Assignment 3

Data Visualization and Pre-processing

Description:-

Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-onsuming task. Other measurements, which are easier to obtain, are used to predict age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.

Building a Regression Model

1. Perform Below Visualizations.

Univariate Analysis

1. Summary Statistics

M

0.440

0.365

0.125

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm

In [2]:
file_data = pd.read_csv('C:/KavinKumar/abalone.csv')
file_data
```

Whole Shucked Viscera Shell Rings Sex Length Diameter Height weight weight weight weight 0.455 0.365 0.095 0.5140 0.2245 0.1010 0.1500 15 M 0.0995 0.0485 0.0700 7 1 M 0.350 0.265 0.090 0.2255 2 F 0.530 0.420 0.135 0.6770 0.2565 0.1415 0.2100 9

0.5160

0.2155

0.1140

0.1550

Out[2]:

10

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

4177 rows × 9 columns

Add a Age column in a dataset

file_data['Age']=''
file_data.head()

In [3]:

Out[3]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	

In [4]:

file_data['Age']=file_data['Rings']+1.5
file data.head()

Out[4]:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings	Age
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15	16.5
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9	10.5
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10	11.5
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7	8.5

Drop the Rings Column

file_data = file_data.drop(columns=['Rings'],axis=1)
file_data

Out[5]:

In [5]:

								Out[5].				
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age			
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	16.5			
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	8.5			
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	10.5			
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	11.5			
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	8.5			
•••												
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	12.5			
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	11.5			
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	10.5			

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age						
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	11.5						
4176	M														
4177 rows × 9 columns															
<pre>In [6 file_data['Height'].mean()</pre>															
Out[6 0.1395163993296614															
	data	['Heigh	ıt'].std(()					In [8]:						
0.041	.8270	5660725	703					C	Out[8]:						
		ncy Tab													
	-	['Sex']	.value_c	counts()					In [9]: Out[9]:						
I F	1528 1342 1307 Sex		: int64												
3. Create Charts															
file	data	.boxplc	t(column	=['Lengt	ch'], grid=:	False)		li	n [10]:						
_	-							Οι	ut[10]:						

file_data.hist(column='Length', grid=False, edgecolor='black')

Out[11]:

sns.kdeplot(file_data['Length'])

Out[12]:

In [12]:

In [11]:

Bi - Variate Analysis

1. Barplot

In [13]:
data = sns.barplot(x = file_data["Sex"], y = file_data["Age"])
data
Out[13]:

2. Correlation Coefficients

								Out[14]:	
	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age	
Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720	
Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660	
Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467	
Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390	
Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884	
Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819	
Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574	
Age	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000	

3.Linear Plot

 $\label{local_local_local_local} In \cite{Local_local$

Out[15]:

4. Scatter Plot

```
In [16]:
data = sns.scatterplot(x = file_data['Age'], y = file_data['Diameter'],
color="green")
data
```


Multi - Variate Analysis

Out[16]:

```
x = sns.scatterplot(x=file_data['Whole
weight'], y=file_data['Age'], hue=file_data["Sex"])
```


Out[17]:

4. Perform descriptive statistics on the dataset.

```
In [18]:
file_data.shape
                                                                      Out[18]:
(4177, 9)
                                                                       In [19]:
file data.info()
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):
                    Non-Null Count Dtype
    Column
 0
    Sex
                    4177 non-null
                                     object
    Length
                     4177 non-null
                                     float64
                                     float64
 2
    Diameter
                     4177 non-null
                                    float64
 3
    Height
                     4177 non-null
    Whole weight
                    4177 non-null
                                    float64
                                   float64
    Shucked weight 4177 non-null
    Viscera weight 4177 non-null
                                    float64
 7
    Shell weight
                     4177 non-null
                                     float64
                     4177 non-null
                                     float64
dtypes: float64(8), object(1)
memory usage: 293.8+ KB
                                                                       In [20]:
file data.describe()
                                                                      Out[20]:
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age
cou nt	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00	4177.0000 00
mea n	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

file_data.head()

Out[21]:

In [21]:

								○ a.t[= :].				
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age			
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5			
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5			
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5			
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5			
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5			

In [22]:

file_data.tail()

Out[22]:

	Sex	Length	n Diamete	r Height	Whole weight	Shucked weight						
4172	2 F	0.565	5 0.450	0.165	0.8870	0.3700	0.2390	0.2490	12.5			
4173	8 M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	11.5			
4174	М	0.600	0.475	5 0.205	1.1760	0.5255	0.2875	0.3080	10.5			
4175	5 F	0.625	0.485	5 0.150	1.0945	0.5310	0.2610	0.2960	11.5			
4176	6 M	0.710	0.555	5 0.195	1.9485	0.9455	0.3765	0.4950	13.5			
£410	ا ماماد،		(numaria	on] 	\			Ir	า [23]:			
ттте	_uat	a.mean	(numeric_	_OHIY =IF	ue)			Ou	·15.51+i			
Heig Whol Shuc Visc Shel Age	neter Tht The wes Tked The Terral The The serial The The serial Th		O.	ıt[23]:								
atyp	e. I.	loat64						Ir	n [24]:			
	_	a.media	an(numeri	_	Frue)				ıt[24]:			
Leng	th eter		0.54 0.42									
Heig			0.42									
-	e we:	ight	0.79									
		weight	0.33	360								
Visc	era v	weight	0.17	710								
Shel	l we:	ight	0.23									
Age 10.5000												
dtype: float64							l۷	. [25].				
file	_data	a.mode	()						n [25]: ut[25]:			
						-			، در <i>ت</i> ا.			
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age			
0	M	0.550	0.45	0.15	0.2225	0.175	0.1715	0.275	10.5			

