

STM32F101x6

STM32F101x8 STM32F101xB

基本型, 32位基于ARM核心的带闪存微控制器 6个16位定时器、ADC、7个通信接口

功能
初步信息

■ 核心

- ARM 32 位的 Cortex-M3™CPU
- 36MHz, 高达 45DMips, 1.25DMips/MHz
- 单周期硬件乘法和除法——加快计算

■ 存储器

- 从 32K 字节至 128K 字节闪存程序存储器
- 从 6K 字节至 16K 字节 SRAM

■ 时钟、复位和供电管理

- 2.0 至 3.6 伏供电和 I/O 管脚
- 上电/断电复位(POR/PDR)、可编程电压监测器(PVD)
- 内嵌 4 至 16MHz 高速晶体振荡器
- 内嵌经出厂调校的 8MHz RC 振荡器
- 内部 40kHz 的 RC 振荡器
- 内嵌 PLL 供应 CPU 时钟
- 内嵌使用外部 32kHz 晶体的 RTC 振荡器

■ 低功耗

- 睡眠、停机和待机模式
- V_{BAT}为 RTC 和后备寄存器供电

■ 调试模式

- 串行线调试(SWD)和JTAG接口

DMA

- 7 通道 DMA 控制器
- 支持的外设:定时器、ADC、SPI、I²C和 USART

■ 1 个 12 位模数转换器, 1us 转换时间(16 通道)

- 转换范围是 0 至 3.6V
- 温度传感器

VFQFPN36 6 × 6 mm

LQFP48 7 x 7 mm

LQFP64 10 x 10 mm

LQFP100 14 x 14 mm

■ 多达 80*个快速 I/O 口

- 26/36/51/80 个多功能双向 5V 兼容的 I/O □
- 所有 I/O 口可以映像到 16 个外部中断

■ 多达6个定时器

- 多达 3 个同步的 16 位定时器,每个定时器 有多达 4 个用于输入捕获/输出比较/PWM 或脉冲计数的通道
- 2个16位看门狗定时器(独立的和窗口型的)
- 系统时间定时器: 24 位的、带自动加载功能的、可变时钟源的递减计数器,提供时基功能

■ 多达7个通信接口

- 多达 2 个 I2C 接口(SMBus/PMBus)
- 多达 3 个 USART 接口(提供:智能卡 ISO7816 接口、LIN 主从能力、IrDA 能力 和调制解调器控制)
- 多达 2 个 SPI 同步串行接口(18 兆位/秒)

■ ECOPACK®封装

表1 列表

参考	基本型号
STM32F101x6	STM32F101C6,STM32F101R6, STM32F101T6,STM32F101CBT6
STM32F101x8	STM32F101C8, STM32F101R8, STM32F101V8, STM32F101T6,
STM32F101xB	STM32F101RB, STM32F101VB

1 介绍

本文给出了STM32F101xx基本型的订购信息和器件的机械特性。

有关闪存存储器的编程、擦除和保护等信息,请参考《STM32F10x闪存编程手册》。

有关Cortex-M3的信息,请参考《Cortex-M3技术参考手册》

2 规格说明

STM32F101xx基本型系列使用高性能的ARM Cortex-M3 32位的RISC内核,工作频率为36MHz,内置高速存储器(高达128K字节的闪存和16K字节的SRAM),丰富的增强型外设和I/O端口联接到两条APB总线。所有型号的器件都包含1个12位的ADC和3个通用16位定时器,还包含标准的通信接口: 2个I2C、2个SPI和3个USART。

STM32F101xx基本型系列工作于-40°C至+85°C的温度范围,2.0V至3.6V的工作电压,一系列的省电模式满足低功耗应用的需求。

完整的STM32F101xx基本型系列产品包括从36脚至100脚的四种不同封装形式,根据不同的封装形式,器件中的外设配置不尽相同。下面给出了该系列产品中所有外设的基本介绍。

这些丰富的外设配置,使得STM32F101xx基本型系列微控制器适用于多种应用场合:

- 应用控制和用户界面
- 医疗和手持设备
- PC外设,游戏和GPS平台
- 工业应用:可编程逻辑控制器、变频器、打印机和扫描仪
- 报警系统,视频对讲,和暖气通风空调系统

图1给出了该产品系列的框图。

2.1 器件一览

耒2	哭件功能和配置	(STM32F101xx 基本型)
1X.Z		(OTIVIOZI IUTAX 本平年)

