Seminari 6

Matematičke metode za informatičare

Damir Horvat

FOI, Varaždin

Sadržaj

prvi zadatak

drugi zadatak

treći zadatak

četvrti zadatak

prvi zadatak

Zadatak 1

 $U \mathcal{P}_3(t)$ zadani su polinomi

$$p_1(t) = t^2 + t$$
, $p_2(t) = t^2 - 2t + 3$.

Prikažite, ako je moguće, polinome

$$p_3(t) = -t^2 + 8t - 9$$
 i $p_4(t) = t + 2$

kao linearne kombinacije polinoma p_1 i p_2 .

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 =$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t)$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) +$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 =$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 +$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2}+8t-9=\alpha_{1}\cdot(t^{2}+t)+\alpha_{2}\cdot(t^{2}-2t+3)$$

$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^{2}+8t-9=(\alpha_{1}+\alpha_{2})t^{2}+(\alpha_{1}-2\alpha_{2})t+3\alpha_{2}$$

$$\alpha_1 + \alpha_2 = -1$$
$$\alpha_1 - 2\alpha_2 = 8$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1$$

$$\alpha_1 - 2\alpha_2 = 8$$

$$3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1$$
 α_2

 $\alpha_1 + \alpha_2 = -1$ $\alpha_1 - 2\alpha_2 = 8$ $3\alpha_2 = -9$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1$$
 α_2

$$\alpha_1$$
 α_2

$$\alpha_1 + \alpha_2 = 1$$

$$\alpha_1 - 2\alpha_2 = 8$$

$$egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2} + 8t - 9 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

		`	_	-,	` -	-,	
α_1	α_{2}						
_		_					

$$\begin{array}{c|cccc}
1 & 1 & -1 \\
1 & -2 & 8
\end{array}$$

$$\alpha_1 + \alpha_2 = -1$$
$$\alpha_1 - 2\alpha_2 = 8$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2} + 8t - 9 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\begin{vmatrix} 8 \\ -9 \end{vmatrix}$$

$$-2\alpha_2$$
)t +

$$-2\alpha_2)t+3$$

$$\mathbf{J}\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\begin{array}{c|cccc} a_1 & a_2 \\ \hline 1 & 1 & -1 \\ 1 & -2 & 8 \\ 0 & 3 & -9 \\ \hline \end{array}$$

$$9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$lpha_1 + lpha_2 = lpha_1 - 2lpha_2 = lpha_1 - 2lpha_2 = lpha_1 - lpha_2 - lpha_2 = lpha_1 - lpha_2 - l$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & 1 & -1 & \end{array}$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$a_2 = -9$$

$$= -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\begin{array}{c|ccccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & 1 & -1 & \\ 1 & -2 & 8 & \\ \hline 0 & 3 & -9 & /: 3 \\ \hline 1 & 1 & -1 & \\ \end{array}$$

$$\begin{array}{c|ccccc}
0 & 3 & -9 \\
\hline
1 & 1 & 1
\end{array}$$

$$\left.egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}
ight\}$$

$$\alpha_2 = -9$$

$$\frac{1}{2} = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2} + 8t - 9 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & 1 & -1 & \\ 1 & -2 & 8 & \\ \hline 0 & 3 & -9 & /:3 \\ \hline 1 & 1 & -1 & \\ \end{array}$$

$$\left.egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}
ight\}$$

$$3\alpha_2 = -$$

$$_{2}=-9$$

$$= -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

0/1	Oʻa	I	
	α_2	1	
1	1	-1	
1	-2	8	
0	3	-9	/:3
1	1	-1	
1	-2	8	
0	1	-3	

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\begin{array}{c|ccccc} \alpha_1 & \alpha_2 & & \\ \hline 1 & 1 & -1 & \\ 1 & -2 & 8 & \\ \hline 0 & 3 & -9 & / : 3 \\ \hline 1 & 1 & -1 & \leftarrow + \\ \hline 1 & -2 & 8 & / \cdot (-1) \\ \hline 0 & 1 & -3 & \\ \hline 0 & & & \\ 1 & -2 & 8 & \\ \end{array}$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\begin{array}{c|cccc}
\alpha_{1} & \alpha_{2} & & \\
\hline
1 & 1 & -1 & \\
1 & -2 & 8 & \\
\hline
0 & 3 & -9 & / : 3 \\
\hline
1 & 1 & -1 & \leftarrow + \\
\hline
1 & -2 & 8 & / \cdot (-1) \\
\hline
0 & 1 & -3 & \\
\hline
0 & 3 & -9 & \\
1 & -2 & 8 & \\
\end{array}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2} + 8t - 9 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^{2} + 8t - 9 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$
$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

 $\left. \begin{array}{l} \alpha_1 + \alpha_2 = -1 \\ \alpha_1 - 2\alpha_2 = 8 \\ 3\alpha_2 = -9 \end{array} \right\}$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2}+8t-9=\alpha_{1}\cdot(t^{2}+t)+\alpha_{2}\cdot(t^{2}-2t+3)$$

$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

α_1	α_2		α_1	α_2	
1	1	-1			
1	-2	8			
0	3	<u>-9</u> /: 3			
1	1	-1 ← +			
1	-2	8 / · (-1)			
0	1	-3			
0	3	−9 /: 3			
1	-2	8			
0	1	-3			

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^{2} + 8t - 9 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$
$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α	1 (χ_2			α_1	α_{2}	
1	-	1	-1		0	1	-3
1	_	-2	8		1	-2	8
)	3	<u>-9</u>	/:3			
1	-	1	-1	+			
(1) -	-2	8	$/\cdot (-1)$			
)	1	-3				
C)	3	-9	/:3			
1	_	-2	8				
			_				
)	1	-3				

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^{2}+8t-9=(\alpha_{1}+\alpha_{2})t^{2}+(\alpha_{1}-2\alpha_{2})t+3\alpha_{2}$$

$$\left.egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}
ight\}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α_{1}	$lpha_{ extsf{2}}$		α_1	α_{2}	
1	1	-1	0	1	-3
1	-2	8	1	-2	8
0	3	<u>-9</u> /: 3	0	1	-3
1	1	-1 ← +			
1	-2	8 /· (-1)			
0	1	-3			
0	3	−9 /: 3			
1	-2	8			•
0	1	-3			

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α_1	α_2		α_1	α_{2}	
1	1	-1	0	1	-3
1	-2	8	1	-2	8
0	3	<u>-9</u> /: 3	0	1	-3
1	1	-1 ← +	0	1	-3
1	-2	8 /· (-1)			
0	1	-3			
0	3	<u>-9</u> /: 3			
1	-2	8			
0	1	-3			

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α_1	α_{2}		α_1	α_{2}	
1	1	$\overline{ -1 }$	0	1	-3
1	-2	8	1	-2	8
0	3	<u>-9</u> /: 3	0	1	-3
1	1	<u>−1</u> ← +	0	1	-3
	_		_	_	_
(1)	-2	8 / · (-1)	1	-2	8
0	$-2 \\ 1$	8 /·(-1) -3	1	-2	8
0 0	$ \begin{array}{c} -2 \\ 1 \\ \hline 3 \end{array} $	_ , , , ,	1	-2	8
0 0 1	-2 1 3 -2	_3	1	-2	8
	3	-3 -9 /: 3	1	-2	8

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α_1	α_2		α_1	α_2	
1	1	-1	0	1	-3
1	-2	8	1	-2	8
0	3	<u>-9</u> /: 3	0	1	-3
1	1	-1 ← +	0	1	-3
1	-2	8 /· (-1)	1	-2	8
0	1	-3			
0	3	−9 /: 3			
1	-2	8			•
0	1	-3			

$$\alpha_1 + \alpha_2 = -1
\alpha_1 - 2\alpha_2 = 8
3\alpha_2 = -9$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α_1	$lpha_{ extsf{2}}$		α_1	α_{2}	
1	1	$\overline{ -1 }$	0	1	-3
1	-2	8	1	-2	8
0	3	<u>-9</u> /: 3	0	1	-3
1	1	<u>-1</u> ← +	0	1	-3
1	-2	8 /· (-1)	1	-2	8
0	1	-3			
0	3	-9 /: 3			
1	-2	8			•
_	-	_			

 $\begin{array}{c|cccc}
\alpha_1 & \alpha_2 & & & \alpha_1 + \alpha_2 = -1 \\
\hline
0 & 1 & -3 & & \alpha_1 - 2\alpha_2 = 8 \\
1 & -2 & 8 & & 3\alpha_2 = -9
\end{array}$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\left. \begin{array}{l} \alpha_1 + \alpha_2 = -1 \\ \alpha_1 - 2\alpha_2 = 8 \\ 3\alpha_2 = -9 \end{array} \right\}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

 $\left.egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}
ight\}$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

 $\alpha_1 + \alpha_2 = -1$ $\alpha_1 - 2\alpha_2 = 8$ $3\alpha_2 = -9$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

 $\left.egin{aligned} lpha_1+lpha_2=-1\ lpha_1-2lpha_2=8\ 3lpha_2=-9 \end{aligned}
ight\}$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

 $\alpha_1 + \alpha_2 = -1$ $\alpha_1 - 2\alpha_2 = 8$ $3\alpha_2 = -9$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

 $-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

 $-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\begin{array}{c|cccc}
0 & 1 & -3 \\
\hline
0 & 1 & -3 \\
1 & -2 & 8 \\
\hline
0 & 1 & -3 \\
\end{array}$$

$$\alpha_2 = -3$$

 $\left. \begin{array}{l} \alpha_1 + \alpha_2 = -1 \\ \alpha_1 - 2\alpha_2 = 8 \\ 3\alpha_2 = -9 \end{array} \right\}$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

α_1	α_{2}		α_1	α_{2}	
1	1	-1	0	1	$\boxed{-3} \qquad \qquad \alpha_1 - 2\alpha_2 = 8$
1	-2	8	1	-2	$3\alpha_2 = -9$
0	3	<u>-9</u> /: 3	0	1	-3
1	1	<u>−1</u> ← +	0	1	$\overline{\left -3 \right } / \cdot 2$
1	-2	8 / · (-1)	1	-2	8 +
0	1	-3	0	1	-3 $\alpha_2 = -3$
0	3	-9 /: 3	1	0	$2 \alpha_1 = 2$
1	-2	8			· «1 -
0	1	-3			

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

 $-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$

$$-t^2 + 8t - 9 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$p_3(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$
$$-t^2 + 8t - 9 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$-t^{2} + 8t - 9 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 =$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t)$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) +$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 =$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2}$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + 4$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

 $\alpha_1 + \alpha_2 = 0$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2} \qquad 3\alpha_{2} = 2$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0
 t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1
 t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2} \qquad 3\alpha_{2} = 2$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

$$\begin{array}{c|cccc} \alpha_1 & \alpha_2 \\ \hline 1 & 1 & 0 \\ \hline \end{array}$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

α_1	α_2	
1	1	0
1	-2	1

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

α_1	α_2	
1	1	0
1	-2	1
0	3	2

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

α_1	α_2	
1	1	0
1	-2	1
0	3	2

$$\begin{aligned}
p_4(t) &= \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t) & \alpha_1 + \alpha_2 &= 0 \\
t + 2 &= \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3) & \alpha_1 - 2\alpha_2 &= 1 \\
t + 2 &= (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2
\end{aligned}$$

α_1	α_2	
1	1	0
1	-2	1
0	3	2

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

α_1	α_2		
1	1	0	$^-/\cdot (-1)$
1	-2	1	
0	3	2	_
		I	

$$\begin{aligned}
p_4(t) &= \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t) & \alpha_1 + \alpha_2 &= 0 \\
t + 2 &= \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3) & \alpha_1 - 2\alpha_2 &= 1 \\
t + 2 &= (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2
\end{aligned}$$

$$\begin{aligned}
p_4(t) &= \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t) & \alpha_1 + \alpha_2 &= 0 \\
t + 2 &= \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3) & \alpha_1 - 2\alpha_2 &= 1 \\
t + 2 &= (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2
\end{aligned}$$

$$\begin{aligned}
p_4(t) &= \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t) & \alpha_1 + \alpha_2 &= 0 \\
t + 2 &= \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3) & \alpha_1 - 2\alpha_2 &= 1 \\
t + 2 &= (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2
\end{aligned}$$

$$\begin{aligned}
p_4(t) &= \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t) & \alpha_1 + \alpha_2 &= 0 \\
t + 2 &= \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3) & \alpha_1 - 2\alpha_2 &= 1 \\
t + 2 &= (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2
\end{aligned}$$

$$\begin{aligned}
p_4(t) &= \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t) & \alpha_1 + \alpha_2 &= 0 \\
t + 2 &= \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3) & \alpha_1 - 2\alpha_2 &= 1 \\
t + 2 &= (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2 & 3\alpha_2 &= 2
\end{aligned}$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0
 t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1
 t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{1 \quad 1} \quad 0 \quad / \cdot (-1)
 1 \quad -2 \quad 1 \quad \longleftarrow +$$

-3

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0
 t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1
 t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac$$

$$\begin{aligned}
p_{4}(t) &= \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) & \alpha_{1} + \alpha_{2} &= 0 \\
t + 2 &= \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) & \alpha_{1} - 2\alpha_{2} &= 1 \\
t + 2 &= (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}
\end{aligned}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{1 \quad 1 \quad 0} / \cdot (-1) \\
1 \quad -2 \quad 1 \quad \longleftarrow + \\
\frac{0 \quad 3}{1 \quad 0} \quad 2$$

 $1 / \cdot 1$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{\boxed{1} \quad 1} \quad 0 \quad / \cdot (-1)$$

$$1 \quad -2 \quad 1 \quad \longleftarrow +$$

$$\frac{0 \quad 3}{\boxed{1} \quad 1} \quad 0$$

$$\left. \begin{array}{l} \alpha_1 + \alpha_2 = 0 \\ \alpha_1 - 2\alpha_2 = 1 \\ 3\alpha_2 = 2 \end{array} \right\}$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{\boxed{1} \quad 1} \quad 0 \quad / \cdot (-1)$$

$$1 \quad -2 \quad 1 \quad \longleftarrow +$$

$$0 \quad 3 \quad 2$$

$$\boxed{1} \quad 1 \quad 0$$

$$0 \quad \boxed{-3} \quad 1 \quad / \cdot 1 / \cdot \frac{1}{3}$$

$$\left. \begin{array}{l} \alpha_1 + \alpha_2 = 0 \\ \alpha_1 - 2\alpha_2 = 1 \\ 3\alpha_2 = 2 \end{array} \right\}$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{$$

 $\alpha_1 + \alpha_2 = 0$ $\alpha_1 - 2\alpha_2 = 1$ $3\alpha_2 = 2$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\frac{\alpha_1}{1} \quad \frac{\alpha_2}{1} \quad \frac{\alpha$$

 $p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{\boxed{1} \quad 1 \quad 0 \quad / \cdot (-1)}$$

$$1 \quad -2 \quad 1 \quad +$$

$$0 \quad 3 \quad 2$$

$$1 \quad 1 \quad 0 \quad +$$

$$0 \quad -3 \quad 1 \quad / \cdot 1 / \cdot \frac{1}{3}$$

$$0 \quad 3 \quad 2 \quad +$$

$$0 \quad -3 \quad 1$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1} \quad \alpha_{2}}{1} \quad 1 \quad 0 \quad / \cdot (-1)$$

$$1 \quad -2 \quad 1 \quad +$$

$$0 \quad 3 \quad 2$$

$$1 \quad 1 \quad 0 \quad +$$

$$0 \quad -3 \quad 1 \quad / \cdot 1 / \cdot \frac{1}{3}$$

$$0 \quad 3 \quad 2 \quad +$$

$$0 \quad -3 \quad 1$$

$$0 \quad 0 \quad 3$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{$$

 $\begin{array}{c} \alpha_1 - 2\alpha_2 = 1 \\ 3\alpha_2 = 2 \end{array}$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{$$

 $\begin{array}{c} \alpha_1 - 2\alpha_2 = 1 \\ 3\alpha_2 = 2 \end{array}$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{$$

 $\alpha_1 - 2\alpha_2 = 1$ $3\alpha_2 = 2$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{$$

 $\alpha_1 - 2\alpha_2 = 1$ $3\alpha_2 = 2$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t)$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3)$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$\frac{\alpha_{1}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{\alpha_{2}}{1} \quad \frac{\alpha_{3}}{1} \quad \frac{$$

$$\alpha_1 + \alpha_2 = 0
\alpha_1 - 2\alpha_2 = 1
3\alpha_2 = 2$$

$$p_{4}(t) = \alpha_{1} \cdot p_{1}(t) + \alpha_{2} \cdot p_{2}(t) \qquad \alpha_{1} + \alpha_{2} = 0$$

$$t + 2 = \alpha_{1} \cdot (t^{2} + t) + \alpha_{2} \cdot (t^{2} - 2t + 3) \qquad \alpha_{1} - 2\alpha_{2} = 1$$

$$t + 2 = (\alpha_{1} + \alpha_{2})t^{2} + (\alpha_{1} - 2\alpha_{2})t + 3\alpha_{2}$$

$$3\alpha_{2} = 2$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = 0$$

$$\alpha_1 - 2\alpha_2 = 1$$

$$3\alpha_2 = 2$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = 0$$

$$\alpha_1 - 2\alpha_2 = 1$$

$$3\alpha_2 = 2$$

$$p_4(t) = \alpha_1 \cdot p_1(t) + \alpha_2 \cdot p_2(t)$$

$$t + 2 = \alpha_1 \cdot (t^2 + t) + \alpha_2 \cdot (t^2 - 2t + 3)$$

$$t + 2 = (\alpha_1 + \alpha_2)t^2 + (\alpha_1 - 2\alpha_2)t + 3\alpha_2$$

$$\alpha_1 + \alpha_2 = 0$$

$$\alpha_1 - 2\alpha_2 = 1$$

$$3\alpha_2 = 2$$

drugi zadatak

Zadatak 2

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2, 1, 2)$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1)$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1)$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0)$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4,$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(2\alpha_{1} + \alpha_{2} - \alpha_{3} + 4\alpha_{4}, \alpha_{1} + \alpha_{3} - \alpha_{4},$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(2\alpha_{1} + \alpha_{2} - \alpha_{3} + 4\alpha_{4}, \alpha_{1} + \alpha_{3} - \alpha_{4}, 2\alpha_{1} + \alpha_{2} + \alpha_{3})$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(2\alpha_{1} + \alpha_{2} - \alpha_{3} + 4\alpha_{4}, \alpha_{1} + \alpha_{3} - \alpha_{4}, 2\alpha_{1} + \alpha_{2} + \alpha_{3}) = (0,0,0)$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4, \ \alpha_1 + \alpha_3 - \alpha_4, \ 2\alpha_1 + \alpha_2 + \alpha_3) = (0,0,0)$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4, \ \alpha_1 + \alpha_3 - \alpha_4, \ 2\alpha_1 + \alpha_2 + \alpha_3) = (0,0,0)$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4, \alpha_1 + \alpha_3 - \alpha_4, 2\alpha_1 + \alpha_2 + \alpha_3) = (0,0,0)$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

 $U \mathbb{R}^3$ ispitajte linearnu nezavisnost vektora

$$(2,1,2), (1,0,1), (-1,1,1), (4,-1,0)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4, \ \alpha_1 + \alpha_3 - \alpha_4, \ 2\alpha_1 + \alpha_2 + \alpha_3) = (0,0,0)$$

$$2\alpha_{1} + \alpha_{2} - \alpha_{3} + 4\alpha_{4} = 0$$

$$\alpha_{1} + \alpha_{3} - \alpha_{4} = 0$$

$$2\alpha_{1} + \alpha_{2} + \alpha_{3} = 0$$

$$\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	$lpha_{ extsf{2}}$	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	_←+
1	0	1	$\bigcirc 1$	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0	
2	1	1	0	0	

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	$\overline{-1}$	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_
1	0	1	-1	0	
2	1	1	0	0	_

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	\bigcirc 1	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_/: 2
1	0	1	-1	0	
2	1	1	0	0	

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_{1}	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	$\overline{-1}$	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	/: 2
1	0	1	-1	0	
2	1	1	0	0	
2	0	1	0	0	_

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_2	$lpha_{3}$	α_{4}		
2	1	-1	4	0	+
1	0	1	\bigcirc 1	0	/· 4
2	1	1	0	0	
6	1	3	0	0	+
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_/: 2
1	0	1	-1	0	
2	1	1	0	0	
2	0	1	0	0	
1	0	1	-1	0	

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	\bigcirc 1	0	/· 4
2	1	1	0	0	
6	1	3	0	0	+
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_/: 2
1	0	1	-1	0	
2	1	1	0	0	
2	0	1	0	0	
1	0	1	-1	0	
2	1	1	0	0	

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	$\overline{-1}$	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_ /: 2
1	0	1	-1	0	
2	1	1	0	0	_
2	0	1	0	0	
1	0	1	-1	0	
2	1	1	0	0	_

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	$\bigcirc 1$	0	/· 4
2	1	1	0	0	
6	1	3	0	0	+
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_/: 2
1	0	1	-1	0	
2	1	1	0	0	_
2	0	1	0	0	
1	0	1	-1	0	
2	1	1	0	0	_

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	\bigcirc 1	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_/: 2
1	0	1	-1	0	
2	1	1	0	0	_
2	0	1	0	0	$/\cdot (-1)$
1	0	1	-1	0	
2	1	1	0	0	_

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$

$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
2	1	-1	4	0	+
1	0	1	\bigcirc 1	0	/· 4
2	1	1	0	0	
6	1	3	0	0	
1	0	1	-1	0)
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	_/: 2
1	0	1	-1	0	
2	1	1	0	0	
2	0	1	0	0	$^{-}/\cdot (-1)$
1	0	1	-1	0	←+
2	1	1	0	0	

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_2	$lpha_{3}$	α_{4}			20
2	1	-1	4	0	+	20
1	0	1	$\overline{-1}$	0	$/\cdot 4$	
2	1	1	0	0		
6	1	3	0	0		
1	0	1	-1	0		
2	1	1	0	0	$/ \cdot (-1)$	
4	0	2	0	0	/: 2	
1	0	1	-1	0		
2	1	1	0	0		
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left($	-1)
1	0	1	-1	0	+	
2	1	1	0	0	+	_
					_	

$$2\alpha_1 + \alpha_2 - \alpha_3 + 4\alpha_4 = 0$$
$$\alpha_1 + \alpha_3 - \alpha_4 = 0$$
$$2\alpha_1 + \alpha_2 + \alpha_3 = 0$$

α_1	α_2	α_3	α_{4}		α_1 α_2 α_3 α_4
2	1	-1	4	0	+
1	0	1	\bigcirc 1	0	/ · 4
2	1	1	0	0	
6	1	3	0	0	+
1	0	1	-1	0	
2	1	1	0	0	$/\cdot (-1)$
4	0	2	0	0	/: 2
1	0	1	-1	0	
2	1	1	0	0	_
2	0	1	0	0	$/\!\cdot (-1)/\!\cdot (-1)$
1	0	1	-1	0	\leftarrow
2	1	1	0	0	+
					_

α_1	α_2	α_3	α_{4}			α_1	α_2	α_3	$lpha_{ extsf{4}}$	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\bigcirc 1$	0	/· 4					
2	1	1	0	0						
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	_/: 2					
1	0	1	-1	0						
2	1	1	0	0	_					
2	0	1	0	0	$/\cdot \left(-1\right) /\cdot \left(-1\right)$.)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_{2}	$lpha_{3}$	α_{4}			α_1	α_2	$lpha_{3}$	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\bigcirc 1$	0	/· 4	-1				
2	1	1	0	0						
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0	_					
2	0	1	0	0	$/\cdot\left(-1\right) /\cdot\left(-1\right)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_{2}	$lpha_{3}$	α_{4}			α_1	α_2	$lpha_{3}$	$lpha_{ t 4}$	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\bigcirc 1$	0	/· 4	-1	0			
2	1	1	0	0						
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	_/: 2					
1	0	1	-1	0						
2	1	1	0	0	_					
2	0	1	0	0	$/\cdot \left(-1\right) /\cdot \left(-1\right)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	$lpha_{3}$	α_{4}			α_1	α_2	$lpha_{3}$	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\bigcirc 1$	0	/· 4	-1	0	0		
2	1	1	0	0						
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	$lpha_{3}$	$lpha_{ extsf{4}}$			α_{1}	α_{2}	α_3	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\overline{-1}$	0	/· 4	-1	0	0	-1	
2	1	1	0	0						
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	α_3	α_{4}			α_1	α_2	α_3	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\bigcirc 1$	0	/· 4	-1	0	0	-1	0
2	1	1	0	0						
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	α_3	$lpha_{ extsf{4}}$			α_1	α_{2}	$lpha_{3}$	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\overline{-1}$	0	/· 4	-1	0	0	-1	0
2	1	1	0	0		0				
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	_/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	α_3	α_{4}			α_{1}	α_2	$lpha_{3}$	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\overline{-1}$	0	/· 4	-1	0	0	-1	0
2	1	1	0	0		0	1			
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	_/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	α_3	$lpha_{ extsf{4}}$			α_1	α_2	$lpha_{3}$	$lpha_{ extsf{4}}$	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\bigcirc 1$	0	/· 4	-1	0	0	-1	0
2	1	1	0	0		0	1	0		
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	α_3	α_{4}			α_1	α_2	$lpha_{3}$	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\overline{-1}$	0	/· 4	-1	0	0	-1	0
2	1	1	0	0		0	1	0	0	
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	$lpha_{3}$	α_{4}			α_1	α_{2}	$lpha_{3}$	α_{4}	
2	1	-1	4	0	+	2	0	1	0	0
1	0	1	$\overline{-1}$	0	/· 4	-1	0	0	-1	0
2	1	1	0	0		0	1	0	0	0
6	1	3	0	0	+					
1	0	1	-1	0						
2	1	1	0	0	$/\cdot (-1)$					
4	0	2	0	0	/: 2					
1	0	1	-1	0						
2	1	1	0	0						
2	0	1	0	0	$^-/\cdot \left(-1 ight) /\cdot \left(-1 ight)$)				
1	0	1	-1	0	←					
2	1	1	0	0	+					

α_1	α_2	$lpha_{3}$	α_{4}		α_1 α_2 α_3	α_{4}	
2	1	-1	4	0	2 0 1	0	0
1	0	1	$\overline{-1}$	0	$/\cdot 4$ $-1 \ 0 \ 0$	-1	0
2	1	1	0	0	0 1 0	0	0
6	1	3	0	0	+		
1	0	1	-1	0	$2\alpha_1 + \alpha_3 = 0$		
2	1	1	0	0	$/\cdot (-1)$		
4	0	2	0	0			
1	0	1	-1	0			
2	1	1	0	0			
2	0	1	0	0	$^-/\cdot (-1)/\cdot (-1)$		
1	0	1	-1	0	←		
2	1	1	0	0	+		
					_		

α_1	α_2	$lpha_{3}$	$\alpha_{ extsf{4}}$		α_1 α_2 α_3 α_4	
2	1	-1	4	0	2 0 1 0 0	_
1	0	1	$\bigcirc 1$	0	$/\cdot \stackrel{1}{4}$ -1 0 0 -1 0	
2	1	1	0	0	0 1 0 0 0	
6	1	3	0	0	+	
1	0	1	-1	0	$2\alpha_1 + \alpha_3 = 0$	
2	1	1	0	0	$/\cdot (-1) \qquad -\alpha_1 - \alpha_4 = 0$	
4	0	2	0	0	/: 2	
1	0	1	-1	0		
2	1	1	0	0		
2	0	1	0	0	$/\cdot (-1)/\cdot (-1)$	
1	0	1	-1	0	→	
2	1	1	0	0	+	
					_	

α_1	α_2	$lpha_{3}$	$lpha_{ extsf{4}}$		α_1 α_2 α_3 α_4
2	1	-1	4	0	2 0 1 0 0
1	0	1	$\bigcirc 1$	0	$/\cdot \stackrel{1}{4}$ -1 0 0 -1 0
2	1	1	0	0	0 1 0 0 0
6	1	3	0	0	+
1	0	1	-1	0	$2\alpha_1 + \alpha_3 = 0$
2	1	1	0	0	$/\cdot (-1)$ $-\alpha_1 - \alpha_4 = 0$
4	0	2	0	0	$\alpha_2 = 0$
1	0	1	-1	0	
2	1	1	0	0	
2	0	1	0	0	$^ /\cdot (-1)$ $/\cdot (-1)$
1	0	1	-1	0	\leftarrow
2	1	1	0	0	+
-					

α_1	α_{2}	α_3	α_{4}		α_1 α_2 α_3 α_4
2	1	-1	4	0	2 0 1 0 0
1	0	1	$\bigcirc 1$	0	$/\cdot \stackrel{1}{4}$
2	1	1	0	0	0 1 0 0 0
6	1	3	0	0	+
1	0	1	-1	0	$2\alpha_1 + \alpha_3 = 0$
2	1	1	0	0	$/\cdot (-1)$ $-\alpha_1 - \alpha_4 = 0$
4	0	2	0	0	$\alpha_2 = 0$
1	0	1	-1	0	
2	1	1	0	0	
2	0	1	0	0	$^ /\cdot \left(-1 ight)/\cdot \left(-1 ight)$
1	0	1	-1	0	\leftarrow
2	1	1	0	0	+
					_

α_1	α_2	α_3	α_{4}		α_1 α_2 α_3 α_4
2	1	-1	4	0	2 0 1 0 0
1	0	1	$\bigcirc 1$	0	$/\cdot \stackrel{1}{4}$
2	1	1	0	0	0 1 0 0 0
6	1	3	0	0	+
1	0	1	-1	0	$2\alpha_1 + \alpha_3 = 0$ $\alpha_1 = 0$
2	1	1	0	0	$ -\frac{1}{2} \begin{pmatrix} -\alpha_1 - \alpha_4 = 0 \\ \alpha_2 = 0 \end{pmatrix} \qquad \begin{cases} \alpha_2 = \\ \alpha_3 = 0 \end{cases} $
4	0	2	0	0	$-$ /: 2 $\qquad \qquad \alpha_2 = 0$) $\qquad \alpha_3 = $
1	0	1	-1	0	$\alpha_4 =$
2	1	1	0	0	
2	0	1	0	0	$^ /\cdot (-1)$ $/\cdot (-1)$
1	0	1	-1	0	←
2	1	1	0	0	+
					_

 $\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$

$$\alpha_1 \cdot (2, 1, 2) + \alpha_2 \cdot (1, 0, 1) + \alpha_3 \cdot (-1, 1, 1) + \alpha_4 \cdot (4, -1, 0) = \Theta_{\mathbb{R}^3}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$t = 1$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$
 (2, 1, 2)

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$\begin{array}{c} t=1 \\ (2,1,2)+0\cdot (1,0,1)-2\cdot (-1,1,1)-1\cdot (4,-1,0)=\Theta_{\mathbb{R}^3} \\ (2,1,2)= \end{array}$$

$$lpha_1 \cdot (2,1,2) + lpha_2 \cdot (1,0,1) + lpha_3 \cdot (-1,1,1) + lpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

 $(2,1,2) = 0 \cdot (1,0,1)$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$
 $(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1)$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$
$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t = 1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t=-\frac{1}{2}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t=1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t = -\frac{1}{2}$$

$$-\frac{1}{2} \cdot (2, 1, 2)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$-\frac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)$$

$$\begin{split} \alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ \hline t &= 1 \\ (2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \end{split}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$-\frac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)$$

$$\begin{split} \alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ \hline t &= 1 \\ (2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \end{split}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t = -\frac{1}{2}$$

$$-\frac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)+\frac{1}{2}\cdot(4,-1,0)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t\in\mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$
 $(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$

$$egin{align} t = -rac{1}{2} \ & -rac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + rac{1}{2} \cdot (4,-1,0) = \Theta_{\mathbb{R}^3} \ \end{split}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t = 1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t=-\frac{1}{2}$$

$$-rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)+rac{1}{2}\cdot(4,-1,0)=\Theta_{\mathbb{R}^3}$$

$$(-1, 1, 1) =$$

 $t \in \mathbb{R}$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$t = 1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t=-\frac{1}{2}$$

$$-rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)+rac{1}{2}\cdot(4,-1,0)=\Theta_{\mathbb{R}^3} \ (-1,1,1)=rac{1}{2}\cdot(2,1,2)$$

$$\cdot (2, 1, 2)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t=1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$egin{align} t = -rac{1}{2} \ -rac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + rac{1}{2} \cdot (4,-1,0) = \Theta_{\mathbb{R}^3} \ \end{array}$$

$$(-1,1,1) = \frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$egin{aligned} t = -rac{1}{2} \ & -rac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + rac{1}{2} \cdot (4,-1,0) = \Theta_{\mathbb{R}^3} \ & (-1,1,1) = rac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - rac{1}{2} \cdot (4,-1,0) \end{aligned}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t = 1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t=-\frac{1}{2}$$

$$-rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)+rac{1}{2}\cdot(4,-1,0)=\Theta_{\mathbb{R}^3} \ (-1,1,1)=rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)-rac{1}{2}\cdot(4,-1,0)$$

$$(-1,1,1) = \frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - \frac{1}{2} \cdot (4,-1,0)$$

$$t = -1$$

 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t = 1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{P}^3}$$

$$(2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (1,-1,0) = 0_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$-rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)+rac{1}{2}\cdot(4,-1,0)=\Theta_{\mathbb{R}^3}$$
 $(-1,1,1)=rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)-rac{1}{2}\cdot(4,-1,0)$ $t=-1$

 $-1\cdot(2,1,2)$

 $t = -\frac{1}{2}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (1,-1,0)$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$egin{aligned} -rac{1}{2}\cdot(2,1,2) + 0\cdot(1,0,1) + (-1,1,1) + rac{1}{2}\cdot(4,-1,0) &= \Theta_{\mathbb{R}^3} \ (-1,1,1) &= rac{1}{2}\cdot(2,1,2) + 0\cdot(1,0,1) - rac{1}{2}\cdot(4,-1,0) \end{aligned}$$

$$-1\cdot(2,1,2)+0\cdot(1,0,1)$$

t = -1

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$egin{aligned} t = -rac{1}{2} \ & -rac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + rac{1}{2} \cdot (4,-1,0) = \Theta_{\mathbb{R}^3} \ & (-1,1,1) = rac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - rac{1}{2} \cdot (4,-1,0) \ & t = -1 \end{aligned}$$

$$-1 \cdot (2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$
 $(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$

$$(2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$egin{align} -rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)+(-1,1,1)+rac{1}{2}\cdot(4,-1,0)&=\Theta_{\mathbb{R}^3}\ (-1,1,1)&=rac{1}{2}\cdot(2,1,2)+0\cdot(1,0,1)-rac{1}{2}\cdot(4,-1,0) \end{split}$$

$$-1 \cdot (2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + (4,-1,0)$$

t = -1

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t = 1$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$\begin{aligned} t &= -\frac{1}{2} \\ &- \frac{1}{2} \cdot (2, 1, 2) + 0 \cdot (1, 0, 1) + (-1, 1, 1) + \frac{1}{2} \cdot (4, -1, 0) = \Theta_{\mathbb{R}^3} \\ &- (-1, 1, 1) = \frac{1}{2} \cdot (2, 1, 2) + 0 \cdot (1, 0, 1) - \frac{1}{2} \cdot (4, -1, 0) \end{aligned}$$

$$t &= -1$$

$$-1\cdot(2,1,2)+0\cdot(1,0,1)+2\cdot(-1,1,1)+(4,-1,0)=\Theta_{\mathbb{R}^3}$$

$$\begin{split} \alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ t &= 1 \\ (2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ (2,1,2) &= 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0) \\ \hline t &= -\frac{1}{2} \\ -\frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + \frac{1}{2} \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ (-1,1,1) &= \frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - \frac{1}{2} \cdot (4,-1,0) \\ \hline t &= -1 \\ -1 \cdot (2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + (4,-1,0) &= \Theta_{\mathbb{R}^3} \end{split}$$

(4, -1, 0) =

/ 13

$$\begin{split} \alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ t &= 1 \\ (2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ (2,1,2) &= 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0) \\ t &= -\frac{1}{2} \\ -\frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + \frac{1}{2} \cdot (4,-1,0) &= \Theta_{\mathbb{R}^3} \\ (-1,1,1) &= \frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - \frac{1}{2} \cdot (4,-1,0) \\ t &= -1 \\ -1 \cdot (2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + (4,-1,0) &= \Theta_{\mathbb{R}^3} \end{split}$$

 $(4,-1,0) = 1 \cdot (2,1,2)$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t = -\frac{1}{2}$$

$$-\frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + \frac{1}{2} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(-1,1,1) = \frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - \frac{1}{2} \cdot (4,-1,0)$$

$$t = -1$$

$$-1 \cdot (2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(4,-1,0) = 1 \cdot (2,1,2) + 0 \cdot (1,0,1)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1) - 1 \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(2,1,2) = 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + 1 \cdot (4,-1,0)$$

$$t = -\frac{1}{2}$$

$$-\frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) + (-1,1,1) + \frac{1}{2} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(-1,1,1) = \frac{1}{2} \cdot (2,1,2) + 0 \cdot (1,0,1) - \frac{1}{2} \cdot (4,-1,0)$$

$$t = -1$$

$$-1 \cdot (2,1,2) + 0 \cdot (1,0,1) + 2 \cdot (-1,1,1) + (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(4,-1,0) = 1 \cdot (2,1,2) + 0 \cdot (1,0,1) - 2 \cdot (-1,1,1)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$ $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) =$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(1,0,1) = \beta_1 \cdot (2,1,2)$

 $t\in\mathbb{R}$

7 / 13

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1)=eta_1\cdot(2,1,2)+eta_2\cdot(-1,1,1)+eta_3\cdot(4,-1,0)$$
 $t\in\mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$

$$t \in \mathbb{R}$$

$$2\beta_1 - \beta_2 + 4\beta_3 = 1$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = eta_1 \cdot (2,1,2) + eta_2 \cdot (-1,1,1) + eta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$2\beta_1 - \beta_2 + 4\beta_3 = 1$$
$$\beta_1 + \beta_2 - \beta_3 = 0$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$

$$2\beta_1 - \beta_2 + 4\beta_3 = 1$$
$$\beta_1 + \beta_2 - \beta_3 = 0$$
$$2\beta_1 + \beta_2 = 1$$

 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$

$$2\beta_1 - \beta_2 + 4\beta_3 = 1 \beta_1 + \beta_2 - \beta_3 = 0 2\beta_1 + \beta_2 = 1$$

 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(1,0,1)=eta_1\cdot(2,1,2)+eta_2\cdot(-1,1,1)+eta_3\cdot(4,-1,0)$ $t\in\mathbb{R}$

$$2\beta_{1} - \beta_{2} + 4\beta_{3} = 1$$

$$\beta_{1} + \beta_{2} - \beta_{3} = 0$$

$$2\beta_{1} + \beta_{2} = 1$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(1,0,1) = eta_1 \cdot (2,1,2) + eta_2 \cdot (-1,1,1) + eta_3 \cdot (4,-1,0)$ $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $(1,0,1) = eta_1 \cdot (2,1,2) + eta_2 \cdot (-1,1,1) + eta_3 \cdot (4,-1,0)$ $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = eta_1 \cdot (2,1,2) + eta_2 \cdot (-1,1,1) + eta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$ $t \in \mathbb{R}$ $(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = eta_1 \cdot (2,1,2) + eta_2 \cdot (-1,1,1) + eta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$
 $t \in \mathbb{R}$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) \equiv \Theta_{\mathbb{R}^3}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

 $(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$$

$$t \in \mathbb{R}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) \equiv \Theta_{\mathbb{R}^3}$ $(1,0,1) = \beta_1 \cdot (2,1,2) + \beta_2 \cdot (-1,1,1) + \beta_3 \cdot (4,-1,0)$ $t \in \mathbb{R}$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$\alpha_1 \cdot (2,1,2) + \alpha_2 \cdot (1,0,1) + \alpha_3 \cdot (-1,1,1) + \alpha_4 \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^3}$$

 $t \in \mathbb{R}$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{2}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1}$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{$$

6

3

 $| 1 / \cdot (-1) / \cdot (-3)$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{2}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1}$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{$$

 $| 1 / \cdot (-1) / \cdot (-3)$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{2 \quad -1 \quad 4} \quad 1 \leftarrow +$$

$$1 \quad 1 \quad \boxed{0} \quad / \cdot 4 \quad 2\beta_{1} - \beta_{2} + 4\beta_{3} = 1$$

$$2 \quad 1 \quad 0 \quad 1 \qquad \beta_{1} + \beta_{2} - \beta_{3} = 0$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{2 \quad -1 \quad 4} \qquad 1 \leftarrow +$$

$$1 \quad 1 \quad \boxed{0} \quad / \cdot 4 \quad 2\beta_{1} - \beta_{2} + 4\beta_{3} = 1$$

$$2 \quad 1 \quad 0 \quad 1 \qquad \beta_{1} + \beta_{2} - \beta_{3} = 0$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{2}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1}$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{2} \frac{\beta_{3}}{$$

1 / (-1) / (-3)

6

3

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1}}{2} \frac{\beta_{2}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{2}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{4} \frac{\beta_{3}}{4}$$

$$\frac{\beta_{3}}{2} \frac{\beta_{3}}{-1} \frac{\beta_{3}}{4} \frac{\beta_{3}}{4}$$

1 / (-1) / (-3)

0

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{2 \quad -1 \quad 4} \begin{vmatrix} 1 & + \\ 1$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$t \in \mathbb{R}$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \in \mathbb{R}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\alpha_{1} \cdot (2,1,2) + \alpha_{2} \cdot (1,0,1) + \alpha_{3} \cdot (-1,1,1) + \alpha_{4} \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$t \cdot (2,1,2) + 0 \cdot (1,0,1) + (-2t) \cdot (-1,1,1) + (-t) \cdot (4,-1,0) = \Theta_{\mathbb{R}^{3}}$$

$$(1,0,1) = \beta_{1} \cdot (2,1,2) + \beta_{2} \cdot (-1,1,1) + \beta_{3} \cdot (4,-1,0)$$

$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{4} \quad \text{Vektor } (1,0,1) \text{ se ne može prikazati kao}$$

linearna kombinacija preostalih vektora. 0 /· 4 $2\beta_1 - \beta_2 + 4\beta_3 = 1$ 1 $\beta_1 + \beta_2 - \beta_3 = 0$ 6 3 0 1 $/\cdot (-1)/\cdot (-3)$ $-2 \longrightarrow 0 = -2$ 0 sustav nema rješenja

treći zadatak

Zadatak 3

 $U \mathbb{R}^2$ ispitajte linearnu nezavisnost vektora

$$(1,1), (2,3), (1,0), (-2,1)$$

i prikažite pojedini vektor kao linearnu kombinaciju preostalih kad god je to moguće.

$$\alpha_1 \cdot (1,1)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

 $(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4,$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

 $\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(\alpha_{1} + 2\alpha_{2} + \alpha_{3} - 2\alpha_{4}, \ \alpha_{1} + 3\alpha_{2} + \alpha_{4}) = (0,0)$$

$$\alpha_{1} + 2\alpha_{2} + \alpha_{3} - 2\alpha_{4} = 0$$

$$\alpha_{1} + 3\alpha_{2} + \alpha_{4} = 0$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(\alpha_{1} + 2\alpha_{2} + \alpha_{3} - 2\alpha_{4}, \ \alpha_{1} + 3\alpha_{2} + \alpha_{4}) = (0,0)$$

$$\alpha_{1} + 2\alpha_{2} + \alpha_{3} - 2\alpha_{4} = 0$$

$$\alpha_{1} + 3\alpha_{2} + \alpha_{4} = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1$$
 α_2 α_3 α_4

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

α_1	α_2	α_3	$lpha_{ extsf{4}}$	
1	2	1	-2	0
1	3	0	1	0

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

α_1	α_2	α_3	α_{4}	
1	2	1	-2	0
1	3	0	1	0

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

α_1	α_{2}	$lpha_{3}$	$lpha_{ extsf{4}}$		
1	2	1	-2	0	
1	3	0	1	0	$/\cdot (-1)$
0					
1	3	0	1	0	

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$-\alpha_2 + \alpha_3 - 3\alpha_4 = 0$$
$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\begin{cases} \alpha_1 = \\ \alpha_2 = \\ \alpha_3 = \\ \alpha_4 = \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$-\alpha_2 + \alpha_3 - 3\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\begin{cases} \alpha_1 = \\ \alpha_2 = \\ \alpha_3 = \\ \alpha_4 = \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$-\alpha_2 + \alpha_3 - 3\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\begin{cases} \alpha_1 = \\ \alpha_2 = u \\ \alpha_3 = \\ \alpha_4 = \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$-\alpha_2 + \alpha_3 - 3\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\begin{cases} \alpha_1 = \\ \alpha_2 = u \\ \alpha_3 = \\ \alpha_4 = v \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4 = 0$$

$$\alpha_1 + 3\alpha_2 + \alpha_4 = 0$$

$$\alpha_{1} + 3\alpha_{2} + \alpha_{4} = 0$$

$$\begin{cases}
\alpha_{1} = -3u - v \\
\alpha_{2} = u \\
\alpha_{3} = u + 3v
\end{cases}$$

$$\alpha_{4} = v$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(\alpha_1 + 2\alpha_2 + \alpha_3 - 2\alpha_4, \ \alpha_1 + 3\alpha_2 + \alpha_4) = (0,0)$$

α_1	α_2			
1	2	1	-2	0 ← +
1	3	0	1	0 ← 0 /· (−1)
0	-1	1	-3	0
1	3	0	1	0

Kako dobiveni homogeni sustav linearnih jednadžbi ima i netrivijalnih rješenja, zadani vektori su linearno zavisni u \mathbb{R}^2 .

$$\alpha_{1} + 2\alpha_{2} + \alpha_{3} - 2\alpha_{4} = 0$$

$$\alpha_{1} + 3\alpha_{2} + \alpha_{4} = 0$$

$$-\alpha_{2} + \alpha_{3} - 3\alpha_{4} = 0$$

$$\alpha_{1} + 3\alpha_{2} + \alpha_{4} = 0$$

$$\alpha_{1} + 3\alpha_{2} + \alpha_{4} = 0$$

$$\alpha_{2} = u$$

$$\alpha_{3} = u + 3v$$

$$u, v \in \mathbb{R}$$

$$\alpha_{4} = v$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$\begin{cases} \alpha_1 = -3u - v \\ \alpha_2 = u \\ \alpha_3 = u + 3v \\ \alpha_4 = v \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1)$$

$$\begin{cases} \alpha_1 = -3u - v \\ \alpha_2 = u \\ \alpha_3 = u + 3v \\ \alpha_4 = v \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3)$$

$$\begin{cases} \alpha_1 = -3u - v \\ \alpha_2 = u \\ \alpha_3 = u + 3v \\ \alpha_4 = v \end{cases}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u+3v) \cdot (1,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u+3v) \cdot (1,0) + v \cdot (-2,1)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u+3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$\begin{cases} \alpha_1 = -3u - v \\ \alpha_2 = u \\ \alpha_3 = u + 3v \\ \alpha_4 = v \end{cases}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$- v) \cdot (1,1) + u \cdot (2,3) + (u+3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}}$$

$$(-3u - v) \cdot (1, 1) + u \cdot (2, 3) + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^2}$$

$$u, v \in \mathbb{R}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

 $u, v \in \mathbb{R}$

$$\alpha_1 \cdot (\mathbf{1},\mathbf{1}) + \alpha_2 \cdot (\mathbf{2},\mathbf{3}) + \alpha_3 \cdot (\mathbf{1},\mathbf{0}) + \alpha_4 \cdot (-2,\mathbf{1}) = \Theta_{\mathbb{R}^2}$$

$$(-3u-v)\cdot(1,1)+u\cdot\underline{(2,3)}+(u+3v)\cdot(1,0)+v\cdot(-2,1)=\Theta_{\mathbb{R}^2}$$

 $u,v\in\mathbb{R}$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$-3 \cdot (1,1)$$

(1,1

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$-3 \cdot (1,1) + (2,3)$$

10 / 13

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3\cdot (1,1)+(2,3)+1\cdot (1,0)+0\cdot (-2,1)=\Theta_{\mathbb{R}^2}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(2,3) =$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(2,3) = 3 \cdot (1,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0)$$

$$(2,3) = 3 \cdot (1,1) = 1 \cdot (1,0)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$(2,3) \equiv 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$u, v \in \mathbb{R}$$

 $\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$
 $-4 \cdot (1, 1)$

(-,-

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

 $(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$

$$u = 1, v = 1$$

$$-4\cdot(1,1)+(2,3)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

 $(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$

$$u = 1, v = 1$$

$$-4 \cdot (1, 1) + (2, 3) + 4 \cdot (1, 0)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4\cdot (1,1) + (2,3) + 4\cdot (1,0) + 1\cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 0$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1) + (2,3)$$

10 / 13

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1) + (2,3) - 2 \cdot (1,0)$$

10 / 13

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1) + (2,3) - 2 \cdot (1,0) - 1 \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{I}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1) + (2,3) - 2 \cdot (1,0) - 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$lpha_1 \cdot (1,1) + lpha_2 \cdot (2,3) + lpha_3 \cdot (1,0) + lpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
 $(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$
 $u, v \in \mathbb{R}$
 $u = 1, v = 0$
 $u = 1, v = 0$
 $u = 1, v = 0$

 $(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$

$$u = 1, v = 1$$

$$egin{aligned} -4\cdot (1,1) + (2,3) + 4\cdot (1,0) + 1\cdot (-2,1) &= \Theta_{\mathbb{R}^2} \ (2,3) &= 4\cdot (1,1) - 4\cdot (1,0) - 1\cdot (-2,1) \end{aligned}$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1) + (2,3) - 2 \cdot (1,0) - 1 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(2,3) =$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

 $(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$

$$u = 1, v = 1$$

$$egin{aligned} -4\cdot (1,1) + (2,3) + 4\cdot (1,0) + 1\cdot (-2,1) &= \Theta_{\mathbb{R}^2} \ (2,3) &= 4\cdot (1,1) - 4\cdot (1,0) - 1\cdot (-2,1) \end{aligned}$$

$$u = 1, v = -1$$

$$-2\cdot (1,1) + (2,3) - 2\cdot (1,0) - 1\cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
 $(2,3) = 2\cdot (1,1)$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$egin{aligned} -4\cdot (1,1) + (2,3) + 4\cdot (1,0) + 1\cdot (-2,1) &= \Theta_{\mathbb{R}^2} \ (2,3) &= 4\cdot (1,1) - 4\cdot (1,0) - 1\cdot (-2,1) \end{aligned}$$

$$u = 1, v = -1$$

$$egin{aligned} -2\cdot (1,1) + (2,3) - 2\cdot (1,0) - 1\cdot (-2,1) &= \Theta_{\mathbb{R}^2} \ (2,3) &= 2\cdot (1,1) + 2\cdot (1,0) \end{aligned}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u = 1, v = 0$$

$$-3 \cdot (1,1) + (2,3) + 1 \cdot (1,0) + 0 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 3 \cdot (1,1) - 1 \cdot (1,0) + 0 \cdot (-2,1)$$

$$u = 1, v = 1$$

$$-4 \cdot (1,1) + (2,3) + 4 \cdot (1,0) + 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 4 \cdot (1,1) - 4 \cdot (1,0) - 1 \cdot (-2,1)$$

$$u = 1, v = -1$$

$$-2 \cdot (1,1) + (2,3) - 2 \cdot (1,0) - 1 \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = 2 \cdot (1,1) + 2 \cdot (1,0) + 1 \cdot (-2,1)$$

$$\vdots$$

$$10/13$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1, 1) + u \cdot \underline{(2, 3)} + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^2}$$

 $u, v \in \mathbb{R}$

$$(2,3) =$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$
$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u+3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(2,3) = \beta_1 \cdot (1,1)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1, 1) + u \cdot \underline{(2, 3)} + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^2}$$

 $u, v \in \mathbb{R}$

$$(2,3) = \beta_1 \cdot (1,1) + \beta_2 \cdot (1,0)$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1, 1) + u \cdot \underline{(2, 3)} + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^2}$$

 $u, v \in \mathbb{R}$

$$(2,3) = \beta_1 \cdot (1,1) + \beta_2 \cdot (1,0) + \beta_3 \cdot (-2,1)$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_1 \cdot (1,1) + \beta_2 \cdot (1,0) + \beta_3 \cdot (-2,1)$$

 $\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$

$$\beta_1 + \beta_2 - 2\beta_3 = 2$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_1 + \beta_2 - 2\beta_3 = 2$$
$$\beta_1 + \beta_3 = 3$$

$$(-3u - v) \cdot (1, 1) + u \cdot \underline{(2, 3)} + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2, 3) = \beta_{1} \cdot (1, 1) + \beta_{2} \cdot (1, 0) + \beta_{3} \cdot (-2, 1)$$

 $\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$

$$\beta_1 + \beta_2 - 2\beta_3 = 2$$

$$\beta_1 + \beta_3 = 3$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u+3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_1 + \beta_2 - 2\beta_3 = 2$$

$$\beta_1 + \beta_3 = 3$$

$$\beta_1 \quad \beta_2 \quad \beta_3$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_1 + \beta_2 - 2\beta_3 = 2$$

$$\beta_1 + \beta_3 = 3$$

$$\frac{\beta_1}{1} \quad \frac{\beta_2}{1} \quad \beta_3$$

$$\frac{\beta_3}{1} \quad \frac{\beta_2}{1} \quad \frac{\beta_3}{2} \quad \frac{\beta_3}{2}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u+3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{1 \quad 1 \quad -2 \quad 2}$$

$$1 \quad 0 \quad 1 \quad 3$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{1 \quad 1 \quad -2 \quad 2}$$

$$1 \quad 0 \quad 1 \quad 3$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3}$$

$$\frac{1}{1} \quad 1 \quad -2 \quad 2$$

$$\boxed{1} \quad 0 \quad 1 \quad 3$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{1 \quad 1 \quad -2 \quad 2}$$

$$\frac{1}{2} \quad 0 \quad 1 \quad 3 \quad / \cdot (-1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{4}}{1} \quad \frac{\beta_{5}}{1} \quad \frac{\beta_{7}}{1} \quad \frac{\beta_{7}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{4}}{1} \quad \frac{\beta_{5}}{1} \quad \frac{\beta_{7}}{1} \quad \frac{\beta_{7}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u+3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \beta_{2} - 3\beta_{3} = -1$$

$$\frac{(1)}{1} \quad 0 \quad 1 \quad 3 \quad \frac{\beta_{3}}{1} - \frac{\beta_{3}}{1} = -1$$

$$\frac{(1)}{1} \quad 0 \quad 1 \quad 3 \quad \frac{\beta_{3}}{1} - \frac{\beta_{3}}{1} = -1$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3} \mid \qquad \qquad + \qquad + \qquad \qquad + \qquad$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1} \quad \beta_{2} \quad \beta_{3}}{1 \quad 1 \quad -2 \quad 2} \leftarrow + \qquad \beta_{2} - 3\beta_{3} = -1$$

$$\frac{\boxed{0} \quad 0 \quad 1 \quad 3}{0 \quad 1 \quad -3 \quad -1}$$

$$1 \quad 0 \quad 1 \quad 3$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3}$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3}$$

$$\frac{1}{1} \quad 1 \quad -2 \quad 2 \quad + \quad \beta_{2} - 3\beta_{3} = -1$$

$$\frac{1}{0} \quad 0 \quad 1 \quad 3 \quad / \cdot (-1) \quad \beta_{1} + \beta_{3} = 3$$

$$\begin{cases} \beta_{1} = \\ \beta_{2} = \\ \beta_{3} = \end{cases}$$

$$11/13$$

 $(-3u - v) \cdot (1, 1) + u \cdot (2, 3) + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^2}$

 $(2,3) = \beta_1 \cdot (1,1) + \beta_2 \cdot (1,0) + \beta_3 \cdot (-2,1)$

 $u, v \in \mathbb{R}$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3} \mid \frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3} \mid \frac{\beta_{2}}{1} \quad \beta_{2} - 3\beta_{3} = -1$$

$$\frac{1}{1} \quad 0 \quad 1 \quad 3 \quad \beta_{1} + \beta_{3} = 3$$

$$\begin{cases} \beta_{1} = \beta_{2} = \beta_{3} = 0 \end{cases}$$

$$\beta_{3} = \beta_{3} = \beta_{3} = \beta_{3}$$

 $(-3u - v) \cdot (1, 1) + u \cdot (2, 3) + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^2}$

 $(2,3) = \beta_1 \cdot (1,1) + \beta_2 \cdot (1,0) + \beta_3 \cdot (-2,1)$

 $u, v \in \mathbb{R}$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1}$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \beta_{2} = -1$$

$$\frac{(1)}{1} \quad 0 \quad 1 \quad 3 \quad \beta_{1} + \beta_{3} = 3$$

$$\begin{cases} \beta_{1} = 1 \\ \beta_{2} = 1 \\ \beta_{3} = t \end{cases}$$

$$11/13$$

 $(-3u-v)\cdot(1,1)+u\cdot(2,3)+(u+3v)\cdot(1,0)+v\cdot(-2,1)=\Theta_{\mathbb{R}^2}$

 $u, v \in \mathbb{R}$

$$(-3u - v) \cdot (1, 1) + u \cdot \underline{(2, 3)} + (u + 3v) \cdot (1, 0) + v \cdot (-2, 1) = \Theta_{\mathbb{R}^{2}}$$

$$(2, 3) = \beta_{1} \cdot (1, 1) + \beta_{2} \cdot (1, 0) + \beta_{3} \cdot (-2, 1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3}$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$\frac{\beta_{1}}{1} \quad \beta_{3} = 3$$

 $\begin{cases} \beta_1 = 3 - t \\ \beta_2 = \\ \beta_3 = t \end{cases}$ 11/13

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{2} = \beta_{3}$$

$$\beta_{2} - 3\beta_{3} = -1$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) =$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \beta_{2} - 3\beta_{3} = -1$$

$$\frac{1}{0} \quad 0 \quad 1 \quad 3 \quad / \cdot (-1) \quad \beta_{1} + \beta_{3} = 3$$

$$\begin{cases} \beta_{1} = 3 - t \\ \beta_{2} = -1 + 3t \\ \beta_{3} = t \end{cases}$$

$$11/13$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3 - t) \cdot (1,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \beta_{2}$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \beta_{2}$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \beta_{3} = 1$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3 - t) \cdot (1,1) + (-1 + 3t) \cdot (1,0)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \frac{\beta_{3}}{1} \quad \beta_{3} \quad \beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} = -1$$

$$\frac{\beta_{1}}{1} \quad \beta_{3} = 1$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1)$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$\frac{1}{1} \quad 0 \quad 1 \quad 3 \quad 3 \quad -1$$

$$1 \quad 0 \quad 1 \quad 3$$

$$\beta_{1} + \beta_{3} = 3$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3 - t) \cdot (1,1) + (-1 + 3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{2} = \beta_{3}$$

$$\frac{\beta_{1}}{1} + \frac{\beta_{2}}{1} = \beta_{3}$$

$$\frac{\beta_{1}}{1} + \frac{\beta_{2}}{1} = \beta_{3}$$

$$\frac{\beta_{1}}{1} + \beta_{3} = 3$$

11 / 13

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$u, v \in \mathbb{R}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$
Prikaz nije jedinstven jer su vektori $(1,1), (1,0)$ i $(-2,1)$ linearno zavisni.
$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} \quad \beta_{2} \quad \beta_{3} = -1$$

$$1 \quad 1 \quad -2 \quad 2 \quad + \quad \beta_{2} - 3\beta_{3} = -1$$

$$1 \quad 0 \quad 1 \quad 3 \quad / \cdot (-1) \quad \beta_{1} + \beta_{3} = 3$$

1 0 1 3 $\begin{cases} \beta_1 = 3 - t \\ \beta_2 = -1 + 3t \\ \beta_3 = t \end{cases}$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot (2,3) + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$
Prikaz nije jedinstven jer su vektori $(1,1), (1,0)$ i $(-2,1)$ linearno zavisni.
$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{1}}{1} + \beta_{3} = 3$$

$$\frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{3}}{1} \quad \frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{1}}{1} \quad \frac{\beta_{2}}{1} \quad \frac{\beta_{2}$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$
Prikaz nije jedinstven jer su vektori $(1,1), (1,0)$ i $(-2,1)$ linearno zavisni.
$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$1 \quad 0 \quad 1 \quad 3 \quad / \cdot (-1) \quad \beta_{1} + \beta_{3} = 3$$

$$\beta_{1} = 3 - t \quad \beta_{2} = -1 + 3t \quad \beta_{3} = t$$

$$11/13$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$
Prikaz nije jedinstven jer su vektori $(1,1), (1,0)$ i $(-2,1)$ linearno zavisni.
$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$0 \quad 1 \quad 3 \quad \beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$\beta_{1} \quad \beta_{3} = 1$$

$$\beta_{1} = 3 - t$$

$$\beta_{2} = -1 + 3t$$

$$\beta_{3} = t$$

$$\beta_{1} = 3 - t$$

$$\beta_{3} = t$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$
Prikaz nije jedinstven jer su vektori $(1,1), (1,0)$ i $(-2,1)$ linearno zavisni.
$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$1 \quad 0 \quad 1 \quad 3 \quad / \cdot (-1) \quad \beta_{1} + \beta_{3} = 3$$

$$\beta_{1} = 3 - t \quad \beta_{2} = -1 + 3t \quad \beta_{3} = t$$

$$11/13$$

$$\alpha_{1} \cdot (1,1) + \alpha_{2} \cdot (2,3) + \alpha_{3} \cdot (1,0) + \alpha_{4} \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^{2}}$$

$$(2,3) = \beta_{1} \cdot (1,1) + \beta_{2} \cdot (1,0) + \beta_{3} \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_{1} + \beta_{2} - 2\beta_{3} = 2$$

$$\beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3$$
Prikaz nije jedinstven jer su vektori $(1,1), (1,0)$ i $(-2,1)$ linearno zavisni.
$$\beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} \quad \beta_{1} \quad \beta_{2} \quad \beta_{3} = -1$$

$$1 \quad 0 \quad 1 \quad 3 \quad \beta_{1} + \beta_{3} = 3$$

$$\beta_{1} + \beta_{3} = 3 \quad \beta_{3} = -1$$

$$\beta_{1} + \beta_{3} = 3 \quad \beta_{3} = -1$$

$$\beta_{1} + \beta_{3} = 3 \quad \beta_{3} = -1$$

$$\beta_{1} + \beta_{3} = 3 \quad \beta_{3} = -1$$

$$\beta_{1} + \beta_{3} = 3 \quad \beta_{3} = -1$$

$$\beta_{1} + \beta_{3} = 3 \quad \beta_{3} = -1$$

$$\beta_{1} = 3 - t \quad \beta_{2} = -1 + 3t \quad \beta_{3} = t$$

$$\beta_{3} = t \quad \beta_{1} = 1 + 3t \quad \beta_{3} = t$$

$$\alpha_1 \cdot (1,1) + \alpha_2 \cdot (2,3) + \alpha_3 \cdot (1,0) + \alpha_4 \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(-3u - v) \cdot (1,1) + u \cdot \underline{(2,3)} + (u + 3v) \cdot (1,0) + v \cdot (-2,1) = \Theta_{\mathbb{R}^2}$$

$$(2,3) = \beta_1 \cdot (1,1) + \beta_2 \cdot (1,0) + \beta_3 \cdot (-2,1)$$

$$(2,3) = (3-t) \cdot (1,1) + (-1+3t) \cdot (1,0) + t \cdot (-2,1) \qquad t \in \mathbb{R}$$

$$\beta_1 + \beta_2 - 2\beta_3 = 2$$

$$\beta_1 + \beta_3 = 3$$

$$\beta_1 + \beta_3 = 3$$
Prikaz nije jedinstven jer su vektori $(1,1)$, $(1,0)$ is $(-2,1)$ linearno zavisni.
$$\beta_1 + \beta_2 - 2\beta_3 = 2$$

$$\beta_1 + \beta_3 = 3$$
Prikaz nije jedinstven jer su vektori $(1,1)$, $(1,0)$ is $(-2,1)$ linearno zavisni.
$$\beta_1 + \beta_2 - 3\beta_3 = -1$$

$$1 \quad 0 \quad 1 \quad 3 \quad / \cdot (-1) \quad \beta_1 + \beta_3 = 3$$
Svaki vektor iz zadanog skupa može se prikazati kao linearna kombinacija preostalih vektora, ali prikazi nisu jedinstveni zbog linearne zavisnosti preostalih vektora.

11/13

četvrti zadatak

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

Rješenje

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

12 / 13

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\left\lceil 4\gamma-2\delta\right.$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\left[\begin{array}{cc} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma\end{array}\right]$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$4\gamma - 2\delta = 0$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{aligned} 4\gamma - 2\delta &= 0 \\ 3\alpha + \beta + 3\gamma &= 0 \end{aligned}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{aligned} 4\gamma - 2\delta &= 0 \\ 3\alpha + \beta + 3\gamma &= 0 \\ \alpha + \gamma + 3\delta &= 0 \end{aligned}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{aligned} 4\gamma - 2\delta &= 0 \\ 3\alpha + \beta + 3\gamma &= 0 \\ \alpha + \gamma + 3\delta &= 0 \\ \alpha + 3\gamma &= 0 \end{aligned}$$

Ispitajte jesu li sljedeće matrice linearno nezavisne u $M_2(\mathbb{R})$:

$$\begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix}, \ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix}, \ \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix}.$$

$$\alpha \cdot \begin{bmatrix} 0 & 3 \\ 1 & 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \cdot \begin{bmatrix} 4 & 3 \\ 1 & 3 \end{bmatrix} + \delta \cdot \begin{bmatrix} -2 & 0 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4\gamma - 2\delta & 3\alpha + \beta + 3\gamma \\ \alpha + \gamma + 3\delta & \alpha + 3\gamma \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{aligned} 4\gamma - 2\delta &= 0 \\ 3\alpha + \beta + 3\gamma &= 0 \\ \alpha + \gamma + 3\delta &= 0 \\ \alpha + 3\gamma &= 0 \end{aligned}$$

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

$$\begin{array}{c}
4\gamma - 2\delta = 0 \\
3\alpha + \beta + 3\gamma = 0 \\
\alpha + \gamma + 3\delta = 0 \\
\alpha + 3\gamma = 0
\end{array}$$

3 1 3 0

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

$$\begin{array}{c|cccc} \gamma & \delta & \\ \hline 4 & -2 & 0 \\ 3 & 0 & 0 \\ 1 & 3 & 0 \\ 3 & 0 & 0 \\ \end{array}$$

 α

0

3 1 3

0

0

0 3

$4\gamma - 2\delta = 0$	
$3\alpha + \beta + 3\gamma = 0$	
$\alpha + \gamma + 3\delta = 0$	
$\alpha + 3\gamma = 0$	

0

0 3

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

0

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

0

0

0 3

3

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

 α

$$4\gamma - 2\delta = 0$$
$$3\alpha + \beta + 3\gamma = 0$$
$$\alpha + \gamma + 3\delta = 0$$
$$\alpha + 3\gamma = 0$$

α	β	γ	δ	α β γ	δ	
0	0	4	-2	0 /:(-2)		
3	1	3	0	0		
1	0	1	3	0		
1	0	3	0	0		
0	0	-2	1	0 /·(-3)		
3	1	3	0	0		
1	0	1	3	0 🗸		
1	0	3	0	0		
0	0	-2	1	0		
3	1	3	0	0 ← ←		
1	0	7	0	0 ←+		
1	0	3	0	0/(-1)/(-3)		
					I	

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0						
1	0	1	3	0						
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	_ /·(-3)					
3	1	3	0	0						
1	0	1	3	0	+					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	_ /·(-1) /·(-3)					
										ı

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0						
1	0	1	3	0		0				
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	/·(_3)					
3	1	3	0	0						
1	0	1	3	0	*					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0						
1	0	1	3	0		0	0			
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0						
3	1	3	0	0),					
1	0	1	3	0	/ +					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0						
1	0	1	3	0		0	0	4		
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0						
3	1	3	0	0),					
1	0	1	3	0	/ +					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0						
1	0	1	3	0		0	0	4	0	
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0						
3	1	3	0	0),					
1	0	1	3	0	/ +					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0						
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	_ /·(-3)					
3	1	3	0	0						
1	0	1	3	0	*					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (- 2)					
3	1	3	0	0		0				
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	_ /·(-3)					
3	1	3	0	0						
1	0	1	3	0	+					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (- 2)					
3	1	3	0	0		0	1			
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	_ /·(-3)					
3	1	3	0	0						
1	0	1	3	0	+					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/:(-2)					
3	1	3	0	0		0	1	-6		
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	/·(_3)					
3	1	3	0	0						
1	0	1	3	0	+					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	$/\cdot(-1)/\cdot(-3)$					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/: (-2)					
3	1	3	0	0		0	1	-6	0	
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	_ /·(-3)					
3	1	3	0	0						
1	0	1	3	0	+					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	_ /·(-1) /·(-3)					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/:(-2)					
3	1	3	0	0		0	1	-6	0	0
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0	/·(_3)					
3	1	3	0	0						
1	0	1	3	0	*					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	_ /·(-1) /·(-3)					
										I

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/:(-2)	0	0	-2	1	0
3	1	3	0	0		0	1	-6	0	0
1	0	1	3	0		0	0	4	0	0
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0						
3	1	3	0	0						
1	0	1	3	0	+					
1	0	3	0	0						
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	_ /·(-1) /·(-3)					
										I

α	β	γ	δ			α
0	0	4	-2	0	/:(-2)	0
3	1	3	0	0		0
1	0	1	3	0		0
1	0	3	0	0		1
0	0	-2	1	0	/·(_3)	
3	1	3	0	0		
1	0	1	3	0	*	
1	0	3	0	0		
0	0	-2	1	0	_	
3	1	3	0	0	+	
1	0	7	0	0	+	
1	0	3	0	0	$/\cdot(-1)/\cdot(-3)$	

α	β	γ	δ	
0	0	-2	1	0
0	1	-6	0	0
0	0	4	0	0
1	0	3	0	0

α	β	γ	δ		
0	0	4	-2	0	_ /:(-2)
3	1	3	0	0	
1	0	1	3	0	
1	0	3	0	0	
0	0	-2	1	0	/·(_3)
3	1	3	0	0	
1	0	1	3	0	+
1	0	3	0	0	
0	0	-2	1	0	_
3	1	3	0	0	+
1	0	7	0	0	+
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	/: (- 2)	0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0	/:4
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0	/·(-3)	0	0	-2	1	0	_
3	1	3	0	0							
1	0	1	3	0	\						
1	0	3	0	0							
0	0	-2	1	0	_						
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	_ /·(-1) /·(-3)						
										I	

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	/:(-2)	0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0	/:4
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0		0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0	+						
1	0	3	0	0							
0	0	-2	1	0	_						
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	$/\cdot(-1)/\cdot(-3)$						
										I	

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	/:(-2)	0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0	/:4
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0	·(-3)	0	0	-2	1	0	_
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0	+	0	0	1	0	0	
1	0	3	0	0							
0	0	-2	1	0	_						
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	_ /·(-1) /·(-3)						
										I	

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	/:(-2)	0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0	/:4
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0	/·(-3)	0	0	-2	1	0	_
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0	→	0	0	1	0	0	
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0	_						
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	$/\cdot(-1)/\cdot(-3)$						
										I	

α	β	γ	δ			α	β	γ	δ
0	0	4	-2	0	/:(-2)	0	0	-2	1
3	1	3	0	0		0	1	-6	0
1	0	1	3	0		0	0	4	0
1	0	3	0	0		1	0	3	0
0	0	-2	1	0	/·(-3)	0	0	-2	1
3	1	3	0	0		0	1	-6	0
1	0	1	3	0	*	0	0	1	0
1	0	3	0	0		1	0	3	0
0	0	-2	1	0	_				
3	1	3	0	0	+				
1	0	7	0	0	+				
1	0	3	0	0	$/\cdot(-1)/\cdot(-3)$				

/:4

0

	Q		2	l			Q	
α	β	γ	δ		_	α	β	γ
0	0	4	-2	0	/:(-2)	0	0	-2
3	1	3	0	0		0	1	-6
1	0	1	3	0		0	0	4
1	0	3	0	0		1	0	3
0	0	-2	1	0	/·(3)	0	0	-2
3	1	3	0	0),	0	1	-6
1	0	1	3	0	+	0	0	1
1	0	3	0	0		1	0	3
0	0	-2	1	0	_			
3	1	3	0	0	+			
1	0	7	0	0	+			
1	0	3	0	0	$/ \cdot (-1) / \cdot (-3)$			
					_			

α	β	γ	δ		
0	0	-2	1	0	_
0	1	-6	0	0	
0	0	4	0	0	/:4
1	0	3	0	0	
0	0	-2	1	0	_
0	1	-6	0	0	
0	0	1	0	0	
1	0	3	0	0	
					_

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	/:(-2)	0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0	/:4
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0	/·(3)	0	0	-2	1	0	-
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0	+	0	0	1	0	0	/·(−3)
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0	_						_
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	/·(-1)/·(-3)						
										I	

α	β	γ	δ			α	β	γ	δ	
0	0	4	-2	0	/:(-2)	0	0	-2	1	0
3	1	3	0	0		0	1	-6	0	0
1	0	1	3	0		0	0	4	0	0 /:4
1	0	3	0	0		1	0	3	0	0
0	0	-2	1	0		0	0	-2	1	0
3	1	3	0	0		0	1	-6	0	0
1	0	1	3	0	*	0	0	1	0	0 /·(-3)
1	0	3	0	0		1	0	3	0	0 +
0	0	-2	1	0	_					
3	1	3	0	0	+					
1	0	7	0	0	+					
1	0	3	0	0	_ /·(-1) /·(-3)					
										I

α	β	γ	δ		α	β	γ	δ		
0	0	4	-2	0 /:(-2)	0	0	-2	1	0	_
3	1	3	0	0	0	1	-6	0	0	
1	0	1	3	0	0	0	4	0	0	/: 4
1	0	3	0	0	1	0	3	0	0	_
0	0	-2	1	0 /·(-3)	0	0	-2	1	0	_
3	1	3	0	0	0	1	-6	0	0	
1	0	1	3	0	0	0	1	0	0	/·(-3) /·6
1	0	3	0	0	1	0	3	0	0	+
0	0	-2	1	0						
3	1	3	0	0 ←+						
1	0	7	0	0 ←+						
1	0	3	0	0/(-1)/(-3)						
									I	

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	/:(-2)	0	0	-2	1	0	_
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0	/: 4
1	0	3	0	0	_	1	0	3	0	0	_
0	0	-2	1	0	/·(-3)	0	0	-2	1	0	_
3	1	3	0	0		0	1	-6	0	0	+
1	0	1	3	0	*	0	0	1	0	0	$/\cdot(-3)/\cdot6$
1	0	3	0	0		1	0	3	0	0	+
0	0	-2	1	0	_						
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	_ /·(-1) /·(-3)						
										I	

α	β	γ	δ		α	β	γ	δ	
0	0	4	-2	0 /: (-2)	0	0	-2	1	0
3	1	3	0	0	0	1	-6	0	0
1	0	1	3	0	0	0	4	0	0 /:4
1	0	3	0	0	1	0	3	0	0
0	0	-2	1	0 /·(-3)	0	0	-2	1	0
3	1	3	0	0	0	1	-6	0	0 ← +
1	0	1	3	0 🗸	0	0	1	0	0 /·(-3) /·6 /·2
1	0	3	0	0	1	0	3	0	0 +
0	0	-2	1	0					
3	1	3	0	0 ←+					
1	0	7	0	0 ←+					
1	0	3	0	0/(-1)/(-3)					
									I

α	β	γ	δ			α	β	γ	δ		
0	0	4	-2	0	_ /:(-2)	0	0	-2	1	0	
3	1	3	0	0		0	1	-6	0	0	
1	0	1	3	0		0	0	4	0	0 /:4	
1	0	3	0	0		1	0	3	0	0	
0	0	-2	1	0		0	0	-2	1	0 +	
3	1	3	0	0		0	1	-6	0	0 ← +	١
1	0	1	3	0	+	0	0	1	0	0 /·(-3) /·6 /·	2
1	0	3	0	0		1	0	3	0	0 +	
0	0	-2	1	0	_						
3	1	3	0	0	+						
1	0	7	0	0	+						
1	0	3	0	0	_ /·(-1) /·(-3)						
										I	

α	β	γ	δ		α	β	γ	δ	
0	0	4	-2	0 /:(-2)	0	0	-2	1	0
3	1	3	0	0	0	1	-6	0	0
1	0	1	3	0	0	0	4	0	0 /:4
1	0	3	0	0	1	0	3	0	0
0	0	-2	1	0 /·(-3)	0	0	-2	1	<u>0</u> ←+
3	1	3	0	0	0	1	-6	0	0 +
1	0	1	3	0 +	0	0	1	0	0 / (-3) / 6 / 2
1	0	3	0	0	1	0	3	0	0 +
0	0	-2	1	0	0	0	0	1	$0 \longrightarrow \delta = 0$
3	1	3	0	0 ←+	0	1	0	0	$0 \longrightarrow \beta = 0$
1	0	7	0	0 ←+	0	0	1	0	$0 \xrightarrow{\gamma} 0$
1	0	3	0	0/(-1)/(-3)	1	0	0	0	0
									I

α	β	γ	δ		α	β	γ	δ	
0	0	4	-2	0 /:(-2)	0	0	-2	1	0
3	1	3	0	0	0	1	-6	0	0
1	0	1	3	0	0	0	4	0	0 /:4
1	0	3	0	0	1	0	3	0	0
0	0	-2	1	0 /·(-3)	0	0	-2	1	+ 0
3	1	3	0	0	0	1	-6	0	0 +
1	0	1	3	0 +	0	0	1	0	0 /·(-3) /·6 /·2
1	0	3	0	0	1	0	3	0	0 +
0	0	-2	1	0	0	0	0	1	$0 \longrightarrow \delta = 0$
3	1	3	0	0 ←+	0	1	0	0	$0 \beta = 0$
1	0	7	0	0 ←+	0	0	1	0	$0 \longrightarrow \gamma = 0$
1	0	3	0	0/(-1)/(-3)	1	0	0	0	$0 \longrightarrow \alpha = 0$
									I

 α

od njih ne može napisati kao linearna kombinacija preostalih. 13 / 13