# Методы оптимизации 2

Назаров Владимир Целиков Владислав

19 июня 2023 г.

# 1 Реализуйте стохастический градиентный спуск для решения линейной регрессии.

#### 1.1 Линейная регрессия

Регрессионная модель:

 $y = f(x, b) + \varepsilon$ 

b - параметры модели

 $\varepsilon$  - случайная ошибка модели

 $f(x,b) = b_0 + b_1 x_1 + b_2 x_2 + ... + b_k x_k$ , Где  $b_j$  - параметры (коэффициенты) модели,  $x_j$  - регрессоры (факторы модели), k - кол-во факторов модели.

Матричное представление:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$
 $X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1k} \\ x_{21} & x_{22} & \dots & x_{2k} \\ \dots & & & & \\ x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix}$  - факторы модели  $\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}$  - вектор ошибок.  $\varepsilon = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_k \end{pmatrix}$  - параматры модели.

Тогда наша реграссионная модель будет иметь формулу:  $y = Xb + \varepsilon$ 

Для решения задачи:  $y=b_0+b_1*x$ . Будем говорить, что у нас есть  $x_0$ .  $y=b_0*x_0+b_1*x_1=b_0*1+b_1*x_1$ 

#### 1.2 Производная линейной регрессии

Наша задача состоит в том чтобы найти такой вектор b, чтобы  $\varepsilon = (Xb-y)^2 \to min$   $(Xb-y)^2 = (Xb-y)^T(Xb-y) = (Xb)^TXb - y^TXb - (Xb)^Ty + y^Ty$   $y^TXb = (Xb)^Ty = b^TX^Ty$   $(Xb)^TXb = b^TX^TXb$   $\varepsilon = b^TX^TXb - 2b^TX^Ty + y^Ty$   $\frac{d(b^TX^TXb - 2b^TX^Ty + y^Ty)}{db}$   $(b^TX^TXb)' - (2b^TX^Ty)' + (y^Ty)' = 0$   $2X^TXb - 2X^Ty = 0$   $X^TXb = X^Ty$  Значит  $b^{[i+1]} = b^{[i]} - \alpha \nabla F(b^{[i]}) = b^{[i]} - \alpha (X^TXb^{[i]} - X^Ty)$ 

#### 1.2.1 Исследования

Для иследования возьмем 100 точек. И прямую y = x + 2. Не будем добавлять шума для объективности исследований. Стартовая точка для всех batch будет (10, 10)

Для  $SGD \ alpha = 0.01$ 

Для  $Minibatch\ GD\ alpha = 0.001$ 

Для GD возьмем наилучшую из экспериментов alpha=0.0004







Можно заметить, что SGD метод довольно рандомный. он ведет себя очень не предсказуемо. Идет то вверх то вниз. Так же требует довольно много итераций. Но в отличие от остальных размров batch. Одна итерация стоит довольно дёшево.

 $Minibatch\ CD$  уже менее заметна эта проблема. Хотя рандомность присутствует, но все равно график лежит плотнее к CD, и кол-во итераций требуется наименьшее.

CD идет равнее всех. Но один его шаг стоит дороже всех. Хоть он и является самым точным, но так же он является не самым эффективным.

#### 2 Экспоненциальная функция изменения шага

Сейчас наш градиентный шаг равен  $b^{[i+1]}=b^{[i]}-\alpha \nabla F(b^{[i]})$  Давайте попробуем заменить константную  $\alpha$  на экспоненциальную  $\alpha^{[i+1]}=\alpha^{[i]}*e^c$ . с - константа, c<0

Рассмотрим применение экспоненциальной alpha с  $Minibatch\ CD$ . Возмём все те же значения из предыдущего исследования.

$$exp \ alpha = 0.0003, c = -0.001$$



Метод стал вести себя более стабильно. Но для этого пришлось подобрать подходящие alpha, c, что не очень легко. Так же потребовалось больше итераций для нахождения нужной точки.

