1. Construct a truth table for the following:

$$(x+y)(x+z)(x'+z)$$

Ans.

Χ	У	Z	x + y	X + Z	X' + Z	(x+y)(x+z)(x'+z)
0	0	0	0	0	1	0
0	0	1	0	1	1	0
0	1	0	1	0	1	0
0	1	1	1	1	1	1
1	0	0	1	1	0	0
1	0	1	1	1	1	1
1	1	0	1	1	0	0
1	1	1	1	1	1	1

- 2. Show that x = xy + xy'
- a. Using truth tables
- b. Using Boolean identities

Ans.

a.

X	У	хy	xy'	<i>xy</i> + <i>xy'</i>
0	0	0	0	0
0	1	0	0	0
1	0	0	1	1
1	1	1	0	1

The final column is equal to x.

b.
$$xy + xy' = x(y + y')$$
 Distributive
= $x(1)$ Inverse
= x Identity

- 3. Given the function: F(x,y,z)=xy'z+x'y'z+xyz
- a. List the truth table for F.
- b. Draw the logic diagram using the original Boolean expression
- c. Simplify the expression using Boolean algebra and identities.
- d. List the truth table for your answer in Part c.
- e. Draw the logic diagram for the simplified expression in Part c.

Ans.

a.

X	У	Ζ	xy'z	x'y'z	XYZ	F
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	0	0	0
1	0	1	1	0	0	1
1	1	0	0	0	0	0
1	1	1	0	0	1	1

b. Logic diagram for xy'z + x'y'z + xyz

c.
$$xy'z + x'y'z + xyz = (xy'z + xy'z) + x'y'z + xyz$$

= $(xy'z + x'y'z) + (xy'z + xyz)$
= $(x + x')y'z + (y' + y)xz$
= $y'z + xz$

d.

Х	У	Z	y'z	XZ	F
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	1	1	1

e. Logic diagram for y'z + xz:

