PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-114020

(43)Date of publication of application: 02.05.1995

(51)Int.CI.

GO2F 1/1335 G02F 1/1212 G02F 1/1333 G02F 1/136

(21)Application number: 05-285923

(71)Applicant:

NIPPONDENSO CO LTD

(22)Date of filing:

18.10.1993

(72)Inventor:

SATO MAKOTO

OZAKI MASAAKI

KAWAHARA HIDEKI

(54) LIQUID CRYSTAL DISPLAY ELEMENT

(57)Abstract:

PURPOSE: To provide the liquid crystal display device having transmittance which

depends less on vertical visual angles.

CONSTITUTION: There are transparent electrodes 4, 5 on the inner side of substrate glass 1, 3 at the cross section of the color liquid crystal display element provided with two cell gaps d1, d2 within one pixel. Oriented films 5, 7 are formed on the surfaces thereof and are provided with TFT elements with each of the pixels. Phase difference plates 8, 9 for Improving the visual angle are formed on the outside of the substrates 1, 2 and polarizing plates 10, 11 are formed on the outside thereof. Different color filters 12, 12' are arranged in the respective elements. Insulating films 13 used thus far in the process in order to protect the TFT elements are partly made to remain in the respective $\,^{17}$ elements. The cell gap which is the width of the liquid crystal layer is thereby provided with two d1, d2. Since these materials are originally used, there is no need for increasing man-hours and materials. The visual angle at which transmittances of 10% and 30% of medium contrast invert is apread from a lower direction 42° thus far to 55% and the visibility in the lower direction is improved.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Japanese Laid-Open Patent Publication No. 7-114020/1995 (Tokukaihei 7-114020) (Published on May 2, 1995)

[0005]

[Problems to Be Solved by the Invention]

problem identified above, the arrangement of the present invention is such that, a liquid crystal display element, in which liquid crystal is sandwiched between two substrates each having an electrode and twisted when no voltage is applied to the electrode, includes at least one phase difference plate and a plurality of cell gaps formed in one pixel. A second arrangement of the present invention is characterized in that, the cell gaps are any one of the followings or a combination of them: gaps formed by causing a part of an insulating film on a transparent electrode of one pixel to remain; gaps formed by causing a part of a gate insulating film of a thin-film transistor as a structural element of one pixel to remain; and gaps formed by altering, in one pixel, the thickness of a topcoat layer provided between the substrates. A third arrangement of the present invention is such that the substrate is a glass substrate, and the cell gaps are irregularities formed by subjecting the surface of the substrate to a hydrofluoric acid

treatment. A fourth arrangement of the present invention is such that the difference between the cell gaps is only not more than 10% of the thickness of the cell gaps. A fifth arrangement of the present invention is such that the difference between the cell gaps is only not more than 10µm.

[0006]

[Effects]

In liquid crystal displays, optical transmission is controlled by twisting the orientation of liquid crystal molecules by applying an electric field thereto. For this reason, it is unavoidable that the contrast varies depending on viewing angle. Thus, since the dependency on vertical viewing angles varies in accordance with the variation of a retardation value of the liquid crystal element, different retardation values are set so that the dependency on vertical viewing angles is enhanced in addition to the effect of the phase difference plate, and consequently the dependency on the viewing angles is improved by balancing out the viewing angles. Since the retardation value is determined by multiplying an optical anisotropy An of the liquid crystal molecules by a cell gap d, the cell gap d is caused to vary accordingly, in order to acquire a desired retardation value. The cell gap is a gap between alignment films. When the gap between the alignment films is varied, since the rotation angle of the liquid crystal molecules is consistent (i.e. the value Δn is consistent) in the same electric field, the total rotation angle is decreased when the cell gap as accumulation of the rotation angles is caused to be shorter. As a result, the transmittance decreases. In other words, a multi-cell-gap arrangement is realized by providing more than one cell gap in one pixel of the liquid crystal element, and the range of retardation values in one pixel is increased. With this, the dependency of the transmittance on the viewing angles is varied, causing the inversion to occur at the deeper angle.

