• Medida dos potenciais padrões

Deve-se montar pilhas com concentrações aonde a lei limite de Debye-Hückel seja válida, mas não sabemos com certeza qual a máxima concentração permitida para cada solução→ montar equação de Nernst com lei limite aplicada às concentrações e testar seu comportamento para baixas concentrações

Exemplo: Pilha Pt $\mid H_2(g) \mid HCl(aq) \mid AgCl(s) \mid Ag$

Reação: $AgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + HCl(aq)$

$$v = 1 \rightarrow E = E^{o} - \frac{RT}{F} \ln \frac{a_{H^{+}} a_{Cl^{-}}}{\left(f_{H_{2}} / P^{o}\right)^{1/2}}$$

Controlar pressão do H_2 para que $f = P^o$

Concentrações dos íons são iguais à concentração nominal do ácido \rightarrow para os dois íons, $a = \gamma_+(b_{HCI}/b^{\circ})$

$$E = E^{o} - \frac{RT}{F} \ln \left(\gamma_{\pm}^{2} \left(\frac{b_{HCl}}{b^{o}} \right)^{2} \right) = E^{o} - \frac{RT}{F} \ln \left(\frac{b_{HCl}}{b^{o}} \right)^{2} - \frac{RT}{F} \ln \gamma_{\pm}^{2}$$

$$\rightarrow E = E^{o} - \frac{2RT}{F} \ln \left(\frac{b_{HCl}}{b^{o}} \right) - \frac{2RT}{F} \ln \gamma_{\pm}$$

Aplicação da lei limite de Debye-Hückel:

Eletrólito uniunivalente: $I = b_{HCI}/b^{\circ}$

$$\rightarrow \log \gamma_{\pm} = - |1(-1)| 0.509 (b_{HCl}/b^{\circ})^{1/2} \rightarrow \ln \gamma_{\pm} = -A' (b_{HCl}/b^{\circ})^{1/2}$$

$$\rightarrow E = E^{o} - \frac{2RT}{F} \ln \left(\frac{b_{HCl}}{b^{o}} \right) + \frac{2RTA'}{F} \left(\frac{b_{HCl}}{b^{o}} \right)^{1/2}$$

Exemplo: O potencial padrão da pilha $Zn \mid ZnCl_2(aq, b) \mid AgCl(s) \mid Ag$, a 25°C, tem os seguintes valores para várias concentrações b do $ZnCl_2$:

$b/(10^{-3}b^{\circ})$	0,772	1,253	1,453	3,112	6,022
E/V	1,2475	1,2289	1,2235	1,1953	1,1742

Reação: Zn(s) + 2AgCl(s) \rightarrow 2Ag(s) + Zn²⁺(aq) + 2Cl⁻(aq)

$$Q = a_{Zn^{2+}} a_{Cl^{-}}^{2} \qquad v = 2$$

Equação de Nernst: $E = E^o - \frac{RT}{2F} \ln a_{Zn^{2+}} a_{Cl^-}^2$

$$\begin{split} a_{Zn^{2+}} a_{Cl^{-}}^2 = & \left(\gamma_{\pm} \frac{b_{Zn^{2+}}}{b^o} \right) \left(\gamma_{\pm} \frac{b_{Cl^{-}}}{b^o} \right)^2 = \gamma_{\pm}^3 \left(\frac{b_{Zn^{2+}}}{b^o} \right) \left(\frac{b_{Cl^{-}}}{b^o} \right)^2 = \gamma_{\pm}^3 \left(\frac{b}{b^o} \right) \left(\frac{2b}{b^o} \right)^2 \\ = & 4\gamma_{\pm}^3 \left(\frac{b}{b^o} \right)^3 \end{split}$$

Nernst:
$$E = E^o - \frac{RT}{2F} \ln \left(4\gamma_{\pm}^3 \left(\frac{b}{b^o} \right)^3 \right)$$
$$= E^o - \frac{RT}{2F} \ln 4 - \frac{RT}{2F} \ln \gamma_{\pm}^3 - \frac{RT}{2F} \ln \left(\frac{b}{b^o} \right)^3$$

Eletrólito $MX_2 \rightarrow I = 3(b/b^{\circ})$

$$\rightarrow \log \gamma_{\pm} = -0.509 | +2 \cdot (-1) | (3)^{1/2} (b/b^{\circ})^{1/2} \rightarrow \ln \gamma_{\pm} = -A' (b/b^{\circ})^{1/2}$$

Equação de Nernst com lei limite aplicada:

$$E = E^{o} - \frac{RT}{2F} \ln 4 + \frac{3A'RT}{2F} \left(\frac{b}{b^{o}}\right)^{1/2} - \frac{3RT}{2F} \ln \left(\frac{b}{b^{o}}\right)$$

Rearranjo:

$$E + \frac{3RT}{2F} \ln\left(\frac{b}{b^o}\right) + \frac{RT}{2F} \ln 4 = E^o + C\left(\frac{b}{b^o}\right)^{1/2}$$

RT/2F = 0.01285 V

$(b/(10^{-3}b^{\circ}))^{1/2}$	0,879	1,119	1,205	1,764	2,454
$E/V + 0.03854 \ln b$	0,9891	0,9892	0,9895	0,9906	0,9950
+ 0,01285 ln4					

Coef. linear da região linear: $0.9886 \text{ V} = E^{\circ}$

Se
$$E^{\circ}(AgCl/Ag) = 0.22$$
,

$$E^{\circ}(Zn^{2+}/Zn) = 0,22 - 0,9886$$

= -0,77 V

• Medida de coeficientes de atividade

 \to Medir E da pilha com concentrações conhecidas e calcular ln γ_\pm através da equação de Nernst

Exemplo: Para a pilha Pt $|H_2(g)|$ |HCl(aq)| |AgCl(s)| |Ag, montamos acima a seguinte versão da equação de Nernst:

$$E = E^{o} - \frac{2RT}{F} \ln \left(\frac{b_{HCl}}{b^{o}} \right) - \frac{2RT}{F} \ln \gamma_{\pm}$$

Rearranjando para determinação de γ_+ :

$$\ln \gamma_{\pm} = \frac{E^o - E}{2RT/F} - \ln \left(\frac{b_{HCl}}{b^o}\right)$$

Atkins e de Paula, 7ª edição, problema numérico 10.4:

10.4 Seja a pilha $Zn(s)|ZnCl_2(0,0050 \text{ mol kg}^{-1})|Hg_2Cl_2(s) Hg(l)$, para a qual a reação da pilha é $Hg_2Cl_2(s) + Zn(s) \rightarrow 2$ $Hg(l) + 2 Cl^-(aq) + Zn^{2+}(aq)$. Dados $E^{\ominus}(Zn^{2+},Zn) = -0,7628 \text{ V}$, $E^{\ominus}(Hg_2Cl_2,Hg) = +0,2676 \text{ V}$ e sabendo que a fem da pilha é +1,2272 V, (a) escreva a equação de Nernst da pilha. Determine (b) a fem padrão da pilha, (c) $\Delta_r G$, $\Delta_r G^{\ominus}$ e K para a reação da pilha, (d) a atividade iônica média, e o coeficiente médio de atividade iônica do $ZnCl_2$, a partir da fem medida, e (e) o coeficiente médio de atividade iônica do $ZnCl_2$, a partir da lei limite de Debye-Hückel. (f) Sendo $(\partial E/\partial T)_p = -4,52 \times 10^{-4} \text{ V K}^{-1}$, calcule ΔS e ΔH .

ELETROQUÍMICA: APLICAÇÕES

Prof. Harley P. Martins Filho

• Série eletroquímica

Pilha genérica: $\operatorname{Red}_1 | \operatorname{Ox}_1 | \operatorname{Ox}_2 | \operatorname{Red}_2 \quad E^{\circ} = E^{\circ}_2 - E^{\circ}_1$

Reação: $Red_1 + Ox_2 \rightarrow Ox_1 + Red_2$

Reação é espontânea se $E^{\circ}>0$ ($E^{\circ}_1< E^{\circ}_2$) \to Red $_1$ reduzirá Ox $_2$ se E°_1 for mais baixo que E°_2

Série eletroquímica: Ouro Prata Cobre Chumbo Níquel Zinco Alumínio Sódio

mais oxidantes ou Eo mais alto

Exemplo: cobre está mais alto na série que o zinco

→ Zn reduz íons Cu²⁺ (desloca o cobre de soluções)

Limitações da previsão:

- Estado de equilíbrio não é previsto

Mas quanto mais separados na série eletroquímica estiverem os metais, maior a constante de equilíbrio *K*.

- Fatores cinéticos podem retardar reação

Exemplo: zinco desloca o H+ de soluções, mas a cinética é lenta demais para percepção visual.

