

Análisis de señales Examen de segundo corte

Escuela de Ciencias exactas e Ingeniería Código: SA2018IIA_EXA02

Profesor: Marco Teran

Deadline: 25 de octubre de 2018

- 1. (0.5 points) Responda la pregunta teórica asignada (sea claro y conciso, pero que no falte nada.)
- 2. Para la siguiente secuencia:

Name:

$$s[n] = \frac{1}{2}\cos^2\left(\frac{\pi}{5}n\right)$$

- (a) (0.5 points) Dibujar la señal, encontrar su periodo fundamental N y su frecuencia fundamental Ω .
- (b) (3.5 points) Determinar la representación de la Serie de Fourier de tiempo discreto (**DTFS**). La expresión para los coeficientes de Fourier deben estar totalmente simplificados y expresados en función de k.
- (c) (0.5 points) Encontrar el valor de c_0 y c_{-1} .

Formulas			
Serie de Fourier	Tiempo (variable independiente)		
	Tiempo continuo	Tiempo discreto	
Exponencial compleja:			
	$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-\omega_k t} dt$	$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-\Omega_k n}$	
	$x(t) = \sum_{k=-\infty}^{\langle T \rangle} c_k e^{\omega_k t}$	$x[n] = \sum_{n = \langle N \rangle} c_k e^{\Omega_k n}$	
Trignométrica:	$a_k = \frac{2}{T} \int_{\infty} x(t) \cos(\omega_k t) dt$		
	$b_k = \frac{2}{T} \int_{\langle T \rangle}^{\langle T \rangle} x(t) \sin(\omega_k t) dt$		
	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$		

Análisis de señales Examen de segundo corte

Escuela de Ciencias exactas e Ingeniería Código: SA2018IIA_EXA02

	Profesor: Marco Teran
Name:	Deadline: 25 de octubre de 2018

- 1. (0.5 points) Responda la pregunta teórica asignada (sea claro y conciso, pero que no falte nada.)
- 2. Para la siguiente señal periódica de tiempo continuo:

$$x(t) = |-0.5t|$$
, entre $t \in [-4, 4]$

- (a) (0.5 points) Dibujar la señal peiodica, encontrar su periodo fundamental T y la frecuencia angular ω .
- (b) (3.5 points) Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) utilizando exclusivamente Serie trigonométrica de Fourier. La expresión para los coeficientes de Fourier deben estar totalmente simplificados y expresados en función de k.
- (c) (0.5 points) Encontrar los coeficientes para valores de k=0 y k=2.

Formulas			
Serie de Fourier	Tiempo (variable independiente)		
	Tiempo continuo	Tiempo discreto	
Exponencial compleja:			
	$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-\omega_k t} dt$	$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-\Omega_k n}$	
	$x(t) = \sum_{k = -\infty}^{\langle T \rangle} c_k e^{\omega_k t}$	$x[n] = \sum_{n = \langle N \rangle} c_k e^{\Omega_k n}$	
Trignométrica:	$a_k = \frac{2}{T} \int x(t) \cos(\omega_k t) dt$		
	$b_k = rac{2}{T} \int\limits_{\langle T \rangle}^{\langle T \rangle} x(t) \sin{(\omega_k t)} \mathrm{d}t$		
	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$		

Análisis de señales Examen de segundo corte

Escuela de Ciencias exactas e Ingeniería Código: SA2018IIA_EXA02

Name: _____ Deadline: 25 de octubre de 2018

- 1. (0.5 points) Responda la pregunta teórica asignada (sea claro y conciso, pero que no falte nada.)
- 2. Para la siguiente señal periódica de tiempo continuo:

- (a) (0.5 points) Encontrar el periodo fundamental T y la frecuencia angular ω .
- (b) (3.5 points) Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) utilizando exclusivamente Serie de Fourier de exponencial compleja. La expresión para los coeficientes de Fourier deben estar totalmente simplificados y expresados en función de k.
- (c) (0.5 points) Encontrar los coeficientes para valores de k = 0 y k = -3.

<u>Formulas</u>			
Serie de Fourier	Tiempo (variable independiente)		
	Tiempo continuo	Tiempo discreto	
Exponencial compleja:			
	$c_k = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-\omega_k t} dt$	$c_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-\Omega_k n}$	
	$x(t) = \sum_{k=-\infty}^{\langle T \rangle} c_k e^{\omega_k t}$	$x[n] = \sum_{n = \langle N \rangle} c_k e^{\Omega_k n}$	
Trignométrica:	2 (
	$a_k = \frac{2}{T} \int x(t) \cos(\omega_k t) dt$		
	$b_k = \frac{2}{T} \int_{\langle T \rangle}^{\langle T \rangle} x(t) \sin(\omega_k t) dt$		
	$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t)$		