

PHYSIQUE

Classe: 4 MATHS ET SC EXP

Série: 1: OSC ELEC LIBRES

Nom du Prof: HAFFAR SAMI

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

PARTIE A

Le circuit de la figure comporte :

Un générateur de tension idéal de f.e.m U₀.

Un dipôle résistor de résistances $R_0 = 20 \Omega$.

Un commutateur K

Un condensateur de capacité C = 114 nF initialement déchargé.

Une bobine d'inductance L et de résistance interne $r = 5 \Omega$.

On ferme K₁ en gardant K₂ ouvert, on charge alors le condensateur.

Une fois que le condensateur est complètement chargé, on ouvre K₁ et on ferme K_2 à un instant de date t = 0, pris comme origine des temps. Le circuit formé (R₀, r, L, C) constitue alors un oscillateur électrique.

- a- L'oscillateur électrique est le siège d'oscillations libres amorties. Justifier les dénominations suivantes :
 - */ Libre. */ Amortie.
 - b- En exploitant le chronogramme de la figure, déterminer la pseudopériode T.
- c- En déduire la valeur de L, sachant que la pseudopériode T est pratiquement égale à la période
- propre du circuit LC. 2° Etablir l'équation différentielle régissant les variations de la tension, uc(t), aux bornes du
- condensateur.
- 3° a- Donner l'expression de l'énergie totale, E, de l'oscillateur en fonction de q(t) (charge électrique portée par l'armature A du condensateur), i(t) intensité du courant circulant dans le circuit, L et C.
 - b- Montrer que l'oscillateur est non conservatif.
 - **4°** A l'instant de date t_1 on trace la tangente à la courbe i(t) notée (Δ)
 - a- Déterminer à cet instant la tension $u_b(t_1)$ aux bornes de la bobine.
- **b** Calculer la tension aux bornes du condensateur, $\mathbf{u}_{c}(\mathbf{t}_{1})$, à la date \mathbf{t}_{1} . En déduire l'énergie totale \mathbf{E} de l'oscillateur à cet instant.
- c-Sachant que l'énergie thermique E_{th} perdue par effet joule entre les instants de date t = 0 et t_1 vaut **4,96μJ**, calculer la valeur de la **fem U**₀ du générateur.

On réalise un circuit électrique à l'aide d'une bobine d'inductance L et de résistance négligeable et d'un condensateur de capacité C=1μF préalablement chargé (figue 4). On ferme l'interrupteur K à

Soit q la charge de l'armature A à un instant t.

1°a- Etablir l'équation différentielle vérifiée par q(t).

- **b** Montrer que $q(t)=Q_{max}.sin(\omega_0t+\phi)$ est une solution de l'équation différentielle que si ω_0 vérifie
- relation bien déterminée qu'on déterminera.
 - c- donner l'expression de la période propre T_o de ces oscillations.
- **d-** A t = 0 s, le condensateur est chargé sous une tension U_0 . Déterminer les expressions de q(t) et i(t) en fonction de U_0 , C, ω_0 et t (On précisera les phases initiales)
- 2° a- Donner l'expression de l'énergie électromagnétique, E, du circuit en fonction de C, L, q et i.
 - **b** Montrer que cette énergie est constante et donner son expression en fonction de C et U₀.
 - **3°** On donne la courbe : $q^2 = f(i^2)$ (figure 5).
 - a- Justifier la courbe en établissant l'expression de q² en fonction de i, L, C et U₀.
 - **b-** Déterminer :
 - La valeur de L
 - La valeur de Uo. En déduire la valeur de l'énergie totale du circuit