• Constantes de solubilidade

 \rightarrow Expressar dissolução de um sal como soma de duas meiasreações, calcular valor de K para o processo e através deste a solubilidade

Exemplo: cálculo da solubilidade do cloreto de mercúrio (I) (mercúrio (I) em solução é a espécie ${\rm Hg_2}^{2+}$)

$$Hg_2Cl_2(s) \to Hg_2^{2+}(aq) + 2Cl^{-}(aq)$$

Meias-reações:

$$Hg_2Cl_2(s) + 2e^- \rightarrow 2Hg(l) + 2Cl^-(aq)$$
 $E^0 = 0.27 \text{ V}$
 $2Hg(l) \rightarrow Hg_2^{2+}(aq) + 2e^ E^0 = -0.79 \text{ V}$

Pilha: $Hg(l) \mid Hg_2^{2+}(aq), Cl^{-}(aq) \mid Hg_2Cl_2(s) \mid Hg(l) \quad E^{\circ} = -0,52 \text{ V}$

$$\ln K = \frac{2 \cdot 96485 \cdot (-0.52)}{8.314 \cdot 298} = -40.50 \quad \to K = 2.6 \times 10^{-18}$$

$$K = a_{Hg_2^{2+}} a_{CF}^2$$

molalidade de sal dissolvido (solubilidade) = s

Pelo valor da constante, solubilidade é muito baixa $\rightarrow \gamma_+ \approx 1$

$$K = \left(\frac{b_{Hg_2^{2+}}}{b^o}\right) \left(\frac{b_{C\Gamma}}{b^o}\right)^2 = \left(\frac{s}{b^o}\right) \left(\frac{2s}{b^o}\right)^2 = 4\left(\frac{s}{b^o}\right)^3$$

$$\Rightarrow s = \left(\frac{K}{4}\right)^{1/3} b^o = 8.6 \times 10^{-7} \text{ mol kg}^{-1}$$

Atkins e de Paula, 7a edição, problema numérico 10.1:

10.1 Imagine uma pilha na qual a reação seja Pb(s) + $Hg_2SO_4(s) \rightarrow PbSO_4(s)$ + 2 Hg(1). Qual o potencial desta pilha quando o eletrólito estiver saturado pelos dois sais. a 25 °C? As constantes de solubilidade do Hg_2SO_4 e do $PbSO_4$ são $6,6 \times 10^{-7}$ e $1,6 \times 10^{-8}$, respectivamente.

Pb | PbSO₄(s) | PbSO₄(sat, b_1) || Hg₂SO₄(sat, b_2) | Hg₂SO₄(s) | Hg

Esquerda: $Pb + SO_4^{2-}(b_1) \rightarrow PbSO_4 + 2e^-$ Direita: $Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}(b_2)$

Completa: $Hg_2SO_4 + Pb + SO_4^{2-}(b_1) \rightarrow PbSO_4 + 2Hg + SO_4^{2-}(b_2)$

$$Q = \frac{a(SO_4^{2-}, b_2)}{a(SO_4^{2-}, b_1)}$$

- Determinação de funções termodinâmicas
- ➤ Energias livres de formação de íons

$$\Delta G_{\rm r}^{\rm o} = -\nu F E^{\rm o}$$

Exemplo: para a pilha Pt $| H_2(g) | H^+(aq) | Ag^+(aq) | Ag$, $E^{\circ} = 0.7996 \text{ V}$

Reação: $Ag^+(aq) \stackrel{1}{\sim} H_2(g) \rightarrow H^+(aq) + Ag(s)$

$$\rightarrow \Delta G_r^{\text{o}} = -1F(0.7996) = -77.10 \text{ kJ mol}^{-1}$$

$$\Delta G_{\rm f}^{\circ} = \Delta G_{\rm f}^{\circ}(Ag,s) + \Delta G_{\rm f}^{\circ}(H^{\scriptscriptstyle +},aq) - \frac{1}{2}\Delta G_{\rm f}^{\circ}(H_2,g) - \Delta G_{\rm f}^{\circ}(Ag^{\scriptscriptstyle +},aq)$$
$$= -\Delta G_{\rm f}^{\circ}(Ag^{\scriptscriptstyle +},aq)$$

Portanto, $\Delta G_f^{\circ}(Ag^+,aq) = 77,10 \text{ kJ mol}^{-1}$

➤ Cálculo de um potencial padrão a partir de outros potenciais padrões

Se uma combinação de duas meias-reações de redução a - b leva a uma terceira meia-reação c, $\Delta G_{\rm c}$ ° = $\Delta G_{\rm a}$ ° - $\Delta G_{\rm b}$ °.

$$\rightarrow -v_c F E_c^{\circ} = -v_a F E_a^{\circ} - (-v_b F E_b^{\circ}) \qquad \rightarrow E_c^{\circ} = \frac{v_a E_a^{\circ} - v_b E_b^{\circ}}{v_c}$$

Exemplo: O potencial padrão do par redox $Cu^{2+}/Cu \notin 0,340 V$ e o do par $Cu^{+}/Cu \notin 0,552 V$. Estimar $E^{\circ}(Cu^{2+}/Cu^{+})$.

