Revision Question 2 — 01/05/14

Let X be the subset of \mathbb{R}^2 given by

$$\{(x, x^2) \mid x \in \mathbb{R}\}.$$

Let \mathcal{O}_X be the subspace topology on X with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$.

- a) Prove that (X, \mathcal{O}_X) is homeomorphic to $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$. You may quote without proof any facts from the course. [5 marks]
- b) Give an example of a subset Y of \mathbb{R}^2 such that the following hold.
 - i) Y is not closed in \mathbb{R}^2 with respect to $\mathcal{O}_{\mathbb{R}^2}$.
 - ii) (Y, \mathcal{O}_Y) is homeomorphic to $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$, where \mathcal{O}_Y is the subspace topology on Y with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$.

You do not need to prove that your set Y satisfies i) and ii). [5 marks]

c) What is the closure in \mathbb{R}^2 with respect to $\mathcal{O}_{\mathbb{R}^2}$ of your set Y of part b)? You do not need to give a proof. [3 marks]

Let Z be the subset of \mathbb{R}^2 given by

$$\{(x^2 - 1, x^3 - x) \mid x \in \mathbb{R}\}.$$

Let \mathcal{O}_Z be the subspace topology on Z with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$.

- d) Is (Z, \mathcal{O}_Z) homeomorphic to $(\mathbb{R}, \mathcal{O}_{\mathbb{R}})$? Justify your answer. You may quote without proof any results from the syllabus. [6 marks]
- e) Prove that (Z, \mathcal{O}_Z) is connected. You may quote without proof any results from the syllabus. [5 marks]
- f) Prove that (-3,0) is not a limit point of Z in \mathbb{R}^2 with respect to $\mathcal{O}_{\mathbb{R}^2}$. [4 marks]