Algorithms – FCAI-CU-SWE

1.	What is a hash table?												
	A	A structure that 1	maps	s values to keys	©	A structure used	l for s	torage					
	B	A structure that	map	s keys to values	D	A structure used to implement stack and queue							
2.	If se	veral elements a	re co	mpeting for the sa	ame	bucket in the has	h tab	le, what is it called?					
	A	Diffusion	lacksquare	Replication	©	Collision	D	Duplication					
3.	Wha	t is the hash fun	ction	n used in the divisi	on n	nethod?							
	A	h(k)=k/m	B	h(k)=k mod m	©	h(k)=m/k	D	h(k)=m mod k					
4.	Wha	hat can be the value of m in the division method?											
	A	Any prime number	В	Any even number	©	2 ^p - 1	D	2^p					
5.	Usin	g division metho	od, ir	n a given hash tabl	e of	size 157, the key	of val	ue 172 be placed at position					
	A	19	lacksquare	72	©	15	D	17					
6.	Wha	What is the table size when the value of p is 7 in multiplication method of creating hash functions?											
	A	14	B	128	©	49	D	127					
7.	Wha	t is the average r	etrie	eval time when n k	eys l	nash to the same	slot?						
	A	Theta (n)	В	Theta (n²)	©	Theta (n log n)	D	Big-Oh (n²)					
8.	Wha	t is Direct Addre	ssing	g;									
	(A)												
	(B) (C)	Fewer array pos Fewer keys than		•									
	(D)	Same array posi											
9.	_			exity in direct add	ressi	ing?							
	A	O (n)	В	O (log n)	©	O (n log n)	(D)	0 (1)					
10.	Wha	t is Hash Functio	on?	<u> </u>		J							
	A	A function has a	lloca	ated memory to ke	ys								
	В			putes the location	of th	ne key in the arra	y						
	©	A function that		•	- C 41-								
	(D)	A function that (com	outes the location (oi tn	e values in the ar	ray						
11.	Whi	ch of the followi	ng is	not a technique to	avo	id a collision?							
	A	Make the hash fur	nctio	n appear random	©	Use the chaining	g met	hod					
	В	Use uniform has	hing		(D)	Increasing hash	ı table	e size					
12.	Wha	t is the load facto	or?										
	A	Avg. array size	B) Avg. Key Size		Avg. chain le	ngth	Avg. Hash table length					
40	Who	t is Uniform Has	hino										
13.	WIIa		_	s qual probability of	f has	hing into any of	the sle	ots					
	В			istic method is use									
	©			m probability of h									
	D	Elements are ha	shed	l based on priority									

14.	in s	simple chaining, wh	ıat d	ata structure is app	ropr	riate?				
	A	Singly Linked list	B	Doubly Linked list	(C) Circular Linked list	D	Binary T	ree	
15.	and as s	l linear probing. Af	ter i	nserting 6 values i e of the following cl	nto a hoice	th hash function h(k) in empty hash table, es gives a possible ord e?	the ta	able is	0 1 2 3 4	42 23 34
	©	34,42,23,52,33,46 46,34,42,23,52,33							5 6 7 8	52 46 33
16.		42,46,33,23,34,52	node	oo in a hinawa twoo w	rith h	oight le whom most i	a hair	rhto io	9	
10.		2 ^k - 1	(B)	2 ^{k+1} - 1	(C	neight k, where root is	_ `	2 ^k + 1		
17.	_	ick sort algorithm i	_		C) 2 -1	0	2 +1		
-7.	_	Greedy Approach		Improved binary Search	©	Dynamic Programming	(Divide :	and Co	onquer
18.	The	e minimum numbe	r of e	edges required to c	reate	a cyclic graph of n ve	rtice	s is		
	A	n	В	n-1	©	n+1	D	2n		
19.	Wh	ich of the following	g is e	example of not in-p	olace	algorithm?				
	A	Bubble Sort	В	Merge Sort	©	Insertion Sort	D	All of th	ne abo	ve
20.	Tin	ne required to merg	ge tw	o sorted lists of siz	ze m a	and n, is				
	A	O (m/n)	B	0 (m + n)	©	O (m log n)	D	O (n log	gm)	
21.	Wh	ich of the following	g use	es memorization?						
	A	Greedy Approach	В	Divide and Conquer	©	Dynamic programming	(D)	None o	f the a	bove
22.		ap is an example of								
		Complete Binary Tree				Sparse Tree		Binary	Search	1 Tree
23.	Acc	cess time of a binary	y sea	, ,	_	n terms of time comp	olexit	y upto		
	(A)	$O(n^2)$	В	0 (n log n)	_	0 (n)	D	0 (1)		
24.	if T	at will be the Huffn he probability are 1	/2 ,1,	/4 , 1/8, 1/16 ,, 1/32	, ,	, ,				
						10,01,0001,100,1010		•		•
25.	_			_	_	orithm needs the min	_			_
- ((A)	Bubble Sort	_	Quick Sort	©	O	(D)	Selection		t
26.	_	O	_ `			the lowest worst case		-		
	(A)	Bubble Sort	B	Quick Sort	<u>©</u>	Merge Sort	(D)	Selection	on Sort	t
27.	x = For	(t = 1; t < N; t++) For(p = 1; p <= t; p < x = x+1 End For loop; d For Loop;	++)					N2		
	(A)	x=N+1	В	x=N(N-1)/2	(c)	x=N(N+1)/2	(D)	$x=N^2$		

