Aspectos Formais da Computação

Prof. Sergio D Zorzo

Departamento de Computação - UFSCar

1º semestre / 2017

Aula 14

Máquina de Turing

Hierarquia de Chomsky

Hierarquia	Gramáticas	Linguagens	Autômato mínimo
Tipo-0	?	?	?
Tipo-1	?	?	?
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos

Hierarquia de Chomsky

- Tipo-3
 - Problemas mais simples (analisar protocolos, buscas textuais, análise léxica)
- Tipo-2
 - Problemas "médios" (analisar programas, linguagens)
- Tipo-0
 - Problemas que podem ser resolvidos por um dispositivo computacional qualquer

Hierarquia de Chomsky

- Tipo-0:
 - Linguagem
 - Gramática
 - Autômato
- Se esse autômato não conseguir resolver um determinado problema
 - (Lembram da definição de problema? Decidir se uma cadeia w pertence a uma linguagem L)
 - Nenhum computador irá conseguir!!

Conclusão

- Esse autômato deve ser muito poderoso mesmo!
- E se eu disser que basta pegar um autômato de pilha....

Conclusão

- ... e adicionar mais uma pilha???
- Você acredita que é possível resolver todo e qualquer problema computacional com esse autômato?

Conclusão

 Bem-vindo ao estudo dos limites da computação...

Ou: a tese de Church-Turing

A tese de Church-Turing

Um pouco de história

- Século III
 - Diofanto de Alexandria
 - Alguns o consideram como o "pai da álgebra"
 - Não resolvia problemas com um método geral
 - Arithmetica
- Equações diofantinas
 - equações polinomiais indeterminadas cujas variáveis só podem assumir valores inteiros
- Século XVII
 - Último teorema de Pierre de Fermat
 - A equação aⁿ+bⁿ=cⁿ não possui solução para n > 2
 - Obs: só foi provado na década de 1990, mais de 3 séculos depois

Os problemas de Hilbert

- 1900:
 - O matemático David Hilbert identificou 23 problemas matemáticos
 - Desafios para o século vindouro
 - Décimo problema: Encontrar um processo com o qual é possível determinar se uma equação diofantina tem uma raiz inteira, usando um número finito de operações
- Hilbert pedia que um algoritmo fosse concebido
 - Aparentemente, ele assumiu que tal algoritmo tinha de existir – alguém só precisava encontrá-lo

Definição de algoritmo

- Você sabe o que é algoritmo?
 - Uma sequência de instruções simples para realizar alguma tarefa
 - Procedimento
 - Receita
- Essa noção é intuitiva
 - Não serve para a matemática
 - Mais precisamente, n\u00e3o serve para responder \u00e0 pergunta:
 - "Existe um algoritmo para um dado problema?"

Definição de algoritmo

- 1936
 - Alonzo Church usou um sistema notacional denominado λ-cálculo para definir algoritmos
 - Alan Turing usou "máquinas" abstratas autômatos
 para definir algoritmos
- Conexão entre noção informal de algoritmo e definição precisa
 - Tese de Church-Turing
- 1970
 - Yuri Matijasevic mostrou que não existe algoritmo para determinar se uma equação diofantina tem solução

Na nossa terminologia

- D = {p | p é um polinômio com uma raiz inteira}
- Turing diz que:
 - Se conseguirmos projetar um autômato decisor para esta linguagem
 - Então D é decidível
 - Então existe um algoritmo para decidir (resolver) D
- Nesta aula, vamos estudar o formalismo de Turing as "máquinas" de Turing
 - Se tiver curiosidade matemática, procure saber mais sobre λ-cálculo – as definições são equivalentes

A máquina de Turing

Inicialmente, a entrada (cadeia finita de símbolos escolhidos do alfabeto de entrada) é colocada na fita, em qualquer lugar, substituindo os brancos

Inicialmente, a cabeça encontra-se na célula mais à esquerda que contém a entrada

- Um movimento da máquina de Turing é uma função:
 - Do estado do controle finito
 - Do símbolo de fita varrido
- Em um movimento, a máquina de Turing
 - Mudará de estado
 - Gravará um símbolo de fita na célula varrida,
 substituindo qualquer símbolo que estava nessa célula
 - Movimentará a cabeça da fita para a esquerda ou para a direita
 - Estritamente, não pode ficar parada
 - Mas é possível simular um movimento estacionário, movendo para a direita e para a esquerda em seguida, sem alterar o estado

Definição formal

- $M = (Q, \Sigma, \Gamma, \delta, q0, B, F)$, onde:
 - Q = conjunto finito de estados
 - Σ = conjunto finito de símbolos de entrada
 - Γ = conjunto completo de símbolos de fita
 - Σ é sempre um subconjunto de Γ
 - q0 = estado inicial
 - B = o símbolo branco
 - Este símbolo está em Γ mas não pode estar em Σ.
 - O branco aparece inicialmente em todas as células da fita, exceto nas células que contém a entrada
 - F = conjunto de estados finais ou de aceitação

Definição formal

- Função de transição
 - δ : Q x $\Gamma \rightarrow$ Q x Γ x {E,D}
 - Os argumentos de δ(q,X) são:
 - um estado q e um símbolo de fita X
 - O valor de δ(q,X) (se definido) é uma tripla (p,Y,S), onde:
 - p é o próximo estado em Q
 - Y é o símbolo, em Γ, gravado na célula que está sendo varrida, substituindo o símbolo que estava nessa célula
 - S é um sentido, ou direção, em que a cabeça se move
 - E = esquerda, D = direita
 - L = left, R = right

Descrição instantânea

- Uma cadeia que mostra um determinado momento da execução de uma máquina de Turing
- Uma sequência de descrições instantâneas permite descrever formalmente o que uma MT faz
 - E nos permite visualizar passo-a-passo sua execução

Descrição instantânea

• $X_1X_2...X_{i-1}qX_iX_{i+1}...X_n$

Onde:

- q é o estado atual da máquina de Turing
- A cabeça da fita está varrendo o i-ésimo símbolo a partir da esquerda
- X₁X₂...X_{i-1}qX_iX_{i+1}...X_n é a parte da fita entre o nãobranco mais à esquerda e o não-branco mais à direita
 - Ou seja, não mostramos os (infinitos) brancos à esquerda e à direita
 - Mas se a cabeça estiver nos extremos (X_i ou X_n), mostramos um branco para deixar claro que a partir desse momento começam os infinitos brancos

Exemplo

- $\{0^n1^n \mid n \ge 1\}$
- $M = (\{q0,q1,q2,q3,q4\},\{0,1\},\{0,1,X,Y,B\},\delta,q0,B,\{q4\})$

δ	Símbolo				
Estado	0	1	X	Y	В
q0	(q1,X,R)	-	-	(q3,Y,R)	-
q1	(q1,0,R)	(q2,Y,L)	-	(q1,Y,R)	-
q2	(q2,0,L)	-	(q0,X,R)	(q2,Y,L)	-
q3	-	-	-	(q3,Y,R)	(q4,B,R)
q4	-	-	-	-	-

Exercício

• Teste as cadeias 000111 e 0010

Notação de diagrama

- É também possível representar a Máquina de Turing na forma de diagrama
 - Nós = estados
 - Arcos = transições
 - Transições = X/Y S, onde
 - $\delta(q,X) = (p,Y,S)$
 - A seta leva de q até p
 - X e Y são símbolos de fita
 - S é um sentido, L ou R, E ou D,← ou →

Exemplo

- M = $(\{q0,q1,q2,q3,q4,q5,q6\},\{0,1\},\{0,1,B\},\delta,q0,B)$
 - Obs: essa máquina não tem estados de aceitação
 - Pois não é utilizada para aceitar entradas

