

SEQUENCE LISTING

<110> Friddle, Carl Johan
Gerhardt, Brenda
Hilbun, Erin
Turner, C. Alexander Jr.

<120> Novel Human Ion Channel-Related Proteins
and Polynucleotides Encoding the Same

<130> LEX-0274-USA

<150> US 60/258,595
<151> 2000-12-28

<160> 17

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 642
<212> DNA
<213> homo sapiens

<400> 1
atgagtagtc aggaactggc cactttgaat gtggggaggaa agatattcac gacaaggttt 60
tctacgataa agcagttcc tgcttctcggt ttggcacgca tggtagatgg cagagaccaa 120
gaattcaaga tggttgggtgg ccagatTTTt gtagacagag atggtgattt gtttagtttc 180
atcttagatt ttttgagaac tcaccagctt ttattaccca ctgaattttc agactatctt 240
aggcttcaga gagaggctct tttctatgaa cttcgttctc tagttgatct cttaaaccca 300
tacctgctac agccaagacc tgctcttgg gaggtacatt tcctaagccg gaacactcaa 360
gctttttca ggggtttgg ctcttcgcggc aaaacaattt agatgctaac agggaggatt 420
acagtgttta cagaacaacc ttccagcggcc acctggaaatg gtaactttt ccctccctcag 480
atgacacctac ttccactgcc tccacaaaaga ccttcttacc atgacctgggt tttccagtgt 540
ggttctgaca gcactactga taaccaaact ggagtcaggt attttgtact ttgcagtatt 600
tctcttgat accagtttgc gatgtttct cttttttttt ga 642

<210> 2
<211> 213
<212> PRT
<213> homo sapiens

<400> 2
Met Ser Ser Gln Glu Leu Val Thr Leu Asn Val Gly Gly Lys Ile Phe
1 5 10 15
Thr Thr Arg Phe Ser Thr Ile Lys Gln Phe Pro Ala Ser Arg Leu Ala
20 25 30
Arg Met Leu Asp Gly Arg Asp Gln Glu Phe Lys Met Val Gly Gly Gln ,
35 40 45
Ile Phe Val Asp Arg Asp Gly Asp Leu Phe Ser Phe Ile Leu Asp Phe
50 55 60
Leu Arg Thr His Gln Leu Leu Leu Pro Thr Glu Phe Ser Asp Tyr Leu
65 70 75 80
Arg Leu Gln Arg Glu Ala Leu Phe Tyr Glu Leu Arg Ser Leu Val Asp

85	90	95
Leu Leu Asn Pro Tyr Leu Leu Gln Pro Arg Pro Ala Leu Val Glu Val		
100	105	110
His Phe Leu Ser Arg Asn Thr Gln Ala Phe Phe Arg Val Phe Gly Ser		
115	120	125
Cys Ser Lys Thr Ile Glu Met Leu Thr Gly Arg Ile Thr Val Phe Thr		
130	135	140
Glu Gln Pro Ser Ala Pro Thr Trp Asn Gly Asn Phe Phe Pro Pro Gln		
145	150	155
Met Thr Leu Leu Pro Leu Pro Pro Gln Arg Pro Ser Tyr His Asp Leu		
165	170	175
Val Phe Gln Cys Gly Ser Asp Ser Thr Thr Asp Asn Gln Thr Gly Val		
180	185	190
Arg Tyr Phe Val Leu Cys Ser Ile Ser Leu Val Tyr Gln Phe Val Met		
195	200	205
Phe Ser Leu Lys Thr		
210		

