Project 2 - Notebook

Please make sure your solution is divided into multiple code cells, explained clearly and properly, and most importantly, pretty.

```
In [0]: from pyspark.sql.types import *
    from pyspark.sql.functions import *
    import os,time
    from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("my_project_2").getOrCreate()
```

Read Sub Demographic data

```
In [0]: demographic df = spark.read.parquet("dbfs:/FileStore/project b data/proj B d
        demographic df.printSchema()
        display(demographic df.limit(10))
       root
        |-- household id: long (nullable = true)
        |-- household size: integer (nullable = true)
        |-- num adults: integer (nullable = true)
        |-- num generations: integer (nullable = true)
        |-- marital status: string (nullable = true)
        |-- race code: string (nullable = true)
        |-- dwelling type: string (nullable = true)
        |-- home owner status: string (nullable = true)
        |-- length residence: integer (nullable = true)
        |-- home market value: double (nullable = true)
        |-- net worth: double (nullable = true)
        |-- gender individual: string (nullable = true)
        |-- education highest: string (nullable = true)
```

maritai_status	num_generations	num_aduits	nousenoia_size	nousenoia_ia
В	2	1	2	85
М	2	1	1	2073
М	3	6	7	2523
S	2	2	3	2717
М	2	2	2	3364
М	3	3	4	4046
S	1	1	1	4303
S	2	2	3	4559
М	2	2	3	5277
S	1	1	1	5440

Read Static Viewing Data

```
In [0]: schema = StructType([
            StructField("device_id", StringType(), True),
            StructField("event_date", StringType(), True),
            StructField("event time", StringType(), True),
            StructField("station_num", IntegerType(), True),
            StructField("prog code", StringType(), True),
            StructField("household id", IntegerType(), True)
        ])
        viewing static df = spark.read.schema(schema).option("header", True).csv("dt
        viewing static df.printSchema()
        display(viewing static df.limit(10))
       root
        |-- device id: string (nullable = true)
        |-- event_date: string (nullable = true)
        |-- event time: string (nullable = true)
        |-- station num: integer (nullable = true)
        |-- prog code: string (nullable = true)
        |-- household id: integer (nullable = true)
```

housel	prog_code	station_num	event_time	event_date	device_id
3	EP000009110053	75523	181338	20150120	001bd74cc8d1
3	MV001054110000	11218	181338	20150120	10ea5940d694
	SH004464010000	11713	181338	20150120	44e08ed80c35
3	MV000506130000	65626	181338	20150120	0000048de4f2
3	EP019199930005	58812	181338	20150120	0000059867a7
3	EP010855880111	18510	181338	20150120	000011ff9ba9
3	EP000369550087	35513	181338	20150120	00000254e5f6
2	EP013413450102	10035	181338	20150120	000002bd8a47
2.	MV000744670000	59337	181338	20150120	000003c4c597
2	EP015899250028	14771	181338	20150120	00407bba00fe

Static Data Analysis (65 points)

Feature Extraction

Normalization of numeric columns

This block manually normalizes all numeric columns using min-max scaling. For each numeric column, the minimum and maximum values are calculated, and a new scaled version of the column is created using the formula (x - min).

All scaled columns are then added to the DataFrame.

An example with household_size and home_market_value is shown to compare the original and normalized values.

In [0]: print(f"household_size: min = {min_max_values['household_size'][0]}, max = {
 print(f"home_market_value: min = {min_max_values['home_market_value'][0]}, m
 display(demo_normalized_df.select("household_size", "household_size_scaled",

household_size: min = 1, max = 9 home market value: min = 0.001, max = 1.0

home_market_va	home_market_value	household_size_scaled	household_size
0.12412412	0.125	0.125	2
0.14914914	0.15	0.0	1
0.0990990	0.1	0.75	7
0.12412412	0.125	0.25	3
0.0990990	0.1	0.125	2

Indexing, one-hot encoding, and feature vector assembly

In this block, all categorical columns are processed using a StringIndexer to convert each category into a numeric index. Each index is then transformed into a binary vector using a OneHotEncoder to avoid introducing a false order in the data.

The final feature vector combines all normalized numeric columns (scaled_cols) with all one-hot encoded categorical columns. A VectorAssembler is used to merge everything into a single features column that can be used for PCA or clustering.

The pipeline is built with the indexers, encoders, and assembler, then fitted and applied to the normalized demographic DataFrame. A display shows the resulting DataFrame like required and another one shows only ID and features vector for clarty.

```
# Create indexers and encoders lists
indexers = [StringIndexer(inputCol=c, outputCol=f"{c}_index") for c in cat_c
encoders = [OneHotEncoder(inputCol=f"{c}_index", outputCol=f"{c}_ohe") for c
# Combine all input columns for the final features vector
# --> normalized numeric columns + one-hot encoded categorical columns
assembler_inputs = scaled_cols + [f"{c}_ohe" for c in cat_cols]
assembler = VectorAssembler(inputCols=assembler_inputs, outputCol="features"
# Build the pipeline stages: indexers + encoders + assembler
transformer_pipeline = Pipeline(stages=indexers + encoders + [assembler])
# Fit and transform on your normalized DataFrame
model = transformer_pipeline.fit(demo_normalized_df)
prepared_demo_df = model.transform(demo_normalized_df)
# Display all
display(prepared_demo_df.limit(7))
```

household_id household_size num_adults num_generations marital_status

85 2 1 2 B

2073 1 1 2 M

```
In [0]: # Display features column only
display(prepared_demo_df.select("household_id", "features").limit(7))
```

household_id features

```
Map(vectorType -> sparse, length -> 18, indices -> List(0, 2, 3, 4, 5, 9,
  85
          12, 13, 15), values -> List(0.125, 0.5, 1.0, 0.12412412412412413,
                                             0.05, 1.0, 1.0, 1.0, 1.0))
        Map(vectorType -> sparse, length -> 18, indices -> List(2, 3, 4, 5, 6,
2073
        11, 12, 13, 15), values -> List(0.5, 1.0, 0.14914914914914915, 0.1,
                                              1.0, 1.0, 1.0, 1.0, 1.0))
        Map(vectorType -> dense, length -> 18, values -> List(0.75, 1.0, 1.0,
0.0, 1.0, 0.0)
        Map(vectorType -> dense, length -> 18, values -> List(0.25, 0.2, 0.5,
2717
       0.73333333333333333, 0.12412412412412413, 0.2, 0.0, 1.0, 0.0, 1.0,
                                   0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0))
       Map(vectorType -> dense, length -> 18, values -> List(0.125, 0.2, 0.5,
```

Visual Analysis

PCA projection and scatter plot

In this part, a PCA is applied with k=2 to project the full feature vector to two dimensions.

The result is first displayed to check both the original features and the new pca features columns.

The vector_to_array function is used to convert the Spark ML vector to an array, making it easy to extract the first and second principal components.

These components are saved as pca_x and pca_y and plotted as a 2D scatter plot using the Pandas shortcut.

The scatter uses pink points, as required, to visualize how the data is spread in the reduced space.

```
In [0]: from pyspark.ml.feature import PCA
    from pyspark.ml.functions import vector_to_array
    import matplotlib.pyplot as plt

# Apply PCA with k=2 to reduce the feature vector to two dimensions
    pca = PCA(k=2, inputCol="features", outputCol="pca_features")
    pca_model = pca.fit(prepared_demo_df)
    pca_demo_df = pca_model.transform(prepared_demo_df)

print(f"Displaying all the df")
    display(pca_demo_df.limit(7))
    print(f"Displaying relevant colums only")
    display(pca_demo_df.select("household_id", "features", "pca_features").limit

# Convert the PCA output vector to an array to easily extract each component
    pca_array_df = pca_demo_df.withColumn("pca_array", vector_to_array("pca_features"))
```

```
# Create separate columns for the first and second principal components
 pca plot df = pca array df \
      .withColumn("pca_x", col("pca_array")[0]) \
      .withColumn("pca y", col("pca array")[1])
 # Convert to Pandas DataFrame and create a scatter plot with pink points
 pca plot df.toPandas().plot.scatter(x='pca x', y='pca y', color='pink')
Displaying all the df
household_id household_size num_adults num_generations marital_status
           85
                                                                              В
                             2
                                          1
                                                              2
        2073
                                                              2
                                                                             Μ
Displaying relevant colums only
household_id
                                      features
                                                                  pca_features
               Map(vectorType -> sparse, length -
                                                  Map(vectorType -> dense, length
               > 18, indices -> List(0, 2, 3, 4, 5, 9,
                                                                  -> 2, values ->
                 12, 13, 15), values -> List(0.125,
                                                       List(0.7696161667682886,
                 0.5, 1.0, 0.12412412412412413,
                                                         -0.1432845044432588))
                          0.05, 1.0, 1.0, 1.0, 1.0))
                Map(vectorType -> sparse, length -
                                                  Map(vectorType -> dense, length
                 > 18, indices -> List(2, 3, 4, 5, 6,
```

```
-> 2, values ->
2073
        11, 12, 13, 15), values -> List(0.5,
                                                  List(1.0470607429479766,
         1.0, 0.14914914914914915, 0.1,
                                                     -0.8077002155153574))
                    1.0, 1.0, 1.0, 1.0, 1.0))
        Map(vectorType -> dense, length -
                                            Map(vectorType -> dense, length
        > 18, values -> List(0.75, 1.0, 1.0,
                                                              -> 2, values ->
2523
           1.0, 0.0990990990991, 0.1,
                                                  List(-0.2156446172043761,
        1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0,
                                                    -1.6496380625532248))
                        1.0, 0.0, 1.0, 0.0)
```