Exercício

- Teste as cadeias 0010, 0000100 e 01000
- Resp: calcula a operação monus ou subtração própria
 - Max(m-n,0)
- Entrada: 0^m10ⁿ
- Na fita irá restar: 0^x
 - Onde x = m monus n

A linguagem de uma máquina de Turing

- A cadeia de entrada é colocada na fita
- A cabeça da fita começa no símbolo de entrada mais à esquerda
- Se a MT entrar eventualmente em um estado de aceiação
 - A entrada será aceita
 - Caso contrário, não será aceita

A linguagem de uma máquina de Turing

Formalmente

- Seja M uma máquina de Turing
 - M = $(Q, \Sigma, \Gamma, \delta, q0, B, F)$
- Então L(M) é o conjunto de cadeias w em Σ* tais que
 - q0w +* αpβ
 - Para algum estado p em F e quaisquer cadeias de fita α e β

A linguagem de uma máquina de Turing

- O conjunto de linguagens aceitas pelas máquinas de Turing é chamado de
 - Linguagens recursivamente enumeráveis
 - Linguagens Turing-reconhecíveis
- Na hierarquia de Chomsky

Hierarquia	Gramáticas	Linguagens	Autômato mínimo Máquinas de Turing	
Tipo-0	Recursivamente Enumeráveis	Recursivamente Enumeráveis		
Tipo-1	?	?	?	
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha	
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos	

Máquinas de Turing e sua parada

- Existem três resultados possíveis para a execução de uma máquina de Turing em uma dada entrada
 - Não há mais movimentos possíveis, e o último estado é de aceitação
 - Não há mais movimentos possíveis, e o último estado não é de aceitação
 - A máquina entra em loop infinito
 - Comportamento simples ou complexo que nunca leva a máquina a parar

Máquinas de Turing e sua parada

- Máquinas de Turing que sempre param são interessantes
 - Ou seja, em TODA entrada possível ela é capaz de decidir se aceita ou não, sem entrar em loop
- São chamadas de decisores, pois sempre tomam uma decisão
 - Em contraste, por exemplo, que máquinas que param quando aceitam, mas podem entrar em loop em algumas cadeias que não aceitam
- Linguagem aceitas por decisores:
 - Linguagens recursivas
 - Linguagens Turing-decidíveis
 - Linguagens decidíveis

Máquinas de Turing e sua parada

- É muito simples projetar estados de aceitação ou não-aceitação que forçam a MT a parar
- Basta criar um estado q que não possui nenhuma transição a partir dele
 - Se q pertence a F, assim que a máquina entrar em T, a cadeia é aceita
 - Se q não pertence a F, assim que a máquina entrar em T, a cadeia é rejeitada
- Dessa forma, facilita-se o projeto de decisores (máquinas que eventualmente param, aceitando ou não)

Projetando Máquinas de Turing

- Vamos projetar uma máquina de Turing para a linguagem B = {w#w | w está em {0,1}*}
- Imagine-se numa estrada com 1 km de comprimento
- Na estrada existe uma cadeia de 0s e 1s escrita no chão. Em algum ponto no meio dessa cadeia tem um "#" escrito
 - Conclusão óbvia: não dá para "memorizar" (em estados) toda a cadeia
 - Mas você pode riscar os 0s e 1s à vontade
 - Como você resolveria o problema de decidir se essa cadeia pertence a B?

Projetando Máquinas de Turing

Solução:

- Comece no primeiro símbolo e memorize-o
- Faça um X sobre esse símbolo
- Ande pela estrada até encontrar o meio (#)
- A partir desse momento, encontre o primeiro símbolo nãoriscado e compare com aquele memorizado no início
 - Se for diferente, você já sabe que a cadeia não pertence a B!! Pode ir pra casa descansar
 - Se for igual, marque-o com um X e volte em direção ao início da cadeia, passando pelo #, parando assim que encontrar o primeiro símbolo riscado. Recomece o processo.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanescente à direita do #. Se houver, a cadeia não pertence a B.
- Se não houver, a cadeia pertence a B!!

