EE 538 Spring 2020 Analog Circuits for Sensor Systems University of Washington Electrical & Computer Engineering

Instructor: Jason Silver

Midterm

Please show your work.

Problem 1: Common-emitter amplifier

For the following, V_{CC} = 5V, V_S = 1V, R_S = 1k Ω , I_{bias} = 100 μ A, R_C = 10k Ω , C_L = 10pF, β = 100, V_A = 100V, V_T = 25mV, and I_S = 10⁻¹⁶A.

- a) (10 points) Calculate the input impedance of the amplifier, Z_{in} . Note: This does not include R_{S} .
- b) (10 points) Find an expression for the transfer function, V_{out}/V_S . Be sure to account for attenuation due to Z_{in} .
- c) (10 points) Calculate the DC gain and transit frequency f_T .

Problem 2: Opamp nonidealities

Assume the opamp has infinite gain and bandwidth. $V_{OS} = 1 \text{mV}$, and $I_B = -1 \text{nA}$. $R_f = 10 R_i$.

- a) (15 points) Determine an expression for the output offset voltage, including the contributions from both V_{OS} and I_B .
- b) (10 points) Assuming $R_S = 0$, calculate values for R_i and R_f that result in zero output offset.
- c) (10 points) Assuming R_S = 1k and V_{OS} = 0, calculate values for R_i and R_f that result in zero output offset.

Problem 3. Opamp AC and transient analysis

Figure 3a. Non-inverting amplifier

Figure 3b. Opamp open-loop frequency response

Figure 3. Input waveform for c) and d)

Assume ideal input/output resistances (R_{in} and R_o) for the opamp. Let R_f = 10 R_{in} .

- a) (10 points) Determine the DC gain and the 3dB frequency of the closed loop transfer function (V_{out}/V_{in}) .
- b) (7.5 points) Provide an expression for the transient response of the amplifier for a voltage step input of 0 to 100mV. Sketch the response and label all relevant times/voltages.
- c) (10 points) Assume the amplifier is driven by the input waveform shown in Fig 3c. Determine the minimum period T for which 0.1% settling is achieved during each half-period (integer multiples of T/2). Sketch the output waveform.
- d) (7.5 points) Calculate the total worst-case error in the output voltage (at the end of each half-period) if the resistors have a tolerance of 0.1%.