

# CS 3251- Computer Networks 1: Mobility

Professor Patrick Traynor
11/12/13
Lecture 23

#### Announcements

- Project 4 has been posted
  - Due 11/26.
  - Trust me when I say that you'll want to start now...
- Homework 3 is due 11/19
  - That's one week away
- Start thinking about the final
  - Hey it's almost Thanksgiving!



## Last Time

- What is the hidden terminal problem?
- How do CDMA networks use spectrum differently than TDMA systems?
  - What is a chipping code?
- How is CSMA/CA different the CSMA/CD?

• If a manufacturer lists a range of 50m, what is the maximum range of a radio?



# Chapter 6 outline

#### 6. Introduction

#### Wireless

- 6.2 Wireless links, characteristics
  - CDMA
- 6.3 IEEE 802.11 wireless LANs ("wi-fi")
- 6.4 Cellular Internet Access
  - architecture
  - standards (e.g., GSM)

#### **Mobility**

- 6.5 Principles: addressing and routing to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higher-layer protocols
- 6.9 Summary

# What is mobility?

spectrum of mobility, from the network perspective:



# Mobility: Vocabulary

home network: permanent

"home" of mobile

(e.g., 128.119.40/24)

home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote



wide area network



Permanent address: address in home network, can always be used to reach mobile e.g., 128.119.40.186



# Mobility: more vocabulary



correspondent: wants to communicate with mobile

mobile.

# How do you contact a mobile friend:

Consider friend frequently changing addresses, how do you find her?

• search all phone books?

• call her parents?

expect her to let you know where he/she is?



I wonder where

# Mobility: approaches

- Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange.
  - routing tables indicate where each mobile located
  - no changes to end-systems
- Let end-systems handle it:
  - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
  - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

# Mobility: approaches

• Let routing handle it: routers advertise permanent address of mobile-nodes-in-resider sual routing table exchange.

mobiles

- routing tables ind scalable to millions of
- no changes to end
- let end-systems handle it:
  - indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote
  - direct routing: correspondent gets foreign address of mobile, sends directly to mobile

# Mobility: registration



#### End result:

- Foreign agent knows about mobile
- Home agent knows location of mobile

# Mobility via Indirect Routing



# Indirect Routing: comments

- Mobile uses two addresses:
  - permanent address: used by correspondent (hence mobile location is transparent to correspondent)
  - care-of-address: used by home agent to forward datagrams to mobile
- foreign agent functions may be done by mobile itself
- triangle routing: correspondent-home-network-mobile
  - inefficient when correspondent, mobile are in same network



## Indirect Routing: moving between networks

- suppose mobile user moves to another network
  - registers with new foreign agent
  - new foreign agent registers with home agent
  - home agent update care-of-address for mobile
  - packets continue to be forwarded to mobile (but with new care-of-address)
- mobility, changing foreign networks transparent: on going connections can be maintained!

# Mobility via Direct Routing



# Mobility via Direct Routing: comments

- overcome triangle routing problem
- non-transparent to correspondent: correspondent must get care-of-address from home agent
  - what if mobile changes visited network?



# Mobility with Direct Routing

- anchor foreign agent: FA in first visited network
- data always routed first to anchor FA
- when mobile moves: new FA arranges to have data forwarded from old FA (chaining)



# Chapter 6 outline

#### 6. Introduction

#### Wireless

- 6.2 Wireless links, characteristics
  - CDMA
- 6.3 IEEE 802.11 wireless LANs ("wi-fi")
- 6.4 Cellular Internet Access
  - architecture
  - standards (e.g., GSM)

#### **Mobility**

- 6.5 Principles: addressing and routing to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higher-layer protocols

6.9 Summary

### Mobile IP

- RFC 3344
- has many features we've seen:
  - home agents, foreign agents, foreign-agent registration, care-ofaddresses, encapsulation (packet-within-a-packet)
- three components to standard:
  - indirect routing of datagrams
  - agent discovery
  - registration with home agent

# Mobile IP: indirect routing



# Mobile IP: agent discovery

 agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9)



# Mobile IP: registration example



# Cellular Network Components



different cellular networks, operated by different providers

## Handling mobility in cellular networks

- home network: network of cellular provider you subscribe to (e.g., AT&T, Verizon)
  - home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network)
- visited network: network in which mobile currently resides
  - visitor location register (VLR): database with entry for each user currently in network
  - could be home network

# GSM: Indirect Routing to Mobile



# GSM: Handoff with Common MSC



- Handoff goal: route call via new base station (without interruption)
- reasons for handoff:
  - stronger signal to/from new BSS (continuing connectivity, less battery drain)
  - load balance: free up channel in current BSS
  - GSM doesn't mandate why to perform handoff (policy), only how (mechanism)
- handoff initiated by old BSS

# GSM: Handoff with Common MSC



- 1. old BSS informs MSC of impending handoff, provides list of 1<sup>+</sup> new BSSs
- 2. MSC sets up path (allocates resources) to new BSS
- 3. new BSS allocates radio channel for use by mobile
- 4. new BSS signals MSC, old BSS: ready
- 5. old BSS tells mobile: perform handoff to new BSS
- mobile, new BSS signal to activate new channel
- 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call
- 8 MSC-old-BSS resources released

# GSM: Handoff Between MSCs



(a) before handoff

- anchor MSC: first MSC visited during call
  - call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

# GSM: Handoff Between MSCs



anchor MSC: first MSC visited during cal

- call remains routed through anchor MSC
- new MSCs add on to end of MSC chain as mobile moves to new MSC
- IS-41 allows optional path minimization step to shorten multi-MSC chain

# Mobility: GSM versus Mobile IP

| GSM element                                                                              | Comment on GSM element                                                                                                                                                                                               | Mobile IP element |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Provider Network                                                                         | Network to which the mobile user's permanent phone number belongs                                                                                                                                                    | Home network      |
| Gateway Mobile<br>Switching Center, or<br>"home MSC". Home<br>Location Register<br>(HLR) | Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information | Home agent        |
| Visited System                                                                           | Network other than home system where mobile user is currently residing                                                                                                                                               | Visited network   |
| Visited Mobile services<br>Switching Center.<br>Visitor Location Record<br>(VLR)         | Visited MSC: responsible for setting up calls to/ from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user | Foreign agent     |
| Mobile Station Roaming<br>Number (MSRN), or<br>"roaming number"                          | Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent.                                                                                   | Care-of-address   |

## Wireless, mobility: impact on higher layer protocols

- logically, impact should be minimal ...
  - best effort service model remains unchanged
  - TCP and UDP can (and do) run over wireless, mobile
- ... but performance-wise:
  - packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff
  - TCP interprets loss as congestion, will decrease congestion window un-necessarily
  - delay impairments for real-time traffic
  - limited bandwidth of wireless links

# Chapter 6 Summary

#### Wireless

- wireless links:
  - capacity, distance
  - channel impairments
  - CDMA
- IEEE 802.11 ("wi-fi")
  - CSMA/CA reflects wireless channel characteristics
- cellular access
  - architecture
  - standards (e.g., GSM, CDMA-2000, UMTS)

#### **Mobility**

- principles: addressing, routing to mobile users
  - home, visited networks
  - direct, indirect routing
  - care-of-addresses
- case studies
  - mobile IP
  - mobility in GSM
- impact on higher-layer protocols

## **Next Time**

- Read Sections 8.1-8.2
  - Security!
- Get started on Homework 3 and Project 4!
- Start getting prepared for the final...

