论文写作的易读性原则

案例分析:基于Seq2Seq的对话数据增广

报告人:刘一佳

合作者:侯宇泰、车万翔、刘挺

http://yjliu.net/cv/res/2018-08-19-nlpcc-sws.compressed.pdf

学术报告中的一些设计技巧

报告人:刘一佳

导师:秦兵、车万翔

错误地利用 报告与论文结构的相似性

简介	模型	模型
模型	实验	结论

思考题

- 为什么做学术报告
 - 为了更好地交流
- 做怎样的学术报告
 - □ "向听众展示我对问题的深入理解"
 - 口"让听众明白我的论文中的技术"
 - 口"引起听众的兴趣"

思考题

- 为什么做学术报告
 - 为了更好地交流
- 做怎样的学术报告
 - □ "向听众展示我对问题的深入理解"
 - 口"让听众明白我的论文中的技术"
 - ☑ "引起听众的兴趣"

听众模型

理想中的听众

- 领域专家
- 已经读过你的论文
- 对于你的工作非常感兴趣

现实中的听众

- 来自其他领域
- 刚刚了解到你的工作
- 这个时段没什么可听的,恰巧发现这屋子网络比较好

类比审稿人模型

审稿

你以为审稿人应该是这样审稿的:

审稿人一定是专家,无所不知。打印出来,仔细研读揣摩数天,对于看不懂的地方反复推敲。即使你的英文写得极其糟糕、即使你的文章组织很混乱、即使你的表述很难看懂,审稿人花费了大量的时间后终于看懂了,他认为你的工作是有意义的,决定给你个border line或以上的分数。

审稿人实际上往往是这样审稿的:

他不一定是专家,一直忙于其他事。在deadline到来之前一天要完成 n篇。审稿时他往往先看题目、摘要,扫一下introduction(知道你做 什么),然后直接翻到最后找核心实验结果(做得好不好),然后 基本确定录还是不录(也许只用5分钟!)。如果决定录,剩下就是 写些赞美的话,指出些次要的小毛病。如果决定拒,下面的过程就 是细看中间部分找理由拒了。

第一印象定录拒,5分钟内打动审稿人

12

刘洋. 2014. 机器翻译学术论文写作方法与技巧

类比审稿人模型

```
你以为审稿人应该是这样审稿的:
审稿人一定是专家,无所不知。打印出来,仔细研读揣摩数天,对于看不懂的地方反复推敲。即使你的英文写得极其糟糕、即使你的文章组织很混乱、即使你的表述很难看懂,审稿人花费了大量的时间后终于看懂了,他认为你的工作是有意义的,决定给你个border line或以上的分数。

审稿人实际上往往是这样审稿的:
他不一定是专家,一直忙于其他事,在deadline到来之前一天要完成的第一次是专家,一直忙于其他事,在deadline到来之前一天要完成的第一家和助他往往先看题目、携要,扫一下introduction(知道你做
```

"You have **two minutes** to engage your audience before they start to doze." -- Simon Peyton Jones in *How to give* a great research talk

简介部分:展示最好的部分

Danqi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency Parser using Neural Networks,第三页

模型部分:多用例子

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. 2010. Painless Unsupervised Learning with Features, 第28到54页

模型部分:反例

Transition	Current State	Resulting State	Description
Drop	$[\sigma s_0, \delta, b_0 \beta, A]$	$[\sigma _{\mathbf{S}_0},\ \delta,\ \beta,\ A]$	pops out the word that doesn't convey any semantics (e.g., function words and punctuations).
Merge	$[\sigma s_0,\ \delta,\ b_0[b_1 eta,\ A]$	$[\sigma _{\mathbf{S}_0},\ \delta,\ b_0_b_1 eta,\ A]$	concatenates a sequence of words into a span, which can be derived as a named entity (name) or date-entity.
CONFIRM(c)	$[\sigma \mathfrak{s}_0,\ \delta,\ b_0 eta,\ A]$	$[\sigma _{\mathbb{S}_0},\;\delta,\;c _{\mathcal{B}},\;A]$	derives the first element of the buffer (a word or span) into a concept c.
ENTITY(c)	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{\Lambda}]$	$[\sigma[s_0, \delta, c]\beta, A \cup \text{relations}(c)]$	a special form of CONFIRM that derives the first element into an entity and builds the internal entity AMR fragment.
NEW(c)	$\overline{[\sigma \overline{s}_0, \overline{\delta}, \overline{b}_0 \beta, A]}$	$[\sigma[s_0, \delta, c]b_0 \beta, \Lambda]$	generates a new concept c and pushes it to the front of the buffer.
LEFT(r)	$[\sigma s_0, \delta, b_0 \beta, A]$	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \stackrel{\overline{x}}{\leftarrow} b_0\}]$	links a relation r between the top
RIGHT(r)	$[\sigma s_0,\ \delta,\ b_0 eta,\ A]$	$[\sigma \mathbf{s}_0, \ \delta, \ \mathbf{b}_0 \beta, \ A \cup \{\mathbf{s}_0 \stackrel{\mathbf{r}}{ o} \mathbf{b}_0\}]$	concepts on the stack and the buffer.
CACHE	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, A]$	$[\sigma, s_0 \delta, b_0 \overline{\beta}, A]$	passes the top concept of the stack onto the deque.
SHIFT	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\overline{\beta}, A]^{-1}$	$[\sigma[s_0]\delta[b_0, [], \beta, A]$	shifts the first concept of the buffer onto the stack along with those on the deque.
REDUCE	$[\sigma s_0, \overline{\delta}, \overline{b_0} \beta, A]$	$[\sigma, \delta, \overline{b_0}]\beta, \overline{A}]$	pops the top concept of the stack.

实验部分:图比表格好

实验部分:图比表格好

刘洋. 2014. 机器翻译学术论文写作方法与技巧

实验部分:图比表格好

用图与例子来描述方法和实验

刘洋. 2014. 机器翻译学术论文写作方法与技巧

结论部分:新的展现形式

Hao Peng, Sam Thomson, and Noah A. Smith. 2018. Backpropagating through Structured Argmax using a SPIGOT,最后一页

设计原则

- 亲密性:相关的元素应该 组织到一起
- 重复:相同的内容达到形式的统一
- 对比:如果两项不完全相同,就应使之截然不同
- 对齐: 使元素之间产生关联, 有关联的都应对齐

根据设计原则做幻灯片

Challenges and Contribution

- The first challenge is deriving an actimal alignment in ambiguous situations
- The second challenge is recalling more semantically metched word-concept pair without harming. The alignment procesion.
- The final challenge which is faced by both the rule-based and unsupervised aligners is turing the alignment with downstream passer learning.
- We proposed an enhanced a igner tuned by transitionbased cracle parser

加入空行提高相关 元素的亲密性

Challenges and Contribution

- The first challenge is deriving an octimal alignment in embigroup situations
- The second challenge is recalling more semantically matched word-correct can without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsubervised aligners is turning the alignment with downstream parser learning.
- We proposed an enhanced aligner funed by transition breast crede points.

Challenges and Contribution

Challenges

- deriving on optimal alignment in ambiguous situations.
- Healing near semantically matched woods, and quip as without harming the alignment processin.
- a is of the alignment with Howeverse in passed for rong.

Contribution

an enhanced aligner tuned by transition, based oracle parser.

