- 一、填充題 (每題 10 分,共計 80 分)
- 1. 在南北朝《張丘建算經》中有一個很有名的百雜問題,題目是這樣:公難5元錢1隻,母雞3元錢1隻,小雞3隻1元錢,現在用100元錢買100隻雞,分別可以買a隻公雞、b隻母雞及c隻小雞?求整數組(a,b,c)。(答案不只一組)

- 3. 求 7⁸+4⁵ 的正因數個數。
- 4. 立方體中,任選兩組頂點所形成的兩條線段為相互歪斜線段,共有幾對?
- 5. 數列 1, 2, 3,…, 2010 中, 扣除與 2010 不互質的數後, 第 500 個數是多少?
- 6. 找出方程式 $x^3 + 2\sqrt{2}x^2 + 2x + \sqrt{2} + 1 = 0$ 的所有解。
- 7. A, B, C 為橢圓 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 上三點,且 ΔABC 的重心恰為原點,已知 $A(1, \frac{3\sqrt{3}}{2})$,求 \overline{BC} 之長。
- 8. 設 a, b 為正實數, 求 $2a + b + \frac{2}{a} + \frac{18}{ab}$ 的最小值。

國立台灣師範大學九十九學年度 附屬高級中學第一學期 高中科學實驗能力競賽【第二階段】數學科試題

2010/09/30

二、計算證明題(沒有過程不予計分,部份過程給部份分數,每題20分,共計100分)

1. 容器內裝有濃度為 10%的溶液 100 公克,注入濃度為 40%的溶液 25 公克,均勻攪拌後,再倒出混合液 25 克,如此反 覆下去。設 $a_0\% = 10\%$ 表示溶液的初始濃度, $a_n\%$ 代表稀釋 n 次後的溶液濃度 $(n \in \mathbb{N})$,試求:

(1) $a_1 = ?(4 \, \beta)$ (2) 列出 a_n 與 a_{n+1} 的關係式。(6 分) (3) 求出 a_n 的一般式。(10 分)

2. 證明:任意四邊形 ABCD 的四邊長、兩條對角線長及對角線中點連線長有如下的關係:

 $\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{DA}^2 = 4\overline{MN}^2 + \overline{AC}^2 + \overline{BD}^2$ (其中 M,N 分別是對角線 \overline{BD} , \overline{AC} 的中點)

3. 某比賽共有 n 人參加 (n≥2),採單循環制(即任兩人都需要比賽一場),每場比賽沒有和局。若有某甲滿足 "對於任何 其他選手乙,必有甲勝乙或是甲間接勝乙(即甲勝某丙而丙勝乙)″則稱甲為優秀選手。證明:

(1)必存在優秀選手。(10分) (2) 若這樣的優秀選手只有一個,則此選手在此次比賽期間全勝。(10分)

4. 如圖,圓O與圓 O_1 內切於A,圓O與圓 O_2 內切於B,而圓 O_1 與圓 O_2 相交於P,Q雨點,試證明:

若 A, Q, B 三點共線,則 $\angle OPQ$ 為直角。

5. 三實數 a < b < c 滿足 a + b + c = 6, ab + bc + ca = 9。試證:0 < a < 1 < b < 3 < c < 4。

國立台灣師範大學九十九學年度 附屬高級中學第一學期 高中科學實驗能力競賽【第二階段】數學科答案卷 | P.03 |

201	0/09/30	
Z.1.1	しけいタ/うし	

据规 序號 姓名 1. 2. 3. 4. 4. 5. 6. 6. 6. 7. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		2011
1. 2. 3. 4. 5. 6. 5. 6. 7. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		班級
3. 4. 5. 6. 7. 8		
5. 6. 7. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1.	2.
5. 6. 7. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		
5. 6. 7. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		
5. 6. 7. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		
7. 8. 計算證明題 (沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.	3.	4.
7. 8. 計算證明題 (沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.		
7. 8. 計算證明題 (沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.		
7. 8. 計算證明題 (沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.		
計算證明題(沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.	5.	6.
計算證明題(沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.		
計算證明題(沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.		
計算證明題(沒有過程不予計分,部份過程給部份分數,每題 20 分,共計 100 分) 1.	7	0
	1.	0.
	計質終明期(沒有過程不予計分,部份過程終部份公數	, 每期 20 公, 共計 100 公)
	可开证引起(汉有过任个)可力。可仍过任治可切力数	
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
2.		
		2.

或	立台	3 灣	師	範	大	學	九	十	九學	年	度	度 高中科學實驗能力競賽【第二階段】數學科答案卷	P 0 4
附	屬	高	級	4	þ	學	第	-	_ <u>_</u>	學	期	一向下杆字貝橛肥刀祝食【另一陷权】数字杆合系论 ;	1.04

20	10	100	1/2/
70	HU	/(P	9/3(

班級	座號	姓名	
7) - W/L	/エ ‴し		

3.
4.
5.

一、填充題(每題10分,共計80分)

英元选(每选10分一共前00分)	
1.	2.
(0, 25, 75), (4, 18, 78), (8, 11, 81), (12, 4, 84)	$-\frac{1}{2}$
3.	4.
24	174
5.	6.
1901	$\frac{1-\sqrt{2}\pm\sqrt{2\sqrt{2}+1}i}{2}\vec{\boxtimes}-\sqrt{2}-1$
7.	8.
$\frac{3\sqrt{7}}{2}$	11

1. 在南北朝《張丘建算經》中有一個很有名的百雜問題,題目是這樣:公雞 5 元錢 1 隻,母雞 3 元錢 1 隻,小雞 3 隻 1 元錢,現在用 100 元錢買 100 隻雞,分別可以買 a 隻公雞、b 隻母雞及 c 隻小雞?求整數組(a,b,c)。(答案不只一組)

解:依題意
$$\begin{cases} a+b+c=100 & \cdots (1) \\ 5a+3b+\frac{1}{3}c=100 & \cdots (2) \end{cases}$$
 , (2)×3 – (1)得 $14a+8b=200$, 即 $7a+4b=100$, 易得 4 整除 a ,

令 a=4t, 其中 t 為非負整數,代回得 b=25-7t,c=75+3t,再由 $b\geq 0$ 得 $t\leq \frac{25}{7}$,也就是 t=0,1,2,3。 代回便能得到(a,b,c)的所有解(0,25,75), (4,18,78), (8,11,81), (12,4,84)。

2. 若
$$x = \sqrt{\frac{8}{3+\sqrt{5}}}$$
 , 試求 $\log_{\frac{1}{4}}(2x^4+5x^3-7x^2-6x+6)$ 之值。

解:由於
$$x = \sqrt{\frac{8}{3+\sqrt{5}}} = \sqrt{\frac{8(3-\sqrt{5})}{3^2-\sqrt{5}^2}} = \sqrt{6-2\sqrt{5}} = \sqrt{5}-1$$
,故 $(x+1)^2 = \sqrt{5}^2$,得 $x^2+2x-4=0$,

所以
$$2x^4 + 5x^3 - 7x^2 - 6x + 6 = (x^2 + 2x - 4)(2x^2 + x - 1) + 2 = 2 \Rightarrow \log_{\frac{1}{4}}(2x^4 + 5x^3 - 7x^2 - 6x + 6) = \log_{\frac{1}{4}}2 = -\frac{1}{2}$$
 °

3. 求 7⁸+4⁵ 的正因數個數。

解:
$$7^8+4^5=7^8+2\times 7^4\times 2^5+2^{10}-2\times 7^4\times 2^5$$

= $(7^4+2^5)^2-(7^2\times 2^3)^2$ (利用加減項後,變成平方差)
= $(7^4+2^5+7^2\times 2^3)(7^4+2^5-7^2\times 2^3)$ (變成較小的數字之後,再分解比較好做)
= $2825\times 2041=5^2\times 113\times 13\times 157$,所以有 $(2+1)(1+1)(1+1)(1+1)=24$ 個正因數。

4. 立方體中,任選兩組頂點所形成的兩條線段為相互歪斜線段,共有幾對?

解:設立方體邊長為l,任選兩組頂點所形成的線段分長度l、 $\sqrt{2}l$ 、 $\sqrt{3}l$ 各 12、12、4條,共 28條,

其中互相平行者:長度 l 有三個方向各 4 條,有 $3\times C_2^4$;長度 $\sqrt{2}$ l 共 12 條,每兩個一對,有 $\frac{12}{2}$ 對;長度 $\sqrt{3}$ l 不平行。而相交於一點者:交於頂點類,有 8 個頂點,每個頂點有 7 條線段通過,有 $8\times C_2^7$ 對;交於各面中點類,各面一對,共 6 對;交於立方體中心者,有 4 條,共 C_2^4 對。

故所求為
$$C_2^{28} - (3 \times C_2^4 + \frac{12}{2}) - (8 \times C_2^7 + 6 + C_2^4) = 174 對。$$

5. 數列 1, 2, 3,…, 2010 中, 扣除與 2010 不互質的數後, 第 500 個數是多少?

解:由於
$$2010 = 2 \times 3 \times 5 \times 67$$
,此數列共有 $2010 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{67}\right) = 528$ 個數,故所求為倒數第 29 個數。

又 1, 2, ···, 30 中有 $30\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=8$ 個數與 30 互質,所以 1981, 1982, ···, 2010 中有 8 個數與 2010 互質,

1951, 1952,…, 1980 中有 8 個數與 2010 互質, 1921, 1922,…, 1950 中有 7 個數與 2010 互質(去除 67 × 29 = 1943), 1891, 1892,…, 1920 中有 8 個數與 2010 互質, 故為 1891, 1892,…, 1920 中第三個與 2010 互質的數,即 1901。

國立台灣師範大學九十九學年度 附屬高級中學第一學期 高中科學實驗能力競賽【第二階段】數學科解答卷 | P.03 |

6. 找出方程式 $x^3 + 2\sqrt{2}x^2 + 2x + \sqrt{2} + 1 = 0$ 的所有解。

解:令 $t = \sqrt{2}$,原式成為 $x^3 + 2tx^2 + t^2x + t + 1 = 0$ 得 $xt^2 + (2x^2 + 1)t + (x^3 + 1) = 0$ 十字交乘得 $[xt + (x^2 - x + 1)][t + (x + 1)] = 0$, t 還原得 $x^2 + (\sqrt{2} - 1)x + 1 = 0$ 或 $x + \sqrt{2} + 1 = 0$,故 $x = \frac{1 - \sqrt{2} \pm \sqrt{2}\sqrt{2} + 1i}{2}$ 或 $-\sqrt{2} - 1$ 。

7. A, B, C 為橢圓 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 上三點,且 ΔABC 的重心恰為原點,已知 $A(1, \frac{3\sqrt{3}}{2})$,求 \overline{BC} 之長。

解: 設 $B(x_1, y_1), C(x_2, y_2)$, $x_1 \ge x_2$, 由重心原點易得 $x_1 + x_2 = -1$, $y_1 + y_2 = -\frac{3\sqrt{3}}{2}$, 如此 \overline{BC} 中點 M 為 $(-\frac{1}{2}, -\frac{3\sqrt{3}}{4})$, 又 $\frac{x_1^2}{4} + \frac{y_1^2}{9} = 1$ 且 $\frac{x_2^2}{4} + \frac{y_2^2}{9} = 1$,相減得 $\frac{(x_1 + x_2)(x_1 - x_2)}{4} + \frac{(y_1 + y_2)(y_1 - y_2)}{9} = 0$,化簡得 $\frac{y_1 - y_2}{y_1 - y_2} = -\frac{\sqrt{3}}{2}$,

即直線 \overrightarrow{BC} 的斜率為 $-\frac{\sqrt{3}}{2}$,又直線 \overrightarrow{BC} 過 \overrightarrow{BC} 中點 $M(-\frac{1}{2},-\frac{3\sqrt{3}}{4})$,所以 \overrightarrow{BC} : $y=-\frac{\sqrt{3}}{2}x-\sqrt{3}$,

代入橢圓方程式,解得 x = 1 或-2,故 $B(1, -\frac{3\sqrt{3}}{2}), C(-2, 0)$,故 $\overline{BC} = \frac{3\sqrt{7}}{2}$ 。

8. 設 a, b 為正實數, 求 $2a + b + \frac{2}{a} + \frac{18}{ab}$ 的最小值。

解: 令 $2a + b + \frac{2}{a} + \frac{18}{ab} = [ka + b + \frac{18}{ab}] + [(2 - k)a + \frac{2}{a}]$, 欲使兩中括號內各利用算幾不等式找出最小值, 並使兩者等號成立 條件相同,必須有 $ka = b = \frac{18}{ab}$ 且 $(2-k)a = \frac{2}{a}$,解得 $k = \frac{3}{2}$, a = 2, b = 3。

故 $2a + b + \frac{2}{a} + \frac{18}{ab} = \left[\frac{3a}{2} + b + \frac{18}{ab}\right] + \left[\frac{a}{2} + \frac{2}{a}\right] \ge 3\sqrt[3]{\frac{3a}{2} \cdot b \cdot \frac{18}{ab}} + 2\sqrt{\frac{a}{2} \cdot \frac{2}{a}} = 11$, 等號會在 a = 2, b = 3 時成立,得最小值 11。

二、計算證明題(沒有過程不予計分,部份過程給部份分數,每題20分,共計100分)

容器內裝有濃度為 10%的溶液 100 公克,注入濃度為 40%的溶液 25 公克,均匀攪拌後,再倒出混合液 25 克,如此 反覆下去。設 a_0 % = 10%表示溶液的初始濃度, a_n %代表稀釋 n 次後的溶液濃度(n∈N),試求:

- $(1) a_1 = ? (4 分)$ (2) 列出 a_n 與 a_{n+1} 的關係式。(6 分) (3) 求出 a_n 的一般式。(10 分)

解:(1)
$$a_1 = \frac{10 \times 100 + 40 \times 25}{100 + 25} = 16$$
。

(2)
$$a_{n+1} = \frac{a_n \times 100 + 25}{100 + 25}$$
, $parall a_{n+1} = \frac{4}{5} a_n + 8$

(3) 由於 $a_{n+1}-40=\frac{4}{5}(a_n-40)$,所以 $a_n-40=(\frac{4}{5})(a_{n-1}-40)=(\frac{4}{5})^2(a_{n-2}-40)=\cdots=(\frac{4}{5})^n(a_0-40)=-30(\frac{4}{5})^n$ 得 $a_n = 40 - 30(\frac{4}{5})^n$ °

答:(1) $a_1 = 16$, (2) $a_{n+1} = \frac{4}{5} a_n + 8$, (3) $a_n = 40 - 30(\frac{4}{5})^n$

證明:任意四邊形 ABCD 的四邊長、兩條對角線長及對角線中點連線長有如下的關係:

$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{DA}^2 = 4\overline{MN}^2 + \overline{AC}^2 + \overline{BD}^2$$
 (其中 M,N 分別是對角線 \overline{BD} , \overline{AC} 的中點)

解:連 \overline{BN} , \overline{ND} 利用中線定理可知: $2(\overline{DN}^2 + \overline{NB}^2) = 4\overline{MN}^2 + \overline{BD}^2 \cdots (1)$

同理
$$2(\overline{CD}^2 + \overline{DA}^2) = 4\overline{DN}^2 + \overline{AC}^2 \cdots (2)$$

$$2(\overline{AB}^2 + \overline{BC}^2) = 4\overline{BN}^2 + \overline{AC}^2 \cdot \cdot \cdot \cdot \cdot (3)$$

(1)式+ $\frac{1}{2}$ ×(2)式+ $\frac{1}{2}$ ×(3)式後可消去題目中沒有的 \overline{BN} , \overline{ND} ,

得
$$\overline{AB}^2 + \overline{BC}^2 + \overline{CD}^2 + \overline{DA}^2 = 4\overline{MN}^2 + \overline{AC}^2 + \overline{BD}^2$$

3.

某比賽共有 n 人參加 (n≥2),採單循環制(即任兩人都需要比賽一場),每場比賽沒有和局。若有某甲滿足 "對於任 何其他選手乙,必有甲勝乙或是甲間接勝乙(即甲勝某丙而丙勝乙)"則稱甲為優秀選手。證明:

(1) 必存在優秀選手。(10分) (2) 若這樣的優秀選手只有一個,則此選手在此次比賽期間全勝。(10分)

解

- (1) 假設甲為勝利最多場的其中一人,令A為甲所勝的所有人形成之集合,B為勝了甲的所有人形成之集合, 顯然除了甲以外的人必在A或B中。
 - 若B中有某乙沒被A中的任何人打敗,於是乙勝過A中所有人及甲,故乙的勝場數超過甲,此與假設矛盾! 所以B中所有人都分別被A中的某人打敗,則甲可以間接勝過B中所有人,故甲為優秀選手。得證!
- (2) 不妨設唯一的優秀選手為甲,令A為甲所勝的所有人形成之集合,B為勝了甲的所有人形成之集合,若B非空集合,由(1)知B中有相對於B的優秀選手乙,即乙勝過或間接勝過B中其他所有人,然而B勝甲且B透過甲間接勝過A中所有人,如此得乙為優秀選手,此與優秀選手的唯一性互相矛盾。所以B為空集合,即甲勝過所有人。得證!

1

如圖,圓O與圓 O_1 內切於A,圓O與圓 O_2 內切於B,而圓 O_1 與圓 O_2 相交於P,Q 兩點,試證明: 若A,Q,B三點共線,則 $\angle OPQ$ 為直角。

解:設圓 O, O₁, O₂ 的半徑分別為 R, r₁, r₂,

即 ZOPQ 為直角。

由於 $\overline{O_1A} = \overline{O_1Q}$ 、 $\overline{O_2B} = \overline{O_2Q}$ 、 $\overline{OA} = \overline{OB}$, 故 $\angle O_1QA = \angle O_1AQ = \angle O_2BQ = \angle O_2QB$, 又 A , Q , B 三點 共線 , 故 得 \overline{OA} // $\overline{O_2Q}$ 且 \overline{OB} // $\overline{O_1Q}$,即 OO_1QO_2 為平行四邊形 。 如圖 , 設 \overline{OQ} 與 \overline{PQ} 分 別 交 $\overline{O_1O_2}$ 於 M , N ,則 $\overline{OM} = \overline{MQ}$, $\overline{PN} = \overline{NQ}$ 。 如此得 \overline{MN} 為 ΔQOP 中點連線 ,故 \overline{MN} // \overline{OP} ,又 $\overline{MN} \perp \overline{PQ}$,得 $\overline{OP} \perp \overline{PQ}$,

5.

三實數 a < b < c 滿足 a + b + c = 6, ab + bc + ca = 9。試證:0 < a < 1 < b < 3 < c < 4。

解: 首先 $ab = 9 - bc - ca = 9 - c(b + a) = 9 - c(6 - c) = (3 - c)^2 \ge 0$,同理 $bc \ge 0$, $ca \ge 0$,得 $0 \le a < b < c$ 。 若 a = 0,由上一行前面等式知 c = 3,再和為 6 得 b = 3,此與 b < c 矛盾,故 0 < a < b < c。 接著便得 $a = \frac{3a}{3} < \frac{a + b + c}{3} = 2$,模仿第一行得 $bc = (3 - a)^2$,

再由算幾不等式得 $abc = a(3-a)^2 = \frac{1}{2} 2a(3-a)(3-a) \le \frac{1}{2} \left(\frac{2a+(3-a)+(3-a)}{3} \right)^3 = 4$,

等號成立時,a=1,解得 b=1, c=4,此與 a < b 矛盾,所以等號不會成立,得 0 < abc < 4。

然後令 $f(x) = x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc = x^3 - 6x^2 + 9x - abc$,

而 f(0) = f(3) = -abc < 0,f(1) = f(4) = 4 - abc > 0,由勘根定理得 f(x) = 0 在 $0 \sim 1 \cdot 1 \sim 3$ 及 $3 \sim 4$ 間各有一實根,最後由根與係數關係知 a, b, c 為 f(x) = 0 的三根,配合 a < b < c 即得 0 < a < 1 < b < 3 < c < 4。