EE5137 Stochastic Processes: Problem Set 5 Assigned: 11/02/22, Due: 18/02/22

There are six (6) non-optional problems in this problem set.

- 1. Exercise 2.1(b) (Gallager's book)
- 2. Exercise 2.2(a) and 2.2(b) (Gallager's book)
- 3. Exercise 2.4 (Gallager's book)
- 4. Exercise 2.7 (Gallager's book)

Hint for Part(a): Recall that the derivative of a function f(t) at the point τ is

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t}\bigg|_{t=\tau} = \lim_{\delta \downarrow 0} \frac{f(\tau+\delta) - f(\tau)}{\delta}.$$

5. Transmitters A and B independently send messages to a single receiver in a Poisson manner with rates $\lambda_{\rm A}$ and $\lambda_{\rm B}$ respectively. All the messages are so brief that we may assume that they occupy single points in time. The number of words in a message, regardless of the source that is transmitting it, is a random variable with PMF

$$p_W(w) = \begin{cases} 2/6 & w = 1\\ 3/6 & w = 2\\ 1/6 & w = 3\\ 0 & \text{otherwise} \end{cases}$$

and is independent of everything else.

- (a) What is the probability that during an interval of duration t, a total of exactly 9 messages will be received?
- (b) Let N be the total number of words received during an interval of duration t. Determine the expected value of N.
- (c) Determine the PDF of the time from t = 0 until the receiver has received exactly eight three-word messages from transmitter A.
- (d) What is the probability that exactly 8 out of the next 12 messages received will be from transmitter A?
- 6. Consider a Poisson process of rate $\lambda > 0$. Let t^* be a fixed time instant and consider the length of the interarrival interval [U, V] that contains t^* . In this question, we would like to determine the distribution of

$$L = (t^* - U) + (V - t^*).$$

(i) Give a one sentence answer as to why $V - t^*$ is independent of $t^* - U$.

Figure 1: Here U and V are successive arrival epochs and t^* is a fixed time instance between U and V.

- (ii) In class, we determined the distribution of $V t^*$. What is this distribution?
- (iii) Consider the event

$$\{t^* - U > x\}.$$

This event is the same as

{there are k arrivals in the interval $[t^* - x, t^*]$ }.

Find the integer k. No explanation is needed.

- (iv) Hence, find the distribution of $t^* U$.
- (v) By using the preceding parts, find the distribution of L.
- (vi) What is the distribution of an interarrival time of a Poisson process? Why is this the same or different from that of L in part (v)?
- 7. (Optional) Exercise 2.8 (Gallager's book)
- 8. (Optional) Exercise 2.9 (Gallager's book)
- 9. (Optional) Exercise 2.12 (Gallager's book)
- 10. (Optional) Customers depart from a bookstore according to a Poisson process with rate λ per hour. Each customer buys a book with probability p, independent of everything else.
 - (a) Find the distribution of the time until the first sale of a book.
 - (b) Find the probability that there are no books sold during a particular hour.
 - (c) Find the expected number of customers who buy a book during a particular hour.
- 11. (Optional) Let S_1 and S_2 be independent and exponentially distributed with parameters λ_1 and λ_2 , respectively. Show that the expected value of $\max\{S_1, S_2\}$ is

$$\mathbb{E}[\max\{S_1, S_2\}] = \frac{1}{\lambda_1 + \lambda_2} \left(1 + \frac{\lambda_1}{\lambda_2} + \frac{\lambda_2}{\lambda_1} \right)$$

using Poisson Processes.

Hint: Consider two independent Poisson processes with rates λ_1 and λ_2 , respectively. We interpret S_1 as the first arrival time in the first process, and S_2 the first arrival time in the second process. Let $V = \min\{S_1, S_2\}$ be the first time when one of the processes registers an arrival. Let $W = \max\{X_1, X_2\} - V$ be the additional time until both have registered an arrival. Now calculate the expectations of V and V to find the expectation of the desired $\max\{S_1, S_2\}$.