泛函分析 (作业三)

▷ § 1.4.1 在二维空间 \mathbb{R}^2 中, 对每一点 z = (x, y), 令

$$||z||_1 = |x| + |y|;$$
 $||z||_2 = \sqrt{x^2 + y^2};$
 $||z||_3 = \max(|x|, |y|);$ $||z||_4 = (x^4 + y^4)^{\frac{1}{4}}.$

- (1) 求证 $\| \cdot \|_i$ (i = 1, 2, 3, 4) 都是 \mathbb{R}^2 的范数.
- (2) 画出 $(\mathbb{R}^2, \|\bullet\|_i)$, (i = 1, 2, 3, 4) 各空间中的单位球面图形.
- (3) 在 \mathbb{R}^2 中取定三点 O = (0,0), A = (1,0), B = (0,1), 试在上述四种不同范数下求出 $\triangle OAB$ 三边的长度.
- (1) 证明: (正定性) $||z||_i \ge 0$, $||z||_i = 0 \iff z = (0,0)$, i = 1, 2, 3, 4.
- (齐次性) $\|\alpha z\|_i = |\alpha| \|z\|_i$, $\forall \alpha \in \mathbb{R}^1$, i = 1, 2, 3, 4.
- (三角形不等式) 对 $p \ge 1$, 有 Minkowski 不等式

$$(|x_1 + x_2|^p + |y_1 + y_2|^p)^{\frac{1}{p}} \le (|x_1|^p + |y_1|^p)^{\frac{1}{p}} + (|x_2|^p + |y_2|^p)^{\frac{1}{p}},$$

p=1,2,4 时分别对应 $\|ullet\|_1$, $\|ullet\|_2$, $\|ullet\|_4$, $p\to +\infty$ 时对应 $\|ullet\|_3$.

(3) ΔOAB 三边的长度如下表.

	$\ \cdot \ _1$	$\left\ \bullet \right\ _2$	$\ \bullet\ _3$	$\ \bullet\ _4$
OA	1	1	1	1
OB	1	1	1	1
AB	2	$\sqrt{2}$	1	$\sqrt[4]{2}$

▷ § 1.4.4 在 C[0,1] 中, 对每一个 $f \in C[0,1]$, 令

$$||f||_1 = \left(\int_0^1 |f(x)|^2 dx\right)^{\frac{1}{2}}; \ ||f||_2 = \left(\int_0^1 (1+x) |f(x)|^2 dx\right)^{\frac{1}{2}},$$

求证: $\|\bullet\|_1$ 和 $\|\bullet\|_2$ 是 C[0,1] 中的两个等价范数.

证明: $\| \cdot \|_1$ 和 $\| \cdot \|_2$ 均满足正定性、齐次性和三角不等式, 因此都是 C[0,1] 上的范数. 由

$$\left(\int_{0}^{1} |f(x)|^{2} dx\right)^{\frac{1}{2}} \leq \left(\int_{0}^{1} (1+x) |f(x)|^{2} dx\right)^{\frac{1}{2}} \leq \left(\int_{0}^{1} 2 |f(x)|^{2} dx\right)^{\frac{1}{2}}$$

$$\mathcal{F} \|f\|_{1} \leq \|f\|_{2} \leq \sqrt{2} \|f\|_{1}.$$

§ 1.4.6 设 $\mathcal{X}_1, \mathcal{X}_2$ 是两个 B^* 空间, $x_1 \in \mathcal{X}_1$ 和 $x_2 \in \mathcal{X}_2$ 的序对 (x_1, x_2) 全体构成空间 $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2$, 并赋以范数 $||x|| = \max(||x_1||_1, ||x_2||_2)$, 其中 $x = (x_1, x_2), x_1 \in \mathcal{X}_1, x_2 \in \mathcal{X}_2, ||\bullet||_1$ 和 $||\bullet||_2$ 分别是 \mathcal{X}_1 和 \mathcal{X}_2 的范数. 求证: 如果 $\mathcal{X}_1, \mathcal{X}_2$ 是 B 空间, 那么 \mathcal{X} 也是 B 空间.

证明: $\mathcal{X} \in B^*$ 空间. 任取 \mathcal{X} 中的 Cauchy 列 $\{x^n\}$, 则当 $m, n \to 0$ 时, $\|x^m - x^n\| \to 0$ $\iff \|x_i^m - x_i^n\|_i \to 0$ (i = 1, 2). 由于 \mathcal{X}_i 完备,即 $\exists x_i \in \mathcal{X}_i$,使得 Cauchy 列 $x_i^n \to x_i$. 于是 $x \triangleq (x_1, x_2) \in \mathcal{X}$,且有 $\|x^n - x\| = \max_i \|x_i^n - x_i\|_i \to 0$. 因此 \mathcal{X} 完备.

- **§** 1.5.1 设 \mathcal{X} 是 B^* 空间, E 是以 θ 为内点的真凸子集, P 是由 E 产生的 Minkowski 泛函, 求证:
 - (1) $x \in \mathring{E} \iff P(x) < 1$; (2) $\overline{\mathring{E}} = \overline{E}$.

证明: (1) "⇒": $x \in \mathring{E} \Longrightarrow \exists \varepsilon > 0$, 使 $B(x,\varepsilon) \in E$, 取 $\left(1 + \frac{\varepsilon}{2\|x\|}\right) x \in B(x,\varepsilon)$, 即 $\lambda = \left(1 + \frac{\varepsilon}{2\|x\|}\right)^{-1} < 1$, 使 $\frac{x}{\lambda} \in E \Longrightarrow P(x) < 1$;

" \iff ": $\forall x$ 满足 P(x) < 1, $\exists \lambda$, 使 $P(x) < \lambda < 1$, $\frac{x}{\lambda} \in E$. θ 为 E 的内点, 即 $\exists \varepsilon > 0$, 使得 $B(\theta, \varepsilon) \subset E$. 构造映射 $\varphi(z) = (1 - \lambda)z + \lambda \frac{x}{\lambda}$, 则 $\varphi(z)$ 将开球 $B(\theta, \varepsilon)$ 映射为 $B(x, (1 - \lambda)\varepsilon)$, 再由 E 是凸集可知 $B(x, (1 - \lambda)\varepsilon) \subset E$, 即 $x \in \mathring{E}$. (2) $\mathring{E} \subset E \Longrightarrow \mathring{E} \subset \overline{E}$. 由于 \mathring{E} 是闭集, 只需再证 $E \subset \mathring{E}$ 即可.

(反证法) 假设 $\exists x \in E$, 但 $x \notin \mathring{E}$. $x \notin \mathring{E} \implies x \in \mathring{E}$ 为开集 $\Longrightarrow \exists \varepsilon > 0$, 使得 $B(x,\varepsilon) \subset \mathring{E}^c$. 取 $x_0 = \left(1 - \frac{\varepsilon}{2 ||x||}\right) x \in B(x,\varepsilon)$, $x_0 \notin \mathring{E}$. 的 为 E 的 内 点,即 $\exists \xi > 0$,使得 $B(\theta,\xi) \subset E$. 构造映射 $\varphi(z) = \frac{\varepsilon}{2 ||x||} z + \left(1 - \frac{\varepsilon}{2 ||x||}\right) x$,则 $\varphi(z)$ 将开球 $B(\theta,\xi)$ 映射为 $B\left(x_0, \frac{\varepsilon\xi}{2 ||x||}\right)$,再由 $x \in E$ 且 E 是凸集可知 $B\left(x_0, \frac{\varepsilon\xi}{2 ||x||}\right) \subset E$,即 $x_0 \in \mathring{E}$. 这与 $x_0 \notin \mathring{E}$ 矛盾.

- ▶ § 1.5.4 设 C 是 B 空间 \mathcal{X} 中的一个有界闭凸集, 映射 T_i : $C \to \mathcal{X}$ (i = 1, 2) 适合 (1) $\forall x, y \in C \Longrightarrow T_1 x + T_2 y \in C$;
 - (2) T₁ 是一个压缩映射, T₂ 是一个紧映射.

