МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Лабораторная работа № 1 Вариант 14

Выполнила студентка 3 курса 5 группы **Кадакова Надежда**

Преподаватель доктор физ.-мат. наук профессор Корзюк Виктор Иванович

Задание 2.1 (Вариант 14)

Используя формулу Остроградского проинтегрировать по частям следующее выражение:

$$\int_{Q} (\partial_{x0} u + a^2 \sum_{j=1}^{n} \partial_{xj}^2 u) \, v dx, \, x = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}, u, v \in C^2(\overline{Q}), a^2 \in \mathbb{R}$$

Дополнительные сведения.

В ходе решения будут применены следующие формулы:

$$\int div au dx = \int\limits_{\partial Q} (au, v) ds$$
 - формула Остроградского (*)

$$\int\limits_{Q}\Delta uvdx=\int\limits_{\partial Q}v\partial_{\gamma}u-\int\limits_{\partial Q}u\partial_{\gamma}v+\int\limits_{\partial}u\Delta vdx\quad (**)\ ,$$
 где $\Delta v=div(grad\ u)$ - оператор Лапласа.

 $v\cdot\partial_{\gamma}u=(vgrad\ u,\ \gamma)$ - скалярное произведение единичного вектора γ к поверхности ∂Q и $vgrad\ u$.

Аналогично, $u \cdot \partial_{\gamma} v = (ugrad \ v, \ \gamma)$.

Решение.

$$I = \int_{Q} (\partial_{x0} u + a^2 \sum_{j=1}^{n} \partial_{xj}^2 u) \, v dx, \, x = (x_0, \dots, x_n) \in \mathbb{R}^{n+1}, u, v \in C^2(\overline{Q}), a^2 \in \mathbb{R}$$

 \overline{Q} - замыкание области Q , то есть множество, содержащее точки области Q и границу ∂Q этой области.

Из вышесказанного следует, что:

$$\overline{Q} = Q \cup \partial Q$$

 $\partial_{x_i}^2 u$ - это вторая производная (частная) по x_j функции u .

Тогда,
$$\sum_{j=0}^{n} \partial_{xj}^{2} u = \Delta u$$
.

В выражении $\sum\limits_{i=1}^{n}\partial_{xj}^{2}u$ прибавим и вычтем $\partial_{x0}^{2}u$. Получим:

$$\sum_{j=1}^{n} \partial_{xj}^{2} u + \partial_{x0}^{2} u - \partial_{x0}^{2} u = \partial_{x0}^{2} u + \partial_{x1}^{2} u + \partial_{x2}^{2} u + \dots + \partial_{xn}^{2} u - \partial_{x0}^{2} u$$

Тогда имеем:
$$\sum_{j=1}^{n} \partial_{xj}^{2} u + \partial_{x0}^{2} u - \partial_{x0}^{2} u = \Delta u - \partial_{x0}^{2} u$$
 (***)

Подставив (***) в исходное выражение, получаем:

$$I = \int\limits_{Q} (\partial_{x0} u + a^2 (\Delta u - \partial_{x0}^2 u)) v dx$$

Применяя формулы (*), (**), а также (***), имеем:

$$I = \int\limits_{Q} (\partial_{x0} u - \partial_{x0}^2 u) v dx + a^2 \int\limits_{Q} \Delta u v dx = I_1 + I_2 \ ,$$

$$I_1 \qquad \qquad I_2$$

где
$$I_2 = a^2 \left[\int\limits_{\partial Q} v \partial_\gamma u - \int\limits_{\partial Q} u \partial_\gamma v + \int\limits_{\partial} u \Delta v dx \right].$$

Окончательно получаем:

$$I = I_1 + I_2 = \int\limits_{Q} (\partial_{x0} u - \partial_{x0}^2 u) v dx + a^2 \left[\int\limits_{\partial Q} v \partial_{\gamma} u - \int\limits_{\partial Q} u \partial_{\gamma} v \right] + a^2 \int\limits_{\partial} u \Delta v dx \; .$$