OT 0 3 2001 CO

SEQUENCE LISTING

Wands, Jack R. de la Monte, Suzanne M. Ince, Nedim Carlson, Rolf I.

- <120> DIAGNOSIS AND TREATMENT OF MALIGNANT NEOPLASMS
- <130> 21486-032 DIV4
- <140> 09/903,199
- <141> 2001-07-11
- <150> 09/436,184
- <151> 1999-11-08
- <160> 9
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 36
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Consensus EGF-like domain
- <220>
- <221> VARIANT
- <222> (2)..(8)
- <223> Wherein Xaa is any amino acid
- <220>
- <221> VARIANT
- <222> (10)..(13)
- <223> Wherein Xaa is any amino acid.
- <220>
- <221> VARIANT
- <222> (15)..(24)
- <223> Wherein Xaa is any amino acid.
- <220>
- <221> VARIANT
- <222> (26)

THE ALL STORES OF THE STORES O

<220> <221> VARIANT <222> (28)..(35) <223> Wherein Xaa is any amino acid. Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys Xaa Xaa 5 10 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Cys Xaa Xaa Xaa Xaa 20 25 30 Xaa Xaa Xaa Cys 35 <210> 2 <211> 758 <212> PRT <213> Homo sapiens <400> 2 Met Ala Gln Arg Lys Asn Ala Lys Ser Ser Gly Asn Ser Ser Ser Ser Gly Ser Gly Ser Gly Ser Thr Ser Ala Gly Ser Ser Ser Pro Gly Ala 20 25 Arg Arg Glu Thr Lys His Gly Gly His Lys Asn Gly Arg Lys Gly Gly Leu Ser Gly Thr Ser Phe Phe Thr Trp Phe Met Val Ile Ala Leu Leu 55 Gly Val Trp Thr Ser Val Ala Val Val Trp Phe Asp Leu Val Asp Tyr 65 70 75 80 Glu Glu Val Leu Gly Lys Leu Gly Ile Tyr Asp Ala Asp Gly Asp Gly 85 90 95 Asp Phe Asp Val Asp Asp Ala Lys Val Leu Leu Gly Leu Lys Glu Arg 100 105 110 Ser Thr Ser Glu Pro Ala Val Pro Pro Glu Glu Ala Glu Pro His Thr

<223> Wherein Xaa is any amino acid.

120

115

Glu Pro Glu Glu Gln Val Pro Val Glu Ala Glu Pro Gln Asn Ile Glu Asp Glu Ala Lys Glu Gln Ile Gln Ser Leu Leu His Glu Met Val His Ala Glu His Val Glu Gly Glu Asp Leu Gln Gln Glu Asp Gly Pro Thr Gly Glu Pro Gln Glu Asp Asp Glu Phe Leu Met Ala Thr Asp Val Asp Asp Arq Phe Glu Thr Leu Glu Pro Glu Val Ser His Glu Glu Thr Glu His Ser Tyr His Val Glu Glu Thr Val Ser Gln Asp Cys Asn Gln Asp Met Glu Glu Met Met Ser Glu Gln Glu Asn Pro Asp Ser Ser Glu Pro Val Val Glu Asp Glu Arg Leu His His Asp Thr Asp Asp Val Thr Tyr Gln Val Tyr Glu Glu Gln Ala Val Tyr Glu Pro Leu Glu Asn Glu Gly Ile Glu Ile Thr Glu Val Thr Ala Pro Pro Glu Asp Asn Pro Val Glu Asp Ser Gln Val Ile Val Glu Glu Val Ser Ile Phe Pro Val Glu Glu Gln Gln Glu Val Pro Pro Glu Thr Asn Arg Lys Thr Asp Asp Pro Glu Gln Lys Ala Lys Val Lys Lys Lys Pro Lys Leu Leu Asn Lys Phe Asp Lys Thr Ile Lys Ala Glu Leu Asp Ala Ala Glu Lys Leu Arg Lys Arg Gly Lys Ile Glu Glu Ala Val Asn Ala Phe Lys Glu Leu Val