相同内容使用相同样式 即提高了**一致性**又形成 了必要的**对比**

避免不对齐

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	(on hand-align)	(on dev.	dataset)
JAMR 90.6		91.7	
Our	95.2	94.	.7
model	Т	ewswire	all
JAMR po	arser: Word, POS.	NER, DEP)
+ JAN	IR aligner	71.3	65.9
+ Our aligner		73.1	67.6
CAMR I	xarser: Word, POS	, NER, DE	p
A 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	IR aligner	68.4	64.6
+ Our	aligner	68.8	65.1

Aligner Alignment F1 Oracle's Smatch

model	newswire	ail
Our single parser: Word	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Won	d, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
х3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.3
x10	73.3	68.4

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	(on hand-align) (on dev.	dataset)
JAMR.	JAMR 90.6		7
Our	95.2	94.7	
model		newswire	all
JAMR po	arser: Word, POS	, NER, DEF	2
+ JAN	IR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR 1	xarser: Word, PO	S, NER, DE	P
+ JAM	IR aligner	68.4	64.6
+ Our	aligner	68.8	65.1

Aligner Alignment F1 Oracle's Smatch

model	newswire	
Our single parser: Won	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Won	d. POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	3
х3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"乱"的解法:重新组织内容

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	Son hand-align)	ton dev	dalaset J.
JAMR 90.5		91	7
Our	95.2	95.2 94.7	
model	arana di	newswire	zll.
JAMR p	arser: Word, POS	, NER, DEF	
4 JAN	tR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR:	serser, Word, POS	S. NER, DE	P
4 JA5	IR aligner	68.4	64.6
+ Our	aliener	68.8	65.1

Alignar Alignment F1 Oracle's Smatch

model	th/syswite:	911
On angle param: Wor	lundy	
+ JAMR algrer	68.6	63.9
+ Our oligier	69.3	64.7
Our single parser: Won	d. POS	
+ IAMIC abgree	68.8	64.5
+ Our aligner	69.8	65.2
Our ensemble: Word or	dy + Our alianer	
63	71.9	67.4
x10	72.5	65.1
Cur ensemble: Word, P.	OS + Our aligner	3507
x3	72.5	67.7
x10	25.3	68.4

LDC2014T12 Experiments

alignment F-score

Aligner	Alignment ET (on bandsalign)	Oracle's Smatch (on des. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

· parser improvements

model	DGN2@fts	211
JAMR purson Word,	POS, NER, DEP	
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR perser. Word,	POS. NER. DEI	P
+ JAMR aligner	68.4	64.6
+ Our aligner	68.8	65.1

视线跳动在论文写作中的作用

刘洋. 2014. 机器翻译学术论文写作方法与技巧

参考文献

- Simon Peyton Jones: How to give a great talk
- 写给大家看的设计书
- 机器翻译学术论文写作方法与技巧
- 知乎专栏: 跟我学个P

总结

祝大家产出优秀的学术工作

最简单做法:复制粘贴

Challenges and Contribution

- Ine fretichallenge is der ving an optmal alignment in ambiguous situations.
- The second of allenge is recalling more semantically. matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based. and areadesviced alignosa is tuning the alignosal with downstream parser learning.
- We process an enhanced aligner tuned by transition period proce princes.

Overview

Our aligner algorithm.

- Enhancing sligner with rich semantic resources.
- Prontional multiple. alignments.

Our grade parser

Transier: Caro	100.4	นึกส	free 0 g S (2 [c/sc, 4, 4, 4]	Contains population and the population with the second and the second and the second and purchase the second and a second
			PROPERTY.	provided the section of the highest open which are benefit of a remove order transport data - accuracy.
1994.843	Jee 24	25.3.	.becaessal	Total service who are a service of the control of t
FORM	1886	P. A.	- bedance a power-set-0	the first program of the first of the first control of the first control of the first of the fir
TO NEWS	1945.7	FRA.	.kwa.ebat	Supplied the Deliging of the problem.
Linns	Mary I	24.30	THE KIND OF DUCKERS	Table at March Street, Bridge
Ammes	123.1	F. \$5. 18. 5	Mars all or to year	example on the rank and the buffer
	MEST	Assist.	- Eresignor	ryttise tenhame spinte sandnier nedage
nn	15757	ANX.	FSACTES.	delt de le demonstrat les actes à la restación may although il de de
AFYER.	100,00	Sec. 4	16 (2) No 17 (4)	proportioning content of the Section

Experiments

- We conduct experiments on LDC2014T12.
- We evaluate the alignment F-score and Smatch of resulted parsers

Algir	Angenett.		
DAVE	904	41.	
U.F	25.2	24,	7
eschil.		creats:	+3
N.VIS 10	rse : Work FOR	bes, les	0.025
+1400	Ralgan	71.5	10.5
+ 25 41	ilpir .	75.1	67.5
CAMBLE	arm Wat. FOR	MER. JE	
+140/	Ralgan	80	613
+ than	dara	55.5	62.

nod.	tim-retail	
for the appearant Wa	3.430	
LANGE ROOM	40.0	41.4
+ Cor it land	92	54.7
Garding apparent Wa	7 18.5°	
CAMP Com	9.2	56.8
4 Constitute	9.1	41.7
Convision to Vente	are de ten	
4%	21.5	31.4
alt	72.3	58.1
transport in Vest.	106 + Caragos	1550
45	72.3	61.4
	77.7	40.4

Conclusion.

- We propose a new AMR anyone which is tuned by an novel transition-based AMR oracle parset. Our aligner is also enhanced by righ semantic resource and recalls. more aimoments
- Both the intrinsic and extrinsic evaluations show the of oil venes of our alignor by achieving higher alignment P° scare and consistently improving two open-sourced AMR parsers
- We also develop transition-based AMR parser hased. on our aigner and transition system and it achieves a performance of 68.4 Smatch F1 score via ensemble with unity words and POS tops as input

Challenges and Contribution • Instratchallenge siderwing an optima alignment in ambiguous altuations • The second dialenge is recalling more semantically matched word-concept pair without harming the alignment processor. • The final challenge which is faced by both the rule-hased and unsuperword aligness is tuning the alignment with coversines in parse, learning. • We processed an enhanced aligner tuned by transition-based proceip passer.	Overview Summer Create Street Suphers would pack	Cour aligner algorithms 77.3 - treasuring aspections - treaturing motions - treaturing - treaturin
Cour practic parter	Experiments * We conduct experiments on LDC2014712 * We conducte the alignment F-acore and Smatch of resoluted params New New York New	Conclusion * this propose a new ASE arguest when it would by a reason to seek to the party of the service service of the party of the service

设计原则(1): 亲密性相关的元素应该组织到一起

• 目的:实现组织性

- 亲密性检查: 眯起眼
 - 视线跳动的次数不宜超过3次
 - 过多的跳动需要重新设计

• 实现方式:加空行

"过多跳动"的反例

Experiments

Alignment F1

Aligner

We conduct experiments on LDC2014T12

Oracle's Smatch

(on hand-align) (on dev. dataset)

 We evaluate the alignment F-score and Smatch of resulted parsers

	Corn character mergany	Troub rate and	Contract of the
JAMR.	90.6	91	.7
Our	95.2	94	1.7
model	1	newswire	all
JAMR po	arser: Word, POS	NER, DE	Р
+ JAN	IR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR I	xarser: Word, POS	S, NER, DE	P
	IR aligner	68.4	64.6
+ Our	aligner	68.8	65.1

model	newswire	all
Our single parser: Won	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Won	d. POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	8
х3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"过多跳动"的反例

Experiments

Alignment F1

Aligner

We conduct experiments on LDC2014T12

Oracle's Smatch

(on hand-align) (on dev. dataset)

 We evaluate the alignment F-score and Smatch of resulted parsers

JAMR	90.6	91.	7
Our	95.2	94.	7
model		newswire	all
JAMR par	ser: Word, POS	and the state of t	•
+ JAME	Raligner	71.3	65.9
+ Our a	ligner	73.1	67.6
CAMR pa	rser: Word, PO	S, NER, DE	P
+ JAME	R aligner	68.4	64.6
+ Our a	liener	68.8	65.1

model	newswire	all
Our single parser: Won	d only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Won	d. POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	3
х3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"过多跳动"的反例

视线在这张幻灯片上跳动的了4到5次

修改方法:重新组织内容

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	Sun hand-align:	Con dev . c	(descript
JAMR.	90.5	91.	7
Our	95.2	94.	ž.
model	arana ili	newswire	zII
JAMR p	arser: Word, POS	, NER, DEP	3. (5.)
4 JAN	tR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMR:	serser, Word, POS	S, NER, DEL	
4 JA5	IR aligner	68.4	64.6
4 Our	aliener	68.8	65.1

Alignar Alignment F1 Oracle's Smatch

model	th/syswite:	311
On engle parsar: Wor	lundy	
+ JAMR algrer	68.6	63.9
+ Our oligier	69.3	64.7
Our single parser: Won	d. POS	
+ IAMIC aligner	68.8	64.5
+ Our aligner	69.8	65.2
Our ensemble: Word or	dy + Our alianer	
43	71.9	67.4
x10	72.5	65.1
Cur ensemble: Word, P.	OS + Our aligner	550
χ3	72.5	67.7
x10	25.3	68.4

LDC2014T12 Experiments

alignment F-score

Aligner	Alignment ET (on band-align)	Oracle's Smatch (on des. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

· parser improvements

model	DGNZBITE	211
JAMR parson Word,	POS, NER, DEP	50
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR perser. Word,	POS. NER. DEI	P
+ JAMR alianer	68.4	64.6
+ Our aligner	68.8	65.1

设计原则

• 亲密性: 相关的元素应该组织到一起

Challenges and Contribution • The fretchallenge is deriving an optimal alignment in ambiguous situations • The second challenge is recalling more semandarly metched word-concept pair without harming the alignment processor • The final challenge which is faced by both the rule-based and an autoenword aligness is busing the alignment with downstream parser learning. • We processo an enhanced aligner tuned by transition-based processor process.	Overview Summy Aligner Coach End. Sighest word, pick	Our aligner algorithms 1713 *Treatment agent on 1713 *Treatment on the control of the control
Cour practic parser	Experiments * We conduct experiments on LDC2014712 * We evaluate the alignment F-acore and Smatch of resoluted params Mark Massach Mark Noor Mark Mark Noor Mark Mark	Conclusion * the propose a new ASE arginor effort to luced by a reason terminal feature and much person (SA Algebra is also estamost by tota person to teacons and residence allowance). * Note the electron and secretal readulations alrow the effectiveness of our arginal to, antiened, figure algebraics of our arginal to, antiened, figure algebraics of our arginal to, antiened, figure algebraics of our arginal real enteriors, regionally reached and arginal real enteriors. * No approximate thereton. * No approximate thereton. Treason And James Special real enteriors and a software the enteriors. * No approximate the treatment of proximate and a software the enteriors. * No approximate the treatment of the enteriors and a software the enteriors. * No approximate the treatment of the enteriors and a software the enteriors. * No approximate the treatment of the enteriors and a software the enteriors. * No approximate the treatment of the enteriors and a software the enteriors. * No approximate the enterior of the enteriors and a software the enteriors. * No approximate the enterior of the enteriors and a software the enteriors. * No approximate the enterior of the enterior of the enteriors. * No approximate the enterior of the enterior of the enteriors. * No approximate the enterior of the enterior of the enteriors. * No approximate the enterior of the enterio

进一步合并,并加粗

Challenges and Contribution

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is turning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

Challenges and Contribution

Challenges

- deriving an optimal alignment in ambiguous situations.
- recalling more semantically matched word-concept pair without harming the argument precision.
- · toning the alignment with downs near parser learning.

Contribution

· an enhanced aligner tuned by transition-based brade parser.

