PCT

YELTORGANISATION FÜR GEISTIGES EIGENTU Internationales Büro

INTERNATIONALE AMMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7: (11) Internationale Veröffentlichungsnummer: WO 00/12588 C08G 77/388, 18/28, 18/67, C08F 290/06, A61K 7/06 (43) Internationales Veröffentlichungsdatum: 9. März 2000 (09.03.00) (21) Internationales Aktenzeichen: PCT/EP99/06234 (81) Bestimmungsstaaten: CN, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, (22) Internationales Anmeldedatum: 25. August 1999 (25.08.99) MC, NL, PT, SE). (30) Prioritätsdaten: Veröffentlicht 198 38 852.7 26. August 1998 (26.08.98) DE Mit internationalem Recherchenbericht. 199 23 276.8 20. Mai 1999 (20.05.99) DE (71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): NGUYEN KIM, Son [DE/DE]; Zedernweg 9, D-69502 Hemsbach (DE). SANNER, Axel [DE/DE]; Lorscher Ring 2c, D-67227 Frankenthal (DE). SCHEHLMANN, Volker [DE/DE]: Ostring 12, D-67105 Schifferstadt (DE). (74) Anwälte: KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Ludwigsplatz 4, D-67059 Ludwigshafen (DE).

(54) Title: URETHANE(METH)ACRYLATES CONTAINING SILOXANE GROUPS AND ABLE TO UNDERGO FREE-RADICAL POLYMERISATION

(54) Bezeichnung: RADIKALISCH POLYMERISIERBARE, SILOXANGRUPPENHALTIGE URETHAN(METH)ACRYLATE UND POLYMERE AUF DEREN BASIS

(57) Abstract

The invention relates to urethane(meth)acrylates containing siloxane groups and able to undergo free-radical polymerization, which contain: a) at least one compound containing at least one active hydrogen atom and at least one α,β -ethylenically unsaturated double bond able to undergo free-radical polymerization per molecule; b) at least one diisocyanate; c) at least one compound which contains two active hydrogen atoms per molecule; and d) at least one compound containing at least one active hydrogen atom and at least one siloxane group per molecule. The invention also relates to water-soluble or water-dispersible polymers in which said urethane(meth)acrylates are incorporated by polymerisation, the use of said polymers and cosmetic agents containing said polymers.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft radikalisch polymerisierbare, siloxangruppenhaltige Urethan(meth)acrylate, welche a) wenigstens eine Verbindung, die mindestens ein aktives Wasserstoffatom und mindestens eine radikalisch polymerisierbare, α,β-ethylenisch ungesättigte Doppelbindung pro Molekül enthält, b) wenigstens ein Diisocyanat, c) wenigstens eine Verbindung, die zwei aktive Wasserstoffatome pro Molekül enthält, d) wenigstens eine Verbindung, die mindestens ein aktives Wasserstoffatom und mindestens eine Siloxangruppe pro Molekül enthält, eingebaut enthalten, wasserlösliche oder wasserdispergierbare Polymere, die diese Urethan(meth)acrylate einpolymerisiert enthalten, die Verwendung dieser Polymere sowie kosmetische Mittel, die diese Polymere enthalten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
Armenien	FI	Finnland	LT	. Litauen		Slowakei
Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldan	TG	Togo
Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
	GR	Griechenland		Republik Mazedonien	TR	Türkei
	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
	IE	Irland	MN	Mongolei	UA	Ukraine
Brasilien	IL	Israel	MR	Mauretanien	υG	Uganda
Belanis	IS	Island	MW	Malawi	US	Vereinigte Staaten von
Kanada	IT	Italien	MX	Mexiko		Amerika
Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
	KE	Kenia	NL	Niederlande	VN	Vietnam
		Kirgisistan	NO	Norwegen	YU	Jugoslawien
			NZ	Neuseeland	zw	Zimbabwe
		Korea	PL	Polen		
	KR	Republik Korea	PT	Portugal		
		Kasachstan	RO	Rumānien		
		St. Lucia	RU	Russische Föderation		
		Liechtenstein	SD	Sudan		
			SE	Schweden		
Estland	LR	Liberia	SG			
	Armenien Osterreich Australien Aserbaidschan Bosnien-Herzegowina Barbados Belgien Burkina Faso Bulgarien Benin Brasilien Belarus Kanada Zentralafrikanische Republik Kongo Schweiz Cöte d'Ivoire Kamerun China Kuba Tschechische Republik Deutschland Danemark	Armenien FI Osterreich FR Australien GA Aserbaidschan GB Bosnien-Herzegowina GE Barbados GH Belgien GN Burkina Faso GR Bulgarien HU Benin IE Brasilien IL Besaris IS Kanada IT Zentralafrikanische Republik JP Kongo Schweiz KG Côte d'Ivoire KP Kamerun China KR Kuba KZ Tschechische Republik LC Deutschland LI Danemark LK	Armenien Osterreich FI Finnland Osterreich FR Frankreich GA Gabun Aserbaidschan GB Vereinigtes Königreich Bosnien-Herzegowina GE Georgien Burbados GH Ghana Belgien GN Guinea Burkina Faso GR Griechenland Bulgarien HU Ungarn Benin IE Irland Brasilien IL Israel Belarus IS Island Kanada IT Italien Zentralafrikanische Republik J Japan Kongo KE Kenia Schweiz KG Kirgisistan Cöte d'Ivoire KP Demokratische Volksrepublik Kamerun China KR Republik Korea Kuba KZ Kasachstan Tschechische Republik LC St. Lucia Deutschland LI Liechtenstein Damemark LK Sri Lanka	Amenien FI Finnland LT Osterreich FR Frankreich LU Australien GA Gabun LV Aserbaidschan GB Vereinigtes Königreich MC Bosnien-Herzegowina GE Georgien MD Barbados GH Ghana MG Belgien GN Guinea MK Burloia Faso GR Griechenland MK Bulgarien HU Ungarn ML Benin IE Irland MN Brasilien IL Israel MR Belarus IS Island MW Kanada IT Italien MX Zentralafrikanische Republik JP Japan NE Kongo KE Kenia NL Schweiz KG Kirgisistan NL Côte d'Ivoire KP Demokratische Volksrepublik NZ Kuba KZ Kasachstan RO	Armenien FI Finnland LT Litauen Osterreich FR Frankreich LU Luxemburg Australien GA Gabun LV Lettland Aserbaldschan GB Vereinigtes Königreich MC Monaco Bosnien-Herzegowina GE Georgien MD Republik Moldau Barbados GH Ghana MG Madagaskar Belgien GN Guinea MK Die ehemalige jugoslawische Burkina Faso GR Griechenland MR Die ehemalige jugoslawische Burkina Faso HU Ungarn ML Mali Benin IE Irland MN Mongolei Brasilien IL Israel MR Mauretanien Belarus IS Island MW Malawi Kanada IT Italien MX Mexiko Zentralafrikanische Republik J Japan NE Niger Kongo KE Kenia NL Niederlande Schweiz KG Kirgisistan NO Norwegen Côte d'Ivoire KP Demokratische Volksrepublik NZ Neusseeland Kamerun Korea PL Poten China KR Republik KC Sc. Lucia RU Russische Föderation Deutschland LI Liechtenstein SD Sudan	Amenien

WO 00/12588 PCT/EP99/06234

Radikalisch polymerisierbare, siloxangruppenhaltige Urethan(meth)acrylate und Polymere auf deren Basis

5 Beschreibung

Die vorliegende Erfindung betrifft radikalisch polymerisierbare, siloxangruppenhaltige Urethan(meth)acrylate, wasserlösliche oder wasserdispergierbare Polymere, die diese einpolymerisiert enthal10 ten, die Verwendung dieser Polymere sowie kosmetische Mittel, die diese Polymere enthalten.

In der Kosmetik werden Polymere mit filmbildenden Eigenschaften zur Festigung, Strukturverbesserung und Formgebung der Haare ver-15 wendet. Diese Haarbehandlungsmittel enthalten im Allgemeinen eine Lösung des Filmbildners in einem Alkohol oder einem Gemisch aus Alkohol und Wasser.

Haarfestigungsmittel werden im Allgemeinen in Form von wässrig20 alkoholischen Lösungen auf die Haare aufgesprüht. Nach dem Verdampfen des Lösungsmittels werden die Haare an den gegenseitigen
Berührungspunkten vom zurückbleibenden Polymer in der gewünschten
Form gehalten. Die Polymere sollen einerseits so hydrophil sein,
dass sie aus dem Haar ausgewaschen werden können, andererseits

25 aber sollen sie hydrophob sein, damit die mit den Polymeren behandelten Haare auch bei hoher Luftfeuchtigkeit ihre Form behalten und nicht miteinander verkleben. Um eine möglichst effiziente Haarfestigerwirkung zu erzielen, ist es außerdem wünschenswert, Polymere einzusetzen, welche ein relativ hohes Molekulargewicht 30 und eine relativ hohe Glastemperatur (mindestens 15°C) besitzen.

Bei der Formulierung von Haarfestigern ist außerdem zu berücksichtigen, dass aufgrund der Umweltbestimmungen zur Kontrolle der Emission flüchtiger organischer Verbindungen (VOC = volatile or-35 ganic compounds) in die Atmosphäre eine Verringerung des Alkoholund Treibmittelgehalts erforderlich ist.

Ein weiterer aktueller Anspruch an Haarbehandlungsmittel ist es, dem Haar ein natürliches Aussehen und Glanz zu verleihen, z.B. 40 auch dann, wenn es sich um von Natur aus besonders kräftiges und/ oder dunkles Haar handelt.

Es ist bekannt, Polysiloxane und Polysiloxanderivate, die nicht kovalent an ein Festigerpolymer gebunden sind, als Weichmacher-45 komponente in Haarpflegemitteln einzusetzen. Da Siliconöle und Polysiloxanderivate mit Festigerpolymeren, die allgemein polare Gruppen enthalten, unverträglich sind, erfordert die Herstellung 2

stabiler Formulierungen im Allgemeinen den Zusatz weiterer Hilfsstoffe. Häufig kommt es dennoch zu Entmischungen während der Lagerung oder nach Anwendung der Produkte auf den Haaren. Der Anwendungsbereich derartiger Formulierungen ist daher stark eingeschränkt. Um die nachteilige Entmischung zu verhindern, sind Versuche unternommen worden, Polysiloxangruppen kovalent an das
Festigerpolymer zu binden.

Die WO-A-97/00664 beschreibt wässrige Nagellacke, die ein vernetztes Acrylharz auf Basis von difunktionellen UrethanacrylatOligomeren enthalten. Die mit diesen Harzen erhaltenen Verfilmungen sind weder wasserlöslich noch in Wasser redispergierbar. Eine
Verwendung in der Haarkosmetik, insbesondere als Festigerpolymer,
wird in diesem Dokument nicht beschrieben. Auch der Einsatz von
15 siloxangruppenhaltigen Urethanacrylaten wird nicht beschrieben.

Die EP-A-408 311 beschreibt die Verwendung Copolymers, das a) ein ethylenisch ungesättigtes, hydrophiles Monomer, b) ein ethylenisch ungesättigtes Monomeren mit Polysiloxangruppen und c) ein ethylenisch ungesättigtes, hydrophobes Monomer eingebaut enthält, in Haarpflegeprodukten.

Die EP-A-412 704 beschreibt ein Haarpflegemittel auf Basis eines Pfropfcopolymers, welches monovalente Siloxan-Polymereinheiten an 25 einem Rückgrat auf Basis eines Vinylpolymers aufweist.

Die WO 93/03703 beschreibt eine Haarsprayzusammensetzung, umfassend: a) ein oberflächenaktives Mittel, b) ein ionisches Harz mit einem zahlenmittleren Molekulargewicht von mindestens 300 000 und 30 c) einen flüssigen Träger. Dabei kann es sich bei dem ionischen Harz um die in der EP-A-412 704 beschriebenen Pfropfcopolymere handeln.

Die EP-A-362 860 beschreibt Alkohol-modifizierte Siliconesterde-35 rivate und kosmetische Zusammensetzungen, die diese enthalten.

Keine dieser Publikationen beschreibt Festigerpolymere auf Basis von α,β -ethylenisch ungesättigten Polyurethanen, die zusätzlich wenigstens eine Siloxangruppe aufweisen.

Es ist bekannt, Polyurethane mit filmbildenden Eigenschaften in der Kosmetik einzusetzen. So beschreiben die DE-A-42 25 045 und die WO 94/03515 die Verwendung von wasserlöslichen oder in Wasser dispergierbaren, anionischen Polyurethanen als Haarfestiger. Die DE-A-42 41 118 beschreibt die Verwendung von kationischen Polyurethanen und Polyharnstoffen als Hilfsmittel in kosmetischen und pharmazeutischen Zubereitungen. Diese Polyurethane umfassen keine

Polysiloxangruppen und können die Anforderungen an Haarfestigerpolymere nur teilweise erfüllen. So ist z.B. die Geschmeidigkeit des Haares verbesserungswürdig.

5 Die EP-A-492 657 beschreibt ein kosmetischen Mittel zur Verwendung in Haut- und Haarpflegeprodukten, welches ein lineares Polysiloxan-Polyoxyalkylen-Blockcopolymer enthält.

Die EP-A-0 389 386 beschreibt Blockcopolymere, die ein Polysilo-10 xandiol, einen Blockcopolyester und ein Diisocyanat eingebaut enthalten. Sie eignen sich zur kontrollierten Freigabe aktiver Inhaltsstoffe.

Die EP-A-277 816 beschreibt Polydimethylsiloxane mit zwei Hydro-15 xylgruppen an einem Kettenende und einer Trimethylsilylgruppe am anderen, der allgemeinen Formel

- 25 worin R für Wasserstoff, Methyl oder Ethyl steht und n für einen Wert von 0 bis 4 000 steht, sowie damit modifizierte Polyurethane. Die Herstellung dieser siloxanmodifizierten Polyurethane erfolgt durch Polykondensation der Polysiloxane der obigen Formel mit Polyurethanpräpolymeren, die zwei oder mehrere Isocyanatgrup-
- 30 pen aufweisen. Radikalisch polymerisierbare siloxangruppenhaltige Polyurethane und Polymere, die diese einpolymerisiert enthalten, werden nicht beschrieben. Eine Anwendung der modifizierten Polyurethane in der Haarkosmetik wird auch nicht beschrieben.
- 35 Die EP-A-636 361 beschreibt eine kosmetische Zusammensetzung, welche in einem Träger mindestens einen Pseudolatex auf Basis eines Polykondensates umfasst, das mindestens eine Polysiloxaneinheit und mindestens eine Polyurethan- und/oder Polyharnstoffeinheit mit anionischen oder kationischen Gruppen enthält. Diese Po-
- 40 lykondensate weisen keine radikalisch polymerisierbare, α,β -ethylenisch ungesättigte Doppelbindung auf und werden auch nicht zur Siliconmodifizierung anderer Polymere eingesetzt. Die Auswaschbarkeit dieser Filmbildner ist nicht zufriedenstellend. Zudem besitzen sie aufgrund eines hohen Siloxananteils auch nicht die für
- 45 ein Haarpolymer erforderliche Festigungswirkung.

WO 00/12588 PCT/EP99/06234

Die WO 97/25021 hat einen der EP-A-0 636 361 vergleichbaren Offenbarungsgehalt.

Die EP-A-751 162 beschreibt die Verwendung von Polykondensaten 5 mit Polyurethan- und/oder Harnstoffeinheiten und einkondensierten Polysiloxaneinheiten oder aufgepfropften Polysiloxan-Seitenketten zur Herstellung von kosmetischen oder dermatologischen Zusammensetzungen. Die eingesetzten Komponenten entsprechend im Wesentlichen den in der EP-A-636 361 beschriebenen.

Die EP-A-0 705 594 beschreibt ein kosmetisches Mittel, das eine wäßrige Dispersion eines Filmbildnerpolymers und eine wasserlösliche oder wasserdispergierbare Siliconzusammensetzung enthält. Dabei kann es sich bei dem Filmbildnerpolymer um ein Polyurethan oder einen Polyharnstoff handeln.

Die DE-A-195 24 816 beschreibt hydroxylierte Siloxanblockcopolymere, die Siloxan- und Kohlenwasserstoffsegmente enthalten, welche über hydroxylierte Kohlenwasserstoffstrukturen verknüpft 20 sind.

Die DE-A-195 41 326 und die WO 97/17386 beschreiben wasserlösliche oder wasserdispergierbare Polyurethane mit endständigen Säuregruppen. Zu ihrer Herstellung wird ein Polyurethanpräpolymer

25 mit endständigen Isocyanatgruppen mit einer Aminosulfonsäure oder Aminocarbonsäure umgesetzt. Dabei können die Polyurethanpräpolymere auch Siloxanverbindungen mit zwei gegenüber Isocyanatgruppen reaktiven Gruppen einkondensiert enthalten, wobei die Publikation jedoch kein Beispiel für ein entsprechendes Polyurethanpräpolymer 30 enthält.

Die DE-A-195 41 658 beschreibt wasserlösliche oder wasserdispergierbare Pfropfcopolymere aus einem Polyurethanpräpolymer mit endständigen Isocyanatgruppen und einem Aminogruppen enthaltenden 35 Protein, wobei das Präpolymer auch Siloxangruppen eingebaut enthalten kann.

Radikalisch polymerisierbare, siloxangruppenhaltige Polyurethane und Polymere, die diese einpolymerisiert enthalten, werden in den 2 uvor genannten Dokumenten nicht beschrieben.

Die EP-A-687 459 beschreibt Haarbehandlungsmittel auf Basis einer wässrigen Polymerdispersion, die durch radikalische Pfropfcopolymerisation eines monoethylenisch ungesättigten Siloxanmakromonomers und wenigstens eines Polymers erhältlich ist, wobei es sich um Polyester oder Polyesteramide handeln kann. Radikalisch ungesättigte, siloxangruppenhaltige Polyurethane sind nicht beschrie-

ben. Auch eine Umsetzung der monoethylenisch ungesättigten Silo- xanmakromere mit weiteren, α,β -ethylenisch ungesättigten Komponenten ist nicht beschrieben.

5 Die EP-A-687 462 und die US-A-5,650,159 besitzen einen der EP 687 459 vergleichbaren Offenbarungsgehalt, wobei es sich bei den Polymeren, die mit den Siloxanmakromonomeren pfropfcopolymerisiert werden, um Polyurethane und/oder Polyharnstoffe handeln kann.