<210> 3
<211> 1236
<212> DNA
<213> homo sapiens

<400> 3
tttgatgtct atcttccaat atatcgccag ttttccttaa gctattttgt tcctcatctg 60
ttgcttttcc attttgtata ctgcaggatc ccaggcaact cgaatttgca aacacagcca 120
tggaaacact atttacccca cagtagttc ctggaaatct aagtctggtt tttgttattc 180
ttccctcccc tccactgcatt aatcatgttat aactagcaac atttatggtt ataggttgat 240
ttcctaagtgt tggctgatgg tagcctctag tttgaagtga gggagaatg agtagtcagg 300
aactggtcac tttgaatgtg ggagggaaga tattcacgac aaggtttct acgataaaggc 360
agtttccctgc ttctcggttgc acacgcattgt tagatggcag agaccaagaa ttcaagatgg 420
ttggtgccca gattttgttgc gacagagatg gtgattttgtt tagtttcattt ttagattttt 480
tgagaactca ccagcttttta ttaccactg aattttcaga ctatctttagg cttcagagag 540
aggctttttt ctatgaactt cgttctctag ttgatctctt aaaccctatac ctgctacagc 600
caagacctgc tcttggag gtacatttcc taagccggaa cactcaagct tttttcagg 660
tggggctc ttgcagcaaa acaattgaga tgctaacagg gaggattaca gtgtttacag 720
aacaacccctc agcgccgacc tggaatggta actttttccc tcctcagatg accttacttc 780
caactgcctcc acaaagaccc tcttaccatg acctgggtttt ccagtgtgggt tctgacagca 840
ctactgataa ccaaactggc gtcaggtatt ttgtactttg cagttttctt cttgtataacc 900
agtttgcgtat gttttctcta aaaacttgaa gttcctcagg cctgttaactt ctggaaaaaga 960
tgattattca aaataatgtt ttggggtaac cagttggatg gggtagaaatg accaaataat 1020
tattttccaa actgggatac ttttttagatg gaaagggctt atttttagatg gggacaaaag 1080
gaataaatgaa agactgccca gaaaaactg agactatggc cattcaaatc atgggagaaaa 1140
ataattttgtt agattatgtt ccattgctaa tgaatttgac tttagaaaaga attgccttat 1200
tttaagaga ttgtttcagt ggttaacata aaggct 1236

<210> 4
<211> 363
<212> DNA
<213> homo sapiens

<400> 4
atgggtggtag tcacggggcg ggagccagac agccgtcgtc aggacgggtgc catgtccagc 60
tctgacgccc aagacgactt tctggagccg gccaccccga cggccacgca ggcggggcac 120
gcgctgcccc tgctgccaca ggagttccct gaggttggc ccccttaacat cggaggggct 180

cacttcacta cacgcctgtc cacactgcgg tgctacgaag acaccatgtt ggcagccatg 240
ttcagtgggc ggcactacat ccccacggac tccgaggggcc ggtacttcat cgaccgagat 300
ggcacacact ttgggtatgt ctctccctct acaatcaact ttgttagtcct agcaggtgat 360
tag 363

<210> 5
<211> 120
<212> PRT
<213> homo sapiens

<400> 5
Met Val Val Val Thr Gly Arg Glu Pro Asp Ser Arg Arg Gln Asp Gly
1 5 10 15
Ala Met Ser Ser Ser Asp Ala Glu Asp Asp Phe Leu Glu Pro Ala Thr
20 25 30
Pro Thr Ala Thr Gln Ala Gly His Ala Leu Pro Leu Leu Pro Gln Glu
35 40 45
Phe Pro Glu Val Val Pro Leu Asn Ile Gly Gly Ala His Phe Thr Thr
50 55 60
Arg Leu Ser Thr Leu Arg Cys Tyr Glu Asp Thr Met Leu Ala Ala Met
65 70 75 80
Phe Ser Gly Arg His Tyr Ile Pro Thr Asp Ser Glu Gly Arg Tyr Phe
85 90 95
Ile Asp Arg Asp Gly Thr His Phe Gly Tyr Val Ser Pro Ser Thr Ile
100 105 110
Asn Phe Val Val Leu Ala Gly Asp
115 120

