Пояснительная записка

Вычислительные техники решения задач линейного программирования в частично-целочисленной постановке и приемы работы с решателем SCIP

Подвойский А.О., Глазунова Е.В.

Содержание

1	Клі	очевы	е термины и определения	2
2	Вы	явленн	ные баги SCIP и тонкости процедуры поиска решения	2
	2.1	Недоп	устимое решение для релаксированной постановки задачи	2
	2.2	Нееди	нственность релаксированного решения	2
3	Обі	цие св	едения	3
	3.1	Замеч	ание о стабильности работы решателя SCIP на различных операционных си-	
		стемах	X	3
4	Прі	иемы п	поиска решения	3
	4.1	Прием	и фиксации бинарно-целочисленных переменных в релаксированном решении	3
	4.2	-	и подавления подгруппы первичных эвристик низкой эффективности	4
	4.3		и подбора порога бинаризации для бинарных переменных в релаксированном	
		решен	ии	5
5	Опі	исание	вычислительных экспериментов на сценариях группы ИКП	6
	5.1	Общи	е замечания по процедуре поиска решения на сценариях без бинарных пере-	
		менны	IX	6
		5.1.1	Сценарий F398266B без бинарных переменных	7
		5.1.2	Сценарий 50197DF7 без бинарных переменных	8
		5.1.3	Сценарий 7FAC4231 без бинарных переменных	9
		5.1.4	Сценарий СА485А55 без бинарных переменных	10
		5.1.5	Сценарий 276 без бинарных переменных	11
		5.1.6	Сценарий 337 без бинарных переменных	12
		5.1.7	Сценарий 13D686AB без бинарных переменных	12
		5.1.8	Сценарий A78CBEAD без бинарных переменных	13
	5.2	Общие	е замечания по процедуре поиска решения на сценариях c бинарными пере-	
		менны	іми	14
		5.2.1	Сценарий A78CBEAD с бинарными переменными	16
		5.2.2	Сценарий 7FAC4231 с бинарными переменными	17
		5.2.3	Сценарий 50197DF7 с бинарными переменными	18
		5.2.4	Сценарий F398266B с бинарными переменными	20

6	Оп	исание	вычислительных экспериментов на сценариях группы МВО	26
7	Оп	исание	вычислительных экспериментов	
	на	сценар	риях MIPLIB 2017	26
	7.1	Сцена	рии со статусом «open»	26
		7.1.1	Сценарий DLR2	26
		7.1.2	Сценарий CVRPA-N64K9VRPI	26
	7.2	Сцена	рии со статусом «hard»	26
		7.2.1	Сценарий CRYPTANALYSISKB128N5OBJ14	26
	7.3	Сцена	рии со статусом «easy»	26
		7.3.1	Сценарий NEOS-4332801-seret	26
Cı	писо	к иллі	остраций	27
Cı	писо	к табл	иц	27
Cı	писо	к лите	ературы	28
1.	\mathbf{K}_{J}	іючеі	вые термины и определения	
			4	

Задача линейного программирования (LP-задача) – это ...

Задача линейного программирования в частично-целочисленной постановке (МІLР-задача) – это ...

2. Выявленные баги SCIP и тонкости процедуры поиска решения

2.1. Недопустимое решение для релаксированной постановки задачи

По состоянию на 18.06.2022 г. решатель SCIP версии 8.0.0 с оберткой PySCIPOpt версий 4.0.0 и 4.2.0 для операционной системы Windows 10 релаксированную постановку задачи (т.е. при снятых ограничениях на целочисленность переменных) оценивает как неспособную привести к допустимому решению.

SCIP версии 7.0.3 (PySCIPOpt 3.4.0) как на операционной системе Windows 10, так и на Unixподобных операционных системах (в частности, MacOS Monterey 12.1 и Linux Centos 7) решает задачу в релаксированной постановке корректно.

2.2. Неединственность релаксированного решения

Если эвристические приемы строятся на базе релаксированного решения задачи, важно помнить, что релаксированные решения, полученные с помощью различных решателей с точки зрения распределения значений переменных могут существенно различаться¹, не смотря на то, что во всех случах зазор будет нулевым и целевая функция будет имееть одно и тоже значение (с оговоркой на допуск точности решателя).

 $^{^{1}}$ Потому как гиперплоскость целевой функции может касаться политопа не в вершине, а по грани

3. Общие сведения

3.1. Замечание о стабильности работы решателя SCIP на различных операционных системах

- Вычислительные эксперименты проводились на трех версиях решателя SCIP (7.0.0, 7.0.3, 8.0.0) и трех платформах: Windows 10, MacOS (Monterey 12), Linux (Centos 7). Разброс времени поиска решения для каждой конфигурации решателя оценивается минимум по 3 запускам сценария
- На текущий момент наиболее стабильные и наиболее адекватные результаты получаются
 - -для OC Linux (Centos 7) и OC MacOS (Monterey12) на решателе SCIP версии 7.0.3 (обертка PySCIPOpt 3.4.0) и платформе Ecole версии 0.7.3 , собранных для однопоточной реализации
 - для ОС Windows 10 на решателе SCIP версии 8.0.0 (обертка PySCIPOpt 4.0.0), собранном для однопоточной реализации
- Последняя доступная версия решателя SCIP 8.0.0 (PySCIPOpt 4.1.0) на MacOS (Monterey 12.1) и Linux (Centos 7) при тех же настройках, что и для SCIP версии 7.0.3, как правило, работает значительно медленнее (2.5-2.85 раза) и в большинстве случаев либо не успевает найти решение за отведенное время, либо «просаживает» целевую функцию

4. Приемы поиска решения

4.1. Прием фиксации бинарно-целочисленных переменных в релаксированном решении

Часто фиксация целочисленных переменных² в релаксированном решении приводит к приемлемому допустимому целочисленному решению, которое потом можно использовать как «теплый старат» или как базовое решение для других схем фиксации.

```
ZERO = 0.0
relax_sol: pd.Series = read_relax_sol(path_to_relax_sol)
model = pyscipopt.Model()
model.readProblem(path_to_lp_file)
model.readParams(path_to_set_file)
all_vars: t.List[pyscipopt.scip.Variable] = model.getVars()
bin_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, BINARY)
int_vars: t.List[pyscipopt.scip.Variable] = extract_vars_set_type(all_vars, INTEGER)
all_zero_bin_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
 relax_sol,
 sub_group_vars=bin_vars,
all_zero_int_vars: t.List[
 pyscipopt.scip.Variable
] = extract_from_relax_sol_zero_vars(
```

