

Direct Volume Visualization

Scientific Visualization – Summer Semester 2021

Jun.-Prof. Dr. Michael Krone

Contents

- Overview
- Volume rendering equation
- Compositing schemes
- Ray casting
- Acceleration techniques for ray casting

Focus:
Second step of visualization pipeline

Overview – Volume Visualization

- Directly get a 3D representation of the volume data
 - The data is considered to represent a semi-transparent light-emitting medium
 - Also gaseous phenomena can be simulated
 - Approaches are based on the laws of physics
 - Emission, absorption, scattering
 - The volume data is used as a whole
 - Look inside, see all interior structures

Optical model

• Emission q and absorption κ of light \rightarrow participating media

Volume rendering equation

$$\frac{dI(s)}{ds} = q(s) - \kappa(s)I(s)$$

Volume rendering integral

$$I(D) = I(s_0)T(s_0) + \int_{s_0}^{D} q(s)T(s)ds$$

Transparency

$$T(s) = \exp\left(-\int_{s}^{D} \kappa(t)dt\right)$$

- Numerical approach to compute the volume rendering integral
 - Riemann sum
 - Sampling of light rays
- Backward methods
 - Image space, image-order algorithms
 - Performed pixel-by-pixel

• Example: Ray casting

- Forward methods
 - Object-space, object-order algorithm
 - Cell projection
 - Performed voxel by voxel
 - Examples: Slicing, shear-warp, splatting
 - → mostly outdated methods, modern volume vis usually uses ray casting

- Goal: physical model for volume rendering
 - Emission-absorption model
 - Density-emitter model [Sabella 1988]
 - Leads to volume rendering equation
- More general approach:
 - Linear transport theory
 - Equation of transfer for radiation
 - Basis for all rendering methods
- Important aspects:
 - Absorption, Emission, Scattering
 - Participating medium

The grand scheme

- Assumptions:
 - Based on a physical model for radiation
 - Geometrical optics
- Neglect:
 - Diffraction, Interference, Wave-character, Polarization
- Interaction of light with matter at the macroscopic scale
 - Describes the changes of specific intensity due to absorption, emission, and scattering
- Based on energy conservation
- Expressed by equation of transfer

- Basic quantity of light: radiance I
- Sometimes called specific intensity

- Contributions to radiation at a single position:
 - Absorption
 - Emission
 - Scattering

- Absorption
 - Total absorption/extinction coefficient $\chi(x, n, \nu)$
- Loss of radiative energy through a cylindrical volume element:

$$\delta E^{absorption} = \chi(\mathbf{x}, \mathbf{n}, \mathbf{v}) I(\mathbf{x}, \mathbf{n}, \mathbf{v}) ds dA d\Omega dv dt$$

Absorption

- Total absorption coefficient χ consists of:
 - True absorption coefficient $\kappa(x, n, \nu)$
 - Scattering coefficient $\sigma(x, n, \nu)$

$$\chi = \kappa + \sigma$$

removal of radiative energy by true absorption (conversion to thermal energy)

scattering out of solid angle $d\Omega$

 Effect of absorption

Absorption

Scientific Visualization (summer semester 2021)

- Emission
 - Emission coefficient $\eta(x, n, \nu)$
- Emission of radiative energy within a cylindrical volume element:

$$\delta E^{emission} = \eta(\mathbf{x}, \mathbf{n}, \mathbf{v}) ds dA d\Omega d\mathbf{v} dt$$

- Consists of two parts:
 - Thermal part or source term q(x, n, v)
 - Scattering part j(x, n, v)

$$\eta = q + j$$

 Effect of emission

Equation of transfer:

$$\frac{\delta}{\delta s}I(\mathbf{x},\mathbf{n},\nu) = -\chi(\mathbf{x},\mathbf{n},\nu)I(\mathbf{x},\mathbf{n},\nu) + \eta(\mathbf{x},\mathbf{n},\nu)$$
 for derivative along a line $\mathbf{x} = \mathbf{p} + s\mathbf{n}$

