MA-321-Optimization

Quiz-2

Time: 6:00 pm - 7:15 pm 27th October, 2022 **Total marks:** 17

Notation: BFS: Basic Feasible Solution.

LI: Linearly Independent $\tilde{\mathbf{a}}_i$: the *i*-th column of A.

Answers without proper justification will be awarded zero marks

1. For a linear programming problem **P** of the form,

Minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A}_{2\times 3} \mathbf{x} < \mathbf{b}, \ \mathbf{x} > \mathbf{0},$

where $\mathbf{c} = [-2, 2, -1]^T$, the following is the optimal table corresponding to the optimal extreme point \mathbf{x}_0 of Fea(\mathbf{P}).

$c_j - z_j$						
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\mathbf{e}_1$	$B^{-1}\mathbf{e}_2$	$B^{-1}\mathbf{b}$
$\widetilde{\mathbf{a}_1}$				1		2
\mathbf{e}_2				-2		1

(a) If a variable x_4 is added to **P** (everything else remaining same as **P**) with $c_4 = -2$ and $\tilde{\mathbf{a}}_4 = [2, -3]^T$ then check whether $[\mathbf{x}_0^T, 0]^T$ is optimal for the new problem.

Solution:
$$B^{-1} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$
.

$$B^{-1}\tilde{\mathbf{a}}_4 = [2, -7]^T, c_B^T = [-2, 0]^T \text{ hence } z_4 = c_B^T B^{-1} \tilde{\mathbf{a}}_4 = -4.$$

Since $c_4 - z_4 = -2 - (-4) = 2$, and the added variable is non basic in the new table (with the added column) which remains optimal, hence the extreme point $[\mathbf{x}_0^T, 0]^T$ is optimal for the new \mathbf{P} .

(b) If a constraint $2x_1 - 3x_2 - x_3 \le 3$ is added to **P** (everything else remaining same as **P**) then will the new **P** have an optimal solution? If yes, then will the optimal solution of the new **P** satisfy the newly added constraint as an equality?

Solution:

Let us call the new **P** as **P**'.

Since $B^{-1}\mathbf{b} = [2,1]^T$, we get $\mathbf{b} = [2,5]^T$. Hence $\mathbf{0}$ is a feasible solution of \mathbf{P} . Since $\mathbf{0}$ also satisfies the constraint $2x_1 - 3x_2 - x_3 \leq 3$ hence the feasible region of the \mathbf{P} ' is nonempty.

Also since a constraint is added to $Fea(\mathbf{P})$,

Fea(
$$\mathbf{P'}$$
) \subset Fea(\mathbf{P}), and

$$\forall \mathbf{x} \in \text{Fea}(\mathbf{P'}), \mathbf{c}^T \mathbf{x} > \mathbf{c}^T \mathbf{x}_0,$$

which implies that the objective function of \mathbf{P}' is bounded below, and $\operatorname{Fea}(\mathbf{P}') \neq \phi$ implies \mathbf{P}' has an optimal solution. [1.5]

Note that the Dual of P is given by:

Maximize
$$-\mathbf{b}^T \mathbf{y}$$

subject to $-\mathbf{A}^T \mathbf{y} \ge \mathbf{c}, \ \mathbf{y} \ge \mathbf{0},$

Let the optimal solution of Dual of **P** corresponding to \mathbf{x}_0 be \mathbf{y}_0 .

Note that adding a constraint to **P** results in adding a variable to the Dual of **P**, say y_3 variable is added to the Dual with cost $-b_3 = -3$ (obtained from the RHS of the newly added constraint).

If suppose the optimal solution of \mathbf{P} ' does **not** lie on the newly added constraint then $s_3 > 0$ in the optimal BFS, which implies (by complementary slackness theorem) that the corresponding newly added dual variable $y_3 = 0$ in any optimal BFS of the Dual of \mathbf{P} '.