 $^{^{2}}$ Вообще говоря, фиксировать можно не только бинарные и целочисленные переменные

```
relax_sol,
   sub_group_vars=int_vars,
)

for var in all_zero_bin_vars + all_zero_int_vars:
   model.fixVar(var, ZERO)

model.optimize()
...
```

4.2. Прием подавления подгруппы первичных эвристик низкой эффективности

В некоторых случаях отдельные первичные эвристики могут оказаться не способными справится со своей задачей, не оказывая никакого влияния на процедуру поиска решения, и все же потреблять предоставленные ресурсы.

Такие эвристики – условимся их называть первичными эвристиками низкой эффективности (ПЭНЭ) – можно выявить путем анализа статистической сводки stat-файла в разделе Primal Heuristics

Фрагмент файла статистической сводки 337 bin default.stat

Primal Heuristics	:	ExecTime	SetupTime	Calls	Found	Best	
LP solutions	:	0.00	-	-	0	0	
relax solutions	:	0.00	-	-	0	0	
pseudo solutions	:	0.00	_	_	0	0	
conflictdiving	:	0.00	0.00	0	0	0	
crossover	:	0.00	0.00	0	0	0	
dins	:	0.00	0.00	0	0	0	
distributiondivi	n:	0.00	0.00	0	0	0	
dualval	:	0.00	0.00	0	0	0	
farkasdiving	:	2032.89	0.00	1	0	0	# <- NB
feaspump	:	882.12	0.00	1	0	0	# <- NB
fixandinfer	:	0.00	0.00	0	0	0	
intdiving	:	0.00	0.00	0	0	0	
intshifting	:	52.99	0.00	1	1	1	

В данном случае ПЭНЭ являются farkasdiving и feaspump. Чтобы подавить эти эвристики при следующем запуске SCIP, достаточно включить следующие строки в конфигурационный файл $scip.set^3$

```
scip.set

...
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
...
```

Доступ к статистической сводке можно получить либо в сессии SCIP, либо через одну из оберток над решателем (например, с помощью PySCIPOpt)

 $^{^3}$ При запуске интерактивной сесии через утилиту командной строки **scip**, решатель ищет этот файл в текущей директории и, если находит, автоматически вычитывает. При работе через PySCIPOpt требуется явно передавать путь до файла методу модели **readParams**()

Фрагмент сессии scip. Получение статистической сводки

```
...
SCIP> read file.lp
SCIP> opt
SCIP> display stat
```

Получение статистической сводки через обертку PySCIPOpt

```
import pyscipopt

model = pyscipopt.Model()
model.readProblem("...")
model.readParams("...")
model.optimize()

model.printStatistics()
```

4.3. Прием подбора порога бинаризации для бинарных переменных в релаксированном решении

Условимся ϕ иксацией называть стратегию инициализации подгруппы переменных x_k (вещественных, бинарных или целочисленных), значения которых задаются на основе каких-либо эврестических соображений, например, касающихся специальных свойств матрицы ограничений, и способных в результате привести к такой постановке задачи, которую, используя механизмы первичных эвристик, сепараторов, пропагаторов и пр. можно развить в ϕ опустимое целочисленное решение.

Базовая идея построения ϕ иксации на бинарных переменных заключается в том, чтобы значения бинарных переменных в релаксированном решении $\{rx_k^{(b)}\}_{k=1,...}$ интерпретировать как степень уверенности решателя в том, что рассматриваемую бинарную переменную можно выставить в единицу.

Если значение k-ой бинарной переменной ${}^{r}x_{k}^{(b)}$ превосходит некоторый $nopor\ \theta$, то переменная выставляется в единицу, в противном случае – в ноль. Порог подбирается итерационно, начиная с некоторого нижнего значения θ_l (по умолчанию $\theta_l=0$), увеличивая текущее значение порога на величину шага $\Delta\theta$ и заканчивая верхним значением порога θ_u (по умолчанию $\theta_u=1$).

Для практических целей достаточно остановится на наименьшем значении порога θ , который отвечает такой фиксации, которую решатель SCIP не отклоняет как неспособную привести к допустимому целочисленному решению.

Фрагмент лога решателя SCIP для случая фиксации, которую невозможно развить в допустимое целочисленное решение

 $^{^4}$ Верхний левый индекс «r» указывает на релаксированное значение, а верхний правый «(b)» — на то, что речь идет о бинарной переменной

. .

После того как порог θ подобран, бинарные переменные разбиваются на две подгруппы: подгруппу бинарных переменных, выставленных в ноль $\{x_k^{(b_0)}\}$, и подгруппу бинарных переменных, выставленных в единицу $\{x_k^{(b_1)}\}$. Долю бинарных переменных, выставленных в ноль обозначим через δ_{b_0} , долю бинарных переменных, выставленных в единицу – через δ_{b_1} , а целевую функцию, найденную при заданных долях – через $f_{\theta}(\delta_{b_0}, \delta_{b_1})$.

В результате получаем исследовательский инструмент, который дает возможность управлять решением через подбор долей δ_{b_0} и δ_{b_1} при найденном пороге θ . Часто оказывается эффективным прием управления решением через подбор доли нулевых бинарных переменных δ_{b_0} .

Целевая функция, вычисленная при единичной доле нулевых бинарных переменных $f_{\theta}(\delta_{b_0}=1)$, как правило, значительно уступает целевой функции релаксированного решения f_r . Но тем неменее это решение может быть улучшено, сокращением доли δ_{b_0} (см. рис. 1 и рис. 2).

Рис. 1. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий a78cbead

Как видно из графиков, на кривой изменения верхней границы решения существует точка с наименьшим значением целевой функции $f_{\theta}(\delta_{b_0})$ допустимого целочисленного решения. Эта точка и будет «оптимальной» для рассматриваемого сценария.

