11. Hilfsmittel aus der Funktionalanalysis

In diesem Paragraphen sei X stets ein Vektorraum (VR) über \mathbb{K} , wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$.

Definition

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}$ heißt eine **Norm auf** $X: \iff$

- (i) $||x|| \ge 0 \ \forall x \in X; \ ||x|| = 0 \iff x = 0$
- (ii) $\|\alpha x\| = |\alpha| \|x\| \ \forall \alpha \in \mathbb{R}, x \in X$
- (iii) $||x + y|| \le ||x|| + ||y||$ (Dreiecks-Ungleichung)

In diesem Fall heißt $(X, \|\cdot\|)$ ein **normierter Raum** (NR). Meist schreibt man nur X statt $(X, \|\cdot\|)$.

Beispiele:

- (1) $X = \mathbb{K}^n$, für $x = (x_1, \dots, x_n)$: $||x|| = \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}$. Analysis II $\implies (X, ||\cdot||)$ ist ein normierter Raum.
- (2) $A \subseteq \mathbb{R}^n$ sei beschränkt und abgeschlossen. $X = C(A, \mathbb{R}^n)$; $||f||_{\infty} = \max\{||f(x)||, x \in A\} \ (f \in X)$. Dann ist $(X, ||\cdot||_{\infty})$ ein normierter Raum.
- (3) $X = L(\mathbb{R}^n)$. Für $f \in L(\mathbb{R})$: $||f||_1 := \int_{\mathbb{R}^n} |f(x)| dx$; $||f||_2 := \left(\int_{\mathbb{R}^n} |f(x)|^2 dx\right)^{\frac{1}{2}}$; Analysis II 16.1 $\Longrightarrow ||\cdot||_1$ hat die Eigenschaft (ii) und (iii) einer Norm, $||f||_1 \ge 0$ aber $||f||_1 = 0 \iff f = 0$ fast überall auf \mathbb{R}^n .

Es ist üblich, zwei Funktionen $f, g \in L(\mathbb{R}^n)$ als gleich zu betrachten, wenn f = g fast überall. In diesem Sinne: $(L(\mathbb{R}), \|\cdot\|_1)$ ist ein normierter Raum.

Für den Rest des Paragraphen sei $(X, \|\cdot\|)$ stets ein normierter Raum. Wie in Analysis II zeigt man:

$$|||x|| - ||y||| < ||x - y|| \ \forall x, y \in X$$

||x-y|| heißt Abstand von x und y.

Definition

Sei (x_n) eine Folge in X

(1) (x_n) heißt konvergent : $\iff \exists x \in X : ||x_n - x|| = 0 \ (n \to \infty)$ In diesem Fall ist x eindeutig bestimmt (Beweis wie in \mathbb{R}^n) und heißt der Grenzwert (GW) oder Limes von (x_n) . Man schreibt:

$$x_n \to x \ (x \to \infty) \ \text{oder} \ x_n \to \infty \ \text{oder} \ \lim_{n \to \infty} x_n = x$$

(2) $\sum_{n=1}^{\infty} x_n$ bedeutet die Folge (s_n) wobei $s_n := x_1 + \dots + x_n \ (n \in \mathbb{N})$ $\sum_{n=1}^{\infty} x_n$ heißt konvergent : \iff (s_n) ist konvergent. $\sum_{n=1}^{\infty} x_n$ heißt divergent : \iff (s_n) ist divergent. Im Konvergenzfall: $\sum_{n=1}^{\infty} x_n := \lim_{n \to \infty} s_n$

Wie üblich zeigt man: Aus $x_n \to x$ und $y_n \to y$ folgt:

$$x_n + y_n = x + y$$
$$\alpha x_n \to \alpha x \ (\alpha \in \mathbb{K})$$
$$\|x_n\| \to \|x\|$$

Definition

Sei (x_n) eine Folge in X und $A \subseteq X$

- (1) A heißt konvex : \iff aus $x, y \in A$ und $t \in [0, 1]$ folgt stets: $x + t(y x) \in A$
- (2) A heißt **beschränkt**: $\iff \exists c \ge 0 : ||x|| \le c \ \forall x \in A$
- (3) A heißt **abgeschlossen** : \iff der Grenzwert jeder konvergenten Folge aus A gehört zu A
- (4) A heißt **kompakt** : \iff jede Folge in A enthält eine konvergente Teilfolge, deren Grenzwert zu A gehört.
- (5) (x_n) heißt eine Cauchyfolge (CF) in $X:\iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{R}: ||x_n x_m|| < \varepsilon \ \forall n, m \ge n_0$

