The LNM Institute of Information Technology Jaipur, Rajasthan MATH-III

Assignment #1

1. Let $z, w \in \mathbb{C}$. Show that

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$
, (b) $\overline{zw} = \overline{zw}$, (c) $\overline{\overline{z}} = z$, (d) $|\overline{z}| = |z|$ and (e) $|\overline{zw}| = |z||w|$.

2. Show that

(a)
$$|z + w|^2 = |z|^2 + |w|^2 + 2Re(z\overline{w})$$

(b)
$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$$

(c) |z+w|=|z|+|w| if and only if either zw=0 or z=cw for some positive real number c.

3. Give a geometric description of the following sets:

(a)
$$\{z \in \mathbb{C} : |z - i| > |z + i|\}$$
 (b) $\{z \in \mathbb{C} : |z - i| + |z + i| = 2\}$

4. Determine the values of the following:

(a)
$$(1+i)^{20} - (1-i)^{20}$$
.

(b)
$$\cos \frac{1}{4}\pi + i \cos \frac{3}{4}\pi + \dots + i^n \cos \frac{(2n+1)}{4}\pi + \dots + i^{40} \cos \frac{81}{4}\pi$$
.

5. Let z be a non zero complex number and n a positive integer. If $z = r(\cos \theta + i \sin \theta)$ show that $z^{-n} = r^{-n}(\cos n\theta - i\sin \theta)$.

6. Let α be any of the n^{th} roots of 1 except 1. Show that $1 + \alpha + \alpha^2 + \cdots + \alpha^n = 0$. Find all the possible values of i^i . Express your answer in the form x + iy.

7. Find the roots of each of the following in the form x + iy. Indicate the principal root.

(a)
$$\sqrt{2i}$$
 (b) $(-1)^{\frac{1}{3}}$ and (c) $(-16)^{\frac{1}{4}}$.

8. Find all the values in $[0, 2\pi)$ where $\lim_{r\to\infty} e^{re^{i\theta}}$ exists.

9. Find the roots of $z^4 + 4 = 0$. Use these roots to factor $z^4 + 4$ as a product of two quadratics with real coefficients.

10. Discuss the convergence of the following sequences: (a)
$$z^n$$
 (b) $\frac{z^n}{n!}$ (c) $i^n \sin \frac{n\pi}{4}$ and (d) $\frac{1}{n} + i^n$.

11. Discuss the behavior of $e^{1/z}$ as z approaches 0.

12. Verify if each of the following functions can be given a value at z=0 so that they

become continuous. (a)
$$f(z) = \frac{|z|^2}{z}$$
, (b) $f(z) = \frac{z+1}{|z|-1}$ (c) $f(z) = \frac{\overline{z}}{z}$.

13. Let $f(z) = z^3, z_1 = 1$ and $z_2 = i$. Show that there exists no c on the line segment joining z_1 and z_2 such that $\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)$. What can you infer from this?

14. Determine whether the following regions in C are domains:

(a)
$$Re(z) > 1$$
 (b) $0 \le \text{Arg } z \le \frac{\pi}{4}$ (c) $Im(z) = 1$

(d)
$$|z-2+i| < 1$$
 (e) $|2z+3| > 4$