Convex set

2.1

According to the definition of convexity, this conclusion holds for k=2.

Suppose this conclusion holds for k(k>=2), we have:

With
$$x_1,x_2,...,x_k\in C$$
 and $\theta_1,\theta_2,...,\theta_k\in\mathbb{R}^n$ satisfy $\theta_i\geq 0$ and $\theta_1+\theta_2+\cdots+\theta_k=1$, $\theta_1x_1+\cdots+\theta_kx_k\in C$.

Then, for any $x_1,x_2,...,x_k,x_{k+1}\in C$ and $\theta_1,\theta_2,...,\theta_k,\theta_{k+1}$ satisfy $\theta_i\geq 0$ and $\theta_1+\theta_2+\cdots+\theta_k+\theta_{k+1}=1$, we have $u=\frac{\theta_1x_1+\cdots+\theta_kx_k}{\theta_1+\cdots+\theta_k}\in C,v=x_{k+1}\in C$. Let $\lambda_1=\theta_1+\cdots+\theta_k,\lambda_2=\theta_{k+1}$, then $\lambda_1+\lambda_2=1$, so $\lambda_1u+\lambda_2v\in C$, i.e. $\theta_1x_1+\cdots+\theta_kx_k+\theta_{k+1}x_{k+1}\in C$. That is, the conclusion holds for k+1.

In summary, the conclusion holds for all $k \geq 2$.

2.3

Suppose two points $x_1, x_2 \in C$.

Firstly, let's prove that $\forall p \in [0,2^k]$, $rac{p}{2^k}x_1 + (1-rac{p}{2^k})x_2 \in C$ holds for all $k \geq 1$:

Since C is midpoint convex, $rac{x_1+x_2}{2}\in C$, which means the conclusion holds for k=1.

Suppose the conclusion holds for $k(k\geq 1)$, we have: $orall p\in [0,2^k]$, $rac{p}{2^k}x_1+(1-rac{p}{2^k})x_2\in C$

Then, for $p=0,2,4,6,\cdots,2^k$, $\frac{p}{2^{k+1}}x_1+(1-\frac{p}{2^{k+1}})x_2\in C$.

For
$$p=1,3,5,\cdots,2^k-1$$
, $p=rac{p-1}{2^{k+1}}+rac{p+1}{2^{k+1}}$, so $rac{p}{2^{k+1}}x_1+(1-rac{p}{2^{k+1}})x_2=rac{1}{2}\{[rac{p-1}{2^{k+1}}x_1+(1-rac{p-1}{2^{k+1}})x_2]+[rac{p+1}{2^{k+1}}x_1+(1-rac{p+1}{2^{k+1}})x_2]\}\in C$

That is, the conclusion holds for k+1.

In summary, the conclusion holds for all $k \geq 1$.

When k becomes infinity, $\{rac{p}{2^k}|p\in[0,2^k]\}=\{x|0\leq x\leq 1\}.$

Therefore, C is convex.

2.5

The distance between these two hyperplanes is the same as the distance between $x_1=\frac{b_1}{\|a\|_2^2}a$ and $x_2=\frac{b_2}{\|a\|_2^2}a$, i.e. $d=\|x_1-x_2\|_2=\frac{|b_1-b_2|}{\|a\|_2}$.

2.8

- (a) S is a Hydrohedra. It is an intersection of some hyperplane.
- (b) S is a polyhedron. It is the solution of some linear inequalities and some linear equalities.
- (c) S is not a polyhedron. It is the intersection of a ball $\{x|\|x\|_2 \leq 1\}$ and \mathbb{R}^n_+ .
- (d) S is a polyhedron. It is the intersection of $\{x \mid |x_k| \leq 1, k=1,...,n\}$ and \mathbb{R}^n_+ .

2.10

- (a) Let $f(x)=x^TAx+b^Tx+c$, then $abla^2f(x)\succeq 0$ if $A\succeq 0$ i.e. f is convex. That means C is convex.
- (b) Best answer: I don't know.

2.12

(a) A slab is convex. Proof:

Let $S = \{x \in \mathbb{R}^n | \alpha \leq a^T x \leq \beta\}$. For any $x_1, x_2 \in S$ and $\theta \in [0, 1]$, $\theta \alpha \leq a^T \theta x_1 \leq \theta \beta$ and $(1 - \theta)\alpha \leq a^T (1 - \theta)x_2 \leq (1 - \theta)\beta$ holds. So $\alpha \leq a^T [\theta x_1 + (1 - \theta)x_2] \leq \beta$, which means $\theta x_1 + (1 - \theta)x_2 \in S$.

