

# Global United Technology Services Co., Ltd.

Report No.: GTS201607000010E02

# **FCC REPORT**

**Applicant:** Quantum Creations LLC.

Address of Applicant: 16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida

United States 33162

**Equipment Under Test (EUT)** 

Product Name: Mini PC

Model No.: A-1062-ABP, A-1062-ABP-1, A-1062-ABP-2, A-1062-ABP-3,

A-1062-ABP-4, A-1062-ABP-5, A-1062-ABP-6, A-1062-ABP-

7, A-1062-ABP-8

Trade Mark: Azulle

**FCC ID:** 2AFJI20161062

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2015

Date of sample receipt: July 11, 2016

**Date of Test:** July 12-21, 2016

Date of report issued: July 22, 2016

Test Result: PASS \*

Authorized Signature:

Robinson Lo V Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | July 22, 2016 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

| Prepared By: | Yang, liu        | Date: | July 22, 2016 |  |
|--------------|------------------|-------|---------------|--|
|              | Project Engineer |       |               |  |
| Check By:    | Andy wa          | Date: | July 22, 2016 |  |
|              | Reviewer         |       | ·             |  |

Project No.: GTS201607000010

Page 2 of 54



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | cov   | ER PAGE                        | 1    |
| 2 | VER   | SION                           | 2    |
| 3 | CON   | ITENTS                         | 3    |
| 4 |       | T SUMMARY                      |      |
| • |       |                                |      |
|   | 4.1   | MEASUREMENT UNCERTAINTY        |      |
| 5 | GEN   | IERAL INFORMATION              | 5    |
|   | 5.1   | CLIENT INFORMATION             | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF EUT     | 5    |
|   | 5.3   | TEST MODE                      |      |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |      |
|   | 5.5   | TEST FACILITY                  | 7    |
|   | 5.6   | TEST LOCATION                  | 7    |
| 6 | TES   | T INSTRUMENTS LIST             | 8    |
| 7 | TES   | T RESULTS AND MEASUREMENT DATA | 10   |
|   | 7.1   | ANTENNA REQUIREMENT            |      |
|   | 7.2   | CONDUCTED EMISSIONS            |      |
|   | 7.3   | CONDUCTED PEAK OUTPUT POWER    |      |
|   | 7.4   | CHANNEL BANDWIDTH              |      |
|   | 7.5   | POWER SPECTRAL DENSITY         |      |
|   | 7.6   | BAND EDGES                     |      |
|   | 7.6.1 |                                |      |
|   | 7.6.2 |                                |      |
|   | 7.7   | Spurious Emission              |      |
|   | 7.7.1 |                                |      |
|   | 7.7.2 | Radiated Emission Method       | 38   |
| 8 | TES   | T SETUP PHOTO                  | 53   |
| 9 | FIIT  | CONSTRUCTIONAL DETAILS         | 54   |



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| Channel Bandwidth                | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014.

# 4.1 Measurement Uncertainty

| Test Item                        | Frequency Range                      | Measurement Uncertainty          | Notes   |
|----------------------------------|--------------------------------------|----------------------------------|---------|
| Radiated Emission                | 9kHz ~ 30MHz                         | ± 4.34dB                         | (1)     |
| Radiated Emission                | 30MHz ~ 1000MHz                      | ± 4.24dB                         | (1)     |
| Radiated Emission                | 1GHz ~ 26.5GHz                       | ± 4.68dB                         | (1)     |
| AC Power Line Conducted Emission | 0.15MHz ~ 30MHz                      | ± 3.45dB                         | (1)     |
| Note (1): The measurement u      | ncertainty is for coverage factor of | of k=2 and a level of confidence | of 95%. |



# **5** General Information

# 5.1 Client Information

| Applicant:               | Quantum Creations LLC.                                                         |  |  |
|--------------------------|--------------------------------------------------------------------------------|--|--|
| Address of Applicant:    | 16410 NE 19th Avenue Suite 102 North, Miami Beach, Florida United States 33162 |  |  |
| Manufacturer:            | SHENZHEN MELE STAR TECHNOLOGY LIMITED                                          |  |  |
| Address of Manufacturer: | 3F,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.          |  |  |
| Factory:                 | Shenzhen MeLE Precision Technology Limited                                     |  |  |
| Address of Factory:      | 3F East,Bldg#1,28 Cuijing Road, Pingshan New District, Shenzhen, PR China.     |  |  |

# 5.2 General Description of EUT

| Product Name:          | Mini PC                                                 |
|------------------------|---------------------------------------------------------|
| Model No.:             | A-1062-ABP, A-1062-ABP-1, A-1062-ABP-2, A-1062-ABP-3,   |
|                        | A-1062-ABP-4, A-1062-ABP-5, A-1062-ABP-6, A-1062-ABP-7, |
|                        | A-1062-ABP-8                                            |
| Operation Frequency:   | 802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz          |
|                        | 802.11n(HT40): 2422MHz~2452MHz                          |
| Channel numbers:       | 802.11b/802.11g/802.11n(HT20): 11                       |
|                        | 802.11n(HT40): 7                                        |
| Channel bandwidth:     | 802.11b/802.11g/802.11n(HT20) : 20MHz                   |
|                        | 802.11n(HT40): 40MHz                                    |
| Modulation technology: | 802.11b: Direct Sequence Spread Spectrum (DSSS)         |
|                        | 802.11g/802.11n(H20)/802.11n(H40):                      |
|                        | Orthogonal Frequency Division Multiplexing (OFDM)       |
| Antenna Type:          | Integral Antenna                                        |
| Antenna gain:          | 2.0dBi (declare by Applicant)                           |
| Power supply:          | SWITCHING ADAPTER:                                      |
|                        | Model No.:S12B22-120A100-04                             |
|                        | Input: AC 100~240V~50/60Hz 0.5A                         |
|                        | Output: DC 12V 1A                                       |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



|                                                                         | Operation Frequency each of channel @ 2.4G Band |   |         |   |         |    |           |  |
|-------------------------------------------------------------------------|-------------------------------------------------|---|---------|---|---------|----|-----------|--|
| Channel Frequency Channel Frequency Channel Frequency Channel Frequency |                                                 |   |         |   |         |    | Frequency |  |
| 1                                                                       | 2412MHz                                         | 4 | 2427MHz | 7 | 2442MHz | 10 | 2457MHz   |  |
| 2                                                                       | 2417MHz                                         | 5 | 2432MHz | 8 | 2447MHz | 11 | 2462MHz   |  |
| 3                                                                       | 3 2422MHz 6                                     |   | 2437MHz | 9 | 2452MHz |    |           |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

|                 | Frequency (MHz) |         |               |               |  |  |
|-----------------|-----------------|---------|---------------|---------------|--|--|
| Test channel    | 2.4G Band       |         |               |               |  |  |
|                 | 802.11b         | 802.11g | 802.11n(HT20) | 802.11n(HT40) |  |  |
| Lowest channel  | 2412            | 2412    | 2412          | 2422          |  |  |
| Middle channel  | 2437            | 2437    | 2437          | 2437          |  |  |
| Highest channel | 2462            | 2462    | 2462          | 2452          |  |  |



#### 5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, dutycycle>98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

| Mode          | Data rate |
|---------------|-----------|
| 802.11b       | 1Mbps     |
| 802.11g       | 6Mbps     |
| 802.11n(HT20) | 6.5Mbps   |
| 802.11n(HT40) | 13Mbps    |

# 5.4 Description of Support Units

None.

#### 5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

# • Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

#### 5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 6 Test Instruments list

| Radiated Emission: |                                       |                                    |                           |                  |                        |                            |  |
|--------------------|---------------------------------------|------------------------------------|---------------------------|------------------|------------------------|----------------------------|--|
| Item               | Test Equipment                        | Manufacturer                       | Model No.                 | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 1                  | 3m Semi- Anechoic<br>Chamber          | ZhongYu Electron                   | 9.2(L)*6.2(W)*<br>6.4(H)  | GTS250           | Mar. 27 2016           | Mar. 26 2017               |  |
| 2                  | Control Room                          | ZhongYu Electron                   | 6.2(L)*2.5(W)*<br>2.4(H)  | GTS251           | N/A                    | N/A                        |  |
| 3                  | EMI Test Receiver                     | Rohde & Schwarz                    | ESU26                     | GTS203           | June 29 2016           | June 28 2017               |  |
| 4                  | Spectrum analyzer                     | Agilent                            | E4447A                    | GTS516           | June 29 2016           | June 28 2017               |  |
| 5                  | Spectrum Analyzer                     | Agilent                            | E4440A                    | GTS533           | Nov. 18 2015           | Nov. 17 2016               |  |
| 6                  | BiConiLog Antenna                     | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | VULB9163                  | GTS214           | Feb. 21 2016           | Feb. 20 2017               |  |
| 7                  | Double -ridged<br>waveguide horn      | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | 9120D-829                 | GTS208           | June 29 2016           | June 28 2017               |  |
| 8                  | Horn Antenna                          | ETS-LINDGREN                       | 3160                      | GTS217           | Mar. 27 2016           | Mar. 26 2017               |  |
| 9                  | EMI Test Software                     | AUDIX                              | E3                        | N/A              | N/A                    | N/A                        |  |
| 10                 | Coaxial Cable                         | GTS                                | N/A                       | GTS213           | Mar. 27 2016           | Mar. 26 2017               |  |
| 11                 | Coaxial Cable                         | GTS                                | N/A                       | GTS211           | Mar. 27 2016           | Mar. 26 2017               |  |
| 12                 | Coaxial cable                         | GTS                                | N/A                       | GTS210           | Mar. 27 2016           | Mar. 26 2017               |  |
| 13                 | Coaxial Cable                         | GTS                                | N/A                       | GTS212           | Mar. 27 2016           | Mar. 26 2017               |  |
| 14                 | Amplifier(100kHz-<br>3GHz)            | HP                                 | 8347A                     | GTS204           | June 29 2016           | June 28 2017               |  |
| 15                 | Amplifier(2GHz-<br>20GHz)             | HP                                 | 8349B                     | GTS206           | June 29 2016           | June 28 2017               |  |
| 16                 | Amplifier (18-40GHz)                  | MITEQ                              | AMF-6F-18004000-<br>29-8P | GTS534           | June 29 2016           | June 28 2017               |  |
| 17                 | Band filter                           | Amindeon                           | 82346                     | GTS219           | Mar. 27 2016           | Mar. 26 2017               |  |
| 18                 | Constant temperature and humidity box | Oregon Scientific                  | BA-888                    | GTS248           | Mar. 27 2016           | Mar. 26 2017               |  |
| 19                 | D.C. Power Supply                     | Instek                             | PS-3030                   | GTS232           | Mar. 27 2016           | Mar. 26 2017               |  |
| 20                 | Universal radio communication tester  | Rohde & Schwarz                    | CMU200                    | GTS235           | Mar. 27 2016           | Mar. 26 2017               |  |
| 21                 | Splitter                              | Agilent                            | 11636B                    | GTS237           | Mar. 27 2016           | Mar. 26 2017               |  |
| 22                 | Power Meter                           | Anritsu                            | ML2495A                   | GTS540           | June 29 2016           | June 28 2017               |  |
| 23                 | Power Sensor                          | Anritsu                            | MA2411B                   | GTS541           | June 29 2016           | June 28 2017               |  |



| Con  | Conducted Emission: |                                    |                          |                  |                        |                               |  |
|------|---------------------|------------------------------------|--------------------------|------------------|------------------------|-------------------------------|--|
| Item | Test Equipment      | Manufacturer                       | Model No.                | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due<br>date<br>(mm-dd-yy) |  |
| 1    | Shielding Room      | ZhongYu Electron                   | 7.0(L)x3.0(W)x3.0(H<br>) | GTS264           | June 29 2016           | June 28 2017                  |  |
| 2    | EMI Test Receiver   | Rohde & Schwarz                    | ESCS30                   | GTS223           | June 29 2016           | June 28 2017                  |  |
| 3    | 10dB Pulse Limita   | Rohde & Schwarz                    | N/A                      | GTS224           | June 29 2016           | June 28 2017                  |  |
| 4    | Coaxial Switch      | ANRITSU CORP                       | MP59B                    | GTS225           | June 29 2016           | June 28 2017                  |  |
| 5    | LISN                | SCHWARZBECK<br>MESS-<br>ELEKTRONIK | NSLK 8127                | GTS226           | June 29 2016           | June 28 2017                  |  |
| 6    | Coaxial Cable       | GTS                                | N/A                      | GTS227           | June 29 2016           | June 28 2017                  |  |
| 7    | EMI Test Software   | AUDIX                              | E3                       | N/A              | N/A                    | N/A                           |  |

| Gen  | General used equipment: |              |           |                  |                        |                               |  |  |
|------|-------------------------|--------------|-----------|------------------|------------------------|-------------------------------|--|--|
| Item | Test Equipment          | Manufacturer | Model No. | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due<br>date<br>(mm-dd-yy) |  |  |
| 1    | Barometer               | ChangChun    | DYM3      | GTS257           | July 06 2016           | July 05 2017                  |  |  |



# 7 Test results and Measurement Data

# 7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **E.U.T Antenna:**

The antenna is Integral antenna, the best case gain of the antenna is 2dBi





# 7.2 Conducted Emissions

| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                        |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                        |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                        |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                                                                                          | weep time=auto                                                                                                                                                                                            |                                                                                                                                        |
| Limit:                |                                                                                                                                                                                                                                                                                                                                                  | Limit (d                                                                                                                                                                                                  | lBuV)                                                                                                                                  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                            | Quasi-peak                                                                                                                                                                                                | Average                                                                                                                                |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                         | 66 to 56*                                                                                                                                                                                                 | 56 to 46*                                                                                                                              |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                            | 56                                                                                                                                                                                                        | 46                                                                                                                                     |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                             | 60                                                                                                                                                                                                        | 50                                                                                                                                     |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                   | n of the frequency.                                                                                                                                                                                       |                                                                                                                                        |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                        |
|                       | AUX Equipment  Test table/Insulation plane  Remark E U T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                  | Filter — AC pow                                                                                                                                                                                           |                                                                                                                                        |
| Test procedure:       | <ol> <li>The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance.</li> <li>The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs).</li> <li>Both sides of A.C. line are dinterference. In order to find positions of equipment and according to ANSI C63.10:2</li> </ol> | n network (L.I.S.N.). The<br>dance for the measuri<br>also connected to the<br>n/50uH coupling impec<br>to the block diagram of<br>checked for maximum<br>the maximum emissic<br>all of the interface cab | nis provides a ng equipment. main power through a dance with 500hm the test setup and  conducted on, the relative bles must be changed |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                        |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                           |                                                                                                                                        |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                           |                                                                                                                                        |

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### Measurement data

Line:



Site : Shielded room

: FCC PART15 CLASSB QP LISN-2013 LINE : 0010 Condition

Job No. Test Mode : WiFi mode Test Engineer: Boy

|                       | Freq                                 |                                      | LISN<br>Factor                                     |                                  |                                      |                                  |                                          | Remark               |
|-----------------------|--------------------------------------|--------------------------------------|----------------------------------------------------|----------------------------------|--------------------------------------|----------------------------------|------------------------------------------|----------------------|
| -                     | MHz                                  | dBuV                                 | dB                                                 | d₿                               | dBuV                                 | dBuV                             | ₫B                                       |                      |
| 1<br>2<br>3<br>4<br>5 | 0. 206<br>0. 375<br>0. 440<br>3. 025 | 43. 99<br>41. 06<br>42. 67<br>38. 24 | 0. 15<br>0. 13<br>0. 11<br>0. 12<br>0. 16<br>0. 21 | 0. 13<br>0. 10<br>0. 11<br>0. 15 | 44. 25<br>41. 27<br>42. 90<br>38. 55 | 63.36<br>58.39<br>57.07<br>56.00 | -19. 11<br>-17. 12<br>-14. 17<br>-17. 45 | QP<br>QP<br>QP<br>QP |

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### Neutral:



Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

0.11

0.18

Job No. : 0010
Test Mode : WiFi mode
Test Engineer: Boy

3.025

6.805

37.20

39.39

LISN Cable Limit Over Read Freq Level Factor Loss Leve1 Line Limit Remark MHz dBuV dBuV dBuV ₫B ₫B d₿ 0.156 50.42 0.07 0.12 50.61 65.65 -15.04 QP 2 0.375 40.45 0.06 58.39 -17.78 QP 0.10 40.61 0.440 41.77 0.06 0.11 41.94 57.07 -15.13 QP 0.466 38.89 0.06 0.11 39.06 56.58 -17.52 QP

0.15

0.17

#### Notes:

5

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

37.46

56.00 -18.54 QP

39.74 60.00 -20.26 QP

- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.



# 7.3 Conducted Peak Output Power

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                              |
|-------------------|-----------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03        |
| Limit:            | 30dBm                                                           |
| Test setup:       | Power Meter  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 6.0 for details                                |
| Test mode:        | Refer to section 5.3 for details                                |
| Test results:     | Pass                                                            |

#### **Measurement Data**

| Test CH  |         | Peak Outp | Limit(dBm)    | Result        |             |        |
|----------|---------|-----------|---------------|---------------|-------------|--------|
| Test Off | 802.11b | 802.11g   | 802.11n(HT20) | 802.11n(HT40) | Limit(abin) | Nesuit |
| Lowest   | 14.21   | 11.59     | 9.68          | 10.38         |             |        |
| Middle   | 15.05   | 12.54     | 11.33         | 10.32         | 30.00       | Pass   |
| Highest  | 16.36   | 13.47     | 12.00         | 10.60         |             |        |



# 7.4 Channel Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03              |
| Limit:            | >500KHz                                                               |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 6.0 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Pass                                                                  |

#### **Measurement Data**

| Test    |         | Limit   | Result        |               |       |        |
|---------|---------|---------|---------------|---------------|-------|--------|
| СН      | 802.11b | 802.11g | 802.11n(HT20) | 802.11n(HT40) | (KHz) | Result |
| Lowest  | 11.739  | 16.499  | 17.741        | 35.779        |       |        |
| Middle  | 11.092  | 16.524  | 17.772        | 35.212        | >500  | Pass   |
| Highest | 11.253  | 16.531  | 17.717        | 35.204        |       |        |

# Test plot as follows:



Test mode: 802.11b



#### Lowest channel



#### Middle channel



Highest channel



Test mode: 802.11g



#### Lowest channel



#### Middle channel



Highest channel



Test mode: 802.11n(HT20)



#### Lowest channel



#### Middle channel



Highest channel



Test mode: 802.11n(HT40)



#### Lowest channel



#### Middle channel



Highest channel



# 7.5 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03              |
| Limit:            | 8dBm                                                                  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 6.0 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Pass                                                                  |

#### **Measurement Data**

| Test CH  |         | Power Spectra | Limit(dBm/3kHz) | Result        |                 |        |  |
|----------|---------|---------------|-----------------|---------------|-----------------|--------|--|
| Test Off | 802.11b | 802.11g       | 802.11n(HT20)   | 802.11n(HT40) | Limit(dbm/3km2) | Result |  |
| Lowest   | 1.85    | -2.67         | -4.06           | -6.16         |                 |        |  |
| Middle   | 2.23    | -1.88         | -3.46           | -5.82         | 8.00            | Pass   |  |
| Highest  | 3.36    | -0.78         | -2.37           | -5.07         |                 |        |  |



#### Test plot as follows:

Test mode: 802.11b



#### Lowest channel



#### Middle channel



Highest channel



Test mode: 802.11g



#### Lowest channel



#### Middle channel



Highest channel



Test mode: 802.11n(HT20)



#### Lowest channel



#### Middle channel



Highest channel



Test mode: 802.11n(HT40)



#### Lowest channel



#### Middle channel



Highest channel



# 7.6 Band edges

#### 7.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meads Guidance V03                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |



#### Test plot as follows:



Lowest channel

Highest channel

#### Test mode:



Lowest channel

# 802.11g



Highest channel





Lowest channel

Highest channel



Highest channel



#### 7.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Test Method:          | ANSI C63.10: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |
| Test Frequency Range: | 30MHz to 40GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lz, only worse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | case is repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |  |
| Test site:            | Measurement Distance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Value                                                                                                            |  |
| ·                     | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                             |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                                                                                                          |  |
| Limit:                | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ncv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (dBuV/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m @3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value                                                                                                            |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average                                                                                                          |  |
|                       | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peak                                                                                                             |  |
| Test setup:           | EUT Turn Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antenna Tower  Horn Antenna  Spectrum  Analyzer  Amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |  |
| Test Procedure:       | the ground at determine the 2. The EUT was antenna, white tower.  3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Bar 6. If the emission the limit specified the EUT where 10dB meak or average sheet.  7. The radiation And found the service of the EUT where the test-recession of the EUT where the service of the EUT where the test-recession of the EUT where the test-recessi | t a 3 meter can be position of the set 3 meters che was mount the man and the | mber. The talk the highest racks away from the ted on the top ted from one neaximum value arizations of the tion, the EUT tuned to heigh the ted from 0 declar and the ted. Otherwise re-tested on a specified are tested on the ted on the tested on the test | ole was rotadiation. The interference of a variable of the field one antennatives arrange of the field of the | r meters above the d strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find |  |
| Test Instruments:     | worst case m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |
| Test mode:            | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J.O IOI GOLAII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |  |



#### Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

| Test mode:                                                                                |                                                                                                         | 802.1                                                                                                   | 802.11b                                             |                                                                                                   | Test channel:                                                              |                                                                       | Lowest                                                                                           |                                                                 |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Peak value:                                                                               | 1                                                                                                       |                                                                                                         |                                                     |                                                                                                   |                                                                            |                                                                       |                                                                                                  |                                                                 |
| Frequency<br>(MHz)                                                                        | Read<br>Level<br>(dBuV)                                                                                 | Antenna<br>Factor<br>(dB/m)                                                                             | Cable<br>Loss<br>(dB)                               | Preamp<br>Factor<br>(dB)                                                                          | Level<br>(dBuV/m)                                                          | Limit Line<br>(dBuV/m)                                                | I I imit                                                                                         | Polarization                                                    |
| 2390.00                                                                                   | 51.42                                                                                                   | 27.59                                                                                                   | 5.38                                                | 34.01                                                                                             | 50.38                                                                      | 74.00                                                                 | -23.62                                                                                           | Horizontal                                                      |
| 2400.00                                                                                   | 60.35                                                                                                   | 27.58                                                                                                   | 5.39                                                | 34.01                                                                                             | 59.31                                                                      | 74.00                                                                 | -14.69                                                                                           | Horizontal                                                      |
| 2390.00                                                                                   | 53.08                                                                                                   | 27.59                                                                                                   | 5.38                                                | 34.01                                                                                             | 52.04                                                                      | 74.00                                                                 | -21.96                                                                                           | Vertical                                                        |
| 2400.00                                                                                   | 62.09                                                                                                   | 27.58                                                                                                   | 5.39                                                | 34.01                                                                                             | 61.05                                                                      | 74.00                                                                 | -12.95                                                                                           | Vertical                                                        |
| Average va                                                                                | lue:                                                                                                    |                                                                                                         |                                                     |                                                                                                   |                                                                            |                                                                       |                                                                                                  |                                                                 |
| Frequency<br>(MHz)                                                                        | Read<br>Level<br>(dBuV)                                                                                 | Antenna<br>Factor<br>(dB/m)                                                                             | Cable<br>Loss<br>(dB)                               | Preamp<br>Factor<br>(dB)                                                                          | Level<br>(dBuV/m)                                                          | Limit Line<br>(dBuV/m)                                                | Limit                                                                                            | Polarization                                                    |
| 2390.00                                                                                   | 38.24                                                                                                   | 27.59                                                                                                   | 5.38                                                | 34.01                                                                                             | 37.20                                                                      | 54.00                                                                 | -16.80                                                                                           | Horizontal                                                      |
| 2400.00                                                                                   | 46.51                                                                                                   | 27.58                                                                                                   | 5.39                                                | 34.01                                                                                             | 45.47                                                                      | 54.00                                                                 | -8.53                                                                                            | Horizontal                                                      |
| 2390.00                                                                                   | 40.05                                                                                                   | 27.59                                                                                                   | 5.38                                                | 34.01                                                                                             | 39.01                                                                      | 54.00                                                                 | -14.99                                                                                           | Vertical                                                        |
| 2400.00                                                                                   | 47.62                                                                                                   | 27.58                                                                                                   | 5.39                                                | 34.01                                                                                             | 46.58                                                                      | 54.00                                                                 | -7.42                                                                                            | Vertical                                                        |
|                                                                                           |                                                                                                         |                                                                                                         |                                                     |                                                                                                   |                                                                            |                                                                       |                                                                                                  |                                                                 |
|                                                                                           |                                                                                                         |                                                                                                         |                                                     |                                                                                                   |                                                                            |                                                                       |                                                                                                  |                                                                 |
| Test mode:                                                                                |                                                                                                         | 802.1                                                                                                   | 1b                                                  | Tes                                                                                               | st channel:                                                                |                                                                       | Highest                                                                                          |                                                                 |
| Test mode: Peak value:                                                                    |                                                                                                         | 802.1                                                                                                   | 1b                                                  | Te                                                                                                | st channel:                                                                |                                                                       | Highest                                                                                          |                                                                 |
|                                                                                           | Read<br>Level<br>(dBuV)                                                                                 | Antenna<br>Factor<br>(dB/m)                                                                             | Cable Loss (dB)                                     | Preamp<br>Factor<br>(dB)                                                                          | Level (dBuV/m)                                                             | Limit Line<br>(dBuV/m)                                                | Over                                                                                             | Polarization                                                    |
| Peak value:<br>Frequency                                                                  | Read<br>Level                                                                                           | Antenna<br>Factor                                                                                       | Cable<br>Loss                                       | Preamp<br>Factor                                                                                  | Level                                                                      | Limit Line                                                            | Over<br>Limit                                                                                    | Polarization Horizontal                                         |
| Peak value:<br>Frequency<br>(MHz)                                                         | Read<br>Level<br>(dBuV)                                                                                 | Antenna<br>Factor<br>(dB/m)                                                                             | Cable<br>Loss<br>(dB)                               | Preamp<br>Factor<br>(dB)                                                                          | Level<br>(dBuV/m)                                                          | Limit Line<br>(dBuV/m)                                                | Over<br>Limit<br>(dB)                                                                            |                                                                 |
| Frequency<br>(MHz)<br>2483.50                                                             | Read<br>Level<br>(dBuV)<br>51.97                                                                        | Antenna<br>Factor<br>(dB/m)<br>27.53                                                                    | Cable<br>Loss<br>(dB)<br>5.47                       | Preamp<br>Factor<br>(dB)<br>33.92                                                                 | Level<br>(dBuV/m)<br>51.05                                                 | Limit Line<br>(dBuV/m)<br>74.00                                       | Over<br>Limit<br>(dB)<br>-22.95                                                                  | Horizontal                                                      |
| Frequency<br>(MHz)<br>2483.50<br>2500.00                                                  | Read<br>Level<br>(dBuV)<br>51.97<br>47.87                                                               | Antenna<br>Factor<br>(dB/m)<br>27.53                                                                    | Cable<br>Loss<br>(dB)<br>5.47<br>5.49               | Preamp<br>Factor<br>(dB)<br>33.92<br>29.93                                                        | Level<br>(dBuV/m)<br>51.05<br>50.98                                        | Limit Line<br>(dBuV/m)<br>74.00<br>74.00                              | Over<br>Limit<br>(dB)<br>-22.95<br>-23.02                                                        | Horizontal<br>Horizontal                                        |
| Frequency (MHz)  2483.50  2500.00  2483.50                                                | Read<br>Level<br>(dBuV)<br>51.97<br>47.87<br>54.18<br>50.34                                             | Antenna<br>Factor<br>(dB/m)<br>27.53<br>27.55<br>27.53                                                  | Cable<br>Loss<br>(dB)<br>5.47<br>5.49<br>5.47       | Preamp<br>Factor<br>(dB)<br>33.92<br>29.93<br>33.92                                               | Level<br>(dBuV/m)<br>51.05<br>50.98<br>53.26                               | Limit Line<br>(dBuV/m)<br>74.00<br>74.00<br>74.00                     | Over<br>Limit<br>(dB)<br>-22.95<br>-23.02<br>-20.74                                              | Horizontal Horizontal Vertical                                  |
| Frequency (MHz)  2483.50  2500.00  2483.50  2500.00                                       | Read<br>Level<br>(dBuV)<br>51.97<br>47.87<br>54.18<br>50.34                                             | Antenna<br>Factor<br>(dB/m)<br>27.53<br>27.55<br>27.53                                                  | Cable<br>Loss<br>(dB)<br>5.47<br>5.49<br>5.47       | Preamp<br>Factor<br>(dB)<br>33.92<br>29.93<br>33.92                                               | Level<br>(dBuV/m)<br>51.05<br>50.98<br>53.26                               | Limit Line<br>(dBuV/m)<br>74.00<br>74.00<br>74.00                     | Over<br>Limit<br>(dB)<br>-22.95<br>-23.02<br>-20.74<br>-20.55                                    | Horizontal Horizontal Vertical                                  |
| Frequency (MHz)  2483.50  2500.00  2483.50  2500.00  Average va  Frequency                | Read<br>Level<br>(dBuV)<br>51.97<br>47.87<br>54.18<br>50.34<br>Iue:<br>Read<br>Level                    | Antenna<br>Factor<br>(dB/m)<br>27.53<br>27.55<br>27.53<br>27.55<br>Antenna<br>Factor                    | Cable Loss (dB) 5.47 5.49 5.49 Cable Loss           | Preamp<br>Factor<br>(dB)<br>33.92<br>29.93<br>33.92<br>29.93<br>Preamp<br>Factor                  | Level<br>(dBuV/m)<br>51.05<br>50.98<br>53.26<br>53.45                      | Limit Line (dBuV/m) 74.00 74.00 74.00 74.00 Limit Line                | Over<br>Limit<br>(dB)<br>-22.95<br>-23.02<br>-20.74<br>-20.55<br>Over<br>Limit                   | Horizontal Horizontal Vertical Vertical                         |
| Frequency (MHz)  2483.50  2500.00  2483.50  2500.00  Average va  Frequency (MHz)          | Read<br>Level<br>(dBuV)<br>51.97<br>47.87<br>54.18<br>50.34<br>Iue:<br>Read<br>Level<br>(dBuV)          | Antenna<br>Factor<br>(dB/m)<br>27.53<br>27.55<br>27.55<br>Antenna<br>Factor<br>(dB/m)                   | Cable Loss (dB) 5.47 5.49 5.47 5.49 Cable Loss (dB) | Preamp<br>Factor<br>(dB)<br>33.92<br>29.93<br>33.92<br>29.93<br>Preamp<br>Factor<br>(dB)          | Level<br>(dBuV/m)<br>51.05<br>50.98<br>53.26<br>53.45<br>Level<br>(dBuV/m) | Limit Line (dBuV/m) 74.00 74.00 74.00 74.00 Limit Line (dBuV/m)       | Over<br>Limit<br>(dB)<br>-22.95<br>-23.02<br>-20.74<br>-20.55<br>Over<br>Limit<br>(dB)           | Horizontal Horizontal Vertical Vertical Polarization            |
| Frequency (MHz)  2483.50  2500.00  2483.50  2500.00  Average va  Frequency (MHz)  2483.50 | Read<br>Level<br>(dBuV)<br>51.97<br>47.87<br>54.18<br>50.34<br>Iue:<br>Read<br>Level<br>(dBuV)<br>38.57 | Antenna<br>Factor<br>(dB/m)<br>27.53<br>27.55<br>27.53<br>27.55<br>Antenna<br>Factor<br>(dB/m)<br>27.53 | Cable Loss (dB) 5.47 5.49 5.49 Cable Loss (dB) 5.47 | Preamp<br>Factor<br>(dB)<br>33.92<br>29.93<br>33.92<br>29.93<br>Preamp<br>Factor<br>(dB)<br>33.92 | Level<br>(dBuV/m)<br>51.05<br>50.98<br>53.26<br>53.45<br>Level<br>(dBuV/m) | Limit Line (dBuV/m) 74.00 74.00 74.00 74.00 Limit Line (dBuV/m) 54.00 | Over<br>Limit<br>(dB)<br>-22.95<br>-23.02<br>-20.74<br>-20.55<br>Over<br>Limit<br>(dB)<br>-16.35 | Horizontal Horizontal Vertical Vertical Polarization Horizontal |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



| Test mode:         |                         | 802.1                       | 302.11g T             |                          | Test channel:     |                        | Lowest   |              |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|----------|--------------|--|
| Peak value:        |                         |                             |                       |                          |                   |                        |          |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I imit | Polarization |  |
| 2390.00            | 50.20                   | 27.59                       | 5.38                  | 34.01                    | 49.16             | 74.00                  | -24.84   | Horizontal   |  |
| 2400.00            | 58.72                   | 27.58                       | 5.39                  | 34.01                    | 57.68             | 74.00                  | -16.32   | Horizontal   |  |
| 2390.00            | 51.78                   | 27.59                       | 5.38                  | 34.01                    | 50.74             | 74.00                  | -23.26   | Vertical     |  |
| 2400.00            | 60.13                   | 27.58                       | 5.39                  | 34.01                    | 59.09             | 74.00                  | -14.91   | Vertical     |  |
| Average va         | lue:                    |                             |                       |                          |                   |                        |          |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I Imit | Polarization |  |
| 2390.00            | 37.38                   | 27.59                       | 5.38                  | 34.01                    | 36.34             | 54.00                  | -17.66   | Horizontal   |  |
| 2400.00            | 45.51                   | 27.58                       | 5.39                  | 34.01                    | 44.47             | 54.00                  | -9.53    | Horizontal   |  |
| 2390.00            | 39.08                   | 27.59                       | 5.38                  | 34.01                    | 38.04             | 54.00                  | -15.96   | Vertical     |  |
| 2400.00            | 46.53                   | 27.58                       | 5.39                  | 34.01                    | 45.49             | 54.00                  | -8.51    | Vertical     |  |
|                    |                         |                             |                       |                          |                   |                        |          |              |  |
| Test mode:         |                         | 802.11g                     |                       | Test channel:            |                   |                        | Highest  |              |  |
| Peak value:        |                         |                             |                       | T                        |                   |                        | •        |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I imit | Polarization |  |
| 2483.50            | 50.23                   | 27.53                       | 5.47                  | 33.92                    | 49.31             | 74.00                  | -24.69   | Horizontal   |  |
| 2500.00            | 46.52                   | 27.55                       | 5.49                  | 29.93                    | 49.63             | 74.00                  | -24.37   | Horizontal   |  |
| 2483.50            | 52.19                   | 27.53                       | 5.47                  | 33.92                    | 51.27             | 74.00                  | -22.73   | Vertical     |  |
| 2500.00            | 48.76                   | 27.55                       | 5.49                  | 29.93                    | 51.87             | 74.00                  | -22.13   | Vertical     |  |
| Average va         | Average value:          |                             |                       |                          |                   |                        |          |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | I I imit | Polarization |  |
| 2483.50            | 37.52                   | 27.53                       | 5.47                  | 33.92                    | 36.60             | 54.00                  | -17.40   | Horizontal   |  |
| 2500.00            | 33.90                   | 27.55                       | 5.49                  | 29.93                    | 37.01             | 54.00                  | -16.99   | Horizontal   |  |
| 2483.50            | 39.34                   | 27.53                       | 5.47                  | 33.92                    | 38.42             | 54.00                  | -15.58   | Vertical     |  |
| 2500.00            | 35.72                   | 27.55                       | 5.49                  | 29.93                    | 38.83             | 54.00                  | -15.17   | Vertical     |  |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



| Test mode:         | 802.1                   | 1n(HT20)                    |                       | Tes                      | t channel:        | L                      | owest                 |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 50.52                   | 27.59                       | 5.38                  | 34.01                    | 49.48             | 74.00                  | -24.52                | Horizontal   |
| 2400.00            | 59.16                   | 27.58                       | 5.39                  | 34.01                    | 58.12             | 74.00                  | -15.88                | Horizontal   |
| 2390.00            | 52.13                   | 27.59                       | 5.38                  | 34.01                    | 51.09             | 74.00                  | -22.91                | Vertical     |
| 2400.00            | 60.65                   | 27.58                       | 5.39                  | 34.01                    | 59.61             | 74.00                  | -14.39                | Vertical     |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 37.61                   | 27.59                       | 5.38                  | 34.01                    | 36.57             | 54.00                  | -17.43                | Horizontal   |
| 2400.00            | 45.78                   | 27.58                       | 5.39                  | 34.01                    | 44.74             | 54.00                  | -9.26                 | Horizontal   |
| 2390.00            | 39.34                   | 27.59                       | 5.38                  | 34.01                    | 38.30             | 54.00                  | -15.70                | Vertical     |
| 2400.00            | 46.82                   | 27.58                       | 5.39                  | 34.01                    | 45.78             | 54.00                  | -8.22                 | Vertical     |
|                    |                         |                             |                       |                          |                   |                        |                       |              |
| Test mode:         |                         | 1n(HT20)                    |                       | Tes                      | t channel:        | ŀ                      | Highest               |              |
| Peak value:        |                         |                             |                       |                          | <u> </u>          |                        |                       | 1            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 50.70                   | 27.53                       | 5.47                  | 33.92                    | 49.78             | 74.00                  | -24.22                | Horizontal   |
| 2500.00            | 46.88                   | 27.55                       | 5.49                  | 29.93                    | 49.99             | 74.00                  | -24.01                | Horizontal   |
| 2483.50            | 52.72                   | 27.53                       | 5.47                  | 33.92                    | 51.80             | 74.00                  | -22.20                | Vertical     |
| 2500.00            | 49.18                   | 27.55                       | 5.49                  | 29.93                    | 52.29             | 74.00                  | -21.71                | Vertical     |
| Average va         |                         |                             |                       | T                        | 1                 |                        |                       | ·            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 37.80                   | 27.53                       | 5.47                  | 33.92                    | 36.88             | 54.00                  | -17.12                | Horizontal   |
| 2500.00            | 34.12                   | 27.55                       | 5.49                  | 29.93                    | 37.23             | 54.00                  | -16.77                | Horizontal   |
| 2483.50            | 39.65                   | 27.53                       | 5.47                  | 33.92                    | 38.73             | 54.00                  | -15.27                | Vertical     |
| 2500.00            | 35.96                   | 27.55                       | 5.49                  | 29.93                    | 39.07             | 54.00                  | -14.93                | Vertical     |

#### Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



| Test mode:         | 802.1                   | 1n(HT40)                    |                       | Tes                      | t channel:        | I                      | _owest                |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 49.57                   | 27.59                       | 5.38                  | 34.01                    | 48.53             | 74.00                  | -25.47                | Horizontal   |
| 2400.00            | 57.89                   | 27.58                       | 5.39                  | 34.01                    | 56.85             | 74.00                  | -17.15                | Horizontal   |
| 2390.00            | 51.11                   | 27.59                       | 5.38                  | 34.01                    | 50.07             | 74.00                  | -23.93                | Vertical     |
| 2400.00            | 59.12                   | 27.58                       | 5.39                  | 34.01                    | 58.08             | 74.00                  | -15.92                | Vertical     |
| Average va         | lue:                    |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2390.00            | 36.93                   | 27.59                       | 5.38                  | 34.01                    | 35.89             | 54.00                  | -18.11                | Horizontal   |
| 2400.00            | 45.00                   | 27.58                       | 5.39                  | 34.01                    | 43.96             | 54.00                  | -10.04                | Horizontal   |
| 2390.00            | 38.58                   | 27.59                       | 5.38                  | 34.01                    | 37.54             | 54.00                  | -16.46                | Vertical     |
| 2400.00            | 45.97                   | 27.58                       | 5.39                  | 34.01                    | 44.93             | 54.00                  | -9.07                 | Vertical     |
|                    |                         |                             |                       |                          |                   |                        |                       |              |
| Test mode:         | 802.1                   | 1n(HT40)                    |                       | Tes                      | t channel:        | ŀ                      | Highest               |              |
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 49.33                   | 27.53                       | 5.47                  | 33.92                    | 48.41             | 74.00                  | -25.59                | Horizontal   |
| 2500.00            | 45.83                   | 27.55                       | 5.49                  | 29.93                    | 48.94             | 74.00                  | -25.06                | Horizontal   |
| 2483.50            | 51.17                   | 27.53                       | 5.47                  | 33.92                    | 50.25             | 74.00                  | -23.75                | Vertical     |
| 2500.00            | 47.95                   | 27.55                       | 5.49                  | 29.93                    | 51.06             | 74.00                  | -22.94                | Vertical     |
| Average value:     |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 2483.50            | 36.98                   | 27.53                       | 5.47                  | 33.92                    | 36.06             | 54.00                  | -17.94                | Horizontal   |
| 2500.00            | 33.48                   | 27.55                       | 5.49                  | 29.93                    | 36.59             | 54.00                  | -17.41                | Horizontal   |
| 2483.50            | 38.74                   | 27.53                       | 5.47                  | 33.92                    | 37.82             | 54.00                  | -16.18                | Vertical     |
| 2500.00            | 35.28                   | 27.55                       | 5.49                  | 29.93                    | 38.39             | 54.00                  | -15.61                | Vertical     |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



# 7.7 Spurious Emission

# 7.7.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

# Test plot as follows:



#### Test mode:

#### 802.11b

#### Lowest channel



30MHz~10GHz

#### Agilent R T Peak Search Ref 20 dBm Next Peak Atten 30 dB Next Pk Right Next Pk Left Min Search Stop 25.000 GHz Sweep 1.434 s (601 pts) Start 10.000 GHz Res BN 100 kHz #VBW 300 kHz Pk-Pk Search Type Freq Trace (1) X Axis 13.975 GHz Amplitude -50.74 dBm Mkr → CF More 1 of 2 Copyright 2000-2012 Agilent Technologies

10GHz~25GHz

#### Middle channel



30MHz~10GHz



10GHz~25GHz





30MHz~10GHz



10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



#### Test mode:

#### 802.11g

#### Lowest channel



30MHz~10GHz

### 

10GHz~25GHz

#### Middle channel



30MHz~10GHz



10GHz~25GHz



30MHz~10GHz



10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



More 1 of 2

#### Test mode:

#### 802.11n(HT20)

#### Lowest channel



30MHz~10GHz

#### 

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

### Middle channel



30MHz~10GHz



10GHz~25GHz





30MHz~10GHz



10GHz~25GHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 36 of 54



#### Test mode:

#### 802.11n(HT40)

#### Lowest channel



30MHz~10GHz

#### \* Agilent R T Peak Search 14.475 GHz -51.63 dBm Atten 30 dB Next Peak ef 20 dBm Next Pk Right Next Pk Left Min Search Start 10.000 GHz •Res BW 100 kHz Stop 25.000 GH: Sweep 1.434 s (601 pts) Pk-Pk Search #VBW 300 kHz X Axis 14.475 GHz Amplitude -51.63 dBm Mkr → CF Copyright 2000-2012 Agilent Technologies

10GHz~25GHz

#### Middle channel



30MHz~10GHz



10GHz~25GHz





30MHz~10GHz



10GHz~25GHz



# 7.7.2 Radiated Emission Method

| Test Requirement:     | FCC Part15 C Se                    | ection 15.209                |             |         |            |  |  |  |  |  |  |
|-----------------------|------------------------------------|------------------------------|-------------|---------|------------|--|--|--|--|--|--|
| Test Method:          | ANSI C63.10:201                    | 13                           |             |         |            |  |  |  |  |  |  |
| Test Frequency Range: | 30MHz to 40GHz                     | 30MHz to 40GHz               |             |         |            |  |  |  |  |  |  |
| Test site:            | Measurement Dis                    | stance: 3m                   |             |         |            |  |  |  |  |  |  |
| Receiver setup:       | Frequency                          | Detector                     | RBW         | VBW     | Value      |  |  |  |  |  |  |
|                       | 30MHz-1GHz                         | <u> </u>                     |             |         |            |  |  |  |  |  |  |
|                       | Al- 2012 4 CH                      | Above 1GHz Peak 1MHz 3MHz    |             |         |            |  |  |  |  |  |  |
|                       | Above 1GHz                         | Above 1GHz RMS 1MHz 3MHz     |             |         |            |  |  |  |  |  |  |
| Limit:                | Frequen                            | су                           | Limit (dBuV | /m @3m) | Value      |  |  |  |  |  |  |
|                       | 30MHz-88                           | MHz                          | 40.0        | 0       | Quasi-peak |  |  |  |  |  |  |
|                       | 88MHz-216                          | 6MHz                         | 43.5        | 0       | Quasi-peak |  |  |  |  |  |  |
|                       | 216MHz-96                          | 216MHz-960MHz 46.00 Q        |             |         |            |  |  |  |  |  |  |
|                       | 960MHz-1                           | 960MHz-1GHz 54.00 Quasi-peal |             |         |            |  |  |  |  |  |  |
|                       |                                    | Above 1GHz 54.00 Average     |             |         |            |  |  |  |  |  |  |
|                       | Above 10                           | Above 1GHz  74.00  Peak      |             |         |            |  |  |  |  |  |  |
|                       | Search Antenna  Turn Table 0.8m Im |                              |             |         |            |  |  |  |  |  |  |
|                       | Ground Plane                       | nijum <del>a</del>           |             |         |            |  |  |  |  |  |  |

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960



| Test Procedure:   | 1. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                               |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                       |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                    |
|                   | 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                           |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. |
|                   | 7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.                                                                                                                                                            |
| Test Instruments: | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                      |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                      |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                  |

# Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.



## **Measurement Data**

# ■ Below 1GHz

| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| 35.50              | 39.80                   | 14.44                       | 0.61                  | 30.07                    | 24.78             | 40.00                  | -15.22                | Vertical     |
| 78.14              | 38.27                   | 10.31                       | 1.01                  | 29.81                    | 19.78             | 40.00                  | -20.22                | Vertical     |
| 130.84             | 54.98                   | 10.88                       | 1.44                  | 29.51                    | 37.79             | 43.50                  | -5.71                 | Vertical     |
| 177.51             | 45.84                   | 11.49                       | 1.73                  | 29.29                    | 29.77             | 43.50                  | -13.73                | Vertical     |
| 316.59             | 51.68                   | 15.28                       | 2.45                  | 29.90                    | 39.51             | 46.00                  | -6.49                 | Vertical     |
| 801.79             | 35.86                   | 22.06                       | 4.46                  | 29.20                    | 33.18             | 46.00                  | -12.82                | Vertical     |
| 34.76              | 26.65                   | 14.30                       | 0.61                  | 30.07                    | 11.49             | 40.00                  | -28.51                | Horizontal   |
| 41.71              | 27.21                   | 15.57                       | 0.68                  | 30.04                    | 13.42             | 40.00                  | -26.58                | Horizontal   |
| 134.09             | 55.95                   | 10.61                       | 1.47                  | 29.49                    | 38.54             | 43.50                  | -4.96                 | Horizontal   |
| 210.79             | 45.24                   | 12.90                       | 1.90                  | 29.30                    | 30.74             | 43.50                  | -12.76                | Horizontal   |
| 316.59             | 45.92                   | 15.28                       | 2.45                  | 29.90                    | 33.75             | 46.00                  | -12.25                | Horizontal   |
| 845.09             | 27.97                   | 22.55                       | 4.63                  | 29.15                    | 26.00             | 46.00                  | -20.00                | Horizontal   |



#### ■ Above 1GHz

| Test mode:         |                         | 802.11b                     |                       | Test                     | channel:          | Lowe                   | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       | •                        |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 40.99                   | 31.79                       | 8.62                  | 32.10                    | 49.30             | 74.00                  | -24.70                | Vertical     |
| 7236.00            | 34.66                   | 36.19                       | 11.68                 | 31.97                    | 50.56             | 74.00                  | -23.44                | Vertical     |
| 9648.00            | 33.03                   | 38.07                       | 14.16                 | 31.56                    | 53.70             | 74.00                  | -20.30                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4824.00            | 39.55                   | 31.79                       | 8.62                  | 32.10                    | 47.86             | 74.00                  | -26.14                | Horizontal   |
| 7236.00            | 34.35                   | 36.19                       | 11.68                 | 31.97                    | 50.25             | 74.00                  | -23.75                | Horizontal   |
| 9648.00            | 32.58                   | 38.07                       | 14.16                 | 31.56                    | 53.25             | 74.00                  | -20.75                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 30.02                   | 31.79                       | 8.62                  | 32.10                    | 38.33             | 54.00                  | -15.67                | Vertical     |
| 7236.00            | 23.51                   | 36.19                       | 11.68                 | 31.97                    | 39.41             | 54.00                  | -14.59                | Vertical     |
| 9648.00            | 23.36                   | 38.07                       | 14.16                 | 31.56                    | 44.03             | 54.00                  | -9.97                 | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4824.00            | 29.06                   | 31.79                       | 8.62                  | 32.10                    | 37.37             | 54.00                  | -16.63                | Horizontal   |
| 7236.00            | 22.93                   | 36.19                       | 11.68                 | 31.97                    | 38.83             | 54.00                  | -15.17                | Horizontal   |
| 9648.00            | 22.32                   | 38.07                       | 14.16                 | 31.56                    | 42.99             | 54.00                  | -11.01                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
|                    |                         |                             |                       |                          |                   |                        |                       |              |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11b                     |                       | Test                     | channel:          | Midd                   | le                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 39.93                   | 31.85                       | 8.66                  | 32.12                    | 48.32             | 74.00                  | -25.68                | Vertical     |
| 7311.00            | 34.66                   | 36.37                       | 11.71                 | 31.91                    | 50.83             | 74.00                  | -23.17                | Vertical     |
| 9748.00            | 33.99                   | 38.27                       | 14.25                 | 31.56                    | 54.95             | 74.00                  | -19.05                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 40.32                   | 31.85                       | 8.66                  | 32.12                    | 48.71             | 74.00                  | -25.29                | Horizontal   |
| 7311.00            | 33.25                   | 36.37                       | 11.71                 | 31.91                    | 49.42             | 74.00                  | -24.58                | Horizontal   |
| 9748.00            | 33.86                   | 38.27                       | 14.25                 | 31.56                    | 54.82             | 74.00                  | -19.18                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 30.74                   | 31.85                       | 8.66                  | 32.12                    | 39.13             | 54.00                  | -14.87                | Vertical     |
| 7311.00            | 22.96                   | 36.37                       | 11.71                 | 31.91                    | 39.13             | 54.00                  | -14.87                | Vertical     |
| 9748.00            | 23.24                   | 38.27                       | 14.25                 | 31.56                    | 44.20             | 54.00                  | -9.80                 | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 30.40                   | 31.85                       | 8.66                  | 32.12                    | 38.79             | 54.00                  | -15.21                | Horizontal   |
| 7311.00            | 22.33                   | 36.37                       | 11.71                 | 31.91                    | 38.50             | 54.00                  | -15.50                | Horizontal   |
| 9748.00            | 23.57                   | 38.27                       | 14.25                 | 31.56                    | 44.53             | 54.00                  | -9.47                 | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14622.00           | *                       | _                           |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11b                     |                       | Tes                      | t channel:        | Highe                  | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 45.88                   | 31.90                       | 8.70                  | 32.15                    | 54.33             | 74.00                  | -19.67                | Vertical     |
| 7386.00            | 35.60                   | 36.49                       | 11.76                 | 31.83                    | 52.02             | 74.00                  | -21.98                | Vertical     |
| 9848.00            | 37.48                   | 38.62                       | 14.31                 | 31.77                    | 58.64             | 74.00                  | -15.36                | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4924.00            | 45.03                   | 31.90                       | 8.70                  | 32.15                    | 53.48             | 74.00                  | -20.52                | Horizontal   |
| 7386.00            | 34.42                   | 36.49                       | 11.76                 | 31.83                    | 50.84             | 74.00                  | -23.16                | Horizontal   |
| 9848.00            | 33.62                   | 38.62                       | 14.31                 | 31.77                    | 54.78             | 74.00                  | -19.22                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 36.71                   | 31.90                       | 8.70                  | 32.15                    | 45.16             | 54.00                  | -8.84                 | Vertical     |
| 7386.00            | 25.49                   | 36.49                       | 11.76                 | 31.83                    | 41.91             | 54.00                  | -12.09                | Vertical     |
| 9848.00            | 25.96                   | 38.62                       | 14.31                 | 31.77                    | 47.12             | 54.00                  | -6.88                 | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00            | 35.34                   | 31.90                       | 8.70                  | 32.15                    | 43.79             | 54.00                  | -10.21                | Horizontal   |
| 7386.00            | 23.79                   | 36.49                       | 11.76                 | 31.83                    | 40.21             | 54.00                  | -13.79                | Horizontal   |
| 9848.00            | 22.86                   | 38.62                       | 14.31                 | 31.77                    | 44.02             | 54.00                  | -9.98                 | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11g                     |                       | Test                     | channel:          | lowes                  | st                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 39.37                   | 31.79                       | 8.62                  | 32.10                    | 47.68             | 74.00                  | -26.32                | Vertical     |
| 7236.00            | 33.63                   | 36.19                       | 11.68                 | 31.97                    | 49.53             | 74.00                  | -24.47                | Vertical     |
| 9648.00            | 32.30                   | 38.07                       | 14.16                 | 31.56                    | 52.97             | 74.00                  | -21.03                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4824.00            | 38.18                   | 31.79                       | 8.62                  | 32.10                    | 46.49             | 74.00                  | -27.51                | Horizontal   |
| 7236.00            | 33.46                   | 36.19                       | 11.68                 | 31.97                    | 49.36             | 74.00                  | -24.64                | Horizontal   |
| 9648.00            | 31.91                   | 38.07                       | 14.16                 | 31.56                    | 52.58             | 74.00                  | -21.42                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 28.53                   | 31.79                       | 8.62                  | 32.10                    | 36.84             | 54.00                  | -17.16                | Vertical     |
| 7236.00            | 22.52                   | 36.19                       | 11.68                 | 31.97                    | 38.42             | 54.00                  | -15.58                | Vertical     |
| 9648.00            | 22.66                   | 38.07                       | 14.16                 | 31.56                    | 43.33             | 54.00                  | -10.67                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4824.00            | 27.77                   | 31.79                       | 8.62                  | 32.10                    | 36.08             | 54.00                  | -17.92                | Horizontal   |
| 7236.00            | 22.05                   | 36.19                       | 11.68                 | 31.97                    | 37.95             | 54.00                  | -16.05                | Horizontal   |
| 9648.00            | 21.67                   | 38.07                       | 14.16                 | 31.56                    | 42.34             | 54.00                  | -11.66                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       | _                           |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11g                     |                       | Test                     | channel:          | Midd                   | le                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 38.59                   | 31.85                       | 8.66                  | 32.12                    | 46.98             | 74.00                  | -27.02                | Vertical     |
| 7311.00            | 33.81                   | 36.37                       | 11.71                 | 31.91                    | 49.98             | 74.00                  | -24.02                | Vertical     |
| 9748.00            | 33.39                   | 38.27                       | 14.25                 | 31.56                    | 54.35             | 74.00                  | -19.65                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 39.18                   | 31.85                       | 8.66                  | 32.12                    | 47.57             | 74.00                  | -26.43                | Horizontal   |
| 7311.00            | 32.51                   | 36.37                       | 11.71                 | 31.91                    | 48.68             | 74.00                  | -25.32                | Horizontal   |
| 9748.00            | 33.30                   | 38.27                       | 14.25                 | 31.56                    | 54.26             | 74.00                  | -19.74                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 29.50                   | 31.85                       | 8.66                  | 32.12                    | 37.89             | 54.00                  | -16.11                | Vertical     |
| 7311.00            | 22.14                   | 36.37                       | 11.71                 | 31.91                    | 38.31             | 54.00                  | -15.69                | Vertical     |
| 9748.00            | 22.65                   | 38.27                       | 14.25                 | 31.56                    | 43.61             | 54.00                  | -10.39                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 29.34                   | 31.85                       | 8.66                  | 32.12                    | 37.73             | 54.00                  | -16.27                | Horizontal   |
| 7311.00            | 21.61                   | 36.37                       | 11.71                 | 31.91                    | 37.78             | 54.00                  | -16.22                | Horizontal   |
| 9748.00            | 23.03                   | 38.27                       | 14.25                 | 31.56                    | 43.99             | 54.00                  | -10.01                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14622.00           | *                       | _                           |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         |                         | 802.11g                     |                       | •                   | Test | channel:          |                | Highest |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|---------------------|------|-------------------|----------------|---------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                     |      |                   |                |         |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Prea<br>Fact<br>(dE | tor  | Level<br>(dBuV/m) | Limit<br>(dBu  |         | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 43.56                   | 31.90                       | 8.70                  | 32.1                | 15   | 52.01             | 74.            | 00      | -21.99                | Vertical     |
| 7386.00            | 34.13                   | 36.49                       | 11.76                 | 31.8                | 33   | 50.55             | 74.            | 00      | -23.45                | Vertical     |
| 9848.00            | 36.43                   | 38.62                       | 14.31                 | 31.7                | 77   | 57.59             | 74.            | 00      | -16.41                | Vertical     |
| 12310.00           | *                       |                             |                       |                     |      |                   | 74.            | 00      |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                     |      |                   | 74.            | 00      |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                     |      |                   | 74.            | 00      |                       | Vertical     |
| 4924.00            | 43.07                   | 31.90                       | 8.70                  | 32.1                | 15   | 51.52             | 74.            | 00      | -22.48                | Horizontal   |
| 7386.00            | 33.14                   | 36.49                       | 11.76                 | 31.8                | 33   | 49.56             | 74.            | 00      | -24.44                | Horizontal   |
| 9848.00            | 32.65                   | 38.62                       | 14.31                 | 31.7                | 77   | 53.81             | 74.            | 00      | -20.19                | Horizontal   |
| 12310.00           | *                       |                             |                       |                     |      |                   | 74.            | 00      |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                     |      |                   | 74.            | 00      |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                     |      |                   | 74.            | 00      |                       | Horizontal   |
| Average val        | ue:                     | •                           |                       |                     |      |                   |                |         |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Prea<br>Fact<br>(dE | tor  | Level<br>(dBuV/m) | Limit<br>(dBu\ |         | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 34.58                   | 31.90                       | 8.70                  | 32.1                | 15   | 43.03             | 54.            | 00      | -10.97                | Vertical     |
| 7386.00            | 24.08                   | 36.49                       | 11.76                 | 31.8                | 33   | 40.50             | 54.            | 00      | -13.50                | Vertical     |
| 9848.00            | 24.96                   | 38.62                       | 14.31                 | 31.7                | 77   | 46.12             | 54.            | 00      | -7.88                 | Vertical     |
| 12310.00           | *                       |                             |                       |                     |      |                   | 54.            | 00      |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                     |      |                   | 54.            | 00      |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                     |      |                   | 54.            | 00      |                       | Vertical     |
| 4924.00            | 33.51                   | 31.90                       | 8.70                  | 32.1                | 15   | 41.96             | 54.            | 00      | -12.04                | Horizontal   |
| 7386.00            | 22.55                   | 36.49                       | 11.76                 | 31.8                | 33   | 38.97             | 54.            | 00      | -15.03                | Horizontal   |
| 9848.00            | 21.93                   | 38.62                       | 14.31                 | 31.7                | 77   | 43.09             | 54.            | 00      | -10.91                | Horizontal   |
| 12310.00           | *                       |                             |                       |                     |      |                   | 54.            | 00      |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                     |      |                   | 54.            | 00      |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                     |      |                   | 54.            | 00      |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         | 802.11                  | n(HT20)                     |                       | Test                     | channel:          | Lowe                   | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 40.12                   | 31.79                       | 8.62                  | 32.10                    | 48.43             | 74.00                  | -25.57                | Vertical     |
| 7236.00            | 34.11                   | 36.19                       | 11.68                 | 31.97                    | 50.01             | 74.00                  | -23.99                | Vertical     |
| 9648.00            | 32.63                   | 38.07                       | 14.16                 | 31.56                    | 53.30             | 74.00                  | -20.70                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4824.00            | 38.81                   | 31.79                       | 8.62                  | 32.10                    | 47.12             | 74.00                  | -26.88                | Horizontal   |
| 7236.00            | 33.87                   | 36.19                       | 11.68                 | 31.97                    | 49.77             | 74.00                  | -24.23                | Horizontal   |
| 9648.00            | 32.22                   | 38.07                       | 14.16                 | 31.56                    | 52.89             | 74.00                  | -21.11                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4824.00            | 29.22                   | 31.79                       | 8.62                  | 32.10                    | 37.53             | 54.00                  | -16.47                | Vertical     |
| 7236.00            | 22.98                   | 36.19                       | 11.68                 | 31.97                    | 38.88             | 54.00                  | -15.12                | Vertical     |
| 9648.00            | 22.98                   | 38.07                       | 14.16                 | 31.56                    | 43.65             | 54.00                  | -10.35                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4824.00            | 28.36                   | 31.79                       | 8.62                  | 32.10                    | 36.67             | 54.00                  | -17.33                | Horizontal   |
| 7236.00            | 22.46                   | 36.19                       | 11.68                 | 31.97                    | 38.36             | 54.00                  | -15.64                | Horizontal   |
| 9648.00            | 21.97                   | 38.07                       | 14.16                 | 31.56                    | 42.64             | 54.00                  | -11.36                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         | 802.11                  | n(HT20)                     |                       | Test                     | channel:          | Midd                   | le                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 39.20                   | 31.85                       | 8.66                  | 32.12                    | 47.59             | 74.00                  | -26.41                | Vertical     |
| 7311.00            | 34.20                   | 36.37                       | 11.71                 | 31.91                    | 50.37             | 74.00                  | -23.63                | Vertical     |
| 9748.00            | 33.67                   | 38.27                       | 14.25                 | 31.56                    | 54.63             | 74.00                  | -19.37                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4874.00            | 39.71                   | 31.85                       | 8.66                  | 32.12                    | 48.10             | 74.00                  | -25.90                | Horizontal   |
| 7311.00            | 32.85                   | 36.37                       | 11.71                 | 31.91                    | 49.02             | 74.00                  | -24.98                | Horizontal   |
| 9748.00            | 33.56                   | 38.27                       | 14.25                 | 31.56                    | 54.52             | 74.00                  | -19.48                | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 30.07                   | 31.85                       | 8.66                  | 32.12                    | 38.46             | 54.00                  | -15.54                | Vertical     |
| 7311.00            | 22.52                   | 36.37                       | 11.71                 | 31.91                    | 38.69             | 54.00                  | -15.31                | Vertical     |
| 9748.00            | 22.92                   | 38.27                       | 14.25                 | 31.56                    | 43.88             | 54.00                  | -10.12                | Vertical     |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4874.00            | 29.83                   | 31.85                       | 8.66                  | 32.12                    | 38.22             | 54.00                  | -15.78                | Horizontal   |
| 7311.00            | 21.94                   | 36.37                       | 11.71                 | 31.91                    | 38.11             | 54.00                  | -15.89                | Horizontal   |
| 9748.00            | 23.28                   | 38.27                       | 14.25                 | 31.56                    | 44.24             | 54.00                  | -9.76                 | Horizontal   |
| 12185.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14622.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17059.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2. &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         | 802.11                  | n(HT20)                     |                       | Test                     | channel:          | Highe                  | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 44.63                   | 31.90                       | 8.70                  | 32.15                    | 53.08             | 74.00                  | -20.92                | 4924.00      |
| 7386.00            | 34.81                   | 36.49                       | 11.76                 | 31.83                    | 51.23             | 74.00                  | -22.77                | 7386.00      |
| 9848.00            | 36.92                   | 38.62                       | 14.31                 | 31.77                    | 58.08             | 74.00                  | -15.92                | 9848.00      |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4924.00            | 43.97                   | 31.90                       | 8.70                  | 32.15                    | 52.42             | 74.00                  | -21.58                | Horizontal   |
| 7386.00            | 33.73                   | 36.49                       | 11.76                 | 31.83                    | 50.15             | 74.00                  | -23.85                | Horizontal   |
| 9848.00            | 33.09                   | 38.62                       | 14.31                 | 31.77                    | 54.25             | 74.00                  | -19.75                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4924.00            | 35.56                   | 31.90                       | 8.70                  | 32.15                    | 44.01             | 54.00                  | -9.99                 | Vertical     |
| 7386.00            | 24.73                   | 36.49                       | 11.76                 | 31.83                    | 41.15             | 54.00                  | -12.85                | Vertical     |
| 9848.00            | 25.42                   | 38.62                       | 14.31                 | 31.77                    | 46.58             | 54.00                  | -7.42                 | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4924.00            | 34.35                   | 31.90                       | 8.70                  | 32.15                    | 42.80             | 54.00                  | -11.20                | Horizontal   |
| 7386.00            | 23.12                   | 36.49                       | 11.76                 | 31.83                    | 39.54             | 54.00                  | -14.46                | Horizontal   |
| 9848.00            | 22.36                   | 38.62                       | 14.31                 | 31.77                    | 43.52             | 54.00                  | -10.48                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       | _                           |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2 &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         | 802.11                  | 802.11n(HT40)               |                       |                          |  | Test channel:     |                        |    | st                    |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|--|-------------------|------------------------|----|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |  |                   |                        |    |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |  | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) |    | Over<br>Limit<br>(dB) | polarization |
| 4844.00            | 38.75                   | 31.81                       | 8.63                  | 32.11                    |  | 47.08             | 74.00                  |    | -26.92                | Vertical     |
| 7266.00            | 33.25                   | 36.28                       | 11.69                 | 31.94                    |  | 49.28             | 74.00                  |    | -24.72                | Vertical     |
| 9688.00            | 32.02                   | 38.13                       | 14.21                 | 31.52                    |  | 52.84             | 74.00                  |    | -21.16                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |  |                   | 74.00                  |    |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |  |                   | 74.                    | 00 |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |  |                   | 74.                    | 00 |                       | Vertical     |
| 4844.00            | 37.66                   | 31.81                       | 8.63                  | 32.11                    |  | 45.99             | 74.                    | 00 | -28.01                | Horizontal   |
| 7266.00            | 33.12                   | 36.28                       | 11.69                 | 31.94                    |  | 49.15             | 74.                    | 00 | -24.85                | Horizontal   |
| 9688.00            | 31.65                   | 38.13                       | 14.21                 | 31.52                    |  | 52.47             | 74.                    | 00 | -21.53                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |  |                   | 74.                    | 00 |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |  |                   | 74.                    | 00 |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |  |                   | 74.                    | 00 |                       | Horizontal   |

#### Average value:

| Avelage val        | <b></b>                 |                             |                       |                          |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4844.00            | 27.96                   | 31.81                       | 8.63                  | 32.11                    | 36.29             | 54.00                  | -17.71                | Vertical     |
| 7266.00            | 22.15                   | 36.28                       | 11.69                 | 31.94                    | 38.18             | 54.00                  | -15.82                | Vertical     |
| 9688.00            | 22.39                   | 38.13                       | 14.21                 | 31.52                    | 43.21             | 54.00                  | -10.79                | Vertical     |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4844.00            | 27.28                   | 31.81                       | 8.63                  | 32.11                    | 35.61             | 54.00                  | -18.39                | Horizontal   |
| 7266.00            | 21.72                   | 36.28                       | 11.69                 | 31.94                    | 37.75             | 54.00                  | -16.25                | Horizontal   |
| 9688.00            | 21.42                   | 38.13                       | 14.21                 | 31.52                    | 42.24             | 54.00                  | -11.76                | Horizontal   |
| 12060.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14472.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 16884.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         | 802.11                                | 1n(HT40)                    |                       |                          | Test channel:      |                   |                        | Middle |                       |              |
|--------------------|---------------------------------------|-----------------------------|-----------------------|--------------------------|--------------------|-------------------|------------------------|--------|-----------------------|--------------|
| Peak value:        | · · · · · · · · · · · · · · · · · · · |                             |                       |                          |                    |                   |                        |        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)               | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) |                    | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) |        | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 38.08                                 | 31.85                       | 8.66                  | 32.12                    |                    | 46.47             | 74.                    | 00     | -27.53                | Vertical     |
| 7311.00            | 33.49                                 | 36.37                       | 11.71                 | 31.91                    |                    | 49.66             | 74.                    | 00     | -24.34                | Vertical     |
| 9748.00            | 33.16                                 | 38.27                       | 14.25                 | 31.56                    |                    | 54.12             | 74.00                  |        | -19.88                | Vertical     |
| 12185.00           | *                                     |                             |                       |                          |                    |                   | 74.                    | 00     |                       | Vertical     |
| 14622.00           | *                                     |                             |                       |                          |                    |                   | 74.00                  |        |                       | Vertical     |
| 17059.00           | *                                     |                             |                       |                          |                    |                   | 74.                    | 00     |                       | Vertical     |
| 4874.00            | 38.75                                 | 31.85                       | 8.66                  | 32                       | .12                | 47.14             | 74.                    | 00     | -26.86                | Horizontal   |
| 7311.00            | 32.23                                 | 36.37                       | 11.71                 | 31                       | .91                | 48.40             | 74.                    | 00     | -25.60                | Horizontal   |
| 9748.00            | 33.09                                 | 38.27                       | 14.25                 | 31                       | .56                | 54.05             | 74.                    | 00     | -19.95                | Horizontal   |
| 12185.00           | *                                     |                             |                       |                          |                    |                   | 74.                    | 00     |                       | Horizontal   |
| 14622.00           | *                                     |                             |                       |                          |                    |                   | 74.                    | 00     |                       | Horizontal   |
| 17059.00           | *                                     |                             |                       |                          |                    |                   | 74.                    | 00     |                       | Horizontal   |
| Average val        | ue:                                   |                             |                       |                          |                    |                   |                        |        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV)               | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Fa                       | amp<br>ctor<br>IB) | Level<br>(dBuV/m) | Limit<br>(dBu          |        | Over<br>Limit<br>(dB) | polarization |
| 4874.00            | 29.03                                 | 31.85                       | 8.66                  | 32                       | .12                | 37.42             | 54.                    | 00     | -16.58                | Vertical     |
| 7311.00            | 21.83                                 | 36.37                       | 11.71                 | 31                       | .91                | 38.00             | 54.                    | 00     | -16.00                | Vertical     |
| 9748.00            | 22.43                                 | 38.27                       | 14.25                 | 31                       | .56                | 43.39             | 54.                    | 00     | -10.61                | Vertical     |
| 12185.00           | *                                     |                             |                       |                          |                    |                   | 54.                    | 00     |                       | Vertical     |
| 14622.00           | *                                     |                             |                       |                          |                    |                   | 54.                    | 00     |                       | Vertical     |
| 17059.00           | *                                     |                             |                       |                          |                    |                   | 54.                    | 00     |                       | Vertical     |
| 4874.00            | 28.93                                 | 31.85                       | 8.66                  | 32                       | .12                | 37.32             | 54.                    | 00     | -16.68                | Horizontal   |
| 7311.00            | 21.34                                 | 36.37                       | 11.71                 | 31                       | .91                | 37.51             | 54.                    | 00     | -16.49                | Horizontal   |
| 9748.00            | 22.83                                 | 38.27                       | 14.25                 | 31                       | .56                | 43.79             | 54.                    | 00     | -10.21                | Horizontal   |
| 12185.00           | *                                     |                             |                       |                          |                    |                   | 54.                    | 00     |                       | Horizontal   |
| 14622.00           | *                                     |                             |                       |                          |                    |                   | 54.                    | 00     |                       | Horizontal   |
| 17059.00           | *                                     |                             |                       |                          |                    |                   | 54.                    | 00     |                       | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "\*", means this data is the too weak instrument of signal is unable to test.



| Test mode:         | 802.11                  | n(HT40)                     |                       |                          | channel:          | Highe                  | est                   |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Peak value:        |                         |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4904.00            | 42.69                   | 31.88                       | 8.68                  | 32.13                    | 51.12             | 74.00                  | -22.88                | Vertical     |
| 7356.00            | 33.58                   | 36.45                       | 11.75                 | 31.86                    | 49.92             | 74.00                  | -24.08                | Vertical     |
| 9808.00            | 36.04                   | 38.43                       | 14.29                 | 31.68                    | 57.08             | 74.00                  | -16.92                | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Vertical     |
| 4904.00            | 42.33                   | 31.88                       | 8.68                  | 32.13                    | 50.76             | 74.00                  | -23.24                | Horizontal   |
| 7356.00            | 32.65                   | 36.45                       | 11.75                 | 31.86                    | 48.99             | 74.00                  | -25.01                | Horizontal   |
| 9808.00            | 32.28                   | 38.43                       | 14.29                 | 31.68                    | 53.32             | 74.00                  | -20.68                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 74.00                  |                       | Horizontal   |
| Average val        | ue:                     |                             |                       |                          |                   |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | polarization |
| 4904.00            | 33.77                   | 31.88                       | 8.68                  | 32.13                    | 42.20             | 54.00                  | -11.80                | Vertical     |
| 7356.00            | 23.54                   | 36.45                       | 11.75                 | 31.86                    | 39.88             | 54.00                  | -14.12                | Vertical     |
| 9808.00            | 24.58                   | 38.43                       | 14.29                 | 31.68                    | 45.62             | 54.00                  | -8.38                 | Vertical     |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Vertical     |
| 4904.00            | 32.81                   | 31.88                       | 8.68                  | 32.13                    | 41.24             | 54.00                  | -12.76                | Horizontal   |
| 7356.00            | 22.08                   | 36.45                       | 11.75                 | 31.86                    | 38.42             | 54.00                  | -15.58                | Horizontal   |
| 9808.00            | 21.58                   | 38.43                       | 14.29                 | 31.68                    | 42.62             | 54.00                  | -11.38                | Horizontal   |
| 12310.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 14772.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |
| 17234.00           | *                       |                             |                       |                          |                   | 54.00                  |                       | Horizontal   |

#### Remark:

<sup>1</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

<sup>2 &</sup>quot;\*", means this data is the too weak instrument of signal is unable to test.



# 8 Test Setup Photo

**Radiated Emission** 







Conducted Emission



# 9 EUT Constructional Details

Reference to the test report No. GTS201607000010E01

-----END-----