МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ)

Е. В. ГОШИН

ПРАКТИКУМ ПО ТЕОРИИ ИНФОРМАЦИИ И КОДИРОВАНИЯ

Рекомендовано редакционно-издательским советом федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» в качестве учебного пособия для студентов, обучающихся по основной образовательной программе высшего образования по направлению подготовки 01.03.02 Прикладная математика и информатика и специальности 10.05.03 Информационная безопасность автоматизированных систем

САМАРА
Издательство Самарского университета
2018

УДК 519.72(075) ББК 32.811я7 Г749

Рецензенты: д-р техн. наук С. А. П р о х о р о в,

д-р техн. наук С. Б. Попов

Гошин, Егор Вячеславочич

Г749 Практикум по теории информации и кодирования: учеб. пособие / E.B. Гошин. — Самара: Изд-во Самарского ун-та, 2018. — 80 с.: ил.

ISBN 978-5-7883-1278-1

Настоящий практикум по структуре повторяет курс лекций, приведённый учебном пособии «Теория информации кодирования». Для большинства рассматриваемых тем приведён необходимый теоретический минимум, а также рассмотрены типичные подходы к решению задач. Практикум содержит задачи, посвящённые понятиям энтропии и количества информации, а также алгоритмам кодирования источника и кодирования канала. В частности, приведены задачи по следующим методам и алгоритмам: кодирование Шеннона-Фано; кодирование Хаффмена; циклические коды, в том числе, исправляющие пакеты ошибок; алгоритм подсчёта контрольной суммы; коды Адамара; коды Рида-Маллера; свёрточные коды.

Предназначено для студентов, обучающихся по направлению подготовки 01.03.02 Прикладная математика и информатика и специальности 10.05.03 Информационная безопасность автоматизированных систем.

УДК 519.72(075) ББК 32.811я7

ОГЛАВЛЕНИЕ

Предисловие	4
Тема 1. Ансамбли и вероятности.	5
Тема 2. Энтропия	11
Тема 3. Количество информации	25
Тема 4. Дискретный канал.	28
Тема 5. Символьные коды. Префиксные коды	30
Тема 6. Кодирование Шеннона-Фано. Кодирование Хаффм	ена.31
Тема 7. Другие эффективные коды	37
Тема 8. Помехоустойчивое кодирование. Код Хэмминга	43
Тема 9. Циклические коды	48
Тема 10. Исправление пакетов ошибок. CRC	55
Тема 11. Матричные коды. Коды Адамара	58
Тема 12. Коды Рида-Маллера	63
Тема 13. Свёрточные коды. Треллис-диаграммы	66
Тема 14. Модели детерминированных сигналов	73
Тема 15. Восстановление сигнала по его дискретным	
значениям	76
Список источников	78

Предисловие

Автор настоящего практикума читает курс лекций по теории информации Самарском университете кафедре на информатики. суперкомпьютеров общей При проведении практических занятий последние несколько лет автор пользовался изданным профессором Фурсовым В.А. в 2014 году учебным «Залачи ПО теории информации», полностью соответствующим программе курса. В ходе работы над новым учебным пособием «Теория информации и кодирования» содержание некоторых лекций было переработано, часть лекций – полностью заменены, что потребовало разработки нового учебного издания практикума.

Структура настоящего практикума во многом повторяет курс лекций, приведённый в учебном пособии «Теория информации и кодирования». Для каждой рассматриваемой темы приведён необходимый теоретический минимум, а также рассмотрены типичные подходы к решению задач. Далее приведены варианты задач для решения на практических задачах и для самостоятельного решения.

Практикум предназначен, в основном, для подготовки бакалавров по направлениям 01.03.02 — «Прикладная математика и информатика» и 10.05.03 — «Информационная безопасность автоматизированных систем», но может быть полезен и для студентов других специальностей и направлений.

Автор выражает благодарность профессору Фурсову В.А. за огромный труд по подготовке предыдущего издания и чтению курса лекций «Теория информации», без которого настоящее издание не могло бы появиться на свет.

Тема 1. Ансамбли и вероятности. Байесовский вывод

Ансамбль X — это тройка (x,A_x,P_x) , где исход x — это значение некоторой случайной величины, принимающей одно из набора возможных значений $A_x=\{a_1,a_2,...,a_i,...,a_I\}$ с вероятностями $P_x=\{p_1,p_2,...,p_i,...,p_I\}$.

$$P(x = a_i) = p_i, p_i \ge 0, \sum_{a_i \in A_i} P(x = a_i) = 1.$$

Если T – подмножество A_{x} , тогда

$$P(T) = P(x \in T) = \sum_{a_i \in T} P(x = a_i).$$

Совместный ансамбль XY — это ансамбль, каждый исход которого представляет собой упорядоченную пару (x, y), в которой $x \in A_x = \{a_1, a_2, ..., a_I\}$, а $y \in A_y = \{b_1, b_2, ..., b_I\}$.

Будем называть вероятность P(x,y) совместной вероятностью x и y. В такой записи запятая опциональна, поэтому P(x,y) и P(xy) суть одно и то же. Следует обратить внимание, что случайные величины x и y, входящие в ансамбль XY могут не быть независимыми.

Вероятности отдельных величин P(x) и P(y), входящих в ансамбль определяются через совместные вероятности как

$$P(x=a_i) = \sum_{b_j \in A_Y} P(x=a_i, y=b_j),$$

$$P(y) = \sum_{y \in A_Y} P(x, y).$$

Вероятность того, что x равно a_i при условии, что $y = b_j$ называется условной вероятностью, обозначается и определяется следующим образом:

$$P(x=a_i \mid y=b_j) = \frac{P(x=a_i, y=b_j)}{P(y=b_j)}$$
 при $P(y=b_j) \neq 0$

Правило умножения:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x).$$

Правило суммирования:

$$P(x) = \sum_{y} P(x, y) = \sum_{y} P(x | y) P(y).$$

Теорема Байеса

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x|y)P(y)}{\sum_{y'} P(x|y')P(y')}.$$

Независимость

Две случайные величины X и Y независимы ($X \perp Y$) тогда и только тогда, когда

$$P(x, y) = P(x)P(y).$$

Математическое ожидание случайной величины.

Дискретный случай:

$$MX = \sum_{i} x_{i} p_{i} .$$

Непрерывный случай:

$$MX = \int_{x=-\infty}^{+\infty} xf(x) dx.$$

Дисперсия случайной величины.

Дискретный случай:

$$DX = \sum_{i} (x_i - MX)^2 p_i.$$

Непрерывный случай:

$$DX = \int_{x=-\infty}^{+\infty} (x - MX)^2 f(x) dx,$$

$$DX = MX^2 - (MX)^2.$$

Задача 1.1

Вычислить дисперсию и математическое ожидание дискретной случайной величины с заданным законом распределения (см. варианты).

Варианты заданий:

1) Бернулли (параметр p) — успех (или провал) в одиночном испытании:

$$p(x) = \begin{cases} p, & k = 1, \\ 1 - p, & k = 0. \end{cases}$$

2) Биномиальный закон распределения (параметры p и n) —число успехов в n независимых испытаниях Бернулли.

$$p(k) = C_n^k p^k (1-p)^{n-k}, k = 0,...,n.$$

3) Геометрическое распределение (параметр p) — число попыток до первого успеха

$$p(k) = (1-p)^{k-1} p, \qquad k = 1,...,n,...$$

Задача 1.2

Вычислить дисперсию и математическое ожидание непрерывной случайной величины с заданным законом распределения (см. варианты).

Варианты заданий:

1) Равномерный закон распределения на интервале [a,b]

$$f(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \le x \le b, \\ 0, & x > b, \end{cases}$$

2) Экспоненциальный закон распределения:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

3) Нормальный закон распределения.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Задача 1.3

Дано произведение ансамблей ХУ (см. варианты). Определить, являются ли ансамбли X и Y независимыми, вычислить вероятности $p(x_i), p(y_i), p(x_i | y_i), p(y_i | x_i).$

Варианты заданий:

1)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix}$$
.

2)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.3 & 0.45 & 0.2 & 0.05 \end{bmatrix}$$
.

3)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.45 & 0.3 & 0.15 & 0.1 \end{bmatrix}$$
.

4)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.15 & 0.05 & 0.6 & 0.2 \end{bmatrix}$$
.

5)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0,63 & 0,07 & 0,27 & 0,03 \end{bmatrix}$$
.

6)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.2 & 0.3 & 0.3 & 0.2 \end{bmatrix}$$
.

7)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.05 & 0.15 & 0.2 & 0.075 & 0.225 & 0.3 \end{bmatrix}$$
.

8)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_1 y_3 \\ 0.25 & 0.05 & 0.2 & 0.25 & 0.2 & 0.05 \end{bmatrix}$$
.

8)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_1 y_3 \\ 0.25 & 0.05 & 0.2 & 0.25 & 0.2 & 0.05 \end{bmatrix}$$
.
9) $XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 & x_3 y_1 & x_3 y_2 \\ 0.35 & 0.15 & 0.14 & 0.06 & 0.21 & 0.09 \end{bmatrix}$.

10)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 & x_3 y_1 & x_3 y_2 \\ 0.04 & 0.16 & 0.02 & 0.08 & 0.14 & 0.56 \end{bmatrix}$$
.

11)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_1 y_3 \\ 0.4 & 0.2 & 0.2 & 0.1 & 0.05 & 0.05 \end{bmatrix}$$
.

12)
$$XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_2y_1 & x_2y_2 & x_3y_1 & x_3y_2 \\ 0.2 & 0.1 & 0.3 & 0.1 & 0.2 & 0.1 \end{bmatrix}$$
.
13) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_1y_3 \\ 0.12 & 0.3 & 0.18 & 0.08 & 0.2 & 0.12 \end{bmatrix}$.

13)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_1 y_3 \\ 0.12 & 0.3 & 0.18 & 0.08 & 0.2 & 0.12 \end{bmatrix}$$
.

14)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.2 & 0.1 & 0.1 & 0.3 & 0.15 & 0.15 \end{bmatrix}$$
.

Решение задачи 1.3 (вариант 1)

$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.4 & 0.3 & 0.2 & 0.1 \end{bmatrix}.$$

Вероятности событий ансамбля Х определяются как суммы соответствующих вероятностей ансамбля ХҮ:

$$p(x_i) = \sum_{j} p(x_i y_j),$$

$$p(x_1) = \sum_{j=1}^{2} p(x_1 y_j) = 0, 4 + 0, 3 = 0, 7,$$

$$p(x_2) = 0, 2 + 0, 1 = 0, 3.$$

Аналогично определяются вероятности событий ансамбля Y

$$p(y_1) = \sum_{i=1}^{2} p(x_i y_1) = 0,4+0,2=0,6,$$

$$p(y_2) = 0,3+0,1=0,4.$$

Таким образом:

$$X = \begin{bmatrix} x_1 & x_2 \\ 0.7 & 0.3 \end{bmatrix}, Y = \begin{bmatrix} y_1 & y_2 \\ 0.6 & 0.4 \end{bmatrix}.$$

Определим, являются ли ансамбли независимыми. Для этого проверим выполнение равенства

$$p(x_i y_j) = p(x_i) p(y_j).$$

Если это равенство выполняется для всех возможных комбинаций событий ансамблей X и Y, то ансамбли независимы, иначе — зависимы.

$$p(x_1)p(y_1) = 0.7 \cdot 0.6 = 0.42 \neq p(x_1y_1).$$

Поскольку равенство не выполняется, ансамбли зависимы.

Теперь рассчитаем условные вероятности, исходя из определения условной вероятности:

$$p(x_{i} | y_{j}) = \frac{p(x_{i}y_{j})}{p(y_{j})}.$$

$$p(x_{1} | y_{1}) = \frac{p(x_{1}y_{1})}{p(y_{1})} = \frac{0.4}{0.6} = \frac{2}{3}, \quad p(x_{1} | y_{2}) = \frac{p(x_{1}y_{2})}{p(y_{2})} = \frac{0.3}{0.4} = \frac{3}{4},$$

$$p(x_{2} | y_{1}) = \frac{p(x_{2}y_{1})}{p(y_{2})} = \frac{0.2}{0.6} = \frac{1}{3}, \quad p(x_{2} | y_{2}) = \frac{p(x_{2}y_{2})}{p(y_{2})} = \frac{0.1}{0.4} = \frac{1}{4}.$$

Аналогично,

$$p(y_{1}|x_{1}) = \frac{p(x_{1}y_{1})}{p(x_{1})},$$

$$p(y_{1}|x_{1}) = \frac{p(x_{1}y_{1})}{p(x_{1})} = \frac{0.4}{0.7} = \frac{4}{7}, \quad p(y_{1}|x_{2}) = \frac{p(x_{2}y_{1})}{p(x_{2})} = \frac{0.2}{0.3} = \frac{2}{3},$$

$$p(y_{2}|x_{1}) = \frac{p(x_{1}y_{2})}{p(x_{1})} = \frac{0.3}{0.7} = \frac{3}{7}, \quad p(y_{2}|x_{2}) = \frac{p(x_{2}y_{2})}{p(x_{2})} = \frac{0.1}{0.3} = \frac{1}{3}.$$

Тема 2. Энтропия

Предположим, что задан дискретный вероятностный ансамбль $\{Z,p(z)\}$ с N возможными состояниями и заданным на нём распределением вероятностей $p(z_i)$ таким, что для всех $i=\overline{1,N}$ $p(z_i)\geq 0$, а $\sum p(z_i)=1$:

$$Z = \begin{bmatrix} z_1, z_2, ..., z_i, ..., z_N \\ p_1, p_2, ..., p_i, ..., p_N \end{bmatrix},$$

Информационная двоичная энтропия H(Z) для этого ансамбля рассчитывается следующим образом:

$$H(Z) = -\sum_{i=1}^{N} p(z_i) \log_a p(z_i).$$

Если заданы два дискретных ансамбля $\{Z,p(z)\}$ и $\{V,p(v)\}$: $Z=\{z_1,z_2,...,z_N\}$ и $V=\{v_1,v_2,...,v_K\}$, помимо энтропии для каждого из этих ансамблей можно определить их совместную энтропию:

$$H(ZV) = -\sum_{i=1}^{N} \sum_{j=1}^{K} p(z_i v_j) \log_2 p(z_i v_j),$$

а также частные условные энтропии

$$H_{v_j}(Z) = -\sum_{i=1}^{N} p(z_i | v_j) \log_2 p(z_i | v_j),$$

$$H_{z_i}(V) = -\sum_{j=1}^{K} p(v_j | z_i) \log_2 p(v_j | z_i),$$

и соответствующие им полные условные энтропии

$$H_{V}(Z) = \sum_{j=1}^{K} p(v_{j}) H_{v_{j}}(Z) = -\sum_{j=1}^{K} p(v_{j}) \sum_{i=1}^{N} p(z_{i} | v_{j}) \log_{2} p(z_{i} | v_{j}),$$

$$H_{Z}(V) = \sum_{i=1}^{N} p(z_{i}) H_{z_{i}}(V) = -\sum_{i=1}^{N} p(z_{i}) \sum_{i=1}^{K} p(v_{i} | z_{i}) \log_{2} p(v_{i} | z_{i}).$$

Существует ряд выражений, описывающих связь между приведёнными величинами, основным из которых является следующее:

$$H(ZV) = H(Z) + H_Z(V) = H_V(Z) + H(V)$$
.