<210> 6
<211> 321
<212> DNA
<213> homo sapiens

<400> 6
atgaatggtg tggcaccaat cagacccccag ggattgaaga tggagcagcc ccagctctca 60
ttccccgttg cctgcctgag agccctggtg atttcttcc agttcctgta ggttgttccc 120
cttaacatcg gaggggctca cttcaactaca cgcctgtcca cactgcggtg ctacgaagac 180
accatgttgg catccatgtt cagtggccgg cactacatcc ccacggactc cgagggccgg 240
tacttcatcg accgagatgg cacacacttt gggtatgtct ctccctctac aatcaacttt 300
gtagtcctag caggtgatta g 321

<210> 7
<211> 106
<212> PRT
<213> homo sapiens

<400> 7
Met Asn Gly Val Ala Pro Ile Arg Pro Gln Gly Leu Lys Met Glu Gln
1 5 10 15
Pro Gln Leu Ser Phe Pro Val Ala Cys Leu Arg Ala Leu Val Ile Ser
20 25 30
Phe Gln Phe Pro Glu Val Val Pro Leu Asn Ile Gly Gly Ala His Phe
35 40 45
Thr Thr Arg Leu Ser Thr Leu Arg Cys Tyr Glu Asp Thr Met Leu Ala
50 55 60

```

Ser Met Phe Ser Gly Arg His Tyr Ile Pro Thr Asp Ser Glu Gly Arg
65           70          75          80
Tyr Phe Ile Asp Arg Asp Gly Thr His Phe Gly Tyr Val Ser Pro Ser
85           90          95
Thr Ile Asn Phe Val Val Leu Ala Gly Asp
100          105

```

```
<210> 8  
<211> 680  
<212> DNA  
<213> homo sapiens
```

```
<400> 8
cggttcaggc cccagctggg cgcgagcggt tcggcggtga gggagccacc gcccctccgc 60
ctgcgcactg cctctcgccc ccctccggcc agcccgacg cggccgcgts atgccaggcg 120
ctgctcgccg gttagggagtgc cccggggccg ccyctccgc ccccccgaag ccgcggccac 180
tgcccagagc cagagggatgc tggttagtca cggggcggga gccagacagc cgtcgctcagg 240
acggtgtccat gtccagctct gacgcccgaag acgactttct ggagccggcc acgcccacgg 300
ccacgcaggc ggggcacgcg ctgcggctgc tgccacagga gtttcctgag gttgtcccc 360
ttaacatcg aggggctcac ttcaactacac gcctgtccac actgcgggtc tacgaagaca 420
ccatgttgc agccatgttc agtgggcggc actacatccc cacggactcc gagggccggt 480
acttcatcg a cccggatggc acacactttg ggtatgtctc tccctctaca atcaactttg 540
tagtcctagc aggtgattag cataggctt agtatggac ttgatatatct tccatagtac 600
ctagaagagg agatagcata ttgatgaaat ttaataaaatg gtttatttga aagagatcaa 660
tttttttttttttttqcc 680
```

<210> 9
<211> 852
<212> DNA
<213> homo sapiens

```
<210> 10  
<211> 283  
<212> PRT  
<213> homo sapiens
```

<400> 10
Met Pro His Arg Lys Glu Arg Pro Ser Gly Ser Ser Leu His Thr His

1	5	10	15
Gly Ser Thr Gly Thr Ala Glu Gly Gly Asn Met Ser Arg Leu Ser Leu			
20	25	30	
Thr Arg Ser Pro Val Ser Pro Leu Ala Ala Gln Gly Ile Pro Leu Pro			
35	40	45	
Ala Gln Leu Thr Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Gly			
50	55	60	
His Met Tyr Thr Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Asp Ser			
65	70	75	80
Arg Ile Ser Arg Leu Phe Asn Gly Thr Glu Pro Ile Val Leu Asp Ser			
85	90	95	
Leu Lys Gln His Tyr Phe Ile Asp Arg Asp Gly Glu Ile Phe Arg Tyr			
100	105	110	
Val Leu Ser Phe Leu Arg Thr Ser Lys Leu Leu Leu Pro Asp Asp Phe			
115	120	125	
Lys Asp Phe Ser Leu Leu Tyr Glu Glu Ala Arg Tyr Tyr Gln Leu Gln			
130	135	140	
Pro Met Val Arg Glu Leu Glu Arg Trp Gln Gln Glu Gln Gln Arg			
145	150	155	160
Arg Arg Ser Arg Ala Cys Asp Cys Leu Val Val Arg Val Thr Pro Asp			
165	170	175	
Leu Gly Glu Arg Ile Ala Leu Ser Gly Glu Lys Ala Leu Ile Glu Glu			
180	185	190	
Val Phe Pro Glu Thr Gly Asp Val Met Cys Asn Ser Val Asn Ala Gly			
195	200	205	
Trp Asn Gln Asp Pro Thr His Val Ile Arg Phe Pro Leu Asn Gly Tyr			
210	215	220	
Cys Arg Leu Asn Ser Val Gln Val Leu Glu Arg Leu Phe Gln Arg Gly			
225	230	235	240
Phe Ser Val Ala Ala Ser Cys Gly Gly Val Asp Ser Ser Gln Phe			
245	250	255	
Ser Glu Tyr Val Leu Cys Arg Glu Glu Arg Arg Pro Gln Pro Thr Pro			
260	265	270	
Thr Ala Val Arg Ile Lys Gln Glu Pro Leu Asp			
275	280		

<210> 11
<211> 795
<212> DNA
<213> homo sapiens

<400> 11
atgcctcacc gcaaggagcg gccgagcggg tcctcgcttc acacacacgg cagcacccggc 60
accgcggagg gaggaacat gtcccggtg tctctcaccc ggtcgcctgt gtctcccctg 120
gctgcccagg gcatccccct gccagcccag ctcaccaagt ccaatgcacc tgtgcacatc 180
gatgtggcgcc gccacatgta caccagcagc ctggccacgc tcaccaagta ccctgactcc 240
aggataagcc gccttcaa tggcactgaa cccatgtcc tggacagttt gaagcaacat 300
tatttcattt accggatgg ggagatttc cgctacgtcc tgagcttcct gcggacgtcc 360
aagctgctgc ttccggatga cttaaggac ttcaagtctgc tgtacgagga ggcgcgtac 420
tatcagctcc agcccatggt ggcgcagctg gagcgttggc agcaggagca ggagcagcgg 480
cgccgcagcc gggcctgtga ctgcctggtg gtgcgcgtca cgcccgactt gggcgagcgg 540
atcgcaact gccccggaa gcccctcatc gagggaggct tccccggagac cggagacgtc 600
atgtcaact ccgtcaacgc cggctggAAC caggacccc cgcacgtcat ccgttcccc 660
ctcaatggct actgcccggct caactcggtA caggtgaggg ctgcacgtcg ccccccccc 720
gccgaacccc cggcgccgcggc ggagccctcc agggcgagag tgagctggag ggaggcgca 780

