Лекция 8.

Задача линейной фильтрации. Фильтр Калмана – Бьюси. Необходимые сведения о гауссовских векторах.

Рассматриваем пространство R^d , вектор в R^d - это вектор-столбец. Пусть $m \in R^d$ и Q — симметрическая, неотрицательно определённая матрица порядка d (то есть $d \times d$ - матрица). Гауссовский вектор $X \in R^d$ с законом распределения $\mathcal{N}(m,Q)$ - это случайный вектор, преобразование Фурье которого (характеристическая функция) имеет вид

$$E(e^{i\lambda^*X}) = e^{i\lambda^*m} \cdot e^{-\frac{\lambda^*Q\lambda}{2}}.$$
 (1)

Для всех $\lambda \in \mathbb{R}^d$. Тогда

$$E(X) = m$$

И

$$Var(X) = Q$$
,

где Var(X) обозначает матрицу ковариаций вектора X, которая равна

$$Var(X) = E\left(\left(X - E(X)\right)\left(X - E(X)\right)^*\right).$$

Обратно, если есть X случайный вектор, имеющий м. о. равное m и матрицу ковариаций Q и такой, что все линйные комбинации $\lambda^* X, \lambda \in R^d$, гауссовские, $\lambda^* X \sim \mathcal{N}(\lambda^* m, \lambda^* Q \lambda)$, то, как следует из формулы (1) преобразования Фурье для $\lambda^* X$, вектор $X \sim \mathcal{N}(m, Q)$.

Пусть теперь $X = \binom{U}{V}$, где $U \in R^p$, $V \in R^q$. Предположим, что для всех $k, j, 1 \le k \le p, 1 \le j \le q$,

$$Cov(U_k, V_j) = E\left(\left(U_k - E(U_k)\right)\left(V_j - E(V_j)\right)^*\right) = 0$$

где U_k , V_j - компоненты U и V. Тогда ковариационная матрица имеет блочный вид

$$Q = \begin{pmatrix} Var(U) & 0 \\ 0 & Var(V) \end{pmatrix}.$$

Следовательно, если $m_U = E(U), m_V = E(V)$, и если $a \in R^p, b \in R^q$, то, поскольку

$$\lambda^*X \coloneqq {a \choose b}^*X = (a^*, b^*) {U \choose V} = a^*U + b^*V,$$

имеем

$$Ee^{i(a^*U+b^*V)} = e^{i\lambda^*m}e^{-\frac{\lambda^*Q\lambda}{2}} = e^{i(a^*m_U+b^*m_V)}e^{-\frac{a^*Var(U)a}{2}}e^{-\frac{b^*Var(V)b}{2}} =$$

$$e^{ia^*m_U} \cdot e^{-\frac{a^*Var(U)a}{2}} \cdot e^{ib^*m_V} \cdot e^{-\frac{b^*Var(V)b}{2}} = E(e^{ia^*U}) \cdot E(e^{ib^*V}).$$

Таким образом, преобразование Фурье пары (U, V) равно произведению преобразований Фурье U и V, откуда следует независимость U и V. Мы доказали нетривиальную часть (достаточность) следующей теоремы.

Теорема 1. Если вектор (U,V) гауссовский, то необходимое и достаточное условие независимости U и V состоит в том, что для всех компонент этих векторов $Cov(U_k,V_j)=0$, k=1,...,p, j=1,...,q.

Рассмотрим теперь гауссовский вектор

$$(X_1,\ldots,X_n,Z)$$

и будем искать условный закон распределения Z при условии $\sigma(X_1, ..., X_n)$. Компоненты $X_1, ..., X_n, Z$ интегрируемы с квадратом, то есть принадлежат пространству $L^2(\Omega, \mathcal{A}, P)$. Обозначим через H подпространство L^2 конечной размерности, порождённое функциями $X_1, ..., X_n$ и функцией, равной константе 1. Пусть \hat{Z} - ортогональная проекция Z на H (в пространстве $L^2(\Omega, \mathcal{A}, P)$, снабжённом скалярным произведением $\langle U, V \rangle = E(UV)$).

