

ARF868 Radio Modems

User guide version V2.2.1 FRANCAIS ENGLISH

Table des matières

Intorma Diselaim		5
Disclaim	technique	5 5
	tion de conformité	6
	nandations environnementales	7
	nandations d'usage	7
1.	Introduction	8
1.1.	Versions de modems	8
1.2.	Description générale	9
1.3.	Signification des LEDs	9
1.4.	Système de fixation Rail DIN	9
1.5.	Accessoires	9
1.6.	Raccordement électrique	11
1.6.1	Affectation du connecteur d'alimentation Jack	11
1.6.2	Affectation du connecteur data série SubD9	11
1.7.	Modes de sélection du Bus data série	11
1.8.	Interface S.A.V	12
1.9.	Installation mécanique - Optimisation des performances	12
1.9.1	Encombrement	12
1.9.2	Positionnement des modems	13
1.9.3	Positionnement de l'antenne	13
1.9.4	Positionnement des câbles alimentation et série	13
1.10.	Protection des modems à antenne déportée contre les surcharges	14
2.	Caractéristiques électriques et radio	14
2.1.	Valeurs maximales	14
2.2.	Spécification générales	14
2.3.	Caractéristiques radio	15
2.3.1	Introduction aux exigences radio	15
2.3.1.1	Sous-bandes	15
2.3.1.2	Duty Cycle	15
2.3.1.3	Schématisation des exigences de la bande de fréquence 863-870MHz	15
2.3.2	Modes de fonctionnement des modems ARF868	15
2.3.3	Mode standard	16
2.3.3.1	Usage à 500mW : portée maximale	16
2.3.3.2	Usage jusqu'à 25mW : nombre de canaux maximal	17
3.	Echange de données - Mode de Communication	18
3.1.	Protocole asynchrone paquetisé	18
3.1.1	Description du protocole	18
3.1.2	Mode paquet non sécurisé	19
3.1.3	Mode paquet sécurisé	19
3.1.4	Contrôle de l'intégrité de la transmission	19
3.1.5	Mise en oeuvre	19
3.1.6	Transmission «data path»	19
3.2.	Protocole asynchrone continu	19
3.2.1	Description du protocole	19
3.2.2	Mise en oeuvre	19
3.2.3	Adressage	20
3.3.	Protocole Legacy X3-PRO	20

4. 4.1. 4.2. 4.3. 4.3.1 4.3.2 4.4. 4.5. 4.6.	Fonctions avancées du produit Auto-détection d'interface UART Autobaud : Auto-détection du débit de la liaison série. RSSI RSSI continu RSSI trame Fonction Scan Free Test d'émission/réception Mode répéteur	20 20 21 21 21 21 21 22 22
5. 5.1. 5.2. 5.3. 5.4.	Configuration du produit - Mode commande Entrée/Sortie du mode Commande Commandes AT Description des registres Cohérence de la configuration	22 23 23 24 27
6. 6.1. 6.2.	Annexes Liste des canaux disponibles Temps de transmission RF et temps de retournement	28 28 29
7.	Historique de document	30
Table o	f contents	
Declara Environ		31 31 31 32 33 33
1. 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.6.1 1.6.2 1.7. 1.8. 1.9. 1.9.1 1.9.2 1.9.3 1.9.4 1.10.	Introduction Modem versions General description Meaning of the LEDs DIN Rail mounting system Accessories Electricity connection Functions of the jack supply connector Functions of the SubD9 serial data connector Serial data Bus selection modes Service interface Mechanical installation - Optimizing performance Dimensions Positioning of the modems Positioning of power and serial cables Protection of remote aerial modems against overloads	34 34 35 35 35 37 37 37 37 38 38 38 38 39 39 39
2. 2.1. 2.2. 2.3. 2.3.1	Electrical and radio specifications Maximum values General specifications Radio specifications Introduction to the radio requirements	40 40 40 41 41

7.

Document history

2.3.1.1	Sub-bands	41
2.3.1.2	Duty Cycle	41
2.3.1.3	Schematic representation of the requirements of the 863-870MHz frequency band	41
2.3.2	ARF868 modem operating modes	41
2.3.3	Standard mode	42
2.3.3.1	Use at 500mW: maximum range	42
2.3.3.2	Usage up to 25mW: maximum number of channels	43
3.	Data exchange – Communication mode	44
3.1.	Packet protocol	44
3.1.1	Protocol description	44
3.1.2	Non-secured Packet protocol	45
3.1.3	Secured Packet protocol	45
3.1.4	Transmission integrity control	45
3.1.5	Implementation	45
3.1.6	Transmission data path	45
3.2.	Continuous asynchronous protocol	45
3.2.1	Description of the protocol	45
3.2.2	Implementation	45
3.2.3	Addressing	46
3.3.	Legacy X3-PRO protocol	46
4.	Advanced product functions	46
4.1.	UART interface self-detection	46
4.2.	Autobaud: Self-detection of the serial link data rate	47
4.3.	RSSI	47
4.3.1	Continuous RSSI	47
4.3.2	Frame RSSI	47
4.4.	Scan Free function	47
4.5.	Transmission/reception test	48
4.6.	Repeater mode	48
5.	Product Configuration - Command Mode	48
5.1.	Command mode input/output	48
5.2.	AT Commandes	49
5.3.	Description of registers	50
5.4.	Configuration coherency	53
6.	Appendices annexes	54
6.1.	List of available channels	54
6.2.	RF Transmission and turn-around time	55

56

Information

Information document	Information document			
Titre ARF868 Radio Modems - User guide				
Sous-titre	Version 2.2.1			
Type de document	Mise en oeuvre			

Ce document s'applique aux produits suivants :

Nom	Référence	Version firmware
Modem Radio ARF868 ULR 500mW	ARF7940	TW_AB_V2.4.0_AA_B_1.3.0
Modem Radio ARF868 LR 500mW	ARF7941	TW_AB_V2.4.0_AA_B_1.3.0
Modem Radio ARF868 MR 25mW	ARF7942	TW_AB_V2.4.0_AA_B_1.3.0
Modem Radio ARF868 LP 25mW	ARF7943	TW_AB_V2.4.0_AA_B_1.3.0

Disclaimer

Ce document et l'utilisation de toute information qu'il contient, est soumis à l'acceptation des termes et conditions ADEUNIS RF. Ils peuvent être téléchargés à partir www.adeunis-rf.com.

ADEUNIS RF ne donne aucune garantie sur l'exactitude ou l'exhaustivité du contenu de ce document et se réserve le droit d'apporter des modifications aux spécifications et descriptions de produit à tout moment sans préavis.

Adeunis RF se réserve tous les droits sur ce document et les informations qu'il contient. La reproduction, l'utilisation ou la divulgation à des tiers sans autorisation expresse est strictement interdite. Copyright © 2012, ADEUNIS RF.

ADEUNIS RF est une marque déposée dans les pays de l'UE et autres.

Support technique

Site web

Notre site Web contient de nombreuses informations utiles: information sur les modules et modems radio, guides d'utilisation, logiciel de configuration et de documents techniques qui peuvent être accessibles 24 heures par jour.

Email

Si vous avez des problèmes techniques ou ne pouvez pas trouver les informations requises dans les documents fournis, contactez notre support technique par e-mail. Utilisez notre adresse e-mail dédiée (arf@adeunis-rf.com) plutôt que d'une adresse e-mail personnelle. Cela permet de s'assurer que votre demande soit traitée le plus rapidement possible.

Informations utiles lorsque vous contactez notre support technique

Lorsque vous contactez le support technique merci de vous munir des informations suivantes:

- Type de produit (par exemple Radio Modem ARF868 LR)
- Version du firmware
- Description claire de votre question ou de votre problème
- Une brève description de l'application
- Vos coordonnées complètes

Déclaration UE de Conformité

Nous

ADEUNIS RF 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis-rf.com

Déclarons que la DoC est délivrée sous notre seule responsabilité et fait partie du produit suivant :

Modèle produit : Modem ARF868

Références: ARF7940AA, ARF7940BA, ARF7941AA, ARF7941BA,

ARF7942AA, ARF7942BA, ARF7943AA, ARF7943BA

Objet de la déclaration :

L'objet de la déclaration décrit ci-dessus est conforme à la législation d'harmonisation de l'Union applicable :

Directive 2014/53/UE (RED)

Directive 2011/65/UE (ROHS)

Erp 2009/125

Les normes harmonisées et les spécifications techniques suivantes ont été appliquées :

Titre : Date du standard/spécification

EN 300 220-2 V3.1.1 2017/02 EN 301 489-1 V2.1.1 2016/11 EN 301 489-3 V2.1.0 2016/09

EN 60950-1 2006 +A11:2009 +A1:2010 +A12:2011 +A2:2013

 EN 62311
 2008

 EN50385
 2002

 EN50581
 2012

12 Juin 2017 Monnet Emmanuel, Responsable Certification

The state of the s

Recommandations environnementales

Tous les matériaux d'emballage superflus ont été supprimés. Nous avons fait notre possible afin que l'emballage soit facilement séparable en trois types de matériaux : carton (boîte), polystyrène expansible (matériel tampon) et polyéthylène (sachets, feuille de protection en mousse). Votre appareil est composé de matériaux pouvant être recyclés et réutilisés s'il est démonté par une firme spécialisée. Veuillez observer les règlements locaux sur la manière de vous débarrasser des anciens matériaux d'emballage, des piles usagées et de votre ancien appareil.

Recommandations d'usage

ATTENTION

- Eviter la proximité à moins de 3m d'un appareil électronique (PC, Téléphone portable....) qui est susceptible d'affecter la grande sensibilité du modem et ainsi diminuer sa portée effective.
- Avant d'utiliser le système, vérifiez si la tension d'alimentation figurant dans son manuel d'utilisation correspond à votre source. Dans la négative, consultez votre fournisseur.
- Placez l'appareil contre une surface plane, ferme et stable.
- L'appareil doit être installé à un emplacement suffisamment ventilé pour écarter tout risque d'échauffement interne et il ne doit pas être couvert avec des objets tels que journaux, nappe, rideaux, etc.
- L'antenne de l'appareil doit être dégagée et distantes de toute matière conductrice de plus de 10 cm.
- L'appareil ne doit jamais être exposé à des sources de chaleur, telles que des appareils de chauffage.
- Ne pas placer sur l'appareil à proximité d'objets enflammés telles que des bougies allumées, chalumeaux, etc.
- L'appareil ne doit pas être exposé à des agents chimiques agressifs ou solvants susceptibles d'altérer la matière plastique ou de corroder les éléments métalliques.
- Installez votre appareil près de sa source d'alimentation DC.
- Evitez les rallonges électriques et RS232 de plus de 3m.
- Lors du branchement au PC (utilisation d'une passerelle série-USB), il n'y aura pas de détection automatique du produit. Vous devrez lancer une recherche de «port com» disponibles.

1. Introduction

Le modem ARF868 convertit des données d'une liaison série en une trame radio à envoyer à un équipement similaire.

Les Modems radio ARF868 sont principalement dédiés à des communications point à point et point multipoints. Ils exploitent la bande européenne 863-870MHz, harmonisée et utilisable sans licence. Leurs excellentes sensibilités associées à des puissances jusqu'à 500mW permettent de mettre en oeuvre des transmissions de données jusqu'à 20km.

L'utilisation de la technologie Narrow band permet également d'offrir de nombreux canaux de communication :

- 19 canaux @27dBm/2.4kbps
- +500 canaux @14dBm/2.4kbps

Les paramètres opératoires de ces modems (lien série, gestion radio...) peuvent être mis à jour par des commandes sur le lien série. L'utilisation du logiciel Adeunis dédié «Adeunis RF - Stand Alone Configuration Manager», disponible sur le site www.adeunis-rf.com, vous permettra de mettre en œuvre très simplement vos modems ARF868.

1.1. Versions de modems

Tous les produits sont disponibles en version antenne intégrée ou embase TNC pour antenne déportée.

Référence	Designation	Puissance / Puissance RF
ARF7940AA	ARF868 ULR - INT. ANTENNA	500mW / 27dBm
ARF7941AA	ARF868 LR - INT. ANTENNA	500mW / 27dBm
ARF7942AA	ARF868 MR - INT. ANTENNA	25mW / 14dBm
ARF7943AA	ARF868 LP - INT. ANTENNA	25mW / 14dBm
ARF7940BA	ARF868 ULR - TNC. ANTENNA	500mW/27dBm
ARF7941BA	ARF868 LR - TNC. ANTENNA	500mW/27dBm
ARF7942BA	ARF868 MR - TNC. ANTENNA	25mW / 14dBm
ARF7943BA	ARF868 LP - TNC. ANTENNA	25mW / 14dBm

Chacun des produits listés ci-dessus est livré en version dite «standard».

La version standard dispose d'un capot de protection qui peut être retiré de sorte à pouvoir dégager la fixation Rail-DIN.

Version Standard avec capot de protection

Version Standard sans capot de protection

1.2. Description générale

1.3. Signification des LEDs

1.4. Système de fixation Rail DIN

Monté nativement sur toutes les versions. Il permet :

- de verrouiller le corps du modem sur le profil Rail DIN lorsque le capôt de protection du modem est retiré.
- de verrouiller les accessoires de fixation mât ou mur.

1.5. Accessoires

Les modems ARF868 sont livrés avec différents accessoires dédiés qui permettent le montage intérieur ou exterieur sur mur, poteau, mât....

Des options de protection sont également disponibles et peuvent être montées sur les modems ARF868 de sorte à autoriser leur utilisation en environements difficiles :

- Option IP53 avec ajout d'un capot de protection des raccordements électriques par un système de mousse compensée.
- Option IP67 avec ajout d'un capot de protection des raccordements électriques par un système de presseétoupe.

Fixation Mat/Poteau

- Accessoire universel permettant la fixation modem sur tous types de support :
 - Mat/poteau de différents diamètres (ailettes souples)
 - Plan plat (mur, panneau, etc...)
- L'accessoire doit être préalablement fixé à l'aide de vis ou serflex sur la base prévue.
- Ensuite, le modem pourra se fixer sur l'accessoire par l'intermédiaire du verrou Rail-DIN.

Dans cette position, le modem est à 90° par rapport au support mural, ce qui permet de préserver une distance minimum entre l'antenne et des masses métallique éventuelles.

Fixation murale à 90°

- Accessoire permettant la fixation sur support plan (mur, panneau, etc...)
- L'accessoire doit être préalablement fixé sur le plan à l'aide de trois vis.
- Ensuite, le modem pourra se fixer sur l'accessoire par l'intermédiaire du verrou Rail-DIN.
- Dans cette position, le modem est parallèle par rapport au support mural. On évitera ce type de montage sur un support plan métallique.

Capot IP53

Le système capot IP53 se présente sous la forme de trois pièces :

- Le capot qui se positionne sous la partie inférieure du modem pour protéger les connecteurs.
- Le couvercle clipsable inférieur qui laisse passer les sorties câbles.
- La mousse qui se positionne entre le couvercle et la base inférieure du capot et qui une fois compressé assure une étanchéité performante.

