
Zadanie 1. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ , wariancji $\sigma^2 < \infty$ oraz momencie centralnym μ_{2k} rzędu 2k zachodzą nierówności (*typu Czebyszewa*):

$$\Pr(X > \mu + t \cdot \sigma) < \frac{1}{t^{2k}} \cdot \frac{\mu_{2k}}{\sigma^{2k}}. \qquad k = 1, 2, \dots,$$

W naszym przypadku zmienna losowa X jest sumą pięciu niezależnych zmiennych losowych o identycznych rozkładach, o zerowej wartości oczekiwanej, wariancji równej 4, oraz momencie centralnym czwartego rzędu równym $13 \cdot 4^2$.

Niech $x_{0.95}$ oznacza kwantyl rzędu 0.95 zmiennej losowej X, to znaczy iż zachodzi: $\Pr(X>x_{0.95})=0.05$.

Niech C oznacza najmniejszą z tych liczb, dla której w świetle podanych informacji zachodzi $x_{0.95} < C$.

Liczba C w przybliżeniu wynosi:

- (A) $C \approx 12.0$
- (B) $C \approx 14.1$
- (C) $C \approx 15.8$
- (D) $C \approx 18.0$
- (E) $C \approx 20.0$

Zadanie 2. O zmiennej losowej Y wiemy, że:

- 1. $\Pr(Y \in [0,1]) = 2/5$,
- 2. $Pr(Y \in (1, 2]) = 3/5$,
- 3. $E(Y/Y \in [0,1]) = 1/2$
- 4. $E(Y/Y \in (1, 2]) = 4/3$

Oznaczmy przez $\underline{\sigma}^2$ infimum, zaś przez $\overline{\sigma}^2$ supremum wariancji na zbiorze wszystkich zmiennych losowych spełniających warunki 1, 2, 3 i 4. Wybierz zdanie prawdziwe

- (A) $\underline{\sigma}^2 = 1/6$, $\overline{\sigma}^2 = 2/5$
- (B) $\underline{\sigma^2} = 1/6$ $\overline{\sigma^2} = 11/30$
- (C) $\underline{\sigma^2} = 1/5$ $\overline{\sigma^2} = 11/30$
- (D) $\underline{\sigma^2} = 1/5$ $\overline{\sigma^2} = 2/5$
- (E) $\underline{\sigma^2} = 1/6$ $\overline{\sigma^2} = 1/3$

Zadanie 3. Zmienne losowe Y oraz N są przy danej wartości λ parametru Λ warunkowo niezależne. Rozkład warunkowy zmiennej N jest rozkładem Poissona o wartości oczekiwanej $E(N/\Lambda=\lambda)=\lambda$. O zmiennej Y wiemy, że jej warunkowa wartość oczekiwana wynosi $E(Y/\Lambda=\lambda)=\lambda\mu$.

Bezwarunkowy rozkład parametru Λ w populacji ryzyk dany jest rozkładem gamma:

•
$$f_{\Lambda}(\lambda) = 4 \cdot \lambda \cdot \exp(-2\lambda)$$
,

Warunkowa wartość oczekiwana:

•
$$E(Y/N > 0)$$

wynosi:

(A)
$$\frac{4}{3}\mu$$

(B)
$$\frac{19}{15}\mu$$

(C)
$$\frac{6}{5}\mu$$

(D)
$$\frac{17}{15}\mu$$

(E)
$$\frac{16}{15}\mu$$

Zadanie 4. Rozkład łącznej wartości szkód *X* z jednego wypadku ma rozkład złożony:

 $X = Y_1 + Y_2 + ... + Y_N$, gdzie:

- $Y_1,Y_2,Y_3,...$ wyrażające wartości poszczególnych szkód są niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym z wartością oczekiwaną β^{-1}
- niezależna od nich zmienna losowa N (liczba szkód z jednego wypadku) ma rozkład logarytmiczny o parametrze ½, a więc:

$$Pr(N = k) = \frac{1}{\ln 2} \cdot \frac{1}{k \cdot 2^k}, \qquad k = 1, 2, 3, ...$$

 $E(X^3)$ wynosi:

$$(A) \qquad \frac{11}{\beta^3 \cdot \ln 2}$$

(B)
$$\frac{12}{\beta^3 \cdot \ln 2}$$

(C)
$$\frac{13}{\beta^3 \cdot \ln 2}$$

(D)
$$\frac{14}{\beta^3 \cdot \ln 2}$$

(E)
$$\frac{15}{\beta^3 \cdot \ln 2}$$

Zadanie 5. Nawzajem niezależne zmienne losowe X_1 oraz X_2 mają następujące rozkłady:

- X_1 ma rozkład złożony Poissona o oczekiwanej liczbie szkód $\lambda = 1$ oraz wykładniczym rozkładzie wartości pojedynczej szkody o dystrybuancie danej dla $x \ge 0$ wzorem: $F_1(x) = 1 \left(\sqrt{3}\right)^{-x}$
- X_2 ma rozkład ujemny dwumianowy dany wzorem:

$$\Pr(N = k) = {k+2 \choose k} \cdot (1/3)^3 (2/3)^k$$
,

(Rozkład zmiennej X_2 można też traktować jako złożony rozkład Poissona)

Wiadomo, że zmienna losowa $W=X_1+X_2$ ma także złożony rozkład Poissona, a więc można ją reprezentować jako losową sumę:

 $\bullet \quad W = Z_1 + \ldots + Z_M \,,$

gdzie M ma rozkład Poissona z parametrem λ_M , zaś rozkład pojedynczego składnika Z dany jest dystrybuantą F_Z . Aby reprezentacja tego rozkładu za pomocą pary parametrów (λ_M, F_Z) była jednoznaczna, przyjmiemy że λ_M jest parametrem częstotliwości <u>niezerowych szkód</u>, a co za tym idzie $F_Z(0) = 0$.

Wartość $F_Z(2)$, czyli $\Pr(Z \le 2)$, w przybliżeniu wynosi:

(A)
$$F_{z}(2) \approx 0.630$$

(B)
$$F_Z(2) \approx 0.667$$

(C)
$$F_z(2) \approx 0.703$$

(D)
$$F_Z(2) \approx 0.739$$

(E)
$$F_z(2) \approx 0.776$$

Zadanie 6. Zmienna losowa:

$$X = Y_1 + \ldots + Y_N$$

ma złożony rozkład Poissona o parametrze intensywności $\lambda = E(N) = 1/2$. W tabeli poniżej podano rozkład prawdopodobieństwa składnika Y. W tejże tabeli podano także obliczone dla k=0,1,...,4 prawdopodobieństwa $\Pr(X=k)$.

k	$\Pr(Y=k)$	$\Pr(X=k)$
0	0	0,60653
1	0,1	0,03033
2	0,4	0,12206
3	0,1	0,03640
4	0,1	0,04413
5	0,3	

Pr(X = 5) wynosi (w przybliżeniu do trzeciego miejsca dziesiętnego):

- (A) 0.087
- (B) 0.091
- (C) 0.095
- (D) 0.099
- (E) 0.103

Zadanie 7. W pewnym portfelu ryzyk łączna wartość szkód:

$$S = Y_1 + Y_2 + ... + Y_N$$

ma złożony rozkład Poissona o parametrze częstotliwości $\lambda=10$ oraz rozkładzie wartości pojedynczej szkody Y wykładniczym z wartością oczekiwaną E(Y)=10. Niech:

$$Y_{M,i} = \min\{Y_i, M\}; i = 1,2,...,N, \text{ oraz niech:}$$

$$S_M = Y_{M,1} + ... + Y_{M,N}$$
,

gdzie S_M oznacza tę część łącznej wartości szkód S, która pozostaje na udziale ubezpieczyciela (po scedowaniu nadwyżki każdej szkody z tego portfela ponad M na reasekuratora). Aktualnie parametrem kontraktu reasekuracyjnego jest wartość zachowku M=45. Rozważamy jednak możliwość zmiany tego parametru, oraz wpływ takiej zmiany na charakterystyki zmiennej losowej S_M .

Pochodna wariancji zmiennej S_M :

$$\left. \frac{\partial VAR(S_M)}{\partial M} \right|_{M=45}$$

wynosi (w przybliżeniu do jednej dziesiątej):

- (A) 8.0
- (B) 8.5
- (C) 9.0
- (D) 9.5
- (E) 10.0

Zadanie 8. Rozważmy proces nadwyżki ubezpieczyciela z czasem dyskretnym

 $U_n = u + c \cdot n - S_n$, n = 0,1,2,...

gdzie $S_n=W_1+W_2+...+W_n$ jest procesem o przyrostach niezależnych o identycznym rozkładzie, gdzie nadwyżka początkowa u jest nieujemna, składka c jest większa od wartości oczekiwanej μ przyrostu szkód W_i , a wariancja σ^2 oraz moment centralny trzeciego rzędu μ_3 przyrostu szkód W_i są dodatnie ale skończone. Rozważmy funkcje:

• $\Psi_{dV}(u, c, E(W_i), VAR(W_i), \mu_3(W_i))$

przypisującą procesowi nadwyżki spełniającemu ww. założenia prawdopodobieństwo ruiny aproksymowane **metodą deVyldera**. Oznaczmy przez:

- $\Psi_{A,dV}$ wartość tak uzyskanej aproksymacji dla procesu nadwyżki ubezpieczyciela A o parametrach $(u, c, \mu, \sigma^2, \mu_3) = (6, 4, 3, 4, 2)$,
- $\Psi_{B,dV}$ wartość tak uzyskanej aproksymacji dla procesu nadwyżki ubezpieczyciela B o parametrach (u,c,μ,σ^2,μ_3) = (12,8,6,8,4)
- $\Psi_{A+B,dV}$ wartość tak uzyskanej aproksymacji dla procesu nadwyżki ubezpieczyciela, który powstanie po połączeniu portfeli i nadwyżek początkowych ubezpieczycieli A i B, o parametrach $(u,c,\mu,\sigma^2,\mu_3)=(18,12,9,12,6)$,

Zachodzi równość $\Psi_{A+B,dV} = a \cdot \Psi_{A,dV} \cdot \Psi_{B,dV}$. Stała a wynosi:

(A)
$$a = 8/9$$

(B)
$$a = 1$$

(C)
$$a = 13/12$$

(D)
$$a = 9/8$$

(E)
$$a = 5/4$$

Uwaga: **metoda de Vyldera** polega na tym, iż Ψ_{dV} wyznaczamy jako dokładne prawdopodobieństwo ruiny dla procesu aproksymującego $U_{dV}(t)$, w którym szkody pojawiają się zgodnie z procesem Poissona, ich rozkład jest wykładniczy (β_{dV}) , zaś parametry procesu aproksymującego $(\theta_{dV}, \lambda_{dV}, \beta_{dV})$ są tak dobrane, aby przyrosty procesu aproksymującego i przyrosty procesu aproksymowanego miały takie same momenty trzech pierwszych rzędów.

Zadanie 9. Rozważmy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci:

$$U_n = u + c \cdot n - S_n$$
, $n = 0,1,2,...$

gdzie $S_n = W_1 + W_2 + ... + W_n$ jest procesem o przyrostach niezależnych o jednakowym rozkładzie. Rozkład przyrostów W_i jest rozkładem wykładniczym o wartości oczekiwanej równej 1/2. Dobierz składkę c tak, aby współczynnik dopasowania (adjustment coefficient) R wyniósł jeden.

Funkcja prawdopodobieństwa ruiny będzie wtedy postaci:

$$\Psi(u) = a \cdot \exp(-u).$$

Stała a wynosi:

- (A) ln2
- (B)
- (C)
- (D) $\exp\left(-\frac{1}{2}\right)$ (E) $\frac{1}{2} \cdot \exp\left(\frac{1}{2}\right)$

Zadanie 10. Niech T będzie czasem likwidacji szkody, mierzonym w taki sposób, że T=0 gdy szkodę zlikwidowano w ciągu tego samego roku, w którym do niej doszło, T=1 jeśli w ciągu następnego roku, T=2 jeśli jeszcze w następnym roku itd.

Rozkład zmiennej T jest rozkładem geometrycznym:

$$Pr(T = k) = (1/2)^{k+1}$$
,

$$k = 0,1,2,...$$

O rozkładzie wartości pojedynczej szkody wiemy, że:

$$E(Y/T) = 10 \cdot (11/10)^T$$

$$T = 0,1,2,...$$

Ani T, ani Y nie zależą od tego, w którym roku kalendarzowym do szkody doszło.

Ponieważ w przeszłości dochodziło do tej samej liczby szkód w kolejnych latach, wobec tego na koniec roku t_0 rozkład ilości szkód, oczekujących na likwidację według czasu ich zajścia jest także geometryczny z ilorazem postępu ½ (połowa to szkody zaszłe w roku t_0 , jedna czwarta to szkody zaszłe w roku t_0-1 itd.

Oczekiwana wartość szkody losowo dobranej ze zbioru szkód, które na koniec roku t_0 oczekują na likwidację, wynosi:

- (A) 13.58
- (B) 13.13
- (C) 12.67
- (D) 12.22
- (E) 11.11

Egzamin dla Aktuariuszy z 25 stycznia 2003 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko	K L U C Z	ODPOWIEDZI	
Dasal			

Zadanie nr	Odpowiedź	Punktacja⁴
1	В	
2	A	
3	В	
4	D	
5	Е	
6	D	
7	Е	
8	С	
9	С	
10	A	
_		

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.