Лемма 1. Случайная величина $Z - \hat{Z}$ не зависит от $(X_1, ..., X_n)$, имеет гауссовское распределение со средним 0 и ортогональная проекция Z на H почти наверное совпадает с условным математическим ожиданием

$$\hat{Z} = E(Z|\sigma(X_1, \dots, X_n)).$$

Доказательство. По определению проекции в L^2 , вектор \hat{Z} - это единственный вектор вида $\hat{Z} = 1 \cdot \lambda_0 + \sum_{k=1}^n \lambda_k \cdot X_k$ такой, что

$$\langle Z - \hat{Z}, 1 \rangle = E[(Z - \hat{Z}) \cdot 1] = E(Z - \hat{Z}) = 0.$$

и для k = 1,2, ... n

$$\langle Z - \hat{Z}, X_k \rangle = E\left(\left(Z - \hat{Z}\right) \cdot X_k\right) = 0.$$

Таким образом, $\forall k = 1, 2, ..., n$

$$Cov(Z-\hat{Z},X_k)=E((Z-\hat{Z})\cdot X_k)-E(Z-\hat{Z})\cdot EX_k=0.$$

Независимость $Z - \hat{Z}$ от $(X_1, ..., X_n)$ следует теперь из Теоремы 1. Наконец,

$$\begin{split} E\big(Z|\sigma(X_1,\ldots,X_n)\big) &= E\left(\big(Z-\hat{Z}\big)|\sigma(X_1,\ldots,X_n)\right) + \\ E\left(\hat{Z}|\sigma(X_1,\ldots,X_n)\right) &= \hat{Z} \end{split}$$

Первое слагаемое средней части последнего равенства равно нулю, так как $Z - \hat{Z}$ не зависит от $\sigma(X_1, ..., X_n)$ и $E(Z - \hat{Z}) = 0$. Во втором слагаемом, поскольку \hat{Z} - ортогональная проекция Z на H, \hat{Z} есть линейная комбинация $(1, X_1, ..., X_n)$, поэтому \hat{Z} измерима относительно $\sigma(X_1, ..., X_n)$ и $E(\hat{Z} | \sigma(X_1, ..., X_n)) = \hat{Z}$. Кроме того $Var(Z - \hat{Z}) = E(Z - \hat{Z})^2$.

Предложение 1. Условный закон распределения Z при условии $\sigma(X_1, ..., X_n)$ является гауссовским с (условным) средним \hat{Z} , где \hat{Z} – ортогональная проекция Z на векторное пространство, порождённое $1, X_1, ..., X_n$.

Доказательство. Представим $Z = \hat{Z} + Z - \hat{Z}$. Тогда из независимости $Z - \hat{Z}$ от $\sigma(X_1, ..., X_n)$ следует

$$\begin{split} E\left(e^{i\lambda Z}|\sigma(X_1,\ldots,X_n)\right) &= e^{i\lambda \hat{Z}}E\left(e^{i\lambda(Z-\hat{Z})}|\sigma(X_1,\ldots,X_n)\right) = \\ &e^{i\lambda \hat{Z}}E\left(e^{i\lambda(Z-\hat{Z})}\right). \end{split}$$

Случайная величина $Z - \hat{Z}$ - гауссовская, как линейная комбинация компонент гауссовского вектора $(X_1, ..., X_n, Z)$. Таким образом, в правой части последнего равенства стоит характеристическая функция с.в., имеющей нормальное распределение со средним \hat{Z} .

Фильтр Калмана – Бьюси.

Постановка задачи. Для $t \ge 1$ рассмотрим уравнения

$$X_{t+1} = AX_t + \varepsilon_{t+1}$$

$$Y_t = CX_t + \tau_t \tag{2}$$

где X_t и ε_t случайные векторы в R^d , Y_t и τ_t случайные векторы в R^p , $A-d\times d$ матрица и $C-p\times d$ матрица. Предположим, что:

- $X_1, \varepsilon_1, \varepsilon_2, ... \tau_1, \tau_2, ...$ независимые **гауссовские** векторы
- ε_t центрированы, с матрицей ковариаций Q
- τ_t центрированы, с обратимой матрицей ковариаций R
- Матрицы А и С детерминированы.

