Um Algoritmo Heurístico Aplicado a Homogeneização das Características Físicas de Produtos

Luis Henrique Leão

Universidade Federal de Ouro Preto *luis_ccm14@hotmail.com*

29 de Março de 2017

Introdução

Introdução

Dias Atuais

Atualmente, a inteligência computacional e seus métodos têm sido utilizados nas indústrias, basicamente em todas as fases da produção, desde a obtenção da matéria-prima até a entrega do produto acabado ao consumidor final.

Introdução

Figura: Computadores na Indústria.

Peça

- Em algumas indústrias há a necessidade de transformar unidades maiores de matéria prima em produtos menores com diferentes formas e tamanhos;
- É preciso realizar cortes em uma determinada unidade de matéria prima a fim de ser obter unidades menores (ou peças), respeitando algum objetivo pré-estabelecido.

Padrão

- Um plano (ou padrão) de corte pode ser caracterizado como a disposição das peças dentro de uma chapa de matéria prima, semelhante a um gabarito;
- Cada padrão é unicamente reconhecido por possuir uma quantidade finita de peças e para cada uma há uma posição associada.

Estágio

- Um estágio é definido como uma subdivisão de um processo em uma sequência de sub-processos;
- No meio industrial um estágio da produção pode ser caracterizado como uma unidade de tempo em que determinado padrão de corte é processado.

Critérios de Qualidade

A ordem em que os padrões são processados, pode interferir diretamente na produtividade, ocasionando custos desnecessários. É preciso então planejar a sequência em que os padrões serão cortados atendendo algum critério de qualidade.

Descontinuidade

Uma descontinuidade surge quando uma determinada peça está sendo processada a partir de um padrão em um determinado estágio, e em nos estágios posteriores a referida peça não é produzida, porém, volta a sê-lo em algum estágio posterior.

Consequência

Ao fabricar peças diferentes, a mesma matéria prima é utilizada e, posteriormente, ao retomar a produção de um tipo de peça específica, as características da matéria prima podem ser diferentes, originando variações de características físicas.

Motivação

Motivação

Prática

Trata-se de um problema de aplicação prática no contexto industrial, tornando-se essencial para o planejamento e execução do processo produtivo de diversas indústrias, tais como as relacionadas a produtos de madeira, vidro, papel e cimentícios.

Teórica

Trata-se de um problema NP-Difícil ou seja, não existe algoritmo conhecido que resolva este problema em tempo determinístico polinomial.

Fundamentação Teórica

Fundamentação Teórica

Entrada

É representada por uma matriz M binária que relaciona os padrões de corte e as peças. Cada elemento m_{ij} $(i \in P, j \in S)$ da matriz M é preenchida da seguinte forma:

$$m_{ij} = \begin{cases} 1, & \text{se o padrão } p_j \text{ possui a peça } i \\ 0, & \text{caso contrário} \end{cases}$$

	p_1	p_2	<i>p</i> ₃	p_4	p_5	<i>p</i> ₆
1	1	1	0	0	0	0
2	1	0	1	0	0	0
3	0	0	0	1	1	0
4	0	0	0	1	0	1
5	0	1	0	0	1	0
6	1 1 0 0 0	0	1	0	0	1

Fundamentação Teórica

Solução

Uma solução para o MDP é dada por uma permutação π das colunas da matriz M, dando origem à uma Matriz Q^{π} , que consiste nos mesmos elementos da Matriz M, porém, com as colunas permutadas. Essa representação indica qual padrão de corte será processado em cada estágio da produção.

	<i>p</i> ₅	p_2	<i>p</i> ₄	<i>p</i> ₆	<i>p</i> ₃	p_1		p_1	<i>p</i> ₆	p_5	<i>p</i> ₄	<i>p</i> ₃	1
1	0	1	0	0	0	1	1	1	0	0	0	0	
2	0	0	0	0	1	1	2	1	0	0	0	1	(
3	1	0	1	0	0	0	3	0	0	1	1	0	(
4	0	0	1	1	0	0	4	0	1	0	1	0	(
5	1	1	0	0	0	0	5	0	0	1	0	0	
6	0	0	0	1	1	0	6	0	1	0	0	1	(
			(a)				,	'		(b)			

Tabela: Dois possíveis sequenciamentos para o processamento dos padrões.

