Kataloge astronomischer Objekte und Strukturen

- IC 405, Index Katalog:
 - Wikipedia:Index-Katalog (http://de.wikipedia.com/wiki/Index-Katalog)
- M 100, Messier Katalog
 - Wikipedia: Messier-Katalog (http://de.wikipedia.com/wiki/Messier-Katalog)
 - Originalkatalog (http://www.seds.org/messier/xtra/history/m-cat.html)
 - kompletter Katalog bebildert (http://www.maa.agleia.de/Messier/D/)
 - deutsche Fassung bebildert (http://www.astronomie.de/galerie/projekte/messier/)
- NGC 104, New General Catalogue,
 - Wikipedia: NGC New General Catalogue http://www.seds.org/~spider/ngc/ngc.html?M+100
- γ Gem, Bayer-Bezeichnungen
 - Wikipedia:Bayer-Bezeichnung (http://de.wikipedia.com/wiki/Bayer-Bezeichnung

Weitere Kataloge

- R Lyrae, Bezeichnung veränderlicher Sterne:
 Wikipedia:Benennung_veränderlicher_Sterne (http://de.wikipedia.com/wiki/Benennung_ver%E4nderlicher_Sterne)
- weitere Kataloge wie SAO, Hipparchos, Tycho
 Wikipedia:Sternkatalog (http://de.wikipedia.com/wiki/Sternkatalog)

Leere

- wir wissen bereits: Raum zwischen unseren Planeten ist ziemlich leer
- noch wesentlich größere sind Abstände zwischen den Sternen, dennoch:
- Olbersches Paradoxon: Warum ist der Nachthimmel schwarz?
- Raum nimmt mit r3 zu, Helligkeit eines Objektes nur mit r2 ab
- bei manchen Sternspektren fehlen Linien
- seltsame dunkle Regionen am Himmel
- bunt leuchtende Flecken am Himmel

Wolken

Nachdem es die letzten beiden Male, vielleicht etwas zu physikalisch wurde, wollen wir heute etwas mehr genießen.

Vielleicht forschen Sie selbst weiter, was die berühmte 21cm-Linie des Wasserstoffes ist und lernen Merkwürdigkeiten wie den Spin oder die Quantelung von physikalischen Großen selbst kennen!

Der Raum zwischen den Sternen ist nicht leer

- Wasserstoffwolken
- Molekülwolken
- Staubwolken

Wasserstoffwolken

- im Raum zwischen den Sternen befindet sich eine beträchtliche Menge an Wasserstoff in verschiedenen Formen
- 1. HII Wolken: ionisierte Wasserstoffatome, heiß (103 106°C), etwa 22% Masse in der Galaxis
- 2. HI Wolken: neutraler Wassserstoff, kühler (bis etwas 8000°C), etwa 60% Masse
- 3. H2-Wolken: Wasserstoffmolekülwolken, im 10°Kelvin Bereich, etwa 18% Masse

Der Nordamerika-Nebel

Grund für das Leuchten

Elektronen werden von ionisierten Wasserstoffatomen wieder eingefangen, dabei wird über mehrere Zwischenstufen elektromagnetische Strahlung abgegeben, u.a. das rote Leuchten im Bild zuvor.

Ionisierung erfolgt durch UV-Licht von Sternen. Auf diese Weise wird UV-Licht auch in sichtbares Licht umgewandelt.

Prinzip der Leuchtstoffröhre:

- UV-Licht durch Entladung
- Umwandlung in Farbschicht an der Glaswand

M82

Die irreguläre Galaxie M82 zeigt rote Wasserstoffwolken

March 24, 2000

Nebel

- Teilchen können entweder selbst leuchten (wie gerade gesehen) oder (wie in diesem Beispiel) beleuchtet werden.
- •Exkurs: Warum ist der Himmel blau?
- Reflexion, Streuung, Absorbtion
- Teilchen nun nicht mehr nur Wasserstoff, auch Moleküle oder gar Staubteilchen sind vertreten

Trifidnebel

Blauer Anteil des Trifidnebels

Nebelarten

- Diffuse Nebel
- Planetarische Nebel
- Dunkelnebel
- Bipolare Nebel
- Extragalaktische Nebel

Diffuse Nebel

- Emissionsnebel senden Licht nach dem beschriebenen Verfahren aus (UV- Umwandlung), auch Stoßprozesse
- Reflexionsnebel: Staubteilchen werden beleuchtet

Beispiel: Der emittierende Lagunennebel

Planetarische Nebel

- sehen wie kleine Planetenscheiben aus, haben aber nichts mit Planeten zu tun
- Gashüllen um einen Zentralstern

Beispiel M57

Dunkelnebel

- Gas und Staub, die dahinter liegende Sterne verdunkeln
- täuschen Sternleere vor (Olbers'sches Paradoxon?!)

