BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 048 494.5

Anmeldetag:

05. Oktober 2004

Anmelder/Inhaber:

Continental Teves AG & Co oHG,

60488 Frankfurt/DE

Bezeichnung:

Verfahren zur Verringerung des Kraftstoffverbrauchs

eines Kraftfahrzeugs

Priorität:

14. November 2003 DE 103 53 335.4

IPC:

F 02 D 41/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 9. Dezember 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrad

BEST AVAILABLE COPY

Faust

Verfahren zur Verringerung des Kraftstoffverbrauchs eines Kraftfahrzeugs

Die Erfindung bezieht sich auf ein Verfahren zur Verringerung des Kraftstoffverbrauchs eines Kraftfahrzeugs.

Aufgrund ständig steigender Energiepreise richtet sich ein besonderes Interesse auf den Kraftstoffverbrauch von Fahrzeugen. Eine Verringerung des Kraftstoffverbrauchs heutiger Fahrzeuge wird immer wichtiger.

Weiterentwicklungen von Antriebsmotoren, Verringerungen von Luftwiderstand oder Rollwiderstand und andere verbrauchmindernde Verbesserungen können das vorhandene Potential der möglichen Verbrauchreduzierung aber nur teilweise ausnutzen.

Weitere, vergleichsweise große Einsparungen sind im Grundsatz nur durch eine energiesparende Fahrweise möglich.

Es ist die Aufgabe der Erfindung, die Fahrzeugregelung im Hinblick auf energiesparendes Fahren zu verbessern.

Die Aufgabe wird durch die unabhängigen Patentansprüche gelöst. Bevorzugte Ausführungsformen sind in den Unteransprüchen angegeben.

Die Aufgabe wird dadurch gelöst, dass ein Fahrerwunsch nach einer gleichmäßigen Fahrzeuggeschwindigkeit ermittelt wird und dass wenn der Fahrerwunsch nach einer gleichmäßigen Fahrzeuggeschwindigkeit erkannt wurde, die Fahrzeuggeschwindigkeitsänderungen, die nicht durch den Fahrer veranlasst sind, im Hinblick auf einen möglichst geringen Kraftstoffverbrauch, wie Benzin oder Dieselkraftstoff, des Antriebsmotors des Fahrzeugs zumindest teilweise ausgeregelt werden.

Im Sinne der Erfindung wird die Gleichmäßigkeit der Fahrt als ein wichtige Faktor für eine energiesparende Fahrweise verbessert. Das bedeutet, es sollen Beschleunigungs- und auch Verzögerungsvorgange auf ein nötiges Maß verringert werden.

Besonders bevorzugt wird dieses Verfahren für Fahrzeuge mit einem Benzin-Direkteinspritzer oder Dieselmotore als Antriebsmotor eingesetzt, die im Teillastbetrieb besondere Vorteile im Verbrauch aufweisen.

Darüber hinaus ist es vorgesehen, dass das Fahrzeug auf Änderungen der Fahrpedalstellung wie bisher (ohne verbrauchsoptimierte Regelung nach dem Verfahren der Erfindung) reagieren soll, wenn es die Verkehrssituation erfordert und wenn es dem Fahrerwunsch entspricht.

Insgesamt wird dem Fahrer vorteilhaft durch diese Lösung keine generelles anderes Fahrverhalten "aufgezwungen". Der automatische Eingriff in die Fahrzeugregelung durch das Verfahren nach der Erfindung wird nicht als eine Bevormundung für den Fahrer angesehen und kann vom Fahrer einfacher akzeptiert werden.

Es zeigt sich, dass durch diese Maßnahmen nach der Erfindung der Fahrer dort unterstützt wird, wo selbst ein geübter und vorausschauender Fahrer Defizite bei seinem Verhalten im Hinblick auf optimale Energieeffizienz des

Fahrzeugs aufweißt. Darüber hinaus verbessert das Verfahren nicht nur den Kraftstoffverbrauch, sondern steigert auch den Fahrkomfort durch eine gleichmäßigere Fahrzeuggeschwindigkeit.