5. Описание вычислительных экспериментов на сценариях группы ИКП

5.1. Общие замечания по процедуре поиска решения на сценариях *без* бинарных переменных

Метаконфигурация 5 SUH (Suppress Useless Heuristics) процедуры поиска решения сводится к приему подавления подгруппы первичных эвристик низкой эффективности.

 $^{^{5}}$ Под метаконфигурацией понимается совокупность конфигурации решателя и набора эвристических приемов

Прием подавления подгруппы первичных эвристик низкой эффективности (порог: 0.05) Общее количество переменных: 859230 Количество целочисленных переменных: 173622 Количество бинарных переменных: 155

Рис. 2. Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий **337**

Замечание

Решение получено без доменно-ориентированных эвристик, «теплого» старта и подбора параметров решателя

Конфигурация решателя SCIP для всех сценариев группы ИКП (без бинарных переменных) имеет вид

scip.set. Сценарии группы ИКП без бинарных переменных

```
# критерии останова и перезапуска
limits/time = 7200
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shiftandpropagate/freq = -1
heuristics/shifting/freq = -1
```

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

5.1.1. Сценарий F398266В без бинарных переменных

Статистика

Общее количество переменных: 774901

Количество целочисленных переменных: 172449

Количество бинарных переменных: 0 Количество ограничений: 650263 lp-файл: https://disk.yandex.ru/d/o_eAb9475u5ueg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/URRnZ8soTaJEgQ Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/N2tfhj1N6RczzA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.063% лучше в смысле целевой функции и на 10.20% — в смысле временных издержек (рис. 3).

Сценарий input_f398266b-093b-ec11-a2d4-005056a5ee74.json

Общее количество переменных: 774901 Количество целочисленных переменных: 172449 Количество бинарных переменных: 0 Количество ограничений: 650263 6.5 1e10 SCIP без "теплого" старта, SCIP 8.0.0 Windows 10 64 доменно-ориентированных эвристик и Отклонение ЦФ=-7.480% ▲ БРH=90.23% подбора параметров решателя! 6.3 6.2 SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-6.513% SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-5.253% **■** БРН=90.7342% БРН=90.7642% целевой 6.1 Значение ₁ 9.0 CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-0.686% БРН=93.1104% CRC+DOH **БРН=93.1915**% SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+1.063% БРН=93.2845% SCIP 7.0.3+SUH MacOS (Monterey 12) Отклонение ЦФ=+1.105% 5.8 БРН=93.2951% 10 15 35 20 25 30 Полное время расчета t, мин

Рис. 3. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий **f398266b** без бинарных переменных

5.1.2. Сценарий 50197DF7 без бинарных переменных

Статистика

Общее количество переменных: 718464

Количество целочисленных переменных: 159332

Количество бинарных переменных: 0 Количество ограничений: 595797

lp-файл: https://disk.yandex.ru/d/KO_xj9dkgUdcog

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING,
- RENS.

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/R4B1fkTx-nE3tg
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/BLvUmZ43vtMFKg

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 1.25% лучше в смысле целевой функции и на 46.43% — в смысле временных издержек (рис. 4).

Сценарий input_50197df7-ff50-ec11-a2d7-005056a5ee74.json

Рис. 4. Сводка результатов анализа эффективности метаконфигурации SUH. Спенарий 50197df7 без бинарных переменных

5.1.3. Сценарий 7FAC4231 без бинарных переменных

Статистика

Общее количество переменных: 737585

Количество целочисленных переменных: 147789

Количество бинарных переменных: 0 Количество ограничений: 540018

lp-файл: https://disk.yandex.ru/d/qiZAmraUNK1Peg

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- o INTSHIFING.
- RENS.

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/20NeMuQ7NF_ccA

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 5.22% лучше в смысле целевой функции и на 27.10% — в смысле временных издержек (рис. 5).

Рис. 5. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 7fac4231 без бинарных переменных

5.1.4. Сценарий СА485А55 без бинарных переменных

Статистика

Общее количество переменных: 718601

Количество целочисленных переменных: 140858

Количество бинарных переменных: 0

Количество ограничений: 514229

lp-файл: https://disk.yandex.ru/d/iSP6xrh4K_wHEQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING,
- o RENS.

 Φ айл решения задачи доступен по ссылке https://disk.yandex.ru/d/_WzkmgoueNb2Bg

Файл статистической сводки доступен по ссылке

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках

(USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 0.683% лучше в смысле целевой функции и на 46.48% – в смысле временных издержек (рис. 6).

Сценарий input_ca485a55-0485-ec11-a2db-005056a5ee74.json

Рис. 6. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий ca485a55 без бинарных переменных

5.1.5. Сценарий 276 без бинарных переменных

Статистика

Общее количество переменных: 809224

Количество целочисленных переменных: 162562

Количество бинарных переменных: 0

Количество ограничений: 602190

lp-файл: https://disk.yandex.ru/d/QaS5kd7VRZQ66A

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/M2V88djiiGM5PA
Файл статистической сводки доступен по ссылке

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (OC Linux Centos 7) на 3.67% лучше в смысле целевой функции и на 51.56% — в смысле временных издержек (рис. 7).

Сценарий input 276.json

Общее количество переменных: 809224

Количество целочисленных переменных: 162562 Количество бинарных переменных: 0 Количество ограничений: 602190 1e10 Отклонение ЦФ=-28.64% ВРН=94.885% SCIP 8.0.0 Windows 10 1.9 SCIP без "теплого" старта, доменно-ориентированных эвристик и подбора параметров решателя! 1.8 1.7 1.7 1.6 SCIP 7.0.3 Linux (Centos 7) SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-26.73% БРН=94.9826% Отклонение ЦФ=-24.11% БРН=94.9386% Значение CBC+DOH (USE_RECAL_ON_FLOW=false) 1.5 Отклонение ЦФ=-0.92% БРН=96.5865% CBC+DOH ■ БРН=96.6934% 1.4 SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+3.67% БРН=96.7882% 1.3 35 40 15 20 25 30

Рис. 7. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276 без бинарных переменных

Полное время расчета t, мин

5.1.6. Сценарий 337 без бинарных переменных

Статистика

Общее количество переменных: 859075

Количество целочисленных переменных: 173622

Количество бинарных переменных: 0 Количество ограничений: 624327

lp-файл: https://disk.yandex.ru/d/keyQLAagsD7Sbw

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING.
- RENS.

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/ZUIEo3dDq77FjA

Файл статистической сводки доступен по ссылке

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 22.12% лучше в смысле целевой функции и на 18.32% – в смысле временных издержек (рис. 8).

5.1.7. Сценарий 13D686AB без бинарных переменных

Статистика

Общее количество переменных: 786020

Сценарий input 337.json

Общее количество переменных: 859075 Количество целочисленных переменных: 173622 Количество бинарных переменных: 0 Количество ограничений: 624327

Рис. 8. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337 без бинарных переменных

Количество целочисленных переменных: 168857

Количество бинарных переменных: 0

Количество ограничений: 598414

lp-файл: https://disk.yandex.ru/d/3KkYKzN13PjGdg

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFING,
- RENS.

Файл решения задачи доступен по ссылке $\verb|https://disk.yandex.ru/d/EXylMeX6Ytz4tg||$

Файл статистической сводки доступен по ссылке

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 9.40% лучше в смысле целевой функции и на 33.03% — в смысле временных издержек (рис. 9).

5.1.8. Сценарий А78СВЕАD без бинарных переменных

Статистика

Общее количество переменных: 795400

Количество целочисленных переменных: 180160

Количество бинарных переменных: 0 Количество ограничений: 658339

lp-файл: https://disk.yandex.ru/d/vTPPa1H3VFD7tA

Пул решений задачи был найден с помощью следующих первичных эвристик:

o INTSHIFING,

Общее количество переменных: 786020

Количество целочисленных переменных: 168857 Количество бинарных переменных: 0 Количество ограничений: 598414 1e10 1.05 SCIP без "теплого" старта, SCIP 7.0.3 Linux (Centos 7) Отклонение ЦФ=-14.12% доменно-ориентированных эвристик и подбора параметров решателя: БРН=92.4941% 1.00 1.00 0.0 0.0 0.0 0.0 SCIP 8.0.0 Windows 10 Отклонение ЦФ=-13.39% SCIP 7.0.3 MacOS (Monterey 12) БРН=92.4875% Отклонение ЦФ=-12.05% БРН=92.6924% CBC+DOH (USE_RECAL_ON_FLOW=false) Отклонение ЦФ=-1.66% 5PH=94 3008% CBC+DOH БРН=94.427% Значение 0.85 SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+9.40% БРН=94.6894% 0.80 10 40 15 20 25 30 35

Рис. 9. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 13d686ab без бинарных переменных

Полное время расчета t, мин

• RENS.

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/fARVcHb66ToHxQ Файл статистической сводки доступен по ссылке

Вывод по сценарию: описанная выше метаконфигурация SUH приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках (USE_RECALCULATION_ON_FLOW=true) для последнего решения из пула допустимых целочисленных решений (ОС Linux Centos 7) на 1.57% лучше в смысле целевой функции и на 23.30% — в смысле временных издержек (рис. 10).

5.2. Общие замечания по процедуре поиска решения на сценариях c бинарными переменными

На ранних стадиях изучения проблемы высокоразмерных сценариев с бинарными переменными, поиск решения осуществлялся в семь шагов:

- 1. Подавить подгруппу первичных эвристик низкой эффективности (см. раздел 4.2),
- 2. При разрешении конфликтов и ветвлении⁶ отдавать предпочтение бинарным переменным,
- 3. Найти релаксированное решение задачи,
- 4. Подобрать порог бинаризации на релаксированном решении для бинарных переменных (см. раздел 4.3),
- 5. Зафиксировать *нулевые* 0-bin и *единичные* 1-bin *бинарные переменные*; подать фиксацию решателю,
- 6. В решении, найденном на предыдущей итерации, зафиксировать *нулевые целочисленные* 0-int и *единичные бинарные* 1-bin *переменные*; полученную фиксацию подать на вход решателю,

 $^{^6}$ К сожалению, на сценариях группы ИКП с бинарными переменными решателю SCIP не удается найти решение в корне дерева

Общее количество переменных: 795400

Количество целочисленных переменных: 180160 Количество бинарных переменных: 0 Количество ограничений: 658339 1e10 4 15 SCIP 7.0.3 Linux (Centos 7) SCIP без "теплого" старта, Отклонение ЦФ=-7.13% БРН=93.7065% 4.10 доменно-ориентированных эвристик и подбора параметров решателя! 4.05 функции SCIP 7.0.3 MacOS (Monterey 12) Отклонение ЦФ=-6.70% БРН=93.7089% 4.00 SCIP 8.0.0 Windows 10 Отклонение ЦФ=-5.44% БРН=93.8405% целевой 3.95 3.90 Значение CBC+DOH (USE RECAL ON FLOW=false) Отклонение ЦФ=-0.79% 3.85 БРН=95.9525% CBC+DOH БРН=96.0087% 3.80 SCIP 7.0.3+SUH Linux (Centos 7) Отклонение ЦФ=+1.57% БРН=96.0739% 3.75

Рис. 10. Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий a78cbead без бинарных переменных

20

Полное время расчета t, мин

25

15

30

7. В решении, полученном на предыдущей итерации, зафиксировать *нулевые бинарные* 0-bin и *целочисленные* 0-int *переменные*; фиксацию подать на вход решателю.

Процедура поиска оказалась чувствительной к параметру autorestartnodes. Графическая интерпретация результатов вычислительных экспериментов с разверткой процедуры поиска верхней границы решения во времени приведена на рис. 11, 12, 13 и 14.

Позже описанную процедуру удалось упростить и свести к следующей метаконфигурации FZBIVSUHPB (Fixed Zero Binary and Integer Variables, Suppress Useless Heuristics, Prefer Binary):

1. Подавить подгруппу первичных эвристик низкой эффективности,

5

10

- 2. При разрешении конфликтов и ветвлении отдавать предпочтение бинарным переменным,
- 3. Зафиксировать *нулевые бинарные* 0-bin и *нулевые целочисленные* 0-int *переменные* в релаксированном решении (см. раздел 4.1).

