NOTES ON GEOMETRY AND GROUPS

US

1. Introduction Contents

1.	Introduction	1
2.	Notation and things	1
3.	Group Actions	1
4.	Metric Spaces	5
4.1.	. Geodesics	7
4.2.	Some Topology	8
5.	Isometries of Euclidean space	9

2. Notation and things

3. Group Actions

Definition 3.1 (Group Action). Let G be a group and X be a set. We say that G acts on X or $G \cap X$ if there is a map

$$G\times X\to X$$

$$g \mapsto g \cdot x$$

Such that

$$\forall x \in X, e \cdot x = x$$

where e is the identity and

$$g \cdot (h \cdot x) = (gh) \cdot x$$

Furthermore if G acts on X there is a group homomorphism

$$\Theta: G \to Sym(X),$$

where Sym(X) denotes the group of all bijections (symmetries) on the set X.

Example 3.2. We list some examples of group actions.

- (1) Any group $G \bigcirc G$ by $g \cdot h = gh$, by definition any group acts on itself by left (right) multiplication;
- (2) Similarly a group acts by itself by conjugation $G \cap G$ by $g \cdot h = ghg^{-1}$;
- (3) $GL_n(\mathbb{R}) \cap \mathbb{R}^n$ more generally one can get an action of G on G by any group automorphism.
- (4) The Möbius group $SL_2(\mathbb{C}) \supseteq \hat{\mathbb{C}}$, the Riemann sphere, by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z \coloneqq \frac{az+b}{cz+d}$$

Date: January 30, 2024.

2 US

Definition 3.3 (Faithful Group Action). We say a group action $G \supseteq X$ is **faithful** if $\forall g \in G/\{e\} \exists x \in X \ g \cdot x \neq x$. This definition is equivalen to saying that the homomorphism $\Theta : G \mapsto Sym(X)$ is injective.

Example 3.4. The Galois group Gal(K/F) acts faithfully on the roots of the polynomial f(x) for which K is a splitting field

Example 3.5. The group of symmetries of an n-sided regular polygon P (which is D_n) acts faithfully on P. See Figure 1.

FIGURE 1. The group D_n , n = 6 the axis of reflection are drawn in the picture and then one also has the order n rotation.

Definition 3.6 (Orbits). If $G \supseteq X$ then the **orbit** of $x \in X$ is

$$Orb(x) = O(x) = G.x = \{y \in X | y = g.x, g \in G\}.$$

Orbits form equivalence relation on X and we denote the quotient space X/\sim by X/G. The equivalence relation is given as

$$x \sim y \iff \exists g \in G \text{ such that } x = g.y,$$

or equivalently

$$x \in Orb(y) \iff \exists g \in G : x = g.y.$$

Exercise 3.7. Show the above is indeed an equivalence relation and that distinct orbits are disjoint.

Example 3.8. The group of $\frac{\pi}{4}$ rotations $G := \langle \begin{pmatrix} \cos(\frac{\pi}{4}) & \sin(\frac{\pi}{4}) \\ -\sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{pmatrix} \rangle$ acts on \mathbb{R}^2 .

For $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ the orbit Orb(v) is the set of eight roots of unity identified with their elements of \mathbb{R}^2 , see Figure 2.

Definition 3.9 (Stabilisers). For a group action $G \cap X$ the **stabiliser** of $x \in X$ is

$$Stab(x) = \{ g \in G \,|\, g \cdot x = x \} \subseteq G,$$

is the subset of G which fixes the element x.

FIGURE 2. The orbit of v = (1,0) under the rotation by $\frac{\pi}{4}$.

Example 3.10. The group $G = \left\langle \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle \simeq \mathbb{Z}$ acts on \mathbb{R}^2

if $b \neq 0$ and $v = \begin{pmatrix} a \\ b \end{pmatrix} v$ then $Stab(v) = \left\{ \stackrel{\cdot}{g}^n \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \right\}$ which, as $2^n b$ must be equal to b, is just the identity element

$$g^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

The orbit of v is given as

$$Orb(v) = \left\{ \begin{pmatrix} a \\ 2^n b \end{pmatrix} | n \in \mathbb{Z} \right\}.$$

Theorem 3.11 (Orbit-Stabiliser). $G \supseteq X$ then

$$\alpha: G/Stab(x) \to Orb(x)$$

which is a bijection. Moreover, if G is a finite group $|G| < \infty$ then

$$|G| = |Stab(x)||Orb(x)|.$$

Proof. We want to show that the map: $gStab(x) \mapsto g.x$ is well defined and bijective. The map is well defined since if $a, b \in Stab(x)$ then:

$$ga.x = g.(a.x) = g.x = g.(b.x) = gb.x$$
.

