanz) werden von Engineering-Tool (AutomationML) und Gateway (NOA-OPC UA-Informationsmodell) einem VBS-Tool zur Verfügung gestellt
- Zusammenführung und Vergleich von Planungsdaten und Gerätedaten in VBS-Tool als Value Based Service
 - Fehlerfreies, effizienteres Engineering
- Zuordnung durch semantische Annotation mit IDs

Beziehung zu den NOA-Szenarien

Bezug zur Verwaltungsschale (kurz: AAS)

- Zusammenführung und Vergleich von Planungsdaten und Gerätedaten in VBS-Tool als Value Based Service
 - Fehlerfreies, effizienteres Engineering
- Zuordnung durch semantische Annotation mit IDs

Umsetzung durch "Gateways" und NOA

- Daten-Zugang als Voraussetzung für Value based Services (dt.: Mehrwertdienste, kurz: VBS)
- Im Folgenden: 3 gerätetechnische Realisierungen

Gateway als "seitliche" Schnittstelle zwischen Anlage und Außenwelt

Anlage

Daten-Zugang als Voraussetzung für Value based Services (dt.: Mehrwertdienste, kurz: VBS)

Option 1 – Feldbusverteiler und –koppler

Lösung 1 – Siemens DP/PA-Koppler und Aktiver Feldverteiler

SIEMENS

Feldbuskoppler & -verteiler für Anforderungen der Prozessindustrie in Industrie 4.0 Eigenschaften

- Siemens Aktiver Feldverteiler
 - Anbindung von PROFIBUS PA-Geräten
 - Anbindung von FOUNDATION FIELDBUS-Geräten
 - 8 kurzschlussfeste Stichleitungen mit Prell-Schutz-Logik
 - Automatischer Busabschluss
 - Für Linien- und Ringtopologie
 - Erweiterter Temperaturbereich Schutzklasse IP 66
- Siemens DP/PA–Koppler
 - Koppelmodul zum Verbinden von PROFIBUS-DP und -PA-Netzen
 - redundante Stromeinspeisung

NAMUR

Option 2 – Ethernet–Gateways

Lösung 2 – Siemens CFU

SIEMENS

Prozessnah installiertes Ethernet-Gateway für Anforderungen der Prozessindustrie in Industrie 4.0 Eigenschaften

- Systemanbindung über Industrial Ethernet Standard (PROFINET)
- Kombination von digitalem Feldbus und diskreten
 I/Os
 - 8 × digitaler Feldbus (PROFIBUS PA)
 - ullet 8 imes digitale Eingänge/Ausgänge, frei konfigurierbar
- Bereit für den dezentralen Einsatz
 - Installation bis in Ex-Zone 2 22
 - Erweiterter Temperaturbereich von -40 bis +70 °C
 - Erhöhte Störfestigkeit gemäß NAMUR-Empfehlung NE21
- Einfache Nutzung
 - Automatische Adressierung von PROFIBUS PA-Feldgeräten
 - Diagnosemeldungen gemäß NAMUR-Empfehlung NE107

Lösung 3 – THORSIS isNet Lite

Prozessnah installiertes Ethernet-Gateway für Anforderungen der Prozessindustrie in Industrie 4.0 Eigenschaften

- Ethernet-Gateway in modularem Gehäuse
- Für Zwecke der Fernüberwachung und Fernbedienung einsetzbar
- Für Einsatz in industriellen Umgebungen vorgesehen
- Auf Ethernet-Bus unterstützt das Modul die Protokolle PROFINET, Modbus TCP und HART over IP
- Zusammen mit den verschiedenen
 Feldbusmodulen lassen sich Gateways realisieren wie
 - PROFINET zu PROFIBUS PA
 - Modbus TCP zu HART
 - Ethernet zu FOUNDATION Fieldbus

VBS-Tool: Einordnung in Use Case

VBS-Tool: Funktionen & Benutzeroberfläche

VBS-Tool: Generierung der Benutzeroberfläche

Stolpersteine, Risiken, weitere Entwicklungsschritte

Bestehendes Plug & Play-Konzept implementieren

Integration des Verification of Request

 Weitere Use Cases für Value based Services umsetzen, um vielfältige Nutzungsmöglichkeiten der Daten-Verfügbarkeit zu evaluieren

Zusammenfassung

- Assets gemäß Modellierungskonzept von NOA abbildbar
- Zugang zu Geräteparametern kann über bereits installierte
 Feldbus-Schnittstellen erfolgen
- → Eignung des Ansatzes auch für **Bestandsanlagen**
- OPC UA-Server als Aggregation-Server geeignet
- Mehrwert der Daten
 - Verfügbarkeit durch digitale Dienste (M+O)
 - VBS-Tool für as planned/as built-Vergleich
- Systemgestützte Erfassung und Integration von Geräten durch Nutzung von standardisierten PA-Profilen sowie Inbetriebnahme-, Gerätetausch- und Wartungs-Assistenten
- Nötige Technologien bereits am Markt verfügbar

NOA – NAMUR Open Architecture

NOA-Demonstrator der OvGU Magdeburg

Christian Diedrich Otto-von-Guericke-Universität Magdeburg

Tizian Schröder Otto-von-Guericke-Universität Magdeburg

