# International Rectifier

12TQ... 12TQ...S

## SCHOTTKY RECTIFIER

15 Amp

 $I_{F(AV)} = 15Amp$  $V_R = 35 \text{ to } 45V$ 

## **Major Ratings and Characteristics**

| Characteristics                                | 12TQ       | Units |
|------------------------------------------------|------------|-------|
| I <sub>F(AV)</sub> Rectangular waveform        | 15         | А     |
| V <sub>RRM</sub> range                         | 35 to 45   | V     |
| I <sub>FSM</sub> @tp=5 µs sine                 | 990        | А     |
| V <sub>F</sub> @15 Apk, T <sub>J</sub> = 125°C | 0.50       | V     |
| T <sub>J</sub> range                           | -55 to 150 | °C    |

#### **Description/ Features**

The 12TQ... Schottky rectifier series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150° C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C  $T_J$  operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability



# Voltage Ratings

| Part number                                            | 12TQ035 | 12TQ040 | 12TQ045 |
|--------------------------------------------------------|---------|---------|---------|
| V <sub>R</sub> Max. DC Reverse Voltage (V)             |         |         |         |
| V <sub>RWM</sub> Max. Working Peak Reverse Voltage (V) | 35      | 40      | 45      |

# Absolute Maximum Ratings

|                    | Parameters                               | 12TQ | Units | Conditions                                                 |                                          |
|--------------------|------------------------------------------|------|-------|------------------------------------------------------------|------------------------------------------|
| I <sub>F(AV)</sub> | Max. Average Forward Current *See Fig. 5 | 15   | Α     | 50% duty cycle @ T <sub>C</sub> = 120° C, r                | ectangular wave form                     |
| I <sub>FSM</sub>   | Max. Peak One Cycle Non-Repetitive       | 990  | Α     | 5μs Sine or 3μs Rect. pulse                                | Following any rated load condition and   |
|                    | Surge Current * See Fig. 7               | 250  |       | 10ms Sine or 6ms Rect. pulse                               | with rated V <sub>RRM</sub> applied      |
| E <sub>AS</sub>    | Non-Repetitive Avalanche Energy          | 16   | mJ    | T <sub>J</sub> =25 °C, I <sub>AS</sub> =2.4 Amps, L=5.5 mH |                                          |
| I <sub>AR</sub>    | Repetitive Avalanche Current             | 2.4  | Α     | Current decaying linearly to zero in 1 µsec                |                                          |
|                    |                                          |      |       | Frequency limited by T <sub>J</sub> max. V <sub>j</sub>    | <sub>A</sub> =1.5xV <sub>R</sub> typical |

# **Electrical Specifications**

|                 | Parameters                       | 12TQ  | Units |                                                            | Conditions                            |  |
|-----------------|----------------------------------|-------|-------|------------------------------------------------------------|---------------------------------------|--|
| $V_{FM}$        | Max. Forward Voltage Drop (1)    | 0.56  | V     | @ 15A                                                      | T <sub>1</sub> = 25 °C                |  |
|                 | * See Fig. 1                     | 0.71  | V     | @ 30A                                                      | 1 <sub>J</sub> = 23 0                 |  |
|                 |                                  | 0.50  | V     | @ 15A                                                      | T <sub>.</sub> = 125 °C               |  |
|                 |                                  | 0.64  | V     | @ 30A                                                      | 1, 128 8                              |  |
| I <sub>RM</sub> | Max. Reverse Leakage Current (1) | 1.75  | mA    | T <sub>J</sub> = 25 °C                                     | V <sub>P</sub> = rated V <sub>P</sub> |  |
|                 | * See Fig. 2                     | 70    | mA    | T <sub>J</sub> = 125 °C                                    | V <sub>R</sub> Tates V <sub>R</sub>   |  |
| C <sub>T</sub>  | Max. Junction Capacitance        | 900   | pF    | $V_R = 5V_{DC}$ , (test signal range 100Khz to 1Mhz) 25 °C |                                       |  |
| L <sub>S</sub>  | Typical Series Inductance        | 8.0   | nH    | Measured lead to lead 5mm from package body                |                                       |  |
| dv/dt           |                                  | 10000 | V/ µs |                                                            |                                       |  |

<sup>(1)</sup> Pulse Width < 300µs, Duty Cycle < 2%

# Thermal-Mechanical Specifications

|                   | Parameters                                   |         | 12TQ       | Units    | Conditions                           |
|-------------------|----------------------------------------------|---------|------------|----------|--------------------------------------|
| T <sub>J</sub>    | Max. Junction Temperature                    | Range   | -55 to 150 | °C       |                                      |
| T <sub>stg</sub>  | Max. Storage Temperature Range               |         | -55 to 150 | °C       |                                      |
| R <sub>thJC</sub> | Max. Thermal Resistance Juto Case            | inction | 2.0        | °C/W     | DCoperation *See Fig. 4              |
| R <sub>thCS</sub> | Typical Thermal Resistance, Case to Heatsink |         | 0.50       | °C/W     | Mounting surface, smooth and greased |
| wt                | ApproximateWeight                            |         | 2(0.07)    | g(oz.)   |                                      |
| Т                 | MountingTorque                               | Min.    | 6(5)       | Kg-cm    |                                      |
|                   |                                              | Max.    | 12(10)     | (lbf-in) |                                      |



Fig. 1-Maximum Forward Voltage Drop Characteristics

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage



Fig. 4 - Maximum Thermal Impedance  $Z_{thJC}$  Characteristics



Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current



Fig. 6 - Forward Power Loss Characteristics



Fig. 7 - Maximum Non-Repetitive Surge Current



Fig. 8 - Unclamped Inductive Test Circuit

#### **Outline Table**





#### Marking Information



### Tape & Reel Information



### Ordering Information Table



Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 12/01