Generated on 2025-04-15 15:09:39 by gEcon version 1.2.1 (2023-01-18)

Model name: NK\_RS

## 1 CONSUMER

### 1.1 Optimisation problem

$$\max_{C_t, K_t^s, I_t, B_t, L_t^s} U_t = \beta E_t \left[ U_{t+1} \right] + (1 - \eta)^{-1} \left( C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta}$$
(1.1)

s.t.:

$$C_t + I_t + B_t R_t^{-1} = D \dot{w}_t - T_t + B_{t-1} \pi_t^{-1} + K_{t-1}^{s} r_t + L_t^{s} W_t \quad (\lambda_t)$$

$$\tag{1.2}$$

$$K_t^{\rm s} = I_t + K_{t-1}^{\rm s} (1 - \delta) \quad (q_t)$$
 (1.3)

#### 1.2 Identities

$$Q_t = \lambda_t^{-1} q_t \tag{1.4}$$

1.3 First order conditions

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left( C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$-q_t + \beta \left( (1 - \delta) \, \mathcal{E}_t \left[ q_{t+1} \right] + \mathcal{E}_t \left[ \lambda_{t+1} r_{t+1} \right] \right) = 0 \quad (K_t^{\mathrm{s}})$$
(1.6)

$$-\lambda_t + q_t = 0 \quad (I_t) \tag{1.7}$$

$$\beta E_t \left[ \lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \quad (B_t)$$
(1.8)

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left( C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.9)

## 2 FIRM

## 2.1 Optimisation problem

$$\max_{K_t^{\rm d}, L_t^{\rm d}} t t_t^{\rm j} = -r_t K_t^{\rm d} - L_t^{\rm d} W_t \tag{2.1}$$

s.t.:

$$Y_t^{\mathbf{j}} = Z_t K_t^{\mathbf{d}^{\alpha}} L_t^{\mathbf{d}^{1-\alpha}} \quad (mc_t) \tag{2.2}$$

#### 2.2 First order conditions

$$-r_t + \alpha m c_t Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad \left(K_t^{\mathrm{d}}\right) \tag{2.3}$$

$$-W_t + mc_t Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.4)$$

#### 3 PRICE SETTING PROBLEM

#### 3.1 Identities

$$g_t^1 = \eta_t^{\rm p} + g_t^2 (1 + \lambda^{\rm p}) \tag{3.1}$$

$$g_t^1 = \lambda_t \pi_t^* Y_t + \beta \xi^{\mathbf{p}} \pi_t^* \mathbf{E}_t \left[ g_{t+1}^1 \pi_{t+1}^{*-1} \left( \pi_{t+1}^{-1} \pi_t^{\gamma^{\mathbf{p}}} \right)^{-\lambda^{\mathbf{p}-1}} \right]$$
(3.2)

$$g_t^2 = \beta \xi^{\rm p} E_t \left[ g_{t+1}^2 \left( \pi_{t+1}^{-1} \pi_t^{\gamma^{\rm p}} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} \right] + \lambda_t m c_t Y_t$$
(3.3)

#### 4 PRICE EVOLUTION

4.1 Identities

2

$$1 = \xi^{p} \left( \pi_{t}^{-1} \pi_{t-1} \gamma^{p} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}}$$

$$\tag{4.1}$$

## 5 PRODUCT AGGREGATION

#### 5.1 Identities

$$Y_t^{\rm s} = Y_t^{\rm j} \tag{5.1}$$

$$\nu_t^{\rm p} = (1 - \xi^{\rm p}) \, \pi_t^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{t-1}^{\rm p} \left( \pi_t^{-1} \pi_{t-1} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})}$$

$$(5.2)$$

$$\nu_t^{\mathrm{p}} Y_t = Y_t^{\mathrm{s}} \tag{5.3}$$

## 6 EQUILIBRIUM

6.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{6.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{6.2}$$

$$B_t = 0 (6.3)$$

$$D\dot{w}_t = Y_t - L_t^{\mathrm{d}} W_t - r_t K_t^{\mathrm{d}} \tag{6.4}$$

#### 7 MONETARY POLICY AUTHORITY

7.1 Identities

$$abbr^{\pi} + \log\left(R_{ss}^{-1}R_{t}\right) = \eta_{t}^{R} + \rho\log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log\pi_{t}^{obj} + r^{\pi}\left(-\log\pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right)$$
(7.1)

$$\log \pi_t^{\text{obj}} = \eta_t^{\pi} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{perical}_t^{\pi^{\text{obj}}} \left( 1 - \rho^{\pi^{\text{bar}}} \right)$$

$$(7.2)$$

## 8 ENDOGENOUS REGIME PROB

8.1 Identities

$$\log \inf_{t} \inf_{t} = -\log \operatorname{pericul}_{t}^{\pi^{\text{obj}}} + \log \pi_{t} \tag{8.1}$$

$$pL_t = \left(1 + e^{pLss - \kappa \log \inf_t flation_t^{\text{gap}}}\right)^{-1} \tag{8.2}$$

$$pH_t = 1 - pL_t \tag{8.3}$$

$$\log percieved_t^{\pi^{\text{obj}}} = pH_t \log \pi^{\text{H}} + pL_t \left(\log percieved_{t-1}^{\pi^{\text{obj}}} + \tau \log inflation_t^{\text{gap}}\right)$$
(8.4)

## 9 GOVERNMENT

9.1 Identities

$$G_t = G^{\text{bar}} \epsilon_t^{G} \tag{9.1}$$

$$G_t + B_{t-1}\pi_t^{-1} = T_t + B_t R_t^{-1} \tag{9.2}$$

### 10 GOVERNMENT SPENDING SHOCK

## 10.1 Identities

$$\log \epsilon_t^{G} = \eta_t^{G} + \rho^{G} \log \epsilon_{t-1}^{G} \tag{10.1}$$

