- Part2
 - Haffman Coding
 - o DCT
 - KLT
 - o SVD
- Part3
 - Chroma Subsampling
 - Motion Estimation Methods
- Part4
 - MAC
 - o CRC
 - TCP/UDP

Part2

Haffman Coding

概率合并的时候,上1下0,把符号翻译成码字的时候,从右往左看

DCT

KLT

lexicographical:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} => \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

SVD

学习推荐这两个视频:

https://www.bilibili.com/video/BV1B44y1C7CX https://www.bilibili.com/video/BV1MT4y1y75x

 Σ 从大到小排列,形状和 A 一样

U 里面的特征向量是列向量, V^T 里面的特征向量是行向量

做法演示: https://www.cnblogs.com/marsggbo/p/10155801.html

A,B是两个矩阵 c是常数

$$\mathrm{dct2}(A+B)=\mathrm{dct2}(A)+\mathrm{dct2}(B)$$

$$c \cdot \det 2(A) = \det 2(c \cdot A)$$

Part3

Chroma Subsampling

https://zh.wikipedia.org/zh-cn/%E8%89%B2%E5%BA%A6%E6%8A%BD%E6%A0%B7

Motion Estimation Methods

- · direct methods
 - block-matching algorithm
 - full search
 - three step search
 - two dimensional logarithmic search
 - o optical flow
- indirect methods

.

Part4

MAC

https://zhuanlan.zhihu.com/p/331750721 https://zhuanlan.zhihu.com/p/401068717

CRC

```
m-bit dataword
n-bit CRC
(n +1)-bit generator
codeword = dataword + remainder(CRC)
modulo 2 Arithmetic --> xor
```

dataword后面先补n-bit的0,被除数的0用完,余数就是n-bit CRC

CRC Decoder 余数全0就校验成功

polynomial:

n-order generator (n-1)-order CRC $\label{eq:cross} \mbox{Augmented dataword polynomial = dataword polynomial multiplied by } x^n$

TCP/UDP

https://www.zhihu.com/question/39849641/answer/83774680