

IDENTIFICATION OF SUB-PHENOTYPES OF COVID-19 WITHIN PATIENT POPULATION

COVID Sub phenotyping Project

BMED 8813 BHI Presenter: G-6

Seonggeon Cho, Rohan Bhukar, Bryce Butler, Zhonghao Dai

Data driven clinical-decision making is required for better prognosis of disease

- Millions of deaths worldwide
- More than 12,000 mutations reported
- Variety of symptoms based on patients' preconditions and type of covid variants.
- Due to this variability, clinical-decision making is challenging

WHO, 2021

Identification of COVID-19 sub-phenotypes could lead to better understanding of the diverse host responses that result in these heterogeneous presentations.

Current challenges of COVID sub-phenotyping

Limited availability of COVID-19 patient data

- Lack Long term follow up
- Partial availability of medical health record
- Current models limited to hospitalized patients
- Current models limited to Age ≥ 60

Literature critiques

Title of Paper	Methods/Solutions	Strengths	Weakness
Deep representation learning of electronic health records to unlock patient stratification at scale	Convolutional Neural Network, Autoencoder	It showed robust result with sparsely available EHR record	It used 12 years of EHR record to make meaning subcluster of the disease type.
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data	K-means clustering	Unsupervised methodology of high dimensional subclustering within a single disease type.	Large sample size is required for training. It used 10 years of EHR record to make meaningful subcluster of the disease type.
3. Phenotyping Clusters of Patient Trajectories suffering from Chronic Complex Disease.	Time Series K means clustering, Variational Autoencoder	Both methods shows promising phenotyping of time-series vital signs data with distinct phenotypic characteristics on	Phenotype separation are shown to be susceptible to unevenly sampled time-series data and unbalanced class distribution
4. Vital signs assessed in initial clinical encounters predict CO VID-19 mortality in an NYC hospital system.	Multivariate Logistic regression, Hyperparameter Tuning, Extreme Gradient Boosting Xgboost	 Immediate, objective measures(age, BMI, heart rate, respiratory rate, O2 saturation rate) collected at time of admit, can be effective predictors of mortality rather than lab-tests with critical lag in response time; 2-tier analysis. A) identifies critical factors using logistic regression; B) gradient boosting ML uses factors to predict COVID-19 related mortality 	 Critical factors, Odds ratio values are derived from demographic data (Race, ethnicity, etc.) comprising of patients from New York area only, cannot be generalized to major ethnic world populations. Only severe cases of COVID-19 considered, they disproportionately included patients with poor outcomes, limiting the generalizability of study
5. COVID paper	Logistic regression (LR) with lasso, Decision tree, Adaboost algorithm	 Feature importance of clinically relevant measurements and health data Characterizing suspected & non-suspected pneumonia cases based on top features 	 Only a small sample size of 132 patients used for modeling. Model was developed and validated in a single-center fever clinic

Tasks remain to be explored / What new work can be added to the field

In the problem statement of COVID-19 sub phenotyping,

- Solutions arising from classical machine learning models (gradient boosting, logistic regression, etc.) exist in the case of COVID-19 sub phenotyping utilizing only single cohort data, and basic clinical presentation factors.
- Either the existing methods for COVID-19 phenotyping predict only mortality, or they present more novel
 phenotypes but derived from only smaller cohort size, which is the current bottleneck in multi-modal
 comprehensive research.

Solutions lacking from the current methods and literature available,

- Utilizing data from larger cohort sizes via multiple systems and developing the models with data from diverse ethnic populations as part of demographic factors is lacking from current studies.
- **Not only larger cohort sizes**, but **multi-modal data** which **measures vital** (temperature, heart rate, respiratory rate, O2 saturation, etc.) patient clinical presentations, also **needs to be factored in** to develop better and novel patient sub phenotypes, along with developing more accurate predictive models for clinical use-cases which can handle time irregularities in the datasets.

