

BIK-TZP.21 Technologické základy počítačů

ZS 2021/22 2. sobota

doc. Ing. Kateřina Hyniová,CSc.

<u>hyniova@fit.cvut.cz</u>

Katedra číslicového návrhu, FIT ČVUT v Praze

kancelář A:1033

Přednáška 2C Základní logická hradla

- 1. Základní logické členy
- 2. Booleova algebra
- 3. Základní logická hradla
- 4. Booleova algebra
- 5. Návrh kombinačních logických obvodů -
 - Příklady

1. Základní logické členy

- Logický člen neboli hradlo je základní stavební prvek logických obvodů, který vyčísluje logickou funkci.
- Typicky má jeden či více vstupů a jediný výstup.
- Hodnota na výstupu logického členu je funkcí logických hodnot 1,2 či více vstupních logických proměnných: Y=f(A,B,C,D,E....)

Logický člen je obvod, kterým se realizují logické funkce. Logický signál, který tyto obvody zpracovávají, nabývá pouze 2 hodnot:

ANO TRUE (pravda) log 1

NE FALSE (nepravda) log 0

0 a 1 mají dvojí význam

- -aritmetický pro binární kódování čísel a pro aritmetické operace)
- -logický jako FALSE a TRUE (pro logické operace)

2. Booleova algebra

Booleova algebra je matematická disciplína, která je přímo aplikovatelná při návrhu číslicových obvodů. Tato 2-hodnotová algebra (0,1) zahrnuje pravidla a teorémy pro operace s logickými proměnnými a funkcemi. Při používání pravidel se využívají tři základní operace:

- logický součin (konjunkce),
- · logický součet (disjunkce),
- negace (inverze, doplněk),

které tvoří teoretický prostředek pro návrh (syntézu) logických obvodů s požadovaným chováním.

2. Logické funkce

Hradlo	Operace	Zápis
NOT	Negace	Ā
AND	Logický součin	A.B
OR	Logický součet	A + B
NAND	Negace logického součinu	(A . B)
NOR	Negace logického součtu	(A + B)
XOR	Non-ekvivalence	A⊕B
XNOR	Ekvivalence	(A⊕B) ₆

3. Základní logická hradla

- Základní logické hradlo implementuje některou z logických operací, ve schématech je tato logická operace reprezentována odpovídajícím symbolem hradla.
- Z Booleových operací na Booleových proměnných můžeme skládat složitější výrazy a realizovat je pomocí základních hradel. Implemantaci složitějších logických výrazů nazýváme:
 - hradlo
 - kombinační logický obvod

■ NOT (negace, doplněk)

$$\square Y = \neg A$$

$$\Box Y = \overline{A}$$

$$\square Y = not(A)$$

$$\square Y = !A$$

Logické hradlo (invertor)

A —	У
Α	1 p— Y

Α	$Y = \overline{A}$
false	true
true	false

Α	$Y = \overline{A}$
0	1
1	0

٠,

Booleovy funkce dvou proměnných

■ AND (logický součin, konjunkce)

$$\square Y = A.B = AB$$

$$\Box Y = A \wedge B$$

$$\square Y = A$$
 and B

$$\square Y = A \& B$$

Α	В	Y = A.B
false	false	false
false	true	false
True	false	false
True	true	true

Logické hradlo AND

Α	В	Y = A.B
0	0	0
0	1	0
1	0	0
1	1	1

NAND

(negace logického součinu)

$$\Box Y = \neg (A \land B)$$

$$\Box Y = A.B$$

$$\square Y = not (A and B)$$

Logické hradlo NAND

Α	В	$Y = \overline{A.B}$
false	false	true
false	true	true
true	false	true
true	true	false

Α	В	$Y = \overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

OR (logický součet, disjunkce)

$$\Box Y = A \vee B$$

$$\square Y = A + B$$

$$\square Y = A \text{ or } B$$

$$\square Y = A \parallel B$$

Logické hradlo OR

Α	В	Y = A+B
false	false	false
false	true	true
true	false	true
true	true	true

Α	В	Y = A + B
0	0	0
0	1	1
1	0	1
1	1	1

NOR

(Negace logického součtu)

$$\square Y = \neg (A \lor B)$$

$$\Box Y = \overline{A+B}$$

$$\square Y = not (A or B)$$

Α	В	$Y = (\overline{A+B})$
false	false	true
false	true	false
true	false	false
true	true	false

Logické hradlo NOR

Α	В	$Y = \overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

XOR

(exclusive or, non-ekvivalence)

$$\Box Y = A \Leftrightarrow B$$

$$\Box Y = A \oplus B$$

$$\square Y = A \text{ xor } B$$

Logické hradlo XOR

A	В	Y = A⊕B
false	false	false
false	true	true
true	false	true
true	true	false

Α	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

(exclusive nor, ekvivalence)

$$\Box Y = A \Leftrightarrow B$$

$$\Box Y = A \oplus B$$

$$\square Y = A \times A$$

Logické hradlo XNOR

Α	В	Y = A ⊕B
false	false	true
false	true	false
true	false	false
true	true	true

Α	В	$Y = \overline{A \oplus B}$
0	0	1
0	1	0
1	0	0
1	1	1

Hradla AND a OR mohou mít více než 2 vstupy

Pro negaci proměnné Y můžeme buď použít hradlo pro negaci (invertor) popř. jednoduše specifikovat invertovanou proměnnou Y.

