6.2 The Mobius Inversion Formula

7/4/2005

1. (a). For each positive integer n, show

 $\mu(n)\mu(n+i)\mu(n+z)\mu(n+3)=0$

Pf: From The Division Algorithm, let n = 4a + 6, where 0 = 5 < 4If 6 = 0, Then $4(n = 7 \ 2^2 / n) = 0$ If 5 = 1, Then n+3 = 4a+4, so 4/n+3,

So $\mu(n+3)=0$ If b=2, n+2=4a+4, so $4/n+2=7\mu(n+2)=0$ If b=3, n+1=4a+4, so $4/n+1=7\mu(n+1)=0$

: For any n, at least one factor

will yield u=0.

(6). For any integer n = 3, show \(\frac{1}{2}\) = 1

Pf: u(4)=0 since 4=22.

If n = 4, Then n. will contain 4 as a

 μ is multiplicative, so for $n \ge 4$, $\mu(n!) = \mu(n) \cdots \mu(4) \mu(3) \mu(2) \mu(1) = 0$.

$$\mu(1) = 1, \quad \mu(2) = -1, \quad \mu(3) = -1.$$

$$\sum_{k=1}^{3} \mu(k!) = \mu(1!) + \mu(2!) + \mu(3!)$$

$$\Lambda(n) = \{ log(p), if n = pk, pprime, k \ge 1 \}$$

Prove
$$\Lambda(n) = \sum_{d|n} \mu(\frac{n}{d}) \log(d) = -\sum_{d|n} \mu(d) \log(d)$$

(a)
$$=\frac{\sum_{k}\mu\left(\frac{n}{d}\right)\log\left(d\right)}{\exp\left(\frac{n}{d}\right)\log\left(\frac{n}{d}\right)} = \mu\left(\frac{n}{p^{k-1}}\right)\log\left(\frac{n}{p}\right)$$

+ ...
$$M(p^{K-i})/cg(p^{i})$$

If
$$k=1$$
, The sum is $\mu(p')\log(1) + \mu(p^0)\log(p')$

$$= \mu(1)\log(p) = \log(p)$$

If $k=1$, $\mu(p^{k-i}) = 0$ except for $i=1,2$, and then the sum is the same as for $k=1$.

$$\sum_{i=1}^{n} \mu(\frac{n}{n})\log(d) = \log(p) = \lambda(n)$$

(b) $\sum_{i=1}^{n} \mu(d)\log(d) = \mu(p^0)\log(1)$

$$= \mu(p^0)\log(p^0)$$

+ $\mu(p^0)\log(p^0)$

+ $\mu(p^0)\log(p^0)$

Because $\mu(p^0) = 0$ for $k>1$. The

Because $\mu(p^k) = 0$ for k > 1, The above sum reduces to, for all k, $\mu(p) \log(1) + \mu(p) \log(p) = -\log(p)$

$$\frac{1}{2} \sum_{n \in \mathbb{Z}} \mathcal{M}(n) \log_{n}(n) = -\Lambda_{n}(n)$$

3. Let n= pkp2...pkr for n>1. If f is a multiplicative

function not identically O, prove that

 $\sum_{d \mid n} \mu(d) f(d) = (1 - f(p_i)) (1 - f(p_i)) - (1 - f(p_i))$

Pf: Since m and fare multiplicative, They

Mf is multiplicative (prob. # 19, Sec. 6.1).

-- By Th. 6.4, F(n) = \(\int m(d) f(d) is

multiplicative - If prove for F(pt) Then, since F(pt, pt. ... pt.) = F(pt.) ... F(pt.), will

have proven for F(n).

