ACA HLS Final Project DNA Sequence Analysis Acceleration

https://github.com/soyccan/hls_project

Team12

陳正康

蔡德育

王則勛

Outline

- Problem Statement
- Architecture
- Analysis and Optimization
 - System
 - o Kernel
- Implementation Issues
- Conclusion

Problem Statement

reference genome (len=3e9)

ACTCATTAGC...

- DNA sequence analysis includes an operation of string matching
- Mapping many short reads onto one long reference genome (find common substrings)

reads (len=100)

ATGATTGC..

CCAGCTAC..

TCAGCCAA...

Problem Statement

- Burrows-Wheeler Aligner
- Step 1: Build FM-index table O and C of the reference genome

Position	0	1	2	3	4	5	6
Ref. sequence (X)	С	С	Т	G	Α	G	\$

Position	0	1	2
Short read (W)	С	G	Α

а	Α	С	G	Т
C(a)	1	2	4	6

(a) Reference sequence X, short-read W and C(a) of X

Position	0	1	2	3	4	5	6
0	С	С	Т	G	Α	G	\$
1	С	Т	G	Α	G	\$	С
2	Т	G	Α	G	\$	С	С
3	G	Α	G	\$	С	С	Т
4	Α	G	\$	С	С	Т	G
5	G	\$	С	С	Т	G	Α
6	\$	С	С	Т	G	Α	G

(b) Rotation of X

						W7 rin		В)			nce . , .	
C A	Desition	^	1	_	2	1	_	-	Φ	Λ		-

									-					
SA	Position	0	1	2	3	4	5	6		\$	Α	С	G	Т
0	6	\$	С	С	Т	G	Α	G		0	0	0	1	0
1	4	Α	G	\$	С	С	Т	G		0	0	0	2	0
2	0	С	С	Т	G	Α	G	\$		1	0	0	2	0
3	1	С	Т	G	Α	G	\$	С		1	0	1	2	0
4	5	G	\$	O	С	Η	G	Α		1	1	1	2	0
5	3	G	Α	G	\$	C	С	Т		1	1	1	2	1
6	2	Т	G	Α	G	\$	С	С		1	1	2	2	1

(c) Sorting result

Problem Statement

- Burrows-Wheeler Aligner
- Step 2: With index O and C, perform the alignment process of a read W
- Recurrence is implemented by ring

buffe

Precalculation:

Calculate BWT string B for reference string X Calculate array $C(\cdot)$ and $O(\cdot, \cdot)$ from B Calculate BWT string B' for the reverse reference Calculate array $O'(\cdot, \cdot)$ from B'

Procedures:

```
INEXRECUR(W, i, z, k, l)
   if z < D(i) then
      return Ø
   if i < 0 then
      return \{[k,l]\}
   I \leftarrow \emptyset
   I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)
   for each b \in \{A, C, G, T\} do
      k \leftarrow C(b) + O(b, k-1) + 1
      l \leftarrow C(b) + O(b, l)
      if k \le l then
          I \leftarrow I \cup INEXRECUR(W, i, z-1, k, l)
          if b = W[i] then
             I \leftarrow I \cup INEXRECUR(W, i-1, z, k, l)
          else
             I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)
   return I
```

Preprocessing

- We implemented an FM-index generator using openBWT in software
 - BWT: Burrows-Wheeler Transform
- Our kernel will use this index as input

```
ref_size 100
endmark 85
sa bwt occ[0:3]
  62232
```

Test Dataset

- Reference genome length = 100
 - \circ Index table size (O) = 100 x 4
- #Reads = 10
- Read length = 10

Architecture

System Diagram

Platform: Xilinx Alveo U50

Momery (read only)

cum

kernel

Mondery (write only)

