Synthèse automatique de programmes à mémoire finie

Ismaël Jecker Concours CNRS 06/02

2009-2014 B. Sc. et M. Sc. en Mathématiques, EPFL

Suisse

2009-2014 B.	Sc. et M. Sc. en Mathématiques, EPFL	Suisse
2014-2019 Do	ctorat en Sciences, ULB	Belgique
Théorie des transduc	cteurs (LICS, ICALP, FoSSaCS, MFCS, CSL, DLT)	
Collaborations :	Christof Löding Emmanuel Filiot, Guillermo Pérez, Jean-François Raskin Nicolas Basset, Luc Dartois, Nathan Lhote, Pierre-Alain Reynier, Marie van den Bogaard Laure Daviaud, Arno Pauly	Allemagne Belgique France Royaume-Uni

2009-2014 B.	Sc. et M. Sc. en Mathématiques, EPFL	Suisse
2014-2019 Do	ctorat en Sciences, ULB	Belgique
Théorie des transduc	cteurs (LICS, ICALP, FoSSaCS, MFCS, CSL, DLT)	
Collaborations :	Christof Löding Emmanuel Filiot, Guillermo Pérez, Jean-François Raskin	Allemagne Belgique
	Nicolas Basset, Luc Dartois, Nathan Lhote, Pierre-Alain Reynier, Marie van den Bogaard	France
	Laure Daviaud, Arno Pauly	Royaume-Uni
2019- Po	stdoctorat, IST Austria	Autriche
Théorie des automat	tes (STACS, MFCS), théorie des jeux (SODA, MFCS)	
Collaborations :	Henning Fernau, Markus Holzer	Allemagne
	Krishnendu Chatterjee	Autriche
	Karoliina Lehtinen	France
	Shibashis Guha	Inde
	Guy Avni, Orna Kupferman	Israël

Norvège

Royaume-Uni

Mateus de Oliveira Oliveira

Rasmus Ibsen-Jensen, Martin Zimmermann

Suisse

2009-2014 B. Sc. et M. Sc. en Mathématiques, EPFL

2014-2019 Do	ctorat en Sciences, ULB	Belgique
Théorie des transduc	cteurs (LICS, ICALP, FoSSaCS, MFCS, CSL, DLT)	
Collaborations :	Christof Löding Emmanuel Filiot, Guillermo Pérez, Jean-François Raskin	Allemagne Belgique
	Nicolas Basset, Luc Dartois, Nathan Lhote, Pierre-Alain Reynier, Marie van den Bogaard	France
	Laure Daviaud, Arno Pauly	Royaume-Uni
2019- Pos	stdoctorat, IST Austria	Autriche
Théorie des automat	es (STACS, MFCS), théorie des jeux (SODA, MFCS)	
Collaborations :	Henning Fernau, Markus Holzer Krishnendu Chatterjee Karoliina Lehtinen Shibashis Guha Guy Avni, Orna Kupferman Mateus de Oliveira Oliveira Rasmus Ibsen-Jensen, Martin Zimmermann	Allemagne Autriche France Inde Israël Norvège Royaume-Uni

ICALP 2016 Equivalence and Uniformisation Problems for Finite Transducers. Filiot, Jecker, Löding, Winter

 $\label{eq:but:simplifier} \textbf{But}: Simplifier \ la \ programmation \ par \ un \ haut \ niveau \ d'abstraction$ $\ Langage \ machine \rightarrow Langage \ d'assemblage \rightarrow Langage \ haut \ niveau \rightarrow \dots$

But : Simplifier la programmation par un haut niveau d'abstraction
 Langage machine → Langage d'assemblage → Langage haut niveau → ...

But: Simplifier la programmation par un haut niveau d'abstraction

Langage machine → Langage d'assemblage → Langage haut niveau → . . .

But : Simplifier la programmation par un haut niveau d'abstraction

Langage machine → Langage d'assemblage → Langage haut niveau → . . .

