The capital asset pricing model has solutions with positive α and negative β_A

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe two solutions to the capital asset pricing model with positive α and negative β_A .

The paper ends with "The End"

Introduction

Unknown to most individuals, the capital asset pricing model has solutions with positive α and negative β_A .

Such solutions seem surprising, but upon closer examination are valid solutions nonetheless.

In this paper, I describe two solutions to the capital asset pricing model with positive α and negative β_A .

Two solutions to the capital asset pricing model with positive α and negative β_A

Differentiating between the two solutions

Note that both solutions have the same return on the asset r_A and return on the market portfolio r_M , but different risk-free rate r_f , alpha α and beta of the asset β_A .

$$r_A(\mu, \sigma, t) = \frac{e^{-\frac{(t-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

$$r_M(\mu, \sigma, \theta, t) = 2\left(\begin{cases} 2\theta e^{-\frac{t^2\theta^2}{\pi}} & t > 0\\ 0 & t \le 0 \end{cases} \right) - \frac{e^{-\frac{(t-\mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$$

The first solution

$$r_f(\theta,t) = - \left\{ \begin{array}{cc} 0 & t \leq 0 \\ 2\theta e^{-\frac{\theta^2 t^2}{\pi}} & t > 0 \end{array} \right.$$

$$\beta_A(t) = -\frac{1}{2}$$

$$\alpha(\mu,\sigma,\theta,t) = \frac{5}{2} \left(\left\{ \begin{array}{cc} 2e^{-\frac{t^2\theta^2}{\pi}}\theta & t > 0 \\ 0 & t \leq 0 \end{array} \right. \right) + \frac{e^{-\frac{(t-\mu)^2}{2\sigma^2}}}{2\sqrt{2\pi}\sigma}$$

The second solution

$$r_f(\theta, t) = \begin{cases} 0 & t \le 0 \\ 2\theta e^{-\frac{\theta^2 t^2}{\pi}} & t > 0 \end{cases}$$
$$\beta_A(t) = -\frac{3}{2}$$
$$\alpha(\mu, \sigma, \theta, t) = \frac{1}{2} \left(\begin{cases} 2e^{-\frac{t^2 \theta^2}{\pi}} \theta & t > 0 \\ 0 & t \le 0 \end{cases} \right) - \frac{e^{-\frac{(t-\mu)^2}{2\sigma^2}}}{2\sqrt{2\pi}\sigma}$$

Use of the two solutions

The first solution is useful to build a **high-risk high-reward hedge fund**. The second solution is useful to build a **medium-risk medium-reward wealth fund**.

Code for the solutions

Mathematica code for the solutions is available here.

The End