

A-378CIP5C (3-31-04).ST25 SEQUENCE LISTING

BOYLE, WILLIAM J. LACEY, DAVID LEE <110> CALZONE, FRANK J. CHANG, MING-SHI SENALDI, GIORGIO

COMBINATION THERAPY FOR CONDITIONS LEADING TO BONE LOSS <120>

<130> A-378CIP5C

<140> US 09/613,591

2000-07-10 <141>

<150> us 09/457,647

1999-12-09 <151>

us 09/350,670 <150>

<151> 1999-07-09

<150> us 08/706,945

<151> 1996-09-03

US 08/577,788 1995-12-22 <150>

<151>

178 <160>

<170> PatentIn version 3.2

<210>

36 <211>

<212> DNA

<213> Artificial Sequence

<220>

<223> Not I restriction site

<220>

misc_feature (28)..(35) <221>

<222>

N = any random nucleic acid <223>

aaaggaagga aaaaagcggc cgctacannn nnnnnt

<210> 2

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

Not I restriction site <223>

<400> 2

tcgacccacg cgtccg

16

36

<210>

12 <211>

<212> DNA

Artificial Sequence <213>

<220>

<223> Not I restriction site

<400> gggtgc	3 gcag gc	12
<210> <211> <212> <213>	4 18 DNA Artificial Sequence	
<220> <223>	Not I restriction site	
<400> tgtaaa	4 acga cggccagt	18
<210> <211> <212> <213>		
<220> <223>	Not I restriction site	
<400> caggaa	5 acag ctatgacc	18
<210> <211> <212> <213>	20	
<220> <223>	Not I restriction site	
<400> caatta	6 naccc tcactaaagg	20
<210> <211> <212> <213>	7 23 DNA Rattus rattus	
<400> gcatta	7 atgac ccagaaaccg gac	23
<210> <211> <212> <213>	8 23 DNA Rattus rattus	
<400> aggtag	8 gcgcc cttcctcaca ttc	23
<210> <211> <212> <213>	9 30 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400>	9	

gactag	A-378CIP5C (3-31-04).ST25 tccc acaatgaaca agtggctgtg	30
<210> <211> <212> <213>	10 45 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> ataaga	10 atgc ggccgctaaa ctatgaaaca gcccagtgac cattc	45
<210> <211> <212> <213>	11 21 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> gcctct	11 agaa agagctggga c	21
<210> <211> <212> <213>	12 21 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> cgccgt	12 gttc catttatgag c	21
<210> <211> <212> <213>	13 24 DNA Rattus rattus	
<400> atcaaa	13 ggca gggcatactt cctg	24
<210> <211> <212> <213>	14 24 DNA Rattus rattus	
<400> gttgca	14 actcc tgtttcacgg tctg	24
<210> <211> <212> <213>	15 24 DNA Rattus rattus	
<400> caagac	15 cacct tgaagggcct gatg	24
<210>	16 24	

	A-378CIP5C (3-31-04).ST25	
<212> <213>	DNA Rattus rattus	
<400> taactt1	16 ttac agaagagcat cagc	24
<210> <211> <212> <213>	17 33 DNA Rattus rattus	
<400> agcgcgg	17 gccg catgaacaag tggctgtgct gcg	33
<210> <211> <212> <213>	18 31 DNA Rattus rattus	
<400> agctcta	18 agag aaacagccca gtgaccattc c	31
<210> <211> <212> <213>	19 24 DNA Rattus rattus	
<400> gtgaag	19 ctgt gcaagaacct gatg	24
<210> <211> <212> <213>	20 24 DNA Rattus rattus	
<400> atcaaa	20 ggca gggcatactt cctg	24
<210> <211> <212> <213>	21 24 DNA Homo sapiens	
<400> cagato	21 ctga agctgctcag tttg	24
<210> <211> <212> <213>	22 33 DNA Homo sapiens	
<400> agcgcg	22 gccg cggggaccac aatgaacaag ttg	33
<210> <211> <212> <213>	23 33 DNA Homo sapiens	
<400> agctct	23 agaa ttgtgaggaa acagctcaat ggc Page 4	33

<210> <211> <212> <213>	24 39 DNA Artificial Sequence	
<220> <223>	Not I restriction site	
<400> atagcg	24 gccg ctgagcccaa atcttgtgac aaaactcac	39
	25 45 DNA Artificial Sequence	
<220> <223>	Not I restriction site	
<400> tctaga	25 gtcg acttatcatt tacccggaga cagggagagg ctctt	45
<210> <211> <212> <213>	26 38 DNA Mus musculus	
<400> cctctg	26 agct caagcttccg aggaccacaa tgaacaag	38
<210> <211> <212> <213>	27 43 DNA Mus musculus	
<400> cctctg	27 pegge egetaageag ettatttea eggattgaae etg	43
<210> <211> <212> <213>	28 38 DNA Mus musculus	
<400> cctct	28 gagct caagcttccg aggaccacaa tgaacaag	38
<210> <211> <212> <213>	24	
<400> tccgt	29 aagaa acagcccagt gacc	24
<210> <211> <212> <213>	31	
~400 >	30	

A-378CIP5C (3-31-04).ST25 cctctgcggc cgctgttgca tttcctttct g	31
<210> 31 <211> 19 <212> PRT <213> Mus musculus	
<400> 31	
Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His 1 10 15	
Gln Leu Leu	
<210> 32 <211> 21 <212> DNA <213> Mus musculus	
<400> 32 tcccttgccc tgaccactct t	21
<210> 33 <211> 34 <212> DNA <213> Mus musculus	
<400> 33 cctctgcggc cgcacacacg ttgtcatgtg ttgc	34
<210> 34 <211> 21 <212> DNA <213> Mus musculus	
<400> 34 tcccttgccc tgaccactct t	21
<210> 35 <211> 34 <212> DNA <213> Mus musculus	
<400> 35 cctctgcggc cgccttttgc gtggcttctc tgtt	34
<210> 36 <211> 37 <212> DNA <213> Homo sapiens	
<400> 36 cctctgagct caagcttggt ttccggggac cacaatg	37
<210> 37 <211> 38 <212> DNA <213> Homo sapiens	

.

A-378CIP5C (3-31-04).ST25 <400> 37 38 cctctgcggc cgctaagcag cttatttta ctgaatgg 38 37 <210> <211> <212> DNA Homo sapiens <213> 37 cctctgagct caagcttggt ttccggggac cacaatg <210> 39 33 <211> <212> DNA <213> Homo sapiens <400> 33 cctctgcggc cgccagggta acatctattc cac <210> 40 <211> <212> 35 DNA <213> Mus musculus <400> 35 ccgaagcttc caccatgaac aagtggctgt gctgc <210> 41 <211> 40 <212> DNA <213> Mus musculus <400> 40 cctctgtcga ctattataag cagcttattt tcacggattg <210> 42 <211> <212> 21 DNA <213> Mus musculus <400> 42 21 tcccttgccc tgaccactct t <210> 43 <211> 35 <212> DNA <213> Mus musculus <400> 43 35 cctctgtcga cttaacacac gttgtcatgt gttgc <210> 44 21 <211> <212> DNA <213> Mus musculus <400> 44 tcccttgccc tgaccactct t 21 <210> 45

<211> 35 <212> DN/ <213> Mu:	A s musculus					
<400> 45 cctctgtcg	a cttacttttg	cgtggcttct	ctgtt			35
<210> 46 <211> 15 <212> DN/ <213> Ar		uence				
<220> <223> pAI	1G21					
<400> 46 tgcacgcat	gcatacgtac	cagaggggta	cgctctcatc	ccttgacggt	ccgtagttta	60
ttttgcttt	cgagtcagct	ttctgacccg	gaaagcaaaa	tagacaacaa	acagccactt	120
gcgagagga	tcatcctgtt	taggcggccc	tcgcctaaac	ttgcaacgct	tcgttgccgg	180
gcctcccac	gcccgtcctg	cgggcggtat	ttgacggtcc	gtagtttaat	tcgtcttccg	240
gtaggactg	ctaccggaaa	aacgcaaaga	tgtttgagaa	aacaaataaa	aagatttatg	300
taagtttat	a cctgcagcat	gaattgaaaa	tttcataccc	gttagttaac	gaggacaatt	360
ttaacgaaa	ctttatgaaa	ccgtcgccaa	acaacataac	tcaaagtaaa	cgcgtaacca	420
atttacctt	cactggcacg	cgaatgatgt	cggattataa	aaactttata	gggttctcga	480
aaaaggaag	gtacgggtgc	gatttgtaag	aaaaagagaa	aaccaattta	gcaacaaact	540
aaataataa	a cgatataaat	aaaaagctat	taatagttga	tctcttcctt	gttaattacc	600
atacaagta [.]	gtgcgtacat	ttttatttga	tagatatatc	aacagaaaga	gacttacacg	660
ttttgattc	g taaggcttcg	gtaataatcg	tcatacttat	ccctttgatt	tgggtcacta	720
ttctggact	a ctaaagcgaa	gaaattaatg	taaacctcta	aaaaataaat	gtcgtaacaa	780
aagtttata	aaggttaatt	agccacttac	taacctcaat	cttattagat	gatatcctag	840
tataaaata	a tttaatcgca	gtagtattat	aacggaggta	aaaaatccca	ttaataggtc	900
ttaacttta	agtctaaatt	ggtatcttac	tcctatttac	tagcgctcat	ttattataag	960
tgttacatg	g taaaatcagt	atagtctatt	cgtaactaat	tatagtaata	acgaagatgt	1020
ccgaaatta	a aataattaat	aagacattca	cagcagccgt	aaatacagaa	agtatgggta	1080
gagaaatag	g aatggataac	aaacagcgtt	caaaacgcac	aatatatagt	aattttgcca	1140
ttatctaac	t gtaaactaag	attatttaac	ctaaaaacag	tgtgataata	tagcgaactt	1200
tatgttaac	a aattgtattc	atggacatcc	tagcatgtcc	aaatgcgttc	ttttaccaaa	1260
caatatcag	taattagcta	aactaagatc	taaacaaaat	tgattaattt	cctccttatt	1320
gtataccaa [.]	tgcgcaacct	taagctcgag	tgatcacagc	tggacgtccc	atggtacctt	1380
cgaatgagc	cctaggcgcc	tttcttcttc	ttcttcttct	ttcgggcttt	ccttcgactc	1440
aaccgacga	ggtggcgact	cgttattgat	cgtattgggg	aaccccggag	atttgcccag	1500
aactcccca	a aaaacgactt	tcctccttgg	cgagaagtgc	gagaagtg		1548

```
<210>
       47
       48
<211>
<212>
       DNA
<213>
       Homo sapiens
<400>
ccggcggaca tttatcacac agcagctgat gagaagtttc ttcatcca
                                                                        48
<210>
       48
<211>
       55
<212>
       DNA
<213>
       Artificial Sequence
<220>
       pAMG21
<223>
<400>
       48
                                                                        55
cgatttgatt ctagaaggag gaataacata tggttaacgc gttggaattc ggtac
<210>
       49
<211>
       49
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
       pAMG21
<400>
                                                                        49
taaactaaga tcttcctcct tattgtatac caattgcgca accttaagc
<210>
       50
       1546
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       pAMG21
<220>
<221>
       misc_feature
<222>
       (1, 2, 1545)..(1546)
<223>
       Unique AatII and SacII sticky ends
<400> 50
gcgtaacgta tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa
                                                                        60
cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct
                                                                       120
ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca acggcccgga
                                                                       180
gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggccatc
                                                                       240
ctgacggatg gcctttttgc gtttctacaa actcttttgt ttatttttct aaatacattc
                                                                       300
aaatatggac gtcgtactta acttttaaag tatgggcaat caattgctcc tgttaaaatt
                                                                       360
gctttagaaa tactttggca gcggtttgtt gtattgagtt tcatttgcgc attggttaaa
                                                                       420
tggaaagtga ccgtgcgctt actacagcct aatatttttg aaatatccca agagcttttt
                                                                       480
ccttcgcatg cccacgctaa acattctttt tctcttttgg ttaaatcgtt gtttgattta
                                                                       540
```

