APRENDIZAJE NO SUPERVISADO

Aprendizaje no supervisado

- Su objetivo es encontrar "estructura" en los datos proporcionados sin atender a ninguna categoría prefijada
 - Se les conoce también como técnicas exploratorias
- Típicamente se busca estructura en los individuos o en las variables
 - Estructura en los individuos: técnicas de agrupamiento o clustering
 - Estructura en las variables: técnicas de reducción de la dimensionalidad
 - Nosotros nos centraremos en las técnicas de agrupamiento
- La estructura nos permite
 - "Reducir" nuestro conjunto de datos (reducir la dimensión de las variables o la de los individuos a grupos)
 - Ganar comprensión sobre los datos (a nivel de variables y/o de los individuos)
 - Ver qué variables están más (o menos) relacionadas entre sí y ver cómo se agrupan los individuos según su similitud

El problema de la dimensionalidad

- A menudo contar con muchas variables es un problema
 - "Maldición de la dimensionalidad": Podemos tener un número de dimensiones/variables muy elevado y no contar con suficientes ejemplos en muchas regiones de ese espacio multidimensional
 - Lo que "aprendamos" de esas regiones seguramente sea espúreo
 - Existen variables irrelevantes o redundantes
 - Algunas técnicas de aprendizaje no son capaces de elegir las variables relevantes para el problema y pueden confundirse si incluimos variables irrelevantes
 - Complica la visualización de los datos y su comprensión por el humano
 - ¿Cómo visualizar puntos con 100 o 1000 dimensiones?

Reducción de la dimensionalidad

- En las técnicas de reducción de la dimensionalidad
 - Se parte de un conjunto de variables m (es decir, m dimensiones)
 - Se busca reducirlo en un conjunto p mucho menor de factores que conserven el máximo posible de la información inicial (es decir, la variabilidad de las m variables)
 - En muchas de estas técnicas los factores se obtienen como una combinación de las variables originales
 - El Análisis de Componentes Principales (PCA) es la técnica clásica y usa combinación lineal
 - Existen variantes más sofisticadas para hacer combinaciones no lineales usando kernels

X ₁	x ₂	•••	X ₁₀₀	x' ₁	x'2	x' ₃	x' ₄	x' ₅	x

$$x'_{1} = w_{1,1}x_{1} + w_{1,2}x_{2} + \dots + w_{1,100}x_{100}$$

$$\vdots$$

$$x'_{6} = w_{6,1}x_{1} + w_{6,2}x_{2} + \dots + w_{6,100}x_{100}$$

Reducción de la dimensionalidad

- ullet La interpretación de los p factores resultantes nos habla de dimensiones "ocultas" y de la estructura de las variables originales
 - De las variables originales habrá algunas que "contribuyen" más a un factor que a otros, lo que quiere decir que están más relacionadas con dicho factor
 - Las variables que contribuyen más en un factor están relacionadas entre sí
 - P.ej. En un conjunto de datos de pacientes variables como el peso y la altura estarán correlacionadas y podrían quedar agrupadas en un factor que nos hable del tamaño del individuo

APRENDIZAJE NO SUPERVISADO TÉCNICAS DE CLUSTERING

ISIA – FDI –

Técnicas de agrupamiento o clustering

- El objetivo es agrupar los n individuos de nuestro conjunto de datos en una serie de grupos de forma que
 - Los individuos del mismo grupo sean lo más parecidos posible entre sí
 - Los individuos de grupos diferentes sean lo más diferentes entre sí
- De esta forma los grupos nos revelarán cierta "estructura" de los individuos de nuestro conjunto de datos, por ejemplo:
 - Cuáles son los grupos más numerosos y menos numerosos
 - Cuáles son los grupos más homogéneos y más dispersos
 - Qué individuos están más "alejados" de su grupo (outliers) o forman un grupo propio
- El concepto de parecido o de similitud suele requerir el uso de una medida de disimilitud o de distancia
 - Matemáticamente no toda disimilitud es una distancia
- Existen muchas familias de algoritmos de agrupamiento, aunque se suelen dividir en dos grandes grupos de los que veremos un ejemplo:
 - Algoritmos de clustering jerárquico
 - Algoritmos de clustering basados en particiones

