Technische Universität Berlin

Fakultät II – Institut für Mathematik

 $\bf Doz.:$ Gündel-vom Hofe, Mehl, Penn-Karras, Schneider Ass.: Altmann, Tölle

März/April – Klausur Analysis I für Ingenieure

WS 11/12

31. März 2012

Name: V	Vorname:				
MatrNr.:	Studiengang:				• • • • • • •
Neben einem handbeschriebenen A4-Blatt mit lassen. Die Lösungen sind in Reinschrift auf bitte ein neues Blatt verwenden. Auf jedes ben. Mit Bleistift oder Rotstift geschriebene Kigeben Sie im Zweifelsfalle auch Ihre Schmierze	A4 Blättern abz Blatt bitte Name lausuren können	ugeben und M nicht g	Für j atrikelr ewertet	ede An nummer werder	ufgabe : schrei- n. Bitte
Geben Sie im Rechenteil immer den vollstär wenn nichts anderes gesagt ist, immer eine k Insbesondere soll immer klar werden, v wurden! Ohne Begründung bzw. Rechenweg g	turze, aber voll welche Sätze oo	ständi der Th	ge Beg	gründu	ing an.
Die Bearbeitungszeit beträgt 90 Minuten.					
Die Gesamtklausur ist mit 30 Punkten bestande mindestens 10 Punkte erreicht werden müssen.		ı der be	iden Te	ile der I	
Korrektur					
		1	2	3	Σ
		4	5	6	Σ

Rechenteil

1. Aufgabe 10 Punkte

Sei $f:]-1, \infty[\to \mathbb{R}$ gegeben durch $f(x) = \ln(2x+2)$.

- (a) Berechnen Sie das Taylorpolynom T_3 vom Grad 3 für f an der Stelle $x_0 = 0$.
 - Berechnung der Ableitungen bis Ordnung 3

$$f'(x) = \frac{1}{x+1}$$
, $f''(x) = \frac{-1}{(x+1)^2}$, $f'''(x) = \frac{2}{(x+1)^3}$

- Taylorpolynom

$$T_3(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \frac{1}{6}f'''(0)x^3 = \ln(2) + x - \frac{1}{2}x^2 + \frac{1}{3}x^3.$$

- (b) Stellen Sie das dazugehörige Restglied R_3 auf.
 - Berechnung der 4. Ableitung

$$f^{(4)}(x) = \frac{-6}{(x+1)^4}$$

- $R_3(x) = \frac{1}{24} f^{(4)}(\xi) x^4$ mit einem ...
- ... $\xi \in [0, x]$ oder $\xi \in [x, 0]$.
- (c) Für welche x > 0 gilt $|T_3(x) f(x)| \le \frac{1}{100}$?
 - $R_3 = f T_3$
 - Also $|T_3(x) f(x)| \le \frac{1}{100} \iff \left| -\frac{1}{4} \frac{x^4}{(\xi+1)^4} \right| \le \frac{1}{100} \iff \frac{x^4}{(\xi+1)^4} \le \frac{1}{25}.$
 - ξ liegt zwischen 0 und $x \ge 0$. Daher gilt $\frac{x^4}{(\xi+1)^4} \le \frac{x^4}{(0+1)^4} = x^4$.
 - $|T_3(x) f(x)| \le \frac{1}{100}$ gilt also zumindest für alle $x \le \sqrt[4]{1/25} = \sqrt{1/5}$.
- (a)-(b) zusammen 6 Punkte
- (c) 4 Punkte

2. Aufgabe 11 Punkte

(a) Berechnen Sie $\int_0^{\pi^2} \cos(\sqrt{x}) dx$.

$$\int_0^{\pi^2} \cos(\sqrt{x}) dx \text{ Substitution } y = \sqrt{x}, dx = 2y dy$$

$$= \int_0^{\pi} \cos(y) 2y dy$$

$$= 2y \sin(y) \Big|_0^{\pi} - \int_0^{\pi} 2 \sin(y) dy$$

$$= 0 - 4$$

- (b) Berechnen Sie $\int \frac{2x-1}{x^2-x} dx$.
 - Ansatz Partialbruchzerlegung $\frac{2x-1}{x^2-x} = \frac{A}{x} + \frac{B}{x-1}$
 - Koeffizientenvergleich ergibt A = B = 1.

$$\int \frac{2x-1}{x^2-x} dx$$

$$= \int \frac{1}{x} dx + \int \frac{1}{x-1} dx$$

$$= \ln|x| + \ln|x-1| + c$$

$$= \ln|x^2 - x| + c$$

(geht auch ohne Partialbruchzerlegung direkt, wenn man die Form $\frac{f'(x)}{f(x)}$ erkennt)

(c) Berechnen Sie $\int_1^\infty \frac{1}{2x^3} dx$.

$$\int_{1}^{\infty} \frac{1}{2x^{3}} dx \text{ uneigentliches Integral}$$

$$= \lim_{b \to \infty} \int_{1}^{b} \frac{1}{2x^{3}} dx$$

$$= \lim_{b \to \infty} \left(-\frac{1}{4}x^{-2} \Big|_{1}^{b} \right)$$

$$= \lim_{b \to \infty} \left(-\frac{1}{4}b^{-2} + \frac{1}{4} \right)$$

$$= 1/4$$

- (a) 4 Punkte
- (b) 4 Punkte
- (c) 3 Punkte

3. Aufgabe

10 Punkte

Sei $g: \mathbb{R} \to \mathbb{R}$ die 2-periodische Funktion mit

$$g(x) = 1 - |x - 1|, x \in [0, 2[.$$

(a) Skizzieren Sie die Funktion g im Intervall [-1,3].

- (b) Ist die Funktion g gerade, ungerade oder weder noch? Begründen Sie Ihre Antwort.
 - Funktion ist gerade
 - g lässt sich auch beschreiben durch $g(x) = |x|, x \in [-1, 1[$. Betragsfunktion ist gerade.
- (c) Berechnen Sie die Fourierkoeffizienten von g.
 - Ansatz $\Phi(x) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(k\omega x) + b_k \sin(k\omega x)$
 - Erkennen, dass T=2, Berechnung $\omega=\frac{2\pi}{T}=\pi$
 - Daggerade ist, gilt $b_k=0$ für alle k
 - Berechnung a_0 :

$$a_0 = \frac{2}{T} \int_0^T g(x) \ dx = \int_0^2 g(x) \ dx = 2 \int_0^1 1 - |x - 1| \ dx = 2 \int_0^1 x \ dx = 1.$$

Berechnung $a_k, k \ge 1$

$$\begin{split} a_k &= \frac{2}{T} \int_0^T g(x) \cos(k\omega x) \; dx \\ &= \int_0^2 g(x) \cos(k\pi x) \; dx \\ &= 2 \int_0^1 x \cos(k\pi x) \; dx \\ &= 2 \frac{x}{k\pi} \sin(k\pi x) \Big|_0^1 - 2 \int_0^1 \frac{1}{k\pi} \sin(k\pi x) \; dx \; \text{(partielle Int)} \\ &= 0 + 2 \frac{1}{k^2 \pi^2} \Big(\cos(k\pi) - 1 \Big) \\ &= \begin{cases} -\frac{4}{k^2 \pi^2}, & \text{falls k ungerade} \\ 0, & \text{falls k gerade.} \end{cases} \end{split}$$

- (a) 1 Punkte
- (b) 2 Punkte
- (c) 7 Punkte

Verständnisteil

4. Aufgabe 9 Punkte

- (a) Für welche **reellen** Zahlen x gilt $|x^2 1| \ge 1$?
 - Fall 1: $x^2 1 \ge 0$. In dem Fall ist die Gleichung äquivalent zu $x^2 \ge 2$. Somit ergibt sich als Lösungsmenge $\mathbb{L}_1 =]-\infty, -\sqrt{2}] \cup [\sqrt{2}, \infty[$.
 - Fall 2: $x^2 1 < 0$. In dem Fall ist die Gleichung äquivalent zu $-x^2 + 1 \ge 1$, also $x^2 \le 0$. $\mathbb{L}_2 = \{0\}$.

Gesamtlösungsmenge $\mathbb{L} =]-\infty, -\sqrt{2}] \cup \{0\} \cup [\sqrt{2}, \infty[$

(b) Berechnen Sie alle **reellen** Lösungen x der Gleichung: $\cosh(x) + \sinh(x) = e^2$.

$$\cosh(x) + \sinh(x) = e^{2}$$

$$\iff \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2} = e^{2}$$

$$\iff e^{x} = e^{2}$$

$$\iff x = 2.$$

- (c) Geben Sie die **komplexe** Zahl $z=\sqrt{2}e^{i\pi/4}-2$ in kartesischen und Polarkoordinaten an.
 - Umwandlung in kartesische Koord: $\sqrt{2}e^{i\pi/4}=\sqrt{2}(\cos\pi/4+i\sin\pi/4)=1+i.$ Ergebnis z=1+i-2=-1+i
 - Umwandlung in Polarkoordinaten: $z=re^{i\varphi}$ mit Betrag $r=\sqrt{(-1)^2+1^2}=\sqrt{2}$ Winkel $\varphi=\pi+\arctan{(-1)}$
- (d) Berechnen Sie alle **komplexen** Zahlen z, für die gilt: Im(2 + z + 4i) = 4 i + z.
 - Ansatz z = a + bi, $a, b \in \mathbb{R}$

$$\operatorname{Im}(2+a+bi+4i) = 4-i+a+bi$$

$$\iff 4+b = 4+a+i(b-1)$$

- Aufteilung Real- und Imaginärteil ergibt die beiden Gleichungen 4+b=4+a und 0=b-1. Somit ergibt sich a=b=1, also $\mathbb{L}=\{1+i\}$.
- (a) 2 Punkte
- (b) 2 Punkte
- (c) 3 Punkte
- (d) 2 Punkte

(a) Berechnen Sie folgende Grenzwerte:

(i)
$$\lim_{x \to \infty} \frac{x^2}{2^x}$$
, (ii) $\lim_{n \to \infty} \frac{a^2n^2 + e^{-n/2}}{an^2 + bn + 2}$, $a, b > 0$, (iii) $\lim_{n \to \infty} \frac{1 + (-i)^n}{3n}$.

(i) Ableitung $(2^x)' = (e^{x \ln(2)})' = \ln(2)e^{x \ln(2)} = \ln(2)2^x$.

$$\lim_{x \to \infty} \frac{x^2}{2^x} = \lim_{x \to \infty} \frac{2x}{\ln(2)2^x} = \lim_{x \to \infty} \frac{2}{\ln^2(2)2^x} = 0.$$

(ii) - Umformung

$$\lim_{n \to \infty} \frac{a^2 n^2 + e^{-n/2}}{an^2 + bn + 2} = \lim_{n \to \infty} \frac{a^2 + e^{-n/2}/n^2}{a + b/n + 2/n^2}$$

- Bemerkung zu Einzelgrenzwerten, u.a. $\lim_{n \to \infty} \frac{e^{-n/2}}{n^2} = 0$
- Ergebnis = a
- (iii) Zähler ist beschränkt: $|1 + (-i)^n| \le 2$.
 - Nenner wächst unbeschränkt und daher Ergebnis = 0.
- (b) Beweisen oder widerlegen Sie mit einem Gegenbeispiel folgende Aussage: Der Quotient zweier Nullfolgen ist wieder eine Nullfolge.
 - Falsch.
 - Gegenbeispiel: $a_n = 1/n, b_n = 1/n^2$. Dann gilt

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}n=\infty\neq0.$$

- (a) 4+3+2 Punkte
- (b) 2 Punkte

6. Aufgabe 11 Punkte

- (a) Beweisen Sie, dass für alle natürlichen Zahlen $n \ge 1$ die Ungleichung $n! \le n^n$ gilt.
 - Induktionsanfang: (n = 1) $1 \le 1^1$ stimmt.
 - Induktionsvoraussetzung: Es gilt $n! \leq n^n$ für ein beliebiges aber festes $n \geq 1.$
 - Induktionsbehauptung: $(n+1)! \le (n+1)^{(n+1)}$
 - Induktions schritt: $(n+1)!=(n+1)\cdot n! \leq (n+1)\cdot n^n \leq (n+1)\cdot (n+1)^n=(n+1)^{(n+1)}.$
- (b) Gesucht ist ein reelles Polynom p vom Grad 4 mit den Eigenschaften:
 - p hat Nullstellen bei $x_0 = i$ und $x_1 = 2$,
 - p besitzt eine doppelte Nullstelle.

Existiert solch ein Polynom? Geben Sie ein Beispiel an oder begründen Sie warum es nicht existieren kann.

- p ist reell also ist neben i auch -i eine Nullstelle. i,-i können keine doppelten Nullstellen sein, da es sonst 5 Nullstellen gibt. Somit ist 2 eine doppelte Nullstelle.
- Beispiel $p(x) = (x-i)(x+i)(x-2)^2 = (x^2+1)(x-2)^2 = x^4 4x^3 + 5x^2 4x + 4$.

(auch ok: Angabe eines Beispiels MIT Nachweis, dass alle Eigenschaften erfüellt)

- (a) 6 Punkte
- (b) 5 Punkte