Measure of Dispersion

1. What is the range of the following data set: [3, 5, 7, 9, 11]?

The range is the maximum minus the minimum.

$$Max = 11$$

$$Min = 3$$

Range =
$$11 - 3 = 8$$

Answer: 8

2. Find the variance of the data set: [2, 4, 6, 8,].

Mean =
$$(2 + 4 + 6 + 8) / 4 = 5$$

Squared deviations sum =
$$(-3)^2 + (-1)^2 + 1^2 + 3^2 = 9 + 1 + 1 + 9 = 20$$

Population variance
$$(\sigma^2) = 20 / 4 = 5$$

Sample variance
$$(s^2) = 20 / (4 - 1) = 20 / 3 = 6.6667$$

Answer: population variance = 5; sample variance = 20/3 (≈ 6.6667)

3. Calculate the standard deviation of the values: [1, 2, 3, 4, 5].

We'll calculate step by step for the dataset [1, 2, 3, 4, 5].

Step 1: Mean

Mean=
$$[1+2+3+4+5]/5=3$$

Step 2: Squared deviations from mean

- $(1-3)^2 = (-2)^2 = 4$
- $(2-3)^2 = (-1)^2 = 1$
- $(3-3)^2=0^2=0$
- $(4-3)^2 = 1^2 = 1$
- $(5-3)^2=2^2=4$

$$Sum = 4 + 1 + 0 + 1 + 4 = 10$$

Step 3: Variance

- Population variance = 10 / 5 = 2
- Sample variance = 10/(5-1) = 10/4 = 2.5

Step 4: Standard Deviation

- Population SD = $\sqrt{2} \approx 1.414$
- Sample SD = $\sqrt{2.5} \approx 1.581$

 \checkmark **Answer:** Population SD = 1.414, Sample SD = 1.581

4. Define range in your own words.

Range is the difference between the highest value and the lowest value in a dataset.

5. What does a high standard deviation indicate about a data set?

A high standard deviation means the values in the dataset are spread out widely from the mean (average).

6. If all numbers in a data set are the same, what is the standard deviation?

If all numbers in a dataset are the same, then:

- Every value = Mean
- So, each deviation from the mean = 0
- Variance = 0
- Standard deviation = $\sqrt{0} = \mathbf{0} \checkmark$

Answer: The standard deviation is 0.

7. Find the range of the values: [15, 18, 12, 20, 10].

Let's calculate step by step:

- Maximum = 20
- Minimum = 10
- Range = 20 10 = 10

Answer: 10

8. What is the formula to calculate variance in a population?

The formula for **population variance** (σ^2) is:

$$\sigma^2 = rac{\sum_{i=1}^N (x_i - \mu)^2}{N}$$

Where:

- N = total number of values in the population
- xi = each individual value
- μ = population mean

In words: Variance is the average of the squared differences from the mean.

9. Explain the difference between sample variance and population variance.

Population variance is used when you have data for the **entire group** you are studying. It measures how spread out all the values are in the whole population.

Sample variance is used when you only have data from a **subset** (**sample**) of the population. Since a sample doesn't represent the whole perfectly, we make a small adjustment (by dividing a little differently) to avoid underestimating the spread.

10. Compute the standard deviation for this data set: [4, 4, 4, 4, 4].

Let's check step by step for the dataset [4, 4, 4, 4, 4]:

Step 1: Mean

Mean = [4+4+4+4+4]/5 = 4

Step 2: Deviations from mean

Each value – Mean = 4 - 4 = 0

Step 3: Squared deviations

All are $02=00^2 = 0$

Step 4: Variance

Average of squared deviations = 0

Step 5: Standard Deviation

 $0=0 \setminus sqrt\{0\} = 0$

Answer: The standard deviation is 0

11. A data set has a variance of 0. What can you say about its values.

If a dataset has a variance of 0, it means there is no spread at all in the data.

In simple words: all the values in the dataset are exactly the same.

For example: $[7, 7, 7, 7] \rightarrow \text{variance} = 0$.

12. What is the square root of variance called?

The square root of variance is called the standard deviation $\mathscr C$

13. Why do we square the differences from the mean when calculating variance?

We square the differences to **remove negatives**, **prevent cancellation**, and **emphasize larger deviations**.

14. Which measure of dispersion is affected most by outliers?

The measure of dispersion most affected by **outliers** is the **range** $\mathscr C$

15. True or False: Range is a measure of central tendency.

False