10/10/2019
Regression & Classification:
Logistic Regression:
3 speedes: SP1 SP2 SP3 Log P(SP1/X) = XTB1.
$\log \frac{P(sP2/\pi)}{P(sP3/\pi)} = 2 \overline{\beta}_2.$
$\frac{\int \log P(SP1 X)}{P(SP2 X)} \Rightarrow we com get this from above two.$

Log
$$\frac{P(SP1|n)}{P(SP3|n)} = x^T\beta_1 \Rightarrow P(SP1|n)$$

$$= P(SP3|n) \exp(x^T\beta_1)$$

$$= P(SP3|n) \exp(x^T\beta_2)$$

$$\Rightarrow P(SP3|n) = P(SP3|n) \exp(x^T\beta_2)$$

$$\Rightarrow P(SP3|n) + P(SP3|n) + P(SP3|n)$$

$$= 1$$

$$\Rightarrow P(SP3|n) = 1$$

1. P(SP3/x)= 1+= exp(2TBi)

for multinomial logistic fregression, use negative log likeliherd as optimizer.

In the Trish dedaset, likelihurd would be a trinomial distribution, would be a trinomial distribution, $P = (P_1, P_2, P_3)$, where each peobabilities Pi tepresent probabilities for species i, i=1,2,3.

Bookstrap Statistics:

- $(1) \times_1, \times_2, \dots, \times_n \text{ i.i.d } N(\mu, 1)$ $\overline{\chi} \longrightarrow N(\mu, \frac{1}{m}).$
- 2) ×1, ..., ×n i.i.d f (), such Lhad, E(ri)= el, V(xi)=1, & i.

what is the sampling distribution of x? Ho: U= llo VS Ha: ll + llo C.I of U Ly for both, we need sompling distribution of \overline{x} . Then from CLT, If n > 00 (i.e. n is large) then x opprox n (u, In) Mode: x1, x2, --, xn ~ Exp (7) X Gamma (nz,n) $E(X) = \frac{u}{uV} = y$

Let, X1, --, Xn is F(), E(x)=11, $V(x)=6^2<\infty$, \overline{X} \sim $G_{1n}()$, Define: X1, --, ^Xn v F(). F(x) = P[x < x]. Emperical CDF: $F_n(x) = \frac{1}{n} \sum_{i=1}^{n} T(x_i \leq x).$ =(# Xi <x)/n. Let, $\forall i = I(x_i \leq x_i)$. yind Bornoulli (P). where, $P = P(x; \leq x)$.

Hence, we can say that, $F_n(x)$ is MLE of $F(x)$. Simulate $(x_1^{\dagger}, x_2^{\dagger},, x_n^{\dagger}) \leftarrow F_n(x)$
estimate x*
Xi, X2,, XM Draw histogram of X*
Gin # asymp.
Bootstroop Preocess.
De are just using resampling Lechnique with SRSWR.