CMIP6 Model Documentation

Institute: IPSL

Model: IPSL-CM6A-LR Atmosphere

Doc. Generated: 2018-12-17

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	14
5	Turbulence Convection	27
6	Microphysics Precipitation	31
7	Cloud Scheme	33
8	Observation Simulation	37
9	Gravity Waves	40
10	Natural Forcing	44

1 Key Properties

Atmosphere key properties

1.1.1 Top level properties

Atmosphere key properties

1.1.1.1 Name *

Name of atmos model code

Atmosphere LMDZ5A

1.1.1.2 Keywords *

Keywords associated with atmos model code

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

The atmospheric general circulation model LMDZ5A is based on a finite-difference formulation of the primitive equations of meteorology (Sadourny and Laval, 1984) on a staggered and stretchable longitude-latitude grid (the Z of LMDZ standing for Zoom). Water vapor, liquid water and atmospheric trace species are advected with a monotonic second order finite volume scheme (Van Leer, 1977; Hourdin and Armengaud, 1999). In the vertical, the model uses a classical so-called hybrid sigma pressure coordinate. _x000D_ _x000D_ In the LMDZ5A version, (Hourdin et al, 2012) the physical parametrization are very close to that of the previous LMDZ4 version used for CMIP3. The radiation scheme is inherited from the European Center for Medium-Range Weather Forecasts. The dynamical effects of the subgrid-scale orography are parametrized according to Lott (1999). Turbulent transport in the planetary boundary layer is treated as a vertical eddy diffusion (Laval et al, 1981) with counter-gradient correction and dry convective adjustment. The surface boundary layer is treated according to Louis (1979). Cloud cover and cloud water content are computed using a statistical scheme (Bony and Emanuel, 2001). For deep convection, the LMDZ5A version uses the episodic mixing and buoyancy sorting scheme originally developed by Emanuel (1991). With respect to the previous LMDZ4 version, the number of layers has been increased from 19 to 39, with 15 levels above 20km and a top at about the same altitude as the stratospheric LMDZ4-L50 version (Lott et al, 2005). The horizontal has also changed, with an increased number of point in latitude to shift the jets poleward (Guemas and Codron 2011). At Low Resolution (LR), the LMDZ5A model has 95x96 points in latitude and longitude corresponding to a resolution of 1.875 3.75.

1.1.1.4 Model Family * Type of atmospheric model.

\boxtimes	AGCM - Atmospheric General Circulation Model
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.1.5	Basic Approximations *
Basic ap	proximations made in the atmosphere.
	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
	Hydrostatic
	Quasi-hydrostatic
	Other - please specify:
1.2.1	Resolution
Charact	teristics of the model resolution
1.2.1.1	Horizontal Resolution Name *
	string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.
Ente	er TEXT:
1.2.1.2	Canonical Horizontal Resolution *
Expression	on quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.
Ente	er TEXT:
1.2.1.3	Range Horizontal Resolution *
Range of	horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg
Ente	or TEXT:
1.2.1.4	Number Of Vertical Levels *
Number	of vertical levels resolved on the computational grid.
Ente	er INTEGER value:
1915	High Top *
Does the	atmosphere have a high-top? High-Top atmospheres have a fully resolved stratosphere with a model top e stratopause.
Selec	ct either TRUE or FALSE:
	True False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

Timestep for the dynamics in seconds

180

1.3.1.2 Timestep Shortwave Radiative Transfer

 $Time step \ for \ the \ shortwave \ radiative \ transfer \ in \ seconds.$

Enter INTEGER value:

1.3.1.3 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4.1 Orography

Characteristics of the model orography

1.4.1.1 Type *		
Type of o	rographic representation.	
	Fixed: present day	
	Fixed: modified - Provide details of modification below	
	Other - please specify:	

1.4.1.2 Modified

If the orography type is modified describe the adaptation.

Select MULTIPLE options:			
	Related to ice sheets		
	Related to tectonics		
	Modified mean		
	Modified variance if taken into account in model (cf gravity waves)		
	Other - please specify:		

1.4.1.3 Time-varying

Describe any time varying orographic change

Enter TEXT:

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.5.1.3 Regional Metrics Used

List of regional metrics of mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Grid

 $Atmosphere\ grid$

2.	1.1	1 To	p lev	el pro	perties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type * Horizontal discretisation type

Spectral
Fixed grid
Other - please specify:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Ш	Finite elements
	Finite volumes
	Finite difference
	Centered finite difference

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Select SINGLE option:

Second

	Third
	Fourth
	Other - please specify:
2.1.2.4	Horizontal Pole
Horizont	al discretisation pole singularity treatment
	Filter
	Pole rotation
	Artificial island
	Other - please specify:
2.1.2.5	Grid Type *
Horizont	al grid type
Selec	et SINGLE option:
	Gaussian
	Latitude-Longitude
	Cubed-Sphere
	Icosahedral
	Other - please specify:
$2.1.3^{-1}$	Vertical
	here discretisation in the vertical
2.1.3.1	Coordinate Type *
Type of u	vertical coordinate system
Selec	et MULTIPLE options:
	Isobaric - Vertical coordinate on pressure levels
	Sigma - Allows vertical coordinate to follow model terrain
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above
	Hybrid pressure
	Vertically lagrangian
	Other - please specify

3 Dynamical Core

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.3	Timestepping	Type	*
0.1.1.0	Timesocpping	- ., pc	

Temperature

3.1.1.3	Imestepping Type			
$Timestep_{j}$	ping framework type			
	Adams-Bashforth			
	Explicit			
	Implicit			
	Semi-implicit			
	Leap frog			
	Multi-step			
	Runge Kutta fifth order			
	Runge Kutta second order			
	Runge Kutta third order			
	Other - please specify:			
3.1.1.4	3.1.1.4 Prognostic Variables *			
List of th	e model prognostic variables			
	Surface pressure			
	Wind components			
	Divergence/curl			

	Potential temperature				
	Total water				
	Water vapour				
	Water liquid				
	Water ice				
	Total water moments				
	Clouds				
	Radiation				
	Other - please specify:				
3.2.1	Top Boundary				
Type of	boundary layer at the top of the model				
3.2.1.1	Top Boundary Condition *				
Top boun	dary condition				
	Sponge layer				
	Radiation boundary condition				
	Other - please specify:				
3.2.1.2	Top Heat *				
Top boun	dary heat treatment				
Ente	r TEXT:				
3.2.1.3	Top Wind *				
Top boun	dary wind treatment				
Ente	r TEXT:				
3.3.1	Lateral Boundary				
Type of	lateral boundary condition (if the model is a regional model)				
3.3.1.1	Condition				
Type of le	ateral boundary condition				
Selec	et SINGLE option:				
	Sponge layer				

	Radiation boundary condition
	Other - please specify:
3.4.1 Г	Diffusion Horizontal
	al diffusion scheme
110,000,00	ar agg actor contents
3.4.1.1	Scheme Name
Horizonta	l diffusion scheme name
Iterat	ed Laplacian
3.4.1.2	Scheme Method *
Horizontal	l diffusion scheme method
	Iterated Laplacian
	Bi-harmonic
	Other - please specify:
3.4.2 T	cracers
Tracer a	dvection scheme
3.4.2.1	Scheme Name
Tracer adv	vection scheme name
	Heun
\boxtimes	Roe and VanLeer
	Roe and Superbee
	Prather
	UTOPIA
Ш	Other - please specify:
3.4.2.2	Scheme Characteristics *
Tracer adv	vection scheme characteristics
	Eulerian
	Modified Euler
	Lagrangian
	Semi-Lagrangian

	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
	Conserved Quantities *
Tracer add	vection scheme conserved quantities
	Dry mass
	Tracer mass
	Other - please specify:
	Conservation Method *
Tracer adv	vection scheme conservation method
Select	t SINGLE option:
	Conservation fixer
	Priestley algorithm
	Other - please specify:
0.40.7	T
	Momentum
Moment	um advection scheme
3.4.3.1	Scheme Name
Momentur	n advection schemes name
Select	t SINGLE option:
	VanLeer
	Janjic
	SUPG (Streamline Upwind Petrov-Galerkin)
	` - ,

3.4.3.2	Scheme Characteristics *
Momentu	m advection scheme characteristics
	2nd order
	4th order
	Cell-centred
	Staggered grid
	Semi-staggered grid
	Other - please specify:
3.4.3.3	Scheme Staggering Type *
	m advection scheme staggering type
	Arakawa B-grid
\boxtimes	Arakawa C-grid
	Arakawa D-grid
	Arakawa E-grid
	Other - please specify:
3.4.3.4	Conserved Quantities *
	m advection scheme conserved quantities
	Angular momentum
	Horizontal momentum
\boxtimes	Enstrophy
	Mass
	Total energy
	Vorticity
	Other - please specify:
3.4.3.5	Conservation Method *
Momentu	m advection scheme conservation method
Selec	t SINGLE option:
	Conservation fixer
	Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.1.2 Overview

Overview of characteristics of the atmosphere radiation process in atmos model.

Enter TEXT:

4.1.1.3 Aerosols *

Aerosols whose radiative effect is taken into account in the atmosphere model		
	Sulphate	
	Nitrate	
	Sea salt	
	Dust	
	Ice	
	Organic	
\boxtimes	BC - Black carbon / soot	
	SOA - Secondary organic aerosols	
\boxtimes	POM - Particulate organic matter	
	Polar stratospheric ice	
	NAT - Nitric acid trihydrate	
	NAD - Nitric acid dihydrate	
	STS - Supercooled ternary solution aerosol particle	
	Other - please specify:	

4.2.1 Shortwave Radiation

 $Properties \ of \ the \ shortwave \ radiation \ scheme$

4.2.1.1 Name		
Commonly used name for the shortwave radiation scheme		
Enter TEXT:		
4.2.1.2 Spectral Integration *		
Shortwave radiation scheme spectral integration	gration	
Wide-band model		
Correlated-k		
Exponential sum fitting		
Other - please specify:		
4.2.1.3 Transport Calculation *	¢	
Shortwave radiation transport calculation	methods	
Select MULTIPLE options:		
Two-stream		
Layer interaction		
Bulk - Highly parameterised n	nethods that use bulk expressions	
Adaptive - Exploits spatial and	d temporal correlations in optical characteristics	
Multi-stream		
Other - please specify:		
4.2.1.4 Spectral Intervals *		
Shortwave radiation scheme number of sp	pectral intervals	
2		
4.2.1.5 General Interactions *		
General radiative interactions e.g. with a	erosols, cloud ice and cloud water	
Select MULTIPLE options:		
Emission/absorption,		
Scattering		
Other - please specify:		

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a $CFC-12$ ec concentration
concentra	${ m HFC}\text{-}134a$ eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC}\text{-}134a$ equivalence tion
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4.3.1.2 Ozone dep model	ODS oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone dep model	
Ozone dep model	oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone dep model	oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere t MULTIPLE options:
Ozone dep model	t MULTIPLE options: CFC-12 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC HCFC-141b - HCFC

	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	urinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC

	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 S	hortwave Cloud Ice
Shortwar	ve radiative properties of ice crystals in clouds
4.4.1.1 l	Physical Representation *
Physical re	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area ees
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4 4 1 0 4	O-4:1 M-41 d- *
	Optical Methods * ethods applicable to cloud ice crystals in the shortwave radiation scheme
	: MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

Physical representation of cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii Droplet size distribution Liquid water path - Integrated liquid water path through the cloud kg m-2 Other - please specify: 4.5.1.2 Optical Methods * Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Geometric optics - For non-spherical particles Mie theory - For spherical particles Other - please specify: 4.6.1 Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 4.6.1.1 Cloud Inhomogeneity * Method for taking into account horizontal cloud inhomogeneity Select SINGLE option: Monte Carlo Independent Column Approximation - McICA Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010 Analytic Other - please specify: 4.7.1 Shortwave Aerosols Shortwave radiative properties of aerosols 4.7.1.1 Physical Representation * Physical representation of aerosols in the shortwave radiation scheme

4.5.1.1 Physical Representation *

Select MULTIPLE options:

	Number concentration	
	Effective radii	
	Size distribution	
	Asymmetry	
	Aspect ratio	
	Mixing state - For shortwave radiative interaction	
	Other - please specify:	
4.7.1.2	Optical Methods *	
Optical m	ethods applicable to aerosols in the shortwave radiation scheme	
Selec	t MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.8.1 I	Longwave Radiation	
Properti	es of the longwave radiation scheme	
4.8.1.1 Name		
	y used name for the longwave radiation scheme.	
Ente	TEXT:	
4.8.1.2	Spectral Integration *	
	radiation scheme spectral integration	
	Wide-band model	
	Correlated-k	
	Exponential sum fitting	
	Other - please specify:	

4.8.1.3	Transport Calculation *
Longwave	radiation transport calculation methods
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
6	
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 I	Longwave GHG
Represer	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexion	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalence	${ m CFC-12\ eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ec concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion

	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
4.9.1.2 Ozone der model	ODS pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	t MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other \ flour in a ted \ gases \ whose \ longwave \ radiative \ effects \ are \ explicitly \ taken \ into \ account \ in \ the \ atmosphere \ model$

Select MULTIPLE options:

	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	${ m HFC} ext{-}143a$ - ${ m HFC}$
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	${ m HFC} ext{-}43 ext{-}10{ m mee}$ - ${ m HFC}$
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.10.1 Longwave Cloud Ice	
Longwave radiative properties of ice crystals in clouds	
4.10.1.1 Physical Reprenstation *	

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:

typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns					
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes					
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res					
	Ice water path - Integrated ice water path through the cloud kg m-2 $$					
	Crystal asymmetry					
	Crystal aspect ratio					
	Effective crystal radius					
	Other - please specify:					
4.10.1.2	Optical Methods *					
$Optical\ m$	ethods applicable to cloud ice crystals in the longwave radiation scheme					
Select	t MULTIPLE options:					
	T-matrix - For non-spherical particles					
	Geometric optics - For non-spherical particles					
	Finite difference time domain (FDTD) - For non-spherical particles					
	Mie theory - For spherical particles					
	Anomalous diffraction approximation					
	Other - please specify:					
4.11.1	Longwave Cloud Liquid					
Longwav	e radiative properties of liquid droplets in clouds					
4.11.1.1	Physical Representation *					
Physical r	epresentation of cloud liquid droplets in the longwave radiation scheme					
Select	t MULTIPLE options:					
	Cloud droplet number concentration - CDNC					
	Effective cloud droplet radii					
	Droplet size distribution					
	Liquid water path - Integrated liquid water path through the cloud kg m-2					
	Other - please specify:					

4.11.1.2	Optical Methods *					
$Optical\ m$	ethods applicable to cloud liquid droplets in the longwave radiation scheme					
Select	t MULTIPLE options:					
	Geometric optics - For non-spherical particles					
	Mie theory - For spherical particles					
	Other - please specify:					
4.12.1	Longwave Cloud Inhomogeneity					
Cloud in	homogeneity in the longwave radiation scheme					
4.12.1.1	Cloud Inhomogeneity *					
Method fo	r taking into account horizontal cloud inhomogeneity					
Select	t SINGLE option:					
	Monte Carlo Independent Column Approximation - McICA					
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010					
	☐ Analytic					
	Other - please specify:					
4.13.1	Longwave Aerosols					
Longwav	ne radiative properties of aerosols					
4.13.1.1	Physical Representation *					
Physical r	representation of aerosols in the longwave radiation scheme					
Select	t MULTIPLE options:					
	Number concentration					
	Effective radii					
	Size distribution					
	Asymmetry					
	Aspect ratio					
	Mixing state - For shortwave radiative interaction					
	Other - please specify:					

