Consider a two-state Markov chain with states $\{0,1\}$ and transition matrix P. Without loss of generality, let the Markov chain start in state 0, and in each discrete time slot it makes a transition following P. At each time slot t, let the true state of the Markov chain be s(t) while the estimated state (needs to be output by an algorithm \mathcal{A} for each t) be $\hat{s}(t)$. Then the loss at time slot t is $f(s(t), \hat{s}(t))$ for some 'nice' function f. For example $f(x,y) = |x-y|^2$, the squared-loss which in this case is either 0 or 1.

An algorithm \mathcal{A} also has the ability to probe the Markov chain at any time slot t by paying a cost of c. Thus, if \mathcal{A} probes at time slot t, then s(t) is exactly revealed. Under this model, the objective is to find the optimal probe times τ_1, τ_2, \ldots so that the following cost is minimized

$$\frac{1}{T} \left(\sum_{t=1}^{T} \mathbb{E} \{ f(s(t), \hat{s}(t)) + kc \right)$$

where $k = \max_{\tau_i < T} i$ the maximum number of probes made by \mathcal{A} .

The answer we expect is that if on a probe at time t, the state is s then the time to probe next is T_s (which could be random).

Potential Algorithm \mathcal{A} : Consider that the current slot is t and the last slot at which sampling was done is t^- . Then if there exists a t' such that $t^- < t' \le t$ for which

$$c + g_s(t', t) \le g(t', t), \tag{1}$$

where $g_s(t',t)$ is the expected accumulated loss between slots t' and t if sampling is done at time t', while $g_s(t',t)$ is the expected accumulated loss between slots t' and t when sampling is done at time t^- , then sample at time t.

Claim: This algorithm is 2-approximate.

sub-claim 1: If the algorithm samples at time t_i 's, then without loss of generality we can assume that the OPT samples at least once within each interval $[t_i, t_{i+1}]$. In particular at times t'_i .

sub-claim 2: In light of sub-claim 1, the cost of the algorithm is at most

$$c \cdot n_{\mathsf{OPT}} + \mathsf{loss}_{\mathsf{OPT}} + \mathsf{loss}_{\mathcal{A} \setminus \mathsf{OPT}}$$

where n_{OPT} is the number of times OPT samples, and $\mathsf{loss}_{\mathcal{A}\setminus\mathsf{OPT}}$ is the loss accumulated by \mathcal{A} but not by OPT (easiest to see via a picture where at each slot we have a step function indicating the total accumulated loss).

Using the definition of the algorithm (easiest to see pictorially), one can show that $loss_{A \setminus OPT} \leq cn_{OPT}$.

Algorithm \mathcal{A} is a hindsight algorithm and incurs a loss between t' and t since it can only sample at t even though it would have been beneficial to do so at time t' itself. Given that all the information is stochastic here is an attempt to improve upon \mathcal{A} .

Algorithm \mathcal{A}^c : At the most recent sampling instant t^- , compute the **earliest** time $t > t^-$ for which a $t^- < \tau < t$ exists satisfying (1). Sample at time τ .

Conjecture: A^c is optimal.