Beispiel: Kohlensack

Quelle:http://www.allthesky.com/nebulae/coals.html

Bipolare Nebel

- Akkretionsscheibe
- auf jeder Seite eine Wolke aufgesetzt
- im Zentrum ein junger windiger Stern
- Emission und Reflexion möglich

Quelle:http://de.wikipedia.org/wiki/Planetarischer_Nebel

Beispiel: M2-9

Extragalaktische Nebel

Beispiel: Nebel NGC 604 in M33

Quelle:http://www.rcopticalsys tems.com/gallery/ngc604.html

- außerhalb unserer Galaxis
- können eigene Sternsysteme sein

Die Milchstraße im Spektrum

Quelle: Spektrum d.Wissenschaft, Dossier die Milchstraße, ISBN:3936278288

Nachsatz

Auch Wolken und Nebel sind dynamische Gebilde, die in den galaktischen Prozessen eine wesentliche Rolle spielen. Auch hier können Sie selbst weiterforschen!

Quelle: Spektrum d.Wissenschaft, Dossier die Milchstraße, ISBN:3936278288

Hintergrundstrahlung

- nach dem Urknall herrschten unglaublich hohe Temperaturen und Drücke
- das Universum war undurchsichtig, denn freie Elektronen streuten das Licht
- Abkühlung und damit Atombildung
- Durchsichtigkeit nach etwa 300 000 Jahren

Quelle

- wir blicken in die Vergangenheit zurück
- Universum breitet sich aus → Strahlung ist stark rotverschoben
- sehen die undurchsichtige Vergangenheit wie einen Nebelvorhang
 - Bild: Echo des Urknalls eher unangebracht
 - besser: Nachglühen des Urknalls, aber: entspricht einer Strahlung eines Körpers von 2,7 K (–270°C)
- hat eigentlich keine Relevanz für unserer Milchstraße, aber...
- ist ein starkes Indiz für die Urknalltheorie
- beschränkt den zeitlichen Horizont unserer Rückschau
- beschränkt die Größe des beobachtbaren Universums

Grafische Darstellung

- Technischer Fortschritt zwischen 1992 und 2004
- Strahlung ist in erster
 Näherung isotrop, nicht aber in höheren Näherungen

Quelle:http://map.gsfc.nasa.gov/m_mm.html

Entdeckung der Hintergrundstrahlung

- 1940 vorhergesagt, u.a. von George Gamov
- 1968 von Penzias und Wilson gemessen
- wollten eigentlich einen neuen Antennentyp testen
- störendes Hintergrundsignal, das scheinbar aus allen Richtungen kam
- 1978 Nobelpreis für Physik
- Neu: Existenz eines ausgezeichneten kosmischen Bezugssystems (http://arxiv.org/pdf/physics/0211054)

Penzias und Wilson

Das schwarze Loch im Zentrum

ausgezeichnete populärwissenschaftliche Quelle: Wikipedia:Schwarzes_Loch)

Entstehung

- 1. stellare Schwarze Löcher: (nach Modell!) bei der Explosion massereicher Sterne (mehr als 10 Sonnenmassen)
- 2. mittelschwere schwarze Löcher: entstehen möglicherweise durch Kollision von Sternen
- 3. supermassive Schwarze Löcher: im Zentrum von Galaxien könnten ursprünglich stellare Schwarze Löcher gewesen sein werden im Zuge der Galaxienentwicklung erforscht
- 4. primordiale Schwarze Löcher: beim Urknall entstanden

Das Wesen eines schwarzen Loches

- die Dichte der Materie ist so groß, dass die Fluchtgeschwindigkeit größer als die Lichtgeschwindigkeit wäre
- Schwarzschildradius: Point of No Return
 - bei nicht rotierenden schwarzen Löchern ist er der Radius der Kugel des Ereignishorizonts
 - keine Singularität (keine Unendlichkeitsstelle)
- Schwarzschildradius ist proportional zur Masse
- Schwarzes Loch kann Hawking-Strahlung abgeben
- mathematisch physikalisch sind Schwarze Löcher mögliche Lösungen der Feldgleichungen der allg. Relativitätstheorie
- besteht dort nur aus leerem Raum, der stark gekrümmt ist (Vergleiche: Erdoberfläche, Sprungtuch)
- im Zentrum eine Singularität = Unendlichkeitsstelle
- diese durch hohe (unendliche) Massendichte hervorgerufen

Wechselwirkungen

 die Gravitationskraft wird dadurch so groß, dass keine andere Wechselwirkung die Bewegung eines Teilchens auf das Zentrum hin stoppen kann

es wären in Frage gekommen:

- 1. elektromagnetische Wechselwirkung: normale Materie, Elektronenhüllen stoßen ab
- 2. starke Wechselwirkung: sorgt beim Neutronenstern noch für Stabilität, wesentlich im Atomkern

nicht mehr in Frage kommen:

- 3. Gravitation: nur anziehend
- 4. schwache Wechselwirkung: beim β-Zerfall von Bedeutung

Hawking - Strahlung

- Schwarze Löcher strahlen Energie ab
- (für einen Kursteilnehmer: ist eine Schwarzkörper-Strahlung)
- Temperatur sinkt mit Masse
- d.h. je kleiner, desto mehr wird abgestrahlt
- Quelle der Strahlung ist Elektron-Positron-Paarbildung

Elektron e⁻ - Positron e⁺ - Paarbildung

- Positron ist das Antiteilchen zum Elektron (Antimaterie)
- normale Paarbildung: aus einem Photon (Lichtteilchen) wird ein Elektron + ein Positron
- Photon muss dafür ausreichend Energie besitzen (Energieerhaltung gilt übrigens sogar in schwarzen Löchern)
- Trifft Positron später ein Elektron, zerstrahlen die beiden wieder zu einem Photon (= Vernichtungsstrahlung)
- bei Strahlentherapie mit ultraharter Röntgenstrahlung tritt Paarbildung auf
- dieser Prozess kann auch spontan auftreten →

Heisenberg'sche Unschärferelation

vorausschickend: jetzt sind wir in der Quantenphysik, Ihr Vortragender wandelt am Glatteis der nichtzulässigen Vereinfachungen; Modelle; Theorien ... ;-)

 $\delta E * \delta t \le konst.$

- kurzzeitiges Ausborgen von Energie ist möglich
- Beleg durch eine Messung des Casimir-Effektes (zwischen eng liegenden Platten können gewisse virtuelle Paare nicht entstehen → Druck von außen auf die Platten)
- eines der Teilchen stürzt in das Loch, das andere kann entkommen
- eines der virtuellen Teilchen wird damit real
- die potentielle Energie des hineinfallenden Teilchen dem schwarzen Loch entzogen, es wird leichter

Heisenbergsche Unschärferelation II

- andere Formulierung: ein Teilchen, das an potentieller Energie verliert, wird leichter
- eine vollständige Erklärung dieses Effektes benötigt Quantenmechanik und allgemeine Ralativitätstheorie (u. damit Gravitation)
- so eine vereinheitlichte Theorie (Theory of Everything, Grand Unified Theorie, GUT) exisitert noch nicht

Werner Heisenberg
Quelle:
http://www.fourmilab.ch/docu

ments/figures/heisenberg.gif

"Glatze"

- Schwarze Löcher haben laut Wheeler keine Haare
- d.h. schwarzes Loch ist durch Masse, elektrischer Ladung und Drehmoment charakterisiert
- Disput, ob weitere Information prinzipiell nach außen gelangen kann
- der Vortragende schlägt sich auf die Seite Wheelers und entzieht sich damit weiteren Erläuterungen ;-)
- aktuelle Diskussion: Hawking hat auf einer Konferenz Ende Juli 2004 in Dublin sich dieser Meinung nicht mehr angeschlossen ...

Stephen Hawking

Quelle: http://wwwuxsup.csx.cam.ac.uk/~fanf2/hermes/doc/talk
s/2004-05-techlinks/hawking.jpg

Ein Bild ... wie es nicht aussieht!

Quelle:http://de.wikipedia.org/wiki/ Schwarzes_Loch

Sag A*

- im Zentrum unserer Milchstraße vermutlich auch ein supermassives schwarzes Loch
- nämlich die Radioquelle Sagittarius A*
- Ereignishorizont von einigen Sonnendurchmessern
- Masse von 2–3 Millionen Sonnenmassen

Die Zentralregion der Milchstraße

Aufnahme des Röntgensatelliten Chandra, Mosaik der Zentralregion der Galaxis

Quelle:http://chandra.harvard.edu/photo/2002/gcenter/index.html

Quasare

Jet von M87

Quelle:http://science.nasa.gov/newhome/headlines/ast24nov99_I.htm

- Abkürzung für Quasi-Stellare-Radioquelle
- in weit entfernten Galaxien zu finden (frühe Galaxien)
- extrem helle Erscheinung,
 Zentralobjekt so hell wie sonst eine ganze Galaxie
- Theorie: stark erhitzte leuchtende Akkretionsscheibe um ein supermassives schwares Loch
- Jets können normal auf die Scheibe austreten

Weiterführender Link: Der Tag, als die Erde ein schwarzes Loch wurde: