TD 2

Exercice 1

Une étude sur le chômage a été faite et qui s'intéresse à l'ancienneté du chômage X moins de 24 mois, et l'âge Y entre 20 et 35 ans. Les résultats sont donnés par le tableau de contingence suivant :

$X \setminus Y$	[20, 25[[25, 30[[30, 35[
[0, 6[10	8	5		
[6, 12[8	9	4		
[12, 18[15	11	9		
[18, 24[3	6	2		

- 1. Quel est le nombre d'individus qui ont une ancienneté de chômage moins d'un an?
- 2. Quel est le nombre d'individus qui ont une ancienneté de chômage moins de 14 mois?
- 3. Déterminer la distribution conjointe.
- 4. Déterminer les deux distributions marginales.
- 5. Déterminer la fréquence de X conditionnelle à Y = [25; 30[, c'est à dire, $f_{X|Y=[25;30[}$.
- 6. Déterminer les deux tables des fréquences conditionnelles.
- 7. Quelle est la proportion des individus qui ont une ancienneté de chômage moins d'un an sachant que leur âge ne dépasse pas 25 ans?

Exercice 2

La population française est présentée en 2000 selon la nationalité et le lieu de naissance (effectifs en milliers) :

Lieu de naissance	France	Étranger		
Nationalité				
Français de naissance	51 340	1 560		
Français par acquisition	800	1 560		
Étrangers	510	2 750		

1. Donner les différentes distributions et représenter graphiquement la distribution conjointe ainsi que les marginales.

Exercice 3

On vous demande s'il existe une corrélation entre la population d'un village et le nombre de permis de chasse enregistré par l'association de chasse locale

Années	2005	2006	2007	2008	2009	2010 4350	
Chamois	3200	3650	3430	3890	4200		
Permis	Permis 202		240	225	245	263	

- 1. Calculer le coefficient de corrélation entre ces deux séries.
- 2. Tracer la droite d'ajustement.

Exercice 4

(Facultatif) On vous demande s'il existe une corrélation entre l'évolution du prix des actions et l'évolution du prix des obligations

Années	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Actions	352	360	358	361	366	382	398	406	450	445
Obligations	1024	998	980	970	982	972	935	902	895	900

- 1. Calculer le coefficient de corrélation entre ces deux séries.
- 2. Tracer la droite d'ajustement

Exercice 5

Le tableau suivant donne le chiffre d'affaires, en millions de DH, d'une entreprise durant les années 1990 à 1999 :

	Année A_i	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Г	$x_i = A_i - 1990$	0	1	2	3	4	5	6	7	8	9
Γ	Chiffre d'affaires y_i	398	451	423	501	673	956	1077	1285	1427	1490

- I) Nuage de points
- 1. Dessiner le nuage de points $M_i(x_i; y_i)$ dans le plan muni d'un repère orthogonal avec, pour unités graphiques 1 cm pour un rang en abscisse, 1cm pour 200 millions DH en ordonnée.
- 2. Déterminer les coordonnées du point moyen G. Placer le point G sur le même graphe.
- II) Ajustement de Mayer :
 - 1. G_1 désigne le point moyen des 5 premiers points du nuage et G_2 celui des 5 derniers points. Déterminer les coordonnées de G_1 et G_2 .
 - 2. Placer ces points sur le graphe précédent et tracer la droite (G_1G_2) . Le point G appartient-il à cette droite?
 - 3. Donner l'équation de la droite (G_1G_2) sous la forme y = ax + b (on arrondira les coefficients à 0,1 prés)
 - 4. Calculer la somme des carrés des résidus pour cet ajustement : $S_1 = \sum_{i=0}^{9} [yi (ax_i + b)]^2$
 - 5. En utilisant cet a justement, effectuer une prévision du chiffre d'affaire de l'année 2005.
- III) En utilisant l'ajustement des moindres carrés, effectuer une prévision du chiffre d'affaire de l'année 2005.