MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Departamento de Matemática

17 de Abril de 2022

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

muuança ue

Representação de números

Introdução

Sistema de números discretos

Mudança de base

Erros

Aritmética de ponto flutuante

Efeitos numéricos

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

números

Introdução

Sistema de números discretos

F----

Efeitos numáricos

Números | Introdução

Representação de números

- Conjunto finito → Conjunto discreto
- ▶ Nem todos os pontos de um intervalo [a, b] podem ser representados
- Implicação: resultados de operações simples geralmente contêm erros

Interação usuário/computador

- Dados de entrada enviados pelo usuário na base decimal
- Conversão: operações efetuadas pelo computador na base binária
- Erros aproximação/arredondamento: números podem apresentar representação finita em uma base e não-finita em outra

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

Números | Sistema de números

Representação de números inteiros

Representação de número inteiro $n \neq 0$: sequência de números inteiros n_i

$$n = \pm (n_{-k} n_{-k+1} \dots n_{-1} n_0) = \pm \left(n_0 \beta^0 + n_{-1} \beta^1 \dots + n_{-k} \beta^k \right)$$

- ▶ Base fixa β : inteiro maior ou igual à 2 ($\beta \in \mathbb{Z} : \beta \geq 2$)
- ightharpoonup Números inteiros n_i satisfazem as condições

$$0 \le n_i < \beta$$
 Nenhum número pode ser maior que a base $n_{-k} \ne 0$ Primeiro número da sequência não nulo

Exemplo:
$$\beta = 10$$
, $n = 2019$

$$2019 = 9 \times 10^{0} + 1 \times 10^{1} + 0 \times 10^{2} + 2 \times 10^{3}$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

ntrodução

Sistema de números discretos Mudança de base

Números | Sistema de números

Representação de números reais: ponto fixo

Representação de número real $x \neq 0$: sequência de números inteiros x_i separados por um ponto (.)

$$x = \pm (x_{-k} \dots x_{-1} x_0 \dots x_1 \dots x_n) = \pm \sum_{i=-k}^n x_i \beta^{-i}$$

► x_i : número inteiro satisfazendo $0 \le x_i < \beta$.

Exemplo: $\beta = 10$, x = 692.84

$$692.84 = \sum_{i=-2}^{2} x_i \ 10^{-i} = x_{-2} \ x_{-1} \ x_0 \ . \ x_1 \ x_2$$
$$= 6 \times 10^2 + 9 \times 10^1 + 2 \times 10^0 + 8 \times 10^{-1} + 4 \times 10^{-2}$$

MÓDULO 01 |
ARITMÉTICA DE
PONTO
FLUTUANTE E
ESTUDO SOBRE
ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

Representação de números reais: ponto flutuante

Representação de número real $x \neq 0$:

$$x = \pm d \times \beta^e$$

► Mantissa *d*: número em ponto fixo

$$d = \sum_{i=1}^{t} d_i \, \beta^{-i}$$

- Expoente e: define limites de representação dos números no sistema; $e \in [e_{\min}, e_{\max}]$.
- Ponto flutuante normalizado: $d_1 \neq 0$
- ► Representação: $\beta^{-1} \le d < 1$.
- t: número de dígitos significativos (precisão do sistema)

Números | Sistema de números

Exemplos

1) Números em ponto flutuante normalizados ($\beta = 10$)

$$65.168 = 0.65168 \times 10^{2}$$
$$0.000571 = 0.571 \times 10^{-3}$$

2) Limites de representação de números:

$$(\beta = 10|t = 3| - 2 \le e \le 2).$$

Maior número representável = 0.999×10^2 Menor número representável = 0.1×10^{-2}

Underflow

Alocação de um número menor que o menor número admitível no sistema de representação.

- Exemplo anterior: $0.00003 = 0.3 \times 10^{-4}$
- Resultado: computador substitui o valor por 0.

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

> Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Números | Sistema de números

Overflow

Alocação de um número maior que o maior número admitível no sistema de representação.

- Exemplo anterior: $100 = 0.1 \times 10^3$
- Resultado: computador trava o programa por não saber como proceder.

Problema insolúvel

Determinar raíz da função $f(x) = x^3 - 3$ com $(\beta = 10|t = 10)$

$$f(0.1442249570 \times 10^{1}) = -0.2 \times 10^{-8}$$

 $f(0.1442249571 \times 10^{1}) = 0.4 \times 10^{-8}$

- Não existe número representável no sistema entre os dois, portanto o problema não tem solução
- Resultado: programa roda indefinidamente

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

Números | Bases

Bases

- ▶ Base decimal ($\beta = 10$): base de uso diário/comum.
- ▶ Base duodecimal ($\beta = 12$): descrição tempo (horas), comprimento em pés.
- ▶ Base binária ($\beta = 2$): computadores.

- Usuário passa informações para computador na base decimal.
- Computador aloca informação convertida para a base binária.
- 3) Computador executa cálculos na base binária.
- 4) Computador converte informação alocada para base decimal e envia ao usuário.

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudanca de base

Erros

- 1) 1101: da base binária para a base decimal.
 - Multiplicação de cada algarismo na base binária por potências crescentes de 2

$$(1101)_2 = 1 \times 2^0 + 0 \times 2^1 + 1 \times 2^2 + 1 \times 2^3$$
$$= 1 + 0 + 4 + 8 = 13$$

- 2) **0.110**: da base binária para a base decimal.
 - Multiplicação de cada algarismo após o ponto na base binária por potências decrescentes de 2

$$(0.110)_2 = 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3}$$
$$= \frac{1}{2} + \frac{1}{4} + 0 = \frac{3}{4} = 0.75$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

> Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

-

EIIUS

Efeitos numéricos

Sistema de números discreto Mudança de base

F----

Aritmética de ponto flutuante

- 3) 13: da base decimal para a base binária.
 - Divisões da parte inteira por 2: divisão dos quocientes até que o ultimo seja igual a 1

O número na base binária será o ultimo quociente e todos os restos das divisões anteriores (da direita para a esquerda).

$$13 = (1101)_2$$

- 4) 0.75: da base decimal para a base binária.
 - Multiplicações da parte decimal por 2: multiplicação da parte decimal restante

$$0.75 \times 2 = 1.5$$

$$0.50 \times 2 = 1.0$$

$$0.00 \times 2 = 0.0$$

O número na base binária será a sequência de inteiros obtida em cada multiplicação.

$$0.75 = (0.110)_2$$

- 5) **3.8**: da base decimal para a base binária.
 - Parte inteira: $3 = (11)_2$
 - ▶ Parte decimal:

$$0.8 \times 2 = 1.6$$

 $0.6 \times 2 = 1.2$
 $0.2 \times 2 = 0.4$
 $0.4 \times 2 = 0.8$
 $0.8 \times 2 = 1.6$
:

 O número na base decimal 3.8 não tem expressão exata na base binária

$$3.8 = (11.110011001100...)_2$$

Números | Erros

Erros de aproximação/comparativos

Hipótese: valor p^* é uma aproximação do número p

Erro real

$$E(p, p^*) = p - p^*$$

Erro absoluto

$$EA(p, p^*) = |p - p^*|$$

Erro relativo

$$ER(p, p^*) = \frac{|p - p^*|}{|p|}$$

 Utilizados como critérios de parada para métodos numéricos iterativos. MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

> Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erron

► Fornece resultado mais acurado.

Erro de truncamento

- Despreza a parte que extrapola o número de dígitos significativos
- Utilizado em computadores devido à velocidade superior na operação

Representação ($\beta = 10|t = 5$):

6584.691 arred.
$$0.65847 \times 10^4$$

6584.691 trunc. 0.65846×10^4

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

> Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

- Contribuição dos erros nas parcelas para o erro no resultado final da operação
- Ordem dos fatores altera o resultado: em aritmética de ponto flutuante com precisão finita não são válidas mais as propriedades associativas e distributivas

Exemplos

Representação ($\beta = 10|t = 3$) com arredondamento

1) Soma de três números

$$(11.4 + 3.18) + 5.05 = 14.6 + 5.05 = 19.7$$

$$11.4 + (3.18 + 5.05) = 11.4 + 8.23 = 19.6$$

MÓDULO 01 |
ARITMÉTICA DE
PONTO
FLUTUANTE E
ESTUDO SOBRE
FRROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Números | Aritmética de ponto flutuante

2) Soma de 1/3 comparada com multiplicação por inteiro

$$0.333 + 0.333 = 0.666$$
 | $2 \times 0.333 = 0.666$
 $0.666 + 0.333 = 0.999$ | $3 \times 0.333 = 0.999$
 $0.999 + 0.333 = 1.33$ | $4 \times 0.333 = 1.33$
 $1.33 + 0.333 = 1.66$ | $5 \times 0.333 = 1.67$
 $1.66 + 0.333 = 1.99$ | $6 \times 0.333 = 2.00$
 $1.99 + 0.333 = 2.32$ | $7 \times 0.333 = 2.33$
 $2.32 + 0.333 = 2.65$ | $8 \times 0.333 = 2.66$
 $2.65 + 0.333 = 2.98$ | $9 \times 0.333 = 3.00$
 $2.98 + 0.333 = 3.31$ | $10 \times 0.333 = 3.33$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Números | Aritmética de ponto flutuante

3) Cálculo do polinômio P(x) no ponto x = 5.24, onde

$$P(x) = x^3 - 6x^2 + 4x - 0.1$$

Cálculo exato:

$$P(5.24) = 143.8777824 - 164.7456 + 20.96 - 0.1$$

= -0.00776

Cálculo aproximado 1: 5 multiplicações + 3 somas

$$P(5.24) = 5.24 \times 27.5 - 6 \times 27.5 + 4 \times 5.24 - 0.1$$

= 144 - 165 + 21.0 - 0.1
= -0.1 (soma da esquerda para a direita)
= 0 (soma da direita para a esquerda)
 $ER_1 \approx 13.89$ (1389%)
 $ER_2 = 1.0$ (100%)

MÓDULO 01 |
ARITMÉTICA DE
PONTO
FLUTUANTE E
ESTUDO SOBRE
ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

$$P(x) = x(x(x-6) + 4) - 0.1$$

$$P(5.24) = 5.24 (5.24 (5.24 - 6) + 4) - 0.1$$
$$= 5.24 (-3.98 + 4) - 0.1$$
$$= 0.105 - 0.1 = 0.005$$
$$ER \approx 1.644 (164.4\%)$$

Comentários

- Quanto maior o número de operações aritméticas, maior é a tendencia do erro se amplificar.
- Ponto central do cálculo numérico: desenvolver algoritmos capazes de minimizar os efeitos da aritmética discreta na execução de um grande número de operações.

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Definição

Erros comumente observados em cálculo numérico resultantes da implementação inadequada de algoritmos

- Cancelamento
- Propagação de erros
- Instabilidade Numérica
- ► Mal condicionamento

Cancelamento

Perda de precisão numérica quando dois números muito próximos são subtraídos.

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Efeitos numéricos

Exemplo: cálculo de $\sqrt{9876} - \sqrt{9875}$

$$\sqrt{9876} = 0.9937806599 \times 10^{2}$$

$$\sqrt{9875} = 0.9937303457 \times 10^{2}$$

$$\sqrt{9876} - \sqrt{9875} = 0.0000503142 \times 10^{2}$$

$$= 0.5031420000 \times 10^{-2}$$

Minimização do efeito: reescrever a operação de subtração de outra maneira

$$\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$$

$$\sqrt{9876} - \sqrt{9875} = \frac{1}{\sqrt{9876} + \sqrt{9875}}$$
$$= 0.5031418679 \times 10^{-2}$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

> Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

- Só ocorre quando existe inversão de sinal nos termos da soma.
- ▶ Dado um conjunto $\{a_k\}$ de números reais, o cálculo da soma total $s_n = \sum_{k=1}^n a_k$ é realizado a partir das somas parciais:

$$s_1 = a_1,$$
 $s_k = s_{k-1} + a_k,$ $k = 2, ..., n.$

Exemplo: Cálculo de $e^{-5.25}$ através da expansão em série

$$e^{-x} = \sum_{k=0}^{\infty} (-1)^k \frac{x^k}{k!}$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Mudança de base

Cálculo: representação ($\beta = 10|t = 5$) com arredondamento

Ordem k	Termo $(-1)^k x^k / k!$	Soma parcial s_k
0	$+0.10000 \times 10^{1}$	$+0.10000 \times 10^{1}$
1	-0.52500×10^{1}	-0.42500×10^{1}
2	$+0.13781 \times 10^2$	$+0.95310 \times 10^{1}$
3	-0.24117×10^2	-0.14586×10^2
4	$+0.31654 \times 10^2$	$+0.17068 \times 10^2$
5	-0.33236×10^2	-0.16168×10^2
6	$+0.29082 \times 10^2$	$+0.12914 \times 10^2$
7	-0.21811×10^2	-0.88970×10^{1}
8	$+0.14314 \times 10^2$	$+0.54170 \times 10^{1}$
9	-0.83497×10^{1}	-0.29327×10^{1}
10	$+0.43836 \times 10^{1}$	$+0.14509 \times 10^{1}$
11	-0.20922×10^{1}	-0.64130×10^0
12	$+0.91532 \times 10^{0}$	$+0.27402 \times 10^{0}$
13	-0.36965×10^0	-0.95630×10^{-1}

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

Ordem k	Termo $(-1)^k x^k / k!$	Soma parcial s_k
14	$+0.13862 \times 10^{0}$	$+0.42990 \times 10^{-1}$
15	-0.48517×10^{-1}	-0.55270×10^{-2}
16	$+0.15919 \times 10^{-1}$	$+0.10392 \times 10^{-1}$
17	-0.49163×10^{-2}	$+0.54757 \times 10^{-2}$
18	$+0.14339 \times 10^{-2}$	$+0.69096 \times 10^{-2}$
19	-0.39622×10^{-3}	$+0.65134 \times 10^{-2}$
20	$+0.10401 \times 10^{-3}$	$+0.66174 \times 10^{-2}$
21	-0.26002×10^{-4}	$+0.65914 \times 10^{-2}$
22	$+0.62049 \times 10^{-5}$	$+0.66038 \times 10^{-2}$
23	-0.14163×10^{-5}	$+0.66024 \times 10^{-2}$
24	$+0.30983 \times 10^{-6}$	$+0.66027 \times 10^{-2}$
25	-0.65063×10^{-7}	$+0.66026 \times 10^{-2}$

Valor correto: $e^{-5.25} = 0.52475 \times 10^{-2} (ER \approx 0.258)$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

► A aproximação de 5 dígitos significativos dos termos de ordem mais altas (azul) excluem contribuições da mesma ordem de grandeza do resultado final

$$k = 3$$
 | $-0.14586 \times 10^2 = -1458.60000 \times 10^{-2}$
 $k = 4$ | $+0.17068 \times 10^2 = +1706.80000 \times 10^{-2}$
 $k = 5$ | $-0.16168 \times 10^2 = -1616.80000 \times 10^{-2}$
 $k = 6$ | $+0.12914 \times 10^2 = +1291.40000 \times 10^{-2}$

k = 23 | $+0.66026 \times 10^{-2} = -0000.66026 \times 10^{-2}$

Solução para o problema: cálculo de $e^{-5.25}=1/e^{5.25}$ através da expansão em série

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

k	$x^k/k!$	$ s_k $	$ s_{\iota}^{-1} $
0	0.10000×10^{1}	0.10000×10^{1}	0.10000×10^{1}
1	0.52500×10^{1}	0.62500×10^{1}	0.16000×10^0
2	0.13781×10^2	0.20031×10^2	0.49923×10^{-1}
3	0.24117×10^2	0.44148×10^2	0.22651×10^{-1}
4	0.31654×10^2	0.75802×10^2	0.13192×10^{-1}
5	0.33236×10^2	0.10904×10^3	0.91709×10^{-2}
6	0.29082×10^2	0.13812×10^3	0.72401×10^{-2}
7	0.21811×10^2	0.15993×10^3	0.62527×10^{-2}
8	0.14314×10^2	0.17424×10^3	0.57392×10^{-2}
9	0.83497×10^{1}	0.18259×10^3	0.54768×10^{-2}
10	0.43836×10^{1}	0.18697×10^3	0.53485×10^{-2}
11	0.20922×10^{1}	0.18906×10^3	0.52893×10^{-2}
12	0.91532×10^{0}	0.18998×10^3	0.52637×10^{-2}
13	0.36965×10^{0}	0.19035×10^3	0.52535×10^{-2}

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

	$x^k/k!$	$ s_k $	s_k^{-1}
	0.13862×10^{0}		
	0.48517×10^{-1}		
16	0.15919×10^{-1}	0.19056×10^3	0.52477×10^{-2}

Valor correto: $e^{-5.25} = 0.52475 \times 10^{-2} (ER \approx 0.381 \times 10^{-4})$

Erros em cálculo numérico

- Todo cálculo intermediário introduz erros de arredondamento/truncamento que afetam resultados subsequentes, independentemente do nível de precisão utilizado.
- ▶ Ponto central é como os erros influenciam o resultado final, i.e., se e como eles se somam ou se cancelam.
- ► Algoritmo estável: erros intermediários têm efeito desprezível no resultado final

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

> Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos Mudança de base

Exemplo: cálculo iterativo da integral

$$I_n = \frac{1}{e} \int_0^1 dx e^x x^n$$

Método recursivo:

$$I_0 = 1 - \frac{1}{e} \approx 0.63212056$$

$$I_n = 1 - nI_{n-1}, \ n = 1, 2, \dots$$

$$(I_{n+1} < I_n)$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Cálculo numérico: t = 8

$$I_0 = 0.63212056 \quad (ER \sim 10^{-9}) \mid I_7 = 0.11237760 \quad (ER \sim 10^{-5})$$

 $I_1 = 0.36787944 \quad (ER \sim 10^{-9}) \mid I_8 = 0.10097920 \quad (ER \sim 10^{-4})$
 $I_2 = 0.26424112 \quad (ER \sim 10^{-9}) \mid I_9 = 0.09118720 \quad (ER \approx 0.005)$
 $I_3 = 0.20727664 \quad (ER \sim 10^{-8}) \mid I_{10} = 0.0881280 \quad (ER \approx 0.051)$
 $I_4 = 0.17089344 \quad (ER \sim 10^{-7}) \mid I_{11} = 0.030591998 \quad (ER \approx 0.6)$
 $I_5 = 0.14553280 \quad (ER \sim 10^{-7}) \mid I_{12} = 0.63289603 \quad (ER \approx 7.8)$
 $I_6 = 0.12680320 \quad (ER \sim 10^{-6}) \mid I_{13} = -7.2276483 \quad (ER \sim 10^{-2})$

 Origem do erro: instabilidade numérica do algoritmo recursivo utilizado. MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

- $ightharpoonup I_n$: valor exato da integral
- $ightharpoonup \widetilde{I}_n$: valor calculado assumindo erro propagado de I_0
- \triangleright ε_0 : erro no valor de I_0

$$\widetilde{I}_0 = I_0 + \varepsilon_0$$

$$\widetilde{I}_n = 1 - n \, \widetilde{I}_{n-1}, \qquad n = 1, 2, \dots$$

 \triangleright ε_n : erro cometido no cálculo da n-ésima integral

$$\varepsilon_n \equiv \widetilde{I}_n - I_n = -n \ \varepsilon_{n-1}, \qquad n = 1, 2, \dots$$

