1. For each of the following, find the matrix $M \in SO(2)$ which diagonalizes the given symmetric matrix:

$$1. \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}$$

$$2. \begin{bmatrix} 5 & -13 \\ -15 & 5 \end{bmatrix}$$

$$3. \begin{bmatrix} 7 & -2 \\ -2 & 5/3 \end{bmatrix}$$

- 2. For each of the symmetric matrices A in the previous exercise write down a quadratic equation with associated matrix A.
- 3. For each of the following equations write down the associated matrix.

1.
$$-x^2 + xy - y^2 = 0$$
,

2.
$$6xy + x - y = 0$$
.

- 4. Bring the equations from the previous exercise in canonical form.
- 5. Decide if the following equations describe an ellipse, a hyperbola or a parabola.

1.
$$x^2 - 4xy + 2y^2 = 1$$
,

$$2. \ x^2 + 4xy + 2y^2 = 2,$$

3.
$$x^2 + 4xy + 4y^2 = 3$$
.

6. Using the classification of quadrics, decide what surfaces are described by the following equations.

1.
$$x^2 + 2y^2 + z^2 + xy + yz + zx = 1$$
,

$$2. \quad xy + yz + zx = 1,$$

3.
$$x^2 + xy + yz + zx = 1$$
,

$$4. \quad xy + yz + zx = 0.$$

- **7.** Consider the rotation $R_{90^{\circ}}$ of \mathbb{E}^2 around the origin and the translation $T_{\mathbf{v}}$ of \mathbb{E}^2 with vector $\mathbf{v}(1,0)$.
 - 1. Give the algebraic form of the isometries $R_{90^{\circ}}$, $T_{\mathbf{v}}$ and $T_{\mathbf{v}} \circ R_{90^{\circ}}$.
 - 2. Determine the equations of the hyperbola $\mathcal{H}: \frac{x^2}{4} \frac{y^2}{9} 1 = 0$ and the parabola $\mathcal{P}: y^2 8x = 0$ after transforming them with R_{90° and with $T_{\mathbf{v}} \circ R_{90^\circ}$ respectively.
- **8.** Let e and f be two orthonormal bases of a \mathbb{V}^n . Show that $M_{e,f}$ is orthogonal, i.e. that $M_{e,f} \in O(n)$.
- **9.** Let $e = (\mathbf{e}_1, \dots, \mathbf{e}_n)$ be an orthonormal basis of \mathbb{V}^n . If π is a permutation of $\{1, \dots, n\}$ let $\pi(e) = (\mathbf{e}_{\pi(1)}, \dots, \mathbf{e}_{\pi(n)})$. Show that $\mathbf{M}_{e,\pi(e)} \in O(n)$.