BTS-IV	(aa)	00 0	10 0	α
KIN-IV		417.	/ 1 1 - 1	แทง
DIDTI		V4.4		,,,,

Reg. No.								
----------	--	--	--	--	--	--	--	--

B. Tech. Degree IV Semester Special Supplementary Examination February 2020

CS 15-1404 AUTOMATA LANGUAGES AND COMPUTATIONS

(2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A (Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Define Non deterministic Finite Automata. How is it different from Deterministic Finite Automata?
 - (b) Explain Moore and Mealy machines. Give an example for each.
 - (c) What are regular grammars? Give an example.
 - (d) What are context free grammars? Give a CFG to generate palindromes made of letters 'a' and 'b'.
 - (e) State the Pumping Lemma for regular sets. What is the lemma used to prove?
 - (f) Define a Push Down Automata (PDA).
 - (g) Explain the model of a Turing Machine.
 - (h) Explain Chomsky classification of languages.
 - (i) What are Context Sensitive Languages and Linear Bounded Automata?
 - (i) Explain the two normal forms of context free grammars.

PART B

 $(4 \times 10 = 40)$

II. (a) Convert the following NFA to equivalent DFA.

(5)

•	Next State		
Present State	a = 0	a = 1	
\rightarrow A	A, B	C	
В	В	A, C	
С	A, D	В	
D	D	D	

Final state = D.

(b) Construct NFA for the following regular expression.

(5)

(i) (111 + 000) 00

(ii) 0* + 1* + 2*

OR

III. (a) Prove that for every NFA there exits an equivalent DFA.

- (5) (5)
- (b) Construct a DFA to accept binary strings which have 00 or 11 as a substring.
 - (P.T.O.)

IV.	(a)	What are regular expressions? Write language.		All 1 of	the following	(5)		
		(i) Binary strings starting with 0(ii) Binary strings having exactly(iii) Stings made of alphabets 'a'	two zeros	s's and any nur				
		(iv) Binary strings having 4 bits						
	<i>a</i> >	(v) Binary strings starting and en	· -		adding to the	(5)		
	(b)	Using Ardens theorem, find the regular expression corresponding to the following automata.						
			Next	State				
		Preșent State II	nput 0	Input 1				
		\rightarrow q1	q2	q3				
		q2	Φ	q1				
		q3	q1	ф				
		Ol				(5)		
V.	(a)	Using Pumping lemma show that the set of perfect squares in not a regular (5) language.						
	(b)	Construct regular grammar for the fo			ions.	(5)		
		(i) aa*bb*cc* (ii)	(0+1)*00	00(0+1)*				
VI.	(a)	Convert the following grammar to C	homsky N	lormal Form		(5)		
		$S \rightarrow aAB \mid b$						
		$A \rightarrow Ba \mid a$						
		$B \rightarrow aAB \mid b$ Simplify the following CFG by removing epsilon symbols						
	(b)		(5)					
		$S \rightarrow aAB \mid bX \mid C$						
		$A \rightarrow Ba \mid bSX \mid$						
		$B \rightarrow aAB \mid b \mid C$						
		$X \rightarrow a$	D					
VII.	(a)	Design a PDA to accept the language		$n \mid n > = 1$ by e	mpty stack.	(5)		
1 11.	(b)	Construct an equivalent PDA for the following context free grammars. (5)						
	(0)	S \rightarrow aB bA						
		$A \rightarrow aAB \mid bBB \mid a$						
		$B \rightarrow aS \mid bA \mid b$						
VIII.	(a)	Design a turing machine to accept th	e languag	$e L = \{a^n b^n n > 1\}$	>=1}.	(5)		
	(b)							
		Ol	R			(5)		
IX.	(a)	Design a turing machine to accept the $L(M) = \{ww^R \mid where \mid w \mid > 0 \}$				(5)		
	(b) ₂	What is meant by Universal Turing machines? How can they solve any problem?						
