Homework6_GiacomoMenegatti

May 29, 2024

1 Giacomo Menegatti Homework 6

1.1 WARNING

This homework is not completed becuase I haven't been able to reproduce the wanted results. I submit this as a proof of my work, and I will try to fix the bugs and errors present in the code in the next few days.

1.2 LAGEOS satellite orbit propagation

For this work I found a different library than pysofa which is pyerfa (Essential Routines for Fundamental Astronomy) based on SOFA, which I found more complete.

```
[]: import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
import pandas as pd
import erfa
import matplotlib.pyplot as plt
```

1.2.1 Associated Legendre Functions table of coefficients

The coefficients are calculated by the relations

$$\begin{split} f_n &= \sqrt{(1+\delta_{1n})\frac{2n+1}{2n}} \\ g_n^m &= \sqrt{\frac{(2n+1)(2n-1)}{(n+m)(n-m)}} \\ h_n^m &= \frac{g_n^m}{g_{n-1}^m} \\ f_n' &= \sqrt{\frac{n(n+1)}{2}} \\ k_n^m &= \frac{1}{2}\sqrt{(n-m)(n+m+1)} \\ l_n^m &= \frac{1}{2}\sqrt{(1+\delta_{1m})(n+m)(n-m+1)} \end{split}$$

The Legendre functions are calculated with the recurrent relationships

$$\begin{split} P_n^n(\sin\phi) &= f_n \cos\phi P_{n-1}^{n-1}(\sin\phi) \\ P_n^{n-1}(\sin\phi) &= g_n^m \sin\phi P_{n-1}^{n-1}(\sin\phi) \\ P_n^m(\sin\phi) &= g_n^m \sin\phi P_{n-1}^m(\sin\phi) - h_n^m P_{n-2}^m(\sin\phi) \\ \partial_\phi P_n(\sin\phi) &= f_n' P_n^1(\sin\phi) \\ \partial_\phi P_n^m(\sin\phi) &= k_n^m P_n^{m+1}(\sin\phi) - l_n^m P_n^{m-1}(\sin\phi) \end{split}$$

The functions and the coefficients are saved in a table where the index is given by $\frac{n(n+1)}{2} + m$. In this way each value for $n, 0 \le m \le n$ is assigned to a unique entry. I assume that all values with m > n are equal to zero.

```
[]: f = lambda n, m : ((1+1*(n==1))*(2*n+1)/(2*n))**0.5 \#I \ added \ the \ m \ variable_{i}
      ⇔even as I don't use it to have the same form
      g = lambda n, m : ((2*n+1)*(2*n-1)/((n+m)*(n-m)))**0.5
      h = lambda n, m : g(n,m)/g(n-1,m)
      fprime = lambda n, m : (n*(n+1)/2)**0.5
      k = lambda n, m : 0.5*((n-m)*(n+m+1))**0.5
      1 = lambda n, m : 0.5*((1+1*(m==1))*(n+m)*(n-m+1))**0.5
      #Index function
      i = lambda n,m : n*(n+1)//2+m
      #Table of coefficients. Values that do not exists are reported as Nan
      #In this way the indexing of the values is always the same
      def coef table(deg):
        M_ = [m for n in range(deg+1) for m in range(n+1)]
        N_{-} = [n \text{ for } n \text{ in } range(deg+1) \text{ for } m \text{ in } range(n+1)]
        F_{-} = [f(n,m) \text{ if } n>0 \text{ else np.NAN for m, n in } zip(M_{-},N_{-})]
        G_{-} = [g(n,m) \text{ if } n>m \text{ else np.NAN for m,n in } zip(M_{-},N_{-})] #q is not defined for_{-}
        H_{-} = [h(n,m) \text{ if } n>m+1 \text{ else np. NAN for m,n in } zip(M_{-},N_{-})] \#g \text{ is not } defined_{-}
       \rightarrow for m==n and m=n-1
        FPRIME_ = [fprime(n,m) for m, n in zip(M_,N_)]
        K_{-} = [k(n,m) \text{ for } m, n \text{ in } zip(M_{-},N_{-})]
        L_{-} = [l(n,m) \text{ for } m, n \text{ in } zip(M_{-},N_{-})]
        return M_,N_,F_,G_,H_,FPRIME_,K_,L_
```

```
[]:
                       f
                                              fprime
                                                                     1
        n
             m
                                         h
                                                            k
                                g
                                       NaN 0.000000 0.000000 0.000000
       0.0 0.0
                     NaN
                              NaN
    1 0.0 1.0 1.732051 1.732051
                                       NaN 1.000000 0.707107 0.707107
    2 1.0 1.0 1.732051
                              NaN
                                       NaN 1.000000 0.000000 1.000000
    3 0.0 2.0 1.118034 1.936492
                                 1.118034 1.732051 1.224745 1.224745
    4 1.0 2.0 1.118034 2.236068
                                       NaN 1.732051 1.000000 1.732051
    5 2.0 2.0 1.118034
                                       NaN 1.732051 0.000000 1.000000
                              {\tt NaN}
    6 0.0 3.0 1.080123 1.972027
                                  1.018350 2.449490 1.732051 1.732051
    7 1.0 3.0 1.080123 2.091650 0.935414 2.449490 1.581139 2.449490
    8 2.0 3.0 1.080123 2.645751
                                       NaN 2.449490 1.224745 1.581139
    9 3.0 3.0 1.080123
                              NaN
                                       NaN 2.449490 0.000000 1.224745
```

