ETEC SALES GOMES 101 Ensino técnico de química

Ana Gabriély de Oliveira Moraes Ellen Edenice Almeida

TINTA CONDUTORA A PARTIR DA POLIANILINA

Tatuí - SP 2019

ANA GABRIÉLY DE OLIVEIRA MORAES ELLEN EDENICE ALMEIDA

TINTA CONDUTORA A PARTIR DA POLIANILINA

Desenvolvimento do Trabalho de Conclusão de Curso para Habilitação Profissional Técnica Nível Médio em Química na Escola Técnica Sales Gomes de Tatuí sob Orientação do Professor Luís Carlos Antunes Júnior.

Tatuí - SP

2019

Ana Gabriély de Oliveira Moraes

Ellen Edenice Almeida

TINTA CONDUTORA A PARTIR DA POLIANILINA

Desenvolvimento do trabalho de conclusão de curso para habilitação profissional técnica nível médio em Química na escola técnica Sales Gomes de Tatuí sob orientação do professor Luís Carlos Antunes Júnior.

	TATUÍ, 25 de novembro de 2019
Banca Examinadora	
Adriano José Branco	
Aline Figlia Zacarias	
Maria Claudia Araújo de Sousa Vi	eira
Pamela Galera Prestes Pires	
Aprovado Rep Prof. Orientador Luís Carlos Antur	orovado nes Junior
	TATUÍ- SP

TATUÍ- SP 2019 **DEDICATÓRIA** Dedicamos esse trabalho à nossa família e amigos que nos apoiaram ao decorrer de todo o projeto e também a Giovane Giacomassi que nos auxiliou, possibilitando o término deste trabalho.

AGRADECIMENTO

Agradecemos primeiramente a Deus que nunca nos desemparou, pois, sem Ele, não teríamos força suficiente pra chegar até aqui, em segundo lugar, queremos demonstrar toda nossa gratidão aos professores que, de alguma maneira nos ajudaram.

EPÍGRAFE

"A jornada de mil quilômetros começa com o primeiro passo".

O REI LEÃO

RESUMO

A polianilina é um polímero condutor que se tornou de muito interesse nos últimos tempos devido a sua alta condutividade elétrica. Sua síntese é realizada a partir da polimerização da fenilamina, um composto químico orgânico, também conhecido como anilina. Este polímero pode possuir diversos estágios de oxidação, onde estando em sua forma sal esmeraldina, se torna o ideal para ser utilizado no desenvolvimento deste projeto. Propomos estudar as propriedades condutoras da polianilina quando aplicadas a uma tinta, que passa a ser o meio condutor da eletricidade descarregada. O mecanismo de condução dos polímeros, como na polianilina, é explicado através da teoria de bandas. De maneira geral, o trabalho a seguir fora desenvolvido com base em diversos livros e pesquisas para adquirir um maior conhecimento sobre polímeros e o assunto em questão. Também foram realizados inúmeros testes em laboratório, desde o melhor método para se realizar a polimerização da anilina até as formas de aplicações da mesma na tinta.

Palavras-chave: Polianilina; Polímero; Condutividade; Tinta; Esmeraldina;

Polyanilin is a conductive polymer that has become of great interest in recent times due to its high electrical conductivity. Its synthesis is performed from the polymerization of phenylamine, an organic chemical compound, also known as aniline. This polymer can have several stages of oxidation, where being in its salt form esmeraldina, becomes ideal to be used in the development of this project. We propose to study the conductive properties of polyaniline when applied to an ink, which becomes the driving means of discharged electricity. The driving mechanism of polymers, as in polyanilin, is explained through band theory. In general, the following work was developed based on several books and research to acquire greater knowledge about polymers and the subject in question. Numerous laboratory tests were also performed, from the best method to polymerize aniline to the forms of applications of the laboratory in the ink.

Keywords: Polyanilin; Polymer; Conductivity; Ink; Esmeraldina;

- **Figura 1** Estruturas dos polímeros condutores intrínsecos (PICs) mais estudados.
- **Figura 2** Esquema da composição geral da PAN indicando as unidades reduzidas e oxidadas repetitivas; (a) Leucoesmeraldina; (b) Pernigranilina; (c) Esmeraldina; (d) Esmeraldina protonada considerando-se a formação de bipolarons.
 - Figura 3 Estrutura da polianilina na forma de base (não dopada).
- **Figura 4** Espectros de absorção no UV-VIS-NIR da base de esmeraldina (PANI-EB), da base pernigranilina (PANI-PB) e do sal de esmeraldina (PANI-ES) em solução de NMP.

Sumário

1. INTRODUÇÃO	11
1.1 Justificativa	11

1.2 Problemática	11
1.3 Hipótese	11
1.4 Objetivos	12
1.4.1. Objetivo geral	12
1.4.2. Objetivos específicos	12
1.5 Metodologia	12
1.6 Cronograma	13
1.7 Fluxograma	15
1.8 Resultados esperados	16
2. REVISÃO BIBLIOGRÁFICA	17
2.1.Polímeros	17
2.1.1.Polimeros condutores	17
2.2.Teoria dos orbitais moleculares em sólidos	18
2.2.1.Bandas de orbitais moleculares	19
2.3.Isolantes	19
2.4.Semicondutores	20
2.4.1.Semicondutores intrínsecos	20
2.4.2.Semicondutores extrínsecos	20
2.5. Supercondutividade	21
2.6. Óxidos e fluoretos modelo	22
2.7. Polianilina	22
2.7.1. Síntese da polianilina	24
2.7.2. Espectroscopia eletrônica de absorção no UV- VIS- NIR	25
2.8.Tintas	26
2.8.1. Componentes básicos da tinta	26
2.8.2.Tintas condutoras	27
3. DESENVOLVIMENTO	27
4. CONSIDERAÇÕES FINAIS	30
REFERÊNCIAS	31

1. INTRODUÇÃO

1.1 Justificativa

Incentivar a ampliação dos estudos relacionados aos polímeros condutores. Estudar e analisar o comportamento da PANI e aplicá-la a uma tinta, para que a mesma se torne condutora e dessa forma contribua com a condutividade elétrica de diferentes maneiras, podendo conduzir eletricidade até mesmo em superfícies isolantes e irregulares.

Desenvolver um meio alternativo para a substituição de fios de aterramento, já que a mesma é capaz de receber altas descargas elétricas podendo, dessa maneira, desviá-las. Disponibilizar esse trabalho para estudos relacionados à polianilina, polímero de grande importância para a química.

1.2 Problemática

O estudo acerca dos polímeros condutores, ainda é considerado relativamente novo, havendo a necessidade de maior incentivo nas pesquisas relacionas a esta área.

Os polímeros condutores já têm demonstrado grande aplicabilidade em muitos campos, principalmente para a área da nanotecnologia e também da saúde, do bem-estar do ser humano e do planeta:

"[...] temos a aplicação de tais materiais em complexos macroporosos que são desenvolvidos com o intuito de absorver metais pesados de organismos intoxicados, sendo o mercúrio um dos de maior estudo. Temos também o uso de tais complexos em tratamento de água com alta toxidade devido aos resquícios fenólicos encontrados. (COUTO, 2015)"

Mesmo sendo uma área pouco explorada, os polímeros condutores já proporcionaram inúmeros benefícios, o que nos leva a crer que caso houvesse maior interesse e estudos mais aprofundados as vantagens seriam ainda maiores, visto que estes polímeros podem revolucionar as mais diferentes áreas.

1.3 Hipótese

Os polímeros comuns nos proporcionaram uma variedade de objetos quase que indispensáveis nos dias de hoje. Após muitas pesquisas, vimos que a descoberta dos polímeros com características condutivas também veio a se tornar

de muito interesse, pois a partir deles é possível o desenvolvimento de materiais compósitos que podem se aliar a alta resistência mecânica, atividade catalítica e propriedades magnéticas a condutividade eletrônica.

Neste projeto pretendemos além de incentivar o estudo dos polímeros condutores em geral, estudar a polianilina, polímero que possui diversas aplicações industriais, como telas OLEDs, dispositivos eletrocrômicos, músculos artificiais e pode substituir trilhos de cobre impressos em placas de PCBs, como o fenolite e fibra de vidro, etc.

1.4 Objetivos

Estudar um dos polímeros condutores, a polianilina, para introduzi-la em uma tinta e assim a torna-la condutora, visando entender suas propriedades condutivas e a sua importância para avanços na tecnologia futura, como a nanotecnologia em dispositivos eletrônicos.

1.4.1. Objetivo geral

Estudar o polímero condutor e produzir uma tinta com propriedades condutivas a partir da polimerização da anilina.

1.4.2. Objetivos específicos

Executar a polimerização da anilina, para que a mesma se torne condutora, estando em sua forma sal esmeraldina;

Dopar e purificar a PANI;

Aplicar a PANI à tinta;

Testar a condutividade elétrica.

1.5 Metodologia

Procedimento 1:

Preparar 50 ml de solução de HCl 1M e dissolver 3 ml de anilina em 10 ml dessa solução em um balão de fundo chato, estando este dentro de um recipiente repleto de gelo e sal grosso, o sistema deve ser mantido a -10°C. Separadamente, deve-se dissolver 6 g de (NH4)2S2O4 no restante da solução de HCl e adicionar cuidadosamente no balão contendo a anilina, sob agitação que deve ser realizada por 2 horas.

Realizar a filtração da solução sob vácuo e lavá-la com uma solução de HCl 1 mol/L, depois é necessário levar o sólido obtido ao dessecador contendo CaCl2. A secagem deve ser monitorada, pesando o sólido periodicamente até que sua massa se torne constante, podendo levar alguns dias.

Procedimento 2:

Utilizar 20 ml de anilina para síntese, cerca de 1L de ácido clorídrico a 1M e 60 g de persulfato de amônio. A anilina deve ser dissolvida em 200 ml de HCl dentro de um balão, cujo deve permanecer em temperatura extremamente baixa, sendo indicado a estar por volta de 2°C e para isso, devido à falta de recursos no laboratório, há a necessidade da utilização de diversas pedras de gelo e sal grosso ao redor da solução enquanto é agitada. Deve-se dissolver o persulfato de amônio no restante do HCl e adicionar lentamente no balão cujo está contido a anilina. A agitação deve ser realizada por no mínimo duas horas.

Após obter o precipitado verde escuro, o produto deve ser filtrado e exaustivamente lavado com água desmineralizada e em seguida com etanol e dopado com ácido clorídrico a 1M. Feito isso, deve-se secar o sólido no dissecador por alguns dias até que a solução se estabilize.

1.6 Cronograma Fevereiro

07	Definir o tema do TCC;	
14	Pesquisas iniciais da matéria prima, polímeros, a polianilina;	
21	Pesquisas de métodos e artigos sobre a síntese da polianilina;	
28		
	Estudos das normas ABNT para o TCC.	