Bemerkung: (1) Wie in Analysis II: (x_n) konvergiert $\implies (x_n)$ ist eine Cauchyfolge in X

- (2) Ist $A \subseteq \mathbb{R}^n$: A ist kompakt : \iff A ist beschränkt und abgeschlossen (Analysis II, 2.2)
- (3) $A \text{ kompakt} \implies A \text{ abgeschlossen}$
- (4) X = C[a, b] mit $\|\cdot\|_{\infty}$. Sei (f_n) eine Folge in X und $f \in X$. Dann $(f_n) \to f$ bezüglich $\|\cdot\|_{\infty} \iff (f_n)$ konvergiert auf [a, b] gleichmäßig gegen f (Analysis I, Übungsblatt 10, Aufgabe 37)

Beispiel

$$X = C[-1, 1] \text{ mit } \| \cdot \|_2 = \left(\int_{-1}^1 |f(x)|^2 dx \right)^{\frac{1}{2}}.$$

$$f_n = \begin{cases} -1, & 1 \le x \le -\frac{1}{n} \\ nx, & -\frac{1}{n} \le x \le \frac{1}{n} \\ 1, & \frac{1}{n} \le x \le 1 \end{cases}$$

In der Übung: (f_n) ist eine Cauchyfolge in X, aber es existiert kein $f \in X : f_n \to f$ (bezüglich $\|\cdot\|_2$)

Definition

Ein normierter Raum X heißt **vollständig** oder ein **Banachraum** (BR) : \iff jede Cauchyfolge in X ist konvergent.

Beispiele:

- (1) Sei X und $\|\cdot\|_2$ wie im obigen Beispiel. Dann ist X kein Banachraum.
- (2) \mathbb{R}^n ist mit der üblichen Norm ein Banachraum (Siehe Analysis II)
- (3) C[a,b] ist mit $\|\cdot\|_{\infty}$ ein Banachraum (Analysis I, Übungsblatt 10, Aufgabe 37)
- (4) $L(\mathbb{R}^n)$ ist mit $\|\cdot\|_1$ ein Banachraum (Analysis II, 18.1)

Definition

X sei ein normierter Raum, $x_0 \in X$ und $\epsilon > 0$.

- (1) $U_{\epsilon}(x_0) := \{x \in X : ||x x_0|| < \epsilon\}$ heißt ϵ Umgebung von U
- (2) $D \subseteq X$ heißt offen : $\Leftrightarrow \forall x \in D \ \exists \epsilon = \epsilon(x) > 0 : U_{\epsilon}(x) \subseteq D$

Wie in Analysis 2 zeigt man:

Satz 11.1 (Verweis auf Analysis 2.3(3))

- (1) D ist offen $:\Leftrightarrow X \setminus D$ ist abgeschlossen.
- (2) Ist $A \subseteq X$ kompakt, so gilt die Aussage des Satzes 2.3(3) aus Analysis 2 wörtlich

Definition (Operator)

X sei ein normierter Raum, $A \subseteq X$ und $T : A \to X$ eine Abbildung. T heißt auch ein **Operator** auf A, man schreibt meist T_x statt T(x) ($x \in A$).

- (1) x^* heißt ein **Fixpunkt** von $T :\Leftrightarrow T_{x^*} = x^*$.
- (2) T heißt in $x_0 \in A$ stetig : \Leftrightarrow für jede Folge (x_n) in A. mit $x_n \to x_0 : T_{x_n} \to T_{x_0}$. (Übung: $\Leftrightarrow \forall \epsilon > 0 \; \exists \delta > 0 : ||T_x T_0|| < \epsilon \; \forall x \in U_\delta(x_0) \cap A$)
- (3) T heißt stetig auf $A :\Leftrightarrow T$ ist stetig in jedem $x \in A$.
- (4) T heißt auf A kontrahierend : $\Leftrightarrow \exists L \in [0,1) : ||T_x T_y|| \le L||x y|| \forall x, y \in A$

