Guía Álgebra - Práctica 1

Lorenzo Durante

27 de agosto de 2025

1. Introducción

Esta es la resolución de la primer guía de ejercicios de Álgebra 1 para Ciencias de la Computación en la UBA.

2. Conjuntos

- 2.1. Dado el conjunto $A = \{1, 2, 3\}$, determinar cuáles de las siguientes afirmaciones son verdaderas.
 - I) $1 \in A$
 - II) $\{1\} \subseteq A$
 - III) $\{2,1\} \subseteq A$
 - IV) $\{1,3\} \in A$
 - $v) \{2\} \in A$

Resolución

- I) $1 \in A$: el número 1 es un elemento que pertenece al conjunto A.
- II) $\{1\} \subseteq A$: el conjunto $\{1\}$ está contenido en A, ya que todos sus elementos pertenecen a A.
- III) $\{2,1\}\subseteq A$: el conjunto $\{2,1\}$ es un subconjunto de A, pues tanto 1 como 2 pertenecen a A.
- IV) $\{1,3\} \notin A$: el conjunto $\{1,3\}$ no es un elemento de A, es decir, A no contiene a $\{1,3\}$ como uno de sus elementos.
- v) $\{2\} \notin A$: el elemento $\{2\}$ no pertenece al conjunto A.
- **2.2.** Dado el conjunto $A = \{1, 2, \{3\}, \{1, 2\}\}$, determinar cuáles de las siguientes afirmaciones son verdaderas.
 - I) $3 \in A$

VII) $\{\{1,2\}\}\subseteq A$

II) $\{3\} \subseteq A$

VIII) $\{\{1,2\},3\} \subseteq A$

III) $\{3\} \in A$

 $IX) \emptyset \in A$

IV) $\{\{3\}\}\subseteq A$

 $X) \emptyset \subseteq A$

v) $\{1, 2\} \in A$

 $XI) A \in A$

 $VI) \{1,2\} \subseteq A$

XII) $A \subseteq A$

Resolución

- I) $3 \notin A$: es falso ya que el número 3 no es un elemento del conjunto A.
- II) $\{3\} \not\subseteq A$: es falso ya que el elemento 3 no está en A.
- III) $\{3\} \in A$: es verdadero porque el elemento $\{3\}$ pertenece al conjunto A.
- IV) $\{\{3\}\}\subseteq A$: es verdadero ya que el único elemento de este conjunto es $\{3\}$ y este pertenece a A.
- v) $\{1,2\} \in A$: verdadero, ya que $\{1,2\}$ pertenece a A.
- VI) $\{1,2\} \subseteq A$: verdadero porque 1 y 2 pertenecen a A.
- VII) $\{\{1,2\}\}\subseteq A$: verdadero porque $\{1,2\}$ pertenece a A.
- VIII) $\{\{1,2\},3\} \not\subseteq A$: falso, ya que 3 no pertenece a A.
- IX) $\emptyset \in A$: falso, ya que \emptyset no está como elemento dentro de A.
- x) $\emptyset \subseteq A$: verdadero, ya que el conjunto vacío es subconjunto de todos los conjuntos.
- XI) $A \in A$: falso, ya que A no es un elemento de sí mismo.
- XII) $A \subseteq A$: verdadero, ya que todo conjunto es subconjunto de sí mismo.

3. Determinar si $A \subseteq B$ en cada uno de los siguientes casos.

- I) $A = \{1, 2, 3\}, B = \{5, 4, 3, 2, 1\}$
- II) $A = \{1, 2, 3\}, \quad B = \{1, 2, \{3\}, -3\}$
- III) $A = \{x \in \mathbb{R} \mid 2 < |x| < 3\}, \quad B = \{x \in \mathbb{R} \mid x^2 < 3\}$
- IV) $A = \{\emptyset\}, \quad B = \emptyset$

Resolución

- I) $A \subseteq B$
- II) $A \not\subseteq B$
- III) $A \not\subseteq B$

$$A = [-3, -2] \cup (2, 3)$$
$$B = (-\sqrt{3}, \sqrt{3})$$

Entonces, $A \nsubseteq B$

Por ejemplo, $-2.5 \in A$ pero $-2.5 \notin B$.

