Turpmākajos uzdevumos, iespējams, nepieciešams lietot matemātisko indukciju ar induktīvās hipotēzes pastiprināšanu. Tas nozīmē, ka uzdevumā pierādāmo apgalvojumu tīšām pārraksta nedaudz "stiprāku", lai varētu normāli veikt induktīvo pāreju.

Sk. diskusiju https://bit.ly/3o30BOA.

Uzdevums 101.39: Pierādīt, ka jebkuram naturālam skaitlim n eksistē tāds naturāls skaitlis m, kuram

 $\left(\sqrt{2}-1\right)^n = \sqrt{m} - \sqrt{m-1}.$

Uzdevums 101.40: Pierādiet, ka eksistē bezgalīgi daudz naturālu skaitļu n, kuriem skaitlis $2^n + 2$ dalās ar n.

Uzdevums 101.41: Pierādiet, ka eksistē bezgalīgi daudz naturālu skaitļu n, kuriem skaitlis n! dalās ar $n^2 + 1$.

Uzdevums 101.42: Dots nepāra pirmskaitlis p un veseli skaitļi $a_1, a_2, \ldots, a_{p-1}$, kuri nedalās ar p. Pierādiet, ka, aizstājot dažus no šiem skaitļiem ar pretējiem, var iegūt p-1 skaitļus, kuru summa dalās ar p.

Uzdevums 101.43: Doti tādi naturāli skaitļi a_1, a_2, \ldots, a_n , ka $a_k \leq k$, un visu šo n skaitļu summa ir pāra skaitlis. Pierādiet, ka, aizvietojot dažus no tiem ar pretējiem, var iegūt n skaitļus, kuru summa ir 0.

Uzdevums 101.44: Doti veseli skaitļi $a_1 = 1, a_2, \ldots, a_n$, kuriem $a_i \le a_{i+1} \le 2a_i$ visiem $i \in \{1, 2, \ldots, n-1\}$. Zināms, ka šo skaitļu summa ir pāra skaitlis. Pierādiet, ka šos skaitļus var sadalīt divās grupās tā, ka skaitļu summas abās grupās ir vienādas.

Uzdevums 101.45: Pierādiet, ka jebkuram naturālam skaitlim s vienādojumam

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_s} = 1$$

eksistē galīgs, lielāks par nulli, atrisinājumu skaits.

Uzdevums 101.46: Kurš no skaitliem

$$\underbrace{2^{3^{2^{3^{-}}}}}_{n \text{ simboli}} \quad \text{un} \quad \underbrace{3^{2^{3^{2^{-}}}}}_{n \text{ simboli}}$$

ir lielāks?

Uzdevums 101.47: Pierādiet, ka jebkuram naturālam skaitlim n eksistē naturāls skaitlis, kuru var uzrakstīt kā divu kvadrātu summu tieši n dažādos veidos. (Izteiksmes $a^2 + b^2$ un $b^2 + a^2$ uzskatīsim par vienādām).

Uzdevums 101.48: Dota virkne $a_1 \in \mathbb{N}$, $a_{n+1} = a_n + 2^{a_n}$, ja $n \ge 1$. Pierādiet, ka šajā virknē ir bezgalīgi daudz locekļu, kuri

- (a) nedalās ar 3,
- (b) dalās ar 3.

Uzdevums 101.49: Kādiem naturāliem skaitļiem n visi skaitļi

$$C_n^2, C_n^2, \ldots, C_n^n$$

ir nepāra skaitļi?

 $Piez\bar{\imath}me$. Ar C_n^k apzīmē kombināciju skaitu pa k no n, t.i. $\frac{n!}{k!(n-k)!}$.

Uzdevums 101.50: Dota funkcija f(x,y), kura definēta visiem nenegatīviem pozitīviem skaitļiem. Dots, ka visiem nenegatīviem pozitīviem skaitļiem x un y izpildās vienādības

- (a) f(0,y) = y + 1,
- (b) f(x+1,0) = f(x,1),
- (c) f(x+1,y+1) = f(x,f(x+1,y)).

Aprēķināt vērtību f(4, 1980).

Uzdevums 101.51: Funkcija f(x) definēta veselām pozitīvām x vērtībām, un tās vērtības arī ir veseli pozitīvi skaitli. Zināms, ka vienlaikus ir spēkā šādas trīs īpašības:

- (1) $f(1) < f(2) < f(3) < \cdots < f(n) < f(n+1) < \cdots$ t.i., funkcija f(x) ir stingri augoša;
- (2) f(985) = 1985;
- (3) ja veseliem pozitīviem skaitļiem m un k lielākais kopīgais dalītājs ir 1, tad $f(m \cdot k) = f(m) \cdot f(k)$.

Aprēķināt

- (a) f(1000);
- (b) f(3599);
- (c) f(n) patvaļīgam pozitīvam n.

Uzdevums 101.52: Ar a_n apzīmējam to dažādo veidu skaitu, kuros n var izsacīt kā tādu saskaitāmo summu, kas nepieņem citas vērtības kā 1;3;4. Pieļaujamas arī summas, kas sastāv no viena saskaitāmā. Veidus, kas atšķiras tikai ar saskaitāmo kārtību, uzskatām par dažādiem. Piemēram, $a_1 = 1$; $a_2 = 1$; $a_3 = 2$; $a_4 = 4$. Pierādīt: ja n - pāra skaitlis, tad a_n ir naturāla skaitļa kvadrāts.