Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/001861

International filing date: 02 February 2005 (02.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-245546

Filing date: 25 August 2004 (25.08.2004)

Date of receipt at the International Bureau: 24 March 2005 (24.03.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

02. 2. 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 8月25日

出 願 番 号 Application Number: 特願2004-245546

[ST. 10/C]:

[JP2004-245546]

出 願 人
Applicant(s):

独立行政法人物質・材料研究機構

特許庁長官 Commissioner, Japan Patent Office 2005年 3月10日

1/E ページ:

特許願 【書類名】

03-MS-175R 【整理番号】

平成16年 8月25日 【提出日】 特許庁長官 殿 【あて先】 B01J 23/755

【国際特許分類】

【発明者】

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研 【住所又は居所】

究機構内

【氏名】

許 亜

【発明者】

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研 【住所又は居所】

究機構内

【氏名】

岸田 恭輔

【発明者】

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研 【住所又は居所】

究機構内

【氏名】

出村 雅彦

【発明者】

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研 【住所又は居所】

究機構内

【氏名】

平野 敏幸

【特許出願人】

301023238 【識別番号】

独立行政法人物質・材料研究機構 【氏名又は名称】

岸 輝雄 【代表者】 029-860-4627 【電話番号】 知的財産室 【連絡先】

【先の出願に基づく優先権主張】

特願2004-25121 【出願番号】 平成16年 2月 2日 【出願日】

【手数料の表示】

257648 【予納台帳番号】 16,000円 【納付金額】

【提出物件の目録】

特許請求の範囲 1 【物件名】

明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】

【書類名】特許請求の範囲

【請求項1】

金属間化合物 Ni 3 Alを含有することを特徴とするメタノール改質用触媒。

【請求項2】

共存成分とともに金属間化合物 N i 3 A l を含有し、共存成分を含めた全体の元素組成 (重量%) がNi77-95%、Al5-23%であることを特徴とする請求項1のメタ ノール改質用触媒。

【請求項3】

インゴット溶製後の切削と機械研磨もしくはアトマイズ法により作製された粉末または 粉粒であることを特徴とする請求項1または2のメタノール改質用触媒。

【請求項4】

請求項1または2に記載のメタノール改質用触媒は、一方向凝固法で作製したNi3A 1の合金を用いて冷間圧延法により作製された冷間圧延箔であることを特徴とするメタノ ール改質用触媒。

【請求項5】

請求項1から4のいずれかの触媒において、アルカリまたは酸処理されていることを特 徴とするメタノール改質用触媒。

【請求項6】

請求項1から4のいずれかの触媒を用いるメタノールの改質方法であって、メタノール またはメタノールと水との混合液を前記触媒と接触させて水素を製造することを特徴とす るメタノール改質方法。

【請求項7】

触媒をあらかじめ水素還元処理した後にメタノールまたはメタノールと水との混合液と 接触させることを特徴とする請求項6のメタノール改質方法。

【書類名】明細書

【発明の名称】メタノール改質用の金属間化合物Ni3A1触媒とこれを用いたメタノー ル改質方法

【技術分野】

[0001]

この出願の発明は、水素を製造するのに有用なメタノール改質用触媒とこれを用いたメ タノール改質方法に関するものである。

【背景技術】

[0002]

近年、水素は燃焼すると水しか発生せず、地球環境の保全という観点からクリーンなエ ネルギー媒体として期待されており、最近では、特に燃料電池の燃料として注目されてい る。このような燃料としての水素の製造方法としてはこれまでに様々なものが知られてお り、このうちの一つの方法として、メタノールの改質反応より製造する方法がある。メタ ノールは、そのものがバイオマス燃料等として利用可能とされているが、このメタノール の改質による水素生成がエネルギー効率の観点からも注目されているところである。

[0003]

メタノールの改質による水素製造の反応方法は、吸熱反応であり、たとえば、燃料電池 自動車のメタノール改質ガスエンジンでは、メタノールの改質反応に排気熱を利用して、 エネルギーの利用効率を上げており、この場合の総合効率は、メタノールを直接燃焼させ る場合に比べて、31-48%向上するとされている。

[0004]

