BITS Pilani Hyderabad Campus CS F214 Logic in Computer Science, I Semester 2021-2022 Lecture Notes Lecture 15-16

13.1 Soundness of Propositional Logic

Theorem: Let $\phi_1, \phi_2, ..., \phi_n$ and ψ be propositional logic formulas. If $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ is valid, then $\phi_1, \phi_2, ..., \phi_n \models \psi$ holds.

Proof: Since $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ is valid, we know that there is a proof of ψ from the premises $\phi_1, \phi_2, ..., \phi_n$.

We will do course of values induction on the length of this proof (the numbering lines in it).

M(R): For all the sequents $\phi_1, \phi_2, ..., \phi_n \vdash \psi, n \geq 0$, which have a proof of length R. It is the case that $\phi_1, \phi_2, ..., \phi_n \vDash \psi$ holds.

We will show M(k) is true for $k \in N$ by course of values induction. Example: Consider $p \land q \to r \vdash p \to q \to r$.

Solution:

 $1.p \land q \rightarrow r$ premise

$$7.p \rightarrow (q \rightarrow r) \rightarrow i 2-6$$

1. Base Case: We wish to show M(1) is true. This is an example of sequent with one line proof.

$$1.\phi$$
 premise

Above is a proof that shows $\phi \vdash \phi$. $\phi \vDash \phi$ hols because whenever ϕ is true, ϕ is true. $\vdash \phi \lor \neg \phi$

$$1.\phi \lor \neg \phi$$
 LEM

 $\vdash \phi \vee \neg \phi \text{ For every valuation for } \phi \text{ is true, } \neg \phi \text{ is false. Therefore, } \phi \vee \neg \phi \text{ is true. Similarly, for every valuation for } \phi \text{ is false, } \neg \phi \text{ is true.}$ $\therefore \text{ for every valuation } \phi \vee \neg \phi \text{ is true.}$

 $\therefore \vDash \phi \lor \neg \phi \text{ holds.}$

2. **Inductive Step**: We assume that shortest proof of the sequent $\phi_1, \phi_2, ..., \phi_n \vdash \psi$ is of length K. We assert the inductive hypothesis of all sequents that have a proof of length < K.

A proof has the structure

1.
$$\phi_1$$
 premise

 $n. \ \phi_n$ premise $K. \ \psi$ justification

Two issues the proof needs to deal with.

- (a) What happens in between. (We hope this will be solved by induction hypothesis).
- (b) What is the last rule? (Proof needs to consider all such cases).

Cases (corresponding to which was the last rule applied)

(a) Consider $\wedge i$ to be the last rule applied. ψ has to be of the form $\psi_1 \wedge \psi_2$ citing lines K_1 and K_2 respectively. K_1 and K_2 ; K. Lines 1- K_1 constitute a proof of the sequent. $\phi_1, \phi_2, ..., \phi_n \vdash \psi_1$. Likewise, Lines 1- K_2 constitute a proof of the sequent. $\phi_1, \phi_2, ..., \phi_n \vdash \psi_1$.

Induction hypothesis is that M(1),...,M(k-1) is true. By the induction hypothesis $\phi_1,\phi_2,...,\phi_n \vDash \psi_1$ holds and $\phi_1,\phi_2,...,\phi_n \vDash \psi_2$ holds.

$$1.\phi_1, \phi_2, ..., \phi_n \vDash \psi_1 2.\phi_1, \phi_2, ..., \phi_n \vDash \psi_2$$