## 3 Варианции

Базовый градиентный спуск:

$$b^{[i+1]} = b^{[i]} - \alpha \nabla F(b^{[i]})$$

#### 3.1 Nesterov

$$\begin{split} u^{[i+1]} &= \gamma u^{[i]} + \alpha \nabla F(b^{[i]} - \gamma u^{[i]}) \\ b^{[i+1]} &= b^{[i]} - u^{[i+1]} \end{split}$$

пример фрема который исследуется

| points | alpha    | iters | result point |
|--------|----------|-------|--------------|
| 10     | 0.000100 | 1001  | [5.3, 0.5]   |
| 10     | 0.000250 | 1001  | [3.2, 0.8]   |
| 10     | 0.000300 | 1001  | [2.9, 0.9]   |
| 10     | 0.000400 | 1001  | [2.4, 0.9]   |
| 10     | 0.000500 | 1001  | [2.2, 1.0]   |
| 10     | 0.000700 | 1001  | [2.1, 1.0]   |
| 10     | 0.001000 | 1001  | [2.0, 1.0]   |

выбраннные  $\alpha$  для анализа

 $\alpha = [0.0001, 0.00025, 0.0003, 0.0004, 0.0005, 0.0007, 0.001]$ 

то сколько раз метод не сошёлся на для каждой  $\alpha$  всего тестов 28

| alpha    | result err |
|----------|------------|
| 0.000100 | 16         |
| 0.000250 | 8          |
| 0.000300 | 8          |
| 0.000400 | 8          |
| 0.000500 | 8          |
| 0.000700 | 12         |
| 0.001000 | 20         |

data with runs

|     | alpha    | run        |
|-----|----------|------------|
| 40  | 0.000500 | 926.750000 |
|     | 0.000700 | 658.000000 |
|     | 0.001000 | 452.250000 |
| 70  | 0.000250 | 725.750000 |
|     | 0.000300 | 602.000000 |
|     | 0.000400 | 442.000000 |
|     | 0.000500 | 348.750000 |
|     | 0.000700 | 240.250000 |
|     | 0.001000 | 154.250000 |
| 100 | 0.000250 | 598.750000 |
|     | 0.000300 | 493.250000 |
|     | 0.000400 | 363.500000 |
|     | 0.000500 | 283.250000 |
|     | 0.000700 | 192.750000 |
| 130 | 0.000100 | 965.500000 |
|     | 0.000250 | 366.250000 |
|     | 0.000300 | 300.250000 |
|     | 0.000400 | 216.000000 |
|     | 0.000500 | 164.000000 |
|     | 0.000700 | 177.500000 |
| 160 | 0.000100 | 782.250000 |
|     | 0.000250 | 292.750000 |
|     | 0.000300 | 238.500000 |
|     | 0.000400 | 168.500000 |
|     | 0.000500 | 128.750000 |
| 190 | 0.000100 | 676.500000 |
|     | 0.000250 | 250.000000 |
|     | 0.000300 | 200.500000 |
|     | 0.000400 | 138.250000 |

#### 3.2 Momentum

$$u^{[i+1]} = \gamma u^{[i]} + \alpha \nabla F(b^{[i]})$$
$$b^{[i+1]} = b^{[i]} - u^{[i+1]}$$

взятые  $\alpha$ 

 $\alpha = [0.0001, 0.0005, 0.00075, 0.001, 0.00125, 0.0025, 0.005, 0.02]$ 

пример фрейма

| points | alpha    | iters | result point   | fail  |
|--------|----------|-------|----------------|-------|
| 10     | 0.000100 | 1001  | [6.2, 0.3]     | 20/28 |
| 10     | 0.000500 | 1001  | [2.8, 0.9]     | 4/28  |
| 10     | 0.000750 | 1001  | [2.3, 1.0]     | 4/28  |
| 10     | 0.001000 | 1001  | [2.1, 1.0]     | 4/28  |
| 10     | 0.001250 | 1001  | [2.0, 1.0]     | 4/28  |
| 10     | 0.002500 | 623   | [2.0, 1.0]     | 4/28  |
| 10     | 0.005000 | 305   | [2.0, 1.0]     | 4/28  |
| 10     | 0.020000 | 1001  | $[\inf, \inf]$ | 4/28  |

| alpha    | fail |
|----------|------|
| 0.000100 | 20   |
| 0.000500 | 4    |
| 0.000750 | 4    |
| 0.001000 | 4    |
| 0.001250 | 8    |
| 0.002500 | 16   |
| 0.005000 | 24   |
| 0.020000 | 28   |
|          |      |