Следует отметить, что для независимых случайных величин Z и V выполняются равенства $H\left(V\right) = H_Z(V)$ и $H\left(Z\right) = H_V(Z)$, из чего следует, что

$$H(ZV) = H(Z) + H(V)$$
 (только для независимых величин).

Для непрерывных величин вместо энтропии вычисляется, так называемая, дифференциальная энтропия h(Z)

$$h(Z) = -\int_{-\infty}^{+\infty} f(z) \log_2 f(z) dz,$$

где f(z) – плотность вероятности случайной величины Z .

Для двух непрерывных случайных величин также может быть определена совместная дифференциальная энтропия и условная дифференциальная энтропия:

$$h(ZV) = -\int_{-\infty - \infty}^{+\infty + \infty} f(z, v) \log_2 f(z, v) dz dv,$$

$$h_Z(V) = -\int_{-\infty - \infty}^{+\infty + \infty} f(z, v) \log_2 \frac{f(z, v)}{f(z)} dz dv =$$

$$= -\int_{-\infty}^{+\infty} f(z) \int_{-\infty}^{+\infty} f(v | z) \log_2 f(v | z) dz dv$$

$$h(ZV) = h(Z) + h_Z(V) = h(V) + h_U(Z).$$

Залача 2.1

Вероятности появления сообщений дискретного ансамбля X равны

$$p(x_1) = \frac{1}{4}, \ p(x_2) = \frac{1}{2}, \ p(x_3) = \frac{1}{4}.$$

При этом условные вероятности появления сообщений ансамбля Y

$$\begin{split} &p\left(y_{1}\mid x_{1}\right)=p\left(y_{2}\mid x_{1}\right)=\frac{1}{2}\,;\;\;p\left(y_{3}\mid x_{1}\right)=p\left(y_{4}\mid x_{1}\right)=0\;;\\ &p\left(y_{1}\mid x_{2}\right)=0\;;\;\;p\left(y_{2}\mid x_{2}\right)=\frac{1}{2}\;;\;\;p\left(y_{3}\mid x_{2}\right)=p\left(y_{4}\mid x_{2}\right)=\frac{1}{4}\;;\\ &p\left(y_{1}\mid x_{3}\right)=p\left(y_{3}\mid x_{3}\right)=0\;;\;\;p\left(y_{2}\mid x_{3}\right)=p\left(y_{4}\mid x_{3}\right)=\frac{1}{2}\;.\\ &\text{Вычислить }H(X),\;\;H(Y),\;H(XY),\;H_{Y}(X),\;H_{Y}(Y)\;. \end{split}$$

Решение залачи 2.1

Для нахождения энтропии ансамбля X есть все необходимые вероятности:

$$H(X) = -\sum_{i=1}^{N} p(x_i) \log_2 p(x_i) = -\sum_{i=1}^{3} p(x_i) \log_2 p(x_i) =$$

$$= -\left(\frac{1}{4} \log_2 \frac{1}{4} + \frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{4} \log_2 \frac{1}{4}\right) = \frac{3}{2}$$

Найдём вероятности появления сообщений ансамбля Y:

$$p(y_{j}) = \sum_{i} p(x_{i}y_{j}) = \sum_{i} p(y_{j}|x_{i})p(x_{i})$$

$$p(y_{1}) = \sum_{i} p(x_{i}y_{1}) = \sum_{i} p(x_{i})p(y_{1}|x_{i}) = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{8};$$

$$p(y_{2}) = \sum_{i} p(x_{i}y_{2}) = \sum_{i} p(x_{i})p(y_{2}|x_{i}) = \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{2};$$

$$p(y_{3}) = \sum_{i} p(x_{i}y_{3}) = \sum_{i} p(x_{i})p(y_{3}|x_{i}) = \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{4} \cdot 0 = \frac{1}{8};$$

$$p(y_{4}) = \sum_{i} p(x_{i}y_{4}) = \sum_{i} p(x_{i})p(y_{4}|x_{i}) = \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{4};$$

$$H(Y) = -\sum_{j} p(y_{j})\log_{2} p(x_{j}) = -\sum_{j=1}^{4} p(y_{j})\log_{2} p(y_{j}) =$$

$$= -\left(\frac{1}{8}\log_{2}\frac{1}{8} + \frac{1}{2}\log_{2}\frac{1}{2} + \frac{1}{8}\log_{2}\frac{1}{8} + \frac{1}{4}\log_{2}\frac{1}{4}\right) = \frac{7}{4}$$

Для вычисления энтропии совместного ансамбля необходимо знать вероятности событий $P(x_i y_i)$.

$$p(x_i y_j) = p(y_j | x_i) p(x_i).$$

Для упрощения записи выпишем вероятности только для событий с ненулевой вероятностью:

$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_2 & x_2 y_3 & x_2 y_4 & x_3 y_2 & x_3 y_4 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \end{bmatrix},$$

$$H(XY) = -\sum_i \sum_j p(x_i y_j) \log_2 p(x_i y_j) = \sum_{i=0}^3 \sum_{j=0}^4 p(x_i y_j) \log_2 p(x_i y_j) = \sum_{i=0}^3 \sum_{j=0}^4 p(x_i y_j) \log_2 p(x_i y_j) = \sum_{i=0}^4 p(x_i y_i) = \sum_{i=0}^4 p($$

Для нахождения полной условной энтропии $H_{_X}(Y)$ есть все необходимые вероятности, поскольку

$$H_X(Y) = \sum_{i=1}^{3} p(x_i) H_{x_i}(Y) = -\sum_{i=1}^{3} p(x_i) \sum_{i=1}^{4} p(y_i | x_i) \log_2 p(y_i | x_i).$$

Вычислим отдельно каждую частную условную энтропию:

$$H_{x_1}(Y) = -\sum_{j=1}^{4} p(y_j | x_1) \log_2 p(y_j | x_1) = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} = 1,$$

$$H_{x_2}(Y) = -\sum_{j=1}^{4} p(y_j | x_2) \log_2 p(y_j | x_2) = \frac{3}{2},$$

$$H_{x_3}(Y) = -\sum_{j=1}^{4} p(y_j | x_3) \log_2 p(y_j | x_3) = 1.$$

Полная условная энтропия вычисляется как

$$H_X(Y) = \sum_{i=1}^{3} p(x_i) H_{x_i}(Y) = \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot \frac{3}{2} + \frac{1}{4} \cdot 1 = \frac{5}{4}.$$

Для нахождения полной условной энтропии необходимо вычислить условные вероятности $p(x_i \mid y_j)$:

$$p(x_{1}|y_{1}) = \frac{p(x_{1}y_{1})}{p(y_{1})} = \frac{1}{8} \cdot \frac{8}{1} = 1, \ p(x_{1}|y_{2}) = \frac{p(x_{1}y_{2})}{p(y_{2})} = \frac{1}{8} \cdot \frac{2}{1} = \frac{1}{4},$$

$$p(x_{1}|y_{3}) = \frac{p(x_{1}y_{3})}{p(y_{3})} = 0 \cdot \frac{8}{1} = 0, \ p(x_{1}|y_{4}) = \frac{p(x_{1}y_{4})}{p(y_{4})} = 0 \cdot \frac{4}{1} = 0,$$

$$p(x_{2}|y_{1}) = \frac{p(x_{2}y_{1})}{p(y_{1})} = 0 \cdot \frac{8}{1} = 0, \ p(x_{2}|y_{2}) = \frac{p(x_{2}y_{2})}{p(y_{2})} = \frac{1}{4} \cdot \frac{2}{1} = \frac{1}{2},$$

$$p(x_{2}|y_{3}) = \frac{p(x_{2}y_{3})}{p(y_{3})} = \frac{1}{8} \cdot \frac{8}{1} = 1, \ p(x_{2}|y_{4}) = \frac{p(x_{2}y_{4})}{p(y_{4})} = \frac{1}{8} \cdot \frac{4}{1} = \frac{1}{2},$$

$$p(x_{3}|y_{1}) = \frac{p(x_{3}y_{1})}{p(y_{1})} = 0 \cdot \frac{8}{1} = 0, \ p(x_{3}|y_{2}) = \frac{p(x_{3}y_{2})}{p(y_{2})} = \frac{1}{8} \cdot \frac{2}{1} = \frac{1}{4},$$

$$p(x_{3}|y_{3}) = \frac{p(x_{3}y_{3})}{p(y_{3})} = 0 \cdot \frac{8}{1} = 0, \ p(x_{3}|y_{4}) = \frac{p(x_{3}y_{4})}{p(y_{4})} = \frac{1}{8} \cdot \frac{4}{1} = \frac{1}{2}.$$

Теперь полная условная энтропия находится аналогично предыдущей:

$$H_{y_1}(X) = -\sum_{i=1}^{3} p(x_i | y_1) \log_2 p(z_i | v_1) = 0,$$

$$H_{y_1}(X) = -\sum_{i=1}^{3} p(x_i | y_1) \log_2 p(z_i | v_1) = \frac{1}{4} \cdot 2 + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 = \frac{3}{2},$$

$$H_{y_1}(X) = -\sum_{i=1}^{3} p(x_i | y_1) \log_2 p(z_i | v_1) = 0,$$

$$H_{y_1}(X) = -\sum_{i=1}^{3} p(x_i | y_1) \log_2 p(z_i | v_1) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1,$$

$$H_{Y}(X) = \sum_{i=1}^{4} p(y_i) H_{y_1}(X) = \frac{1}{8} \cdot 0 + \frac{1}{2} \cdot \frac{3}{2} + \frac{1}{8} \cdot 0 + \frac{1}{4} \cdot 1 = 1.$$

Можно проверить, что полученные разными способами ответы совпадают:

$$H(XY) = -\sum_{i} \sum_{j} p(x_{i}y_{j}) \log_{2} p(x_{i}y_{j}) = \frac{11}{4}.$$

$$H(XY) = H(X) + H_{X}(Y) = \frac{3}{2} + \frac{5}{4} = \frac{11}{4},$$

$$H(XY) = H_{Y}(X) + H(Y) = 1 + \frac{7}{4} = \frac{11}{4}.$$

Задача 2.2

Энтропия для ансамбля А с заданными вероятностями событий

$$A = \begin{bmatrix} a_1 & a_2 \\ p & 1-p \end{bmatrix}$$

равна H_a

а) Выразить через H_a энтропию ансамбля X со следующими вероятностями:

$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ \frac{p}{2} & \frac{p}{2} & \frac{1-p}{2} & \frac{1-p}{2} \end{bmatrix}.$$

b) Выразить через H_a энтропию ансамбля Y со следующими вероятностями:

$$Y = \begin{bmatrix} y_1 & y_2 & y_3 \\ \frac{p}{2} & \frac{p}{2} & 1 - p \end{bmatrix}.$$

с) Выразить через H_a энтропию ансамбля Z со следующими вероятностями:

$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 \\ p^2 & p(1-p) & p(1-p) & (1-p)^2 \end{bmatrix}.$$

Задача 2.3

Дано произведение ансамблей ХУ (см. варианты). Вычислить $H(X), H(Y), H(XY), H_{v}(X), H_{v}(Y).$

Варианты заданий.

1)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.45 & 0.3 & 0.15 & 0.1 \end{bmatrix}$$
.

2)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.15 & 0.05 & 0.6 & 0.2 \end{bmatrix}$$
.

3)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_2 y_1 & x_2 y_2 \\ 0.6 & 0.15 & 0.2 & 0.05 \end{bmatrix}$$
.

4)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.63 & 0.18 & 0.09 & 0.07 & 0.02 & 0.01 \end{bmatrix}$$
.

5)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.27 & 0.54 & 0.09 & 0.03 & 0.06 & 0.01 \end{bmatrix}$$

$$\begin{bmatrix} 0,63 & 0,18 & 0,09 & 0,07 & 0,02 & 0,01 \end{bmatrix}$$
5) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0,27 & 0,54 & 0,09 & 0,03 & 0,06 & 0,01 \end{bmatrix}$
6) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0,18 & 0,45 & 0,27 & 0,02 & 0,05 & 0,03 \end{bmatrix}$
7) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0,09 & 0,36 & 0,45 & 0,01 & 0,04 & 0,05 \end{bmatrix}$

7)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.09 & 0.36 & 0.45 & 0.01 & 0.04 & 0.05 \end{bmatrix}$$

8)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.14 & 0.04 & 0.02 & 0.56 & 0.16 & 0.08 \end{bmatrix}$$

9)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.06 & 0.12 & 0.02 & 0.24 & 0.48 & 0.08 \end{bmatrix}$$

10)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.04 & 0.1 & 0.06 & 0.16 & 0.4 & 0.24 \end{bmatrix}$$

9)
$$XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0.06 & 0.12 & 0.02 & 0.24 & 0.48 & 0.08 \end{bmatrix}$$

10) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0.04 & 0.1 & 0.06 & 0.16 & 0.4 & 0.24 \end{bmatrix}$
11) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0.02 & 0.08 & 0.1 & 0.08 & 0.32 & 0.4 \end{bmatrix}$

12)
$$XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0.49 & 0.14 & 0.07 & 0.21 & 0.06 & 0.03 \end{bmatrix}$$
.
13) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0.21 & 0.42 & 0.07 & 0.09 & 0.18 & 0.03 \end{bmatrix}$.
14) $XY = \begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 & x_2y_1 & x_2y_2 & x_2y_3 \\ 0.14 & 0.35 & 0.21 & 0.06 & 0.15 & 0.09 \end{bmatrix}$.

13)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.21 & 0.42 & 0.07 & 0.09 & 0.18 & 0.03 \end{bmatrix}$$
.

14)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.14 & 0.35 & 0.21 & 0.06 & 0.15 & 0.09 \end{bmatrix}$$

15)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.07 & 0.28 & 0.35 & 0.03 & 0.12 & 0.15 \end{bmatrix}$$
.

16)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.28 & 0.08 & 0.04 & 0.42 & 0.12 & 0.06 \end{bmatrix}$$

17)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.12 & 0.24 & 0.04 & 0.18 & 0.36 & 0.06 \end{bmatrix}$$

$$\begin{bmatrix} 0,07 & 0,28 & 0,33 & 0,03 & 0,12 & 0,13 \end{bmatrix}$$

$$16) XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0,28 & 0,08 & 0,04 & 0,42 & 0,12 & 0,06 \end{bmatrix}.$$

$$17) XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0,12 & 0,24 & 0,04 & 0,18 & 0,36 & 0,06 \end{bmatrix}.$$

$$18) XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0,08 & 0,2 & 0,12 & 0,12 & 0,3 & 0,18 \end{bmatrix}.$$

19)
$$XY = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 & x_2 y_1 & x_2 y_2 & x_2 y_3 \\ 0.04 & 0.16 & 0.2 & 0.06 & 0.24 & 0.3 \end{bmatrix}$$
.

Задача 2.5

Равномерно распределённая случайная величина Х принимает значения из алфавита {0000,0001,...,1001} (числа от 0 до 9, записанные с помощью четырёх битов).

Вычислить энтропию каждого бита.

Задача 2.6

Вычислить стационарное (асимптотическое) распределение X_i , энтропию $H(X_i)$, энтропию $H(X_iX_{i+1})$ и условную энтропию $H_{X_{\cdot}}\left(X_{i+1}\right)$ марковской цепи (см. варианты).

Варианты заданий:

$$p(a|a) = 0.0$$
, $p(a|b) = 0.15$, $p(a|c) = 0.7$,

1)
$$p(b|a) = 0.9$$
, $p(b|b) = 0.4$, $p(b|c) = 0.3$, $p(c|a) = 0.1$, $p(c|b) = 0.45$, $p(c|c) = 0.0$.

$$p(a|a) = 0.5$$
, $p(a|b) = 0.2$, $p(a|c) = 0.8$,

2)
$$p(b|a) = 0.4$$
, $p(b|b) = 0.1$, $p(b|c) = 0.1$, $p(c|a) = 0.1$, $p(c|b) = 0.7$, $p(c|c) = 0.1$.

$$p(a|a) = 0.1$$
, $p(a|b) = 0.1$, $p(a|c) = 0.4$,

3)
$$p(b|a) = 0.1$$
, $p(b|b) = 0.3$, $p(b|c) = 0.3$, $p(c|a) = 0.8$, $p(c|b) = 0.6$, $p(c|c) = 0.3$.

$$p(a|a) = 0.5$$
, $p(a|b) = 0.6$, $p(a|c) = 0.4$,

4)
$$p(b|a) = 0.35$$
, $p(b|b) = 0.2$, $p(b|c) = 0.1$, $p(c|a) = 0.15$, $p(c|b) = 0.2$, $p(c|c) = 0.5$.

$$p(a|a) = 0.0$$
, $p(a|b) = 0.4$, $p(a|c) = 0.2$,

5)
$$p(b|a) = 0.9$$
, $p(b|b) = 0.2$, $p(b|c) = 0.7$, $p(c|a) = 0.1$, $p(c|b) = 0.4$, $p(c|c) = 0.1$.

$$p(a|a) = 0.1$$
, $p(a|b) = 0.1$, $p(a|c) = 0.4$,

6)
$$p(b|a) = 0.6$$
, $p(b|b) = 0.2$, $p(b|c) = 0.1$, $p(c|a) = 0.3$, $p(c|b) = 0.7$, $p(c|c) = 0.5$.

$$p(a|a) = \frac{5}{9}, \quad p(a|b) = \frac{5}{9}, \quad p(a|c) = \frac{3}{9}, \quad p(a|d) = \frac{3}{9},$$

$$p(b|a) = \frac{3}{9}, \quad p(b|b) = \frac{3}{9}, \quad p(b|c) = 0, \quad p(b|d) = 0,$$

$$p(c|a) = \frac{1}{9}, \quad p(c|b) = 0, \quad p(c|c) = \frac{5}{9}, \quad p(c|d) = 0,$$

$$p(d|a) = 0, \quad p(d|b) = \frac{1}{9}, \quad p(d|c) = \frac{1}{9}, \quad p(d|d) = \frac{6}{9},$$

$$p(a|a) = \frac{1}{7}, \quad p(a|b) = \frac{1}{7}, \quad p(a|c) = \frac{1}{7}, \quad p(a|d) = 0,$$

$$p(b|a) = \frac{2}{7}, \quad p(b|b) = \frac{2}{7}, \quad p(b|c) = \frac{1}{7}, \quad p(b|d) = \frac{4}{7},$$

$$p(c|a) = \frac{4}{7}, \quad p(c|b) = \frac{4}{7}, \quad p(c|c) = \frac{4}{7}, \quad p(c|d) = 0,$$

$$p(d|a) = 0, \quad p(d|b) = 0, \quad p(d|c) = \frac{1}{7}, \quad p(d|d) = \frac{3}{7},$$

Решение задачи 2.6 (вариант 1)

Изобразим заданную марковскую цепь

$$p(a|a) = 0.0,$$
 $p(a|b) = 0.15,$ $p(a|c) = 0.7,$
 $p(b|a) = 0.9,$ $p(b|b) = 0.4,$ $p(b|c) = 0.3,$
 $p(c|a) = 0.1,$ $p(c|b) = 0.45,$ $p(c|c) = 0.0.$

в виде конечного автомата:

Puc. 1

В соответствие с заданными вероятностями переходов можно записать связь вероятностей состояний марковской цепи на i-м и (i+1)-м шагах:

$$\begin{split} p\big(X_{i+1} = s_k\big) &= \sum_{s_j \in \{a,b,c\}} p\big(X_i = s_j\big) \cdot p\big(X_{i+1} = s_k \mid X_i = s_j\big), \quad s_k \in \{a,b,c\}, \\ p\big(X_{i+1} = a\big) &= 0.15 \cdot p\big(X_i = b\big) + 0.7 \cdot p\big(X_i = c\big), \\ p\big(X_{i+1} = b\big) &= 0.9 \cdot p\big(X_i = a\big) + 0.4 \cdot p\big(X_i = b\big) + 0.3 \cdot p\big(X_i = c\big), \\ p\big(X_{i+1} = c\big) &= 0.1 \cdot p\big(X_i = a\big) + 0.45 \cdot p\big(X_i = b\big). \end{split}$$

Поскольку для стационарного (асимптотического) распределения $p\left(X_{i+1}=s_j\right)=p\left(X_i=s_j\right)\quad \text{для}\quad s_j\in\{a,b,c\},\quad \text{обозначим}\quad \text{эти}$ вероятности как p_{s_j} и запишем систему уравнений, дополненную ограничением $\sum_{s_i\in\{a,b,c\}}p_{s_j}=1$:

$$\begin{cases} p_a = 0.15 \cdot p_b + 0.7 \cdot p_c, \\ p_b = 0.9 \cdot p_a + 0.4 \cdot p_b + 0.3 \cdot p_c, \\ p_c = 0.1 \cdot p_a + 0.45 \cdot p_b, \\ p_a + p_b + p_c = 1. \end{cases}$$

Решим эту систему (поскольку одно из первых трёх уравнений является избыточным, исключим второе):

$$\begin{cases} 60p_{a} = 9p_{b} + 42p_{c}, & \begin{cases} 62p_{a} = 62p_{c}, & \Rightarrow & p_{a} = p_{c}, \\ 20p_{c} = 2p_{a} + 9p_{b}, & \begin{cases} 18p_{c} = 9p_{b}, & \Rightarrow & p_{b} = 2p_{c}, \\ 4p_{c} = 1. & \Rightarrow & p_{c} = 0,25. \end{cases} \end{cases}$$

Таким образом, значения вероятностей стационарного распределения заданной марковской цепи равны $p_a=0,25,\,p_b=0,5,\,p_c=0,25.$

Энтропия для этого распределения рассчитывается по стандартной формуле:

$$H(X_i) = \sum_{s_i \in \{a,b,c\}} p(X_i = s_j) \log_2 p(X_i = s_j) = \sum_{s_i \in \{a,b,c\}} p_{s_j} \log_2 p_{s_j} = \frac{3}{2}.$$

Для вычисления энтропии $H(X_i X_{i+1})$ необходимы совместные вероятности $p(X_i = s_j, X_{i+1} = s_k)$, которые вычисляются по формуле:

$$p(X_i = s_j, X_{i+1} = s_k) = p(X_i = s_j) p(X_{i+1} = s_k | X_i = s_j) = p_{s_i} p(s_k | s_j).$$

Таким образом:

$$p(X_i = a, X_{i+1} = a) = 0,$$

 $p(X_i = b, X_{i+1} = a) = \frac{3}{40},$
 $p(X_i = c, X_{i+1} = a) = \frac{7}{40},$

$$p(X_i = a, X_{i+1} = b) = \frac{9}{40},$$

$$p(X_i = b, X_{i+1} = b) = \frac{8}{40},$$

$$p(X_i = c, X_{i+1} = b) = \frac{3}{40},$$

$$p(X_i = a, X_{i+1} = c) = \frac{1}{40},$$

$$p(X_i = b, X_{i+1} = c) = \frac{9}{40}$$

$$p(X_i = c, X_{i+1} = c) = 0,$$

$$H(X_i X_{i+1}) = -\left(\frac{3}{40}\log_2\frac{3}{40} + \frac{7}{40}\log_2\frac{7}{40} + \frac{9}{40}\log_2\frac{9}{40} + \frac{8}{40}\log_2\frac{8}{40} + \frac{3}{40}\log_2\frac{3}{40} + \frac{1}{40}\log_2\frac{1}{40} + \frac{9}{40}\log_2\frac{9}{40}\right).$$

Условная энтропия $H_{X_i}ig(X_{i+1}ig)$ может быть найдена двумя способами.

Первый способ:

$$H_{X_i}(X_{i+1}) = \sum_{s_j \in \{a,b,c\}} p_{s_j} \sum_{s_k \in \{a,b,c\}} p(s_k \mid s_j) \log_2 p(s_k \mid s_j).$$

Второй способ:

$$H_{X_i}(X_{i+1}) = H(X_i X_{i+1}) - H(X_i).$$

Задача 2.7

Непрерывная случайная величина X распределена по закону равной вероятности в пределах от x_0 до $x_0 + a$:

$$f(x) = \begin{cases} 0, & x < x_0, \\ \frac{1}{a}, & x_0 \le x \le x_0 + a, \\ 0, & x > x_0 + a. \end{cases}$$

Найти дифференциальную энтропию этой случайной величины.

Задача 2.8

Непрерывная случайная величина X распределена по нормальному закону с параметрами $N(0,\sigma^2)$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}.$$

Найти дифференциальную энтропию этой случайной величины.

Задача 2.9

Непрерывная случайная величина X распределена по экспоненциальному закону:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Найти дифференциальную энтропию этой случайной величины.

Задача 2.10

Сравнить энтропии непрерывных случайных сигналов, распределенных соответственно равномерно на интервале $\left[-\alpha;\alpha\right]$ и нормально, если их дисперсии равны.

Задача 2.11

Сравнить дисперсии непрерывных случайных сигналов, распределенных соответственно равномерно на интервале $\left[-\alpha;\alpha\right]$ и нормально, если их энтропии равны.

Тема 3. Количество информации

Задача 3.1

Даны вероятности появления входных символов в канале и вероятности верной/ошибочной передачи (см. варианты).

$$p(x_0) = 0.5,$$
 $p(x_1) = 0.5,$
 $p(y_0 | x_0) = 1,$ $p(y_0 | x_1) = 0.5,$
 $p(y_1 | x_0) = 0,$ $p(y_1 | x_1) = 0.5.$

Вычислить I(X,Y).

Варианты заданий:

$$p(x_0) = \frac{1}{4}, \qquad p(x_1) = \frac{3}{4},$$

1)
$$p(y_0 | x_0) = \frac{4}{5}$$
, $p(y_0 | x_1) = \frac{4}{15}$, $p(y_1 | x_0) = \frac{1}{5}$, $p(y_1 | x_1) = \frac{11}{15}$. $p(x_0) = 0.5$, $p(x_1) = 0.5$,

2)
$$p(y_0 | x_0) = 1$$
, $p(y_0 | x_1) = 0.25$,
 $p(y_1 | x_0) = 0$, $p(y_1 | x_1) = 0.75$.
 $p(x_0) = 0.5$, $p(x_1) = 0.5$,

3)
$$p(y_0 | x_0) = 1$$
, $p(y_0 | x_1) = 0.5$,
 $p(y_1 | x_0) = 0$, $p(y_1 | x_1) = 0.5$.
 $p(x_0) = 0.75$, $p(x_1) = 0.25$,

4)
$$p(y_0 | x_0) = 1$$
, $p(y_0 | x_1) = 0.5$,
 $p(y_1 | x_0) = 0$, $p(y_1 | x_1) = 0.5$.
 $p(x_0) = 0.75$, $p(x_1) = 0.25$,

5)
$$p(y_0 | x_0) = 1$$
, $p(y_0 | x_1) = 0.25$,
 $p(y_1 | x_0) = 0$, $p(y_1 | x_1) = 0.75$.

$$p(x_0) = 0.75, \quad p(x_1) = 0.25,$$

6)
$$p(y_0 | x_0) = 0.75$$
, $p(y_0 | x_1) = 0.5$, $p(y_1 | x_0) = 0.25$, $p(y_1 | x_1) = 0.5$.

$$p(x_0) = 0.75, \quad p(x_1) = 0.25,$$

7)
$$p(y_0 | x_0) = 0.5$$
, $p(y_0 | x_1) = 0.25$, $p(y_1 | x_0) = 0.5$, $p(y_1 | x_0) = 0.5$, $p(y_1 | x_1) = 0.75$.

$$p(x_0) = 0.75, \quad p(x_1) = 0.25,$$

8)
$$p(y_0|x_0) = 0.75$$
, $p(y_0|x_1) = 0$,
 $p(y_1|x_0) = 0.25$, $p(y_1|x_1) = 1$.