(a)
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $v = 2$

(b)
$$Cu^+(aq) + e^- \rightarrow Cu(s)$$
 $v = 1$

Reação desejada é (a) – (b): $Cu^{2+}(aq) + e^- \rightarrow Cu^+(aq)$ v = 1

$$E^{o}(Cu^{2+}/Cu^{+}) = \frac{2 \cdot 0.340 - 1 \cdot 0.522}{1} = 0.160 \text{ V}$$

Atkins e de Paula, 7a edição, exercício 10.27(b):

10.27 (b) Determine a fem padrão de uma pilha em que a reação é $Co^{3+}(aq) + 3 Cl^{-}(aq) + 3 Ag(s) \rightarrow 3$ AgCl(s) + Co(s), a partir dos potenciais padrões dos pares Ag/AgCl,Cl⁻ (+0,22 V), Co³⁺/Co²⁺ (+1,81 V) e Co²⁺/Co (-0,28 V).

> Entropia e entalpia de uma reação eletroquímica

Da equação de estado para energia livre:

$$\left(\frac{\partial \Delta G}{\partial T}\right)_{p} = -\Delta S$$

$$\operatorname{Mas} \Delta G_{r}^{\circ} = -vFE^{\circ} \rightarrow -\Delta S_{r}^{o} = -vF\left(\frac{\partial E^{o}}{\partial T}\right)_{p}$$

$$\rightarrow \Delta S_{r}^{o} = vF\left(\frac{dE^{o}}{dT}\right)$$

Entalpia da reação: $\Delta H_{\rm r}^{\circ} = \Delta G_{\rm r}^{\circ} + T \Delta S_{\rm r}^{\circ}$

$$\rightarrow \Delta H_r^o = -vF \left(E^o - T \frac{dE^o}{dT} \right)$$

Exemplo: O potencial padrão da pilha

$$Pt \mid H_2(g) \mid HBr(aq) \mid AgBr(s) \mid Ag(s)$$

foi medido em várias temperaturas e os dados obtidos ajustaramse ao seguinte polinômio:

$$E^{\circ}/V = 0.07131 - 4.99 \times 10^{-4} (T/K - 298) - 3.45 \times 10^{-6} (T/K - 298)^{2}$$

Estimar a energia livre padrão, a entropia padrão e a entalpia padrão da reação a 298 K.

Reação:
$$AgBr(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + HBr(aq)$$
 $v = 1$

Substituindo 298 K no polinômio, E° = 0,07131 V

$$\rightarrow \Delta G_{\rm r}^{\circ} = -1F(0.07131) = -6.880 \text{ kJ mol}^{-1}.$$

Derivando a expressão para *E*°:

$$\frac{dE^{\circ}}{dT} = -4,99 \times 10^{-4} - 6,90 \times 10^{-6} (T - 298)$$

$$\rightarrow$$
 A 298 K, dE°/dT = -4,99×10⁻⁴ V K⁻¹

$$\rightarrow \Delta S_{\rm r}^{\circ} = 1F(-4.99 \times 10^{-4}) = -48.2 \text{ J K}^{-1} \text{ mol}^{-1}$$

Entalpia:

$$\Delta H_{\rm r}^{\circ} = -1F(0.07131 - 298(-4.99 \times 10^{-4})) = -21.2 \text{ kJ mol}^{-1}$$

Atkins e de Paula, 7a edição, problema numérico 10.10:

10.10 O potencial padrão do par AgCl/Ag,Cl⁻ foi medido cuidadosamente (R.G. Bates e V.E. Bowes, *J. Res. Nat. Bur. Stand.* 53, 283 (1954)) em diversas temperaturas, e os resultados ajustados à expressão

$$E^{\bullet}/V = 0.23659 - 4.8564 \times 10^{-4} (\theta/^{\circ}C) - 3.4205 \times 10^{-6} (\theta/^{\circ}C)^{2} + 5.869 \times 10^{-9} (\theta/^{\circ}C)^{3}$$

Calcule a energia de Gibbs padrão e a entalpia de formação do Cl⁻(aq) e a sua entropia, a 298 K.