

CUAI 스터디 CS224n 1팀

2022.05.03

발표자 : 김서린

스터디원 소개 및 만남 인증

스터디원 1 : 김병찬(통계학과)

스터디원 2: 김서린(응용통계학과)

스터디원 3: 이재용(통계학과)

22.03.31. 15:00 - 17:00 응용통계학과 분석실에서 진행

스터디 스케줄

Date	Week	Торіс							
Mar 17, 2022	1	Lecture 1 – Introduction and Word Vectors							
Mar 17, 2022	1	Lecture 2 - Neural Classifiers							
Mar 17, 2022	1	Lecture 3 - Backprop and Neural Networks							
Mar 31, 2022	2	Lecture 4 - Dependency Parsing							
Mar 31, 2022	2	Lecture 5 - Language Models and RNNs							
May 12, 2022	4	Lecture 6 - Simple and LSTM RNNs							
May 12, 2022	5	Lecture 7 - Translation, Seq2Seq, Attention							
미정	6	Lecture 9 - Self- Attention and Transformers							

Lecture 4:

Dependency Parsing

Syntactic Structure: Consistency and Dependency

1) Consistency Parsing (Phrase structure grammar, CFGs)

- word → phrase → bigger phrase
- 동사구, 명사구, 전치사구 등으로 묶어서 문장의 구조 파악

ex) Grammar	Lexicon
NP→ Det (Adj)* N (PP)	N→ dog, cat
PP → P NP	$bet \rightarrow a$, the
VP → V PP	$P \rightarrow in, on, by$
S -> NP VP	$V \rightarrow talk$, walked

2) Dependency Parsing

- 문장에서 각 단어에 대해 어떤 단어가 그것을 수식하는지 설명하는 것이 목표

Prepositional Phrase Attachment Ambiguity

San Jose cops kill man with knife

1) PP attachment ambiguities multiply

- 문장 끝에 k개 전치사구 있으면 문장은 Catalan numbers만큼 parse할 수 있음
- Catalan number = (2n)! / (n+1)!n!

Other Ambiguities

1) Coordination scope ambiguity

2) Adjectival/Adverbial modifier ambiguity

3) Verb Phrase attachment ambiguity

Dependency Grammar and Dependency Structure

- 1) ROOT에 의존하는 단어는 단 하나
- 2) A→B, B→A 등의 사이클이 없어야 함
- 3) Non-projective sentence (화살표가 겹치면 안됨)

Basic Transition-based Dependency Parser

1) Initialization

- Stack (sigma): 'ROOT'
- Buffer (beta) : parse하려는 문장의 단어들
- A : dependency arcs

2) Shift

- 다음 단어를 스택에 넣기

3) Left-Arc or Right-Arc

- 스택에서 단어 두 개 가져와서 의존관계(수식관계) 파악 (Left or Right)
- A에 두 단어의 문법적 관계 + Left or Right Arc 추가
- 수식받은 단어는 스택에서 사라짐

4) Final

- Stack (sigma): 'ROOT'
- Buffer (beta) : 공집합

Arc-standard Transition-based Parser

I ate fish

4) Softmax Layer

- 3) Hidden Layer
- 2) Feature Embedding
- 1) Feature Selection

1) Feature Selection

- STACK, BUFFER의 top 3 단어 (6개) : s1, s2, s3, b1, b2, b3
- STACK top 1,2 단어의 1st and 2nd left and right child 단어 (8개) : lc1(s1), rc1(s1), lc2(s1), rc2(s1), lc1(s2), rc1(s2), lc2(s2), rc2(s2)
- STACK top 1,2 단어의 (left of left) and (right of right) child 단어 (4개) : lc1(lc1(s1)), rc1(rc1(s1)), lc1(lc1(s2)), rc1(rc1(s2))
- 선택된 word feature에 해당하는 POS Tag (18개)
- STACK과 BUFFER의 6개 단어를 제외하고 선택된 word에 달린 arc-label (12개)

→ word feature 18개 + POS Tag feature 18개 + Arc-label feature 12개 = 48개 feature

1) Feature Selection

2) Feature Embedding

Arc-label Features									Arc-	label	Embe	eddin		Embedded Matrix										
	Null	ROOT	nsubj	cc		сор	conj		Null	0.8	0.1	0.6		0.2	1.4	0.8		$e_{l_1}^l$	0.8	0.1	0.6	0.2	1.4	0.8
Null	1	0	0	0	0	0	0		ROOT	0.2	0.6	1.4		1,1	0.6	1.3		$e_{l_2}^l$	0.8	0.1	0.6	0.2	1.4	0.8
Null	1	0	0	0	0	0	0		nsubj	0.1	0.2	1.2		0.7	0.8	0.2		$e_{l_3}^l$	0.8	0.1	0.6	0.2	1.4	0.8
Null	1	0	0	0	0	0	0	×	cc	0.5	0.8	0.1		1.1	0.4	0.0	=							
***									***				***					$e_{l_{10}}^l$	0,1	0.2	1.2	0.7	0.8	0.2
nsubj	0	0	1	0	0	0	0		cop	0.7	0.5	0.6		1.1	0.5	0.2		$e_{l_{11}}^l$	1.1	0.1	0.6	0.1	0.2	0.6
conj	0	0	0	0	0	0	1		conj	1.1	0.1	0.6		0.1	0.2	0.6		$e_{l_{12}}^l$	0.7	0.5	0.6	1.1	0.5	0.2
сор	0	0	0	0	0	1	0																	
$S'^l \in \mathbb{R}^{12 \times N_l}$						$E^l \in \mathbb{R}^{d \times N_l}$									$x^l = [e^l_{l_1}; e^l_{l_2}; \dots; e^l_{l_{12}}]$									
																•								
																Arc-la	bels							
									_				_					-						
							(000) (00		•	- (

