

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2513        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>   | 641.4 (M + H) | 4.13                 |
| 2514        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>   | 595.4 (M + H) | 3.89                 |
| 2515        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>   | 623.4 (M + H) | 4.20                 |
| 2516        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 629.2 (M + H) | 4.15                 |
| 2517        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 613.2 (M + H) | 4.02                 |
| 2518        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 528.2 (M + H) | 4.03                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2519        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 570.2 (M + H) | 3.96                 |
| 2520        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 611.0 (M + H) | 3.69                 |
| 2521        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 514.2 (M + H) | 3.94                 |
| 2522        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 625.4 (M + H) | 3.94                 |
| 2523        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 558.2 (M + H) | 3.96                 |
| 2524        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 544.2 (M + H) | 3.67                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2525        |    | 613.2 (M + H) | 3.31                 |
| 2526        |    | 596.2 (M + H) | 4.69                 |
| 2527        |   | 673.4 (M + H) | 3.57                 |
| 2528        |  | 634.4 (M + H) | 4.41                 |
| 2529        |  | 622.2 (M + H) | 4.45                 |
| 2530        |  | 576 (M + H)   | 4.25                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2531        |    | 604.4 (M + H) | 4.52                 |
| 2532        |    | 610.2 (M + H) | 4.40                 |
| 2533        |   | 606.4 (M + H) | 4.29                 |
| 2534        |  | 594.2 (M + H) | 4.27                 |
| 2535        |  | 571.8 (M + H) | 4.99                 |
| 2536        |  | 609.8 (M + H) | 4.43                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2537        |    | 536.4 (M + H) | 4.86                 |
| 2538        |    | 564.6 (M + H) | 5.13                 |
| 2539        |   | 530.6 (M + H) | 4.65                 |
| 2540        |  | 605.6 (M + H) | 5.21                 |
| 2541        |  | 571.6 (M + H) | 4.45                 |
| 2542        |  | 568.8 (M + H) | 4.09                 |

| Example No. | Structure                                                                                                                                                                                                                                      | ESI-MS                          | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2543        |  <p><chem>CC[C@H](C[C@H](N(C(=O)S(=O)(=O)c1ccc(F)c(F))c2ccc(Cl)cc2)Cc3ccccc3)N4C=NC5=C4C=CC=5</chem></p> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>   | 570.6 ( $\text{M} + \text{H}$ ) | 5.11                 |
| 2544        |  <p><chem>CC[C@H](C[C@H](N(C(=O)S(=O)(=O)c1ccc(F)c(F))c2ccc(Cl)cc2)Cc3ccccc3)N4C=NC5=C4C=CC=5</chem></p> <p><math>2\text{CF}_3\text{CO}_2\text{H}</math></p>  | 629.6 ( $\text{M} + \text{H}$ ) | 4.37                 |
| 2545        |  <p><chem>CC[C@H](C[C@H](N(C(=O)S(=O)(=O)c1ccc(F)c(F))c2ccc(Cl)cc2)Cc3ccccc3)N4C=NC5=C4C=CC=5</chem></p> <p><math>2\text{CF}_3\text{CO}_2\text{H}</math></p> | 655.6 ( $\text{M} + \text{H}$ ) | 5.35                 |
| 2546        |  <p><chem>CC[C@H](C[C@H](N(C(=O)S(=O)(=O)c1ccc(F)c(F))c2ccc(Cl)cc2)Cc3ccccc3)N4C=NC5=C4C=CC=5</chem></p> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 621.8 ( $\text{M} + \text{H}$ ) | 4.63                 |
| 2547        |  <p><chem>CC[C@H](C[C@H](N(C(=O)S(=O)(=O)c1ccc(F)c(F))c2ccc(Cl)cc2)Cc3ccccc3)N4C=NC5=C4C=CC=5</chem></p> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 606.8 ( $\text{M} + \text{H}$ ) | 5.45                 |
| 2548        |  <p><chem>CC[C@H](C[C@H](N(C(=O)S(=O)(=O)c1ccc(F)c(F))c2ccc(Cl)cc2)Cc3ccccc3)N4C=NC5=C4C=CC=5</chem></p> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 644.6 ( $\text{M} + \text{H}$ ) | 5.21                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2549        |    | 632.6 (M + H) | 5.25                 |
| 2550        |    | 618.6 (M + H) | 4.29                 |
| 2551        |   | 616.6 (M + H) | 5.14                 |
| 2552        |  | 604.6 (M + H) | 5.13                 |
| 2553        |  | 544.6 (M + H) | 5.03                 |
| 2554        |  | 585.6 (M + H) | 5.13                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2555        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 623.6 (M + H) | 4.25                 |
| 2556        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 574.6 (M + H) | 4.73                 |
| 2557        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 649.0 (M + H) | 5.25                 |
| 2558        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 615.0 (M + H) | 4.51                 |
| 2559        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 617.4 (M + H) | 4.15                 |
| 2560        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 600.6 (M + H) | 5.37                 |

| Example No. | Structure                                                                                                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2561        | <br><chem>CC(C1=CC=C(C=C1)N2C=C(C=C2)N(C3CCCCC3)C[C@H](CS(=O)(=O)c4ccc(Br)cc4)C[C@H]3Cc5ccccc5)C(=O)OC(F)(F)F</chem>    | 677.0 (M + H) | 4.45                 |
| 2562        | <br><chem>CC(C1=CC=C(C=C1)N2C=C(C=C2)N(C3CCCCC3)C[C@H](CS(=O)(=O)c4ccc(Br)cc4)C[C@H]3Cc5ccc(O)cc5)C(=O)OC(F)(F)F</chem> | 638.6 (M + H) | 5.18                 |
| 2563        | <br><chem>CC(C1=CC=C(C=C1)N2C=C(C=C2)N(C3CCCCC3)C[C@H](CS(=O)(=O)c4ccc(Br)cc4)C[C@H]3Cc5ccncc5)C(=O)OC(F)(F)F</chem>   | 612.6 (M + H) | 4.16                 |
| 2564        | <br><chem>CC(C1=CC=C(C=C1)N2C=C(C=C2)N(C3CCCCC3)C[C@H](CS(=O)(=O)c4ccc(Br)cc4)C[C@H]3Cc5ccccc5)C(=O)OC(F)(F)F</chem>  | 580.0 (M + H) | 5.01                 |
| 2565        | <br><chem>CC(C1=CC=C(C=C1)N2C=C(C=C2)N(C3CCCCC3)C[C@H](CS(=O)(=O)c4ccc(Br)cc4)C[C@H]3Cc5ccccc5)C(=O)OC(F)(F)F</chem>  | 608.0 (M + H) | 5.26                 |
| 2566        | <br><chem>CC(C1=CC=C(C=C1)N2C=C(C=C2)N(C3CCCCC3)C[C@H](CS(=O)(=O)c4ccc(Cl)cc4)C[C@H]3Cc5ccccc5)C(=O)OC(F)(F)F</chem>  | 613.6 (M + H) | 4.44                 |

| Example No. | Structure                                                                                                                                                                                                                                              | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2567        | <br><chem>C[C@H](C[C@H]1CC[C@H]2[C@H]1Cc3ccccc3N2Cc4ccccc4N5CC[C@@H]6[C@H]5Cc7ccccc7N6Cc8ccccc8O=S(=O)(=O)c9ccc(Cl)cc9</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>   | 639.6 (M + H) | 5.48                 |
| 2568        | <br><chem>C[C@H](C[C@H]1CC[C@H]2[C@H]1Cc3ccccc3N2Cc4ccccc4N5CC[C@@H]6[C@H]5Cc7ccccc7N6Cc8ccccc8O=S(=O)(=O)c9ccc(Cl)cc9</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 552.6 (M + H) | 4.92                 |
| 2569        | <br><chem>C[C@H](C[C@H]1CC[C@H]2[C@H]1Cc3ccccc3N2Cc4ccccc4N5CC[C@@H]6[C@H]5Cc7ccccc7N6Cc8ccccc8O=S(=O)(=O)c9ccc(Cl)cc9</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>  | 607.8 (M + H) | 4.33                 |
| 2570        | <br><chem>C[C@H](C[C@H]1CC[C@H]2[C@H]1Cc3ccccc3N2Cc4ccccc4N5CC[C@@H]6[C@H]5Cc7ccccc7N6Cc8ccccc8O=S(=O)(=O)c9ccc(Cl)cc9</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 667.4 (M + H) | 4.67                 |
| 2571        | <br><chem>C[C@H](C[C@H]1CC[C@H]2[C@H]1Cc3ccccc3N2Cc4ccccc4N5CC[C@@H]6[C@H]5Cc7ccccc7N6Cc8ccccc8O=S(=O)(=O)c9ccc(Cl)cc9</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 628.6 (M + H) | 5.29                 |
| 2572        | <br><chem>C[C@H](C[C@H]1CC[C@H]2[C@H]1Cc3ccccc3N2Cc4ccccc4N5CC[C@@H]6[C@H]5Cc7ccncc7N6Cc8ccccc8O=S(=O)(=O)c9ccc(Cl)cc9</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 602.6 (M + H) | 4.35                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2573        |    | 570.6 (M + H) | 5.23                 |
| 2574        |    | 805.4 (M + H) | 4.91                 |
| 2575        |   | 730.8 (M + H) | 4.47                 |
| 2576        |  | 771.6 (M + H) | 4.93                 |
| 2577        |  | 745.6 (M + H) | 5.01                 |
| 2578        |  | 580.8 (M + H) | 5.18                 |

| Example No. | Structure                                                                                                               | ESI-MS                          | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2579        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 621.8 ( $\text{M} + \text{H}$ ) | 5.27                 |
| 2580        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 587.6 ( $\text{M} + \text{H}$ ) | 4.51                 |
| 2581        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 584.6 ( $\text{M} + \text{H}$ ) | 4.21                 |
| 2582        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 582.8 ( $\text{M} + \text{H}$ ) | 5.03                 |
| 2583        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 653.8 ( $\text{M} + \text{H}$ ) | 4.90                 |
| 2584        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 604.6 ( $\text{M} + \text{H}$ ) | 5.33                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2585        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 645.6 (M + H) | 5.41                 |
| 2586        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 458.6 (M + H) | 4.39                 |
| 2587        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 458.6 (M + H) | 4.40                 |
| 2588        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 474.6 (M + H) | 4.39                 |
| 2589        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 474.6 (M + H) | 4.58                 |
| 2590        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 542.6 (M + H) | 4.79                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2591        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 518.6 (M + H) | 4.51                 |
| 2592        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 500.8 (M + H) | 4.33                 |
| 2593        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 524.6 (M + H) | 4.61                 |
| 2594        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 508.6 (M + H) | 4.57                 |
| 2595        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 496.8 (M + H) | 4.87                 |
| 2596        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 446.8 (M + H) | 4.29                 |

| Example No. | Structure                                                                                                                                                                                                      | ESI-MS        | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2597        | <br><chem>CN(C)c1nc2ccccc2n1NCC[C@H]1CCCC[C@H](NS(=O)(=O)c2ccc(F)cc2)C1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>           | 472.8 (M + H) | 4.47                 |
| 2598        | <br><chem>CN(C)c1nc2ccccc2n1NCC[C@H]1CCCC[C@H](NS(=O)(=O)c2ccc(F)cc2)C1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>           | 472.8 (M + H) | 4.53                 |
| 2599        | <br><chem>CN(C)c1nc2ccccc2n1NCC[C@H]1CCCC[C@H](NS(=O)(=O)c2ccc(Cl)cc2)C1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>          | 488.6 (M + H) | 4.55                 |
| 2600        | <br><chem>CN(C)c1nc2ccccc2n1NCC[C@H]1CCCC[C@H](NS(=O)(=O)c2ccc(Cl)cc2)C1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>        | 487.6 (M + H) | 4.65                 |
| 2601        | <br><chem>CN(C)c1nc2ccccc2n1NCC[C@H]1CCCC[C@H](NS(=O)(=O)c2cc(F)c(F)c(Cl)cc2)C1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 556.6 (M + H) | 4.91                 |
| 2602        | <br><chem>CN(C)c1nc2ccccc2n1NCC[C@H]1CCCC[C@H](NS(=O)(=O)c2ccc(Br)cc2)C1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>        | 532.4 (M + H) | 4.61                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2603        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 514.8 (M + H) | 4.43                 |
| 2604        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 538.6 (M + H) | 4.80                 |
| 2605        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 510.6 (M + H) | 5.00                 |
| 2606        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 460.6 (M + H) | 4.40                 |
| 2607        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 486.6 (M + H) | 4.60                 |
| 2608        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 484.6 (M + H) | 4.64                 |

| Example No. | Structure                                                                                                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2609        | <br><chem>CCN1C=NC2=C1C=CC=C2N[C@@H](CS(=O)(=O)c1ccc(Cl)cc1)C3CCCCC3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>         | 503.6 (M + H) | 4.74                 |
| 2610        | <br><chem>CCN1C=NC2=C1C=CC=C2N[C@@H](CS(=O)(=O)c1ccc(Cl)cc1)C3CCCCC3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>         | 502.6 (M + H) | 4.86                 |
| 2611        | <br><chem>CCN1C=NC2=C1C=CC=C2N[C@@H](CS(=O)(=O)c1ccc(C(F)(F)Cl)cc1)C3CCCCC3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 570.8 (M + H) | 5.00                 |
| 2612        | <br><chem>CCN1C=NC2=C1C=CC=C2N[C@@H](CS(=O)(=O)c1ccc(Br)cc1)C3CCCCC3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>       | 546.0 (M + H) | 4.80                 |
| 2613        | <br><chem>CCN1C=NC2=C1C=CC=C2N[C@@H](CS(=O)(=O)c1ccc(O)cc1)C3CCCCC3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>        | 528.8 (M + H) | 4.63                 |
| 2614        | <br><chem>CCN1C=NC2=C1C=CC=C2N[C@@H](CS(=O)(=O)c1ccc(C(F)(F)F)cc1)C3CCCCC3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 552.8 (M + H) | 4.90                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2615        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 536.6 (M + H) | 4.82                 |
| 2616        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 524.8 (M + H) | 5.07                 |
| 2617        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 474.6 (M + H) | 4.55                 |
| 2618        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 468.4 (M + H) | 4.59                 |
| 2619        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 502.6 (M + H) | 4.81                 |
| 2620        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 552.8 (M + H) | 4.94                 |

| Example No. | Structure                                                                                                             | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2621        |  CF <sub>3</sub> CO <sub>2</sub> H   | 482.6 (M + H) | 4.73                 |
| 2622        |  CF <sub>3</sub> CO <sub>2</sub> H   | 546.6 (M + H) | 4.85                 |
| 2623        |  CF <sub>3</sub> CO <sub>2</sub> H  | 536.4 (M + H) | 5.08                 |
| 2624        | CF <sub>3</sub> CO <sub>2</sub> H                                                                                     | 630.4 (M + H) | 5.11                 |
| 2625        |  CF <sub>3</sub> CO <sub>2</sub> H | 604.6 (M + H) | 5.16                 |
| 2626        |  CF <sub>3</sub> CO <sub>2</sub> H | 518.6 (M + H) | 4.75                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2627        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 518.6 (M + H) | 4.91                 |
| 2628        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 561.6 (M + H) | 4.61                 |
| 2629        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 500.8 (M + H) | 4.75                 |
| 2630        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 500.2 (M + H) | 4.85                 |
| 2631        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 516.6 (M + H) | 4.81                 |
| 2632        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 516.6 (M + H) | 4.95                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2633        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 584.6 (M + H) | 5.18                 |
| 2634        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 560.6 (M + H) | 4.87                 |
| 2635        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 542.8 (M + H) | 4.80                 |
| 2636        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 566.6 (M + H) | 5.01                 |
| 2637        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 550.8 (M + H) | 4.95                 |
| 2638        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 538.6 (M + H) | 5.20                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2639        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 488.6 (M + H) | 4.65                 |
| 2640        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 482.6 (M + H) | 4.73                 |
| 2641        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 516.8 (M + H) | 4.97                 |
| 2642        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 566.6 (M + H) | 5.12                 |
| 2643        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 496.8 (M + H) | 4.89                 |
| 2644        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 560.0 (M + H) | 4.98                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2645        |    | 550.6 (M + H) | 5.21                 |
| 2646        |    | 532.6 (M + H) | 4.99                 |
| 2647        |   | 532.6 (M + H) | 5.03                 |
| 2648        |  | 575.8 (M + H) | 4.80                 |
| 2649        |  | 486.6 (M + H) | 4.64                 |
| 2650        |  | 486.6 (M + H) | 4.66                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2651        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 502.6 (M + H) | 4.72                 |
| 2652        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 502.6 (M + H) | 4.87                 |
| 2653        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 570.6 (M + H) | 5.03                 |
| 2654        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 546.6 (M + H) | 4.77                 |
| 2655        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 528.8 (M + H) | 4.68                 |
| 2656        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 552.8 (M + H) | 4.89                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2657        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 536.6 (M + H) | 4.85                 |
| 2658        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 524.8 (M + H) | 5.15                 |
| 2659        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 474.8 (M + H) | 4.63                 |
| 2660        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 468.4 (M + H) | 4.61                 |
| 2661        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 502.6 (M + H) | 4.86                 |
| 2662        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 546.6 (M + H) | 4.64                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2663        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 536.4 (M + H) | 4.81                 |
| 2664        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 630.4 (M + H) | 4.85                 |
| 2665        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 604.6 (M + H) | 4.87                 |
| 2666        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 518.6 (M + H) | 4.67                 |
| 2667        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 518.6 (M + H) | 4.90                 |
| 2668        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 561.6 (M + H) | 4.64                 |

| Example No. | Structure                                                                                                                                                                                                            | ESI-MS        | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2669        | <br><chem>CC(C)(C)N1C=CC2=C1N=C(NCC[C@H]3CCCC[C@H]3CS(=O)(=O)c4ccc(F)cc4)N2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 500.8 (M + H) | 4.73                 |
| 2670        | <br><chem>CC(C)(C)N1C=CC2=C1N=C(NCC[C@H]3CCCC[C@H]3CS(=O)(=O)c4ccc(F)cc4)N2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 500.8 (M + H) | 4.74                 |
| 2671        | <br><chem>CC(C)(C)N1C=CC2=C1N=C(NCC[C@H]3CCCC[C@H]3CS(=O)(=O)c4ccc(Cl)cc4)N2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 516.6 (M + H) | 4.89                 |
| 2672        | <br><chem>CC(C)(C)N1C=CC2=C1N=C(NCC[C@H]3CCCC[C@H]3CS(=O)(=O)c4ccc(Cl)c4)N2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 516.6 (M + H) | 4.93                 |
| 2673        | <br><chem>CC(C)(C)N1C=CC2=C1N=C(NCC[C@H]3CCCC[C@H]3CS(=O)(=O)c4ccc(Br)cc4)N2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 560.0 (M + H) | 4.89                 |
| 2674        | <br><chem>CC(C)(C)N1C=CC2=C1N=C(NCC[C@H]3CCCC[C@H]3CS(=O)(=O)c4ccc(O)cc4)N2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 542.8 (M + H) | 4.76                 |

| Example No. | Structure                            | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------|---------------|----------------------|
| 2675        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 566.6 (M + H) | 5.03                 |
| 2676        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 550.8 (M + H) | 4.96                 |
| 2677        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 538.8 (M + H) | 5.25                 |
| 2678        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 488.6 (M + H) | 4.67                 |
| 2679        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 482.4 (M + H) | 4.71                 |
| 2680        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 516.6 (M + H) | 4.95                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2681        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 566.8 (M + H) | 5.07                 |
| 2682        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 496.8 (M + H) | 4.83                 |
| 2683        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 560.6 (M + H) | 5.01                 |
| 2684        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 550.6 (M + H) | 5.07                 |
| 2685        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 644.6 (M + H) | 5.29                 |
| 2686        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 618.6 (M + H) | 5.25                 |

| Example No. | Structure                                                                                                                                                                                                           | ESI-MS                          | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2687        | <br><chem>CC(C)(C)c1nc2ccccc2n1Cc3cccc(c3)NCS(=O)(=O)c4ccccc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>            | 532.6 ( $\text{M} + \text{H}$ ) | 5.01                 |
| 2688        | <br><chem>CC(C)(C)c1nc2ccccc2n1Cc3cccc(c3)NCS(=O)(=O)c4ccccc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>            | 532.6 ( $\text{M} + \text{H}$ ) | 5.04                 |
| 2689        | <br><chem>CC(C)(C)c1nc2ccccc2n1Cc3cccc(c3)NCS(=O)(=O)c4cc(N)c(cc4)cc3</chem> <p><math>2\text{CF}_3\text{CO}_2\text{H}</math></p>  | 575.8 ( $\text{M} + \text{H}$ ) | 4.75                 |
| 2690        | <br><chem>CC(C)(C)c1nc2ccccc2n1Cc3cccc(c3)NCS(=O)(=O)c4cc(F)ccccc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>     | 484.6 ( $\text{M} + \text{H}$ ) | 4.51                 |
| 2691        | <br><chem>CC(C)(C)c1nc2ccccc2n1Cc3cccc(c3)NCS(=O)(=O)c4cc(Cl)ccccc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>    | 500.8 ( $\text{M} + \text{H}$ ) | 4.59                 |
| 2692        | <br><chem>CC(C)(C)c1nc2ccccc2n1Cc3cccc(c3)NCS(=O)(=O)c4cc(Cl)cc(Cl)cc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 500.8 ( $\text{M} + \text{H}$ ) | 4.71                 |

| Example No. | Structure                                                                                                             | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2693        |  CF <sub>3</sub> CO <sub>2</sub> H   | 544.6 (M + H) | 4.63                 |
| 2694        |  CF <sub>3</sub> CO <sub>2</sub> H   | 526.8 (M + H) | 4.55                 |
| 2695        |  CF <sub>3</sub> CO <sub>2</sub> H  | 550.6 (M + H) | 4.79                 |
| 2696        |  CF <sub>3</sub> CO <sub>2</sub> H | 534.6 (M + H) | 4.69                 |
| 2697        |  CF <sub>3</sub> CO <sub>2</sub> H | 522.4 (M + H) | 5.03                 |
| 2698        |  CF <sub>3</sub> CO <sub>2</sub> H | 472.8 (M + H) | 4.43                 |

| Example No. | Structure                                                                                                                                                                                      | ESI-MS        | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2699        | <br><chem>C[C@H](C[C@H]1CCCC[C@H]1Cc2nc3c(NC4CC4)nc4ccccc3n2)N(Cc5ccccc5)S(=O)(=O)c6ccccc6</chem>             | 466.6 (M + H) | 4.50                 |
| 2700        | <br><chem>C[C@H](C[C@H]1CCCC[C@H]1Cc2nc3c(NC4CC4)nc4ccccc3n2)N(Cc5ccccc5)S(=O)(=O)c6ccc(O(F)(F)F)cc6</chem>   | 550.6 (M + H) | 4.87                 |
| 2701        | <br><chem>C[C@H](C[C@H]1CCCC[C@H]1Cc2nc3c(NC4CC4)nc4ccccc3n2)N(Cc5ccccc5)S(=O)(=O)c6ccc(Br)cc6</chem>        | 480.6 (M + H) | 4.65                 |
| 2702        | <br><chem>C[C@H](C[C@H]1CCCC[C@H]1Cc2nc3c(NC4CC4)nc4ccccc3n2)N(Cc5ccccc5)S(=O)(=O)c6ccc(Cl)cc6</chem>       | 544.6 (M + H) | 4.75                 |
| 2703        | <br><chem>C[C@H](C[C@H]1CCCC[C@H]1Cc2nc3c(NC4CC4)nc4ccccc3n2)N(Cc5ccccc5)S(=O)(=O)c6ccc(Cl)cc6</chem>       | 534.6 (M + H) | 4.90                 |
| 2704        | <br><chem>C[C@H](C[C@H]1CCCC[C@H]1Cc2nc3c(NC4CC4)nc4ccccc3n2)N(Cc5ccccc5)S(=O)(=O)c6ccc(O(F)(F)F)cc6</chem> | 628.6 (M + H) | 5.08                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2705        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 602.6 (M + H) | 5.10                 |
| 2706        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 516.8 (M + H) | 4.71                 |
| 2707        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 516.8 (M + H) | 4.81                 |
| 2708        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 559.6 (M + H) | 4.50                 |
| 2709        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 498.8 (M + H) | 4.64                 |
| 2710        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 498.8 (M + H) | 4.73                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2711        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 514.8 (M + H) | 4.87                 |
| 2712        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 564.6 (M + H) | 4.93                 |
| 2713        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 548.6 (M + H) | 4.87                 |
| 2714        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 536.6 (M + H) | 5.19                 |
| 2715        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 603.8 (M + H) | 4.76                 |
| 2716        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 603.4 (M + H) | 4.87                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2717        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 671.6 (M + H) | 5.05                 |
| 2718        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 647.6 (M + H) | 4.79                 |
| 2719        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 629.8 (M + H) | 4.67                 |
| 2720        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 653.8 (M + H) | 4.91                 |
| 2721        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 637.8 (M + H) | 4.85                 |
| 2722        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 625.8 (M + H) | 5.14                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2723        |    | 575.6 (M + H) | 4.63                 |
| 2724        |    | 569.8 (M + H) | 4.66                 |
| 2725        |   | 603.8 (M + H) | 4.88                 |
| 2726        |  | 653.8 (M + H) | 5.01                 |
| 2727        |  | 583.8 (M + H) | 4.77                 |
| 2728        |  | 647 (M + H)   | 4.92                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2729        |    | 637.8 (M + H) | 5.13                 |
| 2730        |    | 731.6 (M + H) | 5.19                 |
| 2731        |   | 705.8 (M + H) | 5.22                 |
| 2732        |  | 619.8 (M + H) | 4.91                 |
| 2733        |  | 619.8 (M + H) | 4.93                 |
| 2734        |  | 663.0 (M + H) | 4.67                 |

| Example No. | Structure                                                                                                                                                                                                                  | ESI-MS        | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2735        | <br><chem>CC(C)(C)N(C(=O)C)Cc1cc2c(c1)nc(NCc3ccccc3S(=O)(=O)c4ccc(Cl)cc4)cn2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>         | 631.8 (M + H) | 5.01                 |
| 2736        | <br><chem>CC(C)(C)N(C(=O)C)Cc1cc2c(c1)nc(NCc3ccccc3S(=O)(=O)c4ccc(C(F)(F)F)cc4)cn2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 699.0 (M + H) | 5.19                 |
| 2737        | <br><chem>CC(C)(C)N(C(=O)C)Cc1cc2c(c1)nc(NCc3ccccc3S(=O)(=O)c4ccc(Br)cc4)cn2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>        | 675.8 (M + H) | 4.95                 |
| 2738        | <br><chem>CC(C)(C)N(C(=O)C)Cc1cc2c(c1)nc(NCc3ccccc3S(=O)(=O)c4ccc(O)cc4)cn2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>        | 657.8 (M + H) | 4.81                 |
| 2739        | <br><chem>CC(C)(C)N(C(=O)C)Cc1cc2c(c1)nc(NCc3ccccc3S(=O)(=O)c4ccc(C(F)(F)F)cc4)cn2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 665.8 (M + H) | 4.97                 |
| 2740        | <br><chem>CC(C)(C)N(C(=O)C)Cc1cc2c(c1)nc(NCc3ccccc3S(=O)(=O)c4cc(C(C)(C)C)cc4)cn2Cc5ccccc5</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 653.8 (M + H) | 5.27                 |

| Example No. | Structure                                                                                                                                                                                                                               | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2741        | <br><chem>CC(C)(C)N1C=CC2=C1NC3=C2CNC(C[C@H]3C)c4cc(cc(c4)S(=O)(=O)c5ccccc5)S(=O)(=O)c6ccccc6</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>              | 603.4 (M + H) | 4.77                 |
| 2742        | <br><chem>CC(C)(C)N1C=CC2=C1NC3=C2CNC(C[C@H]3C)c4cc(cc(c4)S(=O)(=O)c5ccccc5)S(=O)(=O)c6ccccc6</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>              | 597.8 (M + H) | 4.79                 |
| 2743        | <br><chem>CC(C)(C)N1C=CC2=C1NC3=C2CNC(C[C@H]3C)c4cc(cc(c4)S(=O)(=O)c5ccccc5)S(=O)(=O)c6ccccc6Cl</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>           | 631.8 (M + H) | 5.02                 |
| 2744        | <br><chem>CC(C)(C)N1C=CC2=C1NC3=C2CNC(C[C@H]3C)c4cc(cc(c4)S(=O)(=O)c5ccccc5)S(=O)(=O)c6cc(OCC(F)(F)F)cc6</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 681.8 (M + H) | 5.14                 |
| 2745        | <br><chem>CC(C)(C)N1C=CC2=C1NC3=C2CNC(C[C@H]3C)c4cc(cc(c4)S(=O)(=O)c5ccccc5)S(=O)(=O)c6ccccc6</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>            | 611.8 (M + H) | 4.93                 |
| 2746        | <br><chem>CC(C)(C)N1C=CC2=C1NC3=C2CNC(C[C@H]3C)c4cc(cc(c4)S(=O)(=O)c5ccccc5)S(=O)(=O)c6cc(Br)cc6</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>         | 675.0 (M + H) | 5.05                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2747        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 665.8 (M + H) | 5.29                 |
| 2748        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 759.6 (M + H) | 5.31                 |
| 2749        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 733.8 (M + H) | 5.36                 |
| 2750        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 647.8 (M + H) | 5.05                 |
| 2751        |  <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 647.8 (M + H) | 5.08                 |
| 2752        |  <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 691.0 (M + H) | 4.89                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2753        |    | 559.6 (M + H) | 4.51                 |
| 2754        |    | 575.6 (M + H) | 4.57                 |
| 2755        |   | 575.6 (M + H) | 4.69                 |
| 2756        |  | 619.6 (M + H) | 4.63                 |
| 2757        |  | 625.8 (M + H) | 4.72                 |
| 2758        |  | 609.8 (M + H) | 4.67                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2759        |    | 541.8 (M + H) | 4.45                 |
| 2760        |    | 625.8 (M + H) | 4.38                 |
| 2761        |   | 555.8 (M + H) | 4.57                 |
| 2762        |  | 609.8 (M + H) | 4.94                 |
| 2763        |  | 677.8 (M + H) | 5.05                 |
| 2764        |  | 591.6 (M + H) | 4.73                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2765        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 591.6 (M + H) | 4.75                 |
| 2766        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 635.0 (M + H) | 4.47                 |
| 2767        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 503.6 (M + H) | 3.83                 |
| 2768        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 503.6 (M + H) | 3.99                 |
| 2769        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 571.6 (M + H) | 4.16                 |
| 2770        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 547.6 (M + H) | 3.85                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2771        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 529.6 ( $\text{M} + \text{H}$ ) | 3.75                 |
| 2772        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 553.8 ( $\text{M} + \text{H}$ ) | 3.99                 |
| 2773        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 537.6 ( $\text{M} + \text{H}$ ) | 3.93                 |
| 2774        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 525.8 ( $\text{M} + \text{H}$ ) | 4.22                 |
| 2775        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 475.6 ( $\text{M} + \text{H}$ ) | 3.64                 |
| 2776        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 469.6 ( $\text{M} + \text{H}$ ) | 3.71                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2777        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 503.6 ( $\text{M} + \text{H}$ ) | 3.97                 |
| 2778        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 553.8 ( $\text{M} + \text{H}$ ) | 4.17                 |
| 2779        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 483.4 ( $\text{M} + \text{H}$ ) | 3.87                 |
| 2780        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 547.6 ( $\text{M} + \text{H}$ ) | 4.04                 |
| 2781        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 537.4 ( $\text{M} + \text{H}$ ) | 4.23                 |
| 2782        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 631.6 ( $\text{M} + \text{H}$ ) | 4.23                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2783        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 605.8 ( $\text{M} + \text{H}$ ) | 4.41                 |
| 2784        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 519.6 ( $\text{M} + \text{H}$ ) | 4.01                 |
| 2785        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 519.6 ( $\text{M} + \text{H}$ ) | 4.07                 |
| 2786        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 562.6 ( $\text{M} + \text{H}$ ) | 3.77                 |
| 2787        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 531.6 ( $\text{M} + \text{H}$ ) | 3.90                 |
| 2788        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 531.6 ( $\text{M} + \text{H}$ ) | 4.04                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2789        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 599.6 ( $\text{M} + \text{H}$ ) | 4.24                 |
| 2790        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 575.0 ( $\text{M} + \text{H}$ ) | 3.95                 |
| 2791        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 557.6 ( $\text{M} + \text{H}$ ) | 3.86                 |
| 2792        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 565.6 ( $\text{M} + \text{H}$ ) | 4.03                 |
| 2793        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 554 ( $\text{M} + \text{H}$ )   | 4.29                 |
| 2794        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 503.6 ( $\text{M} + \text{H}$ ) | 3.78                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2795        |    | 497.6 (M + H) | 3.83                 |
| 2796        |    | 531.6 (M + H) | 4.05                 |
| 2797        |   | 582.0 (M + H) | 4.23                 |
| 2798        |  | 511 (M + H)   | 3.95                 |
| 2799        |  | 575.6 (M + H) | 4.10                 |
| 2800        |  | 565.0 (M + H) | 4.32                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2801        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 659.6 ( $\text{M} + \text{H}$ ) | 4.35                 |
| 2802        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 634.0 ( $\text{M} + \text{H}$ ) | 4.43                 |
| 2803        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 547.6 ( $\text{M} + \text{H}$ ) | 4.09                 |
| 2804        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 547.6 ( $\text{M} + \text{H}$ ) | 4.15                 |
| 2805        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 590.6 ( $\text{M} + \text{H}$ ) | 3.93                 |
| 2806        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 459.6 ( $\text{M} + \text{H}$ ) | 4.07                 |

| Example No. | Structure                                                                                                                                                                                            | ESI-MS        | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2807        | <br><chem>CN1C=NC2=C1C=CC=C2N(CCN3CCCC[C@H]3Cc4cc(F)c(F)cc(S(=O)(=O)C(F)(F)F)c4)C(=O)OC(F)(F)F</chem>               | 477.6 (M + H) | 4.07                 |
| 2808        | <br><chem>CN1C=NC2=C1C=CC=C2N(CCN3CCCC[C@H]3Cc4ccc(Cl)cc(S(=O)(=O)C(F)(F)F)c4)C(=O)OC(F)(F)F</chem>                 | 475.6 (M + H) | 4.07                 |
| 2809        | <br><chem>CN1C=NC2=C1C=CC=C2N(CCN3CCCC[C@H]3Cc4ccc(Cl)cc(S(=O)(=O)C(F)(F)F)c4)C(=O)OC(F)(F)F</chem>                 | 475.6 (M + H) | 4.23                 |
| 2810        | <br><chem>CN1C=NC2=C1C=CC=C2N(CCN3CCCC[C@H]3Cc4ccc(O)cc(S(=O)(=O)C(F)(F)F)c4)C(=O)OC(F)(F)F</chem>                | 501.8 (M + H) | 4.15                 |
| 2811        | <br><chem>CN1C=NC2=C1C=CC=C2N(CCN3CCCC[C@H]3Cc4ccc(C(F)(F)F)cc(S(=O)(=O)C(F)(F)F)c4)C(=O)OC(F)(F)F</chem>         | 509.4 (M + H) | 4.27                 |
| 2812        | <br><chem>CN1C=NC2=C1C=CC=C2N(CCN3CCCC[C@H]3Cc4ccc(C(F)(F)OC(F)(F)F)cc(S(=O)(=O)C(F)(F)F)c4)C(=O)OC(F)(F)F</chem> | 525.6 (M + H) | 4.37                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2813        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 519.6 ( $\text{M} + \text{H}$ ) | 4.25                 |
| 2814        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 509.4 ( $\text{M} + \text{H}$ ) | 4.49                 |
| 2815        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 603.0 ( $\text{M} + \text{H}$ ) | 4.60                 |
| 2816        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 577.6 ( $\text{M} + \text{H}$ ) | 4.72                 |
| 2817        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 491 ( $\text{M} + \text{H}$ )   | 4.31                 |
| 2818        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 491.6 ( $\text{M} + \text{H}$ ) | 4.33                 |

| Example No. | Structure                                                                                                              | ESI-MS                          | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2819        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 534.6 ( $\text{M} + \text{H}$ ) | 4.01                 |
| 2820        | <br>$2\text{HCl}$                     | 325.4 ( $\text{M} + \text{H}$ ) | 3.91                 |
| 2821        | <br>$2\text{HCl}$                    | 359.4 ( $\text{M} + \text{H}$ ) | 4.24                 |
| 2822        | <br>$2\text{HCl}$                   | 409.4 ( $\text{M} + \text{H}$ ) | 4.51                 |
| 2823        | <br>$2\text{HCl}$                   | 339.6 ( $\text{M} + \text{H}$ ) | 4.09                 |
| 2824        | <br>$2\text{HCl}$                   | 403.4 ( $\text{M} + \text{H}$ ) | 4.28                 |

| Example No. | Structure                                                                                   | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------|---------------|----------------------|
| 2825        | <br>2HCl   | 393.0 (M + H) | 4.57                 |
| 2826        | <br>2HCl   | 521.6 (M + H) | 4.69                 |
| 2827        | <br>2HCl  | 461.6 (M + H) | 4.77                 |
| 2828        | <br>2HCl | 375.4 (M + H) | 4.33                 |
| 2829        | <br>2HCl | 375.4 (M + H) | 4.39                 |
| 2830        | <br>2HCl | 418.8 (M + H) | 4.33                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 2831        | <br>2HCl  | 343.4 (M + H) | 3.96                 |
| 2832        | <br>2HCl  | 343.4 (M + H) | 4.03                 |
| 2833        | <br>2HCl  | 359.4 (M + H) | 4.05                 |
| 2834        | <br>2HCl  | 359.4 (M + H) | 4.24                 |
| 2835        | <br>2HCl  | 403.4 (M + H) | 4.07                 |
| 2836        | <br>2HCl  | 385.4 (M + H) | 4.00                 |

| Example No. | Structure                                                                                   | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------|---------------|----------------------|
| 2837        | <br>2HCl   | 409.4 (M + H) | 4.32                 |
| 2838        | <br>2HCl   | 393.6 (M + H) | 4.23                 |
| 2839        | <br>2HCl  | 381.6 (M + H) | 4.62                 |
| 2840        | <br>2HCl | 330.8 (M + H) | 3.83                 |
| 2841        | <br>2HCl | 361.4 (M + H) | 4.05                 |
| 2842        | <br>2HCl | 427.4 (M + H) | 4.51                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 2843        |           | 458.4 (M + H) | 3.22                 |
| 2844        |           | 415.4 (M + H) | 3.01                 |
| 2845        |           | 432.6 (M + H) | 3.26                 |
| 2846        |           | 396.2 (M + H) | 2.81                 |
| 2847        |           | 450.0 (M + H) | 3.09                 |
| 2848        |           | 408.4 (M + H) | 2.85                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2849        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 434.4 (M + H) | 2.89                 |
| 2850        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 440.0 (M + H) | 3.20                 |
| 2851        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 482.4 (M + H) | 3.43                 |
| 2852        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 466.4 (M + H) | 2.71                 |
| 2853        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 380.2 (M + H) | 2.72                 |
| 2854        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 426.2 (M + H) | 2.91                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2855        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 450.0 ( $\text{M} + \text{H}$ ) | 2.82                 |
| 2856        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 434.4 ( $\text{M} + \text{H}$ ) | 2.69                 |
| 2857        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 440.0 ( $\text{M} + \text{H}$ ) | 2.85                 |
| 2858        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 550.6 ( $\text{M} + \text{H}$ ) | 3.80                 |
| 2859        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 441.4 ( $\text{M} + \text{H}$ ) | 3.03                 |
| 2860        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 446.6 ( $\text{M} + \text{H}$ ) | 3.41                 |

| Example No. | Structure                                                                                                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2861        | <br><chem>CN(C)c1cc2c(c1)nc3c(N[C@H]4CCCC[C@H]4CNCCc5ccc(O)cc5)cc2n1</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>        | 448.4 (M + H) | 2.91                 |
| 2862        | <br><chem>CN(C)c1cc2c(c1)nc3c(N[C@H]4CCCC[C@H]4CNCCc5ccc(Cl)cc5)cc2n1</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>       | 424.2 (M + H) | 3.05                 |
| 2863        | <br><chem>CN(C)c1cc2c(c1)nc3c(N[C@H]4CCCC[C@H]4CNCCc5cnc6ccccc6cc5)cc2n1</chem> <p>3CF<sub>3</sub>CO<sub>2</sub>H</p>   | 441.4 (M + H) | 2.68                 |
| 2864        | <br><chem>CN(C)c1cc2c(c1)nc3c(N[C@H]4CCCC[C@H]4CNCCc5ccncc5)cc2n1</chem> <p>3CF<sub>3</sub>CO<sub>2</sub>H</p>         | 463.4 (M + H) | 2.76                 |
| 2865        | <br><chem>CN(C)c1cc2c(c1)nc3c(N[C@H]4CCCC[C@H]4CNCCc5ccc(F)cc5)cc2n1</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p>      | 408.4 (M + H) | 2.91                 |
| 2866        | <br><chem>CN(C)c1cc2c(c1)nc3c(N[C@H]4CCCC[C@H]4CNCCc5ccc(Cl)c(Cl)c5)cc2n1</chem> <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 492.2 (M + H) | 3.30                 |

| Example No. | Structure                          | ESI-MS        | Retention Time (min) |
|-------------|------------------------------------|---------------|----------------------|
| 2867        |                                    | 464.2 (M + H) | 2.93                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H |               |                      |
| 2868        |                                    | 474.4 (M + H) | 3.27                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H |               |                      |
| 2869        |                                    | 390.6 (M + H) | 2.88                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H |               |                      |
| 2870        |                                    | 482.2 (M + H) | 3.43                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H |               |                      |
| 2871        |                                    | 408.4 (M + H) | 2.91                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H |               |                      |
| 2872        |                                    | 420.4 (M + H) | 2.91                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H |               |                      |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2873        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 468.2 ( $\text{M} + \text{H}$ ) | 3.09                 |
| 2874        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 406.4 ( $\text{M} + \text{H}$ ) | 2.80                 |
| 2875        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 464.2 ( $\text{M} + \text{H}$ ) | 2.97                 |
| 2876        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 524.6 ( $\text{M} + \text{H}$ ) | 3.12                 |
| 2877        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 442.4 ( $\text{M} + \text{H}$ ) | 3.10                 |
| 2878        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 426.2 ( $\text{M} + \text{H}$ ) | 2.90                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2879        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 480.2 (M + H) | 2.89                 |
| 2880        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 468.2 (M + H) | 3.07                 |
| 2881        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 422.4 (M + H) | 2.61                 |
| 2882        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 450.0 (M + H) | 2.93                 |
| 2883        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 404.6 (M + H) | 3.01                 |
| 2884        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 436.4 (M + H) | 3.08                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2885        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 440.0 (M + H) | 3.18                 |
| 2886        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 470.4 (M + H) | 3.25                 |
| 2887        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 450.0 (M + H) | 3.01                 |
| 2888        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 466.4 (M + H) | 3.40                 |
| 2889        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 415.4 (M + H) | 2.83                 |
| 2890        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 458.4 (M + H) | 3.25                 |

| Example No. | Structure | ESI-MS                                              | Retention Time (min) |
|-------------|-----------|-----------------------------------------------------|----------------------|
| 2891        |           | 468.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.00                 |
| 2892        |           | 406.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.66                 |
| 2893        |           | 420.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.92                 |
| 2894        |           | 379.4 (M + H)<br>3CF <sub>3</sub> CO <sub>2</sub> H | 2.71                 |
| 2895        |           | 434.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.87                 |
| 2896        |           | 480.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.17                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2897        |    | 426.2 (M + H) | 2.98                 |
| 2898        |    | 480.2 (M + H) | 2.99                 |
| 2899        |   | 528.4 (M + H) | 3.15                 |
| 2900        |  | 458.4 (M + H) | 3.19                 |
| 2901        |  | 480.2 (M + H) | 2.92                 |
| 2902        |  | 470.4 (M + H) | 3.27                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2903        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 404.6 (M + H) | 2.87                 |
| 2904        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 460.4 (M + H) | 3.48                 |
| 2905        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 410.4 (M + H) | 2.96                 |
| 2906        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 450.0 (M + H) | 3.03                 |
| 2907        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 434.4 (M + H) | 3.08                 |
| 2908        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 452.2 (M + H) | 2.79                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2909        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 396.2 (M + H) | 2.81                 |
| 2910        | <br>3CF <sub>3</sub> CO <sub>2</sub> H   | 459.4 (M + H) | 3.21                 |
| 2911        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 458.2 (M + H) | 3.08                 |
| 2912        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 410.4 (M + H) | 2.88                 |
| 2913        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 426.2 (M + H) | 3.01                 |
| 2914        | <br>3CF <sub>3</sub> CO <sub>2</sub> H | 429.4 (M + H) | 2.97                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2915        | <br>3CF <sub>3</sub> CO <sub>2</sub> H   | 507.2 (M + H) | 3.53                 |
| 2916        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 522.4 (M + H) | 3.56                 |
| 2917        | <br>3CF <sub>3</sub> CO <sub>2</sub> H  | 483.2 (M + H) | 2.80                 |
| 2918        | <br>3CF <sub>3</sub> CO <sub>2</sub> H | 507.2 (M + H) | 3.27                 |
| 2919        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 474.2 (M + H) | 3.10                 |
| 2920        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 450.0 (M + H) | 3.00                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2921        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 498.4 (M + H) | 3.15                 |
| 2922        | <br>$3\text{CF}_3\text{CO}_2\text{H}$   | 459.4 (M + H) | 2.99                 |
| 2923        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 476.0 (M + H) | 3.10                 |
| 2924        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 518.2 (M + H) | 3.10                 |
| 2925        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 476.2 (M + H) | 3.12                 |
| 2926        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 490.4 (M + H) | 3.35                 |

| Example No. | Structure | ESI-MS                                              | Retention Time (min) |
|-------------|-----------|-----------------------------------------------------|----------------------|
| 2927        |           | 434.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.11                 |
| 2928        |           | 478.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.29                 |
| 2929        |           | 438.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.01                 |
| 2930        |           | 433.4 (M + H)<br>3CF <sub>3</sub> CO <sub>2</sub> H | 2.59                 |
| 2931        |           | 438.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.90                 |
| 2932        |           | 456.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.10                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2933        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 492.2 ( $\text{M} + \text{H}$ ) | 3.25                 |
| 2934        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 476.2 ( $\text{M} + \text{H}$ ) | 3.11                 |
| 2935        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 490.4 ( $\text{M} + \text{H}$ ) | 3.20                 |
| 2936        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 448.4 ( $\text{M} + \text{H}$ ) | 3.17                 |
| 2937        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 489.6 ( $\text{M} + \text{H}$ ) | 3.31                 |
| 2938        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 528.2 ( $\text{M} + \text{H}$ ) | 3.03                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2939        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 476.2 (M + H) | 2.99                 |
| 2940        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 447.4 (M + H) | 2.66                 |
| 2941        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 532.4 (M + H) | 3.66                 |
| 2942        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 514.4 (M + H) | 3.08                 |
| 2943        | <br>3CF <sub>3</sub> CO <sub>2</sub> H | 393.4 (M + H) | 2.79                 |
| 2944        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 474.4 (M + H) | 3.24                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2945        |    | 526.6 (M + H) | 3.44                 |
| 2946        |    | 526.6 (M + H) | 3.42                 |
| 2947        |   | 490.4 (M + H) | 3.35                 |
| 2948        |  | 462.2 (M + H) | 3.43                 |
| 2949        |  | 418.6 (M + H) | 3.13                 |
| 2950        |  | 458.4 (M + H) | 3.10                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2951        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 476.4 ( $\text{M} + \text{H}$ ) | 3.19                 |
| 2952        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 438.2 ( $\text{M} + \text{H}$ ) | 2.95                 |
| 2953        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 422.4 ( $\text{M} + \text{H}$ ) | 2.61                 |
| 2954        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 458.2 ( $\text{M} + \text{H}$ ) | 3.07                 |
| 2955        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 470.4 ( $\text{M} + \text{H}$ ) | 3.45                 |
| 2956        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 471.6 ( $\text{M} + \text{H}$ ) | 2.88                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 2957        |    | 472.4 (M + H) | 3.36                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 2958        |    | 450 (M + H)   | 2.75                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 2959        |    | 448.4 (M + H) | 3.20                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 2960        |  | 508.4 (M + H) | 3.00                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 2961        |  | 420.4 (M + H) | 2.80                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 2962        |  | 474.4 (M + H) | 3.20                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2963        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 404.4 (M + H) | 2.87                 |
| 2964        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 458.2 (M + H) | 3.00                 |
| 2965        | <br>$3\text{CF}_3\text{CO}_2\text{H}$   | 394.4 (M + H) | 2.30                 |
| 2966        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 505.4 (M + H) | 2.60                 |
| 2967        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 424.2 (M + H) | 3.00                 |
| 2968        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 436.4 (M + H) | 2.71                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2969        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 432.4 (M + H) | 3.30                 |
| 2970        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 424.2 (M + H) | 2.95                 |
| 2971        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 415.4 (M + H) | 2.79                 |
| 2972        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 480.2 (M + H) | 3.00                 |
| 2973        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 496.2 (M + H) | 3.46                 |
| 2974        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 562.2 (M + H) | 2.99                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2975        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 492.4 (M + H) | 3.64                 |
| 2976        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 492.2 (M + H) | 3.25                 |
| 2977        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 448.4 (M + H) | 3.22                 |
| 2978        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 456.2 (M + H) | 3.09                 |
| 2979        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 434.4 (M + H) | 2.89                 |
| 2980        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 436.4 (M + H) | 2.79                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2981        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 438.2 (M + H) | 2.91                 |
| 2982        | <br>3CF <sub>3</sub> CO <sub>2</sub> H   | 441.4 (M + H) | 2.55                 |
| 2983        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 446.4 (M + H) | 3.13                 |
| 2984        | <br>3CF <sub>3</sub> CO <sub>2</sub> H | 461.4 (M + H) | 2.46                 |
| 2985        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 422.2 (M + H) | 3.01                 |
| 2986        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 510.2 (M + H) | 2.85                 |

| Example No. | Structure                                                                           | ESI-MS                                              | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|
| 2987        |    | 414.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.86                 |
| 2988        |    | 534.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.13                 |
| 2989        |    | 424.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.08                 |
| 2990        |  | 510.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.32                 |
| 2991        |  | 510.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.17                 |
| 2992        |  | 476.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.17                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 2993        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 476.2 (M + H) | 3.21                 |
| 2994        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 454.2 (M + H) | 2.77                 |
| 2995        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 468.4 (M + H) | 2.89                 |
| 2996        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 418.6 (M + H) | 3.12                 |
| 2997        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 496.4 (M + H) | 3.29                 |
| 2998        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 472.6 (M + H) | 2.99                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 2999        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 466.4 ( $\text{M} + \text{H}$ ) | 3.37                 |
| 3000        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 574.2 ( $\text{M} + \text{H}$ ) | 3.64                 |
| 3001        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 430.4 ( $\text{M} + \text{H}$ ) | 3.05                 |
| 3002        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 532.4 ( $\text{M} + \text{H}$ ) | 4.05                 |
| 3003        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 552.0 ( $\text{M} + \text{H}$ ) | 3.37                 |
| 3004        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 448.4 ( $\text{M} + \text{H}$ ) | 3.51                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3005        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 454.2 (M + H) | 3.91                 |
| 3006        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 472.4 (M + H) | 4.02                 |
| 3007        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 494.4 (M + H) | 4.01                 |
| 3008        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 537.4 (M + H) | 3.77                 |
| 3009        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 418.6 (M + H) | 3.63                 |
| 3010        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 418.6 (M + H) | 3.51                 |

| Example No. | Structure                                                                                                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3011        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H]3CNC(=O)C4CCCC4)nc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>             | 396.2 (M + H) | 3.47                 |
| 3012        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H]3CNC(=O)c4ccc(O)cc4)nc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>         | 434.4 (M + H) | 3.52                 |
| 3013        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H]3CNC(=O)c4ccncc4)nc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>            | 395.4 (M + H) | 3.15                 |
| 3014        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H]3CNC(=O)c4cc(C(C)(C)C)cc4)nc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 460.2 (M + H) | 4.03                 |
| 3015        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H]3CNC(=O)c4cc(C)c(cc4)C)nc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 418.6 (M + H) | 3.65                 |
| 3016        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H]3CNC(=O)c4cc1cc1ccccc14)nc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 462.2 (M + H) | 4.09                 |

| Example No. | Structure                                                                                                                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3017        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H](N[C@@H](C(=O)c4ccc(Br)cc4)C(F)(F)F)C3)cn2</chem>      | 484.2 (M + H) | 3.79                 |
| 3018        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H](N[C@@H](C(=O)c4ccc(O)cc4)C(F)(F)F)C3)cn2</chem>       | 498.6 (M + H) | 3.88                 |
| 3019        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H](N[C@@H](C(=O)c4ccc(Cl)c(Cl)c4)C(F)(F)F)C3)cn2</chem> | 483.2 (M + H) | 3.80                 |
| 3020        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H](N[C@@H](C(=O)c4ccc(O)cc4)C(F)(F)F)C3)cn2</chem>     | 478.2 (M + H) | 3.49                 |
| 3021        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H](N[C@@H](C(=O)SCc4ccccc4)C(F)(F)F)C3)cn2</chem>      | 450.0 (M + H) | 3.61                 |
| 3022        | <br><chem>CN(C)c1cc2c(n1)nc(N[C@H]3CCCC[C@H](N[C@@H](C(=O)OCc4ccccc4)C(F)(F)F)C3)cn2</chem>      | 448.2 (M + H) | 3.70                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3023        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 554.4 (M + H) | 4.41                 |
| 3024        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 598.2 (M + H) | 4.03                 |
| 3025        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 499.2 (M + H) | 3.59                 |
| 3026        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 524.6 (M + H) | 3.84                 |
| 3027        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 497.4 (M + H) | 3.80                 |
| 3028        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 410.2 (M + H) | 3.43                 |

| Example No. | Structure                                                                                                                                                           | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3029        | <br><chem>CCN(C)c1nc2ccccc2n1Cc3cccc(C(=O)OC(=O)c4ccc(Cl)cc4)c3</chem>             | 468.2 (M + H) | 3.77                 |
| 3030        | <br><chem>CCN(C)c1nc2ccccc2n1Cc3cccc(C(=O)OC(=O)c4ccc([N+](=O)[O-])cc4)c3</chem>   | 463.2 (M + H) | 3.73                 |
| 3031        | <br><chem>CCN(C)c1nc2ccccc2n1Cc3cccc(C(=O)OC(=O)c4cc(F)cc(C(F)(F)F)cc4)c3</chem>  | 490.4 (M + H) | 3.91                 |
| 3032        | <br><chem>CCN(C)c1nc2ccccc2n1Cc3cccc(C(=O)OC(=O)c4cc(F)cc(C(F)(F)F)cc4)c3</chem> | 490.4 (M + H) | 3.94                 |
| 3033        | <br><chem>CCN(C)c1nc2ccccc2n1Cc3cccc(C(=O)OC(=O)c4cc(F)c(cc4)C(F)(F)F)c3</chem>  | 490.4 (M + H) | 3.85                 |
| 3034        | <br><chem>CCN(C)c1nc2ccccc2n1Cc3cccc(C(=O)OC(=O)c4cc(F)cc(C(F)(F)F)cc4)c3</chem> | 490.4 (M + H) | 3.87                 |

| Example No. | Structure                                                                                                                                                                                                                     | ESI-MS                          | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3035        | <br><chem>CN(C)c1nc2ccccc2n1Cc3cccc(C(F)(F)F)c3</chem> <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p>        | 490.4 ( $\text{M} + \text{H}$ ) | 3.63                 |
| 3036        | <br><chem>CN(C)c1nc2ccccc2n1Cc3cccc(C(F)(F)F)c3</chem> <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p>        | 490.2 ( $\text{M} + \text{H}$ ) | 3.54                 |
| 3037        | <br><chem>CN(C)c1nc2ccccc2n1Cc3cccc(C(F)(F)C(F)(F)F)c3</chem> <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 540.4 ( $\text{M} + \text{H}$ ) | 3.95                 |
| 3038        | <br><chem>CN(C)c1nc2ccccc2n1Cc3cccc(F)c(F)c3</chem> <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p>         | 440.4 ( $\text{M} + \text{H}$ ) | 3.58                 |
| 3039        | <br><chem>CN(C)c1nc2ccccc2n1Cc3cccc(F)c(F)c3</chem> <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p>         | 458.4 ( $\text{M} + \text{H}$ ) | 3.56                 |
| 3040        | <br><chem>CN(C)c1nc2ccccc2n1Cc3cccc(F)c(F)c(F)c3</chem> <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p>     | 476.4 ( $\text{M} + \text{H}$ ) | 3.83                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3041        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 490.4 (M + H) | 3.82                 |
| 3042        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 508.0 (M + H) | 3.85                 |
| 3043        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 438.2 (M + H) | 3.71                 |
| 3044        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 464.2 (M + H) | 3.65                 |
| 3045        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 448.4 (M + H) | 3.47                 |
| 3046        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 440.4 (M + H) | 3.59                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time.(min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3047        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 464.2 (M + H) | 3.36                 |
| 3048        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 464.4 (M + H) | 3.39                 |
| 3049        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 432.4 (M + H) | 3.81                 |
| 3050        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 448.4 (M + H) | 3.69                 |
| 3051        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 438.2 (M + H) | 3.69                 |
| 3052        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 472.4 (M + H) | 4.03                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3053        |    | 429.2 (M + H) | 3.47                 |
| 3054        |    | 488.4 (M + H) | 4.60                 |
| 3055        |    | 424.2 (M + H) | 3.41                 |
| 3056        |  | 530.2 (M + H) | 3.83                 |
| 3057        |  | 446.4 (M + H) | 4.02                 |
| 3058        |  | 438.2 (M + H) | 3.70                 |

| Example No. | Structure                                                                                                                                                               | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3059        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@@H](CC[C@H]3C(=O)C(F)(F)F)C(F)(F)F</chem>          | 472.4 (M + H) | 3.55                 |
| 3060        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@@H](CC[C@H]3C(=O)c1ccccc1)C(F)(F)F</chem>          | 506.4 (M + H) | 3.71                 |
| 3061        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@@H](CC[C@H]3C(=O)c1ccc(I)cc1)C(F)(F)F</chem>      | 530.2 (M + H) | 3.61                 |
| 3062        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@@H](CC[C@H]3C(=O)c1ccc(CC)cc1)C(F)(F)F</chem>    | 474.4 (M + H) | 4.41                 |
| 3063        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@@H](CC[C@H]3C(=O)c1ccc(OCCCC)cc1)C(F)(F)F</chem> | 476.4 (M + H) | 4.14                 |
| 3064        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@@H](CC[C@H]3C(=O)c1ccc(OCCCC)cc1)C(F)(F)F</chem> | 502.4 (M + H) | 4.83                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3065        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 480.4 (M + H) | 4.09                 |
| 3066        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 486.4 (M + H) | 3.84                 |
| 3067        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 440.4 (M + H) | 3.46                 |
| 3068        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 494.4 (M + H) | 3.79                 |
| 3069        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 472.4 (M + H) | 3.55                 |
| 3070        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 464.4 (M + H) | 3.63                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 3071        |           | 458.2 (M + H) | 3.69                 |
| 3072        |           | 440.4 (M + H) | 3.69                 |
| 3073        |           | 440.4 (M + H) | 3.66                 |
| 3074        |           | 422.4 (M + H) | 3.55                 |
| 3075        |           | 460.4 (M + H) | 4.24                 |
| 3076        |           | 429.2 (M + H) | 3.42                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 3077        |           | 434.4 (M + H) | 3.61                 |
| 3078        |           | 488.4 (M + H) | 3.86                 |
| 3079        |           | 518.6 (M + H) | 4.74                 |
| 3080        |           | 458.2 (M + H) | 3.68                 |
| 3081        |           | 410.4 (M + H) | 3.58                 |
| 3082        |           | 540.4 (M + H) | 4.19                 |

| Example No. | Structure | ESI-MS                                             | Retention Time (min) |
|-------------|-----------|----------------------------------------------------|----------------------|
| 3083        |           | 422.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.50                 |
| 3084        |           | 494.4 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.39                 |
| 3085        |           | 440.0 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.55                 |
| 3086        |           | 438.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.48                 |
| 3087        |           | 454.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.75                 |
| 3088        |           | 472.4 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.83                 |

| Example No. | Structure                                                                                                                                                                                                        | ESI-MS                          | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3089        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H]1NC(=O)c2ccc(F)cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>        | 422.2 ( $\text{M} + \text{H}$ ) | 3.51                 |
| 3090        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H]1NC(=O)c2ccc(C(F)(F)F)cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 472.4 ( $\text{M} + \text{H}$ ) | 3.87                 |
| 3091        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H]1NC(=O)c2ccc(Br)cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>      | 500.4 ( $\text{M} + \text{H}$ ) | 3.03                 |
| 3092        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H]1NC(=O)c2ccc(N(C)C)cc2</chem> <p><math>2\text{CF}_3\text{CO}_2\text{H}</math></p> | 447.4 ( $\text{M} + \text{H}$ ) | 2.59                 |
| 3093        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H]1NC(=O)c2ccc3ccsc3cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>   | 486.4 ( $\text{M} + \text{H}$ ) | 3.25                 |
| 3094        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H]1NC(=O)c2ccc3sncc3cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>   | 488.4 ( $\text{M} + \text{H}$ ) | 2.81                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3095        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 452.4 (M + H) | 2.98                 |
| 3096        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 496.4 (M + H) | 3.29                 |
| 3097        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 448.4 (M + H) | 2.77                 |
| 3098        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 458.4 (M + H) | 3.06                 |
| 3099        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 484.4 (M + H) | 3.40                 |
| 3100        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 418.6 (M + H) | 2.69                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3101        |    | 496.4 (M + H) | 3.01                 |
| 3102        |    | 483.4 (M + H) | 2.79                 |
| 3103        |   | 420.4 (M + H) | 2.76                 |
| 3104        |  | 516.2 (M + H) | 3.03                 |
| 3105        |  | 480.4 (M + H) | 2.41                 |
| 3106        |  | 483.2 (M + H) | 2.84                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3107        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 455 ( $\text{M} + \text{H}$ )   | 2.45                 |
| 3108        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 455.2 ( $\text{M} + \text{H}$ ) | 3.19                 |
| 3109        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 461.4 ( $\text{M} + \text{H}$ ) | 2.60                 |
| 3110        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 470.4 ( $\text{M} + \text{H}$ ) | 2.74                 |
| 3111        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 446.6 ( $\text{M} + \text{H}$ ) | 2.61                 |
| 3112        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 464.4 ( $\text{M} + \text{H}$ ) | 2.35                 |

| Example No. | Structure                                                                                                                                                         | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3113        | <br><chem>CCN1C=CC=C2=C1NC(=N2)C[C@H]3CCCC[C@H]3C(=O)C4=CC=CC=C4</chem>          | 468.4 (M + H) | 3.04                 |
| 3114        | <br><chem>CCN1C=CC=C2=C1NC(=N2)C[C@H]3CCCC[C@H]3C(=O)C4=CC=CC=N4</chem>          | 456.2 (M + H) | 2.44                 |
| 3115        | <br><chem>CCN1C=CC=C2=C1NC(=N2)C[C@H]3CCCC[C@H]3C(=O)C4=CC=CC=CN4</chem>        | 455.2 (M + H) | 2.11                 |
| 3116        | <br><chem>CCN1C=CC=C2=C1NC(=N2)C[C@H]3CCCC[C@H]3C(=O)C4=CC(O)=CC(Cl)=C4</chem> | 454.2 (M + H) | 3.21                 |
| 3117        | <br><chem>CCN1C=CC=C2=C1NC(=N2)C[C@H]3CCCC[C@H]3C(=O)C4=CC=CC(N)=C4</chem>     | 433.6 (M + H) | 2.34                 |
| 3118        | <br><chem>CCN1C=CC=C2=C1NC(=N2)C[C@H]3CCCC[C@H]3C(=O)C4=CC=CC=C4</chem>        | 444.6 (M+)    | 2.93                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3119        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 421.4 (M + H) | 2.23                 |
| 3120        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 506.4 (M + H) | 3.31                 |
| 3121        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 511.6 (M + H) | 3.21                 |
| 3122        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 479.4 (M + H) | 3.60                 |
| 3123        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 434.4 (M + H) | 2.37                 |
| 3124        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 516.4 (M + H) | 3.02                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3125        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 394.4 (M + H) | 2.45                 |
| 3126        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 450.2 (M + H) | 2.41                 |
| 3127        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 477.0 (M + H) | 2.88                 |
| 3128        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 405.6 (M + H) | 2.61                 |
| 3129        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 472.6 (M + H) | 3.17                 |
| 3130        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 464.4 (M + H) | 2.59                 |

| Exemple No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3131        | <br>$\text{CF}_3\text{CO}_2\text{H}$    | 484.2 (M + H) | 2.99                 |
| 3132        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 453.0 (M + H) | 2.45                 |
| 3133        | <br>$\text{CF}_3\text{CO}_2\text{H}$    | 488.4 (M + H) | 3.59                 |
| 3134        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 454.2 (M + H) | 2.81                 |
| 3135        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 421.4 (M + H) | 2.89                 |
| 3136        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 468.4 (M + H) | 2.53                 |

| Example No. | Structure                                                                           | ESI-MS                                                          | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|
| 3137        |    | 483.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H             | 2.83                 |
| 3138        |    | 487.4 (M+2H <sup>+</sup> )<br>CF <sub>3</sub> CO <sub>2</sub> H | 3.40                 |
| 3139        |    | 445.6 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H              | 2.36                 |
| 3140        |  | 453.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H             | 2.46                 |
| 3141        |  | 478.4 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H              | 2.77                 |
| 3142        |  | 672.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H              | 3.92                 |

| Example No. | Structure                                                                                                                                                             | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3143        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@H](C[C@H]3C)NC(=O)c4cc(Br)c(O)c(Br)c4</chem>     | 576.2 (M + H) | 3.71                 |
| 3144        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@H](C[C@H]3C)NC(=O)c4ccn(O)c4</chem>              | 421.2 (M + H) | 2.01                 |
| 3145        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@H](C[C@H]3C)NC(=O)c4ccc([N+](=O)[O-])cc4</chem> | 494.4 (M + H) | 2.77                 |
| 3146        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@H](C[C@H]3C)NC(=O)c4ccncc4</chem>              | 405.6 (M + H) | 1.99                 |
| 3147        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@H](C[C@H]3C)NC(=O)c4cc(O[CF3])cc(F)cc4</chem>  | 488.4 (M + H) | 3.13                 |
| 3148        | <br><chem>CN(C)C1=NC2=C1C=CC3=C2N[C@H](C[C@H]3C)NC(=O)c4ccccc4C=CC=CC</chem>       | 430.4 (M + H) | 2.91                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3149        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 459.4 ( $\text{M} + \text{H}$ ) | 2.47                 |
| 3150        | <br>$\text{CF}_3\text{CO}_2\text{H}$    | 486.6 ( $\text{M} + \text{H}$ ) | 2.93                 |
| 3151        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 474.4 ( $\text{M} + \text{H}$ ) | 3.03                 |
| 3152        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 465.2 ( $\text{M} + \text{H}$ ) | 3.13                 |
| 3153        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 483.4 ( $\text{M} + \text{H}$ ) | 2.67                 |
| 3154        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 556.4 ( $\text{M} + \text{H}$ ) | 2.84                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3155        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 443.4 (M + H) | 2.94                 |
| 3156        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 508.2 (M + H) | 3.20                 |
| 3157        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 440.0 (M + H) | 2.72                 |
| 3158        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 532.4 (M + H) | 3.58                 |
| 3159        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 535.4 (M + H) | 3.51                 |
| 3160        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 504.4 (M + H) | 3.49                 |

| Example No. | Structure                                                                                                                                                                    | ESI-MS        | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3161        | <br><chem>CC1=NC2=C(C=C1)N=C(NC3CCCC[C@H]3CN(C)C(=O)c4oc(C(F)(F)F)c(c4Cl)C(F)(F)F)C2</chem> | 572.4 (M + H) | 3.71                 |
| 3162        | <br><chem>CC1=NC2=C(C=C1)N=C(NCc3ccccc3C(=O)c4ccccc4)C2</chem>                              | 460.2 (M + H) | 3.80                 |
| 3163        | <br><chem>CC1=NC2=C(C=C1)N=C(NCc3ccccc3C(=O)c4ccccc4)C2</chem>                             | 589.2 (M + H) | 4.00                 |
| 3164        | <br><chem>CC1=NC2=C(C=C1)N=C(NCc3ccccc3C(=O)c4cc(F)ccccc4)C2</chem>                       | 492.2 (M + H) | 3.90                 |
| 3165        | <br><chem>CC1=NC2=C(C=C1)N=C(NCc3ccccc3C(=O)c4cc(F)ccccc4)C2</chem>                       | 478.2 (M + H) | 3.80                 |
| 3166        | <br><chem>CC1=NC2=C(C=C1)N=C(NCc3ccccc3C(=O)c4cc(F)ccccc4)C2</chem>                       | 607.6 (M + H) | 4.00                 |

| Example No. | Structure                                                                                                                                                                    | ESI-MS        | Retention Time (min) |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3167        | <br><chem>CN(C)c1cc2c(n1)nc(NCc3ccc(NC(=O)c4ccc(cc4)c5ccc(O)cc5)cc3)cn2</chem>              | 504.2 (M + H) | 3.40                 |
| 3168        | <br><chem>CN(C)c1cc2c(n1)nc(NCc3ccc(NC(=O)c4ccc(cc4)c5ccccc5)cc3)cn2</chem>                 | 506.2 (M + H) | 3.90                 |
| 3169        | <br><chem>CN(C)c1cc2c(n1)nc(NCc3ccc(NC(=O)c4ccc(cc4)c5ccsc5)cc3)cn2</chem>                 | 480.2 (M + H) | 3.80                 |
| 3170        | <br><chem>CN(C)c1cc2c(n1)nc(NCc3ccc(NC(=O)c4ccc(cc4)c5ccsc5)cc3)cn2</chem>                | 466.2 (M + H) | 3.70                 |
| 3171        | <br><chem>CN(C)c1cc2c(n1)nc(NCc3ccc(NC(=O)c4c(c5cc(Cl)ccn5)s4)cc3)cn2</chem>              | 515.2 (M + H) | 3.90                 |
| 3172        | <br><chem>CN(C)c1cc2c(n1)nc(NCCNC(=O)C(C)(C)C)Cc3ccc(NC(=O)c4c(c5cc(Cl)ccn5)s4)cc3</chem> | 644.2 (M + H) | 4.10                 |

| Example No. | Structure                                                                                                               | ESI-MS                          | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3173        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 488.2 ( $\text{M} + \text{H}$ ) | 3.90                 |
| 3174        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 474.4 ( $\text{M} + \text{H}$ ) | 3.80                 |
| 3175        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 525.4 ( $\text{M} + \text{H}$ ) | 3.70                 |
| 3176        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 654.2 ( $\text{M} + \text{H}$ ) | 3.90                 |
| 3177        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 428.2 ( $\text{M} + \text{H}$ ) | 3.10                 |
| 3178        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 414.4 ( $\text{M} + \text{H}$ ) | 2.90                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3179        |    | 506.4 (M + H) | 3.04                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3180        |    | 578.8 (M + H) | 3.50                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3181        |    | 520.6 (M + H) | 3.19                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3182        |  | 448.4 (M + H) | 2.80                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3183        |  | 494.6 (M + H) | 2.66                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3184        |  | 478.4 (M + H) | 2.66                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3185        |    | 492.6 (M + H) | 2.94                 |
| 3186        |    | 464.4 (M + H) | 2.65                 |
| 3187        |    | 464.4 (M + H) | 2.68                 |
| 3188        |  | 566.4 (M + H) | 3.03                 |
| 3189        |  | 512.6 (M + H) | 2.85                 |
| 3190        |  | 474.4 (M + H) | 3.09                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3191        | <br>$3\text{CF}_3\text{CO}_2\text{H}$   | 477.4 (M + H) | 2.51                 |
| 3192        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 464.4 (M + H) | 2.67                 |
| 3193        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 494.6 (M + H) | 2.78                 |
| 3194        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 494.6 (M + H) | 2.60                 |
| 3195        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 434.6 (M + H) | 2.67                 |
| 3196        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 546.4 (M + H) | 4.30                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3197        |    | 606.6 (M + H) | 3.95                 |
| 3198        |    | 536.6 (M + H) | 3.83                 |
| 3199        |    | 492.4 (M + H) | 2.97                 |
| 3200        |  | 478.4 (M + H) | 2.79                 |
| 3201        |  | 542.0 (M + H) | 2.85                 |
| 3202        |  | 492.6 (M + H) | 2.81                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3203        |    | 590.4 (M + H) | 3.02                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3204        |    | 502.2 (M + H) | 2.91                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3205        |    | 480.4 (M + H) | 2.51                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3206        |  | 536.4 (M + H) | 3.21                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3207        |  | 443.6 (M + H) | 2.66                 |
|             | 3CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3208        |  | 536.4 (M + H) | 3.08                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3209        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 520.0 ( $\text{M} + \text{H}$ ) | 3.51                 |
| 3210        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 480.4 ( $\text{M} + \text{H}$ ) | 2.58                 |
| 3211        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 552.0 ( $\text{M} + \text{H}$ ) | 3.11                 |
| 3212        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 464.4 ( $\text{M} + \text{H}$ ) | 3.22                 |
| 3213        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 450.4 ( $\text{M} + \text{H}$ ) | 2.70                 |
| 3214        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 450.4 ( $\text{M} + \text{H}$ ) | 2.58                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3215        |    | 480.4 (M + H) | 2.73                 |
| 3216        |    | 429.4 (M + H) | 3.29                 |
| 3217        |   | 480.2 (M + H) | 2.78                 |
| 3218        |  | 522.4 (M + H) | 3.77                 |
| 3219        |  | 450.2 (M + H) | 2.57                 |
| 3220        |  | 498.0 (M + H) | 2.97                 |

| Example No. | Structure | ESI-MS                                              | Retention Time (min) |
|-------------|-----------|-----------------------------------------------------|----------------------|
| 3221        |           | 478.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.17                 |
| 3222        |           | 480.0 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.08                 |
| 3223        |           | 590.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 4.20                 |
| 3224        |           | 576.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.95                 |
| 3225        |           | 512.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.86                 |
| 3226        |           | 472.4 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H  | 3.07                 |



| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3233        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 382.2 (M + H) | 2.67                 |
| 3234        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 436.4 (M + H) | 3.05                 |
| 3235        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 394.4 (M + H) | 2.75                 |
| 3236        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 420.4 (M + H) | 2.82                 |
| 3237        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 426.4 (M + H) | 3.17                 |
| 3238        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 468.4 (M + H) | 3.44                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3239        |    | 452.2 (M + H) | 2.69                 |
| 3240        |    | 436.4 (M + H) | 2.80                 |
| 3241        |   | 426.2 (M + H) | 2.79                 |
| 3242        |  | 536.4 (M + H) | 3.75                 |
| 3243        |  | 427.2 (M + H) | 2.95                 |
| 3244        |  | 432.4 (M + H) | 3.41                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3245        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 434.2 (M + H) | 2.84                 |
| 3246        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 410.2 (M + H) | 3.02                 |
| 3247        | <br>3CF <sub>3</sub> CO <sub>2</sub> H  | 427.4 (M + H) | 2.61                 |
| 3248        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 450.4 (M + H) | 2.91                 |
| 3249        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 460.4 (M + H) | 3.19                 |
| 3250        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 468.4 (M + H) | 2.79                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3251        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 394.4 (M + H) | 2.83                 |
| 3252        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 454.2 (M + H) | 3.08                 |
| 3253        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 392.4 (M + H) | 2.73                 |
| 3254        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 450.4 (M + H) | 2.92                 |
| 3255        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 510.4 (M + H) | 3.17                 |
| 3256        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 428.2 (M + H) | 3.08                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3257        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 392.4 ( $\text{M} + \text{H}$ ) | 2.63                 |
| 3258        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 412.2 ( $\text{M} + \text{H}$ ) | 2.83                 |
| 3259        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 466.4 ( $\text{M} + \text{H}$ ) | 2.89                 |
| 3260        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 454.0 ( $\text{M} + \text{H}$ ) | 3.05                 |
| 3261        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 408.2 ( $\text{M} + \text{H}$ ) | 2.53                 |
| 3262        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 390.4 ( $\text{M} + \text{H}$ ) | 2.92                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3263        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 422.2 ( $\text{M} + \text{H}$ ) | 3.05                 |
| 3264        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 456.4 ( $\text{M} + \text{H}$ ) | 3.25                 |
| 3265        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 452.2 ( $\text{M} + \text{H}$ ) | 3.37                 |
| 3266        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 401.2 ( $\text{M} + \text{H}$ ) | 2.76                 |
| 3267        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 444.4 ( $\text{M} + \text{H}$ ) | 3.17                 |
| 3268        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 392.4 ( $\text{M} + \text{H}$ ) | 2.61                 |

| Example No. | Structure | ESI-MS                                              | Retention Time (min) |
|-------------|-----------|-----------------------------------------------------|----------------------|
| 3269        |           | 406.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.86                 |
| 3270        |           | 365.4 (M + H)<br>3CF <sub>3</sub> CO <sub>2</sub> H | 2.61                 |
| 3271        |           | 420.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.83                 |
| 3272        |           | 466.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.10                 |
| 3273        |           | 514.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.13                 |
| 3274        |           | 444.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.17                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3275        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 466.4 (M + H) | 2.86                 |
| 3276        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 456.2 (M + H) | 3.22                 |
| 3277        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 446.6 (M + H) | 3.45                 |
| 3278        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 436.4 (M + H) | 2.95                 |
| 3279        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 420.2 (M + H) | 3.03                 |
| 3280        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 382.4 (M + H) | 2.72                 |

| Example No. | Structure                                                                                                                  | ESI-MS        | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3281        | <br>2CF <sub>3</sub> CO <sub>2</sub> H    | 444.4 (M + H) | 3.07                 |
| 3282        | <br>2CF <sub>3</sub> CO <sub>2</sub> H    | 396.2 (M + H) | 2.79                 |
| 3283        | <br>2CF <sub>3</sub> CO <sub>2</sub> H    | 412.4 (M + H) | 2.95                 |
| 3284        | <br>32CF <sub>3</sub> CO <sub>2</sub> H | 493.4 (M + H) | 3.57                 |
| 3285        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 508.2 (M + H) | 3.52                 |
| 3286        | <br>2CF <sub>3</sub> CO <sub>2</sub> H  | 469.6 (M + H) | 2.76                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3287        | <br>$3\text{CF}_3\text{CO}_2\text{H}$   | 493.2 ( $\text{M} + \text{H}$ ) | 3.17                 |
| 3288        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 460.2 ( $\text{M} + \text{H}$ ) | 2.95                 |
| 3289        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 484.2 ( $\text{M} + \text{H}$ ) | 3.14                 |
| 3290        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 462.2 ( $\text{M} + \text{H}$ ) | 3.11                 |
| 3291        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 462.2 ( $\text{M} + \text{H}$ ) | 3.11                 |
| 3292        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 476.4 ( $\text{M} + \text{H}$ ) | 3.39                 |

| Example No. | Structure                                                                           | ESI-MS                                              | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|
| 3293        |    | 420.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.05                 |
| 3294        |    | 464.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.21                 |
| 3295        |    | 424.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.94                 |
| 3296        |  | 419.4 (M + H)<br>3CF <sub>3</sub> CO <sub>2</sub> H | 2.51                 |
| 3297        |  | 366.4 (M + H)<br>3CF <sub>3</sub> CO <sub>2</sub> H | 2.26                 |
| 3298        |  | 424.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.93                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3299        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 442.4 ( $\text{M} + \text{H}$ ) | 2.97                 |
| 3300        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 478.2 ( $\text{M} + \text{H}$ ) | 3.19                 |
| 3301        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 462.2 ( $\text{M} + \text{H}$ ) | 3.05                 |
| 3302        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 476.4 ( $\text{M} + \text{H}$ ) | 3.20                 |
| 3303        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 366.4 ( $\text{M} + \text{H}$ ) | 2.64                 |
| 3304        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 412.4 ( $\text{M} + \text{H}$ ) | 2.85                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3305        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 420.4 (M + H) | 2.67                 |
| 3306        | <br>$3\text{CF}_3\text{CO}_2\text{H}$   | 449.4 (M + H) | 2.74                 |
| 3307        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 394.4 (M + H) | 2.86                 |
| 3308        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 478.2 (M + H) | 3.38                 |
| 3309        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 444.4 (M + H) | 3.09                 |
| 3310        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 376.4 (M + H) | 2.82                 |

| Example No. | Structure                                                                           | ESI-MS                                              | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|
| 3311        |    | 406.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.87                 |
| 3312        |    | 436.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.91                 |
| 3313        |   | 426.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.13                 |
| 3314        |  | 436.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.99                 |
| 3315        |  | 454.0 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.97                 |
| 3316        |  | 412.4 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 2.92                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3317        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 466.4 (M + H) | 2.95                 |
| 3318        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 390.4 (M + H) | 2.95                 |
| 3319        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 396.2 (M + H) | 2.89                 |
| 3320        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 438.2 (M + H) | 2.76                 |
| 3321        | <br>3CF <sub>3</sub> CO <sub>2</sub> H | 445.4 (M + H) | 3.16                 |
| 3322        | <br>3CF <sub>3</sub> CO <sub>2</sub> H | 415.4 (M + H) | 2.96                 |

| Example No. | Structure                                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3323        | <br>$3CF_3CO_2H$   | 445.4 (M + H) | 2.96                 |
| 3324        | <br>$2CF_3CO_2H$   | 504.2 (M + H) | 3.11                 |
| 3325        | <br>$2CF_3CO_2H$  | 434.4 (M + H) | 3.17                 |
| 3326        | <br>$2CF_3CO_2H$ | 476.2 (M + H) | 3.27                 |
| 3327        | <br>$2CF_3CO_2H$ | 514.4 (M + H) | 3.07                 |
| 3328        | <br>$2CF_3CO_2H$ | 462.2 (M + H) | 2.99                 |

| Example No. | Structure                             | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------|---------------|----------------------|
| 3329        | <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 433.2 (M + H) | 2.63                 |
| 3330        | <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 518.4 (M + H) | 3.63                 |
| 3331        | <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 500.4 (M + H) | 3.09                 |
| 3332        | <p>3CF<sub>3</sub>CO<sub>2</sub>H</p> | 379.4 (M + H) | 2.77                 |
| 3333        | <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 460.2 (M + H) | 3.31                 |
| 3334        | <p>2CF<sub>3</sub>CO<sub>2</sub>H</p> | 512.4 (M + H) | 3.51                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3335        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 512.6 ( $\text{M} + \text{H}$ ) | 3.51                 |
| 3336        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 476.2 ( $\text{M} + \text{H}$ ) | 3.39                 |
| 3337        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 448.4 ( $\text{M} + \text{H}$ ) | 3.42                 |
| 3338        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 404.4 ( $\text{M} + \text{H}$ ) | 3.17                 |
| 3339        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 444.4 ( $\text{M} + \text{H}$ ) | 3.13                 |
| 3340        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 462.2 ( $\text{M} + \text{H}$ ) | 3.21                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3341        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 424.2 (M + H) | 2.97                 |
| 3342        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 444.6 (M + H) | 3.16                 |
| 3343        | <br>3CF <sub>3</sub> CO <sub>2</sub> H   | 469.4 (M + H) | 3.47                 |
| 3344        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 456.4 (M + H) | 3.47                 |
| 3345        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 457.4 (M + H) | 3.09                 |
| 3346        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 458.2 (M + H) | 3.37                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3347        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 436.4 (M + H) | 2.83                 |
| 3348        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 434.4 (M + H) | 3.30                 |
| 3349        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 494.4 (M + H) | 2.98                 |
| 3350        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 406.4 (M + H) | 2.80                 |
| 3351        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 460.4 (M + H) | 3.20                 |
| 3352        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 390.4 (M + H) | 2.97                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3353        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 444.2 (M + H) | 3.01                 |
| 3354        | <br>$3\text{CF}_3\text{CO}_2\text{H}$   | 380.2 (M + H) | 2.27                 |
| 3355        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 491.4 (M + H) | 2.55                 |
| 3356        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 410.4 (M + H) | 3.05                 |
| 3357        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 422.2 (M + H) | 2.69                 |
| 3358        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 418.6 (M + H) | 3.36                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3359        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 410.4 ( $\text{M} + \text{H}$ ) | 2.97                 |
| 3360        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 401.2 ( $\text{M} + \text{H}$ ) | 2.81                 |
| 3361        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 466.2 ( $\text{M} + \text{H}$ ) | 3.01                 |
| 3362        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 482.4 ( $\text{M} + \text{H}$ ) | 3.43                 |
| 3363        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 548.4 ( $\text{M} + \text{H}$ ) | 3.03                 |
| 3364        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 543.6 ( $\text{M} + \text{H}$ ) | 3.95                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3365        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 478.4 ( $\text{M} + \text{H}$ ) | 3.64                 |
| 3366        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 478.4 ( $\text{M} + \text{H}$ ) | 3.29                 |
| 3367        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 434.4 ( $\text{M} + \text{H}$ ) | 3.20                 |
| 3368        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 442.4 ( $\text{M} + \text{H}$ ) | 3.09                 |
| 3369        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 420.4 ( $\text{M} + \text{H}$ ) | 2.87                 |
| 3370        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 422.2 ( $\text{M} + \text{H}$ ) | 2.79                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3371        |    | 424.2 (M + H) | 2.96                 |
| 3372        |    | 427.2 (M + H) | 2.53                 |
| 3373        |    | 432.4 (M + H) | 3.12                 |
| 3374        |  | 447.4 (M + H) | 2.45                 |
| 3375        |  | 408.2 (M + H) | 3.02                 |
| 3376        |  | 496.4 (M + H) | 2.81                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Rétenion Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|
| 3377        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 400.2 ( $\text{M} + \text{H}$ ) | 2.81                |
| 3378        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 520.2 ( $\text{M} + \text{H}$ ) | 3.14                |
| 3379        | <br>$2\text{CF}_3\text{CO}_2\text{H}$  | 410.4 ( $\text{M} + \text{H}$ ) | 3.12                |
| 3380        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 496.4 ( $\text{M} + \text{H}$ ) | 3.40                |
| 3381        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 496.4 ( $\text{M} + \text{H}$ ) | 3.17                |
| 3382        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 462.2 ( $\text{M} + \text{H}$ ) | 3.19                |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3383        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 462.2 ( $\text{M} + \text{H}$ ) | 3.28                 |
| 3384        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 440.4 ( $\text{M} + \text{H}$ ) | 2.74                 |
| 3385        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 454.2 ( $\text{M} + \text{H}$ ) | 2.89                 |
| 3386        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 404.4 ( $\text{M} + \text{H}$ ) | 3.09                 |
| 3387        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 482.2 ( $\text{M} + \text{H}$ ) | 3.29                 |
| 3388        | <br>$3\text{CF}_3\text{CO}_2\text{H}$ | 458.4 ( $\text{M} + \text{H}$ ) | 2.99                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3389        |    | 452.2 (M + H) | 3.40                 |
| 3390        |    | 560.2 (M + H) | 3.73                 |
| 3391        |   | 416.4 (M + H) | 2.99                 |
| 3392        |  | 518.6 (M + H) | 4.08                 |
| 3393        |  | 436.4 (M + H) | 2.95                 |
| 3394        |  | 434.4 (M + H) | 3.30                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3395        |    | 440.4 (M + H) | 4.26                 |
| 3396        |    | 458.2 (M + H) | 4.39                 |
| 3397        |   | 480.4 (M + H) | 4.37                 |
| 3398        |  | 523.6 (M + H) | 4.15                 |
| 3399        |  | 404.4 (M + H) | 3.46                 |
| 3400        |  | 404.4 (M + H) | 3.75                 |

| Example No. | Structure                                                                                                                                                                                                                                 | ESI-MS                          | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3401        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H](N1C(=O)C2CCCCC2)C3=CC=CC=C3</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>                       | 382.4 ( $\text{M} + \text{H}$ ) | 3.65                 |
| 3402        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H](N1C(=O)C2=CC(O)C=CC2)C3=CC=CC=C3</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>                  | 420.4 ( $\text{M} + \text{H}$ ) | 3.81                 |
| 3403        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H](N1C(=O)C2=CC(F)=CC=C2)C3=CC=CC=C3</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>                 | 381.2 ( $\text{M} + \text{H}$ ) | 3.33                 |
| 3404        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H](N1C(=O)C2=CC(C)C=CC2)C3=CC=CC=C3</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>                | 404.4 ( $\text{M} + \text{H}$ ) | 3.93                 |
| 3405        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H](N1C(=O)C2=CC([O-][N+]([O-])=O)C=CC2)C3=CC=CC=C3</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 435.2 ( $\text{M} + \text{H}$ ) | 3.40                 |
| 3406        | <br><chem>CN(C)c1nc2ccccc2n1C[C@H]1CCCC[C@H](N1C(=O)C2=CC(O)C=CC=C2)C3=CC=CC=C3</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>              | 484.4 ( $\text{M} + \text{H}$ ) | 4.15                 |

| Example No. | Structure                                                                                                                 | ESI-MS                           | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|
| 3407        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 469.4 (M + H)<br>-O <sup>-</sup> | 4.20                 |
| 3408        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 436.2 (M + H)                    | 3.88                 |
| 3409        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 434.4 (M + H)                    | 3.91                 |
| 3410        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 558.4 (M + H)                    | 4.92                 |
| 3411        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 483.4 (M + H)                    | 4.08                 |
| 3412        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 396.2 (M + H)                    | 3.68                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3413        |    | 454.2 (M + H) | 3.70                 |
| 3414        |    | 449.4 (M + H) | 4.09                 |
| 3415        |   | 476.2 (M + H) | 4.33                 |
| 3416        |  | 476.4 (M + H) | 3.60                 |
| 3417        |  | 476.4 (M + H) | 4.23                 |
| 3418        |  | 476.4 (M + H) | 4.38                 |

| Example No. | Structure                                                                                                                                                                                             | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3419        | <br><chem>CN(C)c1cc2nc3c(N[C@H]4CCCC[C@H]4CNC(=O)c5cc(F)cc(F)cc5)nc3n2c1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 426.2 (M + H) | 3.87                 |
| 3420        | <br><chem>CN(C)c1cc2nc3c(N[C@H]4CCCC[C@H]4CNC(=O)c5cc(F)c(F)cc5)nc3n2c1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>  | 444.4 (M + H) | 3.86                 |
| 3421        | <br><chem>CN(C)c1cc2nc3c(N[C@H]4CCCC[C@H]4CNC(=O)c5cc(F)c(F)c5)nc3n2c1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 462.2 (M + H) | 4.15                 |
| 3422        | <br><chem>CN(C)c1cc2nc3c(N[C@H]4CCCC[C@H]4CNC(=O)c5cc(Cl)cc5)nc3n2c1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>   | 424.2 (M + H) | 4.06                 |
| 3423        | <br><chem>CN(C)c1cc2nc3c(N[C@H]4CCCC[C@H]4CNC(=O)c5cc(O)c(O)c5)nc3n2c1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 450.4 (M + H) | 4.03                 |
| 3424        | <br><chem>CN(C)c1cc2nc3c(N[C@H]4CCCC[C@H]4CNC(=O)c5cc(O)cc5)nc3n2c1</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>    | 434.2 (M + H) | 3.75                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3425        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 426.2 (M + H) | 3.88                 |
| 3426        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 450.4 (M + H) | 3.64                 |
| 3427        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 450.4 (M + H) | 3.55                 |
| 3428        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 418.6 (M + H) | 4.17                 |
| 3429        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 434.4 (M + H) | 4.03                 |
| 3430        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 458.2 (M + H) | 4.45                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3431        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 415.4 (M + H) | 3.76                 |
| 3432        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 474.4 (M + H) | 5.06                 |
| 3433        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 410.2 (M + H) | 3.64                 |
| 3434        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 516.2 (M + H) | 4.24                 |
| 3435        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 424.2 (M + H) | 4.09                 |
| 3436        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 458.2 (M + H) | 3.89                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3437        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 516.2 (M + H) | 3.88                 |
| 3438        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 460.4 (M + H) | 4.86                 |
| 3439        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 488.4 (M + H) | 4.70                 |
| 3440        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 472.4 (M + H) | 4.29                 |
| 3441        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 426.2 (M + H) | 3.69                 |
| 3442        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 480.2 (M + H) | 4.16                 |

| Example No. | Structure                                                                                                       | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3443        | <p><chem>CCN1C=NC2=C1C=CC=C2N[C@H]3CCCC[C@H]3NC(=O)C(=O)c4cc(Cl)c(Cl)cc4</chem></p> <p><chem>CF3CO2H</chem></p> | 458.2 (M + H) | 3.91                 |
| 3444        | <p><chem>CCN1C=NC2=C1C=CC=C2N[C@H]3CCCC[C@H]3NC(=O)C(=O)c4cc(O)cc(O)cc4</chem></p> <p><chem>CF3CO2H</chem></p>  | 450.4 (M + H) | 3.95                 |
| 3445        | <p><chem>CCN1C=NC2=C1C=CC=C2N[C@H]3CCCC[C@H]3NC(=O)C(=O)c4cc(F)c(F)cc4</chem></p> <p><chem>CF3CO2H</chem></p>   | 444.4 (M + H) | 4.01                 |
| 3446        | <p><chem>CCN1C=NC2=C1C=CC=C2N[C@H]3CCCC[C@H]3NC(=O)C(=O)c4cc(F)c(F)cc4</chem></p> <p><chem>CF3CO2H</chem></p>   | 426.2 (M + H) | 4.00                 |
| 3447        | <p><chem>CCN1C=NC2=C1C=CC=C2N[C@H]3CCCC[C@H]3NC(=O)C(=O)c4cc(F)cc4</chem></p> <p><chem>CF3CO2H</chem></p>       | 408.4 (M + H) | 3.75                 |
| 3448        | <p><chem>CCN1C=NC2=C1C=CC=C2N[C@H]3CCCC[C@H]3NC(=O)C(=O)c4cc(CCCC)cc4</chem></p> <p><chem>CF3CO2H</chem></p>    | 446.6 (M + H) | 4.65                 |

| Example No. | Structure                                                                                       | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3449        | <br><chem>CN(C)c1cc2c(N)nc3c2cc1C[C@H]1CCCC[C@H]1CNC(=O)c4ccccc4C#N</chem>                      | 415.2 (M + H) | 3.75                 |
| 3450        | <br><chem>CN(C)c1cc2c(N)nc3c2cc1C[C@H]1CCCC[C@H]1CNC(=O)c4ccccc4CCOC(=O)c5ccccc5</chem>         | 420.4 (M + H) | 3.91                 |
| 3451        | <br><chem>CN(C)c1cc2c(N)nc3c2cc1C[C@H]1CCCC[C@H]1CNC(=O)c4ccccc4COCCCCOC(=O)c5ccccc5</chem>     | 490.4 (M + H) | 4.99                 |
| 3452        | <br><chem>CN(C)c1cc2c(N)nc3c2cc1C[C@H]1CCCC[C@H]1CNC(=O)c4ccccc4COCCCCCCCCOC(=O)c5ccccc5</chem> | 504.4 (M + H) | 5.16                 |
| 3453        | <br><chem>CN(C)c1cc2c(N)nc3c2cc1C[C@H]1CCCC[C@H]1CNC(=O)c4ccccc4CCOC(=O)c5cc(F)c(F)cc5</chem>   | 444.4 (M + H) | 4.00                 |
| 3454        | <br><chem>CN(C)c1cc2c(N)nc3c2cc1C[C@H]1CCCC[C@H]1CNC(=O)c4ccccc4</chem>                         | 396.2 (M + H) | 3.85                 |

| Example No. | Structure                            | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------|---------------|----------------------|
| 3455        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 526.6 (M + H) | 4.69                 |
| 3456        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 408.4 (M + H) | 3.30                 |
| 3457        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 480.4 (M + H) | 3.76                 |
| 3458        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 426.2 (M + H) | 3.86                 |
| 3459        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 424.2 (M + H) | 3.76                 |
| 3460        | <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 440.4 (M + H) | 4.05                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 3461        |           | 458.4 (M + H) | 4.25                 |
| 3462        |           | 408.2 (M + H) | 3.84                 |
| 3463        |           | 458.2 (M + H) | 4.25                 |
| 3464        |           | 446.6 (M + H) | 4.44                 |
| 3465        |           | 470.2 (M + H) | 4.13                 |
| 3466        |           | 476.2 (M + H) | 4.25                 |

| Example No. | Structure                                                                                                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3467        | <br><chem>CN(C)c1cc2nc(N[C@H]3CCCCC3)nc2[nH]1.C(F)(F)c2ccc(F)c(O=C)c2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>        | 476.2 (M + H) | 3.92                 |
| 3468        | <br><chem>CN(C)c1cc2nc(N[C@H]3CCCCC3)nc2[nH]1.C(F)(F)c2ccc(C(F)(F)F)c(O=C)c2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p> | 526.4 (M + H) | 4.31                 |
| 3469        | <br><chem>CN(C)c1cc2nc(N[C@H]3CCCCC3)nc2[nH]1.C(=O)c2cc(F)cc(Cl)c(Cl)c2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>      | 476.2 (M + H) | 4.15                 |
| 3470        | <br><chem>CN(C)c1cc2nc(N[C@H]3CCCCC3)nc2[nH]1.C(=O)c2ccc(OCCCC)cc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>         | 462.2 (M + H) | 4.48                 |
| 3471        | <br><chem>CN(C)c1cc2nc(N[C@H]3CCCCC3)nc2[nH]1.C(=O)c2ccc(c2)cc3ccccc3</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>      | 466.4 (M + H) | 4.45                 |
| 3472        | <br><chem>CN(C)c1cc2nc(N[C@H]3CCCCC3)nc2[nH]1.C(=O)c2ccc(O(F)(F)F)cc2</chem> <p>CF<sub>3</sub>CO<sub>2</sub>H</p>      | 474.4 (M + H) | 4.29                 |

| Example No. | Structure                                                                                                                                                                                                                  | ESI-MS                          | Retention Time (min) |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3473        | <br><chem>CN(C)c1nc2ccccc2n1N[C@H]1CCCC[C@H]1NC(=O)c2cc(F)cc(Br)cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>             | 486.2 ( $\text{M} + \text{H}$ ) | 4.32                 |
| 3474        | <br><chem>CN(C)c1nc2ccccc2n1N[C@H]1CCCC[C@H]1NC(=O)c2cc(Cl)cc(c2)cc1</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>            | 438.4 ( $\text{M} + \text{H}$ ) | 4.31                 |
| 3475        | <br><chem>CN(C)c1nc2ccccc2n1N[C@H]1CCCC[C@H]1NC(=O)c2ccncc2</chem> <p><math>2\text{CF}_3\text{CO}_2\text{H}</math></p>                    | 441.4 ( $\text{M} + \text{H}$ ) | 3.75                 |
| 3476        | <br><chem>CN(C)c1nc2ccccc2n1N[C@H]1CCCC[C@H]1NC(=O)c2cc(O)cc(c2)cc1</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>           | 434.4 ( $\text{M} + \text{H}$ ) | 4.10                 |
| 3477        | <br><chem>CN(C)c1nc2ccccc2n1N[C@H]1CCCC[C@H]1NC(=O)c2cc(Cl)c([N+](=O)[O-])cc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 469.4 ( $\text{M} + \text{H}$ ) | 4.19                 |
| 3478        | <br><chem>CN(C)c1nc2ccccc2n1N[C@H]1CCCC[C@H]1NC(=O)c2cc1ccccc2</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>                | 444.4 ( $\text{M} + \text{H}$ ) | 4.36                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 3479        |           | 482.4 (M + H) | 4.35                 |
| 3480        |           | 482.4 (M + H) | 4.64                 |
| 3481        |           | 502.2 (M + H) | 4.37                 |
| 3482        |           | 458.2 (M + H) | 4.08                 |
| 3483        |           | 465.4 (M + H) | 3.66                 |
| 3484        |           | 404.4 (M + H) | 4.03                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3485        |    | 469.4 (M + H) | 4.23                 |
| 3486        |    | 447.4 (M + H) | 3.94                 |
| 3487        |   | 456.2 (M + H) | 4.07                 |
| 3488        |  | 432.4 (M + H) | 3.99                 |
| 3489        |  | 441.3 (M + H) | 1.70                 |
| 3490        |  | 440.2 (M + H) | 4.57                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3491        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 393.4 ( $\text{M} + \text{H}$ ) | 4.01                 |
| 3492        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 497.4 ( $\text{M} + \text{H}$ ) | 4.45                 |
| 3493        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 470.2 ( $\text{M} + \text{H}$ ) | 2.40                 |
| 3494        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 439.4 ( $\text{M} + \text{H}$ ) | 1.92                 |
| 3495        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 407.4 ( $\text{M} + \text{H}$ ) | 2.30                 |
| 3496        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 469.5 ( $\text{M} + \text{H}$ ) | 2.27                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3497        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 439.4 (M + H) | 1.93                 |
| 3498        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 407.4 (M + H) | 1.62                 |
| 3499        | <br>$\text{CF}_3\text{CO}_2\text{H}$    | 416.3 (M + H) | 2.34                 |
| 3500        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 460.4 (M + H) | 2.46                 |
| 3501        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 465.4 (M + H) | 4.13                 |
| 3502        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 419.4 (M + H) | 3.87                 |

| Example No. | Structure | ESI-MS        | Retention Time (min) |
|-------------|-----------|---------------|----------------------|
| 3503        |           | 450.4 (M + H) | 3.97                 |
| 3504        |           | 406.2 (M + H) | 2.18                 |
| 3505        |           | 470.4 (M + H) | 4.74                 |
| 3506        |           | 466.4 (M + H) | 3.83                 |
| 3507        |           | 441.2 (M + H) | 4.38                 |
| 3508        |           | 441.2 (M + H) | 3.62                 |

| Example No. | Structure                                                                                                                                                                                               | ESI-MS                          | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3509        | <br><chem>CN(C)c1cc2c(n1)nc(NC3CCCCC3)C(=O)Cc4ccccc42</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>        | 454.5 ( $\text{M} + \text{H}$ ) | 2.44                 |
| 3510        | <br><chem>CN(C)c1cc2c(n1)nc(NC3CCCCC3)C(=O)C4(OCCOC4)C=C</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>     | 384.4 ( $\text{M} + \text{H}$ ) | 3.67                 |
| 3511        | <br><chem>CN(C)c1cc2c(n1)nc(NC3CCCCC3)C(=O)Cc4cc(Br)c(Cl)cc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 502.2 ( $\text{M} + \text{H}$ ) | 4.37                 |
| 3512        | <br><chem>CN(C)c1cc2c(n1)nc(NC3CCCCC3)C(=O)Cc4cc(O)cc(O)c4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 480.5 ( $\text{M} + \text{H}$ ) | 2.18                 |
| 3513        | <br><chem>CN(C)c1cc2c(n1)nc(NC3CCCCC3)C(=O)Cc4ccoc4</chem> <p><math>\text{CF}_3\text{CO}_2\text{H}</math></p>        | 380.2 ( $\text{M} + \text{H}$ ) | 3.81                 |
| 3514        | <br><chem>CN(C)c1cc2c(n1)nc(NC3CCCCC3)C(=O)Cc4cc(C=CC)sc4</chem> <p><math>2\text{CF}_3\text{CO}_2\text{H}</math></p> | 463.2 ( $\text{M} + \text{H}$ ) | 4.23                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3515        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 443.4 (M + H) | 2.12                 |
| 3516        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 431.1 (M + H) | 1.90                 |
| 3517        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 474.4 (M + H) | 5.05                 |
| 3518        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 440.5 (M + H) | 2.33                 |
| 3519        | <br>CF <sub>3</sub> CO <sub>2</sub> H  | 464.5 (M + H) | 2.20                 |
| 3520        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 391.1 (M + H) | 1.59                 |

| Example No. | Structure                                                                                                                | ESI-MS        | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3521        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 474.4 (M + H) | 4.53                 |
| 3522        | <br>CF <sub>3</sub> CO <sub>2</sub> H   | 542.2 (M + H) | 2.26                 |
| 3523        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 429.3 (M + H) | 2.41                 |
| 3524        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 494.6 (M + H) | 2.59                 |
| 3525        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 518.5 (M + H) | 2.96                 |
| 3526        | <br>CF <sub>3</sub> CO <sub>2</sub> H | 420.4 (M + H) | 2.19                 |

| Example No. | Structure                                                                                                                 | ESI-MS        | Retention Time (min) |
|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|
| 3527        | <br>CF <sub>3</sub> CO <sub>2</sub> H    | 420.4 (M + H) | 2.19                 |
| 3528        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 552.0 (M + H) | 2.45                 |
| 3529        | <br>2CF <sub>3</sub> CO <sub>2</sub> H   | 564.2 (M + H) | 2.48                 |
| 3530        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 606.0 (M + H) | 2.86                 |
| 3531        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 586.2 (M + H) | 3.20                 |
| 3532        | <br>2CF <sub>3</sub> CO <sub>2</sub> H | 614.4 (M + H) | 2.76                 |

| Example No. | Structure                                                                                                                | ESI-MS                          | Retention Time (min) |
|-------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3533        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 620.0 ( $\text{M} + \text{H}$ ) | 2.68                 |
| 3534        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 616.0 ( $\text{M} + \text{H}$ ) | 2.56                 |
| 3535        | <br>$2\text{CF}_3\text{CO}_2\text{H}$   | 566.0 ( $\text{M} + \text{H}$ ) | 2.54                 |
| 3536        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 532.2 ( $\text{M} + \text{H}$ ) | 3.35                 |
| 3537        | <br>$2\text{CF}_3\text{CO}_2\text{H}$ | 541.4 ( $\text{M} + \text{H}$ ) | 3.11                 |
| 3538        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 505.2 ( $\text{M} + \text{H}$ ) | 2.98                 |



| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3545        |    | 520.4 (M + H) | 3.56                 |
| 3546        |    | 504.2 (M + H) | 3.25                 |
| 3547        |   | 513.4 (M + H) | 2.86                 |
| 3548        |  | 616.2 (M + H) | 3.73                 |
| 3549        |  | 450.4 (M + H) | 2.79                 |
| 3550        |  | 466.2 (M + H) | 3.35                 |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3551        |    | 465.2 (M + H) | 3.34                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3552        |    | 451.2 (M + H) | 3.83                 |
|             | CF <sub>3</sub> CO <sub>2</sub> H                                                   |               |                      |
| 3553        |    | 451.2 (M + H) | 4.10                 |
|             | CF <sub>3</sub> CO <sub>2</sub> H                                                   |               |                      |
| 3554        |  | 563.2 (M + H) | 4.33                 |
|             | CF <sub>3</sub> CO <sub>2</sub> H                                                   |               |                      |
| 3555        |  | 468.4 (M + H) | 3.66                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |
| 3556        |  | 467.4 (M + H) | 2.85                 |
|             | 2CF <sub>3</sub> CO <sub>2</sub> H                                                  |               |                      |

| Example No. | Structure                                                                           | ESI-MS        | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|---------------|----------------------|
| 3557        |    | 515.4 (M + H) | 3.52                 |
| 3558        |    | 485.2 (M + H) | 3.40                 |
| 3559        |   | 467.4 (M + H) | 3.90                 |
| 3560        |  | 473.4 (M + H) | 4.17                 |
| 3561        |  | 467.4 (M + H) | 3.57                 |
| 3562        |  | 490.2 (M + H) | 4.00                 |

| Example No. | Structure                                                                           | ESI-MS                                              | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|
| 3563        |    | 490.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H  | 3.99                 |
| 3564        |    | 476.2 (M + H)<br>2CF <sub>3</sub> CO <sub>2</sub> H | 3.76                 |
| 3565        |   | 467.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H  | 4.07                 |
| 3566        |  | 528.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H  | 4.53                 |
| 3567        |  | 464.2 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H  | 4.11                 |
| 3568        |  | 494.0 (M + H)<br>CF <sub>3</sub> CO <sub>2</sub> H  | 3.43                 |

| Example No. | Structure                                                                                                               | ESI-MS                          | Retention Time (min) |
|-------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|
| 3569        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 444.0 ( $\text{M} + \text{H}$ ) | 3.03                 |
| 3570        | <br>$\text{CF}_3\text{CO}_2\text{H}$   | 552.0 ( $\text{M} + \text{H}$ ) | 3.30                 |
| 3571        | <br>$\text{CF}_3\text{CO}_2\text{H}$  | 510.0 ( $\text{M} + \text{H}$ ) | 3.37                 |
| 3572        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 562.0 ( $\text{M} + \text{H}$ ) | 3.66                 |
| 3573        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 622.0 ( $\text{M} + \text{H}$ ) | 3.61                 |
| 3574        | <br>$\text{CF}_3\text{CO}_2\text{H}$ | 588.0 ( $\text{M} + \text{H}$ ) | 3.59                 |

| Example No. | Structure                                                                      | ESI-MS                          | Retention Time (min.) |
|-------------|--------------------------------------------------------------------------------|---------------------------------|-----------------------|
| 3575        | <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 510.0 ( $\text{M} + \text{H}$ ) | 3.31                  |
| 3576        | <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 562.0 ( $\text{M} + \text{H}$ ) | 3.61                  |
| 3577        | <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 510.0 ( $\text{M} + \text{H}$ ) | 3.35                  |
| 3578        | <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 597.0 ( $\text{M} + \text{H}$ ) | 3.55                  |
| 3579        | <p style="text-align: center;"><math>\text{CF}_3\text{CO}_2\text{H}</math></p> | 665.0 ( $\text{M} + \text{H}$ ) | 4.02                  |

### Assay Procedures

Compounds identified and disclosed throughout this patent document were assayed according to the protocols found in co-pending patent application having U.S. Serial Number 09/826,509, which is incorporated herein by reference.

### Example 3580

#### Preparation of Endogenous MCH Receptor.

The endogenous human MCH receptor was obtained by PCR using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the sequence:

5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ.ID.NO.:1)

and the 3' primer contained an EcoRI site with the sequence:

5'-GCAGAATTCCCGTGGCGTGTGTGGTGCC-3' (SEQ.ID.NO.:2).

The 1.3 kb PCR fragment was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of CMVp expression vector. Later the cloning work by Lakaye et al showed that there is an intron the coding rgion of the gene. Thus the 5' end of the cDNA was obtained by 5' RACE PCR using Clontech's marathon-ready hypothalamus cDNA as template and the manufacturer's recommended protocol for cycling condition. The 5' RACE PCR for the first and second round PCR were as follows:

5'-CATGAGCTGGTGGATCATGAAGGG-3' (SEQ.ID.NO.:3) and

5'-ATGAAGGGCATGCCAGGAGAAAG-3' (SEQ.ID.NO.:4).

Nucleic acid and amino acid sequences were thereafter determined and verified with the published sequences found on GenBank having Accession Number U71092.

### Example 3581

#### Preparation of Non-Endogenous, Constitutively Active MCH Receptor.

Preparation of a non-endogenous version of the human MCH receptor was accomplished by creating a MCH-IC3-SST2 mutation (*see*; SEQ.ID.NO.:7 for nucleic acid sequence, and SEQ.ID.NO.:8 for amino acid sequence). Blast result showed that MCH receptor had the highest sequence homology to known SST2 receptor. Thus the third intracellular loop ("IC3") of MCH receptor was replaced with that of the IC3 of SST2

receptor to see if the chimera would show constitutive activity.

The BamHI-BstEII fragment containing IC3 of MCH receptor was replaced with synthetic oligonucleotides that contained the IC3 of SST2. The PCR sense mutagenesis primer used had the following sequence:

5'-GATCCTGCAGAAGGTGAAGTCCTCTGGAATCCGAGTGGGCTCCTCTAAGAG  
GAAGAAGTCTGAGAAGAAG-3' (SEQ.ID.NO.:9)

and the antisense primer had the following sequence:

5'-GTGACCTTCTTCAGACTTCTCCTTAGAGGGAGCCCCTCGGATTCCAG  
AGGACTTCACCTTCTGCAG-3' (SEQ.ID.NO.:10).

The endogenous MCH receptor cDNA was used as a template.

### **Example 3582**

#### **GPCR Fusion Protein Preparation.**

MCH Receptor-G $\alpha$  Fusion Protein construct was made as follows: primers were designed for endogenous MCH receptor was as follows:

5'-GTGAAGCTTGCCCCGGCAGGATGGACCTGG-3' (SEQ.ID.NO.:11; sense)

5'-ATCTAGAGGTGCCTTGCTTCTG-3' (SEQ.ID.NO.:12; antisense).

The sense and anti-sense primers included the restriction sites for KB4 and XbaI, respectively.

PCR was utilized to secure the respective receptor sequences for fusion within the G $\alpha$  universal vector disclosed above, using the following protocol for each: 100ng cDNA for MCH receptor was added to separate tubes containing 2uL of each primer (sense and anti-sense), 3uL of 10mM dNTPs, 10uL of 10XTaqPlus™ Precision buffer, 1uL of TaqPlus™ Precision polymerase (Stratagene: #600211), and 80uL of water. Reaction temperatures and cycle times for MCH receptor were as follows: the initial denaturing step was done at 94°C for five minutes, and a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two minutes. A final extension time was done at 72°C for ten minutes. PCR product was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with KB4 and XbaI (New England Biolabs) and the desired inserts will be isolated, purified and ligated into the Gi universal vector at the respective restriction site. The positive clones were isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished.

following the protocol set forth *infra*. Each positive clone for MCH receptor: Gi-Fusion Protein was sequenced and made available for the direct identification of candidate compounds. (See, SEQ.ID.NO.:13 for nucleic acid sequence and SEQ.ID.NO.:14 for amino acid sequence).

Endogenous version of MCH receptor was fused upstream from the G protein Gi and is located at nucleotide 1 through 1,059 (see, SEQ.ID.NO.:13) and amino acid residue 1 through 353 (see, SEQ.ID.NO.:14). With respect to the MCH receptor, 2 amino acid residues (an equivalent of 6 nucleotides) were placed in between the endogenous (or non-endogenous) GPCR and the start codon for the G protein Gi $\alpha$ . Therefore, the Gi protein is located at nucleotide 1,066 through 2,133 (see, SEQ.ID.NO.:13) and at amino acid residue 356 through 711 (see, SEQ.ID.NO.:14). Those skilled in the art are credited with the ability to select techniques for constructing a GPCR Fusion Protein where the G protein is fused to the 3' end of the GPCR of interest.

### **Example 3583**

#### **ASSAY FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRs**

##### **A. Intracellular IP<sub>3</sub> Accumulation Assay**

On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually 1x10<sup>5</sup> cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing 0.25ug DNA in 50  $\mu$ l serum free DMEM/well and 2  $\mu$ l lipofectamine in 50  $\mu$ l serum-free DMEM/well. The solutions are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and 400  $\mu$ l of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO<sub>2</sub> and then the transfection media is removed and replaced with 1ml/well of regular growth media. On day 3 the cells are labeled with <sup>3</sup>H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25  $\mu$ Ci of <sup>3</sup>H-myo-inositol/ well and the cells are incubated for 16-18 hrs o/n at 37°C/5%CO<sub>2</sub>. On Day 4 the cells are washed with 0.5 ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10 $\mu$ M pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50  $\mu$ l of 10x

ketanserin (ket) to final concentration of 10 $\mu$ M. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBS and 200  $\mu$ l of fresh/ice cold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200  $\mu$ l of fresh/ice cold neutralization sol. (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8™ anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with H<sub>2</sub>O and stored at 4°C in water.

Reference is made to Figure 1. Figure 1 provides an illustration of IP<sub>3</sub> production from several non-endogenous, constitutively activated version of MCH receptor as compared with the endogenous version of this receptor. When compared to the endogenous version of MCH receptor ("MCH-R wt"), MCH-IC3-SST2 evidenced about a 27% increase in IP<sub>3</sub> accumulation.

#### **Example 3584**

##### **Determination of Compound Using [<sup>35</sup>S]GTP $\gamma$ S ASSAY**

Direct identification of candidate compounds was initially screened using [<sup>35</sup>S]GTP $\gamma$ S Assay (see, Example 6 of co-pending patent application 09/826,509). Preferably, an MCH receptor: Gi Fusion Protein was utilized, according to Example 6(2) of co-pending patent application 09/826,509. Several lead hits were identified utilizing [<sup>35</sup>S]GTP $\gamma$ S Assay.

#### **Example 3585**

##### **High Throughput Functional Screening: FLIPR™**

Subsequently, a functional based assay was used to confirm the lead hits, referred to as FLIPR™ (the Fluorometric Imaging Plate Reader) and FDSS6000™ (Functional

Drug Screening System). This assay utilized a non-endogenous version of the MCH receptor, which was created by swapping the third intracellular loop of the MCH receptor with that of the SST2 receptor (see Example 2(B)(2) of patent application serial number 09/826,509).

The FLIPR and FDSS assays are able to detect intracellular  $\text{Ca}^{2+}$  concentration in cells, which can be utilized to assess receptor activation and determine whether a candidate compound is an, for example, antagonist, inverse agonist or agonist to a Gq-coupled receptor. The concentration of free  $\text{Ca}^{2+}$  in the cytosol of any cell is extremely low, whereas its concentration in the extracellular fluid and endoplasmic reticulum (ER) is very high. Thus, there is a large gradient tending to drive  $\text{Ca}^{2+}$  into the cytosol across both the plasma membrane and ER. The FLIPR<sup>TM</sup> and FDSS6000<sup>TM</sup> systems (Molecular Devices Corporation, HAMAMATSU Photonics K.K.) are designed to perform functional cell-based assays, such as the measurement of intracellular calcium for high-throughput screening. The measurement of fluorescent is associated with calcium release upon activation of the Gq-coupled receptors. Gi or Go coupled receptors are not as easily monitored through the FLIPR<sup>TM</sup> and FDSS6000<sup>TM</sup> systems because these G proteins do not couple with calcium signal pathways.

To confirm the lead hits identified using the [<sup>35</sup>S]GTP $\gamma$ S assay, Fluorometric Imaging Plate Reader system was used to allow for rapid, kinetic measurements of intracellular fluorescence in 96 well microplates (or 384 well microplates). Simultaneous measurements of fluorescence in all wells can be made by FLIPR or FDSS6000<sup>TM</sup> every second with high sensitivity and precision. These systems are ideal for measuring cell-based functional assays such as monitoring the intracellular calcium fluxes that occur within seconds after activation of the Gq coupled receptor.

Briefly, the cells are seeded into 96 well at  $5.5 \times 10^4$  cells/well with complete culture media (Dulbecco's Modified Eagle Medium with 10 % fetal bovine serum, 2 mM L-glutamine, 1 mM sodium pyruvate and 0.5 mg/ml G418, pH 7.4) for the assay next day. On the day of assay, the media is removed and the cells are incubated with 100  $\mu\text{l}$  of loading buffer (4  $\mu\text{M}$  Fluo4-AM in complete culture media containing 2.5 mM Probenicid, 0.5 mg/ml and 0.2% bovine serum albumin) in 5% CO<sub>2</sub> incubator at 37°C for 1 hr. The loading buffer is removed, and the cells are washed with wash buffer (Hank's Balanced Salt Solution containing 2.5 mM Probenicid, 20 mM HEPES, 0.5 mg/ml and 0.2% bovine

serum albumin, pH 7.4)). One hundred fifty  $\mu$ l of wash buffer containing various concentrations of test compound are added to the cells, and the cells are incubated in 5% CO<sub>2</sub> incubator at 37°C for 30 min. Fifty  $\mu$ l of wash buffer containing various concentration of MCH are added to each well, and transient changes in [Ca<sup>2+</sup>]i evoked by MCH are monitored using the FLIPR or FDSS in 96 well plates at Ex. 488 nm and Em. 530 nm for 290 second. When antagonist activity of compound is tested, 50 nM of MCH is used.

Use of FLIPR™ and FDSS6000™ can be accomplished by following manufacturer's instruction (Molecular Device Corporation and HAMAMATSU Photonics K.K.).

The results were shpwn below.

| Compound No. | IC <sub>50</sub> value (nM) |
|--------------|-----------------------------|
| Example 41   | 6                           |
| Example 42   | 19                          |

It is intended that each of the patents, applications, printed publications, and other published documents mentioned or referred to in this specification be herein incorporated by reference in their entirety.

Those skilled in the art will appreciate that numerous changes and modifications may be made to the preferred embodiments of the invention and that such changes and modifications may be made without departing from the spirit of the invention. It is therefore intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.

**What is claimed is:**

1. A compound of Formula I:



wherein Q is



II

III

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>16</sub> alkyl,

C<sub>1</sub>-C<sub>16</sub> alkyl substituted by substituent(s) independently selected from

- halogen,

- hydroxy,

- oxo,

- C<sub>1</sub>-C<sub>3</sub> alkoxy,

- C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by substituent(s) independently selected from

- carbocyclic aryl,

- heterocyclyl,

- heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,

- C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,

- carbocycloloxy,

- carbocyclic aryloxy,

- carbocyclic aryloxy substituted by substituent(s) independently selected from

- halogen,

- nitro,

- carbocyclic aryl,

- carbocyclic aryl substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,

- C<sub>1</sub>-C<sub>4</sub> alkyl,
- C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
  - oxo,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by halogenated carbocyclic aryl,
  - carbocyclic arylcarbonylamino,
  - halogenated carbocyclic arylcarbonylamino,
- heterocyclyloxy,
- heterocyclyloxy substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
- substituted heterocycl-ethylideneaminoxy,
- C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,
- C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl substituted by carbocyclic aryl,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by substituent(s) independently selected from
  - cyano,
  - carbocyclic aryl,
  - heterocycl,
  - mono- or di-carbocyclic arylamino,
  - mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected from
    - hydroxy,
    - C<sub>1</sub>-C<sub>3</sub> alkyl,
    - C<sub>1</sub>-C<sub>3</sub> alkyl carbonylamino,
    - C<sub>1</sub>-C<sub>3</sub> alkyl carbonylamino substituted by substituent(s) independently selected from
      - C<sub>1</sub>-C<sub>3</sub> alkyl carbonylamino,
      - carbocyclic aryl carbonylamino,
      - heterocycl,
      - C<sub>1</sub>-C<sub>4</sub> alkoxy carbonylamino,
      - heterocycl carbonylamino,
      - carbocyclic arylsulfonylamino,

- carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from
  - nitro,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
  - C<sub>1</sub>-C<sub>3</sub> alkylthio,
- C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by substituent(s) independently selected from
  - mono- or di-carbocyclic arylaminocarbonyl,
  - halogenated mono- or di-carbocyclic arylaminocarbonyl,
  - mono- or di-carbocyclic arylamino,
  - halogenated mono- or di-carbocyclic arylamino,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by substituent(s) independently selected from
    - halogen,
    - C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - carbocyclic arylthio,
- carbocyclic arylthio substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - carbocyclic arylsulfonyl,
  - halogenated carbocyclic arylsulfonyl,
  - heterocyclylthio,
- heterocyclylthio substituted by substituent(s) independently selected from
  - nitro,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - C<sub>3</sub>-C<sub>6</sub> cycloalkyl,
  - C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
  - C<sub>3</sub>-C<sub>6</sub> cycloalkenyl,
  - carbocyclyl,
  - carbocyclyl substituted by substituent(s) independently selected from
    - halogen,
    - C<sub>1</sub>-C<sub>3</sub> alkyl,
    - C<sub>1</sub>-C<sub>3</sub> alkoxy,

••C<sub>2</sub>-C<sub>3</sub> alkenyl,  
••C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,  
••C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl substituted C<sub>1</sub>-C<sub>3</sub> alkylsulfinyl,  
•carbocyclic aryl,  
•carbocyclic aryl substituted by substituent(s) independently selected from  
••halogen,  
••hydroxy,  
••nitro,  
••C<sub>1</sub>-C<sub>4</sub> alkyl,  
••C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from  
•••halogen,  
•••hydroxy,  
•••oxo,  
•••carbocyclic aryl,  
•••heterocycll,  
•••mono- or di-carbocyclic arylamino,  
•••mono- or di-carbocyclic arylamino substituted by substituent(s) independently selected from  
••••halogen,  
••••nitro,  
••••C<sub>1</sub>-C<sub>3</sub> alkyl,  
••••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••C<sub>1</sub>-C<sub>4</sub> alkoxy,  
••C<sub>1</sub>-C<sub>4</sub> alkoxy substituted by substituent(s) independently selected from  
•••halogen,  
•••carbocyclic aryl,  
•••carbocyclic aryloxy,  
•••C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,  
•••C<sub>1</sub>-C<sub>3</sub> alkyl carbonyloxy,  
•••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,  
•••mono- or di-carbocyclic arylamino,

••halogenated mono- or di-carbocyclic arylamino,  
••mono- or di-carbocyclic arylaminocarbonyl,  
••mono- or di-carbocyclic arylaminocarbonyl substituted by substituent(s) independently selected from  
    ••halogen,  
    ••nitro,  
    ••C<sub>1</sub>-C<sub>3</sub> alkyl,  
    ••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
    ••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,  
    ••mercapto,  
    ••C<sub>1</sub>-C<sub>3</sub> alkylthio,  
    ••halogenated C<sub>1</sub>-C<sub>3</sub> alkylthio,  
    ••C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,  
    ••C<sub>3</sub>-C<sub>6</sub> cycloalkyl,  
    ••carbocyclic aryl,  
    ••heterocyclyl,  
    ••heterocyclyl,  
    •heterocyclyl substituted by substituent(s) independently selected from  
        ••hydroxy,  
        ••C<sub>1</sub>-C<sub>3</sub> alkyl,  
        ••C<sub>1</sub>-C<sub>3</sub> alkyl substituted by carbocyclic aryl,  
        ••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
        ••C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
        ••carbocyclic aryl,  
        ••halogenated carbocyclic aryl,  
    (ii) C<sub>2</sub>-C<sub>8</sub> alkenyl,  
C<sub>2</sub>-C<sub>8</sub> alkenyl substituted by substituent(s) independently selected from  
    •halogen,  
    •oxo,  
    •C<sub>1</sub>-C<sub>3</sub> alkoxy,  
    •C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
    •carbocyclic aryl,

• carbocyclic aryl substituted by substituent(s) independently selected from

•• halogen,

•• hydroxy,

•• nitro,

•• C<sub>1</sub>-C<sub>3</sub> alkyl,

•• halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,

•• C<sub>1</sub>-C<sub>3</sub> alkoxy,

•• halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,

• heterocyclyl,

• heterocyclyl substituted by substituent(s) independently selected from

•• hydroxy,

•• nitro,

•• C<sub>1</sub>-C<sub>3</sub> alkyl,

•• C<sub>1</sub>-C<sub>3</sub> alkoxy,

(iii) C<sub>2</sub>-C<sub>4</sub> alkynyl,

C<sub>2</sub>-C<sub>4</sub> alkynyl substituted by carbocyclic aryl,

(iv) C<sub>3</sub>-C<sub>6</sub> cycloalkyl,

C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by substituent(s) independently selected from

• C<sub>1</sub>-C<sub>3</sub> alkyl,

• C<sub>1</sub>-C<sub>3</sub> alkyl substituted by substituent(s) independently selected from

•• hydroxy,

•• oxo,

•• carbocyclic aryl,

• mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,

• mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,

• carbocyclic arylcarbonylamino,

• carbocyclic aryl,

(v) C<sub>3</sub>-C<sub>6</sub> cycloalkeyl,

C<sub>3</sub>-C<sub>6</sub> cycloalkeyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,

(vi) carbocyclyl,

carbocyclyl substituted by substituent(s) independently selected from

• hydroxy,

•nitro,  
(vii) carbocyclic aryl,  
carbocyclic aryl substituted by substituent(s) independently selected from  
•halogen,  
•hydroxy,  
•cyano,  
•nitro,  
•C<sub>1</sub>-C<sub>9</sub> alkyl,  
•C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from  
••halogen,  
••hydroxy,  
••OXO,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••carbocyclic aryloxy,  
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino-N-oxy,  
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,  
••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,  
••mono- or di-carbocyclic arylamino,  
••carbocyclylimino,  
••carbocyclylimino substituted by carbocyclic aryl,  
••mono- or di-carbocyclic arylamino,  
••mono- or di-carbocyclic arylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••mono- or di-carbocyclic arylaminocarbonyl,  
••mono- or di-carbocyclic arylaminocarbonyl substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••carbocyclic aryl,  
••carbocyclic aryl substituted by substituent(s) independently selected from  
•••halogen,  
•••C<sub>1</sub>-C<sub>3</sub> alkyl,  
•••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,  
••heterocyclyl,  
••heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,  
•C<sub>2</sub>-C<sub>3</sub> alkenyl,

- C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,
- C<sub>1</sub>-C<sub>9</sub> alkoxy,
- C<sub>1</sub>-C<sub>9</sub> alkoxy substituted by substituent(s) independently selected from
  - hydroxy,
  - halogen,
  - carboxy,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
  - heterocyclyl,
  - heterocyclyl substituted by substituent(s) independently selected from
    - halogen,
    - heterocyclyl,
    - heterocyclyl substituted by substituent(s) independently selected from
      - halogen,
      - C<sub>1</sub>-C<sub>3</sub> alkyl,
      - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
- C<sub>2</sub>-C<sub>3</sub> alkenyloxy,
- C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,
- carbocyclic aryloxy,
- carbocyclic aryloxy substituted by substituent(s) independently selected from
  - halogen,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>4</sub> alkyl,
- C<sub>1</sub>-C<sub>3</sub> alkoxy,
- heterocyclyoxy,
- heterocyclyoxy substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
- (carbocyclic aryl)S(O)<sub>2</sub>O,

- carboxy,
- C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl substituted by carbocyclic aryl,
- mono- or di-carbocyclic arylaminocarbonyl,
- mono- or di-carbocyclic arylaminocarbonyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
- amino,
- mono- or di-C<sub>1</sub>-C<sub>4</sub> alkylamino,
- mono- or di-C<sub>1</sub>-C<sub>4</sub> alkylamino substituted by cyano,
- mono- or di-carbocyclic arylamino,
- C<sub>1</sub>-C<sub>3</sub> alkynylcarbonylamino,
- C<sub>1</sub>-C<sub>3</sub> alkynylcarbonylamino substituted by carbocyclic aryl,
- carbocyclic arylsulfonylamino,
- carbocyclic arylsulfonylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
- (carbocyclic aryl)NHC(O)NH,
- (carbocyclic aryl)NHC(O)NH substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
- (carbocyclic aryl)NHC(O)NH substituted by halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,
- carbocyclic aryl diazo,
- carbocyclic aryl diazo substituted by mono- or di- C<sub>1</sub>-C<sub>3</sub> alkylamino,
- C<sub>1</sub>-C<sub>3</sub> alkylthio,
- halogenated C<sub>1</sub>-C<sub>3</sub> alkylthio,
- carbocyclic arylthio,
- carbocyclic arylthio substituted by substituent(s) independently selected from
  - halogen,
  - cyano,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - heterocyclithio,
- C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminosulfonyl,
- carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>7</sub> alkyl,

••halogenated C<sub>1</sub>-C<sub>7</sub> alkyl,  
•heterocyclyl,  
•heterocyclyl substituted by substituent(s) independently selected from  
••C<sub>1</sub>-C<sub>3</sub> alkyl,  
••carbocyclic aryl,  
••halogenated carbocyclic aryl,  
(viii) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from  
•halogen,  
•hydroxy,  
•cyano,  
•nitro,  
•C<sub>1</sub>-C<sub>4</sub> alkyl,  
•C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from  
••halogen,  
••hydroxy,  
••oxo,  
••C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,  
••carbocyclic arylcarbonylamino,  
••halogenated carbocyclic arylcarbonylamino,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by carbocyclic aryl,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by halogenated carbocyclic aryl,  
••carbocyclic aryl,  
••carbocyclic aryl substituted by substituent(s) independently selected from  
•••halogen,  
•••nitro,  
••heterocyclyl,  
••heterocyclyl substituted by substituent(s) independently selected from  
•••halogen,  
•••C<sub>1</sub>-C<sub>3</sub> alkyl,

••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
•carbocyclic aryloxy,  
•carbocyclic aryloxy substituted by substituent(s) independently selected from  
••halogen,  
••C<sub>1</sub>-C<sub>3</sub> alkyl,  
•mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,  
•C<sub>1</sub>-C<sub>4</sub> alkylcarbonylamino,  
•C<sub>1</sub>-C<sub>3</sub> alkylthio,  
•C<sub>1</sub>-C<sub>3</sub> alkenylthio,  
•carbocyclic arylthio,  
•halogenated carbocyclic arylthio,  
•carbocyclic arylthio substituted by C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,  
•heterocyclithio,  
•heterocyclithio substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,  
•C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,  
•carbocyclic arylsulfonyl,  
•halogenated carbocyclic arylsulfonyl,  
•carbocyclic arylsulfonyl substituted by C<sub>1</sub>-C<sub>4</sub> alkyl,  
•C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,  
•carbocyclic aryl,  
•carbocyclic aryl substituted by substituent(s) independently selected from  
••halogen,  
••nitro,  
••C<sub>1</sub>-C<sub>3</sub> alkyl,  
••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•heterocyclyl,  
•heterocyclyl substituted by substituent(s) independently selected from  
••halogen,

- C<sub>1</sub>-C<sub>3</sub> alkyl,
- halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
- C<sub>1</sub>-C<sub>3</sub> alkoxy,
- C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl;

R<sub>2</sub> is -NHNH<sub>2</sub>, -NHNHBoc, -N(R<sub>2a</sub>)(R<sub>2b</sub>), morpholino, 4-acetyl-piperazyl, or 4-phenyl-piperazyl;

wherein R<sub>2a</sub> is H or C<sub>1</sub>-C<sub>3</sub> alkyl;

R<sub>2b</sub> is C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from

- hydroxy,
- C<sub>1</sub>-C<sub>3</sub> alkoxy,
- amino,

- NHBoc,

- C<sub>3</sub>-C<sub>6</sub> cycloalkyl,
- carbocyclic aryl,

•carbocyclic aryl substituted by substituent(s) independently selected from

- halogen,

- C<sub>1</sub>-C<sub>3</sub> alkyl,

- C<sub>1</sub>-C<sub>3</sub> alkoxy,

- SO<sub>2</sub>NH<sub>2</sub>,

- heterocyclyl,

C<sub>3</sub>-C<sub>6</sub> cycloalkyl, carbocyclic aryl, carbocyclic aryl substituted by substituent(s)

independently selected from

- halogen,

- C<sub>1</sub>-C<sub>3</sub> alkyl,

- C<sub>1</sub>-C<sub>3</sub> alkoxy,

or a group of Formula IV;



wherein Boc is carbamic acid *tert*-butyl ester and R<sub>3</sub> is C<sub>1</sub>-C<sub>3</sub> alkyl or C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl

substituted by substituent(s) independently selected from

- carbocyclic aryl,
- halogenated carbocyclic aryl,
- carbocyclic aryl substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy;

L is selected from Formula V - XIX;





wherein R<sub>4</sub> is H or C<sub>1</sub>-C<sub>3</sub> alkyl;  
 R<sub>5</sub> is H, C<sub>1</sub>-C<sub>3</sub> alkyl, or C<sub>1</sub>-C<sub>3</sub> alkyl substituted by a substituted carbocyclic aryl;  
 Y is -S(O)<sub>2</sub>-, -C(O)-, or -(CH<sub>2</sub>)<sub>m</sub>;  
 m is 0 or 1;  
 wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, biphenyl, or phenanthryl;  
 carbocyclyl is 10,11-dihydro-5-oxo-dibenzo[a,d]cycloheptyl, 1-oxo-indanyl, 7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptyl, 9H-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, C-fluoren-9-ylidene, indanyl, indenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny; heterocyclyl is 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3,4-thiadiazolyl, 1,3-dioxo-isoindolyl, 1,3-dioxolanyl, 1H-indolyl, 1H-pyrrolo[2,3-c]pyridyl, 1H-pyrrolyl, 1-oxo-3H-isobenzofuranyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-benzopyranyl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 4H-benzo[1,3]dioxinyl, 4H-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9H-carbazolyl, 9H-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, benzofuryl, benzothiazolyl, cinnolyl, furyl, imidazo[2,1-b]thiazolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxazolyl, oxolanyl, piperazyl, piperidyl, piridyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrrolidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-

dihydro-benzofuryl, tetrahydro-thienyl, or benzofuranyl;  
halogen is fluoro, chloro, bromo, or iodo;  
or a salt thereof.

2. A compound according to claim 1, wherein Q is Fomura II;  
 $R_1$  represents

(i)  $C_1-C_{10}$  alkyl,

$C_1-C_{10}$  alkyl substituted by substituent(s) independently selected from

• halogen,

• oxo,

•  $C_1-C_3$  alkoxy,

•  $C_1-C_3$  alkoxy substituted by carbocyclic aryl,

•  $C_1-C_3$  alkylcarbonyloxy,

• carbocyclyloxy,

• carbocyclic aryloxy,

• carbocyclic aryloxy substituted by substituent(s) independently selected from

•• halogen,

•• nitro,

••  $C_1-C_4$  alkyl,

••  $C_1-C_4$  alkyl substituted by substituent(s) independently selected from

••• oxo,

••• carbocyclic arylcarbonylamino,

••• halogenated carbocyclic arylcarbonylamino,

• heterocyclyloxy,

• heterocyclyloxy substituted by  $C_1-C_3$  alkyl,

• substituted heterocycl-ethylideneaminooxy,

•  $C_1-C_3$  alkoxycarbonyl,

•  $C_1-C_3$  alkoxycarbonyl substituted by carbocyclic aryl,

• mono- or di- $C_1-C_3$  alkylaminocarbonyl,

• mono- or di-carbocyclic arylamino,

• mono- or di-carbocyclic arylamino substituted by hydroxy,

•  $C_1-C_3$  alkylcarbonylamino,

- C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino,
  - carbocyclic arylcarbonylamino,
  - heterocyclyl,
- C<sub>1</sub>-C<sub>4</sub> alkoxy carbonylamino,
- heterocyclyl carbonylamino,
- carbocyclic arylsulfonylamino,
- carbocyclic arylsulfonylamino substituted by substituent(s) independently selected from
  - nitro,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
- C<sub>1</sub>-C<sub>3</sub> alkylthio,
- C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by substituent(s) independently selected from
  - mono- or di-carbocyclic arylaminocarbonyl,
  - halogenated mono- or di-carbocyclic arylaminocarbonyl,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by substituent(s) independently selected from
    - halogen,
    - C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - carbocyclic arylthio,
- carbocyclic arylthio substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - carbocyclic arylsulfonyl,
  - halogenated carbocyclic arylsulfonyl,
  - heterocyclylthio,
  - heterocyclylthio substituted by substituent(s) independently selected from
    - nitro,
    - C<sub>1</sub>-C<sub>3</sub> alkyl,
    - C<sub>3</sub>-C<sub>6</sub> cycloalkyl,
    - C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
    - C<sub>3</sub>-C<sub>6</sub> cycloalkenyl,

- carbocyclyl,
- carbocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - C<sub>2</sub>-C<sub>3</sub> alkenyl,
  - C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,
  - C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl substituted C<sub>1</sub>-C<sub>3</sub> alkylsulfinyl,
- carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
    - OXO,
    - carbocyclic aryl,
    - heterocyclyl,
  - C<sub>1</sub>-C<sub>4</sub> alkoxy,
  - C<sub>1</sub>-C<sub>4</sub> alkoxy substituted by substituent(s) independently selected from
    - halogen,
    - carbocyclic aryl,
    - carbocyclic aryloxy,
    - C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,
    - mono- or di-carbocyclic arylamino,
    - halogenated mono- or di-carbocyclic arylamino,
    - mono- or di-carbocyclic arylaminocarbonyl,
    - mono- or di-carbocyclic arylaminocarbonyl substituted by substituent(s) independently selected from
      - halogen,
      - nitro,
      - C<sub>1</sub>-C<sub>3</sub> alkyl,

•••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••mercaptopo,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio,  
••halogenated C<sub>1</sub>-C<sub>3</sub> alkylthio,  
••C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,  
••C<sub>3</sub>-C<sub>6</sub> cycloalkyl,  
••carbocyclic aryl,  
••heterocyclyl,  
•heterocyclyl,  
•heterocyclyl substituted by substituent(s) independently selected from  
••hydroxy,  
••C<sub>1</sub>-C<sub>3</sub> alkyl,  
••C<sub>1</sub>-C<sub>3</sub> alkyl substituted by carbocyclic aryl,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
••carbocyclic aryl,  
••halogenated carbocyclic aryl,  
(ii) C<sub>2</sub>-C<sub>6</sub> alkenyl,  
C<sub>2</sub>-C<sub>6</sub> alkenyl substituted by substituent(s) independently selected from  
•oxo,  
•carbocyclic aryl,  
•carbocyclic aryl substituted by substituent(s) independently selected from  
••halogen,  
••nitro,  
••C<sub>1</sub>-C<sub>3</sub> alkyl,  
••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•heterocyclyl,  
•heterocyclyl substituted by substituent(s) independently selected from  
•• hydroxy,

••C<sub>1</sub>-C<sub>3</sub> alkyl,

••C<sub>1</sub>-C<sub>3</sub> alkoxy,

(iii) C<sub>3</sub>-C<sub>6</sub> cycloalkyl,

C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by substituent(s) independently selected from

•C<sub>1</sub>-C<sub>3</sub> alkyl,

•C<sub>1</sub>-C<sub>3</sub> alkyl substituted by substituent(s) independently selected from

••oxo,

••carbocyclic aryl,

•carbocyclic arylcarbonylamino,

•carbocyclic aryl,

(iv) carbocyclyl,

carbocyclyl substituted by nitro,

(v) carbocyclic aryl,

carbocyclic aryl substituted by substituent(s) independently selected from

•halogen,

•hydroxy,

•cyano,

•nitro,

•C<sub>1</sub>-C<sub>9</sub> alkyl,

•C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from

••halogen,

••oxo,

••carbocyclic aryloxy,

••carbocyclylimino,

••carbocyclylimino substituted by carbocyclic aryl,

••mono- or di-carbocyclic arylaminocarbonyl,

••mono- or di-carbocyclic arylaminocarbonyl substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,

••carbocyclic aryl,

••carbocyclic aryl substituted by substituent(s) independently selected from

•••halogen,

•••C<sub>1</sub>-C<sub>3</sub> alkyl,

•••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,

- heterocyclyl,
- heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
- C<sub>1</sub>-C<sub>7</sub> alkoxy,
- C<sub>1</sub>-C<sub>7</sub> alkoxy substituted by substituent(s) independently selected from
  - halogen,
  - carbocyclic aryl,
  - C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,
  - carbocyclic aryloxy,
  - carbocyclic aryloxy substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl substituted by carbocyclic aryl,
  - mono- or di-carbocyclic arylaminocarbonyl,
  - mono- or di-carbocyclic arylaminocarbonyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
  - amino,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
  - C<sub>1</sub>-C<sub>3</sub> alkynylcarbonylamino,
  - C<sub>1</sub>-C<sub>3</sub> alkynylcarbonylamino substituted by carbocyclic aryl,
  - carbocyclic arylsulfonylamino,
  - carbocyclic arylsulfonylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
  - (carbocyclic aryl)NHC(O)NH,
  - (carbocyclic aryl)NHC(O)NH substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - (carbocyclic aryl)NHC(O)NH substituted by halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - C<sub>1</sub>-C<sub>3</sub> alkylthio,
  - halogenated C<sub>1</sub>-C<sub>3</sub> alkylthio,
  - carbocyclic arylthio,
  - carbocyclic arylthio substituted by cyano,
  - C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
  - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminosulfonyl,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by substituent(s) independently selected from
    - C<sub>1</sub>-C<sub>7</sub> alkyl,

- halogenated C<sub>1</sub>-C<sub>7</sub> alkyl,
- heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
- (vi) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
    - halogen,
    - oxo,
    - C<sub>1</sub>-C<sub>3</sub> alkylthio,
    - C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by carbocyclic aryl,
    - C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by halogenated carbocyclic aryl,
    - carbocyclic aryl,
    - halogenated carbocyclic aryl,
    - heterocyclyl,
    - C<sub>1</sub>-C<sub>3</sub> alkoxy,
    - carbocyclic aryloxy,
    - carbocyclic aryloxy substituted by substituent(s) independently selected from
      - halogen,
      - C<sub>1</sub>-C<sub>3</sub> alkyl,
      - C<sub>1</sub>-C<sub>3</sub> alkylthio,
      - C<sub>1</sub>-C<sub>3</sub> alkenylthio,
      - carbocyclic arylthio,
      - C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
      - carbocyclic arylsulfonyl,
      - halogenated carbocyclic arylsulfonyl,
      - carbocyclic arylsulfonyl substituted by C<sub>1</sub>-C<sub>4</sub> alkyl,

- carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - nitro,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl;

Y is -C(O)-;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;  
carbocyclyl is 10,11-dihydro-5-oxo-dibenzo[a,d]cycloheptyl, 1-oxo-indanyl, 9H-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, C-fluoren-9-ylidene, indanyl, indenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;  
heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-dioxo-isoindolyl, 1H-indolyl, 1H-pyrrolyl, 1-oxo-3H-isobenzofuranyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,3-dihydro-benzofuryl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-benzopyranyl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9H-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, cinnolyl, furyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxazolyl, oxolanyl, piperidyl, piridyl, pyrazolyl, pyridyl, pyrimidyl, pyrrolidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thieryl, thiolanyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;  
halogen is fluoro, chloro, bromo, or iodo;  
or a salt thereof.

3. A compound according to claim 2, wherein

R<sub>1</sub> represents

- (i) C<sub>1</sub>-C<sub>10</sub> alkyl,

C<sub>1</sub>-C<sub>10</sub> alkyl substituted by substituent(s) independently selected from

- oxo,
- di-propylaminocarbonyl,
- methoxy substituted by carbocyclic aryl,
- methylcarbonyloxy,
- carbocyclic aryloxy,
- halogenated carbocyclic aryloxy,
- carbocyclic aryloxy substituted by nitro,
- heterocyclxy substituted by methyl,
- substituted heterocycl-l-ethylideneaminoxy,
- tert*-butoxycarbonylamino,
- carbocyclic arylcarbonylamino,
- C<sub>1</sub>-C<sub>2</sub> alkylthio,
- C<sub>1</sub>-C<sub>2</sub> alkylthio substituted by substituent(s) independently selected from
  - halogenated carbocyclic aryl,
  - carbocyclic aryl substituted by methoxy,
  - carbocyclic arylthio,
  - hetrocyclthio substituted by nitro,
  - hetrocyclthio substituted by methyl,
- C<sub>5</sub>-C<sub>6</sub> cycloalkyl,
- C<sub>5</sub>-C<sub>6</sub> cycloalkenyl,
- carbocycl substituted by substituent(s) independently selected from
  - halogen,
  - methyl,
  - methoxy,
  - ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
  - carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
- C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from

•••OXO,  
•••carbocyclic aryl,  
•••heterocyclyl,  
••C<sub>1</sub>-C<sub>4</sub> alkoxy,  
••halogenated C<sub>1</sub>-C<sub>4</sub> alkoxy,  
••C<sub>1</sub>-C<sub>4</sub> alkoxy substituted by carbocyclic aryl,  
••carbocyclic aryloxy,  
••halogenated mono-carbocyclic arylaminocarbonyl,  
••carbocyclic aryl,  
••heterocyclyl,  
•heterocyclyl,  
•heterocyclyl substituted by substituent(s) independently selected from  
••C<sub>1</sub>-C<sub>2</sub> alkyl,  
•• C<sub>1</sub>-C<sub>2</sub> substituted by carbocyclic aryl,  
••methoxy,  
••methoxy substituted by carbocyclic aryl,  
••carbocyclic aryl,  
••halogenated carbocyclic aryl,  
(ii) C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by substituent(s) independently selected from  
•carbocyclic aryl,  
•halogenated carbocyclic aryl,  
•carbocyclic aryl substituted by nitro,  
(iii) C<sub>3</sub>-C<sub>6</sub> cycloalkyl,  
C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by substituent(s) independently selected from  
•methyl substituted by oxo,  
•methyl substituted by carbocyclic aryl,  
•carbocyclic aryl,  
(iv) carbocyclyl,  
(v) carbocyclic aryl,  
carbocyclic aryl substituted by substituent(s) independently selected from  
•halogen,  
•hydroxy,

- cyano,
- nitro,
- C<sub>1</sub>-C<sub>9</sub> alkyl,
- C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from
  - halogen,
  - oxo,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by methyl,
  - carbocyclic aryloxy,
  - C<sub>1</sub>-C<sub>7</sub> alkoxy,
  - halogenated C<sub>1</sub>-C<sub>7</sub> alkoxy,
  - C<sub>1</sub>-C<sub>7</sub> alkoxy substituted by carbocyclic aryl,
  - methylcarbonyloxy,
  - carbocyclic aryloxy,
  - carbocyclic aryloxy substituted by methoxy,
  - amino,
  - di-methylamino,
  - propargynylcarbonylamino substituted by carbocyclic aryl,
  - carbocyclic arylsulfonylamino substituted by methyl,
  - (carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
  - halogenated methylthio,
  - carbocyclic arylthio substituted by cyano,
  - di-propylamino sulfonyl,
  - mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,
  - carbocyclic aryl,
  - heterocyclyl substituted by methyl,
  - heterocyclyl substituted by halogenated carbocyclic aryl,
- (vi) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,

- C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
  - halogen,
  - methylthio substituted by halogenated carbocyclic aryl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
  - heterocyclyl,
  - methoxy,
  - carbocyclic aryloxy,
  - carbocyclic aryloxy substituted by methyl,
  - C<sub>1</sub>-C<sub>3</sub> alkylthio,
  - propenylthio,
  - carbocyclic arylthio,
  - C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
  - carbocyclic arylsulfonyl substituted by C<sub>1</sub>-C<sub>4</sub> alkyl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
  - carbocyclic aryl substituted by methyl,
  - carbocyclic aryl substituted by nitro,
  - heterocyclyl;

R<sub>2</sub> is methylamino or dimethylamino;

L is selected from Formula Va, VIIIa, or IXa;

wherein R<sub>4</sub> and R<sub>5</sub> are independently selected from H or C<sub>1</sub>-C<sub>3</sub> alkyl;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

carbocyclyl is 1-oxo-indanyl, 9-oxo-fluorenyl, indenyl, anthraquinonyl, C-fluoren-9-ylidene, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-dioxo-isoindolyl, 1H-indolyl, 1H-pyrrolyl, 1-oxo-3H-isobenzofuranyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,4-dihydro-3-oxo-pyrazolyl, 2H-benzopyranyl, 2-oxo-benzopyranyl, 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 4-oxo-3,4-dihydro-phthalazinyl, 4-oxo-benzopyranyl, 9,10,10-trioxo-thioxanthenyl, 9H-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxolanyl, piperidyl, piridyl, pyrazolyl, pyridyl, quinolyl,

quinoxalyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2-oxo-pyrrolidinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, cinnolyl, pyrimidyl, pyrrolidyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl; halogen is fluoro, chloro, bromo, or iodo; or a salt thereof.

4. A compound according to claim 3, wherein

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>10</sub> alkyl substituted by substituent(s) independently selected from

- oxo,
- di-propylaminocarbonyl,
- methoxy substituted by carbocyclic aryl,
- methylcarbonyloxy,
- carbocyclic aryloxy,
- halogenated carbocyclic aryloxy,
- carbocyclic aryloxy substituted by nitro,
- heterocyclloxy substituted by methyl,
- substituted heterocycl-ethylideneaminoxy,
- *tert*-butoxycarbonylamino,
- carbocyclic arylcarbonylamino,
- C<sub>1</sub>-C<sub>2</sub> alkylthio,
- C<sub>1</sub>-C<sub>2</sub> alkylthio substituted by substituent(s) independently selected from
  - halogenated carbocyclic aryl,
  - carbocyclic aryl substituted by methoxy,
  - carbocyclic arylthio,
  - heterocyclthio substituted by nitro,
  - heterocyclthio substituted by methyl,
- C<sub>5</sub>-C<sub>6</sub> cycloalkenyl,
- carbocycl substituted by substituent(s) independently selected from
  - halogen,
  - methyl,
  - methoxy,

- ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
- C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
  - OXO,
  - carbocyclic aryl,
  - heterocyclyl,
  - C<sub>1</sub>-C<sub>4</sub> alkoxy,
  - halogenated C<sub>1</sub>-C<sub>4</sub> alkoxy,
  - C<sub>1</sub>-C<sub>4</sub> alkoxy substituted by carbocyclic aryl,
  - carbocyclic aryloxy,
  - halogenated mono-carbocyclic arylaminocarbonyl,
  - carbocyclic aryl,
  - heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>2</sub> alkyl,
  - C<sub>1</sub>-C<sub>2</sub> substituted by carbocyclic aryl,
  - methoxy,
  - methoxy substituted by carbocyclic aryl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
- (ii) C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by substituent(s) independently selected from
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
  - carbocyclic aryl substituted by nitro,
- (iii) C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by substituent(s) independently selected from
  - methyl substituted by oxo,
  - methyl substituted by carbocyclic aryl,
  - carbocyclic aryl,

(iv) carbocyclyl,

(v) carbocyclic aryl substituted by substituent(s) independently selected from

- halogen,

- hydroxy,

- cyano,

- nitro,

- C<sub>1</sub>-C<sub>9</sub> alkyl,

- C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from

- halogen,

- OXO,

- carbocyclic aryl,

- carbocyclic aryl substituted by methyl,

- carbocyclic aryloxy,

- C<sub>1</sub>-C<sub>7</sub> alkoxy,

- halogenated C<sub>1</sub>-C<sub>7</sub> alkoxy,

- C<sub>1</sub>-C<sub>7</sub> alkoxy substituted by carbocyclic aryl,

- methylcarbonyloxy,

- carbocyclic aryloxy,

- carbocyclic aryloxy substituted by methoxy,

- amino,

- di-methylamino,

- propargynylcarbonylamino substituted by carbocyclic aryl,

- carbocyclic arylsulfonylamino substituted by methyl,

- (carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,

- halogenated methylthio,

- carbocyclic arylthio substituted by cyano,

- di-propylamino sulfonyl,

- mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,

- carbocyclic aryl,

- heterocyclyl substituted by methyl,

- heterocyclyl substituted by halogenated carbocyclic aryl,

(vi) or heterocyclyl substituted by substituent(s) independently selected from

- halogen,
- nitro,
- C<sub>1</sub>-C<sub>4</sub> alkyl,
- C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
  - halogen,
  - methylthio substituted by halogenated carbocyclic aryl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
  - heterocyclyl,
- methoxy,
- carbocyclic aryloxy,
- carbocyclic aryloxy substituted by methyl,
- C<sub>1</sub>-C<sub>3</sub> alkylthio,
- propenylthio,
- carbocyclic arylthio,
- C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
- carbocyclic arylsulfonyl,
- carbocyclic arylsulfonyl substituted by C<sub>1</sub>-C<sub>4</sub> alkyl,
- carbocyclic aryl,
- halogenated carbocyclic aryl,
- carbocyclic aryl substituted by methyl,
- carbocyclic aryl substituted by nitro,
- heterocyclyl;

L is selected from Formula XX - XXII;



wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;  
 carbocyclyl is 1-oxo-indanyl, 9-oxo-fluorenyl, indenyl, anthraquinonyl, C-fluoren-

9-ylidene, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1*H*-indolyl, 1*H*-pyrrolyl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 4-oxo-benzopyranyl, azetidinyl, benzo[b]thienyl, furyl, isoxazolyl, morpholinyl, piperidyl, piridyl, pyrazolyl, pyridyl, quinolyl, thiazolidyl, thiazolyl, thienyl, thiolanyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2-oxo-benzopyranyl, 2-oxo-pyrrolidinyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 9*H*-xanthenyl, cinnolyl, imidazolyl, morpholino, pyrimidyl, pyrrolidyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

5. A compound according to claim 4, wherein

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>5</sub> alkyl substituted by substituent(s) independently selected from

- oxo,
- di-propylaminocarbonyl,
- methoxy substituted by carbocyclic aryl,
- methylcarbonyloxy,
- carbocyclic aryloxy,
- halogenated carbocyclic aryloxy,
- carbocyclic aryloxy substituted by nitro,
- heterocyclyoxy substituted by methyl,
- substituted heterocyclyl-ethylideneaminoxy,
- *tert*-butoxycarbonylamino,
- carbocyclic arylcarbonylamino,
- C<sub>1</sub>-C<sub>2</sub> alkylthio,
- C<sub>1</sub>-C<sub>2</sub> alkylthio substituted by substituent(s) independently selected from
  - halogenated carbocyclic aryl,
  - carbocyclic aryl substituted by methoxy,
  - carbocyclic arylthio,
  - heterocyclylthio substituted by nitro,
  - heterocyclylthio substituted by methyl,

- cyclohexenyl,
- carbocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - methyl,
  - methoxy,
  - ethenyl substituted by carbocyclic aryl substituted methylsulfinyl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
    - oxo,
    - carbocyclic aryl,
    - heterocyclyl,
    - C<sub>1</sub>-C<sub>2</sub> alkoxy,
    - halogenated C<sub>1</sub>-C<sub>2</sub> alkoxy,
    - C<sub>1</sub>-C<sub>2</sub> alkoxy substituted by carbocyclic aryl,
    - carbocyclic aryloxy,
    - halogenated mono-carbocyclic arylaminocarbonyl,
    - carbocyclic aryl,
    - heterocyclyl,
  - heterocyclyl substituted by substituent(s) independently selected from
    - C<sub>1</sub>-C<sub>2</sub> alkyl,
    - C<sub>1</sub>-C<sub>2</sub> substituted by carbocyclic aryl,
    - methoxy,
    - methoxy substituted by carbocyclic aryl,
    - carbocyclic aryl,
    - halogenated carbocyclic aryl,
- (ii) C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by substituent(s) independently selected from
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,

- carbocyclic aryl substituted by nitro,
- (iii) C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by substituent(s) independently selected from
  - methyl substituted by oxo,
  - methyl substituted by carbocyclic aryl,
  - carbocyclic aryl,
- (iv) carbocyclyl,
- (v) carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - cyano,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - C<sub>1</sub>-C<sub>2</sub> alkyl substituted by substituent(s) independently selected from
    - halogen,
    - oxo,
    - carbocyclic aryl,
    - carbocyclic aryl substituted by methyl,
    - carbocyclic aryloxy,
    - C<sub>1</sub>-C<sub>2</sub> alkoxy,
    - halogenated C<sub>1</sub>-C<sub>2</sub> alkoxy,
    - C<sub>1</sub>-C<sub>2</sub> alkoxy substituted by carbocyclic aryl,
    - methylcarbonyloxy,
    - carbocyclic aryloxy,
    - carbocyclic aryloxy substituted by methoxy,
    - amino,
    - di-methylamino,
    - propargynylcarbonylamino substituted by carbocyclic aryl,
    - carbocyclic arylsulfonylamino substituted by methyl,
    - (carbocyclic aryl)NHC(O)NH substituted by halogenated methoxy,
    - halogenated methylthio,
    - carbocyclic arylthio substituted by cyano,
    - di-propylamino sulfonyl,

- mono- or di- ethylaminocarbonyl substituted by carbocyclic aryl,
- carbocyclic aryl,
- heterocyclyl substituted by methyl,
- heterocyclyl substituted by halogenated carbocyclic aryl,
- (vi) or heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
- C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
  - halogen,
  - methylthio substituted by halogenated carbocyclic aryl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
  - heterocyclyl,
  - methoxy,
  - carbocyclic aryloxy,
  - carbocyclic aryloxy substituted by methyl,
- C<sub>1</sub>-C<sub>3</sub> alkylthio,
- propenylthio,
- carbocyclic arylthio,
- C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
- carbocyclic arylsulfonyl,
- carbocyclic arylsulfonyl substituted by methyl,
- carbocyclic aryl,
- halogenated carbocyclic aryl,
- carbocyclic aryl substituted by methyl,
- carbocyclic aryl substituted by nitro,
- heterocyclyl;

wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;

carbocyclyl is 1-oxo-indanyl, indenyl, 9-oxo-fluorenyl, 1,2,3,4-tetrahydro-naphthyl, or bicyclo[2.2.1]hepteny;

heterocyclyl is 1H-indolyl, 2,4-dihydro-3-oxo-pyrazolyl, furyl, pyrazolyl, pyridyl,

thienyl, 1,2,3-triazolyl, 1*H*-pyrrolyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzofuryl, 2*H*-benzopyranyl, 2-oxo-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, pyrazolyl, pyrimidyl, quinolyl, thiazolyl, tetrahydro-thienyl, benzofuranyl, or benzothiazolyl;  
halogen is fluoro, chloro, bromo, or iodo;  
or a salt thereof.

6. A compound according to claim 5 of Formula I selected from the group consisting of





























































## 7. A compound according to claim 3, wherein

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>10</sub> alkyl,

C<sub>1</sub>-C<sub>10</sub> alkyl substituted by substituent(s) independently selected from

•C<sub>5</sub>-C<sub>6</sub> cycloalkyl,

•carbocyclic aryl,

•heterocyclyl,

(ii) C<sub>3</sub>-C<sub>6</sub> cycloalkyl,

(iii) carbocyclic aryl,

(iv) or heterocyclyl;

L is selected from Formula XX - XXII;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

heterocyclyl is 1,3-dioxo-isoindolyl, 1H-indolyl, 1-oxo-3H-isobenzofuranyl, 2,3-dihydro-benzo[1,4]dioxinyl, 3,4-dihydro-2H-benzo[b][1,4]dioxepinyl, 4-oxo-3,4-dihydro-phthalazinyl, 9,10,10-trioxo-thioxanthenyl, 9H-xanthenyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoazolyl, morpholino, oxolanyl, piperidyl, pyridyl, quinoxalyl, thienyl, quinolyl, or benzothiazolyl;

or a salt thereof.

## 8. A compound according to claim 7, wherein

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>4</sub> alkyl,

C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from

•cyclopentyl,

•carbocyclic aryl,

•heterocyclyl,

(ii) carbocyclic aryl,

(iii) or heterocyclyl;

wherein carbocyclic aryl is phenyl, naphthyl, anthranyl, or biphenyl;

heterocyclyl is 9H-xanthenyl, benzo[1,3]dioxolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, thienyl, 1H-indolyl, quinoxalyl, quinolyl, or benzothiazolyl;

or a salt thereof.

9. A compound according to claim 8 of Formula I thereof selected from the group consisting of









; or, in case of, a salt thereof.

10. A compound according to claim 1, wherein Q is Fomura II;

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>10</sub> alkyl,

C<sub>1</sub>-C<sub>10</sub> alkyl substituted by substituent(s) independently selected from

•halogen,

•hydroxy,

•oxo,

•C<sub>1</sub>-C<sub>3</sub> alkoxy,

•C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by substituent(s) independently selected from

••carbocyclic aryl,

••heterocyclyl,

••heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,

•carbocyclic aryloxy,

•carbocyclic aryloxy substituted by substituent(s) independently selected from

••halogen,

••nitro,

••carbocyclic aryl,

••carbocyclic aryl substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,

••C<sub>1</sub>-C<sub>4</sub> alkyl,

••C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from

•••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,

•••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,

•••mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by halogenated carbocyclic aryl,

•mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,

•mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by substituent(s) independently selected from

••cyano,

••carbocyclic aryl,

••heterocyclyl,

•mono- or di-carbocyclic arylamino,

•mono- or di-carbocyclic arylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,

•C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino,

•C<sub>1</sub>-C<sub>4</sub> alkoxy carbonylamino,





••C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
••carbocyclic aryl,  
••halogenated carbocyclic aryl,  
(ii) C<sub>2</sub>-C<sub>8</sub> alkenyl,  
C<sub>2</sub>-C<sub>8</sub> alkenyl substituted by substituent(s) independently selected from  
•halogen,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
•carbocyclic aryl,  
•carbocyclic aryl substituted by substituent(s) independently selected from  
•halogen,  
•hydroxy,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy,  
••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•heterocyclyl,  
•heterocyclyl substituted by nitro,  
(iii) C<sub>2</sub>-C<sub>4</sub> alkynyl,  
C<sub>2</sub>-C<sub>4</sub> alkynyl substituted by carbocyclic aryl,  
(iv) C<sub>3</sub>-C<sub>6</sub> cycloalkyl,  
C<sub>3</sub>-C<sub>6</sub> cycloalkyl substituted by substituent(s) independently selected from  
•C<sub>1</sub>-C<sub>3</sub> alkyl,  
•C<sub>1</sub>-C<sub>3</sub> alkyl substituted by substituent(s) independently selected from  
•hydroxy,  
•oxo,  
••carbocyclic aryl,  
•mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,  
•mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,  
•carbocyclic aryl,  
(v) C<sub>3</sub>-C<sub>6</sub> cycloalkeyl,  
C<sub>3</sub>-C<sub>6</sub> cycloalkeyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,  
(vi) carbocyclyl,  
carbocyclyl substituted by substituent(s) independently selected from

- hydroxy,
- nitro,
- (vii) carbocyclic aryl,  
carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - cyano,
  - nitro,
  - C<sub>1</sub>-C<sub>9</sub> alkyl,
  - C<sub>1</sub>-C<sub>9</sub> alkyl substituted by substituent(s) independently selected from
    - halogen,
    - hydroxy,
    - oxo,
    - C<sub>1</sub>-C<sub>3</sub> alkoxy,
    - carbocyclic aryloxy,
    - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino-N-oxy,
    - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,
    - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino substituted by carbocyclic aryl,
    - mono- or di-carbocyclic arylamino,
    - mono- or di-carbocyclic arylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
    - carbocyclic aryl,
    - halogenated carbocyclic aryl,
    - heterocyclyl,
    - heterocyclyl substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
    - C<sub>2</sub>-C<sub>3</sub> alkenyl,
    - C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,
    - C<sub>1</sub>-C<sub>9</sub> alkoxy,
    - C<sub>1</sub>-C<sub>9</sub> alkoxy substituted by substituent(s) independently selected from
      - hydroxy,
      - halogen,
      - carboxy,
      - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,

- carbocyclic aryl,
- halogenated carbocyclic aryl,
- heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
  - heterocyclyl,
  - heterocyclyl substituted by substituent(s) independently selected from
    - halogen,
    - C<sub>1</sub>-C<sub>3</sub> alkyl,
    - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
  - C<sub>2</sub>-C<sub>3</sub> alkenyloxy,
  - C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,
  - carbocyclic aryloxy,
  - carbocyclic aryloxy substituted by substituent(s) independently selected from
    - halogen,
    - C<sub>1</sub>-C<sub>4</sub> alkyl,
    - halogenated C<sub>1</sub>-C<sub>4</sub> alkyl,
    - C<sub>1</sub>-C<sub>3</sub> alkoxy,
    - heterocyclyloxy,
    - heterocyclyloxy substituted by substituent(s) independently selected from
      - halogen,
      - C<sub>1</sub>-C<sub>3</sub> alkyl,
      - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
      - (carbocyclic aryl)S(O)<sub>2</sub>O,
      - carboxy,
      - C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,
      - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl,
      - mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminocarbonyl substituted by carbocyclic aryl,
      - amino,
      - mono- or di-C<sub>1</sub>-C<sub>4</sub> alkylamino,
      - mono- or di-C<sub>1</sub>-C<sub>4</sub> alkylamino substituted by cyano,
      - mono- or di-carbocyclic arylamino,
      - C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino,

- carbocyclic arylsulfonylamino,
- carbocyclic arylsulfonylamino substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
- (carbocyclic aryl)NHC(O)NH,
- (carbocyclic aryl)NHC(O)NH substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy,
- (carbocyclic aryl)NHC(O)NH substituted by halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,
- C<sub>1</sub>-C<sub>3</sub> alkylthio,
- halogenated C<sub>1</sub>-C<sub>3</sub> alkylthio,
- carbocyclic arylthio,
- halogenated carbocyclic arylthio,
- carbocyclic arylthio substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,
- heterocyclylthio,
- C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
- mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylaminosulfonyl,
- carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>7</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>7</sub> alkyl,
- heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - carbocyclic aryl,
  - halogenated carbocyclic aryl,
- (viii) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - cyano,
  - nitro,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by substituent(s) independently selected from
    - halogen,
    - hydroxy,

••OXO,  
••C<sub>1</sub>-C<sub>3</sub> alkylcarbonyloxy,  
••C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by carbocyclic aryl,  
••C<sub>1</sub>-C<sub>3</sub> alkylthio substituted by halogenated carbocyclic aryl,  
••carbocyclic aryl,  
••carbocyclic aryl substituted by substituent(s) independently selected from  
••halogen,  
••nitro,  
••heterocyclyl,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by carbocyclic aryl,  
•carbocyclic aryloxy,  
•carbocyclic aryloxy substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,  
•mono- or di-C<sub>1</sub>-C<sub>3</sub> alkylamino,  
•C<sub>1</sub>-C<sub>4</sub> alkylcarbonylamino,  
•C<sub>1</sub>-C<sub>3</sub> alkylthio,  
•carbocyclic arylthio,  
•halogenated carbocyclic arylthio,  
•carbocyclic arylthio substituted by C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,  
•heterocyclylthio,  
•heterocyclylthio substituted by C<sub>1</sub>-C<sub>3</sub> alkyl,  
•C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,  
•carbocyclic arylsulfonyl,  
•carbocyclic arylsulfonyl substituted by C<sub>1</sub>-C<sub>4</sub> alkyl,  
•C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,  
•carbocyclic aryl,  
•carbocyclic aryl substituted by substituent(s) independently selected from  
••halogen,  
••nitro,  
••C<sub>1</sub>-C<sub>3</sub> alkyl,

- halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
- C<sub>1</sub>-C<sub>3</sub> alkoxy,
- halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,
- heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
- C<sub>1</sub>-C<sub>3</sub> alkyl,
- halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
- C<sub>1</sub>-C<sub>3</sub> alkoxy,
- C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl;

Y is -(CH<sub>2</sub>)<sub>m</sub>, m is 0 or 1;

wherein carbocyclic aryl is phenyl, naphthyl, biphenyl, or phenanthryl; carbocyclyl is 9*H*-fluorenyl, 9-oxo-fluorenyl, acenaphthyl, anthraquinonyl, indanyl, or indenyl;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3,4-thiadiazolyl, 1,3-dioxo-isoindolyl, 1,3-dioxolanyl, 1*H*-indolyl, 1*H*-pyrrolo[2,3-c]pyridyl, 1*H*-pyrrolyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-1-oxo-isoindolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 2,3-dihydro-benzofuryl, 2,4-dihydro-3-oxo-pyrazolyl, 2*H*-benzopyranyl, 2-oxo-pyrrolidinyl, 3,4-dihydro-2*H*-benzo[1,4]oxazinyl, 3,4-dihydro-2*H*-benzo[b][1,4]dioxepinyl, 4*H*-benzo[1,3]dioxinyl, 4*H*-benzopyranyl, 4-oxo-1,5,6,7-tetrahydro-indolyl, 4-oxo-benzopyranyl, 9*H*-carbazolyl, 9*H*-xanthenyl, azetidinyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[b]thienyl, benzofuryl, benzothiazolyl, furyl, imidazo[2,1-b]thiazolyl, imidazolyl, isoxazolyl, morpholino, morpholinyl, oxolanyl, piperazyl, piperidyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrrolidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thietyl, or thiolanyl;

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

11. A compound according to claim 10, wherein

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>10</sub> alkyl substituted by substituent(s) independently selected from

- methoxy,
- methoxy substituted by carbocyclic aryl,

- carbocyclic aryloxy,
  - halogenated carbocyclic aryloxy,
  - mono-C<sub>1</sub>-C<sub>2</sub> alkylamino substituted by cyano,
  - mono- or di-C<sub>1</sub>-C<sub>2</sub> alkylamino substituted by carbocyclic aryl,
  - mono-carbocyclic arylamino,
  - mono-carbocyclic arylamino substituted by methyl,
  - carbocyclic arylsulfonylamino substituted by methyl,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by substituent(s) independently selected from
    - halogen,
    - nitro,
    - C<sub>1</sub>-C<sub>4</sub> alkyl,
    - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by carbocyclic aryl,
    - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by hydroxy,
    - C<sub>1</sub>-C<sub>2</sub> alkoxy,
    - halogenated C<sub>1</sub>-C<sub>2</sub> alkoxy,
    - heterocyclyl substituted by carbocyclic aryl,
  - (ii) C<sub>2</sub>-C<sub>8</sub> alkenyl substituted by substituent(s) independently selected from
    - methoxy substituted by carbocyclic aryl,
    - carbocyclic aryl,
    - carbocyclic aryl substituted by methoxy,
  - (iii) C<sub>2</sub>-C<sub>4</sub> alkynyl substituted by carbocyclic aryl,
  - (iv) cyclohexyl substituted by carbocyclic arylmethyl,
  - (v) carbocyclyl,
  - (vi) carbocyclic aryl,
- carbocyclic aryl substituted by substituent(s) independently selected from
- halogen,
  - hydroxy,
  - cyano,
  - amino,
  - C<sub>1</sub>-C<sub>9</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>9</sub> alkyl,

- C<sub>1</sub>-C<sub>9</sub> alkoxy,
  - C<sub>1</sub>-C<sub>9</sub> alkoxy substituted by substituent(s) independently selected from
    - halogen,
    - halogenated carbocyclic aryl,
  - propenyoxy,
  - methylamino,
  - di-C<sub>1</sub>-C<sub>2</sub> alkylamino,
  - di-C<sub>1</sub>-C<sub>2</sub> alkylamino substituted by cyano,
  - methylthio,
  - halogenated methylthio,
- (vii) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>4</sub> alkyl,
  - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by hydroxy,
  - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by carbocyclic aryl,
  - methoxy,
  - C<sub>1</sub>-C<sub>2</sub> alkoxycarbonyl,
  - carbocyclic arylthio substituted by methoxycarbonyl,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by substituent(s) independently selected from
    - halogen,
    - halogenated methyl,
  - heterocyclyl;

R<sub>2</sub> is methylamino or dimethylamino;

L is selected from Formula Va, VIIia, or IXa;

wherein carbocyclic aryl is phenyl, naphthyl, biphenyl, or phenanthryl;

carbocyclyl is 9*H*-fluorenyl, acenaphthyl, or anthraquinonyl;

heterocyclyl is 1,2,3-thiadiazolyl, 1,2,3-triazolyl, 1,2-dihydro-3-oxo-pyrazolyl, 1,3-dioxolanyl, 1*H*-indolyl, 1*H*-pyrrolyl, 2,2',5',2"-terthiophenyl, 2,2'-bithiophenyl, 2,3-dihydro-benzo[1,4]dioxinyl, 3,4-dihydro-2*H*-benzo[1,4]oxazinyl, 4-oxo-benzopyranyl, 9*H*-carbazolyl, 9*H*-xanthenyl, benzimidazolyl, benzo[1,3]dioxolyl, benzo[b]thienyl, benzofuryl,

benzothiazolyl, furyl, imidazolyl, isoxazolyl, oxolanyl, pyrazolo[5,1-b]thiazolyl, pyrazolyl, pyridyl, pyrimidyl, quinolyl, quinoxalyl, thiazolidyl, thiazolyl, thieryl, 2H-benzopyranyl, 4H-benzo[1,3]dioxinyl, azetidinyl, imidazo[2,1-b]thiazolyl, morpholinyl, or 2,3-dihydrobenzofuryl;

halogen is fluoro, chloro, bromo, or iodo;  
or a salt thereof.

