STAT 401A - Statistical Methods for Research Workers Multiple regression models

Jarad Niemi (Dr. J)

Iowa State University

last updated: November 2, 2014

Multiple regression

Recall the simple linear regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_i, \sigma^2)$$

The multiple regression model is

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}, \sigma^2)$$

where

- Y_i is the response for observation i and
- $X_{i,p}$ is the p^{th} explanatory variable for observation i.

We may also write

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$
 or $Y_i = \mu_i + e_i, e_i \stackrel{iid}{\sim} N(0, \sigma^2)$

where

$$\mu_i = \beta_0 + \beta_1 X_{i,1} + \dots + \beta_n X_{i,n}.$$

Explanatory variables

There is a lot of flexibility in the mean

$$\mu_i = E[Y_i|X_{i,1},...,X_{i,p}] = \beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}$$

and there are many possibilities for the explanatory variables $X_{i,1},\ldots,X_{i,p}$:

- Higher order terms (X^2)
- Additional explanatory variables $(X_1 \text{ and } X_2)$
- ullet Dummy/indicator variables for categorical variables $(X_1=\mathrm{I}())$
- Interactions (X₁X₂)
 - Continuous-continuous
 - Continuous-categorical
 - Categorical-categorical

Higher order terms (X^2)

Let

- Y_i be the distance for the i^{th} run of the experiment and
- H_i be the height for the i^{th} run of the experiment.

Simple linear regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i)$$
 , σ^2

The quadratic multiple regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i + \beta_2 H_i^2, \sigma^2)$$

The cubic multiple regression assumes

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 H_i + \beta_2 H_i^2 + \beta_3 H_i^3, \sigma^2)$$

Case1001

SAS code and output

DATA case1001;

```
INFILE 'case1001.csv' DSD FIRSTOBS=2;
INPUT distance height;
height2 = height*height;
height3 = height*height2;

# PROC REG allows multiple MODEL statements
PROC REG DATA=case1001;
MODEL distance = height;
MODEL distance = height height2;
MODEL distance = height height2 height3;
RUN:
```

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	269.71246	24.31239	11.09	0.0001
height	1	0.33334	0.04203	7.93	0.0005
Intercept	1	199.91282	16.75945	11.93	0.0003
height height2	1 1	0.70832 -0.00034369	0.07482 0.00006678	9.47 -5.15	0.0007 0.0068
Intercept	1	155.77551	8.32579	18.71	0.0003
height	1	1.11530	0.06567	16.98	0.0004
height2	1	-0.00124	0.00013842	-8.99	0.0029
height3	1	5.477104E-7	8.327329E-8	6.58	0.0072

SAS code and output

```
DATA case1001:
 INFILE 'case1001.csv' DSD FIRSTOBS=2;
 INPUT distance height;
 height2 = height ** 2;
 height3 = height ** 3;
PROC GLM DATA=case1001:
 MODEL distance = height height2 height3:
/* PROC GLM allows the variable construction within the MODEL statement
   and provides nicer output (not shown here) */
DATA case1001:
  INFILE 'case1001.csv' DSD FIRSTOBS=2;
 INPUT distance height;
/* This shorthand puts in H, H^2, and H^3 */
PROC GLM DATA=case1001;
 MODEL distance = height|height|height;
/* This only puts H^3 */
PROC GLM DATA=case1001:
 MODEL distance = height*height*height;
```

R code and output

```
# Construct the variables by hand
case1001$Height2 = case1001$Height^2
case1001$Height3 = case1001$Height3
m1 = lm(Distance~Height,
                                       case1001)
m2 = lm(Distance~Height+Height2,
                                     case1001)
m3 = lm(Distance~Height+Height2+Height3, case1001)
coefficients(m1)
(Intercept)
               Height
  269.7125
                0.3333
coefficients(m2)
(Intercept) Height Height2
  1.999e+02 7.083e-01 -3.437e-04
coefficients(m3)
(Intercept)
                Height Height2
                                      Height3
            1 115e+00 -1 245e-03
  1.558e+02
                                    5.477e-07
# Let R construct the variables for you
lm(Distance~poly(Height,3), case1001)
```

