(18) 日本国格群庁 (JP)

公報(A) 盐 华 噩 (S2

(11)特許出限公開番号

(43)公開日 平成9年(1997)2月7日

特開平9-37214

技格表示值所

4

广内数理器号

即配号

200

H04N

<u>%</u> H04N

(全18頁) 春金銭水 未割水 競水項の数19 OL

000005821 (71) 田國人 平成7年(1995)7月14日 **特醒平7-178482** (21)出版符号 (22) 出版日

大阪府門其市大字門東1006番地 大阪府門其市大字門其1006番地 股下電器産業株式会社 **▲<ず▼本 B**ー (72) 発明者

的操作式会社内 恻 (72)発明者

校下舞器

大阪府門真市大学門真1006番地

松下電器

磨業株式会社内 広谷 職 (72) 発明者

大阪府門真市大学門真1006番地 医蒙株式会社内

松下電路

年1名) **升型士商外智之** (74)代理人

(54) [発明の名称] 風次走査変換方法及び間次走査変換装置

[目的] 解めエッジや斜め線に対しても有効な走査線 4間を行うことができる順次走査変換方法および顧次走 査変数装置を提供することを目的とする。 (23)

【構成】 インターレース走査の映像信号を順次走査の **ら選択し、これらの画茶値の遊分絶対値を求め、原画案** し、補正された差分絶対値が最小となる原画衆の粗を検 補問画素を中心とした点対称関係の原画森の粗のうちか 出し、この原画素の粗に基づいて、フィルタ回路108 が、画楽値の差分絶対値を求める原画楽の組の候補を、 映像個号に変換する場合には、原画素選択回路101 のエッジ情報に基づいて、これらの差分絶対値を補正 が補間画案を作成する。

(特許請求の範囲)

【閻求項1】 インターレース走査の映像信号を順次走査 た点対称関係の原画楽の粗を選択し、前配選択された原 住に基づいて、前配相関値に対して補正を行い、前配補 正された相関値に基づいて、前配補間画案を作成する原 の映像借号に変数するに際し、前配インターレース走査 の1フィールドの映像信号を格子状にサンプリングした **る類次走査変換方法において、前配補関画素を中心とし** 画紫の組の画楽値の相関値を算出した後に、前記原画案 の組をなすそれぞれの原画楽におけるエッジ情報の相関 原画祭に基づいて、哲配宏数のための補配画祭を作成す 回案の組を選択する順次走査整換方法。

【群求項2】補間画案をはさむ原画案の組の画案値の相 関値は、前配原画業の組の画案値の差分絶対値であるに とを特徴とする請求項1配帳の類次走査変換方法。

隣接する画森との差分値であることを特徴とする請求項 [酵求項3] 原画素におけるエッジ情報は、垂直方向に 1 記載の順次走査変換方法。

贅抜する画築との差分値であることを特徴とする請求項 【糖水項4】原画紫におけるエッジ情報は、水平方向に 1 記載の個次走査変換方法。 【請求項5】エッジ情報の相関性を、エッジ情報の差分 絶対値で算出することを特徴とする闘求項 1 記載の順次 【間水項6】回來値の相関値による相関性が最も高くな は、いくつかの候補となる補間方向に存在する原画素に 基づいて、補間画案を作成する請求項 1 記載の順次走査 る原画案の組の補間方向が1つに特定できない場合に

【請求項7】作成する補間画券の画券値を、画券値の差 分絶対値が最小となる原画案の組の画案値の平均値とす る精水項1配載の順次走査変数方法。

【請求項8】補問画業の作成を、前記補問画案をはさむ 上下複数ライン上の補間方向の原画祭に基づいて行うこ とを特徴とする間求項1配転の順次走査変換方法。

された相関値を補正する相関値補正手段と、前配相関値 補正手段から得られる補正された相関値のうち、最も相 [請求項 9] インターレース走査の映像信号を順次走査 の映像信号に変数するに際し、前記インターレース走査 の1フィールドの映像信号を格子状にサンプリングした 原画業に基づいて、前記変数のための補間画券を作成す る類次走査変数装置において、作成する前配補間画券を 択手段と、前配原画桒選択手段により選択された原画桊 の組の画案値の相関値を算出する相関値算出手段と、前 妃原画衆の組の各原画衆におけるエッジ僣報を検出する エッジ情報検出手段と、前記エッジ情報検出手段で検出 されたエッジ情報を用いて、前配相関値算出手段で算出 **現性が高い原画素の組の傾き方向を検出する傾き検出手** 毀と、前配変数のための補間画案を作成するフィルタ手 中心とした点対称関係の原画衆の組を選択する原画楽選

段とを備え、前配傾き検出手段で検出された前配傾き方 向の所定数の原回業に基づいて、前配フィルタ手段によ り、哲智数数のための植園画繋を作成するよう構成した 順次走査変換装置 【閻求項10】相関値補正手段を、ルックアップテーブ ルメモリで構成したことを特徴とする間求項 9 記載の順 **次走査室換装置** 【節水項11】 掻き検出手段を、補間画券をはさむ原画 紫の粗の画楽値の整分絶対値に基づいて、前配原画楽の 組に対する相関性の評価を行い、前配並分絶対値が最小 となる原画素の粗を、最も相関性が高い原画案の粗と評 価するよう格成したことを特徴とする糖水項 9 記載の顧 次走查变換裝置。 【開求項12】フィルタ手段を、画案値の差分絶対値が 最小となる原画茶の紐の画条質の平均値を補配画券の画 **楽値とするよう構成したことを特徴とする請求項 9 記載**

【閻吹項13】フィルタ手段を、前配補間画業をはさむ 上下複数ライン上の植物方向の原画株に基づいて植物画 紫を作成するよう構成したことを特徴とする酸水項9配 の類次走査変数装置

佐の映像信号に変数するに際し、前配インターレース走 た原画茶に払びこれ、哲配致数のための補間画茶を作成 【閻水項14】インターレース走査の映像信号を鬩次走 する魔次走査変換装置において、作成する前配補関画案 を中心とした点対称関係の原画素の粗を選択する原画案 選択手段と、前配原画業選択手段により選択された原画 **査の1フィールドの映像信号を格子状にサンプリングし** 衆の粗の画素値の相関値を算出する相関値算出手段と、 戦の頃次走査変換装置。

ジ情報を用いて、前配第1の相関値補正手段より得られ る前配原画業の組の相関値を補正する類2の相関値補正 正手段から得られる補正された相関値のうち、最も相関 報を検出する垂直方向エッジ情報検出手段と、前配垂直 手段と、前配第1の相関値補正手段及び第2の相関値補 性が高い原画業の組の傾き方向を検出する傾き検出手段 と、前記変数のための補間画案を作成するフィルタ手段 前配原画案の組の各原画案における垂直方向のエッジ情 方向エッジ情報検出手段で検出された垂直方向エッジ情 報を用いて、前配相関値算出手段で算出された相関値を 補正する第1の相関価補正手段と、前配補関画繋に対し て上下に位配する原画案の組の各原画案における前配垂 直方向エッジ情報検出手段で検出された垂直方向のエッ とを協え、前記傾き検出手段で選択された補間方向の所 定数の原画葉に基づいて、前配フィルタ手段により、前 配変数のための補間画素を作成するよう構成した顧次走 【請求項15】第1の相関値補正手段を、ルックアップ テーブルメモリで構成したことを特徴とする請求項14 記載の順次走査変換装置

