Adaptive and Array Signal Processing

Solution to Homework 3

b)
$$1 = u^{+}u = \begin{bmatrix} u_{1}^{+} \\ u_{2}^{+} \end{bmatrix} \begin{bmatrix} u_{1} & u_{2} \end{bmatrix} = \begin{bmatrix} u_{1}^{+}u_{1} & u_{2}^{+}u_{2} \\ u_{2}^{+}u_{1} & u_{2}^{+}u_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

with
$$U_1^{\mu}U_1=1 \in \mathbb{R}^{r \times r}$$
 and $U_2^{\mu}U_2=1 \in \mathbb{R}^{(m-r) \times (m-r)}$

To show that $\chi_1^{\mu}\chi_1 = 1$ the same thing can be done with $\chi_1^{\mu}\chi = 1$

(2) a)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 $A^{\dagger} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

•
$$AA^{\dagger}A = A$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} a+c & b+d \\ a+c & b+d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} a+b+c+d & a+b+c+d \\ a+b+c+d & a+b+c+d \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
Her $a+b+c+d=1$

•
$$AA^{+} = (AA^{+})^{H}$$

$$\begin{bmatrix} a+c & b+d \end{bmatrix} = \begin{bmatrix} a+c & b+d \end{bmatrix}^{H} = \begin{bmatrix} a+c & a+c \\ b+d \end{bmatrix} = \begin{bmatrix} b+d & b+d \end{bmatrix}$$
then $a+c = b+d \implies a-b+c-d=0$

$$\begin{bmatrix} a_1b & a_1b \\ c+d & c+d \end{bmatrix} = \begin{bmatrix} a_1b & a_1b \\ c+d & c+d \end{bmatrix} = \begin{bmatrix} a_1b & c+d \\ a_1b & c+d \end{bmatrix}$$

ther
$$a+b=c+d \Rightarrow a+b-c-d=0$$

We can write all the equations as follows

b) Solving the above system of equations in terms of d we get a:d $b=\frac{1}{2}-d$ and $c=\frac{1}{2}-d$

c)
$$A^{\dagger}AA^{\dagger} = \begin{bmatrix} a+b & a+b \\ c+d & c+d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a(a+b)+c(a+b) & b(a+b)+d(a+b) \\ a(c+d)+c(c+d) & b(c+d)+d(c+d) \end{bmatrix}$$

d)
$$A^{\dagger} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \sqrt{4} & \sqrt{4} \\ \sqrt{4} & \sqrt{4} \end{bmatrix}$$
 Since $a = d = \sqrt{4}$
 $c = b = \frac{1}{2} - d = \sqrt{4}$
 $d = \sqrt{4}$

e)
$$A^{+} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Same solution!

· PM=P then I is an orthogonal projector onto a vector space

$$\begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2/5 & 4/5 \\ 0 & 36/5 & 18/5 \\ 0 & 18/5 & 9/5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2/5 & 4/5 \\ 0 & 18/5 & 9/5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2/5 & 4/5 \\ 0 & 18/5 & 9/5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2/5 & 4/5 \\ 0 & 0 & 0 \end{bmatrix}$$
Two pivots

So l has only two independent columns (or rows) so the rank l=2 and $\dim S=2$

c)
$$\dim S^{\perp} = 3 - \dim S = 1$$
 Since $P \in \mathbb{C}^3$

d) The projector
$$P^{\perp}$$
 onto S^{\perp} is given by $P^{\perp} = 1 - P$

$$P^{\perp} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 4/q & 2/q & 4/q \\ 2/q & 1/q & 2/q \\ -4/q & -2/q & 4/q \end{bmatrix} = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4/q & -2/q & 4/q \end{bmatrix}$$

$$\begin{bmatrix} A & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1/2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 which indirects that the

We can take any column of Pt and from it we ren construct a basis for Pt. Taking the first column:

$$\frac{1}{9} \begin{bmatrix} 4 \\ 2 \\ -4 \end{bmatrix}$$
 and normalizing it $\rightarrow \frac{1}{9} \sqrt{4^2 + 2^2 + (-4)^2} = \frac{2}{3}$
we then can get a bosis B

$$\beta = \frac{1}{9} \begin{bmatrix} 4 \\ 2 \\ -4 \end{bmatrix} \div \frac{2}{3} = \frac{1}{9} \begin{bmatrix} 4 \\ 2 \\ -4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

f) $S_2' = S'$ if they have the same prejector \mathcal{L} .

First we need the basis \mathcal{B}_2 of S_2' . The vectors given in (9) are already a basis for S_2 because they are arthonormal:

$$\mathcal{B}_{z}^{H}\mathcal{B}_{z} = \frac{1}{\sqrt{18}} \begin{bmatrix} 3 & 0 & 3 \\ -1 & 4 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 0 & 3 \end{bmatrix} \frac{1}{\sqrt{8}} = \frac{1}{18} \begin{bmatrix} 18 & 0 \\ 0 & 18 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore Bz is a basis for NZ. Now let us compute the projector and NZ

$$P_{2} = \mathcal{B}_{2} \mathcal{B}_{2}^{H} = \frac{1}{18} \begin{bmatrix} 3 & -1 \\ 0 & 4 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 3 \\ -1 & 4 & 7 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 10 & -4 & 8 \\ -4 & 16 & 4 \\ 8 & 4 & 10 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix}$$

So since $L_2 = L$ and the projector onto the same subspace is unique, then $S_2' = S'$

(a) à is the projection of b onto the range of A.

A basis for the range of A is U1 so

the projector can be written as

P = 4744 and we have b = PbThen let us substitute X_{LS} into X in AX = bto see if the equality holds:

 $A \times = A (A^{\dagger}b) = U_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} \times_{1} b$ $= U_{1} \times_{1} \times_{$

b) $\frac{1}{b}$ and He error $(b-\frac{1}{b})$ are orthogonal if $\frac{1}{b}$ $(b-\frac{1}{b}) = 0$

 $\hat{b}^{H}(b-\hat{b}) = (Pb)^{H}(b-Pb)$ $= b^{H}P^{M}(1-P)b$ $= b^{H}P(1-P)b$ $= b^{H}(P-P^{2})b$ $= b^{H}(P-P)b$ Since $P^{2}=P$

= 64 0 6