HW 2 for PDE-I Fall 2024, 140 Marks Total, Due Oct 9

1. (30 marks) (i) Let $n \geq 3$. Show that there does not exist a **positive** harmonic function u in the exterior of the unit open ball in \mathbb{R}^n , that decays faster than $\frac{1}{r^{n-2}}$ at ∞ , i.e.

$$\lim_{r \to \infty} \frac{u(x)}{\frac{1}{x^{n-2}}} = 0.$$

(**Hint:** Define $v(x) = u(x) - \frac{\varepsilon}{r^{n-2}}$, ε being so tiny that $v|_{|x|=1} > 0$. You might need to use the week maximum principle in unbounded domain.)

(ii) Prove that there does not exist a **positive** harmonic function on the exterior of the open unit disc that decays at ∞ .

(**Hint:** Let $v_{\varepsilon}(x) = u(x) + \varepsilon \ln |x|$. What can you say about $\inf_{|x| \ge 1} v_{\varepsilon}(x)$? You might need to use the week maximum principle in unbounded domain.)

(iii) Prove that there does not exist a **positive**, bounded, and nonconstant harmonic function on the interval $(1, \infty)$.

Note: In problems 2-3, B_1 denotes the closed unit ball in \mathbb{R}^n centered at 0.

2. (10 marks) In class, we proved that if $\Delta u = 0$ in $\overline{B_1^c}$ with $n \geq 3$, and $\lim_{x \to \infty} u(x) = 0$, then $u(x) = O(\frac{1}{|x|^{n-2}})$ as $x \to \infty$. For n = 2, prove that it is possible that u decays at ∞ at any algebraic decay rate $\frac{1}{|x|^k}$, $k \geq 1$ integer.

(**Hint:** Consider complex analytic functions such as $\frac{1}{z^k}$.)

3. (20 marks) Suppose that $u \in C^2(B_1 \setminus \{0\})$ is harmonic on $B_1 \setminus \{0\}$ (u may or may not be singular at 0). Prove that if

$$u(x) = \begin{cases} o(\ln r) & \text{as } r = |x| \to 0^+, & n = 2, \\ o(\frac{1}{r^{n-2}}) & \text{as } r = |x| \to 0^+, & n \ge 3, \end{cases}$$
 (1)

then

$$\sup_{B_1\setminus\{0\}} u = \sup_{\partial B_1} u, \quad \inf_{B_1\setminus\{0\}} u = \inf_{\partial B_1} u.$$

(**Hint:** For n=2, consider $u(x) \pm \epsilon \ln r$ for the sup and inf identities, respectively. For $n \geq 3$, consider $u(x) \mp \frac{\epsilon}{r^{n-2}}$ for the sup and inf identities, respectively. Note that the inf identities can also be obtained from the sup identities by considering -u.)

4. (10 marks) Let Ω be a bounded domain in \mathbb{R}^n that satisfies the interior sphere condition at every point on $\partial\Omega$. Prove that every solution $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ of

$$\begin{cases} \Delta u = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega, \end{cases}$$
 (2)

where ν is an outer pointing vector field on $\partial\Omega$, must be a constant function on Ω .

6. (10 marks) Let $\Omega = (0,1)$. Suppose $u, v \in C^2(\Omega) \cap C^1(\bar{\Omega})$ and $Lu \geq Lv$ in Ω . Here

$$Lu = a(x)u'' + b(x)u' + c(x)u,$$

where $\lambda_0 \leq a(x) \leq M$, $|b(x)| \leq M$, and $-M \leq c(x) \leq 0$ for every $x \in \Omega$ for some constants λ_0 , M > 0. Prove that given $u'(0) \geq v'(0)$ and u(1) < v(1), it holds that u < v in [0,1].

6. $(5 \times 6 = 30 \text{ marks})$ Let Ω be a bounded domain in \mathbb{R}^n with C^2 -smooth boundary $\partial \Omega$. Let $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ be a solution of the "Allen-Cahn/bistable equation" (from material science and math biology):

$$\begin{cases} \Delta u - f(u) = 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial \mathbf{n}} = 0 & \text{on } \partial \Omega, \end{cases}$$
 (3)

where **n** is the outer normal vector field on $\partial\Omega$; f is an N-shaped, C^1 -smooth function as shown:

f(u) > 0 for -1 < u < a and u > 1; f(u) < 0 for u < -1 and a < u < 1.

Let $M := \max_{\bar{\Omega}} u$, $m := \min_{\bar{\Omega}} u$.

