Sistemi Elettronici, Tecnologie e Misure Appello del 30/1/2020

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a						
b						
c						
d						

- 1. In un circuito contenente un diodo semi-ideale D con $V_{\gamma}=0.7\mathrm{V}$ si è fatta l'ipotesi che il diodo sia OFF. L'ipotesi è verificata se e solo se:
 - (a) $v_{\rm D} < 0.7 {\rm V}$
 - (b) $v_{\rm D} > 0.7 {\rm V}$
 - (c) $i_D > 0$
 - (d) $v_{\rm D} < -0.7 {\rm V}$
- 2. Un amplificatore differenziale fornisce in uscita una tensione $v_{\rm out}=200.5v^+-199.5v^-$. Le amplificazioni differenziale $(A_{\rm d,dB})$ e di modo comune $(A_{\rm cm,dB})$ sono:
 - (a) $A_{d,dB} = 46dB, A_{cm,dB} = -46dB$
 - (b) $A_{d,dB} = 46dB, A_{cm,dB} = 0dB$
 - (c) $A_{d,dB} = 0dB, A_{cm,dB} = 0dB$
 - (d) $A_{d,dB} = 0dB, A_{cm,dB} = -46dB$
- 3. Indicare in quale stadio amplificatore MOS a singolo transistore (assumendo $\lambda=0$) la resistenza d'uscita non dipende dalla transcoduttanza $g_{\rm m}$ del transistore:
 - (a) drain comune
 - (b) gate comune
 - (c) source comune
 - (d) la resistenza d'uscita dipende da g_{m} in tutti gli stadi MOS a singolo transistore
- 4. Un amplificatore operazionale con prodotto banda-guadagno pari a $1 \mathrm{MHz}$, resistenze d'ingresso e uscita trascurabili (cioè $R_{\mathrm{in,d}} \to \infty, R_{\mathrm{in,cm}} \to \infty, R_{\mathrm{out}} = 0$), è utilizzato in un amplificatore di tensione non invertente in cui i due resistori hanno resistenza uguale. La banda dell'amplificatore è pari a:
 - (a) 900Hz
 - (b) 1MHz
 - (c) 2MHz
 - (d) 500kHz
- 5. In un circuito contenente due amplificatori operazionali, la tensione d'uscita per ingresso nullo $V_{\rm OUT,0}$ è esprimibile in funzione delle tensioni di offset in ingresso (input offset voltage) $V_{\rm OFF,1}$ e $V_{\rm OFF,1}$ dei due operazionali come: $V_{\rm OUT,0} = V_{\rm OFF,1} 2 \cdot V_{\rm OFF,2}$. Sui datasheet degli operazionali utilizzati è indicato $|V_{\rm OFF,max}| = 5 \, {\rm mV}$. Si può necessariamente concludere che:
 - (a) $V_{OUT,0} < 15 \text{mV}$
 - (b) $V_{\rm OUT,0} < -15 \,\rm mV$
 - (c) $V_{\text{OUT},0} > -5 \text{mV}$
 - (d) $V_{\text{OUT},0} < 5 \text{mV}$
- 6. Affinché un transistore pMOS sia polarizzato in regione di saturazione, si deve avere:
 - (a) $V_{\rm GS} > V_{\rm TH}$ e $V_{\rm DS} > V_{\rm GS} V_{\rm TH}$
 - (b) $V_{\rm SG} > V_{\rm TH}$ e $V_{\rm SD} < V_{\rm SG} V_{\rm TH}$
 - (c) $V_{\rm SG} > V_{\rm TH}$ e $V_{\rm SD} > V_{\rm SG} V_{\rm TH}$
 - (d) $V_{\rm SG} < -V_{\rm TH}$ e $V_{\rm DS} < V_{\rm GS} + V_{\rm TH}$

Esercizio n. 1

Con riferimento al circuito in figura:

- 1. verificare il funzionamento del transistore MOS in regione di saturazione e determinarne i parametri di piccolo segnale nel punto di lavoro;
- 2. determinare, in condizioni di piccolo segnale, l'amplificazione di tensione $A_{\rm v}=v_{\rm out}/v_{\rm in},\,R_{\rm in}$ e $R_{\rm out}$ indicate in figura, assumendo che il condensatore C si comporti come un corto circuito nella banda del segnale applicato (sono richieste le espressioni analitiche ed i valori numerici);
- 3. assumendo $C=\frac{10}{2\pi}$ nF, calcolare la funzione di trasferimento nel dominio della frequenza $A_{\rm v}(s)=V_{\rm out}(s)/V_{\rm in}(s)$ e tracciarne i diagrammi di Bode di modulo e fase;
- 4. si considerino due stadi analoghi a quello in figura a) collegati in cascata come indicato in figura b). Determinare l'amplificazione di tensione $A_{\rm v,c} = v_{\rm out,c}/v_{\rm in,c}$, $R_{\rm in,c}$ e $R_{\rm out,c}$ per la cascata dei due amplificatori assumendo che C all'interno dello stadio a) e $C_{\rm C}$ in b) si comportino entrambi come corto circuiti.

Esercizio 2.

Nel circuito in figura la dinamica di v_1 e v_2 è (-1V,1V) e $R_{1,2,\dots,8}=R_{\rm L}=R=10{\rm k}\Omega.$ Determinare:

- 1. l'espressione delle tensioni $v_{\text{OUT},1}$ e v_{OUT} ;
- 2. l'espressione della corrente erogata da OP1 $(i_{OUT,1})$ e da OP2 (i_{OUT}) , assumendo che gli amplificatori operazionali siano ideali;
- 3. la minima dinamica delle tensione d'uscita di OP2 $(V_{\rm OUT,min}, V_{\rm OUT,max})$ compatibile con i segnali in ingresso assegnati;
- 4. la minima dinamica della corrente d'uscita di OP2 $(I_{\rm OUT,min},I_{\rm OUT,max})$, compatibile con i segnali in ingresso assegnati.