Análise das Características do Solo ideiais para cada Cultura

Projeto da disciplina SME0860 - Aprendizado de Máquina Aplicado a Problemas

Membros

- Alexandre E. de Souza Jesus alexandre_souza@usp.br 12559506
- Eduardo Zaffari Monteiro eduardozaffarimonteiro@usp.br 12559490
- Lucas Ivars Cadima Ciziks luciziks@usp.br 12559472

1. Introdução

O uso do solo de maneira adequada é de fundamental importância para maximizar o retorno do plantio e mantê-lo em boas condições para que possa ser utilizado por vários anos sem degradação. Caso o solo seja mal manejado, pode-se acabar com um terreno infértil, o que aumenta a demanda de recursos para o cultivo e recuperação da área de plantio.

Conforme o solo é utilizado para o plantio de um tipo de alimento, ocorre a diminuição dos tipos de nutrientes consumidos por essa planta, e em contrapartida os outros se tornam abundantes pelo acúmulo durante o tempo em que não foi consumido. Dessa forma, pode-se realizar a rotação de culturas, que consiste em plantar alimentos que consomem nutrientes diferentes de maneira cíclica, fazendo com que o solo se mantenha mais bem preservado.

Com objetivo de facilitar a escolha da cultura a ser semeada em um terreno específico será feito o treinamento de um modelo de aprendizado supervisionado. Para isso, serão utilizados dados que consistem em características do terreno, principalmente relacionadas à quantidade de nutrientes e substâncias nele presentes. A classificação dar-se-á de acordo com um tipo de cultura que é considerado ideal para o solo observado.

A tabela de dados apresenta 2200 diferentes condições de solo e suas respectivas culturas ideais, as quais são divididas em 22 classes que indicam diferentes sementes e frutas. Para cada um desses terrenos existem valores de quantidade de nitrogênio, fósforo, potássio, além de temperatura, umidade e pH, além da precipitação plantação recebe durante o crescimento.

2. Metodologia

O projeto está sendo realizado e versionado remotamente através da plataforma Github. Seu acesso é possível por meio do link https://github.com/ale-souza/crop-recommendation

2.1. Origem dos Dados

Os dados foram obtidos diretamente da plataforma kaggle, um site para estudo de ciência de dados e machine learning, e podem ser obtidos através do link https://www.kaggle.com/datasets/aksahaha/crop-recommendation. Segundo o usuário Abhishek Kumar, que disponibilizou os dados, eles são provenientes do ICAR (Indian Council of Agriculture Research), e complementados por pesquisas na internet feitas por ele.

2.2 Dicionário de Dados

- Nitrogênio (nitrogen): Representa a quantidade de nitrogênio (em kg/ha) presente no solo para a cultura. O nitrogênio é um nutriente essencial para o crescimento de plantas, e sua deficiência ou excesso pode afetar o crescimento e a produção da cultura;
- **Fósforo (phosphorus)**: Representa a quantidade de fósforo (em kg/ha) presente no solo para a cultura. Também é um elemento essencial no plantio, sendo importante para processos como transferência de energia e fotossíntese;
- Potássio (potassium): Representa a quantidade de potássio (em kg/ha) presente no solo para a cultura. Também é um elemento essencial, e é importante para processos fisiológicos como regulação de água e transporte de nutrientes;
- **Temperatura (temperature)**: Representa a temperatura média (em Celsius) durante o período de crescimento da cultura. A temperatura é um fator ambiental importante que pode afetar o crescimento e o desenvolvimento das plantas, e cada cultura possui uma temperatura ideal;
- Umidade (humidity): Representa a humidade relativa (em porcentagem) durante o período de
 crescimento da cultura. A humidade é outro fator ambiental importante, tendo em vista que uma alta
 humidade pode promover a proliferação de fungos e desenvolvimento de doenças;
- **pH**: Representa o pH da cultura durante seu período de crescimento. O pH é uma medida de acidez ou alcalinidade do solo e pode afetar a disponibilidade de nutrientes para a cultura;
- Precipitação (rainfall): Representa a precipitação (em mm) durante o período de crescimento da cultura. Cada cultura necessita de uma quantidade diferente de água, o que torna a precipitação outro fator ambiental importante;
- Crop (label): Representa o tipo da cultura.