Valor de uma Solução

Uma maneira aproximada de determinar o número de descontinuidades na matriz Q^{π} é determinar o número de inversões de 0 para 1 em cada linha da mesma matriz.

$$Z_{MDP}^{\pi}(Q^{\pi}) = \sum_{j=1}^{J} \sum_{i=1}^{I} q_{ij}^{\pi} (1 - q_{ij-1}^{\pi})$$
 (1)

Função Objetivo

$$\min_{\pi \in \Pi} \ Z_{MDP}^{\pi}(M) \tag{2}$$

Pré-processamento por dominância

Técnica que consiste na remoção de padrões que possuem em sua composição todas as peças existentes em algum outro padrão do problema, a fim de eliminar redundâncias.

Exemplo

	p_1	p_2	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆		p_1p_3	p_2	$p_5 p_4$	р
1	1	1	0	1	1	0	1	1	1	1	(
2	0	1	0	0	0	1	2	0	1	0	1
3	1	1	1	1	1	1	3	1	1	1	-
4	1	0	0	0	1	1	4	1	0	1	1
5	0	0	0	1	1	1	5	0	0	1	1
6	1	0	1	0	0	0	6	1	0	0	1
7	1	1	0	0	1	1	7	1	1	1	-

Metodologia

Etapas para Obtenção da Solução

O processo para a geração de uma solução para o problema consiste nas seguintes etapas:

- Pré-processamento por dominância entre padrões;
- Representação Computacional em forma de um grafo;
- Geração da lista ϕ de peças (utilizando um método de busca em grafos);
- Geração da lista π de padrões (Solução Inicial);
- Aplicação da metaheurística para refinamento(melhoria) da solução.

Representação Computacional

Contrução de um grafo ponderado e não direcionado, em que:

- Os vértices representam as peças;
- Existe ligação entre dois vértices quaisquer se as peças estão presentes em um mesmo padrão;
- A cada ocorrência desta característica, o peso da aresta correspondente é aumentado em uma unidade.

Representação Computacional

	p_1	p_2	<i>p</i> ₃	p_4	p_5	<i>p</i> ₆
1	1	1	1	0	0	0
2	1	0	1	0	0	0
3	0	0	0	1	1	0
4	0	0	0	1	1	1
5	0	1	0	0	1	1
6	1 1 0 0 0	0	1	0	0	1

Tabela: Instância MDP.

Figura: Grafo correspondente a instância.

Figura: $\phi = []$

Figura: $\phi = [2]$

Figura: $\phi = [2,1,6]$

Figura: $\phi = [2,1,6,5]$

Figura: $\phi = [2,1,6,5,4,3]$

Geração da Solução Inicial

Sequenciamento dos Padrões

	p_1	p_2	<i>p</i> ₃	p_4	p_5	<i>p</i> ₆
1	1	1	1	0	0	0
2	1 1 0 0	0	1	0	0	0
3	0	0	0	1	1	0
4	0	0	0	1	1	1
5	0	1	0	0	1	1
6	0	0	1	0	0	1

Tabela: Instância MDP.

ϕ	$ $ π
2	
2,1	p_1
2,1,6	<i>p</i> ₁ , <i>p</i> ₃
2,1,6,5	p_1, p_3, p_2
2,1,6,5,4	p_1, p_3, p_2, p_6
2,1,6,5,4,3	$p_1, p_3, p_2, p_6, p_4, p_5$

Tabela: Sequenciamento de padrões a partir da BFS.

Melhoria da Solução

Busca Local Iterada

Metaheurística que emprega um conjunto de buscas locais para gerar novas soluções correntes. Também são aplicados sutis modificações das soluções, mudando elementos da mesma, denominadas *perturbações*, com o objetivo de mudar o foco da busca local para outra região do espaço de busca e levar à soluções que gerem melhoras na solução global.

