A Family of Test Adequacy Criteria for Database-Driven Applications

Gregory M. Kapfhammer

Department of Computer Science

University of Pittsburgh

Department of Computer Science
Allegheny College

Mary Lou Soffa
Department of Computer Science
University of Pittsburgh

Motivation

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen NavData are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

Testing Challenges

- → Should consider the environment in which software applications execute
- Must test a program and its interaction with a database
- → Database-driven application's state space is well-structured, but infinite (Chays et al.)
- → Need to show program does not violate database integrity, where integrity = consistency + validity (Motro)
- Must locate program and database coupling points that vary in granularity

 A program can interact with a database at different levels of granularity

Test Adequacy Criteria

- \rightarrow P violates a database D_i 's validity when it:
 - ightharpoonup (1-v) inserts entities into D_i that do not reflect real world
- \rightarrow P violates a database D_i 's completeness when it:
 - \rightarrow (1-c) deletes entities from D_i that still reflect real world
- In order to verify (1-v) and (1-c), T must cause P to define and then use entities within $D_1, \ldots, D_n!$

Data Flow Information

- Interaction point: 'UPDATE UserInfo SET
 acct_lock=1'' + 'WHERE
 card_number='' + c_n + '';'';
 - → Database Level: define(BankDB)
 - Attribute Level: define(acct_lock) and use(card_number)
- Data fbw information varies with respect to the granularity of the database interaction

Database Entities

UserInfo

ı	card_number	pin_number	user_name	acct_lock
	1	32142	Brian Zorman	0
	2	41601	Robert Roos	0
	3	45322	Marcus Bittman	0
	4	56471	Geoffrey Arnold	0

$$A_{\nu}(I_r) = \{ 1, 32142, \ldots, Geoffrey Arnold, 0 \}$$

The DICFG: A Unified Representation

- "Database-enhanced"CFG for lockAccount
- Define temporaries to represent the program's interaction at the levels of database and attribute

The DICFG: A Unified Representation

- → Database interaction graphs (DIGs) are placed before the database interaction point *I*_r
- Multiple DIGs can be integrated into a single CFG

Test Adequacy Criteria

- → Database interaction association (DIA) involves the def and use of a database entity
- DIAs can be located in the DICFG with data flow analysis
- all-database-DUs requires
 tests to exercise all DIAs for all
 of the accessed databases

Generating Test Requirements

Counting Associations and Definitions

→ DIAs at attribute value level represent 16.8% of mp3cd's and 9.6% of ATM's total number of intraprocedural associations

Measuring Time Overhead

Computing DIAs at the attribute value level incurs no more than a 5 second time overhead

Measuring Average Space Overhead

→ mp3cd shows a more marked increase in the average number of nodes and edges than ATM

Measuring Maximum Space Overhead

→ mp3cd shows a signifi cantly greater maximum space overhead than ATM

Conclusions

- → Must test the program's interaction with the database
- Unique family of test adequacy criteria to detect type (1) violations of database validity and completeness
- Intraprocedural database interactions can be computed from a DICFG with minimal time and space overhead
- High number of hanging defi nitions indicates that the scope of data fbw analysis could be broadened
- → This data fbw-based test adequacy criteria can serve as the foundation for algorithms that measure test suite quality, automatically generate test cases, and support regression testing

http://cs.allegheny.edu/~gkapfham/research/diatoms/