[8000]

The following will describe a specific embodiment of the present invention. Fig. 1 shows a cross section of a color liquid crystal display element in which two cell gaps d₁ and d₂ are provided in one pixel. In terms of structure, this liquid crystal display element is identical with a conventional liquid crystal display element in which a liquid crystal layer 3 is sandwiched between two glass substrates 1 and 2. The liquid crystal element in Fig. 1 is arranged in such a manner that transparent electrodes 4 and 5 are disposed on respective inner surfaces of glass substrates 1 and 2, on these transparent electrodes 4 and 5 alignment films 6 and 7 are formed, respectively, and a

TFT (Thin Film Transistor) element (not illustrated in its entirety) as a switching element is provided for each pixel. Furthermore, on respective outer surfaces of the glass substrates 1 and 2, conventional phase difference plates 8 and 9 for improving viewing angles are formed, and polarizing plates 10 and 11 are provided further outsides thereof. The figure illustrates two pixels, and these pixels have different color filters 12 and 12'. In each of these pixels, two cell gaps d1 and d2 as widths of the liquid crystal layer are formed by forming an insulating film 13. This insulating film 13 is a residue of an insulating film which has conventionally been used in a process in order to protect a TFT element functioning as a pixel. Since the insulating film 13 is a part of the conventionally required member, neither additional manufacturing steps nor additional materials are required. Note that, in figures, the widths of the cell gaps, other kinds of thicknesses and the like are not illustrated in conformity to actual proportions.

[0009]

Provided that the cell gap $d_1=4.0\mu m$ and the cell gap $d_2=4.5\mu m$, a transmittance in 10% halftone varies in such a way that, as Fig. 6 shows, the transmittance in the cell gap d_1 is smaller than the transmittance in the cell gap d_2 when the viewing angle is small, but the transmittance in

the cell gap d₁ is smaller than the transmittance in the cell gap d₂ when the viewing angle is not more than -40° in the downward direction. That is, from one viewpoint, the transmittance of the liquid crystal between the cell gap d₁ is different from the transmittance of the liquid crystal between the cell gap d₂, when identical voltages are applied thereto. However, as the liquid crystal between the cell gap d₁ is very close to the liquid crystal between the cell gap d₂, one cannot discern the difference between the transmittances in one pixel, so that the transmittance of one pixel is at an average of these two transmittances.

Thus, in the case of the multi-cell-gap arrangement as shown in Fig. 1, the transmittance in 10% contrast halftone is at an average of the transmittances in Fig. 6, and the transmittances in other percentages are also figured out in similar manners. Fig. 7 shows the overall transmittances. This figure indicates that the inversion occurs at 55° in the downward direction in the cases of the transmittances in 10% and the transmittances in 30%, comparing to 42° in the downward direction in the case of the conventional art.

[0011]

[0010]

As described above, by the plurality of cell gaps, the transmittances in the downward direction are varied and

an angle at which the inversion occurs is moved. For this reason, the visibility in the downward direction is improved by providing cell gaps in one pixel. There are several ways to form the cell gaps.

[0012]

(Second Embodiment)

After forming color filters 12 and 12' as shown in Fig. 8, a top coat layer 14 is formed thereon, and cell gaps di and d2 are formed by forming an unevenness in each pixel. After forming the top coat layer 14, transparent electrodes 4 and 5 and alignment films 6 and 7 are formed, and consequently a liquid crystal display element is formed. In this case, the unevenness is formed on the side opposite to that of First Embodiment in Fig. 1 but the difference of retardation values is identical with that of the Embodiment in Fig. 1.

[0013]

(Third Embodiment)

Fig. 9 illustrates how cell gaps are formed using a gate insulating film 15. In a process of forming a gate electrode of a transistor of each pixel, a part of the gate insulating film is caused to remain and then transparent electrodes 4 and 5 and alignment films 6 and 7 are formed on that part, so that the thickness of a liquid crystal layer 3 is caused to be uneven. This process is also a part of

the conventional process, thereby not resulting in cost rise.