ttattt	gcta tatttattt		8CIP5C (3-3: tcaactagag		taatggtatg	600
	- cacg catgtaaaaa					660
ctaagc	attc cgaagccatt	attagcagta	tgaataggga	aactaaaccc	agtgataaga	720
cctgat	gatt tcgcttcttt	aattacattt	ggagattttt	tatttacagc	attgttttca	780
aatata	ttcc aattaatcgg	tgaatgattg	gagttagaat	aatctactat	aggatcatat	840
tttatt	aaat tagcgtcatc	ataatattgc	ctccattttt	tagggtaatt	atccagaatt	900
gaaata	tcag atttaaccat	agaatgagga	taaatgatcg	cgagtaaata	atattcacaa	960
tgtacc	attt tagtcatatc	agataagcat	tgattaatat	cattattgct	tctacaggct	1020
ttaatt	ttat taattattct	gtaagtgtcg	tcggcättta	tgtctttcat	acccatctct	1080
ttatcc	ttac ctattgtttg	tcgcaagttt	tgcgtgttat	atatcattaa	aacggtaata	1140
gattga	catt tgattctaat	aaattggatt	tttgtcacac	tattatatcg	cttgaaatac	1200
aattgt	ttaa cataagtacc	tgtaggatcg	tacaggttta	cgcaagaaaa	tggtttgtta	1260
tagtcg	atta atcgatttga	ttctagattt	gttttaacta	attaaaggag	gaataacata	1320
tggtta	acgc gttggaattc	gagctcacta	gtgtcgacct	gcagggtacc	atggaagctt	1380
actcga	ggat ccgcggaaag	aagaagaaga	agaagaaagc	ccgaaaggaa	gctgagttgg	1440
ctgctg	ccac cgctgagcaa	taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	1500
ggggtt	tttt gctgaaagga	ggaaccgctc	ttcacgctct	tcacgc		1546
<210> <211> <212> <213>	51 47 DNA Artificial Sequ	ience				
<220> <223>	pAMG22					
<400>						
tatyaa	51 acat catcaccatc	accatcatgc	tagcgttaac	gcgttgg		47
<210> <211> <212> <213>			tagcgttaac	gcgttgg		47
<210> <211> <212>	acat catcaccatc 52 49 DNA		tagcgttaac	gcgttgg		47
<210> <211> <212> <213> <220> <223> <400>	acat catcaccatc 52 49 DNA Artificial Sequence pAMG22	Jence				47 49
<210> <211> <212> <213> <220> <223> <400>	52 49 DNA Artificial Sequence pAMG22 52 tagt agtggtagtg	uence gtagtacgat				
<210> <211> <212> <213> <220> <223> <400> actttg <210> <211> <212>	52 49 DNA Artificial Sequence pAMG22 52 tagt agtggtagtg 53 141 DNA	uence gtagtacgat				

A-3/8CIPSC (3-31-04).ST25 ctaattccgc tctcacctac caaacaatgc cccctgcaa aaaataaatt catataaaaa	60
acatacagat aaccatctgc ggtgataaat tatctctggc ggtgttgaca taaataccac	120
tggcggtgat actgagcaca t	141
<210> 54 <211> 147 <212> DNA <213> Artificial Sequence	
<220> <223> pAMG22	
<400> 54 tgcagattaa ggcgagagtg gatggtttgt tacgggggga cgttttttat ttaagtatat	60
tttttgtatg tctattggta gacgccacta tttaatagag accgccacaa ctgtatttat	120
ggtgaccgcc actatgactc gtgtagc	147
<210> 55 <211> 55 <212> DNA <213> Artificial Sequence	
<220> <223> pAMG22	
<400> 55 cgatttgatt ctagaaggag gaataacata tggttaacgc gttggaattc ggtac	55
<210> 56 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> pAMG22	
<400> 56 taaactaaga tcttcctcct tattgtatac caattgcgca accttaagc	49
<210> 57 <211> 668 <212> DNA <213> Artificial Sequence	
<220> <223> pAMG22	
<400> 57 tgcacgcatt gcatacgtac cagaggggta cgctctcatc ccttgacggt ccgtagttta	60
ttttgctttc cgagtcagct ttctgacccg gaaagcaaaa tagacaacaa acagccactt	120
gcgagaggac tcatcctgtt taggcggccc tcgcctaaac ttgcaacgct tcgttgccgg	180
gcctcccacc gcccgtcctg cgggcggtat ttgacggtcc gtagtttaat tcgtcttccg	240
gtaggactgc ctaccggaaa aacgcaaaga tgtttgagaa aacaaataaa aagatttatg	300
taagtttata cctgcagagt attaaaaatt ttttaagtaa actgtttacg attttaagaa	360

A-378CIP5C (3-31-04).ST25 ctaattataa gagttaacac tcgcgagtgt taaatagcta aactaagatc taaactcaat	420
tgattaattt cctccttatt gtataccaat tgcgcaacct taagctcgag tgatcacagc	480
tggacgtccc atggtacctt cgaatgagct cctaggcgcc tttcttcttc ttcttct	540
ttcgggcttt ccttcgactc aaccgacgac ggtggcgact cgttattgat cgtattgggg	600
aaccccggag atttgcccag aactccccaa aaaacgactt tcctccttgg cgagaagtgc	660
gagaagtg	668
<210> 58 <211> 726 <212> DNA <213> Artificial Sequence <220> <223> pAMG22	
<400> 58	60
gcgtaacgta tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa	120
cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct	120 180
ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca acggcccgga	
gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggggcct	240 300
cccaccgccc gtcctgcggg cggtatttga cggtccgtag tttaattcgt cttcgccatc	
ctgacggatg gcctttttgc gtttctacaa actcttttgt ttatttttct aaatacattc	360
aaatatggac gtctcataat ttttaaaaaa ttcatttgac aaatgctaaa attcttgatt	420
aatattctca attgtgagcg ctcacaattt atcgatttga ttctagattt gttttaacta	480
attaaaggag gaataacata tggttaacgc gttggaattc gagctcacta gtgtcgacct	540
gcagggtacc atggaagctt actcgaggat ccgcggaaag aagaagaaga agaagaaagc	600
ccgaaaggaa gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg	660
ggcctctaaa cgggtcttga ggggtttttt gctgaaagga ggaaccgctc ttcacgctct	720
tcacgc	726
<210> 59 <211> 44 <212> DNA <213> Homo sapiens	
<400> 59 tacgcactgg atccttataa gcagcttatt tttactgatt ggac	44
<210> 60 <211> 27 <212> DNA <213> Homo sapiens	
<400> 60 gtcctcctgg tacctaccta aaacaac	27

```
A-378CIP5C (3-31-04).ST25
<211>
       54
<212>
       DNA
<213>
       Homo sapiens
<400>
                                                                         54
tatggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac
<210>
       62
       19
<211>
<212>
       PRT
<213>
       Homo sapiens
<400>
       62
Met Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro
Gly Thr Tyr
<210>
       63
<211>
       84
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       pAMG21
<400> 63
tatggaaact tttcctccaa aatatcttca ttatgatgaa gaaacttctc atcagctgct
                                                                         60
                                                                         84
gtgtgataaa tgtccgccgg gtac
       64
<210>
<211>
       78
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       pAMG21
<400>
ccggcggaca tttatcacac agcagctgat gagaagtttc ttcatcataa tgaagatatt
                                                                         60
                                                                         78
ttggaggaaa agtttcca
<210>
       65
<211>
       44
       DNA
<212>
       Artificial Sequence
<213>
<220>
<223>
       pAMG21-MuOPG
<400>
                                                                         44
tacgcactgg atccttataa gcagcttatt ttcacggatt gaac
<210>
       66
<211>
       38
<212>
       DNA
<213>
       Artificial Sequence
```