-. Consider $F(p^k) = \sum_{\substack{d \mid p^k}} u(d) f(d)$

= $\mu(1)f(1) + \mu(p)f(p) + \dots + \mu(p^{k})f(p^{k})$

Since, for a multiplicative function not identically zero, If(1) = 1 (see Sec. G.1).

$$-F(p^{k}) = I - F(p).$$

$$-\frac{1}{2}\sum_{d \mid n} \mu(d) f(d) = (1 - f(p_1)) \cdots (1 - f(p_r))$$

(a)
$$\geq m(d) T(d) = (-1)^r$$

(6)
$$\sum_{d \mid n} \mu(d) \sigma(d) = (-1)^r \rho_1 \rho_2 \cdots \rho_r$$

Pf: By Prob. #3 above,

Zn(d) o(d) = [1- o(p)][1-o(p)]...[1-o(p)]

But T(p) = 1+ p for any prime p. -- 1- T(p) = -p

 $\frac{1}{2} \sum_{n} \int_{0}^{\infty} \int_{0}^{\infty}$

(c)
$$Z_{M}(d)/d = (1-\frac{1}{p_{1}})(1-\frac{1}{p_{2}})-..(1-\frac{1}{p_{r}})$$

Pf: First, $f(n) = \frac{1}{n}$ is multiplicative Since $f(mn) = \frac{1}{mn} = \frac{1}{m} \cdot \frac{1}{n} = f(m) f(n)$.

=. By Pros. #3 above, where f(n) = h

 $\sum_{d(n)} \mu(d) \frac{1}{d} = (1 - f(p_1)) \cdots (1 - f(p_r)) = (1 - \frac{1}{p_1}) \cdots (1 - \frac{1}{p_r})$

If
$$\rho^2/m$$
, $A_{in} \rho^2/mn$. $f(mn) = 0$ and $f(m) = 0$. $f(m) = 0$. $f(m) = f(m) f(n)$
 $A_{ssum} both m, n are squar-free.$

Let $m = \rho_1 \dots \rho_r$, $n = q_1 \dots q_s$. $f_i \neq q_i$ since $g_i cd(m,n) = l$. $C(a_{in}l_{j}) = l$, $f(m) = l$, $f(n) = l$, and $f(mn) = l$. $f(mn) = f(m) = f(m) = f(m)$.

 $M(n) | is multiplicative.$
 $M(n) | is multiplicative.$

 $= 1 + 1 + 0 + \dots + 0 = 2$ The number of square-free diviors of pt
is 2 and is defined by $\sum |\mu(u)|$

Consider $n = \rho_i^k \rho_z^{k_2} \dots \rho_r^{k_r}$. From $\nabla h. G. I$,

all the square-free divious of n are represented by $n = \rho_i^n \rho_z^{n_2} \dots \rho_r^{n_r}$, $0 \le a_i \le 1$ Since the number of square-free divious from ρ_i is 2 (1 and ρ_i); from ρ_z is 2, ... from ρ_r is 2, the total number of square-free divious is 2^r , or 2^r ,

Where W(n) = r = # of distinct prime divisors of n.

$$= (2) \cdots (2) = S(p^{k_1}) S(p^{k_2}) \cdots S(p^{k_r})$$

$$= (2) \cdots (2) = 2^r = 2^{\omega(n)}$$

C. Find formulas for $\leq \frac{M^2(n)}{T(n)}$ and $\leq \frac{M^2(n)}{d(n)}$ in terms of The prime factorization of n.

From Prob. # 19, Sec. 6.1,
$$\mu^{2}(n)$$
 and $\mu^{2}(n)$

are both multiplicative.