Arg Lys Tyr Pro Gln Ser Pro Arg Ala Arg Tyr Gly Lys Ala Gln Cys

Glu Asp Asp Leu Ala Glu Lys Arg Arg Ser Asn Glu Val Leu Arg Gly Ala Ile Glu Thr Tyr Gln Glu Val Ala Ser Leu Pro Asp Val Pro Ala Asp Leu Leu Lys Leu Ser Leu Lys Arg Arg Ser Asp Arg Gln Gln Phe Leu Gly His Met Arg Gly Ser Leu Leu Thr Leu Gln Arg Leu Val Gln Leu Phe Pro Asn Asp Thr Ser Leu Lys Asn Asp Leu Gly Val Gly Tyr Leu Leu Ile Gly Asp Asn Asp Asn Ala Lys Lys Val Tyr Glu Glu Val Leu Ser Val Thr Pro Asn Asp Gly Phe Ala Lys Val His Tyr Gly Phe Ile Leu Lys Ala Gln Asn Lys Ile Ala Glu Ser Ile Pro Tyr Leu Lys Glu Gly Ile Glu Ser Gly Asp Pro Gly Thr Asp Asp Gly Arg Phe Tyr Phe His Leu Gly Asp Ala Met Gln Arg Val Gly Asn Lys Glu Ala Tyr Lys Trp Tyr Glu Leu Gly His Lys Arg Gly His Phe Ala Ser Val Trp Gln Arg Ser Leu Tyr Asn Val Asn Gly Leu Lys Ala Gln Pro Trp Trp Thr Pro Lys Glu Thr Gly Tyr Thr Glu Leu Val Lys Ser Leu Glu Arg Asn Trp Lys Leu Ile Arg Asp Glu Gly Leu Ala Val Met Asp Lys Ala Lys Gly Leu Phe Leu Pro Glu Asp Glu Asn Leu Arg Glu Lys Gly Asp Trp Ser Gln Phe Thr Leu Trp Gln Gln Gly Arg Arg Asn Glu Asn Ala

