Choplers - 05

* Binony Ponallel Adder / Ripple Conny Adder :

Аз	102	AI	
831	182	_B B ₁	

(Corerry Look - ahead adder:

1000

From trouth table of 1 bit

Full Adders

of your full

-> Gi is called a corrry generate and it produces an output corrry.

-> Pi is called a conrey propogation which propogates

the conrey from prievious stoge.

Tore 3 bit Binary:

$$A = A_3 A_2 A_1$$

$$B = B_3 B_2 B_1$$

$$C_3 S_3 S_2 S_1$$
output

simplification:

$$\underline{1st \ bit}: \qquad \rho_1 = A_1 \oplus \beta_1$$

$$i = 1 \qquad G_1 = A_1 \beta_1$$

$$\begin{bmatrix} c_1 = 0 \end{bmatrix}$$

$$\begin{bmatrix} s_1 = P_1 \oplus C_1 \end{bmatrix} = A_1 \oplus B_1$$

and bit:

$$\rho_2 = A_2 \oplus B_2$$

$$c_2 = G_1 + P_1C_1$$

$$= A_1P_1 + (A_1 \oplus B_1) \cdot 0$$

Scanned with CamScanner

9.194 3

Apply wieldy forcipie

111 111

$$S_2 = P_2 \oplus C_2$$

$$= \left(A_2 \oplus B_2 \right) \oplus A_1 B_1$$

3rd bit: with your warmen to be the

$$P_{3} = A_{3} \oplus B_{3}$$

$$G_{3} = A_{3}B_{3}$$

$$C_{3} = G_{2} + P_{2}C_{2}$$

$$= A_{2}B_{2} + (A_{2} \oplus B_{2}) A_{1}B_{1}$$

$$S_3 = P_3 \oplus C_3$$

$$= (A_3 \oplus B_3) \oplus A_2 B_2 + (A_2 \oplus B_2) A_1 B_1$$

pon lota e

4th bit

7.5) Owiz #1:

F = A +B

F = AB+AB

Apply duality Atinciple

 $F = (\overline{A} + B) \cdot (A + \overline{B}) = \overline{AB} + AB = \overline{A \oplus B} \rightarrow \text{ which is complement}$ of $A \oplus B$

通量的 自

ate at the to

AM 1 1

Scanned with CamScanner

" Neil end harmin

BCD Adders:

$$A = 0 - \boxed{9}$$

$$B = 0 - 9$$

$$10 \rightarrow 16$$

$$11 \rightarrow 17$$

$$12 \rightarrow 18$$

$$19 \rightarrow 25$$

Sum

c	54	s_{j}	S2	\mathcal{S}_{j}	. i niliaga	3 bho si				
0	1	0	1	0	lo		Unco	nnecte	d su	m:
0	1	0	1	1	11	S2S1				
0	3	1	0	0	12	S453	<u> 5,5</u>	5251	5251	525,
0	1	1	٥	1	13	<u>5</u> 453				1
0	1	1	- Jot	0	14			1167	TEE I	
0	t.	1	1	1	15	5 ₄ s ₃				
12	0	o Ì	٥	0	16	54 S ₃	1	3]_]	1
1	0	0	0	1	17	345			1	1
1	٥	0	٤	0	18	3 4 La 18	***			
1	0	0	1	1		2	1			

BCD Adderc:

> Each input digit does not exceed 9

> the output digit 9+9+1 = 19 and does not exceed 19.

Cin

> Take input bits to the 4 bit adders

> check if result > 9

> if it is not then return as it is

= if it is, add 6 to st and reducen.

$$F = S_4 S_3 + S_2 S_4$$

$$= S_4 (S_3 + S_2)$$

To add 6, equation is,

$$F' = c + F$$

= $c + s_1 (s_1 + s_2)$

11 - 1

९ गव करा

EJ < 21

C S4 S3 S2 S1

10 ग्रं प्रभी

54 53 52 51

1 0 1 0

F = S1 (53+52) + C

= 1 0 1

=

Block Diagram:

@ Magnitude Comparatorz:

Truth Table for 1 bit comparators

A	В	F (A>B)	F2 (A = B)	· 5 (A <b)< th=""></b)<>
0	0	O	J	0
0	1	0	o	1
1	0	30	0	0
1	1	0	1	0

A Antern

$$A>B$$
, $F=A\overline{B}$

$$A=B$$
, $T_2=\overline{AB}+AB=\overline{A\oplus B}$

$$A < \theta$$
, $F_3 = \overline{A} \theta$

Fore 2 bit: ()

$$A = A_2A_1$$

$$B = B_2 B_1$$

$$(A_2 > B_2) + (A_2 = B_2) \cdot (A_1 > B_1)' = A_2 \overline{B_2} + (\overline{A_2 \oplus B_2}) A_1 \overline{B_1}$$

$$(A_2 = B_2) (A_1 = B_1) = (\overline{A_2 \oplus B_2}) (\overline{A_1 \oplus B_1})$$

$$(A_2 < \beta_2) + (A_2 = \beta_2)(A_1 < \beta_1) = \overline{A_2}\beta_2 + (\overline{A_2 \oplus \beta_2})\overline{A_1}\beta_1$$

For 3 61:

$$B = \theta_3 \ \theta_2 \ \theta_1$$

$$(A_3 > B_3) + (A_3 = B_3) (A_2 > B_2) + (A_3 = B_3) (A_2 = B_2) (A_1 > B_1)$$

$$(A_3 = B_3) (A_2 = B_2) (A_1 = B_1)$$

$$(A_3 < B_3) + (A_3 = B_3) (A_2 < B_2) + (A_3 = B_3) (A_2 = B_2)$$

Decodere:

2 to 4 line Decoders (1x4 Decoders):

Truth Table:

Inp	ut	output						
Α	в	Do		D ₂	Dз			
0	0	1	0	0	0			
0	L	0	1	0	0			
1	0	0	٥	1	0			
د ا	٤	0	0	0				

0 पत्र जना Do (ए 1

Dispress or no or

1 अत्र जना म (ए 1

2 थत फर्ना D2 ए 1

उ पत्र कता के ए 1

Logic Diogram:

- 1i) 3 to 8 line Diogram (3x8 Decoders)
- iii) 4 to 16 line Diagram (4×16 Decoders)
- Drow logic Diogram of a BCD to decimal decoders:

4 to 10 line Decoders

EO 60 10

Truth Table:

Input				Light was distributed to the control of the control				Out	lput	lon.					
	A	B	c	ه		Do	D1	02	D3	04	Dş	υe	D≠	Δ8	Дэ

Topal

Expression:

$$D_0 = \overline{A}\overline{B}\overline{C}\overline{D}$$

$$D_1 = \bar{A}\bar{B}\bar{C}D$$

1

Decoder:
$$F(AB,C) = \underbrace{\xi(1,2,4,\mp)}_{\text{output 1}}$$

Truth Table:

* Design a 1 bit full adder using a decoder and one gater.

Truth Table:

	Input		Output
cin	A	В	Corrry Sum
0	0	0	0 0
0	0	7	0 1
0	1	0	_
0	1	1	1 0
1	0	0	0 1
J	0	1	
4	4	a	1 0
_	-		1 0
1	1	1	1 1

A full (adder)

-4-0

Trade of the

using two half adders and other basic gates.

A	8	A ₇	AG	Аъ	A4	Pu	A ₂	A ₁
в	8	<i>6</i> 7	BG	B ₅	B4	Вз	B ₂	01

4 bit ma compare

* Construct a [5x32] decoders with four 3x8 decoders and a 2x4 decoders.

- 4.4

* Implement the following function awing 3x8 decoder

Decoders:

Truth Table:

A	В	Do	D _I	D ₂	Dz
0	0	1	0.1	0	0
0	1	0	4	0	0
3	0	0	0	נ	0
1	1	0	0	0	1

Encoder :

Truth Table:

I.	4	T ₂	I_3	Fi.	Fı
1	0	0	0	0	0
0	د	0	0	0	1
٥	0	1	0	_1	0
0	0	0	1	1	1

Decoder

Design_ 8×3 Encoder. Octal to Binory

Priority Encoder ...

हा ना किस्से र ता र अस्त स्थान

- A projortity is an encodered circuit that includes the prescrity function. The operation of the prescrity Encoder is such that if two OTC MOTE inputs orce equal to 1 at the some time, the input having the highest prioraity will take precedence.

ouil that

KUM

1

(b) Meete Dispersons

3>2>1>0

	Ij.	I,	4	I.	Fo	F	and the one sound .
. kada alsa	O	٥	0	1	0	0	
. < 200 0000	0	0	١	X	0	1	tab politorifora tid
	o	1	×	×	נ	0	
	_1	×	x	×	١	1	(xum 1x2, xum 1 of s

Air our landhadean o to combilition is .

2>3>1>0

I,	I3	I _I	I _o	۴	Fi
0	0	0	1	0	٥
0	0	1	×	0	1
0	4	X	×	.1	0
1	×	×	×	L	1

Fo = IZI3 + IZ

The third multiples of