MATH: 185: Homework 3

William Guss 26793499 wguss@berkeley.edu

February 11, 2016

1. II.4.5

Theorem 1. The different branches of $\cos^{-1}(z)$ have the same derivative.

Proof. Let $f = cos^{-1}(z)$. Then f' is determined by the following derivation;

$$\begin{split} f'(z) &= \frac{d}{dz} - i \log[z \pm \sqrt{z^2 - 1}] = -\frac{i}{z \pm \sqrt{z^2 - 1}} \frac{d}{dz} (z \pm \sqrt{z^2 - 1}) \\ &= -\frac{i}{z \pm \sqrt{z^2 - 1}} (1 \pm \frac{d}{dz} \sqrt{z^2 - 1})) \\ &= -\frac{i}{z \pm \sqrt{z^2 - 1}} (1 \pm \frac{1}{2\sqrt{z^2 - 1}} \frac{d}{dz} (z^2 - 1))) \\ &= -\frac{i}{z \pm \sqrt{z^2 - 1}} (1 \pm \frac{2z}{2\sqrt{z^2 - 1}})) \\ &= -\frac{-z\sqrt{z^2 - 1}}{z\sqrt{1 - z^2} \sqrt{z^2 - 1}} \\ &= \frac{1}{\sqrt{1 - z^2}} \\ &= \frac{\sqrt{1 - z^2}}{1 - z^2}. \end{split}$$

And so, the derivative has branches corresponding to that of $\sqrt{\gamma(z)}$. Since this function's riemann surface is not regular in the sence that $\log'(z)$ is. So we have that the derivative of cos is different on different branches.

2. II.4.7

Theorem 2. Let f(z) be a bounded analytic injective function. Then let $D \subset (C)$ be its domain. It follows that

$$Area(f(D)) = \iint_D |f'(z)|^2 dx dy. \tag{1}$$

Proof. The area of a region A is given by the riemann integral over that region, $Area(A) = \int_A du$ for $u \in \mathbb{R}^2$. If ϕ is a 2-cell, that is $\phi : I^2 \to A$ is a diffeomorphism where I^2 is the unit square. We have that the $dx \wedge dy$ 2-form area is given by

$$Area(A) = \int_{\phi} dx \wedge dy = \int_{I^2} \frac{\partial(\phi)}{\partial(u)} du.$$
 (2)

With this in mind, we can assume that f is lopcally diffeomorphic by its injectivity and the inverse function theorem. So we assert that if D is the image of a smooth 2-cell, γ , then $f(D) = d(\gamma(i^2))$. Therefore, we get

$$Area(f(D) = \int_{f \circ \gamma} dx \wedge dy = \int_{I^2} \frac{\partial (f \circ \gamma)}{\partial (u)} du$$

$$= \int_{I^2} \frac{\partial (f)}{\partial (v)} \frac{\partial (\gamma)}{\partial (u)} du$$

$$= \int_{D} \frac{\partial (f)}{\partial (v)} dv \text{ (c.o.v)}$$

$$= \int_{D} |f'(v)|^2 dv \text{ (C.R.)}$$

$$= \iint_{D} |f'(v)|^2 dx dy \text{ (notation)}$$

And this completes the proof.

- 3. II.5.1 I(*b) The second derivative of $xy+3x^2y-y^3$ with x is 6y, and with y is -6y so their sum is 0 and the harmonic equation is satisfied. For the harmonic conjugate we use $u_x=v_y$. So $u_x=y+6xy=v_y$ so $v=\frac{1}{2}y^2+3xy^2+h(x)$. Then $u_y=-v_x$. So $v_x=3y^2+h'(x)=-x-3x^2+3y^2$ which impliess $h'(x)=-x-3x^2$ so $h(x)=-\frac{1}{2}x^2-x^3$, giving $v=\frac{1}{2}y^2+3xy^2-\frac{1}{2}x^2-x^3+C$.
 - (c) The second derivative with x is $\sin hx \sin y$ and with y is $-\sin hx \sin x$ so the sum is zero and the equation is harmonic In this case we have that $u = \sin hx \sin y$ so it follows that $u_x = \cosh(x) \sin y = v_y$ so $v = -\cos h(x)\cos(y) + h(x)$. Then $v_x = -\sin h(x)\cos(y) + h'(x) = -\sin hx\cos y$ so h' = 0 and h = C Therefore the harmonic conjugate is $v = -\cos h\cos(y) + C$.
- 4. The proof is roughly as follows. Take a region on which the set of discontinuities of f is a zero set, In particular for the punctured plane we could take the unit rectangle around the puncture. Then integration of v as determined by the harmonic conjuage method is valid in the real direction since the discontinuity set on every line is at most a zero set (a single point) and Fubilinilinili's theorem says intergration in this fashion is valid. However, integration of such an h(x) function fails to give a satisfactory harmonic conjugate (for the line along Im(z)=0). In other words the equation for v(x,y) does not satisfy the Laplace equations.

However such a line in that region could be integrated (for lack of existing) in the slit plane. Since the line is a zero set in C removing it from the integrand does not affect th[e result of Fublbinilili's theorem and so in this case there are no jumps and this would suggest that the harmonic conjugate naturally satisfies the laplace equations.

5.

- 6. Take the map $-z^2$ from the first quadrant complex planme and observe that its range is the lower half plane. z^2 is a conformal map so its submapping on a suibmetric space is also conformal. Therefore this mapping is a conformal map.
- 7. Suppose that some order-derivative of f, say g, vanished. Then, we have the following argument. Since $f'(\gamma)$ is the tangent vector to γ at some point, say the intersection of γ , with ϕ then $f'(\gamma)$ should be orthogonal to $g'(\gamma)$. This holds for all orders of dderivatives. Since g is 0 at this point, we have that the curves $g'(\gamma), g'(\phi)$ are not orthogonal which is a contradiction to the angle preserving property of f. So f' must not vanish.