# Comparative Effectiveness and Personalized Medicine Research Using Real-World Data

Thomas Debray

2023-05-03

## Table of contents

| 2 | 2.1  | Exam  | ntrol and quality assessment of real-world data and real-world evidence ple code |
|---|------|-------|----------------------------------------------------------------------------------|
| 3 |      |       | ng adjustment using propensity score methods                                     |
| • | 3.1  |       | luction                                                                          |
|   | 3.2  |       | paring baseline characteristics                                                  |
|   | 3.3  | -     | ating the propensity score                                                       |
|   | 0.0  | 3.3.1 | Logistic regression                                                              |
|   |      | 3.3.2 | Assessing overlap                                                                |
|   | 3.4  |       | ensity score matching                                                            |
|   | 0.1  | 3.4.1 | 1:1 Optimal full matching without replacement                                    |
|   |      | 3.4.2 | Assess balance after matching                                                    |
|   |      | 3.4.3 | Estimating the ATT                                                               |
|   | 3.5  |       | ensity score stratification                                                      |
|   | 0.0  | 3.5.1 | Divide sample into quintiles of propensity scores                                |
|   |      | 3.5.2 | Assess balance within each propensity score stratum                              |
|   |      | 3.5.3 | Estimating and pooling of stratum-specific treatment effects                     |
|   | 3.6  |       | ensity score weighting                                                           |
|   |      | 3.6.1 | Calculate propensity score weights for ATT                                       |
|   |      | 3.6.2 | Assess balance in the weighted sample                                            |
|   |      | 3.6.3 | Estimate the ATT                                                                 |
|   | 3.7  |       | ssion adjustment for the propensity score for the ATE                            |
|   | 3.8  | _     | iew                                                                              |
|   | Vers |       | 0                                                                                |
|   |      |       |                                                                                  |

|   | 4.2          | Covariate adjustment                                               | 38         |
|---|--------------|--------------------------------------------------------------------|------------|
|   |              | 4.2.1 Interaction approach                                         | 38         |
|   |              | 4.2.2 Stratification                                               | 41         |
|   | 4.3          | Propensity score matching                                          | 42         |
|   |              | 4.3.1 Stratification with exact matching within subgroups          | 42         |
|   |              | 4.3.2 Joint approach without exact matching within subgroups       | 44         |
|   |              | 4.3.3 Joint approach with exact matching within subgroups          | 45         |
|   |              | 4.3.4 Interaction approach without exact matching within subgroups | 46         |
|   |              | 4.3.5 Interaction approach with exact matching within subgroups    | 46         |
|   | 4.4          | Propensity Score Weighting                                         | 47         |
|   |              | 4.4.1 Common model                                                 | 47         |
|   |              | 4.4.2 Separate models                                              | 48         |
|   |              | 4.4.3 Weights from the subgroup balancing propensity scores        | 50         |
|   | 4.5          | Covariate adjustment for the propensity score                      | 50         |
|   |              | 4.5.1 As continuous covariate                                      | 50         |
|   |              | 4.5.2 As quantiles                                                 | 52         |
|   | 4.6          | Propensity Score Stratification                                    | 53         |
|   | 4.7          | Summary                                                            | 54         |
|   | Vers         | ion info                                                           | 54         |
|   | Refe         | erences                                                            | 56         |
| _ | _            |                                                                    |            |
| 5 |              |                                                                    | 57         |
|   | $5.1 \\ 5.2$ | v ·                                                                | 57         |
|   | -            |                                                                    | 58         |
|   | 5.3          |                                                                    | 59<br>59   |
|   |              |                                                                    |            |
|   |              | 9 9                                                                | 62         |
|   |              | 1                                                                  | 62         |
|   |              |                                                                    | 65         |
|   | 5.4          |                                                                    | 70         |
|   | 5.4          | 9                                                                  | 71<br>72   |
|   |              |                                                                    | 75         |
|   | Vona         | 5.4.2 Results                                                      |            |
|   |              |                                                                    | 76<br>78   |
|   | цен          | rences                                                             | 10         |
| 6 | Syst         | ematic review and meta-analysis of Real-World Evidence             | <b>7</b> 9 |
|   | 6.1          | Introduction                                                       | 79         |
|   | 6.2          | Pairwise meta-analysis of clinical trials                          | 79         |
|   |              | 6.2.1 Toculizumab for coronavirus disease 2019                     | <b>7</b> 9 |
|   |              | 6.2.2 Remdesivir for coronavirus disease 2019                      | 81         |
|   | 6.3          | Network meta-analysis of clinical trials                           | 82         |
|   |              | 6.3.1 Interventions for coronavirus disease 2019                   | 82         |

|    |          | 3.2 Pharmacologic treatments for chronic obstructive pulmonary disease       | 89  |
|----|----------|------------------------------------------------------------------------------|-----|
|    |          | 3.3 Advanced Therapies for Ulcerative Colitis                                | 90  |
|    |          | ı info                                                                       | 93  |
|    | Referen  | nces                                                                         | 94  |
| 7  | Individ  | ual Participant Data Meta-analysis of clinical trials and real-world data    | 95  |
|    | 7.1 In   | troduction                                                                   | 95  |
|    | 7.2 Hi   | ierarchical Meta-Regression                                                  | 95  |
|    | 7.5      | 2.1 Aggregate data                                                           | 95  |
|    | 7.5      | 2.2 Individual participant data                                              | 97  |
|    | 7.5      | 2.3 Hierarchical metaregression                                              | 99  |
| 8  | Dealing  | g with irregular and informative visits                                      | 103 |
|    | 8.1 In   | troduction                                                                   | 103 |
|    | 8.2 Ex   | xample dataset                                                               | 104 |
|    | 8.3 Es   | stimation of treatment effect                                                | 106 |
|    | 8.3      | 3.1 Original data                                                            | 106 |
|    | 8.3      | 3.2 Doubly-weighted marginal treatment effect                                | 106 |
|    | 8.3      | 3.3 Multilevel multiple imputation                                           | 107 |
|    | 8.4 Re   | eproduce the results using all data to compute the marginal effect with IIV- |     |
|    | we       | eighted                                                                      | 108 |
|    | 8.4      | 4.1 Doubly -weighted marginal treatment effect total                         | 108 |
|    | 8.5 Re   | esults                                                                       | 108 |
|    | Version  | ı info                                                                       | 109 |
|    | Referen  | nces                                                                         | 110 |
| 9  | Predict  | tion of individual treatment effect using data from multiple studies         | 111 |
|    |          | stimating heterogeneous treatment effects in pairwise meta-analysis          | 111 |
|    | 9.       | 1.1 Example of a continuous outcome                                          | 111 |
|    | 9.       | 1.2 Example of a binary outcome                                              |     |
|    | 9.2 Es   | stimating heterogeous treatment effects in network meta-analysis             |     |
|    | 9.5      | 2.1 Example of a continuous outcome                                          | 121 |
|    | 9.5      | 2.2 Modeling patient-level relative effects using randomized and observa-    |     |
|    |          | tional evidence for a network of treatments                                  | 127 |
|    | Version  | ı info                                                                       |     |
|    | Referen  | nces                                                                         | 134 |
| 10 | Visualia | zation and interpretation of individualized treatment rule results           | 135 |
|    |          | ·                                                                            | 135 |
|    | 10.2 Es  | stmition of individualized treatment rules                                   |     |
|    |          | isualization of individualized treatment rules                               |     |
|    |          | 0.3.1 Direct visualization                                                   |     |
|    |          |                                                                              | 147 |

|      | 10.3.3 ITR agreement                                     |
|------|----------------------------------------------------------|
| 10.4 | Patient well-being                                       |
| 10.5 | Responder diagnostics                                    |
|      | 10.5.1 Validation                                        |
|      | 10.5.2 Univariate comparision of patient characteristics |
| Vers | ion info                                                 |
| Refe | rences                                                   |

## 1 Preface

Thomas Debray (Smart Data Analysis and Statistics B.V.)

#### About this book

This book provides practical guidance for estimating the effectiveness of treatments in real-world populations. It explains how real-world data can directly be used or combined with other data sources to derive overall and individualized estimates of treatment effect. The book explains statistical methods for implementing bias adjustments, conducting evidence synthesis and individualizing treatment effect, whilst also providing illustrative examples and supporting software. The chapters and contents of the book are written by leading experts, with a track record in the generation and/or evaluation of real-world evidence.

This book is intended as a pivotal textbook for statisticians, epidemiologists, methodologists, regulators and/or regulatory scientists considering, undertaking or appraising the real-world evidence of treatment effectiveness. It covers key concepts and stages to derive and evaluate treatment effect estimates for entire populations and specific individuals. The book offers a conceptual framework towards estimating treatment effects at both the population and individualized level, where modelling methods may include traditional regression-based and machine learning methods.

#### **Motivation**

Although randomized clinical trials traditionally form the cornerstone of comparative effectiveness research, there is a growing demand to consider evidence from "real-world data" (RWD) in clinical decision-making. These data are often available from observational cohort studies, administrative databases, and patient registries, and may offer additional insights into the comparative effectiveness and safety of treatments. Yet, the analysis of RWD and the evaluation of real-world evidence face many operational and methodological challenges.

In this book, we aim to address three current needs. First, this book will offer the guidance that is currently lacking on assessing the quality of RWD and on implementing appropriate

statistical methods to reduce bias of single study estimates of treatment effects. Second, this book will provide researchers with advanced approaches to pooling estimates from multiple non-randomized studies for which traditional evidence synthesis methods are not suitable. Finally, to answer the growing need to translate average estimates of treatment effects to individualized clinical decision-making, this book will present recent methods for more tailored approaches where patient characteristics are used to derive their individualized prognosis and treatment benefit.

This book aims to explain key principles and state-of-the-art methods for deriving treatment effects in entire populations and specific individuals using RWD. It will not only discuss statistical theory by key experts in the field; it will also provide illustrative examples and practical guidance for implementation in R. In short, the book aims to prepare a new generation of researchers who wish to generate and integrate evidence from both randomized and non-randomized data sources to investigate the real-world effectiveness of treatments in populations and individual patients.

#### **Contents**

The book is divided into six sections:

- 1. **Introduction**. This section introduces the relevance of real-world data for conducting comparative effectiveness research, and discusses various concerns regarding their use.
- 2. Principles of treatment effect estimation using real-world data. In this section, we discuss key principles of treatment effect estimation in non-randomized data sources. We explain methods to adjust for confounding (including propensity score analysis and disease risk score analysis) and missing data when estimating the treatment effect for a specific (sub)population.
- 3. Principles of evidence synthesis. In this section, we discuss statistical methods for estimating the treatment effect using (individual participant and/or aggregate) data from multiple studies. To this purpose, key principles of meta-analysis are introduced and explained, including the standard fixed effect and random effects meta-analysis models, methods for individual patient data (IPD) meta-analysis, methods for network meta-analysis, and methods for data-driven and tailored bias adjustment.
- 4. Advanced modelling issues for dealing with additional bias in both randomized and non-randomized data sources. In this section, we discuss advanced statistical and machine learning methods for dealing with time-varying confounding, informative visit schedules, and measurement error.
- 5. **Individualizing treatment effects for personalized medicine**. In this section, we discuss statistical methods to estimate and evaluate individualized treatment effects.
- 6. Closing

## 2 Validity control and quality assessment of real-world data and real-world evidence

Christina ReadThomas Debray (Smart Data Analysis and Statistics B.V.)

```
library(readxl)
library(robvis)
```

The quality of real-world data is often suboptimal and can therefore lead to bias when generating real-world evidence (RWE). In this chapter, we will introduce key quality concerns of RWD, including their accuracy, completeness, and timeliness. Subsequently, we will discuss which steps can be taken to assess the quality of RWD, and determine their fitness for use. The chapter will also introduce directed acyclic graphs to explain how the analysis of RWD may be affected by different types of bias. We will put particular focus on confounding bias, selection bias, and information bias, and explain how these biases can be addressed by referring to specific chapters from the book. Finally, the chapter presents common quality appraisal tools that can be used to assess the quality of real-world evidence (for instance when conducting a systematic review).

## 2.1 Example code

A risk of bias assessment was conducted in the COVID-NMA review. We can create a summary table of risk of bias assessment and produce a traffic light plot as follows:

```
Risk_of_Bias <- read_excel("resources/RoB-covid.xlsx")

#creation of traffic light plot
trafficlight_rob <- rob_traffic_light(data = Risk_of_Bias, tool = "ROB2")
trafficlight_rob</pre>
```



#### **Version info**

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15)

Platform: x86\_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

#### locale:

| [1] LC_CTYPE=C.UTF-8   | LC_NUMERIC=C        | LC_TIME=C.UTF-8     |
|------------------------|---------------------|---------------------|
| [4] LC_COLLATE=C.UTF-8 | LC_MONETARY=C.UTF-8 | LC_MESSAGES=C.UTF-8 |
|                        |                     |                     |

[7] LC\_PAPER=C.UTF-8 LC\_NAME=C LC\_ADDRESS=C

[10] LC\_TELEPHONE=C LC\_MEASUREMENT=C.UTF-8 LC\_IDENTIFICATION=C

#### attached base packages:

[1] stats graphics grDevices utils datasets methods base

#### other attached packages:

[1] robvis\_0.3.0 readxl\_1.4.3

#### loaded via a namespace (and not attached):

| [1]  | knitr_1.45                  | magrittr_2.0.3   | munsell_0.5.0  | tidyselect_1.2.0 |
|------|-----------------------------|------------------|----------------|------------------|
| [5]  | <pre>colorspace_2.1-0</pre> | R6_2.5.1         | rlang_1.1.2    | fastmap_1.1.1    |
| [9]  | fansi_1.0.5                 | dplyr_1.1.4      | tools_4.2.3    | grid_4.2.3       |
| [13] | gtable_0.3.4                | xfun_0.41        | utf8_1.2.4     | cli_3.6.1        |
| [17] | withr_2.5.2                 | htmltools_0.5.7  | $yaml_2.3.7$   | digest_0.6.33    |
| [21] | tibble_3.2.1                | lifecycle_1.0.4  | farver_2.1.1   | ggplot2_3.4.4    |
| [25] | purrr_1.0.2                 | tidyr_1.3.0      | vctrs_0.6.4    | codetools_0.2-19 |
| [29] | glue_1.6.2                  | evaluate_0.23    | rmarkdown_2.25 | compiler_4.2.3   |
| [33] | pillar_1.9.0                | cellranger_1.1.0 | scales_1.2.1   | generics_0.1.3   |
| [37] | jsonlite_1.8.7              | pkgconfig_2.0.3  |                |                  |

## 3 Confounding adjustment using propensity score methods

Tammy Jiang (Biogen) Thomas Debray (Smart Data Analysis and Statistics B.V.)

#### 3.1 Introduction

The purpose of this document is to provide example R code that demonstrates how to estimate the propensity score and implement matching, stratification, weighting, and regression adjustment for the continuous propensity score. In this example using simulated data, we have two disease modifying therapies (DMT1 and DMT0) and the outcome is the number of post-treatment multiple sclerosis relapses during follow-up. We will estimate the average treatment effect in the treated (ATT) using propensity score matching, stratification, and weighting. We will estimate the average treatment effect in the population (ATE) using regression adjustment for the continuous propensity score. The treatment effects can be interpreted as annualized relapse rate ratios (ARR).

We consider an example dataset with the following characteristics:

head(dat)

|    | age  | ${\tt female}$ | prevDMTeffic | cacy prem | edicalcost | ${\tt numSymptoms}$ | prerelapse_num |
|----|------|----------------|--------------|-----------|------------|---------------------|----------------|
| 1: | 50   | 1              | 1            | None      | 3899.61    | 1                   | 1              |
| 2: | 51   | 0              | 1            | None      | 9580.51    | 1                   | 0              |
| 3: | 56   | 0              | 1            | None      | 4785.89    | 1                   | 0              |
| 4: | 44   | 1              | 1            | None      | 8696.80    | 1                   | 1              |
| 5: | 63   | 0              | 1            | None      | 2588.03    | 1                   | 0              |
| 6: | 28   | 1              | 1            | None      | 5435.57    | 1                   | 0              |
|    | trea | atment y       | years        | Isc       | ore        |                     |                |
| 1: |      | DMT1 (         | 1.78507871   | Moderate  | A1         |                     |                |
| 2: |      | DMT1 (         | 0.01368925   | High      | A1         |                     |                |

```
3: DMT1 2 3.25530459 High A1
4: DMT1 2 5.73853525 Neutral
5: DMT1 0 1.31143053 High A1
6: DMT1 0 0.59137577 Moderate A0
```

#### 3.2 Comparing baseline characteristics

- DMT1 is the treatment group and DMT0 is the control group
- prevDMTefficacy is previous DMT efficacy (none, low efficacy, and medium/high efficacy)
- prerelapse\_num is the number of previous MS relapses

|                               | DMT0             | DMT1            |
|-------------------------------|------------------|-----------------|
| n                             | 2300             | 7700            |
| age (mean (SD))               | 51.39 (8.32)     | 44.25 (9.79)    |
| female = 1 (%)                | $1671 \ (72.65)$ | 5915 (76.82)    |
| prevDMTefficacy (%)           |                  |                 |
| None                          | 1247 (54.22)     | 3171 (41.18)    |
| Low_efficacy                  | $261\ (11.35)$   | 858 (11.14)     |
| Medium_high_efficacy          | 792(34.43)       | 3671 (47.68)    |
| $prerelapse\_num~(mean~(SD))$ | $0.39 \ (0.62)$  | $0.46 \ (0.68)$ |

## 3.3 Estimating the propensity score

#### 3.3.1 Logistic regression

We sought to restore balance in the distribution of baseline covariates in patients treated with DMT1 (index treatment) and DMT0 (control tratment). We fit a multivariable logistic regression model in which treatment was regressed on baseline characteristics including age, sex, previous DMT efficacy, and previous number of relapses.

```
Call:
glm(formula = treatment ~ age + female + prevDMTefficacy + prerelapse_num,
    family = binomial(), data = dat)
Deviance Residuals:
   Min
           1Q Median
                               3Q
                                       Max
-2.7949
         0.2585 0.5220 0.7478
                                    1.5033
Coefficients:
                                    Estimate Std. Error z value Pr(>|z|)
                                    4.809473
                                              0.157127 30.609 < 2e-16 ***
(Intercept)
                                   -0.086708
                                               0.002996 -28.939 < 2e-16 ***
age
female1
                                    0.253611
                                               0.057664 4.398 1.09e-05 ***
                                    0.310394
prevDMTefficacyLow_efficacy
                                               0.083022 3.739 0.000185 ***
prevDMTefficacyMedium_high_efficacy 0.660266
                                               0.054393 12.139 < 2e-16 ***
prerelapse_num
                                    0.156318
                                               0.039288 3.979 6.93e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 10786 on 9999 degrees of freedom
Residual deviance: 9597 on 9994 degrees of freedom
ATC: 9609
Number of Fisher Scoring iterations: 5
  # Extract propensity scores
  dat$ps <- predict(ps.model, data = dat, type = "response")</pre>
```

#### 3.3.2 Assessing overlap

We examined the degree of overlap in the distribution of propensity scores across treatment groups using histograms and side-by-side box plots.

```
# Histogram
ggplot(dat, aes(x = ps, fill = as.factor(treatment), color = as.factor(treatment))) +
  geom_histogram(alpha = 0.3, position='identity', bins = 15) +
  facet_grid(as.factor(treatment) ~ .) +
```

```
xlab("Probability of Treatment") +
ylab("Count") +
ggtitle("Propensity Score Distribution by Treatment Group") +
theme(legend.position = "bottom", legend.direction = "vertical")
```

## Propensity Score Distribution by Treatment Group



```
# Side-by-side box plots
ggplot(dat, aes(x=as.factor(treatment), y=ps, fill=as.factor(treatment))) +
    geom_boxplot() +
    ggtitle("Propensity Score Distribution by Treatment Group") +
    ylab("Probability of Treatment") +
    xlab("Treatment group") +
    theme(legend.position = "none")
```

## Propensity Score Distribution by Treatment Group



```
# Distribution of propensity scores by treatment groups
summary(dat$ps[dat$treatment == "DMT1"])
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3230 0.7214 0.8265 0.7970 0.9010 0.9854
```

```
summary(dat$ps[dat$treatment == "DMTO"])
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3230 0.5730 0.6894 0.6795 0.7975 0.9799

## 3.4 Propensity score matching

#### 3.4.1 1:1 Optimal full matching without replacement

```
call:
matchit(formula = treatment ~ age + female + prevDMTefficacy +
    prerelapse_num, data = dat, method = "full", estimand = "ATT")
```

Summary of Balance for All Data:

|                                        | Means Treated | Means Control | Std. Mean Diff. |
|----------------------------------------|---------------|---------------|-----------------|
| distance                               | 0.7970        | 0.6795        | 0.8943          |
| age                                    | 44.2496       | 51.3883       | -0.7289         |
| female0                                | 0.2318        | 0.2735        | -0.0987         |
| female1                                | 0.7682        | 0.7265        | 0.0987          |
| ${\tt prevDMTefficacyNone}$            | 0.4118        | 0.5422        | -0.2649         |
| <pre>prevDMTefficacyLow_efficacy</pre> | 0.1114        | 0.1135        | -0.0065         |
|                                        |               |               |                 |

| prerelapse_num         0.4595         0.3930         0.0976           Var. Ratio eCDF Mean eCDF Max         distance         0.7873         0.1917         0.3379           age         1.3868         0.1519         0.3085           female0         . 0.0417         0.0417           female1         . 0.0417         0.0417           prevDMTefficacyNone         . 0.1304         0.1304           prevDMTefficacyLow_efficacy         . 0.0020         0.0020           prevDMTefficacyMedium_high_efficacy         . 0.1324         0.1324           prerelapse_num         1.1990         0.0133         0.0383    Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.  distance  0.7970  0.7970  0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| distance       0.7873       0.1917       0.3379         age       1.3868       0.1519       0.3085         female0       .       0.0417       0.0417         female1       .       0.0417       0.0417         prevDMTefficacyNone       .       0.1304       0.1304         prevDMTefficacyLow_efficacy       .       0.0020       0.0020         prevDMTefficacyMedium_high_efficacy       .       0.1324       0.1324         prerelapse_num       1.1990       0.0133       0.0383    Summary of Balance for Matched Data: Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| age 1.3868 0.1519 0.3085  female0 . 0.0417 0.0417  female1 . 0.0417 0.0417  prevDMTefficacyNone . 0.1304 0.1304  prevDMTefficacyLow_efficacy . 0.0020 0.0020  prevDMTefficacyMedium_high_efficacy . 0.1324 0.1324  prerelapse_num 1.1990 0.0133 0.0383  Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| female0 female1 female1 female1 female2 female3 female4 female1 female5 female6 female6 female7 female7 female7 female8 female8 female8 female8 female8 female9 female8 female9 female9 female9 female8 female9 female |
| female1 prevDMTefficacyNone prevDMTefficacyLow_efficacy prevDMTefficacyLow_efficacy prevDMTefficacyMedium_high_efficacy prevDMTefficacyMedium_high_efficacy prerelapse_num 1.1990 0.0133 0.0383  Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| prevDMTefficacyNone . 0.1304 0.1304 prevDMTefficacyLow_efficacy . 0.0020 0.0020 prevDMTefficacyMedium_high_efficacy . 0.1324 0.1324 prerelapse_num 1.1990 0.0133 0.0383  Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| prevDMTefficacyLow_efficacy . 0.0020 0.0020 prevDMTefficacyMedium_high_efficacy . 0.1324 0.1324 prerelapse_num 1.1990 0.0133 0.0383  Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| prevDMTefficacyMedium_high_efficacy . 0.1324 0.1324 prerelapse_num 1.1990 0.0133 0.0383  Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| prerelapse_num 1.1990 0.0133 0.0383  Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Summary of Balance for Matched Data:  Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Means Treated Means Control Std. Mean Diff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| digtages 0.7070 0.7070 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| distance 0.7970 0.7970 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| age 44.2496 44.1749 0.0076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| female0 0.2318 0.2327 -0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| female1 0.7682 0.7673 0.0022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| prevDMTefficacyNone 0.4118 0.4391 -0.0555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| prevDMTefficacyLow_efficacy 0.1114 0.0873 0.0766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| prevDMTefficacyMedium_high_efficacy 0.4768 0.4736 0.0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| prerelapse_num 0.4595 0.4759 -0.0241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Var. Ratio eCDF Mean eCDF Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| distance 0.9968 0.0007 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| age 0.9979 0.0047 0.0300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| female0 . 0.0009 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| female1 . 0.0009 0.0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| prevDMTefficacyNone . 0.0273 0.0273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| prevDMTefficacyLow_efficacy . 0.0241 0.0241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| prevDMTefficacyMedium_high_efficacy . 0.0032 0.0032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| prerelapse_num 1.0230 0.0060 0.0229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Std. Pair Dist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| distance 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| age 0.1158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| female0 0.2334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| female1 0.2334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| prevDMTefficacyNone 0.2183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| prevDMTefficacyLow_efficacy 0.3742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| prevDMTefficacyMedium_high_efficacy 0.3758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| prerelapse_num 0.3690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

## Sample Sizes:

Control Treated

```
All 2300. 7700
Matched (ESS) 253.16 7700
Matched 2300. 7700
Unmatched 0. 0
Discarded 0. 0
```

plot(summary(opt))

```
distance
age
female0
female1
prevDMTefficacyNone
prevDMTefficacyLow_efficacy
prerelapse_num

0.0 0.4 0.8
Absolute Standardized
Mean Difference
```

```
# black line is treated group, grey line is control group
plot(opt, type = "density", which.xs = vars)
```





#### 3.4.3 Estimating the ATT

We can estimate the ATT in the matched sample using Poisson regression in which the number of post-treatment relapses is regressed on treatment status and follow-up time for each patient (captured by the variable years). More details are provided at <a href="https://cran.r-project.org/web/packages/MatchIt/vignettes/estimating-effects.html">https://cran.r-project.org/web/packages/MatchIt/vignettes/estimating-effects.html</a>.

Warning: The `transform\_pre` argument is deprecated. Use `comparison` instead.

```
opt.comp |> tidy()
```

Warning: The `transform\_pre` argument is deprecated. Use `comparison` instead.

```
# A tibble: 1 x 8
            contrast
                        estimate std.error statistic p.value conf.low conf.high
  term
            <chr>
                           <dbl>
                                     <dbl>
                                                <dbl>
                                                         <dbl>
                                                                  <dbl>
                                                                            <dbl>
  <chr>
1 treatment mean(DMT1)~
                           0.772
                                     0.105
                                                7.37 1.68e-13
                                                                  0.566
                                                                            0.977
```

As indicated in the summary output above, the annualized relapse rate ratio for DMT1 vs DMT0 among patients treated with DMT0 (ATT) is given as 0.77 with a 95% confidence interval ranging from 0.57 to 0.98.

### 3.5 Propensity score stratification

#### 3.5.1 Divide sample into quintiles of propensity scores

We will form five mutually exclusive groups of the estimated propensity score.

