Workshop SECR no Ambiente R "Modelo Espacialmente Explícito de Captura e Recaptura"

Seleção de modelos

Francesca B.L. Palmeira 28/05/2014

Período: 26 a 30/05/2014
Local: Departamento de Ciências Florestais
ESALQ/USP, Piracicaba

Figure 1.5 Flow of the modeling process.

Distribution	Type	Range	Skew	Examples
Binomial	Discrete	0, N	any	Number surviving, number
				killed
Poisson	Discrete	$0, \infty$	$right \rightarrow none$	Seeds per quadrat, settlers
				$(variance/mean \approx 1)$
Negative binomial	Discrete	$0, \infty$	right	Seeds per quadrat, settlers
				(variance/mean > 1)
Geometric	Discrete	$0, \infty$	right	Discrete lifetimes
Normal	Continuous	$-\infty, \infty$	none	Mass
Gamma	Continuous	$0, \infty$	right	Survival time, distance to
				nearest edge
Exponential	Continuous	$0, \infty$	right	Survival time, distance to
-			_	nearest edge
Lognormal	Continuous	$0, \infty$	right	Size, mass (exponential
_		-	_	growth)

Table 4.1 Summary of probability distributions

Figure 9.2 All (or most) of statistics. The labels in parentheses (non-normal errors and nonlinearity) imply restricted cases: (non-normal errors) means exponential family (e.g. binomial or Poisson) distributions, while (nonlinearity) means nonlinearities with an invertible linearizing transformation. Models to the right of the gray dashed line involve multiple levels or types of variability; see Chapter 10.

Número de parâmetros

FIGURE 1.2. "How many parameters does does it take to fit an elephant?" was answered by Wel (1975). He started with an idealized drawing (A) defined by 36 points and used least squares Fourier sine series fits of the form $x(t) = \alpha_0 + \sum \alpha_i \sin(it\pi/36)$ and $y(t) = \beta_0 + \sum \beta_i \sin(it\pi/36)$ for i = 1, ..., N. He examined fits for K = 5, 10, 20, and 30 (shown in B–E) and stopped with the fit of a 30 term model. He concluded that the 30-term model "may not satisfy the third-grade art teacher, but would carry most chemical engineers into preliminary design."

Model selection in ecology and evolution

Jerald B. Johnson¹ and Kristian S. Omland²

¹Conservation Biology Division, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA

²Vermont Cooperative Fish & Wildlife Research Unit, School of Natural Resources, University of Vermont, Burlington, VT 05405, USA

Table I. Comparison of model selection implementation in mark-recapture research and molecular systematics^a

_				
	Mark-recapture studies	Molecular systematics		
Objective	To estimate parameters (survival rates, recapture rates, and transition rates) based on recovery of marked individuals	To identify a model of molecular evolution and model parameter estimates that can be used in phylogenetic reconstruction		
Model types	Multinomial probability models	Multinomial probability models		
Set of candidate models	Parameter families [10]: S , survival probability p , detection probability ψ , transition probability (multi-strata models) Model variations: Parameter constant, θ . Parameter varying freely over time, θ_t Parameter differing among groups, θ_g Parameter differing by patch, θ_r Linear trend in parameter value, $\theta = f(t)$ Parameter a function of a covariate, $\theta = f(x)$	Parameter families [46]: τ , phylogenetic tree, including branch lengths π , nucleotide base frequencies l , proportion of invariable nucleotide sites in a set of aligned DNA sequences Γ , substitution rate heterogeneity among nucleotide sites (gamma distribution with four discrete categories) ϕ , substitution rate variation among nucleotides (6 classes of transitions and transversions)		
Goodness of fit test	Commonly used; applied to the most complex model before the model selection step	Very rare; when used, applied to the best model after the model selection step [52]		
Model fitting algorithm	Maximum likelihood	Maximum likelihood		
Model selection criterion	Predominantly AIC_c or $QAIC_c$; LRT seldom used	Predominantly hierarchical LRT; AIC seldom used		
Use of model averaging	Uncommon, but available and sometimes used [3]	Recently introduced, but still rarely used [4]		
Software commonly used	MARK [45]	MODELTEST [46]		
Abbreviations: AIC, Akaike information criterion; LRT, likelihood ratio test; QAIC, variant of AIC for overdispersed count data.				

