

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования

«Астраханский государственный технический университет»

Система менеджмента качества в области образования, воспитания, науки и инноваций сертифицирована DQS по международному стандарту ISO 9001:2015

Институт информационных технологий и коммуникаций

Кафедра «Информационная безопасность»

Теория информации и кодирование

Методические указания

по выполнению лабораторных работ

для обучающихся по направлению *09.03.04 Программная инженерия*

Автор: к.т.н., доцент кафедры «Информационная безопасность» СибикинаИ.В.
Рецензент: к.т.н., доцент кафедры «Информационная безопасность» КосмачеваИ.М.
Методические указания по выполнению лабораторных работ по дисциплине «Теория информации и кодирование» утверждены на заседании кафедры «Информационная безопасность» «31» 08 2021 г., протокол №. 7

© Астраханский государственный технический университет

Методические рекомендации по выполнению лабораторных работ по дисциплине «Теория информации и кодирование» предназначены для обучающихся по направлению «09.03.04 Программная инженерия.

Цель методических указаний: оказание помощи обучающимся в выполнении лабораторных работ по дисциплине «Теория информации и кодирование».

Настоящие методические указания содержат лабораторные работы, которые позволят обучающимся самостоятельно изучить криптографические протоколы, и направлены на формирование следующих компетенций:

ОПК-7: Способен применять в лабораторной деятельности основные концепции, принципы, теории и факты, связанные с информатикой;

В результате выполнения лабораторных работ по дисциплины «*Теория* информации и кодирование» обучающиеся должны:

- Знать теоретические и математические основы теории информации и кодирования; различные коды и их классификацию;
- Уметь находить все информационные характеристика каналов связи;
 строить оптимальные коды методами Шеннона-Фано и Хаффмена, строить корректирующие коды.
- Владеть методами математического описания каналов связи;
- методами количественного анализа процессов обработки, поиска и передачи информации
- строить оптимальные коды методами Шеннона-Фано и Хаффмена, корректирующие коды Хемминга, и циклические коды

1. Оформление отчета по лабораторным работам

Отчет по лабораторной работе оформляется на листах белой бумаги формата A4 (210×297 мм) на одной стороне листа. Интервал межстрочный – полуторный. Шрифт: цвет – черный, гарнитура – «Times New Roman», кегль (размер) – 14. Абзац: формат – выравнивание «по ширине», отступ красной строки одинаковый по всему тексту. Размеры полей страницы: правое – 30 мм, верхнее, и нижнее, левое – 20 мм. Титульный лист отчета оформляется по образцу, представленном в Приложении1. Все листы отчета должны быть пронумерованы и скреплены.

Отчет должен содержать:

- ✓ название работы;
- ✓ цель работы;
- ✓ задание;
- ✓ описание по пунктам выполненной работы с приведением необходимых пояснений и скриншотов экрана компьютера.

2. Критерии оценивания и порядок отчетности лабораторных работ

Лабораторная работа оценивается «отлично» в том случае, если обучающийся:

- понимает цель действия;
- всесторонне и в полном объеме использует информацию для постановки и выполнения задач;
 - планирует и выполняет последовательно действия и операции;
 - интерпретирует данные исследований;
 - формулирует выводы и предложения.

Лабораторная работа оценивается «хорошо» в том случае, если обучающийся:

- понимает цель действия;
- использует в полном объеме информацию для выполнения поставленных задач;
 - выполняет действия и операции;
 - интерпретирует данные исследований;

- формулирует выводы;
- допускает малозначительные ошибки.

Лабораторная работа оценивается «удовлетворительно» в том случае, если обучающийся:

- понимает цель действия;
- использует базовую информацию для выполнения поставленных задач;
- выполняет базовые действия и операции;
- интерпретирует основные данные исследований;
- формулирует основные выводы.

Лабораторная работа оценивается «неудовлетворительно» в том случае, если обучающийся:

- не понимает цель действия;
- демонстрирует не умение использовать информацию для выполнения поставленных задач;
 - не выполняет действия и операции;
 - не интерпретирует данные исследований;
 - не формулирует выводы;
 - допускает значительные ошибки.

Зачет по каждой лабораторной работе производится преподавателем при наличии правильно оформленного отчета, в результате индивидуального собеседования со студентами по выявлению у них знаний и лабораторных навыков по исследуемому объекту.

Прием зачета по лабораторной работе проводится во время текущего занятия или в любой период времени последующих занятий.

3. Тематика и задания лабораторных работ

Лабораторная работа №1

«Энтропия. Свойства энтропии»

Цель работы: изучить понятие энтропия, свойства энтропии.

Задачи: Событие А в каждом из п повторных независимых испытаний происходит с вероятностью р. Найти энтропию числа появлений события А. Составить соответствующую вероятностную схему. Выяснить характер изменения энтропии в зависимости от изменения р на промежутке [0;1] при фиксированном значении п, построив график соответствующей функции H(p). Определить её наименьшее и наибольшее значение.(Значения параметра п задаются преподавателем.)

Событие А в каждом из независимых испытаний происходит с вероятностью р. Найти энтропию числа испытаний до первого появления события А. Составить соответствующую вероятностную схему. Выяснить характер изменения энтропии в зависимости от изменения р на промежутке (0;1], построив график соответствующей функции H(p). Определить её наименьшее и наибольшее значение.

В партии из n изделий имеется k ($k \le n$) стандартных. Наудачу отобраны m изделий ($m \le n$). Найти энтропию числа стандартных изделий среди отобранных. Выяснить характер изменения энтропии в зависимости от изменения k на промежутке [0; n] при фиксированных значениях n и m, построив график соответствующей функции H(k). Для этого при каждом значении k составить необходимую вероятностную схему. Определить наименьшее и наибольшее значение H(k). (Значения параметров n и m задаются преподавателем.)

Порядок выполнения лабораторной работы

Лабораторные работы выполняются на персональной ЭВМ с использованием языка программирования высокого уровня и заключаются в составлении программ, решающих определённый класс задач. Каждая программа должна обладать достаточным интерфейсом для удобства работы пользователя. В частности, это означает, что после запуска программы на каждом шаге работы пользователю должны быть даны чёткие указания или рекомендации по возможным вариантам его действий, а также необходимые комментарии промежуточных и окончательных результатов. При этом должна быть предусмотрена защита от неверного ввода с указанием на допущенную ошибку и приглашением повторить действие.

Типовая структура отчета по лабораторной работе

- 1. Тема лабораторной работы.
- 2. Цель и задачи лабораторной работы.
- 3. Ход лабораторной работы.
- 4. Вывод по лабораторной работе.

Знать ответы на устные вопросы

- 1. Количество информации в сообщении; основные свойства.
- 2. Количество информации в сообщении относительно другого сообщения; основные свойства.
- 3. Энтропия, условная энтропия; основные свойства.
- 4. Взаимная информация вероятностных схем; основные свойства.

Лабораторная работа № 2

«Обработка алфавита введенного сообщения»

Цель работы: изучить все информационные характеристики.

Задача: Составить программу, позволяющую вводить сообщение произвольной длины из файла и с клавиатуры с последующей статистической обработкой введённого текста. Статистическая обработка текста включает в себя: выделение букв(включая пробелы и знаки препинания) алфавита данного сообщения; подсчёт и выведение на экран частоты и относительной частоты появления этих букв и указанных их сочетаний в порядке убывания вероятности. Определить энтропию, приходящуюся в среднем на одну букву и на одно двухбуквенное сочетание, количество информации, которое несёт в себе сообщение

о получении первой буквы относительно второй. Найти длину кода при равномерном кодировании и избыточность.

.

Порядок выполнения лабораторной работы

Практические работы выполняются на персональной ЭВМ с использованием языка программирования высокого уровня и заключаются в составлении программ, решающих определённый класс задач. Каждая программа должна обладать достаточным интерфейсом для удобства работы пользователя. В частности, это означает, что после запуска программы на каждом шаге работы пользователю должны быть даны чёткие указания или рекомендации по возможным вариантам его действий, а также необходимые комментарии промежуточных и окончательных результатов. При этом должна быть предусмотрена защита от неверного ввода с указанием на допущенную ошибку и приглашением повторить действие.

Типовая структура отчета по лабораторной работе

- 1. Тема лабораторной работы.
- 2. Цель и задачи лабораторной работы.
- 3. Ход лабораторной работы.
- 4. Вывод по лабораторной работе.

Знать ответы на устные вопросы:

- 1. Вероятностная схема; произведение вероятностных схем.
- 2. Количество информации в сообщении; основные свойства.
- 3. Количество информации в сообщении относительно другого сообщения; основные свойства.
- 4. Энтропия, условная энтропия; основные свойства.
- 5. Взаимная информация вероятностных схем; основные свойства.

«Оптимальное кодирование»

Цель работы: изучить алгоритм оптимального кодирования Шеннона-Фано, Хаффмена.

Порядок выполнения лабораторной работы

Составить программу, позволяющую вводить сообщение произвольной длины из файла и с клавиатуры с последующей статистической обработкой введённого текста. Определить энтропию, приходящуюся в среднем на одну букву, длину кода при равномерном кодировании и избыточность. Построить схемы алфавитного кодирования методами Фано и Хаффмана. Найти среднюю длину элементарного кода, эффективность сжатия. Предусмотреть возможность кодирования короткого сообщения в данном алфавите, введённого с клавиатуры, по каждой из схем.

При выводе на экран в соответствующих таблицах должны присутствовать столбцы: номер по порядку; символ; относительная частота; элементарный код.

Типовая структура отчета по лабораторной работе

- 1. Тема лабораторной работы.
- 2. Цель и задачи лабораторной работы.
- 3. Ход лабораторной работы.
- 4. Вывод по лабораторной работе.

Знать ответы на устные вопросы

- 1. Кодирование. Алфавитное кодирование. Основные понятия.
- 2. Префиксные схемы алфавитного кодирования.
- 3. Неравенство Крафта-Макмиллана.
- 4. Стохастические источники сообщений. Основные понятия. Теоремы Шеннона.
- 5. Экономное кодирование. Определение, основные свойства.
- 6. Методы кодирования Фано и Хаффмана.

Лабораторная работа № 5

«Код Хемминга»

Цель работы: изучить алгоритм построения кода Хемминга

Методом Хемминга закодировать указанные информационные комбинации, построив порождающую проверочную матрицы. Внести ошибку в один из разрядов кодового вектора; найти синдром; найти и исправить ошибку.

Вари-	Информационные комбинации		
ант			
1	01111	101	10000001
2	111	1111000	11110
3	0011	10110	0000100
4	1111	0000110	10101
5	010111	11100011	001
6	011100	1010	1010101010
7	1110	010	010001000
8	1001	110	111001010
9	011	111111110	0100011
10	001	10001010	1111
11	111100001	1010	101
12	11000000	111	00001
13	110	001001	11110111
14	10011	011	011111111
15	001001001	11111	100

Типовая структура отчета по лабораторной работе

- 1. Тема лабораторной работы.
- 2. Цель и задачи лабораторной работы.
- 3. Ход лабораторной работы.
- 4. Вывод по лабораторной работе

Знать ответы на устные вопросы

- 1. Линейное кодирование. Основные понятия.
- 2. Порождающая и проверочная матрицы; синдром.
- 3. Помехоустойчивое кодирование. Основные понятия. Расстояние Хемминга; кодовое расстояние.
- 4. Метод кодирования Хемминга.

Лабораторнаяработа № 5

«Циклические коды»

Цель работы: изучить алгоритм построения циклических кодов

Закодировать указанные информационные комбинации, построив порождающий и проверочный многочлен. Внести ошибку в один из разрядов кодового многочлена; проверить полученное сообщение; найти и исправить ошибку.

Вариант	Информационные комбинации		
1	01111	101	10000001
2	111	1111000	11110
3	0011	10110	0000100
4	1111	0000110	10101
5	010111	11100011	001
6	011100	1010	1010101010
7	1110	010	010001000
8	1001	110	111001010
9	011	111111110	0100011
Вариант	Информационные комбинации		
10	001	10001010	1111
11	111100001	1010	101
12	11000000	111	00001
13	110	001001	11110111
14	10011	011	011111111
15	001001001	11111	100

Типовая структура отчета по лабораторной работе

- 1. Тема лабораторной работы.
- 2. Цель и задачи лабораторной работы.
- 3. Ход лабораторной работы.
- 4. Вывод по лабораторной работе.

Знать ответы на вопросы

- 1. Линейное кодирование. Основные понятия.
- 2. Порождающая и проверочная матрицы; синдром.

- 3. Помехоустойчивое кодирование. Основные понятия. Расстояние Хемминга; кодовое расстояние.
- 4. Коды, порождённые многочленами. Основные понятия.
- 5. Циклические коды. Основные понятия и свойства.

Лабораторная работа № 6 «Коды БЧХ»

>>

Цель работы: изучить алгоритм построения кодов БЧХ.

Лабораторная часть

Закодировать указанные информационные комбинации, построив порождающий многочлен для кода, исправляющего s ошибок при минимальной длине n кодового слова. Внести m ошибок ($m \le s$) в кодовую комбинацию; проверить полученное сообщение; найти и исправить ошибки.

Ba-	Информационные комбинации		
ри-			
ант			
1	01111	1111101	1000001
	s = 3	s = 15	s=2
2	01010100111	1001111000	1111110
	s = 5	s = 13	s=2
3	1111001110110	01100	0011110
	011	s = 3	s=2
	s = 3		
4	0001101	11110100111	0111010
	s = 15	s = 5	s=2
5	01010111111	01010	0011110
	s = 5	s = 3	s=2
Ba-	Информационные комбинации		
ри-			
ант			
6	00001	1000001000	1110000
	s = 3	s = 13	s = 2
7	1101001	11111	0001110
	s = 15	s = 3	s = 2
8	001100111011	01010100000	0010011
	0010	s = 5	s=2

	s=3		
9	1110001	10101	1111111
	s = 15	s=3	s = 2
10	11110	100000111011	1111110
	s = 3	0001 s = 3	s = 2
11	01010110101	1111111	0101010
	s = 5	s = 15	s = 2
12	0001101000	01011111111	1100111
	s = 13	s = 5	s = 2
13	0010101	110100101011	1010000
	s = 15	0010 s = 3	s = 2
14	11001	0000001	1000000
	s=3	s = 15	s = 2
15	11010000111	1111111000	0000010
	s = 5	s = 13	s = 2

Типовая структура отчета по лабораторной работе

- 1. Тема лабораторной работы.
- 2. Цель и задачи лабораторной работы.
- 3. Ход лабораторной работы.
- 4. Вывод по лабораторной работе.

Знать ответы на вопросы

- 1. Линейное кодирование. Основные понятия.
- 2. Порождающая и проверочная матрицы; синдром.
- 3. Помехоустойчивое кодирование. Основные понятия. Расстояние Хемминга; кодовое расстояние.
- 4. Коды, порождённые многочленами. Основные понятия.
- 5. Циклические коды. Основные понятия и свойства.
- 6. Неприводимые, примитивные и минимальные многочлены.
- 7. Коды Боуза-Чоудхури-Хоквингема.

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования

«Астраханский государственный технический университет»

Система менеджмента качества в области образования, воспитания, науки и инноваций сертифицирована DQS по международному стандарту ISO 9001:2015

Институтинформационных технологий и коммуникаций

Кафедра «Информационная безопасность»

ОТЧЕТ	
по лабораторной работе №	
(название работь	ı)
по дисциплине	
«Теория информации и кодирование»	
	Выполнил:
студент группы _	(группа)
	(ФИО)