

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-11 (canceled)

12. (currently amended) A method of ~~treatment of diseases or conditions mediated by excessive or inappropriate HSP90 activity in mammals~~ which method comprises administering to the mammal an amount of a compound ~~as defined in claim 1 of formula (I), or a salt, N-oxide thereof:~~

wherein

R₂ is a group of formula (IA):

wherein in any compatible combination

Ar¹ is an optionally substituted aryl or heteroaryl radical,

Alk¹ and Alk² are optionally substituted divalent C₁-C₃ alkylene or C₂-C₃ alkenylene radicals,

m, p, r and s are independently 0 or 1,

Z is -O-, -S-, -(C=O)-, -(C=S)- SO₂-, -C(=O)O-, -C(=O)NR^A-, -C(=S)NR^A-, -SO₂NR^A-, -NR^AC(=O)-, -NR^ASO₂- or -NR^A-

wherein R^A is hydrogen or C₁-C₆ alkyl, and
Q is hydrogen or an optionally substituted carbocyclic or heterocyclic radical;

R₃ is hydrogen, an optional substituent, or an optionally substituted (C₁C₆)alkyl, aryl or
heteroaryl radical; and

R₄ is a carboxamide or sulfonamide group,

wherein the optional substituent is selected from the group consisting of: C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxyl, hydroxy C₁-C₆ alkyl, mercapto, mercapto C₁-C₆ alkyl, C₁-C₆ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, -COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NHR^C, -NR^CR^D, -OCONH₂, -OCONHR^C, -OCONR^CR^D, -NHCOR^C, -NHCOOR^C, -NHR^DCOOR^C, -NHSO₂OR^C, -NR^DSO₂OR^C, -NHCONH₂, -NR^CCONH₂, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^CR^D, and -NR^CCONR^CR^D, wherein R^C and R^D are independently C₁-C₆ alkyl groups,
effective to inhibit said HSP90 activity.

13-20. (canceled)

21. (new) The method of claim 12 wherein m is 1, each of p, r and s is 0, and Q is hydrogen.

22. (new) The method of claim 21 wherein R₂ is optionally substituted phenyl, 2- or 3-thienyl, 2- or 3-furanyl, or 2-, 3- or 4-pyridinyl,

wherein the optional substituent is selected from the group consisting of: C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxyl, hydroxy C₁-C₆ alkyl, mercapto, mercapto C₁-C₆ alkyl, C₁-C₆ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, -COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NHR^C, -NR^CR^D, -OCONH₂, -OCO NHR^C, -OCONR^CR^D, -NHCOR^C, -NHCOOR^C, -NHR^DCOOR^C, -NHSO₂OR^C, -NR^DSO₂OR^C, -NHCONH₂, -NR^CCONH₂, -NHCONHR^D, -NR^C

CONHR^D , $-\text{NHCONHR}^C\text{R}^D$, and $-\text{NR}^C\text{CONR}^C\text{R}^D$, wherein R^C and R^D are independently $\text{C}_1\text{-}\text{C}_6$ alkyl groups.

23. (new) The method of claim 21 wherein R_2 is phenyl, optionally substituted by methyl, ethyl, n- or isopropyl, methoxy, ethoxy, isopropoxy, chloro, or bromo,

wherein the optional substituent is selected from the group consisting of: $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_6$ alkoxy, hydroxyl, hydroxy $\text{C}_1\text{-}\text{C}_6$ alkyl, mercapto, mercapto $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_6$ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C , $-\text{COR}^C$, $-\text{SO}_2\text{R}^C$, $-\text{CONH}_2$, $-\text{SO}_2\text{NH}_2$, $-\text{CONHR}^C$, $-\text{SO}_2\text{NHR}^C$, $-\text{CONR}^C\text{R}^D$, $-\text{SO}_2\text{NR}^C\text{R}^D$, $-\text{NH}_2$, $-\text{NHR}^C$, $-\text{NR}^C\text{R}^D$, $-\text{OCONH}_2$, $-\text{OCO NHR}^C$, $-\text{OCONR}^C\text{R}^D$, $-\text{NHCOR}^C$, $-\text{NHCOOR}^C$, $-\text{NHR}^D\text{COOR}^C$, $-\text{NSO}_2\text{OR}^C$, $-\text{NR}^D\text{SO}_2\text{OR}^C$, $-\text{NHCONH}_2$, $-\text{NR}^C\text{CONH}_2$, $-\text{NHCONHR}^D$, $-\text{NR}^C\text{CONHR}^D$, $-\text{NHCONHR}^C\text{R}^D$, and $-\text{NR}^C\text{CONR}^C\text{R}^D$, wherein R^C and R^D are independently $\text{C}_1\text{-}\text{C}_6$ alkyl groups.

