Prof. Amador Martin-Pizarro Übungen: Dr. Francesco Gallinaro

Modelltheorie II

Homework Sheet 7 Deadline: 19.06.2023, 14 Uhr

Exercise 1 (4 Points). Consider a sufficiently large cardinal $\kappa \geq \aleph_0$ and a strongly κ -homogeneous κ -saturated model \mathbb{U} of a complete first-order theory T with infinite models in a fixed language \mathcal{L} . It follows from Exercise 4 in the homework sheet 6 that a type p in S(A) which is coheir over C (a subset of A) admits a global extension \mathbb{P} over \mathbb{U} which is coheir over C.

- a) Show that Cb(p) is definable over C.
- b) Is \mathbb{P} definable over \mathbb{C} ?

Exercise 2 (10 Points). We work inside a sufficiently large saturated model \mathbb{U} of an ω -stable complete first-order theory T with infinite models in a fixed language \mathcal{L} .

a) Given a set of parameters C and b in \mathbb{U} , show that $b \downarrow_C b \iff b \in \operatorname{acl}(C)$.

We now consider a independent sequence $(a_n)_{n\in\mathbb{N}}$ over C, that is, $a_n \downarrow_C a_0, \ldots, a_{n-1}$ for n in \mathbb{N} .

- b) If $C \subset B$ with $B \downarrow_C \{a_n\}_{n \in \mathbb{N}}$, show that $(a_n)_{n \in \mathbb{N}}$ is also an independent sequence over B.
- c) Given indices $i_1, \ldots, i_n, j_1, \ldots, j_m$ with $\{i_1, \ldots, i_n\} \cap \{j_1, \ldots, j_m\} = \emptyset$, deduce from (a) that $\operatorname{acl}(C, a_{i_1}, \ldots, a_{i_m}) \cap \operatorname{acl}(C, a_{j_1}, \ldots, a_{j_m}) = \operatorname{acl}(C)$.

Hint: Every extension to the algebraic closure is non-forking.

d) Assume now that all a_n 's have the same strong type over C. Show that $(a_n)_{n\in\mathbb{N}}$ is indiscernible over C.

Hint: Use stationarity to show inductively that $a_{i_1}, \ldots, a_{i_n} \equiv_C a_1, \ldots, a_n$ if $i_1 < \cdots < i_n$.

Exercise 3 (6 Points). We work inside a sufficiently large saturated model \mathbb{U} of an ω -stable complete first-order theory T with infinite models in a fixed language \mathcal{L} .

a) Show that an instance $\varphi[x,a]$ with a in \mathbb{U} has Morley degree 1 if and only if there is a unique type of maximal rank containing $\varphi[x,a]$ over each set B containing a.

Consider the saturated model \mathbb{C} of the strongly minimal theory ACF₀ in the language of rings.

b) Given b_1, \ldots, b_n algebraically independent, show that the definable set

$$X = \left\{ (x_1, \dots, x_n) \in \mathbb{C}^n \mid \sum_{i=1}^n b_i \cdot x_i = 1 \right\}$$

has Morley degree 1. What is its Morley rank?

c) Let \mathbb{p} be the unique global type containing the definable set X. Show that $\mathrm{Cb}(\mathbb{p})$ is interdefinable with (b_1,\ldots,b_n) .

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.07 IM KELLER DES MATHEMATISCHEN INSTITUTS.