Решение задачи 3.1 (вариант 1)

Даны вероятности:

$$p(x_0) = \frac{1}{4}, p(x_1) = \frac{3}{4},$$

$$p(y_0 | x_0) = \frac{4}{5}, p(y_0 | x_1) = \frac{4}{15},$$

$$p(y_1 | x_0) = \frac{1}{5}, p(y_1 | x_1) = \frac{11}{15}.$$

Вычислим вероятности событий y_j , а также условные вероятности $p(y_i | x_i)$:

$$p(y_0) = p(x_0) p(y_0 | x_0) + p(x_1) p(y_0 | x_1) = \frac{1}{4} \cdot \frac{4}{5} + \frac{3}{4} \cdot \frac{4}{15} = \frac{2}{5},$$

$$p(y_1) = p(x_0) p(y_1 | x_0) + p(x_1) p(y_1 | x_1) = \frac{1}{4} \cdot \frac{1}{5} + \frac{3}{4} \cdot \frac{11}{15} = \frac{3}{5},$$

$$p(x_0 | y_0) = \frac{p(x_0) p(y_0 | x_0)}{p(y_0)} = \frac{1}{4} \cdot \frac{4}{5} \cdot \frac{5}{2} = \frac{1}{2},$$

$$p(x_1 | y_0) = \frac{p(x_1) p(y_0 | x_1)}{p(y_0)} = \frac{3}{4} \cdot \frac{4}{15} \cdot \frac{5}{2} = \frac{1}{2},$$

$$p(x_0 | y_1) = \frac{p(x_0)p(y_1 | x_0)}{p(y_1)} = \frac{1}{4} \cdot \frac{1}{5} \cdot \frac{5}{3} = \frac{1}{12}$$

$$p(x_1 | y_1) = \frac{p(x_1)p(y_1 | x_1)}{p(y_1)} = \frac{3}{4} \cdot \frac{11}{15} \cdot \frac{5}{3} = \frac{11}{12}.$$

Рассчитаем все необходимые энтропии:

$$\begin{split} H(X) &= -\left(\frac{1}{4}\log_2\frac{1}{4} + \frac{3}{4}\log_2\frac{3}{4}\right), \\ H_Y(X) &= -\frac{2}{5}\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) - \frac{3}{5}\left(\frac{1}{12}\log_2\frac{1}{12} + \frac{11}{12}\log_2\frac{11}{12}\right), \\ I(X,Y) &= H(X) - H_Y(X). \end{split}$$

Помимо этого, можно найти I(X,Y), воспользовавшись свойством

$$I(X,Y) = I(Y,X) = H(Y) - H_X(Y)$$

либо

$$I(X,Y) = H(X) + H(Y) - H(XY).$$

Залача 3.2

Брошена пара игральных костей с шестью гранями со значениями на гранях от 1 до 6. Сколько информации содержится в сообщении «Сумма выпавших значений равна 5» (см. варианты)?

Варианты заданий:

- 1) Кости различимы.
- 2) Кости неразличимы.

Задача 3.3

Задана марковская цепь (см. задача 2.6, варианты). Вычислить количество информации $I(X_{i+1}, X_i)$, где X_i , X_{i+1} – асимптотические состояния марковской цепи на i -м и (i+1) -м шагах.

Тема 4. Каналы передачи данных

Задача 4.1

Задан дискретный канал без памяти и без обратной связи с двумя возможными символами на входе (0,1) и восемью возможными символами на выходе (0,0',0",0"',1"',1",1',1). Заданы соответствующие вероятности переходов:

$$p(0|0) = p(1|1) = 0.309; p(0|1) = p(1|0) = 0.006;$$

$$p(0'|0) = p(1'|1) = 0.191; p(0'|1) = p(1'|0) = 0.017;$$

$$p(0"|0) = p(1"|1) = 0.191; p(0"|1) = p(1"|0) = 0.044;$$

$$p(0"|0) = p(1"|1) = 0.150; p(0"|1) = p(1"|0) = 0.092.$$

Вычислить пропускную способность канала для различных способов демодуляции (см. варианты).

Варианты заданий:

1) Мягкая (soft) демодуляция. Выходные символы интерпретируются как есть:

$$0 \to 0;$$
 $0' \to 0';$ $0" \to 0";$ $0"" \to 0"";$ $1" \to 1";$ $1 \to 1.$

2) Жесткая (hard) демодуляция. Выходные символы преобразуются в символы из алфавита (0,1):

$$0 \to 0;$$
 $0' \to 0;$ $0" \to 0;$ $0"" \to 0;$ $1"" \to 1;$ $1' \to 1;$ $1 \to 1.$

3) Демодуляция со стиранием. Символы (0',0",0"',1"',1",1') интерпретируются как неизвестные, остальные преобразуются в символы из алфавита (0,1):

$$0 \rightarrow 0;$$
 $0' \rightarrow \Delta;$ $0" \rightarrow \Delta;$ $0"' \rightarrow \Delta;$
 $1"' \rightarrow \Delta;$ $1" \rightarrow \Delta;$ $1 \rightarrow 1.$

4) Демодуляция со стиранием. Символы (0",0"",1"",1") интерпретируются как неизвестные, остальные преобразуются в символы из алфавита (0,1):

$$0 \rightarrow 0;$$
 $0' \rightarrow 0;$ $0" \rightarrow \Delta;$ $0"' \rightarrow \Delta;$ $1" \rightarrow \Delta;$ $1' \rightarrow 1;$ $1 \rightarrow 1.$

5) Демодуляция со стиранием. Символы (0",1") интерпретируются как неизвестные, остальные преобразуются в символы из алфавита (0,1):

$$0 \rightarrow 0;$$
 $0' \rightarrow 0;$ $0" \rightarrow 0;$ $0" \rightarrow \Delta;$
 $1" \rightarrow \Delta;$ $1" \rightarrow 1;$ $1 \rightarrow 1;$ $1 \rightarrow 1.$

Решение задачи 4.1 (вариант 3)

Вероятности передачи для заданного способа демодуляции принимают следующий вид (на основе исходных вероятностей):

$$p(0|0) = p(1|1) = 0,309;$$
 $p(0|1) = p(1|0) = 0,006;$ $p(\Delta|0) = p(\Delta|1) = 0,685.$

Рассмотрим

$$C = \max_{p_x} I(X, Y) = \max_{p_x} I(Y, X) = \max_{p_x} (H(Y) - H_X(Y)).$$

По свойству симметричного канала, максимум количества информации достигается при равномерном распределении $p_{_{\rm x}}$.

$$\begin{aligned} p_x(0) &= p_x(1) = 0.5. \\ p_y(0) &= p_y(1) = 0.1575; \ p_y(\Delta) = 0.685. \\ H(Y) &= -0.315\log_2 0.1575 - 0.685\log_2 0.685 \ . \\ H_x(Y) &= -0.5 \cdot (0.309\log_2 0.309 + 0.006\log_2 0.006 + 0.685\log_2 0.685) \\ &-0.5 \cdot (0.309\log_2 0.309 + 0.006\log_2 0.006 + 0.685\log_2 0.685) = \\ &= -0.309\log_2 0.309 - 0.006\log_2 0.006 - 0.685\log_2 0.685 \\ C &= -0.315\log_2 0.1575 + 0.309\log_2 0.309 + 0.006\log_2 0.006. \end{aligned}$$

Тема 5. Символьные коды. Префиксные коды

Три основных требования к полезному коду:

- любая закодированная строка должна быть однозначно декодируемой;
 - символьный код должен быть прост для декодирования;
 - код должен обеспечивать максимально возможное сжатие.

Задача 5.1

Даны различные варианты кодов для ансамбля X (см. варианты). Является ли код однозначно декодируемым (каждое кодовое слово может быть идентифицировано в кодовой последовательности)?

Является ли код мгновенно декодируемым (конец каждого кодового слова может быть идентифицирован без учета последующих символов)?

Обеспечивает ли код максимально возможное сжатие (не существует однозначно декодируемого кода, в котором хотя бы одна кодовая комбинация содержит меньше знаков, чем у приведённого, при этом остальные кодовые комбинации содержат не больше знаков, чем у приведённого)?

Варианты заданий:

T	аблица	1
-		

	X_1	x_2	x_3	X_4	X_5	x_6
1)	0	1	01	010	0110	0111
2)	0	11	01	000	1110	10101
3)	00	01	100	110	1110	1111
4)	00	01	100	101	110	111

Тема 6. Кодирование Шеннона-Фано. Кодирование Хаффмена

Кодирование алгоритмом Шеннона-Фано производится следующим образом. Кодируемые знаки выписывают в таблицу в порядке убывания их вероятностей в сообщениях. Затем их разделяют на две группы так, чтобы значения сумм вероятностей в каждой группе были близкими. Все знаки одной из групп в соответствующем разряде кодируются, например, единицей, тогда знаки второй группы кодируются нулем. Каждую полученную в процессе деления группу подвергают вышеописанной операции до тех пор, пока в результате очередного деления в каждой группе не останется по одному знаку.

При использовании алгоритма Хаффмена, кодируемые знаки также располагают в порядке убывания их вероятностей. Далее на каждом этапе две последние позиции списка заменяются одной и ей приписывают вероятность, равную сумме вероятностей заменяемых позиций. После этого производится пересортировка списка по убыванию вероятностей, с сохранением информации о том, какие именно знаки объединялись на каждом этапе. Процесс продолжается до тех пор, пока не останется единственная позиция с вероятностью, равной 1.

После этого строится кодовое дерево. Корню дерева ставится в соответствие узел с вероятностью, равной 1. Далее каждому узлу приписываются два потомка с вероятностями, которые участвовали в формировании значения вероятности обрабатываемого узла. Так продолжают до достижения узлов, соответствующих вероятностям исходных знаков.

Процесс кодирования по кодовому дереву осуществляется следующим образом. Одной из ветвей, выходящей из каждого узла, например, с более высокой вероятностью, ставится в соответствие символ 1, а с меньшей -0. Спуск от корня к нужному знаку дает код этого знака. Правило кодирования в случае равных вероятностей оговаривается особо.

Задача 6.1

Используя алгоритмы Шеннона-Фано и Хаффмена, провести эффективное кодирование ансамбля из восьми знаков z_i с заданными вероятностями (см. варианты).

Для построенного эффективного кода определить среднюю длину кодовой комбинации.

Варианты заданий:

1)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.26 & 0.24 & 0.15 & 0.12 & 0.09 & 0.07 & 0.05 & 0.02 \end{bmatrix}$$
.

2)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.26 & 0.23 & 0.16 & 0.11 & 0.09 & 0.08 & 0.05 & 0.02 \end{bmatrix}$$
.

3)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.21 & 0.19 & 0.15 & 0.13 & 0.12 & 0.09 & 0.06 & 0.05 \end{bmatrix}$$

$$\begin{bmatrix} 0,26 & 0,23 & 0,16 & 0,11 & 0,09 & 0,08 & 0,05 & 0,02 \end{bmatrix}$$
3) $Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0,21 & 0,19 & 0,15 & 0,13 & 0,12 & 0,09 & 0,06 & 0,05 \end{bmatrix}$.

4) $Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0,23 & 0,17 & 0,15 & 0,14 & 0,1 & 0,09 & 0,07 & 0,05 \end{bmatrix}$.

5)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.26 & 0.19 & 0.14 & 0.11 & 0.1 & 0.08 & 0.07 & 0.05 \end{bmatrix}$$
.

6)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0,26 & 0,22 & 0,16 & 0,12 & 0,09 & 0,07 & 0,05 & 0,03 \end{bmatrix}$$
.

7)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.2 & 0.18 & 0.14 & 0.12 & 0.12 & 0.1 & 0.08 & 0.06 \end{bmatrix}$$
.

8)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.28 & 0.22 & 0.15 & 0.11 & 0.11 & 0.07 & 0.04 & 0.02 \end{bmatrix}$$
.

9)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.22 & 0.18 & 0.15 & 0.13 & 0.13 & 0.09 & 0.05 & 0.05 \end{bmatrix}$$
.

10)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.25 & 0.19 & 0.15 & 0.11 & 0.09 & 0.09 & 0.07 & 0.05 \end{bmatrix}$$
.

11)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.24 & 0.17 & 0.16 & 0.14 & 0.09 & 0.08 & 0.07 & 0.05 \end{bmatrix}$$

12) $Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.24 & 0.23 & 0.16 & 0.14 & 0.08 & 0.06 & 0.06 & 0.03 \end{bmatrix}$

12)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.24 & 0.23 & 0.16 & 0.14 & 0.08 & 0.06 & 0.06 & 0.03 \end{bmatrix}$$

13)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.21 & 0.17 & 0.14 & 0.13 & 0.12 & 0.1 & 0.07 & 0.06 \end{bmatrix}$$
.

14)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.22 & 0.18 & 0.16 & 0.12 & 0.12 & 0.1 & 0.05 & 0.05 \end{bmatrix}$$
.

Решение задачи 6.2 (вариант 3

$$Z = \begin{bmatrix} z_1 & z_2 & z_3 & z_4 & z_5 & z_6 & z_7 & z_8 \\ 0.26 & 0.24 & 0.15 & 0.12 & 0.09 & 0.07 & 0.05 & 0.02 \end{bmatrix}.$$

Выполним кодирование этого ансамбля по алгоритму Шеннона-Фано. Продемонстрируем первые три шага алгоритма после сортировки ансамбля по убыванию вероятностей:

Таблииа 2

	e ci Ostitiga	<u> </u>				_				_			
z_1	0,26		\mathcal{Z}_1	0,26	0		\mathcal{Z}_1	0,26	00		z_1	0,26	00
z_2	0,24		z_2	0,24	0		\mathcal{Z}_2	0,24	01		\mathcal{Z}_2	0,24	01
Z_3	0,15		Z_3	0,15	1		Z_3	0,15	1		Z_3	0,15	10
Z_4	0,12		Z_4	0,12	1		Z_4	0,12	1		Z_4	0,12	10
Z_5	0,09		Z_5	0,09	1		Z_5	0,09	1		Z_5	0,09	11
z_6	0,07		Z_6	0,07	1		Z_6	0,07	1		Z_6	0,07	11
Z_7	0,05		Z_7	0,05	1		Z_7	0,05	1		Z_7	0,05	11
Z_8	0,02		Z_8	0,02	1		Z_8	0,02	1		Z_8	0,02	11

Выполняем эту процедуру до тех пор, пока в результате очередного деления в каждой группе не останется по одному знаку.

Таблица 3

Ž _I	0,26	00
z_2	0,24	01
z_3	0,15	100
Z_4	0,12	101
Z_5	0,09	110
z_6	0,07	1110
z_7	0,05	11110
Z_8	0,02	11111

Средняя длина кодовой комбинации получившегося кода:

$$l_{aver} = 0,26 \cdot 2 + 0,24 \cdot 2 + 0,15 \cdot 3 + 0,12 \cdot 3 + 0,09 \cdot 3 + 0,07 \cdot 4 + 0,05 \cdot 5 + 0,02 \cdot 5 = 2.21.$$

Выполним кодирование этого ансамбля по алгоритму Хаффмена. Заполним таблицу после сортировки ансамбля по убыванию вероятностей. Будем отмечать новое получившееся значение вероятности (сумму) на каждом шаге подчёркиванием и полужирным шрифтом.

Таблица 4

Z_1	0,26	0,26	0,26	0,26	0,29	0,45	0,55	1
z_2	0,24	0,24	0,24	0,24	0,26	0,29	0,45	
Z_3	0,15	0,15	0,15	<u>0,21</u>	0,24	0,26		
Z_4	0,12	0,12	<u>0,14</u>	0,15	0,21			
Z_5	0,09	0,09	0,12	0,14				
Z_6	0,07	0,07	0,09					
z_7	0,05	<u>0,07</u>						
Z_8	0,02							

Построим дерево кодирования на основе полученной таблицы:

На основе построенного дерева формируем коды:

Таблица 5

z_1	0,26	10
Z_2	0,24	01
Z_3	0,15	111
Z_4	0,12	001
Z_5	0,09	000
Z_6	0,07	1101
Z_7	0,05	11001
Z_8	0,02	11000

Средняя длина кодовой комбинации получившегося кода:

$$l_{aver} = 0,26 \cdot 2 + 0,24 \cdot 2 + 0,15 \cdot 3 + 0,12 \cdot 3 + 0,09 \cdot 3 + 0,07 \cdot 4 + 0,05 \cdot 5 + 0,02 \cdot 5 = 2,21.$$

Задача 6.3

При помощи алгоритма Хаффмена построить эффективный код для ансамбля (см. варианты) с использованием блоков по два или три знака (см. варианты).

Вычислить среднюю длину кодовой комбинации.

Варианты заданий:

1)
$$Z = \begin{bmatrix} z_1 & z_2 \\ 0.9 & 0.1 \end{bmatrix}$$
, блоками по три знака.

2)
$$Z = \begin{bmatrix} z_1 & z_2 \\ 0.8 & 0.2 \end{bmatrix}$$
, блоками по три знака.

3)
$$Z = \begin{bmatrix} z_1 & z_2 \\ 0.7 & 0.3 \end{bmatrix}$$
, блоками по три знака.

4)
$$Z = \begin{bmatrix} z_1 & z_2 \\ 0.6 & 0.4 \end{bmatrix}$$
, блоками по три знака.

5)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.7 & 0.2 & 0.1 \end{bmatrix}$$
, блоками по три знака.

6)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.6 & 0.3 & 0.1 \end{bmatrix}$$
, блоками по три знака.

7)
$$Z = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.5 & 0.2 & 0.3 \end{bmatrix}$$
, блоками по три знака.

Тема 7. Другие эффективные коды

Гамма-код

Гамма-код Элиаса — это универсальный код для кодирования положительных целых чисел, разработанный Питером Элиасом. Он обычно используется при кодировании целых чисел, максимальное значение которых не может быть определено заранее.

Алгоритм кодирования гамма-кодом Элиаса:

- 1. Записать число в двоичном представлении.
- 2. Перед двоичным представлением дописать нули, количество которых на единицу меньше количества битов двоичного представления числа.

Алгоритм декодирования гамма-кода Элиаса

- 1. Считать все нули, встречающиеся до первой единицы. Пусть N количество этих нулей.
- 2. Считать N+1 цифр целого числа.

Дельта-код

Дельта-код Элиаса — это модификация гамма-кода Элиаса, в котором число разрядов двоичного представления числа, в свою очередь, тоже кодируется дельта-кодом Элиаса.

Алгоритм кодирования дельта-кодом Элиаса:

- 1. Записать число без в двоичном представлении без старшей единицы.
- 2. Перед двоичным представлением записать количество битов двоичного представления *исходного* числа гамма-кодом Элиаса.

Алгоритм декодирования дельта -кода Элиаса

- 1. Считать все нули, встречающиеся до первой единицы. Пусть \mathbf{M} количество этих нулей.
- 2. Записать в L число, представленное следующими M+1 битов.
- 3. Считать следующие L-1 битовых цифр и приписать к ним слева единицу.

Омега-код (рекурсивный код) Элиаса

Так же, как гамма- и дельта-код Элиаса, он приписывает к началу целого числа порядок его величины в универсальном коде. Однако, в отличие от двух других указанных кодов, омега-код рекурсивно кодирует префикс, именно поэтому он также известен, как рекурсивный код Элиаса.

Алгоритм кодирования омега-кодом Элиаса числа N:

- 1. Записать ноль в конец представления.
- 2. Если N единица, работа алгоритма останавливается.
- 3. Двоичное представление числа N добавляется в начало представления.
- 4. Переменной N присваивается значение, равное количеству записанных на предыдущем шаге битов минус один.
- 5. Переход к шагу 2.

Алгоритм декодирования омега -кода Элиаса

- 1. Начать с переменной N, установленной в значение 1.
- 2. Если следующий бит равен нулю, работа алгоритма останавливается, декодируемое число равно N.
- 3. Если следующий бит равен единице, считывается N+1 бит (включая единицу), полученное бинарное число записывается в N. Переход к шагу 2.

Aлгoрumm LZW

- 1. Инициализация словаря всеми возможными односимвольными фразами. Инициализация входной фразы ω первым символом сообщения.
- 2. Считать очередной символ К из кодируемого сообщения.
- 3. Если КОНЕЦ_СООБЩЕНИЯ, то выдать код для ω, закончить кодирование, иначе переход к 4.
- 4. Если фраза ω К уже есть в словаре, присвоить входной фразе значение ω К и перейти к шагу 2, иначе выдать код, соответствующий ω , добавить ω К в словарь, присвоить входной фразе значение К и перейти к шагу 2.

Задача 7.1

Закодировать число (см. варианты) гамма-, дельта- и омега-кодом Элиаса.

Варианты заданий:

- 1) 45.
- 2) 56.
- 3) 67.
- 4) 78.
- 5) 89.
- 6) 100.

Решение задачи 7.1 (вариант 1).

Кодирование гамма-кодом Элиаса:

$$45 = 101101$$
,

$$\gamma(45) = 00000101101.$$

Кодирование дельта-кодом Элиаса:

$$45 = 101101$$
,

$$6 = 110$$
,

$$\gamma(6) = 00110_3,$$

$$\delta(6) = 00110101101.$$

Кодирование омега-кодом Элиаса:

$$45 = 101101$$
,

$$6-1=5=101$$

$$3-1=2=10$$
,

$$2-1=1 \rightarrow stop$$
,

$$\omega(6) = 101011011010$$
.

Задача 7.2

Декодировать число (см. варианты), закодированное гамма-кодом Эпиаса.

Варианты заданий:

- 1) 011.
- 2) 00110.
- 3) 0001010.
- 4) 000010110.

Задача 7.3

Декодировать число (см. варианты), закодированное дельтакодом Элиаса.

Варианты заданий:

- 1) 01110.
- 2) 00100110.
- 3) 0011011011.
- 4) 000100111001100.

Задача 7.4

Декодировать число (см. варианты), закодированное омега-кодом Эпиаса.

Варианты заданий:

- 1) 101100.
- 2) 1111100.
- 3) 10100101000.
- 4) 101011010110.

Задача 7.5

Закодировать строку (см. варианты), составленную из символов заданного алфавита (см. варианты), при помощи алгоритма LZW.

Варианты заданий:

- 1) Строка: "abcdabceab". Алфавит {"a", "b", "c", "d", "e"}.
- 2) Строка: "ababcdabc". Алфавит {"a", "b", "c", "d"}.
- 3) Строка: "abcabdabc". Алфавит {"a", "b", "c", "d"}.

Решение задачи 7.5 (вариант 1)

Кодируется последовательность «abcdabceab».

Таблица 6

Текущая	Новый	Выходной	Словарь	
строка (ω)	символ (К)	символ		
			0: a	
			1: b	
			2: c	
			3: d	
			4: e	
a	b	0	5: ab	
b	С	1	6: bc	
С	d	2	7: cd	
d	a	3	8: da	
a	b	-	-	
ab	С	5	9: abc	
С	e	2	10: ce	
e	a	4	11: ea	
a	b	-	-	
ab	-	5	-	

Итоговый код: 0, 1, 2, 3, 5, 2, 4, 5.

Задача 7.6

Декодировать строку, составленную из символов заданного алфавита (см. варианты), из кодовой последовательности (см. варианты), полученной при помощи алгоритма LZW.

Варианты заданий:

- 1) Код: «0, 1, 2, 3, 5, 2, 4, 5». Алфавит: {"a", "b", "c", "d", "e"}.
- 2) Код: «0, 1, 4, 0, 2, 5, 6». Алфавит: {"a", "b", "c", "d"}.

Решение задачи 7.6 (вариант 1)

Декодируется сообщение «0, 1, 2, 3, 5, 2, 4, 5». Алфавит: {"a", "b", "c", "d", "e"}.

Таблица 7

Dwarwar	На	Сло	оварь
Входной символ		Полная	Частичная
Символ	выходе	запись	запись
		0: a	
		1: b	
		2: c	
		3: d	
		4: e	
0	a	-	5: a?
1	b	5: ab	6: b?
2	С	6: bc	7: c?
3	d	7: cd	8: d?
5	ab	8: da	9: ab?
2	С	9: abc	10: c?
4	e	10: ce	11: e?
5	ab	11: ea	-

Декодированная строка: «abcdabceab».

Тема 8. Помехоустойчивое кодирование. Код Хэмминга

В соответствии с общей схемой построения группового кода, каждой из 2^k-1 ненулевых информационных последовательностей ставится в соответствие n-разрядная разрешенная кодовая комбинация, в которой n-k символов проверочные. Они должны быть заполнены опознавателями так, чтобы имело место взаимнооднозначное соответствие множеств исправляемых ошибок (классов смежности) и опознавателей.

На этапе декодирования процедура определения символов опознавателя реализуется с использованием так называемых проверочных равенств как проверка на четность. При отсутствии ошибок в декодируемой последовательности в результате всех проверок на четность, должен получиться опознаватель из одних нулей. Для выполнения указанного правила каждый разряд опознавателя на этапе кодирования должен заполняться символом, который дополняет число единиц в суммируемых разрядах до четного числа единиц. Поэтому при отсутствии ошибок проверочные равенства, в которых к суммируемым разрядам прибавляется проверочный разряд, дают нуль в каждом проверочном разряде. При наличии ошибок в соответствующих разрядах опознавателя появляются единицы.

Задача 8.1

Сформировать набор векторов ошибок и опознавателей группового кода, предназначенного для передачи 15 символов, позволяющего исправлять одиночные ошибки.

Задача 8.2

Сформировать набор векторов ошибок и опознавателей группового кода, предназначенного для передачи 15 символов, позволяющего исправлять одиночные и обнаруживать двойные ошибки.

Задача 8.3

Сформировать набор векторов ошибок и опознавателей группового кода, предназначенного для передачи 31 символов, позволяющего исправлять одиночные ошибки.

Залача 8.4

Для заданных векторов ошибок и опознавателей (см. варианты) составить уравнения кодирования и проверочные равенства.

Варианты заданий:

Таблица 8

1)		2	2)	3)	
0000001	001	0000001	. 001	0000001	001
0000010	010	0000010	010	0000010	010
0000100	011	0000100	100	0000100	100
0001000	100	0001000	101	0001000	011
0010000	101	0010000) 111	0010000	110
0100000	110	0100000	011	0100000	111
1000000	111	1000000	110	1000000	101

Решение задачи 8.4 (вариант 1)

Обозначим разряды векторов ошибок как $a_7a_6a_5a_4a_3a_2a_1$, а разряды опознавателей как $b_3b_2b_1$.

Тогда проверочные равенства принимают вид:

$$\begin{cases} b_1 = a_1 + a_3 + a_5 + a_7, \\ b_2 = a_2 + a_3 + a_6 + a_7, \\ b_3 = a_4 + a_5 + a_6 + a_7. \end{cases}$$

Выбрав в качестве информационных битов a_3 , a_5 , a_6 и a_7 , а в качестве проверочных — a_1 , a_2 и a_4 , подставив в качестве опознавателей нули, получаем уравнения кодирования:

$$\begin{cases} a_1 = a_3 + a_5 + a_7, \\ a_2 = a_3 + a_6 + a_7, \\ a_4 = a_5 + a_6 + a_7. \end{cases}$$

Задача 8.5

Для заданных векторов ошибок и опознавателей

Таблица 9

•	
0000001	001
0000010	010
0000100	011
0001000	100
0010000	101
0100000	110
1000000	111

Провести помехоустойчивое кодирование сообщений (см. варианты).

Варианты заданий:

- 1) (0001), (0110), (1011).
- 2) (0010), (0111), (1100).
- 3) (0011), (1000), (1101).
- 4) (0100), (1001), (1110).
- 5) (0101), (1010), (1111).

Решение задачи 8.5 (вариант 1, частично)

Для заданных векторов ошибок и опознавателей уравнения кодирования принимают вид:

$$\begin{cases} a_1 = a_3 + a_5 + a_7, \\ a_2 = a_3 + a_6 + a_7, \\ a_4 = a_5 + a_6 + a_7. \end{cases}$$

Закодируем сообщение (0001). Заполним информационные биты значениями исходного сообщения:

Рассчитаем проверочные биты на основе информационных:

$$\begin{cases} a_1 = a_3 + a_5 + a_7 = 1 + 0 + 0 = 1, \\ a_2 = a_3 + a_6 + a_7 = 1 + 0 + 0 = 1, \\ a_4 = a_5 + a_6 + a_7 = 0 + 0 + 0 = 0. \end{cases}$$

Заполним проверочные биты:

Полученная кодовая комбинация: (0000111).

Задача 8.6

Для заданных векторов ошибок и опознавателей

Таблица 10

0000001	001
0000010	010
0000100	011
0001000	100
0010000	101
0100000	110
1000000	111

Обнаружить и исправить ошибку в случае её наличия для принятых кодовых комбинаций(см. варианты).

Варианты заданий:

- 1) (0111011), (0001111), (1100100), (1000101).
- 2) (1100010), (1011101), (1000111), (0110010).
- 3) (0011001), (0110001), (1101110), (0011101).
- 4) (1001110), (1001100), (1110101), (0110111).

- 5) (1011011), (0100111), (0100110), (1111010).
- 6) (0111101), (1101101), (1010011), (0010011).
- 7) (1100011), (1011110), (1110110), (1101001).
- 8) (1110100), (1110001), (0101111), (1011000).
- $9)\ (0101100),\ (0111010),\ (1111000),\ (1010111).$
- 10) (1101011), (0010110), (1000100), (0111100).
- 11) (0011110), (1001001), (0001011), (0100010).

Решение задачи 8.6 (вариант 1, частично)

Для заданных векторов ошибок и опознавателей проверочные равенства имеют вид:

$$\begin{cases} b_1 = a_1 + a_3 + a_5 + a_7, \\ b_2 = a_2 + a_3 + a_6 + a_7, \\ b_3 = a_4 + a_5 + a_6 + a_7. \end{cases}$$

Вычислим значения опознавателей для кода (0111011):

$$0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1,$$

$$7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$$

$$b_{1} = a_{1} + a_{3} + a_{5} + a_{7} = 0,$$

$$b_{2} = a_{2} + a_{3} + a_{6} + a_{7} = 0,$$

$$b_{3} = a_{4} + a_{5} + a_{6} + a_{7} = 1.$$

$$b_{3}b_{2}b_{1} = 100.$$

Соответствующий этому опознавателю вектор ошибок: (0001000).

Суммируем кодовую комбинацию с вектором ошибок:

$$(0111011) + (0001000) = (0110011).$$

Аналогичную процедуру можно проделать для остальных кодовых комбинаций.

Тема 9. Шиклические коды

Описание циклических кодов удобно проводить с помощью многочленов. Для этого вводят фиктивную переменную x, степени которой соответствуют номерам разрядов, начиная с 0. В качестве коэффициентов многочленов берут цифры 0 и 1, т.е. вводятся в рассмотрение многочлены над полем $\mathbf{GF}(2)$. Например, строка 1001011 описывается многочленом

$$1 \cdot x^6 + 0 \cdot x^5 + 0 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x^1 + 1 \cdot x^0 = x^3 + x + 1$$
.

Многочлен для каждой следующей строки образуется путем умножения на x. При этом, если крайний левый символ отличается от нуля для реализации операции переноса единицы в конец комбинации из результата необходимо вычесть (сложить по мо.0дулю 2) многочлен $x^n + 1$.

Все комбинации циклического кода могут быть построены на кольце многочленов путем задания на множестве n-разрядных кодовых комбинаций двух операций — сложения и умножения. Операция сложения многочленов в данном случае реализуется как сложение соответствующих коэффициентов по модулю 2.

Операция умножения реализуется в следующей последовательности. Многочлены перемножаются как обычно с последующим приведением коэффициентов по модулю 2. Если в результате умножения получается многочлен степени n и выше, то осуществляется его деление на заданный многочлен степени n, а результатом умножения считают остаток от деления. Ясно, что старшая степень этого остатка не будет превышать величины n-1, а полученный остаток будет соответствовать некоторой n-разрядной кодовой комбинации, т.е. обеспечивается замкнутость.

Операция деления является обычным делением многочленов, только вместо вычитания используется сложение по модулю 2.

$$\begin{array}{c|c}
x^{6} + x^{4} + x^{2} + 1 & x^{3} + x + 1 \\
\underline{x^{6} + x^{4} + x^{3}} & x^{3} + 1 \\
\hline
x^{3} + x^{2} + 1 & x^{3} + x + 1 \\
\underline{x^{3} + x + 1} & x^{2} + x
\end{array}$$

<u>Построение несистематического кода</u>. Для построения n-разрядной разрешенной комбинации многочлен a(x), соответствующий кодируемой последовательности информационных символов, умножается на образующий многочлен:

$$q(x) = a(x)g(x)$$
.

При декодировании (возможно отличающийся от q(x)) многочлен $\tilde{q}(x)$, соответствующий принятой комбинации, делят на g(x). Ясно, что в случае отсутствия ошибок сразу получится исходный многочлен a(x). Если в принятой комбинации содержится ошибка, при делении образуется остаток r(x), т.е.

$$\tilde{q}(x)/g(x) = f(x) + r(x)/g(x)$$
.

По остатку определяется класс вычетов и производится исправление ошибки.

Недостаток данного способа кодирования заключается в том, что после обнаружения и исправления ошибки необходимо снова делить на g(x) для того, чтобы выделить информационные символы.

<u>Построение</u> систематического кода. Многочлен, соответствующий исходной информационной посылке a(x), умножается на x^m . Образовавшиеся после умножения свободные младшие разряды заполняются остатком от деления данного выражения на образующий многочлен:

$$q(x) = a(x) \cdot x^m + r(x).$$

Многочлен q(x) обязан делиться на g(x) без остатка. Покажем это.

При делении $a(x)x^m$ на g(x) в общем случае имеем

$$a(x)\cdot x^{m}/g(x) = c(x) + r(x)/g(x),$$

где c(x) — целый полином. Это равенство (с учетом того, что операции вычитания и сложения по модулю два совпадают) можно переписать в виде

$$a(x)\cdot x^{m}/g(x)+r(x)/g(x)=c(x),$$

или

$$q(x) = a(x) \cdot x^m + r(x) = c(x)g(x).$$

В данном случае информационные символы всегда остаются на первых k позициях. Такой код называют *систематическим*. При таком способе кодирования после исправления ошибок сразу становится известной исходная кодовая последовательность, занимающая первые k позиций.

Задача 9.1

Задан образующий многочлен g(x) (см. варианты). Определить опознаватели для всех одиночных ошибок.

Варианты заданий:

- 1) Код (7,4), $g(x) = x^3 + x + 1$.
- 2) Код (7,4), $g(x) = x^3 + x^2 + 1$.
- 3) Код (15, 10), $g(x) = x^5 + x^4 + x^2 + 1$

Решение задачи 9.1 (вариант 1)

Для получения опознавателей составим таблицу степеней x от нулевой до шестой и вычислим остатки от деления на образующий:

Таблица 11

i	Многочлен разряда	Остаток	Опознаватель
0	1	1	001
1	X	x	010
2	x^2	x^2	100
3	x^3	<i>x</i> + 1	011
4	x^4	$x^2 + x$	110
5	x^5	$x^2 + x + 1$	111
6	x^6	$x^2 + 1$	101

Задача 9.2

Задан образующий многочлен кода (7,4)

$$g(x) = x^3 + x + 1$$
.

Построить несистематический избыточный код для заданных сообщений (см. варианты).

Варианты заданий:

- 1) (0101), (1010), (1111).
- 2) (0001), (0110), (1011).
- 3) (0010), (0111), (1100).
- 4) (0011), (1000), (1101).
- 5) (0100), (1001), (1110).

Решение задачи 9.2 (вариант 1, частично)

Для построения несистематического избыточного кода для сообщения (0011) преобразуем его в многочлен

$$(0101) \rightarrow x^2 + 1$$
.

Умножим полученный многочлен на образующий:

$$(x^2+1)\cdot(x^3+x+1)=x^5+x^2+x+1.$$

Соответствующая кодовая комбинация является несистематическим циклическим кодом:

$$x^5 + x^2 + x + 1 \rightarrow (0100111).$$

Аналогичным образом можно получить код для остальных сообщений.

Задача 9.3

Задан образующий многочлен кода (7,4)

$$g(x) = x^3 + x + 1$$
.

Построить систематический избыточный код для заданных сообщений (см. варианты).

Варианты заданий:

- 1) (0101), (1010), (1111).
- 2) (0001), (0110), (1011).
- 3) (0010), (0111), (1100).
- 4) (0011), (1000), (1101).
- 5) (0100), (1001), (1110).

Решение задачи 9.3 (вариант 1, частично)

Для построения систематического избыточного кода для сообщения (0101) преобразуем его в многочлен и умножим на x^3 .

$$(0101) \rightarrow (x^2 + 1),$$

$$(x^2 + 1)x^3 = x^5 + x^3.$$

Поделим полученный многочлен с остатком на образующий:

$$x^5 + x^3 = g(x) \cdot x^2 + x^2$$
.

Сложим многочлен $x^4 + x^3$ с полученным остатком x^2 .

$$x^5 + x^3 + x^2$$

Соответствующая кодовая комбинация является систематическим циклическим кодом:

$$x^5 + x^3 + x^2 \rightarrow (0101100)$$
.

Аналогичным образом можно получить код для остальных сообшений.

Задача 9.4 (вариант 1, частично)

Задан образующий многочлен кода (7,4)

$$g(x) = x^3 + x + 1$$
.

Обнаружить и исправить ошибку в случае её наличия для принятых кодовых комбинаций(см. варианты).

Варианты заданий:

- 1) (0111011), (0001111), (1100100), (1000101).
- 2) (1100010), (1011101), (1000111), (0110010).
- 3) (0011001), (0110001), (1101110), (0011101).
- 4) (1001110), (1001100), (1110101), (0110111).
- 5) (1011011), (0100111), (0100110), (1111010).
- 6) (0111101), (1101101), (1010011), (0010011).
- 7) (1100011), (1011110), (1110110), (1101001).
- 8) (1110100), (1110001), (0101111), (1011000).
- 9) (0101100), (0111010), (1111000), (1010111).
- 10) (1101011), (0010110), (1000100), (0111100).
- 11) (0011110), (1001001), (0001011), (0100010).

Решение задачи 9.3 (вариант 1, частично)

Для обнаружения ошибки в кодовой комбинации (0111011) преобразуем её в многочлен и разделим его на образующий:

$$(0111011) \rightarrow (x^5 + x^4 + x^3 + x + 1),$$

$$x^5 + x^4 + x^3 + x + 1 = g(x) \cdot (x^2 + x) + 1.$$

Полученный остаток показывает разряд ошибки в соответствии с таблицей из задачи 9.1.

Таким образом, ошибка в 1-м разряде. Исправив её, получаем исходное переданное сообщение: (0111010).

Для вычисления исходного кодируемого сообщения необходимо разделить многочлен, соответствующий этому сообщению, на образующий и взять частное:

$$x^5 + x^4 + x^3 + x = g(x) \cdot (x^2 + x).$$

Исходное кодируемое сообщение:

$$x^2 + x \rightarrow (0110)$$
.

Тема 10. Исправление пакетов ошибок. Циклический избыточный код

Циклический код может исправлять все пакеты ошибок длины t или меньше тогда и только тогда, если синдромы этих ошибок отличаются. Мы можем декодировать циклические пакеты ошибок посредством улавливания ошибок.

Можно доказать, что код (n, k) исправляющий пакеты ошибок длины t удовлетворяет ограничению $n-k\geq 2t$. Следовательно, $n-k\geq t$ и $n-t\geq k$. Теперь пакет ошибок длины t в кодовом слове длины n имеет циклическую последовательность из n-t нулей, что является требованием для работы алгоритма улавливания ошибок. Мы приведём модификацию алгоритма улавливания ошибок, который может быть использован для всех пакетов ошибок длины t или меньше в циклическом коде исправления пакетов ошибок длины t.

- (1) Вычислить синдром.
- (2) Установить i = 0
- (3) Если $s_i(x)$ нециклический пакет ошибок длины $\leq t$, тогда $e(x) = x^{n-i} \lceil s_i(x), 0 \rceil$.
 - (4) Пусть I = I + 1
 - (5) Если I = n, остановиться, шаблон ошибок неопределим.
- (6) Вычислить $s_i(x) = x s_{i-1}(x)$. Если степень $s_i(x) > n k$, $s_i(x) = s_i(x) g(x)$.
 - (7) Вернуться к шагу (3)

Залача 10.1

Задан образующий многочлен кода (15,9)

$$g(x) = x^6 + x^3 + x^2 + x + 1$$
,

предназначенный для исправления пакетов ошибок длины не более 3. Обнаружить и исправить ошибку в случае её наличия для принятых

кодовых комбинаций(см. варианты), либо показать, что кодовая комбинация содержит пакет ошибок длины более 3.

Варианты заданий:

- 1) (000.0011.0111.0111)
- 2) (001.1001.0100.0001)
- 3) (101.1000.1000.0011)
- 4) (101.1101.0100.0011)
- 5) (100.1010.0110.0100)
- 6) (101.0110.1010.0100)
- 7) (001.0110.0110.0101)
- 8) (011.0111.0101.0110)
- 9) (001.0010.0101.0111)
- 10) (011.0010.0001.0110)

Решение задачи 10.1 (вариант 1)

Вычислим остаток от деления многочлена, соответствующего принятой кодовой комбинации

$$(000.0011.0111.0111) \rightarrow g(x) = x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1$$

на образующий

$$g(x) = x^{6} + x^{3} + x^{2} + x + 1:$$

$$x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{2} + x + 1 = (x^{3} + x^{2})g(x) + (x^{5} + x^{4} + x + 1).$$

Составим таблицу опознавателей, начиная с полученного остатка, на каждом шаге умножая остаток на x и, при необходимости, снова вычисляя остаток от деления на образующий. Процедура выполняется до тех пор, пока опознаватель не примет вид пакета ошибок степени не выше третьей, либо до тех пор, пока i не станет равным 15. В последнем случае, исправление ошибок невозможно, поскольку полученная кодовая комбинация содержит пакет ошибок длины больше 3.

Таблица 12

i	$xr_{i-1}(x)$	$r_i(x)$	Опознаватель
0		$x^5 + x^4 + x + 1$	110011
1	$x^6 + x^5 + x^2 + x$	$x^5 + x^3 + 1$	101001
2	$x^6 + x^4 + x$	$x^4 + x^3 + x^2 + 1$	011101
3	$x^5 + x^4 + x^3 + x$	$x^5 + x^4 + x^3 + x$	111010
4	$x^6 + x^5 + x^4 + x^2$	$x^5 + x^4 + x^3 + x + 1$	111011
5	$x^6 + x^5 + x^4 + x^2 + x$	$x^5 + x^4 + x^3 + 1$	111001
6	$x^6 + x^5 + x^4 + x$	$x^5 + x^4 + x^3 + x^2 + 1$	111101
7	$x^6 + x^5 + x^4 + x^3 + x$	$x^5 + x^4 + x^2 + 1$	110101
8	$x^6 + x^5 + x^3 + x$	$x^5 + x^2 + 1$	100101
9	$x^6 + x^3 + x$	$x^2 + 1$	000101

Соответствующий опознавателю остаток умножается на x^{15-i} , после чего вычисляется остаток от деления на $x^{15}+1$.

$$(x^2 + 1)x^6 = x^8 + x^6.$$

Полученный многочлен соответствует вектору ошибки:

$$x^8 + x^6 \rightarrow (000.0001.0100.0000)$$
.

Для получения исправленной кодовой комбинации складываем исходную комбинацию и вектор ошибок:

$$(000.0011.0111.0111) + (000.0001.0100.0000) = (000.0010.0011.0111)$$
.

После деления на образующий получаем исходное сообщение:

$$(x^9 + x^5 + x^4 + x^2 + x + 1)/g(x) = x^3 + 1.$$

Тема 11. Матричные коды. Коды Адамара

Существует формальный способ построения матрицыдополнения, основанный на следующем требовании. Вектор-строка, получающаяся в результате суммирования любых $l,\ (1 \le l \le k)$ строк матрицы дополнения, должна содержать не менее $d_{\min}-l$ отличных от нуля символов, где d_{\min} — минимальное кодовое расстояние.

В соответствии с указанным требованием матрица-дополнение может строиться с соблюдением следующих правил:

количество единиц в строке должно быть не менее $d_{\min} - 1$;

сумма по модулю два двух любых строк должна содержать не менее $d_{\min} - 2$ единиц.

При соблюдении указанных требований комбинация, полученная суммированием любых 2-х строк образующей матрицы, будет содержать не менее d_{\min} ненулевых символов.

В общем случае при необходимости обнаружения ошибки кратности до r включительно, минимальное кодовое расстояние должно удовлетворять условию

$$d_{\min} \ge r + 1$$
.

Для исправления ошибок кратности s должно выполняться неравенство

$$d_{\min} \ge 2s + 1$$
.

Для исправления ошибок кратности s и одновременного обнаружения всех ошибок кратности r ($r \ge s$) минимальное кодовое расстояние должно удовлетворять неравенству

$$d_{\min} \ge r + s + 1$$
.

Коды Адамара

Правило формирования матрицы Адамара:

$$H_{1} = \begin{bmatrix} 1 \end{bmatrix}, \\ H_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & - & 1 & - & 1 & - & 1 \\ 1 & 1 & - & 1 & 1 & - & - & 1 \\ 1 & 1 & - & - & 1 & 1 & - & - & - \\ 1 & 1 & 1 & 1 & - & - & - & - & - \\ 1 & 1 & 1 & 1 & - & - & - & - & - \\ 1 & 1 & - & - & - & 1 & 1 & - & - \\ 1 & 1 & - & - & - & - & 1 & 1 \\ 1 & 1 & - & - & - & - & 1 & 1 \\ 1 & - & - & 1 & - & 1 & 1 & - \end{bmatrix}, \quad H_{2i} = \begin{bmatrix} H_{i} & H_{i} \\ H_{i} & -H_{i} \end{bmatrix},$$

Для кодирования и декодирования значению -1 матрицы Адамара (обозначается как "-") ставится в соответствие значение бита кода равное 0, а значению +1 матрицы Адамара (обозначается как "1") - значение бита кода равное 1.

Код Адамара предназначен для кодирования n символов входной последовательности в 2^n выходной. Для этого в качестве выходной последовательности берётся соответствующая строка матрицы Адамара.

Для декодирования матрицу Адамара умножается на полученную последовательность, формируя вектор ${\bf F}$. Определяется координата a (нумерация начинается ${\bf c}$ нуля), которой соответствует максимальное по модулю значение ${\bf F}$.

Если F_a отрицательна, то первая координата исходного сообщения равна 1, если F_a положительна - 0. Остальные координаты равны двоичному представлению a .

Задача 11.1

Построить образующую матрицу помехоустойчивого кода, предназначенного для передачи заданного числа k информационных разрядов (см. варианты) с заданной корректирующей способностью: r — кратность обнаруживаемой ошибки, s — кратность исправляемой ошибки (см варианты).

Варианты заданий:

1)
$$k = 3, s = 1$$
.

2)
$$k = 3, r = 2, s = 1$$
.

3)
$$k = 2, s = 2$$
.

4)
$$k = 4, r = 1$$
.

5)
$$k = 4, s = 1$$
.

6)
$$k = 4, r = 2, s = 1$$
.

7)
$$k = 5, r = 1$$
.

8)
$$k = 5, s = 1$$
.

9)
$$k = 5, r = 2, s = 1$$
.

Решение задачи 11.1 (вариант 2)

Для помехоустойчивого кода с корректирующей способностью r=2, s=1 минимальное кодовое расстояние должно быть $d_{\min} \geq s+r+1=4$.

Для передачи k=3 информационных символов построим матрицу-дополнение, состоящую из трёх строк, для которых должны удовлетворяться следующие требования:

- количество единиц в строке должно быть не менее трёх,
- сумма по модулю два двух любых строк должна содержать не менее двух единиц,
- сумма по модулю два трёх любых строк должна содержать не менее одной единицы.

$$\mathbf{P}_{k,n-k} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}.$$

Таким образом, образующая матрица принимает вид:

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k \\ \vdots \\ \mathbf{P}_{k,n-k} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

Задача 11.2.

Декодировать комбинации (см. варианты), полученные с использованием матрицы Адамара \mathbf{H}_8 .

Варианты заданий:

- 1) (01101011), (00001111), (11000100), (10000101).
- 2) (11000010), (10101101), (10000111), (01100010).
- 3) (00101001), (01100001), (11001110), (00101101).
- 4) (10001110), (10001100), (11100101), (01100111).
- 5) (10101011), (01000111), (01000110), (11101010).
- 6) (01101101), (11001101), (10100011), (00100011).
- 7) (11000011), (10101110), (11100110), (11001001).
- 8) (11100100), (11100001), (01001111), (10101000).
- 9) (01001100), (01101010), (11101000), (10100111).
- 10) (11001011), (00100110), (10000100), (01101100).
- 11) (00101110), (10001001), (00001011), (01000010).

Решение задачи 11.2 (вариант 1, частично)

Было принято сообщение $\mathbf{r} = [0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1]$.

Запишем соответствующий этому сообщению вектор в нотации матрицы Адамара

$$\mathbf{v} = \begin{bmatrix} - & 1 & 1 & - & 1 & - & 1 & 1 \end{bmatrix}.$$

После умножения матрицы Адамара

$$H_8 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & - & 1 & - & 1 & - & 1 & - \\ 1 & 1 & - & - & 1 & 1 & - & - & 1 \\ 1 & - & - & 1 & 1 & - & - & - & 1 \\ 1 & 1 & 1 & 1 & - & - & - & - & 1 \\ 1 & 1 & - & - & - & - & 1 & 1 \\ 1 & - & - & 1 & - & 1 & 1 & - \end{bmatrix}$$

на получившийся вектор, получаем вектор

$$\mathbf{F} = \begin{bmatrix} 2 & 2 & -2 & -2 & -2 & 2 & -6 \end{bmatrix}.$$

Наименьшему значению вектора ${\bf F}$ соответствует координата a=7 , при этом F_a отрицательна, следовательно исходное сообщение формируется как $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Аналогичным образом можно декодировать остальные сообщения.

Тема 12. Коды Рида-Маллера

Задача 12.1

Составить матрицу кода Рида-Маллера (см. варианты) и проверочные уравнения.

Варианты заданий:

- 1) r = 1, m = 3.
- 2) r = 2, m = 3.
- 3) r = 2, m = 4.

Решение задачи 12.1 (вариант 2)

Матрица кода Рида-Маллера (r=2,m=3) будет состоять из восьми (2^r) столбцов и семи строк ($\sum_{i=0}^r C_m^i = 1+3+3$). Заполним заголовки столбцов всеми возможными трёхбитовыми словами, а заголовки строк — булевыми произведениями разрядов (при этом степень каждого разряда не может быть выше первой, а степень произведения — выше r=2).

Таблица 13

V ₃ V ₂ V ₁	000	001	010	011	100	101	110	111
1								
\mathbf{v}_1								
\mathbf{v}_2								
V 3								
v_1v_2								
V ₁ V ₃								
V ₂ V ₃								

Заполним ячейки таблицы в соответствии с функциями в заголовках строк. Кроме того, обозначим соответствующие разряды входного и выходного кода как $\mathbf{m} = (m_0, m_1, m_2, m_3, m_{12}, m_{13}, m_{23})$ и $\mathbf{c} = (c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7)$.

Таблица 14

V3V2V1	000	001	010	011	100	101	110	111	
1	1	1	1	1	1	1	1	1	m_0
\mathbf{v}_1	0	1	0	1	0	1	0	1	$m_{_{1}}$
V ₂	0	0	1	1	0	0	1	1	m_2
V ₃	0	0	0	0	1	1	1	1	m_3
v_1v_2	0	0	0	1	0	0	0	1	m_{12}
V_1V_3	0	0	0	0	0	1	0	1	m_{13}
v_2v_3	0	0	0	0	0	0	1	1	m_{23}
	c_0	$c_{_{1}}$	c_2	c_3	c_4	c_5	C_6	c_7	

Кодирование заключается в вычислении разрядов выходного кода посредством скалярного произведения соответствующих строк матрицы с входным вектором.

Выразим разряды выходного кода через разряды входного следующим образом:

$$\begin{cases} c_0 = m_0, \\ c_1 = m_0 + m_1, \\ c_2 = m_0 + m_2, \\ c_3 = m_0 + m_1 + m_2 + m_{12}. \end{cases}$$

Если сложить все указанные разряды, получим:

$$c_0 + c_1 + c_2 + c_3 = m_{12},$$

$$c_4 + c_5 + c_6 + c_7 = m_{12}.$$

Таким образом, проверочными равенствами будет пара выражений:

$$\begin{cases} \hat{m}_{12} = c_0 + c_1 + c_2 + c_3, \\ \hat{m}_{12} = c_4 + c_5 + c_6 + c_7. \end{cases}$$

Если значения совпадают, значение входного разряда m_{12} принимается равным его оценке \hat{m}_{12} . Если отличаются — код содержит ошибку, которую можно обнаружить, но невозможно исправить. Аналогичным образом можно получить выражения для остальных входных разрядов.

Тема 13. Свёрточные коды. Треллис-диаграммы

Задача 11.1

Сформировать конечный автомат для заданных образующих коэффициентов свёрточного кода (см варианты):

Варианты заданий:

1)
$$g_0(x) = (1,1,1),$$
 $g_1(x) = (1,1,0).$

2)
$$g_0(x) = (1,1,0,1)$$
 $g_1(x) = (1,1,1,0)$.

3)
$$g_0(x) = (1,1,0,1,0), \qquad g_1(x) = (1,1,1,0,1).$$

4)
$$g_0(x) = (1,1,0,1,0,1), \quad g_1(x) = (1,1,1,0,1,1).$$

Решение задачи 11.2 (вариант 1)

Заданы образующие коэффициенты свёрточного кода

$$g_0(x) = (1,1,1),$$
 $g_1(x) = (1,1,0).$

Сформируем конечный автомат для этих многочленов. Для этого зададим набор состояний, представляющих собой все битовые комбинации, количество разрядов в которых на единицу меньше длины образующих коэффициентов кода.

Такими комбинациями являются 00, 01, 10 и 11.

Рассмотрим состояние конечного автомата, соответствующее комбинации 00, и два входных сигнала: 0 и 1.

Если текущее состояние $x_{n-2}x_{n-1}$ равно 00 ($x_{n-2}=0,x_{n-1}=0$) и входной сигнал равен 0 ($x_n=0$), выходной сигнал для первого набора коэффициентов равен:

$$p_0(x_{n-2} = 0, x_{n-1} = 0, x_n = 0) = 1 \cdot x_n + 1 \cdot x_{n-1} + 1 \cdot x_{n-2} = 0$$

для второго:

$$p_1(x_{n-2} = 0, x_{n-1} = 0, x_n = 0) = 1 \cdot x_n + 1 \cdot x_{n-1} + 0 \cdot x_{n-2} = 0$$
.

При этом новым состоянием становится 00 (к предыдущему добавляется ноль и убирается самый первый разряд).

Аналогичным образом, для текущего состояния 0 и входного сигнала 1 результатом кодирования будет:

$$p_0(x_{n-2} = 0, x_{n-1} = 0, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 1 \cdot x_{n-2} = 1$$

для второго:

$$p_1(x_{n-2} = 0, x_{n-1} = 0, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 0 \cdot x_{n-2} = 1$$
.

Такая же процедура выполняется для всех состояний и входных сигналов.

Состояние: 01, входной сигнал 0.

$$p_0(x_{n-2} = 0, x_{n-1} = 1, x_n = 0) = 1 \cdot x_n + 1 \cdot x_{n-1} + 1 \cdot x_{n-2} = 1$$
,

$$p_1(x_{n-2} = 0, x_{n-1} = 1, x_n = 0) = 1 \cdot x_n + 1 \cdot x_{n-1} + 0 \cdot x_{n-2} = 1$$
,

новое состояние: 10.

Состояние: 01, входной сигнал 1.

$$p_0(x_{n-2} = 0, x_{n-1} = 1, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 1 \cdot x_{n-2} = 0$$

$$p_1(x_{n-2} = 0, x_{n-1} = 1, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 0 \cdot x_{n-2} = 0$$

новое состояние: 11.

