Um Ciclo de Carnot (Infinitesimal) Operando com uma Substância Qualquer

(A (infinitesimal) Carnot cycle operating with any given substance)

G. E. Leal Ferreira

Instituto de Física e Química de São Carlos, Universidade de São Paulo Caixa Postal 369, 13.560-970 São Carlos, SP, Brasil

Recebido para publicação em 21 de Setembro de 1992; Aceito para publicação em 24 de Março de 1993

Resumo

Um ciclo de Carnot infinitesimal, operando com uma substância qualquer, é estudado, impondo-se o Princípio de Carnot sobre a eficiência das máquinas reversíveis. Dele resulta relação bem conhecida entre os calores específicos e as constantes de estado da substância. Mostra-se também como o cálculo pode ser sobremaneira simplificado por uma sutil consideração, a qual o leitor fora convidado a descobrir. Finalmente, compara-se a performance de uma substância gasosa e outra líquida sob identicas prescrições.

Abstract

An infinitesimal Carnot cycle, operating with any given substance, is studied imposing the Carnot Principle on the efficiency of a reversible engine. There results a well known relation between the specific heats and material constants of the substance. It is also shown how the calculation may be greatly simplified by a subtle consideration, which the reader had been invited to guess. Finally, a comparison is made between the performances of a gaseous and a liquid substance operating under identical prescriptions.

I. Introdução

Vai-se muito diretamente ao 2° princípio da Termodinâmica^[1-3]: o teorema de Carnot sobre a eficiência máxima das máquinas reversíveis operando entre dois reservatórios, fechado o ciclo por duas adiabáticas, é invocado tendo como substância operante um gás perfeito, já que o rendimento não depende daquela. Provase então que o quociente entre o calor retirado da fonte quente Q_1 e sua temperatura absoluta T_1 , é igual àquele entre o calor entregue a fonte fria Q_2 e sua temperatura T_2 . Como subproduto deste resultado derivase que o trabalho realizado no ciclo W está para Q_1 , (ou Q_2) assim como a diferença das temperaturas ΔT , $\Delta T = T_1 - T_2$, está para T_1 , (ou T_2).

Carnot anteriormente chegara a este resultado através de bem sucedidas conjecturas, mesmo com a teoria do calórico. Tomando a diferença de temperatura entre as fontes como pequena, concluiu que o trabalho produzido, ou seja, a perda de energia potencial do calórico, devia ser proporcional àquela diferença de temperatura e o quociente entre o calor retirado da fonte quente e sua temperatura absoluta. Desde que a mesma quantidade de calórico era rejeitada na fonte fria, o acoplamento de diversas máquinas operando a temperaturas menores permitiu-lhe chegar ao resultado geral sobre a máxima eficiência das máquinas reversíveis, mesmo envolvendo violação da que hoje se conhece como a 1ª lei da Termodinâmica.

Apesar de o desenvolvimento do raciocínio usado hoje em dia ser perfeitamente claro aparece a pergunta de por que se operar sempre com um gás perfeito. Como estudaríamos o ciclo de Carnot para uma substância qualquer? Em primeiro lugar, teríamos de nos limitar a um ciclo infinitesimal, para evitarmos a variação das propriedades com a mudança de estado da substância: teríamos assim uma equação de estado linearizada, válida nas vizinhanças de um dado estado da

substância. Teríamos depois de invocar o Princípio de Carnot $(W/Q_1, = \Delta T/T_1)$, computando W e Q_1 , respectivamente de acordo com a equação de estado e com os calores específicos a pressão e a volume constante. Notemos que, para processos infinitesimais calculados em primeira ordem, os calores trocados dependem somente do estado final e inicial e são, portanto, independentes do caminho escolhido entre eles^[4].

A seguir realizaremos o cálculo ao pé da letra, isto é, usando duas isotérmicas e duas adiabáticas próximas e chegaremos a uma conhecida relação entre os calores específicos, as constantes de estado da substância e a temperatura absoluta, a qual usualmente é derivada através do método das diferenciais exatas de Maxwell^[5]. Isto na seção II. Convidamos o leitor a antes de entrar na Seção III imaginar uma maneira de simplificar a demonstração - e pode ser de muito - através de uma judiciosa consideração a fazer tendo como referência a Fig. 2. Finalmente apresentamos na Seção IV comparação entre desempenho de uma substância gasosa e outra líquida - o mercúrio - trabalhando sob idênticas prescrições.

Devemos mencionar que os cálculos realizados a seguir estão virtualmente contidos na obra referida aqui como 4.

