Lecture 10

In this lecture we discuss rules of probability

Rules of Probability

On a table, there are a total of 30 distinct books: 9 math books, 10 physics books, and 11 chemistry books.

What is the probability of getting a book that is not a math book?

Probability of getting a physics or a math book?

First of all these are **mutually exclusive events** → **independent** → **no overlap**

$$P(\bar{m}) = P(H) + P(C)$$
 no overlap!
= $\frac{10}{30} + \frac{11}{30} = 21/30$

This is the **sum rule of probability (Handling OR)**

Now these are not mutually exclusive as 2 is both prime or even

$$P(E \cup R) = P(E) + P(R) - P(E \cap R)$$

$$= \frac{10}{20} + \frac{8}{20} - \frac{1}{20}$$

$$= \frac{17}{20}$$

Now for the probability of **three** events

In the first we have to subtract the regions which we counted twice like $A \cap B$ AND $A \cap C$ AND $B \cap C$ but the region $A \cap B \cap C$ is subtracted thrice so we have to add it once

Product rule: (Handling AND)

Two coin flips: Probability of both being heads:

$$P(HH) = P(H) * P(H)$$
Independent events: Knowing one has occured doesn't change the probability of the other!

Conversely if $P(A) * P(B) = P(A \cap B)$

Then A and B are independent

Example: 20-sided dice is rolled. Probability that the number is even and prime.

$$P(E) = \frac{10}{20} P(B) = \frac{8}{20} \frac{P(E \cap B)}{P(E \cap B)} = \frac{1}{20}$$

WE KNOW THAT EVEN NUMBERS ARE TOTAL 10 FROM 20 AND PRIME NUMBERS ARE 8 FROM 20 AND THERE IS ONLY ONE NUM WHICH IS BOTH EVEN AND PRIME.

$$P(ERR) \neq P(E) \cdot P(R)$$
 $\frac{1}{20} \neq \frac{10}{20} \cdot \frac{8}{20}$
 $0.05 \neq 0.2$

AS $P(E \cap R)$ IS NOT EQUAL TO P(E).P(R) SO THEY ARE NOT INDEPENDENT.

So, if we know one, the probability of the other changes.
$$P(E) = \frac{1}{2} = 0.5 \qquad \text{given no other information}.$$
 If you are $\frac{1}{2} = 0.125$ (less likely now!)

PROBABILITY OF BEING EVEN WAS ½
BUT IF I TOLD THAT THE NUMBER WAS ALSO A PRIME SO THE PROBABILITY OF PRIME CHANGES AS WE KNOW THERE IS ONLY ONE NO WHICH IS BOTH EVEN AND PRIME

SO PROBABILITY OF AN EVENT CHANGES BY THE OCCURRENCE OF ANOTHER EVENT

R IS THE EVENT THAT HAS OCCURRED ALREADY U CANT SAY THAT NUMBER IS NOT PRIME IT IS ALREADY GIVEN THAT THE NO IS PRIME. PROBABILITY OF NON-PRIME IS ZERO.

BUT P(R) HAS TO BE 1 TO SATISFY THE AXIOM BECAUSE R IS OUR UNIVERSE NOW IT IS DEFINITE THAT IT HAS OCCUR SO ITS PROBABILITY SHOULD BE 1.

FOR STRETCHING THE R U TAKE THE P(R) AND DIVIDE BY THE P(R) SIMILARLY FOR P(E \cap R) TO STRETCH U DIVIDE IT BY P(R).

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
Conditional Probability
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
Prob of A given that
$$P(B) = \frac{P(A \cap B)}{P(B)}$$
Prob of A given that
$$P(B) = \frac{P(A \cap B)}{P(B)}$$
Normalized so that axioms of probability still hold

FOR INSTANCE IF WE SEE IN THIS DIAGRAM THERE IS NO OVERLAP SO P(C/B) IS 0 AS B WILL BE A NEW UNIVERSE FOR US WHERE IT IS TRUE SO THERE IS NO C .

p(c18) = 0