```
# Divide the PS scores into five strata of roughly equal size
breaks <- quantile(dat$ps, probs = seq(0, 1, by = 0.2))
dat <- dat %>% mutate(ps.strata = cut(ps,
                                       breaks = breaks,
                                       labels = seq(1:5),
                                       include.lowest = TRUE))
# Number of patients in each stratum
table(dat$ps.strata)
1
     2
          3
               4
                     5
```

## 2002 2015 1991 1997 1995

#### 3.5.2 Assess balance within each propensity score stratum

Within each propensity score stratum, treated and control patients should have similar values of the propensity score and the distribution of baseline covariates should be approximately balanced between treatment groups.

#### 3.5.2.1 Propensity Score Stratum #1

```
tab1.strata1 <- CreateTableOne(vars, data = dat %>% filter(ps.strata == 1),
                                factorVars = c("female", "prevDMTefficacy"),
                                strata = "treatment",
                                test = FALSE)
tab1.strata1.print <- print(tab1.strata1,</pre>
                             catDigits = 2,
                             contDigits = 2,
                             smd = TRUE)
```

#### tab1.strata1.print

|                            | DMT0            | DMT1            | SMD   |
|----------------------------|-----------------|-----------------|-------|
| n                          | 901             | 1101            |       |
| age (mean (SD))            | 58.38(3.67)     | 57.45(3.73)     | 0.251 |
| female = 1 (%)             | 605 (67.15)     | 775 (70.39)     | 0.070 |
| prevDMTefficacy (%)        |                 |                 | 0.056 |
| None                       | 650 (72.14)     | 771 (70.03)     |       |
| Low_efficacy               | 106 (11.76)     | 130 (11.81)     |       |
| Medium_high_efficacy       | 145 (16.09)     | 200 (18.17)     |       |
| prerelapse_num (mean (SD)) | $0.29 \ (0.53)$ | $0.33 \ (0.56)$ | 0.074 |

#### 3.5.2.2 Propensity Score Stratum #2

|                            | DMT0            | DMT1             | SMD   |
|----------------------------|-----------------|------------------|-------|
| n                          | 617             | 1398             |       |
| age (mean (SD))            | 52.18(4.35)     | 51.97(4.22)      | 0.049 |
| female = 1 (%)             | 458 (74.23)     | $1048 \ (74.96)$ | 0.017 |
| prevDMTefficacy (%)        |                 |                  | 0.054 |
| None                       | 292 (47.33)     | 624 (44.64)      |       |
| Low_efficacy               | 69 (11.18)      | 162 (11.59)      |       |
| Medium_high_efficacy       | 256 (41.49)     | 612 (43.78)      |       |
| prerelapse_num (mean (SD)) | $0.40 \ (0.64)$ | $0.41 \ (0.66)$  | 0.004 |

#### 3.5.2.3 Propensity Score Stratum #3

|                                 | DMT0            | DMT1             | SMD   |
|---------------------------------|-----------------|------------------|-------|
| n                               | 392             | 1599             |       |
| age (mean (SD))                 | 46.73(4.06)     | $46.36 \ (4.08)$ | 0.092 |
| female = $1 (\%)$               | 305 (77.81)     | $1193 \ (74.61)$ | 0.075 |
| prevDMTefficacy (%)             |                 |                  | 0.041 |
| None                            | 168 (42.86)     | 687 (42.96)      |       |
| Low_efficacy                    | 52 (13.27)      | 191 (11.94)      |       |
| Medium_high_efficacy            | 172 (43.88)     | 721 (45.09)      |       |
| $prerelapse\_num\ (mean\ (SD))$ | $0.49 \ (0.68)$ | 0.47 (0.66)      | 0.031 |

#### 3.5.2.4 Propensity Score Stratum #4

|                            | DMT0            | DMT1             | SMD   |
|----------------------------|-----------------|------------------|-------|
| n                          | 269             | 1728             |       |
| age (mean (SD))            | 41.07(4.11)     | 40.88(4.29)      | 0.046 |
| female = 1 (%)             | $203\ (75.46)$  | $1356 \ (78.47)$ | 0.071 |
| prevDMTefficacy (%)        |                 |                  | 0.084 |
| None                       | 105 (39.03)     | 634 (36.69)      |       |
| Low_efficacy               | 22 (8.18)       | 181 (10.47)      |       |
| Medium_high_efficacy       | 142 (52.79)     | 913 (52.84)      |       |
| prerelapse_num (mean (SD)) | $0.50 \ (0.69)$ | $0.51 \ (0.71)$  | 0.012 |

#### 3.5.2.5 Propensity Score Stratum #5

|                            | DMT0             | DMT1            | SMD   |
|----------------------------|------------------|-----------------|-------|
| n                          | 121              | 1874            |       |
| age (mean (SD))            | $33.26 \ (4.95)$ | 32.04 (5.58)    | 0.233 |
| female = 1 (%)             | 100 (82.64)      | 1543 (82.34)    | 0.008 |
| prevDMTefficacy (%)        |                  |                 | 0.050 |
| None                       | 32(26.45)        | 455 (24.28)     |       |
| Low_efficacy               | 12 (9.92)        | $194\ (10.35)$  |       |
| Medium_high_efficacy       | 77(63.64)        | 1225 (65.37)    |       |
| prerelapse_num (mean (SD)) | $0.52 \ (0.66)$  | $0.52 \ (0.73)$ | 0.004 |

#### 3.5.3 Estimating and pooling of stratum-specific treatment effects

The overall ATT across strata can be estimated by weighting stratum-specific estimates by the proportion of treated patients in each stratum over all treated patients in the sample.

We first define a function att.strata.function() to calculate stratum-specific estimates of the treatment effect:

```
att.strata.function <- function(data, stratum, confint = TRUE) {
  fit <- glm("y ~ treatment + offset(log(years))",
    family = poisson(link = "log"),
    data = data %>% filter(ps.strata == stratum))

arr <- round(as.numeric(exp(coef(fit)["treatmentDMT1"])), digits = 3)
  ll <- ul <- NA

if (confint) {
    ll <- round(exp(confint(fit))["treatmentDMT1",1], digits = 3)
    ul <- round(exp(confint(fit))["treatmentDMT1",2], digits = 3)
}</pre>
```

```
return(c("stratum" = stratum,
              "arr" = arr,
              "ci_lower" = 11,
              "ci_upper" = ul))
  }
  arr.strata <- as.data.frame(t(sapply(1:5, att.strata.function, data = dat)))</pre>
  arr.strata
 {\tt stratum}
            arr ci_lower ci_upper
1
        1 0.904
                   0.760
                             1.076
2
        2 0.822
                    0.696
                             0.975
3
        3 0.798
                   0.666
                             0.961
4
        4 0.716
                   0.587
                             0.881
        5 0.589
                   0.463
                             0.761
```

Subsequently, we define a function weights.strata.function() to calculate the weights for each stratum. The weight is the proportion of treated patients in each stratum over all treated patients in the sample:

```
weights.strata.function <- function(data, stratum) {</pre>
    n_DMT1_stratum <- nrow(data %>% filter(ps.strata == stratum & treatment == "DMT1"))
    n_DMT1_all <- nrow(data %>% filter(treatment == "DMT1"))
    weight <- n_DMT1_stratum/n_DMT1_all</pre>
    return(c("stratum" = stratum, "weight" = weight))
  weights.strata <- as.data.frame(t(sapply(1:5, weights.strata.function, data = dat)))</pre>
  weights.strata
  stratum
             weight
        1 0.1429870
1
2
        2 0.1815584
3
        3 0.2076623
        4 0.2244156
4
        5 0.2433766
  # Create table with ARRs and weights for each PS stratum
  arr.weights.merged <- merge(arr.strata, weights.strata, by = "stratum")</pre>
```

```
# Calculate the weighted ARR for each stratum
arr.weights.merged <- arr.weights.merged %>%
   mutate(weighted.arr = as.numeric(arr) * weight)

# Sum the weighted ARRs across strata to get the overall ATT
sum(arr.weights.merged$weighted.arr)
```

#### [1] 0.7482462

We now define a new function ps.stratification.bootstrap() that integrates estimation of the ATT and the PS weights for bootstrapping purposes:

We can now estimate the treatment effect and its confidence interval using the bootstrap procedure:

We can summarize the bootstrap samples as follows:

```
# Bootstrap estimate of the ARR
median(arr.stratification.boot$t)

[1] 0.7558609

# Bootstrap 95% CI of the ARR
boot.ci(arr.stratification.boot, conf = 0.95, type = "perc")

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL:
boot.ci(boot.out = arr.stratification.boot, conf = 0.95, type = "perc")

Intervals:
Level Percentile
95% ( 0.6833,  0.8366 )
Calculations and Intervals on Original Scale
```

#### 3.6 Propensity score weighting

#### 3.6.1 Calculate propensity score weights for ATT

Propensity score weighting reweights the study sample to generate an artificial population (i.e., pseudo-population) in which the covariates are no longer associated with treatment, thereby removing confounding by measured covariates. For the ATT, the weight for all treated patients is set to one. Conversely, the weight for patients in the control group is set to the propensity score divided by one minus the propensity score, that is, (PS/(1 - PS)). We estimated stabilized weights to address extreme weights.

#### w.out

#### A weightit object

- method: "glm" (propensity score weighting with GLM)
- number of obs.: 10000
   sampling weights: none
   treatment: 2-category
- estimand: ATT (focal: DMT1)
- covariates: age, female, prevDMTefficacy, prerelapse\_num

summary(w.out)

#### Summary of weights

#### - Weight ranges:

|      | Min    |    | Max     |
|------|--------|----|---------|
| DMTO | 0.4772 |    | 48.6856 |
| DMT1 | 1.0000 | 11 | 1.0000  |

- Units with the 5 most extreme weights by group:

|      | 9492    | 8836    | 6544    | 9610    | 4729    |
|------|---------|---------|---------|---------|---------|
| DMTO | 32.1027 | 32.1027 | 34.3126 | 38.1817 | 48.6856 |
|      | 5       | 4       | 3       | 2       | 1       |
| DMT1 | 1       | 1       | 1       | 1       | 1       |

#### - Weight statistics:

Coef of Var MAD Entropy # Zeros
DMT0 1.098 0.673 0.383 0
DMT1 0.000 0.000 -0.000 0

#### - Effective Sample Sizes:

DMT0 DMT1 Unweighted 2300. 7700 Weighted 1043.16 7700

plot(summary(w.out))

## Distribution of Weights



### 3.6.2 Assess balance in the weighted sample

```
bal.tab(w.out, stats = c("m", "v"), thresholds = c(m = .05))
```

#### Balance Measures

|                                                 | _                | D        | m         |        |
|-------------------------------------------------|------------------|----------|-----------|--------|
|                                                 | Туре             | Diff.Adj | M.Thre    | eshold |
| prop.score                                      | ${\tt Distance}$ | -0.0045  | Balanced, | <0.05  |
| age                                             | Contin.          | 0.0054   | Balanced, | <0.05  |
| female                                          | Binary           | 0.0005   | Balanced, | <0.05  |
| <pre>prevDMTefficacy_None</pre>                 | Binary           | -0.0003  | Balanced, | <0.05  |
| <pre>prevDMTefficacy_Low_efficacy</pre>         | Binary           | 0.0023   | Balanced, | <0.05  |
| ${\tt prevDMTefficacy\_Medium\_high\_efficacy}$ | Binary           | -0.0020  | Balanced, | <0.05  |
| prerelapse_num                                  | Contin.          | -0.0034  | Balanced, | <0.05  |
|                                                 | V.Ratio.         | Adj      |           |        |
| prop.score                                      | 0.99             | 926      |           |        |
| age                                             | 1.03             | 102      |           |        |
| female                                          |                  |          |           |        |
| <pre>prevDMTefficacy_None</pre>                 |                  | •        |           |        |

```
prevDMTefficacy_Low_efficacy
prevDMTefficacy_Medium_high_efficacy
                                          1.0941
prerelapse_num
Balance tally for mean differences
                    count
Balanced, < 0.05
Not Balanced, >0.05
Variable with the greatest mean difference
 Variable Diff.Adj
                       M.Threshold
          0.0054 Balanced, <0.05
      age
Effective sample sizes
              DMTO DMT1
Unadjusted 2300. 7700
Adjusted
           1043.16 7700
```

#### 3.6.3 Estimate the ATT

One way to estimate the ATT is to use the survey package. The function <code>svyglm()</code> generates model-robust (Horvitz-Thompson-type) standard errors by default, and thus does not require additional adjustments.

As indicated above, propensity score weighting yielded an ATT estimate of 0.71 (95% CI: 0.62; 0.8).

An alternative approach is to use glm() to estimate the treatment effect and calculate robust standard errors.

```
# Alternative way to estimate treatment effect
  weighted.fit2 <- glm(y ~ treatment + offset(log(years)),</pre>
                       family = poisson(link = "log"),
                       data = dat,
                       weights = w.out$weights)
  # Extract the estimated ARR
  exp(coef(weighted.fit2))["treatmentDMT1"]
treatmentDMT1
   0.7083381
  # Calculate robust standard error and p-value of the log ARR
  coeftest(weighted.fit2, vcov. = vcovHC)["treatmentDMT1",]
     Estimate
                 Std. Error
                                  z value
                                                Pr(>|z|)
-3.448337e-01 6.442745e-02 -5.352280e+00 8.685284e-08
  # Derive 95% confidence interval of the ARR
  exp(lmtest::coefci(weighted.fit2,
         level = 0.95, # 95% confidence interval
         vcov. = vcovHC)["treatmentDMT1",])
    2.5 %
             97.5 %
0.6243094 0.8036767
```

Using this approach, the ATT estimate was 0.71 (95% CI: 0.62; 0.8).

## 3.7 Regression adjustment for the propensity score for the ATE

In this approach, a regression model is fitted to describe the observed outcome as a function of the received treatment and the estimated propensity score:

```
ps.reg.fit <- glm(y ~ treatment + ps + offset(log(years)),</pre>
                  family = poisson(link = "log"),
                  data = dat)
  summary(ps.reg.fit)
Call:
glm(formula = y ~ treatment + ps + offset(log(years)), family = poisson(link = "log"),
   data = dat)
Deviance Residuals:
            1Q Median
                            3Q
                                   Max
-2.0160 -0.7336 -0.4441 -0.1352
                                4.2634
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
            -1.99585 0.10359 -19.266 < 2e-16 ***
(Intercept)
ps
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 7514.7 on 9999 degrees of freedom
Residual deviance: 7443.0 on 9997 degrees of freedom
AIC: 12378
Number of Fisher Scoring iterations: 6
  # ATE
  exp(coef(ps.reg.fit))["treatmentDMT1"]
treatmentDMT1
   0.7741606
Waiting for profiling to be done...
Waiting for profiling to be done...
```

Bootstrapped confidence intervals can be obtained as follows:

```
# Function to bootstrap for 95% CIs
  ps.reg.bootstrap <- function(data, inds) {</pre>
    d <- data[inds,]</pre>
    fit <- glm(y ~ treatment + ps + offset(log(years)),</pre>
                 family = poisson(link = "log"),
                 data = d
    return(exp(coef(fit))["treatmentDMT1"])
  set.seed(1854)
  # Generate 1000 bootstrap replicates
  arr.boot <- boot(dat, statistic = ps.reg.bootstrap, R = 1000)</pre>
  # Extract the median annualized relapse rate across 1000 bootstrap replicates
  median(arr.boot$t)
[1] 0.7750426
  # Bootstrap 95% CI of the ARR
  boot.ci(arr.boot, conf = 0.95, type = "perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
boot.ci(boot.out = arr.boot, conf = 0.95, type = "perc")
Intervals:
Level Percentile
95%
      (0.7007, 0.8547)
Calculations and Intervals on Original Scale
```

#### 3.8 Overview

| Method                                   | Estima | nd Estimate | 95% CI<br>(lower) | 95% CI<br>(upper) |
|------------------------------------------|--------|-------------|-------------------|-------------------|
| Optimal full matching                    | ATT    | 0.7715105   | 0.5663852         | 0.9766358         |
| Propensity score stratification          | ATT    | 0.7482462   | NA                | NA                |
| Propensity score stratification (with    | ATT    | 0.7558609   | 0.6832955         | 0.8365798         |
| bootstrapping)                           |        |             |                   |                   |
| Propensity score weighting               | ATT    | 0.7083381   | 0.6245507         | 0.8033662         |
| Propensity score weighting (robust SE)   | ATT    | 0.7083381   | 0.6243094         | 0.8036767         |
| PS regression adjustment                 | ATE    | 0.7741606   | 0.7101080         | 0.8448218         |
| PS regression adjustment (bootstrapping) | ATE    | 0.7750426   | 0.7006837         | 0.8546834         |

#### **Version info**

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15)

Platform: x86\_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

#### locale:

| [1]  | LC_CTYPE=C.UTF-8   | LC_NUMERIC=C           | LC_TIME=C.UTF-8     |
|------|--------------------|------------------------|---------------------|
| [4]  | LC_COLLATE=C.UTF-8 | LC_MONETARY=C.UTF-8    | LC_MESSAGES=C.UTF-8 |
| [7]  | LC_PAPER=C.UTF-8   | LC_NAME=C              | LC_ADDRESS=C        |
| [10] | IC TELEDUONE-C     | IC MEACHDEMENT_C HTE O | IC TDENTTETCATION_C |

[10] LC\_TELEPHONE=C LC\_MEASUREMENT=C.UTF-8 LC\_IDENTIFICATION=C

#### attached base packages:

| [1] | grid | stats | graphics | grDevices utils | datasets | methods |
|-----|------|-------|----------|-----------------|----------|---------|
|     | 0    |       | 0 1      | 6               |          |         |

[8] base

#### other attached packages:

| [1]  | WeightIt_0.14.2   | boot_1.3-28.1          | MatchIt_4.5.5            |
|------|-------------------|------------------------|--------------------------|
| [4]  | sandwich_3.0-2    | truncnorm_1.0-9        | tableone_0.13.2          |
| [7]  | survey_4.2-1      | survival_3.5-3         | Matrix_1.6-3             |
| [10] | MASS_7.3-58.2     | marginaleffects_0.16.0 | <pre>lmtest_0.9-40</pre> |
| [13] | zoo_1.8-12        | knitr_1.45             | ggplot2_3.4.4            |
| [16] | data.table_1.14.8 | cobalt_4.5.2           | dplyr_1.1.4              |

loaded via a namespace (and not attached):

| [1]  | tidyselect_1.2.0 | xfun_0.41       | mitools_2.4      | haven_2.5.3                 |
|------|------------------|-----------------|------------------|-----------------------------|
| [5]  | splines_4.2.3    | lattice_0.20-45 | labelled_2.12.0  | <pre>colorspace_2.1-0</pre> |
| [9]  | vctrs_0.6.4      | generics_0.1.3  | htmltools_0.5.7  | yaml_2.3.7                  |
| [13] | utf8_1.2.4       | rlang_1.1.2     | e1071_1.7-13     | pillar_1.9.0                |
| [17] | glue_1.6.2       | withr_2.5.2     | DBI_1.1.3        | lifecycle_1.0.4             |
| [21] | munsell_0.5.0    | gtable_0.3.4    | codetools_0.2-19 | evaluate_0.23               |
| [25] | labeling_0.4.3   | forcats_1.0.0   | fastmap_1.1.1    | class_7.3-21                |
| [29] | fansi_1.0.5      | optmatch_0.10.7 | Rcpp_1.0.11      | checkmate_2.3.0             |
| [33] | backports_1.4.1  | scales_1.2.1    | jsonlite_1.8.7   | farver_2.1.1                |
| [37] | chk_0.9.1        | hms_1.1.3       | digest_0.6.33    | insight_0.19.6              |
| [41] | cli_3.6.1        | tools_4.2.3     | magrittr_2.0.3   | proxy_0.4-27                |
| [45] | tibble_3.2.1     | crayon_1.5.2    | pkgconfig_2.0.3  | rlemon_0.2.1                |
| [49] | rmarkdown_2.25   | R6_2.5.1        | compiler_4.2.3   |                             |

## References

## 4 Effect Modification Analysis within the Propensity score Framework

Mohammad Ehsanul Karim (University of British Columbia)

Observational comparative effectiveness studies often adopt propensity score analysis to adjust for confounding. Although this approach is relatively straightforward to implement, careful thought is needed when treatment effect heterogeneity is present. This chapter illustrates the estimation of subgroup-specific treatment effects using (traditional) covariate adjustment methods, propensity score matching, propensity score weighting, propensity score stratification, and covariate adjustment using propensity scores.

#### 4.1 Simulation

We will use the following data-generation model:

```
require(simcausal)
D <- DAG.empty()
D <- D +
  node("age", distr = "rnorm",
       mean = 2, sd = 4) +
  node("gender", distr = "rbern",
       prob = plogis(4)) +
  node("education", distr = "rbern",
       prob = plogis(3 + 5 * age)) +
  node("diet", distr = "rbern",
       prob = plogis(1 - 3 * education)) +
  node("income", distr = "rbern",
       prob = plogis(2 - 5 * education - 4 * age)) +
  node("smoking", distr = "rbern",
       prob = plogis(1 + 1.2 * gender + 2 * age)) +
  node("hypertension", distr = "rbern",
```

Below is the diagram, with pink lines representing open backdoor path.

using the following vertex attributes:

NAdarkbluenone100.50

using the following edge attributes:

black0.210.60.5



We can now generate an example dataset:

```
Obs.Data <- sim(DAG = Dset, n = 50000, rndseed = 123)
Obs.Data$smoking <- as.character(Obs.Data$smoking)
Obs.Data$income <- as.factor(Obs.Data$income)</pre>
```

```
Obs.Data$income <- relevel(Obs.Data$income, ref = "1")
```

Sample data from the hypothetical example of association between hypertension and smoking, where other variables such as income, age [centered], gender, education and diet also plays a role in the data generation process.

|       | age   | gender | education | diet | income | smoking | hypertension |
|-------|-------|--------|-----------|------|--------|---------|--------------|
| 34901 | 12.29 | 1      | 1         | 1    | 0      | 1       | 1            |
| 149   | 10.40 | 1      | 1         | 0    | 0      | 1       | 1            |
| 10060 | 2.99  | 1      | 1         | 0    | 0      | 1       | 0            |
| 22220 | -4.31 | 0      | 0         | 0    | 1      | 0       | 1            |
| 9979  | -6.44 | 0      | 0         | 0    | 1      | 0       | 1            |

## 4.2 Covariate adjustment

### 4.2.1 Interaction approach

Below, we estimate a logistic regression model to assess whether the effect of smoking (the exposure) on hypertension is modified by income levels. This model considers the following variables:

• Outcome: hypertension

• Exposure variables: smoking and income

• Confounders: age and gender

Results indicate that the interaction between smoking status and income level is statistically significant (p = 0.02).

If we expand previous model to adjust for an additional confounder education, we have:

|                  | exp(Est.) | 2.5% | 97.5% | z val. | р    |
|------------------|-----------|------|-------|--------|------|
| (Intercept)      | 5.46      | 4.37 | 6.82  | 14.97  | 0.00 |
| smoking1         | 2.93      | 2.60 | 3.30  | 17.69  | 0.00 |
| income0          | 0.48      | 0.41 | 0.57  | -8.28  | 0.00 |
| age              | 1.29      | 1.27 | 1.31  | 36.77  | 0.00 |
| gender           | 0.54      | 0.43 | 0.67  | -5.55  | 0.00 |
| smoking1:income0 | 1.27      | 1.04 | 1.56  | 2.33   | 0.02 |

```
data = Obs.Data)
results.int.model <- summ(fit.w.int, exp = TRUE)</pre>
```

|                               | $\exp(\mathrm{Est.})$ | 2.5%           | 97.5%          | z val.       | p              |
|-------------------------------|-----------------------|----------------|----------------|--------------|----------------|
| (Intercept)                   | 5.69                  | 4.56           | 7.11           | 15.31        | 0.00           |
| smoking1                      | 3.35                  | 2.95           | 3.79           | 18.85        | 0.00           |
| income0                       | 1.09                  | 0.85           | 1.40           | 0.68         | 0.49           |
| age                           | 1.30                  | 1.28           | 1.32           | 37.32        | 0.00           |
| gender                        | 0.54                  | 0.43           | 0.67           | -5.58        | 0.00           |
| education<br>smoking1:income0 | $0.42 \\ 1.10$        | $0.35 \\ 0.90$ | $0.51 \\ 1.35$ | -8.87 $0.93$ | $0.00 \\ 0.35$ |

The interaction term between income and smoking is no longer statistically significant (p = 0.35).

We can generate a summary report from aforementioned effect modification analysis.

The table below depicts the adjusted odds ratios for income levels (high = 0, and low = 1). The variables CI.ll and CI.ul depict the lower and upper limits of the 95 percent confidence intervals,  $\mathtt{OR11} = OR_{A=1,M=1}$ ,  $\mathtt{OR10} = OR_{A=1}$ ,  $\mathtt{OR01} = OR_{M=1}$  and  $\mathtt{OR00}$  captures the reference.

Similarly, for the analysis adjusting for an additional confounder education, we have:

Table 4.1: Summary report from an interaction analysis when investigating association between two exposure variables (smoking and income) and hypertension.

| Measures                            | Estimates | CI.ll | CI.ul |
|-------------------------------------|-----------|-------|-------|
| OR00                                | 1.00      | NA    | NA    |
| OR01                                | 2.93      | 2.60  | 3.30  |
| OR10                                | 0.48      | 0.41  | 0.57  |
| OR11                                | 1.80      | 1.63  | 1.98  |
| OR(smoking1 on outcome [income0==0] | 2.93      | 2.60  | 3.30  |
| OR(smoking1 on outcome [income0==1] | 3.72      | 3.14  | 4.41  |
| Multiplicative scale                | 1.27      | 1.04  | 1.56  |
| RERI                                | -0.61     | -0.98 | -0.29 |

Table 4.2: Summary report from an interaction analysis when investigating association between two exposure variables (smoking and income) and hypertension.

| Measures                            | Estimates | CI.ll | CI.ul |
|-------------------------------------|-----------|-------|-------|
| OR00                                | 1.00      | NA    | NA    |
| OR01                                | 1.09      | 0.85  | 1.40  |
| OR10                                | 3.35      | 2.95  | 3.79  |
| OR11                                | 4.02      | 3.29  | 4.92  |
| OR(income0 on outcome [smoking1==0] | 1.09      | 0.85  | 1.40  |
| OR(income0 on outcome [smoking1==1] | 1.20      | 1.00  | 1.45  |
| OR(smoking1 on outcome [income0==0] | 3.35      | 2.95  | 3.79  |
| OR(smoking1 on outcome [income0==1] | 3.69      | 3.11  | 4.37  |
| Multiplicative scale                | 1.10      | 0.90  | 1.35  |
| RERI                                | 0.59      | 0.03  | 1.27  |
| AP                                  | 0.15      | 0.00  | 0.26  |
| SI                                  | 1.24      | 1.01  | 1.53  |

```
robust = TRUE,
confint = TRUE,
data = Obs.Dat)
```

JOHNSON-NEYMAN INTERVAL

When income is INSIDE the interval [-3.27, 16.87], the slope of smoking is p < .05.

Note: The range of observed values of income is [0.00, 1.00]

SIMPLE SLOPES ANALYSIS

Slope of smoking when income = 0.00(0):

Slope of smoking when income = 1.00 (1):

### 4.2.2 Stratification

This approach involves estimating a regression model in different strata of the discrete effect modifier income:

The table below summarizes the adjusted odds ratios for smoking across the different income levels (low = 1, and high = 0) as obtained using the stratified approach.

| Value of income | Estimate | 2.5~% | 97.5 % | z value | p value |
|-----------------|----------|-------|--------|---------|---------|
| 1               | 3.07     | 2.71  | 3.47   | 17.65   | 0       |
| 0               | 3.59     | 3.02  | 4.26   | 14.57   | 0       |

Note that we can obtain the same results by estimating a regression model with an interaction term between the modifier and all covariates:

## 4.3 Propensity score matching

### 4.3.1 Stratification with exact matching within subgroups

We simulate another example dataset using aforementioned DAG, but restrict the sample size to 5000 individuals to reduce computational burden.

```
set.seed(123)

Obs.Data \leftarrow sim(DAG = Dset, n = 5000, rndseed = 123)
```

We first estimate the propensity of smoking in the high-income group (income == 0):

Below, we draw a sample from the high-income group based on the hypothetical example of an association between hypertension and smoking. Here age [centered], gender, education, and diet are covariates.

```
age gender education diet income smoking hypertension distance
657
      6.0810120
                                1
                                     1
                                            0
                                                     1
                                                                  1 0.9999874
                                     0
                                            0
                                                                  0 0.9943155
4932 1.6109860
                     1
                                1
                                                     1
252 -0.2475055
                     1
                                1
                                     1
                                            0
                                                    0
                                                                  1 0.8525107
2693 -0.2511048
                     1
                                1
                                     0
                                            0
                                                                  1 0.8516785
                                                   1
1646 -0.2836155
                     1
                                0
                                                                  1 0.8439843
                                            0
                                                     1
        weights subclass
    1.00000000
657
                      33
4932 1.00000000
                      33
252 0.04944134
                      23
2693 1.00000000
                      23
1646 1.00000000
                       4
```

Now, we do the same for the low-income group (income == 1):

We estimated the exposure effect from a weighted outcome model for the matched data. While the weights are essential for estimating the point estimate from the outcome model, the subclass variable assists in calculating the robust variance of the exposure effect estimate.

Table 4.3: Subgroup-specific treatment effect estimates (expressed in log-OR) from the hypothetical example using the stratified approach.

| Value of income | Est. | 2.5%   | 97.5% | t val. | p    |
|-----------------|------|--------|-------|--------|------|
| 0               | 3.76 | -43.15 | 50.66 | 0.16   | 0.88 |
| 1               | 1.36 | 0.90   | 1.81  | 5.78   | 0.00 |

### 4.3.2 Joint approach without exact matching within subgroups

Here, entire cohort data is used to estimate the propensity scores, and the effect modifier income is considered as a covariate in the propensity score model:

```
johnson_neyman = TRUE,
confint = TRUE,
data = match.data.j)
```

Table 4.4: Subgroup-specific treatment effect estimates (expressed in log-OR) from the hypothetical example using the joint approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 3.77 | 1.02 | 1.77 | 5.76  | 3.70   | 0 |
| 1               | 1.34 | 0.28 | 0.79 | 1.89  | 4.78   | 0 |

### 4.3.3 Joint approach with exact matching within subgroups

We specify the moderator variable's name in the exact argument of the matchit function.

```
ps.formula.no.mod <- as.formula("smoking ~ age + gender")</pre>
match.obj.js <- matchit(ps.formula.no.mod, data = Obs.Data,</pre>
                         method = "full", distance = "glm",link = "logit",
                         exact = "income")
match.data.js <- match.data(match.obj.js)</pre>
fit.joint.exact <- glm(hypertension ~ smoking*income + age + gender,</pre>
                        data = match.data.js, weights = weights,
                        family = binomial("logit"))
js.nexp.adj.res <- interactions::sim_slopes(fit.joint.exact,</pre>
                                               pred = smoking,
                                               modx = income, # effect modifier
                                               robust = "HC1",
                                               cluster = "subclass",
                                               johnson_neyman = FALSE,
                                               confint = TRUE,
                                               data = match.data.js)
```

Table 4.5: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using the Joint model, separate matching approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 3.81 | 1.02 | 1.81 | 5.80  | 3.74   | 0 |
| 1               | 1.34 | 0.28 | 0.79 | 1.89  | 4.76   | 0 |

### 4.3.4 Interaction approach without exact matching within subgroups

Analysts incorporate relevant moderator-covariate interactions into the propensity score model that align with biological plausibility. For instance, in the case study we considered an interaction between age (a covariate) and income (a moderator), but did not include other interactions terms.

Table 4.6: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using the interaction approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 3.77 | 1.02 | 1.77 | 5.77  | 3.70   | 0 |
| 1               | 1.35 | 0.28 | 0.80 | 1.91  | 4.77   | 0 |

### 4.3.5 Interaction approach with exact matching within subgroups

This method bears resemblance to the interaction approach for propensity score estimation. However, when it comes to matching, researchers match within each moderator subgroup.

Table 4.7: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using the interaction model, separate matching approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | р |
|-----------------|------|------|------|-------|--------|---|
| 0               | 3.75 | 1.02 | 1.75 | 5.75  | 3.68   | 0 |
| 1               | 1.37 | 0.28 | 0.82 | 1.92  | 4.88   | 0 |

## 4.4 Propensity Score Weighting

### 4.4.1 Common model

This approach adds confounder-moderator interactions in the common weight model.

Table 4.8: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using the weighting approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | t val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 2.66 | 0.63 | 1.42 | 3.89  | 4.23   | 0 |
| 1               | 1.32 | 0.25 | 0.83 | 1.82  | 5.24   | 0 |

We can adjust previous analysis model to adopt stabilized weights for the propensity score (stabilize = TRUE):

Table 4.9: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using stabilized propensity score weights.

| Value of income | Est. | S.E. | 2.5% | 97.5% | t val. | р |
|-----------------|------|------|------|-------|--------|---|
| 0               | 2.27 | 0.73 | 0.84 | 3.69  | 3.12   | 0 |
| 1               | 1.32 | 0.25 | 0.83 | 1.82  | 5.23   | 0 |

### 4.4.2 Separate models

Propensity score weighting approach with weights estimated separately from each subgroup:

Table 4.10: Weight summaries before and after truncation.

| Weight               | Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.  |
|----------------------|------|---------|--------|------|---------|-------|
| Raw weights          | 0    | 0.01    | 0.11   | 0.45 | 1       | 11.69 |
| 1% truncated weights | 0    | 0.01    | 0.11   | 0.44 | 1       | 7.61  |

```
# Outcome model for income = 1
d.w1 <- svydesign(~1, weights = trimmed.weight.1.percent1,</pre>
                   data = subset(Obs.Data, income == 1))
fit2unadj1 <- svyglm(hypertension ~ smoking,</pre>
                      design = d.w1,
                      family = binomial("logit"))
# weight model for income = 0
W.out0 <- weightit(ps.formula, data = subset(Obs.Data, income == 0),
                   method = "ps", estimand = "ATT")
trimmed.weight.1.percent0 <- trim(W.out0$weights, at = 1, lower = TRUE)</pre>
# Outcome model for income = 0
d.w0 <- svydesign(~1, weights = trimmed.weight.1.percent0,</pre>
                   data = subset(Obs.Data, income == 0))
fit2unadj0 <- svyglm(hypertension ~ smoking,</pre>
                      design = d.w0,
                      family = binomial("logit"))
fit.exp.adj.res1 <- summ(fit2unadj1, confint = TRUE)</pre>
fit.exp.adj.res0 <- summ(fit2unadj0, confint = TRUE)</pre>
```

Table 4.11: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using the propensity score weighting approach (Separate weight models).

| Value of income | Est. | 2.5% | 97.5% | t val. | p |
|-----------------|------|------|-------|--------|---|
| 0               | 2.21 | 1.27 | 3.15  | 4.60   | 0 |
| 1               | 1.34 | 0.85 | 1.83  | 5.36   | 0 |

### 4.4.3 Weights from the subgroup balancing propensity scores

Subgroup balancing propensity scores for propensity score weighting:

Table 4.12: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using the subgroup balancing weighting approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | t val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 2.68 | 0.64 | 1.44 | 3.92  | 4.22   | 0 |
| 1               | 1.32 | 0.25 | 0.82 | 1.82  | 5.22   | 0 |

## 4.5 Covariate adjustment for the propensity score

### 4.5.1 As continuous covariate

An implementation of propensity scores as a continuous covariate in the outcome model:

```
# Separate models for each subgroup

# For subgroup income = 1
Obs.Data$ps[Obs.Data$income == 1] <- glm(ps.formula,</pre>
```

Table 4.13: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using Propensity Score as a covariate adjustment approach (considering separate models for each subgroup).

| Value of income | Est. | 2.5% | 97.5% | z val. | p |
|-----------------|------|------|-------|--------|---|
| 0               | 1.16 | 0.56 | 1.75  | 3.83   | 0 |
| 1               | 1.37 | 0.96 | 1.77  | 6.61   | 0 |

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

```
modx = income,
confint = TRUE,
data = Obs.Data)
```

Table 4.14: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using Propensity Score as a covariate adjustment approach (considering a common model).

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | р |
|-----------------|------|------|------|-------|--------|---|
| 0               | 1.17 | 0.29 | 0.61 | 1.74  | 4.07   | 0 |
| 1               | 1.43 | 0.23 | 0.98 | 1.87  | 6.30   | 0 |

### 4.5.2 As quantiles

The propensity scores as a categorical covariate, broken by quintiles, in the outcome model.

```
Obs.Data$ps <- glm(ps.formula.with.int,
                    data = Obs.Data,
                    family = "binomial")$fitted.values
quintiles <- quantile(Obs.Data$ps,
                       prob = seq(from = 0, to = 1, by = 0.2),
                       na.rm = T)
Obs.Data$psq <- cut(Obs.Data$ps, breaks = quintiles,
                    labels = seq(1,5), include.lowest = T)
Obs.Data$psq <- as.factor(Obs.Data$psq)</pre>
fit2adjq <- glm(hypertension ~ (smoking*psq)*income,</pre>
                 family = binomial("logit"),
                 data = Obs.Data)
cq.nexp.adj.res <- interactions::sim_slopes(fit2adjq,</pre>
                                              pred = smoking,
                                              modx = income,
                                              confint = TRUE,
                                              data = Obs.Data)
```

Table 4.15: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using Propensity Score as a covariate adjustment approach (as quintiles).

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 3.08 | 0.63 | 1.85 | 4.32  | 4.91   | 0 |
| 1               | 2.60 | 0.47 | 1.68 | 3.51  | 5.56   | 0 |

## 4.6 Propensity Score Stratification

Here is an implementation of propensity score stratification approach by using the marginal mean weighting through stratification (MMWS):

Table 4.16: Subgroup-specific exposure effect estimates (expressed in log-OR) from the hypothetical example using propensity score stratification approach.

| Value of income | Est. | S.E. | 2.5% | 97.5% | z val. | p |
|-----------------|------|------|------|-------|--------|---|
| 0               | 2.21 | 0.47 | 1.29 | 3.13  | 4.71   | 0 |
| 1               | 1.89 | 0.19 | 1.51 | 2.26  | 9.78   | 0 |

## 4.7 Summary





### Version info

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15)

Platform: x86\_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

### locale:

| L1  | ] LC_CTYPE=C.UTF-8   | LC_NUMERIC=C           | LC_TIME=C.UTF-8     |
|-----|----------------------|------------------------|---------------------|
| [4  | ] LC_COLLATE=C.UTF-8 | LC_MONETARY=C.UTF-8    | LC_MESSAGES=C.UTF-8 |
| [7  | ] LC_PAPER=C.UTF-8   | LC_NAME=C              | LC_ADDRESS=C        |
| [10 | ] LC_TELEPHONE=C     | LC_MEASUREMENT=C.UTF-8 | LC_IDENTIFICATION=C |

#### attached base packages: graphics grDevices utils [1] grid stats datasets methods [8] base other attached packages: [1] interactions\_1.1.5 survey\_4.2-1 survival 3.5-3 Matrix\_1.6-3 [5] interactionR\_0.1.6 simcausal\_0.5.6 scales\_1.2.1 ggplot2\_3.4.4 [9] xtable\_1.8-4 dplyr\_1.1.4 kableExtra\_1.3.4 knitr\_1.45 [13] cowplot\_1.1.1 broom\_1.0.5 MatchIt\_4.5.5 jtools\_2.2.2 [17] sandwich\_3.0-2 $lmtest_0.9-40$ zoo\_1.8-12 optmatch\_0.10.7 [21] WeightIt\_0.14.2 cobalt\_4.5.2 table1\_1.4.3 loaded via a namespace (and not attached): [1] fontquiver\_0.2.1 webshot\_0.5.5 httr\_1.4.7 [4] tools\_4.2.3 backports\_1.4.1 utf8\_1.2.4 [7] R6\_2.5.1 DBI\_1.1.3 colorspace\_2.1-0 [10] withr\_2.5.2 tidyselect\_1.2.0 curl\_5.1.0 [13] compiler\_4.2.3 textshaping\_0.3.7 cli\_3.6.1 [16] rvest\_1.0.3 expm\_0.999-7 flextable 0.9.4 [19] xml2\_1.3.5 officer\_0.6.3 fontBitstreamVera\_0.1.1 [22] labeling\_0.4.3 mvtnorm\_1.2-3 askpass\_1.2.0 [25] systemfonts\_1.0.5 stringr\_1.5.1 digest\_0.6.33 [28] rmarkdown\_2.25 svglite\_2.1.2 gfonts\_0.2.0 [31] pkgconfig\_2.0.3 fastmap\_1.1.1 htmltools\_0.5.7 [34] rlang\_1.1.2 httpcode\_0.3.0 rstudioapi\_0.15.0 [37] shiny\_1.8.0 farver\_2.1.1 generics\_0.1.3 [40] jsonlite\_1.8.7 car\_3.1-2 zip\_2.3.0 [43] magrittr\_2.0.3 Formula\_1.2-5 Rcpp\_1.0.11 [46] munsell\_0.5.0 fansi\_1.0.5 $abind_1.4-5$ [49] gdtools\_0.3.4 lifecycle\_1.0.4 chk\_0.9.1 [52] stringi\_1.8.2 yaml\_2.3.7 carData\_3.0-5 [55] promises\_1.2.1 crayon\_1.5.2 lattice\_0.20-45 pillar\_1.9.0 [58] splines\_4.2.3 pander\_0.6.5

igraph\_1.5.1

glue\_1.6.2

mitools\_2.4

vctrs\_0.6.4

later\_1.3.1

tibble\_3.2.1

openssl\_2.1.1

assertthat\_0.2.1

codetools 0.2-19

fontLiberation 0.1.0

evaluate\_0.23

httpuv\_1.6.12

ellipsis\_0.3.2

purrr\_1.0.2

xfun\_0.41 ragg\_1.2.6

[61] uuid 1.1-1

[64] crul\_1.4.0

 $[67] msm_1.7.1$ 

[76] tidyr\_1.3.0

[85] rlemon\_0.2.1

[79] mime\_0.12

[70] data.table\_1.14.8 [73] gtable\_0.3.4

[82] viridisLite\_0.4.2

## References

# 5 Dealing with missing data

Johanna Munoz (Julius Center for Health Sciences and Primary Care) Thomas Debray (Smart Data Analysis and Statistics B.V.)

## 5.1 Main Analysis

The main objective of this analysis is to assess whether the number of episodes (y) occurring within specific time periods (years) differs between the treatment groups (1: DMF and 0: TERI). To address potential confounding factors, the researchers consider variables such as patient age, the log of premedical cost (logPremedicalcost), previous DMT efficacy (prevDMTefficacy), and the number of episodes in previous relapses (prerelapseNum).

When estimating treatment effects from observational data, an assumption is made that the patient populations in both treatment groups are as similar as possible. Various methods for balancing data across treatment groups are proposed, including matching, inverse propensity weighting, stratification, and regression adjustment.

In this case, the focus is specifically on the matching method, which offers advantages over regression adjustment by potentially alleviating issues related to model mis-specification. This includes addressing non-linear relationships between certain confounders and the outcome variable and accounting for treatment effects that may depend on specific confounders (treatment-confounder interaction terms). Propensity scores are used to match subjects in the treatment groups.

Moreover, intentionally introducing incomplete covariate variables in this example adds complexity to the propensity score estimation. Depending on the propensity score estimation technique employed, it may be necessary to incorporate an imputation step. For instance, logistic regression estimation requires complete data for all observations, while XGBoost is robust to missing data [?].

To estimate marginal treatment effects, the g-computation method is employed [?]. This method involves specifying a model for the outcome dependent on the treatment and covariates. The potential outcomes, i.e., the predicted values of the outcome on treatment  $(y_i^1)$  and control

 $(y_i^0)$  for each sample unit i, are estimated. The marginal treatment effect is then calculated by contrasting the averaged estimated potential outcomes.

In this example, we consider the estimation of comparative treatment effects in the absence of treatment-effect heterogeneity.

### 5.2 Estimation workflow

The proposed workflow consists of the following steps:



Figure 5.1: Estimation Workflow

- 1. Data Exploration: In this step, we examine the observed data to comprehend the variables within the dataset. Our primary focus lies on identifying missing patterns and relationships among observed variables, including missing indicator variables and others. This exploration aids in discerning the most plausible missing mechanisms and suitable imputation techniques. Additionally, field experts' insights may be incorporated to enhance understanding of the missing process, potentially considering MNAR assumptions.
- 2. **Imputation:** It is essential to evaluate whether the imputation procedure is necessary or if simpler methods, such as complete case analysis, are more suitable. In case imputation procedures are required, selecting plausible imputation methods that align with the main model analysis is crucial. This involves choosing individual imputation methods for each incomplete variable, determining the predictor variables on the imputation model. Pre\_imputation (where imputation values can be deterministically derived from other variables) and Post-imputation (e.g.ensuring imputed values fall within a reasonable range) steps may also considered.
- 3. **Data Balancing:** Several methods, including PS matching or inverse weighting propensity score, can be utilized. It is required to evaluate the balance, which could be done via visual inspection.(eg.cobalt package). In this example, we estimate propensity scores

using logistic regression. For most balancing procedures in R, counterparts specifically designed for imputed datasets are available, such as those in the matchthem R package, which includes PS matching and IPW as done in the matchit R package.

- 4. **Model Fit:** It is fit a model to predict the outcomes for each sample unit under each possible treatment value (DMF and TERI), as predictors include the treatment and optionally the baseline covariates and also the propensity score.
- 5. **Treatment Estimation & Pooling:** For simplicity in this tutorial, we will use the comparison functions from the R **matchingmethods** package [?], which can be used for completed data and also from outputs from the imputation process. In the last case, internally the functions calculate the treatment effects on each imputed dataset and pool the estimates using Rubin's Rules.

Let's start by preparing the R environment. All the functions used in this tutorial can be found in the resource file functions.r.

```
# Load the required packages and additional functions
source("resources/chapter 09/functions.r")
```

## 5.3 Homogeneous Treatment Effect

In this example, we focus on estimating comparative treatment effects in the absence of heterogeneous treatment effects (HTE).

### 5.3.1 Generating an Observational Dataset

We can simulate an observational dataset of N = 3000 patients as follows:

```
data_hom <- generate_data(n = 3000, seed = 1234)</pre>
```

The **generate\_data()** function allows the specification of various treatment effect options, easily adjustable by modifying the beta parameter. In this instance, we assume a consistent treatment effect across the entire target population. This dataset currently contains no missing values.

The simulated dataset comprises two treatment groups with variations in baseline characteristics. For example, the figure below illustrates baseline imbalances in covariates such as age.

We can calculate the treatment effect on the complete observed dataset. To do this, we start by balancing the dataset using Propensity Score matching. In this case, the propensity score model uses confounder variables only: age, gender, prevDMTefficacy, logPremedicalcost, and prerelapseNum.



Figure 5.2: Figure 1:Distribution of confounders and outcome variable

Then, we proceed to model estimation. In this case, a Poisson model is used which assumes that  $y_i \sim \operatorname{Poisson}(\lambda_i)$ . In this expression,  $\log(\lambda_i) = \beta_0 + \beta_1$  treatment  $+ \beta_2$  age  $+ \beta_3$  gender  $+ \beta_4$  prevDMTefficacy  $+ \beta_5$  logPremedicalcost  $+ \beta_6$  prerelapseNum  $+ \beta_7$  numSymptoms  $+ \log(\text{years})$ 

Since patient measurements were recorded over varying time frames, the natural logarithm of the years of evaluation is incorporated as an offset in the model. The model is fitted with a glm function, and we include the treatment and the baseline covariates as predictors, which are optional if the data is well balanced. Additionally, it is necessary to specify the matching weights in the glm function.

Typically, Poisson models adjust standard errors using robust standard errors to accommodate small values arising from the equidispersion assumption. This correction can be directly applied to the model using the vcovCL() function [?]. However, given that we will calculate the treatment effect using the functions of the **marginaleffects** package, this step becomes redundant. This package allows specifying HC3 sandwich standard errors during treatment estimation.

Finally, we calculate the Average Treatment Effect (ATE). The ATE is defined as

$$\tau_{ATE} = E(y_i^1 - y_i^0)$$

But this cannot be directly extracted from the  $\beta_1$  parameter, as the model has  $log(\lambda)$  as the response. We estimate it as:

$$\tau_{ATE} = E(\lambda_i^1 - \lambda_i^0)$$

This can be done with the function **avg\_comparisons()**, from the R package marginal effect, that calculates the potential outcomes for each unit sample and then combines them to summarize the average effect.

Henceforth, for ease of explanation, we will use the function **TE\_estimation()** attached to the function code that performs all the previous estimation steps at once.

### 5.3.2 Generating Missing Values

In this example, we focus on the case where confounder variables are incomplete.

Missing values can be generated using the **getmissdata()** function, considering the following patterns of missingness for the log previous medical cost (logPremedicalcost):

- 1. MAR: missingness depends on age and sex
- 2. MART: missingness depends on age, sex and the treatment variable treatment
- 3. MARTY: missingness depends on age, sex, treatment and the outcome variable y
- 4. MNAR: missingness depends on age, sex and logPremedicalcost

Lets select the missing data pattern "MART"

```
m_data_hom <- get_missdata(data = data_hom, scenario = "MART")</pre>
```

After introducing missing values, we only have complete data for N=1015 patients.

### 5.3.3 Data Exploration

First, let's examine the missing patterns in our dataset. This will help us better understand the missing data, including the proportion of missing values and the underlying causes, which may be related to other observable variables. Various R packages, such as ggmice, vim, naniar, and factorminer, can assist in visualizing the data.

Table 5.1: Baseline characteristics of the incomplete dataset.

|                         | DMF               | TERI              | Overall           |
|-------------------------|-------------------|-------------------|-------------------|
|                         | (N=2265)          | (N=735)           | (N=3000)          |
| Age (years)             |                   |                   |                   |
| Mean (SD)               | 44.4 (9.95)       | 51.5 (8.59)       | 46.2 (10.1)       |
| Median [Min, Max]       | 45.0 [18.0, 64.0] | 53.0 [23.0, 64.0] | 47.0 [18.0, 64.0] |
| Missing                 | 303~(13.4%)       | $54 \ (7.3\%)$    | $357 \ (11.9\%)$  |
| Gender                  |                   |                   |                   |
| Female                  | $1740 \ (76.8\%)$ | 526 (71.6%)       | 2266~(75.5%)      |
| Male                    | 525~(23.2%)       | $209\ (28.4\%)$   | 734~(24.5%)       |
| Efficacy of previous DN | IT                |                   |                   |
| None                    | 725 (32.0%)       | 318 (43.3%)       | 1043 (34.8%)      |
| Low_efficacy            | 190 (8.4%)        | 52 (7.1%)         | 242 (8.1%)        |
| Medium_high_efficacy    | 800 (35.3%)       | 225(30.6%)        | 1025~(34.2%)      |
| Missing                 | $550\ (24.3\%)$   | 140 (19.0%)       | 690~(23.0%)       |
| Log prior medical costs | 3                 |                   |                   |
| Mean (SD)               | 8.71 (1.03)       | 9.45(1.20)        | 8.98 (1.15)       |
| Median [Min, Max]       | 8.75 [5.10, 11.3] | 9.48 [5.56, 12.7] | 8.98 [5.10, 12.7] |
| Missing                 | 1145~(50.6%)      | $109 \ (14.8\%)$  | 1254~(41.8%)      |
| Number of prior sympt   | oms               |                   |                   |
| 0                       | 158 (7.0%)        | 53 (7.2%)         | $211\ (7.0\%)$    |
| 1                       | 1142 (50.4%)      | 401 (54.6%)       | 1543 (51.4%)      |
| >=2                     | 432 (19.1%)       | $151\ (20.5\%)$   | 583 (19.4%)       |
| Missing                 | 533~(23.5%)       | 130~(17.7%)       | 663~(22.1%)       |
| Number of prior relaps  | es                |                   |                   |
| Mean (SD)               | $0.438 \ (0.650)$ | $0.414 \ (0.653)$ | $0.432\ (0.650)$  |
| Median [Min, Max]       | 0 [0, 4.00]       | 0 [0, 3.00]       | 0 [0, 4.00]       |
| Missing                 | 305~(13.5%)       | 71 (9.7%)         | $376 \ (12.5\%)$  |

Upon initial examination, we've observed that the outcome variable y, treatment status, and gender are fully observed, while other covariate variables, including age, logPremedicalcost, prevDMTefficacy, numSymptoms, and prerelapseNum, have incomplete data. In total, approximately 11% of the observations in the dataset have missing data. These missing values follow a non-monotonic pattern, requiring the use of MCMC imputation techniques, therefore we mainly use the Full Conditional Specification approach given in the mice package.

When assessing missingness based on treatment groups, we find that there are more patients receiving DMF treatment. However, the percentage of missing values is higher for the DMF treatment group compared to the TERI treatment group, indicating that data is unlikely to be MCAR when the proportion of missing differs by treatment allocation.

```
library(naniar)
naniar::gg_miss_upset(m_data_hom, nsets = 10)
```



```
naniar::gg_miss_var(m_data_hom, facet = treatment, show_pct = T)
```



Additionally, it could be explored whether associations exist between the missingness of variables and other observed variables, indicating if a MAR assumption is more plausible than a MCAR assumption. The plausibility of MNAR vs. MAR assumptions cannot be evidenced by observable data, and the possibility of a MNAR scenario is contemplated based on expert input.

### 5.3.4 Methods for Handling Missing Data

### 5.3.4.1 Complete Case Analysis

To estimate the ATE using propensity score matching, we employ complete case analysis. Initially, we filter out all units with incomplete data and then apply the estimation process as before.

### 5.3.4.2 Missing Indicator

In this method, it is essential to create missing indicators and deterministic imputed variables for each incomplete variable. For example, for the "age" variable, we calculate a missing indicator, denoted as "age.mind," and a deterministic imputed value of age where missing values are replaced by an arbitrary value (in this case, the missing values were replaced by zero).

```
dat$age.mind <- ifelse( is.na(dat$age),1,0) # missing indicator of age
dat$age <- ifelse(is.na(dat$age), 0, dat$age) # deterministic imputed age,</pre>
```

Subsequently, the Propensity Score (PS) model is estimated for all the confounding variables, including their missing indicators. In this case, the propensity score model is given by:

```
PS.formula <- treatment ~ gender + age.mind + age + lpmc.mind + logPremedicalcost + pde.mind + prevDMTefficacy + prn.mind + prerelapseNum
```

Then, the estimation process follows the same structure as before:

### 5.3.4.3 Multiple Imputation

In this section, we will generate m=10 imputed datasets and perform matching within each imputed dataset. We first need to specify the imputation model for prevDMTefficacy, premedicalcost, numSymptoms, prerelapseNum, and age, i.e., the predictors for each incomplete variable. This can be done in mice via the prediction matrix or by using the form parameter where the models are specified for each variable and saved in a list.

Next, we need to set the individual imputation model for each variable. We call the mice function, which automatically proposes certain imputation methods according to the type of variable. Here, we decide to modify the imputation method for the numSymptoms and prevDMTefficacy variables to the predictive mean matching method "pmm". After this, we run the mice() function to generate 10 imputed datasets.

Before proceeding with the estimation procedure, we inspect the convergence of all the imputed variables using a trace plot:

```
plot(imp)
```





## Iteration

As there don't seem to be any problems in the trace plot (i.e., no marked tendency & well-dispersed plots), we can now proceed with the PS Matching in each of the imputed datasets

using the **MatchedThem** package functions. Here, we adopt full matching without replacement and use a logistic model. The function allows the pooling of PS estimates, which can be done through the within or across approach.

### 5.3.4.3.1 Multiple Imputation (within approach)

The within approach it is specified with the approach parameter in the matchthem function as follows:

Then we proceed to fit a main model on the outcome Y.

Finally, we utilize the marginal effects package to estimate the treatment effect. As before, we use the avg\_comparisons function, which allows us to specify the variance correction. While most of the marginal effects functions are designed to handle imputed datasets, since we need to evaluate the model on each imputed dataset, we manually pass each imputed dataset into the parameter newdata using the lapply function, as follows:

### 5.3.4.3.2 Multiple Imputation (across aproach)

We proceed similarly as before; the only difference is specifying the approach "across" in the matchthem function. To simplify the steps, use the built-up function ATE\_estimation.

### 5.3.5 Results

Analysis methods:

- Full Data: The treatment effect is estimated in the original data of N = 3000 patients where no missing values are present. This estimate can be used as a benchmark to compare the missing data methods.
- Complete Case Analysis: The treatment effect is estimated using all data from N = 1015 patients that do not have any missing values.
- Missing Indicator: The treatment effect is estimated in the incomplete dataset of N=3000 patients. The propensity score model includes a missing indicator variable for each incomplete covariate.
- MICE: A treatment effect is estimated within each imputed dataset using propensity score analysis. Using Rubin's rule, the ten treatment effects are combined into a single treatment effect.

```
library(ggplot2)
result_ATE$analysis = factor(result_ATE$analysis,
                         levels = c("Full Data",
                                    "Complete Case Analysis",
                                    "Missing indicator",
                                    "MICE (within)",
                                    "MICE (across)"))
ggplot(result_ATE,aes(x = analysis, y = estimate, col = analysis)) +
  geom point(shape = 1,
             size = 1) +
  geom errorbar(aes(ymin = conf.low ,
                    ymax = conf.high),
                width = 0.2,
                size = 0.5) +
  see::scale_color_flat() + theme_light() +
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
```

```
axis.ticks.x = element_blank(),
legend.position = "bottom")
```



In this example, we observe that there is no significant difference across the methods. The Complete Case Analysis yields a wider confidence interval and leads to more biased estimates. It appears that the MICE method with the within approach and Missing Indicator methods provide less biased estimates. However, the formal leads to a non-significant treatment estimate similar to the results from the Full Dataset.

## 5.4 Heterogeneous Treatment Effect

In practice, the treatment effect is often not homogeneous among individuals. In this section, we will consider a heterogeneous treatment effect where there is effect modification by the confounding covariates. The way we generate the heterogeneous dataset is to segment the population according to the efficacy of each treatment (**Iscore**). We can see in the graph below, that for the previous dataset, there was no difference in treatment effect across the groups, but in this new dataset, we observe a marked difference across groups.

Let's start by simulating a new heterogeneous treatment dataset, using the same missing data generation process as before.



We use also the G computation to calculate the treatment effect, but this time in the main model, we take into account the interaction of the treatment and the covariates. In addition, we will estimate the conditional average treatment effect given the Iscore groups.

$$\tau_{CATE}(x) = E(y^1 - y^0 | X = x)$$

### 5.4.1 Methods for Dealing with Missing Data

### 5.4.1.1 Complete Case Analysis

As before, we also proceed to calculate the ATE by employing the Complete Case Analysis.

```
result_het <- bind_rows(result_het,result_CC)</pre>
```

#### 5.4.1.2 Multiple Imputation by Treatment Group

As there is a treatment effect, the first imputation approach that we consider is to perform a separate imputation procedure on each of the treatment groups. This is an option that can be implemented in this case as the treatment group is complete, and the sample size is large enough in each treatment group [?]. Here we use the same imputation models that we used before but removing the treatment variable.

#### 5.4.1.3 Parametric Multiple Imputation

As the main model includes treatment interaction terms, we need to include them also in the imputation model to avoid congeniality issues. So we modify the imputation models for each variable, including the treatment interaction terms and also the interaction of treatment and outcome as follows:

Then we proceed to impute the dataset with mice with a parametric model using and not the interaction terms.

#### 5.4.1.4 Non-parametric Multiple Imputation

Another option is to use imputation methods based on non-parametric approaches such as random forest, which are robust to the inclusion of interaction and quadratic terms. Here we use the "rf" method included in mice, but there are other available options as discussed by [?].

It has also been proposed a new method based on XGBoost that seems also an option for data with interaction terms [?]. Here it is required to calibrate the parameters to be included in the function and do an extra job to put it in the mice package format.

After checking the convergence of all the imputation methods, via traceplots, we proceed to estimate the treatment effect with the **ATE\_estimation()** function, were it is required to specify the variable *Iscore* to evaluate the treatment effect on each group.

#### 5.4.2 Results

```
library(ggplot2)
result het$Iscore <- as.factor(result het$Iscore)</pre>
levels(result_het$Iscore) <- c("High DMF",</pre>
                                "Moderate DMF",
                                "Neutral",
                                "Moderate TERI",
                                "High TERI")
result_het$analysis = factor(result_het$analysis,
                          levels = c("Full data",
                                     "Complete Case Analysis",
                                     "MICE (separated)",
                                     "MICE (no interaction)",
                                     "MICE (interaction)",
                                     "Random forest",
                                     "MixGb"))
ggplot(result_het,aes(x = analysis, y = estimate, col = analysis)) +
  geom_point(shape = 1,
             size = 1) +
  geom_errorbar(aes(ymin = conf.low,
                    ymax = conf.high),
                width = 0.2,
                size = 0.5) +
  see::scale_color_flat() + theme_light() +
  theme(axis.title.x = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element blank(),
        legend.position = "bottom") +
  facet_wrap("Iscore",ncol = 2, scales = "free")
```



We found that except for the complete case analysis, all the methods lead to unbiased results of the treatment effect across all the Iscore groups. However, it seems that the estimation of the MixGb method leads to estimations closer to the Full dataset ones.

#### Version info

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15)

Platform: x86\_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

#### locale:

| [1]  | LC_CTYPE=C.UTF-8   | LC_NUMERIC=C           | LC_TIME=C.UTF-8     |
|------|--------------------|------------------------|---------------------|
| [4]  | LC_COLLATE=C.UTF-8 | LC_MONETARY=C.UTF-8    | LC_MESSAGES=C.UTF-8 |
| [7]  | LC_PAPER=C.UTF-8   | LC_NAME=C              | LC_ADDRESS=C        |
| [10] | LC_TELEPHONE=C     | LC_MEASUREMENT=C.UTF-8 | LC_IDENTIFICATION=C |

```
attached base packages:
                        graphics grDevices utils
[1] grid
              stats
                                                        datasets methods
[8] base
other attached packages:
 [1] ranger_0.16.0
                             ggmice_0.1.0
                                                     missForest 1.5
 [4] mice_3.16.0
                             marginaleffects_0.16.0 survey_4.2-1
 [7] survival_3.5-3
                             Matrix 1.6-3
                                                     cobalt 4.5.2
[10] sandwich_3.0-2
                             PSweight_1.1.8
                                                     WeightIt_0.14.2
[13] MatchThem_1.1.0
                             MatchIt_4.5.5
                                                     optmatch_0.10.7
[16] see_0.8.1
                             naniar_1.0.0
                                                     ggpubr_0.6.0
                                                     truncnorm_1.0-9
[19] ggplot2_3.4.4
                             mixgb_1.0.2
[22] MASS_7.3-58.2
                             tidyr_1.3.0
                                                     dplyr_1.1.4
[25] data.table_1.14.8
                             table1_1.4.3
                                                     kableExtra_1.3.4
loaded via a namespace (and not attached):
 [1] minqa_1.2.6
                           colorspace_2.1-0
                                                  ggsignif_0.6.4
 [4] visdat_0.6.0
                            rstudioapi_0.15.0
                                                   farver_2.1.1
 [7] fansi 1.0.5
                            xml2_1.3.5
                                                   codetools 0.2-19
[10] splines_4.2.3
                           knitr 1.45
                                                   itertools_0.1-3
[13] Formula_1.2-5
                            jsonlite_1.8.7
                                                  nloptr_2.0.3
[16] broom_1.0.5
                            compiler_4.2.3
                                                  httr_1.4.7
[19] backports_1.4.1
                           RcppZiggurat_0.1.6
                                                  fastmap_1.1.1
[22] cli_3.6.1
                           htmltools_0.5.7
                                                   tools_4.2.3
[25] gtable_0.3.4
                                                   doRNG_1.8.6
                            glue_1.6.2
[28] Rcpp_1.0.11
                            carData_3.0-5
                                                  SuperLearner_2.0-28.1
[31] vctrs_0.6.4
                            svglite_2.1.2
                                                  nlme_3.1-162
[34] iterators_1.0.14
                            insight_0.19.6
                                                  xfun_0.41
[37] stringr_1.5.1
                            lme4_1.1-35.1
                                                  rvest_1.0.3
[40] lifecycle_1.0.4
                           rngtools_1.5.2
                                                  rstatix_0.7.2
[43] pan_1.9
                                                   scales_1.2.1
                           zoo_1.8-12
[46] rlemon_0.2.1
                           parallel_4.2.3
                                                  RColorBrewer_1.1-3
[49] yaml_2.3.7
                                                  UpSetR_1.4.0
                            gridExtra_2.3
[52] rpart 4.1.19
                            gam 1.22-2
                                                   stringi 1.8.2
[55] foreach_1.5.2
                           randomForest_4.7-1.1
                                                   checkmate_2.3.0
[58] boot_1.3-28.1
                            shape_1.4.6
                                                  rlang 1.1.2
[61] pkgconfig_2.0.3
                            systemfonts_1.0.5
                                                   evaluate_0.23
[64] lattice_0.20-45
                           purrr_1.0.2
                                                   chk_0.9.1
[67] labeling_0.4.3
                            cowplot_1.1.1
                                                  Rfast_2.1.0
[70] tidyselect_1.2.0
                            gbm_2.1.8.1
                                                  plyr_1.8.9
[73] magrittr_2.0.3
                           R6_2.5.1
                                                   generics_0.1.3
[76] nnls_1.5
                           mitml_0.4-5
                                                  DBI_1.1.3
```

| [79] pillar_1.9.0  | withr_2.5.2         | $abind_1.4-5$      |
|--------------------|---------------------|--------------------|
| [82] nnet_7.3-18   | tibble_3.2.1        | crayon_1.5.2       |
| [85] car_3.1-2     | jomo_2.7-6          | xgboost_1.7.5.1    |
| [88] utf8_1.2.4    | rmarkdown_2.25      | digest_0.6.33      |
| [91] webshot_0.5.5 | numDeriv_2016.8-1.1 | RcppParallel_5.1.7 |
| [94] munsell_0.5.0 | glmnet_4.1-8        | viridisLite_0.4.2  |
| [97] mitools_2.4   |                     |                    |

### References

# 6 Systematic review and meta-analysis of Real-World Evidence

Dimitris Mavridis (University of Ioannina) Thomas Debray (Smart Data Analysis and Statistics B.V.)

#### 6.1 Introduction

We first load the required packages

```
library(dplyr)
library(gemtc)
library(netmeta)
```

#### 6.2 Pairwise meta-analysis of clinical trials

#### 6.2.1 Toculizumab for coronavirus disease 2019

In this example, we consider the results from a systematic literature review of clinical trials investigating any pharmacological in hospitalized patients with coronavirus disease 2019 (Selvarajan et al. 2022). A total of 23 randomized controlled trials were included and studied seven different interventions: dexamethasone, remdesivir, tocilizumab, hydroxychloroquine, combination of lopinavir/ritonavir, favipiravir and interferon. We here focus on the synthesis of 7 trials that comparted toculizumab (TOCI) to standard care (STD) and collected mortality data.

| studlab       | treat1 | treat2 | event1 | n1  | event2 | n2  |
|---------------|--------|--------|--------|-----|--------|-----|
| Hermine et al | TOCI   | STD    | 7      | 63  | 8      | 67  |
| Rosas et al   | TOCI   | STD    | 58     | 294 | 28     | 144 |
| Salama et al  | TOCI   | STD    | 26     | 249 | 11     | 128 |

#### (continued)

| studlab         | treat1 | treat2 | event1 | n1  | event2 | n2 |
|-----------------|--------|--------|--------|-----|--------|----|
| Salvarini et al | TOCI   | STD    | 2      | 60  | 1      | 66 |
| Stone et al     | TOCI   | STD    | 9      | 161 | 3      | 82 |
| Veiga et al     | TOCI   | STD    | 14     | 65  | 6      | 64 |

We now conduct a pairwise meta-analysis to assess the pooled effect of tocilizumab versus standard care. For each study, the log odds ratio and corresponding standard error is derived after which the corresponding estimates are pooled using the Mantel-Haenszel method.



Altough a random effects meta-analysis was conducted, no heterogeneity was found ( $\tau$ =0, with a 95% confidence interval ranging from 0 to 0.85).

#### 6.2.2 Remdesivir for coronavirus disease 2019

In aforementioned example, a total of 4 trials compared remdesivir to standard care:



#### 6.3 Network meta-analysis of clinical trials

We here use the R packages netmeta for conducting a frequentist network meta-analysis. A detailed tutorial on the use of netmeta is available from the book Doing Meta-Analysis with R: A Hands-On Guide.

#### 6.3.1 Interventions for coronavirus disease 2019

We here consider data from a study which aimed to assess the comparative effectiveness of remdesivir and tocilizumab for reducing mortality in hospitalised COVID-19 patients. 80 trials were identified from two published network meta-analyses (Selvarajan et al. 2022), (Siemieniuk et al. 2020), a living COVID-19 trial database (COVID-NMA Initiative) [Covid-NMA.com], and a clinical trial database [clinicaltrials.gov]. Trials were included in this study if the patient population included hospitalized COVID-19 patients, active treatment was remdesivir or tocilizumab, comparator treatment was placebo or standard care, short-term mortality data was available, and the trial was published. 21 trials were included. For included trials, a risk of bias score was extracted from the COVID-NMA Initiative.

| studlab | treat1 | treat2 | event1 | n1  | event2 | n2  |
|---------|--------|--------|--------|-----|--------|-----|
| Ader    | REM    | STD    | 34     | 414 | 37     | 418 |

 $\underline{(continued)}$ 

| studlab              | treat1 | treat2 | event1 | n1   | event2 | n2   |
|----------------------|--------|--------|--------|------|--------|------|
| Beigel (ACTT-1)      | REM    | STD    | 59     | 541  | 77     | 521  |
| Broman               | TOCI   | STD    | 1      | 57   | 0      | 29   |
| Criner               | REM    | STD    | 4      | 384  | 4      | 200  |
| Declerq (COV-AID)    | TOCI   | STD    | 10     | 81   | 9      | 74   |
| Gordon (REMAP-CAP)   | TOCI   | STD    | 83     | 353  | 116    | 358  |
| Hermine (CORIMUNO)   | TOCI   | STD    | 7      | 63   | 8      | 67   |
| Horby (RECOVERY)     | TOCI   | STD    | 621    | 2022 | 729    | 2094 |
| Islam                | REM    | STD    | 0      | 30   | 0      | 30   |
| Mahajan              | REM    | STD    | 5      | 34   | 3      | 36   |
| Pan (WHO Solidarity) | REM    | STD    | 602    | 4146 | 643    | 4129 |
| Rosas (COVACTA)      | TOCI   | STD    | 58     | 294  | 28     | 144  |
| Rutgers              | TOCI   | STD    | 21     | 174  | 34     | 180  |
| Salama (EMPACTA)     | TOCI   | STD    | 26     | 249  | 11     | 128  |
| Salvarani            | TOCI   | STD    | 2      | 60   | 1      | 63   |
| Soin (COVINTOC)      | TOCI   | STD    | 11     | 92   | 15     | 88   |
| Spinner              | REM    | STD    | 5      | 384  | 4      | 200  |
| Stone (BACC-BAY)     | TOCI   | STD    | 9      | 161  | 4      | 82   |
| Talaschian           | TOCI   | STD    | 5      | 17   | 4      | 19   |
| Veiga (TOCIBRAS)     | TOCI   | STD    | 14     | 65   | 6      | 64   |
| Wang                 | REM    | STD    | 22     | 158  | 10     | 78   |

The corresponding network is displayed below:



Figure 6.1: Evidence network of the 21 coronavirus-19 trials

We use the following command to calculate the log odds ratios and corresponding standard errors for each study:

| $^{\mathrm{TE}}$ | seTE      | studlab            | treat1 | treat2 | event1 | n1  | event2 | n2  | incr | alls |
|------------------|-----------|--------------------|--------|--------|--------|-----|--------|-----|------|------|
| -0.0819293       | 0.2483849 | Ader               | REM    | STD    | 34     | 414 | 37     | 418 | 0.0  | FAI  |
| -0.3483875       | 0.1851030 | Beigel (ACTT-1)    | REM    | STD    | 59     | 541 | 77     | 521 | 0.0  | FAI  |
| 0.4487619        | 1.6487159 | Broman             | TOCI   | STD    | 1      | 57  | 0      | 29  | 0.5  | FAI  |
| -0.6620566       | 0.7125543 | Criner             | REM    | STD    | 4      | 384 | 4      | 200 | 0.0  | FAI  |
| 0.0170679        | 0.4904898 | Declerq (COV-AID)  | TOCI   | STD    | 10     | 81  | 9      | 74  | 0.0  | FAI  |
| -0.4442338       | 0.1688337 | Gordon (REMAP-CAP) | TOCI   | STD    | 83     | 353 | 116    | 358 | 0.0  | FAI  |

Below, we conduct a random effects network meta-analysis where we consider standard care (STD) as the control treatment. Note that we have one study where zero cell counts occur, this study will not contribute to the NMA as the log odds ratio and its standard error cannot be determined.

```
NMA.covid <- netmeta(TE = TE, seTE = seTE, treat1 = treat1, treat2 = treat2,
                        studlab = studlab, data = covid, sm = "OR", ref = "STD",
                        comb.random = TRUE, common = FALSE, warn = FALSE)
  NMA.covid
Number of studies: k = 20
Number of pairwise comparisons: m = 20
Number of treatments: n = 3
Number of designs: d = 2
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'STD'):
                      95%-CI
                                 z p-value
REM 0.8999 [0.8067; 1.0039] -1.89 0.0588
STD
TOCI 0.8301 [0.7434; 0.9268] -3.31 0.0009
Quantifying heterogeneity / inconsistency:
tau^2 = 0; tau = 0; I^2 = 0\% [0.0\%; 48.9\%]
```

```
Q d.f. p-value
Total 16.38 18 0.5663
Within designs 16.38 18 0.5663
Between designs 0.00 0 --
```

A league table of the treatment effect estimates is given below:

```
netleague(NMA.covid)
```

League table (random effects model):

```
REM 0.8999 [0.8067; 1.0039] .

0.8999 [0.8067; 1.0039] STD 1.2047 [1.0789; 1.3451]

1.0842 [0.9282; 1.2663] 1.2047 [1.0789; 1.3451] TOCI
```

We can also present the results in a forest plot:



We now consider a Bayesian random effects network meta-analysis that analyzes the observed event counts using a binomial link function.

```
responders = event,
                       sampleSize = n)
  network <- mtc.network(data.ab = bdata)</pre>
  model <- mtc.model(network,</pre>
                      likelihood = "binom",
                      link = "log",
                      linearModel = "random",
                      n.chain = 3)
  # Adaptation
  mcmc1 <- mtc.run(model, n.adapt = 1000, n.iter = 1000, thin = 10)
Compiling model graph
  Resolving undeclared variables
  Allocating nodes
Graph information:
  Observed stochastic nodes: 42
  Unobserved stochastic nodes: 45
  Total graph size: 930
Initializing model
  # Sampling
  mcmc2 <- mtc.run(model, n.adapt = 10000, n.iter = 100000, thin = 10)
Compiling model graph
  Resolving undeclared variables
  Allocating nodes
Graph information:
  Observed stochastic nodes: 42
  Unobserved stochastic nodes: 45
  Total graph size: 930
Initializing model
```

We can extract the pooled treatment effect estimates from the posterior distribution. When using STD as control group, we have:

```
summary(relative.effect(mcmc2, t1 = "STD"))
```

Results on the Log Risk Ratio scale

Iterations = 10010:110000
Thinning interval = 10
Number of chains = 3
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
Mean SD Naive SE Time-series SE d.STD.REM -0.1074 0.09846 0.0005685 0.0008330 d.STD.TOCI -0.1104 0.08477 0.0004894 0.0008925 sd.d 0.1157 0.08931 0.0005156 0.0018492
```

2. Quantiles for each variable:

```
2.5% 25% 50% 75% 97.5% d.STD.REM -0.318119 -0.16126 -0.10248 -0.05056 0.08433 d.STD.TOCI -0.256244 -0.16275 -0.11852 -0.06801 0.08852 sd.d 0.005209 0.04734 0.09607 0.16410 0.33489
```

The corresponding odds ratios are as follows:

| Comparison   | 95% CrI           |
|--------------|-------------------|
| REM vs. STD  | 0.9 (0.73; 1.09)  |
| TOCI vs. STD | 0.89 (0.77; 1.09) |
| REM vs. TOCI | 1.02 (0.74; 1.27) |

Finally, we expand the COVID-19 network with trials investigating the effectiveness of hydroxychloroquine (HCQ), lopinavir/ritonavir (LOPI), dexamethasone (DEXA) or interferon- $\beta$  (INTB) (Selvarajan et al. 2022). The corresponding network is displayed below:

We conducted a random effects network meta-analysis, results are depicted below:

```
Number of studies: k = 33
Number of pairwise comparisons: m = 33
```



Figure 6.2: Evidence network of the 33 coronavirus-19 trials

```
Number of treatments: n = 7
Number of designs: d = 6
Random effects model
Treatment estimate (sm = 'OR', comparison: other treatments vs 'STD'):
         OR.
                      95%-CI
                                 z p-value
                                                      95%-PI
DEXA 0.8557 [0.7558; 0.9688] -2.46 0.0139 [0.7463; 0.9812]
HCQ 1.1809 [0.8934; 1.5610] 1.17 0.2428 [0.8786; 1.5872]
INTB 1.1606 [0.9732; 1.3841] 1.66 0.0973 [0.9604; 1.4026]
LOPI 1.0072 [0.8906; 1.1392] 0.11 0.9085 [0.8794; 1.1537]
REM 0.8983 [0.8014; 1.0070] -1.84 0.0658
                                           [0.7913; 1.0199]
STD
TOCI 0.8304 [0.7410; 0.9306] -3.20 0.0014
                                           [0.7316; 0.9426]
Quantifying heterogeneity / inconsistency:
tau^2 = 0.0004; tau = 0.0205; I^2 = 0.6\% [0.0\%; 42.3\%]
Tests of heterogeneity (within designs) and inconsistency (between designs):
                    Q d.f. p-value
Total
                27.18
                           0.4543
                        27
Within designs 27.18
                        27
                           0.4543
Between designs 0.00
                         0
```

We can calculate the P score for each treatment as follows:

```
netrank(NMA.covidf)
```

```
P-score
TOCI 0.9070
DEXA 0.8357
REM 0.7143
STD 0.4027
LOPI 0.3899
HCQ 0.1336
INTB 0.1166
```

#### 6.3.2 Pharmacologic treatments for chronic obstructive pulmonary disease

In this example, we consider the resuls from a systematic review of randomized controlled trials on pharmacologic treatments for chronic obstructive pulmonary disease (Baker, Baker, and Coleman 2009). The primary outcome, occurrence of one or more episodes of COPD exacerbation, is binary (yes / no). For this outcome, five drug treatments (fluticasone, budesonide, salmeterol, formoterol, tiotropium) and two combinations (fluticasone + salmeterol, budesonide + formoterol) were compared to placebo. The authors considered the two combinations as separate treatments instead of evaluating the individual components.

#### data(Baker2009)

| study                | year | id | treatment   | exac | total |
|----------------------|------|----|-------------|------|-------|
| Llewellyn-Jones 1996 | 1996 | 1  | Fluticasone | 0    | 8     |
| Llewellyn-Jones 1996 | 1996 | 1  | Placebo     | 3    | 8     |
| Boyd 1997            | 1997 | 2  | Salmeterol  | 47   | 229   |
| Boyd 1997            | 1997 | 2  | Placebo     | 59   | 227   |
| Paggiaro 1998        | 1998 | 3  | Fluticasone | 45   | 142   |
| Paggiaro 1998        | 1998 | 3  | Placebo     | 51   | 139   |

Warning: Comparisons with missing TE / seTE or zero seTE not considered in

network meta-analysis.

Comparisons not considered in network meta-analysis: studlab treat1 treat2 TE seTE

39 Fluticasone+Salmeterol Placebo NA NA

39 Fluticasone+Salmeterol Salmeterol NA NA

39 Salmeterol Placebo NA NA

netgraph(NMA.COPD)



#### 6.3.3 Advanced Therapies for Ulcerative Colitis

In this example, we consider a systematic literature review of Phase 3 randomized controlled trials investigating the following advanced therapies: infliximab, adalimumab, vedolizumab, golimumab, tofacitinib, ustekinumab, filgotinib, ozanimod, and upadacitinib (Panaccione et al. 2023). This review included 48 RCTs, from which 23 were found eligible for inclusion in a network meta-analysis. The included RCT populations were largely comparable in their baseline characteristics, though some heterogeneity was noted in weight, disease duration, extent of disease, and concomitant medications. A risk of bias assessment showed a low risk of bias for all included RCTs, which were all industry sponsored.

We here focus on the synthesis of 18 trials that contributed efficacy data for induction in bionaive populations. The following FDA- and/or EMA-approved biologic or SMD doses were investigated:

- Adalimumab subcutaneous 160 mg at week 0, 80 mg at week 2, and 40 mg at week 4 (ADA160/80)
- Infliximab intravenous 5 mg/kg (INF5) at weeks 0, 2, and 6 then every 8 weeks
- Infliximab intravenous 10 mg/kg (INF10) at weeks 0, 2, and 6 then every 8 weeks
- Filgotinib oral 100 mg once daily (FIL100)
- Filgotinib oral 200 mg once daily (FIL200)
- Golimumab subcutaneous 200 mg at week 0 and 100 mg at week 2 (GOL200/100)
- Ozanimod oral 0.23 mg once daily for 4 days, 0.46 mg once daily for 3 days, then 0.92 mg once daily (OZA0.92)
- Tofacitinib oral 10 mg twice daily for 8 weeks (TOF10)
- Upadacitinib oral 45 mg once daily for 8 weeks (UPA45)
- Ustekinumab intravenous 6 mg/kg at week 0 (UST6)
- Vedolizumab intravenous 300 mg at weeks 0, 2, and 6 (VED300)

The reference treatment is placebo (PBO).

Table 6.1: Efficacy outcomes (i.e., clinical remission) data of induction bio-naïve populations

| studlab          | treat1     | treat2 | event1 | n1  | event2 | n2  |
|------------------|------------|--------|--------|-----|--------|-----|
| ACT-1            | INF10      | INF5   | 39     | 122 | 47     | 121 |
| ACT-1            | INF10      | PBO    | 39     | 122 | 18     | 121 |
| ACT-1            | INF5       | PBO    | 47     | 121 | 18     | 121 |
| ACT-2            | INF10      | INF5   | 33     | 120 | 41     | 121 |
| ACT-2            | INF10      | PBO    | 33     | 120 | 7      | 123 |
| ACT-2            | INF5       | PBO    | 41     | 121 | 7      | 123 |
| GEMINI 1         | VED300     | PBO    | 30     | 130 | 5      | 76  |
| Japic CTI-060298 | INF5       | PBO    | 21     | 104 | 11     | 104 |
| Jiang 2015       | INF5       | PBO    | 22     | 41  | 9      | 41  |
| M10-447          | ADA160/80  | PBO    | 9      | 90  | 11     | 96  |
| NCT01551290      | INF5       | PBO    | 11     | 50  | 5      | 49  |
| NCT02039505      | VED300     | PBO    | 22     | 79  | 6      | 41  |
| OCTAVE 1         | TOF10      | PBO    | 56     | 222 | 9      | 57  |
| OCTAVE 2         | TOF10      | PBO    | 43     | 195 | 4      | 47  |
| PURSUIT-SC       | GOL200/100 | PBO    | 45     | 253 | 16     | 251 |
| SELECTION        | FIL100     | FIL200 | 47     | 277 | 60     | 245 |
| SELECTION        | FIL100     | PBO    | 47     | 277 | 17     | 137 |
| SELECTION        | FIL200     | PBO    | 60     | 245 | 17     | 137 |
| TRUE NORTH       | OZA0.92    | PBO    | 66     | 299 | 10     | 151 |
| U-ACCOMPLISH     | UPA45      | PBO    | 54     | 166 | 3      | 81  |

(continued)

| studlab           | treat1    | treat2 | event1 | n1  | event2 | n2  |
|-------------------|-----------|--------|--------|-----|--------|-----|
| U-ACHIEVE Study 2 | UPA45     | PBO    | 41     | 145 | 4      | 72  |
| ULTRA-1           | ADA160/80 | PBO    | 24     | 130 | 12     | 130 |
| ULTRA-2           | ADA160/80 | PBO    | 32     | 150 | 16     | 145 |
| UNIFI             | UST6      | PBO    | 27     | 147 | 15     | 151 |

The corresponding network is displayed below:



Figure 6.3: Evidence network of 18 trials that contributed efficacy data for induction in bionaive populations

Below, we conduct a random effects network meta-analysis of the reported study effects (expressed as odds ratio) and consider placebo (treat = "PBO") as the control treatment.

All treatments except FIL100 and UST6 are significantly more efficacious than PBO at inducing clinical remission. We can now estimate the probabilities of each treatment being at each possible rank and the SUCRAs (Surface Under the Cumulative RAnking curve):

```
ADA160/80 FIL100 FIL200 GOL200/100 INF10 INF5 OZA0.92 0.27727273 0.16545455 0.45909091 0.58909091 0.58181818 0.76000000 0.78545455 PBO TOF10 UPA45 UST6 VED300 0.02090909 0.42636364 0.98454545 0.35181818 0.59818182
```

These results indicate that 98.5% of the evaluated treatments are worse than UPA45.

#### **Version info**

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15)
Platform: x86\_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

#### locale:

| [1] LC_CTYPE=C.UTF-8   | LC_NUMERIC=C        | LC_TIME=C.UTF-8     |
|------------------------|---------------------|---------------------|
| [4] LC_COLLATE=C.UTF-8 | LC_MONETARY=C.UTF-8 | LC_MESSAGES=C.UTF-8 |
| [7] LC_PAPER=C.UTF-8   | LC_NAME=C           | LC_ADDRESS=C        |

[10] LC\_TELEPHONE=C LC\_MEASUREMENT=C.UTF-8 LC\_IDENTIFICATION=C

#### attached base packages:

[1] stats graphics grDevices utils datasets methods base

#### other attached packages:

```
[1] netmeta_2.8-2 meta_6.5-0 gemtc_1.0-2 coda_0.19-4
```

[5] dplyr\_1.1.4 kableExtra\_1.3.4

#### loaded via a namespace (and not attached):

| [13] httr_1.4.7 ggplot2_3.4.4 pillar_1.9.0 [16] rlang_1.1.2 rstudioapi_0.15.0 minqa_1.2.6 [19] nloptr_2.0.3 rjags_4-14 Matrix_1.6-3                                           | [1]  | Rcpp_1.0.11     | mvtnorm_1.2-3     | svglite_2.1.2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-------------------|---------------|
| [10] plyr_1.8.9 magic_1.6-1 evaluate_0.23 [13] httr_1.4.7 ggplot2_3.4.4 pillar_1.9.0 [16] rlang_1.1.2 rstudioapi_0.15.0 minqa_1.2.6 [19] nloptr_2.0.3 rjags_4-14 Matrix_1.6-3 | [4]  | lattice_0.20-45 | digest_0.6.33     | utf8_1.2.4    |
| [13] httr_1.4.7 ggplot2_3.4.4 pillar_1.9.0 [16] rlang_1.1.2 rstudioapi_0.15.0 minqa_1.2.6 [19] nloptr_2.0.3 rjags_4-14 Matrix_1.6-3                                           | [7]  | truncnorm_1.0-9 | slam_0.1-50       | R6_2.5.1      |
| [16] rlang_1.1.2 rstudioapi_0.15.0 minqa_1.2.6<br>[19] nloptr_2.0.3 rjags_4-14 Matrix_1.6-3                                                                                   | [10] | plyr_1.8.9      | magic_1.6-1       | evaluate_0.23 |
| [19] nloptr_2.0.3 rjags_4-14 Matrix_1.6-3                                                                                                                                     | [13] | httr_1.4.7      | ggplot2_3.4.4     | pillar_1.9.0  |
| . –                                                                                                                                                                           | [16] | rlang_1.1.2     | rstudioapi_0.15.0 | minqa_1.2.6   |
| [22] rmarkdown_2.25 mathjaxr_1.6-0 splines_4.2.3                                                                                                                              | [19] | nloptr_2.0.3    | rjags_4-14        | Matrix_1.6-3  |
|                                                                                                                                                                               | [22] | rmarkdown_2.25  | mathjaxr_1.6-0    | splines_4.2.3 |

| [25] | lme4_1.1-35.1       | webshot_0.5.5                | stringr_1.5.1    |
|------|---------------------|------------------------------|------------------|
| [28] | igraph_1.5.1        | munsell_0.5.0                | compiler_4.2.3   |
| [31] | numDeriv_2016.8-1.1 | xfun_0.41                    | pkgconfig_2.0.3  |
| [34] | systemfonts_1.0.5   | Rglpk_0.6-5                  | htmltools_0.5.7  |
| [37] | tidyselect_1.2.0    | tibble_3.2.1                 | codetools_0.2-19 |
| [40] | fansi_1.0.5         | <pre>viridisLite_0.4.2</pre> | withr_2.5.2      |
| [43] | MASS_7.3-58.2       | grid_4.2.3                   | nlme_3.1-162     |
| [46] | jsonlite_1.8.7      | gtable_0.3.4                 | lifecycle_1.0.4  |
| [49] | magrittr_2.0.3      | metafor_4.4-0                | scales_1.2.1     |
| [52] | metadat_1.2-0       | cli_3.6.1                    | stringi_1.8.2    |
| [55] | remotes_2.4.2.1     | xm12_1.3.5                   | generics_0.1.3   |
| [58] | vctrs_0.6.4         | boot_1.3-28.1                | tools_4.2.3      |
| [61] | forcats_1.0.0       | CompQuadForm_1.4.3           | glue_1.6.2       |
| [64] | abind_1.4-5         | fastmap_1.1.1                | yaml_2.3.7       |
| [67] | colorspace_2.1-0    | rvest_1.0.3                  | knitr_1.45       |

## References

## 7 Individual Participant Data Meta-analysis of clinical trials and real-world data

Pablo Verde (Universitätsklinikum Düsseldorf) Thomas Debray (Smart Data Analysis and Statistics B.V.)

#### 7.1 Introduction

#### 7.2 Hierarchical Meta-Regression

We illustrate the implementation of hierarchical meta-regression using an example that involves the following data sources:

- Aggregate data from 35 randomized trials investigating the efficacy of adjunctive treatments in managing diabetic foot problems compared with routine care
- Individual participant data from a prospective cohort study investigating patient and limb survival in patients with diabetic foot ulcers

#### 7.2.1 Aggregate data

We first retrieve the randomized evidence and summarize the treatment effect estimates using a random effects meta-analysis:

```
library(dplyr)
library(jarbes)
library(meta)

data("healing")

results.ADJ <- metabin(event.c = y_c, n.c = n_c, event.e = y_t, n.e = n_t,</pre>
```

```
studlab = Study, data = healing,
sm = "OR",
prediction = TRUE)
```

The corresponding forest plot is depicted below. The endpoint is healing without amputations within a period less than or equal to 1 year.

| Experi<br>Study               |                 | Co<br>Events | ontrol<br>Total | Events | Odds Ratio                                        | OR [95%-CI]             |
|-------------------------------|-----------------|--------------|-----------------|--------|---------------------------------------------------|-------------------------|
| •                             |                 |              |                 |        | Lé                                                |                         |
| Veves_2002                    | 138             | 51           | 138             | 39     | <u>+</u>                                          | 1.49 [ 0.90; 2.47]      |
| Jude_2007                     | 67              | 21           | 67              | 15     | 17                                                | 1.58 [ 0.73; 3.43]      |
| Niezgoda_2005                 | 37              | 18           | 36              | 10     | <u> </u>                                          | 2.46 [ 0.93; 6.52]      |
| Jeffcoate_2009                | 108             | 48           | 103             | 46     |                                                   | 0.99 [ 0.58; 1.71]      |
| Harkless_2005                 | 139             | 99           | 150             | 100    | 青                                                 | 1.24 [ 0.75; 2.04]      |
| Van_de_Weg_2008               | 23              | 6            | 20              | 6      | <del>- 1</del> ;                                  | 0.82 [ 0.22; 3.13]      |
| Bouter_1996                   | 22              | 4            | 24              | 6      |                                                   | 0.67 [ 0.16; 2.77]      |
| Hardikar_2005                 | 54              | 39           | 58              | 18     |                                                   | 5.78 [ 2.56; 13.05]     |
| Lipsky_2008                   | 418             | 363          | 417             | 377    | <b>≕</b> 5                                        | 0.70 [ 0.45; 1.08]      |
| Lipsky_2005_1                 | 47              | 31           | 56              | 39     |                                                   | 0.84 [ 0.37; 1.94]      |
| Robson_2005                   | 74              | 31           | 72              | 25     | <u> </u>                                          | 1.36 [ 0.69; 2.65]      |
| Afshari_2005                  | 30              | 7            | 20              | 2      | <del>                                      </del> | 2.74 [ 0.51; 14.82]     |
| Tsang_2003                    | 42              | 32           | 19              | 15     | <del>- * ;</del>                                  | 0.85 [ 0.23; 3.17]      |
| Viswanathan_2006              | 29              | 25           | 28              | 14     | € +                                               | 6.25 [ 1.72; 22.69]     |
| Duzgun_2008                   | 50              | 33           | 50              | 0      |                                                   | 193.34 [11.24; 3325.30] |
| Kessler_2003                  | 15              | 2            | 13              | 0      | - 1:                                              | 5.00 [ 0.22; 114.22]    |
| Katz_2005                     | 21              | 17           | 20              | 15     |                                                   | 1.42 [ 0.32; 6.27]      |
| Marston_2003                  | 130             | 39           | 115             | 21     | 7                                                 | 1.92 [ 1.05; 3.51]      |
| Naughton_1997                 | 109             | 42           | 126             | 40     | 青                                                 | 1.35 [ 0.79; 2.31]      |
| Pham_1999                     | 16              | 12           | 17              | 7      | <u>;</u>                                          | 4.29 [ 0.97; 18.97]     |
| Veves_2001                    | 112             | 63           | 96              | 36     | <del></del>                                       | 2.14 [ 1.23; 3.74]      |
| Blume_2008                    | 169             | 73           | 166             | 48     | <del></del>                                       | 1.87 [ 1.19; 2.94]      |
| Moretti_2009                  | 15              | 8            | 15              | 5      | <del>  [*</del>                                   | 2.29 [ 0.52; 10.01]     |
| Peters_2001                   | 20              | 13           | 20              | 7      | <del>[ • • •</del>                                | 3.45 [ 0.94; 12.65]     |
| Ganguly_2008                  | 29              | 28           | 26              | 21     | + + -                                             | 6.67 [ 0.72; 61.40]     |
| Driver_2006                   | 19              | 13           | 21              | 9      | <del>  [ • -</del>                                | 2.89 [ 0.79; 10.57]     |
| Reyzelman_2009                | 47              | 32           | 39              | 18     | <del>(a</del>                                     | 2.49 [ 1.03; 5.99]      |
| Kalani_2003                   | 44              | 14           | 43              | 9      | <del>  [ •</del>                                  | 1.76 [ 0.67; 4.65]      |
| deLalla_2001                  | 20              | 7            | 20              | 7      | <del>- † ;</del>                                  | 1.00 [ 0.27; 3.67]      |
| Kastenbauer_2003              | 20              | 0            | 17              | 0      |                                                   |                         |
| Abidia_2003                   | 8               | 5            | 8               | 1      | 1                                                 | - 11.67 [ 0.92; 147.56] |
| Londahl_2010                  | 49              | 25           | 45              | 12     | - <del></del>                                     | 2.86 [ 1.20; 6.81]      |
| Steed_1995                    | 40              | 14           | 25              | 2      |                                                   | 6.19 [ 1.27; 30.19]     |
| Mueller_1989                  | 21              | 19           | 19              | 6      | i —                                               | 20.58 [ 3.58; 118.32]   |
| Piagessi_2001                 | 10              | 10           | 10              | 9      | - !                                               | 3.32 [ 0.12; 91.60]     |
| Common effect model           | 2192            |              | 2119            |        | į                                                 | 1.73 [ 1.51; 1.98]      |
| Random effects model          |                 |              |                 | ♦      | 1.90 [ 1.50; 2.40]                                |                         |
| Prediction interval           | _               |              |                 |        |                                                   | [ 0.72; 4.97]           |
| Heterogeneity: $I^2 = 56\%$ , | $\tau^2 = 0.20$ | 092, p < 0   | .01             |        |                                                   | I                       |
|                               |                 |              |                 | (      | 0.001 0.1 1 10                                    | 1000                    |

The random effects meta-analysis yielded a pooled odds ratio of 1.90. However, substantial between-study heterogeneity was found, with  $\tau = 0.46$ .

#### 7.2.2 Individual participant data

Subsequently, we retrieve the individual participant data:

Briefly, these IPD were obtained from a prospective cohort study enrolling consecutive patients with diabetic foot ulcers (DFUs) and without previous major amputation in a single diabetes center between June 1998 and December 1999 (Morbach et al. 2012). The baseline characteristics of the study population is summarized below:

|                                                                   | Overall                    |
|-------------------------------------------------------------------|----------------------------|
|                                                                   | (N=260)                    |
| Age (years)                                                       |                            |
| Mean (SD)                                                         | 68.9 (10.9)                |
| Median [Min, Max                                                  | [25.0, 91.0]               |
| Diabetes duration                                                 | (years)                    |
| Mean (SD)                                                         | 15.9 (10.6)                |
| Median [Min, Max                                                  | $[14.0 \ [0, 53.0]]$       |
| Sex                                                               |                            |
| Female                                                            | 106 (40.8%)                |
| Male                                                              | 154 (59.2%)                |
| Ever smoker                                                       |                            |
| Yes                                                               | 154 (59.2%)                |
| No                                                                | 106 (40.8%)                |
| Diabetes type 2                                                   | ,                          |
| Yes                                                               | 229 (88.1%)                |
| No                                                                | 31 (11.9%)                 |
| Peripheral arteria                                                | ,                          |
| Yes                                                               | 148 (56.9%)                |
| No                                                                | 112 (43.1%)                |
| Neuropathy                                                        | ()                         |
| Yes                                                               | 224 (86.2%)                |
| No                                                                | 36 (13.8%)                 |
|                                                                   | 30 (13.070)                |
| $egin{aligned} 	ext{First ever lesion} \ 	ext{Yes} \end{aligned}$ | 114 (49 007)               |
| No.                                                               | 114 (43.8%)<br>146 (56.2%) |
|                                                                   | ,                          |
| No continuous car $N_{-}$                                         |                            |
| Yes<br>No                                                         | 177 (68.1%)<br>83 (31.9%)  |
|                                                                   | , ,                        |
| Insulin dependent                                                 |                            |
| Yes                                                               | 174 (66.9%)                |
| No                                                                | 86 (33.1%)                 |
| History of coronar                                                | . ,                        |
| Yes                                                               | 52 (20.0%)                 |
| No                                                                | $208 \ (80.0\%)$           |
| History of stroke                                                 |                            |
| Yes                                                               | 55~(21.2%)                 |
| No                                                                | 205~(78.8%)                |
| Charcot foot synd                                                 |                            |
| Yes                                                               | $52\ (20.0\%)$             |
| No                                                                | 208~(80.0%)                |
| Dialysis                                                          |                            |
| Yes                                                               | 9(3.5%)                    |
| No                                                                | $251\ (96.5\%)$            |
| DNOAP                                                             |                            |
| Yes                                                               | 29~(11.2%)                 |
| No                                                                | 231 (88.8%)                |
|                                                                   | ,                          |

Wagner score

As depicted above, IPD are available from 260 patients. Some of these patients have similar characteristics to those enrolled in the randomized trials. However, other patients have comorbidities, where one or more risk factors prevent them to participate in the RCTs due to ethical reasons. For example, 118 patients have severe ulcer lesions (Wagner score 3 to 4), and 77 patients suffer from severe ulcer lesions and peripheral arterial disease (PAD). The question is: Can we generalize the benefit of adjuvant therapies observed in the RCTs to the subgroups of patients encountered in clinical practice?

#### 7.2.3 Hierarchical metaregression

We fitted an HMR model to the available RWD and published AD:

```
set.seed(2022)
AD <- healing %>% dplyr::select(yc = y_c, nc = n_c,
                                yt = y_t, nt = n_t, Study = Study)
mx2 <- hmr(data = AD,
                                    # Published aggregate data
           two.by.two = FALSE,
           dataIPD = IPD,
                                    # Data frame of the IPD
           re = "sm",
                                    # Random effects model: "sm" scale mixtures
           link = "logit",
                                    # Link function of the random effects
           sd.mu.1 = 1,
                                    # Scale parameter for the prior of mu.1
                                    # Scale parameter for the prior of mu.2
           sd.mu.2 = 1,
           sd.mu.phi = 1,
                                    # Scale parameter for the prior of mu.phi
           sigma.1.upper = 5,
                                   # Upper bound of the prior of sigma.1
           sigma.2.upper = 5,
                                  # Upper bound of the prior of sigma.2
           sigma.beta.upper = 5,  # Upper bound of the prior of sigma.beta
           sd.Fisher.rho = 1.25,
                                  # Scale parameter for the prior of rho
           df.estimate = TRUE,
                                    # If TRUE the degrees of freedom are estimated
           df.lower = 3,
                                    # Lower bound of the df's prior
           df.upper = 10,
                                    # Upper bound of the df's prior
           nr.chains = 2,
                                    # Number of MCMC chains
           nr.iterations = 10000,  # Total number of iterations
           nr.adapt = 1000,
                                    # Number of iteration for burnin
           nr.thin = 1)
                                    # Thinning rate
```

We start our analysis by visualizing the conflict of evidence between the different types of data and study types. The figure below depicts the posterior distribution of  $\mu_{\phi}$ , which is the mean bias of the IPD-NRS compared to the AD-RCTs control groups. The posterior distribution has a substantial probability mass on the right of zero, which indicates that in average the IPD-NRS patients present a better prognoses than the AD-RCTs control groups. That means

that taking the IPD-NRS results at face value would be misleading if we aim to combine them with a meta-analysis of AD-RCTs.

The figure below presents the posterior distribution of the weights  $w_i$  for each study included in the HMR. These posteriors are summarized using a forest plot, where posterior intervals substantially greater than one indicate outliers. One important aspect of the HMR is that those outliers are automatically down-weighted in the analysis.



Figure 7.1: Conflict of evidence analysis. The left panel shows the prior to posterior sensitivity analysis of bias mean between the RCTs and the IPD-NRS. The right panel depicts the posterior distribution of the outliers detection weights.



Figure 7.2: Posterior distribution of the weights for each study included in the HMR

## 8 Dealing with irregular and informative visits

```
Janie Coulombe (Université de Montréal)
Thomas Debray (Smart Data Analysis and Statistics B.V.)
```

#### 8.1 Introduction

```
We first load the relevant R scripts:

source("resources/chapter 12/sim.r")

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
   filter, lag

The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union

Attaching package: 'mice'

The following object is masked from 'package:stats':
   filter
```

```
The following objects are masked from 'package:base':
    cbind, rbind

Attaching package: 'nlme'

The following object is masked from 'package:dplyr':
    collapse

Attaching package: 'MASS'

The following object is masked from 'package:dplyr':
    select

source("resources/chapter 12/fig_functions.r")
    source("resources/chapter 12/mlmi.r")
```

#### 8.2 Example dataset

Below, we generate an example dataset that contains information on the treatment allocation x and three baseline covariates age, sex and edss (EDSS at treatment start). The discrete outcome y represents the Expanded Disability Status Scale (EDSS) score after time months of treatment exposure. Briefly, the EDSS is a semi-continuous measure that varies from 0 (no disability) to 10 (death).

```
sd_age = 10.53,
min_age = 18,
beta_age = 0.05, # DGM - prognostic effect of age
beta_t = 0.014, # DGM - prognostic effect of time
beta_t2 = 0,
              # DGM - prognostic effect of time squared
delta_xt = 0, # DGM - interaction treatment time
delta_xt2 = 0, # 0.0005
                           # DGM - interaction treatment time2
p_{\text{female}} = 0.75,
beta_female = -0.2 , ## DGM - prognostic effect of male sex
delta_xf = 0,
                 ## DGM - interaction sex treatment
rho = 0.8,
                       # DGM - autocorrelation of between alpha_
                       # DGM - correlation structure of the late
corFUN = corAR1,
tx_alloc_FUN = treatment_alloc_confounding_v2 ) ## or treatment_
```

### EDSS Prognosis



Figure 8.1: Distribution of the EDSS score at each time point

We remove the outcome y according to the informative visit process that depends on the received treatment, gender, and age.

```
dataset_visit <- censor_visits_a5(dataset, seed = 12345) %>%
  dplyr::select(-y) %>%
  mutate(time_x = time*x)
```

In the censored data, a total of 17 out of 5000 patients have a visit at time=60.

#### 8.3 Estimation of treatment effect

We will estimate the marginal treatment effect at time time=60.

#### 8.3.1 Original data

#### 8.3.2 Doubly-weighted marginal treatment effect

We here implement inverse probability of response weights into the estimating equations to adjust for nonrandom missingness Coulombe, Moodie, and Platt (2020).

#### 8.3.3 Multilevel multiple imputation

We adopt the imputation approach proposed by Debray et al. (2023). Briefly, we impute the entire vector of y\_obs for all 61 potential visits and generate 10 imputed datasets. Note: mlmi currently does not support imputation of treatment-covariate interaction terms.

```
imp <- impute_y_mice_31(dataset_visit, seed = 12345)</pre>
```

We can now estimate the treatment effect in each imputed dataset

## 8.4 Reproduce the results using all data to compute the marginal effect with IIV-weighted

#### 8.4.1 Doubly -weighted marginal treatment effect total

#### 8.5 Results



Doubly weighted all times combuitbed weighted the Multiple Imputation t=60Reference method

#### Version info

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15) Platform: x86\_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.3 LTS Matrix products: default /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3 LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so locale: [1] LC\_CTYPE=C.UTF-8 LC NUMERIC=C LC\_TIME=C.UTF-8 [4] LC\_COLLATE=C.UTF-8 LC\_MONETARY=C.UTF-8 LC\_MESSAGES=C.UTF-8 [7] LC\_PAPER=C.UTF-8 LC\_NAME=C LC\_ADDRESS=C [10] LC\_TELEPHONE=C LC\_MEASUREMENT=C.UTF-8 LC\_IDENTIFICATION=C attached base packages: [1] stats graphics grDevices utils datasets methods

#### other attached packages:

- [1] sparseMVN\_0.2.2 truncnorm\_1.0-9 MASS\_7.3-58.2 nlme\_3.1-162 ggplot2\_3.4.4 broom\_1.0.5 [5] mice\_3.16.0 dplyr\_1.1.4
- loaded via a namespace (and not attached):

| [1]  | shape_1.4.6        | tidyselect_1.2.0 | xfun_0.41        | purrr_1.0.2    |
|------|--------------------|------------------|------------------|----------------|
| [5]  | splines_4.2.3      | lattice_0.20-45  | colorspace_2.1-0 | vctrs_0.6.4    |
| [9]  | generics_0.1.3     | htmltools_0.5.7  | yam1_2.3.7       | pan_1.9        |
| [13] | utf8_1.2.4         | survival_3.5-3   | rlang_1.1.2      | jomo_2.7-6     |
| [17] | pillar_1.9.0       | nloptr_2.0.3     | withr_2.5.2      | glue_1.6.2     |
| [21] | RColorBrewer_1.1-3 | foreach_1.5.2    | lifecycle_1.0.4  | munsell_0.5.0  |
| [25] | gtable_0.3.4       | codetools_0.2-19 | evaluate_0.23    | labeling_0.4.3 |
| [29] | knitr_1.45         | fastmap_1.1.1    | fansi_1.0.5      | Rcpp_1.0.11    |
| [33] | scales_1.2.1       | backports_1.4.1  | jsonlite_1.8.7   | farver_2.1.1   |
| [37] | lme4_1.1-35.1      | digest_0.6.33    | grid_4.2.3       | cli_3.6.1      |
| [41] | tools_4.2.3        | magrittr_2.0.3   | glmnet_4.1-8     | tibble_3.2.1   |
| [45] | tidyr_1.3.0        | pkgconfig_2.0.3  | ellipsis_0.3.2   | Matrix_1.6-3   |
| [49] | minqa_1.2.6        | rmarkdown_2.25   | iterators_1.0.14 | $mitml_0.4-5$  |
| [53] | R6_2.5.1           | boot_1.3-28.1    | rpart_4.1.19     | nnet_7.3-18    |
| [57] | compiler_4.2.3     |                  |                  |                |

base

### References

# 9 Prediction of individual treatment effect using data from multiple studies

Orestis Efthimiou (Institute of Social and Preventive Medicine (ISPM))

In this chapter, we discuss statistical methods for developing models to predict patient-level treatment effects using data from multiple randomized and non-randomized studies. We will first present prediction models that assume a constant treatment effect and discuss how to address heterogeneity in baseline risk. Subsequently, we will discuss approaches that allow for treatment effect modification by adopting two different approaches in an IPD-MA context, namely the risk modelling and the effect modelling approach. For both approaches, we will first discuss how to combine IPD from RCTs comparing the same two treatments. We will then discuss how these methods can be extended to include randomized data from multiple treatments, real-world data, and published aggregate data. We will discuss statistical software to implement these approaches and provide example code as supporting information. Real examples will be used throughout to illustrate the main methods.

# 9.1 Estimating heterogeneous treatment effects in pairwise meta-analysis

We hereby provide code for estimating patient-level treatment effects for the case when we have patient-level data from multiple randomized trials.

#### 9.1.1 Example of a continuous outcome

#### 9.1.1.1 Setup

We start by simulating an artificial dataset using the R package **bipd**:

```
library(bipd)
ds <- generate_ipdma_example(type = "continuous")</pre>
```

Table 9.1: The simulated dataset with a continuous outcome

|                          | 0                    | 1                     | Overall               |
|--------------------------|----------------------|-----------------------|-----------------------|
|                          | (N=311)              | (N=289)               | (N=600)               |
| z1                       |                      |                       |                       |
| Mean (SD)                | -0.148 (0.916)       | -0.0850 (1.03)        | -0.118 (0.973)        |
| Median [Min, Max]        | -0.183 [-2.91, 2.14] | -0.0372 [-3.06, 3.15] | -0.0966 [-3.06, 3.15] |
| $\mathbf{z}2$            |                      |                       |                       |
| Mean (SD)                | -0.0942 (1.01)       | $0.00763 \ (1.05)$    | -0.0451 (1.03)        |
| Median [Min, Max]        | -0.139 [-3.31, 2.31] | 0.0659 [-3.57, 2.95]  | -0.0345 [-3.57, 2.95] |
| $\operatorname{studyid}$ |                      |                       |                       |
| 1                        | $48 \ (15.4\%)$      | 52 (18.0%)            | $100 \ (16.7\%)$      |
| 2                        | 50 (16.1%)           | 50 (17.3%)            | $100 \ (16.7\%)$      |
| 3                        | 53 (17.0%)           | 47 (16.3%)            | $100 \ (16.7\%)$      |
| 4                        | 52 (16.7%)           | 48 (16.6%)            | $100\ (16.7\%)$       |
| 5                        | 54 (17.4%)           | 46 (15.9%)            | $100\ (16.7\%)$       |
| 6                        | 54 (17.4%)           | 46 (15.9%)            | 100 (16.7%)           |

Let us have a look at the dataset:

#### head(ds)

|   | studyid | treat | z1          | z2          | У  |
|---|---------|-------|-------------|-------------|----|
| 1 | 1       | 0     | 0.85843329  | 0.58505355  | 11 |
| 2 | 1       | 0     | -0.93114713 | -0.26152364 | 11 |
| 3 | 1       | 0     | -1.34240319 | -0.16789945 | 11 |
| 4 | 1       | 0     | -0.08378685 | -0.70173434 | 11 |
| 5 | 1       | 0     | -1.52303096 | 0.62569591  | 11 |
| 6 | 1       | 0     | 0.90680699  | 0.02503966  | 11 |

The simulated dataset contains information on the following variables:

- the trial indicator studyid
- ullet the treatment indicator  ${\sf treat}$ , which takes the values 0 for control and 1 for active treatment
- two prognostic variables z1 and z2
- the continuous outcome y

#### 9.1.1.2 Model fitting

We synthesize the evidence using a Bayesian random effects meta-analysis model. The model is given in Equation 16.7 of the book. First we need set up the data and create the model:

The JAGS model can be accessed as follows:

```
ipd$model.JAGS
function ()
    for (i in 1:Np) {
        y[i] ~ dnorm(mu[i], sigma)
        mu[i] <- alpha[studyid[i]] + inprod(beta[], X[i, ]) +</pre>
            (1 - equals(treat[i], 1)) * inprod(gamma[], X[i,
                 ]) + d[studyid[i], treat[i]]
    }
    sigma ~ dgamma(0.001, 0.001)
    for (j in 1:Nstudies) {
        d[j, 1] \leftarrow 0
        d[j, 2] ~ dnorm(delta[2], tau)
    }
    sd ~ dnorm(0, 1)
    T(0,)
    tau \leftarrow pow(sd, -2)
    delta[1] <- 0
    delta[2] ~ dnorm(0, 0.001)
    for (j in 1:Nstudies) {
        alpha[j] ~ dnorm(0, 0.001)
    for (k in 1:Ncovariate) {
        beta[k] ~ dnorm(0, 0.001)
    for (k in 1:Ncovariate) {
        gamma[k] ~ dnorm(0, 0.001)
    }
```

```
}
<environment: 0x55ef48935ad8>
We can fit the treatment effect model as follows:
  samples <- ipd.run(ipd, n.chains = 2, n.iter = 20,
                      pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 600
   Unobserved stochastic nodes: 19
   Total graph size: 6034
Initializing model
Here are the estimated model parameters:
  summary(samples)
Iterations = 2001:2020
Thinning interval = 1
Number of chains = 2
Sample size per chain = 20
1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:
                      SD Naive SE Time-series SE
            Mean
alpha[1] 10.9421 0.06982 0.011040
                                         0.019861
alpha[2] 8.0159 0.04948 0.007823
                                         0.011738
alpha[3] 10.4823 0.05996 0.009481
                                         0.016542
alpha[4] 9.5636 0.05016 0.007931
                                         0.010828
alpha[5] 12.8665 0.04439 0.007018
                                         0.006099
```

0.005253

0.004046

0.005406

alpha[6] 15.7681 0.04115 0.006506

0.1888 0.01992 0.003149

0.3334 0.01989 0.003144

beta[1]

beta[2]

```
      delta[1]
      0.0000
      0.00000
      0.000000

      delta[2]
      -3.2328
      0.84523
      0.133642
      0.134387

      gamma[1]
      -0.4334
      0.02756
      0.004357
      0.005542

      gamma[2]
      0.5356
      0.02841
      0.004492
      0.005697

      sd
      2.2811
      0.50037
      0.079116
      0.093257
```

#### 2. Quantiles for each variable:

```
2.5%
                    25%
                            50%
                                         97.5%
                                    75%
alpha[1] 10.8346 10.8963 10.9318 10.9825 11.0907
alpha[2]
        7.9377 7.9845 8.0056 8.0484 8.1177
alpha[3] 10.3849 10.4315 10.4845 10.5206 10.5809
alpha[4]
        9.4844 9.5292 9.5620 9.5967
alpha[5] 12.7885 12.8421 12.8653 12.8983 12.9308
alpha[6] 15.6982 15.7413 15.7730 15.8024 15.8348
beta[1]
         0.1526  0.1733  0.1895  0.2027  0.2226
beta[2]
         0.2917 0.3224 0.3334 0.3477
                                        0.3617
delta[1] 0.0000 0.0000 0.0000 0.0000 0.0000
delta[2] -4.7575 -3.9193 -3.0935 -2.6962 -1.8427
gamma[1] -0.4851 -0.4536 -0.4302 -0.4156 -0.3787
gamma[2] 0.4806 0.5189 0.5330 0.5530 0.5818
sd
         1.3496 1.9337 2.2744 2.7147 2.9755
```

#### 9.1.1.3 Prection

We can now predict the individualized treatment effect for a new patient with covariate values z1=1 and z2=0.5.

We can also predict treatment benefit for all patients in the sample, and look at the distribution of predicted benefit.

```
library(dplyr)
library(ggplot2)

ds <- ds %>% mutate(benefit = NA)
```

```
for (i in seq(nrow(ds))) {
   newpat <- as.matrix(ds[i, c("z1", "z2")])
   ds$benefit[i] <- treatment.effect(ipd, samples, newpatient = newpat)["0.5"]
}

ggplot(ds, aes(x = benefit)) + geom_histogram() + facet_wrap(~studyid) +
   xlab("Predicted treatment benefit")</pre>
```



Figure 9.1: Distribution of predicted treatment benefit in each trial

#### 9.1.1.4 Penalization

Let us repeat the analysis, but this time while penalizing the treatment-covariate coefficients using a Bayesian LASSO prior.

#### 9.1.2 Example of a binary outcome

#### 9.1.2.1 Setup

We now present the case of a binary outcome. We first generate a dataset as before, using the **bipd** package.

```
ds2 <- generate_ipdma_example(type = "binary")</pre>
  head(ds2)
  studyid treat
                                   w2 y
                        w1
1
              1 -0.3829662 0.5822928 0
2
              0 0.7879807 -0.3607282 1
3
              0 1.1144111 1.0868824 1
              1 -0.9727629 -1.7013723 0
5
        1
              1 0.4663732 1.0481332 0
              1 1.4372806 -0.3099531 0
        1
```

The simulated dataset contains information on the following variables:

Table 9.2: The simulated dataset with a binary outcome

|                          | 0                     | 1                     | Overall               |
|--------------------------|-----------------------|-----------------------|-----------------------|
|                          | (N=297)               | (N=303)               | (N=600)               |
| w1                       |                       |                       |                       |
| Mean (SD)                | -0.0695 (1.07)        | 0.0109 (0.970)        | -0.0289 (1.02)        |
| Median [Min, Max]        | -0.0605 [-3.18, 2.74] | -0.0432 [-2.69, 3.53] | -0.0459 [-3.18, 3.53] |
| w2                       |                       |                       |                       |
| Mean (SD)                | 0.0536 (1.01)         | -0.0255(1.11)         | 0.0137 (1.06)         |
| Median [Min, Max]        | 0.0593 [-2.54, 2.74]  | -0.0343 [-2.61, 3.12] | 0.0294 [-2.61, 3.12]  |
| $\operatorname{studyid}$ |                       |                       |                       |
| 1                        | 51 (17.2%)            | 49~(16.2%)            | $100 \ (16.7\%)$      |
| 2                        | 55 (18.5%)            | 45 (14.9%)            | $100 \ (16.7\%)$      |
| 3                        | 49 (16.5%)            | 51 (16.8%)            | $100 \ (16.7\%)$      |
| 4                        | 37 (12.5%)            | 63~(20.8%)            | $100\ (16.7\%)$       |
| 5                        | 58 (19.5%)            | 42 (13.9%)            | $100 \ (16.7\%)$      |
| 6                        | 47 (15.8%)            | 53 (17.5%)            | 100 (16.7%)           |

- the trial indicator studyid
- the treatment indicator treat, which takes the values 0 for control and 1 for active treatment
- two prognostic variables w1 and w2
- the binary outcome y

#### 9.1.2.2 Model fitting

We use a Bayesian random effects model with binomial likelihood. This is similar to the model 16.7 of the book, but with a Binomial likelihood, i.e.

$$\begin{aligned} y_{ij} \sim Binomial(\pi_{ij}) \\ logit(\pi_{ij}) == a_j + \delta_j t_{ij} + \sum_{l=1}^L \beta_l x_{ij} + \sum_{l=1}^L \gamma_l x_{ij} t_{ij} \end{aligned}$$

The remaining of the model is as in the book. We can penalize the estimated parameters for effect modification ( $\gamma$ 's), using a Bayesian LASSO. We can do this using again the *bipd* package:

```
ipd2 <- with(ds2, ipdma.model.onestage(y = y, study = studyid, treat = treat,</pre>
                                            X = cbind(w1, w2),
                                            response = "binomial",
                                            shrinkage = "laplace"),
                type = "random", hy.prior = list("dunif", 0, 1))
  ipd2$model.JAGS
function ()
{
    for (i in 1:Np) {
        y[i] ~ dbern(p[i])
        logit(p[i]) <- alpha[studyid[i]] + inprod(beta[], X[i,</pre>
            ]) + (1 - equals(treat[i], 1)) * inprod(gamma[],
            X[i, ]) + d[studyid[i], treat[i]]
    }
    for (j in 1:Nstudies) {
        d[j, 1] \leftarrow 0
        d[j, 2] ~ dnorm(delta[2], tau)
    sd \sim dnorm(0, 1)
    T(0,)
    tau <- pow(sd, -2)
    delta[1] <- 0
    delta[2] ~ dnorm(0, 0.001)
    for (j in 1:Nstudies) {
        alpha[j] ~ dnorm(0, 0.001)
    }
    for (k in 1:Ncovariate) {
        beta[k] ~ dnorm(0, 0.001)
    tt <- lambda
    lambda <- pow(lambda.inv, -1)</pre>
    lambda.inv ~ dunif(0, 5)
    for (k in 1:Ncovariate) {
        gamma[k] ~ ddexp(0, tt)
    }
}
<environment: 0x55ef4c808870>
```

Compiling model graph
Resolving undeclared variables
Allocating nodes
Graph information:

Observed stochastic nodes: 600 Unobserved stochastic nodes: 19

Total graph size: 6637

Initializing model

summary(samples)

Iterations = 2001:2020
Thinning interval = 1
Number of chains = 2
Sample size per chain = 20

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
SD Naive SE Time-series SE
             Mean
alpha[1] -0.169952 0.3228 0.05105
                                         0.05860
alpha[2] -0.887544 0.2186 0.03456
                                         0.03026
alpha[3] -0.649074 0.2699 0.04267
                                         0.03555
alpha[4] -0.708881 0.2199 0.03477
                                         0.03357
alpha[5] -0.824848 0.2819 0.04457
                                         0.04099
alpha[6] -0.787355 0.2649 0.04188
                                         0.05778
beta[1]
         0.176128 0.1267 0.02003
                                         0.04440
beta[2] -0.007226 0.1152 0.01822
                                         0.02435
delta[1] 0.000000 0.0000 0.00000
                                         0.00000
delta[2] -0.674678 0.3055 0.04830
                                         0.04676
gamma[1] -0.452111 0.2831 0.04476
                                         0.10876
gamma[2] 0.305685 0.1570 0.02482
                                         0.03339
         0.813355 0.2539 0.04015
                                         0.05601
```

2. Quantiles for each variable:

```
2.5%
                      25%
                                50%
                                         75%
                                                97.5%
alpha[1] -0.79243 -0.31185 -0.208872 0.06135 0.41686
alpha[2] -1.23560 -1.00858 -0.905661 -0.77093 -0.43992
alpha[3] -1.12925 -0.88771 -0.625846 -0.47534 -0.16277
alpha[4] -1.09192 -0.87549 -0.688519 -0.57915 -0.29602
alpha[5] -1.27376 -0.99627 -0.803184 -0.66031 -0.33575
alpha[6] -1.25123 -0.99010 -0.805055 -0.60054 -0.32128
beta[1] -0.02088 0.06047 0.169251 0.28546 0.36212
beta[2] -0.24124 -0.06311 -0.003534 0.08165 0.17954
delta[1] 0.00000 0.00000 0.000000 0.00000 0.00000
delta[2] -1.19075 -0.89581 -0.594720 -0.44644 -0.22874
gamma[1] -0.97435 -0.59283 -0.464777 -0.17678 -0.03033
gamma[2] -0.04221 0.21811 0.294994 0.39628 0.58166
         0.48280 0.64602 0.787635 0.94308 1.16281
sd
  round(treatment.effect(ipd2, samples, newpatient = c(w1= 1.6, w2 = 1.3)), 2)
0.025
       0.5 0.975
0.15 0.35 0.80
```

# 9.2 Estimating heterogeous treatment effects in network meta-analysis

#### 9.2.1 Example of a continuous outcome

#### 9.2.1.1 Setup

We use again the bipd package to simulate a dataset:

```
ds3 <- generate_ipdnma_example(type = "continuous")</pre>
  head(ds3)
  studyid treat
                        z1
              2 -0.3776202 -0.5926186
2
              1 1.5265083 0.4110088 11
3
              1 -0.0252932 1.0224110 11
4
        1
              1 -0.3163045 -1.0963140 11
5
        1
              2 -0.4402084 0.5633210 9
              1 -0.8005045 0.4798249 11
```

Table 9.3: The simulated dataset with a continuous outcome

|                          | 1                      | 2                    | 3                     | Overall               |
|--------------------------|------------------------|----------------------|-----------------------|-----------------------|
|                          | (N=344)                | (N=344)              | (N=312)               | (N=1000)              |
| z1                       |                        |                      |                       |                       |
| Mean (SD)                | -0.135 (1.01)          | $-0.125 \ (0.986)$   | 0.0567 (1.07)         | -0.0717(1.02)         |
| Median [Min, Max]        | -0.145 [-3.21, 2.49]   | -0.124 [-3.76, 2.82] | 0.0978 [-2.70, 3.19]  | -0.0830 [-3.76, 3.19] |
| z2                       |                        |                      |                       |                       |
| Mean (SD)                | 0.00864(1.01)          | $0.0138 \ (0.958)$   | -0.0417 (1.01)        | -0.00529 (0.992)      |
| Median [Min, Max]        | -0.00608 [-2.92, 3.70] | 0.0466 [-3.16, 2.28] | -0.0460 [-3.17, 2.38] | 0.0105 [-3.17, 3.70]  |
| $\operatorname{studyid}$ |                        |                      |                       |                       |
| 1                        | 48 (14.0%)             | 52 (15.1%)           | 0 (0%)                | 100 (10.0%)           |
| 2                        | 53 (15.4%)             | 47 (13.7%)           | 0 (0%)                | 100 (10.0%)           |
| 3                        | 44 (12.8%)             | 56 (16.3%)           | 0 (0%)                | 100 (10.0%)           |
| 4                        | 61 (17.7%)             | 0 (0%)               | 39~(12.5%)            | 100 (10.0%)           |
| 5                        | 44 (12.8%)             | 0 (0%)               | 56 (17.9%)            | 100 (10.0%)           |
| 6                        | 0 (0%)                 | 41 (11.9%)           | 59 (18.9%)            | 100 (10.0%)           |
| 7                        | 0 (0%)                 | 50 (14.5%)           | 50 (16.0%)            | 100 (10.0%)           |
| 8                        | $26 \ (7.6\%)$         | 40 (11.6%)           | 34 (10.9%)            | 100 (10.0%)           |
| 9                        | 37 (10.8%)             | 30 (8.7%)            | 33 (10.6%)            | 100 (10.0%)           |
| 10                       | 31 (9.0%)              | 28 (8.1%)            | 41 (13.1%)            | 100 (10.0%)           |

Let us look into the data a bit in more detail:

#### 9.2.1.2 Model fitting

We will use the model shown in Equation 16.8 in the book. In addition, we will use Bayesian LASSO to penalize the treatment-covariate interactions.

```
y[i] ~ dnorm(mu[i], sigma)
    mu[i] <- alpha[studyid[i]] + inprod(beta[], X[i, ]) +</pre>
         inprod(gamma[treat[i], ], X[i, ]) + d[studyid[i],
        treatment.arm[i]]
}
sigma ~ dgamma(0.001, 0.001)
for (i in 1:Nstudies) {
    w[i, 1] \leftarrow 0
    d[i, 1] \leftarrow 0
    for (k in 2:na[i]) {
        d[i, k] ~ dnorm(mdelta[i, k], taudelta[i, k])
        mdelta[i, k] <- delta[t[i, k]] - delta[t[i, 1]] +</pre>
             sw[i, k]
        taudelta[i, k] \leftarrow tau * 2 * (k - 1)/k
        w[i, k] \leftarrow d[i, k] - delta[t[i, k]] + delta[t[i, k]]
             1]]
         sw[i, k] \leftarrow sum(w[i, 1:(k-1)])/(k-1)
    }
}
sd \sim dnorm(0, 1)
T(0, )
tau \leftarrow pow(sd, -2)
delta[1] <- 0
for (k in 2:Ntreat) {
    delta[k] ~ dnorm(0, 0.001)
}
for (j in 1:Nstudies) {
    alpha[j] ~ dnorm(0, 0.001)
for (k in 1:Ncovariate) {
    beta[k] ~ dnorm(0, 0.001)
}
lambda[1] \leftarrow 0
lambda.inv[1] <- 0</pre>
for (m in 2:Ntreat) {
    tt[m] <- lambda[m] * sigma
    lambda[m] <- pow(lambda.inv[m], -1)</pre>
    lambda.inv[m] ~ dunif(0, 5)
}
for (k in 1:Ncovariate) {
    gamma[1, k] \leftarrow 0
    for (m in 2:Ntreat) {
         gamma[m, k] ~ ddexp(0, tt[m])
```

```
}
    }
}
<environment: 0x55ef4c610e30>
  samples <- ipd.run(ipd3, n.chains = 2, n.iter = 20,
                      pars.save = c("alpha", "beta", "delta", "sd", "gamma"))
Compiling model graph
   Resolving undeclared variables
   Allocating nodes
Graph information:
   Observed stochastic nodes: 1000
   Unobserved stochastic nodes: 35
   Total graph size: 10141
Initializing model
  summary(samples)
Iterations = 2001:2020
Thinning interval = 1
Number of chains = 2
Sample size per chain = 20
1. Empirical mean and standard deviation for each variable,
   plus standard error of the mean:
                        SD Naive SE Time-series SE
              Mean
alpha[1]
           10.9568 0.04289 0.006782
                                           0.006859
            7.9847 0.04538 0.007175
alpha[2]
                                           0.009086
alpha[3]
           10.4797 0.05059 0.007999
                                           0.013568
alpha[4]
           9.5447 0.03966 0.006271
                                           0.006345
alpha[5]
           12.8079 0.04633 0.007326
                                           0.013270
           13.1495 0.04497 0.007110
alpha[6]
                                           0.011113
alpha[7]
           7.4273 0.05538 0.008756
                                           0.015657
alpha[8]
           10.9870 0.03833 0.006060
                                           0.006660
alpha[9]
           10.2467 0.05245 0.008293
                                           0.013660
```

0.026767

9.2293 0.06685 0.010571

alpha[10]

| beta[1]    | 0.1672  | 0.02447 | 0.003869 | 0.006983 |
|------------|---------|---------|----------|----------|
| beta[2]    | 0.3364  | 0.02179 | 0.003446 | 0.006532 |
| delta[1]   | 0.0000  | 0.00000 | 0.00000  | 0.000000 |
| delta[2]   | -2.8871 | 0.04818 | 0.007617 | 0.008753 |
| delta[3]   | -1.1183 | 0.04882 | 0.007719 | 0.014185 |
| gamma[1,1] | 0.0000  | 0.00000 | 0.00000  | 0.000000 |
| gamma[2,1] | -0.5517 | 0.02820 | 0.004458 | 0.006883 |
| gamma[3,1] | -0.2641 | 0.02815 | 0.004451 | 0.008101 |
| gamma[1,2] | 0.0000  | 0.00000 | 0.00000  | 0.000000 |
| gamma[2,2] | 0.5129  | 0.03130 | 0.004949 | 0.007908 |
| gamma[3,2] | 0.3830  | 0.02525 | 0.003992 | 0.007903 |
| sd         | 0.1125  | 0.03558 | 0.005626 | 0.012659 |

#### 2. Quantiles for each variable:

```
2.5%
                          25%
                                  50%
                                           75%
                                                 97.5%
alpha[1]
           10.87855 10.93362 10.9491 10.9909 11.0281
alpha[2]
                     7.96404
                               7.9826
                                       8.0093
            7.90971
                                                8.0957
alpha[3]
           10.36675 10.45180 10.4904 10.5129 10.5517
alpha[4]
            9.47983
                     9.52016
                               9.5440
                                       9.5693
                                                9.6181
alpha[5]
           12.72929 12.76649 12.8044 12.8485 12.8768
alpha[6]
           13.06216 13.12563 13.1490 13.1795 13.2346
alpha[7]
            7.31834
                     7.39380
                               7.4401
                                       7.4699
                                                7.4953
alpha[8]
           10.90090 10.97048 10.9978 11.0169 11.0474
alpha[9]
           10.15886 10.21359 10.2465 10.2688 10.3508
alpha[10]
            9.09467
                     9.17834
                               9.2345
                                       9.2855
                                                9.3236
beta[1]
            0.12273
                     0.15594
                               0.1677
                                       0.1823
                                                0.2108
beta[2]
            0.29864
                     0.32122
                               0.3362
                                       0.3497
                                                0.3722
delta[1]
                     0.00000
            0.00000
                               0.0000
                                       0.0000
                                                0.0000
delta[2]
           -2.95873 -2.92099 -2.8884 -2.8564 -2.8025
delta[3]
           -1.18860 -1.15947 -1.1113 -1.0793 -1.0403
                               0.0000
gamma[1,1]
            0.00000 0.00000
                                       0.0000
                                                0.0000
gamma[2,1]
          -0.59693 -0.56927 -0.5550 -0.5309 -0.5002
gamma[3,1]
          -0.31742 -0.28267 -0.2638 -0.2448 -0.2170
gamma[1,2]
                     0.00000
                                       0.0000
            0.00000
                               0.0000
                                                0.0000
                     0.49753
gamma [2,2]
            0.45098
                               0.5137
                                       0.5253
                                                0.5700
gamma[3,2]
            0.34632
                     0.36314
                               0.3783
                                       0.4007
                                                0.4312
sd
            0.06621
                     0.08743
                               0.1013
                                       0.1369
                                                0.1835
```

As before, we can use the treatment.effect() function of bipd to estimate relative effects for new patients.

