Problem 2

☐ Perform a Rainflow counting for the following load history (see Figure 1)

Figure 1 Load history for one repetition

Step 1

Stress range **AB > BC**→then move to the next segment

Step 1

Stress range **BC** < **CD**→then count a cycle

Cycle	Stress range	Mean stress	
В-С	20 MPa	50 MPa	

Step 2

Stress range **AD > DE**→then move to the next segment

Figure 1 Load history for one repetition

Step 2

Stress range **DE > EF**→then move to the next segment

Figure 1 Load history for one repetition

Step 2

Stress range **EF > FG**→then move to the next segment

Figure 1 Load history for one repetition

Step 2

Stress range **FG** < **GH** →then count a cycle

Figure 1 Load history for one repetition

Step 3

Figure 1 Load history for one repetition

Figure 1 Load history for one repetition

Step 4

Figure 1 Load history for one repetition

Figure 1 Load history for one repetition

Step 5

Figure 1 Load history for one repetition

Step 5

Figure 1 Load history for one repetition

Step 5

Stress range **KL** < **LA**→then count a cycle

Cycle	Stress range	Mean stress	
B-C	20 MPa	50 MPa	
F-G	30 MPa	65 MPa	
D-E	70 MPa	55 MPa	
H-I	30 MPa	25 MPa	
K-L	30 MPa	55 MPa	

Figure 1 Load history for one repetition

Figure 1 Load history for one repetition

Time

Results for Problem 2

Cycle	Stress range	Mean stress
B-C	20 MPa	50 MPa
F-G	30 MPa	65 MPa
D-E	70 MPa	55 MPa
H-I	30 MPa	25 MPa
K-L	30 MPa	55 MPa
A-J	100 MPa	50 MPa

Problem 3

An unnotched member fabricated from Man-Ten steel (see Table 1) is subjected to the load history shown below.

- a) Perform a Rainflow counting of the load history for one repetition (see Figure 1).
- b) Estimate the number of repetitions and the number of cycles to failure (Miner rule). Use the Goodman equation (see Dowling book section 9.7 and Lecture 2 slides):

Note: Constants for Goodman equation from Table 1.

$$\sigma_a = \left(1 - \frac{\sigma_m}{\sigma_u}\right) \cdot A \cdot N_f^b$$

Figure 2 Load history for one repetition

Table 1 Constraints for stress-life curves: tests at zero mean stress on unnotched axial specimen

Material	Yield Strength	Ultimate Strength	True Fracture Strength	$\sigma_a = \sigma_f' (2N_f)^b = AN_f^B$		
	σ_o	$\sigma_{\!u}$	~		A	b = B
(a) Steels						
AISI 1015	227	415	725	976	886	-0.14
(normalized)	(33)	(60.2)	(105)	(142)	(128)	
Man-Ten	322	557	990	1089	1006	-0.115
(hot rolled)	(46.7)	(80.8)	(144)	(158)	(146)	
RQC-100	683	758	1186	938	897	-0.0648
(roller Q & T)	(99.0)	(110)	(172)	(136)	(131)	
AISI 4142	1584	1757	1998	1937	1837	-0.0762
(Q & T, 450 HB)	(230)	(255)	(290)	(281)	(266)	
AISI 4340 (aircraft quality)	1103 (160)	1172 (170)	1634 (237)	1758 (255)	1643 (238)	-0.0977

Notes: The tabulated values have units of MPa(ksi) except for dimensionless b=B. See Table 14.1 for sources and additional properties.

Results for Problem 3 a)

The loading history for one reptation contains three loading blocks: block 1, block 2, and block 3

		Block 1	Block 2	Block 3
Count cycles	N	1	400	1000
Maximum stress	$\sigma_{ m max}$	400	300	200
Minimum stress	σ_{\min}	-200	0	-200
Stress range	Δσ	600	300	400
Stress amplitude*	σ_{a}	300	150	200
Mean stress**	$\sigma_{ m m}$	100	150	0

*
$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2}$$
, * * $\sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$

Results for Problem 3 b)

The Goodman equation is applied in order to determine the maximum number of repetitions for each loading block to failure.

Step 1: From Table 1, we can pick up the following parameters for Man-Ten steel:

 $\sigma_u = 557 \text{ MPa}, A = 1006 \text{ MPa}, \text{ and } b = -0.115.$

Step 2: Then, the repetitions can be obtained by using equation: $\sigma_a = \left(1 - \frac{\sigma_m}{\sigma_u}\right) \cdot A \cdot N_f^b \rightarrow N_f = \left[\frac{\sigma_a}{A(1 - \frac{\sigma_m}{\sigma_u})}\right]^{1/b}$

For block 1:
$$N_{f1} = \left[\frac{300}{1006(1-\frac{100}{557})}\right]^{-1/0.115} = 6638$$
 For block 3: $N_{f2} = \left[\frac{200}{1006(1-\frac{0}{557})}\right]^{-1/0.115} = 1260640$

For block 3:
$$N_{f2} = \left[\frac{200}{1006(1-\frac{0}{557})}\right]^{-1/0.115} = 1260640$$

For block 2:
$$N_{f2} = \left[\frac{150}{1006(1-\frac{150}{557})}\right]^{-1/0.115} = 1004936$$

Step 3: Then we can apply Miner's rule as follows:

$$B_f \sum \frac{N_i}{N_{fi}} = 1 \to B_f = \frac{1}{\sum \frac{N_i}{N_{fi}}} = \frac{1}{\frac{1}{6638} + \frac{400}{1004936} + \frac{1000}{1260640}} = 745$$

Thus, the specimen fails after 745 repetitions and, equivalently, after $745 \times 1401 = 1044026$ cycles.