

Facultad de Ciencias

Doble Grado en Ingeniería Informática y Matemáticas

TRABAJO DE FIN DE GRADO

Estructuras diferenciales sobre una superficie topológica y la visualización computacional de superficies.

Presentado por:

Norberto Fernández de la Higuera

Tutor:

Francisco José López Fernández Departamento de Geometría y Topología

Carlos Ureña Almagro Departamento de Lenguajes y Sistemas Informáticos

Curso académico 2020-2021

Estructuras diferenciales sobre una superficie topológica y la visualización computacional de superficies.

Norberto Fernández de la Higuera

Norberto Fernández de la Higuera Estructuras diferenciales sobre una superficie topológica y la visualización computacional de superficies..

Trabajo de fin de Grado. Curso académico 2020-2021.

Responsable de tutorización

Francisco José López Fernández Departamento de Geometría y Topología

Carlos Ureña Almagro Departamento de Lenguajes y Sistemas Informáticos Doble Grado en Ingeniería Informática y Matemáticas Facultad de Ciencias Universidad de Granada Declaración de originalidad

D./Dña. Norberto Fernández de la Higuera

Declaro explícitamente que el trabajo presentado como Trabajo de Fin de Grado (TFG), correspondiente al curso académico 2020-2021, es original, entendida esta, en el sentido de que no ha utilizado para la elaboración del trabajo fuentes sin citarlas debidamente.

En Granada a 15 de marzo de 2021

Fdo: Norberto Fernández de la Higuera

Índice general

Ínc	dice de figuras	IX
ĺno	dice de tablas	ΧI
Su	ımmary	XIII
Re	sumen	χV
Int	troducción	ΧVI
I.	Conocimientos previos	1
1.	Variedades topológicas	3
2.	Estructuras diferenciales 2.1. Resultados previos	
II.	Teorema clásico de Munkres	7
3.	Resultados principales 3.1. Enunciados	9
Ш	. Visualización de superficies	13
4.	Segundo capítulo 4.1. Primera sección	15
A.	Instalación del software	17
В.	Guía de uso del programa	19
Со	onclusiones	21
G۱٬	osario	23

Índice de figuras

3.1. Cui va de joidan cercana ai mangulo	3.1.	Curva de	Jordan cercana al triángulo		1
--	------	----------	-----------------------------	--	---

Índice de tablas

Summary

An english summary of the project (around 800 and 1500 words are recommended). File: preliminares/summary.tex

Resumen

Resumen en español (recomendado de 800 a 1500 palabras). Fichero: preliminares/resumen.tex

Introducción

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/introduccion.tex

Parte I.

Conocimientos previos

Si el trabajo se divide en diferentes partes es posible incluir al inicio de cada una de ellas un breve resumen que indique el contenido de la misma. Esto es opcional.

1. Variedades topológicas

Definición 1.1. Una **variedad topológica** es un espacio de Hausdorff localmente Euclídeo verificando el segundo axioma de numerabilidad, es decir, que su topología tiene una base numerable.

Un subconjunto abierto de una variedad es una variedad.

2. Estructuras diferenciales

2.1. Resultados previos

Teorema 2.1. (de "alisamiento de asas") Sea S una variedad diferenciable, entonces:

- 1. Un embebimiento $\mathbb{R}^2 \to S$ puede isotoparse a un embebimiento diferenciable entorno al origen, quedando fijo fuera de un entorno mayor al anterior.
- 2. Un embebimiento $D^1 \times \mathbb{R} \to S$ que es diferenciable entorno a $\partial D^1 \times \mathbb{R}$ puede isotoparse a un embebimiento diferenciable entorno a $D^1 \times 0$, quedando fijo fuera de un entorno mayor al anterior y cercano a $\partial D^1 \times \mathbb{R}$.
- 3. Un embebimiento $D^2 \to S$ que es diferenciable entorno a ∂D^2 puede isotoparse a un embebimiento diferenciable en todo D^2 , quedando fijo en un entorno pequeño de ∂D^2 .

Demostración. Voy a proceder a la demostración de cada uno de los apartados:

1. Vamos a utilizar el "truco del toro", vemos el toro (T) como el espacio de órbitas $\mathbb{R}^2/\mathbb{Z}^2$, tomando el 0 como imagen del $0 \in \mathbb{R}^2$. Eliminamos un punto del toro, al que llamamos T'.

Hacemos una inmersión de T' en \mathbb{R}^2 manteniendo el 0 y viendo T' como el interior del disco unidad de \mathbb{R}^2 junto con dos 1-asas, que es un embebimiento en el disco (las asas se embeben por separado, se observa como se solapan en \mathbb{R}^2).

Sea $h: \mathbb{R}^2 \to M$ embebimiento,por el cual M induce una estructura diferenciable en \mathbb{R}^2 , que denotaremos S. Por el mismo razonamiento (el embebimiento definido para T'), \mathbb{R}^2 con la estructura S induce una estructura diferenciable en T', que llamaremos T'_S .

Sabemos por el **Hecho 3** que existe un conjunto compacto en T'_S cuyo complemento es difeomorfo a $S^1 \times \mathbb{R}$, lo que nos permite extender la estructura diferenciable de T' a T, llamada T_S .

Por el **Hecho 4** sabemos que toda estructura diferenciable del toro $(S^1 \times S^1)$ es difeomorfa a la estándar. Por tanto, existe un difeomorfismo $g: T_S \to T$. Podemos tomar $\widehat{g}: \mathbb{R}^2_S \to \mathbb{R}^2$ como la normalización de g (llevar el 0 en el 0 y al verlo en \mathbb{R}^2 que también deje fijo \mathbb{Z}^2).

Identificamos \mathbb{R}^2 con el interior del disco unidad de \mathbb{R}^2 mediante una reparametrización radial que es la identidad entorno al 0, por lo que \widehat{g} se convierte en un automorfismo en el interior del disco, que tiende a ser también la identidad en el borde. Se puede extender a $G: \mathbb{R}^2 \to \mathbb{R}^2$, siendo la identidad fuera del interior del disco.

2. Estructuras diferenciales

Además, G tiene la propiedad de comportarse igual que g entorno al 0, por como se ha construido la reparametrización.

Por el truco de Alexander G es isotópica a la identidad. Se puede obtener la isotopía G_t variando el radio del disco, por lo que cuando el radio tiende a o G_t tiende a ser la identidad (G_0). Para t=1, $G_1=G$.

Definimos la isotopía para h como $h_t = h \circ G_t^{-1}$, teniendo que $h_0 = h$ por ser G_0 la identidad. h_t se queda fija fuera del disco unidad ya que G_t es la identidad en dicho conjunto. También tenemos que $h_t(0) = h(0)$ ya que para todo t, G_t es la identidad entorno al 0. h_1 es diferenciable entorno al 0 respecto a la estructura diferenciable usual de \mathbb{R}^2 porque $G_1^{-1} = G^{-1}$ es un difeomorfismo de dicha estructura a S entorno al 0.

- 2. por hacer.
- 3. por hacer.

Corolario 2.1. El teorema anterior sigue siendo cierto para un abierto de \mathbb{R}^2 en vez de para todo \mathbb{R}^2 .

2.2. Hechos utilizados para los teoremas

Parte II. Teorema clásico de Munkres

3. Resultados principales

3.1. Enunciados

Teorema A. Toda variedad topológica 2-dimensional tiene una estructura diferenciable.

Teorema B. Todo homeomorfismo entre variedades diferenciables 2-dimensionales es isotópico a un difeomorfismo.

Suponiendo ciertos los teoremas anteriores, es directa la obtención del siguiente resultado, ya que por A tenemos que toda variedad topológica 2-dimensional tiene una estructura diferenciable y por B sabemos que es única salvo difeomorfismos:

Corolario 3.1. (Teorema clásico de Munkres) Toda variedad topológica 2-dimensional tiene una única estructura diferenciable salvo difeomorfismos.

3.2. Demostración del Teorema A

Teorema A. Toda variedad topológica tiene una estructura diferenciable.

Demostración. Sea S una variedad topológica sin borde, podemos coger un sistema coordenado de cartas finito $\{(V_i,h_i)/1 \le i \le N\}$. Vamos a construir por inducción una estuctura diferenciable en el conjunto $U_n = \bigcup_{i \le n} h_i(\mathbb{R}^2)$, que por ser un sistema coordenado su límite debe de ser S, probando así el resultado. Cabe destacar que cada U_i contiene a todos los anteriores.

La inducción empieza tomando una carta cualquiera del sistema, $U_1 = V_1$ por ejemplo. Si se considera la variedad U_1 con el atlas $\{(h_1, U_1)\}$ entonces h_1 es diferenciable para ésta de forma trivial (se compone con la inversa y queda la identidad en \mathbb{R}^2).

Una vez arrancada la inducción, suponiendo cierto para el paso n-1 vamos a extender la diferenciabilidad de U_{n-1} a U_n . Sea la carta (V_n, h_n) , tomamos entonces $W = h_n^{-1}(U_{n-1}) = h_n^{-1}(U_{n-1} \cap h_n(V_n))$, que es un abierto de \mathbb{R}^2 por ser h_n un homeomorfismo de \mathbb{R}^2 a V_n .

