TENSOR CHARACTERISATION LEMMA

In what follows, let M be a smooth manifold of dimension n.

Let $\mathcal{T}^{(k,l)}(M)$ denote the $C^{\infty}(M)$ -module of all smooth (k,l)-tensor fields. Let $\mathcal{M}^{(k,l)}(M)$ denote the $C^{\infty}(M)$ -module of all $C^{\infty}(M)$ -multilinear maps of the form

$$\underbrace{\mathfrak{X}^*(M)\times\cdots\times\mathfrak{X}^*(M)}_{k \text{ copies}}\times\underbrace{\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)}_{l \text{ copies}}\to C^\infty(M).$$

A tensor field defines an element of $\mathcal{M}^{(k,l)}(M)$.

Proposition. Let $A \in \mathcal{T}^{(k,l)}(M)$. Let

$$\mathcal{M}(A): \underbrace{\mathfrak{X}^*(M) \times \cdots \times \mathfrak{X}^*(M)}_{k \ copies} \times \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{l \ copies} \to C^{\infty}(M)$$

be defined by

$$\mathcal{M}(A)(\omega^1,\ldots,\omega^k,X_1,\ldots X_l)(p) := A_n(\omega^1|_n,\ldots,\omega^k|_n,X_1|_n,\ldots,X_l|_n).$$

Then $\mathcal{M}(A)$ belongs to $\mathcal{M}^{(k,l)}(M)$.

Proof. The codomain makes sense because a previous result tells us

$$\mathcal{M}(A)(\omega^1,\ldots,\omega^k,X_1,\ldots X_l):M\to\mathbb{R}$$

is smooth. Multilinearity is straightforward to verify.

For the following two lemmas, let $A \in \mathcal{M}^{(k,l)}(M)$, let $\omega^1, \ldots, \omega^k \in \mathfrak{X}^*(M)$, and let $X_1, \ldots, X_l \in \mathfrak{X}(M)$. Let $p \in M$ be fixed.

Lemma. Suppose $X_{j_0} \equiv 0$ on a neighbourhood B of p for some j_0 . Then

$$\mathcal{A}(\omega^1,\ldots,\omega^k,X_1,\ldots,X_k)(p)=0.$$

Proof. Let ψ be a bump function supported in B such that $\psi(p) = 1$. Then $\psi X_{j_0} \equiv 0$, so $0 = \mathcal{A}(\omega^1, \dots, \psi X_i, \dots, X_k)(p) = \psi(p)\mathcal{A}(\omega^1, \dots, X_k)(p)$.

Lemma. Suppose $X_{j_0}|_p = 0$ for some j_0 . Then

$$\mathcal{A}(\omega^1,\ldots,\omega^k,X_1,\ldots,X_k)(p)=0.$$

Proof. Let (U, φ) be a chart around p. Then we can write $X_{j_0} = X^m \partial_m : U \to TM$, where $X^m : U \to \mathbb{R}$ are smooth. We can also write $p \in B \subseteq \overline{B} \subseteq U$ for some open B in M. Let $E_m \in \mathfrak{X}(M)$ satisfy $E_m|_B = \partial_m|_B$, and let $f^m \in C^\infty(M)$ satisfy $f^m|_B = X^m|_B$. Then $f^m E_m \in \mathfrak{X}(M)$ satisfies $X = f^m E_m$ on B. Furthermore, we have $f^m(p) = X^m(p) = 0$. Thus, the previous lemma implies

$$\mathcal{A}(\omega^1,\ldots,X_i,\ldots,X_k)(p) = f^m(p)\mathcal{A}(\omega^1,\ldots,E_m,\ldots,X_k)(p) = 0.$$

The results analogous to the previous two lemmas hold for covector fields. Thus, the value of an element of $\mathcal{M}^{(k,l)}(M)$ at p depends only on the values of the covector and vector fields at p.

Proposition. $A \in \mathcal{M}^{(k,l)}(M)$ Define $\mathcal{T}(A) : M \to T^{(k,l)}TM$ by

$$\mathcal{T}(\mathcal{A})_p(\alpha^k,\ldots,\alpha^k,v_1,\ldots,v_l) := \mathcal{A}(\omega^1,\ldots,\omega^k,X_1,\ldots,X_l)(p),$$

where $\omega^1, \ldots, \omega^k \in \mathfrak{X}^*(M)$ and $X_1, \ldots, X_l \in \mathfrak{X}(M)$ satisfy $\omega^i|_p = \alpha^p$ and $X_j|_p = v_j$. Then $\mathcal{T}(\mathcal{A})$ is well-defined and belongs to $\mathcal{T}^{(k,l)}(M)$.

Proof. The previous lemma shows that $\mathcal{T}(\mathcal{A})$ is well-defined. Given $\omega^1, \ldots, \omega^k \in \mathfrak{X}^*(M)$ and $X_1, \ldots, X_l \in \mathfrak{X}(M)$, notice that the map $p \mapsto \mathcal{T}(\mathcal{A})_p(\omega^1|_p, \ldots, X_l|_p)$ is nothing more than $\mathcal{A}(\omega^1, \ldots, X_l)$, so $\mathcal{T}(\mathcal{A})$ is smooth by a previous result.

Proposition. The maps

$$\mathcal{M}: \mathcal{T}^{(k,l)}(M) \longrightarrow \mathcal{M}^{(k,l)}(M), \quad A \mapsto \mathcal{M}(A),$$

$$\mathcal{T}: \mathcal{M}^{(k,l)}(M) \longrightarrow \mathcal{T}^{(k,l)}(M), \quad \mathcal{A} \mapsto \mathcal{T}(\mathcal{A})$$

are $C^{\infty}(M)$ -linear isomorphisms and inverses of each other.

Proof. It is straightforward to check that \mathcal{M} is $C^{\infty}(M)$ -linear. Unraveling the definitions shows that $\mathcal{M} \circ \mathcal{T}$ and $\mathcal{T} \circ \mathcal{M}$ are identity maps.