A-378CIP5C (3-31-04).ST25 <220> <223> pAMG21-MuOPG <400> 66 38 gtgctcctgg tacctaccta aaacagcact gcacagtg <210> 67 <211> <212> 84 DNA Artificial Sequence <213> <220> <223> pAMG21-MuOPG <400> 60 tatggaaact ctgcctccaa aatacctgca ttacgatccg gaaactggtc atcagctgct 84 gtgtgataaa tgtgctccgg gtac <210> 68 <211> <212> 78 DNA Artificial Sequence <213> <220> <223> pAMG21-MuOPG <400> 60 ccggagcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt 78 ttggaggcag agtttcca <210> 69 54 <211> <212> DNA <213> Mus musculus <400> 69 54 tatggaccca gaaactggtc atcagctgct gtgtgataaa tgtgctccgg gtac <210> 70 48 <211> <212> DNA Mus musculus <213> <400> ccggagcaca tttatcacac agcagctgat gaccagtttc tgggtcca 48 71 87 <210> <211> <212> DNA Artificial Sequence <213> <220> <223> pAMG21 <400> 71 tatgaaagaa actctgcctc caaaatacct gcattacgat ccggaaactg gtcatcagct 60

gctgtgtgat aaatgtgctc cgggtac

87

				A-378	BCIP5C (3-3:	L-04).ST25		
<211> <212> <213>	81 DNA Arti	ificial	Sequ	ience				
<220> <223>	рАМО	521						
<400> ccggago	72 caca	tttatca	acac	agcagctgat	gaccagtttc	cggatcgtaa	tgcaggtatt	60
ttggagg	gcag	agtttct	tttc	a				81
<210> <211> <212> <213>	73 71 DNA Arti	ificial	Sequ	ience				
<220> <223>	рАМС	521						
<400> gttctco	73 ctca	tatgaaa	acat	catcaccatc	accatcatga	aactctgcct	ccaaaatacc	60
tgcatta	acga	t						71
<210> <211> <212> <213>	74 43 DNA Mus	musculu	ıs		·			
	74 ctca	tatgaaa	agaa	actctgcctc	caaaatacct	gca		43
<210> <211> <212> <213>	75 76 DNA Mus	musculı	ıs					
<400> tacgcad	75 ctgg	atcctta	aatg	atggtgatgg	tgatgatgta	agcagcttat	tttcacggat	60
tgaacct	tgat	tcccta						76
<210> <211> <212> <213>	76 47 DNA Mus	musculı	ıs					
<400> gttctco	76 ctca	tatgaaa	atac	ctgcattacg	atccggaaac	tggtcat		47
<210> <211> <212> <213>	77 43 DNA Homo	o sapier	าร					
<400> gttctco	77 ctat	taatgaa	aata	tcttcattat	gatgaagaaa	ctt		43
<210> <211> <212>	78 40 DNA							

```
A-378CIP5C (3-31-04).ST25
<213> Homo sapiens
<400> 78
                                                                         40
tacgcactgg atccttataa gcagcttatt tttactgatt
<210>
       79
<211>
      40
<212>
<213>
       DNA
      Mus musculus
<400>
                                                                        40
gttctcctca tatggaaact ctgcctccaa aatacctgca
<210>
       80
<211>
       43
      DNA
<212>
<213>
      Mus musculus
<400>
                                                                        43
tacgcactgg atccttatgt tgcatttcct ttctgaatta gca
<210>
       81
<211>
      18
<212>
      DNA
      Artificial Sequence
<213>
<220>
<223>
      pAMG21
<400> 81
ccggaaacag ataatgag
                                                                        18
<210>
       82
<211>
       18
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      pAMG21
<400> 82
                                                                        18
gatcctcatt atctgttt
<210>
       83
       30
<211>
<212>
      DNA
      Artificial Sequence
<213>
<220>
<223>
       pAMG21
                                                                        30
ccggaaacag agaagccacg caaaagtaag
<210>
      84
<211>
      30
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      pAMG21
```

Page 16

A-378CIP5C (3-31-04).ST25 <400> 84 30 gatccttact tttgcgtggc ttctctgttt <210> 85 <211> 12 <212> DNA <213> Artificial Sequence <220> pAMG21 <223> <400> 85 12 tatgttaatg ag <210> 86 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> pAMG21 <400> 86 gatcctcatt aaca 14 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pAMG21 <400> 87 tatgttccgg aaacagttaa g 21 <210> 88 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> pAMG21 <400> 88 gatccttaac tgtttccgga aca 23 <210> 89 36 <211> <212> DNA <213> Artificial Sequence <220> <223> pAMG21 <400> 89 tatgttccgg aaacagtgaa tcaactcaaa aataag 36 <210> 90 <211> 38 <212> DNA Artificial Sequence <213>

ŧ

```
<220>
<223>
       pAMG21
<400>
                                                                          38
gatccttatt tttgagttga ttcactgttt ccggaaca
<210>
       91
       100
<211>
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
      pAMG21
<400>
      91
ctagcgacga cgacgacaaa gaaactctgc ctccaaaata cctgcattac gatccggaaa
                                                                          60
ctggtcatca gctgctgtgt cataaatgtg ctccgggtac
                                                                         100
<210>
       92
<211>
       92
<212>
       DNA
<213>
      Artificial Sequence
<220>
<223>
      pAMG21
<400> 92
ccggagcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt
                                                                          60
ttggaggcag agtttctttg tcgtcgtcgt cg
                                                                          92
       93
<210>
<211>
       26
<212>
<213>
       Artificial Sequence
<220>
<223>
      pAMG21-huOPG
<400>
                                                                          26
acaaacacaa tcgatttgat actaga
<210>
       94
<211>
<212>
       50
       DNA
      Artificial Sequence
<213>
<220>
<223>
       pAMG21-huOPG
<400> 94
                                                                          50
tttgttttaa ctaattaaag gaggaataaa atatgagagg atcgcatcac
<210>
       95
       50
<211>
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       pAMG21-huOPG
```

Page 18

A-378CIP5C (3-31-04).ST25 <400> 95 50 catcaccatc acgaaacctt cccgccgaaa tacctgcact acgacgaaga <210> 96 <211> 49 <212> DNA Artificial Sequence <213> <220> pAMG21-huOPG <223> <400> 96 49 aacctcccac cagctgctgt gcgacaaatg cccgccgggt acccaaaca 97 <210> <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> tgtttgggta cccggcgggc atttgt 26 <210> 98 <211> 50 <212> DNA <213> Artificial Sequence <220> pAMG21-huOPG <223> <400> cgcacagcag ctggtgggag gtttcttcgt cgtagtgcag gtatttcggc 50 <210> 99 49 <211> <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <400> 99 49 gggaaggttt cgtgatggtg atggtgatgc catcctctca tattttatt <210> 100 <211> 50 <212> DNA Artificial Sequence <213> <220> <223> pAMG21-huOPG <400> cctcctttaa ttagttaaaa caaatctagt atcaaatcga ttgtgtttgt 50 <210> 101 <211> 59 <212> DNA <213> Homo sapiens

<400> acaaaca	101 acaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg	59
<210> <211> <212> <213>	102 48 DNA Homo sapiens	
<400> ctaatta	102 aaag gaggaataaa atgaaagaaa cttttcctcc aaaatatc	48
<210> <211> <212> <213>	103 31 DNA Homo sapiens	
<400> tgtttg	103 ggta cccggcggac atttatcaca c	31
<210> <211> <212> <213>	104 59 DNA Homo sapiens	
<400> acaaac	104 acaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg	59
<210> <211> <212> <213>	105 54 DNA Homo sapiens	
<400> ctaatt	105 aaag gaggaataaa atgaaaaaaa aagaaacttt tcctccaaaa tatc	54
<210> <211> <212> <213>	106 31 DNA Homo sapiens	
<400> tgtttg	106 ggta cccggcggac atttatcaca c	31
<210> <211> <212> <213>		
<220> <223>	PCR primer for Fc-hOPG fusion protein.	
<400> cagccc	107 gggt aaaatggaaa cgtttcctcc aaaatatctt catt	44
<210> <211> <212> <213>	108 44 DNA Artificial Sequence	
<220>		

```
A-378CIP5C (3-31-04).ST25
<223> PCR primer for FchOPG fusion protein.
<400> 108
                                                                        44
cgtttccatt ttacccgggc tgagcgagag gctcttctgc gtgt
<210>
       109
<211>
       45
<212>
      DNA
<213> Artificial Sequence
<220>
      Fc/muOPG
<223>
<400> 109
cgctcagccc gggtaaaatg gaaacgttgc ctccaaaata cctgc
                                                                        45
<210>
       110
<211>
       39
<212>
      DNA
      Artificial Sequence
<213>
<220>
<223>
      Fc/muOPG
<400> 110
                                                                        39
ccattttacc cgggctgagc gagaggctct tctgcgtgt
<210>
       111
<211>
       36
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
      muOPG
<400> 111
                                                                        36
gaaaataaga tgcttagctg cagctgaacc aaaatc
<210>
       112
<211>
      34
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
       muOPG
<400> 112
                                                                        34
cagctgcagc taagcagctt attttcacgg attg
<210>
       113
<211>
       36
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
      huOPG
<400>
      113
                                                                        36
aaaaataagc tgcttagctg cagctgaacc aaaatc
<210>
      114
<211>
       35
```

A-378CIP5C (3-31-04).ST25 <212> DNA <213> Artificial Sequence <220> <223> huopg <400> 114 35 cagctgcagc taagcagctt atttttactg attgg <210> 115 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> pAMG21-huOPG <220> <221> misc_feature Linker with XbaI and KpnI sites inserted into human sequence. <223> <400> 115 ctagaaggag gaataacata tggaaacttt tgctccaaaa tatcttcatt atgatgaaga 60 aactagtcat cagctgctgt gtgataaatg tccgccgggt ac 102 <210> 116 <211> 94 <212> DNA Artificial Sequence <213> <220> huOPG <223> <400> 116 ccggcggaca tttatcacac agcagctgat gactagtttc ttcatcataa tgaagatatt 60 94 ttggagcaaa agtttccata tgttattcct cctt <210> 117 <211> 62 <212> DNA Artificial Sequence <213> <220> <223> huOPG <400> 117 ctagaaggag gaataacata tggaaacttt tcctgctaaa tatcttcatt atgatgaaga 60 62 aa <210> 118 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> huOPG <400> 118 ctagtttctt catcataatg aagatattta gcaggaaaag tttccatatg ttattcctcc 60

