Numerical Analysis

Lecture2: Solutions of Equations in One Variable

Instructor: Prof. Guanding Yu Zhejiang University

Outline

- The Root-Finding Problem
- 2 Newton's Method
- 3 Error Analysis for Iterative Methods

Review of Calculus

Rolle's Theorem

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If f(a) = f(b), then a number c in (a, b) exists with f'(c) = 0.

Review of Calculus

Mean Value Theorem

If $f \in C[a,b]$ and f is differentiable on (a,b), then a number c in (a,b) exists with

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Review of Calculus

Intermediate Value Theorem

If $f \in C[a, b]$ and K is any number between f(a) and f(b), then there exists a number c in (a, b) for which f(c) = K.

The Root-Finding Problem

The Root-Finding problem

• This process involves finding a root, or solution, of an equation of the form

$$f(x) = 0$$

for a given function f.

• A root of this equation is also called a zero of the function f.

The Bisection Method

Assumptions

- Suppose $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$.
- By the IVT, there exists an x in (a, b) with f(x) = 0.
- We assume for simplicity that the root in this interval is unique.

Solution - The Bisection Method

• Divide the interval [a, b] by computing the midpoint

$$p = (a+b)/2$$

- If f(p) has same sign as f(a), consider new interval [p, b].
- If f(p) has same sign as f(b), consider new interval [a, p].
- Repeat until interval small enough to approximate x well.

The Bisection Method

The Bisection Method

Algorithm

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .)
 $FP = f(p)$.

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then OUTPUT (p) ; (Procedure completed successfully.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .)
 $FA = FP$
else set $b = p$. (FA is unchanged.)

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

Convergence

Theorem

Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq \frac{b-a}{2^n}, \text{ when } n\geq 1.$$

Proof

Convergence

Theorem

Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq \frac{b-a}{2^n}, \text{ when } n\geq 1.$$

Proof

• For each $n \ge 1$, we have

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a)$$
 and $p \in (a_n, b_n)$.

Convergence

Theorem

Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq \frac{b-a}{2^n}, \text{ when } n\geq 1.$$

Proof

• For each $n \ge 1$, we have

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a)$$
 and $p \in (a_n, b_n)$.

• Since $p_n = \frac{1}{2}(a_n + b_n)$ for all $n \ge 1$, it follows that

$$|p_n - p| \le \frac{1}{2}(b_n - a_n) = \frac{b - a}{2^n}.$$

Rate of Convergence

Theorem

Suppose that $f \in C[a,b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq \frac{b-a}{2^n}, \text{ when } n\geq 1.$$

Theorem

The sequence $\{p_n\}_{n=1}^{\infty}$ converges to p with rate of convergence $O(1/2^n)$:

$$p_n = p + O\left(\frac{1}{2^n}\right).$$

Remarks

Remarks

- The Bisection Method has a number of significant drawbacks.
 - 1 It is very slow to converge in that N may be quite large before $|p p_N|$ becomes sufficiently small.
 - It is possible that a good intermediate approximation may be inadvertently discarded.
- It will always converge to a solution however and, for this reason, is often used to provide a good initial approximation for a more efficient procedure.

Example 1

Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1, 2], and use the Bisection method to determine an approximation to the root that is accurate to at least within 10^{-4} .

n	a_n	b_n	p_n	$f(p_n)$
1	1.0	2.0	1.5	2.375
2	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

The Fixed-Point Problem

The Root-Finding Problem

Given a function f(x) where $a \le x \le b$, find values p such that

$$f(p) = 0$$

The Fixed-Point Problem

Given such a function, f(x), we now construct an auxiliary function g(x) such that

$$p = g(p)$$

whenever f(p) = 0.

- This construction is not unique.
- The problem of finding p such that p = g(p) is known as the fixed point problem.

The Fixed-Point Problem

A Fixed Point

If g is defined on [a, b] and g(p) = p for some $p \in [a, b]$, then the function g is said to have the fixed point p in [a, b].

Ex: Determine any fixed points of the function $g(x) = x^2 - 2$.

Theorem (Existence of Fixed Points)

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then the function g has a fixed point in [a,b].

Theorem (Existence of Fixed Points)

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then the function g has a fixed point in [a,b].

Proof

Theorem (Existence of Fixed Points)

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then the function g has a fixed point in [a,b].

Proof

• If g(a) = a or g(b) = b, the existence of a fixed point is obvious.

Theorem (Existence of Fixed Points)

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then the function g has a fixed point in [a,b].

Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- If not, then it must be true that g(a) > a and g(b) < b.

Theorem (Existence of Fixed Points)

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then the function g has a fixed point in [a,b].

Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- If not, then it must be true that g(a) > a and g(b) < b.
- Define h(x) = g(x) x; h is continuous on [a, b] and, moreover,

$$h(a) = g(a) - a > 0,$$
 $h(b) = g(b) - b < 0.$

Theorem (Existence of Fixed Points)

If $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$ then the function g has a fixed point in [a,b].

Proof

- If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
- If not, then it must be true that g(a) > a and g(b) < b.
- Define h(x) = g(x) x; h is continuous on [a, b] and, moreover,

$$h(a) = g(a) - a > 0,$$
 $h(b) = g(b) - b < 0.$

• The IVT implies that there exists $p \in (a, b)$ for which h(p) = 0.

Theorem (Uniqueness of Fixed Points)

Let $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$. Further if g'(x) exists on [a,b] and

$$|g'(x)| \le k < 1, \forall x \in [a, b],$$

then the function g has a unique fixed point p in [a,b].

Proof

Theorem (Uniqueness of Fixed Points)

Let $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$. Further if g'(x) exists on [a,b] and

$$|g'(x)| \le k < 1, \forall x \in [a, b],$$

then the function g has a unique fixed point p in [a,b].

Proof

• Suppose that p and q are both fixed point in [a, b] with $p \neq q$.

Theorem (Uniqueness of Fixed Points)

Let $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$. Further if g'(x) exists on [a,b] and

$$|g'(x)| \le k < 1, \forall x \in [a, b],$$

then the function g has a unique fixed point p in [a,b].

Proof

- Suppose that p and q are both fixed point in [a, b] with $p \neq q$.
- By the MVT, a number ξ exists between p and q in [a,b] with

$$|p-q| = |g(p) - g(q)| = |g'(\xi)||p-q|$$

 $\leq k|p-q| < |p-q|$

which is a contradiction

Theorem (Uniqueness of Fixed Points)

Let $g \in C[a,b]$ and $g(x) \in [a,b]$ for all $x \in [a,b]$. Further if g'(x) exists on [a,b] and

$$|g'(x)| \le k < 1, \forall x \in [a, b],$$

then the function g has a unique fixed point p in [a,b].

Proof

- Suppose that p and q are both fixed point in [a, b] with $p \neq q$.
- ullet By the MVT, a number ξ exists between p and q in [a,b] with

$$|p-q| = |g(p) - g(q)| = |g'(\xi)||p-q|$$

 $\leq k|p-q| < |p-q|$

which is a contradiction

• Hence, p = q and the fixed point in [a, b] is unique.

A Method to Solve the Fixed-Point Problem

• Choose an initial approximation p_0 and generate the sequence $\{p_n\}_{n=0}^{\infty}$ by letting $p_n = g(p_{n-1})$, for each $n \ge 1$.

A Method to Solve the Fixed-Point Problem

- Choose an initial approximation p_0 and generate the sequence $\{p_n\}_{n=0}^{\infty}$ by letting $p_n = g(p_{n-1})$, for each $n \ge 1$.
- If the sequence converges to p and g is continuous, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p),$$

and a solution to x = g(x) is obtained.

A Method to Solve the Fixed-Point Problem

- Choose an initial approximation p_0 and generate the sequence $\{p_n\}_{n=0}^{\infty}$ by letting $p_n = g(p_{n-1})$, for each $n \ge 1$.
- If the sequence converges to p and g is continuous, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p),$$

and a solution to x = g(x) is obtained.

• This technique is called fixed-point iteration.

Fixed-Point Algorithm

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

```
Step 1 Set i = 1.
```

Step 2 While
$$i \le N_0$$
 do Steps 3–6.

