Zadanie domowe

Każde zadanie jest warte 20 punktów. Na ocenę 3 należy zdobyć 50 puntów. Każde dodatkowe 10 punktów to pół oceny wyżej. Każda zdobyta liczba punktów powyżej 100 jest mnożona przez $\frac{4}{10}$ i dodawana do wyniku kolokwium. Można zdobyć maksymalnie 200 punktów, ale jest więcej zadań do wyboru.

- 1. Opisz grupę automorfizmów triangulacji $\mathbb{R}P^2$ o najmniejszej liczbie wierzchołków.
- 2. Niech G będzie skończoną grupą działającą na rzeczywistej przestrzeni liniowej V w sposób wierny (odwzorowanie $G \to \operatorname{GL}(V)$ jest injekcją). Punkt $x \in V$ nazywamy typowym, gdy jego stabilizator w grupie G jest trywialny. Grupościanem grupy G nazywamy wielościan $\operatorname{Gs}(G) = \operatorname{Conv}(Gx)$ w V rozpięty przez orbitę typowego punktu względem działania G. Opisz grupościan $\operatorname{Gs}(A_4)$ grupy alternującej A_4 działającej na \mathbb{R}^4 przez permutacje wektorów bazowych (jest to działanie na $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : \sum_{i=1}^4 x_i = 1\} \cong \mathbb{R}^3$). Jak zmienia się kombinatoryka $\operatorname{Conv}(A_4x)$ w zależności od wyboru $x \in \mathbb{R}^4$?
- 3. Rozważmy cztery sztywne patyczki o długościach $r_1, ..., r_4$. Kolejne patyczki są ze sobą połączone końcami. Początek tego łańcuszka jest przymocowany do punktu (0,0), a koniec do punktu (R,0) (przy czym R jest mniejsze od sumy r_i). Takie wahadełko porusza się na płaszczyźnie. Patyczki mogą swobodnie obracać się w punktach połączeń i przez siebie przechodzić. Dla pewnych wartości R, r_i przestrzeń położeń takiego wahadełka jest powierzchnią. Przeanalizować, co dzieje się w zależności od parametrów R, r_i . Kiedy przestrzeń położeń jest spójna, jaka jest jej charakterystyka Eulera, kiedy jest powierzchnią, kiedy ma osobliwość, czy jest orientowalna?
- 4. Niech X będzie przestrzenią topologiczną. Definiujemy przestrzeń konfigruacji $\operatorname{Conf}_n(X)$ jako przestrzeń położeń n różnych punktów w X (zakładamy, że dwa punkty nie mogą leżeć w tym samym miejscu. Definiujemy też przestrzeń konfiguracji $\operatorname{conf}_n(X)$ jako przestrzeń położeń n nierozróżnialnych punktów w X, czyli

$$\operatorname{Conf}_n(X) = \{(x_1, ..., x_n) \in X^n : x_i \neq x_j, \text{ gdy } i \neq j\}$$
$$\operatorname{conf}_n(X) = \frac{\operatorname{Conf}_n(X)}{S_n}$$

gdzie S_n działa na $\operatorname{Conf}_n(X)$ przez permutacje współrzędnych. Oblicz charakterystykę Eulera $\operatorname{conf}_n(\mathbf{Y})$, gdzie \mathbf{Y} to drzewo o 4 wierzchołkach z czego 3 to liście, dla n=2,3,4.

5. Mapą na powierzchni *M* nazywamy podział powierzchni na komórki homeomorficzne z dyskami, których przekroje są zawarte w ich brzegach. Z takim podziałem mamy związany graf dualny, którego wierzchołki, to komórki, a krawędź istnieje pomiędzy wierzchołkami, gdy odpowiadające im komórki mają niepusty przekrój. Kolorowaniem mapy nazywać będziemy funkcję ze zbioru komórek w pewien skończony zbiór kolorów, która przyjmuje różne wartości na krojących się niepusto komórkach.

- (a) Jak mogą wyglądać mapy na powierzchniach? Czy da się uprościć je tak, by graf dualny był 1-szkieletem triangulacji? Rozważyć mapę o sześciu krajach na butelce Kleina.
- (b) Twierdzenie o k barwach dla powierzchni M mówi, że każdą mapę na powierzchni M można pokolorować co najwyżej k kolorami. Udowodnić twierdzenie o 5 barwach dla sfery S^2 , o 6 barwach dla $\mathbb{R}P^2$ o 7 barwach dla torusa T^2 i o 6 barwach dla butelki Kleina.
- 6. Niech \mathbb{K} będzie ciałem. Grassmanian $Gr_{\mathbb{K}}(k,n)$ to przestrzeń k-wymiarowych podprzestrzeni \mathbb{K}^n . Jeśli $\mathbb{K} = \mathbb{R}, \mathbb{C}$, to jest to rozmaitość. Oblicz charakterystykę Eulera Grassmannianu $Gr_{\mathbb{C}}(k,n)$ korzystając z uogólnionej formuły Riemanna-Hurwitza i działania torusa T^n na \mathbb{C}^n przez macierze diagonalne.
- 7. Grassmannian $Gr_{\mathbb{C}}(k,n)$ ma pewien podział na komórki, który możemy opisać za pomocą szufladek i groszków. Rozważamy n szufladek, w których umieszczać będziemy k groszków, co najwyżej po jednym w danej szufladzie. Takie rozmieszczenie groszków reprezentuje zbiór k-wymiarowych podprzestrzeni \mathbb{C}^n . Kolejne l szufladek od lewej reprezentuje podprzestrzeń \mathbb{C}^n rozpiętą przez pierwsze l wektorów bazowych $e_1, ..., e_l$, a liczba groszków leżących w pierwszych l szufladkach to wymiar przekroju k-wymiarowej podprzestrzeni z tego zbioru z podprzestrzenią rozpiętą przez $e_1, ..., e_l$.
 - (a) Pokaż, że konkretne rozmieszczenie groszków w szufladkach reprezentuje przestrzeń k-wymiarowych podprzestrzeni \mathbb{C}^n izomorficzną z \mathbb{C}^m , gdzie m to liczba przesunięć groszków w lewo o jedną szufladkę dopóki to możliwe.
 - (b) Przestrzeń \mathbb{C}^m z poprzedniego podpunktu to otwarta komórka wspomnianego rozkładu. Komórka odpowiadająca rozmieszczeniu groszków A zawiera się w domknięcu komórki odpowiadającej rozmieszczeniu B, gdy A można otrzymać z B poprzez kolejne przesunięcia groszków w lewo o jedną szufladkę. Domknięcie komórki odpowiadającej rozmieszczeniu A nazywamy (A) rozmaitością Schuberta. Policz charakterystykę Eulera rozmaitości Schuberta. Policz charakterystykę Eulera $G_{\mathbb{C}}(k,n)$ zliczając te komórki.
- 8. Rozwiaż poprzednie dwa zadania dla \mathbb{R} zamiast \mathbb{C} .
- 9. Niech P będzie prostym wielościanem wypukłym wymiaru d. Rozważamy dowolny funkcjonał liniowy na P (funkcję wysokości). Dla wierzchołka $v \in P$ definiujemy indeks ind(v) jako liczbę krawędzi wychodzących z v, dla których zadany funkcjonał przyjmuje maksimum w v. Definiujemy h-wielomian przez

$$h_P(t) = \sum_{i=0}^n h_i(P)t^i$$

gdzie

$$h_i(P) = |\{v \in P : \operatorname{ind}(v) = i\}|$$

a n to wymiar P. Wektor $(h_0(P),...,h_n(P))$ nazywamy h-wektorem P. Udowodnić, że h-wektor nie zależy od wyboru funkcjonału. Pokazać, że współrzędne h-wektora to współczynniki f-wielomianu wielościanu dualnego do P w bazie

$$e_n = t^n (t+1)^{d-n}$$

Jest to abstrakcyjna definicja h-wektora dla d-wymiarowego kompleksu symplicjalnego.

- 10. Gwiazdą sympleksu σ w kompleksie symplicjalnym X nazywamy podkompleks X złożony ze wszystkich sympleksów zawierających σ . Linkiem σ w X nazywamy podkompleks gwiazdy σ w X złożony z tych sympleksów, które kroją się pusto z σ . Kompleks symplicjalny wymiaru d nazywamy Eulerowskim, gdy link każdego jego n-sympleksu ma charakterystykę Eulera sfery wymiaru d-(n+1). Pokazać, że h-wektor kompleksu Eulerowskiego jest palindromiczny dla d=2,3,4.
- 11. Skonstruować powierzchnię z działaniem skończonej grupy, której orbifold to trójkąt hiperboliczny (2,3,8). Wskazówka: skorzystać z redukcji mod 8 na $PSL_2(\mathbb{Z})$.
- 12. (Bardzo trudne, można je pominąć) Twierdzenie Hurwitza mówi, że grupa symetrii powierzchnii genusu g>1 ma co najwyżej 84(g-1) elementów. Pokazać, że na powierzchnii genusu 2 to ograniczenie nie jest osiągane. Jaka jest największa grupa symetrii powierzchnii genusu 2?