Março

07	Planejamento e desenvolvimento da escrita do TCC;
14	Envio da primeira proposta do TCC para o orientador;
21	Continuação de pesquisas e escrita do TCC;
28	Continuação de pesquisas e escrita do TCC,
	Compra da Anilina para a síntese do polímero.

Abril

04	Início do desenvolvimento do prático do projeto;
11	Pesquisas das reações e métodos alternativos para a síntese da
	polianilina;
18	Polimerização da Anilina;
25	Filtração da solução sintetizada;

Maio

02	Secagem do polímero;
09	Teste de condutividade;
16	Pesquisas sobre a adição do polímero a tinta;
23	resquisas sobre a adição do políticio a tirta,
30	Polimerização da anilina;
	Filtragem da solução polimerizada;

Junho

06	Secagem do polímero;
13	Testes de condutividade
20	
27	Revisar resultados para colocar no TCC.

Julho

04	
11	Férias, e desenvolvimento da escrita para o TCC;
18	Preparos das soluções necessárias para a síntese da polianilina.
25	

Agosto

01	Polimerização da anilina;
08	Filtragem da solução;
15	
22	Verificação do polímero sintetizado;
29	Testes de condutividade.

Setembro

05	Desenvolvimento teórico;
12	Revisão da parte pré-textual;
19 25	Revisão e atualização do desenvolvimento;
	Pesquisas com químicos sobre o produto.

Outubro

02	Últimos testes;
09	Revisão e atualização dos resultados;
18	Última polimerização;
23	Ollima polimenzação,
30	Filtração;
	Teste de condutividade.

Novembro

06	Finalização da parte escrita do TCC;
13	Entregar o trabalho completo para o orientador.

1.7 Fluxograma

Pesou-se 3 g de anilina e dissolveu-se em 10 ml da solução de HCl

1.8 Resultados esperados

Aplicar a PANI à tinta, para que a mesma se torne condutora e dessa forma contribuir com a condutividade elétrica em diferentes áreas, facilitando e, disponibilizando também uma alternativa para possíveis substituições do fio terra, já que a mesma pode receber as descargas elétricas e desvia-las.

Realizar testes para buscar a melhoria e inovação da capacidade da tinta em conduzir eletricidade, almejando dessa forma, promover a adoção e um maior conhecimento sobre a mesma.

Dar o nosso melhor, inovar no que pudermos e não menos importante, disponibilizar esse trabalho para estudos relacionados à PANI, polímero de grande importância para a química.

2. REVISÃO BIBLIOGRÁFICA

2.1.Polímeros

Segundo CANEVAROLO JR. (2006) o polímero é uma macromolécula composta por diversas unidades de repetição chamadas de Meros, que são ligadas por ligações covalentes. O polímero é produzido a partir de um monômero, ou seja, uma molécula com unidades de repetições, o polímero é composto por dezenas de milhares unidades de monômero.

Segundo CANEVAROLO JR. (2006) as propriedades físicas são dependentes da massa molar, ou seja, do comprimento da molécula. Os polímeros abrangem normalmente uma grande faixa de valores de massa molar e podemos esperar uma grande variação em suas propriedades. Segundo CANEVAROLO JR, as propriedades alterações nas propriedades físicas estão ligadas ao tamanho da molécula, ou seja, as alterações tendem a ser menores com o aumento do tamanho das moléculas.

CANEVAROLO JR. (2006) diz que para a síntese do polímero é necessário que os monômeros se liguem entre si para formar a cadeia polimérica e para que possa ocorrer essa combinação de monômeros é necessário que ocorra a reação de polimerização.

Polimerização é a reação ou conjunto de reações nos quais moléculas simples reagem entre si formando uma macromolécula de alta massa molar. Durante esse processo, algumas variáveis são mais ou menos importantes, dependendo de sua influência na qualidade do polímero formado. Assim, temperatura de reação, pressão, tempo, presença e tipo de indicador, e agitação são considerados variáveis primárias, a presença, tipo de inibidor, retardador, catalizador, controlador de massa molar, da quantidade de reagentes e outros agentes específicos, são considerados variáveis secundárias (CANEVAROLO JR, 2006).

2.1.1. Polímeros condutores

MAIA et al., apud KANATZIDIS (1998) diz que nos últimos anos que tem se passado fora desenvolvida uma classe nova de polímeros orgânicos, que tem como fator importante a possibilidade de condução de eletricidade.

Segundo MAIA et al. (1998), os novos componentes da classe são designados metais sintéticos e que "Eles possuem uma característica em comum:

longos sistemas π conjugados, ou seja, uma alternância de ligações simples e duplas ao longo da cadeia".

Conforme diz MAIA et al. (1998) "Desde a década de 60, é conhecido que moléculas orgânicas apresentam duplas ligações conjugadas podem exibir propriedades semicondutoras". Segundo MAIA et al., apud SHIRAKAWA (1998) em 1997, Mac Diarmind e cols descobriram que tratando poliacetileno com ácido ou base de Lewis, era possível aumentar a condutividade em até 13 ordens de grandeza. Esse processo foi chamado de dopagem, que consiste na remoção ou adição de elétrons da cadeia polimérica. Maia et al. Continua dizendo que nessa família de metais sintéticos podemos encontrar o poliacetileno, polipirrol, politiofeno e a polianilina.

Figura 1. Estruturas dos polímeros condutores intrínsecos (PICs) mais estudados.

Fonte: MAIA, Daltamir J. et al. Síntese de polímeros condutores em matrizes sólidas hospedeiras. Química Nova, 2000.

