Impact of LHC data on (NN)PDFs

Nathan Hartland The University of Edinburgh

The NNPDF Collaboration:

R. D. Ball, V. Bertone, F. Cerutti, C. Deans, L. Del Debbio, S Forte, A Guffanti, N.H, J.I. Latorre, J. Rojo and M. Ubiali.

XLVInd Rencontres de Moriond La Thuile, Aosta valley, Italy March 10th -March 17th, 2012

Parton distributions for the LHC

$$\sigma_X = \sum_{a,b} \int_0^1 dx_1 dx_2 f_a(x_1, Q^2) f_b(x_2, Q^2) \sigma_{q_a q_b \to X} (x_1, x_2, Q^2)$$

- Need to have a reliable determination of PDFs for LHC physics.
- ▶ An accurate estimation of PDF uncertainties is crucial.

G. Watt [hep-ph/1106.5788]

NNPDF approach to parton fitting

- Use of Neural Networks as unbiased and extremely flexible interpolators.
 - ▶ Each PDF has 37 free parameters to vary in the fit.
 - ▶ Total of 259 free parameters minimises parametrisation bias.
- ► Monte Carlo approach to uncertainty estimation.
 - Perform an independent NN fit upon an ensemble of artificial data sets.
 - ► Ensemble of PDF replicas faithfully represent the uncertainty in the original experimental data without the need for a tolerance criterion.

$$\langle \mathcal{O} \rangle = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k]. \qquad \text{Var}[\mathcal{O}] = \frac{1}{N} \sum_{k=1}^{N} (\mathcal{O}[f_k] - \langle \mathcal{O} \rangle)^2.$$

1e-05

0.0001

0.001

0.0001

0.001

0.1

NNPDF collider only fits

Target: An NNPDF Fit based only upon collider data

- ► Free of contamination from higher twists.
- ► No nuclear corrections required.

Including new experimental data

How can we add new LHC data to an existing parton set?

► Full Refit

 $\underline{\mathsf{Tools}}\!\!:\;\mathsf{APPLgrid}/\mathsf{FastNLO}\;\mathsf{projects}\to\mathsf{MC}\;\mathsf{Weights}\;\mathsf{on}\;\mathsf{an}\;\mathsf{interpolation}\;\mathsf{grid}$

$$W = \sum_{p} \sum_{l=0}^{n_{\text{sub}}} \sum_{i_{y_1}} \sum_{i_{y_2}} \sum_{i_{\tau}} W_{i_{y_1}, i_{y_2}, i_{\tau}}^{(p)(l)} \left(\frac{\alpha_s \left(Q^{2^{(i_{\tau})}} \right)}{2\pi} \right)^{p} F^{(l)} \left(x_1^{(i_{y_1})}, x_2^{(i_{y_1})}, Q^{2^{(i_{\tau})}} \right)$$

Fast ... but can we get faster? \rightarrow combine weight tables with FastKernel evolution:

$$egin{aligned} E_{lphaeta jk}^{ au} &= \int_{x_lpha}^1 rac{dy}{y} \Gamma_{ij} \left(rac{x_eta}{y}, Q_0^2, Q_ au^2
ight) \mathcal{I}^{(eta)}(y). \ f_i(x_lpha, Q_ au^2) &= \sum_j^{N_{
m pdf}} R_{ij} N_j(x_lpha, Q_ au^2) = \sum_eta^{N_{
m pdf}} \sum_{j,k}^{N_{
m pdf}} R_{ij} E_{lphaeta jk}^ au N_k^0(x_eta). \end{aligned}$$

Combined Weight-Evolution tables

- ► More of the calculation is precomputed
- Smaller flavour basis at initial scale

$$W = \sum_{lpha,eta}^{N_{
m x}} \sum_{i,j}^{N_{
m pdf}} \sigma_{lphaeta ij} N_i^0(x_lpha) N_j^0(x_eta)$$

Including new experimental data

How can we add new LHC data to an existing parton set?

- ightharpoonup Full Refit ightharpoonup Work in progress!
- Reweight existing Monte Carlo parton set. Giele, Keller [hep-ph/9803393]

If the new data is statistically independent of the data in the prior set:

$$\mathcal{P}_{\mathrm{new}}(f) = \mathcal{N}_{\chi} \mathcal{P}(\chi^2 | f) \; \mathcal{P}_{\mathrm{old}}(f),$$

$$\langle \mathcal{O} \rangle_{\mathrm{new}} = \int \mathcal{O}[f] \, \mathcal{P}_{\mathrm{new}}(f) \, Df = \frac{1}{N} \, \sum_{k=1}^{N} w_k \mathcal{O}[f_k].$$

Weights determined by statistical inference

$$w_k = \mathcal{N}_{\chi} \mathcal{P}(\chi^2 | f_k) = \frac{(\chi_k^2)^{(n-1)/2} e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N} \sum_{k=1}^N (\chi_k^2)^{(n-1)/2} e^{-\frac{1}{2}\chi_k^2}}.$$

Number of effective replicas reduced after reweighting:

$$N_{
m \,eff} \equiv \exp \left(rac{1}{N_{
m rep}} \sum_{k=1}^{N_{
m rep}} w_k \ln(N_{
m rep}/w_k)
ight)$$

R. D. Ball et al. Nucl. Phys. B 849 112 [arXiv:1012.0836].

Application: NNPDF2.2 Parton Set .

