Solutions Manual to Pattern Recognition and Machine Learning

Hiromichi Inawashiro May 24, 2025

Contents

1	Introduction	1
2	Probability Distributions	42
3	Linear Models for Regression	102
4	Linear Models for Classification	127
5	Neural Networks	153

1 Introduction

1.1

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2.$$
 (1.1)

Setting the derivative with respect to \mathbf{w} to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n).$$
 (1.2)

If

$$y(x_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \boldsymbol{\phi}(x_n), \tag{1.3}$$

then

$$\mathbf{0} = \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \left(\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(x_n) - t_n \right). \tag{1.4}$$

Therefore,

$$\left(\sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}}\right) \mathbf{w} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n). \tag{1.5}$$

Thus,

$$\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}) = \mathbf{A}^{-1} \mathbf{v}, \tag{1.6}$$

where

$$\mathbf{A} = \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}},$$

$$\mathbf{v} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n).$$
(1.7)

If

$$\phi(x_n) = \begin{bmatrix} 1 \\ x_n \\ \vdots \\ x_n^M \end{bmatrix},$$

then

$$A_{mm'} = \sum_{n=1}^{N} x_n^{m+m'},$$

$$v_m = \sum_{n=1}^{N} t_n x_n^m.$$
(1.8)

1.2

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2.$$
 (1.9)

Setting the derivative with respect to \mathbf{w} to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial y(x_n, \mathbf{w})}{\partial \mathbf{w}} (y(x_n, \mathbf{w}) - t_n) + \lambda \mathbf{w}.$$
 (1.10)

If

$$y(x_n, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \phi(x_n), \tag{1.11}$$

then

$$\mathbf{0} = \sum_{n=1}^{N} \phi(x_n) \left(\mathbf{w}^{\mathsf{T}} \phi(x_n) - t_n \right) + \lambda \mathbf{w}. \tag{1.12}$$

Therefore,

$$\left(\sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}} + \lambda \mathbf{I}\right) \mathbf{w} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n). \tag{1.13}$$

Thus,

$$\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}) = \mathbf{A}^{-1}\mathbf{v},\tag{1.14}$$

where

$$\mathbf{A} = \sum_{n=1}^{N} \boldsymbol{\phi}(x_n) \boldsymbol{\phi}(x_n)^{\mathsf{T}} + \lambda \mathbf{I},$$

$$\mathbf{v} = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(x_n).$$
(1.15)

If

$$\phi(x_n) = \begin{bmatrix} 1 \\ x_n \\ \vdots \\ x_n^M \end{bmatrix},$$

then

$$A_{mm'} = \sum_{n=1}^{N} x_n^{m+m'} + \lambda I_{mm'},$$

$$v_m = \sum_{n=1}^{N} t_n x_n^m.$$
(1.16)

1.3

Let a, o and l be the events where an apple, orange and lime are selected respectively.

(a)

The probability that an apple is selected is given by

$$p(a) = p(a|r)p(r) + p(a|b)p(b) + p(a|g)p(g).$$
(1.17)

Substituting $p(a|r) = \frac{3}{10}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{1}{2}$, $p(r) = \frac{1}{5}$, $p(a|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives

$$p(a) = \frac{17}{50}. (1.18)$$

(b)

If an orange is selected, the probability that it came from the geen box is given by

$$p(g|o) = \frac{p(g,o)}{p(o)}.$$
 (1.19)

Here,

$$p(g, o) = p(o|g)p(g),$$

$$p(o) = p(o|r)p(r) + p(o|b)p(b) + p(o|q)p(q).$$
(1.20)

Substituting $p(o|r) = \frac{2}{5}$, $p(r) = \frac{1}{5}$, $p(o|b) = \frac{1}{2}$, $p(b) = \frac{1}{5}$, $p(o|g) = \frac{3}{10}$ and $p(g) = \frac{3}{5}$ gives

$$p(g,o) = \frac{9}{50},$$

$$p(o) = \frac{9}{25}$$
(1.21)

Therefore,

$$p(g|o) = \frac{1}{2}. (1.22)$$

1.4

Let

$$x = g(y) \tag{1.23}$$

and \hat{x} and \hat{y} be the locations of the maximum of $p_x(x)$ and $p_y(y)$ respectively.

(a)

Let us assume that there exists $\epsilon > 0$ such that $g'(y) \neq 0$ for $|y - \hat{y}| < \epsilon$. Then, Taking the derivative of the transoformation

$$p_y(y) = p_x(g(y))|g'(y)|$$
 (1.24)

and substituting $y = \hat{y}$ gives

$$0 = g'(\hat{y})p'_x(g(\hat{y})) + p_x(g(\hat{y}))g''(\hat{y}).$$
 (1.25)

Therefore, in general,

$$\hat{x} \neq g\left(\hat{y}\right). \tag{1.26}$$

(b)

Let us assume that

$$g(y) = ay + b. (1.27)$$

Then, Taking the derivative of the transformation and substituting $y = \hat{y}$ gives

$$0 = p_x'\left(g\left(\hat{y}\right)\right). \tag{1.28}$$

$$\hat{x} = g\left(\hat{y}\right). \tag{1.29}$$

By the definition,

$$\operatorname{var} f(x) = \operatorname{E} (f(x) - \operatorname{E} f(x))^{2}.$$
 (1.30)

The right hand side can be written as

$$E((f(x))^{2} - 2f(x) E f(x) + (E f(x))^{2}) = E(f(x))^{2} - (E f(x))^{2}.$$
 (1.31)

Therefore,

$$var f(x) = E(f(x))^{2} - (E f(x))^{2}.$$
 (1.32)

1.6

By the definition,

$$cov(x,y) = E((x - Ex)(y - Ey)).$$
(1.33)

The right hand side can be written as

$$E xy - E (x E y) - E (y E x) + E (E x E y) = E xy - E x E y.$$
 (1.34)

The right hand side can be written as

$$\int xyp(x,y)dxdy - \int xp(x)dx \int yp(y)dy.$$
 (1.35)

If x and y are independent, by the definition,

$$f(x,y) = f(x)f(y). (1.36)$$

Then,

$$\int xyp(x,y)dxdy = \int p(x)dx \int p(y)dy.$$
 (1.37)

$$cov(x,y) = 0. (1.38)$$

(a)

Let

$$I = \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}x^2\right) dx. \tag{1.39}$$

Then,

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^{2}}\left(x^{2} + y^{2}\right)\right) dx dy. \tag{1.40}$$

By the transformation from Cartesian coordinates (x, y) to polar coordinates (r, θ) , the right hand side can be written as

$$\int_0^\infty \int_0^{2\pi} \exp\left(-\frac{1}{2\sigma^2}r^2\right) \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} dr d\theta = 2\pi \int_0^\infty \exp\left(-\frac{1}{2\sigma^2}r^2\right) r dr. \tag{1.41}$$

By the transformation $s = \frac{r}{\sigma}$, the right hand side can be written as

$$2\pi\sigma^2 \int_0^\infty \exp\left(-\frac{1}{2}s^2\right) s ds = 2\pi\sigma^2 \left[-\exp\left(-\frac{1}{2}s^2\right)\right]_0^\infty. \tag{1.42}$$

Therefore,

$$I = \left(2\pi\sigma^2\right)^{\frac{1}{2}}.\tag{1.43}$$

(b)

By the definition,

$$\mathcal{N}\left(x|\mu,\sigma^2\right) = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{1.44}$$

Then,

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = \left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx. \tag{1.45}$$

By the transformation $t = x - \mu$, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}t^2\right) dt = (2\pi\sigma^2)^{-\frac{1}{2}} I.$$
 (1.46)

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1. \tag{1.47}$$

(a)

Let x be a variable such that

$$p(x) = \mathcal{N}(x|\mu, \sigma^2). \tag{1.48}$$

Then

$$E x = \int_{-\infty}^{\infty} x \mathcal{N}(x|\mu, \sigma^2) dx.$$
 (1.49)

By the definition, the right hand side can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx.$$
 (1.50)

By the transformation $y = x - \mu$, it can be written as

$$\left(2\pi\sigma^2\right)^{-\frac{1}{2}} \int_{-\infty}^{\infty} (y+\mu) \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy. \tag{1.51}$$

Since

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} y \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = 0,$$
 (1.52)

and

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \mu \exp\left(-\frac{1}{2\sigma^2}y^2\right) dy = \mu \int_{-\infty}^{\infty} \mathcal{N}\left(y|\mu,\sigma^2\right) dy, \tag{1.53}$$

we have

$$\mathbf{E} x = \mu. \tag{1.54}$$

(b)

The property

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx = 1 \tag{1.55}$$

can be written as

$$(2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right) dx = 1.$$
 (1.56)

Taking the derivative with respect to σ^2 gives

$$(2\pi)^{-\frac{1}{2}} \left(-\frac{1}{2}\right) (\sigma^2)^{-\frac{3}{2}} \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx + (2\pi\sigma^2)^{-\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{2} (\sigma^2)^{-2} (x-\mu)^2 \exp\left(-\frac{1}{2\sigma^2} (x-\mu)^2\right) dx = 0.$$
 (1.57)

The left hand side can be written as

$$-\frac{1}{2} (\sigma^{2})^{-1} \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^{2}) dx + \frac{1}{2} (\sigma^{2})^{-2} \int_{-\infty}^{\infty} (x-\mu)^{2} \mathcal{N}(x|\mu, \sigma^{2}) dx$$

$$= -\frac{1}{2} (\sigma^{2})^{-1} + \frac{1}{2} (\sigma^{2})^{-2} \operatorname{var} x.$$
(1.58)

Therefore,

$$var x = \sigma^2. (1.59)$$

1.9

(a)

Let x be a variable such that

$$p(x) = \mathcal{N}\left(x|\mu, \sigma^2\right). \tag{1.60}$$

Setting the derivative of the right hand side with respect to x to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{1}{2}} \left(-\frac{1}{\sigma^2} (x - \mu) \right) \exp\left(-\frac{1}{2\sigma^2} (x - \mu)^2 \right). \tag{1.61}$$

Therefore,

$$mode x = \mu. (1.62)$$

(b)

Let \mathbf{x} be a variable such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$
 (1.63)

Setting the derivative of the right hand side with respect to \mathbf{x} to zero gives

$$\mathbf{0} = -(2\pi)^{-\frac{D}{2}} \left(\det \mathbf{\Sigma}\right)^{-\frac{1}{2}} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1}\right)^{\mathsf{T}}\right) (\mathbf{x} - \boldsymbol{\mu}) \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$$

$$(1.64)$$

Therefore,

$$mode \mathbf{x} = \boldsymbol{\mu}. \tag{1.65}$$

1.10

(a)

By the definition,

$$E(x+y) = \int \int (x+y)p(x,y)dxdy.$$
 (1.66)

The right hand side can be written as

$$\int x \left(\int p(x,y) dy \right) dx + \int y \left(\int p(x,y) dx \right) dy = \int x p(x) dx + \int y p(y) dy.$$
(1.67)

By the definition, the right hand side can be written as

$$\mathbf{E}\,x + \mathbf{E}\,y. \tag{1.68}$$

Therefore,

$$E(x+y) = Ex + Ey. (1.69)$$

(b)

By the definition,

$$var(x+y) = E(x+y-E(x+y))^{2}$$
 (1.70)

By the result above and the definition, the right hand side can be written as

$$E(x - Ex)^{2} + 2E((x - Ex)(y - Ey)) + E(y - Ey)^{2}$$

$$= var x + 2 cov(x, y) + var y.$$
(1.71)

By 1.6, if x and y are independent, then

$$cov(x,y) = 0. (1.72)$$

$$var(x+y) = var x + var y. (1.73)$$

Let x_1, \dots, x_N be variables such that

$$p(x_n) = \mathcal{N}\left(x_n|\mu, \sigma^2\right). \tag{1.74}$$

Then,

$$\ln p(\mathbf{x}) = -\frac{N}{2} \ln \left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$
 (1.75)

Setting the derivatives with respect to μ and σ^2 to zero gives

$$0 = \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu),$$

$$0 = -\frac{N}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{n=1}^{N} (x_n - \mu)^2.$$
(1.76)

Therefore, the maximum likelihood solutions for μ and σ^2 are given by

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n,$$

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2.$$
(1.77)

1.12

(a)

Let x_n and $x_{n'}$ be independent variables such that

$$p(x_n) = \mathcal{N}\left(x_n|\mu, \sigma^2\right),$$

$$p(x_{n'}) = \mathcal{N}\left(x_{n'}|\mu, \sigma^2\right).$$
(1.78)

Then,

$$\mathbf{E} \, x_n x_{n'} = \mu^2. \tag{1.79}$$

By the property

$$\operatorname{E} x_n^2 = \operatorname{var} x_n + \left(\operatorname{E} x_n\right)^2, \tag{1.80}$$

we have

$$E x_n^2 = \sigma^2 + \mu^2. (1.81)$$

Therefore,

$$E x_n x_{n'} = \mu^2 + I_{nn'} \sigma^2. (1.82)$$

(b)

Let x_1, \dots, x_N be independent variables such that

$$p(x_n) = \mathcal{N}\left(x_n|\mu, \sigma^2\right). \tag{1.83}$$

Then, by 1.11, the maximum likelihood solution for μ is given by

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n. \tag{1.84}$$

Then,

$$E \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} E x_n.$$
 (1.85)

Therefore,

$$E \mu_{ML} = \mu. \tag{1.86}$$

Similarly, by 1.11, the maximum likelihood solution for σ^2 is given by

$$\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2.$$
 (1.87)

Then,

$$E \sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} E (x_n - \mu_{ML})^2.$$
 (1.88)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - 2\mu_{\text{ML}}x_n + \mu_{\text{ML}}^2\right) = \frac{1}{N} \sum_{n=1}^{N} E\left(x_n^2 - \frac{2}{N} E\left(\mu_{\text{ML}}\left(\sum_{n=1}^{N} x_n\right)\right) + E\mu_{\text{ML}}^2\right).$$
(1.89)

The first term of the right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} (\mu^2 + \sigma^2) = \mu^2 + \sigma^2, \tag{1.90}$$

while the second and third terms can be writen as

$$-2 \,\mathrm{E} \,\mu_{\mathrm{ML}}^2 + \mathrm{E} \,\mu_{\mathrm{ML}}^2 = - \,\mathrm{E} \,\mu_{\mathrm{ML}}^2. \tag{1.91}$$

Here,

$$E \mu_{ML}^2 = E \left(\frac{1}{N} \sum_{n=1}^{N} x_n\right)^2.$$
 (1.92)

The right hand side can be written as

$$\frac{1}{N^2} \sum_{n=1}^{N} \operatorname{E} x_n^2 + \frac{2}{N^2} \sum_{1 \le n \le n' \le N} \operatorname{E} x_n x_{n'} = \frac{1}{N} \left(\mu^2 + \sigma^2 \right) + \frac{N-1}{N} \mu^2.$$
 (1.93)

Therefore,

$$E \mu_{\rm ML}^2 = \mu^2 + \frac{1}{N} \sigma^2. \tag{1.94}$$

Thus,

$$E \sigma_{\rm ML}^2 = \frac{N-1}{N} \sigma^2. \tag{1.95}$$

1.13

Let x_1, \dots, x_N be variables such that

$$\begin{aligned}
\mathbf{E} \, x_n &= \mu, \\
\text{var } x_n &= \sigma^2.
\end{aligned} \tag{1.96}$$

Here,

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_n-\mu)^2\right) = \frac{1}{N}\sum_{n=1}^{N}E(x_n-\mu)^2.$$
 (1.97)

The right hand side can be writen as

$$\frac{1}{N} \sum_{n=1}^{N} \operatorname{var} x_n = \sigma^2. \tag{1.98}$$

$$E\left(\frac{1}{N}\sum_{n=1}^{N}(x_n-\mu)^2\right)=\sigma^2.$$
 (1.99)

(a)

Let

$$w_{dd'}^{S} = \frac{1}{2}(w_{dd'} + w_{d'd}),$$

$$w_{dd'}^{A} = \frac{1}{2}(w_{dd'} - w_{d'd}).$$
(1.100)

Then,

$$w_{dd'} = w_{dd'}^{S} + w_{dd'}^{A},$$

$$w_{dd'}^{S} = w_{d'd}^{S},$$

$$w_{dd'}^{A} = -w_{d'd}^{A}.$$
(1.101)

(b)

Here,

$$\sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'}^{A} x_{d} x_{d'} = \frac{1}{2} \sum_{d=1}^{D} \sum_{d'=1}^{D} (w_{dd'} - w_{d'd}) x_{d} x_{d'}.$$
 (1.102)

The right hand side can be written as

$$\frac{1}{2} \left(\sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'} x_d x_{d'} - \sum_{d=1}^{D} \sum_{d'=1}^{D} w_{d'd} x_d x_{d'} \right) = 0.$$
 (1.103)

Therefore,

$$\sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'}^{A} x_{d} x_{d'} = 0.$$
 (1.104)

(c)

We have

$$\sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'} x_d x_{d'} = \sum_{d=1}^{D} \sum_{d'=1}^{D} \left(w_{dd'}^{S} + w_{dd'}^{A} \right) x_d x_{d'}.$$
 (1.105)

By (b), the right hand side can be written as

$$\sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'}^{S} x_{d} x_{d'} + \sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'}^{A} x_{d} x_{d'} = \sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'}^{S} x_{d} x_{d'}, \qquad (1.106)$$

Therefore,

$$\sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'} x_d x_{d'} = \sum_{d=1}^{D} \sum_{d'=1}^{D} w_{dd'}^{S} x_d x_{d'}.$$
 (1.107)

(d)

Since the matrix \mathbf{W}^{S} is a $D \times D$ symmetric matrix, its number of independent parameters is $\frac{D(D+1)}{2}$.

1.15

(a)

Let n(D, M) be the number of independent parameters of a polynomial in D dimensions and M orders. Then

$$n(1, M) = n(1, M - 1) = 1.$$
 (1.108)

Let us assume that

$$n(D,M) = \sum_{d=1}^{D} n(d,M-1).$$
 (1.109)

The independent terms of a polynomial in D+1 dimensions and M orders can be split into 1. the ones of a polynomial in D dimensions and M orders and 2. the ones generated by multiplying the ones in D+1 dimensions and M orders by the D+1th variable. Therefore,

$$n(D+1,M) = n(D,M) + n(D+1,M-1). (1.110)$$

Thus,

$$n(D+1,M) = \sum_{d=1}^{D+1} n(d,M-1).$$
 (1.111)

Hence, the assumption is proved by induction on D.

(b)

Note that

$$\sum_{d=1}^{1} \frac{(d+M-2)!}{(d-1)!(M-1)!} = 1.$$
 (1.112)

Let us assume that

$$\sum_{d=1}^{D} \frac{(d+M-2)!}{(d-1)!(M-1)!} = \frac{(D+M-1)!}{(D-1)!M!}.$$
 (1.113)

Then

$$\sum_{d=1}^{D+1} \frac{(d+M-2)!}{(d-1)!(M-1)!} = \frac{(D+M-1)!}{(D-1)!M!} + \frac{(D+M-1)!}{D!(M-1)!}.$$
 (1.114)

The right hand side can be written as

$$\frac{D(D+M-1)! + M(D+M-1)!}{D!M!} = \frac{(D+M)!}{D!M!}.$$
 (1.115)

Therefore, the assumption is proved by induction on D.

(c)

By 1.14(d),

$$n(D,2) = \frac{D(D+1)}{2}. (1.116)$$

Let us assume that

$$n(D,M) = \frac{(D+M-1)!}{(D-1)!M!}.$$
(1.117)

Then, by (a),

$$n(D, M+1) = \sum_{d=1}^{D} n(d, M).$$
(1.118)

By the assumption and (b), the right hand side can be written as

$$\sum_{d=1}^{D} \frac{(d+M-1)!}{(d-1)!M!} = \frac{(D+M)!}{(D-1)!(M+1)!}.$$
 (1.119)

Therefore, the assumption is proved by induction on M.

(a)

Let N(D, M) be the number of independent parameters in all of the terms up to and including the ones of D dimensions and M orders. Then, by 1.15,

$$N(D, M) = \sum_{m=0}^{M} n(D, m), \qquad (1.120)$$

where

$$n(D,m) = \frac{(D+m-1)!}{(D-1)!m!}.$$
(1.121)

(b)

By (a),

$$N(D,0) = 1. (1.122)$$

Let us assume that

$$\sum_{m=0}^{M} n(D,m) = \frac{(D+M)!}{D!M!}.$$
(1.123)

Then,

$$\sum_{m=0}^{M+1} n(D,m) = \frac{(D+M)!}{D!M!} + \frac{(D+M)!}{(D-1)!(M+1)!}.$$
 (1.124)

The right hand side can be written as

$$\frac{(M+1)(D+M)! + D(D+M)!}{D!(M+1)!} = \frac{(D+M+1)!}{D!(M+1)!}.$$
 (1.125)

Therefore, the assumption is proved by induction on M. Thus,

$$N(D, M) = \frac{(D+M)!}{D!M!}. (1.126)$$

(c)

By the approximation

$$n! \simeq n^n \exp(-n),\tag{1.127}$$

we have

$$\frac{(D+M)!}{D!M!} \simeq \frac{(D+M)^{D+M}}{D^D M^M}.$$
 (1.128)

The right hand side can be written as

$$D^{M} \left(1 + \frac{M}{D} \right)^{D} \left(\frac{1}{M} + \frac{1}{D} \right)^{M} = M^{D} \left(1 + \frac{D}{M} \right)^{M} \left(\frac{1}{D} + \frac{1}{M} \right)^{D}. \quad (1.129)^{M} = M^{D} \left(1 + \frac{D}{M} \right)^{M} \left(\frac{1}{D} + \frac{1}{M} \right)^{D}.$$

Therefore,

$$N(D,M) \simeq \begin{cases} D^M, & D \gg M, \\ M^D, & M \gg D. \end{cases}$$
 (1.130)

(d)

By (b),

$$N(10,3) = 286,$$

 $N(100,3) = 176851,$ (1.131)
 $N(1000,3) = 167668501.$

1.17

(a)

Let

$$\Gamma(x) = \int_0^\infty u^{x-1} \exp(-u) du. \tag{1.132}$$

Then

$$\Gamma(x+1) = \int_0^\infty u^x \exp(-u) du.$$
 (1.133)

The right hand side can be written as

$$[-u^{x} \exp(-u)]_{u=0}^{u=\infty} + \int_{0}^{\infty} x u^{x-1} \exp(-u) du = x\Gamma(x).$$
 (1.134)

$$\Gamma(x+1) = x\Gamma(x). \tag{1.135}$$

(b)

Since

$$\Gamma(1) = \int_0^\infty \exp(-u)du,\tag{1.136}$$

we have

$$\Gamma(1) = 0!. \tag{1.137}$$

For a positive integer x, let us assume that

$$\Gamma(x) = (x - 1)!. \tag{1.138}$$

Then,

$$\Gamma(x+1) = x\Gamma(x). \tag{1.139}$$

Therefore,

$$\Gamma(x+1) = x!. \tag{1.140}$$

Thus, the assumption is proved by induction on x.

1.18

(a)

Let us consider the transformation from Cartesian to polar coordinates

$$\prod_{d=1}^{D} \int_{-\infty}^{\infty} \exp\left(-x_d^2\right) dx_i = S_D \int_{0}^{\infty} \exp\left(-r^2\right) r^{D-1} dr, \qquad (1.141)$$

where S_D is the surface area of a sphere of unit raidus in D dimensions. By 1.7, the left hand side can be written as $\pi^{\frac{D}{2}}$. By the transformation

$$s = r^2, (1.142)$$

the right hand side can be written as

$$\frac{S_D}{2} \int_0^\infty \exp(-s) s^{\frac{D-1}{2}} s^{-\frac{1}{2}} ds = \frac{S_D}{2} \Gamma\left(\frac{D}{2}\right). \tag{1.143}$$

$$S_D = \frac{2\pi^{\frac{D}{2}}}{\Gamma\left(\frac{D}{2}\right)}. (1.144)$$

(b)

The volume of the sphere can can be written as

$$V_D = S_D \int_0^1 r^{D-1} dr. (1.145)$$

Therefore,

$$V_D = \frac{S_D}{D}. ag{1.146}$$

(c)

By (a) and (b),

$$S_2 = 2\pi,$$

 $V_2 = \pi.$ (1.147)

Similarly,

$$S_3 = 4\pi,$$

$$V_3 = \frac{4}{3}\pi.$$
(1.148)

1.19

(a)

The volume of a cube of side 2 in D dimensions is 2^{D} . Therefore, by 1.18, the ratio of the volume of the cocentric sphere of radius 1 divided by the volume of the cube is given by

$$\frac{V_D}{2^D} = \frac{\pi^{\frac{D}{2}}}{D2^{D-1}\Gamma(\frac{D}{2})}. (1.149)$$

(b)

By the Stering's formula

$$\Gamma(x+1) \simeq (2\pi)^{\frac{1}{2}} \exp(-x)x^{\frac{x+1}{2}},$$
 (1.150)

we have

$$\frac{V_D}{2^D} \simeq \frac{\pi^{\frac{D}{2}}}{D2^{D-1}(2\pi)^{\frac{1}{2}} \exp\left(1 - \frac{D}{2}\right) \left(\frac{D}{2} - 1\right)^{\frac{D}{4}}}.$$
 (1.151)

The right hand side can be written as

$$\frac{1}{2e(2\pi)^{\frac{1}{2}}} \frac{1}{D} \left(\frac{e^2 \pi^2}{8D - 16} \right)^{\frac{D}{4}}.$$
 (1.152)

Therefore,

$$\lim_{D \to \infty} \frac{V_D}{2^D} = 0. \tag{1.153}$$

(c)

The ratio of the distance from the center of the cube to one of the corners divided by the perpendicular distance to one of the sides is given by

$$\frac{\sqrt{\sum_{i=1}^{D} 1^2}}{1} = \sqrt{D}.\tag{1.154}$$

Therefore, the ratio goes to ∞ as $D \to \infty$.

1.20

(a)

For a vector \mathbf{x} in D dimensions, let

$$p(\mathbf{x}) = (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{\|\mathbf{x}\|^2}{2\sigma^2}\right). \tag{1.155}$$

Then

$$\int_{r \le \|\mathbf{x}\| \le r + \epsilon} p(\mathbf{x}) d\mathbf{x} = \int_{r}^{r + \epsilon} \int (2\pi\sigma^{2})^{-\frac{D}{2}} \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) J dr' d\phi, \qquad (1.156)$$

where ϕ is the vector of the angular components of the polar coordinate and J is the Jacobian of the transformation from the Cartesian to polar coordinate. For a sufficiently small ϵ , the right hand side can be approximated as

$$(2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \int_r^{r+\epsilon} \int J dr' d\boldsymbol{\phi}$$

$$= (2\pi\sigma^2)^{-\frac{D}{2}} \exp\left(-\frac{r^2}{2\sigma^2}\right) \int_{r \le \|\mathbf{x}\| \le r+\epsilon} d\mathbf{x}.$$
(1.157)

Therefore,

$$\int_{r < \|\mathbf{x}\| \le r + \epsilon} p(\mathbf{x}) d\mathbf{x} \simeq p(r) \epsilon, \qquad (1.158)$$

where

$$p(r) = (2\pi\sigma^2)^{-\frac{D}{2}} S_D r^{D-1} \exp\left(-\frac{r^2}{2\sigma^2}\right),$$
 (1.159)

and S_D is the surface area of a unit sphere in D dimensions.

(b)

Setting the derivative of p(r) to zero gives

$$0 = (2\pi\sigma^2)^{-\frac{D}{2}} S_D \left((D-1)r^{D-2} - \frac{r^D}{\sigma^2} \right) \exp\left(-\frac{r^2}{2\sigma^2} \right).$$
 (1.160)

Therefore, p(r) is maximised at a sigle stationary point

$$\hat{r} = \sqrt{D - 1}\sigma. \tag{1.161}$$

(c)

By the expression of p(r) above,

$$\frac{p(\hat{r}+\epsilon)}{p(\hat{r})} = \left(\frac{\hat{r}+\epsilon}{\hat{r}}\right)^{D-1} \exp\left(-\frac{2\hat{r}\epsilon+\epsilon^2}{2\sigma^2}\right). \tag{1.162}$$

Using the expression of \hat{r} above, the right hand side can be written as

$$\exp\left((D-1)\ln\left(1+\frac{\epsilon}{\hat{r}}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right)$$

$$= \exp\left(\frac{\hat{r}^2}{\sigma^2}\ln\left(1+\frac{\epsilon}{\hat{r}}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right). \tag{1.163}$$

By the Taylor series

$$\ln(1+x) = x - \frac{1}{2}x^2 + o(x^3), \qquad (1.164)$$

the right hand side can be approximated as

$$\exp\left(\frac{\hat{r}^2}{\sigma^2}\left(\frac{\epsilon}{\hat{r}} - \frac{\epsilon^2}{2\hat{r}^2}\right) - \frac{2\hat{r}\epsilon + \epsilon^2}{2\sigma^2}\right) = \exp\left(-\frac{\epsilon^2}{\sigma^2}\right). \tag{1.165}$$

$$p(\hat{r} + \epsilon) \simeq p(\hat{r}) \exp\left(-\frac{\epsilon^2}{\sigma^2}\right).$$
 (1.166)

(d)

Let a vector of length \hat{r} be $\hat{\mathbf{r}}$. Then, by the definition of $p(\mathbf{x})$,

$$\frac{p(\mathbf{0})}{p(\hat{\mathbf{r}})} = \exp\left(\frac{\hat{r}^2}{2\sigma^2}\right). \tag{1.167}$$

Substituting the expression of \hat{r} above, the right hand side can be written as $\exp\left(\frac{D-1}{2}\right)$. Therefore,

$$\frac{p(\mathbf{0})}{p(\hat{\mathbf{r}})} = \exp\left(\frac{D-1}{2}\right). \tag{1.168}$$

1.21

(a)

If $0 \le a \le b$, then

$$0 \le a(b-a). \tag{1.169}$$

Therefore,

$$a \le (ab)^{\frac{1}{2}}.\tag{1.170}$$

(b)

For a two-class classification problem of \mathbf{x} , let the classes be \mathcal{C}_1 and \mathcal{C}_2 and let the decision regions be \mathcal{R}_1 and \mathcal{R}_2 . Let us choose the decision regions to minimise the probability of misclassification. Then,

$$p(\mathbf{x}, \mathcal{C}_1) > p(\mathbf{x}, \mathcal{C}_2) \Rightarrow \mathbf{x} \in \mathcal{C}_1,$$

$$p(\mathbf{x}, \mathcal{C}_2) > p(\mathbf{x}, \mathcal{C}_1) \Rightarrow \mathbf{x} \in \mathcal{C}_2.$$
(1.171)

Then, by (a),

$$\int_{\mathcal{R}_{1}} p(\mathbf{x}, \mathcal{C}_{2}) d\mathbf{x} \leq \int_{\mathcal{R}_{1}} \left(p(\mathbf{x}, \mathcal{C}_{1}) p(\mathbf{x}, \mathcal{C}_{2}) \right)^{\frac{1}{2}} d\mathbf{x},
\int_{\mathcal{R}_{2}} p(\mathbf{x}, \mathcal{C}_{1}) d\mathbf{x} \leq \int_{\mathcal{R}_{2}} \left(p(\mathbf{x}, \mathcal{C}_{1}) p(\mathbf{x}, \mathcal{C}_{2}) \right)^{\frac{1}{2}} d\mathbf{x}.$$
(1.172)

$$\int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x} \le \int \left(p(\mathbf{x}, \mathcal{C}_1) p(\mathbf{x}, \mathcal{C}_2) \right)^{\frac{1}{2}} d\mathbf{x}. \tag{1.173}$$

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$
 (1.174)

If

$$L_{kj} = 1 - I_{kj}, (1.175)$$

then the right hand side can be written as

$$\sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} \left(p(\mathbf{x}, \mathcal{C}_{k}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x} = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} p(\mathbf{x}, \mathcal{C}_{k}) - p(\mathbf{x}, \mathcal{C}_{j}) \right) d\mathbf{x}.$$
(1.176)

The right hand side can be written as

$$\sum_{j} \int_{\mathcal{R}_{j}} (p(\mathbf{x}) - p(\mathbf{x}, \mathcal{C}_{j})) d\mathbf{x} = 1 - \sum_{j} \int_{\mathcal{R}_{j}} p(\mathbf{x}, \mathcal{C}_{j}) d\mathbf{x}.$$
 (1.177)

Therefore,

$$EL = 1 - \sum_{j} \int_{\mathcal{R}_{j}} p(\mathcal{C}_{j}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
 (1.178)

Thus, minimising EL reduces to choosing the criterion to maximise the posterior probatility $p(C_j|\mathbf{x})$.

1.23

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$
 (1.179)

The right hand side can be written as

$$\sum_{j} \int_{\mathcal{R}_{j}} \sum_{k} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x} = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} L_{kj} p(\mathcal{C}_{k} | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.180)

Therefore.

$$EL = \sum_{j} \int_{\mathcal{R}_{j}} \left(\sum_{k} L_{kj} p(\mathcal{C}_{k} | \mathbf{x}) \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.181)

Thus, minimising EL reduces to minimising $\sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$.

1.24 (Incomplete)

Let

$$EL = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x} + \lambda \int_{\forall kp(\mathcal{C}_{k}|\mathbf{x}) < \theta} p(\mathbf{x}) d\mathbf{x}.$$
 (1.182)

1.25

Let

$$EL(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
 (1.183)

Setting the derivative with respect to y(x) to zero gives

$$\mathbf{0} = 2 \int (\mathbf{y}(\mathbf{x}) - \mathbf{t}) p(\mathbf{x}, \mathbf{t}) d\mathbf{t}. \tag{1.184}$$

The integral of the right hand side can be written as

$$\mathbf{y}(\mathbf{x}) \int p(\mathbf{x}, \mathbf{t}) d\mathbf{t} - \int \mathbf{t} p(\mathbf{x}, \mathbf{t}) d\mathbf{t} = \mathbf{y}(\mathbf{x}) p(\mathbf{x}) - p(\mathbf{x}) \int \mathbf{t} p(\mathbf{t}|\mathbf{x}) d\mathbf{t}. \quad (1.185)$$

The integral in the second term of the right hand side can be written as $E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})$. Therefore, the right hand side can be written as

$$\mathbf{0} = p(\mathbf{x}) \left(\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) \right). \tag{1.186}$$

Thus,

$$\underset{\mathbf{y}(\mathbf{x})}{\operatorname{argmin}} E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}). \tag{1.187}$$

For a single target variable t, it reduces to

$$\underset{\mathbf{y}(\mathbf{x})}{\operatorname{argmin}} \, \mathbf{E} \, L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \mathbf{E}_t(t|\mathbf{x}). \tag{1.188}$$

1.26

Let

$$E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
 (1.189)

The right hand side can be written as

$$\int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) + \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}$$

$$= \int \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}$$

$$+ 2 \int \int (\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}))^{\mathsf{T}} (\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}) p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}$$

$$+ \int \int \|\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^{2} p(\mathbf{x}, \mathbf{t}) d\mathbf{x} d\mathbf{t}.$$
(1.190)

Let us look at each term of the right hand side. The first term can be written

$$\int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} \left(\int p(\mathbf{x}, \mathbf{t}) d\mathbf{t} \right) d\mathbf{x} = \int \|\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}) d\mathbf{x}.$$
(1.191)

The integral of the second term can be written as

$$\int (\mathbf{y}(\mathbf{x}) - \mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}))^{\mathsf{T}} \left(\int (\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}) p(\mathbf{t}|\mathbf{x}) d\mathbf{t} \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.192)

Since

$$\int E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})p(\mathbf{t}|\mathbf{x})d\mathbf{t} = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\frac{\int p(\mathbf{x},\mathbf{t})d\mathbf{t}}{p(\mathbf{x})},
\int \mathbf{t}p(\mathbf{t}|\mathbf{x})d\mathbf{t} = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}),$$
(1.193)

the second term is zero. The third term can be written as

$$\int \left(\int \|\mathbf{E}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) - \mathbf{t}\|^2 p(\mathbf{t}|\mathbf{x}) d\mathbf{t} \right) p(\mathbf{x}) d\mathbf{x} = \int \operatorname{var}_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
 (1.194)

Therefore,

$$E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = \int \|\mathbf{y}(\mathbf{x}) - E_{\mathbf{t}}(\mathbf{t}|\mathbf{x})\|^{2} p(\mathbf{x}) d\mathbf{x} + \int var_{\mathbf{t}}(\mathbf{t}|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}. \quad (1.195)$$

Thus,

$$\underset{\mathbf{y}(\mathbf{x})}{\operatorname{argmin}} E L(\mathbf{t}, \mathbf{y}(\mathbf{x})) = E_{\mathbf{t}}(\mathbf{t}|\mathbf{x}). \tag{1.196}$$

1.27 (Incomplete)

(a)

Let

$$EL_{q} = \int \int |y(\mathbf{x}) - t|^{q} p(\mathbf{x}, t) d\mathbf{x} dt.$$
 (1.197)

Setting the derivative with respect to $y(\mathbf{x})$ to zero gives

$$0 = qp(\mathbf{x}) \int |y(\mathbf{x}) - t|^{q-1} \operatorname{sign}(y(\mathbf{x}) - t)p(t|\mathbf{x})dt.$$
 (1.198)

Therefore,

$$\underset{y(\mathbf{x})}{\operatorname{argmin}} \operatorname{E} L_q = \left\{ y(\mathbf{x}) \mid \int |y(\mathbf{x}) - t|^{q-1} \operatorname{sign}(y(\mathbf{x}) - t) p(t|\mathbf{x}) dt = 0 \right\}.$$
(1.199)

(b)

We have

$$EL_1 = \int \left(\int \operatorname{sign}(y(\mathbf{x}) - t) p(t|\mathbf{x}) dt \right) p(\mathbf{x}) d\mathbf{x}.$$
 (1.200)

The integral of the right hand side with respect to t can be written as

$$\int_{y(\mathbf{x})}^{\infty} p(t|\mathbf{x})dt - \int_{-\infty}^{y(\mathbf{x})} p(t|\mathbf{x})dt.$$
 (1.201)

Therefore,

$$\underset{y(\mathbf{x})}{\operatorname{argmin}} E L_1 = \operatorname{median}(t|\mathbf{x}). \tag{1.202}$$

(c)

We have

$$\lim_{q \to 0} \left(\underset{y(\mathbf{x})}{\operatorname{argmin}} \, \mathbf{E} \, L_q \right) = \operatorname{mode}(t|\mathbf{x})? \tag{1.203}$$

(a)

Let us assume that

$$p(x,y) = p(x)p(y) \Rightarrow h(x,y) = h(x) + h(y).$$
 (1.204)

Then,

$$h\left(p^2\right) = 2h(p). \tag{1.205}$$

Let us assume that, for a positive integer n,

$$h\left(p^{n}\right) = nh(p). \tag{1.206}$$

Then, by the first assumption,

$$h(p^{n+1}) = h(p^n) + h(p),$$
 (1.207)

so that

$$h(p^{n+1}) = (n+1)h(p).$$
 (1.208)

Therefore, the second assumption is proved by induction on n.

