# Teoria da Computação

Transformação de Autômatos em Expressões Regulares

José Osvano da Silva, PMP

#### Sumário

- > 3. EXPRESSOES REGULARES
  - Transformação de Autômatos em Expressões Regulares
  - Exemplos
  - Exercícios

## Introdução

- > Autômatos e Expressões Regulares são mecanismo de reconhecimentos que atuam sobre as linguagens regulares.
- > Possuem o mesmo poder de processamento e podem ser obtidos através de transformação autômatos ←→ ER ou ER ←→Autômatos.



## Transformação de Autômatos em Expressões Regulares

- > 1°) Construir o autômato correspondente a linguagem a ser reconhecida;
- > 2°) Inserir um novo estado inicial I, que aponta em ε (vazio) para o antigo estado inicial;
- > 3°) Inserir um novo estado final F, que será apontado por todos os estados finais em ε (vazio);
- > 4°) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.
- > A expressão sobre a transição de I para F é a ER equivalente.

- > Transformar o seguinte autômato em ER
- > 1°) Construir o autômato correspondente a linguagem a ser reconhecida



- > 2°) Inserir um novo estado inicial I, que aponta em ε (vazio) para o antigo estado inicial;
- > 3°) Inserir um novo estado final F, que será apontado por todos os estados finais em ε (vazio);



> 4°) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.



- > 4°) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.
- > Eliminando 1



> 4°) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.



- > 4º) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.
- > Eliminando 3



- > 4º) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.
- > Eliminando 4



## π Exemplo

- > 4°) Eliminar um a um, todos os estados intermediários, substituindo o estado eliminado por lógica de ER equivalente, até que restem apenas os estados I e F.
- > Eliminando 5





#### $\pi$

- > Resultado
- $\Rightarrow$  ER = ? . a . b . (a U b)\* . ? U ((?.b U ?.a.a) . (a U b)\* . b . b . (a U B)\* . ?) U (?.b U ?.a.a) . (a U b)\* . a . (a U b)\* . ?
- $\Rightarrow$  ER = [a . b . (a U b)\*] U [(b U a . a) . (a U b)\* . b . b . (a U b)\*] U [(b U a . a) . (a U b)\*]

- > Instruções:
  - Podem enviar no portal ou imagens mostrando.
- > Transformar os seguintes autômatos em expressões regulares.
- > a)



 $\pi$ 

- > Transformar os seguintes autômatos em expressões regulares.
- > b)



- > Transformar os seguintes autômatos em expressões regulares.
- > C)



- > Transformar os seguintes autômatos em expressões regulares.
- > d)



- > Transformar os seguintes autômatos em expressões regulares.
- > e)



## Exercício de Fixação - Gabarito

- > Instruções:
  - Podem enviar no portal ou imagens mostrando.
- > Transformar os seguintes autômatos em expressões regulares.
- > a)



## Dúvidas

