Description Logics State Features for Planning (dlplan)

Dominik Drexler Linköping University, Linköping, Sweden dominik.drexler@liu.se

September 1, 2021

1 Introduction

This document aims at providing a better understanding of the different types of elements and different elements itself that can be used with this library. There are four different types of elements: concepts, roles, boolean, and numericals. The main difference is that each type returns different types of objects when evaluated on a given planning state. Evaluating a concept returns a set of unary relations over objects, evaluating a role returns a set of binary relations over objects, evaluating a boolean returns a Boolean, and evaluating a numerical returns a natural number. The following section shows how elements can be composed to obtain more complex elements.

2 Available Elements

In this section, we describe the elements that are available to construct more complex elements. We make use of description logics [1] and include Boolean and numerical elements as described in [2].

Consider concepts C, D, roles R, S, T, the universe Δ containing all objects, and X to be either a concept or a role. Also consider some predicate $p(c_0, \ldots, c_{n-1})$ with arity n, integers $0 \le i, j \le n-1$, integer $k \in \{0, 1\}$, and some constant a that occurs in every instance.

2.1 Syntax Overview

2.1.1 Concepts

Name	Abstract syntax	Concrete syntax
Primitive concept	p(i)	p(i)
Top	Τ	c_top
Bottom	\perp	c_bot
Intersection	$C \sqcap D$	$c_{-}and(C, D)$
Union	$C \sqcup D$	$c_{-}or(C, D)$
Negation	$\neg C$	$c_not(C)$
Difference	$C \setminus D$	$c_{-}diff(C, D)$
Value restriction	$\forall R.C$	all(R, C)
Existential quantification	$\exists R.C$	some(R, C)
Role-value-map	$R \subseteq S$	subset(R, S)
One-of	a	one-of(a)
Projection	R[k]	c_projection(R, k)

Table 1: Concepts

2.1.2 Roles

Name	Abstract syntax	Concrete syntax
Primitive role	p(i,j)	p(i,j)
Universal role	Τ	$r_{-}top$
Intersection	$R \sqcap S$	r_{-} and (R, S)
Union	$R \sqcup S$	$r_{-}or(R, S)$
Complement	$\neg R$	$r_{-}not(R)$
Difference	$R \setminus S$	$r_diff(R, S)$
Inverse	R^{-1}	$r_{-inverse}(R)$
Composition	$R \circ S$	$r_{-}compose(R, S)$
Transitive closure	R^+	$r_{transitive_closure(R)}$
Transitive reflexive closure	R^*	$r_transitive_reflexive_closure(R)$
Role restriction	$R _C$	$r_restrict(R, C)$
Identity	id(C)	$r_{-identity}(C)$

Table 2: Roles

2.1.3 Booleans

Name	Abstract syntax	Concrete syntax
Empty	Empty(X)	$b_{-}empty(X)$

Table 3: Booleans

2.1.4 Numericals

Name	Abstract syntax	Concrete syntax
Count	Count(X)	$n_count(X)$
Concept distance	ConceptDistance(C, R, D)	$n_{concept_distance}(C, R, D)$
Sum concept distance	SumConceptDistance(C, R, D)	$n_sum_concept_distance(C, R, D)$
Role distance	RoleDistance(R, S, T)	$n_role_distance(R, S, T)$
Sum role distance	SumRoleDistance(R,S,T)	$n_sum_role_distance(R, S, T)$

Table 4: Numericals

2.2 Semantics

2.2.1 Concepts

- $(p(i))^s$ is a concept that denotes the set of objects occurring at index i in ground atoms of predicate p in state s.
- $\bullet \ \top^s = \Delta^s$
- $\bullet \ \bot^s = \emptyset$
- $\bullet \ (C \sqcap D)^s = C^s \cap D^s$
- $(C \sqcup D)^s = C^s \cup D^s$
- $\bullet \ (\neg C)^s = \Delta^s \setminus C^s$
- $\bullet \ (C \setminus D)^s = (C^s \setminus D^s)$
- $(\forall R.C)^s = \{a \mid \forall b : (a,b) \in R^s \to b \in C^s\}$
- $(\exists R.C)^s = \{a \mid \exists b : (a,b) \in R^s \land b \in C^s\}$
- $(R \subseteq S)^s = \{a \mid \forall b : (a,b) \in R^s \to (a,b) \in S^s\}$
- $a^s = \{a\}$
- $(R[k])^s = \begin{cases} (\exists R.\top)^s & \text{if } k = 0\\ (\exists R^{-1}.\top)^s & \text{if } k = 1 \end{cases}$

2.2.2 Roles

- $p(i,j)^s$ is a role that denotes the set of pairs of objects occurring at index i and j in ground atoms of p in state s.
- $\bullet \ \top^s = \Delta^s \times \Delta^s$
- $(R \sqcap S)^s = R^s \cap S^s$
- $(R \sqcup S)^s = R^s \cup S^s$

- $\bullet \ (\neg R)^s = \top^s \setminus R^s$
- $(R \setminus S)^s = (R^s \setminus S^s)$
- $(R^{-1})^s = \{(b, a) \in T^s \mid (a, b) \in R^s\}$
- $\bullet \ (R \circ S)^s = R^s \circ S^s$
- $\bullet (R^+)^s = \bigcup_{n>1} (R^s)^n$
- $(R^*)^s = \bigcup_{n>0} (R^s)^n$
- $(R|_C)^s = R^s \sqcap (\Delta^s \times C^s)$
- $id(C) = \{(d, d) \mid d \in C^s\}$

where the iterated composition $(R^s)^n$ is inductively defined as $(R^s)^0 = \{(d,d) \mid d \in \Delta^s\}$ and $(R^s)^{n+1} = (R^s)^n \circ R^s$.

2.2.3 Booleans

• $Empty(X)^s$ is true iff $|X^s| = 0$

2.2.4 Numericals

- $Count(X)^s \equiv |X^s|$
- ConceptDistance $(C, R, D)^s$ is the smallest $n \in \mathbb{N}_0$ s.t. there are objects x_0, \ldots, x_n with $x_0 \in C^s$, $x_n \in D^s$ and $(x_i, x_{i+1}) \in R^s$ for $i = 0, \ldots, n-1$. Special cases: If C^s is empty then the element evaluates to 0 and if no such n exists then it evaluates to ∞ .
- $SumConceptDistance(C, R, D)^s := \sum_{x \in C^s} ConceptDistance(\{x\}, R, D)^s$ where the sum evaluates to ∞ if any term is ∞ .
- $RoleDistance(R, S, T)^s$ is the smallest $n \in \mathbb{N}_0$ s.t. there are objects x_0, \ldots, x_n , there exists some $(a, x_0) \in R^s$, $(a, x_n) \in T^s$, and $(x_i, x_{i+1}) \in S^s$ for $i = 0, \ldots, n-1$. Special cases: If R^s is empty then the element evaluates to 0 and if no such n exists then it evaluates to ∞ .
- $SumRoleDistance(R, S, T)^s := \sum_{r \in R^s} RoleDistance(\{r\}, S, T)^s$, where the sum evaluates to ∞ if any term is ∞ .

References

- [1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors. *The Description Logic Handbook: Theory, Implementation and Applications*. Cambridge University Press, 2003.
- [2] Dominik Drexler, Jendrik Seipp, and Hector Geffner. Expressing and exploiting the common subgoal structure of classical planning domains using sketches: Extended version. arXiv:2105.04250 [cs.AI], 2021.