Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №6

по дисциплине «Математическая статистика»

Выполнила студентка

группы 5030101/20202 Чинь Тхи Тху Хоай

Проверил

Преподаватель

Баженов Александр Николаевич

Санкт-Петербург 2025

Содержание

1	Пос	Іостановка задачи				
2	Teo	Теория				
	2.1	Доверительные интервалы для параметров нормального распределения				
		2.1.1	Доверительный интервал для математического ожидания m нормаль-			
			ного распределения	3		
		2.1.2	Доверительный интервал для среднего квадратического отклонения σ			
			нормального распределения	3		
	2.2 Доверительные интервалы для математического ожидания m и среднего ква					
		ратич	еского отклонения σ произвольного распределения при большом объёме			
	выборки. Асимптотический подход					
		2.2.1	Доверительный интервал для математического ожидания m произволь-			
			ной генеральной совокупности при большом объёме выборки	4		
		2.2.2	Доверительный интервал для среднего квадратического отклонения σ			
			произвольной генеральной совокупности при большом объёме выборки	4		
3	Про	ограми	иная реализация	4		
4	Рез	Результаты				
	4.1	Довер	оительные интервалы для параметров нормального распределения	5		
	4.2	Довер	оительные интервалы для параметров произвольного распределения. Асимп-			
		тотич	еский подход	5		
	4.3	Резул	ьтаты представить в виде твинов с порядком по включению	5		
5	Обо	ужде	ние	6		
6	Прі	Приложение				

1 Постановка задачи

Для выборок мощностью n=20 и n=100

- 1. Найти доверительные интервалы для параметров
 - нормального распределения и
 - произвольного распределения, используя асимптотический подход
- 2. Результаты представить в виде твинов с порядком по включению.

2 Теория

2.1 Доверительные интервалы для параметров нормального распределения

2.1.1 Доверительный интервал для математического ожидания m нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объёма n из нормальной генеральной совокупности. На её основе строим выборочное среднее \bar{x} и выборочное среднее квадратическое отклонение s. Параметры m и σ нормального распределения неизвестны.

Доверительный интервал для m с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\bar{x} - \frac{sx}{\sqrt{n-1}} < m < \bar{x} + \frac{sx}{\sqrt{n-1}}\right) = 2F_T(x) - 1 = 1 - \alpha,$$

$$P\left(\bar{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \bar{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha,$$
(1)

2.1.2 Доверительный интервал для среднего квадратического отклонения σ нормального распределения

Дана выборка (x_1, x_2, \dots, x_n) объёма n из нормальной генеральной совокупности. На её основе строим выборочную дисперсию s^2 . Параметры m и σ нормального распределения неизвестны.

Задаёмся уровнем значимости α .

Доверительный интервал для σ с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha,\tag{2}$$

2.2 Доверительные интервалы для математического ожидания m и среднего квадратического отклонения σ произвольного распределения при большом объёме выборки. Асимптотический подход

При большом объёме выборки для построения доверительных интервалов может быть использован асимптотический метод на основе центральной предельной теоремы.

2.2.1 Доверительный интервал для математического ожидания m произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемое генеральное распределение имеет конечные математическое ожидание m и дисперсию σ^2 .

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

Доверительный интервал для m с доверительной вероятностью $\gamma=1-\alpha$:

$$P\left(\bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \bar{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma,\tag{3}$$

2.2.2 Доверительный интервал для среднего квадратического отклонения σ произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента.

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

 $E=rac{\mu_4}{\sigma^4}-3$ - эксцесс генерального распределения, $e=rac{m_4}{s^4}-3$ - выборочный эксцесс; $m_4=rac{1}{n}\sum_{i=1}^n(x_i-ar{x})^4$ - четвёртый выборочный центральный момент.

$$s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2}, \tag{4}$$

или

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U), \tag{5}$$

где
$$U = u_{1-\alpha/2} \sqrt{(e+2)/n}$$

Формулы 4 или 5 дают доверительный интервал для σ с доверительной вероятностью $\gamma = 1 - \alpha$

Замечание. Вычисления по формуле 4 дают более надёжный результат, так как в ней меньше грубых приближений.

3 Программная реализация

Лабораторная работа выполнена на языке Python 3.12.6 в среде разработки Visual Studio Code. Использовались дополнительные библиотеки:

- 1. scipy
- 2. math
- 3. numpy

В приложении находится ссылка на GitHub репозиторий с исходным кодом.

4 Результаты

4.1 Доверительные интервалы для параметров нормального распределения

n	m	σ
20	-0.62 < m < 0.28	$0.73 < \sigma < 1.40$
100	-0.59 < m < 0.25	$0.79 < \sigma < 1.34$

Таблица 1: Доверительные интервалы для параметров нормального распределения

4.2 Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

n	m	σ
20	-0.24 < m < 0.12	$0.81 < \sigma < 1.07$
100	-0.24 < m < 0.12	$0.81 < \sigma < 1.09$

Таблица 2: Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

4.3 Результаты представить в виде твинов с порядком по включению

Для n = 20:

Для параметра m:

$$T_m^{(20)} = ([-0.62, 0.28], [-0.24, 0.12])$$

Для параметра σ :

$$T_{\sigma}^{(20)} = ([0.73, 1.40], [0.81, 1.07])$$

Для n = 100:

Для параметра m:

$$T_m^{(100)} = \left([-0.59,\, 0.25],\,\, [-0.24,\, 0.12]\right)$$

Для параметра σ :

$$T_{\sigma}^{(100)} = ([0.79, 1.34], [0.81, 1.09])$$

5 Обсуждение

Построенные доверительные интервалы показывают, что при увеличении объёма выборки интервалы становятся уже, что повышает точность оценок. Асимптотический подход даёт более узкие интервалы по сравнению с нормальным распределением, особенно для дисперсии. При n=100 результаты двух методов для оценки m практически совпадают, что подтверждает эффективность асимптотического подхода при больших выборках.

6 Приложение

Код программы GitHub URL:

https://github.com/Akira1707/Math-Statistic/tree/main/Lab6