The coefficients are the same ones given in the provided table.

```
[]: def ALF_table(x, deg=10):
      # The index of (n,m) is n^2+n+1-m
      P_{-} = [1.0] \#P(0,0)
      DP_{-} = [0.0]
      for n in range(1,deg+1):
        for m in range(n+1):
          if m==n:
            P_.append(F_coeff[i(n,m)]*(1-x**2)**0.5 * P_[i(n-1, n-1)])
                                                                      \#As x is
      \hookrightarrow sin, cos is sqrt(1-x^2)
          elif m==n-1:
            P_a.append(G_coeff[i(n,m)]*x*P_[i(n-1, n-1)])
            P_a-append(G_c-oeff[i(n,m)]*x*P_a[i(n-1, m)]-H_c-oeff[i(n,m)]*P_a[i(n-2, m)])
      for n in range(1,deg+1):
        for m in range(0, n+1):
          if m==0:
            DP_aappend(fprime(n,m)*P_a[i(n,1)])
          elif m==n: # In this condition the first value is zero
            DP_aappend(-L_coeff[i(n,m)]*P_[i(n,m-1)])
          else:
            return np.array(P_),np.array(DP_)
```

1.2.2 fnALF test

[]: for deg in range(11):

2475.0000000000005

3630.000000000005

The fnALFs have to satisfy the conditions

$$\sum_{n=0}^{N} \sum_{m=0}^{n} P_n^m(x) = (N+1)^2$$

$$\sum_{n=0}^{N} \sum_{m=0}^{n} \partial_{x} P_{n}^{m}(x) = \frac{(N+1)^{2}(N+2)N}{4}$$

for every angle. This has been proven up to N=10 selecting every time a random angle.

```
phi = np.random.uniform(-np.pi/2, np.pi/2) #Get a random angle every time
  P, DP = ALF_table(np.sin(phi), deg)
  print(f'For N={deg}: expected values {(deg+1)**2} and {(deg+1)**2*(deg+2)*deg/
  \hookrightarrow 4: obtained {sum(P**2)} and {sum(DP**2)}')
For N=0: expected values 1 and 0.0: obtained 1.0 and 0.0
For N=1: expected values 4 and 3.0: obtained 3.999999999999999 and
2.99999999999996
For N=2: expected values 9 and 18.0: obtained 9.0 and 17.99999999999999
For N=3: expected values 16 and 60.0: obtained 15.99999999999998 and
59.9999999999964
For N=4: expected values 25 and 150.0: obtained 25.0000000000001 and
150.00000000000003
For N=5: expected values 36 and 315.0: obtained 36.0000000000001 and
315.0000000000003
For N=6: expected values 49 and 588.0: obtained 49.00000000000014 and
588.000000000001
```

