CS & IT

ENGINEERING

Combinational Circuit

Lecture No. 5

By- CHANDAN SIR

TOPICS TO BE COVERED

01 DECODER

02 Question Practice

03 HA

04 FA

05 Discussion

8×3 Encoder

74	16	15	I4	Ls	L	I,	L	2	3,	y.
				O						_
				0						
0	0	0	0	0	1	0	0	0	1	0
6	O	6	0	1	0	0	0	0	1	1
0	0	0	t	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	L	0	1
O	1	0	0	0	0	0	O	1		
1	0	0	O	0	O	0	0	1	1	1

$$3 = 14 + 15 + 16 + 17$$
 $3 = 14 + 15 + 16 + 17$
 $3 = 15 + 13 + 16 + 17$
 $3 = 17 + 13 + 15 + 17$
 $3 = 17 + 13 + 15 + 17$

LSB Priority Encoder:

LSB.

7	MSB			LSB		
	I_3	I_2	11	Lo	71	30
	X	×	Χ	1	0	0
	X	X	1	0	0	1
	X	1	0	0	J	0
	1	400	0	0	1	J
					7	

Recoder: A circuit which is use to convert Binary into any other code are called Recoder

DECODER

- 2 × 4 Decoder
- 3 × 8 Decoder
- 4 × 16 Decoder

2 × 4 DECODER

Step 1.

Step 2.

I ₁	I ₀	Ý3	y ₂	y ₁	y ₀
0	0	0	0	6	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Step 3.

$$\lambda_2 = I_1 I_2$$

Step 4. Minimization $\frac{\partial_3}{\partial t} = \mathcal{I}_1 I_0$

Step 5. Hardware Implementation

3 × 8 DECODER

Step 2.

I ₂	I ₁	I ₀	y ₇	y ₆	y ₅	y ₄	y ₃	y ₂	y ₁	y ₀
0	0	0	0	0	0	O	0	0	0	1
0	0	1	σ	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	7	0	0
0	1	1	0	0	0	0	1	0	O	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	O	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	6

3 × 8 DECODER

Step 4. Minimization

Step 5. Hardware Implementation

DESIGN 3 × 8 DECODER BY USING 2 × 4 DECODER

$$\frac{69}{8+1=9} + \frac{8}{8}$$

$$8+1=9$$

$$6 \times 64$$
Decoder

DESIGN 3 × 8 DECODER BY USING 2 × 4 DECODER

Q.1

A logic circuit consist of two 2×4 decoders as shown in the figure.

The output of decoder are as follow:

$$D0 = 1$$
 when $A0 = 0$, $A1 = 0$

$$D1 = 1$$
 when $A0 = 1$, $A1 = 0$

$$D2 = 1$$
 when $A0 = 0$, $A1 = 1$

$$D3 = 1$$
 when $A0 = 1$, $A1 = 1$

The value of f(x, y, z) is

		A, Ao	03	Ds .	ם ט	0
A	0	00	0	0	0	1
		0	0	0	1	0
B	Z	10	0	1	0	0
	Z	-1 1	1	0	O	0

Q.2

The Boolean expression f(a, b, c) in its canonical form for the decoder circuit shown below is

- A Π M(4, 6)
- B Σ m(0, 1, 2, 3, 5, 7)
- Sm(4, 6) /
- **D** Π M(0, 1, 2, 3, 5)

$$f = \overline{c} \in \mathbb{E}m(3,4,6,7)$$

$$f = \overline{c} \left[\overline{A},8c + AB\overline{c} + AB\overline{c} + AB\overline{c} + AB\overline{c} + AB\overline{c} \right]$$

$$f = AB\overline{c} + AB\overline{c}$$

$$\sqrt{f} = \overline{c} \in \mathbb{E}m(9,6)$$

$$\sqrt{f} = \mathbb{E}m(9,6)$$

Besign Binary to Decimal Decoder?

HALF ADDER

Two bit adder are known as half adder.

HALF ADDER

Step 1.

HALF ADDER

Step 2. Truth table.

A	В	Sum	Carry
0	0	0	0
0	1	L	0
1	0	1	0
1	1	0	1

HALF ADDER

Step 3.

$$sum = \overline{AB} + A\overline{B} = A \oplus B$$

$$carry = AB$$

Step 4. Minimization

HALF ADDER

Step 5.

By NAND GATE

By NAND GATE

By NOR GLATE

HALF ADDER BY Using 2X4 Decoder ->

Pw

FULL ADDER

Three bit adder are known as full adder

$$\begin{array}{c|c}
0 & 0 & 1 \\
+0 & +1 & +1 \\
\hline
0 & 0 & 1
\end{array}$$
Corry
Corry
Corry

when majority of

the inputs are

FULL ADDER

Step 2.

	A	В	С	Sum	Carry
0	0	0	0	0	0
J->	0	0	1	1	0
2	0	1	0	1	0
3 →	0	1	1	0	1
47	1	0	0	1	0
5 →	1	0	1	0	1
6-7	1	1	0	0	1
7-	1	1	1	1	7

high.

FULL ADDER

Step 3. Sum
$$(A, B, C) = \leq m(1, 2, 4, 7) = A \oplus B \oplus C = (A \oplus B) \oplus C$$

Step 4. Carry (A, B, C) =
$$\sum m(3,5,6,7) = ABC + ABC +$$

$$=(A\oplus B)C+AB$$

FULL ADDER

AST (ADA):C = CAYMY

HALF

A full adder is implemented with two half adders and one OR gate. OR gate is used to derive the final carry function of full adder. In each half adder, $T_{sum} = 25$ ns and $T_{carry} = 20$ ns and $T_{OR} = 25$ ns. The minimum time required to derive both the sum and carry function of a full adder after applying the inputs is ____ ns

A logic function 'f' is implemented by the circuit shown in the figure below. The circuit consists of one 2×4 decoder, two 2×1 multiplexers and a two input or gate connected in cascade. Then the function f is equal to.

- $A \oplus B$
- $B \rightarrow A \oplus B \oplus C$
- C B ⊙ C
- **D** A ⊙ B

What is the Boolean expression for the output f of the combinational logic circuit of NOR gates given below?

- $\overline{Q+R}$
- $\overline{P+Q}$
- \overline{C} $\overline{P+R}$
- $\overline{P+Q+R}$

The combinational circuit given below implements which of the following

- A NOR gate
- B XOR gate
- C NAND gate
- None of these

The combinational logic circuit shown in the given figure has an output Q which is

- A ABC
- B A + B + C
- $A \oplus B \oplus C$
- D A.B + C

Thank you

