POTD 1254

Jonathan Kasongo

July 16, 2025

POTD 1254

If a, b, c > 0 and a + b + c = 6, show that

$$\left(a + \frac{1}{b}\right)^2 + \left(b + \frac{1}{c}\right)^2 + \left(c + \frac{1}{a}\right)^2 \ge \frac{75}{4}.$$

Solution

In this solution any summation terms Σ are assumed to be cyclic over a,b,c, that is for a function $f,\Sigma f(a,b,c)=f(a,b,c)+f(b,c,a)+f(c,a,b)$. The inequality is symmetric so we may assume, without loss of generality, that $a \ge b \ge c$. We start of by showing some useful inequalities. Firstly using QM-AM, we get that $\frac{1}{3}(a+b+c)=2 \le \sqrt{(a^2+b^2+c^2)/3}$ and so $12 \le a^2+b^2+c^2$. Using the Re-arragement inequality on the sequences $a \ge b \ge c$ and $\frac{1}{c} \ge \frac{1}{b} \ge \frac{1}{a}$ we can show that $2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \ge 2\left(\frac{a}{a}+\frac{b}{b}+\frac{c}{c}\right)=6$. We can now use these 2 results. Expand the LHS to get that $\sum a^2+2\sum \frac{a}{b}+\sum \frac{1}{a^2}\ge \frac{75}{4}$. By our 2 results we can see that it suffices to show that $\sum \frac{1}{a^2}\ge \frac{75}{4}-12-6=\frac{3}{4}$. By AM-GM we know that $a+b+c=6\ge 3(abc)^{1/3}\iff 2\ge (abc)^{1/3}\iff 8\ge abc\iff \frac{1}{8}\le \frac{1}{abc}$. Now by the Re-arragement inequality on the sequence $\frac{1}{c}\ge \frac{1}{b}\ge \frac{1}{a}$ and itself coupled with the fact that a+b+c=6 we know that $\sum \frac{1}{a^2}\ge \sum \frac{1}{ac}=\frac{1}{abc}(a+b+c)=\frac{6}{abc}\ge \frac{6}{8}=\frac{3}{4}$ as desired. This finishes the problem.