Non-isothermal reactors

- Energy balance for ideal reactors
- Non-adiabatic PFR
- Reversible reactions in adiabatic reactors
- CSTR with heat effects
- Batch reactors

Lecture # 27 CHE331A

Non-ideal Reactors

Goutam Deo 2020-2021 1st semester

Principles behind Non-ideal reactors and their analysis

- Residence time distribution
- ▶ Tank-in-series model
- Dispersion model (will not include)
- Applications to design

Industrial Reactors are rarely ideal

- ▶ Ideal reactors: Batch, CSTR, PFR and PBR
- ► Flow in these reactors are idealized and are rarely experienced
- Real flow-reactors lie between the extremes of
 - Completely mixed (no spatial variation) for CSTR (for example, no deadzone)
 - No radial variation or axial mixing for PFR (entering fluid moves as a plug from entry to exit)

In non-ideal reactors the flows between these two extremes characterize the system

- ► Reasons for non-ideality in real reactors
 - Channelling, Recycle of fluid, stagnant regions, axial mixing, and velocity profile
- ▶ Time spent by fluid elements are different $\rightarrow residence time distribution$

A real Packed Bed Reactor

Ways to account for non-ideality

- Three concepts used to describe non-ideal reactors:
 - Residence time distribution
 - Quality of mixing
 - Model used to describe the system
- ► For example, in an ideal PFR reactor all atoms of material have been in the reactor for the same "residence" time
- In real reactors some material leave quicker than the rest
 - There is a residence time distribution (RTD)
 or exit age distribution for a stream of fluid

- In PFR/PBR and Batch are the only reactors in which each fluid element spends the same amount time in the reactor
- In a CSTR there is a distribution

Residence time distribution is determined experimentally

- ▶ Injecting tracer at some time and measuring outlet concentration of tracer
 - Tracer is an inert chemical molecule that can be detected in the feed
- Reactors give responses to different types of tracer input
- Tracer input primarily of two types
 - Pulse input and step input
 - Other types exist

A known amount of tracer material injected in one shot in a pulse input to determine the RTD

▶ Outlet concentration in a real reactor is measured as a function of time, C-

curve. For example,

► Amount of tracer leaving between t and t + dt is $\Delta N = C(t)$. ν . Δt

Where, ν is the volumetric flowrate

► To make this independent of the amount of tracer

► For a pulse injection the residence time distribution function, E(t), is defined as $E(t) = (C(t), \nu)/N_0$ so that $\frac{\Delta N}{N_0} = E(t), \Delta t$

The residence time distribution function, E(t)

- $\blacktriangleright E(t)$, is defined as $E(t) = (C(t).\nu)/N_0$ so that $\frac{\Delta N}{N_0} = E(t).\Delta t$
 - describes quantitatively how much time different fluid elements spend in the reactor
 - \circ E(t).dt is the fraction of fluid exiting the reactor that has spent between t and t+dt time inside the reactor
- ▶ If N_0 is not known it can be determined by integrated the outlet concentration vs time curve

Residence time distribution function is also expressed in its integral form

The fraction of material leaving the
$$\int_{t_1}^{t_2} E(t)dt = \int_{t_1}^{t_2} E(t)dt = \int_{t_1}^{t_2} E(t)dt$$
 between t_1 and t_2

Furthermore, $\int_0^\infty E(t)dt = 1$

- Sometimes there are difficulties with the pulse technique, such as:
 - o injection must take place in a short time compared to the residence time,
 - negligible dispersion between point of injection and entrance to the reactor, and
 - \circ the C(t) vs t curve has a long tail

