Suzune Nisiyama

July 15, 2018

MIT License

Copyright (c) 2018 Nisiyama-Suzune

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents

1	Env	ironment 2		
	1.1	Vimrc		
	1.2	Java		
2	Dat	a Structure 2		
	2.1	KD tree		
	2.2	Splay		
	2.3	Link-cut tree		
		nula 3		
3	Formula			
	3.1	Zellers congruence		
	3.2	Lattice points below segment		
	3.3	Adaptive Simpson's method		
4		mber theory 3		
	4.1	Fast power module		
	4.2	Euclidean algorithm		
	4.3	Discrete Fourier transform		
	4.4	Number theoretic transform 4		
	4.5	Chinese remainder theorem 4		
	4.6	Linear Recurrence 4		
	4.7	Berlekamp Massey algorithm 4		
	4.8	Baby step giant step algorithm 4		
	4.9	Miller Rabin primality test 4		
	4.10			
	1.10	Tolking of this disposition in the second of		
5	Geo	metry 5		
	5.1	Point		
	5.2	Line		
	5.3	Circle		
	5.4	Centers of a triangle 6		
	5.5	Fermat point		
	5.6	Convex hull		
	5.7			
		1		
	5.8			
	5.9	Intersection of a polygon and a circle 6		
	5.10	Union of circles 6		
6	Gra	ph 7		
U	6.1	-		
	6.2	1 0		
	6.2	O Company		
		9		
	6.4	Weighted blossom algorithm		
	6.5	Maximum flow		
	6.6	Minimum cost flow		
	6.7	Stoer Wagner algorithm		
	6.8	DN maximum clique		
	6.9	Dominator tree		
_	.	10		
7	Stri	<u> </u>		
	7.1	Suffix Array		
	7.2	Suffix Automaton		
	7.3	Palindromic tree		
	7.4	Regular expression		
0				
8	Tips			
	8.1	Builtin functions		
	8.2	Prufer sequence		
	8.3	Spanning tree counting		
•		19		
9		pendix 11		
	9.1	Calculus table		
	9.2	Regular expression		

1 Environment

1.1 Vimrc

1.2 Java

```
1 /* Java reference : References on Java IO, structures,
       etc. */
2 import java.io.*;
3 import java.lang.*;
4 import java.math.*;
5 import java.util.*;
6 /* Common usage:
       19 doubleValue () / toPlainString () : converts to other
  types.

20 Arrays: Arrays.sort (T [] a); Arrays.sort (T [] a, int fromIndex, int toIndex); Arrays.sort (T [] a, int fromIndex, int toIndex, Comperator <? super T>
   comperator);

21 LinkedList <E> : addFirst / addLast (E) / getFirst /
getLast / removeFirst / removeLast () / clear () /
add (int, E) / remove (int) / size () / contains
/ removeFirstOccurrence / removeLastOccurrence (E)

22 ListIterator <E> listIterator (int index) : returns an
iterator:

                                           iterator
 () () () stringBuilder (string) / append (int, string, ...) / insert (int offset, ...) charAt ( int) / setCharAt (int, char) / delete (int, int) / reverse () / length () / toString () () string: String.format (String, ...) / toLowerCase / toUpperCase () */

22 /* Examples on Comparator:
33 public class Main {
34 public static class Point {
35 public int x; public int y;
36 public Point () {
37 x = 0;
                  public Point () {
  x = 0;
  y = 0; }
public Point (int xx, int yy) {
  x = xx;
  y = yy; } };
public static class Cmp implements Comparator <Point>
    38
                 (c);
; } };
                         return;
    53 */
54 /* or :
```

2 Data Structure

2.1 KD tree

```
1 /* kd_tree : finds the k-th closest point in O(kn^{1-\frac{1}{k}}).
2 Usage : Stores the data in p[]. Call function init (n, k). Call min_kth (d, k). (or max_kth) (k is 1-based)
 Note: Switch to the commented code for Manhattan distance.
     30 //
      data[i]) + std::abs (rhs.data[i] - dmin.data[i]));
}
return ret; } tree[MAXN * 4];
struct result {
long long dist; point d; result() {}
result (const long long &dist, const point &d) :
    dist (dist), d (d) {}
bool operator > (const result &rhs) const { return dist > rhs.dist || (dist == rhs.dist && d.id > rhs.d.id); }
bool operator < (const result &rhs) const { return dist < rhs.dist || (dist == rhs.dist && d.id < rhs.d.id); } };
long long sqrdist (const point &a, const point &b) { long long ret = 0; for (int i = 0; i < k; ++i) ret += 111 * (a.data[i] - b.data[i]); // for (int i = 0; i < k; ++i) ret += std::abs (a.data[i] - b.data[i] - b.data[i]);</pre>
35
36
```

```
const int &r) {
   if (1 > r) return;
   register int middle = (1 + r) >> 1;
   std::nth_element (p + 1, p + middle, p + r + 1, [=]
        (const point & a, const point & b) { return a.
        data[depth] < b.data[depth]; });
   tree[rt = alloc()] = kd_node (p[middle]);
   if (1 == r) return;
   build ((depth + 1) % k, tree[rt].1, 1, middle - 1);
   build ((depth + 1) % k, tree[rt].r, middle + 1, r);
   if ("tree[rt].1) tree[rt].merge (tree[tree[rt].1], 1);
        );
   }
}</pre>
                       if ("tree[rt].r) tree[rt].merge (tree[tree[rt].r], k
            54
55
 62
 63
 65
           int &m, const point &u;
result tmp = result (sqrdist (tree[rt].p, d), tree[
    rt].p);
if ((int)heap_r.size() < m) heap_r.push (tmp);
else if (tmp > heap_r.top()) {
    heap_r.pop();
    heap_r.push (tmp);
}
int x = tree[rt].l, y = tree[rt].r;
if (~x && ~y && sqrdist (d, tree[x].p) < sqrdist (d
        , tree[yl.p)) std::swap (x, y);
if (~x && ((int)heap_r.size() < m || tree[x].
        max_dist (d, k) >= heap_r.top().dist))
        _max_kth ((depth + 1) % k, x, m, d);
if (~y && ((int)heap_r.size() < m || tree[y].
        max_dist (d, k) >= heap_r.top().dist))
        max_kth ((depth + 1) % k, y, m, d);
void init (int n, int k) { this -> k = k; size = 0;
    int rt = 0; build (0, rt, 0, n - 1); }
result min_kth (const point &d, const int &m) {
    heap_l = decltype (heap_l) (); _min_kth (0, 0, m,
    d); return heap_l.top (); }
result max_kth (const point &d, const int &m) {
    heap_r = decltype (heap_r) (); _max_kth (0, 0, m,
    d); return heap_r.top (); };
81
```

2.2 Splay

```
if \binom{n}{n}[x].c[1] n[x].m = merge (n[x].m, n[n[x].c[1]].
 m); }
void rotate (int x, int k) {
  push_down (x); push_down (n[x].c[k]);
  int y = n[x].c[k]; n[x].c[k] = n[y].c[k ^ 1]; n[y].c[
        k ^ 1] = x;
  if (n[x].f! = -1) n[n[x].f].c[n[n[x].f].c[1] == x] =
11
```

2.3Link-cut tree

```
= u;

n[u].c[1] = v;

if (~v) n[v].f = u, n[v].p = -1;

update (u); u = n[v = u].p; }

splay (x); }
```

3 Formula

3.1 Zellers congruence

```
/* Zeller's congruence : converts between a calendar date and its Gregorian calendar day. (y >= 1) (0 = Monday, 1 = Tuesday, ..., 6 = Sunday) */
int get_id (int y, int m, int d) {
  if (m < 3) { --y; m += 12; }
  return 365 * y + y / 4 - y / 100 + y / 400 + (153 * ( m - 3) + 2) / 5 + d - 307; }
  std::tuple <int, int, int> date (int id) {
    int x = id + 1789995, n, i, j, y, m, d;
    n = 4 * x / 146097; x -= (146097 * n + 3) / 4;
    i = (4000 * (x + 1)) / 1461001; x -= 1461 * i / 4 - 31;
    j = 80 * x / 2447; d = x - 2447 * j / 80;
    x = j / 11;
    m = j + 2 - 12 * x; y = 100 * (n - 49) + i + x;
    return std::make_tuple (y, m, d); }
```

3.2 Lattice points below segment

```
_{\rm 1}|\ /* Euclidean-like algorithm : computes the sum of
\sum_{i=0}^{n-1} \left[ \frac{a+bi}{m} \right] \cdot \star /
```

3.3Adaptive Simpson's method

```
_{1} /* Adaptive Simpson's method : integrates f in [1, r].
   struct simpson {
double area (double (*f) (double), double 1, double r
  struct
   double m = 1 + (r - 1) / 2;
return (f (1) + 4 * f (m) + f (r)) * (r - 1) / 6; }
double solve (double (*f) (double), double 1, double
    r, double eps, double a) {
    double m = 1 + (r - 1) / 2;
    double left = area (f, 1, m), right = area (f, m, r)
    ;
}
```

Number theory

4.1 Fast power module

```
/* Fast power module : x<sup>n</sup> */
int fpm (int x, int n, int mod) {
  int ans = 1, mul = x; while (n) {
  if (n & 1) ans = int (111 * ans * mul * mod);
  mul = int (111 * mul * mul * mod); n >>= 1; }
  return ans; }
```

4.2 Euclidean algorithm

```
1 /* Euclidean algorithm : solves for ax + by = gcd (a,
  b). */
void euclid (const long long &a, const long long &b,
    long long &x, long long &y) {
    if (b == 0) x = 1, y = 0;
    else euclid (b, a % b, y, x), y -= a / b * x; }
  long long inverse (long long x, long long m) {
  long long a, b; euclid (x, m, a, b); return (a % m +
    m) % m; }
```

4.3 Discrete Fourier transform

```
_{1} /* Discrete Fourier transform : the nafarious you-know
 - what thing.

2 Usage : call init for the suggested array size, and solve for the transform. (use f!=0 for the inverse
 11
12
         return len; }
void solve (complex *a, int n, int f) {
  for (int i = 0, j = 0; i < n; ++i) {
    if (i > j) std::swap (a[i], a[j]);
    for (int t = n >> 1; (j ^= t) < t; t >>= 1); }
  for (int i = 2; i <= n; i <<= 1)
    for (int j = 0; j < n; j += i)
    for (int k = 0; k < (i >> 1); ++k) {
      complex A = a[j + k];
      complex B = e[f][n / i * k] * a[j + k + (i >> 1)
      ];
}
15
19
                   a[j+k] = A + B;
```

```
a[j + k + (i >> 1)] = A - B; }
if (f == 1) {
for (int i = 0; i < n; ++i) a[i] = complex (a[i]. real () / n, a[i].imag ()); } };
```

4.4 Number theoretic transform

4.5 Chinese remainder theorem

4.6 Linear Recurrence

```
for (int i = 1; i < LOG; ++i) bin.push_back(add(bin
        [i - 1], bin[i - 1])); }
int solve (int k) {
   std::vector <int> a(n + 1, 0); a[0] = 1;
   for (int i = 0; i < LOG; ++i) if (k >> i & 1) a =
        add(a, bin[i]);
int ret = 0;
for (int i = 0; i < n; ++i) if ((ret += (long long)
        a[i + 1] * first[i] % MOD) >= MOD) ret -= MOD;
   return ret; } );
```

4.7 Berlekamp Massey algorithm

4.8 Baby step giant step algorithm

```
| /* Baby step giant step algorithm : Solves a^x = b \mod c | in O(\sqrt{c}). */
| struct bsgs {
| int solve (int a, int b, int c) {
| std::unordered_map <int, int> bs; |
| int m = (int) sqrt ((double) c) + 1, res = 1; |
| for (int i = 0; i < m; ++i) {
| if (bs.find (res) == bs.end ()) bs[res] = i; |
| res = int (1LL * res * a * c); |
| int mul = 1, inv = (int) inverse (a, c); |
| for (int i = 0; i < m; ++i) mul = int (1LL * mul * inv * c); |
| res = b * c; |
| for (int i = 0; i < m; ++i) {
| if (bs.find (res) != bs.end ()) return i * m + bs[ res]; |
| res = int (1LL * res * mul * c); |
| res = int (1LL * res * mul * c); |
| return -1; | };
```

4.9 Miller Rabin primality test

4.10 Pollard's Rho algorithm

5 Geometry

```
#define cd const double &
const double EPS = 1E-8, PI = acos (-1);
int sgn (cd x) { return x < -EPS ? -1 : x > EPS; }
int cmp (cd x, cd y) { return sgn (x - y); }
double sqr (cd x) { return x * x; }
```

5.1 Point

5.2 Line

```
#define cl const line &
struct line {
  point s, t;
  explicit line (cp s = point (), cp t = point ()) : s
      (s), t (t) {};
  bool point_on_segment (cp a, cl b) { return sgn (det (
      a - b.s, b.t - b.s)) == 0 && sgn (dot (b.s - a, b.
      t - a)) <= 0;
  bool two_side (cp a, cp b, cl c) { return sgn (det (a
      - c.s, c.t - c.s)) * sgn (det (b - c.s, c.t - c.s)
      ) < 0;
  }
  bool intersect_judgment (cl a, cl b) {
    if (point_on_segment (b.s, a) || point_on_segment (b.
      t, a)) return true;
    if (point_on_segment (a.s, b) || point_on_segment (a.
            t, b)) return true;
  return two_side (a.s, a.t, b) && two_side (b.s, b.t,
            a);
  point line_intersect (cl a, cl b) {
    double s1 = det (a.t - a.s, b.s - a.s), s2 = det (a.t - a.s, b.t - a.s);
}</pre>
```

```
5.3 Circle
   #define cc const circle &
struct circle {
   point c; double r;
   explicit circle (point c = point (), double r = 0) :
        c (c), r (r) {};
   bool operator == (cc a, cc b) { return a.c == b.c &&
        cmp (a.r, b.r) == 0; }
   bool operator != (cc a, cc b) { return !(a == b); }
   bool in_circle (cp a, cc b) { return cmp (dis (a, b.c)
        , b.r) <= 0; }
   circle make_circle (cp a, cp b) { return circle ((a +
        b) / 2, dis (a, b) / 2); }
   circle make_circle (cp a, cp b, cp c) { point p =
        circumcenter (a, b, c); return circle (p, dis (p,
        a)); }
</pre>
     1 #define cc const circle &
  a)); }

10 //In the order of the line vector.

11 std::vector <point> line_circle_intersect (cl a, cc b)
           if (cmp (point_to_line (b.c, a), b.r) > 0) return std
    ::vector <point> ();
double x = sqrt (sqr (b.r) - sqr (point_to_line (b.c,
    a));
} else {
              point p = (b.c * a.r - a.c * b.r) / (a.r - b.r);
std::vector pp = tangent (p, a), qq = tangent (p, b)
            if (pp.size () == 2 && qq.size () == 2) {
  if (cmp (a.r, b.r) < 0) std::swap (pp[0], pp[1]),
      std::swap (qq[0], qq[1]);
  ret.push_back (line (pp[0], qq[0]));
  ret.push_back (line (pp[1], qq[1])); }
return ret; }</pre>
  48 return ret; }
49 //Counter-clockwise with respect of point O_a.
50 std::vector <line> intangent (cc c1, cc c2) {
51 point p = (b.c * a.r + a.c * b.r) / (a.r + b.r);
52 std::vector pp = tangent (p, a), qq = tangent (p, b);
53 if (pp.size () == 2 && qq.size () == 2) {
54 ret.push_back (line (pp[0], qq[0]));
55 ret.push_back (line (pp[1], qq[1])); }
56 return ret; }
```

5.4 Centers of a triangle

```
point incenter (cp a, cp b, cp c) {
   double p = dis (a, b) + dis (b, c) + dis (c, a);
   return (a * dis (b, c) + b * dis (c, a) + c * dis (a, b)) / p; }

   point circumcenter (cp a, cp b, cp c) {
    point p = b - a, q = c - a, s (dot (p, p) / 2, dot (q, q) / 2);
   return a + point (det (s, point (p.y, q.y)), det (point (p.x, q.x), s)) / det (p, q); }

   point orthocenter (cp a, cp b, cp c) { return a + b + c - circumcenter (a, b, c) * 2; }
```

5.5 Fermat point

```
| /* Fermat point : finds a point P that minimizes | PA| + |PB| + |PC| . */
| point fermat_point (cp a, cp b, cp c) {
| if (a == b) return a; if (b == c) return b; if (c == a) return c;
| double ab = dis (a, b), bc = dis (b, c), ca = dis (c, a);
| double cosa = dot (b - a, c - a) / ab / bc;
| double cosb = dot (a - b, c - b) / ab / bc;
| double cosb = dot (b - c, a - c) / ca / bc;
| double cosc = dot (b - c, a - c) / ca / bc;
| double sq3 = PI / 3.0; point mid;
| if (sqn (cosa + 0.5) < 0) mid = a;
| else if (sqn (cosb + 0.5) < 0) mid = b;
| else if (sqn (det (b - a, c - a)) < 0) mid = line_intersect (line (a, b + (c - b).rot (sq3)), line (b, c + (a - c).rot (sq3));
| else mid = line_intersect (line (a, c + (b - c).rot (sq3)), line (c, b + (a - b).rot (sq3)));
| return mid; }
```

5.6 Convex hull

5.7 Half plane intersection

```
while (rear - fore > 1 && !turn_left (ret[rear],
line_intersect (ret[fore], ret[fore + 1]))) ++
fore;
if (rear - fore < 2) return std::vector <point> ();
std::vector <point> ans; ans.resize (rear + 1);
for (int i = 0; i < rear + 1; ++i) ans[i] =
line_intersect (ret[i], ret[(i + 1) % (rear + 1)];
return ans; }
```

5.8 Minimum circle

5.9 Intersection of a polygon and a circle

5.10 Union of circles

```
area[cnt] += ang * c[i].r * c[i].r / 2 - sin(ang)
* c[i].r * c[i].r / 2; } } } };
```

6 Graph

6.1 Hopcoft-Karp algorithm

6.2 Kuhn-Munkres algorithm

```
/* Kuhn Munkres algorithm: weighted maximum ming algorithm for bipartition graphs with complexity O(N^3).

Note: The graph is 1-based. */

template <int MAXN = 500>

struct kuhn munkres {

int n, w[MAXN][MAXN], lx[MAXN], ly[MAXN], m[MAXN],

way[MAXN];

bool u[MAXN];

void hungary(int x) {

m[0] = x; int j0 = 0;

std::fill (sl, sl + n + 1, INF); std::fill (u, u + n + 1, false);

do {

u[j0] = true; int i0 = m[j0], d = INF, j1 = 0;

for (int j = 1; j <= n; ++j)

if (u[j] == false) {

int cur = -w[i0][j] - lx[i0] - ly[j];

if (cur < sl[j]) { sl[j] = cur; way[j] = j0; }

if (sl[j] < d) { d = sl[j]; j1 = j; } }

for (int j = 0; j <= n; ++j) {

if (u[j]) { lx[m[j]] += d; ly[j] -= d; }

else sl[j] -= d; }

j0 = j1; } while (m[j0] != 0);

do {

int j1 = way[j0]; m[j0] = m[j1]; j0 = j1;

} while (j0); }

int solve() {

for (int i = 1; i <= n; ++i) m[i] = lx[i] = ly[i] =

way[i] = 0;

for (int i = 1; i <= n; ++i) hungary (i);

int sum = 0; for (int i = 1; i <= n; ++i) sum += w[m

[i]][i];

return sum; } };
```

6.3 Blossom algorithm

```
1  /* Blossom algorithm : maximum match for general graph
2  template <int MAXN = 500, int MAXM = 250000>
3  struct blossom {
4    using edge_list = std::vector <int> [MAXN];
5    int match[MAXN], d[MAXN], fa[MAXN], c1[MAXN], c2[MAXN]
6    int *qhead, *qtail;
7    struct {
8        int fa[MAXN];
9        void init (int n) { for (int i = 1; i <= n; i++) fa[i ] = i; }
10    int find (int x) { if (fa[x] != x) fa[x] = find (fa[x]);
11    void merge (int x, int y) { x = find (x); y = fin
```

6.4 Weighted blossom algorithm

```
1 /* Weighted blossom algorithm (vfleaking ver.) :
    maximum matching for general weighted graphs with
 complexity O(n^3). 2 Usage : Set n to the size of the vertices. Run init () . Set g[][].w to the weight of the edge. Run solve
The first result is the answer, the second one is the number of matching pairs. Obtain the matching with match[].
 4 Note: 1-based
  int n, n_x;
edge g[MAXN * 2 + 1][MAXN * 2 + 1];
int lab[MAXN * 2 + 1], match[MAXN * 2 + 1], slack[
MAXN * 2 + 1], st[MAXN * 2 + 1], pa[MAXN * 2 +
   int> q;
28
29
   void augment (int u, int v) {
   0;
     return
   void add_blossom (int u, int lca, int v) {
  int b = n + 1; while (b <= n_x && st[b]) ++b;
  if (b > n_x) ++n_x;
  lab[b] = 0, S[b] = 0;
```

```
52
                            = 0;

for (int x = 1; x <= n; ++x) flower_from[b][x] = 0;

for (size_t i = 0; i < flower[b].size (); ++i) {

  int xs = flower[b][i];

  for (int x = 1; x <= n_x; ++x) if (g[b][x].w == 0

      || e_delta(g[xs][x]) < e_delta(g[b][x]))

      g[b][x] = g[xs][x], g[x][b] = g[x][xs];

  for (int x = 1; x <= n; ++x) if (flower_from[xs][x])

      flower_from[b][x] = xs; }

set slack (b): }
                      rlower_irom[b][k] - kb, ,
set_slack (b); }
void expand_blossom (int b) {
for (size_t i = 0; i < flower[b].size (); ++i)
    set_st (flower[b][i], flower[b][i]);
int xr = flower_from[b][g[b][pa[b]].u], pr = get_pr(
                            int xr = flower_from[b][g[b][pa[b]].u], pr = get_pr
    b, xr);
for (int i = 0; i < pr; i += 2) {
    int xs = flower[b][i], xns = flower[b][i + 1];
    pa[xs] = g[xns][xs].u; S[xs] = 1, S[xns] = 0;
    slack[xs] = 0, set_slack(xns); q_push(xns);
S[xr] = 1, pa[xr] = pa[b];
for (size_t i = pr + 1; i < flower[b].size (); ++i)</pre>
                                                             xs = flower[b][i]; S[xs] = -1, set_slack(xs); }
                              st[b] = 0:
                    st[b] = 0; }
bool on_found_edge (const edge &e) {
   int u = st[e.u], v = st[e.v];
   if (S[v] == -1) {
      pa[v] = e.u, S[v] = 1; int nu = st[match[v]];
      slack[v] = slack[nu] = 0; S[nu] = 0, q_push(nu);
   } else if(S[v] == 0) {
   int lca = get_lca(u, v);
   if (!lca) return augment(u, v), augment(v, u), true
                  if (!!ca) return augment(u, v), augment(v, u), true
  else add_blossom(u, lca, v);
  return false;
bool matching() {
   memset (S + 1, -1, sizeof (int) * n_x);
  memset (slack + 1, 0, sizeof (int) * n_x);
  q = std::queue <int>();
  for (int x = 1; x <= n_x; ++x) if (st[x] == x &&!
        match[x]) pa[x] = 0, S[x] = 0, q_push (x);
  if (q.empty()) return false;
  for (;;) {
    while (q.size()) {
        int u = q.front(); q.pop();
        if (S[st[u]] == 1) continue;
        for (int v = 1; v <= n; ++v) if (g[u][v].w > 0 &&
            st[u] != st[v]) {
        if (on_found_edge (g[u][v])) return true;
        } else update_slack (u, st[v]); }
   int d = INF;
  for (int b = n + 1; b <= n_x; ++b) if(st[b] == b &&
            S[b] == 1) d = std::min (d, lab[b] / 2);
  for (int x = 1; x <= n_x; ++x) if(st[x] == x &&
            slack[x]) {
        if (S[x] == -1) d = std::min (d, e_delta (g[slack[x] + x]][x]));
        else if (S[x] == 0) d = std::min (d, e delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0) d = std::min (d, e_delta (g[slack[x] + x]);
        else if (S[x] == 0);

    99
                                 100
101
103
105
107
109
113
                      return false; }
std::pair <long long, int> solve () {
memset (match + 1, 0, sizeof (int) * n); n_x = n;
int n_matches = 0; long long tot_weight = 0;
for (int u = 0; u <= n; ++u) st[u] = u, flower[u].
118
                    for (int u = 0; u <= n; ++u) st[u] = u, flower[u].
    clear();
int w max = 0;
for (int u = 1; u <= n; ++u) for (int v = 1; v <= n;
    ++v) {
    flower from[u][v] = (u == v ? u : 0); w_max = std::
        max (w_max, g[u][v].w); }
for (int u = 1; u <= n; ++u) lab[u] = w_max;
while (matching ()) ++n_matches;
for (int u = 1; u <= n; ++u) if (match[u] && match[u]
    ] < u) tot_weight += g[u][match[u]].w;
return std::make_pair (tot_weight, n_matches); }
void init () { for (int u = 1; u <= n; ++u) for (int
    v = 1; v <= n; ++v) g[u][v] = edge (u, v, 0); }
};</pre>
120
121
123
```

6.5 Maximum flow

```
| /* Sparse graph maximum flow : isap.*/
2| template <int MAXN = 1000, int MAXM = 100000>
3| struct isap {
```

```
struct flow_edge_list {
  int size, begin[MAXN], dest[MAXM], next[MAXM], flow[
     MAXM];
    10
13
19
23
} else {
      MAXM];
void clear (int n) { size = 0; std::fill (begin,
    begin + n, -1); }
flow_edge_list (int n = MAXN) { clear (n); }
void add_edge (int u, int v, int f) {
  dest[size] = v; next[size] = begin[u]; flow[size] =
    f; begin[u] = size++;
  dest[size] = u; next[size] = begin[v]; flow[size] =
    dest[size] = u; next[size] = begin[v]; flow[size] =
    int ans = 0; n = n_; s = s_; dinic::t = t_;
while (bfs (e)) {
  for (int i = 0; i < n; ++i) w[i] = e.begin[i];
  ans += dfs (e, s, INF); }
return ans; };</pre>
```

Minimum cost flow

20

```
int x = queue[head];
for (int i = e.begin[x]; ~i; i = e.next[i]) {
  int y = e.dest[i];
  if (e.flow[i] && dist[y] > dist[x] + e.cost[i]
  dist[y] = dist[x] + e.cost[i]; prev[y] = i;
  if (!occur[y]) {
    occur[y] = true; queue.push_back (y); } } }
cccur[x] = false; }
return dist[t] < INF; }</pre>
```

```
std::pair <int, int> solve (cost_flow_edge_list &e,
    int n_, int s_, int t_) {
n = n_; s = s_; t = t_; std::pair <int, int> ans =
        std::make_pair (0, 0);
while (augment (e)) {
    int num = INF;
    for (int i = t; i != s; i = e.dest[prev[i] ^ 1]) {
        num = std::min (num, e.flow[prev[i]]); }
    ans.first += num:
26
27
                 ans.first += num;
for (int i = t; i != s; i = e.dest[prev[i] ^ 1
    e.flow[prev[i]] -= num; e.flow[prev[i] ^ 1] +
                   ans.second += num * e.cost[prev[i]]; } }
as return ans; } ;;
37 /* Dense graph minimum cost flow: zkw. */
38 template <int MAXN = 1000, int MAXM = 100000>
39 struct zkw_flow {
       struct zkw_flow {
    struct cost_flow_edge_list {
        int size, begin[MAXN], dest[MAXM], next[MAXM], cost[
            MAXM], flow[MAXM];
    void clear (int n) { size = 0; std::fill (begin, begin + n, -1); }
    cost_flow_edge_list (int n = MAXN) { clear (n); }
    void add_edge (int u, int v, int c, int f) {
        dest[size] = v; next[size] = begin[u]; cost[size] = c; flow[size] = f; begin[u] = size++; }
    dest[size] = u; next[size] = begin[v]; cost[size] = -c; flow[size] = 0; begin[v] = size++; };
    int n, s, t, tf, tc, dis[MAXN], slack[MAXN], visit[MAXN];
41
         slack[i] = INF; }
if (delta == INF) return 1;
for (int i = 0; i < n; i++) if (visit[i]) dis[i] +=
    delta;
return 0; }</pre>
        return 0; }
int dfs (cost_flow_edge_list &e, int x, int flow) {
   if (x == t) { tf += flow; tc += flow * (dis[s] - dis
        [t]); return flow; }
   visit[x] = 1; int left = flow;
   for (int i = e.begin[x]; ~i; i = e.next[i])
        if (e.flow[i] > 0 && !visit[e.dest[i]]) {
        int y = e.dest[i];
        if (dis[y] + e.cost[i] == dis[x]) {
        int delta = dfs (e, y, std::min (left, e.flow[i])
        );
    }
}
                      e.flow[i] -= delta; e.flow[i ^ 1] += delta; left
                      -= delta;
if (!left) { visit[x] = false; return flow; }
         = std::min (slack[y], dis[y] + e.cost[i]
        do { do {
   std::fill (visit + 1, visit + t + 1, 0);
} while (dfs (e, s, INF)); } while (!modlable ());
return std::make_pair (tf, tc);
};
```

6.7Stoer Wagner algorithm

```
dist[j] += edge[k][j]; }
return mincut; }
int solve () {
  int mincut, i, j, s, t, ans;
  for (mincut = INF, i = 1; i < n; i++) {
    ans = contract (s, t); bin[t] = true;
    if (mincut > ans) mincut = ans;
    if (mincut == 0) return 0;
    for (j = 1; j <= n; j++) if (!bin[j])
    edge[s][j] = (edge[j][s] += edge[j][t]); }
return mincut; } ;</pre>
```

6.8 DN maximum clique

```
\frac{1}{1} /* DN maximum clique : n <= 150 */
```

```
| 6 typedef std::vector <int> ColorClass; ColorClass QMAX, Q; | 7 std::vector <ColorClass> C; | 8 static bool desc_degree (const Vertex &vi,const Vertex &vj) { return vi.d > vj.d; } | 9 void init_colors (Vertices &v) { | 10 const int max_degree = v[0].d; | 11 for (int i = 0; i < (int) v.size(); ++i) v[i].d = std ::min (i, max_degree) + 1; } | 12 void set_degrees (Vertices &v) { | 13 for (int i = 0, j; i < (int) v.size(); ++i) | 14 for (v[i].d = j = 0; j < (int) v.size(); ++i) | 15 v[i].d += e[v[i].i][v[j].i]; } | 16 struct StepCount { int i1, i2; StepCount(): i1 (0), i2 | (0) { }; | (0) { }; | (int) A.size(); ++i) | (0) { }; | (int) econst ColorClass &A) { | 19 for (int i = 0; i < (int) A.size(); ++i) | (19 int) econst | (e[pi][A[i]]) return true; return false; } | (e[A.back ().i][A[i].i]) B.push_back (A[i].i); } | (e[A.back ().i][A[i].i]) B.push_back (A[i].i]; } | (e[A.back ().i][A[i].i]]; } | (e[A.back ().i][A[i].i]; } | (e[A.back ().i][A[i].i]; } | (e[A.back ()
 | 6| typedef std::vector <int> ColorClass; ColorClass QMAX,
                       while ((int) R.size ()) {
   if ((int) Q.size () + R.back ().d > (int) QMAX.size
   ()) {
                                    ()) {
Q.push_back (R.back ().i); Vertices Rp; cut2 (R, Rp
40
     58 BB e[N];
                                                                        int ans, sol[N]; for (...) e[x][y] = e[y][x]
                                                        true:
     | Maxclique mc (e, n); mc.mcqdyn (sol, ans); //0-based.
| for (int i = 0; i < ans; ++i) std::cout << sol[i] << std::endl;
```

6.9 Dominator tree

21

22

```
/* Dominator tree : finds the immediate dominator (
   idom[]) of each node, idom[x] will be x if x does
   not have a dominator, and will be -1 if x is not
f (o) {
sdom[x] = f[x];
       for (int p : pred[x]) {
  if (dfn[p] < 0) continue;</pre>
```

```
if (dfn[p] > dfn[x]) { getfa (p); p = sdom[smin[p
                                                                        if (drn[p] < drn[x], ( getter for five for 
31
```

String

Suffix Array 7.1

```
/* Suffix Array : sa[i] - the beginning position of the ith smallest suffix, rk[i] - the rank of the suffix beginning at position i. height[i] - the longest common prefix of sa[i] and sa[i - 1]. */

template <int MAXN = 1000000, int MAXC = 26>

struct suffix array {

int rk[MAXN], height[MAXN], sa[MAXN];

int cmp (int *x, int a, int b, int d) {

return x[a] == x[b] && x[a + d] == x[b + d]; }

void doubling (int *a, int n) {

static int sRank[MAXN], tmpA[MAXN], tmpB[MAXN];

int m = MAXC, *x = tmpA, *y = tmpB;

for (int i = 0; i < m; ++i) sRank[i] = 0;

for (int i = 0; i < n; ++i) ++sRank[x[i] = a[i]];

for (int i = 1; i < m; ++i) sRank[i] += sRank[i - 1];

for (int i = n - 1; i >= 0; --i) sa[--sRank[x[i]]]
12
          for (int i = n - 1; i \ge 0; --i) sa[--sRank[x[i]]] =
13
          (int i = 0; i < n; ++i) ++sRank[x[i]];
(int i = 1; i < m; ++i) sRank[i] += sRank[i -
            for (int i = 0; i < n; ++i)
int cur = 0;
for (int i = 0; i < n; ++i)
if (rk[i]) {
  if (cur) cur--;
}</pre>
               for (; a[i + cur] == a[sa[rk[i] - 1] + cur]; ++cur
               height[rk[i]] = cur; } };
```

Suffix Automaton

```
/* Suffix automaton : head - the first state. tail -
the last state. Terminating states can be reached
via visiting the ancestors of tail. state::len -
the longest length of the string in the state.
state::right - 1 - the first location in the
string where the state can be reached. state::
parent - the parent link. state::dest - the
automaton link. */
template <int MAXN = 1000000, int MAXC = 26>
struct suffix automaton {
struct state {
int len, right; state *parent, *dest[MAXC];
state (int len = 0, int right = 0) : len (len),
right (right), parent (NULL) {
memset (dest, 0, sizeof (dest)); }
} node_pool[MAXN * 2], *tot_node, *null = new state()
    1 /* Suffix automaton : head - the first state. tail
                   state *head, *tail;
void extend (int token) {
    state *p = tail;
    state *np = tail -> dest[token] ? null : new (
        tot_node+) state (tail -> len + 1, tail -> len
        + 1);
    while (p && !p -> dest[token]) p -> dest[token] = np
        , p = p -> parent;
    if (!p) np -> parent = head;
    else {
        state *a = p -> parent = new state ()
13
                       else {
    state *q = p -> dest[token];
    if (p -> len + 1 == q -> len) {
        np -> parent = q;
    } else {
        state *nq = new (tot_node++) state (*q);
        nq -> len = p -> len + 1;
        np -> parent = q -> parent = nq;
        while (p && p -> dest[token] == q) {
            p -> dest[token] == q) = p -> dest[token] = nq;
        }
} tail = np == null ? np -> parent : np; }
yoid init () {
                  tall = np -- null : np -> parent . np, ,
void init () {
  tot_node = node_pool;
  head = tail = new (tot_node++) state (); }
suffix_automaton () { init (); } };
```

7.3Palindromic tree

```
/* Palindromic tree : extend () - returns whether the tree has generated a new node. odd, even - the root of two trees. last - the node representing the last char. node::len - the palindromic string length of the node. */
```

```
2 template <int MAXN = 1000000, int MAXC = 26>
      else {
   now = match (now -> fail);
   last -> fail = now -> child[token]; }
return true; }
    return true; ;
void init() {
  text[size = 0] = -1; tot_node = node_pool;
  last = even = new (tot_node++) node (0); odd = new (
    tot_node++) node (-1);
  even -> fail = odd; }
palindromic_tree () { init (); } };
```

Regular expression

```
std::string str = ("The_the_there");
std::regex pattern ("(th|Th)[\\w]*", std::
    regex_constants::optimize | std::regex_constants::
          ECMAScript)
 std::smatch match; //std::cmatch for char *
 s std::regex_match (str, match, pattern);
match = *i
   match = *1;
/* The word is match[0], backreferences are match[i]
    up to match.size ().
match.prefix () and match.suffix () give the prefix
    and the suffix.
match.length () gives length and match.position ()
gives position of the match. */ }
std::regex_replace (str, pattern, "sh$1");
6 //$n is the backreference, $& is the entire match, $`
is the prefix, $' is the suffix, $$is the $ sign.
```

8 Tips

Builtin functions

- 1. __builtin_clz: Returns the number of leading 0-bits in x, starting at the most significant bit position. If x is 0, the result is undefined.
- 2. __builtin_ctz: Returns the number of trailing 0-bits in x, starting at the least significant bit position. If x is 0, the result is undefined.
- 3. _builtin_clrsb: Returns the number of leading redundant sign bits in x, i.e. the number of bits following the most significant bit that are identical to it. There are no special cases for 0 or other values.
- 4. _builtin_popcount: Returns the number of 1-bits
- 5. $\lim_{n \to \infty} x$. Returns the parity of x, i.e. the
- number of 1-bits in x modulo 2. 6. __builtin_bswap16, _builtin_bswap32, _builtin_bswap64: Returns x with the order of the bytes (8 bits as a group) reversed.
- 7. bitset::_Find_first(), bitset::_Find_next(i

bitset built-in functions. **Prufer sequence**

In combinatorial mathematics, the Prufer sequence of a labeled tree is a unique sequence associated with the tree. The sequence for a tree on n vertices has length n-2.

One can generate a labeled tree's Prufer sequence by iteratively removing vertices from the tree until only two vertices remain. Specifically, consider a labeled tree T with vertices 1, 2, ..., n. At step i, remove the leaf with the smallest label and set the ith element of the Prufer sequence to be the label of this leaf's neighbour.

One can generate a labeled tree from a sequence in three steps. The tree will have n+2 nodes, numbered from 1 to n+2. For each node set its degree to the number of times it appears in the sequence plus 1. Next, for each number in the sequence a[i], find the first (lowest-numbered) node, j, with degree equal to 1, add the edge (j, a[i]) to the tree, and decrement the degrees of j and a[i]. At the end of this loop

two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u, v) to the tree.

The Prufer sequence of a labeled tree on n vertices is a unique sequence of length n-2 on the labels 1 to n - this much is clear. Somewhat less obvious is the fact that for a given sequence S of length n-2 on the labels 1 to n, there is a unique labeled tree whose Prufer sequence is S.

Spanning tree counting

Kirchhoff's Theorem: the number of spanning trees in a graph G is equal to any cofactor of the Laplacian matrix of G, which is equal to the difference between the graph's degree matrix (a diagonal matrix with vertex degrees on the diagonals) and its adjacency matrix (a (0,1)-matrix with 1's at places corresponding to entries where the vertices are adjacent and 0's otherwise).

The number of edges with a certain weight in a minimum spanning tree is fixed given a graph. Moreover, the number of its arrangements can be obtained by finding a minimum spanning tree, compressing connected components of other edges in that tree into a point, and then applying Kirrchoff's theorem with only edges of the certain weight in the graph. Therefore, the number of minimum spanning trees in a graph can be solved by multiplying all numbers of arrangements of edges of different weights together.

9 Appendix Calculus table

9.1.1
$$ax + b \ (a \neq 0)$$

1. $\int \frac{x}{ax+b} dx = \frac{1}{a^2} (ax+b-b \ln |ax+b|) + C$

1.
$$\int \frac{ax+b}{ax+b} dx = \frac{1}{a^2} \left(\frac{1}{2} (ax+b)^2 - 2b(ax+b) + b^2 \ln|ax+b| \right) + C$$
2.
$$\int \frac{x^2}{ax+b} dx = \frac{1}{a^3} \left(\frac{1}{2} (ax+b)^2 - 2b(ax+b) + b^2 \ln|ax+b| \right) + C$$
3.
$$\int \frac{dx}{x(ax+b)} = -\frac{1}{b} \ln\left| \frac{ax+b}{x} \right| + C$$
4.
$$\int \frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2} \ln\left| \frac{ax+b}{x} \right| + C$$
5.
$$\int \frac{x}{(ax+b)^2} dx = \frac{1}{a^2} \left(\ln|ax+b| + \frac{b}{ax+b} \right) + C$$

$$6. \int \frac{(ax+b)^2}{(ax+b)^2} dx = \frac{1}{a^3} \left(ax + b - 2b \ln|ax+b| - \frac{b^2}{ax+b} \right) + C$$

$$7. \int \frac{dx}{(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln\left|\frac{ax+b}{x}\right| + C$$

7.
$$\int \frac{\mathrm{d}x'}{x(ax+b)^2} = \frac{1}{b(ax+b)} - \frac{1}{b^2} \ln \left| \frac{ax+b}{x} \right| + C$$

9.1.2 $\sqrt{ax+b}$

1.
$$\int \sqrt{ax + b} dx = \frac{2}{3a} \sqrt{(ax + b)^3} + C$$
2.
$$\int x \sqrt{ax + b} dx = \frac{2}{15a^2} (3ax - 2b) \sqrt{(ax + b)^3} + C$$
3.
$$\int x^2 \sqrt{ax + b} dx = \frac{2}{105a^3} (15a^2x^2 - 12abx + 8b^2) \sqrt{(ax + b)^3} + C$$
4.
$$\int \frac{x}{\sqrt{ax + b}} dx = \frac{2}{3a^2} (ax - 2b) \sqrt{ax + b} + C$$
5.
$$\int \frac{x^2}{\sqrt{ax + b}} dx = \frac{2}{15a^3} (3a^2x^2 - 4abx + 8b^2) \sqrt{ax + b} + C$$
6.
$$\int \frac{dx}{x \sqrt{ax + b}} = \begin{cases} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax + b} - \sqrt{b}}{\sqrt{ax + b + \sqrt{b}}} \right| + C \quad (b > 0) \\ \frac{2}{\sqrt{-b}} \arctan \sqrt{\frac{ax + b}{-b}} + C \quad (b < 0) \end{cases}$$
7.
$$\int \frac{dx}{x^2 \sqrt{ax + b}} dx = 2\sqrt{ax + b} - \frac{a}{2b} \int \frac{dx}{x \sqrt{ax + b}}$$
8.
$$\int \frac{\sqrt{ax + b}}{x} dx = 2\sqrt{ax + b} + b \int \frac{dx}{x \sqrt{ax + b}}$$
9.
$$\int \frac{\sqrt{ax + b}}{x^2} dx = -\frac{\sqrt{ax + b}}{x} + \frac{a}{2} \int \frac{dx}{x \sqrt{ax + b}}$$

9.1.3 $x^2 \pm a^2$

1.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

2.
$$\int \frac{\frac{dx}{(x^2+a^2)^n}}{\frac{dx}{(x^2+a^2)^n}} = \frac{\frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}}}{\frac{x^2+a^2}{2(n-1)a^2}} + \frac{2n-3}{2(n-1)a^2} \int \frac{dx}{(x^2+a^2)^{n-1}}$$

1.
$$\int \frac{x^{2} + a^{2}}{(x^{2} + a^{2})^{n}} = \frac{x}{2(n-1)a^{2}(x^{2} + a^{2})^{n-1}} + \frac{2n-3}{2(n-1)a^{2}} \int \frac{dx}{(x^{2} + a^{2})^{n-1}}$$
2.
$$\int \frac{dx}{(x^{2} + a^{2})^{n}} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$$
3.
$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C$$
9.1.4
$$ax^{2} + b \quad (a > 0)$$
1.
$$\int \frac{dx}{ax^{2} + b} = \begin{cases} \frac{1}{\sqrt{ab}} \arctan \sqrt{\frac{a}{b}}x + C & (b > 0) \\ \frac{1}{\sqrt{ab}} \arctan \sqrt{\frac{a}{b}}x + \sqrt{-b} \\ \frac{1}{\sqrt{aa}} + \sqrt{-b} + C & (b < 0) \end{cases}$$
2.
$$\int \frac{x}{ax^{2} + b} dx = \frac{1}{2a} \ln \left| ax^{2} + b \right| + C$$
2.
$$\int \frac{x^{2}}{ax^{2} + b} dx = \frac{1}{2a} \ln \left| ax^{2} + b \right| + C$$

2.
$$\int \frac{x}{ax^2 + b} dx = \frac{1}{2a} \ln |ax^2 + b| + C$$

3.
$$\int \frac{x^2}{ax^2 + b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^2 + b}$$

4.
$$\int \frac{dx}{x(ax^2+b)} = \frac{1}{2b} \ln \frac{x^2}{|ax^2+b|} + C$$

3.
$$\int \frac{x^2}{ax^2 + b} dx = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^2 + b}$$
4.
$$\int \frac{dx}{x(ax^2 + b)} = \frac{1}{2b} \ln \frac{x^2}{|ax^2 + b|} + C$$
5.
$$\int \frac{dx}{x^2(ax^2 + b)} = -\frac{1}{bx} - \frac{a}{b} \int \frac{dx}{ax^2 + b}$$

6.
$$\int \frac{\mathrm{d}x}{x^3(ax^2+b)} = \frac{a}{2b^2} \ln \frac{|ax^2+b|}{x^2} - \frac{1}{2bx^2} + C$$

7.
$$\int \frac{dx}{(ax^2+b)^2} = \frac{x}{2b(ax^2+b)} + \frac{1}{2b} \int \frac{dx}{ax^2+b}$$

9.1.5 $ax^2 + bx + c \ (a > 0)$

1.3
$$dx + bx + C$$
 $(b > 0)$

1. $\frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C & (b^2 < 4ac) \\ \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C & (b^2 > 4ac) \end{cases}$

2. $\int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln |ax^2 + bx + c| - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$

9.1.6 $\sqrt{x^2 + a^2}$ (a > 0)

1.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \operatorname{arsh} \frac{x}{a} + C_1 = \ln(x + \sqrt{x^2 + a^2}) + C$$

2.
$$\int \frac{dx}{\sqrt{(x^2 + a^2)^3}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} + C$$
3.
$$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} + C$$

3.
$$\int \frac{x}{\sqrt{2+a^2}} dx = \sqrt{x^2 + a^2} + C$$

4.
$$\int \frac{x}{\sqrt{(x^2+a^2)^3}} dx = -\frac{1}{\sqrt{x^2+a^2}} + C$$

$$\sqrt{(x^2 + a^2)^2} \sqrt{x^2 + a^2}$$
5.
$$\int \frac{x^2}{\sqrt{x^2 + a^2}} dx = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$

4.
$$\int \frac{x}{\sqrt{(x^2 + a^2)^3}} dx = -\frac{1}{\sqrt{x^2 + a^2}} + C$$
5.
$$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$
6.
$$\int \frac{x^2}{\sqrt{(x^2 + a^2)^3}} dx = -\frac{x}{\sqrt{x^2 + a^2}} + \ln(x + \sqrt{x^2 + a^2}) + C$$

8.
$$\int \frac{\mathrm{d}x}{x^2 \sqrt{x^2 + a^2}} = -\frac{\sqrt{x^2 + a^2}}{a^2 x} + C$$

9.
$$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$

$$9. \int \sqrt{x^2 + a^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) + C$$

$$10. \int \sqrt{(x^2 + a^2)^3} \, \mathrm{d}x = \frac{x}{8} (2x^2 + 5a^2) \sqrt{x^2 + a^2} + \frac{3}{8} a^4 \ln(x + \sqrt{x^2 + a^2}) + C$$

11.
$$\int x\sqrt{x^2+a^2}dx = \frac{1}{3}\sqrt{(x^2+a^2)^3} + C$$

13.
$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} + a \ln \frac{\sqrt{x^2 + a^2} - a}{|x|} + C$$

9.1.7 $\sqrt{x^2 - a^2}$ (a > 0)

1.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \frac{x}{|x|} \operatorname{arch} \frac{|x|}{a} + C_1 = \ln |x + \sqrt{x^2 - a^2}| + C_1$$

2.
$$\int \frac{dx}{\sqrt{(x^2 - a^2)^3}} = -\frac{x}{a^2\sqrt{x^2 - a^2}} + C$$
3.
$$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$$

3.
$$\int \frac{x}{\sqrt{2-a^2}} dx = \sqrt{x^2 - a^2} + C$$

4.
$$\int \frac{x}{\sqrt{(x^2-a^2)^3}} dx = -\frac{1}{\sqrt{x^2-a^2}} + C$$

4.
$$\int \frac{\sqrt{x^2 - a^2}}{\sqrt{(x^2 - a^2)^3}} dx = -\frac{1}{\sqrt{x^2 - a^2}} + C$$
5.
$$\int \frac{x^2}{\sqrt{x^2 - a^2}} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$

$$\begin{array}{l} 6. \quad \int \frac{x^2}{\sqrt{(x^2-a^2)^3}} \, \mathrm{d}x = -\frac{x}{\sqrt{x^2-a^2}} + \ln|x+\sqrt{x^2-a^2}| + C \\ 7. \quad \int \frac{\mathrm{d}x}{x\sqrt{x^2-a^2}} = \frac{1}{a} \arccos \frac{a}{|x|} + C \end{array}$$

7.
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2-a^2}} = \frac{1}{a}\arccos\frac{a}{|x|} + C$$

9.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$

9.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln|x + \sqrt{x^2 - a^2}| + C$$
10.
$$\int \sqrt{(x^2 - a^2)^3} dx = \frac{x}{8} (2x^2 - 5a^2) \sqrt{x^2 - a^2} + \frac{3}{8} a^4 \ln|x + \sqrt{x^2 - a^2}| + C$$
11.
$$\int x \sqrt{x^2 - a^2} dx = \frac{1}{3} \sqrt{(x^2 - a^2)^3} + C$$

11.
$$\int x\sqrt{x^2-a^2} dx = \frac{1}{3}\sqrt{(x^2-a^2)^3} + C$$

12.
$$\int x^2 \sqrt{x^2 - a^2} dx = \frac{x}{8} (2x^2 - a^2) \sqrt{x^2 - a^2} - \frac{a^4}{8} \ln|x + \sqrt{x^2 - a^2}| + C$$

13.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|} + C$$

14.
$$\int \frac{\sqrt{x^2 - a^2}}{2} dx = -\frac{\sqrt{x^2 - a^2}}{2} + \ln|x + \sqrt{x^2 - a^2}| + C$$

9.1.8 $\sqrt{a^2-x^2}$ (a>0)

1.
$$\int \frac{dx}{\sqrt{2}} = \arcsin \frac{x}{a} + C$$

$$\frac{dx}{dx} = \frac{x}{dx} + C$$

1.8
$$\sqrt{a^2 - x^2}$$
 $(a > 0)$
1. $\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$
2. $\frac{dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{a^2 \sqrt{a^2 - x^2}} + C$
3. $\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$

$$\sqrt{a^2 - x^2}$$
4 $\int \frac{x}{x} dx = \frac{1}{x} + C$

$$\int \sqrt{(a^2-x^2)^3} \, dx = \sqrt{a^2-x^2}$$

6.
$$\int \frac{x^2}{\sqrt{(a^2 - x^2)^3}} dx = \frac{x}{\sqrt{a^2 - x^2}} - \arcsin \frac{x}{a} + C$$

7.
$$\int \frac{\mathrm{d}x}{x\sqrt{a^2 - x^2}} = \frac{1}{a} \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C$$

9.
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\begin{array}{l} 9. \quad \int \sqrt{a^2-x^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{a^2-x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C \\ 10. \quad \int \sqrt{(a^2-x^2)^3} \, \mathrm{d}x = \frac{x}{8} \left(5a^2-2x^2\right) \sqrt{a^2-x^2} + \frac{3}{8} a^4 \arcsin \frac{x}{a} + C \end{array}$$

11.
$$\int x \sqrt{a^2 - x^2} dx = -\frac{1}{2} \sqrt{(a^2 - x^2)^3} + C$$

11.
$$\int \sqrt{a^2 - x^2} dx = -\frac{1}{3} \sqrt{(a^2 - x^2)^3} + C$$
12.
$$\int x^2 \sqrt{a^2 - x^2} dx = -\frac{1}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a} + C$$
13.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} + a \ln \frac{a - \sqrt{a^2 - x^2}}{|x|} + C$$

$$a = \sqrt{a^2 - x^2}$$
, $a = \sqrt{a^2 - x^2}$

14.
$$\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \arcsin \frac{x}{a} + C$$

9.1.9
$$\sqrt{\pm ax^2 + bx + c}$$
 $(a > 0)$

1.
$$\int \frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c}| + C$$

9.1.9
$$\sqrt{\pm ax^{2} + bx + c} \quad (a > 0)$$
1.
$$\int \frac{dx}{\sqrt{ax^{2} + bx + c}} = \frac{1}{\sqrt{a}} \ln|2ax + b + 2\sqrt{a}\sqrt{ax^{2} + bx + c}| + C$$
2.
$$\int \sqrt{ax^{2} + bx + c} dx = \frac{2ax + b}{4a} \sqrt{ax^{2} + bx + c} + \frac{4ac - b^{2}}{8\sqrt{a^{3}}} \ln|2ax + b| + C$$

$$2\sqrt{a}\sqrt{ax^{2} + bx + c}| + C$$

3.
$$\int \frac{x}{\sqrt{ax^{2}+bx+c}} dx = \frac{1}{a} \sqrt{ax^{2}+bx+c} - \frac{b}{2\sqrt{a^{3}}} \ln |2ax+b+2\sqrt{a}\sqrt{ax^{2}+bx+c}| + C$$
4.
$$\int \frac{dx}{\sqrt{c+bx-ax^{2}}} = -\frac{1}{\sqrt{a}} \arcsin \frac{2ax-b}{\sqrt{b^{2}+4ac}} + C$$
5.
$$\int \sqrt{c} + bx - ax^{2} dx = \frac{2ax-b}{4a} \sqrt{c} + bx - ax^{2} + \frac{b^{2}+4ac}{8\sqrt{a^{3}}} \arcsin \frac{2ax-b}{\sqrt{b^{2}+4ac}} + C$$
6.
$$\int \frac{x}{\sqrt{c+bx-ax^{2}}} dx = -\frac{1}{a} \sqrt{c} + bx - ax^{2} + \frac{b}{2\sqrt{a^{3}}} \arcsin \frac{2ax-b}{\sqrt{b^{2}+4ac}} + C$$
9.1.10
$$\sqrt{\pm \frac{x-a}{x-b}} \& \sqrt{(x-a)(x-b)}$$
1.
$$\int \sqrt{\frac{x-a}{x-b}} dx = (x-b)\sqrt{\frac{x-a}{x-b}} + (b-a)\ln(\sqrt{|x-a|} + \sqrt{|x-b|}) + C$$
2.
$$\int \sqrt{\frac{x-a}{b-x}} dx = (x-b)\sqrt{\frac{x-a}{b-x}} + (b-a)\arcsin\sqrt{\frac{x-a}{b-x}} + C$$
3.
$$\int \frac{dx}{\sqrt{(x-a)(b-x)}} = 2\arcsin\sqrt{\frac{x-a}{b-x}} + C (a < b)$$
4.
$$\int \sqrt{(x-a)(b-x)} dx = \frac{2x-a-b}{b-x} + C (a < b)$$
9.1.11 Triangular function
1.
$$\int \tan x dx = -\ln|\cos x| + C$$

- 1. $\int \tan x dx = -\ln|\cos x| + C$ 2. $\int \cot x dx = \ln|\sin x| + C$
- 3. $\int \sec x dx = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right| + C = \ln \left| \sec x + \tan x \right| + C$
- 4. $\int \csc x \, dx = \ln \left| \tan \frac{x}{2} \right| + C = \ln \left| \csc x \cot x \right| + C$
- $5. \int \sec^2 x \, \mathrm{d}x = \tan x + C$
- $6. \int \csc^2 x \, \mathrm{d}x = -\cot x + C$

- $\begin{aligned} 6. & & \int \csc^2 x \, \mathrm{d}x = -\cot x + C \\ 7. & \int \sec x \tan x \, \mathrm{d}x = \sec x + C \\ 8. & & \int \sec x \cot x \, \mathrm{d}x = -\csc x + C \\ 9. & & \int \sin^2 x \, \mathrm{d}x = \frac{x}{2} \frac{1}{4} \sin 2x + C \\ 10. & & \int \cos^2 x \, \mathrm{d}x = \frac{x}{2} + \frac{1}{4} \sin 2x + C \\ 11. & \int \sin^n x \, \mathrm{d}x = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, \mathrm{d}x \\ 12. & \int \cos^n x \, \mathrm{d}x = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, \mathrm{d}x \\ 13. & \frac{\mathrm{d}x}{\sin^n x} = -\frac{1}{n-1} \frac{\cos x}{\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{\mathrm{d}x}{\sin^{n-2} x} \\ 14. & \frac{\mathrm{d}x}{\cos^n x} = \frac{1}{n-1} \frac{\sin x}{\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{\mathrm{d}x}{\cos^{n-2} x} \\ 15. \end{aligned}$

$$\int \cos^m x \sin^n x dx$$

$$= \frac{1}{m+n} \cos^{m-1} x \sin^{n+1} x + \frac{m-1}{m+n} \int \cos^{m-2} x \sin^n x dx$$

$$= -\frac{1}{m+n} \cos^{m+1} x \sin^{n-1} x + \frac{n-1}{m+1} \int \cos^m x \sin^{n-2} x dx$$

- 16. $\int \sin ax \cos bx dx = -\frac{1}{2(a+b)} \cos(a+b)x \frac{1}{2(a-b)} \cos(a-b)x + C$
- 17. $\int \sin ax \sin bx dx = -\frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$ 18. $\int \cos ax \cos bx dx = \frac{1}{2(a+b)} \sin(a+b)x + \frac{1}{2(a-b)} \sin(a-b)x + C$

- 21. $\int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{1}{ab} \arctan\left(\frac{b}{a} \tan x\right) + C$ 22. $\int \frac{dx}{a^2 \cos^2 x b^2 \sin^2 x} = \frac{1}{2ab} \ln \left|\frac{b}{b} \tan x + a\right| + C$ 23. $\int x \sin ax dx = \frac{1}{a^2} \sin ax \frac{1}{a} x \cos ax + C$ 24. $\int x^2 \sin ax dx = -\frac{1}{a} x^2 \cos ax + \frac{2}{a^2} x \sin ax + \frac{2}{a^3} \cos ax + C$ 25. $\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax + C$ 26. $\int x^2 \cos ax dx = \frac{1}{a} x^2 \sin ax + \frac{2}{a^2} x \cos ax \frac{2}{a^3} \sin ax + C$

9.1.12 Inverse triangular function (a > 0)

- 1. $\int \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a} + \sqrt{a^2 x^2} + C$ 2. $\int x \arcsin \frac{x}{a} dx = (\frac{x^2}{2} \frac{a^2}{4}) \arcsin \frac{x}{a} + \frac{x}{4} \sqrt{x^2 x^2} + C$ 3. $\int x^2 \arcsin \frac{x}{a} dx = \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9} (x^2 + 2a^2) \sqrt{a^2 x^2} + C$ 4. $\int \arccos \frac{x}{a} dx = x \arcsin \frac{x}{a} \sqrt{a^2 x^2} + C$

- 5. $\int x \arccos \frac{x}{a} dx = (\frac{x^2}{2} \frac{a^2}{4}) \arccos \frac{x}{a} \frac{x}{4} \sqrt{a^2 x^2} + C$ 6. $\int x^2 \arccos \frac{x}{a} dx = \frac{x^3}{3} \arccos \frac{x}{a} \frac{1}{9}(x^2 + 2a^2) \sqrt{a^2 x^2} + C$ 7. $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} \frac{a}{2} \ln(a^2 + x^2) + C$ 8. $\int x \arctan \frac{x}{a} dx = \frac{1}{2}(a^2 + x^2) \arctan \frac{x}{a} \frac{a}{2}x + C$

- 9. $\int x^2 \arctan \frac{x}{a} dx = \frac{x^3}{3} \arctan \frac{x}{a} \frac{a}{6}x^2 + \frac{a^3}{6} \ln(a^2 + x^2) + C$

9.1.13 Exponential function

- 1.13 EXPONENTIAL TUNEVAL.

 1. $\int a^x dx = \frac{1}{\ln a} a^x + C$ 2. $\int e^{ax} dx = \frac{1}{a} a^{ax} + C$ 3. $\int x e^{ax} dx = \frac{1}{a^2} (ax 1) a^{ax} + C$ 4. $\int x^n e^{ax} dx = \frac{1}{a^2} x^n e^{ax} \frac{n}{a} \int x^{n-1} e^{ax} dx$ 5. $\int x a^x dx = \frac{1}{\ln a} a^x \frac{1}{(\ln a)^2} a^x + C$ 6. $\int x^n a^x dx = \frac{1}{\ln a} x^n a^x \frac{n}{\ln a} \int x^{n-1} a^x dx$ 7. $\int e^{ax} \sin bx dx = \frac{1}{a^2 + b^2} e^{ax} (a \sin bx b \cos bx) + C$ 2. $\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C$
- 8. $\int e^{ax} \cos bx dx = \frac{1}{a^2 + b^2} e^{ax} (b \sin bx + a \cos bx) + C$ 9. $\int e^{ax} \sin^n bx dx = \frac{1}{a^2 + b^2 n^2} e^{ax} \sin^{n-1} bx (a \sin bx nb \cos bx) + C$
- $\frac{n(n-1)b^2}{a^2+b^2n^2} \int e^{ax} \sin^{n-2} bx dx$ 10. $\int e^{ax} \cos^n bx dx = \frac{1}{a^2+b^2n^2} e^{ax} \cos^{n-1} bx (a\cos bx + nb\sin bx) + \frac{1}{a^2+b^2n^2} e^{ax} \cos^{n-1} bx (a\cos bx + nb\sin bx)$ $\frac{n(n-1)b^2}{a^2+b^2n^2}\int \mathrm{e}^{ax}\cos^{n-2}bx\mathrm{d}x$
- 9.1.14 Logarithmic function
 - 1. $\int \ln x dx = x \ln x x + C$ 2. $\int \frac{dx}{x \ln x} = \ln |\ln x| + C$

9.2Regular expression

9.2.1 Special pattern characters

	1
Characters	Description
	Not newline
\t	Tab (HT)
\n	Newline (LF)
\v	Vertical tab (VT)
\f	Form feed (FF)
\r	Carriage return (CR)
\cletter	Control code
\xhh	ASCII character
\uhhhh	Unicode character
\0	Null
\int	Backreference
\d	Digit
\D	Not digit
\s	Whitespace
\S	Not whitespace
\ W	Word (letters, numbers and the underscore)
\W	Not word
\character	Character
[class]	Character class
[^class]	Negated character class

9.2.2Quantifiers

•	•		
Characters	Times		
*	0 or more		
+	1 or more		
?	0 or 1		
{int}	int		
{int,}	int or more		
{min,max}	Between min and max		

By default, all these quantifiers are greedy (i.e., they take as many characters that meet the condition as possible). This behavior can be overridden to ungreedy (i.e., take as few characters that meet the condition as possible) by adding a question mark (?) after the quantifier.

9.2.3Groups

Characters	Description
(subpattern)	Group with backreference
(?:subpattern)	Group without backreference

Assertions

Characters	Description
^	Beginning of line
\$	End of line
\b	Word boundary
\B	Not a word boundary
(?=subpattern)	Positive lookahead
(?!subpattern)	Negative lookahead

Alternative

A regular expression can contain multiple alternative patterns simply by separating them with the separator operator (+): The regular expression will match if any of the alternatives match, and as soon as one does.

9.2.6Character classes

Class	Description
[:alnum:]	Alpha-numerical character
[:alpha:]	Alphabetic character
[:blank:]	Blank character
[:cntrl:]	Control character
[:digit:]	Decimal digit character
[:graph:]	Character with graphical representation
[:lower:]	Lowercase letter
[:print:]	Printable character
[:punct:]	Punctuation mark character
[:space:]	Whitespace character
[:upper:]	Uppercase letter
[:xdigit:]	Hexadecimal digit character
[:d:]	Decimal digit character
[:W:]	Word character
[:s:]	Whitespace character

Please note that the brackets in the class names are additional to those opening and closing the class definition. For example:

[[:alpha:]] is a character class that matches any alphabetic character.

 $[\verb"abc[:digit:]] \ is a \ character \ class \ that \ matches \ a, \ b,$

c, or a digit.

[^[:space:]] is a character class that matches any character except a whitespace.