DE AY1718 S1

Q1.

Given that: $xy' = y + 2x \ln x \ (*), \quad y(1) = 0$

Observing that the equation (*) valid for all x > 0. Dividing both sides of the equation, we get:

$$(*) \to \frac{y'}{x} - \frac{y}{x^2} = \frac{2 \ln x}{x}$$

$$\leftrightarrow \frac{dy}{dx} \frac{1}{x} + y \frac{d}{dx} \left(\frac{1}{x}\right) = \frac{2 \ln x}{x}$$

$$\leftrightarrow \frac{d}{dx} \left(\frac{y}{x}\right) = \frac{2 \ln x}{x}$$

$$\leftrightarrow \int \frac{d}{dx} \left(\frac{y}{x}\right) dx = \int \frac{2 \ln x}{x} dx$$

$$\leftrightarrow \int d \left(\frac{y}{x}\right) = 2 \int \ln x \, d(\ln x)$$

$$\leftrightarrow \frac{y}{x} = \ln^2 x + C$$

With the initial condition: y(1) = 0, it leads to:

$$0 = 0 + C \leftrightarrow C = 0$$

Hence, the solution of the equation is:

$$\frac{y}{x} = \ln^2 x$$

Or:

$$y = x \ln^2 x$$

Q2.

Given that:

$$y\cos x \, dx + (2y + \sin x + 1)dy = 0 \ (*)$$

$$\leftrightarrow M(x, y)dx + N(x, y)dy = 0$$

Where:
$$\begin{cases} M(x,y) = y \cos x \\ N(x,y) = 2y + \sin x + 1 \end{cases}$$
$$\left(\frac{\partial M}{\partial x} = \cos x\right)$$

And:
$$\begin{cases} \frac{\partial M}{\partial y} = \cos x \\ \frac{\partial N}{\partial x} = \cos x \end{cases}$$

$$\rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Therefore the given differential equation is exact.

Solve the given differential equation:

$$(*) \leftrightarrow y \cos x \, dx + 2y \, dy + \sin x \, dy + dy = 0$$

$$\leftrightarrow y \, d(\sin x) + d(y^2) + \sin x \, dy + dy = 0$$

$$\leftrightarrow y \, d(\sin x) + \sin x \, dy + d(y^2) + dy = 0$$

$$\leftrightarrow d(y \sin x) + d(y^2) + dy = 0$$

$$\leftrightarrow d(y \sin x + y^2 + y) = 0$$

Integrating both sides we obtain the final result:

$$\leftrightarrow y \sin x + y^2 + y + C = 0$$

Q3.

$$y'' - 4y' + 20y = e^{x}(x+2) + xe^{2x}$$

 $\leftrightarrow L[y] = g_1(x) + g_2(x)$

Where:
$$\begin{cases} L[y] = y'' - 4y' + 20y \\ g_1(x) = e^x(x+2) \\ g_2(x) = xe^{2x} \end{cases}$$

Characteristic equation of the given ODE: $r^2 - 4r + 20 = 0$

$$\rightarrow r_1 = 2 + 4i, r_2 = 2 - 4i$$

So, the complement solution is: $y_c = C_1 e^{2x} \cos 4x + C_2 e^{2x} \sin x$

Since the right hand side of the given equation has two terms $g_1(x)$ and $g_2(x)$, therefore the particular solution also has two term: $y_p = y_{p1} + y_{p2}$, respectively.

Solve fore
$$y_{p1}$$
 from: $L[y_{p1}] = g_1(x) \leftrightarrow y_{p1}'' - 4y_{p1}' + 20y_{p1} = e^x(x+2)$ $(\alpha = 1)$

Since, $\alpha = 1$ is not a root of characteristic equation.

So, y_{p1} has the following form: $y_{p1} = (Ax + B)e^x$

Substituting into the equation we obtain:

$$e^{x}(17A + 17B - 2A) = e^{x}(x + 2)$$

Therefore:
$$y_{p1} = \left(\frac{1}{17}x + \frac{36}{289}\right)e^x$$

Solve fore
$$y_{p2}$$
 from: $L[y_{p2}] = g_2(x) \leftrightarrow y_{p2}'' - 4y_{p2}' + 20y_{p2} = xe^{2x}$ $(\alpha = 2)$

Since, $\alpha = 2$ is not a root of characteristic equation.