进一步合并,并加粗

设计原则(2): 重复

重复相同的内容达到形式的统一

• 目的:提高组织性

• 重复检查:是否使用相同的字体样式等

• 实现方式:使用不同的样式、对齐方式

设计原则

- 亲密性: 相关的元素应该组织到一起
- 重复:相同的内容达到形式的统一

"'过多跳动'的反例"中的对比

设计原则(3): 对比

如果两项不完全相同,就应使之截然不同

• 目的:增强页面效果和提高组织性

• 实现方式:使用不同的样式

设计原则

- 亲密性: 相关的元素应该组织到一起
- 重复:相同的内容达到形式的统一
- 对比:如果两项不完全相同,就应使之截然不同

对齐

设计原则(4): 对齐

使元素之间产生关联,有关联的都应对齐

•目的:使元素产生关联,而统一且有条理

• 对齐检查: 隐线

设计原则

- 亲密性: 相关的元素应该组织到一起
- 重复:相同的内容达到形式的统一
- 对比:如果两项不完全相同,就应使之截然不同
- 对齐: 使元素之间产生关联, 有关联的都应对齐

Challenges

- deriving an optimal alignment in ambiguous situations.
- recalling more semantically matched word-concept pair without harming the argument precision.
- · toning the alignment with downs ream parser learning.

Contribution

· an enhanced aligner tuned by transition-based brade parser

Association between a concept and a spain of words is abstracted away North server froze is tricker actions in exchange for two nuclear reactors (1997) (19

Problems in Previous Work

- · Ambiguities in matching results
- · Limited semantic resources
- · Parser training does not feed back to alignment

An example of ambiguities

LDC2014T12 Experiments

alignment F-score

| Aligner | Alignment F1 | Oracle's Smatch | (on lumbarign) | (on des dataset) | JAMR | 90.6 | 91.7 | | 95.2 | 94.7 |

parser improvements

model	DGNZANTE	211
JAMR parser: Word,	POS, NER, DEP	5
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR perser. Word,	POS. NER. DEI	P
+ JAMR alianer	68.4	64.6
+ Our aligner	68.3	65.1

"结论"的新的展现形式

Hao Peng, Sam Thomson, and Noah A. Smith. 2018. Backpropagating through Structured Argmax using a SPIGOT,最后一页

Conclusion

- We propose a new AMR aligner which is tuned by a novel transition-based AMR oracle parser. Our aligner is also enhanced by rich semantic resource and recalls more alignments.
- Both the intrinsic and extrinsic evaluations show the effectiveness of our aligner by achieving higher alignment F1 score and consistently improving two open-sourced AMR parsers.
- We also develop transition-based AMR parser based on our aligner and transition system and it achieves a performance of 68.4 Smatch F1 score via ensemble with only words and POS tags as input.

Conclusions

Alignment Challenge Associate consciona concept and c

Problems in Previous Work

- · Ambig., Jos in matching results.
- . Limited semantic resources.
- Perser training does not lead back to alignmen.

这里有方法的动画

Aligner Experiments: Alignment Evaluation

Aligner Experiments: Two Open-sourced AMR Parsers

Conclusion

Challenges

- deriving an optimal alignment in ambiguous situations.
- recalling more semantically matched word-concept pair without harming the alignment precision.
- tuning the alignment with downstream parser learning.

Contribution

an enhanced aligner tuned by transition-based oracle parser

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is tuning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is tuning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

LDC2014T12 Experiments

alignment F-score

Aligner	Alignment F1 (on hand-align)	Oracle's Smatch (on dev. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

parser improvements

model	newswire	all
JAMR parser: Word,	POS, NER, DEP	K:
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR parser: Word,	POS, NER, DEI	P
+ JAMR aligner	68.4	64.6
+ Our aligner	68.8	65.1

Our aligner algorithm

- Enhancing aligner with rich semantic resources
- Producing multiple alignments

```
Input: An AMR graph with a set of graph fragments C;
             a sentence W; a set of matching rules PM; and
             a set of updating rules P<sub>II</sub>.
   Output: a set of alignments A.
1 for c \in C do
         A_c \leftarrow \emptyset;
3 for \rho_M \in P_M do
         for w_{s,e} \leftarrow spans(W) do
               for c \in C do
  updated \leftarrow true:
   while updated is true do
         updated \leftarrow false;
         for \rho_U \in P_U do
               for c, c' \in C \times C do
                     for (s, e, d) \in A'_c do
                           if \rho_U(c, w_{s,e}) \land (s, e, c') \notin A_c then A_c \leftarrow A_c \cup (s, e, c'); updated \leftarrow true;
  A \leftarrow \emptyset:
   for (a_1, ..., a_c) \in CartesianProduct(A_1, ..., A_{|C|}) do
         legal ← true:
         for a \in (a_1, ..., a_c) do
               (s, e, c') \leftarrow a;
               if s \neq s' \land e \neq e' then
                     legal \leftarrow false;
         if legal then
               A \leftarrow A \cup (a_1, ..., a_c);
```

11

24

Conclusion

- We propose a new AMR aligner which is tuned by a novel transition-based AMR oracle parser. Our aligner is also enhanced by rich semantic resource and recalls more alignments.
- Both the intrinsic and extrinsic evaluations show the effectiveness of our aligner by achieving higher alignment F1 score and consistently improving two open-sourced AMR parsers.
- We also develop transition-based AMR parser based on our aligner and transition system and it achieves a performance of 68.4 Smatch F1 score via ensemble with only words and POS tags as input.

视线在这张幻灯片上跳动的了4到5次

视线在这张幻灯片上跳动的了4到5次

Our oracle parser

Transition	Current State	Resulting State	Description
Drop	$[\sigma _{\mathfrak{S}_0},\ \delta,\ b_0 _{\mathfrak{B}},\ A]$	$[\sigma s_0, \delta, \beta, A]$	pops out the word that doesn't convey any semantics (e.g., function words and punctuations).
MERGE	$[\sigma s_0,\ \delta,\ b_0[b_1 eta,\ A]$	$[\sigma _{\mathbf{S}_0},\ \delta,\ b_0_b_1 eta,\ A]$	concatenates a sequence of words into a span, which can be derived as a named entity (name) or date-entity.
CONFIRM(c)	$[\sigma \mathfrak{s}_0,\ \delta,\ b_0 eta,\ A]$	$[\sigma s_0, \delta, c \beta, A]$	derives the first element of the buffer (a word or span) into a concept c.
ENTITY(c)	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\beta, \overline{\Lambda}]$	$[\sigma[s_0, \delta, c]\beta, A \cup \text{relations}(c)]$	a special form of CONFIRM that derives the first element into an entity and builds the internal entity AMR fragment.
NEW(c)	$\overline{[\sigma s_0, \delta, b_0]\beta, A}$	$[\sigma[s_0, \delta, c]b_0]\beta, A]$	generates a new concept c and pushes it to the front of the buffer.
LEFT(r)	$\sigma s_0, \delta, b_0 \beta, A $	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \stackrel{\overline{s}}{\leftarrow} b_0\}]$	links a relation r between the top
RIGHT(r)	$[\sigma s_0,\ \delta,\ b_0 eta,\ A]$	$[\sigma \mathbf{s}_0, \ \delta, \ \mathbf{b}_0 \beta, \ A \cup \{\mathbf{s}_0 \stackrel{\mathbf{r}}{\to} \mathbf{b}_0\}]$	concepts on the stack and the buffer.
CACHE	$\overline{[\sigma \bar{s}_0, \bar{\delta}, \bar{b}_0]} \beta, \overline{A}$	$[\sigma, s_0 \delta, b_0 \overline{\beta}, A]$	passes the top concept of the stack onto the deque.
SHIFT	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\overline{\beta}, \overline{A}]^{-1}$	$[\sigma[s_0]\delta[b_0, [], \beta, A]$	shifts the first concept of the buffer onto the stack along with those on the deque.
REDUCE	$[\sigma s_0, \overline{\delta}, \overline{b_0} \beta, A]$	$[\sigma, \delta, \overline{b_0}]\beta, A]$	pops the top concept of the stack.

Alignment Challenge

Problems in Previous Work

- Ambiguities in matching results
- Limited semantic resources
- Parser training does not feed back to alignment

An example of ambiguities

Aligner Experiments: Alignment Evaluation

Aligner Experiments: Two Open-sourced AMR Parsers

Conclusion

