

Features

- Advanced Process Technology
- Key Parameters Optimized for PDP Sustain, Energy Recovery and Pass Switch Applications
- Low E_{PULSE} Rating to Reduce Power Dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications
- Low Q_G for Fast Response
- High Repetitive Peak Current Capability for Reliable Operation
- Short Fall & Rise Times for Fast Switching
- 150°C Operating Junction Temperature for Improved Ruggedness
- Repetitive Avalanche Capability for Robustness and Reliability

HEXFET® Power MOSFET

Key Parameters					
V _{DS} max	200	V			
V _{DS (Avalanche)} typ.	240	V			
R _{DS(ON)} typ. @ 10V	21	mΩ			
I _{RP} max @ T _C = 100°C	47	Α			
T _J max	150	°C			

G	D	S
Gate	Drain	Source

Description

This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications

Door Don't Number	Dooks as Tune	Standar	d Pack	Ordershie Bert Number	
Base Part Number	Package Type	Form Quantity		Orderable Part Number	
IRFI4227PbF	TO-220 Full-Pak	Tube	50	IRFI4227PbF	

Absolute Maximum Ratings				
Symbol	Parameter	Max.	Units	
V_{GS}	Gate-to-Source Voltage	± 30	V	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	26		
I _D @ T _C = 100°C Continuous Drain Current, V _{GS} @ 10V		17		
Pulsed Drain Current ①		100	Α	
I _{RP} @ T _C = 100°C	Repetitive Peak Current ⑤	47		
P _D @T _C = 25°C	Maximum Power Dissipation	46	W	
P _D @T _C = 100°C	Maximum Power Dissipation	18		
	Linear Derating Factor	0.37	W/°C	
TJ	Operating Junction and	-40 to + 150		
T_{STG}	Storage Temperature Range	-40 (0 + 150	°C	
	Soldering Temperature, for 10 seconds (1.6mm from case)	300		
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case 4		2.73	°C/W
$R_{ heta JA}$	Junction-to-Ambient		65	C/VV

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		240		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		21	25	mΩ	$V_{GS} = 10V, I_D = 17A$
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	V - V I - 2500A
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Temp. Coefficient		-11		mV/°C	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
ı	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 200V, V_{GS} = 0V$
I _{DSS}	Dialii-to-Source Leakage Current			1.0	mA	$V_{DS} = 200V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ПА	$V_{GS} = -20V$
gfs	Forward Trans conductance	47			S	$V_{DS} = 25V, I_{D} = 17A$
Q_g	Total Gate Charge		73	110	nC	$I_D = 17A, V_{DS} = 100V$
Q_{gd}	Gate-to-Drain Charge		21		110	V _{GS} = 10V
$t_{d(on)}$	Turn-On Delay Time		17			V _{DD} = 100V, V _{GS} = 10V
t _r	Rise Time		19		ns	I _D = 17A
$t_{d(off)}$	Turn-Off Delay Time		11		113	$R_G = 2.5\Omega$
t _f	Fall Time		29			See Fig. 22
t _{st}	Shoot Through Blocking Time	100			ns	$V_{DD} = 160 V, V_{GS} = 15 V, R_G = 4.7 \Omega$
E _{PULSE}	Energy per Pulse		570		μJ	L = 220nH, C = 0.4 μ F, V _{GS} = 15V V _{DD} = 160V, R _G = 4.7 Ω , T _J = 25°C
	Ellergy per Fulse		910		μυ	L = 220nH, C = 0.4μ F, V_{GS} = 15V V_{DD} = 160V, R_{G} = 4.7Ω , T_{J} = 100°C
C _{iss}	Input Capacitance		4600			$V_{GS} = 0V$
Coss	Output Capacitance		460		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		91		μΓ	f = 1.0MHz
C _{oss} eff.	Effective Output Capacitance		360			$V_{GS} = 0V$, $V_{DS} = 20V$ to 160V
L _D	Internal Drain Inductance		4.5		nH	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		''''	from package and center of die contact

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		54	m l
E _{AR}	Repetitive Avalanche Energy ①		4.6	mJ
V _{DS(Avalanche)}	Repetitive Avalanche Voltage ①	240		V
I _{AS}	Avalanche Current ②		16	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S @ T _C = 25°C	Continuous Source Current			26		MOSFET symbol
Is @ 1c - 25 C	(Body Diode)			20	Α	showing the
	Pulsed Source Current			100	^	integral reverse
ISM	(Body Diode) ①			100		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 17A, V_{GS} = 0V$ 3
t _{rr}	Reverse Recovery Time		93	140	ns	$T_J = 25^{\circ}C$, $I_F = 17A$, $V_{DD} = 50V$
Q _{rr}	Reverse Recovery Charge		350	520	nC	di/dt = 100A/μs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② starting $T_J = 25$ °C, L = 0.44mH, $R_G = 25\Omega$, $I_{AS} = 16$ A.
- \P R_{θ} is measured at T_J of approximately 90°C.
- ⑤ Half sine wave with duty cycle = 0.25, ton=1µsec.

2 2017-04-27

Fig. 1. Typical Output Characteristics

Fig. 3. Typical Transfer Characteristics

Fig 5. Typical E_{PULSE} vs. Drain-to-Source Voltage

Fig. 2. Typical Output Characteristics

Fig. 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical E_{PULSE} vs. Drain Current

Fig. 7. Typical E_{PULSE} vs. Temperature

Fig 9. Typical Capacitance vs.Drain-to-Source Voltage

Fig 11. Maximum Drain Current vs. Case Temperature

Fig 8. Typical Source-Drain Diode Forward Voltage

Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 12. Maximum Safe Operating Area

Fig. 13. On-Resistance Vs. Gate Voltage

Fig. 15. Threshold Voltage vs. Temperature

Fig. 14. Maximum Avalanche Energy Vs. Temperature

Fig. 16. Typical Repetitive peak Current vs. Case temperature

Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case

5 2017-04-27

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 19a. Unclamped Inductive Test Circuit

Fig 19b. Unclamped Inductive Waveforms

Fig 20a. Gate Charge Test Circuit

Fig 20b. Gate Charge Waveform

Fig 21a. $t_{\text{st}}\,$ and $E_{\text{PULSE}}\, Test \, Circuit$

Fig 21b. t_{st} Test Waveforms

Fig 21c. E_{PULSE} Test Waveforms

Fig 22a. Switching Time Test Circuit

Fig 22b. Switching Time Waveforms

TO-220 Full-Pak Package Outline (Dimensions are shown in millimeters (inches))

1.0 DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.

2,0 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

么么 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.

4.0 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTER MOST EXTREMES OF THE PLASTIC BODY.

DIMENSION 61, 63, 65 & c1 APPLY TO BASE METAL ONLY.

6.0 STEP OPTIONAL ON PLASTIC BODY DEFINED BY DIMENSIONS u & v.

7.0 CONTROLLING DIMENSION: INCHES.

S Y	DIMENSIONS				N	
M B	MILLIM	ETERS	INC	INCHES		
0 L	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.57	4.83	.180	.190		
A1	2.57	2.82	.101	.111		
A2	2.51	2.92	.099	.115		<u>LEA</u>
ь	0.61	0.94	.024	.037		
ь1	0.61	0.89	.024	.035	5	
b2	0.76	1.27	.030	.050		,
b3	0.76	1.22	.030	.048	5	,
b4	1.02	1.52	.040	.060		4
b5	1.02	1.47	.040	.058	5	
С	0.33	0.63	.013	.025		
с1	0.33	0.58	.013	.023	5	
D	8.66	9.80	.341	.386	4	
d1	15.80	16.13	.622	.635		
d2	13.97	14.22	.550	.560		
d3	12.29	12.93	.484	.509		<u> </u>
E	9.63	10.74	.379	.423	4	·
е	2.54	BSC	.100	BSC		
L	13.21	13.72	.520	.540		
L1	3.10	3.68	.122	.145	3	
n	6.05	6.60	.238	.260		
øΡ	3.05	3.45	.120	.136		
u	2.39	2.49	.094	.098	6	
V	0.41	0.51	.016	.020	6	
Ø1	_	45°	_	45°		

EAD ASSIGNMENTS

HEXFET

1.- GATE

2.- DRAIN

3.- SOURCE

GBTs, CoPACK

1.- GATE

2.- COLLECTOR

3.- EMITTER

TO-220 Full-Pak Part Marking Information

EXAMPLE: THIS IS AN IRFI840G WITH ASSEMBLY

LOT CODE 3432

ASSEMBLED ON WW 24, 2001 IN THE ASSEMBLY LINE "K"

Note: "P" in assembly line position indicates "Lead-Free"

TO-220AB Full-Pak packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to website at http://www.irf.com/package/

Qualification Information

Qualification information					
Qualification Level	Industrial (per JEDEC JESD47F) †				
Moisture Sensitivity Level	TO-220 Full-Pak N/A				
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments	
	Changed datasheet with Infineon logo - all pages.	
04/27/2017	Corrected Package Outline on page 8.	
	Added disclaimer on last page.	

Trademarks of Infineon Technologies AG

HVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

9 2017-04-27