Neural networks for text

What is text?

You can think of text as a sequence of

- Characters
- Words
- Phrases and named entities
- Sentences
- Paragraphs
- •

Bag of words way (sparse)

~100k columns

	good	movie	very	a	did	like
very	0	0	1	0	0	0
good	1	0	0	0	0	0
movie	0	1	0	0	0	0

Bag of words way (sparse)

~100k columns

		good	movie	very	a	did	like
very		0	0	1	0	0	0
				+			
good		1	0	0	0	0	0
	,			+			
movie		0	1	0	0	0	0
				=			
very good movie		1	1	1	0	0	0

Bag of words representation is a sum of sparse one-hot-encoded vectors

Neural way (dense)

Word2vec property:

Words that have similar context tend to have collinear vectors

Neural way (dense)

Sum of word2vec vectors can be a good text descriptor already!

A better way: 1D convolutions

Word embeddings

cat	0.7	0.4	0.5
sitting	0.2	-0.1	0.1
there	-0.5	0.4	0.1

How do we make 2-grams?

dog	0.6	0.3	0.5
resting	0.3	-0.1	0.2
here	-0.5	0.4	0.1

A better way: 1D convolutions

• This convolution provides high activations for 2-grams with certain meaning

A better way: 1D convolutions

- This convolution provides high activations for 2-grams with certain meaning
- Word2vec vectors for similar words are similar in terms of cosine distance (similar to dot product)

http://bionlp-www.utu.fi/wv demo/

- Can be extended to 3-grams, 4-grams, etc.
- One filter is not enough, need to track many n-grams
- They are called 1D because we slide the window only in one direction

cat	0.7	0.4	0.5	0.1
sitting	0.2	-0.1	0.1	
there	-0.5	0.4	0.1	
or	-0.1	0.8	-0.3	
here	-0.5	0.3	0.2	

- Can be extended to 3-grams, 4-grams, etc.
- One filter is not enough, need to track many n-grams
- They are called 1D because we slide the window only in one direction

cat	0.7	0.4	0.5	0.1
sitting	0.2	-0.1	0.1	0.3
there	-0.5	0.4	0.1	
or	-0.1	0.8	-0.3	
here	-0.5	0.3	0.2	

- Can be extended to 3-grams, 4-grams, etc.
- One filter is not enough, need to track many n-grams
- They are called 1D because we slide the window only in one direction

cat	0.7	0.4	0.5	0.1
sitting	0.2	-0.1	0.1	0.3
there	-0.5	0.4	0.1	-0.2
or	-0.1	0.8	-0.3	
here	-0.5	0.3	0.2	

- Can be extended to 3-grams, 4-grams, etc.
- One filter is not enough, need to track many n-grams
- They are called 1D because we slide the window only in one direction

cat	0.7	0.4	0.5	0.1
sitting	0.2	-0.1	0.1	0.3
there	-0.5	0.4	0.1	-0.2
or	-0.1	0.8	-0.3	0.7
here	-0.5	0.3	0.2	

- Can be extended to 3-grams, 4-grams, etc.
- One filter is not enough, need to track many n-grams
- They are called 1D because we slide the window only in one direction

cat		0.7	0.4	0.5	0.1	
sitting		0.2	-0.1	0.1	0.3	What to do
there		-0.5	0.4	0.1	-0.2	with this
or		-0.1	0.8	-0.3	0.7	vector?
here		-0.5	0.3	0.2	-0.4	

- Can be extended to 3-grams, 4-grams, etc.
- One filter is not enough, need to track many n-grams
- They are called 1D because we slide the window only in one direction

					1
cat		0.7	0.4	0.5	
sitting		0.2	-0.1	0.1	
there		-0.5	0.4	0.1	0.7
or		-0.1	0.8	-0.3	Maximum
here		-0.5	0.3	0.2	pooling
	'			•	over time!

Let's train many filters

Final architecture

- 3,4,5-gram windows with 100 filters each
- MLP on top of these 300 features

Quality comparison on customer reviews (CR)

- Naïve Bayes on top of 1,2-grams 86.3% accuracy
- 1D convolutions with MLP -89.6% (+3.8%) accuracy

Going deeper with text

What is text?

You can think of text as a sequence of

- Characters
- Words
- Phrases and named entities
- Sentences
- Paragraphs
- •

Text as a sequence of characters

Let's start with character *n*-grams!

Filter #1

Filter #2

Filter #3

Filter #1

Filter #2

Filter #3

0.4	0.8	0.5	0.1	0.3	0.2	0.7	0.1
0.5	0.1	0.4	0.2	0.3	0.9	0.1	0.8
0.4	0.7	0.3	0.7	0.5	0.5	0.9	0.4
		0.8	0.5				
						' [

Filter #1

Filter #2

Filter #3

0.4	0.8	0.5	0.1	0.3	0.2	0.7	0.1
0.5	0.1	0.4	0.2	0.3	0.9	0.1	0.8
0.4	0.7	0.3	0.7	0.5	0.5	0.9	0.4
		0.8	0.5	0.3	0.7		
	·					-	

Provides a little bit of position invariance for character n-grams

Repeat 1D convolution + pooling

Repeat 1D convolution + pooling

Repeat 1D convolution + pooling

Final architecture

- Let's take only first 1014 characters of text
- Apply 1D convolution + max pooling 6 times
 - Kernels widths: 7, 7, 3, 3, 3, 3
 - Filters at each step: 1024
- After that we have a 1024×34 matrix of features
- Apply MLP for your task

Experimental datasets

Categorization or sentiment analysis

Sr	nal	ler
\sim	11001	

Bigger

Dataset	Classes	Train Samples
AG's News	4	120,000
Sogou News	5	450,000
DBPedia	14	560,000
Yelp Review Polarity	2	560,000
Yelp Review Full	5	650,000
Yahoo! Answers	10	1,400,000
Amazon Review Full	5	3,000,000
Amazon Review Polarity	2	3,600,000

Experimental results

Errors on test set for classical models:

Model	AG	Sogou	DBP.	Yelp P.	Yelp F.	Yah. A.	Amz. F.	Amz. P.
BoW	11.19	7.15	3.39	7.76	42.01	31.11	45.36	9.60
BoW TFIDF	10.36	6.55	2.63	6.34	40.14	28.96	44.74	9.00
ngrams	7.96	2.92	1.37	4.36	43.74	31.53	45.73	7.98
ngrams TFIDF	7.64	2.81	1.31	4.56	45.20	31.49	47.56	8.46

Errors on test set for deep models:

LSTM	13.94	4.82	1.45	5.26	41.83	29.16	40.57	6.10
Sm. Full Conv.	11.59	8.95	1.89	5.67	38.82	30.01	40.88	5.78
Lg. Full Conv. Th.	9.51	-	1.55	4.88	38.04	29.58	40.54	5.51
Sm. Full Conv. Th.	10.89	-	1.69	5.42	37.95	29.90	40.53	5.66
Lg. Conv.	12.82	4.88	1.73	5.89	39.62	29.55	41.31	5.51
Sm. Conv.	15.65	8.65	1.98	6.53	40.84	29.84	40.53	5.50
Lg. Conv. Th.	13.39	-	1.60	5.82	39.30	28.80	40.45	4.93
Sm. Conv. Th.	14.80	-	1.85	6.49	40.16	29.84	40.43	5.67

Deep models work better for large datasets!

Summary

- You can use convolutional networks on top of characters (called learning from scratch)
- It works best for large datasets where it beats classical approaches (like BOW)
- Sometimes it even beats LSTM that works on word level