Distribution régionale de la ventilation

Mesure de la Distribution régionale de la ventilation pulmonaire

Pour étudier la distribution de la ventilation pulmonaire, par inhalation d'un bolus de

Xénon 133 analysé par une gamma camera .

La région la plus radioactive étant par définition la mieux ventilée,

Chez un sujet en position assise, on observe:

- l'ensemble des alvéoles est ventilé,
- la ventilation est beaucoup plus importante dans les parties inferieures du poumon,
- il existe une inhomogénéité de la distribution de la ventilation,
- augmentation de la ventilation des parties supérieures vers les parties inferieures,

Distribution régionale de la ventilation

Comment expliquer ce phénomène?

Les régions inferieures fonctionnent sur une partie très compliante de la courbe pression transpulmonaire - volume

RAPPORT VENTILATION-PERFUSION

- Les distributions de la ventilation et de la perfusion augmentent des parties supérieures vers les parties inferieures, mais il y a une inhomogénéité de la distribution du rapport ventilation-perfusion,
- On peut décrire trois zones pulmonaires:

Zone supérieure du poumon:

- Le rapport est très élevé: la ventilation existe mais la perfusion est très faible,
- A ce niveau le sang est riche en oxygène : PaO2 = 130 mmhg et PaCO2= 30 mmhg,

Zone médiane du poumon:

- Le rapport est idéal
- Ventilation alvéolaire= 4litres/minute, Perfusion capillaire= 5litres/minute,
- Ventilation/perfusion = 4/5= 0,8

Pour cette valeur, PaO2= 100 mmhg et PaCO2 = 40 mmhg,

Zone inferieure du poumon:

- La perfusion est supérieure à la ventilation
- Le rapport est bas
- PaO2 = 90 mmhg et PaCO2 = 43 mmhg,