R code and output

```
# Let R construct the variables for you
m = lm(Distance~poly(Height,3), case1001)
summary(m)
Call:
lm(formula = Distance ~ polv(Height, 3), data = case1001)
Residuals:
-2.4036 3.5809 1.8917 -4.4688 -0.0804 2.3216 -0.8414
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
             434.00 1.52 286.31 9.4e-08 ***
poly(Height, 3)1 267.12 4.01 66.60 7.5e-06 ***
               -70.19 4.01 -17.50 0.00041 ***
poly(Height, 3)2
poly(Height, 3)3
               26.38
                        4.01 6.58 0.00715 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.01 on 3 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.6e+03 on 3 and 3 DF, p-value: 2.66e-05
```

Interpretation

Model:

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \cdots + \beta_p X_{i,p}, \sigma^2)$$

The interpretation is

- β_0 is the expected value of the response Y_i when all explanatory variables are zero.
- β_p , $p \neq 0$ is the expected increase in the response for a one-unit increase in the p^{th} explanatory variable when all other explanatory variables are held constant.
- ullet R^2 is the proportion of the variance in the response explained by the model

Longnose Dace Abundance

From http://udel.edu/~mcdonald/statmultreg.html:

I extracted some data from the Maryland Biological Stream Survey. ... The dependent variable is the number of Longnose Dace (Rhinichthys cataractae) per 75-meter section of [a] stream. The independent variables are the area (in acres) drained by the stream; the dissolved oxygen (in mg/liter); the maximum depth (in cm) of the 75-meter segment of stream; nitrate concentration (mg/liter); sulfate concentration (mg/liter); and the water temperature on the sampling date (in degrees C).

Consider the model

$$Y_i \stackrel{ind}{\sim} N(\beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2}, \sigma^2)$$

where

- Y_i: count of Longnose Dace in stream i
- $X_{i,1}$: maximum depth (in cm) of stream i
- $X_{i,2}$: nitrate concentration (mg/liter) of stream i

Exploratory


```
DATA dace;
```

INFILE 'Longnose Dace.csv' DSD FIRSTOBS=2;

INPUT stream \$ count acreage do2 maxdepth no3 so4 temp;

PROC REG DATA=dace:

MODEL count = maxdepth no3;

RUN;

The REG Procedure Model: MODEL1 Dependent Variable: count

Number of Observations Read 67 Number of Observations Used 67

Analysis of Variance

		Sum or	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	28930	14465	7.68	0.0010
Error	64	120503	1882.85220		
Corrected Total	66	149432			
Root MS	E	43.39184	R-Square	0.1936	
Dopondo	nt Moan	30 10//8	Adi P-Sa	0 1684	

Dependent Mean 39.10448 Adj R-Sq 0.1684 Coeff Var 110.96388

Parameter Estimates

	Parameter	Standard		
DF	Estimate	Error	t Value	Pr > t
1	-17.55503	15.95865	-1.10	0.2754
1	0.48106	0.18111	2.66	0.0100
1	8.28473	2.95659	2.80	0.0067
	DF 1 1	DF Estimate 1 -17.55503 1 0.48106	DF Estimate Error 1 -17.55503 15.95865 1 0.48106 0.18111	DF Estimate Error t Value 1 -17.55503 15.95865 -1.10 1 0.48106 0.18111 2.66

R code and output

```
d = read.csv("longnosedace.csv")
m = lm(count~no3+maxdepth.d)
summary(m)
Call:
lm(formula = count ~ no3 + maxdepth, data = d)
Residuals:
      10 Median 30 Max
  Min
-55.06 -27.70 -8.68 11.79 165.31
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.555 15.959 -1.10 0.2754
         8.285 2.957 2.80 0.0067 **
no3
maxdepth 0.481 0.181 2.66 0.0100 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 43.4 on 64 degrees of freedom
Multiple R-squared: 0.194, Adjusted R-squared: 0.168
F-statistic: 7.68 on 2 and 64 DF, p-value: 0.00102
```

Interpretation

- Intercept (β_0): The expected count of Longnose Dace when maximum depth and nitrate concentration are both zero is -18.
- Coefficient for maxdepth (β_1) : Holding nitrate concentration constant, each cm increase in maximum depth is associated with an additional 0.48 Longnose Dace counted on average.
- Coefficient for no3 (β_2): Holding maximum depth constant, each mg/liter increase in nitrate concentration is associated with an addition 8.3 Longnose Dace counted on average.
- Coefficient of determination: The model explains 19% of the variability in the count of Longnose Dace.