Theory Session | Statistical Inference

Tamojit Maiti
Masters in Applied Statistics and Operations Research, ISI Kolkata
Data Scientist at Sixt R&D, previously at Rapido & AB InBev

Agenda

- Probability
 - Definitions
 - Exercises
- Random Variables
 - Definitions
 - Exercises
- Probability Distributions
 - Uniform
 - Binomial
 - Poisson
 - Exponential
 - Normal
 - Exercises
- Central Limit Theorem

Exercises

Probability

Probability | Definitions

- An experiment is something that be infinitely repeated and has a well-defined set of possible outcomes, called the sample space.
- Event is a subset of the sample space.
 - Experiment: Rolling a die
 - Sample Space, S = {1, 2, 3, 4, 5, 6}
 - Event: Getting an odd number, A = {1, 3, 5}
- Probability is a numerical way of describing how likely (or not) an event is to happen.
 - If each of the elements in the sample space S are equally likely, then we can define the probability of event A as $P(A) = \frac{n(A)}{n(S)}$
 - The probability of any event is between 0 and 1 inclusive

Probability | Axioms

- The probability of a certain event is 1
- The probability of an impossible event is zero, and probabilities cannot be negative
- For any two events, $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- A conditional probability is the probability of an event, given some other event has already occurred.
 - It is denoted by P(A|B) and read as probability of A given B
 - $P(A|B) = \frac{P(A \cap B)}{P(B)}$

• For independent events A and B, $P(A \cap B) = P(A) \times P(B)$

Probability | Exercises

• In a simultaneous toss of two fair coins, what is the probability that you get two heads?

• In a simultaneous roll of two fair dice, what is the probability of getting a sum of greater than or equal to 9?

• In a group of 25 people, 18 have a mortgage, 13 own some shares and 2 people have neither a mortgage nor any shares. You select a person at random. What is the probability that they have both mortgage and shares?

Random Variables

- A random variable
 - is a variable whose possible values are numerical outcomes of a random phenomenon
 - is a mapping of each element in the sample space to the set of real numbers
- Example: Discrete
 - Experiment: Tossing a coin
 - Sample space: S = {H, T}.
 - Random Variable: X is the outcome of the coin toss
 - X(H) = 1 and X(T) = 0
- Example: Continuous
 - Experiment: Measuring the temperature during the day
 - Sample space: $S = [0, \infty] K$
 - Random Variable: T is the temperature in Kelvins

- An event is when a random variable equals one/more values in the sample space
- Example: Rolling a fair dice
 - Random Variable: Number on the dice face, denoted by X
 - Event: The dice face shows 3
 - Probability of the event P(X = 3) = 1/6
- The probability distribution function is a mapping from the set of values of the random variable to the set [0,1]. It describes how the probabilities are 'distributed' across the values of the random variables
- It is defined as f(x) = P(X = x) and has the following properties
 - $f(x) \ge 0 \ \forall \ x \in X$
 - $\sum_{X} f(x) = 1$

- The probability distribution function of a discrete random variable is a mapping from the set of values of the random variable to the set [0,1]. It describes how the probabilities are 'distributed' across the values of the random variables
- It is defined as f(x) = P(X = x) and has the following properties
 - $f(x) \ge 0 \ \forall \ x \in X$
 - $\sum_{X} f(x) = 1$

- The cumulative distribution function of a discrete random variable is also a mapping from the set of values of the random variable to the set [0,1]. However, it describes the probability of X not exceeding some value x
- It is defined as $F(x) = P(X \le x)$

Random Variables | Exercises

 Define suitable random variables and write their corresponding probability distribution function and the cumulative distribution function for the following experiments:

Tossing a fair coin

Rolling a fair dice

- The probability distribution function for a continuous random variable is always zero $P(X=x)=0 \ \forall \ x\in X$
- The probability density function of a continuous random variable is defined as

$$P(a < X < b) = \int_{a}^{b} f_X(x) dx$$

• The cumulative density function for a continuous random variable is defined as

$$F_X(b) = \int_{-\infty}^b f_X(x) dx$$

Random Variables | Exercises

Given a PDF for a random variable W., perform the following exercises

$$f_W(w) = 12w^2(1-w)\forall w \in [0,1]$$

Check that the PDF is non-negative for all values of w

Calculate the CDF

- The mean or expected value of a random variable X refers to the central location of the probability distribution function of X
- It is defined as
 - $E(X) = \sum_{X} x \times f_{X}(x)$ for discrete random variables
 - $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ for continuous random variables
- The variance of a random variable X refers to the spread of the probability distribution function of X
- It is defined as
 - $Var(X) = E[X^2] (E[X])^2$

Probability Distributions

Probability Distributions | Uniform

- Probability All outcomes are equally likely
- Random variable $X = \{1,2,3,...k\}$
- The PDF

$$f_X(x) = \frac{1}{k} \ \forall \ x \in \{1, 2, 3, \dots, k\}$$

The expected value

$$E(X) = \sum_{k=1}^{k} x(\frac{1}{k}) = \frac{1}{k} \sum_{k=1}^{k} x = \frac{1}{k} \times \frac{(k)(k+1)}{2} = \frac{k+1}{2}$$

The variance

$$var(X) = \sum_{k=1}^{k} x^{2} (\frac{1}{k}) = \frac{1}{k} \sum_{k=1}^{k} x^{2} = \frac{1}{k} \times \frac{(k)(k+1)(2k+1)}{6} = \frac{(k+1)(2k+1)}{6}$$

Probability Distributions | Bernoulli

- Probability Two possible outcomes, either a success or a failure
- Random variable $X = \{0,1\}$
- The PDF

$$f_X(x) = p^x (1-p)^{1-x} \,\forall \, x \in \{0,1\}, p \in [0,1]$$

The expected value

$$E(X) = p$$

The variance

$$var(X) = p(1-p)$$

Probability Distributions | Binomial

- Probability Outcome of the number of successes out of a sequence of N independent and identically distributed Bernoulli trials, each of which as a chance of success p
- Random variable $X = \{0,1,2,3,\dots,N\}$
- The PDF

$$f_X(x) = \binom{N}{x} p^x (1-p)^{N-x} \ \forall \ x \in \{0,1,2,\cdots,N\}, p \in [0,1]$$

The expected value

$$E(X) = Np$$

The variance

$$var(X) = Np(1-p)$$

Probability Distributions | Exponential

- Probability Outcome of the time to failure of a certain equipment
- Random variable $X = [0, \infty)$
- The PDF

$$f_X(x) = \lambda e^{-\lambda x} \ \forall \ x \in [0, \infty), \lambda \in [0, \infty)$$

The expected value

$$E(X) = 1/\lambda$$

The variance

$$var(X) = 1/\lambda$$

Probability Distributions | Normal

- Probability Outcome of many natural processes
- Random variable $X = (-\infty, \infty)$
- The PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \,\forall \, x \in (-\infty, \infty), \mu \in (-\infty, \infty), \sigma^2 \in [0, \infty)$$

The expected value

$$E(X) = \mu$$

The variance

$$var(X) = \sigma^2$$

Probability Distributions | Exercises

 Calculate the expected value and the variance of the random variable described by the number shown when a fair dice is thrown

 Calculate the expected value and the variance of the random variable whose PDF is given by the following expression

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$

The Central Limit Theorem

Central Limit Theorem | Definitions

- A population refers to the entire group that we want to draw conclusions about
- But often the population size is very large, so we cannot collect data about the entire population
- In that case, we collect data from a small part of the population
- A sample refers to the subset of the group from which we will collect our data from
- A parameter is a number describing some attribute of the entire population
- A statistic is a number describing some attribute of the sample in question
- The basic aim of statistical inference is to conclude about population parameters using sample statistics

Central Limit Theorem | Statement

- No matter the distribution from which a bunch of random variables are drawn
 - If we sample randomly from the bunch of random variables
 - And calculate the mean of the sample
 - And repeat the above two steps many many times, keeping the sample size same in each draw
- We will see that the sample means form a normal distribution with
 - Expected value equal to the population mean
 - Variance equal to the population variance divided by the sample size
- It means that under certain circumstances, most distributions can be transformed and approximated by a normal distribution
 - Binomial $(n,p) \sim N(np, np(1-p))$ when np > 5 and n(1-p) > 5

• Poisson $(\lambda) \sim N(\lambda, \lambda)$ if λ is large

Q & A