Tenemos $W \subset V_n$ abierto en \mathbb{R}^2 , por el **Hecho 1** sabemos que existe una triangulación geométrica suya y que al ser abierto (no tiene borde) al ir acercándose al borde los triángulos tienden a ser puntos. Queremos aplicar el "Teorema de alisamiento de asas" en los vértices de los triángulos, seguidamente en los lados y finalmente en el interior de cada uno (aplicar los 3 apartados del teorema de forma consecutiva), pero para ello es necesario partir de un embebimiento de \mathbb{R}^2 :

1. Para cada vértice p, elegimos una bola abierta lo suficientemente pequeña de forma que sus cierres no se corten (lo hacemos para todos los vértices de una vez), $B(p, \varepsilon_p) \subset W$ que es difeomorfo a \mathbb{R}^2 ($f_p : \mathbb{R}^2 \to B$ difeomorfismo, con $f_p(0) = p$). Tomamos

 $g = h_n \circ f_p : \mathbb{R}^2 \to h_n(W)$, que es un embebimiento por serlo $h_n|_B : B \to h_n(W)$ y f_p (la composición de embebimientos es un embebimiento).

Aplicamos el apartado 1 del Teorema de alisamiento de asas y obtenemos una \widehat{g} isotópica a la primera, que es diferenciable en O_p (entorno abierto del origen, con $0 = f_p^{-1}(p)$) y además queda fija fuera de otro entorno un poco mayor $O_p' \supset O_p$, con $\overline{f_p(O_p)} \subset B$. Si tomamos la función a trozos $\widehat{h}_n|_B = \widehat{g} \circ f_p^{-1}$ y $\widehat{h}_n|_{W-B} = h_n$, está bien definida porque en $B - f_p(O_p)$ al aplicar f_p^{-1} nos lleva a $\mathbb{R}^2 - O_p$, que es donde $\widehat{g} = g$, es decir:

$$\widehat{h}_n|_{B-f_p(O_p)} = \widehat{g} \circ (f_p^{-1}|_{B-f_p(O_p)}) = g \circ (f_p^{-1}|_{B-f_p(O_p)}) = h_n|_{B-f_p(O_p)}$$

por lo que la función a trozos está bien definida, es diferenciable entorno a p y no se altera fuera de B.

Éste paso se puede realizar de forma simultánea para todos los vértices, obteniendo así una \hat{h}_n que es diferenciable entorno a todos los vértices y se mantiene h_n fuera de un entorno de cada vértice, algo mayor que el anterior (entornos con cierres disjuntos). Es por ello que para no cargar demasiado la notación se llamará a esa nueva función h_n .

2. Tenemos un h_n que es diferenciable entorno a los vértices de los triángulos y queremos usar el apartado 2 del Teorema de alisamiento de asas para extender la diferenciabilidad a un entorno tubular de los lados de los triángulos. Para ello, vemos que en cada lado, junto con los entornos de los vertices, podemos incluir un rectángulo abierto (conjunto abierto de W) que contenga a todo el segmento y cuyos segmentos laterales del rectángulo estén contenidos en ambas bolas. Este conjunto es difeomorfo a \mathbb{R}^2 y aplicando previamente dicho difeomorfismo cumplimos las hipótesis deseadas.

Al proseguir de forma semejante al apartado anterior, conseguimos una función h_n que es diferenciable en un entorno del conjunto de todos los lados, quedando fija fuera de un entorno algo más grande.

3. Buscamos finalmente una curva dentro del"esqueleto" de entornos de los lados de los triángulos que junto con su componente interior sea difeomorfa a la bola cerrada unidad, para aplicar el 3^{er} apartado del Teorema de alisamiento de asas y así obtener una h_n diferenciable en todo W.

La curva buscada debe ser diferenciable, cerrada y simple, para así decir que es una curva de Jordan y aplicar el Teorema de la curva de Jordan. Como consecuencia, sabemos que su componente interior es difeomorfa a la bola unidad de \mathbb{R}^2 . Podemos reducir el problema a buscar dicha curva para el entorno tubular de un triángulo equilátero, ya que es difeomorfo al de un triángulo cualquiera. Además, podemos seguir simplificándolo, aportando únicamente una curva no cerrada cuyos extremos se puedan pegar consecutivamente, siendo infinitamente derivable en los puntos donde se unen.

