

Exploring SqueezeBERT

Lorenzo Baietti ID:2130676

Francesco Carlesso ID:2125806

Noemi Cicala ID:2105377

Matteo Mazzini ID:2107797

Lisa Tassinari ID:2121469

Key Points

- Tailored for mobile devices
- Use of computer vision techniques
- Focus on computational efficiency (fewer parameters than other similar models)
- Accuracy vs. Inference speed trade-off

SqueezeBERT's Architecture

Bottleneck Layers

Residual Networks (ResNet)

Grouped Convolutions

BERT-based Structures

Embedding layer

Transforms individual words into fixed-length vectors, followed by position encoding

Encoder blocks

Self-attention module with 3 Positionwise Fully-Connected (PFC) layers Three more PFCs known as Feed-Forward Network (FFN) layers

Classifier

Predicts the final output

SqueezeBERT Structure

- Serial connection approach with convolution before attention
- Replacing PFC layers with convolutions
- Grouped convolution to evenly distribute computational workload among FFN layers
- Similarites with BERT-base:

768 of Embedding size; 12 Encoder blocks; 12 Heads per self-attention module; Word-piece tokenizer

Testing

Experimental Methodology

- SqueezeBERT and BERT-base comparison
- Three tasks:

Masked Language Modeling (MLM); Text Classification; Token Classification

Performance metrics:

Average Cosine Similarity for MLM

Accuracy for Text and Token Classification

Masked Language Modeling

Predicting a masked token in a sequence

Importance for Mobile Devices

- » Improved understanding of context
- » Multilingual applications and adaptability

Masked Language Modeling

Dataset: Improved version of the DailyDialog conversations dataset

Results

Model / Metrics	Average Cosine Similarity	CPU Time
SqueezeBERT	0.6972	115.056 sec
BERT-base	0.7820	174.756 sec

Text Classification

Assigning a sentence or document to an appropriate category

Importance for Mobile Devices

- » Improved user experience
 - Spam Detection
 - Email Categorization
 - News Categorization

Text Classification

Dataset: News articles categorization

Results

Model / Metrics	Accuracy	CPU Time
SqueezeBERT	0.9463	62.666 sec
BERT-base	0.9705	99.316 sec

Token Classification

Named Entity Recognition (NER): Identifies specific entities within a text

Importance for Mobile Devices

- » Contextual autocorrect and predictive text
- » Accessibility features

Token Classification

Dataset: CoNLL-2003 dataset (english and german languages)

Results

Model / Metrics	Accuracy	CPU Time
SqueezeBERT	0.9674	172.922 sec
BERT-base	0.9756	300.034 sec

Conclusions

- SqueezeBERT on average 1.6 times faster than BERT-base
- Better results as tasks got easier
- Much less remarkable results than in the original paper
- Still a valid and efficient model for practical applications