外设		STM32	F101Tx	STM32F101Cx			STM32F101Rx			STM32F101Vx	
闪存(K 字节)		32	64	32	64	128	32	64	128	64	128
RAM (K 字节)	6	10	6	10	16	6	10	16	10	16
定时 器	通用	2	3	2	3	3	2	2 3		3	
	SPI	1	2	1	2	2	1		2		2
通信	I2C	1	2	1	2	2	1		2	2	
	USART	2	3	2	3	3	2		3		3
	司步 ADC 道数		l 通道	1 10 通道				1 16 通道	道	1 16 通道	
G	PIO	2	6		36		51			80	
CPU	频率		36MHz								
工作	工作电压		2.0至3.6V								
工作	乍温度		-40 至+85° C								
畫	対装	VFQ	FPN36		LQF	P48		LQF	P64	LQF	P100

2.2 概述

使用ARM®的Cortex™-M3内核并内嵌闪存和SRAM

ARM的Cortex-M3处理器是最新一代的嵌入式ARM处理器,它为实现MCU的需要提供了低成本的平台、缩减的管脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM的Cortex-M3是32位的RISC处理器,提供额外的代码效率,在通常8和16位系统的存储空间上得到了ARM内核的高性能。

STM32F101xx基本型系列拥有内置的ARM核心,因此它与所有的ARM工具和软件兼容。

内置闪存存储器

高达128K字节的内置闪存存储器,用于存放程序和数据。

内置SRAM

多达16K字节的内置SRAM, CPU能以0等待周期访问(读/写)。

嵌套的向量式中断控制器(NVIC)

STM32F101xx基本型内置嵌套的向量式中断控制器,能够处理多达43个可屏蔽中断通道(不包括16个Cortex-M3的中断线)和16个优先级。

● 紧耦合的NVIC能够达到低延迟的中断响应处理

- 申断向量入口地址直接进入核心
- 紧耦合的NVIC接口
- 允许中断的早期处理
- 处理晚到的较高优先级中断
- 支持中断尾部链接功能
- 自动保存处理器状态
- 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

外部中断/事件控制器(EXTI)

外部中断/事件控制器包含19个边沿检测器,用于产生中断/事件请求。

每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。EXTI可以检测到脉冲宽度小于内部APB2时钟周期的外部信号。多达80个通用I/O口连接到16个外部中断线。

时钟和启动

系统时钟的选择是在启动时进行,复位时内部8MHz的RC振荡器被选为默认的CPU时钟,随后可以选择外部的、具失效监控的4~16MHz时钟;当外部时钟失效时,它将被隔离,同时会产生相应的中断。同样,在需要时可以采取对PLL时钟完全的中断管理(如当一个外接的振荡器失效时)。

具有多个预分频器用于配置AHB的频率、高速APB(APB2)和低速APB(APB1)区域。AHB和APB的最高频率是36MHz。

在慢速模式下, AHB的时钟可以显著的减小以减低功耗。

自举模式

在启动时,自举管脚被用于选择三种自举模式中的一种:

- 从用户闪存自举
- 从系统存储器自举
- ◆ 从SRAM自举

自举加载器存放于系统存储器中,可以通过USART对闪存重新编程。

供电方案

- V_{DD} = 2.0至3.6V: V_{DD} 管脚提供I/O管脚和内部调压器的供电。
- V_{SSA} , V_{DD} = 2.0至3.6V:为ADC、复位模块、RC振荡器和PLL的模拟部分提供供电。使用ADC时, V_{DD} 不得小于2.4V。
- V_{BAT} =1.8至3.6V:当(通过电源开关)关闭 V_{DD} 时,为RTC、外部32kHz振荡器和后备寄存器供电。

供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过2V时工作;当 V_{DD} 低于设定的阀值($V_{POR/PDR}$)时,置器件于复位状态,而不必使用外部复位电路。

2007年10月 第三版 4/18

器件中还有一个可编程电压监测器(PVD),它监视 V_{DD} 供电并与阀值 V_{PVD} 比较,当 V_{DD} 低于或高于阀值 V_{PVD} 时将产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。需要通过程序开启PVD。

有关 $V_{POR/PDR}$ 和 V_{PVD} 数值,请参考表九"内置复位和电源控制模块特性"。

电压调压器

调压器有三个操作模式: 主模式(MR)、低功耗模式(LPR)和关断模式

- 主模式(MR)用于正常的运行操作
- 低功耗模式(LPR)用于CPU的停机模式
- 关断模式用于CPU的待机模式:调压器的输出为高阻状态,内核电路的供电切断,调压器处于 零消耗状态(但寄存器和SRAM的内容将丢失)