Show that

(i) $M \le 1$;

Hint: Suppose M > 1. Consider two cases: (a) M is attained at some $x_0 \in \Omega$. Then what is the sign of $\Delta u(x_0)$? (b) M is not achieved in Ω (so it is achieved only at a point $x_0 \in \partial \Omega$). Then what can you say about the sign of Δu in a small neighborhood of x_0 in Ω ?

- (ii) $m \ge -1$.
- (iii) M < 1 unless $u \equiv 1$ in $\bar{\Omega}$.
- (iv) m > -1 unless $u \equiv -1$ in $\bar{\Omega}$.
- (v) M > a unless $u \equiv -1$ or $u \equiv a$ in $\bar{\Omega}$.

Hint: Argue by contradiction: Suppose $u \not\equiv -1, a$, and $a \geq M \geq m > -1$. Integrating the PDE, we have $\int_{\Omega} \Delta u_{\underline{}} dx = \int_{\Omega} f(u(x)) dx$.

(vi) m < a unless $u \equiv 1$ or $u \equiv a$ in $\bar{\Omega}$.

7 (15 marks) Let Ω be a bounded domain in \mathbb{R}^n with C^1 -smooth $\partial\Omega$ (so at each $x \in \partial\Omega$, \exists unit outer normal vector $\mathbf{n}(x)$ of $\partial\Omega$). Suppose that $u, v \in C^1(\bar{\Omega})$ satisfy

$$u|_{\partial\Omega} \geq 0, \ v|_{\partial\Omega} \geq 0, \ u > 0 \text{ in } \Omega, \ \frac{\partial u(x)}{\partial \mathbf{n}} < 0 \text{ whenever } x \in \partial\Omega \text{ and } u(x) = 0.$$

Prove that $\exists \varepsilon > 0 \text{ s.t. } u + \delta v > 0 \text{ in } \Omega, \forall \delta \in (0, \varepsilon).$

Hint: If such ε does not exist, then $\forall k \geq 1, \exists x_k \in \Omega$ s.t.

$$(u + \frac{1}{k}v)(x_k) \le 0. \tag{4}$$

Since $\bar{\Omega}$ is compact, after passing to a subsequence, $x_k \to \text{some } x^* \in \bar{\Omega}$.

The hard case is when $x^* \in \partial \Omega$. Project x_k (for large k) onto $\partial \Omega$ to obtain $\bar{x}_k \in \partial \Omega$. Let $\nu_k = \frac{\bar{x}_k - x_k}{|\bar{x}_k - x_k|}$. Then $\nu_k \to \mathbf{n}(x^*)$ as $k \to \infty$. Let $w_k = u + \frac{1}{k}v$. By (4), we have $w_k(\bar{x}_k) - w_k(x_k) \geq 0$. By the Mean Value Theorem, $\nabla w_k(y_k) \cdot (\bar{x}_k - x_k) \geq 0$, where y_k is between x_k and \bar{x}_k .

8. (15 marks) Let Ω be a bounded domain in \mathbb{R}^n with C^2 -smooth $\partial\Omega$. Consider operator

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b_i(x)u_{x_i} + c(x)u, \quad x \in \Omega,$$
 (5)

where L is strictly elliptic on Ω and $a_{ij}(x)$, $b_i(x)$, and c(x) are uniformly bounded on Ω . Suppose $\exists u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ that satisfies

$$Lu \le 0 \text{ and } u > 0 \text{ in } \Omega, \ u = 0 \text{ on } \partial\Omega.$$
 (6)

Prove that if $v \in C^2(\Omega) \cap C^1(\bar{\Omega})$ satisfies

$$Lv \le 0 \quad \text{in } \Omega, \quad v \ge 0 \quad \text{on } \partial\Omega, \tag{7}$$

then either $v \ge 0$ in Ω or \exists constant $c_0 > 0$ s.t. $u = -c_0 v$, and in the latter case Lu = 0 = Lv in Ω , $v|_{\partial\Omega} = 0$.

Comments: This is a surprising result with elementary proof. Note we impose no conditions on the sign of c(x).

Hint:

- If $v \ge 0$ in Ω , then nothing needs to be proved.
- If $\exists x_0 \in \Omega$ s.t. $v(x_0) < 0$, then define

$$c_0 = \sup \{ \varepsilon > 0 \mid u + \delta v > 0 \text{ in } \Omega, \ \delta \in (0, \varepsilon) \}.$$

• Use problem 7 to see that ε exists.

- Is c_0 finite?
- Let $w = u + c_0 v \Rightarrow w \ge 0$ in Ω , $Lw \le 0$ in Ω .
- Use the strong maximum principle and the Hopf boundary point Lemma on w to show $w \equiv 0$.