00 MATH. II - MP

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE, ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

CONCOURS D'ADMISSION 2000

MATHÉMATIQUES

DEUXIÈME ÉPREUVE FILIÈRE MP

(Durée de l'épreuve : 4 heures)

Sujet mis à la disposition des concours : ENSAE (Statistique), ENSTIM, INT, TPE-EIVP.

L'emploi de la calculette est interdit.

Les candidats sont priés de mentionner de façon très apparente sur la première page de la copie : MATHÉMATIQUES II - MP.

L'énoncé de cette épreuve, particulière aux candidats de la filière MP, comporte 6 pages.

Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Le but de ce problème est d'établir que le réel ln2 est irrationnel.

1. Fonction h:

Soit la série entière de terme général $u_n(x)$, n = 0, 1, 2, ... définie par la relation suivante :

$$u_n(x) = C_{2n}^n x^n$$
.

Rappel : pour tout entier strictement positif n et tout entier naturel p tel que $0 \le p \le n$, $C_n^p = \binom{n}{p}$ est le cardinal de l'ensemble des parties ayant p éléments d'un ensemble de n éléments. Par convention : $C_0^0 = 1$.

Soit R le rayon de convergence de la série entière de terme général $u_n(x)$; la somme h de cette série entière est la fonction définie à l'intérieur de l'intervalle ouvert]-R, R[par la relation :

$$h(x) = \sum_{n=0}^{\infty} C_{2n}^n x^n.$$

- a. Déterminer le rayon de convergence R de la série entière de terme général $u_n(x)$.
- b. Démontrer que, sur l'intervalle ouvert de convergence]-R, R[, la fonction h vérifie l'équation différentielle linéaire du premier degré.

$$(1-4x) h'(x) = 2 h(x).$$

c. En déduire l'expression de h(x) sur l'intervalle ouvert]-R, R[.

2. Fonctions M_p :

Soit p un entier strictement positif $(p \ge 1)$; soit M_p la fonction définie sur la demi-droite ouverte $]-\infty, 1[$ par la relation :

$$M_p(x) = \frac{1}{(1-x)^p}.$$

Déterminer le développement en série entière de la fonction M_p dans un voisinage de 0. Exprimer le coefficient de x^k à l'aide de $C_{p+k-1}^k \left(= C_{p+k-1}^{p-1} \right)$

3. **Fonction** *f* :

Soit f la fonction définie par la relation :

$$f(x) = \frac{1}{\sqrt{1 - 6x + x^2}}.$$

- a. Quel est l'ensemble de définition D_f de la fonction f?
- b. Déterminer pour quelles valeurs du réel x la relation suivante

$$f(x) = \frac{1}{1-x} . h\left(\frac{x}{(1-x)^2}\right).$$

est vérifiée. En déduire que, dans un voisinage de 0, la fonction f est égale à la somme d'une série de fonctions f_n , n = 0, 1, 2, ..., définies par la relation :

$$f_n(x) = \lambda_n M_{2n+1}(x) x^n.$$

Les λ_n sont des scalaires qui seront déterminés ; il vient par suite :

$$f(x) = \sum_{n=0}^{\infty} \lambda_n M_{2n+1}(x) x^n.$$

c. Déduire des résultats précédents l'existence d'un développement en série entière de la fonction f dans un voisinage de 0:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

Exprimer chaque coefficient a_n à l'aide de la somme d'une série. Préciser le rayon de convergence de la série entière de terme général $a_n x^n$, n = 0, 1, 2...

d. Démontrer que la fonction f vérifie une équation différentielle linéaire du premier ordre :

$$a(x)f'(x) + b(x)f(x) = 0,$$

dans laquelle les deux fonctions a et b sont des polynômes de degré inférieur ou égal à 2. Les déterminer.

e. En déduire que les coefficients a_n , n=0,1,2,... du développement en série entière de la fonction f vérifient, pour tout entier n supérieur ou égal à 1, la relation de récurrence (\mathbf{R}) suivante :

(**R**)
$$\forall n \geq 1, (n+1)a_{n+1} - 3(2n+1)a_n + n a_{n-1} = 0.$$

Déterminer les coefficients a_0 , a_1 , a_2 et a_3 .

