Qs1

$$M(s) = \frac{20(s-1)}{(s+2)(s^2+4)}$$

Poles at $-2, \pm 2j$:- 2 poles on imaginary axis and one pole in LHP, so it is marginally stable, as seen from the impulse response of the transfer function.

```
tf1=zpk(1,[-2,2i,-2i],20);
impulse(tf1,100)
```


QS. 2

Characteristic equation,

$$2s^4 + s^3 + 3s^2 + 5s + 10 = 0$$

```
y1=rhc([2,1,3,5,10],1);
```

```
Routh-Hurwitz Table:
rhTable = 5×3
2.0000 3.0000 10.0000
1.0000 5.0000 0
-7.0000 10.0000 0
6.4286 0 0
```

10.0000 0 0

```
if y1==0
    fprintf("System is unstable \n")
else
    fprintf("System is stable \n")
end
```

System is unstable

QS. 3

Characteristic equation,

```
s^4 + s^3 + 2s^2 + 2s + 3 = 0
```

```
y2=rhc([1,1,2,2,3],1);
 Routh-Hurwitz Table:
rhTable = 5 \times 3
10<sup>4</sup> ×
    0.0001
              0.0002
                        0.0003
    0.0001
              0.0002
                              a
    0.0000
              0.0003
                              0
   -2.9998
                              0
                   0
    0.0003
                   0
                              0
if y2==0
     fprintf("System is unstable \n")
else
```

System is unstable

QS. 4

end

Characteristic equation,

```
s^5 + 4s^4 + 8s^3 + 8s^2 + 7s + 4 = 0
```

fprintf("System is stable \n")

```
y3=rhc([1,4,8,8,7,4],1);
```

```
Routh-Hurwitz Table:
rhTable = 6 \times 3
    1.0000
              8.0000
                         7.0000
                         4.0000
    4.0000
              8.0000
    6.0000
              6.0000
                              0
              4.0000
                               0
    4.0000
                               0
    0.0001
                    0
    4.0000
                    0
```

```
if y3==0
   fprintf("System is unstable \n")
else
   fprintf("System is stable \n")
```

System is stable

QS. 5


```
For K \ge -1 + \sqrt{\frac{7}{3}} the system is stable
```

For $K = -1 + \sqrt{\frac{7}{3}}$ it is marginally stable.

```
k=1e-3:1e-3:5;
y=zeros(size(k));

for i =1:length(k)
     y(i)=rhc([1,3*k(i),k(i)+2,4],0);
end
figure;
plot(k,y,"r-")
xlabel("K");
ylabel("Stability");
```


stable response on k >0.527

QS. 6

Fig. 1: Disk-storage data-head positioning feedback system

 $0 < K \le 60$; $0 \le a \le \frac{10}{k} + \frac{3}{2} - \frac{k}{36}$; The system is stable

K = 60; a = 0; The system is marginally stable with pole at 0

```
k=0.1:0.1:70;
a=0:0.01:10;
y=zeros(size(k));
```



```
A=[0.4,0.8,1.0,1.2,1.6,2.0];
CM=hsv(6);
figure;

for i=1:6
    model6a=A(i);
    out=sim("model_6.slx");
    plot(out.c,"Color",CM(i,:),"DisplayName",strcat("a = ",num2str(model6a)));
    hold on
end
```

```
hold off
legend
ylabel("Data head position");
title("Step response for variable a");
```


Reducing the value of a, reduces the overshoot and oscillation

For higher value of a, the system reaches the steady state value faster

but it oscillates for long time

QS.7

Fig. 2: Attitude control system of a space shuttle

```
k=0.01:0.01:20;
m=0:0.01:20;
y=zeros(size(k));
for i=1:length(k)
    for j=1:length(m)-1
        a=rhc([1,k(i),k(i)*(m(j)+2)-1,2*k(i)*m(j)],0);
        b=rhc([1,k(i),k(i)*(m(j+1)+2)-1,2*k(i)*m(j+1)],0);
        if(a~=b)||(b==1 && j==length(m)-1)
            y(i)=m(j);
        end
    end
end
figure;
patch([k,fliplr(k)],[y,zeros(size(y))],'r')
xlabel("k");
ylabel("m");
title("Stability Region");
grid on
```


Stability region:

```
y1=5./k;
Li=(y>=y1);
figure;

patch([k(Li),fliplr(k(Li))],[y(Li),fliplr(y1(Li))],'r');
xlabel("k");
ylabel("m");
grid on
title("Stability Region on ramp response");
```


QS. 8

Fig. 3: A two-loop feedback system

At K2=1, value of K1 vaaries in the range of 0<K1<54

At K1=54, the system is marginally stable i.e. oscillates

Frequency of Oscillation will be 3rad/sec.