(b)

For positive integers m and n,

$$h\left(p^{n}\right) = h\left(p^{\frac{n}{m}m}\right). \tag{1.209}$$

By the second assumption in (a), the left hand side can be written as nh(p). By the first assumption in (a), the right hand side can be written as $mh\left(p^{\frac{n}{m}}\right)$. Therefore,

$$h\left(p^{\frac{n}{m}}\right) = \frac{n}{m}h(p). \tag{1.210}$$

(c)

By the continuity, for a positive real number a,

$$h\left(p^{a}\right) = ah(p). \tag{1.211}$$

Taking the derivative with respect to a and substituting a = 1 gives

$$(p \ln p)h'(p) = h(p).$$
 (1.212)

Then,

$$\int \frac{h'(p)}{h(p)} dp = \int \frac{1}{p \ln p} dp + \text{const}.$$
 (1.213)

Ignorting the constants, the left hand side can be written as $\ln h(p)$ and the right hand side can be written as $\ln(\ln p)$. Therefore,

$$h(p) \propto \ln p. \tag{1.214}$$

1.29

Let x be an M-state discrete random variable. Then, by the definition, the entropy is given by

$$H(x) = -\sum_{m=1}^{M} p(x_m) \ln p(x_m), \qquad (1.215)$$

where

$$\sum_{m=1}^{M} p(x_m) = 1. (1.216)$$

By the Jensen's inequality,

$$\sum_{m=1}^{M} p(x_i) \ln \frac{1}{p(x_m)} \le \ln \left(\sum_{m=1}^{M} 1 \right).$$
 (1.217)

Therefore,

$$H(x) \le \ln M. \tag{1.218}$$

1.30

Let

$$p(x) = \mathcal{N}(x|\mu, \sigma^2),$$

$$q(x) = \mathcal{N}(x|m, s^2).$$
(1.219)

Then, by the definition, the Kullback-Leibler divergence is given by

$$KL(p||q) = -\int p(x) \ln \frac{q(x)}{p(x)} dx. \qquad (1.220)$$

The right hand side can be written as

$$-\int_{-\infty}^{\infty} p(x) \ln \frac{(2\pi s^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-m)^2}{2s^2}\right)}{(2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)} dx$$

$$= -\int_{-\infty}^{\infty} p(x) \left(-\frac{1}{2} \ln \frac{s^2}{\sigma^2} - \frac{(x-m)^2}{2s^2} + \frac{(x-\mu)^2}{2\sigma^2}\right) dx.$$
(1.221)

The right hand side can be written as

$$\ln \frac{s}{\sigma} \int_{-\infty}^{\infty} p(x)dx + \frac{1}{2s^2} \int_{-\infty}^{\infty} (x-m)^2 p(x)dx - \frac{1}{2\sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 p(x)dx. \quad (1.222)$$

The first term can be written as $\ln \frac{s}{\sigma}$. The second term can be written as

$$\frac{1}{2s^2} \int_{-\infty}^{\infty} (x - \mu + \mu - m)^2 p(x) dx = \frac{\sigma^2 + (\mu - m)^2}{2s^2}.$$
 (1.223)

The third term can be written as $-\frac{1}{2}$. Therefore,

$$KL(p||q) = \ln \frac{s}{\sigma} + \frac{\sigma^2 + (\mu - m)^2}{2s^2} - \frac{1}{2}.$$
 (1.224)

1.31

Let \mathbf{x} and \mathbf{y} be two variables. Then, by the definition, the entropies are given by

$$H(\mathbf{x}) = -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x},$$

$$H(\mathbf{y}) = -\int p(\mathbf{y}) \ln p(\mathbf{y}) d\mathbf{y},$$

$$H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
(1.225)

Note that

$$H(\mathbf{x}) = -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}\right) \ln p(\mathbf{x}) d\mathbf{x},$$

$$H(\mathbf{y}) = -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{x}\right) \ln p(\mathbf{y}) d\mathbf{y}.$$
(1.226)

Therefore,

$$H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y}.$$
 (1.227)

Since

$$\int \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = 1, \tag{1.228}$$

The Jensen's inequality can be used to write that

$$-\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y} \ge -\ln \left(\int \int p(\mathbf{x})p(\mathbf{y}) d\mathbf{x} d\mathbf{y} \right). \quad (1.229)$$

The right hand side can be written as

$$-\ln\left(\int p(\mathbf{x})d\mathbf{x}\int p(\mathbf{y})d\mathbf{y}\right) = 0. \tag{1.230}$$

Therefore,

$$H(\mathbf{x}, \mathbf{y}) \le H(\mathbf{x}) + H(\mathbf{y}). \tag{1.231}$$

1.32

Let \mathbf{x} be a vector and let

$$\mathbf{y} = \mathbf{A}\mathbf{x},\tag{1.232}$$

where \mathbf{A} is a nonsingular matrix. Since

$$1 = \int p_x(\mathbf{x}) d\mathbf{x} = \int p_x \left(\mathbf{A}^{-1} \mathbf{y} \right) \left| \det \mathbf{A}^{-1} \right| d\mathbf{y}, \qquad (1.233)$$

we have

$$p_y(\mathbf{y}) = p_x \left(\mathbf{A}^{-1} \mathbf{y} \right) \left| \det \mathbf{A}^{-1} \right|, \tag{1.234}$$

so that

$$\ln p_y(\mathbf{y}) = \ln p_x \left(\mathbf{A}^{-1} \mathbf{y} \right) - \ln |\det \mathbf{A}|. \tag{1.235}$$

By the definition, the entropy is given by

$$H(\mathbf{y}) = -\int p_y(\mathbf{y}) \ln p_y(\mathbf{y}) d\mathbf{y}. \tag{1.236}$$

Then, the right hand side can be written as

$$-\int p_y(\mathbf{y}) \ln p_x \left(\mathbf{A}^{-1}\mathbf{y}\right) d\mathbf{y} + \ln\left|\det \mathbf{A}\right| \int p_y(\mathbf{y}) d\mathbf{y}. \tag{1.237}$$

By the transformation

$$\mathbf{x} = \mathbf{A}^{-1} \mathbf{y},\tag{1.238}$$

the first term can be written as

$$-\int p_y(\mathbf{A}\mathbf{x})\ln p_x(\mathbf{x})|\det \mathbf{A}|d\mathbf{x}.$$
 (1.239)

Since

$$1 = \int p_y(\mathbf{y})d\mathbf{y} = \int p_y(\mathbf{A}\mathbf{x})|\det \mathbf{A}|d\mathbf{x}, \qquad (1.240)$$

we have

$$p_x(\mathbf{x}) = p_y(\mathbf{A}\mathbf{x})|\det \mathbf{A}|. \tag{1.241}$$

Then, the first term can be written as

$$-\int p_x(\mathbf{x}) \ln p_x(\mathbf{x}) d\mathbf{x} = \mathbf{H}(\mathbf{x}). \tag{1.242}$$

Therefore,

$$H(\mathbf{y}) = H(\mathbf{x}) + \ln|\det \mathbf{A}|. \tag{1.243}$$

1.33

Let x and y be two discrete variables with K and L states. By the definition, the conditional entropy is given by

$$H(y|x) = -\sum_{k=1}^{K} \sum_{l=1}^{L} p(x_k, y_l) \ln p(y_l|x_k).$$
 (1.244)

If H(y|x) is zero, then

$$0 = -\sum_{k=1}^{K} p(x_k) \sum_{l=1}^{L} p(y_l|x_k) \ln p(y_l|x_k).$$
 (1.245)

Since

$$p(x_k) \ge 0,$$

 $p(y_l|x_k) \ln p(y_l|x_k) \le 0,$ (1.246)

the equation reduces to

$$p(y_l|x_k) \ln p(y_l|x_k) = 0. (1.247)$$

Then, $p(y_l|x_k)$ is zero or one. Therefore, since

$$\sum_{l=1}^{L} p(y_l|x_k) = 1, (1.248)$$

we have

$$p(y_l|x_k) = \begin{cases} 1, & \text{if } K = 1, \\ 0, & \text{otherwise.} \end{cases}$$
 (1.249)

1.34

Let x be a variable. By the definition, the entropy is given by

$$H(x) = -\int_{-\infty}^{\infty} p(x) \ln p(x) dx. \tag{1.250}$$

In order to maximise H(x) with the constratints

$$\int_{-\infty}^{\infty} p(x)dx = 1,$$

$$\int_{-\infty}^{\infty} xp(x)dx = \mu,$$

$$\int_{-\infty}^{\infty} (x - \mu)^2 p(x)dx = \sigma^2,$$
(1.251)

let

$$L(p) = H(x) + \lambda_1 \left(\int_{-\infty}^{\infty} p(x)dx - 1 \right) + \lambda_2 \left(\int_{-\infty}^{\infty} xp(x)dx - \mu \right) + \lambda_3 \left(\int_{-\infty}^{\infty} (x - \mu)^2 p(x)dx - \sigma^2 \right).$$

$$(1.252)$$

Setting the variation with respect to p to zero gives

$$0 = -\ln p - 1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2. \tag{1.253}$$

Therefore,

$$p(x) = \exp(-1 + \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2),$$
 (1.254)

so that

$$p(x) = c \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right),$$
 (1.255)

where

$$c = \exp\left(-1 + \lambda_1 - \frac{\lambda_2^2}{4\lambda_3}\right). \tag{1.256}$$

Substituting it to the constraints gives

$$c \int_{-\infty}^{\infty} \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = 1,$$

$$c \int_{-\infty}^{\infty} x \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = \mu,$$

$$c \int_{-\infty}^{\infty} (x - \mu)^2 \exp\left(\lambda_3 \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3}\right)\right)^2\right) dx = \sigma^2.$$

$$(1.257)$$

By the transformation

$$y = \sqrt{-\lambda_3} \left(x - \left(\mu - \frac{\lambda_2}{2\lambda_3} \right) \right), \tag{1.258}$$

they can be written as

$$c \int_{-\infty}^{\infty} \exp(-y^2) (-\lambda_3)^{-\frac{1}{2}} dy = 1,$$

$$c \int_{-\infty}^{\infty} \left((-\lambda_3)^{-\frac{1}{2}} y + \mu - \frac{\lambda_2}{2\lambda_3} \right) \exp(-y^2) (-\lambda_3)^{-\frac{1}{2}} dy = \mu,$$

$$c \int_{-\infty}^{\infty} \left((-\lambda_3)^{-\frac{1}{2}} y - \frac{\lambda_2}{2\lambda_3} \right)^2 \exp(-y^2) (-\lambda_3)^{-\frac{1}{2}} dy = \sigma^2.$$
(1.259)

Since

$$\int_{-\infty}^{\infty} \exp(-y^2) dy = \Gamma\left(\frac{1}{2}\right),$$

$$\int_{-\infty}^{\infty} y \exp(-y^2) dy = 0,$$

$$\int_{-\infty}^{\infty} y^2 \exp(-y^2) dy = \Gamma\left(\frac{3}{2}\right),$$
(1.260)

they can be written as

$$c(-\lambda_3)^{-\frac{1}{2}}\Gamma\left(\frac{1}{2}\right) = 1,$$

$$c\left(\mu - \frac{\lambda_2}{2\lambda_3}\right)(-\lambda_3)^{-\frac{1}{2}}\Gamma\left(\frac{1}{2}\right) = \mu,$$

$$c\left((-\lambda_3)^{-\frac{3}{2}}\Gamma\left(\frac{3}{2}\right) + (-\lambda_3)^{-\frac{1}{2}}\frac{\lambda_2^2}{4\lambda_3^2}\Gamma\left(\frac{1}{2}\right)\right) = \sigma^2.$$

$$(1.261)$$

Then,

$$\lambda_1 = 1 - \frac{1}{2} \ln \left(2\pi \sigma^2 \right),$$

$$\lambda_2 = 0,$$

$$\lambda_3 = -\frac{1}{2\sigma^2}.$$
(1.262)

Therefore,

$$p(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$
 (1.263)

1.35

Let x be a variable such that

$$p(x) = \mathcal{N}\left(x|\mu, \sigma^2\right). \tag{1.264}$$

Then, by the definition, the entropy is given by

$$H(x) = -\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \ln \mathcal{N}\left(x|\mu,\sigma^2\right) dx.$$
 (1.265)

The right hand side can be written as

$$-\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) \left(-\frac{1}{2}\ln\left(2\pi\sigma^2\right) - \frac{1}{2\sigma^2}(x-\mu)^2\right) dx$$

$$= \frac{1}{2}\ln\left(2\pi\sigma^2\right) \int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^2\right) dx + \frac{1}{2\sigma^2} \int_{-\infty}^{\infty} (x-\mu)^2 \mathcal{N}\left(x|\mu,\sigma^2\right) dx.$$
(1.266)

$$H(x) = \frac{1}{2} (1 + \ln(2\pi\sigma^2)).$$
 (1.267)

1.36 (Incomplete)

Let f be a strictly convex function. Then, by the definition,

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b), \tag{1.268}$$

where $a \leq b$ and $0 \leq \lambda \leq 1$. Let

$$x = \lambda a + (1 - \lambda)b. \tag{1.269}$$

Then, the inequality can be written as

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b).$$
 (1.270)

Let

$$g(x) = \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b) - f(x). \tag{1.271}$$

Then,

$$g(x) \ge 0. \tag{1.272}$$

Additionally, for x > a,

$$g(x) = (x - a) \left(\frac{f(b) - f(a)}{b - a} - \frac{f(x) - f(a)}{x - a} \right).$$
 (1.273)

By the mean value theorem, there exists c and y such that $a \leq c \leq b$, $a \leq y \leq x$ and

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

$$f'(y) = \frac{f(x) - f(a)}{x - a}.$$
(1.274)

Then, for x > a, the inequality reduces to

$$f'(y) \le f'(c). \tag{1.275}$$

1.37

Let \mathbf{x} and \mathbf{y} be two variables. Then, by the definition, the entropy is given by

$$H(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
 (1.276)

The right hand side can be written as

$$-\int \int p(\mathbf{x}, \mathbf{y}) \left(\ln p(\mathbf{y}|\mathbf{x}) + \ln p(\mathbf{x}) \right) d\mathbf{x} d\mathbf{y}$$

$$= -\int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{y}|\mathbf{x}) d\mathbf{x} d\mathbf{y} - \int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) \ln p(\mathbf{x}) d\mathbf{x}.$$
(1.277)

By the definition, the first and second terms of the right hand side can be written as H(y|x) and H(x). Therefore,

$$H(\mathbf{x}, \mathbf{y}) = H(\mathbf{y}|\mathbf{x}) + H(\mathbf{x}). \tag{1.278}$$

1.38

Let f be a strictly convex function. Then, by the definition,

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2),$$
 (1.279)

where $0 \le \lambda \le 1$. Let us assume that

$$f\left(\sum_{m=1}^{M} \lambda_m x_m\right) \le \sum_{m=1}^{M} \lambda_m f(x_m),\tag{1.280}$$

where $\lambda_m \geq 0$ and

$$\sum_{m=1}^{M} \lambda_m = 1. (1.281)$$

Here, let $\lambda_m \geq 0$ and

$$\sum_{m=1}^{M+1} \lambda_m = 1. \tag{1.282}$$

Then, by the definition,

$$f\left(\sum_{m=1}^{M+1} \lambda_m x_m\right) \le \lambda_{M+1} f(x_{M+1}) + (1 - \lambda_{M+1}) f\left(\sum_{m=1}^{M} \frac{\lambda_m}{1 - \lambda_{M+1}} x_m\right). \tag{1.283}$$

By the assumption,

$$f\left(\sum_{m=1}^{M} \frac{\lambda_m}{1 - \lambda_{M+1}} x_m\right) \le \sum_{m=1}^{M} \frac{\lambda_m}{1 - \lambda_{M+1}} f(x_m). \tag{1.284}$$

Then,

$$f\left(\sum_{m=1}^{M+1} \lambda_m x_m\right) \le \lambda_{M+1} f(x_{M+1}) + (1 - \lambda_{M+1}) \sum_{m=1}^{M} \frac{\lambda_m}{1 - \lambda_{M+1}} f(x_m). \quad (1.285)$$

Then,

$$f\left(\sum_{m=1}^{M+1} \lambda_m x_m\right) \le \sum_{m=1}^{M+1} \lambda_m f(x_m). \tag{1.286}$$

Therefore, the assumption is proved by induction on M.

1.39

Let x and y be two binary variables where

$$p(x = 0, y = 0) = \frac{1}{3},$$

$$p(x = 0, y = 1) = \frac{1}{3},$$

$$p(x = 1, y = 0) = 0,$$

$$p(x = 1, y = 1) = \frac{1}{3}.$$
(1.287)

(a)

By the definition, the entropy is given by

$$H(x) = -\sum p(x) \ln p(x). \tag{1.288}$$

By the distribution,

$$p(x = 0) = \frac{2}{3},$$

$$p(x = 1) = \frac{1}{3}.$$
(1.289)

$$H(x) = \ln 3 - \frac{2}{3} \ln 2. \tag{1.290}$$

(b)

By the definition, the entropy is given by

$$H(y) = -\sum p(y) \ln p(y).$$
 (1.291)

By the distribution,

$$p(y = 0) = \frac{1}{3},$$

$$p(y = 1) = \frac{2}{3}.$$
(1.292)

Therefore,

$$H(y) = \ln 3 - \frac{2}{3} \ln 2. \tag{1.293}$$

(c)

By the definition, the conditional entropy is given by

$$H(y|x) = -\sum p(x,y) \ln p(y|x).$$
 (1.294)

By the definition,

$$p(y = 0|x = 0) = \frac{p(x = 0, y = 0)}{p(x = 0)},$$

$$p(y = 0|x = 1) = \frac{p(x = 1, y = 0)}{p(x = 1)},$$

$$p(y = 1|x = 0) = \frac{p(x = 0, y = 1)}{p(x = 0)},$$

$$p(y = 1|x = 1) = \frac{p(x = 1, y = 1)}{p(x = 1)}.$$
(1.295)

Then, by the distribution,

$$p(y = 0|x = 0) = \frac{1}{2},$$

$$p(y = 0|x = 1) = 0,$$

$$p(y = 1|x = 0) = \frac{1}{2},$$

$$p(y = 1|x = 1) = 1.$$
(1.296)

$$H(y|x) = \frac{2}{3} \ln 2. \tag{1.297}$$

(d)

By the definition, the conditional entropy is given by

$$H(x|y) = -\sum p(x,y) \ln p(x|y).$$
 (1.298)

By the definition,

$$p(x = 0|y = 0) = \frac{p(x = 0, y = 0)}{p(y = 0)},$$

$$p(x = 0|y = 1) = \frac{p(x = 0, y = 1)}{p(y = 1)},$$

$$p(x = 1|y = 0) = \frac{p(x = 1, y = 0)}{p(y = 0)},$$

$$p(x = 1|y = 1) = \frac{p(x = 1, y = 1)}{p(y = 1)}.$$
(1.299)

Then, by the distribution,

$$p(x = 0|y = 0) = 1,$$

$$p(x = 0|y = 1) = \frac{1}{2},$$

$$p(x = 1|y = 0) = 0,$$

$$p(x = 1|y = 1) = \frac{1}{2}.$$
(1.300)

Therefore,

$$H(x|y) = \frac{2}{3} \ln 2. \tag{1.301}$$

(e)

By the definition, the entropy is given by

$$H(x,y) = -\sum p(x,y) \ln p(x,y).$$
 (1.302)

$$H(x,y) = \ln 3.$$
 (1.303)

(f)

By the definition, the mutual information is given by

$$I(x,y) = -\sum p(x,y) \ln \frac{p(x)p(y)}{p(x,y)}.$$
 (1.304)

By the distribution, the right hand side can be written as

$$H(x) + H(y) - H(x, y).$$
 (1.305)

Therefore,

$$I(x,y) = \ln 3 - \frac{4}{3} \ln 2. \tag{1.306}$$

1.40

Let x_1, \dots, x_M be numbers where $x_m > 0$, and let $\lambda_1, \dots, \lambda_M$ be numbers where $\lambda_m \geq 0$ and

$$\sum_{m=1}^{M} \lambda_m = 1. (1.307)$$

By the Jensen's inequality,

$$\sum_{m=1}^{M} \lambda_m \ln x_m \le \ln \left(\sum_{m=1}^{M} \lambda_m x_m \right), \tag{1.308}$$

so that

$$\prod_{m=1}^{M} x_m^{\lambda_m} \le \sum_{m=1}^{M} \lambda_m x_m. \tag{1.309}$$

Substituting

$$\lambda_m = \frac{1}{M} \tag{1.310}$$

to the inequality gives

$$\left(\prod_{m=1}^{M} x_{m}\right)^{\frac{1}{M}} \leq \frac{1}{M} \sum_{m=1}^{M} x_{m}.$$
(1.311)

1.41

Let \mathbf{x} and \mathbf{y} be continuous variables. Then, by the definition, the mutual information is given by

$$I(\mathbf{x}, \mathbf{y}) = -\int \int p(\mathbf{x}, \mathbf{y}) \ln \frac{p(\mathbf{x})p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} d\mathbf{x} d\mathbf{y}.$$
 (1.312)

The right hand side can be written as

$$-\int \int p(\mathbf{x}, \mathbf{y}) \left(\ln p(\mathbf{x}) + \ln \frac{p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})} \right) d\mathbf{x} d\mathbf{y}$$

$$= -\int \left(\int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} \right) \ln p(\mathbf{x}) d\mathbf{x} + \int \int p(\mathbf{x}, \mathbf{y}) \ln p(\mathbf{x}|\mathbf{y}) d\mathbf{x} d\mathbf{y}.$$
(1.313)

By the definition, the first and second terms of the right hand side can be written as $H(\mathbf{x})$ and $-H(\mathbf{x}|\mathbf{y})$. Therefore,

$$I(\mathbf{x}, \mathbf{y}) = H(\mathbf{x}) - H(\mathbf{x}|\mathbf{y}). \tag{1.314}$$

By the definition,

$$I(\mathbf{x}, \mathbf{y}) = I(\mathbf{y}, \mathbf{x}). \tag{1.315}$$

$$I(\mathbf{x}, \mathbf{y}) = H(\mathbf{y}) - H(\mathbf{y}|\mathbf{x}). \tag{1.316}$$

2 Probability Distributions

2.1

Let x be a variable such that

$$x \in \{0, 1\},\ p(x) = \mu^x (1 - \mu)^{1 - x}.$$
 (2.1)

(a)

We have

$$\sum_{x \in \{0,1\}} p(x) = 1 - \mu + \mu. \tag{2.2}$$

Therefore,

$$\sum_{x \in \{0,1\}} p(x) = 1. \tag{2.3}$$

(b)

By the definition,

$$E x = \sum_{x \in \{0,1\}} xp(x),$$

$$E x^2 = \sum_{x \in \{0,1\}} x^2 p(x),$$
(2.4)

Therefore,

$$\begin{aligned}
\mathbf{E} \, x &= \mu, \\
\mathbf{E} \, x^2 &= \mu.
\end{aligned} \tag{2.5}$$

Since

$$\operatorname{var} x = \operatorname{E} x^{2} - (\operatorname{E} x)^{2},$$
 (2.6)

we have

$$var x = \mu(1 - \mu). \tag{2.7}$$

(c)

By the definition,

$$H(x) = -\sum_{x \in \{0,1\}} p(x) \ln p(x). \tag{2.8}$$

Therefore,

$$H(x) = -\mu \ln \mu - (1 - \mu) \ln(1 - \mu). \tag{2.9}$$

2.2

Let x be a variable such that

$$x \in \{-1, 1\},\$$

$$p(x) = \left(\frac{1-\mu}{2}\right)^{\frac{1-x}{2}} \left(\frac{1+\mu}{2}\right)^{\frac{1+x}{2}}.$$
(2.10)

(a)

We have

$$\sum_{x \in \{-1,1\}} p(x) = \frac{1-\mu}{2} + \frac{1+\mu}{2}.$$
 (2.11)

Therefore,

$$\sum_{x \in \{-1,1\}} p(x) = 1. \tag{2.12}$$

(b)

By the definition,

$$E x = \sum_{x \in \{-1,1\}} xp(x),$$

$$E x^{2} = \sum_{x \in \{-1,1\}} x^{2}p(x).$$
(2.13)

The right hand sides can be written as

$$-\frac{1-\mu}{2} + \frac{1+\mu}{2} = \mu,$$

$$\frac{1-\mu}{2} + \frac{1+\mu}{2} = 1.$$
(2.14)

Therefore,

$$E x = \mu,$$

$$E x^2 = 1.$$
(2.15)

Since

$$\operatorname{var} x = \operatorname{E} x^2 - (\operatorname{E} x)^2,$$
 (2.16)

we have

$$var x = 1 - \mu^2. (2.17)$$

(c)

By the definition,

$$H(x) = -\sum_{x \in \{-1,1\}} p(x|\mu) \ln p(x|\mu). \tag{2.18}$$

Therefore,

$$H(x) = -\frac{1-\mu}{2} \ln \frac{1-\mu}{2} - \frac{1+\mu}{2} \ln \frac{1+\mu}{2}.$$
 (2.19)

2.3

(a)

By the definition,

$$\binom{N}{n} = \frac{N!}{n!(N-n)!},$$

$$\binom{N}{n-1} = \frac{N!}{(n-1)!(N-n+1)!}$$
(2.20)

Then,

$$\binom{N}{n} + \binom{N}{n-1} = \frac{(N-n+1)N! + nN!}{n!(N-n+1)!}.$$
 (2.21)

The right hand side can be written as

$$\frac{(N+1)!}{n!(N+1-n)!} = \binom{N+1}{n}.$$
 (2.22)

$$\binom{N}{n} + \binom{N}{n-1} = \binom{N+1}{n}. \tag{2.23}$$

(b)

Note that

$$1 + x = \sum_{n=0}^{1} {1 \choose n} x^{n}.$$
 (2.24)

Let us assume that

$$(1+x)^N = \sum_{n=0}^N \binom{N}{n} x^n.$$
 (2.25)

Then,

$$(1+x)^{N+1} = \sum_{n=0}^{N} {N \choose n} x^n + \sum_{n=0}^{N} {N \choose n} x^{n+1}.$$
 (2.26)

By (a), the right hand side can be written as

$$\sum_{n=0}^{N} {N \choose n} x^n + \sum_{n=1}^{N+1} {N \choose n-1} x^n = 1 + x^{N+1} + \sum_{n=1}^{N} {N+1 \choose n} x^n.$$
 (2.27)

Then,

$$(1+x)^{N+1} = \sum_{n=0}^{N+1} {N+1 \choose n} x^n.$$
 (2.28)

Therefore, the assumption is proved by induction on N.

(c)

Let n be a variable such that

$$p(n) = \binom{N}{n} \mu^n (1 - \mu)^{N-n}.$$
 (2.29)

Then,

$$\sum_{n=0}^{N} p(n) = \sum_{n=0}^{N} {N \choose n} \mu^{n} (1-\mu)^{N-n}.$$
 (2.30)

By (b), the right hand side can be written as

$$(1-\mu)^N \sum_{n=0}^N \binom{N}{n} \left(\frac{\mu}{1-\mu}\right)^n = (1-\mu)^N \left(1 + \frac{\mu}{1-\mu}\right)^N. \tag{2.31}$$

Therefore,

$$\sum_{n=0}^{N} p(n) = 1. (2.32)$$

2.4

Let n be a variable such that

$$p(n) = \binom{N}{n} \mu^n (1 - \mu)^{N-n}.$$
 (2.33)

(a)

We have

$$E n = \sum_{n=0}^{N} n \binom{N}{n} \mu^n (1 - \mu)^{N-n}.$$
 (2.34)

By 2.3(c),

$$\sum_{n=0}^{N} \binom{N}{n} \mu^n (1-\mu)^{N-n} = 1.$$
 (2.35)

Taking the derivative with respect to μ gives

$$\sum_{n=0}^{N} n \binom{N}{n} \mu^{n-1} (1-\mu)^{N-n} - \sum_{n=0}^{N} (N-n) \binom{N}{n} \mu^{n} (1-\mu)^{N-n-1} = 0. \quad (2.36)$$

The first term of the left hand side can be written as

$$\frac{1}{\mu} \sum_{n=0}^{N} np(n) = \frac{1}{\mu} \operatorname{E} n.$$
 (2.37)

Since

$$(N-n)\binom{N}{n} = N\binom{N-1}{n},\tag{2.38}$$

the second term can be written as

$$-N\sum_{n=0}^{N-1} \binom{N-1}{n} \mu^n (1-\mu)^{N-n-1} = -N.$$
 (2.39)

$$E n = N\mu. (2.40)$$

(b)

By 2.3(c),

$$\sum_{n=0}^{N} \binom{N}{n} \mu^n (1-\mu)^{N-n} = 1.$$
 (2.41)

Taking the second derivative with respect to μ gives

$$\sum_{n=0}^{N} n(n-1) \binom{N}{n} \mu^{n-2} (1-\mu)^{N-n}$$

$$-2 \sum_{n=0}^{N} n(N-n) \binom{N}{n} \mu^{n-1} (1-\mu)^{N-n-1}$$

$$+ \sum_{n=0}^{N} (N-n)(N-n-1) \binom{N}{n} \mu^{n} (1-\mu)^{N-n-2} = 0.$$
(2.42)

The first term of the left hand side can be written as

$$\frac{1}{\mu^2} \sum_{n=0}^{N} n(n-1)p(n) = \frac{1}{\mu^2} \operatorname{E} n(n-1).$$
 (2.43)

Since

$$n(N-n)\binom{N}{n} = N(N-1)\binom{N-2}{n-1},$$

$$(N-n)(N-n-1)\binom{N}{n} = N(N-1)\binom{N-2}{n},$$
(2.44)

the second and third terms can be written as

$$-2N(N-1)\sum_{n=1}^{N-1} {N-2 \choose n-1} \mu^{n-1} (1-\mu)^{N-n-1} = -2N(N-1),$$

$$N(N-1)\sum_{n=0}^{N} {N-2 \choose n} \mu^{n} (1-\mu)^{N-n-2} = N(N-1).$$
(2.45)

Then,

$$E n(n-1) = N(N-1)\mu^{2}.$$
 (2.46)

Therefore, since

$$var n = E n(n-1) + E n - (E n)^{2}, (2.47)$$

we have

$$var n = N\mu(1-\mu). \tag{2.48}$$

2.5

By the definition,

$$\Gamma(a)\Gamma(b) = \int_0^\infty x^{a-1} \exp(-x) dx \int_0^\infty y^{b-1} \exp(-y) dy.$$
 (2.49)

By the transformation

$$t = x + y, (2.50)$$

the right hand side can be written as

$$\int_{0}^{\infty} x^{a-1} \left(\int_{x}^{\infty} (t-x)^{b-1} \exp(-t) dt \right) dx$$

$$= \int_{0}^{\infty} \left(\int_{0}^{t} x^{a-1} (t-x)^{b-1} dx \right) \exp(-t) dt.$$
(2.51)

By the transformation

$$x = t\mu, \tag{2.52}$$

the right hand side can be written as

$$\int_{0}^{\infty} \left(\int_{0}^{1} (t\mu)^{a-1} t^{b-1} (1-\mu)^{b-1} t d\mu \right) \exp(-t) dt$$

$$= \int_{0}^{1} \mu^{a-1} (1-\mu)^{b-1} d\mu \int_{0}^{\infty} t^{a+b-1} \exp(-t) dt.$$
(2.53)

By the definition, the second integral of the right hand side can be written as $\Gamma(a+b)$. Therefore,

$$\int_0^1 \mu^{a-1} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$
 (2.54)

2.6

Let μ be a variable such that

$$p(\mu) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$
 (2.55)

Then, by the definition,

By 2.5,

$$\int_{0}^{1} \mu^{a} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)},$$

$$\int_{0}^{1} \mu^{a+1} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)}.$$
(2.57)

Therefore,

$$E \mu = \frac{a}{a+b},$$

$$E \mu^2 = \frac{a(a+1)}{(a+b)(a+b+1)}.$$
(2.58)

Since

$$\operatorname{var} \mu = \operatorname{E} \mu^2 - (\operatorname{E} \mu)^2,$$
 (2.59)

we have

$$var \mu = \frac{ab}{(a+b)^2(a+b+1)}.$$
 (2.60)

Since

$$\frac{\partial}{\partial \mu} p(\mu) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1} \left(\frac{a-1}{\mu} - \frac{b-1}{1-\mu} \right), \tag{2.61}$$

we have

$$mode \mu = \frac{a-1}{a+b-2}.$$
 (2.62)

2.7

Let m and l be variables such that

$$p(m, l|\mu) = \binom{m+l}{m} \mu^m (1-\mu)^l,$$

$$p(\mu) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$
(2.63)

By 2.6,

$$E\mu = \frac{a}{a+b}. (2.64)$$

Setting the derivative of $p(m, l|\mu)$ with respect to μ to zero gives

$$0 = {m+l \choose m} \mu^m (1-\mu)^l \left(\frac{m}{\mu} + \frac{l}{1-\mu}\right).$$
 (2.65)

Then, the maximum likelihood solution for μ is given by

$$\mu_{\rm ML} = \frac{m}{m+l}.\tag{2.66}$$

By the Bayes' thereorem,

$$p(\mu|m, l)p(m, l) = p(m, l|\mu)p(\mu). \tag{2.67}$$

Then, by 2.5,

$$p(\mu|m,l) = \frac{\Gamma(m+l+a+b)}{\Gamma(m+a)\Gamma(l+b)} \mu^{m+a-1} (1-\mu)^{l+b-1}.$$
 (2.68)

The, by 2.6,

$$E(\mu|m,l) = \frac{m+a}{m+l+a+b}.$$
 (2.69)

Therefore,

$$E(\mu|m,l) = \lambda \mu_{\rm ML} + (1-\lambda) E \mu, \qquad (2.70)$$

where

$$\lambda = \frac{m+l}{m+l+a+b}. (2.71)$$

2.8

Let x and y be variables.

(a)

By the definition,

$$\mathbf{E} x = \int x p(x) dx. \tag{2.72}$$

The right hand side can be written as

$$\int x \left(\int p(x,y)dy \right) dx = \int \left(\int x p(x|y)dx \right) p(y)dy. \tag{2.73}$$

$$E x = E_y (E_x(x|y)). (2.74)$$

(b)

By the definition,

$$\operatorname{var} x = \operatorname{E} (x - \operatorname{E} x)^{2}.$$
 (2.75)

By (a), the right hand side can be written as

$$E_y\left(E_x\left((x-E_x)^2|y\right)\right) = E_y\left(E_x\left((x-E_x(x|y)+E_x(x|y)-E_x)^2|y\right)\right). \tag{2.76}$$

The right hand side can be written as

$$E_{y} (E_{x} ((x - E_{x}(x|y))^{2}|y)) + 2 E_{y} (((E_{x}(x|y) - E_{x}) E_{x} (x - E_{x}(x|y))|y)) + E_{y} ((E_{x}(x|y) - E_{x})^{2}|y).$$
(2.77)

Let us look at each term of the right hand side. By the definition, the first term can be written as $E_y(\operatorname{var}_x(x|y))$. The second term can be written as

$$2 E_y ((E_x(x|y) - E_x) (E_x(x|y) - E_x(x|y))) = 0.$$
 (2.78)

By (a), the third term can be written as

$$E_y (E_x(x|y) - E_y (E_x(x|y)))^2 = var_y (E_x(x|y)).$$
 (2.79)

Therefore,

$$\operatorname{var} x = \operatorname{E}_{y} \left(\operatorname{var}_{x}(x|y) \right) + \operatorname{var}_{y} \left(\operatorname{E}_{x}(x|y) \right). \tag{2.80}$$

2.9 (Incomplete)

For a vector $\boldsymbol{\mu}$ in 2 dimensions, by 2.5,

$$\int_{\substack{\mu_1 + \mu_2 = 1 \\ \mu_1 > 0, \mu_2 > 0}} \mu_1^{\alpha_1 - 1} \mu_2^{\alpha_2 - 1} d\boldsymbol{\mu} = \frac{\Gamma(\alpha_1) \Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}.$$

For a vector $\boldsymbol{\mu}$ in M dimensions, let us assume that

$$\int_{\substack{\sum_{m=1}^{M} \mu_m > 0}} \prod_{m=1}^{M} \mu_m^{\alpha_m - 1} d\boldsymbol{\mu} = \frac{\prod_{m=1}^{M} \Gamma(\alpha_m)}{\Gamma(\sum_{m=1}^{M} \alpha_m)}.$$

Under the constraint

$$\sum_{m=1}^{M+1} \mu_m = 1, \tag{2.81}$$

we have

$$\int_{0}^{c} \prod_{m=1}^{M+1} \mu_{m}^{\alpha_{m}-1} d\mu_{M+1} = \left(\prod_{m=1}^{M-1} \mu_{m}^{\alpha_{m}-1}\right) \int_{0}^{c} \mu_{M+1}^{\alpha_{M+1}-1} \left(c - \mu_{M+1}\right)^{\alpha_{M}-1} d\mu_{M+1},$$
(2.82)

where

$$c = 1 - \sum_{m=1}^{M-1} \mu_m. (2.83)$$

By the transformation

$$\mu'_{M+1} = \frac{\mu_{M+1}}{c},\tag{2.84}$$

the integral of the right hand side can be written as

$$\int_{0}^{1} (c\mu'_{M+1})^{\alpha_{M+1}-1} \left(c(1-\mu'_{M+1}) \right)^{\alpha_{M}-1} cd\mu'_{M+1}
= c^{\alpha_{M}+\alpha_{M+1}-1} \int_{0}^{1} {\mu'_{M+1}}^{\alpha_{M+1}-1} (1-\mu'_{M+1})^{\alpha_{M}-1} d\mu'_{M+1}.$$
(2.85)

By 2.5, the integral of the right hand side can be written as

$$\frac{\Gamma(\alpha_M)\Gamma(\alpha_{M+1})}{\Gamma(\alpha_M + \alpha_{M+1})}. (2.86)$$

Then,

$$\int_{0}^{c} \prod_{m=1}^{M+1} \mu_{m}^{\alpha_{m}-1} d\mu_{M+1} = \left(\prod_{m=1}^{M-1} \mu_{m}^{\alpha_{m}-1}\right) c^{\alpha_{M}+\alpha_{M+1}-1} \frac{\Gamma(\alpha_{M})\Gamma(\alpha_{M+1})}{\Gamma(\alpha_{M}+\alpha_{M+1})}. \quad (2.87)$$

For a vector $\boldsymbol{\mu}$ in M dimensions, by the assumption,

$$\int_{\substack{\sum_{m=1}^{M} \mu_m > 0}} \left(\prod_{m=1}^{M-1} \mu_m^{\alpha_m - 1} \right) \mu_M^{\alpha_M + \alpha_{M+1} - 1} d\boldsymbol{\mu} = \frac{\left(\prod_{m=1}^{M-1} \Gamma(\alpha_m) \right) \Gamma(\alpha_M + \alpha_{M+1})}{\Gamma(\sum_{m=1}^{M+1} \alpha_m)}.$$

Then, for a vector $\boldsymbol{\mu}$ in M+1 dimensions,

$$\int_{\substack{\sum_{m=1}^{M+1} \mu_m > 0}} \prod_{m=1}^{M+1} \mu_m^{\alpha_m - 1} d\boldsymbol{\mu} = \frac{\Gamma(\alpha_M) \Gamma(\alpha_{M+1})}{\Gamma(\alpha_M + \alpha_{M+1})} \frac{\left(\prod_{m=1}^{M-1} \Gamma(\alpha_k)\right) \Gamma(\alpha_M + \alpha_{M+1})}{\Gamma(\sum_{m=1}^{M+1} \alpha_m)}?$$

The right hand side can be written as

$$\frac{\prod_{m=1}^{M+1} \Gamma(\alpha_m)}{\Gamma(\sum_{m=1}^{M+1} \alpha_m)}.$$
(2.88)

Therefore, the assumption is proved by induction on M.