First consider case for $n = p^{k}$

$$\frac{2}{2} \frac{\mu^{2}(n)}{7(n)} = \frac{\mu^{2}(1)}{7(n)} + \frac{\mu^{2}(p)}{7(p)} + \frac{\mu^{2}(p^{2})}{7(p^{2})} + \dots + \frac{\mu^{2}(p^{k})}{7(p^{k})}$$

$$= \frac{1}{1} + \frac{1}{2} + 0 + \dots + 0$$

$$= \frac{3}{2}$$

$$\frac{3}{2}$$

$$\frac{3}{2$$

 $F(n) = \sum \mu^2(n)$, $G(n) = \sum \mu^2(n)$ $\frac{d\ln F(n)}{F(n)}$

Both
$$F$$
 and G are multiplicative,

$$F(n) = F(p_1^k p_2^{k_2} ... p_r^{k_r}) = F(p_1^k) F(p_2^{k_2}) ... F(p_r^{k_r})$$
and $G(n) = G(p_1^k) G(p_2^{k_2}) ... G(p_r^{k_r})$

$$F(p_2^k) -.. F(p_r^{k_r}) = \left(\frac{3}{2}\right) -.. \left(\frac{3}{2}\right)$$

$$F(p_2^k) -.. F(p_2^k) = \left(\frac{3}{2}\right) -.. F(p_2^k)$$

$$F(p_2^k) -.. F(p_2^k) = \left(\frac{3}{2}\right) -.. F(p_2^k)$$

$$F(p_2^k) -.. F(p_2^k) = \left(\frac{3}{2}\right) -.. F(p_2^k)$$

$$F(p_2^k) -.. F$$

$$\frac{\sum u^{2}(n)}{\sigma(n)} = G(\rho_{r}^{k_{1}}) \dots G(\rho_{r}^{k_{r}})$$

$$= \left(\frac{\rho_{1}+2}{\rho_{1}+1}\right) \left(\frac{\rho_{2}+2}{\rho_{2}+1}\right) \dots \left(\frac{\rho_{r}+2}{\rho_{r}+1}\right)$$

7. The Liouville
$$\lambda$$
-function is defined by:

$$\lambda(1) = 1$$

 $\lambda(n) = (-1)^{k_1 + k_2 + \dots + k_r}, n > 1, n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$

$$m = p_{1}^{k_{1}}p_{2}^{k_{2}}...p_{r}^{k_{r}}, \quad n = q_{1}^{j_{1}}q_{2}^{j_{2}}...q_{s}^{j_{s}}$$

$$mn = p_{1}^{k_{1}}p_{2}^{k_{2}}...p_{r}^{k_{r}}q_{1}^{j_{1}}...q_{s}^{j_{s}}, \quad where \quad p_{i} \neq q_{s}^{j_{s}}$$

$$Since \quad g(d(m,n) = 1.$$

$$\sum_{i=1}^{k_{1}}(mn) = (-1)^{k_{1}+...+k_{r}+j_{1}+...j_{s}}$$

$$= \frac{1}{2} \left(\frac{k_1 + \dots + k_r + j_1 + \dots j_s}{k_1 + \dots + k_r + j_1 + \dots + j_s} \right)$$

$$= \frac{1}{2} \left(\frac{k_1 + \dots + k_r + j_1 + \dots + j_s}{k_1 + \dots + k_r + j_1 + \dots + j_s} \right)$$

$$= \frac{1}{2} \left(\frac{k_1 + \dots + k_r + j_1 + \dots + j_s}{k_1 + \dots + k_r + j_1 + \dots + j_s} \right)$$

$$\sum \chi(d) = \begin{cases} 1 & \text{if } n = m^2, \text{ some } m \\ 0 & \text{otherwise} \end{cases}$$

$$F(n) = \lambda(1) + \lambda(p) + \dots + \lambda(p^{k})$$

$$= 1 + (-1) + (-1)^{2} + (-1)^{3} + \dots + (-1)^{k-1} + (-1)^{k}$$

If k is even,
$$n = p^{2w}$$
, where $k = 2w$.
If $m = p^{2w}$, $n = m^{2w}$.
Also, $F(n) = 1$

If k is odd,
$$F(p^k) = 0$$

.: Now (at $n = p, p^{k_2} \dots p^{k_r}$
.: $F(n) = F(p^{k_1}) \dots F(p^{k_r})$

If
$$n=m^2$$
 for some m , then all the k : are even, so $F(p_i^{(k)})=1$ from above.
 $F(n)=1$

