Metode Runge-Kutta

Radu T. Trîmbiţaş

18 ianuarie 2007

1 Probleme scalare, pas constant

Dorim să aproximăm soluția problemei Cauchy

$$y'(t) = f(t, y), a \le t \le b,$$

$$y(a) = \alpha.$$

pe o grilă uniformă de (N+1)-puncte din [a,b].

Dându-se un punct generic $x \in [a, b], y \in \mathbb{R}^d$, definim un pas al metodei cu un pas prin

$$y_{next} = y + h\Phi(x, y; h), \quad h > 0.$$
(1)

La metodele Runge-Kutta se caută Φ de forma:

$$\Phi(x, y; h) = \sum_{s=1}^{r} \alpha_s K_s
K_1(x, y) = f(x, y)
K_s(x, y) = f\left(x + \mu_s h, y + h \sum_{j=1}^{s-1} \lambda_{sj} K_j\right), \qquad s = 2, 3, \dots, r$$
(2)

Este natural să impunem în (2) condițiile

$$\mu_s = \sum_{j=1}^{s-1} \lambda_{sj}, \quad s = 2, 3, \dots, r, \quad \sum_{s=1}^r \alpha_s = 1,$$
 (3)

unde primul set de condiții este echivalent cu

$$K_s(x, y; h) = u'(x + \mu_s h) + O(h^2), \quad s \ge 2,$$

iar a doua este condiția de consistență (adică $\Phi(x, y; h) = f(x, y)$). Formula Runge-Kutta clasică de ordin p = 4 este:

$$\Phi(x, y; h) = \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)
K_1(x, y; h) = f(x, y)
K_2(x, y; h) = f\left(x + \frac{1}{2}h, y + \frac{1}{2}hK_1\right)
K_3(x, y; h) = f\left(x + \frac{1}{2}h, y + \frac{1}{2}hK_2\right)
K_4(x, y; h) = f(x + h, y + hK_3)$$
(4)

Metoda Runge-Kutta clasică de ordinul 4 pentru o grilă de N+1 puncte echidistante este dată de algoritmul 1.

Algorithm 1 Metoda Runge-Kutta de ordinul 4

Intrare: Funcția f, capetele a, b ale intervalului; întregul N; valoarea inițială α .

Ieşire: N+1 abscise t și aproximantele w ale lui valorilor lui y în t.

```
\begin{split} h &:= (b-a)/N; \\ t_0 &:= a; \\ w_0 &:= \alpha; \\ \textbf{for } i &:= 0 \ \textbf{ to } N-1 \ \textbf{do} \\ K_1 &:= hf(t_i, w_i); \\ K_2 &:= hf(t_i + h/2, w_i + K_1/2); \\ K_3 &:= hf(t_i + h/2, w_i + K_2/2); \\ K_4 &:= hf(t_i + h, w_i + K_3); \\ w_{i+1} &:= w_i + \frac{1}{6}(K_1 + 2*K_2 + 2*K_3 + K_4); \\ t_{i+1} &:= t_i + h; \\ \textbf{end for} \end{split}
```

Exemplu. Utilizând metoda Runge-Kutta de ordinul 4 pentru a aproxima soluția problemei Cauchy

$$y' = -y + t + 1, \quad t \in [0, 1]$$

 $y(0) = 1,$

cu h = 0.1, N = 10 și $t_i = 0.1i$ se obțin rezultatele din tabelul de mai jos

$\overline{t_i}$	Aproximante	Valori exacte	Eroarea
0.0	1	1	0
0.1	1.00483750000	1.00483741804	8.19640 e - 008
0.2	1.01873090141	1.01873075308	1.48328e-007
0.3	1.04081842200	1.04081822068	2.01319e-007
0.4	1.07032028892	1.07032004604	2.42882e-007
0.5	1.10653093442	1.10653065971	2.74711e-007
0.6	1.14881193438	1.14881163609	2.98282e-007
0.7	1.19658561867	1.19658530379	3.14880e-007
0.8	1.24932928973	1.24932896412	3.25617e-007
0.9	1.30656999120	1.30656965974	3.31459e-007
1.0	1.36787977441	1.36787944117	3.33241e-007

Se obișnuiește să se asocieze unei metode Runge-Kutta cu r stadii (2) tabloul

numit tabelă Butcher. Pentru metoda Runge-Kutta clasică de ordinul patru (4) tabela Butcher este:

1.1 Probleme

1. Implementați metoda Runge-Kutta de ordinul 4.

- 2. Testați rutina dumneavoastră pe exemple ale căror soluții pot fi exprimate prin cuadraturi și reprezentați pe același grafic soluția exactă.
- 3. Implementați următoarele metode: Euler, Euler modificată, Heun.

