差分方法 II

lab1

Wide stencil finite difference method 算例

陈伟

1901110037

2020年5月20日

目录

1	问题	描述														2
2	求解	方法														2
	2.1	Wide	stencil finite	differenc	e met	thod	 	 		 		 				2
	2.2	Explic	it solution m	ethod.			 	 		 		 				3
	2.3	Newto	on's method				 	 	•	 						3
3	算法															4
	3.1	构建 1	$F[u] \ldots \ldots$				 	 		 		 				4
		3.1.1	$G_{ heta}$ 算法				 	 		 		 				4
		3.1.2	$\Delta_e u_h$ 算法 .				 	 		 		 				4
	3.2	迭代法	宗求解 $F[u] =$	f			 	 		 						5
		3.2.1	$\nabla_u \Delta_e u_h$ 算	法			 	 		 						5
		3.2.2	$\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u]$	<i>u_h</i>] 算法			 	 		 						6
		3.2.3	$\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}$	$[u_h]$ 算法			 	 	•	 						7
4	数值	算例														8
5	代码	说明														11

1 问题描述

用宽模版的有限差分法求解 2D 的 Monge-Ampère 方程:

$$\begin{cases} \det D^2 u = f & \text{in } \Omega \subset \mathbb{R}^2 \\ u = g & \text{on } \partial \Omega \end{cases}$$

其中计算区域为单位正方形, 也即是 $\Omega = (0,1)^2$. 令 $\boldsymbol{x} = (x,y)^T, \boldsymbol{x}_0 = (0.5,05)$. 对于如下三个例子进行数值实验:

• Smooth and radial example:

$$u(\mathbf{x}) = \exp(|\mathbf{x}|^2/2), \quad f(\mathbf{x}) = (1+|\mathbf{x})|^2 \exp(|\mathbf{x}|^2).$$

• C^1 example:

$$u(\mathbf{x}) = \frac{1}{2} \left((|\mathbf{x} - \mathbf{x}_0| - 0.2)^+ \right)^2, \quad f(\mathbf{x}) = \left(1 - \frac{0.2}{|\mathbf{x} - \mathbf{x}_0|} \right)^+.$$

• Twice differentiable in the interior domain, but has unbounded gradient near the boundary point (1, 1):

$$u(x) = -\sqrt{2 - |x|^2}, \quad f(x) = 2(2 - |x|^2)^{-2}.$$

边界 g(x) 可以通过真解获得. 分别用 explicit solution method 和 Newton's method 来解这个离散的非线性方程. 报告中应包含不同模版的 L^{∞} 误差.

2 求解方法

2.1 Wide stencil finite difference method

�

$$\mathrm{MA}[\varphi]\left(x_{0}\right) = \min_{\left(w_{1}, \cdots, w_{d}\right) \in V} \left[\prod_{i=1}^{d} \left(\frac{\partial^{2} \varphi}{\partial w_{i}^{2}} \left(x_{0}\right) \right)^{+} - \sum_{i=1}^{d} \left(\frac{\partial^{2} \varphi}{\partial w_{i}^{2}} \left(x_{0}\right) \right)^{-} \right]$$

 $\Phi \varphi$ 是凸函数下有:

$$MA[\varphi] = \det D^2 \varphi$$

对于凸区域 Ω , 以及网格剖分, 给定 $x_h \in \Omega$, 以及方向 e, 有 $\rho_{\pm} \in (0,1]$ 使得 $x_h \pm \rho_{\pm} h e \in \partial \Omega \cup \bar{\Omega}_h$. 当 $x_h \pm h e$ 落在 Ω_h 内部网格点时, ρ_{\pm} 均为 1; 当落在外边界时, ρ_{\pm} 为使得 $x_h \pm \rho_{\pm} h e$ 收缩回边界的 比例. 令

$$\Delta_e u_h(x_h) = \frac{2}{(\rho_+ + \rho_-)|e|^2 h^2} \left[\frac{u_h(x_h + \rho_+ he) - u_h(x_h)}{\rho_+} - \frac{u_h(x_h) - u_h(x_h - \rho_- he)}{\rho_-} \right]$$
(1)

