Welcome to STN International! Enter x:x LOGINID:ssspta1623kxg PASSWORD: TERMINAL (ENTER 1, 2, 3, OR ?):2 Welcome to STN International Web Page URLs for STN Seminar Schedule - N. America NEWS NEWS Apr 08 "Ask CAS" for self-help around the clock BEILSTEIN: Reload and Implementation of a New Subject Area NEWS Apr 09 NEWS Apr 09 ZDB will be removed from STN US Patent Applications available in IFICDB, IFIPAT, and IFIUDB NEWS Apr 19 Records from IP.com available in CAPLUS, HCAPLUS, and ZCAPLUS NEWS Apr 22 Apr 22 BIOSIS Gene Names now available in TOXCENTER NEWS Apr 22 Federal Research in Progress (FEDRIP) now available NEWS 8 NEWS 9 Jun 03 New e-mail delivery for search results now available NEWS 10 Jun 10 MEDLINE Reload Jun 10 PCTFULL has been reloaded NEWS 11 FOREGE no longer contains STANDARDS file segment NEWS 12 Jul 02 USAN to be reloaded July 28, 2002; NEWS 13 Jul 22 saved answer sets no longer valid NEWS 14 Jul 29 Enhanced polymer searching in REGISTRY NETFIRST to be removed from STN NEWS 15 Jul 30 NEWS 16 Aug 08 CANCERLIT reload PHARMAMarketLetter (PHARMAML) - new on STN NEWS 17 Aug 08 NEWS 18 Aug 08 NTIS has been reloaded and enhanced Aquatic Toxicity Information Retrieval (AQUIRE) NEWS 19 Aug 19 now available on STN IFIPAT, IFICDB, and IFIUDB have been reloaded NEWS 20 Aug 19 The MEDLINE file segment of TOXCENTER has been reloaded NEWS 21 Aug 19 NEWS 22 Aug 26 Sequence searching in REGISTRY enhanced NEWS 23 Sep 03 JAPIO has been reloaded and enhanced Experimental properties added to the REGISTRY file NEWS 24 Sep 16 NEWS 25 Sep 16 CA Section Thesaurus available in CAPLUS and CA CASREACT Enriched with Reactions from 1907 to 1985 NEWS 26 Oct 01 NEWS 27 Oct 21 EVENTLINE has been reloaded NEWS 28 Oct 24 BEILSTEIN adds new search fields NEWS 29 Oct 24 Nutraceuticals International (NUTRACEUT) now available on STN NEWS 30 Oct 25 MEDLINE SDI run of October 8, 2002 NEWS 31 Nov 18 DKILIT has been renamed APOLLIT NEWS 32 Nov 25 More calculated properties added to REGISTRY NEWS 33 Dec 02 TIBKAT will be removed from STN NEWS 34 Dec 04 CSA files on STN NEWS 35 Dec 17 PCTFULL now covers WP/PCT Applications from 1978 to date NEWS 36 Dec 17 TOXCENTER enhanced with additional content Adis Clinical Trials Insight now available on STN NEWS 37 Dec 17 NEWS 38 Dec 30 ISMEC no longer available Indexing added to some pre-1967 records in CA/CAPLUS NEWS 39 Jan 13 NEWS 40 Jan 21 NUTRACEUT offering one free connect hour in February 2003 PHARMAML offering one free connect hour in February 2003 NEWS 41 Jan 21 Simultaneous left and right truncation added to COMPENDEX, NEWS 42 Jan 29

