Antilles Guyane 2017. Enseignement spécifique

EXERCICE 1 (3 points) (commun à tous les candidats)

On munit le plan d'un repère orthonormé direct. On considère l'équation :

$$(E) : z^4 + 2z^3 - z - 2 = 0$$

ayant pour inconnue le nombre complexe z.

- 1) Donner une solution entière de (E).
- 2) Démontrer que, pour tout nombre complexe z,

$$z^4 + 2z^3 - z - 2 = (z^2 + z - 2)(z^2 + z + 1).$$

- 3) Résoudre l'équation (E) dans l'ensemble des nombres complexes.
- 4) Les solutions de l'équation (E) sont les affixes de quatre points A, B, C, D du plan complexe tels que ABCD est un quadrilatère non croisé.

Le quadrilatère ABCD est-il un losange? Justifier.

Antilles Guyane 2017. Enseignement spécifique

EXERCICE 1 : corrigé

- 1) $1^4 + 2 \times 1^3 1 2 = 1 + 2 1 2 = 0$. Donc, 1 est une solution entière de l'équation (E).
- 2) Pour tout nombre complexe z,

$$\left(z^2+z-2\right)\left(z^2+z+1\right)=z^4+z^3+z^2+z^3+z^2+z-2z^2-2z-2=z^4+2z^3-z-2.$$

- 3) Soit z un nombre complexe. $z^4 + 2z^3 z 2 = 0 \Leftrightarrow (z^2 + z 2)(z^2 + z + 1) = 0 \Leftrightarrow z^2 + z 2 = 0$ ou $z^2 + z + 1 = 0$.
- Le discriminant de l'équation $z^2+z-2=0$ est $\Delta=1^2-4\times 1\times (-2)=9$. L'équation $z^2+z-2=0$ admet deux solutions réelles distinctes à savoir $z_1=\frac{-1+\sqrt{9}}{2}=1$ et $z_2=\frac{-1-\sqrt{9}}{2}=-2$.
- Le discriminant de l'équation $z^2+z+1=0$ est $\Delta=1^2-4\times1\times1=-3$. Δ est strictement négatif et donc l'équation $z^2+z+1=0$ admet deux solutions non réelles conjuguées à savoir $z_3=\frac{-1+i\sqrt{3}}{2}$ et $z_4=\frac{-1-i\sqrt{3}}{2}$.

Les solutions dans \mathbb{C} de l'équation $z^4 + 2z^3 - z - 2 = 0$ sont $1, -2, -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ et $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

4) On note A, B, C et D les points d'affixes respectives $a=1,\,b=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\,c=-2$ et $d=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$

Les coordonnées respectives des points A, B, C et D sont $(1,0), \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right), (-2,0)$ et $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$.

Le vecteur \overrightarrow{AB} a pour coordonnées $\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ et le vecteur \overrightarrow{DC} a pour coordonnées $\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$. Ainsi, $\overrightarrow{AB} = \overrightarrow{DC}$ et donc le quadrilatère \overrightarrow{ABCD} est un parallélogramme.

Le vecteur \overrightarrow{AC} a pour coordonnées (-3,0) et le vecteur \overrightarrow{BD} a pour coordonnées $(0,-\sqrt{3})$. Ensuite,

$$\overrightarrow{AC}.\overrightarrow{BD} = (-3) \times 0 + 0 \times (-\sqrt{3}) = 0.$$

Les diagonales du parallélogramme ABCD sont perpendiculaires et donc le parallélogramme ABCD est un losange.