Out[0]: <Axes: xlabel='pca x', ylabel='pca y'>

Clustering

K-means clustering and distance to centroid

In this part, the KMeans algorithm is applied to the final features vector with k=3 clusters and a fixed random seed for reproducibility. Each row is assigned to a cluster, stored in the cluster column.

Then, the cluster centers are retrieved and a custom UDF computes the Euclidean distance from each point to its assigned cluster centroid. The distance is calculated by summing the squared differences for each dimension and taking the square root.

A new column distance_to_centroid is added to the DataFrame to store this value for each row.

```
In [0]: from pyspark.ml.clustering import KMeans
    from pyspark.sql.functions import udf
    from pyspark.sql.types import FloatType
    from pyspark.ml.linalg import Vectors
    import builtins

# Apply K-means clustering with k = c = 6
kmeans = KMeans(featuresCol="features", predictionCol="cluster", k=6, seed=3
```

```
# Fit the K-means model on the prepared DataFrame
kmeans model = kmeans.fit(prepared demo df)
# Transform to assign each row to a cluster
clustered df = kmeans model.transform(prepared demo df)
# Get cluster centers
centers = kmeans model.clusterCenters()
# UDF to compute Euclidean distance to cluster center
def compute distance(features, cluster id):
   center = centers[cluster id]
    diff = [(a - b) ** 2 for a, b in zip(features, center)]
    return float(builtins.sum(diff) ** 0.5)
distance udf = udf(compute distance, FloatType())
# Add a distance column
clustered df = clustered df.withColumn(
   "distance to centroid",
   distance udf(col("features"), col("cluster"))
)
print(f"Displaying all the df")
display(clustered df.limit(7))
print(f"Displaying relevant colums only")
display(clustered df.select("household id", "cluster", "distance to centroic
```

Displaying all the df

household_id household_size num_adults num_generations marital_status

85 2 1 2 B

2073 1 1 2 M

Displaying relevant colums only

l	distance_to_centroi	cluster	household_id
)	0.9568649	1	85
j	0.848148	2	2073
L	1.32964	0	2523
L	1.431509	1	2717
j	0.586158	5	3364
j	0.935810	5	4046
Ĺ	0.970572	1	4303

Dividing households into subsets

In this part, households are partitioned by their clusters, and then ordered by their distance to the centroid of each cluster. Each household is assigned a row number within the cluster, with the closest households to the centroid ranked first.

Next, the households are divided into 18 subsets:

3rds subset - Every 3rd household in the cluster.

17ths subset - Every 17th household in the cluster.

Full subset - This includes all households in the cluster.

These subsets will allow us to analyze how different groups of households behave with respect to their viewing habits, particularly in relation to their proximity to the cluster centroid.

```
In [0]: from pyspark.sql.window import Window

# Create a window specification to order households within each cluster by a window_spec = Window.partitionBy("cluster").orderBy("distance_to_centroid")

# Add a column for the row number within each cluster ordered by distance to df_with_order = clustered_df.withColumn("row_num", row_number().over(window_df_3rds = df_with_order.filter((col("row_num") % 3) == 0) # Every 3rd house df_17ths = df_with_order.filter((col("row_num") % 17) == 0) # Every 17th house df_full = df_with_order # Full subset includes all households

# Dictionaries to store the subsets permanently full_subsets = {}
thirds_subsets = {}
seventeenths_subsets = {}
```

```
for k in range(6):
    # Filter each subset for the current cluster
    df_full_k = df_full.filter(col("cluster") == k)
    df_3rds_k = df_3rds.filter(col("cluster") == k)
    df_17ths_k = df_17ths.filter(col("cluster") == k)

# Store the filtered DataFrames in dictionaries
full_subsets[k] = df_full_k
thirds_subsets[k] = df_3rds_k
seventeenths_subsets[k] = df_17ths_k

# Optional: display a sample for visual verification
print(f"Full subset for cluster {k}")
display(df_full_k.select("household_id", "cluster", "distance_to_centroi
```

