

All these steps use the λ 's and the x's. This section solves the constant coefficient problems that turn into linear algebra. It clarifies these simplest but most important differential equations—whose solution is completely based on growth factors $e^{\lambda t}$.

Second Order Equations

The most important equation in mechanics is my'' + by' + ky = 0. The first term is the mass m times the acceleration a = y''. This term ma balances the force F (that is Newton's Law). The force includes the damping -by' and the elastic force -ky, proportional to distance moved. This is a second-order equation because it contains the second derivative $y'' = d^2y/dt^2$. It is still linear with constant coefficients m, b, k.

In a differential equations course, the method of solution is to substitute $y=e^{\lambda t}$. Each derivative of y brings down a factor λ . We want $y=e^{\lambda t}$ to solve the equation:

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0 \quad \text{becomes} \quad (m\lambda^2 + b\lambda + k)e^{\lambda t} = 0.$$
 (8)

Everything depends on $m\lambda^2 + b\lambda + k = 0$. This equation for λ has two roots λ_1 and λ_2 . Then the equation for y has two pure solutions $y_1 = e^{\lambda_1 t}$ and $y_2 = e^{\lambda_2 t}$. Their combinations $c_1 y_1 + c_2 y_2$ give the complete solution unless $\lambda_1 = \lambda_2$.

In a linear algebra course we expect matrices and eigenvalues. Therefore we turn the scalar equation (with y'') into a vector equation for y and y': first derivative only. Suppose the mass is m=1. Two equations for $\mathbf{u}=(y,y')$ give $d\mathbf{u}/dt=A\mathbf{u}$:

$$\frac{dy/dt = y'}{dy'/dt = -ky - by'} \quad \text{converts to} \quad \frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ -k & -b \end{bmatrix} \begin{bmatrix} y \\ y' \end{bmatrix} = Au. \quad (9)$$

The first equation dy/dt = y' is trivial (but true). The second is equation (8) connecting y'' to y' and y. Together they connect u' to u. So we solve u' = Au by eigenvalues of A:

$$A - \lambda I = egin{bmatrix} -\lambda & 1 \ -k & -b - \lambda \end{bmatrix}$$
 has determinant $\lambda^2 + b\lambda + k = 0$.

The equation for the λ 's is the same as (8)! It is still $\lambda^2 + b\lambda + k = 0$, since m = 1. The roots λ_1 and λ_2 are now *eigenvalues of A*. The eigenvectors and the solution are

$$m{x}_1 = egin{bmatrix} 1 \ \lambda_1 \end{bmatrix} \qquad m{x}_2 = egin{bmatrix} 1 \ \lambda_2 \end{bmatrix} \qquad m{u}(t) = c_1 e^{\lambda_1 t} egin{bmatrix} 1 \ \lambda_1 \end{bmatrix} + c_2 e^{\lambda_2 t} egin{bmatrix} 1 \ \lambda_2 \end{bmatrix}.$$

The first component of u(t) has $y=c_1e^{\lambda_1t}+c_2e^{\lambda_2t}$ —the same solution as before. It can't be anything else. In the second component of u(t) you see the velocity dy/dt. The vector problem is completely consistent with the scalar problem. The 2 by 2 matrix A is called a *companion matrix*—a companion to the second order equation with y''.