Ve 280

Programming and Elementary Data Structures

Developing Programs on Linux;

Review of C++ Basics

Outline

- Developing programs on Linux
- Review of C++ basics

Compile a Program

g++ -o program source.cpp

= g^{++} -c source.cpp

= g^{++} -o program source.o

Object code: portion of machine code that has NOT yet been linked into a complete program

- Just machine code for one particular library or module
- Can be generated by command g++ -c source.cpp

Developing Program on Linux

Multiple Source Files

- A large project is usually split into several source files in order to be manageable.
- Why?
 - To speed up compilation changing a single line only requires recompiling a single small source file. Much faster!
 - To increase organization make it easier for you to find functions, variables, etc.
 - To facilitate code reuse.
 - To split coding responsibilities among programmers.

Developing Program on Linux

Multiple Source Files

- Multiple source files include two types of files
 - header files ".h" files: normally contain class definitions and function declarations.
 - C++ source files ".cpp" files: normally contain function definitions and member functions of classes.
- Example

```
// add.h
#ifndef ADD_H
#define ADD_H
int add(int a, int b);
#endif
```

```
// add.cpp
int add(int a, int b)
{
  return a+b;
}
```

Developing Program on Linux

Multiple Source Files

• If a function in another file calls function add (), we should put #include "add.h" in that file.

Example

```
// run_add.cpp
#include "add.h"
int main()
{
   add(2,3);
   return 0;
}
```

In C++, the **preprocessor** replaces each #include by the contents of the specified file.

Headers Often Need Other Headers

line.h

```
#include "point.h"
...
```

drawing.h

```
#include "point.h"
#include "line.h"
...
```

- <u>Consequence</u>: A header file may be included more than once in a single source file
 - E.g., in drawing.h, we include point.h twice

Problem of Multiple Inclusions

- The including of a header file more than once may cause **multiple** definitions of the classes and functions defined in the header file.
 - Compiler complains!
- Solution: header guard.
 - It avoids **reprocessing** the contents of a header file if the header has already been seen.

Header Guard

```
// add.h
#ifndef ADD_H
#define ADD_H
int add(int a, int b);
#endif
```

Header guard to prevent multiple definitions!

- #ifndef VAR: a conditional directive --- tests whether the **preprocessor variable** VAR has **not** been defined.
 - If not defined, #ifndef succeeds and all lines up to #endif are processed.
 - Specially, #define defines VAR.
 - If defined, #ifndef fails and all lines between #ifndef and #endif are ignored.

Header Guard

```
// add.h
#ifndef ADD_H
#define ADD_H
int add(int a, int b);
#endif
```

- What happens if the header is included first time?
 - #ifndef succeeds. ADD_H is defined and the content is included
- What happens if the header is included second time?
 - Since ADD_H has been defined the first time we include the header, #ifndef fails. The lines between #ifndef and #endif are ignored
 - Good! No multiple declarations of the function add
- With header guard, we guarantee that the definition in the header is just seen **once**!

Compiling Multiple Source Files

- To compile multiple source files, use command
 - g++ -Wall -o program src1.cpp src2.cpp src3.cpp

Program name

All .cpp files

- E.g., g++ -Wall -o run_add run_add.cpp add.cpp
- Note: you don't put ".h" in the compiling command
 - I.e., you don't have g++ -Wall -o program src1.cpp src1.h src2.cpp src3.cpp
 - Why? ".h" files are already included.
 E.g., run_add.cpp includes add.h

Another Way

- Generate the object codes (.o files) **first**
- Example: g++ -Wall -o run_add run_add.cpp add.cpp
 - **Equivalent** way:

```
g++ -Wall -c run_add.cpp # will produce run_add.o
g++ -Wall -c add.cpp # will produce add.o
g++ -Wall -o run_add run_add.o add.o
```

- Advantage?
- Disadvantage?

A Better Way: Makefile

all: run_add

run_add: run_add.o add.o

g++ -o run_add run_add.o add.o

run_add.o: run_add.cpp
g++ -c run_add.cpp

add.o: add.cpp g++ -c add.cpp

clean:

rm -f run_add *.o

• The file name is "Makefile"

• Type "make" on command-line

A Rule

Target: Dependency
<Tab> Command

Don't forget the Tab!

Dependency: A list of files that the target depends on

A Better Way: Makefile

all: run_add

run_add: run_add.o add.o
g++ -o run_add run_add
•

run_add.o: run_add.cpp
g++ -c run_add.cpp

add.o: add.cpp
g++ -c add.cpp

clean:

rm -f run_add *.o

There is a target called "all"

- It is the **default** target
- Its dependency is program name
- It has no command

A Rule

Target: Dependency

<Tab> Command

Usually, there is a target called "clean"

- A dummy target. Type "make clean"
- It has no dependency!
- Question: what does "clean" do?

A Better Way: Makefile

all: run_add

run_add: run_add.o add.o

g++ -o run_add run_add.o add.o

A Rule

Target: Dependency

<Tab> Command

run_add.o: run_add.cpp g++ -c run_add.cpp

add.o: add.cpp g++ -c add.cpp

clean:

rm -f run_add *.o

Dependency Graph

run_add

run_add

run_add.o

run_add.o

run_add.o

run_add.o

add.o

run_add.cpp

add.cpp

Outline

- Developing programs on Linux
- Review of C++ basics

Very Basic Concepts

- Variables
- Built-in data types, e.g., int, double, etc.
- Input and output, e.g., cin, cout.
- Operators
 - Arithmetic: +, -, *, etc.
 - Comparison: <, >, ==, etc.
 - x++ versus ++x
- Flow of controls
 - Branch: if/else, switch/case
 - Loop: while, for, etc.

An Example

```
#include <iostream>
using namespace std;
int main() {
  // Calculating the area of a square
  int length, area;
  cin >> length;
  if(length > 0) {
    area = length * length;
    cout << "area is " << area << endl;</pre>
  else
    cout << "negative length!" << endl;</pre>
  return 0;
```

Ivalue and rvalue

- Two kinds of expressions in C++
 - lvalue: An expression which may appear as either the left-hand or right-hand side of an assignment
 - rvalue: An expression which may appear on the right- but not left-hand side of an assignment
- Which of the followings are lvalues? Which are rvalues?
 - a // a is an int variable
 - 10
 - a+1 // a is an int variable
 - a+b // a and b are two int variables
 - a[2*3] // a is an array

Function Declarations vs. Definitions

- Function declaration (or function prototype)
 - Shows how the function is called.
 - Must appear in the code before the function can be called.
 - Syntax:

 Return_Type Function_Name(Parameter_List);

 //Comment describing what function does

 int add(int a, int b); //Comment
- Function definition
 - Describes how the function does its task.
 - Can appear before or after the function is called.
 - Syntax:

```
Return_Type Function_Name(Parameter_List)
{
   //function code
}
int add(int a, int b) {
   return (a + b);
}
```

Function Declaration

- Tells:
 - return type
 - how many arguments are needed
 - types of the arguments
 - name of the function
 - formal parameter names

Type Signature

Formal Parameter Names

Example:
double total_cost(int(number) double price);
// Compute total cost including 5% sales tax on
// number items at cost of price each

Function Definition

- Provides the same information as the declaration
- Describes how the function does its task
- Example:

function header

double total_cost(int number, double price)

```
double TAX_RATE = 0.05; //5% tax
double subtotal;
subtotal = price * number;
return (subtotal + subtotal * TAX_RATE);
}
```

function body

Function Call Mechanisms

- Two mechanisms:
 - Call-by-Value
 - Call-by-Reference

```
void f(int x)
{
    x *= 2;
}
```



```
int main()
{
    ...
    int a=4;
    f(a);
    ...
}
```

What will a be?

Array

- An array is a fixed-sized, indexed data type that stores a collection of items, all of the same type.
- Declaration: int b[4];
- Accessing array elements using index: b[i]
- C++ arrays can be passed as arguments to a function.

```
int sum(int a[], unsigned int size);
  // Returns the sum of the first
  // size elements of array a[]
```

Array is passed by **reference**.

Array as Function Argument

• Using the values below, what would the contents of b be after calling add one (b, 4)?

```
void add one(int a[], unsigned int size) {
  unsigned int i;
  for (i=0; i<size; i++) {
    a[i]++;
```


Reference

- Makefile
 - http://www.cs.colby.edu/maxwell/courses/tutorials/maketut
 or/