<211> <212> <213>	119 51 PRT Homo	sapi	iens												
<400>	119			_		_				_	_		_		
Tyr Hi 1	s Tyr	Tyr	Asp 5	Gln	Asn	Gly	Arg	Met 10	Cys	Glu	Glu	Cys	His 15	Met	
Cys G1	n Pro	G]y 20	His	Phe	Leu	٧a٦	Lys 25	His	Cys	Lys	Gln	Pro 30	Lys	Arg	
Asp Th	ır Val 35	Cys	His	Lys	Pro	Cys 40	Glu	Pro	Gly	val	Thr 45	Tyr	Thr	Asp	
Asp Tr 50															
<210> <211> <212> <213>	120 2432 DNA Ratti	us ra	attus	5											
<220> <221> <222>	CDS (124))(1	L326))											
<400>	120														
atcaaa		gggca	atact	t co	tgtt	tgcc	c aga	accti	tata	taaa	acgt	ca 1	gtto	gcctg	60
atcaaa ggcagc	iggca (_		_				_		_		60 120
ggcagc aca at	agag a	aagca aag	accta tgg	ag ca ctg	tgc	gccca tgt	a gco gca	ggcto ctc	gccg ctg	cctg	gagg1 ttc	tt d	caga gac	aggacc atc	
ggcagc aca at	aggca g agag a g aac t Asn	aagca aag Lys aca	tgg Trp acc	ctg Leu 5	tgc Cys	tgt Cys	gca Ala	ggcto ctc Leu cct	ctg Leu 10 cca	ccto gtg val	gaggt ttc Phe tac	ttg Leu ttg	gac Asp	aggacc atc Ile 15	120
ggcagc aca at Me 1 att ga	aggca (cagag accet Asnua tgg u Trp	aagca aag Lys aca Thr	tgg Trp acc Thr 20 gga	ctg Leu 5 cag Gln	tgc tgc Cys gaa Glu cag	tgt Cys acc Thr	gca Ala ttt Phe	ctc Leu cct Pro 25	ctg Leu 10 cca Pro	gtg val aaa Lys	ttc Phe tac Tyr	ttg Leu ttg Leu	gac Asp cat His 30	aggacc atc Ile 15 tat Tyr	120 168
ggcagc aca at Me 1 att ga Ile Gl	agag a agag a ag aac a tgg u Trp a gaa o Glu	aagca aag Lys aca Thr acc Thr 35	tgg Trp acc Thr 20 gga Gly	ctg Leu 5 cag Gln cgt Arg	tgc Cys gaa Glu cag Gln	tgt Cys acc Thr ctc Leu	gca Ala ttt Phe ttg Leu 40	ctc Leu cct Pro 25 tgt Cys	ctg Leu 10 cca Pro gac Asp	gtg val aaa Lys aaa Lys	ttc Phe tac Tyr tgt Cys	ttg Leu ttg Leu gct Ala 45	gac Asp cat His 30 cct Pro	aggacc atc Ile 15 tat Tyr ggc Gly	120 168 216
ggcagc aca at Me 1 att ga Ile Gl gac cc Asp Pr	agag acat Asn a tgg u Trp a gaa r Glu ac cta r Leu 50 gc cct	aagca aag Lys aca Thr acc Thr 35 aaa Lys	accta tgg Trp acc Thr 20 gga Gly cag Gln	ctg Leu 5 cag Gln cgt Arg cac His	tgc Cys gaa Glu cag Gln tgc Cys	acc Thr ctc Leu aca Thr 55	gca Ala ttt Phe ttg Leu 40 gtc Val	ctc Leu cct Pro 25 tgt Cys agg Arg	ctg Leu 10 cca Pro gac Asp agg Arg	gtg val aaa Lys aaa Lys aag Lys	ttc Phe tac Tyr tgt Cys aca Thr 60	ttg Leu ttg Leu gct Ala 45 ctg Leu	gac Asp cat His 30 cct Pro tgt Cys	aggacc atc Ile 15 tat Tyr ggc Gly gtc Val	120 168 216 264
ggcagc aca at Me 1 att ga Ile Gl gac cc Asp Pr acc ta Thr Ty cct tg Pro Cy	agag a ac a tag a a tag a a tag a a a tag a a a a	aagca aag Lys aca Thr acc Thr 35 aaa Lys gac Asp	tgg Trp acc Thr 20 gga Gly cag Gln tac Tyr	ctg Leu 5 cag Gln cgt Arg cac His	tgc Cys gaa Glu cag Gln tgc Cys tat Tyr 70 gtg	tgt Cys acc Thr ctc Leu aca Thr 55 aca Thr	gca Ala ttt Phe ttg Leu 40 gtc Val gac Asp	ctc Leu Cct Pro 25 tgt Cys agg Arg	ctg Leu 10 Cca Pro gac Asp agg Arg	gtg val aaa Lys aaa Lys cac His 75	ttc Phe tac Tyr tgt Cys aca Thr 60 acg Thr	ttg Leu ttg Leu gct Ala 45 ctg Leu agt Ser	gac Asp cat His 30 cct Pro tgt Cys gat Asp	aggacc atc Ile 15 tat Tyr ggc Gly gtc Val gaa Glu	120 168 216 264 312

							_			•	-					
tac Tyr	ctg Leu	gag Glu	ctc Leu 115	gaa Glu	ttc Phe	tgc Cys	ttg Leu	aag Lys 120	cac His	cgg Arg	agc Ser	tgt Cys	ccc Pro 125	cca Pro	ggc Gly	504
ttg Leu	ggt Gly	gtg Val 130	ctg Leu	cag Gln	gct Ala	ggg Gly	acc Thr 135	cca Pro	gag Glu	cga Arg	aac Asn	acg Thr 140	gtt Val	tgc Cys	aaa Lys	552
aga Arg	tgt Cys 145	ccg Pro	gat Asp	ggg Gly	ttc Phe	ttc Phe 150	tca Ser	ggt Gly	gag Glu	acg Thr	tca Ser 155	tcg Ser	aaa Lys	gca Ala	ccc Pro	600
tgt Cys 160	agg Arg	aaa Lys	сас His	acc Thr	aac Asn 165	tgc Cys	agc Ser	tca Ser	ctt Leu	ggc Gly 170	ctc Leu	ctg Leu	cta Leu	att Ile	cag Gln 175	648
aaa Lys	gga Gly	aat Asn	gca Ala	aca Thr 180	cat His	gac Asp	aat Asn	gta Val	tgt Cys 185	tcc Ser	gga Gly	aac Asn	aga Arg	gaa Glu 190	gca Ala	696
act Thr	caa Gln	aat Asn	tgt Cys 195	gaa Glu	ata Ile	gat Asp	gtc Val	acc Thr 200	ctg Leu	tgc Cys	gaa Glu	gag Glu	gca Ala 205	ttc Phe	ttc Phe	744
														gtt Val		792
gtg Val	gac Asp 225	agt Ser	ttg Leu	cct Pro	ggg Gly	acc Thr 230	aaa Lys	gtg Val	aat Asn	gca Ala	gag Glu 235	agt Ser	gta Val	gag Glu	agg Arg	840
ata Ile 240	aaa Lys	cgg Arg	aga Arg	cac His	agc Ser 245	tcg Ser	caa Gln	gag Glu	caa Gln	act Thr 250	ttc Phe	cag Gln	cta Leu	ctt Leu	aag Lys 255	888
ctg Leu	tgg Trp	aag Lys	cat His	caa Gln 260	aac Asn	aga Arg	gac Asp	cag Gln	gaa Glu 265	atg Met	gtg Val	aag Lys	aag Lys	atc Ile 270	atc Ile	936
caa Gln	gac Asp	att Ile	gac Asp 275	ctc Leu	tgt Cys	gaa Glu	agc Ser	agt Ser 280	gtg Val	caa Gln	cgg Arg	cat His	atc Ile 285	ggc Gly	cac His	984
gcg Ala	aac Asn	ctc Leu 290	Thr	aca Thr	gag Glu	Gln	ctc Leu 295	Arg	atc Ile	ttg Leu	atg Met	gag Glu 300	agc Ser	ttg Leu	cct Pro	1032
ggg Gly	aag Lys 305	aag Lys	atc Ile	agc Ser	cca Pro	gac Asp 310	gag Glu	att Ile	gag Glu	aga Arg	acg Thr 315	aga Arg	aag Lys	acc Thr	tgc Cys	1080
aaa Lys 320	ccc Pro	agc Ser	gag Glu	cag Gln	ctc Leu 325	ctg Leu	aag Lys	cta Leu	ctg Leu	agc Ser 330	ttg Leu	tgg Trp	agg Arg	atc Ile	aaa Lys 335	1128
														aag Lys 350		1176
ttg Leu	aaa Lys	gca Ala	tac Tyr 355	cac His	ttt Phe	ccc Pro	aaa Lys	acc Thr 360	gtc Val	acc Thr	cac His	agt Ser	ctg Leu 365	agg Arg	aag Lys	1224
									Met		Arg			cag Gln		1272
									rat	ut Zi	7					

Page 24

ctc ttt cta gaa atg ata ggg aat cag gtt caa tca gtg aag ata agc Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser 385 390 395	1320
tgc tta tagttaggaa tggtcactgg gctgtttctt caggatgggc caacactgat Cys Leu 400	1376
ggagcagatg gctgcttctc cggctcttga aatggcagtt gattcctttc tcatcagttg	1436
gtgggaatga agatcctcca gcccaacaca cacactgggg agtctgagtc aggagagtga	1496
ggcaggctat ttgataattg tgcaaagctg ccaggtgtac acctagaaag tcaagcaccc	1556
tgagaaagag gatattttta taacctcaaa cataggccct ttccttcctc tccttatgga	1616
tgagtactca gaaggcttct actatcttct gtgtcatccc tagatgaagg cctctttat	1676
ttattttttt attcttttt tcggagctgg ggaccgaacc cagggccttg cgcttgcgag	1736
gcaagtgctc taccactgag ctaaatctcc aacccctgaa ggcctctttc tttctgcctc	1796
tgatagtcta tgacattctt ttttctacaa ttcgtatcag gtgcacgagc cttatcccat	1856
ttgtaggttt ctaggcaagt tgaccgttag ctatttttcc ctctgaagat ttgattcgag	1916
ttgcagactt ggctagacaa gcaggggtag gttatggtag tttatttaac agactgccac	1976
caggagtcca gtgtttcttg ttcctctgta gttgtaccta agctgactcc aagtacattt	2036
agtatgaaaa ataatcaaca aattttattc cttctatcaa cattggctag ctttgtttca	2096
gggcactaaa agaaactact atatggagaa agaattgata ttgcccccaa cgttcaacaa	2156
cccaatagtt tatccagctg tcatgcctgg ttcagtgtct actgactatg cgccctctta	2216
ttactgcatg cagtaattca actggaaata gtaataataa taatagaaat aaaatctaga	2276
ctccattgga tctctctgaa tatgggaata tctaacttaa gaagctttga gatttcagtt	2336
gtgttaaagg cttttattaa aaagctgatg ctcttctgta aaagttacta atatatctgt	2396
aagactatta cagtattgct atttatatcc atccag	2432

<210> 121

<211> 401

<212> PRT

<213> Rattus rattus

<400> 121

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp $20 \hspace{1cm} 25 \hspace{1cm} 30$

