Calculus and Probability Assignment 4

Christoph Schmidl s4226887 Master Computing Science Group: Tutorial 5

May 18, 2018

Exercise 6

- a) ... Answer 6a
- b) ... Answer 6b

Exercise 7

a) i
$$\frac{\partial}{\partial x} f(x,y) = -\sin(4y - xy)(-y) = y\sin(4y - xy)$$

ii $\frac{\partial}{\partial y} f(x,y) = -\sin(4y - xy)(4 - x)$

b) i
$$\frac{\partial}{\partial x} f(x,y) = \frac{e^{\frac{x}{y}}}{y}$$

ii $\frac{\partial}{\partial y} f(x,y) = -\frac{xe^{\frac{x}{y}}}{y^2}$

Exercise 8

a)

$$\int_{1}^{3} (3\sqrt{x} + \frac{3}{x^{2}})dx = 3\left(\int_{1}^{2} \sqrt{x}dx + \int_{1}^{2} \frac{1}{x^{2}}dx\right)$$
$$= 3\left(\frac{2}{3}(2\sqrt{2} - 1) + \frac{1}{2}\right)$$
$$= 4\sqrt{2} - \frac{1}{2}$$

$$\int_{1}^{3} (3\sqrt{x} + \frac{3}{x^2})dx = 4\sqrt{2} - \frac{1}{2}$$

b)

$$\int_{-1}^{1} \frac{-5}{\sqrt{1-x^2}} dx = -5 \left(\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx \right)$$

$$= -5 \left[\arcsin(x) \right]_{-1}^{1}$$

$$= -5 \left[\arcsin(1) - \arcsin(-1) \right]$$

$$= -5 \left[\frac{\pi}{2} - (-\frac{\pi}{2}) \right]$$

$$= -5 \frac{2\pi}{2}$$

$$= -5\pi$$

$$\int_{-1}^{1} \frac{-5}{\sqrt{1-x^2}} dx = -5\pi$$

Exercise 9

a)

$$\int_{-\infty}^{\frac{-\pi}{2}} \frac{x \cos(x) - \sin(x)}{x^2} dx = \lim_{b \to \infty} \left(\left[\frac{\sin((x)}{x} \right]_{-b}^{\frac{-\pi}{2}} \right)$$
$$= \lim_{b \to \infty} \left(\frac{-1}{\frac{-\pi}{2}} - \frac{\sin(b)}{b} \right)$$
$$= \frac{2}{\pi}$$

$$\int_{-\infty}^{\frac{-\pi}{2}} \frac{x \cos(x) - \sin(x)}{x^2} dx = \frac{2}{\pi}$$

b) ... Answer 9b

Exercise 10

- a) ... Answer 10a
- b) ... Answer 10b

Answer Form Assignment 4

Name	Christoph Schmidl
Student Number	s4226887
Group	Master Computing Science
Group: Tutorial 5	'

Question		Answer
6a	(1pt)	Answer 6a
6b	(1pt)	Answer 6b
7a	(1pt)	
		$i \frac{\partial}{\partial x} f(x, y) = -\sin(4y - xy)(-y) = y\sin(4y - xy)$
		ii $\frac{\partial}{\partial y}f(x,y) = -\sin(4y - xy)(4 - x)$
7b	(1pt)	
		$i \frac{\partial}{\partial x} f(x, y) = \frac{e^{\frac{x}{y}}}{y}$
		ii $\frac{\partial}{\partial y}f(x,y) = -\frac{xe^{\frac{x}{y}}}{y^2}$
8a	(1pt)	
		$\int_{1}^{3} (3\sqrt{x} + \frac{3}{x^2})dx = 4\sqrt{2} - \frac{1}{2}$
8b	(1pt)	
		$\int_{-1}^{1} \frac{-5}{\sqrt{1-x^2}} dx = -5\pi$
9a	(1pt)	
		$\int_{-\infty}^{\frac{-\pi}{2}} \frac{x \cos(x) - \sin(x)}{x^2} dx = \frac{2}{\pi}$
9b	(1pt)	Answer 9b
10a	(1pt)	Answer 10a
10b	(1pt)	Answer 10b