Bayesian Nonparametrics and Random Trees: Multi Object Tracking Problem

Bahman Moraffah

Arizona State University

October 15, 2018

Problem Statement and Objective

Problem in hand:

- ► Transition kernel $p_{\theta_k}(x_k|x_{k-1})$ due to state equation $x_k = f(x_{k-1}, n_k)$ with parameters θ_k .
- Observation (measurement) equations (Likelihood density) $p(z_k|x_k)$ due to measurement equation $z_k = g(x_k, \nu_k)$.

Objective:

- 1. Use a dependent Diffusion process on a tree as prior on θ_k .
- 2. Find trajectory of each object by tracing the paths on the tree.
- 3. Predict and update the number of objects at each time step.

Diffusion Process

- Draw $\theta_0 \sim P_{\theta_0}$.
- Generate N data points as follows:
 - Points start at t = 0 and follow a diffusion process to time t = 1.
 - Branching probability: At a branch point,

$$\mathbb{P}(ext{selecting kth path}) = rac{n_k - eta}{m + \eta}$$
 $\mathbb{P}(ext{diverging}) = rac{\eta - eta K}{m + \eta}$

where:

current path.

 n_k : number of samples which previously took branch k. K: current number of branches from this branch point. $m = \sum_{k=1}^{K} n_k$: number of samples which previously took the

 β, η are concentration and discount hyperparameters.

Probability of diverging between [t, t+dt]: $\frac{\Gamma(m-\beta)}{\Gamma(m+1-\eta)} \int_{[t,t+dt]} dH(s), \ H(t) \text{ is cumulative Hazard function.}$

Survival Analysis

Fix P_{θ_0} as the base distribution on the parameters, α is the hyperparameter. Draw $N_0 \sim poisson(\mu(\Theta))$.

- ▶ **At time** k-1: Given:
 - 1. N_{k-1}
 - 2. $V_{k-1} = \{\theta_{1,k-1}^*, \dots, \theta_{N_{k-1},k-1}^*\}$
 - 3. $V_{B,k-1}$ is the set of all branch nodes that are connected to a leaf at time k-1.
 - 4. $S_{a,k-1}$ is the set of siblings with the common parent branch node a.

- ▶ Transitioning from time k-1 to k:
 - 1. Define $V_{k|k-1} \subset V_{k-1}$ to be the set of survived object parameters.
 - 2. $V_{B,k|k-1} \subset V_{B,k-1}$ is the set of survived branch nodes.
 - 3. $S_{a,k|k-1} \subset S_{a,k-1}$ is the set of survived siblings with the
 - common parent branch node a. 4. $N_{B,k|k-1}$ is the total number of survived points after transition.

▶ At time *k*:

- 1. For $\theta_{i,k|k-1} \in V_{k|k-1}$ (W.L.O.G $\theta_{i,k|k-1} \in S_{a,k|k-1}$.)
- 2. Draw $\tilde{N}_{i,k|k-1} \sim poisson(\frac{p_a \times \alpha}{2|S_{a,k|k-1}|})$ and generate $\tilde{N}_{i,k|k-1}$ points given $\theta_{i,k|k-1}$ based on a diffusion process.
- 3. Draw $\tilde{N}_{\delta,k|k-1} \sim poisson(p_{\delta} \times \alpha)$ and draw $\tilde{N}_{\delta,k|k-1}$ new points from P_{θ_0} .

Output at time k:

Set
$$\tilde{N}_k = \sum_i \tilde{N}_{i,k|k-1}$$
.

Set
$$\tilde{V}_k = \{\theta_1, \dots \theta_{\tilde{N}_k}\}.$$

Note1: Assign probability vector $\mathbf{p}_{branch\ node} = [p_a]_{a \in V_{B,k|k-1} \cup \delta}$ to the survived branch nodes as follows (γ, ζ) are hyperparameters:

$$p_{a} = \begin{cases} \frac{|S_{a,k-1}| + |S_{a,k|k-1}| - \gamma}{N_{B,k|k-1} - 1 + \sum_{a \in V_{B,k|k-1}} |V_{a,k-1}| + \zeta} & a \in V_{B,k|k-1} \\ \frac{\zeta - |V_{B,k|k-1}| \gamma}{N_{B,k|k-1} - 1 + \sum_{a \in V_{B,k|k-1}} |V_{a,k-1}| + \zeta} & a = \delta \end{cases}$$

Note2: if all the leaves connected to a branch node disappear, the branch node is removed from the set of branch nodes.

Inference

Receive measurement vectors $\mathbf{z}_{\ell,k}$ for $\ell = 1, \dots, L_k$ at time k.

- Update:
 - $ightharpoonup \mathbf{x}_{l,k}|\theta_{l,k} \sim G(\theta_{l,k})$. $(\theta_{l,k})$ is drawn from the described process.)
 - ightharpoonup $\mathbf{z}_{\ell,k}|\mathbf{x}_{I,k},\theta_{I,k}\sim F(\mathbf{x}_{I,k},\theta_{I,k})$
- $N_k \leftarrow \tilde{N}_k$ Note that all the new generated parameters may not be used.
- $V_k = \{\theta_{1,k}^*, \dots, \theta_{N_k,k}^*\}$