UTILIZAÇÃO DO EXTRATO DE AÇAÍ (*Euterpe oleracea* Mart.) COMO INDICADOR ÁCIDO-BASE NO ENSINO DE QUÍMICA.

Ana Carolina FERREIRA DE BRITO (1); Ana Cláudia BATISTA ALMEIDA (2); Ildemara Aline RABELO BEZERRA (3); Nayana Cristina SILVA (4)

(1) Instituto Federal de Educação Ciência e Tecnologia do Maranhão – (IFMA), Av. Getúlio Vargas, n º 04 – Monte Castelo - CEP 65025-001 – São Luis - MA, e-mail: annacarolinna.brito@hotmail.com

(2) IFMA, e-mail: dudalmeid.@hotmail.com
(3) IFMA, e-mail: a_line_103@hotmail.com
(4) IFMA, e-mail: nanacrisloira@hotmail.com

RESUMO

A Euterpe oleracea Mart., conhecida popularmente como açaí, fruta apreciada por nutricionistas devido ao seu poder energético, tem sido utilizada na preparação de medicamentos, sucos e sorvetes. A presença de antocianinas no extrato de açaí chama a atenção para a sua utilização como indicador ácido-base. Este trabalho desenvolve uma metodologia alternativa para o Ensino de Química, utilizando esse extrato como indicador natural. Para o desenvolvimento da metodologia, levou-se em consideração a atual realidade da educação no Brasil, onde a maioria das escolas não possui laboratórios e materiais didáticos adequados. Os extratos foram preparados a partir da polpa de açaí para a construção de uma escala padrão de pH utilizando materiais de uso doméstico. Os resultados demonstraram que o extrato de açaí pode ser utilizado como indicador ácido-base na forma de solução ou impregnado em papel de filtro. A metodologia foi viabilizada, servindo como suporte na compreensão dos conceitos ácido-base e colaborando para a aprendizagem do aluno. Dessa forma, a proposta vai de encontro com a Lei de Diretrizes e Bases da Educação, no qual se podem apresentar conceitos explorando-se o cotidiano do aluno, nesse caso, uma fruta presente na alimentação dos discentes.

Palavras-chave: açaí, indicador ácido-base, ensino de química.

1 INTRODUÇÃO

O açaizeiro (*Euterpe sp.*), palmeira típica da região amazônica cujos frutos se obtém um "vinho", é tradicional na cultura dos povos desta região, fazendo parte da dieta básica de algumas populações locais. Atualmente, o açaí tornou-se "a fruta da moda" nas grandes capitais do sudeste brasileiro, sendo muito consumido como energético, pelos adeptos da vida natural que cultuam a boa forma física do corpo (RIBEIRO, 2005). Na exploração extrativista do açaí, é produzido algo em torno de 200 mil toneladas de "vinho" e 150 mil toneladas de palmito, por ano, sendo quase esse total oriundo do Pará e do Maranhão, onde ocorrem grandes concentrações naturais do açaí.

Experimentos demonstrativos ajudam a enfocar a atenção no comportamento e propriedades de substâncias químicas e auxiliam também, a aumentar o conhecimento e a consciência do estudante de química. Entretanto, muitas escolas e professores se vêem impossibilitados de realizar aulas práticas devida à falta de estrutura e materiais. Diante deste fato, pesquisas com materiais de fácil aquisição estão sendo desenvolvidas para facilitar o processo ensino-aprendizagem, principalmente nas escolas da rede pública.

Diversos materiais alternativos já foram relatados como indicadores dentre os quais se destaca o repolhoroxo. Nesse sentido, o presente trabalho tem como objetivo, estudar um pouco mais, substâncias com propriedades indicadoras ácido-básicas não muito exploradas, como o açaí (*Euterpe oleracea Mart.*).

2 FUNDAMENTAÇÃO TEÓRICA

O açaí (*Euterpe oleracea Mart.*) (Figura 1) é considerado alimento de alto valor calórico, com elevado percentual de lipídeos, e nutricional, pois é rico em proteínas e minerais. O óleo extraído do açaí é composto de ácidos graxos de boa qualidade, com 60% de monoinsaturados e 13% de poliinsaturados. Com relação às

proteínas, possui teor superior ao do leite (3,50%) e do ovo (12,49%), enquanto o perfil em aminoácidos é semelhante ao do ovo (EMBRAPA, 2006).

Figura 1- Euterpe oleracea Mart.

Além dessa grande aceitação no mercado, o fruto do açaí, também pode se usado como indicador ácido-base no ensino de química. Isso é devido a presença de antocianinas (Figura 2), pigmentos pertencentes a classe dos flavonóides, substâncias responsáveis pela coloração azul, vermelha e roxa de diversos tecidos vegetais, inclusive flores e frutos (HERBERT et. al., 2001).

Figura 2- Fórmula genérica da antocianina (R1, R2= H, CH3 e R3 = H, Glc). (Glc = resíduos de açúcares estereficados, sendo b-D-glicose, b-D-galactose e a-D-ramnose os mais comuns).

Uma das principais características desses pigmentos no uso didático é a sua mudança de coloração em função de pH (COUTO *et. al.*, 1990). As transformações estruturais que ocorrem quando há variação no pH do meio e que são responsáveis pelas mudanças de coloração observadas, foram objeto de estudo por parte de diversos autores, dos quais destacam-se o trabalho pioneiro de Geissman e Brouillard e colaboradores. Recentemente Gouveia-Matos discutiu aspectos teóricos destas mudanças de coloração. Segundo estudos de MATOS (1999), a variação de cores de soluções contendo antocianinas, ocorre com a variação de equilíbrios ácido-base, proporcionando uma combinação de comprimentos de onda no visível que variam em três cores primárias: vermelho-alaranjada, azul-violeta e verde.

A mais antiga definição de ácidos foi dada em 1663, por Robert Boyle, como ácidos que modificavam extratos de plantas para o vermelho, descrevendo indicadores de extratos de violetas, repolho roxo, rosas, pau-brasil e outras e agora a fruta de açaí. Esses pigmentos foram usados por mais 200 anos dando o lugar, atualmente para os indicadores sintéticos. Porém os extratos naturais utilizados como indicadores, são importantes na compreensão de conceitos químicos por se tratar de experimentos simples, possuírem baixo custo e envolver o uso de poucos reagentes e materiais.

3 DESCRIÇÃO DA PROPOSTA

O presente trabalho teve como objetivo geral desenvolver uma metodologia alternativa para o Ensino de Química, utilizando o extrato de açaí como indicador natural como também avaliar a adequação do extrato como indicador natural na forma de solução e papel no ensino de química. A nova abordagem leva em consideração a atual realidade da educação no Brasil que, de acordo com os Parâmetros Curriculares Nacionais para o Ensino Médio (PCN's) (BRASIL, 2002) os conteúdos abordados no ensino de Química não devem se resumir à mera transmissão de informações que não apresentem qualquer relação com o cotidiano do aluno, seus interesses e suas vivências, mas devem partir de temas que permitam a contextualização e a interconexão entre diferentes saberes.

4 METODOLOGIA, RESULTADOS, ANÁLISE E INTERPRETAÇÃO DOS DADOS

4.1 Metodologia

Preparação do extrato do açaí

O extrato de açaí foi preparado pela diluição de 100 g da polpa, vendida comercialmente, em 200 mL de etanol a 70%. Após a diluição total, o suco foi filtrado e estocado em frasco âmbar a aproximadamente 14°C. Os resíduos sólidos foram descartados.

Preparação de solução tampão e aplicação do extrato de açaí

Para observar a mudança de cor do extrato de açaí, foram feitas soluções tampões com pHs variando de 1 a 14. Os ensaios foram realizados em tubos de ensaio contendo 5,0 mL de solução tampão, 5,0 mL de extrato e 10,0 mL de água destilada.

Preparação e teste do papel de filtro impregnado com o extrato

Papel de filtro (n.º 02) foi mergulhado em solução do extrato de açaí por 4 horas. Após esse período, os papéis foram secados ao ar e cortados em retângulos, sendo posteriormente imergidos em soluções tampões.

Aplicação do extrato de açaí em soluções de uso doméstico

Foram utilizadas soluções de limão, vinagre, soda limonada, água sanitária, detergente, sabão em pó e caseiro (4%) e álcool. Ambas as soluções foram colocadas em béckeres de 100 mL seguindo a seguinte proporção: 5,0 mL de solução; 40,0 mL de água e 5,0 mL de extrato de açaí. Foram observado e o pH e cor das respectivas soluções e comparadas com um indicar padrão.

