Prova sem consulta. Duração: 1h30m.

EXAME / RECURSO

- * Prova sem consulta. Justifique adequadamente todos os cálculos que efetuar.
- * A duração da prova é 1h30m.
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas nem microcomputadores.
- * Responda a cada grupo em folhas de capa separadas e identifique todas as folhas usadas.

GRUPO I

- **1.** [3,5] Considere a curva, C, parametrizada por $\vec{r}(t) = (\cos(t), t, \sin(t))$, $t \in \mathbb{R}$. Determine:
 - a) O versor da tangente à curva no $Q = (-1, \pi, 0)$.
 - **b**) O comprimento de arco entre os pontos P = (1,0,0) e Q.
- **2.** [3] Seja a curva, L, que é a interseção das superfícies $z = x^2 + y^2 6$ e $x^2 + y^2 = 4$. Esboce a curva, parametrize-a e calcule $\int_C (y+3z)dx + (x)dy + (3x+2z)dz$, sendo C a porção da curva L definida entre os pontos P = (2,0,-2) e Q = (0,2,-2) (percorrida no sentido direto quando é vista da origem do referencial).

GRUPO II

- 3. [2,5] Considere a curva, C, parametrizada por $\vec{r}(t) = (\cos(t), t, \sin(t))$, $t \in \mathbb{R}$ e a função escalar $f(x, y, z) = 6xz^2 2x^2 + xy$. Calcule a derivada direcional de f em $Q = (-1, \pi, 0)$, segundo a tangente à curva C neste ponto.
- **4.** [3,5] Sabendo que a equação $y xz e^z = 0$ define, de modo implícito, z = z(x, y) como função de x e de y na vizinhança do ponto S = (1,1,0), obtenha, usando derivação implícita, $\partial z / \partial x$ e $\partial^2 z / \partial x^2$ no ponto S.

GRUPO III

5. [5,5] Considere o integral triplo dado, em coordenadas cartesianas:

$$\int_0^1 \int_0^{\sqrt{1-y^2}} \int_0^{x^2+y^2} (2x) dz dx dy$$

- a) Esboce o domínio de integração, V, e a sua projeção no plano Oxy.
- **b**) Calcule o seu valor.
- c) Reescreva o integral transformando-o num integral em coordenadas cilíndricas.
- **6.** [2] Seja uma curva descrita pela função vetorial $\vec{r}(s)$, parametrizada em relação ao comprimento de arco, s, e tal que $||\vec{r}(s)|| = k$, $\forall s \in [0, a]$ e k > 0. Mostre que $\forall s \in [0, a]$, $\vec{r}(s) \cdot \vec{r}'(s) = 0$ e $\vec{r}(s) \cdot \vec{r}''(s) = -1$.