An Introduction to GPU and CUDA C/C++

Slides adapted by Dr Sparsh Mittal

Courtesy for slides: NVIDIA, Mutlu/Kirk/Hwu and others

What is CUDA?

- CUDA Architecture
 - Expose GPU parallelism for general-purpose computing
 - Retain performance
- CUDA C/C++
 - Based on industry-standard C/C++
 - Small set of extensions to enable heterogeneous programming
 - Straightforward APIs to manage devices, memory etc.
- We discuss CUDA C/C++ and GPU architecture (briefly)

Introduction to CUDA C/C++

- What will you learn in this session?
 - Start from "Hello World!"
 - Write and launch CUDA C/C++ kernels
 - Manage GPU memory
 - Manage communication and synchronization

Architectural parameters of recent NVIDIA GPUs

RF = register file

	Archite cture	Compute Capability	L1 size (KB)	L2 size (KB)	RF size (KB)	# of SMs	Total RF size (KB)
G80	Tesla	1.0	None	None	32	16	512
GT200	Tesla	1.3	None	None	64	30	1920
GF100	Fermi	2.0	48	768	128	16	2048
GK110	Kepler	3.5	48	1536	256	15	3840
GK210	Kepler	3.7	48	1536	512	15	7680
GM204	Maxwell	5.2	48	2048	256	16	4096
GP100	Pascal	6.0	48	4096	256	56	14336
GV100	Volta	7.0	128	6144	256	80	20480

This PPT applies to devices with capability >= 2.0

HETEROGENEOUS COMPUTING

Heterogeneous Computing

- Terminology:
 - *Host* The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)

Device

GPU vs. CPU

"The Tradeoff"

Optimizes LATENCY

CPU

Optimizes THROUGHPUT

Heterogeneous Computing

```
#include <iostream>
#include <algorithm>
using namespace std;
#define RADIUS 3
#define BLOCK_SIZE 16
__global__ void stencil_1d(int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
         int gindex = threadldx.x + blockldx.x * blockDim.x;
         int lindex = threadIdx.x + RADIUS;
         // Read input elements into shared memory
        temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {
                 temp[lindex - RADIUS] = in[gindex - RADIUS];
                 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
        // Synchronize (ensure all the data is available)
         _syncthreads();
        // Apply the stencil
         int result = 0:
        for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
                 result += temp[lindex + offset];
         out[gindex] = result;
void fill_ints(int *x, int n) {
        fill n(x, n, 1):
int main(void) {
    int *in, *out;
        int *d in, *d out:
                                // device copies of a. b. c
        int size = (N + 2*RADIUS) * sizeof(int);
        // Alloc space for host copies and setup values in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
        out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
        // Alloc space for device copies
        cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);
         cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
         // Launch stencil 1d() kernel on GPLI
        stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
         // Copy result back to host
        cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
         free(in); free(out);
         cudaFree(d_in); cudaFree(d_out);
         return 0:
```


Simple Processing Flow

Simple Processing Flow

Simple Processing Flow

CUDA extension to declare functions

__global__ called only from host executes only on device

__device__ called only from device executes only on device

__host__ called only from host executes only on host

Hello World!

```
int main(void) {
    printf("Hello World!\n");
    return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no device code

Output:

```
$ nvcc
hello_world.cu
$ a.out
Hello World!
$
```

```
__global__ void mykernel(void) {
}
int main(void) {
    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}
```

Two new syntactic elements...

```
__global___ void mykernel(void) {
}
```

- CUDA keyword __global__ indicates a function that:
 - Runs on the device
 - Is called from host code
- nvcc separates source code into host and device components
 - Device functions (e.g. mykernel()) processed by NVIDIA compiler
 - Host functions (e.g. main()) processed by standard host compiler
 - gcc, cl.exe

```
mykernel<<<1,1>>>();
```

- Triple angle brackets mark a call from *host* code to *device* code
 - Also called a "kernel launch"
 - We'll return to the parameters (1,1) in a moment
- That's all that is required to execute a function on the GPU!

```
__global___ void mykernel(void) {
}

int main(void) {

    mykernel<<<1,1>>>();
    printf("Hello World!\n");
    return 0;
}

Solution:

$ nvcc hello.cu
$ a.out
Hello World!
$ $
```

 In this example, mykernel() does nothing

Printing Hello World from Device

```
//filename helloPrintFromDevice.c
#include <stdio.h>
<u>__device__</u> const char *STR = "HELLO WORLD!";
const char STR_LENGTH = 12;
 _global__ void hello()
 printf("%d %c\n", threadIdx.x, STR[threadIdx.x %
STR LENGTH]);
int main(void){
       int num threads = STR LENGTH;
       int num\_blocks = 1;
       hello<<<num_blocks,num_threads>>>();
       cudaDeviceSynchronize();
       return 0;
```

Output

```
$ nvcc helloPrintFromDevice.cu
$ ./a.out
0 H
1 E
2 L
3 L
5
              Each thread prints one character
6 W
7 0
8 R
9 L
10 D
11
```

Parallel Programming in CUDA C/C++

• GPU computing is about massive parallelism!

• We will discuss a more interesting example...

• We'll start by adding two integers and build up to vector addition

Addition on the Device

A simple kernel to add two integers

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- As before __global__ is a CUDA C/C++ keyword meaning
 - add() will execute on the device
 - add() will be called from the host

Addition on the Device

Note that we use pointers for the variables

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- add() runs on the device, so a, b and c must point to device memory
- We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
 - Device pointers point to GPU memory
 May be passed to/from host code
 May not be dereferenced in host code
 - Host pointers point to CPU memory
 May be passed to/from device code
 May not be dereferenced in device code

- Simple CUDA API for handling device memory
 - cudaMalloc(), cudaFree(), cudaMemcpy()
 - Similar to the C equivalents malloc(), free(), memcpy()

Addition on the Device: add()

• Returning to our add() kernel

```
__global__ void add(int *a, int *b, int *c) {
     *c = *a + *b;
}
```

• Let's take a look at main()...

Addition on the Device: main()

```
int main(void) {
          int a, b, c; // host copies of a, b, c
          int *d a, *d b, *d c;// device copies
          int size = sizeof(int);
// Allocate space for device copies of a, b, c
          cudaMalloc((void **)&d a, size);
          cudaMalloc((void **)&d b, size);
          cudaMalloc((void **)&d c, size);
// Setup input values
          a = 2;
          b = 7;
```

Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a,&a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b,&b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
     add<<<1,1>>>(d a, d b, d c);
// Copy result back to host
cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d_a); cudaFree(d_b); cudaFree(d c);
          return 0;
```

UNDERSTANDING THREAD ORGANIZATION

Understanding thread organization using example of student groups

Similarly, threads are organized

- A kernel is launched as a grid of blocks of threads
 - blockIdx and threadIdx are 3D
 - We showed only one dimension (x)
- Built-in variables:
 - threadIdx
 - blockIdx
 - blockDim
 - gridDim

Parallel computing using

BLOCKS

Moving from Scalar to Parallel

- GPU computing is about massive parallelism
 - So how do we run code in parallel on the device?

```
add<<< 1, 1 >>>();
add<<< N, 1 >>>();
```

• Instead of executing add () once, execute N times in parallel

Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
 - The set of blocks is referred to as a grid
 - Each invocation can refer to its block index using blockIdx.x

```
__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];}
```

• By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device

```
__global__ void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• On the device, each block can execute in parallel:

```
Block 0 Block 1 Block 2 Block 3
```

c[0]=a[0]+b[0]; c[1]=a[1]+b[1]; c[2]=a[2]+b[2]; c[3]=a[3]+b[3];

Vector Addition on the Device:

• Returning to our parallelized add() kernel

```
__global__ void add(int *a, int *b, int *c)
{
c[blockIdx.x] = a[blockIdx.x] +
b[blockIdx.x];
}
```

• Let's take a look at main()...

Vector Addition on the Device: main()

```
#define N 512
    int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d c; //device copies
     int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
     cudaMalloc((void **)&d a, size);
     cudaMalloc((void **)&d b, size);
     cudaMalloc((void **)&d c, size);
// Alloc space for host copies and initialize
     a = (int *)malloc(size); random ints(a, N);
    b = (int *)malloc(size); random ints(b, N);
     c = (int *)malloc(size);
```

Vector Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
       add <<< N, 1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
        free(a); free(b); free(c);
cudaFree(d a); cudaFree(d_b); cudaFree(d_c);
```

Review (1 of 2)

- Difference between *host* and *device*
 - Host CPU
 - Device GPU
- Using __global__ to declare a function as device code
 - Executes on the device
 - Called from the host
- Passing parameters from host code to a device function

Review (2 of 2)

- Basic device memory management
 - cudaMalloc()
 - cudaMemcpy()
 - cudaFree()
- Launching parallel kernels
 - Launch N copies of add() with add<<<\N,1>>>(...);
 - Use blockIdx.x to access block index

Parallel computing using

THREADS

CUDA Threads

- Terminology: a block can be split into parallel threads
- Let's change add() to use parallel *threads* instead of parallel *blocks*

```
__global__ void add(int *a, int *b, int *c) {
  c[threadIdx.x] = a[threadIdx.x] +
  b[threadIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x
- Need to make one change in main()...

Vector Addition Using Threads: main()

```
#define N 512
    int main(void) {
int *a, *b, *c;  // host copies of a, b, c
int *d a, *d b, *d c; // device copies of a, b, c
        int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
        cudaMalloc((void **)&d a, size);
        cudaMalloc((void **)&d b, size);
        cudaMalloc((void **)&d c, size);
  // Alloc space for host copies and initialize
 a = (int *)malloc(size); random ints(a, N);
 b = (int *)malloc(size); random ints(b, N);
  c = (int *)malloc(size);
```

Vector Addition Using Threads: main()

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N threads
      add <<<1,N>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);
// Cleanup
        free(a); free(b); free(c);
    cudaFree(d a); cudaFree(d b); cudaFree(d c);
```

COMBINING BLOCKS AND THREADS

Combining Blocks and Threads

- We've seen parallel vector addition using:
 - Many blocks with one thread each
 - One block with many threads
- Let's adapt vector addition to use both blocks and threads
- Why? We'll come to that...
- First let's discuss data indexing...

Indexing using Blocks & Threads

- No longer as simple as using blockIdx.x and threadIdx.x
 - Consider indexing an array with one element per thread (8 threads/block)

```
threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
```

• With M threads/block a unique index for each thread is given by:

```
int index = threadIdx.x + blockIdx.x * M;
```

Indexing Arrays: Example

• Which thread will operate on the red element?

= 21;

Vector Addition with Blocks and Threads

• Use the built-in variable block for threads per block

```
int index = threadIdx.x + blockIdx.x *
blockDim.x;
```

• Combined version of add() to use parallel threads *and* parallel blocks

```
__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x *
blockDim.x;
c[index] = a[index] + b[index]; }
```

Addition with Blocks and Threads

```
#define N (2048*2048)
    #define THREADS PER BLOCK 512
    int main(void) {
 int *a, *b, *c; // host copies of a, b, c
 int *d a, *d b, *d c; // device copies
 int size = N * sizeof(int);
  // Alloc space for device copies of a, b, c
        cudaMalloc((void **)&d a, size);
        cudaMalloc((void **)&d b, size);
        cudaMalloc((void **)&d c, size);
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);
c = (int *)malloc(size);
```

Addition with Blocks and Threads

```
// Copy inputs to device
cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
        // Launch add() kernel on GPU
add<<<N/THREADS PER BLOCK, THREADS PER BLOCK>>>(d
a, d b, d c);
        // Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
       // Cleanup
        free(a); free(b); free(c);
    cudaFree(d a); cudaFree(d b); cudaFree(d c);
```

Handling Arbitrary Vector Sizes

- Typical problems: non-multiples of
- Avoid accessing beyond end of the arrays:

```
__global___ void add(int *a,int *b,int *c, int n) {
    int index = threadIdx.x + blockIdx.x *

blockDim.x;
    if (index < n)
        c[index] = a[index] + b[index];
}

• Update the kernel launch:</pre>
```

add <<<(N + M-1) / M, M>>>(d a, d b, d c, N);

Why Bother with Threads?

- Threads seem unnecessary
 - They add a level of complexity
 - What do we gain?
- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize
- Other constraints: The number of blocks in a single launch is limited (e.g., 65536)
- Number of threads per block is limited

Lets first discuss

GPU MEMORY ADDRESS SPACES

GPU Memory Address Spaces

- 1. Local
- 2. Shared

3. Global

Increasing visibility of data between threads

- In addition there are two more (read-only) address spaces:
- 1. Constant
- 2. Texture.

Local (Private) Address Space

Each thread has its own "local memory"

Note: Location at address 100 for thread 0 is different from location at address 100 for thread 1.

Contains local variables private to a thread.

Global Address Spaces

- Each thread in the different thread blocks (even from different kernels) can access "global memory"
- **cudaMalloc** allocates global memory
- Threads write their own portion of global memory
- No need for synchronization
- Slow

Lets take example of Matrix Transpose

Matrix Transpose

```
_global__ void transpose(float *odata, float* idata, int width, int
height){
  int xIndex = blockIdx.x * TILE DIM + threadIdx.x;
  int yIndex = blockIdx.y * TILE DIM + threadIdx.y;
  int index in = xIndex + width * yIndex;
  int index out = yIndex + height * xIndex;
  for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {</pre>
    odata[index out+i] = idata[index in+i*width];
```

- "xIndex", "yIndex", "index_in", "index_out", and "i" are in <u>local memory</u> (local variables are register allocated, stack is allocated in local memory)
- "odata" and "idata" are pointers to <u>global memory</u>
 (both allocated using calls to cudaMalloc -- not shown above)

Shared Address Space

Each thread in the same block can access a memory region called "shared memory"

Limited size (16 to 48 KB).

Used as a software managed "cache" to avoid off-chip memory accesses.

Synchronize threads in a thread block using __syncthreads();

Analogy: Institute and Dept. Library

Similarly: Global and Shared memory

CUDA Variable Type Qualifiers

Variable declaration	Memory	Scope	Lifetime	Latency
int LocalVar;	register	thread	thread	1x
<pre>int localArray[10];</pre>	local	thread	thread	100x
shared int SharedVar;	shared	block	block	1x
device int GlobalVar;	global	grid	application	100x
constant int ConstVar;	constant	grid	application	1x

- Automatic variables without any qualifier reside in a register
 - Except per-thread arrays that reside in local memory
 - Or if there are not enough registers

53

Programming scenario 1

Task:

Load data from global memory

Do thread-local computations

Store results to global memory

Solution:

Load data from global memory float a = d ptr[blockldx.x * blockDim.x + threadIdx.x];

- Do computation with registers float res = func(a)
- Store result
 d ptr[blockldx.x*blockDim.x + threadldx.x] = res;

Programming scenario 2

Task: 1. Load data from global memory 2. Do **block-local** computations 3. Store results to global memory **Solution:**

```
Load data from global memory to shared memory

__shared__ float a_sh [ BLOCK_SIZE ];

int idx = blockIdx .x* blockDim .x + threadIdx .x;

a_sh [ threadIdx .x] = d_ptr [ idx ];

__syncthreads ();
```

- Do computation
 float res = func(a_sh[threadIdx.x])
- Store result d_ptr[index] = res;

Because it's tricky, lets discuss in more detail:

SHARED MEMORY

Dept library need synchronization

Good – when students have similar choices

Bad – when students have different choices

Same with Blocking/Tiling

Good –when threads have similar access timing

Bad – when threads have very différent timing

Barrier Synchronization

- A function call in CUDA
 - __syncthreads()
- All threads in the same block must reach the __synctrheads() before any can move on
- Best used to coordinate tiled algorithms
 - To ensure that all elements of a tile are loaded
 - To ensure that all elements of a tile are consumed

An example execution timing of barrier synchronization.

References

- CUDA language:
 - CUDA by Example, by Jason Sanders and Edward Kandrot, NVIDIA
 - "Programming Massively Parallel Processors: A Hands-on Approach" by David B. Kirk and Wen-mei W. Hwu
- GPU architecture
 - "A Survey of CPU-GPU heterogeneous computing", S. Mittal et al., CSUR 2015

Thanks!

Sparsh Mittal sparsh@iith.ac.in