$\left[\text{IDA} \right]$ Domácí úloha: Sada 7

Adrián Tomášov Tomáš Ulický Jozef Urbanovský Adrián Tóth Adam Šulc Ondrej Svoreň

2015-12-09

1 Domácí úloha 1

- 1.1 Dokažte nebo vyvrať te protipříkladem následující tvrzení. Pro všechny množiny $X, Y, Z \subseteq U$ platí (doplňky množin uvažujeme vůči množině U):
 - (i) $\overline{Y \setminus Z} = \overline{Z \setminus Y}$

$$U = \{\,1, 2, 3, 4, 5, 6\,\}$$

$$Y = \{\,1,2,3,4\,\}$$

$$Z = \{1, 2, 5, 6\}$$

$$\overline{Y \setminus Z} = \overline{\{3,4\}} = \{1,2,5,6\}$$

 $\overline{Z \setminus Y} = \{5,6\} = \{1,2,3,4\}$

Jestliže $\overline{Y \setminus Z} = \{1, 2, 5, 6\}$ a $\overline{Z \setminus Y} = \{1, 2, 3, 4\}$, pak $\overline{Y \setminus Z} \neq \overline{Z \setminus Y}$.

(ii) $X \setminus (Y \cap Z) = (X \setminus Y) \cup Z$

$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$X = \{1, 2, 3, 4, 5\}$$

$$Y = \{1, 2, 6, 7\}$$

$$Z = \{1, 3, 6, 8\}$$

$$[X \smallsetminus (Y \cap Z)] = X \smallsetminus \{1,6\} = \{2,3,4,5\}$$

$$[(X \smallsetminus Y) \cup Z] = \{3,4,5\} \cup Z = \{1,3,4,5,6,8\}$$

Jestliže $[X \smallsetminus (Y \cap Z)] = \{2,3,4,5\}$ a $[(X \smallsetminus Y) \cup Z] = \{1,3,4,5,6,8\}$, pak $[X \smallsetminus (Y \cap Z)] \neq [(X \smallsetminus Y) \cup Z]$.

(iii) $X \cup (Y \setminus Z) = (X \cap Y) \setminus (X \cup Z)$

$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$X = \{1, 2, 3, 4, 5\}$$

$$Y = \{1, 2, 6, 7\}$$

$$Z = \{1, 3, 6, 8\}$$

$$[X \cup (Y \setminus Z)] = X \cup \{2,7\} = \{1,2,3,4,5,7\}$$
$$[(X \cap Y) \setminus (X \cup Z)] = \{1,2\} \setminus \{1,2,3,4,5,6,8\} = \emptyset$$

Jestliže $[X \cup (Y \setminus Z)] = \{1,2,3,4,5,7\}$ a $[(X \cap Y) \setminus (X \cup Z)] = \emptyset$, pak $[X \cup (Y \setminus Z)] \neq [(X \cap Y) \setminus (X \cup Z)]$.

(iv)
$$X \cap (Y \setminus Z) = (X \cup Y) \setminus (X \cap Z)$$

 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 $X = \{1, 2, 3, 4, 5\}$
 $Y = \{1, 2, 6, 7\}$
 $Z = \{1, 3, 6, 8\}$

$$[X \cap (Y \setminus Z)] = X \cap \{2, 7\} = \{2\}$$

$$[(X \cup Y) \setminus (X \cap Z)] = \{1, 2, 3, 4, 5, 6, 7\} \setminus \{1, 3\} = \{2, 4, 5, 6, 7\}$$
Jestliže $[X \cap (Y \setminus Z)] = \{2\}$ a $[(X \cup Y) \setminus (X \cap Z)] = \{2, 4, 5, 6, 7\}$, pak $[X \cap (Y \setminus Z)] \neq [(X \cup Y) \setminus (X \cap Z)]$.
(v) $(X \cup Y) \cap (Y \setminus X) = Y$
 $U = \{1, 2, 3, 4, 5\}$
 $X = \{1, 2, 3\}$
 $Y = \{1, 4, 5\}$
 $[(X \cup Y) \cap (Y \setminus X)] = \{1, 2, 3, 4, 5\} \cap \{4, 5\} = \{4, 5\}$
 $Y = \{1, 4, 5\}$
Jestliže $[(X \cup Y) \cap (Y \setminus X)] = \{4, 5\}$ a $Y = \{1, 4, 5\}$, pak $(X \cup Y) \cap (Y \setminus X) \neq Y$.

