PUmped Liquid System for Amateur Rockets

Project PikaPump

Final Design Review

April 23rd, 2024

James Beeman, Lamya Bhat, John Clark, Max Cohen, Fred Gouronc, Tom Neidlein

Background

- Liquid rockets are fed two propellants to provide thrust
- Key stakeholders:

STUDENTS

AMATEUR ROCKET BUILDERS

EDUCATIONAL INSTITUTIONS

 Value Added: We aim to provide the resources in one location for other people to design and build their own electric pumps

Project Requirements

Pressure	Liquid methane pressure output of 240 psia	
Flow	Liquid methane flow rate of 1.19 lbm/s	
Weight	Total system weight below 12.5 lbs	
Sizing	6.6" Max diameter, 16" Maximum height	
Temperature	Can withstand temperatures of -190 °C	
Corrosion	Resistant to corrosive cryogenic fuels	
Reusability	Will be able to operate for at least 2 flights	
Measurement	Able to record outputs using sensors	
Safety	Automatic and manual emergency shutoff	
Test Ready	System is cryogenic test ready	

Business Case

\$10,000

AVERAGE BUDGET OF STUDENT ROCKET TEAMS

Multi-Use

ELECTRIC PUMPED SYSTEMS HAVE GREATER REUSABILITY

Risk

LARGEST OBSTACLE IS TECHNICAL RISK

CDR to FDR Model

Analysis Performed

- Initial CFD sims
- Material Analysis tests
- Driveshaft design

Overall Assembly

Top Casing

Bottom Casing

Coupling Block

Motor

Inducer

Impeller

Bearing Blocks

Magnetic Coupler

Top and Bottom Casing

- Machined on the MB-15 CNC mill
 - High precision
 - o Purchased 1/16" endmill for seal
- Post processing
 - o Bolted together and tapped
 - Adjusted clearances

Magnetic Coupler

- Torque transmission with no leakage
- Custom-made couplers
 - Neodymium magnets packed into an aluminum case

https://www.stanfordmagnets.com/magnetic-coupling.html

Coupler Iteration

Stage 1

Stage 2- More magnets

Final Design

Impeller and Inducer

- Core internal pump components
- Could not be easily made in-house
 - o Geometries impractical for machining
- Parts were metal 3D printed
 - Sanded down to ensure smoothness

Other Major Components

- Pump Driveshaft
 - Connects magnetic coupler to pump impeller
 - Uses left hand threading to prevent unscrewing
- Coupling Block
 - Holds magnetic coupler in place
 - Supports pump and motor
 - Bolted to test setup using a welded steel Hbracket

Drivetrain Iteration

Problem	Solution	
Coupler must be larger	Increase bearing block size	
Can't assemble driveshaft	Add "coupler adaptor" part	
Threads unscrew when system spins	Use left hand threading	
Bolt assembly interferes w/ motor	Decrease bolt size and move outward	
Bearing blocks can't be removed after press fit	Change interference fit to transition fit	
Cryogenic bearings don't spin well at low RPMs	Use cheaper bearings for testing in water	
Impeller/couplers bind with the casing	Increase clearances until it runs smoothly	

CFD Simulations

- Simulate a wide range of operating conditions
- Both Water and Cryogenic fluids
- Need to be validated with experiments

Validation Plan

Verifying the design to ensure it meets expected parameters

- Create test setup
- Record parameters
- Data Analysis

Data Acquisition

Electrical CAD

Test Setup

Pressure sensor

Flow meter

Pump housing

Motor controller

Arduino & Breadboard

Battery

Water proof box

Test Results

- Ran test up ~7000 rpms
- Pressure rise ~15 psi
- Flow rate of 0.55 lbm/s
- Any higher the coupler was not strong enough

Results vs. Simulation

- Point falls on the performance curves as predicted
- Validates simulation
- Would be better to test at higher rpms

Requirements Assessment

Requirement	<u>Description</u>	Rqmt Met?	<u>Reasoning</u>
Pressure	Liquid methane pressure output of 240 psia	No	No cryo test
Flow	Liquid methane flow rate of 1.19 lbm/s	No	No cryo test
Weight	Total system weight below 12.5 lbs	Yes	~4 lbs
Sizing	6.6" Max diameter, 16" Maximum height	Yes	4" Dia., 10" Tall
Temperature	Can withstand temperatures of -190 °C	Yes*	Full compliance
Corrosion	Resistant to corrosive cryogenic fuels	Yes*	Full compliance
Reusability	Will be able to operate for at least 2 flights	Yes	Multiple tests
Measurement	Able to record outputs using sensors	Yes	Data acquired
Safety	Automatic and manual emergency shutoff	Yes	E-stop works
Test Ready	System is cryogenic test ready	Yes*	Full compliance

^{*}No tests were performed with cryogenics, but all components are designed for cryogenic compatibility

Design Improvements

- Single piece pump casing
- Coupler magnet placement and strength
- Better machining tolerances and finish
- Sensor and data acquisition improvements

Moving Forward

 Provided roadmap, documentation, CAD, and code on GitHub so others can iterate on the design

Thank you!

