Geometry Representation

Introduction to Computer Graphics 2022

Yu-Ting Wu

1

Define the 3D World

- 2

2

Vector in 3D Space

Use to represent direction (e.g., movement) in the 3D world

5

Triangle Mesh

• We can define the geometry of an object by specifying the coordinates of the vertices and their adjacencies

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022

10K triangles

6

8

• Using more triangles can lead to higher-quality meshes

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022 **Surface Normal** • A surface normal is a vector that is perpendicular to a surface at a particular position • Represent the orientation of the face • The length of a normal should be equal to 1 \rightarrow normal (n_x, n_y, n_z) → tangent → binormal

10

3D Model Format

- · A model is often stored in a file
- · Common file format includes
 - Wavefront (*.obj)
 - Polygon file format (*.ply)
 - Filmbox (*.fbx)
 - MAX (*.max)

13

- Digital Asset Exchange File (*.dae)
- STereoLithography (*.stl)

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022 Example: Wavefront OBJ File Format cube.obi Created by Morgan McGuire and released into the Public Domain of specify material file face data (adjacency, submesh) vertex position declaration vertex texture coordinate declaration

Transformation

21

Introduction to Computer Graphics 2022

World Space and World Coordinate (cont.)

- Advantages for using "transformation"
 - Reuse model: design a model and use it in several scenes
 - Memory saving: store a 4x4 matrix instead of duplication of the entire models

2

World Space and World Coordinate

• Objects are defined in object space individually

• When building a scene, each object is transformed to a global and unique space called world space

• The transform is called world transform

World Transformation

Object Space

World Space

22

Common Transformations

- Translation
- Scaling
- Rotation

24

Introduction to Computer Graphics 2022

23

21

24

Introduction to Computer Graphics 2022

2D Translation

• Given a point p(x, y) and a translation offset $T(t_x, t_y)$, the new point p'(x', y') after translation is p' = p + T

$$x' = x + t_x$$
$$y' = y + t_y$$

• Can be represented as Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

25

Introduction to Computer Graphics 2022

2D Rotation

• Given a point p(x, y), rotate it with respect to the origin by Θ and get the new point p'(x', y') after rotation

• First we define

Introduction to Computer Graphics 2022

2D Scaling

• Given a point p(x, y) and a scaling factor $S(s_x, s_y)$, the new point p'(x', y') after scaling is p' = Sp

$$x' = x * s_x$$
$$y' = y * s_y$$

Matrix-vector multiplication

$$\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0\\0 & s_y & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$$

26

Introduction to Computer Graphics 2022

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by Θ and get the new point p'(x', y') after rotation

$$x' = r\cos(\phi + \theta) \quad y' = r\sin(\phi + \theta)$$

$$x' = r\cos(\phi + \theta)$$

$$= r\cos(\phi)\cos(\theta) - r\sin(\phi)\sin(\theta)$$

$$= x\cos(\theta) - y\sin(\theta)$$

$$y' = r\sin(\phi + \theta)$$

$$= x\sin(\phi)\cos(\theta) + r\cos(\phi)\sin(\theta)$$

 $x = r\cos(\phi)$ $y = r\sin(\phi)$

 $= y\cos(\theta) + x\sin(\theta)$

Introduction to Computer Graphics 2022

2D Rotation (cont.)

• Given a point p(x, y), rotate it with respect to the origin by θ and get the new point p'(x', y') after rotation

$$x' = r\cos(\phi + \theta)$$

$$= x\cos(\theta) - y\sin(\theta)$$

$$y' = r\sin(\phi + \theta)$$

$$= y\cos(\theta) + x\sin(\theta)$$

• Matrix-vector multiplication

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

29

29

Introduction to Computer Graphics 2022

Homogeneous Coordinate

 We call the (x, y, 1) representation the homogeneous coordinate for (x, y)

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 If w is not equal to 1, to make the transformed coordinate also homogeneous, we need to divide the x and y components by w

$$x' = x'/w$$
 $y' = y'/w$ $w = 1$

Introduction to Computer Graphics 2022

2D Translation, Scaling, and Rotation

 $\begin{array}{ccc} \bullet \text{ Translation } & \begin{bmatrix} x'\\y'\\1 \end{bmatrix} \!=\! \begin{bmatrix} 1 & 0 & t_x\\0 & 1 & t_y\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$

• Scaling $\begin{bmatrix} x'\\y'\\1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0\\0 & s_y & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\1 \end{bmatrix}$

• Rotation $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$

- Using a 3x3 matrix allows us to perform all transformations using matrix/vector multiplications
 - We can also **pre-multiply (concatenate)** all the matrices

30

30

32

Introduction to Computer Graphics 2022

Revisit 2D Scaling

• The standard scaling matrix will only anchor at (0, 0)

• What if we want the object to be scaled w.r.t its center?

Revisit 2D Scaling (cont.)

• Scaling about an arbitrary pivot point $Q(q_w, q_y)$ • Translate the objects so that Q will coincide with the origin: $T(-q_w - q_y)$ • Scale the object: $S(s_w, s_y)$ • Translate the object back: $T(q_w, q_y)$ Concatenation of matrices

• The final scaling matrix can be written as T(q)S(s)T(-q)

33

Revisit 2D Rotation (cont.)

• Rotate about an arbitrary pivot point $Q(q_x, q_y)$ by θ • Translate the objects so that Q will coincide with the origin: $T(-q_x, -q_y)$ • Rotate the object: $R(\theta)$ • Translate the object back: $T(q_x, q_y)$ • The final rotation matrix can be written as $T(q)R(\theta)T(-q)$

Introduction to Computer Graphics 2022

Introduction to Computer Graphics 2022

Revisit 2D Rotation

• The standard rotation matrix is used to rotate about the origin (0, 0)

 What if we want the object to be rotated w.r.t a specific pivot?

34

34

Translation (3D) and Scaling (3D)

 A 3D transformation is represented as a 4x4 matrix, with homogeneous coordinate

Introduction to Computer Graphics 2022

3D Transformation

Practice
Scale w.r.t a given pivot point
Rotate w.r.t a given pivot point

Introduction to Computer Graphics 2022 Spoiler for building scene **Object Space** • There are other spaces (Local Space) Ŧ • We will introduce camera space, clip space, and NDC in the next **World Space** slides for assisting rendering Camera Space (View, Eye Space) Clip Space Normalized Device Coordinate (NDC) **Screen Space** for displaying

39

Any Questions?

40