II. O ciclo de Carnot operando com uma substância qualquer

II.1. Generalidades

Escolheremos como variáveis independentes a temperatura e a pressão e assim consideramos variações de volume ΔV em função de variações de temperatura ΔT e de pressão Δp , a partir do estado inicial E_o Fig. 1, como

$$\Delta V = a\Delta T - b\Delta p \tag{1}$$

com $a = \alpha V_0$ e $b = \beta V_0$ sendo α o coeficiente de dilatação a pressão constante, β o coeficiente de compressibilidade a temperatura constante e V_0 o volume inicial, que tomaremos igual ao volume molar. Consideraremos conhecidos os calores específicos molares, C_v a volume constante e C_p a pressão constante, e estes, como também a e b, constantes.

Figura 1. Transformação isotérmica E_0E_1 e adiabática E_0E_2 a partir do estado inicial E_0 no plano pV. As respectivas variações de volume e temperatura são $\Delta p_1 \ \Delta V_1$ e Δp_2 e ΔV_2 , contadas a partir de E_0 .

Para processos inifitesimais, como dissemos acima, a quantidade de calor recebida ΔQ num processo com variações de pressão e volume (usaremos o plano p-V nas ilustrações), pode ser obtido pela superposição de dois processos, um a volume constante e outro a pressão constante, ou vice-versa, em que os calores recebidos serão, respectivamente ΔQ_v e ΔQ_p com

$$\Delta Q = \Delta Q_v + \Delta Q_p. \tag{2}$$

Vamos agora achar as variações de temperatura e pressão num processo isotérmico e depois num adiabático, sendo ambos caracterizados por dadas variações de volume.

II.2. O Processo Isotérmico

Na Fig. 1, a partir do estado inicial E_0 , mostramos a isotérmica pela qual se atinge E_1 com variação de volume ΔV_1 . Queremos calcular a variação de pressão Δp_1 e a quantidade de calor ΔQ_1 recebida pela substância. Pela Eq.1, sendo $\Delta T=0$, obtemos logo

$$\Delta p_1 = -\frac{\Delta V_1}{b} \ . \tag{3}$$

Para calcular ΔQ_1 como indicado na Eq. 2, decompomos o processo numa parte a pressão constante e outro a volume constante, com calores ΔQ_{1p} e ΔQ_{1v} . Temos

$$\Delta Q_{1p} = C_p \Delta T_{1p}, \qquad (4)$$

onde ΔT_{1p} é a correspondente variação de temperatura, que pela Eq. 1 vale

$$\Delta T_{1p} = \frac{\Delta V_1}{a}, \quad (5)$$

ou seja

$$\Delta Q_{1p} = \frac{C_p \Delta V_1}{a}.$$
 (6)

Considerando agora o processo a volume constante, tem-se que a correspondente variação de temperatura deve ser $-\Delta T_{1p}$ por se tratar, no todo, de um processo isotérmico. Então ΔQ_{1p} será

$$\Delta Q_{1v} = -C_v \Delta T_{1p}, \qquad (7)$$

que pela Eq. 5, será

$$\Delta Q_{1v} = -\frac{C_v \Delta V_1}{a}.$$
 (8)

O calor recebido total será, pelas Eq. 2, 6 e 7

$$\Delta Q_1 = \frac{(C_p - C_v)}{\sigma} \Delta V_1. \qquad (9)$$

Vamos agora analisar o processo adiabático.

II.3. Processo Adiabático

Na Fig. 1 consideremos o processo adiabático E_0E_2 . Temos por definição que o calor trocado total ΔQ_2 é zero. Seja ΔV_2 a variação de volume e devemos calcular ΔT_2 e Δp_2 . Podemos construir as seguintes equações. Da Eq. 1 temos

$$\Delta V_2 = a\Delta T_2 - b\Delta p_2 . \qquad (10)$$

Pela decomposição sugerida na Eq.2 temos

$$\Delta Q_{2v} = C_v \Delta T_{2v} \qquad (11)$$

 $\Delta Q_{2p} = C_p \Delta T_{2p}, \qquad (12)$

sendo ΔQ_{2v} e ΔQ_{2p} e ΔT_{2v} e ΔT_{2p} os calores e as variações de temperatura nos processos a volume e pressão constante. Mas, com a Eq. 1, temos

$$\Delta T_{2v} = \frac{b\Delta p_2}{a} \qquad (13)$$

Figura 2. Representação de um ciclo de Carnot $E_0E_1E_3E_2$, composto das isotérmicas E_0E_1 e E_3E_2 , e das adiabáticas E_1E_3 e E_2E_0 . Os pontos S_1 , S_2 , S_4 e S_3 , com suas coordenadas, são usados no cálculo da área englobada pelo ciclo.

 $\Delta T_{2p} = \frac{\Delta V_2}{a} \ . \tag{14}$

Com isto as Eqs. 11 e 12 se escrevem

$$\Delta Q_{2v} = \frac{bC_v \Delta p_2}{a} \tag{15}$$

$$\Delta Q_{2\nu} = \frac{C_p \Delta V_2}{a}.$$
 (16)

Como $\Delta Q_{2v} = -\Delta Q_{2p}$ por se tratar de um processo adiabático, calculamos

$$\Delta p_2 = \frac{C_p \Delta V_2}{bC_v} \tag{17}$$

com o que ΔT_2 pode ser achado da Eq. 10:

II.3. O Ciclo de Carnot

Vamos agora construir um ciclo de Carnot a partir do estado E_0 ver Fig. 2. Ele formará um paralelogramo tendo duas isotérmicas, paralelas a E_0E_1 da Fig. 1 e da mesma forma duas adiabáticas, paralelas a E_0E_2 . As coordenadas do estado final da primeira isotérmica, E_1 , são ΔV_1 , Δp_1 ; as de E_3 ao final da primeira adiabática $\Delta V_1 + \Delta V_2$, $\Delta p_1 + \Delta p_2$; de E_2 , ao fim da segunda isotérmica, ΔV_2 , Δp_2 . O ciclo é percorrido no sentido horário, afim de realizar trabalho.

Como vimos, o Princípio de Carnot sobre a eficiência da máquina térmica reversível afirma que o quociente do trabalho ΔW realizado pelo calor retirado à fonte quente ΔQ_1 , $\Delta W/\Delta Q_1$ é igual ao quociente da diferença de temperatura ΔT_2 , entre as fontes quente e fria e pela temperatura absoluta da fonte quente T, $\Delta T_2/T$, ou seja

$$\frac{\Delta W}{\Delta Q_1} = \frac{\Delta T_2}{T} \ . \tag{19}$$

Devemos agora computar o trabalho no ciclo da Fig.2 (é aqui que um raciocínio sutil reduzirá em muito os cálculos). Vemos que a área do paralelograma $E_0E_1E_3E_2$ é igual à área $E_0S_1E_3S_4$ subtraida das áreas iguais dos trapézios $E_0S_1S_2E_1$ e $S_3E_2E_3S_4$ e das áreas iguais dos triângulos $E_1S_2E_3$ e $S_3E_2E_0$. Com as coordenadas dos pontos pertinentes como mostrado na Fig.2, obtem-se para ΔW

$$\Delta W = \Delta V_1 \Delta p_2 - \Delta V_2 \Delta p_1 . \qquad (20)$$

Com os valores de Δp_1 , Δp_2 , dados nas Eqs. 3 e 17, obtem-se:

$$\Delta W = \frac{\Delta V_1 \Delta V_2}{b} (C_p - C_v) \qquad (21)$$

e pela Eq. 19, usando-se também ΔQ_1 e ΔT_2 dados nas Eqs. 9 e 18, chega-se a

$$C_p - C_v = \frac{a^2T}{b}.$$
 (22)

Esta, de acordo com as definições de a e b dadas abaixo da Eq. 1, pode ser escrita assim

$$C_p - C_v = \frac{\alpha^2 V_0 T}{\beta}, \qquad (23)$$

que é o resultado a que queríamos chegar^[5].

III. Simplificando

Georges Bruhat^[6] (ver também Feynman^[7]) observa que se mantém o mesmo trabalho realizado - é a simplificação referida - se o gráfico da Fig.2 é deformado como mostra a Fig. 3. Em vez do ciclo fechar-se pelas duas adiabáticas E_1E_3 e E_2E_0 a mesma área resultará fechando-o por duas transformações a volume constante E_1E_3' e $E_2'E_0$. O cálculo do trabalho realizado é agora muito mais simples. Pela Eq. 1, a variação de pressão $\Delta p'$ de E_2' a E_0 é (com $\Delta V = O$)

$$\Delta p' = \frac{-a\Delta T_2}{b}$$
(24)

Figura 3. Ciclo simplificado, de mesma área que o da Fig. 2, mas fechado por duas transformações a volume constante, E_1 E_3' e E_2' E_0 em vez de pelas adiabáticas E_1 E_3 e E_2 E_0 , como sugerido por G.Bruhat.

e como o trabalho é simplesmente dado por $\Delta p' \ \Delta V_1$ o uso da Eq. 18 e da Eq. 24 leva diretamente à Eq. 22. É interessante que na edição revista da Termodinâmica de G.Bruhat por A.Kastler^[8] esta abordagem menos convencional já não está presente.

Note-se, porém, que embora o trabalho possa ser calculado pela área $E_0E_1E_3'E_2'E_0$ (Fig.3), o ciclo fundamental infinitesimal é o de Carnot, com as isotérmicas e as adiabáticas, pelo qual as quantidades de calor trocadas nas isotérmicas devem ser calculadas. Mas a igualdade das áreas pode ser usada para se obter conhecida relação termodinâmica. Assim, ΔQ_1 na isotérmica é igual a $T\Delta S_T$, em que ΔS_T é a variação da entropia à temperatura constante ou escrito de outra forma

$$\Delta Q_1 = T \frac{\partial S}{\partial V} \Big|_T \Delta V_1 \tag{25}$$

então, das Eqs. 19 e 25 vem

$$\Delta p' \Delta V_1 = \frac{T \Delta S_T \Delta T}{T}, \qquad (26)$$

o que dá para o processo a volume constante

$$\frac{\Delta p'}{\Delta T}\Big|_{V} = \frac{\Delta S_T}{\Delta V_i}$$
(27)

ou finalmente

$$\frac{\partial p}{\partial T}\Big|_{V} = \frac{\partial S}{\Delta V}\Big|_{T}$$
 (28)

conhecida relação da termodinâmica^[6]. Feynman et al.^[7] apresenta cálculo análogo.

Tabela 1

A A A A	α °C−1	β cm²/dyn	. 0	$\frac{C_p}{\mathrm{cal/mol^{\circ}C}}$		$\gamma = C_p/C_v$
Hg	$1,8\times 10^{-4}$	$3,8\times 10^{-12}$	14,7	25 6,7 00	5,9	1,1
Ar	$3,7\times10^{-3}$	$9,9\times10^{-7}$	$22,4\times10^3$	7,0	5,0	1,4

IV. Comparação dos trabalhos com gás e matéria Condensada

Por fim vale a pena considerar as diferenças em magnitude entre operar-se com substâncias condensadas e gasosas. Na tabela 1 estão os valores aproximados das constantes termodinâmicas para o mercúrio, retirados da ref.8, e para o ar, à pressão atmosférica e 0°C.

Da tabela vê-se que os calores específicos molares das duas fases, C_p e C_v , se equivalem, grosso modo. Porém, enquanto a razão entre as compressibilidades β_{ar}/β_{Hg} é da ordem de 10^5 , aquela entre os coeficientes de dilatação é de apenas 20. Os volumes molares (V_0) estão na razão de 10^3 .

Por outro lado tem-se que $|\Delta p/\Delta V|$, pelas Eqs. 3 e 27, serão da mesma ordem nos processos isotérmico e adiabático já que os calores específicos Cp e Cv se equivalem, mas diferem amplamente nas duas fases: 45 para o ar e 1,8 × 1010 dyn/cm5 para o mercúrio. Já a quantidade de calor por unidade de volume recebido na transformação isotérmica, Eq.9, é de 2,4 x 10⁻² e 300 cal/cm3, respectivamente, para o ar e para o mercúrio, muito maior para este. Como o módulo da variação de temperatura, Eq. 18, difere de ΔQ pelo calor específico, Eq. 9, que é da mesma ordem nos dois casos, então a relação entre as variações de temperatura será mantida. Isto quer dizer que, pela Eq. 19, o trabalho fornecido, para mesmas variações de volume de ar e de mercúrio. seria muito maior para este do que para o ar, cerca de 1,3 x 108 vezes!! Mas isto parece carecer de sentido prático, sendo mais razoável fixar-se, para comparações de performances, o calor retirado da fonte quente na fase isotérmica e a variação de pressão na adiabática (ou a volume constante). Com a Eq. 17 ve-se agora que o ar produz 4 x 104 o trabalho do mercurio. Porém, como notado na Ref.9, a análise da performance real de um ciclo de Carnot ideal admite-se condutibilidades

térmicas infinitas.

Agradecimentos

Este trabalho foi concluido durante a vigência de Bolsa de Pesquisa do Programa RHAE, CNPq.

Referências

- F. W. Sears e M. W. Zemanski, Física-Calor-Ondas-Ótica, vol.2, Livros Técnicos e Científicos Editora S.A., Rio de Janeiro, 1977.
- H. Moysés Nussenzveig, Curso de Física Básica 2, Fluidos, Oscilações, Ondas e Calor, Editora Edgard Blucher Ltda, 1981, São Paulo.
- M. W. Zemansky, Heat and Thermodynamics, McGraw-Hill Book Co Inc., N. York, 4a edição, 1957.
- G. Bruhat, Cours de Physique Génerale: Thermodynamique, Masson & Cie, Éditeurs, Paris, 1947, pg. 82.
- 5. Ref. 3, pg. 242.
- 6. Ref. 4, pg. 168-170.
- R. P. Feynman, R. B. Leighton e M. Sands, The Feynman Lectures, Vol.1, Addison-Wesley Publ.Co., Reading MA, 1969, p. 453.
- G. Bruhat & A. Kastler, Curso de Física Geral: Termodinâmica, 3 volumes, Masson & Cie, Paris, Difusão Européia do Livro, São Paulo, 1967, Vol.I.
- J. P. Wesley, Selected Topics in Advanced Fundamental Physics, Benjamin Wesley, Blumberg, Germany, (1991), p. 346.