しかしながら、実際にメタノールの改質反応に排ガスを利用しようとすると、排ガス温 度は200℃から700℃まで変化するため、耐熱性、高活性、耐摩耗性に優れ、長寿命 、低コストな触媒の使用が必要となる。従来、メタノール改質用触媒としては、銅、クロ ム、亜鉛などの卑金属元素や、その酸化物などが一般的に用いられているが、これら従来 の触媒は、メタノールの水蒸気改質反応において低温活性を示すものの、耐熱性に乏しい という問題点がある。また、アルミナなどの担体に白金などの貴金属元素やその酸化物な どを担持した触媒も知られているが、これらの触媒はコストが高いという問題がある。

[0005]

以上のような従来技術の状況において、この出願の発明者らは、メタノール改質用触媒 として、降伏強度が正の温度依存性を示し(強度の逆温度依存性と呼ばれている)、優れ た高温特性、耐摩耗性を持っている金属間化合物Ni3Alに着目した。金属間化合物N i3Alは触媒用成形体として提案されているが(特許文献1)、メタノール改質用触媒 としての高温下での適用については、未だほとんど検討されておらず、具体的に報告され ていない。

【特許文献1】特開昭55-88856号公報

【発明の開示】

【発明が解決しようとする課題】

この出願の発明は以上のとおりの背景よりなされたものであって、メタノールまたはメ タノールと水の混合液を原料として水素含有ガスを製造するメタノール改質用の触媒とし て有用であって、耐熱性、耐摩耗性に優れ、高温でも、高活性、高選択性を持つ低コスト の新しいメタノール改質用触媒と、これを用いた新しいメタノールの改質方法を提供する ことを課題としている。

【課題を解決するための手段】

[0007]

この出願の発明は、上記の課題を解決するものとして、第1には、金属間化合物 N i 3 Alを含有することを特徴とするメタノール改質用触媒を提供する。

また、この出願の発明は、第2には、共存成分とともに金属間化合物Ni3Alを含有

し、共存成分を含めた全体の元素組成(重量%)がNi77-95%、Al5-23%で あることを特徴とするメタノール改質用触媒を提供し、第3には、インゴット溶製後の切 削と機械研磨もしくはアトマイズ法により作製された粉末または粉粒であることを特徴と するメタノール改質用触媒を提供する。また、第4には、上記の第1,第2のメタノール 改質用触媒は、一方向凝固法で作製したNi3Alの合金を用いて冷間圧延法により作製 された冷間圧延箔であることを特徴とするメタノール改質用触媒を提供する。

[0009]

さらに、この出願の発明は、第5には、上記いずれかの触媒において、アルカリまたは 酸処理されていることを特徴とするメタノール改質用触媒を提供する。

[0010]

そして、この出願の発明は、第6には、上記いずれかの触媒を用いるメタノールの改質 方法であって、メタノールまたはメタノールと水との混合液を前記触媒と接触させて水素 を製造することを特徴とするメタノール改質方法を提供し、第7には、触媒をあらかじめ 水素還元処理した後にメタノールまたはメタノールと水との混合液と接触させることを特 徴とするメタノール改質方法を提供する。

【発明の効果】

[0011]

上記のとおりのこの出願の第1の発明によって、メタノールまたはメタノールと水の混 合液を原料として水素含有ガスを製造する反応において、350℃以上の高温度でも高活 性、高選択性を有する、金属間化合物Ni3Al含有のメタノール改質用触媒が提供され る。

$[0\ 0\ 1\ 2]$

第2の発明によれば、触媒は、金属間化合物のNi3Al以外の共存成分を特有の元素 組成の範囲において含有してよく、このことによって、触媒の製造、調製が簡便かつ低コ ストで可能とされる。

[0013]

また、第3の発明によれば、簡便な手段の採用によって粉末または粉粒状の触媒が得ら れ、メタノール改質反応への適用も容易となる。

$[0\ 0\ 1\ 4\]$

第4の発明によれば、優れた高温特性を持つとともに、400℃以上の高温度でも高い 触媒活性、高選択性を有し、高温長時間でも触媒活性が劣化しないメタノール改質用触媒 が提供される。

[0015]

そして、第5の発明によれば、活性成分としての金属間化合物の表面活性化をはじめ、 表面の形状、組成の改変が可能とされ、触媒活性が向上するとともに、より低い温度にお いても触媒活性を発現させることができる。

[0016]

さらに、この出願の第6および第7の発明によれば、実際に350℃以上の高温度にお いても高い反応性でのメタノール改質反応によって効率的な水素製造が可能とされる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 7\]$

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態につ いて説明する。

[0018]

この出願の発明においては、金属間化合物 N i 3 A 1 を活性成分とするものであるが、 単独相としての組成範囲はNi85-88重量%、All2-15重量%である。このN i 3 A l 金属間化合物を含有する触媒では、他種のものを共存させていてもよく、たとえ ばNiAl、Ni5Al3、Ni等が共存されていてもよい。これらの成分の存在が許容さ れることは、触媒の製造、調製が容易とされるだけでなく、触媒の組成や形状調節、そし て活性化処理にとっても好適でもある。これらの他種成分を共存する場合には、全体とし ての組成範囲はNi 77-95重量%、Al 15-23重量%とすることが好適に考慮される。

[0019]

また、この出願の発明では、金属間化合物 N i $_3$ A 1 の表面の酸化物膜などを取り除くと共に、A 1、N i が溶け出すことによって表面形状、組成を制御し、触媒活性を高めるために、アルカリや酸で処理してもよい。アルカリ処理は、一般的には、無機または有機の塩基の水溶液もしくは有機溶媒の溶液を用いることができ、処理温度が室温~100 $^{\circ}$ 程度の範囲で処理することができる。また酸処理には、無機酸または有機酸、それらの水溶液や有機溶媒溶液を用いることができる。処理温度としては、室温~50 $^{\circ}$ 程度までとすることが一般的に考慮される。

[0020]

上記のアルカリ処理の場合には、A1だけが溶出し、Niが殆んど溶出しない。たとえばNaOH水溶液を用いる場合には、その濃度は10%以上、望ましくは20~30%であり、また処理温度60-100°C、処理時間1時間以上が望ましい。酸処理の場合、A1とNiとも溶出するので、高濃度、長時間処理すると、金属間化合物 Ni_3A1 の損失が増えることに注意する必要がある。たとえば、HC1溶液の場合には、濃度20%以下、処理温度20°C付近、処理時間1時間以下が望ましい。 HNO_3 溶液の場合には、濃度5%以下、処理温度20°C付近、処理時間1時間以下が望ましい。

[0021]

また、この出願の発明のメタノール改質用触媒は、様々な方法によって製造、調製することができる。たとえば粉末または粉粒体として製造、調製する場合には、原料金属元素をインゴットに製造し、これを切削したものや、さらに機械的研磨を施したもの、あるいは溶解した金属のアトマイズ法による方法等を採用することができる。もちろん所要の形状に成形したものとすることもできる。さらには、セラミックスや他の金属、それらの複合体との組合わせとして触媒を構成してもよいことは言うまでもない。Ni3Alの活性を阻害しない限り、公知のものをはじめとする他のメタノール改質用触媒を併用してもよい。

[0022]

以上のようなこの出願の発明の触媒を粉末、もしくは粉粒体として用いる場合には、たとえばその平均粒径としては 150μ m以下程度の範囲のものが例示される。より好ましくは 32μ m以下のものが好適に考慮される。その比表面積については、たとえば、アルカリまたは酸処理前の場合に $2.5m^2/g$ 以下の範囲のものが、処理後の場合には、 $2.5\sim6m^2/g$ の範囲のものが例示される。

[0023]

さらに、この出願の発明のメタノール改質用触媒は、一方向凝固法で作製したNi3A1の合金を用いて冷間圧延法により作製された冷間圧延箔であってもよい。この冷間圧延箔は、たとえば特許第3374173号に記載された方法で製造される。すなわち、Niを主成分とし、A1を含む化学組成の合金をアーク溶解して原料棒を作製し、この原料棒を溶融凝固で柱状晶に育成して一方向凝固材を作製し、次いでこの一方向凝固材を切り出して、板状体を作製し、この板状体を室温で冷間圧延加工して冷間圧延箔とするものである。さらに必要に応じて、10-3Paよりも高い真空度において、800℃以上の温度で、20分以上焼鈍し、冷間圧延加工してもよい。この冷間圧延箔の厚さとしては、製造上及び触媒活性の効果の点から500 μ m以下であることが好ましい。このようにして作製されたメタノール改質用触媒は、優れた高温特性を持つものであり、400℃以上の温度で高い触媒活性、高選択性を有し、高温長時間でも触媒活性が劣化しないものである。また、上記のアルカリ処理をこの冷間圧延箔に施してもよい。この場合には、より低い温度でも触媒活性を発現させることができる。したがって、このメタノール改質用触媒は、高温化学反応容器材料と触媒材料の2役を果たすことが可能で、小型、高効率の新型高温リアクターとしての適用が期待できる。

[0024]

この出願の発明の触媒を用いてのメタノール改質反応による水素の製造においては、メタノールまたはメタノールと水との混合液を用いることができる。メタノールと触媒との使用割合については、一般的にはたとえば空間速度(LHSV)は $15\sim35h^{-1}$ の範囲とすることが、メタノールと水を用いる場合には、両者の割合は、モル比として、メタノール:水=1:0.1~5程度とすることが好適に考慮される。また、改質反応は、固定床方式や流動床方式が考慮される。

[0025]

反応温度としては、240℃~520℃の範囲がより好適である。

[0026]

そこで、以下の実施例により、この出願の発明の実施の形態についてさらに説明する。

[0027]

もちろん、以下の例により、この出願の発明が限定されることはない。

【実施例】

[0028]

<実施例1>

以下の二種類のNi3Al粉末試料を作製した。

- (a) 回転ディスクアトマイズ法で組成 86.91 重量 % N i -13.09 重量 % A l の N i $_3$ A l 粉末試料を作製した。BET法を用いて比表面積を測定した結果、粒子直径 32μ m以下の粉末の比表面積は $1.3m^2/g$;粒子直径 $32-75\mu$ mの粉末の比表面積は $0.4m^2/g$;粒子直径 $75-150\mu$ mの粉末の比表面積は $0.1m^2/g$ である
- (b) 組成 8 7. 3 2 重量% N i 1 2. 6 7 重量% A l の N i 3 A l 合金インゴットを溶解炉で作製した。インゴットから機械加工で切屑を作り、これらの切屑を機械研磨で 1 5 0 μ m以下の粉末にした。BET法を用いて比表面積を測定した結果、このように作製した N i 3 A l 粉末の比表面積は 2. 3 m²/g であることが分かった。

[0029]

次に、ここで作製した粉末に対して以下の各アルカリ処理と酸処理を行った。

- (1)機械研磨で作製したN i $_3$ A l 粉末 3 g を 1 2 0 g の 2 0 % N a O H 水溶液に加え、6 5 − 7 0 $^{\circ}$ C の温度で攪拌しながら 5 時間放置した。その後アルカリ水溶液をデカンテーションにより除去した。沈殿物を適量な蒸留水で洗浄し、洗液をデカンテーションにより除去した。この操作を洗液が中性になるまで繰返した。得られた沈殿生成物を脱水した。脱水後 5 0 $^{\circ}$ C で一晩乾燥して、N i $_3$ A l 触媒を調製した。 I C P 発光分光分析の結果、このN a H O 水溶液により調製したN i $_3$ A l 中のA l 量の約 1 4 %(重量比)溶出し除去されたことが分かった。B E T 法による比表面積測定の結果、以上の処理で調製した触媒の比表面積が 5 . 1 m²/g であったことが分かった。
- (2)機械研磨で作製したNi₃Al粉末1.3gを80gの30%NaOH水溶液に加え、60-65℃の温度で攪拌しながら3.5時間放置した。ICP発光分光分析の結果、このNaHO水溶液により調製したNi₃Al中のAl量の約10%(重量比)を溶出し除去されたことが分かった。BET法による測定した結果、調製した粉末の比表面積は4.3 m^2/g である。
- (3)回転ディスクアトマイズ法で作製した粒子直径 $32-75\mu$ m以下のN i $_3$ A 1 粉末 3 g を 120 g の 20 % H C 1 の溶液に加え、室温で攪拌しながら 3 時間放置した。B E T 法で測定した結果、調製した粉末の比表面積は $1.1 \text{ m}^2/\text{g}$ であることが分かった
- (4)回転ディスクアトマイズ法で作製した粒子直径 $32-75\mu$ mのN i_3 A 1 粉末 3 gを 120 gの 5 % H N O 3 溶液に加え、室温で攪拌しながら 3 時間放置した。B E T 法で測定した結果、調製した粉末の比表面積は 3.6 m 2 / g であることが分かった。

[0030]

以上の表面処理によりBET法にて測定した比表面積(m^2/g)の結果を表1に示す。("-"は測定していないことを表す)

[0031] 【表1】

試料	表面処理前	20%NaOH 処理後	30%NaOH 処理後	20%HCI 処理後	5%HNO ₃ 処理後
Ni ₃ Al(機械研磨で 作製)	2.3	5.1	4.3		
NigAl(回転ディスク アトマイズ法で作製 32-75 μm)	0.4			1.1	3.6

表 1 より、アルカリ処理と酸処理ともN i $_3$ A 1 の比表面積が増加する効果があること がわかる。

<実施例2>

上記の実施例1において(b)の機械研磨で作製した粉末試料0.2gを触媒として、 触媒反応装置(固定床流通式反応装置)で240℃1時間水素還元処理を行った後、メタ ノールと水の混合液 (CH₃OH: H₂O=1mol: 1.5mol) を原料に、常圧、2 40℃、260℃、280℃、300℃、320℃、340℃、360℃の各反応温度で 活性評価試験を行った。その結果を図1-図3中の黒丸印に示した。図1に示したように 、反応の水素発生速度(m l / m i n / g)は温度の上昇に伴い増大するが、全体的に低 い。図2と図3はそれぞれ測定した各反応温度でのCOとCO2発生速度(ml/min /g)を反応温度の関数として示した結果である。Ni3Al触媒の場合、主にCOが生 成していることが分かった。これによって、Ni3Al触媒はメタノールの分解反応(C H₃ O H→C O+2 H₂)、すなわち水素発生反応に活性があることがわかる。 <実施例3>

上記実施例1での(b)の機械研磨で作製した粉末試料を(1)の方法により20%N a O H 水溶液で処理調製した触媒 0.2 g を 2 4 0 ℃で 1 時間水素還元処理を行った後、 活性評価試験を行った。その結果を図1-図3中の黒四角印に示した。図1よりアルカリ 処理したN i 3 A l は 3 5 2 ℃で 3 5 1 m l / m i n / g の大きな水素発生速度が得られ ることが分かった。しかもアルカリ処理したNi3Al触媒はさらに温度の上昇に伴いこ の水素発生速度は増加するという優れた高温活性を示す。また、図2と図3より、主にC 〇が生成していることが分かった。これによって、アルカリ処理によりNi3Alの触媒 活性が向上することがわかる。

<実施例4>

各組成(Ni-24at%Al, Ni-22at%Al, Ni-18at%Al)の合 金を特許第3374173号に記載された方法に従って一方向凝固法により作製し、冷間 圧延法で厚さ $30-35\mu$ mの箔を作製した。

[0032]

作製した各組成の箔をアルカリ表面処理せず、そのまま幅4mm、長さ220mmに切 出し、直径6-7mmの渦巻状円筒に成形する。これらの円筒試料を触媒反応装置(固定 床流通式装置)で240℃、1時間水素還元処理を行った後、メタノールを原料に、常圧 、240℃、260℃、280℃、300℃、320℃、340℃、360℃、400℃ 、440℃、480℃、520℃の各反応温度で触媒活性評価試験を行った。その結果を 図4-図7の黒三角印 (Ni-18at%Al)、黒四角印 (Ni-22at%Al)、 黒丸印 (Ni-24at%Al) に示した。図4に示したように、すべての組成の箔に対 し、水素発生速度($m \cdot m^{-2} \cdot m \cdot n^{-1}$)(毎平方メートル箔触媒表面の上で、毎分間 生成した水素の体積)は400℃以上の温度になると、温度の上昇に伴い、増大する。そ の中、組成Ni-22at%Alの箔が最も水素発生速度が大きく、最も優れた触媒活性 を示すことが分かった。図5-図7は水素以外のガス、CO、CO2、CH4の発生速度($m \cdot m^{-2} \cdot m \cdot n^{-1}$)を反応温度の関数として示した結果である。各組成の箔とも、主 にCOが生成していることが分かった。この結果、Ni3Al箔はアルカリ表面処理しな

くても、400 C以上の温度で、メタノールの分解反応($CH_3OH \rightarrow CO + 2H_2$)、即ち水素発生反応に触媒活性があることが分かった。

<実施例5>

実施例 4 で作製した箔(組成 N i -2 4 a t % A 1) e 2 0 % e n n e n

<実施例6>

実施例 4 で作製した箔(組成 N i -2 4 a t % A 1)を用い、常圧、5 2 0 $\mathbb C$ $\mathbb C$ 6 5 時間、メタノール分解反応を続け、箔状の N i 3 A 1 の触媒活性の経時変化を調べた。図 9 は測定した H_2 、C O、C O_2 、C H_4 の発生速度(m 1 · m^{-2} · m i n^{-1})を反応時間の関数として示した結果である。6 5 時間まで反応しても、 H_2 の生成速度は減少することなく、触媒活性が劣化しないことが分かった。