Projetando Máquinas de Turing

Projetando Máquinas de Turing

- É a mesma noção de construir um algoritmo
- Primeiro pensa-se nos passos
 - Considerando as restrições e os possíveis movimentos da máquina
- Depois fazemos a "tradução" para um diagrama ou tabela
 - Criamos estados para lembrar de algumas coisas
 - Outras coisas armazenamos na própria fita

Exercício

- Projete uma máquina de Turing que decide
 - A = $\{0^{2^n} \mid n \ge 0\}$
 - Todas as cadeias de 0s cujo comprimento é uma potência de 2

Solução (algoritmo)

- 1. Faça uma varredura da esquerda para a direita na fita, marcando um 0 não, e outro, sim
- 2. Se no estágio 1, a fita continha um único 0, aceite
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, rejeite
- Retorne a cabeça para a extremidade esquerda da fita
- Vá para o estágio 1

Solução (algoritmo)

- Cada iteração do estágio 1 corta o número de 0s pela metade.
 - Nessa verredura da fita, a máquina mantém registro de se o número de 0s é par ou ímpar
 - Se for ímpar e maior que 1, o número de 0s não pode ser uma potência de 2 → rejeita
 - Se o número de 0s visto for 1, o número original deve ter sido uma potência de 2 → aceita

Solução (formal)

Variantes

- Existem muitas variantes para o modelo que vimos anteriormente
 - Todas possuem o mesmo poder de reconhecimento
- Facilitam o entendimento de alguns aspectos
- Facilitam a "programação"

Armazenamento no estado

Armazenamento no estado

- Por exemplo, uma linguagem baseada em {a,b}* onde os primeiros três símbolos não se repetem ao longo da cadeia:
 - "aabbbaabbaaa" faz parte (aab não se repete)
 - "ababbbaabbbb" faz parte (aba não se repete)
 - "aabbbaabbba" não faz parte (aab aparece depois)
- Seria interessante "armazenar" as três primeiras letras e mantê-las "por perto" para poder consultar

Armazenamento no estado

- A solução é simples
- Não exige modificações no modelo da MT
 - Basta dar nomes adequados e criar quantos estados forem necessários para cobrir todas as combinações dos valores a serem armazenados
 - E também incluir os estados "normais" (q1, q2, etc)

• Ex:

- q=q1, P1=a, P2=a, P3=a → q1aaa
- q=q1, P1=a, P2=a, P3=b \rightarrow q1aab
- q=q4, P1=a, P2=b, P3=a → q4aba

- Por exemplo, considere a seguinte linguagem:
 - {w#w | w em {0,1}*}
 - Anteriormente, projetamos uma MT que ziguezagueia pela entrada, "riscando" símbolos e substituindo-os por um x
 - · Cada x representa um símbolo que já foi verificado
 - Quando toda a cadeia estiver somente com "x"s, ela é aceita
- Mas...
 - E se eu precisar de algum comportamento adicional?
 - E se eu precisar lembrar quais eram os símbolos que estavam lá?

Trilha 1 (entrada)	0	0	1	0	1	#	0	0	1	0	1	
Trilha 2 (marcação)	Х											
→ →												
Trilha 1 (entrada)	0	0	1	0	1	#	0	0	1	0	1	
Trilha 2 (marcação)	Х						Х					
Trilha 1 (entrada)	0	0	1	0	1	#	0	0	1	0	1	
Trilha 2 (marcação)	Х	X					Х					
Trilha 1 (entrada)	0	0	1	0	1	#	0	0	1	0	1	
Trilha 2 (marcação)	Х	Χ					Χ	Χ				