该调压器在复位后始终处于工作状态,在待机模式下关闭处于高阻输出。

低功耗模式

STM32F101xx基本型支持三种低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

● 睡眠模式

在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。

● 停机模式

在保持SRAM和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,停止所有内部1.8V部分的供电,PLL、HSI和HSE的RC振荡器被关闭,调压器可以被置于普通模式或低功耗模式。

可以通过任一配置成EXTI的信号把微控制器从停机模式中唤醒,EXTI信号可以是16个外部I/O口之一、PVD的输出、RTC闹钟或USB的唤醒信号。

● 待机模式

在待机模式下可以达到最低的电能消耗。内部的电压调压器被关闭,因此所有内部1.8V部分的供电被切断;PLL、HSI和HSE的RC振荡器也被关闭;进入待机模式后,SRAM和寄存器的内容将消失,但后备寄存器的内容仍然保留,待机电路仍工作。

从待机模式退出的条件是: NRST上的外部复位信号、IWDG复位、WKUP管脚上的一个上升 边沿或RTC的闹钟到时。

注:在进入停机或待机模式时,RTC、IWDG和对应的时钟不会被停止。

DMA

灵活的7路通用DMA可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输; DMA控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件DMA请求逻辑,同时可以由软件触发每个通道; 传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA可以用于主要的外设: SPI、I2C、USART、通用定时器TIMx和ADC。

RTC(实时时钟)和后备寄存器

RTC和后备寄存器通过一个开关供电,在 V_{DD} 有效时该开关选择 V_{DD} 供电,否则由 V_{BAT} 管脚供电。后备寄存器(10个16位的寄存器)可以用于在 V_{DD} 消失时保存数据。

实时时钟具有一组连续运行的计数器,可以通过适当的软件提供日历时钟功能,还具有闹钟中断和阶段性中断功能。RTC的驱动时钟可以是一个使用外部晶体的32.768kHz的振荡器、内部低功耗RC振荡器或高速的外部时钟经128分频。内部低功耗RC振荡器的典型频率为40kHz。为补偿天然

2007年10月 第三版 5/18

晶体的偏差,RTC的校准是通过输出一个512Hz的信号进行。RTC具有一个32位的可编程计数器,使用比较寄存器可以产生闹钟信号。有一个20位的预分频器用于时基时钟,默认情况下时钟为32.768kHz时它将产生一个1秒长的时间基准。

独立的看门狗

独立的看门狗是基于一个12位的递减计数器和一个8位的预分频器,它由一个独立的40kHz的内部RC振荡器提供时钟,应为这个RC振荡器独立于主时钟,所以它可运行于停机和待机模式。它可以被当成看门狗用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选择字节可以配置成是软件看门狗或硬件看门狗。在调试模式,计数器可以被冻结。

窗口看门狗

窗口看门狗内有一个7位的递减计数器,并可以设置成自由运行。它可以被当成看门狗用于在发生问题时复位整个系统。它由主时钟驱动,具有早期预警中断功能;在调试模式,计数器可以被冻结。

系统时基定时器

这个定时器是专用于操作系统,也可当成一个标准的递减计数器。它具有下述特性:

- 24位的递减计数器
- 重加载功能
- 可屏蔽的计数器为0中断
- 可编程时钟源

通用定时器(TIMx)

STM32F101xx基本型系列产品中内置了多达3个同步的标准定时器。每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。

在调试模式下, 计数器可以被冻结。

任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。

I²C总线

多达2个I2C总线接口,能够工作于多主和从模式,支持标准和快速模式。

它们支持双从地址寻址(只有7位)和主模式下的7/10位寻址。内置了硬件CRC发生器/校验器。

它们可以使用DMA操作并支持SM总线2.0版/PM总线

通用同步/异步接受发送器(USART)

USART接口通信速率可达2.25兆位/秒,并具有硬件的CTS和RTS信号管理、支持IrDA的 SIR ENDEC、与ISO7816兼容并具有LIN主/从功能。

USART接口可以使用DMA操作。

串行外设接口(SPI)

多达2个SPI接口,在从或主模式下,全双工和半双工的通信速率可达18兆位/秒。3位的预分频器可产生8种主模式频率,可配置成每帧8位或16位。硬件的CRC产生/校验支持基本的SD卡和MMC模式。

2个SPI接口都可以使用DMA操作。

2007年10月 第三版 6/18

通用输入输出接口(GPIO)

