LECTURE 2: FUNCTION MINIMIZATION

STAT 545: INTRO. TO COMPUTATIONAL STATISTICS

Vinayak Rao

Purdue University

August 19, 2019

GLOBAL AND LOCAL MINIMA

Find minimum of some function $f: \mathbb{R}^D \to \mathbb{R}$. (maximization is just minimizing -f).

No global information (e.g. only function values, derivatives).

GLOBAL AND LOCAL MINIMA

Find minimum of some function $f: \mathbb{R}^D \to \mathbb{R}$. (maximization is just minimizing -f).

No global information (e.g. only function values, derivatives).

Finding global minima is hard! Usually settle for local minima.

Even finding local minima is not easy. Usually need iterative algorithms. (Exceptions?)

Consider 1-d case. Let x_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

Consider 1-d case. Let x_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

 η : 'step-size' or 'learning rate'.

Consider 1-d case. Let x_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{\mathrm{d}f}{\mathrm{d}x} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

 η : 'step-size' or 'learning rate'.

Choosing η requires care (not too large or too small):

Consider 1-d case. Let x_{old} be our current value.

Update
$$x_{new}$$
 as $x_{new} = x_{old} - \eta \left. \frac{df}{dx} \right|_{x_{old}}$

The steeper the slope, the bigger the move.

 η : 'step-size' or 'learning rate'.

Choosing η requires care (not too large or too small):

Better methods adapt step-size according to the curvature of f.

GRADIENT DESCENT IN HIGHER-DIMENSIONS

Also applies to higher dimensions: $x_{new} = x_{old} - \eta |\nabla f|_{x_{old}}$

Again, need care choosing η

Alternately, at each step, set η by minimizing along ∇f

 \cdot Note: even the optimal step-size η can be inefficient:

Rather than finding best step-size each step, save computation and find a decent solution

WOLFE CONDITIONS TO DECIDE STEP-SIZE

Bad step sizes along direction **p** (for grad. descent, $\mathbf{p} = -\nabla f$):

1) Big steps with little decrease 2) Small steps getting nowhere

WOLFE CONDITIONS TO DECIDE STEP-SIZE

Bad step sizes along direction **p** (for grad. descent, $\mathbf{p} = -\nabla f$):

1) Big steps with little decrease 2) Small steps getting nowhere

Avoid (1): Avg. decrease at least some fraction of initial rate:

$$f(\mathbf{x} + \eta \mathbf{p}) \le f(\mathbf{x}) + \eta c_1(\nabla f \cdot \mathbf{p}),$$
 $c_1 \in (0, 1) \text{ e.g. } 0.9$

WOLFE CONDITIONS TO DECIDE STEP-SIZE

Bad step sizes along direction **p** (for grad. descent, $\mathbf{p} = -\nabla f$):

1) Big steps with little decrease 2) Small steps getting nowhere

Avoid (1): Avg. decrease at least some fraction of initial rate:

$$f(\mathbf{x} + \eta \mathbf{p}) \le f(\mathbf{x}) + \eta c_1(\nabla f \cdot \mathbf{p}),$$
 $c_1 \in (0, 1) \text{ e.g. } 0.9$

Avoid (2): Final rate is greater than some fraction of initial rate:

$$\nabla f(\mathbf{x} + \eta \mathbf{p}) \cdot \mathbf{p} \ge c_2 \nabla f(\mathbf{x}) \cdot \mathbf{p},$$

$$c_2 \in (0,1) \text{ e.g. } 0.1$$

WOLFE CONDITIONS

Permissible δx 's under condition 1

WOLFE CONDITIONS

WOLFE CONDITIONS

A simple way to satisfy Wolfe conditions:

Set
$$\mathbf{p} = -\nabla f, c_1 = c_2 = .5$$

Start with $\nu=1$, and while condition i is not satisfied, set $\nu=\beta_i t$ (for $\beta_1\in(0,1),\beta_2>1$ and $\beta_1*\beta_2<1$

GRADIENT FLOW

One way to understand/improve gradient descent is to view it as an approximation to 'gradient flow'.

Write \mathbf{x}_t for the position of a particle at time t, evolving as

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -\nabla f(\mathbf{x}_t), \quad \text{for some initialization at } t = 0.$$

 \mathbf{x}_t converges to \mathbf{x}^* , the minimum of f as t increases

· At minimum, $\nabla f(\mathbf{x}^*) = 0$.

