Image Matting

Topic 2

Week 2 – Jan. 16th, 2019

Topic 2: Image Matting

- Alpha Masks
- The Matting Equation
- Four Ways to Solve the Matting Equation
- The Triangulation Matting algorithm

Alpha Channel

- Typical images from cameras are captured with 3 channels: RGB
 - i.e. every image pixel has 3 values: R, G, B
- Useful to have a 4th channel: α (alpha)
 - Has same representation as pixels (i.e. 0-255 for 8-bit image), but assumed to be fractional value between 0-1
- Alpha channel is pixel "transparency"

$$\begin{bmatrix} R \\ G \\ B \\ \alpha \end{bmatrix} \rightarrow \begin{bmatrix} \alpha R \\ \alpha G \\ \alpha B \end{bmatrix}$$

Alpha Channel: Compositing

- Alpha channel is pixel "transparency"
 - $\alpha = 0$ \rightarrow pixel is transparent
 - $\alpha = 1$ \rightarrow pixel is opaque
- When representing RGBA pixel as RGB, we calculate the alpha composite,
 - Foreground pixel (RGBA): $C_F = [R_F, G_F, B_F]$, α_F and,
 - Background pixel (RGB): $C_B = [R_B, G_B, B_B]$

$$C = \alpha_F \cdot C_F + (1 - \alpha_F) \cdot C_B$$

Overlaying Graphics on Reality

- Alpha masks are often used to combine graphics and reality
 - i.e. "Green Screen"
- Applications:
 - TV weather reporting
 - Sports advertising
 - Special visual effects

Constant-Colour Image Matting

- We want to separate "foreground" from "background" ill-defined
- Assume pixels of a given constant colour belong to background
- i.e. blue-screen matting:

Semi-Transparent Matte

- Constant colour matting doesn't look very realistic
- Better results if we can obtain semi-transparent matte
- Uses alpha channel for matte i.e. matte is a greyscale image

Topic 2: Image Matting

- Alpha Masks
- The Matting Equation
- Four Ways to Solve the Matting Equation
- The Triangulation Matting algorithm

Matting Equation

Matting problem: estimating foreground, background, and matte from a composite

• Matting Problem: We want to extract all the foreground pixels $F = [F_r, F_g, F_b]$, and matte α_0

 $\alpha_o \cong 1$

- Given (for every pixel):
 - Background pixel colour $B = [B_r, B_g, B_b]$
 - Composite pixel colour $C = [C_r, C_g, C_b]$
- We can consider the composite pixel C to be a mixture of the foreground (F) and background (B) pixels:

$$C = \alpha_F F + (1 - \alpha_F) B$$

Matting Equation: Why it's Hard

- Matting Equation: $C = \alpha_F F + (1 \alpha_F) B$
- i.e.

$$C_r = \alpha_F F_r + (1 - \alpha_F) B_r$$

$$C_g = \alpha_F F_g + (1 - \alpha_F) B_g$$

$$C_b = \alpha_F F_b + (1 - \alpha_F) B_b$$

- 3 equations, 7 unknowns
- More unknowns than equations!
- We call this an underdetermined (or underconstrained) system

Approaches to Underdetermined Systems

- An under-determined linear system of equations has infinitely many solutions (or no solutions if it is inconsistent)
 - e.g. x + y = 1 (one equation, two unknowns)
 - There are infinitely many values of x, y that satisfy this!

General approaches to these systems:

- Reduce the number of unknowns, i.e. assume values for some unknowns
 - e.g. if we assume y = 0.3, can solve for x
 - makes sense if y is a real-world variable we can control, and we care about x
- Increase the number of equations (introduce more constraints)
 - e.g. if we assume that x + 2y = 1.3, we can solve for x

Topic 2: Image Matting

- Alpha Masks
- The Matting Equation
- Four Ways to Solve the Matting Equation
- The Triangulation Matting algorithm

Approach 1: Known Background

- Reduce the number of unknowns
- Assume background $B = [B_r, B_g, B_b]$ is known
 - Then alpha matte also known, $\alpha_F = \begin{cases} 0, & C = B \\ 1, & C \neq B \end{cases}$ $C_r = \alpha_F F_r + (1 \alpha_F) B_r$ $C_g = \alpha_F F_g + (1 \alpha_F) B_g$ $C_b = \alpha_F F_b + (1 \alpha_F) B_b$

• 3 equations, 3 unknowns

Approach 1: Downsides

- Background colour must be known very accurately, and must be constant
- Foreground subject cannot have pixels similar to the background colour
- Alpha is binary → no transparency or smooth transitions between objects

Approach 2: Blue Screen Matting

Assume background contains only blue, i.e.

$$B = [B_r = 0, B_g = 0, B_b]$$

- Note: allows lighting to vary, because blue brightness not fixed, i.e. could be [0, 0, 1] or [0, 0, 0.5]
- Matting equations simplify:

$$C_r = \alpha_F F_r + (1 - \alpha_F) B_r$$

$$C_g = \alpha_F F_g + (1 - \alpha_F) B_g$$

$$C_b = \alpha_F F_b + (1 - \alpha_F) B_b$$

• 3 equations, 3 unknowns, and can still use α

Approach 2: Downsides

- Having no blue in foreground in practice is difficult!
- Not good for people with blue eyes (i.e. Hollywood movie actors/actresses)
- Excludes any colour with blue component i.e. 2/3 of all hues, including gray, pastels and white!
- "Blue/green spilling": light reflected off background onto foreground, making it have some blue component