10

Die WO 95/00108 beschreibt flüssige Haarbehandlungsmittel auf Basis von Pfropfcopolymeren aus einem Vinylpolymer-Rückgrat und darauf aufgepfropften siliconhaltigen Macromeren. Das Vinylcopolymer-Rückgrat besteht dabei aus einem hydrophilen carbonsaure-haltigen Monomer und gegebenenfalls einem lipophilen Monomer. Siliconhaltige Macromere, die Diisocyanate eingebaut enthalten, sind in diesem Dokument nicht beschrieben.

Die US-A-5,162,472 beschreibt siliconhaltige Polymere, erhältlich durch radikalische Polymerisation eines vinylsiliconhaltigen Monomers, wobei es sich um (Meth)acrylsäureester von Siloxanpolyolen oder um Vinylsiliconurethane auf Basis von Benzol-1-(1-isocyanato-1-methylethyl)-3-(1-(methyl)ethinyl) handeln kann. Radikalisch polymerisierbare siloxangruppenhaltige Polymere auf Basis von Diisocyanaten sind nicht beschrieben.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue, radikalisch polymerisierbare, siloxangruppenhaltige Urethan(meth)acrylate zur Verfügung zu stellen. Diese sollen sich zur Herstellung von siloxanmodifizierten Polymeren durch radikalische Polymerisation eignen. Vorzugsweise sollen die dabei resultierenden siloxanmodifizierten Polymere als Haarbehandlungsmittel geeignet sein. Insbesondere sollen diese Haarbehandlungsmittel einerseits als Haarfestiger brauchbar sein, andererseits aber auch eine gute Auswaschbarkeit (Redispergierbarkeit) besitzen.

Überraschenderweise wurde nun gefunden, dass die Aufgabe durch radikalisch polymerisierbare, siloxangruppenhaltige Ure40 than(meth)acrylate gelöst wird, die wenigstens eine Verbindung mit mindestens einem aktiven Wasserstoffatom und mindestens einer radikalisch polymerisierbaren, α,β-ethylenisch ungesättigten Doppelbindung, wenigstens ein Diisocyanat, wenigstens eine Verbindung mit 2 aktiven Wasserstoffatomen pro Molekül und wenigstens eine Verbindung mit wenigstens einer Siloxangruppe pro Molekül eingebaut enthalten.

WO 00/12588 PCT/EP99/06234

Gegenstand der vorliegenden Erfindung sind daher radikalisch polymerisierbare, siloxangruppenhaltige Urethan(meth)acrylate, die

a) wenigstens eine Verbindung, die mindestens ein aktives Wasserstoffatom und mindestens eine radikalisch polymerisierbare, α,β -ethylenisch ungesättigte Doppelbindung pro Molekül enthält,

b) wenigstens ein Diisocyanat,

10

- c) wenigstens eine Verbindung, die zwei aktive Wasserstoffatome pro Molekül enthält,
- d) wenigstens eine Verbindung, die mindestens ein aktives Wasserstoffatom und mindestens eine Siloxangruppe pro Molekül enthält,

eingebaut enthalten, und die Salze davon.

- 20 Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck "Urethan(meth)acrylate" auch Verbindungen, die Harnstoffgruppen statt oder zusätzlich zu den Urethangruppen aufweisen. Harnstoffgruppen resultieren bei der Umsetzung einer Isocyanatgruppe mit einer primären oder sekundären Aminogruppe. Zur Herstellung von Ure-
- 25 than(meth)acrylaten mit Harnstoffgruppen können Komponenten mit aktiven Wasserstoffatomen a), c) und/oder d) sowie gegebenenfalls e) und/oder f) eingesetzt werden, die wenigstens eine Verbindung mit mindestens einer primären und/oder sekundären Aminogruppe enthalten.

30

- Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck C_1 bis C_{30} -'Alkyl' geradkettige und verzweigte Alkylgruppen. Geeignete kurzkettige Alkylgruppen sind z. B. geradkettige oder verzweigte C_1 - C_8 -Alkyl-, bevorzugt C_1 - C_6 -Alkyl- und besonders bevorzugt
- 35 C₁-C₄-Alkylgruppen. Dazu zählen insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Di-
- 40 methylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl,
 1-Propylbutyl, Octyl etc.

45

7

Geeignete längerkettige C₈- bis C₃₀-Alkyl- bzw. C₈- bis C₃₀-Alkylengruppen sind geradkettige und verzweigte Alkyl- bzw. Alkylengruppen. Bevorzugt handelt es sich dabei um überwiegend lineare Alkylreste, wie sie auch in natürlichen oder synthetischen Fettsäuren und Fettalkoholen sowie Oxoalkoholen vorkommen, die gegebenenfalls zusätzlich einfach, zweifach oder mehrfach ungesättigt sein können. Dazu zählen z. B. n-Hexyl(en), n-Heptyl(en), n-Octyl(en), n-Nonyl(en), n-Decyl(en), n-Undecyl(en), n-Dodecyl(en), n-Tridecyl(en), n-Tetradecyl(en), n-Pentadecyl(en), n-Hexade10 cyl(en), n-Heptadecyl(en), n-Octadecyl(en), n-Nonadecyl(en) etc.

Bei der C_5 - bis C_8 -Cycloalkylgruppe handelt es sich z. B. um Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl.

15 Im Folgenden werden Verbindungen, die sich von Acrylsäure und Methacrylsäure ableiten können teilweise verkürzt durch Einfügen der Silbe "(meth)" in die von der Acrylsäure abgeleitete Verbindung bezeichnet.

20 Komponente a)

Geeignete Verbindungen a) sind z.B. die üblichen, dem Fachmann bekannten Vinylverbindungen, die zusätzlich wenigstens eine gegenüber Isocyanatgruppen reaktive Gruppe aufweisen, die vorzugs-25 weise ausgewählt ist unter Hydroxylgruppen sowie primären und sekundären Aminogruppen. Dazu zählen z. B. die Ester α,β-ethylenisch ungesättigter Mono- und Dicarbonsäuren mit mindestens zweiwertigen Alkoholen. Als α,β-ethylenisch ungesättigte Mono- und/ oder Dicarbonsäuren können z. B. Acrylsäure, Methacrylsäure, Fu-30 marsäure, Maleinsäure, Crotonsäure, Itaconsäure etc. und Gemische davon eingesetzt werden. Geeignete Alkohole sind übliche Diole, Triole und Polyole, z. B. 1,2-Ethandiol, 1,3-Propandiol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,10-Decandiol, Diethylenglykol, 2,2,4-Trimethylpentandiol-1,5, 2,2-Dimethylpropan-35 diol-1,3, 1,4-Dimethylolcyclohexan, 1,6-Dimethylolcyclohexan, Glycerin, Trimethylolpropan, Erythrit, Pentaerythrit, Sorbit etc. Bei den Verbinden a) handelt es sich dann z. B. um Hydroxymethyl(meth)acrylat, Hydroxyethylethacrylat, 2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypro-40 pyl(meth)acrylat, 3-Hydroxybutyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6-Hydroxyhexyl(meth)acrylat, 3-Hydroxy-2-ethylhexyl(meth)acrylat sowie um Di(meth)acrylsäureester des 1,1,1-Trimethylolpropans oder des Glycerins.

45 Geeignete Monomere a) sind weiterhin die Ester und Amide der zuvor genannten α,β -ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C_2 - bis C_{12} -Aminoalkoholen, die eine primäre oder sekun-

däre Aminogruppe aufweisen. Dazu zählen Aminoalkylacrylate und Aminoalkylmethacrylate und deren N-Monoalkylderivate, die z. B. einen N-C₁- bis C₈-Monoalkylrest tragen, wie Aminomethyl(meth)acrylat, Aminoethyl(meth)acrylat, N-Methylaminomethyl(meth)acrylat, N-Ethylaminomethyl(meth)acrylat, N-Ethylaminoethyl(meth)acrylat, N-Isopropylaminomethyl(meth)acrylat und bevorzugt tert.-Butylaminoethylacrylat und tert.-Butylaminoethylmethacrylat. Dazu zählen weiterhin N-(Hydroxy-C₁- bis C₁₂-alkyl)(meth)acrylamide, wie N-Hy-10 droxymethyl(meth)acrylamid, N-Hydroxyethyl(meth)acrylamid etc.

Geeignete Monomere a) sind auch die Amide der zuvor genannten α,βethylenisch ungesättigten Mono- und Dicarbonsäuren mit Di- und
Polyaminen, die mindestens zwei primäre oder zwei sekundäre oder

15 eine primäre und eine sekundäre Aminogruppe(n) aufweisen. Dazu
zählen z. B. die entsprechenden Amide der Acrylsäure und Methacrylsäure, wie Aminomethyl(meth)acrylamid, Aminoethyl(meth)acrylamid, Aminopropyl(meth)acrylamid, Amino-n-butyl(meth)acrylamid,
Methylaminoethyl(meth)acrylamid, Ethylaminoethyl(meth)acrylamid,

20 Methylaminopropyl(meth)acrylamid, Ethylaminopropyl(meth)acrylamid, Methylamino-n-butyl(meth)acrylamid etc.

Geeignete Monomere a) sind auch die Reaktionsprodukte von Epoxidverbindungen, die mindestens eine Epoxidgruppe aufweisen, mit den zuvor genannten α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäuren und deren Anhydriden. geeignete Epoxidverbindungen sind z. B. Glycidylether, wie Bisphenol-A-diglycidylether, Resorcindiglycidylether, 1,3-Propandioldiglycidylether, 1,4-Butandioldiglycidylether, 1,5-Pentandioldiglycidylether, 1,6-Hexandioldig-

Komponente b)

Bei der Komponente b) handelt es sich um übliche aliphatische,
35 cycloaliphatische und/oder aromatische Diisocyanate, wie Tetramethylendiisocyanat, Hexamethylendiisocyanat, Methylendiphenyldiisocyanat, 2,4- und 2,6-Toluylendiisocyanat und deren Isomerengemische, o- und m-Xylylendiisocyanat, 1,5-Naphthylendiisocyanat,
1,4-Cyclohexylendiisocyanat, Dicyclohexylmethandiisocyanat und
40 Mischungen davon. Bevorzugt handelt es sich bei der Komponente b)
um Hexamethylendiisocyanat, Isophorondiisocyanat, o- und m-Xylylendiisocyanat, Dicyclohexylmethandiisocyanat und Mischungen davon. Gewünschtenfalls können bis zu 3 Mol-% der genannten Verbindungen durch Triisocyanate ersetzt sein.

45

Komponente c)

Geeignete Verbindungen der Komponente c) sind z.B. Diole, Diamine, Aminoalkohole, und Mischungen davon. Das Molekulargewicht dieser Verbindungen liegt vorzugsweise in einem Bereich von etwa 56 bis 280. Gewünschtenfalls können bis zu 3 Mol-% der genannten 5 Verbindungen durch Triole oder Triamine ersetzt sein.

Geeignete Diole c) sind z. B. Ethylenglykol, Propylenglykol, Butylenglykol, Neopentylglykol, Cyclohexandimethylol, Di-, Tri-, Tetra-, Penta- oder Hexaethylenglykol und Mischungen davon. Be-10 vorzugt werden Neopentylglykol und/oder Cyclohexandimethylol eingesetzt.

Geeignete Aminoalkohole c) sind z. B. 2-Aminoethanol, 2-(N-Methylamino)ethanol, 3-Aminopropanol, 4-Aminobutanol, 1-Ethylaminobutan-2-ol, 2-Amino-2-methyl-1-propanol, 4-Methyl-4-aminopentan-2-ol etc.

Geeignete Diamine c) sind z. B. Ethylendiamin, Propylendiamin, 1,4-Diaminobutan, 1,5-Diaminopentan und 1,6-Diaminohexan.

Bevorzugte Verbindungen der Komponente c) sind Polymerisate mit einem zahlenmittleren Molekulargewicht im Bereich von etwa 300 bis 5 000, bevorzugt etwa 400 bis 4 000, insbesondere 500 bis 3 000. Dazu zählen z. B. Polyesterdiole, Polyetherole, α,ω-Diaminopolyether und Mischungen davon. Vorzugsweise werden ethergruppenhaltige Polymerisate eingesetzt.

Bei den Polyetherolen c) handelt es sich vorzugsweise um Polyalkylenglykole, z.B. Polyethylenglykole, Polypropylenglykole, Po-30 lytetrahydrofurane etc., Blockcopolymerisate aus Ethylenoxid und Propylenoxid oder Blockcopolymerisate aus Ethylenoxid, Propylenoxid und Butylenoxid, die die Alkylenoxideinheiten statistisch verteilt oder in Form von Blöcken einpolymerisiert enthalten.

35 Geeignete α,ω -Diaminopolyether c) sind z. B. durch Aminierung von Polyalkylenoxiden mit Ammoniak herstellbar.

Geeignete Polytetrahydrofurane c) können durch kationische Polymerisation von Tetrahydrofuran in Gegenwart von sauren Katalysa40 toren, wie z. B. Schwefelsäure oder Fluoroschwefelsäure, hergestellt werden. Derartige Herstellungsverfahren sind dem Fachmann bekannt.

Brauchbare Polyesterdiole c) weisen vorzugsweise ein zahlenmitt-45 leres Molekulargewicht im Bereich von etwa 400 bis 5 000, bevorzugt 500 bis 3 000, insbesondere 600 bis 2 000, auf.

PCT/EP99/06234 WO 00/12588

10

Als Polyesterdiole kommen alle diejenigen in Betracht, die üblicherweise zur Herstellung von Polyurethanen eingesetzt werden. insbesondere solche auf Basis aromatischer Dicarbonsäuren, wie Terephthalsäure, Isophthalsäure, Phthalsäure, Na- oder K-Sulfo-5 isophthalsäure etc., aliphatischer Dicarbonsäuren, wie Adipinsäure oder Bernsteinsäure etc., und cycloaliphatischer Dicarbonsäuren, wie 1,2-, 1,3- oder 1,4-Cyclohexandicarbonsäure. Als Diole kommen insbesondere aliphatische Diole in Betracht, wie Ethylenglykol, Propylenglykol, 1,6-Hexandiol, Neopentylglykol, 10 Diethylenglykol, Polyethylenglykole, Polypropylenglykole, 1,4-Dimethylolcyclohexan, sowie Poly(meth)acrylatdiole der Formel

$$HO \xrightarrow{\begin{array}{c} R' \\ | \\ C \\ | \\ COOR'' \end{array}} OH$$

15

worin R' für H oder CH3 steht und R'' für C1-C18-Alkyl (insbesondere C_1 - C_{12} - oder C_1 - C_8 -Alkyl) steht, die eine Molmasse von bis zu 20 etwa 3000 aufweisen. Derartige Diole sind auf übliche Weise herstellbar und im Handel erhältlich (Tegomer®-Typen MD, BD und OD der Fa. Goldschmidt).

Bevorzugt sind Polyesterdiole auf Basis von aromatischen und ali-25 phatischen Dicarbonsäuren und aliphatischen Diolen, insbesondere solche, bei denen die aromatische Dicarbonsäure 10 bis 95 Mol-%, insbesondere 40 bis 90 Mol-% und bevorzugt 50 bis 85 Mol-%, des gesamten Dicarbonsäureanteils (Rest aliphatische Dicarbonsäuren) ausmacht.

30

Besonders bevorzugte Polyesterdiole sind die Umsetzungsprodukte aus Phthalsäure/Diethylenglykol, Isophthalsäure/1,4-Butandiol, Isophthalsäure/Adipinsäure/1,6-Hexandiol, 5-NaSO3-Isophthalsäure/ Phthalsäure/Adipinsäure/1,6-Hexandiol, Adipinsäure/Ethylenglykol, 35 Isophthalsäure/Adipinsäure/Neopentylglykol, Isophthalsäure/Adipinsäure/Neopentylglykol/Diethylenglykol/Dimethylolcyclohexan und 5-NaSO3-Isophthalsäure/Isophthalsäure/Adipinsäure/Neopentylglykol/ Diethylenglykol/Dimethylolcyclohexan.

40 Die Verbindungen der Komponente c) können einzeln oder als Mischungen eingesetzt werden.

Komponente d)

- 45 Bevorzugt ist die Komponente d) ausgewählt unter:
 - Polysiloxanen der allgemeinen Formel I.1

$$z^{1} - (CH_{2})_{a} = \begin{bmatrix} R^{1} & & & \\ & & & \\ & & & \\ Si - & & \\ & & & \\ R^{2} & & & \\ & &$$

worin

a und b unabhängig voneinander für 2 bis 8 stehen,

c für 3 bis 100 steht,

 R^1 und R^2 unabhängig voneinander für C_1 - bis C_8 -Alkyl, Benzyl oder Phenyl stehen,

 \mathbf{Z}^1 und \mathbf{Z}^2 unabhängig voneinander für OH, NHR 3 oder einen Rest der Formel II

20
$$-O-(CH_2CH_2O)_v(CH_2CH(CH_3)O)_w-H$$
 (II)

stehen, wobei

in der Formel II die Reihenfolge der Alkylenoxideinheiten beliebig ist und
v und w unabhängig voneinander für eine ganze Zahl
von 0 bis 200 stehen, wobei die Summe aus v und w > 0
ist,

30 R³ für Wasserstoff, C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 -Cycloalkyl steht;

- Polysiloxanen der allgemeinen Formel I.2

worin

die Reihenfolge der Siloxaneinheiten beliebig ist,

d und e unabhängig voneinander für 0 bis 100 stehen, wobei die Summe aus d und e mindestens 2 ist,

BNSDOCID: <WO__0012588A1_J_>

25

35

40

45

f für eine ganze Zahl von 2 bis 8 steht,

Z³ für OH, NHR³ oder einen Rest der Formel II steht,

5

wobei R^3 für Wasserstoff, C_1 - bis C_8 -Alkyl, C_5 - bis C_8 -Cycloalkyl oder einen Rest der Formel - $(CH_2)_u$ -NH₂ steht, wobei u für eine ganze Zahl von 1 bis 10, bevorzugt 2 bis 6, steht,

10

 Polysiloxanen mit sich wiederholenden Einheiten der allgemeinen Formel I.3

15
$$\begin{bmatrix} CH_{3} & CH_{3} \\ SI & CH_{3} \\ CH_{3} & CH_{3} \end{bmatrix}_{p} R^{20}-NH-R^{21}-(CH_{2}CH_{2}O)_{r}(CH_{2}CH(CH_{3})O)_{s}-R^{20}-NH-R^{21} \\ CH_{3} & CH_{3} \end{bmatrix}_{q}$$
(I.3)

20

worin

25

p für eine ganze Zahl von 0 bis 100 steht, q für eine ganze Zahl von 1 bis 8 steht, R²⁰ und R²¹ unabhängig voneinander für C_1 - bis C_8 -Alkylen stehen,

die Reihenfolge der Alkylenoxideinheiten beliebig ist und
r und s unabhängig voneinander für eine ganze Zahl von 0
bis 200 stehen, wobei die Summe aus r und s > 0 ist,

30

Polysiloxanen der allgemeinen Formel I.4

35
$$CH_3$$
 CH_3 CH_3

40

45

worin

R²² für einen C₁- bis C₈-Alkylenrest steht,
R²³ und R²⁴ unabhängig voneinander für Wasserstoff, C₁- bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl stehen,
die Reihenfolge der Siloxaneinheiten beliebig ist,
x, y und z unabhängig voneinander für 0 bis 100 stehen,
wobei die Summe aus x, y und z mindestens 3 ist,

t für eine ganze Zahl von 2 bis 8 steht,

Z⁵ für einen Rest der Formel VII

-(OCH₂CH₂)_i(OCH₂CH(CH₃))_j-R²⁵ (VII)

5

steht, worin

die Reihenfolge der Alkylenoxideinheiten beliebig ist und i und j unabhängig voneinander für eine

ganze Zahl von 0 bis 200 stehen, wobei die Summe
aus i und j > 0 ist,

 R^{25} für Wasserstoff oder einen C_1 - bis C_8 -Alkylrest steht.