求证: $T_1 + T_2$ 在 C 上至少有一个不动点.

证明: T_1 是压缩映射, 即 $\exists \alpha \in (0,1)$, 使得 $||T_1x_1 - T_1x_2|| \leq \alpha ||x_1 - x_2||$ 对 $\forall x_1, x_2 \in C$ 都成立. C 是完备度量空间的闭集 $\Longrightarrow C$ 完备. 对 $\forall x, y \in C \Longrightarrow T_1x + T_2y \in C$, 考虑将 y 固定, 则映射 $T'x \triangleq T_1x + T_2y$ 满足

$$||T'x_1 - T'x_2|| = ||T_1x_1 - T_1x_2|| \le \alpha ||x_1 - x_2||, \ \alpha \in (0, 1), \ \forall x_1, x_2 \in C,$$

由压缩映像原理, $\exists ! x \in C$, 使得 $T'x = T_1x + T_2y = x$. 于是 $\forall y \in C$, 都对应 唯一的 $x \in C$, 这隐含一个由方程 $T_1x + T_2y = x$ 确定的映射 $\varphi : y \mapsto x$. 取 $\varphi(y_1) = x_1$, $\varphi(y_2) = x_2$,

$$||x_{1} - x_{2}|| = ||T_{1}x_{1} + T_{2}y_{1} - T_{1}x_{2} - T_{2}y_{2}||$$

$$\leq ||T_{1}x_{1} - T_{1}x_{2}|| + ||T_{2}y_{1} - T_{2}y_{2}||$$

$$\leq \alpha ||x_{1} - x_{2}|| + ||T_{2}y_{1} - T_{2}y_{2}||$$

$$\implies ||x_{1} - x_{2}|| \leq \frac{1}{1 - \alpha} ||T_{2}y_{1} - T_{2}y_{2}||.$$
(1)

 T_2 是一个紧映射,则 T_2 连续,且对有界集 $C,T_2(C)$ 列紧.

对 T_2 连续, 即对 $\forall y_1, y_2 \in C$, $||y_1 - y_2|| \rightarrow 0 \Longrightarrow ||T_2y_1 - T_2y_2|| \rightarrow 0$, 联合 (1)

式
$$\Longrightarrow ||x_1 - x_2|| \to 0$$
, 这说明映射 $\varphi: C \to C$ 连续. (2)

映射 φ 可以写成 $\psi \circ T_2$, 其中 $\psi : T_2(C) \to \varphi(C)$ 是由方程 $T_1x + z = x$ 确定的 $z \mapsto x$ 映射, 于是对 $\forall \{x_n\} \subset \varphi(C) \subset C$, 总可以找到对应的 $\{z_n\} \subset T_2(C)$, $T_2(C)$ 列紧, 即 $\exists z_{n_k} \to z_0 \in \mathcal{X}$, $\{z_{n_k}\}$ 为 Cauchy 列, 亦即 $k, l \to +\infty \Longrightarrow \|z_{n_k} - z_{n_l}\| \to 0$, 联合 $\|x_{n_k} - x_{n_l}\| \le \frac{1}{1-\alpha} \|z_{n_k} - z_{n_l}\| \Longrightarrow \|x_{n_k} - x_{n_l}\| \to 0 \Longrightarrow \{x_{n_k}\}$ 为 Cauchy 列, 由于 C 完备, 故 $\exists x_0 \in C$ 使得 $x_{n_k} \to x_0$, 这说明 $\varphi(C)$ 列紧.

(2), (3) 满足 Schauder 不动点定理条件, 于是 $\exists x^* \in C$, 使 $\varphi(x^*) = x^*$, 即 $T_1x^* + T_2x^* = x^*$.

▶ § 1.6.1 (极化恒等式)设 a 是复线性空间 \mathcal{X} 上的共轭双线性函数, q 是由 a 诱导的二次型, 求证: 对 $\forall x, y \in \mathcal{X}$ 有

$$a(x,y) = \frac{1}{4} \{ q(x+y) - q(x-y) + iq(x+iy) - iq(x-iy) \}.$$

证明: $\lambda q(x + \lambda y) = \lambda a(x, x) + |\lambda|^2 a(x, y) + \lambda^2 a(y, x) + \lambda |\lambda|^2 a(y, y)$, 分别代入 $\lambda = \pm 1, \pm i$ 即得结论.