The map is surjective by definition and for the bijection part if $\alpha(gStab(x)) = \alpha(hStab(x))$ then we have:

$$g.x = h.x$$

$$\iff (h^{-1}g) \cdot x = x$$

$$\iff h^{-1}g \in Stab(x) .$$

Thus, g = hs for $s \in Stab(x)$ and so gStab(x) = hStab(x)

Lemma 3.12 (Burnside Lemma). Let $G \supseteq X$ be a group action and define $X^g = \{x \in X \mid g \cdot x = x\}$. Then there exists a bijection

$$G \times X/G \leftrightarrow \coprod_{g \in G} X^g$$

Exercise 3.13. Prove Burnside Lemma 3.12 for $|G| < \infty$ and find formula similar to the one in the orbit stabiliser.

4 US

Definition 3.14. Given a group action $G \cap X$ a fundamental domain for $G \cap X$ is a subset $F \subseteq X$ that contains exactly one point per orbit. Thus, we have

$$\forall x \in X \quad |\operatorname{Orb}(x) \cap F| = 1.$$

Equivalently, we can define it as the maximal set F for which the projection $\pi: X \to X/G$ is injective.

We now consider certain examples of this.

Example 3.15. For our earlier considered group action, $G
otin \mathbb{R}^2$, generated by a $\frac{\pi}{4}$ rotation, we can consider F as a wedge in the upper right quadrant (note this identification is not unique), that is

$$F = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x, 0 \le y < x\}.$$

For a schematic and a picture of \mathbb{R}^2/G , see Figure 3.

FIGURE 3. The quotient of the plane by a group of rotation is the dunce hat.

Remark 3.16. An aside is that in most nice cases, there is a homeomorphism $\overline{F}/\sim \simeq X/G$.

We consider this identification in our next example.

Example 3.17. Consider $\mathbb{Z} \subset \mathbb{R}$ with the group action for any $n \in \mathbb{Z}$, $n \cdot x = x + n$. Here we have $\mathbb{Z} \cdot 0 \simeq \mathbb{Z}$ and we can choose F = [0, 1), and with $\overline{F} = [0, 1]$ we can then say that

$$\mathbb{R}\,/\,\mathbb{Z}\simeq\frac{[0,1]}{0\sim1}$$

a circle of length 1. For a schematic and a picture of \mathbb{R}^2/G , see Figure 4.

FIGURE 4. The quotient of the line by a pure translation group is a circle.

Example 3.18. In this example we look at the group action of \mathbb{Z}^2 on \mathbb{R}^2 given by:

$$(n,m).z = z + nv + mw,$$
 $v = (1,0)$ $w = (0.5,1)$

The orbit of the origine a fundamental domain and its quotient are in Figure 5.

We conclude with an example of a free group $\mathbb{F}_2 = \langle a, b \rangle$, i.e. the set of all reduced words in a, b, a^{-1}, b^{-1} on an infinite graph.

FIGURE 5. The $\mathbb{Z}_v \oplus \mathbb{Z}_w$ lattice and its quotient.

Example 3.19. Consider $\mathbb{F}_2 = \langle a, b \rangle$ acting on a tree with degree 4, that is the graph with countably many vertices each with 4 distinct edges and no loops. The action is given as in Figure 6. In this case the fundamental domain is just a vertex and a collection of half-edges at that vertex (two which are open and two closed).

FIGURE 6. The free group action and its quotient space, the figure eight.

Similarly we can extend it to a surface as in Figure 7. The fundamental domain is the 4-holed sphere given by the complement of the red loops and one of the loops for each pair.

4. Metric Spaces

Definition 4.1. A pair of a space X and a map $d: X \times X \to \mathbb{R}_{\geq 0}$ together denoted (X, d) is a metric space if

- (1) $d(x,y) = d(y,x) \forall x, y \in X$
- $(2) \ d(x,y) = 0 \iff x = y$
- (3) $d(x,y) \leq d(x,z) + d(z,y) \forall x,y,z$, often called the triangle inequality.

Example 4.2. We list off some classic examples of metric spaces

 $_{\mathrm{US}}$ 6

FIGURE 7. The free group action on an infinite surface.