1.2 Probleme practice

Rezolvați problemele următoare. Comparați soluția aproximativă cu cea exactă:

1.

$$y' = x^2 - y, x \in [0, 4],$$

$$y(0) = 1.$$

Soluţia exactă $y(x) = x^2 - 2x + 2 - e^x$.

2.

$$y' = \frac{y^2}{1 + x^2};$$
$$y(1) = -\frac{\pi}{4}.$$

3.

$$y' = \frac{1}{1+x^2} - y^2;$$

$$y(0) = 0.$$

Soluţia exactă:

$$y = \frac{x}{1 + x^2}.$$

4.

$$y' = -y^2, x \in [0, 5]$$

 $y(0) = 1.$

Soluţia exactă: y(x) = 1/(1+x).

5.

$$y' = -y + 2\cos x, \quad x \in [0, 2\pi]$$

 $y(0) = 1.$

Soluția exactă: $y(x) = \cos x + \sin x$.

2 Sisteme de ecuații diferențiale ordinare și ecuații de ordin superior

Rezolvați următoarele EDO și sisteme de EDO. Comparați soluția exactă și cea aproximativă. Găsiți soluțiile și cu rezolvitori MATLAB.

1.

$$u'_1 = 3u_1 + 2u_2, \quad t \in [0, 1], \quad u_1(0) = 0$$

 $u'_2 = 4u_1 + u_2, \quad t \in [0, 1], \quad u_2(0) = 1.$

h = 0.1, soluţia exactă $u_1(t) = \frac{1}{3}(e^{5t} - e^{-t})$, $u_2(t) = \frac{1}{3}(e^{5t} + 2e^{-t})$.

2.

$$u'_1 = -4u_1 - 2u_2 + \cos t + 4\sin t, \ u_1(0) = 1,$$

 $u'_2 = 3u_1 + u_2 - 3\sin t, \ u_2(0) = -1, t \in [0, 2]$

h=0.1, soluţia exactă

$$u_1(t) = 2e^{-t} - 2e^{-2t} + \sin t,$$

 $u_2(t) = -3e^{-t} + 2e^{-2t}.$

3.

$$u'_1 = u_2, \quad u_1(0) = 3,$$

 $u'_2 = -u_1 + 2e^{-t} + 1, \quad u_2(0) = 0,$
 $u'_3 = -u_1 + e^{-t} + 1, \quad u_3(0) = 1, \quad t \in [0, 1].$

h=0.1, soluţia exactă

$$u_1(t) = \cos t + \sin t + 1,$$

 $u_2(t) = -\sin t + \cos t - e^{-t},$
 $u_3(t) = -\sin t + \cos t.$

4.

$$t^{2}y'' - 2ty' + 2y = t^{3} \ln t, \quad t \in [0, 2]$$

$$y(0) = 1, y'(0) = -1,$$

h = 0.05, soluția exactă

$$y(t) = \frac{7}{4}t + \frac{t^3}{2}\ln t - \frac{3}{4}t^3.$$

5.

$$y''' = -6y^4$$
, $t \in [1, 1.9]$
 $y(1) = -1$, $y'(1) = -1$, $y''(1) = -2$,

h = 0.05; soluţia exactă

$$y(t) = \frac{1}{t-2}.$$

3 Controlul pasului

Pentru o descriere sintetică a metodelor Runge-Kutta cu pas variabil tabela Butcher se completează cu o linie suplimentară care servește la calculul lui Φ^* (și deci a lui r(x, y; h)):

$$\begin{array}{c|ccccc}
\mu_1 & \lambda_{11} & \lambda_{12} & \dots & \lambda_{1r} \\
\mu_2 & \lambda_{21} & \lambda_{22} & \dots & \lambda_{2r} \\
\vdots & \vdots & \vdots & \dots & \vdots \\
\mu_r & \lambda_{r1} & \lambda_{r2} & \dots & \lambda_{rr} \\
\hline
& \alpha_1 & \alpha_2 & \dots & \alpha_r \\
& \alpha_1^* & \alpha_2^* & & \alpha_r^* & \alpha_{r+1}^*
\end{array}$$

Ca exemplu, tabela 1 este tabela Butcher pentru metoda Bogacki-Shampine. Ea stă la baza rezolvitorului ode23 din MATLAB.

Un alt exemplu important este DORPRI5 sau RK5(4)7FM, o pereche cu ordinele 4-5 și cu 7 stadii (tabela 2). Aceasta este o pereche foarte eficientă, ea stând la baza rezolvitorului ode45 din MATLAB, dar și a altor rezolvitori importanți.

Algoritmul 2 încearcă să dea sugestii pentru implementarea unei metode Runge-Kutta cu pas variabil când se cunoaște tabela Butcher. *ttol* este produsul dintre *tol* și factorul de siguranță (0.8 sau 0.9).

μ_j	λ_{ij}				
0	0				
$\begin{array}{c} \frac{1}{2} \\ \frac{3}{4} \\ 1 \end{array}$	$\frac{1}{2}$	0			
$\frac{3}{4}$	0	$\frac{3}{4}$	0		
1	$\frac{2}{9}$	$\frac{3}{9}$	$\frac{4}{9}$	0	
α_i	$ \begin{array}{c} \frac{1}{2} \\ 0 \\ \frac{2}{9} \\ \hline \frac{7}{24} \end{array} $	$\frac{3}{4}$ $\frac{3}{9}$ $\frac{3}{9}$	$\frac{\frac{4}{9}}{\frac{4}{9}}$	0	
α_i^*	$\frac{7}{24}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{8}$	

Tabela 1: Tabela Butcher pentru metoda Bogacki-Shampine

μ_j			λ	ij			
0	0						
$\frac{1}{5}$	$\frac{1}{5}$	0					
$\frac{\frac{1}{5}}{\frac{3}{10}}$	$\frac{3}{40}$	$\frac{9}{40}$	0				
$\frac{4}{5}$	$\frac{44}{45}$	$-\frac{56}{15}$	$\frac{32}{9}$	0			
$\frac{8}{9}$	$\frac{19372}{6561}$	$-\frac{25360}{2187}$	$\frac{64448}{6561}$	$-\frac{212}{729}$	0		
1	$\frac{9017}{3168}$	$-\frac{355}{33}$	$\frac{46732}{5247}$	$\frac{49}{176}$	$-\frac{5103}{18656}$	0	
_1	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	0
α_i	$\frac{35}{384}$	0	$\frac{500}{1113}$	$\frac{125}{192}$	$-\frac{2187}{6784}$	$\frac{11}{84}$	0
α_i^*	$\frac{5179}{57600}$	0	$\frac{7571}{16695}$	$\frac{393}{640}$	$-\frac{92097}{339200}$	$\frac{187}{2100}$	$\frac{1}{40}$

Tabela 2: Perechea inclusă RK5(4)7FM (DORPRI5)

Algorithm 2 Fragment de pseudocod ce ilustrează implementarea unei metode RK cu pas variabil

```
done := \mathbf{false};
loop
  K_{:,1} := f(x,y);
  for i = 2 to s do
     w := y + hK_{:,1:i-1}\lambda_{i,1:i-1}^T;
     K_{::i} := f(x + \mu_i h, w);
  end for
  \delta := h \max(|K(\alpha^* - \alpha)^T|); \{\text{estimarea erorii}\}
  \beta := (\delta/ttol)^{1/(1+p)}; {raport lung. pas}
  if \delta < tol then
     {acceptare pas}
     y := y + h(K\alpha^T); \{\text{actualizare } y\}
     x := x + h;
     if done then
        EXIT {terminare şi ieşire}
     end if
     h := h/\max(\beta, 0.1); \{\text{predicție pas următor}\}\
     if x + h > x_{end} then
        h := x_{end} - x; {reducere pas la capăt}
        done := \mathbf{true};
     end if
  else
     {respingere pas}
     h := h/\min(\beta, 10); \{\text{reducere pas}\}\
     if done then
        done := \mathbf{false};
     end if
  end if
end loop
```

3.1 Probleme

- 1. Implementați un mecanism de control al pasului pentru una din metodele descrise de tabelele Butcher precedente.
- 2. Testați rutina precedentă pentru o EDO scalară, un sistem și o EDO de ordin superior.