以及 $G_{\theta} \subset (\mathbb{Z}^d)^d$ (参数 $d\theta$) 为 \mathbb{R}^d 上的正交基组全体 V 的离散. 并定义:

$$\mathrm{MA}_{h,\theta}^{WS}[u_h]\left(x_h\right) \triangleq \min_{\left(v_1,\cdots,v_d\right) \in G_{\theta}} \prod_{i=1}^{d} \left(\Delta_{v_i} u_h\left(x_n\right)\right)^{+}$$

对于 Monge-Ampère 方程的宽模版法也即是:

$$\begin{cases} \operatorname{MA}_{h,\theta}^{WS} \left[u_h \right] (x_h) = f \left(x_h \right) & \forall x_h \in \Omega_n \\ u_h \left(x_h \right) = g \left(x_h \right) & \forall x_h \in \partial \Omega_h \end{cases}$$

对于给定的参数 $\delta > 0$, 将上述 $\mathrm{MA}_{h.\theta}^{WS}$ 换成

$$\mathrm{MA}_{h,\theta,\delta}^{WS}\left[u_{h}\right]\left(x_{h}\right)\triangleq\min_{\left(v_{1},\cdots,v_{d}\right)\in G_{\theta}}^{\delta}\left[\prod_{i=1}^{d}\left(\Delta_{v_{i}}u_{h}\left(x_{h}\right)\right)^{+,\delta}\right]$$

也即得到正则化版本. 总之, 我们要求解方程组 F[u]=f, 其中 F 为 $\mathrm{MA}_{h,\theta}^{WS}$ 或者 $\mathrm{MA}_{h,\theta,\delta}^{WS}$, 用以下两种迭代法来求解.

2.2 Explicit solution method

迭代格式为

$$u^{n+1} = u^n + dt(F[u] - f)$$

其中 $dt \sim \mathcal{O}(h^2)$,2D case 的一个选择为:

$$dt = \frac{h^2}{2} \left(\max_{x_h} \max_{(v_1, v_2) \in G_{\theta}} \left[\left(\Delta_{v_1} u^n (x_h) \right)^+ + \left(\Delta_{v_2} u^n (x_h) \right)^+ \right] \right)^{-1}$$

2.3 Newton's method

迭代格式为:

$$u^{n+1} = u^n - \alpha v^n$$

其中 $0 < \alpha < 1$,为使得残量 $||F(u^n) - f||$ 下降的参数. 矫正项 v^n 为满足:

$$\nabla_u F[u^n] v^n = F[u^n] - f$$

3 算法

观察以上方法,不难发现主要分为两部分:

- 1. F[u] 的建立;
- 2. 迭代法求解 F[u] = f.

下面我们分两部分来构造上述两部分.

3.1 构建 F[u]

无论 F 为 $\mathrm{MA}_{h,\theta}^{WS}$ 或者 $\mathrm{MA}_{h,\theta,\delta}^{WS}$, 其中最主要的部分都是:

- G_θ 的构建;
- 对于给定的方向 e, 以及 $x_h \in \Omega_h$, $\Delta_e u_h(x_h)$ 的构建;

然后再根据 $MA_{h,\theta}^{WS}$ 和 $MA_{h,\theta,\delta}^{WS}$ 的方式去构建即可.

3.1.1 G_{θ} 算法

对于给定的模版宽度 WideN(WideN = 1,2,3,···), 函数 G_{θ} (WideN) 输出模版宽度为 WideN 的正交基中方向在一象限的方向的集合 $\{e \in \mathbb{Z}^2 : e_1, e_2 = 0, 1, 2, \cdots, N; |e| \neq 0\}$, 而且一旦 e 定下来了, 则 $e^{\perp} = (-e_2, e_1)$ 也就给定了. 下面是 G_{θ} 的算法.