<比較例1>

市販のラネーニッケル(50重量%Ni-50重量%Al)を上記実施例1,2と同じ方法で調製して、活性評価試験を行った。その結果を図1-図3中の黒三角印に示した。図1より、ラネーニッケル触媒の場合、300℃以下の温度では水素発生速度は温度の上昇に伴い増加するが、300℃以上の温度になると、水素発生速度は増加しなくなる。

<比較例2>

市販の純Ni箔(厚さ 50μ m)を上記の実施例4と同じ方法で触媒活性評価試験を行った。その結果、を図4-図7中の白四角印に示した。図4に示すように、520℃までの反応温度では、純Ni箔の水素発生速度はNi $_3$ Al箔より著しく低いことが分かった。また、図5-図 $_7$ においても、水素以外のガス、CO、 CO_2 、 CH_4 の発生速度がNi $_3$ Al箔より著しく低いことが分かった。Ni $_3$ Al箔の触媒活性が非常に優れていることは明らかである。

【産業上の利用可能性】

[0033]

この出願の発明によって、メタノールまたはメタノールと水の混合液を原料として水素含有ガスを製造する反応において、350 C以上の温度でも高活性、高選択性を持つ優れた金属間化合物 Ni $_3$ A 1 からなるメタノール改質用触媒が提供され、自動車の燃料電池や小型、高効率の新型高温リアクター等への適用が期待でき、産業上においても有効に活用することができる。

【図面の簡単な説明】

[0034]

【図1】Ni3A1とラネーニッケルを用いてメタノール改質反応させる際、測定した水素発生速度 (m1/min/g) を反応温度の関数として示した図である。

【図2】 Ni_3Al とラネーニッケルを用いてメタノール改質反応させる際、測定したCO発生速度 (ml/min/g) を反応温度の関数として示した図である。

【図3】 Ni_3Al とラネーニッケルを用いてメタノール改質反応させる際、測定した CO_2 発生速度(ml/min/g)を反応温度の関数として示した図である。

【図4】実施例4で作製した各種組成のNi3Al箔と市販の純Ni箔を用いてメタノール分解反応させた時、測定した水素発生速度 $(ml\cdot m^{-2}\cdot min^{-1})$ を反応温度の関数として示した図である。

【図 5 】実施例 4 で作製した各種組成のN i 3 A 1 箔と市販の純N i 箔を用いてメタノール分解反応させた時、測定したC O 発生速度(m 1 · m $^{-2}$ · m i n $^{-1}$)を反応温度の関数として示した図である。

【図7】実施例4で作製した各種組成の Ni_3A1 箱と市販の純 Ni_3 を用いてメタノール分解反応させた時、測定した CH_4 発生速度($ml\cdot m^{-2}\cdot min^{-1}$)を反応温度の関数として示した図である。

【図8】アルカリ表面処理したNi $_3$ Al箔(組成Ni-24at%Al)とアルカリ表面処理前のNi $_3$ Al箔(組成Ni-24at%Al)を用いてメタノール分解反応させた時、測定した各反応温度でのH2、CO、CO2、CH4(アルカリ表面処理前のNi $_3$ Al箔についてはH2とCOのみ)の発生速度(ml·m-2·min-1)を反応温度の関数として示した図である。

【図9】実施例 4 で作製したN i 3 A 1 箱 (組成N i - 2 4 a t % A 1) を用いて 5 2 0 \mathbb{C} でメタノール分解反応させた時、測定した H_2 、C O、C O_2 、C H_4 の発生速度 $(m\ l\cdot m^{-2}\cdot m\ i\ n^{-1})$ を反応時間の関数として示した図である。

【書類名】図面

【図1】

【図2】

【図4】

【図8】

【要約】

【課題】 耐熱性、耐摩耗性に優れ、高温でも、高活性、高選択性を持つメタノール改質 用触媒を提供する。

【解決手段】 主成分としてNi3Al金属間化合物を含有している触媒とする。

【選択図】 図1

ページ: 1/E

認定 · 付加情報

特許出願の番号

特願2004-245546

受付番号

5 0 4 0 1 4 3 3 1 6 1

書類名

特許願

担当官

第六担当上席

0 0 9 5

作成日

平成16年 9月 9日

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

301023238

【住所又は居所】

茨城県つくば市千現一丁目2番1号

【氏名又は名称】

独立行政法人物質・材料研究機構

出願人履歴情報

識別番号

[301023238]

1. 変更年月日 [変更理由] 住 所

氏 名

2001年 4月 2日 新規登録

理田」 新規宣述

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研究機構