Package 'spfda'

March 18, 2022

ype Package	
itle Function-on-Scalar Regression with Group-Bridge Penalty	
ersion 0.9.1	
icense MIT + file LICENSE	
escription Implements a group-bridge penalized function-on-scalar regression model proposed by Wang et al. (2020) <arxiv:2006.10163>, to simultaneously estimate functional coefficient and recover the local sparsity.</arxiv:2006.10163>	
RL https://github.com/dipterix/spfda, http://dipterix.org/spfda/	
ugReports https://github.com/dipterix/spfda/issues	
mports stats, splines, graphics, mathjaxr	
ncoding UTF-8	
oxygenNote 7.1.2	
dMacros mathjaxr	
anguage en-US	
uggests grpreg, refund	
R topics documented:	
fosr_vs	
ndex	

2 spfda

fosr_vs

Ported function from 'refund' package

Description

A modified version of fosr.vs, but with groups parameter to allow grouping time points rather than the whole coefficient when the underlying functions are locally supported.

Usage

```
fosr_vs(
  formula,
  data,
  nbasis = 10,
  method = c("ls", "grLasso", "grMCP", "grSCAD"),
  epsilon = 1e-05,
  max.iter_num = 100,
  groups = NULL
)
```

Arguments

groups

integer vector with length of number of time-points of how time-points should be grouped; default is NULL, indicating there is no local sparsity.

spfda

Sparse Function-on-scalar Regression with Group Bridge Penalty

Description

Function-on-scalar regression model, denote n as total number of observations, p the number of coefficients, K as the number of B-splines, T as total time points.

Usage

```
spfda(
   Y,
   X,
   lambda,
   time = seq(0, 1, length.out = ncol(Y)),
   nsp = "auto",
   ord = 4,
   alpha = 0.5,
   W = NULL,
   init = NULL,
   max_iter = 50,
   inner_iter = 50,
```

spfda 3

```
CI = FALSE,
...
```

Arguments

Y Numeric $n \times T$ matrix, response function. X Numeric $n \times p$ matrix, design matrix

lambda Regularization parameter γ

time Time domain, numerical length of T

nsp Integer or 'auto', number of B-splines K; default is 'auto'

ord B-spline order, default is 4; must be ≥ 3 alpha Bridge parameter α , default is 0.5

W A $T \times T$ weight matrix or NULL (identity matrix); default is NULL

init Initial γ ; default is NULL max_iter Number of outer iterations

inner_iter Number of ADMM iterations (inner steps)

CI Logical, whether to calculate theoretical confidence intervals

... Ignored

Details

This function implements "Functional Group Bridge for Simultaneous Regression and Support Estimation" (https://arxiv.org/abs/2006.10163). The model estimates functional coefficients $\beta(t)$ under model

$$y(t) = X\beta(t) + \epsilon(t)$$

with B-spline basis expansion

$$\beta(t) = \gamma B(t) + R(t),$$

where R(t) is B-spline approximation error. The objective function

$$\|(Y - X\gamma B)W\|_{2}^{2} + \sum_{j,m} \|\gamma_{j}^{T} \mathbf{1}(B^{t} > 0)\|_{1}^{\alpha}.$$

The input response variable is a matrix. If $y_i(t)$ are observed at different time points, please interpolate (e.g. kernel) before feeding in.

Value

A spfda.model object (environment) with following elements:

B B-spline basis functions used

error Root Mean Square Error ('RMSE')

CI Whether confidence intervals are calculated

gamma B-spline coefficient $\gamma_{p \times K}$

generate_splines Function to generate B-splines given time points

K Number of B-spline basis functions

knots B-spline knots used to fit the model

predict Function to predict responses $\beta(t)$ given new X and/or time points

raw A list of raw variables

4 spfda_simulate

Examples

spfda_simulate

Generates toy example data

Description

Synthesized functional signals with heterogeneous error. The underlying three coefficients correspond to 'dense', 'global sparse', and 'local sparse' functions. See https://arxiv.org/abs/2006.10163 for detailed configurations.

Usage

```
spfda_simulate(n = 1000, n_timepoints = 100, err = 1, scale = c(1, 1, 1))
```

Arguments

n Total number of observations n_timepoints Total number of time points

err Error magnitude

scale the scale of coefficients length of 1 or 3.

Value

A list of data generated: X is scalar predictor, Y is functional response.

spfda_weight 5

spfda_weight Calculates weight matrices

Description

Calculates weight matrices

Usage

```
spfda_weight(X, Y, bandwidth, part)
```

Arguments

X design matrix
Y response matrix
bandwidth numeric band-width

part list of time point boundaries

Value

the weight matrix

Index

```
fosr.vs, 2
fosr_vs, 2
kernel, 3
spfda, 2
spfda_simulate, 4
spfda_weight, 5
```