PAM

1. Firstly, the data obtained by SAS after dimensionality reduction were processed to obtain the data used for K-methods analysis.

Factor1	Factor2	Factor3	Factor4
1.0957	-0.4099	-0.4004	1.3764
1.2496	1.0433	1.3544	-0.4226
0.6065	0.7071	-0.4714	0.4641
1.1946	0.8062	-0.2757	0.9940
2.1832	0.8749	1.4010	0.7490
0.8249	-0.3740	1.6784	-0.2971
-1.2824	-3.5999	0.5087	-0.3153
1.2996	0.8091	1.3359	0.4076
1.8321	0.2421	0.3473	1.6793
1.2273	1.0194	1.3372	0.0425
1.0657	0.8317	1.2323	-0.2408
0.3239	0.8930	-0.1936	0.0883

2. According to the clustering results obtained by SAS, the value of the center point was set to 17 for further comparison, and k- medoids clustering was carried out for the data.

clusplot(pam(x = data.cut, k = 17))

These two components explain 72.7 % of the point variability.

Average silhouette width: 0.26 3. Get the center point of the 17 classes.

medoids	Factor1	Factor2	Factor3	Factor4
1	1.2060	0.4051	-0.5400	1.4712
2	0.5180	0.6977	1.2849	-0.3136
3	0.6786	0.6375	-0.3802	0.4131
4	1.3940	0.6868	1.2441	0.5858
5	1.1926	-0.2461	2.1286	0.1435
6	-1.2824	-3.3049	0.3029	-0.3157
7	2.0216	-0.3029	0.9430	1.7573
8	0.1448	0.5968	-0.4572	-0.1158
9	2.7353	0.0884	0.1369	4.4462
10	0.5974	-0.1495	0.5975	0.3312
11	-0.9186	-0.4798	0.6543	-0.6041
12	-0.2508	0.3309	-0.6604	-0.3676
13	-0.3646	0.7070	1.3149	-0.8808
14	0.0367	-0.4502	-0.7734	0.2565
15	-0.6199	0.4370	-0.4955	-0.5281
16	-1.1064	-0.4466	-1.0355	-0.4853
17	-0.9928	0.0911	-0.8110	-0.5999

4. The results obtained by R PAM classification were compared with those obtained by SAS, As can be seen from the following figure, the classification results of R and SAS are quite different.

The result of SAS

5. Because the classification is too detailed, it is not conducive to further study. Therefore, PAM is optimized and FCP is adopted to select the optimal classification number. The optimal number of categories selected by fcp is three, and it can be seen from the drawing that the effect of three categories is better.

clusplot(pam(x = sdata, k = k, diss = diss))

Silhouette plot of pam(x = sdata, k = k, diss = diss)

Average silhouette width: 0.4

RPART

The SAS System

1. Firstly, according to the dimensionality reduction results obtained by sas, the training set and test set are selected. The data4 of SALES=NA are the test set and the rest are the training set.

SALES	Factor1	Factor2	Factor3	Factor4
4	1.0957	-0.4099	-0.4004	1.3764
NA	1.2496	1.0433	1.3544	-0.4226
1	0.6065	0.7071	-0.4714	0.4641
57	1.1946	0.8062	-0.2757	0.9940
7	2.1832	0.8749	1.4010	0.7490
17	0.8249	-0.3740	1.6784	-0.2971
809	-1.2824	-3.5999	0.5087	-0.3153
NA	1.2996	0.8091	1.3359	0.4076
790	1.8321	0.2421	0.3473	1.6793
586	1.2273	1.0194	1.3372	0.0425
NA	1.0657	0.8317	1.2323	-0.2408
19	0.3239	0.8930	-0.1936	0.0883
15	-1.2824	-4.2787	1.8498	-0.3385
6	1.2529	0.7131	0.7362	1.2431
132	-1.2824	-3.7545	0.4273	-0.3099
28	0.2078	0.6722	-0.3491	-0.2253
224	0.3850	1.0210	0.0654	-0.0052
152	0.3771	0.8352	-0.0049	-0.0730
15	0.5326	1.0479	0.0198	-0.3310
6	0.3300	0.8581	1.1419	-0.5649