Approach 3: Gray or Skin Coloured Foreground

- Still blue screen, i.e. $B = [B_r = 0, B_g = 0, B_b]$, but generalize a little
- Assume foreground colour is either:
 - Gray: i.e. $F_r = F_g = F_b$
 - "Flesh": $F = [F_r = d, F_g = \frac{d}{2}, F_b = \frac{d}{2}]$ where d depends on skin tone
- Equations simplify (e.g. gray):

$$C_r = \alpha_F F + (1 - \alpha_F) B_F$$

$$C_g = \alpha_F F + (1 - \alpha_F) B_g$$

$$C_b = \alpha_F F + (1 - \alpha_F) B_b$$

• 2 unknowns, 3 equations

Approach 4: Triangulation Matting

- Increase number of equations, by using two different backgrounds
- Assume backgrounds $B_0=[B_{0,r},B_{0,g},B_{0,b}]$ and $B_1=[B_{1,r},B_{1,g},B_{1,b}]$ known

$$C_{0,r} = \alpha_F F_r + (1 - \alpha_F) B_{0,r}$$

$$C_{0,g} = \alpha_F F_g + (1 - \alpha_F) B_{0,g}$$

$$C_{0,b} = \alpha_F F_b + (1 - \alpha_F) B_{0,b}$$

$$C_{1,r} = \alpha_F F_r + (1 - \alpha_F) B_{1,r}$$

$$C_{1,g} = \alpha_F F_g + (1 - \alpha_F) B_{1,g}$$

$$C_{1,b} = \alpha_F F_b + (1 - \alpha_F) B_{1,b}$$

• 6 equations, 4 unknowns

Approach 4: Downsides

- Need two photos with two different known backgrounds for each object
- Object must have same lighting in both images
- Object must be static

Approach 4: Examples

Matting Equation: In Matrix Form

Non-linear

Matting Equation: $C = \alpha_F F + (1 - \alpha_F) B$, define $F' \equiv \alpha_F F$ i.e.

$$C_r = F_r' + (1 - \alpha_F)B_r$$

$$C_g = F_g' + (1 - \alpha_F)B_g$$

$$C_b = F_b' + (1 - \alpha_F)B_b$$
Linear

Define $C_{\Delta} \equiv C - B$

Then

$$C_{\Delta r} = F_{r}' - \alpha_{r} B_{r} \\
C_{\Delta g} = F_{g}' - \alpha_{r} B_{g} = \begin{bmatrix} C_{r} - B_{r} \\ C_{g} - B_{g} \\ C_{b} - B_{b} \end{bmatrix} = \begin{bmatrix} C_{\Delta r} \\ C_{\Delta g} \\ C_{\Delta b} \end{bmatrix} = \begin{bmatrix} 1 & -B_{r} \\ C_{\Delta g} \\ C_{\Delta b} \end{bmatrix} \begin{bmatrix} F_{r}' \\ F_{g}' \\ F_{b}' \\ \alpha_{r} \end{bmatrix} = \begin{bmatrix} 1 & -B_{r} \\ 1 & -B_{g} \\ C_{AF} \end{bmatrix} \begin{bmatrix} \alpha_{r} F_{r} \\ \alpha_{r} F_{g} \\ \alpha_{r} F_{b} \\ \alpha_{r} \end{bmatrix}$$

Triangulation Matting: In Matrix Form

Similarly, define $F' \equiv \alpha_F F$, and Define $C_\Delta \equiv C - B$

$$C_{0,r} = \alpha_{F}F_{r} + (1 - \alpha_{F})B_{0,r}$$

$$C_{0,g} = \alpha_{F}F_{g} + (1 - \alpha_{F})B_{0,g}$$

$$C_{0,b} = \alpha_{F}F_{b} + (1 - \alpha_{F})B_{0,b}$$

$$C_{1,r} = \alpha_{F}F_{r} + (1 - \alpha_{F})B_{1,r}$$

$$C_{1,g} = \alpha_{F}F_{g} + (1 - \alpha_{F})B_{1,g}$$

$$C_{1,b} = \alpha_{F}F_{b} + (1 - \alpha_{F})B_{1,b}$$

$$= \begin{bmatrix} C_{\Delta 0,r} \\ C_{\Delta 0,g} \\ C_{\Delta 0,b} \\ C_{\Delta 1,r} \\ C_{\Delta 1,r} \\ C_{\Delta 1,g} \\ C_{\Delta 1,b} \end{bmatrix} = \begin{bmatrix} 1 & -B_{0,r} \\ 1 & -B_{0,g} \\ C_{\Delta 1,r} \\ C_{\Delta 1,g} \\ C_{\Delta 1,b} \end{bmatrix} \begin{bmatrix} F_{r}' \\ F_{g}' \\ F_{b}' \\ \alpha_{F} \end{bmatrix}$$

Pseudo-inverse to compute the solution.

Next Topic 3: HDR