If any one of the ki is odd, then
$$F(p_i k_i) = 0, so F(n) = 0.$$

- 8. For any integer n=1, verify formulas below:
 - (a) $\geq \mu(d) \lambda(d) = 2^{\omega(n)}, \omega(n) = \# \text{ distinct prime divisors of } n$

$$\frac{1}{d \ln |x(d)|^{2}} = \mu(1) \chi(1)
+ \mu(p) \chi(p) + \dots + \mu(p^{k}) \chi(p^{k})
= 1 \cdot 1 + (-1)(-1) + \dots + 0 \cdot (-1)^{k}
= 2$$

That is, for
$$n=p^k$$
, $F(n) = \sum_{d|n} u(d) \lambda(d) = 2$

$$F(n) = \int_{1}^{k_{1}} \int_{2}^{k_{2}} \dots \int_{r}^{k_{r}} f(n) = F(p_{1}^{k_{1}}) + F(p_{2}^{k_{2}}) + F(p_{2}^{k$$

(6)
$$\sum_{d \mid n} \lambda \left(\frac{n}{d}\right) 2^{w(d)} = 1$$

Pf: Lemma: If
$$f(n)$$
, $g(n)$ are multiplicative,
Then so is
$$F(n) = \sum_{d \mid n} f(\overline{d}) \cdot g(d)$$

$$positive integers.$$

$$F(mn) = \sum_{d|mn} f(\frac{mn}{a}) \cdot g(d) =$$

$$\frac{\sum_{d_{1}|m} f\left(\frac{m\eta}{d_{1}d_{2}}\right) \cdot g(d_{1}d_{2})}{d_{1}|m} \cdot g(d_{1})g(d_{2})} = \frac{\sum_{d_{1}|m} f\left(\frac{m\eta}{d_{1}}\right) g(d_{1}) g(d_{2})}{d_{2}|m} d_{2}|n$$

$$= \sum_{d_{1}|m} f\left(\frac{m\eta}{d_{1}}\right) g(d_{1}) f\left(\frac{n\eta}{d_{2}}\right) g(d_{2})$$

$$= \left(\sum_{d_{1}|m} f\left(\frac{m\eta}{d_{1}}\right) g(d_{1})\right) \left(\sum_{d_{2}|n} f\left(\frac{n\eta}{d_{2}}\right) g(d_{2})\right) = F(m) F(n)$$

$$= \left(\sum_{d_{1}|m} f\left(\frac{m\eta}{d_{1}}\right) g(d_{1})\right) \left(\sum_{d_{2}|n} f\left(\frac{n\eta}{d_{2}}\right) g(d_{2})\right) = F(m) F(n)$$

$$F(h) = \sum_{n} \frac{n}{n} 2^{w(d)}$$
 is multiplicative.

dln by above Lemma and problems 19, 20(a), Sec. 6.1

-. Consider
$$n = p^{k}$$

$$F(p^{k}) = \sum_{d \mid p^{k}} \lambda \left(\frac{p^{k}}{d}\right) 2^{w(d)}$$

$$=\lambda\left(\frac{p^{k}}{1}\right)2^{\omega(1)}+\lambda\left(\frac{p^{k}}{p}\right)2^{\omega(p)}+...+\lambda\left(\frac{p^{k}}{p^{k-1}}\right)2^{\omega(p^{k-1})}+\lambda\left(\frac{p^{k}}{p^{k}}\right)2^{\omega(p^{k})}$$

$$= (-1)^{k} | + (-1)^{k-1} 2 + ... + (-1)^{l} 2 + 1 \cdot 2$$
There are k terms of $(-1)^{k-1} 2 + ... + (-1)^{l} - 2 + ... + (-1)^{l} - 2 + 1 \cdot 2$

There are k terms of $(-1)^{k-1} + (-1)^{k-1} + 1 \cdot 2 + ... + (-1)^{l} + 1 \cdot$