Deep learning and inverse problems **Exercise 3**:

Problem 1.1

$$\tilde{\chi}=$$
 $W_1\cdot \chi_1+$ $W_2\cdot \chi_2+$... + $W_p\cdot \chi_p$, with $W=\{W_1,...,W_p\}\subset IR^n$ if $\tilde{\chi}$ has K blocks of constants with lengths $\ell_1,\ell_2,...,\ell_K$ respectively,

if x has k blocks of constants with lengths
$$C_1, C_2, \dots, C_K$$
 respectively,

$$\Rightarrow x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot x_1 + \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \cdot x_2 + \dots + \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot x_k + w_{k+1} \cdot x_{k+1} + \dots + w_{p} \cdot x_p$$

$$\begin{array}{c} w_{k+1}, \dots, w_p \text{ can actually be any basis } \mathbb{R}^n \text{ multiplied by } x_{k+1}, \dots, x_p = 0.$$
hence, w is an overcomplete dictionary such that $x_5 = [x_1, x_2, \dots, x_p]^T$ is K -sparse.

hence, W is an overcomplete dictionary such that $x_5 = [x_1, x_2, \dots, x_p]'$ is K-sparse.

Problem 1.2

$$y = A \cdot \widetilde{x} = A \cdot W \cdot x_s \in \mathbb{R}^m$$

for lo minimization, a necessary and sufficient condition to recover every k-sparse vector xs from y = A.W. xs is that every set of 2K column of A.W is linearly independent. => m = 2k linear measurements are necessary (with any method).

Problem 1.3

- Choice of ai: Rows of a Gaussian random matrix (with i.i.d $N(0, \frac{1}{m})$).
- · Algorithm: (Candes, Romberg, Tao) if [Ks is K-sparse in ONB W, l A contains the rows of a Gaussian random matrix \Rightarrow the reconstruction of $\hat{x}_1(y) = \operatorname{argmin} \|x_s\|_1$ s.t. A. W. $x_s = y$ succeeds with high probability.
- Number of measurements: $m \gg C \cdot K \cdot (\log(n))$ with constant C.

Problem 2

From RIP:
$$x$$
 is s -sparse $A \cdot x = [a_1, a_2, ..., a_s] \cdot \begin{bmatrix} x_1 \\ x_s \end{bmatrix} \times non-zero$ elements

A is μ -incoherent \Rightarrow A has unit norm columns: $\|a_i\| = 1$ for $\forall a_i$ of A .

 $\|Ax\|_2^2 = x^T \cdot A^T \cdot A \times = x^T \cdot \begin{bmatrix} a_1 \cdot a_2 \\ a_2 \end{bmatrix} \cdot [a_1, a_2, ..., a_s] \cdot x = x^T \cdot \begin{bmatrix} 1 & a_1^T a_2 & ... & a_1^T a_3 \\ a_2^T & a_$

$$|\lambda_{max} - D_{i}| = \frac{1}{5\pi} |b_{i}|$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| \leq \frac{1}{5\pi} |b_{i}| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| = (S-1) \cdot \mu + 1$$

$$|\lambda_{max} - 1| = (S-1) \cdot \mu + 1$$

Limitation: It requires a small u (incoherent measurement matrix) to maintain the robustness of RIP.