CS 131 – Fall 2019, Discussion Worksheet 7 October 30, 2019

Problem 1. The knight in chess can move to a square that is two squares away horizontally and one square vertically, or two squares vertically and one square horizontally.

Suppose we have an $m \times n$ $(m, n \ge 4)$ board with a knight in the upper left corner. Prove that the knight can reach any cell on the board.

Solution. The proof is by induction (twice). Let P(m, n) be true if and only if the knight can reach any cell on an $m \times n$ board.

First we will prove $\forall n \geq 4 \ P(4, n)$.

In the basis step we need to prove P(4,4). We can reach any cell on an 4×4 board as follows:

- 1. $(1,1) \to (2,3)$
- $2. (1,1) \rightarrow (3,2)$
- $3. (2,3) \rightarrow (4,2)$
- 4. $(2,3) \to (4,4)$
- 5. $(2,3) \to (3,1)$
- 6. $(4,2) \rightarrow (2,1)$
- 7. $(4,2) \to (3,4)$
- 8. $(3,1) \to (1,2)$
- 9. $(2,1) \to (1,3)$
- 10. $(2,1) \to (3,3)$
- 11. $(3,4) \to (2,2)$
- 12. $(2,2) \to (1,4)$
- 13. $(2,2) \to (4,1)$

Note that the left side of an arrow is reachable as established by a previous line.

Inductive step: suppose P(4, k), where $k \geq 4$. We will prove P(4, k + 1). By the inductive hypothesis, we know we can reach any cell (i, j), where $1 \leq i \leq 4$ and $1 \leq j \leq k$. It easy to see how to get to the remaining cells (i, k + 1), $1 \leq i \leq 4$, from the previous ones:

- 1. $(3,k) \to (1,k+1)$
- $2. (4,k) \rightarrow (2,k+1)$
- 3. $(1,k) \to (3,k+1)$
- 4. $(2,k) \to (4,k+1)$

Thus, P(4, k + 1) and we have proven $\forall n \geq 4 \ P(4, n)$ by induction.

Now, fix an arbitrary $n \geq 4$. We will show that $\forall m \geq 4 \ P(m,n)$ by induction.

Our basis case is P(4, n). We know it is true already.

Now assume P(k, n), where $k \geq 4$. We will show that P(k + 1, n) is true.

Similarly to the previous proof, by the induction hypothesis, we can reach any cell (i,j), where $1 \le i \le k$ and $1 \le j \le n$. It is each to see how to reach the last row, (k+1,j) where $1 \le j \le n$, from those. Thus, we establish P(k+1,n) and prove $\forall m \ge 4$ P(m,n) by induction.

Since n was arbitrary, P(m, n) for all $m, n \ge 4$.

Problem 2. Calculate the following numbers using Euclid's algorithm:

- gcd(4,8)
- gcd(34,51)
- gcd(112, 75)

Solution.

- $gcd(4,8) = gcd(4,8 \mod 4) = gcd(4,0) = 4$
- $\gcd(340, 204) = \gcd(340 \mod 204, 204) = \gcd(136, 204) = \gcd(136, 204 \mod 136) = \gcd(136, 68) = \gcd(136 \mod 68, 68) = \gcd(0, 68) = 68$
- gcd(112,75) = gcd(37,75) = gcd(37,1) = 1

Problem 3. For given a and b prove or disprove the following claim: there is a natural number N such that for all integers $n \ge N$, n cents can be changed to a cent coins and b cent coins.

a)
$$a = 6, b = 15$$

Solution. Notice that both 6 and 15 are divisible by 3. Then, any combination of those must be divisible by 3. Therefore the answer is no: for all N, there is always $n \ge N$ that is not divisible by 3.

b)
$$a = 143, b = 253$$

Solution. Same as before: both 143 and 253 are divisible by 11, so the answer is no.

c)
$$a = 5, b = 13$$

Solution. The answer is yes. As in the previous lab, we need to find 5 consecutive integers that can be represented as a sum of 5's and 13's. Here they are:

- $50 = 5 \cdot 10$
- $51 = 13 \cdot 2 + 5 \cdot 5$
- $52 = 13 \cdot 4$
- $53 = 13 + 5 \cdot 8$
- $54 = 13 \cdot 3 + 5 \cdot 3$

Problem 4. Let a be a real number.

 $\lfloor a \rfloor$ is called the floor of a and is equal to a rounded down to the nearest integer. Technically we define $\lfloor a \rfloor$ to be the biggest element in the set $\{x \in \mathbb{Z} : x \leq a\}$.

 $\lceil a \rceil$ is called the ceiling of a and is equal to a rounded up to the nearest integer. Technically we define $\lceil a \rceil$ to be the smallest element in the set $\{x \in \mathbb{Z} : x \geq a\}$.

a) Find $\lfloor 5.3 \rfloor$.

Solution. 5

b) Find |5|.

Solution. 5

c) Find $\lceil 5.3 \rceil$.

Solution. 6

d) Find [5].

Solution. 5

e) Prove or disprove: $\lfloor a \rfloor \cdot \lfloor b \rfloor = \lfloor ab \rfloor$.

Solution. This is incorrect. $\left\lfloor \frac{5}{2} \right\rfloor \cdot \left\lfloor 2 \right\rfloor = 2 \cdot 2 = 4$, but $\left\lfloor \frac{5}{2} \cdot 2 \right\rfloor = \left\lfloor 5 \right\rfloor = 5$.

Problem 5. A number is called *perfect* if it is equal to the sum of its positive divisors other than itself. E.g., 6 = 1 + 2 + 3. Prove the following claim:

Claim: If $2^k - 1$ is a prime, then $2^{k-1}(2^k - 1)$ is perfect

Solution. Since $2^k - 1$ is a prime, factors of $2^{k-1}(2^k - 1)$ are

$$2^0, 2^1, \cdots, 2^{k-1}$$

and

$$(2^{k}-1)\cdot 2^{0}, (2^{k}-1)\cdot 2^{1}, \cdots, (2^{k}-1)\cdot 2^{k-2}$$

The sum of factors are then

$$\sum_{n=0}^{k-1} 2^n + \sum_{m=0}^{k-2} \left((2^k - 1) \cdot 2^m \right) = \sum_{n=0}^{k-1} 2^n + (2^k - 1) \sum_{m=0}^{k-2} 2^m = (2^k - 1) + (2^k - 1)(2^{k-1} - 1),$$

which is equal to the given number, $2^{k-1}(2^k - 1)$.