# Sequence, Bisulfite, Machine Learning and Mutation

Youqing Xiang

July 19, 2017

## Introduction: Sequence



Figure 1:

From Wei, L et al PNAS 2015

#### Introduction: Bisulfite

#### Detection of ssDNA in chromatinized substrates

In an effort to find out whether ssDNA is enriched in vivo in regions that undergo SHM in B cells, we used sodium bisulfite, which, like AID, deaminates dCs in ssDNA to form deoxyuridine (36). After PCR amplification and sequencing of bisulfite-treated DNA, clones derived from amplification of either the nontemplate (upper, nontranscribed) or the template (lower, transcribed) strand reveal the location and strand of single-stranded dCs. Thus, C to T conversions indicate single-stranded dCs on the upper strand, whereas G to A conversions on the lower strand indicate single-stranded dCs (Fig. S1, available at http://www.jem.org/cgi/content/

## Introduction: Machine Learning

### What is Machine Learning?

- Machine learning is a method of data analysis that automates analytical model building
- Using algorithms that iteratively learn from data, machine learing allows computers to find hidden insights without being explicitly programmed where to look.

#### What is it used for?

- Fraud detection
- New pricing models
- Financial Modeling
- ▶ Image recognition
- ▶ Text Sentiment Analysis
- . . . . . . . . . .

## Introduction: Mutation from Ramos 4-34



# Original Data Source and Tools

#### Data

- Bisulfite.Alberto.fasta
- Ramos wild type 4-34

#### **Tools**

- Python and R
- Biopython, DNASTAR
- matplotlib and ggplot2
- randomForest

What is bisulfite accessible?



Bisulfite accessible site or region?



#### C to T Conversion



Figure 5:

#### G to A Conversion



Figure 6:

## Bisulfite Data: Future work

## Study C to T (G to A) conversion sites

- Step 1: Dividing C/G positions into three groups (in hotspot, coldspot and neutral spot)
- Step 2: Calculate C to T conversion (G to A conversion) for each of three groups
- ▶ Step 3: Data visulization for the resuts from step 2
- ▶ Step 4: T test or ANOVA test for statistical significance

## Study Bisulfite Acessible Region

- Collect more data
- Data Visulization and statistical analysis

## Combined Data: Data Visulization



Figure 7:

## Combined Data: Data Visulization



# Combined Data: Machine Learning

#### **Features**

- Position
- Nucleotide type (G,C, A, T)
- Distance to AGCT (agct\_d)
- Distance to AGCA (agca\_d)
- Distance to TA (ta\_d)
- Distance to TT (tt\_d)
- Distance to AA (aa\_d)
- C to T conversion rate (C\_T)
- Distance to bisulfite accessible site (bisulf\_d)

#### Labels

Mutation: High (1) and Low (0)

# Combined Data: Machine Learning

Benchmark

Assuming all labels are 1.

Error rate: 50%

# Combined Data: Machine Learning

#### randomForest

Training error rate: 21.6%

| ## |                    | IncNodePurity |
|----|--------------------|---------------|
| ## | Position           | 4.883839      |
| ## | ${\tt Nucleotide}$ | 17.175575     |
| ## | agct_d             | 3.951250      |
| ## | agca_d             | 6.152648      |
| ## | ta_d               | 4.078553      |
| ## | tt_d               | 5.991813      |
| ## | aa_d               | 5.400212      |
| ## | C_T                | 1.024082      |
| ## | bisulf_d           | 3.784090      |
|    |                    |               |

## Combined Data: Future work

## Collecting more data

- Sequence data
- Bisulfite data

Creating new features

Optimizing models and Evaluating models

Testing models with experiments