Arquitetura e Organização de Computadores

Arquitetura de Von Neumann:

Memórias

Prof. Me Rodrigo Vilela da Rocha 2022

SUBSISTEMAS DE MEMÓRIA

- Memória: Componente do SC (Sistema Computacional) que armazena as informações que serão manipuladas pelo sistema (depósito).
- Necessidade de memórias:
 - Rápidas: Velocidade do processador dobra a cada 1,5 ano. No entanto, a velocidade da memória tem crescido a taxas bem menores (20 a 30% ao ano). Exemplo: Computador de 200MHz manipula um dado em 5ns, enquanto a memória (EDO) transfere dados para a CPU em 60ns CPU ociosa por 55ns.
 - Alta Capacidade de Armazenamento: Devido ao aumento dos programas e do volume de dados a ser armazenado.
- Solução Óbvia: Memória veloz e com alta capacidade Custo elevado.
- Solução Possível: Utilizar uma hierarquia de memória, cujos conceitos serão vistos logo adiante.

Localização

- Processador (Registradores).
- Interna (Principal).
- Externa (Secundária, Armazenamento de Segurança).

- Capacidade
 - Tamanho da Célula: Unidade básica de armazenamento da memória, ou menor unidade endereçável.
 - Número de Células: Determina a capacidade máxima de armazenamento de dados da memória.
- Unidade de Transferência
 - Células (Memória Principal).
 - Blocos (Memória Externa).

Método de Acesso

- Seqüencial: Os dados são organizados em registros seqüenciais, de modo que o acesso é feito através de uma seqüência linear específica. O tempo de acesso a um registro varia conforme sua posição. Ex: Fitas magnéticas.
- Direto: Cada registro individual (ou bloco) possui um endereço único, baseado na sua localização. O acesso é feito diretamente a uma vizinhança do registro, e em seguida por uma pesquisa seqüencial ao registro desejado. O tempo de acesso também é variável. Ex: Unidades de disco.
- Aleatório: Chamadas geralmente de memórias RAM (Random Access Memory), possuem um mecanismo de endereçamento que permite que o tempo de acesso a uma célula seja independente da sua posição. Ex: Memória principal.
- Associativo: Tipo de memória de acesso aleatório que permite a busca de uma célula com base no seu conteúdo, e não de acordo com o seu endereço. Possui tempo de acesso constante. Ex: Memória cache (alguns tipos).

Desempenho

- Tempo de Acesso: Tempo gasto para efetuar uma operação de leitura ou escrita.
- Tempo de Ciclo: Principalmente aplicável às memórias semicondutoras, compreende o tempo de espera requerido antes do início de um novo acesso à memória.
- Taxa de Transferência: Quantidade de dados que pode ser transferida de/para o dispositivo por unidade de tempo. Ex: 150MBytes/s.

Tecnologia

- Semicondutores (Ex: Memória Principal).
- Magnética (Ex: Discos Magnéticos, como o Hard Disk).
- Óptica (Ex: Discos Ópticos, como o CD).

- Características Físicas
 - Volatilidade
 - **Memórias Voláteis:** Necessitam de fornecimento constante de energia para manter os dados armazenados (Ex: Memória Principal, Cache, Registradores).
 - Memórias Não Voláteis: Uma vez gravados, os dados permanecem constantes até uma alteração explícita (Ex: Discos, Fitas).
 - Apagabilidade
 - Memórias Apagáveis: Memórias do tipo leitura e escrita (R/W), pois seu conteúdo pode ser alterado.
 - Memórias Não Apagáveis: ROM (Read Only Memory). Seu conteúdo pode ser apenas lido.