Конфигурация решателя SCIP для всех сценариев группы ИКП (с бинарными переменными) имеет вид

scip.set. Сценарии группы ИКП с бинарными переменными

```
# критерии останова и перезапуска
limits/time = 7200
limits/autorestartnodes = -1
limits/gap = 0.02 # решение останавливается при зазоре <= 2%

# управление стратегиями анализа конфликтов и ветвления
conflict/preferbinary = True
branching/preferbinary = True

# подавление подгруппы первичных эвристик низкой эффективности
heuristics/farkasdiving/freq = -1
heuristics/feaspump/freq = -1
heuristics/randrounding/freq = -1
heuristics/shiftandpropagate/freq = -1
```

Все эксперименты проводились на виртуальной машине Linux (Centos 7) Intel Core[™] i7 (8 CPUs), $3.6 \mathrm{GHz}$, RAM $16 \mathrm{Gb}$.

Сводка результатов вычислительных экспериментов доступна по ссылке https://docs.google.com/document/d/1V9fZLT9cXkbVQ5BvMCwzKrAiASZ2v4-01Z68jVBZUBU/edit?usp=sharing.

Кодовая база решения доступна по ссылке https://gitdp.zyfra.com/ds_and_math_users/ml-dl-in-operations-reaseearches.git

5.2.1. Сценарий А78СВЕАО с бинарными переменными

Статистика

Общее количество переменных: 797818

Количество целочисленных переменных: 180160

Количество бинарных переменных: 2418

Количество ограничений: 663175

lp-файл: https://disk.yandex.ru/d/JbT3KR5Yi1ZomQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING,
- ONEOPT,
- o GINS.

Фргамент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
                | primalbound | gap
    dualbound
                                       | compl.
d1790s| 1881 | 1668 | 1010k| 296.9 |distribu| 93 |
                                                     50k|
                                                           43k| 43k|
                                                                       0 | 1 | 385 | 3585 |
   3.757279e+10 | 3.894342e+10 |
                                  3.65%|
                                          7.70%
d1790s| 1881 | 1668 | 1010k| 296.9 |distribu| 93 | 50k|
                                                           43k| 43k|
                                                                       0 | 1 | 385 | 3585 |
   3.757279e+10 | 3.894341e+10 |
                                  3.65%
                                          7.70%
i1792s| 1882 | 1667 | 1011k| 297.0 | oneopt| 93 | 50k| 43k| 43k|8612 | 0 | 385 | 3585 |
   3.757279e+10 | 3.893993e+10 |
                                  3.64%|
                                          7.70%
1796s| 1900 | 1687 | 1016k| 297.0 | 3669M | 93 | 50k| 43k| 43k|8644 | 1 | 387 |3585 |
   3.757279e+10 | 3.893993e+10 |
                                  3.64%1
                                          2.82%
                                        gins| 93 |
                                                           43k| 43k|8935 | 1 | 398 |3590 |
L1902s | 1982 | 1769 | 1090k | 313.4 |
                                                     50k|
   3.757279e+10 | 3.875897e+10 |
                                  3.16% | 2.83%
L1912s | 1982 | 1769 | 1090k | 313.4 |
                                        gins| 93 |
                                                     50k|
                                                           43k| 43k|8935 | 1 | 398 |3590 |
   3.757279e+10 | 3.864257e+10 | 2.85%|
                                          2.83%
i1920s| 1982 | 1769 | 1099k| 316.2 | oneopt| 93 | 50k|
                                                           43k | 43k | 8935 | 1 | 398 | 3590 |
   3.757279e+10 | 3.864241e+10 | 2.85%|
                                          2.83%
1954s| 2000 | 1787 | 1133k| 325.5 | 3731M | 93 | 50k| 43k| 43k|9004 | 1 | 398 | 3591 |
   3.757279e+10 | 3.864241e+10 |
                                  2.85%
                                           2.83%
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/6FPE-S5VupA6iw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/9G-v54ywEK1TJA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.46% лучше в смысле целевой функции и на 19.64% – в смысле временных издержек (табл. 1).

В табл. 1 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepвomy допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее nocnednemy допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 1. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий a78cbead с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	39.82	3.961502
SCIP+MC (a)	29.83 + 25.09%	3.894342 +1.70%
$\overline{\text{SCIP+MC}(b)}$	32.00 +19.64%	3.864241 + 2.46%

5.2.2. Сценарий 7FAC4231 с бинарными переменными

Статистика

Общее количество переменных: 740251

Количество целочисленных переменных: 147789

Количество бинарных переменных: 2666

Количество ограничений: 545350

lp-файл: https://disk.yandex.ru/d/3NbbjfLW5zhejQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- o ONEOPT,
- o GINS,
- CROSSOVER,
- ALNS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
    dualbound
                | primalbound | gap
                                       | compl.
                341 | 91171 | 102.3 | intshift | 309 | 41k | 33k | 34k | 2788 | 5 | 57 | 3711 |
r 454s|
         372 |
   1.053077e+10 | 1.309195e+10 | 24.32%|
                                           0.78%
         373 | 340 | 91171 | 102.0 | oneopt| 309 | 41k| 33k| 34k|2788 | 0 | 57 |3711 |
i 454sl
   1.053077e+10 | 1.308634e+10 | 24.27%|
                                           0.78%
       400 | 369 | 93623 | 101.3 | 2493M | 309 | 41k | 33k | 34k | 2950 | 1 | 57 | 3761 |
   1.053077e+10 | 1.308634e+10 | 24.27% | 0.29%
        473 | 442 | 106991 | 113.9 | gins | 309 | 41k | 33k | 34k | 3084 | 1 | 57 | 3813 |
L 507s|
   1.053077e+10 | 1.297515e+10 | 23.21% | 0.29%
                                        gins | 309 | 41k | 33k | 34k | 3084 | 1 | 57 | 3813 |
L 512s | 473 | 442 | 106991 | 113.9 |
   1.053077e+10 | 1.292548e+10 | 22.74%| 0.29%
                                         gins| 309 |
                                                     41k| 33k| 34k|3084 | 1 | 57 |3813 |
L 522s | 473 | 442 | 106991 | 113.9 |
   1.053077e+10 | 1.289283e+10 | 22.43% | 0.29%
L 525s | 473 | 442 | 106991 | 113.9 |
                                         gins | 309 | 41k | 33k | 34k | 3084 | 1 | 57 | 3813 |
   1.053077e+10 | 1.286340e+10 | 22.15%| 0.29%
```