- $(\mathbb{R}^n, ||\cdot||_2)$, where the (Euclidean) norm is $||x-y||_2 = \sqrt{\sum_i (x_i-y_i)^2}$ $(\mathbb{R}^n, ||\cdot||_1)$, the taxicab metric is $||x-y||_1 = \sum_i |x_i-y_i|$
- (\mathbb{S}^1, d_θ) where $d(x, y) = \alpha$ is the metric induced on the unit circle in \mathbb{R}^2 and α is the length of the shortest arc of the circumference connecting x and y.

We also note certain other properties, if (X,d) is a metric space, so too is $(X,\frac{d}{d+1})$ and this new metric is bounded.

Exercise 4.3. If (X,d) is a metric space so is (X,f(d)) if f is $C^0,f(0)=0$, concave and strictly increasing, to start show it for differentiable f with strictly positive derivative and f'' < 0.

Definition 4.4. A map $f: X \to X$ is an isometry if d(f(x), f(y)) = d(x, y)

Example 4.5. Any rotation, translation or reflection along an axis is an isometry of $(\mathbb{R}^2, \|\cdot\|_2)$ as is the composition of any of these.

Exercise 4.6. For f an isometry, show this map is necessarily injective. Show that an isometry is not necessarily surjective. (Hint: needs too have infinite cardinality for this to be possible). Show that if f is an isometry on a finite metric space then it is a bijection.

Exercise 4.7. For two isometries $f, g : \mathbb{R}^2 \to \mathbb{R}^2$, show that if f and g coincide on $p_1 \neq p_2 \neq p_3$ not all on a line, then the two maps are equal. Do the same for \mathbb{R}^n and n+1 points.

Example 4.8. Here are some classical examples of isometries:

- $O_n(\mathbb{R})$ are isometries of $(\mathbb{R}^n, ||\cdot||_2)$.
- Translations are isometries of $(\mathbb{R}^n, ||\cdot||_2)$.
- Reflections on hyperplanes in \mathbb{R}^n .
- The group of symmetris of a regular n-polygon D_n acts by isometries of \mathbb{R}^2 .

4.1. **Geodesics.** In this short section we want to discuss what straight lines are in general metric spaces. In \mathbb{R}^n we have the usual notion of straight lines.

Example 4.9. Given $x \neq y$ in \mathbb{R}^2 , there exists line connecting them. We denote by $\gamma:[0,1] \to \mathbb{R}^2$, $\gamma(0) = x$, $\gamma(1) = y$ a smooth parametrisation of the line segment connecting them. Then, its length can be computed as

$$\ell_{||\cdot||_2}(\gamma) = \ell(\gamma) = \int_0^1 \left\| \dot{\gamma} \right\|_2 dt,$$

we can define the length as such since the metric is given by an inner products, this works in general for Riemmanian metric spaces. For example with the parametrisation

$$\gamma(t) = x + t(y - x) \Rightarrow l(\gamma) = d_{||\cdot||_2}(x, y).$$

Definition 4.10. A Geodesic γ is a **locally** length minimising path $\gamma:[a,b] \to (X,d)$. That, is $\forall t \in (a,b)\exists \varepsilon > 0$:

$$\gamma: (t-\varepsilon, t+\varepsilon) \to (X, d)$$

is length minimising. This can be equivalently stated that given γ there exists a constant v > 0 such that for the above quantifiers for all $s_1, s_2 \in (t - \varepsilon, t + \varepsilon)$ we have $d(\gamma(s_1), \gamma(s_2)) = v |s_2 - s_1|$.

When we do not have a Riemannian space the length of a path can be confuted as follows.

Definition 4.11. Given $\gamma: I \to (X, d)$, define $\ell(\gamma) = \sup_P \sum_{t_i \in P} d(\gamma(t_i), (t_{i+1}))$ for P all finite partitions of I.

Example 4.12. Here are some examples given by various metrics

- For $\mathbb{S}^2 \subseteq (\mathbb{R}^3, ||\cdot||)$, a geodesic is just an arc of a great circle. That is, it can be thought as a path $\gamma: I \to \mathbb{R}^3, ||\gamma||_2 = 1$ that lies on a maximal circle. Thus, between any two (non-antipodal) points there are two geoedesics paths (the two possible arcs of a great circle) and between two antipodal points there are infinitely many.
- The Graph Metric, we have to decide edge lengths that preserve the triangle inequality. But we get $\gamma: I \to (X, d), t \mapsto x$ is a geodesic

Most of the examples we have seen are called length spaces, i.e. metric spaces (X, d) such that between any two points they are connected by a geodesic realising the distance.

Definition 4.13. A metric space (X, d) is a **geodesic length space** if $\forall x, y \in X$ there exists a geodesic $\gamma_{x,y}$ realising d(x,y). If we have that $d(x,y) = \inf_{\gamma:x\to y} \ell(\gamma)$ then we say it is a length space.

Example 4.14. The following are all length spaces:

- Euclidean space $(\mathbb{R}^n, ||\cdot||_2)$, in which straight lines are the length minimising geodesics.
- Certain metric graphs, in particular if every vertex has only finitely many edges.

• Spherical space (\mathbb{S}^n, d_θ) with arcs of great circles realising the distance, however points can have infinitely many minimising geodesics connecting them.

US

• Hyperbolic space $(\mathbb{H}, d_{\mathbb{H}})$.

Remark 4.15. Most metric spaces are not length spaces, in general the unique paths a space has are constant paths. For example take any collection of points in \mathbb{R}^n with the induced metric.

Exercise 4.16. Let X be the graph with two vertices x, y connected by infinitely many edges e_n , $n \in \mathbb{N}$, such that, metrically, $e_n = [0, 1 + \frac{1}{n}]$. Show that the induced metric graph is a length space but not a geodesic one.

4.2. Some Topology.

8

Definition 4.17. (X,d) a set $O \subseteq X$ is open if $\forall x \in O, \exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subseteq O$ $F \subseteq X$ is closed if F^c is open.

Given $\{x_n\} \subseteq X, \bar{x}$ is an accumulation point if $\exists \{x_{n_k}\} \subseteq \{x_n\}, \ d(x_{n_k}, \bar{x}) \to 0$ as $k \to \infty$

Example 4.18.
$$(\mathbb{R}^2, ||\cdot||_2), x_n = \begin{cases} (\frac{1}{n}, 0), n \text{ even} \\ (n, 0), n \text{ odd} \end{cases}$$

Definition 4.19. Given $S \subseteq (X,d), y \in X$ is an accumulation point for S if $\exists \{S_n\} \subseteq S \setminus \{y\}$, s.t. $S_n \to y$.

The set of accumulation points for S is the frontier or boundary, denoted ∂S or (Fr(S)). The closure of S is $S \cup \partial S$, this is equivalent to taking the smallest closed superset of S.

Theorem 4.20 (On Unions and Intersections). If O_i is open $\forall i \in I$, then $O = \bigcup_{i \in I} O_i$ is open. If F_i is closed $\forall i \in I$, then $F = F_i$ is closed.

Example 4.21. Here are examples of open sets

- for $(\mathbb{R}^2, ||\cdot||_2)$ $B_{\gamma}(x)$ is open by definition,
- the set (x,y): $0 < x, \log x < y < \log x$ for any (x,y) we can find an ε ball around it between the two graphs;
- $\mathbb{R}^2 \setminus \mathbb{Z}^2$ is open for the same reasoning as the one above.

Here some closed sets:

- the closed ball of radius $r, B_r(x) := \{y \in X : d(x,y) \le r\};$
- (x,y): 0 < x, -e^{-x} ≤ y ≤ e^{-x} for any (x, y) we can find an ε- ball around it between the two graphs and the boundary is given by the graphs themselves;
 the set of points {(½, 0, 0), (0, 0)} in ℝ², this is closed since it contains the
- the set of points $\{(\frac{1}{n},0,0),(0,0)\}$ in \mathbb{R}^2 , this is closed since it contains the origin which is the unique accumulation point;
- the Cantor ternary set, see https://en.wikipedia.org/wiki/Cantor_set. The reasoning here is that it is the countable intersection of closed sets F_n 's, which are the intervals one gets at level n of the construction, see Figure 8.

Some sets that are neither open nor closed:

FIGURE 8. The first 7-iteration of the middle third cantor set construction.

- $[0,1) \subseteq \mathbb{R}$;
- the set of rational numbers in R, Q = R;
 the square [0, 1] × [0, 1) in R².

Definition 4.22. We say that a map $f:(X,d)\to (Y,d')$ is a homeomorphism if it is continuous and admits a continuous inverse.

5. Isometries of Euclidean space

Definition 5.1. \mathbb{R}^n shall refer to any metric space isometric to $(\mathbb{R}^n, ||\cdot||_2)$ Isom (\mathbb{R}^n) $= \text{Affine group} \cong A_n + b_{\in \mathbb{R}^n}$