res sa len

readn

res sa itv

Tool: Vitis with OpenCL

occ

refn

Interface

Name	Туре	Size	Offset	Host Offset	Host Size	Port	Port Mode	Port Range	Port Data Width	Port Base
v 🥖 bwa_align										
<pre>res_sa_len</pre>	int*	0x8	0x10	0x0	0x8	M_AXI_GMEM	master	0xFFFF_FFFF	32	0x0
<pre>res_sa_itv</pre>	int*	0x8	0x1C	0x0	0x8	M_AXI_GMEM	master	0xFFFF_FFFF	32	0x0
buf	int*	0x8	0x28	0x0	0x8	M_AXI_GMEM	master	0xFFFF_FFFF	32	0x0
<pre>occ</pre>	int const *	0x8	0x34	0x0	0x8	M_AXI_GMEM	master	0xFFFF_FFFF	32	0x0
cum	int const *	0x8	0x40	0x0	0x8	M_AXI_GMEM	master	0xFFFF_FFFF	32	0x0
<pre>ref_len</pre>	int	0x4	0x4C	0x0	0x4	S_AXI_CONTROL	slave	0x1000	32	0x0
<pre>read</pre>	char const *	0x8	0x54	0x0	0x8	M_AXI_GMEM	master	0xFFFF_FFFF	32	0x0
<pre>read_len</pre>	int	0x4	0x60	0x0	0x4	S_AXI_CONTROL	slave	0x1000	32	Ox O

Single Kernel, Single Read

Single Kernel, Single Read

Multiple Compute Units

- Improve throughput by dispatching reads to separate CU
- Correctly specifiy
 dependencies, then XRT will
 schedule them

Multiple Compute Units

Compute Ur	nits: Running	Time and Stalls		
Compute Unit	Running Time (us)	Intra-Kernel Stream Stalls (%)	External Memory Stalls (%)	External Stream Stalls (%)
bwa_align_0	85.014	0.0	-45875.924	0.0
bwa_align_1	123.736	0.0	0.0	0.0

Hiding Data Transfer

- Kernel consumes one read per run
- Make use of out-of-order execution to hide data transfer inside kernel execution
- clEnqueueMigrateMemObjects(), clEnqueueTask()

Hiding Data Transfer

GlobMem = clCreateBuffer()

clSetKernelArg(GlobMem)

clEnqueueMigrateMemObjects(NULL, mem_write_event)

clEnqueueTask(mem_write_event, kernel_event)

clEnqueueMigrateMemObjects(kernel_event, mem_read_event[i % 2])

Problem: Stuck at memory write so that kernel won't start without any error message

Solution: Make sure host code specifies correct buffer size

Hiding Data Transfer - Timeline (SW)

Hiding Data Transfer - Timeline (SW)

Hiding Data Transfer - Timeline (HW-emulation)

Hiding Data Transfer - Timeline (HW-emulation)

Bandwidth Usage (HW-emulation)

- Why Host -> Glabal_Mem significantly faster than Global_Mem -> Kernel?
 - # transfer of the ring buffer is large and irregular, and does not pass host
 - Maybe we should increase the data burst size

Average Randwidth Average

Transfer

Data Transfer: Host to Global Memory

Why the time of Host -> Global_Mem cannot be measured?

of Devices	Туре	Buffer Transfers	Rate (MB/s)	Utilization (%)	Buffer Size (KB)	Time (ms)	Time (ms)						
context0:1	READ	20	N/A		N/A	1.026	N/A	N/A						
context0:1	WRITE	50	N/A		N/A	1.236	N/A	N/A						
													_	
V Data Transfe	er: Kernels	to Global Memory	y											
Device	Compute Unit/ Kernel Port Name Arguments			Memory Resources	Transfer Type	Number Of Transfers	Transfer Rate (MB/s)	Average Bandwidth Utilization (%)	Average Size (KB)	Average ^1 Latency				
xilinx_u50_gen3x	k16_xdma_2	01920_3-0 bwa	a_align_0/m_axi	gmem res	s_sa_len re	es_sa_itv buf_r oc	c cum read_r	HBM[0]	READ	5744	4800.000	41.667	0.016	3.333
xilinx_u50_gen3x	k16_xdma_2	01920_3-0 bwa	a_align_1/m_axi	gmem res	s_sa_len re	es_sa_itv buf_r oc	c cum read_r	HBM[0]	READ	5724	4800.000	41.667	0.016	3,333
xilinx_u50_gen3x	k16_xdma_2	01920_3-0 bwa	a_align_0/m_axi	gmem res	s_sa_len re	es_sa_itv buf_r oc	c cum read_r	HBM[0]	WRITE	1435	3211.190	27.875	0.016	6.667
xilinx_u50_gen3x	k16_xdma_2	01920_3-0 bwa	a_align_1/m_axi	gmem res	s_sa_len re	es_sa_itv buf_r oc	c cum read_r	HBM[0]	WRITE	1560	3052,070	26,404	0.016	6.667

Total

Average

→ Top Data Transfer: Kernels to Glob	al Memory							
Device	Compute Unit	Number Of Transfers	Average Bytes per Transfer	Transfer Efficiency (%)	Total Data Transfer (MB)	Total Write (MB)	Total Read (MB)	Total Transfer Rate (MB/s)
xilinx_u50_gen3x16_xdma_201920_3-0	bwa_align_1	7292	16.000	0.391	0.117	0.025	0.092	4273.700
xilinx_u50_gen3x16_xdma_201920_3-0	bwa_align_0	7179	16.000	0.391	0.115	0.023	0.092	4368.010

→ Top Kernel Execution

. Top Kerner Exec	ution								
Kernel Instance Address	Kernel	Context ID	Command Queue ID	Device	Start Time (ms)	Duration (ms)	Global Work Size	Local Work Size	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.262	0.090	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.256	0.081	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.031	0.076	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.109	0.075	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.103	0.075	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.179	0.074	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.186	0.074	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.353	0.074	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.338	0.073	1:1:1	1:1:1	
0x55c640d85cc0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.028	0.073	1:1:1	1:1:1	

→ Top Memory Writes: Host to Global Memory

Buffer Address	Context ID	Command Queue ID	Start Time (ms)	Duration (ms)	Buffer Size (KB)	Writing Rate (MB/s)
0x9000	0	0	33294.400	N/A	4.096	N/A
0xa000	0	0	33388.600	N/A	0.016	N/A
0x7000	0	0	33112.600	N/A	2.048	N/A
0x27000	0	0	233123.000	N/A	4.096	N/A
0x29000	0	0	233370.000	N/A	0.016	N/A
0x28000	0	0	233244.000	N/A	0.016	N/A
0x25000	0	0	233010.000	N/A	2.048	N/A
0x33000	0	0	312075.000	N/A	4.096	N/A
0x1b000	0	0	167018.000	N/A	4.096	N/A
0x1c000	0	0	167132.000	N/A	0.016	N/A

∨ Kernel Ex	cecution (inclu	ıdes estima	ted device	times)							
Kernel	Number Of Enqueues		Minimum Time (ms)	Average Time (ms)	Maximum Time (ms)						

Number

Of Calls

Dataflow

5 No

5 No

Execution

Dataflow

1 1.000000x

1 1.000000x

Acceleration

Total

Time (ms)

0.357

0.369

Minimum

Time (ms)

0.069

0.070

Average

Time (ms)

0.071

0.074

Maximum

Time (ms)

0.077

0.086

Max Parallel

Executions

Compute	Unit	Utilization	(includes	estimated	device	times

0.765

10

xilinx_u50_gen3x16_xdma_201920_3-0

xilinx_u50_gen3x16_xdma_201920_3-0

bwa_align

V

Device

ation	(includes	estimated	device	times	
		Compute			

0.073

bwa_align_0

bwa_align_1

estimated de	vice times)	
Compute Unit	Kernel	Global Work S

0.076

bwa_align

bwa_align

Work Size

1:1:1

1:1:1

0.090

Local

1:1:1

1:1:1

Work Size

- Reduce memory access to large index table O by local buffering
 - O is Ref_Genome_Size x 4
- Index of access to O is increasing
 - o k, I are increasing during runtime
 - Easy to buffer

```
INEXRECUR(W, i, z, k, l)
   if z < D(i) then
       return Ø
   if i < 0 then
      return \{[k,l]\}
   I \leftarrow \emptyset
   I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)
   for each b \in \{A, C, G, T\} do
      k \leftarrow C(b) + O(b, k-1) + 1
       l \leftarrow C(b) + O(b, l)
      if k < l then
          I \leftarrow I \cup INEXRECUR(W, i, z-1, k, l)
          if b = W[i] then
             I \leftarrow I \cup INEXRECUR(W, i-1, z, k, l)
          else
             I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)
   return /
```

 Reduce R/W turnaround of ring buffer

```
INEXRECUR(W, i, z, k, l)
   if z < D(i) then
      return Ø
   if i < 0 then
      return \{[k,l]\}
   I \leftarrow \emptyset
   I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)
   for each b \in \{A, C, G, T\} do
      k \leftarrow C(b) + O(b, k-1) + 1
      l \leftarrow C(b) + O(b,l)
      if k < l then
          I \leftarrow I \cup INEXRECUR(W, i, z-1, k, l)
          if b = W[i] then
             I \leftarrow I \cup INEXRECUR(W, i-1, z, k, l)
          else
             I \leftarrow I \cup INEXRECUR(W, i-1, z-1, k, l)
   return /
```

- How to determine local buffer size?
- Consider data burst size and available memory
 - Max data burst size = 256 bits

Specification	Į.	U50 Production ¹					
Product SKU		A-U50-P00G-PQ-G					
Total electrical card load ²		75W					
Thermal cooling solution		Passive					
Weight		300g - 325g					
Form factor	Ha	alf height, half leng	th				
Network interface	1	1x QSFP28 (100 GbE)					
Network clock precision		IEEE 1588					
PCIe interface ^{3, 4}	Gen3 x16, Gen4 x8, CCIX						
HBM2 total capacity		8 GB					
HBM2 bandwidth		316 GB/s ⁷					
Look-up tables (LUTs)		872K					
Registers		1,743K					
DSP slices		5,952					
Max. Dist. RAM		24.6 Mb					
36 Kb block RAM		1344 (47.3 Mb)					
288 Kb UltraRAM		640 (180.0 Mb)					
GTY transceivers		20					
V _{CCINT} supported		V _{NOM} (0.85V)					
Vitis™ Development Enviroment		Yes					
Vitis platform	Gen3 x	Gen3 x16 XDMA, Gen3 x4 XDMA ⁸					
Vivado Design Suite		Yes					
Target workloads	Fintech, vide	o, database, and co storage	omputational				

```
void bwa_align(
    int* res_sa_len, int res_sa_itv[BUF_SIZE * 2],
    int buf[BUF_SIZE * 4],
    const int occ[BUF_SIZE * 4],
    const int cum[4],
    int ref_len,
    const char read[READ_MAX_LEN], int read_len)
{
    static int res_sa_itv_w[LOCAL_BUF_SIZE][2];
    static int buf_w[9][4];

    static int occ_r[LOCAL_BUF_SIZE][4];
    static int cum_r[4];
    static int cum_r[4];
    static char read_r[READ_MAX_LEN];
```

```
//// read input ////
  for (int i=0; i<LOCAL BUF SIZE; i++) {</pre>
#pragma HLS PIPELINE II=1
    for (int j=0; j<4; j++) {
      occ r[i][j] = occ[i * 4 + j];
  for (int i=0; i<4; i++) {
#pragma HLS PIPELINE II=1
    cum r[i] = cum[i];
  for (int i=0; i<MAX READ LEN; i++) {</pre>
#pragma HLS PIPELINE II=1
    read r[i] = read[i];
  // process...
  // write result
  for (int j=0; j<LOCAL_BUF_SIZE; j++) {</pre>
#pragma HLS PIPELINE II=1
    if (j < tail * 4) {</pre>
      res_sa_itv[j * 2] = res_sa_itv_w[j][0];
      res sa itv[j * 2 + 1] = res_sa_itv_w[j][1];
```

Local buffer size = 256 x 4 int

V Data Transfer	: Host to	Global Memory						
Context:Number of Devices	Transfer Type	Number Of Buffer Transfers	Transfer Rate (MB/s)	Average Bandwidth Utilization (%)	Average Buffer Size (KB)	Total Time (ms)	Average Time (ms)	
context0:1	READ	2	N/A	N/A	1.026	N/A	N/A	
context0:1	WRITE	5	N/A	N/A	1.236	N/A	N/A	

→ Data Transfer: Kernels to Global Memory

Device	Compute Unit/ Port Name	Kernel Arguments	Memory Resources		Number Of Transfers		Average Bandwidth Utilization (%)	Average Size (KB)
xilinx_u50_gen3x16_xdma_201920_3-0	bwa_align_0/m_axi_gmem	res_sa_len res_sa_itv buf_r occ cum read_r	HBM[0]	READ	1177	4800.000	41.667	0.016
xilinx_u50_gen3x16_xdma_201920_3-0	bwa_align_0/m_axi_gmem	res_sa_len res_sa_itv buf_r occ cum read_r	HBM[0]	WRITE	411	2676.800	23.236	0.016

 Compute Ur 	nits: Running	Time and Stalls		
Compute Unit	Running Time (us)	Intra-Kernel Stream Stalls (%)	External Memory Stalls (%)	External Stream Stalls (%)
bwa_align_0	85.014	0.0	-45875.924	0.0
bwa_align_1	123.736	0.0	0.0	0.0

V	Top	Data	Transfer:	Kernels	to	Global Memory	
---	-----	------	-----------	---------	----	---------------	--

Device	Compute Unit	Number Of Transfers	Average Bytes per Transfer		Total Data Transfer (MB)	Total Write (MB)	Total Read (MB)	Total Transfer Rate (MB/s)
xilinx_u50_gen3x16_xdma_201920_3-0	bwa_align_0	1588	16.000	0.391	0.025	0.007	0.019	3982.450
xilinx_u50_gen3x16_xdma_201920_3-0	bwa_align_1	0	0.0	0.0	0.0	0.0	0.0	0.0

Top Kernel Execution

Kernel Instance Address	Kernel	Context ID	Command Queue ID	Device	Start Time (ms)	Duration (ms)	Global Work Size	Local Work Size	
0x55d472c89ac0	bwa_align	0	0	xilinx_u50_gen3x16_xdma_201920_3-0	0.027	0.088	1:1:1	1:1:1	

Top Memory Writes: Host to Global Memory

Buffer Address	Context ID	Command Queue ID	Start Time (ms)	Duration (ms)	Buffer Size (KB)	Writing Rate (MB/s)
0x3000	0	0	34787.800	N/A	4.096	N/A
0x1000	0	0	34787.600	N/A	2.048	N/A
0x4000	0	0	34791.300	N/A	0.016	N/A
0x0	0	0	34787.500	N/A	0.004	N/A
0x5000	0	0	34792.800	N/A	0.016	N/A

→ Top Memory Reads: Host to Global Memory

Buffer Address	Context ID	Command Queue ID	Start Duration (ms) Buffer Size (K		Buffer Size (KB)	Reading Rate (MB/s)
0x0	0	0	112800.000	N/A	0.004	N/A
0x1000	0	0	112800.000	N/A	2.048	N/A

Reducing Index Table Size

- Index table are generated off-line
- To reduce index table size, accumulate an interval of the index table O, and recalculate on demand
- Require BWT string for

reconstruction

Position	0	1	2	3	4	5	6
Ref. sequence (X)	С	С	Т	G	Α	G	\$

Position	0	1	2
Short read (W)	С	G	Α

а	Α	С	G	Т
C(a)	1	2	4	6

(a) Reference sequence X, short-read W and C(a) of X

Position	0	1	2	3	4	5	6
0	С	С	Т	G	Α	G	\$
1	С	Т	G	Α	G	\$	С
2	Т	G	Α	G	\$	С	С
3	G	Α	G	\$	С	С	Т
4	Α	G	\$	С	С	Т	G
5	G	\$	С	С	Т	G	Α
6	\$	С	С	Т	G	A	G

(b) Rotation of X

BWT Occurrence string (B) array O(.,.)

								,					
SA	Position	0	1	2	3	4	5	6	\$	Α	C	G	Т
0	6	\$	О	С	Т	G	Α	G	0	0	0	1	0
1	4	Α	G	\$	С	С	Т	G	0	0	0	2	0
2	0	С	С	Т	G	Α	G	\$	1	0	0	2	0
3	1	С	Т	G	Α	G	\$	С	1	0	1	2	0
4	5	G	\$	С	С	Т	G	Α	1	1	1	2	0
5	3	G	Α	O	\$	С	С	Т	1	1	1	2	1
6	2	Т	G	Α	G	\$	С	С	1	1	2	2	1
							-	$\overline{}$					

(c) Sorting result

Streaming Interface from Host to Kernel?

- We thought streaming interface may not be helpful
- Since index of O (k and l) is increasing by variable step size
- Streaming may be beneficial when many kernels form a dataflow, but we have only one kernel

```
tail=1 i=8 z=0 k=0 l=100
tail=2 i=9 z=0 k=1 l=24
tail=3 i=8 z=0 k=1 l=24
tail=4 i=9 z=0 k=25 l=53
tail=5 i=8 z=0 k=25 l=53
tail=6 i=9 z=0 k=54 l=77
tail=7 i=8 z=0 k=54 l=77
tail=8 i=9 z=0 k=78 l=100
tail=9 i=8 z=1 k=78 l=100
```

More Optimization for Memory Access

- Separate HBM banks
 - More bandwidth to utilize, may increase local buffer size
 - Note: Kernel instances that shares the same host memory should be on same bank
- Data burst

```
#pragma HLS INTERFACE m_axi port=res_sa_len offset=slave bundle=gmem0 max_write_burst_length=256
#pragma HLS INTERFACE m_axi port=res_sa_itv offset=slave bundle=gmem0 max_write_burst_length=256
#pragma HLS INTERFACE m_axi port=buf offset=slave bundle=gmem1 max_read_burst_length=256 max_write_burst_length=256
#pragma HLS INTERFACE m_axi port=occ offset=slave bundle=gmem2 max_read_burst_length=256
#pragma HLS INTERFACE m_axi port=cum offset=slave bundle=gmem3 max_read_burst_length=256
#pragma HLS INTERFACE m_axi port=read offset=slave bundle=gmem3 max_read_burst_length=256
```

Synthesis Timing

Hardware Utilization

* Summary:										
Name	+ BRAM_18K +	+ DSP48E +	+ FF +	LUT	+ URAM +					
DSP				-1						
Expression			0	329704						
FIFO				-1						
Instance	8		1145	1723						
Memory	5		0	0	0					
Multiplexer				13427						
Register			77250	- [
Total	13	0	78395	344854	0					
Available SLR	1344	+ 2976 +	871680 	435840	320					
Utilization SLR (%)	~0	0 +	8 8 	79 	0					
Available 	2688 +	5952 ++	1743360 	871680 	640 +					
Utilization (%)	~0 +	0 +	4 +	39 	0 +					

Hardware Utilization

* Memory:	-+	+	+	+	+	+	+	+	+
Memory +	Module 	BRAM_18K	FF	LUT	URAM +	Words	Bits	Banks	W*Bits*Banks
occ_r_U read_r_U res_sa_itv_w_0_U res_sa_itv_w_1_U	bwa_align_occ_r bwa_align_read_r bwa_align_res_sa_itv_w_0 bwa_align_res_sa_itv_w_0		0 0 0 0	0 0 0 0	0 0 0 0	1024 16 256 256	32 8 32 32	1 1 1 1	32768 128 8192 8192
Total		5	0	0	0	1552 +	104	4	49280

Implementation Issues

- Our kernel at first runs correctly in Emulation-SW, but produced incorrect result in Emulation-HW
- Kernel had better use 1D array as argument
- Input/Output buffering is necessary
- Recurrece may have variable branch size but we make it fixed


```
for (int head = 0, tail = 1; head < tail; head++) {</pre>
  // pop head
  i = buf r[0]; z = buf r[1];
  k = buf r[2]; 1 = buf r[3];
  for (int s = 0; s < 4; s++) {
    int k nxt = cum r[s] + occ r[k - 1][s];
    int 1 nxt = cum r[s] + occ_r[1][s] - 1;
    if (k nxt <= 1 nxt) {</pre>
      // SNP (substitute) alpha[s]
      buf w[2 * s + 1][0] = i:
      buf w[2 * s + 1][1] = z - 1;
      buf w[2 * s + 1][2] = k nxt;
      buf w[2 * s + 1][3] = 1 nxt;
      if (match symbol(s, read r[i])) {
        // match alpha[s]
        buf w[2 * s + 2][0] = i - 1;
        buf w[2 * s + 2][1] = z;
        buf w[2 * s + 2][2] = k nxt;
        buf w[2 * s + 2][3] = 1 nxt;
```

Conclusion

- To use larger dataset -> Closer to practice
 - Data transfer policy becomes critical due to limited memory
- Fully utilize memory bandwidth to obtain high throughput
- Cache locally to reduce memory access

What's Learnt

- Emulation has few error message, hard to debug
- Though a quite simple kernel, building is time-consuming
 - Emulation-HW: 20+ minutes; Hardware: 2+ hours
 - (May there be incremental build?)
- Justify clearly before actually implement any optimization
- Strictly follow: Emulation-SW -> Emulation-HW -> Hardware

Reference

- Waidyasooriya, H. M., et al. (2013). Implementation of a custom hardware-accelerator for short-read mapping using Burrows-Wheeler alignment, IEEE.
- https://github.com/Xilinx/Vitis Accel Examples/tree/master/host/overlap
- https://github.com/Xilinx/SDAccel-Tutorials/blob/master/docs/using-multiple-cu/
- Vitis Unified Software Platform Documentation Application Acceleration Development (UG1393), Xilinx
- Lab3 Slides of High-Level Synthesis, Jiin Lai
- OpenBWT, 2008-2009 Yuta Mori,