Numerical Mathematics Optimisation (Non-Examinable)

Pieter Collins

Department of Knowledge Engineering

Maastricht University

pieter.collins@maastrichtuniversity.nl

Block 1.5, April-May 2018

General Optimisation Problem

Formalisation Given a set X and a function $f: X \to \mathbb{R}$, find $x^* \in X$ such that $f(x^*) \leq f(x)$ for all $x \in X$.

Local Optimisation Find a point $x^{\dagger} \in X$ such that for some $\epsilon > 0$, $f(x^{\dagger}) \leq f(x)$ whenever $d(x^{\dagger}, x) < \epsilon$.

Continuous Optimisation

Unconstrained Feasible set X is \mathbb{R}^n .

One-Dimensional Feasible set X is an interval in \mathbb{R} .

Optimality conditions (1d)

Let $f:[a,b] \to \mathbb{R}$ be sufficiently differentiable.

Interior x is an interior point if $x \in (a, b)$.

Necessary If f has an local minimum at x, then f'(x) = 0 and $f''(x) \ge 0$.

Sufficient If f'(x) = 0 and f''(x) > 0, then x is a local minimum.

Endpoints

Necessary If f has a local minimum at a, then $f'(a) \ge 0$.

Sufficient If f'(a) > 0, then f has a local minimum at a.

Optimality conditions

Positive (semi)definite A symmetric matrix S is *positive-definite*, denoted $S \prec 0$, if $v^T S v > 0$ whenever $v \neq 0$.

Necessary If $f:\mathbb{R}^n\to\mathbb{R}$ has a local minimum at x, then $\nabla f(x)=0$, and $\nabla^2 f(x)$ is positive semidefinite.

Sufficient If $\nabla f(x) = 0$, and $\nabla^2 f(x)$ is positive-definite, then $f: \mathbb{R}^n \to \mathbb{R}$ has a local minimum at x.

Optimisation Problems **Local Optimisation** Unconstrained Unconstrained Methods **Global Optimisation Local Optimisation**

Unconstrained

Quadratic approximation Sufficient local information contained in *quadratic* terms.

Line search Compute $x_{k+1} = x_k + \alpha_k s_k$, where s_k is a *search direction*, and α_k approximately minimises $f(x_k + \alpha s_k)$.

Trust region Approximate f by \tilde{f} in a sub-region R, and (approximately) minimise \tilde{f} in R.

Unconstrained Methods

Hill climbing Given a point x and vectors v_1, \ldots, v_m , m > n, choose v_i such that $f(x + v_i)$ is minimised, set $x_{n+1} = x_n + v_{n,i}$.

BAD. VERY, VERY BAD.

Simplex Given n+1 points, choose new point outside simplex (search) or inside (refinement).

Steepest-Descent Choose search direction $s_k = -g_k$ where $g_k = \nabla f(x_k)$. BAD

Conjugate-gradient Choose search direction

$$s_k = -g_k + \beta_{k-1} s_{k-1}$$
 where $\beta_{k-1} = \frac{(g_k - g_{k-1})^T g_k}{g_{k-1}^T g_{k-1}}$.

Newton Choose search direction $s_k = -H_k^{-1}g_k$ where $H_k = \nabla^2 f(x_k)$.

Taking $\alpha_k = 1$, corresponds to minimising Taylor expansion

$$\tilde{f}_k(x) = f(x_k) + g_k(x - x_k) + \frac{1}{2}H_k(x - x_k)^2.$$

Optimisation Problems **Local Optimisation Global Optimisation** Complexity Heuristics Methods Future **Global Optimisation**

Complexity

Global, non-convex problems may have many local minima.

Searching through these to find the best may take a lot of work.

Sharp, deep valleys are hard to find.

Heuristics

Random search Aim to explore state space focusing on promising areas.

Simulated annealing

Particle swarm

Genetic

Ant colony

Neural nets

Methods

Branch-and-bound

Cutting

Lagrange relaxation

Future

Morse Theory Map out hills and saddles to find promising regions.