Cys Lys Gly Ala Pro Lys Thr Cys Thr Leu Leu Glu Lys Phe Pro Glu 645 650 655

Thr Thr Gly Cys Arg Arg Gly Gln Ile Lys Tyr Ser Ile Met His Pro 660 665 670

Gly Thr His Val Trp Pro His Thr Gly Pro Thr Asn Cys Arg Leu Arg 675 680 685

Met His Leu Gly Leu Val Ile Pro Lys Glu Gly Cys Lys Ile Arg Cys 690 695 700

Ala Asn Glu Thr Arg Thr Trp Glu Glu Gly Lys Val Leu Ile Phe Asp
705 710 715 .720

Asp Ser Phe Glu His Glu Val Trp Gln Asp Ala Ser Ser Phe Arg Leu 725 730 735

Ile Phe Ile Val Asp Val Trp His Pro Glu Leu Thr Pro Gln Gln Arg
740 745 750

Arg Ser Leu Pro Ala Ile 755

<210> 3

<211> 2324

<212> DNA

<213> Homo sapiens

<400> 3

cqqaccqtqc aatqqcccaq cqtaaqaatq ccaaqaqcaq cggcaacagc agcagcagcg 60 geteeggeag eggtageaeg agtgegggea geageageee eggggeeegg agagagaeaa 120 agcatggagg acacaagaat gggaggaaag gcggactete gggaaettea ttetteaegt 180 ggtttatggt gattgcattg ctgggcgtct ggacatctgt agctgtcgtt tggtttgatc 240 ttgttgacta tgaggaagtt ctaggaaaac taggaatcta tgatgctgat ggtgatggag 300 attttgatgt ggatgatgcc aaagttttat taggacttaa agagagatct acttcagagc 360 cagcagtece gecagaagag getgagecae acaetgagee egaggageag gtteetgtgg 420 aggcagaacc ccagaatatc gaagatgaag caaaagaaca aattcagtcc cttctccatg 480 aaatggtaca cgcagaacat gttgagggag aagacttgca acaagaagat ggacccacag 540 gagaaccaca acaagaggat gatgagtttc ttatggcgac tgatgtagat gatagatttg 600 agaccetgga acetgaagta teteatgaag aaacegagea tagttaceae gtggaagaga 660 caqtttcaca aqactqtaat caqqatatqq aaqaqatgat gtctgagcag gaaaatccag 720 attccagtga accagtagta gaagatgaaa gattgcacca tgatacagat gatgtaacat 780 accaaqtcta tqaqqaacaa qcaqtatatq aacctctaqa aaatqaaqqq ataqaaatca 840 cagaaqtaac tgctccccct gaggataatc ctgtagaaga ttcacaggta attgtagaag 900 aagtaagcat ttttcctgtg gaagaacagc aggaagtacc accagaaaca aatagaaaaa 960 cagatgatcc agaacaaaaa gcaaaagtta agaaaaagaa gcctaaactt ttaaataaat 1020

```
ttqataagac tattaaagct gaacttgatg ctgcagaaaa actccgtaaa aggggaaaaa 1080
ttqaggaagc agtgaatgca tttaaagaac tagtacgcaa ataccctcag agtccacgag 1140
caagatatgg gaaggcgcag tgtgaggatg atttggctga gaagaggaga agtaatgagg 1200
tqctacgtgg agccatcgag acctaccaag aggtggccag cctacctgat gtccctgcag 1260
acctgctgaa gctgagtttg aagcgtcgct cagacaggca acaatttcta ggtcatatga 1320
qaqqttccct qcttaccctg cagagattag ttcaactatt tcccaatgat acttccttaa 1380
aaaatqacct tqqcqtqqga tacctcttga taggagataa tgacaatgca aagaaagttt 1440
atgaagaggt gctgagtgtg acacctaatg atggctttgc taaagtccat tatggcttca 1500
tcctgaaggc acagaacaaa attgctgaga gcatcccata tttaaaggaa ggaatagaat 1560
ccggagatcc tggcactgat gatgggagat tttatttcca cctgggggat gccatgcaga 1620
qqqttqqqaa caaaqaqqca tataaqtqqt atqaqcttqq qcacaaqaqa qqacactttq 1680
catctgtctg gcaacgctca ctctacaatg tgaatggact gaaagcacag ccttggtgga 1740
ccccaaaaqa aacgggctac acagagttag taaagtcttt agaaagaaac tggaagttaa 1800
tccqaqatga aggccttgca gtgatggata aagccaaagg tctcttcctg cctgaggatg 1860
aaaacctgag ggaaaaaggg gactggagcc agttcacgct gtggcagcaa ggaagaagaa 1920
atgaaaatgc ctgcaaagga gctcctaaaa cctgtacctt actagaaaag ttccccgaga 1980
caacaqqatq caqaaqaqqa cagatcaaat attccatcat gcaccccggg actcacgtgt 2040
ggccgcacac agggcccaca aactgcaggc tccgaatgca cctgggcttg gtgattccca 2100
aqqaaqqctq caaqattcqa tqtqccaacq agaccaggac ctgggaggaa ggcaaggtgc 2160
tcatctttga tgactccttt gagcacgagg tatggcagga tgcctcatct ttccggctga 2220
tattcatcgt ggatgtgtgg catccggaac tgacaccaca gcagagacgc agccttccag 2280
                                                                  2324
caatttaqca tgaattcatg caagcttggg aaactctgga gaga
```

```
<210> 4
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: EGF-like
      cysteine-rich repeat
<220>
<221> VARIANT
<222> (3)..(5)
<223> Wherein any Xaa may be any amino acid
<220>
<221> VARIANT
<222> (6)..(7)
<223> Wherein Xaa is any amino acid.
<220>
<221> VARIANT
<222> (10)
<223> Wherein Xaa is any amino acid.
```

```
<220>
<221> VARIANT
<222> (14)
<223> Wherein Xaa is any amino acid.
<220>
<221> VARIANT
<222> (17)..(18)
<220>
<221> VARIANT
<222> (25)..(26)
<223> Wherein Xaa is any amino acid.
<220>
<221> VARIANT
<222> (29)
<223> Wherein Xaa is any amino acid.
<400> 4
Cys Asp Xaa Xaa Cys Xaa Xaa Lys Xaa Gly Asn Gly Xaa Cys Asp
                  5
                                      10
                                                          15
Xaa Xaa Cys Asn Asn Ala Ala Cys Xaa Xaa Asp Gly Xaa Asp Cys
             20
<210> 5
<211> 1242
<212> PRT
<213> Homo sapiens
Met Ala Ser Pro Pro Glu Ser Asp Gly Phe Ser Asp Val Arg Lys Val
                                     10
Gly Tyr Leu Arg Lys Pro Lys Ser Met His Lys Arg Phe Phe Val Leu
             20
                                 25
Arg Ala Ala Ser Glu Ala Gly Gly Pro Ala Arg Leu Glu Tyr Tyr Glu
         35
                             40
Asn Glu Lys Lys Trp Arg His Lys Ser Ser Ala Pro Lys Arg Ser Ile
                         55
                                              60
     50
Pro Leu Glu Ser Cys Phe Asn Ile Asn Lys Arg Ala Asp Ser Lys Asn
```

