

RETO: SPOTIFY API

Data Quality Engineer - Prueba Técnica

REPORTE CALIDAD DE DATOS

Dirigido a : Empresa R5

Encargado: Juan José López Condori

9 de enero de 2024

${\rm \acute{I}ndice}$

1.	Introducción	2
2.	Metodología 2.1. Herramientas utilizadas	2 2
3.	Dataset	3
4.	Análisis de calidad de datos 4.1. Completeness (Completitud)	7
5.	4.3. Validity (Validez)	8

Reporte de calidad de datos -Spotify API

1. Introducción

Se ha demostrado que los datos son la clave para entregar valor a los clientes y estos son una parte integral de tu estrategia comercial. Además, son un activo importante de todas las empresas.

El presente reporte de calidad de datos - Spotify API forma parte del proceso de selección para el cargo de Data Quality Engineer Junior en la empresa R5.

Esta propuesta busca explicar a detalle el proceso de indentificación de todas las anomalías de calidad de datos del dataset obtenido de la API de Spotify (dataset entregado como parte de la prueba), cabe resaltar que el reporte se basa en las seis dimensiones principales para la evaluación de la calidad de los datos [1]

2. Metodología

Para el proceso de evaluación de calidad de datos y de la identificación de anomalías se utilzó las seis dimensiones principales para la evaluación de la calidad de los datos:

- Completeness (Completitud).
- Uniqueness (Unicidad).
- Timeliness (Actualidad).
- Validity (Validez).
- Accuracy (Exactitud).
- Consistency (Consistencia).

Considerando el dataset proporcionado se empleó solo 03 dimensiones: Completeness (Completitud), Uniqueness (Unicidad) y Validity (Validez).

2.1. Herramientas utilizadas

Las herramientas utilizadas para la generación del reporte de calidad de datos - Spotify API, se utilizaron las siguientes herramientas/bibliotecas: Menciona las herramientas, librerías o lenguajes de programación que has utilizado (por ejemplo, Python y pandas).

- Lenguaje de programación Python
- Librería Pandas
- Librería Display

3. Dataset

El dataset proporcionado **taylor_swift_spotify.json** tenía una estructura que se detalla a continuacion:

```
{
1
    "artist_id": "06HL4z0CvFAxyc27GX",
2
        "artist_name": "Taylor Swift",
        "artist_popularity": 120,
        "albums": [
            {
                 "album_id": "1o59UpKw81iHR0HPiSkJR0",
                 "album_name": "1989 (Taylor's Version) [Deluxe]",
                 "album_release_date": "2023-10-27",
                 "album_total_tracks": 22,
10
                 "tracks": [
11
                     {
12
                          "disc_number": 1,
13
                          "duration_ms": 212600,
                          "explicit": false,
15
                          "track_number": 1,
16
                          "audio_features": {
17
                              "danceability": 0.757,
18
                              "energy": 0.61,
19
                              "key": 7,
20
                              "loudness": -4.84,
21
                              "mode": 1,
22
                              "speechiness": 0.0327,
                              "acousticness": 0.00942,
                              "instrumentalness": 3.66e-05,
25
                              "liveness": 0.367,
26
                              "valence": 0.685,
27
                              "tempo": 116.998,
28
                              "id": "4WUepByoeqcedHoYhSNHRt",
29
                              "time_signature": 4
30
                         },
31
                         "track_popularity": 77,
                         "track_id": "4WUepByoeqcedHoYhSNHRt",
33
                          "track_name": "Welcome To New York (Taylor's Version)"
34
                     }, . . . ] , . . .
35
                }
36
37
   }
38
39
40
```

Se indentificó que el campo "albums" era un campo anidado (una lista de albums) asi mismo cada uno de los albums tenía el campo "tracks" otro campo anidado (una lista de tracks), por lo tanto se procedió a desanidar ambos campos, exportando los siguientes archivos csv:

- dataset_albumes.csv : Con los albums desanidados.
- dataset: Con ambos campos desanidados(albums y tracks).

4. Análisis de calidad de datos

Considerando el dataset proporcionado se empleó solo 03 dimensiones: Completeness (Completitud), Uniqueness (Unicidad) y Validity (Validez), que se detallan a continuación:

4.1. Completeness (Completitud).

En el análisis del dataset, se identificaron registros con datos nulos en varias columnas, considerando los datos anidados:

 Album: Mediante la función .isnull() de pandas en un daframe, analizamos los valores nulos de manera general como se muestra en la Figura 1

```
artist id
                        0
artist name
                        0
artist popularity
                        0
album id
                        0
album name
                        2
album release date
                        0
album total tracks
                        0
tracks
                        0
```

Figura 1: Informacion general de datos nulos

En el campo $album_id$, se encontraron dos registros con valores nulos, tanto en la fila 16 y 20 respectivamente, como se muestra en la Figura 2

Figura 2: Datos nulos - campo album_name

■ Tracks: Con el mismo procedimiento utilizado anteriormente, mostramos en la Figura 3, la información general de datos nulos desanidando la información del campo *tracks*:

Juan José Lopez

Figura 3: Informacion general de datos nulos

En la Figura 4 se muestran las filas con valores nulos de los campos: $album_id$, $track_id$, $track_name$, $audio_features_danceability$, $audio_features_energy$, $audio_features_key$, $audio_features_loudness$, $audio_features_s$, $audio_features_timess$, $audio_features_timess$, $audio_features_timess$, $audio_features_timess$, $audio_features_timess$, $audio_features$, se añadió el campo Index que indica la posición de la fila en el dataframe original.

Index	track_id	track_name	audio_features_danceability	audio_features_energy	audio_features_key	audio_features_loudness	audio_features_speechiness	audio_features_acousticness	audio_features_liveness	audio_features_tempo	audio_features_time_signature
0 77	1QQii3pa5m8MEda0nbkjfw	NaN	0.661	0.345	4.0	-14.037	0.1440	0.54500	0.0871	125.977	4.0
1 91	02Zkkf2zMkwRGQjZ7T4p8f	NaN	0.638	0.634	4.0	-6.582	0.0457	0.13300	0.1520	96.953	4.0
2 104	7712gjoih4QoDbXpljEk21	NaN	0.700	0.509	7.0	-10.547	0.0789	0.11200	0.1370	110.947	4.0
3 321	NaN	Gorgeous	0.800	0.535	7.0	-6.684	0.1350	0.07130	0.2130	92.027	4.0
4 330	22C0JIVhFaczZ4t9heqREN	Wildest Dreams	NaN	NaN	8.0	NaN	NaN	0.06920	0.1060	139.997	4.0
5 334	7eGeUVeCEvEQrivmjl9Qn3	Teardrops On My Guitar - Radio Single Remix	0.626	0.427	NaN	NaN	0.0234	0.31300	0.1380	99.959	4.0
6 341	41T04yafZVrjNq2FqvLtId	So It Goes	0.574	0.610	2.0	-7.283	0.0732	0.12200	NaN	74.957	4.0
7 363	NaN	Jump Then Fall	0.617	NaN	2.0	-5.712	0.0274	0.11300	0.0740	80.007	NaN
8 375	NaN	Welcome To New York	0.789	0.634	7.0	-4.762	0.0323	0.03480	0.3020	116.992	4.0
9 379	NaN	All You Had To Do Was Stay	0.605	0.725	5.0	-5.729	0.0323	0.00201	0.1010	96.970	4.0
10 382	NaN	Bad Blood	0.646	0.794	7.0	-6.104	0.1900	0.08850	0.2010	170.216	4.0
11 391	4FoV729rw7IhoKlMZW5K5V	NaN	0.592	0.128	9.0	-17.932	0.5890	0.82900	0.5270	78.828	4.0
12 396	71PmZqBXH0RUETqxpwlV0w	NaN	0.598	0.786	2.0	-5.572	0.0382	0.00256	0.1170	95.021	4.0
13 401	0TvQLMecTE8utzoNmvXRbK	NaN	0.652	0.802	7.0	-6.114	0.1810	0.08710	0.1480	170.157	4.0
14 408	7gJtmLyPTwKzhGzMBXtuXH	NaN	0.602	0.896	1.0	-4.267	0.0437	0.07730	0.0911	124.978	4.0
15 431	72GIZuUXo14oyrS0si3Rgc	The Story Of Us - Live	NaN	0.908	9.0	-5.156	0.0651	NaN	0.8150	139.813	4.0
16 432	7mFiEij8AXPUZB7aKLbUlQ	Mean - Live/2011	0.429	0.915	4.0	-4.373	0.0690	0.15400	0.6930	NaN	4.0
17 434	NaN	Back To December/Apologize/You're Not Sorry	0.374	0.516	2.0	-8.745	0.0294	0.15500	0.7950	142.057	4.0
18 442	NaN	Enchanted - Live/2011	0.340	0.663	8.0	-5.597	0.0331	0.07470	0.5630	163.678	4.0
19 445	NaN	Mine - POP Mix	0.696	0.768	7.0	-3.863	0.0308	0.00461	0.1010	121.050	4.0

Figura 4: Datos nulos - campo track desanidado

En la Figura 5 se muestra la integridad de dataset según las columnas:

artist_id	100.00			
artist_name	100.00			
artist_popularity	100.00			
album_id	100.00			
album_name	92.59			
album_release_date	100.00			
album_total_tracks	100.00			
disc_number	100.00			
duration_ms	100.00			
explicit	100.00			
track_number	100.00			
track_popularity	100.00			
track_id	98.52			
track_name	98.70			
audio_features_danceability	99.63			
audio_features_energy	99.63			
audio_features_key	99.81			
audio_features_loudness	99.63			
audio_features_mode	100.00			
audio_features_speechiness	99.81			
audio_features_acousticness	99.81			
audio_features_instrumentalness	100.00			
audio_features_liveness	99.81			
audio_features_valence	100.00			
audio_features_tempo	99.81			
audio features id	100.00			
audio_features_time_signature	99.81			

Figura 5: Integridad del dataset completo (%)

La presencia de datos nulos en estas columnas puede deberse a diversas razones, como errores durante la recolección de datos, registros incompletos en la fuente de origen, o incluso cambios en la estructura de la base de datos que no se han reflejado adecuadamente en la extracción de datos.

La identificación de estos datos faltantes es crucial para comprender la integridad del dataset y decidir cómo manejarlos, ya sea eliminándolos, imputando valores o aplicando estrategias específicas según el contexto del análisis.

4.2. Uniqueness (Unicidad).

En el análisis de los datos se encontró una fila duplicada, esto se identificó mediante el campo " $album_id$ ", considerando que debe ser un valor único, las filas duplicadas se muestran en la Figura 6.

Figura 6: Datos duplicados

La Unicidad de los datos es de 96.43 %

4.3. Validity (Validez).

En el proceso se encontró una fila con un tipo de datos que no correspondía al atributo correspondiente, en el campo "album_total_tracks", donde los datos eran tipo entero se identificó un dato de tipo string, como se observa en la Figura 7

Figura 7: Datos con tipo de dato incorrecto

5. Conclusiones

- Se identificaron 2 filas duplicadas en el conjunto de datos, lo que indica posibles errores en la entrada de datos o inconsistencias en el proceso de almacenamiento. Se recomienda revisar y mejorar los controles de calidad en la entrada de datos para prevenir duplicados en el futuro.
- Se encontraron valores nulos en varias columnas. La presencia de valores nulos puede afectar la integridad y confiabilidad de los resultados del análisis. Se sugiere realizar una imputación de datos y establecer validaciones más estrictas en la entrada de datos para minimizar la ocurrencia de valores nulos.

Referencias

[1] The Six Primary Dimensions For Data Quality Assessment, 2013