ENERGY, INSPEC

METADEX enhancements Feb 24 PCTGEN now available on STN

NEWS 43

NEWS 44

NEWS 45

Feb 13

Feb 24

CANCERLIT is no longer being updated

NEWS 46 Feb 24 TEMA now available on STN

NEWS 47 Feb 26 NTIS now allows simultaneous left and right truncation

NEWS 48 Feb 26 PCTFULL now contains images

NEWS 49 Mar 04 SDI PACKAGE for monthly delivery of multifile SDI results

NEWS EXPRESS January 6 CURRENT WINDOWS VERSION IS V6.01a,

CURRENT MACINTOSH VERSION IS V6.0b(ENG) AND V6.0Jb(JP),

AND CURRENT DISCOVER FILE IS DATED 01 OCTOBER 2002

NEWS HOURS STN Operating Hours Plus Help Desk Availability

NEWS INTER General Internet Information

NEWS LOGIN Welcome Banner and News Items

NEWS PHONE Direct Dial and Telecommunication Network Access to STN

NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 15:02:14 ON 17 MAR 2003

=> le reg

LE IS NOT A RECOGNIZED COMMAND

The previous command name entered was not recognized by the system. For a list of commands available to you in the current file, enter "HELP COMMANDS" at an arrow prompt (=>).

=> file reg

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

FILE 'REGISTRY' ENTERED AT 15:02:24 ON 17 MAR 2003 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2003 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 16 MAR 2003 HIGHEST RN 499182-00-2 DICTIONARY FILE UPDATES: 16 MAR 2003 HIGHEST RN 499182-00-2

TSCA INFORMATION NOW CURRENT THROUGH MAY 20, 2002

Please note that search-term pricing does apply when conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details: http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf

STRUCTURE UPLOADED L1

=> d l1

L1 HAS NO ANSWERS

L1 STR

Structure attributes must be viewed using STN Express query preparation.

=> s l1 exact sam

SAMPLE SEARCH INITIATED 15:04:04 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 0 TO ITERATE

100.0% PROCESSED 0 ITERATIONS 0 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

**COMPLETE
0 TO 0 PROJECTED ITERATIONS: PROJECTED ANSWERS:

L20 SEA EXA SAM L1

=> s l1 sss sam

SAMPLE SEARCH INITIATED 15:04:49 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 373 TO ITERATE

100.0% PROCESSED 373 ITERATIONS 4 ANSWERS

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 6302 TO 8618 PROJECTED ANSWERS: 4 TO 200 => d scan

L3 4 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN Benzamide, 3-[2-(dimethylamino)ethoxy]-4-methoxy-N-[(1S)-3-methyl-1[[[(1S)-1-methyl-2-oxo-3-[(2-pyridinylsulfonyl)amino]propyl]amino]carbonyl
]butyl]- (9CI)

MF C27 H39 N5 O7 S

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L3 4 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN Benzeneacetamide, N-[(3S)-3-[[(2S)-2-[[3-[2-(dimethylamino)ethoxy]-4methoxybenzoyl]amino]-4-methyl-1-oxopentyl]amino]-2-oxobutyl]-.alpha.methyl-3-(2-pyridinyl)- (9CI)

MF C36 H47 N5 O6

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L3 4 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN Glycinamide, 1,1'-(1,4,7-trioxo-1,7-heptanediyl)bis[N-[2-[[2-[[2-(4-methoxyphenyl)ethyl]amino]-2-oxoethyl][2-oxo-2-[[(3,4,5-trimethoxyphenyl)methyl]amino]ethyl]amino]-2-oxoethyl]glycyl-N2-[2-[[2-(4-methoxyphenyl)methyl]amino]ethyl]amino]-2-oxoethyl]glycyl-N2-[2-[[2-(4-methoxyphenyl)methyl]amino]ethyl]amino]-2-oxoethyl]glycyl-N2-[2-[[2-(4-methoxyphenyl)methyl]amino]ethylamino]ethylamino[ethylamino]ethylamino[ethylamino[ethylamino[ethylamino]ethylamino[ethylamino[ethylamino[ethylamino[ethylamino[ethylamino[ethylamino[ethylamino[ethylamino[ethylamino[eth

PAGE 1-A

$$\begin{array}{c} \text{OMe} \\ \text{MeO} & \text{OMe} \\ \\ \text{CH}_2 \\ \text{NH} \\ \\ \text{C} = \text{O} \\ \\ \text{CH}_2 \\ \text{O} \\ \text{N-CH}_2 - \text{C-NH-CH}_2 - \text{CH}_2 - \\ \\ \text{C} = \text{O} \\ \\ \text{C} \\ \text{C$$

PAGE 1-B

OMe
$$\begin{array}{c} CH_2 \\ CH_2 \\ NH \\ C \longrightarrow O \\ OMe \\ - CH_2 \longrightarrow O \\ CH_2 \longrightarrow O \\ - CH_2 \longrightarrow O \\ - CH_2 \longrightarrow CH_2 - C \longrightarrow CH_2 - C \longrightarrow NH - CH_2 \longrightarrow OMe \\ OMe \\ - CH_2 \longrightarrow O \longrightarrow OMe \\ - CH_2 \longrightarrow OMe \\ -$$

PAGE 2-A

| OMe

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L3 4 ANSWERS REGISTRY COPYRIGHT 2003 ACS
IN Benzeneacetamide, N-[3-[[(2S)-2-[[4-methoxy-3-[2-(1-

piperidinyl)ethoxy]benzoyl]amino]-4-methyl-1-oxopentyl]amino]-2-oxopropyl]3-(2-pyridinyl)- (9CI)
MF C37 H47 N5 O6

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

=> s l1 sss full FULL SEARCH INITIATED 15:06:32 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED - 7741 TO ITERATE

100.0% PROCESSED 7741 ITERATIONS SEARCH TIME: 00.00.01

L4 81 SEA SSS FUL L1

=> d scan

L4 81 ANSWERS REGISTRY COPYRIGHT 2003 ACS
IN Acetamide, N-[1-[[3,4-bis(acetyloxy)phenyl]methyl]-2-oxopropyl]- (9CI)
MF C16 H19 N O6

81 ANSWERS

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L4 81 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN Heptanedioic acid, 3-[[[(3,4-dimethoxyphenyl)methyl](2-ethoxy-2-

oxoethyl) amino] methylene] -4-oxo-, diethyl ester (9CI)

MF C25 H35 N O9

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L4 81 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN 3-Buten-2-one, 4-[2-[(dimethylamino)methyl]-4,5-dimethoxyphenyl]- (9CI)

MF C15 H21 N O3

$$\begin{array}{c} \text{MeO} & \text{CH} \\ \text{CH} \\ \text{CH} \\ \text{CH}_2 \\ \text{NMe}_2 \end{array}$$

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L4 81 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN 3-Penten-2-one, 4-[[(2-bromo-4,5-dimethoxyphenyl)methyl]amino]- (9CI)

MF C14 H18 Br N O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):1

L4 81 ANSWERS REGISTRY COPYRIGHT 2003 ACS

IN Benzeneacetonitrile, 3,4-dimethoxy-.alpha.-[(1-methyl-3-oxo-1-

butenyl)amino]- (9CI)

MF C15 H18 N2 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1):end

=> file caplus
COST IN U.S. DOLLARS

SINCE FILE TOTAL
ENTRY SESSION
151.75 151.96

FULL ESTIMATED COST

FILE 'CAPLUS' ENTERED AT 15:08:26 ON 17 MAR 2003 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 17 Mar 2003 VOL 138 ISS 12 FILE LAST UPDATED: 16 Mar 2003 (20030316/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 14 and vannillinamide

45 L4

0 VANNILLINAMIDE

L5 0 L4 AND VANNILLINAMIDE

=> s 15 and N-acyl 2546853 N

90371 ACYL

229 ACYLS

90469 ACYL

(ACYL OR ACYLS)