70

- Lys His Leu Val Ala Leu Tyr Thr Arg Asp Glu His Phe Ala Ile Ala Ala Asp Ser Glu Ala Glu Gln Asp Ser Trp Tyr Gln Ala Leu Leu Gln Leu His Asn Arg Ala Lys Gly His His Asp Gly Ala Ala Ala Leu Gly Ala Gly Gly Gly Gly Ser Cys Ser Gly Ser Ser Gly Leu Gly Glu Ala Gly Glu Asp Leu Ser Tyr Gly Asp Val Pro Pro Gly Pro Ala Phe Lys Glu Val Trp Gln Val Ile Leu Lys Pro Lys Gly Leu Gly Gln Thr Lys Asn Leu Ile Gly Ile Tyr Arg Leu Cys Leu Thr Ser Lys Thr Ile Ser Phe Val Lys Leu Asn Ser Glu Ala Ala Val Val Leu Gln Leu Met Asn Ile Arg Arg Cys Gly His Ser Glu Asn Phe Phe Phe Ile Glu Val Gly Arg Ser Ala Val Thr Gly Pro Gly Glu Phe Trp Met Gln Val 230 1 Asp Asp Ser Val Val Ala Gln Asn Met His Glu Thr Ile Leu Glu Ala Met Arg Ala Met Ser Asp Glu Phe Arg Pro Arg Ser Lys Ser Gln Ser

Leu Asn Asn Pro Pro Pro Ser Gln Val Gly Leu Thr Arg Arg Ser Arg

Ser Ser Asn Cys Ser Asn Pro Ile Ser Val Pro Leu Arg Arg His His

- Thr Glu Ser Ile Thr Ala Thr Ser Pro Ala Ser Met Val Gly Gly Lys
- Pro Gly Ser Phe Arg Val Arg Ala Ser Ser Asp Gly Glu Gly Thr Met

Ser Arg Pro Ala Ser Val Asp Gly Ser Pro Val Ser Pro Ser Thr Asn Arg Thr His Ala His Arg His Arg Gly Ser Ala Arg Leu His Pro Pro Leu Asn His Ser Arg Ser Ile Pro Met Pro Ala Ser Arg Cys Ser Pro Ser Ala Thr Ser Pro Val Ser Leu Ser Ser Ser Ser Thr Ser Gly His Gly Ser Thr Ser Asp Cys Leu Phe Pro Arg Arg Ser Ser Ala Ser Val Ser Gly Ser Pro Ser Asp Gly Gly Phe Ile Ser Ser Asp Glu Tyr Gly Ser Ser Pro Cys Asp Phe Arg Ser Ser Phe Arg Ser Val Thr Pro Asp Ser Leu Gly His Thr Pro Pro Ala Arg Gly Glu Glu Leu Ser Asn Tyr Ile Cys Met Gly Gly Lys Gly Pro Ser Thr Leu Thr Ala Pro Asn Gly His Tyr Ile Leu Ser Arg Gly Gly Asn Gly His Arg Cys Thr Pro Gly Thr Gly Leu Gly Thr Ser Pro Ala Leu Ala Gly Asp Glu Ala Ala Ser Ala Ala Asp Leu Asp Asn Arg Phe Arg Lys Arg Thr His Ser Ala Gly Thr Ser Pro Thr Ile Thr His Gln Lys Thr Pro Ser Gln Ser Ser Val Ala Ser Ile Glu Glu Tyr Thr Glu Met Met Pro Ala Tyr Pro Pro Gly Gly Gly Ser Gly Gly Arg Leu Pro Gly His Arg His Ser Ala Phe