количество итераций для каждого количества точек и  $\alpha$ 

| count | alpha    | run   |
|-------|----------|-------|
| 10    | 0.002500 | 667.8 |
|       | 0.005000 | 322.8 |
| 40    | 0.000500 | 726.5 |
|       | 0.000750 | 476.2 |
|       | 0.001000 | 343.5 |
|       | 0.001250 | 273.0 |
|       | 0.002500 | 103.2 |
| 70    | 0.000500 | 355.8 |
|       | 0.000750 | 219.8 |
|       | 0.001000 | 150.8 |
|       | 0.001250 | 105.0 |
|       | 0.002500 | 101.0 |
| 100   | 0.000500 | 208.2 |
|       | 0.000750 | 120.2 |
|       | 0.001000 | 94.5  |
|       | 0.001250 | 92.8  |
| 130   | 0.000500 | 196.2 |
|       | 0.000750 | 111.5 |
|       | 0.001000 | 100.0 |
|       | 0.001250 | 103.0 |
| 160   | 0.000100 | 788.0 |
|       | 0.000500 | 115.5 |
|       | 0.000750 | 92.0  |
|       | 0.001000 | 90.2  |
|       | 0.001250 | 122.2 |
| 190   | 0.000100 | 694.0 |
|       | 0.000500 | 89.8  |
|       | 0.000750 | 90.2  |
|       | 0.001000 | 114.5 |

### 3.3 Adagrad

$$\begin{split} \nabla F(b^{[i]}) &= (g_0^{[i]}, ..., g_k^{[i]}) \\ G_j^{[i+1]} &= G_j^{[i]} + (g_j^{[i]})^2 \\ \alpha_j^{[i]} &= \frac{\alpha}{\sqrt{G^{[i]} + \varepsilon}} \\ b^{[i+1]} &= b^{[i]} - \alpha^{[i]} \otimes \nabla F(b^{[i]}) \end{split}$$

$$\varepsilon = 0.1^8$$

пример фрейма который исследуется

| points | alpha   | iters | result point | fail  |
|--------|---------|-------|--------------|-------|
| 10     | 1       | 1001  | [1.6, 1.1]   | 28/28 |
| 10     | 2       | 1001  | [2.0, 1.0]   | 25/28 |
| 10     | 50      | 154   | [2.0, 1.0]   | 0/28  |
| 10     | 100     | 185   | [2.0, 1.0]   | 0/28  |
| 10     | 1000000 | 135   | [2.0, 1.0]   | 0/28  |

для испытания кода, бралось 4 стартовые точки,  $(\pm 10, \pm 10)$ , ниже представлена таблица для каких $\alpha$  метод не сошёлся

решено было взять такие  $\alpha$  так в силу того что adagrad использует в себе корретирование  $\alpha$  и при меньшем алгоритм не успевает сойтись

$$\alpha = [1, 2, 50, 100, 1000000]$$

далее удалим те методы которые не сошлись из статистики среднее значение итераций, для каждого количества точек и выбрынных  $\alpha$ 

| count points | alpha   | iters |
|--------------|---------|-------|
| 10           | 50      | 206.2 |
|              | 100     | 213.5 |
|              | 1000000 | 245.0 |
| 40           | 50      | 224.5 |
|              | 100     | 247.5 |
|              | 1000000 | 234.2 |
| 70           | 50      | 179.2 |
|              | 100     | 193.0 |
|              | 1000000 | 201.0 |
| 100          | 2       | 874.0 |
|              | 50      | 165.2 |
|              | 100     | 158.8 |
|              | 1000000 | 170.2 |
| 130          | 2       | 834.0 |
|              | 50      | 151.5 |
|              | 100     | 170.8 |
|              | 1000000 | 182.0 |
| 160          | 50      | 197.5 |
|              | 100     | 207.8 |
|              | 1000000 | 230.2 |
| 190          | 2       | 851.0 |
|              | 50      | 156.8 |
|              | 100     | 164.2 |
|              | 1000000 | 170.8 |

#### 3.4 RMSProp

$$\begin{split} \nabla F(b^{[i]}) &= (g_0^{[i]}, ..., g_k^{[i]}) \\ G_j^{[i+1]} &= G_j^{[i]} + (g_j^{[i]})^2 - (g_j^{[i-W]})^2 \\ \alpha_j^{[i]} &= \frac{\alpha}{\sqrt{\frac{1}{W}G^{[i]} + \varepsilon}} \\ b^{[i+1]} &= b^{[i]} - \alpha^{[i]} \otimes \nabla F(b^{[i]}) \end{split}$$

Отличие от Adagrad, в том что суммируем не все, атолько W последних выбранные  $\alpha$ 

$$\alpha = [0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1, 5, 20]$$

пример фрейма

| points | alpha     | iters | result point | fail  |
|--------|-----------|-------|--------------|-------|
| 10     | 0.010000  | 1001  | [1.7, 1.1]   | 28/28 |
| 10     | 0.020000  | 595   | [2.0, 1.0]   | 14/28 |
| 10     | 0.050000  | 249   | [2.0, 1.0]   | 0/28  |
| 10     | 0.100000  | 147   | [2.0, 1.0]   | 0/28  |
| 10     | 0.250000  | 103   | [2.0, 1.0]   | 0/28  |
| 10     | 0.500000  | 112   | [2.0, 1.0]   | 0/28  |
| 10     | 1.000000  | 389   | [2.0, 1.0]   | 8/28  |
| 10     | 5.000000  | 1001  | [1.7, 1.0]   | 18/28 |
| 10     | 20.000000 | 1001  | [5.0, -1.0]  | 28/28 |

для таких  $\alpha$  не сошёлся

| alpha     | fail |
|-----------|------|
| 0.010000  | 28   |
| 0.020000  | 14   |
| 0.050000  | 0    |
| 0.100000  | 0    |
| 0.250000  | 0    |
| 0.500000  | 0    |
| 1.000000  | 8    |
| 5.000000  | 18   |
| 20.000000 | 28   |

среднее число для каждого числа точек и  $\alpha$ 

| count | alpha               | iters            |
|-------|---------------------|------------------|
| 10    | 0.020000            | 615.5            |
|       | 0.050000            | 427.8            |
|       | 0.100000            | 270.0            |
|       | 0.250000            | 324.2            |
|       | 0.500000            | 467.5            |
|       | 1.000000            | 414.2            |
| 40    | 0.020000            | 598.5            |
|       | 0.050000            | 419.8            |
|       | 0.100000            | 213.8            |
|       | 0.250000            | 224.8            |
|       | 0.500000            | 334.8            |
|       | 1.000000            | 400.5            |
| 70    | 0.020000            | 594.0            |
|       | 0.050000            | 422.0            |
|       | 0.100000            | 250.8            |
|       | 0.250000            | 214.5            |
|       | 0.500000            | 140.8            |
|       | 1.000000            | 209.5            |
|       | 5.000000            | 259.0            |
| 100   | 0.020000            | 611.5            |
|       | 0.050000            | 426.2            |
|       | 0.100000            | 244.0            |
|       | 0.250000            | 144.8            |
|       | 0.500000            | 347.5            |
|       | 1.000000            | 198.0            |
| 130   | 5.000000            | 238.0            |
| 130   | 0.020000            | 605.0            |
|       | 0.050000 $0.100000$ | 446.2            |
|       |                     | 251.8            |
|       | 0.250000 $0.500000$ | 204.0            |
|       | 1.000000            | 313.8            |
|       | 5.000000            | $180.5 \\ 354.0$ |
| 160   | 0.020000            | 622.0            |
| 100   | 0.020000 $0.050000$ | 434.0            |
|       | 0.100000            | 269.0            |
|       | 0.100000 $0.250000$ | 183.2            |
|       | 0.250000 $0.500000$ | 310.5            |
|       | 1.000000            | 431.3            |
|       | 5.000000            | 855.0            |
| 190   | 0.020000            | 604.0            |
| 100   | 0.050000            | 456.5            |
|       | 0.100000            | 240.2            |
|       | 0.100000 $0.250000$ | 240.2 $240.8$    |
|       | 0.250000 $0.500000$ | 240.3 $220.2$    |
|       | 1.000000            | 613.5            |
|       | 5.000000            | 782.5            |
|       | 9.000000            | 104.0            |

# 3.5 Adam

$$\begin{split} m^{[i+1]} &= \beta_1 m^{[i]} + (1 - \beta_1) \cdot \nabla F(b^{[i]}) \\ u^{[i+1]} &= \beta_2 u^{[i]} + (1 - \beta_2) \cdot \nabla (F(b^{[i]}))^2 \\ b^{[i+1]} &= b^{[i]} - \frac{\alpha \cdot m^{[i]}}{\sqrt{u^{[i]}} + \varepsilon} \end{split}$$

$$\beta_1 = 0.9, \beta_2 = 0.9$$

пример фрейма

| points | alpha    | iters | result point | fail  |
|--------|----------|-------|--------------|-------|
| 10     | 0.010000 | 1001  | [1.4, 1.1]   | 28/28 |
| 10     | 0.025000 | 537   | [2.0, 1.0]   | 13/28 |
| 10     | 0.050000 | 397   | [2.0, 1.0]   | 0/28  |
| 10     | 0.050000 | 355   | [2.0, 1.0]   | 0/28  |
| 10     | 0.075000 | 311   | [2.0, 1.0]   | 0/28  |
| 10     | 0.100000 | 331   | [2.0, 1.0]   | 4/28  |
| 10     | 0.200000 | 253   | [2.0, 1.0]   | 19/28 |
| 10     | 0.500000 | 993   | [2.0, 1.0]   | 24/28 |
| 10     | 1.000000 | 1001  | [2.0, 1.0]   | 28/28 |
|        |          |       |              |       |

решено было взять такие  $\alpha$  так в силу того что adagrad использует в себе корретирование  $\alpha$  и при меньшем алгоритм не успевает сойтись

$$\alpha = [0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.5, 1, 5]$$

для испытания кода, бралось 4 стартовые точки, ( $\pm 10$ ,  $\pm 10$ ), ниже представлена таблица для каких  $\alpha$  метод не сошёлся

| alpha | fail |
|-------|------|
| 0.010 | 28   |
| 0.025 | 13   |
| 0.050 | 0    |
| 0.075 | 0    |
| 0.100 | 0    |
| 0.200 | 4    |
| 0.500 | 19   |
| 1.000 | 24   |
| 5.000 | 28   |

среднее значение итераций, для каждого количества точек и выбрынных  $\alpha$ 

| count | alpha               | iters            |
|-------|---------------------|------------------|
| 10    | 0.025000            | 576.0            |
|       | 0.050000            | 563.1            |
|       | 0.075000            | 442.8            |
|       | 0.100000            | 386.0            |
|       | 0.200000            | 309.0            |
|       | 0.500000            | 608.7            |
| 40    | 0.025000            | 692.3            |
|       | 0.050000            | 486.1            |
|       | 0.075000            | 397.8            |
|       | 0.100000            | 439.5            |
|       | 0.200000            | 352.7            |
|       | 1.000000            | 896.5            |
| 70    | 0.025000            | 576.0            |
|       | 0.050000            | 517.2            |
|       | 0.075000            | 481.0            |
|       | 0.100000            | 410.0            |
|       | 0.200000            | 520.2            |
|       | 0.500000            | 806.0            |
| 100   | 0.025000            | 593.5            |
|       | 0.050000            | 527.1            |
|       | 0.075000            | 438.2            |
|       | 0.100000            | 452.5            |
|       | 0.200000            | 352.7            |
| 130   | 0.500000            | 428.5            |
| 130   | 0.025000            | 583.0<br>518.4   |
|       | 0.050000            |                  |
|       | 0.075000            | 477.0            |
|       | 0.100000 $0.200000$ | $359.0 \\ 414.7$ |
|       | 0.200000            | 729.5            |
|       | 1.000000            | 443.0            |
| 160   | 0.025000            | 595.5            |
| 100   | 0.025000 $0.050000$ | 531.2            |
|       | 0.075000            | 432.0            |
|       | 0.100000            | 435.8            |
|       | 0.200000            | 505.8            |
|       | 0.500000            | 808.0            |
| 190   | 0.025000            | 604.0            |
| 100   | 0.025000 $0.050000$ | 511.6            |
|       | 0.075000            | 474.5            |
|       | 0.100000            | 428.5            |
|       | 0.200000            | 600.0            |
|       | 1.000000            | 346.0            |
|       | 1.000000            | 040.0            |

# 4 Исследования

math oper per iter

|   | name                  | math per oper |
|---|-----------------------|---------------|
| 0 | adagrad               | 12            |
| 1 | $\operatorname{adam}$ | 21            |
| 2 | momentum              | 8             |
| 3 | ${ m rms}$            | 15            |
| 4 | nesterov              | 10            |

| count | alpha      | name                  | iters       |
|-------|------------|-----------------------|-------------|
| 10    | 0.005000   | momentum              | 128.000000  |
| 10    | 50.000000  | adagrad               | 206.250000  |
| 10    | 0.100000   | $\mathrm{rms}$        | 270.000000  |
| 10    | 0.200000   | $\operatorname{adam}$ | 309.000000  |
| 10    | 0.000100   | nesterov              | 1001.000000 |
| 40    | 0.002500   | momentum              | 99.750000   |
| 40    | 0.100000   | ${ m rms}$            | 213.750000  |
| 40    | 50.000000  | adagrad               | 224.500000  |
| 40    | 0.200000   | adam                  | 352.666667  |
| 40    | 0.001000   | nesterov              | 452.250000  |
| 70    | 0.500000   | rms                   | 140.750000  |
| 70    | 0.001000   | nesterov              | 154.250000  |
| 70    | 0.001250   | momentum              | 162.500000  |
| 70    | 50.000000  | adagrad               | 179.250000  |
| 70    | 0.100000   | $\operatorname{adam}$ | 410.000000  |
| 100   | 0.001000   | momentum              | 93.250000   |
| 100   | 0.250000   | ${ m rms}$            | 144.750000  |
| 100   | 100.000000 | adagrad               | 158.750000  |
| 100   | 0.000700   | nesterov              | 192.750000  |
| 100   | 0.200000   | $\operatorname{adam}$ | 352.666667  |
| 130   | 0.001000   | momentum              | 92.250000   |
| 130   | 50.000000  | adagrad               | 151.500000  |
| 130   | 0.000500   | nesterov              | 164.000000  |
| 130   | 1.000000   | ${ m rms}$            | 180.500000  |
| 130   | 0.100000   | $\operatorname{adam}$ | 359.000000  |
| 160   | 0.000750   | momentum              | 93.250000   |
| 160   | 0.000500   | nesterov              | 128.750000  |
| 160   | 0.250000   | ${ m rms}$            | 183.250000  |
| 160   | 50.000000  | adagrad               | 197.500000  |
| 160   | 0.075000   | adam                  | 432.000000  |
| 190   | 0.000750   | momentum              | 97.750000   |
| 190   | 0.000400   | nesterov              | 138.250000  |
| 190   | 50.000000  | adagrad               | 156.750000  |
| 190   | 0.500000   | ${ m rms}$            | 220.250000  |
| 190   | 1.000000   | $\operatorname{adam}$ | 346.000000  |

Momentum - модификация градиентного спуска, которая добавляет импульс, учитывающий предыдущие градиенты. Это позволяет более быстро сходиться к минимуму функции и преодолевать локальные минимумы. Однако, этот метод может привести к осцилляциям и увеличению ошибки, если шаг слишком большой.

Nesterov - это модификация Momentum, которая учитывает будущий градиент, что позволяет более точно определить направление движения. Это позволяет более быстро сходиться к минимуму и уменьшить количество осцилляций.

RMSprop - это метод, который адаптивно изменяет скорость обучения в зависимости от градиента. Это позволяет более быстро сходиться к минимуму и уменьшить количество осцилляций. Однако, этот метод может привести к проблеме "затухания градиента когда скорость обучения становится слишком маленькой.

Adagrad - это метод, который адаптивно изменяет скорость обучения в зависимости от градиента и частоты появления каждого параметра. Это позволяет более эффективно использовать скорость обучения и уменьшить количество осцилляций. Однако, этот метод может привести к проблеме "затухания градиента когда скорость обучения становится слишком маленькой.

Adam - это метод, который комбинирует Momentum и RMSprop. Он адаптивно изменяет скорость обучения и добавляет импульс, учитывающий предыдущие градиенты. Это позволяет более быстро сходиться к минимуму и уменьшить количество осцилляций. Adam является одним из наиболее эффективных методов оптимизации в машинном обучении.

Таким образом, каждый из этих методов имеет свои достоинства и недостатки, и выбор конкретного метода зависит от конкретной задачи и данных.

#### 5 Графики

Давайте посмотрим, какие у методов траектории. Возьмем y = x + 2,100 точек и размер batch = 50



Можно выделить два вида графиков. Первый:  $Minibatch\ CD,\ Momentum,\ Nesterov$ 



Momentum довольно быстро находит точку, идет как вверх, так и вниз. Задействует больше области, чем другие методы. А Nesterov сразу находит нужную траекторию, и сглаживает выпады Momentum. Если установить alpha у Momentum побольше, то можно увидеть это замедление.



И второй тип графиков: Adagrad, RMS, Adam. Они идут по другой траектории. они не прижимаются к какой-то оси. Они идут пропорционально к точки.



В чем же их отличия?



Adagrad быстро находит область рядом с нужной точкой. А потом медленно начинает уменьшать eps. Ведь чем больше у него итераций, тем меньше будет alpha.



RMS хранит не все значения alpha и когда начинает двигаться "обратно то он начинает сходиться не очень хорошо, довольно рандомно. Скорее всего это вызвано из-за того, что batch установлен на половину. И если бы batch равнялся n, то точность была бы выше.



Adamубирает рандомность у RMSи сглаживает график, что выглядит гораздо стабильнее.

# Вывод

Таким образом, каждый из этих методов имеет свои достоинства и недостатки, и выбор конкретного метода зависит от конкретной задачи и данных.