【請求項16】第2の相関値補正手段を、ルックアップ

- 2 -

-

B2

(51) Int C. **BEST AVAILABLE**

テーブルメモリで構成したことを特徴とする請求項14

【耐水項17】傾き検出手段を、補間固業をはさむ原画 森の粗の画衆値の差分絶対値に基づいて、前配原画森の 粗に対する相関性の腎価を行い、前配差分絶対値が最小 価するよう構成したことを特徴とする請求項14配帳の となる原画素の組を、最も相関性が高い原画素の組と評 順次走查変換装置。

【精水項18】フィルタ手段を、画案値の差分絶対値が 素値とするよう構成したことを特徴とする請求項14配 最小となる原画素の粗の画素値の平均値を補間画業の画 戦の順次走査変換装置 【請求項19】フィルタ手段を、前配補間画業をはさむ 上下複数ライン上の補間方向の原画業に基づいて補間画 森を作成するよう構成したことを特徴とする間求項14 配載の懶次走査変換装配。

[発明の詳細な説明]

[000]

[産業上の利用分野] 本発明は、インターレース走査の 映像信号を如次走査の映像信号に変換する脚次走査変換 方法および鬩次走査変数装置に関するものである。 [0002]

99~P. 900 (1990) に説明されている。その の平均を用いる平均ライン走査稼補間回路とが提案され **的に画楽値を平均するライン走査線補間回路が開示され** 【従来の技術】従来、2:1インターレース走査(飛び 趙し走査)の映像信号を1:1順次走査の映像信号に変 換する順次走査変換技術における順次走査変換装置とし Tit, IDTV (improved definiti on television)受信回路に採用されてい る動き適応型走査線補間回路がある。動き適応型走査線 **補間回路の詳細については、参考文献、テレビジョン学** 会編、テレビジョン画像情報工学ハンドブック、P.8 内、ライン走査線補間回路として、隣接走査線をそのま **ま用いる2度審きライン走査線補間回路と、隣接走査線** ている。また、特開平6-153169号公報には、爵 カエッジの解像度劣化を防ぐ目的で相関性の高い斜め方 75.5

[0003]以下、図面を参照しながら、従来の順次走 査変換装置の動作について説明する。

[0004] 図6はディスプレイ上に表示した画像を見 **称する)であり、f-nエッジより左上方向が白色、右** た図である。a~tはインターレース走査の映像信号を 表示した原ライン上の原画案であり、p0~p9は順次 走査の映像信号を得るために作成する補間ライン上の補 間回衆である。ここで、原画衆の画衆値(ディスプレイ f=g=h=i=j=0, k=1=m=100, n=o =p=q=r=s=t=0とする。図6に示す画像はf - nの傾きを持つ斜めエッジ(以下、f-nエッジと略 上の輝度値に相当)を、a=b=c=d=e=100、

下方向が黒色である。このような場合に、上配に示す3 方式の回路で補間した場合の画案値を考える。 【0005】まず、2度毎きライン走査線補間回路の場 合は、隣接走査線をそのまま用いるため、補間画案の画 素値は、p0=p1=p2=p3=p4=100、p5 =p6=p7=p8=p9=0となり補間ラインが作成 される。次に、平均ライン走査袋補間回路の場合は、瞬 接走査線の平均を用いるため、補間画案の画案値は、p 0=p1=p2=100, p3=p4=50, p5=p6=p7=p8=p9=0となる。また、相関性の高い 料め方向に画素値を平均するライン走査線補間回路の場 合は、相関性の評価を補間画案を中心とした垂直方向お よび斜め方向の原画素間の差分値によって行い、この差 分値が最も小さくなる方向を相関性の高い方向とし、そ の方向の原画森の平均値を補間画素の画案値とする。そ のとき評価する方向は、垂直方向を中心として、左右に 5 方向を考える。したがって、p0=p1=100とな り、p 2 はc - m方向または、d - 1 方向のいずれかを 数択しp 2 = 100、p 3はe −m方向を選択しp 3 = 100、p4はfin方向を選択しp4=0、p5=p 6=0 kts.

【発明が解決しようとする課題】しかしながら、上配の ような従来の3方式によるライン走査線補間回路を用い 以下のような画質劣化が発生するという問題点を有して た頃次走査変換装置では、画像のエッジ部分において、

【0007】2度審きライン走強模補間回路の場合、図 果、インターレース投示の時に発生していたラインフリ 6に示すようなf-nエッジで、p3=p4=100、 すなわち白色となるためにギザギザが生じる。その結 ッカは全く軽減されない。 【0008】平均ライン走査模補間回路の場合、p3= p4=50、すなわち灰色となる。その結果、ラインフ リッカは若干軽減されるものの、斜め方向の解像度が劣 化しf-nエッジにボケが生じる。

100、p4=0となりf-nエッジが完全に補関され [0009] これらに対して、相関性の高い斜め方向に 画楽値を平均するライン走査袋補間回路の場合、p3= 8. p9の補間画業の画業値は100となるが、p4は -n方向、h-1方向ともに原画案の差分値、すなわち 相関性の評価結果が等しくなり方向が特定できない。た とえ、このような場合、中間的な方向を選択するような アルゴリズムにしていたとしても、d-p方向を選択す bーr方向、cーq方向、dーp方向、dーp方向、f -m方向の相関性の腎価結果が等しくなり、p4=10 cーs方向、dーr方向、eーq方向、gーo方向、i ることでp3の画楽値は100となる。p5も同様に、 る。ところが、図7に示す画像のような母も数Aの場 A. p0. p1. p2. p3. p5. p6. p7. p

Dとなる。その結果、斜め線Aは切断されてしまい、全

[0010] 図7の斜め線Aの場合、平均ライン走査線 ff間回路の方が、p4=p5=50となりポケは生じる ものの切断は起こらない。以上のように、相関性の高い 比較的面積の大きな図形の斜めエッジ部分には非常に有 めに権間が行われるが、値い幹め様に対しては有効に補 斜め方向に画茶値を平均するライン走査線補間回路は、 間できない場合が発生する。

[0011]本発明は、上記の問題点を解決し、面によ って生じた斜めエッジや斜め線に対しても有効な走査線 楠間を行うことができる鬩次走査変換方法および鬩次走 **変変換装置を提供することを目的とする。**

[0012]

【供題を解決するための手段】上配目的を達成するため に、本発明の順次走査変数装置は、インターレース走査 の映像個母を超次走査の映像個母に変換するに際し、前 妃インターレース 走査の 1 フィールドの映像信号を格子 状にサンプリングした原画衆に基づいて、前配数数のた めの補間画素を作成する頃次走査変換装置において、作 成する前記補間國業を中心とした点対称関係の原國業の 組を選択する原画衆選択手段と、前配原画素選択手段に より選択された原画素の組の画案値の相関値を算出する 相関値算出手段と、前配原画案の組の各原画案における 相関値のうち、最も相関性が高い原画案の組の傾き方向 エッジ情報を検出するエッジ情報検出手段と、前配エッ ジ情報検出手段で検出されたエッジ情報を用いて、前記 相関値算出手段で算出された相関値を補正する相関値補 を検出する傾き検出手段と、前配変換のための補間画案 を作成するフィルタ手段とを備え、前記傾き検出手段で 正手段と、前配相関値補正手段から得られる補正された 前配フィルタ手段により、前配変換のための補間画業を **敗出された前配傾き方向の所定数の原画券に基づいて、** 作成するよう構成する。

