ray tracing

image formation

image formation

rendering

computational simulation of image formation

rendering

- given viewer, geometry, materials, lights
- determine visibility and compute colors

raytracing

a specific rendering algorithm

raytracing algorithm

```
for each pixel {
    determine viewing direction
    intersect ray with scene
    compute illumination
    store result in pixel
}
```

• point: location in 3D space

$$\mathbf{P} = (P_x, P_y, P_z)$$

Ρ.

vector: direction and magnitude

$$egin{aligned} egin{aligned} oldsymbol{v} & \mathbf{v} = (v_x, v_y, v_z) \end{aligned}$$

- dot product
 - $\circ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$
- cross product
 - $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$
 - $\circ \ \mathbf{a} imes \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b}

• segment: set of points (line) between two points

$$\mathbf{P}(t) = \mathbf{A} + t(\mathbf{B} - \mathbf{A})$$
 with $t \in [0,1]$

• ray: infinite line from point in a given direction

$$\mathbf{P}(t) = \mathbf{E} + t\mathbf{d}$$
 with $t \in [0,\infty]$

- coordinate system aka frame
 - \circ frame ${f f}=\{{f f_O},{f f_x},{f f_y},{f f_z}\}$: position and orthonormal axes
 - o default (or *world*) frame: origin and three major axes

- point coords are defined wrt a frame
 - \circ ${f P}=(P_x,P_y,P_z)$ wrt $\{{f f_O},{f f_x},{f f_y},{f f_z}\}$ (*world* if not specified)
 - $\mathbf{P} = ig((\mathbf{P} \mathbf{f_O}) \cdot \mathbf{f_x}, (\mathbf{P} \mathbf{f_O}) \cdot \mathbf{f_y}, (\mathbf{P} \mathbf{f_O}) \cdot \mathbf{f_z}ig)$

- ullet change of coordinate system ${f f} o {f f}'$
 - $\mathbf{P'}=(P'_x,P'_y,P'_z)$ is \mathbf{P} w.r.t $\{\mathbf{f'_O},\mathbf{f'_x},\mathbf{f'_y},\mathbf{f'_z}\}$
 - $\mathbf{P}' = \left((\mathbf{P} \mathbf{f_O'}) \cdot \mathbf{f_x'}, (\mathbf{P} \mathbf{f_O'}) \cdot \mathbf{f_y'}, (\mathbf{P} \mathbf{f_O'}) \cdot \mathbf{f_z'}
 ight)$

- ullet change of coordinate system ${f f}' o {f f}$
 - $m{\Phi}'=(P_x',P_y',P_z')$ is ${f P}$ w.r.t $\{{f f_O',f_x',f_y',f_z'}\}$
 - $\circ \mathbf{P} = \mathbf{f_O'} + P_x'\mathbf{f_x'} + P_y'\mathbf{f_y'} + P_z'\mathbf{f_z'}$

- vector coords are defined wrt a frame
 - to change coord system, ignore origin

$$\mathbf{v} = v_x' \mathbf{f}_x' + v_y' \mathbf{f}_y' + v_z' \mathbf{f}_z'$$

$$\mathbf{v}' = \left(\mathbf{v} \cdot \mathbf{f}_{\mathbf{x}}', \mathbf{v} \cdot \mathbf{f}_{\mathbf{y}}', \mathbf{v} \cdot \mathbf{f}_{\mathbf{z}}' \right)$$

- ullet construct a frame from two non-orthonormal vectors \mathbf{z}' , \mathbf{y}'
 - \circ assume that \mathbf{z}' is not parallel to \mathbf{y}'
 - $\mathbf{z} = \mathbf{z}'/|\mathbf{z}'|$
 - $| \circ | \mathbf{x} = \mathbf{y}' imes \mathbf{z} / | \mathbf{y}' imes \mathbf{z} |$
 - $\circ \mathbf{y} = \mathbf{z} \times \mathbf{x}$
- construct a frame from a vector \mathbf{z}'
 - \circ pick arbitrary $\mathbf{y'}$ and continue as above

- infinite plane
 - $egin{array}{ll} \circ \; \mathbf{P} \in plane \; \Longleftrightarrow \; (\mathbf{P} \mathbf{C}) \cdot \mathbf{n} = 0 \; \Longleftrightarrow \; \mathbf{P} \cdot \mathbf{n} = d \end{array}$
 - $egin{aligned} \mathbf{P}(u,v) &= \mathbf{C} + u \cdot \mathbf{u} + v \cdot \mathbf{v} ext{ with } (u,v) \in (-\infty,\infty)^2 \end{aligned}$
 - \circ normal: $\mathbf{n} = \mathbf{u} \times \mathbf{v}$

triangle baricentric coordinates

$$\mathbf{P}(lpha,eta,\gamma) = lpha \mathbf{A} + eta \mathbf{B} + \gamma \mathbf{C}$$
 with $lpha + eta + \gamma = 1$

$$\circ \mathbf{P}(\alpha, \beta) = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C}$$

$$\alpha = area(\mathbf{BCP})/area(\mathbf{ABC})$$
, ...

- sphere
 - $\mathbf{P} \in sphere \iff |\mathbf{P} \mathbf{C}| = R$
 - $\mathbf{P}(u,v) = \mathbf{C} + R \cdot (\cos\phi\sin\theta,\sin\phi\sin\theta,\cos\theta)$

viewing

```
for each pixel {
    -> determine viewing direction
    intersect ray with scene
    compute illumination
    store result in pixel
}
```

viewer model

• a painter tracing objects on a canvas in front

[Marschner 2004 – original unknown]

viewer model

• equivalent to pinhole photography

[Marschner 2004 – original unknown]

viewer model -- parameters

- ullet camera frame: position ${f O}$ and orientation ${f x}$, ${f y}$, ${f z}$
- ullet image plane: distance d and size w, h

view frustum

• all visible points within a truncated pyramid

generating view rays

• for each pixel, ray from camera center to the pixel center

generating view rays

- ullet ray: $\mathbf{r} = \mathbf{O} + t(\mathbf{Q} \mathbf{O})/|\mathbf{Q} \mathbf{O}|$
- **Q** point on image plane

generating view rays

- $\mathbf{Q}(u,v) = (u-0.5)w\mathbf{x} + (v-0.5)h\mathbf{y} d\mathbf{z}$
- ullet image plane params: $(u,v)\in \left[0,1
 ight]^2$, origin at bottom

geometry model

- simple shapes
 - spheres, quads, traingles
- complex shapes
 - handled as collections of simple shapes later in the course

ray-shape intersection

- determine visible surface by finding closest intersection along a ray
- ullet ray $\mathbf{r}:\mathbf{E}+t\mathbf{d}$ with $t\in(t_{min},t_{max})$
 - \circ keep explicit bounds on t
 - e.g. used in shadows and to improve numerical precision
 - \circ if not specified otherwise: $t_{min} = \epsilon$, $t_{max} = \infty$
 - \circ ϵ mitigate numerical precision issues ("shadow acne")
 - value is scene depedent: start with 10^{-5}

point on a ray: $\mathbf{P}(t) = \mathbf{E} + t\mathbf{d}$

point on a sphere: $|\mathbf{P}(t) - \mathbf{C}| = R$

by substitution: $|\mathbf{E} + t\mathbf{d} - \mathbf{C}| = R$

algebraic equation: $at^2 + bt + c = 0$

with: $a=\left|\mathbf{d}\right|^2$, $b=2\mathbf{d}\cdot(\mathbf{E}-\mathbf{C})$, $c=\left|\mathbf{E}-\mathbf{C}\right|^2-R^2$

determinant: $d=b^2-4ac$

no solution for d < 0

two solutions: $t_{\pm} = \left(-b \pm \sqrt{d}\right)/(2a)$ pick smallest t such that $t \in (t_{min}, t_{max})$

- ullet shading frame at ${f P}={f f_O}$ with normal ${f n}={f f_z}$ with
 - $egin{aligned} \mathbf{P} & \mathbf{P} = \mathbf{E} + t\mathbf{d} ext{ and } \mathbf{P}^l = (\mathbf{P} \mathbf{C})/R \end{aligned}$
 - $egin{aligned} \circ \; heta = rccos P_z^l ext{ and } \phi = rctan(P_y^l, P_x^l) \end{aligned}$
- $\mathbf{f}=\{\mathbf{P},\mathbf{x},\mathbf{y},\mathbf{P}^l\}$, where $\mathbf{x}=(\sin\phi,\cos\phi,0)$, $\mathbf{y}=(\cos\theta\cos\phi,\cos\theta\sin\phi,\sin\theta)$

ray-plane intersection

point on a ray: $\mathbf{P}(t) = \mathbf{E} + t\mathbf{d}$ point on a plane: $(\mathbf{P}(t) - \mathbf{C}) \cdot \mathbf{n} = 0$ by substitution: $(\mathbf{E} + t\mathbf{d} - \mathbf{C}) \cdot \mathbf{n} = 0$

ray-plane intersection

one solution for $\mathbf{d}\cdot\mathbf{n}
eq 0$, no/infinite solutions otherwise

$$t = \frac{(\mathbf{C} - \mathbf{E}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

check that $t \in (t_{min}, t_{max})$

ray-plane intersection

ullet shading frame: $\mathbf{f} = \{\mathbf{e} + t\mathbf{d}, \mathbf{u}, \mathbf{v}, \mathbf{n}\}$

point on ray: $\mathbf{P}(t) = \mathbf{E} + t\mathbf{d}$

point on triangle: $\mathbf{P}(\alpha, \beta) = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C}$

by substitution: $\mathbf{E} + t\mathbf{d} = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C}$

$$\mathbf{E} + t\mathbf{d} = \alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) + \mathbf{C} \rightarrow$$
 $\alpha(\mathbf{A} - \mathbf{C}) + \beta(\mathbf{B} - \mathbf{C}) - t\mathbf{d} = \mathbf{E} - \mathbf{C} \rightarrow$
 $\alpha \mathbf{a} + \beta \mathbf{b} - t\mathbf{d} = \mathbf{e} \rightarrow$
 $\begin{bmatrix} -\mathbf{d} & \mathbf{a} & \mathbf{b} \end{bmatrix} \begin{bmatrix} t \\ \alpha \\ \beta \end{bmatrix} = \mathbf{e}$

use Cramer's rule

$$t = \frac{|\mathbf{e} \quad \mathbf{a} \quad \mathbf{b}|}{|-\mathbf{d} \quad \mathbf{a} \quad \mathbf{b}|} = \frac{(\mathbf{e} \times \mathbf{a}) \cdot \mathbf{b}}{(\mathbf{d} \times \mathbf{b}) \cdot \mathbf{a}}$$

$$\alpha = \frac{|-\mathbf{d} \quad \mathbf{e} \quad \mathbf{b}|}{|-\mathbf{d} \quad \mathbf{a} \quad \mathbf{b}|} = \frac{(\mathbf{d} \times \mathbf{b}) \cdot \mathbf{e}}{(\mathbf{d} \times \mathbf{b}) \cdot \mathbf{a}}$$

$$\beta = \frac{|-\mathbf{d} \quad \mathbf{a} \quad \mathbf{e}|}{|-\mathbf{d} \quad \mathbf{a} \quad \mathbf{b}|} = \frac{(\mathbf{e} \times \mathbf{a}) \cdot \mathbf{d}}{(\mathbf{d} \times \mathbf{b}) \cdot \mathbf{a}}$$

test for

$$t \in (t_{min}, t_{max}), lpha \geq 0, eta \geq 0, lpha + eta \leq 1$$

- ullet shading frame: $\mathbf{f} = \{\mathbf{e} + t\mathbf{d}, \mathbf{u}, \mathbf{v}, \mathbf{n}\}$
 - create frame by orthonomalization with

$$\mathbf{z}' = (\mathbf{B} - \mathbf{A}) imes (\mathbf{C} - \mathbf{A}), \mathbf{x}' = (\mathbf{B} - \mathbf{A})$$

intersection and coord systems

- transform the object
 - simple for triangles, since they transforms to triangles
 - but objects may require more complex intersection tests
- transform the ray
 - much more elegant
 - works on any surface
 - allow for much simpler intersection tests

intersection and coord systems

- ullet ray $\mathbf{r}=\{\mathbf{E},\mathbf{d}\}$ wrt \mathbf{f} (e.g. *world*)
- object o' defined wrt f' (in turn defined wrt f)
- ullet transform rays $\mathbf{r}' = \{\mathbf{E}', \mathbf{d}'\}$
 - transform origin/direction as point/vector
- intersect object o' with transformed ray \mathbf{r}'
 - use standard intersection tests
- ullet transform intersection frame back to ${f f}$
 - transform origin/axes as point/vectors

image so far

intersecting many shapes

- intersect each primitive
- pick closest intersection
- essentially a line search

intersecting many shapes -- pseudocode

```
minDistance = infinity
hit = false
foreach surface s {
  if(s.intersect(ray,intersection)) {
    if(intersection.distance < minDistance) {</pre>
      hit = true;
      minDistance = intersection.distance;
```

image so far

shading

```
for each pixel {
    determine viewing direction
    intersect ray with scene
    -> compute illumination
    store result in pixel
}
```

shading

variation in observed color across a surface

shading

- compute reflected light
- depends on:
 - view position
 - o incoming light, i.e. lighting
 - surface geometry
 - surface material

real-world materials

Metals

Dielectric

real-world materials

Metals

Dielectric

52

[Marschner 2004] [Marschner 2004]

