

Flight Delay Prediction

W261 - Fall 2020 Project Team 26

Hanyu Dai Edward Tong Shishir Agarwal Praveen Kasireddy

Agenda

- Introduction of Business Case
- Problem Statement and Research Question
- Overall Approach
- Data Sets Overview
- Evaluation Metrics
- EDA
- Features Engineering
- Features Selection
- Algorithms Exploration and Implementation
- Performance and Scalability
- Limitations and Challenge
- Conclusion

Business Case

Top airports

https://www.chicagotribune.com/news/breaking/ct-biz-ohare-flight-numbers-20190204-story.html

Total Cost of Delay in the U.S. (dollars, billion)

	2016	2017	2018	2019
Airlines	5.6	6.4	7.7	8.3
Passengers	13.3	14.8	16.4	18.1
Lost Demand	1.8	2.0	2.2	2.4
Indirect	3.0	3.4	3.9	4.2
Total	23.7	26.6	30.2	33.0

https://www.faa.gov/data_research/aviation_data_statis_tics/media/cost_delay_estimates.pdf

Total Cost of Delay

Problem Statement & Research Question

S: What are the Problems caused by Flight Delay?

Q: Predicting <u>"Departure"</u> Flight

- Delay or NO Delay

Definitions:

- Delay
 - >= 15 minute w.r.t to the planned time of departure (CRS).
- Prediction
 - "Two hours" ahead of CRS departure time

https://www.transportation.gov/briefing-room/dot8 717

ABCDEFGHIJKLMNORQR STUWWXYZ0123456789

https://www.airlines.org/dataset/per-minute-cost-of-delays-to-u-s-airlines/#

Overall Approach - Machine Learning Phases

EDA and **Feature** Algorithms Hyperparameter ** Ensemble Preprocessing Engineering **Implementation Tuning** Logistics Analysis and Regression Imputation of Transforming and Missing Values Scaling Features Numerical Categorical Selecting best model based on prediction metrics Shortlist of most Adjusting **Decision Tree** important features Hyperparameters "Precision" False Positive Understand and **Derived Variables** Visualize Data Ensemble •Histogram, Heatmaps, Correlation Matrix, Random Forest **Gradient Boosting** Scatter Plots

Data Sets - Overview

1. Raw (before any processing)

	Period	No. of Features	No. of Records
Flights	2015-2019	109	31,746,841
Weather	2015-2019	177	630,904,436
Stations	NA	11	29,771

Other Dataset used:

- Airports data from openflights.org for time zone transformation

2. Modeling (after processing)

	Period	No. Of Features	No. Of Records
Training	2015-2018	53	16,528,705
Test	2019	53	5,082,228

Model Evaluation Metrics

Classifications:

- "Delayed"
- positive class
- "No Delayed "
- negative class

Year	No Delayed	Delayed
2015	4,675,372	1,057,554
2016	4,600,659	953,543
2017	4,580,433	1,013,845
2018	5,789,777	1,306,435

Accuracy: (TP +TN) / (TP + TN + FP + FN)

Precision: (TP) / (TP + FP)

Recall: (TP) / (TP + FN)

Actual

Model Evaluation Metrics - Confusion Matrix

Predictions

Flights	Delay	No Delay
	True Positive , TP	False Negative , FN
	Reality: DELAY	Reality: DELAY
Delay	Prediction:DELAY	Prediction: NO DELAY
	Outcome: EVERYONE is Fine	Outcome: EVERYONE are Annoyed
	Eg. TP = 1	E.g FN =8
	False Positive, FP	True Negative, TN
	Reality: NO DELAY	Reality: NO DELAY
No Delay	Prediction: DELAY	Prediction: NO DELAY
	Outcome: EVERYONE is UNHAPPY	Outcome: EVERYONE is FINE
	Eg. FP = 1	E.g TN = 90

Weather EDA - Forward Filling Null Data

Station	Date	Timestamp	WND_DIRECTION
72219013874	2015-01-01	2015-01-01T00:52:00.000+0000	330
72219013874	2015-01-01	2015-01-01T01:52:00.000+0000	310
72219013874	2015-01-01	2015-01-01T02:52:00.000+0000	null

Before

Code:

window = Window.partitionBy('STATION','date').orderBy('Timestamp').rowsBetween(-250, 0) filled_column = last(weather_data['WND_Direction'], ignorenulls=True).over(window)

Station	Date	Timestamp	WND_DIRECTION
72219013874	2015-01-01	2015-01-01T00:52:00.000+0000	330
72219013874	2015-01-01	2015-01-01T01:52:00.000+0000	310
72219013874	2015-01-01	2015-01-01T02:52:00.000+0000	310

After

Weather EDA - Resolving Multiple Readings

Station	Date	Timestamp	WND_SPEED
72219013874	2015-01-02	2015-01-02T19:22:00.000+0000	36
72219013874	2015-01-02	2015-01-02T19:47:00.000+0000	21
72219013874	2015-01-02	2015-01-02T19:52:00.000+0000	31

Before

Code:

weather_data = weather_data.withColumn("DATE", f.date_trunc("hour", "DATE"))
weather_data = weather_data.groupBy("STATION", "DATE").agg(f.max("WND_SPEED"))

Station	Date	Timestamp	WND_SPEED
72219013874	2015-01-02	2015-01-02T19:22:00.000+0000	36
72219013874	2015-01-02	2015-01-02T19:47:00.000+0000	36
72219013874	2015-01-02	2015-01-02T19:52:00.000+0000	36

After

Joining Data

Code:

airlines.join(stations, (stations.call==airlines.ORIGIN) & (stations.state==airlines.ORIGIN_STATE_ABR), 'inner')

Code:

sqlContext.sql("SELECT * FROM airlines INNER JOIN weather ON airlines.station= weather.station AND airlines.FL_TIMESTAMP_EARLY = weather.DATE")

Feature Engineering via Pagerank

Airport	Pagerank
ORD	14.276905975254800
ATL	13.212343130314500
MSP	8.033267082044770
IAH	7.423410445540550
DTW	7.199458684764240
CLT	7.167862270451910
SLC	6.195332319456120
SFO	6.166775954573200
EWR	5.836649337579180
РНХ	5.440932366785200
LAX	5.368049462519130

create Edge

E =

DF_train.groupBy(["ORIGIN","DEST","DEP_DELAY"]).count().withColumnRenamed("ORIGIN","src").withColumnRenamed("DEST","dst").withColumnRenamed("count","weight")

create Vertics

V = DF_train.select(["DEST"]).distinct().withColumnRenamed("DEST",
"id")

create graph with E and G
airlinesGraph = GraphFrame(V, E)

ranks = airlinesGraph.pageRank(resetProbability=0.15, maxIter=5)

LST_DELAY

Departure delay of the last last flight

Over Clause in Spark SQL for iteration

Long turnaround time nullifies dep. delay

Use dep. delay of last last flight just in case

```
airlines_data = airlines_data.filter(airlines_data.TAIL_NUM.isNotNull())

4 airlines_data.registerTempTable("airlines_data")
5 airlines_data = sqlContext.sql("SELECT *, LAG(CRS_DEP) OVER (PARTITION BY TAIL_NUM ORDER BY CRS_DEP DESC) AS NXT_CRS_DEP, RANK() OVER (PARTITION BY TAIL_NUM ORDER BY CRS_DEP) AS rank FROM airlines_data")
6 airlines_data = airlines_data.withColumn('DEL_T',when((f.col('NXT_CRS_DEP').cast('long') - f.col('CRS_ARR').cast('long'))/60 <= 90, airlines_data.DEP_DELAY).otherwise(0))
7 w = Window().partitionBy().orderBy(*['TAIL_NUM', 'CRS_DEP'])
8 airlines_data = airlines_data.select("*", lag("DEL_T", offset=2).over(w).alias("LST_DELAY"))
9 airlines_data = airlines_data.withColumn('LST_DELAY',when(f.col('rank') == 1, 0).otherwise(f.col('LST_DELAY')))
10 airlines_data = airlines_data.withColumn('LST_DELAY',when(f.col('rank') == 2, 0).otherwise(f.col('LST_DELAY')))</pre>
```


Flight #/hr

Number of incoming/outgoing flights per hour

GroupBy actual flight time and origin/destination

```
airlines_data = airlines_data.withColumn("ACT_DEP", (f.unix_timestamp(airlines_data['CRS_DEP'])
                                             + 60*airlines_data['DEP_DELAY']).cast('timestamp'))
   airlines_data = airlines_data.withColumn("CRS_ARR", (f.unix_timestamp(airlines_data['ACT_DEP'])
                                             + 60*airlines_data['CRS_ELAPSED_TIME']).cast('timestamp'))
10
   airlines_data = airlines_data.withColumn("ACT_ARR", (f.unix_timestamp(airlines_data['ACT_DEP'])
11
12
                                             + 60*airlines data['ACTUAL ELAPSED TIME']).cast('timestamp'))
13
   airlines_data = airlines_data.join(airlines_data.groupBy('ORIGIN','ACT_DEP_DATE','ACT_DEP_HOUR').count()
15
                          .withColumnRenamed("count", "outgoing_hour"),
                          on=['ORIGIN','ACT_DEP_DATE','ACT_DEP_HOUR'], how='inner')
16
17
   airlines_data = airlines_data.join(airlines_data.groupBy('DEST','ACT_ARR_DATE','ACT_ARR_HOUR').count()
                          .withColumnRenamed("DEST", "ORIGIN").withColumnRenamed("count", "incoming_hour"),
19
                          on=['ORIGIN','ACT_ARR_DATE','ACT_ARR_HOUR'], how='inner')
20
```


