Topic 3: sequence file formats and quality checking and trimming

Lecture outcomes

- Understand sequence file formats
- Identify the main steps for preparing NGS data for alignment/assembly

NGS file formats: Fasta

- Sequences with a header (.fasta, .fa, .fas)
- Now mainly used for storing reference sequences (no qual scores) as either nucleotides or peptides
- Can have quality scores are stored in separate files (.qual)
- 2 parts for each sequence:

```
Always begins with ">"

Sequence identifier (contig name, relevant info, etc.)

>ctg7180038347536

CTTTGTGATCACATTACTATCATCGTTTTGAGCCTTGGCCGTGTTCTTACCATTACCTCCACCCTTTTAG

CCGATCATACACCTCCACTTAATTCTTTACCTTTTTGAGGAATAGCTGCGATGAGTAATTCTGTTAGCCA

CCTTCTTTACACTGCCATTCTTGAAAAGTTTCAAACTCAACTAGAACCAGTTGCTACTTGAAAACATCAC

CCATTCCTAAAAAATGAGTCTCTTTTAAGCTCTTTTTAGAATCCTAAAATATGAAAATATTGCCAAGCTA

CTGGCCTTTCCAGCTTGTTAA

>ctg7180038347539

TAAACGAAAGGCTCTTAAACCCCTAAAAAGTGTTGCTTCATACCCTAGAGGATCAAGGTCAAATAACTACA

TCATTTCCTAGAAGTTCTCCCTAAAAAACTGCTCAGAACTGGTCAAAATTGGACCATACAGATTGCTCCA
```

NGS file formats: Fastq

FASTQ:

- Sequence and quality scores are stored in the same file (usually .fq or .fastq)
- Most common format for short read data returned from the sequencer
- 4 lines/sequence read:

```
Always begins with "@"

Sequence identifier (sequencer, lane, location info, etc.)

@HWI-ST521:81:C0HKCACXX:5:1101:1124:1158 1:N:0:GTCCGC

GTGACTATTTTGTCAAAGCTATGGGTGAAGATTTTCAAGACGCTGGAAATGTATTCAAAG

Sequence identifier (sequencer, lane, location info, etc.)

GTGACTATTTTGTCAAAGCTATGGGTGAAGATTTTCAAGACGCTGGAAATGTATTCAAAG

Sequence identifier (sequencer, lane, location info, etc.)

GTGACTATTTTGTCAAAGCTATGGGTGAAGATTTTCAAGACGCTGGAAATGTATTCAAAG

Sequence identifier (sequencer, lane, location info, etc.)
```

NGS file formats: Quality scores

NGS file formats: Quality scores

Historically, two formats (now all are Sanger)

- $Q_{sanger} = -10 * log_{10} (p)$
- $Q_{solexa} = -10 * log_{10} (p / (1 p))$

where p is the probability that a base call is incorrect

High quality scores are good

To calculate p from Q:

$$p = 10^{(-Q / 10)}$$

NGS file formats: Quality scores

```
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS....
        .....
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopgrstuvwxyz{|}~
            59 64
33
                   73
                                 104
                                            126
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa
Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Fortunately, we seem to have settled on a standard in the community...for now!

Phred+33, HiFi reads typically (0, 93)

P - PacBio

Code break

There are more unix examples at the end of Github Topic 3 page (or README.txt file in the ~/Topic_3 folder)

1) How many sequences do you have in the file ~/Topic_3/data/Pine_reference_rnaseq_reduced.fa?

Hint: wc -I <file name> provides the number of lines in a file

2) How many sequences do you have in the fastq file ~/Topic_3/data/GBS12_brds_Pi_197A2_100k_R1.fastq?

Hint: for grep ^ indicates the start of the line and \$ indicates the end of the line (e.g. grep ^H*?\$ <filename> would find all the lines starting with H and ending in ?)

3) How many sequences contain a base with a Phred score of 2 ~/Topic_3/data/GBS12_brds_Pi_197A2_100k_R1.fastq?

Preparing Fastq for analysis

- 1) Check files for completeness, use md5 checksums if file corruption is suspected
- 2) Inspect quality statistics
- 3) Possible steps to clean files (choice of steps depends on the application)

Usually done by

sequencing

- De-multiplex
- Trim adapters
- Filter/trim low quality base calls
- Remove duplicate sequences
- Remove contaminant sequences
- Remove sequences that are mainly adapter

Many programs to implement these steps!

Genotyping and RNAseq

Reference assembly

Preparing Fastq: md5 checksum

Preparing Fastq: De-multiplexing

Multiplexing is when several libraries are barcoded and sequenced on the same lane

- Most sequencing centers will de-multiplex the data
- Casava can be used for de-multiplexing and trimming barcodes from standard Illumina library preps

Preparing Fastq: Trimming

 Adapters are short sequences that are added to the beginning and end of DNA molecules to prepare them for sequencing

- Can compromise how well the reads align to a reference if not removed
- Detect during the quality control phase
- Removed by a range of tools (most sequencing centers will already have removed the adapters)

Preparing Fastq: Quality metrics

Many possible statistics to query:

- Number and length of sequences
- Base qualities
- Poly A/T tails
- Presence of tag sequences (stuff you added during preparation)
- Sequence complexity (e.g. ATATATATATATA...)

Recommended tools: prinseq, fastqc

Preparing Fastq: Quality metrics

Distribution of base frequencies in GBS reads with enzyme cut site:

Distribution in RNAseq data, no adapters/tags:

Preparing Fastq: Quality metrics

A normal quality score distribution for Illumina reads:

Preparing Fastq: Quality trimming

Table 1. Availability and characteristics of the trimming tools investigated in the current work.

					Can work		k d PHRED format	Works on both read	
Tool	Version	Link	Language	Algorithm family	•	end	autodetection	ends	Notes
Cutadapt	1.1	code.google.com/p/cutadapt/ downloads/list	Python and C	Running sum	yes	no	no	no	Can also remove adapters, multi-threaded
ConDeTri	2.2	code.google.com/p/condetri/	Perl	Window based	yes (since v2.2)	yes	no	no	
ERNE-FILTER	1.2	sourceforge.net/projects/ erne/files/	C++	Running sum	yes	yes	yes	yes	Can be combined with contaminant removal, multi-threaded
FASTX quality trimmer	0.0.13.2	hannonlab.cshl.edu/ fastx_toolkit/download.html	C++	Window based	no	no	no	no	The default minimum read length parameter (-p) is set to zero
PRINSEQ	0:19:05	sourceforge.net/projects/ prinseq/files/	Perl	Window based	no	no	no	yes	Also web interface for medium-size data
Trimmomatic	0.22	www.usadellab.org/cms/ index.php?page=trimmomatic	Java	Window based	yes	yes	no	yes	Can also remove adapters
SolexaQA	1.13	sourceforge.net/projects/ solexaqa/files/	Perl	Window based (Running sum with -bwa option)	no	no	yes	no	Cannot specify minimum read length to keep
Sickle	1.2	github.com/ucdavis- bioinformatics/sickle	С	Window based	yes	yes	no	yes	

doi: 10.1371/journal.pone.0085024.t001

Preparing Fastq: Quality trimming

Choice of quality score to filter to depends upon the application:

- Too low a quality score cutoff:
 - 1) increase run times and RAM usage
 - 2) bad results (e.g. false SNP calls)
- Too high a quality score cutoff:
 - 1) faster run times
 - 2) lose useful data (e.g. more fragmented assemblies, missing SNPs)
- Usually Q20, but sometimes lower or higher

Preparing Fastq: Quality trimming

Blue line = SNP number no trimming – many false SNPs

severe trimming - many fewer SNPs

Preparing Fastq: Duplicate identification

- PCR is a common feature of many library preps
- Can introduce errors and biases that can impact downstream analysis
- High % duplicates usually is a sign of wasted sequencing effort
- However, high duplicates rates are expected in some cases
 (library and depth dependent) and should not be removed (e.g., GBS, RNAseq)

*
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
T
C
C

*
TTTCATACTAACTAGCCTGCGGTCTGTGTTTCCCGACTTCTGAGTCATGGGGTTTCAATGCCTATAGATTC
T
C
C
C
C

Preparing Fastq: Contamination

 Checking for sample contamination using trimmed/filtered reads and alignment free estimators of genetic distance (e.g., kWip)

Chlamydomonas reinhardtii

Preparing Fastq: Assembly

- Remove sequences consisting of adapter dimers (otherwise, they may be included as contigs).
 (e.g. tagdust)
- Clean out contaminants by blasting to known databases (can also be conducted postassembly)
- Remove duplicate sequences: for de novo assembly, sequences that are exact copies will slow down the assembly without adding anything (e.g. fastx_collapser)

Preparing Fastq: Pairing

- With paired-end reads, if one read direction is removed but the other is not, then the _R1 and _R2 files are mismatched
- Need to run a script to eliminate unpaired reads from each _R1 and _R2 file

Some programs output reads in paired and unpaired files (e.g. prinseq, Trimmomatic). Others do not and custom scripts are required to re-pair data.

Preparing Fastq: GBS-specific filtering

 GBS / RAD use enzymes to cleave the DNA, so all reads will begin with the recognition sequence:

TGCAG TCCAACGCCACGGTCAAAGAATACCAGCTTTTAAATTAAACTTTGCCCCGGTCTTCC/
TGCAG TCCTCGGTGTCAGGAGTATAACTGCATTGTGTCATCTTCATGGTGAAGATCTCTGCTT
TGCAG CATCCTATTTCTAATTTGGATTTAAATAAAACTGGAAGCTATTGTAAGTCCCCGGCCT
TGCAG TGTTACTCTTACCTCCTGAATTGAACGGAAAACGATCTAGCAAAACTGAACTGCCATT
TGCAG GTGAAATGAGAGAGGGAAGATTGGGGTCAAATAAATTTTCCTAAAGTGGAAGCTTTGAG
TGCAG AGAAGGGAAATGCAGAGTCTGTGCTGAAGGCCATTGGCGATTTTAATAGCCATACCTG
TGCAG GGTATTTAGTTTTTGAATGAGAAATTTTCTGACTTGAGATTTTTTACTGTTCAGTATCG
TGCAG CAGTTTGAGTAAGAGGAAAATGGTTTTCCAAAAATTCACAACTTAAAGAAACATCCATG

- Will need to de-multiplex using Axe, Stacks or custom script
- Clean GBS-specific adapters or other home-brew sequences that sequencing centers didn't remove

Further reading

- Del Fabbro et al. 2013. An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis. PLoSOne. 8:e85024.
- http://prinseq.sourceforge.net/Data_preprocessing.pdf
- http://prinseq.sourceforge.net/manual.html#STANDALONE