Contents

Mo	onitoring HPE GreenLake Servers running GPU using Grafana and Prometheus	2
	Overview	2
	Kubernetes and Helm Setup	2

rev1, 2025-09 1/3

Monitoring HPE GreenLake Servers running GPU using Grafana and Prometheus

Overview

HPE GreenLake provides a cloud-native platform for managing and monitoring infrastructure with built-in tools and dashboards. While GreenLake offers comprehensive native monitoring capabilities, organizations can also leverage the GreenLake API to integrate with popular open-source tools like Grafana and Prometheus. This approach enables teams to consolidate monitoring data across hybrid environments, utilize existing observability workflows, and create customized dashboards tailored to specific operational needs.

Kubernetes and Helm Setup

Environment Verification

Before proceeding with the monitoring setup, verify that your Kubernetes cluster has the necessary components installed. The following shows a working environment with the GPU Operator and Prometheus monitoring stack deployed:

Services running in the gpu-operator namespace: - gpu-operator: Core service for GPU management (ClusterIP: 10.233.44.80:8080) - nvidia-dcgm-exporter: DCGM metrics exporter for Prometheus integration (ClusterIP: 10.233.15.59:9400)

Helm releases: - gpu-operator-1753140595 (v25.3.2) in the gpu-operator namespace - kube-prometheus-stack (76.3.0) in the monitoring namespace

You can verify your setup using the following commands:

```
wsl=> k get svc -n gpu-operator
gpu-operator Cl
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE gpu-operator ClusterIP 10.233.44.80 <none> 8080/TCP 78d rvidia-dcgm-exporter ClusterIP 10.233.15.59 <none> 9400/TCP 78d
wsl=> helm list -A
                         NAMESPACE REVISION UPDATED
NAME
                                                                                                APP
                                        STATUS CHART
    VERSION
    -operator-1753140595 gpu-operator 4

MST deployed gpu-operator-v25.3.2
e-prometheus-stack monitoring 5
gpu-operator-1753140595 gpu-operator
                                                              2025-08-14 19:20:42.329819669 -0700
kube-prometheus-stack monitoring 5
                                                               2025-08-15 13:06:31.169338089 -0700
                         kube-prometheus-stack-76.3.0 v0.84.1
   MST deployed
hjma@HSTHJMA02:~
```

rev1, 2025-09 2/3

External Access Configuration

The cluster has been configured with NodePort services to enable external access to Grafana and Prometheus:

GPU utilization simulation

To simulate GPU load and verify monitoring functionality, we deployed a test pod running the gpuburn utility. This tool performs intensive GPU computations, allowing us to observe GPU utilization metrics in our monitoring dashboards.

The following YAML manifest creates a pod that clones the gpu-burn repository, compiles it, and runs continuous GPU stress testing:

Key configuration details: - **Base image**: nvidia/cuda:12.2.0-devel-ubuntu22.04 provides the CUDA development environment - **GPU allocation**: nvidia.com/gpu: 1 requests a single GPU from the cluster - **Runtime**: gpu_burn 999999 runs for approximately 277 hours (effectively continuous) - **Restart policy**: Never ensures the pod completes its run without automatic restarts

Deploy the pod using:

```
kubectl apply -f gpu-burn.yaml
```

rev1, 2025-09 3/3