Erfindungsgemäß ist es vorgesehen, dass eine Änderung eines Fahrwiderstands ermittelt wird und die Fahrwiderstandsänderung zumindest teilweise ausgeregelt wird.

Erfindungsgemäß ist es vorgesehen, dass bei der Ermittlung der Fahrwiderstandsänderung eine Änderung der Fahrbahnneigung in Fahrzeuglängsrichtung, wie eine Fahrbahnsteigung oder eine Fahrbahngefälle, oder eine Änderung von Witterungsbedingungen, insbesondere veränderliche Geschwindigkeiten atmosphärischen Windes, oder Fahrbedingungen, wie veränderliche Anströmwinkel des Fahrzeugs in einem Windschatten eines anderen Fahrzeugs oder Objekts, und/oder eine Kurvenfahrt mit berücksichtigt wird.

Erfindungsgemäß ist es vorgesehen, dass der Fahrerwunsch nach einer gleichmäßigen Fahrzeuggeschwindigkeit erkannt wird auf Grundlage der Fahrpedalbewegung (Gaspedalbewegung).

Damit ist es möglich, Fahrgeschwindigkeitsänderungen, die nicht durch den Fahrer initiiert werden, feinfühlig auszuregeln, ohne das der Fahrer es bemerkt. Dabei sind zusätzliche technische Bauteile im Grundsatz nicht notwendig.

Erfindungsgemäß ist es vorgesehen, dass wenn eine Stellung des Fahrpedals für einen bestimmten, vorgegebenen Zeitraum

konstant vom Fahrer eingestellt bzw. gehalten wird, eine aus dieser Stellung des Fahrpedals resultierende Fahrzeuggeschwindigkeit als eine den Fahrerwunsch repräsentierende Wunschgeschwindigkeit erkannt wird.

Erfindungsgemäß ist es vorgesehen, dass ein Zeitraum in einem Bereich von 1 Sekunden (sec) bis 8 sec, vorzugsweise ca. 5 sec, vorgegeben wird.

Erfindungsgemäß ist es vorgesehen, dass die den Fahrerwunsch repräsentierende Wunschgeschwindigkeit gespeichert wird.

Erfindungsgemäß ist es vorgesehen, dass die aktuelle Fahrzeuggeschwindigkeit mit der den Fahrerwunsch repräsentierenden Wunschgeschwindigkeit verglichen wird und bei einer Abweichung der aktuellen Fahrzeuggeschwindigkeit von der Wunschgeschwindigkeit das Fahrzeug automatisch beschleunigt oder verzögert bzw. abgebremst wird, um die Abweichung zu verringern, im wesentlichen ähnlich einer Funktion eines Tempomaten mit Bremseingriffsmöglichkeit.

Erfindungsgemäß ist es vorgesehen, dass die automatische Beschleunigung oder das automatische Abbremsen des Fahrzeugs so durchgeführt werden, dass ein möglichst geringer Kraftstoffverbrauch für den Antriebsmotor des Fahrzeugs, wie Benzin oder Dieselkraftstoff, benötigt wird.

Nach einem anderen Aspekt der Erfindung kann die automatische Beschleunigung oder das automatische Abbremsen des Fahrzeugs so durchgeführt werden, dass für den Fahrer möglichst komfortable, relativ geringe Beschleunigungs-oder Abbremsvorgänge resultieren.

Erfindungsgemäß ist es vorgesehen, dass das Fahrzeug automatisch beschleunigt oder abgebremst wird, wenn die Abweichung der aktuellen Fahrzeuggeschwindigkeit von der Wunschgeschwindigkeit größer ist als 0,2 km/h bis 2 km/h.

Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert.

Ein Fahrzeug weist eine Fahrzeugsteuerungs- und Regeleinheit auf, welche die Fahrzeugverzögerung, durch "Gas wegnehmen" und/oder "Bremsdruckaufbau", und die Fahrzeugbeschleunigung, durch "Gas geben" und/oder "Bremsdruckabbau", automatisch beeinflussen kann.

