

- 1. In this lecture series, "cost" and "loss" have distinct meanings. Which one applies to a single training example?
 - Loss
 - ☐ Cost
 - Both Loss and Cost
 - ☐ Neither Loss nor Cost

1 point

1 point

Simplified loss function

$$L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\vec{w},b}(\vec{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\vec{w},b}(\vec{x}^{(i)}))$$

- 2. For the simplified loss function, if the label $y^{(i)}=0$, then what does this expression simplify to?
 - \bigcirc $-\log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$
 - $\bigcirc \log(f_{\vec{w},b}(\mathbf{x}^{(i)})$
 - $\bigcirc \ \log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)})) + log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$
 - $\bigcirc -\log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)})) log(1-f_{\vec{\mathbf{w}},b}(\mathbf{x}^{(i)}))$