3. Coleta dos Dados

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats

# Modelos de aprendizado supervisionado
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.svm import SVC
         # Normalização dos dados
         from sklearn.preprocessing import StandardScaler, MinMaxScaler
         # Validação e Particionamento dos dados
         from sklearn.model selection import StratifiedKFold, LeaveOneOut, GridSearchCV, Stratifi
         # Métricas de Avaliação
         from sklearn.metrics import accuracy score, precision score, recall score, roc auc score
In [2]:
        # Leitura dos dados do problema
         df = pd.read csv("https://raw.githubusercontent.com/ale-souza/crop-recommendation/main/C
         df.head()
Out[2]:
                                                                                        Unnamed: Unnamed:
                                                                           rainfall label
           Nitrogen phosphorus potassium temperature
                                                      humidity
                                                                    ph
                                                                                               8
                                            20.879744 82.002744 6.502985 202.935536
        0
                 90
                            42
                                      43
                                                                                             NaN
                                                                                                       NaN
                                                                                   rice
                                            21.770462 80.319644 7.038096 226.655537
                 85
                            58
                                      41
                                                                                   rice
                                                                                             NaN
                                                                                                       NaN
         2
                 60
                            55
                                            23.004459 82.320763 7.840207 263.964248
                                                                                                       NaN
                                      44
                                                                                   rice
                                                                                             NaN
                 74
                            35
                                      40
                                            26.491096 80.158363 6.980401 242.864034
                                                                                   rice
                                                                                             NaN
                                                                                                       NaN
         4
                 78
                            42
                                      42
                                            20.130175 81.604873 7.628473 262.717340
                                                                                             NaN
                                                                                                       NaN
                                                                                   rice
         # Limpando conjunto de dados
In [3]:
         df = df.drop(['Unnamed: 8', 'Unnamed: 9'], axis=1)
         df = df.rename(columns={"label": "crop"})
         df.head()
Out[3]:
           Nitrogen phosphorus potassium temperature
                                                      humidity
                                                                    ph
                                                                           rainfall crop
        0
                 90
                            42
                                      43
                                            20.879744 82.002744 6.502985 202.935536
                                                                                   rice
         1
                 85
                            58
                                      41
                                            21.770462 80.319644 7.038096 226.655537
                                                                                   rice
         2
                 60
                            55
                                            23.004459 82.320763 7.840207 263.964248
                                      44
                                                                                   rice
         3
                 74
                            35
                                            26.491096 80.158363 6.980401 242.864034
                                      40
                                                                                   rice
                 78
                            42
                                      42
                                            20.130175 81.604873 7.628473 262.717340
                                                                                   rice
        # Verificando as categorias de plantação
In [4]:
         labels = df['crop'].astype('category').values
         labels = list(labels.categories)
         labels
         ['apple',
Out[4]:
          'banana',
          'blackgram',
          'chickpea',
          'coconut',
          'coffee',
          'cotton',
          'grapes',
          'jute',
          'kidneybeans',
          'lentil',
          'maize',
          'mango',
          'mothbeans',
```

```
'orange',
         'papaya',
         'pigeonpeas',
         'pomegranate',
         'rice',
         'watermelon']
In [5]: # Discretizando categorias de plantação
        df["crop int"] = pd.Categorical(df["crop"]).codes
        df["crop int"]
               20
Out[5]:
               20
               20
        2195
        2196
        2197
       2198
        2199
        Name: crop int, Length: 2200, dtype: int8
```

4. Análise Exploratória dos Dados

4.1. Medidas Descritivas

'mungbean',
'muskmelon',

```
In [6]: # Função para calcular o coeficiente de variância (CV)
        def coeficiente variancia(table):
            return 100 * table.std() / table.mean()
        # Função para calcular a amplitude
        def amplitude(table):
            return table.max() - table.min()
        # Aplicando medidas de posição e dispersão aos atributos preditivos
        medidas descritivas = df.drop(["crop"], axis=1).agg(["min", "max", "mean", "median",
                                                              "var", "std",
                                                              coeficiente variancia, amplitude])
        # Renomeando das medidas descritivas
In [7]:
        novos nomes = {
           "min": "Minimo",
            "max": "Maximo",
            "mean": "Media",
            "median": "Mediana",
            "var": "Variancia",
            "std": "Desvio-padrao",
            "coeficiente variancia": "Coeficiente de Variancia",
            "amplitude": "Amplitude"
        medidas descritivas = medidas descritivas.rename(novos nomes)
        # Arredondando casas decimais das medidas descritivas e de dispersão
        medidas descritivas = medidas descritivas.round(3)
In [8]: medidas descritivas
```

Out[8]:		Nitrogen	phosphorus	potassium	temperature	humidity	ph	rainfall	crop_int
	Minimo	0.000	5.000	5.000	8.826	14.258	3.505	20.211	0.000
	Maximo	140.000	145.000	205.000	43.675	99.982	9.935	298.560	21.000
	Media	50.552	53.363	48.149	25.616	71.482	6.469	103.464	10.500
	Mediana	37.000	51.000	32.000	25.599	80.473	6.425	94.868	10.500
	Variancia	1362.890	1088.068	2565.213	25.642	495.677	0.599	3020.424	40.268
	Desvio-padrao	36.917	32.986	50.648	5.064	22.264	0.774	54.958	6.346
	Coeficiente de Variancia	73.029	61.814	105.190	19.768	31.146	11.963	53.119	60.436

A partir das medidas descritivas, pode-se ter uma ideia inicial das distribuições das características. É possível inferir que as variáveis *temperature* e *pH* possuem uma curva simétrica, já que suas médias e medianas são bem próximas, enquanto *humidity* provavelmente possui uma curva assimétrica à esquerda. Para todos os outros atributos as curvas são possivelmente assimétricas à direita.

200.000

34.850

85.724

6.430

278.349

21.000

No que tange as medidas de dispersão, a análise anterior é reforçada. As medidas de variância e desviopadrão apresentam valores altos para as variáveis que não são simétricas, o que indica que há uma alta variabilidade nos dados. Ou seja, há valores que possuem uma grande distância da média.

4.2. Visualização dos Dados

4.2.1. Histogramas

Amplitude

140.000

140.000

Abaixo, é possível observar o formato da curva dos atributos. Assim, há ainda mais evidências de que a análise anteriormente feita está, provavelmente, correta. Fazem-se necessários, então, testes de hipóteses.

```
In [9]: # Nitrogen
sns.histplot(data=df, x="Nitrogen", kde=True, color="gold")
```

Out[9]: <AxesSubplot: xlabel='Nitrogen', ylabel='Count'>


```
In [10]: # Phosphorus
sns.histplot(data=df, x="phosphorus", kde=True, color="salmon")

<AxesSubplot: xlabel='phosphorus', ylabel='Count'>
```

Count phosphorus # Potassium In [11]: sns.histplot(data=df, x="potassium", kde=True, color="green") <AxesSubplot: xlabel='potassium', ylabel='Count'> Out[11]: 0 150 potassium In [12]: # temperature sns.histplot(data=df, x="temperature", kde=True, color="red") <AxesSubplot: xlabel='temperature', ylabel='Count'> Out[12]:

Out[10]:

temperature

Percebe-se, como anteriormente dito, que a distribuição dos dados referentes à variável temperatura provavelmente segue uma distribuição.

```
In [13]: # Humidity
sns.histplot(data=df, x="humidity", kde=True, color="steelblue")
```

Out[13]: <AxesSubplot: xlabel='humidity', ylabel='Count'>


```
In [14]: # ph
sns.histplot(data=df, x="ph", kde=True, color="hotpink")
```

Out[14]: <AxesSubplot: xlabel='ph', ylabel='Count'>

Percebe-se, como anteriormente dito, que a distribuição dos dados referentes à variável pH provavelmente segue uma distribuição.

```
In [15]: ## Rainfall
sns.histplot(data=df, x="rainfall", kde=True, color="aqua")
```

Out[15]: <AxesSubplot: xlabel='rainfall', ylabel='Count'>

4.2.2. Boxplots

Com os *boxplots*, é possível comparar a distribuição dos dados em relação ao atributo-alvo. Mais uma vez, a teoria de que as variáveis *pH* e *temperature* são mais balanceadas é corroborada.

```
kidneybeans
 pigeonpeas
mothbeans
mungbean
          Tentil
pomegranate
       banana
 mango
grapes
watermelon
 muskmelon
apple
orange
       papaya
         cotton
         jute
coffee
                                 20
                                                                              100
                                                                                          120
                                                                                                     140
                                            40
                                                                    80
                                                         Nitrogen
```

```
In [17]: # ------
# Phosphorus x Crop
# ------
sns.boxplot(x=df["phosphorus"], y=df["crop"])
Out[17]: <AxesSubplot: xlabel='phosphorus', ylabel='crop'>
```



```
In [18]: # ------
# Potassium x Crop
# -----
sns.boxplot(x=df["potassium"], y=df["crop"])
```

Out[18]: <AxesSubplot: xlabel='potassium', ylabel='crop'>


```
In [19]: # ------
# Temperature x Crop
# ------
sns.boxplot(x=df["temperature"], y=df["crop"])
```

Out[19]: <AxesSubplot: xlabel='temperature', ylabel='crop'>

A maior parte dos valores está ao redor da média, que é de aproximadamente 25. Apesar de certos valores apresentarem grande variação, como grapes e orange, isso não afetou a curva.

