

Data flow chart

Data flow chart

Preprocessing

- Digital signal filtering
- Feature Extraction
- Feature Selection
- Feature Reduction
- Feature combination

Modelling

- •kNN
- ANN
- •Decision Tree
- •SVM
- Naïve Bayes

Training and Testing

- Fault detection
- Fault Classification
- •Individual fault detection

Data preprocessing methods

Digital signal filtering

- Remove process noise which doesn't add value to the data
- Cutoff range of frequencies with low amplitudes
- Lowpass butterworth filter of order 20 used for digital filtering

UMassAmherst

UMassAmherst

Feature extraction

Time domain

- Mean
- Peak
- Root mean square
- Variance
- Kurtosis
- Crest factor
- Shape factor
- Skewness

Frequency domain

256 points divided into 8 bins

Morlet waves

- Standard deviation
- Wavelet entropy
- Kurtosis
- Skewness
- Variance

Feature reduction

<u>UMassAmherst</u>

UMassAmherst

Support vector machine (SVM)

Support vector machine (SVM)	
Kernel Function	Linear
Box Constraint	0.1
Coding Matrix	Onevsone & onevsall
Standardization	False

Naive Bayes classifier

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$

$$posterior = \frac{prior \times likelihood}{evidence}$$

k-nearest neighbor classifier (kNN)

- **kNN**: classification method in which a new object is classified based upon its distance to the nearest training samples of known classification.
 - Strengths: ability to classify nonlinear, multimodal, unlabeled samples based upon similarity to training samples

Design of kNN classifier	
Number of nearest neighbors (k)	3
Distance measurement metric	Euclidean
Equal or weighted voting	Weighted
Distance weight	Squared-inverse

Decision tree classifier

- Decision tree: network of binary decision-branches that originate from an initial root node. Branches lead to class labels ("leaves") at endpoints.
 - Strengths: simple and intuitive, can classify data of multiple types.
- Problem of deep decision trees overfitting data.
 - Can address this by limiting size of the decision tree.
 - Simple, shallow, generalized decision trees can be more robust.

Design of decision tree classifier	
Split predictor technique	CART
Maximum number of splits	5

Neural network classifier (ANN)

- Artificial neural network: receives input data and implements weight, biases, and transfer functions to deliver an output.
 - Strengths: recognizing patterns in noisy, complex data and determining their nonlinear relationships.
- ANN candidates: recurrent, feedforward

Design of ANN classifier	
Neural network type	Feedforward
Number of layers	3 (2 hidden)
Neurons per hidden layer	20
Transfer function for hidden layers	Tangent-sigmoid
Transfer function for output layer	Pure-linear
Training method	Levenberg-Marquardt
Performance metric	Mean squared error

Classifier training and testing

- 5-fold cross validation for establishing training and testing sets.
- Accuracy determined by comparing the output of the classifier to the known label
- Results from each fold were combined to determine overall accuracy for the classifier

Classifier training and testing

Modes for training

- Fault detection (binary)
- Fault classification (multiclass)
- Individual fault detection (binary)

Fault detection results

Fault detection (penetration)

Fault detection (steady-state)

Fault classification results

Fault classification (penetration)

Fault classification (steady-state)

Individual wear type detection results

26

STEADY STATE

Classification with fault correlation

Conclusions and future work

Conclusions

- SVM & kNN performed best overall out of the five classifiers.
 - SVM: 75% for detection, 93% for classification
 - kNN: 78% for detection, 84% for classification
- Impact of penetration vs. steady-state data
 - Minimal impact on fault detection accuracy.
 - Higher classification accuracies were derived from steady-state data.
 - Higher individual wear type detection accuracies were derived from steady-state data.

Conclusions

- Decision tree performed poorly
 - Excessive pruning = overly generalized
 - Simple classifier excessively sensitive to changes in training data.
- ANN performed poorly
 - Overfitting (able to classify training data without error, but not testing data)
 - Increase the number of training samples by splitting 8-second samples into increments.

Future work

- Re-train ANN with more training data.
- Implement ensemble learning techniques for improved accuracy.
- Requiring additional data: detect and classify <u>multiple</u> types of wear affecting the same drill bit.
- Optimization of parameters using ROC curves
- Optimization of the model using detailed analysis of the frequency spectrum

UMassAmherst

The Commonwealth's Flagship Campus