15

35

und Mischungen davon.

Nach einer geeigneten Ausführungsform weisen die Polysiloxane d) der allgemeinen Formel I.1 keine Alkylenoxidreste der allgemeinen 20 Formel II auf. Diese Polysiloxane d) weisen dann vorzugsweise ein zahlenmittleres Molekulargewicht im Bereich von etwa 300 bis 5 000, bevorzugt 400 bis 3 000 auf.

Geeignete Polysiloxane d), die keine Alkylenoxidreste aufweisen 25 sind z.B. die Tegomer®-Marken der Fa. Goldschmidt.

Nach einer weiteren geeigneten Ausführungsform handelt es sich bei den Polysiloxanen d) um Silicon-poly(alkylenoxid)-Copolymere der Formel I.1, wobei wenigstens einer oder beide Reste Z¹ und/ 30 oder Z² für einen Rest der allgemeinen Formel II stehen.

Vorzugsweise ist in der Formel II die Summe aus v und w so gewählt, daß das Molekulargewicht der Polysiloxane d) dann in einem Bereich von etwa 300 bis 30000 liegt.

Bevorzugt liegt die Gesamtzahl der Alkylenoxideinheiten der Polysiloxane d), das heißt die Summe aus v und w in der Formel II dann in einem Bereich von etwa 3 bis 200, bevorzugt 5 bis 180.

- 40 Nach einer weiteren geeigneten Ausführungsform handelt es sich bei den Polysiloxanen d) um Silicon-poly(alkylenoxid)-Copolymere der Formel I.2, die wenigstens einen Rest Z³ der allgemeinen Formel II aufweisen.
- 45 Vorzugsweise ist dann in der Formel II die Summe aus v und w wiederum so gewählt, daß das Molekulargewicht der Polysiloxane d) dann in einem Bereich von etwa 300 bis 30000 liegt. Bevorzugt

liegt die Gesamtzahl der Alkylenoxideinheiten der Polysiloxane d), das heißt die Summe aus v und w in der Formel II dann ebenfalls in einem Bereich von etwa 3 bis 200, bevorzugt 5 bis 180.

14

- 5 Geeignete Silicon-poly(alkylenoxid)-Copolymere d), die unter dem internationalen Freinamen Dimethicon bekannt sind, sind die Tegopren®-Marken der Fa. Goldschmidt, Belsil® 6031 der Fa. Wacker und Silvet® L der Fa. Witco.
- 10 Nach einer bevorzugten Ausführungsform handelt es sich bei den Polysiloxanen d) um Silicon-poly(alkylenoxid)-Copolymere der Formel I.2, die wenigstens einen Rest Z³ aufweisen, worin Z³ für NHR³ steht und R³ für Wasserstoff oder einen Rest der Formel -(CH₂)_u-NH₂ steht. Vorzugsweise steht u für eine ganze Zahl von 1
 15 bis 10, bevorzugt 2 bis 6. Dazu zählen z.B. die MAN- und MAR-Marken der Fa. Hüls sowie die Finish-Marken der Fa. Wacker, z.B. Finish WT 1270.
- Bevorzugt umfassen die Polysiloxane d) wenigstens eine Verbindung 20 der allgemeinen Formel I.3. Bevorzugt stehen in der Formel I.3 R^{20} und R^{21} unabhängig voneinander für einen C_2 bis C_4 -Alkylenrest. Insbesondere stehen R^{20} und R^{21} unabhängig voneinander für einen C_2 bis C_3 -Alkylenrest.
- 25 Vorzugsweise liegt das Molekulargewicht der Verbindung der Formel I.3 in einem Bereich von etwa 300 bis 100 000 liegt.

Vorzugsweise steht in der Formel I.3 p für eine ganze Zahl von 1 bis 20, wie z. B. 2 bis 10.

Bevorzugt liegt die Gesamtzahl der Alkylenoxideinheiten der Verbindung der Formel I.3, d. h. die Summe aus r und s, in einem Bereich von etwa 3 bis 200, bevorzugt 5 bis 180.

- 35 Bevorzugt sind die Endgruppen der Polysiloxane mit Wiederholungseinheiten der allgemeinen Formel I.3 ausgewählt unter $(CH_3)_3SiO$, H, C_1 bis C_8 -Alkyl und Mischungen davon.
- Aminogruppenhaltigen Verbindungen mit Wiederholungseinheiten der 40 allgemeinen Formel I.3 weisen bevorzugt eine Aminzahl in einem Bereich von etwa 2 bis 50, insbesondere 3 bis 20 auf.
- Geeignete alkoxylierte Siloxanamine der Formel I.3 sind z.B. in der WO-A-97/32917 beschrieben, auf die hier in vollem Umfang Be45 zug genommen wird. Kommerziell erhältliche Verbindungen sind z.B. die Silsoft®-Marken der Fa. Witco, z.B. Silsoft® A-843.

× .

*

₫

**

4

Bevorzugt steht in der Formel I.4 der Rest R^{22} für einen C_2 - bis C_4 -Alkylenrest.

Bevorzugt stehen in der Formel I.4 R^{23} und R^{24} unabhängig vonein-5 ander für Wasserstoff oder C_1 - bis C_4 -Alkyl.

Vorzugsweise wird die Summe aus x, y und z so gewählt, dass das Molekulargewicht der Verbindung der Formel I.4 in einem Bereich von etwa 300 bis 100 000, bevorzugt 500 bis 50 000, liegt.

Bevorzugt liegt die Gesamtzahl der Alkylenoxideinheiten des Restes der Formel VII, d. h. die Summe aus i und j, in einem Bereich von etwa 3 bis 200, bevorzugt 5 bis 80.

15 Bevorzugt steht in der Formel VII der Rest R^{25} für Wasserstoff oder C_1 - bis C_4 -Alkyl.

Eine geeignete Verbindung der Formel I.4 ist z.B. Silsoft® A-858 der Fa. Witco.

Geeignete Polysiloxane d) sind auch die in der EP-A-277 816 beschriebenen Polydimethylsiloxane.

Vorzugsweise enthalten die erfindungsgemäßen Urethan(meth)acry-25 late zusätzlich wenigstens eine Komponente eingebaut, die ausgewählt ist unter

- e) Verbindungen, die zwei oder mehrere aktive Wasserstoffatome und mindestens eine ionogene und/oder ionische Gruppe pro Molekül enthalten,
 - f) einwertigen Alkoholen, Aminen mit einer primären oder sekundären Aminogruppe, aliphatischen, cycloaliphatischen oder aromatischen Monoisocyanaten und Mischungen davon,

g) α,β -ethylenisch ungesättigten Verbindungen, die zusätzlich wenigstens eine Isocyanatgruppe pro Molekül enthalten,

und Mischungen davon.

40

35

Komponente e)

Die erfindungsgemäßen Urethan(meth)acrylate können zusätzlich wenigstens eine Komponente e) einpolymerisiert enthalten, die min-45 destens eine ionogene und/oder ionische Gruppe pro Molekül ent10

25

hält. Vorzugsweise handelt es sich dabei um Carboxylatgruppen und/oder Sulfonatgruppen oder um stickstoffhaltige Gruppen.

Geeignete Diamine und/oder Diole e) mit ionogenen oder ionischen 5 Gruppen sind z.B. Dimethylolpropansäure und Verbindungen der Formel

und/oder

worin \mathbb{R}^4 jeweils für eine $C_2-C_{18}-Alkylengruppe$ steht und Me für Na oder K steht.

Als Komponente e) brauchbar sind auch Verbindungen der Formel

$$H_2N(CH_2)_n$$
-NH- $(CH_2)_m$ -COO-M+ und/oder $H_2N(CH_2)_n$ -NH- $(CH_2)_m$ -SO₃- M+

30 worin m und n unabhängig voneinander für eine ganze Zahl von 1 bis 8, insbesondere 1 bis 6, stehen und M für Li, Na oder K steht.

Wenn man als Komponente e) Verbindungen mit stickstoffhaltigen

35 Gruppen verwendet, erhält man kationische Urethan(meth)acrylate.

Brauchbare Komponenten e) sind z. B. Verbindungen der allgemeinen
Formeln

40

worin

- R^5 und R^6 , die gleich oder verschieden sein können, für C_2 - C_8 -alkylen stehen,
 - R^7 , R^{10} und R^{11} , die gleich oder verschieden sein können, für C_1 - C_6 -Alkyl, Phenyl oder Phenyl- C_1 - C_4 -alkyl stehen, R^8 und R^9 , die gleich oder verschieden sein können, für H oder C_1 - C_6 -Alkyl stehen,
- 30 o für 1, 2 oder 3 steht, X^{Θ} für Chlorid, Bromid, Jodid, $C_1-C_6-Alkylsulfat$ oder $SO_4^2-/_2$ steht.

Komponente f)

35

Die erfindungsgemäßen Urethan(meth)acrylate können eine Komponente f) eingebaut enthalten, die ausgewählt ist unter einwertigen Alkoholen, Aminen mit einer primären oder sekundären Aminogruppe, aliphatischen, cycloaliphatischen oder aromatischen Monoisocyanaten und Mischungen davon. Bevorzugte Verbindungen f) sind allgemein Verbindungen der Formel R¹²-Z⁴, worin R¹² für einen C₂-bis C₃₀-Alkylrest steht und Z⁴ die in der Formel I.1 für Z¹ und Z² angegebenen Bedeutungen besitzt oder für NCO steht.

45 Geeignete einwertige Alkohole f) weisen einen geradkettigen oder verzweigten Alkylrest mit 2 bis 30 Kohlenstoffatomen, bevorzugt 8 bis 22 Kohlenstoffatomen, auf, der gegebenenfalls zusätzlich ein-

fach, zweifach oder mehrfach ungesättigt sein kann. Geeignete C_2 -bis C_{30} -Alkylreste sind die zuvor genannten. Die Alkohole f) können einzeln oder als Gemische eingesetzt werden.

5 Bevorzugte einwertige Alkohole f) sind z.B. Ethanol, n-Propanol, Nonanol, Undecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Heptadecanol, Octadecanol, etc. und Mischungen davon. Die Alkohole können dabei isomerenrein oder in Form von Isomerengemischen eingesetzt werden.

Bevorzugte hydroxylgruppenhaltige Verbindungen f) sind weiterhin die Alkoxilate der zuvor genannten C_2 - bis C_{30} -Alkanole, der allgemeinen Formel III

15 $R^{12}-(CH_2CH_2O)_g(CH_2CH(CH_3)O)_h-H$ (III)

wobei in der Formel III die Reihenfolge der Alkylenoxideinheiten beliebig ist, g und h unabhängig voneinander für eine ganze Zahl von 0 bis 200 stehen, wobei die Summe aus g und h > 0 ist, und R¹² 20 die zuvor angegebene Bedeutung besitzt.

Geeignete höhere primäre oder sekundäre Amine f) sind Amine und Amingemische, die einen oder zwei der zuvor genannten C₁- bis C₃₀-Alkylreste aufweisen. Diese können z.B. durch Umsetzung natür25 licher oder synthetischer Fettsäuren oder Fettsäuregemische mit Ammoniak zu Nitrilen und anschließende Hydrierung erhalten werden. Dazu zählen z.B. Alkylamine, die die zuvor bei den einwertigen Alkoholen f) genannten Alkylreste aufweisen, das heißt Ethylund die isomeren Propyl-, Butyl-, Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl-, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecylamine etc. und Mischungen davon.

Geeignete Monoisocyanate f) sind z.B. C₁- bis C₃₀-Alkylisocyanate, 35 die aus den zuvor genannten Aminen und Amingemischen durch Phosgenierung oder aus natürlichen oder synthetischen Fettsäuren und Fettsäuregemischen durch Hofmann-, Curtius- oder Lossen-Abbau erhältlich sind.

40 Geeignete cycloaliphatische Monoisocyanate f) sind z.B. Cyclohexylisocyanat, 2-, 3- und 4-Methylcyclohexylisocyanat, etc. und Mischungen davon.

Geeignete aromatische Monoisocyanate f) sind z.B. Phenylisocya-45 nat, 2-, 3- und 4-Methylphenylisocyanat, etc. und Mischungen davon. Komponente g)

Bei der Komponente g) handelt es sich z. B. um Isocyanate der allgemeinen Formel IV

5

$$CHR^{13} = CH - C(CH_3)_2 - NCO$$
 (IV)

10 worin

> die -C(CH₃)₂-NCO-Gruppe in o-, m- oder p-Stellung zur Vinylgruppe stehen kann und R^{13} für Wasserstoff oder C_1 - bis C_8 -Alkyl steht.

15 Bevorzugt steht in der Formel IV R13 für Wasserstoff, Methyl oder Ethyl.

Nach einer ersten möglichen Ausführungsform handelt es sich bei den erfindungsgemäßen Urethan(meth)acrylaten um nichtionische 20 Verbindungen. Diese enthalten dann keine der zuvor genannten Verbindungen e) eingebaut.

Nach einer zweiten möglichen Ausführungsform handelt es sich bei den erfindungsgemäßen Urethan(meth)acrylaten um ionische Verbin-25 dungen. Diese weisen dann mindestens eine ionische oder ionogene -Gruppe auf, d. h. sie enthalten mindestens eine der zuvor genannten Verbindungen der Komponente e) eingebaut. Wenn diese Verbindungen e) als ionogene bzw. ionische Gruppe wenigstens eine Carboxylatgruppe und/oder Sulfonatgruppe aufweisen, so resultieren 30 anionische Urethan(meth)acrylate. Vorzugsweise wird zur Herstellung dieser anionischen Verbindungen Dimethylolpropansäure als Verbindung e) eingesetzt. Wenn es sich bei der Verbindung der Komponente e) um eine Verbindung mit einer stickstoffhaltigen Gruppe handelt, so resultieren kationische Urethan(meth)acrylate.

35 Eine bevorzugte Verbindung e) zur Herstellung kationischer Urethan(meth)acrylate ist N-Methyldipropylentriamin.

Die Herstellung der erfindungsgemäßen Urethan(meth)acrylate erfolgt durch Umsetzung wenigstens eines Diisocyanates b) sowie ge-40 gebenenfalls einer oder mehrerer isocyanatgruppenhaltiger Verbindungen f) und/oder g) mit den gegenüber Isocyanatgruppen reaktiven Gruppen der übrigen Komponenten a), c), d) sowie gegebenenfalls e) und/oder f). Werden hydroxylgruppenhaltige Komponenten zur Umsetzung mit den isocyanatgruppenhaltigen Komponenten einge-45 setzt, so wird vorzugsweise die gesamte Isocyanatmenge mit den hydroxylgruppenhaltigen Komponenten zu einem isocyanatgruppenhaltigen Polyurethanpräpolymer umgesetzt. Diese Umsetzung erfolgt im

Allgemeinen bei einer erhöhten Temperatur im Bereich von etwa 40 bis 150 °C. bevorzugt etwa 50 bis 100 °C. Die Reaktion kann ohne Lösungsmittel in der Schmelze oder in einem geeigneten Lösungsmittel oder Lösungsmittelgemisch erfolgen. Dazu zählen Ketone, 5 wie Aceton und Methylethylketon. Bei der Umsetzung der isocyanatgruppenhaltigen Verbindungen der Komponenten b), f) und/oder g) mit den hydroxylgruppenhaltigen Verbindungen der Komponenten a), c), d) sowie e) und/oder f) wird das Verhältnis von NCO-Äquivalent der Verbindungen der Komponenten b), f) und/oder g) zu Äqui-10 valent aktives Wasserstoffatom der übrigen Komponenten so gewählt, dass ein Polyurethanpräpolymer resultiert, welches noch freie Isocyanatgruppen aufweist. Im Allgemeinen beträgt das Verhältnis von NCO-Äquivalent zu Äquivalent aktives Wasserstoffatom der hydroxylgruppenhaltigen Verbindungen > 1:1 bis 1,3:1, bevor-15 zugt 1,05:1 bis 1,2:1. Die Folgereaktion des isocyanatgruppenhaltigen Polyurethanpräpolymers zu dem erfindungsgemäßen Urethan(meth)acrylat erfolgt vorzugsweise ebenfalls in einem der zuvor genannten Lösungsmittel. Gewünschtenfalls kann die Umsetzung jedoch ohne Lösungsmittel erfolgen. Die Temperatur liegt im All-20 gemeinen in einem Bereich von etwa 0 bis 60 °C, bevorzugt etwa 10 bis 50 °C. Die amingruppenhaltigen Komponenten a), c), d), e) und/ oder f) werden im Allgemeinen in einer Menge eingesetzt, dass die freien Isocyanatgruppen des Polyurethanpräpolymers zumindest teilweise, vorzugsweise jedoch vollständig umgesetzt werden. Ge-25 gebenenfalls noch vorhandene Isocyanatgruppen werden abschließend durch Zusatz von Alkoholen, z. B. Ethanol, Aminen, z. B.

Die Herstellung von Urethan(meth)acrylaten, die keine hydroxylgruppenhaltigen Komponenten eingebaut enthalten, erfolgt durch
Umsetzung der amingruppenhaltigen Komponenten mit den isocyanatgruppenhaltigen Komponenten bei einer Temperatur im Bereich von
etwa 0 bis 60 °C. Dabei können sowohl die Isocyanatkomponenten,
als auch die amingruppenhaltigen Komponenten zur Umsetzung vorgelegt werden. Geeignete Lösungsmittel für diese Umsetzung sind
z. B. Wasser, C₁-C₄-Alkohole, wie Methanol, n-Propanol, Isopropanol, n-Butanol und bevorzugt Ethanol und die zuvor genannten Ketone.

2-Amino-2-methyl-1-propanol, oder Mischungen davon inaktiviert.

40 Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Urethan(meth)acrylates mit Harnstoffgruppen, wobei man Komponenten a), c) und d) sowie gegebenenfalls e) und/oder f) einsetzt, deren aktive Wasserstoffatome im Wesentlichen in Form von primären und/oder sekundären Aminogruppen vorliegen, und
45 diese mit wenigstens einer isocyanatgruppenhaltigen Komponente b)

sowie gegebenenfalls f) und/oder g) in einem Lösungsmittel zur Reaktion bringt, das ausgewählt ist unter Wasser, C_1 - bis C_4 -Alkanolen und Gemischen davon.

- 5 Vorzugsweise beträgt nach dem erfindungsgemässen Verfahren der Anteil an hydroxylgruppenhaltigen Komponenten a), c), d), e) und/oder f), bezogen auf die Gesamtmenge dieser Komponenten 0 bis 10 Gew.-%, bevorzugt 0 bis 5 Gew.-%, insbesondere 0,01 bis 1 Gew.-%.
- 10 Vorteilhafterweise eignen sich die in dem erfindungsgemässen Verfahren eingesetzten Lösungsmittel im Allgemeinen auch für die im Folgenden beschriebene Copolymerisation der Urethan(meth)acrylate zur Herstellung von wasserlöslichen oder wasserdispergierbaren Polymeren. Auf einen Lösungsmittelaustausch kann somit im Allge-
- 15 meinen verzichtet werden. Vorteilhafterweise eignen sich die in dem erfindungsgemässen Verfahren eingesetzten Lösungsmittel im Allgemeinen auch zur Herstellung von Formulierungen dieser wasserlöslichen oder wasserdispergierbaren Polymere.
- 20 Säuregruppen enthaltende Urethan(meth)acrylate können durch teilweise oder vollständige Neutralisation mit einer Base, Aminogruppen enthaltende durch Neutralisation mit einer Säure oder durch
 Quaternisierung, in eine wasserlösliche bzw. wasserdispergierbareForm überführt werden. In der Regel weisen die erhaltenen Salze
- 25 der Urethan(meth)acrylate eine bessere Wasserlöslichkeit oder Dispergierbarkeit in Wasser auf als die nicht neutralisierte Form. Geeignete Basen für die Neutralisation säuregruppenhaltiger Urethan(meth)acrylate und Säuren bzw Quaternisierungsmittel für die Protonierung oder Quaternisierung amingruppenhaltiger Ure-
- 30 than(meth)acrylate werden im Folgenden bei der Neutralisation bzw. Quaternisierung der Polymere auf Basis der erfindungsgemäßen Urethan(meth)acrylate genannt.
- Gewünschtenfalls können die erfindungsgemäßen Urethan(meth)acry-35 late auch in nicht neutralisierter bzw. nicht quaternisierter Form zur Umsetzung mit radikalisch polymerisierbaren Verbindungen, wie im Folgenden beschrieben, eingesetzt werden.
- Ein weiterer Gegenstand der Erfindung ist die Verwendung der zu40 vor beschriebenen, radikalisch polymerisierbaren, siloxangruppenhaltigen Urethan(meth)acrylate als Komponente zur Herstellung von
 Polymeren. Somit ist es möglich, siloxangruppenhaltige Polymere
 durch radikalische Copolymerisation der Urethan(meth)acrylate mit
 wenigstens einer weiteren Verbindung herzustellen, welche eben-
- 45 falls mindestens eine radikalisch polymerisierbare, α,β -ethylenisch ungesättigte Doppelbindung aufweist. Bei dieser weiteren Komponente kann es sich um wenigstens ein radikalisch polymeri-

WO 00/12588 PCT/EP99/06234

22

sierbares Monomer, Oligomer und/oder Polymer und Gemische davon handeln.

Ein weiterer Gegenstand der Erfindung ist ein wasserlösliches 5 oder wasserdispergierbares Polymer, das wenigstens ein erfindungsgemäßes Urethan(meth)acrylat und wenigstens ein radikalisch polymerisierbares, α,β -ethylenisch ungesättigtes Monomer M) einpolymerisiert enthält.

10 Die erfindungsgemäßen wasserlöslichen oder wasserdispergierbaren Polymere enthalten die Urethan(meth)acrylate im Allgemeinen in einer Menge von etwa 0,05 bis 80 Gew.-%, bevorzugt 0,1 bis 50 Gew.-%, insbesondere 0,5 bis 35 Gew.-%, bezogen auf die Gesamtmenge von Urethan(meth)acrylat und Monomer M), einpolymerisiert.
15

Vorzugsweise ist das Monomer M) ausgewählt unter

- M1) im Wesentlichen hydrophoben, nichtionischen Verbindungen, bevorzugt Estern α,β-ethylenisch ungesättigter Mono- und/oder
 Dicarbonsäuren mit C₁-C₃₀-Alkanolen, Amiden α,β-ethylenisch ungesättigter Mono- und/oder Dicarbonsäuren mit Mono- und Di-C₁-C₃₀-alkylaminen, Estern von Vinylalkohol oder Allylalkohol mit C₁-C₃₀-Monocarbonsäuren, Vinylethern, Vinylaromaten, Vinylhalogeniden, Vinylidenhalogeniden, C₂-C₈-Monoolefinen, nichtaromatischen Kohlenwasserstoffen mit mindestens 2 konjugierten Doppelbindungen und Mischungen davon,
- M2) Verbindungen mit einer radikalisch polymerisierbaren, α,βethylenisch ungesättigten Doppelbindung und mindestens einer ionogenen und/oder ionischen Gruppe pro Molekül,
- M3) im Wesentlichen hydrophilen, nichtionischen Verbindungen, bevorzugt N-Vinylamiden, N-Vinyllactamen, primären Amiden α,β ethylenisch ungesättigter Monocarbonsäuren, vinyl- und allylsubstituierten heteroaromatischen Verbindungen, Estern α,β ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C_1 - C_{30} -Alkandiolen, Estern und Amiden α,β -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C_2 - C_{30} -Aminoalkoholen, die eine primäre oder sekundäre Aminogruppe aufweisen, Polyetheracrylaten, und Mischungen davon,

und Mischungen davon.

Geeignete Monomere M1) sind im Wesentlichen hydrophobe, nichtioni-45 sche Monomere. Dazu zählen z. B. Vinylformiat, Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinylstearat, Vinyllaurat, Styrol, α-Methylstyrol, o-Chlorstyrol, Vinyltoluole, Vinylchlorid, Vinylidenchlorid, Ethylen, Propylen, Butadien, Isopren, Chloropren, Methyl-, Ethyl-, Butyl-, Dodecylvinylether etc.

Bevorzugte Monomere M1) sind z. B. die Ester α,β -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C_1 - C_{30} -Alkanolen, bevorzugt C_1 - C_{22} -Alkanolen. Bevorzugt sind weiterhin die Amide α,β -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit Mono- und Dialkylaminen, die 1 bis 30 Kohlenstoffatome, bevorzugt 1 bis 22 Kohlenstoffatome, pro Alkylrest aufweisen. Vorzugsweise handelt es sich um Verbindungen der allgemeinen Formel V

15
$$CH_2 = C - C - Y - R^{15}$$
 (V)

20 worin

25

R14 für Wasserstoff oder C1- bis C8-Alkyl steht,

 R^{15} für einen geradkettigen oder verzweigten C_1 - bis C_{30} -Alkylrest steht, und

Y für O oder NR¹⁶ steht, wobei R¹⁶ für Wasserstoff, C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 -Cycloalkyl steht.

Vorzugsweise steht in der Formel V \mathbb{R}^{14} für Wasserstoff, Methyl oder Ethyl.

30 Bevorzugt steht Y für O oder NH.

Geeignete Reste R^{15} sind die zuvor genannten $C_1-C_{30}-Alkylreste$. Insbesondere steht R^{15} für Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl,

35 n-Heptyl, n-Octyl, Ethylhexyl, 1,1,3,3-Tetramethylbutyl, Undecyl, Lauryl, Tridecyl, Myristyl, Pentadecyl, Palmityl, Margarinyl, Stearyl, Palmitoleinyl, Oleyl oder Linolyl.

Insbesondere ist das Monomer M1) ausgewählt unter Me40 thyl(meth)acrylat, Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Octyl(meth)acrylat, 1,1,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat, n-Nonyl(meth)acrylat, n-Decyl(meth)acrylat,
n-Undecyl(meth)acrylat, Tridecyl(meth)acrylat, Myri-

45 styl(meth)acrylat, Pentadecyl(meth)acrylat, Palmityl(meth)acrylat, Heptadecyl(meth)acrylat, Nonadecyl(meth)acrylat, Arrachinyl(meth)acrylat, Behenyl(meth)acrylat, Lignocerenyl(meth)acry-

24

lat, Cerotinyl(meth)acrylat, Melissinyl(meth)acrylat, Palmitoleinyl(meth)acrylat, Oleyl(meth)acrylat, Linolyl(meth)acrylat, Linolenyl(meth)acrylat, Stearyl(meth)acrylat, Lauryl(meth)acrylat,
tert.-Butyl(meth)acrylamid, n-Octyl(meth)acrylamid, 1,1,3,3-Te5 tramethylbutyl(meth)acrylamid, Ethylhexyl(meth)acrylamid, n-Nonyl(meth)acrylamid, n-Decyl(meth)acrylamid, n-Undecyl(meth)acrylamid, Tridecyl(meth)acrylamid, Myristyl(meth)acrylamid, Pentadecyl(meth)acrylamid, Palmityl(meth)acrylamid, Heptadecyl(meth)acrylamid, Nonadecyl(meth)acrylamid, Arrachinyl(meth)acrylamid, Behenyl(meth)acrylamid, Lignocerenyl(meth)acrylamid, Cerotinyl(meth)acrylamid, Melissinyl(meth)acrylamid, Palmitoleinyl(meth)acrylamid,
Oleyl(meth)acrylamid, Linolyl(meth)acrylamid, Linolenyl(meth)acrylamid, Stearyl(meth)acrylamid, Lauryl(meth)acrylamid
und Mischungen davon.

Bevorzugte Monomere M1) sind die Ester α,β-ethylenisch ungesättigter Mono- und Dicarbonsäuren mit geradkettigen und/oder verzweigter C₁-C₆-Alkanolen, bevorzugt C₂-C₄-Alkanolen, z. B. die
 Ester der Acrylsäure und/oder Methacrylsäure mit Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol, tert.-Butanol, n-Pentanol, 2-Methylbutanol, n-Hexanol etc.

Bevorzugte Monomere M1) sind weiterhin Amide α,β-ethylenisch
25 ungesättigter Mono- und Dicarbonsäuren mit Mono- und
Dialkylaminen mit geradkettigen und/oder verzweigten Alkylresten,
die 1 bis 6 Kohlenstoffatome, bevorzugt 2 bis 4 Kohlenstoffatome,
pro Alkylrest aufweisen. Dazu zählen z. B. N-C₁- bis
C₆-Alkyl(meth)acrylamide, wie N-Methyl(meth)acrylamid,
N-Ethyl(meth)- acrylamid, N-(n-Propyl)(meth)acrylamid,
N-Isopropyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid,
N-(tert.-Butyl)(meth)acrylamid, N-(n-Pentyl)(meth)acrylamid,
N-(n-Hexyl)(meth)acrylamid, N,N-Dimethyl(meth)acrylamid,
N,N-Diethyl(meth)acrylamid etc.

Vorzugsweise umfasst die Komponente M1) wenigstens einen Ester einer α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäure mit einem linearen C2- bis C6-Alkanol. Insbesondere handelt es sich um einen Ester der Acrylsäure und/oder Methacrylsäure mit 40 Ethanol, n-Propanol, n-Butanol, n-Pentanol und n-Hexanol. Speziell umfasst die Komponente M1) n-Butylacrylat und/oder n-Butylmethacrylat.

Vorzugsweise umfasst die Komponente M1) wenigstens einen Ester 45 einer α,β -ethylenisch ungesättigten Mono- und/oder Dicarbonsäure mit einem verzweigten C_2 - bis C_6 -Alkanol. Speziell umfasst die

Komponente M1) tert.-Butylacrylat und/oder tert.-Butylmethacry-lat.

25

Vorzugsweise umfasst die Komponente M1) mindestens ein lineares 5 C₁- bis C₆-Alkyl(meth)acrylat und/oder -acrylamid, insbesondere n-Butyl(meth)acrylat und/oder n-Butyl(meth)acrylamid,

Vorzugsweise umfasst die Komponente M1) mindestens ein verzweigtes C1- bis C6-Alkyl(meth)acrylat und/oder -acrylamid, insbeson10 dere tert.-Butyl(meth)acrylat und/oder tert.-Butyl(meth)acrylamid.

Besonders bevorzugt wird als Komponente M1) ein Monomerengemisch eingesetzt, das mindestens eines der zuvor genannten linearen C₁15 bis C₆-Alkyl(meth)acrylate und/oder -acrylamide und mindestens eines der zuvor genannten verzweigten C₁- bis C₆-Alkyl(meth)acrylate und/oder -acrylamide umfasst.

Die Verbindungen M2) weisen mindestens eine ionogene bzw. ioni20 sche Gruppe pro Molekül auf, die bevorzugt ausgewählt ist unter:
Carboxylatgruppen und/oder Sulfonatgruppen und deren durch teilweise oder vollständige Neutralisation mit einer Base erhältlichen Salze, sowie tertiäre Amingruppen, die teilweise oder vollständig protoniert und quaternisiert sein können. Geeignete Basen
25 für die Neutralisation bzw. Säuren für die Protonierung und Alkylierungsmittel für die Quaternisierung sind die zuvor genannten.

. .

13

ح...

...

Geeignete Monomere M2) sind z. B. die zuvor genannten, α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäuren und deren Halb30 ester und Anhydride, wie Acrylsäure, Methacrylsäure, Fumarsäure,
Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat etc. Bevorzugt werden Acrylsäure, Methacrylsäure und
deren Alkalimetallsalze, wie deren Natrium- und Kaliumsalze, eingesetzt.

Geeignete Monomere M2) sind weiterhin Acrylamidoalkansulfonsäuren und deren Salze, wie 2-Acrylamido-2-methylpropansulfonsäure und deren Alkalimetallsalze, z. B. deren Natrium- und Kaliumsalze.

40 Weitere geeignete Verbindungen M2) sind die Ester der zuvor genannten, α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C2- bis C12-Aminoalkoholen, welche am Aminstickstoff C1- bis C8-dialkyliert sind. Dazu zählen z. B. N,N-Dimethylaminomethyl- (meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethyl- aminoethyl(meth)acrylat, N,N-Diethyl- M,N-Diethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat, N,N-Diethylaminopropyl(meth)acrylat, N,N-Dimethylaminocyclohe-

xyl(meth)acrylat etc. Bevorzugt werden N,N-Dimethylaminopropyla-

crylat und N,N-Dimethylaminopropyl(meth)acrylat eingesetzt.

- Geeignete Monomere M2) sind weiterhin die Amide der zuvor genann-5 ten αβ-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diaminen, die eine tertiäre und ein primäre oder sekundäre Aminogruppe aufweisen. Dazu zählen z. B. N-[2-(dimethylamino)ethyl]acrylamid, N-[2-(dimethylamino)ethyl]methacrylamid, N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)propyl]methacryl-10 amid, N-[4-(dimethylamino)butyl]acrylamid, N-[4-(dimethylamino)butyl]methacrylamid, N-[2-(diethylamino)ethyl]acrylamid, N-[4-(dimethylamino)cyclohexyl]acrylamid, N-[4-(dimethylamino)cyclohexyl methacrylamid etc.
- 15 Geeignete Monomere M3) sind im Wesentlichen hydrophile, nichtionische Monomere. Dazu zählen z.B. N-Vinylamide, wie N-Vinylformamid, N-Vinylacetamid, N-Vinylpropionamid etc. Bevorzugt wird N-Vinylformamid eingesetzt.
- 20 Geeignete Monomere M3) sind weiterhin N-Vinyllactame und deren Derivate, die z. B. einen oder mehrere C₁-C₆-Alkylsubstituenten, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl etc. aufweisen können. Dazu zählen z. B. N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N-Vinyl-5-me-
- 25 thyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2-caprolactam etc.

Geeignete Monomere M3) sind weiterhin primäre Amide der zuvor ge-30 nannten α,β -ethylenisch ungesättigten Monocarbonsäuren, wie Acrylamid, Methacrylamid, Ethacrylamid etc.

Geeignete Monomere M3) sind weiterhin vinyl- und allylsubstituierte heteroaromatische Verbindungen, wie 2- und 4-Vinylpyri-35 din, -Allylpyridin, und bevorzugt N-Vinylheteroaromaten, wie N-Vinylimidazol, N-Vinyl-2-methylimidazol etc.

Geeignete Monomere M3) sind weiterhin die Ester α,β -ethylenisch ungesättigter Mono- und Dicarbonsäuren, wie Acrylsäure, Metha-40 crylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure etc., mit C₁-C₃₀-Alkandiolen. Dazu zählen z. B. 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxyethylethacrylat, 2-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat, 3-Hydroxypropylmethacrylat, 3-Hydroxybutylacrylat, 45 3-Hydroxybutylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat, 6-Hydroxyhexylacrylat, 6-Hydroxyhexylmethacrylat, 3-Hydroxy-2-ethylhexylacrylat, 3-Hydroxy-2-ethylhexylmethacrylat

etc. Vorzugsweise werden Hydroxyethylacrylat und Hydroxyethylmethacrylat eingesetzt. Geeignete Monomere e) sind auch die Ester der zuvor genannten Säuren mit Triolen und Polyolen, wie z. B. Glycerin, Erythrit, Pentaerythrit, Sorbit etc.

