Detecting Cancer Metastases on Gigapixel Pathology Images

COMS4995 APPLIED DEEP LEARNING

Chloe Liu (yl4616)

Agenda

- Project Introduction
 - Motivation
 - Data
 - Method
- Data Preprocessing
- Model Implementation
 - Transfer learning
 - Single-scale
 - Multi-scale
- Evaluation and Discussion

Project Introduction

Problem and data

Motivation and goals

High misdiagnosis rate in breast cancer biopsy

interpretation

- Especially when tumors are very small
- But metastasis detection is vital
- We want to help:
 - Improve diagnosis accuracy
 - Raise productivity, save time and cost
 - Increase consistency

Cycle

Preparation

Diagnosis

Visual inspection

Dataset – CAMELYON16

https://camelyon16.grand-challenge.org/

Data used in this project was provided by Prof. Joshua Gordon.

Dataset – CAMELYON16

Each whole slide biopsy image has 10+ billion pixels Can be downsampled by 7 ~ 10 levels

https://camelyon16.grand-challenge.org/

Data used in this project was provided by Prof. Joshua Gordon.

Method (from research papers)

Patch based approach

Multi-scale model

Surrounding context

https://arxiv.org/abs/1703.02442

Data Preprocessing

Patch extraction and tissue filtering

From multiple slides, on level 3 and level 4

This patch is not considered as only a few pixels contain tissues

Tissue mask

Resampling

- RandomOverSampler():
 - Random oversampling
- SMOTETomek():

A combination of oversampling and undersampling

Model Implementation

Deal with data imbalance

- Data augmentation
 - Flip, rotate, zoom, ...
- Resampling
 - Random oversampling
 - SMOTE oversampling + undersampling
- Class weights <-- model.fit()
- Output bias <-- model output Dense(1) layer
- Classification metrics

Transfer learning with fine tuning

InceptionV3

(by <u>Christian Szegedy</u> et al., 2015)

https://arxiv.org/abs/1512.00567

Transfer learning with fine tuning

VGG19

(by Karen Simonyan, et al., 2014)

https://arxiv.org/abs/1409.1556

InceptionV3

Layer (type)	Output Shape	Param #
input_19 (InputLayer)	[(None, 128, 128, 3)]	0
tf.math.truediv_7 (TFOpLambd	(None, 128, 128, 3)	0
tf.math.subtract_7 (TFOpLamb	(None, 128, 128, 3)	0
data_augmentation (Sequentia	(None, 128, 128, 3)	0
dropout (Dropout)	(None, 128, 128, 3)	0
inception_v3 (Functional)	(Noie, 2, 2, 2048)	21802784
global_average_pooling2d (Gl	multiple	0
dense_14 (Dense)	(None, 1)	2049

Total params: 21,804,833

Trainable params: 21,770,401

Non-trainable params: 34,432

Preprocess_input specified by each architecture

VGG19

Layer (type)	Output Shape	Param #
input_15 (InputLayer)	[(None, 128, 128, 3)]	0
tfoperatorsgetitem_5 ((None, 128, 128, 3)	0
tf.nn.bias_add_5 (TFOpLambda	(None, 128, 128, 3)	0
data_augmentation (Sequentia	(None, 128, 128, 3)	0
dropout (Dropout)	(None, 128, 128, 3)	0
vgg19 (Functional)	(None, None, None, 512)	20024384
global_average_pooling2d (Gl	multiple	0
dense_12 (Dense)	(None, 1)	513

Total params: 20,024,897

Trainable params: 20,024,897

Non-trainable params: 0

Trials in parameter search

Metrics

- Accuracy
- Precision
- Recall
- AUC

Evaluation and Discussion

Evaluation

Train set ['031','064','091']

• Best model for level 3, 4:

Retrained VGG19

- + output bias
- + class weights
- Robust to data imbalance
- AUC = 0.99 on test dataset

Evaluation

Train set ['031','064','091','016','078']

Best model for level 3:

Retrained InceptionV3

- + output bias
- + class weights
- Robust to data imbalance
- AUC = 0.95 on test dataset

Results (Predicted by VGG-I3 model)

Test image 110

Classification report:

Accuracy: 0.9425 Precision: 0.9927

Recall: 0.9124

Results (Predicted by InceptionV3-I3 model)

Test image 110

Classification report:

Accuracy: 0.9312 Precision: 0.9944

Recall: 0.8922

Results (Predicted by VGG-I3 model)

Test image 101

Classification report:

Accuracy: 0.9244 Precision: 0.9145

Recall: 0.5073

Results (Predicted by InceptionV3-I3 model)

Test image 101

Classification report:

Accuracy: 0.9663 Precision: 0.9727

Recall: 0.781

Results (Predicted by Multi-scale model of level 3, 4)

Test image 110

Classification report:

Accuracy: 0.9159

Precision: 0.9971

Recall: 0.8644

Conclusion

- The single-scale models on level 3 generated from both VGG19 and InceptionV3 architectures can generalize well
- The multi-scale model on level 3 & 4 offers more reliable diagnosis, which maybe a better option in practice
- Tensorflow provides a variety of excellent options to deal with data imbalance
 - Class weights,
 - Output bias,
 - Data augmentation, etc....
- These imbalance treatments perform better then resampling in this case

Future work

- There might be more accurate algorithms if decreasing the slide window size, e.g. 50 * 50 patch
- More explorations can be made on Multi-scale prediction models
- Simpler neural networks might also perform well, i.e. lighter models with fewer layers and weights
- It worths exploring more directed/targeted algorithms for medical imaging