1.2.3 Acceleration in the body-fixed RF

The acceleration in cartesian coordinates in the body-fixed RF is given by

For N=7: expected values 64 and 1008.0: obtained 64.0 and 1008.0

For N=8: expected values 81 and 1620.0: obtained 81.0 and 1619.999999999998 For N=9: expected values 100 and 2475.0: obtained 100.00000000000004 and

For N=10: expected values 121 and 3630.0: obtained 120.9999999999999 and

$$\begin{split} a_x &= \cos\phi\cos\lambda\partial_r U - \frac{1}{r}\sin\phi\cos\lambda\partial_\phi U - \frac{1}{r}\frac{\sin\lambda}{\cos\phi}\partial_\lambda U \\ a_y &= \cos\phi\sin\lambda\partial_r U - \frac{1}{r}\sin\phi\sin\lambda\partial_\phi U + \frac{1}{r}\frac{\sin\lambda}{\cos\phi}\partial_\lambda U \\ a_z &= \sin\phi\partial_r U + \frac{1}{r}\cos\phi\partial_\phi U \end{split}$$

The gradient of the potential is given by

with

$$\begin{split} \frac{1}{\cos\phi}\partial_{\lambda}U &= \frac{GM}{r}\sum_{n=1}^{\infty}\sum_{m=1}^{n}\left(\frac{a_{e}}{r}\right)^{n}K_{nm}m[r_{nm}P_{n-1}^{m+1}(\sin\phi) + s_{nm}P_{n-1}^{m-1}(\sin\phi)] \\ \partial_{r}U &= -\frac{GM}{r^{2}}[1 + \sum_{n=1}^{\infty}\sum_{m=0}^{n}\left(n+1\right)\left(\frac{a_{e}}{r}\right)^{n}H_{nm}P_{n}^{m}(\sin\phi)] \\ \partial_{\phi}U &= \frac{GM}{r}\sum_{n=1}^{\infty}\sum_{m=0}^{n}\left(\frac{a_{e}}{r}\right)^{n}H_{nm}\partial_{\phi}P_{n}^{m}(\sin\phi) \\ H_{nm} &= C_{nm}\cos m\lambda + S_{nm}\sin m\lambda \\ K_{nm} &= S_{nm}\cos m\lambda - C_{nm}\sin m\lambda \end{split}$$

$$r_{nm}=\frac{1}{2}\sqrt{(n-m)(n+m+1)}$$

$$s_{nm}=r_{nm}(n+m)(n+m-1)\sqrt{\frac{2n+1}{2n-1}}$$

All this calculations are done with the fully normalized functions.

```
[]: H = lambda 1, n,m,C,S : C[i(n,m)]*np.cos(m*1)+S[i(n,m)]*np.sin(m*1)
     K = lambda 1, n,m,C,S : S[i(n,m)]*np.cos(m*1)-C[i(n,m)]*np.sin(m*1)
     r = lambda n,m : 0.5*((n+m)*(n+m+1))**0.5
     s = lambda n,m : r(n,m)*(n+m)*(n+m-1)*((2*n+1)/(2*n-1))**0.5
     def acc_b(x_b, C, S, GM, a_e, deg=10):
       '''Acceleration in the body-fixed RF'''
       R = np.linalg.norm(x_b)
       1 = np.arctan2(x_b[1], x_b[0])
       phi = np.arcsin(x_b[2]/R)
       a = a_e/R
       P , DP = ALF_table(np.sin(phi), 10)
       dUr = -GM/R**2*(1+sum([(n+1)*a**n*H(1,n,m, C, S)*P[i(n,m)] for n in_{\square})
      \negrange(1,deg+1) for m in range(0, n+1)]))
       dUphi = GM/R*sum([a**n*H(1,n,m,C,S)*DP[i(n,m)]) for n in range(1,deg+1) for m<sub>U</sub>
      \rightarrowin range(0, n+1)])
       #In the next computation I have a problem, as it may happen that m>n
```