ジ俗報Edge (b)を、原画衆もの画衆値に対する原

画森aの画森値の差分値として定義する。また、原画教

bの画楽値が、原画森 aの画楽値より大きい場合、す; わち、エッジ情報Edge(b)が正の場合をエッジ

は、1ライン哲の画教にあたる。原画教しにおけるエッ

場合、すなわち、エッジ情報Edge(b)が負の場合 楚がない場合、すなわち、エッジ情報Edge (b) が

1. 原画紫もの画紫値が、原画紫鬼の画紫値より小さい

をエッジ2、原画祭りの画楽値と原画祭 8の画楽値とに 0の場合をエッジ3と定義する。エッジ1及びエッジ2 においては、エッジ情報Edge (b)の絶対値が大き いほど、エッジの傾きが大きくなり、小さいほど、エッ ジの傾きが小さくなる。 すなわち、エッジの傾きが大き いということは、その回像は怠峻なエッジを有し、エッ ジの掻きが小さいということは、扱やかなエッジを有す

ることを意味する。

[0013]

映像信号を順次走査の映像信号に変換する場合には、画 **森値の相関値を求める原画案の超の候補を、補関画案を** [作用] 本発明の構成によると、インターレース走査の 各原回案の組において、画案値の相関値を算出し、各原 **钼関値を補正し、その補正された相関値が最も高い相関** 中心とした点対称関係の原画素の組のうちから選択し、 回来の超のそれぞれの原画森のエッジ情報に基づいて、 住を示す原画業の粗に基づいて補間画業を作成する。

び順次走査変徴装置について、図面を参照しながら説明 【実施例】以下、本発明の実施例の頃次走査変換方法及

[0014]

【0015】はじめに、本実施例の順次走査変換方法に ついて説明する。図4にディスプレイ上に表示した補間 画素を中心とした2次元画像を示し、図4に基づいて、

以明する。図4に示すような2次元画像に対しては、エ 補関画案を中心とした垂直方向および斜め方向の定義を ッジ情報は、水平方向及び垂直方向の2次元的な広がり ぞれ1次元のエッジ情報に分解できるため、説明簡略化 に対して、豊直方向に存在する原画集d、kの方向を傾 は、水平方向のエッジ情報、豊直方向のエッジ情報それ のために、1次元のエッジ情報について説明する。図5 子状にサンプルした原画紫をa~nとする。植間画紫D の方向を傾き+2、原国森B、hの方向を傾き+3、原 画案c、1の方向を傾き-1、原画案b、mの方向を傾 〕の方向を似き+1と定義する。同様に、原画業 f、 i [0017] 図5において、a、bは、インターレース 世登の映像信号を、水平方向に対しては、ドットクロッ クfs (MHz)で、錐荷方向に対しては、ラインクロ ックfh(kHz)で、格子状にサンプルした原面素に おける回茶値(ディスプレイ上の輝度値に相当する)で ある。原画教ョは、水平方向に対しては、原画教もに対 【0016】図4において、順次走査変数信号を得る1 き0、右に1回案分板斜した方向に存在する原画業6、 やなし、しをしながの、2次元のエッツを盛にしてと に1次元のエッジ情報の⑪類を示し、図5に基づいて めの補間画業をD、インターレース走査の映像信号を、 プレイ上に投示された 2 次元画像に基づいて、本東版 して、1ドットクロック前の画森、盤直方向に対して エッジ情報の定義を説明する。また、図6に示すディ の順次走査変換方法の補間画案作成手順を説明する。 きー2、原画業8、nの方向を似きー3と定義する。

[0018] 図6において、a~tはインターレース走 査の映像信号を格子状にサンブルした原画券、p0~p スプレイ上の輝度値に相当する)を、a=b=c=d= e = 100, f = g = h = i = j = 0, k = i = m = 100, n=o=p=q=r=s=t=0とする。図6に 9 は超次走査の映像信号を得るために作成する補間ライ ン上の補間回券である。ここで、原回祭の國紫値(ディ

1. 1. 1. 1. 1. 1.

示す画像は、f-nの傾きを持つ斜めエッジ (以下、f **- nエッジと略称する)であり、f-nエッジより左上** 方向が白色、右下方向が黒色である。 【0019】このような画像に対して、顧次、補間画業 D 0 ~ D 9 を作成していくが、作成手順は次のようなス [0020] ステップ1においては、傾き-3~+3ま での合計 7 方向を傾き候補とする。 ステップ 2 において は、ステップ1で特定した7つの傾き候補の方向に存在 し、補間画業を中心とした点対称関係にある原画案の組 は、差分絶対値を求めた原画業について、エッジ情報を ク前の原画案との差分値を、垂直方向に対しては、1ラ 求める。エッジ情報は、水平方向に対しては、1クロッ の差分絶対値をそれぞれ求める。 ステップ 3において

イン前の原画森との差分値をそれぞれ求める。ステップ

4においては、ステップ2で求めた差分絶対値に対し

行う。 差分絶対値を求めたのと同様に、ステップ1で特 定した7つの概き候補の方向に存在し、補間画案を中心 ッジが存在する方向における原画兼においては、原画業 ついても類似している。また、エッジ情報の類似性にお いては、エッジの有無について考えた場合、エッジ有の ジ1同士やエッジ2同士のような場合、エッジ情報の差 し、エッジ無の場合、すなわち図5のエッジ3のような て、ステップ3で求めたエッジ情報に基づいて、補正を とした点対称関係にある原画業の組の水平方向、垂直方 向のエッジ情報の差分絶対値をそれぞれ求める。斜めエ の画案値が類似しているばかりではなく、エッジ情報に また、エッジの方向性までもが類似していれば、一個相 **ジ有で、方向性までもが類似している場合、エッジ情報** 差分絶対値を求める原画案のエッジ情報が、図5のエッ 関性が高くなるはずである。 このような理由から、エッ 場合の方が類似性、すなわち相関性が高いはずである。 分絶対値に対してある値々を減算するような補正を施

い。以上のように求められたエッジ情報の差分絶対値を ステップ2で求めた差分絶対値に加算する。ステップ5 においては、ステップ4で補正された登分絶対値が扱小 となる原画業の組を、最も相関性の高い原画業の組とし は、傾き0である原画素の組を採用する。ステップ6に おいては、ステップ5で求めた最も相関性の高い原画業 場合、エッジ情報の差分絶対値に対する補正は施さな て評価する。 吸小となる組が1つに特定できない場合 の組の画楽値を平均して、補間画素の画条値とする。

【0021】以上のようなステップ1~ステップ6の手 ~+3までの合計7方向を傾き候補とする。以上7つの 図6を参照しながら、詳しく説明する。まず、戯ぎー3 **傾き候補の原画案の組は、傾き-3のa、aと、傾き-【0022】まず、補間画業p3の作成手順について、** 2のb、pと、傾き-1のc、oと、傾き0のd、n 個に従って、補間画案 D 0~ D 9の画案値を求める。

3の8、 k とになる。7つの傾き候補の原画祭の組それ なる。7つの傾き候補の原画条の組におけるエッジ情報 ぞれで整分絶対値を求めると、傾き~3~0及び傾き+ ~g、k~qにおけるエッジ管報であるが、原画教a~ 方向、垂直方向ともに、差分値は-100、原画紫8及 びoについては、水平方向は0、垂直方向は-100と の差分絶対値は、仮き-3~-2、+1については水平 方向、垂直方向ともに0、傾き-1~0及び+3につい ては水平方向は0であるが、垂直方向は100、傾き+ 向のエッジ情報差分値が加算されて300、傾き0及び 2~+3では100、傾き+1のみ0となる。原画教 3 e、k~m、p~qについては、水平方向、垂直方向と もに、楚分値は0で、原画素 f及びnについては、水平 これらのエッジ情報整分絶対値それぞれを、7 つの傾き 頃きー3~-2は変わらずに100、傾き-1~0、+ +2は200、傾き+1は0となる。以上から、このよ うにエッジ情報により補正された差分絶対値のうち最小 傾き+1は変わらずに0、傾き+2は水平方向、垂直方 る。したがって、補問画券p3の画条値は、原画券6と 2については水平方向、垂直方向ともに100となる。 候補の原画業の粗それぞれの差分絶対値に加算すると、 3 は垂直方向のエッジ情報差分値が加算されて200、 となるのは、傾き+1の原函素eと原画素mの組とな 原国森mの画茶値の平均値である100となる。