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 60

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110 Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125 Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190 Gln Asn Cys Glu Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240 Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 270 Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Ile Gly His Ala 275 280 285 Asn Leu Thr Thr Glu Gln Leu Arg Ile Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Ile Ser Pro Asp Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 305 310 315 320 Pro Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 345 350 Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 365 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400 Leu <210> 122 <211> 1325 <212> DNA Mus musculus <213> <220> <221> <222> misc_feature (11)..(11)At position 11, R is a purine. <220> <221> **CDS** <222> (91)..(1293)<400> 60 ccttatataa racgtcatga ttgcctgggc tgcagagacg cacctagcac tgacccagcg 114 gctgcctcct gaggtttccc gaggaccaca atg aac aag tgg ctg tgc tgc gca Met Asn Lys Trp Leu Cys Cys Ala 1 ctc ctg gtg ctc ctg gac atc att gaa tgg aca acc cag gaa acc ctt Leu Leu Val Leu Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr Leu 162 ctt cca aag tac ttg cat tat gac cca gaa act ggt cat cag ctc ctg Leu Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His Gln Leu Leu 210 tgt gac aaa tgt gct cct ggc acc tac cta aaa cag cac tgc aca gtg Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Val 45 50 55 258 agg agg aag aca ttg tgt gtc cct tgc cct gac cac tct tat acg gac Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser Tyr Thr Asp 60 65 70306 agc tgg cac acc agt gat gag tgt gtg tat tgc agc cca gtg tgc aag Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro Val Cys Lys 75 80 85354 gaa ctg cag tcc gtg aag cag gag tgc aac cgc acc cac aac cga gtg Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val 90 95 100 402

tgt gag tgt gag gaa ggg cgt tac ctg gag atc gaa ttc tgc ttg aag

Page 27

450

	-7	_		-7	-7			78CI						•	4	
105	Glu	Cys	Glu	Glu	Gly 110	Arg	Tyr	Leu	Glu	116 115	GIU	Pne	Cys	Leu	120	
cac His	cgg Arg	agc Ser	tgt Cys	ccc Pro 125	ccg Pro	ggc Gly	tcc Ser	ggc Gly	gtg val 130	gtg Val	caa Gln	gct Ala	gga Gly	acc Thr 135	cca Pro	498
gag Glu	cga Arg	aac Asn	aca Thr 140	gtt Val	tgc Cys	aaa Lys	aaa Lys	tgt Cys 145	cca Pro	gat Asp	ggg Gly	ttc Phe	ttc Phe 150	tca Ser	ggt Gly	546
gag Glu	act Thr	tca Ser 155	tcg Ser	aaa Lys	gca Ala	ccc Pro	tgt Cys 160	ata Ile	aaa Lys	cac His	acg Thr	aac Asn 165	tgc Cys	agc Ser	aca Thr	594
ttt Phe	ggc Gly 170	ctc Leu	ctg Leu	cta Leu	att Ile	cag Gln 175	aaa Lys	gga Gly	aat Asn	gca Ala	aca Thr 180	cat His	gac Asp	aac Asn	tgt Cys	642
tgt Cys 185	tcc Ser	gga Gly	aac Asn	aga Arg	gaa Glu 190	gcc Ala	acg Thr	caa Gln	aag Lys	tgt Cys 195	gga Gly	ata Ile	gat Asp	gtc Val	acc Thr 200	690
ctg Leu	tgt Cys	gaa Glu	gag Glu	gcc Ala 205	ttc Phe	ttc Phe	agg Arg	ttt Phe	gct Ala 210	gtt Val	cct Pro	acc Thr	aag Lys	att Ile 215	ata Ile	738
cca Pro	aat Asn	tgg Trp	ctg Leu 220	agt Ser	gtt Val	ttg Leu	gtg Val	gac Asp 225	agt Ser	ttg Leu	cct Pro	ggg Gly	acc Thr 230	aaa Lys	gtg Val	786
aat Asn	gcc Ala	gag Glu 235	agt Ser	gta Val	gag Glu	agg Arg	ata Ile 240	aaa Lys	cgg Arg	aga Arg	cac His	agc Ser 245	tca Ser	caa Gln	gag Glu	834
caa Gln	acc Thr 250	ttc Phe	cag Gln	ctg Leu	ctg Leu	aag Lys 255	ctg Leu	tgg Trp	aaa Lys	cat His	caa Gln 260	aac Asn	aga Arg	gac Asp	cag Gln	882
gaa Glu 265	atg Met	gtg Val	aag Lys	aag Lys	atc Ile 270	atc Ile	caa Gln	gac Asp	att Ile	gac Asp 275	ctc Leu	tgt Cys	gaa Glu	agc Ser	agc Ser 280	930
gtg Val	cag Gln	cgg Arg	cat His	ctc Leu 285	ggc Gly	cac His	tcg Ser	aac Asn	ctc Leu 290	acc Thr	aca Thr	gag Glu	cag Gln	ctt Leu 295	ctt Leu	978
					ctg Leu											1026
					acc Thr											1074
ctc Leu	agt Ser 330	tta Leu	tgg Trp	agg Arg	atc Ile	aaa Lys 335	aat Asn	ggt Gly	gac Asp	caa Gln	gac Asp 340	acc Thr	ttg Leu	aag Lys	ggc Gly	1122
					aag Lys 350											1170
					agg Arg											1218
atg	tac	aga	ctg	tat	cag	aag	ctc	ttt		gaa ge 28		ata	999	aat	cag	1266

.

1

A-378CIP5C (3-31-04).ST25
Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln
380 385 390 gtt caa tcc gtg aaa ata agc tgc tta taactaggaa tggtcactgg Val Gln Ser Val Lys Ile Ser Cys Leu 395 400 1313 1325 gctgtttctt ca <210> 123 <211> 401 <212> **PRT** Mus musculus <400> Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile 1 10 15 Glu Trp Thr Thr Gln Glu Thr Leu Leu Pro Lys Tyr Leu His Tyr Asp 20 25 30 Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45 Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 60 Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser 115 120 125 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys 130 135 140 Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Ile Lys His Thr Asn Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Cys Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 210 215 220

Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240

Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Leu Gly His Ser 275 280 285

Asn Leu Thr Thr Glu Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Ile Ser Pro Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 305 310 315 320

Ser Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 345 350

Lys Thr Ser His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 365

Met Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

```
<210> 124
```

<211> 1356 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (63)..(63)

<223> At position 63, Y is a pyrimidine.

<220>

<221> CDS

<222> (95)..(1297)

A-378CIPSC (3-31-04).S125 <400> 124 gtatatataa cgtgatgagc gtacgggtgc ggagacgcac cggcgcgctc gcccagccg	jc 60
cgyctccaag cccctgaggt ttccggggac caca atg aac aag ttg ctg tgc tg Met Asn Lys Leu Leu Cys Cy 1	
gcg ctc gtg ttt ctg gac atc tcc att aag tgg acc acc cag gaa acg Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr 10 15 20	163
ttt cct cca aag tac ctt cat tat gac gaa gaa acc tct cat cag ctg Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu 25 30 35	211
ttg tgt gac aaa tgt cct cct ggt acc tac cta aaa caa cac tgt aca Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr 40 45 50 55	259
gca aag tgg aag tcc gtg tgc gcc cct tgc cct gac cac tac tac aca Ala Lys Trp Lys Ser Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr 60 65 70	307
gac agc tgg cac acc agt gac gag tgt cta tac tgc agc ccc gtg tgc Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys 75 80 85	355
aag gag ctg cag tac gtc aag cag gag tgc aat cgc acc cac aac cgc Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg 90 95 100	403
gtg tgc gaa tgc aag gaa ggg cgc tac ctt gag ata gag ttc tgc ttg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu 105 110 115	451
aaa cat agg agc tgc cct cct gga ttt gga gtg gtg caa gct gga acc Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr 120 125 130 135	499
cca gag cga aat aca gtt tgc aaa aga tgt cca gat ggg ttc ttc tca Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser 140 145 150	547
aat gag acg tca tct aaa gca ccc tgt aga aaa cac aca aat tgc agt Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser 155 160 165	595
gtc ttt ggt ctc ctg cta act cag aaa gga aat gca aca cac gac aac Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn 170 175 180	643
ata tgt tcc gga aac agt gaa tca act caa aaa tgt gga ata gat gtt Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val 185 190 195	691
acc ctg tgt gag gag gca ttc ttc agg ttt gct gtt cct aca aag ttt Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe 200 205 210 215	739
acg cct aac tgg ctt agt gtc ttg gta gac aat ttg cct ggc acc aaa Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys 220 225 230	787
gta aac gca gag agt gta gag agg ata aaa cgg caa cac agc tca caa Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln 235 240 245	835
gaa cag act ttc cag ctg ctg aag tta tgg aaa cat caa aac aaa gcc Page 31	883

Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Ala 250 255 260	
caa gat ata gtc aag aag atc atc caa gat att gac ctc tgt gaa aac Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn 265 270 275	931
agc gtg cag cgg cac att gga cat gct aac ctc acc ttc gag cag ctt Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu 280 285 290 295	979
cgt agc ttg atg gaa agc tta ccg gga aag aaa gtg gga gca gaa gac Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp 300 305 310	1027
att gaa aaa aca ata aag gca tgc aaa ccc agt gac cag atc ctg aag Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys 315 320 325	1075
ctg ctc agt ttg tgg cga ata aaa aat ggc gac caa gac acc ttg aag Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys 330 335 340	1123
ggc cta atg cac gca cta aag cac tca aag acg tac cac ttt ccc aaa Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys 345 350 355	1171
act gtc act cag agt cta aag aag acc atc agg ttc ctt cac agc ttc Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe 360 365 370 375	1219
aca atg tac aaa ttg tat cag aag tta ttt tta gaa atg ata ggt aac Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn 380 385 390	1267
cag gtc caa tca gta aaa ata agc tgc tta taactggaaa tggccattga Gln Val Gln Ser Val Lys Ile Ser Cys Leu 395 400	1317
gctgtttcct cacaattggc gagatcccat ggatgataa	1356
<pre>ctgtttcct cacaattggc gagatcccat ggatgataa <210> 125 <211> 401 <212> PRT <213> Homo sapiens</pre>	1356
<210> 125 <211> 401 <212> PRT	1356
<210> 125 <211> 401 <212> PRT <213> Homo sapiens	1356
<pre><210> 125 <211> 401 <212> PRT <213> Homo sapiens <400> 125 Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile</pre>	1356
<pre><210> 125 <211> 401 <212> PRT <213> Homo sapiens <400> 125 Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1</pre>	1356
<pre> <210> 125 <211> 401 <212> PRT <213> Homo sapiens <400> 125 Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1</pre>	1356

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Lys Ala Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350

Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365

Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 126

<211> 139

<212> PRT

<213> Homo sapiens

<400> 126

Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys 10 10

Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro 20 25 30

Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala 40 45

Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys 50 55 60

Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr 65 70 75 80

Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn 85 90 95

Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His $100 \hspace{1cm} 105 \hspace{1cm} 110$

Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly 115 120 125

Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys 130 135

<210> 127

<211> 48

<212> DNA <213> Artificial Sequence

<220>

<223> huOPG

<400> 127
acctacttct ttgaagagta gtcgacgaca cactatttac aggcggcc

<210> 128

<211> 219 <212> PRT

<213> Rattus rattus

<400> 128

Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 1 15

Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser 20 25 30

Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn 35 40 . 45

Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro 50 55 60

Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro 65 70 75 80

Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His 85 90 95

Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly 100 105

Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg 115 120 125

Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 130 135 140

Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr 145 150 155 160

Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175

Leu Cys Leu Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg 180 185 190

Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly
195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr 210 215

<210> 129

<211> 280

<212> PRT

<213> Rattus rattus

<400> 129

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30 .

