3-1 一单位反馈控制系统的开环传递函数为 $W_K(s) = \frac{1}{s(s+1)}$ 。

求: (1) 系统的单位阶跃响应及动态特性指标 δ %、 t_r 、 t_s 、 μ ;

- (2) 输入量 $x_r(t) = t$ 时,系统的输出响应;
- (3) 输入量 x_r(t) 为单位脉冲函数时,系统的输出响应。

3-2 一单位反馈控制系统的开环传递函数为 $W_K(s) = \frac{K_k}{s(\tau s+1)}$,其单位阶跃响应曲线如图 P3-1 所示,图中的 $X_m=1.25$, $t_m=1.5s$ 。试确定系统参数 K_k 及 τ 值。

图 P3-1

3-3 一单位反馈控制系统的开环传递函数为 $W_K(s)=\frac{\omega_n^2}{s(s+2\xi\omega_n)}$ 。已知系统的 $\mathbf{x}_r(t)=\mathbf{1}(t)$,误差时间函数为 $e(t)=1.4e^{-1.7t}-0.4e^{-3.73t}$,求系统的阻尼比 ξ 、自然振荡角频率 ω_n 、系统的开环传递函数和闭环传递函数、系统的稳态误差。

3-4 已知单位反馈控制系统的开环传递函数为 $W_K(s) = \frac{K_k}{s(\tau s+1)}$,试选择 K_k 及 τ 值以满足下列指标。

当 x_r(t) =t 时,系统的稳态误差 e(∞)≤0.02;

当 $x_r(t) = 1(t)$ 时,系统的 δ % ≤ 30 %, $t_s(5$ %) $\leq 0.3s$ 。

3-5 已知单位反馈控制系统的闭环传递函数为 $W_B(s) = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$, 试画出以 ω_n 为常数、 ξ 为变数时,系统特征方程式的根在 s 复平面上的分布轨迹。

3-6 一系统的动态结构图如图 P3-2 所示,求在不同的 K_k 值下(例如, $K_k=1$ 、 $K_k=3$ 、 $K_k=7$)系统的闭环极点、单位阶跃响应、动态指标及稳态误差。

图 P3-2

- 3-7 一闭环反馈控制系统的动态结构图如图 P3-3 所示。
- (1) 求当δ%≤20%、ts (5%) =1.8s 时, 系统的参数 K₁ 及τ值。
- (2) 求上述系统的位置误差系数 K_{ν} 、速度误差系数 K_{ν} 、加速度误差系数 K_{α} 及其相应的稳态误差。

图 P3-3

- 3-8 一系统的动态结构图如图 P3-4 所示。
- 求 (1) $\tau_1 = 0$, $\tau_2 = 0.1$ 时,系统的 δ %、 t_s (5%)
 - (2) $\tau_1 = 0.1, \tau_2 = 0$ 时,系统的 δ %、 t_s (5%)
 - (3) 比较上述两种校正情况下的暂态性能指标及稳态性能。

图 P3-4

3-9 如图 P3-5 所示系统,图中的 $W_g(s)$ 为调节对象的传递函数, $W_c(s)$ 为调节器的传递函数。如果调节对象为 $W_g(s) = \frac{K_g}{(T_1 \, s + 1)(T_2 s + 1)}$, $T_1 > T_2$,系统要求的指标为:位置稳态误差为零,调节时间最短,超调量 $\delta\% \le 4.3\%$,问下述三种调节器中哪一种能满足上述指标? 其参数应具备什么条件?三种调节器为

(a)
$$W_c(s) = K_p$$
; (b) $W_c(s) = K_p \frac{(\tau s + 1)}{s}$; (c) $W_c(s) = K_p \frac{(\tau_1 s + 1)}{(\tau_2 s + 1)}$.

图 P3-5

3-10 有闭环系统的特征方程式如下,试用劳斯判据判断系统的稳定性,并说明特征根在复 平面上的分布。

(1)
$$s^3 + 20s^2 + 4s + 50 = 0$$

(2)
$$s^3 + 20s^2 + 4s + 100 = 0$$

(3)
$$s^4 + 2s^3 + 6s^2 + 8s + 8 = 0$$

(4)
$$2s^5 + s^4 - 15s^3 + 25s^2 + 2s - 7 = 0$$

(5)
$$s^6 + 3s^5 + 9s^4 + 18s^3 + 22s^2 + 12s + 12 = 0$$

3-11 单位反馈系统的开环传递函数为

$$W_k(s) = \frac{K_k(0.5 s + 1)}{s(s+1)(0.5s^2 + s + 1)}$$

试确定使系统稳定的Kk值范围。

3-12 已知系统的结构图如图 P3-6 所示, 试用劳斯判据确定使系统稳定的 Kc值范围。

图 P3-6

3-13 如果采用图 P3-7 所示系统, 问τ取何值时,系统方能稳定?

图 P3-7

3-14 设单位反馈系统的开环传递函数为 $W_k(s) = \frac{K}{s(1+0.33\,s)(1+0.167s)}$,要求闭环特征根的实部均小于 -1,求 K 值应取的范围。

3-15 设有一单位反馈系统,如果其开环传递函数为

(1)
$$W_k(s) = \frac{10}{s(s+4)(5s+1)}$$

(2)
$$W_k(s) = \frac{10(s+0.1)}{s^2(s+4)(5s+1)}$$

求输入量为 $x_r(t) = t$ 和 $x_r(t) = 2 + 4t + 5t^2$ 时系统的稳态误差。

3–16 有一单位反馈系统,系统的开环传递函数为 $W_k(s)=\frac{K_k}{s}$ 。 求当输入量为 $x_r(t)=\frac{1}{2}t^2$ 和 $x_r(t)=\sin\omega t$ 时,控制系统的稳态误差。

3-17 有一单位反馈系统,其开环传递函数为 $W_k(s) = \frac{3s+10}{s(5s-1)}$,求系统的动态误差系数;并求当输入量为 $x_r(t) = 1 + t + \frac{1}{2}t^2$ 时,稳态误差的时间函数 $e_s(t)$ 。

3-18 一系统的结构图如图 P3-8 所示,并设 $W_1(s) = \frac{K_1(1+T_1s)}{s}$, $W_2(s) = \frac{K_2}{s(1+T_2s)}$ 。 当扰动量分别以 $\Delta N(s) = \frac{1}{s}$ 、 $\frac{1}{s^2}$ 作用于系统时,求系统的扰动稳态误差。

图 P3-8

3–19 一复合控制系统的结构图如图 P3–9 所示,其中 $K_1 = 2K_3 = 1$, $T_2 = 0.25s$, $K_2 = 2$ 。

- (1) 求输入量分别为 $x_r(t)=1$, $x_r(t)=t$, $x_r(t)=\frac{1}{2}t^2$ 时, 系统的稳态误差;
- (2) 求系统的单位阶跃响应,及其 δ %, t_s 值。

3-20 一复合控制系统如图 P3-10 所示,图中 $W_c(s)=as^2+bs$, $W_g(s)=\frac{10}{s(1+0.1s)(1+0.2s)}$ 。 如果系统山I 型提高为II型系统,求 a 值及 b 值。