3) Hidden Layer

- 일반적인 feed forward network
- But, ReLU, Sigmoid, Tanh와 같은 일반적인 activation function 사용 X
- 대신 word, POS Tag, Arc-label 간 상호작용 반영할 수 있는 cube function 사용
- 실험 결과 타 non-linearity 대비 우수한 성능

$$h = (W_1[x^w; x^t; x^l] + b)^3$$

$$= (w_1x_1 + w_1x_2 + \dots + w_{48}x_{48} + b)^3$$

$$= \sum_{i,j,k} (w_iw_jw_k)x_ix_jx_k + \sum_{i,j} b(w_iw_j)x_ix_j + \dots$$
각 word, POS tag, arc-label의 조합

4) Softmax Layer

Evaluation Measures

1) UAS (Unlabeled Attachment Score) : Arc 방향만 예측

2) LAS (Labeled Attachment Score) : Arc 방향과 함께 label도 예측

POS and Label Embedding

유사한 요소들끼리 가까이 위치함

Lecture 5: Language Models and Recurrent Neural Networks

Language Model

Language Model

- 단어의 시퀀스에 대해, 얼마나 자연스러운 문장인지 확률을 이용해 예측하는 모델

Language Modeling

- 주어진 단어의 시퀀스에 대해 다음에 나타날 단어가 무엇인지 예측하는 작업
- 기계번역, 음성인식, 자동완성 등에 이용

$$P(w_t|w_{t-1},...,w_1)$$

where w_t can be any word in the vocabulary $V = \{w_1, ..., w_{|V|}\}$

$$P(w_1, ..., w_T) = P(w_1) \times P(w_2|w_1) \times \cdots \times P(w_T|w_{T-1}, ..., w_1)$$

$$= \prod_{t=1}^{T} P(w_t | w_{t-1}, \dots, w_1)$$

N-gram Language Models

N-gram Language Models

- Neural Network 이전에 사용되었던 Language model
- 예측에 사용할 앞 단어들의 개수를 정하여 (n개) 모델링

$$P(w_t|w_{t-1},\dots,w_1)\approx P(w_t|w_{t-1},\dots,w_{t-n+1}) \qquad \text{(assumption)}$$

$$=\frac{P(w_t,w_{t-1},\dots,w_{t-n+1})}{P(w_{t-1},\dots,w_{t-n+1})} \qquad \text{(definition of conditional prob)}$$

$$\approx \frac{\text{count}(w_t,w_{t-1},\dots,w_{t-n+1})}{\text{count}(w_{t-1},\dots,w_{t-n+1})} \qquad \text{(statistical approximation)}$$

문제점

- Sparsity Problems : n이 커질수록 안 좋아짐. 일반적으로 n<5로 설정. smoothing, backoff
- Storage Problems : n이 커지거나 corpus가 증가하면 모델의 크기가 증가함

Window-based Neural Network Language Model (NNLM)

NNLM

- N-gram 모델의 sparsity problem을 해결하기 위해 제안된 신경망 기반 모델
- Language model이면서 동시에 단어의 'distributed representation'을 학습

Window-based Neural Network Language Model (NNLM)

output distribution

$$\hat{y} = \text{softmax}(Uh + b_2) \in \mathbb{R}^{|V|}$$

hidden layer

$$h = f(We + b_1)$$

concatenated word embeddings

$$e = [e_1; e_2; e_3; e_4]$$

words \rightarrow one-hot vectors x_1, x_2, x_3, x_4

Problems

- Fixed window is too small
- Window가 커질 수록 W도 커짐 \rightarrow window 크기의 한계
- x_1 과 x_2 는 완전히 다른 가중치 W가 곱 해지기 때문에 No symmetry함

Improvement

- 단어의 embedding을 통한 sparsity problem 해결
- 관측된 n-gram을 저장할 필요가 없음

Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN)

words → one-hot vectors

 x_1, x_2, x_3, x_4

the

 x_2

students

 x_3

opened

 χ_4

their

Advantages

- 입력(input)의 길이에 제한이 없음
- (이론적으로) 길이가 긴 timestep t 에 대해 처리 가능함
- 입력에 따른 모델의 크기가 증가 하지 않음
- 매 timestep t 에 동일한 가중치를 적용하므로 symmetry 함

Disadvantages

- Recurrent 계산이 느림
- 실제로는 길이가 긴 timestep t 에 대 해 처리가 안됨

References

https://youtube.com/playlist?list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJhttps://youtube.com/playlist?list=PLetSIH8YjIfVdobI2IkAQnNTb1Bt5Ji9U

감사합니다☺