

GILLES KRATZER

JOINT WORK WITH PROF. DR. REINHARD FURRER

EBPI PHD RETREAT JANUARY 29 - JANUARY 30, 2018

ADVANCES IN ADDITIVE BAYESIAN NETWORK APPLIED TO OBSERVATIONAL SYSTEM EPIDEMIOLOGY DATASETS

- Classical aim in epidemiology is to investigate relationship between covariate and ONE outcome
- Typically based on expert knowledge

Issues:

- Multi-collinearity
- Dependence
- Confounders
- Multivariate versus Multivariables

- Classical aim in epidemiology is to investigate relationship between covariate and ONE outcome
- Typically based on expert knowledge

Issues:

- Multi-collinearity
- Dependence
- Confounders
- Multivariate versus Multivariables

SYSTEM THINKING

DISEASE LEVEL

- Multiple outcomes/Scores
- Target variables for intervention
- Beginning of the coil of discovery

Example

- Metabolic syndrom
- A clustering of 3/5 medical conditions

POPULATION LEVEL

- Demographic data
- Meta population information
- Cluster

- Observational data
- Age, gender, ...
- Random effect

ENVIRONMENT LEVEL

- External factors
- Ecology
- Living condition

- Weather condition
- Socio-economic condition
- Housing

Main purpose of ABN: Sort out directly associated versus indirectly associated, as they are not primary target for intervention

Search and score algorithm

Search and score algorithm

Parameter estimation

- compute marginal posterior density
- ▶ regression estimate

STRUCTURE/PARAMETER LEARNING

Search and score algorithm

Parameter estimation

- compute marginal posterior density
- ▶ regression estimate

Using R

buildscorecache()

mostprobable()

fitabn()

ANIMAL WELFARE

Arianna Comin et al (2017); Revealing the structure of the associations between housing system, facilities, management and welfare of commercial laying hens using Additive Bayesian networks

ACTUAL IMPLEMENTATION

- Simple output
- Arc coefficients: easy to interpret
- Statistical guarantees

Current implementation

- Distributed as an R package (CRAN)
- ▶ Bayesian regression based on INLA (Im, logit and Poisson) with possibly random effect
- Most probable search (exact search) and Hill climber (heuristic approach)

(Very!) Near Future features

- Arc strength based on Mutual Information
 - Significance not p-value based
- ▶ GLM implementation (data separation, multinomial variable, adjustment)
 - Multiple scores: AIC, BIC, MDL

FUTUR WORK

Search algorithm based on Mutual Information

Increasing order of complexity!

• Penalized by χ^2 (de Campos et al, 2006)

- Algorithmic search implementation
 - Heuristic search/Hybrid search
 - Integer programming (Cussens, 2012)

- Bayesian regression work horse
 - Stan implementation
 - Diaconis-Ylvisaker conjugate priors (*Pittavino et al, 2016*)

Causal belief: Informative prior structure *versus* incomplete synthetic observations

System epidemiology

- Typically the set of possible variables is formidable
 - ▶ The classical approach for variable selection is based on prior scientific knowledge (29%)¹
 - Change of estimate (18%)¹
 - Stepwise model selection (16%)¹
- No prior model
- Not one outcome experiment

varrank

Variable ranking for better time allocation

- Variable ranking based on a set of variable of importance
- Model free. Based on information theory metrics
- Mixture of variables (continuous and discrete). Discretisation through rule/clustering
- ▶ Ranking of 100 variables with 100′000 observations in ~14 minutes! (forward greedy search)

MAXIMUM RELEVANCE MINIMUM REDUNDANCY

 f_i candidate feature to be ranked

C set of variables of importance

$$H(X) = \sum_{n=1}^{N} P(x_n) \log P(x_n)$$

S set of already selected variables
$$MI(X;Y) = \sum_{n=1}^{N} \sum_{m=1}^{M} P(x_n; y_m) \log \frac{P(x_n; y_m)}{P(x_n)P(y_m)}$$

score_i = MI(
$$f_i$$
; **C**) – $\beta \sum_{F_s \in \mathbf{S}} \alpha(f_i, f_s, \mathbf{C})$ MI(f_i ; f_s)

Estévez and al. (2009)

$$\beta = 1/|\mathbf{S}|$$
 and $\alpha(f_i, f_s, \mathbf{C}) = \frac{1}{\min(\mathbf{H}(f_i), \mathbf{H}(f_s))}$

MAXIMUM RELEVANCE MINIMUM REDUNDANCY

 f_i candidate feature to be ranked

C set of variables of importance

 $H(X) = \sum_{n=1}^{N} P(x_n) \log P(x_n)$

Average amount of information of one RV

S set of already selected variables

$$\mathbf{S}_{\text{MI}(X;Y)} = \sum_{n=1}^{N} \sum_{m=1}^{M} P(x_n; y_m) \log \frac{P(x_n; y_m)}{P(x_n) P(y_m)}$$

Mutual dependence between two RV

Estévez and al. (2009)

$$\beta = 1/|\mathbf{S}| \text{ and } \alpha(f_i, f_s, \mathbf{C}) = \frac{1}{\min(\mathbf{H}(f_i), \mathbf{H}(f_s))}$$

EYSENCK PERSONALITY INVENTORY

Looking forward for your questions, inputs or remarks ...

xkcd.com

Backup slides

Time series regression

- OLS estimates
- Goodness of fit metrics

$$\left(egin{array}{ccccc} \sigma_{y_1}^2 & \sigma_{y_1y_2} & \cdots & \sigma_{y_1y_n} \\ \sigma_{y_1y_2} & \sigma_{y_2}^2 & \cdots & \sigma_{y_2y_n} \\ dots & dots & \ddots & dots \\ \sigma_{y_1y_n} & \sigma_{y_2y_n} & \cdots & \sigma_{y_n}^2 \end{array}
ight)$$

tsabn as a time series extension of abn

- Extending ABN to correlated errors
- ▶ Several implemented scores: AIC, BIC, MDL
- ▶ Errors Autocorrelation: ARMA procedure with Autoregressive modelling
 - ▶ Kalman filter

Future work

▶ Implementation of Granger causality score for BN learning

OZONE DATASET

Daily readings of the air quality values from May to September 1973

111 observations on 6 variables

Future work:

Hourly readings of the PM2.5 and 6 other chemical compounds data of US embassy in Beijing with meteorological data from Beijing Capital International Airport from 2013 to 2017

DIABETE

Pima Indians Diabetes Database

768 observations on 9 variables

0.187								glucose
0.092	0.04							mass
0.085	0.021	0.036						age
0.031	0.007	-0.005	-0.005					pedigree
0.029	-0.041	-0.024	-0.015	-0.013				insulin
0.044	0.013	0.017	-0.03	-0.016	-0.008			pregnant
0.024	-0.009	-0.021	-0.024	-0.019	-0.015	-0.014		pressure
0.034	0.009	-0.046	-0.034	-0.024	-0.035	-0.02		triceps
glucose	mass	age	pedigree	insulin	pregnant	pressure	triceps	

That is all folks!