算法 1 计算 G_{θ}

```
输入 WideN l=0; For i=1:N For j=0:N-1 l=l+1; k=\gcd(i,j); G_{\theta}(l,1)=i/k, G_{\theta}(l,2)=j/k; end end 删去 G_{\theta} 中以一行为一项来看重复的项输出 G_{\theta}
```

3.1.2 $\Delta_e u_h$ 算法

对于给定的方向 e 以及所有内点值 u_h ,我们要计算对应内点的 $\Delta_e u_h$ 的值. 对于 $x_h \in \Omega_h$,我们先找 $x_{h,\pm} = x_h \pm he$,若 $x_{h,\pm} \in \Omega_h$,则 $\rho_{\pm} = 1$,若有 $x_{\pm} \notin \Omega_h$,则根据边界比例来缩小 ρ_{\pm} ,使得

1901110037

 $x_{h,\pm} = x_h \pm \rho_{\pm} he \in \partial\Omega$. 最后再根据(1), 即可得到 $\Delta_e u_h$. 我们这里给定 u_h 为原来 2D 内点数据按列拉升之后得到的一维数组, 这样我们可以根据 $x_{h,\pm}$ 的是否位于该数组中来判断是否越出边界, 下面给出该算法.(由于后面用 Netwon 法时候可能每个点的方向可能不一样, 故这里我们的 e 可能是(1,2) 的数组, 也可能是(Nu,2) 的数组, 其中 Nu 为 u_h 的长度.)

算法 2 计算 $\Delta_e u_h$

输入 u_h, e, h

得到 u_h 的长度 Nu

IF size(e,1)==1

 $e = \operatorname{repmat}(e, \operatorname{size}(u_h));$

For s=1:Nu

 $u_{h,s}$ 对应二维数组的横纵指标 i_s, j_s ; 令 $\rho_{s,\pm} = 1$.

计算 $u_{h,s}$ 依赖值 $u_{h,s,\pm}$ 的横纵指标

$$i_{s,\pm} = i_s \pm \rho_{s,\pm} e(s,1), \qquad j_{s,\pm} = j_s \pm \rho_{s,\pm} e(s,2)$$

根据 $i_{s,\pm}, j_{s,\pm}$ 来得到按列拉升后 $u_{h,s,\pm}$ 的位置 s_{\pm} ;

如果 s_{\pm} 均是 1: Nu 中的某个整数, 则令: $u_{h,\pm,s} = u_{h,s_{\pm}}$;

否则若 s_+ 超标, 则根据坐标值 $x_{s_+} = (i_{s,+}h, j_{s,+}h)$ 以及 $\partial\Omega$ 来修正收缩比例 ρ_+ ,使得重新得到的 $x_{s_+} \in \partial\Omega$,再令 $u_{h,+,s} = g(x_{s_+})$,若 s_- 超标,同理处理.

计算:

$$\Delta_{e_s} u_{h,s} = \frac{2}{(\rho_{+,s} + \rho_{-,s})|e_s|^2 h^2} \left(\frac{u_{h,+,s} - u_{h,s}}{\rho_{+,s}} - \frac{u_{h,s} - u_{h,-,s}}{\rho_{-,s}} \right)$$

end

输出 $\Delta_e u_h$

这样我们得到了模版 G_{θ} 与 $\Delta_e u_h$ 的算法, 剩下的再根据 $\mathrm{MA}_{h,\theta}^{WS}$ 和 $\mathrm{MA}_{h,\theta,\delta}^{WS}$ 的方式即可构建得到对应的 F[u]

3.2 迭代法求解 F[u] = f

Explicit solution method 方法按照对应的格式来即可, 我们主要讨论 Newton's method. 其中困难的一步是 $\nabla_u F[u]$ 矩阵的构建. 再进一步,两种方法均会用到的是 $\nabla_u \Delta_e u_h$. 对于不同的点 x_h , 对应的 e 方向可能也不同.

