Expenditure Mi	nimization
Expenditure	min p.x] exactly isomorphic to
Minimization	s.t. u(x) > u -> target utility min w.x s.t. f(x) > y
Problem (EMP)	w ↔ p, u(·) ↔ f(·), y ↔ ū
	- Hicksian demand
Solution	o h(p,ū) = argmin p·x
Functions	s.t. u(x)≥ū
	oe(p,ū)= minp·x = p·h(p,ū)
	(s.t. u(x) ≥ ū
	value function, expenditure function
	X>
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	h (p, ū)
	$u(x) = \bar{u} \rightarrow constraint$
	X ₁
Properties of	1) hd-linp
e(p,ū)	2) nondecreasing in P& ū
·	3) concave in p
Properties of	1) hd-o in p: h(αp,ū)= h(p,ū)
h (p, ū)	2) ≥ convex ⇒ h(p,ū) is convex set
	≥ strictly convex => h(p,ū) is unique
Shepard's	· ac/awi= Xi (win)
Lemma	For the EMP: $\partial e(p,u)/\partial Pi = h,(p,u)$
	· Substitution matrix
	Dh (p,u) =
	$Dh(p_1u) = \begin{bmatrix} \frac{\partial h_1}{\partial p_1} & \cdots & \frac{\partial h_1}{\partial p_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_n}{\partial p_1} & \cdots & \frac{\partial h_n}{\partial p_n} \end{bmatrix}$

	= [2 e (p, ū) / 2 p, ··· 2 e (p, ū) / 2 p, 2 pn]
	ρ ² e(p,ū)/∂ρι∂ρη ··· ∂ ² e(p,ū)/∂ρη J
	-Theorem:
	The substitution matrix Dh(p,ū) is:
	1) negative semidefinite ~ (differential) law of (compensated) demand, and (compensated)
	2) Symmetric (compensated) demand, $\frac{\partial}{\partial P_i} \leq 0$
	3) satisfies Dh (p,ū)·p=0
Duality	min pixi+ p2x2
	s.t. × log X1 + B log X2 ≥ ū
	=> L = P1 x1 + P2 X2 + N (Q- x log (x1) - B log (x2))
	- Foc:
	D P1 = λα/X1
	λ (ū-α log (x1) - β log (x5))] csc
	Will bind, blc of locally non-satiated
	=) ū= dlog(x1) + Blog(x3) 3
	- Solve:
	$\cdot \bigcirc / \bigcirc : \frac{X_2}{X_1} \frac{\alpha}{\beta} = \frac{P_1}{P_2}$
	$\Rightarrow X_2 = \left(\frac{\beta}{\alpha} \frac{P_1}{P_2}\right) X_1$
	· Plug into ③: α log (x1) + β log (cx1) = ū
	$\alpha \log(x_1) + \beta \log(x_1) + \beta \log(c) = \overline{u}$
	$\log(x_i) + \log c^{\beta} = \bar{u}$
	$\log (x_1) + \log c^{\beta} = \bar{u}$ $x_1 = e^{\bar{u}} e^{-\log c^{\beta}}$
	$ \log(x_1) + \log c^{\beta} = \bar{u}$ $x_1 = e^{\bar{u}} e^{-\log c^{\beta}}$ $x_1 = e^{\bar{u}} \left[\frac{P_1}{\alpha}\right]^{\alpha-1} \left[\frac{P_2}{\beta}\right]^{\beta}$
	$ \log(x_{1}) + \log c^{\beta} = \bar{u} $ $X_{1} = e^{\bar{u}} e^{-\log c^{\beta}}$ $X_{1} = e^{\bar{u}} \left[\frac{P_{1}}{\alpha}\right]^{\alpha-1} \left[\frac{P_{2}}{\beta}\right]^{\beta}$ $\Rightarrow h_{1}(p,\bar{u}) = e^{\bar{u}} \left[\frac{P_{1}}{\alpha}\right]^{\alpha-1} \left[\frac{P_{2}}{\beta}\right]^{\beta}$
	$ \log(x_1) + \log c^{\beta} = \bar{u}$ $x_1 = e^{\bar{u}} e^{-\log c^{\beta}}$ $x_1 = e^{\bar{u}} \left[\frac{P_1}{\alpha}\right]^{\alpha-1} \left[\frac{P_2}{\beta}\right]^{\beta}$
	$ \log(x_{1}) + \log c^{\beta} = \bar{u} $ $X_{1} = e^{\bar{u}} e^{-\log c^{\beta}}$ $X_{1} = e^{\bar{u}} \left[\frac{P_{1}}{\alpha}\right]^{\alpha-1} \left[\frac{P_{2}}{\beta}\right]^{\beta}$ $\Rightarrow h_{1}(p,\bar{u}) = e^{\bar{u}} \left[\frac{P_{1}}{\alpha}\right]^{\alpha-1} \left[\frac{P_{2}}{\beta}\right]^{\beta}$

+ [eū(Pi)x(B)B]B	
$= e^{\overline{u}} \left(\frac{P_1}{\alpha} \right)^{\alpha} \left(\frac{P_2}{B} \right)^{\beta}$	
· X1 (p,m) = am/p1	
X2 (p, m) = βm/p2	
What if we set $m = e(p, u)$?	
$X_{1}(p, e(p, \bar{u})) = \alpha e^{\bar{u}} \left(\frac{p_{1}}{\alpha}\right)^{\alpha} \left(\frac{p_{2}}{\beta}\right)^{\beta} / p_{1}$ $= e^{\bar{u}} \left(\frac{p_{1}}{\alpha}\right)^{\alpha-1} \left(\frac{p_{2}}{\beta}\right)^{\beta}$	
= h, (pa) ? Duality blt UMP & EMP	
Theorem: Assume u() is continuous & LNS.	
1) If x* solves max u(x) s.t. px ≤ m, x; > 0,	
x* also solves min p.x s.t. u(x) > u(x*), x; > o	
Further, e (p,u(x*)) = m.	
2) If X* solves min p.X s.t. u(x) > ん,Xi>o,	
x* also solves max u(x*) s.t. P. X < p. x*, x; >0.	
Further, V(p,p.x*) = u	
Proof of 1):	
· Say x* solves UMP but not EMP at u = u(x*)	
=> ∃ some y s.t. u(y) > u(x*) and p.y < p.x*= m	
· By LNS, 3 another y's.t. p.y' <m and="" u(y)=""> u(y)</m>	
$\Rightarrow u(y') > u(x^*)$	
=> X* is not optimal in UMP (W)	
Proof of 2):	
· Say x* solves EMP but not UMP	
=> 3 some y s.t. u(y) > u(x*) and py < p,x*	
· Let y'= xy for x E(0,1)	
· By continuity, for a≈1, u(y') > u(x*) and p.y'<	D.X*
=> X* is not optimal in EMP (1)	

4 "Duality	1) e (p, v(p,m)) = m
Identities"	2) V (p, e(p, ū)) = ū
	3) X; (p,e(p,ū)) = h; (p,ū)
	4) h; (p, v(p, m)) = X; (p, m) /
Hicksian	· Why is it called "compensated" demand?
Demand	With an increase in pz,
	$h(0\bar{u}) = x(p_1 e(0\bar{u}))$
	h(prū) both change
	Atticksian compensation to achieve same utility even
	X, when price changes
Money Metric	Bundle X, u(x), fix price at p.
Utility	Q: How much money does the consumer need to achieve
	utility u(x) at p?
	- It's NOT the price of X.
	- Should be m (pix) = e (pi u(x))
	x ₂₁
	m(p,x)
	P ₂
	u (v)
	<u>ν(x)</u>
	• Fix p, view as a function of x
	$m(p,\cdot) = e(p,\cdot)$
	As a function of x, m(p,x) is a utility function that
	represents some preferences as u(·)
	X ₂ 1 _x ,
	$m(p,x) = m(p,x') = m(p,x'') = \cdots$
	since you are indifferent with x, x', x', x", x",

$$E_{im} = \frac{d \log (X_{i}(p,m))}{d \log (m)} = \frac{m}{X_{i}(p,m)} \frac{d X_{i}(p,m)}{d m}$$

Special case: homothetic preferences

$$u\left(\frac{1}{\alpha}y\right) \leq u(x)$$

