

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

MAIN CAMPUS (REGULAR PROGRAM)

UNIVERSITY EXAMINATIONS FOR 2022/2023 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF

BACHELOR OF SCIENCE (COM/SIT)

COURSE CODE: MAT 124

COURSE TITLE:

INTEGRAL CALCULUS

DATE: FRIDAY 21ST APRIL, 2023 TIME: 3.00-5.00 P.M

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and any other TWO Questions

Time: 2 hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question One (30 Marks)

- a. Find the average value of the function $f(x) = x^2 + 3x 1$ on the interval [-1,2].(3 Marks)
- b. Decompose $\frac{4x^2 + 13x 9}{x^3 + 2x^2 3x}$ into partial fractions (5 Marks)
- c. Evaluate $\int x^2 e^x dx$ (4 Marks)
- d. Evaluate $\int x^2 \ln x dx$ (4 Marks)
- e. Evaluate the integral $\int e^x \cos x dx$ by parts. (5 Marks)
- f. Find $\frac{d}{dx} \int_{x^3}^{1} \frac{1}{\sqrt{t^4 + 2}} dt$ (4 Marks)
- g. Show that the area bounded by the curves $y = 4 x^2$ and $y = x^2 2x$ is 9 sq. units (5 Marks)

Question Two (20 Marks)

a. Define $I_n = \int \sin^n x dx$. Show that $I_n = \frac{-\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x dx$. Hence or

otherwise evaluate
$$\int_{0}^{\frac{\pi}{2}} \sin^4 x dx$$
 (10 Marks)

- b. Evaluate $\int \sec(3x + \frac{1}{4})dx$ (5 Marks)
- c. Find the area bounded by $y = 4x x^2$, x = 1, x = 2 and the x-axis. (5 Marks)

Question Three (20 Marks)

a). Evaluate
$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$$
 (7 mks)

- b). Find the area bounded by the curves $y = 4 x^2$ and $y = x^2 2x$ (4 mks)
- c). Find the $\int \frac{x^3}{\sqrt{9-x^2}} dx$ (4 mks)
- d). The curve $y = 3 + 2\sin x$ is rotated about the x-axis from the lines x = 0 and $x = \pi$. Find the volume generated by the resulting surface. (5 mks)

Question Four (20 Marks)

Evaluate the following integrals

a.
$$3\int \frac{dx}{x^2+9}$$
 (3 Marks)

b. Evaluate

$$\int_{0}^{\infty} xe^{-x^{2}} dx$$
 (5 Marks)

- c. The curve $y = 3 + 2\sin x$ is rotated about the X-axis from the lines x = 0 and $x = \pi$. Find the volume generated by the resulting surface (5 Marks)
- d. The arc of the parabola $y^2 = 8x$ from (0,0) to (2,4) is rotated about the x-axis. Find the area of the resulting surface (7 Marks)

Question five (20 Marks)

a. Evaluate the following integrals

i.
$$\int \cot^5 x \cos ec^2 x dx$$
 (4 Marks)
::
$$\int \tan^3 x \sec^2 x dx$$
 (3 Marks)

ii.
$$\int \tan^3 x \sec^2 x dx$$
 (3 Marks)
iii.
$$\int \cos^2 x \sin x dx$$
 (5 Marks)

- b. Determine the position function s(t) of an object if its velocity is v(t) = 3 12t and the initial position is s(0) = 3 (3 marks)
- c. Use partial fractions to evaluate $\int \frac{x^4}{x^2 1} dx$ (5 marks)

END OF EXAMINATION: GOOD LUCK