[0014]

(Fourth Embodiment)

Fig. 10 illustrates how cell gaps are formed by forming unevenness on the surface of a glass substrate. The surface of a glass substrate 16 is subjected to a hydrofluoric acid treatment so that scabrous and small irregularities are formed on the surface. As a result, the irregularities equivalent to the cell gaps d1 and d2 are formed in one pixel. In this case, the irregularities are sufficiently small in consideration of the size of the pixel. For this reason, an image can be reproduced in a more uniform manner.

[0015]

The embodiments above can be easily implemented, and cell gaps formed through varying combinations of these embodiments can also vary the retardation values. Thus, a suitable combination of the embodiments can be used depending on the situation, and a liquid crystal display element with improved vertical visibility can be formed without any problems. Also note that, although two cell gaps are formed in First, Second, and Third Embodiments, it is possible to obtain similar effects when more than two cell gaps are formed in one pixel, and the alignment of cell gaps is not necessarily continuous as in Fourth Embodiment.

甲第 3 号証

(19)日本国特許广(JP)

(12) 公開特許公報(A)

(11)特許出頭公開番号

特開平7-114020

(43)公開日 平成7年(1995)5月2日

(51) Int.Cl.*		鐵別記号	庁内整理番号	FI		技術表示箇所
G 0 2 F	1/1335 1/1333	510			·	
		500				
	1/136	500				

審査腱水 未請求 論求項の数5 FD (全 6 頁)

(21)出願書号	特數平5-285923	(71) 出國人	000004260		
			日本電貌株式会社		
(22) 山闌日	平成5年(1993)10月18日		愛知県刈谷市昭和町1丁目1番地		
		(72) 発明者	佐童・良		
			爱知県刈谷市昭和町1丁目1番地 日本電		
			整株式会社内		
		(72) 発明者	尾崎 正明		
			曼知渠刈谷市昭和町1丁目1番地 日本電		
			装株式会社内		
		(72) 発明者	川原英質		
			爱知県刈谷市昭和町1丁目1番地 日本電		
		•	装株式会社内		
		(74)代理人	井理士 富谷 修		

(54) 【発明の名称】 被品表示案子

(57)【裝約】

【目的】上下視角依存性の少ない透過率の液晶表示装置 を提供すること。

【構成】図1は、一面密内にセルギャップを二つd1,d2 設けた場合のカラー液晶表示素子の断面で、基板ガラス1,2 の内側に透明電極4,5 があり、その表面に配向膜6,7 が形成され、面素ごとに1FT素子が設けられている。基板1,2 の外に、視角改善用の位相差板8,9 、その外部に偏光板10,11 が形成されている。各蛮子には異なるカラーフィルタ12,12 が配置されている。各蛮子には異なるカラーフィルタ12,12 が配置されている。各面素内にTFT素子の保護用としてプロセス中で用いていた絶縁膜13を一部残すことによって、液晶層の幅であるセルギャップにd1,d2 の二つが設けられる。元々使用している材料なので工数・材料の付加は必要ではない。この構成で、中間間の10%と30%の透過率が逆転現象を起こす視角が、従来の下方向役。から55°に広がり、下方向の視認性を改善できた。

(2)

特開平7-114020

【特許請求の範囲】

【鯖水漬1】 「缸極を有する二枚の基板と、設基板に挟 持され、前記電極に駆動電圧無印加状態にて捻じれた液 晶の配向をしている液晶表示数子において、

1

少なくとも一枚の位相建板を有し、

一面素内に複数のセルギャップを有することを特徴とす る液晶表示素子。

【請求項2】 前記セルギャップは、前記基板の内側に 設けられた前記一画業の透明電極上の絶禄膜を一部残し て形成した段差、または前配一圓素の構成要素である簿 10 膜トランジスタのゲート絶縁膜の一部を残して設けた段 差、または前記基板の内側に設けられたトップコート層 の厚みを前記一面素内で変化させて形成した段差である こと、のいずれか、もしくはそれらの組合せであること を特徴とする請求項1に記載の液晶表示素子。

【講求項3】 前記基板はガラス基板であり、

前記セルギャップは、前記基板の表面にフッ酸処理を施 して設けた凹凸による改差であることを特徴とする脚水 項1に記収の液晶表示素子。

【請求項4】 前記セルギャップの段差は、たかだかセ 20 ルギャップの10%以下であることを特徴とする調求項 ・ 1 乃至 5 いずれかに配詉の液晶表示器子。

【鯖水頂5】 - 前配セルギャップの段差は、高々10ヵ m以下であることを特徴とする請求項1乃至5いずれか に配収の液温表示器子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、液晶表示素子に関し、 特に、禪牒トランジスタ付き液晶表示紫子に関し、取戦 用液晶モニターや大型液晶テレビ等に利用される。

[0002] 【従来の技術】従來、障膜トランジスタ付き液晶表示案 子(以下TFT-LCD と記す)は、上下の基板のラピング方 向により、正面より高いコントラストが得られる視認方 向がある。これは一般にハイコントラスト方向と呼ば れ、図2に示す配置関係となっている。図2は液晶面を ほぼ垂直な正面から見た図で、実線矢印の方向が下基板 の配向順のラピング方向、点線矢印の方向が上基板の配 向膜のラビング方向という直交関係になるときに下方向 においてハイコントラスト、つまり電極に電圧を無印加 40 と印可との透過率の比(コントラスト)が最大となる。 【0003】この配置関係では、図3に示す上下視角に 対する遚過率の関係からわかるように、正面(視角0 度) における透過率10%と30%のレベルが進転してしま う(図4に示すように左右の視角では生じない)。な お、図3を始めとする透過率の図の各カーブは、角度() 。 における各透過率値となる印加電圧を固定したまま視

角を変化させた場合の透過率変化を示している。この油

転現象は、正面から見て正常な表示となる電圧印加をし

ラストがある模様が区別付かなくなることを意味し、液 昆の表示を非常に見にくくしてしまうが、この現象が視 角の下方向24°で発生している。それで、この現象を防 ぐために特開平4-326331号公報で示されるように、リタ デーション値を変えるため位相差板を基板に張り合わせ

て用いる方法が提案されている。リタデーション値は、 液晶分子の屈折率異方性 A n とセルギャップ d との種で ある。この方法は、上下視角に対する透過率依存性を位 相差板ですらし、図5の透過率のグラフに示すように、 逆転現象を下方向42°で起こさせて視角範囲が広げられ

ている。

[0004]

【発明が解決しようとする課題】 しかしながら、液晶板 を例えば机上に水平に置いて手前から液晶板を見る場合 とか、大型液晶テレビを壁のすこし高い所に掛けて下か ら見上げるような場合には、視角が簡単に下方向42°を 越えてしまって見にくくなり、上記の対策だけでは不十 分である、という問題がある。それで、本発明の目的 は、より広範囲な机角を持ち、視角依存性の少ない漫遇 率を実現する液晶表示装置を提供することである。

[00051

30

【課題を解決するための手段】上記の課題を解決するた め本発明の構成は、電極を有する二枚の基板と、酸基板 に挟持され、前記電極に駆動電圧無印加状態にで捻じれ た液晶の配向をしている液晶表示素子において、少なく とも一枚の位相差板を有し、一画素内に複数のセルギャ ップを有することである。本発明の第二の構成はまた、 前記セルギャップは、前記基板の内側に設けられた前記 一画素の透明電極上の絶縁膜を一部残して形成した段 差、または前記一画素の構成要素である薄膜トランジス タのゲート絶縁膜の一部を残して設けた段差、または前 記載板の内側に設けられたトップコート層の厚みを前記 一画器内で変化させて形成した段差であること、のいず れか、もしくはそれらの組合せであることを特徴とす る。本発明の第三の構成はさらに、前記基板がガラス基 板であり、前記セルギャップが、前記基板の表面にフッ 酸処理を施して設けた凹凸による段差となっていること である。また第四の構成は、前記セルギャップの段差 が、たかだかセルギャップの10%以下となっているこ とである。また第五の構成は、前記セルギャップの段差 が、高々10μm以下であることを特徴とする。

