# Presentation Answers: Farm Financial RAG Application Analysis

## 1. How did you choose what to convert from the original DB schema to the new DB schema and why?

Schema Conversion Strategy:Original Source: The project started with a complex Excel file (FINBIN Data Dictionary Farm.xlsx) containing the original FINBIN (Farm Financial Benchmarking) database schema.Conversion Approach:

- Simplified Complex Tables: The original schema had extremely complex tables (e.g., fm\_guide with 50+ columns). I simplified these to focus on core financial metrics that users would actually query.
- Preserved Key Relationships: Maintained the essential foreign key relationships between hdb\_main\_data (main farm records) and other tables.
- Selected Essential Columns: Instead of all 50+ columns in fm\_guide, I kept only the most important financial ratios:
  - current ratio beg/end (liquidity)
  - net farm income cost/mkt (profitability)
  - working\_capital\_beg/end (liquidity)
  - debt to asset ratios (leverage)
  - ebitda cost/mkt (operating performance)

#### Why This Approach:

- LLM Token Efficiency: Sending the entire 50+ column schema to the LLM would consume excessive tokens
- Query Relevance: Most user questions focus on basic financial metrics, not obscure technical fields
- Maintainability: A Simpler schema is easier to debug and extend
- Performance: Fewer columns = faster queries and better user experience

## 2. What are the pros and cons of this type of SQL building approach by the LLM?

#### PROS:

Natural Language Interface: Users can ask questions in plain English without SQL knowledge

- Intelligent Query Generation: LLM understands context and generates appropriate JOINs,
   WHERE clauses, and aggregations
- Flexible Question Types: Handles complex analytical questions like "Which farms are in the top 10% for profitability?"
- Error Recovery: When queries fail, the LLM can suggest alternative phrasings
- Domain-Aware: The LLM understands farm financial terminology and relationships

#### CONS:

- Token Cost: Each query requires sending the entire schema to the LLM (expensive with large schemas)
- Inconsistent Results: LLM may generate different SQL for similar questions
- Security Risks: SQL injection potential if not properly sanitized
- Performance Overhead: LLM call adds 1-3 seconds to each query
- Limited Complex Logic: Struggles with very complex analytical queries requiring multiple CTEs or window functions
- Schema Dependency: Changes to the database structure require updating prompts

#### Mitigation Strategies Used:

- Simplified schema to reduce token usage
- Added explicit table/column lists in prompts
- Implemented query validation and error handling
- Used temperature=0.1 for more consistent results

## 3. What would happen if there were more than three rows of data?

Current State: The application is designed with 3 sample farms across 10 tables (30 total records). With More Data (1000+ farms): Performance Impact:

- Query Speed: SQLite can handle millions of rows efficiently minimal impact on query execution
- LLM Processing: No effect on LLM response time (schema size matters more than data size)
- Memory Usage: Minimal increase as only result previews are loaded into memory

#### Scalability Considerations:

- Database Size: 1000 farms ≈ 10,000 records = ~50MB database (very manageable)
- Query Optimization: Would need indexes on frequently queried columns (state, year, financial metrics)
- Result Pagination: Currently limited to 10-20 rows in previews would need pagination for large result sets
- Caching: Could implement query result caching for frequently asked questions

#### **Enhanced Capabilities:**

- Better Analytics: More data enables meaningful statistical analysis and benchmarking
- Trend Analysis: Sufficient data for year-over-year comparisons
- Geographic Insights: Better state/county performance comparisons
- Percentile Rankings: More accurate quartile and percentile calculations

Code Changes Needed:

### 4. How do you choose what questions to use for testing?

Testing Question Selection Strategy:

1. Progressive Complexity:

```
python
```

```
# From demo.py and test files

demo_questions = [

"How many farms are in the database?",  # Basic count

"Which farms have the highest current ratio?",  # Simple ranking

"What is the average working capital by state?",  # Aggregation + grouping

"Show me farms with debt-to-equity ratio above 2.0",  # Filtering

"How did net worth change from the beginning to end of year?"  # Complex analysis
```

#### 2. Category-Based Testing:

- Financial Performance: Ratios, rankings, profitability metrics
- Geographic Analysis: State/county comparisons, regional trends
- Trends and Changes: Time-based analysis, year-over-year comparisons
- Benchmarking: Percentiles, quartiles, top/bottom performers

#### 3. Edge Case Testing:

- Empty Results: "Show me farms with negative working capital"
- Error Handling: "What's the average of a non-existent column?"
- Complex Joins: Questions requiring multiple table relationships
- Aggregation Limits: "What's the 99th percentile for current ratio?"

#### 4. User Experience Testing:

- Natural Language Variations: "Which farms are most profitable?" vs "Show me farms with the highest net income"
- Ambiguous Questions: "Best farms" (requires clarification)
- Follow-up Questions: Testing context retention

#### 5. Performance Testing:

```
# From test_rag_app.py

test_questions = [

"How many farms are in the database?",  # Fast count query

"What is the average working capital?",  # Aggregation

"Which state has the most farms?",  # Grouping

"Show me farms with the highest current ratio" # Sorting
```

## 5. How do you track what is happening through the multiple steps?

Multi-Step Tracking Architecture. Structured Logging System:

```
python
```

#### 2. Comprehensive Result Tracking:

python

```
@dataclass
class QueryResult:
success: bool
data: Optional[pd.DataFrame]
sql_query: str
error_message: Optional[str] = None
row count: int = 0
execution_time: float = 0.0 # Performance tracking
3. Step-by-Step Metadata:
python
result = {
"success": True,
"question": user_question,
"sql_query": sql_query,  # Step 1 output
"response": response,
                                        # Step 3 output
"query result": {
"success": query_result.success,  # Step 2 status
"row_count": query_result.row_count,  # Step 2 results
"execution_time": query_result.execution_time, # Performance
"error_message": query_result.error_message
}
}
4. API Response Tracking:
python
# From farm_rag_api.py
class QuestionResponse(BaseModel):
success: bool
question: str
sql_query: str
response: str
```

```
query_result: Dict[str, Any]
  data_preview: Optional[list] = None
  error: Optional[str] = None

5. Testing and Validation Tracking:
python
# From test_rag_app.py - Comprehensive
```

```
# From test_rag_app.py - Comprehensive test suite

tests = [
    ("Environment Configuration", test_environment),
    ("OpenAI API Connection", test_openai_connection),
    ("Database Connection", test_database),
    ("RAG Application Import", test_rag_import),
    ("RAG Instance Creation", test_rag_instance),
    ("SQL Generation", test_sql_generation),  # Step 1 tracking
    ("SQL Execution", test_sql_execution),  # Step 2 tracking
    ("Complete RAG Workflow", test_full_rag_workflow), # End-to-end tracking
    ("API Endpoints", test_api_endpoints),
    ("Performance Test", run_performance_test)
```

#### 6. Performance Monitoring:

#### python

]

```
# Timing each step
start_time = time.time()

result = rag_app.ask_question(question)
end_time = time.time()

response_time = end_time - start_time

# Track in results

results.append({
    "question": question,
    "success": True,
    "response_time": response_time,
```

```
"rows_returned": result["query_result"]["row_count"]
})
```

#### 7. Error Tracking and Recovery:

#### python

```
# Process question

result = rag_app.ask_question(question)

except Exception as e:

logger.error(f"Error in ask_question: {e}")

return {

    "success": False,

    "question": user_question,

    "error": str(e),

    "response": f"I apologize, but I encountered an error: {e}"
}
```

#### Key Tracking Benefits:

- Debugging: Easy to identify which step failed
- Performance Analysis: Track bottlenecks in the pipeline
- User Experience: Provide detailed feedback on query execution
- Monitoring: Log all interactions for analysis and improvement
- Testing: Comprehensive validation of each component

This multi-step tracking system provides complete visibility into the RAG pipeline, enabling easy debugging of issues, performance optimization, and delivering detailed feedback to users regarding their queries.

## **ER Diagram Summary**

#### **Core Tables:**

1. hdb main data (Main Entity)

- Primary Key: hdb main data id
- Purpose: Central farm record with identification, location, and metadata
- Key Fields: Farm ID, state, county, client name, year, analyst info
- 1. fm\_genin (Farm General Information)
  - Primary Key: fm genin guid
  - Foreign Key: hdb main data id  $\rightarrow$  hdb main data
  - Purpose: Farm name and general information linking
- 1. fm guide (Financial Guide Core Financial Metrics)
  - Primary Key: id (auto-increment)
  - Foreign Keys: fm genin guid, hdb main data id
  - Purpose: Key financial ratios and performance metrics
  - Key Metrics: Current ratio, working capital, net farm income, debt ratios, EBITDA
- 1. fm stmts (Financial Statements)
  - Primary Key: id (auto-increment)
  - Foreign Keys: fm\_genin\_guid, hdb\_main\_data\_id
  - Purpose: Detailed financial statement data
  - Key Fields: Net worth, cash flow, income statements, balance sheet changes

