```
In [1]:
        import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.metrics.pairwise import cosine_similarity
In [2]:
        # Load the datasets
         customers_df = pd.read_csv('Customers.csv')
         products_df = pd.read_csv('Products.csv')
         transactions df = pd.read csv('Transactions.csv')
In [5]: # Convert date columns to datetime format
         customers_df['SignupDate'] = pd.to_datetime(customers_df['SignupDate'])
         transactions_df['TransactionDate'] = pd.to_datetime(transactions_df['TransactionDat
In [7]: # Merge datasets
        merged_df = transactions_df.merge(customers_df, on='CustomerID', how='inner')
        merged_df = merged_df.merge(products_df, on='ProductID', how='inner')
        merged_df
```

Out[7]:		TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Price_x	Custoi
	0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	300.68	Andr
	1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	300.68	Britta
	2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	300.68	Kathry
	3	T00272	C0087	P067	2024-03-26 22:55:37	2	601.36	300.68	Travis
	4	T00363	C0070	P067	2024-03-21 15:10:10	3	902.04	300.68	Timo
	•••								
	995	T00630	C0031	P093	2024-10-08 23:58:14	2	609.88	304.94	-
	996	T00672	C0165	P044	2024-07-28 00:09:49	4	75.28	18.82	Juan
	997	T00711	C0165	P044	2024-06-11 15:51:14	4	75.28	18.82	Juan
	998	T00878	C0165	P044	2024-09-24 21:15:21	3	56.46	18.82	Juan
	999	T00157	C0169	P044	2024-11-09 09:07:36	2	37.64	18.82	Jeni

1000 rows × 13 columns

	CustomerID	TransactionCount	
0	C0001	5	
1	C0002	4	
2	C0003	4	
3	C0004	8	
4	C0005	3	
		• • •	
194	C0196	4	
195	C0197	3	
196	C0198	2	
197	C0199	4	
198	C0200	5	

[199 rows x 2 columns]

In [12]: # Calculate product category preferences per customer
 category_preferences = merged_df.pivot_table(index='CustomerID', columns='Category
 print(category_preferences)

Category	CustomerID	Books	Clothing	Electronics	Home Decor
0	C0001	1	0	3	1
1	C0002	0	2	0	2
2	C0003	0	1	1	2
3	C0004	3	0	2	3
4	C0005	0	0	2	1
194	C0196	1	1	0	2
195	C0197	0	0	2	1
196	C0198	0	1	1	0
197	C0199	0	0	2	2
198	C0200	1	2	1	1

[199 rows x 5 columns]

```
In [13]: # Merge all features into a single dataset
```

```
customer_features = customers_df.merge(customer_spending, on='CustomerID', how='lef
customer_features = customer_features.merge(customer_transactions, on='CustomerID',
customer_features = customer_features.merge(category_preferences, on='CustomerID',
customer_features
```

Out[13]:		CustomerID	CustomerName	Region	SignupDate	TotalSpending	TransactionCount	Books
	0	C0001	Lawrence Carroll	South America	2022-07-10	3354.52	5.0	1.0
	1	C0002	Elizabeth Lutz	Asia	2022-02-13	1862.74	4.0	0.0
	2	C0003	Michael Rivera	South America	2024-03-07	2725.38	4.0	0.0
	3	C0004	Kathleen Rodriguez	South America	2022-10-09	5354.88	8.0	3.0
	4	C0005	Laura Weber	Asia	2022-08-15	2034.24	3.0	0.0
	•••							
	195	C0196	Laura Watts	Europe	2022-06-07	4982.88	4.0	1.0
	196	C0197	Christina Harvey	Europe	2023-03-21	1928.65	3.0	0.0
	197	C0198	Rebecca Ray	Europe	2022-02-27	931.83	2.0	0.0
	198	C0199	Andrea Jenkins	Europe	2022-12-03	1979.28	4.0	0.0
	199	C0200	Kelly Cross	Asia	2023-06-11	4758.60	5.0	1.0

200 rows × 10 columns

```
# Fill missing values with 0
In [14]:
         customer_features.fillna(0, inplace=True)
In [15]:
         # Normalize numerical features
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics.pairwise import cosine_similarity
         scaler = StandardScaler()
         numerical_features = ['TotalSpending', 'TransactionCount'] + list(category_preferer
         customer_features[numerical_features] = scaler.fit_transform(customer_features[nume
In [16]: # Similarity Calculation
         # Calculate cosine similarity between all customers
         similarity_matrix = cosine_similarity(customer_features[numerical_features])
         similarity_df = pd.DataFrame(similarity_matrix, index=customer_features['CustomerIC
In [17]: # Find top 3 Lookalikes for each customer
         lookalike_map = {}
         for customer_id in customer_features['CustomerID']:
             similar_customers = similarity_df[customer_id].sort_values(ascending=False).ilc
             lookalike map[customer id] = [(sim id, round(score, 4)) for sim id, score in si
         # Prepare Lookalike.csv
In [18]:
         lookalike_output = []
         for cust_id, lookalikes in lookalike_map.items():
             lookalike_output.append({'CustomerID': cust_id, 'Lookalikes': lookalikes})
In [19]:
         lookalike_df = pd.DataFrame(lookalike_output)
         lookalike_df.to_csv('Lookalike.csv', index=False)
```

```
In [20]: # Output for Customers C0001 - C0020
subset_lookalikes = lookalike_df[lookalike_df['CustomerID'].isin([f'C{str(i).zfill(print(subset_lookalikes))
```

```
CustomerID
                                                       Lookalikes
0
               [(C0069, 0.9473), (C0127, 0.8748), (C0190, 0.8...
        C0001
1
        C0002
               [(C0133, 0.9681), (C0062, 0.8986), (C0134, 0.8...
2
        C0003
               [(C0166, 0.9944), (C0031, 0.9744), (C0158, 0.9...
3
               [(C0090, 0.918), (C0122, 0.9119), (C0017, 0.90...
        C0004
4
        C0005
               [(C0197, 0.9997), (C0007, 0.9906), (C0140, 0.8...
               [(C0135, 0.9132), (C0187, 0.7755), (C0185, 0.7...
5
        C0006
               [(C0005, 0.9906), (C0197, 0.9868), (C0120, 0.8...
6
        C0007
               [(C0162, 0.9358), (C0154, 0.8942), (C0113, 0.8...
7
        C0008
8
        C0009
               [(C0198, 0.9187), (C0029, 0.9179), (C0033, 0.8...
               [(C0061, 0.9181), (C0176, 0.9141), (C0042, 0.9...
9
        C0010
               [(C0126, 0.9552), (C0171, 0.9067), (C0193, 0.8...
10
        C0011
11
        C0012
               [(C0065, 0.9739), (C0136, 0.9319), (C0104, 0.9...
               [(C0067, 0.9497), (C0105, 0.941), (C0102, 0.84...
        C0013
12
               [(C0151, 0.9999), (C0097, 0.9997), (C0060, 0.9...
13
        C0014
               [(C0123, 0.9989), (C0014, 0.9564), (C0151, 0.9...
14
        C0015
        C0016
                  [(C0183, 1.0), (C0107, 0.9962), (C0105, 0.89)]
15
        C0017
               [(C0075, 0.9551), (C0090, 0.9417), (C0194, 0.9...
16
17
        C0018
               [(C0023, 0.8811), (C0168, 0.8687), (C0068, 0.7...
               [(C0191, 0.9555), (C0174, 0.8714), (C0070, 0.8...
18
        C0019
               [(C0130, 0.9987), (C0180, 0.9653), (C0095, 0.9...
        C0020
```

In []: