УДК 519.713.4+519.172.3

Примитивные орграфы с большими экспонентами и медленно синхронизируемые автоматы*

Д. С. Ананичев М. В. Волков В. В. Гусев[†]

Аннотация

Мы приводим несколько бесконечных серий синхронизируемых автоматов, для каждого из которых длина кратчайшего синхронизирующего слова близка к квадрату числа состояний. Все эти автоматы тесно связаны с примитивными ориентированными графами с большими экспонентами.

§1. Постановка задачи и структура работы

Данная работа выросла из попытки теоретически объяснить результаты некоторых численных экспериментов по синхронизации конечных автоматов. Напомним, что (детерминированным конечным) автоматом называется тройка $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$, где Q — конечное множество состояний, Σ — конечный входной алфавит, а $\delta: Q \times \Sigma \to Q$ — всюду определенная функция переходов. Как обычно, через Σ^* обозначаем множество всех конечных слов над алфавитом Σ , включая пустое слово 1. Функция δ естественным образом продолжается на $Q \times \Sigma^*$: для $q \in Q$ и $w \in \Sigma^*$ полагаем $\delta(q,w) = q$, если w = 1, и $\delta(q,w) = \delta(\delta(q,v),a)$, если w = va для некоторого $v \in \Sigma^*$ и $a \in \Sigma$. Таким образом, функция δ определяет действие каждого слова из Σ^* на множестве Q.

Автомат $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ называется $\mathit{синхpohusupyemыm}$, если найдется слово $w \in \Sigma^*$, под действием которого все состояния переходят в одно: $\delta(q,w) = \delta(q',w)$ для всех $q,q' \in Q$. Всякое такое слово w называется $\mathit{cunxpohusupyouum}$ для \mathscr{A} . Минимум длин синхронизирующих слов автомата \mathscr{A} называется его $\mathit{nopoiom}$ $\mathit{cunxpohusauuu}$.

Синхронизируемые автоматы представляют собой очень простую и естественную модель систем, устойчивых к ошибкам. Они используются во многих прикладных областях (тестирование систем и протоколов, кодирование информации, роботика) и в то же время неожиданным образом возникают в некоторых разделах фундаментальной математики (символическая динамика, теория подстановочных систем и др.). Основы теории синхронизируемых автоматов и ее разнообразные связи и приложения обсуждаются,

^{*}Предварительное сообщение о части результатов этой работы опубликовано в [5].

 $^{^\}dagger$ Авторы получали поддержку РФФИ по гранту 10-01-00793. Третий автор был также поддержан программой Erasmus Mundus Action 2 Partnerships – Triple I.

например, в недавних обзорах [19,26]. В данной работе затрагивается только один аспект этой теории, а именно, вопрос о том, как зависит порог синхронизации автомата от числа его состояний.

Условимся для краткости называть автомат с n состояниями n-автоматом. В 1964 г. Черни [11] указал серию синхронизируемых n-автоматов с порогом синхронизации $(n-1)^2$. Немного позднее он высказал предположение, что автоматы из этой серии реализуют наихудший (в смысле скорости синхронизации) случай, т.е. что каждый синхронизируемый n-автомат может быть синхронизирован словом длины не более $(n-1)^2$. За этим предположением закрепилось имя sunomesa Sunomesa

Почему гипотеза Черни оказывается столь неприступной? Развернутое обсуждение этого важного вопроса выходит за рамки данной работы, но одно из затруднений, с которым приходится сталкиваться в теории синхронизируемых автоматов, здесь уместно обозначить. Мы имеем в виду дефицит примеров экстремальных автоматов, т.е. п-автоматов с порогом синхронизации $(n-1)^2$. Единственной известной на сегодня бесконечной серией экстремальных автоматов остается серия, приведенная в [11]. Кроме нее, известно лишь несколько спорадических примеров экстремальных автоматов, наибольшим из которых по числу состояний является 6-автомат, открытый Кари [15] в 2001 г. (Полный список известных экстремальных автоматов см. в [26].) Более того, до сих пор даже n-автоматы с порогом синхронизации, близким к $(n-1)^2$, встречались в литературе крайне редко – кроме серии Черни, здесь можно назвать только серии из [6]. В условиях, когда число примеров крайне ограничено, трудно было подвергать проверке различные предположения и допущения, возникавшие при поисках подходов к гипотезе Черни. Именно поэтому история исследований в данной области богата «ложными следами» - вспомогательными гипотезами, которые сперва казались перспективными, но по прошествии некоторого времени опровергались. (Ряд таких «ложных следов» проанализирован в [8].)

Как же находить медленно синхронизируемые автоматы? Эксперименты (см., например, [20]) показывают, что взятый наугад автомат с вероятностью, очень близкой к 1, синхронизируем словом, длина которого значительно меньше числа состояний. Поэтому случайно натолкнуться на автомат, порог синхронизации которого близок к квадрату числа состояний, невозможно. Приходится выявлять такие автоматы путем исчерпывающего перебора. Именно такой переборный эксперимент и послужил отправной точкой данной работы.

Методика и некоторые результаты эксперимента описаны в §2. Наше

 $^{^{1}}$ На сегодняшний день лучшей верхней оценкой на порог синхронизации произвольного n-автомата остается оценка $\frac{n^{3}-n}{6}$, полученная Пэном [17] еще в 1983 г. Чуть лучшая оценка $\frac{n(7n^{2}+6n-16)}{48}$ опубликована недавно в [25], но в ее доказательстве имеется неясное место.

внимание привлекло сходство между наблюдаемым поведением количества синхронизируемых автоматов с фиксированным числом состояний как функции от значения порога синхронизации и хорошо изученным поведением количества примитивных орграфов с фиксированным числом вершин как функции от значения экспоненты. В §3 мы обсуждаем это сходство, предварительно напомнив необходимые понятия и факты из теории примитивных орграфов. Основные результаты работы содержатся в §4. Мы показываем, что медленно синхронизируемые автоматы, обнаруженные в нашем эксперименте, являются представителями бесконечных серий и что каждая такая серия тесно связана с некоторой известной серией примитивных орграфов с большой экспонентой. Установленная связь между орграфами и автоматами позволила дать прозрачные и единообразные доказательства утверждений о пороге синхронизации для всех без исключения серий медленно синхронизируемых автоматов – как для серий, уже встречавшихся в литературе, так и для серий, впервые появившихся в данной работе. Техника, примененная в этих доказательствах, насколько нам известно, является новой и, на наш взгляд, представляет самостоятельный интерес. В заключительном §5 обсуждаются дальнейшие перспективы подхода, развитого в работе, и формулируется ряд новых гипотез.

§2. Методика и некоторые результаты эксперимента

Как отмечено в §1, поиск автоматов с порогом синхронизации, близким к квадрату числа состояний, требует исчерпывающего перебора. Поскольку число n-автоматов стремительно растет с ростом n, такой перебор должен быть разумным образом организован. Так, задание 9-автомата с двумя входными буквами равносильно заданию пары функций на 9-элементном множестве. Число таких пар равно $9^{18} \approx 1.50 \times 10^{17}$, и если потратить на вычисление порога синхронизации каждого заданного таким образом автомата одну наносекунду, то полный перебор займет около пяти лет. Понятно, что при задании n-автоматов с k входными буквами наборами из k функций на n-элементном множестве каждый автомат будет порождаться n!k! раз. Однако ускорить процесс перебора за счет отбрасывания изоморфных автоматов невозможно — даже при n=9 и k=2 на проверку того, изоморфен ли очередной автомат какому-либо из уже просмотренных, не хватит ни времени, ни памяти.

Мы использовали для оптимизации перебора строковое представление достижимых автоматов, предложенное в [4]. Напомним, что автомат $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ называется достижимым (из состояния q_0), если из q_0 можно попасть в любое наперед заданное состояние, применив подходящее слово: для любого $q\in Q$ существует $w\in \Sigma^*$ такое, что $q=\delta(q_0,w)$. Автомат, достижимый из каждого своего состояния, называется сильно связным. В общем случае синхронизируемый автомат может не быть достижимым и тем более сильно связным. Однако хорошо известно, что в рассмотрениях, связанных с гипотезой Черни, можно ограничиться сильно связными автоматами. Дело в том, что имеет место следующий несложный результат.

Предложение 1 ([27, предложение 2.1]). Пусть $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ – синхронизируемый автомат, а S – множество тех состояний, к которым \mathscr{A} можно синхронизировать. Тогда $\mathscr{S} = \langle S, \Sigma, \delta|_S \rangle$ – сильно связный подавтомат в \mathscr{A} и для любой функции $f: \mathbb{Z}^+ \to \mathbb{N}$, удовлетворяющей неравенствам

$$f(n) \ge \frac{n(n-1)}{2}$$
 u $f(n) \ge f(n-m+1) + f(m)$ npu $n \ge m \ge 1$,

из того, что порог синхронизации автомата $\mathscr S$ ограничен числом f(|S|), вытекает, что порог синхронизации для $\mathscr A$ не превосходит f(|Q|).

В частности, беря в качестве f(n) функцию $(n-1)^2$, можно заключить, что если \mathscr{A} – контрпример к гипотезе Черни, то и его сильно связный подавтомат \mathscr{S} необходимо будет контрпримером. Аналогично, если \mathscr{A} – автомат с порогом синхронизации, близким к квадрату числа состояний, то таков и сильно связный автомат \mathscr{S} . Таким образом, ограничивая перебор достижимыми автоматами, мы не рискуем пропустить контрпример к гипотезе Черни или какой-нибудь интересный медленно синхронизируемый автомат.

Опишем теперь строковое представление из [4]. Пусть $\mathscr{A}=\langle Q,\Sigma,\delta\rangle$ – автомат, достижимый из состояния q_0 . Зафиксируем некоторый линейный порядок на входном алфавите Σ и обойдем автомат поиском в ширину из q_0 , выбирая исходящие переходы в соответствии с этим порядком. Присвоим состоянию q_0 номер 0, а остальные состояния из Q пронумеруем в порядке их посещения при указанном обходе. Например, состояния автомата на рис. 1 при алфавитном упорядочении входных букв a < b < c и выборе состояния A в качестве q_0 будут пронумерованы так: $A \mid B \mid C \mid D \ 0$ | $C \mid D \mid C \mid D \ 0$ | $C \mid D \mid C \mid D \ 0$ | $C \mid D \mid C \mid D \mid C \mid D \ 0$ | $C \mid D \mid C \mid D \mid$

Рис. 1: Автомат с канонической строкой [1, 2, 0, 2, 3, 0, 3, 0, 2, 1, 3, 2]

Каждому состоянию q автомата \mathscr{A} сопоставим строку длины $|\Sigma|$, в которой на позиции i стоит порядковый номер того состояния, в которое q переходит под действием i-й буквы. Соединив все такие строки в порядке возрастания номеров состояний, получим строку чисел из множества $\{0,1,\ldots,|Q|-1\}$, которая имеет длину $|Q||\Sigma|$ и однозначно определяет \mathscr{A} . Мы будем называть ее канонической строкой автомата \mathscr{A} . Так, для автомата на рис. 1 каноническая строка имеет вид [1,2,0,2,3,0,3,0,2,1,3,2].

Несложно проверить (см. [4, теорема 5]), что строка $[s_0,\ldots,s_{nk-1}]$ чисел из множества $\{0,1,\ldots,n-1\}$ будет канонической строкой некоторого до-

стижимого n-автомата с k входными буквами тогда и только тогда, когда она удовлетворяет двум условиям:

- (R1) для каждого i такого, что $s_i > 1$, найдется такое j < i, что $s_j = s_i 1$,
- (R2) для каждого m такого, что $1 \le m < n$, найдется такое j < mk, что $s_j = m$.

Опираясь на это наблюдение, мы вычисляли пороги синхронизации для достижимых n-автоматов с двумя входными буквами следующим образом. Для вычислений использовался 128-ядерный кластер на базе процессоров AMD Opteron с тактовой частотой 2.6 ГГц. Кластер, принадлежащий Институту математики и механики УрО РАН, работает под управлением ОС Linux, имеет 256 ГБ оперативной памяти и пиковую производительность 665.6 Гфлопс. Один узел кластера генерировал относительно небольшие порции строк, удовлетворяющих (R1) и (R2), и раздавал остальным узлам, которые обрабатывали соответствующие порции автоматов параллельно. Для организации данного процесса использовалась известная библиотека МРІ. Проверка каждого автомата на синхронизируемость и вычисление порога синхронизации производились с помощью стандартных алгоритмов (см. [19, 26]). Оба этих алгоритма были реализованы на С. Отметим, что алгоритм проверки синхронизируемости очень быстр, так как работает с орграфом пар состояний, в то время как алгоритм вычисления порога синхронизации работает с орграфом непустых подмножеств состояний и в наихудшем случае время его работы экспоненциально зависит от размера исходного автомата². Однако на практике порог синхронизации вычисляется довольно быстро, поскольку, как отмечалось в §1, для подавляющего большинства автоматов он мал.

Хотя задание автоматов с помощью канонических строк существенным образом сокращает перебор (нетрудно понять, например, что при таком задании каждый n-автомат с двумя входными буквами порождается не более 2n раз), его объем все равно остается значительным. Так, при n=9 число автоматов, которые пришлось проанализировать, составило $705\,068\,085\,303$. Тем не менее, благодаря распараллеливанию, вычисления при n=9 заняли меньше суток.

Результатом вычислений являлся массив, в котором для каждого встретившегося значения порога синхронизации указывалось число автоматов, реализующих это значение. Наиболее значимая для нас часть результатов, относящаяся к медленно синхронизируемым автоматам, была затем перепроверена с помощью пакета TESTAS [22].

Табл. 1 содержит фрагмент массива результатов, полученных в случае n=9. Количество автоматов в ней указано с точностью до изоморфизма.

Понятно, что единственный автомат в столбце, отвечающем N=64, – это 9-автомат из серии Черни. Далее наблюдается разрыв: 9-автоматов с

 $^{^2}$ Известно (см. [16, теорема 4]), что задача вычисления порога синхронизации данного автомата полна для класса сложности $\mathsf{FP}^{\mathsf{NP[log]}}$ — функционального аналога класса $\mathsf{P}^{\mathsf{NP[log]}}$ задач распознавания, разрешимых за полиномиальное время на детерминированной машине Тьюринга, которая может логарифмическое от размера задачи число раз обращаться за подсказкой к оракулу для NP-полной задачи.

Таблица 1: Пороги синхронизации 9-автоматов с двумя входными буквами

_ crov=der:o[r o				7				- 0	J				- /	
N	64	63	62	61	60	59	58	57	56	55	54	53	52	51
Число автоматов с порогом синхронизации N	1	0	0	0	0	0	1	2	3	0	0	0	4	4

двумя входными буквами и значением порога синхронизации от 59 до 63 не существует. Данный разрыв уже упоминался в работах Трахтмана [22,23], где отмечалось, что при n=7,8,9,10 его эксперименты не обнаружили ни одного n-автомата с двумя входными буквами, порог синхронизации которого был бы больше n^2-3n+4 , но меньше n^2-2n+1 . За разрывом следует «остров» из трех значений, достигаемых на 6 автоматах, а за этим «островом» снова наблюдается разрыв. Этот второй разрыв, насколько нам известно, ранее не отмечался в литературе.

Описанное только что поведение исследуемой величины — одинокое экстремальное значение, за которым следуют разрыв, небольшой «остров» и еще один разрыв — проявляется и для автоматов с большим числом состояний. При этом размеры «острова» зависят только от четности числа состояний, а размеры разрывов растут вместе с числом состояний как линейные функции. Сходным образом ведет себя другая величина, исследовавшаяся в дискретной математике, — количество примитивных орграфов с фиксированным числом вершин и данным значением экспоненты. В следующем параграфе мы напомним соответствующие понятия и обсудим указанное сходство подробнее.

§3. Примитивные орграфы и их экспоненты

Oрграф (т. е. ориентированный граф) — это пара $D = \langle V, E \rangle$, где V — конечное множество и $E \subseteq V \times V$. Элементы множеств V и E будем называть соответственно вершинами и дугами. Отметим, что данное определение допускает петли, но исключает кратные дуги. Если $v, v' \in V$ и $e = (v, v') \in E$, то дуга e называется ucxodsumev из v. Мы предполагаем, что читатель знаком c основными понятиями теории орграфов, такими как маршрут (ориентированный путь), контур (ориентированный цикл), изоморфизм и т.д.

Матрица смежности (или просто матрица) орграфа $D = \langle V, E \rangle$ – это $V \times V$ -матрица, в которой элемент в строке v и столбце v' равен 1, если $(v,v') \in E$, и равен 0 в противном случае. Обратно, $n \times n$ -матрице $P = (p_{ij})$ с неотрицательными действительными элементами можно сопоставить орграф D(P) на множестве $\{1,2,\ldots,n\}$, в котором пара (i,j) будет дугой, если и только если $p_{ij} > 0$. Указанное соответствие между матрицами и орграфами позволяет переформулировать на языке орграфов ряд важных понятий и результатов, возникших в классической теории неотрицательных матриц (теории Перрона-Фробениуса).

