General Purpose Transistors NPN Silicon

2N4400 2N4401*

*Motorola Preferred Device

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	40	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	IC	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ⁽¹⁾ (I _C = 1.0 mAdc, I _B = 0)	V(BR)CEO	40	_	Vdc
Collector-Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V(BR)CBO	60	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 0.1 mAdc, I _C = 0)	V(BR)EBO	6.0	_	Vdc
Base Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{BEV}	_	0.1	μAdc
Collector Cutoff Current (VCE = 35 Vdc, VEB = 0.4 Vdc)	ICEX	_	0.1	μAdc

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

REV 1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

	Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS	g(1)					•
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 1	.0 Vdc)	2N4401	hFE	20	_	_
(I _C = 1.0 mAdc, V_{CE} = 1	.0 Vdc)	2N4400 2N4401		20 40	<u>-</u>	
(I _C = 10 mAdc, V_{CE} = 1.	0 Vdc)	2N4400 2N4401		40 80	<u>-</u>	
(IC = 150 mAdc, $V_{CE} = 7$	1.0 Vdc)	2N4400 2N4401		50 100	150 300	
$(I_C = 500 \text{ mAdc}, V_{CE} = 2.0 \text{ Vdc})$		2N4400 2N4401		20 40	<u>-</u>	
Collector-Emitter Saturation	on Voltage (I _C = 150 mAdc, I _B = 15 $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$		VCE(sat)	_	0.4 0.75	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc) (I _C = 500 mAdc, I _B = 50 mAdc)			VBE(sat)	0.75 —	0.95 1.2	Vdc
SMALL-SIGNAL CHAR	ACTERISTICS				•	•
Current-Gain — Bandwidt (I _C = 20 mAdc, V _{CE} = 10		2N4400 2N4401	fΤ	200 250		MHz
Collector-Base Capacitano	e (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 M	Hz)	C _{cb}	_	6.5	pF
Emitter-Base Capacitance	(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MH	z)	C _{eb}	_	30	pF
Input Impedance (IC = 1.0 mAdc, VCE = 1	0 Vdc, f = 1.0 kHz)	2N4400 2N4401	h _{ie}	0.5 1.0	7.5 15	k ohms
Voltage Feedback Ratio (Ic	c = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0) kHz)	h _{re}	0.1	8.0	X 10 ⁻⁴
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		2N4400 2N4401	h _{fe}	20 40	250 500	_
Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	30	μmhos	
SWITCHING CHARACT	ERISTICS				-	-
Delay Time	(V _{CC} = 30 Vdc, V _{BE} = 2.0 Vdc,		t _d	_	15	ns
Rise Time	$I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$		t _r		20	ns
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_{C} = 150 \text{ mAdc},$		t _S	_	225	ns
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$		t _f	_	30	ns

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 1. Turn-On Time

Figure 2. Turn-Off Time

TRANSIENT CHARACTERISTICS

- **—** 100°C

Figure 3. Capacitances

Figure 4. Charge Data

Figure 6. Rise and Fall Times

Figure 7. Storage Time

Figure 8. Fall Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

 $V_{CE} = 10 \text{ Vdc}, T_A = 25^{\circ}C$ Bandwidth = 1.0 Hz

8.0 $I_C = 50 \mu A$ 8 $I_C = 100 \, \mu A$ NF, NOISE FIGURE $I_C = 500 \, \mu A$ 6.0 $= 1.0 \, \text{mA}$ 4.0 0 100 200 5.0 k 10 k 20 k 2.0 k 50 RS, SOURCE RESISTANCE (OHMS)

Figure 9. Frequency Effects

Figure 10. Source Resistance Effects

h PARAMETERS

 $V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C}$

This group of graphs illustrates the relationship between hfe and other "h" parameters for this series of transistors. To

obtain these curves, a high-gain and a low-gain unit were

bered curves on each graph. 50 k 2N4401 UNIT 1

selected from both the 2N4400 and 2N4401 lines, and the

same units were used to develop the correspondingly num-

Figure 11. Current Gain

Figure 13. Voltage Feedback Ratio

Figure 12. Input Impedance

Figure 14. Output Admittance

STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

Figure 17. "On" Voltages

Figure 18. Temperature Coefficients

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN P AND L. DIMENSION F APPLIES BETWEEN F AIND L.
 DIMENSION D AND J APPLY BETWEEN L AND K
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
7	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3 43	

STYLE 1: PIN 1. EMITTER

2. BASE 3. COLLECTOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