Full subset for cluster 0

household_id cluster distance_to_centroid row_num 407843 0 0.70431626 1 3060593 0 0.70431626 2 3514686 0 0.70440924 3 2086992 0.70440924 0 4016114 0 0.70440924 5

Full subset for cluster 1

row_num	distance_to_centroid	cluster	household_id
1	0.80247897	1	2870796
2	0.80305946	1	3631022
3	0.80305946	1	3799062
4	0.80305946	1	2357515
5	0.8031158	1	107954

Full subset for cluster 2

household_id	cluster	distance_to_centroid	row_num
3217437	2	0.7250733	1
2190226	2	0.72576725	2
1319151	2	0.7274364	3
2951776	2	0.7274364	4
3173893	2	0.72756714	5

Full subset for cluster 3

row_num	distance_to_centroid	cluster	household_id
1	0.73912007	3	2424547
2	0.74081695	3	3216288
3	0.74170053	3	3462985
4	0.7427937	3	2127682
5	0.7433983	3	2310490

Full subset for cluster 4

household_id	cluster	distance_to_centroid	row_num
2346443	4	0.986769	1
104917	4	0.9897022	2
2041426	4	0.99178886	3
1482762	4	0.9930077	4
2077425	4	0.9930541	5

Full subset for cluster 5

row_num	distance_to_centroid	cluster	household_id
1	0.51603377	5	4023076
2	0.51603377	5	1996154
3	0.5163706	5	2076499
4	0.5163706	5	2197121
5	0.5163706	5	2828482

Cluster's Viewing Analysis

Explanation

In this cell, we perform the final step of our cluster viewing analysis. The goal is to compare how popular each TV station is inside each cluster **and** each subset (Full, 3rds, 17ths) relative to the general population.

Here's what happens in this block:

Calculate General Popularity:

- We first compute the total number of viewings for each station_num in the entire dataset (viewing_static_df).
- We divide each station's total by the overall number of viewings to get the **general popularity percentage** (popularity general).

Loop Through Each Cluster:

- For each cluster (0 to 5), we take the Full, 3rds, and 17ths subsets.
- We join each subset with the viewing data to get only the relevant viewings for that cluster/subset.
- We count how many viewing events each station_num has within the subset.

Calculate Subset Popularity:

 For each subset of the cluster, we compute the subset popularity rating by dividing the station's count by the total viewings in that subset and multiplying by 100.

4 Compute diff rank:

- For each station in each subset, we join the subset rating with the general rating.
- We subtract the general popularity from the subset's popularity:
 diff_rank = subset.pop_rating popularity_general
- This diff_rank shows whether the station is **more or less popular** in that cluster/subset compared to the average household.

Return the Top 7:

- We order the stations by diff_rank (highest first).
- We display the Top 7 stations for each subset (Full, 3rds, 17ths).
- The results are printed clearly for each cluster with clear headers.

In the end, this gives us a clear, side-by-side comparison of how each cluster's subsets differ from the general population in their station preferences.

```
# Calculate the total number of views for each subset
  total views full k = df viewing full k.count()
  total views 3rds k = df viewing 3rds k.count()
  total views 17ths k = df viewing 17ths k.count()
  df rating full k = df station count full k.withColumn(
     "pop rating",
     (col("view count full k") / total views full k) * 100)
  df rating 3rds k = df station count 3rds k.withColumn(
     "pop rating",
     (col("view count 3rds k") / total views 3rds k) * 100)
  df rating 17ths k = df station count 17ths k.withColumn(
     "pop rating",
     (col("view count 17ths k") / total views 17ths k) * 100)
  # Join subset-cluster with general rating and compute diff rank
  df diff rank full k = df rating full k.join(
        df station general rating,
        on="station num"
    ).withColumn(
        "diff rank",
        col("pop_rating") - col("popularity general"))
  df diff rank 3rds k = df rating 3rds k.join(
        df station general rating,
        on="station num"
    ).withColumn(
        "diff rank",
        col("pop rating") - col("popularity general"))
  df diff rank 17ths k = df rating 17ths k.join(
        df station general rating,
        on="station num"
    ).withColumn(
        "diff rank",
        col("pop rating") - col("popularity general"))
  print(f"+++++++++ Cluster {k} +++
  # Top 7 for each subset per clusters
  print(f"===== Cluster {k} - Full Subset =====")
  display(df diff rank full k.select("station num", "diff rank").orderBy(col
  print(f"===== Cluster {k} - 3rds Subset =====")
  display(df_diff_rank_3rds_k.select("station_num", "diff_rank").orderBy(col
  print(f"===== Cluster {k} - 17ths Subset =====")
   display(df diff rank 17ths k.select("station num", "diff rank").orderBy(cd
===== Cluster 0 - Full Subset =====
```

station_num	diff_rank
60179	0.3920006870166719
16374	0.22730308873892513
49788	0.2045526380494167
32645	0.1001779326043215
10335	0.08745533979025041
50747	0.08060981371936737
61854	0.07566834124361119
Clusto	r 0 – 3rds Subset ===
station_num	diff_rank
60179	0.2783677460567828
32645	0.2474538973497753
16374	0.2133826552268936
45507	0.14576547171833648
49788	0.13701283399803454
33585	0.09696303474071603
34215	0.08941775695329998
61	0 1711 6 1 1
station_num	r 0 - 17ths Subset ==: diff_rank
	0.44015895633866586
49788	0.2507801649439476
	0.23357932061068398
	0.22398065113151377
35070	0.2151831454682132
	0.18897596913173967
30734	0.1009/3909131/390/
++++++++++	+++++++++++++++++++

station_num	diff_rank
74796	0.09908511426226463
16615	0.07821507285923013
58515	0.0729052049584783
15433	0.06216254750469358
11867	0.05490510429148865
10145	0.05024015654787872
18151	0.045981363105474835
==== Cluste	r 1 – 3rds Subset ====
station_num	diff_rank
74796	0.19205720104508817
58515	0.11870899430241932
35859	0.1028220230042531
10518	0.09814996204235371
16615	0.09292315667874906
11344	0.07944274723940087
10510	0.07909147573707428
===== Cluste	r 1 — 17ths Subset ===
station_num	diff_rank
11867	0.35290131793404533
14902	0.28453457433152196
21762	0.24147654427493798
11158	0.24030938571767846
16123	0.23721004363946765
10057	0.22036591342893036
16615	0.21562683667321847
	++++++++++++++++++++++++++++++++++++++
07	

==== Cluster 2 - Full Subset =====

station_num	diff_rank
12131	1.0873718024502066
11118	0.7932517659986893
10222	0.732710780236983
10171	0.6282651264421779
59684	0.49541771437156923
44714	0.3917355689600071
21883	0.3498073553587867
===== (luste	r 2 – 3rds Subset ===
station_num	diff_rank
12131	1.6141901963714
10222	0.7665030496928619
11118	0.6734302045908704
10171	0.6665863724405245
21883	0.5241556772924398
10153	0.3739762196971319
10730	0.3468359802811165
Clusto	r 2 — 17ths Subset ==
station_num	diff_rank
	0.9006422304020296
	0.8354880290814857
	0.7901866538051914
	0.6656403381696374
	0.6042274561166381
	0.5680536534149202
	0.5520843265640794
_0_0	
	+++++++++++++++++++++++++++++++++++++++

station_num	diff_rank
35513	1.240484333024132
70387	0.9286958286186878
11706	0.8767181790254264
10918	0.8436296040147847
10179	0.7654444043606439
12131	0.7626475241621982
10171	0.7179734946114289
==== Cluste	r 3 — 3rds Subset ===
station_num	diff_rank
35513	1.3830534174449665
70387	0.9427997144607659
11706	0.8807201329673058
10918	0.853742954295177
10179	0.7744190720630169
11561	0.6002688034405138
16615	0.5939667949346893
==== Cluste	r 3 – 17ths Subset ==
station_num	diff_rank
10179	1.7264824283806728
10171	1.2597553104935018
35513	0.8782506722686201
11809	0.8369307604534963
11706	0.8294960688213109
12439	0.6815576694208372
10918	0.6420937790856437
++++++++++	+++++++++++++++++

station_num	diff_rank
12131	0.8096983046297903
10171	0.5274324745755883
70387	0.480288515812175
10918	0.44120210236460744
11706	0.3840230810500525
35513	0.38084678359058927
10642	0.36311743823346204
Cluste	r 4 — 3rds Subset ===
station_num	diff_rank
12131	0.8154696791559444
10642	0.6005462326083979
70387	0.535381041391476
10918	0.5155404035510739
10171	0.4871518413529654
11706	0.4131485654024128
11809	0.41206461073214845
Clusto	r 4 — 17ths Subset ==
station_num	diff_rank
	1.5215415231869125
12131	1.1390400244551009
35513	0.9044530093120269
12729	0.8751022222134557
70387	0.8616330975482037
70387 10918	0.8616330975482037 0.7096803814268268

-+-+:-		diff upul		
Statio	n_num	diff_rank		
	60179	0.17028966469247164		
	16374	0.14632688402406413		
	19606	0.10247038444002322		
	11713	0.09290124219643248		
	14771	0.08079973308788535		
	11661	0.0792271519320012		
	57708	0.06647335945716687		
=====	Cluste	r 5 – 3rds Subset =====		
statio	n_num	diff_rank		
	60179	0.1437483458476545		
	19606	0.13593091470669733		
	57708	0.12315933196856826		
	11713	0.11394151835565286		
	14776	0.09620721339450289		
	56905	0.08256761081317332		
	15433	0.08220952117462982		
=====	Cluste	r 5 — 17ths Subset ====		
station_num diff_rank				
	16374	0.4398887132226128		
	64312	0.3910525452732496		
	60179	0.3252874063608482		
	31046	0.21792817196868502		
	49788	0.1656759308130189		
	46811	0.15237013149199632		

18544 0.1351602258377362

Dynamic Data Analysis - Streaming (35 points)

```
.format("kafka")\
                    .option("kafka.bootstrap.servers", kafka server)\
                    .option("subscribe", topic)\
                    .option("startingOffsets", "earliest")\
                    .option("failOnDataLoss",False)\
                    .option("maxOffsetsPerTrigger", OFFSETS PER TRIGGER)\
                    .select(from csv(decode("value", "US-ASCII"), schema=SCH
# ######### OUERY EXAMPLE ########
# station counts = streaming df.groupBy("station num").count()
# count viewings per station query =station counts.writeStream
# .queryName('num viewing')\
# .format("memory")\
# .outputMode("complete")\
# .start()
# time.sleep(10)
# for i in range(10):
     print("Batch number: "+str(i))
      print(count viewings per station query.status)
      spark.sql('SELECT * FROM num viewing ORDER BY count DESC LIMIT 10').sh
      time.sleep(5)
# count viewings per station query.stop()
```

Streaming Cluster Analysis (3rds Subset)

This code implements the final part of the project: streaming-based cluster analysis using PySpark Structured Streaming and Kafka.

Approach

1. **Kafka Ingestion**: A streaming DataFrame is created from a Kafka topic. Each batch processes up to 50,000 events using a predefined schema.

2. Accumulator Logic:

A global accumulator accumulated_df stores all past batch data. This allows computing cumulative popularity statistics over time, which is required to calculate global station popularity.

3. Global Popularity:

After each batch, the code computes the total station popularity across **all accumulated data**, representing the global viewing distribution.

4. Cluster-wise Popularity and Diff Rank: For each of the 6 clusters (thirds_subsets[k]), the code filters relevant views, calculates per-cluster station popularity, and compares it with the global popularity to compute the diff rank.

5. Top-7 Selection:

The stations with the highest positive diff_rank in each cluster are selected and displayed.

6. **Streaming Control**: A batch counter ensures that **at least 3 micro-batches** are processed. Once 3 batches are received and handled, the streaming query stops.

Key Design Choices

- The diff_rank is computed **only** using streaming data (no static data).
- An inner join is used when comparing cluster and global popularity to ensure consistency in station sets.
- Batch-wise accumulation guarantees a progressive and fair comparison between cluster-specific and global viewing behavior.

```
In [0]: import time
        SCHEMA = "device id STRING, event date INT, event time INT, station num STRI
        kafka server = "kafka.eastus.cloudapp.azure.com:29092"
        topic = "view data"
        OFFSETS PER TRIGGER = 50000
        streaming df = spark.readStream \
            .format("kafka") \
            .option("kafka.bootstrap.servers", kafka server) \
            .option("subscribe", topic) \
            .option("startingOffsets", "earliest") \
            .option("failOnDataLoss", False) \
            .option("maxOffsetsPerTrigger", OFFSETS PER TRIGGER) \
            .load() \
            .select(from csv(decode("value", "US-ASCII"), schema=SCHEMA).alias("value")
            .select("value.*")
        # Accumulator to store past batch data
        accumulated df = None
        batch counter = {"count": 0}
        def process batch(batch df, batch id):
            global accumulated_df
            print(f"\n============ BATCH {batch counter['count'] + 1} ===
            # Accumulate batch data
            if accumulated df is None:
                accumulated df = batch df
```

```
else:
        accumulated df = accumulated df.union(batch df)
   # 1. Compute GLOBAL popularity (all households across all clusters so fa
   df station count global = accumulated df.groupBy("station num").agg(cour
   total views global = accumulated df.count()
   if total views global == 0:
        print("No views yet in accumulated data.")
        return
   df global rating = df station count global.withColumn(
        "popularity_general", (col("view_count_global") / total_views_global
    ).select("station num", "popularity general")
   # 2. Process each cluster separately
   for k in range(6):
        df thirds k = thirds subsets[k]
        df_viewing_k = df_thirds_k.join(accumulated df, on="household id")
       total views cluster = df viewing k.count()
        if total views cluster == 0:
            print(f"Cluster {k}: no data yet.")
            continue
       # Popularity inside cluster
        df station count k = df viewing k.groupBy("station num").agg(count("
       df_rating_k = df_station_count_k.withColumn(
            "pop rating", (col("view count k") / total views cluster) * 100
       # Compute diff rank: local vs global
        df diff rank = df rating k.join(
           df global rating,
            on="station num",
        ).withColumn(
            "diff rank", col("pop rating") - col("popularity general")
       # Top 7 by diff rank
       top 7 = df diff rank.orderBy(col("diff rank").desc()).limit(7)
        print(f"---- Cluster {k} - Top 7 diff rank Stations (Batch {batch cc
        top 7.select("station num", "diff rank").show()
   # Update batch counter
   batch_counter["count"] += 1
# Start the query
query = streaming df.writeStream \
    .foreachBatch(process batch) \
    .outputMode("append") \
    .start()
```

```
# Wait until at least 3 batches are processed
while batch_counter["count"] < 3:
    time.sleep(5)

query.stop()</pre>
```

```
---- Cluster 0 - Top 7 diff rank Stations (Batch 1) ----
+----+
|station num|
            diff rank|
+----+
     32645 | 0.8878130104196003 |
     11150 | 0.5635038017459868 |
     11158 | 0.34131568572233173 |
     11187 | 0.33263137144466337 |
     10142 | 0.31499352295128136 |
     11164 | 0.29547676710785686 |
     66268 | 0.2771546043368065 |
+----+
---- Cluster 1 - Top 7 diff rank Stations (Batch 1) ----
+----+
            diff_rank|
|station_num|
+-----+
     12131 | 0.4247884416924663 |
     15433 | 0.32959339525283793 |
    14771 | 0.2767884416924664|
    70522 | 0.274796697626419|
     16300 | 0.2547946336429308 |
     18510|0.24879669762641896|
     11713 | 0.2403859649122806 |
+----+
---- Cluster 2 - Top 7 diff_rank Stations (Batch 1) ----
+----+
|station_num| diff_rank|
+-----+
     32645 | 1.8233231810490698 |
     10918 | 1.261661590524535 |
    10989 | 1.178842639593909 |
     18480 | 1.1592521150592217 |
     10647 | 1.0664331641285956 |
     10731|1.0464331641285958|
     59684 | 0.9148426395939088 |
+----+
---- Cluster 3 - Top 7 diff rank Stations (Batch 1) ----
+----+
|station num| diff rank|
+----+
     10171 | 2.051292517006803 |
     10918 | 2.0381904761904757 |
     10057 | 1.9390204081632652 |
     35513 | 1.280612244897959 |
     10021 | 1.2697142857142856 |
     11561 | 1.151578231292517 |
     11809 | 0.9254421768707484 |
+-----+
---- Cluster 4 - Top 7 diff rank Stations (Batch 1) ----
+----+
|station num| diff_rank|
```

```
+-----+
     10918 | 1.839777777777777 |
     16300 | 1.4358518518518517 |
    11221|1.3729629629629632|
     49788 | 1.3174074074074074 |
     56905 | 1.0498518518518516 |
     10162 | 1.017111111111111 |
     35513 | 0.86111111111111112 |
+-----+
---- Cluster 5 - Top 7 diff rank Stations (Batch 1) ----
+----+
|station num| diff rank|
+----+
     11713 | 0.6433033707865168 |
     19606 | 0.3972883895131086 |
     10120 | 0.28249438202247196 |
    16616 | 0.2821198501872659 |
     11661 | 0.2564569288389513 |
     31709 | 0.2292883895131086 |
     11458 | 0.21430711610486897 |
+----+
---- Cluster 0 - Top 7 diff rank Stations (Batch 2) ----
+----+
|station num| diff rank|
+----+
     32645 | 0.6596133766050518 |
     11150 | 0.4780204599971778 |
     11158 | 0.39194468745590505 |
    14321|0.28938605898123326|
     16374 | 0.28781360237053755 |
     66268 | 0.27417228728658105 |
     49788 | 0.26281360237053764 |
+----+
---- Cluster 1 - Top 7 diff rank Stations (Batch 2) ----
+----+
|station num| diff rank|
+-----+
     16300 | 0.3077888646007458 |
     12131 | 0.2832675839012473 |
     70522 | 0.2448944323003729 |
    14771|0.20740915520123449|
     14902 | 0.20155972740131145 |
     25544 | 0.18504500450045003 |
     18480 | 0.18293943680082292 |
+----+
---- Cluster 2 - Top 7 diff rank Stations (Batch 2) ----
+----+
|station_num| diff_rank|
+-----+
32645 | 1.5820756234915527 |
```

```
10918 | 1.3501641190667737 |
     59684 | 1.0100104585679808 |
     10989 | 0.9292083668543846 |
     60150 | 0.7713073209975865 |
     17927 | 0.7532083668543845 |
     12131 | 0.7254609814963797 |
+----+
---- Cluster 3 - Top 7 diff rank Stations (Batch 2) ----
+-----+
|station_num| diff_rank|
+----+
     10171|1.9321648440664236|
     10918 | 1.7296403402187122 |
     10057 | 1.4701113811259616 |
     35513|1.3370891049007696|
     10021|1.2951113811259618|
     11561|1.0740757391656541|
    11809 | 0.9895646010530579 |
+-----+
---- Cluster 4 - Top 7 diff rank Stations (Batch 2) ----
+-----+
|station_num| diff_rank|
+----+
    10918 | 1.3787042253521125 |
    49788 | 1.1687323943661976 |
    45980 | 1.130394366197183 |
    12131 | 1.060647887323944 |
     17927 | 1.050507042253521 |
     16300|0.9704507042253523|
    10162 | 0.956338028169014 |
+----+
---- Cluster 5 - Top 7 diff rank Stations (Batch 2) ----
+----+
|station_num| diff_rank|
+----+
     11713 | 0.5285611335415556 |
    19606 | 0.276894339910109 |
    16616 | 0.2713740382417918 |
    14771| 0.1842440009141464|
    31709|0.17878052868134386|
    60179|0.16836596328178555|
    67703 | 0.151300830349661 |
+----+
---- Cluster 0 - Top 7 diff rank Stations (Batch 3) ----
+----+
|station_num| diff_rank|
+----+
     32645 | 0.6745626477541373 |
     11150 | 0.4414231678486997 |
     31709 | 0.33837825059101656 |
```

```
11158 | 0.3088888888888889 |
      66268 | 0.2831867612293143 |
      14321 | 0.2821182033096926 |
     11066 | 0.24120094562647754 |
+----+
---- Cluster 1 — Top 7 diff rank Stations (Batch 3) ----
+----+
|station num| diff rank|
     16300 | 0.3017593265196948 |
     11187 | 0.2543580820452178 |
     12131|0.24363898977954224|
     70522|0.20808638116958078|
      11713 | 0.18979181800264677 |
      15433 | 0.18926615423599968 |
      11158 | 0.18864600050679958 |
+----+
---- Cluster 2 — Top 7 diff rank Stations (Batch 3) ----
+----+
|station_num| diff_rank|
+----+
     10918 | 1.2634186307519641 |
     10989 | 1.00613468013468|
     10222|0.9261010101010102|
     59684 | 0.8910347923681257 |
      32645 | 0.8875196408529744 |
     17927 | 0.8694680134680133 |
     60150|0.7127676767676768|
---- Cluster 3 - Top 7 diff rank Stations (Batch 3) ----
+----+
|station_num| diff_rank|
+-----+
      10171|1.6053033832501387|
     10918 | 1.5733211314475875 |
     35513|1.3661619523017192|
     10057 | 1.299616195230172 |
      11561|1.2954952856350526|
     10021|1.1433477537437606|
     11809 | 1.012855241264559 |
+----+
---- Cluster 4 - Top 7 diff rank Stations (Batch 3) ----
+-----+
|station num| diff rank|
+-----+
     49788 | 1.0597139979859016 |
      32645 | 1.0553272910372615 |
     10918 | 1.0515991943605236 |
     17927 | 0.9728177240684792 |
      12131 | 0.9511117824773415 |
      45980 | 0.9231903323262841 |
      56905 | 0.8516636455186306 |
```

======== BATCH 4 ============

This notebook was converted with convert.ploomber.io