3.2.1 $\nabla_u \Delta_e u_h$ 算法

对于给定的点 x_h , 我们求 $\nabla_u \Delta_e u_h(x_h)$, 而由(1), 我们需要知道对应的 ρ_{\pm} , 以及 $x_h \pm \rho_{\pm} he$ 的位置. 接算法 2, 我们有:

算法 3 计算 $\nabla_u \Delta_e u_h$

输入 u_h, e, h

得到 u_h 的长度 Nu

IF size(e,1)==1

 $e = \operatorname{repmat}(e, \operatorname{size}(u_h));$

For s=1:Nu

 $u_{h,s}$ 对应二维数组的横纵指标 i_s, j_s ; 令 $\rho_{s,\pm} = 1$.

计算 $u_{h,s}$ 依赖值 $u_{h,s,\pm}$ 的横纵指标

$$i_{s,\pm} = i_s \pm \rho_{s,\pm} e(s,1), \qquad j_{s,\pm} = j_s \pm \rho_{s,\pm} e(s,2)$$

根据 $i_{s,\pm}, j_{s,\pm}$ 来得到按列拉升后 $u_{h,s,\pm}$ 的位置 s_{\pm} ;

如果 s_{\pm} 均是 1: Nu 中的某个整数, 则令: $u_{h,\pm,s} = u_{h,s_{\pm}}$;

否则若 s_+ 超标, 则根据坐标值 $x_{s_+}=(i_{s,+}h,j_{s,+}h)$ 以及 $\partial\Omega$ 来修正收缩比例 ρ_+ ,使得重新得到的 $x_{s_+}\in\partial\Omega$,再令 $u_{h,+,s}=g(x_{s_+})$,若 s_- 超标, 同理处理.

计算:

$$\nabla_u \Delta_e u_h(s,s) = -\frac{2}{(\rho_{+,s} + \rho_{-,s})|e_s|^2 h^2} \left(\frac{1}{\rho_{+,s}} + \frac{1}{\rho_{-,s}}\right)$$

若 $1 \leqslant s_+ \leqslant Nu$, 则

$$\nabla_u \Delta_e u_h(s, s_+) = -\frac{2}{(\rho_+ s_+ \rho_- s_-)|e_s|^2 h^2} \frac{1}{\rho_+ s_-}$$

若 $1 \leq s_- \leq Nu$, 则

$$\nabla_u \Delta_e u_h(s, s_-) = -\frac{2}{(\rho_{+,s} + \rho_{-,s})|e_s|^2 h^2} \frac{1}{\rho_{-,s}}$$

end

输出 $\nabla_u \Delta_e u_h$

这样我们就可以分别得到 $\mathrm{MA}_{h,\theta}^{WS}$ 和 $\mathrm{MA}_{h,\theta,\delta}^{WS}$ 的梯度矩阵

3.2.2 $\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h]$ 算法

用函数乘积的求导法则我们有:

$$abla_u \operatorname{MA}_{h, heta}^{WS}[u_h] = \sum_{i=1}^d \left[\operatorname{\mathbf{diag}} \left(\prod_{s
eq i} \Delta_{v_s^*} u_h
ight)
abla_u \Delta_{v_i^*} u_h
ight]$$

算法 4 计算 $\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h]$

输入 u_h, G_θ, h

 $\diamondsuit \nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h] = 0.$

在计算 $\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h]$ 同时得到每个点的最小正交基 $v^* = (v_1^*, v_2^*, \dots, v_d^*)$.

For i = 1:d

调用算法 3, 输入 u_h, v_i^*, h , 得到对应的 $\nabla_u \Delta_{v_i^*} u_h$

更新

$$\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h] = \nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h] + \operatorname{\mathbf{diag}}\left(\prod_{s \neq i} \Delta_{v_s^*} u_h\right) \nabla_u \Delta_{v_i^*} u_h$$

end

输出 $\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h]$

这样我们就得到 $\nabla_u \operatorname{MA}_{h,\theta}^{WS}[u_h]$.

