On Target Representation in Continuous-output Neural Machine Translation

Overview

- ► NMT models are typically discrete
- ► Can they be continuous?
 - Yes, by learning to predict word embeddings directly
 - No moving target: must choose good embeddings
- ► This work:

How to choose target embeddings?

Background

- Output layer: treat hidden states as embeddings
- **Objective function:** cosine similarity between target and output embeddings
- **Decoding:** Nearest Neighbors search with K = 1

Parallels between the discrete (left) and continuous (right) Transformers:

Target Embeddings

Types of embeddings used in our analysis:

fastText is pretrained with subword information mBART is fine-tuned on NMT many-to-many data

Results

BLEU scores on newstest data.

embeddings	Ro → En		$\mathbf{E}\mathbf{n} \rightarrow \mathbf{T}\mathbf{r}$		
	dim	test16	dim t	test16	test17
discrete		31.6		12.2	12.2
+beam=5		32.3		12.8	13.0
Trained on target monolingual data					
fastText	(100)	28.6	(100)	9.6	9.5
JoSe (\$)	(50)	28.2	(50)	9.4	9.9
Trained on bilingual data					
MT-transfer	(100)	30.9	(50)	8.6	8.9
YMT-transfer (S)	(50)	30.0	(100)	11.2	11.6
Pretrained on external data					
fastText*	(300)	27.0	(300)	9.1	9.3
fastText _{PCA}	(100)	28.6	(100)	9.3	9.5
mBART-MT◆	(1024)	24.6	(1024)	0	0
mBART-MT _{PCA}	(512)	28.7	(100)	9.2	9.8

Embedding dimension is chosen on the dev set, except for the fixed pretrained models (\(\ldot \))

Embeddings Dimensionality

Lower dimensions is often better (Ro \rightarrow En, test16):

Rare Words

Word-level F_1 score by word training frequency (f):

Conclusion

- Choice of target embeddings matters (
- Dimensionality and geometry plays important role (**22**)
- ► Large-scale pretraining () is not superior to MT-data only
- MT-Transfer embeddings outperforms all other embedding choices (\(\colon\)

Centre