La mise en œuvre sur le modem se fait dans l'ordre suivant :

- Les câbles électriques équipés de connecteurs sont insérés dans le capot par la partie inférieure, puis connectés sur les embases femelles du modem (voir partie raccordement électrique).
- La partie supérieure du capot est ensuite insérée sur la platine inférieure modem supportant les connecteurs femelles et qui aura été préalablement équipée du joint torique.
- C'est l'enveloppe de protection en «U» du modem qui viendra finalement assurer le maintien du capot IP53 une fois en place.
- Il ne restera plus qu'à fermer le capot IP53 sur sa partie basse par les opérations suivantes :
- La mousse est positionnée autour des câbles grâces aux fentes prévues à cet effet, puis translaté jusqu'à sa position sur partie base capot.
- Enfin, le couvercle est clipsé pour mettre en compression la mousse et ainsi éliminer les jeux autour des fils des câbles.
- **Dimensions internes**: Hauteur 42mm / Largeur 63mm / Epaisseur 25.2mm
- Dimension externes: Hauteur 50mm / Largeur 67.5mm / Epaisseur 29.7mm

Capot IP67

- Ce capot se présente sous le même principe que le capot IP53, mais il est équipé sur la sortie câbles de 2 presse-étoupes qui vont assurer une étanchéité aux projections d'eau.
- En revanche son utilisation n'est pas compatible avec des câbles déjà équipés de connecteurs, car ceux-ci ne pourront pas être insérés aux travers des presse-étoupes
- **Dimensions internes**: Hauteur 52.2mm / Largeur 63mm / Epaisseur 25.2mm
- **Dimension externes**: Hauteur 83.5mm / Largeur 67.5mm / Epaisseur 29.7mm

Outil de verrouillage de la fiche d'alimentation Jack

- Permet l'assistance au raccordement du jack d'alimentation, sur les versions standard quand le profil de la platine inférieure du modem ne permet pas un accès confortable.
- L'outil est d'abord inséré sur le câble d'alimentation grâce à la fente latéralle puis remonté le long de ce même câble jusqu'à englober la fiche mâle jack à connecter.
- L'ensemble est présenté sur l'embase jack femelle sur le profil de la platine inférieure du modem. Une fois celui-ci inséré, une rotation de l'outil permet de verrouiller le connecteur à l'embase.

1.6. Raccordement électrique

La mise en œuvre électrique du modem se fait à l'aide de deux connecteurs sur platine inférieure du modem :

- Connecteur d'alimentation (à gauche sur la fig1) type jack, pin centrale diamètre 2.5mm.
- Connecteur données série (à droite sur la fig1) type SubD9.

Caractéristiques des fiches males à utiliser :

- Fiche Jack (fig. 2) type SWITCHCRAFT 761K pour alimentation (disponible via Adeunis RF)
- Fiche SubD 9 broches avec verrouillage latéral par deux vis M3 (fig. 3)

L'embase jack sur platine modem est également compatible avec d'autres types de fiches jack diamètre de pin centrale 2.5mm, mais seules les versions spécifiques SwitchCraft 761K sont verrouillables par écrou.

1.6.1 Affectation du connecteur d'alimentation Jack

L'alimentation du modem par le jack, se fait via une tension continue comprise en 4.5V mini et 36V maxi. Le système intègre une protection contre l'inversion de polarité.

1.6.2 Affectation du connecteur data série SubD9

N° de broche	SubD9-Modem – RS232	SubD9-Modem - RS485 (2)
1		
2	RXD (Modem Data Out)	TXD/RXD+ (B)
3	TXD (Modem Data In)	TXD/RXD- (A)
4		
5		GND
6 <u>Max 5V !</u>	Sel RS232	
7	RTS (1)	
8	CTS (1)	
9	1	Not used

⁽¹⁾ RTS/CTS ne sont utiles que si l'on utilise le contrôle de flux RS232 (Voir § 5).

1.7. Modes de sélection du Bus data série

Le modem est configuré en usine en mode RS232 (Registre S215 à 1).

Par reprogrammation de Registre (Voir § 5), on peut repositionner le modem dans les modes suivants :

- RS232
- RS485
- RS485, mode Terminal(*)
- Détection Auto

Note : le mode de détection auto va déclencher une reconnaissance de l'équipement qui est connecté à la mise sous tension et automatiquement se configurer en RS232 ou RS485.

(*) La liaison RS485 a besoin d'être adaptée . Le modem inclut une résistance de 120 Ohms (mode Terminal) qui doit être sélectionné (Voir § 5), si le modem se situe en bout de ligne RS485.

⁽²⁾ Connexion half duplex seulement.

1.8. Interface S.A.V

Le Modem est équipé sur sa face arrière, de 2 boutons poussoirs (1 & 2) permettant le retour à des réglages de base en cas de diagnostic SAV. Le voyant lumineux bi-couleur en face avant complète cette IHM.

Fonction	Bouton	Sé	quence	Action
Reset du modem	BP2	311	appui sur BP2 puis relacher	Un appui sur BP2 permet de faire un reset du Modem. L'équipement redémarrera donc avec ses paramètres en mémoire non volatile, tels qu'ils ont été configurés lors de la dernière commande AT&W (Voir § 5 Mode commande).
Restitu- tion des paramètres de liaison série USINE	BP1	311	appui long sur BP1 supérieur à 3 secondes	Un appui long sur BP1 (> 3s) permet le forçage des paramètres de liaison série à : RS232, 9600bauds, 8 bits, pas de parité, pas de contrôle de flux. Cette action sera confirmée par 3 clignotements du voyant vert.
Forçage des paramètres de liaison série AUTO	BP1	311	appui court sur BP1 inférieur à 3 secondes	Un appui court sur PB1 (< 3s) permet la restitution des paramètres de liaison série par défaut (Auto-détection d'interface, Autobaud, data 8 bits, pas de parité, pas de contrôle de flux). Cette action sera confirmée par 3 clignotements du voyant vert.
Entrée en mode com- mande	BP2 et BP1	appuyer sur BP2 et maintenir 3 relacher BP2	appuyer sur BP1 et maintenir maintenir BP1 moins de 3 sec puis relacher	Le maintien de BP1 (<3s) après avoir relâché le bouton BP2, permet l'entrée en mode Commande. Cette action sera confirmée par 3 clignotements du voyant rouge.
Redémarrage du modem paramètres par défaut	BP2 et BP1	appuyer sur BP2 et maintenir 3 relacher BP2	appuyer sur BP1 et maintenir maintenir BP1 plus de 3 sec puis relacher	Le maintien de BP1 (>3s) après avoir relâché le bouton BP2, permet le redémarrage du modem avec tous les paramètres par défaut (réglages usine). Cette action sera confirmée par 3 clignotements du voyant rouge.

1.9. Installation mécanique - Optimisation des performances

1.9.1 Encombrement

1.9.2 Positionnement des modems

- Installer le modem à une hauteur minimale de 2m et non collé à la paroi, idéalement décalé de 20 cm (5 à 10 cm minimum).
- Le câble RS232 ne doit pas dépasser 15m de longueur et doit être blindé.

1.9.3 Positionnement de l'antenne

- En cas d'utilisation d'un modem équipé d'une embase TNC pour antenne déportée, nous vous recommandons d'utiliser notre gamme d'antennes (Cf catalogue Stand-alone products disponible sur notre site web,).
- L'antenne doit être installée en champ libre, distante de toute matière conductrice de plus de 10 cm. Aucun obstacle métallique ne doit se trouver dans un rayon de moins d'un mètre.
- Installer les 2 antennes à vue.
- Si le modem est intégré dans une armoire électrique, l'antenne doit être installée en extérieur. Il en est de même si le modem est placé à l'intérieur d'un bâtiment et qu'il doit communiquer avec un modem positionné en extérieur.
- Le câble coaxial doit être le plus court possible (pour information : câble de 25m => 6db d'atténuation => portée divisée par 2).

1.9.4 Positionnement des câbles alimentation et série

Pour assurer un fonctionnement optimal des modems ARF868, il est essentiel de s'assurer que les câbles d'alimentation et de liaison série sont correctement connectés et positionnés.

Un mauvais positionnement des câbles peut réduire de façon significative les performances des modems.

- Les câbles doivent être correctement fixés au modem
- Les câbles doivent être éloignés de l'antenne
- Les câbles ne doivent pas être enroulés ou emmêlés
- Les câbles doivent être positionnés verticalement sous le modem
- Les câbles ne doivent pas avoir une longueur excessive

1.10. Protection des modems à antenne déportée contre les surcharges

Il est parfois nécessaire de protéger le produit contre la foudre. Lorsque le produit est positionné en hauteur il peut être potentiellement touché par la foudre ce qui a pour conséquence d'endommager de façon irreversible le produit. Tous les systèmes de parafoudre peuvent être installés entre l'antenne et le modem ARF868 (produits avec antenne déportée). Il est important de bien suivre les recommandations du fabriquant. Le schéma ci-après montre un exemple d'installation de parafoudre.

N°	Désignation	Référence
1	Connecteur TNC du modem ARF868	
2	Ecrou de Montage	Fourni avec le parafoudre
3	Rondelle Eventail	Fourni avec le parafoudre
4	Fil 12-10 AWG (Doit être connecté à la terre)	
5	Cosse Ronde	RS: 613-9429
6	Joint torique	Fourni avec le parafoudre
7	Parafoudre	RS: 111-658
8	Adaptateur TNC Male-Male	RS: 193-7953
9	Antenne	

2. Caractéristiques électriques et radio

2.1. Valeurs maximales

Paramètres	Min	Тур	Max	Unité	Conditions
Alimentation	4.5	12	36	V	
Temperatures de stockage	-40	20	+85	°C	

2.2. Spécification générales

Parameter	Min			Max
Power supply	4.5V	12V	24V	36V
TX @27dbm	600mA	240mA	145mA	95mA
TX @20dBm	290mA	153mA	86mA	63mA
TX @14dBm	170mA	98mA	53mA	36mA
TX @10dBm	130mA	75mA	40mA	27mA
RX	65mA	26mA	15mA	7mA
Operating temperature	-30°C			+70°C

2.3. Caractéristiques radio

2.3.1 Introduction aux exigences radio

Les modems exploitent la bande de fréquence européenne 863-870MHz. Cette bande de fréquence est segmentée en différentes sous-bandes ayant chacune leurs propres exigences réglementaires tant en terme de puissance, de largeur spectrale, d'utilisation du spectre. Les Modems ARF868 prennent en compte ces exigences réglementaires.

2.3.1.1 Sous-bandes

Chaque sous-bande est définie par une valeur de minimale et maximale de fréquence. En outre, le niveau de puissance maximum autorisé et le rapport cyclique maximal (Duty Cycle) sont définis séparément pour chaque sous-bande.

2.3.1.2 Duty Cycle

Le but de la limite de rapport cyclique (Duty Cycle) est de veiller à ce qu'aucune application ne puisse occuper une bande de fréquence pendant plus d'un certain pourcentage de temps. Le cycle de travail définit un pourcentage de temps maximum (exprimé en pourcentage sur n'importe quelle période d'heure pendant lequel un modem est autorisé à transmettre). La limitation de rapport cyclique doit être contrôlée par l'équipement terminal relié au modem. N'hésitez pas à contacter Adeunis RF pour vos calcul de temps d'occupation «air».

2.3.1.3 Schématisation des exigences de la bande de fréquence 863-870MHz

Le tableau ci-dessous schématise l'utilisation de la bande de fréquence 863-870MHz telle que l'utilise le modem ARF868 d'Adeunis RF.

SRD : Short Range Devices

Attention, ce tableau est non contractuel et est sujet à modifications réglementaires.

2.3.2 Modes de fonctionnement des modems ARF868

Les modems ARF868 proposent 2 modes de fonctionnement :

- 1 mode standard dédié aux très longues portées et pour lequel l'immunité aux brouilleurs est optimale.
- 1 mode ARFx3Pro qui assure une compatibilité « Air » avec toute la gamme de MODEM ARFx3Pro d'Adeunis RF.

Le mode de communication par défaut est le mode standard. Dès sa mise sous tension, le modem est capable d'envoyer et de recevoir des données avec ses paramètres en mémoire (*).

Par défaut, le modem est en écoute permanente de l'interface RF et du port UART

- Dès qu'une trame est démodulée en provenance de la liaison RF, son contenu est transmis sur le port UART
- Dès qu'une chaîne de caractères est détectée sur le port UART, elle est transmise sur la liaison RF.

(*): A la 1ère mise sous tension, les paramètres sont les paramètres par défaut (ou réglages usine). Lors des mises sous tensions suivantes, les paramètres utilisés seront ceux qui ont été mémorisés en dernier lieu avec la commande AT&W (voir § 5.2 Commandes AT).

2.3.3 Mode standard

Le tableau ci-dessous présente les caractéristiques RF principales des modems ARF868 . On pourra distinguer 2 cas d'emploi :

- Les puissances élevées jusqu'à 500mW
- Les puissances < ou égales à 25mW.

2.3.3.1 Usage à 500mW : portée maximale

Le tableau ci-dessous permet aux utilisateurs de configurer leur modem ARF868 de sorte à obtenir les plus longues portées possibles à 500mW dans la bande 869.4 à 869.6MHz.

