Basics about Entropy

Tianwei Gao

January 2025

1 Introduction

This is a note on basic properties and theorems about entropy in HDP.

Definition 1.1. (i) Fix a random variable X, for a convex function ϕ we define H_{ϕ} as follows,

$$H_{\phi}(x) := \mathbb{E}[\phi(X)] - \phi(\mathbb{E}X).$$

(ii) When $\phi(u) = u \log u$, the entropy is defined by $H_{\phi}(e^X)$.

Remark 1.1. (i) For general convex function ϕ , $H_{\phi}(X)$ is called ϕ -entropy.

(ii) When $\phi(u) = u^2$, the ϕ -entropy gives variation.

In the following, we keep the same notation as in HDS book. If not otherwise specified, the entropy function will be the ϕ -entropy with $\phi(u) = u \log u$, and we omit the subscript ϕ . We set $M_X(\lambda) := \mathbb{E}[e^{\lambda X}]$. A random variable X is said to satisfy the Bernstein entropy bound with $b, \sigma > 0$ if

$$H(e^{\lambda X}) \le \lambda^2 [-bM_X'(\lambda) + M_X(\lambda)(\sigma^2 - b\mathbb{E}X)], \quad \lambda \in [0, 1/b)$$
 (1)

Here we present some basic properties of entropy function on parallel shifting, centering and rescaling.

Proposition 1.1. (i) For a random variable X and a constant $C \in \mathbb{R}$,

$$H(e^{\lambda(X+C)}) = e^{\lambda C}H(e^{\lambda X}).$$

- (ii) A random variable X, satisfies the Bernstein entropy bound for $b, \sigma > 0$ if and only if $\tilde{X} = X \mathbb{E}[X]$ also satisfies the Bernstein entropy bound for b, σ .
- (iii) For a zero-mean random variable X, X satisfies the Bernstein entropy bound with positive constants (b, σ) if and only if $\tilde{X} := \frac{X}{b}$ satisfies the Bernstein bound for $(\tilde{b}, \tilde{\sigma}) := (1, \frac{\sigma}{b})$

Proof. We prove (ii). Note that $M_{\tilde{X}}(\lambda) = M_X(\lambda)e^{-\lambda \mathbb{E}X}$, then

$$M'_{\tilde{X}}(\lambda) = M'_X(\lambda)e^{-\lambda \mathbb{E}X} - \mathbb{E}X \cdot M_X(\lambda)e^{-\lambda \mathbb{E}X}$$

, substituting the above results into the Bernstein bound (1), we can see that the Bernstein bound for \tilde{X} turns out to be

$$H(e^{\lambda \tilde{X}}) \le e^{-\lambda \mathbb{E}X} \lambda^2 [bM_X'(\lambda) + M_X(\lambda)(\sigma^2 - b\mathbb{E}X)],$$

By the formula of constant shifting (i), we can see that the above formula is equivalent to the Bernstein entropy bound for X.

Now we present some explicit calculation of entropy.

Example 1.1 (Bounded Variable). Suppose X is a zero-mean bounded random variable supported on [a,b], set $\sigma = b-a$, then

$$H(e^{\lambda X}) \le \frac{\lambda^2 \sigma^2}{2} M_X(\lambda).$$

Proof. One can check that the following variational formulation of entropy holds,

$$H(e^{\lambda X}) = \inf_{t \in \mathbb{R}} \mathbb{E}[\psi(\lambda(X - t))e^{\lambda X}], \tag{2}$$

where $\psi(u) = e^{-u} - 1 + u$.

Then, note that for u > 0, we have

$$\phi(u) \le \frac{u^2}{2},$$

take t = a, then

$$\psi(\lambda(X-t)) \le \frac{\lambda^2(b-a)^2}{2},$$

we thus obtain the bound.

Remark 1.2. The constant can be sharpened to $\frac{1}{8}$, however we cannot take $t = \frac{a+b}{2}$ to achieve this $(\psi(u))$ grows exponentially when u < 0, moreover, we did not use the zero-mean property in the above proof.