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys
35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr 180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Thr Arg Thr Gln Arg Trp Lys 225 230 235 240

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu 245 250 255 Page 36

Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser 260 265 270

Phe Ser Pro Thr Pro Gly Phe Thr 275 280

<210> 130

<211> 207

<212> PRT

<213> Rattus rattus

<400> 130

Met Leu Arg Leu Ile Ala Leu Leu Val Cys Val Val Tyr Val Tyr Gly 1 10 15

Asp Asp Val Pro Tyr Ser Ser Asn Gln Gly Lys Cys Gly Gly His Asp 20 25 30

Tyr Glu Lys Asp Gly Leu Cys Cys Ala Ser Cys His Pro Gly Phe Tyr 35 40 45

Ala Ser Arg Leu Cys Gly Pro Gly Ser Asn Thr Val Cys Ser Pro Cys 50 60

Glu Asp Gly Thr Phe Thr Ala Ser Thr Asn His Ala Pro Ala Cys Val 65 70 75 80

Ser Cys Arg Gly Pro Cys Thr Gly His Leu Ser Glu Ser Gln Pro Cys $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Asp Arg Thr His Asp Arg Val Cys Asn Cys Ser Thr Gly Asn Tyr Cys 100 105 110

Leu Leu Lys Gly Gln Asn Gly Cys Arg Ile Cys Ala Pro Gln Thr Lys 115 120 125

Cys Pro Ala Gly Tyr Gly Val Ser Gly His Thr Arg Ala Gly Asp Thr 130 135 140

Leu Cys Glu Lys Cys Pro Pro His Thr Tyr Ser Asp Ser Leu Ser Pro 145 150 155 160

Thr Glu Arg Cys Gly Thr Ser Phe Asn Tyr Ile Ser Val Gly Phe Asn 165 170 175

Leu Tyr Pro Val Asn Glu Thr Ser Cys Thr Thr Thr Ala Gly His Asn 180 185 190

Glu Val Ile Lys Thr Lys Glu Phe Thr Val Thr Leu Asn Tyr Thr 195 200 205 <210> 131

<211> 227 <212> PRT

<213> Rattus rattus

<400> 131

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Thr Thr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 190

Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 215 220

Gln His Thr 225

```
<210> 132
```

<211> 197

<212> PRT <213> Rattus rattus

<400> 132

Met Val Ser Leu Pro Arg Leu Cys Ala Leu Trp Gly Cys Leu Leu Thr $10 \ 15$

Ala Val His Leu Gly Gln Cys Val Thr Cys Ser Asp Lys Gln Tyr Leu 20 25 30

His Asp Gly Gln Cys Cys Asp Leu Cys Gln Pro Gly Ser Arg Leu Thr 35 40 45

Ser His Cys Thr Ala Leu Glu Lys Thr Gln Cys His Pro Cys Asp Ser 50 60

Gly Glu Phe Ser Ala Gln Trp Asn Arg Glu Ile Arg Cys His Gln His 65 70 75 80

Arg His Cys Glu Pro Asn Gln Gly Leu Arg Val Lys Lys Glu Gly Thr 85 90 95

Ala Glu Ser Asp Thr Val Cys Thr Cys Lys Glu Gly Gln His Cys Thr 100 105 110

Ser Lys Asp Cys Glu Ala Cys Ala Gln His Thr Pro Cys Ile Pro Gly

Phe Gly Val Met Glu Met Ala Thr Glu Thr Thr Asp Thr Val Cys His 130 135 140

Pro Cys Pro Val Gly Phe Phe Ser Asn Gln Ser Ser Leu Phe Glu Lys 145 150 155 160

Cys Tyr Pro Trp Thr Ser Cys Glu Asp Lys Asn Leu Glu Val Leu Gln 165 170 175

Lys Gly Thr Ser Gln Thr Asn Val Ile Cys Gly Leu Lys Ser Arg Met 180 185 190

Arg Ala Leu Leu Val 195

<210> 133

<211> 208 <212> PRT

<213> Rattus rattus

<400> 133

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile 10 15 Page 39

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30 Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45 Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 60 Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110 Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125 Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys 165 170 175Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190 Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Met Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu 1 10 15

Leu Leu Leu Leu Gly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys 20 25 30

Pro Thr Gly Leu Tyr Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn 35 40 45

¹³⁴ 224

<210> <211>

Rattus rattus

<400> 134

Leu Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys 50 60 Glu Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr 65 70 75 80 Glu Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser 90 95 Ala Pro Cys Val Glu Ala Asp Asp Ala Val Cys Arg Cys Ala Tyr Gly
100 105 110 Tyr Tyr Gln Asp Glu Thr Thr Gly Arg Cys Glu Ala Cys Arg Val Cys 115 120 125 Glu Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr 130 135 140 Val Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His 145 150 155 160 Val Asp Pro Cys Leu Pro Cys Thr Val Cys Glu Asp Thr Glu Arg Gln 165 170 175 Leu Arg Glu Cys Thr Arg Trp Ala Asp Ala Glu Cys Glu Glu Ile Pro 180 185 190 Gly Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr 195 200 205 Ala Pro Ser Thr Gln Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile 210 215 220

Met Tyr Val Trp Val Gln Gln Pro Thr Ala Phe Leu Leu Gly Leu 1 5 10 15

Ser Leu Gly Val Thr Val Lys Leu Asn Cys Val Lys Asp Thr Tyr Pro $20 \\ 25 \\ 30$

Ser Gly His Lys Cys Cys Arg Glu Cys Gln Pro Gly His Gly Met Val

Ser Arg Cys Asp His Thr Arg Asp Thr Val Cys His Pro Cys Glu Pro 50 60

<210> 135

<211> 202 <212> PRT

<212> PRT <213> Rattus rattus

<400> 135

A-378CIP5C (3-31-04).ST25
Gly Phe Tyr Asn Glu Ala Val Asn Tyr Asp Thr Cys Lys Gln Cys Thr
65 70 75 80

Gln Cys Asn His Arg Ser Gly Ser Glu Leu Lys Gln Asn Cys Thr Pro 85 90 95

Thr Glu Asp Thr Val Cys Gln Cys Arg Pro Gly Thr Gln Pro Arg Gln 100 105 110

Asp Ser Ser His Lys Leu Gly Val Asp Cys Val Pro Cys Pro Pro Gly 115 120 125

His Phe Ser Pro Gly Ser Asn Gln Ala Cys Lys Pro Trp Thr Asn Cys 130 140

Thr Leu Ser Gly Lys Gln Ile Arg His Pro Ala Ser Asn Ser Val Cys 145 150 155 160

Glu Asp Arg Ser Leu Leu Ala Thr Leu Leu Trp Glu Thr Gln Arg Thr 165 170 175

Thr Phe Arg Pro Thr Thr Val Pro Ser Thr Thr Val Trp Pro Arg Thr 180 185 190

Ser Gln Leu Pro Ser Thr Pro Thr Leu Val 195 200

Met Gly Asn Asn Cys Tyr Asn Val Val Ile Val Leu Leu Val 1 5 10 15

Gly Cys Glu Lys Val Gly Ala Val Gln Asn Ser Cys Asp Asn Cys Gln 20 25 30

Pro Gly Thr Phe Cys Arg Lys Tyr Asn Pro Val Cys Lys Ser Cys Pro 35 40 45

Pro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn Cys Asn Ile Cys 50 60

Arg Val Cys Ala Gly Tyr Phe Arg Phe Lys Lys Phe Cys Ser Ser Thr 65 70 75 80

His Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro

Gln Cys Thr Arg Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr Page 42

<210> 136 <211> 191

<211> 191 <212> PRT

<213> Rattus rattus

<400> 136

54

Lys Gln Gly Cys Lys Thr Cys Ser Leu Gly Thr Phe Asn Asp Gln Asn 115 120 125

Gly Thr Gly Val Cys Arg Pro Trp Thr Asn Cys Ser Leu Asp Gly Arg 130 135 140

Ser Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro 145 150 155 160

Pro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu 165 170 175

Gly Gly Pro Gly Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu 180 185 190

<210> 137

<211> 54 <212> DNA

Artificial Sequence

<220>

<223> huOPG

<400> tatggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac

138 120 <210>

<211> <212> PRT

<213> Homo sapiens

<400>

His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro
1 10 15

Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met 20 25 30

Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr 35 40 45

Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr 50 60

Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys 65 70 75 80

Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg 85 90 95

Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu 100 105 110 Page 43

Gly Cys Arg Leu Cys Ala Pro Leu 115 120

<210> 139

<211> 380

<212> PRT <213> Homo sapiens

<400> 139

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His 10 15

Gln Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 20 25 30

Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 60

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 125

Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His 145 150 155 160

Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile 165 170 175

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr 180 185 190

Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly 195 200 205

Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser 210 215 220

Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn 225 230 235 240

Lys Ala Gln Asp Ile Val Lys Lys Ile Gln Asp Ile Asp Leu Cys 255

Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu 260 265 270

Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala 275 280 285

Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile 290 295 300

Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320

Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Lys His Phe 325 330 335

Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His 340 345 350

Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile $355 \hspace{1cm} 360 \hspace{1cm} 365$

Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380

<210> 140

<211> 30

<212> DNA

Artificial Sequence

<220>

<223> huOPG

<400> 140

tggaccaccc agaagtacct tcattatgac

30

<210> 141

<211> 30

<212> DNA

Artificial Sequence

<220> <223> huopg

<400> 141

gtcataatga aggtacttct gggtggtcca

30

142 <210> <211> 31

<212> DNA

<213>	A-378CIP5C (3-31-04).ST25 Artificial Sequence	
<220> <223>	huOPG	
<400> ggaccad	142 ccca gcttcattat gacgaagaaa c	31
	143 31 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> gtttct1	143 tcgt cataatgaag ctgggtggtc c	31
<210> <211> <212> <213>	144 29 DNA Artificial Sequence	
<220> <223>	huOPG	
<400> gtggac	144 cacc caggacgaag aaacctctc	29
<210> <211> <212> <213>	145 29 DNA Artificial Sequence	
<220> <223>	huopg	
<400> gagagg	145 tttc ttcgtcctgg gtggtccac	29
<210> <211> <212> <213>	146 29 DNA Artificial Sequence	
<220> <223>	huopg	
<400> cgtttc	146 ctcc aaagttcctt cattatgac	29
<210> <211> <212> <213>		
<220> <223>	huopg	
<400> gtcata	147 atga aggaactttg gaggaaacg	29

<210>	148	
<211> <212>	32 DNA	
<213>	Artificial Sequence	
<220> <223>	huOPG	
<400> ggaaac	148 gttt cctgcaaagt accttcatta tg	32
<210>	149	
<211> <212> <213>	32 DNA Artificial Sequence	
<220> <223>	huopg	
<400> cataat	149 gaag gtactttgca ggaaacgttt cc	32
<210>	150	
<211> <212>	27	
	Artificial Sequence	
<220> <223>	muOPG	
	150 aaag tcgggaatag atgtcac	27
<210>	151	
<211> <212>	DNA	
<213>	Artificial Sequence	
<220> <223>	muOPG	
<400> gtgaca	151 tcta ttcccgactt ttgcgtg	27
<210>		
<211> <212>	DNA	
<213>	Artificial Sequence	
<220> <223>	muOPG	
<400> caccct	152 gtcg gaagaggcct tcttc	25
<210>		
<211> <212>	DNA	
	Artificial Sequence	
<220> <223>	muOPG	

Page 47

	153 ggcc tcttccgaca gggtg	25
<210> <211> <212> <213>	154 24 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> tgacct	154 ctcg gaaagcagcg tgca	24
<210> <211> <212> <213>	155 24 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> tgcacg	155 ctgc tttccgagag gtca	24
<210> <211> <212> <213>	156 24 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> cctcga	156 aatc gagcgagcag ctcc	24
<210> <211> <212> <213>	157 25 DNA Artificial Sequence	
<220> <223>	muOPG	
<400> cgattt	157 cgag gtctttctcg ttctc	25
<210> <211> <212> <213>	DNA	
<220> <223>	muOPG	
<400> ccgtga	158 aaat aagctcgtta taactaggaa tgg	33
<210><211><211>	159 33 DNA	

```
A-378CIP5C (3-31-04).ST25
<213> Artificial Sequence
<220>
<223>
      muOPG
<400> 159
                                                                       33
ccattcctag ttataacgag cttatttca cgg
<210>
       160
<211>
      38
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      muOPG
<400>
      160
                                                                       38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210>
      161
<211>
      44
<212> DNA
<213> Artificial Sequence
<220>
<223> muOPG
<400> 161
                                                                       44
cctctctcga gtcaggtgac atctattcca cacttttgcg tggc
<210>
       162
<211>
      38
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      muOPG
<400> 162
                                                                       38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210>
       163
<211>
       38
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
       muOPG
<400> 163
                                                                       38
cctctctcga gtcaaggaac agcaaacctg aagaaggc
<210>
       164
<211>
       38
<212>
       DNA
      Artificial Sequence
<213>
<220>
<223>
       muOPG
<400> 164
                                                                       38
cctctgagct caagcttccg aggaccacaa tgaacaag
```

```
<210>
       165
<211>
       38
<212>
      DNA
      Artificial Sequence
<220>
<223>
      muOPG
<400> 165
                                                                          38
cctctctcga gtcactctgt ggtgaggttc gagtggcc
<210>
       166
<211>
       38
<212> DNA
<213> Artificial Sequence
<220>
<223>
      muOPG
<400> 166
                                                                          38
cctctgagct caagcttccg aggaccacaa tgaacaag
<210>
       167
      38
<211>
<212>
       DNA
      Artificial Sequence
<213>
<220>
<223>
       muOPG
<400> 167
                                                                          38
cctctctcga gtcaggatgt tttcaagtgc ttgagggc
<210>
       168
<211>
       16
<212>
      PRT
      Artificial Sequence
<220>
<223>
      pAMG22
<400> 168
Met Lys His His His His His His Ala Ser Val Asn Ala Leu Glu 1 5 10 15
<210>
       169
<211>
       70
<212>
      PRT
<213> Homo sapiens
<400> 169
Ala Leu Leu Val Phe Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr 10 15
Phe Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly Arg Gln Leu 20 25 30
Leu Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr 35 40 45
                                       Page 50
```

Val Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp Tyr Ser Tyr Thr 50 60 Asp Ser Trp His Thr Ser 70

<210> 170 <211> 48 <212> PRT <213> Homo sapiens <400> 170

Tyr Leu His Tyr Asp Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys
5 10 15

Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys 20 25 30

Thr Leu Cys Val Pro Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His 35 40 45

<210> 171

<400> 171 000

<210> 172

<400> 172 000

<210> 173

<400> 173 000

<210> 174

<211> 139 <212> PRT

<213> Homo sapiens

<400> 174

Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu 1 5 10 15

Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala 20 25 30

Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp 45

Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys 50 60

Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Page 51

Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 85 90 95

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro 100 105 110

Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn 115 120 125

Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His 130 135

<210> 175 380

65

<211>

Mus musculus

<400>

Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His 10 15

Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His 20 25 30

Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro 50 60

Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala 100 105 110

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe 115 120 125

Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn 130 140

Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys Gly Asn Ala Thr His 145 150 155 160

Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr Gln Lys Cys Gly Ile 165 170 175 Page 52

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val Asp Ser Leu Pro Gly 195 200 205 Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Arg His Ser 210 225 220 Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn 225 230 235 240 Arg Asp Gln Glu Met Val Lys Lys Ile Gln Asp Ile Asp Leu Cys 245 250 255 Glu Ser Ser Val Gln Arg His Leu Gly His Ser Asn Leu Thr Thr Glu 260 265 270 Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly Lys Lys Ile Ser Pro 275 280 285 Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys Ser Ser Glu Gln Leu 290 295 300 Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320 Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu Lys Thr Ser His Phe 325 330 335 Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His 340 350 Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile $355 \hspace{1cm} 360 \hspace{1cm} 365$ Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380 <210> 176 <211> 6037 <212> DNA Homo sapiens

<220> <221> CDS <222> (4760)..(6025)

ttaatttgtc	cagtgtctat	ggctttgtga	gataaaaccc	tccttttcct	tgccatacca	180
tttttaacct	gctttgagaa	tatactgcag	ctttattgct	tttctcctta	tcctacaata	240
taatcagtag	tcttgatctt	ttcatttgga	atgaaatatg	gcatttagca	tgaccataaa	300
aagctgattc	cactggaaat	aaagtctttt	aaatcatcac	tctatcactg	aattctaatt	360
ttttctgaaa	agtttcaagc	cagttacttt	tgataggatt	aacggaaggg	agtgagccag	420
tgggtgaggt	gggttcccat	gtagtcaatg	gcctaatact	ggagaatctt	attctaacca	480
agccttccag	agcaagctgt	gagcccctca	gacagtgggc	tactcatgag	acagtccatt	540
ggggtaaagg	aagaaaatat	aacttctatt	tctattcatt	tgcacattgt	ctttagatgc	600
ccatttgggt	gagttttata	gaagtacagc	tacattaaaa	aatagaactg	ataatagata	660
aggctttaaa	aaaacttcat	tcatcaccag	tttgtcaaga	ttccatttca	aagtgaaaaa	720
ccaatttcta	acgggttggt	aaacacagca	gatggcaggg	tgaaaaatta	aagtgagtgc	780
atgtaccttt	aaagaaacac	tgaaatgcac	acacattact	taacctgctc	attcatttat	840
ttacatatag	tcttgggtgt	acaaaattta	gaaataaata	catatggggg	cggggcctta	900
gctgcacaaa	taggatgcgc	ggcgggcctt	ggtaggggcg	gagccttagc	tgcacaaata	960
ggatgcgcgg	cgggccttgg	tgggggcggg	gcctaagctg	cgcaagtggt	acacagctca	1020
gggctgcgat	ttcgcgccaa	acttgacggc	aatcctagcg	tgaaggctgg	taggatttta	1080
tccccgctgc	catcatggtt	cgaccattga	actgcatcgt	cgccgtgtcc	caaaatatgg	1140
ggattggcaa	gaacggagac	ctaccctggc	ctccgctcag	gaacgagttc	aagtacttcc	1200
aaagaatgac	cacaacctct	tcagtggaag	gtaaacagaa	tctggtgatt	atgggtagga	1260
aaacctggtt	ctccattcct	gagaagaatc	gacctttaaa	ggacagaatt	aatatagttc	1320
tcagtagaga	actcaaagaa	ccaccacgag	gagctcattt	tcttgccaaa	agtttggatg	1380
atgccttaag	acttattgaa	caaccggaat	tggcaagtaa	agtagacatg	gtttggatag	1440
tcggaggcag	ttctgtttac	caggaagcca	tgaatcaacc	aggccacctc	agactctttg	1500
tgacaaggat	catgcaggaa	tttgaaagtg	acacgtttt	cccagaaatt	gatttgggga	1560
aatataaact	tctcccagaa	tacccaggcg	tcctctctga	ggtccaggag	gaaaaaggca	1620
tcaagtataa	gtttgaagtc	tacgagaaga	aagactaaca	ggaagatgct	ttcaagttct	1680
ctgctcccct	cctaaagcta	tgcattttta	taagaccatg	ggacttttgc	tggctttaga	1740
tctgaaacac	tgaaattgtc	tgcttctcat	cttcagtgag	attccaaagg	atagtacagt	1800
gacagaacaa	gaataggcac	tctctacaaa	aaaaagaaag	aaaaaactaa	gtaatagcaa	1860
gcataatagc	tactgttaag	aactcagaga	taatgaattg	agaatggata	ctgcttgaaa	1920
tgaaaattta	ataagttaga	aactaaactt	tataaaaata	aaaaaatgag	cattaaaaaa	1980
aaaaaaaaa	aaaaaaaaa	accccccc	cccccctgc	agccaagcta	gcttggaatc	2040
aggggataac	gcaggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	2100
aaaggccgcg	ttgctggcgt	ttttccatag	gctccgcccc Page 5		atcacaaaaa	2160

