模拟电路学习笔记

解密RF信号链:特性和性能指标 (第1部分)

RF表示射频,此术语的通用定义规定了特定的频率范围: MHz至GHz电磁频谱。 RF的突出特性包括相移、电抗、耗散、噪声、辐射、反射和非线性,术语RF适用于 许多具有构成此定义特性的任何电路或组件。

· S矩阵

S21:端口1到端口2的传输系数

|S21|: 输出功率与输入功率的比值, 称为增益或标量对数增益

S11、S22: 反射系数|Г|

反射系数与回波损耗: RL=-20log |Γ| (回波损耗始终是非负值)

(IL和RL与S参数的这种简单关系只有在所有端口都匹配的情况下才有效)

· 频率范围和带宽

3 dB带宽: 信号功率电平超过其最大值一半的频率范围。

瞬时带宽(IBW)或实时带宽:系统在不需要重新调谐的情况下能够产生或获取的最大连续带宽。

占用带宽(OBW): Occupied BW,包含总集成信号功率特定百分比的频率范围。 分辨率带宽(RBW):指两个频率分量(可继续分解)之间的最小间隔。例如,在频谱分析仪系统中,它是最终滤波器级的频率范围。

・非线性

输出1 dB压缩点(OP1dB)

饱和输出功率(PSAT)

IP3

• 分布式元件电路、集总电路

取决于电路中RF波长,高频RF系统中波长较短,需按照分布式原件电路模型分析来体现电路中的相位偏移。

• 回波损耗、反射系数、电压驻波比

插入损耗: Insert Loss

回波损耗: Return Loss

回波损耗与电压驻波比计算:

回波损耗始终是非负值

电压驻波比: VSWR = $\frac{V_{1max}}{V_{1min}} = \frac{V_1^+ + V_1^-}{V_1^+ - V_1^-}$

反射系数 $|\Gamma| = \frac{V_1^-}{V_1^+} = \frac{VSWR-1}{VSWR+1}$, RL=-20log $|\Gamma|$

比如, VSWR = 17.391, $\frac{V_1^-}{V_1^+}$ = 0.891, RL = $-20 \lg \frac{V_1^-}{V_1^+}$ = 1dB

OBW IBW

RF信号链的带宽很大程度上取决于其模拟前端,以及高速模数转换器或数模 转换器的采样速率和带宽

Instantaneous Bandwidth, 瞬时带宽

Operating Bandwidth, 工作带宽

Occupied Bandwidth, 占用带宽, 华为FDD产品无OBW指标

Reference Da	ita - Re X
Return Loss	VSWR
1 dB	17.391
2 dB	8.724
3 dB	5.848
4 dB	4.419
5 dB	3.570
6 dB	3.010
7 dB	2.615
8 dB	2.323
9 dB	2.100
10 dB	1.925
11 dB	1.785
12 dB	1.671
13 dB	1.577
14 dB	1.499
15 dB	1.433
16 dB	1.377
17 dB	1.329
18 dB	1.288
19 dB	1.253
20 dB	1.222
21 dB	1.196
22 dB	1.173
23 dB	1.152
24 dB	1.135
25 dB	1.119
26 dB	1.106
27 dB	1.094
28 dB	1.083
29 dB	1.074
30 dB	1.065
Print	Close

dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts
50 dBm	100 W	20 dBm	100 mW	-10 dBm	100 uW	-40 dBm	100 nW
49 dBm	79 W	19 dBm	79 mW	-11 dBm	79 uW	-41 dBm	79 nW
48 dBm	63 W	18 dBm	63 mW	-12 dBm	63 uW	-42 dBm	63 nW
47 dBm	50 W	17 dBm	50 mW	-13 dBm	50 uW	-43 dBm	50 nW
46 dBm	40 W	16 dBm	40 mW	-14 dBm	40 μW	-44 dBm	40 nW
45 dBm	32 W	15 dBm	32 mW	-15 dBm	32 µW	-45 dBm	32 nW
44 dBm	25 W	14 dBm	25 mW	-16 dBm	25 uW	-46 dBm	25 nW
43 dBm	20 W	13 dBm	20 mW	-17 dBm	20 μW	-47 dBm	20 nW
42 dBm	16 W	12 dBm	16 mW	-18 dBm	16 uW	-48 dBm	16 nW
41 dBm	13 W	11 dBm	13 mW	-19 dBm	13 uW	-49 dBm	13 nW
40 dBm	10 W	10 dBm	10 mW	-20 dBm	10 µW	-50 dBm	10 nW
39 dBm	7.9 W	9 dBm	7.9 mW	-21 dBm	7.9 uW	-51 dBm	7.9 nW
38 dBm	6.3 W	8 dBm	6.3 mW	-22 dBm	6.3 uW	-52 dBm	6.3 nW
37 dBm	5.0 W	7 dBm	5.0 mW	-23 dBm	5.0 µW	-53 dBm	5.0 nW
36 dBm	4.0 W	6 dBm	4.0 mW	-24 dBm	4.0 µW	-54 dBm	4.0 nW
35 dBm	3.2 W	5 dBm	3.2 mW	-25 dBm	3.2 uW	-55 dBm	3.2 nW
34 dBm	2.5 W	4 dBm	2.5 mW	-26 dBm	2.5 µW	-56 dBm	2.5 nW
33 dBm	2.0 W	3 dBm	2.0 mW	-27 dBm	2.0 uW	-57 dBm	2.0 nW
32 dBm	1.6 W	2 dBm	1.6 mW	-28 dBm	1.6 µW	-58 dBm	1.6 nW
31 dBm	1.3 W	1 dBm	1.3 mW	-29 dBm	1.3 uW	-59 dBm	1.3 nW
30 dBm	1.0 W	0 dBm	1.0 mW	-30 dBm	1.0 µW	-60 dBm	1.0 nW
29 dBm	794 mW	-1 dBm	794 µW	-31 dBm	794 nW	-61 dBm	794 pW
28 dBm	631 mW	-2 dBm	631 µW	-32 dBm	631 nW	-62 dBm	631 pW
27 dBm	501 mW	-3 dBm	501 µW	-33 dBm	501 nW	-63 dBm	501 pW
26 dBm	398 mW	-4 dBm	398 µW	-34 dBm	398 nW	-64 dBm	398 pW
25 dBm	316 mW	-5 dBm	316 µW	-35 dBm	316 nW	-65 dBm	316 pW
24 dBm	251 mW	-6 dBm	251 µW	-36 dBm	251 nW	-66 dBm	251 pW
23 dBm	200 mW	-7 dBm	200 μW	-37 dBm	200 nW	-67 dBm	200 pW
22 dBm	158 mW	-8 dBm	158 µW	-38 dBm	158 nW	-68 dBm	158 pW
21 dBm	126 mW	-9 dBm	126 uW	-39 dBm	126 nW	-69 dBm	126 pW
20 dBm	100 mW	-10 dBm	100 uW	-40 dBm	100 nW	-70 dBm	100 pW

・非线性

- ✓ RF网络的功率电平持续升高通常会带来更明显的非线性效应,最终导致其性能下降。
- ✓ 一旦系统处于非线性模式,就会使信号失真、产生杂散频率分量,或者杂散。杂散是相对于载波信号(单位:dBc)的电平进行测量,可以分为谐波和交调产物。谐波是处于基波频率的整数倍位置的信号(例如,H1、H2、H3谐波),而交调产物是非线性系统中存在两个或更多基波信号时出现的信号。如果第一个基波信号位于频率f1,第二个位于f2,则二阶交调产物出现在两个信号的和频和差频位置,即f1 + f2和f2 − f1,以及f1 + f1和f2 + f2(后者也称为H2谐波)。二阶交调产物与基波信号相结合,会产生三阶交调产物,其中两个(2f1 − f2和2f2 − f1)特别重要,由于它们接近原始信号,因此难以滤除。包含杂散频率分量的非线性RF系统的输出频谱表示了交调失真(IMD),这是描述系统非线性度的一个重要术语。
- ✓ 与二阶交调失真(IMD2)和三阶交调失真(IMD3)相关的杂散分量会对目标信号造成干扰。用于量化干扰严重程度的重要指标为交调点(IP)。我们可以区分二阶(IP2)和三阶(IP3)交调点。如图所示,它们定义输入(IIP2、IIP3)和输出(OIP2、OIP3)信号功率电平的假设点,在这些点上,相应的杂散分量的功率将达到与基波分量相同的电平。虽然交调点是一个纯数学概念,但它是衡量RF系统对非线性度耐受性的重要指标。
- ✓ 线性区输出功率: Pour = Gain · Pin
- ✓ 1dB压缩点: OP1_{dB} = Gain·IP1_{dB} 1 (非线性系统实际增益曲线确定)
- ✓ IMn计算: IIPn = PIN + $\Delta P/(n-1)$, OIPn = PIN + G + $\Delta P/(n-1)$