Question: Dans quels cadres de tels algorithmes existent-ils?

But : Simplifier la programmation par un haut niveau d'abstraction

Langage machine → Langage d'assemblage → Langage haut niveau → . . .

Question: Dans quels cadres de tels algorithmes existent-ils?

ICALP 2016 Un algorithme de synthèse pour les transducteurs finiment valués Filiot, Jecker, Löding, Winter

Réalisabilité [Church, 1957] ——

ENTRÉE : Une spécification S

QUESTION: Existe-t-il un programme satisfaisant S?

Réalisabilité [Church, 1957] —

ENTRÉE : Une spécification S

QUESTION: Existe-t-il un programme satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^*$

$$[i_1|o_1]$$
 $[i_2|o_2]$ $[i_3|o_3]$ $[i_4|o_4]$ $[i_5|o_5]$ $\cdots \in S$

Réalisabilité [Church, 1957] —

ENTRÉE : Une spécification $S \subseteq (I \times O)^*$ donnée par un automate fini

QUESTION: Existe-t-il un programme satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^*$

$$[i_1|o_1|i_2|o_2|i_3|o_3|i_4|o_4|i_5|o_5|\cdots \in S$$

Réalisabilité [Church, 1957] — Décidable [Büchi, Landweber, 1969] -

ENTRÉE : Une spécification $S \subseteq (I \times O)^*$ donnée par un automate fini QUESTION : Existe-t-il un programme à mémoire finie satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^*$

$$[i_1|o_1]$$
 $[i_2|o_2]$ $[i_3|o_3]$ $[i_4|o_4]$ $[i_5|o_5]$ $\cdots \in S$

Réalisabilité [Church, 1957] — Décidable [Büchi, Landweber, 1969] - ENTRÉE : Une spécification $S \subseteq (I \times O)^*$ donnée par un automate fini

QUESTION : Existe-t-il un programme à mémoire finie satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^*$

Exemples: Équipement médical, véhicule autonome, ...

Réalisabilité [Church, 1957] — Décidable [Büchi, Landweber, 1969] — ENTRÉE : Une spécification $S \subseteq (I \times O)^*$ donnée par un automate fini QUESTION : Existe-t-il un programme à mémoire finie satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^*$

Asynchronicité:

Réalisabilité [Church, 1957] — Décidable [Büchi, Landweber, 1969] -

ENTRÉE : Une spécification $S \subseteq (I \times O)^*$ donnée par un automate fini

QUESTION : Existe-t-il un programme à mémoire finie satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^*$

Asynchronicité : • Programmes plus puissants

Réalisabilité [Church, 1957] — Décidable [Büchi, Landweber, 1969] -

ENTRÉE : Une spécification $S \subseteq (I \times O)^*$ donnée par un automate fini

QUESTION : Existe-t-il un programme à mémoire finie satisfaisant S?

Le système doit satisfaire une spécification $S \subseteq (I \times O)^* \rightarrow S \subseteq I^* \times O^*$

Asynchronicité : • Programmes plus puissants

• Spécifications plus expressives et plus succintes

Réalisabilité

Entrée : Une spécification donnée par un transducteur fini T

Réalisabilité

ENTRÉE: Une spécification donnée par un transducteur fini T

$$R(T) = \begin{cases} \{(u, a^{|u|}) \mid u \text{ contient au moins deux '}a'\} \\ \{(u, b^{|u|}) \mid u \text{ contient au moins deux '}b'\} \end{cases}$$

Réalisabilité

ENTRÉE : Une spécification donnée par un transducteur fini T

$$R(T) = \begin{cases} \{(\mathbf{u}, a^{|\mathbf{u}|}) \mid \mathbf{u} \text{ contient au moins deux 'a'}\} \\ \{(\mathbf{u}, b^{|\mathbf{u}|}) \mid \mathbf{u} \text{ contient au moins deux 'b'}\} \end{cases} aabb \mapsto \begin{cases} aaaa \\ bbbb \end{cases}$$