作成される。補間画案 p 4 については、7 つの傾き候補 絶対値を求めると、傾き-3~0及び傾き+2~+3で 【0023】以下、同様の手顧で補配画祭p4、p5も は100、傾き+1のみ0となる。エッジ情報差分絶対 値で補正を行う。しかしながら、補間画業p4の作成に おいては、傾き+1に対しては、原画素f及び原画素n のエッジ情報が、水平方向、垂直方向ともに図4のエッ ぞれに対してエッジ情報の整分絶対値からある値のを試 算する。ここでは、説明簡便化のために、α=5とする か、αは正の数であれば、どのような数でもよい。この ようなことから、傾き+1に対するエッジ情報整分絶対 値は、水平方向のエッジ情報、垂直方向のエッジ情報そ た、傾き-3~-1、+3は100、傾き0及び+2は D5については、エッジ情報により補正された原画楽問 qと、傾き-1のd、pと、傾き0のe、oと、傾き+ とになる。7つの傾き候補の原画紫の組それぞれで差分 ジ2であるため、水平方向、整直方向のエッジ情報それ れぞれに対して5が減算されるから、-10となる。ま 200となる。以上から、傾き+1の原画案 f と原画案 nの組が採用され、補間画楽p4の画茶値は、原画業f と原画衆 n の画衆値の平均値である 0 となる。 補間画案 差分絶対値は、傾きー3~-1、+3では100、傾き 0、+2では200、傾き+1では-5となり、傾き+ の原画森の組は、傾き-3のb、rと、傾き-2のc、 1のf、nと、傾き+2のg、mと、傾き+3のh、1

の画条値は、原画素8と原画案のの画条値の平均値であ る0となる。他の補間画祭り0~り2、p6~p9につ いても同様の手頃で作成され、補関画券p0~p2の画 **寮値は100、補間画券p6~p9の画券値は0とな** 【0024】以上のようにしてf-nエッジが完全に補 聞される。図7に示す画像のように、斜め様Aの場合の 福西国教 D 0~D 9を決める。

【0025】まず、補間画券p3~p6に対する補間画 京画素間差分絶対値は、傾き-3~-2、+1は0、傾 き-1-0、+2~+3は100となる。これに対して エッジ情報による補正を施すと、傾き-3に対しては原 傾き — 2 に対しては原画衆もはエッジ無であるが、原画 め200が加算されて200、仮き-1に対しては原画 **森 c はエッジ無であるが、原画茶 o は垂直方向にエッジ** 2が存在するため100が加算されて200、傾き0に 対しては原画茶dはエッジ無であるが、原画茶nは垂直 方向、水平方向ともにエッジ2が存在するため200が 2が存在し、原画素1はエッジ無であるため200が加 算されて300、傾き+3に対しては原画業のは垂直方 森p3の画紫値は、原画森eと原画森mの画紫館の平均 画業aはエッジ無であるが、原画業qは垂直方向に図4 業pは垂直方向、水平方向ともにエッジ1が存在するた **加算されて300、傾き+1に対しては原画券e、原画** 紫mともにエッジ無であるため、変わらずの、傾き+2 に対しては原画案!は垂直方向、水平方向ともにエッジ 向にのみエッジ2が存在し、原画森トはエッジ無である ため100が加算されて200となる。以上から、傾き +1である原画券eと原画条mの組が採用され、補間画 のエッジ1が存在するため100が加算されて100. **株作成手間について述べる。 植型画祭 p 3 については、** 値である100となる。

【0026】補関画案p4については、原画案間差分絶 対値は、傾きー3~-1、+1、+3は0、傾き0、+ **幕トは垂直方向、水平方向ともにエッジ1が存在し、原** 2は100となる。これに対してエッジ情報による補正 に対しては原画衆にはエッジ無であるが、原画祭りは垂 直方向にエッジ1が存在するため100が加算されて1 が、原画来pは垂直方向、水平方向ともにエッジ 1 が存 在するため200が加算されて200、傾き0に対して は、原画案のはエッジ無であるが、原画案のは垂直方向 0が加算されて200となり、傾き+3に対しては原画 を施すと、傾き-3に対しては変わらずに0、傾き-2 傾き+1に対しては、原画案!は垂直方向、水平方向と もにエッジ2が存在し、原画衆nも同様に垂直方向、水 平方向ともにエッジ2が存在するため10が減算されて - 10、 傾き+2に対しては原画衆gは垂直方向にのみ エッジ2が存在し、原画茶mはエッジ無であるため10 にエッジ2が存在するため100が加算されて200、 00、傾き-1に対しては原画森dはエッジ熱である

画来しはエッジ無であるため200が加算されて200 となる。以上から、傾き+1である原画森fと原画森巾 の組が採用され、福間回祭 D 4の回案値は、原画祭 f と 原画業 nの画券値の平均値である0となる. [0027] 植西画株 p5については、エッジ体報によ +1である原画衆 8と原画業のの組が採用され、補間画 森p5の画茶値は、原画森gと原画森oの画茶値の平均 5、傾き+2が500、傾き+3が100となり、傾き 0、傾於-1が100、傾咎0が500、傾咎+1が-る補正後の原画案間整分絶対値は、傾きー3、-2が 値である0となる。

10、傾き+2が300、傾き+3が300となり、傾 【0028】 梅岡画祭 D 6 については、エッジ存扱によ き+1である原画祭りと原画祭りの組が採用され、補間 0、傾き-1が300、傾きのが300、傾き+1が-回来り6の国券値は、原画教11と原画券10の国券値の平 る補正後の原画楽間差分絶対値は、傾きー3、-2が 均値である100となる。 【0029】 街の紘距回桜 20~22. p7~p9につ いても同様の手質で作成され、補間画業 p 0 ~ p 2、 p 7~p9の画紫値は100となる。

[0030]以上のようにして斜め線Aが完全に補関さ れる。さらに、図8に示す画像のように、母め様Aより 傾斜のきつい斜め観Bの場合の補間画祭p0~p9を状 【0031】まず、福西国衆ロ3~p6に公する福西国 き0~+1、+3は100となる。これに対してエッジ **簡報による補正を施すと、仮きー3に対しては原画教**a はエッジ無であるが、原画素qは垂直方向に図4のエッ ジ1が存在するため100が加算されて100、傾き一 2に対しては原画祭り、原画祭りともにエッジ無である ため変わらず 0、 掻き-1 に対しては原画器 c はエッジ 紙であるが、原画数のは水平方向にエッジ1が存在する ため100が加算されて100、傾き0に対しては原画 森dはエッジ無であるが、原画集nは垂直方向にエッジ 2が存在するため100が加算されて200、傾き+1 に対しては原画茶eはエッジ無であるが、原画泰mは磐 直方向、水平方向ともにエッジ2が存在するため200 が加算されて300、傾き+2に対しては原画券f、原 回来1ともにエッジ無であるため変わらず0、 掻き+3 に対しては原画業gは垂直方向、水平方向ともにエッジ 2が存在し、原画券にはエッジ無であるため200が加 算されて300となる。この場合、傾き-2と傾き+2 ため、似き-2である原画紫bと原画紫pの椒、似き+ の差分絶対値がともに0となり、特定することできない 権間回来 b 3の回券値は、原画券 p、原画券 b、原画券 b **教作成手版について述べる。 補間画券 p 3 については、** 2である原画祭 (と原画券)の組のどちらも採用する。 原画素間差分絶対値は、傾き-3~-1、+2は0.