Step 3 Set
$$p = g(p_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_0| < TOL$$
 then OUTPUT (p) ; (The procedure was successful.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Example 1

Find the positive root for the quadratic equation:

$$x^2 - x - 1 = 0$$

Solution 1

Convert the quadratic equation $f(x) = x^2 - x - 1 = 0$ to a fixed-point problem.

• Transpose the equation f(x) = 0 for variable x:

$$x^{2} - x - 1 = 0$$

$$\Rightarrow x^{2} = x + 1$$

$$\Rightarrow x = \pm \sqrt{x + 1}$$

• The constructed fixed-point problem:

$$g(x) = \sqrt{x+1}$$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1: $x_{n+1} = g(x_n) = \sqrt{x_n + 1}$ with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 1:
$$x_{n+1} = g(x_n) = \sqrt{x_n + 1}$$
 with $x_0 = 0$

Solution 2

Convert the quadratic equation $f(x) = x^2 - x - 1 = 0$ to a fixed-point problem.

• Transpose the equation f(x) = 0 for variable x:

$$x^{2} - x - 1 = 0$$

$$\Rightarrow x^{2} = x + 1$$

$$\Rightarrow x = 1 + \frac{1}{x}$$

• The constructed fixed-point problem:

$$g(x) = 1 + \frac{1}{x}$$

Example 2

Find the root for the equation:

$$x^3 + 4x^2 - 10 = 0$$

Solutions: x = g(x) with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x=g_2(x)=\sqrt{\frac{10}{x}}-4x$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

Theorem (Fixed-Point Theorem)

Let $g \in C[a,b]$ with $g(x) \in [a,b]$ for all $x \in [a,b]$. Let g'(x) exist on (a,b) with

$$|g'(x)| \le k < 1, \forall x \in [a, b].$$

Then for any point p_0 in [a,b], the sequence defined by

$$p_n = g(p_{n-1}), n \ge 1$$

will converge to the unique fixed point p in [a, b].

Proof

• By the Uniqueness Theorem, a unique fixed point exists in [a, b].

Theorem (Fixed-Point Theorem)

Let $g \in C[a,b]$ with $g(x) \in [a,b]$ for all $x \in [a,b]$. Let g'(x) exist on (a,b) with

$$|g'(x)| \le k < 1, \forall x \in [a, b].$$

Then for any point p_0 in [a,b], the sequence defined by

$$p_n = g(p_{n-1}), n \ge 1$$

will converge to the unique fixed point p in [a, b].

- By the Uniqueness Theorem, a unique fixed point exists in [a, b].
- Since g maps [a, b] into itself, the sequence $\{p_n\}_{n=0}^{\infty}$ is defined for all $n \ge 0$ and $p_n \in [a, b]$ for all n.

Proof

• Using the MVT and the assumption that $|g'(x)| \le k < 1, \forall x \in [a, b]$, we have

$$|p_{n} - p| = |g(p_{n-1}) - g(p)| = |g'(\xi)||p_{n-1} - p|$$

$$\leq k|p_{n-1} - p|$$

$$\leq k^{2}|p_{n-2} - p|$$

$$\leq k^{n}|p_{0} - p|$$

where $\xi \in (a, b)$.

78

Proof

• Using the MVT and the assumption that $|g'(x)| < k < 1, \forall x \in [a, b]$, we have

$$|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi)||p_{n-1} - p|$$

$$\leq k|p_{n-1} - p|$$

$$\leq k^2|p_{n-2} - p|$$

$$\leq k^n|p_0 - p|$$

where $\xi \in (a, b)$.

• Since k < 1,

$$\lim_{n\to\infty}|p_n-p|\leq \lim_{n\to\infty}k^n|p_0-p|=0,$$

and $\{p_n\}_{n=0}^{\infty}$ converges to p.

Corollary (Corrollary to the Fixed-Point Theorem)

If g satisfies the hypothesis of the Theorem, then

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|.$$

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k^n |p_1 - p_0|$$

Corollary (Corrollary to the Fixed-Point Theorem)

If g satisfies the hypothesis of the Theorem, then

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|.$$

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k^n |p_1 - p_0|$$

• Thus, for
$$m > n \ge 1$$

$$|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - p_{m-2} + \dots + p_{n+1} - p_n|$$

$$\le |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \dots + |p_{n+1} - p_n|$$

$$\le k^{m-1}|p_1 - p_0| + k^{m-2}|p_1 - p_0| + \dots + k^n|p_1 - p_0|$$

$$\le k^n (1 + k + k^2 + \dots + k^{m-n-1})|p_1 - p_0|.$$

Corollary (Corrollary to the Fixed-Point Theorem)

If g satisfies the hypothesis of the Theorem, then

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|.$$

- $|p_{n+1}-p_n|=|g(p_n)-g(p_{n-1})|\leq k^n|p_1-p_0|$
- Thus, for $m > n \ge 1$ $|p_m - p_n| = |p_m - p_{m-1} + p_{m-1} - p_{m-2} + \dots + p_{n+1} - p_n|$ $\le |p_m - p_{m-1}| + |p_{m-1} - p_{m-2}| + \dots + |p_{n+1} - p_n|$ $\le k^{m-1}|p_1 - p_0| + k^{m-2}|p_1 - p_0| + \dots + k^n|p_1 - p_0|$ $\le k^n (1 + k + k^2 + \dots + k^{m-n-1})|p_1 - p_0|.$
- Since $\lim_{m\to\infty} p_m = p$, we obtain $|p-p_n| = \lim_{m\to\infty} |p_m-p_n| \le k^n (1+k+k^2+\cdots+k^{m-n-1})|p_1-p_0| = \frac{k^n}{1-k}|p_1-p_0|$.

Solutions: x = g(x) with $x_0 = 1.5$

$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 Does not Converge

$$x = g_2(x) = \sqrt{\frac{10}{x} - 4x}$$

Does not Converge

$$x = g_3(x) = \frac{1}{2} \sqrt{10 - x^3}$$

Converges after 31 Iterations

$$x=g_4(x)=\sqrt{\frac{10}{4+x}}$$

Converges after 12 Iterations

$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Converges after 5 Iterations

Question

How to construct a fixed-point problem?

Question

How to construct a fixed-point problem?

Outline

- The Root-Finding Problem
- Newton's Method
- 3 Error Analysis for Iterative Methods

Newton's Method

Newton's (or the Newton-Raphson) method is one of the most powerful and well-known numerical methods for solving a root-finding problem.

Remarks

- Newton's method obtains faster convergence than offered by other types of functional iteration.
- Using Taylor polynomials. We will see there that this particular derivation produces not only the method, but also a bound for the error of the approximation.

Derivation

- Suppose that $f \in C^2[a, b]$. Let $p_0 \in [a, b]$ be an approximation to p such that $f'(p_0) \neq 0$ and $|p p_0|$ is small.
- Consider the first Taylor polynomial for f(x) expanded about p_0 and evaluated at x = p.

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)),$$

where $\xi(p)$ lies between p and p_0 .

• Since f(p) = 0, this equation gives

$$0 = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)),$$

$$0 = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p)),$$

Derivation (cont'd)

• Newton's method is derived by assuming that since $|p - p_0|$ is small, the term involving $(p - p_0)^2$ is much smaller, so

$$0 \approx f(p_0) + (p - p_0)f'(p_0).$$

• Solving for *p* gives

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)} \equiv p_1.$$

Newton's Method

Starts with an initial approximation p_0 and generates the sequence $\{p_n\}_{n=0}^{\infty}$, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

Newton's Method

Starts with an initial approximation p_0 and generates the sequence $\{p_n\}_{n=0}^{\infty}$, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

Newton's Algorithm

Newton's Algorithm

INPUT initial approximation p_0 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
.

Step 2 While
$$i \le N_0$$
 do Steps 3–6.

Step 3 Set
$$p = p_0 - f(p_0)/f'(p_0)$$
. (Compute p_i .)

Step 4 If
$$|p - p_0| < TOL$$
 then
OUTPUT (p) ; (The procedure was successful.)
STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p$$
. (Update p_0 .)

Step 7 OUTPUT ('The method failed after N_0 iterations, $N_0 = ', N_0$); (The procedure was unsuccessful.) STOP.

