Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number	Scheme	Marks	
1.	1.5 (93-91)= 1.5 (42-30) = 18	ВІС	oybe plied I for 12 k
	$30-18=12 \Rightarrow \text{no outlier below Q}$ $42+18=60 \Rightarrow \text{one outlier 65}$		6 65 on
		Box plot 30,34,42 60,65	AI
2.	a) $P(166 \le x \le 185) = P(\frac{166-177}{6 \cdot 4} \le Z \le \frac{185-177}{6 \cdot 4})$ $= P(\frac{awrt}{-1.72} \le Z \le 1.25)$	-6.43 M 1	A I
	approx 177/178cm;	Angtwo Sensible Comments	AI (4) BIL Ris (2)
	e) Sumplifies a real world problem; enables up to gour, quicker / chesper, some understanding of a real world problem		13 IL 3 19(2)
-	Alile- 20) of use continuity correction 0/4		

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number	Scheme	Marks
3	a) $P(Y=y) = V_6$ $y=1,2,3,4,5,6$.	B1 B1
	b) Discrete uniform distribution	Bi (i)
	c) $E(Y) = \frac{6+1}{2} = 3.5$	MI AI
	E(6Y+2) = 6E(Y) + 2 = 6x3.5 + 2 = 23	MI AIV
	d) $Var(Y) = \frac{7x5}{12} = \frac{35}{12} \text{ or } 2.92 \text{ or } 2.916$	MI AL
	· Vor (47-2)=16Vor(Y)=16X35=46-7	MI MI AIN For 16 no (s)
	a) accept 7 123456 B1	
	c) Eyp(y) = (1+2+3+6+5+6) *16 = 3.5 M1 A1	
	a) $\sum y^2 \cdot p(y) = y^2 = 9/2 - 3 - 5^2 = 2 - 92$ or $\frac{n^2 - 1}{12} = 2 \cdot 92$	
	Atiter e) 67+2 8 14 20 26 32 35 M1 A1	
	E(6742) = 8+14+20+26+32+28 = 138 = 23 MI A1	
	d) 44-2 2 6 10 14 18 22	
	E(44-2)= 2 -6+10414+18+22 = 72 MIAI	
	Vor(44-2) = 22+62+102+102+182+222 -122 =1144-122	MI ESS MI ESS - ES
	= 4623, 46.6, 46.7	Av

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number	Scheme	Marks
4.	a) P(admin) = 35/ = 7/ or 0-28	MI AI
	b) P(close/Monager) = 6/20 = 3/20 = 0.3	M1 A1 (2)
	20/25 Manager 0-1 M 20/25 Manager 0-1 M 235 125 Admin 0-6 M 14 - 70 M 25 125 Prod 0-8 M 0-2 M	Tree with correct brenches MI 20/125,35/25,79/25 AI AU correct AI (3) For Makin + Adkin + Aradia M
)	d) P(Marred) = 20 x0.9 + 35 x0.6 + 70 x0 125 125 125	\rightarrow
	e) P(Prod/Married) = 70/125 × 0.8	For used Bayes
	= 0.589 = 56	~ 0.59 A (3)

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Question number		Scheme	Marks
5	a)	Histogram - Fol's 5, 14, 49, 53, 15, 5, 2,	E
	P)	The variable (minimules delayed) is continuous	B1 (1)
	c)	Median = $9.5 + (100 - 92) \times 1$ if use 100.5	M1 100 er 100 · S
	-	= 9.65	A1 (2)
	\ \		•
	d)	midpt for for	
		5 75 375	
1	}	7-5 210 1575	
		9 441 3969	
		10 530 5300	
	j	343	
		18 180 3240	
			SC MI) to use
		Zfx=1991 Efx2=21366.5	Efx MI Investor
		Mean = 1991 = 9.955 = 9.96.	MI AI
		$S = \sqrt{\frac{21366.5}{200} - \left(\frac{19.9}{200}\right)^2}$	MI
		= 2.78 = 2ms 67500 (NB Sn-1 = 2.79)	A1 deper
	e	3(9.955-9.65) = 0.329 awrts	B MI AI
		2-78	(2)
	(2)	For normal distribution skewness is zero	BIL
	1'1	In this case the skewners is 0.329 inormal	BIS
-		may not be suitable	(2)

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683		Paper No. S1
Question number	Scheme	Marks
8.0		

5a

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6683

Paper No. S1

Question number	Scheme	Marks
6.	a) $S_{xx} = 65-68 - \frac{25^2}{10} = 3.18$	81
	Sxy = 130.64 - 25-01.50.0 = 5-64	BI
	Syy = 260.48 - 50.00 = 10.48	B 1
	b) p.m.c.c = Socy = S-64 \subsection \subsection \subseta \subsection \subsection \subsection \subsection \subsec	MIAINAI (2)
1	c) positive conclotion atosello bor a neon perfect correlation.	18 (1)
	d) $b = \frac{5xy}{3.18} = \frac{5.64}{3.18} = 1.77$	MI AIV
	$a = \bar{y} - b\bar{x} = (\frac{50}{10}) - 1.773 \cdot (\frac{25}{10})$	MI
	= 0-566	A1 (4)
	e) a=0.566 =) the cost of recondulationing unmediately offer it has been recondulated (ie no usa is £566	
	f)i) y= 0.560 + 1.77x2.4 = 4.814 1e f4814	MI AT
	ii) uncease is 1.77 ×1-5 = 2-655 1e increase of the	MIA!
	g) 4500 hours is well out of the range of ox values (25 = 3,0) and thus there is no enclarce	Bla
	that the model will opply	(2)

NB. F) if use 2400, not 2.4 or i) MO AD

ii) conget MIA I