- Pode ser definida como uma técnica (ou método) de organização de memória em um sistema computacional.
- O objetivo da Hierarquia de Memória é balancear a relação custo/desempenho, de forma a obter o maior desempenho ao menor custo possível.
- Princípio de Funcionamento:
 - Pequenas quantidades de memória rápida e cara são utilizadas para acesso direto da CPU, que passa então a "enxergar" toda a memória como sendo veloz.
 - Esta memória rápida e cara é alimentada por grandes quantidades de memória mais lenta e mais barata.
 - Quanto mais afastada da CPU (em termos de acesso), menor o custo e a velocidade de memória, porém maior a capacidade de armazenamento.

Registradores: São células de memória construídas diretamente no processador, que contém dados para uso imediato pela CPU.

- Custo: Muito Elevado.
- Tempo de acesso: 1 a 5ns.
- Capacidade: Normalmente igual ao tamanho da palavra do processador.
- Volátil. Tecnologia: Semicondutores.

Memória Cache: Para realizar um ciclo de instrução, um ou mais acessos à Memória Principal (MP) devem ser feitos. De modo a aliviar o gargalo entre CPU e MP, inclui-se uma memória intermediária entre estes dois elementos, construída com tecnologia semelhante à da CPU.

- Custo: Elevado (cache interna ainda mais cara do que a externa).
- Tempo de acesso: 5 a 7ns.
- Capacidade: 64KB a 2MB.
- Volátil. Tecnologia: Semicondutores.

OBS.: Cache de disco não é a mesma tecnologia da memória cache. Trata-se do emprego do mesmo conceito da memória cache, para acelerar a transferência de dados entre disco, MP e UCP, usando um programa (um software, por ex.: SmartDrive) para manter um espelho do conteúdo de parte do disco (a mais provável de ser requisitada a seguir pela UCP) gravado em uma parte da Memória Principal. Recentemente, as unidades de disco passaram a incorpor em sua interface chips de memória - tipicamente 32 a 64 Kbytes - para acelerar a transferência de dados, utilizando um algoritmo de cache.

Memória Principal: Memória básica de um SC, onde os programas e dados a serem processados são armazenados (modelo Von Neumann de "máquina de programa armazenado").

- Custo: Médio.
- Tempo de acesso: 7 a 15ns.
- Capacidade: Centenas de MB (Ex: 256MB).
- Volátil. Tecnologia: Semicondutores.

Memória Secundária: Permite o armazenamento mais permanente dos dados e programas do usuário, de modo que estes estejam disponíveis sempre que o SC for inicializado.

- Custo: Baixo.
- Tempo de acesso: Elevado, na ordem de vários milisegundos,
- •dependendo do dispositivo.
- Capacidade: Vários GB, dependendo do dispositivo.
- Não volátil. Tecnologia: Depende do dispositivo (óptica,
- •magnética, etc).

Armazenamento de Segurança: Tipo de memória utilizado para o armazenamento permanente dos dados e programas do usuário (backup), de modo que estes estejam disponíveis para restauração no caso de uma falha no SC.

- Custo: Baixo.
- Tempo de acesso: Elevado, na ordem de alguns segundos,
- dependendo do dispositivo (fita).
- Capacidade: Vários GB, dependendo do dispositivo.
- Não volátil. Tecnologia: Depende do dispositivo (óptica,
- •magnética, etc).

Hierarquia de Memória - RESUMO

 A MP não é o único dispositivo de armazenamento de um computador. Em função de características como tempo de acesso, capacidade de armazenamento, custo, etc., podemos estabelecer uma hierarquia de dispositivos de armazenamento em computadores.

Tipo	Capacidade	Velocidade	Custo	Localização	Volatilidade
Registrador	Bytes	muito alta	muito alto	UCP	Volátil
Memória Cache	Kbytes	alta	alto	UCP/placa	Volátil
Memória Principal	Mbytes	média	médio	Placa	Volátil
Memória Auxiliar	Gbytes	baixa	baixo	Externa	Não Volátil

 A UCP vê nesta ordem e acessa primeiro a que está mais próxima. Subindo na hierarquia, quanto mais próximo da UCP, maior velocidade, maior custo, porém menor capacidade de armazenamento

Memória Principal

- Conforme definimos anteriormente, Memória Principal é a parte do computador onde programas e dados são armazenados para processamento.
- A informação permanece na memória principal apenas enquanto for necessário para seu emprego pela UCP, sendo então a área de MP ocupada pela informação pode ser liberada para ser posteriormente sobregravada por outra informação.
- Quem controla a utilização da memória principal é o Sistema Operacional.