- 28. Match the following pairs
 - (A) I-P, II-M, III-N, IV-O
 - ® I-O, II-P, III-M, IV-N
 - © I-O, II-N, III-M, IV-P
 - □ I-O, II-N, III-P, IV-M

I.	O(log n)	(M)	Heap sort
II.	O(n)	(N)	DFS
III.	(nlogn)	(O)	Binary search
IV.	O(n ²)	(P)	Selecting K th smallest elements

- 29. Time complexity of merging three sorted lists of sizes m, n and p is
- Θ (min(m,n,p))
- © Θ (max(m,n,p))
- ⊕ (m.n.p)
- 30. Which of the algorithm design approach is used by Mergesort
 - (A) Branch and bound approach
- © Dynamic approach
- **B** Divide and Conquer approach
- © Greedy approach
- 31. Which of the following shortest path algorithm cannot detect -presence of negative weight cycle graph?
 - A Bellman Ford Algorithm

- © Dijsktra's Algorithm
- (B) Floyd-Warshall Algorithm
- None of the above
- 32. For the figure below, starting at vertex A, which is a correct order for Prim's minimum spanning tree algorithm to add edges to the minimum spanning tree?
 - (A,G) then (G,C) then (C,B) then (C,F) then (F,E) then (E,D)
 - **(B)** (A,G) then (A,B) then (B,C) then (A,D) then (C,F) then (F,E)
 - \bigcirc (A,G) then (B,C) then (E,F) then (A,B) then (C,F) then (D,E)
 - \bigcirc (A,G) then (A,B) then (A,C) then (A,D) then (A,D) then (C,F)

- 33. For the figure below, which is a correct order for Kruskal's minimum spanning tree algorithm to add edges to the minimum spanning tree?
 - \bigcirc (A,G) then (G,C) then (C,B) then (C,F) then (F,E) then (E,D)
 - (A,G) then (A,B) then (B,C) then (A,D) then (C,F) then (F,E)
 - © (A,G) then (B,C) then (E,F) then (A,B) then (C,F) then (D,E)
 - \bigcirc (A,G) then (A,B) then (A,C) then (A,D) then (A,D) then (C,F)

- 34. If G is an directed graph with 20 vertices, how many boolean values will be needed to represent G using an adjacency matrix?
 - (A) 20
- (B) 40
- © 200
- **D** 400
- 35. What is the special property of red-black trees and what root should always be?
 - A a color which is either red or black and root should always be black color only
 - (B) height of the tree
 - © pointer to next node
 - (D) a color which is either green or black
- 36. Why do we impose restrictions like . root property is black . every leaf is black . children of red node are black all leaves have same black
 - (A) to get logarithm time complexity
 - **B** to get linear time complexity
 - © to get exponential time complexity
 - (P) to get constant time complexity