2.10

Let μ be a vector such that

$$p(\boldsymbol{\mu}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}.$$
 (2.89)

Then, by the definition,

$$E \mu_k = \int \mu_k p(\boldsymbol{\mu}) d\boldsymbol{\mu},$$

$$E \mu_k^2 = \int \mu_k^2 p(\boldsymbol{\mu}) d\boldsymbol{\mu},$$

$$E \mu_k \mu_{k'} = \int \mu_k \mu_{k'} p(\boldsymbol{\mu}) d\boldsymbol{\mu}.$$
(2.90)

Let $k \neq k'$. Then, by 2.9, the right hand sides can be written as

$$\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \frac{\frac{\Gamma(\alpha_{k}+1)}{\Gamma(\alpha_{k})} \prod_{k=1}^{K} \Gamma(\alpha_{k})}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}+1\right)} = \frac{\alpha_{k}}{\sum_{k=1}^{K} \alpha_{k}},$$

$$\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \frac{\frac{\Gamma(\alpha_{k}+2)}{\Gamma(\alpha_{k})} \prod_{k=1}^{K} \Gamma(\alpha_{k})}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}+2\right)} = \frac{\alpha_{k}(\alpha_{k}+1)}{\sum_{k=1}^{K} \alpha_{k}(\sum_{k=1}^{K} \alpha_{k}+1)},$$

$$\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \frac{\frac{\Gamma(\alpha_{k}+1)\Gamma(\alpha_{k'}+1)}{\Gamma(\alpha_{k'})\Gamma(\alpha_{k'})} \prod_{k=1}^{K} \Gamma(\alpha_{k})}{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}+2\right)} = \frac{\alpha_{k}\alpha_{k'}}{\sum_{k=1}^{K} \alpha_{k}(\sum_{k=1}^{K} \alpha_{k}+1)}.$$
(2.91)

Then,

$$E \mu_k = \frac{\alpha_k}{\sum_{k=1}^K \alpha_k}.$$

$$E \mu_k^2 = \frac{\alpha_k(\alpha_k + 1)}{\sum_{k=1}^K \alpha_k \left(\sum_{k=1}^K \alpha_k + 1\right)},$$

$$E \mu_k \mu_{k'} = \frac{\alpha_k \alpha_{k'}}{\sum_{k=1}^K \alpha_k \left(\sum_{k=1}^K \alpha_k + 1\right)}.$$
(2.92)

Since

$$\operatorname{var} \mu_{k} = \operatorname{E} \mu_{k}^{2} - (\operatorname{E} \mu_{k})^{2}, \operatorname{cov} (\mu_{k}, \mu_{k'}) = \operatorname{E} \mu_{k} \mu_{k'} - \operatorname{E} \mu_{k} \operatorname{E} \mu_{k'},$$
(2.93)

we have

$$\operatorname{var} \mu_{k} = \frac{\alpha_{k} \left(\left(\sum_{k=1}^{K} \alpha_{k} \right) - \alpha_{k} \right)}{\left(\sum_{k=1}^{K} \alpha_{k} \right)^{2} \left(\sum_{k=1}^{K} \alpha_{k} + 1 \right)},$$

$$\operatorname{cov}(\mu_{k}, \mu_{k'}) = -\frac{\alpha_{k} \alpha_{k'}}{\left(\sum_{k=1}^{K} \alpha_{k} \right)^{2} \left(\sum_{k=1}^{K} \alpha_{k} + 1 \right)}.$$
(2.94)

2.11

Let μ be a variable such that

$$p(\boldsymbol{\mu}) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \mu_k^{\alpha_k - 1}.$$
 (2.95)

Then, by the definition,

$$E \ln \mu_k = \int (\ln \mu_k) \, p(\boldsymbol{\mu}) d\boldsymbol{\mu}. \tag{2.96}$$

Since

$$\frac{\partial}{\partial \alpha_k} p(\boldsymbol{\mu}) = \left(\frac{\Gamma'\left(\sum_{k=1}^K \alpha_k\right)}{\Gamma\left(\sum_{k=1}^K \alpha_k\right)} - \frac{\Gamma'(\alpha_k)}{\Gamma(\alpha_k)} + \ln \mu_k \right) p(\boldsymbol{\mu}), \tag{2.97}$$

we have

$$E \ln \mu_k = \frac{\partial}{\partial \alpha_k} \int p(\boldsymbol{\mu}) d\boldsymbol{\mu} + \left(\psi(\alpha_k) - \psi \left(\sum_{k=1}^K \alpha_k \right) \right) \int p(\boldsymbol{\mu}) d\boldsymbol{\mu}, \quad (2.98)$$

where

$$\psi(a) = \frac{d}{da} \ln \Gamma(a). \tag{2.99}$$

Therefore,

$$E \ln \mu_k = \psi(\alpha_k) - \psi\left(\sum_{k=1}^K \alpha_k\right). \tag{2.100}$$

2.12

Let x be a variable such that

$$p(x) = \frac{1}{b - a},\tag{2.101}$$

where a < b. Then

$$\int_{a}^{b} p(x)dx = 1. (2.102)$$

Then, by the definition,

$$E x = \frac{1}{b-a} \int_a^b x dx,$$

$$E x^2 = \frac{1}{b-a} \int_a^b x^2 dx.$$
(2.103)

Then,

$$E x = \frac{1}{2}(a+b),$$

$$E x^{2} = \frac{1}{3}(a^{2} + ab + b^{2}).$$
(2.104)

Since

$$var x = E x^2 - (E x)^2, (2.105)$$

we have

$$var x = \frac{1}{12}(b-a)^2. (2.106)$$

2.13

Let \mathbf{x} be a variable in D dimensions and let

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

$$q(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L}).$$
(2.107)

Then, by the definition, the Kulleback-Leibler divergence is given by

$$KL(p||q) = -\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \ln \frac{\mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L})}{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})} d\mathbf{x}.$$
 (2.108)

Note that

$$\ln \frac{\mathcal{N}(\mathbf{x}|\mathbf{m}, \mathbf{L})}{\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})} = \ln \frac{(2\pi)^{-\frac{D}{2}} |\det \mathbf{L}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1}(\mathbf{x} - \mathbf{m})\right)}{(2\pi)^{-\frac{D}{2}} |\det \boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}.$$
(2.109)

The right hand side can be written as

$$\frac{1}{2} \ln \left| \frac{\det \mathbf{\Sigma}}{\det \mathbf{L}} \right| + \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2} (\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \mathbf{m}). \quad (2.110)$$

Then, the integral can be written as

$$\frac{1}{2} \ln \left| \frac{\det \mathbf{\Sigma}}{\det \mathbf{L}} \right| \int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{\Sigma}) d\mathbf{x}
+ \frac{1}{2} \int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{\Sigma}) d\mathbf{x}
- \frac{1}{2} \int (\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \mathbf{m}) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{\Sigma}) d\mathbf{x}.$$
(2.111)

Let us look at the integral of each term. The integral of the first term is 1. Since

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\Sigma}, \tag{2.112}$$

we have

$$\int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \operatorname{tr} \boldsymbol{\Sigma}.$$
 (2.113)

Then, the integral of the second term can be written as

$$\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}\right) = D. \tag{2.114}$$

Since

$$(\mathbf{x} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \mathbf{m}) = (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu} - \mathbf{m}), \quad (2.115)$$

the integral of the third term can be written as

$$\int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{L}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}$$

$$+ 2(\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} \int (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}$$

$$+ (\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\boldsymbol{\mu} - \mathbf{m}) \int \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}$$

$$= \operatorname{tr} (\mathbf{L}^{-1} \boldsymbol{\Sigma}) + (\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\boldsymbol{\mu} - \mathbf{m}).$$
(2.116)

Therefore,

$$KL(p||q) = \frac{1}{2} \left(\ln \left| \frac{\det \mathbf{L}}{\det \mathbf{\Sigma}} \right| - D + \operatorname{tr} \left(\mathbf{L}^{-1} \mathbf{\Sigma} \right) + (\boldsymbol{\mu} - \mathbf{m})^{\mathsf{T}} \mathbf{L}^{-1} (\boldsymbol{\mu} - \mathbf{m}) \right).$$
(2.117)

2.14

Let \mathbf{x} be a variable in D dimensions. By the definition, the entropy is given by

$$H(\mathbf{x}) = -\int p(\mathbf{x}) \ln p(\mathbf{x}) d\mathbf{x}.$$
 (2.118)

In order to maximise H(x) with the constratints

$$\int p(\mathbf{x})d\mathbf{x} = 1,$$

$$\int \mathbf{x}p(\mathbf{x})d\mathbf{x} = \boldsymbol{\mu},$$

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}p(\mathbf{x})d\mathbf{x} = \boldsymbol{\Sigma},$$
(2.119)

let

$$L(p) = \mathbf{H}(\mathbf{x}) + \lambda \left(\int p(\mathbf{x}) d\mathbf{x} - 1 \right) + \mathbf{l}^{\mathsf{T}} \left(\int \mathbf{x} p(\mathbf{x}) d\mathbf{x} - \boldsymbol{\mu} \right)$$

$$+ \mathbf{m}^{\mathsf{T}} \left(\int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x} - \boldsymbol{\Sigma} \right) \mathbf{m}.$$
(2.120)

Setting the variation with respect to p to zero gives

$$0 = -\ln p(\mathbf{x}) - 1 + \lambda + \mathbf{l}^{\mathsf{T}}\mathbf{x} + \mathbf{m}^{\mathsf{T}}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{m}. \tag{2.121}$$

Then,

$$p(\mathbf{x}) = \exp\left(-1 + \lambda + \mathbf{l}^{\mathsf{T}}\mathbf{x} + \mathbf{m}^{\mathsf{T}}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{m}\right), \tag{2.122}$$

so that

$$p(\mathbf{x}) = c \exp\left(-\left(\mathbf{x} - \boldsymbol{\mu} - \mathbf{M}\mathbf{I}\right)^{\mathsf{T}} \mathbf{M}^{-1} \left(\mathbf{x} - \boldsymbol{\mu} - \mathbf{M}\mathbf{I}\right)\right), \qquad (2.123)$$

where

$$c = \exp(-1 + \lambda - \mathbf{l}^{\mathsf{T}} \mathbf{M} \mathbf{l}),$$

$$\mathbf{M} = -(\mathbf{m} \mathbf{m}^{\mathsf{T}})^{-1}.$$
 (2.124)

Substituting it to the constraints and the transformation

$$y = x - \mu - Ml \tag{2.125}$$

gives

$$c \int \exp\left(-\mathbf{y}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{y}\right) d\mathbf{y} = 1,$$

$$c \int (\mathbf{y} + \boldsymbol{\mu} + \mathbf{M}\mathbf{l}) \exp\left(-\mathbf{y}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{y}\right) d\mathbf{y} = \boldsymbol{\mu},$$

$$c \int (\mathbf{y} + \mathbf{M}\mathbf{l}) (\mathbf{y} + \mathbf{M}\mathbf{l})^{\mathsf{T}} \exp\left(-\mathbf{y}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{y}\right) d\mathbf{y} = \boldsymbol{\Sigma}.$$
(2.126)

Since

$$\int \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{y}) d\mathbf{y} = \left(\Gamma\left(\frac{1}{2}\right)\right)^{D},$$

$$\int \mathbf{y} \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{y}) d\mathbf{y} = \mathbf{0},$$

$$\int \mathbf{y} \mathbf{y}^{\mathsf{T}} \exp(-\mathbf{y}^{\mathsf{T}}\mathbf{y}) d\mathbf{y} = \Gamma\left(\frac{3}{2}\right) \left(\Gamma\left(\frac{1}{2}\right)\right)^{D-1} \mathbf{I},$$
(2.127)

they can be written as

$$c\left(\Gamma\left(\frac{1}{2}\right)\right)^{D} |\det \mathbf{M}|^{\frac{1}{2}} = 1,$$

$$c(\boldsymbol{\mu} + \mathbf{Ml}) \left(\Gamma\left(\frac{1}{2}\right)\right)^{D} |\det \mathbf{M}|^{\frac{1}{2}} = \boldsymbol{\mu},$$

$$c\left(\Gamma\left(\frac{3}{2}\right) \left(\Gamma\left(\frac{1}{2}\right)\right)^{D-1} \mathbf{M} + \mathbf{Ml}(\mathbf{Ml})^{\mathsf{T}} \left(\Gamma\left(\frac{1}{2}\right)\right)^{D} |\det \mathbf{M}|^{\frac{1}{2}} = \boldsymbol{\Sigma}.$$

$$(2.128)$$

Then,

$$\lambda = 1 - \frac{D}{2} \ln \pi - \frac{1}{2} \ln |\det \mathbf{M}|,$$

$$\mathbf{l} = \mathbf{0},$$

$$\mathbf{M} = 2\Sigma.$$
(2.129)

Therefore,

$$p(\mathbf{x}) = (2\pi)^{-\frac{D}{2}} |\det \mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right). \tag{2.130}$$

2.15

Let \mathbf{x} be a variable in D dimensions such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}). \tag{2.131}$$

Then, by the definition, the entropy is given by

$$H(\mathbf{x}) = -\int \mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) \ln \mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) d\mathbf{x}. \qquad (2.132)$$

The right hand side can be written as

$$-\int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \left(-\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln|\det \boldsymbol{\Sigma}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right) d\mathbf{x}$$

$$= \left(\frac{D}{2} \ln(2\pi) + \frac{1}{2} \ln|\det \boldsymbol{\Sigma}| \right) \int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}$$

$$+ \frac{1}{2} \int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x}.$$
(2.133)

Let us look at each integral of the right hand side. The first integral is 1. Since

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \boldsymbol{\Sigma}, \tag{2.134}$$

we have

$$\int (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}) \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{x} = \operatorname{tr} \boldsymbol{\Sigma}.$$
 (2.135)

Then, the second integral can be written as

$$\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}\right) = D. \tag{2.136}$$

Therefore,

$$H(\mathbf{x}) = \frac{D}{2} (1 + \ln(2\pi)) + \frac{1}{2} \ln|\det \Sigma|.$$
 (2.137)

2.16

Let x be a variable such that

$$x = x_1 + x_2, (2.138)$$

where

$$p(x_1) = \mathcal{N}\left(x_1|\mu_1, \tau_1^{-1}\right), p(x_2) = \mathcal{N}\left(x_2|\mu_2, \tau_2^{-1}\right).$$
 (2.139)

By marginalisation,

$$p(x) = \int_{-\infty}^{\infty} p(x|x_2)p(x_2)dx_2.$$
 (2.140)

The right hand side can be written as

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu_1 + x_2, \tau_1^{-1}\right) \mathcal{N}\left(x_2|\mu_2, \tau_2^{-1}\right) dx_2$$

$$= \int_{-\infty}^{\infty} \left(\frac{\tau_1}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\tau_1}{2}(x-\mu_1-x_2)^2\right) \left(\frac{\tau_2}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\tau_2}{2}(x_2-\mu_2)^2\right) dx_2.$$
(2.141)

The logarithm of the integrand except the terms independent of x and z is given by

$$-\frac{\tau_1 + \tau_2}{2} \left(x_2 - \frac{\tau_1(x - \mu_1) + \tau_2 \mu_2}{\tau_1 + \tau_2} \right)^2 - \frac{\tau_1}{2} (x - \mu_1)^2 - \frac{\tau_2}{2} \mu_2^2$$

$$+ \frac{\tau_1 + \tau_2}{2} \left(\frac{\tau_1(x - \mu_1) + \tau_2 \mu_2}{\tau_1 + \tau_2} \right)^2$$

$$= -\frac{\tau_1 + \tau_2}{2} \left(x_2 - \frac{\tau_1(x - \mu_1) + \tau_2 \mu_2}{\tau_1 + \tau_2} \right)^2 - \frac{\tau_1 \tau_2}{2(\tau_1 + \tau_2)} (x - \mu_1 - \mu_2)^2.$$
(2.142)

Then,

$$p(x) = \mathcal{N}\left(x|\mu_1 + \mu_2, \tau_1^{-1} + \tau_2^{-1}\right).$$
 (2.143)

Therefore, by 1.35,

$$H(x) = \frac{1}{2} \left(1 + \ln(2\pi) + \ln\left(\tau_1^{-1} + \tau_2^{-1}\right) \right). \tag{2.144}$$

2.17

Let Σ be a matrix and

$$\mathbf{S} = \frac{1}{2} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right),$$

$$\mathbf{A} = \frac{1}{2} \left(\mathbf{\Sigma}^{-1} - \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right).$$
(2.145)

Then,

$$\Sigma^{-1} = \mathbf{S} + \mathbf{A},\tag{2.146}$$

so that

$$(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{S} (\mathbf{x} - \boldsymbol{\mu}) + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}).$$
 (2.147)

The second term of the right hand side can be written as

$$\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Sigma}^{-1})^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.148}$$

The second term of the right hand side can be written as

$$-\frac{1}{2} \left(\mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.149}$$

Then,

$$(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}) = 0. \tag{2.150}$$

Therefore,

$$(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{S} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.151}$$

2.18

(a)

Let Σ be a $D \times D$ real symmetric matrix such that

$$\Sigma \mathbf{u}_d = \lambda_d \mathbf{u}_d, \tag{2.152}$$

where $\mathbf{u}_1, \cdots, \mathbf{u}_D$ are unit vectors. Then,

$$\overline{\mathbf{u}_d}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{u}_d = \lambda_d, \tag{2.153}$$

where $\overline{\mathbf{u}_d}$ is the conjugate of \mathbf{u}_d . Since Σ is real and symmetric, the left hand side can be written as

$$\overline{\mathbf{u}_d}^{\mathsf{T}} \overline{\mathbf{\Sigma}}^{\mathsf{T}} \mathbf{u}_d = \left(\overline{\mathbf{\Sigma}} \overline{\mathbf{u}_d} \right)^{\mathsf{T}} \mathbf{u}_d. \tag{2.154}$$

The right hand side can be writtet as

$$\overline{\lambda_d} \overline{\mathbf{u}_d}^{\mathsf{T}} \mathbf{u}_d = \overline{\lambda_d}. \tag{2.155}$$

Therefore,

$$\lambda_d = \overline{\lambda_d}.\tag{2.156}$$

(b)

For $d \neq d'$, taking the inner product with \mathbf{u}'_d on both sides of

$$\Sigma \mathbf{u}_d = \lambda_d \mathbf{u}_d \tag{2.157}$$

gives

$$\mathbf{u}_{d'}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{u}_d = \lambda_d \mathbf{u}_{d'}^{\mathsf{T}} \mathbf{u}_d. \tag{2.158}$$

Since Σ is symmetric, the left hand side can be written as

$$\mathbf{u}_{d'}^{\mathsf{T}} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{u}_d = (\mathbf{\Sigma} \mathbf{u}_{d'})^{\mathsf{T}} \mathbf{u}_d. \tag{2.159}$$

The right hand side can be written as $\lambda_{d'} \mathbf{u}_{d'}^{\mathsf{T}} \mathbf{u}_{d}$. Then,

$$\lambda_d \mathbf{u}_{d'}^{\mathsf{T}} \mathbf{u}_d = \lambda_{d'} \mathbf{u}_{d'}^{\mathsf{T}} \mathbf{u}_d. \tag{2.160}$$

Therefore, if $\lambda_d \neq \lambda_{d'}$, then

$$\mathbf{u}_{d'}^{\mathsf{T}}\mathbf{u}_d = 0. \tag{2.161}$$

2.19

Let Σ be a $D \times D$ real symmetric matrix such that

$$\Sigma \mathbf{u}_d = \lambda_d \mathbf{u}_d, \tag{2.162}$$

where $\mathbf{u}_1, \dots, \mathbf{u}_D$ are unit vectors. Let

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_D),
\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_D].$$
(2.163)

Then

$$\Sigma \mathbf{U} = \mathbf{U} \mathbf{\Lambda}. \tag{2.164}$$

By 2.18,

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}.\tag{2.165}$$

Then,

$$\Sigma = \mathbf{U}\Lambda\mathbf{U}^{\mathsf{T}}, \Sigma^{-1} = \mathbf{U}\Lambda^{-1}\mathbf{U}^{\mathsf{T}}.$$
(2.166)

Therefore,

$$\Sigma = \sum_{d=1}^{D} \lambda_d \mathbf{u}_d \mathbf{u}_d^{\mathsf{T}},$$

$$\Sigma^{-1} = \sum_{d=1}^{D} \frac{1}{\lambda_d} \mathbf{u}_d \mathbf{u}_d^{\mathsf{T}}.$$
(2.167)

2.20

Let Σ be a $D \times D$ real symmetric matrix such that

$$\Sigma \mathbf{u}_d = \lambda_d \mathbf{u}_d, \tag{2.168}$$

where u_1, \dots, u_D are unit vectors. Let

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_D),
\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_D].$$
(2.169)

By 2.19,

$$\mathbf{a}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{a} = \mathbf{b}^{\mathsf{T}} \mathbf{\Lambda} \mathbf{b},\tag{2.170}$$

where

$$\mathbf{b} = \mathbf{U}^{\mathsf{T}} \mathbf{a}.\tag{2.171}$$

The right hand side can be written as $\sum_{d=1}^{D} \lambda_d b_d^2$. Therefore, the necessary and sufficient condition for

$$\mathbf{a}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{a} > 0 \tag{2.172}$$

for any real vector **a** is

$$\lambda_d > 0. \tag{2.173}$$

2.21

Let Σ be a $D \times D$ real symmetric matrix. Then the number of independent parameters is $\frac{D(D+1)}{2}$.

2.22

Let Σ be a $D \times D$ symmetric matrix and

$$\Sigma \Lambda = I. \tag{2.174}$$

Taking the transpose of the both sides gives

$$\mathbf{\Lambda}^{\mathsf{T}} \mathbf{\Sigma} = \mathbf{I}.\tag{2.175}$$

Therefore,

$$\mathbf{\Lambda}^{\mathsf{T}} = \mathbf{\Lambda}.\tag{2.176}$$

2.23

Let Σ be a $D \times D$ real symmetric matrix such that

$$\Sigma \mathbf{u}_d = \lambda_d \mathbf{u}_d, \tag{2.177}$$

where u_1, \dots, u_D are unit vectors. Let

$$\mathbf{\Lambda}' = \operatorname{diag}\left(\lambda_1^{-\frac{1}{2}}, \cdots, \lambda_D^{-\frac{1}{2}}\right),$$

$$\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_D].$$
(2.178)

By 2.19,

$$\int_{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x}-\boldsymbol{\mu}) = \Delta} d\mathbf{x} = \int_{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}} \mathbf{U} \mathbf{\Lambda}' \mathbf{\Lambda}'^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} (\mathbf{x}-\boldsymbol{\mu}) = \Delta} d\mathbf{x}.$$
 (2.179)

By the transformation

$$\mathbf{y} = \mathbf{\Lambda}^{\prime \mathsf{T}} \mathbf{U}^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu}) \tag{2.180}$$

and the property

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I},\tag{2.181}$$

the right hand side can be written as

$$\int_{\|\mathbf{y}\|^2 = \Delta} \left| \det \left(\mathbf{U} \mathbf{\Lambda}'^{-1} \right) \right| d\mathbf{y} = \left| \det \mathbf{\Sigma} \right|^{\frac{1}{2}} \int_{\|\mathbf{y}\|^2 = \Delta} d\mathbf{y}. \tag{2.182}$$

Therefore,

$$\int_{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=\Delta} d\mathbf{x} = |\det \boldsymbol{\Sigma}|^{\frac{1}{2}} \Delta^D V_D, \qquad (2.183)$$

where

$$V_D = \int_{\|\mathbf{x}\|=1} d\mathbf{x}.$$
 (2.184)

2.24

Let

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

be a partitioned matrix where A is a square matrix and D is an invertible matrix. By an LDU decomposition, we have

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{B}\mathbf{D}^{-1} \\ \mathbf{O} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C} & \mathbf{O} \\ \mathbf{O} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{D}^{-1}\mathbf{C} & \mathbf{I} \end{bmatrix}.$$

Then,

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ -\mathbf{D}^{-1}\mathbf{C} & \mathbf{I} \end{bmatrix} \begin{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{D}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{B}\mathbf{D}^{-1} \\ \mathbf{O} & \mathbf{I} \end{bmatrix}.$$

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1} = \begin{bmatrix} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} & -\mathbf{B} \mathbf{D}^{-1} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} \\ -\mathbf{D}^{-1} \mathbf{C} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} & \mathbf{D}^{-1} + \mathbf{D}^{-1} \mathbf{C} \left(\mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right)^{-1} \mathbf{B} \mathbf{D}^{-1} \end{bmatrix}.$$

2.25

Let \mathbf{x} be a variable such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}), \tag{2.185}$$

where

$$\mathbf{x} = egin{bmatrix} \mathbf{x}_a \ \mathbf{x}_b \ \mathbf{x}_c \end{bmatrix}, oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \ oldsymbol{\mu}_c \end{bmatrix}, oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} & oldsymbol{\Sigma}_{ac} \ oldsymbol{\Sigma}_{ca} & oldsymbol{\Sigma}_{cb} & oldsymbol{\Sigma}_{cc} \end{bmatrix}.$$

Let

$$\Lambda = \Sigma^{-1},\tag{2.186}$$

where

$$oldsymbol{\Lambda} = egin{bmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} & oldsymbol{\Lambda}_{ac} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} & oldsymbol{\Lambda}_{bc} \ oldsymbol{\Lambda}_{ca} & oldsymbol{\Lambda}_{cb} & oldsymbol{\Lambda}_{cc} \end{bmatrix}.$$

Then, the logarithm of $p(\mathbf{x})$ except the terms independent of \mathbf{x}_a can be written as

$$-\frac{1}{2}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})^{\mathsf{T}}\boldsymbol{\Lambda}_{aa}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})-\frac{1}{2}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})^{\mathsf{T}}\boldsymbol{\Lambda}_{ab}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})$$

$$-\frac{1}{2}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})^{\mathsf{T}}\boldsymbol{\Lambda}_{ac}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})-\frac{1}{2}(\mathbf{x}_{b}-\boldsymbol{\mu}_{b})^{\mathsf{T}}\boldsymbol{\Lambda}_{ba}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a})$$

$$-\frac{1}{2}(\mathbf{x}_{c}-\boldsymbol{\mu}_{c})^{\mathsf{T}}\boldsymbol{\Lambda}_{ca}(\mathbf{x}_{a}-\boldsymbol{\mu}_{a}).$$
(2.187)

Except the terms independent of \mathbf{x}_a , it can be written as

$$-\frac{1}{2}(\mathbf{x}_a - \boldsymbol{\mu}_{a|b,c})^{\mathsf{T}} \boldsymbol{\Sigma}_{a|b,c}^{-1}(\mathbf{x}_a - \boldsymbol{\mu}_{a|b,c}), \tag{2.188}$$

where

$$\mu_{a|b,c} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b - \mu_b) - \Lambda_{aa}^{-1} \Lambda_{ac} (\mathbf{x}_c - \mu_c),$$

$$\Sigma_{a|b,c} = \Lambda_{aa}^{-1}.$$
(2.189)

Then,

$$p(\mathbf{x}_a|\mathbf{x}_b,\mathbf{x}_c) = \mathcal{N}(\mathbf{x}_a|\boldsymbol{\mu}_{a|b,c},\boldsymbol{\Sigma}_{a|b,c}). \tag{2.190}$$

By marginalisation,

$$p(\mathbf{x}_a|\mathbf{x}_b) = \int p(\mathbf{x}_a|\mathbf{x}_b, \mathbf{x}_c) p(\mathbf{x}_c) d\mathbf{x}_c.$$
 (2.191)

The integrand of the right hand side except the terms independent of \mathbf{x}_c can be written as

$$-\frac{1}{2} \left(\mathbf{x}_{a} - \boldsymbol{\mu}_{a|b,c} \right)^{\mathsf{T}} \boldsymbol{\Sigma}_{a|b,c}^{-1} \left(\mathbf{x}_{a} - \boldsymbol{\mu}_{a|b,c} \right) - \frac{1}{2} (\mathbf{x}_{c} - \boldsymbol{\mu}_{c})^{\mathsf{T}} \boldsymbol{\Lambda}_{cc} (\mathbf{x}_{c} - \boldsymbol{\mu}_{c})$$

$$= -\frac{1}{2} \mathbf{v}^{\mathsf{T}} \mathbf{M} \mathbf{v},$$
(2.192)

where

$$\mathbf{v} = \begin{bmatrix} \mathbf{x}_{c} - \boldsymbol{\mu}_{c} \\ \mathbf{x}_{a} - \boldsymbol{\mu}_{a} + \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ab} (\mathbf{x}_{b} - \boldsymbol{\mu}_{b}) \end{bmatrix},$$

$$\mathbf{M} = \begin{bmatrix} \boldsymbol{\Lambda}_{cc} + \boldsymbol{\Lambda}_{ac}^{\mathsf{T}} \boldsymbol{\Lambda}_{aa}^{-1} \boldsymbol{\Lambda}_{ac} & \boldsymbol{\Lambda}_{ac}^{\mathsf{T}} \\ \boldsymbol{\Lambda}_{ac} & \boldsymbol{\Lambda}_{aa} \end{bmatrix}.$$
(2.193)

By 2.24,

$$\mathbf{M}^{-1} = \begin{bmatrix} \mathbf{\Lambda}_{cc}^{-1} & -\mathbf{\Lambda}_{cc}^{-1} \mathbf{\Lambda}_{aa}^{\mathsf{T}} \mathbf{\Lambda}_{aa}^{-1} \\ -\mathbf{\Lambda}_{aa}^{-1} \mathbf{\Lambda}_{ac} \mathbf{\Lambda}_{cc}^{-1} & \mathbf{\Lambda}_{aa}^{-1} + \mathbf{\Lambda}_{aa}^{-1} \mathbf{\Lambda}_{ac} \mathbf{\Lambda}_{cc}^{-1} \mathbf{\Lambda}_{aa}^{\mathsf{T}} \mathbf{\Lambda}_{ac}^{-1} \end{bmatrix}.$$
(2.194)

Therefore,

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}_a|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b}), \qquad (2.195)$$

where

$$\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} \left(\mathbf{x}_b - \mu_b \right),
\Sigma_{a|b} = \Lambda_{aa}^{-1} + \Lambda_{aa}^{-1} \Lambda_{ac} \Lambda_{cc}^{-1} \Lambda_{ac}^{\mathsf{T}} \Lambda_{aa}^{-1}.$$
(2.196)

2.26

We have

$$(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}) (\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D})$$

$$= \mathbf{I} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}$$

$$+ \mathbf{A}^{-1}\mathbf{B}\mathbf{C}\mathbf{D} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}\mathbf{B}\mathbf{C}\mathbf{D}.$$
(2.197)

The right hand side except the first term can be written as

$$\mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C} - \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\left(\mathbf{I} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\mathbf{C}\right)\right)\mathbf{D}$$

$$= \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C} - \left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)\mathbf{C}\right)\mathbf{D}.$$
(2.198)

The right hand side can be written as

$$\mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C} - \mathbf{C}\right)\mathbf{D} = \mathbf{O}.\tag{2.199}$$

Then,

$$\left(\mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{D}\mathbf{A}^{-1}\right)\left(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D}\right) = \mathbf{I}.$$
 (2.200)

Therefore,

$$(\mathbf{A} + \mathbf{BCD})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B} (\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}.$$
 (2.201)

2.27

(a)

Let \mathbf{x} and \mathbf{z} be two variables. By the definition,

$$E(\mathbf{x} + \mathbf{z}) = \int \int (\mathbf{x} + \mathbf{z}) p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}.$$
 (2.202)

The right hand side can be written as

$$\int \mathbf{x} \left(\int p(\mathbf{x}, \mathbf{z}) d\mathbf{z} \right) d\mathbf{x} + \int \mathbf{z} \left(\int p(\mathbf{x}, \mathbf{z}) d\mathbf{x} \right) d\mathbf{z} = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x} + \int \mathbf{z} p(\mathbf{z}) d\mathbf{z}.$$
(2.203)

Therefore,

$$E(\mathbf{x} + \mathbf{z}) = E\mathbf{x} + E\mathbf{z}. \tag{2.204}$$

(b)

Let \mathbf{x} and \mathbf{z} be two independent variables. By the definition,

$$cov(\mathbf{x} + \mathbf{z}) = \int \int (\mathbf{x} + \mathbf{z} - E(\mathbf{x} + \mathbf{z})) (\mathbf{x} + \mathbf{z} - E(\mathbf{x} + \mathbf{z}))^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}.$$
(2.205)

The right hand side can be written as

$$\int \int (\mathbf{x} - \mathbf{E} \mathbf{x}) (\mathbf{x} - \mathbf{E} \mathbf{x})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z} + \int \int (\mathbf{x} - \mathbf{E} \mathbf{x}) (\mathbf{z} - \mathbf{E} \mathbf{z})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}
+ \int \int (\mathbf{z} - \mathbf{E} \mathbf{z}) (\mathbf{x} - \mathbf{E} \mathbf{x})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z} + \int \int (\mathbf{z} - \mathbf{E} \mathbf{z}) (\mathbf{z} - \mathbf{E} \mathbf{z})^{\mathsf{T}} p(\mathbf{x}, \mathbf{z}) d\mathbf{x} d\mathbf{z}.$$
(2.206)

Each term can be written as

$$\int (\mathbf{x} - \mathbf{E} \, \mathbf{x}) (\mathbf{x} - \mathbf{E} \, \mathbf{x})^{\mathsf{T}} \left(\int p(\mathbf{x}, \mathbf{z}) d\mathbf{z} \right) d\mathbf{x} = \int (\mathbf{x} - \mathbf{E} \, \mathbf{x}) (\mathbf{x} - \mathbf{E} \, \mathbf{x})^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x},$$

$$\int (\mathbf{x} - \mathbf{E} \, \mathbf{x}) p(\mathbf{x}) d\mathbf{x} \int (\mathbf{z} - \mathbf{E} \, \mathbf{z})^{\mathsf{T}} p(\mathbf{z}) d\mathbf{z} = (\mathbf{E} \, \mathbf{x} - \mathbf{E} \, \mathbf{x}) (\mathbf{E} \, \mathbf{z} - \mathbf{E} \, \mathbf{z})^{\mathsf{T}},$$

$$\int (\mathbf{z} - \mathbf{E} \, \mathbf{z}) p(\mathbf{z}) d\mathbf{z} \int (\mathbf{x} - \mathbf{E} \, \mathbf{x})^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x} = (\mathbf{E} \, \mathbf{z} - \mathbf{E} \, \mathbf{z}) (\mathbf{E} \, \mathbf{x} - \mathbf{E} \, \mathbf{x})^{\mathsf{T}},$$

$$\int (\mathbf{z} - \mathbf{E} \, \mathbf{z}) (\mathbf{z} - \mathbf{E} \, \mathbf{z})^{\mathsf{T}} \left(\int p(\mathbf{x}, \mathbf{z}) d\mathbf{x} \right) d\mathbf{z} = \int (\mathbf{z} - \mathbf{E} \, \mathbf{z}) (\mathbf{z} - \mathbf{E} \, \mathbf{z})^{\mathsf{T}} p(\mathbf{z}) d\mathbf{z}.$$

$$(2.207)$$

Therefore,

$$cov(\mathbf{x} + \mathbf{z}) = cov \mathbf{x} + cov \mathbf{z}. \tag{2.208}$$

2.28

Let z be a variable such that

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix},$$

$$\mathbf{E} \mathbf{z} = \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{A}\boldsymbol{\mu} + \mathbf{b} \end{bmatrix},$$

$$\mathbf{cov} \mathbf{z} = \begin{bmatrix} \boldsymbol{\Lambda}^{-1} & \boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}} \\ \mathbf{A}\boldsymbol{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}} \end{bmatrix},$$
(2.209)

where \mathbf{x} and \mathbf{y} are Gaussian variables. By 2.29,

$$(\cos \mathbf{z})^{-1} = \begin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathsf{T}} \mathbf{L} \\ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix}.$$

Then, $\ln p(\mathbf{z})$ except the terms independent of \mathbf{x} and \mathbf{y} is given by

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu}) + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$+ \frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu}) +$$

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b} - \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}))^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b} - \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}))$$

$$+ \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} (\mathbf{x} - \boldsymbol{\mu}).$$
(2.210)

The right hand side can be written as

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b}). \tag{2.211}$$

Therefore,

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right),$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}\right).$$
(2.212)

2.29

Let

$$\mathbf{R} = \begin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathsf{T}} \mathbf{L} \\ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix}. \tag{2.213}$$

By 2.24,

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{\Lambda}^{-1} & \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \\ \mathbf{A}\mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A}\mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \end{bmatrix}. \tag{2.214}$$

2.30

Let

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{\Lambda}^{-1} & \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \\ \mathbf{A}\mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A}\mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \end{bmatrix}. \tag{2.215}$$

Then,

$$\mathbf{R}^{-1} \begin{bmatrix} \mathbf{\Lambda} \boldsymbol{\mu} - \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{b} \\ \mathbf{L} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{A} \boldsymbol{\mu} + \mathbf{b} \end{bmatrix}. \tag{2.216}$$

Let y be a variable such that

$$\mathbf{y} = \mathbf{x} + \mathbf{z},\tag{2.217}$$

where

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}),$$

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}}).$$
(2.218)

By marginalisation,

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{x})p(\mathbf{x})d\mathbf{x}.$$
 (2.219)

The right hand side can be written as

$$\int \mathcal{N}(\mathbf{y}|\mathbf{x} + \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{z}}) \,\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}) \, d\mathbf{x}. \tag{2.220}$$

The logarithm of the integrand except the terms independent of \mathbf{x} and \mathbf{y} is given by

$$-\frac{1}{2}(\mathbf{y} - \mathbf{x} - \boldsymbol{\mu}_{\mathbf{z}})^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathbf{z}}^{-1} (\mathbf{y} - \mathbf{x} - \boldsymbol{\mu}_{\mathbf{z}}) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}). \quad (2.221)$$

The terms except the ones independent of \mathbf{x} and \mathbf{y} can be written as

$$-\frac{1}{2}\mathbf{u}^{\mathsf{T}}\mathbf{R}\mathbf{u} + \mathbf{u}^{\mathsf{T}}\mathbf{v} = -\frac{1}{2}\left(\mathbf{u} - \mathbf{R}^{-1}\mathbf{v}\right)^{\mathsf{T}}\mathbf{R}\left(\mathbf{u} - \mathbf{R}^{-1}\mathbf{v}\right) + \frac{1}{2}\mathbf{v}^{\mathsf{T}}\mathbf{R}^{-1}\mathbf{v}, \quad (2.222)$$

where

$$\mathbf{u} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix},$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{x}}^{-1} + \mathbf{\Sigma}_{\mathbf{z}}^{-1} & -\mathbf{\Sigma}_{\mathbf{z}}^{-1} \\ -\mathbf{\Sigma}_{\mathbf{z}}^{-1} & \mathbf{\Sigma}_{\mathbf{z}}^{-1} \end{bmatrix},$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{x}}^{-1} \boldsymbol{\mu}_{\mathbf{x}} - \mathbf{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{z}} \\ \mathbf{\Sigma}_{\mathbf{z}}^{-1} \boldsymbol{\mu}_{\mathbf{z}} \end{bmatrix},$$
(2.223)

By 2.29 and 2.30,

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{x}} & \mathbf{\Sigma}_{\mathbf{x}} \\ \mathbf{\Sigma}_{\mathbf{x}} & \mathbf{\Sigma}_{\mathbf{x}} + \mathbf{\Sigma}_{\mathbf{z}} \end{bmatrix},$$

$$\mathbf{R}^{-1}\mathbf{v} = \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{x}} \\ \boldsymbol{\mu}_{\mathbf{x}} + \boldsymbol{\mu}_{\mathbf{z}} \end{bmatrix}.$$
(2.224)

Therefore,

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\boldsymbol{\mu}_{\mathbf{x}} + \boldsymbol{\mu}_{\mathbf{z}}, \boldsymbol{\Sigma}_{\mathbf{x}} + \boldsymbol{\Sigma}_{\mathbf{z}}).$$
 (2.225)

Let \mathbf{x} and \mathbf{y} be variables such that

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right),$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}\right).$$
(2.226)

By the Bayes' theorem,

$$p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y}). \tag{2.227}$$

The logarithm of the left hand side except the terms independent of \mathbf{x} and \mathbf{y} can be written as

$$-\frac{1}{2} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b}) - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})$$

$$= -\frac{1}{2} (\mathbf{y} - \mathbf{A}(\mathbf{x} - \boldsymbol{\mu}) - \mathbf{A}\boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A}(\mathbf{x} - \boldsymbol{\mu}) - \mathbf{A}\boldsymbol{\mu} - \mathbf{b}) \qquad (2.228)$$

$$-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}).$$

The right hand side can be written as

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu}) + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$-\frac{1}{2} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu} - \mathbf{z})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu} - \mathbf{z}) + \frac{1}{2} \mathbf{z}^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) \mathbf{z}$$

$$-\frac{1}{2} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b}),$$
(2.229)

where

$$\mathbf{z} = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b}). \tag{2.230}$$

The right hand side can be written as

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu} - \mathbf{z})^{\mathsf{T}} (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) (\mathbf{x} - \boldsymbol{\mu} - \mathbf{z})$$

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b})^{\mathsf{T}} \mathbf{M} (\mathbf{y} - \mathbf{A} \boldsymbol{\mu} - \mathbf{b}),$$
(2.231)

where

$$\mathbf{M} = \mathbf{L} - \mathbf{L}\mathbf{A} \left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1} \mathbf{A}^{\mathsf{T}}\mathbf{L}. \tag{2.232}$$

We have

$$\mu + \mathbf{z} = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} ((\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A}) \mu + \mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A} \mu - \mathbf{b})).$$
 (2.233)

Then,

$$\mu + \mathbf{z} = (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} (\mathbf{A}^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda} \mu).$$
 (2.234)

By 2.26,

$$(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A})^{-1} = \mathbf{\Lambda}^{-1} - \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right)^{-1} \mathbf{A} \mathbf{\Lambda}^{-1}. \tag{2.235}$$

Then,

$$\mathbf{M} = \mathbf{L} - \mathbf{L} \mathbf{A} \left(\mathbf{\Lambda}^{-1} - \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right)^{-1} \mathbf{A} \mathbf{\Lambda}^{-1} \right) \mathbf{A}^{\mathsf{T}} \mathbf{L}. \quad (2.236)$$

The right hand side can be written as

$$\mathbf{L} - \mathbf{L} \left(\mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} - \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right)^{-1} \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right) \mathbf{L}$$

$$= \mathbf{L} - \mathbf{L} \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right)^{-1} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} - \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right) \mathbf{L}.$$
(2.237)

The right hand side can be written as

$$\mathbf{L} - \mathbf{L} \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right)^{-1}$$

$$= \mathbf{L} \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} - \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right) \left(\mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \right)^{-1}.$$
(2.238)

Then,

$$\mathbf{M} = \left(\mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}}\right)^{-1}.\tag{2.239}$$

Therefore,

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}\left(\mathbf{x}|\left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1}\left(\mathbf{A}^{\mathsf{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda}\boldsymbol{\mu}\right), \left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1}\right),$$
$$p(\mathbf{y}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\mathbf{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}}\right).$$
(2.240)

2.33

Refer to 2.32, while a different approach is presented below.

Let \mathbf{x} and \mathbf{y} be variables such that

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right),$$

$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1}\right).$$
(2.241)

By the Bayes' theorem,

$$p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y}). \tag{2.242}$$

The logarithm of the left hand side except the terms independent of \mathbf{x} and \mathbf{y} can be written as

$$-\frac{1}{2}(\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b})^{\mathsf{T}} \mathbf{L} (\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{b}) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}). \tag{2.243}$$

The terms except the ones independent of \mathbf{x} and \mathbf{y} can be written as

$$-\frac{1}{2} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathsf{T}} \mathbf{L} \\ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} + \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -\mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{b} + \mathbf{\Lambda} \boldsymbol{\mu} \\ \mathbf{L} \mathbf{b} \end{bmatrix}. \quad (2.244)$$

By 2.24,

$$\begin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathsf{T}} \mathbf{L} \\ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{\Lambda}^{-1} & \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \\ \mathbf{A} \mathbf{\Lambda}^{-1} & \mathbf{L}^{-1} + \mathbf{A} \mathbf{\Lambda}^{-1} \mathbf{A}^{\mathsf{T}} \end{bmatrix}, \quad (2.245)$$

so that

$$\begin{bmatrix} \mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{A} & -\mathbf{A}^{\mathsf{T}} \mathbf{L} \\ -\mathbf{L} \mathbf{A} & \mathbf{L} \end{bmatrix}^{-1} \begin{bmatrix} -\mathbf{A}^{\mathsf{T}} \mathbf{L} \mathbf{b} + \mathbf{\Lambda} \boldsymbol{\mu} \\ \mathbf{L} \mathbf{b} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{A} \boldsymbol{\mu} + \mathbf{b} \end{bmatrix}. \tag{2.246}$$

Then,

$$p(\mathbf{y}) = \mathcal{N}\left(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathsf{T}}\right). \tag{2.247}$$

By 2.25,

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu} + (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{L}\left(\mathbf{y} - \mathbf{A}\boldsymbol{\mu} - \mathbf{b}\right), (\boldsymbol{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A})^{-1}\right).$$
(2.248)

We have

$$\mu + (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{L}(\mathbf{y} - \mathbf{A}\boldsymbol{\mu} - \mathbf{b})$$

$$= (\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A})^{-1}(\mathbf{\Lambda}\boldsymbol{\mu} + \mathbf{A}^{\mathsf{T}}\mathbf{L}(\mathbf{y} - \mathbf{b})).$$
(2.249)

Therefore,

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}\left(\mathbf{x}|\left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1}\left(\mathbf{\Lambda}\boldsymbol{\mu} + \mathbf{A}^{\mathsf{T}}\mathbf{L}(\mathbf{y} - \mathbf{b})\right), \left(\mathbf{\Lambda} + \mathbf{A}^{\mathsf{T}}\mathbf{L}\mathbf{A}\right)^{-1}\right). \tag{2.250}$$

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be variables such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}). \tag{2.251}$$

Then,

$$\ln\left(\prod_{n=1}^{N} p(\mathbf{x}_n)\right) = -\frac{ND}{2}\ln(2\pi) - \frac{N}{2}\ln|\det \mathbf{\Sigma}| - \frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{\Sigma}^{-1}(\mathbf{x}_n - \boldsymbol{\mu}).$$
(2.252)

By 3.21(a), setting the derivatives with respect to μ and Σ to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right) (\mathbf{x}_{n} - \boldsymbol{\mu}),$$

$$\mathbf{O} = -\frac{N}{2} \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} + \frac{1}{2} \left(\mathbf{\Sigma}^{-1} \right)^{2} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}) (\mathbf{x}_{n} - \boldsymbol{\mu})^{\mathsf{T}}.$$

$$(2.253)$$

Therefore, the maximum likelihood solutions for μ and Σ are given by

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n},$$

$$\Sigma_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}_{\text{ML}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{\text{ML}})^{\mathsf{T}}.$$
(2.254)

2.35

(a)

Let \mathbf{x} be a variable such that

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}). \tag{2.255}$$

Then,

$$\mathbf{E} \mathbf{x} \mathbf{x}^{\mathsf{T}} = \mathbf{E} (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu} + \boldsymbol{\mu})^{\mathsf{T}}. \tag{2.256}$$

The right hand side can be written as

$$E(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} + \boldsymbol{\mu} E(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} + E(\mathbf{x} - \boldsymbol{\mu})\boldsymbol{\mu}^{\mathsf{T}} + \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}. \tag{2.257}$$

Since

$$\begin{aligned}
\mathbf{E} \mathbf{x} &= \boldsymbol{\mu}, \\
\cos \mathbf{x} &= \boldsymbol{\Sigma},
\end{aligned} (2.258)$$

The right hand side can be written as $\Sigma + \mu \mu^{\dagger}$. Therefore,

$$\mathbf{E} \mathbf{x} \mathbf{x}^{\mathsf{T}} = \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}. \tag{2.259}$$

(b)

Let \mathbf{x}_n and \mathbf{x}_m be independent variables such that

$$p(\mathbf{x}_n) = \mathcal{N}\left(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}\right),$$

$$p(\mathbf{x}_m) = \mathcal{N}\left(\mathbf{x}_m | \boldsymbol{\mu}, \boldsymbol{\Sigma}\right).$$
(2.260)

If $n \neq m$, then

$$\mathbf{E}\,\mathbf{x}_n\mathbf{x}_m^{\mathsf{T}} = \mathbf{E}\,\mathbf{x}_n\,\mathbf{E}\,\mathbf{x}_m^{\mathsf{T}}.\tag{2.261}$$

The right hand side can be written as $\mu\mu^{\dagger}$. Therefore, by (a),

$$\mathbf{E} \, \mathbf{x}_n \mathbf{x}_m^{\mathsf{T}} = I_{nm} \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}. \tag{2.262}$$

(c)

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be variables such that

$$p(\mathbf{x}_n) = \mathcal{N}\left(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}\right). \tag{2.263}$$

By 2.34, the maximum likelihood solutions for μ and Σ are given by

$$\boldsymbol{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n},$$

$$\boldsymbol{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}.$$
(2.264)

Then,

$$E \Sigma_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} E(\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}.$$
 (2.265)

The right hand side can be written as

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{E} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} - \frac{1}{N^{2}} \sum_{n=1}^{N} \mathbf{E} \left(\sum_{n=1}^{N} \mathbf{x}_{n} \right) \mathbf{x}_{n}^{\mathsf{T}} - \frac{1}{N^{2}} \sum_{n=1}^{N} \mathbf{E} \mathbf{x}_{n} \left(\sum_{n=1}^{N} \mathbf{x}_{n} \right)^{\mathsf{T}} + \frac{1}{N^{3}} \sum_{n=1}^{N} \mathbf{E} \left(\sum_{n=1}^{N} \mathbf{x}_{n} \right) \left(\sum_{n=1}^{N} \mathbf{x}_{n} \right)^{\mathsf{T}}.$$
(2.266)

By (b), the first term can be written as $\Sigma + \mu \mu^{\dagger}$. By (b), the second and third terms can be written as

$$-\frac{1}{N}\left((\boldsymbol{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}) + (N-1)\boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}\right) = -\frac{1}{N}\boldsymbol{\Sigma} - \boldsymbol{\mu}\boldsymbol{\mu}^{\mathsf{T}}.$$
 (2.267)

By (b), the fourth term can be written as

$$\frac{1}{N^2} \left(N \left(\mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}} \right) + N (N - 1) \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}} \right) = \frac{1}{N} \mathbf{\Sigma} + \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}. \tag{2.268}$$

Then,

$$E \Sigma_{ML} = (\Sigma + \mu \mu^{\mathsf{T}}) + 2\left(-\frac{1}{N}\Sigma - \mu \mu^{\mathsf{T}}\right) + \frac{1}{N}\Sigma + \mu \mu^{\mathsf{T}}.$$
 (2.269)

Therefore,

$$E \Sigma_{\rm ML} = \frac{N-1}{N} \Sigma. \tag{2.270}$$

2.36

Let x_1, \dots, x_N be variables such that

$$p(x_n) = \mathcal{N}\left(x_n | \mu, \sigma^2\right). \tag{2.271}$$

Let us assume that μ is known. By 2.34, the maximum likelihood solution for σ^2 is given by

$$\sigma_{\rm ML}^{2(N)} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2.$$
 (2.272)

The right hand side can be written as

$$\frac{1}{N}(x_N - \mu)^2 + \frac{1}{N} \sum_{n=1}^{N-1} (x_n - \mu)^2 = \frac{1}{N}(x_N - \mu)^2 + \frac{N-1}{N} \sigma_{\text{ML}}^{2(N-1)}. \quad (2.273)$$

Then,

$$\sigma_{\rm ML}^{2(N)} = \sigma_{\rm ML}^{2(N-1)} + \frac{1}{N} \left((x_N - \mu)^2 - \sigma_{\rm ML}^{2(N-1)} \right). \tag{2.274}$$

We have

$$\frac{\partial}{\partial \sigma^2} \left(-\ln p(x_n) \right) = \frac{1}{2\sigma^2} - \frac{1}{2(\sigma^2)^2} (x_n - \mu)^2.$$
 (2.275)

Therefore,

$$\sigma_{\rm ML}^{2(N)} = \sigma_{\rm ML}^{2(N-1)} - \frac{2\left(\sigma_{\rm ML}^{2(N-1)}\right)^{2}}{N} \left(\frac{\partial}{\partial \sigma^{2}} \left(-\ln p(x_{N})\right)\right) \bigg|_{\sigma^{2} = \sigma_{\rm ML}^{2(N-1)}}.$$
(2.276)

2.37

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be variables such that

$$p(\mathbf{x}_n) = \mathcal{N}\left(\mathbf{x}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}\right). \tag{2.277}$$

Let us assume that μ is known. By 2.34, the maximum likelihood solution for Σ is given by

$$\Sigma_{\mathrm{ML}}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}}.$$
 (2.278)

The right hand side can be written as

$$\frac{1}{N}(\mathbf{x}_N - \boldsymbol{\mu})(\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}} + \frac{1}{N} \sum_{n=1}^{N-1} (\mathbf{x}_n - \boldsymbol{\mu})(\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}}$$

$$= \frac{1}{N} (\mathbf{x}_N - \boldsymbol{\mu})(\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}} + \frac{N-1}{N} \boldsymbol{\Sigma}_{\mathrm{ML}}^{(N-1)}.$$
(2.279)

Then,

$$\Sigma_{\mathrm{ML}}^{(N)} = \Sigma_{\mathrm{ML}}^{(N-1)} + \frac{1}{N} \left((\mathbf{x}_N - \boldsymbol{\mu}) (\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}} - \Sigma_{\mathrm{ML}}^{(N-1)} \right). \tag{2.280}$$

By 3.21(a), we have

$$\frac{\partial}{\partial \mathbf{\Sigma}} \left(-\ln p(x_n) \right) = -\frac{1}{2} \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} + \frac{1}{2} \left(\mathbf{\Sigma}^{-1} \right)^2 (\mathbf{x}_N - \boldsymbol{\mu}) (\mathbf{x}_N - \boldsymbol{\mu})^{\mathsf{T}}. \tag{2.281}$$

Therefore,

$$\Sigma_{\mathrm{ML}}^{(N)} = \Sigma_{\mathrm{ML}}^{(N-1)} - \frac{\left(\Sigma_{\mathrm{ML}}^{(N-1)}\right)^{2}}{N} \left(\frac{\partial}{\partial \Sigma} \left(-\ln p\left(\mathbf{x}_{N}\right)\right)\right)\Big|_{\Sigma = \Sigma_{\mathrm{MI}}^{(N-1)}}.$$
 (2.282)

2.38

Let x_1, \dots, x_N be variables such that

$$p(x_n|\mu) = \mathcal{N}\left(x_n|\mu, \sigma^2\right),$$

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$
(2.283)

By the Bayes' theorem,

$$p(\mu|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mu)p(\mu). \tag{2.284}$$

The logarithm of the right hand side except the terms independent of \mathbf{x} and μ can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2.$$
 (2.285)

By 2.34, the maximum likelihood solution for μ is given by

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n. \tag{2.286}$$

Then, the first term can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}} + \mu_{\text{ML}} - \mu)^2$$

$$= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2 - \frac{\mu_{\text{ML}} - \mu}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}}) - \frac{N}{2\sigma^2} (\mu_{\text{ML}} - \mu)^2.$$
(2.287)

Since the second term of the right hand side is zero, the logarithm except the terms independent of \mathbf{x} and μ can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2 - \frac{N}{2\sigma^2} (\mu_{\rm ML} - \mu)^2 - \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2$$

$$= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2 - \frac{1}{2\sigma_N^2} (\mu - \mu_N)^2 + \frac{\mu_N^2}{2\sigma_N^2} - \frac{N\mu_{\rm ML}^2}{2\sigma^2} - \frac{\mu_0^2}{2\sigma_0^2},$$
(2.288)

where

$$\mu_{N} = \frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{ML} + \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{0},$$

$$\sigma_{N}^{2} = \frac{\sigma^{2}\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}}.$$
(2.289)

Therefore,

$$p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu|\mu_N, \sigma_N^2\right). \tag{2.290}$$

2.39

Let x_1, \dots, x_N be variables such that

$$p(x_n|\mu) = \mathcal{N}\left(x_n|\mu, \sigma^2\right),$$

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$
(2.291)

(a)

By 2.38,

$$p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu|\mu_N, \sigma_N^2\right), \qquad (2.292)$$

where

$$\mu_N = \frac{\sigma_0^2}{N\sigma_0^2 + \sigma^2} \sum_{n=1}^N x_n + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0,$$

$$\sigma_N^2 = \frac{\sigma^2 \sigma_0^2}{N\sigma_0^2 + \sigma^2}.$$
(2.293)

Then,

$$\frac{1}{\sigma_N^2} = \frac{(N-1)\sigma_0^2 + \sigma^2}{\sigma^2 \sigma_0^2} + \frac{1}{\sigma^2}.$$
 (2.294)

Therefore,

$$\frac{1}{\sigma_N^2} = \frac{1}{\sigma_{N-1}^2} + \frac{1}{\sigma^2}. (2.295)$$

We have

$$\frac{\mu_N}{\sigma_N^2} = \frac{1}{\sigma^2} \sum_{n=1}^N x_n + \frac{\mu_0}{\sigma_0^2},\tag{2.296}$$

so that

$$\frac{\mu_{N-1}}{\sigma_{N-1}^2} = \frac{1}{\sigma^2} \sum_{n=1}^{N-1} x_n + \frac{\mu_0}{\sigma_0^2}.$$
 (2.297)

Therefore,

$$\frac{\mu_N}{\sigma_N^2} = \frac{\mu_{N-1}}{\sigma_{N-1}^2} + \frac{x_N}{\sigma^2}.$$
 (2.298)

(b)

By the Bayes' theorem,

$$p(\mu|\mathbf{x}_N)p(\mathbf{x}_N) = p(\mathbf{x}_N|\mu)p(\mu). \tag{2.299}$$

Since \mathbf{x}_{N-1} and x_N are independent, it can be written as

$$p(\mu|\mathbf{x}_N)p(\mathbf{x}_{N-1})p(x_N) = p(\mathbf{x}_{N-1}|\mu)p(x_N|\mu)p(\mu).$$
(2.300)

By the Bayes' theorem, the right hand side can be written as

$$p(\mu|\mathbf{x}_{N-1})p(\mathbf{x}_{N-1})p(x_N|\mu). \tag{2.301}$$

Then,

$$p(\mu|\mathbf{x}_N)p(x_N) = p(\mu|\mathbf{x}_{N-1})p(x_N|\mu). \tag{2.302}$$

The logarithm of the integrand of the right hand side except the terms independent of μ or x_N can be written as

$$-\frac{1}{2\sigma_{N-1}^{2}}(\mu-\mu_{N-1})^{2} - \frac{1}{2\sigma^{2}}(x_{N}-\mu)^{2}$$

$$= -\frac{1}{2}\left(\frac{1}{\sigma_{N-1}^{2}} + \frac{1}{\sigma^{2}}\right)\left(\mu - \frac{\frac{1}{\sigma_{N-1}^{2}}}{\frac{1}{\sigma_{N-1}^{2}} + \frac{1}{\sigma^{2}}}\mu_{N-1} - \frac{\frac{1}{\sigma^{2}}}{\frac{1}{\sigma_{N-1}^{2}} + \frac{1}{\sigma^{2}}}x_{N}\right)^{2}$$

$$+\frac{1}{2}\left(\frac{1}{\sigma_{N-1}^{2}} + \frac{1}{\sigma^{2}}\right)\left(\frac{\frac{1}{\sigma_{N-1}^{2}}}{\frac{1}{\sigma_{N-1}^{2}} + \frac{1}{\sigma^{2}}}\mu_{N-1} + \frac{\frac{1}{\sigma^{2}}}{\frac{1}{\sigma_{N-1}^{2}} + \frac{1}{\sigma^{2}}}x_{N}\right)^{2} - \frac{\mu_{N-1}^{2}}{2\sigma_{N-1}^{2}} - \frac{x_{N}^{2}}{2\sigma^{2}}.$$

$$(2.303)$$

Then,

$$\mu_N = \frac{\frac{1}{\sigma_{N-1}^2}}{\frac{1}{\sigma_{N-1}^2} + \frac{1}{\sigma^2}} \mu_{N-1} + \frac{\frac{1}{\sigma^2}}{\frac{1}{\sigma_{N-1}^2} + \frac{1}{\sigma^2}} x_N,$$

$$\sigma_N^2 = \frac{1}{\frac{1}{\sigma_{N-1}^2} + \frac{1}{\sigma^2}}.$$
(2.304)

Therefore,

$$\frac{\mu_N}{\sigma_N^2} = \frac{\mu_{N-1}}{\sigma_{N-1}^2} + \frac{x_N}{\sigma^2},
\frac{1}{\sigma_N^2} = \frac{1}{\sigma_{N-1}^2} + \frac{1}{\sigma^2}.$$
(2.305)

2.40

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be variables such that

$$p(\mathbf{x}_n|\boldsymbol{\mu}) = \mathcal{N}\left(\mathbf{x}_n|\boldsymbol{\mu}, \boldsymbol{\Sigma}\right),$$

$$p(\boldsymbol{\mu}) = \mathcal{N}\left(\boldsymbol{\mu}|\boldsymbol{\mu}_0, \boldsymbol{\Sigma}\right).$$
(2.306)

By the Bayes' theorem,

$$p(\boldsymbol{\mu}|\mathbf{X})p(\mathbf{X}) = p(\mathbf{X}|\boldsymbol{\mu})p(\boldsymbol{\mu}). \tag{2.307}$$

The logarithm of the right hand side excpt the terms independent of ${\bf X}$ and ${\boldsymbol \mu}$ can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu})-\frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})\boldsymbol{\Sigma}_{0}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})^{\mathsf{T}}.$$
 (2.308)

The first term can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}+\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}+\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})$$

$$=-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})-\frac{N}{2}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu}).$$
(2.309)

where

$$\boldsymbol{\mu}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}, \qquad (2.310)$$

as derived in 2.34. Therefore, the logarithm except the terms independent of X and μ can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}) - \frac{N}{2}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\mathrm{ML}}-\boldsymbol{\mu})$$

$$-\frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})\boldsymbol{\Sigma}_{0}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{0})^{\mathsf{T}}$$

$$=-\frac{1}{2}\sum_{n=1}^{N}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{n}-\boldsymbol{\mu}_{\mathrm{ML}}) - \frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\mu}_{N})^{\mathsf{T}}\boldsymbol{\Sigma}_{N}^{-1}(\boldsymbol{\mu}-\boldsymbol{\mu}_{N})$$

$$+\frac{1}{2}\boldsymbol{\mu}_{N}^{\mathsf{T}}\boldsymbol{\Sigma}_{N}^{-1}\boldsymbol{\mu}_{N},$$
(2.311)

where

$$\mu_{N} = (N\Sigma_{0}^{-1} + \Sigma^{-1})^{-1} (N\Sigma_{0}^{-1}\mu_{ML} + \Sigma^{-1}\mu_{0}),$$

$$\Sigma_{N} = (N\Sigma_{0}^{-1} + \Sigma^{-1})^{-1}.$$
(2.312)

Therefore,

$$p(\boldsymbol{\mu}|\mathbf{X}) = \mathcal{N}\left(\boldsymbol{\mu} \mid \left(N\boldsymbol{\Sigma}_{0}^{-1} + \boldsymbol{\Sigma}^{-1}\right)^{-1} \left(N\boldsymbol{\Sigma}_{0}^{-1}\boldsymbol{\mu}_{\mathrm{ML}} + \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{0}\right), \left(N\boldsymbol{\Sigma}_{0}^{-1} + \boldsymbol{\Sigma}^{-1}\right)^{-1}\right).$$
(2.313)

2.41

By the definition,

$$Gam(\lambda|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda).$$
 (2.314)

Then

$$\int_0^\infty \operatorname{Gam}(\lambda|a,b)d\lambda = \frac{b^a}{\Gamma(a)} \int_0^\infty \lambda^{a-1} \exp(-b\lambda)d\lambda. \tag{2.315}$$

By the transformation

$$\lambda' = b\lambda, \tag{2.316}$$

the right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \int_0^\infty \left(\frac{\lambda'}{b}\right)^{a-1} \exp(-\lambda') \frac{1}{b} d\lambda' = \frac{1}{\Gamma(a)} \int_0^\infty {\lambda'}^{a-1} \exp(-\lambda') d\lambda'. \quad (2.317)$$

The right hand side can be written as

$$\frac{1}{\Gamma(a)}\Gamma(a) = 1. \tag{2.318}$$

Therefore,

$$\int_{0}^{\infty} \operatorname{Gam}(\lambda|a,b)d\lambda = 1. \tag{2.319}$$

2.42

Let λ be a variable such that

$$p(\lambda) = \operatorname{Gam}(\lambda|a, b). \tag{2.320}$$

By the definition,

$$Gam(\lambda|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda).$$
 (2.321)

Then

$$E \lambda = \frac{b^a}{\Gamma(a)} \int_0^\infty \lambda^a \exp\left(-\frac{\lambda}{b}\right) d\lambda. \tag{2.322}$$

By the transformation

$$\lambda' = b\lambda, \tag{2.323}$$

the right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \int_0^\infty \left(\frac{\lambda'}{b}\right)^a \exp(-\lambda') \frac{1}{b} d\lambda' = \frac{1}{b\Gamma(a)} \int_0^\infty {\lambda'}^a \exp(-\lambda') d\lambda'. \tag{2.324}$$

The right hand side can be written as

$$\frac{1}{b\Gamma(a)}\Gamma(a+1) = \frac{a}{b}. (2.325)$$

Therefore,

$$E\lambda = \frac{a}{b}. (2.326)$$

Additionally,

$$E \lambda^{2} = \frac{b^{a}}{\Gamma(a)} \int_{0}^{\infty} \lambda^{a+1} \exp\left(-\frac{\lambda}{b}\right) d\lambda.$$
 (2.327)

By the transformation

$$\lambda' = b\lambda, \tag{2.328}$$

the right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \int_0^\infty \left(\frac{\lambda'}{b}\right)^{a+1} \exp(-\lambda') \frac{1}{b} d\lambda' = \frac{1}{b^2 \Gamma(a)} \int_0^\infty {\lambda'}^{a+1} \exp(-\lambda') d\lambda'. \quad (2.329)$$

The right hand side can be written as

$$\frac{1}{b^2\Gamma(a)}\Gamma(a+2) = \frac{a(a+1)}{b^2}.$$
 (2.330)

Therefore,

$$E \lambda^2 = \frac{a(a+1)}{b^2}. (2.331)$$

By the definition,

$$\operatorname{var} \lambda = \operatorname{E} \lambda^2 - (\operatorname{E} \lambda)^2. \tag{2.332}$$

Therefore,

$$\operatorname{var} \lambda = \frac{a}{b^2}.\tag{2.333}$$

Finally, setting the derivative of $\operatorname{Gam}(\lambda|a,b)$ with respect to λ to zero gives

$$0 = \frac{b^a}{\Gamma(a)} \left(\frac{a-1}{\lambda} - b \right) \lambda^{a-1} \exp\left(-\frac{\lambda}{b} \right). \tag{2.334}$$

Therefore,

$$\operatorname{mode} \lambda = \frac{a-1}{b}.\tag{2.335}$$

2.43

Let

$$p\left(x|\sigma^2,q\right) = \frac{q}{2\Gamma\left(\frac{1}{q}\right)} \left(2\sigma^2\right)^{-\frac{1}{q}} \exp\left(-\frac{|x|^q}{2\sigma^2}\right). \tag{2.336}$$

Then

$$\int_{-\infty}^{\infty} p\left(x|\sigma^2, q\right) dx = \frac{q}{\Gamma(\frac{1}{q})} \left(2\sigma^2\right)^{-\frac{1}{q}} \int_{0}^{\infty} \exp\left(-\frac{x^q}{2\sigma^2}\right) dx. \tag{2.337}$$

By the transformation

$$x' = \frac{x^q}{2\sigma^2},\tag{2.338}$$

the right hand side can be written as

$$\frac{q}{\Gamma(\frac{1}{q})} \left(2\sigma^{2}\right)^{-\frac{1}{q}} \int_{0}^{\infty} \exp(-x') \left(2\sigma^{2}\right)^{\frac{1}{q}} \frac{1}{q} x^{\frac{1}{q}-1} dx'
= \frac{1}{\Gamma(\frac{1}{q})} \int_{0}^{\infty} x^{\frac{1}{q}-1} \exp(-x') dx'.$$
(2.339)

The right hand side can be written as

$$\frac{1}{\Gamma(\frac{1}{q})}\Gamma\left(\frac{1}{q}\right) = 1. \tag{2.340}$$

Therefore,

$$\int_{-\infty}^{\infty} p(x|\sigma^2, q) dx = 1.$$
 (2.341)

Additionally,

$$p\left(x|\sigma^2,2\right) = \frac{1}{\Gamma(\frac{1}{2})} \left(2\sigma^2\right)^{-\frac{1}{2}} \exp\left(-\frac{x^2}{2\sigma^2}\right). \tag{2.342}$$

Therefore,

$$p(x|\sigma^2, 2) = \mathcal{N}(x|0, \sigma^2). \tag{2.343}$$

Finally, let $\mathbf{t} = (t_1, \dots, t_N)^{\mathsf{T}}$ and $\mathbf{X} = \{x_1, \dots, x_N\}$ such that

$$t_n = y(\mathbf{x}_n, \mathbf{w}) + \epsilon_n, \tag{2.344}$$

where

$$p(\epsilon_n) = p(\epsilon_n | \sigma^2, q).$$
 (2.345)

Therefore, the logarithm of $p(\epsilon_n)$ except the terms independent of **w** and σ^2 can be written as

$$-\frac{|\epsilon_n|^q}{2\sigma^2} - \frac{1}{q}\ln\left(2\sigma^2\right). \tag{2.346}$$

Thus, the logarithm of $p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \sigma^2)$ except the terms independent of \mathbf{w} and σ^2 can be written as

$$-\frac{1}{2\sigma^2} \sum_{n=1}^{N} |y(\mathbf{x}_n, \mathbf{w}) - t_n|^q - \frac{N}{q} \ln\left(2\sigma^2\right). \tag{2.347}$$

Let x_1, \dots, x_N be variables such that

$$p(x_n|\mu,\tau) = \mathcal{N}\left(x_n|\mu,\tau^{-1}\right),$$

$$p(\mu,\tau) = \mathcal{N}\left(\mu|\mu_0,(\beta\tau)^{-1}\right) \operatorname{Gam}(\tau|a,b).$$
(2.348)

By the Bayes' theorem,

$$p(\mu, \tau | \mathbf{x}) p(\mathbf{x}) = p(\mathbf{x} | \mu, \tau) p(\mu, \tau). \tag{2.349}$$

The logrithm of the right hand side except the terms independent of \mathbf{x} , μ and τ can be written as

$$\frac{N}{2}\ln\tau - \frac{\tau}{2}\sum_{n=1}^{N}(x_n - \mu)^2 + \frac{1}{2}\ln\tau - \frac{\beta\tau}{2}(\mu - \mu_0)^2 + (a - 1)\ln\tau - b\tau$$

$$= \left(a + \frac{N-1}{2}\right)\ln\tau - \frac{N\tau}{2}(\bar{x} - \mu)^2 - \frac{\beta\tau}{2}(\mu - \mu_0)^2 - b\tau - \frac{\tau}{2}\sum_{n=1}^{N}(x_n - \bar{x})^2, \tag{2.350}$$

where

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n. \tag{2.351}$$

Since

$$-\frac{N\tau}{2}(\bar{x}-\mu)^2 - \frac{\beta\tau}{2}(\mu-\mu_0)^2 = -\frac{(N+\beta)\tau}{2}\left(\mu - \frac{N\bar{x}+\beta\mu_0}{N+\beta}\right)^2 - \frac{N\beta\tau(\bar{x}-\mu_0)^2}{2(N+\beta)},$$
(2.352)

the right hand side can be written as

$$-\frac{(N+\beta)\tau}{2} \left(\mu - \frac{N\bar{x} + \beta\mu_0}{N+\beta}\right)^2 + \left(a + \frac{N-1}{2}\right) \ln \tau - \left(b + \frac{N\beta(\bar{x} - \mu_0)^2}{2(N+\beta)} + \frac{1}{2} \sum_{n=1}^{N} (x_n - \bar{x})^2\right) \tau.$$
 (2.353)

Therefore,

$$p(\mu, \tau | \mathbf{x}) = \mathcal{N} \left(\mu \mid \frac{N\bar{x} + \beta\mu_0}{N + \beta}, ((N + \beta)\tau)^{-1} \right)$$

$$\operatorname{Gam} \left(\tau \mid a + \frac{N+1}{2}, b + \frac{N\beta(\bar{x} - \mu_0)^2}{2(N+\beta)} + \frac{1}{2} \sum_{n=1}^{N} (x_n - \bar{x})^2 \right). \tag{2.354}$$

Let \mathbf{x} be a variable in D dimensions such that

$$p(\mathbf{x}) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right). \tag{2.355}$$

Then

$$p(\mathbf{X}|\mathbf{\Lambda}) = \prod_{n=1}^{N} \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}\right). \tag{2.356}$$

The right hand side exept the terms independent of Λ can be written as

$$(\det \mathbf{\Lambda})^{\frac{N}{2}} \exp \left(-\frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Lambda} (\mathbf{x}_n - \boldsymbol{\mu}) \right) = (\det \mathbf{\Lambda})^{\frac{N}{2}} \exp \left(-\frac{1}{2} \operatorname{tr} (\mathbf{S} \mathbf{\Lambda}) \right),$$
(2.357)

where

$$\mathbf{S} = \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^{\mathsf{T}}.$$
 (2.358)

Therefore,

$$p(\mathbf{X}|\mathbf{\Lambda}) \propto (\det \mathbf{\Lambda})^{\frac{N}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}(\mathbf{S}\mathbf{\Lambda})\right).$$
 (2.359)

Let us assume that a prior distribution of Λ is given by

$$W(\mathbf{\Lambda}|\mathbf{W},\nu) = B(\mathbf{W},\nu)(\det\mathbf{\Lambda})^{\frac{\nu-D-1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}\left(\mathbf{W}^{-1}\mathbf{\Lambda}\right)\right). \tag{2.360}$$

Then, by the definition,

$$p(\mathbf{\Lambda}|\mathbf{X}, \mathbf{W}, \nu) \propto p(\mathbf{X}|\mathbf{\Lambda})\mathcal{W}(\mathbf{\Lambda}|\mathbf{W}, \nu),$$
 (2.361)

where the right hand side except the terms independent of Λ can be written as

$$(\det \mathbf{\Lambda})^{\frac{\nu+N-D-1}{2}} \exp\left(-\frac{1}{2}\operatorname{tr}\left(\left(\mathbf{W}^{-1}+\mathbf{S}\right)\mathbf{\Lambda}\right)\right). \tag{2.362}$$

Therefore,

$$p(\mathbf{\Lambda}|\mathbf{X}, \mathbf{W}, \nu) = \mathcal{W}\left(\mathbf{\Lambda} \mid (\mathbf{W}^{-1} + \mathbf{S})^{-1}, \nu + N\right).$$
 (2.363)

Thus, W is a conjugate prior distribution of Λ .

Let x be a variable such that

$$p(x|\mu,\tau,a,b) = \mathcal{N}\left(x|\mu,\tau^{-1}\right) \operatorname{Gam}(\tau|a,b). \tag{2.364}$$

Then

$$p(x|\mu, a, b) = \int_0^\infty \mathcal{N}\left(x|\mu, \tau^{-1}\right) \operatorname{Gam}(\tau|a, b) d\tau.$$
 (2.365)

The right hand side can be written as

$$\int_0^\infty \left(\frac{\tau}{2\pi}\right)^{\frac{1}{2}} \exp\left(-\frac{\tau}{2}(x-\mu)^2\right) \frac{b^a}{\Gamma(a)} \tau^{a-1} \exp(-b\tau) d\tau$$

$$= (2\pi)^{-\frac{1}{2}} \frac{b^a}{\Gamma(a)} \int_0^\infty \tau^{a-\frac{1}{2}} \exp\left(-\left(b + \frac{(x-\mu)^2}{2}\right)\tau\right) d\tau. \tag{2.366}$$

By the transformation

$$\tau' = \left(b + \frac{(x-\mu)^2}{2}\right)\tau, \tag{2.367}$$

the integral of the right hand side can be written as

$$\int_0^\infty \left(\frac{\tau'}{b + \frac{(x-\mu)^2}{2}} \right)^{a - \frac{1}{2}} \exp(-\tau') \frac{d\tau'}{b + \frac{(x-\mu)^2}{2}} = \Gamma\left(a + \frac{1}{2}\right) \left(b + \frac{(x-\mu)^2}{2}\right)^{-a - \frac{1}{2}}.$$
(2.368)

Therefore,

$$p(x|\mu,\tau,a,b) = (2\pi)^{-\frac{1}{2}} \frac{\Gamma(a+\frac{1}{2})}{\Gamma(a)} b^a \left(b + \frac{(x-\mu)^2}{2}\right)^{-a-\frac{1}{2}}.$$
 (2.369)

Let

$$\nu = 2a,$$

$$\lambda = \frac{a}{b}.$$
(2.370)

Then

$$p(x|\mu,\lambda,\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{\lambda}{\pi\nu}\right)^{\frac{1}{2}} \left(1 + \frac{\lambda(x-\mu)^2}{\nu}\right)^{-\frac{\nu+1}{2}}.$$
 (2.371)

By the definition,

$$\operatorname{St}(x|\mu,\lambda,\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{\lambda}{\pi\nu}\right)^{\frac{1}{2}} \left(1 + \frac{\lambda(x-\mu)^2}{\nu}\right)^{-\frac{\nu+1}{2}}.$$
 (2.372)

By the transformation

$$y = \frac{\lambda(x-\mu)^2}{\nu},\tag{2.373}$$

the right hand side except the terms independent of x can be written as

$$(1+y)^{-\frac{\lambda(x-\mu)^2}{2y}-\frac{1}{2}}. (2.374)$$

In the limit $y \to \infty$, it becomes

$$\exp\left(-\frac{\lambda}{2}(x-\mu)^2\right). \tag{2.375}$$

Therefore, in the limit $\nu \to \infty$, $\operatorname{St}(x|\mu,\lambda,\nu)$ becomes $\mathcal{N}(x|\mu,\lambda^{-1})$.

2.48

Let \mathbf{x} be a variable in D dimensions such that

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \eta, \nu) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right). \tag{2.376}$$

Then

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) = \int_0^\infty \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta.$$
 (2.377)

The right hand side can be written as

$$\int_{0}^{\infty} (2\pi)^{-\frac{D}{2}} (\det(\eta \mathbf{\Lambda}))^{\frac{1}{2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \eta \mathbf{\Lambda} (\mathbf{x} - \boldsymbol{\mu})\right) \frac{(\frac{\nu}{2})^{\frac{\nu}{2}}}{\Gamma(\frac{\nu}{2})} \eta^{\frac{\nu}{2} - 1} \exp\left(-\frac{\nu}{2} \eta\right) d\eta$$

$$= (2\pi)^{-\frac{D}{2}} \frac{(\frac{\nu}{2})^{\frac{\nu}{2}}}{\Gamma(\frac{\nu}{2})} (\det \mathbf{\Lambda})^{\frac{1}{2}} \int_{0}^{\infty} \eta^{\frac{D+\nu}{2} - 1} \exp\left(-\frac{1}{2} (\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Lambda} (\mathbf{x} - \boldsymbol{\mu})) \eta\right) d\eta. \tag{2.378}$$

By the transformation

$$\eta' = \frac{1}{2} \left(\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu}) \right) \eta, \tag{2.379}$$

the integral of the right hand side can be written as

$$\int_{0}^{\infty} \left(\frac{2\eta'}{\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})} \right)^{\frac{D+\nu}{2} - 1} \exp(-\eta') \frac{2}{\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})} d\eta'$$

$$= \left(\frac{2}{\nu + (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})} \right)^{\frac{D+\nu}{2}} \Gamma\left(\frac{D+\nu}{2} \right). \tag{2.380}$$

Therefore,

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \frac{\Gamma(\frac{D+\nu}{2})}{\Gamma(\frac{\nu}{2})} \frac{(\det \boldsymbol{\Lambda})^{\frac{1}{2}}}{(\pi\nu)^{\frac{D}{2}}} \left(1 + \frac{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})}{\nu}\right)^{-\frac{D+\nu}{2}}.$$
 (2.381)

2.49

Let \mathbf{x} be a variable such that

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) = \text{St}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu). \tag{2.382}$$

By the definition,

$$\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \int \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu},(\eta\boldsymbol{\Lambda})^{-1}\right) \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta. \tag{2.383}$$

First,

$$\mathbf{E} \mathbf{x} = \int \mathbf{x} \operatorname{St}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) d\mathbf{x}. \tag{2.384}$$

The right hand side can be written as

$$\int \mathbf{x} \left(\int \mathcal{N} \left(\mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) \operatorname{Gam} \left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta \right) d\mathbf{x}$$

$$= \int \left(\int \mathbf{x} \mathcal{N} \left(\mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) d\mathbf{x} \right) \operatorname{Gam} \left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta.$$
(2.385)

The right hand side can be written as

$$\boldsymbol{\mu} \int \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta = \boldsymbol{\mu}. \tag{2.386}$$

Therefore,

$$\mathbf{E}\,\mathbf{x} = \boldsymbol{\mu}.\tag{2.387}$$

Additionally,

$$\operatorname{cov} \mathbf{x} = \int (\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \operatorname{St}(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu) d\mathbf{x}. \tag{2.388}$$

The right hand side can be written as

$$\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \left(\int \mathcal{N} \left(\mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) \operatorname{Gam} \left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta \right) d\mathbf{x}$$

$$= \int \left(\int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathcal{N} \left(\mathbf{x} | \boldsymbol{\mu}, (\eta \boldsymbol{\Lambda})^{-1} \right) d\mathbf{x} \right) \operatorname{Gam} \left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta.$$
(2.389)

The right hand side can be written as

$$\int (\eta \mathbf{\Lambda})^{-1} \operatorname{Gam}\left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2}\right) d\eta = \mathbf{\Lambda}^{-1} \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \int \eta^{\frac{\nu}{2}-2} \exp\left(-\frac{\nu}{2}\eta\right) d\eta. \quad (2.390)$$

By the transformation

$$\eta' = \frac{\nu}{2}\eta,\tag{2.391}$$

the integral of the right hand side can be written as

$$\int \left(\frac{2}{\nu}\eta'\right)^{-\frac{\nu}{2}-2} \exp(-\eta') \frac{2}{\nu} d\eta' = \left(\frac{2}{\nu}\right)^{\frac{\nu}{2}-1} \Gamma\left(\frac{\nu}{2}-1\right). \tag{2.392}$$

Therefore, the right hand side can be written as

$$\mathbf{\Lambda}^{-1} \frac{\left(\frac{\nu}{2}\right)^{\frac{\nu}{2}}}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{2}{\nu}\right)^{\frac{\nu}{2}-1} \Gamma\left(\frac{\nu}{2}-1\right) = \frac{\frac{\nu}{2}}{\frac{\nu}{2}-1} \mathbf{\Lambda}^{-1}. \tag{2.393}$$

Thus,

$$\operatorname{cov} \mathbf{x} = \frac{\nu}{\nu - 2} \mathbf{\Lambda}^{-1}. \tag{2.394}$$

Finally, setting the derivative of $\mathrm{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu)$ with respect to \mathbf{x} to zero gives

$$\mathbf{0} = -\frac{1}{2} \left(\mathbf{\Lambda} + \mathbf{\Lambda}^{\mathsf{T}} \right) \left(\mathbf{x} - \boldsymbol{\mu} \right) \int \eta \mathcal{N} \left(\mathbf{x} | \boldsymbol{\mu}, (\eta \mathbf{\Lambda})^{-1} \right) \operatorname{Gam} \left(\eta \mid \frac{\nu}{2}, \frac{\nu}{2} \right) d\eta. \quad (2.395)$$

Therefore,

$$\operatorname{mode} \mathbf{x} = \boldsymbol{\mu}.\tag{2.396}$$

By the definition,

$$\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \frac{\Gamma(\frac{D+\nu}{2})}{\Gamma(\frac{\nu}{2})} \frac{(\det \boldsymbol{\Lambda})^{\frac{1}{2}}}{(\pi\nu)^{\frac{D}{2}}} \left(1 + \frac{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})}{\nu}\right)^{-\frac{D+\nu}{2}}. \quad (2.397)$$

By the transformation

$$y = \frac{(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})}{\nu}, \tag{2.398}$$

the right hand side except the terms independent of \mathbf{x} can be written as

$$(1+y)^{-\frac{(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})}{2y}-\frac{D}{2}}.$$
 (2.399)

In the limit $y \to \infty$, it becomes

$$\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})\right). \tag{2.400}$$

Therefore, in the limit $\nu \to \infty$, $\operatorname{St}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}, \nu)$ becomes $\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$.

2.51

We have

$$\exp(iA)\exp(-iA) = 1. \tag{2.401}$$

The left hand side can be written as

$$(\cos A + i \sin A)(\cos A - i \sin A) = \cos^2 A + \sin^2 A. \tag{2.402}$$

Therefore,

$$\cos^2 A + \sin^2 A = 1. \tag{2.403}$$

Additionally,

$$\cos(A - B) = \operatorname{Re}\left(\exp\left(i(A - B)\right)\right). \tag{2.404}$$

The right hand side can be written as

$$\operatorname{Re}\left(\exp(iA)\exp(-iB)\right) = \operatorname{Re}\left((\cos A + i\sin A)(\cos B - i\sin B)\right). \tag{2.405}$$

The right hand side can be written as $\cos A \cos B + \sin A \sin B$. Therefore,

$$\cos(A - B) = \cos A \cos B + \sin A \sin B. \tag{2.406}$$

Finally,

$$\sin(A - B) = \text{Im} \left(\exp \left(i(A - B) \right) \right).$$
 (2.407)

The right hand side can be written as

$$\operatorname{Im}\left(\exp(iA)\exp(-iB)\right) = \left((\cos A + i\sin A)(\cos B - i\sin B)\right). \tag{2.408}$$

The right hand side can be written as $\sin A \cos B - \cos A \sin B$. Therefore,

$$\sin(A - B) = \sin A \cos B - \cos A \sin B. \tag{2.409}$$

2.52 (Incomplete)

Let θ be a variable such that

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp(m\cos(\theta - \theta_0)),$$
 (2.410)

where

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp(m\cos\theta) d\theta. \tag{2.411}$$

By the Taylor series

$$\cos \alpha = 1 - \frac{1}{2}\alpha^2 + O\left(\alpha^4\right) \tag{2.412}$$

and the transformation

$$\xi = m^{\frac{1}{2}}(\theta - \theta_0), \tag{2.413}$$

we have

$$\exp(m\cos(\theta - \theta_0)) = \exp\left(m\left(1 - \frac{1}{2}(\theta - \theta_0)^2 + O\left((\theta - \theta_0)^4\right)\right)\right). (2.414)$$

2.53

Let θ_0 be a parameter such that

$$\sum_{n=1}^{N} \sin(\theta_n - \theta_0) = 0. \tag{2.415}$$

The left hand side can be written as

$$\sum_{n=1}^{N} (\sin \theta_n \cos \theta_0 - \cos \theta_n \sin \theta_0) = \cos \theta_0 \sum_{n=1}^{N} \sin \theta_n - \sin \theta_0 \sum_{n=1}^{N} \cos \theta_n. \quad (2.416)$$

Therefore,

$$\theta_0 = \arctan\left(\frac{\sum_{n=1}^N \sin \theta_n}{\sum_{n=1}^N \cos \theta_n}\right). \tag{2.417}$$

2.54

Let θ be a variable such that

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp(m\cos(\theta - \theta_0)),$$
 (2.418)

where

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp(m\cos\theta) d\theta. \tag{2.419}$$

Setting the first and second derivatives with respect to θ to zero gives

$$0 = -m\sin(\theta - \theta_0)p(\theta|\theta_0, m),$$

$$0 = (m^2\sin^2(\theta - \theta_0) - m\cos(\theta - \theta_0))p(\theta|\theta_0, m).$$
(2.420)

Therefore,

$$\underset{\theta}{\operatorname{argmax}} p(\theta|\theta_0, m) = \theta_0,$$

$$\underset{\theta}{\operatorname{argmin}} p(\theta|\theta_0, m) = \theta_0 - \pi \operatorname{sgn}(\theta_0 - \pi).$$
(2.421)

2.55

Let

$$\theta_0^{\text{ML}} = \arctan\left(\frac{\sum_{n=1}^N \sin \theta_n}{\sum_{n=1}^N \cos \theta_n}\right). \tag{2.422}$$

Let

$$\bar{r}\cos\bar{\theta} = \frac{1}{N} \sum_{n=1}^{N} \cos\theta_n,$$

$$\bar{r}\sin\bar{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sin\theta_n.$$
(2.423)

Then

$$\theta_0^{\rm ML} = \bar{\theta}. \tag{2.424}$$

Here,

$$\frac{1}{N} \sum_{n=1}^{N} \cos \left(\theta_n - \theta_0^{\text{ML}}\right) = \left(\frac{1}{N} \sum_{n=1}^{N} \cos \theta_n\right) \cos \theta_0^{\text{ML}} + \left(\frac{1}{N} \sum_{n=1}^{N} \sin \theta_n\right) \sin \theta_0^{\text{ML}}.$$
(2.425)

By the result above, the right hand side can be written as

$$\bar{r}\cos^2\bar{\theta} + \bar{r}\sin^2\bar{\theta} = \bar{r}.$$
 (2.426)

Therefore,

$$\frac{1}{N} \sum_{n=1}^{N} \cos\left(\theta_n - \theta_0^{\text{ML}}\right) = \bar{r}.$$
(2.427)

2.56

By the definition,

Beta
$$(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}.$$
 (2.428)

The right hand side can be written as

$$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \exp((a-1)\ln\mu + (b-1)\ln(1-\mu))$$
 (2.429)

Therefore, the natural parameters are given by

$$\boldsymbol{\eta} = \begin{bmatrix} a-1 \\ b-1 \end{bmatrix}.$$

Additionally, by the definition,

$$Gam(\lambda|a,b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda). \tag{2.430}$$

The right hand side can be written as

$$\frac{b^a}{\Gamma(a)} \exp\left((a-1)\ln\lambda - b\lambda\right). \tag{2.431}$$

Therefore, the natural parameters are given by

$$oldsymbol{\eta} = \begin{bmatrix} a-1 \\ -b \end{bmatrix}.$$

Finally, for

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp(m\cos(\theta - \theta_0)),$$
 (2.432)

where

$$I_0(m) = \frac{1}{2\pi} \int_0^{2\pi} \exp(m\cos\theta) d\theta, \qquad (2.433)$$

the right hand side can be written as

$$\frac{1}{2\pi I_0(m)} \exp(m\cos\theta_0\cos\theta + m\sin\theta_0\sin\theta). \tag{2.434}$$

Therefore, the natural parameters are given by

$$\boldsymbol{\eta} = \begin{bmatrix} m\cos\theta_0 \\ m\sin\theta_0 \end{bmatrix}.$$

2.57

By the definition,

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} (\det \boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right). \quad (2.435)$$

Therefore,

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})\right), \qquad (2.436)$$

where

$$h(\mathbf{x}) = (2\pi)^{-\frac{D}{2}},$$

$$g(\boldsymbol{\eta}) = (\det(-2\boldsymbol{\eta}_2))^{-\frac{1}{2}} \exp\left(\frac{1}{4}\boldsymbol{\eta}_1^{\mathsf{T}}\boldsymbol{\eta}_2^{-1}\boldsymbol{\eta}_1\right),$$

$$\boldsymbol{\eta} = \begin{bmatrix} \boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} \\ -\frac{1}{2}\boldsymbol{\Sigma}^{-1} \end{bmatrix},$$

$$\mathbf{u}(\mathbf{x}) = \begin{bmatrix} \mathbf{x} \\ \mathbf{x}\mathbf{x}^{\mathsf{T}} \end{bmatrix}.$$

Let \mathbf{x} be a variable such that

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathsf{T}}\mathbf{u}(\mathbf{x})\right). \tag{2.437}$$

Then, taking the first derivative of

$$\int p(\mathbf{x}|\boldsymbol{\eta})d\mathbf{x} = 1 \tag{2.438}$$

with respect to η gives

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} + g(\boldsymbol{\eta}) \int \mathbf{u}(\mathbf{x}) h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} = \mathbf{0}.$$
(2.439)

The left hand side can be written as

$$\frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} \int p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} + \int \mathbf{u}(\mathbf{x}) p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} = \frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} + \mathbf{E} \mathbf{u}(\mathbf{x}). \tag{2.440}$$

Therefore,

$$\mathbf{E}\,\mathbf{u}(\mathbf{x}) = -\frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})}.\tag{2.441}$$

Thus,

$$\mathbf{E}\,\mathbf{u}(\mathbf{x}) = -\nabla \ln g(\boldsymbol{\eta}). \tag{2.442}$$

Taking the second derivative with respect to η gives

$$\nabla \nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} + 2\nabla g(\boldsymbol{\eta}) \int \mathbf{u}(\mathbf{x})^{\mathsf{T}} h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x}$$
$$+ g(\boldsymbol{\eta}) \int \mathbf{u}(\mathbf{x}) \mathbf{u}(\mathbf{x})^{\mathsf{T}} h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\mathsf{T}} \mathbf{u}(\mathbf{x})) d\mathbf{x} = \mathbf{O}.$$
(2.443)

The left hand side can be written as

$$\frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} \int p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} + \frac{2\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} \int \mathbf{u}(\mathbf{x})^{\mathsf{T}} p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x} + \int \mathbf{u}(\mathbf{x}) \mathbf{u}(\mathbf{x})^{\mathsf{T}} p(\mathbf{x}|\boldsymbol{\eta}) d\mathbf{x}
= \frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} - 2 \operatorname{E} \mathbf{u}(\mathbf{x}) \operatorname{E} \mathbf{u}(\mathbf{x})^{\mathsf{T}} + \operatorname{E} (\mathbf{u}(\mathbf{x}) \mathbf{u}(\mathbf{x})^{\mathsf{T}}).$$
(2.444)

Therefore,

$$E(\mathbf{u}(\mathbf{x})\mathbf{u}(\mathbf{x})^{\mathsf{T}}) = -\frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} + \frac{2\nabla g(\boldsymbol{\eta})(\nabla g(\boldsymbol{\eta}))^{\mathsf{T}}}{g^2(\boldsymbol{\eta})}.$$
 (2.445)

By the definition,

$$\operatorname{cov} \mathbf{u}(\mathbf{x}) = \operatorname{E} (\mathbf{u}(\mathbf{x})\mathbf{u}(\mathbf{x})^{\mathsf{T}}) - \operatorname{E} \mathbf{u}(\mathbf{x}) \operatorname{E} \mathbf{u}(\mathbf{x})^{\mathsf{T}}. \tag{2.446}$$

Thus,

$$\operatorname{cov} \mathbf{u}(\mathbf{x}) = -\frac{\nabla \nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} + \frac{\nabla g(\boldsymbol{\eta})(\nabla g(\boldsymbol{\eta}))^{\mathsf{T}}}{g^{2}(\boldsymbol{\eta})}.$$
 (2.447)

Hence,

$$\operatorname{cov} \mathbf{u}(\mathbf{x}) = -\nabla \nabla \ln g(\boldsymbol{\eta}). \tag{2.448}$$

2.59

Let

$$p(x|\sigma) = \frac{1}{\sigma} f\left(\frac{x}{\sigma}\right). \tag{2.449}$$

Then

$$\int p(x|\sigma)dx = \frac{1}{\sigma} \int f\left(\frac{x}{\sigma}\right) dx. \tag{2.450}$$

By the transformation

$$x' = \frac{x}{\sigma},\tag{2.451}$$

the right hand side can be written as

$$\frac{1}{\sigma} \int f(x')\sigma dx' = \int f(x')dx'. \tag{2.452}$$

Therefore, $p(x|\sigma)$ will be normalised if f(x) is normalised.

2.60

Let \mathbf{x} be a variable such that

$$\mathbf{x} \in \mathcal{R}_i \Rightarrow p(\mathbf{x}) = h_i,$$
 (2.453)

where

$$\int_{\mathcal{R}_i} d\mathbf{x} = \Delta_i. \tag{2.454}$$

Since

$$\int p(\mathbf{x})d\mathbf{x} = 1,\tag{2.455}$$

we have

$$\sum_{i} h_i \Delta_i = 1. \tag{2.456}$$

Let N be the total number of observations and n_i be the number of observations which fall in \mathcal{R}_i . Then, the logarithm of the likelihood is given by

$$\ln\left(\prod_{i} h_i^{n_i}\right) = \sum_{i} n_i \ln h_i, \tag{2.457}$$

where

$$\sum_{i} n_i = N. \tag{2.458}$$

Setting the derivatives of

$$\sum_{i} n_{i} \ln h_{i} + \lambda \left(\sum_{i} h_{i} \Delta_{i} - 1 \right) \tag{2.459}$$

with respect to h_i and λ to zero gives

$$\frac{n_i}{h_i} + \lambda \Delta_i = 0,$$

$$\sum_i h_i \Delta_i - 1 = 0.$$
(2.460)

Then,

$$\lambda = -N,$$

$$h_i = \frac{n_i}{N\Delta_i}.$$
(2.461)

Therefore, the maximum likelihood estimator for the $\{h_i\}$ is $\frac{n_i}{N\Delta_i}$.

2.61 (Incomplete)

Let \mathbf{x} be a variable and $\mathbf{x}_1, \dots, \mathbf{x}_N$ be observations. Let

$$p(\mathbf{x}) = \frac{K}{NV(\mathbf{x})},\tag{2.462}$$

where

$$V(\mathbf{x}) = \int_{\|\mathbf{x}' - \mathbf{x}\| \le \|\mathbf{x}_{(K)} - \mathbf{x}\|} d\mathbf{x}', \qquad (2.463)$$

K is a constant and $\mathbf{x}_{(K)}$ is the Kth nearest observation from the point \mathbf{x} .

3 Linear Models for Regression

3.1

By the definition,

$$tanh a = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}.$$
(3.1)

The right hand side can be written as

$$\frac{1 - \exp(-2a)}{1 + \exp(-2a)} = \frac{2}{1 + \exp(-2a)} - 1. \tag{3.2}$$

Therefore,

$$tanh a = 2\sigma(2a) - 1,$$
(3.3)

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}. (3.4)$$

Let

$$y(x_n, \mathbf{w}) = w_0 + \sum_{m=1}^{M} w_j \sigma\left(\frac{x - \mu_j}{s}\right). \tag{3.5}$$

By the result above, the right hand side can be written as

$$w_0 + \sum_{m=1}^{M} w_m \frac{1 + \tanh\left(\frac{x - \mu_m}{2s}\right)}{2} = w_0 + \frac{1}{2} \sum_{m=1}^{M} w_m + \frac{1}{2} \sum_{m=1}^{M} w_m \tanh\left(\frac{x - \mu_m}{2s}\right).$$
(3.6)

Therefore, $y(x_n, \mathbf{w})$ is equivalent to

$$y(x_n, \mathbf{u}) = u_0 + \sum_{m=1}^{M} u_m \tanh\left(\frac{x - \mu_m}{2s}\right), \tag{3.7}$$

where

$$u_0 = w_0 + \frac{1}{2} \sum_{m=1}^{M} w_m,$$

$$u_m = \frac{1}{2} w_m.$$
(3.8)

3.2 (Incomplete)

Let Φ be an $N \times M$ matarix. Then, for any vector \mathbf{v} in N dimensions,

$$\mathbf{\Phi} \left(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathsf{T}}\mathbf{v} \tag{3.9}$$

is a projection of \mathbf{v} onto the space spanned by the columns of $\mathbf{\Phi}$? Additionally, for a vector \mathbf{t} in N dimensions,

$$(\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1}\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} \tag{3.10}$$

is an orthogonal projection of ${\bf t}$ onto the space spanned by the columns of ${\bf \Phi}$?

3.3

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} r_n \left(t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right)^2.$$
 (3.11)

The right hand side can be written as

$$\frac{1}{2} \|\mathbf{t}' - \mathbf{\Phi}' \mathbf{w}\|^2, \tag{3.12}$$

where

$$\mathbf{t}' = egin{bmatrix} \sqrt{r_1}t_1 \ dots \ \sqrt{r_N}t_N \end{bmatrix}, \mathbf{\Phi}' = egin{bmatrix} \sqrt{r_1}oldsymbol{\phi}(\mathbf{x}_1)^\intercal \ dots \ \sqrt{r_N}oldsymbol{\phi}(\mathbf{x}_N)^\intercal \end{bmatrix}.$$

Setting the derivative with respect to \mathbf{w} to zero gives

$$\mathbf{0} = -\mathbf{\Phi}^{\prime\mathsf{T}}(\mathbf{t}^{\prime} - \mathbf{\Phi}^{\prime}\mathbf{w}). \tag{3.13}$$

Therefore,

$$\underset{\mathbf{w}}{\operatorname{argmin}} E(\mathbf{w}) = \left(\mathbf{\Phi}^{\prime \mathsf{T}} \mathbf{\Phi}^{\prime}\right)^{-1} \mathbf{\Phi}^{\prime \mathsf{T}} \mathbf{t}^{\prime}. \tag{3.14}$$

3.4 (Incomplete)

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2, \qquad (3.15)$$

where

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{m=1}^{M} w_m(x_m + \epsilon_m),$$

$$p(\epsilon_m) = \mathcal{N}\left(\epsilon_m | 0, \sigma^2\right).$$
(3.16)

Setting the derivative with respect to \mathbf{w} to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \begin{bmatrix} 1 \\ \mathbf{x}_n + \boldsymbol{\epsilon}_n \end{bmatrix} (y(\mathbf{x}_n, \mathbf{w}) - t_n).$$

The right hand side can be written as

$$\sum_{n=1}^{N} \begin{bmatrix} 1 \\ \mathbf{x}_n \end{bmatrix} (y(\mathbf{x}_n, \mathbf{w}) - t_n) + \sum_{n=1}^{N} \begin{bmatrix} 0 \\ \boldsymbol{\epsilon}_n \end{bmatrix} (y(\mathbf{x}_n, \mathbf{w}) - t_n).$$

3.5

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2.$$
 (3.17)

Then, the minimisation of $E(\mathbf{w})$ under the constraint

$$\sum_{m=1}^{M} \left| w_m \right|^q \le \eta \tag{3.18}$$

reduces to the minimisation of

$$E(\mathbf{w}) + \lambda \left(\sum_{m=1}^{M} |w_m|^q - \eta \right) \tag{3.19}$$

with respect to \mathbf{w} and λ . Then,

$$\eta = \sum_{m=1}^{M} |w_m^*(\lambda)|^q, \tag{3.20}$$

where

$$\mathbf{w}^*(\lambda) = \underset{\mathbf{w}}{\operatorname{argmin}} \left(E(\mathbf{w}) + \lambda \left(\sum_{m=1}^M |w_m|^q - \eta \right) \right). \tag{3.21}$$

3.6

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables in D dimensions such that

$$p(\mathbf{t}_n|\mathbf{W}, \mathbf{\Sigma}) = \mathcal{N}\left(\mathbf{t}_n|\mathbf{y}(\mathbf{x}_n, \mathbf{W}), \mathbf{\Sigma}\right), \tag{3.22}$$

where

$$\mathbf{y}(\mathbf{x}_n, \mathbf{W}) = \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n). \tag{3.23}$$

Then,

$$\ln \left(\prod_{n=1}^{N} p(\mathbf{t}_n | \mathbf{W}, \mathbf{\Sigma}) \right)$$

$$= -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln(\det \mathbf{\Sigma}) - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{t}_n - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{t}_n - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n)).$$
(3.24)

By 3.21(a), setting the derivatives with respect to **W** and Σ to zero gives

$$\mathbf{O} = -\frac{1}{2} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right) \sum_{n=1}^{N} \left(\mathbf{t}_{n} - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) \right) \left(\boldsymbol{\phi}(\mathbf{x}_{n}) \right)^{\mathsf{T}},$$

$$\mathbf{O} = -\frac{N}{2} \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} + \frac{1}{2} \left(\mathbf{\Sigma}^{-1} \right)^{2} \sum_{n=1}^{N} \left(\mathbf{t}_{n} - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) \right) \left(\mathbf{t}_{n} - \mathbf{W}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{n}) \right)^{\mathsf{T}}.$$

$$(3.25)$$

Therefore,

$$\mathbf{W}_{\mathrm{ML}} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathsf{T}}\mathbf{t},$$

$$\mathbf{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{t}_{n} - \mathbf{W}_{\mathrm{ML}}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_{n})) (\mathbf{t}_{n} - \mathbf{W}_{\mathrm{ML}}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_{n}))^{\mathsf{T}},$$
(3.26)

where

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{\phi}(\mathbf{x}_1)^\intercal \ dots \ oldsymbol{\phi}(\mathbf{x}_N)^\intercal \end{bmatrix}.$$

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$
 (3.27)

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t})p(\mathbf{t}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{3.28}$$

The logarithm of the right hand side except the terms independent of \mathbf{t} and \mathbf{w} can be written as

$$-\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{1}{2} (\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}} \mathbf{S}_0^{-1} (\mathbf{w} - \mathbf{m}_0)$$

$$= -\frac{\beta}{2} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})^{\mathsf{T}} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w}) - \frac{1}{2} (\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}} \mathbf{S}_0^{-1} (\mathbf{w} - \mathbf{m}_0),$$
(3.29)

where

$$oldsymbol{\Phi} = egin{bmatrix} oldsymbol{\phi}(\mathbf{x}_1)^\intercal \ dots \ oldsymbol{\phi}(\mathbf{x}_N)^\intercal \end{bmatrix}.$$

The right hand side can be written as

$$-\frac{1}{2} (\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1} (\mathbf{w} - \mathbf{m}_N) + \frac{1}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{S}_N^{-1} \mathbf{m}_N - \frac{\beta}{2} \mathbf{t}^{\mathsf{T}} \mathbf{t} - \frac{1}{2} \mathbf{m}_0^{\mathsf{T}} \mathbf{S}_0^{-1} \mathbf{m}_0, (3.30)$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.31)

Therefore,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N). \tag{3.32}$$

3.8

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$
 (3.33)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}_N) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.34}$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{t}_{N} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{\Phi}_{N}.$$

$$(3.35)$$

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(\mathbf{t}_{N+1}) = p(\mathbf{t}_{N+1}|\mathbf{w})p(\mathbf{w}). \tag{3.36}$$

Since \mathbf{t}_N and t_{N+1} are independent, it can be written as

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(\mathbf{t}_N)p(t_{N+1}) = p(t_{N+1}|\mathbf{w})p(\mathbf{t}_N|\mathbf{w})p(\mathbf{w}). \tag{3.37}$$

By the Bayes' theorem, the right hand side can be written as

$$p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N)p(\mathbf{t}_N). \tag{3.38}$$

Then,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(t_{N+1}) = p(\mathbf{w}|\mathbf{t}_N)p(t_{N+1}|\mathbf{w}). \tag{3.39}$$

The logarithm of the right hand side except the terms independent of \mathbf{w} can be written as

$$-\frac{1}{2} (\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N}) - \frac{\beta}{2} (t_{N+1} - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{N+1}))^{2}$$

$$= -\frac{1}{2} (\mathbf{w} - \boldsymbol{\mu}_{N+1})^{\mathsf{T}} \boldsymbol{\Lambda}_{N+1} (\mathbf{w} - \boldsymbol{\mu}_{N+1}) + \frac{1}{2} \boldsymbol{\mu}_{N+1}^{\mathsf{T}} \boldsymbol{\Lambda}_{N+1} \boldsymbol{\mu}_{N+1}$$

$$-\frac{1}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N} - \frac{\beta}{2} t_{N+1}^{2},$$
(3.40)

where

$$\boldsymbol{\mu}_{N+1} = \boldsymbol{\Lambda}_{N+1}^{-1} \left(\mathbf{S}_{N}^{-1} \mathbf{m}_{N} + \beta t_{N+1} \boldsymbol{\phi}(\mathbf{x}_{N+1}) \right),$$

$$\boldsymbol{\Lambda}_{N+1} = \mathbf{S}_{N}^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}_{N+1}) \boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}}.$$
(3.41)

Therefore,

$$\mu_{N+1} = \mathbf{m}_{N+1},
\Lambda_{N+1} = \mathbf{S}_{N+1}^{-1}.$$
(3.42)

Thus,

$$p(\mathbf{w}|\mathbf{t}_{N+1}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{N+1}, \mathbf{S}_{N+1}). \tag{3.43}$$

3.9 (Incomplete)

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$
 (3.44)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}_N) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.45}$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{t}_{N} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{\Phi}_{N}.$$

$$(3.46)$$

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(\mathbf{t}_{N+1}) = p(\mathbf{t}_{N+1}|\mathbf{w})p(\mathbf{w}). \tag{3.47}$$

The right hand side can be written as

$$p(t_{N+1}|\mathbf{w})p(\mathbf{t}_N|\mathbf{w})p(\mathbf{w}) = p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N)p(\mathbf{t}_N).$$
(3.48)

Therefore,

$$p(\mathbf{w}|\mathbf{t}_{N+1})p(t_{N+1}) = p(t_{N+1}|\mathbf{w})p(\mathbf{w}|\mathbf{t}_N). \tag{3.49}$$

The logarithm of the right hand side except the terms independent of ${\bf w}$ can be written as

$$-\frac{\beta}{2} \left(t_{N+1} - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_{N+1})\right)^{2} - \frac{1}{2} \left(\mathbf{w} - \mathbf{m}_{N}\right)^{\mathsf{T}} \mathbf{S}_{N}^{-1} \left(\mathbf{w} - \mathbf{m}_{N}\right). \tag{3.50}$$

3.10

Let t be a variable such that

$$p(t|\mathbf{w}) = \mathcal{N}\left(t|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{0}, \mathbf{S}_{0}).$$
(3.51)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.52}$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
(3.53)

By marginalisation,

$$p(t|\mathbf{t}) = \int p(t|\mathbf{w})p(\mathbf{w}|\mathbf{t})d\mathbf{w}.$$
 (3.54)

The logarithm of the integrand of the right hand side except the terms independent of t and \mathbf{w} can be written as

$$-\frac{\beta}{2} (t - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}))^{2} - \frac{1}{2} (\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N}). \tag{3.55}$$

It can be written as

$$-\frac{1}{2}\begin{bmatrix}\mathbf{w}\\t\end{bmatrix}^{\mathsf{T}}\begin{bmatrix}\mathbf{S}_{N}^{-1}+\beta\boldsymbol{\phi}(\mathbf{x})\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\beta\boldsymbol{\phi}(\mathbf{x})\\-\beta\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta\end{bmatrix}\begin{bmatrix}\mathbf{w}\\t\end{bmatrix}+\begin{bmatrix}\mathbf{w}\\t\end{bmatrix}^{\mathsf{T}}\begin{bmatrix}\mathbf{S}_{N}^{-1}\mathbf{m}_{N}\\0\end{bmatrix}-\frac{1}{2}\mathbf{m}_{N}^{\mathsf{T}}\mathbf{S}_{N}^{-1}\mathbf{m}_{N}.$$