System becomes unstable when K1>54

K1=40, stable

K1=54, marginally stable

K1=60, unstable


```
%a,b
k1=1e-2:1e-2:60;
y=zeros(size(k));
for i =1:length(k1)
     y(i)=rhc([1,6,9,k1(i)],0);
end
figure;
plot(k1,y,"r-")
xlabel("K1");
ylabel("Stability");
```



```
%c

tf1=tf(20,[1,6,9,20]);
tf2=tf(4,[1,1,4]);
step(tf1,tf2);
legend("Actual response","Approximated response")
grid on
```


QS. 9

Fig. 4: A feedback system with proportional controller

Y curve(output)

Gain=0.1,

Gain=0.6,


```
k=0:0.01:10;
y=zeros(size(k));

for i =1:length(k)
y(i)=rhc([1,4,5,2+2*k(i)],0);
end

figure;
plot(k,y,"r-")
xlabel("K");
ylabel("Stability");
```


plot e_{ss} vs K graph.

```
% The error gradually decreases till.
% Then the system becomes unstable

K=17/3:1e-2:8.5;
error=zeros(size(K));

for i=1:length(K)
    [y,t]=step(tf(2*K(i),[1,4,5,2+2*K(i)]),500);
    error(i)=100*abs(1-y(end));
end

figure;
plot(K,error,'r');
xlabel("K");
ylabel("Steady state error(%)");
title("Steady state error vs K plot");
```


QS. 10

Case-I:

$$G(s) = \frac{1}{s-1}$$

$$C(s) = \frac{s-1}{s+1}$$

r-to-y and r-to-u:

d-to-y and d-to-u:

With d as disturbance in system, the system behaves uncontrollably, as u(t) is unstable for d-to-u.

So for even a little disturbance in system, output at u will reach saturation, changing the system output y.

Case II:

$$G(s) = \frac{s-1}{s+1}$$

$$C(s) = \frac{1}{s-1}$$

r-to-y and r-to-u:

d-to-y and d-to-u:

Disturbance is controlled, as both output d-to-u and d-to-y are stable.

But the output response at u for reference input is uncontrollable,

which will reach saturation faster and change the output y.

```
function y=rhc(coeffVector,x)
ceoffLength = length(coeffVector);
rhTableColumn = round(ceoffLength/2);
rhTable = zeros(ceoffLength,rhTableColumn);
rhTable(1,:) = coeffVector(1,1:2:ceoffLength);
if (rem(ceoffLength,2) ~= 0)
    rhTable(2,1:rhTableColumn - 1) = coeffVector(1,2:2:ceoffLength);
else
    rhTable(2,:) = coeffVector(1,2:2:ceoffLength);
end
epss=0.0001;
for i = 3:ceoffLength
```

```
if rhTable(i-1,:) == 0
        order = (ceoffLength - i);
        cnt1 = 0;
        cnt2 = 1;
        for j = 1:rhTableColumn - 1
            rhTable(i-1,j) = (order - cnt1) * rhTable(i-2,cnt2);
            cnt2 = cnt2 + 1;
            cnt1 = cnt1 + 2;
        end
    end
   for j = 1:rhTableColumn - 1
        firstElemUpperRow = rhTable(i-1,1);
        rhTable(i,j) = ((rhTable(i-1,1) * rhTable(i-2,j+1))-(rhTable(i-2,1) * rhTable(i-1,j+1))
    end
    if rhTable(i,1) == 0
        rhTable(i,1) = epss;
    end
end
unstablePoles = 0;
for i = 1:ceoffLength - 1
    if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == -1
        unstablePoles = unstablePoles + 1;
    end
end
if x==1
    fprintf('\n Routh-Hurwitz Table:\n')
    rhTable %#ok<NOPRT>
end
if unstablePoles == 0
else
    y=0;
end
end
```