7921 N-ACYL (N(W)ACYL) L6 0 L5 AND N-ACYL => s 15 and vanil? 18727 VANIL? 0 L5 AND VANIL? 1.7 => s 17 and vanillin? 11056 VANILLIN? 0 L7 AND VANILLIN? L8 => s 15 and vanillinamide O VANILLINAMIDE 0 L5 AND VANILLINAMIDE L9 => s 14 and vanil? 45 L4 18727 VANIL? L10 2 L4 AND VANIL? => dis 110 1-2 bib abs hitstr L10 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2003 ACS 2002:511742 CAPLUS NΑ DN 137:216814 N-Acylvanillamides: Development of an Expeditious Synthesis and Discovery TТ of New Acyl Templates for Powerful Activation of the Vanilloid Receptor Appendino, Giovanni; Minassi, Alberto; Morello, Aniello Schiano; De ΑU Petrocellis, Luciano; Di Marzo, Vincenzo Dipartimento di Scienze Chimiche Alimentari, Farmaceutiche e CS Farmacologiche, Novara, 28100, Italy Journal of Medicinal Chemistry (2002), 45(17), 3739-3745 SO CODEN: JMCMAR; ISSN: 0022-2623 PΒ American Chemical Society DTJournal LA English CASREACT 137:216814 os A simple and general synthesis of vanillamides was developed and AB employed to screen acids from the fatty and isoprenoid pools for new acyl templates of biol. relevance as capsaicin analogs. Potent activation of the human vanilloid receptor 1 (VR1) was obsd. for the vanillamides of certain polyfunctional acids from both pools, showing that the vanilloid activity of capsaicinoids can be substantially improved by introducing polar groups and/or unsaturations on the acyl moiety. The activity of the unsatd. analogs was maintained or even increased by cyclopropanation, while .omega. dimerization led to a substantial increase of activity. Because of the wide structural diversity of the library of compds. screened, these observations could not be translated into a single framework of structure-activity relationships. Nevertheless, a series of new highly active leads was identified, validating the pharmacol. potential of the unnatural combination of natural building blocks to provide new bioactive compds. IT 457067-08-2P RL: PAC (Pharmacological activity); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation) (prepn. of N-acylvanillamines as templates for vanilloid receptor activators) RN 457067-08-2 CAPLUS Octadecanamide, N-[(4-hydroxy-3-methoxyphenyl)methyl]-12-oxo- (9CI) (CA CN INDEX NAME)

$$CH_2 - NH - C - (CH_2)_{10} - C - (CH_2)_5 - Me$$

HO

OMe

RE.CNT 35 THERE ARE 35 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2003 ACS

AN 1993:650209 CAPLUS

DN 119:250209

TI **Vanilloids**. 1. Analogs of capsaicin with antinociceptive and antiinflammatory activity

AU Janusz, John M.; Buckwalter, Brian L.; Young, Patricia A.; LaHann, Thomas R.; Farmer, Ralph W.; Kasting, Gerald B.; Loomans, Maurice E.; Kerckaert, Gary A.; Maddin, Cherie S.; et al.

CS Miami Valley Lab., Procter and Gamble Co., Cincinnati, OH, 45239-8707, USA

SO Journal of Medicinal Chemistry (1993), 36(18), 2595-604 CODEN: JMCMAR; ISSN: 0022-2623

DT Journal

LA English

GΙ

As part of a program to establish structure-activity relationships for vanilloids, analogs of the pungent principle capsaicin (I), the alkyl chain portion of the parent structure (and related compds. derived from homovanillic acid) was varied. In antinociceptive and antiinflammatory assays (rat and mouse hot plate and croton oil-inflamed mouse ear), compds. with widely varying alkyl chain structures were active. Short-chain compds. were active by systemic administration in the assay mentioned above but they retained the high pungency and acute toxicity characteristic of capsaicin. In contrast, the long chain cis-unsaturates, NE-19550 (vanillyloleamide) and NE-28345 (oleylhomovanillamide), were orally active, less pungent, and less acutely toxic than capsaicin. The potential of these compds. as antiinflammatory/analgesic agents is discussed in light of recent data on the mechanism of action of vanilloids on sensory nerve fibers.

Ι

IT 150988-84-4P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and antinociceptive and antiinflammatory activity of)

RN 150988-84-4 CAPLUS

CN Octadecanamide, N-[(4-hydroxy-3-methoxyphenyl)methyl]-9-oxo- (9CI) (CA INDEX NAME)