https://github.com/physicell-training/01-Welcome-to-training

Module 01: What you need to code in PhysiCell

Paul Macklin, Ph.D.

last updated: November 11, 2019

PhysiCell is a C++ toolkit

 To actively develop PhysiCell models, you will need an appropriate C++ development environment.

 For models that aren't shared as cloud-hosted simulators, running PhysiCell-based projects requires compiling and running C++ codes.

 This module will help you create your own 64-bit C++ development environment.

PhysiCell development environment

- Local install (64-bit g++ environment with OpenMP support)
 - 64-bit g++ (with OpenMP) and standard command-line tools
 - Your choice of code editing
 - Ideal for long-term development
- Cloud-hosted environment on nanoHUB.org
 - Cloud-hosted workstation on nanoHUB.org
 - Ideal for use in short courses and classrooms

- Virtual appliance (no longer supported)
 - Pre-configured environment that runs in VirtualBox as a virtual machine
 - Use this while debugging your local install, but slow (and not frequently updated)

Local environment

Minimal tools:

- 64-bit g++ with OpenMP support (other compilers okay)
- Make and zip/unzip (at command line)
- Some sort of code editor (I just use a text editor.)

• Setup tutorials:

- Linux: You probably already have it! Use your package manager as needed.
- <u>Windows</u>: We wrote detailed instructions here, based on mingw-w64 and msys: http://www.mathcancer.org/blog/setting-up-a-64-bit-gcc-environment-on-windows/
- OSX: We wrote a tutorial using Homebrew:
 - ♦ <u>Note</u>: OSX has "gcc" which is actually llvm/clang without OpenMP support
 - ♦ <u>Note</u>: OSX users must set an environment variable. So <u>please do</u> use the tutorial http://www.mathcancer.org/blog/setting-up-gcc-openmp-on-osx-homebrew-edition/

nanoHUB Account

- These tutorials use cloud-hosted PhysiCell models on nanoHUB.org.
- nanoHUB is free, but it requires a onetime registration.

Steps:

- Visit https://nanohub.org/register
- 2. Choose "Sign in with Google"
- 3. Choose a Google account
- Click "No" (so it doesn't try to associate with some other nanoHIB account)
- 5. Finish filling in details, and you're done!
- Use your google account to sign in the future.

Cloud-hosted environment (1)

- nanoHUB created the workspace tool to allow online development
- We created a specialized *PhysiCell* environment in workspace
- Request to join the physicelldev group: https://nanohub.org/groups/physicelldev
- 2. Go to the workspace tool: http://nanohub.org/tools/workspace
- 3. Start the tool
- 4. Select the physicell environment using "chuse"
 - a. Right-click the desktop
 - b. Select "chuse"
 - c. Type "physicell" in the bottom search bar
 - d. Select physicell-x.y.z (currently 1.1.1)
 - e. close chuse and all xterm windows
 - f. open a new xterm window, and get PhysiCell by typing "get_PhysiCell.sh" and follow the prompts

Cloud-hosted environment (2)

- After running the script, you have a full Linux-based dev environment:
 - Latest PhysiCell is in ~/PhysiCell
 - Also installed:
 - ♦ 64-bit g++ with OpenMP
 - ♦ Anaconda / Python 3.x
 - ♦ ImageMagick (to batch edit images)
 - ♦ geany (text editor)
 - ♦ gedit (text editor)
 - ♦ nautilus (file browser)
 - ♦ mirage (to view images)
 - ♦ mplayer (to play videos)
 - ♦ povray (for 3D raytracing)

Next steps

Super fast: Please proceed to 02

(How to use a PhysiCell App on nanoHUB)

Intermediate: Please proceed to 02

(How to use a PhysiCell App on nanoHUB)

Full training: Please proceed to 02

(How to use a PhysiCell App on nanoHUB)

link: https://www.github.com/PhysiCell-Training/....

Credits and acknowledgements

Module Planning: Paul Macklin

Slides: Paul Macklin

Recording: Paul Macklin

Post-production: Paul Macklin, Drew Willis*, Kali Konstantinopoulos*

Microapps: not applicable

* denotes undergraduate researcher

Funding:

PhysiCell Development:

- Breast Cancer Research Foundation
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625)

Training materials:

* Administrative supplement to NCI U01CA232137 (Year 2)