```
i 529sl
                 442 | 112279 | 125.1 | oneopt | 309 | 41k |
                                                            33k|
                                                                  34k|3084 | 1 | 57 |3813 |
   1.053077e+10 | 1.285668e+10 | 22.09%|
                                                                  34k|3084 | 1 | 58 |3813 |
r 531s|
         474 |
                443 | 120630 | 142.5 | intshift | 309 |
                                                      41k|
                                                            33k|
   1.053077e+10 | 1.197786e+10 | 13.74%|
                                           0.29%
i 532sl
         474 |
               373 | 124926 | 151.6 | oneopt | 309 | 41k |
                                                            33k|
                                                                  34k|3084 | 1 | 58 |3813 |
   1.053077e+10 | 1.197230e+10 | 13.69%|
                                           0.29%
               399 | 126496 | 146.9 | 2579M | 309 |
                                                    41k| 33k|
                                                                34k|3181 | 1 | 58 |3822 |
536sl
   1.053077e+10 | 1.197230e+10 | 13.69%|
                                           0.29%
              499 | 158520 | 175.8 | 2613M | 309 | 41k | 33k | 34k | 3641 | 1 | 60 | 3933 |
567s1
       600 |
    1.053095e+10 | 1.197230e+10 | 13.69%|
                                           0.29%
                                         gins| 309 | 41k| 33k| 34k|4060 | 1 | 62 |3978 |
L 739sl
         659 l
                 554 | 189783 | 207.6 |
   1.053095e+10 | 1.191898e+10 | 13.18%|
                                           0.29%
                 555 | 198453 | 220.4 | oneopt | 309 | 41k | 33k | 34k | 4060 | 1 | 62 | 3981 |
i 741s|
         660 l
   1.053095e+10 | 1.191889e+10 | 13.18%|
                                           0.30%
794s1
               595 | 236166 | 261.7 | 2689M | 309 |
                                                    41k| 33k|
                                                                34k|4418 | 1 | 62 |4010 |
       700 I
   1.053095e+10 | 1.191889e+10 | 13.18%|
                                           0.32%
       800 |
             695 | 277232 | 280.4 | 2728M | 309 |
                                                    41k| 33k|
                                                                34k|4757 | 1 | 64 |4027 |
   1.053219e+10 | 1.191889e+10 | 13.17%|
                                           0.32%
                                                                 34k|5000 | 1 | 64 |4059 |
         860 | 693 | 295017 | 281.5 | crossove | 309 |
                                                            33k|
L 967sl
                                                      41k|
   1.053219e+10 | 1.154287e+10 |
                                   9.60%
                                           0.32%
i 968s|
         860 |
                 693 |300734 | 288.1 | oneopt | 309 | 41k|
                                                            33k|
                                                                  34k|5000 | 1 | 64 |4059 |
   1.053219e+10 | 1.154284e+10 |
                                   9.60%|
                                            0.32%
990s|
       900 |
             733 |312921 | 288.9 | 2793M | 309 | 41k| 33k|
                                                                34k|5288 | 1 | 64 |4139 |
   1.053219e+10 | 1.154284e+10 |
                                   9.60%
                                           0.33%
                                                                34k|5725 | 1 | 65 |4281 |
1042s| 1000 | 823 |346085 | 293.2 | 2816M | 309 | 41k|
                                                           33k|
   1.053219e+10 | 1.154284e+10 |
                                   9.60%|
                                           0.33%
                                                                  34k|5747 | 2 | 65 |4284 |
L1083s| 1003 |
                826 | 347173 | 293.4 |
                                         alns| 309 |
                                                      41k|
                                                            33k|
                                   9.50%
   1.053219e+10 | 1.153273e+10 |
                                           0.33%
                827 |352908 | 298.8 | oneopt| 309 |
                                                            33k|
                                                                  34k|5747 | 1 | 65 |4284 |
i1084s| 1004 |
                                                      41k|
   1.053219e+10 | 1.118743e+10 |
                                  6.22%
                                           0.33%
1113s | 1100 | 699 | 373504 | 291.4 | 2860M | 309 |
                                                                 34k | 6055 | 3 | 65 | 4323 |
                                                     41k|
                                                           33k|
   1.053219e+10 | 1.118743e+10 | 6.22%|
                                           0.44%
1140s|
          1 |
                  0 |419115 |
                                  - | 3039M |
                                                0 |
                                                     41k|
                                                           34k|
                                                                 34k|
                                                                        0 | 0 | 65 | 4323 |
   1.053219e+10 | 1.118743e+10 |
                                   6.22% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/TmA6hqFV87eGTg
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/CsGV_oal40Tx0Q

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 3.38% лучше в смысле целевой функции и на 33.07% — в смысле временных издержек (табл. 2).

В табл. 2 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее *первому* допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее *последнему* допустимому целочисленному решению в наборе полученных. Синим цветом обозначен выигрыш в процентах.