Val Pro Thr Arg Ser Tyr Pro Glu Glu Gly Leu Glu Met His Pro Leu

- Glu Arg Arg Gly Gly His His Arg Pro Asp Ser Ser Thr Leu His Thr Asp Asp Gly Tyr Met Pro Met Ser Pro Gly Val Ala Pro Val Pro Ser Gly Arg Lys Gly Ser Gly Asp Tyr Met Pro Met Ser Pro Lys Ser Val Ser Ala Pro Gln Gln Ile Ile Asn Pro Ile Arg Arg His Pro Gln Arg Val Asp Pro Asn Gly Tyr Met Met Ser Pro Ser Gly Gly Cys Ser Pro Asp Ile Gly Gly Pro Ser Ser Ser Ser Ser Ser Ser Asn Ala Val Pro Ser Gly Thr Ser Tyr Gly Lys Leu Trp Thr Asn Gly Val Gly Gly His His Ser His Val Leu Pro His Pro Lys Pro Pro Val Glu Ser Ser Gly Gly Lys Leu Leu Pro Cys Thr Gly Asp Tyr Met Asn Met Ser Pro Val Gly Asp Ser Asn Thr Ser Ser Pro Ser Asp Cys Tyr Tyr Gly Pro Glu Asp Pro Gln His Lys Pro Val Leu Ser Tyr Tyr Ser Leu Pro Arg Ser Phe Lys His Thr Gln Arg Pro Gly Glu Pro Glu Glu Gly Ala Arg His Gln His Leu Arg Leu Ser Thr Ser Ser Gly Arg Leu Leu Tyr Ala Ala Thr Ala Asp Asp Ser Ser Ser Ser Thr Ser Ser Asp Ser Leu
- His His Gln Val Leu Gln Pro His Leu Pro Arg Lys Val Asp Thr Ala 835 840 845

Gly Gly Gly Tyr Cys Gly Ala Arg Leu Glu Pro Ser Leu Pro His Pro

- Ala Gln Thr Asn Ser Arg Leu Ala Arg Pro Thr Arg Leu Ser Leu Gly 850 855 860
- Asp Pro Lys Ala Ser Thr Leu Pro Arg Ala Arg Glu Gln Gln Gln 865 870 875 880
- Gln Gln Pro Leu Leu His Pro Pro Glu Pro Lys Ser Pro Gly Glu Tyr 885 890 895
- Val Asn Ile Glu Phe Gly Ser Asp Gln Ser Gly Tyr Leu Ser Gly Pro 900 905 910
- Val Ala Phe His Ser Ser Pro Ser Val Arg Cys Pro Ser Gln Leu Gln 915 920 925
- Pro Ala Pro Arg Glu Glu Glu Thr Gly Thr Glu Glu Tyr Met Lys Met 930 935 940
- Asp Leu Gly Pro Gly Arg Arg Ala Ala Trp Gln Glu Ser Thr Gly Val 945 950 955 960
- Glu Met Gly Arg Leu Gly Pro Ala Pro Pro Gly Ala Ala Ser Ile Cys 965 970 975
- Arg Pro Thr Arg Ala Val Pro Ser Ser Arg Gly Asp Tyr Met Thr Met 980 985 990
- Gln Met Ser Cys Pro Arg Gln Ser Tyr Val Asp Thr Ser Pro Ala Ala 995 1000 1005
- Pro Val Ser Tyr Ala Asp Met Arg Thr Gly Ile Ala Ala Glu Glu Val 1010 1015 1020
- Ser Leu Pro Arg Ala Thr Met Ala Ala Ser Ser Ser Ser Ala Ala 1025 1030 1035 1040
- Ser Ala Ser Pro Thr Gly Pro Gln Gly Ala Ala Glu Leu Ala Ala His 1045 1050 1055
- Ser Ser Leu Leu Gly Gly Pro Gln Gly Pro Gly Gly Met Ser Ala Phe 1060 1065 1070
- Thr Arg Val Asn Leu Ser Pro Asn Arg Asn Gln Ser Ala Lys Val Ile 1075 1080 1085
- Arg Ala Asp Pro Gln Gly Cys Arg Arg Arg His Ser Ser Glu Thr Phe 1090 1095 1100

