HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

Applied Algorithm Lab

Strongly connected component

ONE LOVE. ONE FUTURE.

Strongly connected component

- Count #strongly connected components in a directed graph
 - Definition: A subset with maximal number of vertices that between 2 arbitrary vertices, there exists a path from a vertex to the other and vice versa.

Thành phần liên thông mạnh là một tập con tối đa các đỉnh sao cho giữa 2 đỉnh bất kỳ luôn có đường đi từ đỉnh này đến đỉnh kia và ngược lại.

- Input: Edge list
 - Line 1 contains N, M
 - M lines follow, containing a pair of 2 integers a, b which is an undirected edge from a to b.
- Output:
 - Number of strongly connected components.

Strongly Connected Components

- BFS and DFS can find all connected component in undirected graph.
- However, in directed graph, finding all strongly connected components is not trivial.
- Can we use DFS tree to find all strongly connected components?

Strongly connected component

- Idea to solve: DFS on residual graph. Algorithm:
 - Run DFS on G -> compute the finishing time f(v) of each node v of G
 - Build residual graph G^T of G: reverse direction of all edges
 - Run DFS on G^T:
 - the nodes are considered in a decreasing order of finishing time f:
 - Each run DFS(u) will visit all nodes of the strongly connected component containing
 - Number of connected components on G = number of times call DFS on residual graph of G

THANK YOU!