ESTRUTURA DA MEMÓRIA PRINCIPALCÉLULAS E ENDEREÇOS......

- A memória precisa ter uma organização que permita ao computador guardar e recuperar informações quando necessário. Não teria nenhum sentido armazenar informações que não fosse possível recuperar depois.
- Portanto, não basta transferir informações para a memória.
- É preciso ter como encontrar essa informação mais tarde, quando ela for necessária, e para isso é preciso haver um mecanismo que registre exatamente onde a informação foi armazenada

Célula

- Célula é a unidade de armazenamento do computador.
- A memória principal é organizada em células.
- Célula é a menor unidade da memória que pode ser endereçada (não é possível buscar uma "parte" da célula) e tem um tamanho fixo (para cada máquina).
- As memórias são compostas de um determinado número de células ou posições.
- Cada célula é composta de um determinado número de bits.
 Todas as células de um dado computador tem o mesmo tamanho, isto é, todas as células daquele computador terão o mesmo número de bits.

Célula

- Cada célula é identificada por um endereço único, pela qual é referenciada pelo sistema e pelos programas.
- As células são numeradas seqüencialmente, uma a uma, de 0 a (N-1), chamado o endereço da célula.
- **Endereço** é o localizador da célula, que permite identificar univocamente uma célula.
- Assim, cada célula pode ser identificada pelo seu endereço.

Célula

- Unidade de transferência é a quantidade de bits que é transferida da memória em uma única operação de leitura ou transferida para a memória em uma única operação de escrita.
- O tamanho da célula poderia ser igual ao da palavra, e também à unidade de transferência, porém por razões técnicas e de custo, são frequentemente diferentes.

OBS.: Uma célula não significa o mesmo que uma palavra;
 uma célula não necessariamente contém uma palavra

Palavra !?!?!

- <u>Palavra</u> é a unidade de processamento da UCP.
- Uma palavra deve representar um dado ou uma instrução, que poderia ser processada, armazenada ou transferida em uma única operação.
- No entanto, em geral não é assim que acontece e os computadores comerciais não seguem um padrão único para a organização da UCP e MP.
- Computadores comerciais (tais como por exemplo os baseados nos processadores Intel 486) podem ter o tamanho da palavra definido como de 32 bits, porém sua estrutura de memória tem células de 16 bits.

Estrutura da Memória Principal

- A estrutura da memória principal é um problema do projeto de hardware:
 - mais endereços com células menores ou
 - menos endereços com células maiores?

O tamanho mais comum de célula era 8 bits (1 byte); hoje já são comuns células contendo vários bytes.

Estrutura da MP

Número de bits para representar um endereço Expressão geral:

MP com endereços de 0 a (N-1)

$$N = 2^{\times}$$

sendo $x = n^0$ de bits para representar um endereço N = 0 número de endereços.

CAPACIDADE DA MEMÓRIA PRINCIPAL

 A capacidade da MP em bits é igual ao produto do nº de células pelo total de bits por célula.

```
T = N \times M

T = \text{capacidade da memória em bits}

N = n^o de endereços (como vimos anteriormente, N=2x sendo x = n^o de bits do endereço)

M = n^o de bits de cada célula
```

Para encontrar a capacidade em bytes, bastaria encontrar a capacidade em bits e depois dividir por 8 (cada byte contém 8 bits) ou então converter o tamanho da célula para bytes e depois multiplicar pelo número de células.

O último endereço na memória é o endereço N-1 (os endereços começam em zero e vão até N-1).

Exercícios para Praticar !!!!

