第一章 随机过程及其分类 习题解答

1、设随机变量 X 服从参数为 1 的指数分布,随机变量 $Y \sim N(0,1)$,且 X 与 Y 独立,试求 随机变量 $Z = \sqrt{2X} |Y|$ 的分布密度函数。

解: 令: $U = \sqrt{2X}$, V = |Y|, 则随机变量U与V独立,且密度函数分别为

$$f_U(u) = ue^{-\frac{u^2}{2}}, \quad u > 0$$

$$f_V(v) = \sqrt{\frac{2}{\pi}} e^{-\frac{v^2}{2}}, \quad v > 0$$

因此,随机变量 $Z = \sqrt{2X} |Y| = UV$ 的分布密度函数为: 当 z > 0 时

$$f_{Z}(z) = \int_{0}^{+\infty} \frac{1}{u} f_{U}(u) f_{V}\left(\frac{z}{u}\right) du = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} e^{-\frac{u^{2}}{2}} e^{-\frac{1}{2}\left(\frac{z^{2}}{u^{2}}\right)} du = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} e^{-\frac{1}{2}\left(u^{2} + \frac{z^{2}}{u^{2}}\right)} du$$

令: $u = \sqrt{zt}$, 则有

$$f_{Z}(z) = \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} e^{-\frac{1}{2} \left(u^{2} + \frac{z^{2}}{u^{2}}\right)} du = \sqrt{z} \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} e^{-\frac{z}{2} \left(t^{2} + \frac{1}{t^{2}}\right)} dt = e^{-z} \sqrt{z} \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} e^{-\frac{z}{2} \left(t - \frac{1}{t}\right)^{2}} dt$$

由于

$$\int_{0}^{+\infty} e^{-\frac{z}{2}\left(t-\frac{1}{t}\right)^{2}} dt = \int_{0}^{+\infty} \frac{t^{2}}{t^{2}+1} e^{-\frac{z}{2}\left(t-\frac{1}{t}\right)^{2}} d\left(t-\frac{1}{t}\right) =$$

$$= \int_{0}^{+\infty} e^{-\frac{z}{2}\left(t-\frac{1}{t}\right)^{2}} d\left(t-\frac{1}{t}\right) - \int_{0}^{+\infty} \frac{1}{t^{2}+1} e^{-\frac{z}{2}\left(t-\frac{1}{t}\right)^{2}} d\left(t-\frac{1}{t}\right) \left(m=t-\frac{1}{t}\right)$$

$$= \int_{-\infty}^{+\infty} e^{-\frac{z}{2}\cdot m^{2}} dm - \int_{0}^{+\infty} \frac{1}{t^{2}} e^{-\frac{z}{2}\left(t-\frac{1}{t}\right)^{2}} dt \quad \left(n=\frac{1}{t}\right)$$

$$= \int_{-\infty}^{+\infty} e^{-\frac{z}{2}\cdot m^{2}} dm - \int_{0}^{+\infty} e^{-\frac{z}{2}\left(n-\frac{1}{n}\right)^{2}} dn$$

因此,有

$$\int_{0}^{+\infty} e^{-\frac{z}{2}\left(t-\frac{1}{t}\right)^{2}} dt = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{z}{2} \cdot m^{2}} dm = \frac{1}{2} \frac{1}{\sqrt{7}} \sqrt{2\pi}$$

即有

$$f_Z(z) = e^{-z} \sqrt{z} \sqrt{\frac{2}{\pi}} \int_0^{+\infty} e^{-\frac{z}{2} \left(t - \frac{1}{t}\right)^2} dt = e^{-z} \sqrt{z} \sqrt{\frac{2}{\pi}} \cdot \frac{1}{2} \frac{1}{\sqrt{z}} \sqrt{2\pi} = e^{-z}$$

即随机变量 $Z = \sqrt{2X} |Y|$ 的分布密度函数为

$$f_Z(z) = \begin{cases} e^{-z} , & z > 0 \\ 0, & z \le 0 \end{cases}$$

2、设随机变量 X_1, X_2 独立同分布,服从参数为 $\lambda > 0$ 的指数分布,试证明随机变量

$$\frac{X_1}{X_1 + X_2} \sim U[0, 1] \circ$$

解: X_1, X_2 的联合分布密度函数为

$$f(x_1, x_2) = \lambda^2 e^{-\lambda(x_1 + x_2)}, x_1 \ge 0, x_2 \ge 0$$

令:
$$Y_1 = X_1 + X_2$$
, $Y_2 = \frac{X_1}{X_1 + X_2}$, 则由

$$y_1 = x_1 + x_2$$
, $y_2 = \frac{x_1}{x_1 + x_2}$ \Rightarrow $x_1 = y_1 y_2$, $x_2 = y_1 - y_1 y_2$

得

$$J = \frac{\partial(x_1, x_2)}{\partial(y_1, y_2)} = \begin{vmatrix} y_2 & y_1 \\ 1 - y_2 & -y_1 \end{vmatrix} = -y_1 \implies |J| = y_1$$

