У нескінченому прямому циліндричному провіднику радіуса R тече струм із густиною:

$$\mathbf{j}(r) = \frac{a}{r}\mathbf{e}_z,$$

де $a={\rm const},\,r$ — відстань від осі циліндра. Магнітна проникність: $\mu={\rm const}$ всередині провідника та μ_0 (вакуум) зовні. Потрібно знайти векторний потенціал ${\bf A}(r)$ з умовою калібрування $\nabla\cdot{\bf A}=0$.

1 Розв'язок

Векторний потенціал **A** має лише z-компоненту: $\mathbf{A} = A_z(r)\mathbf{e}_z$. Рівняння для $A_z(r)$:

$$\nabla^2 A_z = -\mu \frac{a}{r}.$$

1.1 Внутрішня область $(r \le R)$

У циліндричних координатах:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}A_z}{\mathrm{d}r}\right) = -\mu\frac{a}{r}.$$

Інтегруємо:

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}A_z}{\mathrm{d}r}\right) = -\mu a.$$

Перше інтегрування:

$$r\frac{\mathrm{d}A_z}{\mathrm{d}r} = -\mu ar + C_1.$$

Поділимо на r:

$$\frac{\mathrm{d}A_z}{\mathrm{d}r} = -\mu a + \frac{C_1}{r}.$$

Друге інтегрування:

$$A_z(r) = -\mu ar + C_1 \ln r + C_2.$$

Оскільки A_z має бути скінченним при r=0, то $C_1=0.$ Тому:

$$A_z^{\rm in}(r) = -\mu a r + C_2.$$

1.2 Зовнішня область $(r \ge R)$

Тут $\mathbf{j} = 0$, тому:

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}A_z}{\mathrm{d}r}\right) = 0.$$

Інтегруємо:

$$r\frac{\mathrm{d}A_z}{\mathrm{d}r} = C_3.$$

Поділимо на r:

$$\frac{\mathrm{d}A_z}{\mathrm{d}r} = \frac{C_3}{r}.$$

Інтегруємо ще раз:

$$A_z^{\text{out}}(r) = C_3 \ln r + C_4.$$

1.3 Умови зшивання при r = R

1. Неперервність A_z :

$$-\mu a R + C_2 = C_3 \ln R + C_4.$$

2. Неперервність $\frac{\mathrm{d}A_z}{\mathrm{d}r}$:

$$-\mu a = \frac{C_3}{R}.$$

З другого рівняння:

$$C_3 = -\mu a R$$
.

Підставляємо C_3 у перше рівняння:

$$-\mu aR+C_2=-\mu aR\ln R+C_4.$$

Виберемо $C_4=0$ (калібрувальна свобода), тоді:

$$C_2 = \mu a R (1 - \ln R).$$

1.4 Фінальні вирази

• Всередині провідника $(r \leq R)$:

$$A_z^{\rm in}(r) = \mu a(R - r) - \mu aR \ln R.$$

• Зовні провідника $(r \ge R)$:

$$A_z^{\text{out}}(r) = -\mu aR \ln r.$$

Можна опустити загальну константу $-\mu a R \ln R$, оскільки вона не впливає на магнітне поле ${\bf B} = \nabla \times {\bf A}$. Тому остаточно:

$$\mathbf{A}(r) = \begin{cases} \mu a(R-r) \hat{\mathbf{e}}_z, & r \leq R, \\ -\mu aR \ln \left(\frac{r}{R}\right) \hat{\mathbf{e}}_z, & r \geq R. \end{cases}$$

Перевірка

• Умова калібрування $\nabla \cdot \mathbf{A} = \frac{\partial A_z}{\partial z} = 0$ виконується.

• На межі r = R:

$$A_z^{\rm BH}(R)=0, \quad A_z^{\rm 30B}(R)=-\mu aR\ln R. \label{eq:ABH}$$

Щоб була неперервність, потрібно додати константу $\mu a R \ln R$ до $A_z^{\mbox{\tiny BH}},$ що вже зроблено.

• Похідна на межі:

$$\left.\frac{\mathrm{d}A_z^{\text{\tiny BH}}}{\mathrm{d}r}\right|_{r=R} = -\mu a, \quad \left.\frac{\mathrm{d}A_z^{\text{\tiny 30B}}}{\mathrm{d}r}\right|_{r=R} = -\mu a.$$

Умова зшивання похідної виконується.