Beispiel (Wichtig!)

x = C[a,b] ist mit $\|\cdot\|_{\infty}$ ein Banachraum. Definiere $T: X \to X$ durch $(T_y)(x) = y_0 + \int_{x_0}^x f(t,y(t))dt$ $(x \in [a,b])$ wobei $x_0 \in [a,b], y_0 \in \mathbb{R}$ und $f: [a,b] \times \mathbb{R} \to \mathbb{R}$ stetig. $(T_y \in C^1[a,b])$

Behauptung: T ist stetig auf X.

Beweis

Sei $z_0 \in X$. Sei $z \in X$ mit $||z - z_0|| \le 1$. $\forall t \in [a, b] : |z(t)| \le ||z||_{\infty} = ||z - z_0 + z_0||_{\infty} \le ||z - z_0||_{\infty} + ||z_0||_{\infty} \le 1 + ||z_0||_{\infty} =: \gamma$

$$R := [a, b] \times [-\gamma, \gamma]$$
. D.h. $(t, z(t)) \in R \ \forall t \in [a, b] \ \forall z \in X \ \text{mit} \ \|z - z_0\|_{\infty} \le 1$.

fist gl
m. stetig auf R (daRkompakt). Se
i $\epsilon>0.$ ∃ $\delta>0:|f(\alpha)-f(\beta)|<\epsilon \ \forall \alpha,\beta\in R$ mit
 $\|\alpha-\beta\|<\delta$ und $\delta\leq 1.$

Sei $z \in X$ mit $||z - z_0||_{\infty} < \delta \le 1$. Dann: $||(t, z(t)) - (t, z_0(t))|| = ||(0, z(t) - z_0(t))|| = ||z(t) - z_0(t)| \le ||z - z_0||_{\infty} < \delta \ \forall \ t \in [a, b]$

$$\implies |f(t,z(t)) - f(t,z_0(t))| < \epsilon \ \forall \ t \in [a,b]$$

$$\implies |(T_z)(x) - (T_{z_0})(x)| = |\int_{x_0}^x (f(t, z(t))) - (f(t, z_0(t)))dt| \le \epsilon |x - x_0| \le (b - a) \ \forall \ x \in [a, b]$$

$$\implies ||T_z - T_{z_0}||_{\infty} \le \epsilon(b - a) \implies T \text{ ist stetig in } z_0.$$

Satz 11.2 (Fixpunktsatz von Banach)

X sei ein Banachraum. $A\subseteq X$ sei abgeschlossen, $T:A\to X$ sei kontrahierend, also $\exists \ L\in [0,1): \|T_x-T_y\|\le L\|x-y\| \ \forall x,y\in A$ und es sei $T(A)\subseteq A$. Dann hat T genau einen Fixpunkt $x^*\in A$.

Sei $x_0 \in A$ beliebig und $x_{n+1} := T_{x_n} (n \ge 0)$. Dann:

- (i) $x_n \in A \ \forall n \in \mathbb{N}_0$
- (ii) $x_n \to x^*$
- (iii) $||x_n x^*|| \le \frac{L^n}{1 L} ||x_0 x_1|| \ \forall n \in \mathbb{N}_0.$
- (x_n) heißt Folge der sukzessiven Approximation.

Beweis

Sei $x_0 \in A$. Definiere $x_{n+1} := T_{x_n} (n \ge 0) \implies (i)$.

$$||x_{k+1} - x_k|| = ||T_{x_k} - T_{x_{k-1}}|| \le L||x_k - x_{k-1}|| (\forall k \ge 1)$$

Induktiv: $||x_{k+1} - x_k|| \le L^k ||x_k - x_0|| \ \forall k \ge 0$

Seien $m, n \in \mathbb{N}, m > n$. $||x_m - x_n|| = ||x_m - x_{m-1} + x_{m-1} - x_{m-2} + \dots + x_{n+1} - x_n|| \le ||x_m - x_{m-1}|| + ||x_{m-1} - x_{m-2}|| + \dots + ||x_{n+1} - x_n|| \le (L^{m^1} + L^{m-2} + \dots + L^n)||x_1 - x_0|| = L^n \underbrace{(1 + L + \dots + L^{m-1-n})}_{\le \sum_{i=0}^{\infty} L^j = \frac{1}{1-L}} ||x_1 - x_0|| (*)$