Newton's Algorithm

Stopping Criteria for the Algorithm

- Various stopping criteria can be applied.
- We can select a tolerance $\epsilon > 0$ and generate p_1, \dots, p_N until one of the following conditions is met:

$$|p_N - p_{N-1}| < \epsilon \tag{1}$$

$$\frac{|p_N - p_{N-1}|}{p_N} < \epsilon, \quad p_N \neq 0, \quad \text{or}$$
 (2)

$$|f(p_N)| < \epsilon \tag{3}$$

• Note that none of these inequalities give precise information about the actual error $|p_N - p|$.

Fixed-Point Iteration (a.k.a Functional Iteration)

Newton's Method

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

Fixed-Point Iteration (a.k.a Functional Iteration)

Newton's Method

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

• It can be written in the form

$$p_n = g(p_{n-1})$$

with

$$g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$

Example: Newton's Method vs. Fixed-point Iteration

Consider the function

$$f(x) = \cos(x) - x = 0$$

Approximate a root of f using

- a fixed-point method
- Newton's method

(1) Fixed-point Iteration for f(x) = cos(x) - x

• A solution to this root-finding problem is also a solution to the fixed-point problem

$$x = cos(x)$$

and the graph implies that a single fixed-point p lies in $[0, \pi/2]$.

Newton's Method vs. Fixed-point Iteration

(1) Fixed-point Iteration: $x = cos(x), x_0 = \pi/4$

• The following table shows the results of fixed-point iteration with $p_0 = \pi/4$.

n	p_{n-1}	p_n	$ p_n - p_{n-1} $	e_n/e_{n-1}
1	0.7853982	0.7071068	0.0782914	
2	0.707107	0.760245	0.053138	0.678719
3	0.760245	0.724667	0.035577	0.669525
4	0.724667	0.748720	0.024052	0.676064
5	0.748720	0.732561	0.016159	0.671826
6	0.732561	0.743464	0.010903	0.674753
7	0.743464	0.736128	0.007336	0.672816

• The best conclusion from these results is that $p \approx 0.74$.

Newton's Method vs. Fixed-point Iteration

(2) Newton's Method for f(x) = cos(x) - x

• To apply Newton's method to this problem we need

$$f'(x) = -\sin(x) - 1$$

• Starting with $p_0 = \pi/4$, we generate the sequence defined for $n \ge 1$, by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
$$= p_{n-1} - \frac{\cos(p_{n-1}) - p_{n-1}}{-\sin(p_{n-1}) - 1}.$$

Newton's Method vs. Fixed-point Iteration

(2) Newton's Method for f(x) = cos(x) - x, $x_0 = \pi/4$

• The following table shows the results of Newton's method with $p_0 = \pi/4$.

n	p_{n-1}	$f(p_{n-1})$	$f'(p_{n-1})$	p _n	$ p_n-p_{n-1} $
1	0.78539816	-0.078291	-1.707107	0.73953613	0.04586203
2	0.73953613	-0.000755	-1.673945	0.73908518	0.00045096
3	0.73908518	-0.000000	-1.673612	0.73908513	0.00000004
4	0.73908513	-0.000000	-1.673612	0.73908513	0.00000000

- An excellent approximation is obtained with n = 3.
- Because of the agreement of p_3 and p_4 we could reasonably expect this result to be accurate to the places listed.

Convergence Theorem for Newton's Method

Let $f \in C^2[a, b]$. If $p \in (a, b)$ is such that f(p) = 0 and $f'(p) \neq 0$. Then there exists a $\delta > 0$ such that Newton's method generates a sequence $\{p_n\}_{n=1}^{\infty}$, defined by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

converging to p for any initial approximation

$$p_0 \in [p - \delta, p + \delta].$$

Proof: (1/4)

• The proof is based on analyzing Newton's method as the functional iteration scheme $p_n = g(p_{n-1})$, for $n \ge 1$ with

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

- Let $k \in (0, 1)$. We find an interval $[p \delta, p + \delta]$ that g maps into itself and for which $g'(x) \le k$, for all $x \in (p \delta, p + \delta)$.
- Since f' is continuous and $f'(p) \neq 0$, there exists a $\delta_1 > 0$, such that $f'(x) \neq 0$ for $x \in [p \delta_1, p + \delta_1] \subseteq [a, b]$.