37.	What are the operations that could be performed in O(logn) time complexity by red-black tree?												
	insertion, deletion, finding predecessor, successor © only insertion												
	(B) only finding predecessor, successor (D) for sorting												
38.	Why Red-black trees are preferred over hash tables though hash tables have constant time complexity?												
	A no they are not preferred												
	B because of resizing issues of hash table and better ordering in redblack trees												
	© because they can be implemented using trees												
	because they are balanced												
39.	What is the below pseudo code trying to do? Where pt is a node pointer and root pointer redblack (Node root, Node pt) if (root == NULL) return n; if (pt.data < root.data)												
	11 (pt.uata < 100t.uata) {												
	root.left = redblack(root.left, pt); root.left.parent = root;												
	} else if (pt.data > root.data) { root.right = redblack(root.right, pt);												
	root.right.parent = root;												
	} return root												
	(A) insert a node (B) delete a node (C) search a node (D) counter nodes												
40.	Dijkstra's Algorithm is used to solve problems												
	 All pair shortest path Single source shortest path 												
	B Network flowD Sorting												
41.	What is the time complexity of Dijikstra's algorithm?												
42.	Dijkstra's Algorithm cannot be applied on												
•	Directed and weighted graphs												
	B Unweighted graphs Directed and unweighted graphs Directed and unweighted graphs												
	Onweighted graphs of ondirected and unweighted graphs												
43.	How many priority queue operations are involved in Dijkstra's Algorithm? B 2 © 3 © 4												
44.	How many times the insert and extract min operations are invoked per vertex? A 1 B 2 C 3 D 0												

45.		e maximum numbe equal to	r of t	imes the decrease ke	y op	eration perform	ned in Di	kstra's alg	orithm [·]	will			
	A	Total number of v	ertic	es	©	Number of ver	tices – 1						
	В	Total number of e	dges		D	Number of edges – 1							
46.	Wh	at is running time	of Di	jkstra's algorithm u	using Binary min- heap method?								
	(A)	O (V)	(B)	O(VlogV)	(c)	O (E) O (E log V)							
	0		O		0								
47.		is the source verte at is the minimum	•	to reach f vertex?		A 8	В	9 © 4	. ©	6			
48.	Ide	ntify the shortest	nath	having minimum		1							
40.		t to reach vertex E				(a)	→(<u>b</u>	6					
	A	a-b-e				3	5		Ce Ce				
	_	а-с-е				2							
	©	a-c-d-e				C	\rightarrow	1					
	(D)	a-c-d-b-e				4		,					
49.	Dij	kstra's Algorithm i	s the	prime example for									
	A	Greedy algorithm	В	Branch and bound	©	Back tracking	D	Dynamic programn	ning				
5 0.	Sel	ect the correct asyn	npto	tic notation for the f	unct	ion f(n) n³ + 100	00 - 1001	n² - 100n.					
	A	$\theta(n^3)$	B	$O(n^3)$	©	O (n log n)	D	$\Omega(2^n)$					
51	Gre	edy algorithms ma	ke	optimal choi	ces la	eading to	or	ntimal solu	tions				
	(A)	Globally, locally		optimarenoi	(c)	Top-down, bo	_						
	_	3.			_	• ,	-						
	B	Locally, globally			(D)	Bottom-up, to	p-aown						
52.	The	e basic restructurin	g op	eration for red-blac	k tre	es is							
	A	Dynamic programming	В	Binary Sort	©	Depth-First search	(D)	Rotation					
53.	Bot	tom-up dynamic p	rogr	amming works by									
	A	Doubling the recu	rsive	calls	©	Solving the sar	me subp	roblem mu	tiple tir	nes			
	В	Transforming rec			D	Solving larger followed by sn	subprob	lems first,	_				

54.	4. What is the name of the technique that stores computed values for future lookup, rather the recomputing them?										than			
	\bigcirc	recursion tree			©	amorti	ize ar	nalys	is					
	В	Topological sort			(D)	Dynamic Programming								
55.	Wh	ich of the followin	NOT a property of a m	a minimum spanning tree?										
	A	It may have one o	r mo	re cycles.	©	It is not necessarily unique.								
	B	It has V - 1 edges	5		D	The su	m of	weig	hts o	f the	e edge	es is 1	minin	nal
56.	6. You are given infinite coins of denominations v1, v2, v3,,vn and a sum S. The coin of problem is to find the minimum number of coins required to get the sum S. This problem solved using													
	A	Greedy algorithm			©	Divide	and	conq	uer					
	В	Dynamic program	ımin	g	D	Backtr	ackir	ng						
57.	Suppose you have coins of denominations 1, 3 and 4. You use a greedy algorithm, in which you choose the largest denomination coin which is not greater than the A 20 B 12 C 6 D 5 remaining sum. For which of the following sums, will the algorithm NOT produce an optimal answer?											5		
58.	pro con	blem is to find the	e mi nic p	ns of N denomination nimum number of corogramming implem O(S)	oins enta	require	ed to	get t	the s	um coir	s. Wł	nat is nge p	s the	time
		O(N)	b	0(3)	©	O(N)			U	, 0	(3.1	1)		
59.	Pro	blems that can be	solve	ed in polynomial time	e are	known	as?							
	A	intractable	В	tractable	©	decisio	on		D) c	ompl	ete		
60.	alg	is the class orithms?	of d	ecision problems tha	it ca	n be sol	ved l	by no	n-de	terr	ninis	tic p	olyno	mial
	A	NP	В	P	©	Hard			0) C	ompl	ete		
61.	То	which of the follow	ing	class does a CNF-sati	isfial	oility pr	oble	m be	long?	•				
	A	NP Class	В	P Class	©	NP Cor	mple	te	0) N	IP hai	:d		
62.	Ass	suming P != NP, wh	ich c	of the following is tru	e?									
	A	NP-complete = N	?		©	NP-ha	rd =	NP						
	В	NP-complete ∩P :	Φ		D	P = NP	-con	nplet	e					
63.	(A) (B) (C)	The starting node The algorithm gre "Marked" nodes i	mus ows (NOT a property of a most be connected to the conly a single tree from the nodes that will not ext edge, we consider	edgo n sta t be:	e with th	ne lea n <mark>ish.</mark> nal t	ast we	eight.		narke	d no	des tu	n the
	(D)	other unmarked n			. 0111	y cuges	, ciiu			~1111	·····	a 110	aco il	

