

Lab Seminar: 2022, 07, 19.

Going Deeper With Convolutions

(Szegedy et al., CVPR 2015)

JongHyeon Kim

School of Computer Science/Department of AI Convergence Engineering Gyeongsang National University (GNU)

- Introduction
- Related Work
- Motivation & High Level Consideration
- Architectural Details
- GoogLeNet
- Results
- Conclusion
- Discussion

Introduction

우승 알고리즘의 분류 에러율(%)

- GoogLeNet: 12x fewer parameters than AlexNet
 - Synergy from deep architecture & classical computer vision (like R-CNN)
- Flexible architecture: for mobile & embedded computing
 - Under 1.5b multiply-adds at inference time
- Code name: Inception
 - From inception movie script "we need to go deeper"
 - Deep means: new architecture (Inception Module), network depth

Related Work

- Visualizing and Understanding Convolutional Networks (Zelier et al., ECCV 2014; ZFNet)
 - Based on AlexNet (filter size: 11x11 -> 7x7, stride: 4 -> 2)
 - Deconvolutional Network (pixel -> feature mapping, pool-relu-conv)

Related Work

- Visualizing and Understanding Convolutional Networks (Zelier et al., ECCV 2014; ZFNet)
 - Switch: memorize most high stimulation locations when max pooling

Related Work

- Visualizing and Understanding Convolutional Networks (Zelier et al., ECCV 2014; ZFNet)
 - Visualize convolutional layers with Switch

- Simple Solution to Improving Performance (Standard)
 - Increase network size (depth, number of levels, width, ..)
 - Easy and safe way of training higher quality models
 - Works well large amount of labeled data

Drawbacks

- size = larger number of parameters -> easy to overfit with small labeled data (need to creation of train data; bottleneck)
- Dramatically increased use of computational resources
 - Inefficient when most weights end up to be close to zeros

Drawbacks

(a) Siberian husky

(b) Eskimo dog

Dense vs. Sparse

Densely connected

Sparsely connected

Dense Matrix

Donoc matrix									
1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

Sparse Matrix

1		3		9		3			
11		4						2	1
		1				4		1	
8				3	1				
			9			1		17	
13	21		9	2	47	1	81	21	9
				19	8	16			55
54	4				11				
		2					22		21

- Non-uniform sparse data structure: inefficient
 - 100x reduced arithmetic operations: ineffective (cache miss, memory overhead)
- Dense data structure: fast, steadily improving
 - CPU/GPU improvement
 - Highly tuned
 - Numerical libraries for extremely fast dense matrix multiplication

Recap) LeNet-5 vs. AlexNet

Recap) LeNet-5 vs. AlexNet

- Provable Bounds for Learning Some Deep Representations (Arora et al., ICML 2013)
 - Sparse Matrix -> Dense Sub-Matrix
 - Represent with sparse deep NN -> Large probability distribution of dataset => optimal network (from mimicking biological systems)
 - Analyzing correlation statistics of the activations of the last layer
 - Clustering neurons with highly correlated outputs
 - Hebbian Principle: neurons that fire together, wire together

- Network in Network (Lin et al., ICLR 2014)
 - Traditional Conv: generalized (for data path) linear model (GLM)
 - MLPConv: non-linearity
 - Global Average Pooling (GAP): due to enough features from MLPConv, prevents overfitting
 - 1x1 conv

- Network in Network (Lin et al., ICLR 2014)
 - MLPConv

(a) Linear convolution layer

(b) Mlpconv layer

- Network in Network (Lin et al., ICLR 2014)
 - NiN architecture

- 1x1 Convolution
 - Convolution Layer with 1x1 Filter Size
 - Number of channel (hyperparameter) adjust
 - Reduce parameters (efficient)
 - Non-linearity -> more expressive
 - More deeper network

1x1 Convolution

#params = 28x28x64x5x5x128 = 160M

- Main Idea
 - Approximate to optimal local sparse structure -> dense component
 - Clustering sparse matrix -> dense sub-matrix
 - Each unit of previous layer -> region of input image (assume)
 - Lower layer (near to input layer) -> correlated units are concentrated in specific region

- Main Idea
 - Correlation in images
 - Color, texture, ... -> Local Features
 - can be covered by 1x1 convolution

- Various feature maps
 - 1x1, 3x3, 5x5 convolution

• Inception module, naive version: expensive

• Inception module, with dimension reductions (1x1 conv)

☐ 1x1 conv (dimension reduction)

- Dimension Reduction
 - Capacity -> Reduce
 - Each filter have highly correlation
 - doesn't matter
- Advantages in Inception Module
 - Can increase units for each stage without computational complexity
 - Various feature: 1x1, 3x3, 5x5 convolution

- Mean subtraction (AlexNet)
- ReLU: after all the convolutions
- Receptive field: 224x224 RGB color channels

- 1. Lower Layers (near to input)
 - Simple Conv
 - For memory efficiency

- 2. Inception Module
 - Local unit with parallel branches
 - 1x1 "Bottleneck" layers (to reduce channel dimension)

- 3. Auxiliary Classifier: Train Only
 - Deeper network: gradient vanishing problem
 - Encourage discrimination in the lower stages in the classifier
 - increase backpropagate gradient signal
 - provide additional regularization
 - Add to total loss with weighted by 0.3 (0.3 auxiliary + 0.7 inception block output) -> prevent affecting to weights

- 4. Global Average Pooling
 - No additional parameters (just pooling)
 - Adapted before last classifier (fully-connected layer)

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Results

- ILSVRC 2014 Classification Challenge
 - Trained 7 versions of the same GoogLeNet -> ensemble
 - Same initialization, learning rate
 - difference: sampling strategy
 - Aggressive cropping approach -> 256, 228, 320, 352 resize
 - Take the left, center, and right square
 - 4 corners and the center 224x224 crop + 224x224 resize (with horizontal flip)
 - -4 * 3 * 6 * 2 = 144 per image
 - Average over multiple crops (softmax probablities)

Results

ILSVRC 2014 Classification Challenge

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

Results

ILSVRC 2014 Classification Challenge

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7 Final Submission	144	1008	6.67%	-3.45%

Conclusions

- Evidence for improving neural networks for computer vision
 - Approximate optimal sparse structure -> dense structure
- A little increasement of computational cost, significant quality gain
 - Compared to shallower, less wide networks
- Expect result of similar quality with similar depth and width networks
 - GoogLeNet -> more efficient

Discussions

- 1x1 convolution
 - Channel reduction effect -> feature compression
 - Data loss
- Auxiliary classifier
 - More convolution is better ? E.g) add 7x7 conv

Gyeongsang National University

Improving lives through learning

IDEALAB