Proof: (2/4)

• Thus *g* is defined and continuous on $[p - \delta_1, p + \delta_1]$. Also

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2},$$

for $x \in [p - \delta_1, p + \delta_1]$, and since $f \in C^2[a, b]$, we have $g \in C^1[p - \delta_1, p + \delta_1]$.

• By assumption, f(p) = 0, so

$$g'(p) = \frac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

$$g'(p) = \frac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

Proof: (3/4)

• Since g' is continuous and 0 < k < 1, there exists a δ , with $0 < \delta < \delta_1$, and

$$|g'(x)| \le k$$
, for all $x \in [p - \delta, p + \delta]$.

- It remains to show that g maps $[p \delta, p + \delta]$ into $[p \delta, p + \delta]$.
- If $x \in [p \delta, p + \delta]$, the MVT implies that for some number ξ between x and p, $|g(x) g(p)| = |g'(\xi)||x p|$. So

$$|g(x) - p| = |g(x) - g(p)| = |g'(\xi)||x - p| \le k|x - p| < |x - p|.$$

Proof: (4/4)

- Since $x \in [p \delta, p + \delta]$, it follows that $|x p| < \delta$ and that $|g(x) p| < \delta$. Hence, g maps $[p \delta, p + \delta]$ into $[p \delta, p + \delta]$.
- All the hypotheses of the Fixed-Point Theorem are now satisified, so the sequence $\{p_n\}_{n=1}^{\infty}$, defined by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

converges to p for any $p_0 \in [p - \delta, p + \delta]$.

Remarks of Newton's Method

Choice of Initial Approximation

- The convergence theorem states that, under reasonable assumptions, Newton's method converges if a sufficiently accurate initial approximation is chosen.
- It also implies that the constant *k* that bounds the derivative of *g*, and consequently, indicates the speed of convergence of the method, decreases to 0 as the procedure continues.
- This result is important for the theory of Newton's method, but it is seldom applied in practice because it does not tell us how to determine δ .

Remarks of Newton's Method

In a practical application ...

- an initial approximation is selected
- and successive approximations are generated by Newton's method.
- These will generally either converge quickly to the root, or it will be clear that convergence is unlikely.

Remarks of Newton's Method

Weakness of Newton's Method

- It needs to know the value of the derivate of f at each approximation.
- Frequently, f'(x) is far more difficult and needs more arithmetic operations to calculate than f(x).

Outline

- The Root-Finding Problem
- Newton's Method
- 3 Error Analysis for Iterative Methods

Order of Convergence

Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p, with $p_n \neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then $\{p_n\}_{n=0}^{\infty}$ converges to p of order α , with asymptotic error constant λ .

- If $\alpha = 1$, the sequence is linearly convergent.
- If $\alpha = 2$, the sequence is quadratically convergent.

linearly convergent vs. quadratically convergent

Suppose that $\{p_n\}_{n=0}^{\infty}$ is linearly convergent to 0 with

$$\lim_{n \to \infty} \frac{|p_{n+1}|}{|p_n|} = 0.5$$

and that $\{\tilde{p}_n\}_{n=0}^{\infty}$ is quadratically convergent to 0 with the same asymptotic error constant,

$$\lim_{n\to\infty} \frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2} = 0.5.$$

For simplicity we assume that for each n we have

$$\frac{|p_{n+1}|}{|p_n|} \approx 0.5$$
 and $\frac{|\tilde{p}_{n+1}|}{|\tilde{p}_n|^2} \approx 0.5$.

