Mathematics in Computing 4COSC007C

Lecture 4: Relations, Functions, Graphs and Trees

September Intake 2021

Relations

Given a Cartesian product of sets

an n- ary relation R is a subset of the set of tuples

$$\{x,y,...,z:x\in A1, y\in A2, ... z\in An\}$$

We will abbreviate it as R(x,y,...,z) read as

Relations- Example

- Consider a shop and the following three sets:
- S = {x: x is a sales assistant},
- P = {y: y is a product on sale},
- C = {z: z is a customer}.
- Then the following would be a 3-ary (ternary) relation R as a subset of the set of tuples

$$\{x, y, z: x \in S, y \in P, z \in C\}.$$

- Let's make a rule that there is a mapping which somehow associates elements of these sets.
- A particular tuple could be <John, Pen, Margaret> where

John
$$\in$$
 S, Pen \in P, Margaret \in C.

Relations – Special Case

•When all the sets A1 x A2 x...An in the definition of the relation R are the same, for example, B, then R is simply called a relation on the set B

 When a relation is a set of pairs it is called a BINARY relation

 When a relation is a set of triples it is called a TERNARY relation

Relations – More Examples

- Let A = {1,2,3,4,5,6,7,8}
- Let's make the following association of the elements of A:

```
R = \{(1, 2), (2,4), (3, 6), (4, 8)\}
```

 Then R is a BINARY relation over A. More specifically, with every number 1 to 4 the relation R associates the number which is twice greater than this number.

Relations – More Examples

- Let A = {1,2,3,4,5,6,7}
- Let's make the following association of the elements of A:

```
R = \{(1, 2, 3), (2,3,5), (3,4,7)\}
```

 Then R is a TERNARY relation over A. More specifically, with every two consecutive numbers 1 to 4 the relation R associates the number which is their sum.

Properties of Relations

Symmetry: for any x, y: $R(x, y) \Rightarrow R(y, x)$

Transitivity: for any x, y, z: R(x, y) and R(y, z) => R(x, z)

Reflexivity: for any x R(x, x)

Examples?

Properties of Relations

Consider the relation "greater or equal"

 It is reflexive, transitive but not symmetrical

- x ≤ x
- $x \le y$ and $y \le z$ then $x \le z$
- $x \le y$ does not imply $y \le x$

Properties of Relations

- Consider the relation "equal"
- It is reflexive, transitive and symmetrical
- x = x
- x = y and y = z then x = z
- x = y does imply y = x
- A relation which is reflexive, transitive and symmetrical is called EQUIVALENCE

Some relations are special

- We call these special relations "functions" and you have probably met them before.
- A <u>function</u> is a way of transforming one set of objects (usually numbers) into another set of objects (also usually numbers).

Functions

- •A function is a rule that assigns each input exactly one output.
- We call the output the (*range*)*l mage* of the input.
- •The set of all inputs for a function is called the *domain*.
- •The set of all allowable outputs is called the *codomain*.
- We would write f: A→B to describe a function with name f, f, domain A and codomain B.
- •This does not tell us which function f is though. To define the function, we must describe the rule. This is often done by giving a formula to compute the output for any input (although this is certainly not the only way to describe the rule).

Functions - Terminology

Terminology f: A→ B

 This means that the function f maps elements in the Set A (the domain) to the elements in the Set B (the codomain)

Simple Rules

 We can deal with the rules of functions the same way we dealt with relations.

Domain: {1, 2, 3}

Codomain: {5, 6, 7, 8}

Rule: {(1, 5), (2, 6), (3, 8)}

More Advanced Rules

Rules can also be written in the following style

```
-f(a) = a + 4

-g(b) = b \times b + 2

-h(c) = 5
```

- These would read
 - "f of a equals a plus 4"
 - "g of b equals b times b plus 2"
 - "h of c equals 5"

Rules continued

- When we see rules we often ask what their value might be when given concrete values.
- Take the formula from the previous page
 - f(a) = a+4
- What is its value when a equals 7?
 - Answer:

Rules continued

- When we see rules we often ask what their value might be when given concrete values.
- Take the formula from the previous page
 - f(a) = a+4
- What is its value when a equals 7?
 - Answer: 11

More Rules

- To abbreviate this question you might just ask what is f(7)?
- This means substitute the 7 for the a and solve the equation on the right hand side.
- Try out the following formulas and related questions on the next slide.