3.2.3 $\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h]$ 算法

由链式法则以及乘积的求导法则以及 $\mathrm{MA}_{h,\theta,\delta}^{WS}[u_h]$ 的表达式, 我们有:

$$\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h] = \partial_x \min^{\delta}(x,y) \nabla_u x + \partial_y \min^{\delta}(x,y) \nabla_u y$$

其中

$$x = \prod_{i=1}^{d} (\Delta_{v_i} u_h)^{+,\delta}$$

$$y = \min_{(\hat{v}_1, \dots, \hat{v}_d) \in G_{\theta} \setminus (v_1, \dots, v_d)} \delta \left[\prod_{i=1}^{d} (\Delta_{v_i} u_h)^{+,\delta} \right]$$

不难发现 $\nabla_u y$ 可以递归计算. 所以主要是 $\nabla_u x$ 的计算. 有:

$$\nabla_u x = \sum_{i=1}^n \left[\mathbf{diag} \left(\prod_{s=\neq i} (\Delta_{v_s} u_h)^{+,\delta} \right) \nabla_u (\Delta_{v_i} u_h)^{+,\delta} \right]$$

而关于 $\nabla_u(\Delta_{v_i}u_h)^{+,\delta}$, 有

$$\nabla_u(\Delta_{v_i}u_h)^{+,\delta} = \frac{1}{2}\operatorname{\mathbf{diag}}\left(1 + \frac{\Delta_{v_i}u_h}{\sqrt{(\Delta_{v_i}u_h})^2 + \delta^2}\right)\nabla_u(\Delta_{v_i}u_h)$$

这样我们就得到了 $\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h]$ 的算法.

算法 5 计算 $\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h]$

输入 u_h, G_θ, h

得到 G_{θ} 中向量个数 L

$$\diamondsuit \nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h] = 0, \diamondsuit \nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h] = 0.$$

For l = 1:L

IF l==1

计算
$$\nabla_u \left(\prod_{i=1}^d (\nabla_{v_i^l} u_h)^{+,\delta} \right)$$
 并赋值给 $\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h]$ 计算 $\prod_{i=1}^d (\nabla_{v_i^l} u_h)^{+,\delta}$, 并赋值给 $\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h]$.

end

计算
$$\nabla_u \left(\prod_{i=1}^d (\nabla_{v_i^l} u_h)^{+,\delta} \right)$$
 与 $\prod_{i=1}^d (\nabla_{v_i^l} u_h)^{+,\delta}$, 更新

$$\begin{split} \nabla_{u} \operatorname{MA}_{h,\theta,\delta}^{WS}[u_{h}] &= \frac{1}{2} \operatorname{\mathbf{diag}} \left(1 - \frac{\operatorname{MA}_{h,\theta,\delta}^{WS}[u_{h}] - \prod_{i=1}^{d} (\nabla_{v_{i}^{l}} u_{h})^{+,\delta}}{\sqrt{(\operatorname{MA}_{h,\theta,\delta}^{WS}[u_{h}])^{2} + (\prod_{i=1}^{d} (\nabla_{v_{i}^{l}} u_{h})^{+,\delta})^{2} + \delta^{2}}} \right) \nabla_{u} \operatorname{MA}_{h,\theta,\delta}^{WS}[u_{h}]} \\ &+ \frac{1}{2} \operatorname{\mathbf{diag}} \left(1 - \frac{\prod_{i=1}^{d} (\nabla_{v_{i}^{l}} u_{h})^{+,\delta} - \operatorname{MA}_{h,\theta,\delta}^{WS}[u_{h}]}{\sqrt{(\operatorname{MA}_{h,\theta,\delta}^{WS}[u_{h}])^{2} + (\prod_{i=1}^{d} (\nabla_{v_{i}^{l}} u_{h})^{+,\delta})^{2} + \delta^{2}}} \right) \nabla_{u} \left[\prod_{i=1}^{d} (\nabla_{v_{i}^{l}} u_{h})^{+,\delta} \right] \end{split}$$

更新

$$\mathrm{MA}_{h,\theta,\delta}^{WS}[u_h] = \min^{\delta} \left(\prod_{i=1}^{d} (\nabla_{v_i^l} u_h)^{+,\delta}, \mathrm{MA}_{h,\theta,\delta}^{WS}[u_h] \right)$$

end

输出 $\nabla_u \operatorname{MA}_{h,\theta,\delta}^{WS}[u_h]$

这样,程序的主要部分就完成了.后面部分是一些数值算例.

数值算例 4

下面对三个例子分别用 Explicit solution method 和 Newton's method, 选取函数 $u_0(x,y) =$ $x^2 + y^2$ 的值为迭代初值, 取迭代终止条件为

$$||u^{n+1} - u^n||_{\infty} \le 1e - 8$$
 or 迭代次数 ≥ 5000

得到的结果如下.

取 h = 1/8, 1/16, 1/32, 模版宽度为 1, 2, 3, 4.

关于非正则的 Explicit solution method, 对于 Examlpe1, 很遗憾, 达迭代上限后也没达收敛精

度. 重新随机选取初值,结果也是如此。总之,需要很大的迭代步此方法才可能收敛. 对于正则的 Explicit solution method, 分别取 $\delta = 10, 1, 10^{-2}$, 结果如下

表 1: 正则化 Explicit solution method												
example1												
	wide\ h:	1,	/8	1/	16	1/32						
	,	迭代次数	误差	迭代次数	误差	迭代次数	误差					
$\delta = 10$	1	1495	1.18e + 00	5000	1.18e + 00	5000	9.97e-01					
o = 10	2	665	7.39e-01	3600	7.31e-01	5000	7.05e-01					
	3	390	4.26e-01	1965	4.18e-01	5000	4.14e-01					
	4	304	2.65e-01	1459	2.57e-01	5000	2.55 e-01					
	wide\ h:	1,	/8	1/	16	1/	32					
		迭代次数	误差	迭代次数	误差	迭代次数	误差					
$\delta = 10^{-2}$	1	476	3.55 e-03	2253	2.01e-03	5000	1.60 e-01					
0 - 10	2	485	1.69e-03	2197	9.94e-04	5000	4.90e-02					
	3	497	7.56e-03	2264	1.43e-03	5000	6.41e-02					
	4	536	1.52e-02	2316	3.29e-03	5000	7.57e-02					
			exar	nple2								
	wide\ h:	1,	/8	1/	16	1/32						
	,	迭代次数	误差	迭代次数	误差	迭代次数	误差					
2 10	1	1105	1.38e + 00	5000	1.38e + 00	5000	1.65e + 00					
$\delta = 10$	2	388	7.20e-01	3201	7.14e-01	5000	9.38e-01					
	3	171	3.33e-01	1405	3.28e-01	5000	4.60e-01					
	4	102	1.47e-01	838	1.42e-01	5000	1.42e-01					
	wide\ h:	1,	/8	1/	16	1/	32					
		迭代次数	误差	迭代次数	误差	迭代次数	误差					
$\delta = 10^{-2}$	1	5000	8.43e-01	5000	1.41e + 00	5000	1.72e + 00					
0 - 10	2	5000	7.89e-01	5000	1.37e + 00	5000	1.71e+00					
	3	5000	7.51e-01	5000	1.38e + 00	5000	1.71e+00					
	4	5000	7.43e-01	5000	1.37e + 00	5000	1.71e+00					
example3												
	wide\ h:	1,	/8	1/	16	1/	32					
	·	迭代次数	误差	迭代次数	误差	迭代次数	误差					
$\delta = 10$	1	4196	1.32e+00	5000	2.44e + 00	5000	2.27e + 00					
$\sigma = 10$	2	1724	7.55e-01	5000	1.74e + 00	5000	2.18e + 00					
	3	963	3.97e-01	5000	7.40e-01	5000	2.07e + 00					
	4	724	2.20e-01	5000	2.56 e-01	5000	1.99e+00					

可以看出,h 越小,解越不光滑,则对 $MA_{h,\theta,\delta}^{WS}$ 的正则要求越高,即是需要 δ 越大. 在第三个 例子中取 $\delta = 10$ 也不能在 5000 步内收敛, 同时 δ 越大, 收敛得到的数值解与真解的误差也就越大. 总的来说效果不理想。下面我们考虑 Netwon 法.

