UTF ENCODING

(UTF-8, 16, 32)

유니코드의 Character Set

- UCS-2 (Universal Character Set 2)
 - 2Byte Character Set
 - 1개의 언어판 (BMP)을 정의

- UCS-4 (Universal Character Set 4)
 - 4Byte Character Set
 - 32,768 언어판 정의

왜 인코딩이 필요한가?

- UCS-2,4 는
 - □ 유니코드를 저장하는 변수의 크기를 정의
 - □ But, 바이트 순서에 대해서 표준화하지 못했음.
- 파일처리 프로그램들이 바이트 단위로 동작
 - □ UCS와는 잘 맞지 않음
 - 즉, 파일을 인식 시 이 파일이 UCS-2, UCS-4인 지 인식하고 각 경우를 구분해서 모두 다르게 구 현해야 하는 문제 발생

We Need

Suitable external encoding of Unicode

유니코드 인코딩(UTF)

• <u>UTF(Unicode Transformation Format)</u>

- UTF-8(in web)
 - MIN: 8bit, MAX: 32bit(1 Byte * 4)
- UTF-16(in windows, java)
 - MIN: 16bit, MAX: 32bit(2 Byte * 2)
- UTF-32(in unix)
 - MIN: 32bit, MAX: 32bit(4 Byte * 1)

UTF-8

코드범위	UTF-8	설 명	
000000-00007F 1Byte	0xxxxxxx	ASCII와 동일한 범위 (MSB = 0)	
000080-0007FF 2Byte	110xxxxx 10xxxxxx	첫 바이트는 '1'로 그 문자를 표시: 110(2Byte) or 1110(3	
000800-00FFFF 3Byte	1110xxxx 10xxxxxx 10xxxxxx	바이트) 나머지 바이트: 10	
010000-10FFFF 4Byte	11110zzz 10zzxxxx 10xxxxxx 10xxxxxx	SMP 영역	

Hangul Syllables

_	C70	C71	C72	C73	C74	C75	C76	C77	C78	C79	C7A
0	웨 ^{C700}	윐 C710	C720	음 C730	O L C740	<u>今</u> 公 C750	OJI C760	OJT 0770	의 C780	スト C790	감 C7A0
1	윁	윑	유 C721	음 C731	승 C741	O O C751	이 인 C761	읱	인 C781	자 C791	잡 C7A1
2	엪 c702	윒 C712	유 C722	 公 C732	<u></u> () にす 0742	<u>今</u> C752	의 C762	<u>의</u> C772	〇 元 C782	잒 C792	잢 C7A2
3	원 왕	잃	숙 C723	웃 C733	O L C743	O 大 C753	이 대 c763	왕 c773) 당 C783	잓 c793	갓 C7A3
4	위 c704	윔 c714	O C724	分 C734	O 卍 C744	O T C754	의 C764	O]	C784	잔 c794	잤 C7A4

■ Unicode '위'(0xC704) 는 UTF-8로 3바이트(EC 9C 84)로 인코딩 됨

UTF-8 장점 & 단점

- 장점
 - 하위 호환성(ASCII)
 - XML문서의 표준 인코딩
 - 모든 유니코드 문자 표현 가능
 - 미리 바이트 크기를 알 수 있다
 - 간단한 비트 연산만 사용해서 효율적
- 단점
 - 크기가 크다(가변적 인코딩)
 - 문자열 처리가 간단하지 않다

UTF-16

- 인코딩의 기본 단위는 16비트(2바이트)
- 기본 언어판(BMP) 2Byte 인코딩
 - 63,488개 (= 65,536 2,048) 문자 표현 가능
 - 대행문자 영역 2,048개를 제외한 BMP 63,488개의 코드를 문자로 사용. ucs-2와 동일
- 보충 언어판(SMP) 4Byte 인코딩
 - U+10000 ~ U+10FFFF : 100만여개 (1,048,576개)
 - 대행문자(surrogate) 영역 2개의 16-bit 쌍을 이용
 - 16개 SMP 언어판 코드(1,048,576개 문자) 표현 가능
 - Surrogate <High, Low>: 1024*1024
 - High Surrogate: U+D800 ~ U+DBFF
 - Low Surrogate : U+DC00 ~ U+DFFF