- Arbitrary reference point p
- Optical depth between 2 points $x_1 = p + s_1 n$ and $x_2 = p + s_2 n$ is

$$\tau_{\nu}(\boldsymbol{x_1}, \boldsymbol{x_2}) = \int_{s_1}^{s_2} \chi(p + s'\boldsymbol{n}, \boldsymbol{n}, \nu) ds'$$

Optical depth: ratio of incident to transmitted radiant power through material

- Using $\tau_{\nu}(x_0, x) = \tau_{\nu}(x_0, x') + \tau_{\nu}(x', x)$ leads to the
- Integral form of the equation of transfer

$$I(\boldsymbol{x},\boldsymbol{n},\boldsymbol{\nu}) = I(\boldsymbol{x}_0,\boldsymbol{n},\boldsymbol{\nu}) \cdot e^{-\tau_{\boldsymbol{\nu}}(\boldsymbol{x}_0,\boldsymbol{x})} + \int_{s_0}^{s} \eta(\boldsymbol{x}',\boldsymbol{n},\boldsymbol{\nu}) \cdot e^{-\tau_{\boldsymbol{\nu}}(\boldsymbol{x}',\boldsymbol{x})} ds'$$

- Integral equation because generally η contains I (inscattering)
- Interpretation: Radiation consists of
 - Sum of photons emitted from all points along the line segment,
 - Attenuated by the integrated absorptivity of the intervening medium, and
 - Attenuated contribution from radiation entering the boundary surface

Integral form of the equation of transfer

$$I(\mathbf{x}, \mathbf{n}, \mathbf{v}) = I(\mathbf{x}_0, \mathbf{n}, \mathbf{v}) \cdot e^{-\tau_{\nu}(\mathbf{x}_0, \mathbf{x})} + \int_{s_0}^{s} \eta(\mathbf{x}', \mathbf{n}, \mathbf{v}) \cdot e^{-\tau_{\nu}(\mathbf{x}', \mathbf{x})} ds'$$

attenuated contribution from external radiation

sum of photons emitted along the line segment ...

... attenuated by integrated absorptivity

• x: position; n: direction, ν : frequency

- Special case for most volume rendering approaches:
 - Emission-absorption model
 - Density-emitter model [Sabella 1988]
 - Volume filled with light-emitting particles
 - Particles described by density function
- Simplifications:
 - No scattering
 - Emission coefficient consists of source term only: $\eta = q$
 - Absorption coefficient consists of true absorption only: $\chi = \kappa$
 - No mixing between frequencies (no inelastic effects)

Equation of Transfer for Light

Volume rendering equation

$$I(s) = I(s_0) \cdot e^{-\tau(s_0, s)} + \int_{s_0}^{s} q(s') \cdot e^{-\tau(s', s)} ds'$$

with optical depth

$$\tau(s_1, s_2) = \int_{s_1}^{s_2} \kappa(s') ds'$$

Equation of Transfer for Light

- Discretization of volume rendering equation
 - Discrete steps s_k
 - Often equidistant

$$I(s_k) = I(s_{k-1}) \cdot e^{-\tau(s_{k-1}, s_k)} + \int_{s_{k-1}}^{s_k} q(s) \cdot e^{-\tau(s, s_k)} ds$$

Equation of Transfer for Light

- Discretization of volume rendering equation *(cont.)*
- Define:
 - $\theta_k = e^{-\tau(s_{k-1}, s_k)}$ Transparency part
 - $\theta_k = e^{-\tau(s_{k-1}, s_k)} \qquad \approx e^{-\kappa(s_k)\Delta s}$ $b_k = \int_{s_{k-1}}^{s_k} q(s) \cdot e^{-\tau(s, s_k)} ds \qquad \approx q(s_k)\Delta s$ Emission part
- Discretized volume integral:

$$I(s_n) = I(s_{n-1}) \cdot \theta_n + b_n = I(s_{n-1}) \cdot (1 - \alpha_n) + b_n$$

$$= \sum_{k=0}^{n} \left(b_k \prod_{j=k+1}^{n} \theta_j \right) \text{ with } b_0 = I(s_0)$$

over operator with opacity $\alpha = (1-\theta)$

Code: intensity = b_0; for $(k = 1; k \le n; k = k + 1)$ intensity = theta_k * intensity + b_k; Scientific Visualization (summer semester 2021)

