Audoy François M1 Informatique

<u>CC2</u>

Exercice 1

En bleu les erreurs C1 En vert les erreurs Moyenne En rouge les erreurs C2

MAP

Mon MAP est complétement faux et je n'ai pas reussi à trouver le problème.

Perceptron

On peut voir que le Perceptron arrive à bien améliorer la droite de séparation afin de trouver au fur et à mesure des itérations un minimum d'erreurs.

Le fait que le taux d'erreur oscille autant est parce que les échantillons ne sont pas strictement linéairement séparable donc il y aura forcément des erreurs.

Moindre Carrés

La technique des moindre carrés est plus intéressant que le perceptron pour ces échantillons.

Moindre Carré Opti sur le B

Sur ces échantillons l'optimisation sur le B n'est pas plus efficace que les moindre carrés simple .

Exercice 2

C3 en bleu Moyenne en vert C4 en rouge

MAP

Comme au dessus mon MAP est complétement faux je ne peux pas vraiment dire de choses à propos de ça

Perceptron

Là on peut clairement voir que le péceptron se stabilise assez vite et trouve un taux d'erreur correct .

Le perceptron est efficace sur ces échantillon

Moindre Carrés

La technique des moindre carrés est plus efficace que le perceptron, il trouve directement un vecteur plus interressant et à un taux d'erreurs stable et correct.

Moindre Carrés Opti sur le B

Dans ce cas aussi l'optimisation sur le B n'est pas plus efficace que le moindre carré.