因此,随机变量 Y_1, Y_2 的联合分布密度为

$$f(y_1, y_2) = \lambda^2 e^{-\lambda y_1} y_1, y_1 \ge 0, 0 \le y_2 \le 1$$

求边缘分布可得: $Y_2 \sim U[0,1]$ 。

- 3、设随机向量(X,Y)的两个分量相互独立,且均服从标准正态分布N(0,1)。
 - (a) 分别写出随机变量 X + Y 和 X Y 的分布密度
 - (b) 试问: X + Y = X Y 是否独立? 说明理由。
- **A**: (a) $X + Y \sim N(0.2)$, $X Y \sim N(0.2)$
 - (b) 由于:

$$\begin{pmatrix} X+Y\\X-Y \end{pmatrix} = \begin{pmatrix} 1 & 1\\1 & -1 \end{pmatrix} \begin{pmatrix} X\\Y \end{pmatrix} = B \begin{pmatrix} X\\Y \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1\\1 & -1 \end{pmatrix} \quad , \det B = -2 \neq 0$$

因此 $\begin{pmatrix} X+Y\\X-Y \end{pmatrix}$ 是服从正态分布的二维随机向量,其协方差矩阵为:

$$D = BE_2B^T = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

因此X + Y 与 X - Y独立。

4、设二维随机变量(X,Y)的联合密度函数为:

$$f(x,y) = \begin{cases} 24(1-x)y, & 0 < y < x < 1 \\ 0, & \text{ } \sharp \text{ } \Xi \end{cases}$$

试求:

- (a) 边缘密度函数 $f_{X}(x)$ 和 $f_{Y}(y)$,以及条件密度函数 $f_{X|Y}(x|y)$ 和 $f_{Y|X}(y|x)$;
- (b) 当0 < y < 1时,确定 $E\{X | Y = y\}$,以及 $E\{X | Y\}$ 的分布密度函数。

解: (a) 当0<x<1时, $f_X(x) = \int_0^x 24(1-x)ydy = 12x^2(1-x)$, 因此

$$f_X(x) = \begin{cases} 12x^2(1-x), & 0 < x < 1 \\ 0, & \text{其它} \end{cases}$$

当0 < y < 1时, $f_Y(y) = \int_y^1 24(1-x)ydx = 12y(1-y)^2$,因此

$$f_{Y}(y) = \begin{cases} 12y(1-y)^{2}, & 0 < y < 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

当0 < y < 1时,

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{2(1-x)}{(1-y)^2}, & y < x < 1\\ 0, & \text{ } \sharp \dot{\Xi} \end{cases}$$

当0 < x < 1时,

$$f_{Y|x}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{2y}{x^2}, & 0 < y < x \\ 0, & \sharp : \end{cases}$$

(b) 当0 < y < 1时,由

$$E\{X \mid Y = y\} = \int_{-\infty}^{+\infty} x f_{X|Y}(x|y) dx = \int_{y}^{1} x \cdot \frac{2(1-x)}{(1-y)^{2}} dx = \frac{2y+1}{3}$$

因此, $E\{X \mid Y\} = \frac{2Y+1}{3}$ 。令: $Z = E\{X \mid Y\}$,由Y的边缘分布密度函数,有

$$F_Z(z) = P\{Z \le z\} = P\left\{\frac{2Y+1}{3} \le z\right\} = P\left\{Y \le \frac{3z-1}{2}\right\}$$

因此,当 $0 < \frac{3z-1}{2} < 1$,即 $\frac{1}{3} < z < 1$ 时,有

$$F_Z(z) = P\left\{Y \le \frac{3z-1}{2}\right\} = \int_0^{\frac{3z-1}{2}} f_Y(y)dy$$

所以,当 $\frac{1}{3} < z < 1$ 时,

$$f_Z(z) = \frac{3}{2} f_Y\left(\frac{3z-1}{2}\right) = \frac{27(3z-1)(1-z)}{2}$$

因此, $E\{X|Y\}$ 的分布密度函数为:

$$f_{E\{X|Y\}}(z) = \begin{cases} \frac{27(3z-1)(1-z)}{2}, & \frac{1}{3} < z < 1\\ 0, & \text{#$\dot{\mathbb{C}}$} \end{cases}$$

5、设 X_1 、 X_2 、 X_3 为独立同分布的随机变量,且服从标准正态分布。令:

$$Y = \frac{X_1 + X_2 X_3}{\sqrt{1 + X_3^2}}$$

- (a) 试求随机变量Y 的分布密度函数;
- (b) 试问有限个独立正态分布随机变量经过非线性变换是否可以服从正态分布? 解:(a) 利用分布函数的计算公式及连续型全概率公式,有:

$$F_{Y}(y) = P\{Y \le y\} = P\left\{\frac{X_{1} + X_{2}X_{3}}{\sqrt{1 + X_{3}^{2}}} \le y\right\}$$
$$= \int_{-\infty}^{+\infty} P\left\{\frac{X_{1} + X_{2}X_{3}}{\sqrt{1 + X_{3}^{2}}} \le y \,\middle|\, X_{3} = x_{3}\right\} f_{X_{3}}(x_{3}) dx_{3}$$

由于随机变量 X_1 、 X_2 独立,在 $X_3 = x_3$ 的条件下,随机变量

$$\frac{X_1 + x_3 X_2}{\sqrt{1 + x_3^2}} = \frac{1}{\sqrt{1 + x_3^2}} X_1 + \frac{x_3}{\sqrt{1 + x_3^2}} X_2$$

服从正态分布,且均值为0,方差为1,因此有

$$F_{Y}(y) = \int_{-\infty}^{+\infty} P\left\{ \frac{X_{1} + X_{2}X_{3}}{\sqrt{1 + X_{3}^{2}}} \le y \, \middle| \, X_{3} = x_{3} \right\} f_{X_{3}}(x_{3}) dx_{3}$$
$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du \, \middle| f_{X_{3}}(x_{3}) dx_{3} = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^{2}}{2}} du \right] dx_{3}$$

所以随机变量 $Y \sim N(0,1)$ 。

(b) 可以。

6、设 $\xi_1, \xi_2, \cdots \xi_n$ 与 η 为随机变量, $\eta \sim U[0,1]$,而 ξ_i $(i=1,2,\cdots n)$ 均以下述条件概率取 1 和 0 两个,即: $P\{\xi_i=1 | \eta=p\}=p$, $P\{\xi_i=0 | \eta=p\}=1-p$;并且条件独立,即对于 $i=1,2,\cdots,n$,均有 $x_i=0,1$ 时,有

$$P\{\xi_1 = x_1, \dots, \xi_n = x_n \mid \eta\} = P\{\xi_1 = x_1 \mid \eta\} \dots P\{\xi_n = x_n \mid \eta\}$$

试回答以下问题:

- (a) 试求 $P\{\xi_1 = x_1, \dots, \xi_n = x_n\}$;
- (b) 试求随机变量 $S_n = \xi_1 + \cdots + \xi_n$ 的分布;
- (c) 试求条件分布 $P\{\eta \le p \mid S_n = x\}$,并求出密度函数,其中: $x = x_1 + \cdots + x_n$;
- (d) 试问分布 $P\{\eta \le p \mid S_n = x_1 + \cdots x_n\}$ 与 $P\{\eta \le p \mid \xi_1 = x_1, \cdots, \xi_n = x_n\}$ 是否相同,其中: $p \in (0,1)$ 。
- 解: (a) 由题意及全概率公式,有

$$P\{\xi_1 = x_1, \dots, \xi_n = x_n\} = \int_0^1 P\{\xi_1 = x_1, \dots, \xi_n = x_n \mid \eta = p\} f_{\eta}(p) dp$$
$$= \int_0^1 P\{\xi_1 = x_1 \mid \eta = p\} \dots P\{\xi_n = x_n \mid \eta = p\} dp = \int_0^1 p^x (1-p)^{n-x} dp$$

其中: $x = x_1 + \cdots x_n$, 由 Γ 函数和贝塔函数的定义及性质, 可知

$$P\{\xi_1 = x_1, \dots, \xi_n = x_n\} = \int_0^1 p^x (1-p)^{n-x} dp = B(x+1, n-x+1)$$
$$= \frac{\Gamma(x+1)\Gamma(n-x+1)}{\Gamma(n+2)} = \frac{x!(n-x)!}{(n+1)!} = \frac{1}{(n+1)C_n^x}$$

(b) 由题意, 当 $k = 0.1.2, \dots, n$ 时, 有

$$P\{S_n = k\} = \int_0^1 P\{\xi_1 + \dots + \xi_n = k \mid \eta = p\} f_\eta(p) dp$$
$$= \int_0^1 C_n^k p^k (1-p)^{n-k} dp = C_n^k B(k+1, n-k+1) = \frac{1}{n+1}$$

由此可知,随机变量 S_n 服从集合 $\{0,1,2,\cdots,n\}$ 中的离散均匀分布。

(c)令: $x=x_1+\cdots x_n$,当 $p\in(0,1)$ 时,由求密度函数的微元法及(b)的结果,随机变量 η 在 $S_n=x$ 条件下的条件密度函数为

$$f_{\eta|S_n}(p \mid x) = \lim_{h \to 0} \frac{P\{p < \eta \le p + h \mid S_n = x\}}{h} = \lim_{h \to 0} \frac{P\{p < \eta \le p + h, S_n = x\}}{hP\{S_n = x\}}$$

$$= \lim_{h \to 0} \frac{P\{S_n = x \mid p < \eta \le p + h\}f_{\eta}(p)h}{hP\{S_n = x\}} = \frac{P\{S_n = x \mid \eta = p\}}{P\{S_n = x\}}$$

$$= (n+1)C_n^x p^x (1-p)^{n-x}$$

(d) 设事件 $A = \{\xi_1 = x_1, \dots, \xi_n = x_n\}$,令: $x = x_1 + \dots + x_n$,当 $p \in (0, 1)$ 时,由求密