[0006]

【作用】液晶表示はもともと液晶分子の配向を電界で捻 じって、光の通過を制御するため、視角が異なるとコン トラストに差が出てしまうのは止むを得ない。そこで、 液晶素子のリタデーション値が異なると上下視角依存性 も変化することから、逆にこのリタデーション値を異な る構成にし、位相差板の幼巣に加えて上下視角依存性を さらにもたせ、視角性をパランスさせる形で視角依存性 た場合に、それを斜めから見ると、正面から見たコント 50 の改善を実施する。リタデーション他は、液晶分子の配

20

折率異方性 An とセルギャップ d との積であるので、セ ルギャップを変化させて実現する。 セルギャップは配向 膜の間隔であり、この配向腹間隔が異なると、同一電界 では液晶分子の回転角度は同じ (即ち△ nが同じ) であ るため、その回転角の累積を意味するセルギャップが短 いと金回転角が少なくなり透過率を下げることになる。 即ち、液晶素子の同一回案内に二つ以上のセルギャップ を設けてマルチセルギャップとし、リタデーション値を 一画案内で幅をもたせることで、透過率の視角に対する 依存性を変化させ、逆転現象を深い角度の方に移させ る。

[0007]

【発明の効果】視角依存性の程度を示す、コントラスト が中間調の10%と30%の透過率が逆転現象を起こす視角 が、従来の下方向42°から55°に広がり、下方向からの 視認性が改善された。

[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説 明する。図1は、一面素内にセルギャップを二つdi.d 1 設けた場合のカラー液晶炎示素子の断面を示してい る。この液晶投示素子の構造は、2枚の基板ガラス1、 2の間に液晶圏3がある従来のものと変わらない。図1 中の液晶表示素子の構造は、基板ガラス1、2の内面側 に渡明電板4、5があり、その表面に配向膜6、7が形 成され、凹劣ごとにスイッチング素子としてITT(Thin F ilm Transistor)素子(全体構成を図示していない)が 設けられている。また、蓋板ガラス1、2の外面に、従 来より提案されている視角改善用の位相差板8、9が飲 けられ、その外部に優光板10、11か形成されてい る。ここでは回済が二個分示してあり、それぞれの業子 30 に異なるカラーフィルタ12、12' が配置されてい る。このそれぞれの画素内に、絶縁脱13によって液晶 <u>層の幅であるセルギャップにdi, di</u> の二つが設けられ ている。この絶模膜13は、従来、面素の機能をなす 丁 「丁素子の保護用としてプロセス中で用いていた絶縁膜を 一部残したものである。そのため、もともと使用してい る材料であるため、工数および材料の付加は必要ではな い。なお、図1および以降の図のセルギャップやその他 の厚み等は、実際の比率を正確には表示していない。 【0009】セルギャップを、d1=4.0 μm、d2=4.5

μmとした場合に、中間調である10%送過率の特性は、 図6に示す透過率のように、4.0 μmの透過率が、4.5 μmのギャップになると、視角が小さいうちは値が大き くなり、下方向 -40°以上では4.0 μmの遠過率が大き くなる。即ち同一萬圧印加に対して、二つのセルギャッ プが存在することで、同一方向からみると異なった透過 率で見えることになる。同一面素の位億的差異では区別 は付かずに同じ回案と見えてしまい、透過卓はこの二つ のグラフの平均となる。