```
treatment.effect(ipd3, samples, newpatient= c(1,2))
$`treatment 2`
    0.025
                0.5
                         0.975
-2.563851 -2.429903 -2.245252
$`treatment 3`
     0.025
                   0.5
                            0.975
-0.7428706 -0.6280404 -0.4541213
This gives us the relative effects for all treatments versus the reference. To obtain relative
effects between active treatments we need some more coding:
  samples.all=data.frame(rbind(samples[[1]], samples[[2]]))
  newpatient= c(1,2)
  newpatient <- (newpatient - ipd3$scale_mean)/ipd3$scale_sd</pre>
  median(
    samples.all$delta.2.+samples.all$gamma.2.1.*
       newpatient[1]+samples.all$gamma.2.2.*newpatient[2]
     (samples.all$delta.3.+samples.all$gamma.3.1.*newpatient[1]+
        samples.all$gamma.3.2.*newpatient[2])
[1] -1.801863
  quantile(samples.all$delta.2.+samples.all$gamma.2.1.*
              newpatient[1]+samples.all$gamma.2.2.*newpatient[2]
            -(samples.all$delta.3.+samples.all$gamma.3.1.*newpatient[1]+
                samples.all$gamma.3.2.*newpatient[2])
            , probs = 0.025)
     2.5%
-1.953611
  quantile(samples.all$delta.2.+samples.all$gamma.2.1.*
              newpatient[1]+samples.all$gamma.2.2.*newpatient[2]
```

## 9.2.2 Modeling patient-level relative effects using randomized and observational evidence for a network of treatments

We will now follow Chapter 16.3.5 from the book. In this analysis we will not use penalization, and we will assume fixed effects. For an example with penalization and random effects, see part 2 of this vignettte.

#### 9.2.2.1 Setup

We generate a very simple dataset of three studies comparing three treatments. We will assume 2 RCTs and 1 non-randomized trial:

The sample size is as follows:

```
s1 s2 s3
treat A: 46 49 29
treat B: 54 0 39
treat C: 0 51 32
```

#### 9.2.2.2 Model fitting

We will use the design-adjusted model, equation 16.9 in the book. We will fit a two-stage fixed effects meta-analysis and we will use a variance inflation factor. The code below is used to specify the analysis of each individual study. Briefly, in each study we adjust the treatment effect for the prognostic factors z1 and z2, as well as their interaction with treat.

```
library(rjags)
Loading required package: coda
Linked to JAGS 4.3.0
Loaded modules: basemod, bugs
  first.stage <- "
  model{
  for (i in 1:N){
      y[i] ~ dnorm(mu[i], tau)
      mu[i] <- a + inprod(b[], X[i,]) + inprod(c[,treat[i]], X[i,]) + d[treat[i]]</pre>
  sigma ~ dunif(0, 5)
  tau <- pow(sigma, -2)
  a ~ dnorm(0, 0.001)
  for(k in 1:Ncovariate){
      b[k] ~ dnorm(0,0.001)
  }
  for(k in 1:Ncovariate){
      c[k,1] <- 0
  }
  tauGamma <- pow(sdGamma,-1)
  sdGamma ~ dunif(0, 5)
  for(k in 1:Ncovariate){
      for(t in 2:Ntreat){
```

```
c[k,t] ~ ddexp(0, tauGamma)
}

d[1] <- 0
for(t in 2:Ntreat){
   d[t] ~ dnorm(0, 0.001)
}
}"</pre>
```

Subsequently, we estimate the relative treatment effects in the first (randomized) study comparing treatments A and B:

```
model1.spec <- textConnection(first.stage)</pre>
data1 <- with(ds4 %>% filter(studyid == 1),
               list(y = y,
                    N = length(y),
                    X = cbind(z1, z2),
                    treat = treat,
                    Ncovariate = 2,
                    Ntreat = 2))
jags.m <- jags.model(model1.spec, data = data1, n.chains = 2, n.adapt = 500,</pre>
                       quiet = TRUE)
params <- c("d", "c")
samps4.1 <- coda.samples(jags.m, params, n.iter = 50)</pre>
samps.all.s1 <- data.frame(as.matrix(samps4.1))</pre>
samps.all.s1 <- samps.all.s1[, c("c.1.2.", "c.2.2.", "d.2.")]
delta.1 <- colMeans(samps.all.s1)</pre>
cov.1 <- var(samps.all.s1)</pre>
```

We repeat the analysis for the second (randomized) study comparing treatments A and C:

Finally, we analyze the third (non-randomized) study comparing treatments A, B, and C:

```
model1.spec <- textConnection(first.stage)</pre>
data3 <- with(ds4 %>% filter(studyid == 3),
               list(y = y,
                     N = length(y),
                     X = cbind(z1, z2),
                     treat = treat,
                     Ncovariate = 2,
                     Ntreat = 3)
jags.m <- jags.model(model1.spec, data = data3, n.chains = 2, n.adapt = 100,</pre>
                       quiet = TRUE)
params <- c("d", "c")</pre>
samps4.3 <- coda.samples(jags.m, params, n.iter = 50)</pre>
samps.all.s3 <- data.frame(as.matrix(samps4.3))</pre>
samps.all.s3 <- samps.all.s3[, c("c.1.2.", "c.2.2.", "d.2.", "c.1.3.",</pre>
                                     "c.2.3.", "d.3.")]
delta.3 <- colMeans(samps.all.s3)</pre>
cov.3 <- var(samps.all.s3)</pre>
```

The corresponding treatment effect estimates are depicted below:

Table 9.4: Treatment effect estimates.

| study     | B versus A            | C versus A            |
|-----------|-----------------------|-----------------------|
| study 1   | -2.997 (SE = 0.051)   |                       |
| study $2$ |                       | -1.174 (SE = 0.070)   |
| study $3$ | -2.915  (SE = 0.090 ) | -0.956  (SE = 0.089 ) |

We can now fit the second stage of the network meta-analysis. The corresponding JAGS model is specified below:

```
second.stage <-
  "model{
    #likelihood
    y1 ~ dmnorm(Mu1, Omega1)
    y2 ~ dmnorm(Mu2, Omega2)
    y3 ~ dmnorm(Mu3, Omega3*W)
    Omega1 <- inverse(cov.1)</pre>
    Omega2 <- inverse(cov.2)</pre>
    Omega3 <- inverse(cov.3)</pre>
    Mu1 <- c(gamma[,1], delta[2])</pre>
    Mu2 <- c(gamma[,2], delta[3])
    Mu3 <- c(gamma[,1], delta[2],gamma[,2], delta[3])
    #parameters
    for(i in 1:2){
       gamma[i,1] ~ dnorm(0, 0.001)
       gamma[i,2] ~ dnorm(0, 0.001)
    }
    delta[1] <- 0
    delta[2] ~ dnorm(0, 0.001)
    delta[3] ~ dnorm(0, 0.001)
  }
We can fit as follows:
  model1.spec <- textConnection(second.stage)</pre>
  data3 \leftarrow list(y1 = delta.1, y2 = delta.2, y3 = delta.3,
                  cov.1 = cov.1, cov.2 = cov.2, cov.3 = cov.3, W = 0.5)
  jags.m <- jags.model(model1.spec, data = data3, n.chains = 2, n.adapt = 50,</pre>
                         quiet = TRUE)
```

params <- c("delta", "gamma")</pre>

samps4.3 <- coda.samples(jags.m, params, n.iter = 50)</pre>

```
Iterations = 1:50
Thinning interval = 1
Number of chains = 2
Sample size per chain = 50
```

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

```
SD Naive SE Time-series SE
              Mean
           0.0000 0.00000 0.000000
delta[1]
                                          0.000000
delta[2]
           -2.9796 0.10119 0.010119
                                          0.011450
          -1.0961 0.05436 0.005436
delta[3]
                                          0.005419
gamma[1,1] -0.7962 0.09661 0.009661
                                          0.012715
gamma[2,1] 0.8757 0.12703 0.012703
                                          0.012757
gamma[1,2] -0.4790 0.03762 0.003762
                                          0.003763
gamma[2,2] 0.4234 0.06227 0.006227
                                          0.006259
```

2. Quantiles for each variable:

```
2.5% 25% 50% 75% 97.5% delta[1] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 delta[2] -3.0779 -3.0250 -2.9937 -2.9626 -2.8573 delta[3] -1.1903 -1.1379 -1.0891 -1.0622 -0.9919 gamma[1,1] -0.9767 -0.8171 -0.7790 -0.7541 -0.7009 gamma[2,1] 0.7921 0.8280 0.8544 0.8866 0.9915 gamma[1,2] -0.5452 -0.5081 -0.4792 -0.4533 -0.4071 gamma[2,2] 0.3276 0.3793 0.4164 0.4467 0.5490
```

```
# calculate treatment effects
samples.all = data.frame(rbind(samps4.3[[1]], samps4.3[[2]]))
newpatient = c(1,2)

median(
   samples.all$delta.2. + samples.all$gamma.1.1.*newpatient[1] +
   samples.all$gamma.2.1.*newpatient[2]
)
```

[1] -2.059701

```
quantile(samples.all$delta.2.+samples.all$gamma.1.1.*newpatient[1]+
              samples.all$gamma.2.1.*newpatient[2]
            , probs = 0.025)
     2.5%
-2.236219
  quantile(samples.all$delta.2.+samples.all$gamma.1.1.*newpatient[1]+
              samples.all$gamma.2.1.*newpatient[2]
            , probs = 0.975)
    97.5%
-1.813748
Version info
This chapter was rendered using the following version of R and its packages:
R version 4.2.3 (2023-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS
Matrix products: default
        /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
locale:
 [1] LC_CTYPE=C.UTF-8
                            LC_NUMERIC=C
                                                    LC_TIME=C.UTF-8
 [4] LC COLLATE=C.UTF-8
                            LC_MONETARY=C.UTF-8
                                                    LC MESSAGES=C.UTF-8
 [7] LC_PAPER=C.UTF-8
                            LC_NAME=C
                                                    LC ADDRESS=C
                            LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
[10] LC_TELEPHONE=C
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets methods
                                                                 hase
other attached packages:
                     coda_0.19-4
[1] rjags_4-14
                                       ggplot2_3.4.4
                                                        bipd_0.3
```

table1\_1.4.3

[5] kableExtra\_1.3.4 dplyr\_1.1.4

loaded via a namespace (and not attached): [1] pillar\_1.9.0 compiler\_4.2.3 tools\_4.2.3 digest\_0.6.33 [5] gtable\_0.3.4  $lattice_0.20-45$ jsonlite\_1.8.7 evaluate\_0.23 [9] lifecycle\_1.0.4 viridisLite\_0.4.2 pkgconfig\_2.0.3 tibble\_3.2.1 [13] rlang\_1.1.2 cli\_3.6.1 rstudioapi\_0.15.0 yaml\_2.3.7 [17] mvtnorm\_1.2-3 xfun\_0.41 fastmap\_1.1.1 withr\_2.5.2 [21] httr\_1.4.7 stringr\_1.5.1 knitr\_1.45  $xm12_1.3.5$ [25] generics\_0.1.3 vctrs\_0.6.4 systemfonts\_1.0.5 grid\_4.2.3 [29] webshot\_0.5.5 tidyselect\_1.2.0 svglite\_2.1.2 glue\_1.6.2 [33] R6\_2.5.1 fansi\_1.0.5 rmarkdown\_2.25 Formula\_1.2-5 [37] farver\_2.1.1 codetools\_0.2-19 scales\_1.2.1 magrittr\_2.0.3 colorspace\_2.1-0 labeling\_0.4.3 [41] htmltools\_0.5.7 rvest\_1.0.3 [45] utf8\_1.2.4 munsell\_0.5.0 stringi\_1.8.2

### References

# 10 Visualization and interpretation of individualized treatment rule results

Xiaotong Jiang (Biogen)

In this tutorial, we will walk you through the code that implemented the precision medicine methods and generated the visualization results discussed in Chapter 18 of the book. This tutorial focuses more on helping you understand the code. We will not provide detailed interpretation of the results as they have been covered in the chapter already.

### 10.1 Introduction

We first load all relevant functions for this chapter.

```
source("resources/chapter 18/functions.r")
```

Subsequently, we use the function simcountdata() to generate an example dataset with a sample size of N=2000. In this example, we have two disease modifying therapies (DMT1 and DMT0) and the outcome is the number of post-treatment multiple sclerosis relapses during follow-up.

Thank you for using fastDummies!

To acknowledge our work, please cite the package:

Kaplan, J. & Schlegel, B. (2023). fastDummies: Fast Creation of Dummy (Binary) Columns and R

The dataset looks as follows:

```
head(df.ori)
```

|   | trt  | ageatino | lex_centered | female  | prerelapse_  | num   | prevDMT | effi | cacy pr | eme | edicalcost |
|---|------|----------|--------------|---------|--------------|-------|---------|------|---------|-----|------------|
| 1 | 0    | _        | 2            | 0       |              | 2     | Low     | effi | cacy    |     | 4606.04    |
| 2 | 1    |          | 10           | 1       |              | 1     | Low     | effi | cacy    |     | 17065.19   |
| 3 | 1    |          | 12           | 1       |              | 2     |         |      | None    |     | 6308.39    |
| 4 | 1    |          | -12          | 0       |              | 0     | Low     | effi | cacy    |     | 16633.97   |
| 5 | 1    |          | 13           | 1       |              | 0     | Low     | effi | cacy    |     | 642.96     |
| 6 | 1    |          | 14           | 1       |              | 0     | Low     | effi | cacy    |     | 2989.89    |
|   | nums | Symptoms | postrelapse_ | _num fi | nalpostdayso | count | gr      | oup  | sco     | ore | Iscore     |
| 1 |      | 0        |              | 1       |              | 305   | Simula  | ted  | 0.71297 | 792 | 1          |
| 2 |      | 1        |              | 0       |              | 367   | Simula  | ted  | 0.74042 | 238 | 2          |
| 3 |      | 0        |              | 0       |              | 325   | Simula  | ted  | 0.75642 | 233 | 3          |
| 4 |      | 0        |              | 0       |              | 321   | Simula  | ted  | 0.72157 | 764 | 1          |
| 5 |      | 0        |              | 0       |              | 24    | Simula  | ted  | 0.74578 | 323 | 2          |
| 6 |      | 0        |              | 0       |              | 59    | Simula  | ted  | 0.74416 | 32  | 2          |

Below is a summary table of the baseline characteristics by treatment group.

We now define key constants for the case study.

Table 10.1: Baseline characteristics of the case study data

|                            | 0                  | 1                  | Overall            |
|----------------------------|--------------------|--------------------|--------------------|
|                            | (N=506)            | (N=1494)           | (N=2000)           |
| Age (years)                |                    |                    |                    |
| Mean (SD)                  | 45.2 (9.82)        | 45.8 (9.73)        | 45.7 (9.75)        |
| Median [Min, Max]          | 46.0 [20.0, 64.0]  | 46.0 [19.0, 64.0]  | 46.0 [19.0, 64.0]  |
| Gender                     |                    |                    |                    |
| female                     | 375 (74.1%)        | 1123~(75.2%)       | 1498 (74.9%)       |
| male                       | $131\ (25.9\%)$    | 371 (24.8%)        | 502 (25.1%)        |
| Previous number of relap   | oses               |                    |                    |
| 0                          | 319 (63.0%)        | 973 (65.1%)        | 1292 (64.6%)       |
| 1                          | 150 (29.6%)        | 427 (28.6%)        | 577 (28.9%)        |
| 2                          | 31 (6.1%)          | 76 (5.1%)          | 107 (5.4%)         |
| 3                          | 5 (1.0%)           | 17 (1.1%)          | 22 (1.1%)          |
| 4                          | 1 (0.2%)           | 1 (0.1%)           | 2~(0.1%)           |
| Efficacy of previous disea | se modifying thera | ару                |                    |
| Low efficacy               | 216 (42.7%)        | 609 (40.8%)        | 825 (41.3%)        |
| Medium and high efficacy   | 53 (10.5%)         | 179 (12.0%)        | 232 (11.6%)        |
| None                       | $237\ (46.8\%)$    | $706 \ (47.3\%)$   | 943 (47.2%)        |
| Previous medical cost (\8  | 3)                 |                    |                    |
| Mean (SD)                  | 13700 (20400)      | 14400 (24500)      | 14300 (23600)      |
| Median [Min, Max]          | ,                  | 7560 [110, 556000] | 7470 [110, 556000] |
| Previous number of symp    | otoms              | -                  | -<br>-             |
| 0                          | 348 (68.8%)        | 995 (66.6%)        | $1343 \ (67.2\%)$  |
| 1                          | 119 (23.5%)        | 388 (26.0%)        | 507 (25.4%)        |
| >=2                        | 39 (7.7%)          | 111 (7.4%)         | 150 (7.5%)         |

The data need to be preprocessed to be more analyzable. We recategorized treatment, previous treatment, and number of symptoms; scaled medical cost and age; and standardized the data.

```
df <- df.ori %>%
  rename(previous treatment = prevDMTefficacy,
         age = ageatindex_centered,
         y = postrelapse num,
         previous_number_relapses = prerelapse_num,
         previous_number_symptoms = numSymptoms,
         previous_cost = premedicalcost) %>%
  mutate(previous_treatment = factor(previous_treatment,
                                     levels = c("None",
                                                "Low efficacy",
                                                 "Medium and high efficacy"),
                                     labels = c("drugA", "drugB", "drugC")),
         previous_number_symptoms = factor(previous_number_symptoms,
                                           levels = c("0", "1", ">=2"),
                                           labels = c("0", "1", ">=2")),
         trt = factor(trt, levels = c(0, 1), labels = c("drug0", "drug1")),
         previous cost.z = scale(log(previous cost), scale = TRUE),
         age.z = age + 48,
         age.z = scale(age.z, scale = TRUE),
         years = finalpostdayscount / 365.25,
```

#### 10.2 Estmition of individualized treatment rules

The following code provides details of how to implement the precision medicine methods in the example data. Please feel free to jump to the next section if you want to focus on the results. The model results are available online for you to load and save time.

We used the function listdtr() in the listdtr package to estimate individualized treatment rules (ITRs) based on the listDTR method. We used the function catefit() in the precmed package to estimate ITRs based on the Poisson and contrast regression method. These were the methods used in Section 3 of the book where we talked about directly visualizing the ITR before bringing in the outcomes. The methods are discussed in further detail by Zhao et al. (2013) and Yadlowsky et al. (2020).

```
# Estimated ITR based on the listDTR method with 3 branches
modlist3 <- listdtr(y = df$mlogarr,</pre>
                     a = df$drug1,
                    x = df[, c("age.z", "female", "prevtrtB",
                                "prevtrtC", "previous_cost.z",
                                "prevnumsymp1", "prevnumsymp2p",
                                "previous_number_relapses")],
                     stage.x = rep(1, 8), maxlen = 3L) # somewhat slow
# Estimated CATE score based on the Poisson and contrast regression
modpm <- catefit(response = "count",</pre>
            cate.model = cate.formula,
            ps.model = ps.formula,
            data = df,
            higher.y = FALSE,
            score.method = c("poisson", "contrastReg"),
            initial.predictor.method = "poisson",
            seed = 999)
# Estimated CATE score based on the Poisson and contrast regression
# (based on the scaled data so the coefficients are easier to compare)
modpm.s <- catefit(response = "count",</pre>
              cate.model = cate.formula,
              ps.model = ps.formula,
              data = df.s,
              higher.y = FALSE,
              score.method = c("poisson", "contrastReg"),
              initial.predictor.method = "poisson",
              seed = 999)
```

For results in Sections 4 and 5, we applied cross validation to mitigate over-fitting. For this chapter, we created our own customized function cvvalue() to estimate the ITR and calculate the estimated value function via cross validation for all methods, including the fixed method. The results were all saved under the prefix cvmod. The **precmed** package has a built-in cross validation procedure for CATE estimation so we used the function catefit().

```
ps.model = ps.formula,
                data = df,
                higher.y = FALSE,
                score.method = c("poisson", "contrastReg"),
                initial.predictor.method = "poisson",
                cv.n = n.cv,
                plot.gbmperf = FALSE,
                seed = 999) # somewhat slow
## Estimated value function for each method
cvmodall0 <- cvvalue(data = df, xvar = covars,</pre>
                     method = "allo", n.fold = n.fold, n.cv = n.cv,
                     seed = base.seed)
cvmodall1 <- cvvalue(data = df, xvar = covars,</pre>
                     method = "all1", n.fold = n.fold, n.cv = n.cv,
                      seed = base.seed)
cvmoddwols <- cvvalue(data = df, xvar = covars,</pre>
                       method = "dWOLS", n.fold = n.fold, n.cv = n.cv,
                       seed = base.seed)
cvmodpois <- cvvalue(data = df, xvar = covars,</pre>
                     method = "poisson", n.fold = n.fold, n.cv = n.cv,
                      seed = base.seed)
cvmodlist2 <- cvvalue(data = df, xvar = covars,</pre>
                       method = "listDTR2", n.fold = n.fold, n.cv = n.cv,
                       seed = base.seed) # very slow
cvmodcontrastreg <- cvvalue(data = df, xvar = covars,</pre>
                             method = "contrastReg", n.fold = n.fold,
                             n.cv = n.cv,
                             seed = base.seed) # very slow
```

As a next step, we need to combine all estimated ITRs and value functions:

```
# Combine CV results
# Read in each CV result in a loop
vhats.dhat <- dhats <- NULL
mod_names <- c("cvmodall1", "cvmodall0", "cvmoddwols", "cvmodpois", "cvmodcontrastreg", "c</pre>
```

```
for (mod in mod_names) {
  thismod <- get(mod)</pre>
  for (name in names(thismod)) {
    # Get estimated values, vhat.dhat
    vhats.dhat <- rbind(vhats.dhat,</pre>
                         thismod[[name]] %>%
                           map_df(~bind_rows(names(.x) %>% str_detect("vhat.dhat") %>% keep
                           mutate(method = mod, cv.i = name))
    # Get estimated rule from CV test fold, dhat
    dhats <- rbind(dhats,</pre>
                    thismod[[name]] %>%
                      map_df(~bind_rows(names(.x) %>% str_detect("^dhat$") %>% keep(.x, .)
                      mutate(method = mod, cv.i = name))
 }
}
# One time run to get true optimal and worst value
# Simulated data only
trueV <- getTrueOptimalValue(n = big.n, seed = base.seed)</pre>
trueWorstV <- getTrueWorstValue(n = big.n, seed = base.seed)</pre>
# Preprocess
vhats.dhat %<>%
  mutate(V = U/W,
         VR = (U/W - trueWorstV) / (trueV - trueWorstV)) %>%
  group_by(method) %>%
  summarize(n.batches = n(),
            n.nonnaU = sum(!is.na(U)),
            n.nonnaW = sum(!is.na(W)),
            meanV = mean(V, na.rm = T),
            sdV = sd(V, na.rm = T),
            meanVR = mean(VR, na.rm = T),
            sdVR = sd(VR, na.rm = T),
            .groups = "keep") %>%
  ungroup %>%
  arrange(desc(meanV)) %>%
  mutate(method = case_when(
    method == "cvmodcontrastreg" ~ "Contrast\n Regression",
    method == "cvmodall0" ~ "All 0",
    method == "cvmodall1" ~ "All 1",
```

```
method == "cvmodlist2" ~ "List DTR\n (2 branches)",
    method == "cvmoddwols" ~ "dWOLS",
    method == "cvmodpois" ~ "Poisson"),
    method = factor(method,
                    levels = method.vec,
                    labels = method.vec)
  )
dhats %<>%
  mutate(method = case_when(
    method == "cvmodcontrastreg" ~ "Contrast\n Regression",
    method == "cvmodall0" ~ "All 0",
   method == "cvmodall1" ~ "All 1",
    method == "cvmodlist2" ~ "List DTR\n (2 branches)",
    method == "cvmoddwols" ~ "dWOLS",
    method == "cvmodpois" ~ "Poisson"),
    method = factor(method,
                    levels = method.vec,
                    labels = method.vec)
  )
```

#### 10.3 Visualization of individualized treatment rules

#### 10.3.1 Direct visualization

#### 10.3.1.1 listDTR

If the PM method already has built-in visualization (especially for tree-based methods), we can visualize the ITR directly. For example, we can simply use the function plot() to visualize the estimated ITR with the listDTR method.

```
#modlist3 %>% plot()
```

We can also create our own visualization like Figure 1A in the chapter.

```
df.list3 <- df %>%
  mutate(d.list = ifelse(age.z > 0.599 | prevtrtB > 0.5, "Recommend 1", "Recommend 0"), #
     Rule = factor(as.character(d.list), levels = c("Recommend 0", "Recommend 1")),
     prevtrtB = ifelse(prevtrtB == 1, "Previous treatment is drug B", "Previous treatment)
```

```
## Figure 1A
df.list3 %>%
    ggplot(aes(x = age.z, fill = Rule))+
    geom_histogram(position = position_dodge2(preserve = 'single'), binwidth = 0.1)+
    facet_wrap(~ prevtrtB, nrow = 2) +
    scale_fill_brewer(palette = "Set1") +
    labs(x = "Standardized age", y = "Count") +
    theme_classic() +
    theme(legend.position = 'top', text = element_text(size = 20))
```



The subgroup-level annualized relapse rate (ARR) can be calculated based on the listDTR ITR:

| Observed treatment | listDTR ITR | ARR  | n   | prop% |
|--------------------|-------------|------|-----|-------|
| drug0              | Recommend 0 | 0.32 | 197 | 10    |
| drug0              | Recommend 1 | 0.31 | 309 | 15    |
| drug1              | Recommend 0 | 0.39 | 615 | 31    |
| drug1              | Recommend 1 | 0.16 | 879 | 44    |

```
kable_styling(full_width = F)
```

Patients who received drug 0 and were recommended drug 0 by listDTR had a similar ARR on average than those who received drug 0 but were recommended drug 1 (0.32 vs 0.31). Patients who received drug 1 and were recommended drug 1 by listDTR had a much lower ARR on average than those who received drug 1 but were recommended drug 0 (0.16 vs 0.39).

#### 10.3.1.2 Score-based method

Although some PM methods do not have built-in visualization or not as "white-box" as some more interpretable methods, there still might be ways to visualize the ITR. For example, score-based methods (such as Poisson and contrast regression) produce an estimate of the CATE score for each patient, and a classification tree can be fitted on these scores and visualized. Below is a histogram-density plot of the CATE scores estimated from the Poisson regression and the fitted classification tree using the estimated CATE scores. We pruned the tree so it only had three nodes for simplicity. The rpart.plot package has a built-in visualization function of the rpart model, rpart.plot(), which is how Figure 1B in the chapter was generated.

```
df["score.poisson"] <- modpm$score.poisson

ggplot(df, aes(x = score.poisson)) +
   geom_histogram(aes(y = ..density..), colour = "black", fill = "lightblue") +
   geom_density(alpha = .2, fill = "white") +
   labs(x = "Estimated CATE score from the Poisson regression", y = "Density") +
   theme_classic()</pre>
```

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0. i Please use `after\_stat(density)` instead.

`stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.





The CATE scores are now simplified as a tree classifier. Previous treatment of drug B and age seemed to be important in determining the CATE score values, which also showed up in the estimated from the listDTR method. Patients with previous treatment of drug B had the lowest CATE score on average (-0.76) and took up 41% of the samples (dark orange). Patients whose previous treatment was not drug B and age was >= -0.22 standard deviation of the mean also had a negative CATE score on average (-0.23) and took up 36% of the samples (light orange), but not as low as the dark orange group. Negative CATE scores mean that the number of relapses was expected to be lower for those recommended drug 1 than those recommended drug 0, so drug 1 was favored for them. For the blue group, the average CATE score was 0.13, taking up 23% of the samples, and they were expected to benefit from drug 0 based on the Poisson CATE scores.

#### 10.3.2 ITR accuracy

The accuracy of ITR is the proportion of patients whose estimated ITR is the same as the true optimal ITR. The estimated ITRs have been obtained from the PM methods but we need to calculate the true optimal ITR. This is only possible for simulated data where the decision boundary is known. Based on the data generating mechanism in simcountdata(), Iscore is a score generated from a linear combination of baseline covariates where lower scores represented that drug 1 was better and higher scores represented that drug 0 was better. We then classified patients in 5 equal-size subgroups based on the Iscore, where groups 1 and 2 have drug 1 as their true optimal ITR and groups 3 and 4 have drug 0 as their true optimal

ITR. Group 3 is considered the neutral group, where patients are indifferent to either drug so we assign the true optimal ITR to be their observed treatment. Thus, we identify the true optimal ITR for every patient based on this subgrouping, which was derived from their true score Iscore. Since we used cross validation in estimating the ITR, we need to apply the exact same cross validation to the true optimal ITR. This is achieved by specifying the same randomization seed in the cross validation loop (see seed).

```
## Create new columns
dhats$d <- rep(NA, nrow(dhats)) # true d
# Identify the true optimal treatment
# See simcountdata() in the function script to learn more about Iscore
sim <- df %>%
  mutate(trueT = ifelse(as.numeric(Iscore) < 3, 1, 0),</pre>
         trueT = ifelse(Iscore == 3, drug1, trueT)) # neutral group
# Format data
input <- data.frame(y = sim$y,
                     trt = sim$drug1,
                     time = log(sim$years),
                     sim[covars])
# Cross validation loop
for (i in unique(dhats$cv.i)) {
  seed <- base.seed*100 + as.numeric(str_extract(i, "[0-9]+"))</pre>
  set.seed(seed)
  # Create CV folds
  folds <- createFolds(input$trt, k = n.fold, list = TRUE)</pre>
  for (fold.i in seq(n.fold)) {
    testdata <- sim[folds[[fold.i]],]</pre>
    # number of methods which succeeded for the given fold/batch.
    ind_result <- which(dhats$fold == paste0("fold", fold.i) &</pre>
                           dhats$cv.i == i &
                           !is.na(dhats$dhat))
    nr <- length(ind_result)</pre>
    dhats$d[ind result] <- rep(testdata$trueT, nr/nrow(testdata))</pre>
```

```
stopifnot(nr %% nrow(testdata) == 0)
}
} # end of all cv iterations
```

Once we identified the true optimal ITR  $(d^{opt})$ , we can calculate the accuracy in each validation fold for each PM method  $(\hat{d}_{nm})$ . Mathematically, accuracy can be expressed as

$$Accuracy_{pm}(x^{val}) = \frac{1}{n^{val}} \sum_{i=1}^{n^{val}} I(\hat{d}_{pm}(x^{val}_i) == d^{opt}(x^{val}_i)),$$

where  $n^{val}$  is the sample size in the validation fold,  $x_i^{val}$  is the baseline characteristics of the *i*th patient in the validation fold, and pm stands for one PM method.

Below is how Figure 2 in the chapter was generated. It summarized the accuracy across all validation folds as a box plot so we can also learn the variability of accuracy across folds.

```
##### Accuracy #####
## Calculate % accuracy for each iteration & summary statistics
dhats.accuracy <- dhats %>%
  group by (method, cv.i, fold) %>%
  summarise(accuracy = sum(dhat == d)/n(), .groups = "drop") %>%
  ungroup
## Make the accuracy plot, Figure 2
dhats.accuracy %>%
  ggplot(aes(x = method, y = accuracy)) +
  geom_boxplot() +
  geom_hline(yintercept = 1, linetype = 2, linewidth = 1, color = "gray") +
  geom hline(yintercept = 0.5, linetype = 2, linewidth = 1, color = "gray") +
  theme_classic() +
  labs(x = "Method", y = "Accuracy") +
  theme(axis.text = element_text(size = 15),
        axis.title.y = element_text(size = 15),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(angle = 0, size = 15),
        strip.text.x = element_text(size = 15))
```



### 10.3.3 ITR agreement

When we do not know the true data generating mechanism, e.g., real-world data, we cannot compare the estimated ITR with the true optimal ITR. However, we can compare the estimated ITR with another estimated ITR, and this is called agreement. Agreement is the proportion of patients whose estimated ITR of a method is the same as the estimated ITR of another method. Thus, agreement is between two methods. Mathematically,

$$Agreement_{1,2}(x^{val}) = \frac{1}{n^{val}} \sum_{i=1}^{n^{val}} I(\hat{d}_1(x^{val}) == \hat{d}_2(x^{val})),$$

where  $n^{val}$  is the sample size in the validation fold,  $x_i^{val}$  is the baseline characteristics of the *i*th patient in the validation fold, and 1, 2 stands for method 1 and method 2.

```
##### Agreement #####
dhats.concat <- dhats %>%
   arrange(cv.i, fold, method) %>%
   mutate(iteration.fold = (as.numeric(str_extract(cv.i, "[0-9]+")) - 1) * 10 + as.numeric(
   dplyr::select(method, iteration.fold, dhat) %>%
   group_by(method, iteration.fold) %>%
   mutate(i = 1:n()) %>%
   ungroup
```

```
m <- length(method.vec)</pre>
dhats.agreement <- matrix(nrow = m, ncol = m)</pre>
colnames(dhats.agreement) <- method.vec</pre>
rownames(dhats.agreement) <- method.vec</pre>
for(k in seq_len(m)){
  for(j in seq(k, m)){
    data.k <- dhats.concat %>% filter(method == method.vec[k])
    data.j <- dhats.concat %>% filter(method == method.vec[j])
    data.jk <- data.k %>% full_join(data.j, by = c("iteration.fold", "i"))
    dhats.agreement[k, j] <- dhats.agreement[j, k] <- sum(data.jk$dhat.x == data.jk$dhat.y</pre>
  }
}
# Make the agreement plot, Figure 3
corrplot(dhats.agreement, method = "color", type = "lower",
         addCoef.col = "orange", number.cex = 1.5,
         tl.cex = 1.2, cl.cex = 1.2, tl.col = "black", tl.srt = 0, tl.offset = 1.5)
```



We used the corrplot package to generate Figure 3 in the chapter but agreement can be visualized in other creative ways that you prefer.

# 10.4 Patient well-being

Patient well-being is evaluated via the value function, which is defined as the expected outcome had they followed the specified ITR. Like a fortune teller's crystal ball, this metric tells us

how well the patients would do on average under each ITR. We can then compare across different ITRs and identify an optimal ITR. Cross validation is necessary here to mitigate over-fitting, and we visualized the value function results as error bar plots. The mean and standard deviation of the value functions have been preprocessed previously. We use ggplot() to generate the error bar plots. Figure 4A is the original value function estimates, and Figure 4B is the standardized value ratio estimates, which convert value functions to a ratio where 1 is always more desirable.

```
##### Errorbar plot ####
# Figure 4A
p4a <- vhats.dhat %>%
    ggplot(aes(x = method, y = meanV)) +
    geom_point(size = 8, shape = 16, color = "navy") +
    geom_errorbar(aes(ymin = meanV - sdV, ymax = meanV + sdV), width = 0.3, size = 2, positi
    theme_classic() + xlab("") + ylab("Cross-validated value (mean +- SD)") +
    theme(axis.text = element_text(size = 15), axis.title.y = element_text(size = 15)) +
    geom_hline(yintercept = vhats.dhat$meanV[which(vhats.dhat$method == "All 1")], linetype
```

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use `linewidth` instead.

```
##### Value ratio #####
# Figure 4B
p4b <- vhats.dhat %>%
  dplyr::select(method, contains("VR"), n.nonnaU) %>%
  ggplot(aes(x = method, y = meanVR)) +
  geom_point(size = 8, color = "navy") +
  geom_errorbar(aes(ymin = meanVR - sdVR, ymax = meanVR + sdVR), width = 0.3, size = 2, po
  geom_hline(yintercept = 1, color = "gray", linetype = 2, size = 1) +
  geom_hline(yintercept = 0, color = "gray", linetype = 2, size = 1) +
  scale_y_continuous(breaks = seq(0, 1, length = 6)) +
  theme_classic() +
  labs(x = "", y = "Value ratio of cross-validated estimated decision rule (mean +- SD)")
  theme(axis.text = element_text(size = 13),
        axis.title.y = element_text(size = 15),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 15),
        strip.text.x = element_text(size = 12))
# Figure 4
ggarrange(p4a, p4b, ncol = 2, nrow = 1, labels = c("A", "B"))
```



## 10.5 Responder diagnostics

#### 10.5.1 Validation

The package we used for the two score-based methods (Poisson and contrast regression), PrecMed, has built-in visualization tools to diagnose the results: validation box plots boxplot(), validation curves plot(), and area between curves (ABC) statistics abc().

```
##### Validation of ITR scores #####
# Figure 5A
p5a <- boxplot(modcv, ylab = "Rate ratio between T=1 and T=0 in each subgroup")
# Figure 5B
p5b <- plot(modcv, ylab = "Rate ratio between T=1 and T=0 in each subgroup")
# Figure 5
ggarrange(p5a, p5b, ncol = 1, nrow = 2, labels = c("A", "B"))</pre>
```



The PrecMed package has more PM methods implemented other than Poisson and contrast regression that you can try, such as negative binomial and two regressions. See its documentation for more details.

#### 10.5.2 Univariate comparision of patient characteristics

The 60/40 cutoff was used in the chapter to split patients into "high responders" and "standard responders". The function CreateTableOne() in the tableone package was used to generate a table comparing side-by-side the baseline characteristics between the two responder groups.

|                                                 | Stratified by responder to |        |        | T=1    |       |
|-------------------------------------------------|----------------------------|--------|--------|--------|-------|
|                                                 | High                       |        | Standa | ard    | SMD   |
| n                                               | 1200                       |        | 800    |        |       |
| age.z (mean (SD))                               | 0.29                       | (0.94) | -0.44  | (0.92) | 0.789 |
| female (mean (SD))                              | 0.69                       | (0.46) | 0.84   | (0.36) | 0.384 |
| <pre>prevtrtB (mean (SD))</pre>                 | 0.67                       | (0.47) | 0.02   | (0.15) | 1.867 |
| <pre>prevtrtC (mean (SD))</pre>                 | 0.02                       | (0.13) | 0.26   | (0.44) | 0.750 |
| <pre>prevnumsymp1 (mean (SD))</pre>             | 0.32                       | (0.47) | 0.15   | (0.35) | 0.431 |
| <pre>prevnumsymp2p (mean (SD))</pre>            | 0.05                       | (0.22) | 0.11   | (0.31) | 0.208 |
| <pre>previous_cost.z (mean (SD))</pre>          | -0.08                      | (1.00) | 0.12   | (0.99) | 0.203 |
| <pre>previous_number_relapses (mean (SD))</pre> | 0.41                       | (0.64) | 0.47   | (0.68) | 0.104 |

We can directly present the table or visualize the comparison with errorbar plots, which is what the chapter presented (Figure 6A). Here we show both. Tables are helpful if specific numbers are important but readers would have to perform mental comparison to understand

which value is higher, whereas plots are helpful if you want people to quickly identify the larger differences and not focus on the specific values of certain results.

```
smd <- as_tibble(tab, rownames = "var") %>%
  rowwise() %>%
  mutate(variable = as.factor(str_extract(var, ".*(?= \\(mean \\(SD\\))\\)))) %>%
  filter(!is.na(variable)) %>%
  arrange(desc(SMD)) %>%
  mutate(smd = paste0("SMD =", SMD),
         variable = labs[[variable]]) %>%
  dplyr::select(variable, smd) %>%
  mutate(ID = 1)
levels <- unique(smd$variable)</pre>
p6a <- df %>%
  mutate(ID = 1:n()) \%>\%
  dplyr::select(all_of(covars), ID, contains("responder")) %>%
  melt(id = c("ID", "responder to T=1")) %>%
  rowwise() %>%
  mutate(variable = labs[[variable]]) %>%
  left_join(smd, by = c("variable", "ID")) %>%
  mutate(variable2 = factor(variable, levels = levels)) %>%
  ggplot(aes(x = reorder(variable2, desc(variable2)), color = `responder to T=1`, y = value
  stat_summary(fun = mean, geom = "point", size = 4, position = position_dodge(width = 0.5
  stat_summary(fun.data = mean_sdl, geom = "errorbar", position = position_dodge(width = 0
  geom_hline(yintercept = 0, color = "gray", linetype = "dashed") +
  geom_text(aes(label = smd), hjust = -0.5, y = -1.5, color = "darkgray", size = 3.5) +
  # facet_wrap(~ variable2, nrow = 4) +
  labs(x = "Baseline patient characteristic",
       y = "Mean +- SD") +
  coord_flip() +
  scale_color_brewer(palette = "Set2") +
  theme_classic() +
  theme(legend.position = "top",
        axis.text = element_text(size = 13),
        axis.title.y = element_text(size = 15),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 15),
        strip.text.x = element_text(size = 12))
# Figure 6A
```

```
ggarrange(p6a, nrow = 1, labels = c("A"))
```



We can also show the density of ITR scores obtained from the score-based methods. The results can be found in modpm and we used histogram to visualize (Figure 6B).

```
scale_fill_manual(values = c("dodgerblue", "gray30")) +
geom_vline(xintercept = 0, color = "darkgray", linetype = "dashed", size = 1) +
labs(x = "Estimated CATE score", y = "Density", fill = "Method") +
theme_classic() +
theme(legend.position = c(0.2, 0.8),
    axis.text = element_text(size = 13),
    axis.title.y = element_text(size = 15),
    axis.title.x = element_text(size = 15),
    axis.text.x = element_text(size = 15),
    strip.text.x = element_text(size = 12))
```

The ITR scores are essentially a linear combination of the baseline characteristics, thus it might be also of interest for one to know the corresponding coefficients (or weights) which shows how much each baseline variable contributed to the ITR score. To make it comparable across different scales of the baseline variables, we used the scaled data and the model result modpm.s was used to extract the coefficients and visualize as a bar plot. The coefficients can be presented in a table as well.

```
# Coefficients
coef <- modpm.s$coefficients</pre>
p6c <- coef %>%
  as_tibble(rownames = "varname") %>%
  melt(id.vars = "varname") %>%
  filter(variable == "poisson", varname != "(Intercept)") %>%
  mutate(absval = abs(value),
         sign = ifelse(value > 0, "+", "-")) %>%
  arrange(absval) %>%
  mutate(varname = factor(varname, levels = unique(varname))) %>%
  ggplot(aes(x = varname, y = absval, fill = sign)) +
  geom_bar(stat = "identity", width = 0.5) +
  scale_fill_brewer(palette = "Set1") +
  scale_x_discrete(labels = labs) +
  coord_flip() +
  labs(y = "Absolute value of the estimated coefficient of CATE scores \nbased on Poisson r
  theme_minimal() +
  theme(legend.position = c(0.8, 0.2),
        axis.text = element_text(size = 13),
        axis.title.y = element_text(size = 15),
        axis.title.x = element_text(size = 15),
        axis.text.x = element_text(size = 15),
```

```
strip.text.x = element_text(size = 12))
# Figure 6B, 6C
ggarrange(p6b, p6c, nrow = 2, labels = c("B", "C"))
```



|                          | poisson | contrastReg | SE_contrastReg |
|--------------------------|---------|-------------|----------------|
| (Intercept)              | -0.30   | -0.25       | 0.46           |
| age.z                    | -0.21   | -0.23       | 0.17           |
| female                   | 0.20    | 0.29        | 0.43           |
| prevtrtB                 | -0.63   | -0.86       | 0.36           |
| prevtrtC                 | 0.19    | 0.21        | 0.54           |
| prevnumsymp1             | -0.14   | -0.42       | 0.39           |
| prevnumsymp2p            | 0.20    | 1.05        | 0.58           |
| previous_cost.z          | 0.06    | 0.13        | 0.18           |
| previous_number_relapses | 0.08    | 0.26        | 0.23           |

```
# Coefficients presented as a table
coef %>% round(2) %>% kable() %>% kable_styling(full_width = F)
```

## **Version info**

This chapter was rendered using the following version of R and its packages:

R version 4.2.3 (2023-03-15)

Platform: x86\_64-pc-linux-gnu (64-bit) Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86\_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

#### locale:

| [1] LC_CTYPE=C.UTF-8   | LC_NUMERIC=C        | LC_TIME=C.UTF-8     |
|------------------------|---------------------|---------------------|
| [4] LC_COLLATE=C.UTF-8 | LC_MONETARY=C.UTF-8 | LC_MESSAGES=C.UTF-8 |

[7] LC\_PAPER=C.UTF-8 LC\_NAME=C LC\_ADDRESS=C

[10] LC\_TELEPHONE=C LC\_MEASUREMENT=C.UTF-8 LC\_IDENTIFICATION=C

#### attached base packages:

[1] stats graphics grDevices utils datasets methods base

#### other attached packages:

| [1] | fastDummies_1.7.3 | reshape2_1.4.4 | truncnorm_1.0-9 | table1_1.4.3  |
|-----|-------------------|----------------|-----------------|---------------|
| [5] | kableExtra_1.3.4  | knitr_1.45     | ggpubr_0.6.0    | MASS_7.3-58.2 |
| [9] | corrplot_0.92     | caret_6.0-94   | lattice_0.20-45 | gbm_2.1.8.1   |

```
[13] tableone_0.13.2
                       rpart.plot_3.1.1
                                          rpart_4.1.19
                                                             precmed_1.0.0
[17] DTRreg_2.0
                       magrittr_2.0.3
                                          lubridate_1.9.3
                                                             forcats_1.0.0
                       dplyr_1.1.4
                                          purrr_1.0.2
                                                             readr_2.1.4
[21] stringr_1.5.1
                       tibble_3.2.1
                                          ggplot2_3.4.4
                                                             tidyverse_2.0.0
[25] tidyr_1.3.0
loaded via a namespace (and not attached):
  [1] colorspace_2.1-0
                             ggsignif_0.6.4
                                                   class 7.3-21
  [4] ggridges_0.5.4
                             proxy_0.4-27
                                                   rstudioapi_0.15.0
  [7] farver_2.1.1
                             listenv_0.9.0
                                                   prodlim_2023.08.28
 [10] fansi_1.0.5
                             xm12_1.3.5
                                                   codetools_0.2-19
 [13] splines_4.2.3
                             Formula_1.2-5
                                                    jsonlite_1.8.7
 [16] pROC_1.18.5
                             broom_1.0.5
                                                   geepack_1.3.9
 [19] data.tree_1.1.0
                             httr_1.4.7
                                                   DiagrammeR_1.0.10
 [22] clipr_0.8.0
                             compiler_4.2.3
                                                   randomForestSRC_3.2.2
 [25] backports_1.4.1
                             Matrix_1.6-3
                                                   fastmap_1.1.1
 [28] survey_4.2-1
                             cli_3.6.1
                                                   visNetwork_2.1.2
 [31] htmltools_0.5.7
                             tools_4.2.3
                                                   gtable_0.3.4
                                                   Rcpp_1.0.11
 [34] glue_1.6.2
                             MESS_0.5.12
 [37] carData_3.0-5
                             vctrs_0.6.4
                                                   svglite_2.1.2
 [40] nlme_3.1-162
                             iterators 1.0.14
                                                   timeDate 4022.108
 [43] gower_1.0.1
                             xfun_0.41
                                                   globals_0.16.2
 [46] rvest_1.0.3
                             timechange_0.2.0
                                                   lifecycle_1.0.4
 [49] geeM_0.10.1
                             mosaicCore_0.9.4.0
                                                   rstatix_0.7.2
 [52] future_1.33.0
                             scales_1.2.1
                                                   ipred_0.9-14
                             parallel_4.2.3
                                                   RColorBrewer_1.1-3
 [55] hms_1.1.3
 [58] yaml_2.3.7
                             labelled_2.12.0
                                                   gam_1.22-2
 [61] stringi_1.8.2
                             foreach_1.5.2
                                                   e1071_1.7-13
 [64] hardhat_1.3.0
                             lava_1.7.3
                                                    shape_1.4.6
 [67] systemfonts_1.0.5
                             rlang_1.1.2
                                                   pkgconfig_2.0.3
 [70] evaluate_0.23
                             labeling_0.4.3
                                                   recipes_1.0.8
 [73] htmlwidgets_1.6.3
                             cowplot_1.1.1
                                                   tidyselect_1.2.0
 [76] parallelly_1.36.0
                             ggformula_0.12.0
                                                   plyr_1.8.9
 [79] R6_2.5.1
                             generics_0.1.3
                                                   DBI_1.1.3
                                                   withr_2.5.2
 [82] pillar_1.9.0
                             haven_2.5.3
 [85] survival 3.5-3
                             abind 1.4-5
                                                   nnet 7.3-18
 [88] future.apply_1.11.0
                             car_3.1-2
                                                   utf8_1.2.4
 [91] tzdb_0.4.0
                             rmarkdown 2.25
                                                   grid_4.2.3
 [94] data.table_1.14.8
                             ModelMetrics_1.2.2.2
                                                   webshot_0.5.5
 [97] digest_0.6.33
                             stats4_4.2.3
                                                   munsell_0.5.0
[100] glmnet_4.1-8
                             viridisLite_0.4.2
                                                   mitools_2.4
```

#### References

- Baker, William L, Erica L Baker, and Craig I Coleman. 2009. "Pharmacologic Treatments for Chronic Obstructive Pulmonary Disease: A Mixed-Treatment Comparison Meta-Analysis." *Pharmacotherapy* 29 (8): 891–905. https://doi.org/10.1592/phco.29.8.891.
- Coulombe, Janie, Erica E. M. Moodie, and Robert W. Platt. 2020. "Weighted Regression Analysis to Correct for Informative Monitoring Times and Confounders in Longitudinal Studies." *Biometrics* 77 (1): 162–74. https://doi.org/10.1111/biom.13285.
- Coulombe, Janie, Erica E. M. Moodie, Robert W. Platt, and Christel Renoux. 2022. "Estimation of the Marginal Effect of Antidepressants on Body Mass Index Under Confounding and Endogenous Covariate-Driven Monitoring Times." *The Annals of Applied Statistics* 16 (3). https://doi.org/10.1214/21-aoas1570.
- Debray, Thomas PA, Gabrielle Simoneau, Massimiliano Copetti, Robert W Platt, Changyu Shen, Fabio Pellegrini, and Carl de Moor. 2023. "Methods for Comparative Effectiveness Based on Time to Confirmed Disability Progression with Irregular Observations in Multiple Sclerosis." Statistical Methods in Medical Research, June, 096228022311720. https://doi.org/10.1177/09622802231172032.
- Morbach, Stephan, Heike Furchert, Ute Gröblinghoff, Heribert Hoffmeier, Kerstin Kersten, Gerd-Thomas Klauke, Ulrike Klemp, et al. 2012. "Long-Term Prognosis of Diabetic Foot Patients and Their Limbs." *Diabetes Care* 35 (10): 2021–27. https://doi.org/10.2337/dc12-0200.
- Panaccione, Remo, Eric B Collins, Gil Y Melmed, Severine Vermeire, Silvio Danese, Peter D R Higgins, Christina S Kwon, et al. 2023. "Efficacy and Safety of Advanced Therapies for Moderately to Severely Active Ulcerative Colitis at Induction and Maintenance: An Indirect Treatment Comparison Using Bayesian Network Meta-Analysis." Crohn's & Colitis 360 5 (2). https://doi.org/10.1093/crocol/otad009.
- Selvarajan, Sandhiya, Annuja Anandaradje, Santhosh Shivabasappa, Deepthy Melepurakkal Sadanandan, N. Sreekumaran Nair, and Melvin George. 2022. "Efficacy of Pharmacological Interventions in COVID-19: A Network Meta-Analysis." *British Journal of Clinical Pharmacology* 88 (9): 4080–91. https://doi.org/10.1111/bcp.15338.
- Siemieniuk, Reed AC, Jessica J Bartoszko, Dena Zeraatkar, Elena Kum, Anila Qasim, Juan Pablo Díaz Martinez, Ariel Izcovich, et al. 2020. "Drug Treatments for Covid-19: Living Systematic Review and Network Meta-Analysis." *BMJ*, July, m2980. https://doi.org/10.1136/bmj.m2980.
- Yadlowsky, Steve, Fabio Pellegrini, Federica Lionetto, Stefan Braune, and Lu Tian. 2020. "Estimation and Validation of Ratio-Based Conditional Average Treatment Effects Using Observational Data." *Journal of the American Statistical Association* 116 (533): 335–52. https://doi.org/10.1080/01621459.2020.1772080.
- Zhao, Lihui, Lu Tian, Tianxi Cai, Brian Claggett, and L. J. Wei. 2013. "Effectively Selecting a Target Population for a Future Comparative Study." *Journal of the American Statistical Association* 108 (502): 527–39. https://doi.org/10.1080/01621459.2013.770705.