Optimization Theory and Algorithm

Lecture 1 - XXX/XXXX/2021

Lecture Title Here ...

Lecturer:Xiangyu Chang Scribe: XXXXX

Edited by: Junbo Hao

1 I am the section

In this lecture,

1.1 I am the subsection

- I am itemize.
- I am bold.
- I am it

2 Mathematics Formulation

This is the mathematics formulation $\sum_{i=1}^{n} \frac{1}{i^2}$.

We also can write it as

$$\sum_{i=1}^{n} \frac{1}{i^2}.$$

Let us do it for a complex form.

I need a number.

$$\sum_{i=1}^{n} \frac{1}{i^2}.\tag{1}$$

$$Y_{t}^{(i)} = \frac{1}{K} \sum_{l \in \mathcal{S}_{\tau(t)}} M_{l} Z_{t-1}^{(l)} D_{t}^{(l)} + \frac{1}{K} \sum_{l \in \mathcal{S}_{\tau(t)}} N_{t-1}^{(l)} + N_{t}'$$

$$:= \frac{1}{K} \sum_{l \in \mathcal{S}_{\tau(t)}} M_{l} Z_{t-1}^{(l)} D_{t}^{(l)} + N_{t} + N_{t}',$$
(2)

3 Algorithms and Code

Algorithm 1 I am the algorithm

- Input: distributed dataset {A_i}_{i=1}^m, target rank k, iteration rank r ≥ k, number of iterations T.
 Initialization: orthonormal Z₀⁽ⁱ⁾ = Z₀ ∈ ℝ^{d×r} by QR decomposition on a random Gaussian matrix.
- 4:
- The *i*-th worker independently performs $Y_t^{(i)} = M_i Z_{t-1}^{(i)}$ for all $i \in [m]$, where $M_i = \frac{A_i^{\mathsf{T}} A_i}{s_i}$; Each worker i sends $Y_t^{(i)}$ to the server and the server performs aggregation: $Y_t = \sum_{i=1}^m p_i Y_t^{(i)}$; The server performs orthogonalization: $Z_t = \mathsf{orth}(Y_t)$ and broadcast Z_t to each worker such that $Z_t^{(i)} = Z_t$;
- 8: Output: approximated eigen-space $Z_T \in \mathbb{R}^{d \times r}$ with orthonormal columns.

Figure 1: I am the Picture

Figures

Citation 5

You need to learn what a bib file is. How to make it, if you need.

This is the citation [Casella and Berger, 2002].

6 Theorem

Theorem 1 I am a theorem.

Example 1 I am an example.

Lemma 1 I am a lemma.

Definition 1 I am a definition.

Notations defined by ourselves

I am a scalar x or a.

```
I am a vector \mathbf{x} = (x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n.

I am a matrix \mathbf{A} = (a_{ij}) \in \mathbb{R}^{m \times n} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n), where \mathbf{a}_i = (a_{1i}, \dots, a_{im})^{\top} \in \mathbb{R}^m and i = 1, \dots, n.
```

8 Coding

This is an example of coding.

```
import numpy as np

def main():
    # test the numpy
    x = np.array([1, 2, 3, 4])
    print(x)

main()
```

References

[Casella and Berger, 2002] Casella, G. and Berger, R. L. (2002). Statistical inference, volume 2. Duxbury Pacific Grove, CA.