Homework 6

Due on 13:00, December 16, 2024

Problem 1. Assume f and g are functions f, $g: \mathbb{N} \to \mathbb{R}^+$. Prove or disprove the following statements by using the following definitions.

Definition 1. We say f(n) = O(g(n)) if there exists c > 0 and $n_0 \in \mathbb{N}$ such that for every integer $n \ge n_0$,

$$f(n) \le cg(n)$$
.

Definition 2. We say f(n) = o(g(n)) if for each c > 0, there exists $n_0 \in \mathbb{N}$ such that for every integer $n \ge n_0$,

$$f(n) \le cg(n)$$
.

- (a) Let $f(n) = e^{2n}$ and $g(n) = e^{n}$. f(n) = O(g(n))
- (b) Let f(n) = n! and $g(n) = n^n$. f(n) = o(g(n))

For proving the statements, you need to show the existence of n_0 for one c or all c's, depending on the definition of big-O or small-o. For disproving the statements, you must prove the opposite of the definition by also showing details.