Eco Assignemnt_1_DHEERAJ_2020194

Q1) csv is attached

Q2 part B

V40

mean	5.566724
median	3.1
mode	10
sd	8.297

V42

mean	18.43
median	17.5
mode	13.3
sd	13.9

V43

mean	7.148
median	4.2
mode	30
sd	10.850

V44

mean	1.686
median	0
mode	3.3
sd	6.62

mean	3.822
median	0.9
mode	3.3
sd	9.73077

mean	0.2
median	0
mode	0
sd	3.134

Q2 part B

library(ggplot2)

#importing ggplot to make histrogram

```
v40 = dheeraj[,c('v40')]
v42 = dheeraj[,c('v42')]
v43 = dheeraj[,c('v43')]
v44 = dheeraj[,c('v44')]
v45 = dheeraj[,c('v45')]
v46 = dheeraj[,c('v46')]
```

#Year wise

ggplot(dheeraj,aes(v40,fill=as.factor(year)))+geom_histogram(alpha = 0.4,position="identity")

 $ggplot(dheeraj, aes(v42, fill=as.factor(year))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj,aes(v43,fill=as.factor(year))) + geom_histogram(alpha=0.4,position="identity")$

 $ggplot(dheeraj, aes(v44, fill=as.factor(year))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v45, fill=as.factor(year))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v46, fill=as.factor(year))) + geom_histogram(alpha=0.4, position="identity")$

#Season wise

 $ggplot(dheeraj, aes(v40, fill=as.factor(season))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v42, fill=as.factor(season))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v43, fill=as.factor(season))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v44, fill=as.factor(season))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v45, fill=as.factor(season))) + geom_histogram(alpha=0.4, position="identity")$

 $ggplot(dheeraj, aes(v46, fill=as.factor(season))) + geom_histogram(alpha=0.4, position="identity")$

Q2 part C) outliers

The boxplot of each of the following variables are used to compute outliers.

I've listed the range in which the outliers may be found below, and then I've saved them in separate variables.

You can see that in my R scripe

V40

Q2) d) part 1)

V40

gdp	0.0725
tap	-0.080
beds	0.1017

gdp	0.208
tap	0.1725
beds	0.0325

١	12	13
	,	

gdp	-0.2111

tap	-0.166	
beds	-0.108	
	v44	
gdp	-0.1188	
tap	-0.0883	
beds	-0.0698	
v45		
gdp	-0.1457	
tap	-0.1502	
bedS	-0.0330	
v46		
gdp	0.00231	
tap	-0.029	
bedS	0.0386	

PART 2)

```
N#.13 ' WCDENLAPICOL_CASSIGNATION |
> #2)_d)b)
> #correlation of v40 with cash
> ac-dheeraj$index [dheeraj$cropcategory=='Cash'] # saving cash index
> bc-dheeraj$v40 [dheeraj$cropcategory=='Cash'] # v40 value of cash
> cor(a,b,use = "complete.obs")
[1] 0.04843577
>
> ac-dheeraj$v42 [dheeraj$cropcategory=='Cereal'] # saving cash index
> bc-dheeraj$v42 [dheeraj$cropcategory=='Cereal'] # v40 value of cash
> cor(a,b,use = "complete.obs")
[1] -0.1095738
>
> ac-dheeraj$index [dheeraj$cropcategory=='Horticulture'] # saving cash index
> bc-dheeraj$v43 [dheeraj$cropcategory=='Horticulture'] # v40 value of cash
> cor(a,b,use = "complete.obs")
[1] -0.0153495
> ac-dheeraj$index [dheeraj$cropcategory=='Pulse'] # saving cash index
> bc-dheeraj$v44 [dheeraj$cropcategory=='Pulse'] # v40 value of cash
> cor(a,b,use = "complete.obs")
[1] 0.02784892
> ac-dheeraj$index [dheeraj$cropcategory=='oilseed'] # saving cash index
> bc-dheeraj$v45 [dheeraj$cropcategory=='oilseed'] # v40 value of cash
> cor(a,b,use = "complete.obs")
[1] -0.04361901
> ac-dheeraj$index [dheeraj$cropcategory=='Coarse Cereal'] # saving cash index
> bc-dheeraj$v46 [dheeraj$cropcategory=='Coarse Cereal'] # v40 value of cash
> cor(a,b,use = "complete.obs")
[1] 0.004992483
> |
```

Q3)

A)

v40	Model 1	
	Coefficient (SE)	
Intercept	5.129	
gdp	7.240*10^-09	
beds	6.70910^-06	
taps	-2.95210^-02	

B)

Pulses

v40	Model 2.1		
	Coefficient (SE)		
Intercept	5.668		
gdp	2.485*10^-09		
beds	6.010*10^-06		
taps	-3.299*10^-02		
index	-6.524*10^-02		
N=13676 R squared = 0.01577			

coarse cereals

v40	Model 2.3			
	Coefficient (SE)			
Intercept	5.188e			
gdp	8.383*10^09			

beds	4.405*10^-06	
taps	-4.057*10^-02	
index	2.993*10^-01	
N= 8895 R squared = 0.023		

cereals

v40	Model 2.2S			
	Coefficient (SE)			
Intercept	4.459			
gdp	2.277*10^-09			
beds	6.389*10^-06			
taps	-2.546*10^-02			
index	3.766*10^-01			
N= 14269 R squared = 0.01316				

cash

v40	Model 2.4		
	Coefficient (SE)		

Intercept	5.087	
gdp	2.040*10^-08	
beds	3.878*10^-06	
taps	-4.127*10^-02	
index	4.989*10^-03	
N=5826 R squared = 0.02954		

oilseed

v40	Model 2.5			
	Coefficient (SE)			
Intercept	5.291			
gdp	7.206*10^-09			
beds	5.011*10^-06			
taps	-2.720*10^-02			
index	-7.217*10^-02			
N=11610 R squared = 0.01624				

horticulture

v40	Model 2.6			
	Coefficient (SE)			
Intercept	4.932			
gdp	7.449*10^-09			
beds	8.159*10^-06			
taps	-2.209*10^-02			
index	-1.861*10^-02			
N=12594 R squared = 0.01806				

Q5)

The correlation coefficients of the explanatory variables are not equal to 0 and will not be totally independent.

As a result, the X matrix will not be full rank, the X transpose will be singular, and the transverse will not exist. As a result, model estimators would be obsolete.

Q6)

No, the relationship between yield increase and health indices varies by crop type.