Application à la commande d'un moteur à courant continu en boucle ouverte

On étudie le montage à AOP *rail-to-rail* suivant :

La source triangulaire génère un signal de fréquence f=2 kHz entre 0 V et Vdd (à t=0 s on considérera que $V_1=0$ V). L'interrupteur S1 est fermé si sa commande est à 0 V, ouvert sinon; l'interrupteur S2 est piloté en inverse de S1. Pour les applications numériques, on prendra Vdd=4,6 V.

1 Première partie : Réglage du signal de commande

- 1. Sur le chronogramme en fin d'énoncé, tracer 4 périodes de V_1 .
- 2. (a) Que vaut v_- en fonction de Vdd, R et a?
 - (b) Faire les applications numériques pour $a_1 = 0.25$, $a_2 = 0.5$ et $a_3 = 0.75$ et tracer les droites correspondantes sur le même chronogramme que V_1 .
- 3. (a) En déduire le chronogramme de V_2 .
 - (b) Quel est le nom du montage à AOP réalisé?
 - (c) Calculer la valeur moyenne du signal V_2 en fonction de Vdd et a.
 - (d) Comparer cette valeur moyenne à 0.

2 Deuxième partie : Étude de l'étape de puissance

- 1. (a) À partir des résultats précédents, déduire le chronogramme de V_M , la tension aux bornes du moteur.
 - (b) Calculer la valeur moyenne du signal V_M en fonction de Vdd et a.
 - (c) Faire les applications numériques pour les valeurs de *a* utilisées précédemment.
 - (d) Comparer cette valeur moyenne à 0.
- 2. Un moteur à courant continu a un comportement inductif, et il serait possible de démontrer que les grandeurs mécaniques sont liées aux valeurs moyennes des grandeurs électriques :
 - (a) Rappeler le lien, en régime établi, entre vitesse angulaire Ω et la tension dans le cas ou la résistance d'induit est négligeable (cas des petits moteurs pour la robotique par exemple).
 - (b) En déduire l'expression de la vitesse angulaire en fonction de *a*.
 - (c) Comment peut on contrôler la vitesse et le sens de rotation?

Chronogramme:

V_1	:
. т	-

V_2 :

V_M :