2.2. Teoria dos orbitais moleculares em sólidos

Segundo SHRIVER e ATKINS (2003) a teoria dos orbitais é estendida para explicar as propriedades de sólidos, que são uma agregação de um número infinito de átomos. Ela pode ser usada para explicar algumas características como o brilho, condutividade elétrica, maleabilidade e condutividade térmica.

Todas estas propriedades originam-se da habilidade dos átomos de contribuir para a formação do mar de elétrons. O brilho e a condutividade elétrica originam-se da maleabilidade desses elétrons, ou em resposta ao campo elétrico oscilante de um raio de luz incidente ou uma diferença de potencial (SHRIVER e ATKINS, 2003)

SHRIVER e ATKINS (2003) continuam dizendo que a alta condutividade térmica é consequência da mobilidade eletrônica, pois um elétron pode se chocar com um átomo vibrante retirando e transferindo sua energia para outro átomo que está em algum lugar sólido.

A facilidade com que os metais podem ser mecanicamente deformados é outro aspecto da mobilidade eletrônica, porque o mar de elétrons pode rapidamente reajustar-se à deformação do sólido e continuar a unir os átomos (SHRIVER e ATKINS, 2003)

Segundo SHRIVER e ATKINS (2003) a condutividade elétrica é característica de um semicondutor também e que podemos diferenciar um semicondutor e um metal pela sua condutividade em função a temperatura, pois a condutividade elétrica de um metal tende a diminuir com o aumento da temperatura, e de um semicondutor tende a aumentar. A condutividade elétrica de um semicondutor é mais baixa à temperatura ambiente em relação a condutividade de um metal que é bem maior.

SHRIVER e ATKINS (2003) dizem que um sólido isolante tem uma condutividade elétrica muito baixa, mas que essa condutividade pode ser medida com o aumento da temperatura, igual a de um semicondutor, podendo assim descartar essa classificação "isolante" e utilizar a classificação de semicondutores e metais condutores. Os mesmos também dizem que temos uma classe especial de material que possui resistência elétrica zero sob uma temperatura crítica que é chamada de supercondutores.

2.2.1.Bandas de orbitais moleculares

SHRIVER e ATKINS (2003) diz que a explicação da estrutura eletrônica de sólidos é que os elétrons contidos na camada de valências dos átomos ficam espalhados pelo cristal. Isso é definido por uma extensão da teoria de OM, onde o sólido é definido por uma molécula grande indefinida.

2.3. Isolantes

Se um sólido possui muitos elétrons que estão presentes para completar uma banda e existe um amplo afastamento de energia até o próximo orbital vazio, é considerado um sólido isolante, segundo SRIVER e ATKINS (2003).

SRIVER e ATKINS (2003) diz que "um sólido isolante é um semicondutor com uma grande separação entre as energias das bandas".

2.4.Semicondutores

Segundo SRIVER e ATKINS um semicondutor pode ser caracterizado pela propriedade física de conduzir mais eletricidade com o aumento de temperatura, pois em temperatura ambiente sua condutividade elétrica é baixa em relação a metais condutores. O tamanho da energia de separação de bandas (é menor que a energia de separação dos isolantes) é o que difere os materiais isolantes dos semicondutores.

2.4.1. Semicondutores intrínsecos

SRIVER e ATKINS (2003) dizem que um semicondutor intrínseco possui a separação de energia entre bandas muito pequena que leva alguns elétrons a pular para a banda superior vazia.

Essa ocupação da banda de condução introduz transportadores negativos no nível superior e vecâncias positivas no inferior; como resultado, o sólido é condutor. Um semicondutor em temperatura ambiente geralmente tem muito menor condutividade do que um condutor metálico, porque apenas poucos elétrons e vecâncias podem atuar como transportadores de carga (SRIVER e ATKINS, 2003)

Conforme diz SRIVER e ATKINS (2003) "A partir da forma exponencial da população da banda de condução, a condutividade de um semicondutor deve mostrar uma dependência em relação é a temperatura do tipo Arrhenius".

A forte dependência da condutividade com aumento da temperatura deve-se à dependência exponencial, tipo Boltzmann, da população eletrônica na banda superior com a temperatura (SRIVER e ATKINS, 2003).

2.4.2. Semicondutores extrínsecos

Segundo SRIVER e ATKINS (2003) no processo de dopagem o número de transportadores eletrônicos é aumentado, quando é possível ser inserido átomos com mais elétrons que o inicial. Os mesmos dizem que é necessário apenas um baixo nível de concentração do dopante, por esse motivo é preciso que o elemento inicial esteja o mais puro possível.

SRIVER e ATKINS (2003) utilizam o arsênio sendo dopado com silício como um exemplo para explicar a substituição do átomo dopante com o original. Os mesmos dizem que se os átomos doadores (que seria o arsênio no caso) estiverem longe um do outro, os elétrons podem ser localizados e a banda doadora será muito estreita. Neste processo é formado a Semicondutividade tipo n, indicando que os elétrons negativos são os vetores de carga.