・ IPn的推导

线性增益区间线性方程: Y = X + G; 在非线性区间, IPn线性方程: Y = nX + b

(1) 求解IPn线性方程

IPn线性方程经过测试点 (Pin, Pout – ΔP),即(Pin, Pin + G – ΔP),在非线性区间,IPn线性方程:Y = nX + (1 - n)Pin + G - ΔP

(2) 求解IIPn, OIPn

求解Y = X + G和Y = nX + (1 - n)Pin + G - Δ P的交点: (PIN + Δ P/(n - 1), PIN + Δ P/(n - 1)+G)

即: $IIPn = PIN + \Delta P/(n-1)$, $OIPn = PIN + G + \Delta P/(n-1)$

Fundamentals

IP3

Questiona: IM3曲线: 斜率为3倍线性增益, 为什么斜率是3?

Answer1: 非线性系统, n次谐波

非线性系统:
$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + \cdots$$

输入:
$$X(t) = A\cos(\omega t + \varphi) = \frac{A}{2}(e^{j(\omega t + \varphi)} + e^{-j(\omega t + \varphi)})$$
 (欧拉公式)

简化输入,令
$$\varphi = 0$$
: $X(t) = A\cos\omega t = A\frac{(e^{j\omega t} + e^{-j\omega t})}{2}$

✓
$$y = a_0$$
的输出: $Y(t) = a_0$

✓
$$y = a_1 x$$
的输出: $Y(t) = a_1 A \cos \omega t$

✓
$$y = a_2 x^2$$
的输出: $Y(t) = a_2 A^2 (\cos \omega t)^2 = \frac{a_2 A^2}{2} \cos 2\omega t + \frac{a_2 A^2}{2}$

$$\checkmark \ \ y = a_3 x^3$$
的输出: $Y(t) = a_3 A^3 (\cos \omega t)^3 = a_3 A^3 \frac{(e^{j\omega t} + e^{-j\omega t})^3}{8} = a_3 A^3 \frac{\cos 3\omega t + 3\cos \omega t}{4} = \frac{a_3 A^3}{4} \cos 3\omega t + \frac{3a_3 A^3}{4} \cos \omega t$

$$\checkmark y = a_4 x^4$$
的輸出: $Y(t) = a_4 A^4 (\cos \omega t)^4 = a_4 A^4 \frac{(e^{j\omega t} + e^{-j\omega t})^4}{16} = a_4 A^4 \frac{\cos 4\omega t + 4\cos 2\omega t + 3}{8} = \frac{a_4 A^4}{8} \cos 4\omega t + \frac{a_4 A^4}{2} \cos 2\omega t + \frac{3a_4 A^4}{8} \cos 4\omega t$

✓
$$y = a_5 x^5$$
的輸出: $Y(t) = a_5 A^5 (\cos \omega t)^5 = a_5 A^5 \frac{(e^{j\omega t} + e^{-j\omega t})^5}{32} = a_5 A^5 \frac{2\cos 5\omega t + 5\cos 3\omega t + 10\cos \omega t}{32} = \frac{a_5 A^5}{16}\cos 5\omega t + \frac{5a_5 A^5}{32}\cos 3\omega t + \frac{5a_5 A^5}{16}\cos \omega t$

综上:

$$y = a_0 + a_1 x$$
的输出: $Y(t) = a_1 A \cos \omega t + a_0$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 的输出:
$$Y(t) = \frac{a_3 A^3}{4} \cos 3\omega t + \frac{a_2 A^2}{2} \cos 2\omega t \left(a_1 A + \frac{3a_3 A^3}{4} \right) \cos \omega t + \frac{a_2 A^2}{2} + a_0$$

参考文献:

- [1] ADI MT-053 Op Amp Distortion HD, THD, THD + N, IMD, SFDR, MTPR.pdf
- [2] Maxim IP3_and_Intermodulation_Guide.pdf

Answer 2: 非线性系统,输入信号频率w1, w2, n阶互调

非线性系统: $y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7 + \cdots$

输入: $X_1(t) = A_1 \cos(\omega_1 t + \varphi_1) = \frac{A_1}{2} (e^{j(\omega_1 t + \varphi_1)} + e^{-j(\omega_1 t + \varphi_1)}), \quad X_2(t) = A_2 \cos(\omega_2 t + \varphi_2) = \frac{A_2}{2} (e^{j(\omega_2 t + \varphi_2)} + e^{-j(\omega_2 t + \varphi_2)})$