24. (new) The method of claim 22 wherein the optional substituent is in the 4-position of the phenyl ring.

25. (new) The method of claim 12 wherein m is 1, and p, r and s are 0, and Q is an optionally substituted carbocyclic or heterocyclic ring,

wherein the optional substituent is selected from the group consisting of: $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_6$ alkoxy, hydroxyl, hydroxy $\text{C}_1\text{-}\text{C}_6$ alkyl, mercapto, mercapto $\text{C}_1\text{-}\text{C}_6$ alkyl, $\text{C}_1\text{-}\text{C}_6$ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C , $-\text{COR}^C$, $-\text{SO}_2\text{R}^C$, $-\text{CONH}_2$, $-\text{SO}_2\text{NH}_2$, $-\text{CONHR}^C$, $-\text{SO}_2\text{NHR}^C$, $-\text{CONR}^C\text{R}^D$, $-\text{SO}_2\text{NR}^C\text{R}^D$, $-\text{NH}_2$, $-\text{NHR}^C$, $-\text{NR}^C\text{R}^D$, $-\text{OCONH}_2$, $-\text{OCO NHR}^C$, $-\text{OCONR}^C\text{R}^D$, $-\text{NHCOR}^C$, $-\text{NHCOOR}^C$, $-\text{NHR}^D\text{COOR}^C$, $-\text{NSO}_2\text{OR}^C$, $-\text{NR}^D\text{SO}_2\text{OR}^C$, $-\text{NHCONH}_2$, $-\text{NR}^C\text{CONH}_2$, $-\text{NHCONHR}^D$, $-\text{NR}^C\text{CONHR}^D$, $-\text{NHCONHR}^C\text{R}^D$, and $-\text{NR}^C\text{CONR}^C\text{R}^D$, wherein R^C and R^D are independently $\text{C}_1\text{-}\text{C}_6$ alkyl groups.

26. (new) The method of claim 12 wherein Ar^1 is a phenyl or pyridyl ring.

27. (new) The method of claim 12 wherein R₃ is amino (NH₂).

28. (new) The method of claim 12 wherein R₄ is a carboxamide group of formula –

Alk is a divalent alkylene, alkenylene or alkynylene radical, and the Alk radical may be optionally substituted,

n is 0 or 1,

R^B is hydrogen or a C₁-C₆ alkyl or C₂-C₆ alkenyl group,

R^A is hydroxy or optionally substituted carbocyclic or heterocyclyl, any of which heterocyclic rings may be substituted; or

R^A and R^B taken together with the nitrogen to which they are attached form an N-heterocyclic ring which may optionally contain one or more additional hetero atoms selected from O, S and N, and which may optionally be substituted on one or more ring C or N atoms;

wherein the optional substituent is selected from the group consisting of: C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxyl, hydroxy C₁-C₆ alkyl, mercapto, mercapto C₁-C₆ alkyl, C₁-C₆ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, -COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NHR^C, -NR^CR^D, -OCONH₂, -OCO NHR^C, -OCONR^CR^D, -NHCOR^C, -NHCOOR^C, -NHR^DCOOR^C, -NHSO₂OR^C, -NR^DSO₂OR^C, -NHCONH₂, -NR^CCONH₂, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^CR^D, and -NR^CCONR^CR^D, wherein R^C and R^D are independently C₁-C₆ alkyl groups.