```
In [20]:
               Humidity x Crop
          sns.boxplot(x=df["humidity"], y=df["crop"])
          <AxesSubplot: xlabel='humidity', ylabel='crop'>
Out[20]:
                  maize
                chickpea
             kidneybeans
              pigeónpeas
mothbeans
               mungbean
```

```
blackgram
lentil
pomegranate
banana
       mango
       grapes
 watermelon
 muskmelon
apple
      orange
      papaya
      coconut
       cotton
        jute
coffee
                                       40
                       20
                                                                                      100
                                                       60
                                                                       80
                                                 humidity
```

```
In [21]:
             ph x Crop
         sns.boxplot(x=df["ph"], y=df["crop"])
         <AxesSubplot: xlabel='ph', ylabel='crop'>
```

Out[21]:

O padrão se repete com o atributo *pH*. A maior parte dos valores está concentrada ao redor da média. Neste caso, tal resultado é previsível, visto que essa medida varia entre 0 e 14, e 7 representa um meio neutro (a média dos valores foi de aproximadamente 6,4)

```
In [22]:
                 Rainfall x Crop
           sns.boxplot(x=df["rainfall"], y=df["crop"])
           <AxesSubplot: xlabel='rainfall', ylabel='crop'>
Out[22]:
                    maize
                  chickpea
               kidneybeans
               pigeónpeas
                mothbeans
                mungbean
                blackgram
lentil
              pomegranate
                   banana
                    mango
               grapes
watermelon
               muskmelon
                     apple
                   orange
                   papaya
                  coconut
                    cotton
                    jute
coffee
```

150 rainfall

É possível perceber, então, que há certa separação no que tange aos atributos para cada tipo de cultura. Há indícios, portanto, de que é possível classificar o rótulo de novas observações a partir deste conjunto de variáveis.

250

300

4.2.3. Balaceamento dos Dados

50

100

```
In [23]: plt.figure(figsize=(8, 8))
    colors = sns.color_palette('pastel')

plt.pie(df['crop'].groupby(df['crop']).count(), labels = labels, colors = colors, autopc
    plt.show()
```


É possível perceber que a distribuição dos valores é idêntica.

4.3. Correlação entre as Variáveis

```
In [24]:
             # Mapa de calor com as correlações entre os atributos
             sns.heatmap(df.drop(columns=["crop"]).corr(), annot=True, linewidths=0.5)
             <AxesSubplot: >
Out[24]:
                                                                                    - 1.0
                                        -0.14 0.027
                                                      0.19 0.097
                                                                  0.059 -0.031
                 Nitrogen -
                                  -0.23
                                                                                     0.8
              phosphorus
                                    1
                                               -0.13
                                                      -0.12
                                                            -0.14
                                                                  -0.064
                                                                         -0.49
                                                                                     0.6
                            -0.14
                                  0.74
                                          1
                                               -0.16
                                                      0.19
                                                            -0.17
                                                                  -0.053
                                                                        -0.35
               potassium
                                                                                     0.4
             temperature
                          -0.027
                                  -0.13
                                        -0.16
                                                1
                                                      0.21
                                                           -0.018
                                                                  -0.03
                                                                         0.11
                                                                                     0.2
                 humidity
                                                                         0.19
                            0.19
                                  -0.12
                                        0.19
                                               0.21
                                                       1
                                                           0.0085 0.094
                                                                                     0.0
                                              -0.018-0.0085
                                  -0.14
                                        -0.17
                                                                        -0.012
                                                                                     -0.2
                  rainfall
                           -0.059
                                 -0.064
                                        -0.053
                                               -0.03
                                                     0.094
                                                            -0.11
                                                                         0.046
                 crop_int --0.031
                                                           -0.012
                                                                  0.046
                                  -0.49
                                        -0.35
                                               0.11
                                                      0.19
                                                                          grop_int
                                                temperature
                                         potassium
                                                      humidity
                                                             듄
                                                                   rainfall
```

A maior parte das variáveis **não** está relacionada entre si, com exceção dos atributos *potassium* e *phosphorus*, que possuem uma correlação positiva considerável. Para que a classificação dos dados seja mais efetiva, um dos atributos pode ser removido. Abaixo é possível visualizar a **matriz de dispersão** entre

todos as culturas possíveis (os rótulos) e os atributos, o que é necessário para avaliar qual das duas variáveis relacionadas poderia ser removida.

É possível perceber que dentre elas a que possui maior relação com os atributos-alvo é a *potassium*. Sendo assim, uma possível saída para o problema seria remover a variável *phosporus* do conjunto de dados, visto que *potassium* tem maior relação com o atributo-alvo.

In [26]:

5. Modelos de Aprendizado Supervisionado (Classificação)

