

Introduction to

Algorithm Design and Analysis

[1] Model of Computation

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

Course Information

- Syllabus
- Textbook
- Website

Syllabus

Model of Computation

Algorithm design & analysis techniques

Computation complexity

Syllabus

Syllabus

Textbooks

- Course outline: LADA
 - Lectures on AlgorithmDesign & Analysis (slides)
- Course contents
 - Introduction to Algorithms (CLRS)

Textbooks

- Further reading
 - o Algorithms
 - o Algorithm Design
 - o Computer Algorithms*

See the "douban list" for more info: http://book.douban.com/doulist/1155824/

```
1 黄字,算法主义者 ≥ 修改话题经验
Adder 赞同
我讲授算法课的参考书豆列:『算法设计与分析』授课参考书 ≥
排名分先后:前三名是深入浅出的经典,后面的书主要是供 上课/授课 参考用的。
发布于 昨天 23:24 ♀ 添加评论 → 分享 ♀ 收藏 ❖ 设置
```


Problem Sets

- Exercises
 - Course contents

- Problems
 - o Problem solving

算法设计与分析习题集

6	第一章 准备知识
2. 对于 $n \ge 1$, $F(n) \ge 0.01(\frac{1}{7})^n$,	
Problem 1.1.8	
找出下列递归方程结果的渐近阶。你可以假设 $T(1) = 1, n > 1$ 。	e是正的常量(对于下列某些方程)
等式3.14[1] 可能会被用到, 你可以直接使用它而无需证明)。	
1. $T(n) = T(n/2) + c \lg n$	
2. $T(n) = T(n/2) + cn$	
3. $T(n) = 2T(n/2) + cn$	
4. $T(n) = 2T(n/2) + cn \lg n$	
5. $T(n) = 2T(n/2) + cn^2$	
1.2 问题	
Problem 1.2.1	
 请简述截德金分割的基本内容。 	
 请从自然数系统逐步构造实数系统。 	
(可选:可采用皮亚诺的自然数系统;建议参考维基百科。)	
Problem 1.2.2 (Proving the correctness of $Multiply(y, z)$	z))
Algorithm 1 computes the product of two non-negative integer 3	j, z. Please prove its correctness.
Algorithm 1: int multiply(int y, int z)	
1 if z = 0 then	
2 return 0;	
s else if z is odd then	
4 return multiply(2y, [½]) + y;	
s else	
6 return multiply(2y, [[±] ₂]);	
Problem 1.2.3 (Comparing the Asymptotic Behavior of	f(n) and g(n))
$f(n) = n^{\log n}$, $g(n) = (\log n)^n$	
Problem 1.2.4 (Swapping Array Elements)	
Given an array, which is divided into the left part and the right	t part. Swap these two parts. Fo
example, given $A = [1, 2, 3, 4, 5, 6, 7]$. The left part is the first 4	elements and the right part is the
right part. Swap these two parts will result in the array $A' = [5]$, 6, 7, 1, 2, 3, 4].
Problem 1.2.5 (Max Sum Subsequence)	
Given a sequence S of integers, find the largest sum of a consecut	ive subsequence of S. For example
given $S = \{-2, 11, -4, 13, -5, -2\}$. The result $20 = 11 - 4 + 13$.	
Problem 1.2.6 (Master Theorem Does Fail)	
Given recursion $T(n) = bT(\frac{n}{c}) + f(n)$. Choose appropriate b, c :	and $f(n)$, which make none of the

Websites

QQ group: 2105 15746

QA site: http://bigoh.net

Algorithm – Design & Analysis

- Algorithm the spirit of computing
 - Model of computation
- Algorithm by example
 - o Greatest common divisor
 - o Sequential search
- Algorithm design & analysis
 - o Correctness
 - o Worst-case / average-case cost analysis

Computer and Computing

Problem 1

- o Why the computer seems to be able to do anything?
 - Scientific computing, document processing, computer games, EBooks, Movies, Computer games, ...

Computer and Computing

Problem 2

- o What can / cannot be efficiently done by a computer?
 - manage millions of songs vs. music composition

Computer and Computing

Computing

- Encoding everything into `0's and `1's
- o Operations over '1's and '0's
- o Decoding the '1's and '0's

Turing machine

An abstract/logical computer

Computing in Everyday Life

Algorithm

Algorithm

Algorithm is the spirit of computing

- o To solve a specific problem (so called an *algorithmic problem*)
- Combination of basic operations
 - in a precise and elegant way

Essential issues

- Model of computation
- o Algorithm design
- o Algorithm analysis

Model of Computation

Problems

- o Why the algorithms we learn can run almost everywhere?
- o Why the algorithms we learn can be implemented in any language?
- Machine- and language- independent algorithms, running on an abstract machine
 - o Turing machine: over-qualify
 - o RAM model: simple but powerful

The RAM Model of Computation

- Each simple operation takes one time step
 - o E.g., key comparison, +/-, memory access, ...
- Non-simple operations should be decomposed
 - o Loop
 - o Subroutine
- Memory
 - Memory access is a simple operation
 - o Unlimited memory

Further Reading

"哼,你让他们成楔形攻击队形不就行了?"秦始皇轻蔑地看着冯•诺伊曼。牛顿不知从什么地方掏出六面小旗.三白三黑,冯•诺伊曼接过来分给三名士兵,每人一白一黑,说:"白色代表0,黑色代表1。好,现在听我说,出,你转身看着入1和入2,如果他们都举黑旗,你就举黑旗,其他的情况你都举白旗,这种情况有三种:入1白,入2黑;入1黑,入2白;入1、入2都是白。"

"不需要,我们组建一千万个这样的门部件,再将这些部件组合成一个系统, 这个系统就能进行我们所需要的运算,解出那些预测太阳运行的微分方程。 这个系统,我们把它叫做……嗯,叫做……"

"计算机。"汪淼说。

"啊——好!"冯·诺伊曼对汪淼竖起一根指头,"计算机,这个名字好,整个系统实际上就是一部庞大的机器,是有史以来最复杂的机器!"

