SIPMOS® Power Transistors

BUZ 12 BUZ 12 A

- N channel
- Enhancement mode
- Avalanche-rated

Туре	V_{DS}	I_{D}	T_{C}	$R_{ extsf{DS (on)}}$	Package 1)	Ordering Code
BUZ 12	50 V	42 A	65 °C	0.028 Ω	TO-220 AB	C67078-S1331-A2
BUZ 12 A	50 V	42 A	44 °C	0.035 Ω	TO-220 AB	C67078-S1331-A3

Maximum Ratings

Parameter	Symbol	Values	Unit	
Continuous drain current	I_{D}	42	Α	
Pulsed drain current, T _C = 25 °C	I_{Dpuls}	168		
Avalanche current, limited by $T_{ m jmax}$	I_{AR}	42		
Avalanche energy, periodic limited by $T_{ m j(max)}$	E_{AR}	2.5	mJ	
Avalanche energy, single pulse $I_{\rm D}$ = 42 A, $V_{\rm DD}$ = 25 V, $R_{\rm GS}$ = 25 Ω L = 23.2 μ H, $T_{\rm j}$ = 25 $^{\circ}$ C	E_{AS}	41		
Gate-source voltage	$V_{ m GS}$	± 20	V	
Power dissipation, $T_{\rm C}$ = 25 °C	P _{tot}	125	W	
Operating and storage temperature range	$T_{ m j}$, $T_{ m stg}$	– 55 + 150	°C	
Thermal resistance, chip-case	R_{thJC}	≤ 1.0	K/W	
DIN humidity category, DIN 40 040	_	E	_	
IEC climatic category, DIN IEC 68-1	_	55/150/56		

¹⁾ See chapter Package Outlines.

Electrical Characteristics

at T_i = 25 °C, unless otherwise specified.

Parameter	Symbol		Values		
		min.	typ.	max.	
Static characteristics					
Drain-source breakdown voltage $V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA	$V_{(\mathrm{BR})\mathrm{DSS}}$	50	-	-	V
Gate threshold voltage $V_{\rm GS}$ = $V_{\rm DS}$, $I_{\rm D}$ = 1 mA	$V_{ m GS\ (th)}$	2.1	3.0	4.0	
Zero gate voltage drain current $V_{\rm DS}$ = 50 V, $V_{\rm GS}$ = 0 V $T_{\rm j}$ = 25 °C $T_{\rm j}$ = 125 °C	$I_{ m DSS}$	 - -	0.1 10	1.0 100	μΑ
Gate-source leakage current V_{GS} = 20 V, V_{DS} = 0 V	$I_{ m GSS}$	-	10	100	nA
Drain-source on-resistance $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 32 A BUZ 12 BUZ 12 A	R _{DS (on)}	_ _	0.024 0.030	0.028 0.035	Ω
Dynamic characteristics					
Forward transconductance $V_{\rm DS} \geq$ 2 x $I_{\rm D}$ x $R_{\rm DS(on)max}$, $I_{\rm D}$ = 32 A	8 _{fs}	12.0	23.0	-	S
Input capacitance $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 25 V, f = 1 MHz	C_{iss}	-	1700	2300	pF
Output capacitance $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 25 V, f = 1 MHz	$C_{ m oss}$	_	800	1200	
Reverse transfer capacitance $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 25 V, f = 1 MHz	$C_{ m rss}$	_	280	420	
Turn-on time $t_{\rm on}$, $(t_{\rm on} = t_{\rm d~(on)} + t_{\rm r})$ $V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A, $R_{\rm GS}$ = 50 Ω	$t_{\rm d\ (on)}$ $t_{\rm r}$	_	35 85	50 130	ns
Turn-off time t_{off} , $(t_{\text{off}} = t_{\text{d (off)}} + t_{\text{f}})$	t _{d (off)}	_	220	280	
V_{DD} = 30 V, V_{GS} = 10 V, I_{D} = 3 A, R_{GS} = 50 Ω	t_{f}	_	140	180	

Electrical Characteristics (cont'd)

at $T_{\rm j}$ = 25 °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
			typ.	max.	
Reverse diode					
Continuous reverse drain current $T_{\rm C}$ = 25 °C	$I_{\mathtt{S}}$	_		42	Α
Pulsed reverse drain current $T_{\rm C}$ = 25 °C	I_{SM}	_		168	
Diode forward on-voltage $I_{\rm S}$ = 84 A, $V_{\rm GS}$ = 0 V	$V_{ m SD}$	_	1.8	2.2	V
Reverse recovery time $V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, ${\rm d}i_{\rm F}$ / ${\rm d}t$ = 100 A/ μ s	t_{rr}	_	80	-	ns
Reverse recovery charge $V_{\rm R}$ = 30 V, $I_{\rm F}$ = $I_{\rm S}$, ${\rm d}i_{\rm F}$ / ${\rm d}t$ = 100 A/ μ s	$Q_{\rm rr}$	_	0.14	-	μC

Characteristics at T_i = 25 °C, unless otherwise specified.

Total power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

Typ. output characteristics

$$I_{\rm D} = f(V_{\rm DS})$$

BUZ 12

parameter: t_p = 80 μ s

Typ. output characteristics

$$I_{\rm D} = f(V_{\rm DS})$$

BUZ 12 A

parameter: t_p = 80 μ s

Safe operating area

 $I_{\rm D} = f(V_{\rm DS})$

parameter: D = 0.01, $T_C = 25$ °C

Typ. forward transconductance

 $g_{\mathsf{fs}} = f(I_{\mathsf{D}})$

parameter: t_p = 80 μ s

Typ. drain-source on-resistance

 $R_{\mathrm{DS}\,(\mathrm{on})} = f(I_{\mathrm{D}})$

BUZ 12

parameter: V_{GS}

Typ. transfer characteristics

 $I_{\rm D} = f(V_{\rm GS})$

parameter: t_p = 80 μ s, V_{DS} = 25 V

Typ. drain-source on-resistance

 $R_{\rm DS \, (on)} = f(I_{\rm D})$

BUZ 12 A

parameter: V_{GS}

Drain-source on-resistance

 $R_{\rm DS\,(on)}$ = $f(T_{\rm j})$ BUZ 12 parameter: $I_{\rm D}$ = 32 A, $V_{\rm GS}$ = 10 V, (spread)

Drain-source on-resistance

 $R_{\rm DS\,(on)}$ = $f(T_{\rm j})$ BUZ 12 A parameter: $I_{\rm D}$ = 32 A, $V_{\rm GS}$ = 10 V, (spread)

Gate threshold voltage

 $V_{\rm GS \, (th)} = f(T_{\rm i})$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1$ mA, (spread)

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , t_p = 80 μ s, (spread)

Avalanche energy $E_{AS} = f(T_j)$

parameter: I_D = 42 A, V_{DD} = 25 V

 $R_{\rm GS}$ = 25 Ω , L = 23.2 μH

Drain current

 $I_{\rm D} = f(T_{\rm C})$

parameter: $V_{GS} \ge 10 \text{ V}$

Transient thermal impedance

 $Z_{\text{th JC}} = f(t_{\text{p}})$

parameter: $D = t_p / T$

Typ. gate charge

 $V_{\rm GS}$ = $f(Q_{\rm Gate})$ parameter: $I_{\rm D~puls}$ = 63.0 A