2. The obtained training set and test set length

item	length	
training set	2707	
test set	1996	

- 3. The results of the tree method obtained from the test set are as follows
- 1) root 2707 130556000.0 116.32880
 - 2) Factor1< 1.043504 2051 40479120.0 74.02243
 - 4) Factor3< 3.212448 2047 27732720.0 71.87103
 - 8) Factor1< 0.2296959 1287 11760040.0 48.68454 *
 - 9) Factor1>=0.2296959 760 14109080.0 111.13550 *
 - 5) Factor3>=3.212448 4 7888314.0 1175.00000 *
 - 3) Factor1>=1.043504 656 74928670.0 248.60060
 - 6) Factor2>=-1.498155 644 64931910.0 239.72050
 - 12) Factor1< 2.014721 494 27123700.0 214.20450 *
 - 13) Factor1>=2.014721 150 36427360.0 323.75330
 - 26) Factor1>=2.024357 147 32881060.0 306.21090
 - 52) Factor3< 2.713288 142 30069120.0 289.29580
 - 104) Factor4< 2.475297 70 4373779.0 210.48570 *
 - 105) Factor4>=2.475297 72 24837870.0 365.91670 210) Factor4>=3.073342 56 5100261.0 234.89290 *

```
211) Factor4< 3.073342 16 15411470.0 824.50000 422) Factor4< 2.736663 8 721995.9 419.62500 * 423) Factor4>=2.736663 8 12066690.0 1229.37500 * 53) Factor3>=2.713288 5 1617441.0 786.60000 * 27) Factor1< 2.024357 3 1284435.0 1183.33300 * 7) Factor2< -1.498155 12 7220588.0 725.16670 14) Factor1< 2.855771 6 512750.8 387.16670 * 15) Factor1>=2.855771 6 5336909.0 1063.16700 *
```


4. Select the optimal number of nodes, CP value was selected according to the principle of minimum xerror, which was not applicable at this time, because too many branches were cut from the decision tree, resulting in inaccurate final prediction results. Moreover, due to the small number of CP values, manual deletion was adopted to select the optimal CP value as 0.01050069

item	СР	nsplit	Rel error	xerror	xstd
1	0.11602842	0	1.0000000	1.0008277	0.1690388
2	0.03721071	1	0.8839716	0.8985658	0.1615232
3	0.02126418	2	0.8467609	0.9370605	0.1627320
4	0.01427434	3	0.8254967	0.9455882	0.1624032
5	0.01395082	4	0.8112223	0.9408809	0.1624884
6	0.01050069	10	0.7143780	0.9490305	0.1627981
7	0.01000000	11	0.7038773	0.9519849	0.1628204

5. Predict sales according to the optimal CP value and make it into a categorical

SALES	Factor1	Factor2	Factor3	Factor4	level
156	-1.2824	-2.1311	3.0462	-1.3295	3
192	1.4937	0.9005	-0.1112	0.6364	3
65	1.9688	0.9642	1.4695	0.7248	2
26	0.3780	0.7264	-0.0770	-0.0163	1
74	0.5180	0.6977	1.2849	-0.3136	2
1	0.4147	0.5612	-0.4775	-0.0839	1
738	1.1555	0.5503	-0.3756	1.2269	3
6	0.4190	0.6199	-0.2977	0.0207	1
8	0.3317	-0.3685	0.6162	0.0342	1
32	1.2323	0.8899	-0.1468	0.9761	1
3	2.7721	0.0543	2.1291	1.5887	1
16	0.6011	0.5854	1.1163	-0.3800	1
4	-0.0443	0.6043	-0.2336	-0.4322	1
24	-1.3879	-1.3415	0.8960	-1.1500	1
12	-0.6091	0.4108	-0.4971	-0.4391	1
214.2045	1.2496	1.0433	1.3544	-0.4226	3
48.68454	-1.2824	-4.3541	-1.1952	-0.2525	1
111.1355	0.3766	0.9557	1.5958	-0.9392	3