## **Importing Libraries:**

### In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
```

## Reading the dataset:

### In [2]:

```
data=pd.read_csv('water_dataX.csv',encoding='ISO-8859-1',low_memory=False)
```

### In [3]:

data.head()

### Out[3]:

|   | STATION<br>CODE | LOCATIONS                                               | STATE          | Temp | D.O.<br>(mg/l) | РН  | CONDUCTIVITY (µmhos/cm) | B.O.D.<br>(mg/l) | NITRATENAN<br>N+<br>NITRITENANN<br>(mg/l) |
|---|-----------------|---------------------------------------------------------|----------------|------|----------------|-----|-------------------------|------------------|-------------------------------------------|
| 0 | 1393            | DAMANGANGA<br>AT D/S OF<br>MADHUBAN,<br>DAMAN           | DAMAN<br>& DIU | 30.6 | 6.7            | 7.5 | 203                     | NAN              | 0.1                                       |
| 1 | 1399            | ZUARI AT D/S<br>OF PT. WHERE<br>KUMBARJRIA<br>CANAL JOI | GOA            | 29.8 | 5.7            | 7.2 | 189                     | 2                | 0.2                                       |
| 2 | 1475            | ZUARI AT<br>PANCHAWADI                                  | GOA            | 29.5 | 6.3            | 6.9 | 179                     | 1.7              | 0.1                                       |
| 3 | 3181            | RIVER ZUARI<br>AT BORIM<br>BRIDGE                       | GOA            | 29.7 | 5.8            | 6.9 | 64                      | 3.8              | 0.5                                       |
| 4 | 3182            | RIVER ZUARI<br>AT MARCAIM<br>JETTY                      | GOA            | 29.5 | 5.8            | 7.3 | 83                      | 1.9              | 0.4                                       |
| 4 |                 |                                                         |                |      |                |     |                         |                  | •                                         |

# **Analysing the data:**

```
In [4]:
```

```
data.describe()
```

### Out[4]:

|       | year        |
|-------|-------------|
| count | 1991.000000 |
| mean  | 2010.038172 |
| std   | 3.057333    |
| min   | 2003.000000 |
| 25%   | 2008.000000 |
| 50%   | 2011.000000 |
| 75%   | 2013.000000 |
| max   | 2014.000000 |

### In [5]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1991 entries, 0 to 1990
Data columns (total 12 columns):
```

| #  | Column                           | Non-Null Count | Dtype  |
|----|----------------------------------|----------------|--------|
|    |                                  |                |        |
| 0  | STATION CODE                     | 1991 non-null  | object |
| 1  | LOCATIONS                        | 1991 non-null  | object |
| 2  | STATE                            | 1991 non-null  | object |
| 3  | Temp                             | 1991 non-null  | object |
| 4  | D.O. $(mg/1)$                    | 1991 non-null  | object |
| 5  | PH                               | 1991 non-null  | object |
| 6  | CONDUCTIVITY (µmhos/cm)          | 1991 non-null  | object |
| 7  | B.O.D. (mg/l)                    | 1991 non-null  | object |
| 8  | NITRATENAN N+ NITRITENANN (mg/l) | 1991 non-null  | object |
| 9  | FECAL COLIFORM (MPN/100ml)       | 1991 non-null  | object |
| 10 | TOTAL COLIFORM (MPN/100ml)Mean   | 1991 non-null  | object |
| 11 | year                             | 1991 non-null  | int64  |

dtypes: int64(1), object(11)
memory usage: 186.8+ KB

### In [6]:

```
data.shape
```

### Out[6]:

(1991, 12)

## **Handling Missing Values:**

### In [7]:

```
data.isnull().any()
```

### Out[7]:

STATION CODE False LOCATIONS False STATE False Temp False D.O. (mg/1)False False PΗ CONDUCTIVITY (µmhos/cm) False B.O.D. (mg/1)False NITRATENAN N+ NITRITENANN (mg/l) False FECAL COLIFORM (MPN/100ml) False TOTAL COLIFORM (MPN/100ml)Mean False False year dtype: bool