Орграф $D = \langle V, E \rangle$ называется *сильно связным*, если для всякой пары $(v, v') \in V \times V$ найдется маршрут из v в v'. Сильно связный орграф

D называется npumumushum, если наибольший общий делитель длин всех контуров в D равен 1. В литературе такие орграфы иногда называют ane-puoduчecкumu. Наш выбор термина обусловлен тем, что орграф обладает указанным свойством тогда и только тогда, когда его матрица примитивна в смысле теории Перрона—Фробениуса, т.е. когда у этой матрицы есть положительное собственное значение, строго большее модуля любого из ее остальных собственных значений.

Под t-й cmenehoo орграфа $D = \langle V, E \rangle$ понимается орграф D^t с тем же множеством вершин V, в котором пара $(v,v') \in V \times V$ является дугой, если и только если в D найдется маршрут из v в v' длины в точности t. Нетрудно видеть, что если M — матрица орграфа D, то орграф D^t изоморфен орграфу $D(M^t)$, где M^t — обычная t-я степень матрицы M. Известно (см., например, [2, c. 226]), что если D — примитивный орграф, то для некоторого t его степень D^t есть полный орграф с петлями, т. е. в D^t все пары вершин являются дугами. На языке матрицы орграфа это означает, что каждый элемент матрицы M^t положителен. Наименьшее число t с таким свойством называется экспонентой орграфа D и обозначается через $\gamma(D)$. Экспоненты орграфов служат объектом интенсивного изучения на протяжении последних 60 лет, обзор накопленных в этой области фактов см., например, в [9]. В данной работе потребуются лишь несколько классических результатов, собранных в следующем утверждении. В нем (и далее в работе) орграф с n вершинами для краткости именуется n-орграфом.

Теорема 1. (а) (Теорема Виландта, см. [12,13,28]) *Если D – примитивный* n-орграф, то $\gamma(D) \leq (n-1)^2 + 1$.

(b) [13, теорема 6 и следствие 4] Если n > 2, то с точностью до изоморфизма есть ровно один примитивный n-орграф с экспонентой $(n-1)^2 + 1$ и ровно один примитивный n-орграф с с экспонентой $(n-1)^2$. Матрицы этих орграфов суть соответственно

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & 1 & 0 & \dots & 0 & 0 \end{pmatrix} \quad u \quad \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 & 1 \\ 1 & 1 & 0 & \dots & 0 & 0 \end{pmatrix}. \tag{1}$$

- (c) [13, теорема 7] Если n>4 и n четно, то нет ни одного примитивного n-орграфа D, для которого $n^2-4n+6<\gamma(D)<(n-1)^2$. C точностью до изоморфизма существуют ровно три, если n кратно трем, или ровно четыре, если n не кратно трем, примитивных n-орграфа c экспонентой n^2-4n+6 .
- (d) [13, теорема 8] Если n > 3 и n нечетно, то нет ни одного примитивного n-орграфа D, для которого $n^2 3n + 4 < \gamma(D) < (n-1)^2$. C точностью до изоморфизма есть ровно один примитивный n-орграф c экспонентой $n^2 3n + 4$, ровно один примитивный n-орграф c экспонентой $n^2 3n + 3$, и ровно два примитивных n-орграфа c экспонентой $n^2 3n + 2$.

Матрицы этих орграфов суть соответственно

$$\begin{pmatrix}
0 & 1 & 0 & \dots & 0 & 0 \\
0 & 0 & 1 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & 1 & 0 \\
0 & 0 & 0 & \dots & 0 & 1 \\
1 & 0 & 1 & \dots & 0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 & 0 & \dots & 0 & 0 \\
0 & 0 & 1 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & 1 & 0 \\
0 & 1 & 0 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & 1 & 0 \\
0 & 1 & 0 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & 1 & 0 \\
0 & 0 & 0 & \dots & 1 & 0 \\
0 & 0 & 0 & \dots & 0 & 1 \\
1 & 0 & 1 & \dots & 0 & 0
\end{pmatrix}.$$

$$\begin{pmatrix}
0 & 1 & 0 & \dots & 0 & 0 \\
0 & 0 & 1 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & 1 & 0 \\
0 & 0 & 0 & \dots & 0 & 1 \\
1 & 0 & 1 & \dots & 0 & 0
\end{pmatrix}.$$

$$\begin{pmatrix}
0 & 1 & 0 & \dots & 0 & 0 \\
0 & 0 & 1 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & \dots & 0 & 1 \\
1 & 0 & 1 & \dots & 0 & 0
\end{pmatrix}.$$

$$\begin{pmatrix}
0 & 1 & 0 & \dots & 1 & 0 \\
0 & 0 & 1 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots & \dots \\
1 & 0 & 0 & \dots & \dots & 0 & 1 \\
1 & 0 & 1 & \dots & 0 & 0
\end{pmatrix}.$$

(e) [13, теорема 8] Если n > 3 и n нечетно, то нет ни одного n-орграфа D, для которого $n^2 - 4n + 6 < \gamma(D) < n^2 - 3n + 2$. C точностью до изоморфизма существуют ровно три, если n кратно трем, или ровно четыре, если n не кратно трем, примитивных n-орграфа c экспонентой $n^2 - 4n + 6$.

В табл. 2 экспериментальные данные из табл. 1 сопоставлены с информацией, которую можно извлечь из теоремы 1.

Таблица 2: Экспоненты примитивных 9-орграфов и пороги синхронизации 9-автоматов с двумя входными буквами

N	65	64	63	62	61	60	59	58	57	56	55	54	53	52	51
Число орграфов с экспонентой <i>N</i>	1	1	0	0	0	0	0	1	1	2	0	0	0	0	3
Число автоматов с порогом синхронизации N	0	1	0	0	0	0	0	1	2	3	0	0	0	4	4

Сходство между второй и третьей строками табл. 2 очевидно. Аналогичное сходство проявляется при сравнении данных для других размеров автоматов/орграфов. Нам представляется, что обнаруженное сходство не случайно, а напротив, отражает глубокие и, возможно, еще не до конца проясненные взаимосвязи между примитивными орграфами и синхронизируемыми автоматами. Некоторые из этих взаимосвязей были вскрыты при изучении так называемой проблемы раскраски дорог. Напомним соответствующие понятия.

Орграфом автомата $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ будем называть орграф $D(\mathscr{A})$ со множеством вершин Q, в котором дугами служат все такие пары $(q,q') \in Q \times Q$, что $q' = \delta(q,a)$ для некоторой буквы $a \in \Sigma$. Легко видеть, что орграф D изоморфен орграфу некоторого автомата тогда и только тогда, когда любая вершина D имеет хотя бы одну исходящую дугу. В дальнейшем мы всегда будем предполагать, что рассматриваемые орграфы удовлетворяют этому условию. Если D — орграф, то его раскраской называется всякий автомат

 \mathscr{A} со свойством $D\cong D(\mathscr{A})$. Любая раскраска орграфа $D=\langle V,E\rangle$ получается, если зафиксировать некоторый конечный алфавит Σ и приписать каждой дуге из E непустое множество букв из Σ так, чтобы для каждой вершины $v\in V$ множества, приписанные исходящим из v дугам, составляли разбиение алфавита Σ . На рис. 2 изображен орграф и две его раскраски при помощи алфавита $\Sigma=\{a,b\}$.

Рис. 2: Орграф и две его раскраски

Еще в 1977 г. Адлер, Гудвин и Вейс [3] отметили, что орграф каждого сильно связного синхронизируемого автомата примитивен, и предположили, что каждый примитивный орграф имеет синхронизируемую раскраску – в этом и состояла гипотеза раскраски дорог, недавно доказанная Трахтманом [24]. Нетрудно указать и соотношение между порогом синхронизации сильно связного синхронизируемого автомата и экспонентой его орграфа.