Первое из уравнений (2) называется уравнением состояний, а второе – уравнением наблюдений. Наблюдаемыми являются вектора Y_t , которые поступают последовательно в моменты времени t=1,2,...Вектора X_t ненаблюдаемые. По наблюдениям Y_t требуется построить оценки для векторов X_t и оценить точность оценок. При этом оценки динамически пересчитываются с поступлением каждого нового наблюдения Y_t . Естественной оценкой ненаблюдаемого гауссовского вектора X_t по доступной наблюдаемой информации $Y_1, Y_2, ..., Y_t$ является, как мы видели, условное математическое ожидание $E(X_t | \sigma(Y_1, Y_2, ..., Y_t))$ и с вычислительной точки зрения целью фильтра Калмана — Бьюси является получение рекуррентных формул для вычисления проекции

$$\hat{X}_t = E(X_t | \sigma(Y_1, Y_2, \dots, Y_t))$$

и точности прогноза

$$P_t := Var(X_t - \hat{X}_t),$$

где через Var обозначена ковариационная матрица вектора ошибки прогноза $X_t - \hat{X}_t$. Напомним, что условное м.о. $E(X_t|\sigma(Y_1,...,Y_t))$ вектора относительно σ – алгебры – это случайный вектор, компоненты которого равны условным м.о. соответствующих компонент вектора X_t . Рекуррентные формулы должны позволять пересчитывать \hat{X}_t и P_t по мере поступления новой информации.

Разложение с помощью обновлений.

Введём:

• Наилучшую аппроксимацию \hat{X}_t^- , которую можно получить для X_t к моменту t-1, то есть **до** поступления наблюдения в момент t:

$$\widehat{X}_t^- := E(X_t | \sigma(Y_1, \dots, Y_{t-1}))$$

• Матрицу ковариаций P_t^- возникающей при этом ошибки

$$P_t^- := Var(X_t - \hat{X}_t^-)$$

• Обновление (информации) J_t , привносимое новым поступившим наблюдением Y_t

$$J_t := Y_t - E(Y_t | \sigma(Y_1, \dots, Y_{t-1})).$$

(заметим, что J_t не зависит от $Y_1, Y_2, ..., Y_{t-1}$ (по Лемме 1) и, следовательно, действительно является той частью Y_t , которая приносит новую информацию, которая «обновляем»). Следующая лемма легко доказывается.

Лемма 2. Верны следующие соотношения

$$\hat{X}_{t+1}^{-} = A\hat{X}_{t},$$

$$J_{t} = Y_{t} - C\hat{X}_{t}^{-} = C(X_{t} - \hat{X}_{t}^{-}) + \tau_{t},$$

$$P_{t+1}^{-} = AP_{t}A^{*} + Q.$$

Доказательство. Имеем

$$\hat{X}_{t+1}^{-} = E(X_{t+1} | \sigma(Y_1, \dots, Y_t)) = E((AX_t + \varepsilon_{t+1}) | \sigma(Y_1, \dots, Y_t)) = A\hat{X}_t.$$

Мы воспользовались тем, что

$$\sigma(Y_1, ..., Y_t) \subset \sigma(X_1, \varepsilon_1, ..., \varepsilon_t, \tau_1, \tau_2, ..., \tau_t)$$

и предположениями модели, из которых следует, что ε_{t+1} не зависит от $\sigma(Y_1, ..., Y_t)$ и, следовательно,

$$E(\varepsilon_{t+1}|\sigma(Y_1,\ldots,Y_t)) = E\varepsilon_{t+1} = 0.$$

Второе равенство леммы очевидным образом следует из (2) и предположений модели. Для доказательства третьего равенства заметим, что

$$P_{t+1}^{-} = Var\left(X_{t+1} - E(X_{t+1} | \sigma(Y_1, ..., Y_t))\right) = Var[AX_t + \varepsilon_{t+1} - E((AX_t + \varepsilon_{t+1}) | \sigma(Y_1, ..., Y_t))] = Var(A(X_t - \hat{X}_t) + \varepsilon_{t+1}) = AP_tA^* + Q.$$
(3)

(в последнем равенстве воспользовались независимостью векторов $A(X_t - \hat{X}_t)$ и ε_{t+1}).

Нам понадобится также следующая лемма из теории гильбертовых пространств.

Лемма 3. Пусть H_1 и H_2 два замкнутых векторных подпространства гильбертова пространства \mathfrak{H} , которые ортогональны между собой. Пусть $H = H_1 \oplus H_2$. Обозначим π , π_1 , π_2 ортогональные проекции на H, H_1 , H_2 . Тогда

$$\pi=\pi_1+\pi_2.$$

Заметим теперь, что каждая компонента вектора J_t

$$J_t = Y_t - C\hat{X}_t^- = C(X_t - \hat{X}_t^-) + \tau_t$$

ортогональна любой из компонент векторов 1, Y_1 , ..., Y_{t-1} , напомним, что $Y_t = \mathcal{C}X_t + \tau_t$, то есть (по Теореме 1) J_t не зависит от $\sigma(Y_1, \ldots, Y_{t-1})$. Кроме того, из определения J_t следует, что