由于非正则化的 Netwon 法得到的梯度矩阵奇异性较大,初值只有落在真解的一个小区间内才收敛。故我们测试正则化的 Netwon 法,同时对应的正则化因子 δ 大时,梯度矩阵奇异性较小,但数值解与真解的误差较大,故我们可以先选取较大的 δ ,等用 Netwon 法收敛之后,减小 δ ,再用之前得到的数值解作为迭代初值,再用正则化的 Netwon 法迭代至解收敛,再减小 δ (如令 $\delta^{n+1} = \delta^n/2$),如此重复,直到 δ 充分小或者本次迭代收敛值和初值相差充分小即可。对于三个数值算例,分别取定 δ_{max} ,取收敛条件为:

$$\delta^n < 1e - 6 \text{ or } ||u^n - u^{n-1}||_{\infty} < 1e - 8$$

其中 u^n 为以 u^{n-1} 为初值, δ 取为 δ^n 的收敛结果.

表 2: 正则化 Explicit solution method

表 2: 正则化 Explicit solution method														
example1														
	wide\ h:	1/2	16	1/3	32	1/64								
		迭代次数	误差	迭代次数	误差	迭代次数	误差							
$\delta_{max} = 2$	1	171	2.03e-03	177	1.69e-03	180	1.61e-03							
$o_{max} = z$	2	179	1.07e-03	186	6.37e-04	190	4.92e-04							
	3	184	1.42e-03	192	4.27e-04	202	2.51e-04							
	4	183	3.27e-03	199	6.02e-04	217	2.09e-04							
example2														
	wide\ h:	1/	8	1/	16	1/32								
		迭代次数	误差	迭代次数	误差	迭代次数	误差							
$\delta_{max} = 5$	1	1092	2.59e-03	558	2.38e-03	1150	2.13e-03							
$o_{max} = o$	2	487	1.71e-03	384	8.02e-04	466	6.63 e-04							
	3	370	1.15e-03	334	5.65 e-04	348	3.12e-04							
	4	340	1.84e-03	338	4.53e-04	368	2.42e-04							
	example3													
	wide\ h:	1/	8	1/	16	1/	32							
		迭代次数	误差	迭代次数	误差	迭代次数	误差							
$\delta = 5$	1	315	4.45e-03	486	1.58e-03	10	4.67e + 06							
0 - 0	2	240	4.40e-03	273	1.58e-03	25	1.79e + 07							
	3	225	1.97e-03	$258 \\ 257$	1.03e-03	20	4.80e + 05							
	4		226 3.99e-03		1.46e-03	42 $2.28e+06$								
	wide\ h:	vide\ h: 1/		1/3		,	32							
		迭代次数	误差	迭代次数	误差	迭代次数	误差							
$\delta = 10$	1	492	4.45e-03	778	1.58e-03	1561	8.62e-04							
_	2	314	4.40e-03	416	1.58e-03	578	5.59e-04							
	3	271	1.97e-03	313	1.03e-03	351	5.59e-04							
	4	261	3.99e-03	302	1.46e-03	360	3.45e-04							

可以看出,Netwon 法的收敛速度比显示法快很多。但是 Netwon 法得到的矩阵可能有较强的奇

异性,只有在初值选取较好时才能较好收敛,为此好的初值选取很重要。

5 代码说明

本次程序使用 matlab 编写,包含 main.m 和 Readme.txt 等在内一共有 24 个文件,在文件夹'matlabcode'中. 关于各文件的含义以及 main.m 的运行参见 Readme.txt.