NaN

NaN

NaN

NaN NaN

0.625

1 NaN

NaN

NaN

```
In [26]:
 file data.var(numeric only=True)
                                                                                                                  Out[26]:
Length 0.014422
Diameter 0.009849
Height 0.001750
Whole weight 0.240481
Shucked weight 0.049268
Viscera weight 0.012015
Shell weight 0.019377
Age 10.395266
 Length
                              0.014422
 Age
                            10.395266
 dtype: float64
                                                                                                                   In [27]:
 file data.std(numeric only=True)
                                                                                                                  Out[27]:
                          0.120093
0.099240
Length
Diameter 0.099240
Height 0.041827
Whole weight 0.490389
Shucked weight 0.221963
Viscera weight 0.109614
Shell weight 0.139203
3.224169
 Length
 dtype: float64
                                                                                                                   In [28]:
 file data.skew(numeric only=True)
                                                                                                                  Out[28]:
                 -0.639873
-0.609198
 Length
 Diameter
Height
Height 3.128817
Whole weight 0.530959
Shucked weight 0.719098
Viscera weight 0.591852
Shell weight 0.620927
 Age
                            1.114102
 dtype: float64
                                                                                                                   In [29]:
 file data.kurt(numeric only=True)
                                                                                                                  Out[29]:
Length 0.064621
Diameter -0.045476
Height 76.025509
Whole weight -0.023644
Shucked weight 0.595124
 Viscera weight
                              0.084012
 Shell weight 0.531926
Age
 Age
 dtype: float64
                                                                                                                   In [30]:
 quantile = file data['Whole weight'].quantile(q=[0.75, 0.25])
 quantile
                                                                                                                  Out[30]:
```

0.75 1.1530

```
0.25 0.4415
```

Name: Whole weight, dtype: float64

 $x = file_data.Diameter$

sns.boxplot(x=x)

5. Handle the Missing values.

In [32]:

In [31]:

Out[31]:

print(file_data.isnull())

	Sex	Length	Diameter	Height	Whole weight	Shucked weight \
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
4172	False	False	False	False	False	False
4173	False	False	False	False	False	False
4174	False	False	False	False	False	False
4175	False	False	False	False	False	False
4176	False	False	False	False	False	False
	Viscer	a weight	Shell we	ight	Age	
0		False	F	alse Fa	lse	
1		False	F	alse Fa	lse	

	_	_	_
0	False	False	False
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False
4172	False	False	False
4173	False	False	False

```
4174 False False False 4175 False False False False False False
[4177 rows x 9 columns]
                                                                                                 In [33]:
print(file_data.isnull().sum())
                        0
Sex
Length
Diameter
Height
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight
                       0
Age
dtype: int64
                                                                                                 In [34]:
file_data.isna().any()
                                                                                                Out[34]:
Sex
Length False
Diameter False
False
Height False
Whole weight False
Shucked weight False
Viscera weight False
Shell weight False
Age
                       False
dtype: bool
```

6. Find the outliers and replace the outliers

```
In [35]:
x = sns.boxplot(x=file_data["Age"])
x
Out[35]:
```


x = file_data.Age
sns.boxplot(x=x)

In [36]:

Out[36]:

x = np.where(file_data['Age']>57,39, file_data['Age'])

In [37]:

In [38]:

sns.boxplot(x=x)

Out[38]:

7. Check for Categorical columns and perform encoding.

```
In [39]:
import warnings
warnings.filterwarnings('ignore')
x = pd.Categorical(file data["Whole weight"])
[0.5140, 0.2255, 0.6770, 0.5160, 0.2050, ..., 0.8870, 0.9660, 1.1760, 1.094
5, 1.9485]
Length: 4177
Categories (2429, float64): [0.0020, 0.0080, 0.0105, 0.0130, ..., 2.5550, 2
.6570, 2.7795, 2.8255]
                                                                         In [40]:
# One Hot Encoding
pd.get dummies(file data["Height"]).head(10)
                                                                        Out[40]:
   0.
                          0.
                             0.
                                 0.
                                     0.
                                           0.
   00
      01
          01
              02
                  02
                     03
                         03
                             04
                                04
                                    05
                                                  22
                                                      22
                                                             23
                                           21
                                              21
                                                         23
                                                                 24
                                                                        51
                                                                           13
                                     0
           0 0 0 0 0 0 0 0 .
                                          0 \quad 0 \quad 0
                                                     0 0 0
```