刘慈欣,《三体、牛顿、冯·诺依曼、秦始皇、三日连珠》,《三体》第一部

To Create an Algorithm

Algorithm design

o Composition of simple operations, to solve an algorithmic problem

Algorithm analysis

- o Amount of work done / memory used
 - In the worst/average case
- o Advanced issues
 - Optimality, approximation ratio, ...

Algorithm by Example

Algorithmic Problem 1

 Find the greatest common divisor of two nonnegative integers *m* and *n*

Algorithmic Problem 2

o Is a specific key *K* stored in array E[1..n]?

Probably the Oldest Algorithm

• Euclid Algorithm

Problem

 Find the greatest common divisor of two non-negative integers m and n

Specification

Input: non-negative integer m, n

Output: gcd(m, n)

Euclid algorithm

[E1] n divides m, the remainder -> r

[E2] if r = 0 then return n

[E3] n -> m; r-> n; goto E1

Euclid algorithm – recursive version

Euclid(m,n)

[E1] if n=0 then return m

[E2] else return Euclid(n, m mod n)

Sequential Search

Problem

 Search an array for a specific key

Specification

Input: K, E[1..n]

Output: Location of K (1,2,...,n; -1: K is

not in E[])

Sequential searchEuclid algorithm

```
Int seqSearch(int[] E, int n, int K)
  int ans, index;
  ans=-1;
  for (index=1; index<=n; index++)
    if (K==E[index])
     ans=index;
    break;
  Return ans;</pre>
```


Algorithm Design

• Criteria

o Defining correctness

Main challenge

o For proving correctness

Our strategy

Mathematical induction

0 ...

Specification

Input: non-negative integer m, n

Output: gcd(m, n)

Main challenge

- The output is always correct, for any legal input.
- Infinite possible inputs

Mathematical induction

- Weak principle
- Strong principle

For Your Reference

Mathematical induction

The Weak Principle of Mathematical Induction

• If the statement p(b) is true and the statement p(n-1) => p(n) is true for all n>b, then p(n) is true for all integers n>=b.

The Strong Principle of Mathematical Induction

If the statement p(b) is true, and the statement {p(b) and p(b+1) and ... and p(n-1) => p(n)} is true, for all n>b, then p(n) is true for all integers n>=b.

Correctness of the Euclid Algorithm

• Induction on n

- o Base case
 - n = 0: for any m, Euclid(m, 0) = m;
 - n = 1: for any m, Euclid(m, 1) = 1;
 - n = 2: ...
- o Assumption
 - For any $n \le N_0$, Euclid(m, n) is correct;
- o Induction
 - Euclid(m, N_0+1) = Euclid(N_0+1 , m mod (N_0+1));

 $gcd(m, N_0+1) = gcd(N_0+1, m mod (N_0+1))$

Notes on Mathematical Induction

"Notes on Structured Programming", E.W. Dijkstra

I have mentioned **mathematical induction** explicitly, because it is the only pattern of reasoning that I am aware of, that eventually enables us to cope with loops and recursive procedures

- Criteria
 - o Performance metrics
- Worst case
 - o Best case?
- Average case
 - o Average cost?
- Advanced topics
 - o Lower bound, optimality, ...

How to measure

- o Not too general
 - Giving essential indication in comparison of algorithms
- Not too precise
 - Machine independent
 - Language independent
 - Programming paradigm independent
 - Implementation independent

• Criteria

- o Critical operation
- How many critical operation are conducted

For example

Algorithmic problem	Critical operation
Sorting, selection, searching String matching	Comparison (of keys)
Graph traversal	Processing a node/edge
Matrix multiplication	Multiplication

Amount of work done

- o usually depends on size of the input
- o usually does not depend on size of the input only

Worst-case Complexity

- W(n)
 - o Upper bound of cost
 - For any possible input

$$\circ W(n) = \max_{I \in D_n} f(I)$$

Average-case Complexity

• A(n)

- o Weighted average
- $o A(n) = \sum_{I \in D(n)} \Pr(I) f(I)$

A special case

- o Average cost
 - Total cost of all inputs, averaged over the input size

$$o Average(n) = \frac{1}{|D(n)|} \sum_{I \in D(n)} f(I)$$

Average-case Cost of SeqSearch

- Case 1: K is in E[]
 - o Assumptions:
 - 1. Assuming that K is in E[]
 - 2. Assuming no same entries in E[]
 - 3. Each possible input appears with equality (thus, K in the ith location with probability $\frac{1}{n}$)

$$O A_{succ}(n) = \sum_{i=0}^{n-1} \Pr(I_i|succ) t(I_i)$$
$$= \sum_{i=0}^{n-1} \frac{1}{n} (i+1)$$
$$= \frac{n+1}{2}$$

Average-case Cost of SeqSearch

- Case 2: K may (or may not) be in E[]
 - o Assume that K is in E[] with probability q

How to make reasonable assumptions?

Advanced topics

- o Lower bound (Selection)
- o Optimality (Greedy, DP)
- Computation complexity
- o Approximate / online / randomized algorithms

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

