Quiz 3

Multivariable Calculus

Q 1. Find the absolute extrema of the given function on the indicated closed and bounded set R.

$$f(x, y) = xy^2$$
; R is the region that satisfies the inequalities $x \ge 0, y \ge 0$, and $x^2 + y^2 \le 1$. [5 marks]

Solution:

 $f_x=y^2=0, \ f_y=2xy=0;$ no critical points in the interior of R. Along y=0: u(x)=0; along x=0: v(y)=0; along $x^2+y^2=1$: $w(x)=x-x^3$ for $0\leq x\leq 1;$ critical point $\left(1/\sqrt{3},\sqrt{2/3}\right)$.

(x, y)	(0,0)	(0,1)	(1,0)	$\left(1/\sqrt{3},\sqrt{2/3}\right)$
f(x,y)	0	0	0	$2\sqrt{3}/9$

Absolute maximum value is $\frac{2}{9}\sqrt{3}$, absolute minimum value is 0.

Q 2. Evaluate the iterated integral by converting to polar co-ordinates. [5 marks]

$$\int_{-4}^{0} \int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} 3x \, dy \, dx$$

Solution:

$$\int_{\pi/2}^{3\pi/2} \int_0^4 3r^2 \cos\theta \, dr \, d\theta = \int_{\pi/2}^{3\pi/2} 64 \cos\theta \, d\theta = -128.$$

Q 3. Use a double integral to find the area of the region. [5 marks]

One loop of the rose $r = \cos 3\theta$

Solution:

One loop is given by the region

$$D=\{(r,\theta)\,| -\pi/6 \leq \theta \leq \pi/6, 0 \leq r \leq \cos 3\theta\,\},$$
 so the area is

$$\iint_{D} dA = \int_{-\pi/6}^{\pi/6} \int_{0}^{\cos 3\theta} r \, dr \, d\theta = \int_{-\pi/6}^{\pi/6} \left[\frac{1}{2} r^{2} \right]_{r=0}^{r=\cos 3\theta} d\theta$$
$$= \int_{-\pi/6}^{\pi/6} \frac{1}{2} \cos^{2} 3\theta \, d\theta = 2 \int_{0}^{\pi/6} \frac{1}{2} \left(\frac{1 + \cos 6\theta}{2} \right) d\theta$$
$$= \frac{1}{2} \left[\theta + \frac{1}{6} \sin 6\theta \right]_{0}^{\pi/6} = \frac{\pi}{12}$$

