4/25/2021 Clusters.Top

This answer was provided by CS Place, click here to join the Discord.

Question:

Suppose five algorithms $A_1...A_5$ solving the same problem with execution times, $t_1(n),...,t_5(n)$, of the following asymptotic upper bounds. Put the algorithms in order regarding their execution speed from the fastest to the slowest!

- i. $O(2^{n+2})$
- ii. $O([n^n]^2)$
- iii. $O(4^n)$
- iv. $O(n^2!)$
- v. $O(\log n^n)$
- vi. $O(n^{[n^2]})$

Answer:

 $o(logn^n) = o(n log n)$ is the fastest execution time

Below are the execution time from fast to slow

$$o(logn^n) < o(2^{n+2}) < o(4^n) < o([n^n]^2) < o(n^{[n^2]}) < o(n^2!)$$

That is o(lognⁿ) has the low execution time where as o(n²!) has the high execution time..

Low execution time indicates that the algorithm is faster

High execution time indicates that the algorithm is slower..

Note:: algorithmic complexities from best to least is

O(1), $O(\log n)$, O(n), $O(n \log n)$, $O(n^2)$, $O(n^3)$, $O(2^n)$, O(n!) These are the frequently seen complexities from best to least..

Tip:: If we want to check, other complexities which are good and which are not, simply substitute a integer value in the variable "n", and then calculate the time..

For example :: in the given case we have $o(2^{n+2})$, $o(4^n)$, $o([n^n]^2)$ complexities ..

assume n = 3 and substitute n value in each complexity

$$o(2^{n+2}) = o(2^{3+2}) = o(2^5) = o(32) = 32$$

$$o(4^n)=o(4^3)=o(64)=64$$

4/25/2021 Clusters.Top

 $o([n^n]^2) = o([3^3]^2) = o([27]^2) = o(729) = 729$

 $o(2^{n+2})$ Has less execution time compared to $o([n^n]^2)$. Lowest execution time is the fastest algorithm...