Exercices de révision

Exercice 1 Logique propositionnelle. Soit la formule P définie comme $(p \Rightarrow (q \Rightarrow r)) \Rightarrow (r \lor \neg p)$.

- 1. Donner la table de vérité de la formule P.
- 2. Dire si la formule est valide, satisfiable, insatisfiable?
- 3. La formule P a-t-elle un modèle? si oui lequel?
- 4. Donner la forme normale conjonctive et la forme normale disjonctive de la formule P.

Correction:

1. Table de vérité :

p	q	r	$q \Rightarrow r$	$p \Rightarrow (q \Rightarrow r)$	$(p \Rightarrow (q \Rightarrow r)) \Rightarrow (r \lor \neg p)$
		V			V
\overline{F}		F			V
V	\overline{V}	F	F	F	V
V	F	F	V	V	F

- 2. La formule n'est pas valide (une ligne de la table de vérité où elle est fausse), elle est satisfiable (une ligne où elle est vraie) et donc elle n'est pas insatisfiable.
- 3. La formule a plusieurs modèles, par exemple $\{p \mapsto V; q \mapsto V; r \mapsto V\}$
- 4. Forme normale conjonctive qui exprime que l'on n'est pas sur la ligne où la valeur de la formule est fausse : $\neg p \lor q \lor r$. C'est aussi une forme normale disjonctive (parmi d'autres).

Exercice 2 Enigme. Trois collègues, Albert, Bernard et Charles déjeunent ensemble chaque jour ouvrable. Les affirmations suivantes sont vraies :

- 1. Si Albert commande un dessert, Bernard en commande un aussi.
- 2. Chaque jour, soit Bernard, soit Charles, mais pas les deux, commandent un dessert.
- 3. Albert ou Charles, ou les deux, commandent chaque jour un dessert.
- 4. Si Charles commande un dessert, Albert fait de même.

Questions

- 1. Exprimer les données du problème comme des formules propositionnelles
- 2. Que peut on en déduire sur qui commande un dessert?
- 3. Pouvait-on arriver à la même conclusion en supprimant l'une des quatre affirmations?

Correction:

- 1. On introduit des variables propositionnelles a, b et c qui représentent le fait que Albert (a), Bernard (b) et Charles (c) prennent un dessert. On traduit ainsi le problème :
 - (a) $a \Rightarrow b$
 - (b) $(b \land \neg c) \lor (\neg b \lor c)$
 - (c) $a \lor c$
 - $(d) c \Rightarrow a$

2. On peut faire une table de vérité pour regarder tous les modèles possibles :

a	b	c	$a \Rightarrow b$	$(b \wedge \neg c) \vee (\neg b \vee c)$	$a \lor c$	$c \Rightarrow a$
V	V	V	V	F	V	V
V	V	$\mid F \mid$	V	V	V	V
V	F	$\mid V \mid$	F	V	V	V
V	F	$\mid F \mid$	F	F	V	V
F	V	$\mid V \mid$	V	F	V	F
F	V	$\mid F \mid$	V	V	F	V
F	F	$\mid V \mid$	V	V	V	F
F	F	F	V	F	F	V

La seule interprétation qui rend vrai les quatre affirmations correspond à la deuxième ligne dans laquelle Albert et Bernard commandent un dessert mais pas Charles.

Par contre si on relache l'une des contraintes alors il y a à chaque fois un deuxième modèle qui apparaît. On ne peut donc conclure.

Exercice 3 Connecteur de Sheffer. On définit le connecteur de Sheffer noté | (barre de Sheffer, ou encore NAND) par : $p \mid q \stackrel{\text{def}}{=} \neg (p \land q)$

- 1. Donner la table de vérité de la formule $(p \mid q)$
- 2. Donner la table de vérité de la formule $((p \mid q) \mid (p \mid q))$
- 3. On veut maintenant exprimer les connecteurs usuels en utilisant la barre de Sheffer, et rien qu'elle.
 - (a) Donner la table de vérité de la formule $(p \mid p)$ et en déduire que le connecteur \neg peut être défini en n'utilisant que la barre de Sheffer.
 - (b) Trouver une formule équivalente à $p \lor q$, qui n'utilise que la barre de Sheffer (éventuellement plusieurs fois).
 - (c) Trouver une formule équivalente à $p \Rightarrow q$, qui n'utilise que la barre de Sheffer (éventuellement plusieurs fois).

