

EXERCICE D'ORAL

ELECTROCINETIQUE

-EXERCICE 5.3-

• ENONCE :

« Calcul des éléments d'un montage à partir de la puissance »

Le montage ci-contre est alimenté par une tension sinusoïdale de valeur efficace $U=220\ V$, et de fréquence $f=50\ Hz$.

La résistance R est variable.

L'inductance a une valeur L=1,1H.

On note P la puissance moyenne dissipée dans le circuit.

- \bullet Pour $R=R_{\rm l}$ = $10~\Omega$, la valeur de P est maximale et vaut $P_{\rm M}$.
- \bullet Pour ${\it R}={\it R}_{\rm 2}$ (${\it R}_{\rm 2} \succ \! 10~\Omega$), le facteur de puissance vaut 1, et ${\it P}=1~kW$.

Calculer L_2, P_M, R_2 et C.

EXERCICE D' ORAL

ELECTROCINETIQUE

CORRIGE :

«Calcul des éléments d'un montage à partir de la puissance »

• L'intensité du courant \underline{I} traversant la branche (L_2,R) est égale à :

$$\underline{I} = \frac{\underline{U}}{R + jL_2\omega} \implies I = |\underline{I}| = \frac{\underline{U}}{\sqrt{R^2 + (L_2\omega)^2}} \implies P = RI^2 = U^2 \times \frac{R}{R^2 + (L_2\omega)^2}$$

• La puissance maximum est obtenue pour : $\frac{dP}{dR}\Big|_{R=R} = 0 \implies R_1^2 + (L_2\omega)^2 - R_1 \times 2R_1 = 0$; d'où :

$$L_2 = \frac{R_1}{\omega} = \frac{10}{2\pi \times 50} = 31,8 \ mH$$

 $L_2 = \frac{R_1}{\omega} = \frac{10}{2\pi \times 50} = 31.8 \ mH$ On en déduit : $P_M = \frac{U^2}{2R_1} = 2.42 \ kW$

• Pour $R = R_2$, on a: $P = U^2 \times \frac{R_2}{R_2^2 + (L_2\omega)^2} = U^2 \times \frac{R_2}{R_2^2 + R_1^2} \implies R_2^2 - \frac{U^2}{P} \times R_2 + R_0^2 = 0 \implies$

$$\boxed{R_2 = \frac{1}{2} \left[\frac{U^2}{P} + \sqrt{\left(\frac{U^2}{P} \right)^2 - 4R_1^2} \right] = 46, 2 \ \Omega} \qquad \qquad \text{Rq}: \ \text{la 2}^{\text{eme}} \ \text{solution vaut} \ \ 2,16 \ \Omega \succ 10 \ \Omega$$

• Le facteur de puissance vaut 1 : cela veut dire, en particulier, que l'admittance du dipôle est purement réelle (on choisit de travailler avec les admittances, car la structure du circuit est majoritairement de type parallèle). Ainsi :

$$\underline{Y} = jC\omega + \frac{1}{jL_1\omega} + \frac{1}{R_1 + jL_2\omega} = jC\omega - \frac{j}{L_1\omega} + \frac{R_2}{R_2^2 + R_1^2} - \frac{jR_1}{R_2^2 + R_1^2} \quad \text{(avec } R_1 = L_2\omega \text{)} \quad \Rightarrow \quad \underline{Y} \in \mathbb{R} \text{ ssi :}$$

$$C\omega - \frac{1}{L_1\omega} - \frac{R_1}{R_1^2 + R_2^2} = 0$$
 \Rightarrow $C = \frac{1}{\omega} \left(\frac{1}{L_1\omega} + \frac{R_1}{R_1^2 + R_2^2} \right) = 23,5\mu F$