À rendre pour le 26 février 2024 -

Devoir maison nº 4 (facultatif)

Mathématiques

Exercice 1. On se place dans \mathbb{R}^4 . On considère les sous-espaces suivants :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = y \text{ et } x + t = 0\}, \quad G = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + t = 0\}, \quad H = \text{Vect}((1, 0, 1, -1)).$$

- 1) Montrer de deux façons différentes que G est un espace vectoriel.
- 2) Parmi les inclusions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi :

$$F \subset G$$
, $G \subset F$, $H \subset G$, $G \subset H$.

- 3) Déterminer une base pour chacun des espaces F, G et H.
- 4) Montrer que $F \oplus H = G$.

Exercice 2. Dans $\mathbb{R}^{\mathbb{N}}$, l'ensemble des suites réelles, on considère les deux sous-espaces suivants :

$$F = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid u_0 = u_1 = 0 \right\}, \qquad G = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+2} = 4u_{n+1} - 4u_n \right\}.$$

- 1) Déterminer une base de G.
- 2) Montrer que F est un espace vectoriel.
- 3) Montrer que F et G sont supplémentaires dans $\mathbb{R}^{\mathbb{N}}$.

Exercice 3. Soient E, F et G trois ensembles.

Partie A

Dans cette partie, on considère deux applications $f: E \to F$ et $g: G \to F$. On suppose que g est injective. On va, entre autres, montrer l'équivalence suivante :

$$\exists h \in \mathcal{F}(E,G), \ g \circ h = f \iff f(E) \subset g(G).$$

- 1) On suppose dans cette question l'existence d'une fonction $h: E \to G$ telle que $g \circ h = f$.
 - a) Montrer que $f(E) \subset g(G)$.
 - b) Montrer que la fonction h est unique : si $h_1, h_2 \in \mathcal{F}(E, G)$ vérifient $g \circ h_1 = g \circ h_2 = f$ alors $h_1 = h_2$.

- 2) On suppose à présent que $f(E) \subset g(G)$.
 - a) Justifier que pour tout $x \in E$, il existe **un unique** $z_x \in G$ tel que $f(x) = g(z_x)$. On pose $h(x) = z_x$.
 - b) Que vaut $g \circ h$?
 - c) Montrer que h est injective si et seulement si f est injective.
 - d) Montrer que h est surjective si et seulement si f(E) = g(G).

Partie B

Dans cette partie on considère deux applications $f \colon E \to F$ et $g \colon E \to G$. On suppose que f est surjective. On va, entre autres, montrer l'équivalence suivante :

$$\exists h \in \mathcal{F}(F,G), \ h \circ f = g \quad \Longleftrightarrow \quad \Big(\forall x, x' \in E, \ f(x) = f(x') \ \Rightarrow \ g(x) = g(x') \Big).$$

- 1) On suppose dans cette question l'existence d'une fonction $h: F \to G$ telle que $h \circ f = g$.
 - a) Montrer que : $\forall x, x' \in E$, $f(x) = f(x') \Rightarrow g(x) = g(x')$.
 - b) Montrer que la fonction h est unique.
- 2) On suppose à présent que : $\forall x, x' \in E, f(x) = f(x') \Rightarrow g(x) = g(x').$
 - a) Justifier que pour tout $y \in F$, il existe un unique $z_y \in G$ pour lequel il existe un antécédent de y par f qui soit aussi un antécédent de z_y par g. On pose $h(y) = z_y$.
 - b) Que vaut $h \circ f$?
 - c) Montrer que h est surjective si et seulement si g est surjective.
 - d) Montrer que h est injective si et seulement si : $\forall x, x' \in E, f(x) = f(x') \Leftrightarrow g(x) = g(x').$