CH365 Chemical Engineering Thermodynamics

Lesson 14
Generalized Correlations for Gases and Liquids

Generalized Correlations for Gases Lee-Kesler Method

Byung Ik Lee and Michael Kesler, AIChE Journal, 1975, 21(3), 511-527

Pitzer Correlation (L13)

$$Z^0 = 1 + B^0 \frac{P_r}{T_r}$$
 $Z^1 = B^1 \cdot \frac{P_r}{T_r}$ (Eq. 3.60)

Lesson 13, Slide 5 formulas for B⁰ and B¹ eqns. 3.61 and 3.62

Lee-Kesler Modification

$$Z = Z^0 + \frac{\omega}{\omega^{(r)}} \left(Z^{(r)} - Z^0 \right)$$

where

$$Z^{1} = \frac{\left(Z^{(r)} - Z^{0}\right)}{\omega^{(r)}}$$

Lee and Kesler used a modified Benedict-Webb-Rubin EOS:

$$Z = 1 + \frac{B}{V_r} + \frac{C}{V_r^2} + \frac{D}{V_r^5} + \frac{c_4}{T_r^3 V_r^2} \left(\beta + \frac{\gamma}{V_r^2}\right) exp\left(-\frac{\gamma}{V_r^2}\right)$$

Z^(r): calculated for n-octane

B, C, D are functions of T_r (published in the paper) β , γ , c_4 , etc. are constants

Z calculated twice:

 Z^0 : calculated for simple fluids $Z^{(r)}$: calculated for n-octane

Lee-Kesler Method

Tables: Appendix – Tables D.1-D.4, pp. 676-692

Example: Find Z for n-octane at P_r =0.4, T_r =0.9

	Copyright © McGraw-Hill Education. Permission required for reproduction or display.										
			Table	Page 677							
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000			
T_r											
0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892			
0.35	0.0026	0.0130	0.0261	0.0522	0.1043	0.1564	0.2084	0.2604			
0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379			
0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200			
0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056			
0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939			
0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842			
0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765			
0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703			
0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656			
0.80	0.9935	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307	0.1626			
0.85	0.9946	0.9725	0.9436	0.8810	0.0661	0.0983	0.1301	0.1614			
0.90	0.9954	0.9768	0.9528	0.9015	0.7800	0.1006	0.1321	0.1630			
0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664			
0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705			
0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779			
0.97	0.9965	0.9813	0.9623	0.9227	0.8398	0.7240	0.5380	0.1779			
0.99	0.9903	0.9621	0.9037	0.9233	0.0390	0.7300	0.3667	0.1044			
1.00											
1.01	70	-0.7	700								
1.02	Z	=0.7	OU								
1.05											
1.10	— 1	^	4446								
1.15		=-0.	1118	3							
1.20		٠.									
1.30											
1.40	63	=0.40	$\cap \cap$								
1.50	ω -	-0.4	UU								
1.60											
1.70											
1.80	_	_	^	— 4							
1.90		z = Z'	$^{\circ}+\sigma$	\mathbf{N}^{T}							
2.00		_	1 0	'							
2.20											
2.40		_ ^	700	· / /	100	11 /	01	110\			
2.60	$= 0.780 + (0.400) \cdot (-0.1118)$										
2.80				•				_			
3.00		_	0-0								
3.50		$=$ $_{-}$ $/$	353								
4.00		• •									
1.00											

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Table D.2: Values of Z^1 Page 678

			Table D.2: Values of Z^1			Page 678		
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000
T_r								
0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806
0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921
0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946
0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0929
0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893
0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849
0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803
0.65	-0.0137	-0.0772	-0.0078	-0.0156	-0.0309	-0.0461	-0.0611	-0.0759
0.70	-0.0093	-0.0507	-0.1161	-0.0148	-0.0294	-0.0438	-0.0579	-0.0718
0.75	-0.0064	-0.0339	-0.0744	-0.0143	-0.0282	-0.0417	-0.0550	-0.0681
0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648
0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622
0.90	-0.0019	-0.0099	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604
0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602
0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607
0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.0450	-0.0770	-0.1647	-0.0623
0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641
99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680
00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879
)1	-0.0006	-0.0030	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223
)2	-0.0005	-0.0026	-0.0051	-0.0102	-0.0198	-0.0277	-0.0303	-0.0062
)5	-0.0003	-0.0015	-0.0029	-0.0054	-0.0092	-0.0097	-0.0032	0.0220
10	0.0000	0.0000	0.0001	0.0007	0.0038	0.0106	0.0236	0.0476
15	0.0002	0.0011	0.0023	0.0052	0.0127	0.0237	0.0396	0.0625
20	0.0004	0.0019	0.0039	0.0084	0.0190	0.0326	0.0499	0.0719
30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819
40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857
50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	0.0864
50	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.0855
70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838
30	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814
90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792
)0	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767
20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719
40	0.0007	0.0035	0.0070	0.0139	0.0276	0.0411	0.0544	0.0675
50	0.0007	0.0033	0.0066	0.0131	0.0260	0.0387	0.0512	0.0634
30	0.0006	0.0031	0.0062	0.0124	0.0245	0.0365	0.0483	0.0598
)0	0.0006	0.0029	0.0059	0.0117	0.0232	0.0345	0.0456	0.0565
50	0.0005	0.0026	0.0052	0.0103	0.0204	0.0303	0.0401	0.0497
4.00	0.0005	0.0023	0.0046	0.0091	0.0182	0.0270	0.0357	0.0443

Generalized Correlations for Liquids Slide 4

Rackett:
$$V^{\text{sat}} = V_C Z_C^{(1-T_r)^{2/7}}$$
 (Eq. 3.68) $Z^{\text{sat}} = \frac{P_r}{T_r} Z_C^{\left[1+(1-T_r)^{2/7}\right]}$ (Eq. 3.69)

Figure 3.15: Generalized density correlation for liquids.

Lydersen, Greenkorn, and Hougen: $\rho_r \equiv \frac{\rho}{\rho_C} = \frac{V_C}{V} \qquad \text{(Eq. 3.70)}$

(Liquids)

Example 3.14

For ammonia at 310 K, estimate the molar volume density of (a) the saturated liquid and (b) the liquid at 100 bar.

from book;

authors read

reduced density

Example 3.14, part b, continued

 $V^{\text{sat}} = V_C Z_C^{(1-T_r)^{2/7}}$ (Eq. 3.68) Rackett:

$$Z^{\text{sat}} = \frac{P_r}{T_r} Z_C^{\left[1 + (1 - T_r)^{2/7}\right]}$$
 (Eq. 3.69)

Figure 3.15. Generalized density correlation for liquids.

Lydersen, Greenkorn, and Hougen:

$$\rho_{\rm r} \equiv \frac{\rho}{\rho_{\rm C}} = \frac{V_{\rm C}}{V}$$
 (Eq. 3.70)

(Liquids)

Example 3.14, continued

For ammonia at 310 K, estimate the molar volume density of (a) the saturated liquid and (b) the liquid at 100 bar.

Homework

Problem 3.58

To a good approximation, what is the molar volume of ethanol vapor at 480 deg C and 6000 kPa? How does this result compare with the ideal gas?

Answer the problem in four parts:

- (a) Lee-Kesler method.
- (b) SRK equation.
- (c) Ideal gas equation.

For comparison: Compare LK and SRK to IG. If either is less than IG, explain why using knowledge of IG behavior.

Online Interpolator Tool for Lee-Kesler Tables: https://www.ajdesigner.com/phpinterpolation/bilinear_interpolation_equation.php