

High bandwidth ring laser observations in geodesy and geophysics

A. Gebauer, U. Schreiber

gebauer@fs.wettzell.de

High bandwidth observation

Frequency [1/day]

Diurnal polar motion ...

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Introduction – Geodetic Observatory Wettzell

High bandwidth observations

Introduction

Earth rotation
Local tilt effect
Long term stability
Stability
Noise investigations
Local wind effect
Geophysical signals

Backscatter effects

Conclusion

Outlook

- VLBI
- SRL
- Cesium clocks
- H-Maser
- SG (Gravimeter)
- Seismometer
- Tiltmeter
- Weather station
- GNSS
- Ring laser

→ Collocation of several instruments and techniques

Introduction – ring laser - interferometer

Earth rotation

Introduction

High bandwidth observations

- Local tilt effect
- Long term stability
- **Stability**
- **Noise investigations**
- Local wind effect
- **Geophysical signals**
- **Backscatter effects**
- Conclusion
- Outlook

- Light is reference
- No masses → no transfer function
- Insensitive to translations
- → Observation occurs in inertial frame

Introduction – ring laser

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Introduction

orientation of the rotation axis

platform orientation

Sagnac formula:

$$\Delta f = \frac{4 A}{\lambda L} \widehat{n} \widehat{\Omega} + \Delta f_0 + \Delta f$$

norm of rotation

 $10^{-9}\Omega_{\rm E}$ ≈ 0.07 picorad/s

observations Introduction

High bandwidth

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Earth rotation

Z Momentaner Rotations-Pol CIO-Pol Polbewegung

- a) the rotation rate of the Earth is not constant. Deceleration by dissipation and variation by momentum exchange. Free oscillations excited by ocean, atmosphere.
- b) gravitational attraction of sun and moon on a near spherical object give rise to precession and nutation.
- c) mass redistribution on Earth and the fact that the figure axis and the axis of Inertia are not coinciding, give rise to polar motion.

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Local tilt correction

Plattform-Tiltmeter Typ Lippmann

- Tiltmeter: Attraction + Deformation
- Ring laser: only Deformation

Tiltmeter:

$$b_h = (1 + k - h) * \delta V / r \delta \psi$$

previous attraction correction:

$$b_{h(attr)} = (1 + k) * ...$$

 $b_{h(def)} = -h * ...$

Consideration of latitude variation (Wei Tian)

$$b_{h(attr)} = (1 + k - l) * ...$$

 $b_{h(def)} = (-h + l) * ...$

Backscatter effects Conclusion Outlook

High bandwidth

observations

Introduction

Earth rotation

Local tilt effect

Stability

Long term stability

Noise investigations

Geophysical signals

Local wind effect

Long term stability

$$\Delta f = \frac{4A}{\lambda P} \vec{n} \cdot \vec{\Omega} + f_{nr}$$

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Outlook

= const. (4A=const.) $f_{nr1} = const$ pressure regulation digital intensity control

prohibit changes caused by air pressure and temperature

prohibit drift in Sagnac-frequency

> $f_{nr2} \neq const$ **Backscatter**

- Actual Stability $\sim 10^{-8}-10^{-9}$
- intended Stability in scale factor 10-10

Stability – observable signals

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations
Local wind effect
Geophysical signals
Backscatter effects
Conclusion

Noise investigations

In order to get the transversal acceleration, one has to rotate the signal of the two horizontal seismometer components to the correct back azimuth.

$$\varepsilon = a \times \cos \varphi + a \times \sin \varphi$$

High bandwidth observations
Introduction
Earth rotation
Local tilt effect
Long term stability
Stability

Noise investigations

Local wind effect
Geophysical signals
Backscatter effects
Conclusion
Outlook

Local (disturbing) effects

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Observed – computed wind effects

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Local wind effects

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Local wind effects

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Local wind effects

- wind acts very locally (~250 m)
- influencing factors:
 - cultivation
 - topography
 - wind field
 - additional deformation (moving trees)
- soil acts as ,bad' low pass

- High bandwidth observations
- Introduction
- **Earth rotation**
- Local tilt effect
- Long term stability
- **Stability**
- **Noise investigations**

Local wind effect

- Geophysical signals
- **Backscatter effects**
- Conclusion
- Outlook

Signals in ring laser observations

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Effect and used models (IERS2003)

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Geophysical signals

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Geophysical signals

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Stability

Long term stability

Noise investigations

Geophysical signals

Backscatter effects

Local wind effect

Geophysical signals

12.09.14

Conclusion

Outlook

HUM - Workshop

Chandler/Annual Wobble

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Backscatter effect

Backscatter coupling between the clockwise and counterclockwise beams is usually the largest source of systematic error.

$$\Delta f_s \approx \frac{1}{2} f_s m_1 m_2 \cos \phi$$

where m 1 and m 2 are the fractional beam modulations, and ϕ is the phase angle between them.

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Outlook

For given mirror quality, cavity of linear size m 1 and m 2 scale approximately as $L^{-2.5}$ for L .

$$\frac{\Delta f_s}{f_s}$$
 scales approximately as L-5!!!

It is extremely important to maximize the size of the laser.

Backscatter effect

- Currently under investigation
- (Obvious first step) Select best available mirrors
- Most promising approach then appears to be a calculated correction based on modulation of the clockwise and counterclockwise beams.

Can we obtain the necessary quantities m₁ and m₂ well enough?

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Conclusion

- If the sensitivity and stability of the ring laser is within the needed range for Earth rotation observation, seismology wins anyway ...
- Several signals of the ring laser identified (polar motion, earthquakes, free oscillations, Chandler wobble, ambient noise, etc)
- wind / meteorological effects have no consequence for Earth rotation, but might affect long-period seismology

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion

Outlook

- data analysis (models, ...)
- revision of the signal preparation
- increase long term stability (instrumental effects) → frequency comb
 - mirrors
 - Backscatter
 - Laser
 - Piezo actuator (first tests successful)
 - **–** ...
- new concepts for future ring lasers in geophysical applications → ROMY

High bandwidth observations

Introduction

Earth rotation

Local tilt effect

Long term stability

Stability

Noise investigations

Local wind effect

Geophysical signals

Backscatter effects

Conclusion