5.2.3. Сценарий 50197DF7 с бинарными переменными

Статистика

Общее количество переменных: 720954

Количество целочисленных переменных: 159332

Количество бинарных переменных: 2490

Таблица 2. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 7fac4231 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	$peшeния, \times 10^{10}$
CBC+DOH	27.00	1.157865
$\overline{\text{SCIP+MC }(a)}$	18.05 +33.15%	1.153273 +0.40%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 33.07%	1.118743 + 3.38%

Количество ограничений: 600777

lp-файл: https://disk.yandex.ru/d/qWeSKb2WEs6kQA

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- INTSHIFTING,
- o ONEOPT,
- o GINS.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
                 | primalbound | gap
                                        | compl.
                 948 | 155676 | 53.5 | intshift | 409 | 41k | 34k | 35k | 4367 | 1 | 69 | 7354 |
         963 |
   3.554610e+10 | 3.676991e+10 |
                                   3.44% | unknown
                 947 | 155676 | 53.5 | oneopt | 409 | 41k | 34k | 35k | 4367 | 0 | 69 | 7354 |
i 836sl
         964 |
    3.554610e+10 | 3.676497e+10 |
                                   3.43% | unknown
              985 | 157559 | 53.4 | 2577M | 409 | 41k | 34k | 35k | 4396 | 1 | 69 | 7444 |
846s| 1000 |
    3.554610e+10 | 3.676497e+10 |
                                   3.43% | unknown
L 885s | 1064 | 1049 | 157869 | 50.5 |
                                          gins| 409 |
                                                       41k|
                                                             34k|
                                                                   35k|4397 | 1 | 69 |7484 |
   3.554610e+10 | 3.659894e+10 |
                                   2.96% | unknown
L 931s | 1064 | 1049 | 157869 | 50.5 |
                                                                   35k|4397 | 1 | 69 |7484 |
                                                             34k|
                                          gins| 409 |
                                                       41k|
   3.554610e+10 | 3.656967e+10 |
                                   2.88% | unknown
i 962s | 1064 | 1049 | 161589 | 54.0 | oneopt | 409 |
                                                       41k|
                                                             34k|
                                                                   35k|4397 | 1 | 69 |7484 |
   3.554610e+10 | 3.656967e+10 |
                                   2.88% | unknown
                                                                 35k|4397 | 1 | 69 |7532 |
969s | 1100 | 1085 | 161769 | 52.4 | 2620M | 409 |
                                                           34k|
   3.554610e+10 | 3.656967e+10 |
                                   2.88%| unknown
L 988s | 1164 | 1149 | 161992 | 49.7 |
                                          gins| 409 |
                                                                   35k|4397 | 1 | 69 |7557 |
                                                       41k|
                                                             34k|
   3.554610e+10 | 3.630031e+10 |
                                   2.12% | unknown
L 993s | 1164 | 1149 | 161992 | 49.7 |
                                          gins| 409 |
                                                             34k|
                                                                   35k | 4397 | 1 | 69 | 7557 |
                                                       41k|
    3.554610e+10 | 3.625804e+10 |
                                   2.00% unknown
L1000s| 1164 | 1149 | 161992 | 49.7 |
                                                             34k | 35k | 4397 | 1 | 69 | 7557 |
                                          gins| 409 |
                                                       41k|
   3.554610e+10 | 3.623675e+10 |
                                   1.94% unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/2_FDqS70q0UBqA Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/SkRLoRYzQDI-Aw

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 2.87% лучше в смысле целевой функции и на 36.08% — в смысле временных издержек (табл. 3).

В табл. 3 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее nepeomy допустимому целочисленному решению, верхняя граница которого не пре-

вышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b)

– решение, отвечающее последнему допустимому целочисленному решению в наборе полученных.

Синим цветом обозначен выигрыш в процентах.

Таблица 3. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий 50197df7 с бинарными переменными

$Cnoco\delta$	Полное время рас-	Верхняя граница
	чета, мин	решения, $\times 10^{10}$
CBC+DOH	28.27	3.730552
$\overline{\text{SCIP+MC }(a)}$	13.93 +50.73%	3.676991 + 1.44%
$\overline{\text{SCIP+MC}(b)}$	18.07 + 36.08%	3.623675 + 2.87%

5.2.4. Сценарий F398266В с бинарными переменными

Статистика

Общее количество переменных: 777271

Количество целочисленных переменных: 172449

Количество бинарных переменных: 2370

Количество ограничений: 655003

lp-файл: https://disk.yandex.ru/d/4YFYJSB1I1wsmQ

Анализ решения

Пул решений задачи был найден с помощью следующих первичных эвристик:

- DISTRIBUTIOINDIVING.
- o ONEOPT,
- CROSSOVER.

Фрагмент лога сессии SCIP

```
time | node | left | LP iter|LP it/n|mem/heur|mdpt | vars | cons | rows | cuts | sepa|confs|strbr|
               | primalbound | gap | compl.
    dualbound
                434 |462507 | 790.8 |distribu| 51 | 59k| 48k| 49k|
                                                                       0 | 1 | 17 | 1387 |
d1163sl 433 l
                                  3.36% | unknown
   5.857793e+10 | 6.054807e+10 |
d1164s| 433 | 434 |462644 | 791.1 |distribu| 51 |
                                                     59k|
                                                          48k|
                                                                49k|
                                                                       0 | 1 | 17 | 1387 |
   5.857793e+10 | 6.054779e+10 |
                                  3.36% unknown
                                                                       0 | 1 | 17 | 1387 |
d1164s| 433 | 434 |462746 | 791.3 |distribu| 51 |
                                                     59k|
                                                           48k|
                                                                49k|
   5.857793e+10 | 6.054778e+10 |
                                  3.36% unknown
d1164s | 433 | 434 |462780 | 791.4 |distribu | 51 |
                                                          48k|
                                                                       0 | 1 | 17 | 1387 |
                                                     59k|
                                                                49k|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
d1164s| 433 | 434 |462801 | 791.4 |distribu| 51 |
                                                          48k|
                                                                49k|
                                                                       0 | 1 | 17 | 1387 |
                                                     59k|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% unknown
d1165s| 433 | 434 |462836 | 791.5 |distribu| 51 |
                                                           48k|
                                                                49k|
                                                                       0 | 1 | 17 | 1387 |
                                                     59k|
   5.857793e+10 | 6.054776e+10 |
                                  3.36% | unknown
d1165s| 433 | 434 |462856 | 791.6 |distribu| 51 |
                                                     59k|
                                                           48k|
                                                                49k|
                                                                       0 | 1 | 17 | 1387 |
   5.857793e+10 | 6.054774e+10 |
                                  3.36% | unknown
i1167s| 434 | 433 |463020 | 790.1 | oneopt| 51 | 59k|
                                                          48k | 49k | 4333 | 0 | 17 | 1387 |
   5.857793e+10 | 6.053918e+10 |
                                  3.35% | unknown
1250s|
       500 | 501 |531180 | 822.2 | 3321M | 51 |
                                                    59k|
                                                          48k | 49k | 4529 | 1 | 26 | 1402 |
   5.857793e+10 | 6.053918e+10 |
                                  3.35% | unknown
        600 | 601 | 663342 | 905.6 | 3398M | 51 | 59k | 48k | 49k | 5175 | 1 | 36 | 1426 |
   5.857932e+10 | 6.053918e+10 | 3.35% | unknown
```

```
L1892sl
                 635 | 704819 | 922.5 | crossove | 55 | 59k |
                                                            48k | 49k | 5448 | 2 | 41 | 1433 |
   5.858028e+10 | 6.021605e+10 | 2.79% | unknown
                                                                 49k|5448 | 2 | 41 |1433 |
i1895s|
        634 l
                635 |715376 | 939.1 | oneopt| 55 |
                                                      59k|
                                                            48k|
   5.858028e+10 | 6.021603e+10 | 2.79% | unknown
1952s l
        700 | 701 | 770566 | 929.4 | 3457M | 63 |
                                                     59k|
                                                           48k|
                                                                 49k|5644 | 1 | 50 |1442 |
   5.858050e+10 | 6.021603e+10 |
                                  2.79% | unknown
        800 | 801 |879949 | 950.0 | 3489M | 65 |
                                                     59k|
                                                           48k|
                                                                 49k|5964 | 1 | 62 |1476 |
   5.858065e+10 | 6.021603e+10 |
                                   2.79% | unknown
```