tccctgaaac ggtga

795

<210> 12

<211> 264

<212> PRT

<213> homo sapiens

<400> 12

Met Pro His Arg Lys Glu Arg Pro Ser Gly Ser Ser Leu His Thr His
1 5 10 15
Gly Ser Thr Gly Thr Ala Glu Gly Gly Asn Met Ser Arg Leu Ser Leu
20 25 30
Thr Arg Ser Pro Val Ser Pro Leu Ala Ala Gln Gly Ile Pro Leu Pro
35 40 45
Ala Gln Leu Thr Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Gly
50 55 60
His Met Tyr Thr Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Asp Ser
65 70 75 80
Arg Ile Ser Arg Leu Phe Asn Gly Thr Glu Pro Ile Val Leu Asp Ser
85 90 95
Leu Lys Gln His Tyr Phe Ile Asp Arg Asp Gly Glu Ile Phe Arg Tyr
100 105 110
Val Leu Ser Phe Leu Arg Thr Ser Lys Leu Leu Leu Pro Asp Asp Phe
115 120 125
Lys Asp Phe Ser Leu Leu Tyr Glu Glu Ala Arg Tyr Tyr Gln Leu Gln
130 135 140
Pro Met Val Arg Glu Leu Glu Arg Trp Gln Gln Glu Gln Gln Arg
145 150 155 160
Arg Arg Ser Arg Ala Cys Asp Cys Leu Val Val Arg Val Thr Pro Asp
165 170 175
Leu Gly Glu Arg Ile Ala Leu Ser Gly Glu Lys Ala Leu Ile Glu Glu
180 185 190
Val Phe Pro Glu Thr Gly Asp Val Met Cys Asn Ser Val Asn Ala Gly
195 200 205
Trp Asn Gln Asp Pro Thr His Val Ile Arg Phe Pro Leu Asn Gly Tyr
210 215 220
Cys Arg Leu Asn Ser Val Gln Val Arg Ala Ala Arg Cys Pro Leu Pro
225 230 235 240
Ala Glu Pro Pro Ala Ser Ala Glu Pro Ser Arg Gly Arg Val Ser Trp
245 250 255
Arg Glu Ala Arg Ser Leu Lys Arg
260

<210> 13

<211> 774

<212> DNA

<213> homo sapiens

<400> 13

atgtcccggc tgtctctcac ccggtcgcct gtgtctcccc tggctgccca gggcatcccc 60
ctgccagccc agtcaccaa gtccaatgca cctgtgcaca tcgatgtggg cggccacatg 120
tacaccagca gcctggccac gtcaccaag taccctgact ccaggataag ccgcctttc 180
aatggcactg aacccatcgt cctggacagt ttgaagcaac attatttcat tgaccggat 240
ggggagattt tccgctacgt cctgagcttc ctgcggacgt ccaagctgct gcttccggat 300
gactttaagg acttcagtct gctgtacgag gaggcgcgct actatcagct ccagccatg 360

gtgcgcgagc tggagcgctg gcagcaggag caggagcagc ggcgccgca gccccctgt 420
gactgcctgg tggcgccgt cacgcccac ttggcgagc ggatgcact cagcggcgag 480
aaggccctca tcgaggaggt ctccccgag accggagacg tcatgtgcaa ctccgtcaac 540
gcggctgga accaggaccc cacgcacgtc atccgcttcc cgctcaatgg ctactgccgg 600
ctcaactcgg tacaggtcct ggacggctg ttccagaggg gttcagcgt ggctgcgtcc 660
tgtggggcgt gtgtggactc ctcccgatcc agcgagtagt tgcttgccg ggaggagcgg 720
cgccgcagc ccaccccac tgctgttcga atcaagcagg aaccctgga ctag 774

<210> 14
<211> 257
<212> PRT
<213> homo sapiens

<400> 14
Met Ser Arg Leu Ser Leu Thr Arg Ser Pro Val Ser Pro Leu Ala Ala
1 5 10 15
Gln Gly Ile Pro Leu Pro Ala Gln Leu Thr Lys Ser Asn Ala Pro Val
20 25 30
His Ile Asp Val Gly Gly His Met Tyr Thr Ser Ser Leu Ala Thr Leu
35 40 45
Thr Lys Tyr Pro Asp Ser Arg Ile Ser Arg Leu Phe Asn Gly Thr Glu
50 55 60
Pro Ile Val Leu Asp Ser Leu Lys Gln His Tyr Phe Ile Asp Arg Asp
65 70 75 80
Gly Glu Ile Phe Arg Tyr Val Leu Ser Phe Leu Arg Thr Ser Lys Leu
85 90 95
Leu Leu Pro Asp Asp Phe Lys Asp Phe Ser Leu Leu Tyr Glu Glu Ala
100 105 110
Arg Tyr Tyr Gln Leu Gln Pro Met Val Arg Glu Leu Glu Arg Trp Gln
115 120 125
Gln Glu Gln Glu Gln Arg Arg Ser Arg Ala Cys Asp Cys Leu Val
130 135 140
Val Arg Val Thr Pro Asp Leu Gly Glu Arg Ile Ala Leu Ser Gly Glu
145 150 155 160
Lys Ala Leu Ile Glu Glu Val Phe Pro Glu Thr Gly Asp Val Met Cys
165 170 175
Asn Ser Val Asn Ala Gly Trp Asn Gln Asp Pro Thr His Val Ile Arg
180 185 190
Phe Pro Leu Asn Gly Tyr Cys Arg Leu Asn Ser Val Gln Val Leu Glu
195 200 205
Arg Leu Phe Gln Arg Gly Phe Ser Val Ala Ala Ser Cys Gly Gly Gly
210 215 220
Val Asp Ser Ser Gln Phe Ser Glu Tyr Val Leu Cys Arg Glu Glu Arg
225 230 235 240
Arg Pro Gln Pro Thr Pro Thr Ala Val Arg Ile Lys Gln Glu Pro Leu
245 250 255
Asp

