Automata Finito con transiciones ε

Fabio Martínez Carrillo

Autómatas
Escuela de Ingeniería de Sistemas e Informatica
Universidad Industrial de Santander - UIS

18 de septiembre de 2017

Transiciones AFN- ε

- Permite transiciones para ε , la cadena vacía.
- un AFN puede hacer una transición espontáneamente, sin recibir un símbolo de entrada.

Cual es la tabla de transiciones

	ε	+,-		0,1,,9
q_0	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	$\{q_1, q_4\}$
q_2	Ø	Ø	Ø	$\{q_3\}$
q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
90 91 92 93 94 95	0	Ø	$\{q_3\}$	Ø
q_5	Ø	Ø	Ø	Ø

AFN para reconocer palabras claves

Notacion Formal para un AFN- ε

- De la misma forma que un AFN
- La función de transición tiene que incluir la información sobre las transiciones para ε
- La definición del automata es: $A = (Q, \Sigma, \delta, q_0, F)$
- La función Σ:
 - Un estado q
 - $\Sigma \cup \{\varepsilon\}$

Clausura con respecto al Epsilon ε

- $\bullet\,$ Colección de estados siguiendo las transiciones etiquetadas con ε
- ullet Caso Base: El estado $q\in\mathsf{CLAUSURA}_{arepsilon}(q)$
- Paso Inductivo: Si $p \in CLAUSURA_{\varepsilon}(q)$ y existe una transición de p a r con ε . Entonces $r \in CLAUSURA_{\varepsilon}(q)$

Cuales son las clausuras?

Cuales son las clausuras?

Transiciones y lenguajes extendidos para los AFN- ε

Las etiquetas ε de este camino no contribuyen a formar w

- Caso Base: $\hat{\delta}(q, \varepsilon) = \mathsf{CLAUSURA}_{\varepsilon}(q)$
- **Paso Inductivo:** Suponga que w = xa y $a \neq \varepsilon$. Entonces:
 - Sea $\{p_1, p_2, \dots, p_k\}$ los estados de $\hat{\delta}(q, x)$. Este camino puede contener o terminar con estados ε
 - Sea $\bigcup_{i=1}^{k} \delta(p, a) = \{r_1, r_2, \dots, r_m\}$
- $\hat{\delta}(q, w) = \bigcup_{j=1}^{m} \mathsf{CLAUSURA}_{\varepsilon}(r_j)$. Todos los caminos que se pueden seguir desde q etiquetados con w, considerando arcos adicionales con ε

- Calcule la función de transición $\hat{\delta}(q_0, 5.6)$
- Calcule la función de transición $\hat{\delta}(q_0, -20.61)$

Lenguaje AFN- ε

- $E = (Q, \Sigma, \delta, q_0, F)$

Eliminación de transiciones- ε

A partir de un AFN- ε podemos hallar un AFD.

- Se utiliza contrucción de subconjuntos
- Se incorporan las transiciones ε (Clausuras)
- **1** Q_D es el conjunto de subconjuntos de Q_E . En este caso Q_E son los subconjuntos cerrados con respecto a ε . Es decir: $S = \mathsf{CLAUSURA}_{\varepsilon}(S)$.
- $q_D = \mathsf{CLAUSURA}_{\varepsilon}(Q_0)$. Esado inicial.
- Son los conjuntos que contienen almenos un estado de aceptación del AFN
- \bullet $\Sigma(S, a)$ se calcula como:
 - Sea $S = \{p_1, p_2, \dots, p_k\}$
 - Calculamos $\bigcup_{i=1}^k \delta(p,a) = \{r_1, r_2, \dots, r_m\}$
 - $\delta(S, a) = \bigcup_{i=1}^{m} \mathsf{CLAUSURA}_{\varepsilon}(r_i)$

Cual es el AFD para el siguiente autómata?

Cual es el AFD para el siguiente autómata?

Muchas gracias por su atención