【0010】そのため、図1のような同一直素内にマル 50

チセルギャップを有する構成は、コントラスト中間調10 %の透過率が図6に示す透過率を合成した透過率とな り、他のパーセンテージの透過率の分布も分成されるの で、全体として図7に示すような透過率分布を示すよう になる。それで、中間調の10%と30%の渡過率が逆転現 象を起こす視角が、従来の下方向42°から55°に広が

【0011】以上のように、この複数のセルギャップに より下方向に対する遊過率分布を変化させ、逆転現象を 移動させることができるので、同一回案内にセルギャッ プを設けることで下方向の視認性を改善できる。 セルギ ヤップを形成するにはいろいろ考えられる。

【0012】 (第二実施例) まず、図8に示すように、 カラーフィルタ12、12′を形成した後に、その表面 にトップコート層14を形成し、圓鷺ごとに段差を形成 してセルギャップdi, di を形成する。トップコート層 14の形成後、透明電極4、5、配向膜6、7を形成し て液晶表示素子とする。この場合は段差は図1の実施例 の場合と反対側に形成されるが、リタデーション値の違 いとしては同学である。

【0013】(第三実施例)図9はセルギャップ形成と して、ゲート絶線膜15を利用する場合で、各面素のト ランジスタのゲート単極を形成する工程において、ゲー ト絶縁腹を一部残したままにし、その上に透明電極 4、 5、配向腰6、7を形成することで、液晶層3の厚みに 差異を形成する。この工程も従来の工程の一部に組み込 まれるのでコストアップにならない。

【0014】(第四実施例)図10は、こんとは基板ガ ラスの表面に段差を設けることでセルギャップを設ける 場合で、無板ガラス16の表面をフッ酸処理を施し、表 面をざらざらの細かい凹凸を形成して一つの画案内にセ ルギャップdi,dzの差を形成する。この場合は簡繁に 比べて十分細かい凹凸となり、より均質なイメージを与

【0015】また、以上の各実施例は容易に形成でき、 またこれらを自由に組み合わせたセルギャップであって も、リタデーション値を変えることになるので、目的に 応じて最適な構成とすることができ、何ら問題なく上下 の視認性を改善した液晶表示索子を形成できる。また、 | 上記第一、第二、第三実施例は二つのセルギャップを有 したが、第四実施例のように連続的な段差とはいかなく ても、同一回案内にもっと多段階のセルギャップを有す る構成であっても同様の効果を有することはいうまでも ない。

【図面の簡単な説明】

【図1】セルギャップを設けた液晶表示素子の樹式的構 造街面図。

【図2】 ハイコントラストを示すラビング方向を示す説 明区。

【図3】液晶素子の上下透過率角度依存性を示す特性

特開平7-114020

5

Z.

【図4】 液晶素子の左右透過半角度依存性を示す特性 12

【図 5】 位相差板の効果を示す上下透過率角度依存性を 示十特性图。

【図6】 位相差板がある場合の視角 0 度で中間間である 透過率10%を示すの上下透過率依存性の分析特性図。

【図7】 本発明の透過率依存性を示す特性図。

【図8】 本発明の第二実施例の液晶表示素子を示す模式 的構造断面図。

【図9】 本発明の第三実施例の液晶表示素子を示す模式 的構造断面図。

【図10】本発明の第四宴施例の液晶表示素子を示す模

式的構造断面図。

【符号の説明】

1、2 北板ガラス

3 液晶层

(4)

4、5 透明准框

6、7 配向膜

8、9 位相差板

10、11 個光板

12、12'カラーフィルタ

10 13 絶縁膜

14 トップコート

15 ゲート絶縁膜

16 基根ガラス(凹凸処理)

[3]1]

[図2]

ラビング方向

[图3]

減品高子の上下迅過率角度依存性

100

60

20

(%) 40

祖品男子の左右舞渦卒角度依存性

[図4]

特開平7-114020

(5)

[図5]

[图6]

[図7]

本限制の超過率依存性

[图8]

トップコート店利用

(6)

特開平7-114020

[[8 [2]]]

