МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 7304	 Овчинников Н.В.
Преподаватель	 Кирьянчиков В.А.

Санкт-Петербург 2021

Цель

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание

Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где $\{X_i\}$ случайное значение интервала между соседними i-1 –ой и i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- А) Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=\frac{20}{2\sqrt{3}}=5.8$.
- Б) Экспоненциальным законом распределения $W(y)=be^{-by},\,y\geq 0,\,$ с параметром b=0.1 и соответственно $m_{{}^{9}{\rm KC\Pi}}=s_{{}^{9}{\rm KC\Pi}}={}^{1}/b=10.$

Значения случайной величины Y с экспоненциальным законом распределения с параметром b можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]:

$$Y = -\frac{\ln(t)}{b} \tag{1}.$$

В) Релеевским законом распределения $W(y) = {y \choose c^2} \cdot e^{-\frac{y^2}{2c^2}}, y \ge 0$ с параметром c = 8.0 и соответственно $m_{\rm pen} = c \sqrt{\pi/2}, s_{\rm pen} = c \sqrt{\frac{2-\pi}{2}}$.

Значения случайной величины Y с релеевским законом распределения с параметром c можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [2]:

$$Y = c \cdot \sqrt{-2\ln(t)} \tag{2}$$

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
 - 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение

первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать $n \in \{32,24,18\}$ элементов).

Примечание: для каждого значения n следует генерировать и сортировать новые массивы.

- 4. Если B > n, оценить значения средних времен X_j , j = n + 1, n + 2, ..., n + k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1. Равномерный закон

a.
$$100\% (n = 30)$$

i	X	i	X	i	X
1	1.093	11	8.227	21	16.370
2	2.190	12	8.627	22	16.648
3	4.071	13	9.005	23	18.369
4	4.891	14	9.166	24	16.435
5	5.198	15	11.770	25	16.438
6	5.820	16	11.781	26	16.648
7	5.982	17	12.119	27	17.658
8	6.825	18	12.790	28	18.282
9	7.662	19	12.843	29	18.369
10	7.959	20	13.020	30	19.220

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.57$$

$$19.57 > 15.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36	37	38
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609
g	2.613	2.403	2.225	2.071	1.938	1.820	1.716	1.623

f - g 1.382 0.624	0.333	0.184	0.097	0.043	0.009	0.014
--------------------	-------	-------	-------	-------	-------	-------

$$m = 37 \ge B = m - 1 = 36$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.005168$$

Среднее время \widehat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	31	32	33	34	35
X_i	32.252	38.702	48.378	64.504	96.755

Время до полного завершения тестирования 474.101

Полное время: 806.165 b. 80% (n = 24)

i	X	i	X	i	X
1	0.396	9	6.960	17	14.577
2	1.771	10	6.995	18	15.665
3	2.328	11	7.014	19	16.725
4	2.671	12	7.037	20	17.368
5	2.923	13	7.928	21	17.625
6	3.356	14	12.357	22	18.427
7	3.720	15	13.313	23	18.829
8	4.166	16	14.002	24	18.956

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.878$$

$$16.878 > 12.5$$

Найдём m□n□1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28
f	3.776	2.816	2.354	2.058
g	2.955	2.631	2.371	2.158
f-g	0.821	0.185	0.017	0.100

$$m = 27 \ge B = m - 1 = 26$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.010085$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	25	26
X_i	49.579	99.158

Время до полного завершения тестирования 148.737 Полное

время: 383.846

c.
$$60\% (n = 18)$$

	V		v	į	v
L	Λ	L	Λ	L	Λ

1	0.939	7	4.358	13	12.536
2	1.500	8	4.609	14	14.248
3	1.500	9	6.803	15	15.703
4	3.321	10	8.806	16	15.775

5	3.505	11	9.815	17	17.448
6	3.608	12	12.215	18	17.707

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.889$$

$$12.889 > 9.5$$

Найдём т□п□1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21
f	3.776	2.816	2.354
g	2.596	2.343	2.134
f-g	1.180	0.473	0.220

$$m = 20 \ge B = m - 1 = 19$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.01631$$

Среднее время \widehat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	19
X_i	61.310

Время до полного завершения тестирования 61.31. Полное время: 216.5

2. Экспоненциальный закон

a. 100% (n = 30)

i	X	i	X	i	X
1	0.591	11	5.580	21	13.654
2	0.726	12	5.966	22	14.715
3	1.127	13	6.106	23	15.685
4	1.132	14	6.945	24	18.280
5	1.398	15	7.050	25	20.079
6	1.481	16	7.573	26	23.977
7	2.291	17	8.221	27	24.566
8	2.612	18	8.508	28	24.974
9	4.851	19	9.912	29	28.618
10	5.451	20	10.063	30	36.602

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 22.607$$

$$22.607 > 15.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33
f	3.995	3.027	2.558
g	3.575	3.194	2.887
f-g	0.420	0.167	0.328

$$m = 32 \ge B = m - 1 = 31$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_{i}} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} i X_{i}}$$
$$K = 0.010021$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	31
X_i	99.791

Время до полного завершения тестирования 99.791

Полное время: 418.525 b. 80% (n = 24)

i	X	i	X	i	X
1	0.629	9	5.424	17	18.134
2	1.700	10	6.385	18	18.966
3	1.859	11	8.782	19	19.341
4	3.031	12	9.894	20	19.456
5	3.100	13	10.494	21	26.820
6	3.365	14	14.451	22	27.853
7	3.888	15	16.698	23	29.191
8	5.070	16	18.083	24	49.577