So, y_{p2} has the following form: $y_{p2} = (Ax + B)e^{2x}$

$$\rightarrow y'_{p2} = (2Ax + 2B + A)e^{2x}$$

$$\rightarrow y_{p2}^{"} = (4Ax + 4B + 4A)e^x$$

Substituting into the equation we obtain:

$$e^{2x}(16Ax + 16B) = xe^{2x}$$

$$\rightarrow \begin{cases} 16A = 1 \\ 16B = 0 \end{cases} \leftrightarrow \begin{cases} A = \frac{1}{16} \\ B = 0 \end{cases}$$

Therefore: $y_{p2} = \frac{1}{16}xe^{2x}$

So:

$$y_p = y_{p1} + y_{p2}$$

$$y_p = y_{p1} + y_{p2}$$
$$= \left(\frac{1}{17}x + \frac{36}{289}\right)e^x + \frac{1}{16}xe^{2x}$$

Thus, the general solution of the given differential equation is:

$$y_G = y_c + y_p$$

$$= C_1 e^{2x} \cos 4x + C_2 e^{2x} \sin x + \left(\frac{1}{17}x + \frac{36}{289}\right) e^x + \frac{1}{16}x e^{2x}$$

Q4.

Given that:
$$(x - 2017)^2 y'' - (x - 2017) y' + y = 2018 (*), x > 2017$$

It holds that the homogeneous equation: $(x - 2017)^2 y'' - (x - 2017) y' + y = 0$ (1)

Assume that $y_1 = ax + b$ is a solution of the given homogeneous equation

We have: $y_1 = ax + b$; $y_1' = a \rightarrow y_1'' = 0$.

We know that y_1 is a solution of (1), therefore substituting y_1 into (1), we get:

$$(x - 2017)^{2} \cdot 0 - (x - 2017) \cdot a + ax + b = 0$$

$$\leftrightarrow 0 \cdot ax + 2017a + b = 0$$

$$\to \begin{cases} b = -2017a \\ a \in R \end{cases}$$

Thus, with any constant a and b = -2017a, $y_1 = ax + b$ is a solution of (1)

To find the general solution of (*), we rewire (*) in the following form:

$$y'' - \frac{1}{x - 2017}y' + \frac{1}{(x - 2017)^2}y = \frac{2018}{(x - 2017)^2}$$
$$(y'' + p(x)y' + q(x) = r(x))$$

The Wronskian determinant for the equation is:

$$W[y_1, y_2] = C_1 e^{-\int p(x) dx} = C_1 e^{\int \frac{1}{x - 2017} dx}$$

$$\to W[y_1, y_2] = C_1 (x - 2017)$$

Hence:

$$y_2 = y_1 \left[\int \frac{W[y_1, y_2]}{y_1^2} dx + C_2 \right]$$

Choose: $a = 1 \rightarrow b = -2017$ for y_1 , it leads to:

$$y_2 = (x - 2017) \left[\int \frac{C_1(x - 2017)}{(x - 2017)^2} dx + C_2 \right]$$

$$\to y_2 = (x - 2017) [C_1 \ln(x - 2017) + C_2]$$

$$\to y_2 = C_1(x - 2017) \ln(x - 2017) + C_2(x - 2017)$$

Choose $C_1 = 1$, $C_2 = 0 \rightarrow y_2 = (x - 2017) \ln(x - 2017)$

Since, the Wronskian determinant different from 0 for all x > 2017, therefore y_1 and y_2 are linearly independence solutions of the homogeneous equation.

Clearly, $y_p = 2018$ is a particular solution of (*)

Thus, the general solution of the equation is:

$$y_G = C_1 y_1 + C_2 y_2 + y_p = C_1 (x - 2017) + C_2 (x - 2017) \ln(x - 2017) + 2018$$

Q5.

Due to Newton's Cooling Law:

$$\frac{dT}{dt} = -k(T - T_e) \ (*)$$

Where:

T(t): Temperature of a body at time t.

k: Positive constant characteristic of the system.

 T_e : Environment temperature.

$$(*) \rightarrow \frac{dT}{T - T_e} = -kdt$$
$$\rightarrow \ln(T - T_e) = -kt + C (1)$$

DE AY1718 S1

With the condition given in the prolem:

$$\begin{cases} T(0) = 37 \\ T(1) = 28 \end{cases} \xrightarrow{\begin{cases} \ln(37 - 22) = -k.0 + C \\ \ln(28 - 22) = -k.1 + C \end{cases}} \begin{cases} C = \ln 15 \\ k = \ln 2.5 \end{cases}$$

From (1), Solve for T(t), we obtain:

$$T(t) = e^{-kt+C} + T_e$$

If
$$T(t) = 30$$
, Solve for t , we get $t = 0.686$ (hour) = 41 (minutes)

Therefore, the victim is killed at around 7:49 AM