1.2.4 Reading the coefficients C and S

```
[]: ICGEM = pd.read_csv('EGM96.gfc', sep='\s+', skiprows=21, header=None, names=['gfc','n', 'm', 'C', 'S', 'sigmaC', 'sigmaS'])

ICGEM.head(10)
```

```
[]:
                                                sigmaC
       gfc n m
                           C
                                        S
                                                             sigmaS
    0 gfc 0 0 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
    1 gfc 2 0 -4.841654e-04 0.000000e+00 3.561063e-11 0.000000e+00
    2 gfc 2 1 -1.869876e-10 1.195280e-09 1.000000e-30 1.000000e-30
    3 gfc 2 2 2.439144e-06 -1.400167e-06 5.373915e-11 5.435327e-11
    4 gfc 3 0 9.572542e-07 0.000000e+00 1.809424e-11 0.000000e+00
    5 gfc 3 1 2.029989e-06 2.485132e-07 1.396517e-10 1.364588e-10
    6 gfc 3 2 9.046278e-07 -6.190259e-07 1.096233e-10 1.118287e-10
    7 gfc 3 3 7.210727e-07 1.414356e-06 9.515628e-11 9.328509e-11
    8 gfc 4 0 5.398739e-07 0.000000e+00 1.042368e-10 0.000000e+00
    9 gfc 4 1 -5.363216e-07 -4.734403e-07 8.567440e-11 8.240849e-11
```

```
[]: #The values for n=1 are all zero because the origin of the RF is in the center
of mass
# I set them manually to zero
C = [ICGEM.iloc[0]['C'], 0.0, 0.0]
S = [ICGEM.iloc[0]['S'], 0.0, 0.0]

# Save the coefficients up to the highest required degree in the list
C.extend(ICGEM.iloc[1:i(deg,deg)-1]['C'])
S.extend(ICGEM.iloc[1:i(deg,deg)-1]['S'])
GM = 3.986004415e14 # Gravitational parameter
```

```
R_E = 6.378136300e6 # Radius of the Earth
```

1.2.5 LAGEOS - 1 orbit propagation

The acceleration is given in body-fixed coordinated, so they must be rotated from an inertial Rf to the body-fixed one and back. This has been done as described in the given material by calculating the matrix P of precession and nutation and rotating by the Earth rotation angle.

```
[]: def acc_i(x_i, date1, date2, C, S, GM, a_e, deg=10):

P = erfa.pnm06a(date1, date2)
E = erfa.era00(date1, date2) #Earth rotation angle at date
R = erfa.rz(E,P) #Final Rotation matrix
x_b = np.dot(R, x_i) #position in the body-fixed RF
a_b = acc_b(x_b, C, S, GM, a_e, deg)
return np.dot(R.T, a_b) #Rotating back the vector to the inertial RF
```

The ODE is integrated using the solve_ivp method. Because dtf2d splits the Julian date in integer part and remainder, I used the remainder to store the growing time and the first part to store the initial date.

```
[]: # Solution od dy/dt = f(y,t)

def f(t,y,GM, C, S, a_e, date):
    x_i = y[0:3]
    v_i = y[3:6]
    a_i = acc_i(x_i, date, t, C, S, GM, a_e)
    return np.concatenate((v_i, a_i), axis=None)
```

As a test, I integrated the LAGEOS motion from Jan 1st 2020 to Mar 9th 2022, dates fro which I have the position and velocity.

```
sol = solve_ivp(f, y0=y0, t_span=(0,deltaT), t_eval=np.arange(0,deltaT,dt), u

⇔args=(GM, C,S,R_E, date_start), rtol=1e-12)
```

```
fig = plt.figure()
ax = fig.add_subplot(projection='3d')

ax.plot(sol.y[0],sol.y[1], sol.y[2], color='red', label = 'Orbit of LAGEOS')

ax.plot(0,0,0, 'o', color='blue', label='Earth')
ax.set_box_aspect([1,1,1])
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')
ax.set_zlabel('z [m]')
ax.legend()
plt.tight_layout()
plt.show()
```



```
[]: print(f'The expected values are {x_f} for position and {v_f} for velocity') print(f'The calculated values are {sol.y[0:3, -1]} for position and {sol.y[3:6, u -1]} for velocity')
```

The expected values are [9198201.11108904 3346470.4635819 -7343619.83372384] for position and [3760.29086119 -1216.94859687 4128.52516735] for velocity The calculated values are [-3108854.61888849 8701331.54236896 -8137348.31021642] for position and [1314.47568449 4003.04972053 3809.20999045] for velocity

The integration done in this way predicts that the satellite is not orbiting around the Earth. The reason for this mistake are not clear, as a timestep of 5 s during an orbit with period over 13000 s sould be detailed enough. It may be caused either by the integrator or the formulas, but Im' still investigating it and trying new hypothesis.

