Önnur laugardagsæfingin í eðlisfræði 2021

T T	r	
1	otn.	
T .	am:	

Bekkur:

Fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$
Þyngdarhröðun við yfirborð jarðar	g	$9.82{ m ms^{-2}}$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	$8,3145\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C}^2 \mathrm{s}^2 \mathrm{m}^{-3} \mathrm{kg}^{-1}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
Geisli jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$
Geisli sólarinnar	R_{\odot}	$6.96 \cdot 10^8 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5,97 \cdot 10^{24} \mathrm{kg}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$

Krossar

Hver kross gildir 3,5 stig. Vinsamlegast skráið svörin ykkar við tilheyrandi krossi hér fyrir neðan:

K1	K2	K3	K4	K5	K6	K7	K8	K9	K10

K11	K12	K13	K14	K15	K16	K17	K18	K19	K20

Krossar (70 stig)

K1.	Hreyfiorka hlutar með massa m og hraða v er táknuð með K . Hún er skilgreind þannig að $K = \frac{1}{2}mv^2$. Hverjar eru SI-einingar hreyfiorku?
	(A) $kg m/s$ (B) $kg m/s^2$ (C) $kg m^2/s^2$ (D) $kg m^2/s$ (E) $kg^2 m^2/s^2$
K2.	Bíll eykur hraðann úr 60 km/klst í 100 km/klst á 30 m kafla. Hvaða meðalhröðun fékk bíllinn? (A) $5.3\mathrm{m/s^2}$ (B) $7.9\mathrm{m/s^2}$ (C) $8.2\mathrm{m/s^2}$ (D) $4.1\mathrm{m/s^2}$ (E) $107\mathrm{m/s^2}$
K3.	Byssukúlu er skotið án loftmótstöðu lóðrétt upp frá yfirborði tunglsins með hraða $30\mathrm{m/s}$. Hver verður hæsta hæð kúlunnar? (Þyngdarhröðunin á tunglinu er $1,6\mathrm{m/s^2}$). (A) $10\mathrm{m}$ (B) $30\mathrm{m}$ (C) $46\mathrm{m}$ (D) $281\mathrm{m}$ (E) $563\mathrm{m}$
K4.	Engisprettan Engilbert stekkur $40\mathrm{m}$ upp í loftið. Hversu langur tími líður frá því hann stekkur og þar til hann lendir aftur í sömu hæð?
	(A) $0.62 \mathrm{s}$ (B) $2.3 \mathrm{s}$ (C) $5.7 \mathrm{s}$ (D) $9.2 \mathrm{s}$ (E) $11 \mathrm{s}$
K5.	Þegar hlutir falla til jarðar fá þeir í fyrstu hröðun sem er jöfn þyngdarhröðun jarðar. Loftmótstaða veldur því að eftir nokkur fall ná flestir hlutir ákveðnum lokahraða, sem er fasti. Ímyndum okkur lofstein með massa $2.0\mathrm{kg}$ sem fellur til jarðar utan úr geimnum. Hver er heildarkrafturinn sem verkar á loftsteininn þegar hann hefur náð lokahraða? (A) $0\mathrm{N}$ (B) $0.98\mathrm{N}$ (C) $3.4\mathrm{N}$ (D) $9.8\mathrm{N}$ (E) $20\mathrm{N}$
K6.	Kúlu A er skotið með hraða 4,0 m/s á kúlu B sem er kyrr. Þegar A klessir á B endurkastast A með hraða 0,5 m/s í sömu stefnu og hún kom úr. Hvaða hraða fær B ef áreksturinn er alfjarðrandi og engir utanaðkomandi kraftar eru að verki? (A) 0,5 m/s (B) 3,5 m/s (C) 4,0 m/s (D) 4,5 m/s (E) 5,0 m/s
K7.	Á hlut A verkar kraftur F_A og á hlut B verkar kraftur F_B . Hlutur B hefur tvöfalt meiri massa en hlutur A og hröðun hlutar B er helmingi minni en hlutar A . Hvert af eftirtöldu er rétt fullyrðing um kraftana F_A og F_B ? (A) $F_B = \frac{1}{4}F_A$ (B) $F_B = \frac{1}{2}F_A$ (C) $F_B = F_A$ (D) $F_B = 2F_A$ (E) $F_B = 4F_A$
	(-) $ D$ 4 $ A$ $(-)$ $+$ D 2 $+$ A $(-)$ $+$ D $+$ A $(-)$ $+$ D $+$ A

K9. Tveir krakkar, Dagur og Hrólfur, leika sér með hringekju á leikvelli. Dagur stendur á ytri brún hringekjunnar á meðan Hrólfur ýtir honum í hringi með hornhraða 1,25 rad/s. Dagur er 50 kg og radíus hringekjunnar er 1,5 m. Hver er heildarkrafturinn sem verkar á Dag á hringhreyfingunni?

K8. Árið 2061 mun halastjarna Halleys sjást með berum augum frá jörðinni. Halastjarnan er á sporbraut um sólina og mun ljúka fjórðu umferð sinni um sólu frá því að Edmond Halley spáði fyrir um komu hennar fyrst, árið 1758. Þegar halastjarnan var síðast í nándarstöðu, árið 1986 mældist hún í fjarlægðinni $r_p = 0.59\,\mathrm{AU}$ frá sólu. Hver er mesta fjarlægðin, r_a , sem að halastjarna Halleys nær í firrðarstöðu, frá

 $(A) \ \ 25\, N \quad (B) \ \ 94\, N \quad (C) \ \ 117\, N \quad (D) \ \ 130\, N \quad (E) \ \ 146\, N$

K10. Bolta er hent beint upp í loft frá jörðu með hraða v_0 . Á hann verkar loftmótstaða. Í hvaða átt verkar krafturinn frá loftmótstöðunni þegar boltinn er á leiðinni upp, þegar hann er á leiðinni niður og er hraði boltans þegar hann lendir meiri, minni eða jafn v_0 ?

- (A) Upp, niður, meiri
- (B) Niður, upp, minni
- (C) Niður, upp, jafn
- (D) Upp, niður, minni
- (E) Niður, niður, jafn

- **K11.** Kassi með massa M rennur með hraða v_0 á láréttum fleti með núningsstuðul μ . Kassinn stoppar eftir vegalengd d. Ef öðrum kassa með massa 2M er rennt eftir sama fleti hver þarf hraði hans v að vera til að hann stoppi eftir sömu vegalengd d?
 - (A) v_0 (B) $\frac{v_0}{2}$ (C) $2v_0$ (D) $\sqrt{2}v_0$ (E) $\frac{v_0}{\sqrt{2}}$
- **K12.** Tveir íssleðar eru kyrrir við ráslínu og gera sig klára til kapps. Sleði 2 hefur tvöfaldan massa sleða 1. Marklínan er í 100 m fjarlægð frá ráslínunni og báðir sleðarnir fá jafnmikinn kraft alla leiðina. Hvor sleðanna kemst á undan í mark og hvor hefur meiri hreyfiorku þegar hann kemur í mark?
 - (A) Sleði 1 kemur á undan í mark og sleði 1 hefur meiri hreyfiorku þegar hann kemur í mark.
 - (B) Sleði 2 kemur á undan í mark og sleði 1 hefur meiri hreyfiorku þegar hann kemur í mark.
 - (C) Sleði 1 kemur á undan í mark og sleði 2 hefur meiri hreyfiorku þegar hann kemur í mark.
 - (D) Sleði 2 kemur á undan í mark og sleði 2 hefur meiri hreyfiorku þegar hann kemur í mark.
 - (E) Sleði 1 kemur á undan í mark og sleðarnir hafa jafn mikla hreyfiorku þegar þeir koma í mark.
 - (F) Sleði 2 kemur á undan í mark og sleðarnir hafa jafn mikla hreyfiorku þegar þeir koma í mark.
 - (G) Sleðarnir koma í mark á sama tíma og þeir hafa jafn mikla hreyfiorku þegar þeir koma í mark.
- **K13.** Reikistjarnan Júpíter hefur fjölmörg fylgitungl. Íó er eitt þeirra en þar er þyngdarhröðunin við yfirborðið aðeins $g_{\text{fó}} = 1.8 \, \text{m/s}^2$. Vantsmelóna er vigtuð hér á Jörðinni þar sem þyngdarhröðunin er $g = 9.8 \, \text{m/s}^2$ og mælist hún 44 N að þyngd. Hver væri massi vantsmenlónunnar ef hún væri flutt til Íó?
 - $(A) \ \ 24\,\mathrm{kg} \quad \ (B) \ \ 8.1\,\mathrm{kg} \quad \ (C) \ \ 80\,\mathrm{kg} \quad \ (D) \ \ 4.5\,\mathrm{kg} \quad \ (E) \ \ 2.5\,\mathrm{kg}$
- **K14.** Hlaupari hleypur 2 hringi á hlaupabraut. Meðalhraði hans fyrri hringinn er $12,0\,\mathrm{km/klst}$ en meðalhraðinn yfir allt hlaupið er $8,0\,\mathrm{km/klst}$. Hver var meðalhraðinn seinni hringinn?
 - $(A) \quad 2.0 \; km/klst \quad (B) \quad 3.0 \; km/klst \quad (C) \quad 4.0 \; km/klst \quad (D) \quad 5.0 \; km/klst \quad (E) \quad 6.0 \; km/klst$
- **K15.** Ljósgeisli fellur á fiskabúr undir 45° horni eins og sýnt er á myndinni. Glerið hefur brotstuðul $n_g = 1.52$ og vatn hefur brotstuðul $n_v = 1.33$. Hvað eru hornin θ_1 og θ_2 stór?
 - (A) $\theta_1 = 62.3^{\circ} \text{ og } \theta_2 = 31.7^{\circ}$
 - (B) $\theta_1 = 27.7^{\circ} \text{ og } \theta_2 = 32.1^{\circ}$
 - (C) $\theta_1 = 27.7^{\circ} \text{ og } \theta_2 = 62.3^{\circ}$
 - (D) $\theta_1 = 27.7^{\circ} \text{ og } \theta_2 = 58.3^{\circ}$
 - (E) $\theta_1 = 62.3^{\circ} \text{ og } \theta_2 = 58.3^{\circ}$

- **K16.** Ögn með litla jákvæða hleðslu +q og önnur ögn með talsvert stærri neikvæða hleðslu -Q sitja fastar í tiltekinni fjarlægð hvor frá annari eins og á myndinni hér fyrir ofan. Hvar myndirðu þurfa að koma lítilli ögn með jákvæða hleðslu fyrir til þess að hún væri í jafnvægi?
 - (A) Hægra megin við neikvæðu hleðsluna.
 - (B) Vinstra megin við jákvæðu hleðsluna.
 - (C) Milli hleðslanna, nær þeirri jákvæðu.
 - (D) Milli hleðslanna, nær þeirri neikvæðu.
 - (E) Nákvæmlega miðja vegu á milli hleðslanna.

K17. Lítum á rafrásina hér til hægri. Rásin er knúin áfram af 1,0 V rafhlöðu. Heildarstraumurinn í rásinni er 2,0 A. Viðnámin í rásinni eru af stærð x og $\frac{1}{x}$. Hvert er heildarviðnám rásarinnar?

(C) 1.0Ω

(D) 1.5Ω

(E) 2.0Ω

K18. Bolta er sleppt úr hæð h yfir jörðu. Í hæð y < h er búið að koma fyrir planka sem hallar um 45° miðað við lárétt þannig að boltinn skoppar lárétt af plankanum. Finnið y þannig að boltinn lendi í sem mestri láréttri fjarlægð frá plankanum. Gera má ráð fyrir að áreksturinn sé alfjaðrandi.

- (A) $\frac{1}{10}h$ (B) $\frac{1}{5}h$ (C) $\frac{1}{2}h$ (D) $\frac{1}{\sqrt{2}}h$ (E) Boltinn lendir alltaf á sama stað óháð y.
- K19. Járngerður og Stálgerður eru í kapphlaupi. Járngerður er mun betri að hlaupa og er með mikið forskot á Stálgerði. Sjúkrabíll kevrir framhjá Járngerði í átt að Stálgerði með sírenur í gangi. Hver af eftirfarandi fullyrðingum á alltaf við þegar sjúkrabíllinn er að keyra frá Járngerði að Stálgerði?
 - (A) Hljóðið berst fyrr til Stálgerðar en til Járngerðar.
 - (B) Hljóðið berst fyrr til Járngerðar en til Stálgerðar.
 - (C) Stálgerður heyrir dýpri tóna heldur en Járngerður.
 - (D) Stálgerður heyrir hærri tóna heldur en Járngerður.
 - (E) Járngerður og Stálgerður heyra sömu tóna.
- **K20.** Myndin sýnir tvær samsíða hlaðnar plötur með hleðsluþéttleika $\sigma = 1.0 \cdot 10^{-7} \, \text{C/m}^2$. Á milli platnanna er einnig einsleitt segulsvið sem stefnir inn í blaðið og hefur stærð $1,0 \cdot 10^{-2}$ T. Rafeind er skotið inn á milli platnanna með upphafshraða v samsíða x-ás. Hver þarf hraðinn v að vera til þess að rafeindin haldi sömu stefnu meðan hún ferðast milli platnanna?

(A) $1.13 \cdot 10^6 \,\mathrm{m/s}$

- (B) $2.26 \cdot 10^6 \,\mathrm{m/s}$
- (C) $8.85 \cdot 10^7 \,\mathrm{m/s}$
- (D) $1.13 \cdot 10^4 \,\mathrm{m/s}$
- (E) $2.26 \cdot 10^4 \,\mathrm{m/s}$

Dæmi 1: Gormkenndur árekstur (15 stig)

Kubbur með massa m_1 er festur í jafnvægisstöðu við gorm með gormstuðul k_1 . Gormurinn er síðan þjappaður saman um lengdina d. Kubburinn er þar losaður frá gorminum og síðan er honum sleppt. Hann rennur þá eftir núningslausa fletinum sem hann hvílir á þar til hann rekst á kyrrstæðan kubb með massa m_2 sem er festur við gorm með gormstuðul k_2 . Kubbarnir festast saman við áreksturinn.

- (a) (10 stig) Finnið mesta útslag gormsins, x, eftir áreksturinn sem fall af m_1, m_2, k_1, k_2 og d.
- (b) (5 stig) Finnið hreyfiorkuna sem tapast við áreksturinn sem fall af m_1, m_2, k_1, k_2, d og x.

Dæmi 2: Ævintýri kubbsins

(a) (5 stig) Kubbur með massa m rennur niður skábretti sem myndar horn θ miðað við lárétt. Hver er núningsstuðullinn μ milli kubbsins og skábrettisins ef kubburinn rennur niður með jöfnum hraða?

(b) (5 stig) Kubbnum er nú komið fyrir á framhlið vagns sem hefur hröðun a til hægri þegar kubbnum er sleppt úr kyrrstöðu. Núningsstuðullinn milli kubbsins og vagnsins er μ . Hvert er minnsta gildið á hröðuninni a þannig að kubburinn haldist í fastri hæð og detti ekki til jarðar?

(c) (5 stig) Kubbnum er komið fyrir á hreyfanlegu skábretti með massa M sem hallar um horn θ miðað við lárétt borð. Enginn núningur er á milli kubbsins og skábrettisins, né á milli skábrettisins og borðsins. Skábrettinu og kubbnum er sleppt úr kyrrstöðu og fastur kraftur F verkar á vinstri hlið skábrettisins. Hver þarf stærð kraftsins F að vera til þess að kubburinn haldist í fastri hæð yfir borðinu?