IV) $A \not\subseteq B$

2.3. Dados los subconjuntos

$$A = \{1, -2, 7, 3\},$$

$$B = \{1, \{3\}, 10\},$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

del conjunto referencial

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\},\$$

hallar

- I) $A \cap (B \triangle C)$
- II) $(A \cap B) \triangle (A \cap C)$
- III) $A^c \cap B^c \cap C^c$

Resolución

I) $A \cap (B \triangle C) = \{1, -2, 3\}$

Pienso el ejercicio por partes: primero analizo $B\triangle C$. La diferencia simétrica contiene lo que está en uno u otro, pero no en ambos.

$$B = \{1, \{3\}, 10\}$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$B\triangle C = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$$

Sea $D = B \triangle C$, evaluemos ahora la intersección entre A y D.

$$A = \{1, -2, 7, 3\},$$

$$D = \{1, \{3\}, 10, -2, \{1, 2, 3\}, 3\}$$

$$A \cap D = \{1, -2, 3\}$$

Entonces, el resultado de la intersección es $\{1, -2, 3\}$.

II) $(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$

Primero analizo la primer intersección:

$$A = \{1, -2, 7, 3\}$$

$$B = \{1, \{3\}, 10\}$$

$$A \cap B = \{1\}$$

Ahora analizo la segunda intersección:

$$A = \{1, -2, 7, 3\}$$

$$C = \{-2, \{1, 2, 3\}, 3\}$$

$$A \cap C = \{-2, 3\}$$

Ahora podemos calcular la diferencia simétrica:

$$A \cap B = \{1\}$$

$$A \cap C = \{-2, 3\}$$

$$(A \cap B) \triangle (A \cap C) = \{1, -2, 3\}$$

III) $A^c \cap B^c \cap C^c = \emptyset$

El complemento se toma respecto al conjunto referencial V.

Primer complemento:

$$A = \{1, -2, 7, 3\}$$

$$V = \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\}$$

$$A^c = \{\{3\}, 10, \{1, 2, 3\}\}$$

Segundo complemento:

$$\begin{split} B &= \{1, \{3\}, 10\} \\ V &= \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\} \\ B^c &= \{-2, 7, \{1, 2, 3\}, 3\} \end{split}$$

Tercer complemento:

$$\begin{split} C &= \{-2, \{1, 2, 3\}, 3\} \\ V &= \{1, \{3\}, -2, 7, 10, \{1, 2, 3\}, 3\} \\ C^c &= \{1, \{3\}, 7, 10\} \end{split}$$

Intersección final:

$$A^c = \{\{3\}, 10, \{1, 2, 3\}\}$$

$$B^c = \{-2, 7, \{1, 2, 3\}, 3\}$$

$$C^c = \{1, \{3\}, 7, 10\}$$

$$A^c \cap B^c \cap C^c = \emptyset$$

2.4. Dados subconjuntos A, B, C de un conjunto referencial V, describir $(A \cup B \cup C)^c$ en términos de intersecciones y complementos, y $(A \cap B \cap C)^c$ en términos de uniones y complementos.

Resolución

Resolvemos con leyes de Morgan:

$$(A \cup B \cup C)^C \to A^C \cap B^C \cap C^C$$
$$(A \cap B \cap C)^c \to A^c \cup B^C \cup C^C$$

- 6. Sean $A, B \neq C$ conjuntos. Representar en un diagrama de Venn
 - I) $(A \cup B^c) \cap C$
- II) $A\triangle(B\cup C)$
- III) $A \cup (B \triangle C)$

Completado en hoja