Il crescione perfetto (cesena [72 punti])

Questo problema è preso dalla giornata dell'Informatica - Cesena 2024 (problema cesena)

Si consideri un grafo non orientato con:

- + $N \in \mathbb{N}$: numero di nodi, indicizzati da 0 a N-1
- + $M \in \mathbb{N}$: numero di archi
- + $K \in \mathbb{N}$: numero di nodi target $\{s_0, s_1, s_{K-1}\} \subseteq \{0, ..., N-1\}$
- + Un array $A \in \{0,...,N-1\}^M$ e un array $B \in \{0,...,N-1\}^M$ tali che per ogni $i \in \{0,...,M-1\}$, l'arco $\{A_i,B_i\}$ collega due nodi distinti del grafo
- + Un array $T \in \{1,...,K\}^M$ tale che l'arco $\{A_i,B_i\}$ viene rimosso non appena sono stati accesi esattamente T_i nodi target distinti

Obiettivo

Devi determinare il massimo numero $R \in \mathbb{N}$ di nodi target che è possibile accendere applicando il seguente processo fino a quando i nodi target attualmente raggiungibili dal nodo 0 sono tutti già accesi:

nel grafo corrente si percorre un cammino dal nodo 0 ad un qualche nodo target non ancora acceso e lo si accende. Fatto ciò si ritorna al nodo 0 e si rimuovono dal grafo corrente tutti quegli archi $\{A_i,B_i\}$ per cui T_i eguaglia il numero attuale di nodi già accesi

Input

L'input va letto da stdin nel seguente formato:

- + Una riga con tre interi N, M, K
- + Una riga con K interi $S_0,...,S_{\{K-1\}}$
- + M righe contenenti tre interi A_i, B_i, T_i per ogni $i \in [0, M)$

Output

Per ciascuna istanza, prima di leggere l'istanza successiva, scrivi su stdout il tuo output così strutturato:

[goal 1 (opt_val)]: la prima riga contiene un intero: il massimo numero di nodi target distinti che è possibile visitare.

[goal 2 (opt_target_seq)]: la seconda riga riporta gli opt_val nodi target che accenderesti, nell'ordine di accensione.

[goal 3 (opt_paths)]: le seguenti opt_val righe riportano, nello stesso ordine, gli opt_val cammini utilizzati. Ciascun cammino è specificato fornendo la sequenza di nodi che visita, partendo dal nodo 0 e terminando col nodo che accende.

Assunzioni

- + $1 \le K \le N \le 10^5$
- $+ 1 \le M \le 2 \cdot 10^5$
- + $0 \le s_i < N$, tutti distinti
- + $0 \le A_i, B_i < N, A_i \ne B_i$
- + $1 \leq T_i \leq K$
- + Il grafo iniziale è connesso e non contiene archi paralleli
- + Gli estremi di ciascun arco sono nodi distinti

Esempio di Input/Output

	7 10 5		<start out=""></start>
	5 4 0 6 3		2
	5 2 1		1 2
<start in=""></start>	162		0 3 4 1
2	151		0 3 4 2
5 6 3	6 2 2		3
1 4 2	3 5 2		4 3 0
0 3 3	3 6 1		0 4
3 4 2	0 2 3		0 2 6 1 3
2 3 1	1 3 2		0
1 4 1	0 4 1		
0 4 1	101		<end></end>
4 2 2			
<more></more>	<end></end>		

Spiegazione:

Nel primo caso d'esempio la mappa della città è la seguente:

Figure 1: Mappa della citta coi chioschi che vendono piadine.

ed è possibile mangiarsi prima una piadina al chiosco nella piazza 1 raggiungibile col cammino 0-3-4-1 e poi, benchè appesantiti, andare a mangiarsi la piadina all'incrocio 2 raggiungibile col cammino 0-3-4-2.

Subtask

Il tempo limite per istanza è di 1 secondo.

- 1. [0 pts← 2 istanze da 0 + 0 + 0 punti] esempi_testo: I due esempi del testo
- 2. [12 pts \leftarrow 4 istanze da 1 + 1 + 1 punti] tiny: $N \le 10, M \le 20, K \le 10$
- 3. [12 pts \leftarrow 4 istanze da 1 + 1 + 1 punti] small: $N \le 20, M \le 30, K \le 20$
- 4. [12 pts \leftarrow 4 istanze da 1 + 1 + 1 punti] path: $N \leq 3000$, M = N 1, $\{A_i, B_i\} = \{i, i + 1\}$ per $i \in [0, M)$ (il grafo è un cammino)
- 5. [12 pts \leftarrow 4 istanze da 1 + 1 + 1 punti] static: $N \le 3000$, $M \le 7000$, $T_i = K$ (gli archi non scadranno mai)
- 6. [12 pts \leftarrow 4 istanze da 1 + 1 + 1 punti] medium: $N \le 3000, M \le 7000$
- 7. [12 pts← 4 istanze da 1 + 1 + 1 punti] big: Nessuna limitazione specifica

In generale, quando si richiede la valutazione di un subtask vengono valutati anche i subtask che li precedono, ma si evita di avventurarsi in subtask successivi fuori dalla portata del tuo programma

che potrebbe andare in crash o comportare tempi lunghi per ottenere la valutazione completa della sottomissione. Ad esempio, chiamando $^{1,\,2}$:

```
rtal -s <URL> connect -a size=small cesena -- <MY_SOLUTION>
```

vengono valutati, nell'ordine, i subtask:

```
esempi testo, tiny, small.
```

Il valore di default per l'argomento size è big che include tutti i testcase.

Nel template di riga di comando quì sopra <MY_SOLUTION> è una qualsiasi scrittura che ove immessa anche da sola al prompt della CLI comporti l'avvio del solver da tè realizzato. Solo alcuni esempi:

- ./a.out per un compilato da C/c++, eventualmente seguito dagli argomenti che prevede
- ./my_solution.py arg1 arg2 ... se il tuo file my_solution.py col codice python ha i permessi di esecuzione e inizia con la riga di shebang
- python my_solution.py o python3 my_solution.py per far eseguire il tuo script da un interprete python

Se vuoi che una tua sottomissione venga conteggiata ai fini di un esame o homework devi allegare il sorgente della tua soluzione con -fsource=<FILENAME> (ad esempio -fsource=my_solution.py subito a valle del comando connect. Inoltre devi aver precedentemente affettuato il login tramite credenziali GIA (lancia prima rtal -s <URL> login e segui le istruzioni per impostare il sign-on).

Il comando rtal prevede diversi parametri, consigliamo di esplorarne e sperimentarne le potenzialità ed opzioni d'uso. Un tutorial all'uso di rtal è esposto alla pagina:

https://github.com/romeorizzi/AlgoritmiUniVR/tree/main/strumenti

¹<URL> server esame: wss://ta.di.univr.it/esame

²<URL> server esercitazioni e simula-prove: wss://ta.di.univr.it/algo2025