

■ Menu

Decision Boundary

Decision Boundary

In order to get our discrete 0 or 1 classification, we can translate the output of the hypothesis function as follows:

$$h_{\theta}(x) \ge 0.5 \rightarrow y = 1$$

$$h_{\theta}(x) < 0.5 \rightarrow y = 0$$

The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:

$$g(z) \ge 0.5$$
when $z \ge 0$

Remember.

$$z = 0, e^{0} = 1 \Rightarrow g(z) = 1 / 2$$

$$z \to \infty, e^{-\infty} \to 0 \Rightarrow g(z) = 1$$

$$z \to -\infty, e^{\infty} \to \infty \Rightarrow g(z) = 0$$

So if our input to g is $\theta^T X$, then that means:

$$h_{\theta}(x) = g(\theta^T x) \ge 0.5$$

when $\theta^T x \ge 0$

From these statements we can now say:

$$\theta^T x \ge 0 \Rightarrow y = 1$$

$$\theta^T x < 0 \Rightarrow y = 0$$

The **decision boundary** is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.

Example:

5

$$\theta = -1$$

0
 $y = 1 \text{ if } 5 + (-1)x_1 + 0x_2 \ge 0$
 $5 - x_1 \ge 0$
 $-x_1 \ge -5$
 $x_1 \le 5$

In this case, our decision boundary is a straight vertical line placed on the graph where $x_1=5$, and everything to the left of that denotes y = 1, while everything to the right denotes y = 0.

Again, the input to the sigmoid function g(z) (e.g. $\theta^T X$) doesn't need to be linear, and could be a function that describes a circle (e.g. $z= heta_0+ heta_1x_1^2+ heta_2x_2^2$) or any shape to fit our data.