"Para o prazer e para ser feliz, é que é preciso a gente saber tudo, formar alma, na consciência; para penar, não se carece."

(Guimarães Rosa in Grande Sertão: Veredas, 1956)

Introd. Inteligência Artificial

Roteiro da aula:

- Abordagem K-nn (Vizinhos mais próximos);
- Exemplos;
- Métricas de similaridade e distâncias em reconhecimento/aprend. de padrões;

Com slides adaptados de E.Eaton(UPenn)

- Dados não são transformados
- Dados são simplesmente armazenados, e quando um novo exemplo é encontrado, um conjunto de exemplos similares, relacionados, são recuperados da memória e usados para classificar o novo dado.
- Não formam função alvo, simplesmente calculam a classificação de nova instância.

- Aprendizagem Supervisionada
- Não paramétrica

- Modelo mais simples usado como aprendizagem de instâncias.
- K-nn assume que todos os exemplos são pontos em algum espaço n-dimensional e define vizinhos em termos de distância (usualmente Euclideana em R)
- K é o número de vizinhos considerados.

 Classify using the majority vote of the k closest training points

 K-NN algorithm does not explicitly compute decision boundaries. The boundaries between distinct classes form a subset of the Voronoi diagram of the training data.

Image by MIT OpenCourseWare.

Each line segment is equidistant to neighboring points.

Quanto menor for k, mais flexível será o resultado.

Ideia básica:

- A regra de classificação k-nn é atribuir a uma amostra teste o rótulo da maioria de suas k amostras de treinamento mais próximos.
- Na prática k é usualmente escolhido como ímpar para evitar empates.

- Requer 3 coisas:
 - 1. Espaço de Atributos(Dados de treinamento)
 - 2. Métrica de distância
 - para computar distância entre registros
 - 3. Um valor de k
 - o número de vizinhos mais próximos para comparar classes
- Para classificar um registro desconhecido:
 - Computar distância dos registros de treinamento
 - Identificar k vizinhos mais próximos
 - Usar rótulos das classes dos viznhos para determinar classe do registro desconhecido

- Dado um exemplo q para ser classificado
 - Sendo x₁, ..., x_k os k exemplos de treinamentos em Tr_exemplos mais próximos a q
 - Retornar

$$\sum_{i=1}^{k} \delta(v, f(x_i))$$

- Onde Vé o conjunto finito de valores de classe e $\delta(a,b)=1$ if a=b, e 0 caso contrário
- Intuitivamente o algoritmo k-nn atribui a cada nova instância a classe majoritária entre os k vizinhos mais próximos

Métricas de distância comuns:

- Distância Euclideana (distribuição contínua)
 - $d(p,q) = \sqrt{\sum (p_i q_i)^2}$
- Distância de Hamming (métrica com sobreposição)
 - bat (distância = 1)
 toned (distância = 3)
 - cat roses
- Métrica Discreta (métrica booleana)
 - Se x = y então d(x,y) = 0. Caso contrário, d(x,y) = 1
- Determinar a classe da lista dos k vizinhos mais próximos
 - Pegar o voto majoritário dos rótulos entre os k-vizinhos
 - Fator de ponderação
 - w =1/d(interpolação generalizada linear) ou 1/d²

- Escolhendo o valor de k:
 - Se k for muito pequeno, sensível a ruído
 - Se k for muito grande, vizinhança pode incluir pontos de outras classes
 - Escolher um valor ímpar para k, para eliminar empates

- $^{\circ}$ k = 1:
- Pertence à classe quadrado
- $^{\circ}$ k = 3:
- Pertence à classe triângulo
- $^{\circ}$ k = 7:
- Pertence à classe quadrado

Decisão pelo voto da maioria;

- K-nn funciona em muitos problemas práticos e tolerante a ruídos
- Podem existir muitos atributos irrelevantes
- distância/métrica deve ser adequada

- Qual a melhor distância usar?
- Qual o melhor valor de k?

