Algèbre Linéaire

Louis Gérard

Automne 2023

Motivation

On souhaite résoudre un système d'équations linéaires.

Exemple 1

Une équation linéaire à 1 inconnue de la forme :

$$ax + b = c$$

Ici, x est l'inconnue et $a,b,c\in\mathbb{R}$ des constantes. On souhaite trouver $Sol\subset\mathbb{R}$ l'ensemble des solutions.

$$Sol = \begin{cases} \{\frac{c-b}{a}\}, & \text{si a} \neq 0\\ \mathbb{R}, & \text{si a} = 0 \text{ et } b = c\\ \emptyset, & \text{si a} = 0 \text{ et } b \neq c \end{cases}$$

Définition 1

Un système à m équations linéaires à n variables à coefficients réels* est constitué de m équations de la forme :

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

Les coefficients du système sont $a_{11}, \ldots, a_{1n}, \ldots, a_{m1}, \ldots, a_{mn}$. On appelle les coefficients b_1, \ldots, b_m les "coefficients libres". Dans le cas particulier où $b_1 = \cdots = b_m$, on dit que le système est **homogène**.

*On parle aussi de systèmes à coefficients complexes. Ils sont abordés plus loin, dans le chapitre X.

Résoudre un tel système revient à trouver son ensemble de solutions Sol.

$$Sol = \{(\alpha_1, \dots, \alpha_n) \text{ où } \alpha_i \in \mathbb{R}, i = 1, \dots, n\}$$

1 Chapitre 1 - Espaces vectoriels

1.1 Définitions, exemples et propriétés

Pour motiver la définition, on considère quelques exemples de systèmes linéaires.

Exemple a)

$$n = 2, m = 2$$

$$\begin{cases} x + 2y = 2 \\ x - y = -4 \end{cases}$$

$$x = -4 + y \Rightarrow 3y = 6 \Rightarrow \begin{cases} y = 2 \\ x = -2 \end{cases}$$

$$Sol = \{(-2, 2)\}$$

Cette solution a un sens géométrique : les droites d'équations décrites dans le systèmes se croisent bien au point (-2, 2).

Exemple b)

$$n=2, m=2$$

$$\begin{cases} x + 2y = 2 \\ x + 2y = 0 \end{cases} \Rightarrow Sol = \emptyset$$

Les droites ne se croisent effectivement jamais.

Exemple c)

$$n=2, m=2$$

$$\begin{cases} x + 2y = 0 \\ 2x + y = 0 \end{cases} \Rightarrow Sol = \{(0, 0)\}$$

Ce système est homogène.

Exemple d)

$$\begin{cases} x + 2y = 0 \\ 2x + 2y = 0 \end{cases} \Rightarrow Sol = \{(0, 0)\}$$