Uvod u obradu prirodnog jezika

12.1. Označavanje vrste riječi (Part-of-speech tagging)

Branko Žitko

prevedeno od: Dan Jurafsky, Chris Manning

Vrste riječi

- Vjerojatno od Aristotela (384-322 pne) postojala je ideja o vrstama riječi
 - tj. leksičkim kategorijama, POS
- Dioysius Thrax (100 pne) kaže da ima 8 vrsta riječi
 - Thrax: imenica, glagol, član, prilog, prijedlog, veznik, čestica, zamjenica
 - Školska gramatika: imenica, glagol, pridjev, prilog, prijedlog, veznik, zamjenica, usklik, broj, čestica

Vrste riječi

Označavanje vrste riječi (POS označavanje)

- Riječi često mogu imati više vrsta: dan
 - Danas je dobar <u>dan</u>. = imenica
 - On je bogom <u>dan</u> suprug. = pridjev
 - Poklon je <u>dan</u> njemu. = glagol

Problem označavanja vrste riječi je određivanje POS oznake za određen primjerak riječi

POS označavanje

Ulaz: Igra dobro s drugima

Višesmislenost: N/V N/A/R S A

Izlaz: Igra/V dobro/R s/S drugima/A

Korištenje:

- Text-u-govor (kako se izgovara "luk")
- Možemo napraviti regularne izraze kao A* N+ kako bi dobili fraze
- Kao ulaz za ubrzavanje potpunog parsiranja
- Ako se zna oznaka, možemo se vratiti na nju kasnije radi nekih drugih zadataka

Performanse POS označavanja

- Koliko je dobro označenih riječi (točnost):
 - oko 97%
 - ali osnova je već oko 90%
 - osnovno POS označavanje je označavanje na "najjednostavniji" mogući način
 - označi riječ s njenom najfrekventnijom oznakom
 - označi nepoznate riječi kao imenice
 - djelomično lako jer
 - mnoge riječi nisu višesmislene
- I ljudi ponekad imaju problema s određivanjem vrste riječi.

Koliko je teško POS označavanje

- Oko 11% riječi u Brown korpusu su višeznačne obzirom na POS označavanje
- Ali su većina njih učestale riječi: npr. that
 - I know that he is honest = IN
 - Yes, that play was nice = DT
 - You can't go that far = RB
- 40% oblika riječi su višeznačne

Uvod u obradu prirodnog jezika

12.2. Modeli sekvenci kod POS označavanja (Sequence models in POS tagging)

Branko Žitko

prevedeno od: Dan Jurafsky, Chris Manning

Izvori informacija

- Koji su glavni izvori informacija za POS označavanje?
 - Znanje o susjednim riječima

```
Bill saw that man yesterday
NNP NN DT NN NN
VB VB(D) IN VB NN
```

- Znanje o vjerojatnosti riječi
 - man se rijetko koristi kao glagol...
- Znanje o vjerojatnosti riječi se pokazuje najkorisnijim, ali znanje o susjednim riječima također pomaže

Više i bolje osobine -> Tager temeljen na osobinama

 Mogu biti iznenađujuće dobri ako se gleda sama riječ:

– riječ ili: ili → C

riječ s malim slovima nad: nad → S

prefiksi
 reprodukcija: re- → Nc

– sufiksi nositi: -iti → V

riječ s prvim velikim slovom Meridian: CAP → Np

– oblik riječi
 35-ta: d-x → A

- Onda napraviti maxent (ili kakav god) model za predviđanje oznake
 - Maxent P(t|w):93.7% ukupno / 82.6% za nepoznate

Točnosti POS označavanja

- Približne točnosti
 - Najveća frekvencija
 - Trigram HMM
 - Maxent P(t|w)
 - Tnt(HMM++)
 - MEMM
 - Dvosmjerne ovisnosti
 - Gornja granica:

~90% / ~50%

~95% / ~55%

~93.7% / ~82.6%

~96.2% / ~86.0%

~96.9% / ~86.9%

~97.2% / ~90.0%

~98% (ljudski)

Kako poboljšati nadzirane rezultate?

Izgraditi bolje osobine!

```
S
V P N A
Vrti se oko sunca
```

Ovo smo mogli popraviti izgradnjom osobine koja gleda sljedeću riječ

```
A
NP N V A
Dobri ljudi ostaju dobrim
```

 Ovo smo mogli popraviti izgradnjom osobine koja vezuje riječi s prvim velikim slovom i riječi s malim slovima

Označavanje bez informacija o sekvenci

Model	Osobine	Tokeni	Nepoznato	Rečenica
Osnovno	56805	93.69%	82.61%	26.74%
3 riječi	239767	96.57%	86.78%	48.27%

Korištenje samo riječi kod izravnog klasifikatora radi dobro kao osnovni (HMM ili diskriminativni) model sequence!!!

Rezime POS označavanja

- Za POS označavanje, promjena iz generativnog u diskriminativni model ne daje značajna poboljšanja
- Jedna od dobiti su preklapajuće osobine opservacije.
- MEMM dozvoljava integraciju bogatih osobina opservacija, ali može patiti zbog nekorištenja sljedećih opservacija;
 Ovaj efekt se može ublažiti dodavanjem ovisnosti o sljedećim riječima
- Ova dodatna snaga (MEMM, CRF, Perceptron) modela pokazuje poboljšanja u točnosti
- Što je **veća točnost** diskriminativnog modela to ga potrebno **duže trenirati**.