```
In [27]: X = df.drop(["crop", "crop_int"], axis=1)
    y = df["crop_int"]

In [28]: # Separando em conjunto de treino e teste
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state =

In [58]: # Normalização dos dados
    scaler = StandardScaler()
    X_train_norm = scaler.fit_transform(X_train)
    X_test_norm = scaler.transform(X_test)

minmax = MinMaxScaler()
    X_train_MinMax = minmax.fit_transform(X_train)
    X_test_MinMax = minmax.transform(X_test)
```

5.1. K-Nearest Neighbors

In [61]: # Cross-Validation K-Fold

```
In [59]: # Inicializando Classificador kNN
         knn = KNeighborsClassifier()
         # Hiper-parâmetros do kNN
         params knn = {
             "n neighbors": tuple(range(1, 31)),
             "p": tuple(range(1, 6))
         # Cross-validation Holdout
In [60]:
         knn holdout = GridSearchCV(estimator=knn, param grid=params knn, cv=StratifiedShuffleSpl
         # Treinando modelo
         knn holdout.fit(X train MinMax, y train)
         print(f'Os melhores parâmetros para o kNN com o Holdout foram: {knn holdout.best params
         # Predizendo conjunto de teste
         y prediction = knn holdout.predict(X test MinMax)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1_score(y_test, y_prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o kNN com o Holdout foram: {'n neighbors': 1, 'p': 3}
        Precision: 0.984295967190704
        Recall: 0.984090909090909
        F1 Score: 0.9840283700039798
        Accuracy: 0.9840909090909091
```

knn kfold = GridSearchCV(estimator=knn, param grid=params knn, cv=5)

```
# Treinando modelo
         knn kfold.fit(X train MinMax, y train)
         print(f'Os melhores parâmetros para o kNN com o 5-fold foram: {knn kfold.best params }')
         # Predizendo conjunto de teste
         y prediction = knn kfold.predict(X test MinMax)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall_score(y_test, y_prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o kNN com o 5-fold foram: {'n neighbors': 3, 'p': 1}
        Precision: 0.9763108363794862
        Recall: 0.975
        F1 Score: 0.9750192185738652
        Accuracy: 0.975
In [62]: # Cross-Validation Leave-One-Out
         knn loo = GridSearchCV(estimator=knn, param grid=params knn, cv=LeaveOneOut(), n jobs=-1
         # Treinando modelo
         knn loo.fit(X train MinMax, y train)
         print(f'Os melhores parâmetros para o kNN com o Leave-One-Out foram: {knn_loo.best_param
         # Predizendo conjunto de teste
         y prediction = knn loo.predict(X test MinMax)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o kNN com o Leave-One-Out foram: {'n neighbors': 5, 'p': 1}
        Precision: 0.983077528532074
        Recall: 0.9818181818181817
        F1 Score: 0.9817283700467269
```

Accuracy: 0.9818181818181818

No que concerne a validação cruzada, os resultados foram divergentes para os diferentes métodos implementados. Apesar de o holdout e o leave-one-out obterem valores semelhantes para as métricas de avaliação, a maior diferença entre eles é o tempo de execução. O segundo requer um poder computacional muito maior, por se tratar de uma técnica que testa o modelo encontrado para todas as observações, apesar de ser tecnicamente melhor que o holdout por não apresentar viés. Dessa forma, deve-se optar pela técnica que melhor se aplicar aos requisitos de implementação, no que tange ao tempo de execução esperado e custo computacional.

No mais, os valores de k para cada técnica de particionamento dos dados foi diferente, bem como o cálculo da distância para o holdout. Como o Grid Search foi aplicado de forma a maximizar a acurácia e todas as

outras métricas apresentaram valores altos, a escolha do modelo pode ser arbitrária.

5.2. Árvore de Decisão

