CSCI 4100 Fall 2018 Assignment 12 Answers

Damin Xu 661679187

December 10, 2018

Problem 1

(a) Identity:

$$layer1 = \begin{bmatrix} -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \end{bmatrix}$$
 (1)

$$layer1 = \begin{bmatrix} -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \end{bmatrix}$$

$$layer1 = \begin{bmatrix} -0.216 \\ -0.137 \\ -0.137 \end{bmatrix}$$
(2)

tanh:

$$layer1 = \begin{bmatrix} -0.0267 & -0.0267 \\ -0.0322 & -0.0267 \\ -0.0267 & -0.0267 \end{bmatrix}$$

$$layer1 = \begin{bmatrix} -0.179 \\ -0.114 \\ -0.114 \end{bmatrix}$$

$$(3)$$

$$layer1 = \begin{bmatrix} -0.179 \\ -0.114 \\ -0.114 \end{bmatrix} \tag{4}$$

(b) Identity:

$$layer1 = \begin{bmatrix} -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \end{bmatrix}$$

$$(5)$$

$$layer1 = \begin{bmatrix} -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \\ -0.0322 & -0.0322 \end{bmatrix}$$

$$layer1 = \begin{bmatrix} -0.216 \\ -0.137 \\ -0.137 \end{bmatrix}$$
(6)

tanh:

$$layer1 = \begin{bmatrix} -0.0267 & -0.0267 \\ -0.0322 & -0.0267 \\ -0.0267 & -0.0267 \end{bmatrix}$$

$$layer1 = \begin{bmatrix} -0.179 \\ -0.114 \\ -0.114 \end{bmatrix}$$
(8)

$$layer1 = \begin{bmatrix} -0.179 \\ -0.114 \\ -0.114 \end{bmatrix} \tag{8}$$

Problem 2

(a)

(b)

(c)

Problem 3

(a) x = 0

(b)

 $(c) \ \ z1=[1,\,0],\,y1=1,\,z2=[\text{-}1,\,0],\,y2=\text{-}1$

(d)
$$F = x_0^3 y_0^3 - x_0^3 y_1 - x_1 y_0^3 + x_1 y_1 + x_0 x_1 y_0 y_1$$

(e)
$$h(x) = sign(x^3 - y)$$

Problem 4

(a) small C = 0.001:

large C = 100:

- (b) Generally, a large C can produce a result with high complexity. However, when C is too large, underfitting happened.
- (c) C = 100 has the lowest $E_{test} = 0.01278$

Problem 5 E_{test} for five methods:

	E_{test}
Linear Model	0.030669
KNN	0.0202267
RBF	0.0092242
Neural network	0.02867
SVM	0.01278

Above five E_{test} are quite small, and RBF model produced the best boundary with the smallest E_{test} . The reason could be that in my case, RBF model use relatively large K value of 44, hence the decision boundary is much more strict than other methods.