Etapas da Busca Local Iterada

A partir da solução inicial gerada a Busca Local Iterada realiza os seguintes passos:

- Aplicação de Perturbação;
- Aplicação de Buscas Locais;
- 3 Verificação se ocorreu melhoria da solução;

Esses passos são repetidos até que se atenda um critério de parada.

30 / 47

Métodos de Busca Local

Busca Local de Agrupamento de 1-blocks

Busca local que tem como objetivo diminuir o número de *blocos* consecutivos da matriz Q^{π} . O principio é percorrer todas as linhas da matriz Q^{π} de maneira aleatória procurando por dois ou mais *blocos* consecutivos. Ao encontra-los, esses blocos são tomados dois a dois e tentam-se agrupa-los da seguinte maneira:

- Movimentam-se as colunas referentes ao primeiro bloco uma a uma, para antes ou depois do segundo bloco, o que resultar em um menor valor da função objetivo;
- Se ambos os movimentos piorarem a solução, esta coluna não é movimentada;
- Repete-se esse processo para os demais blocos da linha.

Busca Local de Agrupamento de 1-blocks

Tabela: Solução corrente.

	<i>p</i>₁10000	<i>p</i> ₆	<i>p</i> ₅	<i>p</i> ₄	<i>p</i> ₃	p_2
1	1	0	0	0	0	1
2	1	0	0	0	1	0
3	0	0	1	1	0	0
4	0	1	0	1	0	0
5	0	0	1	0	0	1
6	0	1	0	0	1	0

Busca Local de *Agrupamento de 1-blocks*

Tabela: Aplicação da Busca Local.

	<i>p</i>₆00101	p_5	<i>p</i> ₄	p_1	<i>p</i> ₃	p_2
1	0	0	0	1	0	1
2	0	0	0	1	1	0
3	0	1	1	0	0	0
4	1	0	1	0	0	0
5	0	1	0	0	0	1
6	1	0	0	0	1	0
			(a)			

	<i>p</i> ₆	p_5	p_4	<i>p</i> ₃	p_1	p_2
1	0	0	0	0	1	1
2	0	0	0	1	1	0
3	0	1	1	0	0	0
4	1	0	1	0	0	0
5	0	1	0	0	0	1
6	p ₆	0	0	1	0	0
			(b)			

Δ-Avaliação

Definição

Método que visa verificar de maneira rápida uma nova solução de um determinado problema obtida através de *movimentos* realizados em uma solução anterior. Geralmente essa avaliação consiste em verificar somente a parte da solução que foi alterada, na tentativa de melhorar o tempo de execução do algoritmo.

Uso

A partir da expressão b-ab-bc+ac (em que a,b,c são três colunas consecutivas da solução) é calculada o número de blocos da coluna i que foi retirada e o número de blocos da posição j em que a mesma foi re-inserida, onde se procura a ocorrência dos padrões: 101 ou 010 .

Δ-Avaliação

Equação

Utiliza-se a equação para calcular o valor do número de blocos resultantes em uma linha:

$$\delta = -\delta(\pi(i-1), \pi(i), \pi(i+1)) + \delta(\pi(j-1), \pi(j), \pi(j+1))$$
 (3)

É repetido este processo para todas as linhas e somado iterativamente o valor de δ . Caso o resultado seja positivo, ocorreu um aumento do número de blocos consecutivos; em caso de valor nulo, o número de blocos permaneceu constante e, em caso de número negativo ocorreu, uma diminuição do número de blocos consecutivos

Métodos de Busca Local

2-Opt

A idéia principal de funcionamento é eliminar duas arestas presentes na solução e inserir duas arestas não presentes na mesma de forma cruzada, ou seja, seleciona-se duas arestas (k_1,k_2) e (j_1,j_2) presentes na solução e adiciona-se as arestas (k_1,j_2) e (j_1,k_2) . Se esta configuração for melhor que a anterior ela é mantida, caso ao contrário, são escolhidas outras duas arestas para a análise.