Formula Problems

- f(x) = 2x + 3
- g(x) = 7

What are

- f(5)?
- f(8)?
- f(-4)?
- g(3)?
- g(7)?
- g(-10)?

Formula Problems

- f(x) = 2x + 3
- g(x) = 7

What are

- f(5) = 2x5 + 3 = 13
- f(8) = 2x8 + 3 = 19
- f(-4) = 2x(-4) + 3 = -8 + 3 = -5
- g(3) = 7
- g(7) = 7
- g(-10) = 7

So what is a function really?

- A function is a certain way that three of the components (domain, codomain and rule) are related.
- Something is a function if (and only if) you can take every value in the Domain, put the value in the formula, and get a single value that is in the Codomain

Explanation

- Let's look at an example.
 - Suppose I define my <u>Domain</u> to be {1, 2, 3}
 - And I define my <u>Codomain</u> to be {5, 6, 7, 8}
 - And my formula is f(x) = x + 5
- Is this a function?
 - To find out, we will go through each value of the domain

Explanation

Domain =
$$\{1, 2, 3\}$$
 Codomain = $\{5, 6, 7, 8\}$ $f(x) = x + 5$

- Let me try the value 1. f(1) = 1+ 5 = 6
 - 6 is in my Codomain. So far it's working.
- Let me try the value 2. f(2) = 2 + 5 = 7
 - 7 is in my Codomain. It is still working.
- Let me try the value 3. f(3) = 3 + 5 = 8
 - 8 is in my Codomain. It is still working.
- I have tried all values in my domain, and they all worked.
- · Therefore, this is a function.

Explanation

```
Domain = \{1, 2, 3\} Codomain = \{5, 6, 7\} f(x) = x + 5
```

- Almost identical.
- Taking 1 from the domain works
- Taking 2 from the domain works
- Taking 3 from the domain fails.
 - Why? It produces the value 8. This value is no longer part of my Codomain. So therefore this example is not a function

Questions?

1. Is x^2 a function?

2. Is \sqrt{x} a function?

Graphs

- A graph is a finite set of nodes with edges between nodes
- Formally, a graph G is a structure (V,E) where
 - V is a finite set of nodes, and
 - E that is a set of directed or undirected pairs of nodes x and y from V
- If a pair of nodes x and y is directed we abbreviate is as (x,y)
- If a pair of nodes x and y is undirected we abbreviate is as {x,y}

Directed vs. Undirected Graphs

- If the directions of the edges matter, then we show the edge directions, and the graph is called a directed graph (or a digraph)
- If the direction of the edges does not matter the graph is called an *undirected graph*.

Intuition Behind Graphs

- The nodes represent entities (objects such as products, cars, numbers, words, etc.)
- Edges (x,y) represent relationships between entities x and y, such as:
 - "x < y"
 - "x larger than y"
 - "x is cheaper than y"
 - "x is a longer than y"
 - "x is bigger than y"
 - 'x is faster than y", ...

Directed vs. Undirected Graphs

DIRECTED GRAPHS

A directed graph G is a structure (V,E) where V is a finite set of nodes, and E is a set of ordered pairs

$$\{(x,y): x \in V, y \in V\}$$

EXAMPLE

Consider a graph G = (V,E) such that $V = \{a,b,c\}$ and $E = \{(a,b), (b,c), (c,a)\}$ this would be a *directed* graph with three nodes -a, b and c and three directed edges from a to b, b to c and c to a.

UNDIRECTED GRAPHS

An undirected graph G is a structure (V,E) where

V is a finite set of nodes, and E is a set of unordered pairs $\{\{x,v\}: x \in V, v \in V\}$

EXAMPLE

Consider a graph G = (V,E) such that $V = \{a,b,c\}$ and $E = \{\{a,b\},\{b,c\},\{a,c\}\}$ this would be an *undirected* graph with three nodes -a, b and c and three undirected edges between a and b, b and c, a and c.