```
In [34]: # Inicializando Classificador Decision Tree
         decision tree = DecisionTreeClassifier(random state=50)
         # Hiper-parâmetros do Decision tree
         params dt = {
             "max depth": range(5, 21),
             "criterion": ["gini", "log loss", "entropy"]
In [35]:
         # Decision Tree Cross-validation Holdout
         dt holdout = GridSearchCV(estimator=decision tree, param grid=params dt, cv=StratifiedSh
         # Treinando modelo
         dt holdout.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o Decision Tree com o Holdout foram: {dt holdout.bes
         # Predizendo conjunto de teste
         y prediction = dt holdout.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
         Os melhores parâmetros para o Decision Tree com o Holdout foram: {'criterion': 'gini',
         'max depth': 11}
         Precision: 0.9770502883151105
         Recall: 0.975
         F1 Score: 0.9748377062614157
         Accuracy: 0.975
In [36]: # Decision Tree Cross-validation K-Fold
         dt kfold = GridSearchCV(estimator=decision tree, param grid=params dt, cv=5)
         # Treinando modelo
         dt kfold.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o Decision Tree com o 5-fold foram: {dt kfold.best p
         # Predizendo conjunto de teste
         y prediction = dt kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
```

```
Os melhores parâmetros para o Decision Tree com o 5-fold foram: {'criterion': 'gini', 'm ax_depth': 13}
Precision: 0.9808146399055488
Recall: 0.97954545454544
F1 Score: 0.9794203086886014
Accuracy: 0.979545454545454545
```

Ao utilizar as diferentes técnicas de particionamento, percebe-se uma divergência entre os resultados das métricas de avaliação. Mais uma vez, o Grid Search foi aplicado a fim de maximizar a acurácia, e em ambos os modelos tal métrica possui resultados semelhantes. O modelo encontrado pelo algoritmo Kfold teve uma taxa de acerto maior na base de teste, porém dada a escala diminuta da diferença entre ambos, qualquer um dos dois seria adequedo.

5.3. Multi-Layer Perceptron

```
In [85]: # Inicializando MLP Classifier
        mlp = MLPClassifier(random state=50)
         # Hiper-parâmetros do MLP
        params mlp = {
            "hidden layer sizes": [[], [5], [10], [5, 5], [10, 10], [15,15], [20, 20], [50,50],
         # MLP Cross-validation Holdout
In [86]:
        mlp holdout = GridSearchCV(estimator=mlp, param grid=params mlp, cv=StratifiedShuffleSpl
         # Treinando modelo
        mlp holdout.fit(X train norm, y train)
        print(f'Os melhores parâmetros para o MLP com o Holdout foram: {mlp holdout.best params
         # Predizendo conjunto de teste
        y prediction = mlp holdout.predict(X test norm)
         # Calculando métricas para avaliação
        accuracy = accuracy_score(y_test, y_prediction)
        precision = precision score(y test, y prediction, average=None)
        recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o MLP com o Holdout foram: {'hidden layer sizes': [50, 50]}
        Precision: 0.991538764266037
        Recall: 0.9909090909090907
        F1 Score: 0.9908948561066659
        Accuracy: 0.990909090909091
In [87]: # MLP Cross-validation K-Fold
        mlp kfold = GridSearchCV(estimator=mlp, param grid=params mlp, cv=5)
         # Treinando modelo
        mlp kfold.fit(X train norm, y train)
        print(f'Os melhores parâmetros para o MLP com o 5-fold foram: {mlp kfold.best params }')
         # Predizendo conjunto de teste
         y prediction = mlp kfold.predict(X test norm)
```

```
# Calculando métricas para avaliação
accuracy = accuracy_score(y_test, y_prediction)
precision = precision_score(y_test, y_prediction, average=None)
recall = recall_score(y_test, y_prediction, average=None)
f1 = f1_score(y_test, y_prediction, average=None)

print("Precision:", np.mean(precision))
print("Recall:", np.mean(recall))
print("F1 Score: ", np.mean(f1))
print("Accuracy:", np.mean(accuracy))