#### 11 TECHNOLOGY

#### 11.1 Identities

$$Z_t = e^{\epsilon_t^Z + \rho^a \log Z_{t-1}} \tag{11.1}$$

## 12 Equilibrium relationships (after reduction)

$$-B_t = 0 ag{12.1}$$

$$-\lambda_t + q_t = 0 \tag{12.2}$$

$$-\lambda_t + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left( C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0$$
(12.3)

$$-pL_t + \left(1 + e^{pLss - \kappa \log \inf totion_t^{\text{gap}}}\right)^{-1} = 0 \tag{12.4}$$

$$-q_t + \beta \left( (1 - \delta) \, \mathcal{E}_t \left[ q_{t+1} \right] + \mathcal{E}_t \left[ \lambda_{t+1} r_{t+1} \right] \right) = 0 \tag{12.5}$$

$$-r_t + \alpha m c_t Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s1-\alpha} = 0$$
 (12.6)

$$-G_t + G^{\text{bar}} \epsilon_t^{G} = 0 \tag{12.7}$$

$$-Q_t + \lambda_t^{-1} q_t = 0 (12.8)$$

$$-W_t + mc_t Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
(12.9)

$$-Y_t^{j} + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 {(12.10)}$$

$$Y_t^{j} - Y_t^{s} = 0 (12.11)$$

$$Y_t^{\rm s} - \nu_t^{\rm p} Y_t = 0 (12.12)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \rho^{\mathbf{a}} \log Z_{t-1}} = 0 \tag{12.13}$$

$$\beta E_t \left[ \lambda_{t+1} \pi_{t+1}^{-1} \right] - \lambda_t R_t^{-1} = 0 \tag{12.14}$$

$$\lambda_t W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left( C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0$$
(12.15)

#

$$-1 + \xi^{p} \left( \pi_{t}^{-1} \pi_{t-1}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{t}^{\star - \lambda^{p-1}} = 0$$
 (12.16)

$$1 - pH_t - pL_t = 0 (12.17)$$

$$\eta_t^{\rm p} - g_t^1 + g_t^2 (1 + \lambda^{\rm p}) = 0 \tag{12.18}$$

$$\eta_t^{\mathcal{G}} - \log \epsilon_t^{\mathcal{G}} + \rho^{\mathcal{G}} \log \epsilon_{t-1}^{\mathcal{G}} = 0 \tag{12.19}$$

$$-g_t^1 + \lambda_t \pi_t^* Y_t + \beta \xi^p \pi_t^* \mathcal{E}_t \left[ g_{t+1}^1 \pi_{t+1}^{*-1} \left( \pi_{t+1}^{-1} \pi_t^{\gamma^p} \right)^{-\lambda^{p-1}} \right] = 0$$
 (12.20)

$$-g_t^2 + \beta \xi^{P} E_t \left[ g_{t+1}^2 \left( \pi_{t+1}^{-1} \pi_t^{\gamma^{P}} \right)^{-\lambda^{P-1} (1+\lambda^{P})} \right] + \lambda_t m c_t Y_t = 0$$
 (12.21)

$$-\nu_t^{\mathbf{p}} + (1 - \xi^{\mathbf{p}}) \pi_t^{\star - \lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} + \xi^{\mathbf{p}} \nu_{t-1}^{\mathbf{p}} \left( \pi_t^{-1} \pi_{t-1} \gamma^{\mathbf{p}} \right)^{-\lambda^{\mathbf{p} - 1}(1 + \lambda^{\mathbf{p}})} = 0$$
(12.22)

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (12.23)$$

$$U_t - \beta E_t \left[ U_{t+1} \right] - (1 - \eta)^{-1} \left( C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} = 0$$
(12.24)

$$-\log \inf_t dtim_t^{\text{gap}} - \log \operatorname{period}_t^{\pi^{\text{obj}}} + \log \pi_t = 0 \tag{12.25}$$

$$-\log \operatorname{percieved}_{t}^{\pi^{\operatorname{obj}}} + pH_{t}\log \pi^{\operatorname{H}} + pL_{t}\left(\log \operatorname{percieved}_{t-1}^{\pi^{\operatorname{obj}}} + \tau \log \operatorname{inflation}_{t}^{\operatorname{gap}}\right) = 0 \tag{12.26}$$

$$\eta_t^{\pi} - \log \pi_t^{\text{obj}} + \rho^{\pi^{\text{bar}}} \log \pi_{t-1}^{\text{obj}} + \log \operatorname{perice} d_t^{\pi^{\text{obj}}} \left( 1 - \rho^{\pi^{\text{bar}}} \right) = 0 \tag{12.27}$$

$$-D\dot{w}_t + Y_t - K_{t-1}^{s} r_t - L_t^{s} W_t = 0 (12.28)$$

$$-G_t + T_t - B_{t-1}\pi_t^{-1} + B_t R_t^{-1} = 0 (12.29)$$

$$-\alpha h r^{\pi} + \eta_{t}^{R} - \log\left(R_{ss}^{-1}R_{t}\right) + \rho \log\left(R_{ss}^{-1}R_{t-1}\right) + (1-\rho)\left(\log \pi_{t}^{obj} + r^{\pi}\left(-\log \pi_{t}^{obj} + \log\left(\pi_{ss}^{-1}\pi_{t-1}\right)\right) + r^{Y}\log\left(Y_{ss}^{-1}Y_{t}\right)\right) = 0$$

$$(12.30)$$

$$-C_t + D\dot{w}_t - I_t - T_t + B_{t-1}\pi_t^{-1} + K_{t-1}^s r_t - B_t R_t^{-1} + L_t^s W_t = 0$$
(12.31)

