

Lab. Crop Evolution

多様性とはなんだろうか?

多様性は種類で決まる

サンプル数は精度に影響する

多様性とは種類と頻度によって決まる。

でも、ゲノム解析でどうやって種類や頻度を計るの?

系統樹

ゲノム配列

Q. *** vs. *** はどちらが遺伝的に遠い?

Q. 🧦 vs. 🐉 と 🏂 vs. 🥳 はどちらが遺伝的に遠い?

Q. 遺伝的な遠さをどう計りましたか?

Q. 遺伝的な遠さをどう計りましたか?

A. segregating site

例 1)

segregating site

$$S = 4$$

例 2)

$$S = 1$$

$$S = 0$$

実際に計算してみましょう

Dioscorea tokoro

Dioscorea sylvatica

LLIFLE www.llifle.com

Dioscorea elephantipes

Wikipedia commons

どちらが多様でしょうか?

多様性の評価(方法1)

$$S = 2$$

$$S = 2$$

$$S = 2$$

$$\pi = \frac{(全ての組み合わせのSの総和)}{(配列の組み合わせ)} = \frac{2+2+4}{3} = \frac{8}{3}$$

どちらが多様でしょうか?

$$\frac{2+2+4}{3} = \frac{8}{3} > \frac{0+2+2}{3} = \frac{4}{3}$$

多様性の評価(方法2)

※ 方法1と方法2は同じ結果を示します。

(3) 配列の総組み合わせで割る

$$8 / _3C_2 = 8/3$$

実際に計算してみましょう

ボトルネック効果とは

ボトルネック効果とは

多様性

どちらの集団間が遺伝的に遠いでしょうか?

集団間の遺伝的距離の評価方法

集団間の遺伝的距離の評価方法

集団1と集団2が同じ集団だと仮定する

集団間の遺伝的距離の評価方法

$$F_{ST} = \frac{\pi_{12} - (\pi_1 + \pi_2)/2}{\pi_{12}}$$

$$= \frac{\frac{31}{15} - (\frac{2}{3} + \frac{2}{3})/2}{\frac{31}{15}}$$

$$=\frac{21}{31}$$

 F_{ST} は $0 \sim 1$ の間の値をとる指標で、およそ0.4より大きいと高いと言われています。

実際に計算してみましょう

FsTを用いてのゲノムスキャン

FsTを用いてのゲノムスキャン