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select	Select MULTIPLE options:				
	T-matrix - For non-spherical particles				
	Geometric optics - For non-spherical particles				
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$				
	Mie theory - For spherical particles				
	Anomalous diffraction approximation				
	Other - please specify:				

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

Enter TEXT:

5.1.1.2 Overview

Overview of atmosphere convective turbulence and clouds in atmos model.

Enter TEXT:

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Boundary layer turbulence scheme name

Selec	t SINGLE option:			
	Mellor-Yamada			
	Holtslag-Boville			
	EDMF - Combined Eddy Diffusivity Mass-Flux			
	Other - please specify:			
5.2.1.2	Scheme Type *			
Boundary	layer turbulence scheme type			
	TKE prognostic			
\boxtimes	TKE diagnostic			
	TKE coupled with water			
	Vertical profile of Kz			
	Non-local diffusion			
	Monin-Obukhov similarity			
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land			

	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.1.3	Closure Order *
Boundary	layer turbulence scheme closure order
Ente	r INTEGER value:
5.2.1.4	Counter Gradient *
Uses boun	dary layer turbulence scheme counter gradient
\boxtimes	True
5.3.1 I	Deep Convection
Properti	es of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
Emai	nuel (91-93)
5.3.1.2	Scheme Type *
	vection scheme type
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep con	vection scheme method
\boxtimes	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-

	$\label{thm:thm:mass} \mbox{TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer}$			
	Other - please specify:			
5.3.1.4	Processes *			
Physical p	processes taken into account in the parameterisation of deep convection			
	Vertical momentum transport			
	Convective momentum transport			
	Entrainment			
	Detrainment			
	Penetrative convection			
	Updrafts			
	Downdrafts			
	Radiative effect of anvils			
	Re-evaporation of convective precipitation			
	Other - please specify:			
	Microphysics			
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of rometeor and water vapor from updrafts			
Selec	t MULTIPLE options:			
	Tuning parameter based			
	Single moment			
	Two moment			
	Other - please specify:			
5.4.1 \$	Shallow Convection			
Propertie	es of the shallow convection scheme			
5.4.1.1	Scheme Name			
Shallow co	onvection scheme name			
Ente	· TEXT:			

5.4.1.2 Scheme Type *				
Shallow o	convection scheme type			
Selec	et MULTIPLE options:			
	Mass-flux			
	Cumulus-capped boundary layer			
	Other - please specify:			
5.4.1.3	Scheme Method *			
Shallow o	convection scheme method			
	Same as deep (unified)			
	Included in boundary layer turbulence			
	${\bf Separate\ diagnosis\ -\ Deep\ and\ Shallow\ convection\ schemes\ use\ different\ thermodynamic\ closure\ criteria}$			
	Other - please specify:			
5.4.1.4	Processes *			
Physical	processes taken into account in the parameterisation of shallow convection			
Selec	et MULTIPLE options:			
	Convective momentum transport			
	Entrainment			
	Detrainment			
	Penetrative convection			
	Re-evaporation of convective precipitation			
	Other - please specify:			
5.4.1.5 Microphysics				
Microphy	sics scheme for shallow convection			
Selec	et MULTIPLE options:			
	Tuning parameter based			
	Single moment			
	Two moment			
	Other - please specify:			

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Hourdin et al (2006)

6.2.1.2 Hydrometeors *

Precipitating	ny arometeors	taken	into	account	in	tne	large	scale	precipitation	scneme	

	rain
--	------

L] Snow

Hail

\Box Graupel

\Box	Other -	please	specify
--------	---------	--------	---------

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

LeTreut and Li (1991)