## 13 Steady state relationships (after reduction)

$$-B_{\rm ss} = 0 \tag{13.1}$$

$$-\lambda_{\rm ss} + q_{\rm ss} = 0 \tag{13.2}$$

$$-\lambda_{\rm ss} + \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left( C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \right)^{-\eta} = 0 \tag{13.3}$$

$$-pL_{\rm ss} + \left(1 + e^{pLss - \kappa \log \inf lation_{\rm ss}^{\rm gap}}\right)^{-1} = 0 \tag{13.4}$$

$$-q_{\rm ss} + \beta \left(\lambda_{\rm ss} r_{\rm ss} + q_{\rm ss} \left(1 - \delta\right)\right) = 0 \tag{13.5}$$

$$-r_{\rm ss} + \alpha m c_{\rm ss} Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{13.6}$$

$$-G_{\rm ss} + G^{\rm bar} \epsilon_{\rm ss}^{\rm G} = 0 \tag{13.7}$$

$$-Q_{ss} + \lambda_{ss}^{-1} q_{ss} = 0 ag{13.8}$$

$$-W_{\rm ss} + mc_{\rm ss}Z_{\rm ss}(1-\alpha)K_{\rm ss}^{\rm s}{}^{\alpha}L_{\rm ss}^{\rm s}{}^{-\alpha} = 0$$
(13.9)

$$-Y_{ss}^{j} + Z_{ss}K_{ss}^{s} L_{ss}^{\alpha} = 0$$
 (13.10)

$$Y_{\rm ss}^{\rm j} - Y_{\rm ss}^{\rm s} = 0 \tag{13.11}$$

$$Y_{\rm ss}^{\rm s} - \nu_{\rm ss}^{\rm p} Y_{\rm ss} = 0 \tag{13.12}$$

$$-Z_{\rm ss} + e^{\rho^{\rm a} \log Z_{\rm ss}} = 0 {13.13}$$

$$-\lambda_{\rm ss}R_{\rm ss}^{-1} + \beta\lambda_{\rm ss}\pi_{\rm ss}^{-1} = 0 \tag{13.14}$$

$$\lambda_{\rm ss} W_{\rm ss} + (-1 + \mu) C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{-\mu} \left( C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{-\eta} = 0 \tag{13.15}$$

$$-1 + \xi^{p} \left( \pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} + (1 - \xi^{p}) \pi_{ss}^{\star - \lambda^{p-1}} = 0$$
(13.16)

$$1 - pH_{ss} - pL_{ss} = 0 (13.17)$$

$$-g_{ss}^{1} + g_{ss}^{2} (1 + \lambda^{p}) = 0$$
 (13.18)

$$-\log \epsilon_{\rm ss}^{\rm G} + \rho^{\rm G} \log \epsilon_{\rm ss}^{\rm G} = 0 \tag{13.19}$$

$$-g_{ss}^{1} + \lambda_{ss} \pi_{ss}^{\star} Y_{ss} + \beta \xi^{p} g_{ss}^{1} \left( \pi_{ss}^{-1} \pi_{ss}^{\gamma^{p}} \right)^{-\lambda^{p-1}} = 0$$
(13.20)

$$-g_{\rm ss}^2 + \lambda_{\rm ss} m c_{\rm ss} Y_{\rm ss} + \beta \xi^{\rm p} g_{\rm ss}^2 \left( \pi_{\rm ss}^{-1} \pi_{\rm ss} \gamma^{\rm p} \right)^{-\lambda^{\rm p-1} (1+\lambda^{\rm p})} = 0$$
(13.21)

$$-\nu_{\rm ss}^{\rm p} + (1 - \xi^{\rm p}) \,\pi_{\rm ss}^{\star - \lambda^{\rm p-1}(1 + \lambda^{\rm p})} + \xi^{\rm p} \nu_{\rm ss}^{\rm p} \left(\pi_{\rm ss}^{-1} \pi_{\rm ss}^{\gamma^{\rm p}}\right)^{-\lambda^{\rm p-1}(1 + \lambda^{\rm p})} = 0 \tag{13.22}$$

6

$$I_{ss} - K_{ss}^{s} + K_{ss}^{s} (1 - \delta) = 0 \tag{13.23}$$

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left( C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{13.24}$$

$$-\log \inf_{\rm ss} -\log \operatorname{percent}_{\rm ss}^{\pi^{\rm obj}} + \log \pi_{\rm ss} = 0 \tag{13.25}$$

$$-\log \textit{percicued}_{\rm ss}^{\pi^{\rm obj}} + \textit{pH}_{\rm ss}\log \pi^{\rm H} + \textit{pL}_{\rm ss}\left(\log \textit{percicued}_{\rm ss}^{\pi^{\rm obj}} + \tau \log \textit{inflation}_{\rm ss}^{\rm gap}\right) = 0 \tag{13.26}$$

$$-\log \pi_{\rm ss}^{\rm obj} + \rho^{\pi^{\rm bar}} \log \pi_{\rm ss}^{\rm obj} + \log \operatorname{periced}_{\rm ss}^{\pi^{\rm obj}} \left(1 - \rho^{\pi^{\rm bar}}\right) = 0 \tag{13.27}$$

$$-D\dot{w}_{\rm ss} + Y_{\rm ss} - r_{\rm ss}K_{\rm ss}^{\rm s} - L_{\rm ss}^{\rm s}W_{\rm ss} = 0 \tag{13.28}$$

$$-G_{\rm ss} + T_{\rm ss} - \pi_{\rm ss}^{-1} B_{\rm ss} + B_{\rm ss} R_{\rm ss}^{-1} = 0 \tag{13.29}$$

$$-\alpha k b r^{\pi} + (1 - \rho) \left( \log \pi_{ss}^{obj} - r^{\pi} \log \pi_{ss}^{obj} \right) = 0$$

$$(13.30)$$

$$-C_{\rm ss} + D\dot{w}_{\rm ss} - I_{\rm ss} - T_{\rm ss} + \pi_{\rm ss}^{-1}B_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} - B_{\rm ss}R_{\rm ss}^{-1} + L_{\rm ss}^{\rm s}W_{\rm ss} = 0$$
(13.31)

## 14 Calibrating equations

$$-0.18 + G_{\rm ss}Y_{\rm ss}^{-1} = 0 (14.1)$$

$$-0.05 + pL_{ss} = 0 ag{14.2}$$

$$\pi_{\rm ss} - \pi_{\rm ss}^{\rm obj} = 0 \tag{14.3}$$

## 15 Parameter settings

 $\neg$ 

$$\alpha = 0.3 \tag{15.1}$$

$$\beta = 0.99 \tag{15.2}$$

$$\delta = 0.025 \tag{15.3}$$

$$\eta = 2 \tag{15.4}$$

$$\gamma^{\rm p} = 0.469$$
 (15.5)

$$\kappa = 1$$
(15.6)

$$\lambda^{\mathbf{p}} = 0.5 \tag{15.7}$$

$$\mu = 0.3 \tag{15.8}$$

$$\pi^{\mathrm{H}} = 1 \tag{15.9}$$

$$r^{\pi} = 1.684 \tag{15.10}$$

$$r^{Y} = 0.099 (15.11)$$

$$\rho = 0.961 \tag{15.12}$$

$$\rho^{\pi^{\text{bar}}} = 0.924 \tag{15.13}$$

$$\rho^{G} = 0.949 \tag{15.14}$$

$$\rho^{\rm a} = 0.823 \tag{15.15}$$

$$\tau = 0.085 \tag{15.16}$$

$$\xi^{\rm p} = 0.908 \tag{15.17}$$

## 16 Steady-state values

|                                           | Steady-state value |
|-------------------------------------------|--------------------|
| $\epsilon^{ m G}$                         | 1                  |
| $g^1$                                     | 7.3514             |
| $g^2$                                     | 4.9009             |
| $inflation^{ m gap}$                      | 1                  |
| $\lambda$                                 | 1.5467             |
| mc                                        | 0.6667             |
| $ u^{ m p}$                               | 1                  |
| $\mathit{percieved}^{\pi^{\mathrm{obj}}}$ | 1                  |
| $\pi$                                     | 1                  |
| $\pi^{\star}$                             | 1                  |
| $\pi^{ m obj}$                            | 1                  |
| $p\!H$                                    | 0.95               |
| pL                                        | 0.05               |
| q                                         | 1.5467             |
| r                                         | 0.0351             |
| B                                         | 0                  |
| C                                         | 0.3255             |
| Dw                                        | 0.1601             |
| G                                         | 0.0865             |
| I                                         | 0.0684             |
| $K^{ m s}$                                | 2.7374             |
| $L^{ m s}$                                | 0.2279             |
| Q                                         | 1                  |
| R                                         | 1.0101             |
| T                                         | 0.0865             |
| U                                         | -167.8256          |
| W                                         | 0.9837             |
| $Y_{\cdot}$                               | 0.4804             |
| $Y^{\mathrm{j}}$                          | 0.4804             |
| $Y^{ m s}$                                | 0.4804             |
| Z                                         | 1                  |

# 17 The solution of the 1st order perturbation

## Matrix P

# Matrix Q

|                                  | $\epsilon^{ m Z}$ | $\eta^{ m p}$ | $\eta^{ m R}$ | $\eta^{\pi}$ | $\eta^{ m G}$ |
|----------------------------------|-------------------|---------------|---------------|--------------|---------------|
| $\epsilon^{ m G}$                | ( 0               | 0             | 0             | 0            | 1             |
| $ u^{ m p}$                      | 0                 | 0             | 0             | 0            | 0             |
| $percieved^{\pi^{\mathrm{obj}}}$ | -0.0003           | 0.0001        | -0.0049       | 0.0016       | 0             |
| $\pi$                            | -0.0783           | 0.0121        | -1.1605       | 0.3716       | -0.0001       |
| $\pi^{ m obj}$                   | 0                 | 0             | -0.0004       | 1.0001       | 0             |
| B                                | 0                 | 0             | 0             | 0            | 0             |
| $K^{\mathrm{s}}$                 | -0.4903           | -0.0064       | -15.7156      | 3.7977       | 0.0055        |
| R                                | -0.0133           | -0.0002       | 0.5686        | 0.0777       | 0.0007        |
| Z                                | \ 1               | 0             | 0             | 0            | 0 /           |