Data Modalities: COVID-19 DREAM CHALLANGE

Time independent data

- Patient's demographic profile
 - Age
 - Gender
 - Race

Time dependent data

- Medical condition occurrence & timespan
 - Osteoarthritis, Lung fibrosis, bronchitis, etc.
- Drug exposure & timespan of administration
- Procedure occurrence & Device exposure

Short-term Time series data

Vital signs measurement

Ground Truth

- Whether the patient was hospitalized within 3-week after positive diagnostic of COVID-19
 - 0 or 1 (Binary)

Characteristics	Total	Group 1	Group 2	Group 3	Group 4	P Value
No. (%)	696	139 (20)	97 (14)	277 (40)	183 (26)	***
Age, median (IQR), y	61 (47-73)	57 (42-71)	58 (49-73)	60 (44-72)	64 (50-78)	.04
Sex, male, No. (%)	355 (51)	77 (55.4)	54 (55.7)	133 (48)	91 (49.7)	.4
Race, No. (%)						.08
Black	588 (84.5)	121 (87.1)	81 (83.5)	235 (84.8)	151 (82.5)	***
White	44 (6.3)	6 (4.3)	6 (6.2)	19 (6.9)	13 (7.1)	
Other	64 (9.2)	12 (8.6)	10 (10.3)	23 (8.3)	19 (10.4)	***
Comorbidity, No. (%)						***
Congestive heart failure	154 (22.1)	28 (20.1)	14 (14.4)	54 (19.5)	58 (31.7)	.002
Pulmonary disease	166 (23.9)	24 (17.3)	17 (17.5)	68 (24.5)	57 (31.1)	.01
Diabetes mellitus	92 (13.2)	20 (14.4)	11 (11.3)	38 (13.7)	23 (12.6)	.9
Hypertension	233 (33.5)	48 (34.5)	35 (36.1)	94 (33.9)	56 (30.6)	.8
Renal disease	41 (5.9)	7 (5)	4 (4.1)	14 (5.1)	16 (8.7)	.3
Liver disease	14 (2)	2 (1.4)	0 (0)	8 (2.9)	4 (2.2)	.3
BMI, kg/m ²	31 (10)	34 (11)	32 (8)	31 (10)	29 (8)	< .001

EHR Data Source: COVID-19 DREAM CHALLANGE

Data file	Training set	Evaluation set
Measurement data	197,498 x 20	88,996 x 20
Gold standard data	1251 x 2	536 x 2
Person data	1,251 x 18	536 x 18
Condition occurrence data	90,424 x 16	37,395 x 16
Device exposure data	27 x 15	10 x 15
Drug exposure	42,187 x 23	25,250 x 23
Observation data	26,674 x 18	12,794 x 18
Observation period	1,251 x 5	536 x 5
Procedure Occurrence data	1,420 x 14	781 x 5
Visit Occurrence	42,515 x 17	17,362 x 5
Total patients	1251	536

[7]	df	= pd.read_	csv(' <u>/content/dr</u>	rive/MyDrive/bmed_8813/f:	inal_project/q2_syr	nthetic data 08-19-202	0/release_08-19-20	20/training/measurement.csv',	sep=',')	
[]	df.	shape								
	(19	7498, 20)								
[]	df.	head()								
		person_id	measurement_id	measurement_concept_id	measurement_date	measurement_datetime	measurement_time	measurement_type_concept_id	operator concept id	value as
	0	516	1	3000905	2015-11-14	2015-11-14 14:41:00	2018-07-14	44818702	4172703.0	
	0	516 1193	1 2	3000905 3028288	2015-11-14 2013-01-24	2015-11-14 14:41:00 2013-01-24 14:41:00	2018-07-14 2015-12-28	44818702 44818702		
			1 2 3						4172703.0	
	1	1193		3028288	2013-01-24	2013-01-24 14:41:00	2015-12-28	44818702	4172703.0 4172703.0	
	1 2	1193 949	3	3028288 3027114	2013-01-24 2017-09-06	2013-01-24 14:41:00 2017-09-06 14:41:00	2015-12-28 2017-06-20	44818702 44818702	4172703.0 4172703.0 4172703.0	

Data preprocessing

- In total 38 features selected from literature survey (published Covid-19 papers)
- Features extracted from the multiple tables and data values selected based on temporal relevance of features
- One-hot encoding the categorical data (gender, race, etc.)
- Split the training data with 80:20 split ratio, using 5 fold CV
- Imputing train, validation and test data using Mean, Median, KNN impute and MICE.
- Finally, selected KNN impute for data imputation due to the method better suitable to this dataset
 - Distribution of original data changed less with KNN impute compared to MICE
- Z-score normalization of data
 - $Z = (x \mu) / \sigma$
 - Dataset further used as input for clustering
- For Classification,
 - Selecting the train and validation sets in each CV, imputing and feature scaling the datasets separately

Groups	Candidate features				
Demographic information	Age	Gender			
Vital signs	Temperature (TEM)	Heart rate (HR)	Diastolic blood pressure (DIAS_BP)	Systolic blood pressure (SYS_BP)	
	White blood cell count (WBC)	Red blood cell count (RBC)	Hemoglobin (HGB)	Hematocrit (HCT)	Platelet count (PLT)
Blood routine	Mean platelet volume (MPV)	Lymphocyte ratio (LYMPH%)	Lymphocyte count (LYMPH#)	Neutrophil ratio (NEUT%)	Neutrophil count (NEUT#)
values	Eosinophil ratio (EO%)	Eosinophil count (EO#)	Monocyte ratio (MONO%)	Monocyte count (MONO#)	Basophil ratio (BASO%)
	Basophil count (BASO#)	Mean corpuscular volume (MCV)	Mean corpuscular hemoglobin content (MCH)	Mean corpuscular hemoglobin concentratio (MCHC)	Red blood cell volume distribution width (RDW-CV)
Clinical signs and	Fever	Cough	Shortness of breath	Muscle ache	Headache
symptoms on	Rhinorrhoea	Diarrhoea	Nausea	Vomiting	Chills
admission	Expectoration	Nasal congestion	Abdominal pain	Fatigue	Palpitation
ddiiiissioii	Sore throat	Shiver	Fever classification (FC)		
Infection-related	C-reactive protein	Interleukin-6 (IL-	·	·	·
biomarkers	(CRP)	6)			
0.1	Days from illness ons	et			
Others	to first admission (OOA)			

Table1: Candidate features for diagnosis aid model

Table 1: Candidate features from the model from Covid paper

Fig 1: Z-score normalization

person_id	measure_concept_id	measurement_date	value_as_number	range_low	range_high	unit_source_value
1	3016723	4/1/2010	0.54	0.38	1.02	mg/dL
1	3016723	11/15/2010	0.68	0.2	1.1	mg/dL
1	3016723	4/7/2012	3.53	0.51	1.18	mg/dL
1	3016723	4/1/2014	0.7	0.38	1.02	mg/dL
1	3016723	4/7/2015	0.71	0.38	1.02	mg/dL
1	3016723	11/9/2015	0.8	0.51	1.18	mg/dL
1	3016723	9/8/2017	0.91	0.38	1.02	mg/dL
1	3016723	7/19/2019	1.45	0.51	1.18	mg/dL
1	3016723	8/10/2019	0.77	0.51	1.18	mg/dL
1	3016723	4/15/2020	0.89	0.51	1.18	mg/dL

Fig 2: Temporally relevant data

Data preprocessing

Fig 3: Boxplot for the selected features we try to draw distributions and found no extreme value cases

In this diagram:

- 0 : Non hospitalized patients
- 1 : Hospitalized patients

Data preprocessing

Fig 4: Data missingness

Fig 5a: Data distribution after imputation with MICE method

Fig 5b: Data distribution after imputation with KNN method

Feature importance plots

Table 1 : Feature importance ranks of concept ids using MRMR method

Fig 7: Feature importance and generated weights based on tree method

f	Concept id	Feature				
•	cid_3033575	Monocytes [#/volume] in Blood				
	cid_3013650	Neutrophils [#/volume] in Blood				
	cid_3008342	Neutrophils/100 leukocytes in Blood				
	cid_3004327	Lymphocytes [#/volume] in Blood				
	cid_3027018	Heart rate				
	cid_3009744	MCHC [Mass/volume]				
	cid_3023599	MCV [Entitic volume]				
	cid_3011948	Monocytes/100 leukocytes in Blood				
	cid_3023091	Interleukin 6 [Mass/volume] in Serum				
	cid_3013869	Basophils/100 leukocytes in Blood				
	age	Age of patient				
	cid_3012888	Diastolic blood pressure				
	cid_3012030	MCH [Entitic mass]				
	cid_3004249	Systolic blood pressure				
	cid_3024929	Platelets [#/volume] in Blood				
	cid_3010156	C reactive protein [Mass/vol] in Serum				
	gender	Gender of patient				
	cid_3020891	Body temperature				
	cid_3000963	Hemoglobin [Mass/volume]				
	cid_3010457	Eosinophils/100 leukocytes in Blood				
	cid_3023314	Hematocrit [Volume Fraction] of Blood				
	cid_3028615	Eosinophils [#/volume] in Blood				
	race	Race to which person identifies				
	cid_3037511, cid_3013429	Lymphocytes/100 leukocyte, Basophils				

ML methods for feature selection

Fig 8: Upon **imputation at different thresholds of missing value**, found that highest classification AUCs were achieved at 50% missing value imputation. The data with <= 50% missing feature values was created and further imputed using KNN. Additional, column of Body_temp was added manually due small margin of missingness.

Feature analysis

Fig 9: Correlation matrix plot

- 0.8

- 0.4

- 0.2

None of the selected and processed features were found to be correlated.

Data format post data pre-processing

14x23 <u>table</u>			-		-		-			40		40	42		45	4.5
1 person_id	2 I age		3 gender	4 race	5 cid 3020891	6 cid 3027018	7 cid 3012888	8 cid 3004249	9 cid 3024929	10 cid 3028615	11 cid 3013429	12 cid 3004327	13 cid 3037511	14 cid 3023599	15 cid 3000963	16 cid 3033575
person_iu	g age	3	0	1	36.6333	92	81,3333	105	372	0.3433	0.0533	1,3300	13.6667	91	11,7000	0.3000
	12	58	0	1	37.0667	100	67	120	17	0.0900	0.0467	1.6600	30	87.3333	7.6000	0.1000
	33	63	0	1	36,5000	109	70	139.3333	197	0.1700	0	2,2600	21.3333	85.6667	12,2000	0.4100
	58	77	1		36.6333	75	75	136	277	0.1500	0.0533	1,6900	24,6667	93	12,4000	0.6900
	70	7	1	1	36,9667	74	85,3333	96	239	0.0733	0.0233	2,8900	8	85	12,5000	0.2267
	73	58	0	4	37,5000	77	75	133	246	0.2400	0.0400	0.2900	24	85	10.3000	0.2500
	91	63	0	2	36,2667	84	87	118	316	0.1100	0.0500	0.8900	35	88	8.5000	0.3500
	96	68	1	4	36,5000	94	66	111	170	0.4300	0.0067	1,4500	38.3333	90.6667	13,4000	0.2600
	103	8	0	4	36,4000	87.3333	73,3333	140	218	0.3300	0.0167	0.5700	44	92	9,4000	0.100
	144	62	0	2	36,5333	82	65	102	236	0.1500	0	0.0500	33	91.3333	11.1000	0.250
	152	61	1	2	37	77.6667	65	119	297	0	0.0367	2.0500	38	85	11.8000	0.410
	175	64	0	1	36,9000	65	56	135	313	0.1467	0.0267	1.7300	32	103	11.8000	0.830
	177	51	0	4	36.5000	60	66	92	254	0.1200	0.0267	2,2500	30	98	14	0.600
1	184	76	1	0	36.4333	87	83	127	222	0.2600	0.0367	1,2200	19.6667	89	14.5000	0.670
1	189	57	1	4	36.7000	93	68.3333	159	177	0.2000	0	1.9500	29	104	10.6000	0.530
1	192	34	1	1	36.7000	70	78	127	391	0.5200	0.0300	1,3500	31	96.3333	14	0.450
2	220	64	1	1	36.4000	77	75	127	106	0.0700	0.0200	1.6800	18	82	10.8000	0.740
2	221	28	0	1	36.8000	87	79	127	273	0.0500	0.0400	2.5100	22	87	14.8000	0.970
2	224	63	1	2	36.6000	70.3333	66.3333	139	350	0.1800	0.0167	2.0800	33	96.3333	12.1000	0.370
2	226	4	1	1	36.6333	82	74.6667	107	251	0.0900	0.0300	2.5500	18.6667	85	15.5000	0.450
2	230	32	1	1	36.7000	66	77.3333	100	411	0.1600	0.0200	1.8300	33	88	13.6000	0.170
2	239	90	1	1	36.3333	92	68	117.6667	229	0.2000	0.0400	1.6800	17	95.3333	15.1000	0.5400
2	267	16	1	1	36.6000	83	75	134.3333	212	0.1300	0.0200	3.1700	20	96	14.3000	0.1900
3	330	74	0	4	37	79	68	121	257	0.0800	0.0500	2.1800	12	88.6667	16	0.7500
3	336	9	0	2	36.3333	70	76	135	269	0.1067	0.0333	1.8200	28	95	12.5000	0.3400
3	345	64	0	4	36.6000	59	84	95	325	0.2367	0.0267	1.7300	45	88	8	0.7100
3	346	82	0	1	36.4333	72.6667	81	128	146	0.0933	0.0733	1.7900	33	87.3333	8.5000	0.6633
3	359	70	1	2	37.3000	74	67	118.3333	209	0.3400	0.0967	1.5100	14.6667	88.6667	12.7000	0.8600
3	385	62	1	1	36,5000	90	60	126	204	0.2200	0.0467	1.5000	29	101	15.7000	0.4200
3	389	47	1	1	36.8000	90	92	122	289	0.0667	0.0233	1.5100	25	93	15.6000	0.2900
3	390	56	0	3	36	98	68.3333	128	179	0.1300	0.0233	0.8800	15	90.6667	11.6000	0.7900
4	400	79	1	1	37.1667	60	78.3333	119	291	0.2700	0.0467	1.9300	28	94	15.7000	0.4700
4	404	38	1	1	37.1000	58	69	135	192	0	0	1.9300	12	93	11.9000	0.4300
4	417	26	0	1	36,5000	103	73	125	104	0.2333	0.0200	1.5000	15.6667	88	11.5000	0.4000
4	140	83	1	0	36.5333	91	81	120	177	0.2733	0.0233	1.8000	16	93	11.9000	0.5267
4	148	14	1	1	36.3000	76.3333	71	122	206	0.3400	0.0167	1,2000	13	94	11.7000	0.2867

System Workflow

Data Pre-processing

Design and Optimization of Cluster and Classifier Architecture

Performance Evaluation, Data Analysis and Data Interpretation

1

Z-Score Normalization of measurement data; Selection of most recent vital sign measurement; score the relevance of measurement based on temporal relevance

Initial Feature selection based on occurance frequency, missing value imputation based on KNN, Class balance, Split and shuffle into training and testing set.

Identification of the principal features / feature sets driving model prediction using K-means clustering, clasical classification algorithm, and autoencoder

Hyperparameter tuning based on performance metrics

Performance comparison between classical and proposed method using ground truth & supervised scoring

Feature extraction on sub-phenotype clusters and extrapolate clinical significance

Hospitalization classification using Autoencoder

- Compression of patient feature data into latent variables for hospitalization classification while retaining high input integrity.
- Encoder stage: $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$
- Reconstruction optimization stage:

$$\mathcal{L}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^2 = \|\mathbf{x} - \sigma'(\mathbf{W}'(\sigma(\mathbf{W}\mathbf{x} + \mathbf{b})) + \mathbf{b}')\|^2$$

Why? 1. Further validation on the effect of dimensionality reduction of patient features on classification accuracy. 2. Latent space extrapolation for further identifications of feature importance. 3. Classifier provides a non-binary output (0-1) that can assist clinical decision more than direct hospitalization classification.

Why K-mean cluster?

- In this project we hope to use two methods; learning and adjusting the methods as we get an understanding of each. Then comparing the two at the end; evaluating its performance to the classical methods. During our discussions we initially proposed K-means because of the following.
- K means is an unsupervised learning that would help us discover categories that we might not have seen on our own. As we do not have prior information about the grouping found among covid patients.
- We plan to do a comparative analysis between the two methods gauging the accuracies/MbN would be beneficiary
- These groupings can be used to provide information for better prognosis of patients

Performance metrics for classification

- Confusion matrix
- Specificity, Sensitivity, F1 Score
- Area Under Receiver Operating Characteristic Curve (AUC ROC)
- Area under Precision-Recall Curve (AUC PR)

Positive (1) Negative (0) Positive (1) TP FP Negative (0) FN TN

Predicted Values

Sensitivity =
$$\frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}$$

Specificity = $\frac{\text{True Negatives}}{\text{True Negatives} + \text{False Positives}}$

$$F1_{score} = \frac{2*TP}{2*TP + FP + FN}$$

Performance metrics for clustering

The main performance method apart from Evaluating an optimal value of K. This can be done using

- Elbow's method "elbow" method to help select the optimal number of clusters by fitting the
 model with a range of values for K. Initially this method is the backbone of clustering
 algorithm. Where the program is iterated till no data points change clusters, or the sum of
 distances is minimized
- Silhouette Evaluation The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). The silhouette ranges from -1 to +1, where a high value indicates that well matched clusters

Example of Silhouette Evaluation

Model Parameter Selection: Autoencoder (architecture 1)

- Numbers of hidden layers $(1-50) \rightarrow 20$
- Training functions: Scaled Conjugate Gradient (SCG), damped least-squares (DLS), Resilient Backpropagation, One Step Secant (OSS)
- Training performance function: Mean Square Error, Cross-Entropy, Sum Absolute Error, MESREG
- Training epochs: Cross-Entropy-based

Parameter Selection Criteria: Hyperparamter grid search using average AUC ROC from generated model as evaluative criteria.


```
Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)

Performance: Cross-Entropy (crossentropy)

Calculations: MEX
```

e.g. # hidden layers evaluation; Predictability of CV vs EV

Model Parameter Selection: Autoencoder (architecture 2)

- Numbers of hidden layers = 9
- Training performance function: Mean Square Error
- Training epochs: MSE based
- Grid search CV method for model parameter tuning (dynamic range of parameters used)
 - activation = ['relu', 'tanh', 'sigmoid']
 - learn rate = [1E-0, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7]
 - optimizer = ['sgd', 'adam']
 - batch_size = [16, 32, 64, 128]

Parameter Selection Criteria: Parameter tuning with grid search CV using testing AUC ROC from model as criteria for selection.

Optimum parameter values:

- Activation = 'relu'
- Learn rate = 1E-3
- Optimizer = 'adam'
- Batch size = 32

Modeling Results: Autoencoder (architecture 2)

Fig 10: Plotting range of parameters for 2 parameters amongst 4 used in model tuning.

Parameter for tuning	Range
activation	['relu', 'tanh', 'sigmoid']
learn rate	[1E-0, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, 1E-7]
optimizer	['sgd', 'adam']
batch_size	[16, 32, 64, 128]

Fig 11: Final model after training.

Quantitative Data Analysis Results: Autoencoder (architecture 2)

Cohort	AUC	F-1 score	Precision	Recall	Accuracy
Validation cohort	0.751	0.528	0.495	0.820	0.880
Testing cohort	0.630	0.473	0.384	0.705	0.812

Table 3: Train dataset is stratified shuffle split with 80:20 ratio into train and validation cohorts, and the test dataset is considered from evaluation data from competition.

Fig 12: Final model AUC on evaluation/testing dataset.

Fig 13: AUC PR for model on evaluation data set is 0.124

Classical Method Result w/ clinical feature selection

Improved classification accuracy with modified features

Autoencoder Classication Result on Training Set

Autoencoder Classication Result on Training Set

Specificity: 64 / 64 + 43 = 0.6; Sensitivity: 76 / 76 + 31 = 0.71;

F1 score: 2 * 64 / 2 * 64 + 31 + 43 = 0.63

Autoencoder Classication Result on EV set

Specificity: 29 / 29 + 13 = 0.69;

Sensitivity: 324 / 324 + 170 = 0.656;

F1 score: 2 * 29 / 2 * 29 + 13 + 170 = 0.24

Clustering with K-mean without feature selection

Dimension reduction with PCA

Clustering with feature selection with PCA

Clustering with feature selection from feature importance plot

Evaluation of clustering feature selection with PCA

Evaluation of clustering feature selection from feature importnace plot

Graphical user interface(GUI)

1. Patient demographic

2. Patient Age

4. Heart rate

5. If you have other data you can place them in a matrix form as shown in preview

3. Maximum body temperature

6. If you familiar with the process and already have a matrix of the patient's EHR upload here

CSV file upload

Choose File

No file chosen

Sample GUI

Reference: https://www.medrxiv.org/content/10.1101/2020.03.19.20039099v1

K-mean clustering result interpretation

Overlapping features between PCA and feature importance plot

Monocytes [#/volume] in Blood by Automated count

Neutrophils/100 leukocytes in Blood by Automated count

Lymphocytes [#/volume] in Blood by Automated count

Platelets [#/volume] in Blood by Automated count

Hemoglobin [Mass/volume] in Blood

MCHC [Mass/volume] by Automated count

MCH [Entitic mass] by Automated count

Hematocrit [Volume Fraction] of Blood by Automated count

Heart rate

Systolic blood pressure

Diastolic blood pressure

Monocytes, neutrophiles, and lymphocytes as key determinants of COVID-19 disease presentation and severity Brodin, (2021)

