Diagonalisasi Matriks Persegi

Kuliah Aljabar Linier Semester Ganjil 2015-2016

ΜZΙ

Fakultas Informatika Telkom University

FIF Tel-U

November 2015

Acknowledgements

Slide ini disusun berdasarkan materi yang terdapat pada sumber-sumber berikut:

- Aplikasi Matriks dan Ruang Vektor, Edisi 1, 2014, oleh Adiwijaya.
- Elementary Linear Algebra, 10th Edition, 2010, oleh H. Anton dan C. Rorres.
- 3 Slide kuliah Aljabar Linier di Telkom University oleh Jondri.
- Slide kuliah Aljabar Linier di Fasilkom UI oleh Kasiyah M. Junus dan Siti Aminah.
- Slide kuliah Aljabar Linier di Fasilkom UI oleh L. Y. Stefanus.

Beberapa gambar dapat diambil dari sumber-sumber di atas. *Slide* ini ditujukan untuk keperluan akademis di lingkungan FIF Telkom University. Jika Anda memiliki saran/ pendapat/ pertanyaan terkait materi dalam *slide* ini, silakan kirim email ke <ple>pleasedontspam>@telkomuniversity.ac.id.

Bahasan

- Motivasi: Menghitung Pangkat Sebuah Matriks
- Masalah Diagonalisasi
- Prosedur Diagonalisasi Matriks
- Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogonal

Bahasan

- 1 Motivasi: Menghitung Pangkat Sebuah Matriks
- Masalah Diagonalisasi
- ③ Prosedur Diagonalisasi Matriks
- 4 Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogona

Pangkat Sebuah Matriks Persegi

Salah satu dari penerapan diagonalisasi matriks adalah untuk menghitung pangkat (yang cukup besar) dari sebuah matriks dan menentukan solusi dari permasalahan logaritma matriks.

Permasalahan

Jika

$$\mathbf{A} = \left[\begin{array}{ccc} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{array} \right],$$

tentukan A^{13} .

Permasalahan

Jika
$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, carilah bilangan bulat n sehingga

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1024 & 1024 \\ 0 & 1024 & 1024 \end{bmatrix}.$$

Bahasan

- Motivasi: Menghitung Pangkat Sebuah Matriks
- Masalah Diagonalisasi
- Prosedur Diagonalisasi Matriks
- 4 Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogona

November 2015

Masalah Diagonalisasi

Ingat kembali bahwa suatu matriks ${f D}$ dikatakan sebagai matriks diagonal apabila ${f D}$ berbentuk

$$\mathbf{D} = \left[egin{array}{ccc} d_{11} & & \mathbf{O} \\ & d_{22} & & \\ & & \ddots & \\ \mathbf{O} & & d_{2D} \end{array}
ight].$$

Permasalahan

Misalkan ${\bf A}$ adalah sebuah matriks persegi berorde n, apakah terdapat matriks ${\bf P}$ yang invertibel dan memenuhi sifat

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$$

dengan D adalah sebuah matriks diagonal.

Apakah terdapat matriks invertibel ${\bf P}$ sedemikian hingga ${\bf P}^{-1}{\bf A}{\bf P}={\bf D}$ untuk suatu matriks diagonal ${\bf D}$ apabila ${\bf A}=\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

Apakah terdapat matriks invertibel \mathbf{P} sedemikian hingga $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ untuk suatu matriks diagonal \mathbf{D} apabila $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

Pilih
$$\mathbf{P}=\left[\begin{array}{cc} -\frac{1}{2} & 1 \\ 1 & 0 \end{array}\right]$$
, sehingga $\mathbf{P}^{-1}=\left[\begin{array}{cc} 0 & 1 \\ 1 & \frac{1}{2} \end{array}\right]$, tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix} =$$

Apakah terdapat matriks invertibel \mathbf{P} sedemikian hingga $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ untuk suatu matriks diagonal \mathbf{D} apabila $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

Pilih
$$\mathbf{P}=\left[\begin{array}{cc} -\frac{1}{2} & 1 \\ 1 & 0 \end{array}\right]$$
, sehingga $\mathbf{P}^{-1}=\left[\begin{array}{cc} 0 & 1 \\ 1 & \frac{1}{2} \end{array}\right]$, tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Apakah terdapat matriks invertibel \mathbf{P} sedemikian hingga $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ untuk suatu matriks diagonal \mathbf{D} apabila $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

Pilih
$$\mathbf{P}=\left[\begin{array}{cc} -\frac{1}{2} & 1 \\ 1 & 0 \end{array}\right]$$
, sehingga $\mathbf{P}^{-1}=\left[\begin{array}{cc} 0 & 1 \\ 1 & \frac{1}{2} \end{array}\right]$, tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 adalah matriks diagonal yang **entri-entri diagonalnya adalah nilai**

eigen dari **A** (yaitu -1 dan 1).

Apakah terdapat matriks invertibel \mathbf{P} sedemikian hingga $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ untuk suatu matriks diagonal \mathbf{D} apabila $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

Pilih
$$\mathbf{P}=\left[\begin{array}{cc} -\frac{1}{2} & 1 \\ 1 & 0 \end{array}\right]$$
, sehingga $\mathbf{P}^{-1}=\left[\begin{array}{cc} 0 & 1 \\ 1 & \frac{1}{2} \end{array}\right]$, tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 adalah matriks diagonal yang **entri-entri diagonalnya adalah nilai eigen** dari **A** (yaitu -1 dan 1). Anda juga bisa memeriksa bahwa $\begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ adalah salah satu vektor basis bagi E_{-1} dan $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ adalah salah satu vektor basis bagi E_{1} .

Perhatikan bahwa penempatan dari ${\bf P}$ maupun ${\bf P}^{-1}$ berpengaruh, karena bila posisi dari ${\bf P}$ dan ${\bf P}^{-1}$ ditukar diperoleh

Perhatikan bahwa penempatan dari ${\bf P}$ maupun ${\bf P}^{-1}$ berpengaruh, karena bila posisi dari ${\bf P}$ dan ${\bf P}^{-1}$ ditukar diperoleh

$$\left[\begin{array}{cc} -\frac{1}{2} & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ 1 & \frac{1}{2} \end{array}\right] =$$

Perhatikan bahwa penempatan dari P maupun P^{-1} berpengaruh, karena bila posisi dari \mathbf{P} dan \mathbf{P}^{-1} ditukar diperoleh

$$\left[\begin{array}{cc} -\frac{1}{2} & 1\\ 1 & 0 \end{array}\right] \left[\begin{array}{cc} 1 & 1\\ 0 & -1 \end{array}\right] \left[\begin{array}{cc} 0 & 1\\ 1 & \frac{1}{2} \end{array}\right] = \left[\begin{array}{cc} -\frac{3}{2} & -\frac{5}{4}\\ 1 & \frac{3}{2} \end{array}\right],$$

yang bukan matriks diagonal.

Matriks yang Terdiagonalkan

Definisi

Sebuah matriks persegi $\bf A$ berorde n disebut terdiagonalkan (dapat didiagonalkan, diagonalizable) apabila terdapat matriks invertibel $\bf P$ dan matriks diagonal $\bf D$ sedemikian hingga

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.\tag{1}$$

Ketika kondisi (1) terpenuhi, maka \mathbf{P} dikatakan mendiagonalkan \mathbf{A} (Inggris: \mathbf{P} diagonalize \mathbf{A}).

Permasalahan

10 / 46

Matriks yang Terdiagonalkan

Definisi

Sebuah matriks persegi ${\bf A}$ berorde n disebut terdiagonalkan (dapat didiagonalkan, diagonalizable) apabila terdapat matriks invertibel ${\bf P}$ dan matriks diagonal ${\bf D}$ sedemikian hingga

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.\tag{1}$$

Ketika kondisi (1) terpenuhi, maka \mathbf{P} dikatakan mendiagonalkan \mathbf{A} (Inggris: \mathbf{P} diagonalize \mathbf{A}).

Permasalahan

Syarat apa yang diperlukan agar sebuah matriks persegi ${f A}$ terdiagonalkan?

Teorema

Matriks yang Terdiagonalkan

Definisi

Sebuah matriks persegi $\bf A$ berorde n disebut terdiagonalkan (dapat didiagonalkan, diagonalizable) apabila terdapat matriks invertibel $\bf P$ dan matriks diagonal $\bf D$ sedemikian hingga

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}.\tag{1}$$

Ketika kondisi (1) terpenuhi, maka $\mathbf P$ dikatakan mendiagonalkan $\mathbf A$ (Inggris: $\mathbf P$ diagonalize $\mathbf A$).

Permasalahan

Syarat apa yang diperlukan agar sebuah matriks persegi ${f A}$ terdiagonalkan?

Teorema

Jika ${f A}$ adalah sembarang matriks persegi berorde n, maka kedua pernyataan berikut ekivalen

- A terdiagonalkan.
- $oldsymbol{2}$ A memiliki himpunan n vektor eigen yang bebas linier.

Asumsikan A terdiagonalkan.

Asumsikan $\bf A$ terdiagonalkan. Akan ditunjukkan bahwa $\bf A$ memiliki n vektor eigen yang bebas linier. Dari asumsi $\bf A$ terdiagonalkan, kita dapat menulis

Asumsikan $\bf A$ terdiagonalkan. Akan ditunjukkan bahwa $\bf A$ memiliki n vektor eigen yang bebas linier. Dari asumsi $\bf A$ terdiagonalkan, kita dapat menulis

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D},\tag{2}$$

untuk suatu matriks invertibel P dan matriks diagonal D.