Ser Ser Thr Pro Ser Ala Thr Arg Val Gly Asn Thr Val Pro Phe Gly 1105 1110 1115 1120

Ala Gly Ala Ala Val Gly Gly Gly Gly Ser Ser Ser Ser Glu 1125 1130 1135

Asp Val Lys Arg His Ser Ser Ala Ser Phe Glu Asn Val Trp Leu Arg 1140 1145 1150

Pro Gly Glu Leu Gly Gly Ala Pro Lys Glu Pro Ala Lys Leu Cys Gly 1155 1160 1165

Ala Ala Gly Gly Leu Glu Asn Gly Leu Asn Tyr Ile Asp Leu Asp Leu 1170 1180

Val Lys Asp Phe Lys Gln Cys Pro Gln Glu Cys Thr Pro Glu Pro Gln 1185 1190 1195 1200

Pro Pro Pro Pro Pro Pro His Gln Pro Leu Gly Ser Gly Glu Ser 1205 1210 1215

Ser Ser Thr Arg Arg Ser Ser Glu Asp Leu Ser Ala Tyr Ala Ser Ile 1220 1225 1230

Ser Phe Gln Lys Gln Pro Glu Asp Arg Gln 1235 1240

<210> 6

<211> 5828

<212> DNA

<213> Homo sapiens

<400> 6

cggcggcgcg gtcggaggg gccggcgcc agagccagac gccgccgctt gttttggttg 60 gggctctcgg caactctccg aggaggaga ggaggagga ggaggggaga agtaactgca 120 gcggcagcgc cctcccgagg aacaagcgtc ttccccgaac ccttcccaaa cctccccat 180 cccctctcgc ccttgtcccc tcccctctc cccagacgcgcc tggagggagg ggcagggatg 240 agtctgtcc tccggcggt ccccagctgc agtggctgcc cggtatcgtt tcgcatggaa 300 aagccacttt ctccacccgc cgagatgggc ccggatgggg ctgcagagga cgcgccgcg 360 ggcggcggca gcagcagcag cagcagcagc agcaacagca acaagccgcag cgccgcggtc 420 tctgcgactg agctggtatt tggggcggctg gtggcggctg ggacggttgg ggggtgggag 480 gaggcgaagg aggagggaga accccgtgca acgttgggac ttggcaaccc gcctcccct 540 gcccaaaggat atttaatttg cctcgggaat cgctgcttcc agaggggaac tcaggagga 600 aggcggcgg ctccagcg ggcggcgg tcctggagg gacccccgac tgtcgctcc 660 ctgtgccga aggagacttg gccccgaag agaccgag aggagacttg gccccaacc cggacgcact 780 gcctccccc cggcgtgaag cgcccgaaaa ctccggtcg gcctctccc cggacgcact 780 gcctccccc cggcgtgaag cgcccgaaaa ctccggtcg gcctctccc cggacgcac 840

