Quiz2: Probability and Statistics (30 Marks)

Instruction:

- Please state reasons wherever applicable.
- Use precise mathematical arguments, no speeches.
- Universal Hint: Often, checking for almost sure convergence using the definition is going to be difficult, in which case use the following lemma.
 Lemma: Consider a sequence X₁, X₂,.... If for every ε > 0 we have

$$\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty,$$

then it implies that $X_n \to X$ almost surely.

Each question: 6 marks

- Show that convergence in mean square implies convergence in probability.
 (Hint: Use Markov Inequality)
- 2. Consider a sequence of random variables $\{X_n, n=1,2,3,\ldots\}$ such that

$$X_n = \begin{cases} \frac{-1}{n^2} & \text{with probability } 0.3\\ \frac{1}{n^2} & \text{with probability } 0.7. \end{cases}$$

Show that X_n converges to 0 almost surely.

- 3. Suppose X_n are i.i.d Binomial $(n, \frac{\lambda}{n})$. Show that X_n converges in distribution to Poisson (λ)
- 4. (a) Suppose you have access to samples from U[0,1] random variable. Now consider a random variable X with $F_X(x) = 1 e^{-\sqrt{x}}$. How would you use samples from U to generate samples of X? (3marks).
 - (b) Now suppose you have samples of X (you just generated them!). How would you use them to generate samples of U[0,1]. Give justification (2 marks)
- 5. Suppose {X_n, n = 1, 2, 3, ...} are i.i.d unifrom U[0, 1] and let Y_n = min{X₁, ..., X_n}. Show that Y_n converges to 0 in probability. (4marks) Does it also converge in almost sure sense? Justify your answer. (2)marks