- 9 -

f、原画数1の合計4画数の画案値の平均値である10

1の原画券 8と原画券のの組が採用され、補間画券 D 5

と、傾き±1のe、mと、傾き+2のf、1と、傾き+

[0032] 補間画素p4については、原画案間差分絶 原画券 r は垂直方向にエッジ 1 が存在するため 1 0 0 が 加算されて100、傾き-2に対しては原画券 c はエッ るため100が加算されて100、傾き-1に対しては が、原画券のは水平方向にエッジ1が存在するため10 対値は、傾き-3~0、+2は0、傾き+1、+3は1 00となる。これに対してエッジ情報による補正を施す **ジ無であるが、原画素 q は垂直方向にエッジ 1 が存在す** 原画森d、原画森pともにエッジ無であるため変わらず はエッジ無であるが、原画素nは垂直方向にエッジ2が 存在するため100が加算されて200、傾き+2に対 しては原画券gは垂直方向、水平方向ともにエッジ2が 存在し、原画衆mは同袋に垂直方向、水平方向ともにエ ッジ2が存在するため10が弑算されてー10、傾き+ 0となる。以上から、傾き+2である原画祭ョと原画教 0が加算されて100、掻き+1に対しては、原画券f 原回珠1はエッジ無であるため100が加算されて20 mの粗が採用され、補間画発p4の画案値は、原画券g と、傾き-3に対しては原画素bはエッジ無であるが、 たり、傾きのに対しては、原画森をはエッジ無である 3 に対しては原画券 h は垂直方向にエッジ 2 が存在し、 と原回森田の回茶値の平均値である0となる。

れ、補間固発り5の固条値は、原固集トと原画策のの画 [0033] 補間画業p5については、エッジ情報によ る補正後の原画森間差分絶対値は、傾きー3が0、傾き - 2が100、傾き-1が100、傾き0が0、傾き+ 【0034】補問画案p6については、エッジ情報によ 1が400、傾き+2が-5、傾き+3が400とな り、傾き+2である原画紫hと原画紫nの組が採用さ 紫値の平均値である0となる。

- 2が0、傾き- 1が100、傾き0が300、傾き+ る楠正後の原画森間差分絶対値は、傾き-3が0、傾き れ、補間画条p6の画条値は、原画券Iと原画券oの画 1が200、傾き+2が-5、傾き+3が200とな り、傾き+2である原画森1と原画森のの組が採用さ 紫値の平均値である100となる.

[0035] 街の補間回幣 00~ p 2、 p 1~ p 9 につ いても同様の手題で作成され、補間回案p0~p.2、p 7~p9の画紫値は100となる。

[0036]以上のようにして斜め線Bが完全に補関さ れる。以上の方法により、面によって生じた斜めエッジ や斜め線に対しても有効な走査線補間を行うことができ 【0037】なお、上記の実施例では、補間画紫の画素 値を求める際に、最も相関性が高いと判断された補間方 向に存在する補間画案に最も近い原画業の画案値を平均 したが、補間方向に存在する原画素の画素数を増やすこ とで、さらに、高精度に補間画素の画案値を求めること ができる。すなわち、楠間方向に存在する上方2ライン

上の2つの原画楽と下方2 ライン上の2つの原画紫の合 **計4つの原画築の画素値に、それぞれ所定の係数を掛け** 合わせ加算することで補間画素の画案値を求めればよ [0038] さらに、相関性の評価を原画衆の画楽値の 楚分値より行ったが、原画森の画森数を増やすことも、 同様に実施できる。 【0039】次に、本実施例の頃次走査変換装置につい まず、後で用いる傾き方向について、図3にしたがって て説明する。この順次走査変換装置の説明を行う前に、

する原信号 d、kの方向を傾き 0、右に1 画楽分傾斜し 【0040】図3は、鬩次走査の映像信号を得るための **葡萄質 日本中心にして、フィールド内のインターレース** て、補間信号をp、インターレース走査の映像信号を原 間号a~nとする.補間信号pに対して垂直方向に存在 た方向に存在する原信号e、 Jの方向を傾き+1、原信 号f、1の方向を傾き+2、原信号g、hの方向を傾き +3、原信号に、1の方向を傾き-1、原信号も、mの 方向を傾きー2、原信号8、nの方向を傾きー3と定義 走査の映像信号を2次元で見た図である。図3におい

【0041】図1に、順次走査変換方法を実現するため に、第2の実施倒としてのフィールド内補間回路114 14の動作の詳細を説明するためのプロック図を、図3 の本実施例の順次走査変換装置の要部の構成図を示し、 図2に、第1の実施例としてのフィールド内補間回路 1 の動作の詳細を説明するためのプロック図を示す。

[0042] 図1において、入力信号は、2:1インタ --レース走査の映像信号をサンプリング周波数fs (M 号)であり、出力信号は、サンプリング周波数が2×f Hz) でサンプリングしたディジタル映像信号 (原信 s (MHz) の1:1 個次走査の映像信号である。

[0043] 入力信号が1Hメモリ(1Hはインターレ 1、112で遅延され、(y-1)ライン、yライン、 一ス走査の映像信号の1ラインに相当) 110、11

(A+1) ライン、(A+2) ラインの4ウイン七の原 **信号が同時に得られる。それぞれのライン上の原信号は** RAM (ランダム・アクセス・メモリ) 107に記憶さ (y+1) ラインの原信号から掻き候補となる原信号が **選択される。選択された傾き候補の原信号間での相関値** れる。同時に、原信号選択回路101では、ソラインと を、相関値算出回路102で算出する。それと同時に、

い傾き方向が検出され、補間方向として出力される。検 1) ラインの原信号それぞれの水平方向及び垂直方向の エッジ情報を検出する。検出されたエッジ情報に基づい て、相関値算出回路102で算出された相関値に対して 楠正を相関値補正回路104で施す。補正が施された相 関値は傾き検出回路105に入力され、最も相関性の高 エッジ情報後出回路103では、ソライン及び (y+

出された補間方向は、アドレス算出回路106に入力さ

【0044】アドレス算出回路106は、補間借号を算 出するために必要な原信号が配憶されているRAM10 7 のアドレスを算出する。 補間信号を算出するために必 1) ライン、(y + 2) ライン上にあり、算出する補間 間号を中心として、傾き検出回路105で検出された補 間方向の4つの原信号である。アドレス算出回路106 によって、RAM107から呼び出だされた4つの原信 号は、フィルタ手段としてのフィルタ回路108でフィ 要な原信号は、(y-1)ライン、yライン、(y+ ルタ係数メモリ109の所定の係数と取み付け加算さ

れ、補別信号となって時間軸変換回路113へ入力され る. 時間軸変換回路113では、原信号と補間信号がそ れぞれ 2 倍に時間軸圧縮され、1 ライン毎に交互に出力 することで類次走査の映像信号が得られる。 のフィールド内補間回路 1 1 4 の動作について詳細に説 [0046] 図2において、1Hメモリ111で遅延さ

[0045] 次に、図2を用いて、第1の実施例として

れた入力信号は、ソライン上の原信号であり、1D選延 器 (1Dはインターレース走査の1画案に相当) 201 ~206で遅延され、原信号a~gが得られる。原信号 ライン上の原信号であり、1D遅延器208~213で 遅延され、原信号ト~nが得られる。原信号ト~nは図 4に示す原ライン (y+1)上のh~nに相当する。就 分値を絶対値回路228により絶対値化し、相関性を示 3の原信号の組に対する登分値を求める。求められた差 す相関値として、相関値補正回路229~235に入力 算器221~227によって、図4に示す傾き-3~+ a~gは図4に示す原ラインy上のa~gに相当する。 1日メモリ112で遊延された入力俗号は、(y+1)

ッジ情報を、紋算器236~242を用いて、隣接原信 **号との差分値として算出する。また、(y+1)ライン** 上の原信号の水平方向のエッジ情報も、減算器243~ 249を用いて、差分値を算出する。 ソライン上の原信 **号の水平方向のエッジ情報と、(y+1)ライン上の原** 【0047】一方、yライン上の原偕号の水平方向のエ 信号の水平方向のエッジ情報に基づいて、絶対値回路2 28で算出された相関値を、相関値補正回路229~2 35で補正する.

[0048] 相関値補正回路229~235における相 関値の補正処理内容は、傾きー3~+3の原信号の組に の原信号の組それぞれに対応する水平方向のエッジ情報 の差分値を算出する。算出された水平方向のエッジ情報 の遊分値を絶対値化し、この遊分絶対値に基づいて、相 対する差分値を算出する場合と同様に、傾き-3~+3 **関値の補正を行う。相関値の補正は、相関値に対して水** 平方向のエッジ情報の差分絶対値を加算するだけである

楠正方法が若干異なる。 エッジ情報の差分絶対値が小さ 味する。しかしながら、同じエッジ情報の差分絶対値が 小さくとも、エッジの有無により、相関性の意味合いが 原信号間で、エッジの傾き、すなわちエッジの方向性を いということは、同様のエッジが存在していることを意 は、エッジ無、もう一方は、エッジ有の場合、野投した 絶対値が小さくて、エッジ有の場合は、そのエッジ情報 の競分絶対値が加算された相関値からある値αを減算す な構成であってもよい。また、この相関値補正回路をル ックアップテーブルメモリで構成したとしても、同様の 水平方向のエッジ情報の差分絶対値が小さい場合、 若干異なる。エッジ情報の差分絶対値が同じで、一方 **検索している以上、エッジ有の場合の方が、相関性が** る。この処理内容に即した回路構成であれば、どのよ いはずである。このようなことから、エッジ情報の名 効果が得られる。

[0049] このように相関位補正回路229~235 において補正された相関値は、垂直方向のエッジ情報に より補正を行う相関値補正回路250~256に入力さ

【0050】また、yライン上の原信号の垂直方向のエ 上の原信号の直上に位置する(y ー 1)ライン上の原信 **号との笠分位として算出する。さらに、(y + 1)ライ** ン上の原信号の垂直方向のエッジ情報を、減算器264 ~270を用いて、差分値を算出する。 ソライン上の原 **信号の垂直方向のエッジ情報と、(y + 1)ライン上の** 原信号の垂直方向のエッジ情報に基づいて、水平方向の エッジ僚報により補正された相関値を、相関値補正回路 250~256で補正する。

関値の補正処理内容は、水平方向エッジ情報による相関 [0051] 相関値補正回路250~256における/ 価補正処理内容と同様である。

[0052] 解価回路271では、水平方向エッジ情報 して評価された場合は、補間方向は、図4に示す傾きー 3であり、補間方向Pとして-3が出力される。以下同 合は、補間方向P=0、相関値Driの場合は、補間方向 P=1 、相関値 D_{12} の場合は、補間方向P=2 、相関値 及び垂直方向エッジ情報により補正された相関値Dr., 様に、相関値Dr-jの場合は、補間方向P=-2、相関 ~Draの最小値が評価される。相関値Draが最小値と 位Dr-1の場合は、植間方向P=−1、相関値Droの場 Drjの場合は、補間方向P=3が出力される。

[0053] アドレス鄭出回路27.2は、補間方向Pを RAM273には (y-1) ライン上の原信号、RAM 274にはyライン上の原信号、RAM275には (y ライン上の原信号が記憶されており、補間方向Pに存在 する4つの原信号のアドレスを算出する。 アドレス算出 うけて、RAM273~276のアドレスを算出する。 +1) ライン上の原信号、RAM276には (y+2)

1 & 1

回路272によって、RAM273~276から呼び出だされた4つの原信号は、それぞれ乗弊器277~280でフィルタ係数メモリ281の所定の係数が掛けあわせられ、加算器282で加算されて補同信号が得られ

(0054) 図6に示す回線のD3を求める過程を用いて具体的な動作を数明する。D3を求めるときの原信号a~gt図ののa~gt、原信号h~nt図ののk~qt=数寸3のaとn、超さ+1のe上j、超さ+2のた上、複さ+3のdとk、複さ+1のeとj、超を228で結構器221~227で算出し、競技値目の228で結構器221~227で算出し、競技値回路228から出力を強力を決が対値。在なりを相関的は228から出力を付入する姿分総対値、すなから相関値は、傾き-3~0及び解き+1のみのとなる。[0055] 一方、ソラインとの原信号a~go米平方向のエッジ権観は、減算器236~24変で第出され、原信号a~cyが方向のエッジ権観は、減算器236~24変で第出され、原信号a~cyが方向のエッジ権観は、減算器243~249で算出され、原信号1~

(0.057) yライン上の原信号を、8の総直方向のエッジ情報は、減算器257~263で算出され、原信号のでは0.原信号 f~8は-100となる。(y+1)ライン上の原信号 h~nの垂直方向のエッジ情報は、減算器264~270で算出され、原信号 m~n・)は0.原信号 k~1は-100となる。

0、+2は300、焼き+1は0となる。 (0059) 評価回路271では、柏쟁値補正回路250~256で補正された柏照値Dr.3~Dr.3の扱小値の

評価を行うと、傾き+1の相関値Dr₁=0が評価され、 補間方向Pとして1が出力される。 [0060]アドレス算出回路212では、補間方向P=1をうけて、p3を中心として、傾き+1の方向にある4つの原信号のアドレスを算出する。アドレス算出回路272によって、RAM273~276から呼び出だされた4つの原信号は、それぞれ掛け算器277~280でフィルタ保数メモリ281の所定の保敷が掛けあわせられ、加算器282で加算されて補同信号が得られ

[0061]係数メモリ281の係数として、例えば、 乗算器277に0を、乗算器278に0.5を、乗算器 279に0.5を、乗算器280に0を、それぞれ用い れば、補助方向Pに上下2ライン上に存在する原信号の 平均値補而され、また、乗算器277に-0.212 を、乗算器278に0.637を、実算器279に0. 637を、乗算器280に-0.212を、それぞれ いれば、補間方向Pに3次量み込み内存補間される。ど ちらの補間係数を用いた場合でも結問信号p3=100 となる。