Os melhores parâmetros para o MLP com o 5-fold foram: {'hidden_layer_sizes': [50, 50]}
Precision: 0.991538764266037
Recall: 0.99090909090907
F1 Score: 0.9908948561066659
Accuracy: 0.99090909090909091
```

As redes neurais artificiais com ambas as estratégias de validação se adaptaram melhor para a arquitetura com duas camadas de 50 neurônios dentre as configurações testadas, indicando que redes menores não capturam toda a informação para discriminar os dados, e que redes maiores sofrem ao decorar os dados e assim perdem capacidade de aprendizado. No que tange às técnicas de particionamento, é possível perceber que não houve alteração significativa nos resultados das medidas de desempenho, o que implica que o modelo escolhido por ambas as técnicas é adequado.

5.4. Support Vector Machine

Accuracy: 0.98181818181818

```
In [95]: # Inicializando SVM
         svm = SVC()
         # Hiper-parâmetros da SVM
        params svm = {
            'kernel': ['linear', 'poly', 'rbf', 'sigmoid']
         # MLP Cross-validation Holdout
In [96]:
         svm holdout = GridSearchCV(estimator=svm, param grid=params svm, cv=StratifiedShuffleSpl
         # Treinando modelo
         svm holdout.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o MLP com o Holdout foram: {svm holdout.best params
         # Predizendo conjunto de teste
         y prediction = svm holdout.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o MLP com o Holdout foram: {'kernel': 'linear'}
        Precision: 0.9837465564738291
        Recall: 0.9818181818181819
        F1 Score: 0.981714962336972
```

```
In [97]: # MLP Cross-validation Holdout
         svm kfold = GridSearchCV(estimator=svm, param grid=params svm, cv=5)
         # Treinando modelo
         svm kfold.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o MLP com o Kfold foram: {svm kfold.best params }')
         # Predizendo conjunto de teste
         y prediction = svm kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o MLP com o Kfold foram: {'kernel': 'linear'}
        Precision: 0.9837465564738291
        Recall: 0.9818181818181819
```

Assim como no caso do MLP, o modelo escolhido foi o mesmo para as métricas de avaliação cruzada. Algo importante a ser mencionado é que os modelos escolheram o *kernel* linear para a máquina de vetores de suporte. Tal resultado é esperado, visto que a partir da visualização dos dados é possível perceber que eles são linearmente discrimináveis.

5.5. Random Forest

F1 Score: 0.981714962336972 Accuracy: 0.9818181818181818

```
In [98]: # Inicializando Random Forest Classifier
         random forest = RandomForestClassifier(random state=50)
         # Hiper-parâmetros do Random Forest
         params rf = {
            "max depth": range(5, 21)
In [99]: # Random Forest Cross-validation Holdout
         rf holdout = GridSearchCV(estimator=random forest, param grid=params rf, cv=StratifiedSh
         # Treinando modelo
         rf holdout.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o Random Forest com o Holdout foram: {rf holdout.bes
         # Predizendo conjunto de teste
         y prediction = rf holdout.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy_score(y_test, y_prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
```

```
print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Random Forest com o Holdout foram: {'max depth': 8}
        Precision: 0.9937032664305392
        Recall: 0.99318181818183
        F1 Score: 0.9931690047222781
        Accuracy: 0.99318181818182
         # Random Forest Cross-validation K-Fold
In [100...
         rf kfold = GridSearchCV(estimator=random forest, param grid=params rf, cv=5)
         # Treinando modelo
         rf kfold.fit(X train norm, y train)
        print(f'Os melhores parâmetros para o Random Forest com o 5-fold foram: {rf kfold.best p
         # Predizendo conjunto de teste
         y prediction = rf kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
        precision = precision score(y test, y prediction, average=None)
        recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
        print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
        print("F1 Score: ", np.mean(f1))
        print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Random Forest com o 5-fold foram: {'max depth': 14}
        Precision: 0.9935064935064936
        Recall: 0.993181818181818
        F1 Score: 0.9931775541531639
```

Neste caso, as técnicas de validação cruzada resultaram em modelos diferentes, mas com métricas de avaliação similares. Dessa forma, é possível inferir que o melhor modelo seria aquele treinado com o *holdout*, já que são necessárias menos etapas para predizer uma nova observação, uma vez que a sua profundidade é menor comparada a do modelo que utilizou o K-Fold.

5.6. Naive Bayes

nb holdout.fit(X train norm, y train)

Predizendo conjunto de teste

Accuracy: 0.99318181818182

```
In [53]: # Inicializando o Naive Bayes
   nb = GaussianNB()

# Determinando os parâmetros do Grid Search
# https://medium.com/analytics-vidhya/how-to-improve-naive-bayes-9fa698e14cba
params_nb = {
        'var_smoothing': np.logspace(0, -9, num=100)
}

In [77]: # Naive Bayes Cross-validation Holdout
   nb_holdout = GridSearchCV(estimator=nb, param_grid=params_nb, cv=5)

# Treinando modelo
```

print(f'Os melhores parâmetros para o Naive Bayes com o Holdout foram: {nb holdout.best

```
y prediction = nb holdout.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision_score(y_test, y_prediction, average=None)
         recall = recall_score(y_test, y_prediction, average=None)
         f1 = f1 score(y test, y prediction, average=None)
         print("Precision:", np.mean(precision))
         print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Naive Bayes com o Holdout foram: {'var smoothing': 0.00053
        36699231206307}
        Precision: 0.9958677685950413
        Recall: 0.9954545454545454
        F1 Score: 0.9954431533378901
        Accuracy: 0.9954545454545455
In [78]: # Naive Bayes Cross-validation K-Fold
         nb kfold = GridSearchCV(estimator=nb, param grid=params nb, cv=5)
         # Treinando modelo
         nb kfold.fit(X train norm, y train)
         print(f'Os melhores parâmetros para o Naive Bayes com o 5-fold foram: {nb kfold.best par
         # Predizendo conjunto de teste
         y_prediction = nb_kfold.predict(X test norm)
         # Calculando métricas para avaliação
         accuracy = accuracy score(y test, y prediction)
         precision = precision score(y test, y prediction, average=None)
         recall = recall score(y test, y prediction, average=None)
         f1 = f1 score(y test, y_prediction, average=None)
         print("Precision:", np.mean(precision))
        print("Recall:", np.mean(recall))
         print("F1 Score: ", np.mean(f1))
         print("Accuracy:", np.mean(accuracy))
        Os melhores parâmetros para o Naive Bayes com o 5-fold foram: {'var smoothing': 0.000533
        6699231206307}
        Precision: 0.9958677685950413
        Recall: 0.9954545454545454
```

F1 Score: 0.9954431533378901 Accuracy: 0.9954545454545455

Em se tratando do Naive Bayes, ambas as técnicas de validação cruzada resultaram no mesmo modelo, com o hiperparâmetro var_smoothing apresentando o mesmo valor, bem como os métricas de avaliação. Vale mencionar que dentre os algoritmos implementados este foi o que obteve os melhores resultados, mesmo sendo considerado um classificador simples. Apesar de haver a suposição de independência entre as variáveis, o que poderia ser um problema, foi constatado em análises anteriores que os atributos observados possuem baixa correlação, o que indica um cenário ideal para o emprego deste algoritmo classificador.

6. Conclusões preliminares

Em suma, todos os modelos implementados obtiveram bons resultados nas mais diversas métricas de avaliação, sendo que o menos eficiente deles foi o KNN e os mais eficientes Naive Bayes e Multilayer

Perceptron. Tais resultados eram esperados, visto que os dados são balanceados e podem ser separados com relativa facilidade. No que tange às diferentes técnicas de particionamento, é possível perceber que o KNN foi o método que obteve maior diferença nos testes, enquanto que para os outros os resultados mantiveram-se semelhantes.

Nesse cenário, a escolha do melhor modelo deve ser pautada pela disponibilidade de recursos e tempo. O MLP apresenta um custo computacional ligeiramente alto, levando um tempo maior para ser treinado, o que não pode ser o ideal em diversas situações. Dessa maneira, o Naive Bayes torna-se a alternativa mais viável, tendo em vista que suas métricas de avaliação apresentaram os melhores resultados e seu custo computacional é menor.

7. Referências Bibliográficas

- SISTEMA DE PRODUÇÃO DE MELÃO. [S. I.]: Embrapa Semiárido, ISSN 1807-0027. Mensal. Disponível em: http://www.cpatsa.embrapa.br:8080/sistema_producao/spmelao/manejo_do_solo.html. Acesso em: 1 maio 2023;
- SOUSA, Rafaela. Rotação de culturas. [S. l.]: Brasil Escola. Disponível em: https://brasilescola.uol.com.br/geografia/rotacao-culturas.htm. Acesso em: 1 maio 2023.

```
In [48]: !jupyter nbconvert --to webpdf --allow-chromium-download "Análise de Culturas.ipynb"

[NbConvertApp] Converting notebook Análise de Culturas.ipynb to webpdf
[NbConvertApp] Building PDF
[NbConvertApp] PDF successfully created
[NbConvertApp] Writing 2577448 bytes to Análise de Culturas.pdf
```