- ▷ § 1.6.5 设 M 是 Hilbert 空间 \mathcal{Z} 的子集, 求证: $(M^{\perp})^{\perp} = \overline{\operatorname{span} M}$.

证明: 一方面 $\forall x \in M^{\perp} \Longrightarrow x \perp M \Longrightarrow x \perp \operatorname{span} M \Longrightarrow x \perp \overline{\operatorname{span} M} \Longrightarrow x \in (\overline{\operatorname{span} M})^{\perp},$ 即 $M^{\perp} \subset (\overline{\operatorname{span} M})^{\perp},$ 另一方面 $M \subset \overline{\operatorname{span} M} \Longrightarrow M^{\perp} \supset (\overline{\operatorname{span} M})^{\perp},$ 于是 $M^{\perp} = (\overline{\operatorname{span} M})^{\perp}, (M^{\perp})^{\perp} = ((\overline{\operatorname{span} M})^{\perp})^{\perp}.$

 $\forall x \in \overline{\operatorname{span} M} \implies x \perp (\overline{\operatorname{span} M})^{\perp} \implies x \in ((\overline{\operatorname{span} M})^{\perp})^{\perp}, \quad \operatorname{pr} \overline{\operatorname{span} M} \subset ((\overline{\operatorname{span} M})^{\perp})^{\perp}. \quad \exists y \in ((\overline{\operatorname{span} M})^{\perp})^{\perp} \perp \exists y \notin \overline{\operatorname{span} M}, \quad \operatorname{aff} \overline{\operatorname{span} M} \neq \operatorname{Hilbert}$ 空间 \mathcal{L} 的闭线性子空间, y 存在唯一正交分解: $y = m + m^{\perp}, \quad \operatorname{pr} m \in \overline{\operatorname{span} M}, \quad \operatorname{m}^{\perp} \in (\overline{\operatorname{span} M})^{\perp}. \quad \operatorname{aff} y = y - m \in ((\overline{\operatorname{span} M})^{\perp})^{\perp}, \quad \operatorname{ff} m^{\perp} = y - m \in ((\overline{\operatorname{span} M})^{\perp})^{\perp}, \quad \operatorname{ff} m^{\perp} \in ((\overline{\operatorname{span} M})^{\perp})^{\perp}) \cap (\overline{\operatorname{span} M})^{\perp}, \quad \operatorname{m}^{\perp} = \theta, \quad \operatorname{span} M \in \overline{\operatorname{span} M}, \quad \operatorname{ff} \in \overline{\operatorname{span} M} = ((\overline{\operatorname{span} M})^{\perp})^{\perp}.$

综上有
$$(M^{\perp})^{\perp} = \overline{\operatorname{span} M}$$
. □

 \triangleright § 1.6.9 设 $\{e_n\}_1^\infty$, $\{f_n\}_1^\infty$ 是 Hilbert 空间 $\mathcal X$ 中的两个正交规范集, 满足条件

$$\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < 1.$$

求证: $\{e_n\}$ 和 $\{f_n\}$ 两者中一个完备蕴含另一个完备.

证明: 不妨设 $\{e_n\}$ 完备, 假设 $\{f_n\}$ 不完备, 即 $\exists f \neq \theta$, 使得 $f \perp \{f_n\}$.

$$||f||^{2} = \sum_{n=1}^{\infty} |(f, e_{n})|^{2} = \sum_{n=1}^{\infty} |(f, e_{n}) - (f, f_{n})|^{2} = \sum_{n=1}^{\infty} |(f, e_{n} - f_{n})|^{2}$$

$$\leq \sum_{n=1}^{\infty} ||f||^{2} ||e_{n} - f_{n}||^{2} = ||f||^{2} \sum_{n=1}^{\infty} ||e_{n} - f_{n}||^{2} < ||f||^{2},$$

矛盾. 因此 {f_n} 也完备.