

Python Assignment

Excel Data Manipulation

Task 1: Read and Summarize Data

- 1. Read an Excel file (data.xlsx) into a DataFrame using pandas.
- 2. Print the first 10 rows of the dataset.
- 3. Display the number of rows and columns in the dataset.
- 4. Check for missing values in each column and display the count.

Expected Output:

- First 10 rows of the dataset.
- Dataset shape and missing value summary.

Task 2: Add a New Column

- Read an Excel file (sales_data.xlsx).
- 2. Add a new column that calculates a **percentage change** between two columns (e.g., Sales and Cost).
- 3. Save the updated data to a new file (updated_sales_data.xlsx).

Expected Output:

• A new Excel file with the added column.

Task 3: Filter Rows

- 1. Read an Excel file (employees.xlsx).
- 2. Filter out rows where Salary is greater than 50,000.
- 3. Save the filtered data into a new Excel file (high_salary_employees.xlsx).

Expected Output:

• A new Excel file containing only the filtered rows.

Task 4: Handle Missing Data

- Read an Excel file (product_data.xlsx).
- 2. Replace missing values in numerical columns with their mean.
- 3. Replace missing values in categorical columns with their mode.
- 4. Save the cleaned data into a new file (cleaned product data.xlsx).

Expected Output:

• A new Excel file with missing values handled appropriately.

Task 5: Combine Multiple Excel Files

- 1. Assume there are multiple Excel files in a folder (/data_files/).
- 2. Write a script to read all files, combine them into a single DataFrame, and save the combined data into combined data.xlsx.

Expected Output:

A new Excel file containing data from all input files.

Data Cleaning and Transformation

Task 6: Normalize Data

- 1. Read a dataset (normalization data.xlsx) with numerical columns.
- 2. Normalize all numerical columns using Min-Max Scaling.
- 3. Save the normalized data into normalized_data.xlsx.

Expected Output:

A new Excel file with normalized data.

Task 7: Encode Categorical Data

- 1. Read a dataset (categorical_data.xlsx) with a column named Category.
- 2. Convert the Category column to numerical values using **Label Encoding**.
- 3. Save the encoded dataset into encoded data.xlsx.

Expected Output:

• A new Excel file with the Category column encoded.

Task 8: Split Data for Training

- 1. Read a dataset (training_data.xlsx) with features (Feature1, Feature2) and a target column (Target).
- 2. Split the dataset into training (70%) and testing (30%) sets using train_test_split.
- 3. Display the size of training and testing sets.

Expected Output:

• Number of rows in training and testing sets.

Text Data Handling

Task 9: Clean Text Data

- 1. Read a dataset (reviews.xlsx) with a column Review_Text.
- 2. Write a script to:
 - Remove all special characters.
 - Convert text to lowercase.
- 3. Save the cleaned text data into cleaned reviews.xlsx.

Expected Output:

• A new Excel file with cleaned text.

Task 10: Count Word Frequency

- 1. Using the cleaned_reviews.xlsx file, count the frequency of each word in the Review Text column.
- 2. Display the top 10 most frequent words and their counts.

Expected Output:

• A dictionary of the top 10 words and their counts.

Data Visualization

Task 11: Create a Bar Chart

- 1. Read a dataset (sales_data.xlsx) with a column Region.
- 2. Create a bar chart showing the total sales per region.

Expected Output:

• A bar chart displaying total sales per region.

Task 12: Create a Correlation Heatmap

- 1. Read a dataset (data.xlsx) with numerical columns.
- 2. Compute the correlation matrix of the dataset.
- 3. Plot a heatmap of the correlation matrix.

Expected Output:

• A heatmap visualizing correlations.

Foundational AI-Related Tasks

Task 13: Simple Linear Regression

- 1. Read a dataset (housing_data.xlsx) with columns SquareFeet (input feature) and Price (target).
- 2. Train a Linear Regression model to predict Price based on SquareFeet.
- 3. Print the model's coefficients.

Expected Output:

Model's coefficients.

Task 14: Prepare Data for ML

- 1. Read a dataset (ml data.xlsx) with both categorical and numerical columns.
- 2. Perform the following:
 - o Normalize numerical columns.
 - Encode categorical columns.
- 3. Save the prepared data into prepared data.xlsx.

Expected Output:

A new Excel file with normalized and encoded data.

API Integration

Task 15: Fetch Data from an API

- 1. Use the **requests** library to fetch JSON data from https://jsonplaceholder.typicode.com/posts.
- 2. Save the data into an Excel file (api_data.xlsx).

Expected Output:

• An Excel file containing the fetched data.

Task 16: Automate API Data Processing

- 1. Write a script to:
 - Fetch JSON data from an API.
 - o Clean the data (e.g., remove unnecessary fields).
 - Save the cleaned data into processed_api_data.xlsx.

Expected Output:

• A new Excel file with cleaned data.

Automation with Error Handling

Task 17: Robust Excel Handling

- 1. Write a script that:
 - Reads an Excel file (data.xlsx).
 - o Handles errors like FileNotFoundError or missing columns.
 - Logs the error and exits gracefully if something goes wrong.

Expected Output:

• A robust script with error-handling mechanisms.