Pravdivostní tabulka obvodu

Inputs				Outputs	
X	У	Z	\overline{y}	ÿΖ	$x + \overline{y}z = F$
0	0	0	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	1
- 4			_	_	

Otázka: Jaký logický výraz implementuje hradlo?

4. Booleova algebra

- Booleova aritmetika
- Booleovy algebraické identity
- Booleovy algebraické vlastnosti
- De Morganovy zákony

Booleova aritmetika

- Vysvětluje součet a součin logických hodnot (vyplývá z pravdivostních tabulek)
- Logický součet koresponduje s normálně otevřenými spínači zapojenými paralelně
- Logický součin koresponduje s normálně otevřenými spínači zapojenými sériově

Booleova aritmetika-logický součet

Logický součet: Součet libovolné logické hodnoty a 1 je vždy

roven 1, součet libovolné logické hodnoty a 0 je roven původní logické hodnotě.

$$0 + 1 = 1$$

$$1 + 1 = 1$$

$$0 + 0 = 0$$

$$1 + 0 = 1$$

Logický součet OR reprezentovaný N.O. spínači zapojenými paralelně

N.O. spínač – normálně otevřený spínač

Booleova aritmetika-logický součin

Logický součin: Libovolná logická hodnota násobená 0 je rovna 0, libovolná logická hodnota násobená 1 se nemění.

$$0 . 0 = 0$$

$$1.0 = 0$$

$$0.1 = 0$$

$$1.1 = 1$$

Logický součin AND reprezentovaný N.O. spínači zapojenými sériově

Booleovské algebraické identity

$$A + 1 = 1$$

$$A\overline{A} = 0$$

Booleovy algebraické vlastnosti

Logický součet

A + B = B + A

ekvivalentní

komutativní

Logický součin

AB = BA

asociativní

$$A + (B + C) = (A + B) + C$$

ekvivalentní

$$A(BC) = (AB)C$$

ekvivalentní

Booleovy algebraické vlastnosti

distributivní

$$A(B + C) = AB + AC$$

Funkce Exclusive-OR

$$A \oplus B = A\overline{B} + \overline{A}B$$

Α	В	Y = A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

....je ekvivalentní zapojení....

$$A \oplus B = AB + AB$$

De Morganovy zákony

De Morganovy zákony

1)
$$\overline{X+Y}=\overline{X}.\overline{Y}$$

1)
$$\overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

2) $\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$

Zákony tedy říkají:

- 1) Negace logického součtu libovolného počtu proměnných je rovna součinu negovaných těchto proměnných.
- 2) Negace logického součinu libovolného počtu proměnných je rovna součtu negovaných těchto proměnných.

27

Příklad #1:

Použijeme De Morganovy zákony:

$$Y = AB + AC + BC$$

$$Y = \overline{AB + AC + BC}$$

 $Y = AB \cdot AC \cdot BC$

$$\overline{X + Y} = \overline{X}.\overline{Y}$$
$$\overline{X}.\overline{Y} = \overline{X} + \overline{Y}$$

5. Návrh kombinačních obvodů - Příklady

🟴 Návrh kombinačních log. obvodů

- Kombinováním základních logických hradel můžeme realizovat složitější logické výrazy.
- Např.: $Z = \overline{A.B} + \overline{C.D}$
- Výsledný obvod je kombinační logický obvod

- Takové řešení nemusí být optimální co do počtu použitých hradel i struktury obvodu. Optimalizovat se naučíte v BIK-SAP v LS.
- Takto jsou realizovány číslicové obvody, které tvoří ALU a jiné části počítačů.

<u>Příklad #2</u>: Implementujte logickou funkci Z(A,B) pomocí základních log. hradel):

$$Z(A,B)=(A + B).\overline{A} + (A + B)$$

Příklad #3: Implementujte logickou funkci Z(A,B) pomocí základních log. hradel):

$$Z(A,B)=\overline{A}.B + A.\overline{B} = A \oplus B$$

Příklad #4: Implementujte logickou funkci Y(A,B,C) pomocí základních log. hradel):

$$Y = \overline{(A+B+C)}$$
. $\overline{(A+B+C)}$. $\overline{(A+B+C)}$. $\overline{(A+B+C)}$. $\overline{(A+B+C)}$

<u>Příklad #5</u>: Implementujte logickou funkci X(A,B,C) pomocí základních log. hradel):

$$X(A,B,C) = (A.B)+(A.C)+(A.B.C)$$

Příklad #6: Implementujte logickou funkci Q(A,B,C) pomocí základních log. hradel):

$$Q(A,B,C) = (\overline{A+B.C}) + (\overline{A.B})$$

Příklad #7: implementujte log. funkci Q(A,B,C) 2-vstupovými základ. logickými hradly:

$$Q(A,B,C) = AB+B.C.(B+C)$$

