Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №3 за 1 семестр По дисциплине: «МиАПР»

Тема: «Нелинейные ИНС в задачах прогнозирования»

Выполнил: Студент 2 курса Группы ПО-4(2) Юрьев В.А. Проверил: Крощенко А.А.

Лабораторная работа №3

Нелинейные ИНС в задачах прогнозирования

Цель работы: Изучить обучение и функционирование нелинейной ИНС при решении задач прогнозирования.

Вариант 11

Задание:

Написать на любом ЯВУ программу моделирования прогнозирующей нелинейной ИНС. Для тестирования использовать функцию:

```
Y = a*\cos(b*x) + c*\sin(d*x)
```

Код программы:

```
#include <iostream>
#include <math.h>
#include <iomanip>
using namespace std;
double sigmoid(double x)
{
   return 1 / (1 + pow(2, -x));
double function(double x)
{
   return 0.3 * cos(0.5 * x) + 0.05 * sin(0.5 * x);
}
double* hidden(double x, double w1[3][8], double T[3])
{
   double* result = new double[3];
   for (int i = 0; i < 3; i++)
       result[i] = 0;
   double Inputs[8];
   for (int k = 0; k < 8; k++, x += 0.1)
       Inputs[k] = function(x);
   for (int i = 0; i < 3; i++)
   {
       for (int k = 0; k < 8; k++)
           result[i] += Inputs[k] * w1[i][k];
```

```
result[i] -= T[i];
       result[i] = sigmoid(result[i]);
    }
    return result;
}
double output(double x, double w1[3][8], double w2[3], double T[3
{
    double Result = 0;
    double* hidden_result = hidden(x, w1, T);
   for (int j = 0; j < 3; j++) {
       Result += hidden_result[j] * w2[j];
    }
    Result -= T[3];
    return Result;
}
int main()
{
    setlocale(LC_ALL, "rus");
    double w1[3][8], w2[3], T[3 + 1], Reference, E_min = 0.00002,
alpha = 0.4, x = 4, current, E = 0;
    for (int i = 0; i < 3; i++)
    {
       for (int k = 0; k < 8; k++)
       {
           w1[i][k] = ((double)rand() / RAND_MAX) * 0.005;
       w2[i] = ((double)rand() / RAND_MAX) * 0.005;
       T[i] = ((double)rand() / RAND_MAX) * 0.005;
    }
   T[4] = ((double)rand() / RAND MAX) * 0.005;
    do
    {
       E = 0;
       for (int q = 0; q < 200; q++)
       {
```

```
current = output(x, w1, w2, T);
            Reference = function(x + 8 * 0.1);
            double error = current - Reference;
            double* Hiddens = hidden(x, w1, T);
            for (int j = 0; j < 3; j++)
                w2[j] -= alpha * error * Hiddens[j];
            T[3] += alpha * error;
            for (int k = 0; k < 3; k++)
                for (int i = 0; i < 8; i++)
                    w1[k][i] -= alpha * function(x + i * 0.1) *
Hiddens[k] * (1 - Hiddens[k]) * w2[k] * error;
                T[k] += alpha * Hiddens[k] * (1 - Hiddens[k]) * w2[k]
* error;
            }
            x += 0.1; E += pow(error, 3);
        }
    } while (E > E_min);
    cout << "Эталоное значение:" << setw(42) << "Полученное
значение:" << setw(28) << "Отклонение: " << endl;
    for (int i = 0; i < 100; i++)
    {
        double Result = output(x, w1, w2, T), Ethalonn = function(x
+ 8 * 0.1);
             cout << fixed << setprecision(5) << Ethalonn <<</pre>
setw(21) << Result << setw(29) << Result - Ethalonn << endl; x +=</pre>
0.1;
    }
    system("pause");
}
Результат:
Эталоное значение: Полученное значение:
                                       Отклонение:
0.20773
                                        0.01512
                 0.22284
0.19637
                 0.22284
                                        0.02647
                                        0.03832
0.18451
                 0.22283
0.17220
                 0.22283
                                        0.05063
0.15945
                 0.22282
                                        0.06337
0.14631
                 0.22282
                                        0.07650
0.13280
                 0.22281
                                        0.09001
0.11896
                 0.22280
                                        0.10384
0.10482
                 0.22279
                                        0.11797
```

0.09042	0.22279	0.13236
0.07580	0.22278	0.14698
0.06098	0.22277	0.16179
0.04601	0.22276	0.17675
0.03093	0.22276	0.19183
0.01577	0.22275	0.20698
0.00057	0.22274	0.22217
-0.01463	0.22273	0.23736
-0.02980	0.22272	0.25252
-0.04489	0.22271	0.26760
-0.05986	0.22271	0.28257
-0.07469	0.22270	0.29739
-0.08934	0.22269	0.31202
-0.10375	0.22268	0.32643
-0.11791	0.22267	0.34058
-0.13178	0.22266	0.35444
-0.14531	0.22265	0.36797
-0.15848	0.22265	0.38113
-0.17126	0.22264	0.39390
-0.18361	0.22263	0.40624
-0.19550	0.22262	0.41812
-0.20690	0.22261	0.42951
-0.21778	0.22261	0.44039
-0.22812	0.22260	0.45072
-0.23789	0.22259	0.46048
-0.24706	0.22259	0.46965
-0.25562	0.22258	0.47820
-0.26353	0.22257	0.48611
-0.27079	0.22257	0.49336
-0.27737	0.22256	0.49994
-0.28326	0.22256	0.50582
-0.28844	0.22255	0.51100
-0.29290	0.22255	0.51545
-0.29663	0.22255	0.51917
-0.29962	0.22254	0.52216
-0.30185	0.22254	0.52439
-0.30334	0.22254	0.52587
-0.30406	0.22253	0.52659
-0.30402	0.22253	0.52656
-0.30323	0.22253	0.52576
-0.30168	0.22253	0.52420
-0.29937	0.22253	0.52190
-0.29631	0.22253	0.51884
-0.29252	0.22253	0.51504
-0.28799	0.22253	0.51052
-0.28274	0.22253	0.50527
-0.27679	0.22253	0.49932
-0.27014	0.22253	0.49268

-0.26282	0.22254	0.48536
-0.25484	0.22254	0.47738
-0.24623	0.22254	0.46877
-0.23700	0.22255	0.45954
-0.22718	0.22255	0.44973
-0.21679	0.22255	0.43934
-0.20585	0.22256	0.42841
-0.19441	0.22256	0.41697
-0.18247	0.22257	0.40504
-0.17009	0.22257	0.39266
-0.15727	0.22258	0.37985
-0.14406	0.22259	0.36665
-0.13050	0.22259	0.35309
-0.11660	0.22260	0.33920
-0.10242	0.22261	0.32503
-0.08798	0.22261	0.31059
-0.07332	0.22262	0.29594
-0.05847	0.22263	0.28110
-0.04348	0.22264	0.26612
-0.02838	0.22265	0.25103
-0.01321	0.22265	0.23587
0.00199	0.22266	0.22067
0.01719	0.22267	0.20549
0.03234	0.22268	0.19034
0.04741	0.22269	0.17527
0.06237	0.22270	0.16033
0.07717	0.22271	0.14554
0.09178	0.22271	0.13094
0.10615	0.22272	0.11657
0.12027	0.22273	0.10247
0.13408	0.22274	0.08866
0.14755	0.22275	0.07519
0.16066	0.22276	0.06210
0.17337	0.22276	0.04940
0.18564	0.22277	0.03713
0.19745	0.22278	0.02533
0.20876	0.22279	0.01403
0.21956	0.22279	0.00324
0.22980	0.22280	-0.00700
0.23947	0.22281	-0.01666
0.24854	0.22282	-0.02573
0.25699	0.22282	-0.03417
0.26480	0.22283	-0.04197

Вывод: в ходе выполнения работы спроектировал линейную ИНС с использованием адаптивного шага обучения.