Предложение 2. Пусть $\mathscr{A} = \langle Q, \Sigma, \delta \rangle$ — сильно связный синхронизируемый п-автомат с порогом синхронизации t. Тогда

$$\gamma(D(\mathscr{A})) < t + n - 1. \tag{4}$$

Доказательство. Пусть $w \in \Sigma^*$ — синхронизирующее слово длины t и пусть p — то состояние, к которому w синхронизирует автомат \mathscr{A} , т. е. $\delta(q,w)=p$ для всех $q\in Q$. Возьмем теперь произвольную пару $(q',q'')\in Q\times Q$ и укажем в орграфе $D(\mathscr{A})$ маршрут из q' в q'' длины в точности t+n-1. Поскольку орграф $D(\mathscr{A})$ сильно связен, в нем существует маршрут из p в q''. Пусть ℓ — минимальная длина такого маршрута. Так как маршрут минимальной длины не проходит ни через одну вершину дважды, $\ell \leq n-1$. Рассмотрим теперь произвольный маршрут длины $n-1-\ell$, начинающийся из q'. Из конечной вершины этого маршрута пройдем по маршруту длины t, вдоль которого в автомате $\mathscr A$ читается слово w. Поскольку w — синхронизирующее слово, такой маршрут необходимо окончится в p. Теперь осталось пройти по маршруту длины ℓ из ℓ в ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ в ℓ длины ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ в ℓ длины ℓ из ℓ в ℓ длины ℓ из ℓ в ℓ на ℓ в ℓ длины ℓ из ℓ в ℓ длины ℓ на ℓ в ℓ в

Таким образом, раскраски примитивных орграфов с большими экспонентами приводят к автоматам с большими порогами синхронизации. Это наблюдение, однако, еще не достаточно для того, чтобы полностью объяснить сходство между строками табл. 2, поскольку далеко не все автоматы, отвечающие ненулевым позициям в третьей строке, могут быть получены

как раскраски примитивных орграфов с большими экспонентами. В §4 мы укажем еще один способ получения медленно синхронизируемых автоматов из примитивных орграфов.

§4. Серии медленно синхронизируемых автоматов

4.1. Обзор. Обсудим прежде всего, какими именно автоматами мы интересуемся, другими словами, какой точный смысл вкладывается в выражения типа «медленно синхронизируемые автоматы» или «автоматы, с порогом синхронизации, близким к квадрату числа состояний». Как отмечалось в §1, порог синхронизации n-автомата может достигать $(n-1)^2$ соответствующим примером служит открытый Черни [11] автомат $\mathcal{C}_n = \langle \{1,2,\ldots,n\}, \{a,b\},\delta \rangle$, где буквы a и b действуют следующим образом:

$$\delta(i,a) = egin{cases} i, & ext{если } i < n, \ 1, & ext{если } i = n; \end{cases} \quad \delta(i,b) = egin{cases} i+1, & ext{если } i < n, \ 1, & ext{если } i = n. \end{cases}$$

Автомат \mathscr{C}_n изображен слева на рис. 5 ниже. Нетрудно понять, что если к автомату \mathscr{C}_{n-1} добавить новое состояние q_0 , а затем всевозможными способами доопределять действие букв a и b на этом новом состоянии так, чтобы хотя бы одна из них не фиксировала q_0 , то можно получить n^2-1 неизоморфных достижимых n-автоматов с порогами синхронизации от $(n-2)^2$ до $(n-2)^2+1$. Аналогичным образом можно «размножать» до семейств n-автоматов и другие (n-1)-автоматы с порогом синхронизации, близким к $(n-2)^2$. Поскольку мы хотим избежать рассмотрения таких более или менее тривиальных модификаций, наше внимание сосредоточено на n-автоматах с порогом синхронизации, заключенным в пределах от $(n-2)^2+2$ до $(n-1)^2$. (В частности, именно из этих соображений выбирался диапазон значений порога синхронизации в табл. 1 и 2.)

Наши эксперименты показывают, что в указанных пределах автоматов не слишком много и что их распределение по возможным значениям порога синхронизации устойчиво следует такому образцу: изолированное экстремальное значение – разрыв – небольшой «остров» – разрыв – «материк», см. табл. 1 и обсуждение в конце §2. Мы продемонстрируем, что исходя из примитивных орграфов с большими экспонентами, представленных в теореме 1, можно построить следующие серии автоматов над двухбуквенным алфавитом:

- серию \mathscr{C}_n , отвечающую наблюдаемому экстремальному значению;
- серии \mathscr{W}_n , \mathscr{D}'_n , \mathscr{D}''_n , \mathscr{E}_n , а при нечетном n еще и серии \mathscr{B}_n и \mathscr{F}_n , отвечающие всем наблюдаемым «островным» значениям;
- серии \mathscr{G}_n (при нечетном n) и \mathscr{H}_n , отвечающие максимальным наблюдаемым «материковым» значениям.

Рис. 3 показывает, из каких именно орграфов получаются перечисленные серии. (Для наглядности на рис. 3 вместо матриц из теоремы 1 изображены «типичные представители» соответствующих серий орграфов.) Если

от символа орграфа к букве, обозначающей серию автоматов, проведена сплошная стрелка, то автоматы серии получены раскраской соответствующих орграфов; штриховая стрелка указывает на другой способ получения автомата из орграфа. Пунктирной рамкой объединены серии автоматов с одинаковым значением порога синхронизации.

Рис. 3: Связи между сериями примитивных орграфов с большими экспонентами и сериями медленно синхронизируемых автоматов

Итак, здесь мы докажем ряд утверждений о перечисленных на рис. 3 сериях автоматов. (Два из этих утверждений – о сериях \mathcal{C}_n и \mathcal{C}_n – встречались в литературе, но наши доказательства являются существенно новыми.) Эти результаты будут объединены в 5 групп в соответствии с «происхождением» серий, т. е. с типом орграфов, из которых получены автоматы серий.

4.2. Автоматы, связанные с орграфами серии W_n . Орграф W_n – это n-орграф наибольшей экспоненты, отвечающий первой матрице в (1). Если обозначить вершины W_n через $1,2,\ldots,n$, то его дуги суть $(n,1),\ (n,2)$ и (i,i+1) для $i=1,\ldots,n-1$. Нетрудно видеть, что с точностью до изоморфизма и переименования букв существует единственная раскраска орграфа W_n с помощью двух букв. Обозначим соответствующий автомат через \mathcal{W}_n . Орграф W_n и автомат \mathcal{W}_n изображены на рис. 4.

Рис. 4: Орграф W_n и автомат \mathscr{W}_n

Теорема 2. Автомат W_n синхронизируем, и его порог синхронизации равен $n^2 - 3n + 3$.

Доказательство. Нетрудно проверить, что слово $(ab^{n-2})^{n-2}a$ синхронизирует автомат \mathcal{W}_n . Длина этого слова равна $(n-1)(n-2)+1=n^2-3n+3$. С другой стороны, из теоремы 1(b) и предложения 2 вытекает, что порог синхронизации для \mathcal{W}_n не может быть меньше чем $((n-1)^2+1)-(n-1)=n^2-3n+3$.

Серия автоматов \mathcal{W}_n была обнаружена первым автором данной работы в 2008 г. Его первоначальное доказательство теоремы 2 использовало теоретико-игровую технику из [6] и было весьма трудоемким.

Теперь продемонстрируем, что и серия автоматов \mathscr{C}_n тесно (хотя и менее очевидным образом) связана с орграфами из серии W_n . Отметим, что хотя автоматы \mathscr{C}_n известны уже около 50 лет и многократно переоткрывались, их родство с орграфами из серии W_n ранее, по-видимому, не отмечалось.

Рис. 5: Автомат \mathscr{C}_n и автомат, определяемый действиями слов b и c=ab

Дадим новое простое доказательство классического результата Черни.

Теорема 3 ([11, лемма 1]). Автомат \mathscr{C}_n синхронизируем, и его порог синхронизации равен $(n-1)^2$.

Доказательство. Легко проверить, что слово $(ab^{n-1})^{n-2}a$ синхронизирует автомат \mathscr{C}_n . Длина этого слова равна $n(n-2)+1=(n-1)^2$.

Теперь воспользуемся следующим наблюдением, которое будет полезно и в других доказательствах.

Предложение 3. Пусть $\mathscr{A} = \langle Q, \{a,b\}, \delta \rangle$ — синхронизируемый п-автомат с порогом синхронизации t, в котором буква а фиксирует все состояния, кроме ровно одного, а буква b действует как перестановка множества Q. Рассмотрим автомат $\mathscr{B} = \langle Q, \{b,c\}, \zeta \rangle$, в котором $\zeta(q,b) = \delta(q,b)$ и $\zeta(q,c) = \delta(q,ab)$ для всех $q \in Q$. Тогда автомат \mathscr{B} синхронизируем, и его порог синхронизации не превосходит t-n+2.

Доказательство. Пусть w – некоторое синхронизирующее автомат \mathscr{A} слово длины t. Поскольку буква b действует как перестановка множества Q, слово w не может оканчиваться на b – в противном случае, удалив последнюю букву из w, мы получили бы более короткое синхронизирующее слово. Итак, w = w'a для некоторого слова $w' \in \{a,b\}^*$. Пусть $q_1 \in Q$ – то единственное состояние, которое не фиксируется буквой a, и пусть $q_2 = \delta(q_1,a)$.