Algoritmos de clustering jerárquico aglomerativo

- En un algoritmo de clustering jerárquico aglomerativo la estrategia general es la siguiente:
 - 1. Cada individuo empieza siendo un *cluster*, es decir, hay n *clusters*, tantos como individuos
 - 2. Repetir hasta que todos los individuos formen un único *cluster*
 - Agrupar los clusters más próximos en un único cluster
- Necesitamos definir:
 - La distancia (o disimilitud) que se usa para medir la proximidad (o similitud)
 - ¿Cómo se calcula la distancia entre clusters con más de un individuo?
- Existe una gran cantidad de distancias que pueden usarse
 - Su elección no debe ser casual ya que usar una distancia u otra hace que "priorices" unos aspectos frente a otros

Distancias entre individuos

- La familia de métricas de Minkowski (L_p) suelen usarse habitualmente, especialmente sus variantes más famosas (Manhattan y Euclídea)
 - Sean dos individuos A y B descritos por m variables X_i con i = 1, ..., m definimos las distancias

- La importancia que tienen las (o la) variables con mayor distancia aumenta en $L_1 < L_2 < L_\infty$
 - En L_1 damos igual valor a todas las diferencias, en L_2 el cuadrado hace que pesen más las diferencias grandes y en L_{∞} solamente se tiene en cuenta la variable donde la diferencia es mayor
- Es importante tener en cuenta que cuando tenemos varias variables, la magnitud en la que se mueven sus valores puede afectar a la distancia
 - No es lo mismo medir distancia entre dos variables una en centímetros y otra en kilos, que si lo hacemos en metros y gramos
 - Para evitar estos efectos se suelen escalar o estandarizar los datos

Distancias entre *clusters*

- Existen varias estrategias para medir distancias entre clusters
 - Se utiliza una de ellas durante todo el algoritmo
 - La estrategia usada afectará a la forma final de los clusters
- Las más típicas son:
 - Centroide: Se toma la distancia entre los puntos medios (el vector medio) de los dos clusters
 - Enlace simple (single linkage): Se toma la distancia entre los puntos más próximos de los dos clusters
 - Enlace completo (complete linkage): Se toma la distancia entre los puntos más alejados de los dos clusters

Ejemplo con dos clusters en un espacio bidimensional

Imagen de C. Borgelt (2012). Intelligent Data Analysis

Algoritmo extendido

- FASE 1: Crear la matriz de distancias inicial D
 - Es una matriz simétrica (basta con usar una de las matrices triangulares)
- FASE 2: Agrupación de Individuos
 - 1. Partición inicial P_o: Cada objeto es un *cluster*
 - 2. Calcular la partición siguiente usando la matriz de distancias D
 - Elegir los dos clusters más cercanos
 - Serán la fila y la columna del mínimo de la matriz D
 - Agrupar los dos en un cluster
 - Eliminar de la matriz la fila y columna de los clusters agrupados
 - Generar la nueva matriz de distancias D
 - » Añadir una fila y una columna con el cluster nuevo
 - » Calcular la distancia del resto de clusters al cluster nuevo
 - 3. Repetir paso 2 hasta tener sólo un *cluster* con todos los individuos
 - Representar el dendograma (árbol de clasificación)
- La complejidad con los enlaces simple y completo son computacionalmente costosas, $O(n^3)$, aunque existen implementaciones eficientes más livianas en $O(n^2)$