If **P** has a **unique** optimal solution and if \mathbf{x}' is an optimal solution of \mathbf{P}' , then $\mathbf{c}^T\mathbf{x}_0 < \mathbf{c}^T\mathbf{x}'$, since \mathbf{x}' is feasible for **P** and \mathbf{x}_0 is the unique optimal solution of **P**. If \mathbf{y}' is an optimal solution of the Dual of \mathbf{P}' , then from above,

$$\mathbf{b}^{T}\mathbf{y}_{0} > \mathbf{b}'^{T}\mathbf{y}', \quad (*)$$
where $\mathbf{b}' = [\mathbf{b}^{T}, 3]^{T}$ (since $\mathbf{c}^{T}\mathbf{x}_{0} = -\mathbf{b}^{T}\mathbf{y}_{0}$ and $\mathbf{c}^{T}\mathbf{x}' = -\mathbf{b}'^{T}\mathbf{y}'$).
If in the optimal solution \mathbf{y}' , $(\mathbf{y}')_{3} = 0$, then $\mathbf{y}' = [y'_{1}, y'_{2}, 0]^{T}$, and $\mathbf{b}'^{T}\mathbf{y}' = [\mathbf{b}^{T}, 3]^{T}\mathbf{y}' = \sum_{i=1}^{2} b_{i}(\mathbf{y}')_{i}$. (**)

 $[y_1', y_2', 0]^T$ is feasible (optimal) for the Dual of $\mathbf{P}' \Rightarrow [y_1', y_2']^T$ is feasible for Dual of \mathbf{P}

(in the previous Dual, the variable y_3 is added).

Also
$$\mathbf{y}_0$$
 is optimal for the Dual of \mathbf{P} implies,

$$-\sum_{i=1}^2 b_i(\mathbf{y}')_i \leq -\sum_{i=1}^2 b_i(\mathbf{y}_0)_i, \text{ or } \sum_{i=1}^2 b_i(\mathbf{y}')_i \geq \sum_{i=1}^2 b_i(\mathbf{y}_0)_i \quad (***)$$

But (**) and (***) contradicts (*). Hence $s_3 = 0$ in the optimal BFS of P.

Aliter:

The simplex table of the Basic solution corresponding to \mathbf{x}_0 after the addition of the constraint to \mathbf{P} is given as following:

$c_j - z_j$							
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\mathbf{e}_1$	$B^{-1}\mathbf{e}_2$	$B^{-1}\mathbf{e}_3$	$B^{-1}\mathbf{b}$
$\widetilde{\mathbf{a}_1}$	1			1	0	0	2
\mathbf{e}_2	0			-2	1	0	1
\mathbf{e}_3	0			-2	0	1	-1

Since the cost associated with s_3 is equal to 0, the $c_j - z_j$ values remain the same (as the optimal table of \mathbf{x}_0) and nonnegative.

If we try to solve \mathbf{P} , by the Dual simplex method, then in the first iteration \mathbf{e}_3 (or s_3) leaves the basis and since there is at least one negative entry in that row in

the main table (other than $(B^{-1}\mathbf{b})_3$) some nonbasic variable enters the basis.

So in the optimal table corresponding to y_0 a column corresponding to y_3 is added, which is a nonbasic variable in the current BFS corresponding to $[\mathbf{y}_0^T, 0]^T$ (the basic variables corresponding to $[\mathbf{y}_0^T, 0]^T$ are s_2', s_3', y_1).

 s_3 leaves the basic set of variables of **P'** implies the newly added variable y_3 which was nonbasic in $[\mathbf{y}_0^T, 0]^T$ enters as a basic variable of the Dual of \mathbf{P}' in the next iteration, and the $c_j - z_j$ value corresponding to y_3 is $-(B^{-1}\mathbf{b}')_3 = 1$.

If **P** has a **unique** optimal solution then all the $c_i - z_j$ values corresponding to the **non basic variables** of the (given) optimal table are nonzero.

Hence the BFS of the Dual of **P**' corresponding to $[\mathbf{y}_0^T, 0]^T$ is **non degenerate**, which implies that y_3 enters the basis in the first iteration with a **strictly posi**tive value.

Hence if y' corresponds to the new BFS after the first iteration then

$$-[\mathbf{b}^T, 3]\mathbf{y}' > -[\mathbf{b}^T, 3] \begin{bmatrix} \mathbf{y}_0 \\ 0 \end{bmatrix} \quad (**)$$

There is \mathbf{y} solves \mathbf{y} and \mathbf{y} and \mathbf{y} and \mathbf{y} and \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} and \mathbf{y} are \mathbf{y} ar $\begin{bmatrix} \mathbf{y}^{''} \end{bmatrix}$

Then y'' is feasible for the Dual of P, and from (**)

$$-[\mathbf{b}^T, 3] \begin{bmatrix} \mathbf{y}'' \\ 0 \end{bmatrix} > -[\mathbf{b}^T, 3] \begin{bmatrix} \mathbf{y}_0 \\ 0 \end{bmatrix}$$

 $\Rightarrow -\mathbf{b}^T \mathbf{y}'' > -\mathbf{b}^T \mathbf{y}_0$ which contradicts that \mathbf{y}_0 is optimal for the old Dual.

Hence for any optimal solution of Dual of \mathbf{P}' ,

 $y_3 > 0$, which implies that for any optimal solution of \mathbf{P}' , $s_3 = 0$.

However if **P** has **multiple** optimal solutions then every optimal solution of **P** may not lie on the added constraint but at least one optimal solution will lie on the newly added constraint (in this case $[\mathbf{y}_0^T, 0]^T$ may be optimal for Dual of \mathbf{P})

(c) If **b** is changed to $\mathbf{b}' = \mathbf{b} + [2, 2]^T$ (everything else remaining same as **P**), then is \mathbf{x}_0 optimal for the new **P**?

In the optimal solution of the Dual of the new P can y_2 (the Dual variable corresponding to the second constraint of new \mathbf{P}) be equal to 0?

Solution:

Let us call the new **P** as **P**'.

If **b** is changed to $\mathbf{b}' = [4, 7]^T$ then \mathbf{x}_0 is **feasible** for **P**.

Also since
$$B^{-1}\tilde{\mathbf{a}}_1 = [1, -2]^T$$
, $B^{-1} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$, $\tilde{\mathbf{a}}_1 = [1, 2]^T$.
If we consider $\mathbf{x}' = [3, 0, 0]^T$, then \mathbf{x}' satisfies $3[1, 2]^T \leq [4, 7]^T$ and $\mathbf{c}^T\mathbf{x}' = -6 < [3, 0, 0]^T$.

 $\mathbf{c}^T \mathbf{x}_0 = -4$, hence \mathbf{x}_0 is **not** optimal for **P**'.

Those of you who have concluded the the **basic solution** corresponding to \mathbf{x}_0 is **not** feasible, hence **not** optimal for **P'** by checking that $B^{-1}\mathbf{b'} = [4, -1]^T \ngeq \mathbf{0}$, also got credit for their answers.

The table of the **basic solution** corresponding to \mathbf{x}_0 (that is with the same basic and nonbasic variables as \mathbf{x}_0) is given below:

$c_j - z_j$						
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}\tilde{\mathbf{a}_3}$	$B^{-1}\mathbf{e}_1$	$B^{-1}\mathbf{e}_2$	$B^{-1}\mathbf{b}$
$\tilde{\mathbf{a}_1}$				1		2
\mathbf{e}_2				-2		-1

Since all the $c_j - z_j$ values remain nonnegative as in the optimal table so we can use the Dual simplex algorithm to solve the new problem. In the first iteration \mathbf{e}_2 leaves the basis and some non basic variable enters the basis.

So in the Dual's BFS corresponding to the above basic solution, corresponding to say \mathbf{y}_0 , y_2 is **non basic** (its $c_j - z_j$ value is $-(B^{-1}\mathbf{b}')_2 = 1$), and it enters the basis in the next iteration of simplex.

So if the BFS corresponding to \mathbf{y}_0 is **non degenerate** and \mathbf{y}' corresponds to the BFS of the dual of \mathbf{P}' in the next iteration then

$$-\mathbf{b}'^T \mathbf{y}_0 < -\mathbf{b}'^T \mathbf{y}' \qquad (*)$$
(again similar to $\mathbf{c}^T \mathbf{x}' = \mathbf{c}^T \mathbf{x}_0 + (c_s - z_s) x_s'$ where $x_s' = \frac{x_r}{u_{rs}}$).

Hence for any optimal solution of Dual of \mathbf{P} , say \mathbf{y}'' , then from (*) $-\mathbf{b}'^T\mathbf{y}_0 < -\mathbf{b}'^T\mathbf{y}''$. (**)

Also since the feasible region of the Dual has not changed, \mathbf{y}'' is also feasible for Dual of \mathbf{P} . If \mathbf{y}'' has $(\mathbf{y}'')_2 = 0$, then since \mathbf{y}_0 is optimal for the Dual of \mathbf{P}

$$-(\mathbf{y}_0)_1 b_1 = -\mathbf{b}^T \mathbf{y}_0 \ge -\mathbf{b}^T \mathbf{y}'' = -(\mathbf{y}'')_1 b_1.$$

Since $b_1 > 0 (=2)$, we get $(\mathbf{y}_0)_1 \le (\mathbf{y}'')_1$. (***

From **(**)** we get

$$(\mathbf{y}_0)_1(b_1+2) > (\mathbf{y}'')_1(b_1+2) \Rightarrow (\mathbf{y}_0)_1 > (\mathbf{y}'')_1,$$

which contradicts (***).

So y_2 cannot be zero in any optimal solution of the Dual of \mathbf{P}' in this case.

However if \mathbf{P} has alternate optimal solutions or if the BFS corresponding to \mathbf{y}_0 is **degenerate** then y_2 may be zero in an optimal solution of the Dual of \mathbf{P} '(infact \mathbf{y}_0 may remain optimal for the Dual of \mathbf{P} ').

All parts in the above question are independent

[2+4+4]

- 2. Consider the transportation problem **P** with supply a_i 's, 40,30,50 (in this order) and demand d_j 's, 30,50,20,20 (in this order).
 - (a) If possible find a BFS of \mathbf{P} such that (1,3) and (3,2) are basic cells.

Solution: There will be numerous correct answers but all six basic cells must be

mentioned. [2.5]

In case one basic cell is missing then **only**

[1.5] marks

In case two basic cells are missing then **only**

[1] mark

Those who gave a **feasible solution** but not a BFS (that is the cells include a θ -loop) then **only** [1] mark.

- (b) Is it true that any collection of five cells in the above array is LI? **Solution:** False, since the collection of five cells may contain a θ -loop. You have to give an example. [1] mark
- (c) If you consider **any** BFS of a balanced transportation problem with m supply and n destination constraints then in the corresponding simplex table will there always be a non negative row?

Solution:

Given any BFS there exists a row /column of the array with exactly one basic cell from the given basic set of cells **B**.

Let that cell be (i_0, j_0) and WLOG let the row i_0 of the transportation array has no other **basic cell** from the given set of basic cells **B**.

Consider a **non basic cell** say (p,q) (that is (p,q) is not in **B**), hence $p \neq i_0$. Let $\mathbf{a}_{p,q} = \sum_{(i,j) \in B} \alpha_{i,j} \mathbf{a}_{i,j}^{\tilde{}}$, (*)

where $\tilde{\mathbf{a}}_{i,j}$ is the column in the coefficient matrix A (of the transportation problem with feasible region $A\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$) corresponding to the variable x_{ij} (or cell (i,j)).

Since $p \neq i_0$, in the column $\tilde{\mathbf{a}}_{p,q}$ the entry in the row corresponding to the i_0 th supply constraint is equal to 0.

Since none of the other basic cells in **B** are in row i_0 of the array, hence each of the basic columns (other than that corresponding to (i_0, j_0)) has zero entry in the row corresponding to the i_0 th supply constraint, hence (*) implies, $\alpha_{i_0,j_0} = 0$.

Consider a **non basic cell** of the form (i_0, q) (here $q \neq j_0$).

If $\tilde{\mathbf{a}}_{i_0,q} = \sum_{(i,j)\in B} \alpha_{i,j} \tilde{\mathbf{a}}_{i,j}$, (**)

then since there is a 1 in $\mathbf{a}_{i_0,j_0}^{\sim}$ in the row corresponding to the i_0 th supply constraint and there is a 1 in column $\mathbf{a}_{i_0,j_0}^{\sim}$ in the same position $(i_0$ th supply constraint) and all other columns in (**) have 0 in that position, $\alpha_{i_0,j_0} = 1$.

Hence the row corresponding to the basic variable $x_{i_0j_0}$ (or basic cell (i_0, j_0)) in the simplex table corresponding to this BFS will have entries equal to either 0 or 1.

Aliter: Alternatively using θ -loops the same can be proved. [3.5]