shading models

- empirical models
 - produce believable images
 - simple and efficient
 - only for simple materials
- physically-based shading models
 - can reproduce accurate effects
 - more complex and expensive
- will concentrate on empirical models first

shading model

- shading model: diffuse + specular reflection
- diffuse reflection
 - light is reflected in every direction equally
 - colored by surface color
- specular reflection
 - light is reflected only around the mirror direction
 - white for plastic-like surfaces (glossy paints)
 - colored for metals (brass, copper, gold)

incident light

- beam of light is more spread on oblique surfaces
- incident light depends on angle
- ullet light fraction: $f = |{f n} \cdot {f l}|$

surface reflectance

- surface reflectance is described by the BRDF, *bidirectional* surface distribution functions
- BRDF is simple for simple shading models
- ullet in general, the BRDF is a function of incoming and outgoing angles $ho({f l},{f v};{f f})$
 - \circ **l** is the direction from the point to the light
 - \circ **v** is the direction from the point to the viewer
 - \circ **f** is the local shading frame that describes surface orientation (normal and tangent)

lambert diffuse model

- simple and efficient diffuse model
- light is scattered uniformly in all directions
- ullet brdf: $ho_d(\mathbf{l},\mathbf{v};\mathbf{f})=k_d$
- ullet surface color: $C_d=
 ho_d(\mathbf{l},\mathbf{v};\mathbf{f})\cdot |\mathbf{n}\cdot\mathbf{l}|=k_d|\mathbf{n}\cdot\mathbf{l}|$

lambert diffuse model

• produce matte appearance

left-to-right: increasing kd

image so far

phong specular model

- empirical, used to look good enough
- \bullet cosine of mirror \mathbf{r} and view \mathbf{v} direction
- ullet reflected direction: ${f r}=-{f l}+2({f n}\cdot{f l}){f n}$
- brdf: $\rho_s(\mathbf{l}, \mathbf{v}; \mathbf{f}) = k_s \max(0, \mathbf{v} \cdot \mathbf{r})^n$
- $ullet C_s =
 ho_s(\mathbf{l},\mathbf{v};\mathbf{f}) \cdot |\mathbf{n}\cdot\mathbf{l}| = k_s \max(0,\mathbf{v}\cdot\mathbf{r})^n \cdot |\mathbf{n}\cdot\mathbf{l}|$

phong specular model

• produces highlight, shiny appearance

left-to-right: increasing n, top-to-bottom: increasing k_s

blinn specular model

- slightly better than Phong
- ullet cosine of bisector ${f h}$ and normal ${f n}$
- ullet bisector: $\mathbf{h} = (\mathbf{l} + \mathbf{v})/|\mathbf{l} + \mathbf{v}|$
- brdf: $ho_s(\mathbf{l},\mathbf{v};\mathbf{f}) = k_s \max(0,\mathbf{n}\cdot\mathbf{h})^n$
- $C_s =
 ho_s(\mathbf{l}, \mathbf{v}; \mathbf{f}) \cdot |\mathbf{n} \cdot \mathbf{l}| = k_s \max(0, \mathbf{n} \cdot \mathbf{h})^n \cdot |\mathbf{n} \cdot \mathbf{l}|$

image so far

lighting

patterns of illumination in the environment

lighting

- determines how much light reaches a point
- depends on:
 - light geometry
 - light emission
 - scene geometry

light source models

- describe how light is emitted from light sources
- empirical light source models
 - o point, directional, spot
- physically-based light source models
 - area light, sky model

point lights

- ullet light is emitted equally from a point ${f S}$ in all directions
- ullet simulate local lighting, different at each surface point ${f P}$
- ullet light direction: $\mathbf{l} = (\mathbf{S} \mathbf{P})/|\mathbf{S} \mathbf{P}|$
- ullet light color: $L=k_l/|\mathbf{S}-\mathbf{P}|^2$

directional lights

- ullet light is emitted from infinity in one direction ${f d}$
- simulate distant lighting, e.g. sun, same at all surface points **P**
- light direction: $\mathbf{l} = \mathbf{d}$
- ullet light color: $L=k_l$

spot lights

- ullet same as points lights, but only emits in a cone around ${f d}$
- simulate theatrical lights
- cone falloff model arbitrary
- ullet light direction: $\mathbf{l} = (\mathbf{S} \mathbf{P})/|\mathbf{S} \mathbf{P}|$
- ullet light color: $L = k_l \cdot attenutation/|\mathbf{S} \mathbf{P}|^2$