### In [8]:

```
data.isnull().sum()
```

### Out[8]:

STATION CODE 0 **LOCATIONS** 0 STATE 0 0 Temp D.O. (mg/1)0 0 PΗ CONDUCTIVITY (µmhos/cm) 0 B.O.D. (mg/1)0 NITRATENAN N+ NITRITENANN (mg/l) 0 0 FECAL COLIFORM (MPN/100ml) TOTAL COLIFORM (MPN/100ml)Mean 0 0 year dtype: int64

### In [9]:

#### data.dtypes

### Out[9]:

STATION CODE object object LOCATIONS STATE object Temp object D.O. (mg/1)object object CONDUCTIVITY (µmhos/cm) object B.O.D. (mg/1)object NITRATENAN N+ NITRITENANN (mg/l) object FECAL COLIFORM (MPN/100ml) object TOTAL COLIFORM (MPN/100ml)Mean object int64 year dtype: object

```
In [10]:
```

```
data['Temp']=pd.to_numeric(data['Temp'],errors='coerce')
data['D.O. (mg/l)']=pd.to_numeric(data['D.O. (mg/l)'],errors='coerce')
data['PH']=pd.to_numeric(data['PH'],errors='coerce')
data['CONDUCTIVITY (μmhos/cm)']=pd.to_numeric(data['CONDUCTIVITY (μmhos/cm)'],errors='coercdata['B.O.D. (mg/l)']=pd.to_numeric(data['B.O.D. (mg/l)'],errors='coerce')
data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to_numeric(data['NITRATENAN N+ NITRITENANN (mg/data['TOTAL COLIFORM (MPN/100ml)Mean']=pd.to_numeric(data['TOTAL COLIFORM (MPN/100ml)Mean']
data.dtypes
```

### Out[10]:

```
STATION CODE
                                       object
LOCATIONS
                                       object
STATE
                                       object
Temp
                                      float64
D.O. (mg/1)
                                      float64
                                      float64
CONDUCTIVITY (µmhos/cm)
                                      float64
                                      float64
B.O.D. (mg/1)
NITRATENAN N+ NITRITENANN (mg/l)
                                      float64
FECAL COLIFORM (MPN/100ml)
                                      object
TOTAL COLIFORM (MPN/100ml)Mean
                                      float64
                                        int64
year
dtype: object
```

### In [11]:

```
data.isnull().sum()
```

### Out[11]:

```
STATION CODE
                                        0
LOCATIONS
                                        0
STATE
                                        0
                                       92
Temp
D.O. (mg/1)
                                        31
                                        8
PH
CONDUCTIVITY (µmhos/cm)
                                        25
B.O.D. (mg/1)
                                       43
NITRATENAN N+ NITRITENANN (mg/l)
                                       225
FECAL COLIFORM (MPN/100ml)
                                        a
TOTAL COLIFORM (MPN/100ml)Mean
                                      132
year
                                        0
dtype: int64
```

#### In [12]:

```
data['Temp'].fillna(data['Temp'].mean(),inplace=True)
data['D.O. (mg/l)'].fillna(data['D.O. (mg/l)'].mean(),inplace=True)
data['PH'].fillna(data['PH'].mean(),inplace=True)
data['CONDUCTIVITY (µmhos/cm)'].fillna(data['CONDUCTIVITY (µmhos/cm)'].mean(),inplace=True)
data['B.O.D. (mg/l)'].fillna(data['B.O.D. (mg/l)'].mean(),inplace=True)
data['NITRATENAN N+ NITRITENANN (mg/l)'].fillna(data['NITRATENAN N+ NITRITENANN (mg/l)'].me
data['TOTAL COLIFORM (MPN/100ml)Mean'].fillna(data['TOTAL COLIFORM (MPN/100ml)Mean'].mean()
```

### In [13]:

### data.isnull().any()

### Out[13]:

| STATION CODE                     | False |
|----------------------------------|-------|
| LOCATIONS                        | False |
| STATE                            | False |
| Temp                             | False |
| D.O. $(mg/1)$                    | False |
| PH                               | False |
| CONDUCTIVITY (µmhos/cm)          | False |
| B.O.D. (mg/l)                    | False |
| NITRATENAN N+ NITRITENANN (mg/l) | False |
| FECAL COLIFORM (MPN/100ml)       | False |
| TOTAL COLIFORM (MPN/100ml)Mean   | False |
| year                             | False |
| dtype: bool                      |       |

### In [14]:

data.drop("FECAL COLIFORM (MPN/100ml)",axis=1,inplace=True)

### In [15]:

data.head()

### Out[15]:

|   | STATION<br>CODE | LOCATIONS                                               | STATE          | Temp | D.O.<br>(mg/l) | PH  | CONDUCTIVITY (µmhos/cm) | B.O.D.<br>(mg/l) | NITRATENA<br>N<br>NITRITENAN<br>(mg |
|---|-----------------|---------------------------------------------------------|----------------|------|----------------|-----|-------------------------|------------------|-------------------------------------|
| 0 | 1393            | DAMANGANGA<br>AT D/S OF<br>MADHUBAN,<br>DAMAN           | DAMAN<br>& DIU | 30.6 | 6.7            | 7.5 | 203.0                   | 6.940049         | 0                                   |
| 1 | 1399            | ZUARI AT D/S<br>OF PT. WHERE<br>KUMBARJRIA<br>CANAL JOI | GOA            | 29.8 | 5.7            | 7.2 | 189.0                   | 2.000000         | 0                                   |
| 2 | 1475            | ZUARI AT<br>PANCHAWADI                                  | GOA            | 29.5 | 6.3            | 6.9 | 179.0                   | 1.700000         | 0                                   |
| 3 | 3181            | RIVER ZUARI<br>AT BORIM<br>BRIDGE                       | GOA            | 29.7 | 5.8            | 6.9 | 64.0                    | 3.800000         | 0                                   |
| 4 | 3182            | RIVER ZUARI<br>AT MARCAIM<br>JETTY                      | GOA            | 29.5 | 5.8            | 7.3 | 83.0                    | 1.900000         | 0                                   |
| 4 |                 |                                                         |                |      |                |     |                         |                  | •                                   |

### In [16]:

```
data=data.rename(columns={'D.O. (mg/l)':'do'})
data=data.rename(columns={'CONDUCTIVITY (µmhos/cm)':'co'})
data=data.rename(columns={'B.O.D. (mg/l)':'bod'})
data=data.rename(columns={'NITRATENAN N+ NITRITENANN (mg/l)':'na'})
data=data.rename(columns={'TOTAL COLIFORM (MPN/100ml)Mean':'tc'})
data=data.rename(columns={'STATION CODE':'station'})
data=data.rename(columns={'LOCATIONS':'location'})
data=data.rename(columns={'STATE':'state'})
data=data.rename(columns={'PH':'ph'})
```

### In [17]:

```
data.head()
```

#### Out[17]:

|   | station | location                                                | state          | Temp | do  | ph  | со    | bod      | na  | tc     | year |
|---|---------|---------------------------------------------------------|----------------|------|-----|-----|-------|----------|-----|--------|------|
| 0 | 1393    | DAMANGANGA AT<br>D/S OF MADHUBAN,<br>DAMAN              | DAMAN<br>& DIU | 30.6 | 6.7 | 7.5 | 203.0 | 6.940049 | 0.1 | 27.0   | 2014 |
| 1 | 1399    | ZUARI AT D/S OF PT.<br>WHERE<br>KUMBARJRIA CANAL<br>JOI | GOA            | 29.8 | 5.7 | 7.2 | 189.0 | 2.000000 | 0.2 | 8391.0 | 2014 |
| 2 | 1475    | ZUARI AT<br>PANCHAWADI                                  | GOA            | 29.5 | 6.3 | 6.9 | 179.0 | 1.700000 | 0.1 | 5330.0 | 2014 |
| 3 | 3181    | RIVER ZUARI AT<br>BORIM BRIDGE                          | GOA            | 29.7 | 5.8 | 6.9 | 64.0  | 3.800000 | 0.5 | 8443.0 | 2014 |
| 4 | 3182    | RIVER ZUARI AT<br>MARCAIM JETTY                         | GOA            | 29.5 | 5.8 | 7.3 | 83.0  | 1.900000 | 0.4 | 5500.0 | 2014 |

## **Water Quality Index Calculation:**

#### In [18]:

### In [19]:

```
In [20]:
```

### In [21]:

### In [22]:

### In [23]:

### In [24]:

```
data['wph']=data.npH*0.165
data['wdo']=data.ndo*0.281
data['wbdo']=data.nbdo*0.234
data['wec']=data.nec*0.009
data['wna']=data.nna*0.028
data['wco']=data.nco*0.281
data['wqi']=data.wph+data.wdo+data.wbdo+data.wec+data.wna+data.wco
data
```

### Out[24]:

|      | station | location                                                  | state          | Temp      | do  | ph    | СО    | bod      | na       |    |
|------|---------|-----------------------------------------------------------|----------------|-----------|-----|-------|-------|----------|----------|----|
| 0    | 1393    | DAMANGANGA AT<br>D/S OF<br>MADHUBAN,<br>DAMAN             | DAMAN<br>& DIU | 30.600000 | 6.7 | 7.5   | 203.0 | 6.940049 | 0.100000 |    |
| 1    | 1399    | ZUARI AT D/S OF<br>PT. WHERE<br>KUMBARJRIA<br>CANAL JOI   | GOA            | 29.800000 | 5.7 | 7.2   | 189.0 | 2.000000 | 0.200000 | 83 |
| 2    | 1475    | ZUARI AT<br>PANCHAWADI                                    | GOA            | 29.500000 | 6.3 | 6.9   | 179.0 | 1.700000 | 0.100000 | 53 |
| 3    | 3181    | RIVER ZUARI AT<br>BORIM BRIDGE                            | GOA            | 29.700000 | 5.8 | 6.9   | 64.0  | 3.800000 | 0.500000 | 84 |
| 4    | 3182    | RIVER ZUARI AT<br>MARCAIM JETTY                           | GOA            | 29.500000 | 5.8 | 7.3   | 83.0  | 1.900000 | 0.400000 | 55 |
|      |         |                                                           |                |           |     |       |       |          |          |    |
| 1986 | 1330    | TAMBIRAPARANI<br>AT<br>ARUMUGANERI,<br>TAMILNADU          | NAN            | 26.209814 | 7.9 | 738.0 | 7.2   | 2.700000 | 0.518000 | 2  |
| 1987 | 1450    | PALAR AT<br>VANIYAMBADI<br>WATER SUPPLY<br>HEAD WORK, T   | NAN            | 29.000000 | 7.5 | 585.0 | 6.3   | 2.600000 | 0.155000 | 3  |
| 1988 | 1403    | GUMTI AT U/S<br>SOUTH<br>TRIPURA,TRIPURA                  | NAN            | 28.000000 | 7.6 | 98.0  | 6.2   | 1.200000 | 1.623079 | 5  |
| 1989 | 1404    | GUMTI AT D/S<br>SOUTH TRIPURA,<br>TRIPURA                 | NAN            | 28.000000 | 7.7 | 91.0  | 6.5   | 1.300000 | 1.623079 | 5  |
| 1990 | 1726    | CHANDRAPUR,<br>AGARTALA D/S OF<br>HAORA RIVER,<br>TRIPURA | NAN            | 29.000000 | 7.6 | 110.0 | 5.7   | 1.100000 | 1.623079 | 5  |

1991 rows × 24 columns

In [ ]:

## **Data Visualization:**

### In [25]:

```
sns.distplot(data['do'])
plt.show()
```

C:\Users\LENOVO\anaconda3\lib\site-packages\seaborn\distributions.py:2619: F utureWarning: `distplot` is a deprecated function and will be removed in a f uture version. Please adapt your code to use either `displot` (a figure-leve l function with similar flexibility) or `histplot` (an axes-level function f or histograms).

warnings.warn(msg, FutureWarning)



### In [26]:

data.hist(figsize=(14,14))
plt.show()