Indicador padrão

Foi feita uma solução básica de 60,0 mL de Azul de Bromotimol (0,1%) mais 60,0 mL de Vermelho de Metila (0,2%).

4.2 Resultados, análise e interpretação dos dados

Em diferentes pHs, os extratos assumem diferentes colorações que podem ser facilmente identificadas pela visualização, definindo-se a escala de pH em função da cor da solução resultante. A escala de variação de cor do extrato de açaí em função do pH, está representada na Figura 3.

Figura 3- Escala de cores para diferentes pHs, obtida com o extrato de açaí.

As variações de cores observadas indicam que o extrato de açaí pode ser usado como indicador de pH, pois tornou-se vermelho em soluções ácidas (pH < 7,0) e verde em soluções básicas (pH > 7,0). Em soluções de uso doméstico, o indicador natural de açaí viabilizou sua utilização, como mostrado na tabela 1.

Tabela 1 – Medida da faixa de pH de produtos de uso doméstico utilizando indicador natural de açaí e indicador padrão (mistura de azul de Bromotimol e Vermelho de Metila)

Produtos	Indicador Natural de Açaí		Indicador Padrão	
	cor	pН	cor	pН
Limão	Vermelho	2,1	Alaranjado	2,8
Vinagre	Vermelho	2,7	Alaranjado	3,0
Álcool 95%	Vermelho	6,9	Verde	7,2
Detergente	Roxo Claro	7,0	Verde	7,2
Sabão em pó (4% m/v)	Marrom	10,0	Azul	10,3
Água Sanitária	Verde	10,3	Azul	10,6
Sabão caseiro (4% m/v)	Verde Escuro	11,6	Azul	11,9

O papel indicador natural apresentou bons resultados. Mergulhando-se as tiras de papel em soluções tampões de diferentes valores de pH, observou-se uma variação de cor do papel bastante perceptível, conforme descrito na tabela 2.

Tabela 2 – Coloração apresentadas pelo papel indicador natural de açaí em função do pH.

pH dos tampões	Cor do papel impregnado
1,0 – 2,0	Rosa
3,0 – 5,0	Vermelho claro
6,0 – 7,0	Cinza
8,0 – 10,0	Verde escuro

11,0 – 12,0	Marrom
13,0 – 14,0	Amarelo

CONCLUSÃO

De acordo com os resultados obtidos, pode-se concluir que o extrato de açaí apresenta potencialidade para a demonstração do comportamento de indicadores de pH e para medidas de pH. A metodologia aplicada facilita a abordagem didática de conceitos e a simplicidade da parte experimental torna viável em escolas sem infra-estrutura laboratorial.

REFERÊNCIAS

BRASIL. **Parâmetros Curriculares Nacionais:** *Ciências Naturais* (1° E 2° ciclos). vol. 4 . Secretaria de Educação Fundamental. 2ª ed. Rio de Janeiro: MEC/SEF, DP&A, 2002.

COUTO, A.B. et. al. **Aplicação de Pigmentos de Flores do Ensino de Química.** Química Nova, vol. 21, nº 2, p. 221-227, 1998.

EMBRAPA. **O Sistema de Produção do Açaí.** Embrapa Amazônia Oriental, vol.4. 2ª ed., 2006. Disponível em http://sistemasdeproducao.cnptia.embrapa.br/fonteshtml/acai/sistemaproducaoacai_2ed/paginas/composicao.htm. > Acessado em setembro de 2009.

HERBERT, M et. al. Aplicação de Extratos Brutos de Flores de Quaresmeira e Azaléia e da Casca de Feijão Preto em Volumetria Ácido- Base. Um experimento para cursos de análise quantitativa. Química Nova, vol. 24, nº 3, p. 408-411, 2001.

MATOS, J.A.M.G. **Mudanças nas cores dos extratos de flores e do repolho roxo**. Química Nova na Escola, n.º 10, Belo Horizonte, p 1-10, 1999.

RIBEIRO, G.D. **Açaí-solteiro**, **Açaí - do -Amazonas**, **uma boa opção de exploração agrícola em Rondônia**. Ambiente Brasil, Rondônia, 2005. Disponível em < http://www.ambientebrasil.com.br/agropecuario/artigos/acaisolteiro.html.> Acessado em setembro de 2009.