## Matrix R

|                        | $\epsilon_{t-1}^{\mathrm{G}}$ | $ u_{t-1}^{\mathrm{p}}$ | $\mathit{percieved}_{t-1}^{\pi^{\mathrm{obj}}}$ | $\pi_{t-1}$ | $\pi^{	ext{obj}}_{t-1}$ | $B_{t-1}$ | $K_{t-1}^{\mathrm{s}}$ | $R_{t-1}$ | $Z_{t-1}$ |
|------------------------|-------------------------------|-------------------------|-------------------------------------------------|-------------|-------------------------|-----------|------------------------|-----------|-----------|
| $g_t^1$                | $\int 0.1474$                 | 0.9169                  | 0.0235                                          | -1.976      | 5.4626                  | 0         | -0.8828                | -15.6845  | -0.8633   |
| $g_t^2$                | 0.1474                        | 0.9169                  | 0.0235                                          | -1.976      | 5.4626                  | 0         | -0.8828                | -15.6845  | -0.8633   |
| $inflation_t^{ m gap}$ | -0.0001                       | 0.0547                  | -0.0483                                         | 0.3334      | 0.3419                  | 0         | -0.0398                | -1.1105   | -0.0642   |
| $\lambda_t$            | 0.118                         | 0.1357                  | -0.0094                                         | 0.804       | -2.192                  | 0         | -0.2745                | 9.2064    | -0.0383   |
| $mc_t$                 | 0.086                         | 4.973                   | 0.123                                           | -10.2094    | 28.5968                 | 0         | -4.1819                | -122.7528 | -4.7432   |
| $\pi_t^\star$          | -0.0012                       | 0.5422                  | 0.0146                                          | -1.3243     | 3.3889                  | 0         | -0.3942                | -11.0072  | -0.6364   |
| $p\!H_t$               | 0                             | -0.0027                 | 0.0024                                          | -0.0167     | -0.0171                 | 0         | 0.002                  | 0.0555    | 0.0032    |
| $pL_t$                 | -0.0001                       | 0.052                   | -0.0459                                         | 0.3167      | 0.3248                  | 0         | -0.0378                | -1.055    | -0.061    |
| $q_t$                  | 0.118                         | 0.1357                  | -0.0094                                         | 0.804       | -2.192                  | 0         | -0.2745                | 9.2064    | -0.0383   |
| $r_t$                  | 0.2501                        | 9.6861                  | 0.2305                                          | -19.112     | 53.5762                 | 0         | -8.6812                | -230.1222 | -7.5864   |
| $C_t$                  | -0.0535                       | 0.9657                  | 0.0317                                          | -2.6399     | 7.358                   | 0         | -0.6515                | -31.4613  | -0.803    |
| $Di\!w_t$              | -0.008                        | -7.957                  | -0.1386                                         | 11.5161     | -32.2143                | 0         | 4.8645                 | 138.1362  | 6.6432    |
| $G_t$                  | 0.949                         | 0                       | 0                                               | 0           | 0                       | 0         | 0                      | 0         | 0         |
| $I_t$                  | 0.2069                        | 22.1186                 | 0.6037                                          | -49.9414    | 140.3617                | 0         | -21.4666               | -604.1071 | -16.1403  |
| $L_t^{ m s}$           | 0.2344                        | 6.7329                  | 0.1535                                          | -12.718     | 35.6848                 | 0         | -5.4276                | -153.3848 | -5.2374   |
| $Q_t$                  | 0                             | 0                       | 0                                               | 0           | 0                       | 0         | 0                      | 0         | 0         |
| $T_t$                  | 0.949                         | 0                       | 0                                               | 0           | 0                       | 11.5637   | 0                      | 0         | 0         |
| $U_t$                  | -0.0107                       | -0.0272                 | 0.0003                                          | -0.0234     | 0.0592                  | 0         | 0.0226                 | -0.1954   | 0.0162    |
| $W_t$                  | 0.0157                        | 2.9532                  | 0.077                                           | -6.394      | 17.8914                 | 0         | -2.2536                | -76.7373  | -2.349    |
| $Y_{t_{\cdot}}$        | 0.1641                        | 3.805                   | 0.1074                                          | -8.9026     | 24.9794                 | 0         | -3.4993                | -107.3694 | -2.8432   |
| $Y_t^{ m j}$           | 0.1641                        | 4.713                   | 0.1074                                          | -8.9026     | 24.9794                 | 0         | -3.4993                | -107.3694 | -2.8432   |
| $Y_t^{\mathrm{s}}$     | 0.1641                        | 4.713                   | 0.1074                                          | -8.9026     | 24.9794                 | 0         | -3.4993                | -107.3694 | -2.8432 / |

## $\mathbf{Matrix}\ S$

|                      | $\epsilon^{ m Z}$ | $\eta^{ m p}$ | $\eta^{ m R}$ | $\eta^{\pi}$ | $\eta^{ m G}$ |
|----------------------|-------------------|---------------|---------------|--------------|---------------|
| $g^1$                | / -1.049          | 0.1095        | -16.321       | 5.9119       | 0.1553        |
| $g^2$                | -1.049            | -0.0266       | -16.321       | 5.9119       | 0.1553        |
| $inflation^{ m gap}$ | -0.078            | 0.012         | -1.1556       | 0.37         | -0.0001       |
| $\lambda$            | -0.0465           | 0.0051        | 9.5801        | -2.3722      | 0.1243        |
| mc                   | -5.7633           | -0.0535       | -127.7344     | 30.949       | 0.0906        |
| $\pi^{\star}$        | -0.7732           | 0.1192        | -11.4539      | 3.6676       | -0.0012       |
| pH                   | 0.0039            | -0.0006       | 0.0578        | -0.0185      | 0             |
| pL                   | -0.0741           | 0.0114        | -1.0978       | 0.3515       | -0.0001       |
| q                    | -0.0465           | 0.0051        | 9.5801        | -2.3722      | 0.1243        |
| r                    | -9.218            | -0.0995       | -239.4611     | 57.9829      | 0.2635        |
| C                    | -0.9757           | -0.0144       | -32.7381      | 7.9632       | -0.0564       |
| Dw                   | 8.072             | 0.061         | 143.7421      | -34.864      | -0.0084       |
| G                    | 0                 | 0             | 0             | 0            | 1             |
| I                    | -19.6116          | -0.2544       | -628.6234     | 151.9066     | 0.218         |
| $L^{\mathrm{s}}$     | -6.3638           | -0.0657       | -159.6096     | 38.6199      | 0.247         |
| Q                    | 0                 | 0             | 0             | 0            | 0             |
| T                    | 0                 | 0             | 0             | 0            | 1             |
| U                    | 0.0197            | -0.0003       | -0.2033       | 0.0641       | -0.0113       |
| W                    | -2.8542           | -0.0338       | -79.8515      | 19.363       | 0.0165        |
| Y                    | -3.4547           | -0.046        | -111.7267     | 27.034       | 0.1729        |
| $Y^{ m j}$           | -3.4547           | -0.046        | -111.7267     | 27.034       | 0.1729        |
| $Y^{\mathrm{s}}$     | $\sqrt{-3.4547}$  | -0.046        | -111.7267     | 27.034       | 0.1729 /      |

## 18 Model statistics

## 18.1 Basic statistics

|                                           | Steady-state value | Std. dev. | Variance    | Loglin |
|-------------------------------------------|--------------------|-----------|-------------|--------|
| $\epsilon^{ m G}$                         | 1                  | 1.3033    | 1.6986      | Y      |
| $g^1$                                     | 7.3514             | 20.4293   | 417.3582    | Y      |
| $g^2$                                     | 4.9009             | 20.4291   | 417.3479    | Y      |
| $inflation^{ m gap}$                      | 1                  | 1.2239    | 1.4979      | Y      |
| $\lambda$                                 | 1.5467             | 12.2835   | 150.8847    | Y      |
| mc                                        | 0.6667             | 127.9284  | 16365.6722  | Y      |
| $ u^{ m p}$                               | 1                  | 0         | 0           | Y      |
| $\mathit{percieved}^{\pi^{\mathrm{obj}}}$ | 1                  | 0.0053    | 0           | Y      |
| $\pi$                                     | 1                  | 1.2291    | 1.5108      | Y      |
| $\pi^{\star}$                             | 1                  | 11.8882   | 141.3285    | Y      |
| $\pi^{ m obj}$                            | 1                  | 1.2961    | 1.6798      | Y      |
| $p\!H$                                    | 0.95               | 0.0612    | 0.0037      | Y      |
| pL                                        | 0.05               | 1.1627    | 1.3518      | Y      |
| q                                         | 1.5467             | 12.2835   | 150.8847    | Y      |
| r                                         | 0.0351             | 246.1829  | 60606.0446  | Y      |
| B                                         | 0                  | 0         | 0           | N      |
| C                                         | 0.3255             | 30.8502   | 951.733     | Y      |
| Div                                       | 0.1601             | 145.1801  | 21077.2735  | Y      |
| G                                         | 0.0865             | 1.3033    | 1.6986      | Y      |
| I                                         | 0.0684             | 635.6958  | 404109.1599 | Y      |
| $K^{ m s}$                                | 2.7374             | 20.0074   | 400.2969    | Y      |
| $L^{ m s}$                                | 0.2279             | 161.275   | 26009.6363  | Y      |
| Q                                         | 1                  | 0         | 0           | Y      |
| R                                         | 1.0101             | 0.6891    | 0.4748      | Y      |
| T                                         | 0.0865             | 1.3033    | 1.6986      | Y      |
| U                                         | -167.8256          | 0.5475    | 0.2997      | Y      |
| W                                         | 0.9837             | 77.7172   | 6039.9577   | Y      |
| Y                                         | 0.4804             | 110.7744  | 12270.972   | Y      |
| $Y^{ m j}$                                | 0.4804             | 110.7744  | 12270.972   | Y      |
| $Y^{ m s}$                                | 0.4804             | 110.7744  | 12270.972   | Y      |
| Z                                         | 1                  | 1.227     | 1.5056      | Y      |

## 18.2 Correlation matrix

|                                           | $\epsilon^{\mathrm{G}}$ | $g^1$ | $g^2$ | inflation gap | $\lambda$ | mc     | $percieved^{\pi^{\mathrm{obj}}}$ | $\pi$  | $\pi^{\star}$ | $\pi^{\mathrm{obj}}$ | $p\!H$ | pL     |     |
|-------------------------------------------|-------------------------|-------|-------|---------------|-----------|--------|----------------------------------|--------|---------------|----------------------|--------|--------|-----|
| $\epsilon^{ m G}$                         | 1                       | 0.009 | 0.009 | -0.001        | 0.013     | 0      | -0.001                           | -0.001 | -0.001        | 0                    | 0.001  | -0.001 | 0.  |
| $g^1$                                     |                         | 1     | 1     | 0.771         | -0.134    | 0.94   | 0.742                            | 0.771  | 0.958         | 0.148                | -0.771 | 0.771  | -0. |
| $g^1 \ g^2$                               |                         |       | 1     | 0.771         | -0.134    | 0.94   | 0.741                            | 0.771  | 0.958         | 0.148                | -0.771 | 0.771  | -0. |
| $\mathit{inflation}^{\mathrm{gap}}$       |                         |       |       | 1             | -0.626    | 0.899  | 0.999                            | 1      | 0.888         | 0.284                | -1     | 1      | -0. |
| $\lambda$                                 |                         |       |       |               | 1         | -0.445 | -0.641                           | -0.626 | -0.411        | -0.244               | 0.626  | -0.626 |     |
| mc                                        |                         |       |       |               |           | 1      | 0.878                            | 0.899  | 0.994         | 0.109                | -0.899 | 0.899  | -0. |
| $\mathit{percieved}^{\pi^{\mathrm{obj}}}$ |                         |       |       |               |           |        | 1                                | 0.999  | 0.865         | 0.29                 | -0.999 | 0.999  | -0. |
| $\pi$                                     |                         |       |       |               |           |        |                                  | 1      | 0.888         | 0.284                | -1     | 1      | -0. |
| $\pi^{\star}$                             |                         |       |       |               |           |        |                                  |        | 1             | 0.189                | -0.888 | 0.888  | -0. |
| $\pi^{ m obj}$                            |                         |       |       |               |           |        |                                  |        |               | 1                    | -0.284 | 0.284  | -0. |
| $p\!H$                                    |                         |       |       |               |           |        |                                  |        |               |                      | 1      | -1     | 0.  |
| $p\!L$                                    |                         |       |       |               |           |        |                                  |        |               |                      |        | 1      | -0. |
| q                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| r                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| C                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| Div                                       |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| G                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| I                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $K^{ m s}$                                |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $L^{\mathrm{s}}$                          |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| R                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $T \ U$                                   |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| W                                         |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $\stackrel{vv}{Y}$                        |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $Y^{ m j}$                                |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $Y^{ m s}$                                |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
| $\stackrel{\scriptstyle I}{Z}$            |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |
|                                           |                         |       |       |               |           |        |                                  |        |               |                      |        |        |     |

# 18.3 Cross correlations with the reference variable $(\pi)$

|                                            | $\sigma[\cdot]$ rel. to $\sigma[\pi]$ | $\pi_{t-5}$ | $\pi_{t-4}$ | $\pi_{t-3}$ | $\pi_{t-2}$ | $\pi_{t-1}$ | $\pi_t$ | $\pi_{t+1}$ | $\pi_{t+2}$ | $\pi_{t+3}$ | $\pi_{t+4}$ | $  \pi_{t+}$ |
|--------------------------------------------|---------------------------------------|-------------|-------------|-------------|-------------|-------------|---------|-------------|-------------|-------------|-------------|--------------|
| $\epsilon_t^{	ext{G}}$                     | 1.06                                  | 0           | -0.001      | -0.001      | -0.001      | -0.002      | -0.001  | -0.001      | 0           | 0           | 0           | 0            |
| $egin{array}{c} g_t^1 \ g_t^2 \end{array}$ | 16.621                                | 0.015       | 0.037       | 0.075       | 0.152       | 0.329       | 0.771   | -0.358      | -0.245      | -0.186      | -0.146      | -0.1         |
| $g_t^2$                                    | 16.621                                | 0.015       | 0.037       | 0.075       | 0.152       | 0.328       | 0.771   | -0.358      | -0.245      | -0.186      | -0.146      | -0.1         |
| $inflation_t^{ m gap}$                     | 0.996                                 | -0.116      | -0.113      | -0.083      | 0.011       | 0.277       | 1       | 0.277       | 0.011       | -0.083      | -0.113      | -0.1         |
| $\lambda_t$                                | 9.994                                 | 0.276       | 0.32        | 0.342       | 0.301       | 0.081       | -0.626  | -0.476      | -0.367      | -0.278      | -0.204      | -0.1         |
| $mc_t$                                     | 104.079                               | -0.076      | -0.072      | -0.047      | 0.034       | 0.265       | 0.899   | -0.161      | -0.113      | -0.091      | -0.077      | -0.00        |
| $percived_t^{\pi^{	ext{obj}}}$             | 0.004                                 | -0.12       | -0.117      | -0.088      | 0.007       | 0.273       | 0.999   | 0.322       | 0.027       | -0.081      | -0.115      | -0.1         |
| $\pi_t$                                    | 1                                     | -0.116      | -0.113      | -0.083      | 0.011       | 0.277       | 1       | 0.277       | 0.011       | -0.083      | -0.113      | -0.1         |
| $\pi_t^\star$                              | 9.672                                 | -0.066      | -0.059      | -0.031      | 0.051       | 0.277       | 0.888   | -0.196      | -0.121      | -0.09       | -0.075      | -0.00        |
| $\pi_t^\star \\ \pi_t^{	ext{obj}}$         | 1.054                                 | -0.051      | -0.035      | -0.009      | 0.035       | 0.115       | 0.284   | 0.21        | 0.147       | 0.095       | 0.052       | 0.01         |
| $p\!H_t$                                   | 0.05                                  | 0.116       | 0.113       | 0.083       | -0.011      | -0.277      | -1      | -0.277      | -0.011      | 0.083       | 0.113       | 0.11         |
| $p\!L_t$                                   | 0.946                                 | -0.116      | -0.113      | -0.083      | 0.011       | 0.277       | 1       | 0.277       | 0.011       | -0.083      | -0.113      | -0.1         |
| $q_t$                                      | 9.994                                 | 0.276       | 0.32        | 0.342       | 0.301       | 0.081       | -0.626  | -0.476      | -0.367      | -0.278      | -0.204      | -0.1         |
| $r_t$                                      | 200.288                               | -0.058      | -0.051      | -0.024      | 0.056       | 0.278       | 0.881   | -0.2        | -0.143      | -0.113      | -0.094      | -0.0         |
| $C_t$                                      | 25.099                                | -0.142      | -0.151      | -0.137      | -0.057      | 0.199       | 0.933   | 0           | 0.009       | 0.003       | -0.007      | -0.0         |
| $D\!w_t$                                   | 118.115                               | 0.07        | 0.065       | 0.04        | -0.041      | -0.27       | -0.894  | 0.173       | 0.122       | 0.098       | 0.083       | 0.07         |
| $G_t$                                      | 1.06                                  | 0           | -0.001      | -0.001      | -0.001      | -0.002      | -0.001  | -0.001      | 0           | 0           | 0           | 0            |
| $I_t$                                      | 517.186                               | -0.068      | -0.064      | -0.038      | 0.043       | 0.27        | 0.891   | -0.177      | -0.126      | -0.1        | -0.084      | -0.0         |
| $K_t^{ m s}$                               | 16.278                                | -0.275      | -0.319      | -0.341      | -0.299      | -0.077      | 0.633   | 0.477       | 0.365       | 0.276       | 0.202       | 0.1          |
| $L_t^{ m s}$                               | 131.209                               | -0.069      | -0.064      | -0.039      | 0.042       | 0.27        | 0.893   | -0.175      | -0.124      | -0.099      | -0.084      | -0.0         |
| $R_t$                                      | 0.561                                 | 0.256       | 0.305       | 0.336       | 0.308       | 0.109       | -0.559  | -0.395      | -0.297      | -0.226      | -0.17       | -0.13        |
| $T_t$                                      | 1.06                                  | 0           | -0.001      | -0.001      | -0.001      | -0.002      | -0.001  | -0.001      | 0           | 0           | 0           | 0            |
| $U_t$                                      | 0.445                                 | -0.27       | -0.321      | -0.358      | -0.351      | -0.22       | 0.253   | 0.606       | 0.467       | 0.359       | 0.269       | 0.19         |
| $W_t$                                      | 63.229                                | -0.099      | -0.1        | -0.078      | 0.003       | 0.244       | 0.917   | -0.107      | -0.072      | -0.06       | -0.054      | -0.0         |
| $Y_t$                                      | 90.123                                | -0.083      | -0.081      | -0.057      | 0.024       | 0.258       | 0.905   | -0.145      | -0.101      | -0.081      | -0.07       | -0.0         |
| $Y_t^{\rm j}$                              | 90.123                                | -0.083      | -0.081      | -0.057      | 0.024       | 0.258       | 0.905   | -0.145      | -0.101      | -0.081      | -0.07       | -0.0         |
| $Y_t^{ m s}$                               | 90.123                                | -0.083      | -0.081      | -0.057      | 0.024       | 0.258       | 0.905   | -0.145      | -0.101      | -0.081      | -0.07       | -0.00        |
| $Z_t$                                      | 0.998                                 | 0.009       | 0.003       | -0.006      | -0.02       | -0.04       | -0.071  | -0.047      | -0.027      | -0.013      | -0.002      | 0.00         |

