CLASS: Relation on Sets

- Due Mar 8 at 11:59pm
- Points 9
- Questions 9
- Time Limit None
- Allowed Attempts Unlimited

Instructions

This CLASS assignment is a introduction to Relations.

- Additional Examples of Relations;
- · The Inverse of a Relation;
- · Directed Graph of a Relation
- Reflexive, Symmetric, and Transitive Properties;
- Properties of Relations on Infinite Sets

You have multiple attempts in answering the question

Chapter 8 walk through the note → (https://www.youtube.com/watch?v=hfkTgCerEbs)

Take the Quiz Again

Attempt History

	Attempt	Time	Score	
KEPT	Attempt 2	4 minutes	9 out of 9	
LATEST	Attempt 2	4 minutes	9 out of 9	
	Attempt 1	130 minutes	7.4 out of 9	

(!) Correct answers are hidden.

Score for this attempt: 9 out of 9 Submitted Mar 8 at 10:12pm This attempt took 4 minutes.

H

Question 1

1 / 1 pts

Relation and Cartesian Product (https://www.youtube.com/watch?v=9bTkzr-5iel)

Relations on Sets Note.pdf (https://deanza.instructure.com/courses/33250/files/10966564/?wrap=1) \(\psi:\) (https://deanza.instructure.com/courses/33250/files/10966564//download?download_frd=1)

Now answer the following question:

Define a relation L from \mathbf{R} to \mathbf{R} as follows: For all real numbers	pers x and y ,
--	--------------------

$$x L y \Leftrightarrow x < y$$
.

Which	ones	are	ın	re	lation	17

- (1,1)
- (1,2)
- (2,1)
- (54,57)

Question 2

1 / 1 pts

<u>Defining Relation on Power Set of a Set</u> <u>⇒ (https://www.youtube.com/watch?v=K_ubrRtN1cQ)</u>

Relations on Sets Note.pdf (https://deanza.instructure.com/courses/33250/files/10966564/?wrap=1) (https://deanza.instructure.com/courses/33250/files/10966564//download?download_frd=1)

Now answer the following question:

Which ones are in the relation E that I discussed in the lecture?

- (4,0)
- (1,10)
- (10,1)
- **(-3,1)**

::

Question 3

1 / 1 pts

<u>Defining Relation on Power Set of a Set</u> <u>⇒ (https://www.youtube.com/watch?v=K_ubrRtN1cQ)</u>

Relations on Sets Note.pdf (https://deanza.instructure.com/courses/33250/files/10966564/?wrap=1) (https://deanza.instructure.com/courses/33250/files/10966564//download?download_frd=1)

Now answer the following question:

Let $X = \{a, b, c\}$. Then $\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define a relation **S** from $\mathcal{P}(X)$ to **Z** as follows: For all sets A and B in $\mathcal{P}(X)$ (i.e., for all subsets A and B of X),

 $A \otimes B \Leftrightarrow A$ has at least as many elements as B.

- a. Is $\{a, b\} S \{b, c\}$? b. Is $\{a\} S \emptyset$? c. Is $\{b, c\} S \{a, b, c\}$? d. Is $\{c\} S \{a\}$?

Which ones are true?

- ✓ a
- ✓ b
- С
- none

::

Question 4

1 / 1 pts

<u>Inverse of a Relation</u> ⇒ (https://www.youtube.com/watch?v=A47K15JvWog)

Suppose T is a relation. Then T^{-1} is the same as $\frac{1}{T}$

- True
- False

Question 5

1 / 1 pts

Inverse of a Relation ⇒ (https://www.youtube.com/watch?v=A47K15JvWog)

Suppose R is a relation including (x,y). When we define the inverse of R, it means that we interchange x and y.

- True
- False

Question 6

1 / 1 pts

Inverse of a Relation → (https://www.youtube.com/watch?v=A47K15JvWog)

Suppose R is a relation including domain and range . When we define the inverse of R, it means that we interchange the domain and the range.
True
O False
Question 7
1 / 1 pts
Inverse of a Relation ⊕ (https://www.youtube.com/watch?v=A47K15JvWog)
In the lecture I discussed the inverse of relation R (Divisibility).
(8,4) is a member of the inverse of R.
True
O False
Question 8
1 / 1 pts
Relation and Function (https://www.youtube.com/watch?v=irZ-EwwhGLE)
What is the relation that I discussed in the lecture?
○ linear
O quadratic
absolute value
○ circle
Question 9
1 / 1 pts
Reflexive, Symmetric, and Transitive Relation ⊕ (https://www.youtube.com/watch?v=CbVOtylcwjw)
Relations on Sets Note.pdf (https://deanza.instructure.com/courses/33250/files/10966564/?wrap=1) (https://deanza.instructure.com/courses/33250/files/10966564//download?download_frd=1)

https://deanza.instructure.com/courses/33250/quizzes/252539

Now answer the following question:

Let $A = \{0, 1, 2, 3\}$ and define relations R, S, and T on A as follows:

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\},$$

$$S = \{(0,0), (0,2), (0,3), (2,3)\},$$

$$T = \{(0,1), (2,3)\}.$$

Select all that applies:

- R is reflexive
- R is symmetric
- R is not transitive
- S is reflexive
- S is symmetric:
- S is transitive
- T is reflexive
- T is symmetric
- T is transitive

Quiz Score: 9 out of 9