$$\sigma(Y_1,\ldots,Y_{t-1},Y_t)=\sigma(Y_1,\ldots,Y_{t-1},J_t).$$

Из Леммы 3, где в качестве H_1 берется L^2 , порождённое векторами 1, Y_1, \ldots, Y_{t-1} , а в качестве H_2 - подпространство в L^2 , порождённое вектором J_t , следует, что ортогональная проекция X_t на подпространство в L^2 , порождённое всеми компонентами векторов 1, Y_1, \ldots, Y_t (то есть \hat{X}_t) равна ортогональной проекции X_t на подпространство в L^2 , порождённое всеми компонентами векторов 1, Y_1, \ldots, Y_{t-1} (то есть \hat{X}_t^-) плюс ортогональная проекция X_t на «одномерное» подпространство в L^2 , порождённое вектором J_t (то есть $E(X_t|J_t=(J_{1t},J_{2t},\ldots,J_{pt})^*)$). Это последнее условное математическое ожидание есть, по определению, d - мерный вектор, компоненты которого равны условным математическим ожиданиям компонент вектора X_t относительно $\sigma(J_{1t},J_{2t},\ldots,J_{pt})$. Так как все рассматриваемые вектора гауссовские, то все компоненты вектора $E(X_t|J_t=(J_{1t},J_{2t},\ldots,J_{pt})^*)$ есть линейные комбинации компонент $(J_{1t},J_{2t},\ldots,J_{pt})$, то есть

$$E\left(X_{t}\middle|\sigma(J_{1t},\ldots,J_{pt})\right)=K_{t}J_{t},$$

где K_t - матрица порядка $d \times p$, называемая матрицей коэффициентов усиления Калмана. Мы получили важное соотношение

$$\hat{X}_t = \hat{X}_t^- + K_t J_t, \tag{4}$$

где \hat{X}_t^- и $K_t J_t$ ортогональны и независимы.

Вычисление матрицы коэффициентов усиления Калмана.

По определению ортогональной проекции, компоненты случайных векторов

$$X_t - E(X_t | \sigma(J_{1t}, \dots, J_{nt})) = X_t - K_t J_t$$

и J_t ортогональны. Отсюда

$$E((X_t - K_t J_t) \cdot J_t^*) = 0.$$

То есть

$$E(X_t J_t^*) = K_t E(J_t J_t^*). \tag{5}$$

Поскольку J_t центрирован и не зависит от $\sigma(Y_1, ..., Y_{t-1})$, получим, используя второе соотношение Леммы 2, (4), (5)

$$E(X_{t}J_{t}^{*}) = E\left((X_{t} - \hat{X}_{t}^{-})J_{t}^{*}\right) + E(\hat{X}_{t}^{-}J_{t}^{*}) = E\left((X_{t} - \hat{X}_{t}^{-})J_{t}^{*}\right) = E\left((X_{t} - \hat{X}_{t}^{-})J_{t}^{*}\right) = E\left((X_{t} - \hat{X}_{t}^{-})(C(X_{t} - \hat{X}_{t}^{-}) + \tau_{t})^{*}\right) = P_{t}^{-}C^{*}.$$

И

$$E(J_t J_t^*) = E\left((C(X_t - \hat{X}_t^-) + \tau_t) (C(X_t - \hat{X}_t^-) + \tau_t)^* \right) =$$

$$CE\left((X_t - \hat{X}_t^-) (X_t - \hat{X}_t^-)^* \right) C^* + E(\tau_t \tau_t^*) = CP_t^- C^* + R.$$

Отсюда и из (5) найдём K_t (напомним, что R обратима)

$$K_t = E(X_t J_t^*) [E(J_t J_t^*)]^{-1} = P_t^- C^* (C P_t^- C^* + R)^{-1}.$$
 (6)

Наконец, покажем как переходить к P_t от P_t^- , используя Лемму 2 и соотношение $\hat{X}_t = \hat{X}_t^- + K_t J_t$

$$P_{t} = E((X_{t} - \hat{X}_{t})(X_{t} - \hat{X}_{t})^{*}) =$$

$$E((X_{t} - \hat{X}_{t}^{-} - K_{t}J_{t})(X_{t} - \hat{X}_{t}^{-} - K_{t}J_{t})^{*}) =$$

$$E((X_{t} - \hat{X}_{t}^{-})(X_{t} - \hat{X}_{t}^{-})^{*}) - E(K_{t}J_{t}(X_{t} - \hat{X}_{t}^{-})^{*}) -$$

$$E((X_{t} - \hat{X}_{t}^{-})(K_{t}J_{t})^{*}) + E[(K_{t}J_{t})(K_{t}J_{t})^{*}] =$$

$$P_{t}^{-} - K_{t}E((C(X_{t} - \hat{X}_{t}^{-}) + \tau_{t})(X_{t} - \hat{X}_{t}^{-})^{*})$$

$$-E(X_{t}(K_{t}J_{t})^{*}) + E(\hat{X}_{t}^{-}(K_{t}J_{t})^{*})$$

$$+E((K_{t}J_{t})(K_{t}J_{t})^{*}) =$$

$$P_{t}^{-} - K_{t}CE((X_{t} - \hat{X}_{t}^{-})(X_{t} - \hat{X}_{t}^{-})^{*}) - E(X_{t}(K_{t}J_{t})^{*}) +$$

$$E(\hat{X}_t^-(K_tJ_t)^*) + K_tE(J_tJ_t^*)K_t^* = P_t^- - K_tCP_t^-,$$
(7)

где в последнем равенстве мы воспользовались ортогональностью \hat{X}_t^- и K_tJ_t (см. (4)) и равенством $K_tE(J_tJ_t^*)=E(X_tJ_t^*)$ (см. (5)).

Начало рекурсии.

Рекурсия начинается с вектора \hat{X}_1^- , который есть просто проекция X_1 на одномерное пространство констант (так как наблюдений Y_t к этому моменту ещё нет), то есть $\hat{X}_1^- = E(X_1)$. Соответственно,

$$P_1^- = Var(X_1 - \hat{X}_1^-) = Var(X_1 - E(X_1)).$$

Существует другой, достаточно общий метод выбора начальных условий. Если все собственные числа матрицы A в уравнении состояний лежат внутри единичного круга, то VAR (1) процесс в системе Калмана является, как мы знаем, стационарным в широком смысле, т.е. его средние и ковариации постоянны, не зависят от времени. Переходя к безусловным математическим ожиданиям, получим $E(X_{t+1}) = AE(X_t)$, откуда, в силу стационарности,

$$E(X_{t+1}) = E(X_t) \Leftrightarrow (I_d - A)E(X_t) = 0.$$

По предположению, единица не является собственным числом матрицы A, то есть матрица (I_d-A) обратима и уравнение имеет единственное решение $E(X_t)=0$. Ковариационная матрица Σ_t (безусловная) вектора X_t также легко вычисляется. Из уравнения состояний получим

$$\Sigma_{t+1} = A\Sigma_t A^* + Q.$$

Обозначая общую для всех t ковариационную матрицу через Σ , получим уравнение

$$\Sigma = A\Sigma A^* + Q.$$

Решение этого уравнение даётся формулой (см. Добавление в конце лекции)

$$vec(\Sigma) = [I_{d^2} - (A \otimes A)]^{-1} \cdot vec(Q).$$

Таким образом, если все собственные числа матрицы A лежат внутри единичного круга, то итерации фильтра Калмана могут начинаться с $\hat{X}_1^- = E(X_1) = 0$ и с $d \times d$ матрицы P_1^- такой, что

$$vec(P_1^-) = [I_{d^2} - (A \otimes A)]^{-1} \cdot vec(Q).$$

Если же собственные числа матрицы A могут лежать на единичном круге или вне единичного круга, или если X_1 не может рассматриваться как значение случайного процесса, удовлетворяющего уравнению состояний, то выбор начала рекурсии диктуется спецификой задачи и опытом того, кто применяет метод.

Алгоритм.

Подводя итог нашим вычислениям, приходим к следующему алгоритму. Имея начальные значения \hat{X}_1^- и P_1^- , мы имеем поступившее первое наблюдение Y_1 и хотим вычислить \hat{X}_2^- и P_2^- , затем поступает второе наблюдение Y_2 мы хотим найти \hat{X}_3^- и P_3^- и так далее до \hat{X}_T^- и P_T^- . Покажем в общем виде, как зная \hat{X}_t^- и P_t^- и получив следующее наблюдение Y_t , найти \hat{X}_{t+1}^- и P_{t+1}^- . Из (3), (7) и (6) получим переход от P_t^- к P_{t+1}^- :

$$P_{t+1}^- = AP_tA^* + Q = A\underbrace{(P_t^- - K_tCP_t^-)}_{\Box_t}A^* + Q =$$

$$A\left(P_{t}^{-} - \underbrace{P_{t}^{-}C^{*}(CP_{t}^{-}C^{*} + R)^{-1}}_{K_{t}}CP_{t}^{-}\right)A^{*} + Q.$$
(8)

Из (4) и Леммы 2 получим переход от \widehat{X}_t^- к \widehat{X}_{t+1}^- :

$$\hat{X}_{t} = \hat{X}_{t}^{-} + K_{t}J_{t} = \hat{X}_{t}^{-} + K_{t}\underbrace{\left(Y_{t} - C\hat{X}_{t}^{-}\right)}_{I_{t}}.$$
(9)

Умножая обе части последнего равенства на A и снова пользуясь Леммой 2, получим

$$\hat{X}_{t+1}^{-} = A\hat{X}_{t} = A\hat{X}_{t}^{-} + AK_{t}(Y_{t} - C\hat{X}_{t}^{-}) = A\hat{X}_{t}^{-} + A\underbrace{P_{t}^{-}C^{*}(CP_{t}^{-}C^{*} + R)^{-1}}_{K_{t}}(Y_{t} - C\hat{X}_{t}^{-})$$
(10)

Таким образом, формулы (8) и (10) дают искомый переход от P_t^- и \hat{X}_t^- к P_{t+1}^- и \hat{X}_{t+1}^- . На каждом шаге алгоритма из (4) и (7) также находим проекции \hat{X}_t и дисперсии ошибок P_t .

Уравнение Риккати. Напомним уравнение Риккати из теории управления линейными системами (Теорема 3 Лекции 8):

$$\Gamma_t = \rho_{(A,B)}(\Gamma_{t+1}),$$

где

$$\rho_{(A,B)}(\Gamma) = Q + A^* \Gamma A - (A^* \Gamma B)(R + B^* \Gamma B)^{-1}(B^* \Gamma A).$$

Рассмотрим уравнение, которому удовлетворяет P_t^-

$$P_{t+1}^{-} = AP_{t}A^{*} + Q = A\underbrace{(P_{t}^{-} - K_{t}CP_{t}^{-})}_{P_{t}}A^{*} + Q = Q + AP_{t}^{-}A^{*} - AK_{t}CP_{t}^{-}A^{*},$$

где

$$K_t = P_t^- C^* (CP_t^- C^* + R)^{-1}.$$

Поэтому P_{t+1}^- можно переписать также в виде

$$P_{t+1}^- = Q + AP_t^- A^* - AP_t^- C^* (CP_t^- C^* + R)^{-1} CP_t^- A^* = \rho_{(A^*, C^*)}(P_t^-).$$

То есть P_t^- удовлетворяет уравнению Риккати с (A^*, C^*) .

Добавление. Напомним некоторые факты и обозначения из теории матриц. Пусть $A - m \times n$ матрица и $B - p \times q$ матрица.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$B = \begin{pmatrix} b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots \\ b_{p1} & \dots & b_{pq} \end{pmatrix}$$

Тогда $mp \times nq$ матрица их тензорного (или кронекеровского) произведения обозначается $A \otimes B$ и равна

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix}$$

Далее, если $A - m \times n$ матрица, то vec(A) — это вектор-столбец размерности mn, получающийся составлением всех столбцов матрицы (слева направо) в один столбец, каждый следующий столбец располагается ниже предыдущего. Имеет место следующее полезное соотношение, доказательство которого можно найти в книге Hamilton (Appendix 10.A)

Предложение. Пусть A,B и C – матрицы, размерности которых таковы, что произведение ABC существует. Тогда

$$vec(ABC) = (C^* \otimes A) \cdot vec(B).$$

Применяя это Предложение к уравнению $\Sigma = A\Sigma A^* + Q$, получим, применяя оператор vec к обеим частям этого уравнения

 $vec(\Sigma) = vec(A\Sigma A^*) + vec(Q) = (A \otimes A) \cdot vec(\Sigma) + vec(Q),$ откуда

$$(I_{d^2} - (A \otimes A)) \cdot vec(\Sigma) = vec(Q),$$
$$vec(\Sigma) = (I_{d^2} - (A \otimes A))^{-1} \cdot vec(Q).$$

Собственные числа матрицы $A \otimes A$ равны $\lambda_i \lambda_j$, i,j=1,2,...,d, где λ_i , i=1,...,d, собственные числа матрицы A. Поэтому они все тоже лежат внутри единичного круга, и матрица $\left(I_{d^2} - (A \otimes A)\right)$ обратима.