Close correlation of RBC and severe/hospitalized COVID-19 patients Renoux et al., (2021)

Effect of COVID-19 on Cardiovascular health Nishiga et al., (2020)

K-mean clustering Summary and Conclusion

1. Significance

Identified unique clusters and features that explain hospitalized patients

2. Weakness:

- The synthetic data from COVID-19 DREAM Challenge was designed for classification problem and may not be suited for clustering/subphenotyping
- Combined measurement and categorical/frequency dataset is not suitable for Kmean clustering method

3. Future work

- Use latent space from autoencoder
- Apply k-mode for mixed dataset
- Implement UMAP for better visualization quality

Classification task result interpretation

Table 4: Top features selected for making classification predictions of hospitalized vs non-hospitalized patients

- Monocytes, neutrophiles, and lymphocytes as key determinants of COVID-19 disease presentation and severity Brodin et al. (2021)
- Close correlation of RBC and severe or hospitalized COVID-19 patients. Renoux et al. (2021)
- Effect of COVID-19 on Cardiovascular health. *Nishiga et al.*, (2020)
- Blood routine values at the time of admission readily available, play a critical role in deciding patient critical situation. Fengetal. 2020

	Clation	
	Concept id	Feature
5	cid_3033575	Monocytes [#/volume] in Blood
	cid_3013650	Neutrophils [#/volume] in Blood
	cid_3008342	Neutrophils/100 leukocytes in Blood
	cid_3004327	Lymphocytes [#/volume] in Blood
	cid_3027018	Heart rate
	cid_3009744	MCHC [Mass/volume]
	cid_3023599	MCV [Entitic volume]
	cid_3011948	Monocytes/100 leukocytes in Blood
	age	Age of patient
	cid_3012888	Diastolic blood pressure
	cid_3012030	MCH [Entitic mass]
	cid_3004249	Systolic blood pressure
	cid_3024929	Platelets [#/volume] in Blood
	cid_3010156	C reactive protein [Mass/vol] in Serum
	gender	Gender of patient
	cid_3020891	Body temperature
	cid_3000963	Hemoglobin [Mass/volume]
	cid_3023314	Hematocrit [Volume Fraction] of Blood
	cid_3028615	Eosinophils [#/volume] in Blood
	race	Race to which person identifies
	cid_3037511	Lymphocytes/100 leukocyte
	cid_3013429	Basophils count

Fig 15: Top features from the Covid-19 article for Diagnosis aid system

	All patients	Non hospitalized	Hospitalized	
Cohort (n)	536	500	36	
Age (in years) (median)	45	46	36	
Gender (n%)				
Male	264	244	20	
Female	272	256	16	
Vital signs				
Heart rate n/min (median)	82.66	82	88.66	
Diastolic BP mmHg (median)	73	72.5	75.83	
Systolic BP mmHg (median)	117	116	122.83	
Body Temperature deg. C (highest)	37.36	37.36	38.3	
Blood routine values				
Hemoglobin (g/L)	11.6	11.6	11.3	
Hematocrit	34.66	34.66	33.5	
Platelet count (x 10^9 / L)	217	220	201.5	
Lymphocyte count (x 10^9 / L)	1.395	1.35	1.73	
Lymphocyte ratio (%)	22.16	22.16	22.5	
Neutrophil count (x 10^9 / L)	3.555	3.59	2.745	