 $(*) \implies (x_n)$ ist eine Cauchy-Folge in X. X Banachraum $\implies \exists x^* \in X : x_n \to x^*$. (iii) folgt aus (*) mit $m \to \infty$

A abgeschlossen $\implies x^* \in A$

$$||T_{x^*} - x^*|| = ||T_{xj} - x_{n+1} + x_{n+1} - x^*|| \le ||T_{x^*} - \underbrace{x_{n+1}}_{=T_{x_n}}|| + ||x_{n+1} - x^*|| \le \underbrace{L||x^* - x_n|| + ||x_{n+1} - x^*||}_{\to 0(n \to \infty)} \Longrightarrow$$

$$||T_{x^*} - x^*|| = 0 \implies T_{x^*} = x^*$$

Sei $z \in A$ und $T_z = z$. $||x^* - z|| = ||T_{x^*} - T_z|| \le L||x^* - z||$; wäre $||x^* - z|| \ne 0 \implies L \ge 1$, Wid., also $x^* = z$.

Ohne Beweis:

Satz 11.3 (Fixpunktsatz von Schauder)

X sei ein normierter Raum, $A \subseteq X$ sei konvex und kompakt und $T: A \to X$ sei stetig und $T(A) \subseteq A$. Dann hat T einen Fixpunkt (in A).

Satz 11.4 (Konvergente Teilfolgen von Funktionen)

Sei $I = [a, b] \subseteq \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}$, $M \ge 0$ und (y_n) eine Folge in C(I) mit: $y_n(x_0) = y_0 \ \forall n \in \mathbb{N}$ und $|y_n(x) - y_n(\overline{x})| \le M|x - \overline{x}| \ \forall n \in \mathbb{N} \ \forall x, \overline{x} \in I$ Dann enthält (y_n) eine auf I gleichmäßig konvergente Teilfolge.

Beweis

 $\mathcal{F} := \{y_n : n \in \mathbb{N}\}.$ \mathcal{F} ist auf I gleichstetig. $\forall n \in \mathbb{N} \ \forall x \in I : |y_n(x)| = |y_n(x) - y_0 + y_0| \le |y_n(x) - y_0| + |y_0| = |y_n(x) - y_n(x_0)| + |y_0| \le M|x - x_0| + |y_0| \le M(b - a) \cdot |y_0| \implies \mathcal{F}$ ist gleichmäßig beschränkt. $1 \implies$ Behauptung.

Satz 11.5 (Konvexe und Kompakte Teilmenge)

 $I = [a, b] \subseteq \mathbb{R}, x_0 \in I, y_0 \in \mathbb{R}, M \ge 0,$

 $A := \{ y \in C(I) : y(x_0) = y_0 \text{ und } |y(x) - y(\overline{x})| \le M|x - \overline{x}| \ \forall x, \overline{x} \in I \}$

Dann ist A eine nicht leere, konvexe und kompakte Teilmenge des Banachraumes $(C(I), \|\cdot\|_{\infty})$.

Beweis

$$A \neq \emptyset \quad (y(x) \equiv y_0 \implies y \in A)$$

Übung: A ist konvex.

Sei (y_n) ein Folge in A. 11.4 \Longrightarrow (y_n) enthält eine auf I gleichmäßig konvergente Teilfolge $(y_{n_k}), y(x) := \lim_{n \to \infty} y_{n_k}(x) \ (x \in I) \xrightarrow{\text{A I}} y \in C(I)$

z.zg: $y \in A$. $y(x_0) = \lim_{n \to \infty} y_{n_k}(x_0) = y_0$

 $\forall k \in \mathbb{N} \ \forall x, \overline{x} \in I : |y_{n_k}(x) - y_{n_k}(\overline{x})| \le M|x - \overline{x}| \xrightarrow{k \to \infty} |y(x) - y(\overline{x})| \le M|x - \overline{x}|. \text{ Also: } y \in A_{\blacksquare}$