Из минимальности длины слова w вытекает, что образ множества Q под действием слова w' равен $\{q_1,q_2\}$.

Поскольку слово a^2 действует на Q точно так же, как буква a, это слово не может появиться в w в качестве фактора — в противном случае, заменив вхождение a^2 на a, мы получили бы более короткое синхронизирующее слово. Поэтому после каждого вхождения a в w, кроме последнего, следует вхождение буквы b, а стало быть, слово w' может быть переписано в слово v над алфавитом $\{b,c\}$ (где c=ab). Поскольку слова w' и v действуют на множестве Q одинаково, слово vc является синхронизирующим для автомата \mathscr{B} . Итак, автомат \mathscr{B} синхронизируем; пусть s — его порог синхронизации.

Поскольку b лишь переставляет состояния, а каждое применение c может перевести в одно состояние лишь одну пару состояний, слово vc, переводящее все состояния в одно, должно содержать по меньшей мере n-1 вхождение c. Длина v как слова над $\{b,c\}$ не меньше s-1 и v содержит по меньшей мере n-2 вхождения c. Поскольку каждое вхождение c в v отвечает вхождению фактора ab в w', мы можем заключить, что слово w' имеет длину не меньше (s-1)+(n-2). Поскольку длина слова w=w'a равна t, получаем $t-1 \geq (s-1)+(n-2)$, откуда $s \leq t-n+2$.

Вернемся к доказательству теоремы 3. Легко видеть, что для автомата \mathscr{C}_n автомат, определяемый действиями слов b и c=ab, изоморфен автомату \mathscr{W}_n , см. рис. 5. По теореме 2 порог синхронизации для \mathscr{W}_n есть n^2-3n+3 . Применяя предложение 3, заключаем, что порог синхронизации для \mathscr{C}_n не может быть меньше чем $(n^2-3n+3)+(n-2)=n^2-2n+1=(n-1)^2$. \square

Следующая серия из семейства автоматов, связанных с орграфом W_n , состоит из автоматов $\mathcal{E}_n = \langle \{1,2,\ldots,n\}, \{a,b\},\delta \rangle$, где буквы a и b действуют следующим образом:

$$\delta(i,a) = egin{cases} 2, & \text{если } i = 1, \ 3, & \text{если } i = 2, \ i. & \text{если } i > 2; \end{cases} \quad \delta(i,b) = egin{cases} i+1, & \text{если } i < n, \ 1, & \text{если } i = n. \end{cases}$$

Автомат \mathscr{E}_n изображен на рис. 6 слева.

Рис. 6: Автомат \mathscr{E}_n и автомат, определяемый действиями слов b и c=aa

Теорема 4. Автомат \mathscr{E}_n синхронизируем, и его порог синхронизации равен $n^2 - 3n + 2$.

Доказательство. Несложно проверить, что слово $(a^2b^{n-2})^{n-3}a^2$ синхронизирует автомат \mathscr{E}_n . Длина этого слова равна $n(n-3)+2=n^2-3n+2$.

Пусть теперь w — некоторое синхронизирующее \mathcal{E}_n слово минимальной длины. Заметим, что в \mathcal{E}_n слова bab и b^2 действуют одинаково и слова a^3 и a^2 тоже действуют одинаково. Поэтому факторы bab и a^3 не могут входить в слово w. Кроме того, w не может начинаться с ab. Действительно, образ множества всех состояний под действием слова ab равен $\{1,3,\ldots,n\}$, что совпадает с образом буквы b. Поэтому если бы слово w начиналось с ab, то, заменив ab на b, мы получили бы более короткое синхронизирующее слово. Наконец, w не может заканчиваться на ba. Действительно, если w = w'a, то из минимальности w следует, что образ множества всех состояний под действием слова w' равен $\{2,3\}$. Однако последнее множество не принадлежит образу буквы b, т. е. w' не может оканчиваться на b. Итак, любое вхождение буквы a в слово w происходит внутри фактора a^2 и никакие два вхождения таких факторов в w не перекрываются.

Положим $c=a^2$, тогда слово w может быть переписано в слово v над алфавитом $\{b,c\}$. Действия b и c на множестве $\{1,2,\ldots,n\}$ определяют автомат, изображенный на рис. 6 справа. Поскольку слова w и v действуют на множестве $\{1,2,\ldots,n\}$ одинаково, слово v является синхронизирующим для этого автомата, а значит, и для его подавтомата с множеством состояний $\{1,3,\ldots,n\}$. Легко видеть, что этот подавтомат изоморфен автомату \mathscr{C}_{n-1} . По теореме 3 длина v как слова над $\{b,c\}$ не меньше $(n-2)^2$ и v содержит по меньшей мере n-2 вхождения c. Поскольку каждое вхождение c в v отвечает вхождению фактора a^2 в w, мы можем заключить, что слово w имеет длину не меньше $(n-2)^2+(n-2)=n^2-3n+2$.

Доказательство теоремы 4 показывает, что автомат \mathcal{E}_n возникает из одной из той «тривиальных» модификаций автомата \mathcal{E}_{n-1} , которые мы обсудили в п. 4.1. Последняя серия медленно синхронизируемых автоматов из семейства автоматов, связанных с орграфом W_n , возникает из аналогичной модификации автомата \mathcal{W}_{n-1} . Она состоит из автоматов $\mathcal{H}_n = \langle \{1, 2, \ldots, n\}, \{a, b\}, \delta \rangle$, где буквы a и b действуют следующим образом:

$$\delta(i,a) = egin{cases} n, & \text{если } i = 1, \\ i, & \text{если } 1 < i < n, & \delta(i,b) = \begin{cases} i+1, & \text{если } i < n-1, \\ 1, & \text{если } i = n-1, \\ 3, & \text{если } i = n. \end{cases}$$

Автомат \mathscr{H}_n изображен на рис. 7 слева.

Теорема 5. Автомат \mathcal{H}_n синхронизируем, и его порог синхронизации равен $n^2 - 4n + 6$.

Доказательство. Легко убедиться, что слово $b(ab^{n-2})^{n-3}ab$ синхронизирует автомат \mathcal{H}_n . Длина этого слова равна $1+(n-1)(n-3)+2=n^2-4n+6$.

Пусть теперь w – некоторое синхронизирующее \mathscr{H}_n слово минимальной длины. Поскольку в \mathscr{H}_n слово a^2 действует как тождественное преобразование, оно не может входить в w в качестве фактора. Кроме того, слово

Рис. 7: Автомат \mathscr{H}_n и автомат, определяемый действиями слов b и c=ab

w не может ни начинаться, ни заканчиваться буквой a, так как эта буква действует на множестве всех состояний как перестановка.

Положим c=ab, тогда слово w может быть переписано в слово v над алфавитом $\{b,c\}$. Действия b и c на множестве $\{1,2,\ldots,n\}$ определяют автомат, изображенный на рис. 7 справа. Поскольку слова w и v действуют на множестве $\{1,2,\ldots,n\}$ одинаково, слово v является синхронизирующим для этого автомата. Выше отмечено, что слово w начинается c буквы b, а значит, c нее начинается и v. Если записать v=bv' для некоторого $v'\in\{b,c\}^*$, то легко видеть, что слово v' будет синхронизирующим для подавтомата c множеством состояний $\{1,2,\ldots,n-1\}$. Поскольку этот подавтомат изоморфен автомату \mathscr{W}_{n-1} , по теореме c длина c0 как слова над c0 не меньше c1 не меньше c2 вхождения c3 поскольку c4 лишь переставляет состояния из c4, c5 не межет применение c6 может перевести в одно состояние лишь одну пару состояний. Учитывая, что каждое вхождение c7 в c8 и не может быть меньше чем c8 и мы можем заключить, что длина слова c9 не может быть меньше чем c1 не может быть меньше чем c8 и мы можем заключить, что длина слова c8 и не может быть меньше чем c9 не может быть меньше c9 не м

4.3. Автоматы, связанные с орграфами серии D_n . Орграф D_n – это n-орграф с экспонентой $(n-1)^2$, отвечающий второй матрице в (1). Он получается из орграфа W_n добавлением дуги (n-1,1). Нетрудно видеть, что с точностью до изоморфизма и переименования букв существуют ровно две раскраски орграфа D_n с помощью двух букв. На рис. 8 изображен орграф D_n и две его раскраски – автоматы \mathcal{D}'_n и \mathcal{D}''_n .

Рис. 8: Орграф D_n и его раскраски \mathscr{D}'_n и \mathscr{D}''_n

Теорема 6. Автоматы \mathcal{D}'_n и \mathcal{D}''_n синхронизируемы, и их пороги синхронизации равны n^2-3n+4 и n^2-3n+2 соответственно.

Доказательство. Нетрудно проверить, что слово $(ab^{n-2})^{n-2}ba$ синхронизирует автомат \mathscr{D}'_n , а слово $(ba^{n-1})^{n-3}ba$ – автомат \mathscr{D}''_n . Длины этих слов равны $(n-1)(n-2)+2=n^2-3n+4$ и $n(n-3)+2=n^2-3n+2$ соответственно.

Из теоремы 1(b) и предложения 2 вытекает, что порог синхронизации для раскрасок орграфа D_n не может быть меньше чем $(n-1)^2 - (n-1) = n^2 - 3n + 2$. Это доказывает утверждение теоремы для автомата \mathcal{D}_n^n .

Займемся теперь автоматом \mathscr{D}'_n . Здесь будет полезен следующий элементарный результат.

Лемма 1 ([18, Теорема 2.1.1]). Если натуральные числа k и ℓ взаимно просты, то наибольшее натуральное число, не представимое в виде линейной комбинации чисел k и ℓ с целыми неотрицательными коэффициентами, равно $k\ell-k-\ell$.

Пусть теперь w — некоторое синхронизирующее автомат \mathcal{D}'_n слово минимальной длины. Поскольку 2 — единственное состояние в \mathcal{D}'_n , являющееся общим концом двух разных дуг с одинаковой меткой, из минимальности w следует, что под действием w все состояния автомата переходят в 2. Если предположить, что длина w равна $n^2 - 3n + 2$, то в D_n найдется маршрут такой длины из вершины 1 в вершину 2. Но вершина 1 имеет единственную исходящую дугу (1,2), следовательно, указанный маршрут состоит из этой дуги и контура длины $n^2 - 3n + 1$. В орграфе D_n есть ровно три простых контура: один длины n и два длины n-1. Любой контур можно разбить на простые контуры, а потому число $n^2 - 3n + 1$ должно (как длина некоторого контура в D_n) быть линейной комбинацией чисел n и n-1 (длин простых контуров) с целыми неотрицательными коэффициентами. Но это невозможно по лемме 1, поскольку $n^2 - 3n + 1 = n(n-1) - n - (n-1)$.

Предположим теперь, что длина w равна n^2-3n+3 . Тогда в D_n найдется маршрут указанной длины из вершины n-1 в вершину 2. Поскольку b действует как перестановка множества всех состояний автомата \mathcal{D}'_n , слово w должно начинаться с буквы a. Состояние n-1 под действием a переходит в состояние 1. Поэтому в D_n должен быть и маршрут длины n^2-3n+2 из 1 в 2, но в предыдущем абзаце показано, что это невозможно. Таким образом, длина w не может быть меньше чем n^2-3n+4 .

Серия \mathscr{D}'_n интересна тем, что при n>6 автоматы этой серии обладают наибольшим порогом синхронизации среди всех известных автоматов за исключением автоматов из серии Черни \mathscr{C}_n , а также наибольшим порогом синхронизации среди всех известных автоматов без петель. У серии \mathscr{D}''_n также есть экстремальное свойство: автоматы этой серии обладают наибольшим порогом синхронизации среди всех известных автоматов, в которых ни одна буква не действует как перестановка множества состояний.

С орграфами D_n связана еще одна серия n-автоматов с порогом синхронизации $n^2 - 4n + 6$. Мы не будем ее здесь приводить, поскольку одна серия с такими же параметрами уже описана выше (см. теорему 5).

4.4. Автоматы, связанные с орграфами серии V_n . Орграф V_n – это n-орграф, отвечающий первой матрице в (2). Если обозначить вершины V_n через $1,2,\ldots,n$, то его дуги суть $(n,1),\ (n,3)$ и (i,i+1) для $i=1,\ldots,n-1$. Орграф V_n примитивен только при нечетном n, и в этом случае его экспонента равна n^2-3n+4 . С орграфами серии V_n связано семейство автоматов $\mathscr{F}_n=\langle\{1,2,\ldots,n\},\{a,b\},\delta\rangle$, в которых буквы a и b действуют следующим образом:

$$\delta(i,a) = egin{cases} i, & ext{если } i < n, \ 2, & ext{если } i = n; \end{cases} \quad \delta(i,b) = egin{cases} i+1, & ext{если } i < n, \ 1, & ext{если } i = n. \end{cases}$$

Автомат \mathscr{F}_n изображен на рис. 9 слева.

Рис. 9: Автомат \mathscr{F}_n и автомат, определяемый действиями слов b и c=ab

Теорема 7. Автомат \mathscr{F}_n синхронизируем при нечетном n > 3, и его порог синхронизации равен $n^2 - 3n + 3$.

Доказательство. Непосредственно проверяется, что при каждом нечетном n>3 слово $(ab^{n-2})^{n-2}a$ синхронизирует автомат \mathscr{F}_n . Длина этого слова составляет $(n-1)(n-2)+1=n^2-3n+3$.

Ясно, что автомат \mathscr{F}_n удовлетворяет условиям предложения 3. Действия слов b и c=ab на множестве $\{1,2,\ldots,n\}$ определяют автомат, изображенный на рис. 9 справа; обозначим этот автомат через \mathscr{V} . Ясно, что автомат \mathscr{V} изоморфен некоторой раскраске орграфа V_n . Из теоремы 1(d) и предложения 2 следует, что порог синхронизации для раскрасок орграфа V_n не может быть меньше чем $(n^2-3n+4)-(n-1)=n^2-4n+5$. Применяя предложение 3, заключаем, что порог синхронизации для \mathscr{F}_n не может быть меньше чем $(n^2-4n+5)+(n-2)=n^2-3n+3$.

4.5. Автоматы, связанные с орграфами серии R_n . Орграф R_n – это n-орграф, отвечающий второй матрице в (2). Он получается из орграфа V_n добавлением дуги (n-1,2). Орграф R_n примитивен только при нечетном n, и в этом случае его экспонента равна n^2-3n+3 . С орграфами серии R_n связано семейство автоматов $\mathscr{B}_n = \langle \{1,2,\ldots,n\}, \{a,b\},\delta \rangle$, в которых буквы

а и в действуют следующим образом:

$$\delta(i,a) = egin{cases} i & ext{if } i < n-1, \ 1 & ext{if } i = n-1, \ 2 & ext{if } i = n; \end{cases} \quad \delta(i,b) = egin{cases} i+1 & ext{if } i < n, \ 1 & ext{if } i = n. \end{cases}$$

Автомат \mathscr{B}_n изображен на рис. 10 слева.

Рис. 10: Автомат \mathscr{B}_n и автомат, определяемый действиями слов b и c=ab

Серия \mathcal{B}_n (при нечетном n > 3) была опубликована в [6] и до недавнего времени оставалась единственной бесконечной серией медленно синхронизируемых автоматов с двумя входными буквами, представленной в литературе, помимо серии Черни. Ее связь с орграфами из серии R_n ранее не отмечалась.

Следующее утверждение, бывшее основным результатом статьи [6], доказывалось в ней теоретико-игровым методом. Здесь мы даем вполне элементарное доказательство, сходное с доказательствами теорем 3 и 7.

Теорема 8 ([6, теорема 1.1]). Если n > 3 нечетно, то автомат \mathcal{B}_n синхронизируем, и его порог синхронизации равен $n^2 - 3n + 2$.

Доказательство. Нетрудно проверить, что при каждом нечетном n>3 слово $(ab^{n-2})^{\frac{n-3}{2}}ab^{n-3}(ab^{n-2})^{\frac{n-3}{2}}a$ синхронизирует автомат \mathcal{B}_n . Длина этого слова равна $(n-1)^{\frac{n-3}{2}}+n-2+(n-1)^{\frac{n-3}{2}}+1=n^2-3n+2$.

Пусть w – некоторое синхронизирующее автомат \mathcal{B}_n слово минимальной длины t. Поскольку буква b действует как перестановка множества всех состояний, слово w не может ни начинаться с b, ни оканчиваться на b. В частности, w=w'a для некоторого слова $w'\in\{a,b\}^*$. Из минимальности длины слова w вытекает, что образ множества всех состояний под действием слова w' равен либо $\{1,n-1\}$, либо $\{2,n\}$.

Поскольку слово a^2 действует в \mathscr{B}_n точно так же, как буква a, это слово не может появиться в w в качестве фактора. Далее, слово b^n действует в \mathscr{B}_n как тождественное преобразование и, стало быть, также не может быть фактором в синхронизирующем слове минимальной длины. Итак, мы заключаем, что $w=ab^{k_1}ab^{k_2}a\cdots ab^{k_m}a$, где $1\leq k_1,k_2,\ldots,k_m\leq n-1$.

Положим c=ab. Тогда слово w' и слово $v=cb^{k_1-1}cb^{k_2-1}c\cdots cb^{k_m-1}$ одинаково действуют на множестве $\{1,2,\ldots,n\}$. Поэтому слово vc является

синхронизирующим для автомата \mathscr{R} , определяемого действиями слов b и c=ab и изображенного на рис. 10 справа. Ясно, что автомат \mathscr{R} изоморфен некоторой раскраске орграфа R_n . Из теоремы 1(d) и предложения 2 следует, что порог синхронизации для раскрасок орграфа R_n не может быть меньше чем $(n^2-3n+3)-(n-1)=n^2-4n+4$, откуда длина v как слова над $\{b,c\}$, равная $\sum_{i=1}^m k_i$, не меньше n^2-4n+3 . Поскольку $k_i \leq n-1$ для всех $i=1,\ldots,m$, имеем

$$m(n-1) \ge \sum_{i=1}^{m} k_i \ge n^2 - 4n + 3 = (n-3)(n-1),$$
 (5)

откуда $m \geq n-3$. При этом равенство m=n-3 возможно только в случае, когда все неравенства в (5) обращаются в равенства, т. е. когда $k_i=n-1$ для всех $i=1,\ldots,m$. Тогда $vc=(cb^{n-2})^{n-3}c$, но последнее слово не является синхронизирующим для \mathscr{R} – легко видеть, что оно переставляет состояния 2 и 3. Значит, $m\geq n-2$.

Поскольку каждое вхождение c в v отвечает вхождению фактора ab в w', можем заключить, что слово w' имеет длину не меньше $(n^2 - 4n + 3) + (n-2) = n^2 - 3n + 1$, откуда длина w не меньше чем $n^2 - 3n + 2$.

4.6. Автоматы, связанные с орграфами серии G_n . Орграф G_n – это n-орграф, отвечающий второй матрице в (3). Он получается из орграфа V_n добавлением дуги (n-2,1). Орграф G_n примитивен только при нечетном n, и в этом случае его экспонента равна $n^2 - 3n + 2$. На рис. 11 изображен автомат G_n , являющийся одной из возможных раскрасок орграфа G_n . Эта серия автоматов интересна для нас тем, что при нечетном n она реализует максимальное наблюдаемое «материковое» значение порога синхронизации.

Рис. 11: Автомат \mathscr{G}_n

Теорема 9. Если n > 3 нечетно, то автомат \mathcal{G}_n синхронизируем, и его порог синхронизации равен $n^2 - 4n + 7$.

Доказательство. Легко видеть, что при каждом нечетном n>3 слово $a^2(baba^{n-3})^{n-4}baba^2$ синхронизирует автомат \mathscr{G}_n . Длина этого слова равна $2+n(n-4)+5=n^2-4n+7$.

Дальнейшие рассуждения вполне аналогичны аргументам из доказательства теоремы 6. Из теоремы 1(d) и предложения 2 вытекает, что порог синхронизации для раскрасок орграфа G_n не может быть меньше чем $(n^2 - 3n + 2) - (n - 1) = n^2 - 4n + 3$.

Пусть теперь w — некоторое синхронизирующее автомат \mathcal{G}_n слово минимальной длины. Поскольку 3 — единственное состояние в \mathcal{G}_n , являющееся общим концом двух разных дуг с одинаковой меткой, из минимальности w следует, что под действием w все состояния автомата переходят в 3. Если предположить, что длина w равна n^2-4n+3 , то в D_n найдется маршрут такой длины из вершины 2 в вершину 3. Но вершина 2 имеет единственную исходящую дугу (2,3), следовательно, указанный маршрут состоит из этой дуги и контура длины n^2-4n+2 . В орграфе G_n есть ровно три простых контура: один длины n и два длины n-2. Любой контур можно разбить на простые контуры, а потому число n^2-4n+2 должно — как длина некоторого контура в G_n — быть линейной комбинацией с целыми неотрицательными коэффициентами длин простых контуров, т. е. чисел n и n-2. (Отметим, что числа n и n-2 взаимно просты, так как n нечетно.) Однако это невозможно по лемме 1, поскольку $n^2-4n+2=n(n-2)-n-(n-2)$.

Допустим, что длина w равна n^2-4n+4 . Тогда в G_n найдется маршрут такой длины из вершины 1 в вершину 3. Вершина 1 имеет единственную исходящую дугу (1,2), следовательно, указанный маршрут состоит из этой дуги и маршрута длины n^2-4n+3 из 2 в 3. В предыдущем абзаце показано, что в G_n нет маршрута из 2 в 3 с такой длиной.

Предположим, что длина w равна n^2-4n+5 . Подействовав словом w на состояние n-2, мы должны перейти в состояние 3. Для состояния n-2 есть две исходящие дуги: (n-2,1) с меткой a и (n-2,n-1) с меткой b. Поскольку буква b действует как перестановка множества всех состояний автомата \mathcal{G}_n , слово w начинается с буквы a. Поэтому первой дугой маршрута из n-2 в 3, соответствующего действию слова w, необходимо будет дуга (n-2,1), за которой следует маршрут из вершины 1 в вершину 3 с длиной n^2-4n+4 . В предыдущем абзаце показано, что в G_n нет маршрута из 1 в 3 с такой длиной.

Пусть, наконец, длина w равна n^2-4n+6 . Подействовав словом w на каждое из состояний n-3 и n-1, мы должны перейти в состояние 3. Если вторая буква слова w есть a, то маршрут из n-3 в 3, соответствующий действию слова w, начинается с дуг (n-3,n-2) и (n-2,1), за которыми должен следовать маршрут из вершины 1 в вершину 3 с длиной n^2-4n+4 , что невозможно. Если же вторая буква слова w есть b, то маршрут из n-1 в 3, соответствующий действию слова w, начинается с дуг (n-1,n) и (n,1), за которыми снова должен следовать невозможный маршрут из 1 в 3.

Итак, мы показали, что порог синхронизации автомата \mathscr{G}_n не может быть меньше чем $n^2 - 4n + 7$.

§5. Обсуждение и новые гипотезы

- 5.1. Две гипотезы. Построения и результаты, изложенные в §4, свидетельствуют о наличии достаточно тесных связей между порогами синхронизации автоматов с двумя входными буквами и экспонентами примитивных орграфов. Такой вывод подтверждается и недавними результатами третьего автора [14]. Представляется перспективным дальнейшее исследование этих связей. Чтобы придать такому исследованию конкретность, мы сформулируем здесь одну весьма общую гипотезу в духе теоремы 1. Эта гипотеза уточняет гипотезу Черни для случая автоматов с двумя входными буквами и согласуется со всеми известными нам экспериментальными и теоретическими результатами.
- **Гипотеза 1.** (а) (Гипотеза Черни) Порог синхронизации любого синхронизируемого n-автомата c двумя входными буквами не превосходит $(n-1)^2$.
- (b) Если n > 6, то с точностью до изоморфизма есть ровно один синхронизируемый n-автомат c двумя входными буквами и порогом синхронизации $(n-1)^2$, а именно, автомат \mathcal{C}_n .
- (c) Если n > 6 то нет ни одного синхронизируемого n-автомата c двумя входными буквами, для которого порог синхронизации был бы больше $n^2 3n + 4$, но меньше $(n-1)^2$.
- (d) Если n > 7 и n нечетно, то c точностью до изоморфизма есть ровно один синхронизируемый n-автомат c двумя входными буквами и порогом синхронизации $n^2 3n + 4$, а именно, автомат \mathcal{D}'_n , ровно два синхронизируемых n-автомата c двумя входными буквами и порогом синхронизации $n^2 3n + 3$, а именно, автоматы \mathcal{W}_n и \mathcal{F}_n , и ровно три синхронизируемых n-автомата c двумя входными буквами и порогом синхронизации $n^2 3n + 2$, а именно, автоматы \mathcal{E}_n , \mathcal{D}''_n и \mathcal{B}_n . Нет ни одного синхронизируемого n-автомата c двумя входными буквами, для которого порог синхронизации был бы больше $n^2 4n + 7$, но меньше $n^2 3n + 2$.
- (e) Если n > 8 и n четно, то c точностью до изоморфизма есть ровно один синхронизируемый n-автомат c двумя входными буквами и порогом синхронизации $n^2 3n + 4$, а именно, автомат \mathcal{D}'_n , ровно один синхронизируемый n-автомат c двумя входными буквами и порогом синхронизации $n^2 3n + 3$, а именно, автомат \mathcal{W}_n , и ровно два синхронизируемых n-автомата c двумя входными буквами и порогом синхронизации $n^2 3n + 2$, а именно, автоматы \mathcal{E}_n и \mathcal{D}''_n . Нет ни одного синхронизируемого n-автомата c двумя входными буквами, для которого порог синхронизации был бы больше $n^2 4n + 6$, но меньше $n^2 3n + 2$.