Paramètres					Conditions
Débits	2.4kbps	9.6kbps	38.4kbps	57.6kbps	En gras , le débit par défaut. Modification par AT COMMAND ATS254 (voir chapitre § 5.3)
Canaux disponibles	Jusqu'à 19: 869,4125 MHz 869,425 MHz 869,4375 MHz 869,450 MHz 869,475 MHz 869,475 MHz 869,475 MHz 869,500 MHz 869,5125 MHz 869,525 MHz 869,5375 MHz 869,550 MHz 869,550 MHz 869,550 MHz 869,5625 MHz 869,575 MHz 869,5875 MHz 869,6875 MHz	Jusqu'à 9 : 869,425 MHz 869,450 MHz 869,475 MHz 869,500 MHz 869,525 MHz 869,575 MHz 869,600 MHz 869,625 MHz	Jusqu'à 7: 869,450 MHz 869,475 MHz 869,500 MHz 869,525 MHz 869,550 MHz 869,575 MHz 869,600 MHz	Jusqu'à 3 : 869,475 MHz 869,525 MHz 869,575 MHz	En gras , le canal par défaut. Modification par AT COMMAND ATS200 (voir chapitre § 5.3) Puissance jusqu'à 27dBm (500mW) Autres fréquences disponibles dans la bande 863-870MHz (voir paragraphe suivant)
Puissances disponibles	7 niveaux disponibles +27 dBm +25 dBm +23 dBm +20 dBm +117 dBm +14 dBm +10 dBm			En gras , la puissance par défaut. Modification par AT COMMAND ATS231 (voir chapitre §5.3)	
Modulation	2 GFSK		4 GFSK		
Sensibilité en réception ARF868 ULR	-122dBm	-115dBm	-106dBm	-106dBm	@BER 10e-3
Portées ARF868 ULR (version antenne TNC)	Jusqu'à 20km	Jusqu'à 14km	Jusqu'à 10km	Jusqu'à 10km	en champ libre
Sensibilité en réception ARF868 LR	-109dBm	-106dBm	-100dBm	-100dBm	@BER 10 ⁻³
Portées ARF868 LR (version antenne TNC)	Jusqu'à 10km	Jusqu'à 7km	Jusqu'à 5km	Jusqu'à 5km	en champ libre
Duty cycle		10	%		Dépendant de l'utilisation
Espacement	12.5kHz*	25kHz	50kHz	75kHz	* l'occupation spectrale à 2.4kbps étant légèrement supérieure à 12.5KHz, Adeunis RF préconise une utilisation à N-2/N+2

Réjection sur canal adjacent (N-1/N+1)	46dBc	50dBc	39dBc	39dBc	
Alternate channel rejection (N-2/N+2)	46dBc	50dBc	39dBc	39dBc	
Blocking		>75dB			@ +/-1 MHZ, +/-2 MHz, +/- 10 MHz Conducted measurement

2.3.3.2 Usage jusqu'à 25mW : nombre de canaux maximal

Le reste de la bande 863-870MHz est segmentée en sous-bandes de 25mW ayant chacune leurs exigences réglementaires. Le modem ARF868 exploite au maximum les possibilités de cette bande pour permettre un maximum d'applications. Les caractéristiques sont détaillées dans le tableau ci-dessous :

Paramètres					Conditions
Débits	2.4kbps	9.6kbps	38.4kbps	57.6kbps	En gras , le débit par défaut. Modification par COMMAND ATS254 (voir chapitre § 5.3)
Canaux disponibles	Jusqu'à 506	Jusqu'à 249	Jusqu'à 80	Jusqu'à 60	Modification par COMMAND ATS200 (voir chapitre §5.3)
					Puissance jusqu'à 14dBm (500mW)
					Pour chaque fréquence est attribuée un N° de canal C selon la formule suivante : Fréquence = 863.0125 + ((C-13)*0.0125) avec C= 13 à 571.
					Les valeurs de C disponibles dépendent du débit. Cf annexe 1 en fin de document pour la liste exhaustive des canaux et des fréquences
	2	niveaux disponible	2S		En gras , la puissance par défaut.
Puissances disponibles	+14 dBm +10 dBm				Modification par AT COMMAND ATS231 (voir chapitre §5.3)
Modulation	2 GFSK		4 GFSK	1	
Sensibilité en réception ARF868 MR	-122dBm	-115dBm	-106dBm	-106dBm	@BER 10 ⁻³
Portées ARF868 MR (version antenne TNC)	Jusqu'à 4km	Jusqu'à 2.5km	Jusqu'à 1km	Jusqu'à 1km	en champ libre
Sensibilité en réception ARF868 LP	-109dBm	-106dBm	-100dBm	-100dBm	@BER 10 ⁻³
Portées ARF868 LP (version antenne TNC)	Jusqu'à 1km	Jusqu'à 500m	Jusqu'à 500m	Jusqu'à 500m	en champ libre
Duty cycle	Déper	Jusqu' ndant de la fréque		canal	Cf recommandation CEPT 70-03 pour l'information relative
Espacement	12.5kHz*	25kHz	50kHz	75kHz	* l'occupation spectrale à 2.4kbps étant légèrement supérieure à 12.5KHz, Adeunis RF préconise une utilisation à N-2/N+2
Réjection sur canal adjacent (N-1/N+1)	46dBc	50dBc	39dBc	39dBc	
Alternate channel rejection (N-2/N+2)	46dBc	50dBc	39dBc	39dBc	
Blocking		>75dB			@ +/-1 MHZ, +/-2 MHz, +/- 10 MHz Conducted measurement

3. Echange de données - Mode de Communication

Principe:

Le mode de communication est le mode par défaut.

A sa mise sous tension, le modem est configuré en mode RS232, 9.6kbps (liaison série), 2.4kbps débit RF.

Par défaut, le modem est en écoute permanente de l'interface RF et du port UART

- Dès qu'une trame est démodulée en provenance de la liaison RF, son contenu est transmis sur le port UART
- Dès qu'une chaîne de caractères est détectée sur le port UART, elle est transmis sur la liaison RF.

La communication «air» s'effectue en fonction du choix de protocoles suivant :

- Asynchrone paquetisé (sécurisé ou non-sécurisé)
- Asynchrone continu (mode par défaut)
- Asynchrone continu «legacy X3Pro»

3.1. Protocole asynchrone paquetisé

3.1.1 Description du protocole

Le modem ARF868 offre un protocole paquetisé. Les données provenant de l'interface UART sont accumulées dans une mémoire interne, puis encapsulées dans une trame RF. La quantité maximale de données qui peuvent être transférées dans un paquet radio unique peut atteindre 1024 octets.

La taille maximale d'un paquet peut être configurée via le registre S218, de 1 à 1024 octets . Chaque nouveau paquet introduit un certain

temps de latence dans le retard de transmission causé par le surdébit de protocole de RF. Les protocoles RF encapsulent la charge utile de données comprenant les éléments suivants :

- Un préambule nécessaire pour le temps de démarrage du récepteur
- Un motif de synchronisation afin de synchroniser le récepteur sur la trame RF
- D'autre champs tels que l'adresse source et l'adresse de destination, la longueur de la data utile, le CRC et le champ type de paquet

Le FIFO entrant peut accumuler jusqu'à 1024 octet de données. Aucune autre donnée ne doit être transmise dans le FIFO tant qu'un bloc de données de 1024 octets n'a pas été libéré par le radio . Pour empêcher le dépassement de la FIFO, le contrôle de flux du matériel peut être activé . Dans ce cas , le signal RTS sera réglé lorsque le FIFO d'entrée est presque plein pour empêcher le contrôleur hôte d'envoyer de nouvelles données .

3.1.2 Mode paquet non sécurisé

En mode non-sécurisé, chaque paquet est transmis sans accusé de réception. L'émetteur ne sait pas si le paquet a été reçu.

3.1.3 Mode paquet sécurisé

En mode sécurisé, chaque paquet transmis et accusé par le récepteur. Si un paquet n'est pas accusé, le module procède à deux autres tentatives. Après cette séquence, l'émetteur renvoie '>' si le paquet a été reçu, ou «#» si aucun accusé de réception n'a été reçu après les trois tentatives. **Note importante**: le mode adressé doit être activé pour utiliser le mode sécurisé.

3.1.4 Contrôle de l'intégrité de la transmission

Le protocole RF comprend un CRC de 16 bits. Chaque données extraites d'un paquet RF avec un CRC incorrect est jetés par la machine d'état du modem. Le CRC assure que toutes les données reçues sont valides. Il peut être désactivé pour l'utilisateur dont les protocoles utilisent déjà un mécanisme de contrôle de l'intégrité ou quand des corrections d'erreur sont mis en oeuvre par les protocoles de l'utilisateur.

3.1.5 Mise en oeuvre

Le mode paquet peut être sélectionné via le registre S222.

Protocole non sécurisé : S222=0
 Protocole sécurisé : S222=2

3.1.6 Transmission «data path»

En mode paquetisé, la taille des paquets est défini par l'intermédiaire du registre S218. Le modem commence la transmission d'un paquet complet lorsque le nombre de données spécifiées en S218 a été reçu. Si le nombre de données est inférieur, un paquet incomplet sera constituée lorsque le temps (spécifié dans le registre S217) sera atteint.

3.2. Protocole asynchrone continu

3.2.1 Description du protocole

Le protocole asynchrone continu permet le transfert de données depuis l'interface UART vers la liaison radio avec une latence la plus réduite possible. Il est associé à des modulations radio permettant de couvrir une gamme étendue de débits air et de portées. Il s'agit du mode qui vous permettra d'exploiter le modem ARF868 au maximum de ses capacités.

- En émission, les données entrantes sur l'UART sont immédiatement envoyées dans les airs.
- En réception, les données issues des trames RF sont transmises au fur et à mesure sur l'interface UART.

Il n'y a pas de bufferisation des trames radio complètes avant ou après transmission sur la liaison série. En revanche, le produit dispose de bufferisation permettant de réaliser un tampon lorsque les débits radio et UART sont différents.

L'interface UART ne requiert pas de protocole spécifique. Chaque octet transmis est transféré dans les airs et vice versa.

Grâce à sa latence réduite et à l'abscence de protocole sur le port UART, le modem ARF868 utilisé avec le protocole asynchrone continu est entierement transparent dans le cadre d'un remplacement de liaison filaire.

3.2.2 Mise en oeuvre

Le protocole asynchrone continu est sélectionné par le registre S222 (cf §5.3).

Il peut utiliser les débits radio 2.4kbps, 9.6kbps, 38.4kbps et 57.6kbps. Le réglage du débit radio s'effectue à travers le registre S254 (cf § 5.3).

Les notions d'adressage (communication en broadcast, communication dans un groupe et communication adressée entre produits) sont disponibles et décrites ci-dessous.

3.2.3 Adressage

Le produit dispose de différents modes d'adressage configurables à travers les registres produits. Les modes suivants sont disponibles :

- Mode transparent sans sous réseau
- Mode transparent avec sous réseau
- Mode adressé sans sous réseau
- Mode adressé avec sous réseau

Les modes transparent sont destinés à une communication inter-produits : tous les produits sont destinataires des trames émises. Les modes adressés permettent une communication vers un ou plusieurs produits (création de sous groupes).

Mode transparent sans sous réseau

En mode transparent sans sous réseau, tous les produits à portée reçoivent les trames des produits émetteurs. La configuration requise pour ce mode de communication est la suivante :

- S220=0 (mode transparent)
- S253=0 (pas de groupe)

Mode transparent avec sous réseau :

Les sous réseaux permettent la création de groupes de produits qui communiquent entre eux au sein d'un même sous réseau. Les produits du sous réseau 1 ne voient pas ceux du sous réseau 2 et vice versa. En revanche tous les produits sont visibles entre eux au sein d'un même sous réseau.

- S220=0 (mode transparent)
- S253=N° de sous réseau variant de 1 à 255

Lorsque le registre S253 est réglé à 255, la trame est broadcastée à tous les sous réseau.

Mode adressé sans sous réseau :

En mode adressé sans sous réseau, un produit communique avec le destinataire spécifié. Seul le destinataire recevra les trames du produits émetteur. La configuration requise pour ce mode de communication est la suivante :

- S220=1 (mode adressé)
- S253=0 (pas de sous réseau)
- S252=adresse locale (adresse 16 bits)
- S256=adresse du destinataire (adresse 16 bits)

Lorsque le registre S256 est réglé à 65535, la trame est broadcastée et visible par tous les équipements à portée.

Mode adressé avec sous réseau

Les produits communiquent toujours au sein du même sous réseau. Cela signifie que 2 produits avec des adresses identiques et des numéros de sous réseau différents ne communiquent pas entre eux. Le seul cas de communication inter-réseau est lorsque \$256=255 et \$253=255.

- S220=1 (mode adressé)
- \$253=N° de sous réseau variant de 1 à 255 (255 est utilisé pour le brodcast entre sous réseau)
- S252=adresse locale (adresse sur 8 bits)
- \$256=adresse du destinataire (adresse sur 8 bits, 255 est l'adresse de brodcast au sein du sous réseau)

3.3. Protocole Legacy X3-PRO

Le protocole «legacy X3-PRO» offre au modem ARF868 une compatibilité «air» totale avec les modems Adeunis-RF de génération précédente type X3-PRO.

La compatibilité est assurée pour les modes Narrow Band et Wide Band, ainsi que pour les modes Adressé et Transparent.

Merci de vous référer à la note d'application dédiée : ARF868 Radio Modems : mode «Legacy X3-PRO», disponible sur notre site web.

4. Fonctions avancées du produit

4.1. Auto-détection d'interface UART

Le modem ARF868 dispose d'une détection d'interface automatique à la mise sous tension permettant la sélection du mode RS232 ou RS485.

La détection automatique est activée lorsque le registre de sélection d'interface S215 est positionné à la valeur 4.

Pour la détection en mode RS485, il est impératif d'avoir la masse connectée au produit. Sinon le motif de détection « U » ne peut pas être pris en compte.

4.2. Autobaud : Auto-détection du débit de la liaison série.

A la mise sous tension, cable SubD9 branché, le modem va détecter le débit de la liaison série de l'équipement de contrôle afin de se synchroniser sur ses paramètres.

Pour assurer cette détection, l'équipement doit envoyer avant tout autre commande ou chaîne de caractères, l'ordre de synchronisation : « U »

Après réponse positive du modem, celui-ci est alors opérationnel et bascule en mode de communication. Il sera capable de transférer les caractères vus sur sa liaison série sur la liaison air ou d'entrer en mode commande (voir § 5.2 Entrée/sortie du mode commande).

escription	Réponse
	Retourne les paramètres de la liaison série : RS232 ou RS485 et débit.
t	prise la détection automatique du débit

Note:

A cette sollicitation, le modem répondra par la configuration qu'il a détecté : Type de Liaison, Débit UART. Exemple : RS232, 9600 . Si le modem ne répond pas ou répond par une autre chaîne de caractères à la demande de synchronisation U, un nouvel essai peut être tenté, après avoir débranché et rebranché l'alimentation de l'appareil. Si les tentatives restent infructueuses, on vérifiera que la liaison série de l'équipement de contrôle est bien réglée sur : 8bits, 1 bit de stop, pas de parité et que le débit UART proposé correspond à l'un des débits disponibles au registre S210.

L'envoi du caractère de synchronisation «U» n'est utile qu'à la première mise sous tension ou tant qu'une configuration UART n'a pas été mémorisée sur les registres S210 par la commande AT&W.

Sur un équipement déjà synchronisé, elle ne sera pas interprétée comme une demande de synchronisation et sera transférée sur la liaison air, comme toute autre chaine de caractère.

Le mode auto-détection (type & débit) sera conservé pour la prochaine mise sous tension dans le trois cas suivants :

- Pas de mémorisation du registre S210 par la commande AT&W avant coupure de l'alimentation.
- Appui court sur BP1 avant coupure de l'alimentation
- Remise à la valeur 0 du registre S210 par commande ATR et AT&W avant coupure de l'alimentation.

4.3. **RSSI**

Le Received Signal Strength Indication ou RSSI fournit une indication de niveau RF dans le canal radio sélectionné. Selon la valeur observée, il permet d'indiquer la disponibilité du canal et le niveau de bruit de l'environnement du produit, ou la qualité de réception des trames d'un produit distant. Les bornes sont -127dBm pour la limite basse et -20dBm pour la limite haute.

La fonction RSSI est désactivée (par défaut) en positionant le registre S230 à : 0

4.3.1 RSSI continu

Le RSSI est codé sur un octet en valeur absolue de la valeur du niveau du canal en dBm et transmis sur l'UART. Le RSSI est rafraichi en permanence toutes les 10 ms. Il n'y a pas de démodulation de trame dans ce mode.

Réglages et valeurs de registre

La sélection du mode RSSI continu s'effectue par le registre S230, en positionnant la valeur à : 4

4.3.2 RSSI trame

Le RSSI trame est codé sur un octet en début de chaque trame transmise sur l'UART. Le codage est identique au RSSI continu

Réglages et valeurs de registre

La sélection du mode RSSI trame s'effectue par le registre S230, en positionnant la valeur à : 1

4.4. Fonction Scan Free

La fonction Scan Free est une fonction unique aux modems ARF868.

Cette fonction permet de balayer l'ensemble des canaux disponibles sur le produit en quelques secondes. Elle est activable par la commande ATT02.

Le modem ARF868 scanne l'ensemble des canaux disponibles et retourne les niveaux de RSSI de chacun des canaux sur la liaison UART, sous la forme suivante :

 $\begin{array}{ll} \text{Cxxx=-090dBm} < \text{cr} > < \text{lf} > & \text{;Avec xxx} = \text{N}^{\circ} \text{ du canal} \\ \text{Cyyy=-101dBm} < \text{cr} > < \text{lf} > & \text{;Avec yyy} = \text{N}^{\circ} \text{ du canal suivant} \\ \end{array}$

• • • • • •

Le temps de scrutation d'un canal est défini à 25ms. Le résultat de cette scrutation pourra montrer que certains canaux sont plus exploitables que d'autres dans un environnement donné.

Dans un second temps et pour une évaluation plus fiable, on pourra utiliser la commande ATTO3 qui permet d'écouter le canal visé sur une durée plus longue :

ATT03<c (canal)><t (temps de scrutation)>

Avec : $\langle c \rangle = N^{\circ}$ du canal

Avec : $\langle t \rangle$ = Temps de scrutation en secondes

Exemple: ATT03 529 60 -> Scan du canal 529 pendant 1 minute. Le résultat retourné prendre la forme : C529=-087/-096/-101dBm<cr><lf>; Soit dans l'ordre : RSSI mini/RSSI moyen/RSSI maxi mesurés sur cette période.

4.5. Test d'émission/réception

Cette fonction permet la mise en œuvre rapide d'une communication sur le terrain pour vérifier la limite de portée entre les deux modems avec les choix définitifs de fréquence, débit, puissance,

Les commandes ATT00 et ATT01 permettent d'établir une communication entre deux modems avec un minimum de contrainte matériel.

L'envoi de ATT01 sur le modem récepteur activera la réception et le contrôle de la trame émise de manière continue (*). Le voyant LED de la face du modem avant signalera la réception par un clignotement court à chaque trame reçue (toutes les secondes) :

- De couleur verte si la trame est intègre
- De couleur rouge si la trame est corrompue

L'envoi de ATT00 sur le modem émetteur activera l'envoi d'une trame prédéfinie de taille 64 Octets toutes les secondes, de manière continue(*).

(*): Attention, dans ces modes, le modem n'est plus capable d'interpréter des commandes AT. Il faut pour cela sortir des modes de test ATT00 ou ATT01 par l'envoi du caractère ESC (valeur 0x1B). Le modem retourne alors : « O » <cr><lf> si la demande est correctement interprétée et se repositionne à l'écoute d'une commande AT.

4.6. Mode répéteur

Le mode répéteur permet d'étendre la couverture de modems ARF868 & ARF169 afin de permettre des installations sur des distances longues ou l'emploi sur des distances plus réduites sur des terrains présentant un ou plusieurs obstacles naturels (présence de colline par exemple).

Pour la mise en ouvre du mode répéteur, merci de vous référer à la note d'application du mode répéteur disponible sur notre site internet : http://www.adeunis-rf.com/fr/produits/modems-radio/arf868-ulr-500mw

5. Configuration du produit - Mode commande

Le mode commande est un outil embarqué, accessible par la liaison série via un terminal(*), permettant la programmation des paramètres du modem en utilisant un jeu d'instructions dit : « Jeu de commandes AT ». Les commandes AT sont utilisées pour lire et écrire les registres de configuration du modem (voir § 5.3 Description des registres)

En mode commande, la radio est désactivée (en réception et en émission), excepté pour les commandes de test Radio (commandes ATT00 & ATT01).

(*): type Hercules,

5.1. Entrée/Sortie du mode Commande

L'entrée en mode commande se fait par l'émission sur la liaison série d'une séquence de trois caractères ASCII.

Par défaut, la séquence est : « +++ » , toutefois l'utilisateur pourra choisir son propre caractère ASCII par reprogrammation du registre S214 (voir § 5.3 Description des registres).

Une autre possibilité d'entrée en mode commande est d'activer la séquence BP1/BP2 sur l'arrière du modem et telle que décrite au §1.8 Interface SAV. Cette procédure pourra être utilisée si le code d'entrée en mode commande a été changé et a été perdu.

La commande ATO permet de quitter le mode commande et de retourner au mode de communication.

A noter que la sortie du mode commande est également possible de manière automatique (timeout) par programmation du registre S202 (voir § 5.3 Description des registres).

Commande	Description	Réponse
+++	Autorise l'entrée en mode commande	« CM » pour confirmer l'entrée dans le mode commande.
ATO	Sortie du mode commande	« O » si l'opération est acceptée. « E » si l'opération est refusée.

5.2. Commandes AT

Une commande débute avec les 2 caractères ASCII : « AT », suivis d'un ou plusieurs caractères et données (voir ci-après la syntaxe des commandes AT disponibles sur le modem).

Chaque commande doit se terminer par un « CR » ou « CR » «LF », les deux possibilités sont acceptées. (CR signifie: Carriage Return, LF signifie: Line Feed)

A la réception d'une commande, le modem retourne :

- « Les données » < cr> < lf>, pour une commande de lecture type ATS < n> ? , AT/S ou AT/V.
- « O » <cr><lf>, pour toutes les autres commandes lorsque celle-ci est acceptée.
- « E » <cr><lf>, s'il refuse la commande car erreur de syntaxe, commande inconnue, registre inconnu, paramètre invalide,
- « W »<cr><lf>, s'il refuse la commande car la configuration demandée est non autorisée.
- « CM » <cr><lf>, s'il accepte l'entrée en mode commande

Tableau des commandes AT :

Commande	Description	Réponse
ATS <n> ?</n>	Retourne le contenu du registre n	Sn=y avec y représentant le contenu du registre n
ATS <n>=<m></m></n>	Transfert la valeur m au registre n	« O » si l'opération est acceptée. « E » si l'opération est refusée. « W» si l'opération présente un problème de configuration.
AT/S	Edite sous forme de liste, le contenu des tous les registres utilisateur.	Sxxx=y pour chaque registre
AT/V	Retourne la version du software	Exemple : TW_AB_2.3.00_AA_B_1.2.0
ATR	Restore en mémoire volatile la valeur de tous les registres de la mémoire non volatile.	« O » si l'opération est acceptée. « E » si l'opération est refusée.
ATT00	Active le mode de test : Envoie d'une trame prédéfinie (voir note1). Sortie du mode de test ATT00 : ESC (0x1B)	« O » si l'opération est acceptée. « E » si l'opération est refusée.
ATT01	Active le mode de test : Réception et contrôle des trames reçues en vis-à-vis de ATT00 (voir note1). Sortie du mode de test ATT01: ESC (0x1B)	« O » si l'opération est acceptée. « E » si l'opération est refusée.
ATT02	Démarre le mode scan free	«Retourne pour chaque canal, son numéro et sa valeur de RSSI associée : Cxxx=-090dBm < <i>cr></i> < <i>lf></i> >
ATT03 <c> <t></t></c>	Scan du canal c, pendant un temps t , avec : - Valeur <c> sur trois digits. - valeur de <t> de 1 à 999, par pas de 1s</t></c>	La commande retourne trois valeurs de RSSI : mini, moyen et maxi.

ATX3	Programmation automatique des registres pour compatibilité X3Pro : - S210 = 3 -> 9600 bauds - S215 = 1 -> RS232 - S220 = 1 -> Adressé - S252 = 0 -> Adresse source = 0 Autres registres aux valeurs par défaut.	« O » si l'opération est acceptée. « E » si l'opération est refusée.
AT&W	Sauvegarde de la configuration actuelle en mémoire non volatile.	« O » si l'opération est acceptée. « E » si l'opération est refusée.
AT&RST	Redémarre le modem	« O » si l'opération est acceptée. « E » si l'opération est refusée.
AT0	Sortie du mode commande	« O » si l'opération est acceptée. « E » si l'opération est refusée.

Exemple d'une suite de commande et des réponses correspondantes telles qu'on pourrait les voir sur un terminal :

Syntaxe de la Commande	Description	Syntaxe de la réponse à la ligne suivante
+++	Demande d'entrée en mode commande	СМ
ATS254=3	Demande de sélection du débit RF 9.6kbps	0
ATS200=9	Demande de sélection du canal 9	E -> Ce canal n'est pas valide!
ATS200=527	Demande de sélection du canal 527	0
ATS231=0	Demande de sélection de la puissance RF à 27dBm	0
ATS200 ?	Retourne la valeur du registre S200	S200=527
ATS231 ?	Retourne la valeur du registre S231	S231=0
AT&W	Demande de mémorisation de l'état des registres	W (le canal choisi n'est pas disponible au débit RF 9.6kbps) La sauvegarde ne sera pas effectuée.
ATO	Demande de sortie du mode commande	W (le canal choisi n'est pas disponible au débit RF 9.6kbps) La sortie ne sera pas effectuée.

Interprétation de l'exemple ci-avant : L'utilisateur a voulu mémoriser une nouvelle configuration radio (canal 527, puissance 27dBm) après avoir fait une erreur de paramètre (réponse **E**) et une demande de configuration non autorisée (réponse **W**). Le modem ne permet ni la sauvegarde de cette configuration invalide, ni l'utilisation du produit en mode communication.

5.3. Description des registres

A la mise sous tension le modem ARF868 fonctionne selon la dernière configuration sauvegardée (configuration usine si c'est la première mise sous tension, ou si cette configuration n'a pas été changée).

Les commandes de modification type **ATS**<**n**>=<**m**> ou **ATR** permettent de modifier le contenu des registres. Le produit est utilisable avec sa nouvelle configuration tant qu'il n'est pas débranché.

En revanche les valeurs modifiées seront appliquées à la prochaine mise sous tension uniquement si elles ont été sauvegardées par la commande **AT&W**

Liste des registres accessible sur le modem ARF868 :

Registre	Contenu	Valeur par défaut	Commentaires
\$200	N° de Canal 11 et de 13 à 571	11	Certains canaux ne seront pas disponibles fonction du débit et de la puissance choisis. Le modem retournera un message d'erreur en cas de choix interdit. Charge à l'utilisateur de configurer le modem selon les possibilités décrites à l'annexe 1.
S202	Timeout de sortie du mode commande : 0 : Pas de timeout, sortie par ATO ou AT&RST 1 : Sortie automatique programmable de 1 à 65565 sec.	0	Voir note 4

Registre	Contenu	Valeur par défaut	Commentaires
\$204	Durée du préambule : 0 : Réglage nominal X : Autres réglages possibles pour le mode legacy X3-PRO	0	Le choix 0 correspond au réglage optimum. Pour d'autres réglages, consulter Adeunis RF cf document : note d'application ARF868 mode Legacy X3-PRO
S210	Débit UART : 0 : Autobaud 1 : 2.4 kbps 2 : 4.8 kbps 3 : 9.6 kbps 4 : 19.2 kbps 5 : 38.4 kbps 6 : 57.6 kbps 7 : 115.2kbps 8 : 1.2kbps	3	Voir note 1 & note 3 Les autres paramètres d'interface série sont : 1 stop bit -> fixe Parité -> Voir S212 Longueur donnée -> Voir S211
S211	Longueur donnée UART : 0 : 7 Bits 1 : 8 Bits	1	
S212	Parité UART : 0 : Pas de parité 1 : Parité paire 2 : Parité impaire	0	
S214	Caractère d'entrée en mode commande : Code ASCII (sauf 0) 0 : Désactivation de l'entrée en mode commande par l'UART.	43	Le code d'entrée est 3 fois le caractère : Exemple : +++ si le caractère programmé en S214 est le code ASCII de «+» soit 43 La valeur peut être comprise entre 1 et 255
\$215	Interface UART : 0: Position des switch internes 1: RS232 2: RS485, mode no Term 3: RS485, mode Term 4: Auto	1	Sauf demande particulière, la position des switch internes sur modem ARF868 est: mode Auto (idem S215 = 4). Voir note 2
S216	Contrôle de flux RTS/CTS UART : 0 : Inactif 1 : Actif	0	Voir note 3
S217	Timeout démarrage transmission : 0 : Pas de timeout 1 à 6000 : timeout par pas de 1 ms	3	Si # 0, la transmission démarre lorsque le timeout est écoulé, si le seuil du registre S218 n'est pas atteint. Voir note 5
S218	Seuil de démarrage transmission : De 1 à 1024 octets	30	La transmission démarre dès que le nombre d'octets en mémoire fifo à atteint ce seuil. Voir note 5
S220	Mode de communication : 0 : Transparent 1 : Adressé	0	
S222	Protocole Radio 0 : Asynchrone paquetisé non securisé 2: Asynchrone paquetisé securisé 3: Asynchrone continu 4: Asynchrone continu legacy X3Pro	3	
S230 	Mode RSSI : 0 : Pas de RSSI 1 : Sortie RSSI trame sur l'UART 4 : Sortie RSSI permanent sur l'UART	0	

Registre	Contenu	Valeur par défaut	Commentaires
S231	Puissance Radio:	0 : Sur versions ARF7940 et 7941 5 : Sur versions ARF7942 et ARF7943	
S241	Timeout d'entrée en mode commande à 9.6kbps au démarrage produit. 0 : Désactivé 1 : Activé	1	
S243	Re-emitting time out (when S222=2) Adjustable from 0 to 65535 by step of 1ms	0	
\$250	Mode répéteur 0: pas de répéteur 1 à 65535 : temps de garde par pas de 1 ms	0	
S252	Adresse source (ou local) De : 1 à 65535	Pré-initialisé en usine	Utilisé en mode adressé. Ce registre contient l'adresse du modem
\$253	Numéro de sous réseau Pas de sous réseau : 0 Adresse sous réseau: de 1 à 254 255=broadcast	0	
S254	Débit Radio valide uniquement avec mode asynchrone continu: 1: 2,4Kbps 3: 9,6Kbps 6: 38,4kbps 8: 57,6Kbps Débit Radio valide uniquement avec mode asynchrone continu Legacy X3-PRO 11: 10Kbps (Legacy X3-PRO) 12: 57.6Kbps	1	Sélections 11 et 12 : Pour compatibilité avec modems X3Pro.
S256	Adresse destination : De 0 à 65534 Fonction broadcast : 65535	0	En mode adressé, Ce registre doit être renseigné avec l'adresse du modem à atteindre.

Note1: Le mode Autobaud autorise le modem à se synchroniser automatiquement à la mise sous tension sur la vitesse de la liaison série de l'équipement hôte, pourvu gu'il soit configuré en 8bits, 1 bit de stop, pas de parité.

Pour déclencher cette procédure l'équipement de contrôle doit émettre sur la liaison série, le caractère : <U> (voir § 4.1 Commande d'auto-détection).

Après la bonne exécution de la commande d'auto-détection, une lecture du registre S210 (ATS210 ?) retournera, la valeur de débit UART identifiée dans la table (valeur 3 à 7). Elle sera mémorisée sur reconnaissance de la commande AT&W.

Note2: Sauf autre demande particulière, les switchs internes au modem (réglages usine) sont basculés sur le mode Auto (identique à la position S215 = 4).

Note3 : Le débit UART doit être choisit aussi proche que possible du débit Radio.

Ceci afin de limiter l'utilisation de la zone mémoire tampon et l'activation des signaux RTC/CTS de contrôle de flux UART.

Exemple1: Pour un débit radio de 57.6Kbps (S254=8), le choix du débit UART 57.6Kbps (S210=6) conviendra parfaitement.

Exemple2: Pour un débit UART de 9.6Kbps (S210=3), le débit radio 9.6Kbps(S254=3) est le meilleur choix possible.

Dans le cas où il n'est pas possible de rapprocher les débits UART et Radio, la mémoire tampon de taille 1024 octets compensera les différences de vitesse, dans la mesure où cet écart n'est pas significatif et/ou que la taille des données à transmettre est limitée.

Dans tous les autres cas, seule l'utilisation du contrôle de flux UART(S216=1) permettra de garantir l'intégrité des données transmises.

Note4 : Le choix par défaut de sortie manuelle du mode convient à un usage de développement, ou l'utilisateur doit pouvoir garder la maitrise de la sortie du mode commande.

La programmation d'un timeout est recommandé lors de l'usage en exploitation, pour permettre le retour automatique du modem en mode communication s'il s'avérait qu'une chaîne de caractères dans le flux de données soit involontairement assimilée à une demande d'entrée en mode commande.

Note5: Les registres S217 et S218 sont utilisés pour synchroniser le démarrage de transmission:

- Soit sur un timeout (S217)
- Soit sur un nombre de données en mémoire tampon (S218)

La première des deux limites atteinte, va déclencher le démarrage de la transmission.

Quand le nombre d'octets en mémoire tampon atteint le seuil du registre S218 avant le timeout du registre S217, c'est un déclenchement sur données.

Au contraire, quand le timeout du registre S217 arrive à échéance avant que les données en mémoire tampon aient atteint le seuil du registre S218, c'est un déclenchement au temps.

A noter que la programmation à 0 du registre S217 (pas de timeout) implique forcément que le seuil du registre S218 soit atteint pour démarrer la transmission.

Exemple:

5.4. Cohérence de la configuration

Le modem ARF868 intègre un contrôle de cohérence de la configuration et interdit la sauvegarde et le fonctionnement pour les paramètrages invalides.

Cohérence des paramètres radio

Les paramètres puissance radio, débit radio et fréquence doivent correspondre à des combinaisons valides présentées dans les tables ci-dessous (cf Annexes) et de façon plus détaillées dans le document «ARF868 Modem channels list» disponible sur le site web Adeunis RF.

Cohèrence des paramètres de protocole

Les paramètres suivants devront être réglés selon les combinaisons présentées dans la table ci-dessous :

Registre	Mode legacy X3-PRO	Protocole Asynchrone continu
S222	4	3
S254	11 ; 12	1;3;6;8
\$204	0 ou ajustable sur demande	0

Toutes autres combinaisons de ces registres en dehors de celles décrites dans le tableau ci-dessus sont invalides.

Les combinaisons invalides entrainent le retour d'un «W» sur les commandes AT&W et ATO qui ne sont pas éxécutées dans ce cas.

6. Annexes

6.1. Liste des canaux disponibles

Une liste complète de canaux utilisables est disponible sur notre site web. Document : «ARF868 & NB868 Channels list»

Puissance 500mW (27dBm) - 869.4 - 869.650MHz (puissances maximum autorisées indiquées en dBm dans le tableau ci-dessous)

Note: dans le cas d'utilisation de plusieurs produits proches les uns des autres et à débit RF 2.4kbps Adeunis RF suggère de n'utiliser que des canaux pairs (526, 528...) ou impairs (525, 527...)

Canal	Fréquence	2,4kbps	9,6kbps	38,4kbps	57,6kbps
525	869,4125	27			
526	869,425	27	20		
527	869,4375	27			
528	869,45	27	23	23	
529	869,4625	27			
530	869,475	27	23	23	23
531	869,4875	27			
532	869,5	27	25	25	
533	869,5125	27			
11 ou 534	869,525	27	27	27	27
535	869,5375	27			
536	869,55	27	25	25	
537	869,5625	27			
538	869,575	27	23	23	23
539	869,5875	27			
540	869,6	27	23	23	
541	869,6125	27			
542	869,625	27	20		
543	869,6375	27			

Puissance 25mW (14dBm) à 2.4kbps

Note: dans le cas d'utilisation de plusieurs produits proches les uns des autres et à débit RF 2.4kbps Adeunis RF suggère de n'utiliser que des canaux pairs (14, 16.....) ou impairs (13, 15...)

Sous bande	Canaux	Fréquence (en MHz)	Agilité en fréquence
863 - 868,600 MHz	13, 14, 15458,459	de 863,0125 à 868,5875	par pas de 12,5kHz
868.700-869.200MHz	469, 470, 506, 507	de 868,7125 à 869,1875	par pas de 12,5kHz
869.700-870MHz	549, 550 570, 571	de 869.7125 à 869,9875	par pas de 12,5kHz

Puissance 25mW (14dBm) à 9.6kbps

Sous bande	Canaux pairs uniquement	Fréquence (en MHz)	Agilité en fréquence
863 - 868,600 MHz	14, 16, 18456,458	de 863,025 à 868,575	par pas de 25kHz
868.700-869.200MHz	470, 472, 504, 506	de 868,725 à 869,175	par pas de 25kHz
869.700-870MHz	550, 552 568, 570	de 869.725 à 869,975	par pas de 25kHz

Puissance 25mW (14dBm) à 38.4kbps

Sous bande	Canaux (par multiple de 6)	Fréquence (en MHz)	Agilité en fréquence	
863 - 868,600 MHz	18, 24, 30, 450, 456	de 863,075 à 868,550	par pas de 75kHz	
868.700-869.200MHz	474, 480 498, 504	de 868,775 à 869,150	par pas de 75kHz	
869.700-870MHz	552, 558, 564	de 869.75 à 869,900	par pas de 75kHz	

Puissance 25mW (14dBm) à 57.6kbps

Sous bande	s bande Canaux (par multiple de 8) Fréquence (en MHz)		Agilité en fréquence
863 - 868,600 MHz	16, 24, 32, 448, 456	de 863,05 à 868,550	par pas de 100kHz
868.700-869.200MHz	472, 480 496, 504	de 868,750 à 869,150	par pas de 100kHz
869.700-870MHz	552, 560, 568	de 869.75 à 869,950	par pas de 100kHz

6.2. Temps de transmission RF et temps de retournement

ARF868 transmission duration from TX modem to RX modem - Continuous Mode

Mode	RF Data rate	Register S218 set-up	Frame size (in bytes)	Measurement conditions	Duration of RF transmission (t)	Note
	2,4kbps				95ms	The TX/RX turn-around time of the modem is
	9.6kbps		liate departure) N/A	From the stop bit of the first byte (TX side) to the start bit of the first byte (RX side)	42ms	included in the transmission time. The turn-around time is also masked by the
Continuous	3,0КБр3	S218=1 (immediate departure)			TEITIO	
	38,4kbps	oz ro r (mimodiato departare)			15ms	UART delay (depending of the serial data rate of the connected "customer product") and
	57,6kbps				10ms	processing time of the "customer product".

ARF868 transmission duration from TX modem to RX modem - Packetized Mode

Mode	RF Data rate	Register S218 set-up	Frame size (in bytes)	Measurement conditions	Duration of RF transmission (t)	Note
	2,4kbps		30		195ms	
	2,4600	S218 = same number of bytes	1024		3500ms	The TX/RX turn-around time of the modem is
	9,6kbps		30	From the last bit of the last	66ms	included in the transmission time.
Packetized	9,0000		1024	byte (TX side) to the first bit	904ms	The turn-around time is also masked by the
Facketizeu	38,4kbps		30	of the first byte (RX side)	19ms	UART delay (depending of the serial data rate of
	30,4KDPS		1024	of the first byte (NX side)	236ms	the connected "customer product") and
57,6kbps		30		14ms	processing time of the "customer product".	
	37,0KDPS		1024		163ms	

7. Historique de document

Version de mode d'emploi	Contenu
V2.1.1	Mise à jour déclaration de conformité
V2.1	Mise à jour déclaration de conformité
V2.0	Information importante sur alimentation Pin 6 SubD9 (cf chapitre «Racordement electrique»)
V1.9	Ajout schéma modes radio ¶ 3, annexe temps de transmission RF et de retournement et valeur S256
V1.8.1	Correction version soft affichée via AT/V

Information

Document information			
Title	ARF868 Radio Modems - User guide		
Subtitle	Version 2.1.1		
Type of document	Instructions		

This document applies to the following products:

Name	Reference	Firmware version
Modem Radio ARF868 ULR 500mW	ARF7940	TW_AB_V2.4.0_AA_B_1.3.0
Modem Radio ARF868 LR 500mW	ARF7941	TW_AB_V2.4.0_AA_B_1.3.0
Modem Radio ARF868 MR 25mW	ARF7942	TW_AB_V2.4.0_AA_B_1.3.0
Modem Radio ARF868 LP 25mW	ARF7943	TW_AB_V2.4.0_AA_B_1.3.0

Disclaimer

This document and the use of any information that it contains, is subject to acceptation of ADEUNIS RF terms and conditions. They can be downloaded from www.adeunis-rf.com.

ADEUNIS RF gives no guarantee as to the precision or exhaustiveness of the contents of this document and reserves the right to make modifications to the specifications and description of the product at any time without prior notice.

Adeunis RF reserves all rights of over this document and the information that it contains. Copying, use, or divulging of the contents to third parties without express authorisation is strictly forbidden. Copyright © 2012, ADEUNIS RF.

ADEUNIS RF is a registered trademark in the countries of the European Union and others.

Technical support

Website

Our website contains a lot of useful information: information on the modules and radio modems, operating guides, configuration software and technical documents that are accessible round-the-clock.

Email

If you have technical problems or if you cannot find the required information in the documents provided, contact our technical support team by e-mail. Use our dedicated e-mail address (arf@adeunis-rf.com) rather than a personal e-mail address. This will ensure that your question will be handled as quickly as possible.

Useful information when contacting our technical support team

When contacting the technical support department please have the following information available:

- Type of product (e.g. ARF868 radio modem LR)
- Firmware version
- A clear description of your question or your problem
- A brief description of the application
- Your complete contact details

EU Declaration of Conformity

WE

ADEUNIS RF 283 rue LOUIS NEEL 38920 Crolles, France 04.76.92.01.62 www.adeunis-rf.com

Declare that the DoC is issued under our sole responsibility and belongs to the following product:

Apparatus model/Product: Modem ARF868

Type: ARF7940AA, ARF7940BA, ARF7941AA, ARF7941BA,

ARF7942AA, ARF7942BA, ARF7943AA, ARF7943BA

Object of the declaration:

The object of the declaration described above is in conformity with the relevant Union harmonisation legislation:

Directive 2014/53/UE (RED) Directive 2011/65/UE (ROHS)

Erp 2009/125

The following harmonised standards and technical specifications have been applied:

Date of standard/specification Title: EN 300 220-2 V3.1.1 2017/02 EN 301 489-1 V2.1.1 2016/11 EN 301 489-3 V2.1.0 2016/09 2006 +A11:2009 +A1:2010 +A12:2011 +A2:2013 EN 60950-1 EN 62311 2008 EN50385 2002 EN50581

June, 12th, 2017 Monnet Emmanuel, Certification Manager

2012

Environmental recommendations

All unnecessary packing materials have been eliminated. We have made every possible effort to ensure that the packaging can easily be separated into three types of materials: cardboard (box), expandable polystyrene (buffer material) and polyethylene (bags and protective foam layer). Your appliance is composed of materials that can be recycled and reused if it is dismantled by a specialist company. Please respect local regulations concerning the method of disposal of old packaging materials, worn out batteries and your previous equipment.

Usage recommendations

Caution

- Avoid proximity of less than 3 m with an electronic appliance (PC, portable telephone, etc.) which could affect the high sensitivity of the modem and consequently reduce its effective range.
- Before using the system, check that the supply voltage specified in its user manual corresponds to your power source. If this is not the case consult your supplier.
- Place the appliance against a flat firm and stable surface.
- The appliance should be installed in a location that is sufficiently ventilated to eliminate any risk of internal overheating and should not be covered by objects such as newspapers, cloths, curtains, etc.
- The appliance's aerial should be in the open and at least 10 cm clear of any conducting material
- The appliance should never be exposed to sources of heat such as heating appliances.
- Do not place the appliance close to objects producing open flames such as candles, welding torches, etc.
- The appliance should not be exposed to aggressive chemical products or solvents that could affect the plastic materials or corrode metal components.
- Install your appliance close to its DC power source.
- Avoid using electrical extension leads and RS232 more than 3m long.
- When connecting the appliance to a PC (use of a USB-series gateway), there will be no automatic detection of the product. You should run a search for the available «port com».

1. Introduction

The ARF868 modem converts data from a serial link into a radio frame for transmission to similar equipment.

ARF868 radio modems are mainly dedicated to point to point and multipoint communications. They use the harmonised European 863-870MHz, band that is usable without a licence. Their excellent sensitivity coupled with power up to 500mW enable data transmissions up to 20km to be achieved.

The use of Narrow Band technology also makes it possible to provide numerous communication channels

- 19 channels @27dBm/2.4kbps
- +500 channels @14dBm/2.4kbps

The operating parameters of these modems (serial link, radio management, etc) can be updated by commands on the serial link. The use of the dedicated Adeunis software, "Adeunis RF - Stand Alone Configuration Manager", available from the www.adeunis-rf.com website enables you to commission your ARF868 modems very easily.

1.1. Modem versions

All products are available in built-in aerial or TNC base for remote aerial versions.

Reference	Description	Power / RF radiated power
ARF7940AA	ARF868 ULR - INT. ANTENNA	500mW / 27dBm
ARF7941AA	ARF868 LR - INT. ANTENNA	500mW / 27dBm
ARF7942AA	ARF868 MR - INT. ANTENNA	25mW / 14dBm
ARF7943AA	ARF868 LP - INT. ANTENNA	25mW / 14dBm
ARF7940BA	ARF868 ULR - TNC. ANTENNA	500mW/27dBm
ARF7941BA	ARF868 LR - TNC. ANTENNA	500mW/27dBm
ARF7942BA	ARF868 MR - TNC. ANTENNA	25mW / 14dBm
ARF7943BA	ARF868 LP - TNC. ANTENNA	25mW / 14dBm

Each of the products listed above is supplied in the "standard" version.

The standard version has a protective casing which can be removed to obtain access to the DIN-Rail attachment.

Standard version with protective casing

Standard version without protective casing

1.2. General description

1.3. Meaning of the LEDs

1.4. DIN Rail mounting system

Mounted as standard on all versions. It enables:

- The modem body to be locked on the DIN Rail profile section when the protective casing is removed from the modem.
- Mast or wall mounting accessories to be locked.

1.5. Accessories

ARF868 modems are supplied with various dedicated accessories enabling interior or exterior wall, post or mast mounting

Protection options are also available and can be fitted to ARF868 modems to enable them to be used in difficult environments:

- IP53 option with the addition of a protective casing for the electrical connections by a system of compensated foam.
- IP67 option with the addition of a protective cover for the electrical connections by a system of cable glands.

Mast/Post mounting

- A universal accessory enabling the modem to be mounted on any type of base :
 - Various diameters of mast/post (flexible fins)
 - Flat plane (wall, board, etc)
- The accessory should first be fixed to the intended base by means of screws or clips
- The modem can then be fixed to the accessory via the DIN-Rail lock.

In this position, the modem is at 90° in relation to the wall support; this enables the minimum distance between the aerial and metal bodies to be maintained.

90° wall mounting

- An accessory enabling the modem to be mounted on a flat base (wall, board, etc)
- The accessory should first be fixed to the base by means of 3 screws.
- The modem can then be fixed to the accessory via the DIN-Rail lock.
- In this position, the modem is parallel to the wall support. This type of mounting should not be used on a flat metal base.

IP53 casing

The IP53 casing system comes in 3 parts:

- The casing that fits under the bottom part to protect the connectors.
- The clip-on bottom cover that allows the cables to pass.
- The foam that fits between the cover and the bottom base of the casing and that, once it is compressed, provides efficient sealing.

Fitting to the modem is done in the following order:

- The electric cables fitted with their connectors are inserted into the casing through the bottom and connected to the female bases on the modem (see electrical connection part).
- The top part of the cover is then inserted onto the bottom plate of the modem holding the female connectors which has previously been fitted with an O ring seal.
- It is the U shaped modem shield that finally holds the IP53 casing once it is in place.
- It then only remains to close the IP53 casing onto the bottom by the following operations:
- The foam is positioned around the cables by means of the slots provided for the purpose; then move it to its final position on the bottom of the casing.
- Finally, clip the casing to compress the foam and eliminate the clearance around the wires of the
- **Internal dimensions**: Height 42mm / Width 63mm / Thickness 25.2mm
- External dimensions: Height 50mm / Width 67.5mm / Thickness 29.7mm

IP67 casing

- This casing is constructed according to the same principle as the IP53 casing but it is fitted with 2 cable glands on the cable outlets to provide sealing against water splashing.
- Its use is not compatible with cables already fitted with connectors as they cannot be inserted through the cable glands.
- Internal dimensions: Height 52.2mm / Width 63mm / Thickness 25.2mm
- **External dimensions**: Height 83.5mm / Width 67.5mm / Thickness 29.7mm

Supply jack locking tool

- Helps connection to the supply jack on standard versions when the profile of the modem bottom plate does not allow easy access.
- The tool is first inserted on the supply cable by means of its side opening and then slid along the
 cable until it fits around the male jack for connection.
- The combination fits on the female jack on the profile of the modem bottom plate.
- Once the tool is inserted, rotate it to lock the connector to the base.

1.6. Electricity connection

The electrical connection of the modem is via two connectors on the modem bottom plate:

- Jack type supply connector (on the left of fig.1) with a 2.5mm dia. centre pin.
- SubD9 type serial data connector (on the right of fig. 1).

Specifications of the male plugs to be used:

- Jack plug (fig. 2) type SWITCHCRAFT 761K for the power supply (available via Adeunis RF)
- SubD 9 pin connector with lateral locking by two M3 screws (fig. 3)

The jack on the modem plate is also compatible with other types of jack plugs with a 2.5mm central pin, but only specific SwitchCraft 761K types are lockable with nuts.

1.6.1 Functions of the jack supply connector

Supply to the modem is via the jack plug, at a DC voltage between 4.5V min. and 36V max. The system includes a device against polarity reversal.

1.6.2 Functions of the SubD9 serial data connector

Pin n°	SubD9-Modem – RS232	SubD9-Modem - RS485 (2)	
1			
2	RXD (Modem Data Out)	TXD/RXD+ (B)	
3	TXD (Modem Data In)	TXD/RXD- (A)	
4			
5	GND		
6 <u>Max 5V !</u>	Sel RS232		
7	RTS (1)		
8	CTS (1)		
9	Not used		

⁽¹⁾ RTS/CTS are only used if the RS232 data rate control is used (See § 5).

1.7. Serial data Bus selection modes

The modem is factory set to RS232 mode (Register S215 at 1).

By reprogramming the register (see § 5), it is possible to reposition the modem in the following modes:

- RS232
- RS485
- RS485, Terminal(*) mode
- Auto-detection

Note: the Auto-detection mode triggers recognition of the equipment connected when switching on, and automatically configures in RS232 or RS485.

(*) The RS485 link needs to be adapted. The modem contains a 120 Ohm resistor (Terminal mode) which needs to be selected (see § 5) if the modem is situated at the end of the RS485 line.

⁽²⁾ Half duplex connection only.

1.8. Service interface

The Modem is fitted with 2 push buttons (1 & 2) on its rear face enabling the base settings to be restored in the event of troubleshooting diagnostics. The two-colour indicator light on the front face completes this HMI.

Fonction	Button	Se	quence	Action
Modem reset	BP2	23/	Press BP2 then release	Pressing BP2 resets the Modem. Hence the equipment restarts with the parameters in its permanent memory, as they were configured at the last AT&W command (see § 5 Command mode).
Return to FACTORY serial link parame- ters	BP1	23/	Long pressure on BP1 superior to 3 seconds	Long pressure on BP1 (> 3s) enables forcing of the serial link parameters to: RS232, 9600bauds, 8 bits, no parity, no data rate control. This action will be confirmed by 3 flashes of the green indicator light.
Forcing of the AUTO serial link parame- ters	BP1	23/1	Brief pressure on BP1 inferior to 3 seconds	Brief pressure on PB1 (< 3s) enables restoration of the serial link default settings (interface self-detection, Autobaud, 8 bit data, no parity, no data rate control). This action will be confirmed by 3 flashes of the green indicator light.
Entry into the Command mode	BP2 and BP1	Press BP2 and hold Release BP2	Press BP1 and hold Hold BP1 less than 3 sec then release	Holding down BP1 (<3s) after having released BP2 triggers entry into the Command mode. This action will be confirmed by 3 flashes of the red indicator light.
Restarting of the modem with its de- fault settings	BP2 and BP1	Press BP2 and hold Release BP2	Press BP1 and hold Hold BP1 more than 3 sec then release	Holding down BP1 (>3s) after having released BP2 triggers restarting of the modem with all the default settings (factory settings). This action will be confirmed by 3 flashes of the red indicator light.

1.9. Mechanical installation - Optimizing performance

1.9.1 Dimensions

1.9.2 Positioning of the modems

- Install the modem at a minimum height of 2m and not against the face, ideally offset by 20 cm (5 to 10 cm minimum).
- The RS232 cable should not exceed 15m in length and must be shielded.

1.9.3 Positioning of the aerial

- In the event of use of a modem fitted with a TNC base for a remote aerial, we recommend using our range of aerials (Cf catalogue of Stand-alone products available on our web site,).
- The aerial should be installed in a free field, at least 10 cm away from any conducting material. There should be no metal obstacle within a range of less than one metre.
- Install the 2 aerials in view of each other.
- If the modem is installed in an electrical cabinet, the aerial should be installed outside. The same applies if the modem is placed inside a building and it needs to communicate with a modem positioned outside.
- The co-axial cable should be as short as possible (memo: cable of 25m => 6db of attenuation => range divided by 2)

1.9.4 Positioning of power and serial cables

To ensure optimal operation of ARF868 modems, it is essential to ensure that the power and serial communication cables are properly connected and positioned.

Improper positioning of the cables can significantly reduce the performance of modems.

- The cables must be securely attached to the modem
- The cables must be kept away from the antenna
- The cables should not be coiled or tangled
- The cables should be positioned vertically in the modem
- The cables must not be excessive length

1.10. Protection of remote aerial modems against overloads

It is sometimes necessary to protect the product against lightning. When the product is positioned high up it can potentially be struck by lightning which results in irreversible damage to the product. All lightning arrester systems can be installed between the aerial and the ARF868 modem (products with remote aerials). It is important to follow the manufacturer's recommendations. The diagram below shows an example of a lightning arrester installation.

No	Description	Reference
1	TNC connector of ARF868 modem	
2	Mounting nut	delivered with product
3	Tooth lock washer	delivered with product
4	12-10 AWG wire (must be earthed)	
5	Round terminal	RS: 613-9429
6	O ring seal	delivered with product
7	Lightning arrestor	RS : 111-658
8	Male-Male TNC adapter	RS: 193-7953
9	Aerial	

2. Electrical and radio specifications

2.1. Maximum values

Parameters	Min	Тур	Max	Unit	Conditions
Voltage	4.5	12	36	V	
Storage temperatures	-40	20	+85	°C	

2.2. General specifications

Parameter	Min			Max
Power supply	4.5V	12V	24V	36V
TX @27dbm	600mA	240mA	145mA	95mA
TX @20dBm	290mA	153mA	86mA	63mA
TX @14dBm	170mA	98mA	53mA	36mA
TX @10dBm	130mA	75mA	40mA	27mA
RX	65mA	26mA	15mA	7mA
Operating temperature	-30°C			+70°C

2.3. Radio specifications

2.3.1 Introduction to the radio requirements

The modems use the European frequency band 863-870MHz. This frequency band is segmented into different sub-bands each with their own regulatory requirements both in terms of power, spectral bandwidth, and use of the spectrum. ARF868 modems accept these regulatory requirements.

2.3.1.1 Sub-bands

Each sub-band is defined by a minimum and maximum frequency. In addition, the maximum authorised power and the maximum Duty Cycle are defined separately for each sub-band.

2.3.1.2 Duty Cycle

The purpose of the Duty Cycle ratio is to make sure that no application can occupy a frequency band for more than a certain percentage of the time. The duty cycle defines a maximum percentage of time (expressed in percentages of any period of hours during which a modem is authorised to transmit. The limitation of the duty cycle should be monitored by the terminal equipment connected to the modem. Please contact Adeunis RF for your calculations of your "air" occupation time.

2.3.1.3 Schematic representation of the requirements of the 863-870MHz frequency band

The table below is a schematic representation of the use of the 863-870MHz frequency band as used by the Adeunis RF ARF868 model.

SRD : Short Range Devices

Caution: this table is non-contractual and is subject to changes in regulations.

2.3.2 ARF868 modem operating modes

ARF868 modems have two operating modes:

- 1 standard mode dedicated to very long ranges and for which immunity to jammers is optimum.
- 1 **ARFx3Pro** mode which ensures "air" compatibility with the whole of the Adeunis RF ARFx3Pro modem range.

The default communication mode is the standard mode. As soon as it is switched on the modem is capable of transmitting and receiving data with the parameters in its memory (*).

By default, the modem is in permanent listening mode of the RF interface and the UART port.

- As soon as a frame from the RF link is demodulated, its content is transmitted to the UART port
- As soon as a character chain is detected on the UART port, it is transmitted to the RF link.

(*): On first switching on the parameters are the default parameters (or factory settings). At subsequent switchings on the parameters used are those last memorised with the AT&W command (see § 5.2 AT Commands).

2.3.3 Standard mode

The table below shows the main RF characteristics of ARF868 modems. We can separate 2 types of use:

- High powers up to 500mW
- Powers < or equal to 25mW.

2.3.3.1 Use at 500mW: maximum range

The table below enables users to configure their ARF868 modems to obtain the longest possible range at 500mW in the 869.4 to 869.6MHz band.

Parameters					Conditions
RF data rate	2.4kbps	9.6kbps	38.4kbps	57.6kbps	In bold , data rate by default. Modification through AT COMMAND ATS254 (see chapter § 5.3)
Available channels	Up to 19: 869,4125 MHz 869,425 MHz 869,4375 MHz 869,450 MHz 869,46255 MHz 869,475 MHz 869,475 MHz 869,500 MHz 869,5125 MHz 869,5125 MHz 869,550 MHz 869,550 MHz 869,555 MHz 869,5625 MHz 869,575 MHz 869,6125 MHz 869,6375 MHz 869,6375 MHz	Up to 9: 869,425 MHz 869,450 MHz 869,475 MHz 869,500 MHz 869,550 MHz 869,575 MHz 869,600 MHz 869,625 MHz	Up to 7: 869,450 MHz 869,475 MHz 869,500 MHz 869,525 MHz 869,550 MHz 869,575 MHz 869,600 MHz	Up to 3: 869,475 MHz 869,525 MHz 869,575 MHz	In bold , channel by default. Modification through AT COMMAND ATS200 (see chapter § 5.3) RF power up to 27dBm (500mW) other frequencies available in the sub-band 863-870MHz (see next chapter)
Available RF radia- ted power		7 levels +27 dBm +25 dBm +23 dBm +20 dBm +17 dBm +14 dBm +10 dBm			In bold , RF power by default. Modification through AT COMMAND ATS231 (see chapter §5.3)
Modulation	2 GFSK		4 GFSK		
RX sensitivity ARF868 ULR	-122dBm	-116dBm	-112dBm	-110dBm	@BER 10e-3
Range ARF868 ULR TNC version	Up to 20km	Up to 14km	Up to 10km	Up to 10km	in open field
RX sensitivity ARF868 LR	-109dBm	-106dBm	-100dBm	-100dBm	@BER 10e-3
Range ARF868 LR TNC version	Up to 10km	Up to 7km	Up to 5km	Up to 5km	in open field
Duty cycle		10	%		Depending on the use
Spacing	12.5kHz*	25kHz	50kHz	75kHz	* spectral occupancy 2.4kbps being slightly greater than 12.5KHz, Adeunis RF advocates use N-2/N+2

Rejection on adja- cent channel (N-1/ N+1)	46dBc	50dBc	39dBc	39dBc	
Alternate channel rejection (N-2/N+2)	46dBc	50dBc	39dBc	39dBc	
Blocking		>75dB			@ +/-1 MHZ, +/-2 MHz, +/- 10 MHz Conducted measurement

2.3.3.2 Usage up to 25mW: maximum number of channels

The rest of the 863-870MHz band is segmented into sub-bands of 25mW, each with their regulatory requirements. The ARF868 modem makes the best use of all the possibilities of this band to enable a maximum number of applications. The characteristics are given in the table below:

Parameters					Conditions
RF data rate	2.4kbps	9.6kbps	38.4kbps	57.6kbps	In bold , data rate by default. Modification through AT COMMAND ATS254 (see chapter § 5.3)
Available channels	Up to 506	Up to 249	Up to 80	Up to 60	Modification through COMMAND ATS200 (see chapter §5.3)
					Power up to 14dBm (500mW)
					For each frequency is assigned a channel number «C» with the formula: Frequency = 863.0125 + ((C-13)*0.0125) with C= 13 to 571.
					C values available depend on the data rate. See Appendix 1 at end of document for a complete list of channels and frequencies
Accellate DE codic		2 levels			In bold , RF power by default.
Available RF radia- ted power		+14 dBm +10 dBm			Modification through AT COMMAND ATS231 (see chapter §5.3)
Modulation	2 GFSK		4 GFSK		
RX sensitivity ARF868 MR	-122dBm	-116dBm	-112dBm	-110dBm	@BER 10 ⁻³
Range ARF868 MR TNC version	Up to 4km	Up to 2.5km	Up to 1km	Up to 1km	in open field
RX sensitivity ARF868 LP	-109dBm	-106dBm	-100dBm	-100dBm	@BER 10 ⁻³
Range ARF868 LP TNC version	Up to 1km	Up to 700m	Up to 500m	Up to 500m	in open field
Duty cycle	Depend	Up to		channel	See CEPT Recommendation 70-03 for more information
Spacing	12.5kHz*	25kHz	50kHz	75kHz	* spectral occupancy 2.4kbps being slightly greater than 12.5KHz, Adeunis RF advocates use N-2/N+2
Rejection on adja- cent channel (N-1/ N+1)	46dBc	50dBc	39dBc	39dBc	
Alternate channel rejection (N-2/N+2)	46dBc	50dBc	39dBc	39dBc	
Blocking		>75dB			@ +/-1 MHZ, +/-2 MHz, +/- 10 MHz Conducted measurement

3. Data exchange - Communication mode

Principe:

The communication mode is the default mode.

On switching on the modem is configured in RS232, 9.6kbps (serial link), 2.4kbps (RF data rate).

By default, the modem is in permanent listening mode of the RF interface and the UART port.

- As soon as a frame from the RF link is demodulated, its content is transmitted to the UART port
- As soon as a character chain is detected on the UART port, it is transmitted to the RF link.

"Air" communication takes place according to the following choice of protocols:

- Packetized secured or non-secured
- Continuous asynchronous (default mode)
- "Legacy X3Pro" continuous asynchronous

3.1. Packet protocol

3.1.1 Protocol description

ARF868 modem uses a packet oriented protocol on its RF interface. The data coming from the UART interface are accumulated in an internal fifo in the module and then encapsulated in an RF frame. The maximum amount of data that can be transferred into a single radio packet can reach 1024 Bytes.

The maximum packet size can be set up in S218 register from 1 to 1024 bytes. Each new packet introduces some latency in the transmission delay caused by the RF protocol overhead. The RF protocols encapsulate the data payload with the following elements:

- A preamble pattern required for receiver startup time
- A bit synchronization pattern to synchronize the receiver on the RF frame
- Other protocol field such as source address and destination address, payload length, optional CRC and internal packet type field.

The incoming fifo may accumulate up to 1024 data byte. No more data has to be set in the fifo while a 1024 bytes block of data has not been released by the radio transmission layer. To prevent from input fifo overrun, the hardware flow control may be activated. In this case, the RTS signal will be set when the incoming fifo is almost full to prevent the host controller from sending new data.

3.1.2 Non-secured Packet protocol

In non-secured mode, each packet is transmitted without acknowledgment; The transmitter does not know if the package has been received.

3.1.3 Secured Packet protocol

In Secured Mode, each packet is transmitted and acknowledged by the receiver. If a packet is not recognized, the module continues with two further attempts.

Following this sequence, the transmitter sends '>' if the package has been received or '#' if it has not received confirmation after three attempts.

Important note: addressing mode must be enabled to use secured mode.

3.1.4 Transmission integrity control

RF protocol includes a 16 bit CRC. Each data extracted from an RF packet with an invalid CRC is silently discarded by the state machine module. The CRC ensures that all data received are valid. It can be disabled by the user whose protocols already have a control mechanism integrity or when some bug fixes user protocols are implemented.

3.1.5 Implementation

The Packetized protocol is selected through register S222.

Non-secured protocol : S222 = 0 Secured protocol: S222 = 2

3.1.6 Transmission data path

In the Packed protocol mode, the packet size is specified by registration S218.

The modem begins transmission of a complete packet when it has received the specified number of data S218. If the number of data is less a comprehensive package be established when the timeout (specified in the registration S217) is reached..

3.2. Continuous asynchronous protocol

3.2.1 Description of the protocol

The continuous asynchronous protocol enables data transfer from the UART interface to the radio link with the lowest possible latency. It is associated with radio modulations enabling a wide range of air data rate and ranges to be covered. This is the mode that will allow you to use the ARF868 modem to the maximum of its possibilities.

- In transmission, data entering on the UART is immediately transmitted into the "air".
- In reception, data from the RF frames is transmitted progressively to the UART interface.

There is no buffering of complete radio frames before or after transmission on the serial link.

However, the product has buffering enabling a buffer to be performed if the radio and UART data rates are different. The UART interface does not require a specific protocol. Each octet transmitted is transferred into the air and vice versa.

Thanks to its low latency and the absence of a protocol on the UART port, the ARF868 modem used with the continuous asynchronous protocol is completely transparent in the replacement of a wire link.

3.2.2 Implementation

The continuous asynchronous protocol is selected by the S222 register (cf §5.3).

It can use the following radio data rates: 2.4kbps, 9.6kbps, 38.4kbps and 57.6kbps. The adjustment of the radio data rate is done via the S254 register (cf § 5.3).

The notions of addressing (broadcast communication, group communication and addressed communication between products) are available and described below.

3.2.3 Addressing

The product has various addressing modes that are configurable via the product registers. The following modes are available:

- Transparent mode without sub-network
- Transparent mode with sub-network
- Addressed mode without sub-network
- Addressed mode with sub-network

The transparent modes are intended for inter-product communication: all products are recipients of the frames transmitted. The addressed modes enable communication to one or more products (creation of sub-groups).

Transparent mode without sub-network

- In the Transparent mode without sub-network all products within range receive the frames from the transmitting products. The configuration required for this mode of communication is as follows:
- S220=0 (transparent mode)
- S253=0 (no group)

Transparent mode with sub-network:

The sub-networks enable groups of products to be created that communicate with each other within the same sub-network. Products in sub-network 1 cannot see those in sub-network 2 and vice versa. On the other hand all the products are visible between themselves within the same sub-network.

- S220=0 (transparent mode)
- S253=Number of the sub-network varying from 1 to 255

when register S253 is set to 255, the frame is broadcast to the whole of the sub-network.

Addressed mode without sub-network:

In the addressed mode without sub-network a product communicates with a specified addressee. Only the addressee receives the frames from the transmitting products. The configuration required for this mode of communication is as follows:

- S220=1 (address mode)
- S253=0 (no sub-network)
- S252=local address (16 bit address)
- S256=address of the recipient (16 bit address)

When register S256 is set to 65535, the frame is broadcast and visible by all equipment within range.

Addressed mode with sub-network:

The products always communicate within the same sub network. This means that two products with identical addresses and different subnetwork numbers do not communicate with each other. The only case of inter-network communication is when \$256=255 and \$253=255.

- S220=1 (address mode)
- S253= sub network number varying from 1 to 255 (255 is used for broadcast between the sub-network)
- S252= local address (address on 8 bits)
- \$256= recipients address (address on 8 bits, 255 is the broadcast address within the sub-network)

3.3. Legacy X3-PRO protocol

The "legacy X3-PRO" protocol provides the ARF868 modem with total "air" compatibility with the previous generation Adeunis-RF X3-PRO type modems.

Compatibility is provided for Narrowband and Wideband modes, and for Addressed and Transparent modes.

Please refer to the dedicated application note: ARF868 Radio Modems: «Legacy X3-PRO» mode, available on our website.

4. Advanced product functions

4.1. UART interface self-detection

The ARF868 modem has automatic interface detection at switching on enabling a selection of the RS232 or RS485 mode. Automatic detection is activated when interface selection register S215 is positioned on the value 4.

For detection in the RS485 mode it is essential to have an earth connected to the product. Otherwise the detection motive "U" cannot be taken into account.

4.2. Autobaud: Self-detection of the serial link data rate

On switching on with the SubD9 cable connected, the modem detects the data rate on the serial link of the monitoring equipment in order to synchronise itself on its parameters.

For this detection to be performed, the equipment must send, before any command or character chain, the synchronisation command: "U"

After a positive reply from the modem, it is then operational and switches to the communication mode. It will be capable of transferring the characters seen on the serial link onto the Air link or entering the command mode (see § 5.2 command mode input/output).

Command	Description	Answer
U (upper case)	Allows automatic detection of UART data rate (see note 1).	Returns the parameters of the serial link : RS232 or RS485 and data rate.

Note:

To this request the modem will reply by the configuration that it has detected: type of link, UART data rate. E.g.: RS232, 9600.

If the modem does not reply or replies by another character chain to the synchronisation request U, a new test can be attempted, after having disconnected and reconnected the electricity supply to the appliance. If these attempts produced no effect, check that the serial link of the monitoring equipment is set to: 8bits, 1 stop bit, no parity and that the UART proposed corresponds with one of the data rates available in register \$210.

Sending of the synchronisation character "U" is only useful on first switching on or as long as a UART configuration has not been memorised on registers S210 by the AT&W command.

On equipment that is already synchronised, it will not be interpreted as a synchronisation request and will be transferred onto the air link like any other character chain.

The self-detection mode (type & data rate) will be retained for the next switching on in the following three situations:

- No saving of register S210 by the AT&W command before switching off.
- Brief pressure on BP1 before the power is cut off
- Return of register S210 to the value of 0 by ATR and AT&W commands before the power is cut off.

4.3. **RSSI**

The Received Signal Strength Indication or RSSI provides an indication of the RF level in the selected audio channel.

Depending on the value observed, it indicates the availability of the channel and the noise level in the product's environment, or the quality of reception of the frames from a distant product. The terminals are -127dBm for the lower limit and -20dBm for the upper limit

The RSSI is deactivated (by default) by positioning register S230 at: 0

4.3.1 Continuous RSSI

The RSSI is coded on one octet in absolute values of the channel level value in dBm and transmitted to the UART. The RSSI is refreshed continuously every 10 ms. There is no frame demodulation in this mode.

Register settings and values

Selection of the continuous RSSI mode is done by register S230, by setting the value to: 4

4.3.2 Frame RSSI

The frame RSSI is the code on one octet at the beginning of each frame transmitted on the UART. The encoding is identical to the continuous RSSI.

Register settings and values

Selection of the continuous RSSI mode is done by register \$230, by setting the value to: 1

4.4. Scan Free function

The Scan Free function is a function that is unique to ARF868 modems.

This function enables sweeping of all channels available on the product in a few seconds. It is activated by the ATT02 command.

The ARF868 modem scans all the channels available and returns the RSSI levels on each of the channels to the UART link in the following form:

Cxxx=-090dBm < cr > < lf > ; with xxx = channel no

Cyyy=-101dBm < cr > < lf > ; with yyy = No of the following channel

.

The polling time of a channel is defined as 25ms. The result of this polling may show that some channels are more usable than others in a given environment.

As a second stage and for a more reliable assessment, we can use the ATT03 command which enables the channel to be listened to over a longer period:

ATT03<c (channel)><t (polling time)>

With : $\langle c \rangle$ = Channel no

With: <t> = Polling time in seconds

E.g.: ATT03 529 60 -> Scan of channel 529 for 1 minute. The result returned has the following form: C529=-087/-096/-101dBm<cr>><lf>; i.e. in order: RSSI min. RSSI mean/RSSI max. measured over this period.

4.5. Transmission/reception test

This function enables a communication to be put into operation quickly in the field to check the range limit between two modems with the defined choices of frequency, data rate, power, etc.

The ATT00 and ATT01 commands enable communication to be established between two modems with a minimum of material constraints. Sending ATT01 to the receiving modem activates reception and continuous monitoring of the frame transmitted (*). The LED indicator lamp on the front panel of the modem indicates reception by a short flash for each frame received (every second):

- Green if the frame is OK
- Red if the frame is corrupted

Sending ATT00 onto the transmitting modem activates the sending of a predefined 64 octet frame every second, continuously (*).

(*): Caution, in these modes the modem is no longer capable of interpreting AT commands. For this it is necessary to exit the ATT00 or ATT01 test modes by sending the ESC character (value 0x1B). The modem then returns: "O" <cr><tf> if the request is correctly interpreted and repositions itself on listening for an AT command.

4.6. Repeater mode

The repeater mode allows to extend the coverage of modems ARF868 & ARF169 over long distances or use on smaller distances on sites with one or more natural obstacles (eg presence of hill or others).

For the implementation of the repeater mode, thank you refer to the application note repeater available on our website: http://www.adeunis-rf.com/en/products/radio-modems/arf868-ulr-500mw

5. Product Configuration - Command Mode

The command mode is an embedded tool, accessible by the serial link via a terminal (*), enabling the programming of the modem parameters using a set of instructions called: "AT command set". AT commands are used to read and write the modem configuration registers (see § 5.3 Description of registers)

In the command mode, the radio is deactivated (in reception and transmission), except for the radio test commands (commands ATT00 & ATT01).

(*): Hercules types

5.1. Command mode input/output

Entry into the command mode is obtained by transmission of a sequence of 3 ASCII characters on the serial link. By default, the sequence is: « +++ », however the user can choose his own ASCII character by reprogramming on register S214 (see § 5.3 Description of registers).

Another possibility for entering the command mode is to activate the BP1/BP2 sequence on the back of the modem and as described in §1.8 Service interface. This procedure can be used if the command mode entry code has been changed or lost.

The ATO command enables us to quit the command mode and return to the communication mode. It should be noted that exiting from the command mode is also possible automatically (timeout) by programming register S202 (see § 5.3 Description of registers).

Command	Description	Answer
+++	Allows entry into command mode	« CM » to confirm entry in command mode.
ATO	Exit command mode	«O» <cr> if operation OK «E»<cr> if error</cr></cr>

5.2. AT Commandes

A command starts with the two ASCII characters: "AT", followed by one or more characters and data (see C below for the syntax of AT commands available on the modem).

Each command should end with a "CR" or "CR" "LF", the two possibilities are accepted. (CR signifies: Carriage Return, LF signifies: Line Feed)

On receipt of a command the modem returns:

- "the data"<<r><lf>, for a reading command, type ATS<n>?, AT/S or AT/V.
- "0" <cr><lf>, for all other types of commands if it is accepted.
- "E" <cr><lf>, if it refuses the command because of a syntax error, unknown command, unknown register, invalid parameter, etc.
- "W" < cr> < lf>, if it refuses the command because the configuration requested is not authorised.
- "CM" <cr><lf>, if it accepts entry into the command mode

Table of AT commands:

Command	Description	Reply
ATS <n> ?</n>	Returns the contents of register n	Sn=y where y represents the contents of register n
ATS <n>=<m></m></n>	Transfer the value m to register n	«O» <cr> if operation OK «E»<cr> if error « W» if the operation has a configuration problem.</cr></cr>
AT/S	Display as a list, the content of each User register	Sxxx=y <cr><lf> for each register</lf></cr>
AT/V	Display the firmware version	Example : TW_AB_2.3.00_AA_B_1.2.0
ATR	Restore the content of registers with default values. This command must be followed by an AT&W command and a module reset to ensure that all parameters have been applied.	«O» <cr> if operation OK «E»<cr> if error</cr></cr>
ATT00	Enables test mode: Sends a predefined frame (see note1). Exit test mode ATT00 : ESC (0x1B)	«O» <cr> if operation OK «E»<cr> if error</cr></cr>
ATT01	Enables test mode: Reception and control frames received in opposite to ATT00 (see note1). Exit test mode ATT01: ESC (0x1B)	«O» <cr> if operation OK «E»<cr> if error</cr></cr>
ATT02	Starts the Scan Free mode	«Returns for each channel, its number and RSSI value associated : Cxxx=-090dBm < <i>cr></i> < <i>lf></i>
ATT03 <c> <t></t></c>	Scan of channel «c», during a «t» period, with: - <c> value on three digits <t> value from 1 to 999, by step of 1s</t></c>	The command returns three values of RSSI: mini, medium and maximum.
ATX3	Automatic registers programming for X3Pro modems compatibility: - S210 = 3 -> 9600 bauds - S215 = 1 -> RS232 - S220 = 1 -> Addressed - S252 = 0 -> Source address = 0 Other registers to their default values.	«O» <cr> if operation OK «E»<cr> if error</cr></cr>
AT&W	Save the register configuration in E2PROM.	«O» <cr> if operation OK «E»<cr> if error</cr></cr>
AT&RST	Restart the modem	«O» <cr> if operation OK «E»<cr> if error</cr></cr>
AT0	Exit command mode	«O» <cr> if operation OK «E»<cr> if error</cr></cr>

Example of a series of commands and corresponding replies as one could see them on a terminal:

Syntax of the Command	Description	Syntax of the response to the next line
+++	Request for entry into command mode	СМ
ATS254=3	Request for RF data rate at 9.6kbps	0
ATS200=9	Request for channel selection = 9	E -> invalid channel !
ATS200=527	Request for channel selection = 527	0
ATS231=0	Request for RF power at 27dBm	0
ATS200 ?	Returns S200 register value	S200=527
ATS231 ?	Returns S231 register value	S231=0
AT&W	Storage request of the registers status	W (the selected channel is not available at 9.6kbps RF data rate) The value storage will not be performed.
ATO	Request to exit command mode	W (the selected channel is not available at 9.6kbps RF data rate) The Exit will not be performed.

Interpretation of the above example: the user wished to save a new radio configuration (channel 527, power 27dBm) after having made a parameter error (reply **E**) and an unauthorised configuration request (reply **W**). The modem allows neither the saving of this invalid configuration nor the use of the product in the communication mode.

5.3. Description of registers

When switching on the ARF868 modem operates according to the last configuration saved (factory configuration if its the first switching on, or if this configuration has not been changed).

Modification commands, type **ATS**<**n**>=<**m**> or **ATR** allow the content of registers to be modified. The product is usable with each new configuration as long as it is not disconnected.

On the other hand the modified values will be applied next time the modem is switched on only if they have been saved AT&W command

List of the registers accessible on the ARF868 modem:

Register	Content	Default value	Comments
\$200	Channel number : 11 and from 13 to 571		Some channels will not be available depending on the data rate and the selected power. The modem will return an error message if illegal choice. Instructs the user to configure the modem according to the possibilities described in Appendix 1
S202	Timeout to exit command mode : 0 : no timeout, exit through ATO or AT&RST 1 : Automatic programmanle output from 1 to 65565 sec.	0	See note 4
S204	Duration of the preamble: 0: Nominal setting X: Alternative settings for legacy X3-PRO mode	0	The choice 0 is the optimum setting. For other settings, contact Adeunis RF See document: Application note ARF868 Legacy X3-PRO mode
S210	UART data rate: 0: Autobaud 1: 2.4 kbps 2: 4.8 kbps 3: 9.6 kbps 4: 19.2 kbps 5: 38.4 kbps 6: 57.6 kbps 7: 115.2kbps 8: 1.2kbps	3	See note 1 & note 3 The other parameters of the serial interface are : 1 stop bit -> fixed Parity -> See S212 Data lenght -> Voir S211
S211	UART data lenght : 0 : 7 Bits 1 : 8 Bits	1	

Register	Content	Default value	Comments
S212	UART parity : 0: No parity 1: Parity 2: Odd parity	0	
S214	Input character in command mode : ASCII code (except 0) 0 : Disabling entry into command mode by UART.	43	The input code is 3 times the character: Example: +++ if the character programmed in S214 is the ASCII code of «+» wether 43 Value between 1 and 255
\$215	UART interface: 0: Internal switches positions 1: RS232 2: RS485, no Term mode 3: RS485, Term mode 4: Auto	1	Unless special request, the position of the internal switch is on modem ARF868: Auto mode (same as S215 = 4). See note 2
S216	RTS/CTS UART flow control: 0 : Inactive 1 : Active	0	See note 3
S217	Transmission start-up Timeout : 0 : no timeout 1 à 6000 : timeout by step of 1 ms	3	If #0, transmission starts when the timeout has passed, if the threshold of the S218 register is not reached. See note 5
S218	Transmission start-up threshold : From 1 to 1024 octets	30	The transmission starts when the number of bytes in FIFO memory to reach this threshold. See note 5
S220	Communication mode 0 : Transparent 1 : Addressed	0	
S222	Radio protocol 0 : Asynchronous paquetized non secured 2: Asynchronous paquetized secured 3: Continuous Asynchronous 4: Continuous Asynchronous «legacy X3Pro»	3	
\$230	RSSI mode: 0 : no RSSI 1 : Exit «RSSI frame» on UART 4 : Exit «permanent RSSI» on UART	0	
\$231	RF radiated power: 0: 27 dbm 1: 25 dbm 2: 23 dbm 3: 20 dbm 4: 17 dbm 5: 14 dbm 6: 10 dbm	0 : on ARF7940 and 7941 ver- sions 5 : on ARF7942 and ARF7943 versions	
S241	Command mode entry Timeout at 9.6kbps at product start-up. 0 : disabled 1 : enabled	1	
S243	Re-emitting time out (when S222=2) Adjustable from 0 to 65535 by step of 1ms	0	
S250	Repeater mode : 0 : no repeater 1 à 65535 : Guard time by step of 1 ms	0	
S252	Source address (or local) from : 1 to 65535	Factory pre-ini- tialized	Used in the addressed mode. This register contains the address of the modem

Register	Content	Default value	Comments
S253	Network number no network : 0 Network address: from 1 to 254 255=broadcast	0	
S254	Radio data rate valid only with continuous asynchronous mode: 1: 2,4Kbps 3: 9,6Kbps 6: 38,4kbps 8: 57,6Kbps Radio data rate valid only with asynchronous continuous Legacy X3-PRO 11: 10Kbps (Legacy X3-PRO) 12: 57.6Kbps	1	11 and 12 : For compatibility with X3Pro modems
S256	Destination address : From 0 to 65534 Broadcast function : 65535	1	In addressed mode, this register must be set with the address of the modem to achieve.

Note1: the Autobaud mode authorises the modem to synchronise itself at switching on to the speed of the serial link, provided it is configured in 8 bits, 1 stop bit, no parity.

To trigger this procedure the monitoring equipment must transmit, on the serial link, the character: <U> (see § 4.1 self-detection command). After correct execution of the self-detection command, reading register S210 (ATS210 ?) will return the UART data rate value identified in the table (value 3 to 7). It will be memorised on recognition of the AT&W command.

Note2: in the absence of any other special request, the modem internal switches (factory settings) are set to the auto mode (identical to the 215 Fisher position = 4).

Note3: the UART data rate should be chosen as close as possible to the radio data rate.

This is to limit the use of the buffer memory zone and activation of the RTC/CTS UART data rate control signals. E.g. 1: for a radio data rate of 57.6Kbps (\$254=8), the choice of UART data rate of 57.6Kbps (\$210=6) would be ideal. E.g. 2: For a UART data rate of 9.6Kbps (\$210=3), the radio data rate of 9.6Kbps(\$254=3) is the best possible choice.

If it is not possible to bring the UART and Radio data rates close together the 1024 octet buffer memory will compensate for the differences in speed, provided this difference is not significant and/or the size of the data for transmission is limited.

In all other cases, only the use of the UART data rate control (\$216=1) enables the integrity of the data transmitted to be guaranteed.

Note4: the default choice of manual exiting from the mode is suitable for use during development, when the user needs to maintain control over the exit from the command mode.

Programming of a timeout is recommended for use in operation, to enable an automatic return by the modem into the communication mode if a character chain in the data flow is accidentally assimilated to a request for entry into the command mode.

Note5: registers S217 and S218 are used to synchronise transmission start:

- either a timeout (S217)
- or a quantity of data in the buffer memory (S218)

The first of these two limits reached triggers transmission start.

When the number of octets in the buffer memory reaches the threshold of register S218 before the timeout of register S217, it is triggering on data.

On the other hand, when the timeout of register S217 expires before the data in the buffer memory reach the threshold of register S218, it is triggering on time.

It should be noted that programming register S217 to 0 (no timeout) means that the S218 register threshold must be reached to start transmission.

Below example of S217 & S218 register usage :

5.4. Configuration coherency

The ARF868 modem contains monitoring of the configuration coherency and prevents saving and operation of invalid parameters.

Radio parameter coherency

Radio power, radio data rate and frequency parameters should correspond to valid combinations presented in the table below (cf Appendices) and in more detail in the document entitled: "ARF868 Modem channels list" available on the Adeunis RF website.

Protocol parameter coherency

The following parameters should be set according to the combinations shown in the table below:

Register	Legacy X3-PRO Mode	Continuous Asynchronous Protocol
S222	4	3
S254	11 ; 12	1;3;6;8
S204	0 or ajustable on demand	0

All other combinations of these registers except those described in the table above are invalid.

Invalid combinations result in the return of a "W" on the AT&W and ATO commands which are not executed in this case.

6. Appendices annexes

6.1. List of available channels

A complete list of the usable channels is available on our website: "ARF868 & NB868 Channels list"

Power 500mW (27dBm) - 869.4 - 869.650MHz (maximum authorised powers given in dBm in the table below)

Note: in the event of use of several products close to each other and with an RF data rate of 2.4kbps Adeunis RF suggests only using even (526, 528...) or odd channels (525, 527...)

Channel	Frequency	2,4kbps	9,6kbps	38,4kbps	57,6kbps
525	869,4125	27			
526	869,425	27	20		
527	869,4375	27			
528	869,45	27	23	23	
529	869,4625	27			
530	869,475	27	23	23	23
531	869,4875	27			
532	869,5	27	25	25	
533	869,5125	27			
11 or 534	869,525	27	27	27	27
535	869,5375	27			
536	869,55	27	25	25	
537	869,5625	27			
538	869,575	27	23	23	23
539	869,5875	27			
540	869,6	27	23	23	
541	869,6125	27			
542	869,625	27	20		
543	869,6375	27			

Power 25mW (14dBm) at 2.4kbps

Note: in the event of use of several products close to each other and with an RF data rate of 2.4kbps Adeunis RF suggests only using even (14, 16, etc) or odd channels (13, 15, etc)

Sub band	Sub band Channels		Frequency agility
863 - 868,600 MHz	13, 14, 15458,459	from 863,0125 to 868,5875	by step of 12,5kHz
868.700-869.200MHz	469, 470, 506, 507	from 868,7125 to 869,1875	by step of 12,5kHz
869.700-870MHz	549, 550 570, 571	from 869.7125 to 869,9875	by step of 12,5kHz

Power 25mW (14dBm) at 9.6kbps

Sub band	Even Channels only	Frequency (in MHz)	Frequency agility
863 - 868,600 MHz	14, 16, 18456,458	from 863,025 to 868,575	by step of 25kHz
868.700-869.200MHz	470, 472, 504, 506	from 868,725 to 869,175	by step of 25kHz
869.700-870MHz	550, 552 568, 570	from 869.725 to 869,975	by step of 25kHz

Power 25mW (14dBm) at 38.4kbps

Sub band	Channels (by steps of 6)	Frequency (in MHz)	Frequency agility
863 - 868,600 MHz	18, 24, 30, 450, 456	from 863,075 to 868,550	by step of 75kHz
868.700-869.200MHz	474, 480 498, 504	from 868,775 to 869,150	by step of 75kHz
869.700-870MHz	552, 558, 564	from 869.75 to 869,900	by step of 75kHz

Power 25mW (14dBm) at 57.6kbps

Sub band	Channels (by steps of 8)	Frequency (in MHz)	Frequency agility
863 - 868,600 MHz	16, 24, 32, 448, 456	from 863,05 to 868,550	by step of 100kHz
868.700-869.200MHz	472, 480 496, 504	from 868,750 to 869,150	by step of 100kHz
869.700-870MHz	552, 560, 568	from 869.75 to 869,950	by step of 100kHz

6.2. RF Transmission and turn-around time

ARF868 transmission duration from TX modem to RX modem - Continuous Mode

Mode	RF Data rate	Register S218 set-up	Frame size (in bytes)	Measurement conditions	Duration of RF transmission (t)	Note
	2,4kbps		I I	From the stop bit of the first N/A byte (TX side) to the start bit of the first byte (RX side)	95ms	The TX/RX turn-around time of the modem is
	9,6kbps				42ms	included in the transmission time. The turn-around time is also masked by the
Continuous		S218=1 (immediate departure)				,
	38,4kbps	, , , ,			15ms	UART delay (depending of the serial data rate of the connected "customer product") and
	57,6kbps				10ms	processing time of the "customer product".

ARF868 transmission duration from TX modem to RX modem - Packetized Mode

Mode	RF Data rate	Register S218 set-up	Frame size (in bytes)	Measurement conditions	Duration of RF transmission (t)	Note
	2,4kbps		30		195ms	
	2,4600	S218 = same number of bytes than the frame	1024		3500ms	The TX/RX turn-around time of the modem is
	9,6kbps		30	From the last bit of the last	66ms	included in the transmission time.
Packetized	9,0000		1024	byte (TX side) to the first bit	904ms	The turn-around time is also masked by the
Facketizeu	38,4kbps		30	of the first byte (RX side)	19ms	UART delay (depending of the serial data rate of
	36,4KDPS		1024	of the first byte (RX side)	236ms	the connected "customer product") and
	57,6kbps		30		14ms	processing time of the "customer product".
	37,0KDPS		1024		163ms	

7. Document history

Version	Content
V2.1.1	Update Déclaration of conformity
V2.1	Update Déclaration of conformity
V2.0	Warning on using Pin 6 of SubD9 (see chapter «Electricity Connection»)
V1.9	Radio modes schematic ¶ 3, Appendix RF transmission and turn-around time and value S256
V1.8.1	Software version displayed value through AT/V command