	0. 00 0	0. 01 0	0. 01 5	0. 02 0	0. 02 5	0. 03 0	0. 03 5	0. 04 0	0. 04 5	0. 05 0	•	0. 21 0	0. 21 5	0. 22 0	0. 22 5	0. 23 0	0. 23 5	0. 24 0	0. 25 0	0. 51 5	1. 13 0
2	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

10 rows × 51 columns

pd.get_dummies(file_data).head(10)

In [41]:

Out[41]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age	Sex_F	Sex_I	Sex_M
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5	0	0	1
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5	0	0	1

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Age	Sex_F	Sex_I	Sex_M
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5	1	0	0
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5	0	0	1
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5	0	1	0
5	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.120	9.5	0	1	0
6	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.330	21.5	1	0	0
7	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.260	17.5	1	0	0
8	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.165	10.5	0	0	1
9	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.320	20.5	1	0	0

8. Split the data into dependent and independent variables.

```
In [42]:
# Splitting the Dataset into the Independent

X = file_data.iloc[:, :-1].values
print(X)

[['M' 0.455 0.365 ... 0.2245 0.101 0.15]
  ['M' 0.35 0.265 ... 0.0995 0.0485 0.07]
  ['F' 0.53 0.42 ... 0.2565 0.1415 0.21]
  ...
  ['M' 0.6 0.475 ... 0.5255 0.2875 0.308]
  ['F' 0.625 0.485 ... 0.531 0.261 0.296]
  ['M' 0.71 0.555 ... 0.9455 0.3765 0.495]]

# Extracting the Dataset to Get the Dependent

Y = file_data.iloc[:, -1].values
print(Y)

[16.5 8.5 10.5 ... 10.5 11.5 13.5]
```

9. Scale the independent variables

In [44]:

```
In [45]:
x = scale(file data["Viscera weight"])
                                                                       Out[45]:
array([-0.72621157, -1.20522124, -0.35668983, ..., 0.97541324,
        0.73362741, 1.78744868])
```

10. Split the data into training and testing

In [46]: from sklearn.model_selection import train_test_split In [47]: x = file_data.iloc[:, 1:7]

Out[47]:

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	
•••							
4172	0.565	0.450	0.165	0.8870	0.3700	0.2390	
4173	0.590	0.440	0.135	0.9660	0.4390	0.2145	
4174	0.600	0.475	0.205	1.1760	0.5255	0.2875	
4175	0.625	0.485	0.150	1.0945	0.5310	0.2610	
4176	0.710	0.555	0.195	1.9485	0.9455	0.3765	

4177 rows × 6 columns

y = file_data.iloc[:, -1]

In [48]:

```
Out[48]:
0 16.5
       8.5
1
2
      10.5
      11.5
3
       8.5
4172 12.5
4173 11.5
4174 10.5
4175 11.5
4176 13.5
Name: Age, Length: 4177, dtype: float64
                                                                    In [49]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25,random_st
ate =42)
                                                                    In [50]:
x_train
                                                                   Out[50]:
```

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
3823	0.615	0.455	0.135	1.0590	0.4735	0.2630	
3956	0.515	0.395	0.140	0.6860	0.2810	0.1255	
3623	0.660	0.530	0.175	1.5830	0.7395	0.3505	
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	
2183	0.495	0.400	0.155	0.8085	0.2345	0.1155	
•••							
3444	0.490	0.400	0.115	0.5690	0.2560	0.1325	
466	0.670	0.550	0.190	1.3905	0.5425	0.3035	
3092	0.510	0.395	0.125	0.5805	0.2440	0.1335	
3772	0.575	0.465	0.120	1.0535	0.5160	0.2185	
860	0.595	0.475	0.160	1.1405	0.5470	0.2310	

3132 rows × 6 columns

```
In [51]:
y train
                                                                      Out[51]:
3823 10.5
3956 13.5
3623 11.5
      16.5
2183
       7.5
3444
      10.5
      13.5
466
3092
      12.5
3772 10.5
860
        7.5
Name: Age, Length: 3132, dtype: float64
                                                                       In [52]:
print(x_train.shape, x_test.shape)
(3132, 6) (1045, 6)
11. Build the Model
                                                                       In [53]:
from sklearn.linear_model import LinearRegression
                                                                       In [54]:
model=LinearRegression()
                                                                       In [55]:
model.fit(x train,y train)
                                                                      Out[55]:
LinearRegression()
12.Train the Model
                                                                       In [56]:
Y predict train = model.predict(x train)
Y predict train
                                                                      Out[56]:
array([11.25888828, 11.95379472, 12.33692259, ..., 11.12903068,
       10.71152746, 11.59516371])
13.Test the Model
                                                                       In [57]:
y predict = model.predict(x_test)
y predict
                                                                      Out[57]:
array([13.0478407 , 11.43166184, 15.59825921, ..., 13.69440346,
       11.79279231, 10.83037939])
```

14. Measure the performance using Metrics

```
from sklearn.metrics import mean_squared_error
import math
print(mean_squared_error(y_test, y_predict))
print(math.sqrt(mean_squared_error(y_test, y_predict)))
4.862459933051859
2.205098622069285
```

In [58]: