Aula 14

Aula passada

- Distribuição estacionária
- Tempo de chegada
- Distância de variação total
- Convergência
- Reversibilidade
- Passeios aleatórios
- Nascimento e morte

Aula de hoje

- Autovalores, autovetores, decomposição
- Convergência para estacionaridade
- Tempo de mistura
- Spectral gap
- Tempo de mistura de passeios aleatórios

Estacionaridade

- Seja P a matriz de transição de estados de uma CM
- π é uma distribuição estacionária sse

$$\pi P = \pi$$
 $\pi_s \ge 0$ $\sum_{s \in S} \pi_s = 1$

• Seja $\pi(0)$ a distribuição inicial da CM. A distribuição no tempo t é dada por

$$\pi(t) = \pi(t-1)P = \pi(0)P^{t}$$

• Para qualquer CM aperiódica e irredutível, temos

$$\lim_{t\to\infty}d_{TV}(\pi(t),\pi)=0$$

• Convergência para π é única e independe de $\pi(0)$

Convergência

- Mas o quão rápido é esta convergência?
- Lembrando da distância de variação total entre dois vetores de probabilidade

• Como que $d_{TV}(\pi(t),\pi)$ vai a zero com t ?

• Depende de $\pi(0)$? Depende de P?

Autovalores e Autovetores

• Dada uma matriz P, v é chamado de autovetor associado ao autovalor λ , se

- P possui até n autovetores linearmente independentes, cada qual associado a um autovalor
- *u* é chamado de autovetor a esquerda se

$$uP = \lambda u$$
 - Multiplicar u a esquerda de P

- Se u é autovetor a esquerda, então existe autovetor v tq $P'v=\lambda u P'$ é a transposta da matriz P
- Autovalores são os mesmos (esquerda e direita), relação entre autovetores obtida pela transposta da matriz

Autovetores e Matriz P

• π é uma distribuição estacionária da CM com matriz P sse

$$\pi P = \pi$$

- Ou seja, π é o autovetor à esquerda de P associado ao autovalor $\lambda = 1$
- Precisamos ainda $\sum_{s \in S} \pi_s = 1$
- Solução: normalizar o autovetor para garantir soma 1
- **Teorema:** Se P é uma matriz estocástica, temos $|\lambda| <= 1$ para todo autovalor, e apenas um autovalor $\lambda = 1$
 - matriz estocástica = matriz de transição de probabilidade

Decomposição em Autovetores

 Uma matriz P pode ser escrita através de seus autovetores e autovalores

$$P = QLQ^{-1}$$

- Onde Q é matriz com autovetores como colunas
- L é matriz diagonal, com L_{ii} autovalor associado ao autovetor i (i-ésima coluna de Q)
- Q^{-1} é a inversa da matriz Q

Exemplo

$$P = \begin{pmatrix} .3 & .2 & .5 \\ .4 & .5 & .1 \\ .7 & .2 & 1 \end{pmatrix}$$

- Autovalores: 1, 0.3, -0.4 (de acordo $P = \begin{vmatrix} .3 & .2 & .5 \\ .4 & .5 & .1 \\ .7 & .2 & 1 \end{vmatrix}$ • Autovalores: 1, 0.3, -0.4 (de acord com nosso teorema)
 • Autovetores associados: (1, 1, 1),
 - (2, -5, 2), (-43, 13, 55)

$$P = QLQ^{-1}$$

$$Q = \begin{pmatrix} 1 & 2 & -43 \\ 1 & -5 & 13 \\ 1 & 2 & 55 \end{pmatrix} \quad L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.3 & 0 \\ 0 & 0 & -0.4 \end{pmatrix} \quad Q^{-1} = \begin{pmatrix} 43/98 & 2/7 & 27/98 \\ 3/49 & -1/7 & 4/49 \\ -1/98 & 0 & 1/98 \end{pmatrix}$$

Autovetor à esquerda associado ao $\lambda=1$

$$Q^{-1} = \begin{bmatrix} 43/98 & 2/7 & 27/98 \\ 3/49 & -1/7 & 4/49 \\ -1/98 & 0 & 1/98 \end{bmatrix}$$

Autovetores de *P* (um em cada coluna)

Autovalores de *P* (correspondentes) Inversa de Q *Q*⁻¹: autovetores à esquerda de P, um em cada linha!

Distribuição no Tempo t

• Seja $\pi(0)$ a distribuição inicial da CM. A distribuição no tempo t é dada por

$$\pi(t) = \pi(t-1)P = \pi(0)P^{t}$$

• Mas sabemos que $P = QLQ^{-1}$, então temos

$$P^{t} = PP ... P = QLQ^{-1}QLQ^{-1}... QLQ^{-1}$$
$$= QLILI ... LQ^{-1} = QLL ... LQ^{-1} = QL^{t}Q^{-1}$$

• Logo, temos que

$$\pi(t) = \pi(0) Q L^t Q^{-1}$$

Matriz diagonal, com cada elemento elevado a potência *t*

- Para onde vai L^t com t crescente ?
- λ = 1 fica no mesmo lugar, todos os outros valores vão a zero, pois $|\lambda|$ < 1

Exemplo

$$P = \begin{pmatrix} .75 & .25 \\ .67 & .33 \end{pmatrix}$$

$$\pi = (8/11 \ 3/11)$$

- Autovalores de *P*: $\lambda_1 = 1$, $\lambda_2 = 0.08$
- Autovetores a esquerda de *P*: $v_1 = (67 25)$, $v_2 = (1 -1)$
- Temos então $\pi = (\frac{67}{67 + 25} \quad \frac{25}{67 + 25}) \approx (8/11 \quad 3/11)$
- Supor $\pi(0) = (1 \ 0)$. Podemos escrever $\pi(0) = (1 \ 0) = \pi + 3/11 v_2$
- Temos então

$$\pi(t) = \pi(0) P^{t} = (\pi + 3/11 v_{2}) P^{t} = \pi P^{t} + 3/11 v_{2} P^{t}$$

$$= \pi + 3/11 \lambda_{2}^{t} v_{2}$$

$$= (8/11 + 3/11(0.08)^{t} 3/11 - 3/11(0.08)^{t})$$

Exemplo

$$P = \begin{pmatrix} .75 & .25 \\ .67 & .33 \end{pmatrix}$$

$$\pi = (8/11 \ 3/11)$$

Temos então

$$\pi(t) = (8/11+3/11(0.08)^t 3/11-3/11(0.08)^t)$$

• Distância de variação total

$$d_{TV}(\pi(t), \pi) = \frac{1}{2} \frac{3}{11} (0.08^{t} + 0.08^{t}) = \frac{3}{11} 0.08^{t} = \theta(0.08^{t})$$

Converge exponencialmente rápido!

- Resultado vale para qualquer CM
 - converge exponencialmente rápido em t
 - constante a depende da CM e parâmetros

Teorema da Convergência

- Considere uma CM aperiódica e irredutível com matriz de probabilidade P com distribuição estacionária π
- Existe constantes α em (0, 1) e C > 0, tq

$$max_{\pi(0)}d_{TV}(\pi(t),\pi) \leq C \alpha^{t}$$

• Distribuição transiente $\pi(t)$ converge exponencialmente rápido em t para distribuição estacionária π , independente de $\pi(0)$ ou qualquer outra coisa!

Tempo para Convergência

- Quantos passos até decidir convergência?
- Ideia: definir $\epsilon > 0$ como distância até equilíbrio
 - calcular t tal $d_{TV}(\pi(t), \pi) = \varepsilon$
- Exemplo anterior

$$d_{TV}(\pi(t), \pi) = \frac{3}{11} 0.08^{t} = \epsilon \longrightarrow t = \theta \left(\log \frac{1}{\epsilon}\right)$$

- Muitos poucos passos necessários para chegar próximo do equilíbrio
 - constante em θ depende da CM e parâmetros

Tempo de Mistura

$$\tau_{\epsilon} = min\{t \mid max_{\pi(0)}d_{TV}(\pi(t),\pi) \leq \epsilon\}$$

- $\tau_{_{\epsilon}}$: menor valor de t tal que para qualquer distribuição inicial, $\pi(t)$ está a distância menor que ϵ da estacionária
- Para qualquer CM aperiódica, irredutível, temos

$$\tau_{\epsilon} \leq \tau_{1/4} \log 1/\epsilon$$

- Depois de estar perto o suficiente, chegar mais perto é muito fácil (fator log ϵ^{-1})
- \bullet Tempo de mistura depende fracamente em ϵ
 - ε vai ser tomado como constante

Spectral Gap

- Convergência depende da relação dos autovalores de P
 - segundo maior autovalor (em módulo) domina convergência
- Spectral Gap (δ): distância entre os dois maiores autovalores de P (maior é sempre igual a 1)

$$\delta = 1 - max_{k>1} \{ |\lambda_k| \}$$
 - k-ésimo autovalor de P, $\lambda_1 = 1$

- Quanto maior for δ , mas rápido é convergência
 - base da exponencial que domina a convergência é dada por $|\lambda_2|$ (segundo maior autovalor)
 - todas as outras componentes vão a zero mais rapidamente (menor base)

Spectral Gap e Tempo de Mistura

- Relação entre δ e τ
- Considere CM irredutível aperiódica com spectral gap δ e $\pi_{\alpha} = \min_{\alpha} \pi_{\alpha}$ (menor valor da distribuição estacionária)
- Temos a seguinte relação

$$\frac{\log 1/(2\epsilon)}{2\delta} \le \tau_{\epsilon} \le \frac{\log 1/(\pi_{o}\epsilon)}{\delta} \qquad \bullet \text{ Maior } \delta, \text{ menor } \tau_{\epsilon}$$

$$\bullet \text{ Maior } \pi_{o}, \text{ menor } \tau_{\epsilon}$$

Limitante inferior para tempo de mistura

Limitante superior para tempo de mistura

• Usar limitante superior na prática não é fácil, pois precisamos de π_{α} e δ

Tempo de Mistura em N

- Resultados anteriores trazem boas notícias
 - convergência exponencial, tempo de mistura relativamente pequeno
- Mas espaço de estado da CM pode crescer com o tamanho do problema
 - convergência e tempo de mistura nestes casos?
- Seja $N = 2^n$ o número de estados da CM
 - N cresce exponencialmente em n
 - ex. estado da CM = permutações de n números
- Como τ depende de N e n?
 - para algum ε fixo

Passeios Aleatórios

- Tempo de mistura de passeios aleatórios em grafos que podem crescer
 - modelo do grafo parametrizado por n (vértices)
 - grafo completo, grafo em anel, hipercubo, etc
- Passeio aleatório preguiçoso (lazy random walk)
 - permanece no vértice atual com prob ½, caso contrário, escolhe vizinho uniformemente
 - implica CM aperiódica e irredutível
- Como que o tempo de mistura depende da estrutura do grafo?
 - τ_n é o tempo de mistura com n vértice para um ϵ constante

Mistura de Diferentes Grafos

Anel (um ciclo) com n vértices

$$c n^2 \leq \tau_n \leq n^2$$

- Árvore binária cheia com n vértices $\tau_n \leq 16 n$
- Grafo completo com n vértices (com n grande) $\tau_n = 1$
- Hipercubo com d dimensões e $n=2^d$ vértices $\tau_n \le c \, d \log d$ chamado de "fax mixing"

Tema atual de pesquisa na matemática (e computação)