64.	What distinguishing feature should cause us to choose dynamic programming rather than a divide-and-conquer approach to a problem?														
	A	It is an optimiz		-											
	В	The problem ca	an be so	lved recursive	ly.										
	© The problem does not have a brute force solution.														
	D The subproblems for the solution overlap.														
65.	Which one of the following is a true for a red-black tree?														
	A	the root is red													
	В	the root and le	aves are	black											
	©	All simple path	ıs from a	a node to the le	eaves c	onta	in the s	ame r	num	ber of	red a	and t	olack	node	S.
	D	A red node can	have on	ıly one black cl	hild.										
66.	The	e recurrence equ	ıation T	(n) = T(n-1) +	θ(n) r	epres	sents th	ne							
	A	Best case runn	ing time	e for Quicksort		©	Best-	case r	unn	ing tir	ne fo	or He	apso	rt	
	B	Worst-case ru	nning ti	ime for Quicks	ort	D	Worst	-case	run	ning	ime	for H	Ieaps	ort	
67.	An	algorithm that (takes co	nstant time is	repres	ente	d by								
	A	$\Omega(\mathbf{o})$	В	$\theta(n^2)$		©	$\theta(n)$			0	θ(1)			
68.	BUT f	$T(n-1) + \theta(n)$	gth -1 ngth dov [] < A[j-: excha	vnto I + 1 1] nge A[j] with <i>l</i> θ(n²)	A[j-1]	©	2T(n/2			(D		(n)	mm	gun	ie:
69.	wh	at is the smalle ose running tin ose running tim	ne is nº	runs slower th				A	2	В	25	©	4	D	15
70.	you Usi 3rd wit	Marks] k-way-Nowant to combing the merge someone size of the merge someone size of the merged versize of the merged versize of the running someone size of the running someone size of the	ne then subrouti h this m ersion of	n into a single ine taught in nerged version the first three	array of lecture of the arrays	of kr e, yo e firs s, and	n eleme ou merg et two a d so on	ents. (ge the errays until	Cons e fir , the you	sider t st 2 a en me merge	he fo array rge t e in t	ollow rs, th the 4 the fir	ving a nen n th gi nal (l	appro nerge ven a kth) i	oach. e the array nput
	(A)	nk	(B)	n^2k		©	nk²			(D) 1				
	_														
71.	tabi in	Marks] the amor le which start by 01,248 By	y one siz	ze and extend 2	2 power		Le	et c _i = =	the c $\begin{cases} i \\ 1 \end{cases}$	ost of $i - 1$ otherw	the <i>i</i> the is arvise.	h inse 1 exac	ertion et pow	rer of	2,
	(A)	n n ²					i		2	3 4					10
	B						$size_i$	1	2	4 4	8	8	8 8	16	16
	_	n log n					c_{i}	1	1	1 1 2	1 4	1	1 1	1 8	1
	(D)	1							_	_					

72. [5 Marks] inserting these numbers in (1,2,3,4) in red-blact tree will give the follwing tree

73. [10 Marks] The column on the left is the original input of strings to be sorted the column on the right are the strings in sorted order; the other columns are the contents at some intermediate step during one of the algorithms listed below. Match up each algorithm by writing its number under the corresponding column. Use each number exactly once.