に、傾き一3~+3の原信号の組の相関値を求める。水 平方向のエッジ情報の差分絶対値を求めると、全て0 と なる。しかしながら、傾き-3~0、+2~+3におい ては、 y ライン上の原画素及び(y + 1) ライン上の原 は、ソライン上、(y+1)ライン上ともに、類似した エッジが存在する。そのため、傾き+1の相関値対して のみ、ある値の1を減算する。ここでは、の1=5とし て説明を続ける。よって、水平方向のエッジ情報により 補正された相関値は、傾きー3~0、+2~+3は10 0、傾き+1は-5となる。続いて、減算器257~2 63で垂直方向のエッジ情報を求め、それぞれの傾きに 対する垂直方向エッジ愹報の差分絶対値を求めると、傾 きー3~-1、+1、+3は0、傾き0、+2は100 となる。この差分絶対値を水平方向のエッジ情報により 桶正された相関値に加算すると、傾きー3~-1、+3 は100、傾き0、+2は200、傾き+1は-5とな る。傾き+1に対しては、yライン上の原信号、(y+ 1) ライン上の原信号にそれぞれにエッジが存在し、類 以しているため、相関値に対して、ある値α2を減算す ここでも、水平方向エッジ情報による相関値補正と は、傾き+1のみ-10となる。以上のように求められ て1が出力される。その求めた相関値を、ソライン上の 1) ライン上の原信号の水平方向及び垂直方向のエッジ た相関値Dr.1~Dr1の最小値を評価すると、相関値Dr [0062] 阿様にして、ロ4を状める。上配と同様 画券には、エッジが存在しないが、傾き+1において が最小となり、評価回路271からは補間方向Pとし 同様、α2=5として説明を続ける。よって、相関値 原信号の水平方向及び垂直方向のエッジ情報と (y+

~Dr,は、傾き~3~~1、+3では100、傾き+1では−10、傾きの及び+2では200となる。従って、相関値Dr,が最小となり、解価回路271からは補間方向Pとして1が出力される。その結果、 D 4を中心とした傾き+1の方向に存在する原信与より D 4=0と

【0063】次に、図3を用いて、第2の実施例としてのフィールド内補間回路114の動作について詳細に数 ヨナメ 【0064】第2の実施例においては、入力信号、補間方向に対する原信号の登分絶対値算出、垂直方向のエッジ情報算出については、図2の第1の実施例と同様であ

[0065] 図3において、1日メモリ111で連延された入力信号は、ソライン上の原信号であり、1 D運延器 (1Dはインターレースを強つ1回線に相当)301~306で運延され、原信号の~8が得られる。原信号で301日メモリ112で運延された入力信号は、(ソ+1)イン上の原信号であり、1 D運転器307~312で運延され、原信号ルールが得られる。原信号に、(ソ+1)をが関うて、(ソ+1)上のトールに相当する。以上示す原ライン(ソ+1)上のトールに相当する。以上示す原ライン(ソ+1)上のトールに相当な。以上の方を必要を決める。次められた数分値を絶対値回路326により超対値化し、相関性を示す相関値法に回路327~333に入力す場関値として、相関値補正回路327~333に入力

[0066] 一方、ッライン上の原信号の垂直方向のエッジ情報を、減算器335~341を用いて、直上に位属する(y-1)ライン上の解核原信号との整分値として算出する。また、(y+1)ライン上の原信号の垂直方向のエッジ情報を、以上、yライン上の原信号の垂直方のエッジ情報と、(y+1)ライン上の原信号の垂直方向のエッジ情報と、(y+1)ライン上の原信号の垂直方向のエッジ情報と、(y+1)ライン上の原信号の垂直方向のエッジ情報と、(y+1)ライン上の原信号の垂直方向のエッジ情報と、(y+1)ライン上の原信号の垂直方向のエッジ情報とに基づいて、絶対値回路326で算出された相関値を、相関値結正回路327~333で補

(0067) 相関値補正回路327~333における相関値の補正処理内容は、数セー3~1、+1~+3にしいては、第1の英語図の垂直方向のエッジ格線における箱圧手段と同様である。

[0068] A関関値格に回路327~329、331~333で格にされたA関値、すなわち、数きー3~ー1、+1~+3のA関関については、評価回路349に入力されるが、A関値独に回路330、すなわち、領き0のA関値については、数き0の原図集の総の経直方向エッジ体報を用いて、施定を行う。

[0069] 斜めエッジの袖間においては、垂直方向のエッジ俗線のみでも、十分な袖間信号が得られる。しかしながら、図9に示す垂直線ように、水平方向のエッジ

のみの回像では、新位方向のエッジ格積のみによる相関 値の補正では、所望の補間方向が特定できないばかり か、瞬った補間方向が選択されて、大きな回貿劣化を生 じる可能性がある。銀位方向エッジ情報のみによる相関 値の補正を図りないまった。 面本りのまった。 同事りのまった。 同事りのもような回像に対して施した地台 画本りまいては、領きー1、十1を除いて、建直方 向エッジ格報による補正後の相関値は0となり、銀度方 向をや成することができない。 40・12・12・13・13を用いて補間回業り3を作成する場合は、p3=1 00となり、所望の値である0とは大きく異なる。ま た、領きー3~-2、0。+2~+3に属する原図線の 平均値を補間回業り3の回案値とした場合でも、p3= 80となり、この値も所誤の値とは大きく異なる。ま

[0070] そこで、本実施例では、傾き0の原回森の 粗の無点方向エッジ解解により、相関値補に回路330で補正された相関値を、もう一度、相関値構に回路334で補正する。その連載をでいて、以下に、群しく (0071) 相関値補正回路327~333においては、銀直方向エッジが存在し、壁広方向エッジ構製の相関性が高い場合は、絶対値回路326で算出された相関値が対して、ある値なを減算する補正処理を施す。相関値補正回路334では、投資の原力に、少が存在すず、銀直方向エッジが存在が、相関値に対して、ある値のを減算する。 似き0の原画数の組に競に大して、ある値のを減算する。 似き0の原画数の組に限定した場合、銀直方向エッジが存在すず、銀直方向エッジが存在すず、超面が同エッジが存在すず、超点の回数の組に原立した場合、銀道方向エッジが存在すば、超速方向エッジが存在でが、投資の銀に存在している可能性が高い。そのよう本を回線の内域に存在している可能性が高い。そのようある値8を減算する。

[0072] 評価回路349では、相関値補正回路327~329で整直方向エッジ骨組により補正された相関値Dr.3~Dr.p. 相関値補正回路331~33で整直方向エッジ情報により補正された相関値Dr.~Dr. 相関値補正回路334で発直方向エッジ情報により補正されたDr.の最小値が評価され、根図含な結門方向Pが出力される。

AGG 17 17 アレス貸出回路35 0は、補間方向Pを うけて、RAM351~35 4のアドレスを貸出する。 うけて、RAM351~1)ライン上の原語や、RAM35 1には(y - 1)ライン上の原語や、RAM35 3には(y + 1)ライン上の原語や、RAM35 4には(y + 2)ライン上の原語やが配像されており、補間方向Pに存在する4つの原語やアドレスを貸出する。アドレス貸出回路35 0によって、RAM351~35 4から呼び出だされた4つの原語やは、それぞれ聚算835~358でフィルタ係数メモリ359の所定の保数が掛けあち

- 10 -

せられ、加算器360で加算されて補間信号が得られ

.

肾報との差分絶対値により、補正すると、相関値Dr-』

- 6 -

[0074] 図6に示す画像のp3を求める過程を用い て、本第2の実施例のフィールド内補間回路における具 +2のfとi、傾き+3のgとhそれぞれ原信号の組の 体的な動作を説明する。 p 3を求めるときの原信号 a ~ 1のcと1、傾き0のdとk、傾き+1のeとj、傾き 26で絶対値化する。絶対値回路326から出力される g は図6のa~g に、原信号h~nは図6のk~q にー 数する。傾き—3のaとn、傾き—2のbとm、傾き— 整分値を減算器319~325で算出し、絶対値回路3 **巻分絶対値、すなわち相関値は、傾きー3~0及び傾き** +2~+3では100、傾き+1のみ0となる。

【0075】 一方、y ライン上の原信号 a ~ g の 垂直方 向のエッジ情報は、減算器335~341で算出され、 原信号a~eは0、原信号f~gは-100となる。

(y+1) ライン上の原信号h~nの垂直方向のエッジ 南報は、減算器342~348で算出され、原信号h~ j、m~nは0、原信号k~1は~1,00となる。

て、エッジ情報の差分絶対値は $0、傾き-1\sim 0、+2$ 向エッジ情報の笠分絶対値を絶対値回路326から出力 する。図6の補間信号p3においては、直上に位置する 頃きー3~+3に応じた原信号の垂直方向のエッジ情報 ~+3においては、100となる。ここで求めた垂直方 頃き-1~0、+2~+3は200、傾き+1は0とな る。相関値補正回路334では、傾き0における原信号 の垂直方向エッジ情報、特にエッジの有無について注目 原信号がエッジ無、直下に位置する原信号がエッジ有の される相関値に加算すると、傾きー3~-2は100, [0076] 相関値補正回路327~333において、 の楚分絶対値を求める。傾きー3~-2、+1におい

[0077] 評価回路349では、相関値補正回路32 正回路334で補正されたDг。 相関値補正回路331 ~333で補正されたDri~Drgの最小値の評価を行う と、傾き+1の相関値Dr₁=0が腎価され、補間方向P 7~329で補正された相関値Dr.1~Dr.1、相関値補 ため、相関値に対する補正は行わない。 として1が出力される。

る4つの原信号のアドレスを算出する。アドレス算出回 **【0078】アドレス算出回路350では、補間方向P** =1をうけて、p3を中心として、傾き+1の方向にあ 路350によって、RAM351~354から呼び出だ された4つの原信号は、それぞれ掛け算器355~35 8でフィルタ係数メモリ359の所定の係数が掛けあわ る. この得られる補間信号p3は、平均値補間でも、3 せられ、加算器360で加算されて補間信号が得られ 女量み込み内挿補間でも、100となる。

に、傾き-3~+3の原信号の粗の相関値を求め、その 求めた相関値に対して、yライン上の原信号の垂直方向 のエッジ情報と(y + 1)ライン上の原信号の垂直方向 [0079] 同様にして、ロ4を求める。上配と同様

-1、+3では100、傾き0及び2では200、傾き +1では0となる。傾き+1に対しては、yライン上の 京信号、 (y+1) ライン上の原信号それぞれにエッジ ν存在し、類似しているため、相関値に対してある値α 1 (=5) を減算する。それにより、傾き+1では-5 **カエッジ情報との差分絶対値を加算すると、傾き-3~** となる。相関値補正回路334では、傾き0におけるy ライン上の原信号の垂直方向エッジは存在しないが、

するため、柏関値に対する補正は行わない。従って、相 (y+1) ライン上の原信号の垂直方向のエッジは存在 回路349からは補間方向Pとして1が出力される。そ の結果、p4を中心とした傾き+1の方向に存在する原 0、Driは-5となり、相関値Driが扱小となり、評価 関値Dr.,~Dr., Dr,は100、Dr,及びDr,は20 信号より p.4=0となる。

[0080] 概いて、図9に示す画像のp3を状める過 **程を用いて、相関値補正回路334の効果について、具** 体的に説明する。 p3を求めるときの原信号a~gは図 る。傾き-3のaとn、傾き-2のbとm、傾き-1の cと1、傾き0のdとk、傾き+1のeとj、傾き+2 の f と 1、 傾き + 3の g と h それぞれ原信号の粗の差分 値を減算器319~325で算出し、絶対値回路326 で絶対値化する。絶対値回路326から出力される差分 絶対値、すなわち相関値は、傾きー3~-2、0、+2 9のa~gに、原信号h~nは図9のk~qに一致す ~+3では0、傾き-1、+1では100となる。

[0081] yライン上の原信号、(y+1) ライン上 傾きー3~+3に対する垂直方向エッジ情報差分絶対値 は、0となり、相関値補正回路327~333では、相 関値の補正は行われない。ところが、相関値補正回路3 (y+1) ライン上の原信号ともにエッジが存在しない ため、ある値βを減算する。ここでは、β=3として脱 明を続ける。従って、傾き0に対する相関値は一3とな が碌小となり、評価回路349からは補間方向Pとして の方向に存在する原信号を用いて、平均値補間、または 3次母み込み補間され、補間信号p4として0が得られ 1が出力される。その結果、p3を中心とした傾き+1 の原信号ともに、垂直方向にエッジが存在しないため、 34においては、傾き0に対するyライン上の原信号、 る。従って、相関値Dr.j~Dr.j、Dr,~Drjは0、D r. 及びDriは100、Driは-3となり、相関値Dri

[0082] 以上のようにして、第1の実施例、第2の **炙施例ともに、頤次補間信号が求められる。**

[0083]以上の動作により、第1の実施例、第2の きらに垂直線に対しても有効な走査線補間を行うことが **実施例ともに、面によって生じた斜めエッジや斜め線。**

り行ったが、原信号の数を増やして構成することも同様 【0084】さらに、相関性の評価を原信号の差分値よ

【0085】また、相関値補正回路をルックアップテー ブルメモリで構成したとしても、同様の効果が得られ 【発明の効果】以上のように本発明によれば、インター ノース走査の映像信号を順次走査の映像信号に変換する 場合には、画紫値の差分絶対値を求める原画紫の組の候 **痛を、補間画素を中心とした点対称関係の原画素の組の** うちから選択し、このうちの、画森値の整分絶対値を算 出し、算出された競分絶対値を、原画衆のエッジ情報に 基づいて、補正し、補正された整分絶対値が最小となる **尿画菜の粗に基づいて補間画素を作成することができ** [0087] そのため、面によって生じた斜めエッジや **斜め線に対しても有効な走査線補間を行うことができ**

【図面の簡単な説明】

【図2】本発明の第1の実施例のフィールド内補間回路 [図1] 本発明の実施例の順次走査変換装置の構成図

のブロック図

【図3】本発明の第2の実施例のフィールド内補間回路 [図4] 本発明の実施例の垂直方向および斜め方向を定 のブロック図

義する説明図

|図6] 同奥施例の斜めエッジに対する補間画業作成手 【図5】 回実施例のエッジ情報を定義する説明図

[図7] 同奥施例の斜め線に対する補間画素作成手闡の 値の説明図

[図8] 同実施例の別の斜め線に対する補間画条作成手

【図9】 同奥施例の垂直線に対する補間画券作成手順の

[符号の説明]

布阿伯斯比回路 原画素磁択回路

エッジ情報後出回路 相関值補正回路 104

103

何き被出回路 105

アドレス算出回路 106

フィルク回路 RAM 108

107

フィルタ保数メモリ 109

110~112 1HXモリ

114 フィールド内補配回路 113 時間軸変換回路

221~227, 236~249, 257~270 201~220 1D運延器

怒

229~235,250~256 相関値補正回路 228 超対値回路 271 解価回路

272 アドレス算出回路 273~276 RAM

281 フィルタ保数メモリ 277~280 東算器

加算器 282

301~318 1D運延器 283 フィルタ回路

319~325,335~348 減算器 3.2.6 絶対値回路

327~334 相関値補正回路

349 解価回路

350 アドレス算出回路

359 フィルタ保敷メモリ 355~358 漿算器 351~354 RAM

361 フィルク回路

[图2]

エッジ2 0=100 b=100 H V

I 75.3

最高/水平方向

- 12

=

特開平9-37214

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.