[...] os níveis de energia dos átomos estranhos encontrar-se-ão com energia maior do que os elétrons de valência da rede hospedeira. A banda cheia do dopante normalmente está próxima da banda vazia de rede. Para T>0, alguns de seus elétrons serão promovidos termicamente para a banda de condução vazia. Em outras palavras, a excitação térmica permitirá a transferência de um elétron de um átomo de As para os orbitais vazios de um átomo de Si vizinho. Sendo capaz de migrar através das redes pelos de orbitais moleculares formados pela sobreposição Si-Si. (SRIVER e ATKINS, 2003)

SRIVER e ATKINS (2003) dizem que há um procedimento alternativo para a dopagem do com átomos de um elemento com menos elétrons de valência por átomo. Uma dopagem com átomos dessa espécie ocorre a introdução de vecâncias no sólido, ou seja, forma uma banda receptora estreita e vazia que fica localizado acima da banda cheia. Esta banda receptora permanece vazia enquanto a temperatura permanece baixa (T=0), mas recebe elétrons quando atinge altas temperaturas, ou seja, quando os elétrons ficam termicamente excitados, permitindo assim que os elétrons que sobram na banda se tornem móveis. Neste caso os transportadores de carga são positivos na banda inferior, sendo assim, chamada de Semicondutividade tipo p.

2.5. Supercondutividade

Segundo ATKINS e SRIVER (2003), a definição da supercondução por baixa temperatura é que existe um par Cooper, que seria um par de elétrons existente pela influência indireta de dois elétrons pelos núcleos da rede, sendo assim, quando um elétron se encontra em uma região particular do sólido, a estrutura se distorce com a movimentação do núcleo a caminho desse elétron.

Devido ao fato de a distorção local ser rica em carga positiva, é favorável para um segundo elétron juntar-se ao primeiro. Consequentemente, há uma atração virtual entre os dois elétrons e eles se movem juntos como um par.

A distorção local pode ser facilmente rompida pelo movimento térmico de íons; assim, a atração virtual ocorre somente a temperaturas muito baixas (SRIVER e ATKINS, 2003)

2.6. Óxidos e fluoretos modelo

O estudo de óxidos e fluoretos com metais ajudam a entender defeito da difusão de ions, não-estequiometria e toda a atuação destas características nas propriedades físicas, segundo SHRIVER e ATKINS (2003).

Segundo SHRIVER e ATKINS (2003), monóxidos da grande parte de metais 3d possuem uma estrutura do sal-gema, as propriedades destes óxidos têm sido muito estudadas por serem muito interessantes e por esses compostos prover exemplos de como estados de oxidação mistos e defeitos levam a não-estequiometria.

SHRIVER e ATKINS (2003) dizem que os monóxidos 3d MnO, FeO, NiO, e CoO possui a condutividade elétrica muito baixa que é aumentada pela temperatura, tendo assim uma característica semicondutora. Os mesmos continuam dizendo que o elétron permanece situado em seu novo sítio até que seja ativado termicamente e para mudar para o sitio seguinte.

A migração de elétron ou de buraco nesses semicondutores de óxidos é atribuída a um mecanismo de salto. Nesse modelo, o elétron ou buraco salta de um sítio de metal para o próximo. Ao chegar o sítio novo, ele força os íons vizinhos a ajustarem suas localizações, e o elétron ou buraco fica temporariamente preso no poço de potencial produzido por essa polarização atômica (SHIRVER e ATKINS (2003).

2.7. Polianilina

Segundo PADILHA (2011) a Polianilina (PANI) se encontra numa família de compostos cujos anéis aromáticos ou quinona (anéis com seis átomos de carbono C_6H_4) são conectados um ao outro pelos átomos de nitrogênio.

O fato do nitrogênio se apresentar com grau de oxidação diferente quando forma ligações químicas com o carbono permite a formação de compostos estruturalmente semelhantes, mas com comportamento óptico e eletrônico bastante diversificado. (PADILHA, Ronald. 2011)

PADILHA (2011) continua dizendo que a polianilina é um polímero linear, formado pela polimerização da anilina, o qual existe diferentes estados de oxidação, os seus anéis podem existir em formas benzenóides e quinóides.

Figura 2: Esquema da composição geral da PAN indicando as unidades reduzidas e oxidadas repetitivas; (a) Leucoesmeraldina; (b) Pernigranilina; (c) Esmeraldina; (d) Esmeraldina protonada considerando-se a formação de bipolarons.

Fonte: PADILHA, Ronald M. Estudo de transporte de carga de polímeros de Polianilina. 2011. Dissertação de Mestrado. PUC-Rio.

FERREIRA (2010) apud MCDIARMID, GENIES, MATTOSO, diz que dentre os polímeros condutores, a Polianilina (PANI) é um dos mais utilizados por conta da sua estabilidade química, considerando as condições ambientais e, também, devido à sua facilidade de síntese e dopagem em comparação a outros polímeros. AUGUSTO (2015) acrescenta que a PANI por mais que ocorra em diferentes estados de oxidação, em sua gyyforma base esmeraldina vem a ser a mais estável dentre todos seus estados. Ela também ressalta que a condutividade máxima da polianilina é de 5S cm⁻², sendo dentre os polímeros condutores o de menor condutividade.

"Houve grande interesse na PANI nos anos 80 pelo seu potencial em aplicações tecnológicas que gerou um crescente número de publicações e patentes nas últimas décadas". (XAVIER, Miguel Gustavo. 2004). FERREIRA (2010) apud MARTIN, FAHLMAN, TALLMAN, HIGUCHI, VIRJI e ZHANG, diz que A PANI tem

despertado esse interesse principalmente pelas suas aplicações em baterias recarregáveis, inibidores de corrosão, catalisadores e sensores.

