# Bayesian Inference and the MNIST Dataset

Contributors: Jason Spaw

# Objectives:

- Discuss technology
- Show model performance to stakeholders
- Model Selection
- Discuss use cases

# **Technologies**

Optical Character Recognition (OCR)

- Models: Naive Bayes, Gaussian Naive Bayes, Gaussian Bayes, and

K-Nearest Neighbors (KNN) Classifiers





## **Model Performance**



## **Model Selection**

- Best fit: Gaussian Bayes
  - High Accuracy (95.4%)
  - Low Predict Time (6.4 sec)

## **Use Cases**

#### Document Scraper

 Scrape information from documents during scanning process and pipeline to digital forms and documents

#### Web Scraper

- Scrape non text web information, including images containing text, such as memes
- Sentiment Analysis (Financial, Political, Product Reviews, etc.)

### - Digital Notepad Application

- Automatically, translate handwritten text to digital text
- Faster note taking for employees who lack typing skills in the field

## Conclusion

- Goal: Optical Character Recognition (OCR)
- Models: Naive Bayes, Gaussian Naive Bayes, Gaussian Bayes, and K-Nearest Neighbors (KNN) Classifiers
- Best fit: Gaussian Bayes
  - High Accuracy (95.4%)
  - Low Predict Time (6.4 sec)
- Use Cases:
  - Document Scraper
  - Web Scraper
  - Digital Notepad Application