Contrôle S2 – Corrigé Architecture des ordinateurs

Durée: 1 h 30

Inscrivez vos réponses <u>exclusivement</u> sur le document réponse. Ne pas détailler les calculs sauf si cela est explicitement demandé. Ne pas écrire à l'encre rouge ni au crayon à papier.

Exercice 1 (9 points)

- 1. Convertissez les nombres présents sur le <u>document réponse</u> dans le format IEEE754 **simple précision**. Vous exprimerez le résultat final sous **forme binaire** en précisant les trois champs.
- 2. Donnez la représentation associée aux mots binaires codés au format IEEE754 **double précision** présents sur le <u>document réponse</u>. Si une représentation est un nombre, vous l'exprimerez en base 10 sous la forme $k \times 2^n$ où k et n sont des entiers relatifs.

Pour les questions suivantes, vous traiterez le cas du format à mantisse normalisée uniquement et donnerez le résultat sous la forme d'une puissance de deux.

- 3. Pour la simple précision, quel est le plus petit nombre strictement positif qui, ajouté à 16, donne un résultat différent de 16 ?
- 4. Pour la double précision, quel est le plus petit nombre strictement positif qui, ajouté à 2⁸³, donne un résultat différent de 2⁸³ ?

Exercice 2 (3 points)

Soit le montage ci-dessous :

- 1. Complétez le chronogramme sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée).
- 2. Si l'on considère la totalité de ce circuit comme une seule bascule D, quel est son mode de synchronisation ?

Exercice 3 (2 points)

Donnez le type de chaque bascule ci-dessous (répondre sur le <u>document réponse</u>).

Exercice 4 (6 points)

Complétez les chronogrammes sur le <u>document réponse</u> (jusqu'à la dernière ligne verticale pointillée) pour les montages ci-dessous.

Figure 1

Figure 2

Figure 3

DOCUMENT RÉPONSE À RENDRE

Exercice 1

1.

Nombre	S	E	M
483	0	10000111	11100011000000000000000
84,4375	0	1111100	0101000111000000000000
0,171875	0	01111100	0110000000000000000000

2.

Représentation IEEE 754 (base 16)	Représentation associée
3A44 0000 0000 0000	5 × 2 ⁻⁹³
7FF0 0000 0000 0000	+∞
000A D000 0000 0000	173 × 2 ⁻¹⁰³⁰
7FF1 0000 0000 0000	NaN

3. 2 ⁻¹⁹	4. 2 ³¹

Exercice 2

Type de bascule :

Bascule D synchronisée sur impulsion (bascule D maître-esclave)

Exercice 3

Bascule	Type de bascule		
1	Bascule D synchronisée sur état (verrou D)		
2	Bascule D synchronisée sur front descendant		
3	Bascule D synchronisée sur front montant		
4	Bascule D synchronisée sur impulsion (bascule D maître-esclave)		

Exercice 4

Figure 1

Figure 2

Figure 3