Question: 2

Atreads				I				}	
Process	,	al	locat	ion	M	lax	need		
To	A	B	C	D	A	В	C	D	
,,	3	\ \frac{1}{\tau}.	4	, 1	6	4	7.	3	
て,	2	1	0	2	4	2	3	2	
T2	2	4	1	3	2	5	3	3	
T3	4	1	1	0	6	3	3	2	
T.,	ا 2	2	a	1	5	6	7	5	

avai lable A B C D 2 2 4

Remaining need (max - allocation)

memaining need & avoilable we will check it for every thread to check the sequence-Now;

$$3\ 3\ 2\ \leq\ 2\ 2\ 4\ (false)$$

すり

$$2 \mid 30 \leq 2 \mid 2 \mid 4 \mid \text{false}$$

T2;

Now it is true process will terminate its allocation will be added in available.

10 8 4 9

T4;

3 4 5 4
$$\leq$$
 13 9 8 10 (true)

13 9 8 10

2 2 2 1

15 11 10 11

sequence;

The system will be in sufe state-

Question: 2(b)

Ty arrives for
$$(2\ 2\ 2\ 4)$$

request \leq need (Remaining)

2 2 4 \leq 3 4 5 4 (true)

request \leq available

$$2224 \leq 2224 \text{ (true)}$$

= request - available

mew allocation = allocation + request = $(2\ 2\ 2\ 1) + (2\ 2\ 2\ 4)$ = $4\ 4\ 4\ 5$

new need = remaining need - request
$$\frac{3454}{-2224}$$

> sequence is false.

Question: 2(c)

now,

$$0 | | 0 \leq 0 | 2 0$$
 (+rue)

30 11 19 16

(015 to 10 10 0)

available =
$$2 \ 2 \ 2 \ 4$$

- $0 \ 1 \ 1 \ 0$

allocation =
$$2:4:13.-01$$

+ $\frac{0:1:10}{2:5:03}$

```
To ;
      3 3 3 2 < 2 1 1 4 (false)
 T2;
      0 0 1 0 \le 2 1 1 4 (true)
        = 2 1 1 4
+ 0 5 2 3
2 6 3 7
 T3;
     2 2 2 2 2 2 6 3 7 (true)
       = 2 6 3 7

+ 4 1 1 0

6 7 4 7
 T4;
      3454 \le 6747 (false)
 To;
      3332 \leq 6747 (true)
         6 7 4 7
       + 3 | 4 | 9 8 8 8
Ť, ;
      2 1 3 0 \le 98 8 8 (true)
       2 1 9 2
     + 9 8 8 8
      3 4 5 4 \le 11 9 8 10 (true)
Ty;
          2 2 2
```

sequence is;

$$< T_2, T_3, T_0, T_1, T_4 >$$

Question: 2(d)

T3 arrives for
$$(2, 2 | 1 | 2)$$

request \leq need
 $2 | 2 | 1 | 2 | \leq 2 | 2 | 2 | 2 | (true)$
repest \leq available

$$2\ 2\ 12\ \leq\ 2\ 2\ 4\ (true)$$

owailable =
$$2 2 2 4$$

- $2 2 1 2$
0 0 1 2

allocation =
$$\frac{4110}{6322}$$

allocation			meed			available							
		A	В	C	D	A	В	C	DA	0	A	B C	Þ
To		3	1	4	1	3	3	3	2 🐧		0	0 1	2
τ_{l}		2	1	0	2	2	1	3	0				
T2		2	4	1	3	D	1	R	O				
T ₃		6	3	2	2	0	6	1	O.				
T4		2	2	2	1	3	4	5	4	ris L			

```
3 \ 3 \ 3 \ 2 \ \leq \ 0 \ 0 \ 12 \ \text{(false)}
  Ti;
     2 130 \le 00,12 (false)
 T2;
               01 8 01 81
   T3;
     0 \ 0 \ 10 \le 0 \ 0 \ 1 \ 2 \ (+rue)
 available = 0 0 1 2
          + 6 3 2 2 6 3 3 4
 Tu;
     3454 \le 6334 (false)
To;
     3 3 3 2 \le 6 3 3 4 (true)
    owailable = 6 3 3 4
              1 4
T, ;
    2130 \leq 9475 (true)
    available = 9 4 7 5
         +2102
          11 5 7 7
```

To;

$$T_2$$
;

0 1 2 0 \leq 11 5 7 7 (frue)

awailabel = 11 5 7 7

$$\frac{+2}{13} = \frac{11}{9} = \frac{3}{10}$$

Ta;

available =
$$13 9 8 10$$

+ $2 2 2 1$
 $15 11 10 11$

Question: 03

Solution:

	R,	R2	R_3	R4		R,		s+ R3	R4	
Pı	1	Ö	ð	O		0	1	Ö	Ö	9
P2	0	1	0	O		O	O	1	0	Ø
P3	Ø	0	1	0		0	0	0	1	3
P4	0	1	0	1		1	O	Q	0	①
P ₅	0	0	Q	1		O	O	O	O	2

current availability:

$$R_1$$
 R_2 R_3 R_4

2 0 0 0 (allocation) R_4

+ 0 1 0 1

+ 0 0 0 0 (allocation) R_5

2 1 0 2

+ 0 0 1 0 (allocation) R_5

2 1 1 2

+ 1 0 0 0 (allocation) R_5

1 1 2

+ 0 1 0 0 (allocation) R_1

3 1 1 2

+ 0 1 0 0 (allocation) R_2

- > No deadlock will occur
- → Sequence: < P4, P5, P3, P1, P2>

```
AREEB AHMED
FA19-BSE-022
OPERATING SYSTEM
ASSIGNMENT 3
QS:1
Sol:
while (true){
              wait(mutex);
       read_count++;
       if (read_count == 1) /* first reader */
                        wait(rw_mutex);
          signal(mutex);
       /* reading is performed */
       wait(mutex);
       read count--;
       if (read_count == 0) /* last reader */
              signal(rw_mutex);
       signal(mutex);
this was the code
```