Question 5

Partially correct

Marked out of 25

(Lagrange Polynomials). All numerical answers should be rounded to 5-digit floating-point numbers.

The following table, based on the national census counts since 1927, represents the historical data on the population of Turkey, where t is the number of years since 1927 and f(t) is the population of Turkey in the year 1927+t (in millions of people):

t	0	8	13	18	23	28	33	38	43
f(t)	13.649	16.159	17.822	18.791	20.947	24.066	27.756	31.392	35.606
t	48	53	58	63	73	80	82	84	86
f(t)	40.349	44.737	50.665	56.474	67.805	70.586	72.561	74.724	76.668
t	88	90	92	94					
f(t)	78.741	80.811	83.155	84.680					

Thus, according to the table, the population of Turkey in the year 1955 was $f(1955-1927)=f(28)\doteq 24.066$ million people.

Let L(x) be the third Lagrange polynomial for the function f(x) with the nodes

$$x_0 = 0, x_1 = 43, x_2 = 80, x_3 = 94$$

and let y_k denote $f(x_k)$, where k=0,1,2,3.

- (i) (a) Find the value L(58) of the Lagrange polynomial at x=58 and the relative error in the approximation of f(58) by L(58).
- (b) Show your work by filling in the standard table for the method showing the process of evaluation of the Lagrange polynomial at the given point:

x_k	0	~	43	~	80	~	94	~
y_k	13.649	~	35.606	~	70.586	~	84.68	~
$L_k(x)$	-0.036739	~	0.56613	~	0.75579	~	-0.28518	~
$y_k L_k(x)$	-0.50145	~	20.157	~	53.348	~	-24.149	~

(c) Accordingly,

$$L(58) \doteq 48.855$$

and the relative error in question is given by

$$\operatorname{RE}(f(58) pprox L(58)) \doteq 0.035725$$

(ii) Find the value L(84) of the Lagrange polynomial at x=84 and the relative error in the approximation of f(84) by L(84).

Proceed then as in the previous part by filling in the standard table

x_k	0	~	43	~	80	~	94	~
y_k	13.649	~	35.606	~	70.586	~	84.68	~
$L_k(x)$	0.0050717	~	-0.041409	~	0.83108	~	0.20526	~
$y_k L_k(x)$	0.069224	~	-1.4744	~	58.663	~	17.381	~

and by providing the required values:

$$L(84) \doteq$$
 74.639 \checkmark ;
$$\mathrm{RE}(\,f(84) \approx L(84)\,) \doteq$$
 0.0011375

(iii) Find the value L(101)=L(2028-1927) to approximate/extrapolate the population of Turkey in the year 2028 (this time, we skip the standard table):

$$L(101) \doteq$$
 91.52