Examen¹ la Analiză Complexă, seria 20, 30.06.2023

Nume și prenume:

Grupa: ____

Subjectul I

- 1. Determinați $a, b \in \mathbb{R}$ astfel încât funcția $f(x+iy) = x^2 axy^2 y^2 + ibxy$ să fie olomorfă pe \mathbb{C} . (0,5p)
- **2.** Dați exemplu de $f: \mathbb{C} \setminus \{0,1\} \to \mathbb{C}$, olomorfă, cu poli simpli în 0 și 1, astfel încât $\operatorname{res}(f,0) = \operatorname{res}(f,1) = 1$. (0,5p)
- 3. Determinați seria Taylor a funcției olomorfe $f(z) = \cosh z + \cos z$ în punctul $z_0 = 0$. (0,5p)
- 4. Justificați dacă este adevărată său falsă afirmația: dacă funcția olomorfă f(z) are pol de ordin 3 în punctul z_0 , atunci $f(z^2)$ are pol de ordin 6 în z_0 . (0,5p)
- 5. Demonstrați că $\sinh(z) = -i\sin(iz)$ pentru orice $z \in \mathbb{C}$. (0,5p)
- 6. Considerăm funcția $f(z) = \frac{z}{1-\cos z}$. Determinați polii funcției f și ordinele lor și calculați $\operatorname{res}(f,0)$. (1p)

Subjectul II

- 1. Determinați numărul soluțiilor ecuației $z^5 + 9z^3 + 2z^2 + 12 = 0$ din coroana circulară $A = \{1 < |z| < 2\}$. (1p)
- **2.** Considerăm funcția $f(z) = \frac{e^{iz}}{z}$.
- a) Determinaţi res(f,0). (0,25p)
- b) Demonstrați că $\lim_{r\to 0} \int_{-C_r} f(z) dz = -i\pi$, unde $-C_r$ este semicercul din semiplanul superior centrat în 0, de rază r, orientat în sens invers trigonometric (din desenul de mai jos). (0,75p)
- c) Calculați $\lim_{R\to\infty} \int_{-R}^{R} \frac{\sin x}{x} dx$. (1p)

 Hint : Folosim Teorema Cauchy pentru funcția f definită mai sus și conturul de integrare din desenul următor:

- 3. Considerăm domeniul $T = \{x + iy \mid x > 0, y > 0, x + y < 1\}$ și funcția $f(z) = \frac{1}{z}$.
- a) Reprezentați în plan mulțimea T. (0,5p)
- b) Reprezentați în plan mulțimea f(T). (1p)
- **4.** Demonstrați (fără a folosi teorema Picard) că dacă f este o funcție întreagă și $f(\mathbb{C}) \cap (-\infty, 0] = \emptyset$, atunci f este constantă. (1p)

¹Se acordă 1 punct din oficiu. Timp de lucru: 2h 30m. Succes!