Asumsikan ${\bf A}$ terdiagonalkan. Akan ditunjukkan bahwa ${\bf A}$ memiliki n vektor eigen yang bebas linier. Dari asumsi ${\bf A}$ terdiagonalkan, kita dapat menulis

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D},\tag{2}$$

untuk suatu matriks invertibel $\mathbf P$ dan matriks diagonal $\mathbf D$. Misalkan entri-entri diagonal dari $\mathbf D$ adalah d_1, d_2, \ldots, d_n . Ekspresi (2) juga dapat ditulis sebagai

$$AP = PD$$
.

Misalkan
$$\mathbf{P} = [\begin{array}{cccc} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{array}].$$

Asumsikan $\bf A$ terdiagonalkan. Akan ditunjukkan bahwa $\bf A$ memiliki n vektor eigen yang bebas linier. Dari asumsi A terdiagonalkan, kita dapat menulis

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D},\tag{2}$$

untuk suatu matriks invertibel P dan matriks diagonal D. Misalkan entri-entri diagonal dari **D** adalah d_1, d_2, \dots, d_n . Ekspresi (2) juga dapat ditulis sebagai

$$AP = PD$$
.

Misalkan $\mathbf{P} = [\begin{array}{ccc} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{array}]$. Mengingat \mathbf{P} invertibel, maka $\operatorname{rank}(\mathbf{P}) =$

Asumsikan ${\bf A}$ terdiagonalkan. Akan ditunjukkan bahwa ${\bf A}$ memiliki n vektor eigen yang bebas linier. Dari asumsi ${\bf A}$ terdiagonalkan, kita dapat menulis

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D},\tag{2}$$

untuk suatu matriks invertibel ${\bf P}$ dan matriks diagonal ${\bf D}$. Misalkan entri-entri diagonal dari ${\bf D}$ adalah $d_1, d_2 \ldots, d_n$. Ekspresi (2) juga dapat ditulis sebagai

$$AP = PD$$
.

Misalkan $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$. Mengingat \mathbf{P} invertibel, maka $\mathrm{rank}(\mathbf{P}) = n$. Ini artinya himpunan vektor-vektor kolom $\{\mathbf{p}_1, \mathbf{p}_n \dots, \mathbf{p}_n\}$ bebas linier. Dari sifat perkalian matriks, kita memiliki

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} =$$

Asumsikan ${\bf A}$ terdiagonalkan. Akan ditunjukkan bahwa ${\bf A}$ memiliki n vektor eigen yang bebas linier. Dari asumsi ${\bf A}$ terdiagonalkan, kita dapat menulis

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D},\tag{2}$$

untuk suatu matriks invertibel ${\bf P}$ dan matriks diagonal ${\bf D}$. Misalkan entri-entri diagonal dari ${\bf D}$ adalah $d_1, d_2 \ldots, d_n$. Ekspresi (2) juga dapat ditulis sebagai

$$AP = PD$$
.

Misalkan $\mathbf{P} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \cdots \ \mathbf{p}_n]$. Mengingat \mathbf{P} invertibel, maka $\mathrm{rank}(\mathbf{P}) = n$. Ini artinya himpunan vektor-vektor kolom $\{\mathbf{p}_1, \mathbf{p}_n \dots, \mathbf{p}_n\}$ bebas linier. Dari sifat perkalian matriks, kita memiliki

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} = \begin{bmatrix} \mathbf{Ap}_1 & \mathbf{Ap}_2 & \cdots & \mathbf{Ap}_n \end{bmatrix}.$$

Kemudian karena D adalah matriks diagonal kita memiliki

$$\mathbf{PD} = \left[egin{array}{cccc} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{array}
ight] \mathbf{D} =$$

Asumsikan ${\bf A}$ terdiagonalkan. Akan ditunjukkan bahwa ${\bf A}$ memiliki n vektor eigen yang bebas linier. Dari asumsi ${\bf A}$ terdiagonalkan, kita dapat menulis

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D},\tag{2}$$

untuk suatu matriks invertibel ${\bf P}$ dan matriks diagonal ${\bf D}$. Misalkan entri-entri diagonal dari ${\bf D}$ adalah $d_1, d_2 \ldots, d_n$. Ekspresi (2) juga dapat ditulis sebagai

$$AP = PD$$
.

Misalkan $\mathbf{P} = [\begin{array}{ccc} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{array}]$. Mengingat \mathbf{P} invertibel, maka $\mathrm{rank}\left(\mathbf{P}\right) = n$. Ini artinya himpunan vektor-vektor kolom $\{\mathbf{p}_1, \mathbf{p}_n \dots, \mathbf{p}_n\}$ bebas linier. Dari sifat perkalian matriks, kita memiliki

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix} = \begin{bmatrix} \mathbf{Ap}_1 & \mathbf{Ap}_2 & \cdots & \mathbf{Ap}_n \end{bmatrix}.$$

Kemudian karena D adalah matriks diagonal kita memiliki

$$\mathbf{PD} = [\begin{array}{ccccc} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{array}] \mathbf{D} = [\begin{array}{ccccc} d_1 \mathbf{p}_1 & d_2 \mathbf{p}_2 & \cdots & d_n \mathbf{p}_n \end{array}].$$

Karena $\mathbf{AP} = \mathbf{PD}$ kita memperoleh

Karena
$$\mathbf{AP} = \mathbf{PD}$$
 kita memperoleh

Karena $\mathbf{AP} = \mathbf{PD}$ kita memperoleh

Karena AP = PD kita memperoleh

Ini berarti \mathbf{p}_i (vektor kolom dari matriks \mathbf{P}) adalah vektor eigen dari \mathbf{A} , dan entri-entri diagonal utama dari D adalah nilai-nilai eigen yang bersesuaian dengan vektor-vektor eigen untuk setiap vektor \mathbf{p}_i dengan $1 \le i \le n$.

Karena $\mathbf{AP} = \mathbf{PD}$ kita memperoleh

$$\left[\begin{array}{ccccc} \mathbf{A}\mathbf{p}_1 & \mathbf{A}\mathbf{p}_2 & \cdots & \mathbf{A}\mathbf{p}_n \end{array} \right] &=& \left[\begin{array}{ccccc} d_1\mathbf{p}_1 & d_2\mathbf{p}_2 & \cdots & d_n\mathbf{p}_n \end{array} \right] \text{ atau}$$

$$\mathbf{A}\mathbf{p}_i &=& d_i\mathbf{p}_i \text{ untuk setiap } 1 \leq i \leq n.$$

Ini berarti \mathbf{p}_i (vektor kolom dari matriks \mathbf{P}) adalah vektor eigen dari \mathbf{A} , dan entri-entri diagonal utama dari \mathbf{D} adalah nilai-nilai eigen yang bersesuaian dengan vektor-vektor eigen untuk setiap vektor \mathbf{p}_i dengan $1 \leq i \leq n$. Kemudian karena $\{\mathbf{p}_1, \mathbf{p}_n, \dots, \mathbf{p}_n\}$ bebas linier, maka \mathbf{A} memiliki himpunan n vektor eigen yang bebas linier.

Asumsikan ${\bf A}$ memiliki himpunan n vektor eigen yang bebas linier.

Asumsikan $\bf A$ memiliki himpunan n vektor eigen yang bebas linier. Akan dibuktikan bahwa $\bf A$ terdiagonalkan. Dari asumsi $\bf A$ memiliki himpunan n vektor eigen yang bebas linier, misalkan himpunan n vektor eigen yang bebas linier itu adalah $\{{\bf v}_1,{\bf v}_2,\ldots,{\bf v}_n\}$. Masing-masing ${\bf v}_i$ bersesuaian dengan nilai eigen λ_i untuk $1\leq i\leq n$. Kita memiliki

MZI (FIF Tel-U) Diagonalisasi Matriks

Asumsikan $\bf A$ memiliki himpunan n vektor eigen yang bebas linier. Akan dibuktikan bahwa ${f A}$ terdiagonalkan. Dari asumsi ${f A}$ memiliki himpunan n vektor eigen yang bebas linier, misalkan himpunan n vektor eigen yang bebas linier itu adalah $\{v_1, v_2, \dots, v_n\}$. Masing-masing v_i bersesuaian dengan nilai eigen λ_i untuk $1 \le i \le n$. Kita memiliki

$$\mathbf{A}\mathbf{v}_i = \lambda \mathbf{v}_i$$
 untuk setiap $1 \leq i \leq n$.

Selanjutnya konstruksi matriks P yang vektor-vektor kolomnya adalah $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, yaitu

$$\mathbf{P} =$$

Asumsikan $\bf A$ memiliki himpunan n vektor eigen yang bebas linier. Akan dibuktikan bahwa $\bf A$ terdiagonalkan. Dari asumsi $\bf A$ memiliki himpunan n vektor eigen yang bebas linier, misalkan himpunan n vektor eigen yang bebas linier itu adalah $\{{\bf v}_1,{\bf v}_2,\ldots,{\bf v}_n\}$. Masing-masing ${\bf v}_i$ bersesuaian dengan nilai eigen λ_i untuk $1\leq i\leq n$. Kita memiliki

$$\mathbf{A}\mathbf{v}_i = \lambda \mathbf{v}_i$$
 untuk setiap $1 \leq i \leq n$.

Selanjutnya konstruksi matriks $\mathbf P$ yang vektor-vektor kolomnya adalah $\mathbf v_1, \mathbf v_2, \dots, \mathbf v_n$, yaitu

$$\mathbf{P} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}.$$

MZI (FIF Tel-U) Diagonalisasi Matriks

Perhatikan bahwa

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$
$$=$$

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \mathbf{\Lambda}$$

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \mathbf{\Lambda}$$

$$= \mathbf{P}\mathbf{\Lambda}$$

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \mathbf{\Lambda}$$

$$= \mathbf{P}\mathbf{\Lambda}$$

dengan Λ adalah matriks diagonal yang entri-entri diagonalnya adalah $\lambda_1, \lambda_2, \dots, \lambda_n$.

◆ロト ◆団ト ◆重ト ◆ 電ト ◆ロト

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \mathbf{\Lambda}$$

$$= \mathbf{P}\mathbf{\Lambda}$$

dengan Λ adalah matriks diagonal yang entri-entri diagonalnya adalah $\lambda_1, \lambda_2, \ldots, \lambda_n$. Jadi kita memperoleh $\mathbf{AP} = \mathbf{P}\Lambda$. Karena $\{\mathbf{v}_1, \mathbf{v}_2, \ldots \mathbf{v}_n\}$ bebas linier maka $\dim\left(\operatorname{col}\left(\mathbf{P}\right)\right) = \operatorname{rank}\left(\mathbf{P}\right) = n$.

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \mathbf{\Lambda}$$

$$= \mathbf{P}\mathbf{\Lambda}$$

dengan Λ adalah matriks diagonal yang entri-entri diagonalnya adalah $\lambda_1, \lambda_2, \ldots, \lambda_n$. Jadi kita memperoleh $\mathbf{AP} = \mathbf{P}\Lambda$. Karena $\{\mathbf{v}_1, \mathbf{v}_2, \ldots \mathbf{v}_n\}$ bebas linier maka $\dim\left(\operatorname{col}\left(\mathbf{P}\right)\right) = \operatorname{rank}\left(\mathbf{P}\right) = n$. Akibatnya \mathbf{P} invertibel. Jadi kita memiliki

4□ > 4回 > 4 豆 > 4 豆 > 豆 のQで

$$\mathbf{AP} = \mathbf{A} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}\mathbf{v}_1 & \mathbf{A}\mathbf{v}_2 & \cdots & \mathbf{A}\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 & \cdots & \lambda_n\mathbf{v}_n \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \mathbf{\Lambda}$$

$$= \mathbf{P}\mathbf{\Lambda}$$

dengan Λ adalah matriks diagonal yang entri-entri diagonalnya adalah $\lambda_1, \lambda_2, \dots, \lambda_n$. Jadi kita memperoleh $\mathbf{AP} = \mathbf{P} \Lambda$. Karena $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ bebas linier maka $\dim (\operatorname{col}(\mathbf{P})) = \operatorname{rank}(\mathbf{P}) = n$. Akibatnya **P** invertibel. Jadi kita memiliki

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda}.$$

Dengan demikian A dapat didiagonalkan.

4 D > 4 B > 4 E > 4 E > E 990

Permasalahan

Apakah ada matriks yang tak terdiagonalkan?

Permasalahan

Apakah ada matriks yang tak terdiagonalkan?

Ada, matriks
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 tidak terdiagonalkan. Persamaan

karakteristik dari \mathbf{A} adalah $p_{\mathbf{A}}(\lambda) = (\lambda-1)^3 = 0$. Sehingga diperoleh nilai eigen 1 dengan $m_a(1) = 3$. Untuk mencari vektor-vektor eigen dari \mathbf{A} akan ditinjau $E_1 = \ker{(\mathbf{I} - \mathbf{A})}$.

Permasalahan

Apakah ada matriks yang tak terdiagonalkan?

Ada, matriks
$$\mathbf{A}=\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 tidak terdiagonalkan. Persamaan

karakteristik dari ${\bf A}$ adalah $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)^3=0.$ Sehingga diperoleh nilai eigen 1 dengan $m_a(1) = 3$. Untuk mencari vektor-vektor eigen dari **A** akan ditinjau $E_1 = \ker (\mathbf{I} - \mathbf{A})$. Tinjau bahwa

$$\left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right],$$

sehingga diperoleh

Permasalahan

Apakah ada matriks yang tak terdiagonalkan?

Ada, matriks
$$\mathbf{A}=\begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 tidak terdiagonalkan. Persamaan

karakteristik dari ${\bf A}$ adalah $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)^3=0$. Sehingga diperoleh nilai eigen 1 dengan $m_a\left(1\right)=3$. Untuk mencari vektor-vektor eigen dari ${\bf A}$ akan ditinjau $E_1=\ker\left({\bf I}-{\bf A}\right)$. Tinjau bahwa

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

sehingga diperoleh $x_2=x_3=0$, $x_1=t\in\mathbb{R}$. Jadi jika $E_1=\ker\left(\mathbf{I}-\mathbf{A}\right)=\operatorname{span}$

Permasalahan

Apakah ada matriks yang tak terdiagonalkan?

Ada, matriks
$$\mathbf{A}=\left[egin{array}{ccc} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}
ight]$$
 tidak terdiagonalkan. Persamaan

karakteristik dari ${\bf A}$ adalah $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)^3=0$. Sehingga diperoleh nilai eigen 1 dengan $m_a\left(1\right)=3$. Untuk mencari vektor-vektor eigen dari ${\bf A}$ akan ditinjau $E_1=\ker\left({\bf I}-{\bf A}\right)$. Tinjau bahwa

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

sehingga diperoleh $x_2=x_3=0,\ x_1=t\in\mathbb{R}.$ Jadi jika $E_1=\ker{(\mathbf{I}-\mathbf{A})}=\mathrm{span}\,\{(1,0,0)\}.$

Permasalahan

Apakah ada matriks yang tak terdiagonalkan?

Ada, matriks
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
 tidak terdiagonalkan. Persamaan

karakteristik dari ${\bf A}$ adalah $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)^3=0$. Sehingga diperoleh nilai eigen 1 dengan $m_a\left(1\right)=3$. Untuk mencari vektor-vektor eigen dari ${\bf A}$ akan ditinjau $E_1=\ker\left({\bf I}-{\bf A}\right)$. Tinjau bahwa

$$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

sehingga diperoleh $x_2=x_3=0, \ x_1=t\in\mathbb{R}$. Jadi jika $E_1=\ker\left(\mathbf{I}-\mathbf{A}\right)=\mathrm{span}\left\{(1,0,0)\right\}$. Akibatnya semua vektor eigen dari \mathbf{A} pasti berbentuk (t,0,0) dengan $t\neq 0,\ t\in\mathbb{R}$. Jadi **tidak mungkin \mathbf{A}** memiliki himpunan 3 vektor yang bebas linier. Berdasarkan teorema sebelumnya, \mathbf{A} tidak terdiagonalkan.

Diagonalisasi – Multiplisitas Aljabar dan Geometri Nilai Eigen

Pada ilustrasi sebelumnya kita melihat bahwa ${\bf A}$ tak terdiagonalkan dan memiliki nilai eigen 1 dengan $m_a\left(1\right)=3$ dan $m_g\left(1\right)=1$. Secara umum, kita memiliki teorema berikut.

Teorema

Matriks persegi A terdiagonalkan jika dan hanya jika $m_g(\lambda) = m_a(\lambda)$ untuk setiap nilai eigen λ dari matriks A.

Himpunan Vektor Eigen dari Nilai Eigen Berbeda

Teorema

Jika $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ adalah n vektor eigen yang masing-masing bersesuaian dengan nilai eigen $\lambda_1, \lambda_2, \dots, \lambda_n$ yang **berbeda**, maka $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ **bebas linier**.

Akibat

Jika ${\bf A}$ adalah matriks $n \times n$ dengan n nilai eigen berbeda, maka ${\bf A}$ dapat didiagonalkan.

Bukti

Karena $\bf A$ adalah matriks $n \times n$ dengan n nilai eigen berbeda, maka $\bf A$ memiliki himpunan n vektor eigen yang bersifat bebas linier. Akibatnya $\bf A$ dapat didiagonalkan.

November 2015

17 / 46

MZI (FIF Tel-U) Diagonalisasi Matriks

Bahasan

- Motivasi: Menghitung Pangkat Sebuah Matriks
- 2 Masalah Diagonalisasi
- Prosedur Diagonalisasi Matriks
- 4 Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogona

November 2015

Dari teorema yang telah dijelaskan kita dapat mengkonstruksi prosedur diagonalisasi matriks sebagai berikut.

Prosedur Diagonalisasi Matriks

Misalkan A adalah sebuah matriks persegi berorde n.

Diagonalisasi Matriks November 2015

19 / 46

Dari teorema yang telah dijelaskan kita dapat mengkonstruksi prosedur diagonalisasi matriks sebagai berikut.

Prosedur Diagonalisasi Matriks

Misalkan A adalah sebuah matriks persegi berorde n.

• Langkah 1: Tentukan nilai eigen dari A. Selanjutnya carilah (jika ada) nvektor eigen dari A yang bebas linier dan bersesuaian dengan suatu nilai eigen tertentu. Vektor-vektor eigen tersebut dapat diperoleh dari basis-basis bagi ruang eigen untuk A. Jika tidak ada n vektor dari A yang bebas linier, maka A tidak dapat didiagonalkan.

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015 19 / 46

Dari teorema yang telah dijelaskan kita dapat mengkonstruksi prosedur diagonalisasi matriks sebagai berikut.

Prosedur Diagonalisasi Matriks

Misalkan $\bf A$ adalah sebuah matriks persegi berorde n.

- Langkah 1: Tentukan nilai eigen dari A. Selanjutnya carilah (jika ada) n
 vektor eigen dari A yang bebas linier dan bersesuaian dengan suatu nilai
 eigen tertentu. Vektor-vektor eigen tersebut dapat diperoleh dari basis-basis
 bagi ruang eigen untuk A. Jika tidak ada n vektor dari A yang bebas linier,
 maka A tidak dapat didiagonalkan.
- Langkah 2: Misalkan n vektor eigen yang diperoleh dari langkah 1 adalah $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$. Konstruksi matriks $\mathbf{P} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$. Karena $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$ bebas linier, maka \mathbf{P} invertibel.

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015 19 / 46

Dari teorema yang telah dijelaskan kita dapat mengkonstruksi prosedur diagonalisasi matriks sebagai berikut.

Prosedur Diagonalisasi Matriks

Misalkan $\bf A$ adalah sebuah matriks persegi berorde n.

- Langkah 1: Tentukan nilai eigen dari A. Selanjutnya carilah (jika ada) n vektor eigen dari A yang bebas linier dan bersesuaian dengan suatu nilai eigen tertentu. Vektor-vektor eigen tersebut dapat diperoleh dari basis-basis bagi ruang eigen untuk A. Jika tidak ada n vektor dari A yang bebas linier, maka A tidak dapat didiagonalkan.
- Langkah 2: Misalkan n vektor eigen yang diperoleh dari langkah 1 adalah $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$. Konstruksi matriks $\mathbf{P} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$. Karena $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$ bebas linier, maka \mathbf{P} invertibel.
- Langkah 3: Tentukan matriks \mathbf{P}^{-1} . Selanjutnya matriks $\mathbf{P}^{-1}\mathbf{AP}$ adalah matriks diagonal yang entri-entri diagonal utamanya adalah nilai-nilai eigen $\lambda_1, \lambda_2, \ldots, \lambda_n$. Setiap vektor eigen \mathbf{p}_i bersesuaian dengan nilai eigen λ_i untuk setiap $1 \leq i \leq n$. Biasanya matriks diagonal $\mathbf{P}^{-1}\mathbf{AP}$ ditulis dengan $\mathbf{\Lambda} = \mathrm{diag}\,(\lambda_1, \lambda_2, \ldots, \lambda_n)$.

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015 19 / 46

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \left[egin{array}{cc} 1 & 1 \\ 0 & -1 \end{array}
ight]$

Solusi:

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

Solusi: Untuk matriks ${\bf A}$, kita memiliki persamaan karakteristik $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)\left(\lambda+1\right)=0.$

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

Solusi: Untuk matriks ${\bf A}$, kita memiliki persamaan karakteristik $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)\left(\lambda+1\right)=0$. Jadi diperoleh nilai eigen $\lambda_1=-1$ dan $\lambda_2=1$. Pertama kita akan menentukan basis bagi $E_{-1}=\ker\left(-{\bf I}-{\bf A}\right)$. Tinjau SPL

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

Solusi: Untuk matriks A, kita memiliki persamaan karakteristik $p_{\mathbf{A}}(\lambda) = (\lambda - 1)(\lambda + 1) = 0$. Jadi diperoleh nilai eigen $\lambda_1 = -1$ dan $\lambda_2 = 1$. Pertama kita akan menentukan basis bagi $E_{-1} = \ker (-\mathbf{I} - \mathbf{A})$. Tinjau SPL

$$\left[\begin{array}{cc} -2 & -1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],$$

diperoleh $2x_1 + x_2 = 0$, jadi jika $x_2 = s$ maka $x_1 = -\frac{1}{2}s$. Akibatnya $E_{-1} = \operatorname{span}$

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

Solusi: Untuk matriks A, kita memiliki persamaan karakteristik $p_{\mathbf{A}}(\lambda) = (\lambda - 1)(\lambda + 1) = 0$. Jadi diperoleh nilai eigen $\lambda_1 = -1$ dan $\lambda_2 = 1$. Pertama kita akan menentukan basis bagi $E_{-1} = \ker{(-\mathbf{I} - \mathbf{A})}$. Tinjau SPL

$$\left[\begin{array}{cc} -2 & -1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],$$

diperoleh $2x_1 + x_2 = 0$, jadi jika $x_2 = s$ maka $x_1 = -\frac{1}{2}s$. Akibatnya $E_{-1} = \operatorname{span}\left\{\left(-\frac{1}{2},1\right)\right\}$. Selanjutnya kita akan menentukan basis bagi $E_1 = \ker (\mathbf{I} - \mathbf{A})$. Tinjau SPL

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

Solusi: Untuk matriks ${\bf A}$, kita memiliki persamaan karakteristik $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)\left(\lambda+1\right)=0.$ Jadi diperoleh nilai eigen $\lambda_1=-1$ dan $\lambda_2=1.$ Pertama kita akan menentukan basis bagi $E_{-1}=\ker\left(-{\bf I}-{\bf A}\right).$ Tinjau SPL

$$\left[\begin{array}{cc} -2 & -1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],$$

diperoleh $2x_1+x_2=0$, jadi jika $x_2=s$ maka $x_1=-\frac{1}{2}s$. Akibatnya $E_{-1}=\mathrm{span}\left\{\left(-\frac{1}{2},1\right)\right\}$. Selanjutnya kita akan menentukan basis bagi $E_1=\ker\left(\mathbf{I}-\mathbf{A}\right)$. Tinjau SPL

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],$$

diperoleh $x_2=0$ dan $x_1=t\in\mathbb{R}$. Akibatnya $E_1=\operatorname{span}_{\operatorname{reg}}$

Latihan

Lakukan diagonalisasi pada matriks $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$

Solusi: Untuk matriks ${\bf A}$, kita memiliki persamaan karakteristik $p_{\bf A}\left(\lambda\right)=\left(\lambda-1\right)\left(\lambda+1\right)=0.$ Jadi diperoleh nilai eigen $\lambda_1=-1$ dan $\lambda_2=1.$ Pertama kita akan menentukan basis bagi $E_{-1}=\ker\left(-{f I}-{f A}\right).$ Tinjau SPL

$$\left[\begin{array}{cc} -2 & -1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],$$

diperoleh $2x_1+x_2=0$, jadi jika $x_2=s$ maka $x_1=-\frac{1}{2}s$. Akibatnya $E_{-1}=\mathrm{span}\left\{\left(-\frac{1}{2},1\right)\right\}$. Selanjutnya kita akan menentukan basis bagi $E_1=\ker\left(\mathbf{I}-\mathbf{A}\right)$. Tinjau SPL

$$\left[\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right],$$

diperoleh $x_2=0$ dan $x_1=t\in\mathbb{R}$. Akibatnya $E_1=\mathrm{span}\,\{(1_{\mathbb{Z}}0)\}_{\mathbb{C}}$

 $\mathbf{P} =$

$$\mathbf{P} = \left[\begin{array}{cc} -\frac{1}{2} & 1\\ 1 & 0 \end{array} \right].$$

Akibatnya $\mathbf{P}^{-1} =$

$$\mathbf{P} = \left[\begin{array}{cc} -\frac{1}{2} & 1\\ 1 & 0 \end{array} \right].$$

Akibatnya $\mathbf{P}^{-1}=\left[egin{array}{cc}0&1\\1&rac{1}{2}\end{array}
ight]$. Oleh karena itu diperoleh matriks diagonal $m{\Lambda}$ sebagai berikut

$$\mathbf{\Lambda} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{P} = \left[\begin{array}{cc} -\frac{1}{2} & 1\\ 1 & 0 \end{array} \right].$$

Akibatnya ${f P}^{-1}=\left[egin{array}{cc} 0&1\\1&rac{1}{2} \end{array}
ight]$. Oleh karena itu diperoleh matriks diagonal ${f \Lambda}$ sebagai berikut

$$\mathbf{\Lambda} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Perhatikan bahwa $\begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$ adalah vektor eigen yang bersesuaian dengan nilai eigen -1 dan $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ adalah vektor eigen yang bersesuaian dengan nilai eigen 1.

Bahasan

- Motivasi: Menghitung Pangkat Sebuah Matriks
- Masalah Diagonalisasi
- Prosedur Diagonalisasi Matriks
- Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogonal

November 2015

Permasalahan

Misalkan ${\bf A}$ adalah sebuah matriks persegi berorde n yang terdiagonalkan.

Bagaimana cara yang **efisien** untuk menghitung \mathbf{A}^k , $k \in \mathbb{N}$?

Misalkan ${\bf A}$ adalah matriks $n \times n$ yang terdiagonalkan, maka kita memiliki matris invertibel ${\bf P}$ dan matriks diagonal ${\bf \Lambda}$ yang memenuhi

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} =$$

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015 23 / 46

Permasalahan

Misalkan A adalah sebuah matriks persegi berorde n yang terdiagonalkan.

Bagaimana cara yang **efisien** untuk menghitung \mathbf{A}^k , $k \in \mathbb{N}$?

Misalkan ${f A}$ adalah matriks n imes n yang terdiagonalkan, maka kita memiliki matris invertibel ${f P}$ dan matriks diagonal ${f \Lambda}$ yang memenuhi

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & \mathbf{O} \\ & \lambda_2 & \\ & & \ddots & \\ \mathbf{O} & & \lambda_n \end{bmatrix}, \tag{3}$$

dengan $\lambda_1,\lambda_2,\ldots,\lambda_n$ adalah nilai-nilia eigen dari ${\bf A}$. Karena ${\bf \Lambda}$ adalah matriks diagonal, maka kita memiliki

$$\Lambda^k =$$

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015 23 / 46

Permasalahan

Misalkan ${\bf A}$ adalah sebuah matriks persegi berorde n yang terdiagonalkan.

Bagaimana cara yang **efisien** untuk menghitung \mathbf{A}^k , $k \in \mathbb{N}$?

Misalkan ${\bf A}$ adalah matriks $n \times n$ yang terdiagonalkan, maka kita memiliki matris invertibel ${\bf P}$ dan matriks diagonal ${\bf \Lambda}$ yang memenuhi

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & \mathbf{O} \\ & \lambda_2 & \\ & & \ddots \\ \mathbf{O} & & \lambda_n \end{bmatrix}, \tag{3}$$

dengan $\lambda_1,\lambda_2,\ldots,\lambda_n$ adalah nilai-nilia eigen dari ${\bf A}$. Karena ${\bf \Lambda}$ adalah matriks diagonal, maka kita memiliki

$$oldsymbol{\Lambda}^k = \left[egin{array}{ccc} \lambda_1^k & & \mathbf{O} \ & \lambda_2^k & & \ & & \ddots & \ \mathbf{O} & & \lambda_n^k \end{array}
ight]$$
 , untuk setiap $k \in \mathbb{N}$.

 Image: Control of the control of t

Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks

Dengan mengkuadratkan kedua ruas pada (3) diperoleh

<ロ > < 回 > < 回 > < 豆 > < 豆 > ~ 豆 ・ り へ ⊙ 。

24 / 46

$$(\mathbf{P}^{-1}\mathbf{A}\mathbf{P})^2 = \mathbf{\Lambda}^2$$

$$\begin{aligned} \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)^2 &= & \mathbf{\Lambda}^2 \\ \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)\left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right) &= & \mathbf{\Lambda}^2 \end{aligned}$$

$$\begin{aligned} \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)^2 &= & \mathbf{\Lambda}^2 \\ \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)\left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right) &= & \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\left(\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{A}\right)\mathbf{P} &= & \mathbf{\Lambda}^2 \end{aligned}$$

$$\begin{aligned} \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)^2 &= \mathbf{\Lambda}^2 \\ \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)\left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right) &= \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\left(\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{A}\right)\mathbf{P} &= \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\mathbf{A}^2\mathbf{P} &= \mathbf{\Lambda}^2 \end{aligned}$$

Secara umum melalui induksi matematika, kita memiliki

4□ > 4□ > 4 = > 4 = > = 990

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015 24 / 46

$$\begin{aligned} \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)^2 &= \mathbf{\Lambda}^2 \\ \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)\left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right) &= \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\left(\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{A}\right)\mathbf{P} &= \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\mathbf{A}^2\mathbf{P} &= \mathbf{\Lambda}^2 \end{aligned}$$

Secara umum melalui induksi matematika, kita memiliki

$$\mathbf{P}^{-1}\mathbf{A}^k\mathbf{P} = \mathbf{\Lambda}^k$$
 untuk setiap $k \in \mathbb{N}$, jadi $\mathbf{A}^k =$

$$\begin{aligned} \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)^2 &= \mathbf{\Lambda}^2 \\ \left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right)\left(\mathbf{P}^{-1}\mathbf{A}\mathbf{P}\right) &= \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\left(\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\mathbf{A}\right)\mathbf{P} &= \mathbf{\Lambda}^2 \\ \mathbf{P}^{-1}\mathbf{A}^2\mathbf{P} &= \mathbf{\Lambda}^2 \end{aligned}$$

Secara umum melalui induksi matematika, kita memiliki

$$\mathbf{P}^{-1}\mathbf{A}^{k}\mathbf{P} = \mathbf{\Lambda}^{k}$$
 untuk setiap $k \in \mathbb{N}$, jadi
$$\mathbf{A}^{k} = \mathbf{P}\mathbf{\Lambda}^{k}\mathbf{P}^{-1}$$
 untuk setiap $k \in \mathbb{N}$.

Latihan

Dengan metode diagonalisasi matriks, tentukan \mathbf{A}^{13} apabila $\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Solusi:

Latihan

Dengan metode diagonalisasi matriks, tentukan
$$\mathbf{A}^{13}$$
 apabila $\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Solusi: A memiliki persamaan karakteristik sebagai berikut

$$0 = p_{\mathbf{A}}(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix}$$

dengan ekspansi baris pertama

$$0 =$$

Latihan

Dengan metode diagonalisasi matriks, tentukan ${f A}^{13}$ apabila ${f A}=egin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Solusi: ${f A}$ memiliki persamaan karakteristik sebagai berikut

$$0 = p_{\mathbf{A}}(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix}$$

dengan ekspansi baris pertama

$$0 = \lambda \begin{vmatrix} \lambda - 2 & -1 \\ 0 & \lambda - 3 \end{vmatrix} + 2 \begin{vmatrix} -1 & \lambda - 2 \\ -1 & 0 \end{vmatrix}$$

= $\lambda (\lambda - 2) (\lambda - 3) + 2 (\lambda - 2)$
= $(\lambda - 2) (\lambda (\lambda - 3) + 2)$
= $(\lambda - 2) (\lambda^2 - 3\lambda + 2) = (\lambda - 2) (\lambda - 2) (\lambda - 1) = (\lambda - 2)^2 (\lambda - 1)$.

Latihan

Dengan metode diagonalisasi matriks, tentukan ${f A}^{13}$ apabila ${f A}=egin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Solusi: A memiliki persamaan karakteristik sebagai berikut

$$0 = p_{\mathbf{A}}(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = \begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix}$$

dengan ekspansi baris pertama
$$\begin{vmatrix} \lambda - 2 & -1 \end{vmatrix} \begin{vmatrix} -1 & \lambda \end{vmatrix}$$

$$0 = \lambda \begin{vmatrix} \lambda - 2 & -1 \\ 0 & \lambda - 3 \end{vmatrix} + 2 \begin{vmatrix} -1 & \lambda - 2 \\ -1 & 0 \end{vmatrix}$$
$$= \lambda (\lambda - 2) (\lambda - 3) + 2 (\lambda - 2)$$

$$= (\lambda - 2) (\lambda (\lambda - 3) + 2)$$

$$= (\lambda - 2)(\lambda^2 - 3\lambda + 2) = (\lambda - 2)(\lambda - 2)(\lambda - 1) = (\lambda - 2)^2(\lambda - 1).$$

Jadi diperoleh nilai eigen $\lambda_1=1$ dan $\lambda_2=\lambda_3=2$.

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_1+0x_2+2x_3=0 \ x_1+x_2+x_3=0$, akibatnya jika $x_3=s$ maka $x_1=-2s$ dan $x_2=s$ dengan $s\in\mathbb{R}$. Jadi $E_1=\operatorname{span}$

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_1+0x_2+2x_3=0 \ x_1+x_2+x_3=0$, akibatnya jika $x_3=s$ maka $x_1=-2s$ dan $x_2=s$ dengan $s\in\mathbb{R}$. Jadi $E_1=\mathrm{span}\,\{(-2,1,1)\}$. Selanjutnya akan ditentukan $E_2=\ker\big(2\mathbf{I}-\mathbf{A}\big)$.

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_1+0x_2+2x_3=0 \ x_1+x_2+x_3=0$, akibatnya jika $x_3=s$ maka $x_1=-2s$ dan $x_2=s$ dengan $s\in\mathbb{R}$. Jadi $E_1=\mathrm{span}\,\{(-2,1,1)\}$. Selanjutnya akan ditentukan $E_2=\ker\left(2\mathbf{I}-\mathbf{A}\right)$.

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_1+x_3=0$, akibatnya jika $x_3=t$ maka $x_1=-t$. Kemudian $x_2=u\in\mathbb{R}$. Jadi jika $\vec{x}\in\ker\left(2\mathbf{I}-\mathbf{A}\right)$, maka $\vec{x}=(-t,u,t)=t\left(-1,0,1\right)+u\left(0,1,0\right)$ dengan $t,u\in\mathbb{R}$. Oleh karenanya $E_2=\operatorname{span}$

$$\begin{bmatrix} 1 & 0 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_1+0x_2+2x_3=0 \ x_1+x_2+x_3=0$, akibatnya jika $x_3=s$ maka $x_1=-2s$ dan $x_2=s$ dengan $s\in\mathbb{R}$. Jadi $E_1=\mathrm{span}\,\{(-2,1,1)\}$. Selanjutnya akan ditentukan $E_2=\ker\big(2\mathbf{I}-\mathbf{A}\big)$.

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_1+x_3=0$, akibatnya jika $x_3=t$ maka $x_1=-t$. Kemudian $x_2=u\in\mathbb{R}$. Jadi jika $\vec{x}\in\ker\left(2\mathbf{I}-\mathbf{A}\right)$, maka $\vec{x}=(-t,u,t)=t\left(-1,0,1\right)+u\left(0,1,0\right)$ dengan $t,u\in\mathbb{R}$. Oleh karenanya $E_2=\operatorname{span}\left\{(-1,0,1),(0,1,0)\right\}$.

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1 = (-2, 1, 1)$, $\mathbf{p}_2 = (-1, 0, 1)$, dan $\mathbf{p}_3 = (0, 1, 0)$. Sehingga

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1=(-2,1,1)$, $\mathbf{p}_2=(-1,0,1)$, dan $\mathbf{p}_3=(0,1,0)$. Sehingga

$$\mathbf{P} = \left[\begin{array}{ccc} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right] \; \mathsf{dan} \; \mathbf{P}^{-1} = \left[\begin{array}{ccc} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{array} \right] \; \mathsf{(tunjukkan!)}$$

Tinjau bahwa
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right| = \mathbf{\Lambda}.$$

Kita dapat memiliki $\{\mathbf p_1,\mathbf p_2,\mathbf p_3\}$ yang bebas linier, dengan $\mathbf p_1=(-2,1,1)$, $\mathbf p_2=(-1,0,1)$, dan $\mathbf p_3=(0,1,0)$. Sehingga

$$\mathbf{P} = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \, \mathsf{dan} \, \mathbf{P}^{-1} = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \, \mathsf{(tunjukkan!)}$$

Tinjau bahwa
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \mathbf{\Lambda}$$
. Akibatnya $\mathbf{P}^{-1}\mathbf{A}^{13}\mathbf{P} = \mathbf{\Lambda}^{13}$, jadi

$$\mathbf{A}^{13} = \mathbf{P} \mathbf{\Lambda}^{13} \mathbf{P}^{-1}$$

$$A^{13} =$$

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1 = (-2, 1, 1)$, $\mathbf{p}_2 = (-1, 0, 1)$, dan $\mathbf{p}_3 = (0, 1, 0)$. Sehingga

$$\mathbf{P} = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \, \mathsf{dan} \, \mathbf{P}^{-1} = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \, \mathsf{(tunjukkan!)}$$

Tinjau bahwa
$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right]=\mathbf{\Lambda}.$$
 Akibatnya $\mathbf{P}^{-1}\mathbf{A}^{13}\mathbf{P}=\mathbf{\Lambda}^{13}$, jadi

$$\mathbf{A}^{13} = \mathbf{P} \mathbf{\Lambda}^{13} \mathbf{P}^{-1}$$

$$\mathbf{A}^{13} = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{13} & 0 \\ 0 & 0 & 2^{13} \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -8190 & 0 & -16382 \\ 8191 & 8192 & 8191 \\ 8191 & 0 & 16383 \end{bmatrix}.$$

Bahasan

- Motivasi: Menghitung Pangkat Sebuah Matriks
- Masalah Diagonalisasi
- Prosedur Diagonalisasi Matriks
- 4 Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogona

November 2015

Masalah Logaritma Matriks

Permasalahan

Jika
$${\bf B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, carilah bilangan bulat n sehingga
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1024 & 1024 \\ 0 & 1024 & 1024 \end{bmatrix} .$$
 (Petunjuk: cari terlebih dulu matriks yang mendiagonalkan ${\bf B}$).

Solusi:

Solusi: B memiliki persamaan karakteristik sebagai berikut

$$0 = p_{\mathbf{B}}(\lambda) = |\lambda \mathbf{I} - \mathbf{B}| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & -1 & \lambda - 1 \end{vmatrix}$$

dengan ekspansi baris pertama

Solusi: B memiliki persamaan karakteristik sebagai berikut

$$0 = p_{\mathbf{B}}(\lambda) = |\lambda \mathbf{I} - \mathbf{B}| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & -1 & \lambda - 1 \end{vmatrix}$$

dengan ekspansi baris pertama

$$0 = (\lambda - 1) \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1) \left((\lambda - 1)^2 - 1 \right)$$
$$= (\lambda - 1) \left(\lambda^2 - 2\lambda \right) = (\lambda - 1) (\lambda) (\lambda - 2)$$
$$= \lambda (\lambda - 1) (\lambda - 2).$$

MZI (FIF Tel-U)

Solusi: B memiliki persamaan karakteristik sebagai berikut

$$0 = p_{\mathbf{B}}(\lambda) = |\lambda \mathbf{I} - \mathbf{B}| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 0 & \lambda - 1 & -1 \\ 0 & -1 & \lambda - 1 \end{vmatrix}$$

dengan ekspansi baris pertama

$$0 = (\lambda - 1) \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda - 1 \end{vmatrix}$$
$$= (\lambda - 1) \left((\lambda - 1)^2 - 1 \right)$$
$$= (\lambda - 1) \left(\lambda^2 - 2\lambda \right) = (\lambda - 1) (\lambda) (\lambda - 2)$$
$$= \lambda (\lambda - 1) (\lambda - 2).$$

Jadi diperoleh nilai eigen $\lambda_1=0$, $\lambda_2=1$, dan $\lambda_3=2$.

MZI (FIF Tel-U)

Pertama akan ditentukan
$$E_0 = \ker (0\mathbf{I} - \mathbf{B}) = \ker (-\mathbf{B}).$$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Pertama akan ditentukan $E_0 = \ker(0\mathbf{I} - \mathbf{B}) = \ker(-\mathbf{B}).$

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Dengan OBE diperoleh matriks diperbesar dalam bentuk EB: $\left[\begin{array}{cc|c}1&0&0&0\\0&1&1&0\\0&0&0&0\end{array}\right],$

akibatnya diperoleh SPL $x_1=0 \atop x_2+x_3=0$. Akibatnya $x_1=0$ dan bila $x_3=r\in\mathbb{R}$, maka $x_2=-r$. Jadi $E_0=$

4□ > 4回 > 4 = > 4 = > = 990

Pertama akan ditentukan $E_0 = \ker (0\mathbf{I} - \mathbf{B}) = \ker (-\mathbf{B})$.

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Dengan OBE diperoleh matriks diperbesar dalam bentuk EB: $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$,

akibatnya diperoleh SPL
$$x_1=0 \ x_2+x_3=0$$
 . Akibatnya $x_1=0$ dan bila $x_3=r\in\mathbb{R}$, maka $x_2=-r$. Jadi $E_0=\ker\left(0\mathbf{I}-\mathbf{B}\right)=\mathrm{span}\left\{(0,-1,1)\right\}=\mathrm{span}\left\{(0,1,-1)\right\}.$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_2=x_3=0$ dan $x_1=s\in\mathbb{R}$ karena nilai x_1 tidak terkait x_2 dan x_3 . Oleh karenanya $E_1=\operatorname{span}$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_2=x_3=0$ dan $x_1=s\in\mathbb{R}$ karena nilai x_1 tidak terkait x_2 dan x_3 . Oleh karenanya $E_1=\operatorname{span}\{(1,0,0)\}$.

Terakhir akan ditentukan $E_2 = \ker (2\mathbf{I} - \mathbf{B})$.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Diperoleh $x_2=x_3=0$ dan $x_1=s\in\mathbb{R}$ karena nilai x_1 tidak terkait x_2 dan x_3 . Oleh karenanya $E_1=\operatorname{span}\{(1,0,0)\}$.

Terakhir akan ditentukan $E_2 = \ker (2\mathbf{I} - \mathbf{B}).$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Dengan OBE diperoleh matriks diperbesar dalam bentuk EB:

$$\left[\begin{array}{ccc|c}1&0&0&0\\0&1&-1&0\\0&0&0&0\end{array}\right], \text{ akibatnya diperoleh SPL} \quad \begin{array}{c}x_1&=0\\x_2-x_3&=0\end{array}. \text{ Akibatnya}$$

 $x_1=0$ dan bila $x_3=t\in\mathbb{R}$, maka $x_2=t$. Jadi $E_2=$

$$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right].$$

Diperoleh $x_2 = x_3 = 0$ dan $x_1 = s \in \mathbb{R}$ karena nilai x_1 tidak terkait x_2 dan x_3 . Oleh karenanya $E_1 = \operatorname{span} \{(1,0,0)\}$.

Terakhir akan ditentukan $E_2 = \ker (2\mathbf{I} - \mathbf{B})$.

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right].$$

Dengan OBE diperoleh matriks diperbesar dalam bentuk EB:

$$\left[\begin{array}{ccc|c}1&0&0&0\\0&1&-1&0\\0&0&0&0\end{array}\right], \text{ akibatnya diperoleh SPL} \quad \begin{array}{ccc}x_1&=0\\x_2-x_3&=0\end{array}. \text{ Akibatnya}$$

 $x_1 = 0$ dan bila $x_3 = t \in \mathbb{R}$, maka $x_2 = t$. Jadi $E_2 = \ker(2\mathbf{I} - \mathbf{B}) = \operatorname{span}\{(0, 1, 1)\}.$

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1 = (0, 1, -1)$, $\mathbf{p}_2 = (1, 0, 0)$, dan $\mathbf{p}_3 = (0, 1, 1)$. Sehingga

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1 = (0, 1, -1)$, $\mathbf{p}_2 = (1, 0, 0)$, dan $\mathbf{p}_3 = (0, 1, 1)$. Sehingga

$$\mathbf{P} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{array} \right] \; \mathsf{dan} \; \mathbf{P}^{-1} = \left[\begin{array}{ccc} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{array} \right] \; \text{(tunjukkan!)}$$

Tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{BP} =$$

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1 = (0, 1, -1)$, $\mathbf{p}_2 = (1, 0, 0)$, dan $\mathbf{p}_3 = (0, 1, 1)$. Sehingga

$$\mathbf{P} = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{array} \right] \ \text{dan } \mathbf{P}^{-1} = \left[\begin{array}{ccc} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{array} \right] \ \text{(tunjukkan!)}$$

Tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \mathbf{\Lambda}.$$

Kita memiliki $\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \mathbf{\Lambda} \Leftrightarrow \mathbf{B} = \mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1}$, sehingga $\mathbf{B}^n = \mathbf{P}\mathbf{\Lambda}^n\mathbf{P}^{-1}$. Kita memiliki

$$\mathbf{B}^n =$$

Kita dapat memiliki $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ yang bebas linier, dengan $\mathbf{p}_1 = (0, 1, -1)$, $\mathbf{p}_2 = (1, 0, 0)$, dan $\mathbf{p}_3 = (0, 1, 1)$. Sehingga

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \, \mathsf{dan} \, \mathbf{P}^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \, (\mathsf{tunjukkan!})$$

Tinjau bahwa

$$\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \mathbf{\Lambda}.$$

Kita memiliki $\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \mathbf{\Lambda} \Leftrightarrow \mathbf{B} = \mathbf{P}\mathbf{\Lambda}\mathbf{P}^{-1}$, sehingga $\mathbf{B}^n = \mathbf{P}\mathbf{\Lambda}^n\mathbf{P}^{-1}$. Kita memiliki

$$\mathbf{B}^{n} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{n} \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} 2^{n} & \frac{1}{2} 2^{n} \\ 0 & \frac{1}{2} 2^{n} & \frac{1}{2} 2^{n} \end{bmatrix}$$

←ロ → ←団 → ← 三 → へ ○ へ ○ ○

Karena
$$\mathbf{B}^n = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1024 & 1024 \\ 0 & 1024 & 1024 \end{array}
ight]$$
, maka

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}2^n & \frac{1}{2}2^n \\ 0 & \frac{1}{2}2^n & \frac{1}{2}2^n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1024 & 1024 \\ 0 & 1024 & 1024 \end{bmatrix}$$

Akibatnya

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 9 0 ○

Karena
$$\mathbf{B}^n = \left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1024 & 1024 \\ 0 & 1024 & 1024 \end{array}
ight]$$
, maka

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}2^n & \frac{1}{2}2^n \\ 0 & \frac{1}{2}2^n & \frac{1}{2}2^n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1024 & 1024 \\ 0 & 1024 & 1024 \end{bmatrix}$$

Akibatnya $\frac{1}{2}2^n=1024$, jadi $2^n=2048$ sehingga n=11.

MZI (FIF Tel-U)

Bahasan

- Motivasi: Menghitung Pangkat Sebuah Matriks
- 2 Masalah Diagonalisasi
- Prosedur Diagonalisasi Matriks
- 4 Aplikasi Diagonalisasi Matriks: Menghitung Pangkat Matriks
- 6 Aplikasi Diagonalisasi Matriks: Masalah Logaritma Matriks
- 6 Diagonalisasi Ortogonal

November 2015

Definisi Matriks Ortogonal

Definisi

Sebuah matriks persegi ${f Q}$ disebut matriks ortogonal apabila ${f Q}$ invertibel dan inversnya sama dengan transposnya, yaitu

Definisi Matriks Ortogonal

Definisi

Sebuah matriks persegi ${f Q}$ disebut matriks ortogonal apabila ${f Q}$ invertibel dan inversnya sama dengan transposnya, yaitu

$$\mathbf{Q}^{-1} = \mathbf{Q}^T.$$

Akibat

Definisi Matriks Ortogonal

Definisi

Sebuah matriks persegi ${f Q}$ disebut matriks ortogonal apabila ${f Q}$ invertibel dan inversnya sama dengan transposnya, yaitu

$$\mathbf{Q}^{-1} = \mathbf{Q}^T.$$

Akibat

 \mathbf{Q} adalah matriks ortogonal jika dan hanya jika $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$.

Latihan

Periksa apakah matriks-matriks berikut adalah matriks ortogonal.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \, \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \, \mathbf{C} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix},$$

$$\mathbf{D} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}, \, E = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$$

Solusi:

Latihan

Periksa apakah matriks-matriks berikut adalah matriks ortogonal.

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \, \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \, \mathbf{C} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix},$$

$$\mathbf{D} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}, \, E = \begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}.$$

Solusi: A, B, C, D, E semuanya adalah matriks ortogonal (tunjukkan!). Perhatikan bahwa baris-baris matriks A maupun B diperoleh dari permutasi baris matriks identitas. Matriks seperti ini dikatakan sebagai matriks permutasi.

November 2015 37 / 46

MZI (FIF Tel-U) Diagonalisasi Matriks

Beberapa Sifat Matriks Ortogonal

Teorema

Misalkan \mathbf{Q} adalah sebuah matriks persegi berorde n, maka pernyataan-pernyataan berikut ekivalen.

- 1 Q matriks ortogonal.
- ② Jika $R = \{\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n\}$ adalah himpunan vektor-vektor baris dari \mathbf{Q} , maka R adalah himpunan ortonormal.
- **3** Jika $C = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\}$ adalah himpunan vektor-vektor kolom dari \mathbf{Q} , maka C adalah himpunan ortonormal.

Teorema

Jika ${f Q}$ adalah matriks ortogonal, maka ${f Q}^{-1}$ juga matriks ortogonal.

Bukti

Teorema

Jika ${f Q}$ adalah matriks ortogonal, maka ${f Q}^{-1}$ juga matriks ortogonal.

Bukti

Karena ${f Q}$ matriks ortogonal, maka ${f Q}^{-1}=$

Teorema

Jika \mathbf{Q} adalah matriks ortogonal, maka \mathbf{Q}^{-1} juga matriks ortogonal.

Bukti

Karena_ ${f Q}$ matriks ortogonal, maka ${f Q}^{-1}={f Q}^T$. Tinjau bahwa

$$\left(\mathbf{Q}^{-1}\right)^T\mathbf{Q}^{-1} =$$

Teorema

Jika ${f Q}$ adalah matriks ortogonal, maka ${f Q}^{-1}$ juga matriks ortogonal.

Bukti

Karena \mathbf{Q} matriks ortogonal, maka $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Tinjau bahwa

$$\left(\mathbf{Q}^{-1}\right)^T\mathbf{Q}^{-1} = \\ \left(\mathbf{Q}^T\right)^T\mathbf{Q}^{-1} =$$

Teorema

Jika \mathbf{Q} adalah matriks ortogonal, maka \mathbf{Q}^{-1} juga matriks ortogonal.

Bukti

Karena \mathbf{Q} matriks ortogonal, maka $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Tinjau bahwa $\left(\mathbf{Q}^{-1}\right)^T\mathbf{Q}^{-1} = \left(\mathbf{Q}^T\right)^T\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{Q}^{-1} = \mathbf{I}$. Jadi \mathbf{Q}^{-1} juga matriks ortogonal.

Teorema

Jika P dan Q adalah matriks ortogonal, maka PQ juga matriks ortogonal.

Bukti

Karena **P** dan **Q** adalah matriks ortogonal, maka $\mathbf{P}^{-1} = \mathbf{P}^T$ dan $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Tinjau bahwa

$$(PQ)^{-1} =$$

MZI (FIF Tel-U) Diagonalisasi Matriks

Teorema

Jika ${f Q}$ adalah matriks ortogonal, maka ${f Q}^{-1}$ juga matriks ortogonal.

Bukti

Karena \mathbf{Q} matriks ortogonal, maka $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Tinjau bahwa $\left(\mathbf{Q}^{-1}\right)^T\mathbf{Q}^{-1} = \left(\mathbf{Q}^T\right)^T\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{Q}^{-1} = \mathbf{I}$. Jadi \mathbf{Q}^{-1} juga matriks ortogonal.

Teorema

Jika ${f P}$ dan ${f Q}$ adalah matriks ortogonal, maka ${f P}{f Q}$ juga matriks ortogonal.

Bukti

Karena ${f P}$ dan ${f Q}$ adalah matriks ortogonal, maka ${f P}^{-1}={f P}^T$ dan ${f Q}^{-1}={f Q}^T$. Tinjau bahwa

$$(\mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1} =$$

MZI (FIF Tel-U) Diagonalisasi Matriks November 2015

Teorema

Jika ${f Q}$ adalah matriks ortogonal, maka ${f Q}^{-1}$ juga matriks ortogonal.

Bukti

Karena \mathbf{Q} matriks ortogonal, maka $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Tinjau bahwa $\left(\mathbf{Q}^{-1}\right)^T\mathbf{Q}^{-1} = \left(\mathbf{Q}^T\right)^T\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{Q}^{-1} = \mathbf{I}$. Jadi \mathbf{Q}^{-1} juga matriks ortogonal.

Teorema

Jika ${f P}$ dan ${f Q}$ adalah matriks ortogonal, maka ${f P}{f Q}$ juga matriks ortogonal.

Bukti

Karena ${f P}$ dan ${f Q}$ adalah matriks ortogonal, maka ${f P}^{-1}={f P}^T$ dan ${f Q}^{-1}={f Q}^T$. Tinjau bahwa

$$(\mathbf{PQ})^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1} = \mathbf{Q}^T\mathbf{P}^T =$$

Teorema

Jika ${f Q}$ adalah matriks ortogonal, maka ${f Q}^{-1}$ juga matriks ortogonal.

Bukti

Karena
$$\mathbf{Q}$$
 matriks ortogonal, maka $\mathbf{Q}^{-1} = \mathbf{Q}^T$. Tinjau bahwa $\left(\mathbf{Q}^{-1}\right)^T\mathbf{Q}^{-1} = \left(\mathbf{Q}^T\right)^T\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{Q}^{-1} = \mathbf{I}$. Jadi \mathbf{Q}^{-1} juga matriks ortogonal.

Teorema

Jika ${f P}$ dan ${f Q}$ adalah matriks ortogonal, maka ${f P}{f Q}$ juga matriks ortogonal.

Bukti

Karena ${f P}$ dan ${f Q}$ adalah matriks ortogonal, maka ${f P}^{-1}={f P}^T$ dan ${f Q}^{-1}={f Q}^T$. Tinjau bahwa

$$\left(\mathbf{PQ}\right)^{-1} = \mathbf{Q}^{-1}\mathbf{P}^{-1} = \mathbf{Q}^T\mathbf{P}^T = \left(\mathbf{PQ}\right)^T$$
 ,

jadi PQ juga matriks ortogonal.

Determinan Matriks Ortogonal

Teorema

Jika \mathbf{Q} adalah matriks ortogonal, maka $\det(\mathbf{Q}) = \pm 1$.

Bukti

Karena ${f Q}$ matriks ortogonal, maka ${f Q}^T{f Q}={f I}$, akibatnya

$$1 = \det(\mathbf{Q}^T \mathbf{Q}) =$$

Determinan Matriks Ortogonal

Teorema

Jika \mathbf{Q} adalah matriks ortogonal, maka $\det(\mathbf{Q}) = \pm 1$.

Bukti

Karena ${f Q}$ matriks ortogonal, maka ${f Q}^T{f Q}={f I}$, akibatnya

$$1 = \det(\mathbf{Q}^T \mathbf{Q}) = \det(\mathbf{Q}^T) \det(\mathbf{Q}) \\
-$$

Determinan Matriks Ortogonal

Teorema

Jika \mathbf{Q} adalah matriks ortogonal, maka $\det{(\mathbf{Q})} = \pm 1$.

Bukti

Karena ${f Q}$ matriks ortogonal, maka ${f Q}^T{f Q}={f I}$, akibatnya

$$1 = \det(\mathbf{Q}^T \mathbf{Q}) = \det(\mathbf{Q}^T) \det(\mathbf{Q})$$
$$= \det(\mathbf{Q}) \det(\mathbf{Q})$$
$$= (\det(\mathbf{Q}))^2$$

Jadi
$$\det(\mathbf{Q}) = \pm 1$$
.

Matriks Ortogonal dan Hasil Kali Titik

Permasalahan

Misalkan \mathbf{Q} adalah sebuah matriks ortogonal berukuran $n \times n$ dan $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Apa kaitan antara $\mathbf{Q}\mathbf{x} \cdot \mathbf{Q}\mathbf{y}$ dan $\mathbf{x} \cdot \mathbf{y}$? Apa kaitan antara $\|\mathbf{Q}\mathbf{x}\|$ dan $\|\mathbf{x}\|$?

Teorema

Jika \mathbf{Q} adalah sebuah matriks berukuran $n \times n$ dan $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, maka pernyataan-pernyataan berikut ekivalen.

- Q ortogonal
- **2** $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$

MZI (FIF Tel-U) Diagonalisasi Matriks

Diagonalisasi Ortogonal

Definisi

Suatu matriks persegi ${\bf A}$ dikatakan dapat didiagonalkan secara ortogonal jika terdapat matriks ortogonal ${\bf P}$ yang mendiagonalkan ${\bf A}$. Dengan perkataan lain terdapat matriks ortogonal ${\bf P}$ dengan sifat

 $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$, dengan \mathbf{D} matriks diagonal.

Akibat

November 2015 42 / 46

Diagonalisasi Ortogonal

Definisi

Suatu matriks persegi ${\bf A}$ dikatakan dapat didiagonalkan secara ortogonal jika terdapat matriks ortogonal ${\bf P}$ yang mendiagonalkan ${\bf A}$. Dengan perkataan lain terdapat matriks ortogonal ${\bf P}$ dengan sifat

 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}$, dengan \mathbf{D} matriks diagonal.

Akibat

Jika ${f A}$ dapat didiagonalkan secara ortogonal, maka terdapat matriks ortogonal ${f P}$ sehingga

 $\mathbf{P}^T \mathbf{A} \mathbf{P} = \mathbf{D}$, dengan \mathbf{D} matriks diagonal.

Bukti

Karena \mathbf{P} matriks ortogonal, maka $\mathbf{P}^{-1} = \mathbf{P}^T$, akibatnya

$$\mathbf{P}^T \mathbf{A} \mathbf{P} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{D}. \quad \Box$$

Syarat Diagonalisasi Ortogonal

Teorema

Suatu matriks persegi ${f A}$ dapat didiagonalkan secara ortogonal jika dan hanya jika ${f A}$ matriks simetris.

Perhatikan bahwa jika ${\bf A}$ adalah matriks yang dapat didiagonalkan secara ortogonal, maka terdapat matriks diagonal ${\bf D}$ sehingga

$$egin{array}{lcl} \mathbf{A} & = & \mathbf{P}^T \mathbf{D} \mathbf{P}, \ \mathsf{sehingga} \\ \mathbf{A}^T & = & \left(\mathbf{P}^T \mathbf{D} \mathbf{P} \right)^\mathbf{T} \\ & = & \mathbf{P}^T \mathbf{D}^T \mathbf{P} = \mathbf{P}^T \mathbf{D} \mathbf{P} \ \left(\mathsf{karena} \ \mathbf{D}^T = \mathbf{D} \right) \\ & = & \mathbf{A}. \end{array}$$

Prosedur Diagonalisasi Secara Ortogonal

Prosedur pendiagonalan matriks simetris secara ortogoal hampir sama dengan prosedur pendiagonalan matriks seperti biasa. Misalkan ${\bf A}$ adalah matriks simetris berukuran $n \times n$ yang akan didiagonalkan secara ortogonal, maka prosedur yang dapat dilakukan adalah:

- lack lack Tentukan nilai eigen dari lack A, kemudian buat matriks Λ yang diagonalnya adalah nilai-nilai eigen dari lack A
- ② Tentukan basis tiap ruang eigen, misalkan diperoleh himpunan n vektor eigen $\{\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_n\}$ yang bebas linier.
- ① Ubah himpunan $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$ menjadi himpunan **ortonormal** $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n\}$. Hal ini dapat dilakukan dengan prosedur Gram-Schmidt.
- **9** Bentuk matriks P yang vektor-vektor kolomnya adalah q_1, q_2, \ldots, q_n , yaitu $P = [\begin{array}{ccc} q_1 & q_2 & \cdots & q_n \end{array}].$
- **5** Matris **P** dan **A** akan memenuhi $\mathbf{P}^T \mathbf{A} \mathbf{P} = \mathbf{D} = \mathbf{\Lambda}$.

4 D > 4 D > 4 D > 4 D > 4 D O Q O

Latihan

Carilah matriks
$${f P}$$
 yang mendiagonalkan ${f A}=\left[egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array}
ight]$ secara ortogonal.

Solusi:

Latihan

Carilah matriks
$$\mathbf{P}$$
 yang mendiagonalkan $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ secara ortogonal.

Solusi: dari latihan pada masalah logaritma matriks, kita mengetahui bahwa nilai eigen dari $\bf A$ adalah $\lambda_1=0,\ \lambda_2=1,\ {\sf dan}\ \lambda_3=2$ dan ruang-ruang eigennya adalah

•
$$E_0 =$$

Latihan

Carilah matriks
$$\mathbf{P}$$
 yang mendiagonalkan $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ secara ortogonal.

Solusi: dari latihan pada masalah logaritma matriks, kita mengetahui bahwa nilai eigen dari $\bf A$ adalah $\lambda_1=0$, $\lambda_2=1$, dan $\lambda_3=2$ dan ruang-ruang eigennya adalah

- $E_0 = \operatorname{span} \{(0, 1, -1)\}$
- $E_1 =$

Latihan

Carilah matriks
$$\mathbf{P}$$
 yang mendiagonalkan $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ secara ortogonal.

Solusi: dari latihan pada masalah logaritma matriks, kita mengetahui bahwa nilai eigen dari A adalah $\lambda_1 = 0$, $\lambda_2 = 1$, dan $\lambda_3 = 2$ dan ruang-ruang eigennya adalah

- $E_0 = \operatorname{span} \{(0, 1, -1)\}$
- $E_1 = \operatorname{span} \{(1,0,0)\}$
- $E_2 =$

Latihan

Carilah matriks
$$\mathbf{P}$$
 yang mendiagonalkan $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ secara ortogonal.

Solusi: dari latihan pada masalah logaritma matriks, kita mengetahui bahwa nilai eigen dari ${\bf A}$ adalah $\lambda_1=0$, $\lambda_2=1$, dan $\lambda_3=2$ dan ruang-ruang eigennya adalah

- $E_0 = \operatorname{span} \{(0, 1, -1)\}$
- $E_1 = \operatorname{span} \{(1,0,0)\}$
- $E_2 = \operatorname{span} \{(0, 1, 1)\}$

Kita memiliki himpunan 3 vektor yang bebas linier, yaitu $\{(0,1,-1)\,,(1,0,0)\,,(0,1,1)\}$. Untuk memperoleh himpunan ortonormal dari himpunan ini, kita dapat melakukan prosedur Gram-Schmidt.

Latihan

Carilah matriks
$$\mathbf{P}$$
 yang mendiagonalkan $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ secara ortogonal.

Solusi: dari latihan pada masalah logaritma matriks, kita mengetahui bahwa nilai eigen dari ${f A}$ adalah $\lambda_1=0$, $\lambda_2=1$, dan $\lambda_3=2$ dan ruang-ruang eigennya adalah

- $E_0 = \operatorname{span} \{(0, 1, -1)\}$
- $E_1 = \operatorname{span} \{(1,0,0)\}$
- $E_2 = \operatorname{span} \{(0, 1, 1)\}$

Kita memiliki himpunan 3 vektor yang bebas linier, yaitu $\{(0,1,-1),(1,0,0),(0,1,1)\}$. Untuk memperoleh himpunan ortonormal dari himpunan ini, kita dapat melakukan prosedur Gram-Schmidt. Namun karena $\{(0,1,-1),(1,0,0),(0,1,1)\}$ adalah himpunan ortogonal, maka himpunan ortonormal dari himpunan ini dapat diperoleh dengan cara membagi setiap vektor dengan norm-nya masing-masing, sehingga diperoleh himpunan

Latihan

Carilah matriks
$$\mathbf{P}$$
 yang mendiagonalkan $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ secara ortogonal.

Solusi: dari latihan pada masalah logaritma matriks, kita mengetahui bahwa nilai eigen dari A adalah $\lambda_1 = 0$, $\lambda_2 = 1$, dan $\lambda_3 = 2$ dan ruang-ruang eigennya adalah

- $E_0 = \operatorname{span} \{(0, 1, -1)\}$
- $E_1 = \operatorname{span} \{(1,0,0)\}$
- $E_2 = \operatorname{span} \{(0, 1, 1)\}$

Kita memiliki himpunan 3 vektor yang bebas linier, yaitu $\{(0,1,-1),(1,0,0),(0,1,1)\}$. Untuk memperoleh himpunan ortonormal dari himpunan ini, kita dapat melakukan prosedur Gram-Schmidt. Namun karena $\{(0,1,-1),(1,0,0),(0,1,1)\}$ adalah himpunan ortogonal, maka himpunan ortonormal dari himpunan ini dapat diperoleh dengan cara membagi setiap vektor dengan norm-nya masing-masing, sehingga diperoleh himpunan

$$\left\{\left(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right),\left(1,0,0\right),\left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right\}.$$

Akibatnya diperoleh matriks
$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
. Matriks \mathbf{P} adalah matriks

ortogonal karena $\mathbf{PP}^T = \mathbf{P}^T \mathbf{P} = \mathbf{I}$. Kemudian matriks \mathbf{P} juga mendiagonalkan \mathbf{A} karena

$$\mathbf{P}^T \mathbf{A} \mathbf{P} = \mathbf{D} = \mathbf{\Lambda} = \left[egin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}
ight].$$