Introducción a los métodos numéricos

Dr. Manuel Adrian Acuña Zegarra

Motivación

- ► Longitud debe ser igual a 10*m*.
- ▶ Presenta como sección transversal un semicírculo.
- No se quiere que se llene totalmente, sino que haya una altura h = 0.15m que no sea cubierta por agua.
- ► Considerando el punto anterior, que el volumen máximo del agua sea igual a 12.4 m³.

Motivación

Ecuación del volumen de agua para una estructura con las características anteriores:

$$V = L \left[\frac{\pi r^2}{2} - r^2 \arcsin\left(\frac{h}{r}\right) - h\left(r^2 - h^2\right)^{1/2} \right] .$$

Motivación

Ecuación del volumen de agua para una estructura con las características anteriores:

$$V = L \left[\frac{\pi r^2}{2} - r^2 \arcsin\left(\frac{h}{r}\right) - h\left(r^2 - h^2\right)^{1/2} \right] .$$

Reemplazando en la ecuación anterior las características del bebedero a considerar, se tiene:

$$12.4 = 10 \left[\frac{\pi r^2}{2} - r^2 \arcsin\left(\frac{0.15}{r}\right) - 0.15 \left(r^2 - 0.0225\right)^{1/2} \right] .$$

Características de los métodos numéricos

► Son técnicas o procesos mediante los cuales es posible reformular problemas matemáticos, de tal forma que puedan resolverse utilizando operaciones aritméticas.

Características de los métodos numéricos

- Son técnicas o procesos mediante los cuales es posible reformular problemas matemáticos, de tal forma que puedan resolverse utilizando operaciones aritméticas.
- Representan opciones que aumentan, en forma considerable, la capacidad para enfrentar y resolver los diferentes problemas que se nos presentan.

Características de los métodos numéricos

- Son técnicas o procesos mediante los cuales es posible reformular problemas matemáticos, de tal forma que puedan resolverse utilizando operaciones aritméticas.
- Representan opciones que aumentan, en forma considerable, la capacidad para enfrentar y resolver los diferentes problemas que se nos presentan.
- ► En general, se emplean un buen número de cálculos aritméticos para su desarrollo.

Figura 1: Velocímetro y odómetro de un automóvil

► El concepto de cifras o dígitos significativos se ha desarrollado para designar formalmente la confiabilidad de un valor numérico.

- El concepto de cifras o dígitos significativos se ha desarrollado para designar formalmente la confiabilidad de un valor numérico.
- Las cifras significativas de un número están dadas por el número de dígitos que se ofrecen con certeza, más uno estimado.

- ► El concepto de cifras o dígitos significativos se ha desarrollado para designar formalmente la confiabilidad de un valor numérico.
- Las cifras significativas de un número están dadas por el número de dígitos que se ofrecen con certeza, más uno estimado.
- Por convención al dígito estimado se le da el valor de la mitad de la escala menor de división en el instrumento de medición.

Exactitud y precisión

► La exactitud se refiere a qué tan cercano está el valor calculado o medido del valor verdadero.

Exactitud y precisión

- ► La exactitud se refiere a qué tan cercano está el valor calculado o medido del valor verdadero.
- ► La precisión se refiere a qué tan cercanos se encuentran, unos de otros, diversos valores calculados o medidos.

Exactitud y precisión

► Los errores numéricos surgen del uso de aproximaciones para representar operaciones y cantidades matemáticas exactas.

- ► Los errores numéricos surgen del uso de aproximaciones para representar operaciones y cantidades matemáticas exactas.
- ► Tipos de errores numéricos:
 - 1. Errores de truncamiento.
 - 2. Errores de redondeo.

- ► Los errores numéricos surgen del uso de aproximaciones para representar operaciones y cantidades matemáticas exactas.
- ► Tipos de errores numéricos:
 - 1. Errores de truncamiento.
 - Frrores de redondeo.
- ▶ Ambos tipos de errores se pueden expresar como:

 $Valor\ verdadero = Valor\ aproximado + error$

Al reordenar la igualdad anterior, obtenemos

error = Valor verdadero - Valor aproximado,

el cual, tras aplicarle el valor absoluto, se obtiene:

 $error_{absoluto} = |Valor verdadero - Valor aproximado|,$

Al reordenar la igualdad anterior, obtenemos

error = Valor verdadero - Valor aproximado,

el cual, tras aplicarle el valor absoluto, se obtiene:

 $error_{absoluto} = |Valor verdadero - Valor aproximado|,$

Ejemplo: Suponga que se tiene que medir la longitud de un puente y la de un remache, obtiendo 9999 y 9 cm, respectivamente. Si los valores verdaderos son 10000 y 10 cm, calcule el error absoluto en cada caso.

El error relativo está expresado de la siguiente manera

$$\mathsf{error}_{\textit{relativo}} = \frac{\mathsf{error}_{\textit{absoluto}}}{|\mathsf{Valor}|\,\mathsf{verdadero}|},$$

El error relativo está expresado de la siguiente manera

$$error_{relativo} = \frac{error_{absoluto}}{|Valor verdadero|},$$

mientras que el error porcentual está dado por

 $error_{porcentual} = error_{relativo} \times 100 \%$.

Cuando se trabaja en términos computacionales surge el concepto de Tolerancia, el cual puede ser entendido como la cota superior que puede tomar alguno de los errores deseados. Denotaremos a este valor por *TOL*.

Es importante relacionar los errores con el número de cifras significativas en la aproximación. Para hacer esto, se empleará Es posible demostrar el siguiente criterio (Scarborough, 1966):

$$TOL = \left(0.5 \times 10^{2-n}\right) \%$$

con el cual se tendrá la seguridad de que el resultado es correcto en al menos n cifras significativas.

Errores de truncamiento

Son aquellos errores que resultan al usar una aproximación en lugar de un procedimiento matemático exacto.

Por ejemplo, sea la ecuación diferencial

$$\frac{dx}{dt} = -2x,$$

la cual al ser resuelta, se tiene como solución:

$$x(t) = x(0)e^{-2t}$$

Errores de truncamiento

Por otro lado, la ecuación diferencial puede ser aproximada mediante un procedimiento de diferencias finitas, obteniendo:

$$\frac{dx}{dt} pprox \frac{x(t_{i+1}) - x(t_i)}{t_{i+1} - t_i}.$$

Al reemplazar la expresión anterior en la ecuación inicial, se obtiene:

$$x(t_{i+1}) = (1 - 2(t_{i+1} - t_i))x(t_i)$$
,

donde $t_{i+1} - t_i = h$, con h constante para todo i.

Serie de Taylor

La serie de Taylor proporciona un medio para predecir el valor de una función en un punto en términos del valor de la función y sus derivadas en otro punto. Dicha serie se expresa de la siguiente forma:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)(x-a)^n}{n!} .$$

¿Qué requerimientos debe cumplir la función f para poder ser aproximada a través de una serie de Taylor?

Serie de Taylor

Por ejemplo, sea la función:

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2,$$

la cual se busca aproximar cuando x=2 mediante una expansión de Taylor alrededor de 1.