Project Meeting 04/04/24

Current Progress – Interim Report

- Remains my strongest contribution at the moment
- Background is 80% complete
- Lacking in technical discussion

Current Progress – Interim Report

- Previous project quality acts as reference
- Would value a moment to address any comments in the current draft
- With minor corrections from yourself (no comments from second marker)

Current Progress - Project

- Lack of significant progress over lecture time
- nnU-Net studied and output is generating
- Scope of project is fully understood

Chapter 6

Interim Deliverables

6.1 Project Plan

Figure 6.1: Plan for project before exams

Current Progress - Interim Deliverable Plan

- Accomplished half of desired achievements with severe inaction to first attempt
- Metric system trivial to implement

Current Progress - Pre-processing

- Independent pre-processing not effective
- Current plan is to utilize the nnU-Nets dynamic preprocessing pipeline to process images with minor adaptations

Plans for the future – Near Future

- Recently discovered paperswithcode website
- In the next week I will find and implement a collection of pre-trained models (e.g. TotalSegmentator, Univeral-seg., SAM-medical)

Plans for Mid Future (following month)

 I'd like to reach out to Marsden by email to clarify target volume logic

Notation of Structures

- 1. Let the Anorectum be denoted as A
- 2. Let the Bladder be denoted as B
- 3. Let the Cervix be denoted with *C*
- 4. Let the CTVn be denoted with C_n
- 5. Let the CTVp be denoted with C_n
- 6. Let the GTVp be denoted with G_n
- 7. Let the GTVn be denoted with G_n
- 8. Let the Pelvic Lymph Node be denoted as L_p
- 9. Let the Common Iliac Lymph Node be denoted as L_i
- 10. Let the Para-aortic Lymph Node be denoted as L_{pa}

- 11. Let the Parametrium be denoted with P
- 12. Let the Uterus be denoted with U
- 13. Let the Vagina be denoted with V

3.5.1 Relationship between Structures

- 1. Let O denote the set $O = \{B, A, C_n, C_p, P\}$ for a particular patient. If we want to talk about a specific patient, we should use the super-script notation to differentiate patients, e.g., $O^i = \{B^i, A^i, C^i_n, C^i_p, P^i\}$.
- 2. Let the overlap of two structures be denoted by the set intersect symbol \cap .
- 3. Let the joint area of two structures be denoted by the set union symbol $\cup.$

1. There should be no overlap between the CTVn, CTVp or Anorectum.

$$\forall i, j \in \{C_n, C_p, A\} \text{ with } i \neq j, i \cap j = \emptyset$$
(3.1)

2. The Parametrium may overlap with all of the other structures.

$$\forall i \in S, \quad P \cap S_i \neq \emptyset \quad \text{(Possibly)}$$
 (3.2)

3. The Bladder may overlap with the CTVn.

$$B \cap C_n \neq \emptyset \lor B \cap C_n = \emptyset \tag{3.3}$$

4. The CTVp is defined as a compound structure containing:

$$C_p = C \cup G_p \qquad \cup \qquad U \cup V$$
(3.4)

5. The CTVn is defined as a compound structure containing:

$$C_n = G_n \cup L_i \cup L_p + L_{pa} \tag{3.5}$$

Plans for Mid Future (following month)

 Experiment With Individual segmentations or one-shot segmentation for the 5 classes

Plans for Far Future (mid-end of project)

Plans for Far Future (mid-end of

Plans for Far Future (mid-end of project)

- Transfer learning boosting like TrAdaBoost because we break the 'identical distribution assumption'
- Incorporate a variation of atlas learning where we average the predictions of multiple pretrained networks

i	I						May							Jur	ie				
Λ	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Τ	W	Т	F	
1	2	3	4	5	6	7	29	30	1	2	3	4	5	27	28	29	30	31	
8	9	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	
15	16	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	
22	23	24	25	26	27	28	20	21	22	23	24	25	26	17	18	19	20	21	
29	30	1	2	3	4	5	27	28	29	30	31	1	2	24	25	26	27	28	
6	7	8	9	10	11	12	3	4	5	6	7	8	9	1	2	3	4	5	

Stage 1 – Running pre-trained models relevant to the task of medical organ segmentation

ri	il						May							Jur	ie				
	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	=
1	2	3	4	5	6	7	29	30	1	2	3	4	5	27	28	29	30	3	1
8	9	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	
15	16	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	1
22	23	24	25	26	27	28	20	21	22	23	24	25	26	17	18	19	20	21	
29	30	1	2	3	4	5	27	28	29	30	31	1	2	24	25	26	27	28	3
6	7	8	9	10	11	12	3	4	5	6	7	8	9	1	2	3	4	5	

Stage 1 – Running pre-trained models relevant to the task of medical organ segmentation Stage 2 – Implementing pipeline for classifying each class separately using a selected architecture for a proof of concept. Also, clarify target volume logic with Royal Marsden

Apr	il					
М	Т	W	Т	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	1	2	3	4	5
6	7	8	9	10	11	12

Stage 1 – Running pre-trained models relevant to the task of medical organ segmentation Stage 2 – Implementing pipeline for classifying each class separately using a selected architecture for a proof of concept. Also, clarify target volume logic with Royal Marsden Stage 3 – Experiment with one-shot PTV area planning and also other pipelines. (Non-rigid image transformation?)

Apr	il					
M	Т	W	Т	F	S	S
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	1	2	3	4	5
6	7	8	9	10	11	12

Stage 1 – Running pre-trained models relevant to the task of medical organ segmentation Stage 2 – Implementing pipeline for classifying each class separately using a selected architecture for a proof of concept. Also, clarify target volume logic with Royal Marsden Stage 3 – Experiment with one-shot PTV area planning and also other pipelines. (Non-rigid image transformation?)

Stage 4 – Leftover time for interim report and implementation catchup/Boosting Algorithms?

Apri	il						May
M	Т	W	Т	F	S	S	M
1	2	3	4	5	6	7	29
8	9	10	11	12	13	14	6
15	16	17	18	19	20	21	13
22	23	24	25	26	27	28	20
29	30	1	2	3	4	5	27
6	7	8	9	10	11	12	3

May						
M	Т	W	Т	F	S	S
29	30	1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31	1	2
3	4	5	6	7	8	9

Stage 1 – Running pre-trained models relevant to the task of medical organ segmentation Stage 2 – Implementing pipeline for classifying each class separately using a selected architecture for a proof of concept. Also, clarify target volume logic with Royal Marsden Stage 3 – Experiment with one-shot PTV area planning and also other pipelines. (Non-rigid image transformation?)

Stage 4 – Leftover time for interim report and implementation catchup/Boosting Algorithms?

Stage 5 – Presentation and administrative pieces for submission