Exemplo

Exemplo

2-Opt

Utilização

Neste trabalho o 2-Opt foi utilizado da seguinte maneira:

- Inicialmente foi criado um vetor com todas as possíveis combinações de padrões tomados dois a dois: (1,2), (1,3), (1,4), ..., (n-1,n);
- Este vetor é embaralhado;
- \odot Selecionada uma porcentagem β desses conjuntos para que os respectivos padrões sejam trocados;
- Se houver piora na solução a troca é desfeita e examinado-se o próximo par de padrões.
- Caso contrário a troca é mantida, o vetor de combinações é embaralhado novamente e reinicia-se o processo;

Método de Perturbação

2-Swap

O método 2-swap é um método que consiste na realização de trocas de posição entre 2 elementos de uma solução s, gerando uma nova solução s' que difere exatamente de 2 elementos da solução anterior.

2-Swap

Exemplo

Figura: Configuração Inicial

(a) configuração 1.

(b) configuração 2.

Figura: Aplicação de 2-swap

2-Swap

Utilização

Neste trabalho o 2-Swap foi utilizado da seguinte maneira:

- Inicialmente foi criado um vetor com todas as possíveis combinações de padrões tomados dois a dois: (1,2), (1,3), (1,4), ..., (n-1,n);
- 2 Este vetor é embaralhado;
- Selecionada uma porcentagem α desses conjuntos para que os respectivos padrões sejam trocados não importando o valor da solução;

Experimentos

Instâncias

Conjunto de quarenta e cinco instâncias artificiais é dividido em nove grupos (A-I), com cinco instâncias cada. Cada instância foi gerada aleatoriamente atendendo o critério de que cada coluna possua pelo menos um valor diferente a zero, e cada linha possua pelo menos um valor igual a um.

Experimentos

Parâmetros Utili<u>zados</u>

Experimentos preliminares apontaram que se tornaria inviável executar o algoritmo proposto com a melhor configuração encontrada. A versão final do algoritmo para este conjunto utilizou os valores de parâmetros apresentados abaixo:

- Para as instâncias do grupo A até D: Busca Local = 80%,
 Perturbação = 10%, Iterações = 150, Linhas Verificadas = 100%;
- Para as instâncias do grupo E até G: Busca Local = 50%, Perturbação = 10%, Iterações = 100, Linhas Verificadas = 50%;
- Para as instâncias do grupo H e do grupo I: Busca Local = 20%,
 Perturbação = 10%, Iterações = 30, Linhas Verificadas = 20%.

Tabela: Comparação de resultados.

Grupo	P	S	B	ILS-Blocos	T	σ	Haddadi	T	gap
A	100	200	416,0	262	74,19	2,95	253,00	0,45	3,56
В	100	200	955,6	671,60	451,50	2,28	695,80	0,62	-3,48
С	100	200	1789,4	1307,20	769,34	2,44	1358,60	0,79	-3,78
D	100	500	1027,2	601,20	1.015,27	3,73	552,00	3,32	8,91
Ε	100	500	2370,2	1576,20	4.220,57	5,40	1616,00	4,59	-2,46
F	100	500	4529,2	3162,20	8.761,34	4,35	3308,40	5,52	-4,42
G	100	1000	2078,8	1178,20	4.772,54	4,50	1072,40	14,03	9,87
Н	100	1000	4778,4	3067,20	7.612,72	7,09	3125,40	22,20	-1,86
	100	1000	8998,8	6109,60	16.631,09	8,01	6375,40	27,12	-4,17

Conclusões

- Importante problema no contexto industrial, que pode reduzir os custos operacionais da produção de bens de consumo e também auxiliar na homogeneização das características físicas dos mesmos;
- Existem poucas propostas na literatura para a resolução deste problema;
- ILS gerou novos melhores resultados para seis dos nove grupos;
- Em geral, a ILS apresentou robustez no que tange ao valor da solução e o tempo de execução, apresentando em ambos os casos desvio padrão baixo. Foi verificado também a rápida convergência do algoritmo proposto que no pior caso a melhor solução foi encontrada na metade do tempo de execução.
- Os trabalhos futuros se concentrarão em aprimorar o algoritmo proposto a fim de se obter melhores resultados para instâncias esparsas e a diminuição do tempo de execução do mesmo.