Logische Verknüpfungen

Für N eingänge hat man 2^N Eingangskombinationen. Elementare Logische Funktionen: NOT, AND, OR, NAND, NOR, XOR, XNOR

Zahlensysteme

Dezimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	С
13	1101	D
14	1110	Е
15	1111	F

LSB: Least Significant Bit - z.B.: 2^0

Nibble: Gruppe von 4 Bit

Byte: Gruppe von 8 Bit (2Nibble)

Word: Gruppe von mehr als 8 Bit (Meisstens 16Bit)

DWord: Double Word: oft eine Gruppe von 32 Bit

Bsp: $1011 \ 1100 \ 0010 \ (BIN) = BC2 \ (HEX)$

 $101\ 111\ 000\ 010\ (BIN) = 5702\ (OCTAL)$

Divisionsmethode:

47 b10 = 101111 b2

47: 2 = 23 r1 LSB

23: 2 = 11 r111: 2 = 5 r1

11 . 2 - 0 11

5: 2 = 2 r1

2:2=1 r0

1: 2 = 0 r1 MSB

1

Schaltalgebra

Funktion	NOR	NAND
NOT	$x\overline{\vee}x$	x NAND x
OR	$(x\overline{\vee}y)\overline{\vee}(x\overline{\vee}y)$	(x NAND x) NAND (y NAND y)
AND	$(x\overline{\vee}x)\overline{\vee}(y\overline{\vee}y)$	(x NAND y) NAND (x NAND y)

Vereinfachungen

- Kommutativgesetze
 - A & B = B & A
 - A # B = B # A
- $\bullet \ \ Assoziativge setze$
 - (A & B) & C = A & (B & C)
 - (A # B) # C = A # (B # C)
- Distributivgesetze
 - (A # B) & C = (A & C) # (B & C)
 - (A & B) # C = (A # C) & (B # C)
- Vereinfachungen
 - A # (A & B) = A

- A & (A # B) = A

- A # (!A & B) = A # B

- A & (!A # B) = A & B

Disjunktive Normalform

 \bullet OR Verknüpfung von AND Blöcken für K=1

• Jeder AND-Block ist ein MINTERM

• Die DNF K ist eine OR-Verknüpfung aller guten MINTERME (gut = Wahrheitstabelle 1)

Für die Darstellung mit NAND anstelle von OR:

Das DeMorgan Theorem anwenden: K = !(!K) und dann weiter vereinfachen.

Konjunktive Normalform

• AND Verknüpfung von OR Blöcken

• Herstellen durch DNF von K=0, dann DeMorgan Theorem anwenden

• Jeder OR-Block ist ein MAXTERM, der einer Zeile in der Wahrheitstabelle entspricht, negiert, wenn in der Wahrheitstabelle =1, direkt falls WT=0.

Multiplexer:

Art von Drehschalter, umschalten zwischen verschiedenen Eingängen

Vorzeichenlose und Vorzeichenbehaftete Zahlen

Тур	min	-2	-1	0	1	2	max
Unsigned	-	-	-	0000	0001	0010	1111 (15)
One's Complement	1000 (-7)	1101	1110	0000, 1111	0001	0010	0111 (7)
Two's Complement	1000 (-8)	1110	1111	0000	0001	0010	0111 (7)
Sign Magnitude	1111 (-7)	1010	1001	0000, 1000	0001	0010	0111 (7)

CF: Carry Flag: Übertrag beim Addieren

OF: Overflow Flag: Über oder Unterlaufen

Addition und Subtraktion

Oper	anden	I	Addition		Subtraktion					
op1	op2	op1+op2	carry	overflow	op1-op2	borrow	overflow			
6C	97	03	1	0			1			
76	33	A9	1	1	43	0	0			

Addition:

	0	1	1	0	1	1	0	0			0	1	1	1	0	1	1	0]	
. L	1	0	0	1	0	1	1	1	Carry	Overflow	0	0	1	1	0	0	1	1	Carry	Overflow
. [1	1	1	1	1	-	-	-	1	1xor1 = 0	1	1	1	-	1	1	-	-	0	0xor 1 = 0
	0	0	0	0	0	0	1	1			1	0	1	0	1	0	0	1		