简化输入,令 $\varphi_1=0$, $\varphi_2=0$: $X_1(t)=A_1\cos\omega_1t=\frac{A_1}{2}(e^{j\omega_1t}+e^{-j\omega_1t})$, $X_2(t)=A_2\cos\omega_2t=\frac{A_2}{2}(e^{j\omega_2t}+e^{-j\omega_2t})$

 \checkmark $y = a_0$ 的输出: $Y(t) = a_0$

 $\checkmark y = a_1 x$ 的输出: $Y(t) = a_1 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)$

✓ $y = a_2 x^2$ 的輸出: $Y(t) = a_2 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^2 = a_2 \left[\frac{A_1^2}{2} \cos 2\omega_1 t + \frac{A_2^2}{2} \cos 2\omega_2 t + A_1 A_2 \cos(\omega_1 + \omega_2) t + A_1 A_2 \cos(\omega_1 - \omega_2) t + \frac{A_1^2}{2} + \frac{A_2^2}{2} \right]$

✓ $y = a_3 x^3$ 的输出: $Y(t) = a_3 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^3 =$

综上:

$$y = a_0 + a_1 x$$
 的输出: $Y(t) = a_1 A_1 \cos \omega_1 t + a_1 A_2 \cos \omega_2 t + a_0$

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$
 in while:
$$Y(t) = a_3 \frac{A_1^3}{4} \cos 3\omega_1 t + a_3 \frac{A_2^3}{4} \cos 3\omega_2 t + a_2 \frac{A_1^2}{2} \cos 2\omega_1 t + a_2 \frac{A_2^2}{2} \cos 2\omega_2 t + \left(a_1 A_1 + a_3 \frac{3A_1^3}{4} + a_3 \frac{3A_1 A_2^2}{2}\right) \cos \omega_1 t + \left(a_1 A_2 + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{3A_1^2 A_2}{2} + \right) \cos \omega_2 t + \left(a_1 A_2 + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{3A_1^2 A_2}{2} + \right) \cos \omega_2 t + \left(a_1 A_2 + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{3A_1^2 A_2}{2} + a_3 \frac{3A_1^2 A_2}{4} + a_3 \frac{$$

 $= a_3 \left\{ \frac{A_1^3}{4} \cos 3\omega_1 t + \frac{A_2^3}{4} \cos 3\omega_2 t + \left(\frac{3A_1^3}{4} + \frac{3A_1A_2^2}{2} \right) \cos \omega_1 t + \left(\frac{3A_2^3}{4} + \frac{3A_1^2A_2}{2} \right) \cos \omega_2 t + \frac{3A_1^2A_2}{4} \left[\cos(2\omega_1 + \omega_2)t + \cos(2\omega_1 - \omega_2)t \right] + \frac{3A_1A_2^2}{4} \left[\cos(\omega_1 + 2\omega_2)t + \cos(\omega_1 - 2\omega_2)t \right] \right\}$

$$a_3 \frac{3A_1^2A_2}{4} \left[\cos(2\omega_1 + \omega_2)t + \cos(2\omega_1 - \omega_2)t \right] + a_3 \frac{3A_1A_2^2}{4} \left[\cos(\omega_1 + 2\omega_2)t + \cos(\omega_1 - 2\omega_2)t \right] + a_2A_1A_2 \cos(\omega_1 + \omega_2)t + a_2A_1A_2 \cos(\omega_1 - \omega_2)t + a_2\frac{A_1^2}{2} + a_2\frac{A_2^2}{2} + a_$$

- [1] ADI MT-053 Op Amp Distortion HD, THD, THD + N, IMD, SFDR, MTPR.pdf
- [2] Maxim IP3_and_Intermodulation_Guide.pdf

零中频

https://www.analog.com/cn/technical-articles/basics-designing-digital-radio-receiver.html

Basics of Designing a Digital Radio Receiver (Radio 101)

Brad Brannon

This paper introduces the basics of designing a digital radio receiver. With many new advances in data converter and radio technology, complex receiver design has been greatly simplified. This paper attempts to explain how to calculate sensitivity and selectivity of such a receiver. It is not by any means an exhaustive

设置"平滑"

利用这些两个简单的"行星"自行尝试

- 1 复制此幻灯片:右键单击幻灯片缩 略图,然后选择"复制幻灯片"。
- 2 在两张相同的幻灯片中,对第二张右侧的形状进行某些更改(移动、调整大小、更改颜色),然后转到"切换">"平滑"。
- 3 返回两张幻灯片中的第一张,按"<mark>幻灯</mark>片放映"按钮,然后选择"<mark>播放</mark>",观看圆圈的平滑切换!

提示: "效果选项"可以提供更多的"平滑"选项。

THANK YOU