BST02: Using R for Statistics in Medical Research

Part D: Statistics with R

Nicole Erler

Department of Biostatistics, Erasmus Medical Center

✓ n.erler@erasmusmc.nl

24 - 28 February 2020

t-test: t.test()

One-sample t-test

ightharpoonup compares the mean of a sample with a fixed value μ

Two sample / independent samples t-test

 \blacktriangleright compares the difference between the means of two samples with a fixed value μ

Related samples t-test

ightharpoonup compares the mean of the difference between related observations with a fixed value μ (same as one-sample t-test)

Wilcoxon Test: wilcox.test()

Wilcoxon Signed Rank Test

lacktriangle tests if one sample (or the differences between two paired samples) is/are symmetric about μ

Wilcoxon Rank Sum Test / Mann-Whitney test

► test for a location shift between the distributions of two independent samples

See also BBR Sections 7.2 & 7.3 (http://hbiostat.org/doc/bbr.pdf)

Kruskal-Wallis Rank Sum Test: kruskal.test()

- ► This is an extension of the Wilcoxon rank sum test for more than two groups
- Test for a difference in location of a continuous variable between multiple groups
- ► The Wilcoxon rank sum test is a special case of the Kruskal-Wallis rank sum test

Other tests for continuous data

- ► Kolmogoriv-Smirnov Test: ks.test() tests if two samples are drawn from the same continuous distribution
- ► Shapiro-Wilk Normality Test: shapiro.test()
- ► Friedman Rank Sum Test: friedman.test() non-parametric test for 2 or more related samples
- **.**..

Tests for Categorical Data / Proportions

One-sample Proportion Test

- tests if the proportion in one sample is equal to a fixed value p
- prop.test() and binom.test()

Tests for Proportions in Multiple (independent) Groups

- tests if the proportion in several samples are equal
- chisq.test() and fisher.test() (when there are cells with 0)

See also BBR Sections 5.7 & 6 (http://hbiostat.org/doc/bbr.pdf)

Tests for Categorical Data / Proportions

Related Samples: McNemar Test

- ▶ Tests for symmetry in a 2×2 table
- mcnemar.test()

3-Dimensional Contingency Table

- \triangleright χ^2 test for independence of two nominal variables in each stratum
- Cochrane-Mantel-Haenszel Test

Statistical Tests

Continuous Outcomes

- ▶ t.test()
- ▶ wilcox.test()
- kruskal.test()
- ks.test()
- ► friedman.test()
- shapiro.test()

Categorical Outcomes

- prop.test()
- ▶ binom.test()
- chisq.test()
- ▶ fisher.test()
- mcnemar.test()
- mantelhaen.test()

Variance and Correlation

- cor.test()
- ▶ bartlett.test()
- var.test()

Pairwise tests

- pairwise.prop.test()
- pairwise.t.test()
- pairwise.wilcox.test()

Regression

Regression Models

- ► lm()
- **▶** glm()

Regression Results

- summary()
- coef(), confint()
- fitted(), residuals()
- ► AIC(), BIC()
- anova()

Plots

- ▶ plot()
- qqnorm(), qqline(), qqplot()

Topic

- ▶ ns(), bs(), I()
- p.adjust()