Answer [Not MCQ]:

- (0) Original input
- (1) Sorted
- (2) Selection sort
- (3) Insertion sort
- (4) Shell sort
- (5) Merge sort
- (6) Quicksort
- (7) Heapsort

74. [12 Marks – Very Important] Minimum Spanning Tree Algorithms:

Each of the figures below represents a partial spanning tree. Determine whether it could possibly be obtained from, Prim's algorithm, Kruskal's algorithm, both or neither

75 [10 Marks] Analysis of Algorithms:

For each code fragment on the left, check the best matching order of growth of the running time.
You may use an answer more than once or not at all.

	N	$\log N$	$N \log N$	R + N	RN	$N + R^2$	$(N+R)\log N$	N(N+R)
<pre>int x = 1, i; for(i = 0; i < N; i++) x++;</pre>		0	0	0	0	0	0	0
<pre>public static int f2(int N) { int x = 1; while(x < N) x = x * 2; return x; }</pre>	0	0	0	0	0	0	0	0
<pre>int x = 0, i; for(i = 0; i < N; i++) x += f2(N);</pre>	0	0	0	0	0	0	0	0
<pre>int x = 1, i, j; for(i = 0; i < N; i++) for(j = 1; j < R; j++) x = x * j;</pre>	0	0	0	0	0	0	0	0
<pre>int x = 0, i, j; for(i = 1; i <= N; i++) for(j = 1; j <= N+R; j+=i) x += j;</pre>	0	0	0	0	0	0	0	0

1.	Collisions can be reduced by choosing a hash function randomly in a way that is independent of the keys that are actually to be stored	Т
2.	The sum and composition of two polynomials are always polynomials.	Т
3.	A non-deterministic algorithm is said to be non-deterministic polynomial if the time-efficiency of its verification stage is polynomial.	Т
4.	For two algorithm s A and B, if $O(A) = n^{100}$ and $O(B) = 10^{n}$, then algorithm A is the better choice	Т
5.	To perform a binary search the data set must be sorted.	Т
6.	There is significant difference in the running time $f(n) = n$ and the running time $g(n) = \log n$.	Т
7.	The master method can be used to solve all recurrence equations that have the form $T(n) = aT(n/b) + f(n)$.	T and F
8.	Printing every node in a balanced tree takes θ (log n) time	F
9.	In a red-black tree, a black node must have only red children	F
10.	Dynamic programming has the potential to transform exponential-time algorithms to polynomial time	Т
11.	In Kruskal's algrorithm for building a minimum spanning tree, we proceed node by node, adding the connecting edges to the tree	F
12.	Huffman encoding uses a dynamic programming strategy to compress data	F
13.	minimum spanning tree has V - 1 edges	Т
14.	Both matrix and lists can be used to represent weighted graphs	Т
15.	A matrix is a good choice for representing a dense graph.	Т
16.	We do not have to make any key comparisons to find the min or max nodes of a binary search tree.	Т

Khalid Shawki k.shawki@stud.fci-cu.edu.eg

Preference:

- 1. https://www.sanfoundry.com/data-structure-questions-answers-hash-tables/
- 2. https://www.geeksforgeeks.org/data-structure-gq/hash-gq/
- 3. https://www.sanfoundry.com/hashing-functions-multiple-choice-questions-answers-mcgs/
- 4. https://www.sanfoundry.com/quicksort-interview-questions-answers/
- 5. https://www.sanfoundry.com/dijkstras-algorithm-multiple-choice-questions-answers-mcqs/
- 6. https://www.sanfoundry.com/data-structure-questions-answers-red-black-tree/
- 7. https://www.sanfoundry.com/prims-algorithm-multiple-choice-questions-answers-mcqs/
- 8. https://examradar.com/data-structure-graph-mcg-based-online-test-2/
- 9. https://www.sanfoundry.com/p-np-np-hard-np-complete-complexity-classes-multiple-choice-questions-answers-mcqs/
- 10. https://www.sanfoundry.com/data-structure-guestions-answers-coin-change-problem/
- 11. https://engineeringinterviewquestions.com/mcqs-on-dynamic-programming/
- 12. https://testbook.com/objective-questions/mcq-on-dynamic-programming-5eea6a0c39140f30f369e0db
- 13. https://www.sanfoundry.com/hashing-functions-multiple-choice-questions-answers-mcqs