COVER PAGE

STAT 608 Homework 07 Summer 2017

Please TYPE your name and email address below, then convert to PDF and attach as the first page of your homework upload.

NAME: RAJAN KAPOUR

EMAIL: r. Kapoor @ tanu edu.

01/05

(I

Solution 1)

Assuming unrelated regression lines model Y = TOTALCWG, x = STAGE

MI
$$\begin{cases} Y = \beta_0 + \beta_1 x + e & TRT = 0 \\ Y = \beta_0 + \beta_2 + (\beta_1 + \beta_2)x + e & TRT = 1 \end{cases}$$

We call model MI Cus full madel.

Now to test new hypothesis

H.
$$\beta_3 = 0$$
 (identical plopes)
H. $\beta_3 \neq 0$

The following is the reduced model

MQ {
$$Y = \beta_0 + \beta_1 \lambda + e$$
 (TRT=0)
 $Y = \beta_0 + \beta_2 \lambda + e$ (TRT=1)

The null hypothesis can be tested using partial-p

$$Y = 5.4760 + 2.4934 \times TRT=0$$

 $Y = 7.7143 + 0.41857 \quad TRT=1$

For reduced model

$$Y = 7.2298 + 1.51132$$
 TRT=0
 $Y = 5.91248 + 1.51132$ TRT=1

$$F = \frac{187.59 - 155.22}{1} = 3.9623$$

$$\frac{155.22}{19}$$

Solution 2

$$\frac{p(x)}{1-p(x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\Rightarrow$$
 $p(x) = \exp(\hat{\beta}_0 + \hat{\beta}_1 \hat{x}) + \exp(\hat{\beta}_0 + \hat{\beta}_n x) p(x)$

$$\Rightarrow p(x) = \frac{\exp(\hat{\beta}_0 + \hat{\beta}_1 x)}{1 + \exp(\hat{\beta}_0 + \hat{\beta}_1 x)} = \frac{1}{\exp(-\hat{\beta}_0 - \hat{\beta}_1 x) + 1}$$

at x=3

$$P(x) = \frac{1}{\exp[-(-2.643 + 0.674 \times 3)] + 1}$$

$$\Rightarrow P(a) = 0.3495$$

probability that the insect will survive = 1-ph) = 0.6504

Expected no of surviving insects = 200 x (i-pln) = 130.

Odds on dying = $\frac{p(a)}{1-p(a)}$ = $\exp(\hat{\beta}_0 + \hat{\beta}_1 x)$ if x increases by 1 unit, odds on dying increases by $\theta = \exp(0.674)$ = $\frac{1.96207}{1.96207}$

93 90% CI for ϕ exp $(\hat{\beta}_1 \pm Z_{0.05} * 5 e(\hat{\beta}_1))$ $\alpha_{12.0.05}^{\omega=0.1}$ exp $(0.674 \pm 1.6448 \times 0.039)$ (1.840, 2.092)

Solution 3

log(Sales) = Bo+ Time + Month_i i=2,..., 12 The diagnostic plosts and surmary from R is attamed.

Weakness - Variables Time, Month_2, Month_7 au not statistically significant - Case 32,33,21,89 have botandono rest > 2.

```
Call:
```

Residuals:

```
Min 1Q Median 3Q Max -0.57520 -0.05166 -0.00739 0.07133 0.28116
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.8723775 0.0518913 113.167 < 2e-16 ***
Month 2
       -0.0522214 0.0635314 -0.822 0.413533
Month 3
        0.2474630 0.0635029 3.897 0.000201 ***
Month 4
Month 5
        0.2270750 0.0634940 3.576 0.000595 ***
Month 6
        0.0690719 0.0634869 1.088 0.279874
Month 7
Month 8
        0.3708060 0.0634940 5.840 1.07e-07 ***
Month 9
Month 10
        0.4133160 0.0635029 6.509 6.13e-09 ***
        Month 11
        1.4169818 0.0655707 21.610 < 2e-16 ***
Month 12
Time
        0.0007670 0.0004756 1.613 0.110755
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1227 on 80 degrees of freedom Multiple R-squared: 0.9111, Adjusted R-squared: 0.8978 F-statistic: 68.33 on 12 and 80 DF, p-value: < 2.2e-16

Diagnostic Plots:

 $\label{logSales} Fitted\ values \\ Im(log(Sales) \sim Month_2 + Month_3 + Month_4 + Month_5 + Month_6 + Month_7 + ...$

 $\label{log-cont} Theoretical \ Quantiles $$ Im(log(Sales) \sim Month_2 + Month_3 + Month_4 + Month_5 + Month_6 + Month_7 + ... $$$

Im(log(Sales) ~ Month_2 + Month_3 + Month_4 + Month_5 + Month_6 + Month_7 + ...

Im(log(Sales) ~ Month_2 + Month_3 + Month_4 + Month_5 + Month_6 + Month_7 + ...

Solution 4

Clearly a linear regression of Y on X through the origin will estimate p. Since all 4 assumptions of Regression Model -

- Y is related to X by simple reg model (: $e_t = \rho e_{t-1} + \epsilon_t$)
 ϵ_t are independent of each other
 - Et have common variace
 - Et one normally distributed with mean zero e common variance (=1: standard mormal). (least sq distribution given for Ge

(42) YES. the valid S.e. for p should be 0.133, Since model MI is valid regression model (Unear).