Examples

- V={1,2,3,4,5,6}
- *E*={(1,2), (2,4), (3,6)}

This is a graph where only several vertices are connected.

Note the directions!

There is some pattern represented here - E is a set of all pairs (x,y) such that y = 2x

Question

Choose the correct answer.

Figure: Graph G

- [a.] V={1,2,4} and E={{1,2}, {2,4}, {4,1},{1,4}}
- [b.] V={1,2,4} and E={(1,2), (2,4), (4,1),(1,4)}
- [a.] V={1,2,3,4} and E={{1,2}, {2,4}, {4,1},{1,4},{3,3}}
- [a.] V={1,2,3,4} and E={(1,2), (2,4), (4,1),(1,4),(3,3)}

A "Corner Shop Sale" Example of a Graph

A "Corner Shop Sale" Example of a Graph

V is a set of 6 discounted products:

cheese	£2.99	juice	£4.99
beans	£3.99	cake	£3.99
beer	£2.99	coke	£3.99

E is a set of all pairs (*x*,*y*) such that *x* is cheaper than *y*

Examples of Undirected Graphs

- V=set of 6 students: John, Seema, Jack, George, Tina, and Paul, where the first 4 are friends, and the last two are friends
- E = is a set o all pairs {x,y} such that x and y are friends – note this is an undirected graph!

Paths

- A path in a graph G is a sequence of nodes x₁, x₂, ...,x_k, such that for any node x_i (1 ≤ i ≤ k-1) there is an edge from it to the next one in the sequence
- Consider the following examples and find paths through the graphs

Examples of Undirected Graphs

- Are these sequences paths:
 - John, Seema, George, Jack?
 - George, Paul?
 - Jack, Seema, George ?
 - Jack, John, George, Jack ?

Cycle in a Graph

- A cycle in a graph G is a path where the last node is the same as the first node.
- In the "friends" graph, the following sequences are cycles:
- Jack, John, George, Jack is a cycle
- Jack, John, Seema, George, Jack is a cycle
- Tina, Paul, Tina is a cycle

Connectivity

 A graph is connected if for every pair of nodes, there is a path between them. Otherwise, the graph is disconnected.

Graph Cyclicity

A graph is cyclic if it has at least one cycle.
 Otherwise, it is acyclic

Trees

- A tree is a connected acyclic undirected graph.
- In a tree any two nodes are connected by exactly one path

Rooted Trees

 A rooted tree is a tree where one of the nodes is designated as the root node. (We cannot have two roots of a tree)

Tree-Related Concepts

 The nodes adjacent to node x and below x are called the children of x, and x is called their parents

- A node that has no children is called a *leaf*
- The descendents of a node are: its children, their children, all the way down
- The ancestors of a node are: its parent, its grandparent, all the way to the root
- WHAT ARE LEAFS OF THIS TREE?

WHAT ARE LEAVES?

A node that has no children is called a *leaf*:
2, 4, 6, 8, 11,12

Tree-Related Concepts (Contd.)

 The depth of a node is the number of edges from the root to that node.

- The depth (or height) of a rooted tree is the depth of the lowest leaf
- Depth of node 10: 3
- Depth of this tree: 4

Binary Trees

 A tree is a binary tree if every node has at most two children

Binary Trees

- The children of any node in a binary tree are ordered into a left child and a right child
- A node can have a left and a right child, a left child only, a right child only, or no children
- The tree made up of a left child (of a node x) and all its
 _{1.1.1.1}
 descendents is called the left subtree of x
- · Right subtrees are defined similarly

Binary tree

Applications of Graphs and Tress in Computing Disciplines

- Network
- Graph Databases
- Circuits
- Modelling state diagrams, flow diagrams
- Search
- Al applications
- · Logistics optimisation

Applications of Graphs and Tress Organisational Structure