For the linearly convergent scheme, this means that

$$|p_n - 0| = |p_n| \approx 0.5 |p_{n-1}| \approx (0.5)^2 |p_{n-2}| \approx \cdots \approx (0.5)^n |p_0|,$$

whereas the quadratically convergent procedure has

$$\begin{split} |\tilde{p}_n - 0| &= |\tilde{p}_n| \approx 0.5 |\tilde{p}_{n-1}|^2 \approx (0.5)[0.5|\tilde{p}_{n-2}|^2]^2 = (0.5)^3 |\tilde{p}_{n-2}|^4 \\ &\approx (0.5)^3 [(0.5)|\tilde{p}_{n-3}|^2]^4 = (0.5)^7 |\tilde{p}_{n-3}|^8 \\ &\approx \cdots \approx (0.5)^{2^n - 1} |\tilde{p}_0|^{2^n}. \end{split}$$

69/78

linearly convergent vs. quadratically convergent

n	Linear Convergence Sequence $\{p_n\}_{n=0}^{\infty}$ $(0.5)^n$	Quadratic Convergence Sequence $\{\tilde{p}_n\}_{n=0}^{\infty}$ $(0.5)^{2^n-1}$
1	5.0000×10^{-1}	5.0000×10^{-1}
2	2.5000×10^{-1}	1.2500×10^{-1}
3	1.2500×10^{-1}	7.8125×10^{-3}
4	6.2500×10^{-2}	3.0518×10^{-5}
5	3.1250×10^{-2}	4.6566×10^{-10}
6	1.5625×10^{-2}	1.0842×10^{-19}
7	7.8125×10^{-3}	5.8775×10^{-39}

Theorem (Fixed Point Method)

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$ for all $x \in [a,b]$. Suppose, in addition, that g'(x) is continuous on (a,b) and a positive constant k < 1 exists with

$$|g'(x)| \le k, \forall x \in [a, b].$$

If $g'(p) \neq 0$, then for any number $p_0 \neq p$ in [a, b], the sequence

$$p_n = g(p_{n-1}), n \ge 1$$

converges only linearly to the unique fixed point p in [a, b].

Proof

• Since g' exists on (a, b), applying the MVT, we have

$$p_{n+1} - p = g(p_n) - g(p) = g'(\xi_n)(p_n - p)$$

- Since $\{p_n\}_{n=0}^{\infty}$ converges to p, $\{\xi_n\}_{n=0}^{\infty}$ also converges to p.
- Thus,

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}=\lim_{n\to\infty}g'(\xi_n)=g'(p)$$

Hence, if $g'(p) \neq 0$, fixed-point iteration exhibits linear convergence with asymptotic error constant |g'(p)|.

Theorem

Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g'' is continuous with g''(x) < M on an open interval I containing p. Then there exists a $\delta > 0$ such that, for $p_0 \in [p - \delta, p + \delta]$, the sequence defined by $p_n = g(p_{n-1})$, when $n \ge 1$, converges at least quadratically to p. Moreover, for sufficiently large values of n,

$$|p_{n+1}-p|<\frac{M}{2}|p_n-p|^2.$$

Proof (1/2)

- Choose k in (0,1) and $\delta > 0$ such that on the interval $[p-\delta, p+\delta]$ contained in I, we have $|g'(x)| \leq k$ and g'' continuous.
- Expanding g(x) in a linear Taylor polynomial for $x \in [p \delta, p + \delta]$ gives

$$g(x) = g(p) + g'(p)(x - p) + \frac{g''(\xi)}{2}(x - p)^2$$

• The hypotheses g(p) = p and g'(p) = 0 imply that

$$g(x) = p + \frac{g''(\xi)}{2}(x-p)^2$$

Proof (2/2)

• When $x = p_n$, we have

$$p_{n+1} = g(p_n) = p + \frac{g''(\xi)}{2}(p_n - p)^2$$

• Thus,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|g''(p)|}{2} < \frac{M}{2}$$

Remarks

- For a fixed point method to converge quadratically we need to have both g(p) = p, and g'(p) = 0.
- If f(p) = 0 and $f'(p) \neq 0$, then for starting values sufficiently close to p, Newton's method will converge at least quadratically.

Proof: (2/4)

• Thus *g* is defined and continuous on $[p - \delta_1, p + \delta_1]$. Also

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2},$$

for $x \in [p - \delta_1, p + \delta_1]$, and since $f \in C^2[a, b]$, we have $g \in C^1[p - \delta_1, p + \delta_1]$.

• By assumption, f(p) = 0, so

$$g'(p) = \frac{f(p)f''(p)}{[f'(p)]^2} = 0.$$

Assignment

- Numerical Analysis, Chapter 1 & 2;
- Homework 1.