1.2 Na množině $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ je dána relace $R = \{(x,y) \mid x,y \in X, 4y \operatorname{děli} 3x)\}$. Zapiště relaci R výčtem prvků. Určete její definiční obor a obor hodnot. Nalezněte relaci R^{-1} .

$$\begin{split} X &= \{\,1,2,3,4,5,6,7,8,9\,\}\\ 3x\,mod\,4y &= 0\\ R &= \{\,(4,1),(4,3),(8,1),(8,2),(8,3),(8,6)\,\}\\ Dom(R) &= \{\,4,8\,\}\\ Im(R) &= \{\,1,2,3,6\,\}\\ R^{-1} &= \{\,(1,4),(3,4),(1,8),(2,8),(3,8),(6,8)\,\} \end{split}$$

1.3 Buď $X = \mathbb{N}, \ \tau = \{W \mid W \subseteq X, \ X \setminus W \ \mathbf{je} \ \mathbf{konečná}\} \cup \{\varnothing\}.$ Dokažte, že (X, τ) je topologický prostor.

 $X-X=\varnothing \qquad \varnothing \in \tau \qquad X$ je konečná množina

 $W = \mathbb{N} \smallsetminus \{\, 2,7,14 \,\} \quad X \smallsetminus W$ je $\{\, 2,7,14 \,\}$ což je konečná množina $\implies W \in \tau$

- (i) \varnothing , $X \in \tau$
- (ii) Nechť $U_i \neq \varnothing, U_i \in \tau$ pro $\forall i \in I$ tak $K_i = X U_i$ je konečná. Nechť $U = \bigcup_{i \in I} U_i$, tak $U \neq \varnothing$. Tak $X \smallsetminus U = X \smallsetminus \bigcup_{i \in I} U_i = \bigcap_{i \in I} (X \smallsetminus U_i) = \bigcap_{i \in I} K_i$, což je konečná množina, protože K_i je konečná množina.
- (iii) Nechť $U,\,V\in\tau$, pokud $U=\varnothing$ anebo $V=\varnothing$, je $U\cap V=\varnothing\in\tau$. Nechť $U=\varnothing=V$, tak $X\smallsetminus U,\,X\smallsetminus V$ jsou konečné a tedy $X\smallsetminus (U\cap V)=(X\smallsetminus U)\cup (X\smallsetminus V)\in\tau$

 (X, τ) je topologický prostor.

1.4 Nechť R relace na X taková, že R^{-1} je reflexivní a tranzitivní relace na X. Dokažte, že $R \cap R^{-1}$ je ekvivalence na X.

$$X$$

$$R\subseteq X,\,R^{-1}\subseteq X$$

$$R^{-1}\text{ je reflexivn\'i, tranzitivn\'i}$$
 Dokažte, že $R\cap R^{-1}$ je ekvivalence na X

Konkrétní případ:

$$X = \{1, 2, 3, 4\}$$

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (2, 1), (1, 2), (3, 2), (3, 1)\}$$

$$R^{-1} = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (2, 3), (1, 3)\}$$

$$R \cap R^{-1} = \{(1, 1), (2, 2), (3, 3), (4, 4), (2, 1), (1, 2)\}$$

Důkaz:

Podmínky R^{-1} :

Pro všechna $x,y,z\in X$ platí, že $(x,x)\in R^{-1}$ a zároveň platí, že pokud patří do relace R (x,y) i (y,z) potom musí patřit i (x,z).

$$\forall (x,x) \in R^{-1} \land \left(\left[(x,y) \in R^{-1} \land (y,z) \in R^{-1} \right] \implies (x,z) \in R \right)$$
 Podmínky R :

 $(x,y)\in \overset{\circ}{R}$ právě tehdy, pokud $(y,x)\in R^{-1},\, (x,y)\in R\iff (y,x)\in R^{-1}$

$$R_p = R^{-1} \cap R$$

Z výše uvedených podmínek vyplývá, že do R_p patří (x,y) jen v případě, když do R patří (x,y) a zároveň (y,x). Tím pádem pokud patří do $R_p(x,y)$, tak patří tam i (y,x). Z toho vyplývá, že R_p je symetrická relace. R_p musí být i reflexivní, protože $(x,x)^{-1}=(x,x)$ z toho vyplývá, že všechna (x,x) patří do R_p . Pokud patří do $R^{-1}(x,y), (y,z)$ a (x,z), tak aby to samé platilo i do R_p , musí do R zároveň patřit i (y,x), (y,z), (z,x) z toho vyplývá, že pokuď R^{-1} je tranzitivní, musí být i R_p tranzitivní a tím jsou splněny všechny podmínky pro to, aby R_p byla ekvivalence.

- 1.5 Nechť $A = \mathbb{Z}$, $R = \{(x,y) \mid x,y \in Z, 4 \mid y-x\}$. Dokažte, že R je kongruencí na $(A, +, \cdot)$. Sestrojte faktorovou algebru A/R.
 - 1. Musíme dokázat, že R je ekvivalence.
 - a) Reflexivnost Zvolme $x \in A$, tak $x-x=0=0\cdot 4 \implies 4\cdot (x-x) \implies (x,x)\in R$
 - b) Symetrie Nechť $(x,y) \in R$, tak $4 \mid y-x$, tj. $y-x=4k, k \in \mathbb{Z} \implies x-y=-4k \implies 4 \mid x-y \implies (y,x) \in \mathbb{R}$
 - c) Tranzitivnost Nechť $(x,y) \in R$ a $(y,z) \in R$. Tak $4 \mid y-x$ a $4 \mid z-y$. Potom existují $m,n \in Z$, že y-x=4m a z-y=4n, tak $z-y+y-x=z-x=4\cdot(n+m) \implies 4 \mid z-x$ a $(x,z) \in R$

R je ekvivalence.

2. Nechť $x_1, x_2, y_1, y_2 \in A$ takové, že $(x_1, y_1) \in R$ a $(x_2, y_2) \in R$, tak $(x_1 + x_2, y_1 + y_2) \in R$ $(x_1 \cdot x_2, y_1 \cdot y_2) \in R$

Předpokládejme, že $x_1, x_2, y_1, y_2 \in A$ a $(x_1, y_1) \in R$ a $(x_2, y_2) \in R$. Tak $y_1 - x_1 = 4k$ a $y_2 - x_2 = 4n$, kde $k, n \in Z$. Tak $y_1 - x_1 + y_2 - x_2 = 4k + 4n$, tj. $(y_1 + y_2) - (x_1 + x_2) = 4 \cdot (k + n)$. Potom $4 \mid (y_1 + y_2) - (x_1 + x_2)$ a potom $(x_1 + x_2, y_1 + y_2) \in R$.

Podobně $y_1 = 4k + x_1, y_2 = 4n + x_2,$ odtud $y_1 \cdot y_2 = (4k + x_1) \cdot (4n + x_2) = 16kn + 4kx_2 + 4nx_1 + x_1x_2.$ Tak $y_1 \cdot y_2 - x_1 \cdot x_2 = 4 \cdot (4kn + kx_2 + nx_1) \Longrightarrow 4 \mid y_1 \cdot y_2 - x_1 \cdot x_2,$ tj. $(x_1 \cdot x_2, y_1 \cdot y_2) \in R.$

Můžeme vytvořit faktorovou algebru.

Třídy rozkladu podle zbytku:

$$A = \mathbb{Z}$$

$$[0] = \{0, 4, -4, 8, -8, \dots\}$$

$$[1] = \{1, 5, -3, 9, -7, \dots\}$$

$$[2] = \{2, 6, -2, 10, -6, \dots\}$$

$$[3] = \{3, 7, -1, 11, -5, \dots\}$$

$$[2] = \{2, 6, -2, 10, -6, \dots \}$$

$$[3] = \{3, 7, -1, 11, -5, \dots\}$$

faktorová algebra $A/R = \{\,[0],[1],[2],[3]\,\}$

$$[a] \oplus [b] = [a+b]$$

$$[a] \odot [b] = [a \cdot b]$$

$$[a] \odot [b] = [a \cdot b]$$

\oplus	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

\odot	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

1.6 Najděte všechny podgrupy grupy (\mathbb{Z}_6, \oplus) . Které z nich jsou normální? Sestrojte příslušné faktorové grupy.

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Pogrupy: { 0, 1, 2, 3, 4, 5 } { 0, 2, 4 } { 0, 3 } { 0 }

V komunitativní grupě je libovolná její podgrupa normální.

Neutrální prvek: e = 0

$$a \circ e = e \circ a = a$$

$$a \circ e = a$$

$$5 \circ 0 = 5$$

$$e \circ a = a$$

$$0\circ 5=5$$

Inverzní prvek: $a \circ a' = e$

$$5 \circ 1 = 0$$

$$4 \circ 2 = 0$$

$$3 \circ 3 = 0$$

$$2 \circ 4 = 0$$

$$1 \circ 5 = 0$$

$$0 \circ 0 = 0$$

Dokázali jsme, že (\mathbb{Z}_6, \oplus) je grupa.

Komunitativnost: Je symetrická podle hlavní diagonály \implies je komunitativní.

$$a \circ b = b \circ a$$

$$5 \circ 1 = 1 \circ 5$$

$$0 = 0$$

 $\{\,0\,\} \oplus 4 = \{\,4\,\}$

 $\{0\} \oplus 5 = \{5\}$

3 3

 $\overline{4}$ $\overline{4}$ $\overline{5}$ $\overline{0}$

 $\overline{5}$ $\overline{5}$ $\overline{0}$ $\overline{1}$ $\overline{2}$ $\overline{3}$ $\overline{4}$

 $\bar{5}$ $\bar{0}$ $\bar{1}$ $\bar{2}$

 $\bar{3}$

 $\bar{1}$ $\bar{2}$

 $\bar{4}$