Réalisabilité ______ Indécidable [Carayol, Löding. 2015]

Entrée : Une spécification donnée par un transducteur fini T

$$R(T) = \begin{cases} \{(u, a^{|u|}) \mid u \text{ contient au moins deux 'a'}\} \\ \{(u, b^{|u|}) \mid u \text{ contient au moins deux 'b'}\} \end{cases}$$
 $aabb \mapsto \begin{cases} aaaa \\ bbbb \end{cases}$

Réalisabilité à origine fixe _____ EXPTIME-complet

Entrée : Une spécification donnée par un transducteur fini T

Réalisabilité à origine fixe _____ EXPTIME-complet

Entrée : Une spécification donnée par un transducteur fini T

Réalisabilité à origine fixe _____ EXPTIME-complet

Entrée : Une spécification donnée par un transducteur fini T

Réalisabilité à origine fixe _____ EXPTIME-complet

Entrée : Une spécification donnée par un transducteur fini T

Réalisabilité à origine fixe _____ EXPTIME-complet

ENTRÉE : Une spécification donnée par un transducteur fini T

QUESTION: Existe-t-il un transducteur déterministe P tel que $L(P) \subseteq L(T)$?

- T₁ est réalisable à origine fixe
- T₂ n'est pas réalisable à origine fixe

Réalisabilité à origine fixe	Réalisabilité
$L(P) \subseteq L(T)$	$F(P) \subseteq R(T)$
EXPTIME-complet	Indécidable

- T1 est réalisable à origine fixe
- ullet T_2 n'est pas réalisable à origine fixe

Réalisabilité à origine fixe	Réalisabilité
$L(P) \subseteq L(T)$	$F(P) \subseteq R(T)$
EXPTIME-complet	Indécidable

- T1 est réalisable à origine fixe
- ullet T_2 n'est pas réalisable à origine fixe

Réalisabilité à origine fix	e	Réalisabilité
$L(P) \subseteq L(T)$	L(P) 'proche' de $L(T)$	$F(P) \subseteq R(T)$
EXPTIME-complet		Indécidable

- T1 est réalisable à origine fixe
- ullet T_2 n'est pas réalisable à origine fixe

Réalisabilité à origine fixe	· I	Réalisabilité
$L(P) \subseteq L(T)$	L(P) 'proche' de $L(T)$	$F(P) \subseteq R(T)$
EXPTIME-complet		Indécidable

Le resynchroniseur \mathbb{D}_k étend L(T) en délayant la production de sortie

Réalisabilité à	origine fixe	Réalisabili	té à délai $\it k$	Réalisabilité	
$L(P)\subseteq$	L(T)	$L(P) \subseteq \mathbb{D}$	k(L(T))	$F(P) \subseteq R(T)$	
EXPTIME-0	complet	EXPTIME	-complet	Indécidable	

Le resynchroniseur \mathbb{D}_k étend L(T) en délayant la production de sortie

Réalisabilité à origine fixe		Réalisabili	té à délai k	Réalisabilité	
L(P)	L(T)	$L(P) \subseteq \mathbb{D}$	$_{k}(L(T))$	$F(P) \subseteq R(T)$	
EXPTIME	-complet	EXPTIME	-complet	Indécidable	J

Transducteur finiment valué : au plus m sorties associées à une même entrée

Réalisabilité à	à origine fixe	Réalisabili	té à délai k	Réalisabilité
$L(P)\subseteq$	L(T)	$L(P) \subseteq \mathbb{D}$	$\partial_k(L(T))$	$F(P) \subseteq R(T)$
EXPTIME	-complet	EXPTIME	-complet	Indécidable

Transducteur finiment valué : au plus m sorties associées à une même entrée

T finiment valué est réalisable ssi T est réalisable à délai k

Réalisabilité à origine fixe		Réalisabilité à délai k		Réalisabilité	
$L(P)\subseteq$	L(T)	$L(P) \subseteq \mathbb{D}$	$\partial_k(L(T))$	$F(P) \subseteq R(T)$	
EXPTIME	-complet	EXPTIME	-complet	Indécidable	

Transducteur finiment valué : au plus m sorties associées à une même entrée

Théorème La réalisabilité des transducteurs finiment valués est décidable

Preuve : T finiment valué est réalisable ssi T est réalisable à délai k

Réalisabilité à	origine fixe	Réalisabili	té à délai $\it k$	Réalisabilité	
$L(P)\subseteq$	L(T)	$L(P) \subseteq \mathbb{D}$	k(L(T))	$F(P) \subseteq R(T)$	
EXPTIME-0	complet	EXPTIME	-complet	Indécidable	

Transducteur finiment valué : au plus m sorties associées à une même entrée

Théorème La réalisabilité des transducteurs finiment valués est décidable

Preuve : T finiment valué est réalisable ssi T est réalisable à délai k

Notion clé : Resynchroniseurs \rightarrow Transducteurs finis

→ Automates Max-Plus

→ Transducteurs bidirectionnels

→ Indécidabilité

Réalisabilité à origine fixe		Réalisabilité à délai k		Réalisabilité
$L(P) \subseteq L(T)$		$L(P) \subseteq \mathbb{D}_{k}(L(T))$		$F(P) \subseteq R(T)$
EXPTIME-complet		EXPTIME-complet		Indécidable

Transducteur finiment valué : au plus m sorties associées à une même entrée

Théorème La réalisabilité des transducteurs finiment valués est décidable

Preuve: T finiment valué est réalisable ssi T est réalisable à délai k

Notion clé : Resynchroniseurs → Transducteurs finis

→ Automates Max-Plus

→ Transducteurs bidirectionnels

→ Indécidabilité

ICALP 2016 Equivalence and Uniformisation Problems for Finite Transducers. Filiot, Jecker, Löding, Winter

Réalisabilité à origine fixe		Réalisabilité à délai k		Réalisabilité
$L(P) \subseteq L(T)$		$L(P) \subseteq \mathbb{D}_{k}(L(T))$		$F(P) \subseteq R(T)$
EXPTIME-complet		EXPTIME-complet		Indécidable

Transducteur finiment valué : au plus m sorties associées à une même entrée

Théorème La réalisabilité des transducteurs finiment valués est décidable

Preuve : T finiment valué est réalisable ssi T est réalisable à délai k

Notion clé : Resynchroniseurs → Transducteurs finis

→ Automates Max-Plus

→ Transducteurs bidirectionnels

→ Indécidabilité

LICS 2017 On Delay and Regret Determinization of Max-Plus Automata. Filiot, Jecker, Lhote, Pérez, Raskin

Réalisabilité à origine fixe		Réalisabilité à délai k		Réalisabilité
$L(P) \subseteq L(T)$		$L(P) \subseteq \mathbb{D}_k(L(T))$		$F(P) \subseteq R(T)$
EXPTIME-complet		EXPTIME-complet		Indécidable

Transducteur finiment valué : au plus m sorties associées à une même entrée

Théorème La réalisabilité des transducteurs finiment valués est décidable

Preuve : T finiment valué est réalisable ssi T est réalisable à délai k

Notion clé : Resynchroniseurs → Transducteurs finis

→ Automates Max-Plus

→ Transducteurs bidirectionnels

→ Indécidabilité

MFCS 2019 On Synthesis of Resynchronizers for Transducers. Bose, Krishna, Muscholl, Penelle, Puppis FoSSaCS 2021 One-way Resynchronizability of Word Transducers. Bose, Krishna, Muscholl, Puppis

Réalisabilité à origine fixe		Réalisabilité à délai k		Réalisabilité	
$L(P) \subseteq L(T)$		$L(P) \subseteq \mathbb{D}_{k}(L(T))$		$F(P) \subseteq R(T)$	
EXPTIME-complet		EXPTIME-complet		Indécidable	

Transducteur finiment valué : au plus m sorties associées à une même entrée

Théorème La réalisabilité des transducteurs finiment valués est décidable

Preuve : T finiment valué est réalisable ssi T est réalisable à délai k

Notion clé : Resynchroniseurs → Transducteurs finis

→ Automates Max-Plus

→ Transducteurs bidirectionnels

→ Indécidabilité

MFCS 2020 Regular Resynchronizability of Origin Transducers Is Undecidable. Kuperberg, Martens

Synthèse automatique de programmes à mémoire finie

- 1. Synthèse quantitative
- 2. Efficacité des algorithmes de synthèse
- 3. Théorie des jeux

1. Synthèse quantitative

Ajouter une dimension quantitative permet des réponses nuancées

1. Synthèse quantitative

Ajouter une dimension quantitative permet des réponses nuancées

Spécification réalisable → Meilleur programme

Transducteurs finis : nombre d'états minimal

Streaming string transducers: nombre de registres minimal

Collaboration: Emmanuel Filiot (ULB)

Synthèse quantitative

Ajouter une dimension quantitative permet des réponses nuancées

Spécification réalisable → Meilleur programme
 Transducteurs finis : nombre d'états minimal
 Streaming string transducers : nombre de registres minimal

Collaboration: Emmanuel Filiot (ULB)

Spécification non réalisable → Meilleure approximation
 F(P) ⊆ R(T) → F(P) la plus 'proche' de R(T)
 Collaboration : Krishnendu Chatteriee (IST Austria) et Ege Sarac

6

2. Efficacité des algorithmes de synthèse

Contourner la haute complexité théorique des algorithmes de synthèse

2. Efficacité des algorithmes de synthèse

Contourner la haute complexité théorique des algorithmes de synthèse

2. Efficacité des algorithmes de synthèse

Contourner la haute complexité théorique des algorithmes de synthèse

Complexité paramétrée → Algorithme FPT
 Paramètres définis par les relations de Green

STACS'21 A Ramsey Theorem for Finite Monoids. Jecker

2. Efficacité des algorithmes de synthèse

Contourner la haute complexité théorique des algorithmes de synthèse

Complexité paramétrée → Algorithme FPT
 Paramètres définis par les relations de Green

 STACS'21 A Ramsey Theorem for Finite Monoids. Jecker

Simplifier les spécifications → Compositionnalité
 Décomposer les instances complexes en instances basiques

DLT'15, FoSSaCS'17, MFCS'18, MFCS'20, Collaboration: Nicolas Mazzocchi et Petra Wolf

3. Théorie des jeux

À mi-chemin entre déterministe et non-déterministe → Good-for-games

Collaboration: Shibashis Guha (TIFR Mumbai), Karoliina Lehtinen (AMU)
Martin Zimmermann (University of Liverpool)

Allocation de ressources limitées → Jeux de mise

SODA'21, Collaboration : Guy Avni (University of Haifa) et Đorđe Žikelić

Théorie évolutive des jeux → Jeux spatiaux

MFCS'20, Collaboration: Krishnendu Chatterjee (IST Austria) et Jakub Svoboda

Vœux d'affectation

Équipe MOVE, pôle calcul du LIS

Aix Marseille Université

Thématiques:

Langages et transformations, Techniques symboliques pour la vérification Collaborations naturelles :

Karoliina Lehtinen, Nathan Lhote, Benjamin Monmege, Pierre-Alain Reynier

Équipe PLUME, LIP

ENS Lyon

Thématiques:

Programmes corrects par construction

Collaborations naturelles:

Amina Doumane, Denis Kuperberg, Damien Pous

Équipe MoA, LIGM

Université Gustave Eiffel

Thématiques:

Théorie algorithmique des modèles finis et infinis, Théorie des jeux

Collaborations naturelles:

Arnaud Carayol, Marie van den Bogaard, Vincent Jugé