Géométrie et Arithmétique

Contrôle continu 1 - Corrigé 20/09/2016

Questions du cours

1) Donner la définition d'espace vectoriel réel ($\mathbb{K} = \mathbb{R}$).

Corrigé. Un espace vectoriel réel est un ensemble E muni de deux lois :

$$\begin{array}{cccc} + : & E \times E & \rightarrow & E \\ & (u, v) & \mapsto & u + v \end{array}$$

$$\begin{array}{cccc} \cdot : & \mathbb{R} \times E & \to & E \\ & (\lambda, v) & \mapsto & \lambda v \end{array}$$

qui vérifient les propriétés suivantes :

- 1. $\forall u, v \in E, u + v = v + u \text{ (commutativit\'e de +)};$
- 2. $\forall u, v, w \in E, (u+v) + w = u + (v+w)$ (associativité de +);
- 3. $\exists 0_E \in E \text{ tel que } \forall u \in E \text{ on a } u + 0_E = 0_E + u = u \text{ (élément neutre)};$
- 4. $\forall u \in E, \exists -u \in E \text{ tel que } u + (-u) = -u + u = 0_E \text{ (opposé)};$
- 5. $\forall \lambda \in \mathbb{R}, \forall u, v \in E, \lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v;$
- 6. $\forall \lambda, \mu \in \mathbb{R}, \forall u \in E, \lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u;$
- 7. $\forall \lambda, \mu \in \mathbb{R}, \forall u \in E, (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u;$
- 8. $\forall u \in E, 1 \cdot u = u$.
- 2) Donner un exemple d'espace vectoriel réel, en précisant les lois d'addition et de multiplication par scalaire.

Corrigé. L'ensemble $E = \{0\}$ est un exemple d'espace vectoriel réel avec les lois :

$$\begin{array}{ccccc} + : & \{0\} \times \{0\} & \rightarrow & \{0\} \\ & (0,0) & \mapsto & 0 \end{array}$$

$$\begin{array}{cccc} \cdot : & \mathbb{R} \times \{0\} & \to & \{0\} \\ & (\lambda, 0) & \mapsto & 0 \end{array}$$

E est appelé espace vectoriel trivial.

3) Soit E un espace vectoriel réel. Quelles sont les conditions nécessaires et suffisantes pour que $F \subset E$ soit un sous-espace vectoriel?

Corrigé. $F \subset E$ est un sous-espace vectoriel de E si et seulement si :

- $\cdot F \neq \emptyset$;
- $\cdot \ \forall u, v \in F, u + v \in F;$
- $\cdot \ \forall \lambda \in \mathbb{R}, \forall u \in F, \lambda u \in F.$

Exercice 1 (Toutes les réponses doivent être justifiées)

3) Parmi les ensembles suivants, reconnaissez les sous-espaces vectoriels de \mathbb{R}^2 ou \mathbb{R}^3 .

a) $F = \{(x, y) \in \mathbb{R}^2 : 2x - y = 0\}.$

Corrigé. Montrons que F est un sous-espace vectoriel de \mathbb{R}^2 :

- $F \neq \emptyset$ car $(0,0) \in F$;
- · Soient $u = (x_1, y_1), v = (x_2, y_2) \in F$. Alors $2x_1 y_1 = 0$ et $2x_2 y_2 = 0$. Considérons le vecteur $u + v = (x_1 + x_2, y_1 + y_2)$. On a:

$$2(x_1 + x_2) - (y_1 + y_2) = (2x_1 - y_1) + (2x_2 - y_2) = 0 + 0 = 0,$$

 $donc\ u + v \in F$.

· Soient $\lambda \in \mathbb{R}$ et $u = (x, y) \in F$. Alors 2x - y = 0. Considérons le vecteur $\lambda u = (\lambda x, \lambda y)$. On a:

$$2(\lambda x) - \lambda y = \lambda(2x - y) = \lambda \cdot 0 = 0.$$

 ${\cal F}$ vérifie donc les trois conditions nécessaires et suffisantes pour être un sous-espace vectoriel.

b) $G = \{(x, y, z) \in \mathbb{R}^3 : xyz \le 0\}.$

Corrigé. Montrons que G n'est pas un sous-espace vectoriel de \mathbb{R}^3 en donnant un contrexemple. Le vecteur $(-1,1,1) \in G$ (car $(-1)\cdot 1\cdot 1=-1\leq 0$), mais $-1\cdot (-1,1,1)=(1,-1,-1)\notin G$ (car $1\cdot (-1\cdot (-1)=1>0)$).

G donc ne satisfait pas à la troisième condition nécessaire pour être un sous-espace vectoriel.