Analisis Performa Load Testing Antara Mysql Dan Nosql Mongodb Pada RestAPI Nodejs Menggunakan Postman

Lifan Dwinur Andrianto¹, Dwi Fatrianto Suyatno².

1.2 Sistem Informasi, Fakultas Teknik, Universitas Negeri Surabaya

11ifan.19026@mhs.unesa.ac.id
2dwifatrianto@unesa.ac.id

Abstrak— Dengan perkembangan teknologi yang cepat, terutama di bidang industri dan penggunaan internet yang meluas di Indonesia, media penyimpanan data yang efektif diperlukan. Seperti MySQL, database manajemen sistem (DBMS) telah menjadi solusi yang efektif untuk mengelola dan memproses data. Sebagai jenis DBMS, MySQL telah menunjukkan kemampuan untuk mendukung pengembangan aplikasi oleh pengguna yang berpengalaman maupun pemula. Di sisi lain, dalam era digital yang terus berkembang, aplikasi web dan mobile menjadi penting, dan Node.js dan REST API menjadi dasar untuk pembuatan aplikasi web yang efektif. Kemajuan teknologi juga menghasilkan alternatif penyimpanan data tanpa relasi, yang dikenal sebagai NoSQL. MongoDB, misalnya, menawarkan fleksibilitas dan kinerja yang cepat saat menyimpan data dalam format dokumen JSON. Analisis performa pengujian load antara MySQL dan MongoDB pada aplikasi Node.js sangat penting karena keduanya memiliki model data dan jenis beban kerja yang berbeda. Ini adalah teknik penting untuk mengukur dan mengevaluasi performa aplikasi. Kecepatan pencarian, penyimpanan data, dan kompleksitas query dipengaruhi oleh model data relasional MySOL dan MongoDB NoSQL. Tujuan dari analisis performa load testing ini adalah untuk mendapatkan pemahaman tentang bagaimana MySQL dan MongoDB berkinerja saat dihadapkan pada beban kerja yang berbeda, khususnya dalam konteks aplikasi Node.js. Hasil analisis ini diharapkan memberikan gambaran yang jelas tentang kelebihan dan kekurangan masing-masing database saat digunakan dengan aplikasi Node.js, sehingga pengembang dan arsitek sistem dapat membuat keputusan yang bijaksana dan berdasarkan data ketika mereka menggunakan aplikasi Node.js.

Kata Kunci— MySQL, MongoDB, RestAPI, NodeJS, Load Testing.

I. PENDAHULUAN

Kemajuan teknologi yang begitu pesat memiliki banyak manfaat bagi masyarakat dalam berbagai bidang. Pada bidang industri, kemajuan teknologi dapat membantu perusahaan dalam meningkatkan produksi mereka [1]. Hasil survei APJII (Asosiasi Penyelenggara Jasa Internet Indonesia) tahun 2019 dan 2020 menunjukkan bahwa pengguna internet di Indonesia kurang lebih mencapai 73,7% dari total populasi [2]. Untuk melakukan pengolahan data, dibutuhkan media penyimpanan yang baik. Tentu saja, penggunaan Database Management System (DBMS) sebagai mengandalikan pembuatan, pengolahan, dan pemeliharaan data yang efektif dan efisien adalah sesuatu yang mendukung [3].

MySQL merupakan suatu jenis database server yang sangat terkenal. MySQL termasuk jenis RDBMS (Relational Database Manajement System) [4]. RDBMS adalah program yang memungkinkan pengguna database untuk membuat, mengelola, dan menggunakan data pada suatu model relational [5]. MySQL memiliki kemampuan cukup baik untuk menunjang kerja para developer, baik user yang sudah berpengalaman dengan database maupun untuk pemula. MySQL menggunakan bahasa SQL untuk mengakses database-nya [6]. Lisensi MySQL adalah pengecualian untuk lisensi perangkat lunak sumber terbuka dan juga memiliki versi komersial. Tag Mysql adalah "Database Open Source Paling Populer di Dunia."

NoSQL menggunakan nilai kunci pada database program dan menggunakan nilai kunci untuk mengidentifikasi data. Ini berarti bahwa NoSQL tidak membutuhkan hubungan data atau pertanyaan untuk melakukannya. Jadi, NoSQL sangat berbeda dari DBMS. Salah satu contohnya adalah MongoDB [7], yang menawarkan kinerja database yang cepat dan efisien dibandingkan dengan jenis database lain. Dokumen yang digunakan dalam database ini diformat dalam format JSON yang lebih mudah digunakan. MongoDB memiliki kemampuan untuk menyimpan jumlah data yang lebih besar karena memiliki memori cache..

Dalam era digital yang terus berkembang, aplikasi web dan mobile menjadi bagian integral dari kehidupan sehari-hari. Rest API (Application Programming Interface) telah menjadi fondasi utama untuk komunikasi antara berbagai aplikasi, dan Node.js menjadi salah satu lingkungan yang sangat populer untuk mengembangkan server-side dari aplikasi web yang efisien dan scalable [8].

Load Testing merupakan teknik performance testing dimana respon sistem diukur dalam berbagai kondisi dan beban. Pengujian ini membantu menentukan bagaimana software berperilaku ketika beberapa user mengakses software secara bersamaan [9]. Load testing merupakan suatu pendekatan yang kritis dalam mengukur dan mengevaluasi performa suatu aplikasi. Dalam konteks analisis performa load testing, penting untuk memahami bagaimana MySQL dan MongoDB bertindak sebagai penyimpanan data untuk aplikasi Node.js, terutama saat dihadapkan pada beban kerja yang tinggi [10].

Ada beberapa alasan mengapa perbandingan performa antara *database MySQL* dan *MongoDB* penting, terutama dalam konteks pengembangan aplikasi *Node.js* diantaranya

adalah sebagai berikut. Aspek Model Data *MySQL* merupakan *database* relasional yang menggunakan skema tabel dengan relasi antar tabel. *MongoDB*, di sisi lain, adalah *database NoSQL* yang menyimpan data dalam format dokumen *JSON* yang fleksibel. Perbedaan dalam model data ini dapat berdampak pada kinerja, terutama dalam hal kecepatan pencarian, penyimpanan data, dan kompleksitas *query*. Serta aspek Beban Kerja Spesifik, Performa *database* dapat dipengaruhi oleh jenis beban kerja yang dihadapi. *MySQL* mungkin lebih cocok untuk aplikasi dengan *query* kompleks dan hubungan yang kuat antar data, sementara *MongoDB* mungkin lebih unggul dalam situasi di mana skema data lebih dinamis dan aplikasi memiliki kebutuhan untuk menangani dokumen dengan cepat.

Tujuan dari analisis ini adalah untuk memahami bagaimana performa load testing dari dua database tersebut mempengaruhi response dan kinerja aplikasi Node.js pada tingkat beban yang berbeda. Dengan membandingkan performa MySQL dan MongoDB, kita dapat mengevaluasi kelebihan dan kekurangan masing-masing dalam konteks penggunaan dengan aplikasi Node.js. Hasil dari analisis performa load testing ini dapat memberikan pandangan yang lebih jelas terkait kebutuhan dan preferensi dalam pemilihan database untuk aplikasi Node.js, memungkinkan pengembang dan arsitek sistem untuk membuat keputusan yang informasional dan berdasarkan data. Dengan demikian, analisis ini dapat membantu meningkatkan skalabilitas, keandalan, dan efisiensi aplikasi yang dibangun dengan menggunakan kombinasi Node.js, MySQL, dan MongoDB. Berdasarkan latar belakang diatas, maka penulis mengajukan penelitian dengan judul "ANALISIS PERFORMA LOAD TESTING ANTARA MYSQL DAN NOSQL MONGODB PADA RESTAPI NODEJS MENGGUNAKAN POSTMAN".

II. METODOLOGI PENELITIAN

A. Alur Penelitian

Berikut merupakan alur penelitian yang akan dilakukan oleh peneliti untuk melakukan pengujian *load testing database MySQL* dan *MongoDB* pada *Rest API NodeJS*:

Gbr. 1 Flowchart Alur Penelitian.

Berikut adalah penjelasan mengenai alur diatas:

- 1) Merumuskan masalah sesuai dengan yang tertulis pada latar belakang penelitian.
- 2) Peneliti melakukan studi pustaka guna mencari referensi teori yang akan diuji.
- 3) Mengidentifikasi *hardware* dan *software* yang akan digunakan untuk melakukan pengujian.
- 4) Setelah itu mengumpulkan data yang akan digunakan untuk aplikasi yang diuji nantinya.
- 5) Selanjutnya membuat aplikasi yang akan diuji dengan menggunakan *rest-api nodejs*.
- 6) Melakukan testing dengan *postman* pada kedua *database* yang sudah terkonfigurasi dengan *restapi* yang sudah dirancang.
- 7) Setelah hasil dari *load test* sudah ada, selanjutnya adalah menganalisis serta membandingkan hasil dari pengujian sebelumnya.
- 8) Terakhir, peneliti akan membuat rangkuman ke dalam kesimpulan sebagai kajian akhir peneliti.

B. Rumusan Masalah

Berdasarkan latar belakang diatas maka tujuan penelitian ini bermaksud melakukan pengujian *load testing API* dari dua arsitektur *database* yang berbeda dan memberikan analisa *load testing API* sebagai refrensi untuk menentukan manakah *database* yang tepat saat akan melakukan proses *development* aplikasi. Pengujian performa dengan metode *load testing* berfokus pada 4 indikator yaitu *virtual users*: pengguna virtual, *response time*: lamanya waktu antara request dan response dari server, *throughput*: penanganan request pada server, dan *error rate*: presentase error pada saat penanganan request berlangsung.

C. Studi Pustaka

Berdasarkan penelitian yang telah dilakukan, dapat dikatakan bahwa database RDBMS dan NoSQL adalah jenis database yang banyak digunakan dalam berbagai proses pengembangan aplikasi, dengan masing-masing keunggulan dan kelemahan. Untuk melakukan pengolahan data, diperlukan media penyimpanan yang baik. Tentu saja, penggunaan Database Management System (DBMS) sebagai mengandalikan pembuatan, pengolahan, dan pemeliharaan data yang efektif dan efisien adalah hal yang mendukung. Kemudian muncul masalah baru tentang jenis basis data mana yang lebih efisien dan responsif dalam proses transaksi data. Karena kebutuhan data akan terus meningkat di masa depan, diperlukan solusi untuk mempercepat waktu proses transaksi data antara kedua jenis basis data.

D. Kebutuhan Hardware dan Software

Kebutuhan melakukan indentifikasi *hardware* serta *software* yang dibutuhkan dalam proses pengukuran waktu respon pada *restapi*. Spesifikasi *hardware* dan *software* digunakan pada tabel I dan tabel II.

TABEL I KETERANGAN HARDWARE

No	Item	Keterangan
1	Processor	Intel i7-10750H
2	Memory Ram	16 GB DDR4 2933 MHz
3	Graphic Card Integrated	Intel UHD Graphics
4	Graphic Card External	GTX 1660 TI
5	Storage	M.2 PCIe NVMe Samsung
		Evo 512 GB

TABEL III KETERANGAN SOFTWARE

No	Item	Keterangan
1	Windows	11 / 64 Bit
2	MySQL Xampp	8.0.2
3	Visual Studio Code	1.80
4	Node JS	16.17.0
5	Mongo DB	6.0.7
6	Mongo DB Compass	1.38.2
7	Postman	10.15

E. Pengumpulan Data

Teknik pengumpulan data yang digunakan pada penelitian ini adalah dengan mengambil salah satu database buatan Microsoft yang bernama Northwind database samples. Database Northwind dibuat sebagai contoh untuk membantu pengembang dan profesional IT dalam memahami cara mendesain dan bekerja dengan basis data menggunakan produk Microsoft seperti Microsoft Access, Microsoft SQL Server, dan produk database lainnya. Database Northwind dirancang untuk mencakup skenario bisnis yang umum di industri ritel dan distribusi. Oleh karena itu, database ini menyimpan data terkait pelanggan, pesanan, produk, karyawan, dan logistik. Database Northwind memiliki struktur relasional dan terdiri dari beberapa tabel yang saling terkait. Tabel-tabel ini mencakup informasi seperti pelanggan, pesanan, produk, kategori produk, karyawan, dan lainnya. Berikut adalah contoh salah satu table pada Northwind sample database:

TABEL IIIII
CONTOH DATABASE NORTHWIND TABEL ORDERS

OrderID	CustomerID	EmployeeID	OrderDate	ShipperID
10248	90	5	1996-07-04	3
			00:00:00	
10249	81	6	1996-07-04	1
			00:00:00	
10250	34	4	1996-07-04	2
			00:00:00	
10251	84	3	1996-07-04	1
			00:00:00	
10252	76	4	1996-07-04	2
			00:00:00	

F. Perancangan Aplikasi yang Akan Diuji

Pada tahapan ini akan ceritakan langkah-langkah pada pengujian. Beberapa hal yang harus disiapkan sebelum

melakukan proses pengukuran *response time* mengunakan *rest-api nodejs*.

1. Pembuatan Model Databse

Dalam melakukan pembuatan model *database* yang akan diuji, penulis memakai dua *database* yaitu *MySQL* dan *MongoDB*. Sesuai dengan data yang akan diuji, maka diperoleh diagram *ERD* seperti berikut:

Gbr. 2 Diagram ERD database Northwind.

Pada schema northwind sample database terdapat delapan tabel yang terdiri dari tabel Customers, Products, Employees, Orders, Shippers, OrderDetails, Categories, dan Suppliers.

2. Pembuatan Rest API

Dalam melakukan pembuatan rest-api untuk pengujian database, bahasa yang digunakan untuk proses developement adalah JavaScript menggunakan framework ExpressJS dan runtime environtment NodeJS. Dalam satu service rest-api, akan terdapat dua database yang akan diuji dan akan dibedakan berdasarkan endpoint. Berikut merupakan endpoint yang akan digunakan dalam pengujian load testing pada kedua database:

TABEL IV SKENARIO ENDPOINT PADA RESTAPI NORTHWIND

Endpoint	Operation	Table in operation	Record data
create_shipper	CREATE	Shippers	5.000, 10.000,15.000
sum_avg	SUM, AVG	Customers, Orders, Orderdetails , Products	5.000, 10.000,15.000
count	COUNT	Customers, Orders, Employee	5.000, 10.000,15.000
and_not_exist	AND, NOT EXIST	Customers, Orders, Oerderdetail s, Products	5.000, 10.000,15.000

or_in_exist	OR, IN, EXIST	Customers, Orders	5.000, 10.000,15.000
not_in	NOT IN	Customers, Orders, Orderdetails , Products	5.000, 10.000,15.000
update_shipper	UPDATE	Shippers	5.000, 10.000,15.000
delete_shipper	DELETE	Shippers	5.000, 10.000,15.000

Berdasarkan tabel IV menunjukan *endpoint* yang akan dibuat sebagai skenario pengujian *load test* pada masing-masing *database*. Berikut merupakan penjelasan singkat mengenai *endpoint* yang akan dibuat:

a) Endpoint Create

Endpoint ini berisi perintah unutk menyisipkan (INSERT) data baru ke dalam tabel Shippers. Endpoint ini menggunakan nilai yang diterima dari badan permintaan (req.body) untuk ShipperName dan Phone.

b) Endpoint Sum avg

Endpoint ini mencoba menemukan pelanggan (Customers) yang memiliki nilai total pesanan rata-rata di atas nilai total pesanan tertentu dari tabel Orders dan OrderDetails.

c) Endpoint Count

Endpoint ini memberikan informasi tentang jumlah pesanan yang dilakukan oleh pelanggan dari 'USA. Serta mengelompokkan hasil berdasarkan kolom pelanggan.

d) Endpoint And not exist

Endpoint ini memberikan informasi terkait pelanggan (Customers) dari kota tertentu (City) yang telah melakukan pesanan (Orders), tetapi belum pernah melakukan pembelian produk tertentu (Products).

e) Endpoint In or exist

Endpoint ini berisi perintah untuk mengambil data pelanggan dari yang berada di 'USA' atau memiliki pesanan dengan ShipperID '1' atau memiliki pesanan yang dibuat pada atau setelah tanggal '2023-01-01'.

f) Endpoint Not in

Endpoint ini berisi perintah untuk menemukan pelanggan (Customers) yang tidak pernah melakukan pembelian produk tertentu (Products) dengan kriteria tertentu dan yang berasal dari wilayah tertentu (Region).

g) Endpoint Update

Endpoint ini berfungsi untuk memperbarui nama perusahaan (CompanyName) menjadi

'Express Delivery Inc.' dan nomor telepon (Phone) menjadi '(555) 123-4567' untuk shipper dengan ShipperID 4.

h) Endpoint Delete

Endpoint ini berfungsi untuk menghapus data shipper dengan ShipperID 4 dari tabel Shippers. Pastikan bahwa ShipperID yang di gunakan dalam klausa WHERE sesuai dengan data yang ingin di hapus.

G. Testing Aplikasi Menggunakan Postman

Setelah aplikasi sudah selesai dikembangkan, langkah selanjutnya adalah melakukan pengujian load testing pada endpoint RestAPI northwind dengan bantuan tools Postman. Pada proses pengujiannya menggunakan beberapa parameter seperti virtual user, response time, troughput, dan error rate. Dilansir dari halaman dokumentasi resmi Postman terkait dengan perfomance test RestAPI (https://learning.postman.com/docs/collections/testing-apiperformance/), berikut adalah parameter indikator yang diukur ketika melakukan load testing menggunakan Postman:

1. Virtual Users

Setiap pengguna virtual menyimulasikan perilaku pengguna di dunia nyata dengan menjalankan koleksi secara berulang.

2. Response time

Indikator lamanya waktu antara *request* dan *response* dari server

3. Troughput

Jumlah permintaan yang dikirim setiap detik selama pengujian kinerja, ukuran *throughput*.

4. Error rate

Persentase permintaan yang menghasilkan kesalahan. Tanggapan selain tanggapan 2xx dianggap kesalahan.

Selanjutnya *Postman* akan menampilan keseluruhan output dan hasil akhir dari *load testing endpoint RestAPI* yang diuji. Berikut merupakan contoh *output load testing* menggunakan *Postman*:

Gbr. 3 Contoh output dari Postman

Gbr. 4 Contoh Output Independent T Test

Berdasarkan gambar 3 diperoleh hasil di dari pengujian load testing pada endpoint RestAPI. Hasil pengujian tersebut menampilkan perolehan nilai dari masing-masing parameter pengujian meliputi virtual numbers, response time, throughput, dan error rate. Pengujian tersebut nantinya akan dilakukan 6 (enam) kali untuk setiap endpoint. Selanjutnya hasil dari pengujian masing-masing endpoint database akan disajikan dalam bentuk tabel seperti berikut:

 ${\it TABEL~V}$ ${\it TABEL~HASIL~PENGUJIAN~MASING-MASING~ENDPOINT~KEDUA~DATABASE}$

VU	Response Time	Throughput	Error rate	Record data
25				5.000
50				10.000
75				15.000

Dari hasil *load test endpoint database* tersebut nantinya akan diperoleh hasil dari 3 aspek yang akan diuji yaitu response time, throughput, dan error rate. Setelah memperoleh hasil *load test* tersebut selanjutnya akan dilakukan uji beda hasil menggunakan metode independent T test menggunakan software SPSS untuk mengetahui adanya perbedaan performa antara kedua database.

H. Analisis Hasil Pengujian

Setelah semua hasil *load testing* masing-masing *endpoint* kedua *database* tersebut sudah diperoleh. Kemudian penulis akan melakukan uji beda *Independent sample t-test* pada 3 parameter pengujian yaitu, *response time, throughput, error rate*. Seperti gambar berikut:

Group Statistics

	Jenis Database	N	Mean	Std. Deviation	Std. Error Mean
Response Time	Database MySQL	42	7.1905	2.83048	.43675
Database	Database MongoDB	42	34.0714	64.10182	9.89113

Independent Samples Te

		Levene's Test for Equality of Variances				
		F	Sig.	t	df	Sig. (2-tailed)
Response Time Database	Equal variances assumed	13.197	.000	-2.715	82	.008
	Equal variances not assumed			-2.715	41.160	.010

Uji t independen sampel bertujuan untuk membandingkan rata-rata dua grup yang tidak saling berpasangan atau tidak saling berkaitan. *Rumus Polled Varians* digunakan untuk uji t untuk varian yang sama.:

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Gbr. 5 Rumus uji t equal variance

Hipotesis yang disusun adalah hipotesis dua arah dari 3 parameter pengujian, yaitu:

1. Response time

H0 = Tidak terdapat perbedaan performa *response time* antara *MySQL* dan *NoSQL* pada *RestAPI NodeJS*.

H1 = Terdapat perbedaan performa *response time* antara *MySQL* dan *NoSQL* pada *RestAPI NodeJS*.

2. Throughput

H0 = Tidak terdapat perbedaan performa throughput antara MySQL dan NoSQL pada RestAPI NodeJS.

H1 = Terdapat perbedaan performa *throughput* antara *MySQL* dan *NoSQL* pada *RestAPI NodeJS*.

3. Error rate

H0 = Tidak terdapat perbedaan performa *error rate* antara *MySQL* dan *NoSQL* pada *RestAPI NodeJS*.

H1 = Terdapat perbedaan performa *error rate* antara *MySQL* dan *NoSQL* pada *RestAPI NodeJS*.

Setelah dilakukan uji beda hasil dari masing-masing *endpoint*. Hasil akhir *load test* kedua *database* akan ditampilkan kedalam tabel hasil akhir dan dilakukan pengkategorian.

TABEL VI PENGKATEGORIAN HASIL AKHIR PENGUJIAN LOAD TEST

Aspek	Kategori	
jen burava	Cepat (Hijau)	
Response Time	Sama (Kuning)	
	Lambat (Merah)	
	Banyak (Hijau)	
Throughput	Sama (Kuning)	
	Sedikit (Merah)	
	Sedikit (Hijau)	
Error Rate	Sama (Kuning)	
	Banyak (Merah)	

Berikut merupakan tabel hasil akhir pengujian *load test* dari *database MySQL* dan *database MongoDB*:

TABEL VII
HASIL AKHIR PENGUJIAN LOAD TEST KEDUA DATABASE

Endpoint	Aspek	MySQL	MongoDB
	Response Time		
Create	Throughput		
	Error Rate		
_	Response Time		
Sum avg	Throughput		
	Error Rate		
~	Response Time		
Count	Throughput		
	Error Rate		
	Response Time		
And not exist	Throughput		
	Error Rate		
	Response Time		
Or in exist	Throughput		
	Error Rate		
	Response Time	//	
Not in	Throughput		
	Error Rate		
	Response Time		
Update	Throughput		
	Error Rate		
	Response Time		
Delete	Throughput		
	Error Rate		

Tabel hasil akhir berisi kesimpulan akhir performa *load* test dari kedua database bedasarkan hasil dari pengujian load test dan uji beda hasil masing-masing endpoint kedua database.

III. HASIL PENELITIAN DAN PEMBAHASAN

Berikut merupakan tabel hasil akhir pengujian *load test* dari masing–masing *database*:

TABEL VIII
HASIL AKHIR KESELURUHAN LOAD TESTING KEDUA DATABASE

Endpoint	Aspek	MySQL	MongoDB
	Response Time	676.33	1338.78
Create	Throughput	6.21	1.42
	Error Rate	0	0.73
	Response Time	2034.33	3611.39
Sum avg	Throughput	5.14	1.61
	Error Rate	0	1.02
	Response Time	2016	3559.44
Count	Throughput	5.43	1.68
	Error Rate	0	3.68
	Response Time	1094.17	3030.72
And not exist	Throughput	5.81	1.68
	Error Rate	0	1.76
	Response Time	1053.72	2813

Or in exist	Theresialment	5.2	1.42
Or in exist	Throughput	3.2	
	Error Rate	0	3.28
	Response Time	1303.44	2651.67
Not in	Throughput	6.27	1.54
	Error Rate	0	1.94
	Response Time	88.44	1134.28
Update	Throughput	6.71	1.42
	Error Rate	0	0.92
	Response Time	33.83	1252.61
Delete	Throughput	6.7	1.31
	Error Rate	0	0.8

Berikut merupakan pembahsan mengenai pengujian *load test* dan uji beda untuk setiap *endpoint* :

A. Endpoint Create

Pada pengujian load test dan uji beda untuk endpoint create, dapat disimpulkan adanya perbedaan performa dari kedua database. Untuk aspek response time database MySQL mendapatkan hasil performa yang lebih baik dari database MongoDB yaitu sebesar 676.33ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 6.21 request per seconds. Selanjutnya untuk aspek error rate database MySQL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint create, hal ini terjadi dikarenakan adanya perbedaan model data. Perbedaan dalam model data ini dapat berdampak pada kinerja, terutama dalam hal kecepatan pencarian dan penyimpanan data.

B. Endpoint Sum avg

Pada pengujian load test dan uji beda untuk endpoint sum avg, dapat disimpulkan adanya perbedaan performa dari kedua database. Untuk aspek response time database MySQL mendapatkan hasil performa yang lebih baik dari database MongoDB yaitu sebesar 2034.33ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 5.14request per seconds. Selanjutnya untuk aspek error rate database MySQL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint sum avg, hal ini terjadi dikarenakan pengaruh oleh query kompleks dan join 4 tabel. MySQL mungkin lebih cocok untuk aplikasi dengan

query kompleks dan hubungan yang kuat antar data, sementara *MongoDB* mungkin lebih unggul dalam situasi di mana skema data lebih dinamis.

C. Endpoint Count

Pada pengujian *load test* dan uji beda untuk endpoint count, dapat disimpulkan adanya perbedaan performa dari kedua database. Untuk aspek response time database MySQL mendapatkan hasil performa yang lebih baik dari database MongoDB yaitu sebesar 2016ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 5.43 request per seconds. Selanjutnya untuk aspek error rate database MySQL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint count, hal ini terjadi dikarenakan pengaruh oleh query kompleks dan join 3 tabel. MySQL mungkin lebih cocok untuk aplikasi dengan query kompleks dan hubungan yang kuat antar data, sementara MongoDB mungkin lebih unggul dalam situasi di mana skema data lebih dinamis.

D. Endpoint And not exist

Pada pengujian load test dan uji beda untuk endpoint and not exist, dapat disimpulkan adanya perbedaan performa dari kedua database. Untuk aspek response time database MySQL mendapatkan hasil performa yang lebih baik dari database MongoDB yaitu sebesar 1094.17ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 5.81 request per seconds. Selanjutnya untuk aspek error rate database MySQL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint and not exist, hal ini terjadi dikarenakan pengaruh oleh query kompleks dan join 4 tabel. MySOL mungkin lebih cocok untuk aplikasi dengan query kompleks dan hubungan yang kuat antar data, sementara MongoDB mungkin lebih unggul dalam situasi di mana skema data lebih dinamis.

E. Endpoint Or in exist

Pada pengujian *load test* dan uji beda untuk *endpoint or in exist*, dapat disimpulkan adanya perbedaan performa dari kedua *database*. Untuk aspek *response time database MySQL* mendapatkan hasil performa yang lebih baik dari *database*

MongoDB yaitu sebesar 1053.72ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 5.2request per seconds. Selanjutnya untuk aspek error rate database MySOL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint or in exist, hal ini terjadi dikarenakan pengaruh oleh query kompleks dan join 2 tabel. MySQL mungkin lebih cocok untuk aplikasi dengan query kompleks dan hubungan yang kuat antar data, sementara MongoDB mungkin lebih unggul dalam situasi di mana skema data lebih dinamis.

F. Endpoint Not in

Pada pengujian load test dan uji beda untuk endpoint not in, dapat disimpulkan adanya perbedaan performa dari kedua database. Untuk aspek response time database MySQL mendapatkan hasil performa yang lebih baik dari database MongoDB yaitu sebesar 1303.44ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 6.27 request per seconds. Selanjutnya untuk aspek error rate database MySQL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint not in, hal ini terjadi dikarenakan pengaruh oleh query kompleks dan join 4 tabel. MySQL mungkin lebih cocok untuk aplikasi dengan query kompleks dan hubungan yang kuat antar data, sementara MongoDB mungkin lebih unggul dalam situasi di mana skema data lebih dinamis.

G. Enpoint update

Pada pengujian *load test* dan uji beda untuk *endpoint update*, dapat disimpulkan adanya perbedaan performa dari kedua *database*. Untuk aspek *response time database MySQL* mendapatkan hasil performa yang lebih baik dari *database MongoDB* yaitu sebesar 88.44ms. Lalu untuk aspek *throughput database MySQL* mendapatkan hasil performa yang lebih tinggi dari *database MongoDB* yaitu sebesar 6.71*request per seconds*. Selanjutnya untuk aspek *error rate database MySQL* juga mendapatkan hasil performa yang lebih baik dibandingkan dengan *database MongoDB* yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa *database MySQL* memiliki

performa yang lebih unggul dibandingkan dengan

performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint update, hal ini terjadi dikarenakan adanya perbedaan model data. Perbedaan dalam model data ini dapat berdampak pada kinerja, terutama dalam hal kecepatan pencarian dan penyimpanan data.

H. Endpoint Delete

Pada pengujian load test dan uji beda untuk endpoint delete, dapat disimpulkan adanya perbedaan performa dari kedua database. Untuk aspek response time database MySQL mendapatkan hasil performa yang lebih baik dari database MongoDB yaitu sebesar 33.83ms. Lalu untuk aspek throughput database MySQL mendapatkan hasil performa yang lebih tinggi dari database MongoDB yaitu sebesar 6.7request per seconds. Selanjutnya untuk aspek error rate database MySQL juga mendapatkan hasil performa yang lebih baik dibandingkan dengan database MongoDB yaitu sebesar 0%. Dari hasil 3 (tiga) aspek tersebut dapat disimpulkan bahwa database MySQL memiliki performa yang lebih unggul dibandingkan dengan database MongoDB pada pengujian load test endpoint delete, hal ini terjadi dikarenakan adanya perbedaan model data. Perbedaan dalam model data ini dapat berdampak pada kinerja, terutama dalam hal kecepatan pencarian dan penyimpanan data.

Berdasarkan penelitian yang telah dilakukan, didapatkan hasil bahwa performa database MySQL lebih unggul dari pada database MongoDB dari 3 (tiga) aspek response time, throughput, dan error rate pada semua endpoint. Hal ini dikarenakan struktur NorthwindDB dirancang untuk aplikasi pemrosesan transaksi online (online transaction processing, OLTP). Oleh karena itu, membuat database MySQL memiliki performa lebih unggul dibandingkan dengan database MongoDB. Karena format penyimpanan data dalam MySQL membuatnya cocok untuk penggudangan data dan pemrosesan analitis online. Hal ini sesuai dengan ACID (Atomicity, Consistency, Isolation, and Durability), yang berarti transaksi bersifat atomik, konsisten, terisolasi, dan stabil. Dengan ini, database MySQL berguna ketika bekerja dengan transaksi yang kompleks, seperti dalam kasus e-commerce, transaksi, dan keuangan. Berbeda dengan database MongoDB yang merupakan database NoSQL. Dimana database MongoDB itu lebih tepat jika bekerja dengan data tidak terstruktur dalam kasus penggunaan, seperti jejaring sosial, media, atau IOT. Karena database MongoDB tidak memiliki skema, database MongoDB merupakan pilihan yang tepat untuk menangani data yang terus berubah dan berkembang.

IV. PENUTUP

A. Kesimpulan

Penelitian ini dilakukan dengan tujuan agar dapat mengetahui perbandingan performa *load testing* antara database MySQL dan database MongoDB pada Rest API

NodeJS studi kasus *NorthwindDB*. Parameter yang dihitung diambil dari model pengujian *load test* dengan bantuan *Postman* sehingga dapat diambil kesimpulan sebagai berikut :

- 1. Proses penganalisaan dimulai dengan membuat 2 macam services dengan database yang berbeda pada 1 Rest API yang sama menggunakan bahasa pemrogaman javascript dan framework expressjs dan menggunakan data dari NorthwindDB, kedua services dibuat dengan database MySQL dan database MongoDB. Selanjutnya akan dilakukan pengujian performa load test menggunakan tools Postman dengan 4 aspek yaitu virtual users (VU), response time, throughput, dan error rate.
- 2. Hasil penelitian ini menunjukkan bahwa *database MySQL* lebih unggul karena memiliki nilai yang lebih baik dalam 3 (tiga) aspek yaitu *response time, throughput,* dan *error rate* dibandingkan dengan *database MongoDB.*

B. Saran

Untuk studi kasus ini, database MySQL memiliki performa load testing yang lebih baik dibandingkan dengan database MongoDB, tetapi ini tidak berarti bahwa database MongoDB tidak dapat dipertimbangkan ketika ingin mengembangkan aplikasi untuk masa depan karena setiap database memiliki kegunaan dan kegunaannya sendiri.. Dalam penelitian ini, database MySQL memiliki performa load testing yang lebih baik karena struktur NorthwindDB dirancang khusus untuk database MySQL. Diharapkan bahwa penelitian lanjutan akan dapat menganalisis perbandingan elemen seperti skalabilitas, fleksibilitas, keamanan, efisiensi biaya, dan efisiensi waktu pengembangan. karena penelitian dari sisi lain dapat membantu pengembang aplikasi memilih database yang tepat untuk studi kasus aplikasi.

REFERENSI

- [1] Padillah, R. (2021). Implementasi Revolusi Industri (4.0) Pada Ukm Ayam Broiler Melalui Mesin Pakan Ayam Otomatis Berbasis Internet Of Things (IoT). JATI EMAS (Jurnal Aplikasi Teknik Dan Pengabdian Masyarakat), 5(1), 1–4. https://doi.org/10.36339/JE.V511.382.
- [2] Gunawan, R., Aulia, S., Supeno, H., Wijanarko, A., Uwiringiyimana, J. P., Mahayana, D., & Teknik, S. (2021). Adiksi Media Sosial dan Gadget bagi Pengguna Internet di Indonesia. TECHNO-SOCIO EKONOMIKA, 14(1), 1–14. https://doi.org/10.32897/TECHNO.2021.14.1.544.
- [3] Silalahi, M., & Wahyudi, D. (2018). Computer Based Information System Journal PERBANDINGAN PERFORMANSI DATABASE MONGODB DAN MYSQL DALAM APLIKASI FILE MULTIMEDIA BERBASIS WEB. CBIS JOURNAL, 06(01). http://ejournal.upbatam.ac.id/index.php/cbis\http://ejournal.upbatam.ac.id/index.php/cbisM.
- [4] Rahmatullah, S., & Ndaru, M. (2023). SISTEM INFORMASI PENJUALAN SEMBAKO PADA TOKO BAPAK NASRUL BERBASIS WEB. Jurnal Informatika Software Dan Network), 04(01), 1–6.
- [5] Fatman, Y., Khoirun Nafisah, N., & Bendoro Jembar Pambudi, P. (2023). Implementasi Payment Gateway dengan Menggunakan Midtrans pada Website UMKM Geberco. Jurnal KomtekInfo, 64–72. https://doi.org/10.35134/komtekinfo.v10i2.364.

- [6] Raharjo, M., Napiah, M., & Anwar, R. S. (1045). Perancangan Sistem Informasi Dengan PHP Dan MYSQL Untuk Pendaftaran Sekolah Di Masa Pandemi (Issue 18). http://jurnal.bsi.ac.id/index.php/co-science.
- [7] Hadi Winata, R., & Yunanto Putra, Y. (2021). ANALISIS PERBANDINGAN PERFORMA WAKTU RESPONS KUERI ANTARA MySQL PHP 7.4.2, PostgreSQL, dan MongoDB COMPARISONAL ANALYSIS OF PERFORMANCE QUESTION RESPONSE TIME BETWEEN MySQL PHP 7.4.2, PostgreSQL, and MongoDB (Vol. 38).
- [8] Fakultas Matematika dan Ilmu Pengetahuan Alam, J. (2020). Analisis Kinerja Web Server pada SIM Manajemen Diklat Poltekpel Sorong Menggunakan RDBMS MySQL dan MariaDB. In Journal of System and Computer Engineering (JSCE) ISSN (Vol. 1, Issue 1).
- [9] Fadli, A., Zulfa, M. I., Widhi Nugraha, A. W., Taryana, A., & Aliim, M. S. (2020). Analisis Perbandingan Unjuk Kerja Database SQL dan Database NoSQL Untuk Mendukung Era Big Data. JURNAL NASIONAL TEKNIK ELEKTRO, 9(3). https://doi.org/10.25077/jnte.v9n3.774.2020
- [10] Sari, A. S., & Hidayat, R. (2022). Designing website vaccine booking system using golang programming language and framework react JS. Journal of Information System, Informatics and Computing Issue Period, 6(1), 22–39. https://doi.org/10.52362/jisicom.v6i1.760

UNESA
Universitas Negeri Surabaya