### **Supporting Tables:**

- fm prf lq: Profitability & Liquidity analysis
- fm cap ad: Capital & Asset data
- fm hhold: Household financial data
- fm nf ie: Non-farm income & expenses
- fm fm exp: Farm expenses
- fm fm inc: Farm income
- fm beg bs end bs: Beginning/Ending balance sheet data

## **Relationship Pattern:**

- One-to-Many: Each farm (hdb\_main\_data) can have multiple records in each financial table
- Dual Foreign Keys: Most tables reference both hdb\_main\_data\_id and fm genin guid for data integrity
- Hierarchical Structure: hdb main data → fm genin → Financial tables

## **Key Design Features:**

- Simplified Schema: Focused on essential financial metrics for RAG queries
- Flexible Structure: Supporting tables can be extended with additional columns
- Data Integrity: Foreign key constraints ensure referential integrity
- Query Optimization: Primary keys and foreign keys enable efficient JOINs

This ER diagram represents the simplified, RAG-optimized version of the original FINBIN database schema, designed for efficient natural language querying and analysis. Review Changes

## **Detailed Component Interactions**

#### 1. User Interface Layer

- Web Interface (web interface.html): Modern HTML5 interface with JavaScript
- CLI Interface (farm rag app.py): Direct command-line interaction
- Demo Interface (demo.py): Guided demonstration with example questions
- Test Interface (quick test.py): Quick validation and testing

## 2. API Layer (FastAPI)

- Main API Server (farm rag api.py): RESTful API endpoints
- CORS Middleware: Cross-origin resource sharing
- Static File Server: Serves HTML, CSS, JS files
- Health Monitoring: System status and diagnostics

## 3. Core RAG Engine

- FarmDataRAG Class: Main orchestrator
- SQL Generator: Converts natural language to SQL using OpenAl
- SQL Executor: Executes queries against SQLite database
- Response Generator: Creates natural language responses using OpenAI

#### 4. External Services

- OpenAl API: GPT models for SQL generation and response creation
- Environment Variables: Configuration management (API keys, settings)

#### 5. Database Layer

- SQLite Database: Local file-based database
- Schema: 11 tables with a financial data structure
- Sample Data: 10 farms with comprehensive financial records

## 6. Database Management

- Database Creator: Initial schema and data setup
- Data Adder: Additional sample data insertion
- Simple DB Creator: Windows-optimized database creation
- Database Checker: Validation and health monitoring

## 7. Testing & Validation

- Comprehensive Tests: Full system testing suite
- Performance Tests: Load and response time testing
- Health Checks: System status monitoring

## 8. Deployment Scripts

- Startup Script: Linux/macOS automated startup
- Windows Batch: Windows user setup automation
- Windows PowerShell: Advanced Windows automation

## □ Data Flow Process

## **Question Processing Flow:**

- 1. User Input → Web Interface/CLI
- 1. HTTP Request → FastAPI Server
- 1. Question Processing → FarmDataRAG Class
- 1. SQL Generation → OpenAl API (GPT-3.5/GPT-4)
- 1. Query Execution → SQLite Database
- Response Generation → OpenAl API
- Result Formatting → FastAPI Response
- 1. Display → Web Interface/CLI

## **Database Management Flow:**

- 1. Schema Creation → Database Creator
- 1. Data Population → Data Adder
- 1. Validation → Database Checker
- 1. Query Processing → RAG Engine

#### **Testing Flow:**

- 1. Environment Check → Quick Test
- 1. Component Testing → Comprehensive Tests
- 1. Performance Testing → Performance Tests
- 1. Health Monitoring → Health Checks



## Deployment Options

## **Development Mode:**

- Direct Python execution
- Individual component testing
- Interactive debugging

#### **Production Mode:**

- FastAPI server with Uvicorn
- Web interface access
- API documentation
- Health monitoring

## **Windows Deployment:**

- Automated batch scripts
- PowerShell automation
- User-friendly setup process

This architecture provides a robust, scalable, and maintainable RAG application with multiple interfaces, comprehensive testing, and cross-platform deployment capabilities.