universite Lattice Properties of Acyclic Pipe Dreams

Noémie Cartier (LISN, Université Paris-Saclay)

Pipe dreams

pipe dream: filling of shape with + and ~ reduced: no pair of pipes cross twice

contact graph $P^{\#}$: edge $a \rightarrow b$ if $a \not b$ in PP acyclic: $P^{\#}$ acyclic

Increasing flip: exchanges a - b and a - b

= { reduced acyclic pipe dreams on F with exit permutation ω }

Insertion of permutations

Thm. F a shape, ω a permutation:

- $(\ln(P))_{P \in \Sigma_F(\omega)}$ are disjoint
- if $\pi \leqslant \omega$, $\exists ! P \in \Sigma_F(\omega) \mid \pi \in \text{lin}(P)$

Def. *Inserting permutations:*

- $\operatorname{Ins}_{F,\omega}: [\operatorname{id},\omega] \mapsto \Sigma_F(\omega)$ such that $\pi \in \lim_{F,\omega} (\operatorname{Ins}_{F,\omega}(\pi))$
- $\pi \equiv_{F,\omega} \pi' \text{ iff } \operatorname{Ins}_{F,\omega}(\pi) = \operatorname{Ins}_{F,\omega}(\pi')$

Prop. If $UabV \lessdot UbaV \leqslant \omega$:

- $\operatorname{Ins}_{F,\omega}(UabV) = \operatorname{Ins}_{F,\omega}(UbaV)$ or
- $\operatorname{Ins}_{F,\omega}(UabV) \to \operatorname{Ins}_{F,\omega}(UbaV)$ is an increasing flip.

Two algorithms

Computing $Ins_{T,1432}(1324)$:

Sweeping algorithm:

Insertion algorithm:

Triangular shapes

Thm.

- $\bullet \equiv_{T,\omega} lattice congruence$
- $\operatorname{Ins}_{T,\omega}$ lattice morphism

weak order on $[id, \omega]$

 ${
m Ins}_{T,\omega}$

increasing flip graph on $\Sigma_T(\omega)$

transp. $\tau_{i,i+1}$

 $\left| \{ k < a \mid k \vartriangleleft_{\omega} b \} \right| \leq \left| \left\{ k \vartriangleleft_{\pi} a \mid a < k < b \\ b \vartriangleleft_{\omega} k \vartriangleleft_{\omega} a \right\} \right|$

Generalizes the sylvester congruence from the weak order to the Tamari lattice

simple reflections

General shapes

Thm.

- $\equiv_{F,\omega}$ lattice congruence on $[\mathrm{id},\omega]$
- $\operatorname{Ins}_{F,\omega}$ lattice morphism

weak order on $[\mathrm{id},\omega]$

 $\mathrm{Ins}_{F,\omega}$

brick polyhedron skeleton on $\mathrm{Ins}_{F,\omega}([\mathrm{id},\omega])$

Thm. If F sorts ω_0 , then $\forall \omega \in \mathfrak{S}_n$,

 $\operatorname{Ins}_{F,\omega}([\operatorname{id},\omega]) = \Sigma_F(\omega)$

Generalizes Cambrian congruences from the weak order to Cambrian lattices

Generalization to Coxeter groups

Coxeter group

reduced subword complex pipe dreams

 $\pi \in \text{lin}(P) \leftrightarrow \text{root conf.} \subseteq \pi(\Phi^+)$

Thm. $\operatorname{Ins}_{Q,w}$ is well-defined on [e,w]

Thm (Jahn & Stump '22).

 $Q sorts w_0 \Rightarrow \operatorname{Ins}_{Q,w} surjective$

Conj. Q alternating \Rightarrow

- $\equiv_{Q,w}$ lattice congruence
- $Ins_{Q,w}$ lattice morphism

More details?

Triangular: $arXiv:2303.11025^a$

in preparation General:

Contact me:

noemie.cartier@lri.fr

https://www.lri.fr/~cartier/

^aJoint work with N. Bergeron, C. Ceballos and V. Pilaud.