Computer Vision: Project

In the name of Deep Learning

Faustine Ginoux - Guillaume Lamine

The dataset choice

Boats and Cats resized 128x128 pixels

Boat 1 Boat 2

The dataset "no-choice"

Low classification accuracy

Boat and Cat results showed later (no spoilers!)

Autoencoders vs. PCA

Same subspace spanned but weights are different

Example in 2 dimensions:

Autoencoders vs. PCA

Non-Linear Convolutional Autoencoders

Reconstruction - different number of encoding variables

Error = **1.56**Loss function: **mean-squared error**

Error = **0.74** - Better than with linear auto-encoder

Classification task: use code of auto-encoder

1. Train the previous auto-encoder

→ 8192 coding variables

Classification task: multi-label classification

1. Train the previous auto-encoder

- Take the coding variables and train a classifier
 - → Flatten code
 - → Dense layer with 2 outputs

Classification task: results

Overfitting

Classification task: fine-tuning

No improvement on validation set

Classification task: avoid overfitting

- Greedy layer-wise training of auto-encoder
- Deep CNNs trained from scratch
- Activity regularization: L1, L2, dropout
- More training data
- Fewer coding variables
- Data augmentation

Log-loss (cost function)

Data augmentation

Classification task: conclusion

Classification on validation set: 85% - better than random!

- 41% of the boats misclassified
- 23% of the cats misclassified
 - → Use data augmentation only on boats to obtain a balanced dataset
 - → Select only good pictures of boats

Try pre-trained network

Segmentation task

The task: classification for each pixel

All the dataset is taken for better performances

The data processing:

- binary segmentation
- one hot encoding
- extract labels from colored images
- dimensions : 224 x 224 (for vgg16)

The model: FCN8s

BLOCK5 vgg16

14x14x512

convolutional transpose for upsampling

Performance metrics for segmentation

We want a criteria that reflects a "good" segmentation

pixel accuracy: risk of bias towards background $Acc = \frac{TP + TN}{TP + TN + FP + FN}$

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Better: Dice score and Intersection over Union (IoU)

both measures of similarity between sets

$$IoU = \frac{|X \cap Y|}{|X \cup Y|} = \frac{TP}{TP + FP + FN}$$

$$Dice = \frac{2 \cdot |X \cap Y|}{|X| + |Y|} = \frac{2 \cdot TP}{2 \cdot TP + FP + FN}$$

Full image

Training and results

Training still with categorical cross-entropy (maximize log likelihood)

Dice and IoU are not differentiable

Comments:

- loss: overfitting around 30 epochs
- Accuracy is still rising

Metrics	50 epochs	75 epochs	100 epochs	200 epochs
IoU_0	0.580	0.812	0.811	0.809
IoU_1	0.779	0.574	0.566	0.568
$Dice_0$	0.735	0.896	0.896	0.895
$Dice_1$	0.876	0.729	0.723	0.724
mean Dice score	0.805	0.813	0.809	0.809
mean IoU	0.680	0.693	0.689	0.688

https://medium.com/@arthur_ouaknine/review-of-deep -learning-algorithms-for-image-semantic-segmentation -509a600f7b57

Visual evaluation of segmentation

- Visually, seems to get more refined BUT
- best dice and IoU at 75 epochs
- As supposed, where accuracy gets better, tendency to diminish the surface of object classes

 squared board effect, maybe due to transpose convolutions

Segmentation task: conclusion

The results are in the range of the results of the literature: good!

To go further:

- Optimize directly Dice or IoU (approximation functions)
- Generalize task to multi-class: clustering to extract all 22 colors?
- Implement better architecture : U-net ?
- Search reason for squared effect in predictions