Classification Result Comparison

Rank ‡	Submission Id 1=	Created On 1.F	Submitter 1F	description ↓F	AUPR 1	AUROC IF	Train Dataset Version ↓F	Infer Dataset version 1.F	Repository 1	Digest 1	ranked_features ↓F
1	9710459	02/15/2021 7:48 AM	Home Sweet Home	hospitalization baseline prediction	0.2154	0.8103	01-26-2021	01-26-2021	docker.synapse.org/syn22242573/co.	sha256:f59bc18f34be5e6dc402945	age,gender,race
2	9711406	03/26/2021 3:16 PM	@Amhar	hospitalization baseline prediction	0.2046	0.8025	01-26-2021	01-26-2021	docker.synapse.org/syn23763328/co.	sha256:ddacec32dcdb20891c41b11	. age,gender,race
3	9711200	03/09/2021 11:49 AM	🕰 sucovid	COVID diagnosis baseline prediction	0.2025	0.7532	01-26-2021	01-26-2021	docker.synapse.org/syn22156808/q2	sha256:6ecce80c88c939f8df38288e.	. age,ventilator
3	9711217	03/12/2021 1:50 PM	@egearikan	COVID diagnosis baseline prediction	0.2025	0.7532	01-26-2021	01-26-2021	docker.synapse.org/syn22842873/co.	sha256:f76a9cff23b60670e449c624.	age,ventilator
3	9711221	03/13/2021 2:34 AM	@egealpay	COVID diagnosis baseline prediction	0.2025	0.7532	01-26-2021	01-26-2021	docker.synapse.org/syn22156808/q2	sha256:1fd76c54c824d809ad6e50c	. age,ventilator
3	9711223	03/13/2021 3:01 AM	@ealpy	COVID diagnosis baseline prediction	0.2025	0.7532	01-26-2021	01-26-2021	docker.synapse.org/syn22333713/q2	sha256:1fd76c54c824d809ad6e50c	. age,ventilator
3	9711245	03/16/2021 4:35 PM	@semayilmazer	COVID diagnosis baseline prediction	0.2025	0.7532	01-26-2021	01-26-2021	docker.synapse.org/syn24829156/aw	sha256:bd08e75d55c74b52e0d88f6.	. age,ventilator
8	9711247	03/16/2021 5:53 PM	@alperbingol	COVID diagnosis baseline prediction	0.1887	0.7666	01-26-2021	01-26-2021	docker.synapse.org/syn24829191/aw	sha256:3c759dd12d828edf1520783.	age,ventilator
9	9710542	02/16/2021 9:35 PM	@ivanbrugere	COVID diagnosis baseline prediction	0.1833	0.7878	01-26-2021	01-26-2021	docker.synapse.org/syn20833371/co.	sha256:d134a9ef21cd81313ed4c0c	all concept ids
10	9710539	02/16/2021 8:53 PM	Bryson and Yao Team	COVID diagnosis baseline prediction	0.1585	0.6367	01-26-2021	01-26-2021	docker.synapse.org/syn22248060/co.	sha256:d6bea121564e8bcbc1edd73.	. cough,fever,loss of smell,sore throat,r
11	9710308	02/09/2021 8:48 PM	ArkansasAlCampus20	hospitalization baseline prediction	0.1572	0.7759	01-26-2021	01-26-2021	docker.synapse.org/syn22351720/aic	sha256:7ab91d5e93da10b5acdfc97f.	age,gender,race, measurement, condi
12	9711342	03/20/2021 10:19 PM	Social Distancer Team	Covid baseline prediction	0.1425	0.6081	01-26-2021	01-26-2021	docker.synapse.org/syn22089460/q1	sha256:39fae11544b7d092f89cc00	see features.json file
13	9711111	03/01/2021 9:44 PM	🕰 QTeam	hospitalization baseline prediction	0.1179	0.7029	01-26-2021	01-26-2021	docker.synapse.org/syn24262913/ba	sha256:5ce379feacc46a6121fab454.	. age,gender,race
13	9710244	02/06/2021 12:23 AM	@thomas.yu	COVID diagnosis baseline prediction	0.1179	0.7029	01-26-2021	01-26-2021	docker.synapse.org/syn21849256/co.	sha256:f042a09c1bc5cb6b6372621	. cough,body temperature,hematocrit,

Our Best Classification result: AUROC: 0.7287; AUPR: 0.1757 *Sigh* Still need more improvement...

Autoencoder classification Summary and Conclusion

1. Significance

- Retain relatively high accuracy of hospitalization prediction given low clinical measurement features
- General numerical value of likelihood of hospitalization, which can assist clinical decision more than binary output.

2. Weakness:

 The synthetic data from COVID-19 DREAM Challenge contains measurement data across a decade of time, from which many measurement data would not be indicative for hospitalization prediction

3. Future work

- Implement better hyperparameter tuning techniques (i.e. Bayesian optimization)
- Score the quality of measurement data based on temporal relevance