Gradient Domain Imaging

Final Presentation

Submitted by:

Dolniak, Oliver / 220678 / Informatik DIP Klaghstan, Merza / 323179 / Informatik MA

Tutor: Mathias Eitz

TU Berlin
Department of Computer Graphics
Winter Semester 2010-2011

Achievement

- Demo ..
 - Balloon
 - House

What's going on !!

 Simply: replace N pixels from the target, with N processed ones from source

In Details ...

- f* known function in target in domain S
- f unknown function in target in domain Ω
- g source
- ∂Ω boundary

 Solution idea is to find f whose gradient is the closest to G; gradient of source g .. mathematically formulated :

$$min \iint || \nabla f - G||^2$$

Whose solution is the solution of Poisson equation

$$\Delta f = div G = \Delta g$$
 (*)

Poisson Equation

- *div G* is the Divergence
 - Property of gradient field
 - $div G = \partial Gx/\partial x + \partial Gy/\partial y$
- ∆ is the Laplacian operator

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- Condition: Dirichlit-boundary: known pixels at boundaries
 - Fulfilled
 - Pixels at boundaries are read from target

Linear Equation

Applying to (*) equation

$$-4 f(x,y) + f(x-1,y) + f(x,y-1) + f(x+1,y) + f(x,y+1) = div G$$

We turn into a classical linear equation

$$Ax = b$$

- # Unknowns = N pixels
- A: NxN matrix , b: N-elements vector
- Problem
 - Build A
 - Build b

Vector b

- Suppose Pi denotes the unknown pixel (i); i = 1.. N
- And Si denotes the corresponding pixel (i) in source image
- b[i] = div (G(Si)) + Neighbor(Pi)
- Where Neighbor(Pi) is subset of the 4 neighbors of Pi (top, bottom, right, left) that belongs to the boundary.

Its value is read from target.

Matrix A

- First, we build an index for pixels under mask
 - Numerating pixels

Matrix A

- Then we build an NxN matrix A as follows:
 for each pixel denoted by row number
 - Put -4 in its column
 - Put 1 in columns referring to its neighbors

	1	2	3	4	5	6	7	8	9	 20
1	-4	1	0	1	0	0	0	0	0	 0
2	1	-4	0	0	1	0	0	0	0	 0
3	0	0	-4	1	0	0	0	1	0	 0
4	1	0	1	-4	1	0	0	0	1	 0
20	0	0	0	0	0	0	0	0	0	 -4

So, we get a symmetric matrix with diagonal = -4

Matrix A

- Problem, A is huge
- Usually number of pixels to be processed is about 30,000
 => A: 30,000 x 30,000 = 900,000,000 elements
- How to store and deal with it ?!
- Notice that A is a sparse matrix
 - populated primarily with zeros
- Benefit from sparse notation in Matlab!
 - Sparse matrix is stored using Coordinated-list compression method

Coordinated List

- Represent a sparse matrix (A) with 3 vectors referring to nonzero elements
 - Row: row index
 - Column : column index
 - Value: value at the index A(row, column)
- Example :

$$Col = [1, 2, 4, 1, 2, ...]$$

	1	2	3	4	5	6	 20
1	-4	1	0	1	0	0	 0
2	1	-4	0	0	1	0	 0
20	0	0	0	0	0	0	 -4

Number of non-zero elements = O(5xN) : pixel itself + 4 neighbors
 => store 3x5xN instead of NxN

Equation Solve

 Once A and b are there, x can be easily computed

$$x_k = A \setminus b_k$$
; $k = R$, G and B

 Combine the 3 channels and re-arrange the vector into mask-form

Thank you!

