4) We'd like to minimize L= d2 = x2 + y2 + Z2 with the constraint 9 = xy + 2xz - 515 = 0 To do so, we use the method of Layrange multipliers, where for some λ we assume √L = λ√g $2X = \frac{7}{x}(5y) \rightarrow X^2 = \frac{5}{2}y^2$ \rightarrow 2x = $\lambda(\gamma + 2z) \rightarrow$ $2y = \lambda x \rightarrow 2y = Z$ $2 = \lambda(2x) \rightarrow \lambda = \frac{1}{2} / x$, $x \neq 0$ [if x = 0, $\Rightarrow \chi^2 = \frac{5}{4} \gamma(2\gamma) = 5\gamma^2 \Rightarrow \chi = \sqrt{5}\gamma$ Plugging into 9, $(\sqrt{5}y)y + 2(\sqrt{5}y)(2y) = 5\sqrt{5}$ = 15y2+455 y2 = 555 > 5y2= 5 > Y= ±1

From earlier

$$X = \sqrt{5}y \rightarrow X = \pm \sqrt{5}$$
 and $Z = 2y \rightarrow Z = \pm 2$

$$d = \sqrt{\sqrt{5^2 + 1^2 + 2^2}} = \sqrt{5 + 1 + 4} = \sqrt{10}$$

$$\Rightarrow \sqrt{\dim = \sqrt{10}}$$