Example 1.2 (Exponential family). Suppose random variable Y follows the exponential law

$$p_{\theta}(y) = h(y) \exp(\langle \theta, T(y) \rangle - \Phi(\theta)),$$

assume that the regularization term $\Phi(\theta)$ is finite for all $\theta \in \mathbb{R}^n$, and its gradient $\nabla \Phi$ Lipschitz as a function of θ with Lipschitz constant L. Then for a vector of norm 1 v, the random variable

$$X := \langle v, T(y) \rangle$$

satisfies the following entropy bound:

$$H_{\phi}(e^{\lambda X}) \le L\lambda^2 M_X(\lambda).$$

Proof. One can check that

$$M_X(\lambda) = e^{\Phi(\theta + \lambda v) - \Phi(\theta)}$$

then

$$H(e^{\lambda X}) = \lambda M_X'(\lambda) - M_X(\lambda) \log M_X(\lambda)$$

$$= M_X(\lambda)(\lambda \nabla \Phi(\theta + \lambda v) \cdot v - (\Phi(\theta + \lambda v) - \Phi(\theta)))$$

$$= M_X(\lambda)[\lambda(\nabla \Phi(\theta + \lambda v) - \nabla \Phi(\theta + \lambda \xi v)) \cdot v]$$

$$\leq L\lambda^2 M_X(\lambda)$$

where we used the intermediate value theorem and $\xi \in [0,1]$ is a non-negative constant.

Proposition 1.2 (Variational formulation). Fix a random variable X, f a measurable function, $\lambda \in \mathbb{R}$, the entropy can be formed in the following variational viewpoint:

$$H(e^{\lambda f(X)}) = \sup_{\mathbb{E} \exp(g(X)) \le 1} \mathbb{E}[g(X)e^{\lambda f(X)}].$$

Proof. When g(X) is given by

$$g_0(X) := \lambda f(X) - \log \mathbb{E}[e^{\lambda f(X)}],$$

the equality holds. We now show that this is the optimal choice of g.

WLOG, in the following we assume $\lambda = 1$. Suppose g is a maxima, that is for any random variable h, $\mathbb{E}[e^{h(X)}] \leq 1$, and any positive real number ν , we have

$$\mathbb{E}[g(X)e^{\lambda f(X)}] > \mathbb{E}[\log(\frac{e^{g(X)} + \nu e^{h(X)}}{1 + \nu})f(X)].$$

Let $\nu \to 0$, taking the derivative, we can see

$$\partial_{\nu} \mathbb{E}[\log(\frac{e^{g(X)} + \nu e^{h(X)}}{1 + \nu})f(X)]|_{\nu=0} = \mathbb{E}\left[\frac{e^h}{e^g}e^f - e^f\right] \le 0.$$

Take $h = f - \log \mathbb{E}[e^f]$, this becomes

$$\mathbb{E}[\frac{e^{2f}}{e^g}] \le \mathbb{E}[e^f]^2.$$

Note that

$$\begin{split} \mathbb{E}[e^g] &\leq 1 \\ \mathbb{E}[e^{2f-g}] &\geq \mathbb{E}[e^g] \mathbb{E}[e^{2f-g}] \geq \mathbb{E}[e^f]^2 \end{split}$$

By Cauchy Inequality, we have $e^g = \text{Const} \cdot e^f$ almost surely, that is,

$$g - f = \text{Const},$$

this shows that g_0 is optimal.

Remark 1.3. (i) In general, it is hard to find a similar variational formulation of entropy even with positive, monotone increasing, convex ϕ . Indeed, suppose the some entropy can be written in the following form, with a positive, monotone increasing, convex ϕ ,

$$Entropy = \sup_{\mathbb{E}\phi(g) \leq \phi(0)} \mathbb{E}[g(X)\phi(f(X))]$$

To solve the optimized g would involve the inverse function of ϕ' , and the optimized g is required to satisfy the following relation,

$$\phi'(g(X)) \propto \phi(f(X)),$$

the regularization constant (corresponding to the term $\log \mathbb{E}[e^{\lambda f}]$ in our case) is in general not tractable.

Lemma 1.3 (Tensorization of Entropy). Assume X_1, \ldots, X_n are independent random variables, $f : \mathbb{R}^n \to \mathbb{R}$, then

$$H(e^{\lambda f(X_1,\dots,X_n)}) \le \sum_{k=1}^n \mathbb{E}[H(e^{\lambda f_k(x_k)})|X_{\backslash k}]$$

Remark 1.4. With the notation same as in variational formulation, for g(X) such that $\mathbb{E}[e^{g(X)}] \leq 1$, we can define

$$g_k(X) = \log \frac{\mathbb{E}[e^{g(X)}|X_k, \dots, X_n]}{\mathbb{E}[e^{g(X)}|X_{k+1}, \dots, X_n]},$$

then $\mathbb{E}[\exp(g_k(X_k,\ldots,X_n))|X_{k+1},\ldots,X_n]=0$, and

$$g(X) \le \sum_{k=1}^{n} g_k(X).$$

Now the following procedure is very similar to the proof of tensorization of variation.