Haciendo uso de una función meseta f que vale 0 en \mathbb{R}^- y 1 a partir de $\epsilon>0$, si tomamos $g(x)=tg(\frac{\pi}{3})xf(x)$ en el intervalo $[-1,\epsilon]$, tenemos que g(-1)=0 y $g(\epsilon)=tg(\frac{\pi}{3})\epsilon$ al igual que sus derivadas, por lo que si vamos alternando g(x) y g(-x) mediante rotaciones y traslaciones, tendremos una curva α diferenciable (suavización del triángulo equilátero).

Figura 3.1.: Curva de Jordan cercana al triángulo

Se puede observar que es válido $\forall \epsilon>0$ y que al hacer tender ϵ a 0, la curva será el propio triángulo equilátero. Es por ello que podemos tomar el ϵ lo suficientemente pequeño como para que la curva α quepa en el entorno tubular y siga siendo una curva de Jordan.

Ya tenemos un difeomorfismo entre la bola unidad y la componente interior de cada uno de los triángulos, que contienen un abierto conexo en el cual la función no es todavía diferenciable. Estamos en las condiciones del punto 3 del Teorema de alisamiento de asas, así que procediendo de igual forma que en los apartados anteriores obtenemos una h_n totalmente diferenciable en W.

Cabe destacar que en el borde de W la aplicación se queda intacta, ya queen todo momento se está trabajando en el interior de W (es abierto) y en todo paso de la "suavización" de h_n siempre se deja inalterado el espacio complemento de un entorno mayor al aquel donde se obtiene la diferenciabilidad. Es por ello que se puede extender el h_n obtenido a todo \mathbb{R}^2 junto con el original, porque está bien definido, quedando intacta en $\mathbb{R}^2 - W$.

3.3. Demostración del Teorema B

Teorema B. Todo homeomorfismo entre variedades diferenciables 2-dimensionales es isotópico a un difeomorfismo.

Demostración. Sea $f: S \to S'$ homeomorfismo entre variedades diferenciales 2-dimensionales, se pueden dar 2 casos:

3. Resultados principales

1. $\partial S = \phi$, por lo que podemos utilizar el **Hecho 2**, que nos aporta una triangulación diferenciable. Si utilizamos el mismo sistema coordenado que para la demostración del Teorema A, al aplicar h_i^{-1} a dicha triangulación diferenciable, por definición tenemos una triangulación clásica en \mathbb{R}^2 . Si componemos f con h_i ($g = f \circ h_i$), tenemos un embebimiento $g: \mathbb{R}^2 \to S'$.

Aplicando los apartados del Teorema de alisamiento de asas conseguimos un embebimiento diferenciable \widehat{g} isotópico a g, y tomando $\widehat{f}=\widehat{g}\circ h_i^{-1}$ tenemos un homeomorfismo diferenciable isotópico a $g\circ h_i^{-1}=f$. De forma simétrica, aplicándolo a \widehat{f}^{-1} , obtenemos que f es isotópico a un difeomorfismo.

2. $\partial S \neq \phi$, podemos considerar un collar diferenciable de ∂S en S e isotopar f a a un homeomorfismo diferenciable en un collar más pequeño, independientemente del difeomorfismo elegido para el primer collar. Dicha isotopía se obtendrá utilizando el Teorema de alisamiento de asas, tal y como se ha hecho en el apartado anterior. La isotopía dejará fija a f fuera del collar.

Lo hacemos de igual forma para la inversa, obteniendo una isotopía que deja fija a f^{-1} fuera de un collar del borde de S', siendo diferenciable en otro collar contenido en el anterior.

Ahora partimos de un homeomorfismo diferenciable en un entorno del borde de S, con inversa diferenciable en un entorno del borde de S'. Aplicando lo utilizado en el apartado anterior podemos obtener una isotopía a \hat{f} , que es un difeomorfismo de S a S', ya que se puede tomar una triangulación en los interiores de las superficies (entendemos por interior a la superficie menos su borde).

Parte III.

Visualización de superficies

4. Segundo capítulo

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reasons to believe that it is a mystery into which the human mind will never penetrate.

(Leonard Euler)

4.1. Primera sección

A. Instalación del software

Los apéndices son opcionales.
Archivo: apendices/guia_instalacion.tex

B. Guía de uso del programa

Los apéndices son opcionales. Archivo: apendices/guia_uso.tex

Conclusiones

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/conclusiones.tex

Glosario

La inclusión de un glosario es opcional. Archivo: glosario.tex

- $\ensuremath{\mathbb{R}}$ Conjunto de números reales.
- ${\Bbb C}$ Conjunto de números complejos.
- ${\mathbb Z}$ Conjunto de números enteros.