DELAY%

Percentage of delayed flights per hour

GroupBy actual flight time, origin, (DEP_DEL15).

```
DF_delay_count.registerTempTable("airlines_data_delay_count")
current_delay_stats= sqlContext.sql("SELECT cur_fl_early_utc, ORIGIN,
    (sum(DEP_DEL15)*count(distinct(earlier_fl_tail_num))/count(*)) as DEP_DEL15_COUNT,
    (sum(DEP_DEL15)/count(*)) as DEP_DEL15_RATE,
    (sum(DEP_DELAY_NEW)*count(distinct(earlier_fl_tail_num))/count(*)) as DEP_DELAY_NEW_SUM,
    (sum(DEP_DELAY_NEW)/count(*)) as DEP_DELAY_NEW_MEAN, count(distinct(earlier_fl_tail_num)) as
    flcount from airlines_data_delay_count group by cur_fl_early_utc, ORIGIN sort by cur_fl_early_utc,
    Origin")
```

WND_x&y

Decomposition of wind direction (cyclical variable)


```
# Handle Cyclical Variables
weather_data = weather_data.withColumn('WND_Direction_x', cos(col('WND_Direction')*np.pi/180))
weather_data = weather_data.withColumn('WND_Direction_y', sin(col('WND_Direction')*np.pi/180))
```

Pipeline

Features Selection

Objective: Limit the input features to the important once.

Techniques Explored:

- 1. RandomForest featureImportance
- 2. Chi-square test
- 3. Lasso

Rf = RandomForestClassifier(labelCol="DEP_DEL15", featuresCol="features")

RfModel = Rf.fit(DF_train)

print(RfModel.featureImportances)

Feature Importance
0.546916
0.318057
0.025992
0.022456
0.020698
0.018813
0.012826
0.011495
0.011383
0.011366

Algorithms - Logistic & Linear Regression

Base Models

- Logistic Regression
 - Dependent Variable: DEP_DEL15
- Linear Regression
 - Dependent Variable: DEP_DELAY
- Input Variables Selection:
 - Feature Importance
 - o PCA

Algorithms - Decision Tree

- Non-parametric supervised learning method
 - Output: DEP_DEL15
 - Features: ['LST_DELAY','outgoing','incoming',''MONTH','DAY_OF_WEEK' ..]

Algorithms - Random Forest

- Large number of simple trees, combined at the end of the process.
 - Output: DEP_DEL15
 - Features: ['LST_DELAY','outgoing','incoming',"MONTH','DAY_OF_WEEK' ..]

	Training Data	Test Data
Precision	0.782	0.757
Recall	0.158	0.125
F1 Score	0.263	0.214

Algorithms - Gradient Boosting Trees (GBT)

- Combine decision trees, but start the combining at the beginning
 - Output: DEP_DEL15
 - Features: ['LST_DELAY','outgoing','incoming',''MONTH','DAY_OF_WEEK' ..]

	Training Data	Test Data
Precision	0.789	0.645
Recall	0.277	0.214
F1 Score	0.410	0.322

Algorithms Performance Summary

	Predicted Predic									
		LogReg		DT		RF		GBT		
		Delay	No Delay							
Actual	Delay	104,206	2,961,920	534,065	2,474,418	474,953	2,533,530	833,324	2,175,159	
	No Delay	88,712	13,372,165	221,913	13,038,834	132,561	13,128,186	222,313	13,038,434	

Models	LogReg		DT		RF		GBT	
Metrics	Training	Test	Training	Test	Training	Test	Training	Test
Precision	0.54	0.539	0.706	0.709	0.782	0.757	0.789	0.645
Recall	0.034	0.039	0.178	0.154	0.158	0.125	0.277	0.215
F1 Score	0.064	0.073	0.284	0.253	0.263	0.214	0.41	0.322
Accuracy	0.815	0.813	0.834	0.829	0.836	0.828	0.853	0.830

Performance and Scalability

Learnings

- Caching and persisting parquet files
- Incremental Joins & Intermediate Tables

Limitation and Challenges

- Couldn't evaluate model performance w.r.t. Time taken.
- Scope to get improved model performance if we explore more hyperparameter tuning via grid search.

Conclusion

1. Recommended Algorithm: Random Forest

Predicted

	Delay	No Delay
Delay	474,953	2,533,530
No Delay	132,561	13,128,186

Random Forest

	Training	Test
Precision	0.782	0.757
Recall	0.158	0.125
F1	0.263	0.214
Accuracy	0.836	0.828

2. ML Learned and Applied:

- Spark framework with RDD (distribute and parallelize computation)
- Graph algorithm and Pageranks (derived additional features for modeling)
- One hot encoding and normalization (optimized the approach)
- Logistics regression, decision trees, random forest and gradient boosting trees (achieved good result with advance algorithm)

Thank You!

Reference

1. Bureau of Transportation Statistics

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
https://www.bts.gov/topics/airlines-and-airports/understanding-reporting-causes-flight-delays-and-canc ellations

2. Matching station codes to airports:

http://dss.ucar.edu/datasets/ds353.4/inventories/station-list.html https://www.world-airport-codes.com/

- 3. UC Berkeley School of Information, MIDS W261 Fall 2020, all course materials
- Open flights data
 http://openflights.org
- 5. "Machine Learning Crash Course" https://developers.google.com/machine-learning/crash-course
- 6. "Labs Graph Theory -Small World Network" http://web.math.princeton.edu/math_alive/5/Lab1/Networks2.html