每个GPIO管脚都可以由软件配置成输出(推拉或开路)、输入(带或不带上拉或下拉)或其它的外设功能;多数GPIO管脚都与数字或模拟的外设功能管脚共用。所有的GPIO管脚都有大电流通过能力。

在需要的情况下,I/O管脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入I/O寄存器。

ADC(模拟/数字转换器)

12位的模拟/数字转换器(ADC)有多达16个外部通道,可以执行单次或扫描转换模式;在扫描模式下,转换在一组选定的模拟输入上自动进行。

ADC可以使用DMA操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的被转换电压,当被监视的信号超出预置的阀值时,将产生中断。

温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在2V < VDDA < 3.6V之间。温度传感器在内部被连接到ADC_IN16的输入通道上,用于将传感器的输出转换到数字数值。

串行线JTAG调试口(SWJ-DP)

内嵌ARM的SWJ-DP接口和JTAG接口,JTAG的TMS和TCK信号分别与SWDIO和SWCLK共用管脚,TMS脚上的一个特殊的信号序列用于在JTAG-DP和SWJ-DP间切换。

2007年10月 第三版 7/18

图1 STM32F101基本型模块框图

AF: I/O口上的其他功能

工作温度: -40至+85°C (结温达125°C)

3 管脚定义

图2 STM32F101基本型VFQPFN36管脚

图3 STM32F101基本型LQFP100管脚

图4 STM32F101基本型LQFP64管脚

图5 STM32F101基本型LQFP48管脚

表3 管脚定义

	脚位								
LQFP48	LQFP64	LQFP100	VFQFPN36	管脚名称	类 型 ⁽¹⁾	I/0 电平⑵	主功能(3) (复位后)	默认的其他功能(3)	
-	-	1	1	PE2	I/O	FT	PE2	TRACECLK	
-	-	2	-	PE3	I/O	FT	PE3	TRACED0	
-	-	3	-	PE4	I/O	FT	PE4	TRACED1	
-	-	4	-	PE5	I/O	FT	PE5	TRACED2	
-	-	5	-	PE6	I/O	FT	PE6	TRACED3	
1	1	6	-	$V_{{\scriptscriptstyle BAT}}$	S		$V_{{\scriptscriptstyle BAT}}$		
2	2	7	-	PC13-ANTI_TAMP(4)	I/O		PC13	TAMPER-RTC	
3	3	8	1	PC14-OSC32_IN(4)	I/O		PC14- OSC32_IN		
4	4	9	ı	PC15- OSC32_OUT(4)	I/O		PC15- OSC32_OUT		
-	-	10	-	V_{SS_5}	S		V_{SS_5}		
-	-	11	-	V_{DD_5}	S		$V_{DD_{-5}}$		
5	5	12	2	OSC_IN	ı		OSC_IN		
6	6	13	3	OSC_OUT	0		OSC_OUT		
7	7	14	4	NRST	I/O		NRST		
-	8	15	-	PC0	I/O		PC0	ADC_IN10	
-	9	16	-	PC1	I/O		PC1	ADC_IN11	
-	10	17	-	PC2	I/O		PC2	ADC_IN12	
-	11	18	-	PC3	I/O		PC3	ADC_IN13	
8	12	19	5	V_{SSA}	S		V_{SSA}		
-	-	20	-	$V_{{\it REF}-}$	S		$V_{\scriptscriptstyle REF-}$		
-	-	21	-	$V_{{\it REF}+}$	S		$V_{{\scriptscriptstyle REF}+}$		
9	13	22	6	V_{DDA}	S		$V_{\scriptscriptstyle DDA}$		
10	14	23	7	PA0-WKUP	I/O		PA0	WKUP/USART2_CTS(7)/ ADC_IN0/ TIM2_CH1_ETR(7)	
11	15	24	8	PA1	I/O		PA1	USART2_RTS(7)/ADC_IN1/ TIM2_CH2(7)	
12	16	25	9	PA2	I/O		PA2	USART2_TX(7)/ADC_IN2/ TIM2_CH3(7)	
13	17	26	10	PA3	I/O		PA3	USART2_RX/ADC_IN3/ TIM2_CH4(7)	
-	18	27	-	V_{SS_4}	S		V_{SS_4}		

表3 管脚定义 (续)

	脚	位				ର		
LQFP48	LQFP64	LQFP100	VFQFPN36	管脚名称	类 型 ⁽¹⁾	I/0 电平⑵	主功能(3) (复位后)	默认的其他功能(3)
-	19	28	-	V_{DD_4}	S		V_{DD4}	
14	20	29	11	PA4	I/O		PA4	SPI1_NSS/USART2_CK(7)/ ADC_IN4
15	21	30	12	PA5	I/O		PA5	SPI1_SCK/ADC_IN5
16	22	31	13	PA6	I/O		PA6	SPI1_MISO/ADC_IN6/ TIM3_CH1(7)
17	23	32	14	PA7	I/O		PA7	API1_MOSI/ADC_IN7/ TIM3_CH2(7)
-	24	33		PC4	I/O		PC4	ADC_IN14
-	25	34		PC5	I/O		PC5	ADC_IN15
18	26	35	15	PB0	I/O		PB0	ADC_IN8/TIM3_CH3(7)
19	27	36	16	PB1	I/O		PB1	ADC_IN9/TIM3_CH4(7)
20	28	37	17	PB2/BOOT1	I/O	FT	PB2/BOOT1	
-	ı	38	ı	PE7	I/O	FT	PE7	
-	ı	39	ı	PE8	I/O	FT	PE8	
-	ı	40	ı	PE9	I/O	FT	PE9	
-	ı	41	ı	PE10	I/O	FT	PE10	
-	ı	42	ı	PE11	I/O	FT	PE11	
-	1	43	-	PE12	I/O	FT	PE12	
-	ı	44	ı	PE13	I/O	FT	PE13	
-	ı	45	-	PE14	I/O	FT	PE14	
-	ı	46	ı	PE15	I/O	FT	PE15	
21	29	47	ı	PB10	I/O	FT	PB10	I2C2_SCL(5)/USART3_TX(5)(7)
22	30	48	-	PB11	I/O	FT	PB11	I2C2_SDA(5)/USART3_RX(5)(7)
23	31	49	18	$V_{ss_{-1}}$	S		$V_{\scriptscriptstyle DDA}$	
24	32	50	19	V_{DD_1}	S		$V_{\scriptscriptstyle DD_1}$	
25	33	51	-	PB12	I/O	FT	PB12	SPI2_NSS(5)(7)/I2C2_SMBAI(5)/ USART3_CK(5)(7)
26	34	52	-	PB13	I/O	FT	PB13	SPI2_SCK(5)(7)/ USART3_CTS(5)(7)
27	35	53	1	PB14	I/O	FT	PB14	SPI2_MISO(5)(7)/ USART3_RTS(5)(7)
28	36	54	-	PB15	I/O	FT	PB15	SPI2_MOSI(5)(7)
-	ı	55	1	PD8	I/O	FT	PD8	

表3 管脚定义 (续)

	脚 位					<u> </u>		
LQFP48	LQFP64	LQFP100	VFQFPN36	管脚名称	类 型 ⁽¹⁾	I/0 电平⑵	主功能(3) (复位后)	默认的其他功能(3)
-	-	56	-	PD9	I/O	FT	PD9	
-	-	57	-	PD10	I/O	FT	PD10	
-	-	58	-	PD11	I/O	FT	PD11	
-	-	59	-	PD12	I/O	FT	PD12	
-	-	60	-	PD13	I/O	FT	PD13	
-	-	61	-	PD14	I/O	FT	PD14	
-	-	62	-	PD15	I/O	FT	PD15	
-	37	63	-	PC6	I/O	FT	PC6	
-	38	64	-	PC7	I/O	FT	PC7	
-	39	65	-	PC8	I/O	FT	PC8	
-	40	66	-	PC9	I/O	FT	PC9	
29	41	67	20	PA8	I/O	FT	PA8	USART1_CK/MCO
30	42	68	21	PA9	I/O	FT	PA9	USART1_TX(7)
31	43	69	22	PA10	I/O	FT	PA10	USART1_RX(7)
32	44	70	23	PA11	I/O	FT	PA11	USART1_CTS
33	45	71	24	PA12	I/O	FT	PA12	USART1_RTS
34	46	72	25	PA13/JTMS/SWDIO	I/O	FT	JTMS-SWDIO	PA13
-	1	73	-			•	未连接	
35	47	74	26	V_{SS_2}	S		V_{SS_2}	
36	48	75	27	$V_{DD_{-}2}$	S		V_{DD_2}	
37	49	76	28	PA14/JTCK/SWCLK	I/O	FT	JTCK/SWCLK	PA14
38	50	77	29	PA15/JTDI	I/O	FT	JTDI	PA15
-	51	78	-	PC10	I/O	FT	PC10	
-	52	79	-	PC11	I/O	FT	PC11	
-	53	80	-	PC12	I/O	FT	PC12	
5	5	81	2	PD0	I/O	FT	OSC_IN(6)	
6	6	82	3	PD1	I/O	FT	OSC_OUT(6)	
-	54	83	-	PD2	I/O	FT	PD2	TIM3_ETR
-	-	84	-	PD3	I/O	FT	PD3	
-	-	85	-	PD4	I/O	FT	PD4	
-	-	86	-	PD5	I/O	FT	PD5	
-	-	87	-	PD6	I/O	FT	PD6	