Cálculo recursivo

$$\varepsilon_{1} = -\varepsilon_{0} = (-1) \varepsilon_{0}$$

$$\varepsilon_{2} = -2\varepsilon_{1} = 2\varepsilon_{0}$$

$$\varepsilon_{3} = -3\varepsilon_{2} = (-1) 3! \varepsilon_{0}$$

$$\varepsilon_{4} = -4\varepsilon_{2} = 4! \epsilon_{0} \qquad \to \qquad \varepsilon_{n} = (-1)^{n} n! \varepsilon_{0}$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Efeitos numéricos

$$I_{n-1} = \frac{1 - I_n}{n}$$

► Como $I_n \to 0$ conforme $n \to \infty$, basta assumir $I_{\overline{n}} = 0$ para algum \overline{n} suficientemente grande

$$\begin{split} \widetilde{I}_{\overline{n}} &= I_{\overline{n}} + \varepsilon \\ \widetilde{I}_{\overline{n}-1} &= \frac{1 - I_{\overline{n}}}{\overline{n}} - \frac{\varepsilon}{\overline{n}} \\ \widetilde{I}_{\overline{n}-2} &= \frac{\overline{n} (1 + I_{\overline{n}}) - 1}{\overline{n} (\overline{n} - 1)} + \frac{\varepsilon}{\overline{n} (\overline{n} - 1)} \\ \widetilde{I}_{\overline{n}-3} &= \frac{\overline{n}^2 - \overline{n} (2 + I_{\overline{n}}) + 1}{\overline{n} (\overline{n} - 1) (\overline{n} - 2)} - \frac{\varepsilon}{\overline{n} (\overline{n} - 1) (\overline{n} - 2)} \end{split}$$

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

$$r_{\overline{n}-n} = (-1)^n \frac{(\overline{n}-n)!}{\overline{n}!} \varepsilon$$

► Erro decrescente: $r_n \to 0$ conforme $n \to 0$

Cálculo numérico: t = 8

$$I_{20} = 0.0000000000 \quad (ER = 1)$$

 $I_{19} = 0.500000000 \quad (ER \approx 0.048)$
 $I_{18} = 0.500000000 \quad (ER \approx 0.002)$
 $I_{17} = 0.052777778 \quad (ER \sim 10^{-4})$
 $I_{16} = 0.055718954 \quad (ER \sim 10^{-6})$
 $I_{15} = 0.059017565 \quad (ER \sim 10^{-7})$
 \vdots
 $I_{0} = 0.63212056 \quad (ER \sim 10^{-9})$

MÓDULO 01 |
ARITMÉTICA DE
PONTO
FLUTUANTE E
ESTUDO SOBRE
ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Mudança de

Aritmética de ponto flutu

Efeitos numéricos

Mal condicionamento

Uso do cálculo numérico na resolução de problemas segue três passos:

- 1. Entrada de dados: define o problema matemático e os seus parâmetros.
- 2. Processamento de dados: algoritmo realiza os cálculos.
- 3. Saída de dados: resultado obtido pelo algoritmo.

Problema bem posto: resultado depende continuamente dos dados, onde pequenas variações nos parâmetros geram pequenas variações no resultado.

Problema mal posto: resultado não depende continuamente dos dados.

Criticalidade: pequenas alterações mudam qualitativamente o resultado final. MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE FRROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Aritmética de ponto flutuante

Ffeitos numéricos

Exemplo: Sistemas lineares

Sistema linear original

$$x + y = 2$$
, $x + 1.01y = 2.01$

Solução: x = y = 1.

Sistema linear alterado 1

$$x + y = 2$$
, $x + 1.01y = 2.02$

► Solução: (x, y) = (0, 2).

Sistema linear alterado 2

$$x + y = 2$$
, $x + 1.0y = 2.01$

Não existe solução: retas paralelas

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

Efeitos numéricos

Exemplo: Problema de valor inicial

$$\ddot{y} = y$$
, $y(0) = 1$, $\dot{y}(0) = 2\delta - 1$

Solução:

$$y(t) = \delta e^t + (1 - \delta) e^{-t}$$

Limite 1: $|\delta| > 0$

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \delta e^t = \begin{cases} +\infty, & \delta > 0, \\ -\infty, & \delta < 0. \end{cases}$$

Limite 2: $\delta = 0$

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} e^{-t} = 0$$

MÓDULO 01 | ARITMÉTICA DE PONTO FLUTUANTE E ESTUDO SOBRE ERROS

Prof. Paulo F. C. Tilles

Representação de números

Introdução

Sistema de números discretos

Erros

