Nirma University

Institute of Technology Semester End Examination (IR), December - 2022 B. Tech. in CL / CH / ME / EE, Semester-V 2CSOE51 Machine Learning

Roll / Exam No.				Supe initia date					
Time:	3 Hours						Max. Marks:	100	
Instru	2. Figures 3. Use sec 4. Draw r 5. Assum	et all questions s to right indica etion-wise sepa leat sketches w e suitable data scientific calcu	ate full rate a herev	nswer er nec ever n	book essar ecess	y.			
		s	ECTI	ON -	I				
Q-1.	Answer the follow	wing question	ns.					[16]	
(A) CO3 BL2	Discuss supervise its' appropriate ap						rning with respect to branch.	(4)	
(B) CO2 BL2		nas trained w					auction and you find y does poorly on new	(6)	
(C) CO2 BL2	-		s imb	alanc	e pro	bler	n and discuss how to	(6)	
Q-2.	Do as directed.							[18]	
(A) CO2 BL2	Discuss how Support Vector Machine can be used for binary classification.							(6)	
(B) CO1		nerate box plot for the values of the attribute 'Test score' given in the le and discuss how can outliers be detected using box plot?							
BL3	x, Hours of preparat		2	9	6	10			
	y, Test score	64	48	72	73	80	9 8		
			0		1 1	1	1 (1 0 11)	(6)	
(B) CO1	Consider the following data given in the table and do the following.							(6)	
BL3	Year	Vehicle sales	s (in						

Year	Vehicle sales (in lacs)		
2011	26		
2012	27		
2013	25		
2014	26		
2015	27		
2016	30		

(8)

1) Find the least square regression line y=ax+b.

BL4

- 2) Use the least square regression line as a model to estimate the sales of the company for the year 2022.
- (C) What is feature scaling? Why is it required? Differentiate between min-CO1 max normalization and z-score normalization with suitable example.

OR

- (C) Discuss whether we can get multiple local optimum solutions or not if CO1 we solve a linear regression problem by minimizing the sum of squared BL4 errors using gradient descent?
- Q-3. Do as directed. [16]
- (A) To build the decision tree for the data given in the following table, find the best attribute for the root node using Information Gain as the purity BL3 measure. Note: attribute "Loan-risk" is the class label. Don't create the full decision tree. Find only the root node.

Age	Employment	Income- per-month	Pension- plan	Loan-risk
20-34	Salaried	50K-69K	No	High
35-50	Self	50K-69K	Yes	High
35-50	Salaried	70K-89K	Yes	Low
20-34	Self	50K-69K	No	High
51+	Salaried	70K-89K	Yes	Low
51+	Self	90K+	No	High
20-34	Self	90K+	No	Low
35-50	Salaried	70K-89K	No	Low

- Consider the training data shown in the table of Question-3(A). The data

 (B) tuples are described by the attributes: age, employment, Income-perCO2 month and Pension-plan. The class-label attribute: Loan-risk has two
 BL3 distinct values {High/Low}. Predict the class of the following tuple X using naïve-Bayes classification. Show all the computation steps.
 - **X** = {age=51+, employment=self, Income-per-month=50K-69K, pension-plan=No}.

SECTION - II

Do as directed. [16]Q-4. Differentiate between Model accuracy and Error rate of the model. (A) (4)CO₁ BL4 (B) What is Artificial neural network (ANN)? Explain the single-layer feed (6)forward architecture of ANN with suitable diagram. CO₂ BL2 (C) (6)While predicting win-loss of teams in World Cup Football using a CO₃ classification model. Following are the data recorded and consider class BL5 wins as positive class and losses as negative class.

- (a) Correct predictions 73 wins, 13 losses
- (b) Incorrect predictions 9 wins, 5 losses

Show the Confusion matrix and calculate the precision, recall and F-measure of the model.

Q-5. Answer the following questions.

[18]

(A) Differentiate between Multilayer Feedforward neural network and CO2 Backpropagation neural network by taking suitable example and BL4 diagram.

(6)

(B) Justify the need to apply Normal Equation method in a regression CO3 problem with suitable diagram.

(6)

BL5

OR

(B) Describe the preprocessing steps to improve accuracy and efficiency of the classification/prediction process with proper justification.

(6)

BL5
(C) Explain the KNN classification method using suitable example and CO3 diagrams.

(6)

BL2

BL2

OR

(C) What is Clustering? Discuss the working of hierarchical agglomerative clustering techniques with a suitable example and diagram.

(6)

Q-6. Do as directed.

[16]

(A) Consider the following dataset of 5 objects to cluster the data using the CO2 k-means clustering technique. Take the value of k = 2 and select two initial seeds as M1 (4,6) and M2 (6,7). Show the steps for the two epochs. [Use Euclidean distance function].

(8)

Item no.	X	Y
1	5	6
2	4	5
3	4	6
4	6	7
5	7	8

(B) Assume 7 one dimensional input patterns {0.0, 0.17, 0.33, 0.51, 0.67, CO2 0.83, 1.0}. Assume that first three patterns belong to class 0 (with BL3 desired output 0) and remaining patterns belong to class 1 (with desired output 1). Design a perceptron to classify these patterns. Use

perceptron learning rule. Given learning rate = 0.1 and initial weight and bias is (-0.4) and (-0.1) respectively. Show computation for one epoch.