Cryptographie Appliquée Master :Ingénierie Informatique et Sécurité des Systèmes

Introduction à la cryptographie

Cryptanalyse

Objectifs de la cryptanalyse

Attaquer un cryptosystème, cassable(vulnérable). Cryptosystème vulnérable :

- Décrypter des messages sans connaître la clé.
- Chiffrer des messages sans connaître la clé
- Trouver la clé

Niveaux d'Attaques

Les niveaux d'attaques en cryptographie se définissent par les informations disponibles pour l'attaquant et les méthodes utilisées pour casser un système.

Objectif principal:

Découvrir la clé secrète, déchiffrer un message ou compromettre le système de sécurité.

Types d'attaques principales :

- Attaques sur le texte chiffré.
- Attaques sur le texte clair connu.
- Attaques sur le texte clair choisi.
- Attaques sur le texte chiffré choisi.

Attaque par Texte Chiffré Seul (Ciphertext Only Attack - COA)

Description:

- L'attaquant dispose uniquement d'un ou plusieurs textes chiffrés.
- Il tente d'extraire des informations ou de déduire la clé.

Techniques possibles:

- Analyse de fréquence (pour les chiffrements simples).
- Essais systématiques (force brute).

Attaque par Texte Clair Connu (Known Plaintext Attack - KPA)

Description:

- L'attaquant dispose d'un texte chiffré et de son équivalent en clair.
- Il utilise ces informations pour déduire la clé ou le mécanisme de chiffrement.

Techniques possibles:

- Analyse des patterns (répétitions dans le texte clair et le texte chiffré).
- Utilisation de modèles linguistiques.

Attaque par Texte Clair Choisi (Chosen Plaintext Attack - CPA)

Description:

- L'attaquant choisit un texte clair spécifique et obtient son équivalent chiffré.
- Cela lui permet d'étudier le fonctionnement du chiffrement.

Techniques possibles:

- Envoi de textes clairs identiques ou similaires pour analyser les résultats.
- Exploitation des relations entre les textes clairs et chiffrés.

Attaque par le texte Chiffré Choisi (Chosen Ciphertext Attack - CCA)

Description:

- L'attaquant choisit un texte chiffré et obtient son équivalent en clair.
- Utilisé pour tester les faiblesses des algorithmes et des implémentations.

Techniques possibles:

 Exploitation des failles dans le déchiffrement ou le padding (ex : attaque par Oracle Padding).

Attaque par Force Brute

Principe:

- Essayer toutes les combinaisons possibles de clés ou de mots de passe jusqu'à trouver la bonne.
- Fonctionne pour des systèmes utilisant des clés courtes ou faibles.

- 1 Générer une clé candidate.
- 2 Chiffrer ou déchiffrer le message avec cette clé.
- Comparer le résultat avec un texte attendu.
- 4 Répéter jusqu'à ce que la clé correcte soit trouvée.

Attaque par Analyse de Fréquence

Principe:

- Exploiter la fréquence des lettres dans une langue donnée pour déduire les substitutions dans un texte chiffré.
- Applicable aux chiffrements mono-alphabétiques comme César ou Polybe.

- 1 Calculer la fréquence de chaque lettre dans le texte chiffré.
- 2 Comparer ces fréquences avec les fréquences typiques de la langue.
- 3 Faire correspondre les lettres en fonction des probabilités.

Analyse Différentielle

Principe:

- Étudier l'effet des différences dans les textes clairs sur les différences dans les textes chiffrés.
- Exploite la propagation des différences à travers les étapes de chiffrement pour déduire des informations sur la clé.

- Choisir des paires de textes clairs avec une différence spécifique.
- 2 Observer les différences dans les textes chiffrés correspondants.
- 3 Analyser les corrélations pour identifier des failles dans le chiffrement.

Analyse Linéaire

Principe:

- Approximations linéaires des relations entre les bits du texte clair, du texte chiffré et de la clé.
- Exploite des corrélations statistiques faibles dans le chiffrement.

- Formuler une approximation linéaire reliant le texte clair, le texte chiffré et la clé.
- 2 Tester cette relation sur un grand nombre de textes clairs et chiffrés.
- 3 Identifier des biais statistiques pour déduire des parties de la clé.

Introduction à la cryptographie

Principe de Kerckhoffs

Principe de Kerckhoffs

Définition:

Le principe de Kerckhoffs, proposé en 1883, énonce qu'un système cryptographique doit rester sécurisé, même si tout, sauf la clé, est connu par l'attaquant.

Enjeux:

- La sécurité doit reposer sur le secret de la clé, et non sur l'obscurité de l'algorithme.
- Les systèmes peuvent être audités publiquement pour garantir leur robustesse.
- Le principe favorise la transparence et la confiance dans les systèmes cryptographiques.

Importance du Principe de Kerckhoffs

Pourquoi ce principe est-il crucial?

- Transparence : Permet de tester les systèmes publiquement, augmentant leur robustesse.
- **Sécurité durable** : Même si l'algorithme est exposé, la sécurité persiste tant que la clé est protégée.
- Simplicité de mise à jour : Changer une clé est beaucoup plus simple que modifier un algorithme.

Exemple contraire:

- Les systèmes qui reposent sur l'obscurité de l'algorithme (ex : chiffrement propriétaire) sont vulnérables si l'algorithme est révélé.
- Exemple : Algorithmes faibles ou obsolètes (DES raccourci ou algorithmes non standard).

Cryptographie symétrique

Cryptographie Symétrique

Cryptographie Classique

Cryptographie Classique

Définition:

- Les chiffrements classiques regroupent les premières techniques cryptographiques.
- Ils visent à protéger les messages en utilisant des méthodes simples de substitution et de transposition.

Caractéristiques:

- Techniques simples, souvent manuelles ou mécaniques.
- Fonctionnent par substitution ou transposition.
- Manipulent les données caractère par caractère (chiffrement par flux).

Cryptographie Classique

Cryptograpine Symetrique

Catégories des Chiffrements Classiques

1. Chiffrements par substitution:

- Chaque caractère du texte clair est remplacé par un autre caractère selon une règle définie.
- Exemples :
 - Chiffre de César
 - Chiffre de Vigenère

2. Chiffrements par transposition:

- Les caractères du texte clair sont réorganisés selon un schéma prédéfini.
- Exemples :
 - Scytale spartiate
 - Carré de Polybe

Carré de Polybe (200 av. J.-C.)

Principe:

- Méthode de transposition utilisant une grille pour convertir des lettres en paires de chiffres.
- L'alphabet est placé dans une grille de 5×5 , en regroupant I et J dans la même case.

Exemple de grille :

Carré de Polybe (200 av. J.-C.)

Exemple de chiffrement :

■ Texte clair : BONJOUR

■ Texte chiffré : 12 34 33 24 34 45 42

```
1 2 3 4 5
1 A B C D E
2 F G H I/J K
3 L M N O P
4 Q R S T U
5 V W X Y Z
```

Chiffrement de Vernam (1917)

Principe:

- Substitution basée sur l'opération XOR (OU exclusif).
- Chaque caractère du texte clair est combiné avec un caractère d'une clé aléatoire de même longueur.

Formule:

$$y = x \oplus k$$

où:

- y : texte chiffré
- x : texte clair
- k : clé (unique et aléatoire)

Chiffrement de Vernam (1917)

Exemple:

■ x: 10101011

■ k: 11001101

y: 01100110

Rappel: Calcul modulaire et inverse modulaire

■ Calcul modulaire : a mod m représente le reste de la division de a par m.

Exemple : 17 mod 5 = 2 (car $17 = 3 \times 5 + 2$).

■ Inverse modulaire : Soit a et m tels que pgcd(a, m) = 1. L'inverse modulaire a^{-1} mod m est le nombre b tel que :

$$a \cdot b \equiv 1 \pmod{m}$$
.

Exemple : Pour a=3 et m=26, l'inverse modulaire de 3 est 9 car $3 \cdot 9 \equiv 1 \pmod{26}$.

Le chiffrement affine

Formule de chiffrement :

$$y \equiv (a \cdot x + b) \pmod{n}$$

où:

- x : la lettre en clair (représentée par un entier),
- y : la lettre chiffrée,
- **a** et b: clés du chiffrement (pgcd(a, n) = 1),
- n : taille de l'alphabet.

■ Déchiffrement :

$$x \equiv a^{-1} \cdot (y - b) \pmod{n}.$$

Exemple pratique

Paramètres : a = 5, b = 8, n = 26 (alphabet anglais).

Chiffrement:

- Soit x = 7 (représentant la lettre H).
- Calcul: $y \equiv (5 \cdot 7 + 8) \mod 26 = 43 \mod 26 = 17$.
- La lettre chiffrée correspond à $17 \rightarrow R$.

Déchiffrement :

- L'inverse modulaire de a = 5 modulo 26 est $a^{-1} = 21$.
- Calcul: $x \equiv 21 \cdot (17 8) \mod 26 = 21 \cdot 9 \mod 26 = 189 \mod 26 = 7$.
- La lettre déchiffrée est $7 \rightarrow H$.

Avantages et Limites des Chiffrements Classiques

Avantages:

- Simplicité et facilité d'implémentation.
- Adaptés aux communications non numériques à leur époque.

Limites:

- Vulnérabilité aux attaques modernes comme l'analyse de fréquence.
- Clés souvent courtes et faciles à deviner.
- Inadaptés aux grands volumes de données modernes.

Transition vers la Cryptographie Moderne

Problèmes résolus par les algorithmes modernes :

- Gestion des clés simplifiée avec des clés longues et aléatoires.
- Résistance aux attaques connues grâce à des bases mathématiques solides.
- Adaptation aux volumes de données numériques.

Exemples d'algorithmes modernes :

- Symétriques : AES, DES.
- Asymétriques : RSA, ECC.