12. A compound according to claim 11, wherein

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>7</sub> alkyl substituted by substituent(s) independently selected from

- methoxy,
  - methoxy substituted by carbocyclic aryl,
  - carbocyclic aryloxy,
  - halogenated carbocyclic aryloxy,
  - mono-ethylamino substituted by cyano,
  - di-methylamino substituted by carbocyclic aryl,
  - mono-carbocyclic arylamino,
  - mono-carbocyclic arylamino substituted by methyl,
  - carbocyclic arylsulfonylamino substituted by methyl,
  - carbocyclic aryl,
  - carbocyclic aryl substituted by substituent(s) independently selected from
    - halogen,
    - nitro,
    - C<sub>1</sub>-C<sub>4</sub> alkyl,
    - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by carbocyclic aryl,
    - C<sub>1</sub>-C<sub>4</sub> alkyl substituted by hydroxy,
    - methoxy,
    - halogenated methoxy,
    - heterocyclyl substituted by carbocyclic aryl,
- (ii) C<sub>2</sub>-C<sub>7</sub> alkenyl substituted by substituent(s) independently selected from
- methoxy substituted by carbocyclic aryl,
  - carbocyclic aryl,

- carbocyclic aryl substituted by methoxy,
- (iii) butynyl substituted by carbocyclic aryl,
- (iv) cyclohexyl substituted by carbocyclic arylmethyl,
- (v) carbocyclyl,
- (vi) carbocyclic aryl,  
carbocyclic aryl substituted by substituent(s) independently selected from
  - halogen,
  - hydroxy,
  - cyano,
  - amino,
  - C<sub>1</sub>-C<sub>2</sub> alkyl,
  - halogenated methyl,
  - C<sub>1</sub>-C<sub>3</sub> alkoxy,
  - C<sub>1</sub>-C<sub>3</sub> alkoxy substituted by substituent(s) independently selected from
    - halogen,
    - halogenated carbocyclic aryl,
    - propenyoxy,
    - di-C<sub>1</sub>-C<sub>2</sub> alkylamino,
    - di-C<sub>1</sub>-C<sub>2</sub> alkylamino substituted by cyano,
    - methylthio,
    - halogenated methylthio,
  - (vii) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from
    - halogen,
    - C<sub>1</sub>-C<sub>3</sub> alkyl,
    - C<sub>1</sub>-C<sub>3</sub> alkyl substituted by hydroxy,
    - C<sub>1</sub>-C<sub>3</sub> alkyl substituted by carbocyclic aryl,
    - methoxy,
    - ethoxycarbonyl,
    - carbocyclic arylthio substituted by methoxycarbonyl,
    - carbocyclic aryl,
    - carbocyclic aryl substituted by substituent(s) independently selected from

- halogen,
- halogenated methyl,
- heterocyclyl;

L is selected from Formula XX - XXII;  
wherein carbocyclic aryl is phenyl, naphthyl, or biphenyl;  
carbocyclyl is acenaphthyl;  
heterocyclyl is 1*H*-indolyl, 1*H*-pyrrolyl, 2,3-dihydro-benzo[1,4]dioxinyl, 9*H*-carbazolyl, benzo[1,3]dioxolyl, furyl, pyrazolyl, thienyl, 4-oxo-benzopyranyl, azetidinyl, imidazo[2,1-b]thiazolyl, pyridyl, imidazolyl, 2,3-dihydro-benzofuryl, or benzo[b]thienyl;  
halogen is fluoro, chloro, bromo, or iodo;  
or a salt thereof.

13. A compound according to claim 12 of Formua I selected from the group consisting of



































; or, in case of, a salt thereof.

14. A compound according to claim 1, wherein Q is Fomura II;

R<sub>1</sub> represents

(i) C<sub>1</sub>-C<sub>16</sub> alkyl,

C<sub>1</sub>-C<sub>16</sub> alkyl substituted by substituent(s) independently selected from

•halogen,

•carbocyclyl,

•carbocyclic aryl,

•carbocyclic aryl substituted by substituent(s) independently selected from

••halogen,

••nitro,

••C<sub>1</sub>-C<sub>3</sub> alkyl,

••halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,

••C<sub>1</sub>-C<sub>3</sub> alkoxy,

••halogenated C<sub>1</sub>-C<sub>3</sub> alkoxy,

(ii) C<sub>2</sub>-C<sub>3</sub> alkenyl,

C<sub>2</sub>-C<sub>3</sub> alkenyl substituted by carbocyclic aryl,

(iii) carbocyclic aryl,

carbocyclic aryl substituted by substituent(s) independently selected from

•halogen,

•cyano,

•nitro,

•C<sub>1</sub>-C<sub>5</sub> alkyl,

•C<sub>1</sub>-C<sub>5</sub> alkyl substituted by substituent(s) independently selected from

••halogen,

••OXO,

•C<sub>2</sub>-C<sub>3</sub> alkenyl,

•C<sub>1</sub>-C<sub>4</sub> alkoxy,

•C<sub>1</sub>-C<sub>4</sub> alkoxy substituted by substituent(s) independently selected from

••halogen,

••heterocyclyl,

••halogenated heterocyclyl,

•carbocyclic aryloxy,

- carbocyclic aryloxy substituted by substituent(s) independently selected from
  - halogen,
  - nitro,
  - heterocyclyoxy,
- heterocyclyoxy substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
- C<sub>1</sub>-C<sub>3</sub> alkoxycarbonyl,
- mono- or di-C<sub>1</sub>-C<sub>4</sub> alkylamino,
- C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino,
- carbocyclic aryl diazo,
- carbocyclic aryl diazo substituted by mono- or di- C<sub>1</sub>-C<sub>3</sub> alkylamino,
- C<sub>1</sub>-C<sub>3</sub> alkylsulfonyl,
- carbocyclic aryl,
- (iv) heterocyclyl,  
or heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - C<sub>1</sub>-C<sub>3</sub> alkyl substituted by substituent(s) independently selected from
    - halogen,
    - oxo,
    - carbocyclic arylcarbonylamino,
    - halogenated carbocyclic arylcarbonylamino,
    - heterocyclyl,
    - heterocyclyl substituted by substituent(s) independently selected from
      - halogen,
      - C<sub>1</sub>-C<sub>3</sub> alkyl,
      - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl,
      - C<sub>1</sub>-C<sub>3</sub> alkoxy,
      - C<sub>1</sub>-C<sub>3</sub> alkylcarbonylamino,
      - carbocyclic arylsulfonyl,

- C<sub>1</sub>-C<sub>3</sub> alkoxy carbonyl,
- carbocyclic aryl,
- halogenated carbocyclic aryl,
- heterocyclyl,
- heterocyclyl substituted by substituent(s) independently selected from
  - halogen,
  - C<sub>1</sub>-C<sub>3</sub> alkyl,
  - halogenated C<sub>1</sub>-C<sub>3</sub> alkyl;

Y is -S(O)<sub>2</sub>-;

wherein carbocyclic aryl is phenyl, biphenyl, or naphthyl;

carbocyclyl is 7,7-dimethyl-2-oxo-bicyclo[2.2.1]heptyl;

heterocyclyl is 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3-thiadiazolyl, 1*H*-pyrrolyl, benzo[2,1,3]oxadiazolyl, benzo[b]thienyl, furyl, imidazolyl, isoxazolyl, pyrazolyl, pyridyl, quinolyl, thiazolyl, or thienyl;

halogen is fluoro, chloro, bromo, or iodo;

or a salt thereof.

15. A compound according to claim 14 of Formula I selected from the group consisting of



; or, in case of, a salt thereof.

16. A compound according to claim 1, wherein Q is Fomura II;  
R<sub>1</sub> is selected from H, -CO<sub>2</sub>Bu, or -CO<sub>2</sub>Bn (Bn is a benzyl group);  
R<sub>2</sub> is methylamino or dimethylamino;  
L is selected from Formula XX - XXII;  
Y is a single bond;  
or a salt thereof.

17. A method for modulating the G-protein receptor, SLC-1, comprising the step of contacting said SLC-1 with a MCH receptor antagonist.

18. A method for modulating the G-protein receptor, SLC-1, comprising the step of contacting said SLC-1 with a compound of claims 1-16.

19. The method of prophylaxis or treatment of obesity, obesity related disorders, anxiety, or depression in mammals in need of such treatment comprising administering to the mammal a therapeutically effective amount of a compound having the composition of any of claims 1-16.

20. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound having the composition of any of claims 1-16.

Fig. 1



## SEQUENCE LISTING

<110> Arena Pharmaceuticals, Inc.

<120> MCH Receptor Antagonists

<130> AREN-0238

<160> 12

<170> PatentIn version 3.0

<210> 1

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 1

gtgaagcttg cctctggtgc ctgcaggagg 30

<210> 2

<211> 31

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 2

gcagaattcc cggtggcgtg ttgtggtgcc c

31

<210> 3

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 3

catgagctgg tggatcatga aggg

24

<210> 4

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 4

atgaaggcca tgcccaggag aaag

24

<210> 5

<211> 1349

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 5

atggacactgg aaggctcgct gctgccact ggccccatg ccagcaacac ctctgatggc

60

cccgataacc tcacttcggc aggatcacct cctcgcacgg ggagcatctc ctacatcaac

120

|            |            |             |            |            |                |      |
|------------|------------|-------------|------------|------------|----------------|------|
| atcatcatgc | cttcgggttt | cggcaccatc  | tgcctctgg  | gcatcatcg  | gaactccacg     | 180  |
| gtcatcttcg | cggtcgtgaa | gaagtccaag  | ctgcactgg  | gcaacaacgt | ccccgacatc     | 240  |
| ttcatcatca | acctctcggt | agtagatctc  | ctcttctcc  | tgggcatgcc | cttcatgatc     | 300  |
| caccagctca | tgggcaatgg | ggtgtggcac  | tttggggaga | ccatgtgcac | cctcatcacg     | 360  |
| gccatggatg | ccaatagtca | gttcaccagc  | acctacatcc | tgaccgccat | ggccatttgac    | 420  |
| cgctacctgg | ccactgtcca | ccccatctct  | tccacgaagt | tccggaagcc | ctctgtggcc     | 480  |
| accctggta  | tctgcctct  | gtggggccctc | tccttcatca | gcatcacccc | tgtgtggctg     | 540  |
| tatgccagac | tcatcccctt | cccaggaggt  | gcagtgggct | gcccatacg  | cctgcccAAC     | 600  |
| ccagacactg | acctctactg | gttcaccctg  | taccagttt  | tcctggcctt | tgcctgcct      | 660  |
| tttgtggta  | tcacagccgc | atacgtgagg  | atcctgcaga | aggtgaagtc | ctctggaaatc    | 720  |
| cgagtgggct | cctctaagag | gaagaagtct  | gagaagaagg | tcacccgcac | agccatcgcc     | 780  |
| atctgtctgg | tcttctttgt | gtgctggca   | ccctactatg | tgctacagct | gaccagttg      | 840  |
| tccatcagcc | gccccaccc  | cacctttgtc  | tacttataca | atgcggccat | cagttgggc      | 900  |
| tatgccaaca | gctgcctcaa | cccccttgt   | tacatcg    | tctgtgagac | gttccgcaaa     | 960  |
| cgttggtcc  | tgtcggtgaa | gcctgcagcc  | caggggcagc | ttcgcgtgt  | cagcaacgct     | 1020 |
| cagacggctg | acgaggagag | gacagaaagc  | aaaggcacct | gatactccc  | ctgccaccct     | 1080 |
| gcacacctcc | aagtcaaggc | accacaacac  | gccaccggg  | gagatgctga | aaaaaccca      | 1140 |
| agaccgctcg | ggaaatgcag | gaaggccggg  | ttgtgagggg | ttgttgc    | aat gaaataaata | 1200 |
| cattccatgg | gctcacacgt | tgctggggag  | gcctggagtc | aggtttgggg | ttttcagata     | 1260 |
| tcagaaatcc | cttggggag  | caggatgaga  | cctttggata | gaacagaagc | tgagcaagag     | 1320 |
| aacatgttgg | tttggataac | cggttgcac   |            |            |                | 1349 |

&lt;210&gt; 6

&lt;211&gt; 446

&lt;212&gt; PRT

&lt;213&gt; Homo Sapien

&lt;220&gt;

&lt;223&gt; Novel Sequence

&lt;400&gt; 6

Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn  
 1                   5                   10                   15

Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg  
 20                 25                 30

Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly  
 35                 40                 45

Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala  
 50                 55                 60

Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile  
 65                 70                 75                 80

Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met  
 85                 90                 95

Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly  
 100                 105                 110

Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe  
 115                 120                 125

Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala  
 130                 135                 140

Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala  
 145                 150                 155                 160

Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr  
 165                 170                 175

Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val  
 180                 185                 190

Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe  
 195                 200                 205

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile  
 210                 215                 220

Thr Ala Ala Tyr Val Arg Ile Leu Gln Lys Val Lys Ser Ser Gly Ile  
 225                 230                 235                 240

Arg Val Gly Ser Ser Lys Arg Lys Lys Ser Glu Lys Lys Val Thr Arg  
 245                 250                 255

Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr  
 260                 265                 270

Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr  
 275                 280                 285

Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 290                                                             | 295 | 300 |
| Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys |     |     |
| 305                                                             | 310 | 315 |
| Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala |     |     |
| 325                                                             | 330 | 335 |
| Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly |     |     |
| 340                                                             | 345 | 350 |
| Thr Tyr Phe Pro Cys His Pro Ala His Leu Gln Val Arg Ala Pro Gln |     |     |
| 355                                                             | 360 | 365 |
| His Ala Thr Gly Arg Asp Ala Glu Lys Asn Pro Arg Pro Leu Gly Lys |     |     |
| 370                                                             | 375 | 380 |
| Cys Arg Lys Ala Gly Leu Gly Val Val Ala Met Lys Ile His Ser Met |     |     |
| 385                                                             | 390 | 395 |
| Gly Ser His Val Ala Gly Glu Ala Trp Ser Gln Val Trp Gly Phe Gln |     |     |
| 405                                                             | 410 | 415 |
| Ile Ser Glu Ile Pro Trp Gly Ser Arg Met Arg Pro Leu Asp Arg Thr |     |     |
| 420                                                             | 425 | 430 |
| Glu Ala Glu Gln Glu Asn Met Leu Val Trp Ile Thr Gly Cys         |     |     |
| 435                                                             | 440 | 445 |

<210> 7  
<211> 70

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 7  
gatcctgcag aaggtaagt cctctggaaat ccgagtgggc tcctctaaga ggaagaagtc 60  
tgagaagaag 70

<210> 8

<211> 71

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 8

gtgaccttct ttcagactt cttcccttta gaggagccca ctggattcc agaggactc 60  
acttctgca g 71

<210> 9

<211> 30

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 9

gtgaagcttg cccgggcagg atggacctgg 30

<210> 10

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Novel Sequence

<400> 10

atcttagaggt gcctttgtt tctg 24

<210> 11

<211> 2133

<212> DNA

<213> Homo Sapien

<400> 11

atggacacctgg aaggctcgct gctgccact ggtcccaatg ccagcaacac ctctgatggc 60

cccgataacc tcacttcggc aggatcacct cctcgacagg ggagcatctc ctacatcaac 120

atcatcatgc cttcggtgtt cggcaccatc tgccctctgg gcatcatcggaactccacg 180  
gtcatcttcg cggtcgtgaa gaagtccaa ctgcactggt gcaacaacgt ccccacatc 240  
ttcatcatca acctctcggt agtagatctc ctctttctcc tgggcatgcc ctcatgatc 300  
caccagctca tgggcaatgg ggtgtggcac tttggggaga ccatgtgcac cctcatcacg 360  
gccatggatg ccaatagtca gttcaccaggc acctacatcc tgaccgcccc ggccattgac 420  
cgctacatgg ccactgtcca ccccatctc tccacgaatg tccgaaagcc ctctgtggcc 480  
accctggta tctgcctctt gtggccctc tccttcatca gcatcaccc tgggtggctg 540  
tatGCCAGAC tcataccctt cccaggaggt gcagtggct gcccatacg cctGCCAAC 600  
ccagacactg acctctactg gttcaccctg taccagttt tcctggcctt tgccctgcct 660  
tttgggtca tcacagccgc atacgtgagg atcctgcagg gcatgacgtc ctcagtggcc 720  
cccgccccc agcgcagcat cccgcgtgcgg acaaagaggg tgacccgcac agccatcgcc 780  
atctgtctgg tcttctttgt gtgtggca ccctactatg tgctacagct gaccaggatg 840  
tcctatcagcc gcccgcacct caccttgtc tacttataca atgcggccat cagcttgggc 900  
tatGCCAAACA gtcgcctcaa cccctttgt tacatcgatc tctgtgagac gttccgcaaa 960  
cgcttggtcc tggcggtgaa gcctgcagcc cagggcagc ttgcgcgtt cagcaacgct 1020  
cagacggctg acgaggagag gacagaaaagc aaaggcacct ctggatggg ctgcacactg 1080  
agcgctgagg acaaggcggc cgtggagcgc agcaagatga tcgaccgcac cctccggag 1140  
gacggagaga aggcagcgcg cgaggtcaag ctgcgtctgc tgggtgttgg tgaatccggg 1200  
aagagcacaa ttgtgaagca gatgaaaatt atccacgagg ctggctactc agaggaagag 1260  
tgtaaggcgt acaaaggcgt ggtctacatc aacaccatcc agtccatcat tgccatcatt 1320  
agagccatgg ggagattgaa aatcgacttt ggagacgctg ctgcgtcgga tgatgcgc 1380  
caactcttcg tgcttgcgtt ggctgcagag gaaggctta tgaccgcgg gctcgccggc 1440  
gtcataaaaga gactgtggaa ggacagcgg gtcgcacgc gcttcaacag atcccgag 1500  
taccagctga acgattcggc ggcgtactac ctgaaatgact tggacagaat agcacaacca 1560  
aattacatcc caacccagca ggatgttctc agaactagag tgaaaacgcac gggattgtg 1620  
gaaacccact ttactttcaa agatcttcat tttaaatgt ttgcgtggg aggccagaga 1680  
tcagagcgg aagatggat tcactgcctt gaaggcgtga ctgcacatcat cttctgtgt 1740  
gccctgagtg actatgaccc ggttcttgct gaggatgaag aaatgaaccg gatgcgtgaa 1800  
agcatgaagc tggtcgatag catatgtaac aacaagtggt ttacggacac atccatcatc 1860

ctttcctga acaagaagga cctcttcgaa gagaagatca aaaagagtcc cctcacgata 1920  
 tgctatccag aatatgcagg ctcaaacaca tatgaagagg cggctgcgtatccagtgt 1980  
 cagtttgaag acctaataa aaggaaggac acaaaggaaa tttacaccca cttcacttgc 2040  
 gccacggata cgaagaatgt gcagtttgtt ttcgatgctg taacggacgt catcataaaag 2100  
 aataacctaa aagactgtgg tctcttctaa tct 2133

<210> 12  
 <211> 709  
 <212> PRT  
 <213> Homo Sapien

<400> 12  
 Met Asp Leu Glu Ala Ser Leu Leu Pro Thr Gly Pro Asn Ala Ser Asn  
 1 5 10 15  
 Thr Ser Asp Gly Pro Asp Asn Leu Thr Ser Ala Gly Ser Pro Pro Arg  
 20 25 30  
 Thr Gly Ser Ile Ser Tyr Ile Asn Ile Ile Met Pro Ser Val Phe Gly  
 35 40 45  
 Thr Ile Cys Leu Leu Gly Ile Ile Gly Asn Ser Thr Val Ile Phe Ala  
 50 55 60  
 Val Val Lys Lys Ser Lys Leu His Trp Cys Asn Asn Val Pro Asp Ile  
 65 70 75 80  
 Phe Ile Ile Asn Leu Ser Val Val Asp Leu Leu Phe Leu Leu Gly Met  
 85 90 95  
 Pro Phe Met Ile His Gln Leu Met Gly Asn Gly Val Trp His Phe Gly  
 100 105 110  
 Glu Thr Met Cys Thr Leu Ile Thr Ala Met Asp Ala Asn Ser Gln Phe  
 115 120 125  
 Thr Ser Thr Tyr Ile Leu Thr Ala Met Ala Ile Asp Arg Tyr Leu Ala  
 130 135 140  
 Thr Val His Pro Ile Ser Ser Thr Lys Phe Arg Lys Pro Ser Val Ala  
 145 150 155 160  
 Thr Leu Val Ile Cys Leu Leu Trp Ala Leu Ser Phe Ile Ser Ile Thr  
 165 170 175  
 Pro Val Trp Leu Tyr Ala Arg Leu Ile Pro Phe Pro Gly Gly Ala Val  
 180 185 190  
 Gly Cys Gly Ile Arg Leu Pro Asn Pro Asp Thr Asp Leu Tyr Trp Phe  
 195 200 205

Thr Leu Tyr Gln Phe Phe Leu Ala Phe Ala Leu Pro Phe Val Val Ile  
210 215 220

Thr Ala Ala Tyr Val Arg Ile Leu Gln Arg Met Thr Ser Ser Val Ala  
225 230 235 240

Pro Ala Ser Gln Arg Ser Ile Arg Leu Arg Thr Lys Arg Val Thr Arg  
245 250 255

Thr Ala Ile Ala Ile Cys Leu Val Phe Phe Val Cys Trp Ala Pro Tyr  
260 265 270

Tyr Val Leu Gln Leu Thr Gln Leu Ser Ile Ser Arg Pro Thr Leu Thr  
275 280 285

Phe Val Tyr Leu Tyr Asn Ala Ala Ile Ser Leu Gly Tyr Ala Asn Ser  
290 295 300

Cys Leu Asn Pro Phe Val Tyr Ile Val Leu Cys Glu Thr Phe Arg Lys  
305 310 315 320

Arg Leu Val Leu Ser Val Lys Pro Ala Ala Gln Gly Gln Leu Arg Ala  
325 330 335

Val Ser Asn Ala Gln Thr Ala Asp Glu Glu Arg Thr Glu Ser Lys Gly  
340 345 350

Thr Ser Arg Met Gly Cys Thr Leu Ser Ala Glu Asp Lys Ala Ala Val  
355 360 365

Glu Arg Ser Lys Met Ile Asp Arg Asn Leu Arg Glu Asp Gly Glu Lys  
370 375 380

Ala Ala Arg Glu Val Lys Leu Leu Leu Gly Ala Gly Glu Ser Gly  
385 390 395 400

Lys Ser Thr Ile Val Lys Gln Met Lys Ile Ile His Glu Ala Gly Tyr  
405 410 415

Ser Glu Glu Glu Cys Lys Gln Tyr Lys Ala Val Val Tyr Ser Asn Thr  
420 425 430

Ile Gln Ser Ile Ile Ala Ile Ile Arg Ala Met Gly Arg Leu Lys Ile  
435 440 445

Asp Phe Gly Asp Ala Ala Arg Ala Asp Asp Ala Arg Gln Leu Phe Val  
450 455 460

Leu Ala Gly Ala Ala Glu Glu Gly Phe Met Thr Ala Glu Leu Ala Gly  
465 470 475 480

Val Ile Lys Arg Leu Trp Lys Asp Ser Gly Val Gln Ala Cys Phe Asn  
485 490 495

Arg Ser Arg Glu Tyr Gln Leu Asn Asp Ser Ala Ala Tyr Tyr Leu Asn  
500 505 510

Asp Leu Asp Arg Ile Ala Gln Pro Asn Tyr Ile Pro Thr Gln Gln Asp  
515 520 525

Val Leu Arg Thr Arg Val Lys Thr Thr Gly Ile Val Glu Thr His Phe  
530 535 540

Thr Phe Lys Asp Leu His Phe Lys Met Phe Asp Val Gly Gly Gln Arg  
545 550 555 560

Ser Glu Arg Lys Lys Trp Ile His Cys Phe Glu Gly Val Thr Ala Ile  
565 570 575

Ile Phe Cys Val Ala Leu Ser Asp Tyr Asp Leu Val Leu Ala Glu Asp  
580 585 590

Glu Glu Met Asn Arg Met His Glu Ser Met Lys Leu Phe Asp Ser Ile  
595 600 605

Cys Asn Asn Lys Trp Phe Thr Asp Thr Ser Ile Ile Leu Phe Leu Asn  
610 615 620

Lys Lys Asp Leu Phe Glu Glu Lys Ile Lys Lys Ser Pro Leu Thr Ile  
625 630 635 640

Cys Tyr Pro Glu Tyr Ala Gly Ser Asn Thr Tyr Glu Glu Ala Ala Ala  
645 650 655

Tyr Ile Gln Cys Gln Phe Glu Asp Leu Asn Lys Arg Lys Asp Thr Lys  
660 665 670

Glu Ile Tyr Thr His Phe Thr Cys Ala Thr Asp Thr Lys Asn Val Gln  
675 680 685

Phe Val Phe Asp Ala Val Thr Asp Val Ile Ile Lys Asn Asn Leu Lys  
690 695 700

Asp Cys Gly Leu Phe  
705