- O "truque" é fazer o mesmo que o armazenamento no estado
 - Ou seja, cada símbolo de fita, na verdade, é uma tupla que representa uma combinação diferente de símbolos, um para cada trilha
 - Por exemplo, na MT original (com uma única trilha):
 - $\Sigma = \{0,1\}$
 - $\Gamma = \{B,0,1,X\}$
 - Utilizando duas trilhas
 - $\Sigma = \{0,1\}$
 - $\Gamma = \{B,0,1,0',1'\}$
 - Onde 0' representa o 0 "marcado" com um X, e 1' representa o 1 "marcado" com um X
 - Ou: $\Gamma = \{(B,B),(0,B),(1,B),(0,X),(1,X)\}$
- Nessa situação, ainda é possível ver qual é o símbolo original, mesmo sendo "marcado"

E inclusiva naccival limpor a trille auviliar anéa cou uca

- A inclusão de outras fitas não aumenta o poder de definição de linguagens ao modelo básico, com uma única fita
 - Mas facilita a sua "programação"
 - Além de outras demonstrações interessantes

- Inicialmente:
 - A entrada, uma sequência finita de símbolos de entrada, é colocada na primeira fita
 - Todas as outras células de todas as fitas contêm brancos
 - O controle finito está no estado inicial
 - A cabeça da primeira fita está na extremidade esquerda da entrada
 - Todas as outras cabeças de fitas estão em alguma célula arbitrária (na verdade, tanto faz)

- Num movimento:
 - O controle entra em um novo estado (que pode ser o mesmo que o anterior)
 - Em cada fita, um novo símbolo de fita é escrito na célula varrida (pode ser o mesmo que o anterior)
 - Cada uma das cabeças faz um movimento
 - Para a esquerda, direita, ou estacionário (já vimos que movimento estacionário pode ser simulado por um movimento à esquerda seguido por um movimento à direita)
- Ou seja:
 - $\delta(q, a_1, a_2, ..., a_k) = (p, b_1, b_2, ..., b_k, E, D, E, ..., E)$

- MTs com uma fita reconhecem as linguagens recursivamente enumeráveis
 - MTs com múltiplas fitas também reconhecem as linguagens RE (óbvio)
 - Mas elas reconhecem mais linguagens?

Hierarquia	Gramáticas	Linguagens	Autômato mínimo					
			Máquinas de com múltipl	<u> </u>				
Tipo-0	Tipo-0 Recursivamente Recursivamente Enumeráveis Enumeráveis		Máquinas de Turing	Fotorio e MT com				
Tipo-1	?	?	?	Estaria a MT com múltiplas fitas aqui				
Tipo-2	Livres de contexto	Livres de contexto	Autômatos de pilha	em cima?				
Tipo-3	Regulares (Expressões regulares)	Regulares	Autômatos finitos					

A resposta é dada pelo seguinte teorema:

- "Toda linguagem aceita por uma MT de várias fitas é recursivamente enumerável"
- Prova: por construção = conversão de múltiplas fitas para uma única fita
 - Prova 1
 - Prova 2

Prova 1: conversão de M para S

- Prova 1: conversão de M para S
 - M = múltiplas fitas
 - S = uma fita
- Inicialmente, a fita de S é formatada:
 - #w₁'w₂...w_n#B'#B'#...#
 - O conteúdo de cada fita é colocado em sequência, separados por um símbolo especial (#)
 - A primeira fita contém a cadeia de entrada, as demais contém brancos somente
 - Uma segunda trilha irá conter apenas "ponteiros" que apontam onde as cabeças estão em um determinado momento (representados por apóstrofos (') aqui)

- Prova 1: conversão de M para S
- Em um único movimento:
 - S faz uma varredura na fita, desde o primeiro # até o último #
 - Nessa varredura, S "armazena" as posições de cada cabeça
 - S faz então uma segunda varredura, atualizando as fitas conforme a função de transição de M
- Se em algum ponto S move uma das cabeças virtuais sobre um #, significa que M teria encontrado um branco
 - S então escreve um branco sobre o # e desloca o restante da fita, símbolo a símbolo, aumentando seu comprimento, para a esquerda ou direita, conforme necessário

Prova 2: conversão de M para S

- Prova 2: conversão de M para S
- Inicialmente:
 - Para cada fita em M, cria-se duas trilhas em S
 - Uma para os símbolos
 - Outra apenas para marcar a posição da cabeça de M
- Em um movimento:
 - S percorre as trilhas de marcação (armazenando quantos ela já descobriu, para não se perder)
 - E armazena os símbolos lidos na posição correspondente da trilha que representa a fita original
 - S volta ao início e percorre novamente as trilhas, atualizando os símbolos e as posições das cabeças virtuais, conforme definido em M

- Um questionamento: por que não "armazenar" as posições das cabeças no controle finito?
 - Resposta: porque existem infintas posições (as fitas são infinitas)
 - E o armazenamento no controle finito usa um número finito de estados
 - Ou seja, se eu estiver na posição 1456633 da fita, eu teria que ter um estado q1456633
 - Mas sempre poderá existir uma posição 1456634!!
 - Ou seja, seria necessário ter infinitos estados

Uma análise importante

- MT com várias fitas e com uma fita são equivalentes:
 - em termos de capacidade reconhecedora !!
- Mas e em tempo de execução?
 - Obviamente gasta-se mais tempo executando uma MT com uma única fita!!
- De que isso importa?
 - Mais adiante usaremos MTs como uma forma de analisar tratabilidade!
 - Relacionado com tempos de execução viáveis ou inviáveis
 - Nesse contexto, a análise do tempo de execução faz toda a diferença!

Tempo de execução de uma MT

- Não é tempo real
 - Porque a MT não é uma máquina real!!
- É um tempo relativo:
 - Tempo de execução da MT M sobre entrada w é o número de movimentos que M faz antes de parar
 - Se M não parar em w, o tempo será infinito
- Isso leva ao estudo da complexidade
 - Veremos mais adiante na disciplina

Tempo de construção de muitas fitas para uma

- Aparentemente, a diferença de execução entre uma e várias fitas é grande
 - Mas não é muito!!
 - A MT de uma fita demora um tempo não maior que o quadrado do tempo tomado pela outra
 - Teorema: dada uma máquina de múltiplas fitas M que, dada uma entrada w, executa em n movimentos. Uma máquina de uma fita S equivalente a M, para a mesma entrada w, executa em O(n²) movimentos

Tempo de construção de muitas fitas para uma

- Prova: M (k fitas) convertido em S (1 fita)
- M executou n movimentos

n vozoc icco ou cojo: O(n2)

- Os marcadores de cabeça estarão com certeza distantes em 2n células ou menos
- Ou seja, para cada um dos n movimentos de M:
 - S consegue, começando do marcador de cabeça mais à esquerda, em 2n movimentos no máximo, encontrar todos os marcadores nas suas respectivas trilhas
 - Em seguida, em 2n movimentos no máximo, S consegue com certeza voltar para o começo
 - Nesse caminho de volta, ele pode ter que ajustar as posições das cabeças conforme as transições de M
 - Ou seja, algumas cabeças irão para a direita, outras irão para a esquerda. Considerando k cabeças, em 2k movimentos ou menos é possível ajustar todas
 - Total até agora: 4n + 2k = O(n), pois k é uma constante
- Se cada movimento de M leva O(n), n movimentos em S levará

Tempo de construção de muitas fitas para uma

- Resumindo:
 - Se em múltiplas fitas leva 10 movimentos, em uma fita levará no máximo 100
 - Se em múltiplas fitas leva 100 movimentos, em uma fita levará no máximo 10000
- Essa diferença é pequena em termos computacionais!
- Pois é uma diferença polinomial
 - $y=x^2$
- O problema está em taxas de crescimento mais altas
 - São o limite entre o que podemos resolver por computadores e o que não tem solução prática
 - Mais detalhes depois

