Calculus II Lecture 14

Todor Milev

https://github.com/tmilev/freecalc

2020

Todor Milev Lecture 14 2020

Outline

Surface area of solid of revolution

Todor Milev 2020

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Todor Milev Lecture 14 2020

Example

Find the surface area of the ellipsoid obtained by rotating $y = \sqrt{1 - \frac{x^2}{2}}$ about the x axis.

Example

Find the surface area of the ellipsoid obtained by rotating $y = \sqrt{1 - \frac{x^2}{2}}$ about the x axis.

$$y' = \frac{1}{2} \frac{(-x)}{\sqrt{1 - \frac{x^2}{2}}} = -\frac{x}{2y}$$
$$(y')^2 = \frac{x^2}{4y^2}$$

Area =
$$\int_{-2}^{2} 2\pi y \sqrt{1 + \frac{x^2}{4y^2}} dx$$

= $\int_{-2}^{2} 2\pi y \sqrt{\frac{4y^2 + x^2}{4y^2}} dx$
= $\int_{-2}^{2} 2\pi y \sqrt{\frac{4y^2 + x^2}{4y^2}} dx$
= $\int_{-2}^{2} \pi \sqrt{4 \left(1 - \frac{x^2}{2}\right) + x^2} dx$
= $\int_{-2}^{2} \pi \sqrt{4 - x^2} dx$

Todor Milev Lecture 14 2020