Ausgehend von der Erkenntnis, dass der überwiegende Teil der Fahrzeit (speziell im Langstreckenbetrieb) vom Fahrer mit konstanter Geschwindigkeit zurück gelegt werden möchte, wird dieser hierbei unterstützt und unnötige Beschleunigungs- und Verzögerungsvorgänge werden vermieden.

Dem Fahrerwunsch Konstantfahrt können im Laufe der Fahrt bestimmte, häufig auch wechselnde Fahrwiderstandssituationen entgegenstehen.

Strebt der Fahrer eine konstante Geschwindigkeit an und ändert sich der Fahrwiderstand (durch eine Steigung oder ein Gefälle oder Wind usw.) langsam, dann bemerkt er dies erst, wenn sich eine signifikante

Geschwindigkeitsabweichung (5 km/h bis 10 km/h) von seiner Wunschgeschwindigkeit eingestellt hat. Dies liegt einerseits an der Häufigkeit der Geschwindigkeitskontrolle (Blick zum Tacho) and zum anderen an der visuellen

Auflösbarkeit eines analogen Tachos. Auch die Fahrgeräusche ändern sich bei den angesprochen Abweichungen nur

6

geringfügig.

Bemerkt der Fahrer die Abweichung, versuchte er die zuvor eingestellte Wunschgeschwindigkeit wieder einzustellen, das bedeutet er beschleunigt das Fahrzeug. Da die Fahrzeuggeschwindigkeit relativ weit von der Wunschgeschwindigkeit entfernt hat, muss dann sehr viel Energie eingesetzt werden, um die Wunschgeschwindigkeit wieder einzustellen.

Steigt die Fahrzeuggeschwindigkeit, z.B. bei einer Bergabfahrt, an, wird durch eine dann ggf. eingeleitete Bremsung Energie vernichtet, die zuvor dem System zugeführt wurde.

In beiden Situationen kann zusätzlich ein Einschwingvorgang um die Wunschgeschwindigkeit herum den Vorgang noch ineffizienter machen.

Somit haben die Fahrwiderstandsänderungen eine Vielzahl von Ursachen, die nur zum Teil vom Fahrer intuitiv erfasst werden können.

Die offensichtlichste Fahrwiderstandsänderung ist die Fahrt auf einer geneigten Fahrbahn. Auch hierbei wird eine geringe Fahrbahnneigung vom Fahrer meist nicht bemerkt. Diese Fahrwiderstandsänderung wird nach der Erfindung durch das erfindungsgemäße Verfahren ausgeregelt.

Der zweite wichtige Fahrwiderstandsänderung, die vom Fahrer nicht direkt erfasst werden kann, ist die Änderung des Luftwiderstandes, der durch Fahren im Windschatten, bzw. veränderliche Anströmwinkel und/oder veränderliche Geschwindigkeiten des atmosphärischen Windes entstehen

können. Diese Fahrwiderstandsänderung wird nach der Erfindung durch das erfindungsgemäße Verfahren ausgeregelt.

Auch durch eine Kurvenfahrt und dem damit verbundenen Schräglaufschlupf steigt der Fahrwiderstand an. Dieser Anstieg wird als von untergeordneter Bedeutung angesehen. Auch diese Fahrwiderstandsänderung wird nach der Erfindung durch das erfindungsgemäße Verfahren ausgeregelt.

Der Fahrerwunsch eine konstante Geschwindigkeit zu fahren, wird nach der Erfindung durch eine Überwachung der Fahrpedalstellung (Pedal Position) realisiert.

Stellt der Fahrer eine Fahrpedalstellung für 1 bis 8
Sekunden (sec) konstant ein, wobei Abweichung innerhalb
eines engen Bandes nicht berücksichtig werden, wird dieses
der Fahrpedalstellung entsprechende Moment vom
Motorsteuergerät eingestellt. Es wird nun gewartet, bis
sich die Fahrzeuggeschwindigkeit dem Moment entsprechend
eingestellt hat and sich nicht mehr verändert.