Typically, not easy to solve the differential eq. for \mathbf{x}_t Different algs can be seen as approximations to this ideal

FORWARD AND BACKWARD METHODS

$$rac{\Delta \mathbf{x}_t}{\Delta t} pprox rac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -\nabla f(\mathbf{x}_t)$$
 (forward Euler approximation)
 $\implies \mathbf{x}_{t+\Delta t} = \mathbf{x}_t - \Delta t \nabla f(\mathbf{x}_t)$

This is just gradient descent with stepsize $\eta = \Delta t$

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \eta \nabla f(\mathbf{x}_i)$$

FORWARD AND BACKWARD METHODS

$$\begin{split} \frac{\Delta \mathbf{x}_t}{\Delta t} &\approx \frac{\mathrm{d} \mathbf{x}_t}{\mathrm{d} t} = -\nabla f(\mathbf{x}_t) \quad \text{(forward Euler approximation)} \\ \Longrightarrow \quad \mathbf{x}_{t+\Delta t} &= \mathbf{x}_t - \Delta t \nabla f(\mathbf{x}_t) \end{split}$$

This is just gradient descent with stepsize $\eta = \Delta t$

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \eta \nabla f(\mathbf{x}_i)$$

Backward Euler approx \implies $\mathbf{x}_{t+\Delta t} = \mathbf{x}_t - \Delta t \nabla f(\mathbf{x}_{t+\Delta t})$

For a step size η , the iterates are:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \eta \nabla f(\mathbf{x}_{i+1})$$

The updates are implicit (\mathbf{x}_{i+1} is on both LHS and RHS). Why do we care?

BACKWARD EULER METHOD

Backward method: $\mathbf{x}_{i+1} = \mathbf{x}_i - \eta \nabla f(\mathbf{x}_{i+1})$

Claim: this is the same as solving

$$x_{i+1} = arg min f(x) + \frac{1}{2\eta}(x - x_i)^2$$

BACKWARD EULER METHOD

Backward method: $\mathbf{x}_{i+1} = \mathbf{x}_i - \eta \nabla f(\mathbf{x}_{i+1})$

Claim: this is the same as solving

$$x_{i+1} = arg min f(x) + \frac{1}{2\eta}(x - x_i)^2$$

Also called a proximal point method

BACKWARD EULER METHOD

Backward method: $\mathbf{x}_{i+1} = \mathbf{x}_i - \eta \nabla f(\mathbf{x}_{i+1})$

Claim: this is the same as solving

$$x_{i+1} = arg min f(x) + \frac{1}{2\eta}(x - x_i)^2$$

Also called a proximal point method

Now, we see that:

- $\mathbf{x}_{i+1} \leq \mathbf{x}_i$, unlike gradient descent. Has faster convergence.
- This works even if ∇f is not defined!
- · Can be generalized to different distance functions:

$$\mathbf{x}_{i+1} = \text{arg min } f(\mathbf{x}) + \frac{1}{2\eta} d(\mathbf{x}, \mathbf{x}_i)$$

OTHER APPROACHES TO IMPROVING CONVERGENCE

Newton's method: uses second derivatives/Hessians:

$$x_{i+1} = x_i - f'(x_i)/f''(x_i)$$

For vector-valued \mathbf{x} , writing $\mathbf{H}f(\mathbf{x}_i)$ for the Hessian of f at \mathbf{x}_i ,

$$\mathbf{x}_{i+1} = \mathbf{x}_i - [\mathbf{H}f(\mathbf{x}_i)]^{-1}\nabla f(\mathbf{x}_i)$$

Intuition:

- · Stepsize is small when gradient is changing rapidly
- Each iteration uses $f(\mathbf{x}_i)$, $\nabla f(\mathbf{x}_i)$ and $\mathbf{H}f(\mathbf{x}_i)$ to construct a quadratic approximation to f, which is then minimized

BACK TO SIMPLE GRADIENT DESCENT

MLE: maximum likelihood estimation

Consider a set of observations $X = (x_1, \dots, x_N)$.

Assume $x_i \sim p(x|\theta)$

$$\theta_{MLE} = \operatorname{argmax} \ell(\theta) := \operatorname{argmax} \sum_{i=1}^{N} \log p(x_i | \theta)$$

BACK TO SIMPLE GRADIENT DESCENT

MLE: maximum likelihood estimation

Consider a set of observations $X = (x_1, \dots, x_N)$.

Assume $x_i \sim p(x|\theta)$

$$\theta_{MLE} = \operatorname{argmax} \ell(\theta) := \operatorname{argmax} \sum_{i=1}^{N} \log p(x_i | \theta)$$

The gradient of the log-likelihood is $\nabla \ell(\theta) = \sum_{i=1}^{N} \nabla \log p(x_i | \theta)$ (The average of the gradients of each datapoint.)

BACK TO SIMPLE GRADIENT DESCENT

MLE: maximum likelihood estimation

Consider a set of observations $X = (x_1, \dots, x_N)$.

Assume $x_i \sim p(x|\theta)$

$$\theta_{MLE} = \operatorname{argmax} \ell(\theta) := \operatorname{argmax} \sum_{i=1}^{N} \log p(x_i | \theta)$$

The gradient of the log-likelihood is $\nabla \ell(\theta) = \sum_{i=1}^{N} \nabla \log p(x_i | \theta)$ (The average of the gradients of each datapoint.)

Starting with an initial θ_0 , iterate:

$$\theta_{i+1} = \theta_i + \eta_i \nabla \ell(\theta_i)$$

GRADIENT DESCENT (CONTD.)

$$\nabla \ell(\theta) = \sum_{i=1}^{N} \nabla \log p(x_i|\theta)$$

Cons:

- Calculating gradient requires evaluating likelihood *N* times. (Each iteration must cycle through all datapoints.)
- · Lots of redundancy, esp. for large N.

GRADIENT DESCENT (CONTD.)

$$\nabla \ell(\theta) = \sum_{i=1}^{N} \nabla \log p(x_i|\theta)$$

Cons:

- Calculating gradient requires evaluating likelihood *N* times. (Each iteration must cycle through all datapoints.)
- · Lots of redundancy, esp. for large N.

Pros:

· Convergence is better understood.

STOCHASTIC GRADIENT DESCENT

Use a noisy gradient $\widehat{\nabla \ell}$.

Typically split data into N/B batches of size B. Each iteration, calculate gradient on one of the batches B_i :

$$\widehat{\nabla \ell}(\theta) = \sum_{j \in B_i} \nabla \log p(x_j | \theta)$$

STOCHASTIC GRADIENT DESCENT

Use a noisy gradient $\widehat{\nabla \ell}$.

Typically split data into N/B batches of size B. Each iteration, calculate gradient on one of the batches B_i :

$$\widehat{\nabla \ell}(\theta) = \sum_{j \in B_i} \nabla \log p(x_j | \theta)$$

Pros:

- Calculating the gradient is O(B).
 (Often, each batch is just a single datapoint)
- Much faster convergence (just one sweep through the data can get you a decent solution).
- Often, you get better solutions.
- \cdot Useful for online systems, tracking heta that varies over time .

STOCHASTIC GRADIENT DESCENT

Use a noisy gradient $\widehat{\nabla \ell}$.

Typically split data into N/B batches of size B. Each iteration, calculate gradient on one of the batches B_i :

$$\widehat{\nabla \ell}(\theta) = \sum_{j \in B_i} \nabla \log p(x_j | \theta)$$

Cons:

- · Convergence analysis is harder.
- Noisy gradients mean the algorithm will never converge.
 Typically need to reduce the step size every iteration.
 We want

$$\eta_i \to 0, \quad \sum_{i=1}^{\infty} \eta_i = \infty$$

E.g.
$$\eta_i = \frac{a}{b+i}$$

STOCHASTIC GRADIENT DESCENT WITH MOMENTUM

One way to accelarate convergence is to include a momentum term:

$$\theta_{i+1} = \theta_i + \eta_i \widehat{\nabla \ell}(\theta_i) + \beta_i \underbrace{(\theta_i - \theta_{i-1})}_{\text{momentum}}$$

STOCHASTIC GRADIENT DESCENT WITH MOMENTUM

One way to accelarate convergence is to include a momentum term:

$$\theta_{i+1} = \theta_i + \eta_i \widehat{\nabla \ell}(\theta_i) + \beta_i \underbrace{(\theta_i - \theta_{i-1})}_{\text{momentum}}$$

More generally,

$$\theta_{i+1} = \theta_i + \eta_i \widehat{\nabla} \ell(\theta_i + \gamma(\theta_i - \theta_{i-1})) + \beta_i(\theta_i - \theta_{i-1})$$

Include many popular algorithms:

- Polyak's heavy ball method (HB): $\gamma=0$
- · Nesterov's accelerated gradient (NAG): $\gamma_i = \beta_i$

ADAPTIVE METHODS

Adaptive methods accelerate convergence by using the entire history of iterates to determine step-sizes.

ADAPTIVE METHODS

Adaptive methods accelerate convergence by using the entire history of iterates to determine step-sizes.

Often take the general form

$$\theta_{i+1} = \theta_i + \eta_i H_i^{-1} \widehat{\nabla \ell} (\theta_i + \gamma (\theta_i - \theta_{i-1})) + \beta_i H_i^{-1} H_{i-1} (\theta_i - \theta_{i-1})$$

where H_i is some combination of all previous gradients. E.g.

$$H_i = \operatorname{diag}\left(\sum_{j=1}^i g_j \circ g_j\right),$$

with $g_j = \widehat{\nabla \ell}(\theta_j + \gamma(\theta_j - \theta_{j-1}))$, and \circ element-wise product.

Examples are AdaGrad, Adam etc.