

Décima Primeira Lista de Exercícios Programados de ICF2 (EP11 – ICF2)

QUESTÕES

Antes apresentarmos os problemas dos EP11, vamos destacar algumas informações que estão inseridas no Módulo 5. O objetivo é enfatizar a diferença entre troca de calor à volume constante e a troca à pressão constante. Essa diferença nos leva distinção entre a capacidade calorífica à volume constante e aquela à pressão constante. Estamos nos referindo a um sistema termodinâmico que interage termicamente com o meio exterior.

Quando a troca de calor se der a volume constante, representaremo-la por Q_V . Caso a troca aconteça à pressão constante, a notação será Q_p

Sabemos que nos processos isovolumétricos não há realização de trabalho macroscópico W_{ext} porque não há deslocamento das fronteiras do sistema. Nos processos isobáricos, o trabalho W_{ext} é dado pelo produto da pressão pela variação do volume do sistema quando este sai do estado inicial i para o estado final f: $W_{ext} = p\Delta V = p(V_f - V_i)$. Ambos estados i e f estão em equilíbrio termodinâmico e as pressões desses estados são iguais à pressão externa.

Aplicando o Princípio da Conservação da Energia para os processos isovolumétrico e isobárico, temos:

```
Isovolumétrico: Q_V = \Delta U = U_f - U_i (Q_V \equiv calor trocado à volume constante)
Isobárico : Q_p = \Delta U - W_{ext} = U_f - U_i - p(V_f - V_i) (Q_p \equiv calor trocado à pressão constante)
```

Vemos, assim, que o calor trocado nas tranformações isovolumétricas e isobáricas só depende dos estados final e inicial do sistema.

Quando o calor trocado numa transformação só depende dos estados final e inicial do sistema, podemos introduzir o conceito de capacidade calorífica C. A capacidade calorífica C de um sistema é a constante de proporcionalidade entre a quantidade de calor Q e a variação de temperatura ΔT que esta quantidade de calor produz no sistema: $Q = C\Delta T \Rightarrow C = Q / \Delta T$. A capacidade calorífica é uma propriedade de cada substância!

Dois corpos feitos da mesma substância têm capacidades caloríficas proporcionais às suas massas. Assim, define-se calor específico c de um corpo como sendo a capacidade calorífica por unidade de massa desse corpo: $c \equiv C/m$.

Existem situações onde a unidade mais conveniente para especificar a quantidade de substância no corpo é o mol. Nesse caso, o calor específico a ser definido é o molar: $c \equiv C/n$, onde n é o número de moles.

Quando associamos uma capacidade calorífica a qualquer substância, é importante saber não somente quanto calor é absorvido, mas também as condições sob as quais a transferência se faz. Uma transferência de calor feita à pressão constante (Q_p) para certa substância de massa m (ou número de moles n) origina uma variação de temperatura ΔT diferente quando comparada com a mesma transferência de calor feita à volume constante (Q_V) para a mesma massa m (ou número de

moles n) da substância. Então, para uma mesma massa m (ou número de moles n) e uma mesma quantidade de calor Q transferida, existe diferença entre os valores das capacidades caloríficas quando a transferência se dá à pressão constante ($Q_p = C_p \Delta T$) ou a volume constante ($Q_V = C_V \Delta T$): $C_p \neq C_V$. A diferença no valor da capacidade calorífica mais é acentuada para os gases.

À título de informação, pois será visto numa outra física mais adiante, a relação entre os calores específicos molares à pressão constante c_p e à volume constante c_V para um gás ideal é: $c_p = R + c_V$.

Vamos, agora, aos problemas.

QUESTÃO I – O gás nitrogênio no interior de um recipiente com uma das paredes móvel (por exemplo: um êmbolo) é aquecido de 10,0°C até 50,0°C, mantendo-se a pressão constante e igual a 3,00 x 10⁵ Pa (Pascal). O calor total recebido pelo gás é igual a 2,50 x 10⁴ J. Suponha que o nitrogênio possa ser tratado como um gás ideal.

Outros dados: a constante R dos gases, o calor específico molar à pressão constante do nitrogênio c_p e o calor específico molar à volume constante do nitrogênio c_V .

1 Pa = 1 N / m²
1 cm³ =
$$10^{-6}$$
 m³
R = 8,31 J/mol K
 c_p = 29,1 J/mol K
 c_V = 20,8 J/mol K

- a) Calcule o número de moles do gás.
- b) Calcule o trabalho realizado no processo e diga quem realizou esse trabalho.
- c) De quanto variou a energia interna do gás?
- d) Qual seria o calor recebido pelo gás para a mesma variação de temperatura caso o volume permanecesse constante? E a variação da energia interna?
- e) Faça um desenho no diagrama p versus V ilustrando cada um desses processos.

QUESTÃO II – Um grama de água (volume = 1 cm³) se transforma em 1671 cm³ de vapor quando ocorre o processo de ebulição a uma pressão constante de 1 atm (1 atm = 1,013 x 10^5 Pa). O calor de vaporização para esta pressão é dado por L = 2,256 x 10^6 J/kg.

- a) Calcule o trabalho realizado pela água quando ela se transforma em vapor.
- b) Quanto calor precisa ser adicionado ao sistema durante o processo?
- c) Qual a variação da energia interna do sistema durante o processo ebulição?

QUESTÃO III – Durante um processo (Processo A) que leva um sistema do estado i ao estado f, o sistema absorve 16×10^3 J de calor e realiza 12×10^3 J de trabalho. Durante o processo de volta (Processo B), que leva o sistema de volta de f a i, o sistema rejeita 18×10^3 J de calor. Qual o trabalho realizado pelo sistema durante o processo de volta?