Toxin Overlap in Crotalus Snake Genus: Analyzing Venom Composition

1. Research Question(s)

- a. How much toxin overlap exists between Crotalus snake genus?
 - i. What are the most common venom toxins across the genus?
 - **ii.** How similar or different are venom compositions between snakes within the genus?

2. Objective(s)

- a. Provide a framework for analyzing venom toxin composition in Crotalus snakes.
- **b.** Develop R scripts to import, visualize, and compare toxin composition data.
- **c.** Summarize toxin distribution across snakes within the genus using graphical representation.
- **d.** Identify which toxins are most prevalent across the genus in an effort to identify which toxins should be the primary targets when thinking of creating universal or generic antivenoms.

3. Approach

- a. I used the -omics data from several publications to create a dataset representing venom toxin composition across various Crotalus snakes. The dataset contains binary presence/absence values for major snake venom toxin types. Using R, we will:
 - i. Load and clean the dataset.
 - ii. Visualize toxin distribution using heatmaps.
 - iii. Summarize toxin diversity across snakes within the genus.

b. R Code for Analysis

i. Data Import & Cleaning

```
# Load necessary libraries
# install.packages("tidyverse")
# install.packages("ggplot2")
# library(tidyverse)
# library(ggplot2)

# Load the dataset
setwd() # Insert relevant working directory
venom_data <- read.csv("venom_composition.csv")

# View first few rows
head(venom_data)

# Check for missing values
sum(is.na(venom_data))

Exploratory Data Analysis
```

Transform data to long format for visualization

venom_long <- venom_data %>%

```
pivot_longer(cols = -Species, names_to = "Toxin", values_to =
 "Presence") %>%
 mutate(Toxin = gsub("\\.", " ", Toxin)) # Remove periods in toxin names
# Plot heatmap
ggplot(venom_long, aes(x = Species, y = Toxin, fill = factor(Presence))) +
   geom_tile(width = 0.9) + # Makes each column wider
   scale_fill_manual(values = c("0" = "white", "1" = "darkgreen"),
                   labels = c("0" = "Absent", "1" = "Present")) +
   scale_x_discrete(expand = expansion(mult = 0.1)) + # Increase
   column spacing
   theme_minimal() +
   labs(title = "Venom Toxin Presence Across *Crotalus* Genus", fill =
   "Toxin Presence") +
   theme(
       axis.text.x = element_text(angle = 45, hjust = 1), # Tilt x-axis
       labels
       plot.title = element_text(hjust = 0.5), # Center title
       aspect.ratio = 1.5 # Adjust aspect ratio to spread columns
```

4. Selected References

- a. Borja, M., Castañeda-Gaytán, G., Alagón, A., Strickland, J. L., Parkinson, C. L., Gutiérrez-Martínez, A., Rodríguez-López, B., Zarzosa, V., Lomonte, B., Saviola, A. J., Fernández, J., Smith, C. F., Hansen, K. C., Pérez-Robles, A., Castañeda-Pérez, S., Hirst, S. R., Olvera-Rodríguez, F., Fernández-Badillo, L., Sigala, J., Jones, J., Montaño-Ruvalcaba, C., Ramírez-Chaparro, R., Margres, M. J., Acosta-Campaña, G., & Neri-Castro, E. (2025). Venom variation and ontogenetic changes in the *Crotalus molossus* complex: Insights into composition, activities, and antivenom neutralization. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 290, 110129. https://doi.org/10.1016/j.cbpc.2025.110129
- b. Calvete, J. J., Fasoli, E., Sanz, L., Boschetti, E., & Righetti, P. G. (2009). Exploring the venom proteome of the western diamondback rattlesnake (*Crotalus atrox*) via snake venomics and combinatorial peptide ligand library approaches. *Journal of Proteome Research*, 8(6), 3055–3067. https://doi.org/10.1021/pr900249q
- c. Rokyta, D. R., Lemmon, A. R., Margres, M. J., & Aronow, K. (2012). The venom-gland transcriptome of the eastern diamondback rattlesnake (*Crotalus adamanteus*). *BMC Genomics*, 13, Article 312. https://doi.org/10.1186/1471-2164-13-312
- d. Rokyta, D. R., Wray, K. P., & Margres, M. J. (2013). The genesis of an exceptionally lethal venom in the timber rattlesnake (*Crotalus horridus*) revealed through comparative venom-gland transcriptomics. *BMC Genomics*, 14, Article 394. https://doi.org/10.1186/1471-2164-14-394
- e. Segura, Á., Herrera, M., Reta Mares, F., Jaime, C., Sánchez, A., Vargas, M., Villalta, M., Gómez, A., Gutiérrez, J. M., & León, G. (2017). Proteomic, toxicological, and immunogenic characterization of Mexican west-coast rattlesnake (*Crotalus*

- basiliscus) venom and its immunological relatedness with the venom of Central American rattlesnake (*Crotalus simus*). Journal of Proteomics, 158, 62-72. https://doi.org/10.1016/j.jprot.2017.02.015
- f. Strickland, J. L., Mason, A. J., Rokyta, D. R., & Parkinson, C. L. (2018). Phenotypic variation in Mojave rattlesnake (*Crotalus scutulatus*) venom is driven by four toxin families. *Toxins*, 10(4), Article 135. https://doi.org/10.3390/toxins10040135