In-class Activity

ME 570 - Prof. Tron 2023-10-31

Problem 1: Depth-First Search

L

Question 1.1. Consider the discretized environment in the figure below, with a four-connected neighborhood. Manually run the DFS algorithm from the start location **A** to the end location **E**. For each step, keep track of the content of the stack in the provided diagram. For each node, the neighbors should be considered in the order *down*, *right*, *up*, *left*. As you proceed, mark the cells in the figure with an arrow for the backpointer, and a number for the backpointer cost.

Ν

0

Μ

Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 1	J K
	G H
Step 0 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 1	C D E
	Step 6 Step 7 Step 8 Step 9 Step 10
Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17 Step 18 Step 19 Step 20 Step 2	Step 17 Step 18 Step 19 Step 20 Step 21

stion 2.1		First Sear				
3011 2.11	Repeat que	estion 1.1, bu	it using BFS.			٦
		L N		O	P	
		_	J		K	+
		= A E	В	G D	H E	4
	12 Step 1	3 Step 14	Step 15 Ste	p 16 Step 1	7 Step 18	Step 9 Step 10 Step 19 Step 20 from A to E.

Problem 3: A star (A*)

Question optional 3.1. Find the path from node A to node O using an 8-connected neighborhood.

L	M	N		O
4.0	3.0	2.0		0.0
4.12		J 2.24		K 1.0
F 4.47			G 2.24	H 2.0
A	B	C	D	E
5.0	4.24	3.61	3.16	3.0

Step 0	Step 1	Step 2	Step 3	Step 4	$\frac{1}{2}$ Step 5	Step 6	Step 7	Step 8	Step 9	Step 10
				1						
				-						
				-						
Step 11	Step 1	l2 Step	13 St	ep 14	Step 15	Step 16	Step 17	Step 1	l8 Step	19
		_								
		_								