2 Obtaining the initial coditions from the osculating elements

The position and velocity for Apr 20th 2022 are given by the osculating elements. To obtain position and velocity from those I use the Kepler's equation to obtain E and then compute

$$\mathbf{r} = a(\cos E - e)\mathbf{\hat{P}} + a\sqrt{1 - e^2}\sin E\mathbf{\hat{Q}}$$

$$\mathbf{\dot{r}} = -\frac{na^2}{r}\sin E\mathbf{\hat{P}} + \frac{na^2}{r}\sqrt{1 - e^2}\cos E\mathbf{\hat{Q}}$$

$$r = a(1 - e\cos E)$$

$$\mu = n^2a^3$$

and then I apply

$$\mathbf{r}_I = R_z(-\Omega)R_x(-i)R_z(\pi-\Omega)\mathbf{r}_L$$

to rotate the vectors from the Lagrange RF to the geocentric

```
[]: def Rx(theta, v):
       '''Rotation to align to a vector along the x-axis'''
       return np.array([v[0], v[1]*np.cos(theta)+v[2]*np.sin(theta), -v[1]*np.
      \rightarrowsin(theta)+v[2]*np.cos(theta)])
     def Rz(theta, v):
       '''Rotation to align to a vector around the z-axis'''
       return np.array([v[0]*np.cos(theta)+v[1]*np.sin(theta), -v[0]*np.
      \rightarrowsin(theta)+v[1]*np.cos(theta), v[2]])
     def SolveKeplerEq(M,e, atol=1e-14):
       '''Solver of the Kepler's equation'''
       # This works only if M is between O and 2pi, so I have to rescalate it
       k = np.floor(M/(2*np.pi))
       M = M-k*2*np.pi
                                  #Subtract all the complete orbits
       E = M
       Delta = 1e2
```

```
while(Delta > atol):
   Delta = (E - e*np.sin(E) - M)/(1-e*np.cos(E))
   E = E - Delta
 return E
def Lagrange_coord(a, e, M, mu=GM):
  '''position and velocity in the Lagrange RF'''
 E = SolveKeplerEq(M,e)
 n = (mu*a**-3)**0.5
 r = a*(1-e*np.cos(E))
 X = np.array([a*(np.cos(E)-e), a*(1-e**2)**0.5*np.sin(E), 0])
 V = np.array([-n*a**2/r*np.sin(E), n*a*2/r*(1-e**2)**0.5*np.cos(E), 0])
 return X,V
def Inertial_coord(a, e, M, i, Omega, omega, mu=GM):
 X, V = Lagrange_coord(a, e, M, mu)
 x_i = Rz(-Omega, Rx(-i, Rz(omega, X)))
 v_i = Rz(-Omega, Rx( -i, Rz( omega, V )))
 return np.concatenate((x_i, v_i), axis=None)
```

I tested this on the LAGEOS initial conditions for Jan 1st 2020, for which I have both the cartesian and the osculating element representation. The positions seems to match but with inverted sign, while the velocities don't. I can't find a reason for this as the software is the same that has benn used in the Ephemeris homeowrk withou problems.

2.0.1 Converting the position in the Inertial RF to local

The transformation used is

$$\mathbf{r}_{Loc} = R_x(\frac{\pi}{2} - \phi)R_z(\lambda + \frac{\pi}{2})R_z(\theta_{GMST})R\mathbf{r}_I$$

where the matrix R is given by the combination of precession and nutation and the Earth rotation angle

I have not proceded further as I can't reproduce the expected results at a previous step. I will discuss these problems with the others partecipants of the course and try to fix ot as soon as possible.