表3 管脚定义(续)

	脚	位				(2)		
LQFP48	LQFP64	LQFP100	VFQFPN36	管脚名称	类 型 ⁽¹⁾	1/0 电平(2	主功能(3) (复位后)	默认的其他功能(3)
-	-	88	1	PD7	I/O	FT	PD7	
39	55	89	30	PB3/JTDO	I/O	FT	PB3/JTDO	PB3/TRACESWO
40	56	90	31	PB4/JNTRST	I/O	FT	PB4/JNTRST	PB4
41	57	91	32	PB5	I/O		PB5	I2C1_SMBAI
42	58	92	33	PB6	I/O	FT	PB6	I2C1_SCL(7)/TIM4_CH1(5)(7)
43	59	93	34	PB7	I/O	FT	PB7	I2C1_SDA(7)/TIM4_CH2(5)(7)
44	60	94	35	BOOT0	I		BOOT0	
45	61	95	1	PB8	I/O	FT	PB8	TIM4_CH3(5)(7)
46	62	96	1	PB9	I/O	FT	PB9	TIM4_CH4(5)(7)
-	-	97	-	PE0	I/O	FT	PE0	TIM4_ETR(5)
-	-	98	-	PE1	I/O	FT	PE1	
47	63	99	36	V_{SS_3}	S		V_{SS_3}	
48	64	100	1	V_{DD_3}	S		$V_{DD_{-}3}$	

注:

- 1. I: 输入, O: 输出, S: 电源, HiZ: 高阻
- 2. FT: 兼容5V
- 3. 其中部分功能仅在部分型号芯片中支持,具体信息请参考表2。
- 4. PC13, PC14和PC15引脚通过电源开关进行供电,因此这三个引脚作为输出引脚时有以下限制:
 - ✔ 作为输出脚时只能工作在2MHz模式下
 - ✔ 最大驱动负载为30pF
 - ✔ 同一时间,三个引脚中只有一个引脚能作为输出引脚。
- 5. 仅在内嵌大等于64K Flash的型号中支持此类功能。
- 6. VFQFPN36封装的2号,3号引脚和LQFP48,LQFP64封装的5号,6号引脚在芯片复位后默认配置为OSC_IN和OSC_OUT功能脚。软件可以重新设置这两个引脚为PD0和PD1功能脚。但对于LQFP100封装,由于PD0和PD1为固有的功能脚,因此没有必要再由软件进行设置。更多详细信息请参考STM32F10xxx参考手册的复用功能I/O章节和调试设置章节。PD0和PD1作为输出引脚只能工作在50MHz模式下。
- 7. 此类复用功能能够由软件配置到其他引脚上,详细信息请参考STM32F10xxx参考手册的复用功能I/O 章节和调试设置章节。

4 存储器映像

图6 存储器映像图

5 电器特性

请参考英文版数据手册

6 封装参数

请参考英文版数据手册

7 订货代码

表4 订货代码

型号	闪存存储器 K字节	SRAM存储器 K字节	封装
STM32F101T6U6	32	6	VFQFPN36
STM32F101T8U6	64	10	VEQEENSO
STM32F101C6T6	32	6	
STM32F101C8T6	64	10	LQFP48
STM32F101CBT6	128	16	
STM32F101R6T6	32	6	
STM32F101R8T6	64	10	LQFP64
STM32F101RBT6	128	16	
STM32F101V8T6	64	10	LOED100
STM32F101VBT6	128	16	LQFP100

7.1 后续的产品系列

后续的STM32F101xx基本型系列产品将会有更广泛的型号选择,芯片将会有更大的封装尺寸并内嵌多达512KB的Flash和48KB的SRAM。同时,后续产品会提供EMI,DAC和更多的定时器和USARTS接口功能。

8 版本历史

请参考英文版数据手册