Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- de flux, tipul predicatului determinist/nedeterminist).

 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP (DEFUN F(N) (COND ((= N 0) 0) ((> (F (- N 1)) 1) (- N 2)) (T (+ (F (- N 1)) 1)) )
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (- N 1)), fără a redefini logica clauzelor și fără a folosi o funcție auxiliară. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

 ${f B.}$ Să se scrie un program PROLOG care generează lista combinărilor de ${f k}$ elemente dintr-o listă de numere întregi, având suma număr par. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista [6, 5, 3, 4], $\mathbf{k}=2 \Rightarrow [[6,4],[5,3]]$ (nu neapărat în această ordine)

C. Se dă o listă neliniară și se cere înlocuirea valorilor numerice care sunt mai mari decât o valoare k dată și sunt situate pe un nivel impar, cu numărul natural predecesor. Nivelul superficial se consideră 1. Se va folosi o funcție MAP.

Exemplu
pentru lista (1 s 4 (3 f (7))) și
a) k=0 va rezulta (0 s 3 (3 f (6)))
b) k=8 va rezulta (1 s 4 (3 f (7)))