<210> 15
<211> 717
<212> DNA
<213> homo sapiens

<400> 15

atgtcccgcc tgccttcac ccggcgcct gtgtctcccc tggctgccc gggcatcccc 60
ctgccagccc agtcaccaa gtcataatgca cctgtgcaca tcgatgtggg cggccacatg 120
tacaccagca gcctggccac gtcaccaag taccctgact ccaggataag ccgcctttc 180
aatggcactg aaccatcggt cctggacagt ttgaagcaac attatttcat tgaccggat 240
ggggagattt tccgctacgt cctgagcttc ctgcggacgt ccaagctgct gcttccggat 300
gactttaagg acttcagtt gctgtacgag gaggcgccgt actatcagct ccagccatg 360
gtgcgcgagc tggagcgtg gcagcaggag caggagcagc ggcgcgcag cgggcctgt 420
gactgcctgg tggcgcgt cagccccac ttggcgagc ggatgcact cagcggcgag 480
aaggccctca tcgaggaggt ctcccccgag accggagacg tcatgtgcaa ctccgtcaac 540
gccggctgga accaggaccc cacgcacgac atccgcttc cgctcaatgg ctactgccc 600
ctcaactcggt tacaggtgag ggctgcacgc tgccccctcc ccggcgaacc cccggcggtcc 660
gccccctcc ccagggcag agtgagctgg agggaggcgc gatccctgaa acggta 717

<210> 16
<211> 238
<212> PRT
<213> homo sapiens

<400> 16

Met	Ser	Arg	Leu	Ser	Leu	Thr	Arg	Ser	Pro	Val	Ser	Pro	Leu	Ala	Ala
1															15
Gln	Gly	Ile	Pro	Leu	Pro	Ala	Gln	Leu	Thr	Lys	Ser	Asn	Ala	Pro	Val
		20							25						30
His	Ile	Asp	Val	Gly	Gly	His	Met	Tyr	Thr	Ser	Ser	Leu	Ala	Thr	Leu
		35							40						45
Thr	Lys	Tyr	Pro	Asp	Ser	Arg	Ile	Ser	Arg	Leu	Phe	Asn	Gly	Thr	Glu
		50							55						60
Pro	Ile	Val	Leu	Asp	Ser	Leu	Lys	Gln	His	Tyr	Phe	Ile	Asp	Arg	Asp
		65							70						80
Gly	Glu	Ile	Phe	Arg	Tyr	Val	Leu	Ser	Phe	Leu	Arg	Thr	Ser	Lys	Leu
									85						95
Leu	Leu	Pro	Asp	Asp	Phe	Lys	Asp	Phe	Ser	Leu	Leu	Tyr	Glu	Glu	Ala
									100						110
Arg	Tyr	Tyr	Gln	Leu	Gln	Pro	Met	Val	Arg	Glu	Leu	Glu	Arg	Trp	Gln
									115						125
Gln	Glu	Gln	Glu	Gln	Arg	Arg	Arg	Ser	Arg	Ala	Cys	Asp	Cys	Leu	Val
									130						140
Val	Arg	Val	Thr	Pro	Asp	Leu	Gly	Glu	Arg	Ile	Ala	Leu	Ser	Gly	Glu
		145							150						160
Lys	Ala	Leu	Ile	Glu	Glu	Val	Phe	Pro	Glu	Thr	Gly	Asp	Val	Met	Cys
									165						175
Asn	Ser	Val	Asn	Ala	Gly	Trp	Asn	Gln	Asp	Pro	Thr	His	Val	Ile	Arg
									180						190
Phe	Pro	Leu	Asn	Gly	Tyr	Cys	Arg	Leu	Asn	Ser	Val	Gln	Val	Arg	Ala
									195						205
Ala	Arg	Cys	Pro	Leu	Pro	Ala	Glu	Pro	Pro	Ala	Ser	Ala	Glu	Pro	Ser
									210						220
Arg	Gly	Arg	Val	Ser	Trp	Arg	Glu	Ala	Arg	Ser	Leu	Lys	Arg		
									225						230
															235

<210> 17
<211> 1502
<212> DNA
<213> homo sapiens

<400> 17

gcggcgccgc cccctcgccc gctccggcgg ctaccagtgg tctcgaaag agggtcgtgg 60
tcccccacgg atgcgcttgt tggagaaaac cttggagatt cacggcaagg cgtaaagcct 120
ggggcttcca acgatactct gggcagggat ggaagcctag atgcctcacc gcaaggagcg 180
gccgagcggg tcctcgcttc acacacacgg cagcaccggc acccgaggagg gaggaaacat 240
gtccccggctg tcttcaccc ggtcgccctgt gtctccctg gctggccagg gcatccccct 300
gccagcccag ctcaccaagt ccaatgcacc tgtgcacatc gatgtggcg gccacatgta 360
caccagcagc ctggccacgc tcaccaagta ccctgactcc aggataagcc gccttcaa 420
tggcactgaa cccatcgccc tggacagttt gaagcaacat tatttcattt accgggatgg 480
ggagattttc cgctacgtcc tgagcttcct gggacgtcc aagctgctgc ttccggatga 540
ctttaaggac ttcagtcgtc tgtacgagga ggcgcgtac tatcagctcc agcccatgtt 600
gcgcgagctg gagcgctggc agcaggagca ggagcagcgg cgccgcagcc gggcctgtga 660
ctgcctggtg gtgcgcgtca cgcggactt gggcggcgg atcgcactca gcggcgagaa 720
ggccctcatac gaggaggct tccccgagac cggagacgtc atgtcaact cgcgtcaacgc 780
cggtggaac caggacccca cgcacgtcat ccgttcccg ctcaatggct actgcccggct 840
caactcggtt caggtccctgg agcggctgtt ccagagggtt ttcaagcgtgg ctgcgtccctg 900
tggggcggt gtggacttcc cccagttcag cgagttatgtg ctttgggggg aggagcggcg 960
gccgcagccc accccccactg ctgttcgaat caagcggaa cccctggact aggccctgct 1020
tcagtgccca cctggggcccc cccagggacc tggaaacagt gctggggagt tctgcctgtg 1080
tatacttggc cgtgggcatac agaccgggg tgaggctggg gggtccaaag ctggcccaagc 1140
gaggaccagg gtccccagggt tcatggcaac agaacgtggg atgcgtggagg catgcctgca 1200
gaaggactgt tgatgcgacc caaagataca gcggtgggat ctctgtgcc agctctccca 1260
gccccctcagc ttccgcggcct ggcgcagcat cctctgaggc cccggggcct gttggggcg 1320
ggtttggaga gccgtctgca gctacttcag aggagctgtt tatccctctc cacgcggggc 1380
agactctggc gggtctccta gcgtcccgaga gatggcttat tttctacagt atttaaaatg 1440
gatgcagccc taactgcaaa agtcagagag gctgacaagg accaatgctt ctttatctgg 1500
gg 1502