getgegteet cetteagetg ecceteeeeg gegeggggg eggegtggat tteagagteg 900 gggtttetge tgeeteeage eetgtttgea tgtgeeggge egeggegagg ageeteegee 960 ccccacccgg ttgtttttcg gagcctccct ctgctcagcg ttggtggtgg cggtggcagc 1020 atggcgagcc ctccggagag cgatggcttc tcggacgtgc gcaaggtggg ctacctgcgc 1080 aaacccaaga gcatgcacaa acgcttcttc gtactgcgcg cggccagcga ggctgggggc 1140 ccggcgcgcc tcgagtacta cgagaacgag aagaagtggc ggcacaagtc gagcgccccc 1200 aaacgetega teeccettga gagetgette aacateaaca agegggetga etecaagaac 1260 aagcacctgg tggcteteta caccegggac gagcactttg ceategegge ggacagegag 1320 geogageaag acagetggta ecaggetete etacagetge acaacegtge taagggecae 1380 cacgaeggag etgeggeeet eggggeggga ggtggtgggg geagetgeag eggeagetee 1440 ggccttggtg aggctgggga ggacttgagc tacggtgacg tgcccccagg acccgcattc 1500 aaagaggtet ggcaagtgat cetgaageee aagggeetgg gteagaeaaa gaacetgatt 1560 ggtatctacc gcctttgcct gaccagcaag accatcagct tcgtgaagct gaactcggag 1620 gcageggceg tggtgctgca gctgatgaac atcaggeget gtggccactc ggaaaacttc 1680 ttetteateg aggtgggeeg ttetgeegtg aeggggeeeg gggagttetg gatgeaggtg 1740 gatgactetg tggtggccca gaacatgcac gagaccatcc tggaggccat gcgggccatg 1800 agtgatgagt tecgeceteg cageaagage cagteetegt ceaactgete taaccecate 1860 agegtecece tgegeeggea ceateteaac aateeeege eeageeaggt ggggetgace 1920 egecgateae geactgagag cateaeegee aceteeeegg ceageatggt gggegggaag 1980 ccaggetect teegtgteeg egeeteeagt gaeggegaag geaceatgte eegeeeagee 2040 teggtggaeg geageeetgt gagteeeage accaacagaa eecaegeeea eeggeategg 2100 ggcagcgccc ggctgcaccc cccgctcaac cacagccgct ccatccccat gccggcttcc 2160 egetgetege etteggeeae eageceggte agtetgtegt ceagtageae eagtggeeat 2220 ggetecacet eggattgtet etteceaegg egatetagtg etteggtgte tggtteeece 2280 agcgatggcg gtttcatctc ctcggatgag tatggctcca gtccctgcga tttccggagt 2340 teetteegea gtgteactee ggatteeetg ggeeacacee caccageeeg eggtgaggag 2400 gagetaagea actatatetg catgggtgge aaggggeeet eeaccetgae egeeeceaac 2460 ggtcactaca ttttgtctcg gggtggcaat ggccaccgct gcaccccagg aacaggcttg 2520 ggcacgagtc cagcettggc tggggatgaa gcagccagtg ctgcagatct ggataatcgg 2580 ttccgaaaga gaactcactc ggcaggcaca tcccctacca ttacccacca gaagaccccg 2640 teccagteet cagtggette cattgaggag tacacagaga tgatgeetge etacceacca 2700 ggaggtggca gtggaggccg actgccggga cacaggcact ccgccttcgt gcccacccgc 2760 tectacecag aggaggtet ggaaatgeac eeettggage gteggggggg geaceacege 2820 ccagacaget ccaeceteca caeggatgat ggetacatge ccatgteece aggggtggee 2880 ccagtgccca gtggccgaaa gggcagtgga gactatatgc ccatgagccc caagagcgta 2940 tetgececae ageagateat caateecate agacgecate cecagagagt ggaceecaat 3000 ggctacatga tgatgtcccc cagcggtggc tgctctcctg acattggagg tggccccagc 3060 agcagcagca gcagcagcaa cgccgtccct tccgggacca gctatggaaa gctgtggaca 3120 aacggggtag ggggccacca ctctcatgtc ttgcctcacc ccaaaccccc agtggagagc 3180 ageggtggta agetettace ttgcacaggt gactacatga acatgtcace agtgggggac 3240 tecaacacca geageceete egaetgetae taeggeeetg aggaeeeeca geacaageca 3300 gtcctctcct actactcatt gccaagatcc tttaagcaca cccagcgccc cggggagccg 3360 gaggagggtg cocggcatca gcacctccgc ctttccacta gctctggtcg ccttctctat 3420 gctgcaacag cagatgattc ttcctcttcc accagcageg acagcctggg tgggggatac 3480 tgcggggcta ggctggagcc cagccttcca catccccacc atcaggttct gcagccccat 3540 ctgcctcgaa aggtggacac agctgctcag accaatagcc gcctggcccg gcccacgagg 3600 etgtecetgg gggateceaa ggeeageaee ttaceteggg eeegagagea geageageag 3660 cagcagccct tgctgcaccc tccagagccc aagagcccgg gggaatatgt caatattgaa 3720

