EC2104 Tutorial 1 - Functions & Limits

ling

lynomial wer and Exponential functior garithmic function y economics Examples

Functions

Functions

- Function: a procedure mapping domain onto range.
- Key Characteristics: one-to-one mapping between domain and range.
- Test invalid functions:
 - 1. Failed the vertical-line test
 - Numeric example where function failed one-to-one mapping definition
- Composite Functions: nested function, or applying functions sequentially
 - Note: $g \circ f(x) = g(f(x)) \neq f(g(x)) = f \circ g(x)$ for most functions
- ► Inverse Functions: the reverse of the function, mapping from range to domain
 - Note: it is important to identify the domain and range correctly
 - Note: inverse function has to satisfy one-to-one mapping relationship as well

Polynomial
Power and Exponential functio
Logarithmic function
Key economics Examples

Polynomial

Polynomial

Polynomial function

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

- ▶ non-zero coefficients a_n, a_{n-1}, \dots, a_0
- \triangleright x is the unknown, a_n, a_{n-1}, \dots, a_0 are known
- ightharpoonup Domain: \mathbb{R} , Range: \mathbb{R}
- Types of polynomial functions
 - ▶ Linear Functions: $P(x) = a_1x + a_0$
 - Quadratic Functions: $P(x) = a_2x^2 + a_1x + a_0$
- Example of polynomial functions
 - Linear: solving equilibrium conditions (e.g. demand and supply)
 - Quadratic: Solving profit maximisation conditions (e.g. monopoly optimal output level to maximise profit)

Polynomial
Power and Exponential functions
Logarithmic function
Key economics Examples

Power and Exponential functions

Power and Exponential functions

Power Functions

$$f(x) = Ax^r$$

- \triangleright x is the unknown, r, A are known.
- ▶ Domain: x > 0 (in this module)
- ▶ Range: f(x) > 0, A > 0 or f(x) < 0, A < 0

Exponent Functions

$$f(t) = Aa^t$$

- ightharpoonup t is the unknown, A, a are known.
- ightharpoonup Domain: $\mathbb R$
- Range: f(t) > 0
- ▶ Note: $f(t+1) = f(t) \cdot a = Aa^{t+1}$

Polynomial
Power and Exponential function
Logarithmic function
Key economics Examples

Logarithmic function

Logarithmic function

Logarithmic Functions

$$x := \log_a a^x = \log_a b$$

- inverse of exponential function $(a^x = b)$
- ightharpoonup commonly natural log is used $(\log_e x \text{ or } \ln x)$
- Note: $a^{log_a x} = x$
- Logarithmic is commonly used to simplify differentiation
 - Question: $\frac{d}{dx} exp(x-1)^2 = 0$
 - ► Solving Log transformed question:

$$\frac{d}{dx}log(exp(x-1)^2) = \frac{d}{dx}(x-1)^2 = 0 \Rightarrow x^* = 1$$

Log transformed and original question differs in objective function value $(e^{(1-1)^2} = 1 \neq (1-1)^2 = 0)$ but the optimal solution is the same $(x^* = 1)$

Polynomial
Power and Exponential function
Logarithmic function
Key economics Examples

Key economics Examples

Key economics Examples

- Solving equilibrium price and quantity
 - ▶ Linear demand: $Q_D = a bP$
 - ▶ Linear supply: $Q_S = \alpha + \beta P$
- ▶ Solving optimal output Q^M and profit π^M
 - Cost function: $C = \alpha Q + \beta Q^2, Q \ge 0$
 - ▶ Demand function: P = a bQ
 - Revenue function: R = PQ
 - Profit function: $\pi(Q) = R C$

Limits

Limits

Limits

$$\lim_{x\to a} f(x) = A$$

- ▶ Read: as x tends towards a, the limit of f(x) tends towards A
- Commonly used when
 - 1. Functions does not exist at the point
 - 2. When value tends towards infinity
- ► For a limit to exist, the left limit and right limit must tends towards the same value
 - $| \operatorname{lim}_{x \to a} f(x) = A \Leftrightarrow \operatorname{lim}_{x \to a^{-}} f(x) = \operatorname{lim}_{x \to a^{+}} f(x) = A$