Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik FMI-MA0022

Wintersemester 2020/21

Übungsblatt 7

Liveaufgaben für 06./07.01.2021

Präsenzaufgabe 7.1: Direkte Summen

Sei V ein \mathbb{K} -Vektorraum und $U, W \leq V$ mit U + W = V. Weisen Sie nach: $U \oplus W = V \iff \text{jedes } \vec{v} \in V \text{ hat } \underline{\text{genau eine}} \text{ Darstellung } \vec{v} = \vec{u} + \vec{w} \text{ mit } \vec{u} \in U \text{ und } \vec{w} \in W.$

Hinweis: Nehmen Sie an, es gäbe für \vec{v} zwei Darstellungen. Nach einer Umformung ist ein ähnliches Argument möglich wie im Beweis der Dimensionsformel.

Präsenzaufgabe 7.2: Quotientenraum

Sei V eine \mathbb{K} -Vektorraum und $U \leq V$. Auf V definieren wir eine Relation durch $\vec{v}_1 \sim \vec{v}_2 : \Leftrightarrow \vec{v}_2 - \vec{v}_1 \in U$.

- a) Weisen Sie nach, dass \sim eine Äquivalenzrelation ist. Sei $V/U := V/\sim := \{ |\vec{v}| \mid \vec{v} \in V \}$ die Menge der Äquivalenzklassen.
- b) Machen Sie aus V/U einen K-Vektorraum, so dass $\varphi \colon V \to V/U$ mit $\varphi(\vec{v}) := [\vec{v}]$ eine lineare Abbildung ist. **Hinweis:** Wie haben wir Restklassenringe konstruiert?

Anmerkung: Man nennt V/U Quotientenraum (auch: Faktorraum) und φ kanonischen Homomorphismus.

Präsenzaufgabe 7.3: Permutationen

Definition Sei $\sigma \in S_n$. Sei b_1 die Anzahl der $a \in \{1, ..., n\}$ mit $\sigma(a) = a$ und für $j \in \{2, ..., n\}$ sei b_j die Anzahl der j-Zyklen in der Zyklendarstellung von σ . Der **Zykeltyp** von σ ist $\operatorname{typ}(\sigma) := (b_2, ..., b_n)$.

In den folgenden Teilaufgaben sei $\sigma \in S_7$ gegeben durch $\sigma(1) = 2$, $\sigma(2) = 5$, $\sigma(3) = 7$, $\sigma(4) = 6$, $\sigma(5) = 1$, $\sigma(6) = 4$, $\sigma(7) = 3$.

- a) Bestimmen Sie Zyklendarstellung und Zykeltyp von σ .
- b) Bestimmen Sie die kleinste Zahl $m \in \mathbb{N}^*$, so dass σ^m (also $\underbrace{\sigma \circ \cdots \circ \sigma}_{m\text{-mal}}$) das neutrale Element von S_7 ist. Wie können Sie diese Zahl an $\operatorname{typ}(\sigma)$ ablesen? **Anmerkung:** Man bezeichnet die hier berechnete Zahl m als $\operatorname{Ordnung}$ $\operatorname{ord}(\sigma)$ von σ .