```
tttgggagtg atcagtctgg ctacttgtct ggcccggtgg ctttccacag ctcaccttct 3780
gtcaggtgtc catcccagct ccagccagct cccagagagg aagagactgg cactgaggag 3840
tacatgaaga tggacctggg gccgggccgg agggcagcct ggcaggagag cactggggtc 3900
gagatgggca gactgggccc tgcacctccc ggggctgcta gcatttgcag gcctacccgg 3960
gcagtgccca gcagccgggg tgactacatg accatgcaga tgagttgtcc ccgtcagagc 4020
tacgtggaca cctcgccagc tgcccctgta agctatgctg acatgcgaac aggcattgct 4080
gcagaggagg tgagcctgcc cagggccacc atggctgctg cctcctcatc ctcagcagcc 4140
totgottoco ogactgggco toaaggggca goagagotgg otgoccacto gtocotgotg 4200
gggggcccac aaggacctgg gggcatgagc gccttcaccc gggtgaacct cagtcctaac 4260
cqcaaccaqa qtqccaaaqt gatccgtgca gacccacaag ggtgccggcg gaggcatagc 4320
tecgagaett teteeteaae acceagtgee accegggtgg geaacacagt geeetttgga 4380
gegggggcag cagtaggggg eggtggeggt ageageagea geagegagga tgtgaaaege 4440
cacagetetg etteetttga gaatgtgtgg etgaggeetg gggagettgg gggageecee 4500
aaggagccag ccaaactgtg tggggctgct gggggtttgg agaatggtct taactacata 4560
gacctggatt tggtcaagga cttcaaacag tgccctcagg agtgcacccc tgaaccgcag 4620
cctccccac cccaccccc tcatcaaccc ctgggcageg gtgagagcag ctccacccgc 4680
cgctcaagtg aggatttaag cgcctatgcc agcatcagtt tccagaagca gccagaggac 4740
cgtcagtagc tcaactggac atcacagcag aatgaagacc taaatgacct cagcaaatcc 4800
tcttctaact catgggtacc cagactctaa atatttcatg attcacaact aggacctcat 4860
atcttcctca tcagtagatg gtacgatgca tccatttcag tttgtttact ttatccaatc 4920
ctcaqqattt cattqactqa actgcacgtt ctatattgtg ccaagcgaaa aaaaaaaatg 4980
cactgtgaca ccagaataat gagtctgcat aaacttcatc ttcaacctta aggacttagc 5040
tggccacagt gagctgatgt gcccaccacc gtgtcatgag agaatgggtt tactctcaat 5100
gcattttcaa gatacatttc atctgctgct gaaactgtgt acgacaaagc atcattgtaa 5160
attatttcat acaaaactgt tcacgttggg tggagagagt attaaatatt taacataggt 5220
tttgatttat atgtgtaatt ttttaaatga aaatgtaact tttcttacag cacatctttt 5280
ttttggatgt gggatggagg tatacaatgt tctgttgtaa agagtggagc aaatgcttaa 5340
aacaaqqctt aaaagaqtag aatagggtat gatccttgtt ttaagattgt aattcagaaa 5400
acataatata agaatcatag tgccatagat ggttctcaat tgtatagtta tatttgctga 5460
tactatetet tgteatataa acetgatgtt gagetgagtt eettataaga attaatetta 5520
attitigtatt titticctgta agacaatagg ccatgitaat taaactgaag aaggatatat 5580
ttggctgggt gttttcaaat gtcagcttaa aattggtaat tgaatggaag caaaattata 5640
agaagaggaa attaaagtct tccattgcat gtattgtaaa cagaaggaga tgggtgattc 5700
cttcaattca aaagctctct ttggaatgaa caatgtgggc gtttgtaaat tctggaaatg 5760
5828
aaaaaaaa
```

```
<210> 7
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: FLAG epitope
<400> 7
Asp Tyr Lys Asp Asp Asp Asp Lys
```

<210> 8	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 8	
gggggaattt gtcaata	17
<210> 9	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 9	
gaatttgtta atattg	16