Geeignete Verbindungen M3) sind weiterhin Polyetheracrylate der allgemeinen Formel VI

10
$$R^{17}$$
 $CH_2 = C - C - W - (CH_2CH_2O)_k(CH_2CH(CH_3)O)_1 - R^{18}$ (VI)

15

worin

die Reihenfolge der Alkylenoxideinheiten beliebig ist, k und 1 unabhängig voneinander für eine ganze Zahl von 0 bis 50 stehen, wobei die Summe aus k und 1 mindestens 5 beträgt,

- 20 R^{17} für Wasserstoff oder C_1 bis C_8 -Alkyl steht, und R^{18} für Wasserstoff oder C_1 bis C_6 -Alkyl steht, W für O oder NR^{19} steht, wobei R^{19} für Wasserstoff, C_1 bis C_8 -Alkyl oder C_5 bis C_8 -Cycloalkyl steht.
- 25 Bevorzugt handelt es sich bei den Polyetheracrylaten M3) um Verbindungen der allgemeinen Formel VI, worin die Summe aus k und 1 für eine ganze Zahl von 5 bis 70, bevorzugt 6 bis 50, steht.

In der Formel VI steht R¹⁷ bevorzugt für Wasserstoff, Methyl,
30 Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, tert.-Butyl, nPentyl oder n-Hexyl, insbesondere für Wasserstoff, Methyl oder
Ethyl.

Vorzugsweise steht R¹⁸ in der Formel VI für Wasserstoff, Methyl, 35 Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, n-Pentyl oder n-Hexyl.

Vorzugsweise steht W in der Formel VI für O oder NH.

40 Geeignete Polyetheracrylate M3) sind z. B. die Polykondensationsprodukte der zuvor genannten α,β-ethylenisch ungesättigten Monound/oder Dicarbonsäuren und deren Säurechloriden, -amiden und Anhydriden mit Polyetherolen. Geeignete Polyetherole können leicht durch Umsetzung von Ethylenoxid, 1,2-Propylenoxid und/oder Epich-45 lorhydrin mit einem Startermolekül, wie Wasser oder einem kurzkettigen Alkohol R¹6-OH hergestellt werden. Die Alkylenoxide kön-

nen einzeln, alternierend nacheinander oder als Mischung einge-

setzt werden. Die Polyetheracrylate M3) können allein oder in Mischungen zur Herstellung der erfindungsgemäß eingesetzten Polymere verwendet werden.

5 Nach einer ersten bevorzugten Ausführungsform enthalten die erfindungsgemäßen wasserlöslichen oder wasserdispergierbaren Polymere wenigstens ein erfindungsgemäßes Urethan(meth)acrylat, wie zuvor beschrieben, wenigstens eine im Wesentlichen hydrophobe, nichtionische Verbindung M1) und wenigstens eine ionogene bzw.
10 ionische Verbindung M2) eingebaut. Gegebenenfalls können diese Polymere zusätzlich wenigstens eine weitere Verbindung der Komponente M3) einpolymerisiert enthalten.

Vorzugsweise enthält das Polymer

15

- 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines erfindungsgemässen Urethan(meth)acrylats,
- 40 bis 75 Gew.-%, bevorzugt 45 bis 73 Gew.-%, wenigstens einer Komponente M1),
 - 10 bis 35 Gew.-%, bevorzugt 18 bis 30 Gew.-%, wenigstens einer Komponente M2),
- 25 0 bis 30 Gew.-%, wenigstens einer Komponente M3),

einpolymerisiert.

Besonders bevorzugt sind Polymere, die

30

- 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines erfindungsgemässen Urethan(meth)acrylats,
- 40 bis 75 Gew.-%, bevorzugt 45 bis 73 Gew.-%, wenigstens einer Komponente M1), die ausgewählt ist unter linearen und verzweigten C₁- bis C₆-Alkyl(meth)acrylaten, C₁- bis C₆-Alkyl(meth)acrylamiden und Gemischen davon,
- 10 bis 35 Gew.-*, bevorzugt 18 bis 30 Gew.-*, wenigstens einer α,β-ethylenisch ungesättigten Mono- und/oder Dicarbonsäure M2), bevorzugt Acrylsäure, Methacrylsäure und Gemische davon,
 - 0 bis 30 Gew.-%, bevorzugt 0,1 bis 25 Gew.-% wenigstens einer Komponente M3),

45

einpolymerisiert enhalten.

Besonders bevorzugt sind weiterhin Polymere, die

- 5 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines erfindungsgemässen Urethan(meth)acrylats,
- 40 bis 75 Gew.-%, bevorzugt 45 bis 73 Gew.-%, wenigstens einer Komponente M1), die ausgewählt ist unter linearen und
 verzweigten C₁- bis C₆-Alkyl(meth)acrylaten, C₁- bis C₆-Alkyl(meth)acrylamiden und Gemischen davon,
- 10 bis 35 Gew.-*, bevorzugt 18 bis 30 Gew.-*, wenigstens einer Komponente M2), die ausgewählt ist unter Estern der zuvor genannten, α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C2- bis C12-Aminoalkoholen, welche am Aminstickstoff C1- bis C8-dialkyliert sind, Amiden der zuvor genannten α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diaminen, die eine tertiäre und ein primäre oder sekundäre
 Aminogruppe aufweisen, und Mischungen davon,
 - 0 bis 30 Gew.-%, bevorzugt 0,1 bis 25 Gew.-% wenigstens einer Komponente M3),
- 25 einpolymerisiert enhalten.

Nach einer weiteren bevorzugten bevorzugten Ausführungsform enthalten die erfindungsgemäßen wasserlöslichen oder wasserdisper-30 gierbaren Polymere wenigstens ein erfindungsgemäßes Urethan(meth)acrylat, wie zuvor beschrieben und wenigstens eine im Wesentlichen hydrophile, nichtionische Verbindung M3) eingebaut. Gegebenenfalls können diese Polymere zusätzlich wenigstens eine weitere Verbindung, die ausgewählt ist unter den Verbindungen der 35 Komponenten M1) und/oder M2) einpolymerisiert enthalten.

Vorzugsweise enthält das Polymer

- 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines erfindungsgemässen Urethan(meth)acrylats,
 - 0 bis 50 Gew.-% wenigstens einer Komponente M1),
- 0 bis 20 Gew.-%, wenigstens einer Komponente M2),
 - 25 bis 80 Gew.-%, wenigstens einer Komponente M3),

45

einpolymerisiert.

Besonders bevorzugt sind Polymere, die

5

- 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines erfindungsgemässen Urethan(meth)acrylats,
- 0 bis 50 Gew.-%, bevorzugt 0,1 bis 45 Gew.-%, wenigstens einer Komponente M1), die ausgewählt ist unter linearen und verzweigten C₁- bis C₆-Alkyl(meth)acrylaten, C₁- bis C₆-Alkyl(meth)acrylamiden und Gemischen davon,
- 0 bis 20 Gew.-%, bevorzugt 0,1 bis 18 Gew.-%, wenigstens einer Komponente M2), die ausgewählt ist unter Estern der zuvor genannten, α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit C2- bis C12-Aminoalkoholen, welche am Aminstickstoff C1- bis C8-dialkyliert sind, Amiden der zuvor genannten α,β-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Diaminen, die eine tertiäre und ein primäre oder sekundäre Aminogruppe aufweisen, und Mischungen davon,
- 25 bis 80 Gew.-%, wenigstens einer Komponente M3), die ausgewählt ist unter N-Vinyllactamen und deren Derivaten, bevorzugt N-Vinylpyrrolidon und/oder N-Vinylcaprolactam,

einpolymerisiert enthalten.

30 Vorzugsweise enthalten die Polymere als Komponente M1) mindestens ein lineares C₁- bis C₆-Alkyl(meth)acrylat und/oder -acrylamid, insbesondere n-Butyl(meth)acrylat und/oder n-Butyl(meth)acrylamid, und mindestens ein verzweigtes C₁- bis C₆-Alkyl(meth)acrylat und/oder -acrylamid, insbesondere tert.-Butyl(meth)acrylat und/ 35 oder tert.-Butyl(meth)acrylamid, einpolymerisiert.

Vorzugsweise weisen die erfindungsgemäßen Polymere als Komponente M2) wenigstens eine Verbindung mit mindestens einer anionogenen und/oder anionischen Gruppe pro Molekül auf. Die Säurezahl dieser 40 Polymere liegt dann bevorzugt in einem Bereich von 30 bis 190 mg KOH/q.

Vorzugsweise weisen die erfindungsgemäßen Polymere als Komponente M2) wenigstens eine Verbindung mit mindestens einer kationogenen 45 und/oder kationischen Gruppe pro Molekül auf. Bevorzugt liegt die

Ç.

. 45

7

Sin .

Aminzahl bzw. die quaternäre Ammoniumzahl der erfindungsgemäßen Polymere dann in einem Bereich von etwa 30 bis 190 mg KOH/g.

Die Herstellung der erfindungsgemäßen Polymere erfolgt durch ra-5 dikalische Polymerisation nach üblichen, dem Fachmann bekannten Verfahren. Dazu zählt die radikalische Polymerisation in Masse, Emulsion, Suspension und in Lösung, vorzugsweise die Emulsionsund Lösungspolymerisation. Die Mengen an zu polymerisierenden Verbindungen, bezogen auf Lösungs- bzw. Dispergiermittel, werden 10 dabei im Allgemeinen so gewählt, dass etwa 30 bis 80 Gew.-% Lösungen, Emulsionen oder Dispersionen erhalten werden. Die Polymerisationstemperatur beträgt in der Regel 30 bis 120 °C, bevorzugt 40 bis 100 °C. Das Polymerisationsmedium für die Lösungspolymerisation kann sowohl nur aus einem organischen Lösungsmittel als 15 auch aus Mischungen aus Wasser und mindestens einem wassermischbaren, organischen Lösungsmittel bestehen. Bevorzugte organische Lösungsmittel sind z. B. Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Ketone, wie Aceton und Methylethylketonen, Tetrahydrofuran etc. Die Lösungspolymerisation kann 20 sowohl als Batchprozess als auch in Form eines Zulaufverfahrens, einschließlich Monomerenzulauf, Stufen- und Gradientenfahrweise, durchgeführt werden. Bevorzugt ist im Allgemeinen das Zulaufverfahren, bei dem man gegebenenfalls einen Teil des Polymerisationsansatzes vorlegt, auf die Polymerisationstemperatur erhitzt 25 und anschließend den Rest des Polymerisationsansatzes, üblicherweise über einen oder auch mehrere, räumliche getrennte Zuläufe, kontinuierlich, stufenweise oder unter Überlagerung eines Konzentrationsgefälles unter Aufrechterhaltung der Polymerisation der Polymerisationszone zuführt.

30

Als Initiatoren für die radikalische Polymerisation werden übliche Peroxo- oder Azoverbindungen eingesetzt. Dazu zählen z.B. Dibenzoylperoxid, tert.-Butylperpivalat, tert.-Butylper-2-ethylhexanoat, Di-tert.-butylperoxid, 2,5-Dimethyl-2,5-di(tert.-butylpe-35 roxy)hexan, aliphatische oder cycloaliphatische Azoverbindungen, z.B. 2,2'-Azobis(isobutyronitril), 2,2'-Azobis(2-methylbutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril), 1,1'-Azobis(1-cyclohexancarbonitril), 2-(Carbamoylazo)isobutyronitril, 4,4'-Azobis(4-cyanovaleriansäure) und deren Alkalimetall- und Ammonium-40 salze, z.B. das Natriumsalz, Dimethyl-2,2'-azobisisobutyrat, 2,2'-Azobis(2-(2-imidazolin-2-yl)propan), 2,2'-Azobis(2-amidinopropan) und die Säureadditionssalze der beiden zuletzt genannten

45 Ferner kommen als Initiatoren Wasserstoffperoxid, Hydroperoxide in Kombination mit Reduktionsmitteln und Persalze in Frage. Geeignete Hydroperoxide sind beispielsweise t-Butylhydroperoxid,

Verbindungen, z. B. die Dihydrochloride.

t-Amylhydroperoxid, Cumolhydroperoxid und Pinanhydroperoxid jeweils in Kombination mit beispielsweise einem Salz der Hydroxymethansulfinsäure, einem Eisen (II)-Salz oder Ascorbinsäure. Geeignete Persalze sind insbesondere Alkalimetallperoxidisulfate.

- Die verwendete Initiatormenge, bezogen auf die Monomere, liegt im Allgemeinen in einem Bereich von etwa 0,1 bis 2 Gew.-% bezogen auf das Gesamtgewicht der zu polymerisierenden Monomere.
- 10 Die K-Werte der resultierenden Copolymerisate liegen vorzugsweise in einem Bereich von etwa 15 bis 90, bevorzugt 20 bis 70, insbesondere 25 bis 60 (1 gew.-%ige Lösung in Ethanol). Zur Erzielung des gewünschten K-Wertes kann, insbesondere bei der Emulsionsoder Suspensionspolymerisation, der Einsatz eines Reglers ange-15 bracht sein. Als Regler eignen sich beispielsweise Aldehyde, wie Formaldehyd, Acetaldehyd, Propionaldehyd, n-Butyraldehyd und Isobutyraldehyd, Ameisensäure, Ammoniumformiat, Hydroxylammoniumsulfat und Hydroxylammoniumphosphat. Weiterhin können Regler eingesetzt werden, die Schwefel in organisch gebundener Form enthal-20 ten, wie Di-n-butylsulfid, Di-n-octylsulfid, Diphenylsulfid etc., oder Regler, die Schwefel in Form von SH-Gruppen enthalten, wie n-Butylmercaptan, n-Hexylmercaptan oder n-Dodecylmercaptan. Geeignet sind auch wasserlösliche, schwefelhaltige Polymerisationsregler, wie beispielsweise Hydrogensulfite und Disulfite. Wei-25 terhin eignen sich als Regler Allylverbindungen, wie Allylalkohol oder Allylbromid, Benzylverbindungen, wie Benzylchlorid oder Al-

kylhalogenide, wie Chloroform oder Tetrachlormethan.

Gewünschtenfalls setzt man der Polymerlösung im Anschluss an die 30 Polymerisationsreaktion einen oder mehrere Polymerisationsinitiatoren zu und erhitzt die Polymerlösung, z.B. auf die Polymerisationstemperatur oder auf Temperaturen oberhalb der Polymerisationstemperatur, um die Polymerisation zu vervollständigen. Geeignet sind die oben angegebenen Azoinitiatoren, aber auch alle an-35 deren üblichen, für eine radikalische Polymerisation in wässriger Lösung geeignete Initiatoren, beispielsweise Peroxide, Hydroperoxide, Peroxodisulfate, Percarbonate, Peroxoester und Wasserstoffperoxid. Hierdurch wird die Polymerisationsreaktion zu einem höheren Umsatz, wie z. B. von 99,9 %, geführt. Die bei der Polyme-40 risation entstehenden Lösungen können gegebenenfalls durch ein dem Stand der Technik entsprechendes Trocknungsverfahren in feste Pulver überführt werden. Bevorzugte Verfahren sind beispielsweise die Sprühtrocknung, die Sprühwirbelschichttrocknung, die Walzentrocknung und die Bandtrocknung. Ebenfalls anwendbar sind die Ge-45 friertrocknung und die Gefrierkonzentrierung. Gewünschtenfalls kann das Lösungsmittel auch durch übliche Methoden, z. B. Destillation bei verringertem Druck, teilweise oder vollständig entfernt werden.

Nach einer geeigneten Ausführungsform handelt es sich bei den er-5 findungsgemäßen Polymeren um nichtionische Polymere.

Nach einer weiteren geeigneten Ausführungsform handelt es sich bei den erfindungsgemäßen wasserlöslichen oder wasserdispergierbaren Polymeren um anionische bzw. anionogene Polymere. Die Säu-10 regruppen der Polymere können mit einer Base teilweise oder vollständig neutralisiert werden. In aller Regel weisen die erhaltenen Salze der Polymere eine bessere Wasserlöslichkeit oder Dispergierbarkeit in Wasser auf als die nicht neutralisierten Polymere. Als Base für die Neutralisation der Polymere können Alkali-15 metallbasen wie Natronlauge, Kalilauge, Soda, Natriumhydrogencarbonat, Kaliumcarbonat oder Kaliumhydrogencarbonat und Erdalkalimetallbasen wie Calciumhydroxyd, Calciumoxid, Magnesiumhydroxyd oder Magnesiumcarbonat sowie Ammoniak und Amine verwendet werden. Geeignete Amine sind z. B. C₁-C₆-Alkylamine, bevorzugt n-Propyla-20 min und n-Butylamin, Dialkylamine, bevorzugt Diethylpropylamin und Dipropylmethylamin, Trialkylamine, bevorzugt Triethylamin und Triisopropylamin, C1-C6-Alkyldiethyanolamine, bevorzugt Methyloder Ethyldiethanolamin und Di-C1-C6-Alkylethanolamine. Besonders für den Einsatz in Haarbehandlungsmitteln haben sich zur Neutra-25 lisation der Säuregruppen enthaltenden Polymere 2-Amino-2-methyl-1-propanol, 2-Amino-2-ethylpropan-1,3-diol, Diethylaminopropylamin und Triisopropanolamin bewährt. Die Neutralisation der Säuregruppen enthaltenden Polymere kann auch mit Hilfe von Mischungen mehrerer Basen vorgenommen werden, z. B. Mischungen aus 30 Natronlauge und Triisopropanolamin. Die Neutralisation kann je

Nach einer weiteren geeigneten Ausführungsform handelt es sich 35 bei den erfindungsgemäßen wasserlöslichen oder wasserdispergierbaren Polymeren um kationische bzw. kationogene Polymere. Die Amingruppen bzw. protonierte oder quaternisierte Amingruppen enthaltenden Polymere sind aufgrund ihrer kationischen Gruppen im Allgemeinen leicht in Wasser oder Wasser/Alkohol-Gemischen lös-

nach Anwendungszweck partiell z. B. zu 5 bis 95 %, vorzugsweise

30 bis 95 %, oder vollständig, d. h. zu 100 % erfolgen.

- 40 lich oder zumindest ohne Zuhilfenahme von Emulgatoren dispergierbar. Geladene kationische Gruppen lassen sich aus den vorliegenden tertiären Aminstickstoffen entweder durch Protonierung, z. B. mit Carbonsäuren, wie Milchsäure, oder Mineralsäuren, wie Phosphorsäure, Schwefelsäure und Salzsäure, oder durch Quaternisie-
- 45 rung, z. B. mit Alkylierungsmitteln, wie C_1 bis C_4 -Alkylhalogeniden oder -sulfaten, erzeugen. Beispiele solcher Alkylierungsmit-

tel sind Ethylchlorid, Ethylbromid, Methylchlorid, Methylbromid, Dimethylsulfat und Diethylsulfat.

Nach einer weiteren geeigneten Ausführungsform können die erfin-5 dungsgemäßen Polymere sowohl Säuregruppen als auch Aminogruppen aufweisen. Der Betrag der Differenz aus Säuregruppen und Aminogruppen (|\Delta SZ-AZ|) liegt dabei vorzugsweise in einem Bereich von etwa 15 bis 150, bevorzugt 30 bis 100. Säurezahl und Aminzahl sind dabei jeweils als mg KOH/g Prüfsubstanz definiert.

Wird bei der Herstellung der Polyurethane ein wassermischbares organisches Lösungsmittel eingesetzt, so kann dieses im Anschluss durch übliche, dem Fachmann bekannte Verfahren, z.B. durch Destillation bei vermindertem Druck, entfernt werden. Vor dem Abtrennen des Lösungsmittels kann dem Polyurethan zusätzlich Wasser zugegeben werden. Nach Ersatz des Lösungsmittels durch Wasser erhält man eine Lösung oder Dispersion des Polymers, aus der, falls gewünscht, das Polymer in üblicher Weise gewonnen werden kann, z.B. durch Sprühtrocknung.

Die erfindungsgemäßen Polymere weisen Siloxangruppen auf. Vorzugsweise beträgt der auf das Gesamtgewicht der eingebauten Komponenten bezogene Siloxangehalt etwa 0,05 bis 30 Gew.-%, bevorzugt 0,05 bis 25 Gew.-%, insbesondere 0,1 bis 20 Gew.-%. Ihre K-25 Werte (gemessen nach E. Fikentscher, Cellulose-Chemie 13 (1932), S. 58-64, an einer 1%igen Lösung in Ethanol) liegen im Allgemeinen in einem Bereich von etwa 15 bis 90, bevorzugt 20 bis 60. Ihre Glasübergangstemperatur beträgt im Allgemeinen mindestens 0 °C, bevorzugt mindestens 20 °C, insbesondere bevorzugt mindestens 25 °C und speziell mindestens 30 °C. Weisen die erfindungsgemäßen Polymere zwei oder mehrere Glasübergangstemperaturen auf, so liegt wenigstens eine davon in dem angegebenen Bereich. Bevorzugt liegt/liegen die andere(n) dann unterhalb des zuvor angegebenen Temperaturbereichs.

Ein weiterer Gegenstand der Erfindung ist die Verwendung von wasserlöslichen oder wasserdispergierbaren Polymeren, die ausgewählt sind unter

- 40 erfindungsgemässen Polymeren, die wenigstens ein siloxangruppenhaltiges Urethan(meth)acrylaten und wenigstens ein radikalisch polymerisierbares, α,β -ethylenisch ungesättigtes Monomer M) einpolymerisiert enthalten, wie zuvor beschrieben,
- 45 Polymeren, die wenigstens ein siloxangruppenfreies Urethan(meth)acrylaten und wenigstens ein radikalisch polymerisierbares, α,β -ethylenisch ungesättigtes Monomer M) einpolyme-

20

35

20

Ξ

risiert enthalten, wobei das siloxangruppenfreie Urethan(meth)acrylat die Komponenten a), b) und c), wie zuvor definiert und gegebenenfalls wenigstens eine weitere Komponente, die ausgewählt ist unter den Komponenten e), f), und q), wie zuvor definiert, eingebaut enthält,

und Mischungen davon, in der Haarkosmetik, bevorzugt als Festigerpolymer in Haarsprays, Schaumfestigern, Haarmousse, Haargel
und Schampoos, in der Hautkosmetik, bevorzugt in Cremes, pigment10 haltigen Hautkosmetika und wachshaltigen Hautkosmetika, in der
Pharmazie, bevorzugt in Beschichtungsmitteln oder Bindemitteln
für feste Arzneiformen, sowie in Beschichtungsmitteln für die
Textil-, Papier-, Druck-, Leder- und Klebstoffindustrie.

- 15 Neben den erfindungsgemässen Polymeren eignen sich vorzugsweise auch siloxangruppenfreie Polymere und Mischungen von siloxangruppenhaltigen und siloxangruppenfreien Polymeren für die Verwendung in der Haarkosmetik, bevorzugt als Festigerpolymer in Haarsprays, Schaumfestigern, Haarmousse, Haargel und Schampoos.
- Zur Herstellung von siloxangruppenfreien wasserlöslichen oder wasserdispergierbaren Polymeren wird wenigstens ein siloxangruppenfreies Urethan(meth)acrylat und wenigstens ein radikalisch polymerisierbares, α,β-ethylenisch ungesättigtes Monomer M) einer zadikalischen Copolymerisation unterzogen. Geeignete Polymerisationsverfahren sind die üblichen, dem Fachmann bekannten Verfahren. Dazu zählen die zuvor für die Herstellung der erfindungsgemässen Polymere beschriebenen.
- 30 Die Herstellung geeigneter radikalisch polymerisierbarer, siloxangruppenfreier Urethan(meth)acrylate erfolgt, wie zuvor für die
 Herstellung der erfindungsgemässen siloxangruppenhaltigen Urethan(meth)acrylate beschrieben. Dabei wird auf den Einsatz siloxangruppenhaltiger Komponenten d) verzichtet. Zur Herstellung ge35 eignete bzw. bevorzugte Komponenten a), b), c), e), f) und g)
 sind die zuvor entsprechend genannten.

Vorzugsweise ist das Monomer M) ausgewählt unter den zuvor beschriebenen Monomeren M1), M2), M3) und Mischungen davon.

Bevorzugt verwendet man die siloxangruppenfreien Polymere in Haarbehandlungsmitteln, wie Schaumfestigern, Haarmousse, Haargel, -Schampoos und insbesondere Haarsprays. Geeignete Komponenten und deren Einsatzmengen zur Formulierung von Haarbehandlungsmitteln

45 sind die im Folgenden für Haarbehandlungsmittel auf Basis der erfindungsgemäßen siloxangruppenhaltigen Polymere genannten.

Die erfindungsgemäßen siloxangruppenhaltigen Polymere und die zuvor beschriebenen siloxangruppenfreien Polymere sind als Hilfsmittel in der Kosmetik und Pharmazie, insbesondere als oder in Beschichtungsmittel(n) für keratinhaltige Oberflächen (Haar, Haut und Nägel) und als Überzugsmittel und/oder Bindemittel für feste Arzneiformen brauchbar. Außerdem sind sie als oder in Beschichtungsmittel(n) für die Textil-, Papier-, Druck-, Leder- und Klebstoffindustrie brauchbar. Sie sind insbesondere in der Haarkosmetik brauchbar. Die zuvor genannten Polymere können auch in Cremes und als Tablettenüberzugmittel und Tablettenbindemittel verwendet werden. Sie eignen sich auch als Bindemittel und Klebemittel für kosmetische Produkte, z. B. bei der Herstellung stiftförmiger kosmetischer Produkte, wie Deostifte, Schminkstifte etc.

15 Die erfindungsgemäßen siloxangruppenhaltigen Polymere und die zuvor beschriebenen siloxangruppenfreien Polymere eignen sich vorzugsweise für die Verwendung in der Hautkosmetik, bevorzugt in Cremes, pigmenthaltigen Hautkosmetika und wachshaltigen Hautkosmetika.

20

Gegenstand der vorliegenden Erfindung ist auch ein kosmetisches oder pharmazeutisches Mittel, das die erfindungsgemäßen Polymere enthält. Im Allgemeinen enthält das Mittel die Polymere in einer Menge im Bereich von 0,2 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des Mittels.

Die erfindungsgemäßen kosmetischen Mittel eignen sich insbesondere als Beschichtungsmittel für keratinhaltige Oberflächen (Haar, Haut und Nägel). Die in ihnen eingesetzten, gegebenenfalls neutralisierten bzw. quaternisierten Verbindungen sind wasserlöslich oder wasserdispergierbar. Sind die in den erfindungsgemäßen Mitteln eingesetzten Verbindungen wasserdispergierbar, können sie in Form von wässrigen Mikrodispersionen mit Teilchendurchmessern von üblicherweise 1 bis 250 nm, bevorzugt 1 bis 150 nm, zur Anwendung gebracht werden. Die Feststoffgehalte der Präparate liegen dabei üblicherweise in einem Bereich von etwa 0,5 bis 20 Gew.-%, bevorzugt 1 bis 12 Gew.-%. Diese Mikrodispersionen benötigen in der Regel keine Emulgatoren oder Tenside zu ihrer Stabilisierung.

40

Bevorzugt können die erfindungsgemäßen Mittel in Form eines Haarbehandlungsmittels, wie Schaumfestiger, Haarmousse, Haargel, Schampoo und insbesondere in Form eines Haarsprays vorliegen. Zur Anwendung als Haarfestiger sind dabei Mittel bevorzugt, die Polyurethane enthalten, die wenigstens eine Glasübergangstemperatur Tg ≥ 20 °C, bevorzugt ≥ 30 °C, aufweisen. Der K-Wert dieser Polymere liegt vorzugsweise in einem Bereich von 23 bis 90, insbesondere

WO 00/12588 PCT/EP99/06234

25 bis 60. Der Siloxangehalt dieser Polymere beträgt im Allgemeinen 0,05 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der eingebauten Komponenten.

5 Vorzugsweise handelt es sich um Haarbehandlungsmittel. Diese liegen üblicherweise in Form einer wässrigen Dispersion oder in Form einer alkoholischen oder wässrig-alkoholischen Lösung vor. Beispiele geeigneter Alkohole sind Ethanol, Propanol, Isopropanol etc.

10

Weiter enthalten die erfindungsgemäßen Haarbehandlungsmittel im Allgemeinen übliche kosmetische Hilfsstoffe, beispielsweise Weichmacher, wie Glycerin und Glykol; Emollienzien; Parfüms; UV-Absorber; Farbstoffe; antistatische Mittel; Mittel zur Verbesserung der Kämmbarkeit; Konservierungsmittel; und Entschäumer.

Wenn die erfindungsgemäßen Mittel als Haarspray formuliert sind, enthalten sie eine ausreichende Menge eines Treibmittels, beispielsweise einen niedrigsiedenden Kohlenwasserstoff oder Ether, 20 wie Propan, Butan, Isobutan oder Dimethylether. Als Treibmittel sind auch komprimierte Gase brauchbar, wie Stickstoff, Luft oder Kohlendioxid. Die Menge an Treibmittel kann dabei gering gehalten werden, um den VOC-Gehalt nicht unnötig zu erhöhen. Sie beträgt dann im Allgemeinen nicht mehr als 55 Gew.-%, bezogen auf das Gezsamtgewicht des Mittels. Gewünschtenfalls sind aber auch höhere VOC-Gehalte von 85 Gew.-% und darüber möglich.

Die zuvor beschriebenen Polyurethane können auch in Kombination mit anderen Haarpolymeren in den Mitteln zur Anwendung kommen. 30 Solche Polymere sind insbesondere:

- nicht-ionische, wasserlösliche bzw. wasserdispergierbare Polymere oder Oligomere, wie Polyvinylcaprolactam, z. B. Luviskol Plus (BASF), oder Polyvinylpyrrolidon und deren Copolymere, insbesondere mit Vinylestern, wie Vinylacetat, z. B. Luviskol VA 37 (BASF); Polyamide, z. B. auf Basis von Itaconsäure und aliphatischen Diaminen; Polyvinylalkohol;
- amphotere oder zwitterionische Polymere, wie die unter den Bezeichnungen Amphomer® (Delft National) erhältlichen Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere sowie zwitterionische Polymere, wie sie beispielsweise in den deutschen Patentanmeldungen DE 39 29 973, DE 21 50 557, DE 28 17 369 und DE 37 08 451 offenbart sind. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze sind bevorzugte

zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind, und Copolymere aus Hydroxyethylmethacrylat, Methylmethacrylat, N.N-Dimethylaminoethylmethacrylat und Acrylsäure (Jordapon®);

- anionische Polymere, wie Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind, Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymer, Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden, sowie Luvimer® (BASF, Terpolymer aus t-Butylacrylat, Ethylacrylat und Methacrylsäure), oder
- 20 kationische (quaternisierte) Polymere, z. B. kationische Polyacrylatcopolymere auf Basis von N-Vinyllactamen und deren Derivaten (N-Vinylpyrrolidon, N-Vinylcaprolactam etc.) sowie übliche kationische Haarconditionerpolymere, z. B. Luviquat® (Copolymer aus Vinylpyrrolidon und Vinylimidazoliummethochlorid), Luviquat® Hold (Copolymerisat aus quaternisiertem N-Vinylimidazol, N-Vinylpyrrolidon und N-Vinylcaprolactam), Merquat® (Polymer auf Basis von Dimethyldiallylammoniumchlorid), Gafquat® (quaternäre Polymere, die durch Reaktion von Polyvinylpyrrolidon mit quaternären Ammoniumverbindungen entstehen), Polymer JR (Hydroxyethylcellulose mit kationischen Gruppen), Polyquaternium-Typen (CTFA-Bezeichnungen) etc.;
 - nichtionische, siloxanhaltige, wasserlösliche oder -dispergierbare Polymere, z. B. Polyethersiloxane, wie Tegopren® (Fa. Goldschmidt) oder Belsil® (Fa. Wacker);
 - Haarpolymere auf Naturbasis, wie Chitosan, Casein, Cellulosederivate, etc.
- 40 Die erfindungsgemäßen Polymere können als Mischung mit einem anderen amidgruppenhaltigen Haarpolymer eingesetzt. Dazu zählen z. B. die in der DE-A-42 25 045 beschriebenen Polyurethane, die zuvor beschriebenen Vinylpyrrolidon/Acrylat-Terpolymere und Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpolymere (z. B.
- 45 Ultrahold®strong der BASF AG), die zuvor beschriebenen amidgruppenhaltigen amphoteren Polymere (z. B. Amphomer®) und insbesondere Copolymerisate, die einen Anteil an amidgruppenhaltigen Mo-

35

nomeren, wie N-Vinyllactamen, von mindestens 30 Gew.-% aufweisen (z. B. Luviskol®plus und Luviskol®VA37 der BASF AG).

Die erfindungsgemäßen Polymere können auch als Mischung mit einem 5 anderen, siloxangruppenhaltigen Haarpolymer eingesetzt werden, vorzugsweise siloxangruppenhaltigen Polyurethanen.

Die anderen Haarpolymere sind vorzugsweise in Mengen bis zu 10 Gew.-%, bezogen auf das Gesamtgewicht des Mittels enthalten.

10

Ein bevorzugtes Haarbehandlungsmittel enthält:

 a) 0,5 bis 20 Gew.-% mindestens eines, in Wasser löslichen oder dispergierbaren, erfindungsgemäßen Polymers,

15

b) 30 bis 99,5 Gew.-%, bevorzugt 40 bis 99 Gew.-%, eines Lösungsmittels, ausgewählt unter Wasser und wassermischbares Lösungsmitteln, bevorzugt C_2 - bis C_5 -Alkoholen, insbesondere Ethanol, und Mischungen davon,

20

- c) 0 bis 70 Gew.-% eines Treibmittels, vorzugsweise Dimethylether,
- d) 0 bis 10 Gew.-% mindestens eines von a) verschiedenen, in
 Wasser löslichen oder dispergierbaren Haarpolymers,
 - e) 0 bis 0,3 Gew.-% mindestens eines wasserunlöslichen Silicons,
- f) 0 bis 1 Gew.-% mindestens eines nichtionischen, siloxanhalti-30 gen, in Wasser löslichen oder dispergierbaren Polymers,

sowie übliche Zusatzstoffe.

Das erfindungsgemäße Mittel kann als Komponente d) mindestens ein 35 anderes, in Wasser lösliches oder dispergierbares Haarpolymer enthalten. Der Anteil dieser Komponente beträgt dann im Allgemeinen etwa 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des Mittels. Bevorzugt können dabei wasserlösliche oder wasserdispergierbare Polyurethane eingesetzt werden, die Siloxangruppen ein-40 polymerisiert enthalten.

Das erfindungsgemäße Mittel kann als Komponente e) mindestens ein wasserunlösliches Silicon, insbesondere ein Polydimethylsiloxan, z.B. die Abil®-Typen der Fa. Goldschmidt, enthalten. Der Anteil 45 dieser Komponente beträgt dann im Allgemeinen etwa 0,0001 bis

0,2 Gew.-%, bevorzugt 0,001 bis 0,1 Gew.-%, bezogen auf das Gesamtgewicht des Mittels.

Das erfindungsgemäße Mittel kann als Komponente f) mindestens ein 5 nichtionisches, siloxanhaltiges, wasserlösliches oder -dispergierbares Polymer, insbesondere ausgewählt unter den zuvor beschriebenen Polyethersiloxanen, enthalten. Der Anteil dieser Komponente beträgt dann im Allgemeinen etwa 0,001 bis 2 Gew.-%, bezogen auf das Gesamtgewicht des Mittels.

10

Das erfindungsgemäße Mittel kann zusätzlich gegebenenfalls einen Entschäumer, z.B. auf Silicon-Basis, enthalten. Die Menge des Entschäumers beträgt im Allgemeinen bis zu etwa 0,001 Gew.-%, bezogen auf die Gesamtmenge des Mittels.

15

30

Gegenstand der Erfindung ist auch ein Haarbehandlungsmittel, enthaltend:

- a) 0,5 bis 20 Gew.-% mindestens eines in Wasser löslichen oder dispergierbaren Polymers, das wenigstens ein siloxangruppenfreies Urethan(meth)acrylat und wenigstens ein radikalisch polymerisierbares, α,β-ethylenisch ungesättigtes Monomer M) einpolymerisiert enthält, wobei das siloxangruppenfreie Urethan(meth)acrylat die Komponenten a), b) und c), wie in Anspruch 1 definiert und gegebenenfalls wenigstens eine weitere Komponente, die ausgewählt ist unter den Komponenten e), f), und g), wie in Anspruch 2 definiert, eingebaut enthält,
 - b) 30 bis 99,5 Gew.-%, bevorzugt 40 bis 99 Gew.-%, wenigstens eines Lösungsmittels, ausgewählt unter Wasser, wassermischbaren Lösungsmittel und Mischungen davon,
 - c) 0 bis 70 Gew.-% eines Treibmittels,
 - d) 0 bis 10 Gew.-% mindestens eines von a) verschiedenen, in Wasser löslichen oder dispergierbaren Haarpolymers,
 - e) 0 bis 0,3 Gew.-% mindestens eines wasserunlöslichen Silicons,
- 35 f) 0 bis 1 Gew.-% mindestens eines nichtionischen, siloxanhaltigen, in Wasser löslichen oder dispergierbaren Polymers.

Geeignete Polymere a), die wenigstens ein siloxangruppenfreies Urethan(meth)acrylaten und wenigstens ein radikalisch polymerischerbares, α,β -ethylenisch ungesättigtes Monomer M) einpolymerisiert enthalten und Verfahren zu ihrer Herstellung sind die be-

- siert enthalten und Verfahren zu ihrer Herstellung sind die bereits zuvor beschriebenen. Geeignete Komponenten b), c), d), e) und f) sind ebenfalls die zuvor für die erfindungsgemässen Mittel auf Basis siloxangruppenhaltiger Polymere genannten. Auf die Aus-
- 45 führungen zu den erfindungsgemässen Mitteln auf Basis siloxangruppenhaltiger Polymere wird vollständig Bezug genommen.

Die erfindungsgemäßen Mittel besitzen den Vorteil, dass sie einerseits den Haaren die gewünschte Festigkeit verleihen und andererseits die Polymere leicht auswaschbar (redispergierbar) sind. Darüber hinaus lassen sich Haarbehandlungsmittel mit einem in 5 VOC-Gehalt von weniger als 85 Gew.-%, bevorzugt weniger als 60 Gew.-%, und auch rein wässrige Formulierungen herstellen, selbst wenn sie als Haarspray formuliert sind.

Die Erfindung wird anhand der folgenden, nicht einschränkenden 10 Beispiele näher erläutert.

Beispiele

Urethan (meth) acrylatherstellung

15

Zur Herstellung der Urethan(meth)acrylate der folgenden Tabelle 1, die hydroxylgruppenhaltige Komponenten eingebaut enthalten (Beispiel 2: Neopentylglykol, Beispiel 4: Dimethylolpropansäure) wurde in einem Vierhalskolben, der mit Rührer, Tropftrichter,

- 20 Thermometer, Rückflusskühler und einer Vorrichtung für das Arbeise ten unter Stickstoff ausgestattet war, die hydroxylgruppenhaltige. Komponente in einer Menge nach Tabelle 1 in Aceton (Feststoffgehalt der resultierenden Reaktionslösung ca. 80%) vorgelegt und unter Rühren auf eine Temperatur von 60 °C erhitzt. Anschließend
- 25 wurde unter Rühren Isophorondiisocyanat in einer Menge nach Tabelle 1 zugetropft, wobei die Reaktionstemperatur anstieg. Bei Rückfluss wurde das Reaktionsgemisch dann so lange gerührt, bis der Isocyanatgruppengehalt des Gemisches praktisch konstant blieb und anschließend unter Rühren auf Raumtemperatur abgekühlt. Dann
- 30 gab man bei einer Temperatur von etwa 30 °C ein Polysiloxandiamin ($M_n = 900$ g/mol, Tegomer® A Si 2122 der Fa. Goldschmidt) und tert.-Butylaminoethylmethacrylat (in Form einer 50 gew.-\$-igen Lösung in Aceton) in einer Menge nach Tabelle 1 zu den wie zuvor beschrieben hergestellten Polyurethanpräpolymeren. Die Mischung
- 35 wurde dann noch weitere 20 Minuten bei etwa 50 °C gerührt und anschließend ein Polyethylenglykoldiamin (O,O'-Bis(2-aminopropyl)polyethylenglykol 800, $M_n=900$ g/mol der Fa. Fluka, in Form einer 70 %-igen Lösung in Ethanol) zugesetzt. Anschließend wurde das Reaktionsgemisch weitere 30 Minuten bei 30 °C gerührt.

40

Zur Herstellung der Urethan(meth)acrylate, die keine hydroxylgruppenhaltigen Komponenten eingebaut enthalten (Beispiele 1, 3 und 5) wurde ein Gemisch aus einem Polysiloxandiamin (Beispiele 1 und 3: $M_n = 900$ g/mol; Beispiel 5: $M_n = 2800$ g/mol), tert.-Butyla-

45 minoethylmethacrylat (in Form einer 50 gew.-%-igen Lösung in Aceton) und gegegebenenfalls N-Methyldipropylentriamin (Beispiel 3) in einer Menge nach Tabelle 1, in der zuvor beschriebenen Appara-

tur, vorgelegt und unter Rühren auf etwa 30 °C erhitzt. Dann wurde unter Rühren Isophorondiisocyanat in einer Menge nach Tabelle 1 zugetropft, und anschließend das Reaktionsgemisch bei einer Temperatur von etwa 30 °C so lange gerührt, bis der Isocyanatgruppen-5 gehalt praktisch konstant blieb. Dann wurde ein Polyethylenglykoldiamin ebenfalls in einer Menge nach Tabelle 1 bei Raumtemperatur zugegeben und das Reaktionsgemisch noch weitere 30 Minuten bei etwa 30 °C gerührt. Abschließend wurde das Reaktionsgemisch in allen Fällen mit Ethanol auf 50 Gew.-% verdünnt.

10

Tabelle 1

15	Bsp. Nr.	Poly- silo- xan- diamin I1) [mol]	Poly- silo- xan- diamin II ²) [mol]	PEGDA 3) [mol]	NPG ⁴)	MADPTA 5) [mol]	[mol]	tBAEMA 7) [mol]	[mol]
	1	1	-	4,5	-	-	-	1	6
20	2	1	-	3,5	1	-	-	1	6
	3	1	-	3,5	-	1	-	1	6
	4	1	-	3,5	-	-	1	1	6
	5	-	0,5	5	-	-		1	6

- 25 1) Polysiloxandiamin, $M_n = 900$ g/mol (Tegomer® A-Si 2122 der Fa. Goldschmidt)
 - 2) Polysiloxandiamin, $M_n = 2800 \text{ g/mol (Tegomer® A-Si 2322 der Fa. Goldschmidt)}$
 - 3) 0.0'-Bis(2-aminopropyl)polyethylenglykol 800, $M_n = 900$

g/mol (Fa. Fluka)
4) Neopentylglykol

- 5) N-Methyldipropylentriamin
- 6) Dimethylolpropansäure
- 7) tert.-Butylaminoethylmethacrylat
- 35 8) Isophorondiisocyanat

Beispiel 6

Urethan(meth)acrylatherstellung in Ethanol

Zur Herstellung eines Urethan(meth)acrylates mit Harnstoffgruppen wurde in einem Vierhalskolben, der mit Rührer, Tropftrichter, Thermometer, Rückflusskühler und einer Vorrichtung für das Arbeiten unter Stickstoff ausgestattet war, ein Gemisch aus einem Polysiloxanamin (Mn = 2000 g/mol, Aminzahl ca. 28 (entsprechend 0,04 Mol Aminogruppen), MAN® 00078 der Fa. Hüls) und 80 g Ethanol vorgelegt. Bei einer Temperatur von etwa 20°C wurden unter Rühren 133

g (ca. 0,6 mol) Isophorondiisocyanat zugetropft und das Reaktionsgemisch anschliessend noch weitere 20 Minuten bei Umgebungstemperatur gerührt. Dann gab man 7,4 g (0,04 mol) tert.-Butylaminoethylmethacrylat gelöst in 100 g Ethanol und anschliessend ein
5 Gemisch aus 315 g (0,35 mol) 0,0'-Bis(2-aminopropyl)polyethylenglykol 800 (Mn = 900 g/mol der Fa. Fluka) und 33,5 g (0,23 mol)
N-Methyldipropylentriamin gelöst in 400 g Ethanol zu. Dabei wurde
eine Reaktionstemperatur von höchstens 40°C eingehalten. Das Reaktionsgemisch wurde noch weitere 30 Minuten bei etwa 40°C gerührt
10 und abschliessend filtriert. Es wurde eine klare, farblose 30%ige
ethanolische Lösung eines harnstoffgruppenhaltigen Produkts erhalten.

Analog der Reaktionsvorschrift aus Beispiel 6 können die Ure-15 than(meth)acrylate mit Harnstoffgruppen der zuvor beschriebenen Beispiele 1, 3 und 5 hergestellt werden.

Beispiele 7 bis 29

20

Zulauf 1: 220 g Monomerengemisch nach Tabelle 2

Zulauf 2: 0,5 g tert.-Butylperpivalat
100 g Ethanol

25

Zulauf 3: 1,5 g tert.-Butylperpivalat .
82 g Ethanol

lymere sind ebenfalls in Tabelle 2 angegeben.

In einer Rührapparatur mit Rückflusskühler und zwei separaten Zu30 laufvorrichtungen wurden unter Stickstoffatmosphäre 44 g Zulauf 1
und 12 g Zulauf 2 in 120 g Ethanol vorgelegt und unter Rühren auf
etwa 80 °C erwärmt. Nach dem Anpolymerisieren, erkennbar an einer
beginnenden Viskositätserhöhung, wurde der Rest von Zulauf 1 innerhalb von 4 Stunden und der Rest von Zulauf 2 innerhalb von 5
35 Stunden zugegeben, wobei die Innentemperatur auf etwa 70 bis 80 °C
gehalten wurde. Anschließend ließ man noch 2 Stunden bei einer
Temperatur von etwa 75 bis 80 °C nachreagieren und gab dann Zulauf
3 innerhalb von 2 Stunden zu. Nach dem Ende der Zugabe wurde noch
ca. 4 Stunden bei dieser Temperatur nachpolymerisiert. Anschlie40 ßend wurden die säuregruppenhaltigen Polymerisate mit einer Base
nach Tabelle 2 und die amingruppenhaltigen Polymerisate mit einer
Säure neutralisiert. Die K-Werte und Neutralisationsgrade der Po-

WO 00/12588 PCT/EP99/06234

Polymere auf Basis nichtionischer Komponenten oder auf Basis von Urethan(meth)acrylaten, die bereits neutralisierte bzw. quaternisierte Gruppen tragen, können im Allgemeinen direkt zur Formulierung von Haarpräparaten eingesetzt werden.

Tabelle 2

			,	,		45	<u> </u>	,				
K-Wert ⁷⁾			43,7	41,9		38,9		45,3	46,0	40,1	42,8	39,6
Neutra- lisati- onsmittel	(-grad)		AMP ⁶⁾ (95%)	AMP	(928)	AMP	(858)	AMP (100%)	AMP (100%)	AMP (95%)	AMP (100%)	AMP (100%)
VCap ⁵⁾		[Gew%]	-			1		1		ŀ		
VP4)		[Gew%]	_	-		1		1	ı	1	1	
DMAPMA ³⁾		[Gew%]	ı			1		-	-	-	1	1
MAS ²)		[Gew%]	25	20		18		25	25	25	25	20
TBA1)		[Gew%]	65	09		52		65	65	65	65	55
Urethan(meth)- acrylat aus Bsp. Nr.		[Gew%]	(1) 10	(1)	20	(1)	30	(2) 10	(3) 10	(4) 10	(5) 10	(4) 25
Bsp. Nr.			7	8		6		10	11	12	13	14

	1:	3.6	10		1		38,3
(1)	<u> </u>	C7	2		-	(100%)	
	40		15	35	1		37,9
10						(20°) H-DO.	45.2
(1)	1	i	10	35	C	(50%)	
(2)	1		10	35	25	H ₃ PO ₄ (50%)	41,0
30					20	H-00.	39.0
(3)	1		1	çç		(30%)	
					7.0	н,РО,	42,0
(3)	ı	ı		<u></u>		(30%)	•
_				**************************************			

tert.-Butylacrylat

2) N,N-Dimethylaminopropylmethacrylamid

Methacrylsäure

5) Vinylcaprolactam 4) Vinylpyrrolidon

gemessen als 1 %-ige Lösung in Ethanol 6) 2-Amino-2-methylpropanol 7) gemessen als 1 %-ige Lösu

Fortsetzung Tabelle 2

			-		l			
K- Wert ⁷⁾		41,3	43,7	44,1	45,0	38,9	37,5	40,2
Neutra- K- lisati- Weri onsmit-	(-grad)	AMP6) (95%)	AMP (95%)	AMP (95%)	AMP (95%)	H ₃ PO ₄ (50%)	H ₃ PO ₄ (50%)	H ₃ PO ₄ (50%)
VCap ⁵⁾	Gew% [Gew%	1	-	1	ı	35	38	35
	[Gew%	1	1	1	ı	-	_	1
DMAPMA ³ VP ⁴⁾	[Gew%	ı	1	1	ŀ	15	12	15
	[Gew*]	25	25	23	23	1	1	1
NTBAM ⁹⁾ MAS ²⁾		1	20	ı	12	1	20	ı
n-BA ⁸)		35	45	45	55	20	20	1
TBA ¹⁾	[Gew%]	30		22	ı	20	1	40
Urethan(meth)- acrylat aus Bsp. Nr.	[Gew%]	(1) 10	(1)	(6)	(6) 10	(1) 10	(1) 10	(6) 10
Bsp.		21	22	23	24	25	26	27

- 38 n3r04 72.7.1 (50%)	35 н.ро. 43.0		
12		03	
20 20		- 20	
(9)	10	(9)	10
28		29	

8) n-Butylacrylat9) N-(tert.-Butyl)acrylamid

Anwendungstechnische Beispiele

Beispiele 30 bis 52

5 Aerosol-Haarspray-Formulierungen mit einem VOC-Gehalt von 97 Gew.-%:

	Polymer gemäß Beispiel 7-29	3,00	Gew.∽%
	Ethanol	62,00	Gew%
10	Dimethylether	34,96	Gew%
	Parfilm, Zusatzstoffe	q.s.	

Beispiele 53 bis 75

Kompakte Aerosol-Haarspray-Formulierungen mit einem VOC-Gehalt

15 von 90 Gew.-%:

Polymer gemäß Beispiel 7-29	10,00	Gew.−%
Ethanol -	55,00	Gew.−%
Dimethylether	34,96	Gew%
20 Parfüm, Zusatzstoffe	q.s.	

Beispiele 76 bis 98

Haarspray-Formulierungen mit einem VOC-Gehalt von 80 Gew.-%:

25 Polymer gemäß Beispiel 7-29	5,00	Gew∜
Ethanol	45,00	Gew%
Wasser	15,00	Gew∜
Dimethylether	34,96	Gew%
Parfüm, Zusatzstoffe	q.s.	

30

Beispiele 99 bis 121

Haarspray-Formulierungen mit einem VOC-Gehalt von 55 Gew.-%:

	Polmer gemäß Beispiel 7-29	3,00	Gew%
35	Ethanol	20,00	Gew%
	Wasser	42,00	Gew%
	Dimethylether	34,96	Gew%
	Parfüm, Zusatzstoffe	q.s.	

40 Beispiele 122 bis 137

Pump-Haarspray-Formulierungen mit einem VOC-Gehalt 55 Gew.-%:

Polymer gemäß Beispiel 8, 9, 14,

		17-29	10,00	Gews	
45	Wasser			37,00	Gew%
	Ethanol			55,00	Gew%

Parfüm, Zusatzstoffe

Beispiele 161 bis 183

q.s.

5	Beispiele 138 bis 160 Schaum-Conditioner Polymer 7-29 (25%ige wässrige	:[Gew%]
_	Lösung	20,00
	Cremophor® A ¹⁰)	0,20
	Comperlan® KD ¹¹)	0,10
	Wasser	69,70
10	Propan/Butan	9,96
	Parfüm, Konservierungsmittel	q.s.

10) CTFA-Name: Ceteareth 25, Fa. BASF AG, Umsetzungsprodukt aus Fettalkohol und Ethylenoxid

15 11) CTFA-Name: Coamide DEA, Fa. Henkel, Kokosfettsäureamid

Zur Herstellung der Schaum-Conditioner werden die Komponenten eingewogen und unter Rühren gelöst. Anschließend werden sie in einen Spender abgefüllt und das Treibgas zugesetzt.

20

	Cond	ditioner-Shampoo:	[Gew%]
	A)	Texapon® NSO 28%ig12)	50,00 1,00
25		Comperlan® KD Polymer 1-14 (25%ige wässrige	1,00
		Lösung	20,00
		Parfümöl	q.s.
30	B)	Wasser	27,5
50	٠,	Natriumchlorid	1,5
		Konservierungsmittel	q.s.

12) Natriumlaurylsulfat, Fa. Henkel

35

Zur Herstellung der Conditioner-Shampoos werden die Komponenten A) und B) getrennt eingewogen und unter Mischen gelöst. Dann wird Phase B) langsam unter Rühren zu Phase A) gegeben.

40 Beispiele für Anwendungen in der Hautkosmetik

Beispiele 184 bis 206 O/W-Cremes

	Ölphase:	Gew%	CTFA-Name:
	Cremophor® A6 (BASF AG)	3,5	Ceteareth-6 (Stearylalkohol-Ethoxylat)
5	Cremophor® A25 (BASF AG)	3,5	Ceteareth-25 (Fettalkohol-Ethoxylat)
	Glycerinmonostearat s.e.	2,5	Glycerylstearate
	Paraffinöl	7,5	
	Cetylalkohol	2,5	
10	Luvitol® EHO (BASF AG)	3,2	Cetearyloctanoat
	Vitamin-E-acetate	1,0	Tocopherylacetat
	Nip-Nip®, Nipa Laboratories Ltd., USA	0,1	Methyl- und Propyl-4-hydro- xybenzoate (7:3)

15	Wasserphase:	Gew%	
	Polymer 7-29	1,5	
	Wasser	73,6	
	1,2-Propylenglykol	1,0	Propylenglykol
20	Germall II, Sutton Labora- tories Inc., USA	0,1	Imidazolidinylharnstoff

Zur Herstellung der Cremes werden die Komponenten für Öl- und Wasserphase getrennt eingewogen und bei 80 °C homogenisiert. Dann gibt man die Wasserphase langsam unter Rühren zu der Ölphase. Anschließend lässt man unter Rühren auf Raumtemperatur abkühlen.

Beispiele 207 bis 229 O/W-Lotions

	Ölphase:	Gew%	CTFA-Name:			
	Cremophor® A6 (BASF AG)	2,0	Ceteareth-6 (Stearylalkohol-Ethoxylat)			
35	Cremophor® A25 (BASF AG)	2,0	Ceteareth-25 (Fettalkohol-Ethoxylat)			
	Glycerinmonostearat s.e.	6,0	Glycerylstearate			
	Paraffinöl	0,9	Paraffinöl			
40	Tegiloxan® 100	0,1	Dimethicone (Polydimethylsiloxan)			
	Cetylalkohol	1,5	Cetylalkohol			
	Luvitol® EHO (BASF AG)	12,0	Cetearyloctanoat			
	Vitamin-E-acetate	0,4	Tocopherylacetat			
45	Nip-Nip®, Nipa Laboratories Ltd., USA	0,1	Methyl- und Propyl-4-hydro- xybenzoate (7:3)			

Wasserphase:	Gew.−%	
Polymer 7-29	1,0	
Wasser	73,4	
1,2-Propylenglykol	1,0	Propylenglykol
Germall II, Sutton Labora- tories Inc., USA	0,1	Imidazolidinylharnstoff

Zur Herstellung der O/W-Lotionen werden die Komponenten für Öl10 und Wasserphase getrennt eingewogen und bei 80 °C homogenisiert.
Dann gibt man die Wasserphase langsam unter Rühren zu der Ölphase. Anschließend lässt man unter Rühren auf Raumtemperatur abkühlen.