4. Fonction g:

Le but de cette question est la recherche d'une fonction g qui possède les deux propriétés : i. les valeurs de g(0) et de g'(0) sont données par les relations suivantes :

$$g(0) = 0$$
, $g'(0) = 1$.

ii. le réel g(x) est la somme d'une série entière de terme général $b_n x^n$, n = 0, 1, 2, dont les coefficients b_n , n = 0, 1, 2, vérifient la relation de récurrence suivante :

(**R**)
$$\forall n \geq 1, (n+1)b_{n+1} - 3(2n+1)b_n + n b_{n-1} = 0.$$

a. Démontrer que les coefficients b_n , n = 0, 1, 2, sont bien déterminés ; calculer b_0 , b_1 , b_2 et b_3 .

En supposant le rayon de convergence de la série entière de terme général b_n x^n , n = 0, 1, 2, strictement positif, déterminer une équation différentielle du premier ordre vérifiée par la fonction g.

b. Etablir la relation:

$$g(x) = f(x) \cdot \int_0^x f(t) dt.$$

c. En déduire l'expression de chaque coefficient b_n au moyen des coefficients a_k , k=0,1,2,...,n. En déduire une minoration du rayon de convergence de la série entière de terme général $b_n x^n$, n=0,1,2,...

d. Soit n un entier strictement positif; soit d_n le plus petit commun multiple des n premiers entiers 1, 2, ..., n. Démontrer que le réel $d_n.b_n$ est un entier relatif: $(d_n.b_n \in \mathbb{Z})$

5. Etude des suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$:

Soit $(u_n)_{n=1,2,...}$ la suite des réels définis par la relation suivante : pour tout entier n strictement positif :

$$u_n = b_n a_{n-1} - b_{n-1} a_n$$
.

- a. Calculer u_1 et u_2 . Exprimer, pour tout entier n supérieur ou égal à 1, le terme u_{n+1} en fonction de l'entier n et de u_n . Etudier le signe des réels u_n , n = 1, 2, ..., et la monotonie de cette suite. Déterminer le plus petit des majorants C de cette suite.
- b. Démontrer que la suite des nombres réels $\left(\frac{b_n}{a_n}\right)_{n\in\mathbb{N}}$ est définie et strictement croissante ; déterminer, pour tout entier n strictement positif une majoration de la différence

$$\frac{b_n}{a_n} - \frac{b_{n-1}}{a_{n-1}}$$

à l'aide de la constante C et des deux réels a_n et a_{n-1} . En déduire que la suite $\left(\frac{b_n}{a_n}\right)_{n\in\mathbb{N}}$ est convergente. Soit λ la limite de cette suite :

$$\lambda = \lim_{n \to \infty} \frac{b_n}{a_n}.$$

6. Détermination de la limite λ :

Soit ε un réel strictement positif donné. D'après la question précédente, il existe un entier N tel que, pour tout entier n supérieur ou égal à N, le rapport b_n/a_n est encadré par $\lambda - \varepsilon$ et $\lambda + \varepsilon$:

$$\lambda - \varepsilon \le \frac{b_n}{a_n} \le \lambda + \varepsilon.$$

a. Démontrer que, lorsque le réel x tend vers $3-\sqrt{8}$ par valeurs inférieures, les deux fonctions f et g croissent vers l'infini.

Soient f_N , g_N , U_N et V_N les fonctions définies par les relations suivantes :

$$f_N(x) = \sum_{n=0}^N a_n x^n, \ g_N(x) = \sum_{n=0}^N b_n x^n, \ U_N(x) = f(x) - f_N(x), \ V_N(x) = g(x) - g_N(x).$$

b. Démontrer, lorsque le réel x est compris entre 0 et $3-\sqrt{8}$ $(x \in [0, 3-\sqrt{8}[), 1]$ l'encadrement suivant :

$$\lambda - \varepsilon \le \frac{V_N(x)}{U_N(x)} \le \lambda + \varepsilon.$$

c. Démontrer que, pour tout entier naturel N donné, il existe une constante A qui majore les deux fonctions f_N et g_N sur le segment $\left[0,\ 3-\sqrt{8}\ \right]$.

