Comprehensive Review #9

Topics:

Lesson 72 - Law of sines

Lesson 87 - Sum and differene identities

Lesson 90 - Double-angle identities

Lesson 96 - Tirangle area formula

[1]
$$C = 77^{\circ}$$
, $a = 61.85$, $c = 76.48$

[2]
$$C = 84^{\circ}, a = 65.23, c = 93.39$$

$$[5] \sin(\theta - 2\pi) = \sin\theta \cos 2\pi - \cos\theta \sin 2\pi = \sin\theta \cdot (1) - \cos\theta \cdot (0) = \sin\theta$$

$$\cos 2A = \cos(A + A) = \cos A \cos A - \sin A \sin A =$$

$$[6] \quad \cos^2 A - \sin^2 A$$

[7]
$$-\cos\theta$$

[10]
$$\frac{\pi}{6}$$
, $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$

[11]
$$\frac{\pi}{3}$$
, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$

[12]
$$(\cos x + \sin x)^2 - 1 = \cos^2 x + 2\sin x \cos x + \sin^2 x - 1 = 2\sin x \cos x = \sin 2x$$

- [13] [A]
- [14] [A]
- [15] [B]
- [16] [B]