15 183/

20

25

30

35

40

Patentansprüche

- Radikalisch polymerisierbare, siloxangruppenhaltige Urethan(meth)acrylate, die
- a) wenigstens eine Verbindung, die mindestens ein aktives Wasserstoffatom und mindestens eine radikalisch polymerisierbare, α,β-ethylenisch ungesättigte Doppelbindung pro
 10 Molekül enthält,
 - b) wenigstens ein Diisocyanat,
- c) wenigstens eine Verbindung, die zwei aktive Wasserstoffatome pro Molekül enthält,
 - d) wenigstens eine Verbindung, die mindestens ein aktives Wasserstoffatom und mindestens eine Siloxangruppe pro Molekül enthält,
- eingebaut enthalten, und die Salze davon.
- Urethan(meth)acrylate nach Anspruch 1, die zusätzlich wenigstens eine Komponente, die ausgewählt ist unter
- e) Verbindungen, die zwei oder mehrere aktive Wasserstoffatome und mindestens eine ionogene und/oder ionische Gruppe pro Molekül enthalten,
- f) einwertigen Alkoholen, Aminen mit einer primären oder sekundären Aminogruppe, aliphatischen, cycloaliphatischen oder aromatischen Monoisocyanaten und Mischungen davon,
- g) α,β -ethylenisch ungesättigten Verbindungen, die zusätz-1ich wenigstens eine Isocyanatgruppe pro Molekül enthalten,

und Mischungen davon, eingebaut enthalten.

- 40 3. Urethan(meth)acrylate nach einem der Ansprüche 1 oder 2, wobei die Komponente d) ausgewählt ist unter:
 - Polysiloxanen der allgemeinen Formel I.1

15

20

30

35

worin

a und b unabhängig voneinander für 2 bis 8 stehen,

c für 3 bis 100 steht,

 R^1 und R^2 unabhängig voneinander für C_1 - bis C_8 -Alkyl, Benzyl oder Phenyl stehen,

Z¹ und Z² unabhängig voneinander für OH, NHR³ oder einen Rest der Formel II

$$-O-(CH2CH2O)v(CH2CH(CH3)O)w-H (II)$$

stehen, wobei

in der Formel II die Reihenfolge der Alkylenoxidein
beiten beliebig ist und

v und w unabhängig voneinander für eine ganze Zahl

von 0 bis 200 stehen, wobei die Summe aus v und w > 0

ist.

 R^3 für Wasserstoff, C_1 - bis C_8 -Alkyl oder C_5 - bis C_8 Cycloalkyl steht;

- Polysiloxanen der allgemeinen Formel I.2

worin

die Reihenfolge der Siloxaneinheiten beliebig ist,

d und e unabhängig voneinander für 0 bis 100 stehen, wobei die Summe aus d und e mindestens 2 ist,

10

25

30

f für eine ganze Zahl von 2 bis 8 steht,

 ${\tt Z}^{\tt 3}$ für OH, NHR $^{\tt 3}$ oder einen Rest der Formel II steht,

wobei R^3 für Wasserstoff, C_1 - bis C_8 -Alkyl, C_5 - bis C_8 -Cycloalkyl oder einen Rest der Formel $-(CH_2)_u$ -NH $_2$ steht, wobei u für eine ganze Zahl von 1 bis 10 steht,

 Polysiloxanen mit sich wiederholenden Einheiten der allgemeinen Formel I.3

15
$$\begin{bmatrix} CH_{3} & CH_{3} \\ Si & CH_{3} \\ CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{bmatrix}_{p} R^{20}-NH-R^{21}-(CH_{2}CH_{2}O)_{r}(CH_{2}CH(CH_{3})O)_{s}-R^{20}-NH-R^{21} \\ CH_{3} & CH_{3} & CH_{3} \end{bmatrix}_{q}$$
20 (I.3)

worin

p für eine ganze Zahl von 0 bis 100 steht,

für eine ganze Zahl von 1 bis 8 steht,

 R^{20} und R^{21} unabhängig voneinander für C_1- bis C_8- Alkylen stehen,

die Reihenfolge der Alkylenoxideinheiten beliebig ist und r und s unabhängig voneinander für eine ganze Zahl von 0 bis 200 stehen, wobei die Summe aus r und s > 0 ist,

- Polysiloxanen der allgemeinen Formel 1.4

35
$$CH_3$$
 CH_3 CH_3

40 worin

R²² für einen C₁- bis C₈-Alkylenrest steht,

R²³ und R²⁴ unabhängig voneinander für Wasserstoff, C₁
bis C₈-Alkyl oder C₅- bis C₈-Cycloalkyl stehen,

die Reihenfolge der Siloxaneinheiten beliebig ist,

x, y und z unabhängig voneinander für 0 bis 100 stehen,

wobei die Summe aus x, y und z mindestens 3 ist,

t für eine ganze Zahl von 2 bis 8 steht,

25 für einen Rest der Formel VII

-(OCH₂CH₂)_i(OCH₂CH(CH₃))_j-R²⁵ (VII)

5

steht, worin

die Reihenfolge der Alkylenoxideinheiten beliebig ist und i und j unabhängig voneinander für eine

und i und j unabhängig voneinander für eine ganze Zahl von 0 bis 200 stehen, wobei die Summe aus i und j > 0 ist,

 R^{25} für Wasserstoff oder einen C_1 - bis C_8 -Alkylrest steht,

15

und Mischungen davon.

- Verfahren zur Herstellung eines Urethan(meth)acrylates mit Harnstoffgruppen nach einem der Ansprüche 1 bis 3, wobei man Komponenten a), c) und d) sowie gegebenenfalls e) und/oder f) einsetzt, deren aktive Wasserstoffatome im Wesentlichen in Form von primären und/oder sekundären Aminogruppen vorliegen, und diese mit wenigstens einer isocyanatgruppenhaltigen Komponente b) sowie gegebenenfalls f) und/oder g) in einem Lösungsmittel zur Reaktion bringt, das ausgewählt ist unter Wasser, C₁- bis C₄-Alkanolen und Gemischen davon.
- Wasserlösliches oder wasserdispergierbares Polymer, das wenigstens ein Urethan(meth)acrylat nach einem der Ansprüche 1
 bis 3 und wenigstens ein radikalisch polymerisierbares, α,βethylenisch ungesättigtes Monomer M) einpolymerisiert enthält.
- Polymer nach Anspruch 5, wobei das Monomer M) ausgewählt ist
 unter
- M1) im Wesentlichen hydrophoben, nichtionischen Verbindungen, bevorzugt Estern α,β-ethylenisch ungesättigter Mono- und/ oder Dicarbonsäuren mit C₁-C₃₀-Alkanolen, Amiden α,β-ethylenisch ungesättigter Mono- und/oder Dicarbonsäuren mit Mono- und Di-C₁-C₃₀-alkylaminen, Estern von Vinylalkohol und Allylalkohol mit C₁-C₃₀-Monocarbonsäuren, Vinylethern, Vinylaromaten, Vinylhalogeniden, Vinylidenhalogeniden, C₂-C₈-Monoolefinen, nichtaromatischen Kohlenwasserstoffen mit mindestens 2 konjugierten Doppelbindungen und Mischungen davon,

M2) Verbindungen mit einer radikalisch polymerisierbaren, $\alpha, \beta - \text{ethylenisch ungesättigten Doppelbindung und mindestens einer ionogenen und/oder ionischen Gruppe pro Molekül.}$

5

10

15

M3) im Wesentlichen hydrophilen, nichtionischen Verbindungen, bevorzugt N-Vinylamiden, N-Vinyllactamen, primären Amiden α,β -ethylenisch ungesättigter Monocarbonsäuren, vinylund allylsubstituierten heteroaromatischen Verbindungen, Estern α,β -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C_1 - C_{30} -Alkandiolen, Estern und Amiden α,β -ethylenisch ungesättigter Mono- und Dicarbonsäuren mit C_2 - C_{30} -Aminoalkoholen, die eine primäre oder sekundäre Aminogruppe aufweisen, Polyetheracrylaten, und Mischungen davon,

und Mischungen davon.

- 7. Polymer nach einem der Ansprüche 5 oder 6, das
- 20 0,05 bis 80 Gew.-%, bevorzugt 0,1 bis 50 Gew.-%, wenig- ç stens eines Urethan(meth)acrylats, wie in einem der Ansprüche 1 bis 3 definiert,
- 20 bis 99,95 Gew.-%, bevorzugt 50 bis 99,9 Gew.-%, wenigstens einer Komponente M),

einpolymerisiert enthält.

- 8. Polymer nach einem der Ansprüche 5 bis 7, das
- 30 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines Urethan(meth)acrylats, wie in einem der Ansprüche 1 bis 3 definiert,
- 40 bis 75 Gew.-%, bevorzugt 45 bis 73 Gew.-%, wenigstens einer Komponente M1),
 - 10 bis 35 Gew.-%, bevorzugt 18 bis 30 Gew.-%, wenigstens einer Komponente M2),
- 40 0 bis 30 Gew.-%, wenigstens einer Komponente M3),

einpolymerisiert enthält.

9. Polymer nach einem der Ansprüche 5 bis 7, das 45

- 0,1 bis 50 Gew.-%, bevorzugt 0,5 bis 35 Gew.-%, wenigstens eines Urethan(meth)acrylats, wie in einem der Ansprüche 1 bis 3 definiert,
- 5 0 bis 50 Gew.-% wenigstens einer Komponente M1),
 - 0 bis 20 Gew.-%, wenigstens einer Komponente M2),
 - 25 bis 80 Gew.-%, wenigstens einer Komponente M3),

10 einpolymerisiert enthält.

- 10. Kosmetisches oder pharmazeutisches Mittel, bevorzugt in Form eines Haarbehandlungsmittels, das wenigstens ein Polymer nach einem der Ansprüche 5 bis 9 enthält.
 - 11. Haarbehandlungsmittel nach Anspruch 10, enthaltend
- a) 0,5 bis 20 Gew.-% mindestens eines in Wasser löslichen

 20 oder dispergierbaren Polymers, wie in einem der Ansprüche
 5 bis 9 definiert,
 - b) 30 bis 99,5 Gew.-%, bevorzugt 40 bis 99 Gew.-%, wenigstens eines Lösungsmittels, ausgewählt unter Wasser, wassermischbaren Lösungsmittel und Mischungen davon,
- 25 c) 0 bis 70 Gew.-% eines Treibmittels,
 - d) 0 bis 10 Gew.-% mindestens eines von a) verschiedenen, in Wasser löslichen oder dispergierbaren Haarpolymers,
 - e) 0 bis 0,3 Gew.-% mindestens eines wasserunlöslichen Silicons.
- f) 0 bis 1 Gew.-% mindestens eines nichtionischen, siloxanhaltigen, in Wasser löslichen oder dispergierbaren Polymers.
- 12. Haarbehandlungsmittel, enthaltend

a) 0,5 bis 20 Gew.-% mindestens eines in Wasser löslichen oder dispergierbaren Polymers, das wenigstens ein silo-xangruppenfreies Urethan(meth)acrylat und wenigstens ein radikalisch polymerisierbares, α,β-ethylenisch ungesättigtes Monomer M) einpolymerisiert enthält, wobei das siloxangruppenfreie Urethan(meth)acrylat die Komponenten a), b) und c), wie in Anspruch 1 definiert und gegebenenfalls wenigstens eine weitere Komponente, die ausgewählt ist unter den Komponenten e), f), und g), wie in Anspruch 2 definiert, eingebaut enthält,

6 . .

1

. 1

Ed . 7.

T)

- b) 30 bis 99,5 Gew.-%, bevorzugt 40 bis 99 Gew.-%, wenigstens eines Lösungsmittels, ausgewählt unter Wasser, wassermischbaren Lösungsmittel und Mischungen davon,
- c) 0 bis 70 Gew.-% eines Treibmittels,
- d) 0 bis 10 Gew.-% mindestens eines von a) verschiedenen, in Wasser löslichen oder dispergierbaren Haarpolymers,
 - e) 0 bis 0,3 Gew.-% mindestens eines wasserunlöslichen Silicons.
- f) 0 bis 1 Gew.-% mindestens eines nichtionischen, siloxan-10 haltigen, in Wasser löslichen oder dispergierbaren Polymers.
 - 13. Verwendung von wasserlöslichen oder wasserdispergierbaren Polymeren, die ausgewählt sind unter
 - Polymeren, wie in einem der Ansprüche 5 bis 9 definiert,
- Polymeren, die wenigstens ein siloxangruppenfreies Urethan(meth)acrylaten und wenigstens ein radikalisch polymerisierbares, α,β-ethylenisch ungesättigtes Monomer M) einpolymerisiert enthalten, wobei das siloxangruppenfreie Urethan(meth)acrylat die Komponenten a), b) und c), wie in Anspruch 1 definiert und gegebenenfalls wenigstens eine weitere Komponente, die ausgewählt ist unter den Komponenten e), f), und g), wie in Anspruch 2 definiert, eingebaut enthält,

und Mischungen davon, in der Haarkosmetik, bevorzugt alsFestigerpolymer in Haarsprays, Schaumfestigern, Haarmousse,

Haargel und Schampoos, in der Hautkosmetik, bevorzugt in Cremes, pigmenthaltigen Hautkosmetika und wachshaltigen Hautkosmetika, in der Pharmazie, bevorzugt in Beschichtungsmitteln oder Bindemitteln für feste Arzneiformen, sowie in Beschichtungsmitteln für die Textil-, Papier-, Druck-, Leder- und

Klebstoffindustrie.

Verwendung der Polymere, wie in einem der Ansprüche 5 bis 9 definiert, als Hilfsmittel in der Kosmetik, bevorzugt in der Haarkosmetik, insbesondere als Festigerpolymer in Haarsprays,
 Schaumfestigern, Haarmousse, Haargel und Schampoos, in der Pharmazie, bevorzugt in Beschichtungsmitteln oder Bindemitteln für feste Arzneiformen, sowie in Beschichtungsmitteln für die Textil-, Papier-, Druck-, Leder- und Klebstoffindu-

45 183/

strie.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C08G77/388 C08G C08F290/06 A61K7/06 C08G18/28 C08G18/67 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C08G C08F A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages EP 0 274 699 A (STAUFFER WACKER SILICONE 1-9 χ CORP) 20 July 1988 (1988-07-20) column 8, line 15 -column 12, line 15; claims 1.10 WO 97 38035 A (DSM NV ; JAPAN SYNTHETIC 1-9 χ RUBBER CO LTD (JP); YAMAGUCHI YOSHIKAZU (J) 16 October 1997 (1997-10-16) page 23, line 7 - line 26; claims 6,8 page 8, line 17 -page 11, line 26 EP 0 408 311 A (MITSUBISHI PETROCHEMICAL 10-14 Α CO) 16 January 1991 (1991-01-16) cited in the application claims 1-18 Further documents are tisted in the continuation of box C. Patent family members are tisted in annex. Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority ctalm(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 09/12/1999 1 December 1999 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Hoffmann, K

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Info

P 99/06234

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0274699	· A	20-07-1988	US AT AU CA DE JP	4762887 A 78500 T 1027688 A 1285688 A 3780609 T 63182325 A	09-08-1988 15-08-1992 21-07-1988 02-07-1991 27-08-1992 27-07-1988
WO 9738035	A	16-10-1997	JP AU CA EP	9278850 A 2309297 A 2251037 A 0892822 A	28-10-1997 29-10-1997 16-10-1997 27-01-1999
EP 0408311	A	16-01-1991	DE JP JP US US	69028742 D 2815684 B 3128909 A 5480634 A 5166276 A	07-11-1996 27-10-1998 31-05-1991 02-01-1996 24-11-1992

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C08G77/388 C08G18/28 C08G18/67 C08F290/06 A61K7/06 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C08G C08F A61K Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie 1-9 EP 0 274 699 A (STAUFFER WACKER SILICONE X CORP) 20. Juli 1988 (1988-07-20) Spalte 8, Zeile 15 -Spalte 12, Zeile 15; Ansprüche 1,10 WO 97 38035 A (DSM NV ; JAPAN SYNTHETIC 1-9 X RUBBER CO LTD (JP): YAMAGUCHI YOSHIKAZU (J) 16. Oktober 1997 (1997-10-16) Seite 23, Zeile 7 - Zeile 26; Ansprüche Seite 8, Zeile 17 -Seite 11, Zeile 26 10-14 EP 0 408 311 A (MITSUBISHI PETROCHEMICAL Α CO) 16. Januar 1991 (1991-01-16) in der Anmeldung erwähnt Ansprüche 1-18 Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prionitätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erlindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeidedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erlindung kann allein aufgrund dieser Veröffentlichung, nicht als neu oder auf erlinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genamten Veröffentlichung belegt werden -v Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "O" Veröftentlichung, die sich auf eine mündliche Otfenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröftentlichung, die vor dem imternationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröftentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 1. Dezember 1999 09/12/1999 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 Tel. (+31-70) 340-2040, Tx. 31 651 epo nt, Fax: (+31-70) 340-3016 Hoffmann, K

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, di

99/06234

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung		
ΕP	0274699	Α	20-07-1988	US	4762887		09-08-1988
				AT	,	T	15-08-1992
				AU		Α	21 - 07-1988
				CA	1285688	Α	02-07-1991
				DE	3780609	T	27-08-1992
	_			JP	63182325	Α	27-07-1988
WO	9738035	 А	16-10-1997	JP	9278850	A	28-10-1997
				AU	2309297	Α	29-10-1997
				CA	2251037	Α	16-10-1997
				EP	0892822	A	27-01-1999
EP	0408311	Α	16-01-1991	DE	69028742	D	07-11-1996
				JP	2815684	В	27-10-1998
				JP	3128909	Ā	31-05-1991
				US	5480634	Α	02-01-1996
				ÜŠ	5166276		24-11-1992

THIS PAGE BLANK (USPTO)