度函数的微元法及(a)的结果,随机变量 η 在事件A发生条件下的条件密度函数为

$$f_{\eta|A}(p|A) = \lim_{h \to 0} \frac{P\{p < \eta \le p + h \mid A\}}{h} = \lim_{h \to 0} \frac{P\{p < \eta \le p + h, A\}}{hP\{A\}}$$

$$= \lim_{h \to 0} \frac{P\{A \mid p < \eta \le p + h\} f_{\eta}(p)h}{hP\{A\}} = \frac{P\{A \mid \eta = p\}}{P\{A\}}$$

$$= (n+1)C_n^x p^x (1-p)^{n-x}$$

因此, 分布 $P\{\eta \le p \mid S_n = x_1 + \dots + x_n\}$ 与 $P\{\eta \le p \mid \xi_1 = x_1, \dots, \xi_n = x_n\}$ 相同。

7、设 $X \sim N(0,\sigma^2)$,对于 $\forall b > 0$,试证明正态分布尾概率估计不等式:

$$\frac{1}{\sqrt{2\pi}} \left[\frac{\sigma}{b} - \left(\frac{\sigma}{b} \right)^{3} \right] \exp \left\{ -\frac{b^{2}}{2\sigma^{2}} \right\} \leq P\{X \geq b\} \leq \frac{1}{\sqrt{2\pi}} \cdot \frac{\sigma}{b} \exp \left\{ -\frac{b^{2}}{2\sigma^{2}} \right\}$$

解: 由于 $X \sim N(0, \sigma^2)$, 因此, 对于 $\forall b > 0$, 有

$$P\{X \ge b\} = \frac{1}{\sqrt{2\pi}\sigma} \int_{b}^{+\infty} e^{-\frac{x^{2}}{2\sigma^{2}}} dx = \frac{1}{\sqrt{2\pi}} \int_{\frac{b}{\sigma}}^{+\infty} e^{-\frac{y^{2}}{2}} dy = -\frac{1}{\sqrt{2\pi}} \int_{\frac{b}{\sigma}}^{+\infty} \frac{1}{y} d\left(e^{-\frac{y^{2}}{2}}\right)^{\frac{1}{2}} dy$$

$$= -\frac{1}{\sqrt{2\pi}} \left[\frac{1}{y} \cdot e^{-\frac{y^{2}}{2}} \Big|_{\frac{b}{\sigma}}^{+\infty} + \int_{\frac{b}{\sigma}}^{+\infty} \frac{1}{y^{2}} \cdot e^{-\frac{y^{2}}{2}} dy \right]$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{\sigma}{b} \exp\left\{-\frac{b^{2}}{2\sigma^{2}}\right\} - \frac{1}{\sqrt{2\pi}} \int_{\frac{b}{\sigma}}^{+\infty} \frac{1}{y^{2}} \cdot e^{-\frac{y^{2}}{2}} dy$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{\sigma}{b} \exp\left\{-\frac{b^{2}}{2\sigma^{2}}\right\} + \frac{1}{\sqrt{2\pi}} \int_{\frac{b}{\sigma}}^{+\infty} \frac{1}{y^{3}} d\left(e^{-\frac{y^{2}}{2}}\right)$$

$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{\sigma}{b} \exp\left\{-\frac{b^{2}}{2\sigma^{2}}\right\} + \frac{1}{\sqrt{2\pi}} \left[\frac{1}{y^{3}} \cdot e^{-\frac{y^{2}}{2}} \Big|_{\frac{b}{\sigma}}^{+\infty} + 3 \int_{\frac{b}{\sigma}}^{+\infty} \frac{1}{y^{4}} \cdot e^{-\frac{y^{2}}{2}} dy \right]$$

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{\sigma}{b} - \left(\frac{\sigma}{b}\right)^{3}\right] \exp\left\{-\frac{b^{2}}{2\sigma^{2}}\right\} + \frac{3}{\sqrt{2\pi}} \int_{\frac{b}{\sigma}}^{+\infty} \frac{1}{y^{4}} \cdot e^{-\frac{y^{2}}{2}} dy$$

由此,我们有正态分布尾概率估计不等式。

8 、 设 随 机 向 量 $X=(X_1,X_2)^{\mathrm{r}}\sim N(\mu,\Sigma)$, 其 中 : $\mu=(\mu_1,\mu_2)^{\mathrm{r}}=(1,2)^{\mathrm{r}}$,

$$\Sigma = \begin{pmatrix} 1 & 4/5 \\ 4/5 & 1 \end{pmatrix}, 令随机向量 Y = \begin{pmatrix} Y_1, Y_2 \end{pmatrix}^r = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} X.$$

- (a) 试求随机向量Y的协方差矩阵、 $E\{Y_2 \mid Y_1\}$ 及 $E\{Y_1 + Y_2\}$;
- (b) 试问 $X_2 E\{X_2 \mid X_1\}$ 与 X_1 是否独立?证明你的结论。

解: (a) 根据n 维正态随机变量的性质(4),可知随机向量Y 服从正态分布,且协方差矩阵、均值向量、相关系数分别为:

$$B = C\Sigma C^{T} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4/5 \\ 4/5 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 113 & 112 \\ 112 & 113 \end{pmatrix}$$

$$\mu_{Y} = C\mu = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \end{pmatrix}$$

$$\rho_{Y} = \frac{Cov(Y_{1}, Y_{2})}{\sigma_{Y_{1}}\sigma_{Y_{2}}} = \frac{112}{113}$$

由课程讲义中的例子,我们有:

$$E\{Y_2 \mid Y_1\} = \mu_{Y_2} + \rho_Y \sigma_{Y_2} \sigma_{Y_1}^{-1} (Y_1 - \mu_{Y_1})$$

$$= 8 + \frac{112}{113} \sqrt{\frac{113}{5}} \left(\sqrt{\frac{113}{5}} \right)^{-1} (Y_1 - 7) = 8 + \frac{112}{113} (Y_1 - 7)$$

$$E\{Y_1 + Y_2\} = E\{Y_1\} + E\{Y_2\} = 15$$

(b) 同理有:

$$E\{X_{2} \mid X_{1}\} = \mu_{X2} + \rho_{X} \sigma_{X2} \sigma_{X1}^{-1} (X_{1} - \mu_{X1})$$

$$= 2 + \frac{4}{5} \sqrt{1} (\sqrt{1})^{-1} (X_{1} - 1) = 2 + \frac{4}{5} (X_{1} - 1) = \frac{4}{5} X_{1} + \frac{6}{5}$$

$$X_{2} - E\{X_{2} \mid X_{1}\} = X_{2} - \frac{4}{5} X_{1} - \frac{6}{5}$$

令: $Z = X_2 - E\{X_2 | X_1\}$, 则有:

$$E\{Z\} = E\left\{X_2 - \frac{4}{5}X_1 - \frac{6}{5}\right\} = 0$$

又

$$E\{X_1X_2\} = E\{E\{X_1X_2 | X_1\}\} = E\{X_1E\{X_2 | X_1\}\}$$
$$= E\{X_1(\frac{4}{5}X_1 + \frac{6}{5})\} = \frac{4}{5}E\{X_1^2\} + \frac{6}{5}E\{X_1\} = \frac{14}{5}$$

另外

$$Cov(Z, X_1) = E\{(Z - E\{Z\})(X_1 - E\{X_1\})\}\$$

$$= E\{\left(X_2 - \frac{4}{5}X_1 - \frac{6}{5}\right)(X_1 - 1)\}\$$

$$= E\{X_1X_2\} - E\{X_2\} - \frac{4}{5}E\{X_1^2\} + \frac{4}{5}E\{X_1\} - \frac{6}{5}E\{X_1\} + \frac{6}{5}$$

$$= 0$$

由于

$$\begin{pmatrix} Z \\ X_1 \end{pmatrix} = \begin{pmatrix} X_2 - \frac{4}{5}X_1 - \frac{6}{5} \\ X_1 \end{pmatrix} = \begin{pmatrix} -4/5 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} + \begin{pmatrix} -6/5 \\ 0 \end{pmatrix}$$

由此可知随机向量 $(Z,X_1)^T$ 服从正态分布,因此由 $Cov(Z,X_1)=0$,可知随机变量Z与 X_1 独立,即 $X_2-E\{X_2\mid X_1\}$ 与 X_1 独立。

9、设 $\{X(t), t \ge 0\}$ 是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 $E\{X(s)X(t)\}=B(t-s), s \le t$,且是一个周期为T的函数,即 $B(\tau+T)=B(\tau), \tau \ge 0$, 试求方差函数D[X(t)-X(t+T)]。

