Continuidade

Apontamentos sobre a definição de continuidade, os seus teoremas, nomeadamente de Bolzano e Weierstrass e descontinuidades

Page

Definição

• $f: D \subset R$ é contínua no ponto $a \in D$ se $\lim x \to a f(x) = f(a)$

Teoremas

Teorema

- Se f é contínua em a e f(a) > 0, então f é positiva numa vizinhança de a
- Se f é contínua em a e f(a) < 0, então f é negativa numa vizinhança de a

Teorema de Bolzano

• Se f é contínua em [a, b] e $f(a) \neq f(b)$, então para todo o número k entre f(a) e f(b), existe $c \in [a, b[$ tal que f(c) = k.

Corolário:

• Se f é contínua em [a, b] e f(a) x f(b) < 0, então existe $c \in]a, b[$ tal que f(c) = 0.

Teorema de Weierstrass

- Toda a função contínua num intervalo fechado atinge nesse intervalo um valor máximo e um valor mínimo
- f(a) é máximo absoluto da função se f(a) for a maior das imagens
- f(a) é mínimo absoluto da função se f(a) for a menor das imagens

Descontinuidades

- $f: D \subset \mathbb{R}$ tem uma descontinuidade de 1ª espécie no ponto $a \in D$ se os limites laterais $\lim x \to a$ f(x) e $\lim x \to a$ + f(x) existem e são finitos, mas ocorre uma das seguintes situações:
 - $\lim x \rightarrow a^- f(x) \neq \lim x \rightarrow a + f(x)$
 - $\lim x \to a f(x) \neq f(a)$
- f tem uma descontinuidade de 2ª espécie no ponto $a \in D$ se algum dos limites laterais não existe ou não é finito

Diferenciabilidade