shading model with multiple lights

ullet add contribution of all lights i for diffuse and specular

$$C = \sum
olimits_i L_i \cdot ig(
ho_d(\mathbf{l}_i, \mathbf{v}; \mathbf{f}) +
ho_s(\mathbf{l}_i, \mathbf{v}; \mathbf{f}) ig) \cdot |\mathbf{n} \cdot \mathbf{l}_i|$$

for Lambert and Phong

$$C = \sum
olimits_i L_i \cdot ig(k_d + k_s \max(0, \mathbf{v} \cdot \mathbf{r}_i)^nig) \cdot |\mathbf{n} \cdot \mathbf{l}_i|^n$$

for Lambert and Blinn

$$C = \sum_{i} L_i \cdot \left(k_d + k_s \max(0, \mathbf{n} \cdot \mathbf{h}_i)^n
ight) \cdot \left| \mathbf{n} \cdot \mathbf{l}_i
ight|$$

image so far

illumination models

- describe how light spreads in the environment
- direct illumination
 - incoming light comes directly from light sources
 - shadows
- indirect illumination
 - incoming light comes from other objects
 - specular reflections (mirrors)
 - diffuse inter-reflections

illumination models

[PCG]

ray tracing lighting model

- point/directional/spot light sources
- sharp shadows
- sharp reflection/refractions
- hacked diffuse inter-reflection: ambient term

ray traced shadows

• light contributes only if visible at surface point

shadow light viewer 6ccluder point

ray traced shadows

- send a *shadow* ray to check if light is visible
- visible if no hits or if t more than light distance

ray traced shadows

- ullet shadow ray $\mathbf{r} = \mathbf{P} + t\mathbf{l}$ with $t \in (t_{min}, t_{max})$
 - \circ spot/point lights at ${f S}$: $t_{max} = length({f S} {f P})$
 - \circ directional lights: $t_{max} = \infty$
- ullet scale lighting by visibility term $V_i({f P})$ which is 0 or 1

$$C = \sum_i L_i \cdot V_i(\mathbf{P}) (
ho_d +
ho_s) |\mathbf{n} \cdot \mathbf{l}_i|$$

- implementation detail: numerical precision
 - shadow acne: ray hits the visible point
 - \circ solution: only intersect if $t>\epsilon$, i.e. $t_{min}=\epsilon$

image so far

ambient term hack

- light bounces even in diffuse environment
 - ceiling are not black
 - shadows are not perfectly black
- very expensive to compute
- approximate (poorly) with a constant term

$$C = k_d L_a + \sum
olimits_i L_i \cdot V_i(\mathbf{P}) (
ho_d +
ho_s) |\mathbf{n} \cdot \mathbf{l}_i|$$

ray traced reflections and refractions

- perfectly shiny surfaces reflects objects
- recursively trace a ray if material is reflective or refractive

ray traced reflections and refractions

- ullet reflections: along mirror direction ${f r}=-{f l}+2({f l}\cdot{f n}){f n}$ scaled by k_r
- ullet refractions: along refraction direction scaled by k_t

$$C = k_d L_a + \sum_i L_i \cdot V_i(\mathbf{P}) (
ho_d +
ho_s) |\mathbf{n} \cdot \mathbf{l}_i| + \ + k_r \ \mathrm{raytrace}(\mathbf{P}, \mathbf{r}) + k_t \ \mathrm{raytrace}(\mathbf{P}, \mathbf{t})$$

- implementation detail: recursion
 - \circ avoid hitting visible point: $t_{min} > \epsilon$
 - make sure you do not recurse indefinitely

image so far

antialiasing

poor-man antialiasing:

- for each pixel
 - take multiple samples
 - compute average

ray tracing pseudocode

```
for(i = 0; i < imageWidth; i ++) {
  for(j = 0; j < imageHeight; j ++) {
    u = (i + 0.5)/imageWidth;
    v = (j + 0.5)/imageHeight;
    ray = camera.generateRay(u,v);
    c = computeColor(ray);
    image[i][j] = c;
}</pre>
```

anti-aliased ray tracing pseudocode

```
for(i = 0; i < imageWidth; i ++) {
  for(j = 0; j < imageHeight; j ++) {
    color c = 0;
    for(ii = 0; ii < numberOfSamples; ii ++) {</pre>
      for(jj = 0; jj < numberofSamples; jj ++) {</pre>
        u = (i+(ii+0.5)/numberOfSamples)/imageWidth;
        v = (j+(jj+0.5)/numberofSamples)/imageHeight;
        ray = camera.generateRay(u,v);
        c += computeColor(ray);
    image[i][j] = c / (numberOfSamples^2);
```

image so far