Therefore, S is convex.

(b) A Rectangle is convex. Proof:

Let
$$S=\{x\in\mathbb{R}^n|\alpha_i\leq x_i\leq \beta_i, i=1,...,n\}$$
. For any $x_1,x_2\in S$ and $\theta\in[0,1]$, $\theta\alpha_i\leq \theta x_{1i}\leq \theta\beta_i$ and $(1-\theta)\alpha_i\leq (1-\theta)x_{2i}\leq (1-\theta)\beta_i$ holds. So $\alpha_i\leq [\theta x_1+(1-\theta)x_2]_i\leq \beta_i$, which means $\theta x_1+(1-\theta)x_2\in S$

Therefore, S is convex.

- (c) A wedge is convex. It can be proved in the same way as above.
- (d) This set is convex. Because $\{x|\|x-x_0\|_2 \le \|x-y\|_2$ for all $y \in S\} = \bigcap_{y \in S} \{x|\|x-x_0\|_2 \le \|x-y\|_2\}$, which is an intersection of norm balls, and norm balls are convex sets.
- (e) This set is not convex. Let $n=1, S=\{2,-2\}, T=\{0\}$, then $\{x|\mathbf{dist}(x,S)\leq\mathbf{dist}(x,T)\}=\{x|x\leq-1\land x\geq1\}$, which is clearly not convex.
- (f) This set is convex. If $S_2\subseteq S_1$, then $\{x|x+S_2\subseteq S_1\}=S_1$, which is convex. Otherwise, $\{x|x+S_2\subseteq S_1\}=\emptyset$, which is also convex.
- (g) This set is convex. $S = \{x | \|x a\|_2 \le \theta \|x b\|_2\} = \{x | (1 \theta^2) x^T x 2(a \theta^2 b)^T x + (a^T a \theta^2 b^T b) \le 0\}$. If $\theta = 1$, $S = \{x | (a b)^T x + (a^T a b^T b) \le 0\}$, which represents a half space. Otherwise, $S = \{x | x^T x \frac{2(a \theta^2 b)^T x}{1 \theta^2} + \frac{a^T a \theta^2 b^T b}{1 \theta^2} \le 0\}$, which represents a ball.

2.16

For any $(x,y_1+y_2), (u,v_1+v_2) \in S$ and $\theta \in [0,1]$, there exist $(x,y_1), (u,v_1) \in S_1$, $(x,y_2), (u,v_2) \in S_2$.

Since S_1, S_2 are convex sets,

• $\theta(x,y_1) + (1-\theta)(u,v_1) = (\theta x + (1-\theta)u, \theta y_1 + (1-\theta)v_1) \in S_1$;

• $\theta(x,y_2) + (1-\theta)(u,v_2) = (\theta x + (1-\theta)u, \theta y_2 + (1-\theta)v_2) \in S_2$.

So
$$(heta x + (1- heta)u, heta(y_1+y_2) + (1- heta)(v_1+v_2)) = heta(x,y_1+y_2) + (1- heta)(u,v_1+v_2) \in S$$
.

Therefore, S is convex.

2.19

(a) $f^{-1}(C) = \{x \in \operatorname{dom} f | g^T f(x) \le h\} = \{x | g^T (Ax + b) / (c^T x + d) \le h, c^T x + d > 0\} = \{x | (A^T g - hc)^T x \le hd - g^T b, c^T x + d > 0\}$, which is an intersection of a half space and an open half space.

(b) $f^{-1}(C) = \{x \in \operatorname{dom} f | Gf(x) \leq h\} = \{x | G(Ax+b)/(c^Tx+d) \leq h, c^Tx+d > 0\} = \{(GA-hc^T)x - hd + Gb \leq 0, c^Tx+d > 0\}$, which is an intersection of a polyhedron and an open half space.

(c) $f^{-1}(C) = \{x \in \operatorname{dom} f | f(x)^T P^{-1} f(x) \le 1\} = \{x | \frac{(Ax+b)^T}{c^Tx+d} P^{-1} \frac{Ax+b}{c^Tx+d} \le 1, c^Tx+d > 0\}$, which is an intersection of an ellipsoid and an open half space.

(d) $f^{-1}(C) = \{x \in \operatorname{dom} f | f_1(x)A_1 + f_2(x)A_2 + \cdots f_n(x)A_n \leq B\} = \{x | (a_1^Tx + b_1)A_1 + (a_2^Tx + b_2)A_2 + \cdots + (a_n^Tx + b_n)A_n \leq (c^Tx + d)B, c^Tx + d > 0\}$, which is an intersection of a solution set of a linear matrix inequality and an open half space.

Convex function

3.3

g is concave.

Because f is convex, for any $f(x_1), f(x_2), \theta f(x_1) + (1-\theta)f(x_2) \geq f(\theta x_1 + (1-\theta)x_2)$.

Because f is increasing, g is increasing. So $g(\theta f(x_1)+(1-\theta)f(x_2))\geq g(f(\theta x_1+(1-\theta)x_2))=\theta x_1+(1-\theta)x_2=\theta g(f(x_1))+(1-\theta)g(f(x_2))$.

Denote $f(x_1)$ as y_1 , $f(x_2)$ as y_2 , we have $\theta g(y_1) + (1-\theta)g(y_2) \leq g(\theta y_1 + (1-\theta)y_2)$ for any y_1,y_2 . That is, g is concave.

3.5

$$F'(x) = -rac{1}{x^2}\int_0^x f(t)dt + rac{f(x)}{x}$$

$$F''(x) = rac{2}{x^3} \int_0^x f(t) dt - rac{2f(x)}{x^2} + rac{f'(x)}{x} = rac{2}{x^3} (\int_0^x f(t) dt - x f(x) + rac{x^2 f'(x)}{2}) = rac{2}{x^3} (\int_0^x f(t) dt + \int_0^x (-f(t) - t f'(t)) dt + \int_0^x (t f'(t) + \frac{t^2}{2} f''(t)) dt) = rac{1}{x^3} \int_0^x t^2 f''(t) dt$$

Because f is convex, $f''(t)\geq 0$ for $t\in \mathbf{dom}\ f$, so $F''(x)=rac{1}{x^3}\int_0^x t^2f''(t)dt\geq 0$ i.e. F(x) is convex for $x\in\mathbb{R}_{++}$.

3.6

$$\mathbf{epi}\ f = \{(x,t)|x \in \mathbf{dom}\ f, f(x) \leq t\}$$

- (a) The epigraph of f is a halfspace when f(x) satisfy the form $f(x)=a^Tx+b$: $f(x)\leq t\Leftrightarrow a^Tx+b-t\leq 0\Leftrightarrow (a^T,\frac{b}{t}-1)(x,t)^T\leq 0$
- (b) The epigraph of f is a convex cone when the following statement holds: $\forall (x_1,t_1), (x_2,t_2) \in \mathbf{epi}\ f, \forall \theta_1,\theta_2 \geq 0, \theta_1(x_1,t_1) + \theta_2(x_2,t_2) \in \mathbf{epi}\ f$

That is, for all $f(x_1) \leq t_1$ and $f(x_2) \leq t_2, f(\theta_1 x_1 + \theta_2 x_2) \leq \theta_1 t_1 + \theta_2 t_2$ holds.

Let $heta_2=0$, we have $f(heta_1x_1)\leq heta_1f(x_1)$.

Let $heta_1'=rac{1}{ heta_1}, x_1= heta_1'x_1'$, we have $f(x_1')=f(heta_1x_1)\leq heta_1f(x_1)=rac{1}{ heta_1'}f(heta_1'x_1')$ i.e. $f(heta_1'x_1')\geq heta_1'f(x_1')$.

Therefore, $f(\theta x) = \theta f(x)$.

(c) The epigraph of f is a polyhedron \Leftrightarrow \mathbf{epi} f is in the form of $\{(x,t)|(A,-c)(x,t)^T \leq b\} = \{(x,t)|\frac{a_1x-b_1}{c_1} \leq t, \frac{a_2x-b_2}{c_2} \leq t, \cdots, \frac{a_ix-b_i}{c_i} \leq t\} \Leftrightarrow f_i(x) = \frac{a_ix-b_i}{c_i}$

Firstly, prove this conclusion for n = 1:

Suppose $f: \mathbb{R} o \mathbb{R}$ is convex. Let $x,y \in \mathbf{dom}\ f$ and x < y, according to the first-order condition,

$$f(y)\geq f(x)+f'(x)(y-x), f(x)\geq f(y)+f'(y)(x-y)$$

$$\Rightarrow f'(x)(y-x) \leq f(y) - f(x) \leq f'(y)(y-x) \geq f'(x)$$

$$\Rightarrow \frac{f(y)'-f'(x)}{y-x} \geq 0$$

$$\Rightarrow f''(x) \geq 0, \forall x \in \mathbf{dom}\ f$$

Suppose $f''(x) \geq 0, orall x \in \mathbf{dom}\ f$, then for $t \in [x,y]$, $f'(t) = f'(x) + \int_x^t f''(z) dz \geq f'(x)$, so $\int_x^y f'(z) dz \geq \int_x^y f'(x) dz = f'(x)(y-x)$

$$f(y)=f(y)-f(x)-f'(x)$$
 $f(y)=\int_x^y f'(z)dz-\int_x^y f'(z)dz=0$

According to the first-order condition, f is convex.

Then for the case where $f: \mathbb{R}^n \to \mathbb{R}^n$, we can turn the scalars into vectors and get the same conclusion.

3.11

Because f is convex, $f(x) \geq f(y) + \nabla f(y)^T(x-y), f(y) \geq f(x) + \nabla f(x)^T(y-x)$

$$\Rightarrow (
abla f(x) -
abla f(y))^T (x-y) \geq 0$$
 i.e. $abla f$ is monotone.

The converse is not true:

Consider $\psi(x)=egin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} x$, then $abla \psi$ is monotone but never a gradient of any convex function.

Let $h(x)=a^Tx+b$. Because f is convex and g is concave, $S_1=\{(x,t)|f(x)\leq t\}, S_2=\{(x,t)|g(x)\geq t\}$ are convex. Because $f(x)\geq g(x)$, $S_1\cap S_2=\emptyset$. According to the separation hyperplane theorem, there exists a hyperplane $H=\{(x,t)|(a^T,u)(x^T,t)^T=b\}=\{(x,t)|t=\frac{a^Tx-b}{u}\}$ separates S_1 and S_2 , that is, there exists an affine function $h(x)=\frac{a^Tx-b}{u}$ between f and g.

3.15

(a) for
$$x>0$$
, $\lim_{lpha o 0} u_lpha(x) = \lim_{lpha o 0} rac{x^lpha - 1}{lpha} = \lim_{lpha o 0} rac{rac{d(x^lpha - 1)}{dlpha}}{rac{dlpha}{dlpha}} = \lim_{lpha o 0} x^lpha \cdot \log x = \log x = u_0(x)$

(b)
$$u_lpha'(x)=x^{lpha-1}>0, u_lpha''(x)=(lpha-1)x^{lpha-2}\leq 0\Rightarrow u_lpha$$
 is concave and monotone increasing.

$$u_lpha(1)=rac{1^lpha-1}{lpha}=0$$

3.16

(a) f(x) is convex.

$$f''(x) = e^x \ge 0$$

(b) f(x) is neither convex nor concave.

 $abla^2 f(x) = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$, which is neither positive semidefinite or negative semidefinite.

(c) f(x) is convex.

$$abla^2 f(x) = rac{1}{x_1 x_2} egin{pmatrix} rac{2}{x_1^2} & rac{1}{x_1 x_2} \ rac{1}{x_1 x_2} & rac{2}{x_2^2} \end{pmatrix} \succeq 0$$

(d) f(x) is neither convex or concave.

$$abla^2 f(x) = egin{pmatrix} 0 & rac{-1}{x_2^2} \ rac{-1}{x_2^2} & rac{2x_1}{x_2^3} \end{pmatrix}$$
 , which is neither positive semidefinite or negative semidefinite.

(e) f(x) is convex.

$$abla^2 f(x) = egin{pmatrix} rac{2}{x_2} & rac{-2x_1}{x_2^2} \ rac{-2x_1}{x_2^2} & rac{2x_1^2}{x_2^2} \end{pmatrix} = rac{2}{x_2} egin{pmatrix} 1 & 0 \ rac{-x_1}{x_2} & 0 \end{pmatrix} egin{pmatrix} 1 & rac{-x_1}{x_2} \ 0 & 0 \end{pmatrix} \succeq 0$$

(f) f(x) is concave.

$$abla^2 f(x) = egin{pmatrix} lpha(lpha-1)x_1^{lpha-2}x_2^{1-lpha} & lpha(1-lpha)x_1^{lpha-1}x_2^{-lpha} \ lpha(1-lpha)x_1^{lpha-1}x_2^{-lpha-1} \end{pmatrix} = lpha(lpha-1)x_1^lpha x_2^{1-lpha} \left(egin{pmatrix} rac{1}{x_1} & 0 \ rac{1}{x_1} & rac{1}{x_2} \end{pmatrix} \leq 0$$

3.18

(a) Let g(t)=f(Z+tV) with $Z\succ 0$ and $V\in \mathbb{S}^n$, then

$$g(t) = \mathbf{tr}((Z+tV)^{-1}) = \mathbf{tr}(Z^{-1}(I+tZ^{-rac{1}{2}}VZ^{-rac{1}{2}})^{-1}) = \mathbf{tr}(Z^{-1}Q(I+t\Lambda)^{-1}Q^T) = \sum_{i=1}^n (Q^TZ^{-1}Q)_{ii}(1+t\lambda_i)^{-1}.$$

Since $(Q^TZ^{-1}Q)_{ii}>0$, g(t) is convex. Therefore f is convex.

(b) Let g(t)=f(Z+tV) with $Z\succ 0$ and $V\in\mathbb{S}^n$, then

$$g(t) = (\det(Z+tV))^{rac{1}{n}} = (\det Z^{rac{1}{2}} \det(I+tZ^{-rac{1}{2}}VZ^{-rac{1}{2}}) \det Z^{rac{1}{2}})^{rac{1}{2}} = (\det Z)^{rac{1}{n}} \left(\prod_{i=1}^n (1+t\lambda_i)
ight)^{rac{1}{n}}.$$

Since $\det Z>0$, g(t) is concave. Therefore f is concave.

3.20

- (a) f is the composition of two convex function, a norm and an affine function.
- (b) f is the composition of $g(x)=-(\det X)^{\frac{1}{m}}$ and an affine transformation. And g can be proved to be convex.
- (c) f is the composition of $g(x) = \mathbf{tr}(X^{-1})$ and an affine transformation. And g is proved convex in 3.18(a).

- (a) f is the pointwise maximum of k functions, and these functions $\|A^{(i)}x b^{(i)}\|$ are convex because they are the composition of affine functions and norms.
- (b) f is the pointwise maximum of a series of convex functions $\{|x_{i_1}|+\cdots+|x_{i_r}|\mid 1\leq i_1< i_2<\cdots< i_r\leq n\}.$

3.22

(a) $\log \sum_{i=1}^m e^{a_i^T x + b_i}$ is the composition of a convex function and an affine function, so it's convex. i.e. $-\log \sum_{i=1}^m e^{a_i^T x + b_i}$ is concave.

Let
$$g(x) = -\log \sum_{i=1}^m e^{a_i^T x + b_i}, h(x) = -\log x$$
, then $f(x) = h(g(x))$.

Because g is concave while h is convex and decreasing, f is convex.

(b) Let
$$g_1(u,v,x)=u, g_2(u,v,x)=v-rac{x^Tx}{u}, h(x_1,x_2)=-\sqrt{x_1x_2}$$
, then $f(u,v,x)=h(g_1(u,v,x),g_2(u,v,x))$.

Because g is concave while h is convex and decreasing in both direction, f is convex.

(c) Let
$$g_1(u,v,x)=u,$$
 $g_2(u,v,x)=v-rac{x^Tx}{u},$ $h(x_1,x_2)=-\log x_1x_2$, then $f(u,v,x)=h(g_1(u,v,x),g_2(u,v,x))$.

Because g is concave while h is convex and decreasing in both direction, f is convex.

(d)
$$f(x,t) = -t^{1-rac{1}{p}} (t - rac{\|x\|_p^p}{t^{p-1}})^{rac{1}{p}}.$$

Let
$$h(x_1,x_2)=-x_1^{rac{1}{p}}x_2^{1-rac{1}{p}},g_1(x,t)=t^{1-rac{1}{p}},g_2(x,t)=t-rac{\|x\|_p^p}{t^{p-1}}$$
, then $f(x,t)=h(g_1(x,t),g_2(x,t))$.

Because g_1,g_2 are concave while h is convex and decreasing in both direction, f is convex.

(e)
$$f(x,t) = -(p-1)\log t - \log(t - \frac{\|x\|_p^p}{t^{p-1}}).$$

Let $g(x,t)=-(p-1)\log t$ and $h(x,t)=-\log(t-\frac{\|x\|_p^p}{t^{p-1}})$, then f(x,t)=g(x,t)+h(x,t), where g and h are both proved convex. So f is convex.

- (a) f(x,t) is the perspective function of a convex function $\|x\|_{p'}^p$ so it's convex.
- (b) Let $g(x,t)=rac{x^Tx}{t}$, then g is the perspective function of x^Tx , i.e. g is convex.

Since f is the composition of g and an affine transformation, f is convex.