New data added by reweighting NNPDF2.1 Fit: W leptonic charge asymmetry.

R. D. Ball et al, Nucl. Phys. B 855 608 [arXiv:1108.1758] .

Defined in terms of $W^\pm o I^\pm
u_I$ differential cross-sections $d\sigma_{I^\pm}/d\eta_I$

$$A_W^I = \frac{d\sigma_{I^+}/d\eta_I - d\sigma_{I^-}/d\eta_I}{d\sigma_{I^+}/d\eta_I + d\sigma_{I^-}/d\eta_I},$$

- \blacktriangleright ATLAS μ charge asymmetry.
- ightharpoonup CMS $e + \mu$ charge asymmetry.
- ▶ D0 $e + \mu$ charge asymmetry.

[arXiv:1103.2929] [arXiv:1103.3470] [arXiv:0709.4254]

Updated LHC Data

- ► LHC data in NNPDF2.2 now superseded
 - ▶ Full covariance matrix available for the ATLAS W and Z rapidity distributions.
 - ▶ Higher integrated luminosity 234 pb⁻¹ data for CMS muon asymmetry.
- Additional LHC Data
 - ▶ 36 pb⁻¹ Inclusive jet measurements (Full covariance matrix for ATLAS).
 - ▶ 36 pb⁻¹ LHCb Z rapidity distribution, W lepton asymmetry.
 - ▶ 840pb⁻¹ CMS W electron asymmetry with full covariance matrix.
 - ► 4.67fb⁻¹ CMS Inclusive jet measurement.

χ^2 to electroweak vector boson production data

Dataset , χ^2	NNPDF2.1	MSTW08	ABKM09	JR09	HERAPDF1.5
ATLAS W/Z Rapidity	2.7	3.6	3.6	5.0	2.0
CMS μ asym + Z Rap	2.0	3.0	2.8	3.6	2.8
LHCb W asym + Z Rap	0.8	0.7	1.2	0.4	0.6

χ^2 to inclusive jet data

Dataset, χ^2	NNPDF2.1	MSTW08	ABKM09	JR09	HERAPDF1.5
ATLAS Incl. Jets $R = 0.4$	0.93	1.18	1.41	1.63	1.21
ATLAS Incl. Jets $R = 0.6$	1.38	1.31	1.46	1.88	1.43

Impact of LHC EW vector boson data - ATLAS

Dataset	χ^2	$\chi^2_{\rm rw}$	$N_{ m eff}$
ATLAS	2.7	1.2	16
ATLAS W^+ 36 pb ⁻¹	5.7	1.5	17
ATLAS W^- 36 pb $^{-1}$	2.5	1.0	205
ATLAS Z 36 pb ⁻¹	1.8	1.1	581

Impact of LHC EW vector boson data - CMS

Dataset		$\chi^2_{\rm rw}$	$N_{ m eff}$
CMS	2.0	1.2	56
CMS Z rapidity 36 pb ⁻¹	1.9	1.4	223
CMS muon asymmetry 234 pb^{-1}	2.0	0.4	200

Impact of LHC EW vector boson data - LHCb

Dataset		$\chi^2_{\rm rw}$	$N_{ m eff}$
LHCb	0.8	0.8	972
LHCb Z rapidity 36 pb ⁻¹	1.1	1.0	962
LHCb W lepton asymmetry 36 pb ⁻¹	0.8	0.5	961

Impact of LHC EW vector boson data

Ratio of d, \bar{u} PDFs reweighted with ATLAS data to NNPDF2.1

Ratio of d, \bar{u} PDFs reweighted with CMS data to NNPDF2.1

Impact of ATLAS inclusive jet data

Dataset	χ^2	$\chi^2_{\rm rw}$	$N_{ m eff}$
NNPDF2.1 NNLO + ATLAS Incl. Jets $R = 0.4$	0.93	0.91	904
NNPDF2.1 NNLO + ATLAS Incl. Jets $R = 0.6$	1.42	1.24	610

Summary

NNPDF Parton Sets

- Neural Network parametrisation of PDFs. Redundant parametrisation for an unbiased fit.
- Monte Carlo uncertainty determination.
 Faithful representation of the experimental uncertainties.

► Bayesian Reweighting

- Powerful technique for including new data into existing parton fits. Fast assessment of data impact.
- ► Impact of LHC data
 - ATLAS W/Z measurements: Substantial constraints, particularly from W⁺ data.
 - ► CMS W/Z measurements: Less constraining → full covariance matrix is unavailable.
 - LHCb W/Z measurements: Data does not yet provide significant constraint upon PDFs.
 - ATLAS inclusive jet measurements:
 Moderate constraint upon gluon PDF.

LHC data already providing significant constraints on parton distributions.

BACKUPS

ATLAS Determination of R_s

Ratio of strange to non-strange PDFs from a HERA + ATLAS W/Z production fit.

ightharpoonup No discrepancy observed with Rs for NNPDF collider +W/Z only fit

NNPDF2.1NLO/NNLO reweighted with ATLAS jets

