Projet de Simulation 2019 - Modèles Théoriques

Maxime Gonthier - Benjamin Guillot $28~\mathrm{mai}~2019$

Table des matières

1	Introduction				
2	Modèles n°1 - File M/M/N				
	2.1 Description du modèle				
		2.1.1 Représentation			
	2.2	Données et formules			
		2.2.1 Temps moyen d'attente et 90 percentile			
3	$Modèle n^2$ - $File M/M/1$				
	3.1	Description du modèle			
		3.1.1 Représentation			
	3.2	Données et Formules			
		3.2.1 Temps moyen d'attente et 90 percentile			
4	Modèle n°3 - 10 files $M/M/1$				
	4.1	4.1 description du modèle			
		4.1.1 représentation			
	4.2	Données et Formules			

1 Introduction

Ce Rapport à pour but de présenter les trois modèles théoriques étudié pour ce projet de Simulation.

Il sera composé de trois parties, chacune d'entre elles étant dédié à un modèle précis.

2 Modèles n°1 - File M/M/N

2.1 Description du modèle

Le premier modèle est décris de la façon suivante :

Le patron donne au client un ticket numéroté.

Dès qu'un ordinateur se libère, la personne en attente avec le plus petit numéro de ticket accède à l'ordinateur.

2.1.1 Représentation

Ce modèle a donc N ordinateurs qui représentent les serveurs. De plus les temps d'arrivés et de services suivent une loi exponentielle sans mémoire. Le modèle est donc une $\mathrm{M}/\mathrm{M}/\mathrm{N}$.

Modélisation graphique de la file M/M/N.

Dans l'état i il y à i clients dans la file.

L'espace d'état est défini par $E=\mathbb{N}$

Les transitions peuvent s'exprimer de la façon suivante :

$$\forall i \geq 0,$$

$$i^{\lambda} \to i+1$$

$$i^{\mu} \rightarrow i-1$$

La condition de convergence pour ce modèle est : $\rho>1$

2.2 Données et formules

On a besoin pour ce modèles de définir certaines données : λ : probabilité d'arrivée de client.

 μ : le temps de service.

 ρ : l'intensité du trafic.

N: le nombre de serveur, fixé à 10.

On calcule l'intensité du trafic de la façon suivante pour chaque λ : $\rho = \frac{\lambda}{N*\mu}$

On à également besoin du nombre moyen de client théorique Nmoyen:

$$Nmoyen = E[n] = \frac{\rho * \varrho}{1-\rho}$$

$$\begin{aligned} &N moyen = E[n] = \frac{\rho * \varrho}{1 - \rho} \\ &\text{ou } \varrho = Proba(\geq N) = \frac{(N * \rho)^N}{N!(1 - \rho)^{\rho_0}}. \end{aligned}$$

Ici, ρ_0 représente la probabilité que la file soit vide et se calcule de la façon

suivante :
$$\rho_0 = 1 + (\frac{(N*\rho)^N}{N!(1-\rho)} + \sum_{n=1}^{N-1} \frac{(N*\rho)^N}{n!})$$

2.2.1 Temps moyen d'attente et 90 percentile

Maintenant que l'on a toute ces données, on peut écrire une formule pour le temps moyen d'attente de ce modèle :

$$E[A] = \frac{E[n_q]}{\lambda} = \frac{\varrho}{N * \mu(1-\rho)}$$

On peut donc écrire une formule pour calculer de 90 percentile du temps d'attente de ce modèle :

$$t_{90}[A] = \frac{E[A]}{\varrho} * ln(10\varrho)$$

Modèle n°2 - File M/M/13

3.1Description du modèle

Le deuxième modèle est décris de la façon suivante :

Le patron choisit au hasard, uniformément un ordinateur parmis les N puis il donne au client un ticket numéroté pour l'ordinateur choisi.

Dès que le client d'un ordinateur a fini, c'est le client qui a le plus petit numéro parmis ceux affecté à cet ordinateur qui prend la place.

3.1.1Représentation

Il y a donc dans ce modèle une seule file représenté par le patron qui donne les tickets. C'est donc une M/M/1.

Modélisation graphique de la file M/M/1.

Les transitions peuvent s'exprimer de la façon suivante :

	0	1	2
0	$-\lambda$	λ	0
1	μ	$-(\lambda + \mu)$	λ
2	0	μ	$-(\lambda + \mu)$
/ · 10	7		

 $\forall i \epsilon \mathbb{N},$

$$Q_{i,i+1} = \lambda$$

$$Q_{i,i-1} = \mu$$

La condition de convergence pour ce modèle est :

$$\rho < 1$$

3.2 Données et formules

Pour ce modèles, on utilise les même données que pour le modèles précédent soit :

 λ : probabilité d'arrivée de client.

 μ : le temps de service.

 ρ : l'intensité du trafic.

Cependant on calcule ρ différemment :

$$\rho = \frac{\lambda}{\mu}$$

Le nombre moyen de client s'exprime ainsi :

$$Nmoyen = \frac{\rho}{1-\rho}$$

Temps moyen d'attente et 90 percentile

Le temps d'attente moyen est :

$$E[A] = \rho * \frac{\frac{1}{\mu}}{1-\rho}$$

 $E[A]=\rho*\frac{\frac{1}{\mu}}{1-\rho}$ Le 90 percentile du temps d'attente s'exprime donc de la façon suivante : $\max(0,\frac{E[A]}{\rho}ln(10*\rho))$

4 Modèle n°3 - 10 files M/M/1

4.1 Description du modèle

Le troisième modèle est décris de la façon suivante :

Le patron choisit l'ordinateur avec le moins d'attente puis il donne au client un ticket numéroté pour l'ordinateur choisi.

Dès que le client d'un ordinateur a fini, c'est le client qui a le plus petit numéro parmi ceux affecté à cet ordinateur qui prend la place.

4.1.1 Représentation

Dans ce modèle puisque chaque ordinateur a une file d'attente, on peut le représenter sous la forme de $10~\mathrm{M/M/1}$.

Modélisation graphique.

4.2 Données et formules

Pour ce modèle, une fois que la file avec le moins de client en attente à été identifié, le comportement est similaire à une M/M/1. On ne peux cependant pas supposer de valeurs théoriques pour ce modèle puisqu'on ne peut pas savoir sur quelle file va se diriger le client. On a donc pas de valeurs théoriques pour ce modèle. On ne peut pas prévoir le temps moyen d'attente, cependant une fois qu'un client à rejoint une des files, on sait que son temps moyen d'attente à partir de ce moment la sera :

$$E[A] = \rho * \frac{\frac{1}{\mu}}{1-\rho}$$