Cálculo Numérico

6 de julho de 2016

Autores

Lista de autores 1 :

Esequia Sauter - UFRGS

Fabio Souto de Azevedo - UFRGS

Pedro Henrique de Almeida Konzen - UFRGS

 $^{^{1}}$ em ordem alfabética

Licença

Este trabalho está licenciado sob a Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional. Para ver uma cópia desta licença, visite http://creativecommons.org/licenses/by-nc-sa/4.0/ ou envie uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Nota dos autores

Este livro vem sendo construído de forma colaborativa desde 2011. Nosso intuito é de melhorá-lo, expandi-lo e adaptá-lo às necessidades de um curso semestral de cálculo numérico em nível de graduação.

Caso queira colaborar, entre em contato conosco pelo endereço de e-mail:

livro_colaborativo@googlegroups.com

Apresentação

Este livro busca abordar os tópicos de um curso de introdução ao cálculo numérico moderno oferecido a estudantes de matemática, física, engenharias e outros. A ênfase é colocada na formulação de resolução de problemas, implementação em computador e interpretação de resultados. Pressupõe-se que o estudante domine conhecimentos e habilidades típicas desenvolvidas em cursos de graduação de cálculo, álgebra linear e equações diferenciais. Conhecimentos prévios em linguagem de computadores é fortemente recomendável, embora apenas técnicas elementares de programação sejam realmente necessárias.

Sumário

l Introdução	1
Referências Bibliográficas	2

xii SUMÁRIO

Capítulo 1

Introdução

Cálculo numérico é uma disciplina que compreende o estudo de métodos para a computação eficiente da solução de problemas matemáticos. Aliado ao avanço tecnológico dos computadores, o desenvolvimento de métodos numéricos tornou a simulação computacional de modelos matemáticos uma prática cotidiana nas mais diversas áreas científicas e tecnológicas. As então chamadas simulações numéricas são constituídas de um arranjo de vários esquemas numéricos dedicados a resolver problemas específicos como, por exemplo: resolver equações algébricas, resolver sistemas lineares, interpolar e ajustar pontos, calcular derivadas e integrais, resolver equações diferenciais ordinárias, etc.. Neste livro, abordamos o desenvolvimento, a implementação, utilização e aspectos teóricos de métodos numéricos para a resolução desses problemas.

Os problemas que discutiremos não formam apenas um conjunto de métodos fundamentais, mas são, também, problemas de interesse na engenharia e na matemática aplicada. Estes podem se mostrar intratáveis se dispomos apenas de meios puramente analíticos, como aqueles estudados nos cursos de cálculo e álgebra linear. Por exemplo, o teorema de Abel-Ruffini nos garante que não existe uma fórmula algébrica, isto é, envolvendo apenas operações aritméticas e radicais, para calcular as raízes de uma equação polinomial de qualquer grau, mas apenas casos particulares:

- Simplesmente isolar a incógnita para encontrar a raiz de uma equação do primeiro grau;
- Fórmula de Bhaskara para encontrar raízes de uma equação do segundo grau:
- Fórmula de Cardano para encontrar raízes de uma equação do terceiro grau;
- Existe expressão para equações de quarto grau;
- Casos simplificados de equações de grau maior que 4 onde alguns coeficientes são nulos também podem ser resolvidos.

Equações não polinomiais podem ser ainda mais complicadas de resolver exatamente, por exemplo:

$$\cos(x) = x$$
 e $xe^x = 10$

Para resolver o problema de valor inicial

$$\begin{cases} y' + xy = x, \\ y(0) = 2, \end{cases}$$

podemos usar o método de fator integrante e obtemos $y=1+e^{-x^2/2}$. Já o cálculo da solução exata para o problema

$$\begin{cases} y' + xy = e^{-y}, \\ y(0) = 2, \end{cases}$$

não é possível.

Da mesma forma, resolvemos a integral

$$\int_{1}^{2} xe^{-x^2} dx$$

pelo método da substituição e obtemos $\frac{1}{2}(e^{-1}-e^{-2})$. Porém a integral

$$\int_{1}^{2} e^{-x^2} dx$$

não pode ser resolvida analiticamente.

A maioria das modelagem de fenômenos reais chegam em problemas matemáticos onde a solução analítica é difícil (ou impossível) de ser encontrada, mesmo quando provamos que ela existe. Nesse curso propomos calcular aproximações numéricas para esses problemas, que apesar de, em geral, serem diferentes da solução exata, mostraremos que elas podem ser bem próximas.

Para entender a construção de aproximações é necessário estudar um pouco como funciona a aritmética de computador e erros de arredondamento. Como computadores, em geral, usam uma base binária para representar números, começaremos falando em mudança de base.

Referências Bibliográficas

- [1] Cecill and free sofware. http://www.cecill.info. Acessado em 30 de julho de 2015.
- [2] M. Baudin. Introduction to scilab. http://forge.scilab.org/index.php/p/docintrotoscilab/. Acessado em 30 de julho de 2015.
- [3] R.L. Burden and J.D. Faires. *Análise Numérica*. Cengage Learning, 8 edition, 2013.
- [4] J. P. Demailly. Analyse Numérique et Équations Differentielles. EDP Sciences, Grenoble, nouvelle Édition edition, 2006.
- [5] Walter Gautschi and Gabriele Inglese. Lower bounds for the condition number of vandermonde matrices. *Numerische Mathematik*, 52(3):241–250, 1987/1988.
- [6] R. Rannacher. Einführung in die numerische mathematik (numerik 0). http://numerik.uni-hd.de/~lehre/notes/num0/numerik0.pdf. Acessado em 10.08.2014.