Инна Тужикова, 17.04.2019

Transfer learning

Transfer learning: idea

Transfer learning is a machine learning method where a model developed for a task A is reused as the starting point for a model on a task B.

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

Object classes: 1000. Images: 1.2 M train, 100k test

cherry

gill fungus ffordshire bullterrier

dalmatian

elderberry

grape

currant

mushroom

fire engine dead-man's-fingers

agaric

mushroom

jelly fungus

grille

convertible

beach wagon

grille

pickup

Madagascar cat

squirrel monkey

spider monkey

howler monkey

titi

indri

General vs specific

General vs specific

Gabor filters

111	112	113	114	115	121	122	123	124	125	131	132	133	134	135	141	142	143	144	145
				H	-	=			=	$\boldsymbol{\mathcal{F}}^{\prime}$	4					*			
211	212	2 1 3	2 1 4	215	221	222	223	224	225	2 3 1	232	233	234	235	2 4 1	242	243	244	2 4 5
100	(0)		11	10	=			=	=	1	33	(1)	W	*	11		11		
3 1 1	3 1 2	313	3 1 4	3 1 5	321	322	323	324	325	331	3 3 2	333	3 3 4	3 3 5	3 4 1	3 4 2	3 4 3	3 4 4	3 4 5
100	100		100	1101				=		4		· (W)	1111	#	11				1
411	4 1 2	4 1 3	4 1 4	415	421	422	423	424	425	4 3 1	4 3 2	4 3 3	434	4 3 5	4 4 1	4 4 2	443	4 4 4	4 4 5
100			(0)	100									1					0	0
5 1 1	512	5 1 3	5 1 4	5 1 5	5 2 1	5 2 2	523	5 2 4	5 2 5	5 3 1	5 3 2	5 3 3	5 3 4	5 3 5	5 4 1	5 4 2	5 4 3	5 4 4	5 4 5
100	110		100	110			•						11111						
611	612	613	6 1 4	615	621	622	623	624	625	631	632	633	634	635	641	6 4 2	643	644	6 4 5
							•						111111						
711	712	713	7 1 4	715	721	722	723	724	725	7 3 1	7 3 2	733	734	735	7 4 1	742	7 4 3	7 4 4	7 4 5
							-						111111						
8 1 1	812	8 1 3	814	815	8 2 1	822	823	824	825	8 3 1	832	833	834	835	8 4 1	8 4 2	843	8 4 4	8 4 5
			-				Ξ												
911	912	913	9 1 4	915	921	922	923	924	925	931	932	933	934	935	9 4 1	9 4 2	943	9 4 4	9 4 5
	11111	10		011									14/1/						
10 1 1	10 1 2	10 1 3	10 1 4	10 1 5	10 2 1	10 2 2	10 2 3	10 2 4	10 2 5	10 3 1	10 3 2	10 3 3	10 3 4	10 3 5	10 4 1	10 4 2	10 4 3	10 4 4	10 4 5
		0					=						***						

Gabor filters

$$g(x,y;\lambda, heta,\psi,\sigma,\gamma)=\exp(-rac{x^{\prime 2}\,+\gamma^2\,y^{\prime 2}}{2\sigma^2})\cos(2\pirac{x^\prime}{\lambda}+\psi)$$

Feature extraction

Feature extraction consists of using the representations learned by a previous network to extract interesting features from new samples. These features are then run through a new classifier, which is trained from scratch.

Fine-tuning

UNFREEZED BACKBONE + CUSTOM HEAD + BACKPROPAGATION

Replace and retrain the classifier on top of the pretrained neural network on the new dataset, but to also fine-tune the weights of the backbone by continuing the backpropagation.

FINE-TUNE:

- ALL LAYERS
- FIX LOW-LEVEL
- ONLY HIGH-LEVEL

Fine-tuning

- 1. Add your custom HEAD on a top of pretrained BACKBONE.
- 2. Freeze the BACKBONE.
- 3. Train the HEAD.
- 4. Unfreeze some layers in the BACKBONE.
- 5. Jointly train (low lr) unfreezed layers + HEAD.