Large scale	e cloud microphysics processes
Select	MULTIPLE options:
	Mixed phase
	Cloud droplets
	Cloud ice
	Ice nucleation
	Water vapour deposition
	Effect of raindrops
	Effect of snow
	Effect of graupel

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

7	.1.1	Top	level	pro	perties

Characteristics of the cloud scheme

7	1	1	1	N	la	m	6

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3 Scheme Type *

 $Describes\ the\ type(s)\ of\ cloud\ scheme:\ prognostic,\ diagnostic,\ other.$

Select MULTIPLE options:				
	Prognostic			
	Diagnostic			
	Other - please specify:			

7.1.1.4 Uses Separate Treatment *

 $Description \ for \ when \ different \ cloud \ schemes \ are \ used \ for \ different \ types \ of \ clouds \ e.g. \ convective, \ stratiform \ and \ boundary \ layer)$

Yes

7.1.1.5 Processes *

Processes included in the cloud scheme

Entrainment
Detrainment
Bulk cloud
Other - please specify:

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:
	Cloud amount
	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
Atmosphe	re components that are linked to the cloud scheme
Selec	t MULTIPLE options:
	Atmosphere_radiation
	$Atmosphere_microphysics_precipitation$
	Atmosphere_turbulence_convection
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2.1	Optical Cloud Properties
Optical o	cloud properties
7.2.1.1	Cloud Overlap Method
$Method\ fo$	r taking into account overlapping of cloud layers
Selec	t SINGLE option:
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
П	Other - please specify:

7	2	1.2	2 Cloud	Inhomo	geneity
	. 4		. Cioud		5 CHCH V

Method for taking into account cloud inhomogeneity

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

Sub-grid scale water distribution 7.3.1.1 Type * Sub-grid scale water distribution type Prognostic Diagnostic 7.3.1.2 Function Name * $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ name$ Generalyzed log normal 7.3.1.3 Function Order * $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ type$ $\mathbf{2}$ 7.3.1.4 Convection Coupling * Sub-grid scale water distribution coupling with convection Coupled with deep Coupled with shallow Not coupled with convection 7.4.1 Sub Grid Scale Ice Distribution $Sub\text{-}grid\ scale\ ice\ distribution$ 7.4.1.1 Type * Sub-grid scale ice distribution type Select SINGLE option:

Prognostic
Diagnostic

$Sub\mbox{-}grid\ scale\ ice\ distribution\ function\ name$
Enter TEXT:
7.4.1.3 Function Order *
Sub-grid scale ice distribution function type
Enter INTEGER value:
7.4.1.4 Convection Coupling *
Sub-grid scale ice distribution coupling with convection
Select MULTIPLE options:
Coupled with deep
Coupled with shallow
Not coupled with convection

7.4.1.2 Function Name *

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

Commonly used name for the observation simulation in atmos model.

Enter TEXT:

8.1.1.2 Overview

Overview of characteristics of observation simulation in atmos model.

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

Cloud simulator ISSCP top height estimation methodUo

No adjustment

IR brightness

Visible optical depth

Other - please specify:

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction

Lowest altitude level
Highest altitude level
Other - please specify:

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1	Run Configuration
Cloud sin	mulator COSP run configuration
\boxtimes	Inline
	Offline
	Other - please specify:
8.3.1.2	Number Of Grid Points
Cloud sin	mulator COSP number of grid points
9026	3
8.3.1.3	Number Of Sub Columns
Cloud sin	$mulator\ COSP\ number\ of\ sub-cloumns\ used\ to\ simulate\ sub-grid\ variability$
20	
8.3.1.4	Number Of Levels
Cloud sin	mulator COSP number of levels
39	
8.4.1	Radar Inputs
Charac	teristics of the cloud radar simulator
8.4.1.1	Frequency
Cloud sin	$mulator\ radar\ frequency\ (Hz)$
94	
8.4.1.2	Type
Cloud sin	mulator radar type
	Surface
	Space borne
	Other - please specify:
8.4.1.3	Gas Absorption
Cloud sin	mulator radar uses gas absorption
\boxtimes	True False

8.4.1.4 Effective Radius Cloud simulator radar uses effective radius				
	True			
	Lidar Inputs eristics of the cloud lidar simulator			
8.5.1.1	Ice Types			
Cloud sim	ulator lidar ice type			
	Ice spheres			
	Ice non-spherical			
	Other - please specify:			
	Overlap vulator lidar overlap			
Selec	t MULTIPLE options:			
	Max			
	Random			
	Other - please specify:			

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources\ in\ atmos\ model.$

Enter TEXT:

9.1.1.3 Sponge Layer *	
Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.	
Select SINGLE option:	
Rayleigh friction	
Diffusive sponge layer	
Other - please specify:	

9.1.1.4 Background *

Background wave distribution

Selec	t SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify

9.1.1.5 Subgrid Scale Orography *

Subgrid	scale	orography	effects	taken	into	account.

Ш	Effect on dra	ag
	Effect on lift	ing

	Enhanced topography - To enhance the generation of long waves in the atmosphere $$
	Other - please specify:
9.2.1	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
Commonl	y used name for the orographic gravity wave scheme
Enter	r TEXT:
9.2.1.2	Source Mechanisms *
Orographi	ic gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orographi	ic gravity wave calculation method
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orographi	ic gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.1.5	Dissipation Scheme *
Orographi	c gravity wave dissipation scheme
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1 N	Non Orographic Gravity Waves
Gravity	waves generated by non-orographic processes.
9.3.1.1	Name
	y used name for the non-orographic gravity wave scheme
Enter	· TEXT:
9.3.1.2	Source Mechanisms *
Non-orogr	aphic gravity wave source mechanisms
	Convection
	Precipitation
	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-orogr	aphic gravity wave calculation method
	Spatially dependent
	Temporally dependent
9.3.1.4	Propagation Scheme *
Non-orogr	aphic gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Other - please specify:

Non-orographic gravity wave assipation scheme
Select SINGLE option:
П

9.3.1.5 Dissipation Scheme *

	•
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
П	Other - please specify:

10 Natural Forcin	g
-------------------	---

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ natural\ forcing\ in\ atmos\ model.$

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper re, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify:

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

Time adaptation of the solar constant.

Fixed
Transient

If the solar constant is fixed, enter the value of the solar constant (W m -2).
1366.0896
10.3.1.3 Transient Characteristics
$Solar\ constant\ transient\ characteristics\ (W\ m\text{-}2)$
Enter TEXT:
10.4.1 Orbital Parameters
Orbital parameters and top of atmosphere insolation characteristics
10.4.1.1 Type *
Type of orbital parameter
Fixed
Transient
10.4.1.2 Fixed Reference Date
Reference date for fixed orbital parameters (yyyy)
2000
10.4.1.3 Transient Method
Description of transient orbital parameters
Enter TEXT:
10.4.1.4 Computation Method
Method used for computing orbital parameters.
Berger 1978
Laskar 2004
Other - please specify:
10.5.1 Insolation Ozone
Impact of solar insolation on stratospheric ozone
10.5.1.1 Solar Ozone Impact *
Does top of atmosphere insolation impact on stratospheric ozone?
☐ False

10.3.1.2 Fixed Value

10.6.1 Volcanoes Treatment

 $Characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere$

10.6.1.1 Volcanoes Characteristics *

 $Description\ of\ how\ the\ volcanic\ forcing\ is\ taken\ into\ account\ in\ the\ atmosphere.$

Enter TEXT:

10.6.1.2 Volcanoes Implementation *

 $How\ volcanic\ effects\ are\ modeled\ in\ the\ atmosphere.$

Select SINGLE option:	
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please specify: