Exam on Dynamical Systems June, 2015

- 1. (1p) Find the general solution of each of the following differential equations whose unknown is the function denoted x(t).
 - (a) x' + tx = 1; (b) x'' + 4x = 1.
 - 2. (2.5p) Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 1$.
- (a) Find the fixed points of f and study their stability using the linearization method.
 - (b) Represent the graph of f and find geometrically the fixed points of f.
- (c) Find directly $\varphi(k,0)$ (or, in other notation, $f^k(0)$) for any $k \geq 0$. Which is the orbit corresponding to the initial state 0? What remarkable property has this orbit? Depict this orbit using the stair-step diagram.
- d) Let $\eta = 2$, and, respectively, $\eta = -1/4$. Using the stair-step diagram describe the long-term behavior of the orbit that starts at η (in other notation, of the sequence defined by $x_{k+1} = x_k^2 1$, $x_0 = \eta$).
- 3. (2p) Let $c \in [0,1)$ be a parameter and consider the scalar dynamical system $\dot{x} = x(1-x) cx$.
- a) Find its equilibria and study their stability using the linearization method.
 - b) Represent its phase portrait.
- c) When x(t) > 0 is considered to be the number of fish in some lake, and $c \ge 0$ to be the rate of fishing, try to predict the fate of the fish from the lake interpreting the theoretical result obtained at a) and b).
 - d) What will happen with the fish in the case that c = 2?

Universitatea Babeș-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June, 2015

- 1. (1.5p) We consider the linear planar system $\dot{x} = -x$, $\dot{y} = -y$.
- a) Find its general solution and its flow.
- b) Using the definition of the orbit, find two of its orbits: the ones corresponding to the initial states $\eta = (1, 2)$, and, respectively, $\eta = (-1, -2)$.
- c) Find its isocline for the slope m=2. Find its isocline for the slope $m \in \mathbb{R}$. Represent few isoclines and find the shape of the orbits.
 - d) Represent its phase portrait.
 - 2. (0.5p) The following proposition is true or false? Justify.

"The isoclines of a linear planar system are straight lines that pass through the origin".

- 3. (1.5) Find the general solution of the differential equations x' + tx = 2t and $x'' + \omega^2 x = 1$ (the unknown denoted x(t) and the parameter $\omega > 0$) and of the difference equation $x_{k+1} = 3x_k 4$.
- 4. (2p) Using the stair-step diagram, estimate the basin of attraction for each of the fixed points (if there is any which is an attractor) of the map

$$f:(0,\infty)\to \mathbb{R}, \quad f(x)=\frac{x^2+5}{2x}$$
.

Universitatea Babeș-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June, 2015

- 1. (1.5p) Represent the phase portrait of the scalar dynamical system $\dot{x} = x(1-x^2)$. Find $\varphi(t,1)$ and justify. Specify the monotony of $\varphi(t,2)$ and, respectively, $\varphi(t,0.5)$.
- 2. (0.25p) Find the polar coordinates of the points whose cartesian coordinates are: (1,0), (0,1), (-2,0) and (0,-0.5), respectively.
 - 3. (2.5p) We consider the planar system $\dot{x} = -y + x(1 x^2 y^2), \ \dot{y} = x + y(1 x^2 y^2).$
- a) Study the type and stability of the equilibrium point (0,0) using the linearization method. There are other equilibria?
 - b) Transform the given system to polar coordinates.
- c) What is the shape of the orbit corresponding to: $\varphi(t, 1, 0)$, $\varphi(t, 0, 1)$, $\varphi(t, -2, 0)$ and $\varphi(t, 0, -0.5)$, respectively? Justify.
 - d) What remarkable property has the function $\varphi(t, 1, 0)$?
- 4. (1.25p) Find all the solutions of each of the following difference equations and which also satisfies the given conditions: a) $x_{k+2} 5 x_{k+1} + 6x_k = 12$; b) $x_{k+1} = 1 x_k^2$, $x_0 = 0$; c) $x_{k+2} + x_{k+1} + x_k = 0$, $x_0 = 0$.

Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June, 2015

- 1. (1.5p) Find the linear homogeneous differential equation of minimal order that has as solutions:
 - a) $t e^{2t}$ and e^{-t} ;
 - b) $\cos(\omega t)$ and $3\sin(\omega t)$ (here $\omega > 0$).

Find also the general solution of each of these two equations.

- 2. (2p) We consider the planar Lotka-Volterra system $\dot{x} = x(1-y), \quad \dot{y} = y(2-x).$
- a) Find its equilibria and study their stability using the linearization method.
 - b) Find a first integral in $(0, \infty) \times (0, \infty)$.
 - 3. (2p) Let $f : \mathbb{R} \to \mathbb{R}$, f(x) = 2x(1-x).
 - a) Find its fixed points and study their stability.
- b) Let $I_1 = (-\infty, 0)$, $I_2 = (0, 1)$ and $I_3 = (1, \infty)$. Find $f(I_1)$, $f(I_2)$ and $f(I_3)$.
- c) Find the orbits corresponding to the initial states $\eta=0$ and, respectively, $\eta=1$.
- d) Using the stair-step diagram, describe the long-term behavior of the orbits corresponding to the initial states: $\eta = 1/8$, $\eta = 7/8$, $\eta = -1/8$ and, respectively, $\eta = 9/8$.
 - e) Estimate the basin of attraction of the stable fixed point of f.

Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June, 2015

- 1. (1p)
- a) Write the statement of the Fundamental Theorem for linear homogeneous second order differential equations.
- b) The following proposition is true or false? Justify. We remind you that $\cosh t = (e^t + e^{-t})/2$ and $\sinh t = (e^t e^{-t})/2$.

"The general solution of the differential equation x'' - x = 0 is $x(t) = c_1 \cosh t + c_2 \sinh t$, where c_1, c_2 are arbitrary real constants."

2. (1p) Find a first integral in \mathbb{R}^2 of the pendulum equation

$$\ddot{\theta} + \omega^2 \sin \theta = 0.$$

Hint: Write first the planar system equivalent to this equation.

3. (0.75p) Find the expression of the Fibonacci sequence

$$x_{k+2} = x_{k+1} + x_k, \ x_0 = 0, \ x_1 = 1.$$

- 4. (2p) We consider the following nonlinear planar systems $\dot{x} = -x + xy$, $\dot{y} = -2y + 3y^2$.
- a) Find its equilibria and study their stability using the linearization method.
 - b) Find $\varphi(t, 0, 2/3)$, $\varphi(t, 4, 0)$ and $\varphi(t, 1, 2/3)$.
- 5. (0.75p) We consider the IVP $y' = 1 + xy^2$, y(0) = 0. Write the Euler numerical formula on the interval [0,1] with step-size h = 0.02. Specify the initial values and the number of steps necessary to find the approximate value of $\varphi(0.5)$ and, respectively, of $\varphi(1)$. Here with φ is denoted the exact solution of the given IVP.

Universitatea Babeş–Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems June, 2015

- 1. (1.25p) For each k > 0 we consider the differential equation $\dot{x} = -k(x-21)$, which is the model of Newton for cooling processes, here x(t) being the temperature of a cup of tea at time t.
 - a) Find its flow.
- b) An experiment revealed the following fact. A cup of tea with initial temperature of $49^{\circ}C$ has a temperature of $37^{\circ}C$ after 10 minutes. Find the initial temperature of a cup of tea such that after 20 minutes the tea has $37^{\circ}C$.
 - 2. (2.5p) Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 1$.
- (a) Find the fixed points of f and study their stability using the linearization method.
 - (b) Represent the graph of f and find geometrically the fixed points of f.
- (c) Find the orbit corresponding to the initial state 0? What remarkable property has this orbit? Depict this orbit using the stair-step diagram.
- d) Let $\eta = 2$, and, respectively, $\eta = -1/4$. Find $f(\eta)$ and $f^2(\eta)$ (here f^2 denotes the second iterate of f). Using the stair-step diagram describe the long-term behavior of the orbit corresponding to the initial state η .
 - 3. (1.75p) For what values of the real parameter a the system $\dot{x} = ax 5y$, $\dot{y} = x 2y$ has a center at the origin?

For a=0 find the general solution of this system and specify its type and stability.

Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems July, 2015

1. (1.5p) We consider the differential equation

$$x'' + 9x = \cos 3t.$$

- a) Find a solution of the form $x_p = t(a\cos 3t + b\sin 3t)$, with $a, b \in \mathbb{R}$.
- b) Find its general solution.
- c) Describe the motion of a spring-mass system governed by this equation.
- 2. (1p) Find the solution of

$$x_{k+2} - 6x_{k+1} + 9x_k = 12k$$
, $x_0 = 0$, $x_1 = 0$.

Hint: look for $a, b \in \mathbb{R}$ such that $(x_k)_p = ak + b$ is a particular solution of the difference equation.

- 3. (1.5p) We consider the IVP x' = -200x, x(0) = 1.
- a) Find the solution and its limit as $t \to \infty$.
- b) Write the Euler's numerical formula with constant step-size h.
- c) Find a range of values for the step-size h such that the solution $(x_k)_{k\geq 0}$ of the difference equation found at b) satisfies $\lim_{k\to\infty} x_k = 0$.
- 4. (1.5p) Find the fixed points and the 2-periodic points of the map $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 1 2x^2$. Study the stability of the fixed points.

ST1. (1p) Find the general solution of the scalar differential equation x' - ax = at - 1, where the unknown is the function x of variable t and $a \in \mathbb{R}^*$ is a fixed parameter.

ST2. (1p) We consider the scalar differential equation

$$(*)$$
 $\dot{x} = 2x(2-x),$

whose unknown is the function x of variable t. We denote by $\varphi(t;\eta)$ the flow of (*).

- a) For (*), find its equilibria, its orbits, depict its phase portrait, and study the stability of its equilibria.
 - b) Find $\lim_{t\to\infty} \varphi(t;1)$.
 - c) There exists some $\eta \in \mathbb{R}$ such that $\lim_{t \to \infty} \varphi(t; \eta) = 3$?