UTF-16 인코딩 방법

내 용	UTF-8
UTF-16	ууууууу ххххххх
UTF-16 BE (Big Edian)	ууууууу ххххххх
UTF-16 LE (Little Edian)	xxxxxxx yyyyyyy
High Surrogate	110110ZZ ZZxxxxxx
Low Surrogate	110111yy yyyyyyyy
보충 언어판 UTF-16	0000000 000zzzzz
011 10	XXXXXXYY YYYYYYY

^{*} ZZZZ = zzzzz-1

UTF-16 인코딩

예) Old Italic Letter A (0x10300)

내 용	UTF-8	
High Surrogate	Hi-surrogate = (Unicode - 0x10000) / 0x400 + 0xD800; = D800	
Low Surrogate	Low-surrogate = (Unicode - 0x10000) % 0x400 + 0xDC00; = DF00	
UTF-16 (보충 언어판)	0xD800_DF00	

UTF-16 surrogate → UTF-32

- CodeValue = (HighSurrogate 0xD800)
 - * (LowSurrogate 0xDC00) + 0x10000
 - 0xD800은 상위대행코드 영역의 시작점
 - 0xDC00은 하위대행코드 영역의 시작점
 - 보충 언어판은 0x10000부터 시작하므로

- 예) Old Italic Letter A (0x10300)
 - UTF-16 : 0xD800_DF00
 - UTF-32 : (1*0x300) + 0x10000 = 0x10300

UTF-32

- 4 Byte로 모든 유니코드 문자를 표현
 - -고정 길이 인코딩
- UCS-4와 동일하지 않음
 - UCS-4의 부분집합
 - (영역이 0x 0000 0000 ~ 0x 0010 FFFF)
 - CodeValue =

(HighSurrogate - 0xD800)*(LowSurrogate - 0xDC00)

- + 0x10000 (UTF-32 시작점)
- = U+10000 ~ U+10FFFF까지 1,048,576개의 값을 가짐.

ANSI, UCS-2, UTF-8

```
ANSI(MultiByte) -> UCS-2(WideChar) -> UTF-8(MultiByte)
```

ANSI, UCS-2, UTF-8

IconV

\$ iconv -f CP949 -t UTF-8 -o out.txt in.txt

- 입/출력 형식 지정:
 - -f, --from-code=<이름> 원 문서 인코딩
 - -t, --to-code=<이름> 출력 인코딩
- 출력 조정:
 - -o, --output=FILE 출력 파일

UTF 인코딩 기법 비교

	'가'
UTF-8	EA B0 80
UTF-16BE	AC 00
UTF-16LE	00 AC
UTF-32BE	00 00 AC 00
UTF-32LE	00 AC 00 00

참고문헌 및 사이트

- The Unicode standard, version 4.0: the Unicode consortium, Aliprand, Joan / Addison-Wesley
- Unicode demystified a practical programmer's guide to the encoding standard, Gillam, Richard / Addison-Wesley
- 위키백과 http://ko.wikipedia.org/wiki/UTF-8
- 유니코드 사이트 Q&A http://www.unicode.org/unicode/faq/utf_bom.html
- 유니코드 사이트 용어해설 http://www.unicode.org/glossary/
- 유니코드와 인코딩, http://cafe.naver.com/q69.cafe?iframe_url=/ArticleRead.nhn%3Farticleid=4 4522
- 컴퓨터속의 한글 http://b.mytears.org/2005/01/101
- 유니코드 인코딩 컨버터 소스 http://www.unicode.org/Public/PROGRAMS/CVTUTF/
- Uni-Searcher Site, http://www.isthisthingon.org/unicode/index.phtml