Lancer d'une fléchette sur un mur

Exemple #3

Lancer d'une fléchette sur un mur

• \mathcal{E} : « Lancer d'une fléchette sur un mur »

•
$$\Omega = [0, 1]^2$$

• A = "la fléchette atteint la cible circulaire"

$$= \left\{ (x,y) \in \Omega, (x-1/2)^2 + (x-1/2)^2 = \frac{1}{4} \right\}$$

• B = "la fléchette atteint le centre"

$$= \{(1/2, 1/2)\}$$

Probabilité

Étant donné un univers Ω et une tribu \mathcal{A} , une probabilité est une fonction qui à chaque événement attribue une

valeur numérique :
$$\mathbb{P}:\mathcal{A}\longrightarrow [0,1]$$
 $A\longmapsto \mathbb{P}(A)$

et satisfaisant les propriétés :

- 1. $\mathbb{P}(\Omega) = 1$
- 2. Si $(A_n)_{n\geq 0}$ sont des événements 2 à 2 disjoints (i.e. $A_i \cap A_j = \emptyset$ pour tout $i \neq j$), alors

$$\mathbb{P}\left(\bigcup_{i=0}^{+\infty} A_i\right) = \sum_{i=0}^{+\infty} \mathbb{P}(A_i)$$

On dit que le triplet $(\Omega, \mathcal{A}, \mathbb{P})$ forme un espace probabilisé