EJERCICIO EXPERIMENTAL

1. Material

- Osciloscopio
- Generador de funciones
- Polímetro
- Resistencia (R = 56 K Ω ; 1/2 W)
- Condensador (C = 0.01 μ F; 16V)

2. Proceso

1. Montar el circuito R.C. diferenciador con los valores de R y C que se indican: $R = 56~K\Omega;~C = 0.01~\mu F.$ Dibuje el esquema a montar. Indique las principales características, especificando la frecuencia de corte.

Esquema del circuito:	Frecuencia de corte (especifique fórmula)		
	Principales características:		

2. Conectar a la entrada el generador de funciones para excitar el circuito con una señal de tipo senoidal de 1V de amplitud. Dibuje, a la frecuencia de corte, primero la entrada, de manera que se visualicen por los menos 2 períodos y luego la saluda.

CH1 (Ve) Voltios/div.: CH1 (Vs) Voltios/div.:

Time/div.:

3. Medir Vs con el osciloscopio, realizando unas 3 mediciones por debajo de la frecuencia de corte, a la frecuencia de corte y 3 por encima de la frecuencia de corte. Suponga Ve 1 Voltio para todas las medidas.

f	Ve (amplitud)	Vs (amplitud)	G=Vs/Ve	20log10 (G)
$f_c =$				

4. Representar gráficamente en papel semilogarítmico 20 log|G| en función de log (f)

5. Obtener de las gráficas anteriores la frecuencia de corte y compararla con la teórica (especificar las fórmulas empleadas).

Teórica: $fo = ____Hz$; $20log|G|_{f=fo} = ____dB$;

Experimental: fo = Hz; $20\log|G|_{f=fo} =$ dB;

6. Montar el circuito RC integrador con los valores de R y C que se indican: R = 56 $K\Omega$ C = 0.01 μ F. Dibuje el esquema a montar.

Frecuencia de corte (especifique fórmula)
Principales características:

7. Conectar a la entrada el generador de funciones para excitar el circuito con una señal de tipo senoidal de 1V de amplitud. Dibuje primero la entrada, a la frecuencia de corte de manera que se visualicen por los menos 2 períodos y luego la saluda a la frecuencia de corte.

8. Medir Vs con el osciloscopio, realizando unas 3 mediciones por debajo de la frecuencia de corte, a la frecuencia de corte y 3 por encima de la frecuencia de corte. Suponga Ve 1 Voltio.

f	Ve (amplitud)	Vs (amplitud)	G=Vs/Ve	20log ₁₀ (G)
$f_c =$				

9. Representar gráficamente en papel semilogarítmico 20 log|G| en función de log (f)

10. Obtener de las gráficas anteriores la frecuencia de corte y compararla con la teórica (especificar las fórmulas empleadas).

Teórica: fo = Hz; $20\log|G|_{f=fo} = dB$;

Experimental: fo = Hz; $20\log|G|_{f=fo} =$ dB;

Proyecto Innovación Docente REF: 2023-2-5001 Práctica 1: Filtros pasivos

3. NOTAS