18.4 Autocorrelations

|                                           | Lag 1  | Lag 2  | Lag 3  | Lag 4  | Lag 5  |
|-------------------------------------------|--------|--------|--------|--------|--------|
| $\epsilon^{ m G}$                         | 0.713  | 0.471  | 0.271  | 0.109  | -0.017 |
| $g^1$                                     | -0.071 | -0.04  | -0.035 | -0.037 | -0.04  |
| $g^2$                                     | -0.071 | -0.04  | -0.035 | -0.037 | -0.04  |
| $inflation^{ m gap}$                      | 0.277  | 0.011  | -0.083 | -0.113 | -0.116 |
| $\lambda$                                 | 0.682  | 0.438  | 0.246  | 0.095  | -0.022 |
| mc                                        | -0.121 | -0.08  | -0.062 | -0.052 | -0.045 |
| $\mathit{percieved}^{\pi^{\mathrm{obj}}}$ | 0.319  | 0      | -0.085 | -0.119 | -0.125 |
| $\pi$                                     | 0.277  | 0.011  | -0.083 | -0.113 | -0.116 |
| $\pi^{\star}$                             | -0.142 | -0.08  | -0.056 | -0.045 | -0.039 |
| $\pi^{ m obj}$                            | 0.704  | 0.456  | 0.254  | 0.092  | -0.032 |
| $p\!H$                                    | 0.277  | 0.011  | -0.083 | -0.113 | -0.116 |
| $p\!L$                                    | 0.277  | 0.011  | -0.083 | -0.113 | -0.116 |
| q                                         | 0.682  | 0.438  | 0.246  | 0.095  | -0.022 |
| r                                         | -0.124 | -0.082 | -0.063 | -0.053 | -0.045 |
| C                                         | -0.034 | -0.024 | -0.028 | -0.036 | -0.042 |
| Div                                       | -0.122 | -0.081 | -0.063 | -0.052 | -0.045 |
| G                                         | 0.713  | 0.471  | 0.271  | 0.109  | -0.017 |
| I                                         | -0.122 | -0.081 | -0.063 | -0.053 | -0.045 |
| $K^{\mathrm{s}}$                          | 0.677  | 0.433  | 0.242  | 0.093  | -0.023 |
| $L^{ m s}$                                | -0.123 | -0.081 | -0.063 | -0.052 | -0.045 |
| R                                         | 0.651  | 0.406  | 0.221  | 0.078  | -0.031 |
| T                                         | 0.713  | 0.471  | 0.271  | 0.109  | -0.017 |
| U                                         | 0.832  | 0.539  | 0.308  | 0.125  | -0.016 |
| W                                         | -0.105 | -0.07  | -0.056 | -0.049 | -0.045 |
| Y                                         | -0.117 | -0.078 | -0.061 | -0.052 | -0.045 |
| $Y^{ m j}$                                | -0.117 | -0.078 | -0.061 | -0.052 | -0.045 |
| $Y^{ m s}$                                | -0.117 | -0.078 | -0.061 | -0.052 | -0.045 |
| Z                                         | 0.644  | 0.368  | 0.159  | 0.006  | -0.102 |

# 19 Impulse response functions





Figure 1: Impulse responses  $(\pi, p\!H, R)$  to  $\epsilon^{\rm Z}$  shock

Figure 2: Impulse responses  $(\pi, pH, R)$  to  $\eta^p$  shock





Figure 3: Impulse responses  $(\pi, pH, R)$  to  $\eta^{R}$  shock

Figure 4: Impulse responses  $(\pi, pH, R)$  to  $\eta^{\pi}$  shock



Figure 5: Impulse responses  $(\pi, p\!\!\!/ \!\!\! H, R)$  to  $\eta^{\rm G}$  shock

## 20 Impulse response functions





responses

Figure 6: Impulse  $(\pi, p\!H, R, \textit{percieved}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \epsilon^{\text{Z}} \text{ shock}$ 

responses Figure 7: Impulse  $(\pi, p\!H, R, \textit{percived}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \eta^{\text{p}} \text{ shock}$ 





Figure 8: Impulse  $(\pi, p\!H, R, \textit{periexel}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \eta^{\text{R}} \text{ shock}$ 

responses Figure 9: Impulse responses  $(\pi, pH, R, \textit{periexel}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}}) \text{ to } \eta^{\pi} \text{ shock}$ 



Figure 10: Impulse responses  $(\pi, p\!H, R, \textit{percieved}^{\pi^{\text{obj}}}, \textit{inflation}^{\text{gap}})$  to  $\eta^{\text{G}}$  shock