解:由定义,有:

$$D[X(t) - X(t+T)] = D[X(t)] + D[X(t+T)]$$

$$-2E\{[X(t) - EX(t)][X(t+T) - EX(t+T)]\}$$

$$= B(0) + B(0) - 2E\{X(t)X(t+T)\}$$

$$= B(0) + B(0) - 2B(T) = 0$$

10、考察两个谐波随机信号X(t)和Y(t),其中:

$$X(t) = A\cos(\omega_c t + \phi), \quad Y(t) = B\cos(\omega_c t)$$

式中 A 和 ω_c 为正的常数; ϕ 是 $\left[-\pi,\pi\right]$ 内均匀分布的随机变量, B 是标准正态分布的随机变量。

- (a) 求X(t) 的均值、方差和相关函数:
- (b) 若 ϕ 与B独立,求X(t)与Y(t)的互相关函数。

解: (a)
$$E\{X(t)\}=0$$

$$\begin{split} R_{XX}(t_1, t_2) &= E\{X(t_1)X(t_2)\} = \\ &= \int_{-\pi}^{\pi} A^2 \cos(\omega_c t_1 + \varphi) \cos(\omega_c t_2 + \varphi) \frac{1}{2\pi} d\varphi = \frac{A^2}{2} \cos(\omega_c (t_1 - t_2)) \\ &= \frac{A^2}{2} \cos \omega_c \tau \quad \tau = t_1 - t_2 \end{split}$$

$$D\{X(t)\} = \int_{-\pi}^{\pi} A^2 \cos^2(\omega_c t + \varphi) \frac{1}{2\pi} d\varphi = \frac{A^2}{2}$$
(b) $R_{yy}(t_1, t_2) = E\{X(t_1)Y(t_2)\} = 0$

 $\mathbf{11}$ 、设 $\xi(t) = X \sin(Yt)$; $t \ge 0$,而随机变量 X、Y 是相互独立且都服从[0,1] 上的均匀分布,试求此过程的均值函数及相关函数。

M:
$$\mu_{\xi}(t) = E\{\xi(t)\} = \frac{1 - \cos t}{2t}$$

$$R_{\xi}(s,t) = E\{\xi(s)\xi(t)\} = \frac{1}{6} \left[\frac{\sin(t-s)}{t-s} - \frac{\sin(t+s)}{t+s} \right]$$

12、设 $\{\xi_n, n=1,2,\cdots\}$ 是一列独立同分布随机变量序列,且 $P\{\xi_n=-1\}=1-p$, $P\{\xi_n=1\}=p$,令: $X_0=0$, $X_n=(\xi_1+\xi_2+\cdots+\xi_n)/\sqrt{n}$, $n=1,2,\cdots$ 。求随机序列 $\{X_n, n=1,2,\cdots\}$ 的均值函数、协方差函数和相关函数。

解: 由题意:
$$E\{\xi_n\} = 2p-1$$
, $E\{\xi_n^2\} = 1$, 可得:

$$E\{X_0\} = 0, \quad E\{X_n\} = \frac{1}{\sqrt{n}}E\{(\xi_1 + \dots + \xi_n)\} = (2p-1)\sqrt{n}$$

$$R_X(m,n) = E\{X_m X_n\} = \frac{1}{\sqrt{mn}} E\{(\xi_1 + \dots + \xi_m)(\xi_1 + \dots + \xi_n)\}$$

$$= \frac{1}{\sqrt{mn}} [m + m(n-1)(2p-1)^2] = \frac{1}{\sqrt{mn}} [mn(2p-1)^2 + 4mp(1-p)], \quad (m < n)$$

因此,相关函数为:

$$R_X(m,n) = \frac{1}{\sqrt{mn}} [mn(2p-1)^2 + 4\min\{m,n\}p(1-p)], \quad (m,n \ge 0)$$

协方差函数为:

$$C_X(m,n) = \frac{4p(1-p)\min\{m,n\}}{\sqrt{mn}}, \quad (m,n \ge 0)$$

均值函数为:

$$\mu_X(n) = \frac{1}{\sqrt{n}} E\{(\xi_1 + \dots + \xi_n)\} = (2p-1)\sqrt{n}, \quad (n \ge 0)$$

13、设 $X \sim N(\mu, \sigma^2)$, Y 满足参数为 p 的几何分布,即 $P\{Y = k\} = (1-p)^{k-1} p$,其中: 0 , <math>X 与 Y 独立。令 $X(t) = X + e^{-t}Y$,试求:

- (1) X(t)在t > 0的一维概率密度函数;
- (2) $E\{X(t)\}, Cov(X(s), X(t)) (0 \le s \le t)$;

解: (1) 由分布函数的定义,有

$$F_{X(t)}(u) = P\{X(t) \le u\} = P\{X + e^{-t}Y \le u\} = \sum_{k=1}^{+\infty} P\{X + e^{-t}Y \le u \mid Y = k\} P\{Y = k\}$$
$$= \sum_{k=1}^{+\infty} P\{X \le u - ke^{-t}\} (1-p)^{k-1} p$$

因此,X(t)的一维概率密度函数为:

$$f_{X(t)}(u) = \sum_{k=1}^{+\infty} \frac{(1-p)^{k-1} p}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2} (u - \mu - ke^{-t})^2\}$$

(2) 由题意:

$$E\{X(t)\} = E\{X + e^{-t}Y\} = \mu + e^{-t} p^{-1}$$

$$R_X(s,t) = E\{X(s)X(t)\} = E\{X^2 + XYe^{-t} + XYe^{-s} + e^{-s-t}Y^2\}$$

$$= \sigma^2 + \mu^2 + \frac{\mu}{p}(e^{-s} + e^{-t}) + \frac{2-p}{p^2}e^{-s-t}$$

$$Cov(X(s), X(t)) = R_X(s,t) - (\mu + e^{-s} p^{-1})(\mu + e^{-t} p^{-1}) = \sigma^2 + \frac{1-p}{p^2} e^{-s-t}$$

由上面的结果,有:

$$E\{Y(t)\} = E\{\int_0^t X(u)du\} = \int_0^t E\{X(u)\}du = \int_0^t (\mu + e^{-u}p^{-1})du$$
$$= \mu t + p^{-1}(1 - e^{-t})$$

14、设 $X(t) = A\cos(\omega t) + B\sin(\omega t)$, $t \in R$,其中A和B是独立同分布的均值为零方差为 σ^2 的正态随机变量,试求:

- (1) X(t) 的均值函数和相关函数;
- (2) X(t) 的一维概率密度函数;
- (3) X(t) 的二维概率密度函数。

解: (1) 均值函数:

$$\mu_X(t) = E\{A\cos(\omega t) + B\sin(\omega t)\} = \cos(\omega t)E\{A\} + \sin(\omega t)E\{B\} = 0$$

(2) 由于:

$$D\{X(t)\} = D\{A\cos(\omega t) + B\sin(\omega t)\} = \cos^2(\omega t)D\{A\} + \sin^2(\omega t)D\{B\} = \sigma^2$$

因此, $X(t) \sim N(0, \sigma^2)$;

(3) 任意取两个时刻 t_1,t_2 ,有:

$$\begin{pmatrix} X(t_1) \\ X(t_2) \end{pmatrix} = \begin{pmatrix} \cos(\omega t_1) & \sin(\omega t_1) \\ \cos(\omega t_2) & \sin(\omega t_2) \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}$$

由
$$A$$
 和 B 是独立性,可知 $\begin{pmatrix} X(t_1) \\ X(t_2) \end{pmatrix}$ 是二维正态分布的随机向量,由 (1) 可知 $\vec{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$,

$$egin{aligned} egin{pmatrix} X(t_1) \ X(t_2) \end{pmatrix}$$
协方差矩阵为: $\Sigma = \sigma^2 egin{pmatrix} 1 & \cos[\omega(t_1-t_2)] \ \cos[\omega(t_1-t_2)] & 1 \end{pmatrix}$,因此我们有:
$$egin{pmatrix} X(t_1) \ X(t_2) \end{pmatrix} \sim N(\vec{\mu}, \Sigma) \end{aligned}$$

15、设随机过程 $\xi(t) = X\cos 2t + Y\sin 2t$, $-\infty < t < +\infty$, 其中随机变量 X 和 Y 独立同分布。

- (1) 如果 $X \sim U(0,1)$,试求过程 $\xi(t)$ 的均值函数和相关函数;
- (2) 如果 $X \sim N(0,1)$,试求过程 $\mathcal{E}(t)$ 的均值函数和相关函数;

解: 计算随机过程 $\xi(t)$ 的相关函数:

$$R_{\xi}(s,t) = E\{\xi(s)\xi(t)\} = E\{(X\cos 2s + Y\sin 2s)(X\cos 2t + Y\sin 2t)\}$$

= \cos 2s \cos 2tE\{X^2\} + \sin 2s \sin 2tE\{Y^2\} + \[\cos 2s \sin 2t + \sin 2s \cos 2t\]E\{XY\}

(1) 当
$$X \sim U(0,1)$$
时, $E\{X^2\} = E\{Y^2\} = 1/3$, $E\{XY\} = E\{X\}E\{Y\} = 1/4$,因此
$$R_{\xi}(s,t) = E\{\xi(s)\xi(t)\} = \frac{1}{3}\cos 2(t-s) + \frac{1}{4}\sin 2(t+s)$$

所以,此时过程 $\xi(t)$ 不是平稳过程。

(2) 当
$$X \sim N(0,1)$$
 时, $E\{X^2\} = E\{Y^2\} = 1$, $E\{XY\} = E\{X\}E\{Y\} = 0$, 因此
$$R_{\varepsilon}(s,t) = E\{\xi(s)\xi(t)\} = \cos 2(t-s)$$

所以,此时过程 $\xi(t)$ 是平稳过程,且均方可微。

16、设有一脉冲数字通信系统,它传送的信号是脉宽为 T_0 的脉冲信号,每隔 T_0 送出一个脉冲。脉冲幅度X(t)是一随机变量,它可取四个值 $\{+2,+1,-1,-2\}$,且取这四个值的概率是相等的,即:

$$P{X(t) = +2} = P{X(t) = +1} = P{X(t) = -1} = P{X(t) = -2} = 1/4$$

不同周期内脉冲的幅度是相互统计独立的,脉冲的起始时间相对于原点的时间差u 为均匀分布在 $(0,T_0)$ 内的随机变量。试给出随机过程X(t) 的状态空间,画出样本函数及求出其均值函数和相关函数。

解: 状态空间为: $S = \{+2, +1, -1, -2\}$: 典型样本函数:

均值函数为:
$$\mu_X(t) = 2 \times \frac{1}{4} - 2 \times \frac{1}{4} + 1 \times \frac{1}{4} - 1 \times \frac{1}{4} = 0$$
;

在时间轴上任意固定两个时刻 t_1,t_2 ,令:

事件 $C: t_1,t_2$ 间有不同周期的脉冲存在,即 t_1,t_2 处在不同的脉冲周期内;

事件 C^c : t_1,t_2 间没有不同周期的脉冲存在,即 t_1,t_2 处在相同的脉冲周期内;则有:

(1)
$$|t_1 - t_2| > T_0$$
 $|t_1 - t_2| > T_0$ $|t_1 - t_2| > T_0$ $|t_1 - t_2| > T_0$ $|t_1 - t_2| > T_0$

(2)
$$\triangleq |t_1 - t_2| \le T_0 \text{ ft}, \quad P\{C^c\} = 1 - \frac{|t_1 - t_2|}{T_0} \qquad P\{C\} = \frac{|t_1 - t_2|}{T_0}$$

因此,

当 $|t_1-t_2|>T_0$ 时,

$$R_X(t_1,t_2) = E\{X(t_1)X(t_2)\} = E\{X(t_1)X(t_2)\} = 0$$

 $|t_1 - t_2| \le T_0$ 时,

$$\begin{split} R_X(t_1,t_2) &= E\{X(t_1)X(t_2)\} = E\{X(t_1)X(t_2) \Big| C^c\} P\{C^c\} + E\{X(t_1)X(t_2) \Big| C\} P\{C\} = \\ &= E\{X^2(t_1)\} P\{C^c\} + E\{X(t_1)X(t_2)\} P\{C\} = \frac{5}{2} \left[1 - \frac{\left|t_1 - t_2\right|}{T_0}\right] \end{split}$$

以上计算用到了: $E\{X^2(t_1)\}=2^2\times\frac{1}{4}+1^2\times\frac{1}{4}+(-2)^2\times\frac{1}{4}+(-1)^2\times\frac{1}{4}=\frac{5}{2}$, 最后有:

$$R_{X}(t_{1}, t_{2}) = \begin{cases} \frac{5}{2} \left[1 - \frac{\left| t_{1} - t_{2} \right|}{T_{0}} \right], & 0 \leq \left| t_{1} - t_{2} \right| \leq T_{0} \\ 0, & \left| t_{1} - t_{2} \right| > T_{0} \end{cases}$$

17、设有一质点在x 轴上作随机游动,即在 $t=1,2,3,\cdots$ 时质点可以在x 轴上正向或反向移动一个单位距离,作正向和作反向移动的概率分别为p 和q=1-p,且各次游动是相互独

立的。经过n 次游动,质点所处的位置为 X_n ,试求 X_n 的均值函数、自相关函数及自协方差函数。

解: 设质点第i次移动时的距离为 ξ_i ,则 ξ_i 是离散的随机变量,它可取+1,也可取-1。

且
$$P\{\xi_i = +1\} = p$$
, $P\{\xi_i = -1\} = 1 - p = q$, 则有: $X_n = \sum_{i=1}^n \xi_i$, 因此有:

(1)
$$\mu_X(n) = E(X_n) = nE(\xi_i) = n \cdot [q \cdot (-1) + p \cdot 1] = n(p-q)$$

$$(2) \ R_X(n_1, n_2) = E(\sum_{i=1}^{n_1} \xi_i \cdot \sum_{j=1}^{n_2} \xi_j) = E(\sum_{\substack{1 \le i \le n_1 \\ 1 \le j \le n_2}} \xi_i \xi_j) = \sum_{\substack{1 \le i \le n_1 \\ 1 \le j \le n_2}} E(\xi_i \xi_j)$$

当
$$i=j$$
 时, $E(\xi_i\xi_j)=1$; 否则 $E(\xi_i\xi_j)=\left(p-q\right)^2$, 令 $n=\min(n_1,n_2)$,

 $N = \max(n_1, n_2)$, 则有:

$$R_X(n_1, n_2) = \sum_{\substack{1 \le i \le n_1 \\ 1 \le j \le n_2 \\ i \ne j}} E(\xi_i \xi_j) + n \cdot 1 = [n \cdot (N-1)](p-q)^2 + n = (n_1 \cdot n_2 - n)(p-q)^2 + n$$

$$C_X(n_1, n_2) = R_{\eta\eta}(n_1, n_2) - E(\eta(n_1)) \cdot E(\eta(n_2))$$

$$= (n_1 \cdot n_2 - n)(p - q)^2 + n - n_1(p - q) \cdot n_2(p - q) = 4npq$$