Unit 9 Neural Networks

EE-UY 4563/EL-GY 9143: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ Mathematically describe a neural network with a single hidden layer
 - Describe mappings for the hidden and output units
- ☐ Manually compute output regions for very simple networks
- ☐ Select the loss function based on the problem type
- ☐ Build and train a simple neural network in Keras
- ☐ Write the formulas for gradients using backpropagation
- ☐ Describe mini-batches in stochastic gradient descent

Outline

- Motivating Idea: Nonlinear classifiers from linear features
 - ☐ Training Neural Networks and Stochastic Gradient Descent
 - ☐ Building and Training a Network in PyTorch
 - Synthetic data
 - MNIST
 - ☐ Tensorflow Version [Optional]
 - Synthetic data
 - MNIST
 - ☐ Backpropagation Training

Most Datasets are not Linearly Separable

- □Consider simple synthetic data
 - See figure to the left
 - 2D features
 - Binary class label
- □ Not linearly separable

Need a better classifier!

All code in https://github.com/sdrangan/introml/blob/master/neural/synthetic.ipynb

From Linear to Nonlinear

- □ Idea: Build nonlinear region from linear decisions
- ☐ Possible form for a classifier:
 - Step 1: Classify into small number of linear regions
 - Step 2: Predict class label from step 1 decisions

A First Neural Network

- □ Input: $x = (x_0, x_1)$
- □ Step 1. Hidden units: Four linear classification rules of the inputs

$$z_{H,m} = \mathbf{w}_{H,m}^T \mathbf{x} + b_m, \quad m = 1, ..., 4$$

$$u_{H,m} = 1/(1 + e^{-z_{Hm}})$$

□ Step 2: Output unit: A linear classification rule on the hidden units

$$\circ z_O = \boldsymbol{w}_O^T \boldsymbol{u}_H + b_O$$

$$u_0 = 1/(1 + e^{-z_0})$$

General Neural Net Block Diagram

 \square Hidden layer: $\mathbf{z}_H = \mathbf{W}_H^T \mathbf{x} + \mathbf{b}_H$, $\mathbf{u}_H = g_{hid}(\mathbf{z}_H)$

Inspiration from Biology

- ■Simple model of neurons
 - Dendrites: Input currents from other neurons
 - Soma: Cell body, accumulation of charge
 - Axon: Outputs to other neurons
 - Synapse: Junction between neurons
- **□**Operation:
 - Take weighted sum of input current
 - Outputs when sum reaches a threshold
- ☐ Each neuron is like one unit in neural network

History

- □ Interest in understanding the brain for thousands of years
- □ 1940s: Donald Hebb. Hebbian learning for neural plasticity
 - Hypothesized rule for updating synaptic weights in biological neurons
- □1950s: Frank Rosenblatt: Coined the term perceptron
 - Essentially single layer classifier, similar to logistic classification
 - Early computer implementations
 - But, Limitations of linear classifiers and computer power
- □ 1960s: Backpropagation: Efficient way to train multi-layer networks
 - More on this later
- □ 1980s: Resurgence with greater computational power
- □2005+: Deep networks
 - Many more layers. Increased computational power and data
 - Enabled first breakthroughs in various image and text processing.
 - Next lecture

Terminology

Equations:

$$\circ \mathbf{z}_H = \mathbf{W}_H^T \mathbf{x} + \mathbf{b}_H, \quad \mathbf{u}_H = g_{hid}(\mathbf{z}_H)$$

$$\circ \mathbf{z}_O = \mathbf{W}_O^T \mathbf{u}_H + \mathbf{b}_O, \ u_O = g_{out}(\mathbf{z}_O)$$

□Units:

- \circ Hidden units: The components of $oldsymbol{u}_H$
- \circ Output units: The components of $oldsymbol{u}_O$

Activations:

- \circ "Activation functions": $g_{hid}(\mathbf{z}_H)$ and $g_{out}(\mathbf{z}_O)$
- \circ \mathbf{z}_H and \mathbf{z}_O are the "pre-activations"
- \circ $oldsymbol{u}_H$ and $oldsymbol{u}_O$ are the "post-activations"

Selecting the Output Activation

Target	Num output units $=\dim(u_o)=\dim(z_o)$	Output activation $u_{m{o}} = m{g}_{m{out}}(m{z}_{m{o}})$	Interpretation
Binary classification	1	$u_O = \operatorname{sigmoid}(z_O)$	$u_O = P(y = 1 x)$
K-class classification	K	$\mathbf{u}_O = \operatorname{softmax}(\mathbf{z}_O)$	$u_{O,k} = P(y = k x)$
Regression with K outputs	K	$u_O = z_O$	$u_{O,k} = \hat{y}_k$

Selecting the Hidden Activation

- ☐ Two common choices
- ☐Sigmoid:

$$u_{H,k} = 1/(1 + \exp(-z_{H,k}))$$

- ☐ ReLU (Rectified linear unit):
 - $\circ u_{H,k} = \max\{0, z_{H,k}\}$

ReLU

In-Class Exercise

Exercise 1

Consider a neural network where for each scalar input x outputs a value uo as follows:

```
zh = wh*x + bh

uh = 1/(1 + exp(-zh)) # Sigmoid activation

zo = uh.dot(wo) + bo

uo = zo # Linear activation
```

Using the parameter values below, for scalar inputs x in the range of -4 to 8:

- Plot uh vs x . Since there are three hidden unit, your graph should have three curves
- Plot uo=zo vs x . Since there is one hidden unit, your graph should have one curve

```
1 x = np.linspace(-4,8,100)

2 wh = np.array([1,1,1])

3 bh = -np.array([0,2,4])|

4 wo = np.array([1,-2,0.5])

5 bo = 0.1
```


Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- Training Neural Networks and Stochastic Gradient Descent
 - ☐ Building and Training a Network in PyTorch
 - Synthetic data
 - MNIST
 - ☐ Tensorflow Version [Optional]
 - Synthetic data
 - MNIST
 - ☐ Backpropagation Training

Training a Neural Network

- □Given data: (x_i, y_i) , i = 1, ..., N
- \square Learn parameters: $\theta = (W_H, b_H, W_o, b_o)$
 - Weights and biases for hidden and output layers

• $L(\theta)$ = measures how well parameters θ fit training data (x_i, y_i)

Number of Parameters

Layer	Parameter	Symbol	Number parameters	Example $N_I = 5$, $N_H = 20$, $N_O = 3$
Hidden layer	Bias	b_H	N_H	20
	Weights	W_H	$N_H N_I$	20(5)=100
Output layer	Bias	b_O	N_O	3
	Weights	W_O	$N_O N_H$	3(20)=60
Total			$N_H(N_I + 1) + N_O(N_H + 1)$	183

■Sizes:

- $\circ N_I = \text{input dimension}, N_H = \text{number of hidden units}, N_O = \text{output dimension}$
- \square N_H = number of hidden units is a free parameter
- ☐ Discuss selection later

Selecting the Right Loss Function

- ☐ Depends on the problem type
- \square Always compare final output z_{0i} with target y_i

Problem	Target y_i	Output z_{0i}	Loss function	Formula
Regression	y_i = Scalar real	$z_{Oi} = $ Prediction of y_i Scalar output / sample	Squared / MSE loss	$\sum_{i} (y_i - z_{Oi})^2$
Regression with vector samples	$\mathbf{y}_i = (y_{i1}, \dots, y_{iK})$	$z_{Oik} = $ Prediction of y_{ik} K outputs / sample	Squared / MSE loss	$\sum_{ik} (y_{ik} - z_{Oik})^2$
Binary classification	$y_{i} = \{0,1\}$	z_{Oi} = "logit" score Scalar output / sample	Binary cross entropy	$\sum_{i}[\ln(1+e^{y_iz_i})-y_iz_{Oi}]$
Multi-class classification	$y_{i} = \{1, \dots, K\}$	$z_{Oik} = $ "logit" scores K outputs / sample	Categorical cross entropy	$\sum_{i} \ln \left(\sum_{k} e^{z_{Oik}} \right) - \sum_{k} r_{ik} z_{Oik}$

Note on Indexing

- Neural networks are often processed in batches
 - Set of training or test samples
- Need different notation for single and batch input case
- \square For a single input x
 - $x_i = j$ -th feature of the input
 - $z_{H,j}, u_{H,j}, z_{O,j}$ = j-th component of hidden and output variables
 - *H* and *O* stand for Hidden and Output. Not an index
 - Write x, z_0, y if they are scalar (i.e. do not write index)
- \square For a batch of inputs x_1, \dots, x_N
 - $\cdot x_{ij} = \text{j-th feature of the input sample } i$
 - $z_{H,ij}, u_{H,ij}, z_{O,ij}$ = j-th component of hidden and output variables for sample i

Dimension Example

- □ Consider a neural network with:
 - d = 5 inputs, $N_H = 20$ hidden units
 - Output is for K = 3 class classification $\Rightarrow 3$ output units
- □ Dimensions for one input sample:
 - Input *x*: vector shape 5
 - Hidden units z_H , u_H : vector shape 20
 - Output units z_0 , u_0 : vector shape 3
- □ Dimensions for batch of 100 samples
 - Input x: matrix shape (100,5)
 - Hidden units z_H , u_H : matrix shape (100,20)
 - Output units z_0 , u_0 : matrix shape (100,3)

Problems with Standard Gradient Descent

□ Neural network training (like all training): Minimize loss function

$$\hat{\theta} = \arg\min_{\theta} L(\theta), \qquad L(\theta) = \frac{1}{N} \sum_{i=1}^{N} L_i(\theta, \mathbf{x}_i, y_i)$$

- $L_i(\theta, x_i, y_i)$ = loss on sample i for parameter θ
- ■Standard gradient descent:

$$\theta^{k+1} = \theta^k - \alpha \nabla L(\theta^k) = \theta^k - \frac{\alpha}{N} \sum_{i=1}^N \nabla L_i(\theta^k, \mathbf{x}_i, y_i)$$

- \circ Each iteration requires computing N loss functions and gradients
- Will discuss how to compute later
- \square But gradient computation is expensive when data size N large

Stochastic Gradient Descent

- ☐In each step:
 - Select random small "mini-batch"
 - Evaluate gradient on mini-batch
- \square For t = 1 to N_{Steps}
 - ∘ Select random mini-batch $I \subset \{1, ..., N\}$
 - Compute gradient approximation:

$$g^{t} = \frac{1}{|I|} \sum_{i \in I} \nabla L(x_{i}, y_{i}, \theta)$$

Update parameters:

$$\theta^{t+1} = \theta^t - \alpha^t g^t$$

SGD Theory (Advanced)

☐ Mini-batch gradient = true gradient in expectation:

$$E(g^t) = \frac{1}{N} \sum_{i=1}^{N} \nabla L(x_i, y_i, \theta) = \nabla L(\theta^t)$$

- $\Box \text{Hence can write } g^t = \nabla L(\theta^t) + \xi^t,$
 - $\delta \xi^t$ = random error in gradient calculation, $E(\xi^t) = 0$
 - \circ SGD update: $\theta^{t+1} = \theta^t \alpha^t g^t$, $\theta^{t+1} = \theta^t \alpha^t \nabla L(\theta^t) \alpha^t \xi^t$
- □ Robins-Munro: Suppose that $\alpha^t \to 0$ and $\sum_t \alpha^t = \infty$. Let $s_t = \sum_{k=0}^t \alpha^k$
 - Then $\theta^t \to \theta(s_t)$ where $\theta(s)$ is the continuous solution to the differential equation:

$$\frac{d\theta(s)}{ds} = -\nabla L(\theta)$$

- ☐ High-level take away:
 - If step size is decreased, random errors in sub-sampling are averaged out

SGD Practical Issues

☐Terminology:

- \circ Suppose minibatch size is B. Training size is N
- Each training epoch includes updates going through all non-overlapping minibatches
- There are $\frac{N}{B}$ steps per training epoch
- Example: (Typical values for MNIST)
 - N=50000 samples, B=100 batch size $\Rightarrow \frac{N}{B}=500$ steps per epoch
- ☐ Data shuffling
 - Generally do not randomly pick a mini-batch
 - In each epoch, randomly shuffle training samples
 - Then, select mini-batches in order through the shuffled training samples.
 - It is critical to reshuffle in each epoch!

In-Class Exercise

Exercise 2

Conside a neural network with the same structure as before:

```
zh = wh*x + bh

uh = 1/(1 + exp(-zh)) # Sigmoid activation

yhat = uh.dot(wo) + bo # No activation
```

As we progress through the unit, we will show how to fit the parameters for the network in both the hidden and output layers. But, to give you an idea of the training, in this exercise, we will fit just the output weight and bias with the hidden weights and biases fixed.

First plot the training data xtr, ytr, below.

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- ☐ Training Neural Networks and Stochastic Gradient Descent
- ☐ Building and Training a Network in PyTorch
 - Synthetic data
 - MNIST
- ☐ Tensorflow Version [Optional]
 - Synthetic data
 - MNIST
- Backpropagation Training

PyTorch vs. Tensorflow

- ☐ Both are excellent open-source packages
- ☐ In 2024, course is being updated to PyTorch
 - Syntax, APIs are a bit easier
- ☐ Tensorflow version will remain in github
- ☐ Labs will be in PyTorch
- ☐But, you can do your project in either

Pytorch Recipe

- ☐ Step 1. Create a model as a class
 - Number of hidden units, output units, activations, ...
- ☐ Step 2. Select an optimizer
- ☐ Step 3. Select a loss function
- ☐ Step 4. Fit the model
- ☐ Step 5. Test / use the model

Synthetic Data Example

- ☐ Try a simpler two-layer NN
 - Input $x = 2 \dim$
 - 4 hidden units
 - 1 output unit (binary classification)

Step 0: Import the Packages

- ☐ Install Pytorch
- ☐ If you are using Google Collaboratory: Pytorch is pre-installed

```
import torch
import torch.nn as nn
import torch.optim as optim
```

https://pytorch.org/get-started/locally/

Step 1: Define Model

```
# Define the neural network architecture
                                                                    ☐ Each network is defined as a class.
class Net(nn.Module): <---</pre>
    def __init__(self, input_size, hidden_size):

    Derives from nn.Module

        super(Net, self). init ()
        self.fc1 = nn.Linear(input size, hidden size)
                                                                    □ Constructor
        self.activation = nn.Sigmoid()

    Creates layers of the network

        self.fc2 = nn.Linear(hidden size, 1)
        self.sigmoid = nn.Sigmoid()

    This network: Two fully connected layers &

                                                                        activations
   def forward(self, x):
        x = self.fc1(x)
                                                                    ☐ Forward function
        x = self.activation(x)

    Describes set of operations from input to

        x = self.fc2(x)
                                                                        output
        x = self.sigmoid(x)
        return x
```

Step 1: Continued

- ☐ Create an instance of the model
- ☐ Print the model summary _
- ☐ For each layers
 - Show dimensions

```
nin = nx # Number of inputs
nh = 4 # Number of hidden units

model = Net(nin, nh)

# Print a summary
print(model)
```

```
Net(
    (fc1): Linear(in_features=2, out_features=4, bias=True)
    (activation): Sigmoid()
    (fc2): Linear(in_features=4, out_features=1, bias=True)
    (sigmoid): Sigmoid()
)
```


PyTorch Tensors

- ☐ Data in pytorch is passed as tensors
 - Essentially, multi-dimensional arrays
- ■Syntax is identical to numpy

```
# Convert from numpy to torch and back
x_numpy = x3.numpy()
x_torch = torch.from_numpy(x_numpy)
```

```
# Create a 1D tensor
x1 = torch.tensor([1,2,3])

# Create a 2D tensor
x2 = torch.tensor([[1,2,3],[4,5,6]])

# Indexing a tensor
x3 = torch.arange(12).reshape(4,3)
y3 = x3[1:3,1:]
print(x3)
print(y3)
```


Step 2: Create a DataLoader

□ DataLoader:

- An object that creates the mini-batches
- Performs all the shuffling automatically
- ☐ We will explore more complex dataloaders later

```
from torch.utils.data import DataLoader, TensorDataset

# Convert your data to PyTorch tensors.

# The targets, y_torch, are reshaped to (n_samples,1)

X_torch = torch.tensor(X, dtype=torch.float32)

y_torch = torch.tensor(y, dtype=torch.float32)[:,None]

# Create a TensorDataset
dataset = TensorDataset(X_torch, y_torch)

# Create a DataLoader
batch_size = 100
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
```


Step 2, 3: Select an Optimizer & Compile

```
# Define loss function and optimizer
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.03)
```

- ☐Adam optimizer generally works well for most problems
 - In this case, had to manually set learning rate
 - You often need to play with this.
- ☐ Use binary cross-entropy loss

Step 4: Fit the Model

```
# Create arrays to store values
                                                                                    ☐ Manually implement the SGD loop
lossval = []
epochval = []
accval = []
                                                                                    □ Loop over epochs
# Training loop with DataLoader
                                                                                       Loop over mini-batches
num epochs = 1000
for epoch in range(num epochs):

    Compute outputs and loss

   for inputs, labels in data loader:
      optimizer.zero grad()
      outputs = model(inputs)

    Compute gradient of loss

      loss = criterion(outputs, labels)
      loss.backward()

    Take an optimizer step

      optimizer.step()
                                                                                    ■ Measure accuracy
   # Calculate training accuracy
   with torch.no grad():
      outputs = model(X torch)
      predicted = (outputs > 0.5)
      accuracy = torch.sum(predicted == y int).item() / y int.size(0)
                                                                                    ☐ Print results periodically
   # Save the values
   lossval.append(loss.item())
   epochval.append(epoch)
   accval.append(accuracy)
   if (epoch + 1) % 20 == 0:
      print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f},\
         Accuracy: {accuracy:.4f}')
```


Step 4: Output

```
Epoch [20/1000], Loss: 0.5528,
                                         Accuracy: 0.7275
Epoch [40/1000], Loss: 0.5822,
                                         Accuracy: 0.7275
Epoch [60/1000], Loss: 0.6178,
                                         Accuracy: 0.7275
Epoch [80/1000], Loss: 0.5169,
                                         Accuracy: 0.7275
Epoch [100/1000], Loss: 0.4921,
                                          Accuracy: 0.7275
                                          Accuracy: 0.7275
Epoch [120/1000], Loss: 0.5115,
Epoch [140/1000], Loss: 0.4588,
                                          Accuracy: 0.7175
Epoch [160/1000], Loss: 0.4204,
                                          Accuracy: 0.7700
Epoch [180/1000], Loss: 0.4014,
                                          Accuracy: 0.8050
Epoch [200/1000], Loss: 0.3634,
                                          Accuracy: 0.8850
Epoch [220/1000], Loss: 0.3946,
                                          Accuracy: 0.8975
Epoch [240/1000], Loss: 0.3061,
                                          Accuracy: 0.9025
                                          Accuracy: 0.9075
Epoch [260/1000], Loss: 0.3092,
Epoch [280/1000], Loss: 0.3320,
                                          Accuracy: 0.9050
Epoch [300/1000], Loss: 0.2177,
                                          Accuracy: 0.9075
Epoch [320/1000], Loss: 0.2755,
                                          Accuracy: 0.9125
Epoch [340/1000], Loss: 0.2097,
                                          Accuracy: 0.9150
Epoch [360/1000], Loss: 0.2870,
                                          Accuracy: 0.9125
Epoch [380/1000], Loss: 0.2592,
                                          Accuracy: 0.9125
Epoch [400/1000], Loss: 0.3039,
                                          Accuracy: 0.9125
Epoch [420/1000], Loss: 0.2304,
                                          Accuracy: 0.9100
Epoch [440/1000], Loss: 0.2489,
                                          Accuracy: 0.9125
Epoch [460/1000], Loss: 0.2277,
                                          Accuracy: 0.9100
Epoch [480/1000], Loss: 0.1819,
                                          Accuracy: 0.9150
```

- ☐ Prints progress after each 20 epochs
 - You can see the loss decreasing
 - And accuracy increasing

Performance vs Epoch

- ☐ Can observe loss function slowly converging
- ■But there is "noise"
 - Due to random selections in each mini-batch

Using TQDM

- ☐ Periodic printing can create long outputs
- ☐ May be better to use a progress bar
- ☐ Progress bar can be created with tqdm package

Progress bar ————

```
from tqdm import tqdm

# Use the tqdm loop
nepoch = 1000
for epoch in tqdm(range(nepoch)):
    for inputs, labels in data_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

100%| 1000/1000 [00:10<00:00, 96.39it/s]</pre>
```


Step 5. Visualizing the Decision Regions

- □ Feed in data $x = (x_1, x_2)$ over grid of points in $[0,1] \times [0,1]$
- ☐ Use predict to observe output for each input point
- \square Plot outputs $u_O = sigmoid(z_O)$

Step 5. Full Plotting Code

- Meshgrid
 - Creates grid of points in square
- □torch.no_grad():
 - Turns off the gradient for the prediction
- ☐ Computes prediction
- ☐ Plots the outputs

```
# Limits to plot the response.
xmin = [0,0]
xmax = [1,1]
# Use meshgrid to create the 2D input
nplot = 100
x0plot = np.linspace(xmin[0],xmax[1],nplot)
x1plot = np.linspace(xmin[0],xmax[1],nplot)
x0mat, x1mat = np.meshgrid(x0plot,x1plot)
Xplot = np.column stack([x0mat.ravel(), x1mat.ravel()])
# Compute the output
with torch.no grad():
    yplot = model(torch.tensor(Xplot, dtype=torch.float32))
# Convert yplot to numpy
yplot = yplot.numpy()
yplot mat = yplot[:,0].reshape((nplot, nplot))
# Plot the recovered region
plt.imshow(np.flipud(yplot mat), extent=[xmin[0],xmax[0],xmin[0],xmax[1]], cmap=plt.cm.Reds)
plt.colorbar()
# Overlay the samples
I0 = np.where(y==0)[0]
I1 = np.where(y==1)[0]
plt.plot(X[I0,0], X[I0,1], 'bo')
plt.plot(X[I1,0], X[I1,1], 'go')
```


Visualizing the Hidden Layers

```
# Create a model with the activations as the output
class ModelAct(nn.Module):
    def __init__(self, original_model):
        super(ModelAct, self).__init__()
        self.fc1 = original_model.fc1
        self.activation = original_model.activation

def forward(self, x):
    x = self.fc1(x)
    x = self.activation(x)
    return x

model_act = ModelAct(model)
```

- ☐ Create a new model with hidden layer output
- \square Feed in data $x = (x_1, x_2)$ over $[0,1] \times [0,1]$
- ☐ Predict outputs from hidden outputs

Each hidden layer is a logistic regression layer with a different separating line!

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- ☐ Training Neural Networks and Stochastic Gradient Descent
- ☐ Building and Training a Network in PyTorch
 - Synthetic data

- ☐ Tensorflow Version [Optional]
 - Synthetic data
 - MNIST
- Backpropagation Training

Recap: MNIST data

- □ Classic MNIST problem:
 - Detect hand-written digits
 - Each image is 28 x 28 = 784 pixels
- ☐ Dataset size:
 - 50,000 training digits
 - 10,000 test
 - 10,000 validation (not used here)
- ☐ Can be loaded with sklearn and many other packages

Downloading the MNIST data

- ☐ We can download the MNIST data from PyTorch directly
- ☐ Transforms:
 - Used to convert images to arrays
 - Each sample is (1,28,28)
 - The first 1 is since the image in black/white
 - Single channel, no color
- ☐ Scaling used to make data:
 - zero mean and unit variance

```
from torchvision import datasets, transforms
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
                             transforms.Normalize((0.1307,), (0.3081,))])
# Download and load the training data
train data = datasets.MNIST('../data', train=True, download=True, transform=transform)
# Download and load the test data
test data = datasets.MNIST('.../data', train=False, download=True, transform=transform)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Failed to download (trying next):
<urlopen error [SSL: CERTIFICATE VERIFY FAILED] certificate verify failed: certificate has expired</pre>
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ../data/MN.
      Extracting ../data/MNIST/raw/train-images-idx3-ubyte.gz to ../data/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Failed to download (trying next):
```

Simple MNIST Neural Network

- ☐ Flatten layer:
 - Converts (1,28,28) sample to 784 vector
- ☐ FC1, FC2: Fully connected layers
 - 100 hidden units
- ☐ Sigmoid activation
- □Output is softmax
 - 10 outputs since we have 10 classes

```
Print(model)

Net(
    (flatten): Flatten(start_dim=1, end_dim=-1)
    (fc1): Linear(in_features=784, out_features=100, bias=True)
    (fc2): Linear(in_features=100, out_features=10, bias=True)
)
```

```
class Net(nn.Module):
    def __init__(self, nin, nh, nout):
        super(Net, self). init ()
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(nin, nh)
        self.fc2 = nn.Linear(nh, nout)
    def forward(self, x):
        x = self.flatten(x)
        x = self.fc1(x)
        x = torch.sigmoid(x)
        x = self.fc2(x)
        x = F.softmax(x, dim=1)
        return x # Apply softmax to the output
nin = 28*28
nh = 100
nout = 10
model = Net(nin, nh, nout)
```

Fitting the Model

```
# Training loop
for epoch in range(epochs):
   # Training
    model.train()
    correct = 0
    total = 0
   for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        _, predicted = torch.max(output.data, 1)
        total += target.size(0)
        correct += (predicted == target).sum().item()
   train accuracy = 100 * correct / total
   train_accuracy_history.append(train_accuracy)
    # Testing
    model.eval()
    correct = 0
    total = 0
   with torch.no_grad():
        for data, target in test_loader:
            output = model(data)
            _, predicted = torch.max(output.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
    test_accuracy = 100 * correct / total
    test_accuracy_history.append(test_accuracy)
```

- ☐ Train with 30 epochs
- ☐ Mini-batch size = 100
- ☐ After each epoch
 - Evaluate accuracy on test data set

Fitting the Model

- ☐Run for 30 epochs, ADAM optimizer
 - batch size = 100
- ☐ Final accuracy = 0.97
- Not great, but much faster than SVM.
- □Also, CNNs we study later do even better.
 - We will discuss later

```
Epoch 1/30, Train Accuracy: 84.19%, Test Accuracy: 92.45%
Epoch 2/30, Train Accuracy: 93.11%, Test Accuracy: 93.88%
Epoch 3/30, Train Accuracy: 94.56%, Test Accuracy: 94.89%
Epoch 4/30, Train Accuracy: 95.39%, Test Accuracy: 95.34%
Epoch 5/30, Train Accuracy: 96.08%, Test Accuracy: 95.56%
Epoch 6/30, Train Accuracy: 96.56%, Test Accuracy: 95.83%
Epoch 7/30, Train Accuracy: 96.98%, Test Accuracy: 95.93%
Epoch 8/30, Train Accuracy: 97.31%, Test Accuracy: 96.47%
Epoch 9/30, Train Accuracy: 97.61%, Test Accuracy: 96.54%
Epoch 10/30, Train Accuracy: 97.85%, Test Accuracy: 96.68%
Epoch 11/30, Train Accuracy: 98.11%, Test Accuracy: 96.72%
Epoch 12/30, Train Accuracy: 98.28%, Test Accuracy: 96.68%
Epoch 13/30, Train Accuracy: 98.36%, Test Accuracy: 96.89%
Epoch 14/30, Train Accuracy: 98.48%, Test Accuracy: 96.96%
Epoch 15/30, Train Accuracy: 98.58%, Test Accuracy: 96.95%
Epoch 16/30, Train Accuracy: 98.67%, Test Accuracy: 96.87%
Epoch 17/30, Train Accuracy: 98.74%, Test Accuracy: 97.06%
Epoch 18/30, Train Accuracy: 98.80%, Test Accuracy: 97.10%
Epoch 19/30, Train Accuracy: 98.86%, Test Accuracy: 97.12%
Epoch 20/30, Train Accuracy: 98.93%, Test Accuracy: 97.13%
Epoch 21/30, Train Accuracy: 98.95%, Test Accuracy: 97.08%
Epoch 22/30, Train Accuracy: 99.01%, Test Accuracy: 97.10%
Epoch 23/30, Train Accuracy: 99.04%, Test Accuracy: 97.17%
Epoch 24/30, Train Accuracy: 99.08%, Test Accuracy: 97.15%
Epoch 25/30, Train Accuracy: 99.09%, Test Accuracy: 97.03%
Epoch 26/30, Train Accuracy: 99.12%, Test Accuracy: 97.08%
Epoch 27/30, Train Accuracy: 99.16%, Test Accuracy: 96.84%
Epoch 28/30, Train Accuracy: 99.17%, Test Accuracy: 97.22%
Epoch 29/30, Train Accuracy: 99.21%, Test Accuracy: 97.18%
Epoch 30/30, Train Accuracy: 99.23%, Test Accuracy: 97.25%
```


Training and Validation Accuracy


```
#Plot the accuracy
plt.plot(train_accuracy_history, label='Training Accuracy')
plt.plot(test_accuracy_history, label = 'Test Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy (%)')
plt.legend()
plt.show()
```

- Training accuracy continues to increase
- Validation accuracy eventually flattens and sometimes starts to decrease.
- Should stop when the validation accuracy starts to decrease.
- This indicates overfitting.

In-Class Exercise

Exercise 3: Training a Neural Network

Now we will try to train the neural network using tensorflow. In the above example, I manually selected the hidden weights so that you can get a good fit. But, when you have to train both the hidden and output weights, you will need a few more hidden units. Train a neural network as follows:

- Clear the keras session
- . Create a neural network with 32 hidden units, 1 output unit
- Use a sigmoid activation for the hidden layer and a none activation for the output layer
- Compile with mean_squared_error for the loss and metrics
- Fit the model. You may need to play with the learning rate 1r and you will probably need many epochs.
- Plot the predicted and true function

```
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, Activation
import tensorflow.keras.optimizers as optimizers
import tensorflow.keras.backend as K
```


Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- ☐ Training Neural Networks and Stochastic Gradient Descent
- ☐ Building and Training a Network in PyTorch
 - Synthetic data
 - MNIST
- Tensorflow Version [Optional]
 - Synthetic data
 - MNIST
- Backpropagation Training

Keras Recipe

- ☐ Step 1. Describe model architecture
 - Number of hidden units, output units, activations, ...
- ☐ Step 2. Select an optimizer
- ☐ Step 3. Select a loss function and compile the model
- ☐ Step 4. Fit the model
- ☐ Step 5. Test / use the model

Synthetic Data Example

- ☐ Try a simpler two-layer NN
 - Input $x = 2 \dim$
 - 4 hidden units
 - 1 output unit (binary classification)

Step 0: Import the Packages

- ☐ Install Tensorflow
- ☐ For this lab, you can use the CPU version
- ☐ If you are using Google Collaboratory, TF is pre-installed

import tensorflow as tf

https://www.tensorflow.org/install

Step 1: Define Model

```
from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Dense, Activation

Clear graph (extremely important!)

import tensorflow.keras.backend as K
K.clear_session()

Build model

This example: dense layers

Give each layer a dimension, name & activation
```

```
nin = nx # dimension of input data
nh = 4 # number of hidden units
nout = 1 # number of outputs = 1 since this is binary
model = Sequential()
model.add(Dense(units=nh, input_shape=(nx,), activation='sigmoid', name='hidden'))
model.add(Dense(units=nout, activation='sigmoid', name='output'))
```

Step 1: Continued

- ☐ Print the model summary
- ☐ For each layers
 - Shows dimensions and shape
- Note shapes:

• (None, 4)

Batch size

This is not fixed

Dim per sample in batch

model.summary()

Layer (type)	Output Shape	Param #
hidden (Dense)	(None, 4)	12
output (Dense)	(None, 1)	5

Total params: 17 Trainable params: 17 Non-trainable params: 0

Step 2, 3: Select an Optimizer & Compile

- □Adam optimizer generally works well for most problems
 - In this case, had to manually set learning rate
 - You often need to play with this.
- ☐ Use binary cross-entropy loss
- ☐ Metrics indicate what will be printed in each epoch

Step 4: Fit the Model

```
model.fit(X, y, epochs=10, batch size=100)
Epoch 1/10
400/400 [============ - - os - loss: 0.8047 - acc: 0.3900
400/400 [============ - - os - loss: 0.7695 - acc: 0.3900
Epoch 3/10
Epoch 4/10
400/400 [============ - - os - loss: 0.7223 - acc: 0.3900
Epoch 5/10
400/400 [============ - - os - loss: 0.7027 - acc: 0.4000
400/400 [============] - 0s - loss: 0.6895 - acc: 0.5650
400/400 [============ - - os - loss: 0.6814 - acc: 0.6100
Epoch 8/10
400/400 [========== ] - 0s - loss: 0.6756 - acc: 0.6100
Epoch 9/10
Epoch 10/10
```

- ☐ Use keras fit function
 - Specify number of epoch & batch size
- ☐ Prints progress after each epoch
 - Loss = loss on training data
 - Acc = accuracy on training data

Fitting the Model with Many Epochs

- ☐ This example requires large number of epochs (~1000)
- ☐ Do not want to print progress on each epoch
- ☐ Rewrite code to manually print progress
- ☐ Can also use a callback function

```
epoch= 50 loss= 6.6854e-01 acc=0.61000
epoch= 100 loss= 6.6702e-01 acc=0.61000
epoch= 150 loss= 6.5264e-01 acc=0.61000
epoch= 200 loss= 5.9691e-01 acc=0.53500
epoch= 250 loss= 5.4305e-01 acc=0.70500
epoch= 300 loss= 4.8620e-01 acc=0.79000
epoch= 350 loss= 4.1364e-01 acc=0.86250
epoch= 400 loss= 3.6114e-01 acc=0.86250
epoch= 450 loss= 3.3093e-01 acc=0.86750
epoch= 500 loss= 3.1383e-01 acc=0.86750
epoch= 550 loss= 3.0321e-01 acc=0.87250
epoch= 600 loss= 2.9631e-01 acc=0.88000
epoch= 650 loss= 2.9159e-01 acc=0.87750
epoch= 700 loss= 2.8804e-01 acc=0.88250
epoch= 750 loss= 2.8534e-01 acc=0.88750
epoch= 800 loss= 2.8322e-01 acc=0.88250
epoch= 850 loss= 2.8132e-01 acc=0.88750
epoch= 900 loss= 2.7995e-01 acc=0.89000
epoch= 950 loss= 2.7846e-01 acc=0.88500
epoch=1000 loss= 2.7721e-01 acc=0.89000
```

```
nit = 20 # number of training iterations
nepoch_per_it = 50 # number of epochs per iterations
# Loss, accuracy and epoch per iteration
loss = np.zeros(nit)
acc = np.zeros(nit)
epoch it = np.zeros(nit)
# Main iteration loop
for it in range(nit):
    # Continue the fit of the model
    init epoch = it*nepoch per it
    model.fit(X, y, epochs=nepoch per it, batch size=100, verbose=0)
    # Measure the loss and accuracy on the training data
    lossi, acci = model.evaluate(X,y, verbose=0)
    epochi = (it+1)*nepoch per it
    epoch it[it] = epochi
    loss[it] = lossi
    acc[it] = acci
    print("epoch=%4d loss=%12.4e acc=%7.5f" % (epochi,lossi,acci))
```


Performance vs Epoch

☐ Can observe loss function slowly converging

Step 5. Visualizing the Decision Regions

- □ Feed in data $x = (x_1, x_2)$ over grid of points in $[0,1] \times [0,1]$
- ☐ Use predict to observe output for each input point
- \square Plot outputs $u_O = sigmoid(z_O)$

```
# Limits to plot the response.
xmin = [0,0]
xmax = [1,1]

# Use meshgrid to create the 2D input
nplot = 100
x0plot = np.linspace(xmin[0],xmax[1],nplot)
x1plot = np.linspace(xmin[0],xmax[1],nplot)
x0mat, x1mat = np.meshgrid(x0plot,x1plot)
Xplot = np.column_stack([x0mat.ravel(), x1mat.ravel()])

# Compute the output
yplot = model.predict(Xplot)
yplot_mat = yplot[:,0].reshape((nplot, nplot))

# Plot the recovered region
plt.imshow(np.flipud(yplot_mat), extent=[xmin[0],xmax[0],xmin[0],xmax[1]], cmap=plt.cm.Reds)
plt.colorbar()
```


0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Visualizing the Hidden Layers

- ☐ Create a new model with hidden layer output
- \square Feed in data $x = (x_1, x_2)$ over $[0,1] \times [0,1]$
- ☐ Predict outputs from hidden outputs

Each hidden layer is a logistic regression layer with a different separating line!

Outline

- ☐ Motivating Idea: Nonlinear classifiers from linear features
- ☐ Training Neural Networks and Stochastic Gradient Descent
- ☐ Building and Training a Network in PyTorch
 - Synthetic data
 - MNIST
- ☐ Tensorflow Version [Optional]
 - Synthetic data
 - MNIST

Backpropagation Training

Stochastic Gradient Descent

- ☐ Training uses SGD
- ☐ In each step:
 - ∘ Select a subset of sample for minibatch $I \subset \{1, ..., N\}$
 - Evaluate mini-batch loss $L(\theta^t) = \sum_{i \in I} L_i(\theta^t, \mathbf{x}_i, y_i)$
 - Evaluate mini-batch gradient $g^t = \sum_{i \in I} \nabla L_i(\theta^t, x_i, y_i)$
 - Take SGD step: $\theta^{t+1} = \theta^t \alpha g^t$
- □ Question: How do we compute gradient?

Gradients with Multiple Parameters

- \square For neural net problem: $\theta = (W_H, b_H, W_o, b_o)$
- ☐ Gradient is computed with respect to each parameter:

$$\nabla L(\theta) = [\nabla_{W_H} L(\theta), \nabla_{b_H} L(\theta), \nabla_{W_O} L(\theta), \nabla_{b_O} L(\theta)]$$

☐ Gradient descent is performed on each parameter:

$$W_H \leftarrow W_H - \alpha \nabla_{W_H} L(\theta),$$

$$b_H \leftarrow b_H - \alpha \nabla_{b_H} L(\theta),$$

....

Computation Graph & Forward Pass

- □ Neural network loss function can be computed via a computation graph
- □ Sequence of operations starting from measured data and parameters
- □Loss function computed via a forward pass in the computation graph

$$z_{H,i} = W_H x_i + b_H$$

$$u_{H,i} = g_{act}(z_{H,i})$$

$$varphi z_{O,i} = W_O u_{H,i} + b_O$$

$$L = \sum_{i} L_i(z_{O,i}, y_i)$$

Observed variable

Trainable variable

Computed variables

Forward Pass Example in Numpy

■Example network:

- \circ Single hidden layer with N_H hidden units, single output unit
- Sigmoid activation, binary cross entropy loss

```
def forward(param, X, y):
   Computes the BCE loss for a neural network
   with one hidden layer and sigmoid activations
   # Unpack the parameters
   Wh, bh, Wo, bo = param
   # Hidden layer
   Zh = X.dot(Wh) + bh[None, :]
   Uh = 1/(1+np.exp(-Zh))
   # Output layer
    zo = Uh.dot(Wo) + bo[None, :]
    zo = zo.ravel()
   # Binary cross entropy
   loss = np.sum(np.log(1+np.exp(zo))-y*zo)
    return zo, loss
```

```
# Random initial values
Wh = np.random.normal(0,1,(nx,nh))
bh = np.random.normal(0,1,(nh,))
Wo = np.random.normal(0,1,(nh,nout))
bo = np.random.normal(0,1,(nout))
param0 = [Wh,bh,Wo,bo]

# Compute output on the training data
loss = forward(param0, X, y)
```

Back-Propagation on A Two Node Graph

☐Back Propagation:

- A way to compute gradients
- Iterative procedure that works in reverse
- □Consider a simple 2 node computation graph
 - Input $\mathbf{x} = (x_1, \dots, x_N)$, Hidden $\mathbf{z} = (z_1, \dots, z_M)$
 - ∘ Scalar output *J*
- \square First, we compute $\frac{\partial J}{\partial z_i}$
- Then compute $\frac{\partial J}{\partial x_j}$ from multi-variable chain rule:

$$\frac{\partial J}{\partial x_j} = \sum_{i=1}^n \frac{\partial J}{\partial z_i} \frac{\partial z_i}{\partial x_j}$$

Variables computed in forward pass

Gradients computed in reverse pass

Back-Prop on a General Computation Graph

☐ Backpropagation:

- Compute gradients backwards
- Work one node at a time
- ☐ First compute all derivatives of all the variables
 - $\circ \partial L/\partial z_O$
 - \circ $\partial L/\partial u_H$ from $\partial L/\partial z_O$, $\partial z_O/\partial u_H$
 - $\circ \partial L/\partial z_H$ from $\partial L/\partial u_H$, $\partial u_H/\partial z_H$
- ☐ Then compute gradient of parameters:
 - $\partial L/\partial W_O$ from $\partial L/\partial z_O$, $\partial z_O/\partial W_O$
 - $\partial L/\partial b_0$ from $\partial L/\partial z_0$, $\partial z_0/\partial b_0$
 - $\partial L/\partial W_H$ from $\partial L/\partial z_H$, $\partial z_H/\partial W_H$
 - \circ $\partial L/\partial b_H$ from $\partial L/\partial z_H$, $\partial z_H/\partial b_H$

Back-Propagation Example (Part 1)

☐ Continue our example:

- Single hidden layer with *M* hidden units, single output unit
- Sigmoid activation, binary cross entropy loss
- *N* samples, *D* input dimension

□Loss node forward pass:

$$L = \ln[1 + e^{z_{0i}}] - y_i z_{0i}$$

☐ Gradient reverse step:

Back-Propagation Example (Part 2)

\square Node z_0

$$varphi z_O = u_H W_O + b_O$$

$$\circ z_{Oi} = \sum_{m} u_{H,im} W_{Om} + b_{O}$$

□Gradient:

$$\circ \frac{\partial z_{O,i}}{\partial W_{O,m}} = u_{H,i,m}$$

$$\circ \frac{\partial z_{O,i}}{\partial b_O} = 1$$

Other partial derivatives are zero

□Apply chain rule:

$$\circ \frac{\partial L}{\partial W_{O,m}} = \sum_{i} \frac{\partial L}{\partial z_{O,i}} \frac{\partial z_{O,i}}{\partial W_{O,m}} = \sum_{i} \frac{\partial L}{\partial z_{O,i}} u_{H,im}$$

Back-Propagation Example (Part 3)

\square Node z_0

$$varphi z_O = u_H W_O + b_O$$

$$\circ z_{0i} = \sum_{m} u_{H,im} W_{0m} + b_0$$

☐ Gradient:

$$\circ \frac{\partial z_{O,i}}{\partial u_{H,ij}} = W_{O,j}$$
 , m=1,...,M

Other partial derivatives are zero

□Apply chain rule:

$$\circ \frac{\partial L}{\partial u_{H,ij}} = \frac{\partial L}{\partial z_{O,i}} \frac{\partial z_{O,i}}{\partial u_{H,ij}} = \frac{\partial L}{\partial z_{O,i}} W_{O,j}$$

Back-Propagation Example (Part 4)

\square Node u_H

$$u_H = g_{act}(z_H)$$

$$\circ u_{H,ij} = \frac{1}{1 + \exp(-z_{H,ij})}$$

☐ Gradient:

$$\frac{\partial u_{H,ij}}{\partial z_{H,ij}} = \frac{\exp(-z_{H,ij})}{(1 + \exp(-z_{H,ij}))^2} = u_{H,ij}(1 - u_{H,ij})$$

Other partial derivatives are zero

■Apply chain rule:

$$\circ \frac{\partial L}{\partial z_{H,ij}} = \frac{\partial L}{\partial u_{H,ij}} \frac{\partial u_{H,ij}}{\partial z_{H,ij}} = \frac{\partial L}{\partial u_{H,ij}} u_{H,ij} (1 - u_{H,ij})$$

Back-Propagation Example (Part 5)

\square Node z_0

$$\circ z_H = XW_H + b_H$$

$$\circ z_{Hij} = \sum_{k} x_{ik} W_{H,kj} + b_{H,j}$$

☐ Gradient:

$$\circ \ \frac{\partial z_{H,ij}}{\partial W_{H,kj}} = x_{ik}$$

$$\circ \frac{\partial z_{H,ij}}{\partial b_{H,i}} = 1$$

Other partial derivatives are zero

■ Apply chain rule:

$$\circ \frac{\partial L}{\partial W_{O,kj}} = \sum_{i} \frac{\partial L}{\partial z_{H,ij}} \frac{\partial z_{H,ij}}{\partial W_{H,kj}} = \sum_{i} \frac{\partial L}{\partial z_{H,ij}} x_{ik}$$

In-Class Exercise

- ☐ Implement backpropgation in numpy
- ☐ Demo already performs output layer
- ☐ You need to finish the hidden layer
- ☐ Test the gradient
- Note the python broadcasting

```
def loss_eval(param, X, y):
    Evaluates the loss function and gradients
    for the neural network
    # Unpack the parameters
   Wh, bh, Wo, bo = param
   # Hidden layer
   Zh = X.dot(Wh) + bh[None, :]
   Uh = 1/(1+np.exp(-Zh))
    # Output layer
    zo = Uh.dot(Wo) + bo[None,:]
    zo = zo.ravel()
   # Binary cross entropy
   loss = np.sum(np.log(1+np.exp(zo))-y*zo)
   # Gradient for the output layer.
    # Note the use of broadcasting
   grad dzo = 1/(1+np.exp(-zo))-y
    grad_Wo = np.sum(Uh[:,:,None]*grad_dzo[:,None,None], axis=0)
    grad bo = np.sum(grad dzo)
    # TODO: Compute gradients for the hidden layer
   # grad Wh = ...
    # grad bh = ...
    grad Wh = 0
    grad bh = 0
    # Pack the gradients
    grad = [grad_Wh, grad_bh, grad_Wo, grad_bo]
    return loss, grad
```

Lab for this unit

- ☐ Music instrument classification based on music signals
- ☐ Use hand-crafted features for audio (MFCC)
- ☐ Train a neural net
- □ Optimize the learning rate

Initialization and Data Normalization

- □ Solution by gradient descent algorithm depends on the initial solution
- ☐ Typically weights are set to random values near zero.
- ☐ Small weights make the network behave like linear classifier.
 - Hence model starts out nearly linearly
 - Becomes nonlinear as weights increase during the training process.
- ☐ Starting with large weights often lead to poor results.
- Normalizing data to zero mean and unit variance
 - Allows all input dimensions be treated equally and facilitate better convergence.
- □With normalized data, it is typical to initialize the weights to be uniform in [-0.7, 0.7] [ESL]

Regularization

- \Box To avoid the weights get too large, can add a penalty term explicitly, with regularization level λ
- ☐ Ridge penalty

$$R(\theta) = \sum_{d,m} w_{H,d,m}^2 + \sum_{m,k} w_{O,m,k}^2 = ||w_H||^2 + ||w_O||^2$$

☐ Total loss

$$L_{reg}(\theta) = L(\theta) + \lambda R(\theta)$$

- ☐ Change in gradient calculation
- ☐ Typically used regularization
 - L2 = Ridge: Shrink the sizes of weights
 - L1: Prefer sparse set of weights
 - L1-L2: use a combination of both

Regularization in Keras

```
kernel_regularizer: instance of keras.regularizers.Regularizerbias_regularizer: instance of keras.regularizers.Regularizer
```

activity_regularizer : instance of keras.regularizers.Regularizer

Example

Available penalties

```
keras.regularizers.l1(0.)
keras.regularizers.l2(0.)
keras.regularizers.l1_l2(0.)
```

Activity regularization tries to make the output at each layer small or sparse.

Choice of network parameters

- □ Number of layers (typically not more than 2)
- Number of hidden units in the hidden layer
- ☐ Regularization level
- ☐ Learning rate
- ☐ Determined by maximizing the cross validation error through typically exhaustive search

Learning Objectives

- ☐ Mathematically describe a neural network with a single hidden layer
 - Describe mappings for the hidden and output units
- ☐ Manually compute output regions for very simple networks
- ☐ Select the loss function based on the problem type
- ☐ Build and train a simple neural network in Keras
- ☐ Write the formulas for gradients using backpropagation
- ☐ Describe mini-batches in stochastic gradient descent
- ☐ Importance of regularization
- ☐ Hyperparameter optimization

