Matemática Discreta I - 2020 - 2^{do} semestre

Práctico 10: Grafos (árboles, isomorfismos, grado, circuitos eulerianos y ciclos hamiltonianos).

Ref. Grimaldi 12.1, 11.2, 11.3 y 11.5

DEFINICIONES Y SUPOSICIONES:

- Todos los grafos de este práctico se suponen simples, es decir, sin aristas múltiples ni loops.
- Un vértice es aislado si no es advacente a ningún otro.
- El grafo complemento \overline{G} de un grafo G=(V,E) se define como $\overline{G}=(V,V^{(2)}\setminus E)$ donde $V^{(2)}=\{\{u,v\}:u,v\in V,u\neq v\}$. Un grafo G se dice autocomplementario si es isomorfo a \overline{G} .
- Si $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son dos grafos vértices disjuntos $(V_1 \cap V_2 = \emptyset)$, entonces su grafo unión $G_1 \cup G_2$ se define como $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$.
- Denotaremos $\kappa(G)$ a la cantidad de componentes conexas de G.
- Un grafo se dice *k*-regular si todos sus vértices tiene grado *k*. Un *vértice colgante* es un vértice de grado 1. Cuando el grafo es un árbol, también llamamos *hojas* a los vértices colgantes.

ÁRBOLES

Ejercicio 1 Sean $T_1 = (V_1, E_1)$ y $T_2 = (V_2, E_2)$ dos árboles. Determine $|V_1|, |V_2|$ y $|E_2|$ si se sabe que $|E_1| = 17$ y $|V_2| = 2|V_1|$.

Ejercicio 2

- a. Sea $F_1 = (V_1, E_1)$ un bosque de siete árboles con $|E_1| = 40$. ¿Cuánto vale $|V_1|$?
- **b**. Si $F_2 = (V_2, E_2)$ es un bosque con $|V_2| = 62$ y $|E_2| = 51$, ¿cuántos árboles determina F_2 ?

Ejercicio 3 ¿Qué tipo de árboles tiene exactamente dos hojas?

Ejercicio 4 De un ejemplo de un grafo G que no sea un árbol y que tenga un vértice más que el número de aristas. Pruebe que cualquier grafo que verifique las condiciones anteriores no puede ser conexo (sug: considere un árbol recubridor).

Ejercicio 5 Demuestre que la cantidad de componentes conexas de un grafo con n vértices y m aristas es mayor o igual a n-m (sug: considere un árbol recubridor).

Ejercicio 6 ¿Cuál es la máxima cantidad de vértices que puede tener un grafo conexo con 30 aristas?

ISOMORFISMO

Ejercicio 7 Encuentre todos los árboles con 6 vértices, a menos de isomorfismos. ¿Cuáles de estos árboles son árboles recubridores de $K_{3,3}$?

Ejercicio 8

- a. Demuestre que dos grafos son isomorfos si y solo si sus grafos complemento lo son.
- b. ¿Cuáles de los grafos de la Figura 1 son isomorfos?

Figura 1

- c. Determine el número de aristas de \overline{G} en función del número de aristas de G.
- \mathbf{d} . Determine el número de aristas de un grafo autocomplementario de orden n.
- e. Construya un grafo autocomplementario de orden 4 y otro de orden 5.
- f. Determine para qué valores de n existe un grafo autocomplementario de orden n. Sugerencia: Demuestre que n debe ser de la forma 4k o 4k + 1. Para n = 4k, generalice la estructura del grafo autocomplementario de orden 4 agrupando los vértices en cuatro grupos. Para n = 4k + 1 agregue un vértice al grafo anterior y únalo en forma adecuada.

Ejercicio 9 Para cada par de grafos de la Figura 2 determine si los grafos son o no isomorfos.

Figura 2

Ejercicio 10 Pruebe que K_n posee tres subgrafos dos a dos isomorfos cuyos conjuntos de aristas son una partición del conjunto de aristas de K_n si y sólo si n es de la forma 3k o 3k + 1.

GRADO

Ejercicio 11

- a. Determine el orden de un grafo 3-regular con 9 aristas.
- b. Ídem con 10 aristas, dos vértices de grado 4 y los demás de grado 3.
- c. ¿Existen tales grafos? En caso afirmativo construirlos.

Ejercicio 12 En una clase con 9 alumnos, cada alumno le manda 3 tarjetas de navidad a otros 3. ¿Es posible que cada alumno reciba tarjetas de los mismos 3 compañeros a los cuales él le mando una?

Ejercicio 13 Sea G un grafo con n vértices. ¿Cuántos vértices de \overline{G} tienen grado par si G tiene un sólo vértice de grado par?

Ejercicio 14 ¿Cuál es el máximo orden posible para un grafo con 17 aristas si todos sus vértices tienen grado mayor o igual a 3?

¿Existe algún grafo con dicha cantidad de vértices? En caso afirmativo construirlo.

Ejercicio 15 Para todo natural par $n \ge 4$ construya un grafo conexo 3-regular con n vértices.

Ejercicio 16 (Examen diciembre 2016 Ej6)

Demuestre que todo grafo conexo con 2 o más vértices tiene dos vértices con el mismo grado.

Ejercicio 17 ¿Cuántas hojas (vértices colgantes) tiene un árbol con cuatro vértices de grado 2, uno de grado 3, dos de grado 4 y uno de grado 5?

CIRCUITOS Y RECORRIDOS EULERIANOS, CICLOS Y CAMINOS HAMILTONIANOS

Ejercicio 18 Halle un recorrido o un circuito euleriano para cada grafo de la Figura 3 o demuestre que no existe.

Figura 3

Ejercicio 19 Encuentre un recorrido euleriano para G = (V, E) con $V = \{a, b, c, d, e, f, g, h, i, j\}$ y $E = \{ab, ac, ai, aj, bc, cd, ci, de, df, dg, dh, ef, fg, fh, gh, hi, ij\}.$

Ejercicio 20

- a. Determine los valores de n para los cuales el grafo completo K_n tendrá un circuito euleriano.
- **b**. ¿Para cuáles n tiene K_n un recorrido euleriano?

Ejercicio 21 Encuentre la longitud máxima de un recorrido en a) K_6 ; b) K_8 ; c) K_{10} ; d) K_{2n} , $n \in \mathbb{N}$.

Ejercicio 22 Sea \mathcal{E} y \mathcal{H} los conjuntos de grafos Eulerianos y Hamiltonianos respectivamente. Dé un ejemplo de un grafo en $\mathcal{E} \setminus \mathcal{H}$, otro en $\mathcal{H} \setminus \mathcal{E}$ y otro en $\mathcal{E} \cap \mathcal{H}$.

Ejercicio 23 Encuentre un ciclo Hamiltoniano, si existe, para cada grafo de la Figura 4.

Figura 4