压轴题复习

目录

选择 1

填空 7

选择 1

> 1. 如果,函数 f(x) 的图象为折线 ACB,则不等式 $f(x) \ge \log_2(x+1)$ 的解集是)

(A) $\{ x \mid -1 < x \le 0 \}$

(B) $\{ x \mid -1 \le x \le 1 \}$

(C) $\{ x \mid -1 < x \le 1 \}$

- (D) $\{ x \mid -1 \le x \le 2 \}$
- 2. 直线 $l: ax + \frac{1}{a}y 1 = 0$ 与 x, y 轴的交点分别为 A, B,直线 l 与圆 $O: x^2 + y^2 = 1$ 的交点为 C, D. 给出 下面三个结论:

① $\forall a \geqslant 1, S_{\triangle AOB} = \frac{1}{2};$ 则所有正确结论的序号是

- (A) 12
- (B) 23
- (C) 13
- (D) 123

)

- 3. 已知 A(0,1), 点 B 在曲线 $G: y = \ln(x+1)$ 上,若线段 AB 与曲线 $M: y = \frac{1}{x}$ 相交且交点恰为线段 AB 的中点,则称 B 为曲线 G 关于曲线 M 的一个关联点. 记曲线 G 关于曲线 M 的关联点的个数为 a, 则)
 - (A) a = 0
- (B) a = 1
- (C) a = 2
- (D) a > 2
- 4. 已知圆 $C: (x-3)^2 + (y-4)^2 = 1$ 和两点 A(-m,0), B(m,0) (m>0),若圆上存在点 P,使得 $\angle APB = 90^\circ$, 则 m 的最大值为
 - (A)7

(B) 6

(C) 5

- (D) 4
- 5. 设点 $M(x_0,1)$, 若在圆 $O: x^2 + y^2 = 1$ 上存在点 N, 使得 $\angle OMN = 45^{\circ}$, 则 x_0 的取值范围是 ()
 - (A) [-1, 1]

- (B) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (C) $\left[-\sqrt{2}, \sqrt{2}\right]$ (D) $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$

6.	5. 设直线 $l: 3x + 4y + a = 0$,圆 $C: (x - 2)^2 + y^2 = 2$,若在圆 C 上存在两点 P , Q ,在直线 l 上有 M ,使得 $\angle PMQ = 90^\circ$,则 a 的取值范围是					点)
	(A) [-18, 6]		(B) $\left[6 - 5\sqrt{2}, 6 + 5\sqrt{2}\right]$			
	(C) [-16, 4]		(D) $\left[-6 - 5\sqrt{2}, -6 + 5\sqrt{2}\right]$	$ar{2}$		
7.	已知函数 $f(x) = x^3 - 6x^2$ ① $f(0)f(1) > 0$; ② $f(0)f(0)$ 其中正确的结论的序号是			给出如下结论:	()
	(A) ①③	(B) ①④	(C) 23	(D) 24		
8.	已知函数 $f(x) = \frac{e^x - e^{-x}}{2}$,的取值范围是	$x \in \mathbf{R}$,若对任意 $\theta \in (0,$	$\left[\frac{\pi}{2}\right]$,都有 $f(m\sin\theta) + f(1)$	-m)>0成立,	则实数 (<i>m</i>
	(A) $(0,1)$	(B) $(0,2)$	(C) $(-\infty, 1)$	(D) $(-\infty, 1]$		
9.	已知函数 $f(x) = 2mx^2 - 2$ 正数,则实数 m 的取值范		若对于任意实数 $x, f(x)$ -	与 g(x) 的值至少		为)
	(A) $(0,2)$	(B) $(0,8)$	(C) $(2,8)$	(D) $(-\infty, 0)$		
10.	设函数 $f(x) = e^x(2x-1)$ - 是	- ax + a, 其中 a < 1, 若存	字在唯一的整数 x_0 使得 $f($	$(x_0) < 0$,则 a 的	取值范 (围)
	20 /	$(B)\left[-\frac{3}{2e},\frac{3}{4}\right)$	17	(D) $\left[\frac{3}{2e}, 1\right)$		
11.	已知函数 $f(x) = \begin{cases} -x^2 + \\ \ln(x + x) \end{cases}$	$2x$, $x \le 0$, 若 $ f(x) \ge ax$ 1), $x > 0$.	x,则 a 的取值范围是		()
	$(A) (-\infty, 0]$	(B) $(-\infty, 1]$	(C) $[-2, -1]$	(D) $[-2, 0]$		
12.	已知函数 $f(x) = \begin{cases} \log_4 x , & 0 < x \leq 4, \\ x^2 - 10x + 25, & x > 4. \end{cases}$ 若 a, b, c, d 是互不相同的正数,且 $f(a) = f(b) = f(c) = f(d)$,则 $abcd$ 的取值范围是					
	(A) (24, 25)		(C) (21, 24)	(D) $(18, 25)$		
13.	已知函数 $f(x) = \begin{cases} \lg x , \\ -\frac{1}{2}x - \frac{1}{2}x - \frac{1}{2$	$0 < x \le 10$ 若 a, b, c 是 + 6, $x > 10$.	互不相等,且 $f(a) = f(b)$	=f(c),则 abc	的取值	范
	围是				()
	(A) $(1, 10)$	(B) $(5,6)$	(C) $(10, 12)$	(D) $(20, 24)$		
14.	已知函数 $f(x) = \begin{cases} -x^2 + \log_2 x, \end{cases}$	$x \le 4x$, $x \le 4$, 若 $y = f(x)$ 在 $x > 4$.	E区间 (a, a + 1) 上单调递	增,则实数 <i>a</i> 的	取值范	围
	是				()
	$(A) (-\infty, 1]$	(B) [1, 4]	(C) $[4, +\infty)$	(D) $(-\infty, 1] \bigcup [4$	$(1,+\infty)$	

15. 已知函数 $f(x)$ 在	5. 已知函数 $f(x)$ 在 $[0, +\infty)$ 上是增函数, $g(x) = f(x) > g(1)$,则 x 的取值范围是						
(A) $(0, 10)$		(B) $(10, +\infty)$					
$(C)\left(\frac{1}{10}, 10\right)$		$(D)\left(0,\frac{1}{10}\right)\bigcup\left(1\right)$	$10, +\infty$)				
	9	$B(m+\pi, n)(n \neq 1)$ 都在曲	线 $y = f(x)$ 上,且线된				
	公共点,则 ω 的值为	1	1	()		
(A) 4	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{4}$				
$17. 将函数 y = \sin\left(2\right)$	将函数 $y = \sin\left(2x + \frac{\pi}{3}\right)$ 图象上的点 $P\left(\frac{\pi}{4}, t\right)$ 向左平移 $s\left(s > 0\right)$ 个单位长度得到点 P' . 若 P' 位于						
$y = \sin 2x$ 的图象	上,则	_		()		
$(A) t = \frac{1}{2}, s$ 的最	$\frac{\pi}{6}$	(B) $t = \frac{\sqrt{3}}{2}$, six	最小值为 $\frac{\pi}{6}$				
(C) $t = \frac{1}{2}$, s的最	$\frac{\pi}{3}$	$(D) t = \frac{\sqrt{3}}{2}, s \not \vdash$	J最小值为 $\frac{\pi}{3}$				
18. 将函数 y = sin($2x + \frac{\pi}{6}$) 的图象向左平移	8 m (m > 0) 个单位长度,	得到函数 $y = f(x)$	图象在区	区间		
$\left[-\frac{\pi}{12}, \frac{5\pi}{12}\right]$ 上单调	間递减,则 m 的最小值为			()		
$(A) \frac{\pi}{12}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$				
19. 已知函数 $f(x) =$	$\begin{cases} \sin(x+a), x \leq 0 \\ \cos(x+b), x > 0 \end{cases}$ 是偶函	6数,则下列结论可能成立	的是	()		
$(A) a = \frac{\pi}{4}, b = -$	$-\frac{\pi}{4}$	(B) $a = \frac{2\pi}{3}, b =$	$\frac{\pi}{6}$				
(C) $a = \frac{\pi}{3}, b = \frac{\pi}{6}$	7 3	(D) $a = \frac{5\pi}{6}, b =$	$\frac{2\pi}{3}$				
20. 已知函数 $f(x) =$	$\begin{cases} \sin(x+\alpha), x \le 0 \\ \cos(x+\alpha), x > 0 \end{cases}$ "\alpha	$f = \frac{\pi}{4}$ "是"函数 $f(x)$ 是偶	函数"的	()		
(A) 充分不必要	条件	(B) 必要不充分:	条件				
(C) 充分必要条	件	(D) 既不充分也	不必要条件				
		(0), $B(2,2,0)$, $C(0,2,0)$, $D(0,0)上的正投影图形的面积,则$		分别表示 (完三)		
$(A) S_1 = S_2 = S$	S_3	(B) $S_1 = S_2 \perp S$	$_3 \neq S_1$				
$(C) S_1 = S_3 \perp S_3$	$_3 \neq S_2$	(D) $S_2 = S_3 \perp S$	$_1 \neq S_3$				
	函数 $y = log_2x + 2$ 的图象 $y = y$,设点 A 的坐标为 ((R, L) ,点 C 在函数 $y = log_2$ (m, n),则 $m = 1$	<i>x</i> 的图象上,若 △ <i>ABC</i>	为等边三 (E角)		

23. 已知拋物线 $y = \frac{1}{4}x^2$ 和 $y = -\frac{1}{16}x^2 + 5$ 所围成的封闭曲线如图所示,给定点 A(0,a),若在此封闭曲线上恰有三对不同的点,满足每一对点关于 A 对称,则实数 a 的取值范围是()

(A) (1,3) (B) (2,4) (C) $(\frac{3}{2},3)$ (D) $(\frac{5}{2},4)$ 24. 已知 a,b 是正数,且满足 2 < a + 2b < 4,那么 $\frac{b+1}{a+1}$ 的取值范围是 (A) $(\frac{1}{5},3)$ (B) $(\frac{1}{3},2)$ (C) $(\frac{1}{5},2)$ (D) $(\frac{1}{3},3)$)

25. 设关于 x,y 的不等式组 $\begin{cases} 2x-y+1>0\\ x+m<0\\ y-m>0 \end{cases}$ 的取值范围是

的取值范围是 $(A) \left(-\infty, -\frac{4}{3}\right) \qquad \qquad (B) \left(-\infty, -\frac{1}{3}\right) \qquad \qquad (C) \left(-\infty, -\frac{2}{3}\right) \qquad \qquad (D) \left(-\infty, -\frac{5}{3}\right)$

26. 已知 e_1,e_2 为平面上的单位向量, e_1 和 e_2 的起点均为坐标原点 $O,\ e_1$ 与 e_2 夹角为 $\frac{\pi}{3}$. 平面区域 D 由

)

所有满足 $\overrightarrow{OP} = \lambda e_1 + \mu e_1$ 的点 P 组成,其中 $\begin{cases} \lambda + \mu \leq 1, \\ 0 \leq \lambda, & \text{那么平面区域 } D \text{ 的面积为} \\ 0 \leq \mu. \end{cases}$ (A) $\frac{1}{2}$ (B) $\sqrt{3}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{\sqrt{3}}{4}$ 27. 已知符号函数 $sgn(x) = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \end{cases}$ 则函数 $f(x) = sgn(\ln x) - \ln^2 x$ 的零点个数为 ()

(A) 1

(B) 2

(C)3

(D) 4

则 a 的取值范围是 ()

- (A) (1,3]
- (B) [2, 3]
- (C)(1,2]
- (D) $[3, +\infty)$
- 29. 如图,正方体 $ABCD-A_1B_1C_1D_1$ 的棱长为 2,动点 E,F 在棱 A_1B_1 上,动点 P,Q 分别在棱 AD,CD 上,若 EF=1, $A_1E=x$, DQ=y, DP=z (x,y,z大于零),则四面体 P-EFQ 的体积
 - (A) 与 x, y, z 都有关
 - (B) 与x有关,与y,z无关
 - (C) 与y有关,与x,z无关
 - (D)与z有关,与x,y无关

)

- - (A) $\frac{1}{4}$

(B) $\frac{3}{8}$

(C) $\frac{2}{5}$

(D) $\frac{1}{2}$

31. 一个几何体的三视图如图所示,那么该几何体的最长棱长为

(A) 2

- (B) $2\sqrt{2}$
- (C)3

- (D) $\sqrt{10}$
- 32. 在平面直角坐标系 xOy 中,正四面体 P-ABC 的项点 A, B 分别在 x 轴,y 轴上移动,若该正四面体的 棱长为 2,则 |OP| 的取值范围是 ()
 - (A) $\left[\sqrt{3} 1, \sqrt{3} + 1 \right]$

(B) [1, 3]

(C) $\left[\sqrt{3} - 1, 2 \right]$

- (D) $[1, \sqrt{3} + 1]$
- 33. 如图,在等腰梯形 ABCD 中,AB=8,BC=4,CD=4,点 P 在线段 AD 上运动,则 $\left|\overrightarrow{PA}+\overrightarrow{PB}\right|$ 的取值范围是

(D) [6, 12]

34. 某四棱锥的三视图如图所示,则该四棱锥的底面的面积是

)

侧视图

(A) $\frac{1}{2}$

(B) $\frac{3}{2}$

(C) $\frac{1}{4}$

(D) $\frac{3}{4}$

35. 在三角形 $\triangle ABC$ 中,点 D 满足 $\overrightarrow{AD} = 2\overrightarrow{AB} - \overrightarrow{AC}$,则

)

)

(A) 点 D 不在直线 BC 上

(B) 点 D 在 BC 的延长线上

(C) 点 D 在线段 BC 上

(D) 点 $D \in CB$ 的延长线上

36. \vec{a} , \vec{b} 为非零向量," $\vec{a} \perp \vec{b}$ " 是"函数 $f(x) = (x\vec{a} + \vec{b}) \cdot (x\vec{b} - \vec{a})$ 为一次函数"的

(A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

(D) 既不充分也不必要条件

37. 现有10支队伍比赛,规定:比赛采取单循环比赛制,每支队伍与其他9支队伍各比赛一场,每场比赛 中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是(

- (A) 可能有两支队伍得分都是 18 分
- (B) 各队得分总和为 180 分
- (C) 各支队伍中最高得分不少于 10 分
- (D) 得偶数分的队伍必有偶数个

38. 袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒,每次从袋中任意取出两个球, 将其中一个放入甲盒,如果这个球是红球,就将另一个球放入乙盒,如果这个球是黑球,就将另一个 球放入丙盒, 重复上述过程, 直到袋中所有球都被放入到盒中, 则)

- (A) 乙盒中黑球不多于丙盒中黑球
- (B) 乙盒中红球与丙盒中黑球一样多
- (C) 乙盒中红球不多于丙盒中红球
- (D) 乙盒中黑球和丙盒中红球一样多

39. 有语文,数学两门学科,成绩评定为"优秀","合格","不合格"三种,若 A 同学每科成绩不低于 B同学,且至少有一科成绩比 B 高,则称 "A 同学比 B 同学成绩好." 现有若干同学,他们之间没有一个 人比另一个成绩好,且没有任意两个人的语文成绩一样,数学成绩也一样的,问满足条件的最多有多

(C)4

(D) 5

- 40. 为提高信息在传输中的抗干扰能力,通常在原信息中按照一定规则加入相关数据组成传输信息,设定原信息为 $a_0a_1a_2$,其中 $a_i \in \{0,1\}$ (i=0,1,2),传输信息为 $h_0a_0a_1a_2h_1$, $h_0=a_0\oplus a_1$, $h_1=h_0\oplus a_2$,⊕运算规则为: $0\oplus 0=0$, $0\oplus 1=1$, $1\oplus 0=1$, $1\oplus 1=0$. 例如原信息为 111,则传输信息为 01111. 传输信息在传输过程中受到干扰可能导致接收信息出错,则下来信息一定错误的是
 - (A) 11010 (B) 01100 (C) 10111 (D) 00011
- 41. 用 a 表示红球,b 表示蓝球,c 表示黑球,由加法原理及乘法原理,从 1 个红球和 1 个蓝球中取出若干个求的所有取法可由 (1+a) (1+b) 的展开式 1+a+b+ab 表示出来,如:"1"表示一个球都不取,"a"表示取出一个红球,"ab"则表示把红球和蓝球都取出来. 以此类推,下列各式中,其展开式可用来表示从 5 个无区别的红球,5 个无区别的蓝球,5 个有区别的黑球中取出若干个球,且所有的蓝球都取出或者都不取出的所有取法是
 - (A) $(1 + a + a^2 + a^3 + a^4 + a^5) (1 + b^5) (1 + c)^5$

(B) 3

- (B) $(1+a^5)(1+b+b^2+b^3+b^4+b^5)(1+c)^5$
- (C) $(1+a)^5 (1+b+b^2+b^3+b^4+b^5) (1+c^5)$
- (D) $(1+a^5)(1+b)^5(1+c+c^2+c^3+c^4+c^5)$

2 填空

(A) 2

- 1. 己知函数 $f(x) = \begin{cases} \frac{2}{x}, & x \ge 2 \\ (x-1)^3, & x < 2. \end{cases}$ 若关于 x 的方程 f(x) = k 有两个不同的实根,则数 k 的取值范围
- 2. 设函数 $f(x) = \begin{cases} 2^x a, & x < 1; \\ 4(x-a)(x-2a), & x \ge 1. \end{cases}$
 - ① 若 a = 1,则 f(x) 的最小值为 ;
 - ② 若 f(x) 恰有 2 个零点,则实数 a 的取值范围是_____
- 3. 设函数 $f(x) = \begin{cases} x^3 3x, & x \leq a \\ -2x, & x > a. \end{cases}$
 - ① 若 a = 0,则 f(x) 的最大值为 :
 - ② 若 f(x) 无最大值,则实数 a 的取值范围是_____.
- 4. 关于 x 的方程 $g(x) = t(t \in \mathbf{R})$ 的实数根的个数记为 f(t),若 $g(x) = \ln x$,则 $f(t) = _____;$ 若 $g(x) = \begin{cases} x, & x \leqslant 0; \\ (a \in \mathbf{R}), \text{ 存在 } t \text{ 使得 } f(t+2) > f(t) \text{ 成立,则 } a \text{ 的取值范围是}____. \end{cases}$

- 5. 已知函数 $f(x) = \begin{cases} (x 2a)(a x), & x \leq 1, \\ \sqrt{x} + a 1, & x > 1. \end{cases}$

 - (2) 若 f(x) 恰有三个零点,则实数 a 的取值范围是_____.
- 6. 已知函数 $f(x) = \begin{cases} 1 x^2, & x \ge 0, \\ & \text{若关于 } x \text{ 的方程 } f(x+a) = 0 \text{ 在 } (0,+\infty) \text{ 内有唯一实根,则实数 } a \text{ 的} \end{cases}$ 最小值是
- 7. 设 $f(x) = \begin{cases} x^3, & x < a, \\ & \text{ 若存在实数 } b,$ 使得函数 g(x) = f(x) b 有两个零点,则 a 的取值范围是_____.
- 8. 已知函数 f(x) 是 **R** 上的减函数,且 y = f(x-2) 的图象关于点 (2,0) 成中心对称,若 u,v 满足不等式组 $\begin{cases} f(u) + f(v-1) \leq 0, \\ y = f(u-v-1) \geq 0. \end{cases}$ 则 $u^2 + v^2$ 的最小值是_____.
- 9. 已知定义在 $(0,+\infty)$ 的函数 f(x) 的导函数 f'(x) 是连续不断的,若方程 f'(x) = 0 无解,且 $\forall x \in (0,+\infty)$, $f\left[f(x) \log_{2016} x\right] = 2017$,设 $a = f\left(2^{0.5}\right)$, $b = f\left(\log_4 3\right)$, $c = f\left(\log_\pi 3\right)$,则 a,b,c 的大小关系是_____.
- 10. 若函数 $f(x) = (1 x^2)(x^2 + ax + b)$ 的图象关于直线 x = -2 对称,则 f(x) 的最大值是_____.
- 11. 已知函数 $f(x) = e^x e^{-x} (x \in \mathbf{R}, \pm e)$ 自然对数的底). 若存在实数 t,使不等式 $f(x-t) + f(x^2 t^2) \ge 0$ 对一切的 $x \in \mathbf{R}$ 都成立,则 $t = \underline{\hspace{1cm}}$.
- 12. 已知函数 $f(x) = \cos x 2^x 2^{-x} b$, $(b \in \mathbf{R})$.
 - (1) 当 b = 0 时,函数 f(x) 的零点个数为_____;
 - (2) 若函数 f(x) 有两个不同的零点,则 b 的取值范围是_____.
- 13. 设函数 $f(x) = A \sin(\omega x + \varphi)$ $\left(A, \omega, \varphi$ 是常数, $A > 0, \omega > 0\right)$. 若 f(x) 在区间 $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ 上具有单调性,且 $f\left(\frac{\pi}{2}\right) = f\left(\frac{2\pi}{3}\right) = -f\left(\frac{\pi}{6}\right)$,则 f(x) 的最小正周期是_____.
- 14. 已知函数 f(x) 为偶函数,且 $x \ge 0$, f(x) = x [x] ([x] 表示不超过x的最大整数). 设 g(x) = f(x) kx k ($k \in \mathbb{R}$),若 k = 1,则函数 g(x) 有______ 个零点;若 g(x) 有三个不同零点,则 k 的取值范围是_____.
- 15. 已知函数 f(x) = m(x 2m)(x + m + 3), $g(x) = 2^x 2$. 若同时满足条件: ① $\forall x \in \mathbf{R}$, f(x) < 0 或 g(x) < 0; ② $\exists x \in (-\infty, -4)$, f(x)g(x) < 0, 则 m 的取值范围是_____.
- 16. 已知函数 $f(x) = |\ln x|$,关于 x 的不等式 $f(x) f(x_0) \ge c(x x_0)$ 的解集为 $(0, +\infty)$, 其中 $x_0 \in (0, +\infty)$,c为常数. 当 $x_0 = 1$ 时,c 的取值范围是_____; 当 $x_0 = \frac{1}{2}$ 时,c 的值是_____.
- 17. 己知函数 $f(x) = \lg [mx^2 + (m+2)x + 2(m+2)].$
 - (1) 若函数 f(x) 的定义域为 \mathbf{R} ,则实数 m 的取值范围是_____;
 - (2) 若函数 f(x) 在区间 [m+2,2(m+2)] 上恒有定义,则实数 m 的取值范围是_____.

- 18. 已知函数 f(x), 对于实数 t, 若存在 a > 0, b > 0, 满足 $\forall x \in [t a, t + b]$, 使得 $|f(x) f(t)| \le 2$, 则记 a + b 的最大值为 H(t).
 - (1) $\stackrel{\text{def}}{=} f(x) = 2x \text{ priv}, \ H(0) = _____;$
 - (2) 当 $f(x) = x^2$ 且 $t \in [1, 2]$ 时,函数 H(t) 的值域为
- 19. 曲线 C 是平面内与两个定点 $F_1(-1,0)$ 和 $F_2(1,0)$ 的距离的积等于常数 a^2 的点的轨迹. 给出下列三个结论:
 - ① 曲线 C 过坐标原点:
 - ②曲线 C 关于坐标原点对称;
 - ③ 若点 P 在曲线 C 上,则 $\triangle F_1 P F_2$ 的面积不大于 $\frac{1}{2} a^2$.

其中,所有正确的结论的序号是...

- 20. 若点 O 和点 $F_2(-\sqrt{2},0)$ 分别为 $\frac{x^2}{a^2}-y^2=1$ (a>0) 的中心和左焦点,点 P 为双曲线右支上的任意一点,则 $\frac{|PF_2|^2}{|OP|^2+1}$ 的取值范围为_____.
- - ①f(x) 是奇函数;
 - ②f(x) 在 R 上是单调递增函数;
 - ③方程 $f(x) = x^2 + 2x$ 有且仅有 1 个实数根;
 - ④如果对于任意 $x \in (0, +\infty)$, 都有 f(x) > kx, 那么 k 的最大值为 2.

说明: "正方形 PABC 沿 x 轴滚动"包括沿 x 轴正方向和沿 x 轴负方向滚动. 沿 x 轴正方向滚动指的是 先以顶点 A 为中心顺时针旋转,当顶点 B 落在 x 轴上时,再以顶点 B 为中心顺时针旋转,如此继续. 类似地,正方形 PABC 可以沿 x 轴负方向滚动.

- 23. 在平面直角坐标系 xOy 中,动点 P(x,y) 到两坐标轴的距离之和等于它到定点 (1,1) 的距离,记点 P 的 轨迹为 C,给出下面四个结论:
 - ① 曲线 C 关于原点对称;
 - ② 曲线 C 关于 y = x 对称;
 - ③ 点 $(-a^2, 1)(a \in \mathbf{R})$ 在曲线 C 上;
 - ④ 在第一象限,曲线 C 与 x 轴的非负半轴、y 轴的非负半轴围成的封闭图形的面积小于 $\frac{1}{2}$. 其中所有的正确结论的序号是
- 24. 直线 $l: ax + \frac{1}{a}y 1 = 0$ 与 x, y 轴的交点分别为 A, B 直线 l 与圆 $O: x^2 + y^2 = 1$ 相交于 C, D 两点. 给出下面结论:
 - $\textcircled{1} \ \forall a \geqslant 1, S_{\triangle AOB} = \frac{1}{2}; \quad \textcircled{2} \exists a \geqslant 1, |AB| < |CD|; \quad \textcircled{3} \exists a \geqslant 1, S_{\triangle COD} < \frac{1}{2}$

- (A) 12
- (B) 23
- (C) 13
- (D) 123
- 25. 如图,在直角梯形 ABCD中,AB // CD, AB ⊥BC, AB = 2, CD = 1, BC = a (a > 0), P 为线段 AD 上一 个动点,设 $\overrightarrow{AP} = x\overrightarrow{AD}$, $\overrightarrow{PB} \cdot \overrightarrow{PC} = y$,对于函数y = f(x),给出以下三个结论:
 - ① 当 a = 2 时,函数 f(x) 的值域为 [1,4];
 - ② $\forall a \in (0, +\infty)$, 都有 f(1) = 1 成立;
 - ③ $\forall a \in (0, +\infty)$,函数 f(x) 的最大值都等于 4.

其中所有正确结论的序号是 .

26. 如图, $\triangle AB_1C_1$, $\triangle C_1B_2C_2$, $\triangle C_2B_3C_3$ 是三个边长为 2 的等边三角形, 且有一条边在同一直线上, 边 B_3C_3 上有两个不同的点 P_1 , P_2 , 则 $\overrightarrow{AB_2} \cdot (\overrightarrow{AP_1} + \overrightarrow{AP_2}) = \underline{\hspace{1cm}}$.

- 27. 己知函数 $f_n(x) = \frac{\sin nx}{\sin x}$ $(n \in \mathbb{N}^*)$,关于此函数的说法正确的序号是_____
 - ① $f_n(x)(n \in \mathbb{N}^*)$ 为周期函数;
- ② $f_n(x)(n \in \mathbf{N}^*)$ 有对称轴;
- ③ $\left(\frac{\pi}{2},0\right)$ 为 $f_n(x)(n \in \mathbf{N}^*)$ 的对称中心; ④ $\left|f_n(x)\right| \le n(n \in \mathbf{N}^*)$.
- 28. 向量 \vec{a} , \vec{b} , \vec{c} 在正方形网格中的位置如图所示,若 $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ $(\lambda, \mu \in \mathbf{R})$,则 $\frac{\lambda}{\mu} = \underline{\qquad}$

29. 如图,在平行四边形 ABCD 中, $AP\bot BD$,垂足为 P,且 AP=3,则 $\overrightarrow{AP}\cdot\overrightarrow{AC}=$ ______

30. 给定两个长度为 1 的平面向量 \overrightarrow{OA} 和 \overrightarrow{OB} , 它们的夹角为 120° . 如图所示, 点 C 在以 O 为圆心的圆弧 \widehat{AB} 上变动,若 $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}$,其中 $x, y \in \mathbb{R}$,则 x + y 的最大值是_____.

31. 如图,在棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中,E 为 BC 中点,点 P 在线段 D_1E 上,点 P 到直线 CC_1 的距离的最小值为_____.

- 32. 实数 a, b 满足 $0 < a \le 2$, $b \ge 1$, 若 $b \le a^2$, 则 $\frac{b}{a}$ 的取值范围是_____.
- 33. 已知实数 u, v, x, y 满足 $u^2 + v^2 = 1$, $\begin{cases} x + y 1 \ge 0, \\ x 2y + 2 \ge 0, \text{ 则 } z = ux + vy \text{ 的最大值是} \\ x \le 2. \end{cases}$
- 34. 已知函数 $f(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{2}, \\ -1, & \frac{1}{2} \le x < 1, \end{cases}$ 和 $g(x) = \begin{cases} 1, & 0 \le x < 1, \\ 0, & x < 0$ 或 $x > 1. \end{cases}$ 〔1) $g(2x) = _____;$
 - (2) 若 $m, n \in \mathbb{Z} \perp m \cdot g(n \cdot x) g(x) = f(x), 则 m + n = _____.$
- 35. 为了促销某电子产品,商场进行降价,设 m > 0, n > 0, $m \neq n$, 有三种降价方案: 方案①: 先降 m%, 再降 n%;

方案②: 先降 $\frac{m+n}{2}$ %,再降 $\frac{m+n}{2}$ %

方案③: 一次性降价 (m+n)%.

则降价幅度最小的方案是_____(填出正确的序号)

37. 设关于 x,y 的不等式组 $\begin{cases} 3x-4 \geqslant 0, & \text{表示的区域为 } D. \ \text{已知点 } O(0,0), \ A(1,0), \ \text{点 } M \not \in D \\ (y-1)(3x+y-6) \leqslant 0. & \text{上的动点, } \overrightarrow{OA} \cdot \overrightarrow{OM} = \lambda \left| \overrightarrow{OM} \right|, \ \mathbb{M} \lambda \text{ 的取值范围是} _____.$

38. 如图,定义坐标系 xOy,已知 e_1 与 e_2 分别与 x 轴和 y 轴正方向相同的单位向量, e_1 与 e_2 夹角为 $\frac{\pi}{3}$,若 $\overrightarrow{OP} = xe_1 + ye_2$,则称 (x,y) 是点 P 的坐标. 在此定义下, $\angle xOy$ 平分线所在直线方程是_____; 以 O 为圆心,1 为半径的圆的方程是_____.

- 39. 已知向量序列: $a_1, a_2, a_3, \dots, a_n, \dots$ 满足如下条件: $|a_1| = 4 |d| = 2$, $2a_1 \cdot d = -1$ 且 $a_n a_{n-1} = d$ $(n = 3, 4, \dots)$. 若 $a_1 \cdot a_k = 0$, 则 $k = ____; |a_1|$, $|a_2|$, $|a_3|$, \dots , $|a_n|$, \dots 中第_____ 项最小.
- 40. 把 5 件不同的产品摆成一排,若产品 A 与产品 B 相邻,且产品 A 不与产品 C 相邻,则不同的摆法有_____种.
- 41. 10 名象棋选手单循环赛 (即没两名选手比赛一场),规定两人对局胜者得 2 分,平局各得 1 分,负者得 0 分,并按总得分由高到低进行排列. 比赛结束后,10 名选手的得分各不相同,且第二名的成绩是最后 五名选手得分之和的 $\frac{4}{5}$. 则第二名选手的得分是_____.
- 42. 已知甲, 乙, 丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存 36 天的水和食物,且计划每天向沙漠深处走 30 公里,每个人都可以在沙漠中将部分水和食物交给其他人然后独自返回,若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠_____公里.
- 43. 在某中学的"校园微电影节"活动中,学校将从微电影的"点播量"和"专家评分"两个角度来进行评优. 若 A 电影的"点播量"和"专家评分"中至少有一项高于 B 电影,则称 A 电影不亚于 B 电影. 已知共有 10 部微电影参展,如果某部电影不亚于其他 9 部,就称此部电影为优秀影片. 那么在这 10 部微电影中,最多可能有_____ 部优秀影片.
- 44. 某网店统计了连续三天售出商品的种类情况:第一天售出 19 种商品,第二天售出 13 种商品,第三天售出 18 种商品,前两天都售出的商品有 3 种,后两天都售出的商品有 4 种.
 - (1) 则该网店第一天售出但第二天未售出的商品有 种;
 - (2) 这三天售出的商品最少有 种.
- 45. 某学习小组由学生和教师组成,人员构成同时满足以下三个条件:
 - (i) 男学生人数多于女学生人数;
 - (ii) 女学生人数多于教师人数;
 - (iii) 教师人数的两倍多于男学生人数.
 - ① 若教师人数为 4,则女学生人数的最大值为;
 - ② 该小组的人生的最小值是_____.