By 2.24,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\beta \boldsymbol{\phi}(\mathbf{x}) \\ -\beta \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{S}_N & \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}) \\ \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N & \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Therefore,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta \boldsymbol{\phi}(\mathbf{x}) \\ \beta \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & \beta \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{S}_N^{-1} \mathbf{m}_N \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{m}_N \\ \mathbf{m}_N^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Thus,

$$p(t|\mathbf{t}) = \mathcal{N}\left(t|\mathbf{m}_N^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x})\right),\tag{3.56}$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}). \tag{3.57}$$

3.11

Let t be a variable such that

$$p(t|\mathbf{w}) = \mathcal{N}\left(t|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_{0}, \mathbf{S}_{0}).$$
(3.58)

Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N),$$
 (3.59)

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{t}_{N} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}_{N}^{\mathsf{T}} \mathbf{\Phi}_{N}.$$

$$(3.60)$$

Then, by 3.10,

$$p(t|\mathbf{t}) = \mathcal{N}\left(t \mid \mathbf{m}_{N}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_{N}^{2}(\mathbf{x})\right), \tag{3.61}$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}). \tag{3.62}$$

Then,

$$\sigma_N^2(\mathbf{x}) - \sigma_{N+1}^2(\mathbf{x}) = \phi(\mathbf{x})^{\mathsf{T}} \left(\mathbf{S}_N - \mathbf{S}_{N+1} \right) \phi(\mathbf{x}). \tag{3.63}$$

By the expression of \mathbf{S}_N above,

$$\mathbf{S}_{N+1} = \left(\mathbf{S}_N^{-1} + \beta \boldsymbol{\phi}(\mathbf{x}_{N+1}) \boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}}\right)^{-1}.$$
 (3.64)

By the identity

$$\left(\mathbf{M} + \mathbf{v}\mathbf{v}^{\mathsf{T}}\right)^{-1} = \mathbf{M}^{-1} - \frac{\left(\mathbf{M}^{-1}\mathbf{v}\right)\left(\mathbf{v}^{\mathsf{T}}\mathbf{M}^{-1}\right)}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{M}^{-1}\mathbf{v}},\tag{3.65}$$

the right hand side can be written as

$$\mathbf{S}_{N} - \frac{\beta \left(\mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}_{N+1})\right) \left(\boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}} \mathbf{S}_{N}\right)}{1 + \beta \boldsymbol{\phi}(\mathbf{x}_{N+1}) \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}_{N+1})^{\mathsf{T}}}.$$
(3.66)

Therefore,

$$\phi(\mathbf{x})^{\mathsf{T}}(\mathbf{S}_{N} - \mathbf{S}_{N+1})\phi(\mathbf{x}) = \frac{\beta \left(\phi(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\phi(\mathbf{x}_{N+1})\right)^{2}}{1 + \beta\phi(\mathbf{x}_{N+1})\mathbf{S}_{N}\phi(\mathbf{x}_{N+1})^{\mathsf{T}}}.$$
(3.67)

Thus,

$$\sigma_{N+1}^2(\mathbf{x}) \le \sigma_N^2(\mathbf{x}). \tag{3.68}$$

3.12

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w},\beta) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}\right),$$

$$p(\mathbf{w},\beta) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_0,\beta^{-1}\mathbf{S}_0\right)\operatorname{Gam}(\beta|a_0,b_0),$$
(3.69)

where **w** and ϕ are vectors in M dimensions. By the Bayes' theorem,

$$p(\mathbf{w}, \beta | \mathbf{t}) p(\mathbf{t}) = p(\mathbf{t} | \mathbf{w}, \beta) p(\mathbf{w}, \beta). \tag{3.70}$$

The logarithm of the right hand side except the terms independent of \mathbf{t} , \mathbf{w} and β can be written as

$$-\frac{N}{2}\ln\beta^{-1} - \frac{\beta}{2}\sum_{n=1}^{N}(t_n - \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{M}{2}\ln\beta^{-1} - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}}\mathbf{S}_0^{-1}(\mathbf{w} - \mathbf{m}_0)$$

$$+ (a_0 - 1)\ln\beta - b_0\beta$$

$$= -\frac{M}{2}\ln\beta - \frac{\beta}{2}\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_0^{-1} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)\mathbf{w} + \beta\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_0^{-1}\mathbf{m}_0 + \mathbf{\Phi}^{\mathsf{T}}\mathbf{t}\right) - \frac{\beta}{2}\|\mathbf{t}\|^2 - \frac{\beta}{2}\mathbf{m}_0^{\mathsf{T}}\mathbf{S}_0^{-1}\mathbf{m}_0$$

$$+ \left(a_0 + \frac{N}{2} - 1\right)\ln\beta - b_0\beta.$$
(3.71)

The right hand side can be written as

$$-\frac{M}{2}\ln\beta - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}}\mathbf{S}_N^{-1}(\mathbf{w} - \mathbf{m}_N) + (a_N - 1)\ln\beta - b_N\beta, \quad (3.72)$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right),$$

$$\mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi},$$

$$a_{N} = a_{0} + \frac{N}{2},$$

$$b_{N} = b_{0} + \frac{1}{2} \|\mathbf{t}\|^{2} + \frac{1}{2} \mathbf{m}_{0}^{\mathsf{T}} \mathbf{S}_{0} \mathbf{m}_{0} - \frac{1}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}.$$
(3.73)

Therefore,

$$p(\mathbf{w}, \beta | \mathbf{t}) = \mathcal{N}(\mathbf{w} | \mathbf{m}_N, \beta^{-1} \mathbf{S}_N) \operatorname{Gam}(\beta | a_N, b_N).$$
 (3.74)

Substituting it to the result of the Bayes' theorem above, we have

$$p(\mathbf{t}) = \frac{\mathcal{N}(\mathbf{t}|\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I}) \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \beta^{-1}\mathbf{S}_0) \operatorname{Gam}(\beta|a_0, b_0)}{\mathcal{N}(\mathbf{w}|\mathbf{m}_N, \beta^{-1}\mathbf{S}_N) \operatorname{Gam}(\beta|a_N, b_N)}.$$
 (3.75)

The logarithm of the right hand side can be written as

$$-\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln\beta^{-1} - \frac{\beta}{2}(\mathbf{t} - \mathbf{\Phi}\mathbf{w})^{\mathsf{T}}(\mathbf{t} - \mathbf{\Phi}\mathbf{w})$$

$$-\frac{M}{2}\ln(2\pi) - \frac{M}{2}\ln\beta^{-1} - \frac{1}{2}\det\mathbf{S}_{0} - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{0})^{\mathsf{T}}\mathbf{S}_{0}^{-1}(\mathbf{w} - \mathbf{m}_{0})$$

$$+ a_{0}\ln b_{0} - \ln\Gamma(a_{0}) + (a_{0} - 1)\ln\beta - b_{0}\beta$$

$$+ \frac{M}{2}\ln(2\pi) + \frac{M}{2}\ln\beta^{-1} + \frac{1}{2}\det\mathbf{S}_{N} + \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}}\mathbf{S}_{N}^{-1}(\mathbf{w} - \mathbf{m}_{0})$$

$$- a_{N}\ln b_{N} + \ln\Gamma(a_{N}) - (a_{N} - 1)\ln\beta + b_{N}\beta$$

$$= -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\det\mathbf{S}_{0} + a_{0}\ln b_{0} - \ln\Gamma(a_{0}) + \frac{1}{2}\det\mathbf{S}_{N} - a_{N}\ln b_{N} + \ln\Gamma(a_{N}).$$
(3.76)

Therefore,

$$p(\mathbf{t}) = (2\pi)^{-\frac{N}{2}} \left(\frac{\det \mathbf{S}_N}{\det \mathbf{S}_0} \right)^{\frac{1}{2}} \frac{\Gamma(a_N)}{\Gamma(a_0)} \frac{b_0^{a_0}}{b_N^{a_N}}.$$
 (3.77)

3.13

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w},\beta) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}\right),$$

$$p(\mathbf{w},\beta) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_0,\beta^{-1}\mathbf{S}_0\right)\operatorname{Gam}(\beta|a_0,b_0),$$
(3.78)

where **w** and ϕ are vectors in M dimensions. Then, by 3.12,

$$p(\mathbf{w}, \beta | \mathbf{t}) = \mathcal{N}(\mathbf{w} | \mathbf{m}_N, \beta^{-1} \mathbf{S}_N) \operatorname{Gam}(\beta | a_N, b_N),$$
 (3.79)

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right),$$

$$\mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi},$$

$$a_{N} = a_{0} + \frac{N}{2},$$

$$b_{N} = b_{0} + \frac{1}{2} \|\mathbf{t}\|^{2} + \frac{1}{2} \mathbf{m}_{0}^{\mathsf{T}} \mathbf{S}_{0} \mathbf{m}_{0} - \frac{1}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}.$$

$$(3.80)$$

By marginalisation,

$$p(t|\mathbf{t}) = \int \int p(t|\mathbf{w}, \beta)p(\mathbf{w}, \beta|\mathbf{t})d\mathbf{w}d\beta.$$
 (3.81)

The right hand side can be written as

$$\int \left(\int \mathcal{N} \left(t | \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}), \beta^{-1} \right) \mathcal{N} \left(\mathbf{w} | \mathbf{m}_{N}, \beta^{-1} \mathbf{S}_{N} \right) d\mathbf{w} \right) \operatorname{Gam}(\beta | a_{N}, b_{N}) d\beta.$$
(3.82)

The logarithm of the integrand with respect to \mathbf{w} except the terms indepndent of \mathbf{w} can be written as

$$-\frac{\beta}{2} (t - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}))^{2} - \frac{\beta}{2} (\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}} \mathbf{S}_{N}^{-1} (\mathbf{w} - \mathbf{m}_{N}). \tag{3.83}$$

It can be written as

$$-\frac{\beta}{2} \begin{bmatrix} \mathbf{w} \\ t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{S}_N^{-1} + \boldsymbol{\phi}(\mathbf{x}) \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\boldsymbol{\phi}(\mathbf{x}) \\ -\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ t \end{bmatrix} + \beta \begin{bmatrix} \mathbf{w} \\ t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \mathbf{S}_N^{-1} \mathbf{m}_N \\ 0 \end{bmatrix} - \frac{\beta}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{S}_N^{-1} \mathbf{m}_N.$$

By 2.24,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \boldsymbol{\phi}(\mathbf{x})\boldsymbol{\phi}(\mathbf{x})^\intercal & -\boldsymbol{\phi}(\mathbf{x}) \\ -\boldsymbol{\phi}(\mathbf{x})^\intercal & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{S}_N & \mathbf{S}_N\boldsymbol{\phi}(\mathbf{x}) \\ \boldsymbol{\phi}(\mathbf{x})^\intercal\mathbf{S}_N & 1 + \boldsymbol{\phi}(\mathbf{x})^\intercal\mathbf{S}_N\boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Then,

$$\begin{bmatrix} \mathbf{S}_N^{-1} + \boldsymbol{\phi}(\mathbf{x})\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & -\boldsymbol{\phi}(\mathbf{x}) \\ -\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{S}_N^{-1}\mathbf{m}_N \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{m}_N \\ \mathbf{m}_N^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}) \end{bmatrix}.$$

Therefore, the integral with respect to \mathbf{w} can be written as

$$\mathcal{N}\left(t|\mathbf{m}_{N}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}),\beta^{-1}\left(1+\boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x})\right)\right). \tag{3.84}$$

Then, the logarithm of the integrand with respect to β except the terms independent of β can be written as

$$-\frac{1}{2}\ln\beta^{-1} - \frac{\beta}{2\left(1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x})\right)} \left(t - \mathbf{m}_{N}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x})\right)^{2} + (a_{N} - 1)\ln\beta - b_{N}\beta$$

$$= \left(a_{N} + \frac{1}{2} - 1\right)\ln\beta - \left(b_{N} + \frac{\left(t - \mathbf{m}_{N}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x})\right)^{2}}{2\left(1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x})\right)}\right)\beta.$$
(3.85)

Therefore, the integral with respect to β except the terms independent of t can be written as

$$\left(b_N + \frac{\left(t - \mathbf{m}_N^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x})\right)^2}{2\left(1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x})\right)}\right)^{-a_N - \frac{1}{2}}.$$
(3.86)

Thus,

$$p(t|\mathbf{x}, \mathbf{t}) = \operatorname{St}(t|\mu, \lambda, \nu), \tag{3.87}$$

where

$$\mu = \mathbf{m}_{N}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}),$$

$$\lambda = \frac{a_{N}}{b_{N}} (1 + \boldsymbol{\phi}(\mathbf{x})^{\mathsf{T}} \mathbf{S}_{N} \boldsymbol{\phi}(\mathbf{x}))^{-1},$$

$$\nu = 2a_{N}.$$
(3.88)

3.14 (Incomplete)

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.89)

where **w** and ϕ are vectors in M dimensions. Then, by 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.90}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.91)

Let

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}). \tag{3.92}$$

Then,

$$y(\mathbf{x}, \mathbf{m}_N) = \sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) t_n,$$
 (3.93)

where

$$k(\mathbf{x}, \mathbf{x}') = \beta \phi(\mathbf{x})^{\mathsf{T}} \mathbf{S}_N \phi(\mathbf{x}'). \tag{3.94}$$

Let us suppose that $\phi_j(\mathbf{x})$ are linearly independent, N > M and

$$\phi_0(\mathbf{x}) = 1. \tag{3.95}$$

Then, we can construct a new basis set $\psi_i(\mathbf{x})$ such that

$$\mathbf{\Psi}^{\mathsf{T}}\mathbf{\Psi} = \mathbf{I}?\tag{3.96}$$

$$\sum_{n=1}^{N} \psi_j(\mathbf{x}_n) \psi_k(\mathbf{x}_n) = I_{jk}? \tag{3.97}$$

where

$$oldsymbol{\Psi} = egin{bmatrix} oldsymbol{\psi}(\mathbf{x}_1)^\intercal \ dots \ oldsymbol{\psi}(\mathbf{x}_N)^\intercal \end{bmatrix}$$

and

$$\psi_0(\mathbf{x}) = 1. \tag{3.98}$$

Under the basis set, if $\alpha = 0$, then

$$\mathbf{S}_N^{-1} = \beta \mathbf{I},\tag{3.99}$$

so that

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\psi}(\mathbf{x})^{\mathsf{T}} \boldsymbol{\psi}(\mathbf{x}'). \tag{3.100}$$

Then,

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = \sum_{n=1}^{N} \sum_{j=0}^{M-1} \psi_j(\mathbf{x}) \psi_j(\mathbf{x}_n) = 1?$$
 (3.101)

3.15

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.102)

where **w** and ϕ are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.103}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.104)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.105)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.106)

By 3.22, setting the derivatives of $\ln p(\mathbf{t})$ with respect to α and β to zero gives

$$\alpha = \frac{\gamma}{\mathbf{m}_{N}^{\mathsf{T}} \mathbf{m}_{N}},$$

$$\beta = \frac{N - \gamma}{\|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_{N}\|^{2}},$$
(3.107)

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m} \tag{3.108}$$

and $\lambda_1, \dots, \lambda_M$ are the eigenvalues of $\beta \Phi^{\dagger} \Phi$. If α and β are set as above, then

$$E(\mathbf{m}_N) = \frac{N}{2}. (3.109)$$

3.16

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}).$$
 (3.110)

where **w** and ϕ are vectors in M dimensions. By the Bayes' theorem,

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{3.111}$$

Integrating both sides with respect to \mathbf{w} gives

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{w})p(\mathbf{w})d\mathbf{w}.$$
 (3.112)

The logarithm of the integrand of the right hand side except the terms independent of \mathbf{w} can be written as

$$-\frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n))^2 - \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} = -\frac{1}{2} \begin{bmatrix} \mathbf{w} \\ \mathbf{t} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} & -\beta \mathbf{\Phi}^{\mathsf{T}} \\ -\beta \mathbf{\Phi} & \beta \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{t} \end{bmatrix}.$$

By 2.24,

$$\begin{bmatrix} \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} & -\beta \mathbf{\Phi}^{\mathsf{T}} \\ -\beta \mathbf{\Phi} & \beta \mathbf{I} \end{bmatrix}^{-1} = \begin{bmatrix} \alpha^{-1} \mathbf{I} & \alpha^{-1} \mathbf{\Phi}^{\mathsf{T}} \\ \alpha^{-1} \mathbf{\Phi} & \alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}} + \beta^{-1} \mathbf{I} \end{bmatrix}.$$

Therefore,

$$p(\mathbf{t}) = \mathcal{N}\left(\mathbf{t}|\mathbf{0}, \alpha^{-1}\mathbf{\Phi}\mathbf{\Phi}^{\mathsf{T}} + \beta^{-1}\mathbf{I}\right). \tag{3.113}$$

3.17

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.114)

where **w** and ϕ are vectors in M dimensions. By the Bayes' theorem,

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{3.115}$$

Then,

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{w})p(\mathbf{w})d\mathbf{w}.$$
 (3.116)

The logarithm of the integrand of the right hand side can be written as

$$-\frac{N}{2}\ln\left(2\pi\beta^{-1}\right) - \frac{\beta}{2}\sum_{n=1}^{N}\left(t_n - \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n)\right)^2 - \frac{M}{2}\ln\left(2\pi\right) - \frac{1}{2}\ln\left(\det\left(\alpha^{-1}\mathbf{I}\right)\right) - \frac{\alpha}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}.$$
(3.117)

Therefore,

$$p(\mathbf{t}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \left(\frac{\alpha}{2\pi}\right)^{\frac{M}{2}} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w}, \tag{3.118}$$

where

$$E(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$
 (3.119)

3.18

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.120)

where **w** and ϕ are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.121}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.122)

By 3.17,

$$p(\mathbf{t}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \left(\frac{\alpha}{2\pi}\right)^{\frac{M}{2}} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w}, \tag{3.123}$$

where

$$E(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$
 (3.124)

The first term of the definition of $E(\mathbf{w})$ can be written as

$$\frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N - \mathbf{\Phi} (\mathbf{w} - \mathbf{m}_N)\|^2
= \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 - \beta (\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N)^{\mathsf{T}} \mathbf{\Phi} (\mathbf{w} - \mathbf{m}_N) + \frac{\beta}{2} (\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} (\mathbf{w} - \mathbf{m}_N).$$
(3.125)

Similarly, the second term can be written as

$$\frac{\alpha}{2} (\mathbf{w} - \mathbf{m}_N + \mathbf{m}_N)^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_N + \mathbf{m}_N)
= \frac{\alpha}{2} (\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_N) + \alpha \mathbf{m}_N^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_N) + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
(3.126)

Here,

$$-\beta(\mathbf{t} - \mathbf{\Phi}\mathbf{m}_N)^{\mathsf{T}}\mathbf{\Phi}(\mathbf{w} - \mathbf{m}_N) + \alpha\mathbf{m}_N^{\mathsf{T}}(\mathbf{w} - \mathbf{m}_N)$$

= $(-\beta\mathbf{\Phi}^{\mathsf{T}}\mathbf{t} + \beta\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\mathbf{m}_N + \alpha\mathbf{m}_N)^{\mathsf{T}}(\mathbf{w} - \mathbf{m}_N).$ (3.127)

By the definitions of \mathbf{m}_N and \mathbf{S}_N above, the right hand can be written as

$$\left(-\beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} + \mathbf{S}_{N}^{-1} \mathbf{m}_{N}\right)^{\mathsf{T}} (\mathbf{w} - \mathbf{m}_{N}) = 0. \tag{3.128}$$

Therefore,

$$E(\mathbf{w}) = E(\mathbf{m}_N) + \frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1} (\mathbf{w} - \mathbf{m}_N). \tag{3.129}$$

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.130)

where **w** and ϕ are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.131}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.132)

By 3.17,

$$p(\mathbf{t}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \left(\frac{\alpha}{2\pi}\right)^{\frac{M}{2}} \int \exp\left(-E(\mathbf{w})\right) d\mathbf{w}, \tag{3.133}$$

where

$$E(\mathbf{w}) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi}\mathbf{w}\|^2 + \frac{\alpha}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$
 (3.134)

By 3.18,

$$E(\mathbf{w}) = E(\mathbf{m}_N) + \frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1} (\mathbf{w} - \mathbf{m}_N). \tag{3.135}$$

Therefore, the integral in the expression above of p(t) can be written as

$$\exp\left(-E(\mathbf{m}_N)\right) \int \exp\left(-\frac{1}{2}(\mathbf{w} - \mathbf{m}_N)^{\mathsf{T}} \mathbf{S}_N^{-1}(\mathbf{w} - \mathbf{m}_N)\right) d\mathbf{w}$$

$$= (2\pi)^{\frac{M}{2}} (\det \mathbf{S}_N)^{\frac{1}{2}} \exp\left(-E(\mathbf{m}_N)\right). \tag{3.136}$$

Thus,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N). \quad (3.137)$$

3.20

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.138)

where **w** and ϕ are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.139}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.140)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.141)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.142)

Let $\mathbf{u}_1, \cdots, \mathbf{u}_M$ be eigenvectors of $\beta \mathbf{\Phi}^{\intercal} \mathbf{\Phi}$ such that

$$\beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} \mathbf{u}_m = \lambda_m \mathbf{u}_m. \tag{3.143}$$

Then,

$$\mathbf{S}_N^{-1}\mathbf{u}_m = (\alpha + \lambda_m)\mathbf{u}_m, \tag{3.144}$$

so that

$$\det \mathbf{S}_N = \prod_{m=1}^M \frac{1}{\alpha + \lambda_m}.$$
 (3.145)

Therefore, setting the derivative of $\ln p(\mathbf{t}|\alpha,\beta)$ with respect to α to zero gives

$$0 = \frac{M}{2\alpha} - \frac{1}{2} \sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m} - \frac{1}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.146)

Multiplying both sides by 2α gives

$$\alpha \mathbf{m}_{N}^{\mathsf{T}} \mathbf{m}_{N} = M - \sum_{m=1}^{M} \frac{\alpha}{\alpha + \lambda_{m}}.$$
 (3.147)

The right hand side can be written as

$$\sum_{m=1}^{M} \left(1 - \frac{\alpha}{\alpha + \lambda_m} \right) = \sum_{m=1}^{M} \frac{\lambda_i}{\alpha + \lambda_m}.$$
 (3.148)

Thus,

$$\alpha = \frac{\gamma}{\mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N},\tag{3.149}$$

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_i}{\alpha + \lambda_m}.$$
 (3.150)

3.21

(a)

Let Σ be a $M \times M$ real symmetric matrix such that

$$\Sigma \mathbf{u}_m = \lambda_m \mathbf{u}_m, \tag{3.151}$$

where $\mathbf{u}_1, \dots, \mathbf{u}_M$ are unit vectors. Let

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_M),
\mathbf{U} = [\mathbf{u}_1 \cdots \mathbf{u}_M].$$
(3.152)

By 2.19,

$$\Sigma = \mathbf{U}\Lambda\mathbf{U}^{\mathsf{T}},$$

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}.$$
(3.153)

Therefore,

$$\det \mathbf{\Sigma} = \prod_{m=1}^{M} \lambda_m, \tag{3.154}$$

so that

$$\ln(\det \mathbf{\Sigma}) = \sum_{m=1}^{M} \ln \lambda_i. \tag{3.155}$$

Then,

$$\frac{\partial}{\partial \alpha} \ln(\det \Sigma) = \sum_{m=1}^{M} \frac{\partial \lambda_m}{\partial \alpha} \frac{1}{\lambda_m}.$$
 (3.156)

Therefore,

$$\frac{\partial}{\partial \alpha} \ln(\det \Sigma) = \operatorname{tr}\left(\Lambda^{-1} \frac{\partial \Lambda}{\partial \alpha}\right). \tag{3.157}$$

The right hand side can be written as

$$\operatorname{tr}\left(\mathbf{U}\boldsymbol{\Lambda}^{-1}\mathbf{U}^{\mathsf{T}}\frac{\partial\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\mathsf{T}}}{\partial\alpha}\right) = \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\frac{\partial\boldsymbol{\Sigma}}{\partial\alpha}\right). \tag{3.158}$$

Therefore,

$$\frac{\partial}{\partial \alpha} \ln(\det \Sigma) = \operatorname{tr} \left(\Sigma^{-1} \frac{\partial \Sigma}{\partial \alpha} \right). \tag{3.159}$$

(b)

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.160)

where **w** and ϕ are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.161}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.162)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.163)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.164)

By 3.21(a),

$$\frac{\partial}{\partial \alpha} \ln \left(\det \mathbf{S}_N^{-1} \right) = \operatorname{tr} \left(\mathbf{S}_N \right). \tag{3.165}$$

The right hand side can be written as

$$\sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m},\tag{3.166}$$

where $\lambda_1, \dots, \lambda_M$ are eigenvalues of $\beta \Phi^{\dagger} \Phi$. Therefore, setting the derivative of $\ln p(\mathbf{t})$ with respect to α to zero gives

$$0 = \frac{M}{2\alpha} - \frac{1}{2} \sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m} - \frac{1}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N, \tag{3.167}$$

Thus,

$$\alpha = \frac{\gamma}{\mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N},\tag{3.168}$$

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m}.$$
 (3.169)

3.22

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w}) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}\right),$$

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}),$$
(3.170)

where **w** and ϕ are vectors in M dimensions. By 3.7,

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N), \tag{3.171}$$

where

$$\mathbf{m}_{N} = \beta \mathbf{S}_{N} \mathbf{\Phi}^{\mathsf{T}} \mathbf{t}, \mathbf{S}_{N}^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.172)

By 3.19,

$$\ln p(\mathbf{t}) = \frac{M}{2} \ln \alpha + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) + \frac{1}{2} \ln(\det \mathbf{S}_N) - E(\mathbf{m}_N), \quad (3.173)$$

where

$$E(\mathbf{m}_N) = \frac{\beta}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2 + \frac{\alpha}{2} \mathbf{m}_N^{\mathsf{T}} \mathbf{m}_N.$$
 (3.174)

By 3.21(a),

$$\frac{\partial}{\partial \beta} \ln \left(\det \mathbf{S}_N^{-1} \right) = \operatorname{tr} \left(\mathbf{S}_N \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} \right). \tag{3.175}$$

Since

$$\mathbf{S}_N \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi} = \frac{1}{\beta} \left(\mathbf{I} - \alpha \mathbf{S}_N \right), \tag{3.176}$$

the right hand side can be written as

$$\frac{1}{\beta} \left(M - \alpha \sum_{m=1}^{M} \frac{1}{\alpha + \lambda_m} \right) = \frac{1}{\beta} \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m}, \tag{3.177}$$

where $\lambda_1, \dots, \lambda_M$ are eigenvalues of $\beta \Phi^{\dagger} \Phi$. Therefore, setting the derivative of $\ln p(\mathbf{t})$ with respect to β to zero gives

$$0 = \frac{N}{2\beta} - \frac{1}{2\beta} \sum_{m=1}^{M} \frac{\lambda_i}{\alpha + \lambda_m} - \frac{1}{2} \|\mathbf{t} - \mathbf{\Phi} \mathbf{m}_N\|^2.$$
 (3.178)

Thus,

$$\beta = \frac{N - \gamma}{\|\mathbf{t} - \mathbf{\Phi}\mathbf{m}_N\|^2},\tag{3.179}$$

where

$$\gamma = \sum_{m=1}^{M} \frac{\lambda_m}{\alpha + \lambda_m}.$$
 (3.180)

3.23

Let t_1, \dots, t_N be variables such that

$$p(t_n|\mathbf{w},\beta) = \mathcal{N}\left(t_n|\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1}\right),$$

$$p(\mathbf{w},\beta) = \mathcal{N}\left(\mathbf{w}|\mathbf{m}_0,\beta^{-1}\mathbf{S}_0\right)\operatorname{Gam}(\beta|a_0,b_0),$$
(3.181)

where \mathbf{w} and $\boldsymbol{\phi}$ are vectors in M dimensions. By marginalisation,

$$p(\mathbf{t}) = \int \int p(\mathbf{t}|\mathbf{w}, \beta) p(\mathbf{w}, \beta) d\mathbf{w} d\beta.$$
 (3.182)

The right hand side can be written as

$$\int \left(\int \left(\prod_{n=1}^{N} \mathcal{N} \left(t_n | \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1} \right) \right) \mathcal{N} \left(\mathbf{w} | \mathbf{m}_0, \beta^{-1} \mathbf{S}_0 \right) d\mathbf{w} \right) \operatorname{Gam}(\beta | a_0, b_0) d\beta.$$
(3.183)

The logarithm of the integrand with respect to \mathbf{w} can be written as

$$-\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln\beta^{-1} - \frac{\beta}{2}\sum_{n=1}^{N}\left(t_{n} - \mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}(\mathbf{x}_{n})\right)^{2}$$

$$-\frac{M}{2}\ln(2\pi) - \frac{1}{2}\ln\det(\beta^{-1}\mathbf{S}_{0}) - \frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{0})^{\mathsf{T}}\mathbf{S}_{0}^{-1}(\mathbf{w} - \mathbf{m}_{0})$$

$$= -\frac{N+M}{2}\ln(2\pi) + \frac{N+M}{2}\ln\beta - \frac{1}{2}\ln(\det\mathbf{S}_{0})$$

$$-\frac{\beta}{2}\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi}\right)\mathbf{w} + \beta\mathbf{w}^{\mathsf{T}}\left(\mathbf{S}_{0}^{-1}\mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}}\mathbf{t}\right) - \frac{\beta}{2}\|\mathbf{t}\|^{2} - \frac{\beta}{2}\mathbf{m}_{0}^{\mathsf{T}}\mathbf{S}_{0}^{-1}\mathbf{m}_{0}.$$
(3.184)

The right hand side can be written as

$$-\frac{N+M}{2}\ln(2\pi) + \frac{N+M}{2}\ln\beta - \frac{1}{2}\ln(\det\mathbf{S}_{0})$$

$$-\frac{\beta}{2}(\mathbf{w} - \mathbf{m}_{N})^{\mathsf{T}}\mathbf{S}_{N}^{-1}(\mathbf{w} - \mathbf{m}_{N}) + \frac{\beta}{2}\mathbf{m}_{N}^{\mathsf{T}}\mathbf{S}_{N}^{-1}\mathbf{m}_{N} - \frac{\beta}{2}\|\mathbf{t}\|^{2} - \frac{\beta}{2}\mathbf{m}_{0}^{\mathsf{T}}\mathbf{S}_{0}^{-1}\mathbf{m}_{0},$$
(3.185)

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{t} \right), \mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \mathbf{\Phi}^{\mathsf{T}} \mathbf{\Phi}.$$
 (3.186)

Therefore, the logarithm of the integral with respect to \mathbf{w} can be written as

$$-\frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln\beta - \frac{1}{2}\ln(\det\mathbf{S}_0) + \frac{1}{2}\ln(\det\mathbf{S}_N) + \frac{\beta}{2}\mathbf{m}_N^{\mathsf{T}}\mathbf{S}_N^{-1}\mathbf{m}_N - \frac{\beta}{2}\|\mathbf{t}\|^2 - \frac{\beta}{2}\mathbf{m}_0^{\mathsf{T}}\mathbf{S}_0^{-1}\mathbf{m}_0.$$
(3.187)

Then, the logarithm of the integrand with respect to β can be written as

$$-\frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln\beta - \frac{1}{2}\ln(\det \mathbf{S}_{0}) + \frac{1}{2}\ln(\det \mathbf{S}_{N}) + \frac{\beta}{2}\mathbf{m}_{N}^{\mathsf{T}}\mathbf{S}_{N}^{-1}\mathbf{m}_{N} - \frac{\beta}{2}\|\mathbf{t}\|^{2} - \frac{\beta}{2}\mathbf{m}_{0}^{\mathsf{T}}\mathbf{S}_{0}^{-1}\mathbf{m}_{0} - \ln\Gamma(a_{0}) + a_{0}\ln b_{0} + (a_{0} - 1)\ln\beta - b_{0}\beta$$

$$= -\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln(\det \mathbf{S}_{0}) + \frac{1}{2}\ln(\det \mathbf{S}_{N}) - \ln\Gamma(a_{0}) + a_{0}\ln b_{0} + (a_{N} - 1)\ln\beta - b_{N}\beta,$$
(3.188)

where

$$a_{N} = a_{0} + \frac{N}{2},$$

$$b_{N} = b_{0} + \frac{\beta}{2} \|\mathbf{t}\|^{2} + \frac{\beta}{2} \mathbf{m}_{0}^{\mathsf{T}} \mathbf{S}_{0}^{-1} \mathbf{m}_{0} - \frac{\beta}{2} \mathbf{m}_{N}^{\mathsf{T}} \mathbf{S}_{N}^{-1} \mathbf{m}_{N}.$$
(3.189)

Therefore, the logarithm of the integral with respect to β can be written as

$$-\frac{N}{2}\ln(2\pi) - \frac{1}{2}\ln(\det \mathbf{S}_0) + \frac{1}{2}\ln(\det \mathbf{S}_N) - \ln\Gamma(a_0) + a_0\ln b_0 + \ln\Gamma(a_N) - a_N\ln b_N.$$
(3.190)

Thus,

$$p(\mathbf{t}) = (2\pi)^{-\frac{N}{2}} \left(\frac{\det \mathbf{S}_N}{\det \mathbf{S}_0} \right)^{\frac{1}{2}} \frac{\Gamma(a_N)}{\Gamma(a_0)} \frac{b_0^{a_0}}{b_N^{a_N}}.$$
 (3.191)

3.24

Refer to 3.12.

4 Linear Models for Classification

4.1

Let x_1, \dots, x_M and y_1, \dots, y_N be two sets of data points. Then, the corresponding convex hulls are defined as the sets of all points \mathbf{x} and \mathbf{y} such that

$$\mathbf{x} = \sum_{m=1}^{M} \alpha_m \mathbf{x}_m,$$

$$\mathbf{y} = \sum_{n=1}^{N} \beta_n \mathbf{y}_n,$$
(4.1)

where

$$\sum_{m=1}^{M} \alpha_m = \sum_{n=1}^{N} \beta_n = 1,$$

$$\alpha_m \ge 0, \beta_n \ge 0.$$
(4.2)

Let us assume that $\alpha_1, \dots, \alpha_M$ and β_1, \dots, β_N below are subject to the constraints above.

If the convex hulls intersect, then there exist $\alpha_1, \dots, \alpha_M$ and β_1, \dots, β_N such that

$$\sum_{m=1}^{M} \alpha_m \mathbf{x}_m = \sum_{n=1}^{N} \beta_n \mathbf{y}_n. \tag{4.3}$$

Then,

$$\sum_{m=1}^{M} \alpha_m \left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 \right) = \hat{\mathbf{w}}^{\mathsf{T}} \sum_{m=1}^{M} \alpha_m \mathbf{x}_m + w_0 \sum_{m} \alpha_m, \tag{4.4}$$

for any $\hat{\mathbf{w}}$ and w_0 . The right hand side can be written as

$$\hat{\mathbf{w}}^{\mathsf{T}} \sum_{n=1}^{N} \beta_n \mathbf{y}_n + w_0 \sum_{n=1}^{N} \beta_n = \sum_{n=1}^{N} \beta_n \left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 \right). \tag{4.5}$$

Therefore, there do not exist $\hat{\mathbf{w}}$ and w_0 such that

$$\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 > 0, \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 < 0.$$
 (4.6)

Conversely, if there exist $\hat{\mathbf{w}}$ and w_0 such that

$$\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 > 0, \\ \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 < 0,$$
 (4.7)

then

$$\sum_{m=1}^{M} \alpha_m \left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{x}_m + w_0 \right) > 0,$$

$$\sum_{n=1}^{N} \beta_n \left(\hat{\mathbf{w}}^{\mathsf{T}} \mathbf{y}_n + w_0 \right) < 0.$$
(4.8)

The left hand sides can be written as

$$\hat{\mathbf{w}}^{\mathsf{T}} \sum_{m=1}^{M} \alpha_m \mathbf{x}_m + w_0 \sum_{m=1}^{M} \alpha_m = \hat{\mathbf{w}}^{\mathsf{T}} \sum_{m=1}^{M} \alpha_m \mathbf{x}_m + w_0,$$

$$\hat{\mathbf{w}}^{\mathsf{T}} \sum_{n=1}^{N} \beta_n \mathbf{y}_n + w_0 \sum_{n=1}^{N} \beta_n = \hat{\mathbf{w}}^{\mathsf{T}} \sum_{n=1}^{N} \beta_n \mathbf{y}_n + w_0.$$
(4.9)

Therefore, there do not exist $\alpha_1, \dots, \alpha_M$ and β_1, \dots, β_N such that

$$\sum_{m=1}^{M} \alpha_m \mathbf{x}_m = \sum_{n=1}^{N} \beta_n \mathbf{y}_n. \tag{4.10}$$

Thus, the convex hulls do not intersect.

4.2 (Incomplete)

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ and $\mathbf{w}_1, \dots, \mathbf{w}_K$ are variables in M dimensions and $\mathbf{t}_1, \dots, \mathbf{t}_N$ are ones in K dimensions. Let

$$E(\tilde{\mathbf{W}}) = \frac{1}{2} \operatorname{tr} \left((\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T})^{\mathsf{T}} (\tilde{\mathbf{X}} \tilde{\mathbf{W}} - \mathbf{T}) \right), \tag{4.11}$$

where

$$\tilde{\mathbf{X}} = \begin{bmatrix} 1 & \mathbf{x}_1^{\mathsf{T}} \\ \vdots & \vdots \\ 1 & \mathbf{x}_N^{\mathsf{T}} \end{bmatrix},$$

$$\tilde{\mathbf{W}} = \begin{bmatrix} w_{10} & \cdots & w_{K0} \\ \mathbf{w}_1 & \cdots & \mathbf{w}_K \end{bmatrix}$$

and

$$\mathbf{T} = egin{bmatrix} \mathbf{t}_1^\intercal \ dots \ \mathbf{t}_N^\intercal \end{bmatrix}.$$

Setting the derivative with respect to $\tilde{\mathbf{W}}$ to zero gives

$$\mathbf{O} = \tilde{\mathbf{X}}^{\mathsf{T}} (\tilde{\mathbf{X}}\tilde{\mathbf{W}} - \mathbf{T}). \tag{4.12}$$

Therefore,

$$\underset{\tilde{\mathbf{W}}}{\operatorname{argmin}} E(\tilde{\mathbf{W}}) = \left(\tilde{\mathbf{X}}^{\mathsf{T}} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\mathsf{T}} \mathbf{T}. \tag{4.13}$$

Let $\tilde{\mathbf{W}}^*$ denote the least-square solution above. Then,

$$(\tilde{\mathbf{W}}^*)^{\mathsf{T}}\tilde{\mathbf{x}} - \mathbf{t}_n = \mathbf{T}^{\mathsf{T}}\tilde{\mathbf{X}} \left(\tilde{\mathbf{X}}^{\mathsf{T}}\tilde{\mathbf{X}} \right)^{-1} \tilde{\mathbf{x}} - \mathbf{t}_n, \tag{4.14}$$

where $\tilde{\mathbf{x}}$ is a vector in M+1 dimensions whose first element is 1. The right hand side can be written as

$$\mathbf{T}^{\mathsf{T}} \left(\tilde{\mathbf{X}} \left(\tilde{\mathbf{X}}^{\mathsf{T}} \tilde{\mathbf{X}} \right)^{-1} \tilde{\mathbf{x}} - \mathbf{v}_n \right) = \mathbf{0}? \tag{4.15}$$

where \mathbf{v}_n is a vector in N dimensions whose n th element is 1 and other elements are zero. Therefore,

$$(\tilde{\mathbf{W}}^*)^{\mathsf{T}}\tilde{\mathbf{x}} - \mathbf{t}_n = \mathbf{0}. \tag{4.16}$$

Thus, if

$$\mathbf{a}^{\mathsf{T}}\mathbf{t}_n + b = 0,\tag{4.17}$$

then

$$\mathbf{a}^{\mathsf{T}}(\tilde{\mathbf{W}}^*)^{\mathsf{T}}\tilde{\mathbf{x}} + b = 0. \tag{4.18}$$

4.3 (Incomplete)

4.4

Let $\mathbf{x}_1, \cdots, \mathbf{x}_N$ be variables and let

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n,\tag{4.19}$$

where N_k is the number of \mathbf{x}_n such that n is in \mathcal{C}_k . Setting the derivatives of

$$\mathbf{w}^{\mathsf{T}}(\mathbf{m}_2 - \mathbf{m}_1) + \lambda \left(\|\mathbf{w}\|^2 - 1 \right) \tag{4.20}$$

with respect to \mathbf{w} and λ to zero gives

$$\mathbf{m}_2 - \mathbf{m}_1 + 2\lambda \mathbf{w} = \mathbf{0},$$

$$\|\mathbf{w}\|^2 - 1 = 0.$$
 (4.21)

Therefore, $\mathbf{w}^{\intercal}(\mathbf{m}_2 - \mathbf{m}_1)$ under the constratint

$$\|\mathbf{w}\|^2 = 1\tag{4.22}$$

is maximised if

$$\mathbf{w} \propto \mathbf{m}_2 - \mathbf{m}_1. \tag{4.23}$$

4.5

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be variables and let

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n,\tag{4.24}$$

where N_k is the number of \mathbf{x}_n such that n is in C_k . Let

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2},\tag{4.25}$$

where

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2,$$

$$y_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n,$$

$$m_k = \mathbf{w}^{\mathsf{T}} \mathbf{m}_k.$$

$$(4.26)$$

Then, $J(\mathbf{w})$ can be written as

$$\frac{\left(\mathbf{w}^{\mathsf{T}}(\mathbf{m}_{2} - \mathbf{m}_{1})\right)^{2}}{\sum_{n \in \mathcal{C}_{1}} \left(\mathbf{w}^{\mathsf{T}}(\mathbf{x}_{n} - \mathbf{m}_{1})\right)^{2} + \sum_{n \in \mathcal{C}_{2}} \left(\mathbf{w}^{\mathsf{T}}(\mathbf{x}_{n} - \mathbf{m}_{2})\right)^{2}} = \frac{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{W} \mathbf{w}}, \quad (4.27)$$

where

$$\mathbf{S}_{\mathrm{B}} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{\mathsf{T}},$$

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1})(\mathbf{x}_{n} - \mathbf{m}_{1})^{\mathsf{T}} + \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2})(\mathbf{x}_{n} - \mathbf{m}_{2})^{\mathsf{T}}.$$

$$(4.28)$$

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be variables and let

$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n,\tag{4.29}$$

where N_k is the number of \mathbf{x}_n such that n is in C_k . Let

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2},\tag{4.30}$$

where

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2,$$

$$y_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n,$$

$$m_k = \mathbf{w}^{\mathsf{T}} \mathbf{m}_k.$$

$$(4.31)$$

Then, by 4.5,

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{B}} \mathbf{w}}{\mathbf{w}^{\mathsf{T}} \mathbf{S}_{\mathsf{W}} \mathbf{w}},\tag{4.32}$$

where

$$\mathbf{S}_{\mathrm{B}} = (\mathbf{m}_{2} - \mathbf{m}_{1})(\mathbf{m}_{2} - \mathbf{m}_{1})^{\mathsf{T}},$$

$$\mathbf{S}_{\mathrm{W}} = \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \mathbf{m}_{1})(\mathbf{x}_{n} - \mathbf{m}_{1})^{\mathsf{T}} + \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \mathbf{m}_{2})(\mathbf{x}_{n} - \mathbf{m}_{2})^{\mathsf{T}}.$$

$$(4.33)$$

Let

$$E = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 - t_n)^2, \qquad (4.34)$$

where

$$t_n = \begin{cases} \frac{N}{N_1}, & n \in \mathcal{C}_1, \\ -\frac{N}{N_2}, & n \in \mathcal{C}_2. \end{cases}$$
 (4.35)

Setting the derivative with respect to \mathbf{w} and w_0 gives

$$0 = \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 - t_n),$$

$$\mathbf{0} = \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 - t_n) \mathbf{x}_n.$$

$$(4.36)$$

The right hand side of the first equation can be written as

$$\mathbf{w}^{\mathsf{T}} \sum_{n=1}^{N} \mathbf{x}_n + N w_0 - \sum_{n=1}^{N} t_n = N \left(\mathbf{w}^{\mathsf{T}} \mathbf{m} + w_0 \right), \tag{4.37}$$

where

$$\mathbf{m} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n. \tag{4.38}$$

Therefore,

$$w_0 = -\mathbf{w}^{\mathsf{T}}\mathbf{m}.\tag{4.39}$$

Then, the right hand side of the second equation above can be written as

$$\sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{n} - \mathbf{m}) - t_{n}) \mathbf{x}_{n}$$

$$= \sum_{n \in \mathcal{C}_{1}} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{n} - \mathbf{m}) - \frac{N}{N_{1}} \right) \mathbf{x}_{n} + \sum_{n \in \mathcal{C}_{2}} \left(\mathbf{w}^{\mathsf{T}} (\mathbf{x}_{n} - \mathbf{m}) + \frac{N}{N_{2}} \right) \mathbf{x}_{n}.$$
(4.40)

Since

$$\mathbf{m} = \frac{N_1}{N} \mathbf{m}_1 + \frac{N_2}{N} \mathbf{m}_2,$$

$$\sum_{n \in C_1} (\mathbf{x}_n - \mathbf{m}_1) = \mathbf{0},$$
(4.41)

the first term of the right hand side can be written as

$$\sum_{n \in \mathcal{C}_1} \left(\mathbf{w}^{\mathsf{T}} \left(\mathbf{x}_n - \mathbf{m}_1 + \frac{N_2}{N} (\mathbf{m}_1 - \mathbf{m}_2) \right) - \frac{N}{N_1} \right) (\mathbf{x}_n - \mathbf{m}_1 + \mathbf{m}_1)$$

$$= \left(\sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1) (\mathbf{x}_n - \mathbf{m}_1)^{\mathsf{T}} \right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_1 - \mathbf{m}_2) \mathbf{m}_1^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_1.$$
(4.42)

Similarly, the second term can be written as

$$\left(\sum_{n\in\mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^{\mathsf{T}}\right)\mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_2 - \mathbf{m}_1)\mathbf{m}_2^{\mathsf{T}}\mathbf{w} - N\mathbf{m}_2. \quad (4.43)$$

Therefore,

$$\mathbf{0} = \left(\sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \mathbf{m}_1)(\mathbf{x}_n - \mathbf{m}_1)^{\mathsf{T}}\right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_1 - \mathbf{m}_2) \mathbf{m}_1^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_1$$
$$+ \left(\sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \mathbf{m}_2)(\mathbf{x}_n - \mathbf{m}_2)^{\mathsf{T}}\right) \mathbf{w} + \frac{N_1 N_2}{N} (\mathbf{m}_2 - \mathbf{m}_1) \mathbf{m}_2^{\mathsf{T}} \mathbf{w} - N \mathbf{m}_2.$$

$$(4.44)$$

Thus,

$$\left(\mathbf{S}_{W} + \frac{N_{1}N_{2}}{N}\mathbf{S}_{B}\right)\mathbf{w} = N(\mathbf{m}_{1} - \mathbf{m}_{2}). \tag{4.45}$$

4.7

Let

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.\tag{4.46}$$

Then,

$$\sigma(-a) = \frac{1}{1 + \exp(a)}.\tag{4.47}$$

The right hand side can be written as

$$1 - \frac{\exp(a)}{1 + \exp(a)} = 1 - \frac{1}{1 + \exp(-a)}.$$
 (4.48)

Therefore,

$$\sigma(-a) = 1 - \sigma(a). \tag{4.49}$$

Additionally,

$$\exp(-a) = \frac{1}{\sigma(a)} - 1. \tag{4.50}$$

Then,

$$a = -\ln\left(\frac{1}{\sigma(a)} - 1\right). \tag{4.51}$$

Therefore,

$$\sigma^{-1}(y) = \ln\left(\frac{y}{1-y}\right). \tag{4.52}$$

Let \mathbf{x} be a variable in D dimensions such that

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}\left(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}\right), \tag{4.53}$$

where

$$p(C_1) + p(C_2) = 1.$$
 (4.54)

By the Bayes' theorem,

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)}.$$
(4.55)

The right hand side can be written as

$$\sigma(a) = \frac{1}{1 + \exp(-a)},\tag{4.56}$$

where

$$a = \ln \left(\frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)} \right). \tag{4.57}$$

Substituting the expressions above of $p(\mathbf{x}|\mathcal{C}_k)$, we have

$$a = -\frac{D}{2}\ln(2\pi) - \frac{1}{2}\ln(\det\Sigma) - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) + \ln p(\mathcal{C}_1) + \frac{D}{2}\ln(2\pi) + \frac{1}{2}\ln(\det\Sigma) + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_2) - \ln p(\mathcal{C}_2).$$

$$(4.58)$$

Therefore,

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma\left(\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0\right),\tag{4.59}$$

where

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}),$$

$$w_{0} = -\frac{1}{2}\boldsymbol{\mu}_{1}^{\mathsf{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_{1} + \frac{1}{2}\boldsymbol{\mu}_{2}^{\mathsf{T}}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_{2} + \ln p(\mathcal{C}_{1}) - \ln p(\mathcal{C}_{2}).$$
(4.60)

4.9

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables in K dimensions such that

$$p(\mathbf{t}_n, \boldsymbol{\phi}_n) = \prod_{k=1}^K \left(p(\boldsymbol{\phi}_n, \mathcal{C}_k) \right)^{t_{nk}}, \qquad (4.61)$$

where

$$\sum_{k=1}^{K} p(\mathcal{C}_k) = 1. (4.62)$$

Then,

$$p(\mathbf{T}, \mathbf{\Phi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} (p(\boldsymbol{\phi}_n, \mathcal{C}_k))^{t_{nk}}.$$
 (4.63)

If

$$p(\mathcal{C}_k) = \pi_k, \tag{4.64}$$

then, by the Bayes' theorem,

$$\ln p(\mathbf{T}, \mathbf{\Phi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \left(\ln \pi_k + \ln p(\boldsymbol{\phi}_n | \mathcal{C}_k) \right). \tag{4.65}$$

Setting the derivatives of

$$\ln p(\mathbf{T}, \mathbf{\Phi}) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right)$$
 (4.66)

with respect to π_k and λ to zero gives

$$0 = \frac{1}{\pi_k} \sum_{n=1}^{N} t_{nk} + \lambda,$$

$$0 = \sum_{k=1}^{K} \pi_k - 1.$$
(4.67)

Then,

$$\lambda = -\sum_{k=1}^{K} \sum_{n=1}^{N} t_{nk}.$$
(4.68)

The right hand side can be written as -N. Therefore, the maximum likelihood solution for π_k is given by

$$\pi_k = \frac{N_k}{N},\tag{4.69}$$

where

$$N_k = \sum_{n=1}^{N} t_{nk}. (4.70)$$

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables in K dimensions such that

$$p(\mathbf{t}_n, \boldsymbol{\phi}_n) = \prod_{k=1}^K (p(\boldsymbol{\phi}_n, \mathcal{C}_k))^{t_{nk}}, \qquad (4.71)$$

where

$$\sum_{k=1}^{K} p(\mathcal{C}_k) = 1. (4.72)$$

Then,

$$p(\mathbf{T}, \mathbf{\Phi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \left(p(\boldsymbol{\phi}_n, \mathcal{C}_k) \right)^{t_{nk}}.$$
 (4.73)

If

$$p(\phi_n|\mathcal{C}_k) = \mathcal{N}(\phi_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}), \tag{4.74}$$

then, by the Bayes' theorem,

$$\ln p(\mathbf{T}, \mathbf{\Phi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \left(\ln \mathcal{N}(\boldsymbol{\phi}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) + \ln p(\mathcal{C}_k) \right). \tag{4.75}$$

The right hand side can be written as

$$\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \left(-\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln(\det \Sigma) - \frac{1}{2} (\boldsymbol{\phi}_{n} - \boldsymbol{\mu}_{k})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\phi}_{n} - \boldsymbol{\mu}_{k}) + \ln p(\mathcal{C}_{k}) \right). \tag{4.76}$$

By 3.21(a), setting the derivatives of $\ln p(\mathbf{T}, \mathbf{\Phi})$ with respect to $\boldsymbol{\mu}_k$ and $\boldsymbol{\Sigma}$ to zero gives

$$\mathbf{0} = \frac{1}{2} \sum_{n=1}^{N} t_{nk} \left(\mathbf{\Sigma}^{-1} + \left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} \right) (\boldsymbol{\phi}_{n} - \boldsymbol{\mu}_{k}),$$

$$\mathbf{O} = -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \left(\left(\mathbf{\Sigma}^{-1} \right)^{\mathsf{T}} - \left(\mathbf{\Sigma}^{-1} \right)^{2} (\boldsymbol{\phi}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{\phi}_{n} - \boldsymbol{\mu}_{k})^{\mathsf{T}} \right).$$

$$(4.77)$$

Therefore, the maximum likelihood solutions for μ_k and Σ are given by

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} t_{nk} \phi_n,$$

$$\Sigma = \frac{1}{N} \sum_{k=1}^{K} N_k \mathbf{S}_k,$$
(4.78)

where

$$N_k = \sum_{n=1}^{N} t_{nk},$$

$$\mathbf{S}_k = \frac{1}{N_k} \sum_{n=1}^{N} t_{nk} (\boldsymbol{\phi}_n - \boldsymbol{\mu}_k) (\boldsymbol{\phi}_n - \boldsymbol{\mu}_k)^{\mathsf{T}}.$$

$$(4.79)$$

4.11

Let ϕ_1, \cdots, ϕ_M be variables such that

$$p(\boldsymbol{\phi}_m|\mathcal{C}_k) = \prod_{l=1}^L \mu_{kml}^{\phi_{ml}}, \tag{4.80}$$

where

$$\sum_{k=1}^{K} p(\mathcal{C}_k) = 1. \tag{4.81}$$

Then,

$$p(\mathbf{\Phi}|\mathcal{C}_k) = \prod_{m=1}^{M} \prod_{l=1}^{L} \mu_{kml}^{\phi_{ml}}.$$
 (4.82)

By the Bayes' theorem,

$$p(C_k|\mathbf{\Phi}) = \frac{p(\mathbf{\Phi}|C_k)p(C_k)}{\sum_{k=1}^K p(\mathbf{\Phi}|C_k)p(C_k)}.$$
(4.83)

Therefore,

$$p(C_k|\mathbf{\Phi}) = \frac{\exp(a_k(\mathbf{\Phi}))}{\sum_{k=1}^K \exp(a_k(\mathbf{\Phi}))},$$
(4.84)

where

$$a_k(\mathbf{\Phi}) = \left(\sum_{m=1}^M \sum_{l=1}^L \phi_{ml} \ln \mu_{kml}\right) + \ln p(\mathcal{C}_k). \tag{4.85}$$

Let

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.\tag{4.86}$$

Then,

$$\frac{d\sigma(a)}{da} = \frac{\exp(-a)}{\left(1 + \exp(-a)\right)^2}.$$
(4.87)

The right hand side can be written as

$$\frac{1}{1 + \exp(-a)} - \frac{1}{(1 + \exp(-a))^2} = \sigma(a) - (\sigma(a))^2.$$
 (4.88)

Therefore,

$$\frac{d\sigma(a)}{da} = \sigma(a) \left(1 - \sigma(a)\right). \tag{4.89}$$

4.13

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n | \mathbf{w}) = y_n^{t_n} (1 - y_n)^{1 - t_n},$$
(4.90)

where

$$y_n = \sigma(\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_n),$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$
 (4.91)

Let

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}). \tag{4.92}$$

The right hand side can be written as

$$-\ln\left(\prod_{n=1}^{N} y_n^{t_n} (1 - y_n)^{1 - t_n}\right) = -\sum_{n=1}^{N} \left(t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\right). \quad (4.93)$$

Then, by 4.12,

$$\nabla E(\mathbf{w}) = -\sum_{n=1}^{N} \left(\frac{t_n}{y_n} y_n (1 - y_n) \phi_n - \frac{1 - t_n}{1 - y_n} y_n (1 - y_n) \phi_n \right). \tag{4.94}$$

The right hand side can be written as

$$-\sum_{n=1}^{N} (t_n(1-y_n)\boldsymbol{\phi}_n - (1-t_n)y_n\boldsymbol{\phi}_n) = \sum_{n=1}^{N} (y_n - t_n)\boldsymbol{\phi}_n.$$
 (4.95)

Therefore,

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n. \tag{4.96}$$

4.14

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n | \mathbf{w}) = y_n^{t_n} (1 - y_n)^{1 - t_n},$$
(4.97)

where

$$y_n = \sigma(\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_n),$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$
 (4.98)

Let

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}). \tag{4.99}$$

By 4.13, setting the derivative with respect to \mathbf{w} to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} (y_n - t_n) \, \phi_n. \tag{4.100}$$

If ϕ_1, \cdots, ϕ_N are linearly independent, then

$$y_n = t_n. (4.101)$$

Then,

$$\sigma\left(\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}_{n}\right) = \begin{cases} 1, & t_{n} = 1, \\ 0, & \text{otherwise.} \end{cases}$$
 (4.102)

Threrefore,

$$\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_n = \begin{cases} \infty, & t_n = 1, \\ -\infty, & \text{otherwise.} \end{cases}$$
 (4.103)

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},$$

 $p(t_n | \mathbf{w}) = y_n^{t_n} (1 - y_n)^{1 - t_n},$ (4.104)

where

$$y_n = \sigma(\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_n),$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$
 (4.105)

Let

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}). \tag{4.106}$$

By 4.13,

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n. \tag{4.107}$$

Then, by 4.12,

$$\nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \phi_n \phi_n^{\mathsf{T}}.$$
 (4.108)

The right hand side can be written as

$$\mathbf{H} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{R} \mathbf{\Phi},\tag{4.109}$$

where

$$R_{nn'} = \begin{cases} y_n(1 - y_n), & n = n', \\ 0, & \text{otherwise.} \end{cases}$$
 (4.110)

Then,

$$\mathbf{u}^{\mathsf{T}}\mathbf{H}\mathbf{u} = (\mathbf{\Phi}\mathbf{u})^{\mathsf{T}}\mathbf{R}(\mathbf{\Phi}\mathbf{u}). \tag{4.111}$$

Since

$$y_n(1 - y_n) > 0, (4.112)$$

we have

$$\mathbf{u}^{\mathsf{T}}\mathbf{H}\mathbf{u} > 0. \tag{4.113}$$

Therefore, \mathbf{H} is positive definite. Thus, E is a convex function of \mathbf{w} and it has a unique minimum.

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n = 1 | \phi_n) = \pi_n.$$
 (4.114)

Then,

$$p(t_n|\phi_n) = \pi_n^{t_n} (1 - \pi_n)^{1 - t_n}.$$
(4.115)

Therefore,

$$p(\mathbf{t}|\mathbf{\Phi}) = \prod_{n=1}^{N} \pi_n^{t_n} (1 - \pi_n)^{1 - t_n}.$$
 (4.116)

Thus,

$$-\ln p(\mathbf{t}|\mathbf{\Phi}) = -\sum_{n=1}^{N} (t_n \ln \pi_n + (1 - t_n) \ln(1 - \pi_n)). \tag{4.117}$$

4.17

Let

$$y_k = \frac{\exp(a_k)}{\sum_{k=1}^K \exp(a_k)}.$$
 (4.118)

Then,

$$\frac{\partial y_k}{\partial a_k} = \frac{\exp(a_k)}{\sum_{k=1}^K \exp(a_k)} - \frac{\exp(2a_k)}{\left(\sum_{k=1}^K \exp(a_k)\right)^2}.$$
 (4.119)

The right hand side can be written as $y_k(1-y_k)$. If $k \neq k'$, then

$$\frac{\partial y_k}{\partial a_{k'}} = -\frac{\exp(a_k + a_{k'})}{\left(\sum_{k=1}^K \exp(a_k)\right)^2}.$$
(4.120)

The right hand side can be written as $-y_k y_{k'}$. Therefore,

$$\frac{\partial y_k}{\partial a_{k'}} = y_k (I_{kk'} - y_{k'}). \tag{4.121}$$

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables such that

$$t_{nk} \in \{0, 1\},$$

$$p(\mathbf{t}_n | \mathbf{W}) = \prod_{k=1}^K y_{nk}^{t_{nk}},$$
(4.122)

where

$$y_{nk} = \frac{\exp(a_{nk})}{\sum_{k=1}^{K} \exp(a_{nk})},$$

$$a_{nk} = \mathbf{w}_{n}^{\mathsf{T}} \boldsymbol{\phi}_{n}.$$

$$(4.123)$$

Then,

$$p(\mathbf{T}|\mathbf{W}) = \prod_{n=1}^{N} \prod_{k=1}^{K} y_{nk}^{t_{nk}}.$$
 (4.124)

Let

$$E(\mathbf{W}) = -\ln p(\mathbf{T}|\mathbf{W}). \tag{4.125}$$

The right hand side can be written as

$$-\sum_{n=1}^{N}\sum_{k=1}^{K}t_{nk}\ln y_{nk}.$$
(4.126)

Then, by 4.17,

$$\nabla_{\mathbf{w}_{k'}} E(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} (I_{kk'} - y_{nk'}) \frac{t_{nk}}{y_{nk}} \phi_n.$$
 (4.127)

The right hand side can be written as

$$-\sum_{n=1}^{N} \left(\sum_{k=1}^{K} (I_{kk'} - y_{nk'}) t_{nk} \right) \phi_n = -\sum_{n=1}^{N} (t_{nk'} - y_{nk'}) \phi_n.$$
 (4.128)

Therefore,

$$\nabla_{\mathbf{w}_k} E(\mathbf{W}) = \sum_{n=1}^N (y_{nk} - t_{nk}) \, \boldsymbol{\phi}_n. \tag{4.129}$$

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n = 1|a_n) = \Phi(a_n),$$
 (4.130)

where

$$\Phi(a) = \int_{-\infty}^{a} \mathcal{N}(\theta|0,1)d\theta,$$

$$a_n = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_n.$$
(4.131)

Then,

$$p(t_n|\phi_n) = (\Phi(a_n))^{t_n} (1 - \Phi(a_n))^{1-t_n}.$$
(4.132)

Therefore,

$$p(\mathbf{t}|\mathbf{\Phi}) = \prod_{n=1}^{N} (\Phi(a_n))^{t_n} (1 - \Phi(a_n))^{1-t_n}.$$
 (4.133)

Let

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\boldsymbol{\phi}). \tag{4.134}$$

The right hand side can be written as

$$-\sum_{n=1}^{N} (t_n \ln \Phi(a_n) + (1 - t_n) \ln (1 - \Phi(a_n))). \tag{4.135}$$

Then,

$$\nabla E(\mathbf{w}) = -\sum_{n=1}^{N} \left(t_n \frac{\mathcal{N}(a_n|0,1)}{\Phi(a_n)} - (1 - t_n) \frac{\mathcal{N}(a_n|0,1)}{1 - \Phi(a_n)} \right) \phi_n.$$
 (4.136)

The right hand side can be written as

$$-\sum_{n=1}^{N} \left(\frac{t_n}{\Phi(a_n)} - \frac{1 - t_n}{1 - \Phi(a_n)} \right) \mathcal{N}(a_n | 0, 1) \phi_n$$

$$= \sum_{n=1}^{N} \frac{\mathcal{N}(a_n | 0, 1)}{\Phi(a_n) (1 - \Phi(a_n))} \left(\Phi(a_n) - t_n \right) \phi_n.$$
(4.137)

Therefore,

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} \frac{\mathcal{N}(a_n|0,1)}{\Phi(a_n) (1 - \Phi(a_n))} (\Phi(a_n) - t_n) \phi_n.$$
 (4.138)

Then,

$$\nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} \frac{-a_n \mathcal{N}(a_n | 0, 1)}{\Phi(a_n) (1 - \Phi(a_n))} (\Phi(a_n) - t_n) \phi_n \phi_n^{\mathsf{T}}$$

$$- \sum_{n=1}^{N} \frac{(\mathcal{N}(a_n | 0, 1))^2}{(\Phi(a_n))^2 (1 - \Phi(a_n))} (\Phi(a_n) - t_n) \phi_n \phi_n^{\mathsf{T}}$$

$$+ \sum_{n=1}^{N} \frac{(\mathcal{N}(a_n | 0, 1))^2}{\Phi(a_n) (1 - \Phi(a_n))^2} (\Phi(a_n) - t_n) \phi_n \phi_n^{\mathsf{T}}$$

$$+ \sum_{n=1}^{N} \frac{(\mathcal{N}(a_n | 0, 1))^2}{\Phi(a_n) (1 - \Phi(a_n))} \phi_n \phi_n^{\mathsf{T}}.$$
(4.139)

Therefore,

$$\nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} b_n \phi_n \phi_n^{\mathsf{T}}, \tag{4.140}$$

where

$$b_{n} = \left(\frac{\mathcal{N}(a_{n}|0,1)}{\Phi(a_{n})(1-\Phi(a_{n}))}\right)^{2} \left((\Phi(a_{n}))^{2} - 2t_{n}\Phi(a_{n}) + t_{n}\right) - \frac{\mathcal{N}(a_{n}|0,1)}{\Phi(a_{n})(1-\Phi(a_{n}))} a_{n} \left(\Phi(a_{n}) - t_{n}\right).$$

$$(4.141)$$

4.20 (Incomplete)

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables such that

$$t_{nk} \in \{0, 1\},$$

$$p(\mathbf{t}_n | \mathbf{W}) = \prod_{k=1}^{K} y_{nk}^{t_{nk}},$$
(4.142)

where

$$y_{nk} = \frac{\exp(a_{nk})}{\sum_{k=1}^{K} \exp(a_{nk})},$$

$$a_{nk} = \mathbf{w}_k^{\mathsf{T}} \boldsymbol{\phi}_n.$$

$$(4.143)$$

Then,

$$p(\mathbf{T}|\mathbf{W}) = \prod_{n=1}^{N} \prod_{k=1}^{K} y_{nk}^{t_{nk}}.$$
 (4.144)

Let

$$E(\mathbf{W}) = -\ln p(\mathbf{T}|\mathbf{W}). \tag{4.145}$$

By 4.18,

$$\nabla_{\mathbf{w}_k} E(\mathbf{W}) = \sum_{n=1}^N (y_{nk} - t_{nk}) \, \boldsymbol{\phi}_n. \tag{4.146}$$

Additionally, by 4.17,

$$\nabla_{\mathbf{w}_k} \nabla_{\mathbf{w}_{k'}} E(\mathbf{W}) = \sum_{n=1}^N y_{nk} (I_{kk'} - y_{nk'}) \phi_n \phi_n^{\mathsf{T}}. \tag{4.147}$$

The right hand side can be written as

$$\mathbf{H}_{kk'} = \mathbf{\Phi}^{\mathsf{T}} \mathbf{R}_{kk'} \mathbf{\Phi}, \tag{4.148}$$

where

$$R_{kk'nn'} = \begin{cases} y_{nk}(I_{kk'} - y_{nk'}), & n = n', \\ 0, & \text{otherwise.} \end{cases}$$
 (4.149)

Let

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{11} & \cdots & \mathbf{H}_{1K} \\ \vdots & \ddots & \vdots \\ \mathbf{H}_{K1} & \cdots & \mathbf{H}_{KK} \end{bmatrix},$$

and

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_K \end{bmatrix},$$

where $\mathbf{u}_1, \cdots, \mathbf{u}_K$ are vectors in the same dimension as \mathbf{w} . Then,

$$\mathbf{u}^{\mathsf{T}}\mathbf{H}\mathbf{u} = \sum_{k=1}^{K} \sum_{k'=1}^{K} \mathbf{u}_{k}^{\mathsf{T}}\mathbf{H}_{kk'}\mathbf{u}_{k'}, \tag{4.150}$$

Then, the right hand side can be written as

$$\sum_{k=1}^{K} \sum_{k'=1}^{K} (\mathbf{\Phi} \mathbf{u}_k)^{\mathsf{T}} \mathbf{R}_{kk'} (\mathbf{\Phi} \mathbf{u}_{k'}). \tag{4.151}$$

4.21

Let

$$\Phi(a) = \int_{-\infty}^{a} \mathcal{N}(\theta|0,1)d\theta. \tag{4.152}$$

The right hand side can be written as

$$\int_{-\infty}^{0} \mathcal{N}(\theta|0,1)d\theta + \int_{0}^{a} \mathcal{N}(\theta|0,1)d\theta = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \int_{0}^{a} \exp\left(-\frac{\theta^{2}}{2}\right) d\theta. \quad (4.153)$$

The second term of the right hand side can be written as

$$\frac{1}{\sqrt{2\pi}} \int_0^{\frac{a}{\sqrt{2}}} \exp\left(-t^2\right) \sqrt{2} dt = \frac{1}{2} \operatorname{erf}\left(\frac{a}{\sqrt{2}}\right), \tag{4.154}$$

where

$$\operatorname{erf}(a) = \frac{2}{\sqrt{\pi}} \int_0^a \exp(-t^2) dt. \tag{4.155}$$

Therefore,

$$\Phi(a) = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{a}{\sqrt{2}}\right) \right). \tag{4.156}$$

4.22

Let θ be a variable in M dimensions. By a Taylor expansion,

$$\ln (p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})) \simeq \ln (p(\mathcal{D}|\boldsymbol{\theta}_0)p(\boldsymbol{\theta}_0)) + \mathbf{v}(\boldsymbol{\theta}_0)^{\mathsf{T}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) - \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\mathsf{T}}\mathbf{A}(\boldsymbol{\theta}_0)(\boldsymbol{\theta} - \boldsymbol{\theta}_0),$$
(4.157)

where

$$\mathbf{v}(\boldsymbol{\theta}) = \nabla \ln \left(p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) \right), \mathbf{A}(\boldsymbol{\theta}) = -\nabla \nabla \ln \left(p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) \right).$$
(4.158)

Let $\boldsymbol{\theta}_{\text{MAP}}$ be a stationary point of $p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$. Then,

$$\ln (p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})) \simeq \ln (p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}})p(\boldsymbol{\theta}_{\text{MAP}})) - \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_{\text{MAP}})^{\mathsf{T}} \mathbf{A}(\boldsymbol{\theta}_{\text{MAP}})(\boldsymbol{\theta} - \boldsymbol{\theta}_{\text{MAP}}),$$
(4.159)

so that

$$p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}) \simeq p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}})p(\boldsymbol{\theta}_{\text{MAP}})\exp\left(-\frac{1}{2}(\boldsymbol{\theta}-\boldsymbol{\theta}_{\text{MAP}})^{\mathsf{T}}\mathbf{A}(\boldsymbol{\theta}_{\text{MAP}})(\boldsymbol{\theta}-\boldsymbol{\theta}_{\text{MAP}})\right). \tag{4.160}$$

By marginalisation, integrating both sides with respect to θ gives

$$p(\mathcal{D}) \simeq p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}})p(\boldsymbol{\theta}_{\text{MAP}}) \int \exp\left(-\frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_{\text{MAP}})^{\mathsf{T}} \mathbf{A}(\boldsymbol{\theta}_{\text{MAP}})(\boldsymbol{\theta} - \boldsymbol{\theta}_{\text{MAP}})\right) d\boldsymbol{\theta}.$$
(4.161)

The integral of the right hand side can be written as

$$(2\pi)^{\frac{M}{2}} \left(\det \mathbf{A}(\boldsymbol{\theta}_{MAP})^{-1} \right)^{\frac{1}{2}} = (2\pi)^{\frac{M}{2}} \left(\det \mathbf{A}(\boldsymbol{\theta}_{MAP}) \right)^{-\frac{1}{2}}.$$
 (4.162)

Therefore,

$$p(\mathcal{D}) \simeq p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}})p(\boldsymbol{\theta}_{\text{MAP}})(2\pi)^{\frac{M}{2}} \left(\det \mathbf{A}(\boldsymbol{\theta}_{\text{MAP}})\right)^{-\frac{1}{2}},$$
 (4.163)

so that

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) + \ln p(\boldsymbol{\theta}_{\text{MAP}}) + \frac{M}{2}\ln(2\pi) - \frac{1}{2}\ln\left(\det \mathbf{A}(\boldsymbol{\theta}_{\text{MAP}})\right). \tag{4.164}$$

4.23

Let $\boldsymbol{\theta}$ be a variable in M dimensions. By 4.22,

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) + \ln p(\boldsymbol{\theta}_{\text{MAP}}) + \frac{M}{2} \ln(2\pi) - \frac{1}{2} \ln \left(\det \mathbf{A}(\boldsymbol{\theta}_{\text{MAP}}) \right), \tag{4.165}$$

where $\boldsymbol{\theta}_{\text{MAP}}$ is a stationary point of $p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})$ and

$$\mathbf{A}(\boldsymbol{\theta}) = -\nabla \nabla \ln \left(p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) \right). \tag{4.166}$$

If

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}|\mathbf{m}, \mathbf{V}_0), \tag{4.167}$$

then

$$\nabla\nabla \ln p(\theta) = -\mathbf{V}_0^{-1},\tag{4.168}$$

so that

$$\mathbf{A}(\boldsymbol{\theta}) = \mathbf{H}(\boldsymbol{\theta}) + \mathbf{V}_0^{-1},\tag{4.169}$$

where

$$\mathbf{H}(\boldsymbol{\theta}) = -\nabla \nabla \ln p(\mathcal{D}|\boldsymbol{\theta}). \tag{4.170}$$

Then, the right hand side of the approximation above can be written as

$$\ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) - \frac{M}{2} \ln(2\pi) - \frac{1}{2} \ln(\det \mathbf{V}_{0}) - \frac{1}{2} (\boldsymbol{\theta}_{\text{MAP}} - \mathbf{m}_{0})^{\mathsf{T}} \mathbf{V}_{0}^{-1} (\boldsymbol{\theta}_{\text{MAP}} - \mathbf{m}_{0})$$

$$+ \frac{M}{2} \ln(2\pi) - \frac{1}{2} \ln\left(\det\left(\mathbf{H}(\boldsymbol{\theta}_{\text{MAP}}) + \mathbf{V}_{0}^{-1}\right)\right)$$

$$= \ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) + \frac{1}{2} \ln\left(\det\mathbf{V}_{0}^{-1}\right) - \frac{1}{2} (\boldsymbol{\theta}_{\text{MAP}} - \mathbf{m}_{0})^{\mathsf{T}} \mathbf{V}_{0}^{-1} (\boldsymbol{\theta}_{\text{MAP}} - \mathbf{m}_{0})$$

$$- \frac{1}{2} \ln\left(\det\left(\mathbf{H}(\boldsymbol{\theta}_{\text{MAP}}) + \mathbf{V}_{0}^{-1}\right)\right).$$
(4.171)

If \mathbf{V}_0^{-1} can be neglected, the right hand side can be written as

$$\ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) - \frac{1}{2} \ln \left(\det \mathbf{H}(\boldsymbol{\theta}_{\text{MAP}}) \right). \tag{4.172}$$

If each data point is independent and identically distributed, then

$$\mathbf{H}(\boldsymbol{\theta}) = N\bar{\mathbf{H}}(\boldsymbol{\theta}),\tag{4.173}$$

where

$$\bar{\mathbf{H}}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{H}_n(\boldsymbol{\theta}), \tag{4.174}$$

and $\mathbf{H}_n(\boldsymbol{\theta})$ is the one for each data point. Then,

$$\det \mathbf{H}(\boldsymbol{\theta}_{\text{MAP}}) = N^M \det \bar{\mathbf{H}}(\boldsymbol{\theta}_{\text{MAP}}). \tag{4.175}$$

Threrefore,

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\boldsymbol{\theta}_{\text{MAP}}) - \frac{M}{2} \ln N.$$
 (4.176)

4.24 (Incomplete)

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n | \mathbf{w}) = y_n^{t_n} (1 - y_n)^{1 - t_n},$$
(4.177)

where

$$y_n = \sigma(\mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}_n),$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$
 (4.178)

By the Bayes' theorem,

$$p(\mathbf{w}|\mathbf{t})p(\mathbf{t}) = p(\mathbf{t}|\mathbf{w})p(\mathbf{w}). \tag{4.179}$$

If

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0), \tag{4.180}$$

then the lograrithm of the right hand side except the terms independent of \mathbf{w} and \mathbf{t} can be written as

$$\sum_{n=1}^{N} (t_n \ln y_n + (1 - t_n) \ln(1 - y_n)) - \frac{1}{2} (\mathbf{w} - \mathbf{m}_0)^{\mathsf{T}} \mathbf{S}_0^{-1} (\mathbf{w} - \mathbf{m}_0).$$
 (4.181)

Then, by 4.22,

$$p(\mathbf{w}|\mathbf{t}) \simeq \mathcal{N}(\mathbf{w}|\mathbf{w}_{\text{MAP}}, \mathbf{S}_N)$$
? (4.182)

where \mathbf{w}_{MAP} is the maximum likelihood solution for $p(\mathbf{w})$ and

$$\mathbf{S}_N = -\nabla \nabla \ln p(\mathbf{w}|\mathbf{t}). \tag{4.183}$$

By marginalisation,

$$p(\mathcal{C}_1|\mathbf{t}) = \int p(\mathcal{C}_1|\mathbf{w})p(\mathbf{w}|\mathbf{t})d\mathbf{w}.$$
 (4.184)

The logarithm of the integrand of the right hand side except the terms independent of \mathbf{w} can be approximated as

$$-\ln\left(1 + \exp\left(-\mathbf{w}^{\mathsf{T}}\boldsymbol{\phi}\right)\right) - \frac{1}{2}(\mathbf{w} - \mathbf{w}_{\text{MAP}})^{\mathsf{T}}\mathbf{S}_{N}^{-1}(\mathbf{w} - \mathbf{w}_{\text{MAP}}) = (4.185)$$

Let

$$\sigma(a) = \frac{1}{1 + \exp(-a)},$$

$$\Phi(a) = \int_{-\infty}^{a} \mathcal{N}(\theta|0, 1)d\theta.$$
(4.186)

By 4.12,

$$\frac{d\sigma(a)}{da} = \sigma(a) \left(1 - \sigma(a)\right). \tag{4.187}$$

On the other hand, the right hand side can be written as

$$\frac{d\Phi(\lambda a)}{da} = \lambda \mathcal{N}(\lambda a|0,1). \tag{4.188}$$

Let us assume that

$$\left. \frac{d\sigma(a)}{da} \right|_{a=0} = \left. \frac{d\Phi(\lambda a)}{da} \right|_{a=0}. \tag{4.189}$$

Then,

$$\frac{1}{4} = \lambda (2\pi)^{-\frac{1}{2}}. (4.190)$$

Therefore,

$$\lambda^2 = \frac{\pi}{8}.\tag{4.191}$$

4.26

Let

$$I(\mu) = \int \Phi(\lambda a) \mathcal{N}(a|\mu, \sigma^2) da, \qquad (4.192)$$

where

$$\Phi(a) = \int_{-\infty}^{a} \mathcal{N}(\theta|0,1)d\theta. \tag{4.193}$$

By the transformation

$$z = \frac{a - \mu}{\sigma},\tag{4.194}$$

the right hand side can be written as

$$\int \Phi(\lambda(\mu + \sigma z)) \mathcal{N}(\mu + \sigma z | \mu, \sigma^2) \sigma dz = \int \Phi(\lambda(\mu + \sigma z)) \mathcal{N}(z | 0, 1) dz.$$
(4.195)

Then,

$$\frac{\partial}{\partial \mu}I(\mu) = \lambda \int \mathcal{N}\left(\lambda(\mu + \sigma z)|0, 1\right) \mathcal{N}(z|0, 1) dz. \tag{4.196}$$

The logarithm of the integrand of the right hand side can be written as

$$-\frac{1}{2}\ln(2\pi) - \frac{\lambda^2(\mu + \sigma z)^2}{2} - \frac{1}{2}\ln(2\pi) - \frac{z^2}{2}$$

$$= -\ln(2\pi) - \frac{1 + \sigma^2\lambda^2}{2} \left(z + \frac{\mu\sigma\lambda^2}{1 + \sigma^2\lambda^2}\right)^2 + \frac{\mu^2\sigma^2\lambda^4}{2(1 + \sigma^2\lambda^2)} - \frac{\mu^2\lambda^2}{2}.$$
(4.197)

The right hand side can be written as

$$-\ln(2\pi) - \frac{1+\sigma^2\lambda^2}{2} \left(z + \frac{\mu\sigma\lambda^2}{1+\sigma^2\lambda^2}\right)^2 - \frac{\mu^2\lambda^2}{2(1+\sigma^2\lambda^2)}$$

$$= -\frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln\left(1+\sigma^2\lambda^2\right)^{-1} - \frac{1+\sigma^2\lambda^2}{2} \left(z + \frac{\mu\sigma\lambda^2}{1+\sigma^2\lambda^2}\right)^2 - \ln\lambda - \frac{1}{2}\ln(2\pi) - \frac{1}{2}\ln\left(\lambda^{-2} + \sigma^2\right) - \frac{\mu^2}{2(\lambda^{-2} + \sigma^2)}.$$
(4.198)

Then, the integral can be written as

$$\int \mathcal{N}\left(z| - \frac{\mu\sigma\lambda^2}{1 + \sigma^2\lambda^2}, \left(1 + \sigma^2\lambda^2\right)^{-1}\right) \frac{1}{\lambda} \mathcal{N}\left(\mu|0, \lambda^{-2} + \sigma^2\right) dz$$

$$= \frac{1}{\lambda} \mathcal{N}\left(\mu|0, \lambda^{-2} + \sigma^2\right).$$
(4.199)

Therefore,

$$\frac{\partial}{\partial \mu} I(\mu) = \mathcal{N} \left(\mu | 0, \lambda^{-2} + \sigma^2 \right). \tag{4.200}$$

Integrating both sides with respect to μ gives

$$I(\mu) = \int_{-\infty}^{\mu} \mathcal{N}(m|0, \lambda^{-2} + \sigma^2) dm.$$
 (4.201)

By the transformation

$$m' = \frac{m}{(\lambda^{-2} + \sigma^2)^{\frac{1}{2}}},\tag{4.202}$$

the right hand side can be written as

$$\int_{-\infty}^{\frac{\mu}{(\lambda^{-2} + \sigma^2)^{\frac{1}{2}}}} \left(\lambda^{-2} + \sigma^2\right)^{-\frac{1}{2}} \mathcal{N}\left(m'|0,1\right) \left(\lambda^{-2} + \sigma^2\right)^{\frac{1}{2}} dm' = \Phi\left(\frac{\mu}{(\lambda^{-2} + \sigma^2)^{\frac{1}{2}}}\right). \tag{4.203}$$

Therefore,

$$I(\mu) = \Phi\left(\frac{\mu}{(\lambda^{-2} + \sigma^2)^{\frac{1}{2}}}\right).$$
 (4.204)

5 Neural Networks

5.1

Let

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{m=1}^{M} w_{km}^{(2)} \sigma \left(\sum_{d=1}^{D} w_{md}^{(1)} x_d + w_{m0}^{(1)} \right) + w_{k0}^{(2)} \right), \tag{5.1}$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.\tag{5.2}$$

Here,

$$\sigma(a) = \frac{\exp\left(\frac{a}{2}\right)}{\exp\left(\frac{a}{2}\right) + \exp\left(-\frac{a}{2}\right)}.$$
 (5.3)

The right hand side can be written as

$$\tanh\left(\frac{a}{2}\right) + \sigma(-a) = \tanh\left(\frac{a}{2}\right) + 1 - \sigma(a). \tag{5.4}$$

Therefore,

$$\sigma(a) = \frac{1}{2} \left(1 + \tanh\left(\frac{a}{2}\right) \right). \tag{5.5}$$

Then, the argument of the right hand side can be written as

$$\sum_{m=1}^{M} w_{km}^{(2)} \left(\frac{1}{2} \left(1 + \tanh \left(\frac{1}{2} \left(\sum_{d=1}^{D} w_{md}^{(1)} x_d + w_{m0}^{(1)} \right) \right) \right) \right) + w_{k0}^{(2)} \\
= \frac{1}{2} \sum_{m=1}^{M} w_{km}^{(2)} \tanh \left(\frac{1}{2} \sum_{d=1}^{D} w_{md}^{(1)} x_d + \frac{1}{2} w_{m0}^{(1)} \right) + \frac{1}{2} \sum_{m=1}^{M} w_{km}^{(2)} + w_{k0}^{(2)}.$$
(5.6)

Therefore,

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\frac{1}{2} \sum_{m=1}^{M} w_{km}^{(2)} \tanh \left(\frac{1}{2} \sum_{d=1}^{D} w_{md}^{(1)} x_d + \frac{1}{2} w_{m0}^{(1)} \right) + \frac{1}{2} \sum_{m=1}^{M} w_{km}^{(2)} + w_{k0}^{(2)} \right).$$
(5.7)

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables such that

$$p(\mathbf{t}_n|\mathbf{x}_n, \mathbf{w}) = \mathcal{N}\left(\mathbf{t}_n|\mathbf{y}(\mathbf{x}_n, \mathbf{w}), \beta^{-1}\mathbf{I}\right). \tag{5.8}$$

Then, the logarithm of the likelihood except the terms independent of \mathbf{w} can be written as

$$-\frac{1}{2}\sum_{n=1}^{N}\left(\mathbf{t}_{n}-\mathbf{y}(\mathbf{x}_{n},\mathbf{w})\right)^{\intercal}\left(\beta^{-1}\mathbf{I}\right)^{-1}\left(\mathbf{t}_{n}-\mathbf{y}(\mathbf{x}_{n},\mathbf{w})\right)=-\frac{\beta}{2}\sum_{n=1}^{N}\|\mathbf{y}(\mathbf{x}_{n},\mathbf{w})-\mathbf{t}_{n}\|^{2}.$$
(5.9)

Setting the derivative with respect to \mathbf{w} to zero gives

$$\mathbf{0} = -\beta \sum_{n=1}^{N} \frac{\partial \mathbf{y}(\mathbf{x}_{n}, \mathbf{w})}{\partial \mathbf{w}} (\mathbf{y}(\mathbf{x}_{n}, \mathbf{w}) - \mathbf{t}_{n}).$$
 (5.10)

Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}(\mathbf{x}_n, \mathbf{w}) - \mathbf{t}_n\|^2.$$
 (5.11)

Setting the derivative with respect to w to zero gives

$$\mathbf{0} = \sum_{n=1}^{N} \frac{\partial \mathbf{y}(\mathbf{x}_{n}, \mathbf{w})}{\partial \mathbf{w}} (\mathbf{y}(\mathbf{x}_{n}, \mathbf{w}) - \mathbf{t}_{n}).$$
 (5.12)

Therefore, maximising the likelihood is equivalent to minimising $E(\mathbf{w})$.

5.3

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables such that

$$p(\mathbf{t}_n|\mathbf{x}_n,\mathbf{w}) = \mathcal{N}\left(\mathbf{t}_n|\mathbf{y}(\mathbf{x}_n,\mathbf{w}),\boldsymbol{\Sigma}\right). \tag{5.13}$$

Then, the logarithm of the likelihood except the terms independent of ${\bf w}$ and ${\bf \Sigma}$ can be written as

$$-\frac{1}{2}\ln(\det \mathbf{\Sigma}) - \frac{1}{2}\sum_{n=1}^{N} (\mathbf{t}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w}))^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{t}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w})).$$
 (5.14)

Setting the derivatives with respect to \mathbf{w} and Σ to zero gives

$$\mathbf{0} = -\sum_{n=1}^{N} \frac{\partial \mathbf{y}(\mathbf{x}_{n}, \mathbf{w})}{\partial \mathbf{w}} \mathbf{\Sigma}^{-1} \left(\mathbf{t}_{n} - \mathbf{y}(\mathbf{x}_{n}, \mathbf{w}) \right),$$

$$\mathbf{O} = -\frac{1}{2} \mathbf{\Sigma}^{-1} + \frac{1}{2} \left(\mathbf{\Sigma}^{-1} \right)^{2} \sum_{n=1}^{N} \left(\mathbf{t}_{n} - \mathbf{y}(\mathbf{x}_{n}, \mathbf{w}) \right) \left(\mathbf{t}_{n} - \mathbf{y}(\mathbf{x}_{n}, \mathbf{w}) \right)^{\mathsf{T}}.$$
(5.15)

Therefore, the maximum likelihood solution for Σ is given by

$$\Sigma = \sum_{n=1}^{N} (\mathbf{t}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w})) (\mathbf{t}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w}))^{\mathsf{T}}.$$
 (5.16)

On the other hand, if Σ is fixed and known, then the maximum likelihood solution for \mathbf{w} is given by minimising

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{t}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w}))^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{t}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w})).$$
 (5.17)

5.4

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n = 1 | \mathbf{x}_n) = (1 - \epsilon)y_n + \epsilon (1 - y_n),$$
 (5.18)

where

$$y_n = y(\mathbf{x}_n, \mathbf{w}). \tag{5.19}$$

Then,

$$p(t_n|\mathbf{x}_n) = ((1 - \epsilon)y_n + \epsilon (1 - y_n))^{t_n} (\epsilon y_n + (1 - \epsilon) (1 - y_n))^{1 - t_n}.$$
 (5.20)

Therefore,

$$-\ln\left(\prod_{n=1}^{N} p(t_n|\mathbf{x}_n)\right)$$

$$= -\sum_{n=1}^{N} \left(t_n \ln\left((1-\epsilon)y_n + \epsilon(1-y_n)\right) + (1-t_n) \ln\left(\epsilon y_n + (1-\epsilon)(1-y_n)\right)\right).$$
(5.21)

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables in K dimensions such that

$$t_{nk} \in \{0, 1\},\ p(t_{nk} = 1 | \mathbf{x}_n) = y_{nk},$$
 (5.22)

where

$$y_{nk} = y_k(\mathbf{x}_n, \mathbf{w}). \tag{5.23}$$

Then,

$$p(t_{nk}|\mathbf{x}_n) = y_{nk}^{t_{nk}},\tag{5.24}$$

so that

$$p(\mathbf{t}_n|\mathbf{x}_n) = \prod_{k=1}^K y_{nk}^{t_{nk}}.$$
 (5.25)

Therefore,

$$\ln\left(\prod_{n=1}^{N} p(\mathbf{t}_{n}|\mathbf{x}_{n})\right) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}.$$
 (5.26)

5.6

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n = 1 | \mathbf{x}_n) = y_n,$$
 (5.27)

where

$$y_n = y(\mathbf{x}_n, \mathbf{w}). \tag{5.28}$$

Then,

$$p(t_n|\mathbf{x}_n) = y_n^{t_n} (1 - y_n)^{1 - t_n}.$$
 (5.29)

Let

$$E(\mathbf{w}) = -\ln\left(\prod_{n=1}^{N} p(t_n|\mathbf{x}_n)\right).$$
 (5.30)

Then,

$$E(\mathbf{w}) = -\sum_{n=1}^{N} (t_n \ln y_n + (1 - t_n) \ln(1 - y_n)).$$
 (5.31)

If

$$y_n = \sigma(a_n), \tag{5.32}$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)},\tag{5.33}$$

then, by 4.12,

$$\frac{\partial E(\mathbf{w})}{\partial a_n} = -y_n (1 - y_n) \left(\frac{t_n}{y_n} - \frac{1 - t_n}{1 - y_n} \right). \tag{5.34}$$

Therefore,

$$\frac{\partial E(\mathbf{w})}{\partial a_n} = y_n - t_n. \tag{5.35}$$

5.7

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables such that

$$t_{nk} \in \{0, 1\},\$$

$$p(t_{nk} = 1 | \mathbf{x}_n) = y_{nk},$$
(5.36)

where

$$y_{nk} = y_k(\mathbf{x}_n, \mathbf{w}),$$

$$y_{nk} = y_k(\mathbf{x}_n, \mathbf{w}),$$

$$\sum_{k=1}^K y_{nk} = 1.$$
(5.37)

Then,

$$p(\mathbf{t}_n|\mathbf{x}_n) = \prod_{k=1}^K y_{nk}^{t_{nk}}.$$
 (5.38)

Let

$$E(\mathbf{w}) = -\ln\left(\prod_{n=1}^{N} p(\mathbf{t}_n | \mathbf{x}_n)\right). \tag{5.39}$$

Then,

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}.$$
 (5.40)

If

$$y_{nk} = \frac{\exp(a_k(\mathbf{x}_n, \mathbf{w}))}{\sum_{k=1}^K \exp(a_k(\mathbf{x}_n, \mathbf{w}))},$$
 (5.41)

then, by 4.17,

$$\frac{\partial E(\mathbf{w})}{\partial a_{k'}} = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} y_{nk} (I_{kk'} - y_{nk}) \frac{1}{y_{nk}}.$$
 (5.42)

The right hand side can be written as

$$-\sum_{n=1}^{N}\sum_{k=1}^{K}t_{nk}(I_{kk'}-y_{nk}) = -\sum_{n=1}^{N}\left(\sum_{k=1}^{K}t_{nk}y_{nk}-t_{nk'}\right).$$
 (5.43)

Therefore,

$$\frac{\partial E(\mathbf{w})}{\partial a_k} = \sum_{n=1}^{N} (y_{nk} - t_{nk}). \tag{5.44}$$

5.8

Setting the derivative of

$$tanh a = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}$$
(5.45)

gives

$$\frac{d}{da}\tanh a = 1 - \left(\frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)}\right)^2. \tag{5.46}$$

Therefore,

$$\frac{d}{da}\tanh a = 1 - (\tanh a)^2. \tag{5.47}$$

5.9

Let t_1, \dots, t_N be variables such that

$$t_n \in \{-1, 1\},\$$

$$p(t_n = 1 | \mathbf{x}_n) = \frac{1 + y_n}{2},$$
(5.48)

where

$$y_n = y(\mathbf{x}_n, \mathbf{w}). \tag{5.49}$$

Then,

$$p(t_n|\mathbf{x}_n) = \left(\frac{1+y_n}{2}\right)^{\frac{1+t_n}{2}} \left(\frac{1-y_n}{2}\right)^{\frac{1-t_n}{2}}.$$
 (5.50)

Let

$$E(\mathbf{w}) = -\ln\left(\prod_{n=1}^{N} p(t_n|\mathbf{x}_n)\right). \tag{5.51}$$

Then,

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \left(\frac{1+t_n}{2} \ln \frac{1+y_n}{2} + \frac{1-t_n}{2} \ln \frac{1-y_n}{2} \right).$$
 (5.52)

The appropriate choice of y is tanh.

5.10

Let

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}),\tag{5.53}$$

where E is a real function of real vectors. Then, \mathbf{H} is a real symmetric matrix. Therefore, by 2.20, \mathbf{H} is positive if and only if its eigenvalues are positive.

5.11

Let \mathbf{w} be a real vector in M dimensions. Let E be a real function of \mathbf{w} . Let \mathbf{w}^* be a vector such that

$$\nabla E\left(\mathbf{w}^*\right) = \mathbf{0}.\tag{5.54}$$

Then, by a Taylor expansion,

$$E(\mathbf{w}) \simeq E(\mathbf{w}^*) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^*)^{\mathsf{T}} \mathbf{H} (\mathbf{w} - \mathbf{w}^*),$$
 (5.55)

where

$$\mathbf{H} = \left. \nabla \nabla E(\mathbf{w}) \right|_{\mathbf{w} = \mathbf{w}^*}. \tag{5.56}$$

Let $\mathbf{u}_1, \dots, \mathbf{u}_M$ be eigenvectors such that

$$\mathbf{H}\mathbf{u}_m = \lambda_m \mathbf{u}_m. \tag{5.57}$$

Note that **H** is a real symmetric matrix. Then, by ??, we have

$$\mathbf{u}_{m}^{\mathsf{T}}\mathbf{u}_{m'} = I_{mm'}.\tag{5.58}$$

Therefore, there exists $\alpha_1, \dots, \alpha_M$ such that

$$\mathbf{w} - \mathbf{w}^* = \sum_{m=1}^{M} \alpha_m \mathbf{u}_m. \tag{5.59}$$

Then, the approximation can be written as

$$E(\mathbf{w}) \simeq E(\mathbf{w}^*) + \frac{1}{2} \sum_{m=1}^{M} \lambda_m \alpha_m^2.$$
 (5.60)

Therefore, the contours of constant E are ellipses whose axes are aligned with $\mathbf{u}_1, \dots, \mathbf{u}_M$ with lengths which are proportional to $\lambda_1^{-\frac{1}{2}}, \dots, \lambda_M^{-\frac{1}{2}}$.

5.12

Let **w** be a real vector. Let E be a real function of **w**. Let \mathbf{w}^* be a vector such that

$$\nabla E\left(\mathbf{w}^*\right) = \mathbf{0}.\tag{5.61}$$

Then, by a Taylor expansion,

$$E(\mathbf{w}) \simeq E(\mathbf{w}^*) + \frac{1}{2} (\mathbf{w} - \mathbf{w}^*)^{\mathsf{T}} \mathbf{H} (\mathbf{w} - \mathbf{w}^*),$$
 (5.62)

where

$$\mathbf{H} = \left. \nabla \nabla E(\mathbf{w}) \right|_{\mathbf{w} = \mathbf{w}^*}. \tag{5.63}$$

If \mathbf{H} is positive definite, then the second term of the right hand side is positive unless

$$\mathbf{w} = \mathbf{w}^*. \tag{5.64}$$

Therefore, \mathbf{w}^* is a local minimum of the right hand side. On the other hand, if \mathbf{w}^* is a local minimum of the right hand side, then the second term of the right hand side is positive unless

$$\mathbf{w} = \mathbf{w}^*. \tag{5.65}$$

Therefore, \mathbf{H} is positive definite. Thus, the necessary and sufficient condition for \mathbf{w}^* to be a local minimum is that \mathbf{H} be positive definite.

Let \mathbf{w} be a vector in M dimensions. Let E be a function of \mathbf{w} . Then, by a Taylor expansion,

$$E(\mathbf{w}) \simeq E(\hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{b} + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^{\mathsf{T}} \mathbf{H} (\mathbf{w} - \hat{\mathbf{w}}),$$
 (5.66)

where

$$\mathbf{b} = \nabla E(\mathbf{w})|_{\mathbf{w} = \hat{\mathbf{w}}}.$$

$$\mathbf{H} = \nabla \nabla E(\mathbf{w})|_{\mathbf{w} = \hat{\mathbf{w}}}.$$
(5.67)

Since **b** is a vector in M dimensions and **H** is a $M \times M$ symmetric matrix, the number of independent elements of the right hand side is

$$M + \frac{M(M+1)}{2} = \frac{M(M+3)}{2}. (5.68)$$

5.14

Let w be a variable. Let E_n be a function of w. Then, by a Taylor expansion,

$$E_{n}(w_{mm'} + \epsilon) = E_{n}(w_{mm'}) + \frac{\partial E_{n}}{\partial w}\Big|_{w=w_{mm'}} \epsilon + O(\epsilon^{2}),$$

$$E_{n}(w_{mm'} - \epsilon) = E_{n}(w_{mm'}) - \frac{\partial E_{n}}{\partial w}\Big|_{w=w_{mm'}} \epsilon + O(\epsilon^{2}).$$
(5.69)

Therefore,

$$\left. \frac{\partial E_n}{\partial w} \right|_{w=w} = \frac{E_n(w_{mm'} + \epsilon) - E_n(w_{mm'} - \epsilon)}{2\epsilon} + O\left(\epsilon^2\right). \tag{5.70}$$

5.15 (Incomplete)

5.16

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be vectors. Let $\mathbf{y}_1, \dots, \mathbf{y}_N$ be vectors which are dependent on a vector \mathbf{w} . Let

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{t}_n\|^2.$$
 (5.71)

Then,

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (\nabla \mathbf{y}_n)^{\mathsf{T}} (\mathbf{y}_n - \mathbf{t}_n), \qquad (5.72)$$

so that

$$\nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} (\nabla \operatorname{vec} (\nabla \mathbf{y}_n)^{\mathsf{T}})^{\mathsf{T}} (\mathbf{y}_n - \mathbf{t}_n) + \sum_{n=1}^{N} (\nabla \mathbf{y}_n)^{\mathsf{T}} (\nabla \mathbf{y}_n). \quad (5.73)$$

5.17

Let t be a variable. Let y be a function of a vector \mathbf{x} and a vector \mathbf{w} . Let

$$E(\mathbf{w}) = \frac{1}{2} \int \int (y-t)^2 p(\mathbf{x}, t) d\mathbf{x} dt.$$
 (5.74)

Then,

$$\nabla E(\mathbf{w}) = \int \int (y - t)p(\mathbf{x}, t)\nabla y d\mathbf{x} dt.$$
 (5.75)

The right hand side can be written as

$$\int y \nabla y \left(\int p(\mathbf{x}, t) dt \right) d\mathbf{x} - \int \nabla y \left(\int t p(t|\mathbf{x}) dt \right) p(\mathbf{x}) d\mathbf{x}$$

$$= \int y \nabla y p(\mathbf{x}) d\mathbf{x} - \int \nabla y \, \mathbf{E}(t|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
(5.76)

Then,

$$\nabla \nabla E(\mathbf{w}) = \int \nabla y (\nabla y)^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x} + \int y \nabla \nabla y p(\mathbf{x}) d\mathbf{x} - \int \nabla \nabla y E(t|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$
(5.77)

The second and the third terms of the right hand side can be written as

$$E(y\nabla\nabla y) - E(\nabla\nabla y E(t|\mathbf{x})) = E((y - E(t|\mathbf{x})) \nabla\nabla y).$$
 (5.78)

Therefore, if

$$y = E(t|\mathbf{x}),\tag{5.79}$$

then

$$\nabla \nabla E(\mathbf{w}) = \int \nabla y (\nabla y)^{\mathsf{T}} p(\mathbf{x}) d\mathbf{x}. \tag{5.80}$$

Let t_1, \dots, t_N be variables. Let y_1, \dots, y_N be variables such that

$$y_n = \mathbf{w}_n^{(2)^{\mathsf{T}}} \mathbf{z} + \mathbf{w}_n^{(0)^{\mathsf{T}}} \mathbf{x},$$

$$z_m = \tanh\left(\mathbf{w}_m^{(1)^{\mathsf{T}}} \mathbf{x}\right).$$
 (5.81)

Let

$$E = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2.$$
 (5.82)

Then,

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(0)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial \mathbf{w}_{n}^{(0)}},$$

$$\frac{\partial E}{\partial \mathbf{w}_{m}^{(1)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{w}_{m}^{(1)}},$$

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(2)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial \mathbf{w}_{n}^{(2)}}.$$
(5.83)

Therefore,

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(0)}} = (y_{n} - t_{n})\mathbf{x},$$

$$\frac{\partial E}{\partial \mathbf{w}_{m}^{(1)}} = (y_{n} - t_{n})\mathbf{A}\mathbf{w}_{n}^{(2)},$$

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(2)}} = (y_{n} - t_{n})\mathbf{z},$$
(5.84)

where

$$A_{mm'} = (1 - z_m^2) x_{m'}. (5.85)$$

5.19

Let t_1, \dots, t_N be variables such that

$$t_n \in \{0, 1\},\ p(t_n | \mathbf{w}) = y_n^{t_n} (1 - y_n)^{1 - t_n},$$
(5.86)

where

$$y_n = \sigma(a_n(\mathbf{w})),$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)},$$
(5.87)

Let

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w}). \tag{5.88}$$

The right hand side can be written as

$$-\ln\left(\prod_{n=1}^{N} y_n^{t_n} (1-y_n)^{1-t_n}\right) = -\sum_{n=1}^{N} \left(t_n \ln y_n + (1-t_n) \ln(1-y_n)\right). \quad (5.89)$$

Then, by 4.12,

$$\nabla E(\mathbf{w}) = -\sum_{n=1}^{N} \left(\frac{t_n}{y_n} y_n (1 - y_n) \nabla a_n - \frac{1 - t_n}{1 - y_n} y_n (1 - y_n) \nabla a_n \right).$$
 (5.90)

The right hand side can be written as

$$-\sum_{n=1}^{N} (t_n(1-y_n)\nabla a_n - (1-t_n)y_n\nabla a_n) = \sum_{n=1}^{N} (y_n - t_n)\nabla a_n.$$
 (5.91)

Then, by 4.13,

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \nabla a_n.$$
 (5.92)

Therefore, by 4.12,

$$\nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \nabla a_n (\nabla a_n)^{\mathsf{T}} + \sum_{n=1}^{N} (y_n - t_n) \nabla \nabla a_n.$$
 (5.93)

5.20

Let $\mathbf{t}_1, \dots, \mathbf{t}_N$ be variables such that

$$t_{nk} \in \{0, 1\},\ p(t_{nk} = 1 | \mathbf{x}_n) = y_{nk},$$
 (5.94)

where

$$y_{nk} = y_k(\mathbf{x}_n, \mathbf{w}),$$

$$\sum_{k=1}^K y_{nk} = 1.$$
(5.95)

Then,

$$p(\mathbf{t}_n|\mathbf{x}_n) = \prod_{k=1}^K y_{nk}^{t_{nk}}.$$
 (5.96)

Let

$$E(\mathbf{w}) = -\ln\left(\prod_{n=1}^{N} p(\mathbf{t}_n | \mathbf{x}_n)\right). \tag{5.97}$$

Then,

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \ln y_{nk}.$$
 (5.98)

If

$$y_{nk} = \frac{\exp(a_k(\mathbf{x}_n, \mathbf{w}))}{\sum_{k=1}^K \exp(a_k(\mathbf{x}_n, \mathbf{w}))},$$
 (5.99)

then, by 5.7,

$$\frac{\partial E(\mathbf{w})}{\partial a_k} = \sum_{n=1}^{N} (y_{nk} - t_{nk}). \tag{5.100}$$

Then,

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - t_{nk}) \nabla a_k.$$
 (5.101)

Then,

$$\nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} \sum_{k=1}^{K} y_{nk} (1 - y_{nk}) \nabla a_k (\nabla a_k)^{\mathsf{T}} + \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - t_{nk}) \nabla \nabla a_k.$$
(5.102)

5.21 (Incomplete)

5.22

Let y_1, \dots, y_N be variables such that

$$y_n = \mathbf{w}_n^{(2)^{\mathsf{T}}} \mathbf{z},$$

$$z_m = h(a_m),$$

$$a_m = \mathbf{w}_m^{(1)^{\mathsf{T}}} \mathbf{x}.$$
(5.103)

Let E be a function of y_1, \dots, y_N . Then,

$$\frac{\partial E}{\partial \mathbf{w}_{m}^{(1)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial z_{m}} \frac{\partial z_{m}}{\partial a_{m}} \frac{\partial a_{m}}{\partial \mathbf{w}_{m}^{(1)}},$$

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(2)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial \mathbf{w}_{n}^{(2)}}.$$
(5.104)

Therefore,

$$\frac{\partial E}{\partial \mathbf{w}_{m}^{(1)}} = \frac{\partial E}{\partial y_{n}} w_{nm}^{(2)} h'(a_{m}) \mathbf{x},
\frac{\partial E}{\partial \mathbf{w}_{n}^{(2)}} = \frac{\partial E}{\partial y_{n}} \mathbf{z}.$$
(5.105)

Thus,

$$\frac{\partial^{2} E}{\partial \mathbf{w}_{m}^{(1)} \partial \mathbf{w}_{m'}^{(1)}} = w_{nm}^{(2)} \mathbf{x} \left(\frac{\partial^{2} E}{\partial y_{n}^{2}} w_{nm'}^{(2)} h'(a_{m'}) h'(a_{m}) \mathbf{x} + \frac{\partial E}{\partial y_{n}} h''(a_{m}) I_{mm'} \mathbf{x} \right)^{\mathsf{T}},$$

$$\frac{\partial^{2} E}{\partial \mathbf{w}_{m}^{(1)} \partial \mathbf{w}_{n}^{(2)}} = h'(a_{m}) \mathbf{x} \left(\frac{\partial^{2} E}{\partial y_{n}^{2}} w_{nm}^{(2)} \mathbf{z} + \frac{\partial E}{\partial y_{n}} \mathbf{v} \right)^{\mathsf{T}},$$

$$\frac{\partial^{2} E}{\partial \mathbf{w}_{n}^{(2)} \partial \mathbf{w}_{n'}^{(2)}} = \frac{\partial^{2} E}{\partial y_{n} \partial y_{n'}} \mathbf{z} \mathbf{z}^{\mathsf{T}},$$
(5.106)

where

$$v_m = \begin{cases} 1, & m = n, \\ 0 & \text{otherwise.} \end{cases}$$
 (5.107)

5.23

Let y_1, \dots, y_N be variables such that

$$y_n = \mathbf{w}_n^{(2)^{\mathsf{T}}} \mathbf{z} + \mathbf{w}_n^{(0)^{\mathsf{T}}} \mathbf{x},$$

$$z_m = h(a_m),$$

$$a_m = \mathbf{w}_m^{(1)^{\mathsf{T}}} \mathbf{x}.$$
(5.108)

Let E be a function of y_1, \dots, y_N . Then,

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(0)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial \mathbf{w}_{n}^{(0)}},$$

$$\frac{\partial E}{\partial \mathbf{w}_{m}^{(1)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial z_{m}} \frac{\partial z_{m}}{\partial a_{m}} \frac{\partial a_{m}}{\partial \mathbf{w}_{m}^{(1)}},$$

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(2)}} = \frac{\partial E}{\partial y_{n}} \frac{\partial y_{n}}{\partial \mathbf{w}_{n}^{(2)}}.$$
(5.109)

Therefore,

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(0)}} = \frac{\partial E}{\partial y_{n}} \mathbf{x},$$

$$\frac{\partial E}{\partial \mathbf{w}_{m}^{(1)}} = \frac{\partial E}{\partial y_{n}} w_{nm}^{(2)} h'(a_{m}) \mathbf{x},$$

$$\frac{\partial E}{\partial \mathbf{w}_{n}^{(2)}} = \frac{\partial E}{\partial y_{n}} \mathbf{z}.$$
(5.110)

Thus,

$$\frac{\partial^{2} E}{\partial \mathbf{w}_{n}^{(0)} \partial \mathbf{w}_{n'}^{(0)}} = \frac{\partial^{2} E}{\partial y_{n} \partial y_{n'}} \mathbf{x} \mathbf{x}^{\mathsf{T}},
\frac{\partial^{2} E}{\partial \mathbf{w}_{n}^{(0)} \partial \mathbf{w}_{m}^{(1)}} = \frac{\partial^{2} E}{\partial y_{n}^{2}} w_{nm}^{(2)} h'(a_{m}) \mathbf{x} \mathbf{x}^{\mathsf{T}},
\frac{\partial^{2} E}{\partial \mathbf{w}_{n}^{(0)} \partial \mathbf{w}_{n'}^{(2)}} = \frac{\partial^{2} E}{\partial y_{n} \partial y_{n'}} \mathbf{x} \mathbf{z}^{\mathsf{T}},
\frac{\partial^{2} E}{\partial \mathbf{w}_{m}^{(1)} \partial \mathbf{w}_{m'}^{(1)}} = w_{nm}^{(2)} \mathbf{x} \left(\frac{\partial^{2} E}{\partial y_{n}^{2}} w_{nm'}^{(2)} h'(a_{m'}) h'(a_{m}) \mathbf{x} + \frac{\partial E}{\partial y_{n}} h''(a_{m}) I_{mm'} \mathbf{x} \right)^{\mathsf{T}},
\frac{\partial^{2} E}{\partial \mathbf{w}_{m}^{(1)} \partial \mathbf{w}_{n'}^{(2)}} = h'(a_{m}) \mathbf{x} \left(\frac{\partial^{2} E}{\partial y_{n}^{2}} w_{nm}^{(2)} \mathbf{z} + \frac{\partial E}{\partial y_{n}} \mathbf{v} \right)^{\mathsf{T}},
\frac{\partial^{2} E}{\partial \mathbf{w}_{n}^{(2)} \partial \mathbf{w}_{n'}^{(2)}} = \frac{\partial^{2} E}{\partial y_{n} \partial y_{n'}} \mathbf{z} \mathbf{z}^{\mathsf{T}},$$

$$(5.111)$$

where

$$v_m = \begin{cases} 1, & m = n, \\ 0 & \text{otherwise.} \end{cases}$$
 (5.112)

Let y_1, \dots, y_n be variables such that

$$y_n = \mathbf{w}_n^{\mathsf{T}} \mathbf{z} + w_{n0},$$

$$z_m = h \left(\mathbf{w}_m^{\mathsf{T}} \mathbf{x} + w_{m0} \right).$$
(5.113)

(a)

Let

$$\tilde{\mathbf{x}} = a\mathbf{x} + b\mathbf{v},\tag{5.114}$$

where

$$\mathbf{v} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}.$$

Then,

$$z_m = h\left(\frac{1}{a}\mathbf{w}_m^{\mathsf{T}}\left(\tilde{\mathbf{x}} - b\mathbf{v}\right) + w_{m0}\right). \tag{5.115}$$

Therefore,

$$\tilde{z}_m = h\left(\tilde{\mathbf{w}}_m^{\mathsf{T}} \mathbf{x} + \tilde{w}_{m0}\right). \tag{5.116}$$

where

$$\tilde{\mathbf{w}}_{m} = \frac{1}{a} \mathbf{w}_{m},$$

$$\tilde{w}_{m0} = w_{m0} - \frac{b}{a} \mathbf{w}_{m}^{\mathsf{T}} \mathbf{v}.$$
(5.117)

(b)

Let

$$\tilde{y}_n = cy_n + d. (5.118)$$

Then,

$$\frac{\tilde{y}_n - d}{c} = \mathbf{w}_n^{\mathsf{T}} \mathbf{z} + w_{n0}. \tag{5.119}$$

Therefore,

$$\tilde{y}_n = \tilde{\mathbf{w}}_n^{\mathsf{T}} \mathbf{z} + \tilde{w}_{n0}, \tag{5.120}$$

where

$$\tilde{\mathbf{w}}_n = c\mathbf{w}_n,
\tilde{w}_{n0} = cw_{n0} + d.$$
(5.121)