Сформулируем еще одну, более специальную, гипотезу, которую можно рассматривать как количественную форму упоминавшейся в §3 гипотезы раскраски дорог. Поскольку теперь известно, что всякий примитивный орграф имеет синхронизируемую раскраску [24], понятие порога синхронизации можно естественным образом распространить на такие орграфы. А именно, назовем порогом синхронизации примитивного орграфа минимум среди длин синхронизирующих слов для всех его синхронизируемых

раскрасок. Немедленно возникает задача о том, как зависит порог синхронизации примитивного орграфа от числа его вершин.

Заметим, что орграфы медленно синхронизируемых автоматов могут обладать раскрасками с малым порогом синхронизации. Рис. 2 иллюстрирует это замечание: первая раскраска изображенного в левой части рисунка орграфа — это автомат Черни \mathcal{C}_4 , кратчайшее синхронизирующее слово которого имеет длину 9, вторая же раскраска может быть синхронизирована словом a^3 длины 3. В этой связи интересна серия орграфов W_n , в которой каждый орграф имеет единственную (с точностью до изоморфизма) раскраску. Тем самым, порог синхронизации этой раскраски, установленный в теореме 2, совпадает с порогом синхронизации орграфа W_n и дает нижнюю оценку в предлагаемой задаче. Мы предполагаем, что эта оценка в действительности точна.

Гипотеза 2. Порог синхронизации каждого примитивного n-орграфа не превосходит n^2-3n+3 . Если n>3, то с точностью до изоморфизма есть ровно один примитивный n-орграф с порогом синхронизации n^2-3n+3 , а именно, орграф W_n .

Гипотеза 2 озвучивалась в нескольких докладах второго автора начиная с 2008 г., и уже опубликованы некоторые первые частичные результаты в направлении к ее доказательству [10, 21]. Ясно, что гипотезу 2 можно уточнять в духе гипотезы 1: например, единственным (с точностью до изоморфизма) примитивным n-орграфом с порогом синхронизации $n^2 - 3n + 2$ является, по-видимому, орграф D_n , и т. д.

5.2. Влияние размера входного алфавита. В наших экспериментах рассматривались автоматы с двумя входными буквами. Это ограничение связано с тем, что рост размера алфавита влияет на количество автоматов значительно сильнее, чем рост числа состояний, и потому перебор автоматов с более чем двумя входными буквами даже при небольшом числе состояний находится далеко за пределами наших вычислительных ресурсов. Табл. 3 иллюстрирует это обстоятельство. (Данные в таблице рассчитаны по формуле из [1].)

Таблица 3: Число достижимых автоматов с 2 и 3 входными буквами

Число состояний	7	8	9				
2 входные буквы	256 182 290	12665445248	705068085303				
3 входные буквы	500 750 172 337 212	572 879 126 392 178 688	835 007 874 759 393 878 655				

Тем не менее, есть некоторые основания полагать, что поведение исследовавшейся нами величины (количества синхронизируемых автоматов с фиксированным числом состояний как функции от значения порога синхронизации) не слишком сильно зависит от размера алфавита. Например, в экспериментах Трахтмана, о результатах которых сообщается в [22, 23], не было обнаружено ни одного 7-автомата с 3 или 4 входными буквами, порог синхронизации которого был бы больше 32, но меньше 36. Таким образом,

величина разрыва между максимальным и следующим за ним возможным значениями порога синхронизации здесь такая же, как для 7-автоматов с двумя входными буквами.

Отметим еще наблюдение, впервые сделанное, по видимому, в [7]: если имеется верхняя оценка вида $\Theta(n^2)$ для порогов синхронизации синхронизируемых n-автоматов с двумя входными буквами, то оценка такого же порядка (возможно, с худшей константой) существует для порогов синхронизации синхронизируемых n-автоматов с любым фиксированным размером входного алфавита.

Список литературы

- [1] B. A. Лисковец, Число связных инициальных автоматов, Кибернетика, №3 (1969), 16-19.
- [2] В. Н. Сачков, В. Е. Тараканов, Комбинаторика неотрицательных матриц. М.: ТВП, 2000.
- [3] R. L. Adler, L. W. Goodwyn, B. Weiss, Equivalence of topological Markov shifts, Israel J. Math., 27 (1977), 49–63.
- [4] M. Almeida, N. Moreira, R. Reis, Enumeration and generation with a string automata representation, Theor. Comput. Sci., 387 (2007), 93–102.
- [5] D. S. Ananichev, V. V. Gusev, M. V. Volkov, Slowly synchronizing automata and digraphs, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 6281 (2010), 55–64.
- [6] D. S. Ananichev, M. V. Volkov, Yu. I. Zaks, Synchronizing automata with a letter of deficiency 2, Theor. Comput. Sci., 376 (2007), 30–41.
- [7] M. Berlinkov, Approximating the minimum length of synchronizing words is hard, Computer Science in Russia, Lect. Notes Comput. Sci., 6072 (2010), 37–47.
- [8] M. Berlinkov, On a conjecture by Carpi and D'Alessandro, Int. J. Foundations Comp. Sci., 22 (2011), 1565–1576.
- [9] R. Brualdi, H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
- [10] A. Carpi, F. D'Alessandro, On the hybrid Černý-Road Coloring Problem and Hamiltonian paths, Developments in Language Theory, Lect. Notes Comput. Sci., 6224 (2010), 124–135.
- [11] J. Černý, Poznámka k homogénnym eksperimentom s konečnými automatami, Matematicko-fyzikalny Časopis Slovensk. Akad. Vied, 14, №3 (1964), 208–216 (in Slovak).
- [12] A. L. Dulmage, N. S. Mendelsohn, The exponent of a primitive matrix, Can. Math. Bull., 5 (1962), 241–244.

- [13] A. L. Dulmage, N. S. Mendelsohn, Gaps in the exponent set of primitive matrices, Ill. J. Math., 8 (1964), 642–656.
- [14] V. Gusev, Lower bounds for the length of reset words in Eulerian automata, Reachability Problems, Lect. Notes Comput. Sci., 6945 (2011), 180–190.
- [15] J. Kari, A counter example to a conjecture concerning synchronizing words in finite automata, Bull. European Assoc. Theor. Comput. Sci., 73 (2001), 146.
- [16] J. Olschewski, M. Ummels, The complexity of finding reset words in finite automata, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 6281 (2010), 568–579.
- [17] J.-E. Pin, On two combinatorial problems arising from automata theory, Ann. Discrete Math., 17 (1983), 535–548.
- [18] J. L. Ramírez Alfonsín, The diophantine Frobenius problem, Oxford University Press, 2005.
- [19] S. Sandberg, Homing and synchronizing sequences, Model-Based Testing of Reactive Systems, Lect. Notes Comput. Sci., 3472 (2005), 5–33.
- [20] E. Skvortsov, E. Tipikin, Experimental study of the shortest reset word of random automata, Implementation and Application of Automata, Lect. Notes Comput. Sci., 6807 (2011), 290–298.
- [21] B. Steinberg, The Černý conjecture for one-cluster automata with prime length cycle, Theor. Comput. Sci., 412 (2011) 5487–5491.
- [22] A. N. Trahtman, An efficient algorithm finds noticeable trends and examples concerning the Černý conjecture, Mathematical Foundations of Computer Science, Lect. Notes Comput. Sci., 4162 (2006), 789–800.
- [23] A. N. Trahtman, Notable trends concerning the synchronization of graphs and automata, Electr. Notes Discrete Math., 25 (2006), 173–175.
- [24] A. N. Trahtman, The Road Coloring Problem, Israel J. Math., 172 (2009), 51–60.
- [25] A. N. Trahtman, Modifying the upper bound on the length of minimal synchronizing word, Fundamentals of Computation Theory, Lect. Notes Comput. Sci, 6914 (2011), 173–180.
- [26] M. V. Volkov, Synchronizing automata and the Černý conjecture, Languages and Automata: Theory and Applications, Lect. Notes Comput. Sci., 5196, (2008), 11–27.
- [27] M. V. Volkov, Synchronizing automata preserving a chain of partial orders, Theor. Comput. Sci., 410 (2009), 3513–3519.
- [28] H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z., 52, (1950), 642–648 (in German).