tcgacgctca	agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	aggcgtttcc	2220
ccctggaagc	tccctcgtgc	gctctcctgt	tccgaccctg	ccgcttaccg	gatacctgtc	2280
cgcctttctc	ccttcgggaa	gcgtggcgct	ttctcatagc	tcacgctgta	ggtatctcag	2340
ttcggtgtag	gtcgttcgct	ccaagctggg	ctgtgtgcac	gaaccccccg	ttcagcccga	2400
ccgctgcgcc	ttatccggta	actatcgtct	tgagtccaac	ccggtaagac	acgacttatc	2460
gccactggca	gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	gcggtgctac	2520
agagttcttg	aagtggtggc	ctaactacgg	ctacactaga	aggacagtat	ttggtatctg	2580
cgctctgctg	aagccagtta	ccttcggaaa	aagagttggt	agctcttgat	ccggcaaaca	2640
aaccaccgct	ggtagcggtg	gttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	2700
aggatctcaa	gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa	2760
ctcacgttaa	gggattttgg	tcatgagatt	atcaaaaagg	atcttcacct	agatcctttt	2820
aaattaaaaa	tgaagtttta	aatcaatcta	aagtatatat	gagtaaactt	ggtctgacag	2880
ttaccaatgc	ttaatcagtg	aggcacctat	ctcagcgatc	tgtctatttc	gttcatccat	2940
agttgcctga	ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	3000
cagtgctgca	atgataccgc	gagacccacg	ctcaccggct	ccagatttat	cagcaataaa	3060
ccagccagcc	ggaagggccg	agcgcagaag	tggtcctgca	actttatccg	cctccatcca	3120
gtctattaat	tgttgccggg	aagctagagt	aagtagttcg	ccagttaata	gtttgcgcaa	3180
cgttgttgcc	attgctgcag	gcatcgtggt	gtcacgctcg	tcgtttggta	tggcttcatt	3240
cagctccggt	tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	3300
ggttagctcc	ttcggtcctc	cgatcgttgt	cagaagtaag	ttggccgcag	tgttatcact	3360
catggttatg	gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgcttttc	3420
tgtgactggt	gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	3480
ctcttgcccg	gcgtcaacac	gggataatac	cgcgccacat	agcagaactt	taaaagtgct	3540
catcattgga	aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	3600
cagttcgatg	taacccactc	gtgcacccaa	ctgatcttca	gcatctttta	ctttcaccag	3660
cgtttctggg	tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	3720
acggaaatgt	tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	3780
ttattgtctc	atgagcggat	acatatttga	atgtatttag	aaaaataaac	aaataggggt	3840
tccgcgcaca	tttccccgaa	aagtgccacc	tgacgtctaa	gaaaccatta	ttatcatgac	3900
attaacctat	aaaaataggc	gtatcacgag	gccctttcgt	cttcaagaat	tccctgtgga	3960
atgtgtgtca	gttagggtgt	ggaaagtccc	caggctcccc	agcaggcaga	agtatgcaaa	4020
gcatgcatct	caattagtca	gcaaccaggt	gtggaaagtc	cccaggctcc	ccagcaggca	4080
gaagtatgca	aagcatgcat	ctcaattagt	cagcaaccat	agtcccgccc	ctaactccgc	4140
ccatcccgcc	cctaactccg	cccagttccg	cccattctcc Page 5	gccccatggc 5	tgactaattt	4200

tttttattta tgcagaggcc gaggccgcct cggcctctga gctattccag aagtagtgag	4260
gaggcttttt tggaggccta ggcttttgca aaaagctggt cgaggctcgc atctctcctt	4320
cacgcgcccg ccgccctacc tgaggccgcc atccacgccg gttgagtcgc gttctgccgc	4380
ctcccgcctg tggtgcctcc tgaactgcgt ccgccgtcta ggtaagttta aagctcaggt	4440
cgagaccggg cctttgtccg gcgctccctt ggagcctacc tagactcagc cggctctcca	4500
cgctttgcct gaccctgctt gctcaactct acgtctttgt ttcgttttct gttctgcgcc	4560
gttacagatc cgtcgaggaa ctgaaaaacc agaaagttaa ctggtaagtt tagtcttttt	4620
gtcttttatt tcaggtcccg gatccggtgg tggtgcaaat caaagaactg ctcctcagtg	4680
gatgttgcct ttacttctag gcctgtacgg aagtgttact tctgctctaa aagctgctgc	4740
aacaagcttc tagaccacc atg aac aag ttg ctg tgc tgc gcg ctc gtg ttt Met Asn Lys Leu Cys Cys Ala Leu Val Phe 1 5 10	4792
ctg gac atc tcc att aag tgg acc acc cag gaa acg ttt cct cca aag Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys 15 20 25	4840
tac ctt cat tat gac gaa gaa acc tct cat cag ctg ttg tgt gac aaa Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys 30 35 40	4888
tgt cct cct ggt acc tac cta aaa caa cac tgt aca gca aag tgg aag Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys 45 50 55	4936
acc gtg tgc gcc cct tgc cct gac cac tac tac aca gac agc tgg cac Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 60 65 70 75	4984
acc agt gac gag tgt cta tac tgc agc ccc gtg tgc aag gag ctg cag Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln 80 85 90	5032
tac gtc aag cag gag tgc aat cgc acc cac aac cgc gtg tgc gaa tgc Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys 95 100 105	5080
aag gaa ggg cgc tac ctt gag ata gag ttc tgc ttg aaa cat agg agc Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser 110 115 120	5128
tgc cct cct gga ttt gga gtg gtg caa gct gga acc cca gag cga aat Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn 125 130 135	5176
aca gtt tgc aaa aga tgt cca gat ggg ttc ttc tca aat gag acg tca Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser 140 145 150 155	5224
tct aaa gca ccc tgt aga aaa cac aca aat tgc agt gtc ttt ggt ctc Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu 160 165 170	5272
ctg cta act cag aaa gga aat gca aca cac gac aac ata tgt tcc gga Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly 175 180 185	5320
aac agt gaa tca act caa aaa gtc gac aaa act cac aca tgc cca ccg Page 56	5368

•	Asn	Ser	Glu 190	Ser	Thr	Gln	Lys	A-37 Val 195	78CIF Asp	PSC (Lys	(3-31 Thr	L-04) His	ST2 Thr 200	25 Cys	Pro	Pro	
	tgc Cys	cca Pro 205	gca Ala	cct Pro	gaa Glu	ctc Leu	ctg Leu 210	ggg Gly	gga Gly	ccg Pro	tca Ser	gtc Val 215	ttc Phe	ctc Leu	ttc Phe	ccc Pro	5416
	cca Pro 220	aaa Lys	ccc Pro	aag Lys	gac Asp	acc Thr 225	ctc Leu	atg Met	atc Ile	tcc Ser	cgg Arg 230	acc Thr	cct Pro	gag Glu	gtc Val	aca Thr 235	5464
	tgc Cys	gtg Val	gtg Val	gtg Val	gac Asp 240	gtg Val	agc Ser	cac His	gaa Glu	gac Asp 245	cct Pro	gag Glu	gtc Val	aag Lys	ttc Phe 250	aac Asn	5512
	tgg Trp	tac Tyr	gtg Val	gac Asp 255	ggc Gly	gtg Val	gag Glu	gtg val	cat His 260	aat Asn	gcc Ala	aag Lys	aca Thr	aag Lys 265	ccg Pro	cgg Arg	5560
	gag Glu	gag Glu	cag Gln 270	tac Tyr	aac Asn	agc Ser	acg Thr	tac Tyr 275	cgt Arg	gtg Val	gtc Val	agc Ser	gtc Val 280	ctc Leu	acc Thr	gtc Val	5608
	ctg Leu	cac His 285	cag Gln	gac Asp	tgg Trp	ctg Leu	aat Asn 290	ggc Gly	aag Lys	gag Glu	tac Tyr	aag Lys 295	tgc Cys	aag Lys	gtc Val	tcc Ser	5656
	aac Asn 300	aaa Lys	gcc Ala	ctc Leu	cca Pro	gcc Ala 305	ccc Pro	atc Ile	gag Glu	aaa Lys	acc Thr 310	atc Ile	tcc Ser	aaa Lys	gcc Ala	aaa Lys 315	5704
	ggg Gly	cag Gln	ccc Pro	cga Arg	gaa Glu 320	cca Pro	cag Gln	gtg Val	tac Tyr	acc Thr 325	ctg Leu	ccc Pro	cca Pro	tcc Ser	cgg Arg 330	gat Asp	5752
	gag Glu	ctg Leu	acc Thr	aag Lys 335	aac Asn	cag Gln	gtc Val	agc Ser	ctg Leu 340	acc Thr	tgc Cys	ctg Leu	gtc Val	aaa Lys 345	ggc Gly	ttc Phe	5800
	tat Tyr	ccc Pro	agc ser 350	gac Asp	atc Ile	gcc Ala	gtg Val	gag Glu 355	tgg Trp	gag Glu	agc Ser	aat Asn	ggg Gly 360	cag Gln	ccg Pro	gag Glu	5848
	aac Asn	aac Asn 365	tac Tyr	aag Lys	acc Thr	acg Thr	cct Pro 370	ccc Pro	gtg Val	ctg Leu	gac Asp	tcc Ser 375	gac Asp	ggc Gly	tcc Ser	ttc Phe	5896
	ttc Phe 380	ctc Leu	tac Tyr	agc Ser	aag Lys	ctc Leu 385	acc Thr	gtg Val	gac Asp	aag Lys	agc Ser 390	agg Arg	tgg Trp	cag Gln	cag Gln	ggg Gly 395	5944
	aac Asn	gtc Val	ttc Phe	tca Ser	tgc Cys 400	tcc Ser	gtg Val	atg Met	cat His	gag Glu 405	gct Ala	ctg Leu	cac His	aac Asn	cac His 410	tac Tyr	5992
	acg Thr	cag Gln	aag Lys	agc Ser 415	ctc Leu	tcc Ser	ctg Leu	tct Ser	ccg Pro 420	ggt Gly	aaa Lys	tga [.]	taac	tcg	ac		6037
	-211	n ~	177														

<210> <211> <212> <213>

177 422 PRT Homo sapiens

<400> 177

Met Asn Lys Leu Cus Cys Ala Leu Val Phe Leu Asp Ile Ser Ile Page 57

1

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp
20 25 30 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys
65 70 75 80 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190 Gln Lys Val Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu 195 200 205 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp 210 215 220 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp 225 230 235 240 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly 245 250 255 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn 260 265 270 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Page 58

 Leu Asn 290
 Gly Lys
 Glu Tyr
 Lys 295
 Cys Lys Val
 Ser Asn Lys Ala Leu Pro 300
 Lys Ala Lys Gly Gln Pro Arg Glu 320

 Ala Val Gln Val Tyr
 Thr Glu Ser Asn 310
 Leu Val Lys Gly Gly Phe Tyr Pro 310
 Asn 315
 Asn 315
 Asn Asn Tyr Lys Asn 315
 Asn Asn Ile

 Ala Val Gly Trp Glu Ser Asn 360
 Gly Gln Pro Glu Asn Asn Tyr Lys Thr 370
 Asn 365
 Tyr Lys Thr 370
 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Ser Phe Phe Leu Tyr Ser Lys 380
 Leu Tyr Ser Lys 380
 Leu Tyr Ser Lys 400

 Ser Val Met His Glu Ala Leu His Asn 410
 Tyr Thr Gln Lys Ser Leu 415
 Leu His Asn 410
 Tyr Thr Gln Lys Ser Leu 415
 Leu Ash 215
 Leu Ash 215
 Leu Ash 225
 Leu Ash 241
 Leu Ash 241

Ser Leu Ser Pro Gly Lys

<210> 178

<211> 51 <212> PRT

<213> Homo sapiens

<400> 178

Tyr His Tyr Tyr Asp Gln Asn Gly Arg Met Cys Glu Glu Cys His Met 1 5 10 15

Cys Gln Pro Gly His Phe Leu Val Lys His Cys Lys Gln Pro Lys Arg 20 25 30

Asp Thr Val Cys His Lys Pro Cys Glu Pro Gly Val Thr Tyr Thr Asp 35 40 45

Asp Trp His 50