- Compositing = iterative computation of discretized volume integral
- Traversal strategies
 - Front-to-back
 - Back-to-front
- Back-to-front compositing
 - Directly derived from discretized integral: $I(s_n) = I(s_{n-1}) \cdot (1 \alpha_n) + b_n$
 - Just different notation:

$$C^{out} = C^{in} \cdot (1 - \alpha) + C'$$

observer

- Colors C and opacity α are assigned with transfer function
- C' is pre-multiplied color: $C' = C \cdot \alpha$ (often denoted as C too)

- Back-to-front compositing (cont.)
 - Over operator [Porter & Duff 1984]
- Compositing equation:

$$C^{out} = C^{in} \cdot (1 - \alpha) + C'$$

$$C(i)^{in} = C(i-1)^{out}$$

- Front-to-back compositing
 - Reverse the order of summation
 - From

$$I(s_n) = \sum_{k=0}^{n} \left(b_k \prod_{j=k+1}^{n} \theta_j \right)$$

obtain

$$I(s_n) = I(s_{n+1}) + T_{n+1}b_n$$
$$T_n = T_{n+1}\theta_n$$

• with accumulated transparency T_n

- Front-to-back compositing (cont.)
 - Needs to maintain α^{in}
 - Most often used in ray casting
 - Allows for early ray termination (stop if α^{out} close enough to 1)
- Compositing equation:

$$C^{out} = C^{in} + (1 - \alpha^{in})C'$$

$$\alpha^{out} = \alpha^{in} + (1 - \alpha^{in})\alpha$$

- Associated colors
 - Color contributions are already weighted by their corresponding opacity
 - Also called pre-multiplied colors
- Non-associated colors: $C' \to C\alpha$ $(C \to C\alpha)$
 - Just substitute in compositing equations
- Yields the same results as associated colors (on a continuous level)
- **Example:** back-to-front compositing with non-associated colors:

$$C^{out} = C^{in} \cdot (1 - \alpha) + C\alpha$$

Standard OpenGL blending for semi-transparent surfaces

- So far: accumulation scheme
- Variations of composition schemes, e.g.:
 - First
 - Average
 - Maximum intensity projection

- Compositing: First (above a certain intensity)
- Extracts isosurfaces

- Compositing: Average
- Produces basically an X-ray picture

- Maximum Intensity Projection (MIP)
- Often used for magnetic resonance or CT angiograms
- Good to extract vessel structures

- Compositing: Accumulate
- Emission-absorption model
- Make transparent layers visible (see volume classification)

Ray Casting

- Similar to ray tracing in surface-based computer graphics
- In volume rendering we only deal with primary rays; hence: ray casting
- Natural image-order technique
- As opposed to surface graphics how do we define and calculate the ray/object intersection?

Ray Casting

- Since we have no surfaces, we need to carefully step through the volume
- A ray is cast into the volume, sampling the volume at certain intervals
 - Sampling intervals usually are equidistant, but don't have to be
- At each sampling location, a sample is interpolated / reconstructed from the voxel grid → also called "ray marching"
 - Popular filters are: nearest neighbor (box), trilinear (→ GPU), or more sophisticated (Gaussian, cubic spline)
- First: Ray casting in uniform grids
 - Implicit topology
 - Simple interpolation schemes

- Volumetric ray integration:
 - Tracing of rays
 - Accumulation of color and opacity along ray: compositing (front to back)

- How is color and opacity at each integration step determined?
- Opacity and (emissive) color in each cell according to classification
- Additional color due to external lighting
 - According to volumetric shading (e.g., Blinn-Phong, normal from gradient)
- No shadowing, no secondary effects captured so far
 - Requires additional steps, e.g., secondary rays

- Straightforward parallelization on multicore CPUs and GPUs
- One ray can be computed by one thread

- GPUs can be used for ray casting
- Essential idea
 - (Fragment) shader loop implements ray marching
- Benefits from
 - High processing speed and parallelism of GPUs
 - Built-in trilinear interpolation in 3D textures