Состояние: 10, входной сигнал 0.

$$p_0(x_{n-2}=1,x_{n-1}=0,x_n=0)=1\cdot x_n+1\cdot x_{n-1}+1\cdot x_{n-2}=1$$
,

$$p_1(x_{n-2}=1,x_{n-1}=0,x_n=0)=1\cdot x_n+1\cdot x_{n-1}+0\cdot x_{n-2}=0,$$

новое состояние: 00.

Состояние: 10, входной сигнал 1.

$$p_0(x_{n-2} = 1, x_{n-1} = 0, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 1 \cdot x_{n-2} = 0$$

$$p_1(x_{n-2}=1,x_{n-1}=0,x_n=1)=1\cdot x_n+1\cdot x_{n-1}+0\cdot x_{n-2}=1$$

новое состояние: 01.

Состояние: 11, входной сигнал 0.

$$p_0(x_{n-2}=1,x_{n-1}=1,x_n=0)=1\cdot x_n+1\cdot x_{n-1}+1\cdot x_{n-2}=0$$

$$p_1(x_{n-2} = 1, x_{n-1} = 1, x_n = 0) = 1 \cdot x_n + 1 \cdot x_{n-1} + 0 \cdot x_{n-2} = 1$$

новое состояние: 10.

Состояние: 11, входной сигнал 1.

$$p_0(x_{n-2} = 1, x_{n-1} = 1, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 1 \cdot x_{n-2} = 1,$$

$$p_1(x_{n-2} = 1, x_{n-1} = 1, x_n = 1) = 1 \cdot x_n + 1 \cdot x_{n-1} + 0 \cdot x_{n-2} = 0,$$

новое состояние: 11.

Проиллюстрируем это в виде схемы:

Puc. 3

Стрелка на схеме означает, что существует переход из одного состояния в другое. Подписи к стрелкам: до косой черты — входной символ, при появлении которого происходит переход, после косой черты — выходной код.

Задача 11.2

Заданы образующие коэффициенты свёрточного кода

$$g_0(x) = (1,1,1),$$
 $g_1(x) = (1,1,0).$

Закодировать битовые сообщения (см. варианты).

Варианты заданий:

- 1) (1100101).
- 2) (0110011).
- 3) (1001100).
- 4) (1000110).
- 5) (1011011).

- 6) (0110101).
- 7) (1101011).
- 8) (1110100).
- 9) (0101100).
- 10) (1110011).

Решение задачи 11.2 (вариант 1)

Для кодирования составим таблицу, столбцами которой будут: текущее состояние, входной символ, выходная последовательность. Воспользуемся схемой из задачи 11.1.

Puc. 4

Таблица 15

Текущее состояние	Входной	Выходная
текущее состояние	символ	последовательность
00	1	11
01	1	00
11	0	01
10	0	10
00	1	11
01	0	11
10	1	01

Таким образом, выходная последовательность равна: 11 00 01 10 11 11 01.

Задача 11.3

Заданы образующие коэффициенты свёрточного кода. Декодировать полученные сообщения (см. варианты), либо показать, что однозначное декодирование невозможно.

Варианты заданий:

- 1) 01 10 01 00 01 10 11
- 2) 00 10 01 01 00 11 11
- 3) 11 11 01 10 01 01 11
- 4) 11 00 11 01 11 10 11
- 5) 00 10 00 10 01 11 01
- 6) 00 11 01 00 01 10 10
- 7) 01 11 10 01 10 11 01
- 8) 11 10 01 01 01 00 11
- 9) 11 00 00 01 01 00 11
- 10) 00 11 00 10 01 10 10

Решение задачи 11.3 (вариант 1)

Заданы образующие коэффициенты свёрточного кода.

Puc. 5

Puc. 6

Декодированное сообщение: 1011001.

Тема 14. Модели детерминированных сигналов

Комплексным спектром периодического сигнала u(t) называют коэффициенты $A(jk\omega_1)$ в спектральном представлении

$$A(jk\omega_1) = \frac{2}{T} \int_{t_1}^{t_2} u(t) \cdot e^{-jk\omega_1 t} dt.$$

Функция периодического сигнала u(t) может быть представлена в виде

$$u(t) = \frac{1}{2} \sum_{k=-\infty}^{\infty} A(jk\omega_1) \cdot e^{jk\omega_1 t}.$$

Комплексной спектральной плотностью или спектральной характеристикой непериодического сигнала называют комплексную функцию

$$S(j\omega) = \int_{-\infty}^{\infty} u(t) \cdot e^{-j\omega t} dt.$$

В этом случае функция непериодического сигнала u(t) может быть представлена в виде

$$u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S(j\omega) \cdot e^{j\omega t} d\omega.$$

Для стационарного случайного сигнала автокорреляционная функция $R_{_{\!u}}(\tau)$ и спектральная плотность связаны выражениями:

$$S_{u}(\omega) = \frac{2}{\pi} \int_{0}^{\infty} R_{u}(\tau) \cdot \cos \omega \tau d\tau ,$$

$$R_{u}(\tau) = \int_{0}^{\infty} S_{u}(\omega) \cdot \cos \omega \tau \cdot d\omega.$$

Задача 14.1

Найти спектр последовательности косинусоидальных импульсов.

$$x\!\left(t\right)\!=\!\begin{cases} A\cdot\cos\left(\omega_{0}t\right) \text{ при } -\frac{\tau}{2}+nT\leq t\leq\frac{\tau}{2}+nT,\\ \\ 0 \text{ при } \frac{\tau}{2}+nT< t<\frac{3}{2}\tau+nT, \end{cases}$$

$$\omega_0 = 2\pi/T$$
; $T = 2\tau$; $n \in N$

Задача 14.2

Определить спектр последовательности прямоугольных импульсов длительностью τ и амплитудой A , следующих с частотой $\omega_0=2\pi/T$, описываемых выражением

$$x\Big(t\Big) = \begin{cases} A & \text{при } t_1 + nT \leq t \leq t_2 + nT & t_2 = t_1 + \tau, \\ 0 & \text{при } t_2 + nT < t < t_3 + nT, & t_3 = t_1 + T. \end{cases} \quad n \in N.$$

Задача 14.3

Найти спектральную характеристику $S(j\omega)$ одиночного прямоугольного импульса:

$$x(t) = \begin{cases} A & \text{при} & -\frac{\tau}{2} \le t \le \frac{\tau}{2}, \\ 0 & \text{при} & \frac{\tau}{2} < t < -\frac{\tau}{2}. \end{cases}$$

Как изменится спектральная характеристика при увеличении длительности импульса τ в 2 раза?

Задача 14.4

Найти спектр импульса высокочастотных колебаний.

$$x(t) = \begin{cases} A \cdot \cos\left(\frac{2\pi}{\tau}t\right), & -\frac{\tau}{2} \le t \le \frac{\tau}{2}, \\ 0, & \text{иначе.} \end{cases}$$

Задача 14.5

Найти модуль и фазу спектра одиночного экспоненциального импульса:

$$x(t) = \begin{cases} h \cdot e^{-\alpha t} & \text{при } t \ge 0, \\ 0 & \text{при } t < 0. \end{cases}$$

Залача 14.6

Определить спектральную плотность $S(\omega)$ для стационарного процесса с автокорреляционной функцией вида

$$R(\tau) = A e^{-\alpha|\tau|}.$$

Задача 14.7

Определить автокорреляционную функцию стационарного процесса со спектральной плотностью вида

$$S(\omega) = \begin{cases} S, & |\omega| < \omega_0, \\ 0, & |\omega| > \omega_0. \end{cases}$$

Задача 14.8

Определить автокорреляционную функцию для стационарного процесса со спектральной плотностью вида

$$S(\omega) = \begin{cases} 0, & |\omega| \le \omega_0, \\ \sigma^2, & \omega_0 < |\omega| < 2\omega_0, \\ 0, & 2\omega_0 \le |\omega|. \end{cases}$$

Задача 14.9

Определить спектральную плотность для стационарного случайного процесса с корреляционной функцией вида:

$$R(\tau) = \begin{cases} \sigma^2 (1 - |\tau|), & |\tau| \le 1, \\ 0, & |\tau| > 1. \end{cases}$$

Тема 15. Восстановление сигнала по его дискретным значениям

Любая функция u(t), допускающая преобразование Фурье и имеющая непрерывный спектр, ограниченный полосой частот от 0 до $f_c = \omega_c/2\pi$, полностью определяется дискретным рядом своих мгновенных значений, отсчитанных через интервалы времени $\Delta t = 1/(2 \cdot f_c) = \pi / \omega_c$.

Задача 15.1

Найти частоту квантования по времени сигнала x(t) (см. варианты), если относительная величина площади отсекаемой части энергетического спектра не превышает γ_{ω_e} .

Варианты заданий:

1)
$$x(t) = \begin{cases} h \cdot e^{-\alpha t} & \text{при } t \ge 0, \\ 0 & \text{при } t < 0. \end{cases}$$

2)
$$x(t) = \begin{cases} A & \text{при } -\frac{\tau}{2} \le t \le \frac{\tau}{2}, \\ 0 & \text{при } \frac{\tau}{2} < t < -\frac{\tau}{2}. \end{cases}$$

3)
$$x(t) = \begin{cases} A \cdot \cos\left(\frac{2\pi}{\tau}t\right), & -\frac{\tau}{2} \le t \le \frac{\tau}{2}, \\ 0, & \text{иначе.} \end{cases}$$

Решение задачи 15.1 (вариант 1)

Из условий задачи имеем

$$\gamma_{\omega_{c}} \geq \frac{\int_{\omega_{c}}^{\infty} |S(j\omega)|^{2} d\omega}{\int_{0}^{\infty} |S(j\omega)|^{2} d\omega}.$$

Спектральная плотность сигнала

$$S(j\omega) = \int_{0}^{\infty} x(t) \exp(-j\omega t) dt = \int_{0}^{\infty} A_{0} \exp(-(\alpha + j\omega)t) dt = \frac{A}{\alpha + j\omega}.$$

Модуль спектральной плотности

$$|S(j\omega)| = \frac{A_0}{\sqrt{\alpha^2 + \omega^2}}$$
.

Энергия сигнала равна

$$W_0 = \frac{1}{\pi} \int_0^{\infty} \left| S(j\omega) \right|^2 d\omega = \frac{1}{\pi} \int_0^{\infty} \frac{A_0^2}{\alpha^2 + \omega^2} d\omega = \frac{A_0^2}{2\alpha}.$$

Энергия сигнала, сосредоточенная в диапазоне частот от $\omega = \omega_0$ до $\omega = \infty$, равна

$$W_{\omega_{c}} = \frac{1}{\pi} \int_{\omega_{c}}^{\infty} \left| S(j\omega) \right|^{2} d\omega = \frac{1}{\pi} \int_{\omega_{c}}^{\infty} \frac{A_{0}^{2}}{\alpha^{2} + \omega^{2}} d\omega = \frac{A_{0}^{2}}{\pi \alpha} \left(\frac{\pi}{2} - arctg \frac{\omega_{c}}{\alpha} \right).$$

В соответствие с условием задачи:

$$\gamma_{\omega_{c}} \geq \frac{\frac{A_{0}^{2}}{\pi \alpha} \left(\frac{\pi}{2} - arctg \frac{\omega_{c}}{\alpha} \right)}{\frac{A_{0}^{2}}{2\alpha}},$$

откуда

$$\omega_c \ge \alpha \cdot \operatorname{tg}\left(\frac{\pi}{2} - \gamma_{\omega_c}\right).$$

Таким образом наименьшая допустимая частота квантования равна

$$\Delta t = \frac{\pi}{\omega_c} \le \frac{\pi}{\alpha \cdot \operatorname{tg}\left(\frac{\pi}{2} - \gamma_{\omega_c}\right)}.$$

Список источников

- 1. *Фурсов, В.А.* Теория информации [Текст]: учеб. пособие / В.А. Фурсов. Самара: Изд-во СГАУ, 2013. 128 с.
- 2. *Гошин, Е.*В. Теория информации и кодирования [Текст]: учеб. пособие. Самара: Изд-во Самарского университета, 2018. 124 с.
- 3. *Arndt, C.* Information Measures, Information and its Description in Science and Engineering [Tekct] / C. Arndt. Springer Series: Signals and Communication Technology, 2004. 603 p.
- 4. *Cover*, *T*. Elements of information theory [Tekct] / T. Cover, J.A. Thomas. 2-nd ed. New York: Wiley-Interscience, 2006. 776 p.
- 5. *MacKay*, *D.J.C*. Information Theory, Inference, and Learning Algorithms [Текст] / D.J.C. MacKay Cambridge: Cambridge University Press, 2003. 640 р.
- 6. *McEliece*, *R*. The Theory of Information and Coding [Текст] / R. McElliece. Cambridge, 2002. 410 р.
- 7. *Yeung, R.W.* A First Course in Information [Tekct] / R.W. Yeung. Theory Kluwer Academic/Plenum Publishers, 2002. 431 p.
- 8. Скляр, Б. Цифровая связь. Теоретические основы и практическое применение [Текст] / Б. Скляр. 2-е изд., испр.; пер. с англ. М.: Издательский дом "Вильямс", 2003. 1104 с.
- 9. *Шеннон*, K. Работы по теории информации и кибернетике [Текст] / K. Шеннон. M. : Изд-во иностранной литературы, 1963. 830 с.
- 10. Дмитриев, В.И. Прикладная теория информации [Текст]: учеб. пособие. М.: Высшая школа, 198 320 с.
- 11. Университет ИТМО. Алгоритм LZW [Электронный ресурс]. Режим доступа: http://neerc.ifmo.ru/ Заглавие с экрана. (Дата обращения: 04.09.2018).

Учебное излание

Гошин Егор Вячеславович

ПРАКТИКУМ ПО ТЕОРИИ ИНФОРМАЦИИ И КОДИРОВАНИЯ

Учебное пособие

В авторской редакции
Технический редактор А.В. Ярославцева
Компьютерная вёрстка А.В. Ярославцевой

Подписано в печать 09.11.2018. Формат $60\times84~1/16$. Бумага офсетная. Печ. л. 5,0. Тираж 100 экз. Заказ .

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САМАРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА» (САМАРСКИЙ УНИВЕРСИТЕТ) 443086, Самара, Московское шоссе, 34.

Изд-во Самарского университета. 443086, Самара, Московское шоссе, 34.