Die dann festgestellte Geschwindigkeit wird gespeichert. Erfindungsgemäß wird davon ausgegangen, dass diese festgestellte Geschwindigkeit die Wunschgeschwindigkeit darstellt.

Wenn dies nicht der Fall ist, fordert der Fahrer über das Fahrpedal mehr Moment an. Das Moment ist dann nicht mehr konstant.

Die aktuelle Fahrzeuggeschwindigkeit wird ständig mit der gespeicherten Geschwindigkeit (Wunschgeschwindigkeit) verglichen. Wird eine Abweichung von 0,2 km/h bis 2 km/h detektiert, dann wird das Motormoment verändert, um diese

Abweichung zu minimieren, das bedeutet im Sinne der Erfindung "auszuregeln".

Die Überwachung lässt dabei keine Abweichungen zu, die dem Fahrer auffällig werden. Daher ist die Wahrscheinlichkeit eines ineffizienten Eingriffs durch den Fahrer deutlich reduziert.

Fahrpedalbewegungen, d. h. Schwingungen des Fahrpedals, die größer 1 Hz sind, das bedeutet Bewegungen öfter als 1 mal pro Sekunde, werden nicht zur Änderung der Wunschgeschwindigkeit herangezogen. Diese Fahrpedalbewegungen werden als Störung angesehen.

Da das gesamte Verfahren vorteilhaft recht träge ausgelegt ist, werden die hier ggf. entstehenden relativ kurzen Übergangszeiten (Delays) vom Fahrer nicht bemerkt.

Langsame Fahrpedalbewegungen werden sofort umgesetzt, da dies mit sehr hoher Wahrscheinlichkeit keine Störung, sondern ein neuer Fahrerwunsch ist.

Ebenfalls schnelle Fahrpedalbewegungen in eine Richtung und mit einer eindeutigen Amplitude, die am Ende in einer Position verbleiben, werden auch sofort umgesetzt und nach kurzer Überwachungszeit als Fahrerwunsch angesehen.

Die Momentenänderung, die durch die Einregelung der Wunschgeschwindigkeit zugelassen wird, umfasst nicht das gesamte durch den Motor zur Verfügung stehende Moment, sondern es werden nur Änderungen von ± 10% bis ± 40% des Anfangsmomentes (Moment welches bei der Speicherung der Wunschgeschwindigkeit anlag) zugelassen. Damit wird dem Fahrer immer die Möglichkeit gegeben, aktiv zu

9

beschleunigen bzw. Schleppmoment aufzubringen.

Des weiteren ist erfindungsgemäß eine Begrenzung des Geschwindigkeitsbereichs vorgesehen, in dem die Funktion nach der Erfindung durchgeführt wird. Das überwiegende Sparpotential liegt bei höheren Geschwindigkeiten (größer 60 km/h bis 70 km/h). In diesen Geschwindigkeitsbereichen liegen häufiger Konstantfahrten vor als bei Stadtfahrten. Daher kommt das Verfahren vorzugsweise zur Anwendung bei Fahrzeuggeschwindigkeiten größer ca. 60 km/h bis 70 km/h.

Patentansprüche

- 1. Verfahren zur Verringerung des Kraftstoffverbrauchs eines Kraftfahrzeugs,
 dadurch gekennzeichnet, dass ein Fahrerwunsch nach einer gleichmäßigen Fahrzeuggeschwindigkeit ermittelt wird und dass wenn der Fahrerwunsch nach einer gleichmäßigen Fahrzeuggeschwindigkeit erkannt wurde, die Fahrzeuggeschwindigkeitsänderungen, die nicht durch den Fahrer veranlasst sind, im Hinblick auf einen möglichst geringen Kraftstoffverbrauch des Antriebsmotors des Fahrzeugs zumindest teilweise ausgeregelt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Änderung eines Fahrwiderstands ermittelt wird und die Fahrwiderstandsänderung zumindest teilweise ausgeregelt wird.
- 3. Verfahren nach Anspruch 2,
 dadurch gekennzeichnet, dass bei der Ermittlung der
 Fahrwiderstandsänderung eine Änderung der
 Fahrbahnneigung in Fahrzeuglängsrichtung, wie eine
 Fahrbahnsteigung oder eine Fahrbahngefälle, oder eine
 Änderung von Witterungsbedingungen, insbesondere
 veränderliche Geschwindigkeiten atmosphärischen
 Windes, oder Fahrbedingungen, wie veränderliche
 Anströmwinkel des Fahrzeugs in einem Windschatten
 eines anderen Fahrzeugs ode Objekts und/oder eine
 Kurvenfahrt mit berücksichtigt wird.

- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Fahrerwunsch nach einer gleichmäßigen Fahrzeuggeschwindigkeit erkannt wird auf Grundlage der Fahrpedalbewegung (Gaspedalbewegung).
- 5. Verfahren nach Anspruch 4,
 dadurch gekennzeichnet, dass wenn eine Stellung des
 Fahrpedals für einen bestimmten, vorgegebenen
 Zeitraum konstant vom Fahrer eingestellt bzw.
 gehalten wird, eine aus dieser Stellung des
 Fahrpedals resultierende Fahrzeuggeschwindigkeit als
 eine den Fahrerwunsch repräsentierende
 Wunschgeschwindigkeit erkannt wird.
- 6. Verfahren nach Anspruch 5,
 dadurch gekennzeichnet, dass ein Zeitraum in einem
 Bereich von 1 sec bis 8 sec, vorzugsweise ca. 5 sec,
 vorgegeben wird.
- 7. Verfahren nach Anspruch 5 oder 6,
 dadurch gekennzeichnet, dass die den Fahrerwunsch
 repräsentierende Wunschgeschwindigkeit gespeichert
 wird.
- 8. Verfahren nach einem der Ansprüche 5 bis 7,
 dadurch gekennzeichnet, dass die aktuelle
 Fahrzeuggeschwindigkeit mit der den Fahrerwunsch
 repräsentierenden Wunschgeschwindigkeit verglichen
 wird und bei einer Abweichung der aktuellen
 Fahrzeuggeschwindigkeit von der Wunschgeschwindigkeit
 das Fahrzeug automatisch beschleunigt oder verzögert
 bzw. abgebremst wird, um die Abweichung zu
 verringern.

 \odot

- 9. Verfahren nach Anspruch 8,
 dadurch gekennzeichnet, dass die automatische
 Beschleunigung oder das automatische Abbremsen des
 Fahrzeugs so durchgeführt werden, dass ein möglichst
 geringer Kraftstoffverbrauch für den Antriebsmotor
 des Fahrzeugs, wie Benzin oder Dieselkraftstoff,
 benötigt wird.
- 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Fahrzeug automatisch beschleunigt oder abgebremst wird, wenn die Abweichung der aktuellen Fahrzeuggeschwindigkeit von der Wunschgeschwindigkeit größer ist als 0,2 bis 2 km/h.

Zusammenfassung

Verfahren zur Verringerung des Kraftstoffverbrauchs eines Kraftfahrzeugs

Bei einem Verfahren zur Verringerung des
Kraftstoffverbrauchs eines Kraftfahrzeugs wird ein
Fahrerwunsch nach einer gleichmäßigen
Fahrzeuggeschwindigkeit ermittelt und wenn der Fahrerwunsch
nach einer gleichmäßigen Fahrzeuggeschwindigkeit erkannt
wurde, werden die Fahrzeuggeschwindigkeitsänderungen, die
nicht durch den Fahrer veranlasst sind, zumindest teilweise
ausgeregelt im Hinblick auf einen möglichst geringen
Kraftstoffverbrauch, wie Benzin oder Dieselkraftstoff, für
den Antriebsmotor des Fahrzeugs.

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/EP04/052939

International filing date: 12 November 2004 (12.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: DE

> 10 2004 048 494.5 Number:

Number: 10 2004 048 494.5 Filing date: 05 October 2004 (05.10.2004)

Date of receipt at the International Bureau: 25 January 2005 (25.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