2.7.1. Síntese da polianilina

A PANI é sintetizada pela oxidação do monômero (anilina). FOREZI (2011) publicou um artigo sobre Métodos de Preparação Industrial de Solventes e Reagentes Químicos na revista Virtual de Química em 2011 onde diz que a anilina é uma substância orgânica de forma molecular C₆H₅NH₂, e em seu estado puro, se apresenta como líquido oleoso incolor com odor característico. FOREZI (2011) ressaltou também que a anilina é muito usada na fabricação de espuma de poliuretano, produtos químicos agrícolas, tintas sintéticas, substâncias antioxidantes, herbicidas, etc.

Segundo XAVIER (2004) há dois métodos que podem ser utilizados para a síntese da PANI: por via química, que é através da oxidação direta da anilina ou oxidando a anilina por via eletroquímica em meio ácido.

Independentemente do método de síntese, afirma MAIA (2000) apud MacDiarmid, Mattoso, a composição química da PANI na forma de base (não dopada) é representada por uma estrutura geral formada por y e (1-y) unidades repetitivas das espécies reduzida e oxidada, respectivamente (figura 1):

Figura 3: Estrutura da polianilina na forma de base (não dopada)

Fonte: MAIA, Daltamir J. et al. Síntese de polímeros condutores em matrizes sólidas hospedeiras. Química Nova, 2000.

MAIA apud HUANG continua dizendo que a princípio, y pode variar de 0 até 1, mas duas formas sendo duas delas extremas e uma intermediária são, geralmente, diferenciadas na literatura: a forma totalmente reduzida (y = 1), conhecida como leucoesmeraldina; a forma totalmente oxidada (y = 0), chamada de pernigranilina, e a forma parcialmente oxidada (y = 0.5), que é a esmeraldina. Esta fórmula geral mostra somente as formas básicas do polímero.

O método que utilizaremos como base para a polimerização da anilina é, segundo FERREIRA (2010), a síntese química mais comum e também mais utilizada, onde se aplica uma concentração absoluta de anilina e persulfato de amônio (APS) *ca.* 0,42 e 0,097 molL ⁻¹ (razão molar monômero/oxidante *ca.* 4/1), respectivamente e meio aquoso ácido. Geralmente o PH próximo de zero é obtido quando ácidos minerais tais como ácido sulfúrico ou clorídrico é utilizado. A reação é realizada entre 0 – 5 °C até que haja precipitação de um pó verde chamado de sal esmeraldina (PANI-ES), cujo é a forma condutora da PANI, e a que será necessária para realização do nosso projeto.

"A PANI pode ser dopada por protonação, isto é, sem que ocorra alteração do número de elétrons (oxidação/redução) associados à cadeia polimérica, e podem ser divididos em três estados baseados no estado de oxidação". (PADILHA Ronald, 2011)

2.7.2. Espectroscopia eletrônica de absorção no UV- VIS- NIR

FERREIRA (2010) diz que uma importante característica da PANI é a sua variação de oxidação, dopagem e coloração. Por este motivo uma das principais técnicas de caracterização da PANI é a espectroscopia de absorção no UV-VIS-NIR.

FERREIRA (2010) continua dizendo que os espectros UV-VIS-NIR das soluções N-metil-pirrolidona (NMP) das três formas mais usuais da PANI são mostrados na figura 2.

Para todas as formas da PANI é observada uma absorção no UV que é atribuída à transição $\pi-\pi$ * do anel benzênico. Para as formas isolantes, PANI-EB e PANI-PB, esta banda apresenta máximo de absorção em ca. 330 nm. Porém, para forma condutora, PANI-ES, o máximo de absorção da banda $\pi-\pi$ * do benzeno ocorre em ca. 380 nm. (FERREIRA, Daniela. 2011)

Base de Esmeraldina

000

000

Base de Pernigranilina

300 400 500 600 700 800 900 1000 1100 1200 Comprimento de Onda/nm

al de Esmeraldina

Figura 4: Espectros de absorção no UV-VIS-NIR da base de esmeraldina (PANI-EB), da base pernigranilina (PANI-PB) e do sal de esmeraldina (PANI-ES) em solução de NMP.

Fonte: FERREIRA, Daniela Colevati. Caracterização espectroscópica dos produtos da polimerização da anilina-correlação entre estrutura química e morfologia. 2010. Tese de Doutorado. Universidade de São Paulo.

2.8.Tintas

Segundo a página Tintas e Pinturas a tinta é, basicamente, a distribuição de um ou mais pigmentos num veículo (resina) e tem como principais funções proteger superfícies contra os agentes agressores, como chuva, sol, vento, entre outros e pra embelezar as superfícies.

2.8.1. Componentes básicos da tinta

E ainda se baseando nesse artigo, existem quatro componentes básicos, que são os veículos, pigmentos, solventes e aditivos.

Veículos: constituídos por diversos tipos de resina, podendo ser naturais, sintéticas, entre outras, elas formam a película responsável pela proteção depois que a tinta seca, também são elas as responsáveis pelo tempo de secagem, retenção de cor e brilho, aderência, etc.

Pigmento: partículas sólidas, insolúveis no veículo, podendo ser Ativos e Inertes. Os ativos dão cor, poder de cobertura e tingimento, podem ser orgânicos ou inorgânicos de origem natural, sintética ou metálica. Os Inertes promovem propriedades tais como maior resistência, dureza, lixabilidade, etc.

Solventes: Utilizados com intuito de diminuir a viscosidade ou consistência, visando maior facilidade de aplicação. Os solventes mais comuns são: água, xilol e acetona.

Aditivos: São substâncias que adicionadas à tinta promovem certas características. Exemplo: Bactericida, etc.

2.8.2. Tintas condutoras

Com base no artigo técnico científico da ITA as tintas condutoras possuem grande eficácia quando utilizadas como recobrimentos anticorrosivos, sendo de fato muito utilizadas com esse intuito. Devido às necessidades tecnológica e econômica para minimizar as perdas dos materiais metálicos, como aço, cobre prata e ferros, houve grande demanda na procura por recobrimentos que os protegessem.

Atualmente, alguns projetos estão sendo desenvolvidos na Universidade de Wollongong (Intelligent Polymer Research Institute) pelo grupo de pesquisa do professor Gordon Wallace, em conjunto com o Departamento de Defesa dos EUA, visando a obtenção de materiais anticorrosivos, tipo tintas, para aplicação em aeronaves da Força Aérea Americana. Talo et al observaram que recobrimentos de resina epóxi com PAni, dopada com ácido canforsulfônico (CSA) via métodos eletroquímicos, têm uma grande eficiência na proteção contra corrosão de aços. Outro tipo de aplicação de revestimentos de resina epóxi e de PU contendo PAni foi estudado por Wang et al, que avaliaram tintas de aplicação marítima para evitar o acúmulo de resíduos e de organismos vivos no corpo de embarcações, contribuindo, assim, para a economia de combustível. (ITA, Centro Técnico Aeroespacial. 2002).

3. DESENVOLVIMENTO

Inicialmente utilizamos como base algumas pesquisas e teses de doutorado que encontramos para a realização da polimerização, porém as informações encontradas eram incompletas devido a não possuírem as proporções utilizadas e eram realizadas em laboratórios com recursos extremamente mais avançados, o que nos levou a realizarmos diversas adaptações nos procedimentos cujo tínhamos em mãos.

A primeira polimerização fora realizada com valores determinados pelo orientador, para que pudéssemos ter as primeiras noções da maneira que precisava ser feito. Utilizamos 3 g de anilina em pó que nós mesmas havíamos comprado, esta fora dissolvida em 100 ml de ácido clorídrico a 1M, transferimos para um balão de fundo chato de 500 ml. Montamos o agitador magnético, no qual colocamos o balão dentro de um pote de sorvete repleto de gelo e sal grosso. Depois pesamos 5 g de persulfato de amônio P.A, cujo dissolvemos em mais 200 ml de HCl. Ligamos o sistema e fomos adicionando o persulfato de amônio com o HCl lentamente. Deixamos bater por cerca de quatro horas, e armazenamos a solução. Na semana seguinte, realizamos a filtração a vácuo e o pouco sólido obtido, levamos para a secagem na estufa 50°C cujo mesmo veio a queimar.

Após a realização de mais algumas pesquisas, vimos em diversas teses que a agitação deveria ser realizada por 16 horas, e devido ao fato de não possuirmos a autorização necessária para permanecer no laboratório por um longo período de tempo, fomos instruídas pelo orientador a tentativa de terminar a polimerização em nossas próprias casas. Para isso utilizaríamos um mixer e levaríamos a solução protegida por uma caixa de isopor. Efetuamos a compra do mixer, mas na mesma semana um de nossos professores disponibilizou outro procedimento (procedimento 1), sendo este por sua vez mais simples.

Seguindo o procedimento disponibilizado, na segunda tentativa de polimerização, preparamos uma solução de 50 ml de HCl a 1M, na qual em 10 ml dissolvemos 3g da anilina em pó, transferimos a solução para um balão de fundo chato que colocamos dentro de um pote de sorvete repleto de gelo e sal grosso, o sistema estava mantido a pelo menos -5°C. Dissolvemos então, 6g de (NH4)2S2O4 no restante da solução de HCl cujo adicionamos lentamente no balão, sob agitação. A solução fora agitada por um pouco mais de duas horas.

Retiramos a solução do sistema, e a armazenamos num vidro âmbar, para a filtração na aula seguinte. A filtração fora realizada sob vácuo e não fora efetuada a dopagem, pois recebemos a orientação de um de nossos professores que com a quantidade de HCl utilizado, a solução já estaria dopada, sem haver a necessidade da realização da mesma.

Após a filtração, retiramos o papel filtro utilizado deixamos secar naturalmente. Fora possível notar que não seria possível extrair nada do papel filtro, com isso fomos instruídas por nosso orientador a buscar uma maneira eficaz para

tentativa de realizar essa extração. A melhor maneira encontrada foi colocar o papel filtro no álcool, e depois evaporá-lo, com auxílio de uma manta térmica. Mas ainda assim não fora possível obter o sal esmeraldina desejado.

Iniciamos outra síntese, dobrando a quantidade HCI e ao realizarmos a filtração, notamos a presença de um sólido escuro que não havia no filtrado anterior, sendo este possivelmente polianilina, levando a crer o aumento da quantidade do ácido fora crucial para a possível obtenção do polímero. Com isso, deixamos o sólido obtido secando de maneira natural novamente, devido problemas com o dessecador.

Notamos que a quantidade de sólido que obtivemos ainda era insuficiente, o que nos levou a realizar mais uma polimerização, desta vez, aumentando a quantidade dos reagentes. Utilizamos 5,2 g de anilina, 10,38 g de persulfato de amônio e 520,2 ml de HCl a 1M. Deixamos a solução agitar por 5 horas e armazenamos. Posteriormente, fora executada a filtração a vácuo cujo sólido retirado do papel filtro fora armazenado juntamente ao sólido obtido na polimerização anterior.

Ao retornarmos para efetuar a pesagem e os testes de condutividade, vimos que a maior parte do sólido, não estava no local em que havíamos deixado, havendo a necessidade da realização de outra síntese. Efetuamos o teste de condutividade, com auxílio de um multímetro, no pouco sólido que havia restado, mas não obtivemos êxito. Adicionamos então, uma pequena quantidade de HCI na tentativa de realizar a dopagem, mas ainda assim, não houve resultado.

Na quinta tentativa de polimerização, optamos por alterar a concentração do ácido, preparamos assim 250 ml de solução de HCl P.A 50%. Utilizamos 3,5 g de anilina e 9 g de persulfato de amônio. Durante a polimerização, fora possível notar a mudança de coloração, a qual comumente possuía um tom verde escuro, veio a se tornar alaranjada, ao que tudo indica ter ocorrido devido à alta concentração de ácido. A solução fora agitada por cerca de 3 horas e armazenada para filtração na semana seguinte.

Durante a filtração, notamos a presença do que aparentava serem algumas cascas alaranjadas juntamente de um pó. Ao término da filtração, medimos a condutividade com auxílio do multímetro e vimos que esta por sua vez, estava conduzindo. Armazenamos para que secasse e posteriormente pudéssemos realizar

a tentativa de aplicação numa tinta ou verniz. Efetuamos o preparo do verniz utilizando isopor e xilol.

Após uma semana, testamos novamente a condutividade do sólido obtido através da polimerização e notamos que este não estava mais conduzindo. O que nos levou a concluir que, na verdade, o que possibilitou a alteração na marcação no multímetro foi a alta concentração de ácido presente, e parou de conduzir assim que possivelmente o ácido evaporou.

Visto que faltava pouco tempo para a entrega e apresentação do projeto, entramos em contato com um técnico em química que possuía conhecimento e experiência na área deste polímero, que nos recomendou o procedimento 2, e nos orientou que a utilização da anilina de madeira fora um dos principais erros cometidos, devido esta não ser a anilina ideal para a polimerização.

Para nova tentativa de polimerização, haveria a necessidade da compra de anilina para síntese. Porém até que a empresa respondesse ao pedido de orçamento e mais o tempo até que a encomenda chegasse, já teriam se perdido vários dias. Mas mesmo assim, fora requerido dois orçamentos de empresas distintas, na tentativa de efetuar tudo o mais rápido possível, mas não se obteve resposta alguma, o que impossibilitou o término do projeto.

4. CONSIDERAÇÕES FINAIS

O projeto desenvolvido visa estudar as propriedades condutivas da polianilina e como emprega-la em uma tinta, para que a mesma se torne condutora. O estudo dos polímeros condutores é de grande importância cientifica, pois eles possuem um grande potencial para aplicações tecnológicas.

Os polímeros condutores podem combinar as propriedades dos plásticos com os comportamentos magnéticos, elétricos e ópticos dos metais, podendo desenvolver produtos que se assemelham os metais. A polianilina que está sendo estudada é o polímero de mais fácil obtenção, em relação aos demais polímeros condutores, mas por conta de o laboratório não possuir recursos necessários para a polimerização do mesmo, houve diversas modificações necessárias para a sua realização.

Após diversas mudanças nos procedimentos encontrados, entramos em contato com um técnico em química, que já havia feito um projeto com a polianilina,

e com o auxilio do mesmo observamos que estávamos utilizando o tipo de anilina incorreto, que fora um ponto crucial para não ser possível o desenvolvimento do projeto. Como fora descoberto o erro faltando poucos dias para o término do tempo, não houve a possibilidade da encomenda da anilina que seria utilizada e por consequência não foi possível o termino do projeto.

Devido todos os problemas ocorridos, não fora possível introduzir a polianilina na tinta, porém em vista que a polianilina pode receber altas descargas elétricas, teoricamente, a tinta condutora pode vir a se tornar uma alternativa muito eficaz para a substituição dos fios terra, mas para sabermos ao certo, haveria a necessidade de estudos e testes mais aprofundados.

REFERÊNCIAS

AUGUSTO, Tatiana. Introdução a polímeros condutores: síntese e caracterização eletroquímica da polianilina. 2015.

CANEVAROLO JR, Sebastião V. **Ciencia dos polímeros**. Edição 2. São Paulo, Artliber editora, 2006, 280 p.

FERREIRA, Daniela Colevati. et al. Caracterização espectroscópica dos produtos da polimerização da anilina-correlação entre estrutura química e morfologia. 2010. Tese de Doutorado. Universidade de São Paulo.

FOREZI, Luana. **Métodos de Preparação Industrial de Solventes e Reagentes Químicos**. Revista Virtual de Química. 2011 p. 1 e 4

ITA, Centro Técnico Aeroespacial. **Estudo reológico de tintas de poliuretano contendo pani-DBSA aplicadas como materiais absorvedores de microondas (8-12 GHz)**. Polímeros: Ciência e Tecnologia, v. 12, n. 4, p. 318-327, 2002.

MAIA, Daltamir J. et al. **Síntese de polímeros condutores em matrizes sólidas hospedeiras**. Química Nova, 2000.

PADILHA, Ronald M. **Estudo de transporte de carga de polímeros de Polianilina**. 2011. Dissertação de Mestrado. PUC-Rio.

SHRIVER, Duward F.; ATKINS, Peter Willian. **Química inorgânica**. Edição 3. Porto Alegre, Editora Bookman, 2003, 816 p.

XAVIER, Miguel Gustavo. **Polimerização da anilina e 3-metiltiofeno sobre eletrodos de ouro modificados com monocamadas automontdas de dodecanotiol**. 2004. Tese de Doutorado. Universidade de São Paulo.