(vi) \rightarrow (v): Given 0 < f \in E , λ > ω (A) , y \in X , there exists $t_{o} \ge 0$ such that $\{x: f(x) > 0\} \cap \text{supp } T(t_{o}) \land \delta_{y} \ne \emptyset$. Hence, $\{T(t_{o}) (f) (y) = \langle f, T(t_{o}) \land \delta_{y} \rangle > 0$ and therefore

 $(R(\lambda,A)f)(y) = \int_0^\infty e^{-\lambda t} (T(t)f)(y) dt > 0$. Since $\lambda \to R(\lambda,A)f$ is

decreasing in the interval $(s(A), \infty)$ (use the resolvent equation and the fact that $R(\lambda,A)$ is positive) we have $R(\lambda,A)$ > 0 for all $\lambda > s(A)$.

(v) \rightarrow (vi): If I is a R(λ ,A)-invariant ideal and 0 < f \in I , then g := R(λ ,A)f \in I . By (v) g is strictly positive thus I has to be dense (it contains all functions of compact support).

(iv) + (i): At first we recall that a closed linear subspace which is invariant for R(λ_{O} ,A) (λ_{O} \in ρ (A)), is invariant for R(λ ,A) whenever λ and λ_{O} belong to the same component of ρ (A). Hence by A-I,3.2 every R(λ_{O} ,A)-invariant subspace where λ_{O} \in ρ_{+} (A) is T-invariant and vice versa.

Remark 3.2. Obviously, irreducibility of a semigroup $(T(t))_{t\geq 0}$ is implied by the following condition:

(vii) T(t) f >> 0 whenever f > 0 and t > 0.

The rotation semigroup (see A-I,2.5) is irreducible but it does not satisfy condition (vii). However, assuming that the semigroup (T(t)) is holomorphic, then (vii) of Def.3.1 is equivalent to irreducibility. We will give a proof of this result in the more general situation of Banach lattices (see C-III,Thm.3.2(b)).

A semigroup $(T(t))_{t\geq 0}$ is irreducible if and only if $(e^{-\alpha t}T(t))_{t\geq 0}$, $\alpha\in\mathbb{R}$ is. More generally, irreducibility is invariant under perturbations by multiplication operators. In fact, we have the following result:

<u>Proposition</u> 3.3. Suppose A generates a positive semigroup $^{\mathcal{T}}$ on $^{\mathcal{C}}_{\mathcal{O}}(X)$ and let h be a continuous, bounded real-valued function on $^{\mathcal{X}}$. Then the semigroup $^{\mathcal{S}}$ generated by $^{\mathcal{B}}:=A+M_h$ is irreducible if and only if $^{\mathcal{T}}$ has this property.