Maths for AI: 2022

Assignment 0:

This assignment contains revision questions based on what you should have learned from past work and the reading for week 1. Do not hand this in – self-assess your work.

- 1. Prove that the intersection of two convex sets C_1 and C_2 is also a convex set.
- 2. Show whether f(x) = |x| is a convex function or not.
- 3. (a) What is the definition of linear independence?
 - (b) If you have a set of n + 1 vectors in \mathbb{R}^n , can you conclude in general whether those vectors linearly dependent or linearly independent and why?
- 4. Show that MM^T is a symmetric matrix, for all matrices M.
- 5. Write the following system in augmented matrix form.

6. Which of the following are linear equations in x_1 , x_2 and x_3 ?

(a)
$$x_1 + 4x_2x_3 + 5x_3 = 1$$
, (b) $3x_1 - x_2 + x_3 = 0$, (c) $x_1 \le x_2$, (d) $x_1 - x_2 + \sqrt{x_3} = 6$

- 7. (a) What does it mean when two systems of linear equations are equivalent?
 - (b) Find the solution sets for the following two systems. Are they are equivalent?

(i)
$$2x + 2y = 12$$
 (ii) $x + 3z = 13$
 $x - z = 1$ $-x - 2z = -10$
 $y = 2$ $x + y - z = 3$

8. In each case, find a matrix whose product with A_1 transforms the matrix into A_2 .

(a)
$$A_{1} = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 3 & 7 & 0 \\ 0 & 0 & 1 & 3 & 1 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & -2 & -3 \\ 0 & 0 & 1 & 3 & 1 \end{bmatrix}$$

(b)
$$A_1 = \begin{bmatrix} 1 & 1 & 7 \\ 1 & 3 & 9 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 & 7 \\ 0 & 2 & 2 \end{bmatrix}.$$

9. What is the rank of the following matrices.

10. Consider the following system of equations $A\mathbf{x} = \mathbf{b}$:

$$2x_2 - 8x_3 = 20$$
$$-3x_1 + 12x_2 - 3x_3 = -36$$
$$2x_1 - 8x_2 - 6x_3 = 14$$

Maths for AI: 2022

- (a) Use Gauss-Jordan elimination on the augmented matrix [A I b].
- (b) Writing the final matrix as [A'W b'] (where A reduces to A', and so on), what is A'?
- (c) Verify that WA = A' and $W\mathbf{b} = \mathbf{b}'$. What is W?
- (d) Solve the system of equations.
- 11. Sketch the following sets in \mathbb{R}^2 , showing all the vertices.
 - (a) $\{(x_1, x_2) \mid 2x_1 + 3x_2 \le 9, \ 2x_1 x_2 \ge 2, \ x_1 \ge 0, \ x_2 \ge 0\}$
 - (b) $\{(x_1, x_2) \mid 2x_1 + x_2 \ge 2, \ x_1 + 2x_2 \le 4, \ x_1 \ge 0, \ x_2 \ge 0\}$
- 12. Let A be an $n \times n$ matrix.
 - (a) Define what it means for $\mathbf{x} \in \mathbb{R}$ to be an eigenvector of A with eigenvalue λ .
 - (b) Define the characteristic polynomial of A.
 - (c) Find all of the eigenvalues and eigenvectors of the following matrices.

(i)
$$A_1 = \begin{bmatrix} 0 & 3 \\ 6 & -3 \end{bmatrix}$$
 (ii) $A_2 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$

You can use computer code to do your calculations.

- 13. Let A be an $n \times n$ matrix of real or complex numbers. Which of the following statements are equivalent to: "the matrix A is invertible"?
 - (a) The columns of A are linearly independent.
 - (b) The columns of A span \mathbb{R}^n .
 - (c) The rows of A are linearly independent.
 - (d) The kernel of A is 0.
 - (e) The only solution of the homogeneous equations Ax = 0 is x = 0.
 - (f) The linear transformation $T_A: R^n B R^n$ defined by A is 1-1.
 - (g) The linear transformation $T_A: R^n \beta R^n$ defined by A is onto.
 - (h) The rank of A is n
 - (i) $\det A \neq 0$
- 14. Is every real upper triangular $n \times n$ matrix A with $A_{ii} = 1$, for i = 1, 2, ..., n, invertible? Provide a proof or counterexample.
- 15. Let A, B, and C be any three $n \times n$ matrices.
 - (a) Show that trace(ABC) = trace(CAB) = trace(BCA).
 - (b) Is trace(ABC) = trace(BAC). Provide a proof or counterexample.
- 16. Use linear algebra to derive that the nth Fibonacci number F_n is given by

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$