

INTRODUCTION TO AI AND MACHINE LEARNING

# SESSION #1

# WHY ME???



#### **MACHINE LEARNING TRAINING SESSION #1**

## WHY ME???

#### 9 Completed Competitions 952/4127 **Elo Merchant Category Recommendation** Top 24% Help understand customer loyalty Featured - a year ago - > banking, tabular data, regression 1524/1688 TalkingData Mobile User Demographics Top 91% Get to know millions of mobile device users TalkingData Featured - 3 years ago - \ demographics, mobile web, tabular data, multiclass classification 1677/1871 Avito Demand Prediction Challenge Top 90% Predict demand for an online classified ad Featured - 2 years ago - % tabular data, image data, text data 3207/4550 Toxic Comment Classification Challenge Top 71% Identify and classify toxic online comments Featured ⋅ 2 years ago ⋅ % arguments, text data 3484/3946 TalkingData AdTracking Fraud Detection Challenge Top 89% Can you detect fraudulent click traffic for mobile app ads? Featured - 2 years ago 3711/7190 Home Credit Default Risk Top 52% Can you predict how capable each applicant is of repaying a loan? Featured - a year ago - \$ home, banking, tabular data 4267/6381 **IEEE-CIS Fraud Detection** Top 67% Can you detect fraud from customer transactions? Research - 4 months ago - % tabular data, binary classification 49/58 Nagyházi feladat Top 85% Adatelemzési platformok és Customer Analytics 2019 InClass - 7 months ago 223/580 DonorsChoose.org Application Screening

Predict whether teachers' project proposals are accepted

Playground - 2 years ago - ♥ crowdfunding, binary classification

Top 39%

### **COURSE AGENDA**

#### AFTER THIS COMPLETING THIS COURSE YOU WILL:

- know the basic theory behind machine learning
- know the essential machine learning techniques and libraries
- get some hands-on machine learning programming practice in Python
- be able to decide on machine learning applicability to a given problem.

### **COURSE AGENDA**

#### AFTER THIS COMPLETING THIS COURSE YOU WILL NOT BE:

- a machine learning expert
- a Python programmer
- offered a job as a machine learning engineer at the Firm.

## **COURSE AGENDA**

**Session #1**: Introduction to machine learning, concepts, basics, capabilities.
Classification basics.

**Session #2**: Feature engineering, data wrangling. Regression basics.

**Session #3**: Working with textual data, text classification, NLP basics

**Session #4**: Introduction to neural networks, deep learning, image recognition

### **SESSION #1 AGENDA**

## **SECTION 1**

- What is machine learning?
- Essential machine learning problems & application areas
- Machine learning techniques & algorithms overview

## **SECTION 2**

- Setting up a Python ML development environment
- Case Study: The survivals of the Titanic



MACHINE LEARNING IS A FIELD OF STUDY THAT GIVES COMPUTERS THE ABILITY TO LEARN WITHOUT BEING EXPLICITLY PROGRAMMED

Arthur Samuel, 1959

## MACHINE LEARNING VS. AI. VS. DATA SCIENCE

#### **Data Science**

Covers the practical application of advanced analytics, statistics, machine learning, and the necessary data preparation in a business context.



## MACHINE LEARNING VS. TRADITIONAL PROGRAMMING



Source: Hands-On Machine Learning with Scikit-Learn, Keras and Tensorflow (Géron)

## MACHINE LEARNING VS. TRADITIONAL PROGRAMMING



Source: Hands-On Machine Learning with Scikit-Learn, Keras and Tensorflow (Géron)



#### A clothes shop



Data: pictures of people entering the shop

Business context: optimise stock based on customer gender ratio

**Domain expertise**: how to actually optimise stock???

#### A bank



Data: user signatures on documents

**Domain expertise**: ability to determine whether the client is left or right-handed

Business context: how can you make money out of it???

A printing company



Domain expertise: predict machine failures

Business context: save money by predictive maintenance

**Data**: ????

## **ESSENTIAL MACHINE LEARNING PROBLEMS**

- categorisation
- numeric estimation
- forecasting
- data transformation.

## MACHINE LEARNING APPLICATION AREAS

- natural language processing
- image recognition
- signal recognition (e.g. voice, music)
- recommender systems
- anomaly detection.

### **HOW MACHINES LEARN?**

- Supervised learning
  - human labelled data, eg. spam filter
- Unsupervised learning
  - no labelled data, eg. segment customers
- Semi-supervised learning
  - combination of the two, eg. Google Photos

# **SUPERVISED LEARNING**



Source: https://www.codeingschool.com/2019/06/regression-classification-supervised-machine-learning.html



Source: https://www.geeksforgeeks.org/getting-started-with-classification/binary-vs-multi-class-classification/

Result of a classification can be:

- true positive
- true negative
- false positive
- false negative

Result of a classification can be:

- true positive
- <sup>-</sup> true negative
- false positive
- false negative

According to our model the patient has cancer

#### **Model Evaluation**

- **Accuracy**: Percentage of correct predictions made by the model.
- **Precision**: tp / (tp + fp) a.k.a positive predictive value
- **Recall**: tp / (tp + fn) a.k.a sensitivity
- **F1 score**: 2 \* (precision \* recall) / (precision + recall)

Ideal model: high precision, high recall

High recall, low precision: few fn, lot of tp, lot of fp

Low recall, high precision: few fp, few tp, lot of fn

#### Confusion matrices

|              | Actual<br>Cancer = Yes | Actual<br>Cancer = No |  |
|--------------|------------------------|-----------------------|--|
| Predicted    | True Positive          | False Positive        |  |
| Cancer = Yes | 57                     | 14                    |  |
| Predicted    | False Negative         | True Negative         |  |
| Cancer = No  | 23                     | 171                   |  |

|                      | Actual<br>Dog | Actual<br>Cat | Actual<br>Rabbit |
|----------------------|---------------|---------------|------------------|
| Classified<br>Dog    | 23            | 12            | 7                |
| Classified<br>Cat    | 11            | 29            | 13               |
| Classified<br>Rabbit | 4             | 10            | 24               |

## BASIC STATISTICS FOR MACHINE LEARNING

You have the following data set: 7, 11, 11, 15, 20, 20, 37

Find the following properties for the data set:

- mean
- mode
- median
- variance
- standard deviation

## BASIC STATISTICS FOR MACHINE LEARNING

You have the following data set: **7, 11, 11, 15, 20, 20, 37** 

Find the following properties for the data set:

- mean = 
$$(7 + 11 + 11 + 15 + 20 + 20 + 37) / 7 = 121 / 7 = 17.28$$

- mode = highest frequency element: 11 and 20
- median = the middle element in numerical order: 15

variance: 
$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x - \overline{x})^{2}$$
, standard deviation: 
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x - \overline{x})^{2}}$$

- both shows how far the data is from the mean

# **CODE DEMO**

### RECAP

#### Today we learnt:

- what are the essential machine learning problems and their application in a business context
- supervised learning -> classification -> binary classification
- the evaluation of classification models
- the basic steps in Python to build a basic machine learning model

## **HOMEWORK**

#### THE PIMA INDIAN DIABETES DATASET

Can you build a machine learning model to accurately predict whether or not the patients in the dataset have diabetes or not?