Deep Learning for Financial Time-Series Data Analytics: An Image Processing Based Approach

Vishnu P A

Guided By: Prof. Dileep M R
Department of Computer Science and Engineering
Government College of Engineering Kannur

October 26, 2021

Contents

- ► Introduction
- Methods
 - Data collection
 - Data preparation
 - Data transformation
 - Data labeling
 - Modeling
- Conclusion

Introduction

- Foreign Exchange(Forex) is the biggest financial market in the world where currencies are traded.
- We perform technical analysis for predicting price movements which makes use of the information in chart according to time-series historical data.
- A novel model based on CNN Algorithm is proposed here that aims to accurately predict the daily movement of the Forex price.
- ► The idea is to convert time-series data to an image and exploit the CNN algorithm to analyze the pattern in the image.

Deep learning and machine learning model

Data collection

- The data set uses for conducting this research is forex historical data of EURUSD pairwise from 3 JAN 2000 to 4 SEP 2018
- Daily time frame
- Data consist of approximately 4865 records

Data preparation

- The data set divided in to training dataset and testing dataset using sliding window technique
- We use the year 2000-2004 as training dataset and 2005 as testing dataset. Then move one year ahead create another training and testing data set
- Approximately 25300 records

Figure: Data preparation image

Data transformation

- Data converted in to 16×16 grayscale image
- We use 15 indicators and chart information to create and image
- ▶ 16 different input of parameter used to used in order to obtain 16 different value of each indicator

Figure: Transformation image

- To create grayscale image min-max normalisation technique is used
- its feature scaling where values of numeric range of a feature of data increased or reduced to a scale between new maximum and new minimum
- ► V=(v-min/(max-min))(max new-min new)+min new

Figure: Grayscale image

Data labeling

- ► Label BUY if close open greater than 0, Label SELL if close open less than 0
- We use lagging-time for 1 day of the signal column
- we use today information with tomorrow label according to the signal class

Modeling

- After transforming data in to images, training set of image data is used to build the prediction model
- ► The model is based on convolution neural network

CNN Model

The proposed CNN model contain 9 layers

- ► Inputlayer(16×16)
- ► Three convolutional layer $(16 \times 16 \times 16, 16 \times 16 \times 34, 16 \times 16 \times 64)$
- two max pooling layer $(7 \times 7 \times 64, 7 \times 7 \times 64)$
- ► A drop out layer(.25)
- A fully connected layer(128)
- Output layer(2)

- \triangleright filter size used is 3×3
- implemented using keras, tensor flow infrastructure in python language

Structure of the general convolution neural network.

- convolutional layer consist of basic convolutional operation
- maxpooling layers build the deep neural network
- ightharpoonup $e_i = \sum W_{i,j}x_j + b_i$

- dropout layer prevent over fitting
- Decrease filter size results in catching more details of image.

Performance evaluation

- ► The performance of the CNN model evaluated using accuracy of prediction
- Accuracy=(TP+TN)/(TP+FN+FP+TN)

Accuracy of prediction

Sco	enario	Training Data	Testing Data	Accuracy (%)
	1	2000 - 2004	2005	73.68
	2	2001 - 2005	2006	72.73
	3	2002 - 2006	2007	70.40
	4	2003 - 2007	2008	73.89
	5	2004 - 2008	2009	75.45
	6	2005 - 2009	2010	75.74
	7	2006 - 2010	2011	73.71
	8	2007 - 2011	2012	74.34
	9	2008 - 2012	2013	72.60
	10	2009 - 2013	2014	70.71
	11	2010 - 2014	2015	73.51
	12	2011 - 2015	2016	74.11
	13	2012 - 2016	42917 ← 🗗 ト →	₹ → 3 6.87 ₹ • • •

Confusion matrix

		1,054	258	80.3%
Ø	Buy	39.8%	9.7%	19.7%
Clas	Sell	338	997	74.7%
Output Class		12.8%	37.7%	25.3%
0		75.7%	79.4%	77.5%
		24.3%	20.6%	22.5%
		Buy	Sell	

Accuracy of CNN model with other machine learning models

Conclusion

- Proposed a CNN based model for predicting the daily price movements of forex pairs.
- Compared to other algorithm based model it has a higher accuracy.
- CNN model has great potential for making profits in the forex market

Reference

- O. B. Sezer and A. M. Ozbayoglu, "Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach," Appl. Soft Comput., 2018.
- R. Rosillo, D. la Fuente, and J. A. L. Brugos, "Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies," Appl. Econ., vol. 45, no. 12, pp. 1541–1550, 2013.

Thank you