En déduire que la fonction $x \mapsto g(x)/f(x)$ a pour limite λ lorsque le réel x tend vers $3-\sqrt{8}$ par valeurs inférieures.

d. Déterminer le réel λ en admettant la relation ci-dessous :

$$\int_0^{3-\sqrt{8}} \frac{dx}{\sqrt{1-6x+x^2}} = \frac{\ln 2}{2}.$$

7. Un équivalent du réel a_n à l'infini :

Soit α un réel strictement positif donné ; soit $(v_n)_{n\in\mathbb{N}}$ la suite des réels définis par la relation suivante :

$$v_n = n^{\alpha}.a_n.$$

a. Démontrer qu'il est possible de choisir le réel α et deux suites $(A_n)_{n\geq 1}$ et $(B_n)_{n\geq 1}$, qui ont chacune, lorsque l'entier n croît vers l'infini, une limite finie, tels que la suite $(v_n)_{n\in\mathbb{N}}$ vérifie, pour tout entier n supérieur ou égal à 1, la relation de récurrence suivante

$$v_{n+1} - 6 v_n + v_{n-1} = \frac{1}{n^2} (A_n \cdot v_n + B_n \cdot v_{n-1}).$$

b. Soit $(w_n)_{n=0,1,2,...}$ la suite qui vérifie les relations suivantes

$$w_0 = 0$$
, $w_1 = 3$, $\forall n \ge 1$, $w_{n+1} - 6 w_n + w_{n-1} = 0$.

Déterminer les réels w_n ; en déduire un infiniment grand équivalent à w_n à l'infini.

c. En admettant que les deux réels v_n et w_n sont équivalents à l'infini, en déduire un infiniment grand équivalent à a_n lorsque l'entier n croît indéfiniment.

8. Le réel ln 2 n'est pas rationnel :

Soit *u* le réel défini par la relation :

$$u = \ln(3 + \sqrt{8}).$$

a. Démontrer l'existence d'un entier N_1 et d'une constante positive K_1 , tels que, pour tout entier n supérieur ou égal à N_1 , il vienne :

$$\frac{1}{2}K_1\frac{e^{n\,u}}{\sqrt{n}}\leq a_n\leq 2\,K_1\frac{e^{n\,u}}{\sqrt{n}}.$$

b. A l'aide de la majoration démontrée à la question 5.d, établir qu'étant donné un réel a strictement compris entre 0 et 2 (0 < a < 2), il existe une constante K_2 , telle que, pour tout entier n supérieur ou égal à N_1 , l'encadrement ci-dessous a lieu :

$$0 \leq \lambda - \frac{b_n}{a_n} \leq K_2 e^{-a n u}.$$

c. Il est admis que le nombre N(n) des nombres premiers inférieurs ou égaux à un entier n donné est un infiniment grand équivalent à $\frac{n}{\ln n}$:

$$N(n) \sim \frac{n}{\ln n}$$
.

En déduire qu'il existe un entier N_2 tel que, pour tout entier n supérieur ou égal à N_2 ($n \ge N_2$), la relation ci-dessous ait lieu.

$$d_n < e^{1,1.n}$$

d. Soient p_n et q_n les entiers (premiers entre eux) définis par les relations suivantes :

$$p_n = d_n.b_n$$
 ; $q_n = d_n.a_n$.

Démontrer l'existence d'un réel r, strictement positif, d'une constante K_3 et d'un entier N_3 tels que, pour tout entier n supérieur ou égal à N_3 , l'encadrement ci-dessous ait lieu.

$$0 \leq \lambda - \frac{p_n}{q_n} \leq \frac{K_3}{(q_n)^{r+1}}.$$

Le résultat ci-dessous est admis :

$$0,61 < \frac{u}{u+1,1} < 0,62.$$

e. Démontrer que, si λ est rationnel, il existe une constante L, strictement positive, ne dépendant que du rationnel λ , pour laquelle l'inégalité ci-dessous est vérifiée.

$$\left|\lambda-\frac{p_n}{q_n}\right|\geq \frac{L}{q_n}.$$

f. En déduire que le réel ln 2 est irrationnel.

FIN DU PROBLÈME