import pandas as pd In [187]: In [188]: data=pd.read csv("/home/placement/Downloads/fiat500.csv") In [189]: data.describe() Out[189]: km previous_owners ID engine_power age_in_days lat lon price count 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 1538.000000 769.500000 1650.980494 53396.011704 43.541361 8576.003901 51.904421 1.123537 11.563428 mean 2.328190 std 444.126671 3.988023 1289.522278 40046.830723 0.416423 2.133518 1939.958641 min 1.000000 51.000000 366.000000 1232.000000 1.000000 36.855839 7.245400 2500.000000 385.250000 51.000000 670.000000 20006.250000 41.802990 9.505090 7122.500000 25% 1.000000 50% 769.500000 51.000000 1035.000000 39031.000000 1.000000 44.394096 11.869260 9000.000000 75% 1153.750000 51.000000 2616.000000 79667.750000 1.000000 45.467960 12.769040 10000.000000 max 1538.000000 77.000000 4658.000000 235000.000000 4.000000 46.795612 18.365520 11100.000000 In [190]: data.head(5) Out[190]: model engine power age in days km previous owners lat Ion price lounge 0 1 51 25000 1 44.907242 8.611560 8900 882 2 1 51 1186 32500 45.666359 12.241890 8800 pop 2 3 sport 74 4658 142228 45.503300 11.417840 4200 51 2739 160000 40.633171 17.634609 6000 lounge

1 41.903221 12.495650 5700

pop

73

3074

106880

In [211]: data1=data.loc[(data.model=='lounge')]
 data1

Ο.	. 4. 1	r	1 7 7
(1)	IT I		
Οt	<i>1</i> L		

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
6	7	lounge	51	731	11600	1	44.907242	8.611560	10750
7	8	lounge	51	1521	49076	1	41.903221	12.495650	9190
11	12	lounge	51	366	17500	1	45.069679	7.704920	10990
1528	1529	lounge	51	2861	126000	1	43.841980	10.515310	5500
1529	1530	lounge	51	731	22551	1	38.122070	13.361120	9900
1530	1531	lounge	51	670	29000	1	45.764648	8.994500	10800
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990

1094 rows × 9 columns

In [213]: data2

Out[213]:

	model	engine_power	age_in_days	km	previous_owners	price
 0	lounge	51	882	25000	1	8900
3	lounge	51	2739	160000	1	6000
6	lounge	51	731	11600	1	10750
7	lounge	51	1521	49076	1	9190
11	lounge	51	366	17500	1	10990
1528	lounge	51	2861	126000	1	5500
1529	lounge	51	731	22551	1	9900
1530	lounge	51	670	29000	1	10800
1534	lounge	74	3835	112000	1	4600
1536	lounge	51	2557	80750	1	5990

1094 rows × 6 columns

In [214]: data3=pd.get_dummies(data2)

In [215]: data3

0+1	[] [[]	
out	[Z T D]	

	engine_power	age_in_days	km	previous_owners	price	model_lounge
0	51	882	25000	1	8900	1
3	51	2739	160000	1	6000	1
6	51	731	11600	1	10750	1
7	51	1521	49076	1	9190	1
11	51	366	17500	1	10990	1
1528	51	2861	126000	1	5500	1
1529	51	731	22551	1	9900	1
1530	51	670	29000	1	10800	1
1534	74	3835	112000	1	4600	1
1536	51	2557	80750	1	5990	1

1094 rows × 6 columns

```
In [216]: data3.shape
Out[216]: (1094, 6)
In [217]: y=data3['price']
x=data3.drop('price',axis=1)
```

In [218]: x

Out[218]:

	engine_power	age_in_days	km	previous_owners	model_lounge
0	51	882	25000	1	1
3	51	2739	160000	1	1
6	51	731	11600	1	1
7	51	1521	49076	1	1
11	51	366	17500	1	1
1528	51	2861	126000	1	1
1529	51	731	22551	1	1
1530	51	670	29000	1	1
1534	74	3835	112000	1	1
1536	51	2557	80750	1	1

1094 rows × 5 columns

```
In [219]: y
```

```
Out[219]: 0
                    8900
                    6000
           3
          6
                   10750
                    9190
          11
                   10990
                   . . .
          1528
                    5500
          1529
                    9900
          1530
                   10800
          1534
                    4600
          1536
                    5990
```

Name: price, Length: 1094, dtype: int64

In [220]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)

In [221]: x_test.head(5)

Out[221]:

	engine_power	age_in_days	km	previous_owners	model_lounge
676	51	762	18609	1	1
215	51	701	25000	1	1
146	51	4018	152900	1	1
1319	51	731	20025	1	1
1041	51	640	38231	1	1

In [222]: y_test.head(5)

Out[222]: 676 10250 215 9790 146 5500 1319 9900 1041 8900

Name: price, dtype: int64

In [223]: x_train.head(5)

Out[223]:

	engine_power	age_in_days	km	previous_owners	model_lounge
441	51	762	36448	1	1
701	51	701	27100	1	1
695	51	3197	51083	1	1
1415	51	670	33000	1	1
404	51	456	14000	1	1

```
In [224]: y train.head(5)
Out[224]: 441
                    8980
           701
                   10300
                    5880
           695
          1415
                   10490
           404
                    9499
          Name: price, dtype: int64
In [225]: import warnings
          warnings.filterwarnings("ignore")
In [226]: from sklearn.model selection import GridSearchCV
          from sklearn.linear model import Ridge
          alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
          ridge = Ridge()
          parameters = {'alpha': alpha}
          ridge regressor = GridSearchCV(ridge, parameters)
          ridge regressor.fit(x train, y train)
Out[226]: GridSearchCV(estimator=Ridge(),
                        param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                                5, 10, 20, 30]})
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [227]: ridge_regressor.best_params_
Out[227]: {'alpha': 30}
In [228]: ridge=Ridge(alpha=30)
```

```
In [229]: ridge.fit(x train,y train)
          y pred ridge=ridge.predict(x test)
In [230]: from sklearn.metrics import mean squared error
          Ridge Error=mean squared error(y pred ridge, y test)
          Ridge Error
Out[230]: 519771.8129989745
In [231]: from sklearn.metrics import r2 score
          r2_score(y_test,y_pred ridge)
Out[231]: 0.8373030813683994
In [232]: results=pd.DataFrame(columns=['actual', 'Predicted'])
          results['actual']=y test
          results['Predicted']=y pred ridge
          results=results.reset index()
          results['Id']=results.index
          results.head(10)
Out[232]:
```

		index	actual	Predicted	ld
•	0	676	10250	10045.347779	0
	1	215	9790	9989.171535	1
	2	146	5500	4769.099603	2
	3	1319	9900	10048.683238	3
	4	1041	8900	9813.944798	4
	5	1425	9500	8678.143561	5
	6	409	10450	10173.797921	6
	7	617	9790	10180.627008	7
	8	1526	9300	9107.315259	8
	9	1010	4600	5625.007407	9

```
In [233]: import seaborn as hh
import matplotlib.pyplot as plt

In [234]: hh.lineplot(x='Id',y='actual',data=results.head(50))
hh.lineplot(x='Id',y='Predicted',data=results.head(50))
```

Out[234]: <Axes: xlabel='Id', ylabel='actual'>