Dendrograma

- El dendrograma (dendro es árbol en griego) es una representación bidimensional de la jerarquía inferida por el algoritmo de clustering jerárquico
 - En un eje ponemos los individuos y los clusters (abcisas en nuestro caso)
 - El orden de los mismos favorecerá la representación del dendrograma para que no haya cruces
 - El otro eje representa la distancia (ordenadas en nuestro caso)
 - El gráfico representa que la unión entre dos clusters se produce a una distancia determinada

El resultado es una jerarquía en la que podemos ver la estructura de agrupación

que ha ido siguiendo el algoritmo

Ejemplo del Algoritmo

- Dadas estas seis observaciones unidimensionales {2, 12, 16, 25, 29, 45}
- Podemos calcular su matriz de distancias (independientemente de la distancia elegida)

$$D = \begin{pmatrix} 0 & 10 & 14 & 23 & 27 & 43 \\ 10 & 0 & 4 & 13 & 17 & 33 \\ 14 & 4 & 0 & 9 & 13 & 29 \\ 23 & 13 & 9 & 0 & 4 & 20 \\ 27 & 17 & 13 & 4 & 0 & 16 \\ 43 & 33 & 29 & 20 & 16 & 0 \end{pmatrix}$$

Según la estrategia de enlace usada obtendremos diferentes dendrogramas

Imagen de C. Borgelt (2012). Intelligent Data Analysis

Impacto de las estrategias de clustering

- El enlace simple encadena observaciones próximas y tiende a generar cadenas
 - Funciona bien en clusters de formas diversas no necesariamente "homogéneas en todas sus direcciones" siempre y cuando los datos estén bien separados
- El enlace completo y el del centroide tienden a generar clusters más compactos
 - Funciona bien en clusters homogéneos y es más resistente al ruido en los datos

Eligiendo el número adecuado de clusters

- Los problemas de clustering son aprendizaje no supervisado, por lo que no hay una solución correcta (una agrupación o un número de clusters correcto)
 - El objetivo es descubrir estructura en los datos y a priori todas son igual de correctas
 - El analista debe interpretar esa estructura inferida y ver qué le dice sobre el conjunto de datos que está analizando
 - Una solución es buena si los clusters son interpretables
- Hay varias aproximaciones para determinar el número de clusters haciendo un corte en el dendrograma
 - Usar una aproximación visual
 - Usar conocimiento experto y buscar clusters que sean interpretables
 - Especificar una distancia máxima a partir de la cual no formar clusters
 - Analizar la secuencia de distancias de los diferentes enlaces que se van haciendo al formarse la jerarquía y elegir un punto en el que la distancia se incremente mucho con respecto al enlace anterior
 - Existen heurísticas basadas en este concepto como el diagrama del codo que veremos más adelante
- En las dos primeras aproximaciones podríamos utilizar diferentes alturas de cortes para diferentes subclusters

Algoritmos de clustering basados en particiones

- lacktriangle El objetivo es dividir las n observaciones o individuos en un número de clusters k
 - Siendo el número k un valor de entrada del algoritmo
- Lo que hacen estos algoritmos es dividir nuestro espacio de representación m-dimensional en k regiones, siendo m las variables consideradas
 - Normalmente es una aproximación computacionalmente menos costosa que la jerárquica
- Las particiones se realizan optimizando un criterio ya sea globalmente o localmente (es decir, en un subconjunto de individuos)
- Existen muchos algoritmos de este tipo de los que el k-medias (k-means en inglés) es el más famoso

Algoritmo de k-medias

- Una vez fijado el valor de k, se realizan los siguientes pasos:
 - 1. Inicializa los k centros (o centroídes) de los *clusters* de forma aleatoria, típicamente
 - Generando k puntos aleatorios en el espacio m dimensional, o
 - Seleccionando aleatoriamente k individuos
 - 2. Repite el siguiente proceso hasta que los centros no cambien
 - 1. Fase de asignación: Asigna a cada punto la pertenencia al *cluster* que esté más cercano
 - Requiere el uso de una distancia (normalmente se usa la distancia euclídea)
 - 2. Actualiza el centro de los *clusters*, también llamado prototipo
 - Se calcula como el individuo medio de todos los individuos que pertenecen a ese cluster, es decir, se calcula la media de todas las variables consideradas de los individuos de cada cluster
 - El individuo medio es, además, el punto que minimiza la distancia euclídea entre sí mismo y los demás individuos del *cluster*

Algoritmo de k-medias

- El algoritmo de k-medias converge porque llega a un punto en el que los centros no cambian más
 - Y es bastante rápido (salvo en casos excepcionales)
- Sin embargo, la solución para un mismo k puede ser dependiente de la inicialización de los centros
 - Se puede ejecutar varias veces y ver si hay configuraciones más frecuentes o que nos convenzan más

Las regiones de Voronoi

- ullet El algoritmo de k medias genera k particiones del espacio m-dimensional en el que se representan los individuos
- Estas regiones vienen determinadas por los k centros (o prototipos)
 - Cualquier punto dentro de una región determinada pertenece al cluster generado por dicho centro
- Por ejemplo, en los siguientes espacios bidimensionales con 5 prototipos se obtienen las siguientes regiones
 - En derecha, hemos hecho un cambio de escala en X_2 (multiplicando por 2)

El algoritmo k-medias en acción

Eligiendo el mejor resultado clustering

- ¿Cuántos clusters elegimos? Para el mismo número de clusters, ¿con qué resultado de los obtenidos con distintos algoritmos o con las distintas parametrizaciones de los algoritmos nos quedamos?
 - Como es aprendizaje no supervisado, no hay una solución (es decir, partición) correcta
 - Pero hay varias aproximaciones para ayudarnos a obtener una buena solución
- Una opción es usar conocimiento experto y buscar clusters que sean interpretables
 - Analizando los prototipos de los clusters y los individuos que pertenecen a ellos, así como lo dispersos o compactos que son (usando, p.ej. la desviación típica) y buscando que tengan sentido en el dominio del problema
- Existen índices que miden lo "compacto" de una solución, por ejemplo
 - **Dunn**: cociente entre la distancia mínima inter-cluster (entre los centros) y la distancia máxima intra-cluster (entre dos individuos de un cluster)
 - Cuanto mayor es el valor para una partición, mejor
 - Davies-Bouldin es un cociente entre la dispersión de los clusters y la separación de los mismos.
 - Cuanto más pequeño el valor obtenido para una partición, mejor
 - Coeficiente de silueta: similar a los anteriores, pero toma un valor entre 1 y -1, donde valores cercanos a 0 indican la existencia de clusters solapados, valores negativos indica una asignación incoherente y valores positivos indican particiones buenas.
- Hay otras aproximaciones más sofisticadas
 - Por ejemplo: usar validación cruzada (la veremos más adelante) para comprobar si la partición obtenida en los diferentes conjuntos de entrenamiento es homogénea con arreglo a un índice de calidad

Eligiendo el número adecuado de clusters: el diagrama del codo

- Dado un algoritmo de clustering, podemos determinar el número adecuado de clusters usando el diagrama del codo
 - Consiste en representar en el eje X el número de clusters, en el Y un índice de calidad y elegir el punto de X donde se aprecia un cambio de tendencia en Y
 - En general las métricas del eje Y serán mejores cuanto más clusters haya, pero puede haber un punto donde aumentar el número de clusters no produce una mejora significativa (el "codo")

- En el eje Y se suele poner:
 - Cuando usamos un algoritmo basado en particiones, la suma de las distancias al centroide
 - Cuando usamos un algoritmo jerárquico, el valor de la distancia del dendrograma (el eje Y del dendrograma) para cada número de clusters
- También se pueden usar los índices de Dunn, Daves-Boulding, el coeficiente de silueta, etc aunque no está garantizado que siempre se forme un codo, porque la serie no es "monótona".
 - El gráfico que se formará cambia de orientación en el eje Y según los valores óptimos del índice sean los más altos o los más bajos