AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently Amended) An azetidine derivative of the general formula (II) or (III)

$$R^1$$
 R^2
 R^3
 (III)
 R^1
 R^2
 R^3
 (III)

where

 R^1 , R^2 and R^3 independently of one another are H, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl,

Application No. 10/581,624 AMENDMENT UNDER 37 C.F.R. 1.312 AND REPLY TO NOTICE OF ALLOWANCE

 C_6 - C_{10} aryl or alkylaryl with C_1 - C_4 alkyl and C_6 - C_{10} aryl groups R^4 = H, or C_1 - C_6 alkyl (idene)

Z = C_2 - C_{25} alkylidene, C_5 - C_{25} cycloalkylidene, C_6 - C_{24} arylene or

$$R^{7}$$
 C CH_{2} R^{7} R^{7} R^{7} R^{7} R^{6}

 R^5 and R^6 = H, CH₂OH, C₁-C₄ alkyl, C₆H₅ or

$$---(CH_2)_z - \left(-C - CH_2 - CH_2 - CH_3 -$$

$$R^7 = \frac{-\left(-O - CH_2 - CH - CH_3 - CH_3 - CH_3\right)_X}{R^8}$$

 $R^8 = H$, CH_3 , C_2H_5 , or C_6H_5

z = 0 or 1

x = 0 to 100.

- 2. (Canceled)
- 3. (Canceled)

Application No. 10/581,624 AMENDMENT UNDER 37 C.F.R. 1.312 AND REPLY TO NOTICE OF ALLOWANCE

4. (Currently Amended) A method for producing an azetidine derivative of claim 1, wherein a polyamine of the formula NH_2 -Z'- NH_2 is reacted with an α , β -unsaturated aldehyde of the formula R^1R^2 -C= CR^3 - CN^4 in the temperature range from 20 to 150°C, where Z' is

 C_2 - C_{25} alkylidene, C_5 - C_{25} cycloalkylidene, C_6 - C_{24} arylene, and or

 R^5 and $R^6 = H$, CH_2OH , C_1 - C_4 alkyl, C_6 , H_5 , or

$$\frac{---(CH_2)_z - \left(-O - \frac{H_2}{C} - \frac{CH}{X}NH_2}{R^8}$$

$$R^7 = - - - CH_2 - - CH_3 -$$

 $R^8 = H_1$, CH_3 , C_2H_5 , or C_6H_5

z = 0 or 1

x = 0 to 100

 R^1 , R^2 and R^3 independently of one another are H, C_1 - C_{20} alkyl, C_3 - C_8 cycloalkyl, C_6 - C_{10} aryl or alkylaryl with C_1 - C_4 alkyl and C_6 - C_{10} aryl groups; R^4 = H, or C_1 - C_6 alkyl (idene).

Application No. 10/581,624 AMENDMENT UNDER 37 C.F.R. 1.312 AND REPLY TO NOTICE OF ALLOWANCE

5. (Previously Presented) The method of claim 4, wherein the reaction is carried out in the presence of an organic solvent.

6-11. (Canceled)