Beyond classification theorem of Cameron, Groethals, Seidel and Shult (GGSS).
and Shult (this).
Beyond classification theorem of Cameron, Groethals, section of and Shult (6655). and Shult (6655). and Shult (6655). tundamental problem: Characterization of graphs with fundamental problem: Characterization of graphs with characterization of graphs with
Cimited eigenvalues.
G(x) = $\frac{1}{2}$ graphs to with smallest eigenvale $\lambda_1(t_1) = -\lambda_2$ (refer to adjacency matrix). Review of $g(2)$ How vestiles on Classification theorem of $g(x^*) \setminus g(2)$, and $g(x^*)$
Review of g(2)
· Haw tosuits on Classification theorem
of 9(1*) \9(2),
· Beyond G(x*)
Review of S(2): Well known: G(2) = 3 line graphs?
Well Known: 9(2) = 3 line grapes.
L(G)
edge-vertex incidence adjacency matrix $A = BB^{T} - 2I$
edge-various B:
Hafman 1969: $g(z) = generalized linguaghs?$
petals 2 edges share L(G) a exactly one vtx
a expany of water taking disjoint union.
Worte GON is closed under taking disjoint union.

CGSS: Obs: For he G(2), IAG + I is the Gram matrix (1976) of unit vectors in whose pairwise inner prod # angle is 60 or 90°. (geometric) Geg(2) & = 1 AG+I > 0 & anit vectors. representation theory of semisimple Lie algebra. Classification than 1970 { connected graphs in G(x) } = { generalized line graphs} U Rexceptional graphs 305 t represented by subset of Es root system. at most 36 vertices \ generalized / · Classification theorem of g(x*) \ g(2). 1 = 2.0198008871... exceptional G(2). 1← n →1 It not totally real . cannot be graph e.v. (Some conjugates are not real) $g(x^*) \mid g(z) = g_{qq} ph_{g} G_{qq} with <math>\lambda_{1}(G) \in (-x^*, -z)$ THM: $\forall x \in (z, x^*)$. $g(x) \mid g(z)$ has finishly connected graphs Every sufficiently large graph in $g(x^*) \mid g(z)$ RaxDe: books more or less like En".

DEF: (Routed graph a. A vosted graph FR is a graph F equipped with nonempty subset R of vertices The augmented path extention (ape) of (Fr. l. ...) of FR FR L is defined by Part 1: Every sufficiently large connected G & G(x*) \G(z) is an ape of a rooted graph. t classify this? Part : Deve exist DEF: A single-rooted graph Hr is a rooted graph H with a single routr. The line graph L(Hr) is the rooted graph FR. where F = L(H) and R = { edges of H incident tor} Part 2: Que There exists a finite family F of rooteds graphs st. C every FR in F is L(Hr) & for some rooted Hr @ every connected age in G(X*) \ G(2) is an age of @ someonted graph Frin F. 3 for every FR in F, there exists lot {0, ..., 67. \\apes/\limins Quantative version: tist of those Hr. (794 & total) Computer assisted. (48 maximal glassisted. DEF. A marerick graph is a connected graph in G(x*) 19(21/3)
that is not an ape.

 $\lambda_1 \left(\begin{array}{c} \lambda_1 \\ \\ \\ \\ \\ \\ \end{array} \right) \begin{array}{c} \lambda_1 \\ \\ \\ \\ \end{array} = 2.02124.$ benevalization of Part 1, YX6 (x*. 1') Del every sufficiently large graph in G(x) \ G(z) is an ape. Bu Moogo than for Part 2. WAXXX*, finite F of rooted graphs, NEN. 36 on 00 > N vertices in Gas (Gas) that is not an ape of FREF. Every connected graph on 318 vertices in y(x*)/y(z) Contains a unique leaf u sit. 6-6-4 is the line graph of a pipartite graph.