Correction:

1.

p	q	(p q)
V	V	F
V	F	V
F	V	V
F	V	V

2. on retrouve la table de vérité de $p \wedge q$.

p	q	(p q) (p q)
V	V	V
V	F	F
F	V	F
F	V	F

3. (a) On peut poser $\neg p = (p|p)$

p	(p p)
\overline{V}	\overline{F}
F	V

- (b) on a $p \lor q \equiv \neg(\neg p \land \neg q) \equiv (\neg p | \neg q)$ on en déduit un codage de $p \lor q$ qui est : (p|p)|(q|q)
- (c) on a $p \Rightarrow q \equiv \neg (p \land \neg q) \equiv p | \neg q$ et donc on en déduit un codage de $p \Rightarrow q$ qui est : p|(q|q)

Exercice 4 Fonction sur les formules.

- 1. Donner les équations récursives qui définissent une fonction estClause qui étant donnée une formule P renvoie vrai si P est une clause et faux sinon.
- 2. Utiliser cette fonction pour définir une fonction estFNC qui étant donnée une formule P renvoie vrai si P est en forme normale conjonctive et faux sinon.

Correction:

1.

```
\begin{array}{rcl} \textit{estClause}(\top) & = & \textit{vrai} \\ & \textit{estClause}(\bot) & = & \textit{vrai} \\ & \textit{estClause}(x) & = & \textit{vrai} \\ & \textit{estClause}(\neg P) & = & \textit{vrai} & \textit{si $P$ est une formule atomique} \\ & \textit{estClause}(\neg P) & = & \textit{faux} & \textit{si $P$ n'est pas une formule atomique} \\ & \textit{estClause}(P_1 \lor P_2) & = & \textit{si estClause}(P_1) = \textit{vrai alors estClause}(P_2) \textit{sinon faux} \\ & \textit{estClause}(P_1 \land P_2) & = & \textit{faux} \\ & \textit{estClause}(P_1 \Rightarrow P_2) & = & \textit{faux} \end{array}
```

2.

```
\begin{array}{rcl} \textit{estFNC}(\top) & = & \textit{vrai} \\ & \textit{estFNC}(\bot) & = & \textit{vrai} \\ & \textit{estFNC}(x) & = & \textit{vrai} \\ & \textit{estFNC}(\neg P) & = & \textit{vrai} & \textit{si $P$ est une formule atomique} \\ & \textit{estFNC}(\neg P) & = & \textit{faux} & \textit{si $P$ n'est pas une formule atomique} \\ & \textit{estFNC}(P_1 \lor P_2) & = & \textit{si estClause}(P_1) = \textit{vrai alors estClause}(P_2) \textit{sinon faux} \\ & \textit{estFNC}(P_1 \land P_2) & = & \textit{si estFNC}(P_1) = \textit{vrai alors estFNC}(P_2) \textit{sinon faux} \\ & \textit{estClause}(P_1 \Rightarrow P_2) & = & \textit{faux} \\ \end{array}
```

Exercice 5 Preuve dans le système G. En utilisant des arbres de dérivation dans le système G pour les formules suivantes, dire si elles sont valides ou non :

```
1. \vdash ((p \land q) \Rightarrow r) \Rightarrow (\neg p \lor q) \Rightarrow (p \Rightarrow r)
2. \vdash ((p \land q) \Rightarrow r) \land (\neg p \lor q) \Rightarrow p
```

Correction:

$$\begin{array}{c} \text{HYP} \\ \neg g \\ \neg g \\ \hline \neg q \\ \hline -p, p \vdash r, q, p \\ \hline (\neg p \lor q), p \vdash r, p \\ \hline (\neg p \lor q), p \vdash r, p \\ \hline (\neg p \lor q), p \vdash r, p \\ \hline (\neg p \lor q), p \vdash r, p \land q \\ \hline + (p \land q) \Rightarrow r), (\neg p \lor q), p \vdash r \\ \hline (p \land q) \Rightarrow r), (\neg p \lor q), p \vdash r \\ \hline (p \land q) \Rightarrow r), (\neg p \lor q) \vdash (p \Rightarrow r) \\ \Rightarrow d \\ \Rightarrow d \\ \Rightarrow d \\ \Rightarrow d \\ \hline + ((p \land q) \Rightarrow r) \Rightarrow (\neg p \lor q) \Rightarrow (p \Rightarrow r) \\ \hline \vdash ((p \land q) \Rightarrow r) \Rightarrow (\neg p \lor q) \Rightarrow (p \Rightarrow r) \\ \hline \end{array}$$

Les feuilles de l'arbre correspondent à des règles hypothèses donc la formule est valide.

On observe sur cet arbre qu'il y a au moins une feuille qui n'est pas une hypothèse, par exemple $\vdash p, p, p$ qui n'est pas vrai si p = F. Donc la formule n'est pas valide.