GPU Ray Casting/Marching: Ray Traversal

- Single-pass approach
 - Complete computation in a single fragment program
 - Shader loop to step along ray
- Algorithm
 - Render front faces of volume bounding box
 - Issue raster position with each vertex

FOR EACH fragment Compute volume entry position Compute ray of sight direction WHILE in volume Lookup data at ray position in volume texture Accumulate color and opacity Advance along ray

GPU Ray Casting: Examples

- High flexibility
 - Shading models
 - Acceleration techniques (early ray termination, empty space leaping, etc.)

Direct volume rendering

Transparent, illuminated isosurfaces

Isosurface with self-shadowing

- Problem: ray casting/marching is time consuming
- Idea:
 - Neglect "irrelevant" information to accelerate the rendering process
 - Exploit coherence
- Early-ray termination
 - Colors from faraway regions do not contribute if accumulated opacity is already high
 - Stop traversal if contribution of sample becomes irrelevant
 - User-set opacity level for termination
 - Front-to-back compositing

Effect of early-ray termination

Example image

Sample points (semi-transparent)

Sample points (opaque)

- Space leaping
 - Skip empty cells
- Homogeneity-acceleration
 - Approximate homogeneous regions with fewer sample points

- Hierarchical spatial data structure
 - Octree
 - Mean value and variance stored in nodes of octree

(number encodes octree level)

- Adaptive ray traversal
 - Different "velocities" for traversal
 - Different distance between samples
 - Based on vicinity flag
 - Layer of "vicinity voxels" around non-transparent parts of the volume

- Exploiting temporal coherence in volume animations
 - C-buffer (Coordinates buffer)
 - Store coordinates of first opaque voxel
 - Removing potentially hidden voxels
 - Or adding potentially visible voxels
 - Criterion: change of position on image plane

Removing potentially hidden coordinates from the C-buffer. Since the relationship between the two voxels in (a) changed, it serves as an indicator that the other voxel is potentially hidden (b).

- Adaptive screen sampling [Levoy 1990]
 - Rays are emitted from a subset of pixels (on image plane)
 - Missing values are interpolated
 - In areas of high value gradient additional rays are traced

-) pixel colored by a ray (1)
- pixel colored by a interpolation (2)
- interpolated value replaced by ray (3)

Ray Casting

- Ray casting in tetrahedral grids
 - Linear interpolation within cells
 - Slightly modify the traversal through the grid, compared to uniform grids
 - Algorithm by M. P. Garrity
 ["Raytracing irregular volume data", VolVis, 1990]

Ray Casting

- Ray casting in tetrahedral grids
 - Traverse rays front-to-back
 - Stop at intersected cell faces
 - Compute color and opacity for current ray segment
 - Accumulate volume colors and opacities

Texture-Based Volume Rendering

- Object-space approach
- Based on graphics hardware:
 - Rasterization, Texturing, Blending
- Proxy geometry → there are no volumetric primitives in graphics hardware

- "Historic" Example: 2D textured slices through the volume
 - Object-aligned slices
 - Three stacks of 2D textures
 - Bilinear interpolation
 - Back-to-front traversal (blending)

Outlook: Time-dependent Volume Data

- Videos/Animation ineffective for visual analysis
- Compositing of all time steps: occlusion and visual clutter
- Idea: find a meaningful static representation

Outlook: Time-Dependent Volume Visualization

- Treat data as space-time hypercube
 - Slicing and projection
 - Dedicated transfer functions
- Time step selection
 - Based on selection metrics

- Feature extraction and visualization
 - e.g., Illustration-inspired techniques

Spatio-Temporal Contours

- Idea: compute differences between sets of samples computed along each ray in space and time [S. Frey, EuroVis 2018]
 - Visualize large differences between sample sets as contours

Outlook: Volume Ensembles

- Multifield data (ensembles, time-dependent, etc.) a focus of research
- Often based on feature extraction
 - Higher dimensional data, clustering, graphs, etc.
 - Connection to "Information Visualization"

