Foundations of Mathematics YOUR NAME

Math 300 Sections 902, 905

Third Homework:

Due 14 September 2020

- 1. Rewrite the following English sentences (which are mathematical statements) as sentences involving quantifiers.
 - (a) A trangle has three sides.
 - (b) The square of a real number is nonnegative.
 - (c) Some Aggies are not Human.
 - (d) An integer is necessarily prime or composite.
 - (e) Some even numbers are divisible by two and are divisible by seven.
 - (f) The sum of two even integers is an odd integer.
 - (g) Irrational numbers are real.
- 2. Negate each of the quantified statements from Question 1, again as English sentences.
- 3. Recall the following property of the integers: "If n is an integer, then there is an integer m with the property that n + m = 0."
 - (a) Write this as a statement involving quantifiers.
 - (b) Give a useful negation of this statement.
 - (c) What is this property called?
- 4. Negate each of the following statements (which are important definitions in mathematics). Assume that the symbols f, K, a, and l are defined.
 - (a) For every $x \in K$, if $x \neq 0$, then there is a $y \in K$ such that xy = 1.
 - (b) For every real number $\epsilon > 0$, there is a $\delta > 0$ such that if $x \in \mathbb{R}$ with $x \neq a$ and $|x a| < \delta$, then $|f(x) l| < \epsilon$.
 - (c) For every real number $\epsilon > 0$, there is a $\delta > 0$ such that if $x, y \in \mathbb{R}$ with $|x y| < \delta$, then $|f(x) f(y)| < \epsilon$.
- 5. Is the following statement a tautology?

$$(\forall x \in U)(P(x)) \longrightarrow (\exists x \in U)(P(x)).$$

Why or why not? Justify your assertions.

6. Prove the following statement:

For integers a, b, and c, if a|b and a|c, then a|(b+c).

- (a) Construct a "know-show" table for a proof of this statement. You may find it useful to recycle LaTeX code from HW1.
- (b) Write your proof in paragraph form.
- 7. Prove or find counterexamples to following statements. Write negations of the false statements in English.
 - (a) For all integers a, we have $\sqrt{a^2} = a$.
 - (b) For all integers a, b, c with $a \neq 0$, if a|(bc) then a|b or a|c.
 - (c) For all integers a, b with $a \neq 0$, if a|b, then $a^2|b^2$.
 - (d) For all real numbers x, y we have $\sqrt{x^2 + y^2} > 2xy$.
 - (e) For all integers a, b, and c with $a \neq 0$, if a divides (b-1) and a divides (c-1), then a divides (bc-1).
 - (f) For all integers a, b, and c with $a \neq 0$, if a divides both b-c and b+c, then a divides b.
- 8. Let n be a positive integer and consider the statement we explored about congruence modulo n:

For any integers a, b, c, d if $a \equiv b \mod n$ and $c \equiv d \mod n$, then $(a + c) \equiv (b + d) \mod n$.

- (a) Construct a "know-show" table for a proof of this statement. You may find it useful to recycle LaTeX code from HW1.
- (b) Write your proof in paragraph form.
- 9. Repeat the previous question, but replace addition by multiplication.
- 10. Prove or find counterexamples to following statements.
 - (a) If a is an integer with $a \equiv 2 \mod 6$, then $a^2 \equiv 4 \mod 6$.
 - (b) If a is an integer with $a^2 \equiv 4 \mod 6$, then $a \equiv 2 \mod 6$.
- 11. Consider Statement (e) in Problem 7.
 - (a) Rewrite this as a statment involving congruences.
 - (b) Formulate a useful generalization of you statement in part (a) of this problem.