Файл решения задачи доступен по ссылке https://disk.yandex.ru/d/KXzdrUx6TZbXEw
Файл статистической сводки доступен по ссылке https://disk.yandex.ru/d/FERoaFsr5zbkjA

Вывод по сценарию: описанная выше метаконфигурация приводит к решению задачи, которое оказывается по отношению к результату на доменно-ориентированных эвристиках для последнего решения из пула допустимых целочисленных решений на 0.97% лучше в смысле целевой функции и на 56.24% – в смысле временных издержек (табл. 4).

В табл. 4 через SCIP+MC (a) обозначается решение, построенное на метаконфигурации SCIP, отвечающее *первому* допустимому целочисленному решению, верхняя граница которого не превышает верхнюю границу решения на доменно-ориентированных эвристиках, а через SCIP+MC (b) – решение, отвечающее *последнему* допустимому целочисленному решению в наборе полученных. Синим цветом обозначен выигрыш в процентах.

Таблица 4. Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сценарий f398266b с бинарными переменными

$Cnoco\delta$	Полное время рас-	1 ,
	чета, мин	$peшeния, \times 10^{10}$
CBC+DOH	72.17	6.080841
$\overline{\text{SCIP+MC }(a)}$	19.38 + 73.15%	6.054807 + 0.43%
$\overline{\text{SCIP+MC}(b)}$	31.58 + 56.24%	6.021603 + 0.97%

от значения параметра autorestartnodes. Сценарий input_a78cbead. Первая и вторая фазы поиска решения Рис. 11. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости

Сценарий input_a78cbead-073b-ec11-a2d4-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 12. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья фаза поиска решения

Сценарий input_50197df7-ff50-ec11-a2d7-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 13. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья фаза поиска решения

Сценарий input_7fac4231-5951-ec11-a2d7-005056a5ee74.json (3-ья фаза поиска решения)

Рис. 14. Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья фаза поиска решения

- 6. Описание вычислительных экспериментов на сценариях группы MBO
- 7. Описание вычислительных экспериментов на сценариях MIPLIB 2017
- 7.1. Сценарии со статусом «open»
- 7.1.1. Сценарий DLR2

https://miplib.zib.de/WebData/instances/dlr2.mps.gz

7.1.2. Сценарий CVRPA-N64K9VRPI

https://miplib.zib.de/WebData/instances/cvrpa-n64k9vrpi.mps.gz

- 7.2. Сценарии со статусом «hard»
- 7.2.1. Сценарий CRYPTANALYSISKB128N5OBJ14

https://miplib.zib.de/WebData/instances/cryptanalysiskb128n5obj14.mps.gz

- 7.3. Сценарии со статусом «easy»
- 7.3.1. Сценарий NEOS-4332801-seret

https://miplib.zib.de/WebData/instances/neos-4332801-seret.mps.gz

Список иллюстраций

1	Зависимость верхней границы решения от доли бинарных переменных, выставлен-
	ных в ноль. Сценарий a78cbead
2	Зависимость верхней границы решения от доли бинарных переменных, выставленных в ноль. Сценарий 337
3	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
3	f398266b без бинарных переменных
4	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	50197df7 без бинарных переменных
5	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	7fac4231 без бинарных переменных
6	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	са485а55 без бинарных переменных
7	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 276
	без бинарных переменных
8	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий 337
	без бинарных переменных
9	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	13d686ab без бинарных переменных
10	Сводка результатов анализа эффективности метаконфигурации SUH. Сценарий
	a78cbead без бинарных переменных
11	Динамика изменения верхней границы решения и числа конфликтов во времени в
	зависимости от значения параметра autorestartnodes. Сценарий input_a78cbead.
10	Первая и вторая фазы поиска решения
12	Динамика изменения верхней границы решения и числа конфликтов во времени в зависимости от значения параметра autorestartnodes. Сценарий a78cbead. Третья
	фаза поиска решения
13	Динамика изменения верхней границы решения и числа конфликтов во времени в
10	зависимости от значения параметра autorestartnodes. Сценарий 50197df7. Третья
	фаза поиска решения
14	Динамика изменения верхней границы решения и числа конфликтов во времени в
	зависимости от значения параметра autorestartnodes. Сценарий 7fac4231. Третья
	фаза поиска решения
Спис	сок таблиц
1	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-
1	нарий a78cbead с бинарными переменными
2	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-
_	нарий 7fac4231 с бинарными переменными
3	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-
	нарий 50197df7 с бинарными переменными
4	Сводка результатов анализа эффективности метаконфигурации FZBIVSUHPB. Сце-
	нарий f398266b с бинарными переменными

Список литературы

1. Иванов Конспект по обучению с подкреплением, 2022