Chapitre 5 : Le second degré (partie 2)

1 Fonction polynôme du second degré - Rappels

Définition 5.1

Une fonction polynôme de degré 2 est une fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où a, b et c sont des réels, avec a non nul.

Vocabulaire

Les réels a, b et c sont appelés coefficients de la fonction f.

La courbe représentative d'une fonction polynôme du second degré est appelée parabole.

Propriété 5.1 (admise)

Pour toute fonction polynôme du second degré de la forme $f(x) = ax^2 + bx + c$, avec a non nul, on peut trouver des réels α et β , tels que pour tout réel $x : f(x) = a(x - \alpha)^2 + \beta$. L'écriture $a(x - \alpha)^2 + \beta$ est la forme canonique du trinôme $ax^2 + bx + c$.

Propriété 5.2 (admise)

La courbe représentative de f est une parabole de sommet $S(\alpha; \beta)$.

Définition 5.2

Une équation du second degré, d'inconnue x, est une équation de la forme $ax^2 + bx + c = 0$ où a,b et c sont des réels donnés, avec a non nul.

Vocabulaire

Une solution de cette équation est appelée racine du trinôme $ax^2 + bx + c$.

2 Résolution de $ax^2 + bx + c = 0$

^Démonstration 5.1

On considère une équation du second degré $ax^2 + bx + c = 0$ où a, b et c sont des réels et avec $a \neq 0$. Résolvons cette équation.

Propriété 5.3

Soit $\Delta = b^2 - 4ac$ le discriminant du trinôme $ax^2 + bx + c$.

- si $\Delta > 0$, alors l'équation $ax^2 + bx + c = 0$ admet deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
- Si $\Delta = 0$, alors l'équation $ax^2 + bx + c = 0$ admet une seule solution : $x_0 = \frac{-b}{2a}$.
- Si $\Delta < 0$, alors l'équation $ax^2 + bx + c = 0$ n'admet aucune solution.

Savoir-Faire 5.1

Savoir résoudre une équation du second degré Résoudre dans $\mathbb R$ les équations suivantes :

- $2x^2 x = 0$

- $4x^2 4x + 1 = 0$ $6x^2 x 1 = 0$ $16x^2 8x + 13 = 0$
- $x^2 + 2x = 0$

Exercices

page 52 exercices 53, 59 et 60

Savoir-Faire 5.2

SAVOIR ÉTUDIER UNE ÉQUATION DU SECOND DEGRÉ AVEC PARAMÈTRE Soit $a \in \mathbb{R}$ et soit (E) l'équation $x^2 + 2x - 7a = 0$.

Déterminer a pour que (E) n'admette qu'une solution. Quelle est cette solution?

Exercices

page 53 exercices 69,70,71,72

Exercices

page 53 exercice 74

Savoir-Faire 5.3

SAVOIR RÉSOUDRE DES ÉQUATIONS QUI SE RAMÈNENT AU SECOND DEGRÉ Soit l'équation suivante :

$$x + \frac{1}{x - 3} = 5$$

Résoudre cette équation.

Page 53 exercices 76,77,78

Savoir-Faire 5.4

SAVOIR RÉSOUDRE UN PROBLÈME LIÉ AU SECOND DEGRÉ Déterminer 3 entiers consécutifs, sachant que la somme des carrés de ce nombre est égale à 1877.

Exercice 5.1

Trouver deux nombres dont la somme est 21 et le produit 54.

• Exercice 5.2

Des participants a une conférence ont échangé des poignées de mains (ça, c'était avant le covid :-) et l'un deux (il s'ennuyait peut-être!) a compté qu'il y avait eu en tout 325 poignées de mains. Combien de personnes ont assisté à la conférence?

3 Factorisation et signe du trinôme

3.1 Factorisation

Propriété 5.4

Soit $\Delta = b^2 - 4ac$ le discriminant du trinôme $ax^2 + bx + c$.

- si $\Delta > 0$, alors $ax^2 + bx + c = a(x x_1)(x x_2)$ avec x_1 et x_2 les deux racines distinctes.
- Si $\Delta = 0$, alors $ax^2 + bx + c = a(x x_0)^2$ avec x_0 la racine double.
- Si $\Delta < 0$, $ax^2 + bx + c$ n'est pas factorisable.

3.2 Signe du trinôme

Propriété 5.5 (admise)

On considère le trinôme $ax^2 + bx + c$. $ax^2 + bx + c$ est du signe de a, sauf entre ses racines éventuelles.

Remarque

Autrement dit,

• Si $\Delta < 0$, alors on a :

x	$-\infty$ +	$-\infty$
$ax^2 + bx + c$	signe de a	ι

• Si $\Delta = 0$, alors on a :

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
$ax^2 + bx + c$	$signe\ de\ a$	0 signe de	a

• Si $\Delta > 0$, alors on a , avec $x_1 < x_2$, :

x	$-\infty$	x_1	x_2	$+\infty$
$ax^2 + bx + c$	signe de	$a 0 \; sign \epsilon$	e de (-a) 0	signe de a

Savoir-Faire 5.5

Savoir déterminer le signe d'un trinôme du second degré.

Savoir-Faire 5.6

Savoir résoudre une inéquation du second degré.

4 Propriétés supplémentaires

Propriété 5.6 (admise)

Si le trinôme $ax^2 + bx + c$ admet deux racines distinctes ou confondues, alors leur somme S est égale à $S = -\frac{b}{a}$ et leur produit P est égal à $P = \frac{c}{a}$.

Propriété 5.7 (admise)

Deux réels ont pour somme S et produit P si et seulement si ils sont solutions de l'équation $x^2 - Sx + P = 0$.

Savoir-Faire 5.7

Savoir utiliser la propriété précédente.

Trouver, s'ils existent, deux nombres dont le produit est 1 et la somme est 4.