 As amostras (dados) devem ser analisadas observando viés (bias) e variância

- De forma prática
 - Dividir (aleatoriamente) o conjunto de dados em treinamento e teste (e.g. 70%, 30%)

 Depois dividir (também aleatoriamente) a parte de treinamento em um número de partições (e.g. 5 ou 10)

 Escolha uma dessas partições para ajustar/validar esses parâmetros (k e distância)

 Use validação cruzada (cross-validation) trocando a partição e depois fazendo a média dos resultados no treinamento

(James et al., 2017)

Modelo de ajuste por k-nn

```
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)
Número de vizinhos
```

Usando biblioteca Scikit-Learn

Romance, Ação? Quais parâmetros?

Table 2.1 Movies with the number of kicks and number of kisses shown for each movie, along with our assessment of the movie type

Movie title	# of kicks	# of kisses	Type of movie
California Man	3	104	Romance
He's Not Really into Dudes	2	100	Romance
Beautiful Woman	1	81	Romance
Kevin Longblade	101	10	Action
Robo Slayer 3000	99	5	Action
Amped II	98	2	Action

Romance, Ação? Quais parâmetros?

Table 2.1 Movies with the number of kicks and number of kisses shown for each movie, along with our assessment of the movie type

Movie title	# of kicks	# of kisses	Type of movie
California Man	3	104	Romance
He's Not Really into Dudes	2	100	Romance
Beautiful Woman	1	81	Romance
Kevin Longblade	101	10	Action
Robo Slayer 3000	99	5	Action
Amped II	98	2	Action
?	18	90	Unknown

Romance, Ação? Quais parâmetros?

Plotar as variáveis

Romance, Ação? Quais parâmetros?

Distâncias entre os pontos

Movie title	Distance to n	novie "?"
California Man	20.5	
He's Not Really into Dudes	18.7	knn, k=
Beautiful Woman	19.2	
Kevin Longblade	115.3	
Robo Slayer 3000	117.4	
Amped II	118.9	

Pros/Cons to K-NN

Pros:

- Simple and powerful. No need for tuning complex parameters to build a model.
- No training involved ("lazy"). New training examples can be added easily.

Pros/Cons to K-NN

Cons:

- Expensive and slow: O(md), m= # examples, d= # dimensions
 - To determine the nearest neighbor of a new point x, must compute the distance to all m training examples. Runtime performance is slow, but can be improved.
 - Pre-sort training examples into fast data structures
 - Compute only an approximate distance
 - Remove redundant data (condensing)

Exemplo de projeto k-nn em python

- Classificar possibilidade de fraude em transações
- https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn
- Duas variáveis, 39 observações
- dist_from_home: The distance between the user's home location and where the transaction was made.
- purchase_price_ratio: the ratio between the price of the item purchased in this transaction to the median purchase price of that user.

•

Exemplo de projeto k-nn em python

- Classificar possibilidade de fraude em transações
- https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn

Similaridade e distâncias em Reconhecimento/aprendizagem de padrões

Similaridade e distâncias em Reconhecimento/aprendizagem de padrões

Para analisar se um novo dado/objeto/vetor é igual/semelhante/ (o quanto?) a outro é necessária uma função/norma de similaridade/distância

Similaridade e distâncias em Reconhecimento/aprendizagem de padrões

Para identificar, recomendar, filtrar...

$$\|x\|_{2} = \sqrt{X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}}$$

L2 norm is used in many places in machine learning such as normalizing observations and regularization.

Chris Albon

Ly Like in NLP. Ly Example: Ridge Regression.

dlb, UnB, Int. Inteligência Artificial

Hamming Distance

$$D_H = \sum_{i=1}^k \left| x_i - y_i \right|$$

$$x = y \Rightarrow D = 0$$

$$x \neq y \Rightarrow D = 1$$

Х	Υ	Distance
Male	Male	0
Male	Female	1

Referências Bibliográficas

- Russell, S. & Norvig, P. Artificial Intelligence: a modern approach (4th ed), Pearson, 2020. (Capítulo 19)
- Alpaydin, E. Introduction to Machine Learning, MIT Press, 2010. (Capítulo 2)
- James, G.; Witten, D.; Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning with applications in R, Springer, 2017. (Capítulo 8)
- Mitchell, T. Machine Learning. McGraw Hill, 1997.