

به نام خدا

دانشگاه تهران دانشکده مهندسی برق و کامپیوتر م**کاترونیک**

گزارش مینی پروژه اول

کامیار رحمانی	نام و نام خانوادگی
۸۱۰۱۹۹۴۲۲	شماره دانشجویی
14.7/1/7.	تاریخ ارسال گزارش

فهرست گزارش سوالات

٣	بخش اول : كار با سنسور MPU6050
٣	محاسبه پارامترهای طبیعی : e و φ از روی زوایای roll,pitch,yaw
۵	محاسبه پارامترهای طبیعی : e و φ از روی Quaternions
Υ	محاسبه پارامترهای خطی : q , q0 ,
λ	محاسبه ماتریس دوران از روی پارامترهای خطی: $q,q0$
٩	بخش دوم : استفاده از كتابخانه Vpython

بخش اول: كار با سنسور MPU6050

roll,pitch,yaw و از روی زوایای φ و و طبیعی و φ و از روی زوایای

ابتدا تابعی پیاده سازی کردم که پارامتر های طبیعی را از روی زوایای roll و pitch و yaw محاسبه کند.

سنسور MPU6050 زوایای گفته شده را در اختیار ما قرار می دهد و من ارائه شناخته شده XYZ را در دستگاه مختصات ثابت یا Global بدست آوردم :

$$Q = Q_z * Q_y * Q_x$$

همچنین از درس هر کدام از ماتریس های دوران بالا را می دانیم :

$$Q_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Cos9 & -Sin9 \end{bmatrix} \qquad Q_{y} = \begin{bmatrix} Cos 4 & 0 & Sin4 \\ 0 & 1 & 0 \\ -Sin4 & 0 & Cos4 \end{bmatrix}$$

$$Q_{z} = \begin{bmatrix} Cos 4 & 0 & Sin4 \\ -Sin4 & 0 & Cos4 \end{bmatrix}$$

$$Q_{z} = \begin{bmatrix} Cos 4 & 0 & Sin4 \\ -Sin4 & 0 & Cos4 \end{bmatrix}$$

$$Q_{z} = \begin{bmatrix} Cos 4 & -Sin4 & 0 \\ -Sin4 & 0 & Cos4 \end{bmatrix}$$

yaw زاویه roll همان زاویه دوران حول محور x و زاویه pitch که زاویه دوران حول محور z است.

. سپس از روی ماتریس Q پارامترهای طبیعی را استخراج کردم

$$\operatorname{vect}(\mathbf{A}) \equiv \mathbf{a} \equiv \frac{1}{2} \begin{bmatrix} a_{32} - a_{23} \\ a_{13} - a_{31} \\ a_{21} - a_{12} \end{bmatrix}, \quad \operatorname{tr}(\mathbf{A}) \equiv a_{11} + a_{22} + a_{33} \qquad \cos \phi = \frac{\operatorname{tr}(\mathbf{Q}) - 1}{2}$$

$$\operatorname{vect}(\mathbf{Q}) = \operatorname{vect}(\sin \phi \mathbf{E}) = \sin \phi \mathbf{e}$$

خروجی:

در شکل زیر خروجی را برای یک دوران خاص مشاهده می کنیم:

در شکل زیر خروجی ها به ترتیب زیر است:(یادم رفت اسامی رو پرینت کنم!!)

- زوایای دوران roll ,pitch,yaw بر حسب رادیان
 - زاویه دوران phi بر حسب رادیان
 - راستای دوران

توقع داریم محور دوران، بردار یکه شود که همانطور که می بینیم که همینطور است.

Quaternions و ϕ و e : ϕ و طبیعی و بارامترهای طبیعی

طبق درس میدانیم که quaternion همان پارامتر های اویلر رودریگز هستند :

خروجی کد برداری به صورت زیر خواهد بود که از روی درایه آخر زاویه دوران را بدست می آوریم و سپس از روی سه درایه اول و زاویه دوران محور دوران را نیز بدست می آوریم.

$$\vec{\lambda} = \begin{bmatrix} 7 \\ r_0 \end{bmatrix}$$

برای اینکه در کد پایتون Quaternion ها در خروجی نمایش داده شوند بخش زیر را به کد اضافه کردم:

```
r0 = float(splitPacket[0])
r1 = float(splitPacket[1])
r2 = float(splitPacket[2])
r3 = float(splitPacket[3])
```

خروجی :

در شکل زیر خروجی ها به ترتیب زیر است:(یادم رفت اسامی رو پرینت کنم!!)

- محور دوران
- زاویه دوران phi بر حسب درجه

همانطور که می بینیم در این جا نیز محور دوران برداری یکه شده است.

محاسبه پارامترهای خطی: q, q0

در درس آموختیم که :

$$q_0 = \cos(\varphi)$$

$$\vec{q} = \vec{e}\sin(\varphi)$$

با استفاده از پارامترهای طبیعی که در قسمت قبل بدست آوردیم پارامتر های خطی را محاسبه می کنیم: در شکل زیر ترتیب خروجی ها بدین ترتیب است:

- بردار q
 - q0 •

محاسبه ماتریس دوران از روی پارامترهای خطی: q,q0

در درس دیدیم که با استفاده از رابطه زیر می توانیم از روی پارامتر های خطی ماتریس دوران را محاسبه ننیم

. در فرمول بالا \overline{Q} همان (PM(q) است

خروجي :

در شکل زیر ماتریس دوران و هم چنین دترمینان آن را با توجه به فرمول بالا حساب کردم.

همانطور که در شکل می بینیم دترمینان ماتریس دوران با تقریب خوبی برابر یک شده است و این به منزله کالیبره بودن سنسور است.

بخش دوم: استفاده از کتابخانه Vpython

در ابتدا با استفاده از ابزار های box,arrow و همچنین عکسی از نقاله که از اینترنت گرفتم دو زاویهسنج را طراحی کردم :

نتیجه پس از شبیه سازی:

