

Data Driven Modelling of Plasma in Tokamaks

Vignesh Gopakumar vignesh.gopakumar@ukaea.uk

What is Fusion?

What is Fusion?

Energy = Mass $x c^2$

Source: Getty Images

Magnetic Confinement

Tokamak - Structure

Joint European

Torus (JET)

Tokamak - Internal View of JET

MAST-U

ITER

Data Driven Plasma Modelling

Fusion Research: Conundrum

- Physical Experiments are Expensive, Complex and Time Intensive
- Physicists have to rely on developing vast code packages that can extensively perform simulations to understand plasma behavior under various conditions
- Complexity of the problems involved makes simulations often difficult to execute even on vast super clusters.

Plasma Modelling

Edge Modelling

Evolution of the Neutral Density in 3D (2D cross section shown here) using the code suite JOREK.

Source:

ELM Instabilities in MAST-U. S.F.Smith, S.J.P. Pamela, M. Hölzl, G.T.A. Huijsmans. UKAEA.

Edge Modelling

Evolution of the Neutral Density in 3D (2D cross section shown here) using the code suite JOREK.

To simulate the time evolution by 14 ms took over two months on 44 nodes, with each node consisting of 48 cores clocking 2.3GHz each.

Source:

ELM Instabilities in MAST-U. S.F.Smith, S.J.P. Pamela, M. Hölzl, G.T.A. Huijsmans. UKAEA.

Universal Function Approximation Theorem of Neural Networks

States that "a feed-forward network with finite hidden layers each consisting of finite number of nodes can approximate continuous functions on compact subsets of Rⁿ".

- Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359 366, 1989.
- G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303–314, Dec 1989.

Scrape Off Layer Plasma Simulator

Grid Representation

M. Stanojevic X. Bonnin D.P Coster, A. Kukushkin et al. Solps manual.

Parameters under Study

Training Data Gathered from previous SOLPS simulations

Neutral Density

Neutral Parallel Velocity

Physics Parameters

Electron Temperature

Electron Density

Ion Temperature

Ion Density

Ion Parallel Velocity

Parameters under Study

Training Data Gathered from previous SOLPS simulations

7 x (38x86) grids characterising Plasma Behaviour across the quadrangular representation of the Poloidal Cross-Section.

Data Generation

Phase I: Perturb the steady state by changing one or more of the modelling parameters

- Heating Power
- Puffing Rate
- Pump Intensity

Phase I simulations will help create the input datasets characterising the initial state of the edge.

Phase II: The outputs of the Phase I simulations are run with a fixed value of the three modelling parameters to run back to steady state.

Phase II simulations will help create the output datasets characterising the final state of the edge.

Data Generation

Initial Network

Results: Initial Network

SOLPS Solution - Filled Contour Plots in Green and Blue NN Solution - Line Contour Plots in Red and Orange

Now what could be messing up from getting a solid fit?

- EIRENE introducing random noise?
- Imbalanced Dataset?
- Lack of dedicated layers to pick up differing non-linearities?

Information Exchange within SOLPS

Bifurcated Network

Results: Bifurcated Network

SOLPS Solution - Filled Contour Plots in Green and Blue NN Solution - Line Contour Plots in Red and Orange

Results: Bifurcated Network

SOLPS Solution - Filled Contour Plots in Green and Blue NN Solution - Line Contour Plots in Red and Orange

Results: Bifurcated Network

SOLPS Solution - Filled Contour Plots in Green and Blue

NN Solution - Line Contour Plots in Red and Orange

Physics in the spotlight - IOP - 24th Oct, 2019

Data Diversity: Principal Component Analysis

40

columns

70

Time Gain

Edge Solution	Configuration	Time Taken	Training Time
SOLPS on ITM	2 x 18 @ 2.3 GHz	2 – 3 hours	N/A
SOLPS_FCN on FREIA	1 x 16 @ 2.6 GHz	0.033 seconds	117 minutes

Time Gain of more than 5 orders of Magnitude Without much compromise on Accuracy.

Can be employed in a Predictor-Corrector Fashion.

But still a Black Box!

Neural PDEs

Convection-Diffusion Equation:

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = D \frac{\partial^2 u}{\partial x^2}$$

Hybrid Loss Function = Functional Loss + Reconstruction Loss

Functional Loss =
$$\frac{\partial u'}{\partial t} + c \frac{\partial u'}{\partial x} - D \frac{\partial^2 u'}{\partial x^2}$$

Reconstruction Loss =
$$\Sigma(u - u')^2$$

Neural PDEs

Trained up to 1 second Tested up to 2 seconds

Operation Tokamak

Tokamak Operation

Fuel

Exhaust

Control 1000s of parameters that influence the confinement of the plasma.

All the while dealing with instabilities and avoiding disruptions

Extended Stable Plasma control requires a prophetic knowledge of how the Plasma would evolve in time.

Operation Cycle

Exploring the Configuration Space of the operation cycle via Deep Reinforcement Learning

Source: R. Sutton – Reinforcement Learning: An Introduction

Conclusion

Barely Scratched the Surface ...

Extract the complex nonlinear nature of Fusion Plasma effectively using deterministic AI approaches. Use ML based exploratory techniques to improve our control and performance of Fusion Devices.

Vast amounts of Experimental + Simulation Data

Building a team that is currently working with:

Rutherford Appleton Laboratory
University College London
Imperial College London
University of Oxford

And looking for collaborations from ML experts within the industry.

Thanks. Questions?

Vignesh Gopakumar Fusion Specific Machine Learning Engineer

vignesh.gopakumar@ukaea.uk

@littlevgkumar

linkedin.com/in/vignesh-gopakumar

Appendix Slides

Depth Variation

Data Generation

Phase I:

Initial Steady State Config:

Heating Power	4.080 MW
Puffing Rate	10 ²¹ s ⁻¹
Pump Intensity	94 %

Parameter Scan:

Parameter	Min.	Max.	Step	Number
Heating Power	3.0 MW	8.5 MW	+ 0.5 MW	12
Puffing Rate	10 ¹⁷ s ⁻¹	10 ²¹ s ⁻¹	x 5.0	9
Pump Intensity	48 %	98 %	+ 5 %	11

Total Number of Simulations : $12 \times 9 \times 11 = 1188$

Data Generation

Phase II:

Final push towards Steady State Config:

Heating Power	3.0 MW
Puffing Rate	10 ¹⁸ s ⁻¹
Pump Intensity	94 %

Output of Phase I → Input Data
Output of Phase II → Output Data

Labelled, Matching Dataset

Convolutional Strategies

Convolutional Strategies

