

(d) If
$$(0 \in int \ P \ and)$$
 $P = conv(V)$

$$P^{\Delta} = \{a : a \cdot v \in I \ \forall v \in V\}$$

$$\subseteq : P^{\Delta} = \{a : a \cdot p \in I \ \forall v \in P\}$$

$$\supseteq : \text{ Let } a \text{ be such that } a \cdot v \in I \ \forall v \in V$$

$$Sup \quad (a \cdot p) = \{a : a \cdot p \in I \ \forall v \in P\}$$

$$In ear \text{ for some } p \in P.$$

$$The || \text{Invar functional } a : - \text{ is may } a \text{ face } Pa \cdot \text{ let } v \text{ be a varky of } Pa$$

$$0 \cdot V \ge a \cdot p > I$$

a $x \le 1$ is a combin. of $A \times \le 1$ $\Rightarrow \exists c' \text{ such that } c'A = \alpha$, $c'.1 = e \le 1$, $c' \ge 0$ We need: $\exists c \text{ such that } cA = \alpha$, c.1 = 1, $c \ge 0$ (Arrine e<1)

Suthwest: $\exists d \text{ such that } dA \ge 0$ C'''' = 0Need: d[A] = [0] = 0Farkas ||: |f d didn't exist, there must be $(x \ y)$ such that $[A] [x \ y] = 0$ $[A] [x \ y] = 0$ [A] [x