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.925$$

$$17.925 > 12.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27
f	3.776	2.816	2.354
g	3.392	2.972	2.645
f-g	0.384	0.156	0.290

$$m = 26 \ge B = m - 1 = 25$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.009225$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	25
X_i	108.406

Время до полного завершения тестирования 108.406 Полное

время: 430.597

c.
$$60\% (n = 18)$$

i	X	i	X	i	X
1	0.965	7	8.399	13	16.702
2	1.068	8	9.804	14	19.454
3	1.453	9	12.216	15	20.936
4	1.557	10	13.027	16	22.411
5	4.093	11	13.711	17	24.043

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.957$$

$$12.957 > 9.5$$

Найдём т□п□1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21
f	3.495	2.548	2.098
g	2.979	2.556	2.238
f-g	0.516	0.008	0.140

$$m = 20 \ge B = m - 1 = 19$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.01192$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	19
X_i	83.896

Время до полного завершения тестирования 83.896.

Полное время: 298.325

3. Релеевский закон

a. 100% (n = 30)

i	X	i	X	i	X
1	2.747	11	9.957	21	13.463
2	3.917	12	10.034	22	13.573
3	4.064	13	10.611	23	13.667
4	4.125	14	10.847	24	14.259
5	5.308	15	10.857	25	14.429
6	5.598	16	11.030	26	15.202
7	5.984	17	11.477	27	15.551
8	7.034	18	11.915	28	15.704
9	7.800	19	13.192	29	22.706
10	8.465	20	13.296	30	29.635

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.434$$

$$19.434 > 15.5$$

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	31	32	33	34	35	36	37	38	39
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609	1.510
g	2.594	2.387	2.211	2.060	1.927	1.811	1.708	1.616	1.533
f-g	1.401	0.640	0.347	0.196	0.108	0.052	0.017	0.007	0.023

$$m = 38 \ge B = m - 1 = 37$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$
$$K = 0.004803$$

Среднее время \hat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	31	32	33	34	35	36	37
X_i	29.745	34.702	41.643	52.053	69.404	104.106	208.213

Время до полного завершения тестирования 539.866

Полное время: 876.313 b. 80% (n = 24)

i	X	i	X	i	X
1	4.755	9	9.900	17	13.896
2	4.930	10	10.347	18	14.144
3	5.057	11	10.977	19	15.481
4	5.291	12	11.367	20	15.637
5	6.283	13	11.667	21	15.987
6	8.837	14	12.763	22	17.328
7	9.130	15	13.306	23	17.632
8	9.266	16	13.880	24	19.727

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.018$$

$$15.018 > 12.5$$

Найдём m□n□1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.404	2.185	2.003	1.849	1.716	1.602
f-g	1.372	0.631	0.351	0.209	0.127	0.076

m	31	32	33	34	35
f	1.545	1.434	1.341	1.260	1.189
g	1.502	1.413	1.335	1.264	1.201
f-g	0.043	0.021	0.006	0.005	0.012

$$m = 34 \ge B = m - 1 = 33$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.004555$$

Среднее время \widehat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\widehat{K}(\widehat{B} - n)}$$

i	25	26	27	28	29	30
X_i	24.394	27.444	31.364	36.592	43.910	54.887

i	31	32	33
X_i	73.183	109.775	219.550

Время до полного завершения тестирования 621.099

Полное время: 898.687 с. 60% (n = 18)

i	X	i	X	i	X
1	1.335	7	5.714	13	11.613
2	2.616	8	7.568	14	11.831
3	3.647	9	8.199	15	12.785
4	3.781	10	8.707	16	17.422
5	4.874	11	9.869	17	21.165
6	5.132	12	11.149	18	28.201

Проверка существования максимума $B^{\hat{}}$:

$$A > (n+1)/2$$

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.79$$

$$12.79 > 9.5$$

Найдём т□п□1:

$$f_n(m) = \sum_{i=1}^n \frac{1}{m-i}; \quad g_n(m,A) = \frac{n}{m-A};$$

m	19	20	21
f	3.495	2.548	2.098
g	2.899	2.497	2.193
f-g	0.596	0.051	0.095

$$m = 20 \ge B = m - 1 = 19$$

$$K = \frac{n}{\sum_{i=1}^{n} (\hat{B} - i + 1) X_i} = \frac{n}{(\hat{B} + 1) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i X_i}$$

$$K = 0.014217$$

Среднее время \widehat{X}_{n+1}

$$X_{n+1} = \frac{1}{\hat{z}(t_n)} = \frac{1}{\hat{K}(\hat{B} - n)}$$

i	19
X_i	70.337

Время до полного завершения тестирования 70.337

Полное время: 245.945

4. Итоги

а. Оценка первоначального числа ошибок

Закон распределения \ кол-во данных	n=30	n=24	n=18
Равномерный	33	26	26
Экспоненциальный	31	25	19
Релеевский	37	33	19

b. Оценка полного времени проведения тестирования

Закон распределения \ кол-во данных	n=30	n=24	n=18
Равномерный	491.809	383.846	862.429
Экспоненциальный	418.525	430.597	298.325
Релеевский	876.313	898.687	245.945

с. Анализ результатов

Худшие результаты по обоим показателям показал релеевский закон распределения. Во всех случаях экспоненциальный закон распределения показал лучшие результаты. Это соответствует одному из предположений, на которых основана модель Джелински-Моранды («Время до следующего отказа программы распределено экспоненциально»).

Выводы

В результате выполнения данной лабораторной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времени обнаружения отказов И различного числа используемых для анализа данных.

В результате установлено, что экспоненциальный закон распределения лучше всего согласуется с результатами, полученными с помощью модели Джелински-Морданы.