Quantum Information and Computing 2021-2022

4th week assignment November 29, 2021

Campesan Giulia

1-D quantum harmonic oscillator-Eigenvalues problem

$$\hat{H}|\psi\rangle = \left[\frac{\hat{p}}{2m} + \frac{1}{2m}\omega^2 q^2\right]|\psi\rangle = E|\psi\rangle$$

- good approximation of any 1-D system around stable equilibrium point
- analytical solution
- time independent Shrodinger equation for harmonic potential

Representation: **coordinate basis**
$$\hat{q} \to \hat{x}, \quad \hat{p} \to -i\hbar \frac{\partial}{\partial \hat{x}}$$
 Natural units for both energy and distance
$$\hbar \omega x \to x, \quad \sqrt{\frac{\hbar}{m\omega}} E \to E$$

$$\hat{H} |\psi\rangle = \left[\frac{-i}{2} \frac{\partial}{\partial \hat{x}^2} + \frac{1}{2} \omega^2 x^2 \right] |\psi\rangle = E |\psi\rangle$$

- Eigenvalues $\mathbf{E_n} = \mathbf{n} + \frac{1}{2}$, n = 0, 1, 2, ...
- Eigenvectors: $\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \pi^{-\frac{1}{4}} \exp\left(-\frac{-x^2}{2}\right) H_n(x)$, where $H_n(x)$ are the Hermite polynomials

Computational implementation

Computational representation: discretization

 $x \to x_k, \quad x_k = L1 + k * \Delta x$

in which we are building a grid of N+1 points in the interval [L1, L2], with a spacing $\Delta x = \frac{L2-L1}{N}$

The discretized Shrodinger equation is then, using finite differences method:

$$[\hat{H}\left|\psi\right\rangle]_{x=x_{k}}=\frac{1}{2}\omega^{2}x_{k}^{2}+\frac{\psi\left(x=x_{k+1}\right)-2\psi\left(x=x_{k}\right)+\psi\left(x=x_{k-1}\right)}{\Delta x^{2}}+O(\Delta x^{2})$$

The representation of the system Hamiltonian in the computational basis ends up to be **tridiagonal** and **symmetric**:

$$H_{i,i+1} = H_{i,i-1} = -\frac{1}{2\Delta x^2}, \qquad H_{i,i} = \frac{1}{2\Delta x^2} + \frac{1}{2}\omega^2 x_i^2$$

$$H = \begin{bmatrix} \frac{1}{2\Delta x^2} + \frac{1}{2}\omega^2 x_1^2 & -\frac{1}{2\Delta x^2} & 0 \\ -\frac{1}{2\Delta x^2} & \frac{1}{2\Delta x^2} + \frac{1}{2}\omega^2 x_2^2 & -\frac{1}{2\Delta x^2} & 0 \\ \vdots & -\frac{1}{2\Delta x^2} & \frac{1}{2\Delta x^2} + \frac{1}{2}\omega^2 x_3^2 & -\frac{1}{2\Delta x^2} \\ 0 & \ddots & \\ -\frac{1}{2\Delta x^2} & \frac{1}{2\Delta x^2} + \frac{1}{2}\omega^2 x_{N+1}^2 \end{bmatrix}$$

The compilation and execution of the Fortran script and module exploited are controlled by running:

python execution.py L1 L2 dx

where L1, L2 are the range extrema and dx is the discretization spacing. In the *Hermitian.f90* we exploit the DSTEV fortran subroutine for real, symmetric, tridiagonal matrices diagonalization to solve our eigenvalues problem.

```
N = size(h, 1)
LDZ = MAX(1, N)
allocate(eigvalues(N)); allocate(UD(N-1)); allocate(WORK(MAX(1, 2*N-2))); allocate(eigvectors(LDZ, N))
do ii=1. N
    eigvalues(ii) = h(ii, ii)
enddo
do ii=1, N-1
   UD(ii) = h(ii, ii+1)
enddo
call DSTEV( 'V', N, eigvalues, UD, eigvectors, LDZ, WORK, INFO )
call check( condition= (INFO.NE.0), &
            msq type = 'ERROR', &
            msq = 'something went wrong in dstev')
```

Figure: DSTEV subroutine call

Figure: Eigenvalues and eigenvectors (2a). Eigenvalues (2b) and their relative error (2c) for fixed spacing Δx and varying L. Eigenvalues (2d) and their relative error (2e) for fixed spacing Δx and varying L

Correctness

The curves reporting the absolute value of the relative error keeping respectively Δx and L fixed are shown in the slide before. We can see a strong dependence both on the spacing (finite differences method related error) and both on the interval range (higher energies eigenvalues see the potential as infinite-well shaped)

Stability

The program returns the same results (up to finite precision) for different runs

Discretization

There is a strong dependence on the chosen discretization spacing.

Flexibility

The program responds well to different input values of both Δx and L

■ Efficiency

The program exploits the ad-hoc STDEV subroutine for real, tridiagonal, symmetric matrices. Still, there is a strong dependence of the execution time on the number of points in the lattice.