	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Achterberg, O. A. Capurro, G. V. Marti	NDS 110,1473 (2009)	31-May-2008

 $Q(\beta^{-})=-1.152\times10^{4} \text{ syst}; S(n)=1.160\times10^{4} \text{ 8}; S(p)=2060 \text{ 15}; Q(\alpha)=6577 \text{ 3}$ 2012Wa38

Note: Current evaluation has used the following Q record -11560 syst 11610 80 2056 18 6577 5 2003Au03.

 $\Delta Q(\beta)(est) = 110 \text{ keV } (2003\text{Au}03).$

 $Q(\beta^+)=6010 60 \text{ keV } (2003\text{Au}03).$

Theory references:

1972Fa11, calculation of deformation energy surfaces.

1987Be06, shape coexistence studies, PES calculations.

1993Na05, low-spin shape coexistence, reflection asymmetric WS model.

1994Pa29,1994Yo05,1996He02,1996Ta01, discussion of applicability of relativistic mean-field approach in studies of nuclear shapes, binding energies, deformation parameters.

¹⁷⁸Hg Levels

Level scheme based on α - γ correlations, $\gamma\gamma$ coincidences, and intensity balances (2000Ko48,2000Ko01,1997Ca16).

Cross Reference (XREF) Flags

A 182 Pb α decay

 $\mathbf{B} \qquad (\mathrm{HI},\mathrm{xn}\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	266.5 ms 24	AB	%ε+%β ⁺ ≈30; %α≈70 This level decays to the ¹⁷⁴ Pt g.s. by an unhindered α transition, with Eα=6429 3 keV, weighted average of 6425 15 keV (1971Ha03), 6425 15 keV (1976HoZD), 6430 6 keV (1979Ha10), 6428 9 keV (1996Pa01), 6429 4 keV (2000Ko01), 6429 5 keV (2004GoZZ). T _{1/2} : Average from 0.283 23 (2004GoZZ), 0.269 3 (2002Ro17), 0.262 4 (2000Ko01), 0.287 23 (1996Pa01), 0.250 25 (1991Se01), 0.26 3 (1979Ha10), 0.26 3 (1976HoZD). J ^π : g.s. of even-even nucleus. %α: ≈60 to ≈80 from systematics, based on b _α ≈84% (1971Ha03), and b _α ≈50% (1979Ha10). The quoted value is consistent with calculations in 1998Ak04, which yield 70<%α≤100.
558.00 [#] 20	2+		В	·
1012.4 [#] 3	4+		В	
1346.9 [#] 4	6+		В	
1357.8 6	(3^{-})		В	
1447.2 6	3-		В	
1743.5 [#] 5	8+		В	
1851.4 8	(4 ⁻)		В	
1990.2 <i>5</i> 2157.0 <i>8</i>	5-		В	
2137.0 8 2201.2 [#] 7	(5 ⁻)		В	
2201.2" / 2215.3 8	10 ⁺ (6 ⁻)		B B	
2388.6 [@] 6	(0) 7-		В	Band head for negative-parity band 2.
2388.6 6 2711.6 8	/ 12 ⁺			Danu neau for negative-parity valid 2.
			В	
2730.0 [@] 7	9-		В	
3117.7 [@] 8	11-		В	

¹⁷⁸Hg Levels (continued)

E(level) [†]	Jπ‡	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
						4971.9 [@] <i>17</i>		
3539.1 [@] 10			4454.4 [@] 14			5090.3 [#] <i>16</i>		
3853.8 [#] <i>11</i>	16 ⁺	В	4469.3 [#] <i>14</i>	(18^{+})	В	5534.5 [@] 18	(21^{-})	В

 $^{^{\}dagger}$ The level energies are from a least-squares adjustment to the adopted γ -ray energies.

γ (178Hg)

For relative γ -ray intensities, see (HI,xn γ) dataset.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\ddagger}
558.00	2+	558.0 [@] 2		0.0	0^{+}	E2	0.0208
1012.4	4+	454.4 [@] 2		558.00	2+	E2	0.0341
1346.9	6+	334.5 [@] 2		1012.4	4+	E2	0.0775
1357.8	(3^{-})	799.7 6		558.00	2+	(E1)	0.00348
1447.2	3-	889.1 <i>6</i>		558.00	2+	E1	0.00286
1743.5	8+	396.6 [@] 4		1346.9	6+	E2	0.0485
1851.4	(4^{-})	839.0 8		1012.4	4+	(E1)	0.00318
1990.2	5-	542.8 8	31 9	1447.2	3-	E2	0.0221
		632.2 8	59 10	1357.8	(3-)	E2	0.01564
		644.0 ^a 8	<15	1346.9	6 ⁺	(E1)	0.00530
2157.0	(5 ⁻)	978.2 <i>6</i> 799.1 <i>8</i>	100	1012.4 1357.8	4 ⁺	E1 (E2)	0.00240 0.00947
	10+	457.7 [@] 4			(3 ⁻) 8 ⁺	` ′	
2201.2 2215.3	(6-)	363.9 <i>8</i>	100 5	1743.5 1851.4	8 · (4 ⁻)	E2 (E2)	0.0335 0.0612 <i>10</i>
2213.3	(0)	868.4 8	<50	1346.9	6 ⁺	(E2) (E1)	0.0012 10
2388.6	7-	231.5 8	15 4	2157.0	(5^{-})	(E1)	0.239 5
	•	398.4 <i>4</i>	100	1990.2	5-	E2	0.0479
		644.9 8	17 4	1743.5	8+	E1	0.00529
		1041.0 ^a 8	<7	1346.9	6+	(E1)	0.00214
2711.6	12+	510.4 [@] 4		2201.2	10+	E2	0.0256
2730.0	9-	341.4 <mark>&</mark> 4		2388.6	7-	E2	0.0732
3117.7	11-	387.7 <mark>&</mark> 4		2730.0	9-	E2	0.0515
3265.2	14 ⁺	553.6 [@] 4		2711.6	12 ⁺	E2	0.0211
3539.1	13-	421.4 <mark>&</mark> 6		3117.7	11-	E2	0.0414
3853.8	16 ⁺	588.6 [@] 6		3265.2	14+	E2	0.0184
3980.4	(15^{-})	441.3 <mark>&</mark> 6		3539.1	13-	(E2)	0.0367
4454.4	(17^{-})	474.0 <mark>&</mark> 8		3980.4	(15^{-})	(E2)	0.0307
4469.3	(18^{+})	615.5 [@] 8		3853.8	16 ⁺	(E2)	0.01660
4971.9	(19^{-})	517.5 <mark>&</mark> 8		4454.4	(17^{-})	(E2)	0.0248

[‡] From (HI,xn γ).

[#] Band(A): π =+ gs band. Prolate deformed yrast sequence. Levels connected by stretched E2 transitions (2000Ko48,2000Ko01,1999Ca16).

[@] Band(B): π =+ band. Interpreted as an octupole-vibration based rotational band with levels connected by stretched E2 transitions (200Ko48,2000Ko01).

γ (178Hg) (continued)

$$E_i$$
(level) J_i^{π} E_{γ}^{\dagger} E_f J_f^{π} $Mult.^{\#}$ α^{\ddagger}
5090.3 (20⁺) 621.0[@] 8 4469.3 (18⁺) (E2) 0.01627
5534.5 (21⁻) 562.6[&] 8 4971.9 (19⁻) (E2) 0.0204

[†] From (HI,xn γ). Energy uncertainties estimated by the evaluators, based on the range assumed in 2000Ko48, each depending on its experimental γ -ray intensity.

[‡] Theoretical total internal conversion coefficient for the assumed multipolarity.

[#] Multipolarities from measured angular distributions and directional correlations (2000Ko48,1997Ca16) (see (HI,xny) dataset).

[@] Connects levels in g.s. Band 1.

[&]amp; Connects levels in Band 2.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{178}_{80} Hg_{98}$

 $^{178}_{80}{\rm Hg}_{98}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 126, 151 (2015)	1-Feb-2015

 $Q(\beta^{-})=-10990\ 60;\ S(n)=11400\ 30;\ S(p)=2551\ 17;\ Q(\alpha)=6258.4\ 24$ 2012Wa38 $S(2n)=20077 \ 17; \ S(2p)=2831 \ 16; \ Q(\varepsilon p)=4729 \ 15 \ (2012Wa38).$ α : Additional information 1.

¹⁸⁰Hg Leve<u>ls</u>

Cross Reference (XREF) Flags

			B 184 C 92Z	Tl ε decay (1.09 s)
E(level) [†]	J^{π}	$T_{1/2}$ &	XREF	Comments
0.0‡	0+	2.59 s <i>1</i>	ABCDEF	$%ε+%β^+=52$ 2; $%α=48$ 2 $T_{1/2}$: weighted average of 2.60 s I (2013KoZR), 2.59 s I (2000Ko48), 2.6 s I (1996Pa01), 2.56 s I (1993Wa03), 2.6 s I (1986Si19), 3.0 s I (1977Hu05), and 2.9 s I (1970Hu18). Other: 5.9 s I (1968De01). %α: weighted average of 48 I (1999To11), 47 I (1986Si19), and 49 I (1982HeZM).
419.8 <i>4</i>	0^{+}		A F	J^{π} : E0 420 transition to 0^+ .
434.24 [‡] <i>11</i>	2+	12 ps 2	A CDEF	J^{π} : E2 434 γ to 0 ⁺ , band member.
601.60 13	2+		A F	T _{1/2} : from range of 10 ps <t<sub>1/2<14 ps in ⁹⁴Mo(⁸⁸Sr,2nγ). J^π: large E0 component in 167γ to 2⁺. E(level): The relative order of the 602γ-797γ cascade is reversed in ⁹²Zr(⁹⁰Zr,2nγ) giving a level at 797.2 rather than at 601.6. The evaluator adopts the ε decay ordering since $I\gamma(602\gamma)>I\gamma(797\gamma)$ in that decay. The $I\gamma$ data from ⁹²Zr(⁹⁰Zr,2nγ) are consistent with this order.</t<sub>
706.27 [‡] <i>14</i>	4+	19.5 ps 8	A CDEF	J^{π} : E2 272 γ to 2^{+} , band member.
1032.21 [‡] <i>17</i> 1091.5 <i>4</i>	6 ⁺ (2 ⁺ ,1)	8.8 ps <i>4</i>	A CDEF A	J^{π} : E2 326 γ to 4 ⁺ , band member. J^{π} : 672 γ to 0 ⁺ ; systematics and non observation of a transition to the g.s. favor $J^{\pi}=2^{+}$.
1175.6 <i>10</i> 1204.00 <i>20</i>			C A	
1223.77 15	$(3^-,4^+)$		A	J^{π} : 622 γ to 2 ⁺ , 573 γ from 5 ⁽⁻⁾ .
1399.38 16	(3^{-})		A C	J^{π} : 798 γ to 2 ⁺ , E2 398 γ from 5 ⁽⁻⁾ .
1437.2 [‡] 6	8+	2.29 ps <i>21</i>	CDEF	J^{π} : E2 404.5 γ to 6 ⁺ , band member.
1468.79 <i>15</i>	$(3^-,4^+)$	ps	A	J^{π} : 1035 γ to 2 ⁺ , 329 γ from 5 ⁽⁻⁾ .
1504.34 22	(6^{+})		A C	J^{π} : (E2) 798 γ to 4 ⁺ .
1663.1 5			A	
1797.48 [#] 16	5(-)		A CD	J ^{π} : ΔJ=1, D 765 γ to 6 ⁺ , ΔJ=1, D 1091 γ to 4 ⁺ ; π =– is suggested by 2000Ko48 based on decay pattern and theoretical comparisons.
1840.5 5			A	
1869.3 4			С	
1914.0 [‡] 6	10 ⁺		CDEF	J^{π} : E2 477 γ to 8 ⁺ , band member.
2022.10 17	- ()		Α	
2041.89 [#] 25	7 ⁽⁻⁾		CD	J^{π} : E2 244y to 5 ⁽⁻⁾ , D 605y to 8 ⁺ , band member.
2057.3 7 2068.7 [@] 5	(6 ⁺)		C	J^{π} : (E2) 620 γ to 8 ⁺ , population intensity.
2068.7 5	(6) (8 ⁺)		C C	J^{π} : ΔJ =0, D+Q 1036 γ to 6 ⁺ . J^{π} : E2 819 γ to (6 ⁺).
4344.9 3	(0)		•	J. 12 017 to (0).

¹⁸⁰Hg Levels (continued)

E(level) [†]	J^{π}	T _{1/2} &	XREF	Comments
2348.74 16	$(4,5^{-})$		A	J^{π} : 551 γ to 5 ⁽⁻⁾ , 949 γ to (3 ⁻), direct ε + β ⁺ feeding from (5 ⁻) parent.
2359.1 [#] 3	9(-)	7.1 ps 8	CD	J^{π} : E2 317 γ to $7^{(-)}$, band member.
2368.8 9		•	C	
2371.5 [@] 4	(8)		C	J^{π} : E2 302 γ to (6), band member.
2456.3 [‡] 6	12 ⁺		СЕ	J^{π} : E2 542 γ to 10 ⁺ , band member.
2487.76 <i>24</i>			Α	
2524.0 8	(8^{+})		C	J^{π} : 466 γ to (6 ⁺), 610 γ to 10 ⁺ .
2741.3 [@] 6	(10)		C	J^{π} : E2 370 γ to (8), band member.
2748.8 [#] 4	$11^{(-)}$		CD	J^{π} : E2 390 γ to 9 ⁽⁻⁾ , band member.
3041.2 12	(10^{+})		C	J^{π} : 517 γ to (8 ⁺).
3055.7 [‡] 6	14 ⁺		CE	J^{π} : E2 599 γ to 12 ⁺ , band member.
3161.6 [@] 7	(12)		C	J^{π} : E2 420 γ to (10), band member.
3199.6 [#] <i>11</i>	$13^{(-)}$		C	J^{π} : E2 451 γ to 11 ⁽⁻⁾ , band member.
3616.5 [@] 8	(14)		C	J^{π} : E2 455 γ to (12), band member.
3688.6 [#] 11	$15^{(-)}$		С	J^{π} : E2 489 γ to 13 ⁽⁻⁾ , band member.
3704.5 [‡] 7	16 ⁺		CE	J^{π} : E2 645 γ to 14 ⁺ , band member.
4106.5 [@] 11	(16)		C	J^{π} : 490 γ to (14), band member.
4194.7 [#] <i>12</i>	$17^{(-)}$		C	J^{π} : E2 506 γ to 15 ⁽⁻⁾ , band member.
4388.5 [‡] 8	18 ⁺		C	J^{π} : E2 684 γ to 16 ⁺ , band member.
4627.4? [@] <i>14</i>	(18)		C	J^{π} : 521 γ to (16), band member.
4733.9 [#] <i>14</i>	(19^{-})		C	J^{π} : 539 γ to 17 ⁽⁻⁾ , band member.
5091.5 [‡] <i>12</i>	(20^{+})		C	J^{π} : 703 γ to 18 ⁺ , band member.
5309.6? [#] <i>17</i>	(21^{-})		С	J^{π} : 576 γ to (19 ⁻), band member.
5803.4? [‡] <i>14</i>	(22^{+})		C	J^{π} : 712 γ to (20 ⁺), band member.

 $^{^{\}dagger}$ From a least squares fit to Ey by evaluator. ‡ Band(A): g.s. band. $^{\#}$ Band(B): 5⁽⁻⁾ band. $^{@}$ Band(C): (6) band. $^{\&}$ From Recoil Distance Doppler-Shift measurements in $^{94}Mo(^{88}Sr,2n\gamma)$.

γ (180Hg)

$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f J	$\frac{\pi}{f}$ Mult. \ddagger	α	$I_{(\gamma+ce)}$	Comments
419.8	0+	420 3		0.0	+ E0#		100	Mult.: K/L=5.8 25 (2011Pa24).
434.24	2+	434.24 [@] 12	100	0.0 0		0.0383		$\alpha(K)$ =0.0266 4; $\alpha(L)$ =0.00885 13; $\alpha(M)$ =0.00220 3; $\alpha(N)$ =0.000547 8; $\alpha(O)$ =9.66×10 ⁻⁵ 14 $\alpha(P)$ =3.51×10 ⁻⁶ 5 B(E2)(W.u.)=49 9 Mult.: K/L=3.0 8 (2011Pa24).
601.60	2+	167.0 ^{&} 2	13.6 ^{&} 8	434.24 2	⁺ E0(+M1,E2) [†]	[#] 3.5 <i>4</i>		$\alpha(K)$ =0.9 7; $\alpha(L)$ =0.31 6; $\alpha(M)$ =0.076 18; $\alpha(N)$ =0.019 5; $\alpha(O)$ =0.0034 6; $\alpha(P)$ =0.00012 9 α : deduced from I(γ +ce) in ¹⁸⁰ Tl ε decay (1.09 s). Mult.: K/L=6.6 20 (2011Pa24).
		181.8 ^{&} 5	0.66 4	419.8 0	+ [E2]	0.545 10		$\alpha(K)$ =0.213 4; $\alpha(L)$ =0.249 5; $\alpha(M)$ =0.0646 12; $\alpha(N)$ =0.0160 3; $\alpha(O)$ =0.00270 5 $\alpha(P)$ =2.66×10 ⁻⁵ 5
		601.6 ^{&} 2	100 6 5	0.0 0	+ [E2]	0.01748		$\alpha(K)$ =0.01317 19; $\alpha(L)$ =0.00328 5; $\alpha(M)$ =0.000796 12; $\alpha(N)$ =0.000199 3; $\alpha(O)$ =3.58×10 ⁻⁵ 5 $\alpha(P)$ =1.748×10 ⁻⁶ 25
706.27	4+	104.7 ^{&} 5	2.6 ^{&} 7	601.60 2	+ [E2]	4.57 12		$\alpha(K)$ =0.597 9; $\alpha(L)$ =2.97 8; $\alpha(M)$ =0.778 21; $\alpha(N)$ =0.193 6; $\alpha(O)$ =0.0320 9 $\alpha(P)$ =0.0001041 20 B(E2)(W.u.)=7.7×10 ² 22 I _{γ} : calculated in ¹⁸⁰ Tl ε decay from relative branching of 105 γ and 272 γ and conversion coefficient. I γ leads to rather large B(E2) strength.
		272.32 [@] 16	100 ^{&} 6	434.24 2	+ E2 [#]	0.1427		$\alpha(K)$ =0.0798 12; $\alpha(L)$ =0.0474 7; $\alpha(M)$ =0.01208 18; $\alpha(N)$ =0.00300 5; $\alpha(O)$ =0.000515 8 $\alpha(P)$ =1.018×10 ⁻⁵ 15 B(E2)(W.u.)=249 24 Mult.: K/L=2.0 3 (2011Pa24).
1032.21	6+	325.96 [@] 9	100	706.27 4	+ E2 [#]	0.0835		$\alpha(K)$ =0.0517 8; $\alpha(L)$ =0.0240 4; $\alpha(M)$ =0.00606 9; $\alpha(N)$ =0.001508 22; $\alpha(O)$ =0.000261 4 $\alpha(P)$ =6.70×10 ⁻⁶ 10 B(E2)(W.u.)=267 13 Mult.: K/L=2.5 4 (2011Pa24).
1091.5	$(2^+,1)$	657.3 & 5	100 <mark>&</mark> 20	434.24 2	+			
1175 (671.6 ^{&} 5	79 & 4	419.8 0				
1175.6 1204.00		741.4 8 498.1 ^{&} 5	100 37 & 6	434.24 2 706.27 4				
1204.00		602.4 ^{&} 5	43 ^{&} 6	601.60 2				

 ω

γ (180Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.‡	α	Comments
1223.77	$(3^-,4^+)$	517.4 ^{&} 2	18.4 <mark>&</mark> 22	706.27 4	+			
		622.0 <mark>&</mark> 2	100 <mark>&</mark> 5	601.60 2	<u>+</u>			
		789.4 <mark>&</mark> 2	56 <mark>&</mark> 6	434.24 2	<u>.</u> +			
1399.38	(3-)	692.9 [@] 2	53& 4	706.27 4	ļ +	[E1]	0.00459	$\alpha(K)$ =0.00383 6; $\alpha(L)$ =0.000587 9; $\alpha(M)$ =0.0001349 19; $\alpha(N)$ =3.37×10 ⁻⁵ 5; $\alpha(O)$ =6.30×10 ⁻⁶ 9 $\alpha(P)$ =4.58×10 ⁻⁷ 7
		797.7 <mark>&</mark> 2	100 & 40	601.60 2	·+	[E1]	0.00350	$\alpha(K)$ =0.00292 4; $\alpha(L)$ =0.000444 7; $\alpha(M)$ =0.0001019 15; $\alpha(N)$ =2.54×10 ⁻⁵ 4; $\alpha(O)$ =4.77×10 ⁻⁶ 7 $\alpha(P)$ =3.52×10 ⁻⁷ 5
1437.2	8+	404.5 1	100	1032.21 6	ó ⁺	E2	0.0460	$\alpha(K)$ =0.0312 5; $\alpha(L)$ =0.01121 16; $\alpha(M)$ =0.00279 4; $\alpha(N)$ =0.000696 10; $\alpha(O)$ =0.0001223 18 $\alpha(P)$ =4.11×10 ⁻⁶ 6 B(E2)(W.u.)=3.6×10 ² 4
1468.79	$(3^-,4^+)$	867.1 ^{&} 2	25 <i>3</i>	601.60 2	+			
		1034.6 <mark>&</mark> 2	100 11	434.24 2	+			
1504.34	(6^+)	472.5 <mark>&</mark> 5	22 <mark>&</mark> 4	1032.21 6	ó ⁺			
		797.98 [@] 18	100 ^{&} 40	706.27 4	+	(E2)	0.00950	$\alpha(\mathrm{K}){=}0.00747~11;~\alpha(\mathrm{L}){=}0.001551~22;~\alpha(\mathrm{M}){=}0.000370~6;~\alpha(\mathrm{N}){=}9.25{\times}10^{-5}~13$
		0						$\alpha(O)=1.695\times10^{-5} 24$; $\alpha(P)=9.87\times10^{-7} 14$
1663.1		1228.9 <mark>&</mark> 5	100	434.24 2				
1797.48	5(-)	328.6 & 2	90 <mark>&</mark> 60	1468.79 (
		398.24 [@] 18	100 ^{&} 7	1399.38 (3	3-)	E2	0.0480	$\alpha(K)$ =0.0323 5; $\alpha(L)$ =0.01181 17; $\alpha(M)$ =0.00295 5; $\alpha(N)$ =0.000734 11; $\alpha(O)$ =0.0001289 19 $\alpha(P)$ =4.25×10 ⁻⁶ 6
		573.4 <mark>&</mark> 2	55 <mark>&</mark> 7	1223.77 ($3^{-},4^{+})$			
		765.3 [@] 4	52 3	1032.21 6	j+	[E1]	0.00379	$\alpha(K)$ =0.00316 5; $\alpha(L)$ =0.000481 7; $\alpha(M)$ =0.0001106 16; $\alpha(N)$ =2.76×10 ⁻⁵ 4; $\alpha(O)$ =5.18×10 ⁻⁶ 8 $\alpha(P)$ =3.80×10 ⁻⁷ 6
		1091.22 [@] 18	79 3	706.27 4	ļ+	[E1]	0.00197	$\alpha(K)=0.001650 \ 24; \ \alpha(L)=0.000246 \ 4; \ \alpha(M)=5.63\times10^{-5} \ 8; \ \alpha(N)=1.405\times10^{-5} \ 20; \ \alpha(O)=2.65\times10^{-6} \ 4 \ \alpha(P)=2.00\times10^{-7} \ 3$
1840.5		1134.2 <mark>&</mark> 5	100	706.27 4				
1869.3		837.5 4	100	1032.21 6		(D)		
1914.0	10 ⁺	476.8 <i>1</i>	100	1437.2 8	3+	E2	0.0303	$\alpha(K)$ =0.0216 3; $\alpha(L)$ =0.00656 10; $\alpha(M)$ =0.001616 23; $\alpha(N)$ =0.000403 6; $\alpha(O)$ =7.16×10 ⁻⁵ 10 $\alpha(P)$ =2.86×10 ⁻⁶ 4
2022.10		553.0 & 2 798.1 & 2	32 ^{&} 4 100 ^{&} 7	1468.79 (3 1223.77 (3				u(1)-2.00/10 7

γ (180Hg) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	J^π_f	Mult.‡	α	Comments
2022.10		1316.5 <mark>&</mark> 2	42.4 <mark>&</mark> 22	706.27				
2041.89	7 ⁽⁻⁾	244.4 2	100 5	1797.48	5 ⁽⁻⁾	E2	0.201	$\alpha(K)$ =0.1039 <i>15</i> ; $\alpha(L)$ =0.0727 <i>11</i> ; $\alpha(M)$ =0.0186 <i>3</i> ; $\alpha(N)$ =0.00463 <i>7</i> ; $\alpha(O)$ =0.000790 <i>12</i> $\alpha(P)$ =1.314×10 ⁻⁵ <i>19</i>
		604.7 <i>4</i>	81 7	1437.2	8+	[E1]	0.00601	$\alpha(K)=0.00501\ 7;\ \alpha(L)=0.000776\ 11;\ \alpha(M)=0.000179\ 3;\ \alpha(N)=4.45\times10^{-5}\ 7;$ $\alpha(O)=8.32\times10^{-6}\ 12$ $\alpha(P)=5.95\times10^{-7}\ 9$
		1010 ^a 1	<28	1032.21	6+	[E1]	0.00226	$\alpha(K)=0.00189 \ 3; \ \alpha(L)=0.000283 \ 4; \ \alpha(M)=6.49\times10^{-5} \ 10; \ \alpha(N)=1.621\times10^{-5} \ 23; \ \alpha(O)=3.05\times10^{-6} \ 5 \ \alpha(P)=2.30\times10^{-7} \ 4$
2057.3	(6 ⁺)	620.1 4	100	1437.2	8+	(E2)	0.01633	$\alpha(F)=2.50 \times 10^{-4}$ $\alpha(K)=0.01237 \ 18; \ \alpha(L)=0.00301 \ 5; \ \alpha(M)=0.000729 \ 11; \ \alpha(N)=0.000182 \ 3;$ $\alpha(O)=3.29 \times 10^{-5} \ 5$ $\alpha(P)=1.642 \times 10^{-6} \ 23$
2068.7	(6)	563.6 8	83 22	1504.34	(6^+)			u(i) 11012/110 20
		1036.0 8	100 22	1032.21		D+Q		_
2322.9	(8+)	818.6 <i>4</i>	100	1504.34	(6 ⁺)	E2	0.00902	$\alpha(K)=0.00711 \ 10; \ \alpha(L)=0.001457 \ 21; \ \alpha(M)=0.000347 \ 5; \ \alpha(N)=8.67\times10^{-5} \ 13$ $\alpha(O)=1.592\times10^{-5} \ 23; \ \alpha(P)=9.39\times10^{-7} \ 14$
2348.74	$(4,5^{-})$	326.8 ^{&} 2	58 <mark>&</mark> 9	2022.10				
		551.1 <mark>&</mark> 2	31 & 4	1797.48	5(-)			
		880.3 <mark>&</mark> 2	52 <mark>&</mark> 4	1468.79	$(3^-,4^+)$			
		948.9 <mark>&</mark> 2	36 <mark>&</mark> 11	1399.38	(3^{-})			
		1125.1 <mark>&</mark> 2	100 & 5	1223.77	$(3^-,4^+)$			
2359.1	9(-)	317.2 2	100	2041.89		E2	0.0903	$\alpha(K)$ =0.0551 8; $\alpha(L)$ =0.0265 4; $\alpha(M)$ =0.00671 10; $\alpha(N)$ =0.001670 24; $\alpha(O)$ =0.000289 5 $\alpha(P)$ =7.13×10 ⁻⁶ 10 B(E2)(W.u.)=3.8×10 ² 5
2368.8		499.5 8	100	1869.3				$D(E2)(W.u.)=3.0\times10^{-3}$
2371.5	(8)	302.4 4	83 14	2068.7	(6)	E2	0.1040	$\alpha(K)$ =0.0619 9; $\alpha(L)$ =0.0317 5; $\alpha(M)$ =0.00804 12; $\alpha(N)$ =0.00200 3; $\alpha(O)$ =0.000345 6 $\alpha(P)$ =7.97×10 ⁻⁶ 12
		502.6 4	100 17	1869.3				u(i) 1.57/\text{12}
		934.0 <mark>a</mark> 8	<34	1437.2				
2456.3	12+	542.3 1	100	1914.0	10+	E2	0.0222	$\alpha(K)$ =0.01637 23; $\alpha(L)$ =0.00443 7; $\alpha(M)$ =0.001082 16; $\alpha(N)$ =0.000270 4; $\alpha(O)$ =4.84×10 ⁻⁵ 7 $\alpha(P)$ =2.17×10 ⁻⁶ 3
2487.76		1455.4 <mark>&</mark> 5	38 6	1032.21	6+			
		1781.5 <mark>&</mark> 2	100 19	706.27	4+			
2524.0	(8^{+})	466.4 8	100 35	2057.3	(6^{+})			
0741.2	(10)	610.2 8	75 15	1914.0	10+	F-2	0.0506	(II) 0.0004 (
2741.3	(10)	369.8 <i>4</i>	100	2371.5	(8)	E2	0.0586	$\alpha(K)=0.0384\ 6;\ \alpha(L)=0.01526\ 23;\ \alpha(M)=0.00382\ 6;\ \alpha(N)=0.000952\ 14;$

S

γ (180Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J	$\frac{\pi}{f}$ Mult. \ddagger	α	Comments
					,		$\alpha(O)=0.0001664 \ 25$ $\alpha(P)=5.02 \times 10^{-6} \ 8$
2748.8	11 ⁽⁻⁾	389.7 2	100	2359.1 9 ⁽⁻⁾	⁻⁾ E2	0.0508	$\alpha(K)$ =0.0340 5; $\alpha(L)$ =0.01272 18; $\alpha(M)$ =0.00318 5; $\alpha(N)$ =0.000792 12; $\alpha(O)$ =0.0001388 20 $\alpha(P)$ =4.46×10 ⁻⁶ 7
3041.2	(10^+)	517.2 8	100	2524.0 (8	+)		
3055.7	14+	599.4 2	100	2456.3 12	+ E2	0.01762	$\alpha(K)$ =0.01327 19; $\alpha(L)$ =0.00331 5; $\alpha(M)$ =0.000804 12; $\alpha(N)$ =0.000201 3; $\alpha(O)$ =3.62×10 ⁻⁵ 5
21616	(10)	120.2.1	100	2741 2 41		0.0416	$\alpha(P)=1.761\times10^{-6} 25$
3161.6	(12)	420.3 4	100	2741.3 (1	O) E2	0.0416	$\alpha(K)$ =0.0286 4; $\alpha(L)$ =0.00986 15; $\alpha(M)$ =0.00245 4; $\alpha(N)$ =0.000611 9; $\alpha(O)$ =0.0001076 16 $\alpha(P)$ =3.77×10 ⁻⁶ 6
3199.6	13(-)	450.8	100	2748.8 11	(-) E2	0.0348	$\alpha(K)=5.77\times10^{-6}$ $\alpha(K)=0.0245$ 4; $\alpha(L)=0.00784$ 11; $\alpha(M)=0.00194$ 3; $\alpha(N)=0.000483$ 7; $\alpha(O)=8.56\times10^{-5}$
3199.0	13.	450.6	100	2740.0 11		0.0346	$a(R)=0.0243$ 4, $a(L)=0.00784$ 11, $a(M)=0.00194$ 3, $a(N)=0.000483$ 7, $a(O)=8.30\times10$ 12 $a(P)=3.23\times10^{-6}$ 5
3616.5	(14)	454.9 <i>4</i>	100	3161.6 (1	2) E2	0.0340	$\alpha(K) = 0.0240 \ 4$; $\alpha(L) = 0.00761 \ 11$; $\alpha(M) = 0.00188 \ 3$; $\alpha(N) = 0.000469 \ 7$; $\alpha(O) = 8.31 \times 10^{-5}$
3010.3	(14)	757.7 7	100	3101.0 (1	2) 12	0.0540	12 $\alpha(P)=3.17\times10^{-6}$ 5
3688.6	15 ⁽⁻⁾	489.0 <i>4</i>	100	3199.6 13	(-) E2	0.0284	$\alpha(K)=0.0204$ 3; $\alpha(L)=0.00606$ 9; $\alpha(M)=0.001491$ 22; $\alpha(N)=0.000372$ 6;
3000.0	13	102.0 7	100	3177.0 13	22	0.0201	$\alpha(O)=6.62\times10^{-5}$ 10
							$\alpha(P)=2.71\times10^{-6} 4$
3704.5	16 ⁺	648.8 <i>4</i>	100	3055.7 14	+ E2	0.01477	$\alpha(K)$ =0.01128 16; $\alpha(L)$ =0.00266 4; $\alpha(M)$ =0.000642 9; $\alpha(N)$ =0.0001604 23;
							$\alpha(O)=2.91\times10^{-5} 4$
4106.5	(16)	490.0 8	100	3616.5 (1-	4)		$\alpha(P)=1.496\times10^{-6}\ 21$
4100.3	17 ⁽⁻⁾	506.1 <i>4</i>	100	3688.6 15	,	0.0262	$\alpha(K)=0.0190 \ 3; \ \alpha(L)=0.00545 \ 8; \ \alpha(M)=0.001338 \ 19; \ \alpha(N)=0.000334 \ 5;$
4194.7	1/\	300.1 4	100	3000.0 13	C E2	0.0202	$a(K)=0.0190 \text{ 5}, \ a(L)=0.00343 \text{ 6}, \ a(M)=0.001338 \text{ 19}, \ a(N)=0.000334 \text{ 5}, $ $a(O)=5.95\times10^{-5} \text{ 9}$ $a(P)=2.52\times10^{-6} \text{ 4}$
4388.5	18 ⁺	684.0 <i>4</i>	100	3704.5 16	+ E2	0.01316	$\alpha(K)=2.52\times10^{-4}$ $\alpha(K)=0.01014$ 15; $\alpha(L)=0.00231$ 4; $\alpha(M)=0.000555$ 8; $\alpha(N)=0.0001387$ 20;
1300.3	10	001.07	100	3701.3 10	112	0.01310	$\alpha(O)=2.52\times10^{-5} 4$
4627.4?	(18)	520.9 ^a 8	100	4106.5 (1	5)		$\alpha(P)=1.343\times10^{-6} 19$
4733.9	(10) (19^{-})	539.2 8	100	4194.7 17			
5091.5	(20^{+})	703.0 8	100	4388.5 18			
5309.6?	(21^{-})	575.7 ^a 8	100	4733.9 (1			
5803.4?	(22^{+})	711.9 ^a 8	100	5091.5 (2			

6

[†] From 92 Zr(90 Zr,2n γ), except where noted. ‡ From angular distribution coefficients and/or angular anisotropy coefficients in 92 Zr(90 Zr,2n γ), except where noted. Q transitions are taken as stretched E2.

γ (180Hg) (continued)

- # From K/L ratio in $^{147} Sm(^{36} Ar, 3n\gamma)$. @ Weighted average of $^{180} Tl~\varepsilon$ decay (1.09 s) and $^{92} Zr(^{90} Zr, 2n\gamma)$. & From $^{180} Tl~\varepsilon$ decay (1.09 s).
- ^a Placement of transition in the level scheme is uncertain.

Legend

1223.77 1204.00

1032.21 8.8 ps 4

706.27 19.5 ps 8

434.24 12 ps 2

0.0 2.59 s 1

601.60

Adopted Levels, Gammas

Level Scheme (continued) $\begin{array}{c|c} & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ & I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ & \gamma \text{ Decay (Uncertain)} \end{array}$ Intensities: Type not specified 2368.8 2359.1 9(-) 7.1 ps 8 (4,5-) 2348.74 (8⁺) 2322.9 1 10360 Dx 100 (6) 2068.7 (6⁺) 7⁽⁻⁾ 2057.3 2041.89 + 83; - 00,00 | 1 2022.10 1 | 1342 | 100 10+ 1914.0 1869.3 1840.5 5(-) 1797.48 1 428.9 1663.1 (6^{+}) 1504.34 $(3^-,4^+)$ 1468.79 2.29 ps 21 8⁺ (3⁻) 1437.2 1399.38

$$^{180}_{\ 80}{\rm Hg}_{100}$$

 $(3^-,4^+)$

6+

4+

 $^{180}_{\ 80}{\rm Hg}_{100}$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015

¹⁹⁸Hg Levels

For band configurations, see 1985Ko13, 1984Go06, 1977Gu05, 1974Pr13, and 1974Ya03.

Cross Reference (XREF) Flags

	B 1987 C 1987 D 196F E 198F F 197	Au β^- decay (2.7) ε decay (5.3 ε 1) ε decay (1.87) ε 1 ε 2 decay (1.87) ε 2 ε 2 ε 3 ε 4 ε 4 ε 4 ε 5 ε 5 ε 4 ε 6 ε 6 ε 7 ε 7 ε 8 ε 9	h) 1 h) 1	H ¹⁹⁷ Au I ¹⁹⁷ Au J ¹⁹⁸ Hg	(p,F) 0 202 Pb α decay (52.5×10 ³ y) (p,p' γ),(p,p') P 198 Pt $2\beta^-$ decay (γ,γ) : res fluorescence
E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	X	REF	Comments
0.0 ^c	0+	stable	ABCDEF	JKLMNOP	J ^{π} : L=0 in ²⁰⁰ Hg(p,t); populated by favored (HF \approx 1) α decay from ²⁰² Pb(J^{π} =0 ⁺) (1981Na15).
411.80251 ^c 17	2+	23.15 ps 28	ABCDEF	ЈК М Р	$μ$ =+0.76 6 (1995Br34,2011StZZ) $J^π$: E2 $γ$ to 0 ⁺ . $T_{1/2}$: From B(E2)=0.990 $I2$ (adopted in 2001Ra27). $μ$: Transient Field integral perturbed angular correlation(TF) and I^{199} Hg standard (1995Br34). Others: +1.0 I^{199} Hg standard (1995Br34). Others: +1.0 I^{199} Hg standard), +0.70 I^{199} Hg standard), +0.70 I^{199} Hg standard), +0.70 I^{199} Hg standard), -0.70 I^{199} Hg standard). I^{199} Hg standard), +0.70 $I^{$
1048.51 ^c 11	4+	7.2 ps <i>3</i>	BCDEF	J M	μ =+1.6 2 (1995Br34,2011StZZ). μ : TF; ¹⁹⁹ Hg standard. J ^π : J=4 from $\gamma\gamma(\theta)$ in ¹⁹⁸ Tl ε decay (5.3 h) and π =+ from E2 γ to 2 ⁺ . T _{1/2} : From B(E2)(412-1048)=0.537 20 in Coulomb excitation.
1087.6874 5	2+	40.4 ps 5	AB D F	J M	J^{π} : E2 γ to 0^+ .
1401.52 <i>23</i> 1419.41 <i>11</i>	0 ⁺ 3 ⁺		B D B D	J N	$T_{1/2}$: From B(E2)(412-1088)=0.070 <i>5</i> in Coulomb excitation. J^{π} : E2 γ to 2 ⁺ and E0 to 0 ⁺ . J^{π} : J=3 from $\gamma\gamma(\theta)$ in ¹⁹⁶ Pt(α ,2n γ) and π =+ from M1+E2 γ to 2 ⁺ .
1548.49 20 1550 1612.44 <i>I</i> 2	(1,2 ⁺) 0 ⁺ 2 ⁺		B D D D	N	J ^π : L=0 in 200 Hg(p,t). J ^π : J=2 from $\gamma\gamma(\theta)$ in 198 Tl ε decay (5.3 h) and π =+ from M1+E2 γ to 2 ⁺ .
1635.67 ^d 21	5-	62 ps 11	BCDE	J	J^{π} : J=5 from $\gamma(\theta)$ in ¹⁹⁸ Pt(α ,4n γ) and ¹⁹⁶ Pt(α ,2n γ); π =–

 $Q(\beta^-)=-3460~80$; S(n)=8485~3; S(p)=7102.8~5; $Q(\alpha)=1382.8~9$ 2012Wa38 198 Pt can decay by double β^- decay to 198 Hg. Upper limits on 198 Pt half-life have been measured. For details, see $T_{1/2}$ comment for g.s. of 198 Pt In Adopted Levels for 198 Pt.

¹⁹⁸Hg Levels (continued)

1683.38 ^d 22 7-@b	E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
T _{1/2} : From yee(t) in ¹⁹⁸ T1 ε decay (1.87 h) (1971Be09). Other: 510 ps (1970bu10, 1970To14). T ₁						from E1 γ to 4 ⁺ .
Tight Form peetly in 198T ε decay (1.87h) (1970ba10), and 7.1 ns 1 (1984Go06).						$T_{1/2}$: From γ ce(t) in ¹⁹⁸ Tl ε decay (1.87 h) (1971Be09). Other:
1970fol 4). Others: 7.4 ns. 4 (1971Be09), 6.6 ns. 5 (1971Pa06), and 7.1 ns. 1 (1984Go06), and 7.1 ns. 1 (1984Go06).	1683.38 ^d 22	7 ^{-@b}	6.9 ns 2	CDE	J	
1760 15						1970To14). Others: 7.4 ns 4 (1971Be09), 6.6 ns 5 (1971Pa06), and 7.1 ns 1 (1984Go06).
1815.90° 20	1760 <i>15</i>	0+		D F	N	XREF: N(1779).
1832.60 17 2+ B D	1815.90 ^c 20	6 ⁺ @	3.4 ps <i>3</i>	CDEF	M	XREF: F(1820).
1847.21 13	1832.60 <i>17</i>			B D		J^{π} : J=2 from $\gamma\gamma(\theta)$ in ¹⁹⁸ Tl ε decay (5.3 h) and π =+ from
1858.86 18 2+	1834.90 <i>13</i>	4^{+}^{b}		B D	J	
1899.40 21 1+ 2+	1847.21 <i>13</i>	3+		B D		M1+E2 γ to 2 ⁺ .
E[devel]: E[devel] = 1900 with L=0 could correspond to 1899 and/or 1901 levels. J^{π} , L=0 in 197 Au(3 He,d). XREF; f(1900) E(level): E(level) = 1900 with L=0 could correspond to 1899 and/or 1901 levels. J^{π} , $J=(2)$ from $\gamma\gamma(\theta)$ in 198 Tl ε decay (5.3 h) and $\pi=(+)$ from (M1+E2) γ to 2^+ . J^{π} ; $J=(2)$ from $\gamma\gamma(\theta)$ in 198 Tl ε decay (5.3 h) and $\pi=(+)$ from (M1+E2) γ to 7^- . J^{π} ; $J=(2)$ from $\gamma\gamma(\theta)$ in $J=(2)$ from $\gamma\gamma(\theta)$ from $\gamma(\theta)$ fr	1858.86 <i>18</i>			B D	J	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1899.40 <i>21</i>	1+,2+		BDf		E(level): E(level)=1900 with L=0 could correspond to 1899 and/or 1901 levels.
E(level): E(level)=1900 with L=0 could correspond to 1899 and/or 1901 levels. $J^{\pi}: J=(2) \text{ from } \gamma \gamma (\theta) \text{ in } ^{198}\text{TI } \varepsilon \text{ decay } (5.3 \text{ h) and } \pi = (+) \text{ from } (M1+E2) \gamma \text{ to } 2^+.$ $1909.7 \ 3 \qquad 6^- \qquad \text{CD} \qquad J^{\pi}: M1+E2 \gamma \text{ to } 5^ \text{ M1} (+E2) \gamma \text{ to } 7^$ $1910.8^d \ 3 \qquad 9^{-@} \qquad 0.28 \text{ ns } 5 \qquad \text{DE} \qquad J^{\pi}: M1+E2 \gamma \text{ to } 5^ \text{ M1} (+E2) \gamma \text{ to } 7^$ $1928.61 \ 20 \qquad 3^{-b} \qquad \qquad D \qquad J$ $1959.91 \ 20 \qquad 0^{+}, 1, 2, 3, 4^{+} \qquad \qquad D \qquad J$ $1965 \ 6 \qquad \qquad D \qquad J$ $1971.00 \ 16 \qquad 2^{+}, 3, 4^{+} \qquad B \ D \qquad J$ $2008.21 \ 20 \qquad 0^{+}, 1, 2, 3, 4^{+} \qquad B \ D \qquad J$ $2048.21 \ 20 \qquad 0^{+}, 1, 2, 3, 4^{+} \qquad B \ D \qquad J$ $2049.6 \qquad \qquad D \qquad J$ $2059.1 \ 3 \qquad 6^{-} \qquad \text{CD} \qquad J^{\pi}: \gamma' \text{ s to } 2^{+} \text{ and } 4^{+}.$ $209.70 \ 8 \qquad 1^{+}, 2^{+} \qquad B \ D \qquad J$ $209.76 \ 19 \qquad 4^{+}, 5^{+} \qquad D$ $2109.8 \ 5 \qquad 1, 2^{+} \qquad B \ D \qquad J^{\pi}: \gamma \text{ to } 0^{+}.$ $2135.2 \ 3 \qquad 6^{-}, 7^{-} \qquad \text{CD} \qquad J^{\pi}: \gamma \text{ to } 0^{+}.$ $2135.2 \ 3 \qquad 5^{-b} \qquad D \qquad J$ $2135.2 \ 3 \qquad 5^{-b} \qquad D \qquad J$ $2135.2 \ 3 \qquad 5^{-b} \qquad D \qquad J$ $2135.2 \ 3 \qquad 5^{-b} \qquad D \qquad J$ $2135.2 \ 3 \qquad 5^{-b} \qquad D \qquad J$ $2137.6 \ 3 \qquad 1, 2^{+} \qquad B \ D \qquad J$ $2137.7 \ 6 \ 3 \qquad 1, 2^{+} \qquad B \ D \qquad J$ $2137.7 \ 6 \ 3 \qquad 1, 2^{+} \qquad B \ D \qquad J$ $2137.7 \ 7 \ \text{ to } 0^{+} \text{ and } 4^{+}.$ $2202.6 \ 4 \qquad 6^{-}, 7^{-} \qquad \text{CD} \qquad J^{\pi}: \gamma' \text{ s to } 0^{+} \text{ and } 4^{+}.$ $2202.6 \ 4 \qquad 6^{-}, 7^{-} \qquad \text{CD} \qquad J^{\pi}: \gamma' \text{ to } 0^{+} \text{ and } 4^{+}.$ $2209.24 \ 14 \qquad 1, 2^{+} \qquad B \ D \qquad J \qquad XREF: J(2186).$ $J^{\pi}: \gamma' \text{ to } 0^{+}.$ $J^{\pi}: \gamma' \text{ to } 0^{$	1901.51 22	(2^{+})		B D f		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						E(level): E(level)=1900 with L=0 could correspond to 1899 and/or 1901 levels.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						(M1+E2) γ to 2 ⁺ .
1928.61 20 3 -b						
1959.91 20 0+,1,2,3,4+ D J 1965 6 D J J 1971.00 16 2+,3,4+ B D J J^{π} : γ' s to 2^+ and 4^+ . 2005.35 16 0+,1,2,3,4+ B D J 2048.21 20 0+,1,2,3,4+ B D J 2049.6 D J J 2070.8 3 1+,2+ B D F J XREF: J(2067). 2070.8 3 1+,2+ B D F J XREF: J(2067). 2090.76 19 4+,5+ D J J J^{π} : γ to 0^+ . 2125.3 3 6-,7- CD J J^{π} : γ to 0^+ . 2135.6 3 1+,2+ B D F J XREF: F(2130). J J^{π} :			0.28 ns 5	DE		$T_{1/2}$: From $\alpha \gamma(t)$ in ¹⁹⁸ Pt($\alpha,4n\gamma$) (1977Gu05).
1965 6 1971.00 16 2 ⁺ ,3,4 ⁺ B D J ^π : γ's to 2 ⁺ and 4 ⁺ . 2005.35 16 0 ⁺ ,1,2,3,4 ⁺ B D J 2048.21 20 0 ⁺ ,1,2,3,4 ⁺ B D J 2049 6 D J 2070.8 3 1 ⁺ ,2 ⁺ B D F J XREF: J(2067). 2090.76 19 4 ⁺ ,5 ⁺ D 2109.8 5 1,2 ⁺ B D J ^π : γ to 0 ⁺ . 2125.3 3 6 ⁻ ,7 ⁻ CD J ^π : M1(+E2) γ to 6 ⁻ , M1 γ to 7 ⁻ . 2132.6 3 1 ⁺ ,2 ⁺ B D J 2135.2 3 5 ^{-b} D J 2169.40 22 2 ⁺ B D J XREF: J(2186). 2202.6 4 6 ⁻ ,7 ⁻ CD J ^π : γ to 0 ⁺ . 2177.6 3 1,2 ⁺ B D J XREF: J(2186). 3π γ to 0 ⁺ .		-			J	
1971.00 16 2 ⁺ ,3,4 ⁺ B D J ^π : γ's to 2 ⁺ and 4 ⁺ . 2005.35 16 0 ⁺ ,1,2,3,4 ⁺ B D J 2048.21 20 0 ⁺ ,1,2,3,4 ⁺ B D J 2049 6 D J 2059.1 3 6 ⁻ CD J ^π : γ's to 5 ⁻ and 7 ⁻ . 2070.8 3 1 ⁺ ,2 ⁺ B D F J XREF: J(2067). 3 ^π : L=0 in ¹⁹⁷ Au(³ He,d). 2090.76 19 4 ⁺ ,5 ⁺ D 2109.8 5 1,2 ⁺ B D J ^π : γ to 0 ⁺ . 2125.3 3 6 ⁻ ,7 ⁻ CD J ^π : M1(+E2) γ to 6 ⁻ , M1 γ to 7 ⁻ . 2132.6 3 1 ⁺ ,2 ⁺ B D F XREF: F(2130). 3 ^π : L=0 in ¹⁹⁷ Au(³ He,d). 2135.2 3 5 ^{-b} D J 2169.40 22 2 ⁺ B D J XREF: J(2186). 3 ^π : γ to 0 ⁺ . 2177.6 3 1,2 ⁺ B D J XREF: J(2186). 3 ^π : γ to 0 ⁺ . 2202.6 4 6 ⁻ ,7 ⁻ CD J ^π : M1 γ to 7 ⁻ , γ to 5 ⁻ . 2209.24 14 1,2 ⁺ B D J XREF: J(213). E(level): 2213 6 could correspond to 2209 and/or 2219. J ^π : γ to 0 ⁺ .		0,1,2,3,4			1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2+ 3.4+			J	I^{π} : χ' s to 2^+ and 4^+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					J	3. 7 5 to 2 and 1.
2059.1 $\frac{3}{2}$ $\frac{6^{-}}{2070.8 3}$ $\frac{1^{+}}{2^{+}}$ $\frac{1^{+}}{2}$				B D		
2070.8 3		<i>-</i>			J	77 / . 5- 15-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1	
2109.8 5 1,2 ⁺ B D J ^{π} : γ to 0 ⁺ . 2125.3 3 6 ⁻ ,7 ⁻ CD J ^{π} : M1(+E2) γ to 6 ⁻ , M1 γ to 7 ⁻ . 2132.6 3 1 ⁺ ,2 ⁺ B D F XREF: F(2130). J ^{π} : L=0 in ¹⁹⁷ Au(³ He,d). 2135.2 3 5 ⁻ b D J XREF: J(2186). 2177.6 3 1,2 ⁺ B D J XREF: J(2186). J ^{π} : γ to 0 ⁺ . 2202.6 4 6 ⁻ ,7 ⁻ CD J ^{π} : M1 γ to 7 ⁻ , γ to 5 ⁻ . 2209.24 14 1,2 ⁺ B D J XREF: j(2213). E(level): 2213 6 could correspond to 2209 and/or 2219. J ^{π} : γ to 0 ⁺ .		·			J	
2125.3 $\frac{3}{3}$ $\frac{6^-,7^-}{6^-}$ CD $\frac{J^\pi\colon M1(+E2)\ \gamma\ to\ 6^-,\ M1\ \gamma\ to\ 7^-}{3}$. 2132.6 $\frac{3}{3}$ $\frac{1^+,2^+}{1^+}$ B D F $\frac{J^\pi\colon M1(+E2)\ \gamma\ to\ 6^-,\ M1\ \gamma\ to\ 7^-}{3}$. $\frac{J^\pi\colon L=0\ in\ ^{197}Au(^3He,d)}{3}$. 2135.2 $\frac{3}{3}$ $\frac{5^-b}{5}$ D J $\frac{J^\pi\colon \gamma'\ s\ to\ 0^+\ and\ 4^+}{3}$. 2177.6 $\frac{3}{3}$ $\frac{1,2^+}{3}$ B D J $\frac{J^\pi\colon \gamma'\ s\ to\ 0^+\ and\ 4^+}{3}$. 2202.6 $\frac{4}{3}$ $\frac{6^-,7^-}{3}$ CD $\frac{J^\pi\colon M1\ \gamma\ to\ 7^-,\ \gamma\ to\ 5^-}{3}$. $\frac{J^\pi\colon M1\ \gamma\ to\ 7^-,\ \gamma\ to\ 5^-}{3}$. $\frac{J^\pi\colon M1\ \gamma\ to\ 7^-,\ \gamma\ to\ 5^-}{3}$. $\frac{J^\pi\colon \gamma\ to\ 0^+}{3}$.						I^{π} : γ to 0^+ .
2132.6 3 $1^{+},2^{+}$ B D F $XREF: F(2130).$ $J^{\pi}: L=0 \text{ in } ^{197}Au(^{3}He,d).$ 2135.2 3 5^{-b} D J 2169.40 22 2^{+} B D D $J^{\pi}: \gamma' \text{s to } 0^{+} \text{ and } 4^{+}.$ 2177.6 3 $1,2^{+}$ B D J $XREF: J(2186).$ $J^{\pi}: \gamma \text{ to } 0^{+}.$ 2202.6 4 $6^{-},7^{-}$ CD $J^{\pi}: M1 \gamma \text{ to } 7^{-}, \gamma \text{ to } 5^{-}.$ 2209.24 14 $1,2^{+}$ B D J $XREF: J(2213).$ $E(\text{level}): 2213 6 \text{ could correspond to } 2209 \text{ and/or } 2219.$ $J^{\pi}: \gamma \text{ to } 0^{+}.$						
2169.40 22 2+ B D J ^{π} : γ 's to 0+ and 4+. 2177.6 3 1,2+ B D J XREF: J(2186). J ^{π} : γ to 0+. 2202.6 4 6-,7- CD J ^{π} : M1 γ to 7-, γ to 5 2209.24 14 1,2+ B D J XREF: j(2213). E(level): 2213 6 could correspond to 2209 and/or 2219. J ^{π} : γ to 0+.	2132.6 3	1+,2+		B D F		
2177.6 3 1,2 ⁺ B D J XRÉF: J(2186). J^{π} : γ to 0 ⁺ . 2202.6 4 6 ⁻ ,7 ⁻ CD J^{π} : M1 γ to 7 ⁻ , γ to 5 ⁻ . 2209.24 14 1,2 ⁺ B D j XREF: j(2213). E(level): 2213 6 could correspond to 2209 and/or 2219. J^{π} : γ to 0 ⁺ .	2135.2 <i>3</i>			D	J	
2202.6 4 6 ⁻ ,7 ⁻ CD J^{π} : γ to 0 ⁺ . J^{π} : M1 γ to 7 ⁻ , γ to 5 ⁻ . 2209.24 14 1,2 ⁺ B D j XREF: j(2213). E(level): 2213 6 could correspond to 2209 and/or 2219. J^{π} : γ to 0 ⁺ .					_	
2202.6 4 6 ⁻ ,7 ⁻ CD J^{π} : M1 γ to 7 ⁻ , γ to 5 ⁻ . 2209.24 14 1,2 ⁺ B D j XREF: j(2213). E(level): 2213 6 could correspond to 2209 and/or 2219. J^{π} : γ to 0 ⁺ .	2177.6 3	1,2		R D	J	
2209.24 14 1,2 ⁺ B D j XREF: $j(2213)$. E(level): 2213 6 could correspond to 2209 and/or 2219. J^{π} : γ to 0 ⁺ .	2202.6 4	67-		CD		
·					j	XREF: j(2213). E(level): 2213 6 could correspond to 2209 and/or 2219.
	2219.4 3	0+,1,2,3,4+		B D	j	

¹⁹⁸Hg Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XI	REF	Comments
2267.7 3	2+		B D	J	E(level): 2213 could be 2209 and/or 2219. XREF: J(2259). J^{π} : γ' s to 0^+ and 4^+ .
2277.22 23 2287.26 25 2296.05 15 2320.30 24 2331.56 22	1 ⁺ ,2,3,4,5 ⁺ 1,2 ⁺ 2 ⁺ ,3,4,5,6 ⁺ 1,2 ⁺ 4 ⁺		D B D B D F B D B D	J J	J^{π} : γ to 0^{+} . XREF: F(2300). J^{π} : L=4 in ¹⁹⁸ Hg(p,p').
2337.55 ^c 25 2360.78 14	8+@ 3+	79 ps <i>43</i>	DE B D	M J	T _{1/2} : From B(E2)(1816-2338)=0.13 7 in Coulomb excitation. XREF: J(2355). J ^π : J=3 from $\gamma\gamma(\theta)$ in ¹⁹⁸ Tl ε decay (5.3 h) and π =+ from M1(+E2) γ to 4 ⁺ .
2400 <i>4</i> 2434.9 ^c <i>3</i>	10+@	1.92 ns 9	D E	J J	μ =-1.8 8 (2006Le06,2011StZZ) μ : IPAD. T _{1/2} : Weighted average of 1.85 ns 16 ($\alpha\gamma$ (t),1977Gu05) and 1.94 ns 10 (cece(t),1985Ko13).
2450? <i>15</i> 2451.89 <i>17</i> 2465.44 <i>21</i> 2466.9 ^d 4	1 ⁺ ,2 ⁺ (1,3) 2 ⁺ 11 ^{-@}		F B B		J ^π : L=0 in ¹⁹⁷ Au(³ He,d). J ^π : From $\gamma\gamma(\theta)$ in ¹⁹⁸ Tl ε decay (5.3 h). J ^π : γ' s to 0 ⁺ and 4 ⁺ .
2480 <i>4</i> 2486.08 <i>16</i> 2487 <i>4</i>	1,2 ⁺ 3 ⁻		F B	J L	J ^{π} : L=(5) in ¹⁹⁷ Au(³ He,d). J ^{π} : γ to 0 ⁺ . XREF: L(2486). J ^{π} : L=3 in ¹⁹⁸ Hg(p,p').
2515.9 <i>3</i> 2525 <i>3</i> 2535.29 20 2550? <i>15</i>	4 ⁻ ,5,6,7,8 ⁻ (3 ⁻) ^a 3 ⁻		CD D F	L J	J ^{π} : L=3 in ¹⁹⁸ Hg(p,p'). E(level): May be doublet. L=0+2 in ¹⁹⁷ Au(³ He,d).
2564.34 <i>17</i> 2578.1 ^c 4	1,2 ⁺ 12 ⁺ @	1.38 ns <i>4</i>	B E	J	J^{π} : γ to 0 ⁺ . μ =-2.2 10 (2006Le06,2011StZZ) $T_{1/2}$: From $\alpha\gamma$ (t) in ¹⁹⁸ Pt(α ,4n γ) (1977Gu05). μ : IPAD.
2600 15	1+,2+		F		E(level): May be doublet. L=0+2 in ¹⁹⁷ Au(³ He,d). L=0 component gives 1 ⁺ , 2 ⁺ .
2602.45 <i>24</i> 2612.5 <i>3</i>	1,2+		B B	J	XREF: J(2618). J^{π} : γ to 0^+ .
2644.2 7 2655.9 3 2694.8 7 2731.2 3	2 ⁺ ,3,4 ⁺ 1 ⁻ ,2,3,4,5 ⁻ 1,2 ⁺ 2 ⁺ ,3,4 ⁺		B D B F		J^{π} : γ 's to 2^+ and 4^+ . J^{π} : γ to 0^+ . XREF: F(2730). J^{π} : γ 's to 2^+ and 4^+ . L=0+2 in 197 Au(3 He,d).
2756? 2782.76 20	(8 ⁺) [#] 2 ⁺	1.8 ps 5	B F	M	T _{1/2} : From B(E2)=0.30 8 in Coulomb excitation. XREF: F(2780). J ^{π} : γ 's to 0 ⁺ and 4 ⁺ . L=0+2 in ¹⁹⁷ Au(³ He,d).
2816.1 8 2825.5 3 2835.49 23 2840 15	1,2 ⁺ 1,2 ⁺ 1,2 ⁺		B B B		J^{π} : γ to 0 ⁺ . J^{π} : γ to 0 ⁺ . J^{π} : γ to 0 ⁺ . J^{π} : $L=(3,5)$ in ¹⁹⁷ Au(³ He,d).
2845.1 <i>4</i> 2861.6 <i>6</i> 2868.8 <i>6</i>	1,2 ⁺ 1,2 ⁺ 1,2 ⁺		B B B		J^{π} : γ to 0^{+} . J^{π} : γ to 0^{+} . J^{π} : γ to 0^{+} .

¹⁹⁸Hg Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
2894.3 7	1,2+		В	J^{π} : γ to 0^+ .
2926.0 ^c 4	14 ⁺ @	<120 ps	E	$T_{1/2}$: From $\alpha \gamma(t)$ in ¹⁹⁸ Pt(α ,4n γ) (1977Gu05).
2940 15		_	F	$L=(5,6)$ in $^{197}Au(^{3}He,d)$.
2954.6 7	$1,2^{+}$		В	J^{π} : γ to 0^+ .
2975.9 7	$1,2^{+}$		В	J^{π} : γ to 0^+ .
2986.8 8	$1,2^{+}$		В	J^{π} : γ to 0^+ .
2990? 15			F	J^{π} : L=(3) in ¹⁹⁷ Au(³ He,d).
3013.2 <i>3</i>			В	
3022.1 10	$1,2^{+}$		В	J^{π} : γ to 0^+ .
3070? 15			F	
3095.7 10	$1,2^{+}$		В	J^{π} : γ to 0^+ .
3128.0 7	$1,2^{+}$		В	J^{π} : γ to 0^+ .
3150? <i>15</i>			F	J^{π} : L=(3,5) in ¹⁹⁷ Au(³ He,d).
3164.7 6	$1,2^{+}$		В	J^{π} : γ to 0^+ .
3200 15			F	J^{π} : L=(5) in ¹⁹⁷ Au(³ He,d).
3270 <i>15</i>			F	
3325.5 ^d 4	13 ⁻ @		E	
3440 <i>15</i>			F	J^{π} : L=(3) in ¹⁹⁷ Au(³ He,d).
3486.0 ^c 5	16 ⁺ @		E	
4262.5 ^c 5	18 ⁺ @		E	
4302.2? ^d 7	$(15^{-})^{\&}$		E	
4635.7 ^d 8	(17 ⁻)&		E	
5284.3° 7	$(20^+)^{\&}$		E	

 $^{^{\}dagger}$ From least-squares fit to E γ values.

[†] From the γ -ray transition multipolarities and the observed decay pattern in $^{196}\text{Pt}(\alpha,2n\gamma)$, except as noted.

 $^{^{\#}}$ From $\gamma(\theta)$ and multiple Coulomb excitation in Coulomb excitation.

[@] From cascade of stretched E2 γ 's and band structure in ¹⁹⁸Pt(α ,4n γ).

[&]amp; From band structure in 198 Pt(α ,4n γ).

^a From comparison of angular distribution in $^{198}{\rm Hg}(\alpha,\alpha')$ with systematic trend for octopole vibration in even Hg nuclei. ^b From ${\rm d}\sigma/{\rm d}\Omega(\theta)$ analysis $^{198}{\rm Hg}({\rm p,p'})$.

^c Band(A): ground-state rotational band.

^d Band(B): negative-parity bands.

γ (¹⁹⁸Hg)

For unplaced γ' s, see 198 Tl ε decay (5.3 h), 198 Tl ε decay (1.87 h) and 196 Pt(α ,2n γ).

S

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\#}$	I_{γ} # e	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\dagger g}$	α^f	$\mathrm{I}_{(\gamma+ce)}$	Comments
411.80251	2+	411.80205 ^{&} 17	100&	0.0	0+	E2&		0.0439		B(E2)(W.u.)=28.8 4
1048.51	4+	636.7 2	100	411.80251	2+	E2		0.01540		$B(E2)\downarrow = 43^{\circ}2$
		0	0			0	0			B(E2)(W.u.)=10.8 5
1087.6874	2+	675.8836 ^{&} 7	100.0 ^{&} 6	411.80251	2+	M1+E2&	+1.07 ^{&} 14	0.0267 20		B(M1)(W.u.)=0.00067 <i>10</i> ; B(E2)(W.u.)=0.63 8
		1087.6842 <mark>&</mark> 7	19.7 <mark>&</mark> 2	0.0	0^{+}	E2 <mark>&</mark>		0.00512		B(E2)(W.u.)=0.0216 4
1401.52	0^+	989.7 <i>3</i>	100	411.80251		E2		0.00616		
		1401.7 8		0.0	0+	E0			1.4 3	
1419.41	3 ⁺	331.6 2	21 3	1087.6874	2+					
		370.8 <i>3</i>	10.7 <i>16</i>	1048.51	4+					100
		1007.6 3	100 10	411.80251		M1+E2	+1.1 +5-3	0.0100 <i>16</i>		δ : From ¹⁹⁶ Pt(α,2nγ). Other: ≈+0.04 from ¹⁹⁸ Tl ε decay (5.3 h).
1548.49	$(1,2^+)$	1136.8 <i>3</i>	100 9	411.80251						
		1548.4 <i>3</i>	29 6	0.0	0_{+}					
1612.44	2+	564.0 <i>3</i>	3.2 6	1048.51	4+					
		1200.6 2	100 10	411.80251		M1+E2	-0.26 2	0.00925 14		δ: From ¹⁹⁸ Tl ε decay (5.3 h). Other: -0.25 14 from ¹⁹⁶ Pt(α ,2n γ).
		1612.5 <i>3</i>	9.9 5	0.0	0_{+}					
1635.67	5-	587.2 ^a 2	100	1048.51	4+	E1 ^a		0.00638		B(E1)(W.u.)=1.6×10 ⁻⁵ 3 For B(E1)(W.u.) systematics in ¹⁹⁴ Hg- ²⁰⁰ Hg, see 1970To14.
1683.38	7-	47.74 ^b 5	100	1635.67	5-	E2 ^b		171		B(E2)(W.u.)=28.1 <i>10</i> For comparable E2 transitions in ¹⁹⁴ Hg- ²⁰⁰ Hg, B(E2)(W.u.)=25-33 (1970To14).
1815.90	6+	767.3 ^a 2	100	1048.51	4+	E2 ^a		0.01031		B(E2)(W.u.)=9.0 8
1832.60	2+	745.0 8	1.6 7	1087.6874	2+					, , ,
		1420.6 <i>3</i>	100 11	411.80251	2+	M1(+E2)	-0.18 3	0.00623 10		
		1832.6 <i>3</i>	53 6	0.0	0_{+}					
1834.90	4+	747.2 [@] 4	32 [@] 6	1087.6874	2+	E2(+M3)	-0.07 10	0.012 4		
		786.2 [@] 4	68 [@] 14	1048.51	4+	M1+E2	-0.39 23	0.026 3		
		1423.0 [@] 2	100 [@] 10	411.80251			****	******		
1847.21	3 ⁺	234.8 2	12.8 19	1612.44	2+					
1017.21	5	759.6 <i>3</i>	42 4	1087.6874	2+	M1+E2	-0.56 16	0.0260 22		
		798.7 3	30.6 22	1048.51	4 ⁺		0.50 10	0.0200 22		
		1435.4 3	100 13	411.80251		M1(+E2)	+0.15 5	0.00611 10		
	2+	771.2 4	3.6 5	1087.6874	2+	\ - /				

γ (198Hg) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	I_{γ} # e	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\dagger g}$	α^f	Comments
	1858.86	2+	810.4 <i>4</i> 1447.0 <i>3</i>	4.1 <i>8</i> 100 <i>10</i>	1048.51 411.80251		M1(+E2)	-0.20 5	0.00595 11	
ı	1899.40	1+,2+	1859.0 <i>10</i> 497.9 <i>3</i>	18.2 <i>26</i> 9.8 <i>20</i>	0.0 1401.52	0^{+}				
١	1699.40	1 ,2	497.9 <i>3</i> 1487.5 <i>5</i>	9.8 20 15 7	411.80251					
ı			1899.3 <i>3</i>	100 10	0.0	0_{+}				
	1901.51	(2^{+})	853.0 4	5.4 12	1048.51	4 ⁺	0.41 . E0)	0.22.0	0.00550 13	
	1000 7	<i>-</i>	1489.6 3	100 12	411.80251		(M1+E2)	-0.23 8	0.00552 13	
	1909.7	6-	226.2^{b} 3	100^{b} 15	1683.38	7 ⁻	M1(+E2) ^b	$0.5^{b} + 3 - 4$	0.68 10	
	1910.8	9-	274.0 ^b 3 227.5 ^a 2	28 ^b 4 100	1635.67	5 ⁻ 7 ⁻	M1+E2 E2 ^a	-0.9 + 3 - 5	0.32 7	B(E2)(W.u.)=39 7
		3 ⁻	1516.8 [@] 2	100 100	1683.38 411.80251		E2"		0.253	B(E2)(W.u.)=39 /
	1928.61 1959.91	$0^+,1,2,3,4^+$	1516.8 ² 2 1548.1 [@] 2	100 @	411.80251					
	1939.91	0°,1,2,3,4° 2 ⁺ ,3,4 ⁺	884.0 <i>5</i>	100 5	1087.6874	2+ 2+				
	17/1.00	2,5,4	922.7 6	21 4	1048.51	4 ⁺				
			1559.0 <i>3</i>	100 11	411.80251	2+				
	2005.35	$0^+,1,2,3,4^+$	1593.6 2	100	411.80251					
	2048.21	0+,1,2,3,4+	1636.4 [@] 2	100 [@]	411.80251	2+				
	2059.1	6-	149.3 ^b 3	14 <mark>b</mark> 5	1909.7	6-				
			375.9 <mark>b</mark> 6	71 ^b 15	1683.38	7-				
			423.3 ^b 4	100 ^b 15	1635.67	5-	M1+E2	-1.78 23	0.065 6	
	2070.8	1+,2+	1659.1 <i>3</i>	100	411.80251					
	2090.76	4+,5+	274.7 [@] 4		1815.90	6+				
			671.3 [@] 2		1419.41	3 ⁺				
			1042.6 [@] 4		1048.51	4+				
	2109.8	1,2+	1697.3 10	100 15	411.80251					
	0105.0	<i>(- 7-</i>	2109.9 <i>5</i> 215.6 ^b <i>3</i>	45 <i>10</i> 28 5	0.0	0+	MICEN	$+0.4^{b} +3-4$	0.01.12	
	2125.3	6-,7-	215.6 ^b 3 441.8 ^b 3	28 ^b 5 49 ^b 7	1909.7	6 ⁻	M1(+E2) ^b M1 ^b	+0.4° +3-4	0.81 12	
			441.8 ^b 3 489.6 ^b 3	100 ^b 10	1683.38	7 ⁻	MI		0.1272	
	2132.6	1+,2+	489.6° <i>3</i> 1045.0 <i>10</i>	7.5 24	1635.67 1087.6874	5 ⁻ 2 ⁺				
	2132.0	1 ,2	1720.8 3	100 10	411.80251					
	2135.2	5-	452.2 [@] 2		1683.38	<i>-</i> 7-				
I		-	499.1 [@] 2		1635.67	5-				
	2169.40	2+	336.5 4	17 <i>7</i>	1832.60	2+				
			621.0 5	17 <i>7</i>	1548.49	$(1,2^+)$				
			1121.1 <mark>h</mark> 4	<31 ^h	1048.51	4+				
I			1758.6 6	100 15	411.80251					
1			2168.7 5	34 5	0.0	0_{+}				

6

γ (198Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	I_{γ} # e	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	$\delta^{\dagger g}$	α^f	Comments
2177.6	1,2+	318.9 ^{hi} 4	<6 h	1858.86	2+				
		758.0 10	40 <i>10</i>	1419.41	3+				
		1090.3 10	67 26	1087.6874 411.80251	2 ⁺				
		1765.8 <i>3</i> 2177.7 <i>8</i>	100 <i>10</i> 5.6 22	0.0	0+				
2202.6	6-,7-	292.7^{b} 5	5.9^{b} 22	1909.7	6-				
2202.0	0 ,/	519.2 ^b 3	$100^{\frac{b}{12}}$	1683.38	7 ⁻	M1 b		0.0830	
		567.0 ^b 5	5.9^{b} 22	1635.67	5-	1411		0.0050	
2209.24	1,2+	238.3 2	25 5	1971.00	2 ⁺ ,3,4 ⁺				
2207.21	1,2	350.6 ^{hi} 4	<8 ^h	1858.86					
		376.8 5	20 4	1832.60	2 ⁺ 2 ⁺				
		596.8 2	100 11	1612.44	2+				
		789.6 <i>4</i>	49 5	1419.41	3 ⁺				
		1121.1 ^{hi} 4	<14 ^h	1087.6874	2+				
		1797.4 <i>3</i>	50 7	411.80251					
		2209.2 4	41 4	0.0	0+				
2219.4	$0^+,1,2,3,4^+$	1131.7 3	100	1087.6874	2+				
2267.7	2+	1219.2 3	100 9	1048.51	4 ⁺				
		1856.0 <i>10</i> 2267.0 <i>15</i>	44 <i>10</i> 2.6 <i>10</i>	411.80251 0.0	0+				
2277.22	1+,2,3,4,5+	857.8 [@] 2	100@	1419.41	3 ⁺				
2287.26	1,2+	1875.3 <i>3</i>	100 10	411.80251					
	,	2287.5 10	66 16	0.0	0_{+}				
2296.05	2+,3,4,5,6+	325.0 ^h 4	<22 ^h	1971.00	$2^+,3,4^+$				
		437.2 <i>3</i>	45 11	1858.86	2+				
		449.0 3	29 11	1847.21	3+				
		461.0 [@] 2		1834.90	4+				
		876.8 <i>3</i>	66 8	1419.41	3 ⁺				
		1208.7 10	100 24	1087.6874	2 ⁺				
2320.30	1,2+	1884.5 <i>10</i> 1232.6 <i>3</i>	13 <i>5</i> 100 <i>16</i>	411.80251 1087.6874	2+				
2320.30	1,2	1908.5 4	68 11	411.80251					
		2319.5^{hi} 5	<74 ^h	0.0	0+				
2331.56	4+	911.7 5	28 10	1419.41	3 ⁺				
_001.00		1244.0 3	100 14	1087.6874	2 ⁺				
2337.55	8+	521.6 ^a 2	100	1815.90	6 ⁺	E2 ^a		0.0243	B(E2)(W.u.)=2.6 15
2360.78	3 ⁺	513.6 <i>3</i>	5.5 12	1847.21	3+				
		525.9 <i>3</i>	6.9 9	1834.90	4+				
		941.4 3	13.1 12	1419.41	3 ⁺				
		1273.1 4	7.6 9	1087.6874	2 ⁺	M1(+E2)	0.00.3	0.00765	
		1312.2 2	100 11	1048.51	4+	M1(+E2)	-0.09 3	0.00765	

γ (198Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#e}$	E_f	J_f^{π}	Mult. [‡]	$\delta^{\dagger g}$	α^f	Comments
2360.78	3+	1949.1 5	2.5 5	411.80251	2+	(M1+E2)	-0.19 4	0.00317	
2434.9	10 ⁺	97.3 ^a 2	≈32	2337.55	8+	E2 ^a		6.22 11	B(E2)(W.u.)≈49
		524.1 ^a 2	100	1910.8	9-	(E1) ^a		0.00806	$B(E1)(W.u.)=2.2\times10^{-7} 8$
2451.89	(1,3)	318.9 ^{hi} 4	<0.7 ^h	2132.6	1+,2+				
	()-)	550.2 4	1.2 4	1901.51	(2^{+})				
		1363.9 4	3.8 5	1087.6874	2+				
		2040.2 2	100 10	411.80251	2+	D+Q			δ =-0.035 25 if J^{π} =1 ⁺ ; δ =-0.19 4 if J^{π} =3 ⁺ in ¹⁹⁸ Tl ε decay (5.3 h).
2465.44	2+	1045.5 10	74 5	1419.41	3 ⁺				•
		1416.8 <i>10</i>	53 23	1048.51	4+				
		2053.7 3	28 4	411.80251					
		2465.4 <i>3</i>	100 11	0.0	0_{+}				
2466.9	11-	556.1 ^a 2	100	1910.8	9-	E2 ^a		0.0209	
2486.08	1,2+	480.8 2	37 4	2005.35	$0^+,1,2,3,4^+$				
		1066.3 4	19 3	1419.41	3+				
		1398.0 6	7.0 19	1087.6874	2+				
		2074.3 3	51 6	411.80251	21				
		2486.2 <i>3</i>	100 10	0.0	0+				
2515.9	4-,5,6,7,8-	390.4 ^b 3	100 ^b 13	2125.3	6-,7-				
		456.7 [@] 4		2059.1	6-				
		606.0 ^b 10	16 <mark>b</mark> 6	1909.7	6-				
		832.9 ^b 4	27 ^b 5	1683.38	7-				
2535.29	3-	1447.6 [@] 2	100@	1087.6874	2+				
2564.34	1,2+	664.5 6	25 6	1899.40	1 ⁺ ,2 ⁺				
2501.51	1,2	951.7 ^{hi} 5	<11 ^h	1612.44	2+				
		1145.0 3	42 6	1419.41	3 ⁺				
		1476.5 10	46 21	1087.6874	2 ⁺				
		2152.6 3	100 10	411.80251					
		2564.3 <i>3</i>	23 6	0.0	0+				
2578.1	12+	143.2 ^a 2	100	2434.9	10+	E2 ^a		1.313	B(E2)(W.u.)=43.0 <i>14</i> α (K)=0.363 <i>6</i> ; α (L)=0.711 <i>11</i> ; α (M)=0.185 <i>3</i> α (N)=0.0460 <i>7</i> ; α (O)=0.00768 <i>12</i> ; α (P)=4.74×10 ⁻⁵ <i>7</i>
2602.45		1515.0 4	7.8 12	1087.6874	2+				<i>u</i> (11)-0.0400 /, <i>u</i> (0)-0.00/00 12, <i>u</i> (1)-4.74X10 /
2002.13		2190.5 3	100 10	411.80251					
2612.5	1,2+	325.0^{h} 4	<42 ^h	2287.26	1,2+				
2012.3	1,4	2612.6 3	100 10	0.0	0^{+}				
2644.2	2+,3,4+	1595.6 <i>10</i>	100 10	1048.51	0 4 ⁺				
2077.2	۷,5,4	2232.5 8	19 6	411.80251					
2655.9	1-2245-	727.3 [@] 2	100@	1928.61	3-				
7022.9	1-,2,3,4,5-								
2694.8	$1,2^{+}$	2283.0 10	100 22	411.80251	2+				

 ∞

γ (198Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	I_{γ} # e	\mathbb{E}_f	\mathtt{J}_f^{π}	Mult.‡	α^f	Comments
2731.2	2+,3,4+	898.5 <i>4</i>	21 10	1832.60	2+	<u> </u>		
		1643.5 <i>4</i>	100 14	1087.6874	2+			
		1682.5 <i>15</i>	16 7	1048.51	4+			
		2319.5 ^h 5	<49 ^h	411.80251	2+			
2756?	(8^{+})	940.4 ci	100	1815.90	6+	[E2] ^d	0.00681	B(E2)(W.u.)=6.2 18
2782.76	2+	712.1 4	13 5	2070.8	$1^+, 2^+$. ,		
		1734.0 5	18 <i>4</i>	1048.51	4+			
		2370.9 <i>3</i>	100 10	411.80251				
		2782.8 <i>4</i>	82 8	0.0	0_{+}			
2816.1	1,2+	350.6 ^{hi} 4	<100 ^h	2465.44	2+			
		2404.5 ⁱ 15	18 8	411.80251	2+			
		2816.1 8	53 10	0.0	0^{+}			
2825.5	$1,2^{+}$	2413.7 <i>3</i>	100 10	411.80251	2+			
		2825.6 5	35 <i>5</i>	0.0	0_{+}			
2835.49	$1,2^{+}$	503.9 <i>3</i>	40 15	2331.56	4+			
		2423.7 <i>3</i>	100 15	411.80251				
		2835.5 8	10.0 25	0.0	0_{+}			
2845.1	$1,2^{+}$	2433.8 5	100 20	411.80251				
		2844.3 6	74 11	0.0	0+			
2861.6	1,2+	2449.9 8	100 2 <i>1</i>	411.80251	2+			
2060.0	1.0+	2861.5 8	70 15	0.0	0+			
2868.8	1,2+	2457.0 8	100 17	411.80251	2'			
2894.3	1,2+	2868.8 <i>8</i> 1475.0 <i>10</i>	41 8 100 <i>50</i>	0.0 1419.41	0 ⁺ 3 ⁺			
2094.3	1,2	2894.2 8	23 3	0.0	0 ⁺			
2926.0	14 ⁺	347.9 ^a 2	100	2578.1	12 ⁺	E2 ^a	0.0694	B(E2)(W.u.)>13
2954.6	1,2+	2542.7 8	100 21	411.80251		EZ	0.0094	D(E2)(W.u.)>13
2551.0	1,2	2954.8 10	24 10	0.0	0^{+}			
2975.9	1,2+	1074.0^{i} 10	50 19	1901.51	(2 ⁺)			
2913.9	1,2	2564.0 10	100 38	411.80251				
		2975.9 8	36 6	0.0	0+			
2986.8	1,2+	2986.8 8	100	0.0	0+			
3013.2	-,-	1925.3 5	31 7	1087.6874	2+			
		2601.4 <i>3</i>	100 10	411.80251	2+			
3022.1	1,2+	951.7 ^{hi} 5	100 ^h 38	2070.8	$1^+, 2^+$			
	-,-	3022.1 10	<34	0.0	0+			
3095.7	1,2+	3095.7 10	100	0.0	0^{+}			
3128.0	1,2+	2716.0 8	100 <i>21</i>	411.80251	2+			
		3128.2 10	47 12	0.0	0_{+}			
3164.7	1,2+	2753.0 10	100 <i>21</i>	411.80251	2+			
		3164.6 7	100 17	0.0	0_{+}			
3325.5	13-	858.6 ^a 2	100	2466.9	11-	E2 ^a	0.00818	
I								

9

γ (198Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\#}$	I_{γ} # e	\mathbf{E}_f	$\mathbf{J}_f^{m{\pi}}$	Mult.‡	α^f
3486.0	16 ⁺	560.0 ^a 2	100	2926.0	14+	E2 ^a	0.0206
4262.5	18 ⁺	776.5 <mark>a</mark> 2	100	3486.0	16 ⁺	E2 ^a	0.01006
4302.2?	(15^{-})	976.7 ^a 5	100	3325.5	13-		
4635.7	(17^{-})	333.5 ^a 5		4302.2?	(15^{-})		
5284.3	(20^+)	1021.8 ^a 5	100	4262.5	18 ⁺		

- [†] From $\gamma\gamma(\theta)$ measurements in ¹⁹⁸Tl ε decay (5.3 h) or ¹⁹⁶Pt(α ,2n γ), except as noted. [‡] From α (K)exp measurements in ¹⁹⁸Tl ε decay (5.3 h) or $\gamma\gamma(\theta)$ measurements in ¹⁹⁶Pt(α ,2n γ), except as noted.
- # From ¹⁹⁸Tl ε decay (5.3 h), except as noted.
- [@] From 196 Pt(α ,2n γ).
- & From ¹⁹⁸ Au β⁻ decay (2.6941 d).
- ^a From ¹⁹⁸Pt(α ,4n γ).
- ^b From ¹⁹⁸Tl ε decay (1.87 h).
- ^c From Coulomb excitation.
- ^d Assumed by evaluator on the basis of ΔJ^{π} between transition levels.
- ^e Relative photon branching from each level.
- f Additional information 1.
- ^g If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^h Multiply placed with undivided intensity.
- ⁱ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Band(A): Ground-state rotational band

 $^{198}_{80}{\rm Hg}_{118}$

		T	ype	Author	History Citation	Literature (Cutoff Date
			aluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug	-2023
$Q(\beta^-) = -2456 6;$	S(n)=	8028.52 <i>11</i> ; S(p))=7698.5 <i>(</i>	5; $Q(\alpha) = 716.4$	7 2021Wa16		
					²⁰⁰ Hg Levels		
				Cross R	eference (XREF) Flags		
		B $200 \text{ Au } \beta^-$ C $200 \text{ Tl } \epsilon \text{ d}$ D Coulomb E 200 Hg(n,i)	excitation	8.7 h) H I I K	¹⁹⁹ Hg(n,γ) E=th:second ¹⁹⁹ Hg(n,γ) E=33.5 e ³ (199) Hg(n,γ) E=129.7 (199) Hg(n,γ) E=175.1 (190) Hg(p,p') 200 Hg(p,t)	V res N eV res 0	200 Hg(d,d') 200 Hg(α , α') 198 Pt(α ,2n γ) 198 Pt(9 Be, α 3n γ) 203 Tl(μ ,xn γ) Muonic atom
E(level) [†]	J^{π}	T _{1/2}		XREF		Cor	mments
0.0 ^a 367.943 ^a 9	0 ⁺ 2 ⁺	stable 46.4 ps 4 3.21 ps 14	ABCDEFC ABCDEFC	GHIJKLMNOPQR	(1980Sp05). Others (1980Sp05). Others: 0.85 0.855 in 1981Gu0 Q: Recommended by in 1979Bo16. Oth	80Sp05) 0+; L(d,d')=2 0 excitation, or: 44 ps 3 fro 53 15 in 1979 7. 7 2021StZZ, er: +1.07 19 7 2020StZV beat field integer (1974Do01, 1) revised in 19 0.52 for 2+ st 2+; L(d,d')=4 0.477 21. On rerage of 0.46 7 2021StZZ beat field integer (2021StZZ beat field integer)	2. using B(E2) \uparrow =0.853 7 om $\gamma\gamma(\Delta t)$ in 2019Ol05. PBo16, 0.95 11 in 1970Ka09 and based on +1.11 11 and +0.96 11 in 1980Sp05. pased on g=+0.326 26 in ral perturbed angular correlations). but revised in 1986Ko02), g=0.31 P86Ko02, g=0.29 6 in 1986Ko02, ate in 198 Hg.
1029.348 9	0+	8 ps 4	A CDEFO	GHIJKLM	XREF: K(1028).	_	E2 to 2^+ ; $L(d,d')=2$ from
1254.101 9	2+	3.5 ps 7	A CDEFO	GHI JKLM	J ^{π} : 1254.14 γ E2 to (T _{1/2} : From B(E2) \uparrow = $\gamma\gamma(\Delta t)$ in 2019Ol0	1979Bo16) 1253.0)I(1253 0+, 306.863γ :0.0080 <i>15</i> (1	3.0)J(1253.0)K(1256). to 4 ⁺ ; L(d,d')=2. 979Bo16). Other: 8 ps 6 from =0.015 3 (1979Bo16).
1353.4‡ 7				L	•		
1503.5‡ 5				L			

200 Hg Levels (continued)

E(level) [†]	<u>J</u> π&	T _{1/2}	XREF	Comments
1515.178 9	0+		A C E G KLM	XREF: K(1516)M(1516.1).
1570.279 10	1+		A C EFGHIJ	J^{π} : 485.830 γ E0 to 0 ⁺ ; 1147.20 γ E2 to 2 ⁺ ; L(d,d')=2 from J^{π} =2 ⁺ . J^{π} : 540.948 γ and 1570.45 γ M1 to 0 ⁺ .
1573.667 10	2+		A CDEFGHIJKLM Q	XREF: F(1575.3)H(1572.8)I(1572.8)J(1572.8).
				J^{π} : 1205.75 γ M1+E2 to 2 ⁺ , 626.62 γ to 4 ⁺ , 1573.6 γ to 0 ⁺ ;
1593.428 <i>10</i>	2+		A C EFGHIJ L	L(d,d')=2. XREF: F(1594.9)H(1592.4)I(1592.4)J(1592.4).
13/3.120 10	-		n c bronts b	J^{π} : 564.19 γ to 0+, 646.44 γ to 4+, 1225.44 γ M1+E2(+E0) to 2+.
1619.7 [‡] <i>10</i>			L	
1628.8 <i>12</i> 1630.900 <i>10</i>	1+		HIJ A C EFGHIJ	XREF: F(1632.0)H(1630.3)I(1630.3)J(1630.3).
1030.700 10	1		A C LIGHTS	J^{π} : 1630.7 γ M1 to 0 ⁺ , 1262.96 γ M1+E2 to 2 ⁺ .
1641.447 <i>10</i>	2+		A C EFGHIJ L	XREF: H(1640.5)I(1640.5)J(1640.5).
1659.010 <i>13</i>	3 ⁺		ACEG KLM	J^{π} : 1273.43 γ M1+E2 to 2 ⁺ ; 612.12 γ E2 to 0 ⁺ ; 694.14 γ to 4 ⁺ . XREF: K(1660).
1037.010 13	3		A C L G KLII	J^{π} : From 711.70 γ M1(+E2) to 4 ⁺ , 1291.1 γ M1(+E2) to 2 ⁺ and
				1610.9 γ from 1 ⁺ . However, $J^{\pi}=4^+$ from $p'(\theta)$ in 200 Hg(p,p') and L(d,d')=4.
1706.73 ^a 9	6+	0.70 ps 6	B DE KLM OPQ	B(E2)↑=0.46 4 (1981Gu07)
				J^{π} : 759.5 γ E2 to 4+; $p'(\theta)$ in 200 Hg(p,p'); L(d,d')=2 from J^{π} =4+; band structure.
				$T_{1/2}$: From B(E2) \uparrow =0.46 4 in Coulomb excitation.
1718.307 9	1+		A C EFGHIJ	XREF: F(1719.4)H(1716.0)I(1716.0)J(1716.0).
1730.929 10	2+		A C EFGHIJkLM	J [#] : 1718.6 γ M1 to 0 ⁺ , 1350.35 γ M1+E2 to 2 ⁺ . XREF: F(1733.4)H(1732)I(1732)J(1732)k(1734).
1730.727 10	_		ii C Li diii Sklii	J^{π} : From 701.56 γ (E2) to 0 ⁺ , 783.71 γ E2 to 4 ⁺ ; L(d,d')=2.
1734.345 <i>10</i>	3+		ACEG k	XREF: k(1734).
1775.566 11	3 ⁺		C E GHIJ L	J ^π : 787.10γ M1+E2 to 4 ⁺ and 1366.8γ M1(+E2) to 2 ⁺ . J ^π : 521.41γ M1+E2 to 2 ⁺ ; 828.27γ M1+E2 to 4 ⁺ .
1845.779 <i>10</i>	3 ⁺		C E G	J^{π} : 898.56 γ M1+E2 to 4 ⁺ , 275.497 γ to 1 ⁺ .
1851.49 ^c 10	5-		B DE KLM OPQ	XREF: K(1855).
1856.784 <i>10</i>	0^{+}		A C E GHIJ L	J^{π} : 904.2 γ E1 to 4 ⁺ ; L(d,d')=5; band assignment. XREF: H(1857.8)I(1857.8)J(1857.8).
				J^{π} : 1856.784 γ E0 to 0 ⁺ , 1488.5 γ E2 to 2 ⁺ ; L(p,t)=0.
1882.861 10	2+		A C E G LM	J^{π} : 251.696 γ M1+E2 to 1 ⁺ ; 936.1 γ (E2) to 4 ⁺ ; L(d,d')=2.
1919.4 [‡] <i>12</i> 1962.62 ^c <i>10</i>	7-		L B DE HI LM OP	XREF: L(1961.9).
1902.02 10	/		B DE HI LH OP	J ^{π} : 110.7 γ E2 to 5 ⁻ and 255.8 γ E1 to 6 ⁺ ; L(d,d')=2 from J ^{π} =5 ⁻ .
1965 4	(a) I		J	
1972.281 <i>11</i>	$(2)^{+}$		A C E GHIJ L	J ^π : 1604.50γ M1+E2 to 2 ⁺ , 313.23γ to 3 ⁺ , 341.375γ to 1 ⁺ ; direct beta feeding in 200 Au β^- decay (J^{π} =(1 ⁻)) favors J=1,2.
1974.339 <i>11</i>	$(3)^{+}$		C E G KL	XREF: L(1978.4).
				J^{π} : 1027.1 γ M1(+E2) to 4 ⁺ ; 243.4 γ to 2 ⁺ .
1979.9 [#] 6	$(2)^{+}$		М	$J^{\pi}: L(d,d')=2.$
2000.9 <i>6</i> 2048.92 ^b 21	6-		L KL OP	J^{π} : 197.4 γ M1 to 5 ⁻ and 342.3 γ E1 to 6 ⁺ ; band assignment.
2061.257 10	0 1 ⁺		A C EFGHIJ L	XREF: H(2060.1)I(2060.1)J(2060.1).
				J^{π} : 546.1 γ M1 to 0 ⁺ , 1693.13 γ M1+E2 to 2 ⁺ .
2074.335 16	(2)+		E GHIJ LM	XREF: $H(2075.7)I(2075.7)J(2075.7)$. J^{π} : 340.03 γ to 3 ⁺ ; 1706.6 γ to 2 ⁺ ; $L(d,d')=2$.
2100 [#] <i>1</i>	$(2)^{+}$		LM	XREF: $L(2099.0)$. J^{π} : $L(d,d')=2$.
2114.357 <i>13</i>	3+		CEG	J^{π} : 483.3 γ to 1 ⁺ , 1167.1 γ to M1(+E2) 4 ⁺ .
2116.549 <i>12</i>	0+		E GHIJ L	XREF: H(2117.3)I(2117.3)J(2117.3).

²⁰⁰Hg Levels (continued)

E(level) [†]	_J π&	T _{1/2}	XREF	Comments
2126.859 11	2+		C E GHIJ 1	J^{π} : 2116.549 γ E0 to 0 ⁺ . XREF: H(2126.1)I(2126.1)J(2126.1)I(2127.3). J^{π} : 1180.5 γ to 4 ⁺ ; 408.6 γ M1 to 1 ⁺ .
2127.934 <i>12</i>	$(2,3)^{+}$		E G 1	XREF: $1(2127.3)$. J^{π} : 409.63 γ to 1 ⁺ ; 1180.4 γ to 4 ⁺ .
2135.40 ^b 18 2143.80 ^c 13	8- 9-	1.07 ns <i>4</i>	OP B L OP	J^{π} : 86.5 γ to 6 ⁻ ; 172.8 γ M1 to 7 ⁻ ; band assignment. J^{π} : 181.0 γ E2 to 7 ⁻ .
2151.35 10	3-		C E KLM	$T_{1/2}$: From 497 γ -181 γ (Δ t) in 1970To14. XREF: K(2150).
2180.1 [‡] <i>3</i> 2189.477 <i>13</i>	1+		L FGHIJKL	J ^π : p'(θ) in ²⁰⁰ Hg(p,p'); L(d,d')=3. XREF: F(2187.7)H(2188.8)I(2188.8)J(2188.8)K(2184)L(2190.8). J ^π : 2188.7 γ M1 to 0 ⁺ ; 935.45 γ E2+M1 to 2 ⁺ ; p'(θ) in ²⁰⁰ Hg(p,p').
2222.7 [‡] 2 2229.274 <i>13</i>	1+		L C FGHIJKL	XREF: F(2228.9)J(2227.8)K(2230).
2238.51 22	(3)		C E	J^{π} : 713.9 γ to 0 ⁺ , 975.15 γ M1+E2 to 2 ⁺ ; $p'(\theta)$ in ${}^{200}\text{Hg}(p,p')$. J^{π} : 1870.6 γ to 2 ⁺ ; non observation in res n-capture ($J^{\pi}=0^{-}$
2246.446 13	$(1,2)^+$		E GHIJ L	and 1^-) favors J=3. J^{π} : 272.109 γ to (3) ⁺ , 676.2 γ M1(+E2) to 1^+ , L(p,t) consistent with 0^+ .
2258.1 [‡] <i>5</i> 2274.229 <i>13</i>	(2)+		L C EFGHIJ LM	XREF: F(2276.0)H(2275.7)I(2275.7)J(2275.7)M(2275). J^{π} : 1906.2 γ (E2) to 2 ⁺ ; 759.30 γ to 0 ⁺ ; L(d,d')=2.
2284.36 <i>23</i> 2288.93 <i>4</i>	5 ⁻ ,6,7 ⁻ 2 ⁺		O C EFGHIJKL	J^{π} : 321.8 γ to 7 ⁻ ; 432.8 γ to 5 ⁻ . XREF: F(2289.5)J(2290.0).
2296.341 <i>23</i>	1+		C EFGHIJ M	J ^{π} : 2289.6 γ to 0 ⁺ ; 1341.7 γ (E2) to 4 ⁺ , 1921 γ (M1) to 2 ⁺ . XREF: H(2295.3)I(2295.3)J(2295.3). J ^{π} : 2296.3 γ M1 to 0 ⁺ ; L(d,d')=2 from J ^{π} =2 ⁺ .
2297.5 14	(1,2)-		F L	XREF: L(2298.6). J^{π} : 5731.8γ primary M1,E2 from 0 ⁻ in ¹⁹⁹ Hg(n,γ)E=th:primary.
2298.5 <i>3</i> 2307.8 [‡] 2	5-,6,7-		OP L	J^{π} : 335.9 γ to 7 ⁻ and 447.0 γ to 5 ⁻ .
2321.6 2	(2)+		LM	XREF: M(2319). J^{π} : L(d,d')=2.
2331.778 12	2+		C E G L	J^{π} : 475.08 γ to 0 ⁺ ; 1385.0 γ (E2) to 4 ⁺ ; however (0 ⁺) in 202 Hg(p,t).
2343.594 20	1+,2+,3+		C EFG L	XREF: F(2345.5). J^{π} : 1975.8 γ M1(+E2) to 2 ⁺ ; 498.81 γ to 3 ⁺ ; Non observation
2370.043 12	1+		C EFGHIJ	in res n-capture (J^{π} =0 ⁻ and 1 ⁻) favors J=3. XREF: H(2369.8)I(2369.8)J(2369.8). J ^{π} : 2370.0 γ M1 to 0 ⁺ , 710.93 γ to 3 ⁺ ; $\gamma\gamma(\theta)$ in 1989Ah01.
2377.15 22	(7)-		KLM O	XREF: K(2379). J^{π} : 241.8 γ to 8 ⁻ ; 328.3 γ to 6 ⁻ ; L(d,d')=2 from J^{π} =5 ⁻ .
2388.68 <i>4</i> 2408.8 <i>5</i>	$(1,2,3)^+$		C G L O	J^{π} : 2020.6 γ M1+E2 to 2 ⁺ .
2411.830 16	(2)+		GHIJKLM	XREF: K(2416)L(2414.1)M(2415.2). J^{π} : 677.5 γ to 3 ⁺ ; 896.7 γ to 0 ⁺ ; L(d,d')=2.
2442.7? <i>3</i> 2461.83 <i>4</i>	1 ⁻ (1 ⁺)		G FGHIJ L	J ^{π} : 2442.6 γ E1 to 0 ⁺ . XREF: F(2463.7)H(2462.5)I(2462.5)J(2462.5)L(2463.7). J ^{π} : 1432.2 γ (M1) to 0 ⁺ ; 2093.6 γ to 2 ⁺ .
2475.2 [‡] 1	0^{+}		L	J^{π} : From $t(\theta)$ in 2013Be21.

²⁰⁰Hg Levels (continued)

E(level) [†]	J^{π} &	T _{1/2}	XREF		Comments
2480.3 [‡] <i>I</i>	(2)+		KL	M	XREF: K(2481). J^{π} : L(d,d')=2.
2485.7 [‡] 2 2491.430 <i>16</i>	(2)+		CHIJ L		XREF: H(2490.6)I(2490.6)J(2490.6). J^{π} : 634.66 γ to 0 ⁺ ; 757.0 γ to 3 ⁺ ; 2123.9 γ (E2) to 2 ⁺ .
2514.0 [‡] 4 2522.70 ^b 25 2524.6 [‡] 7 2548.1 [‡] 2	10-		KL L	OP	XREF: K(2515). J^{π} : 378.9 M1+E2 to 9 ⁻ , 387.3 E2 to 8 ⁻ .
2548.1 + 2 $2565.6 + 1$	(2)+		L HIJKL		XREF: H(2563.0)I(2563.0)J(2563.0).
2590.79 <i>14</i> 2597.1 <i>3</i>	1 ⁻ (9)		G	OP	J^{π} : L(d,d')=2. J^{π} : 2590.5 γ E1 to 0 ⁺ . J^{π} : 461.7 γ to 8 ⁻ ; relative population of this level in 198 Pt(9 Be, $\alpha 3$ n γ).
2610.42 [‡] <i>10</i>	3-	25.1 ps 24	D KL	MN	B(E3)↑=0.41 4 (1991Li03) XREF: K(2611)M(2612.1). J ^π : 2609γ (E3) to 0+; p'(θ) in 200 Hg(p,p'); L(d,d')=3. T _{1/2} : Using B(E3)↑=0.41 4 and by assuming that Eγ=2609 keV 3 is the only depopulating transition.
2621.1 [‡] 6 2639.929 <i>17</i>	1+		kL FGHIJk		XREF: k(2630). XREF: k(2630). J ^π : 2639.9 γ M1 to 0 ⁺ , 2271.5 γ M1+E2 to 2 ⁺ ; $\gamma\gamma(\theta)$ in 1989Ah01.
2641.57 ^c 16	11-		B L	OP	XREF: L(2643.7). J^{π} : 497.8 γ E2 to 9 ⁻ ; band structure.
2661.9 [‡] <i>1</i>	3-		KL	M	XREF: $K(2659)M(2663.9)$. J^{π} : $L(d,d')=3$.
2680.1 <i>3</i>	8+	0.19 ps 4	D L	OP	B(E2) \uparrow =0.38 8 (1981Gu07) J ^{π} : 973.6 γ E2 to 6 ⁺ ; band structure.
2691.59 <i>3</i>	(1,2)+		fGhij L	M	$T_{1/2}$: From B(E2)↑=0.38 8 in (1981Gu07). XREF: f(2693.4)h(2693.2)i(2693.2)j(2693.2). J^{π} : 1121.4 γ (M1) to 1 ⁺ ; 957.2 γ to 3 ⁺ ; L(d,d')=2.
2697.137 19	(1,2)+		fGhij L		XREF: $f(2693.4)h(2693.2)i(2693.2)j(2693.2)$. J^{π} : 467.86γ (M1) to 1^{+} ; 1442.5γ to 2^{+} ; $t(\theta)$ in 2013Be21 excludes 0^{+} .
2701.366 25	2+		GHIJ :	M	J^{π} : 1042.4 γ M1 to 3 ⁺ ; 1754.6 γ to 4 ⁺ , 331.3 γ to 1 ⁺ ; feeding from n-capture (J^{π} =1 ⁻) resonance state; L(d,d')=2.
2715.4 [‡] 5 2729.9 [‡] 4	3-		L L		XREF: M(2731.6). J^{π} : L(d,d')=3.
2736.8‡ 2	2+		L	M	XREF: M(2741).
2763.097 18	$(1,2)^+$		GHIJ L		J^{π} : L(d,d')=2. XREF: H(2761.8)I(2761.8)J(2761.8). J^{π} : 2764.0y to 0 ⁺ ; 1121.4y M1 to 2 ⁺ .
2773.5 [‡] 4	3-		L	M	XREF: M(2775). J^{π} : L(d,d')=3.
2786.7 [‡] 23 2794.16 3	$(1,2)^+$		L GHIJKL		XREF: K(2800).
2832.3 25	(1-)		HIJKL		J^{π} : 2794.5 γ to 0 ⁺ ; 1163.5 γ M1(+E2) to 1 ⁺ ; L(d,d')=2. XREF: H(2833.6)I(2833.6)J(2833.6)K(2837)L(2828.2). J^{π} : $p'(\theta)$ in 200 Hg(p,p') (1991Ho07).

²⁰⁰Hg Levels (continued)

E(level) [†]	Jπ&	XREF	Comments
2841.9 [‡] 2	3-	LM	XREF: M(2844.5). J^{π} : L(d,d')=3.
2847.51 9	1-	G	J^{π} : 2847.3 γ E1 to 0 ⁺ .
2853.05 <i>13</i>	$(1,2)^+$	GHIJ	XREF: $H(2856.0)I(2856.0)J(2856.0)$. J^{π} : 2485.3 γ E2+M1 to 2 ⁺ , 738.5 γ to 3 ⁺ , 2853.8 γ to 0 ⁺ .
2862.3 5	$(1,2)^+$	GHIJ LM	XREF: $H(2861.5)I(2861.5)J(2861.5)M(2865.2)$. J^{π} : 2862.4γ to 0^{+} ; $L(d,d')=2$.
2877.90 5	1+	FGHIJ 1	XREF: F(2879.6)H(2879.2)I(2879.2)J(2879.2)I(2880.6). J ^π : 546.1 γ (M1) to 2 ⁺ ; 903.5 γ to 3 ⁺ ; direct feeding by E1 primary 5150.1 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
2883.5 [#] 5	3-	1M	XREF: $1(2880.6)$. J^{π} : $L(d,d')=3$.
2893.3 10	$(1,2)^{-}$	F	J^{π} : 5134.7 γ primary M1,E2 from 0 ⁻ in ¹⁹⁹ Hg(n, γ)E=th:primary.
2907.3 [#] 5	$(2)^{+}$	H LM	XREF: $H(2902)L(2907.6)$. J^{π} : $L(d,d')=2$.
2937.55 <i>13</i>	1+,2+	GHIJ M	XREF: H(2940)I(2940)J(2940).
			J^{π} : 1054.7 γ M1 to 2 ⁺ ; 1422.4 γ and 2937.2 γ to 0 ⁺ ; L(d,d')=2.
2953 [#] 1	(2)+	HIJK M	XREF: $H(2949.9)I(2949.9)J(2949.9)K(2948)$. J^{π} : $L(d,d')=2$.
2959.93 11	1-	G M	J^{π} : 2960.2 γ E1 to 0 ⁺ and 1366.8 γ to 2 ⁺ .
2978.213 <i>21</i>	1+	FGHIJ	XREF: F(2979.5)H(2979.3)I(2979.3)J(2979.3). J^{π} : 851.36 γ M1+E2 to 2 ⁺ , 1408.0 γ E2+M1 to 1 ⁺ , 1121.4 γ (M1) to 0 ⁺ ; direct feeding by primary E1 5050.3 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
2995.2 [#] 8	$(2)^{+}$	K M	XREF: K(2989). J^{π} : L(d,d')=2.
3029.2 [@] 21		HIJ	
3043.1 [@] 7		HIJ	
3053.32 8	1+	FGHIJ	XREF: F(3055.0)H(3055.6)I(3055.6)J(3055.6). J^{π} : 1322.4 γ M1 to 2 ⁺ , 1538.2 γ to 0 ⁺ ; direct feeding by primary E1 4974.7 γ in
3062.6 10	(2)+	ніјк м	199 Hg(n, γ)E=th:primary. XREF: H(3063.9)I(3063.9)J(3063.9)K(3061)M(3063.2). J $^{\pi}$: L(d,d')=2.
3073.823 25	1+	FGHIJ M	XREF: F(3075.5)H(3076.3)I(3076.3)J(3076.3). J^{π} : 1503.2 γ E2(+M1) to 1 ⁺ , 3074.2 γ (M1) to 0 ⁺ ; direct feeding by primary E1 4954.2 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3104.9 [#] 5	(2) ⁺	HIJK M	XREF: $H(3106)I(3106)J(3106)K(3097)$. J^{π} : $L(d,d')=2$.
3120.9 ^d 3	10 ⁺	OP	J^{π} : 977.1 γ (E1) to 9 ⁻ , 94.2 γ E2 from 12 ⁺ level.
3123.0 ^b 4	12-	OP	J^{π} : 600.3 γ E2 to 10 ⁻ ; band structure.
3131.4# 5	$(2)^{+}$	HIJ M	XREF: H(3132.4)I(3132.4)J(3132.4). J^{π} : L(d,d')=2.
3142 [#] 5	3-	М	$J^{\pi}: L(d,d')=3.$
3171.1 [#] 5	3-	K M	XREF: K(3169).
			$J^{\pi}: L(d,d')=3.$
3181.4@9	(2)+	HIJ M	XREF: M(3182). J^{π} : L(d,d')=2.
3186.34 3	1+	FG	XREF: F(3187.3). J ^{π} : 1476.6 γ M1+E2 to 1 ⁺ , 3185.8 γ (M1) to 0 ⁺ ; direct feeding by primary E1 4842.4 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3199.9 [@] 21		HIJ	
3212.7 [#] 9	3-	M	$J^{\pi}: L(d,d')=3.$

200 Hg Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREI	F		Comments
3215.2 ^d 3	12+	1.0 ns <i>3</i>			OP	J^{π} : 573.5 γ E1 to 11 ⁻ ; band structure.
3216.84 <i>19</i>	(2)+		FGHIJ			$T_{1/2}$: from 397γ - $498\gamma(\Delta t)$ centroid-shift method in 2021Su02. XREF: F(3217.9)H(3220)I(3220)J(3220). J ^{π} : 1557.7 γ M1+E2 to 3 ⁺ , 1100.3 γ to 0 ⁺ .
3228.6 14	(1)+		F HIJ	M		XREF: F(3230.0)M(3225). J^{π} : 4799.7 γ (E1) primary from 0 ⁻ in ¹⁹⁹ Hg(n, γ); L(d,d')=2.
3242# 2	3-			M		J^{π} : L(d,d')=3.
3259.1 [@] 18	$(2)^{+}$		HIJ	M		XREF: M(3256.1).
3237.1 10	(2)		1113	11		J^{π} : L(d,d')=2.
3269.43 <i>15</i>	1+		FGHIJ			XREF: F(3270.8)H(3272.2)I(3272.2)J(3272.2). J^{π} : 2901.3 γ E2(+M1) to 2 ⁺ , 3269.4 γ (M1) to 0 ⁺ ; direct feeding by primary E1 4758.9 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3288.93 10	1+		FGHIJ			Thinary E1 4736.99 in Figure Hg(n, γ)E=th.primary. XREF: F(3290.5)H(3291.8)I(3291.8)J(3291.8). J ^{π} : 1557.7 γ M1(+E2) to 2 ⁺ , 3288.9 γ (M1) to 0 ⁺ ; direct feeding by primary E1 4739.2 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3304 [#] 1	3-			M		$J^{\pi}: L(d,d')=3.$
3324 [@] 6	$(2)^{+}$		HIJ	M		J^{π} : L(d,d')=2.
3339.1 [@] 11			HIJ			
3353.05 <i>13</i>	1+		FGHIJ			XREF: H(3354.1)I(3354.1)J(3354.1). J^{π} : 1163.5 γ M1+E2 to 1 ⁺ , 1838.1 γ to 0 ⁺ ; direct feeding by primary E1 4675.5 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3371.3 [@] 13	(2)+		HIJ	M		XREF: M(3372.1). J^{π} : L(d,d')=2.
3387.1 [@] 22	(2)+		HIJ	M		XREF: $M(3384.2)$. J^{π} : $L(d,d')=2$.
3398.1 ^c 4	13-				P	J^{π} : 756.6 γ E2 to 11 ⁻ ; band structure.
3402.7 [@] 22	$(0)^{+}$		HIJ	M		XREF: M(3404). J^{π} : L(d,d')=2 from J^{π} =2 ⁺ .
3414.7 [@] 9	(2)+		HIJ	M		XREF: M(3411). J^{π} : L(d,d')=2.
3420.8 [#] 7	3-			M		$J^{\pi}: L(d,d')=3.$
3434 [#] 1	3-			M		J^{π} : L(d,d')=3.
3443? 6	(1)+		HIJ			VDEE E(0454.0)
3452.98 8	(1)+		FG			XREF: F(3454.3). J^{π} : 1811.2 γ to 2 ⁺ , 2432.7 γ to 0 ⁺ ; direct feeding by primary E1 4575.4 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3460.3 [@] 18			HIJ			
3477? 4	1+		HIJ			VDEE E/2401 0)
3492.45 10	1+		FG			XREF: F(3491.9). J^{π} : 2462.6 γ to 0 ⁺ ; 901.69 γ to 1 ⁻ ; direct feeding by primary E1 4537.8 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.
3513.0 [@] 18	$(2)^{+}$		HIJ	M		J^{π} : L(d,d')=2.
3529 [#] 9	$(3)^{-}$			M		$J^{\pi}: L(d,d')=3.$
3537.4 19			HIJ			
3541 [#] 1	$(3)^{-}$			M		$J^{\pi}: L(d,d')=3.$
3547 [#] 1	$(2)^{+}$			M		$J^{\pi}: L(d,d')=2.$
3555.7 17			HIJ			and the second of
3559 [#] 1 3569.5 16	(3) ⁻ 1 ⁺		FG	M M		J^{π} : L(d,d')=3. XREF: F(3570.9)M(3567.7). J^{π} : L(d,d')=2 from J^{π} =2+; direct feeding by primary E1 4458.8γ in ¹⁹⁹ Hg(n,γ)E=th:primary.

²⁰⁰Hg Levels (continued)

$E(level)^{\dagger}$ J^{π} XREF		F	Comments					
3576.6 [@] 16		HIJ						
3584.9 [#] 9	$(2)^{+}$	HIJ	M	XREF: H(3588)I(3588)J(3588).				
	,			J^{π} : L(d,d')=2.				
3606 [#] 1	(3)-		M	J^{π} : L(d,d')=3.				
3611.8 ^d 4	14 ⁺		OP	J^{π} : 396.5 γ E2 to 12 ⁺ ; band structure.				
3619 [#] <i>1</i>	$(3)^{-}$		M	J^{π} : L(d,d')=3.				
3637 [#] 1	$(2)^{+}$		M	$J^{\pi}: L(d,d')=2.$				
3644.3 [@] 8		HIJ						
3655.06 5	(1)+	FGHIJ		XREF: F(3657.4)H(3658.6)I(3658.6)J(3658.6). J^{π} : 1163.5 γ (M1+E2) to (1,2) ⁺ , 1879.3 γ to 3 ⁺ , 2139.7 γ to 0 ⁺ ; direct feeding by primary E1 4372.3 γ in ¹⁹⁹ Hg(n, γ)E=th:primary.				
3673.0 5	14 ⁺		P	J^{π} : 457.8 γ E2 to 12 ⁺ .				
3676 [#] 1	$(2)^{+}$		M	J^{π} : L(d,d')=2.				
3684.8 <i>14</i>		HIJ						
3695 [#] 2	$(3)^{-}$		M	$J^{\pi}: L(d,d')=3.$				
3702?# 1	(2)+	HIJ	M	XREF: $H(3702.6)I(3702.6)J(3702.6)$. J^{π} : $L(d,d')=2$.				
3710 [#] 2	$(3)^{-}$		M	J^{π} : L(d,d')=3.				
3722 <mark>#</mark> 2	$(3)^{-}$		M	$J^{\pi}: L(d,d')=3.$				
3732 [#] 2	$(3)^{-}$		M	$J^{\pi}: L(d,d')=3.$				
3743 [#] 1	$(3)^{-}$		M	J^{π} : L(d,d')=3.				
3764 [#] 1	$(2)^{+}$		M	$J^{\pi}: L(d,d')=2.$				
3774 [#] 1	$(3)^{-}$		M	J^{π} : L(d,d')=3.				
3782 5		HIJ						
3790 [#] 2	(2)+		M	J^{π} : L(d,d')=2.				
3797# 2	(2)+		M	J^{π} : L(d,d')=2.				
3808 [#] <i>1</i> 3826.7 <i>13</i>	$(2)^+$ $(2)^+$	HIJ	M M	J^{π} : L(d,d')=2.				
3840 [#] <i>I</i>	(3)	птл	M	J^{π} : L(d,d')=2. J^{π} : L(d,d')=3.				
3872.9 4	(14^{+})		P	J^{π} : 261.1 γ (M1) to 14 ⁺ and 474.8 γ (E1) to 13 ⁻ .				
3892# 2	(2)+		M	J^{π} : L(d,d')=2.				
3899 [#] 2	(2)+		M	J^{π} : L(d,d')=2.				
3918 [#] 2	(2)+		M	$J^{\pi}: L(d,d')=2.$				
3930 [#] 2	(3)		M	$J^{\pi}: L(d,d')=3.$				
3961 [#] 2	(2)+		M	J^{π} : L(d,d')=2.				
3984 [#] 2	(2)+		M	$J^{\pi}: L(d,d')=2.$				
3990 [#] 2	(3)-		M	$J^{\pi}: L(d,d')=3.$				
4000# 2	(3)		M	$J^{\pi}: L(d,d')=3.$				
4018 [#] 2	(3)		M	$J^{\pi}: L(d,d')=3.$				
4025.3 ^b 7	14-		P	J^{π} : 902.3 γ E2 to 12 ⁻ ; band structure.				
4027 [#] <i>3</i> 4094.6 <i>5</i>	(2) ⁺		M P	J^{π} : L(d,d')=2.				
4094.6 <i>3</i> 4114 [#] <i>3</i>	(15) (2) ⁺			J^{π} : 482.9 γ to 14 ⁺ . J^{π} : L(d,d')=2.				
4114" 3 4122 [#] 3	$(2)^{+}$		M	J^{π} : L(d,d')=2. J^{π} : L(d,d')=2.				
4122" 3 4134 [#] 3			M					
4134" 3 4142 [#] 2	$(2)^{+}$		M	J^{π} : L(d,d')=2.				
4142" 2 4159 [#] 3	(3) ⁺		M	J^{π} : L(d,d')=3.				
4139" 3	$(2)^{+}$		M	$J^{\pi}: L(d,d')=2.$				

²⁰⁰Hg Levels (continued)

E(level) [†]	Jπ&	XREF	Comments
4196.0 ^d 5	16 ⁺	P	J^{π} : 584.2 γ E2 to 14 ⁺ ; band structure.
4296.6 5	16 ⁺	P	J^{π} : 684.9 γ E2 to 14 ⁺ .
4443.9 ^c 4	15-	P	J^{π} : 1045.9 γ E2 to 13 ⁻ ; band structure.
4541.1 <i>4</i>	16 ⁺	P	J^{π} : 345.1 γ M1 to 16 ⁺ ; 929.2 γ E2 to 14 ⁺ .
4919.1 <mark>d</mark> 5	18 ⁺	P	J^{π} : 622.6 γ E2 and 723.0 γ E2 to 16 ⁺ ; band structure.
4928.2 7	$(17,18^+)$	P	J^{π} : 631.6 γ to 16 ⁺ level.
5181.6 <i>5</i>	18 ⁺	P	J^{π} : 885.0 γ E2 and 985.7 γ E2 to 16 ⁺ .
5260.0° 5	(17^{-})	P	J^{π} : 718.7 γ (E1) to 16 ⁺ , 816.4 γ to 15 ⁻ ; band structure.
5344.2 6	18 ⁺	P	J^{π} : 803.1 γ E2 to 16 ⁺ .
5568.3 ^c 5	(19^{-})	P	J^{π} : 308.3 γ E2 to (17 ⁻).
5661.6 <i>4</i>	(1-)	R	
5915.8 <mark>d</mark> 6	20 ⁺	P	J^{π} : 996.7 γ E2 to 18 ⁺ ; band structure.
6162.2 ^c 6	(21^{-})	P	J^{π} : 593.9 γ E2 to (19 ⁻).

 $^{^{\}dagger}$ From a least-squares fit to Ey, unless otherwise stated.

[‡] From ²⁰²Hg(p,t). [#] From ²⁰⁰Hg(d,d'). [@] From ¹⁹⁹Hg(n,γ)E=175.1 eV res.

[&]amp; From deduced γ -ray transition multipolarities and decay pattern, unless otherwise stated.

a Band(A): g.s. band. b Band(B): $v(p_{3/2}^{-1}, i_{13/2}^{-1})$ band $(\sigma=0)$. c Band(C): $v(p_{3/2}^{-1}, i_{13/2}^{-1})$ band $(\sigma=1)$ at low spin and configuration= $v(p_{3/2}^{-1}, i_{13/2}^{-3})$ at high spin. d Band(D): $v(i_{13/2}^{-2})$ band.

$\gamma(^{200}\text{Hg})$

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}^{ϵ}	$\frac{\pi}{f}$ Mult. \ddagger	δ^{\dagger}	α^d	Comments
	367.943	2+	367.942 10	100	0.0 0	+ E2		0.0594 8	$\alpha(K)$ =0.0388 5; $\alpha(L)$ =0.01553 22; $\alpha(M)$ =0.00389 5 $\alpha(N)$ =0.000970 14; $\alpha(O)$ =0.0001694 24; $\alpha(P)$ =5.08×10 ⁻⁶ 7 B(E2)(W.u.)=24.56 22 Mult.: $\alpha(K)$ exp=0.0395 8 (1961Le17), 0.0402 14 (1962Ja10), 0.0400 25 (1962Va10) and $\alpha(K)$ exp=0.036 7 (1974Br02); $\gamma(\theta)$ in 1981He10.
	947.243	4+	579.300 <i>17</i>	100	367.943 2	+ E2		0.01905 27	$\alpha(K)$ =0.01424 20; $\alpha(L)$ =0.00365 5; $\alpha(M)$ =0.000888 12 $\alpha(N)$ =0.0002217 31; $\alpha(O)$ =3.99×10 ⁻⁵ 6; $\alpha(P)$ =1.891×10 ⁻⁶ 26 B(E2)(W.u.)=38.2 17 Mult.: $\alpha(K)$ exp=0.014 4 (1974Br02) and 0.016 2 (1965Sa02); $\gamma\gamma(\theta)$ in 1971Ha09,1965Sa02,1989Ah01.
	1029.348	0+	661.36 <i>3</i>	100	367.943 2	+ E2		0.01416 20	$\alpha(K)$ =0.01085 15; $\alpha(L)$ =0.002524 35; $\alpha(M)$ =0.000609 9 $\alpha(N)$ =0.0001520 21; $\alpha(O)$ =2.76×10 ⁻⁵ 4; $\alpha(P)$ =1.439×10 ⁻⁶ 20 B(E2)(W.u.)=8 4 Mult.: $\alpha(K)$ exp=0.0102 14 (1974Br02) and 0.023 6 (1965Sa02); $\gamma\gamma(\theta)$ in 1971Ha09,1989Ah01.
			(1029.348 9)		0.0 0	+ E0			E _γ : From level energy. Mult.: From 1987Su15; ce(K)(1029.3)/ce(K)(886.2)=0.028 <i>3</i> (1987Su15).
	1254.101	2+	224.750 6	0.37 4	1029.348 0	+ [E2]		0.264 4	$\alpha(K)$ =0.1276 18; $\alpha(L)$ =0.1021 14; $\alpha(M)$ =0.0263 4 $\alpha(N)$ =0.00653 9; $\alpha(O)$ =0.001109 16; $\alpha(P)$ =1.603×10 ⁻⁵ 22 B(E2)(W.u.)=10.2 24
			306.863 11	0.24 3	947.243 4	+ [E2]		0.0996 14	$\alpha(K)=0.0597 \ 8; \ \alpha(L)=0.0300 \ 4; \ \alpha(M)=0.00760 \ 11$ $\alpha(N)=0.001892 \ 26; \ \alpha(O)=0.000327 \ 5; \ \alpha(P)=7.70\times10^{-6} \ 11$ $\alpha(E)=0.001892 \ 26; \ \alpha(E)=0.000327 \ 5; \ \alpha(E)$
			886.20 <i>4</i>	100 8	367.943 2	+ E2+M1	-1.79 <i>17</i>	0.0108 5	$\alpha(K)$ =0.0087 4; $\alpha(L)$ =0.00158 6; $\alpha(M)$ =0.000370 15 $\alpha(N)$ =9.3×10 ⁻⁵ 4; $\alpha(O)$ =1.73×10 ⁻⁵ 7; $\alpha(P)$ =1.18×10 ⁻⁶ 6 B(M1)(W.u.)=0.0015 4; B(E2)(W.u.)=2.2 5 Mult.: From $\alpha(K)$ exp=0.0093 3 (1987Su15) and 0.0081 11 (1974Br02); $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01 and 1971Ha09. δ: From δ=-1.72 12 (2011Be36), -2.20 +16-5 (1989Ah01) and 2.8 +13-8 (1971Ha09) using $\gamma\gamma(\theta)$, and $\alpha(K)$ exp=0.0093 3 (1987Su15) and 0.0081 11 (1974Br02), and the briccmixing program.
			1254.14 10	45 4	0.0 0	+ E2		0.00391 5	program: $\alpha(K)=0.00318 \ 4; \ \alpha(L)=0.000552 \ 8; \ \alpha(M)=0.0001290 \ 18$ $\alpha(N)=3.23\times10^{-5} \ 5; \ \alpha(O)=6.02\times10^{-6} \ 8; \ \alpha(P)=4.15\times10^{-7} \ 6;$ $\alpha(IPF)=9.75\times10^{-6} \ 14$ $B(E2)(W.u.)=0.23 \ 5$ Mult.: $\alpha(K)\exp=0.0033 \ 7 \ (1974Br02)$ and $0.0033 \ 11$ in $^{200}T1 \ \varepsilon$ decay; $A_2=0.27 \ 5 \ (1984Kh02)$.
П	1515.178	0^{+}	(485.830 13)		1029.348 0	+ E0			decay; $A_2=0.273$ (1984Kn02). E_{γ} : From level energy differences.

γ (²⁰⁰Hg) (continued)

						γ (''Hg) (co	ontinued)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\dagger}	α^d	Comments
1515.178	0+	1147.20 8	100	367.943 2+	E2		0.00463 6	Mult.: From 1987Su15; ce(K)(485.6)/ce(K)(886.2)=0.046 5 (1987Su15). $\alpha(K)=0.00375$ 5; $\alpha(L)=0.000668$ 9; $\alpha(M)=0.0001568$ 22 $\alpha(N)=3.92\times10^{-5}$ 5; $\alpha(O)=7.30\times10^{-6}$ 10; $\alpha(P)=4.91\times10^{-7}$ 7; $\alpha(P)=9.74\times10^{-7}$ 14
		(1515.178 9)		0.0 0+	E0			Mult.: $\alpha(K)\exp=0.0041\ 6\ (1974Br02);\ \gamma\gamma(\theta)$ in 1989Ah01. E_{γ} : From level energy. Mult.: From 1987Su15; $ce(K)(1515.0)/ce(K)(886.2)=0.068\ 3$
1570.279	1+	316.176 8	1.20 8	1254.101 2+	M1(+E2)		0.20 11	(1987Su15). $\alpha(K)=0.16 \ I0; \ \alpha(L)=0.035 \ 8; \ \alpha(M)=0.0084 \ I6$ $\alpha(N)=0.0021 \ 4; \ \alpha(O)=0.00038 \ 9; \ \alpha(P)=2.2\times10^{-5} \ I5$
		540.948 16	10.5 7	1029.348 0+	M1		0.0745 10	Mult.: $\alpha(K)\exp=0.33\ 15\ (1974Br02)$. $\alpha(K)=0.0614\ 9;\ \alpha(L)=0.01008\ 14;\ \alpha(M)=0.002340\ 33$ $\alpha(N)=0.000587\ 8;\ \alpha(O)=0.0001111\ 16;\ \alpha(P)=8.57\times10^{-6}\ 12$
		1202.35 7	40 4	367.943 2+	M1+E2	-0.43 4	0.00873 18	Mult.: $\alpha(K)\exp=0.064 \ 10 \ (1974Br02)$. $\alpha(K)=0.00721 \ 15$; $\alpha(L)=0.001162 \ 23$; $\alpha(M)=0.000269 \ 5$ $\alpha(N)=6.75\times10^{-5} \ 13$; $\alpha(O)=1.277\times10^{-5} \ 26$; $\alpha(P)=9.87\times10^{-7}$
		1570.45 <i>15</i>	100 11	0.0 0+	M1		0.00501 7	21; α (IPF)=6.66×10 ⁻⁶ 12 Mult.: From α (K)exp=0.0071 13 (1974Br02); $\gamma\gamma(\theta)$ (2011Be36,1989Ah01). δ : From 2011Be36. Other: +0.16 5 (1989Ah01). α (K)=0.00404 6; α (L)=0.000641 9; α (M)=0.0001483 21 α (N)=3.72×10 ⁻⁵ 5; α (O)=7.05×10 ⁻⁶ 10; α (P)=5.52×10 ⁻⁷ 8; α (IPF)=0.0001423 20
1573.667	2+	319.566 <i>15</i>	0.20 3	1254.101 2+	(M1+E2)		0.20 11	Mult.: $\alpha(K)\exp=0.0030 \ 4 \ (1974Br02)$. $\alpha(K)=0.15 \ 10; \ \alpha(L)=0.034 \ 8; \ \alpha(M)=0.0081 \ 16$ $\alpha(N)=0.0020 \ 4; \ \alpha(O)=0.00037 \ 9; \ \alpha(P)=2.1\times10^{-5} \ 14$ Mult.: $\alpha(K)\exp=0.31 \ 21 \ (1987Su15)$.
		544.21 <i>7</i> 626.52 <i>10</i>	0.24 <i>5</i> 0.32 <i>10</i>	1029.348 0 ⁺ 947.243 4 ⁺				
		1205.75 7	100 10	367.943 2+	M1+E2	+0.252 19	0.00917 14	$\alpha(K)$ =0.00758 11; $\alpha(L)$ =0.001217 18; $\alpha(M)$ =0.000282 4 $\alpha(N)$ =7.06×10 ⁻⁵ 10; $\alpha(O)$ =1.338×10 ⁻⁵ 20; $\alpha(P)$ =1.040×10 ⁻⁶ 16; $\alpha(IPF)$ =7.43×10 ⁻⁶ 11 Mult.: From $\alpha(K)$ exp=0.0077 17 (1987Su15), 0.0088 17 (1974Br02) and 0.0065 7 (1965Sa02); $\gamma\gamma(\theta)$ in 2011Be36,1989Ah01,1971Ha09,1957Li39. δ: From +0.26 2 (2011Be36), +0.31 3 (1989Ah01), -0.27 +2-3 (1971Ha09) and -0.24 1 (1957Li39) using $\gamma\gamma(\theta)$, and $\alpha(K)$ exp=0.0077 17 (1987Su15), 0.0088 17 (1974Br02) and the briccmixing program. The sign of δ is from 2011Be36.
		1573.6 [#] <i>10</i>	0.17 [#] 9	$0.0 0^{+}$	[E2]		0.00264 4	$\alpha(K)=0.002105 \ 30; \ \alpha(L)=0.000346 \ 5; \ \alpha(M)=8.03\times10^{-5} \ 11$

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\dagger}	α^{d}	Comments
1593.428	2+	339.40 564.19 5 646.17 7	0.60 <i>30</i> 0.50 ^c <i>5</i> 0.25 ^c <i>5</i>	1254.101 2 ⁺ 1029.348 0 ⁺ 947.243 4 ⁺	M1(+E0)			$\alpha(N)=2.009\times10^{-5} 28; \ \alpha(O)=3.77\times10^{-6} 5; \ \alpha(P)=2.73\times10^{-7} 4; \ \alpha(IPF)=8.93\times10^{-5} 13$ Mult.: $\alpha(K)=0.20 8 (1987Su15)$.
		1225.44 8	100 8	367.943 2 ⁺	M1+E2(+E0)	-2.48 +16-32	0.00479 15	$\alpha(K)$ =0.00391 $I3$; $\alpha(L)$ =0.000667 $I9$; $\alpha(M)$ =0.000156 4 $\alpha(N)$ =3.90×10 ⁻⁵ II ; $\alpha(O)$ =7.30×10 ⁻⁶ $2I$; $\alpha(P)$ =5.18×10 ⁻⁷ $I8$; $\alpha(IPF)$ =7.06×10 ⁻⁶ $I5$ Mult.: From $\alpha(K)$ exp=0.0043 δ (1965Sa02), 0.0078 $I0$ (1974Br02) and 0.0068 $I4$ (1987Su15); $\gamma\gamma(\theta)$ (2011Be36,1989Ah01,1971Ha09). δ : From 1989Ah01. Others: 2.2 +3-4 (1971Ha09) and -0.09 $I5$ (2011Be36).
1630.900	1+	1593.18 <i>18</i> 115.714 9 376.79 2 601.48 5	1.1 ^c 7 2.2 6 0.35 8 0.42 8	0.0 0 ⁺ 1515.178 0 ⁺ 1254.101 2 ⁺ 1029.348 0 ⁺				E_{γ} : From ²⁰⁰ Au $β$ ⁻ decay (48.4 min).
		1262.96 8	100 9	367.943 2 ⁺	M1+E2	+0.12 5	0.00838 13	$\alpha(K)$ =0.00692 II ; $\alpha(L)$ =0.001108 $I7$; $\alpha(M)$ =0.000256 4 $\alpha(N)$ =6.42×10 ⁻⁵ $I0$; $\alpha(O)$ =1.218×10 ⁻⁵ $I9$; $\alpha(P)$ =9.50×10 ⁻⁷ $I5$; $\alpha(IPF)$ =1.796×10 ⁻⁵ 27 Mult.: $\alpha(K)$ exp=0.0062 7 in 1974Br02 and $\gamma\gamma(\theta)$ in 2011Be36,1989Ah01. δ : From $\gamma\gamma(\theta)$ in 2011Be36. Other: +0.053 33 in 1989Ah01.
		1630.7 4	8.6 19	0.0 0+	(M1)		0.00461 6	$\alpha(K)$ =0.00367 5; $\alpha(L)$ =0.000583 8; $\alpha(M)$ =0.0001347 19 $\alpha(N)$ =3.38×10 ⁻⁵ 5; $\alpha(O)$ =6.41×10 ⁻⁶ 9; $\alpha(P)$ =5.02×10 ⁻⁷ 7; $\alpha(IPF)$ =0.0001767 25 Mult.: $\alpha(K)$ exp>0.0018 (1974Br02).
1641.447	2+	387.345 9	4.8 3	1254.101 2+	M1(+E0)			Mult.: $\alpha(K) \exp > 0.0018 \ (1974B102)$. $\alpha(K) = 0.1486 \ 21; \ \alpha(L) = 0.0246 \ 4; \ \alpha(M) = 0.00572 \ 8;$ $\alpha(N+) = 0.001728 \ 25$ $\alpha(N) = 0.001436 \ 21; \ \alpha(O) = 0.000272 \ 4; \ \alpha(P) = 2.09 \times 10^{-5} \ 3$ Mult.: $\alpha(K) \exp = 0.18 \ 2 \ (1987Su15) \ and \ 0.12 \ 2 \ in \ ^{200}T1$ ε decay.
		612.12 3	7.5 6	1029.348 0+	E2		0.01681 24	$\alpha(K)$ =0.01271 18; $\alpha(L)$ =0.00312 4; $\alpha(M)$ =0.000757 11 $\alpha(N)$ =0.0001890 26; $\alpha(O)$ =3.41×10 ⁻⁵ 5; $\alpha(P)$ =1.686×10 ⁻⁶ 24 Mult.: $\alpha(K)$ exp=0.011 3 in ²⁰⁰ Tl ε decay.
		694.14 <i>5</i> 1273.43 <i>10</i>	1.6 <i>3</i> 100 <i>9</i>	947.243 4 ⁺ 367.943 2 ⁺	M1(+E2)	+0.02 3	0.00828 12	$\alpha(K)$ =0.00683 10; $\alpha(L)$ =0.001093 15; $\alpha(M)$ =0.0002527

						γ (200Hg) (c	continued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\dagger}	α^{d}	Comments
	_							35 $\alpha(N)=6.33\times10^{-5}~9;~\alpha(O)=1.201\times10^{-5}~17;~\alpha(P)=9.38\times10^{-7}~13;~\alpha(IPF)=2.032\times10^{-5}~29$ Mult.: $\alpha(K)\exp=0.0040~9~(1987Su15)~and~0.0058~8~(1974Br02);~\gamma\gamma(\theta)~in~2011Be36,1989Ah01,1971Ha09.$ δ : From $\gamma\gamma(\theta)$ in 2011Be36. Others: $+0.047~+29-30$ in 1989Ah01 and $-0.01~4$ in 1971Ha09.
1659.010	3 ⁺	404.94 4	1.8 3	1254.101 2+				
		711.70 5	45 6	947.243 4+	M1(+E2)		0.024 12	$\alpha(K)$ =0.020 10; $\alpha(L)$ =0.0035 14; $\alpha(M)$ =8.2×10 ⁻⁴ 32 $\alpha(N)$ =2.0×10 ⁻⁴ 8; $\alpha(O)$ =3.8×10 ⁻⁵ 16; $\alpha(P)$ =2.7×10 ⁻⁶ 15 I_{γ} : From $\alpha(\theta)$ in $\alpha(K)$ =2.0×10 ⁻⁶ 15 in $\alpha(K)$ =0.030 5 in $\alpha(K)$
		1291.11 [#] <i>11</i>	100# 9	367.943 2+	M1(+E2)		0.0059 21	$\alpha(K)=0.0048 \ 18; \ \alpha(L)=7.9\times10^{-4} \ 27; \ \alpha(M)=1.8\times10^{-4} \ 6$ $\alpha(N)=4.6\times10^{-5} \ 15; \ \alpha(O)=8.6\times10^{-6} \ 30; \ \alpha(P)=6.5\times10^{-7} \ 26;$ $\alpha(IPF)=2.0\times10^{-5} \ 5$ Mult.: From $\gamma(\theta)$ in 200 Hg(n,n').
1706.73	6+	759.50 ^a 10	100 ^a	947.243 4+	E2		0.01053 <i>15</i>	B(E2)(W.u.)=46 4 α (K)=0.00823 12; α (L)=0.001757 25; α (M)=0.000420 6 α (N)=0.0001050 15; α (O)=1.920×10 ⁻⁵ 27; α (P)=1.089×10 ⁻⁶ 15 Mult.: $\gamma(\theta)$ in ¹⁹⁸ Pt(α ,2n γ) and DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
1718.307	1+	76.857 <i>4</i>	9.1 26	1641.447 2 ⁺				with $\gamma(\theta)$ in $F((\alpha,2\pi\gamma))$ and DCO in $F((Be,\alpha)\pi\gamma)$.
1710.507	1	144.639 10	4.8 7	1573.667 2 ⁺				
		148.026 <i>4</i>	4.1 4	1570.279 1+				
		203.135 7	2.44 26	1515.178 0+	M1		1.058 15	$\alpha(K)$ =0.868 12; $\alpha(L)$ =0.1460 20; $\alpha(M)$ =0.0340 5 $\alpha(N)$ =0.00852 12; $\alpha(O)$ =0.001612 23; $\alpha(P)$ =0.0001234 17 Mult.: $\alpha(K)$ exp=0.76 22 (1974Br02).
		464.214 <i>12</i>	5.7 4	1254.101 2+	E2+M1		0.07 4	$\alpha(K)=0.057 \ 34; \ \alpha(L)=0.011 \ 4; \ \alpha(M)=0.0026 \ 9$ $\alpha(N)=6.6\times10^{-4} \ 22; \ \alpha(O)=1.2\times10^{-4} \ 4; \ \alpha(P)=8.E-6 \ 5$ Mult.: $\alpha(K)\exp=0.05 \ (1974Br02)$.
		688.94 3	40 3	1029.348 0+	M1		0.0397 6	Mult.: α (K)exp=0.03 (1974B102). α (K)=0.0327 5; α (L)=0.00533 7; α (M)=0.001237 17 α (N)=0.000310 4; α (O)=5.87×10 ⁻⁵ 8; α (P)=4.54×10 ⁻⁶ 6 Mult.: α (K)exp=0.033 3 (1974Br02) and 0.038 7 in ²⁰⁰ Tl ε decay.
		1350.35 [#] 16	45 [#] 4	367.943 2+	M1+E2	+0.035 31	0.00716 <i>10</i>	$\alpha(K) = 0.00589 8; \ \alpha(L) = 0.000940 \ 13; \ \alpha(M) = 0.0002174 \ 31$ $\alpha(N) = 5.45 \times 10^{-5} \ 8; \ \alpha(O) = 1.034 \times 10^{-5} \ 15; \ \alpha(P) = 8.08 \times 10^{-7} \ 11;$ $\alpha(IPF) = 4.16 \times 10^{-5} \ 6$

γ (²⁰⁰Hg) (continued)

					2	γ(²⁰⁰ Hg) (co	ntinued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\dagger}	α^{d}	Comments
	_							$\alpha(K)$ =0.00589 8; $\alpha(L)$ =0.000940 13; $\alpha(M)$ =0.0002174 31 $\alpha(N)$ =5.45×10 ⁻⁵ 8; $\alpha(O)$ =1.034×10 ⁻⁵ 15; $\alpha(P)$ =8.08×10 ⁻⁷ 11; $\alpha(IPF)$ =4.16×10 ⁻⁵ 6 Mult.: $\alpha(K)$ exp=0.0054 10 (1974Br02); $\gamma\gamma(\theta)$ in 2011Be36 and 1989Ah01. δ: From δ=+0.03 5 (2011Be36) and -0.036 24 (1989Ah01) using $\gamma\gamma(\theta)$, and $\alpha(K)$ exp=0.0054 10 (1974Br02), and the briccmixing program. The sign of δ is from 2011Be36.
1718.307	1+	1718.35 [#] 14	100# 8	0.0 0+	M1		0.00411 6	$\alpha(K)$ =0.00322 5; $\alpha(L)$ =0.000511 7; $\alpha(M)$ =0.0001180 17 $\alpha(N)$ =2.96×10 ⁻⁵ 4; $\alpha(O)$ =5.61×10 ⁻⁶ 8; $\alpha(P)$ =4.40×10 ⁻⁷ 6; $\alpha(IPF)$ =0.0002294 32 Mult.: $\alpha(K)$ exp>0.0027 (1974Br02) and $\alpha(K)$ exp=0.0034 5 in $\alpha(E)$ =0.0011 $\alpha(E)$ =0.0027 $\alpha(E)$ =0.0034 5 in $\alpha(E)$
1730.929	2+	137.50 2 160.659 <i>11</i>	2.22 0.39	1593.428 2 ⁺ 1570.279 1 ⁺				·
		215.743 <i>13</i>	0.33 8	1515.178 0 ⁺				
		476.815 <i>13</i>	10.8 7	1254.101 2+	E2+M1(+E0)		0.07 4	$\alpha(K)$ =0.054 32; $\alpha(L)$ =0.010 4; $\alpha(M)$ =0.0024 8 $\alpha(N)$ =6.1×10 ⁻⁴ 21; $\alpha(O)$ =1.1×10 ⁻⁴ 4; $\alpha(P)$ =7.E-6 5 Mult.: $\alpha(K)$ exp=0.022 5 (1987Su15).
		701.56 3	46 4	1029.348 0+	(E2)		0.01246 <i>17</i>	$\alpha(K)$ =0.00963 13; $\alpha(L)$ =0.002156 30; $\alpha(M)$ =0.000518 7 $\alpha(N)$ =0.0001295 18; $\alpha(O)$ =2.357×10 ⁻⁵ 33; $\alpha(P)$ =1.276×10 ⁻⁶ 18 Mult.: $\alpha(K)$ exp<0.01 (1974Br02).
		783.71 4	16.7 <i>13</i>	947.243 4+	E2		0.00986 14	$\alpha(K)$ =0.00774 11; $\alpha(L)$ =0.001623 23; $\alpha(M)$ =0.000388 5 $\alpha(N)$ =9.68×10 ⁻⁵ 14; $\alpha(O)$ =1.773×10 ⁻⁵ 25; $\alpha(P)$ =1.023×10 ⁻⁶ 14
		1363.2 2	100 12	367.943 2+	M1+E2	-0.32 10	0.00666 23	Mult.: $\gamma\gamma(\theta)$ in 2011Be36. $\alpha(K)$ =0.00548 19 ; $\alpha(L)$ =0.000876 29 ; $\alpha(M)$ =0.000203 7 $\alpha(N)$ =5.08×10 ⁻⁵ 17 ; $\alpha(O)$ =9.63×10 ⁻⁶ 32 ; $\alpha(P)$ =7.49×10 ⁻⁷ 27 ; $\alpha(IPF)$ =4.44×10 ⁻⁵ 12 Mult.: $\alpha(K)$ exp=0.0064 13 (1974Br02), 0.0056 9 (1987Su15) and 0.0050 8 (1965Sa02); $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01 and 1971Ha09. δ : From δ =-0.38 15 (2011Be36) and -0.32 +6-10 (1989Ah01) using $\gamma\gamma(\theta)$, and $\alpha(K)$ exp=0.0050 8 (1965Sa02) and 0.0056 9 (1987Su15), and the briccmixing program. The sign of δ is from 2011Be36. Other: 1.0 +2-5 from $\gamma\gamma(\theta)$
1734.345	3+	140.898 <i>12</i> 160.659 <i>11</i> 480.24 <i>3</i>	16 5 ≈2.26 7.1 8	1593.428 2 ⁺ 1573.667 2 ⁺ 1254.101 2 ⁺				in 1971Ha09.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathrm{E}_f = \mathrm{J}_f^\pi$	Mult.‡	δ^{\dagger}	α^d	Comments
1734.345	3 ⁺	787.10 4	100 10	947.243 4+	M1+E2	+0.08 4	0.0280 4	$\alpha(K)$ =0.02314 35; $\alpha(L)$ =0.00376 6; $\alpha(M)$ =0.000870 13 $\alpha(N)$ =0.0002182 32; $\alpha(O)$ =4.13×10 ⁻⁵ 6; $\alpha(P)$ =3.20×10 ⁻⁶ 5 Mult.: From $\gamma\gamma(\theta)$ in 2011Be36 and $\gamma(\theta)$ in 2^{00} Hg(n,n' γ); $\alpha(K)$ exp=0.020 4 (1965Sa02). δ : From $\gamma\gamma(\theta)$ in 2011Be36.
		1366.8# 7	85 [#] 25	367.943 2+	M1(+E2)		0.0051 18	$\alpha(\text{K})$ =0.0042 <i>15</i> ; $\alpha(\text{L})$ =6.9×10 ⁻⁴ <i>23</i> ; $\alpha(\text{M})$ =1.6×10 ⁻⁴ <i>5</i> $\alpha(\text{N})$ =4.0×10 ⁻⁵ <i>13</i> ; $\alpha(\text{O})$ =7.5×10 ⁻⁶ <i>25</i> ; $\alpha(\text{P})$ =5.7×10 ⁻⁷ <i>22</i> ; $\alpha(\text{IPF})$ =3.8×10 ⁻⁵ <i>9</i> Mult.: From 200 Hg(n,n' γ) and $\alpha(\text{K})$ exp=0.0050 <i>8</i> (1965Sa02).
1775.566	3+	116.51# 15	1.1# 3	1659.010 3+				$\alpha(K)$ =2.3 19; $\alpha(L)$ =1.3 6; $\alpha(M)$ =0.32 16; $\alpha(N+)$ =0.09 5 $\alpha(N)$ =0.08 4; $\alpha(O)$ =0.014 6; $\alpha(P)$ =0.0003 3
		144.639 10	23 4	1630.900 1+	[E2]		1.264 18	$\alpha(K)$ =0.355 5; $\alpha(L)$ =0.680 10; $\alpha(M)$ =0.1771 25 $\alpha(N)$ =0.0440 6; $\alpha(O)$ =0.00735 10; $\alpha(P)$ =4.63×10 ⁻⁵ 6
		182.17 [#] 20	0.48 [#] 16	1593.428 2+	M1+E2	1.9 <i>4</i>	0.74 8	$\alpha(K)$ =0.42 9; $\alpha(L)$ =0.236 6; $\alpha(M)$ =0.0601 18 $\alpha(N)$ =0.0150 4; $\alpha(O)$ =0.00257 6; $\alpha(P)$ =5.7×10 ⁻⁵ 13 Mult., δ : From $\alpha(K)$ exp=0.42 17 in 1974Br02.
		201.91 2	0.8 3	1573.667 2 ⁺				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		521.41 7	2.7 8	1254.101 2+	M1+E2	1.0 +7-4	0.053 14	$\alpha(K)$ =0.043 12; $\alpha(L)$ =0.0080 15; $\alpha(M)$ =0.00190 33 $\alpha(N)$ =0.00048 8; $\alpha(O)$ =8.8×10 ⁻⁵ 17; $\alpha(P)$ =5.9×10 ⁻⁶ 17 Mult., δ : From $\alpha(K)$ exp=0.043 12 in 1974Br02.
		828.27 4	100 6	947.243 4+	M1+E2	-0.04 3	0.02466 35	$\alpha(K)$ =0.02037 29; $\alpha(L)$ =0.00330 5; $\alpha(M)$ =0.000764 11 $\alpha(N)$ =0.0001916 27; $\alpha(O)$ =3.63×10 ⁻⁵ 5; $\alpha(P)$ =2.82×10 ⁻⁶ 4 I _{γ} : From 200 Tl ε decay. Mult., δ : From $\gamma\gamma(\theta)$ in 2011Be36. Others ($\gamma\gamma(\theta)$): -0.043 52 (1989Ah01), +0.07 (1965Sa02), 0.10 2 (1971Ha09) and 1.0 1 (1957Li39); $\alpha(K)$ exp=0.020 5 (1974Br02) and 0.025 3 (1965Sa02).
		1407.64 [#] 11	13.4 [#] <i>12</i>	367.943 2+	M1+E2	0.44 +3-5	0.00594 13	$\alpha(K)$ =0.00487 11; $\alpha(L)$ =0.000779 17; $\alpha(M)$ =0.000180 4 $\alpha(N)$ =4.52×10 ⁻⁵ 10; $\alpha(O)$ =8.56×10 ⁻⁶ 18; $\alpha(P)$ =6.64×10 ⁻⁷ 15; $\alpha(IPF)$ =5.93×10 ⁻⁵ 11 Mult., δ : From $\gamma\gamma(\theta)$ in 1971Ha09; Other: $\alpha(K)$ exp=0.0030 6 (1965Sa02).
1845.779	3+	186.771 <i>13</i>	1.9 7	1659.010 3+	E2+M1		0.9 4	$\alpha(K)$ =0.6 4; $\alpha(L)$ =0.203 19; $\alpha(M)$ =0.050 7 $\alpha(N)$ =0.0125 17; $\alpha(O)$ =0.00222 18; $\alpha(P)$ =9.E-5 7 Mult.: From A ₂ =0.31 23 (1984Kh02), Δ J=0 transition.
		252.356 7 272.109 8	15.8 <i>12</i> 5.6 28	1593.428 2 ⁺ 1573.667 2 ⁺	(M1)		0.471 7	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.387 \ 5; \ \alpha(\mathrm{L}) \! = \! 0.0647 \ 9; \ \alpha(\mathrm{M}) \! = \! 0.01504 \ 21 \\ \alpha(\mathrm{N}) \! = \! 0.00377 \ 5; \ \alpha(\mathrm{O}) \! = \! 0.0007140 \ 99; \ \alpha(\mathrm{P}) \! = \! 5.47 \times 10^{-5} \ 8 \end{array}$

γ (²⁰⁰Hg) (continued)

						/(118) (
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f J_f^{π}	Mult.‡	δ^{\dagger}	α^d	Comments
								I_{γ} : From ²⁰⁰ Tl ε decay.
								Mult.: $\alpha(K) \exp = 0.60$ in 1974Br02.
1845.779	3+	275.497 12	2.3 4	1570.279 1+				•
		591.66 <i>3</i>	47 <i>4</i>	$1254.101 \ 2^{+}$	(M1+E2)		0.039 20	$\alpha(K)=0.031\ 17;\ \alpha(L)=0.0057\ 23;\ \alpha(M)=0.0013\ 5$
								$\alpha(N)=3.4\times10^{-4}\ 13;\ \alpha(O)=6.3\times10^{-5}\ 25;\ \alpha(P)=4.3\times10^{-6}\ 25$
		000 7 6 7	100.0	0.47.0.40	3.64 - 17.6			Mult.: $\alpha(K) \exp=0.027$ in 1974Br02.
		898.56 7	100 9	947.243 4+	M1+E2	-0.07 4	0.01997 29	$\alpha(K)=0.01650\ 24;\ \alpha(L)=0.00267\ 4;\ \alpha(M)=0.000618\ 9$
								α (N)=0.0001549 23; α (O)=2.94×10 ⁻⁵ 4; α (P)=2.279×10 ⁻⁶ 34
								I_{γ} : From ²⁰⁰ Tl ε decay.
								Mult.,δ: From $\gamma\gamma(\theta)$ in 2011Be36. Others: $\alpha(K)$ exp=0.0080 32 (1974Br02) and 0.0070 14 (1965Sa02).
		1477.78 [#] <i>14</i>	24.5 [#] 21	367.943 2+	D. (1)		0.00577.0	
		14//./8" 14	24.5" 21	367.943 21	[M1]		0.00577 8	$\alpha(K)=0.00470\ 7;\ \alpha(L)=0.000748\ 10;\ \alpha(M)=0.0001730\ 24$ $\alpha(N)=4.34\times10^{-5}\ 6;\ \alpha(O)=8.22\times10^{-6}\ 12;\ \alpha(P)=6.44\times10^{-7}\ 9;$
								$\alpha(N)=4.34\times10^{-6}$ 6; $\alpha(O)=8.22\times10^{-6}$ 12; $\alpha(P)=6.44\times10^{-6}$ 9; $\alpha(IPF)=9.43\times10^{-5}$ 13
1851.49	<i>-</i>	904.23 <i>a</i> 12	100 <i>a</i>	947.243 4+	E1		0.00277 4	
1851.49	5-	904.234 12	1004	947.243 4	EI		0.00277 4	$\alpha(K)=0.002316 \ 32; \ \alpha(L)=0.000349 \ 5; \ \alpha(M)=8.00\times10^{-5} \ 11$ $\alpha(N)=1.997\times10^{-5} \ 28; \ \alpha(O)=3.75\times10^{-6} \ 5; \ \alpha(P)=2.80\times10^{-7} \ 4$
								$\alpha(N)=1.997\times10^{-5}28$; $\alpha(O)=3.75\times10^{-5}3$; $\alpha(P)=2.80\times10^{-7}4$ Mult.: From $\alpha(K)\exp(0.004)$ (1972Cu07) and $\gamma(\theta)$ in
								198 Pt(α ,2n γ) and DCO in 198 Pt(9 Be, α 3n γ).
1856.784	0^{+}	138.471 <i>16</i>	≈4.0	1718.307 1 ⁺				$T((\alpha,2\pi\gamma))$ and $DCO(\pi)$ $T((DC,\alpha)\pi\gamma)$.
1050.701	Ü	225.885 6	6.5 4	1630.900 1 ⁺	M1		0.788 11	$\alpha(K)=0.646$ 9; $\alpha(L)=0.1084$ 15; $\alpha(M)=0.02523$ 35
								$\alpha(N)=0.00633 \ 9; \ \alpha(O)=0.001198 \ 17; \ \alpha(P)=9.17\times10^{-5} \ 13$
								Mult.: $\alpha(K)\exp(0.63 \ 20 \ (1974Br02))$.
		286.518 <i>13</i>	0.70 11	1570.279 1 ⁺				
		(341.606 14)		1515.178 0 ⁺	E0			E_{γ} : From level energy differences.
								Mult.: From 1987Su15; ce(K)(341.8)/ce(K)(886.2)=0.06 2
		602.73 7	1.0.4	1254.101 2+				(1987Su15).
		(827.436 14)	1.8 4	1234.101 2 1029.348 0 ⁺	E0			E_{γ} : From level energy differences.
		(027.430 14)		1029.540 0	LU			Mult.: From 1987Su15; $ce(K)(827.4)/ce(K)(886.2)=0.028$ 10
								(1987Su15).
		1488.5 <i>4</i>	100 20	367.943 2+	E2		0.00289 4	$\alpha(K)=0.002328 \ 33; \ \alpha(L)=0.000387 \ 5; \ \alpha(M)=8.99\times10^{-5} \ 13$
								$\alpha(N)=2.250\times10^{-5}$ 32; $\alpha(O)=4.22\times10^{-6}$ 6; $\alpha(P)=3.03\times10^{-7}$ 4;
								$\alpha(IPF) = 6.14 \times 10^{-5} 9$
								Mult.: $\alpha(K)\exp=0.0028 \ 10$ in 1974Br02; $\gamma\gamma(\theta)$ in 1989Ah01.
		(1856.784 10)		$0.0 0^{+}$	E0			E_{γ} : From level energy differences.
								Mult.: From 1987Su15; ce(K)(1857.4)/ce(K)(886.2)=0.19 1
1002 071	2+	140 500 6	1.0.4	1724 245 2+				(1987Su15).
1882.861	2+	148.500 <i>6</i> 151.932 <i>5</i>	1.9 <i>4</i> 3.1 <i>6</i>	1734.345 3 ⁺ 1730.929 2 ⁺				
		164.544 6	4.3 <i>4</i>	1730.929 2* 1718.307 1*				
		104.544 0	T.J T	1/10.50/ 1				

γ (²⁰⁰Hg) (continued)

					/(118) (0011111	1404)	
$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	$E_f \qquad \underline{\mathbf{J}_f^{\pi}}$	Mult.‡	δ^{\dagger}	α^d	Comments
1882.861	2+	241.425 <i>10</i> 251.969 <i>7</i>	0.78 <i>20</i> 8.0 <i>6</i>	1641.447 2 ⁺ 1630.900 1 ⁺	M1+E2	0.38 21	0.53 5	$\alpha(K)$ =0.43 5; $\alpha(L)$ =0.0780 23; $\alpha(M)$ =0.0183 4 $\alpha(N)$ =0.00460 10; $\alpha(O)$ =0.000860 27; $\alpha(P)$ =6.1×10 ⁻⁵ 7
		289.425 9	14.4 9	1593.428 2+	M1+E2	0.62 12	0.320 22	Mult., δ : α (K)exp=0.43 5 in ²⁰⁰ Tl ε decay. α (K)=0.255 20; α (L)=0.0498 15; α (M)=0.01181 30 α (N)=0.00296 8; α (O)=0.000548 17; α (P)=3.58×10 ⁻⁵ 29 Mult., δ : α (K)exp=0.37 10 in 1974Br02 and 0.25 2 in ²⁰⁰ Tl ε decay.
		309.209 8	6.1 4	1573.667 2+	M1+E2	0.35 23	0.307 34	$\alpha(K)$ =0.250 31; $\alpha(L)$ =0.0437 24; $\alpha(M)$ =0.0102 5 $\alpha(N)$ =0.00256 12; $\alpha(O)$ =0.000482 27; $\alpha(P)$ =3.5×10 ⁻⁵ 4 Mult.,δ: $\alpha(K)$ exp=0.25 3 (200 Tl ε decay).
		312.613 <i>13</i> 628.80 <i>3</i>	0.89 <i>11</i> 20.9 <i>16</i>	1570.279 1 ⁺ 1254.101 2 ⁺	M1(+E2)	≤0.3	0.0489 16	$\alpha(K)=0.0403 \ 13; \ \alpha(L)=0.00662 \ 19; \ \alpha(M)=0.00154 \ 4$
		028.80 3	20.9 10	1234.101 2	WH(+E2)	≤0.3	0.0489 10	$\alpha(N)=0.000385\ 11;\ \alpha(O)=7.29\times10^{-5}\ 20;\ \alpha(P)=5.60\times10^{-6}$
								Mult., δ : α (K)exp=0.037 <i>10</i> (1974Br02) and 0.044 <i>12</i> (1965Sa02).
		936.1# 4	1.5# 8	947.243 4+	(E2)		0.00688 10	$\alpha(K)$ =0.00550 8; $\alpha(L)$ =0.001057 15; $\alpha(M)$ =0.0002500 35 $\alpha(N)$ =6.25×10 ⁻⁵ 9; $\alpha(O)$ =1.154×10 ⁻⁵ 16; $\alpha(P)$ =7.23×10 ⁻⁷ 10 Mult.: From $\alpha(K)$ exp=0.0094 in 1974Br02.
		1514.90# 10	100# 7	367.943 2+	M1+E2(+E0)	+0.10 4	0.00542 8	Mult.: From α(K)exp=0.0094 in 1974B102. α(K)=0.00440 6; α(L)=0.000699 10; α(M)=0.0001617 24 α(N)=4.05×10 ⁻⁵ 6; α(O)=7.69×10 ⁻⁶ 11; α(P)=6.02×10 ⁻⁷ 9; α(IPF)=0.0001121 16 Mult.: From α(K)exp=0.0070 17 in 1974Br02 and 0.0042 5 (1965Sa02); γγ(θ) in 2011Be36,1989Ah01,1971Ha09,1965Sa02. δ: From γγ(θ) in 2011Be36; Others: -0.14 4 in 1971Ha09, -0.25 in 1965Sa02 and +0.120 +43-47 in 1989Ah01.
1962.62	7-	111.12 ^a 12	2.6 ^a 8	1851.49 5	E2		3.58 5	$\alpha(K)$ =0.560 8; $\alpha(L)$ =2.257 34; $\alpha(M)$ =0.590 9 $\alpha(N)$ =0.1463 22; $\alpha(O)$ =0.0243 4; $\alpha(P)$ =8.93×10 ⁻⁵ 13 Mult.: $\gamma(\theta)$ in ¹⁹⁸ Pt(α ,2n γ).
		255.87 ^a 8	100 ^a 8	1706.73 6 ⁺	E1		0.0405 6	Mult.: $\gamma(\theta)$ in $^{184}\text{Pt}(\alpha,2\text{hy})$. $\alpha(\text{K})=0.0333\ 5;\ \alpha(\text{L})=0.00558\ 8;\ \alpha(\text{M})=0.001295\ 18$ $\alpha(\text{N})=0.000322\ 5;\ \alpha(\text{O})=5.89\times10^{-5}\ 8;\ \alpha(\text{P})=3.68\times10^{-6}\ 5$ Mult.: $\gamma(\theta)$ in $^{198}\text{Pt}(\alpha,2\text{ny});\ \alpha(\text{K})\text{exp}=0.033\ 23$ (1972Cu07).
1972.281	(2)+	241.356 <i>12</i> 253.991 <i>15</i> 313.23 <i>3</i>	0.42 <i>15</i> 0.33 <i>10</i> 0.33 <i>8</i>	1730.929 2 ⁺ 1718.307 1 ⁺ 1659.010 3 ⁺				(1712-001).

γ ⁽²⁰⁰Hg) (continued)

					•			
E_i (level)	J_i^π	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dag}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\dagger}	α^d	Comments
1972.281	(2)+	330.84 <i>3</i> 341.375 <i>12</i> 398.63 2 718.04 <i>10</i>	≈0.50 1.75 14 1.83 25 4.2 11	1641.447 2 ⁺ 1630.900 1 ⁺ 1573.667 2 ⁺ 1254.101 2 ⁺				
		1604.50# 14	100 [#] 8	367.943 2+	M1+E2	+0.15 4	0.00473 7	$\alpha(K)$ =0.00379 6; $\alpha(L)$ =0.000602 9; $\alpha(M)$ =0.0001390 21 $\alpha(N)$ =3.48×10 ⁻⁵ 5; $\alpha(O)$ =6.61×10 ⁻⁶ 10; $\alpha(P)$ =5.18×10 ⁻⁷ 8; $\alpha(IPF)$ =0.0001602 24 Mult.: From $\alpha(K)$ exp=0.0032 8 in 1974Br02 and 0.007 3 (1965Sa02); $\gamma\gamma(\theta)$ in 2011Be36 and 1989Ah01. δ : From $\gamma\gamma(\theta)$ in 2011Be36; Other: +0.87 +18-14 in 1989Ah01.
1974.339	(3) ⁺	243.411 <i>7</i> 720.21 <i>5</i>	19.2 <i>15</i> 60 <i>5</i>	1730.929 2 ⁺ 1254.101 2 ⁺				
		1027.11# 20	100# 30	947.243 4+	M1(+E2)		0.010 4	$\alpha(K)=0.008 \ 4; \ \alpha(L)=0.0014 \ 5; \ \alpha(M)=3.2\times10^{-4} \ 12$ $\alpha(N)=8.0\times10^{-5} \ 30; \ \alpha(O)=1.5\times10^{-5} \ 6; \ \alpha(P)=1.1\times10^{-6} \ 5$ Mult.: $\gamma(\theta)$ in $^{200}\text{Hg}(n,n'\gamma)$.
2048.92	6-	197.4 [@] 5	11.3 [@] 18	1851.49 5	M1		1.146 <i>18</i>	$\alpha(K)$ =0.940 15; $\alpha(L)$ =0.1582 25; $\alpha(M)$ =0.0368 6 $\alpha(N)$ =0.00923 15; $\alpha(O)$ =0.001747 27; $\alpha(P)$ =0.0001337 21 Mult.: $\gamma\gamma(\theta)$ in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
		342.3 [@] 3	100 [@] 8	1706.73 6 ⁺	E1		0.02046 29	$\alpha(K)=0.01688\ 24;\ \alpha(L)=0.00275\ 4;\ \alpha(M)=0.000637\ 9$ $\alpha(N)=0.0001584\ 22;\ \alpha(O)=2.93\times10^{-5}\ 4;\ \alpha(P)=1.925\times10^{-6}\ 27$ Mult.: $\gamma\gamma(\theta)$ in 198 Pt(9 Be, $\alpha3$ n γ); $\alpha(K)$ exp<0.02 (1977Gu05).
2061.257	1+	204.477 8	0.14 1	1856.784 0 ⁺				
		330.303 <i>16</i> 342.939 <i>12</i>	0.07 <i>1</i> 0.24 2	1730.929 2 ⁺ 1718.307 1 ⁺				
		419.828 10	1.10 7	1641.447 2 ⁺	M1		0.1458 20	$\alpha(K)$ =0.1199 17; $\alpha(L)$ =0.01984 28; $\alpha(M)$ =0.00461 6 $\alpha(N)$ =0.001156 16; $\alpha(O)$ =0.0002187 31; $\alpha(P)$ =1.682×10 ⁻⁵ 24
		430.368 10	2.85 18	1630.900 1+	M1		0.1364 19	Mult.: From $\alpha(K)$ exp=0.12 β in 1974Br02. $\alpha(K)$ =0.1123 β 6; $\alpha(L)$ =0.01856 β 6; $\alpha(M)$ =0.00431 β 7 $\alpha(N)$ =0.001081 β 7; $\alpha(N)$ =0.0002046 β 9; $\alpha(N)$ =1.574×10 ⁻⁵ 22
		467.86 2	1.00 6	1593.428 2+	M1		0.1093 15	Mult.: From $\alpha(K)$ exp=0.13 3 in 1974Br02. $\alpha(K)$ =0.0900 13; $\alpha(L)$ =0.01484 21; $\alpha(M)$ =0.00344 5 $\alpha(N)$ =0.000864 12; $\alpha(O)$ =0.0001636 23; $\alpha(P)$ =1.259×10 ⁻⁵ 18
		487.56 2	1.10 8	1573.667 2+	M1(+E2)		0.063 35	Mult.: From $\alpha(K)$ exp=0.14 4 in 1974Br02. $\alpha(K)$ =0.051 30; $\alpha(L)$ =0.010 4; $\alpha(M)$ =0.0023 8 $\alpha(N)$ =5.7×10 ⁻⁴ 20; $\alpha(O)$ =1.1×10 ⁻⁴ 4; $\alpha(P)$ =7.E-6 4
		490.95 2	0.70 4	1570.279 1+	E2+M1	≈1.2	≈0.0561	Mult.: From $\alpha(K) \exp > 0.048$ in 1974Br02. $\alpha(K) \approx 0.0444$; $\alpha(L) \approx 0.00888$; $\alpha(M) \approx 0.002110$ $\alpha(N) \approx 0.000528$; $\alpha(O) \approx 9.75 \times 10^{-5}$; $\alpha(P) \approx 6.12 \times 10^{-6}$ Mult., δ : From $\alpha(K) \exp = 0.044$ in 1974Br02.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\dagger}	α^{d}	Comments
2061.257	1+	546.10 2	0.43 3	1515.178	0+	M1		0.0727 10	$\alpha(K)=0.0599 \ 8; \ \alpha(L)=0.00983 \ 14; \ \alpha(M)=0.002282 \ 32$ $\alpha(N)=0.000572 \ 8; \ \alpha(O)=0.0001083 \ 15; \ \alpha(P)=8.36\times10^{-6} \ 12$
		807.20 5	1.73 12	1254.101	2+	M1(+E2)	0.6 6	0.022 6	Mult.: From $\alpha(K)$ exp=0.094 35 in 1974Br02. $\alpha(K)$ =0.018 5; $\alpha(L)$ =0.0030 7; $\alpha(M)$ =0.00070 15 $\alpha(N)$ =0.00017 4; $\alpha(O)$ =3.3×10 ⁻⁵ 7; $\alpha(P)$ =2.5×10 ⁻⁶ 7
		1693.13 <i>14</i>	100 10	367.943	2+	M1+E2	-0.03 2	0.00424 6	Mult., δ : From α (K)exp=0.018 5 in 1974Br02. α (K)=0.00334 5; α (L)=0.000530 7; α (M)=0.0001224 17 α (N)=3.07×10 ⁻⁵ 4; α (O)=5.82×10 ⁻⁶ 8; α (P)=4.57×10 ⁻⁷ 6; α (IPF)=0.0002137 30 Mult.: From α (K)exp=0.0031 4 in 1974Br02; $\gamma\gamma(\theta)$ in 2011Be36 and 1989Ah01.
2074.335	(2)+	340.03 <i>2</i> 343.38 <i>2</i> 1706.6 <i>3</i>	1.18 <i>13</i> 0.92 <i>13</i> 100 <i>16</i>	1734.345 1730.929 367.943	2+				δ: From $\gamma \gamma(\theta)$ in 2011Be36; Other: +0.003 13 in 1989Ah01.
2114.357	3+	268.49 ^f 3 338.75 2 380.03 2 383.437 11 483.34 9 520.91 5	≈3.00 21.0 <i>17</i> 10.0 <i>13</i> 32 <i>3</i> ≈7 21 <i>4</i>	1845.779 1775.566 1734.345 1730.929 1630.900 1593.428	3 ⁺ 3 ⁺ 2 ⁺ 1 ⁺				
		1167.1# 3	100# 33	947.243	4+	M1(+E2)		0.0074 29	$\alpha(K)$ =0.0061 24; $\alpha(L)$ =1.0×10 ⁻³ 4; $\alpha(M)$ =2.3×10 ⁻⁴ 8 $\alpha(N)$ =5.8×10 ⁻⁵ 21; $\alpha(O)$ =1.1×10 ⁻⁵ 4; $\alpha(P)$ =8.2×10 ⁻⁷ 35; $\alpha(P)$ =2.4×10 ⁻⁶ 6 Mult.: $\alpha(K)$ exp=0.013 4 in ²⁰⁰ Tl ε decay.
		1746.40 [#] 18	54 [#] 6	367.943	2+	M1(+E2)		0.0031 9	$\alpha(K)$ =0.0024 7; $\alpha(L)$ =3.9×10 ⁻⁴ 10; $\alpha(M)$ =8.9×10 ⁻⁵ 24 $\alpha(N)$ =2.2×10 ⁻⁵ 6; $\alpha(O)$ =4.2×10 ⁻⁶ 12; $\alpha(P)$ =3.2×10 ⁻⁷ 10; $\alpha(PF)$ =0.00020 5
2116.549	0+	398.249 9	100 5	1718.307	1+	M1		0.1678 23	Mult.: $\alpha(K)\exp=0.0055$ 13 in $^{200}\text{Tl }\varepsilon$ decay. $\alpha(K)=0.1380$ 19; $\alpha(L)=0.02287$ 32; $\alpha(M)=0.00531$ 7 $\alpha(N)=0.001332$ 19; $\alpha(O)=0.0002522$ 35; $\alpha(P)=1.938\times10^{-5}$ 27 Mult.: $\alpha(K)\exp=0.21$ 4 (1974Br02).
		475.08 <i>4</i>	2.7 5	1641.447					V 77 1 - 17 - V 17 - 177
		485.62 2	65 5	1630.900	1+	(M1)		0.0990 14	$\alpha(K)$ =0.0815 11; $\alpha(L)$ =0.01343 19; $\alpha(M)$ =0.00312 4 $\alpha(N)$ =0.000782 11; $\alpha(O)$ =0.0001481 21; $\alpha(P)$ =1.140×10 ⁻⁵ 16 Mult.: $\alpha(K)$ exp>0.056 (1974Br02).
		2116.549 <i>12</i>		0.0	0+	E0			E _{γ} : From level energy. Mult.: From 1987Su15; ce(K)(2116.8)/ce(K)(886.2)=0.035 3 (1987Su15).
2126.859	2+	281.08 2	1.48 30	1845.779	3 ⁺				(17070413).

γ ⁽²⁰⁰Hg) (continued)

						<u>/ υ</u>	,, ,	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad \underline{J_f^{\pi}}$	Mult.‡	δ^{\dagger}	α^d	Comments
2126.859	2+	351.27 2	5.7 10	1775.566 3+				
		392.524 17	2.2 3	1734.345 3 ⁺				
		395.97 <i>4</i>	1.1 3	1730.929 2+				
		408.556 10	24 3	1718.307 1+	M1		0.1567 22	$\alpha(K)$ =0.1289 18; $\alpha(L)$ =0.02135 30; $\alpha(M)$ =0.00496 7 $\alpha(N)$ =0.001244 17; $\alpha(O)$ =0.0002354 33; $\alpha(P)$ =1.810×10 ⁻⁵ 25 Mult.: $\alpha(K)$ exp=0.18 5 (1974Br02).
		467.86 2	30 <i>3</i>	1659.010 3+	(M1)		0.1093 15	$\alpha(K)$ =0.0900 13; $\alpha(L)$ =0.01484 21; $\alpha(M)$ =0.00344 5 $\alpha(N)$ =0.000864 12; $\alpha(O)$ =0.0001636 23; $\alpha(P)$ =1.259×10 ⁻⁵ 18
		485.36 2	18 2	1641.447 2+				
		495.93 2	43 19	1630.900 1+	M1		0.0937 13	$\alpha(K)$ =0.0772 11; $\alpha(L)$ =0.01270 18; $\alpha(M)$ =0.00295 4 $\alpha(N)$ =0.000739 10; $\alpha(O)$ =0.0001400 20; $\alpha(P)$ =1.078×10 ⁻⁵ 15 Mult.: $\alpha(K)$ exp=0.061 (1974Br02).
		533.48 2	24 10	1593.428 2+	M1		0.0773 11	$\alpha(K)$ =0.0637 9; $\alpha(L)$ =0.01046 15; $\alpha(M)$ =0.002428 34 $\alpha(N)$ =0.000609 9; $\alpha(O)$ =0.0001153 16; $\alpha(P)$ =8.89×10 ⁻⁶ 12 Mult.: $\alpha(K)$ exp>0.13 (1974Br02).
		553.18 2	27 3	1573.667 2+	M1		0.0703 10	Mult.: $\alpha(K)$ exp >0.13 (19/4b102). $\alpha(K)$ =0.0579 8; $\alpha(L)$ =0.00950 13; $\alpha(M)$ =0.002205 31 $\alpha(N)$ =0.000553 8; $\alpha(O)$ =0.0001047 15; $\alpha(P)$ =8.08×10 ⁻⁶ 11 Mult.: $\alpha(K)$ exp $=$ 0.056 20 (1974Br02).
		556.58 2	52 19	1570.279 1+	M1(+E2)	≈0.4	≈0.0625	$\alpha(K) \approx 0.0513$; $\alpha(L) \approx 0.00863$; $\alpha(M) \approx 0.002008$ $\alpha(N) \approx 0.000503$; $\alpha(O) \approx 9.50 \times 10^{-5}$; $\alpha(P) \approx 7.13 \times 10^{-6}$ I_{γ} : From ²⁰⁰ Tl ε decay. Mult.: $\alpha(K) \exp = 0.050 \ I3 \ (1974 Br 02)$. δ: From $\gamma \gamma(\theta) \ (1974 Br 02)$.
		872.93 <i>14</i>	38 10	1254.101 2+				I_{γ} : From ²⁰⁰ Tl ε decay.
		1180.5 [#] 3	62 [#] 19	947.243 4+				,
		1759.15 [#] <i>14</i>	100# 10	367.943 2 ⁺	M1(+E2)		0.0031 8	$\alpha(K)=0.0024\ 7;\ \alpha(L)=3.8\times10^{-4}\ 10;\ \alpha(M)=8.8\times10^{-5}\ 24$
		1737.13 17	100 10	307.543 2	WII(TLZ)		0.0031 0	$\alpha(N)=2.2\times10^{-5} 6$; $\alpha(O)=4.2\times10^{-6} 11$; $\alpha(P)=3.2\times10^{-7} 10$; $\alpha(IPF)=0.00021 5$
2127.934 2135.40	(2,3) ⁺ 8 ⁻	352.353 <i>12</i> 397.01 2 409.63 <i>3</i> 468.93 2 486.44 <i>7</i> 534.48 <i>3</i> 1180.4 <i>4</i> 1759.3 <i>3</i> 86.5 <i>3</i>	4.9 6 2.9 4 1.6 3 6.4 13 1.5 6 3.1 6 18 7 100 10	1775.566 3 ⁺ 1730.929 2 ⁺ 1718.307 1 ⁺ 1659.010 3 ⁺ 1641.447 2 ⁺ 1593.428 2 ⁺ 947.243 4 ⁺ 367.943 2 ⁺ 2048.92 6 ⁻				Mult.: $\alpha(K)\exp=0.0030\ 6$ in $^{200}T1\ \varepsilon$ decay. E_{γ} : From $^{198}Pt(^{9}Be,\alpha 3n\gamma)$. Mult.: $\gamma\gamma(\theta)$ in $^{198}Pt(^{9}Be,\alpha 3n\gamma)$.
		172.8 <mark>&</mark> 2	100 <mark>&</mark> 7	1962.62 7	M1		1.666 24	$\alpha(K)=1.366\ 20;\ \alpha(L)=0.2302\ 33;\ \alpha(M)=0.0536\ 8$

						,		
E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\dagger}	α^{d}	Comments
2143.80	9-	181.18 ^a 8	100 ^a	1962.62 7	E2		0.552 8	$\alpha(N)$ =0.01344 19; $\alpha(O)$ =0.00254 4; $\alpha(P)$ =0.0001945 28 Mult.: $\gamma\gamma(\theta)$ in ¹⁹⁸ Pt(⁹ Be, α 3n γ); $\alpha(K)$ exp=1.8 4 (1977Gu05). B(E2)(W.u.)=25.1 10 $\alpha(K)$ =0.2146 30; $\alpha(L)$ =0.253 4; $\alpha(M)$ =0.0655 9 $\alpha(N)$ =0.01627 23; $\alpha(O)$ =0.00274 4; $\alpha(P)$ =2.68×10 ⁻⁵ 4
2151.35 2189.477	3 ⁻ 1 ⁺	1783.4 ^b 1 306.618 11 332.67 4 455.13 4 471.19 3 558.61 5 596.06 3 615.82 10	$ \begin{array}{r} 100^{b} \\ 4.2 \ 4 \\ 1.2 \ 4 \\ 2.6 \ 4 \\ 3.3 \ 5 \\ 3.5 \ 7 \\ 10.0 \ 12 \\ \approx 11.4 \end{array} $	367.943 2 ⁺ 1882.861 2 ⁺ 1856.784 0 ⁺ 1734.345 3 ⁺ 1718.307 1 ⁺ 1630.900 1 ⁺ 1593.428 2 ⁺ 1573.667 2 ⁺	D			Mult.: $\gamma \gamma(\theta)$ in ¹⁹⁸ Pt(⁹ Be, α 3n γ); α (L)exp=0.017 4 (1972Cu07). Mult.: A ₂ =-0.31 8 in 1984Kh02.
		674.29 7 935.45 8	6.3 <i>19</i> 49 <i>7</i>	1515.178 0 ⁺ 1254.101 2 ⁺	E2+M1		0.012 6	$\alpha(K)$ =0.010 5; $\alpha(L)$ =0.0017 7; $\alpha(M)$ =4.0×10 ⁻⁴ 15 $\alpha(N)$ =1.0×10 ⁻⁴ 4; $\alpha(O)$ =1.9×10 ⁻⁵ 7; $\alpha(P)$ =1.4×10 ⁻⁶ 7 Mult.: $\alpha(K)$ exp=0.0094 (1974Br02).
		1822.3 <i>7</i> 2188.7 <i>6</i>	49 <i>19</i> 100 <i>21</i>	367.943 2 ⁺ 0.0 0 ⁺	M1		0.00266 4	$\alpha(K) = 0.001757 \ 25; \ \alpha(L) = 0.000277 \ 4; \ \alpha(M) = 6.39 \times 10^{-5} \ 9$ $\alpha(N) = 1.602 \times 10^{-5} \ 22; \ \alpha(O) = 3.04 \times 10^{-6} \ 4; \ \alpha(P) = 2.396 \times 10^{-7} \ 34;$ $\alpha(IPF) = 0.000547 \ 8$
2229.274	1+	346.406 <i>14</i> 453.60 <i>16</i> 587.88 <i>4</i>	3.5 <i>4</i> ≈1.30 5.0 <i>7</i>	1882.861 2 ⁺ 1775.566 3 ⁺ 1641.447 2 ⁺				Mult.: $\alpha(K)$ exp=0.0032 10 (1974Br02).
		598.35 3	12.2 11	1630.900 1+	M1(+E2)		0.037 20	$\alpha(K)$ =0.030 17; $\alpha(L)$ =0.0055 22; $\alpha(M)$ =0.0013 5 $\alpha(N)$ =3.3×10 ⁻⁴ 12; $\alpha(O)$ =6.1×10 ⁻⁵ 24; $\alpha(P)$ =4.2×10 ⁻⁶ 24 Mult.: $\alpha(K)$ exp>0.025 (1974Br02).
		635.86 <i>16</i> 655.59 <i>5</i> 659.01 <i>3</i> 713.94 <i>10</i>	≈2.59 5.9 9 27 3 4.8 9	1593.428 2 ⁺ 1573.667 2 ⁺ 1570.279 1 ⁺ 1515.178 0 ⁺				
		975.15 <i>7</i>	100 9	1254.101 2+	M1+E2	0.8 +6-4	0.0124 27	$\alpha(K)$ =0.0102 23; $\alpha(L)$ =0.00170 33; $\alpha(M)$ =0.00039 7 $\alpha(N)$ =9.9×10 ⁻⁵ 19; $\alpha(O)$ =1.9×10 ⁻⁵ 4; $\alpha(P)$ =1.39×10 ⁻⁶ 32 Mult., δ : From $\alpha(K)$ exp=0.0100 23 (1974Br02).
2238.51	(3)	1861.0 <i>5</i> 2229.0 <i>10</i> 1870.56 [#] 22	10 <i>4</i> 4.4 22 100 [#]	367.943 2 ⁺ 0.0 0 ⁺ 367.943 2 ⁺				I_{γ} : From 200 Tl ε decay. I_{γ} : From 200 Tl ε decay.

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_f J_f^{π}	Mult.‡	δ^{\dagger}	α^d	Comments
2246.446	(1,2)+	272.109 8 363.72 8 615.54 4 652.91 8 676.15 3	12.8 9 1.6 6 32 7 8.2 16 100 8	1974.339 (3) ⁺ 1882.861 2 ⁺ 1630.900 1 ⁺ 1593.428 2 ⁺ 1570.279 1 ⁺	M1(+E2)	≤1.2	0.033 8	$\alpha(K)$ =0.027 7; $\alpha(L)$ =0.0047 10; $\alpha(M)$ =0.00108 21 $\alpha(N)$ =0.00027 5; $\alpha(O)$ =5.1×10 ⁻⁵ 11; $\alpha(P)$ =3.8×10 ⁻⁶ 10
		992.35 <i>17</i> 1879.3 <i>3</i> 2246 ^f 2	53 7 ≈47	1254.101 2 ⁺ 367.943 2 ⁺ 0.0 0 ⁺				Mult., δ : α (K)exp=0.029 9 (1974Br02).
2274.229	(2)+	299.887 <i>12</i> 301.963 <i>13</i> 428.45 <i>3</i> 498.63 <i>4</i> 632.85 <i>5</i> 643.29 <i>4</i> 700.17 <i>15</i> 703.82 <i>5</i> 759.30 <i>11</i>	1.61 25 1.25 20 2.3 3 3.2 4 3.4 7 11.1 13 4.8 18 22 3 6.1 11	1974.339 (3) ⁺ 1972.281 (2) ⁺ 1845.779 3 ⁺ 1775.566 3 ⁺ 1641.447 2 ⁺ 1630.900 1 ⁺ 1573.667 2 ⁺ 1570.279 1 ⁺ 1515.178 0 ⁺				
		1906.30 [#] 18	100# 9	367.943 2+	(E2)		2.02×10 ⁻³ 3	$\alpha(\mathrm{K}) = 0.001488 \ 2I; \ \alpha(\mathrm{L}) = 0.0002366 \ 33; \ \alpha(\mathrm{M}) = 5.47 \times 10^{-5} \\ 8 \\ \alpha(\mathrm{N}) = 1.368 \times 10^{-5} \ I9; \ \alpha(\mathrm{O}) = 2.58 \times 10^{-6} \ 4; \\ \alpha(\mathrm{P}) = 1.925 \times 10^{-7} \ 27; \ \alpha(\mathrm{IPF}) = 0.0002248 \ 3I \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \exp = 0.0011 \ (1974 \mathrm{Br} 02).$
		2274.0 [#] 6	15# 4	$0.0 0^{+}$				
2284.36	5-,6,7-	321.8 ^{&} 3	83 ^{&} 33	1962.62 7				
2288.93	2+	432.8 ^{&} 3 695.72 20 718.55 13 1034.9 10	100 ^{&} 17 3.8 8 3 18	1851.49 5 ⁻ 1593.428 2 ⁺ 1570.279 1 ⁺ 1254.101 2 ⁺				
		1341.7 5	66 20	947.243 4+	(E2)		0.00346 5	$\alpha(K)$ =0.00281 4; $\alpha(L)$ =0.000479 7; $\alpha(M)$ =0.0001117 16 $\alpha(N)$ =2.79×10 ⁻⁵ 4; $\alpha(O)$ =5.22×10 ⁻⁶ 7; $\alpha(P)$ =3.66×10 ⁻⁷ 5; $\alpha(IPF)$ =2.354×10 ⁻⁵ 34 Mult.: $\alpha(K)$ =0.0038 15 (1965Sa02).
		1921.1 3	100 12	367.943 2+	(M1)		0.00330 5	$\alpha(K)$ =0.002435 34; $\alpha(L)$ =0.000385 5; $\alpha(M)$ =8.89×10 ⁻⁵ 12 $\alpha(N)$ =2.228×10 ⁻⁵ 31; $\alpha(O)$ =4.23×10 ⁻⁶ 6; $\alpha(P)$ =3.32×10 ⁻⁷ 5; $\alpha(IPF)$ =0.000363 5 I_{γ} : From ²⁰⁰ Tl ε decay. Mult.: $\alpha(K)$ =0.0011 4 in ²⁰⁰ Tl ε decay.

		+	4			4		
$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^d	Comments
2288.93	2+	2289.6 7	≈34		0^{+}			
2296.341	1+	439.52 <i>4</i>	0.84 21	1856.784				
		577.98 <i>6</i>	2.1 7	1718.307	1+			
		722.2 5	2.1	1573.667	2+			
		780.96 <i>11</i>	3.0 7	1515.178				
		1042.4 3	19 5	1254.101	2+	M1	0.01372 19	$\alpha(K)$ =0.01134 <i>16</i> ; $\alpha(L)$ =0.001824 <i>26</i> ; $\alpha(M)$ =0.000422 <i>6</i>
								$\alpha(N)=0.0001059 \ 15; \ \alpha(O)=2.007\times10^{-5} \ 28; \ \alpha(P)=1.562\times10^{-6}$
								22
								Mult.: $\alpha(K)\exp=0.012$ (1974Br02).
		1266.9 <i>6</i>	25	1029.348	0_{+}			
		1928.2 <i>3</i>	20 6	367.943	2+			
		2296.3 <i>3</i>	100 11	0.0	0_{+}	M1	$2.50 \times 10^{-3} 4$	$\alpha(K)=0.001559 22$; $\alpha(L)=0.0002453 34$; $\alpha(M)=5.66\times10^{-5} 8$
								$\alpha(N)=1.419\times10^{-5}\ 20;\ \alpha(O)=2.69\times10^{-6}\ 4;\ \alpha(P)=2.124\times10^{-7}$
								30 ; α (IPF)=0.000621 9
								Mult.: $\alpha(K)$ exp=0.0015 5 (1974Br02).
2298.5	5-,6,7-	335.9 & <i>3</i>	100 <mark>&</mark> 12	1962.62	7-			
	- ,-,-	447.0 <mark>&</mark> 4	47 <mark>&</mark> 18	1851.49				
2331.778	2+	203.832 12	1.0 3	2127.934				
2331.770	2	270.530 12	1.17 23	2061.257				
		359.48 <i>4</i>	1.2 3	1972.281				
		448.91 2	18.2 15	1882.861				
		475.08 <i>4</i>	1.7 3	1856.784				
		597.41 <i>4</i>	5.2 8	1734.345				
		600.82 4	6.2 7	1730.929				
		613.55 5	4.2 8	1718.307				
		690.28 6	10.0 25	1641.447				
		738.5 2	≈4.2	1593.428				
		761.43 12	10 4	1570.279				
		1385.0 <i>3</i>	100 20	947.243		(E2)	0.00327 5	$\alpha(K)=0.00265$ 4; $\alpha(L)=0.000448$ 6; $\alpha(M)=0.0001045$ 15
						, ,		$\alpha(N)=2.61\times10^{-5}$ 4; $\alpha(O)=4.89\times10^{-6}$ 7; $\alpha(P)=3.45\times10^{-7}$ 5;
								$\alpha(IPF)=3.31\times10^{-5} 5$
								Mult.: $\alpha(K)\exp=0.0040 \ 10 \ (1974Br02)$.
		1963.5 <i>4</i>	43 10	367.943	2+			r r r
2343.594	$1^+, 2^+, 3^+$	460.76 5	2.3 6	1882.861				
	, ,-	497.81 2	22.1 15	1845.779				
		568.04 7	3.3 10	1775.566				
		1975.8 <i>3</i>	100 <i>21</i>	367.943		M1(+E2)	0.0025 6	$\alpha(K)=0.0018$ 4; $\alpha(L)=0.00029$ 7; $\alpha(M)=6.7\times10^{-5}$ 16
								$\alpha(N)=1.7\times10^{-5} 4$; $\alpha(O)=3.2\times10^{-6} 8$; $\alpha(P)=2.5\times10^{-7} 6$; $\alpha(IPF)=0.00033 7$
								$\alpha(\text{IPF})=0.000337$ Mult.: $\alpha(\text{K})\exp=0.0038\ 16\ (1974\text{Br}02)$.
2370.043	1+	308.801 11	0.18 2	2061.257	1+			with $u(\mathbf{K}) = 0.0030 \text{ 10 (13/4DI02)}.$
2370.043	1	300.001 11	0.10 2	2001.237	1			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\dagger}	α^{d}	Comments
2370.043	1+	397.765 <i>14</i> 487.12 <i>3</i> 635.86 <i>16</i> 639.11 <i>4</i> 651.4 <i>3</i> 710.93 <i>12</i> 728.45 <i>7</i> 739.05 <i>16</i>	0.38 5 0.68 8 ≈0.18 1.04 9 0.25 8 0.27 12 1.05 10 0.53 17	1972.281 (2) ⁺ 1882.861 2 ⁺ 1734.345 3 ⁺ 1730.929 2 ⁺ 1718.307 1 ⁺ 1659.010 3 ⁺ 1641.447 2 ⁺ 1630.900 1 ⁺				
		739.03 16 796.41 6	2.17 18	1573.667 2 ⁺	M1		0.0273 4	$\alpha(K)$ =0.02254 32; $\alpha(L)$ =0.00366 5; $\alpha(M)$ =0.000847 12 $\alpha(N)$ =0.0002124 30; $\alpha(O)$ =4.02×10 ⁻⁵ 6; $\alpha(P)$ =3.12×10 ⁻⁶ 4 Mult.: $\alpha(K)$ exp=0.029 8 (1974Br02).
		799.90 18	0.74 22	1570.279 1 ⁺				
		1116 ^f <i>I</i> 2002.1 2	≈0.52 100 <i>10</i>	1254.101 2 ⁺ 367.943 2 ⁺	M1(+E2)	0.014.10	0.00307 4	-/V) 0.00210/ 21/I) 0.000247.5.
		2002.1 2	100 70	307.943 2	M1(+E2)	-0.014 <i>19</i>	0.00307 4	$\alpha(K)=0.002196 \ 3I; \ \alpha(L)=0.000347 \ 5; \ \alpha(M)=8.01\times10^{-5} \ II \ \alpha(N)=2.007\times10^{-5} \ 28; \ \alpha(O)=3.81\times10^{-6} \ 5; \ \alpha(P)=3.00\times10^{-7} \ 4; \ \alpha(IPF)=0.000418 \ 6 \ Mult.: \ \alpha(K) \exp =0.0018 \ 3 \ (1974 Br 02); \ \gamma \gamma(\theta) \ (1989 Ah 01). \ \delta: \ From \ \gamma \gamma(\theta) \ in \ 1989 Ah 01.$
		2370.0 3	4.3 9	0.0 0+	M1		2.41×10 ⁻³ 3	$\alpha(K)=0.001441\ 20;\ \alpha(L)=0.0002265\ 32;$ $\alpha(M)=5.23\times10^{-5}\ 7$ $\alpha(N)=1.311\times10^{-5}\ 18;\ \alpha(O)=2.488\times10^{-6}\ 35;$ $\alpha(P)=1.962\times10^{-7}\ 27;\ \alpha(IPF)=0.000671\ 9$ Mult.: $\alpha(K)\exp=0.0012$.
2377.15	(7)-	241.8& 3 328.3& 3	40 ^{&} 20 60 ^{&} 20	2135.40 8 ⁻ 2048.92 6 ⁻				· · ·
2388.68	(1,2,3)+	414.4 ^{&} 3 414.41 ^f 7 747.30 9 818.33 11	100 ^{&} 20 1.2 11.2 21 19 3	1962.62 7 ⁻ 1974.339 (3) ⁺ 1641.447 2 ⁺ 1570.279 1 ⁺				
		2020.5# 7	100 [#] 12	367.943 2+	M1+E2		0.0025 6	$\alpha(K)=0.0017 \ 4; \ \alpha(L)=0.00028 \ 6; \ \alpha(M)=6.4\times10^{-5} \ 15$ $\alpha(N)=1.6\times10^{-5} \ 4; \ \alpha(O)=3.0\times10^{-6} \ 7;$ $\alpha(P)=2.3\times10^{-7} \ 6; \ \alpha(IPF)=0.00035 \ 8$
2408.8		446.2 <i>4</i>	100	1962.62 7				Mult.: α (K)exp=0.0018 (1974Br02).
2411.830	$(2)^{+}$	182.53 <i>3</i>	3.5	2229.274 1+				

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}^{π}_f	Mult.‡	α^{d}	Comments
2411.830	(2)+	283.88 <i>3</i> 337.51 2 437.56 <i>f</i> 13 439.52 <i>4</i> 566.15 <i>5</i> 677.45 <i>7</i> 780.96 <i>11</i> 818.33 <i>11</i> 896.7 2 1158.3 <i>7</i> 2044.2 <i>5</i>	2.0 6 2.5 5 3.0 12 4.0 10 13.0 20 28 4 14 4 32 6 10.00 55 20 100 30	2127.934 2074.335 1974.339 1972.281 1845.779 1734.345 1630.900 1593.428 1515.178 1254.101 367.943	(2) ⁺ (3) ⁺ (2) ⁺ 3 ⁺ 3 ⁺ 1 ⁺ 2 ⁺ 0 ⁺ 2 ⁺			
2442.7?	1-	2442.6 3	100	0.0	0+	E1	1.34×10 ⁻³ 2	$\alpha(K)=0.000429 \ 6; \ \alpha(L)=6.19\times 10^{-5} \ 9; \ \alpha(M)=1.411\times 10^{-5} \ 20$ $\alpha(N)=3.53\times 10^{-6} \ 5; \ \alpha(O)=6.68\times 10^{-7} \ 9; \ \alpha(P)=5.28\times 10^{-8} \ 7;$ $\alpha(IPF)=0.000831 \ 12$ Mult.: $\alpha(K)\exp=0.0002 \ (1974Br02)$.
2461.83	(1 ⁺)	743.52 8 1432.2 2 2093.6 4	12.6 <i>17</i> 95 <i>19</i> 100 <i>21</i>	1718.307 1029.348 367.943	0+	(M1)	0.00621 9	$\begin{array}{l} \alpha(\mathrm{K}){=}0.00508\ 7;\ \alpha(\mathrm{L}){=}0.000810\ 11;\ \alpha(\mathrm{M}){=}0.0001873\ 26\\ \alpha(\mathrm{N}){=}4.69{\times}10^{-5}\ 7;\ \alpha(\mathrm{O}){=}8.91{\times}10^{-6}\ 12;\ \alpha(\mathrm{P}){=}6.97{\times}10^{-7}\ 10;\\ \alpha(\mathrm{IPF}){=}7.37{\times}10^{-5}\ 10\\ \mathrm{Mult.:}\ \alpha(\mathrm{K})\mathrm{exp}{=}0.0040\ (1974\mathrm{Br}02). \end{array}$
2491.430	(2)+	2462.6 <i>15</i> 301.963 <i>13</i> 517.14 <i>7</i> 634.66 <i>10</i> 757.01 <i>6</i> 860.6 <i>2</i> 917.9 <i>3</i>	45 <i>19</i> 1.7 <i>3</i> 3.6 <i>10</i> 4.1 <i>12</i> 29 <i>3</i> 12 <i>4</i> 19 <i>5</i>	0.0 2189.477 1974.339 1856.784 1734.345 1630.900 1573.667 1254.101	0 ⁺ 1 ⁺ (3) ⁺ 0 ⁺ 3 ⁺ 1 ⁺ 2 ⁺			
		2123.9 7	100 21	367.943		(E2)	1.80×10 ⁻³ 3	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.001225 \ 17; \ \alpha(\mathrm{L}) \! = \! 0.0001919 \ 27; \ \alpha(\mathrm{M}) \! = \! 4.43 \times 10^{-5} \ 6 \\ \alpha(\mathrm{N}) \! = \! 1.108 \times 10^{-5} \ 16; \ \alpha(\mathrm{O}) \! = \! 2.090 \times 10^{-6} \ 29; \ \alpha(\mathrm{P}) \! = \! 1.582 \times 10^{-7} \ 22; \\ \alpha(\mathrm{IPF}) \! = \! 0.000324 \ 5 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} \! = \! 0.0012 \ (1974 \mathrm{Br} 02). \end{array}$
2522.70	10-	378.9 [@] 3	16.9 [@] 16	2143.80	9-	M1+E2	0.12 7	$\alpha(K)$ =0.10 6; $\alpha(L)$ =0.020 6; $\alpha(M)$ =0.0048 13 $\alpha(N)$ =0.00120 33; $\alpha(O)$ =2.2×10 ⁻⁴ 7; $\alpha(P)$ =1.3×10 ⁻⁵ 9 Mult.: $\gamma\gamma(\theta)$ in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
		387.3 [@] 3	100 [@] 10	2135.40	8-	E2	0.0517 7	$\alpha(K)=0.0345\ 5;\ \alpha(L)=0.01300\ 19;\ \alpha(M)=0.00325\ 5$ $\alpha(N)=0.000809\ 12;\ \alpha(O)=0.0001418\ 20;\ \alpha(P)=4.53\times10^{-6}\ 6$ Mult.: $\gamma\gamma(\theta)$ in 198 Pt(9 Be, α 3n γ); $\alpha(K)$ exp=0.045\ 7 (1977Gu05).
2590.79	1-	2590.5 3	100	0.0	0^+	E1	$1.39 \times 10^{-3} \ 2$	$\alpha(K)=0.000391$ 5; $\alpha(L)=5.63\times10^{-5}$ 8; $\alpha(M)=1.283\times10^{-5}$ 18

							/(11g) (cont	mucu)	
$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}^{\dagger}$	E_f	${\rm J}_f^\pi$	Mult.‡	δ^{\dagger}	α^{d}	Comments
									$\alpha(N)$ =3.21×10 ⁻⁶ 4; $\alpha(O)$ =6.08×10 ⁻⁷ 9; $\alpha(P)$ =4.81×10 ⁻⁸ 7; $\alpha(IPF)$ =0.000921 <i>13</i> Mult.: $\alpha(K)$ exp<0.0002 (1974Br02).
2597.1	(9)	461.7 [@] 3	100 [@]	2135.40	8-				
2610.42	3-	2610.4 <i>I</i>	100	0.0	0+	(E3)		2.24×10 ⁻³ 3	$\alpha(K)$ =0.001539 22; $\alpha(L)$ =0.000256 4; $\alpha(M)$ =5.95×10 ⁻⁵ 8 $\alpha(N)$ =1.490×10 ⁻⁵ 21; $\alpha(O)$ =2.81×10 ⁻⁶ 4; $\alpha(P)$ =2.076×10 ⁻⁷ 29; $\alpha(IPF)$ =0.000371 5 B(E3)(W.u.)=24.6 24 E _y : From level energy. Mult.: From Coulomb excitation.
2639.929	1+	148.500 6 757.01 6 905.3 4 1008.7 4 1385.0 3 1610.9 6	0.52 12 3.7 4 ≈1.8 ≈3.0 18 4 7.3 24	2491.430 1882.861 1734.345 1630.900 1254.101 1029.348	2 ⁺ 3 ⁺ 1 ⁺ 2 ⁺				
		2271.5 4	58 9	367.943	2+	M1+E2	-0.43 +6-5	0.00240 4	$\alpha(K)$ =0.001521 28; $\alpha(L)$ =0.000239 4; $\alpha(M)$ =5.52×10 ⁻⁵ 10 $\alpha(N)$ =1.383×10 ⁻⁵ 26; $\alpha(O)$ =2.62×10 ⁻⁶ 5; $\alpha(P)$ =2.06×10 ⁻⁷ 4; $\alpha(IPF)$ =0.000571 11 Mult.: $\alpha(K)$ exp=0.0011 2 (1974Br02); $\gamma\gamma(\theta)$ (1989Ah01). δ : $\gamma\gamma(\theta)$ in 1989Ah01.
		2639.9 2	100 <i>12</i>	0.0	0+	M1		2.17×10 ⁻³ 3	$\alpha(K)=0.001101\ 15;\ \alpha(L)=0.0001726\ 24;$ $\alpha(M)=3.98\times10^{-5}\ 6$ $\alpha(N)=9.99\times10^{-6}\ 14;\ \alpha(O)=1.896\times10^{-6}\ 27;$ $\alpha(P)=1.498\times10^{-7}\ 21;\ \alpha(IPF)=0.000849\ 12$ Mult.: $\alpha(K)\exp=0.00105\ 15\ (1974Br02)$.
2641.57	11-	497.77 ^a 10	100 ^a	2143.80	9-	E2		0.0272 4	$\alpha(K)$ =0.01967 28; $\alpha(L)$ =0.00573 8; $\alpha(M)$ =0.001409 20 $\alpha(N)$ =0.000352 5; $\alpha(O)$ =6.27×10 ⁻⁵ 9; $\alpha(P)$ =2.61×10 ⁻⁶ 4 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ); $\alpha(K)$ exp=0.021 4 (1972Cu07) decay (18.7 h).
2680.1	8+	716.8 [@] 5	18 [@] 6	1962.62	7-	[E1]		0.00430 6	$\alpha(K)$ =0.00358 5; $\alpha(L)$ =0.000548 8; $\alpha(M)$ =0.0001260 18 $\alpha(N)$ =3.14×10 ⁻⁵ 4; $\alpha(O)$ =5.89×10 ⁻⁶ 8; $\alpha(P)$ =4.29×10 ⁻⁷ 6 B(E1)(W.u.)=0.00043 16
		973.6 [@] 3	100 [@] 14	1706.73	6+	E2		0.00636 9	$\alpha(K)$ =0.00510 7; $\alpha(L)$ =0.000965 14; $\alpha(M)$ =0.0002278 32 $\alpha(N)$ =5.70×10 ⁻⁵ 8; $\alpha(O)$ =1.053×10 ⁻⁵ 15; $\alpha(P)$ =6.71×10 ⁻⁷ 9

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α^d	Comments
								$\alpha(K)=0.00510\ 7;\ \alpha(L)=0.000965\ 14;\ \alpha(M)=0.0002278\ 32$ $\alpha(N)=5.70\times10^{-5}\ 8;\ \alpha(O)=1.053\times10^{-5}\ 15;\ \alpha(P)=6.71\times10^{-7}\ 9$ B(E2)(W.u.)=41 9 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
2691.59	$(1,2)^+$	321.55 <i>3</i> 563.63 <i>9</i> 957.19 <i>13</i>	1.7 <i>3</i> 3.1 <i>11</i> 25 <i>5</i>	2370.043 2127.934 1734.345	$(2,3)^+$			Man. Bee in Tit (Be, asin).
		1121.4 2	71 20	1570.279		(M1)	0.01139 16	$\alpha(K)$ =0.00943 13; $\alpha(L)$ =0.001513 21; $\alpha(M)$ =0.000350 5 $\alpha(N)$ =8.77×10 ⁻⁵ 12; $\alpha(O)$ =1.664×10 ⁻⁵ 23; $\alpha(P)$ =1.297×10 ⁻⁶ 18; $\alpha(IPF)$ =6.63×10 ⁻⁷ 11 Mult.: $\alpha(K)$ exp=0.012 4 (1974Br02).
		2323.5 4	100 25	367.943				
2697.137	(1,2)+	308.47 <i>4</i> 467.86 ^e 2	1.8 7 100 ^e	2388.68 2229.274		(M1)	0.1093 15	$\alpha(K)$ =0.0900 13; $\alpha(L)$ =0.01484 21; $\alpha(M)$ =0.00344 5 $\alpha(N)$ =0.000864 12; $\alpha(O)$ =0.0001636 23; $\alpha(P)$ =1.259×10 ⁻⁵ 18 Mult.: $\alpha(K)$ exp=0.14 4 (1974Br02).
		635.86 16	≈9	2061.257	1+			(13) (13) (13) (13) (13) (13) (13) (13)
		1181.9 ^f		1515.178	0^{+}			
		1442.5 10	≈61	1254.101	2+			
		1667.8 ^f		1029.348				
2701.366	2+	331.34 3	1.9 5	2370.043				
		472.12 8	2.7 8	2229.274				
		573.41 <i>4</i> 586.98 <i>12</i>	10.4 <i>15</i> 3.5 <i>15</i>	2127.934 2114.357				
		1042.4 3	69 <i>19</i>	1659.010		M1	0.01372 19	$\alpha(K)$ =0.01134 16; $\alpha(L)$ =0.001824 26; $\alpha(M)$ =0.000422 6
		10.2	0, 1,	1007.010		1111	0.010,219	$\alpha(N)$ =0.0001059 15; $\alpha(O)$ =2.007×10 ⁻⁵ 28; $\alpha(P)$ =1.562×10 ⁻⁶ 22 Mult.: $\alpha(K)$ exp=0.012 (1974Br02).
		1059.6 2	77 19	1641.447		(E2)		Mult.: $\alpha(K)\exp(0.009)$ (1974Br02).
		1070.0 4	15.4	1630.900				
		1447.5 7	73 23	1254.101				
2763.097	(1.2)+	1754.6 <i>7</i> 271.68 <i>2</i>	100 <i>42</i> 2.4 <i>4</i>	947.243 2491.430				
2103.091	(1,4)	351.27 2	12.4 16	2491.430				
		466.72 3	4.0 10	2296.341				
		788.77 6	45 6	1974.339				
		1121.4 2	100 28	1641.447		M1	0.01139 <i>16</i>	$\alpha(K)$ =0.00943 13; $\alpha(L)$ =0.001513 21; $\alpha(M)$ =0.000350 5 $\alpha(N)$ =8.77×10 ⁻⁵ 12; $\alpha(O)$ =1.664×10 ⁻⁵ 23; $\alpha(P)$ =1.297×10 ⁻⁶ 18; $\alpha(IPF)$ =6.63×10 ⁻⁷ 11 Mult.: $\alpha(K)$ exp=0.012 4 (1974Br02).

γ (²⁰⁰Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^d	Comments
2763.097	$(1,2)^{+}$	1733.7 ^f 10	40	1029.348				
		2764.0 15	72	0.0	0+			
2794.16	$(1,2)^+$	497.81 2	30.7 21	2296.341				
		505.23 3	5.0 9	2288.93 2061.257	2+			
		733.4 <i>3</i> 911.5 <i>6</i>	15 <i>4</i> 29 <i>11</i>	1882.861				
		1059.6 2	71 18	1734.345				
		1163.5 3	100 21	1630.900		M1(+E2)	0.0074 29	$\alpha(K)=0.0061\ 25;\ \alpha(L)=1.0\times10^{-3}\ 4;\ \alpha(M)=2.4\times10^{-4}\ 8$
						WII(+E2)	0.007125	$\alpha(N)$ =5.9×10 ⁻⁵ 21; $\alpha(O)$ =1.1×10 ⁻⁵ 4; $\alpha(P)$ =8.3×10 ⁻⁷ 35; $\alpha(IPF)$ =2.2×10 ⁻⁶ 6 Mult.: $\alpha(K)$ exp=0.0078 (1974Br02).
		2794.5 <i>4</i>	86 29	0.0	0_{+}			
2847.51	1-	404.94 <i>4</i>	≤1.4		1-			
		458.80 9	1.7 6	2388.68	$(1,2,3)^+$			
		558.61 <i>5</i> 573.41 <i>4</i>	3.6 <i>7</i> 6.4 <i>10</i>	2288.93 2274.229	2 ⁺			
		733.40 3	10 3	2114.229				
		2847.3 6	100 21	0.0	0+	E1	1.47×10^{-3} 2	$\alpha(K)=0.000337\ 5;\ \alpha(L)=4.84\times10^{-5}\ 7;\ \alpha(M)=1.103\times10^{-5}\ 15$
		2047.3 0	100 21	0.0	O	EI	1.47×10 2	$\alpha(K)$ =0.0003373, $\alpha(L)$ =4.04×10 7, $\alpha(M)$ =1.103×10 13 $\alpha(N)$ =2.76×10 ⁻⁶ 4; $\alpha(O)$ =5.23×10 ⁻⁷ 7; $\alpha(P)$ =4.15×10 ⁻⁸ 6; $\alpha(IPF)$ =0.001066 15 Mult.: $\alpha(K)$ exp<0.0003 (1974Br02).
2853.05	$(1,2)^{+}$	738.5 2	13	2114.357	3+			With: $u(\mathbf{K}) \exp(0.0003)$ (1974B102).
2033.03	(1,2)	996.5 7	30	1856.784				
		1337.4 15	90	1515.178				
		2485.3 15	100 35	367.943	2+	E2+M1	0.00194 34	$\alpha(K)$ =0.00110 18; $\alpha(L)$ =0.000172 29; $\alpha(M)$ =4.0×10 ⁻⁵ 7 $\alpha(N)$ =9.9×10 ⁻⁶ 17; $\alpha(O)$ =1.88×10 ⁻⁶ 33; $\alpha(P)$ =1.47×10 ⁻⁷ 28 $\alpha(IPF)$ =0.00062 13 Mult.: $\alpha(K)$ exp=0.0011 (1974Br02).
		2853.8 10	70	0.0	0^{+}			
2862.3	$(1,2)^+$	573.41 <i>4</i>	4.7 7	2288.93	2+			
		615.82 10	8.5	2246.446				
		1347.1 5	100 41	1515.178				
2077 00	1+	2862.4 15	8.6	0.0	0 ⁺	(M1)		$M_{\rm vil}$ = $\alpha(V)_{\rm over} = 0.004, 25. (1074D_{\rm r}02)$
2877.90	1'	546.10 2 588.96 6 631.50 9	10.6 8 2.5 5 2.1 6	2331.778 2288.93 2246.446	2^+ $(1,2)^+$	(M1)		Mult.: α (K)exp=0.094 35 (1974Br02).
		749.9 2	2.7 10	2127.934				
		903.5 2	6	1974.339				
		905.3 <i>4</i> 1247.3 <i>3</i>	9 51 <i>11</i>	1972.281 1630.900				

$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f J_f^{π}	Mult. ‡ δ^{\dagger}	α^d	Comments
2877.90 1 ⁺ 2937.55 1 ⁺ ,2 ⁺		1623.5 <i>3</i> 1054.7 <i>4</i>	100 <i>21</i> 24 <i>10</i>	1254.101 2 ⁺ 1882.861 2 ⁺	M1	0.01331 19	$\alpha(K)$ =0.01101 15; $\alpha(L)$ =0.001770 25; $\alpha(M)$ =0.000410 6 $\alpha(N)$ =0.0001027 14; $\alpha(O)$ =1.947×10 ⁻⁵ 27; $\alpha(P)$ =1.516×10 ⁻⁶ 21 Mult.: $\alpha(K)$ exp=0.019 (1974Br02).
		1081.3 <i>3</i> 1366.8 <i>7</i> 1422.4 <i>3</i>	17 <i>5</i> 43 36 <i>12</i>	1856.784 0 ⁺ 1570.279 1 ⁺ 1515.178 0 ⁺			Mai a(11)exp=0.017 (177 12102).
		2569.1 5	100 21	367.943 2 ⁺			$\alpha(K)$ =0.000870 <i>12</i> ; $\alpha(L)$ =0.0001336 <i>19</i> ; $\alpha(M)$ =3.07×10 ⁻⁵
							$\alpha(N)=7.69\times10^{-6}\ 11;\ \alpha(O)=1.454\times10^{-6}\ 20;$ $\alpha(P)=1.121\times10^{-7}\ 16;\ \alpha(PF)=0.000531\ 7$ $\alpha(K)\exp<0.0003\ (1974Br02).$
2959.93	1-	2937.2 <i>10</i> 468.73 <i>3</i> 1366.8 <i>7</i>	36 3 19	0.0 0 ⁺ 2491.430 (2) ⁺ 1593.428 2 ⁺			
		2960.2 3	100 <i>16</i>	0.0 0+	E1	1.50×10 ⁻³ 2	$\alpha(K)=0.000317 \ 4; \ \alpha(L)=4.55\times10^{-5} \ 6; \ \alpha(M)=1.038\times10^{-5} \ 15$ $\alpha(N)=2.59\times10^{-6} \ 4; \ \alpha(O)=4.92\times10^{-7} \ 7; \ \alpha(P)=3.91\times10^{-8} \ 5; \ \alpha(IPF)=0.001128 \ 16$
2978.213	1+	281.08 2 516.35 3 608.22 9 634.66 10 681.87 8 748.84 10 788.77 6	0.16 3 0.84 12 0.59 22 0.53 16 1.2 3 1.5 3 3.5 5	2697.137 (1,2) ⁺ 2461.83 (1 ⁺) 2370.043 1 ⁺ 2343.594 1 ⁺ ,2 ⁺ ,3 ⁺ 2296.341 1 ⁺ 2229.274 1 ⁺ 2189.477 1 ⁺			Mult.: α (K)exp<0.00013 (1974Br02).
		851.36 <i>4</i>	28.4 22	2126.859 2+	M1+E2	0.016 7	$\alpha(K)$ =0.013 6; $\alpha(L)$ =0.0022 9; $\alpha(M)$ =5.1×10 ⁻⁴ 20 $\alpha(N)$ =1.3×10 ⁻⁴ 5; $\alpha(O)$ =2.4×10 ⁻⁵ 10; $\alpha(P)$ =1.7×10 ⁻⁶ 9 Mult.: $\alpha(K)$ exp=0.016 3 (1974Br02).
		861.71 <i>12</i> 1121.4 <i>2</i>	3.0 <i>6</i> 7.8 22	2116.549 0 ⁺ 1856.784 0 ⁺	(M1)	0.01139 <i>16</i>	$\alpha(K)$ =0.00943 13; $\alpha(L)$ =0.001513 21; $\alpha(M)$ =0.000350 5 $\alpha(N)$ =8.77×10 ⁻⁵ 12; $\alpha(O)$ =1.664×10 ⁻⁵ 23; $\alpha(P)$ =1.297×10 ⁻⁶ 18; $\alpha(IPF)$ =6.63×10 ⁻⁷ 11 Mult.: $\alpha(K)$ exp=0.012 4 (1974Br02).
		1247.3 <i>3</i> 1337.4 <i>15</i> 1347.1 <i>5</i>	10.6 22 ≤6 ≤18	1730.929 2 ⁺ 1641.447 2 ⁺ 1630.900 1 ⁺			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

γ (²⁰⁰Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathtt{J}_f^π	Mult.‡	δ^{\dagger}	α^d	Comments
2978.213	1+	1408.0 2	100 13	1570.279	1+	E2+M1	+1.44 +21-10	0.00425 20	$\alpha(K)=0.00346\ 16;\ \alpha(L)=0.000568\ 25;$ $\alpha(M)=0.000132\ 6$ $\alpha(N)=3.30\times10^{-5}\ 14;\ \alpha(O)=6.21\times10^{-6}\ 27;$ $\alpha(P)=4.63\times10^{-7}\ 23;\ \alpha(IPF)=4.68\times10^{-5}\ 15$ Mult., δ : From $\gamma\gamma(\theta)$ in 1989Ah01.
		1462.5 <i>15</i> 2611.0 <i>7</i> 2978.5 <i>6</i>	5.9 <i>19</i> 9.4 <i>19</i> 9.4 <i>19</i>	1515.178 367.943 0.0					,
3053.32	1+	721.0 ^f 8 823.95 <i>14</i> 1081.3 <i>3</i> 1318.0 <i>6</i>	5.7 12 4 20 6 54 17	2331.778 2229.274 1972.281 1734.345	1 ⁺ (2) ⁺				
		1322.4 3	100 26	1730.929		M1		0.00754 11	$\alpha(K)$ =0.00621 9; $\alpha(L)$ =0.000992 14; $\alpha(M)$ =0.0002295 32 $\alpha(N)$ =5.75×10 ⁻⁵ 8; $\alpha(O)$ =1.091×10 ⁻⁵ 15; $\alpha(P)$ =8.53×10 ⁻⁷ 12; $\alpha(IPF)$ =3.27×10 ⁻⁵ 5 Mult.: $\alpha(K)$ exp=0.007 (1974Br02).
		1422.4 <i>3</i> 1479.6 <i>f</i> 15	43 <i>14</i> 29	1630.900 1573.667	2+				Mult.: $a(K)\exp(-0.007)(1974B102)$.
3073.823	1+	1538.2 <i>5</i> 1799.2 <i>5</i> 376.68 <i>2</i> 685.19 <i>12</i> 703.82 <i>5</i> 784.9 <i>3</i> 1432.2 <i>2</i> 1442.5 <i>10</i>	57 17 94 28 3.1 8 3.1 9 19 3 3.7 62 12 15.4	1515.178 1254.101 2697.137 2388.68 2370.043 2288.93 1641.447 1630.900	2 ⁺ (1,2) ⁺ (1,2,3) ⁺ 1 ⁺ 2 ⁺ 2 ⁺				
		1503.2 4	100 20	1570.279		E2(+M1)		0.0042 13	$\alpha(K)=0.0034 \ 11; \ \alpha(L)=5.5\times10^{-4} \ 17;$ $\alpha(M)=1.3\times10^{-4} \ 4$ $\alpha(N)=3.2\times10^{-5} \ 10; \ \alpha(O)=6.0\times10^{-6} \ 19;$ $\alpha(P)=4.6\times10^{-7} \ 16; \ \alpha(IPF)=8.6\times10^{-5} \ 20$ Mult.: $\alpha(K)=0.0018 \ (1974Br02)$.
		2044.2 5	31 9	1029.348					
		3074.2 6	77 15	0.0	0+	(M1)		2.02×10 ⁻³ 3	$\alpha(K)=0.000755 \ II; \ \alpha(L)=0.0001178 \ I7; \ \alpha(M)=2.72\times10^{-5} \ 4 \ \alpha(N)=6.81\times10^{-6} \ I0; \ \alpha(O)=1.294\times10^{-6} \ I8; \ \alpha(P)=1.024\times10^{-7} \ I4; \ \alpha(IPF)=0.001112 \ I6 \ Mult.: \ \alpha(K)=0.00058 \ 25 \ (1974Br02).$
3120.9	10 ⁺	523.8 [@] 3	23.1 [@] 20	2597.1	(9)	D			Mult.: From DCO in 198 Pt(9 Be, $\alpha 3$ n γ).

							-	-
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	J_f^π	Mult.‡	α^d	Comments
3120.9	10+	977.1 [@] 3	100@8	2143.80	9-	(E1)	2.40×10 ⁻³ 3	$\alpha(K)$ =0.002011 28; $\alpha(L)$ =0.000301 4; $\alpha(M)$ =6.91×10 ⁻⁵ 10 $\alpha(N)$ =1.725×10 ⁻⁵ 24; $\alpha(O)$ =3.24×10 ⁻⁶ 5; $\alpha(P)$ =2.435×10 ⁻⁷ 34 Mult.: From DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ). Note, that Mult=M1+E2 is given in ¹⁹⁸ Pt(α ,2n γ) based on $\gamma(\theta)$ (1981He10).
3123.0	12-	600.3 [@] 3	100 [@]	2522.70	10-	E2	0.01756 25	$\alpha(K)$ =0.01323 19; $\alpha(L)$ =0.00330 5; $\alpha(M)$ =0.000801 11 $\alpha(N)$ =0.0001999 28; $\alpha(O)$ =3.61×10 ⁻⁵ 5; $\alpha(P)$ =1.756×10 ⁻⁶ 25 Mult.: From DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ); $\gamma(\theta)$ in ¹⁹⁸ Pt(α ,2n γ).
3186.34	1+	308.47 4 423.24 3 724.78 10 743.52 8 797.4 2 854.2 2 890.0 f 5 957.19 13 996.5 7	≤0.10 0.57 8 0.70 20 1.77 23 1.1 4 2.0 7 1.3 2.9 5 2.0 8		(1,2) ⁺ (1 ⁺) 1 ⁻ (1,2,3) ⁺ 2 ⁺ 1 ⁺			Mult 110III Deo III — 1 ((Be, a 3 ii y), y (o) III — 1 ((a, 2 ii y).
		1467.6 3	31 5	1718.307		M1+E2	0.0044 15	$\begin{array}{l} \alpha(\mathrm{K}) {=} 0.0036 \ 12; \ \alpha(\mathrm{L}) {=} 5.8 {\times} 10^{-4} \ 18; \ \alpha(\mathrm{M}) {=} 1.3 {\times} 10^{-4} \ 4 \\ \alpha(\mathrm{N}) {=} 3.4 {\times} 10^{-5} \ 10; \ \alpha(\mathrm{O}) {=} 6.4 {\times} 10^{-6} \ 20; \ \alpha(\mathrm{P}) {=} 4.8 {\times} 10^{-7} \ 17; \\ \alpha(\mathrm{IPF}) {=} 7.2 {\times} 10^{-5} \ 17 \end{array}$
		2818.6 <i>3</i>	40 4	367.943	2+	E2(+M1)	0.00181 28	Mult.: $\alpha(K)\exp=0.0036\ 10\ (1974Br02)$. $\alpha(K)=0.000836\ 99;\ \alpha(L)=0.000129\ 17;\ \alpha(M)=3.0\times10^{-5}\ 4$ $\alpha(N)=7.5\times10^{-6}\ 10;\ \alpha(O)=1.41\times10^{-6}\ 19;\ \alpha(P)=1.11\times10^{-7}\ 16;$ $\alpha(IPF)=0.00080\ 16$ Mult.: $\alpha(K)\exp=0.00063\ 15\ (1974Br02)$.
		3185.8 4	100 10	0.0	0+	(M1)	2.00×10 ⁻³ 3	$\alpha(K)$ =0.000691 10; $\alpha(L)$ =0.0001078 15; $\alpha(M)$ =2.486×10 ⁻⁵ 35 $\alpha(N)$ =6.23×10 ⁻⁶ 9; $\alpha(O)$ =1.183×10 ⁻⁶ 17; $\alpha(P)$ =9.37×10 ⁻⁸ 13; $\alpha(IPF)$ =0.001172 16 Mult.: $\alpha(K)$ exp=0.00072 10 (1974Br02).
3215.2	12+	94.2 [@] 5	4.5 [@] 20	3120.9	10 ⁺	E2	7.14 19	$\alpha(K)$ =0.625 9; $\alpha(L)$ =4.88 14; $\alpha(M)$ =1.28 4 $\alpha(N)$ =0.316 9; $\alpha(O)$ =0.0524 15; $\alpha(P)$ =0.0001383 28 B(E2)(W.u.)=36 16 Mult.: From $\alpha(tot)$ in 1999Go21.
		573.5 [@] 3	100 [@] 5	2641.57	11-	E1	0.00670 9	$\alpha(K)$ =0.00557 8; $\alpha(L)$ =0.000867 12; $\alpha(M)$ =0.0001996 28 $\alpha(N)$ =4.98×10 ⁻⁵ 7; $\alpha(O)$ =9.29×10 ⁻⁶ 13; $\alpha(P)$ =6.60×10 ⁻⁷ 9 B(E1)(W.u.)=7.6×10 ⁻⁷ 25 Mult.: From $\alpha(K)$ exp=0.008 3 (1977Gu05); DCO in 198 Pt(9 Be, $\alpha(S)$ ny) and $\gamma(\theta)$ in 198 Pt($\alpha(S)$ 2ny).
3216.84	(2)+	453.60 <i>16</i> 1100.3 <i>5</i>	≤0.7 7.53	2763.097 2116.549				1 ((20,0011)) and 7(0) iii 1 ((0,211)).

γ (²⁰⁰Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α^{d}	Comments
3216.84	(2)+	1557.7 3	100 20	1659.010	3+	M1+E2	0.0039 12	$\alpha(K)=0.0031 \ 10; \ \alpha(L)=5.0\times10^{-4} \ 15; \ \alpha(M)=1.17\times10^{-4} \ 35$ $\alpha(N)=2.9\times10^{-5} \ 9; \ \alpha(O)=5.5\times10^{-6} \ 17; \ \alpha(P)=4.2\times10^{-7} \ 14;$ $\alpha(IPF)=0.000110 \ 26$ Mult.: $\alpha(K)\exp=0.0037 \ (1974Br02)$.
		1623.5 <i>3</i>	67 <i>14</i>	1593.428	2+			
		3216.9 8	93 19		0+	(E2)	1.51×10 ⁻³ 2	$\alpha(K)$ =0.000582 8; $\alpha(L)$ =8.77×10 ⁻⁵ 12; $\alpha(M)$ =2.012×10 ⁻⁵ 28 $\alpha(N)$ =5.03×10 ⁻⁶ 7; $\alpha(O)$ =9.54×10 ⁻⁷ 13; $\alpha(P)$ =7.48×10 ⁻⁸ 10; $\alpha(IPF)$ =0.000814 11 Mult.: $\alpha(K)$ exp=0.00058 20 (1974Br02).
3269.43	1+	568.04 7	0.9 3	2701.366				•
		980.2 5	6.4	2288.93				
		1022.5^{f} 4	5.0	2246.446				
		1294.6 6	12	1974.339				
		1538.2 5	14 <i>4</i>	1730.929				
		1610.9 <i>6</i> 1638.3 <i>5</i>	17 6 25 6	1659.010 1 1630.900				
		1676.3 3	21 6	1593.428				
		1699.1 <i>10</i>	7	1570.279				
		1754.6 7	19 8	1515.178				
		2240.6 7	21 6	1029.348				
		2901.3 3	100 10	367.943		E2(+M1)	0.00179 27	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.00079 \; 9; \; \alpha(\mathrm{L}) \! = \! 0.000121 \; 15; \; \alpha(\mathrm{M}) \! = \! 2.79 \times 10^{-5} \; 35 \\ \alpha(\mathrm{N}) \! = \! 7.0 \times 10^{-6} \; 9; \; \alpha(\mathrm{O}) \! = \! 1.33 \times 10^{-6} \; 17; \; \alpha(\mathrm{P}) \! = \! 1.04 \times 10^{-7} \; 14; \\ \alpha(\mathrm{IPF}) \! = \! 0.00085 \; 17 \\ \mathrm{Mult.:} \; \alpha(\mathrm{K}) \! = \! 0.00067 \; 10 \; (1974 \! \mathrm{Br} 02). \end{array}$
		3269.4 6	48 10	0.0	0+	(M1)	$2.00 \times 10^{-3} \ 3$	$\alpha(K)$ =0.000648 9; $\alpha(L)$ =0.0001011 14; $\alpha(M)$ =2.330×10 ⁻⁵ 33 $\alpha(N)$ =5.84×10 ⁻⁶ 8; $\alpha(O)$ =1.109×10 ⁻⁶ 16; $\alpha(P)$ =8.79×10 ⁻⁸ 12; $\alpha(IPF)$ =0.001218 17 Mult.: $\alpha(K)$ exp=0.0010 3 (1974Br02).
3288.93	1+	797.4 2 945.4 <i>3</i> 957.19 <i>13</i>	≤1 1.8 6 2.7 5	2491.430 (2343.594 2331.778 (1+,2+,3+			
		1042.4 3	5.6 16	2246.446				
		1059.6 2	6.3 16	2229.274				
		1172.8 5	3.1 13	2116.549	0+			
		1432.2 2	12.5 25	1856.784				
		1557.7 3	31 6	1730.929	2+	M1(+E2)	0.0039 12	$\alpha(K)$ =0.0031 10; $\alpha(L)$ =5.0×10 ⁻⁴ 15; $\alpha(M)$ =1.17×10 ⁻⁴ 35 $\alpha(N)$ =2.9×10 ⁻⁵ 9; $\alpha(O)$ =5.5×10 ⁻⁶ 17; $\alpha(P)$ =4.2×10 ⁻⁷ 14; $\alpha(IPF)$ =0.000110 26 Mult.: $\alpha(K)$ exp=0.0037 (1974Br02).
		1647.2 <i>3</i>	5.9 19	1641.447	2+			() · r · · · · · · · · · · · · · · · · ·
		1658.2 <i>3</i>	4.4 16	1630.900	1+			

						7	(11g) (continu	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α^d	Comments
3288.93	1+	1715.2 ^f 10 2259.5 5	3 18 <i>4</i>	1573.667 1029.348		(M1)	0.00255 4	$\alpha(K) = 0.001623 \ 23; \ \alpha(L) = 0.000255 \ 4; \ \alpha(M) = 5.90 \times 10^{-5} \ 8$ $\alpha(N) = 1.478 \times 10^{-5} \ 2I; \ \alpha(O) = 2.81 \times 10^{-6} \ 4; \ \alpha(P) = 2.212 \times 10^{-7} \ 3I;$ $\alpha(IPF) = 0.000596 \ 8$
		2921.1 3	50 5	367.943	2+	E2(+M1)	0.00179 27	Mult.: $\alpha(K)\exp=0.0013\ 3\ (1974Br02)$. $\alpha(K)=0.00077\ 8$; $\alpha(L)=0.000119\ 15$; $\alpha(M)=2.75\times10^{-5}\ 34$ $\alpha(N)=6.9\times10^{-6}\ 9$; $\alpha(O)=1.31\times10^{-6}\ 17$; $\alpha(P)=1.03\times10^{-7}\ 14$; $\alpha(IPF)=0.00086\ 17$ Mult.: $\alpha(K)\exp=0.00064\ 17\ (1974Br02)$.
		3288.9 4	100 13		0+	(M1)	2.00×10 ⁻³ 3	α (K)=0.000639 9; α (L)=9.96×10 ⁻⁵ 14; α (M)=2.296×10 ⁻⁵ 32 α (N)=5.75×10 ⁻⁶ 8; α (O)=1.093×10 ⁻⁶ 15; α (P)=8.66×10 ⁻⁸ 12; α (IPF)=0.001228 17 Mult.: α (K)exp=0.00078 12 (1974Br02).
3353.05	1+	415.50 <i>3</i> 762.10 <i>19</i>	1.10 <i>15</i> 4	2937.55 2590.79				
		1163.5 3	34 7	2189.477		M1+E2	0.0074 29	$\alpha(K)$ =0.0061 25; $\alpha(L)$ =1.0×10 ⁻³ 4; $\alpha(M)$ =2.4×10 ⁻⁴ 8 $\alpha(N)$ =5.9×10 ⁻⁵ 21; $\alpha(O)$ =1.1×10 ⁻⁵ 4; $\alpha(P)$ =8.3×10 ⁻⁷ 35; $\alpha(IPF)$ =2.2×10 ⁻⁶ 6 Mult.: $\alpha(K)$ exp=0.0078 (1974Br02).
		1711.7 <i>5</i> 1722.2 <i>6</i> 1783.3 <i>10</i> 1838.1 <i>15</i> 2323.5 <i>4</i>	59 <i>15</i> 100 <i>26</i> 18 18 ≤43	1641.447 1630.900 1570.279 1515.178 1029.348	1 ⁺ 1 ⁺ 0 ⁺			Mail.: a(K)exp=0.0076 (1774B102).
3398.1	13-	756.6 [@] 3	100 [@]	2641.57	11-	E2	0.01062 <i>15</i>	$\alpha(K)$ =0.00829 12; $\alpha(L)$ =0.001774 25; $\alpha(M)$ =0.000424 6 $\alpha(N)$ =0.0001060 15; $\alpha(O)$ =1.938×10 ⁻⁵ 27; $\alpha(P)$ =1.097×10 ⁻⁶ 15 Mult.: From DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
3452.98	(1)+	399.65 5 599.93 11 755.92 18 761.43 12 1010.2 5 1722.2 6 1811.2 4 1822.3 7 2423.7 7	0.49 20 1.1 5 2.2 10 7 3 10 100 37 7 ≤26 39 12		(1,2) ⁺ (1,2) ⁺ (1,2) ⁺ 1 ⁻ 2 ⁺ 2 ⁺ 1 ⁺			Tom See in Tol Se, ash,
3492.45	1+	532.53 6 644.93 5 901.69 17 2462.6 15	5.8 16 12.1 21 32 100	2959.93 2847.51	1 ⁻ 1 ⁻ 1 ⁻			

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	α^{d}	Comments
3611.8	14+	396.5 [@] 3	100 [@]	3215.2	12+	E2	0.0485 7	$\alpha(K)=0.0327\ 5;\ \alpha(L)=0.01199\ 17;\ \alpha(M)=0.00299\ 4$ $\alpha(N)=0.000746\ 11;\ \alpha(O)=0.0001309\ 19;\ \alpha(P)=4.29\times10^{-6}\ 6$ Mult.: $\alpha(K)\exp=0.046\ 7\ (1977Gu05)$ and DCO in $^{198}Pt(^9Be,\alpha^3n\gamma)$.
3655.06	$(1)^{+}$	468.73 <i>3</i>	5.8 16	3186.34				main a (1) exp 0.010 / (1977 cuts) and 200 in 12 (20, ash /).
		860.6 2	≤9.8	2794.16				2
		1163.5 3	56 12	2491.430		(M1+E2)	0.0074 29	$\alpha(K)$ =0.0061 25; $\alpha(L)$ =1.0×10 ⁻³ 4; $\alpha(M)$ =2.4×10 ⁻⁴ 8 $\alpha(N)$ =5.9×10 ⁻⁵ 21; $\alpha(O)$ =1.1×10 ⁻⁵ 4; $\alpha(P)$ =8.3×10 ⁻⁷ 35; $\alpha(IPF)$ =2.2×10 ⁻⁶ 6 Mult.: $\alpha(K)$ exp=0.0078 (1974Br02).
		1192.9 6	16	2461.83 2116.549				
		1538.2 <i>5</i> 1681.1 <i>15</i>	40 <i>12</i> 38	1974.339				
		1771.9 7	58 24	1882.861				
		1879.3 3	24	1775.566				
		2139.7 3	100 20	1515.178				
		2625.5 7	52 16	1029.348				
3673.0	14+	457.8 [@] 3	100@	3215.2	12+	E2	0.0335 5	$\alpha(K)$ =0.02363 33; $\alpha(L)$ =0.00746 11; $\alpha(M)$ =0.001844 26 $\alpha(N)$ =0.000460 7; $\alpha(O)$ =8.15×10 ⁻⁵ 12; $\alpha(P)$ =3.13×10 ⁻⁶ 4 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
3872.9	(14+)	261.1 [@] 3	100 [@] 12	3611.8	14+	(M1)	0.528 8	$\alpha(K)$ =0.433 6; $\alpha(L)$ =0.0725 10; $\alpha(M)$ =0.01686 24 $\alpha(N)$ =0.00423 6; $\alpha(O)$ =0.000800 11; $\alpha(P)$ =6.13×10 ⁻⁵ 9 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
		474.8 [@] 5	18 [@] 4	3398.1	13-	(E1)	0.00993 14	$\alpha(K)=0.00823$ 12; $\alpha(L)=0.001302$ 18; $\alpha(M)=0.000300$ 4 $\alpha(N)=7.49\times10^{-5}$ 11; $\alpha(O)=1.392\times10^{-5}$ 20; $\alpha(P)=9.64\times10^{-7}$ 14 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
4025.3	14-	902.3 [@] 5	100 [@]	3123.0	12-	E2	0.00740 10	$\alpha(K)$ =0.00589 8; $\alpha(L)$ =0.001152 16; $\alpha(M)$ =0.000273 4 $\alpha(N)$ =6.82×10 ⁻⁵ 10; $\alpha(O)$ =1.258×10 ⁻⁵ 18; $\alpha(P)$ =7.76×10 ⁻⁷ 11 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
4094.6	(15)	221.7 [@] 5	18 [@] 7	3872.9	(14^{+})			•
	\ - /	482.9 [@] 5	100 [@] 15	3611.8	14+			
4196.0	16 ⁺	584.2 [@] 3	100@ 8	3611.8	14 ⁺	E2	0.01868 26	$\alpha(K)$ =0.01400 20; $\alpha(L)$ =0.00356 5; $\alpha(M)$ =0.000867 12 $\alpha(N)$ =0.0002163 30; $\alpha(O)$ =3.89×10 ⁻⁵ 5; $\alpha(P)$ =1.858×10 ⁻⁶ 26 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
1206 6	16 ⁺	423.7 [@] 5	15 [@] 3	3872.9	(14^{+})			Multi. Deco III — I II De, u zily).
4296.6	10.	423.7° 3 684.9 [@] 3	15° 3 100° 16		. ,	F2	0.01212.70	(IZ) 0.01011 14 (I) 0.002200 22 (AA) 0.000552 0
		684.9° 3	100 6 16	3611.8	14+	E2	0.01312 18	$\alpha(K)$ =0.01011 14; $\alpha(L)$ =0.002298 32; $\alpha(M)$ =0.000553 8 $\alpha(N)$ =0.0001382 19; $\alpha(O)$ =2.512×10 ⁻⁵ 35; $\alpha(P)$ =1.340×10 ⁻⁶ 19 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	α^{d}	Comments
		1045.9 [@] 3					
4443.9	15-		100@	3398.1 13	E2	0.00553 8	$\alpha(K)$ =0.00446 6; $\alpha(L)$ =0.000820 11; $\alpha(M)$ =0.0001930 27 $\alpha(N)$ =4.83×10 ⁻⁵ 7; $\alpha(O)$ =8.95×10 ⁻⁶ 13; $\alpha(P)$ =5.85×10 ⁻⁷ 8 Mult.: DCO in ¹⁹⁸ Pt(9 Be, α 3n γ).
4541.1	16 ⁺	345.1 [@] 5	13 [@] 4	4196.0 16+	M1	0.247 4	$\alpha(K)$ =0.2027 29; $\alpha(L)$ =0.0337 5; $\alpha(M)$ =0.00784 11 $\alpha(N)$ =0.001965 29; $\alpha(O)$ =0.000372 5; $\alpha(P)$ =2.86×10 ⁻⁵ 4 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
		446.4 [@] 5	6 [@] 3	4094.6 (15)			
		929.2 [@] 3	100 [@] 14	3611.8 14+	E2	0.00698 10	$\alpha(K)$ =0.00557 8; $\alpha(L)$ =0.001075 15; $\alpha(M)$ =0.000254 4 $\alpha(N)$ =6.36×10 ⁻⁵ 9; $\alpha(O)$ =1.174×10 ⁻⁵ 16; $\alpha(P)$ =7.34×10 ⁻⁷ 10 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
4919.1	18+	622.6 [@] 5	25 [@] 5	4296.6 16 ⁺	E2	0.01618 23	$\alpha(K)$ =0.01227 17; $\alpha(L)$ =0.00298 4; $\alpha(M)$ =0.000721 10 $\alpha(N)$ =0.0001801 26; $\alpha(O)$ =3.25×10 ⁻⁵ 5; $\alpha(P)$ =1.628×10 ⁻⁶ 23 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
		723.0 [@] 3	100 [@] 8	4196.0 16+	E2	0.01169 <i>16</i>	$\alpha(K)$ =0.00907 13; $\alpha(L)$ =0.001993 28; $\alpha(M)$ =0.000478 7 $\alpha(N)$ =0.0001195 17; $\alpha(O)$ =2.179×10 ⁻⁵ 31; $\alpha(P)$ =1.201×10 ⁻⁶ 17 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
4928.2	$(17,18^+)$	631.6 [@] 5	100 [@]	4296.6 16 ⁺			
5181.6	18+	885.0 [@] 5		4296.6 16 ⁺	E2	0.00769 11	$\alpha(K)$ =0.00612 9; $\alpha(L)$ =0.001206 17; $\alpha(M)$ =0.000286 4 $\alpha(N)$ =7.15×10 ⁻⁵ 10; $\alpha(O)$ =1.317×10 ⁻⁵ 19; $\alpha(P)$ =8.06×10 ⁻⁷ 11 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
		985.7 [@] 5	93 [@] 19	4196.0 16+	E2	0.00621 9	$\alpha(K)$ =0.00498 7; $\alpha(L)$ =0.000938 13; $\alpha(M)$ =0.0002213 31 $\alpha(N)$ =5.53×10 ⁻⁵ 8; $\alpha(O)$ =1.024×10 ⁻⁵ 14; $\alpha(P)$ =6.55×10 ⁻⁷ 9 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
5260.0	(17-)	718.7 [@] 5	100 [@] 17	4541.1 16 ⁺	(E1)	0.00427 6	$\alpha(K)=0.00357 \ 5$; $\alpha(L)=0.000545 \ 8$; $\alpha(M)=0.0001253 \ 18$ $\alpha(N)=3.13\times10^{-5} \ 4$; $\alpha(O)=5.86\times10^{-6} \ 8$; $\alpha(P)=4.27\times10^{-7} \ 6$ Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
		816.4 [@] 5	13 [@] 6	4443.9 15-			
5344.2	18 ⁺	803.1 [@] 5	100 [@]	4541.1 16 ⁺	E2	0.00938 13	$\alpha(K)$ =0.00738 <i>10</i> ; $\alpha(L)$ =0.001527 <i>22</i> ; $\alpha(M)$ =0.000364 <i>5</i> $\alpha(N)$ =9.10×10 ⁻⁵ <i>13</i> ; $\alpha(O)$ =1.669×10 ⁻⁵ <i>24</i> ; $\alpha(P)$ =9.75×10 ⁻⁷ <i>14</i> Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
5568.3	(19 ⁻)	224.0 [@] 5	65 [@] 20	5344.2 18+	(E1)	0.0560 8	$\alpha(K)$ =0.0458 7; $\alpha(L)$ =0.00780 12; $\alpha(M)$ =0.001812 27 $\alpha(N)$ =0.000450 7; $\alpha(O)$ =8.21×10 ⁻⁵ 12; $\alpha(P)$ =4.99×10 ⁻⁶ 7 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3ny).
		308.3 [@] 5	100 [@] 25	5260.0 (17 ⁻)	E2	0.0982 15	$\alpha(K)=0.0590$ 9; $\alpha(L)=0.0295$ 5; $\alpha(M)=0.00747$ 11 $\alpha(N)=0.001859$ 28; $\alpha(O)=0.000321$ 5; $\alpha(P)=7.62\times10^{-6}$ 11 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	α^d	Comments
5568.3	(19 ⁻)	386.8 [@] 5	10 [@] 5	5181.6 18+	(E1)	0.01552 22	$\alpha(K)$ =0.01283 18; $\alpha(L)$ =0.002067 30; $\alpha(M)$ =0.000478 7 $\alpha(N)$ =0.0001190 17; $\alpha(O)$ =2.203×10 ⁻⁵ 32; $\alpha(P)$ =1.480×10 ⁻⁶ 21 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
		649.1 [@] 5	20 [@] 8	4919.1 18+	(E1)	0.00522 7	$\alpha(K)$ =0.00435 6; $\alpha(L)$ =0.000670 9; $\alpha(M)$ =0.0001542 22 $\alpha(N)$ =3.85×10 ⁻⁵ 5; $\alpha(O)$ =7.19×10 ⁻⁶ 10; $\alpha(P)$ =5.18×10 ⁻⁷ 7 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
5915.8	20+	996.7 [@] 5	100 [@]	4919.1 18+	E2	0.00608 9	$\alpha(K)$ =0.00488 7; $\alpha(L)$ =0.000914 13; $\alpha(M)$ =0.0002157 30 $\alpha(N)$ =5.39×10 ⁻⁵ 8; $\alpha(O)$ =9.98×10 ⁻⁶ 14; $\alpha(P)$ =6.41×10 ⁻⁷ 9 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
6162.2	(21-)	246.4 [@] 5	50 [@] 25	5915.8 20+	(E1)	0.0444 7	$\alpha(K)$ =0.0364 5; $\alpha(L)$ =0.00613 9; $\alpha(M)$ =0.001423 21 $\alpha(N)$ =0.000354 5; $\alpha(O)$ =6.47×10 ⁻⁵ 10; $\alpha(P)$ =4.01×10 ⁻⁶ 6 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).
		593.9 [@] 5	10×10 ¹ @ 4	5568.3 (19 ⁻)	E2	0.01800 25	$\alpha(K)$ =0.01352 19; $\alpha(L)$ =0.00340 5; $\alpha(M)$ =0.000826 12 $\alpha(N)$ =0.0002062 29; $\alpha(O)$ =3.72×10 ⁻⁵ 5; $\alpha(P)$ =1.795×10 ⁻⁶ 25 Mult.: DCO in ¹⁹⁸ Pt(⁹ Be, α 3n γ).

[†] From ¹⁹⁹Hg(n, γ) E=th:secondary, unless otherwise stated. [‡] From ¹⁹⁹Hg(n, γ) E=th:secondary and ²⁰⁰Tl ε decay, based on α (K)exp and $\gamma\gamma(\theta)$, unless otherwise stated.

[#] From 200 Tl ε decay.

From ¹⁹⁸Pt(⁹Be,α3nγ).
 From ¹⁹⁸Pt(α,2nγ).

^a From ²⁰⁰Au β^- decay (18.7 h). ^b From ²⁰⁰Hg(n,n' γ).

^c From ²⁰⁰Au β ⁻ decay (48.4 min).

^d Additional information 1.

^e Multiply placed with undivided intensity.

f Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{200}_{\ 80} Hg_{120}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Legend

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{200}_{80}{\rm Hg}_{120}$

Level Scheme (continued)

alative photon branching from each levi

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

---- γ Decay (Uncertain)

 $^{200}_{\,80}\mathrm{Hg}_{120}$

		Ty	/pe	Author	History Citation	Literature Cutoff Date
			aluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023
$Q(\beta^-) = -1364.9$	18; S(n)=7754.10 <i>20</i> ;	S(p)=8234	3; $Q(\alpha)=133$	5.8 22 2021Wa16	
					²⁰² Hg Levels	
				Cross	Reference (XREF) Flags	
			decay		201 Hg(n, γ) E=70.9 eV re 201 Hg(n, γ) E=210.3 eV re 202 Hg(γ , γ') 202 Hg(n, $n'\gamma$) 202 Hg(p,p')	
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XR	EF		Comments
0.0	0+	stable	ABCDEFG		$\delta v(^{202}\text{Hg},^{198}\text{Hg}) = -10100^{\circ}$ $\delta < r^2 > (^{202}\text{Hg},^{198}\text{Hg}) = +0.10^{\circ}$	MHz 180 (2021Da01). 97 fm ² 3(stat) 14(syst) (2021Da01).
439.564 [‡] 10 959.89 5	2 ⁺	27.35 ps 23 13.5 ps 28	ABCDEFG	IJK MNO J	²⁰² Hg(γ,γ'). B(E2)↑=0.608 5, weighted and 0.605 5 (1980Sp05) E: From g=+0.392 31 in 1 perturbed angular correlation (1990Ba40), 0.44 9 (1980Gp05). G: From 1980Sp05,2021St were deduced using the technique. The agreement but the former value is reference to th	5. Other: 24 ps 5 (1955Me35) in average of B(E2)↑=0.616 9 (1979Bo16) Other: B(E2)↑=0.65 8 (1970Ka09). 995Br34,2020StZV using the transient field ation technique. Others: g=0.37 4 6Ko02), 0.51 14 (1970Ka09) and 0.50 10 ZZ. Other: 0.32 14 (1979Bo16). Both values reorientation effect in Coulomb excitation at between 1980Sp05 and 1979Bo16 is poor, ecommended by the evaluator. 1=2. 10 and B(E2)↑(2₁ to 2₂)=0.053 18
				5	$\Gamma_{1/2}$: Weighted average of ps 4 from B(E2,520.13 γ	11 ps 4 from B(E2) \uparrow in 1979Bo16 and 16 $)(e^2b^2)$ in 1985Ag01. Others: 28.6 ps 26) and 29 ps 5 from B(E2,520.13 γ)(W.u.) in
1119.91 [‡] <i>10</i>	4+	2.05 ps <i>3</i>	CDEF]	(1985Ag01) and 2.03 ps B(E2) data.	2.05 ps 4 (2019Ke01), 2.11 ps 19 6 (1979Bo16). Values determined from the 995Br34,2020StZV using the transient field
1182.24 <i>6</i> 1296.5? ^{<i>a</i>} <i>6</i>	2+	11 ps +4-7			Π^{π} : 129.2 γ from 4 ⁺ , 222.2 γ $\Gamma_{1/2}$: Weighted average of	V M1+E2 to 2^+ , 1182.4 γ to 0^+ . 11 ps +2- $I0$ from B(E2,742.8 γ)(W.u.) and ,222.2 γ)(W.u.) in 2019Ke01.
1296.5 ?** 6 1311.54 7	4+	5.7 ps 5	EFG CD		XREF: $l(1332)$. r^{π} : $L(p,t)=4$, 351.6 γ (E2) t	o 2 ⁺ .

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
1347.89 8	(1+,2+)		A DEFG I 1MNO	$T_{1/2}$: Weighted average of 5.4 ps 7 from B(E2,351.6 γ)(W.u.) and 5.9 ps 6 from B(E2,872.0 γ)(W.u.) in 2019Ke01. XREF: l(1332). J ^{π} : 908.4 γ (M1+E2) to 2 ⁺ ; strong γ -ray feeding from 1 ⁻ ,2 ⁻ thermal capture state in (n, γ);
1389.58 8	2+	8.0 ps 29	DEFG IJ NO	XREF: J(1385). J ^π : 1389.5 γ (E2) to 0 ⁺ , 950.0 γ (E2+M1), Δ J=0 to 2 ⁺ . T _{1/2} : From B(E2,1389.5 γ)(W.u.)=0.013 <i>I</i> in 2019Ke01.
1411.35 <i>12</i> 1457.5 ^a <i>17</i> 1508.8 ^a <i>10</i> 1524.3 ^a <i>12</i>	0+		A I N EFG EFG EFG	J^{π} : L(p,t)=0; 971.85 γ (E2) to 2 ⁺ .
1561.96 9	3(+)		D I N	XREF: N(1564.6). J^{π} : 602 γ D to 2 ⁺ , 250 γ D to 4 ⁺ , 379.7 γ D,E2 to 2 ⁺ ; no γ to 0 ⁺ .
1564.78 <i>8</i> 1575.48 <i>12</i>	0 ⁺ (2 ⁺)	2.1 ps 6	A DEFG I NO DEFG IJ NO	J^{π} : 1125 γ to 2 ⁺ , L(p,t)=0. XREF: E(1576.4)F(1576.4)G(1576.0)J(1574). J^{π} : 456.3 γ to 4 ⁺ ; 615.6 γ (E2),ΔJ=0 to 2 ⁺ . $T_{1/2}$: From B(E2,1135.6 γ)(W.u.)=0.47 2 in 2019Ke01. Other: 1.1 ps 4 from B(E2,615.6 γ)(W.u.)=17 6 in 2019Ke01.
1624.02 <i>10</i> 1643.67 <i>10</i>	(4 ⁺) 0 ⁺		I K N A DEFG IJ MNO	J ^π : 312 γ (E2),ΔJ=0 to 4 ⁺ ; 1184.5 γ (E2) to 2 ⁺ ; no γ to 0 ⁺ . XREF: E(1642.4)F(1642.4)G(1641.5)J(1644)M(1644.1). J ^π : L(p,t)=0; p(θ) in 202 Hg(p,p').
1655.8 ^b 13 1678.24 13	(0 ⁺) 2 ⁺		DEFG I N	J ^π : From t(θ) in ²⁰⁴ Hg(p,t) (2013Be21). XREF: E(1677.1)F(1677.1)G(1676.7). J ^π : 718.3 γ M1+E2, Δ J=0 to 2 ⁺ , 496.2 γ (M1+E2) to 2 ⁺ .
1724.80 <i>11</i>	(4 ⁺)		EFG I K N	XREF: E(1722.5)F(1722.5)G(1722.1). J^{π} : 413.1 γ M1+E2 to 4 ⁺ ; 542.6 γ (E2) to 2 ⁺ .
1745.99 8	1,2+		A DEF I N	XREF: E(1747.8)F(1747.8)N(1748.2). J^{π} : 1306.37 γ to 2 ⁺ , 1746.4 γ to 0 ⁺ ; possible direct feeding in 202 Au β^- decay [J^{π} =(1 ⁻)].
1778.9 ^b 6 1788.39 25	(0 ⁺) 2 ⁺		N DEFG	J ^{π} : From t(θ) in ²⁰⁴ Hg(p,t) (2013Be21). XREF: E(1787)F(1787)G(1786). J ^{π} : 1789.0 γ to 0 ⁺ ; 476.5 γ to 4 ⁺ .
1794.05 20	2+	0.09 ps 5	DEFG Ij NO	XREF: E(1792.9)F(1792.9)G(1792.5)j(1798). J ^{π} : L(p,t)=2; 1354.8 γ M1+E2 to 2 ⁺ , 1794.4 γ to 0 ⁺ . T _{1/2} : From B(E2,833 γ)(W.u.)=6 3 in 2019Ke01. Other: 0.08 ps 6 from B(E2,1794.4 γ)(W.u.)=0.13 6 in 2019Ke01.
1800.9 ^a 19 1823.50 12	(2)+	0.27 ps <i>10</i>	EFG j DEFG IJ NO	XREF: j(1798). XREF: E(1822.7)F(1822.7)G(1822.1)J(1824). J ^{π} : 1384.0 γ (E2+M1) to 2 ⁺ , 1823.1 γ to 0 ⁺ . T _{1/2} : From B(E2,1823.1 γ)(W.u.)=0.052 3 in 2019Ke01.
1852.26 <i>17</i>	2+		A DEFG IJ	XREF: A(1851.7). J^{π} : 1412 γ (E2+M1), Δ J=0 to 2 ⁺ ; 732.3 γ to 4 ⁺ , 1853.0 γ to 0 ⁺ .
1861.7 3	(3)		DEF I N	XREF: E(1863.0)F(1863.0). J^{π} : 549.7γ D (not ΔJ=0) to 4 ⁺ ; 472.5γ to 2 ⁺ .
1903.1 ^b 4 1915.0 ^a 11	1.2+		EFG N EFG	XREF: E(1901.3)F(1901.3)G(1900.9). J^{π} : 1519.6 γ to 2^{+} , 1959.4 γ to 0^{+} .
1959.43 <i>20</i> 1965.62 [@] <i>12</i>	1,2 ⁺ 5 ⁻		A DEFG I C IJK M O	J^{π} : 654 γ (E1) to 4 ⁺ , p(θ) in 202 Hg(p,p').
1966.00 <i>16</i>	2+		DEFG I NO	J^{π} : 554.8 γ to 0 ⁺ , 653.7 γ to 4 ⁺ .
1988.82 [‡] 22	6+	0.647 ps <i>3</i>	C K NO	J ^π : 868.9 γ E2 to 4 ⁺ . T _{1/2} : From B(E2,868.9 γ)(W.u.)=24.9 <i>I</i> in 2019Ke01. Other: 0.65 ps 6 from B(E2,868.9 γ)=0.175 e ² b ² <i>I5</i> in 1985Ag01.

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF		Comments
1991.8 ^a 17		,	EFG J		XREF: J(1995).
2059.8 [@] 5	(7-)	10.4 ns 4	С	N	J^{π} : 84.2 γ to 5 ⁻ ; systematics in neighboring nuclei. $T_{1/2}$: From 164 γ -440 γ (Δ t) and the centroid-shift analysis (2021Su02).
2071.27 10	(2)+		DEFG IJ	N	XREF: J(2067). J^{π} : L(p,t)=2; 1631.7 γ to 2 ⁺ .
2096.1 ^a 8 2111.8 ^b 1			E G	M	(4,1) - 1, - 2, - 1, - 1, - 1, - 1, - 1, - 1,
2126.38 15	(1,2)+		DEF I	N N	XREF: E(2128.7)F(2128.7). J^{π} : 1687 γ M1+E2 to 2+; 564 γ to (3+); t(θ) in ²⁰⁴ Hg(p,t) (2013Be21) suggests J^{π} =(0+).
2133.91 <i>14</i> 2142.5 ^a <i>18</i>			IJ EFG	MNO	
2155.6 ^b 2 2161.87 20			DEFG I	N M	
$2101.87\ 20$ $2196.3^{b}\ 4$			EFG 1	N	
2190.3 4 $2205.3 b$ 3			ErG	N	
2223.1 [@] 7	(9-)	1.4 ns <i>3</i>	С	N	$T_{1/2}$: From 404γ - $164\gamma(\Delta t)$ and the centroid-shift analysis (2021Su02). J^{π} : 163.3 γ to (7 ⁻).
2223.5 ^b 1			EFG J	N	XREF: J(2215).
2249.70 23	(2^{+})		EFG I K	N	J^{π} : 524.9 γ to 4 ⁺ ; feeding from $J^{\pi}=1^{-}$, 2 ⁻ neutron resonance capture state.
2280.16 <i>12</i>	$(1^+,2)$		D	N	J^{π} : 1840.4 γ to 2 ⁺ ; 718.3 γ to 3 ⁺ ; feeding from J^{π} =1 ⁻ ,2 ⁻ neutron capture state.
2283.6 ^a 23			EFG j		XREF: j(2289).
2292.1 3			efg Ij	n	XREF: $e(2295.4)f(2295.4)g(2295.0)j(2289)n(2294.7)$. J^{π} : 902.5 γ (E2) to 2 ⁺ .
2293.20 15	(4+)	0.042 ps <i>11</i>	efg Ij	n0	XREF: e(2295.4)f(2295.4)g(2295.0)j(2289)n(2294.7). J^{π} : 669.3 γ to (4 ⁺); 1853.5 γ to 2 ⁺ ; J>3 from excitation function in 202 Hg(n,n' γ). $T_{1/2}$: From B(E2,1853.5 γ)(W.u.)=3.40 5 in 2019Ke01.
2309.2 4	(3 ⁻)		DEFG I	N	XREF: E(2310.9)F(2310.9)G(2310.5). J^{π} : 1869.6 γ to 2 ⁺ ; J>3 from excitation function in 202 Hg(n,n' γ); feeding from J^{π} =1 ⁻ ,2 ⁻ neutron capture state.
2323.27 10			D I	N	-
2339.29? 31	$(1^+,2^+)$		EFG	N	XREF: N(2342.1). J^{π} : 991.4 γ to (1 ⁺ ,2 ⁺); feeding from J^{π} =1 ⁻ ,2 ⁻ neutron resonance capture state; observation in Coulomb Excitation.
2356.83 18	3-		D IJ	NO	J^{π} : From p(θ) in 202 Hg(p,p'); J>3 from excitation function in 202 Hg(n,n' γ); 1045 γ to 4 ⁺ , 1917.2 γ to 2 ⁺ ; population in Coulomb Excitation.
2367.4 ^a 20			EFG		
2371.9 ^b 2				N	
2415.4 ^b 8			EFG	N	XREF: E(2417.4)F(2417.4)G(2417.0).
2427.5 ^b 8			EFG	N	XREF: E(2428.5)F(2428.5)G(2428.1).
2441.1 ^b 2				N	
2454.9 10			EFG	0	XREF: E(2456.8)F(2456.8)G(2456.4).
2461.7 ^b 2			J	N	XREF: J(2466).
2473.4 ^b 4			EFG	N	
2516.5 <i>3</i>	(2^{+})		EFG I	NO	XREF: E(2515)F(2515)G(2515)N(2515.6).

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF		Comments
					J^{π} : 2516.5 γ to 0 ⁺ .
2523 <mark>&</mark> 4			J		,
2550.3 ^b 2			EFG	N	
2560.1 ^b 2	(4^{+})		J	N	XREF: J(2564).
					J^{π} : From $p(\theta)$ in 202 Hg(p,p').
2570.7 ^b 10	(0^+)		EFG	N	XREF: E(2568.1)F(2568.1)G(2567.7).
					J^{π} : From $t(\theta)$ in $^{204}Hg(p,t)$ (2013Be21).
2584.6 ^b 5				N	
2598.5 <mark>b</mark> 2	0_{+}			N	J^{π} : From $t(\theta)$ in $^{204}Hg(p,t)$ (2013Be21).
2605.0 ^b 4			J	N	XREF: J(2610).
2639.1 ^b 15				N	
2652.9 ^b 3				N	
2675.7 ^b 3				N	
2681.0 <i>10</i>	(2^{+})	0.29 ps 3		0	J^{π} : 2681 γ to 0 ⁺ .
,					$T_{1/2}$: From B(E2,2681 γ)(W.u.)=0.20 2 in 2019Ke01.
2685.7 ^b 5	(0^{+})			N	J^{π} : From $t(\theta)$ in ${}^{204}Hg(p,t)$ (2013Be21).
2706.8 <i>5</i>	3-	≤23.3 ps	EFG J	NO	XREF: E(2705)F(2705)G(2705)J(2710)N(2708.5).
					J^{π} : From $\alpha(\theta)$ in Coulomb Excitation; $p(\theta)$ in ${}^{202}\text{Hg}(p,p')$.
					$T_{1/2}$: Upper limit from B(E3)(W.u.)=21 <i>I</i> in 2019Ke01. Other: <20.7 ps an upper limit from B(E3) \uparrow =0.42 <i>4</i> in 1991Li03.
					B(E3) \uparrow =0.42 4 from Coulomb Excitation (1991Li03).
2731.4 ^b 3			EFG	N	XREF: E(2729)F(2729)G(2728).
2748.2 ^b 3				N	
2755.0 ^b 3			E G J	N	XREF: E(2751.6)G(2751.2)J(2752).
2781.7 ^b 3				N	
2814.7 ^b 6				N	
2821.2 [@] 9	(11^{-})		С	-	J^{π} : 598.1 γ to (9 ⁻).
2824.8^{b} 3	(11)			N	5 · 550.17 to (5).
2831 ^a 4			EFG		XREF: G(2830).
2847.8 ^b 4			EFG	N	XREF: E(2845.5)F(2845.5)G(2845.1).
2858.1 ^a 24			EFG		
2872.2 ^b 4				N	
2882.4 ^b 5				N	
2897 ^a 3			EFG		
2906.2 ^b 18			EFG	N	XREF: E(2908.9)F(2908.9)G(2908.5).
2923.8 ^b 4			EFG J	N	XREF: E(2918.3)F(2918.3)G(2917.9)J(2923).
2934.0 ^b 8				N	
2950.7 ^a 17			EFG		
2970.1 ^a 10			EFG		
2997.5 ^a 8 3017.9 ^a 6			EFG EFG		
3028 ^a 3			EFG J		XREF: G(3027)J(3026).
3058.8 ^a 22			EFG		1111111 (0027)0(0020).
3059 <mark>&</mark> 4	5-		J		J^{π} : From $p(\theta)$ in $^{202}Hg(p,p')$.
3080.2 ^a 21			EFG J		XREF: J(3087).
3118 <mark>&</mark> 4			J		
3164.1 7	3-		J	0	XREF: J(3166).
					J^{π} : From $p(\theta)$ in $^{202}Hg(p,p')$; population in Coulomb Excitation.

E(level) [†]	J^{π}	T _{1/2}	XF	REF	Comments
3179 ^a 3			EFG		
3200.1 ^a 14			EFG		
3222.5 ^a 13			EFG		
3254.3 ^a 21			EFG		
3264 <mark>&</mark> 4				J	
3295 ^a 4			EFG	J	XREF: J(3299).
3311.0 ^a 21			EFG		
3350.4 ^a 13			EFG		
3416 ^a 3			EFG		
3481 ^a 3			EFG		
3514.0 [#] 10	(12^{+})		С		J ^{π} : 692.8 γ to (11 ⁻); systematics of similar structures in neighboring nuclei.
3605.9 ^a 17			FFC		configuration: Probable $v(i_{13/2}^{-2})$.
	(12-)		EFG		TT 0561 (41-)
3777.3 [@] 10	(13^{-})		C		J^{π} : 956.1 γ to (11 ⁻).
3918.3 [#] 11			С		
4156.4 [@] 11			C		
4493.9 [@] <i>13</i>			C		
4648.0 [#] <i>13</i>			C		
4924 5	1-	0.30 eV 5	1	Н	J^{π} : 4924γ E1 to 0 ⁺ ; excitation in 202 Hg(γ,γ'). T _{1/2} : From 1974Te01 in 202 Hg(γ,γ').
5490.3 [#] <i>14</i>			С		
5710.3 [#] <i>14</i>			С		
6339.3 [#] <i>15</i>			C		
7126.9 [#] 16			C		
7663.5 [#] 17			C		
1003.3" 1/			C		

[†] From a least-square fit to E γ , unless otherwise stated. ‡ Band(A): Ground-state band. # Seq.(B): γ -ray cascade based on the (12⁺) state. @ Seq.(C): γ -ray cascade based on the 5⁻ state. & From 202 Hg(p,p'). a From 201 Hg(n, γ) E=43 eV res. b From 204 Hg(p,t).

							•	γ (²⁰² Hg)	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	E_f J	$\frac{\pi}{f}$ M	ult.	δ	α&	Comments
439.564	2+	439.56 1	100	0.0	E2			0.0371 5	$\alpha(K)$ =0.0259 4; $\alpha(L)$ =0.00851 12; $\alpha(M)$ =0.002108 30 $\alpha(N)$ =0.000526 7; $\alpha(O)$ =9.29×10 ⁻⁵ 13; $\alpha(P)$ =3.42×10 ⁻⁶ 5 B(E2)(W.u.)=17.27 15 E _Y ,I _Y : From 1975Co19 in ²⁰² Tl ε decay.
959,89	2+	520.13 7	100 <i>I</i>	439.564 2	+ M1	+E2	+0.9 1	0.0566 34	Mult.: From K/L(exp)=2.6 and (L1+L2)/L3(exp)=3.5 (1953Be79), and α (K)exp=0.03, α (exp)=0.041, α (L1)exp=0.0078, α (L2)exp=0.0011, α (L3)exp=0.0025 (1957Ha97). α (K)=0.0456 29; α (L)=0.0084 4; α (M)=0.00198 8
)57.07	-	320.13 /	100 1	133.301 2	1,11	122	10.51	0.0300 37	α (N)=0.000497 21; α (O)=9.3×10 ⁻⁵ 4; α (P)=6.3×10 ⁻⁶ 4 B(M1)(W.u.)=0.0054 13; B(E2)(W.u.)=5.9 14
									E_{γ} : From 1975Co19 in 202 Tl ε decay.
									I_{γ} : From 2019Ke01 in Coulomb Excitation. Mult., δ : From 520 γ -439 $\gamma(\theta)$ in 1973BeYM [A ₂ =-0.27 3, A ₄ =+0.13
									S]; Other: A ₂ =0.11 <i>I</i> , A ₄ =0.012 <i>I6</i> from $\gamma(\theta)$ in 2019Ke01, consistent with ΔJ =0.
		960.1 <i>1</i>	13.5 4	0.0)+ E2			0.00654 9	$\alpha(K)=0.00524$ 7; $\alpha(L)=0.000996$ 14; $\alpha(M)=0.0002354$ 33
									$\alpha(N)=5.89\times10^{-5} 8$; $\alpha(O)=1.088\times10^{-5} 15$; $\alpha(P)=6.89\times10^{-7} 10$
									B(E2)(W.u.)=0.083 17 E_{γ} : From 1989Ga07 in 202 Hg(n,n' γ).
									I_{γ} : Weighted average of 11.7 12 (1984Ta09) in ²⁰² Tl ε decay, 13.0 14 (1975Br02) in ²⁰¹ Hg(n,γ) E=thermal, 14.9 12 (1989Ga07) in ²⁰² Hg(n,n'γ) and 14.0 3 (2019Ke01), 13.0 5 (1979Bo16), and 15.4 18 (1985Ag01) in Coulomb Excitation.
1110.01		(00.4.1	100	100 561 0	± 52			0.01221 10	Mult.: $\alpha(K)\exp(439\gamma)/\alpha(K)\exp(961\gamma)=5.5\ 7\ (1965Le04)$.
1119.91	4+	680.4 <i>I</i>	100	439.564 2	± E2			0.01331 19	$\alpha(K)$ =0.01024 14; $\alpha(L)$ =0.002339 33; $\alpha(M)$ =0.000563 8 $\alpha(N)$ =0.0001407 20; $\alpha(O)$ =2.56×10 ⁻⁵ 4; $\alpha(P)$ =1.358×10 ⁻⁶ 19 B(E2)(W.u.)=26.5 4
									Mult.: A ₂ =0.30 3 (1989Ga07), A ₂ =0.16 2, A ₄ =-0.01 13 (2019Ke01).
1182.24	2+	222.2 1	100‡ 4	959.89 2	⁺ M1	+E2	-0.13 <i>3</i>	0.815 12	$\alpha(K) = 0.667 \ 10; \ \alpha(L) = 0.1134 \ 16; \ \alpha(M) = 0.0264 \ 4$
									$\alpha(N)=0.00663 \ 9; \ \alpha(O)=0.001252 \ 18; \ \alpha(P)=9.47\times10^{-5} \ 15$ B(M1)(W.u.)=0.07 +5-3; B(E2)(W.u.)=9 +7-5
									Mult., δ : A ₂ =0.12 2, A ₄ =-0.007 22 (2019Ke01); Other: A ₂ =0.40 3 (1989Ga07), Δ J=0 transition.
		742.8 1	51.4 [‡] 11	439.564 2	r+ M1	+E2	2.1 4	0.0150 <i>16</i>	$\alpha(K)$ =0.0120 13; $\alpha(L)$ =0.00233 19; $\alpha(M)$ =0.00055 4 $\alpha(N)$ =0.000138 11; $\alpha(O)$ =2.55×10 ⁻⁵ 20; $\alpha(P)$ =1.62×10 ⁻⁶ 19 B(M1)(W.u.)=0.00019 +14-9; B(E2)(W.u.)=0.55 +36-21 I _γ : Others: 60 9 (1989Ga07), 50 5 (1975Br02), 36 (1984Sc19). Mult.,δ: A ₂ =0.21 4, A ₄ =-0.039 54 (2019Ke01); Other: A ₂ =0.44 2 (1989Ga07), ΔJ=0 transition.
		1182.4 [@] 4	11.3 [@] 28	0.0)+ [E2	2]		0.00437 6	$\alpha(K)$ =0.00355 5; $\alpha(L)$ =0.000626 9; $\alpha(M)$ =0.0001467 21

γ (²⁰²Hg) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\&}$	Comments
1311.54	4+	129.8# 5	13.9# 21	1182.24	2 ⁺	[E2]	1.92 4	$\alpha(N)=3.67\times10^{-5}$ 5; $\alpha(O)=6.83\times10^{-6}$ 10; $\alpha(P)=4.64\times10^{-7}$ 7; $\alpha(IPF)=2.69\times10^{-6}$ 5 B(E2)(W.u.)=0.015 +10-7 $\alpha(K)=0.439$ 7; $\alpha(L)=1.108$ 25; $\alpha(M)=0.289$ 7 $\alpha(N)=0.0717$ 16; $\alpha(O)=0.01195$ 27; $\alpha(P)=6.04\times10^{-5}$ 10 I _y : Others: 20 (1984Sc19) and 17 8 (2019Ke01). B(E2)(W.u.)=2637 403 using the adopted $T_{1/2}$, Iy and α is anomalously high and violates RUL.
		351.6 <i>1</i>	100‡ 4	959.89	2+	(E2)	0.0674 9	$\alpha(K)$ =0.0432 6; $\alpha(L)$ =0.01824 26; $\alpha(M)$ =0.00458 6 $\alpha(N)$ =0.001142 <i>I6</i> ; $\alpha(O)$ =0.0001988 28; $\alpha(P)$ =5.63×10 ⁻⁶ 8 B(E2)(W.u.)=130 <i>I3</i>
		872.0 <i>I</i>	54 3	439.564	2+	[E2]	0.00793 11	Mult.: A_2 =0.34 3 (1989Ga07). $\alpha(K)$ =0.00629 9 ; $\alpha(L)$ =0.001249 17 ; $\alpha(M)$ =0.000297 4 $\alpha(N)$ =7.41×10 ⁻⁵ 10 ; $\alpha(O)$ =1.365×10 ⁻⁵ 19 ; $\alpha(P)$ =8.30×10 ⁻⁷ 12 B(E2)(W.u.)=0.75 8 I_{γ} : Weighted average of 51 6 (2019Ke01), 59 6 (1975Br02), 50 4
1347.89	(1+,2+)	388.0 <i>I</i>	50 6	959.89	2+	(M1+E2)	0.12 6	(1989Ga07) and 58 5 (2021Su02). Other: 62 (1984Sc19). $\alpha(K)=0.09$ 6; $\alpha(L)=0.019$ 6; $\alpha(M)=0.0045$ 12 $\alpha(N)=0.00112$ 31; $\alpha(O)=2.1\times10^{-4}$ 6; $\alpha(P)=1.3\times10^{-5}$ 8 Mult.: $A_2=0.08$ 6 (1989Ga07).
		908.4 1	100 6	439.564	2+	(M1+E2)	0.013 6	$\alpha(K)$ =0.011 5; $\alpha(L)$ =0.0019 7; $\alpha(M)$ =4.4×10 ⁻⁴ 17 $\alpha(N)$ =1.1×10 ⁻⁴ 4; $\alpha(O)$ =2.0×10 ⁻⁵ 8; $\alpha(P)$ =1.5×10 ⁻⁶ 7 Mult.: A ₂ =0.03 7 (1989Ga07).
1389.58	2+	207.3 2	9.6 <i>21</i>	1182.24	2+	[M1,E2]	0.67 33	$\alpha(K)$ =0.49 33; $\alpha(L)$ =0.1403 32; $\alpha(M)$ =0.0345 24 $\alpha(N)$ =0.0086 6; $\alpha(O)$ =0.001536 26; $\alpha(P)$ =7.E-5 5
		429.8 2	32 7	959.89	2+	(E2+M1)	0.09 5	B(M1)(W.u.)=0.018 7 if M1, B(E2)(W.u.)=157 66 if E2. α (K)=0.07 4; α (L)=0.014 5; α (M)=0.0033 10 α (N)=8.3×10 ⁻⁴ 26; α (O)=1.5×10 ⁻⁴ 5; α (P)=1.0×10 ⁻⁵ 6 Mult.: A ₂ =0.28 11 (1989Ga07), Δ J=0 transition.
		950.0 <i>I</i>	100 7	439.564	2+	(E2+M1)	0.012 5	B(M1)(W.u.)=0.0067 27 if M1, B(E2)(W.u.)=14 6 if E2. α (K)=0.010 5; α (L)=0.0017 6; α (M)=3.9×10 ⁻⁴ 15 α (N)=1.0×10 ⁻⁴ 4; α (O)=1.8×10 ⁻⁵ 7; α (P)=1.3×10 ⁻⁶ 6 Mult.: A ₂ =0.14 4 (1989Ga07), Δ J=0 transition.
		1389.5 2	11 4	0.0	0+	(E2)	0.00325 5	B(M1)(W.u.)=0.0020 7 if M1, B(E2)(W.u.)=0.80 29 if E2. α (K)=0.00264 4; α (L)=0.000445 6; α (M)=0.0001037 15 α (N)=2.60×10 ⁻⁵ 4; α (O)=4.86×10 ⁻⁶ 7; α (P)=3.43×10 ⁻⁷ 5; α (IPF)=3.42×10 ⁻⁵ 5 B(E2)(W.u.)=0.013 7
1411.35	0^+	971.85 <i>13</i>	100	439.564	2+	(E2)	0.00638 9	Mult.: A_2 =0.52 <i>17</i> (1989Ga07). $\alpha(K)$ =0.00512 7; $\alpha(L)$ =0.000969 <i>14</i> ; $\alpha(M)$ =0.0002288 <i>32</i>

γ (²⁰²Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α <mark>&</mark>	Comments
								$\alpha(N)=5.72\times10^{-5} 8$; $\alpha(O)=1.058\times10^{-5} 15$; $\alpha(P)=6.73\times10^{-7} 9$
								E_{γ} : From ²⁰² Au β^- decay. Mult.: A ₂ =0.02 21 (1989Ga07).
1508.8		549.8 9	100	959.89	2+			$A_2 = 0.02 \ 21 \ (1989 \ \text{GaV})$. E_{γ}, I_{γ} : From $^{201} \text{Hg}(n, \gamma) \ E = 43 \ \text{eV}$ res.
1561.96	3(+)	172.1 <i>4</i>	33 16	1389.58	2 ⁺	D		A_{γ} , A_{γ} . From A_{γ}
1301.90	3.	250.6 2	39 12	1311.54	_	D D		Mult.: $A_2 = -0.32$ 12 (1969Ga07). Mult.: $A_2 = -0.31$ 20 (1989Ga07).
		379.7 <i>1</i>	66 13	1182.24	2+	D,E2		Mult.: $A_2 = 0.31 \ 20 \ (1989 \ \text{Ga07})$.
		442.3 8	≈40	1119.91	4 ⁺	2,22		114. 11 ₂ 0.12 11 (1707 0401).
		602.1 2	100 16	959.89		D		Mult.: $A_2 = -0.25 \ 8 \ (1989 \text{Ga} 07)$.
		1122 [@] 1	≈10 [@]	439.564				-
1564.78	0^{+}	1125.20 8	100	439.564		(E2)	0.00480 7	$\alpha(K)=0.00389\ 5;\ \alpha(L)=0.000697\ 10;\ \alpha(M)=0.0001637\ 23$
						,		$\alpha(N)=4.09\times10^{-5}$ 6; $\alpha(O)=7.61\times10^{-6}$ 11; $\alpha(P)=5.09\times10^{-7}$ 7;
								$\alpha(IPF)=4.45\times10^{-7} 6$
								E_{γ} : From ²⁰² Au β^- decay.
								Mult.: A ₂ =0.03 11 (1989Ga07).
1575.48	(2^+)	185.8 [@] 4	33 @	1389.58	2+	[M1,E2]	0.9 4	$\alpha(K)=0.75$; $\alpha(L)=0.20720$; $\alpha(M)=0.0518$
	, ,					. , ,		$\alpha(N)=0.0128 \ 18; \ \alpha(O)=0.00227 \ 20; \ \alpha(P)=9.E-5 \ 7$
								B(M1)(W.u.)=0.12 4 if M1; B(E2)(W.u.)=1337 475 if E2 using the
								adopted $T_{1/2}$, $I\gamma$ and α is anomalously high and violates RUL.
		227.2 [@] 6	46 [@]	1347.89	$(1^+,2^+)$	(M1+E2)	0.51 26	$\alpha(K)=0.38\ 26;\ \alpha(L)=0.102\ 5;\ \alpha(M)=0.0250\ 4$
								$\alpha(N)=0.00624$ 10; $\alpha(O)=0.00112$ 6; $\alpha(P)=5.E-5$ 4
								Mult.: $A_2 = -0.05 \ 20 \ (1989 \text{Ga} 07)$.
								B(M1)(W.u.)=0.09 3 if M1; B(E2)(W.u.)=680 240 if E2 using the adopted
								$T_{1/2}$, $I\gamma$ and α is anomalously high and violates RUL.
		393.3 [@] 4	46 [@] 18	1182.24	2+	[M1,E2]	0.11 6	$\alpha(K)=0.09\ 5;\ \alpha(L)=0.018\ 6;\ \alpha(M)=0.0043\ 12$
								$\alpha(N)=0.00107 \ 31; \ \alpha(O)=2.0\times10^{-4} \ 6; \ \alpha(P)=1.2\times10^{-5} \ 8$
		_	_					B(M1)(W.u.)=0.018 8 if M1, B(E2)(W.u.)=43 20 if E2.
		456.3 [@] 3	63 [@] 9	1119.91	4+	[E2]	0.0338 5	$\alpha(K)$ =0.02380 34; $\alpha(L)$ =0.00754 11; $\alpha(M)$ =0.001864 26
								$\alpha(N)=0.000465\ 7;\ \alpha(O)=8.23\times10^{-5}\ 12;\ \alpha(P)=3.15\times10^{-6}\ 4$
								B(E2)(W.u.)=28 9
		615.6 [@] 2	89 [@] 18	959.89	2+	(E2)	0.01660 23	$\alpha(K)=0.01256\ 18;\ \alpha(L)=0.00307\ 4;\ \alpha(M)=0.000745\ 10$
								$\alpha(N)=0.0001859\ 26;\ \alpha(O)=3.36\times10^{-5}\ 5;\ \alpha(P)=1.667\times10^{-6}\ 23$
								B(E2)(W.u.)=9 3
			_					Mult.: A ₂ =0.23 8 (1989Ga07).
		1135.6 [@] 2	100 [@] <i>35</i>	439.564	2+	(E2+M1)	0.0079 32	$\alpha(K)=0.0065\ 27;\ \alpha(L)=0.0011\ 4;\ \alpha(M)=2.5\times10^{-4}\ 9$
								$\alpha(N)=6.3\times10^{-5}$ 22; $\alpha(O)=1.2\times10^{-5}$ 4; $\alpha(P)=9.E-7$ 4; $\alpha(IPF)=8.9\times10^{-7}$ 2
								Mult.: A ₂ =0.67 27 (1989Ga07).
								B(M1)(W.u.)=0.0016 7 if M1, B(E2)(W.u.)=0.46 19 if E2.
1624.02	(4^{+})	312.5 <i>1</i>	100 <i>16</i>	1311.54	4+	(E2)	0.0944 13	$\alpha(K)=0.0572 \ 8; \ \alpha(L)=0.0280 \ 4; \ \alpha(M)=0.00710 \ 10$

 ∞

γ (²⁰²Hg) (continued)

						/ C/ (
$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α &	Comments
1624.02	(4+)	1184.5 2	98 18	439.564 2+	(E2)	0.00435 6	$\alpha(N)$ =0.001766 25; $\alpha(O)$ =0.000305 4; $\alpha(P)$ =7.38×10 ⁻⁶ 10 Mult.: A ₂ =0.33 9 (1989Ga07). $\alpha(K)$ =0.00354 5; $\alpha(L)$ =0.000624 9; $\alpha(M)$ =0.0001461 20 $\alpha(N)$ =3.65×10 ⁻⁵ 5; $\alpha(O)$ =6.81×10 ⁻⁶ 10; $\alpha(P)$ =4.62×10 ⁻⁷ 6; $\alpha(P)$ =2.83×10 ⁻⁶ 4
1643.67	0+	1204.1 <i>I</i>	100	439.564 2+	(E2)	0.00422 6	$\alpha(\text{IPF})=2.83\times10^{-5}4$ Mult.: A ₂ =0.35 6 (1989Ga07). $\alpha(\text{K})=0.00343$ 5; $\alpha(\text{L})=0.000602$ 8; $\alpha(\text{M})=0.0001410$ 20 $\alpha(\text{N})=3.53\times10^{-5}$ 5; $\alpha(\text{O})=6.57\times10^{-6}$ 9; $\alpha(\text{P})=4.48\times10^{-7}$ 6; $\alpha(\text{IPF})=4.37\times10^{-6}$ 6
			_				Mult.: A ₂ =-0.02 7 (1989Ga07).
1678.24	2+	288.4 [@] 5	31 [@]	1389.58 2+			
		496.2 [@] 2	14 [@] 3	1182.24 2+	(M1+E2)	0.060 33	$\alpha(K)$ =0.048 29; $\alpha(L)$ =0.0092 34; $\alpha(M)$ =0.0022 8 $\alpha(N)$ =5.5×10 ⁻⁴ 19; $\alpha(O)$ =1.0×10 ⁻⁴ 4; $\alpha(P)$ =7.E-6 4 Mult.: A ₂ =0.05 18 (1989Ga07).
		718.3 [@] 3	100 [@] 10	959.89 2+	(E2+M1)	0.024 12	$\alpha(K)=0.019 \ 10; \ \alpha(L)=0.0034 \ 14; \ \alpha(M)=8.0\times10^{-4} \ 31$ $\alpha(N)=2.0\times10^{-4} \ 8; \ \alpha(O)=3.7\times10^{-5} \ 15; \ \alpha(P)=2.6\times10^{-6} \ 14$ Mult.: A ₂ =0.14 5 (1989Ga07), Δ J=0.
		1238.8 [@] 3	80 [@] 8	439.564 2+	(E2+M1)	0.0064 24	$\alpha(K)=0.0053\ 20;\ \alpha(L)=8.7\times10^{-4}\ 30;\ \alpha(M)=2.0\times10^{-4}\ 7$ $\alpha(N)=5.1\times10^{-5}\ 17;\ \alpha(O)=9.5\times10^{-6}\ 34;\ \alpha(P)=7.2\times10^{-7}\ 29;\ \alpha(IPF)=1.06\times10^{-5}$ 27
1724.80	(4 ⁺)	413.1 2	27 8	1311.54 4+	(E2+M1)	0.10 5	Mult.: A ₂ =0.17 8 (1989Ga07), Δ J=0. α (K)=0.08 5; α (L)=0.016 5; α (M)=0.0037 11 α (N)=9.3×10 ⁻⁴ 28; α (O)=1.7×10 ⁻⁴ 6; α (P)=1.1×10 ⁻⁵ 7
		542.6 1	100 10	1182.24 2+	(E2)	0.02217 31	Mult.: A_2 =0.68 31 (1989Ga07). $\alpha(K)$ =0.01635 23; $\alpha(L)$ =0.00442 6; $\alpha(M)$ =0.001080 15 $\alpha(N)$ =0.000269 4; $\alpha(O)$ =4.83×10 ⁻⁵ 7; $\alpha(P)$ =2.170×10 ⁻⁶ 30 Mult.: A_2 =0.42 23 (1989Ga07).
1745.99	1,2+	786.0 <i>4</i>	23 4	959.89 2+			E _{γ} ,I _{γ} : From 1984Cr01 in ²⁰² Au β ⁻ decay.
17 (5.77	1,2	1306.37 8	100 3	439.564 2+			E_{γ},I_{γ} : From 1984Cr01 in 202 Au β^- decay.
		1746.4 5	3.2 11	$0.0 0^{+}$			E_{γ} , I_{γ} : From 1984Cr01 in 202 Au β^- decay.
1788.39	2+	476.5 [@] 3	100 [@] 30	1311.54 4+			
		1789.0 [@] 4	99 <mark>@</mark> 11	$0.0 0^{+}$			
1794.05	2+	611.3 [@] 5	≈3 [@]	1182.24 2+	[M1,E2]	0.036 19	$\alpha(K)$ =0.029 <i>16</i> ; $\alpha(L)$ =0.0052 <i>21</i> ; $\alpha(M)$ =0.0012 <i>5</i> $\alpha(N)$ =3.1×10 ⁻⁴ <i>12</i> ; $\alpha(O)$ =5.7×10 ⁻⁵ <i>23</i> ; $\alpha(P)$ =4.0×10 ⁻⁶ <i>23</i> B(M1)(W.u.)=0.029 <i>22</i> if M1, B(E2)(W.u.)=29 <i>21</i> if E2.
		833	3.0 6	959.89 2+	[E2]	0.00870 12	$\alpha(\text{K})=0.00687 \ 10; \ \alpha(\text{L})=0.001396 \ 20; \ \alpha(\text{M})=0.000332 \ 5$ $\alpha(\text{N})=8.30\times10^{-5} \ 12; \ \alpha(\text{O})=1.525\times10^{-5} \ 21; \ \alpha(\text{P})=9.07\times10^{-7} \ 13$ $\alpha(\text{E})=0.00687 \ 10; \ \alpha(\text{O})=0.001396 \ 20; \ \alpha(\text{M})=0.000332 \ 5$ $\alpha(\text{N})=8.30\times10^{-5} \ 12; \ \alpha(\text{O})=1.525\times10^{-5} \ 21; \ \alpha(\text{P})=9.07\times10^{-7} \ 13$ $\alpha(\text{P})=9.07\times10^{-7} \ 13$ $\alpha(\text{P})=9.07\times10^{-7} \ 13$

γ (²⁰²Hg) (continued)

E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.	δ	α &	Comments
1794.05	2+	1354.8 [@] 3	100@9	439.564	2+	M1+E2	0.06 4	0.00709 10	$\alpha(K)$ =0.00584 8; $\alpha(L)$ =0.000931 13; $\alpha(M)$ =0.0002153 31 $\alpha(N)$ =5.40×10 ⁻⁵ 8; $\alpha(O)$ =1.024×10 ⁻⁵ 15; $\alpha(P)$ =8.00×10 ⁻⁷ 12; $\alpha(IPF)$ =4.31×10 ⁻⁵ 6 B(M1)(W.u.)=0.09 5; B(E2)(W.u.)=0.064 +9-7 Mult., δ : A ₂ =0.23 2, A ₄ =0.028 25 (2019Ke01); A ₂ =0.40 8 (1989Ga07).
		1794.4 [@] 6	2.8 [@] 13	0.0	0+	[E2]		2.18×10 ⁻³ 3	$\alpha(K)$ =0.001660 23; $\alpha(L)$ =0.000266 4; $\alpha(M)$ =6.16×10 ⁻⁵ 9 $\alpha(N)$ =1.542×10 ⁻⁵ 22; $\alpha(O)$ =2.90×10 ⁻⁶ 4; $\alpha(P)$ =2.149×10 ⁻⁷ 30; $\alpha(PF)$ =0.0001756 25 B(E2)(W.u.)=0.12 9
1823.50	(2)+	77.1 [@] 4	3.5 [@]	1745.99	1,2+	[D,E2]			B(M1)(W.u.)=3.1 13 if M1; B(E2)(W.u.)=1.6×10 ⁵ 6 if E2, both using the adopted $T_{1/2}$, Iγ and α are anomalously high and violates RUL.
		247.4 [@] <i>a</i> 11	2.1 [@]	1575.48	(2+)	[M1,E2]		0.40 21	$\alpha(K)$ =0.30 20; $\alpha(L)$ =0.077 8; $\alpha(M)$ =0.0187 10 $\alpha(N)$ =0.00466 27; $\alpha(O)$ =0.00084 9; $\alpha(P)$ =4.2×10 ⁻⁵ 29 B(M1)(W.u.)=0.060 26 if M1, B(E2)(W.u.)=359 156 if E2.
		434.0 [@] a 8	≈5.3 [@]	1389.58	2+	[M1,E2]		0.09 5	$\alpha(K)$ =0.07 4; $\alpha(L)$ =0.014 5; $\alpha(M)$ =0.0032 10 $\alpha(N)$ =8.0×10 ⁻⁴ 25; $\alpha(O)$ =1.5×10 ⁻⁴ 5; $\alpha(P)$ =9.E-6 6 B(M1)(W.u.)=0.028 17 if M1, B(E2)(W.u.)=55 34 if E2.
		476.5 [@] 3	12 [@] 4	1347.89	(1+,2+)	[M1,E2]		0.07 4	$\alpha(K)$ =0.054 32; $\alpha(L)$ =0.010 4; $\alpha(M)$ =0.0024 8 $\alpha(N)$ =6.1×10 ⁻⁴ 21; $\alpha(O)$ =1.1×10 ⁻⁴ 4; $\alpha(P)$ =7.E-6 5 B(M1)(W.u.)=0.048 24 if M1, B(E2)(W.u.)=78 39 if E2.
		640.9 [@] 3	14.7 [@] 14	1182.24	2+	[E2,M1]		0.032 16	$\alpha(K)$ =0.026 14; $\alpha(L)$ =0.0046 19; $\alpha(M)$ =0.0011 4 $\alpha(N)$ =2.7×10 ⁻⁴ 10; $\alpha(O)$ =5.1×10 ⁻⁵ 20; $\alpha(P)$ =3.5×10 ⁻⁶ 20 B(M1)(W.u.)=0.024 10 if M1, B(E2)(W.u.)=22 9 if E2.
		863.3 [@] 3	39 [@] 4	959.89	2+	(E2+M1)		0.015 7	$\begin{array}{l} \alpha(\mathrm{K}){=}0.012\ 6;\ \alpha(\mathrm{L}){=}0.0021\ 8;\ \alpha(\mathrm{M}){=}5.0{\times}10^{-4}\ 19\\ \alpha(\mathrm{N}){=}1.2{\times}10^{-4}\ 5;\ \alpha(\mathrm{O}){=}2.3{\times}10^{-5}\ 9;\ \alpha(\mathrm{P}){=}1.7{\times}10^{-6}\\ 8\\ \mathrm{Mult.:\ A}_2{=}0.18\ 10\ (1989\mathrm{Ga}07).\\ \mathrm{B}(\mathrm{M}1)(\mathrm{W.u.}){=}0.026\ 10\ \mathrm{if\ M1,\ B(E2)(W.u.)}{=}13\ 5\ \mathrm{if\ E2.} \end{array}$

γ (²⁰²Hg) (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
	1823.50	(2)+	1384.0 [@] 3	100 [@] 19	439.564	2+	(E2+M1)	0.0050 17	$\alpha(K)$ =0.0041 14; $\alpha(L)$ =6.7×10 ⁻⁴ 22; $\alpha(M)$ =1.5×10 ⁻⁴ 5 $\alpha(N)$ =3.9×10 ⁻⁵ 13; $\alpha(O)$ =7.3×10 ⁻⁶ 24; $\alpha(P)$ =5.5×10 ⁻⁷ 21; $\alpha(IPF)$ =4.3×10 ⁻⁵ 11 Mult.: A ₂ =0.29 5 (1989Ga07). B(M1)(W.u.)=0.016 6 if M1, B(E2)(W.u.)=3.1 12 if E2.
			1823.1 [@] 3	7.9 [@] 28	0.0	0+	[E2]	2.14×10 ⁻³ 3	$\alpha(K)$ =0.001613 23; $\alpha(L)$ =0.000258 4; $\alpha(M)$ =5.97×10 ⁻⁵ 8 $\alpha(N)$ =1.494×10 ⁻⁵ 21; $\alpha(O)$ =2.81×10 ⁻⁶ 4; $\alpha(P)$ =2.088×10 ⁻⁷ 29; $\alpha(P)$ =0.0001879 26 B(E2)(W.u.)=0.06 3
	1852.26	2+	173.4 [@] a 4	2.8 <mark>@</mark>	1678.24	2+			
١			541.1 [@] a 3	6.1 [@] <i>17</i>	1311.54	4+			
١			732.3 [@] 5	≈4 <mark>@</mark>		4+			
			892.0 [@] 3	18 [@] 3	959.89	2+			
			1412.3 [@] 3	100 [@] 10	439.564	2+	(E2+M1)	0.0048 16	$\alpha(K)$ =0.0039 14; $\alpha(L)$ =6.3×10 ⁻⁴ 20; $\alpha(M)$ =1.5×10 ⁻⁴ 5 $\alpha(N)$ =3.7×10 ⁻⁵ 12; $\alpha(O)$ =7.0×10 ⁻⁶ 23; $\alpha(P)$ =5.3×10 ⁻⁷ 19; $\alpha(IPF)$ =5.3×10 ⁻⁵ 13 Mult.: A ₂ =0.23 8 (1989Ga07).
			1853.0 [@] 4	46 [@] 12	0.0	0^{+}	[E2]		
	1861.7	(3)	472.5 [@] 4	41 [@] 14	1389.58	2+			
			549.7 [@] 10	100 [@] 25	1311.54	4+	D		Mult.: $A_2 = -0.14 7$.
١	1959.43	$1,2^{+}$	611.3 [@] 5	≈40 [@]	1347.89	$(1^+,2^+)$			
			999.7 [@] 4	26 [@] 8	959.89	2+			
			1519.6 [@] 6	100 [@] 30	439.564	2+			
			1959.4 [@] 3	80 [@] 20	0.0	0_{+}			
	1965.62	5-	654.1 <i>1</i>	100 10	1311.54	4+	(E1)	0.00514 7	$\alpha(K)$ =0.00428 6; $\alpha(L)$ =0.000660 9; $\alpha(M)$ =0.0001518 21 $\alpha(N)$ =3.79×10 ⁻⁵ 5; $\alpha(O)$ =7.08×10 ⁻⁶ 10; $\alpha(P)$ =5.11×10 ⁻⁷ 7 Mult.: A ₂ =-0.27 5; A ₂ =-0.12 6 (1984Sc19), A ₂ =-0.27 5 (1989Ga07).
١			845.1 5	≈21	1119.91	4+			E_{γ} : From 2021Su02 in ¹⁹⁷ Au(HI,x γ). I_{γ} : From 1984Sc19 in ²⁰² Hg(d,pn γ).
Į	1966.00	2+	104.5 [@] 4	5.8 [@]	1861.7	(3)			,
Į			113.1 [@] 4	1.4	1852.26	2+			
			400.4 [@] 8	≈2.5 [@]	1564.78	0^{+}			
			554.8 2	32 8	1411.35	0_{+}			
			653.7 [@] 6	≈7.8 [@]	1311.54	4+	[E2]	0.01453 21	$\begin{array}{l} \alpha(\mathrm{K}) \! = \! 0.01111 \ 16; \ \alpha(\mathrm{L}) \! = \! 0.00260 \ 4; \ \alpha(\mathrm{M}) \! = \! 0.000629 \ 9 \\ \alpha(\mathrm{N}) \! = \! 0.0001570 \ 22; \ \alpha(\mathrm{O}) \! = \! 2.85 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) \! = \! 1.473 \times 10^{-6} \ 21 \end{array}$
			653.7 [@] 6	≈7.8 [@]			[E2]	0.01453 21	

γ (²⁰²Hg) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
1966.00	2+	783.0 [@] 8	8@ 3	1182.24	2+			
		1526.7 [@] 3	100 [@] 11	439.564		D		Mult.: A ₂ =-0.35 <i>12</i> (1989Ga07).
1988.82	6+	868.9 2	100	1119.91	4+	E2	0.00798 11	$\alpha(K)$ =0.00634 9; $\alpha(L)$ =0.001260 18; $\alpha(M)$ =0.000299 4 $\alpha(N)$ =7.48×10 ⁻⁵ 10; $\alpha(O)$ =1.377×10 ⁻⁵ 19; $\alpha(P)$ =8.35×10 ⁻⁷ 12 B(E2)(W.u.)=24.89 12 E _y : From 1985Ag01 in Coulomb Excitation.
2050.0	(7-)	(70.7# 11)	co# 1.4	1000.02	~ ±	FF.43	0.2102.00	Mult.: From $\gamma(\theta)$ in Coulomb Excitation (1985Ag01).
2059.8	(7-)	(70.7 [#] 11)	63 [#] 14	1988.82	6+	[E1]	0.2183 99	$\alpha(L)$ =0.167 8; $\alpha(M)$ =0.0394 18 $\alpha(N)$ =0.0097 4; $\alpha(O)$ =0.00168 8; $\alpha(P)$ =7.34×10 ⁻⁵ 29 B(E1)(W.u.)=3.8×10 ⁻⁶ 11
		94.2 [#] 5	100 [#] 19	1965.62	5-	[E2]	7.14 <i>19</i>	E_{γ} : From level-energy difference. 2021Su02 give 70.6 keV. $\alpha(K)$ =0.625 9; $\alpha(L)$ =4.88 14; $\alpha(M)$ =1.28 4
			100 19			[E2]	7.14 19	$\alpha(N)$ =0.025 9, $\alpha(D)$ =4.86 14, $\alpha(N)$ =1.126 4 $\alpha(N)$ =0.316 9; $\alpha(O)$ =0.0524 15; $\alpha(P)$ =0.0001383 28 B(E2)(W.u.)=11.7 7
2071.27	$(2)^{+}$	1631.7 <i>1</i>	100	439.564				
2126.38	$(1,2)^+$	380.0 [@] 3	30 [@] 3		1,2+			
		549.7 [@] 10	28 [@] 7		(2^{+})			
		564.5 [@] 3	13 [@] 4		3 ⁽⁺⁾			
		944.6 6	17 [@] 6		2+			
		1166.9 [@] 3	18 [@] 4		2+			
		1686.7 [@] 3	100 [@] 10	439.564	2+	M1+E2	0.0033 10	$\alpha(K)$ =0.0026 8; $\alpha(L)$ =4.2×10 ⁻⁴ 12; $\alpha(M)$ =9.7×10 ⁻⁵ 27 $\alpha(N)$ =2.4×10 ⁻⁵ 7; $\alpha(O)$ =4.6×10 ⁻⁶ 13; $\alpha(P)$ =3.5×10 ⁻⁷ 11; $\alpha(IPF)$ =0.00017 4 Mult.: A ₂ =0.85 29.
2133.91		1014.0 <i>I</i>	100	1119.91	4+			$A_2 = 0.03 \ 29$. E _y : Other: 1015.2 keV 5 in Coulomb Excitation.
2161.87		1722.3 2	100	439.564				,
2223.1	(9-)	163.3 [#] 5	100 [#]	2059.8	(7-)	[E2]	0.803 14	$\alpha(K)$ =0.273 4; $\alpha(L)$ =0.397 8; $\alpha(M)$ =0.1032 20 $\alpha(N)$ =0.0256 5; $\alpha(O)$ =0.00430 8; $\alpha(P)$ =3.45×10 ⁻⁵ 5 B(E2)(W.u.)=27 6
2249.70	(2^{+})	524.9 2	100		(4^{+})			
2280.16	$(1^+,2)$	320.3 [@] 7	4 [@]		1,2+			
		456.3 [@] 3	11.0 18		$(2)^{+}$			
		486.1 [@] 4	3.1 [@] 9		2+			
		602.1 2	26 [@] 3		2+			
		718.3 [@] 3	43 @ 4		3 ⁽⁺⁾			
		1097.8 [@] 3	68 [@] 3	1182.24	2+			

γ (²⁰²Hg) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	<u>α</u> &	Comments
2280.16	(1+,2)	1320.5 [@] 3 1840.4 [@] 3	55 [@] 21 100 [@] 10	959.89 439.564	2+			
2292.1		902.5 3	100	1389.58	2+	(E2)	0.00740 10	$\alpha(K)$ =0.00589 8; $\alpha(L)$ =0.001151 16; $\alpha(M)$ =0.000273 4 $\alpha(N)$ =6.82×10 ⁻⁵ 10; $\alpha(O)$ =1.258×10 ⁻⁵ 18; $\alpha(P)$ =7.76×10 ⁻⁷ 11 Mult.: A ₂ =0.35 40 (1989Ga07).
2293.20	(4 ⁺)	669.3 2	100 27	1624.02	(4+)	[M1,E2]	0.028 14	$\alpha(K)$ =0.023 12; $\alpha(L)$ =0.0041 17; $\alpha(M)$ =1.0×10 ⁻³ 4 $\alpha(N)$ =2.4×10 ⁻⁴ 9; $\alpha(O)$ =4.5×10 ⁻⁵ 18; $\alpha(P)$ =3.2×10 ⁻⁶ 17 B(M1)(W.u.)=1.0 3 if M1; B(E2)(W.u.)=851 268 if E2 using the adopted $T_{1/2}$, I γ and α seems anomalously high.
		1853.5 2	66 23	439.564	2+	[E2]	2.09×10 ⁻³ 3	$\alpha(K)$ =0.001566 22; $\alpha(L)$ =0.0002499 35; $\alpha(M)$ =5.78×10 ⁻⁵ 8 $\alpha(N)$ =1.446×10 ⁻⁵ 20; $\alpha(O)$ =2.72×10 ⁻⁶ 4; $\alpha(P)$ =2.026×10 ⁻⁷ 28; $\alpha(P)$ =0.0002013 28 B(E2)(W.u.)=3.4 13
2309.2 2323.27	(3 ⁻)	1869.6 <i>4</i> 1883.7 <i>I</i>	100 100	439.564 439.564				
2339.29?	(1+,2+)	991.4 ^a 3	100	1347.89				E_{γ} : Unplaced in 202 Hg(n,n' γ) and in Coulomb Excitation. Placed in 1997Sc07, based on the (n,n' γ) threshold which shows that this γ must deexcite a level at <2.5 MeV.
2356.83	3-	1045	30.5 27	1311.54	4+	[E1]	2.13×10 ⁻³ 3	$\alpha(K)=0.001782\ 25$; $\alpha(L)=0.000266\ 4$; $\alpha(M)=6.09\times10^{-5}\ 9$ $\alpha(N)=1.522\times10^{-5}\ 2I$; $\alpha(O)=2.86\times10^{-6}\ 4$; $\alpha(P)=2.162\times10^{-7}\ 30$ E_{γ},I_{γ} : From 2019Ke01 in Coulomb Excitation.
		1174	30.5 24	1182.24	2+	[E1]	$1.74 \times 10^{-3} 2$	$\alpha(K)$ =0.001451 20; $\alpha(L)$ =0.0002151 30; $\alpha(M)$ =4.93×10 ⁻⁵ 7 $\alpha(N)$ =1.230×10 ⁻⁵ 17; $\alpha(O)$ =2.319×10 ⁻⁶ 32; $\alpha(P)$ =1.765×10 ⁻⁷ 25; $\alpha(IPF)$ =9.30×10 ⁻⁶ 13 $E_{\gamma}I_{\gamma}$: From 2019Ke01 in Coulomb Excitation.
		1397.3 4	75 [‡] 5	959.89	2+	[E1]	1.39×10 ⁻³ 2	$\alpha(K)$ =0.001074 15; $\alpha(L)$ =0.0001579 22; $\alpha(M)$ =3.61×10 ⁻⁵ 5 $\alpha(N)$ =9.02×10 ⁻⁶ 13; $\alpha(O)$ =1.703×10 ⁻⁶ 24; $\alpha(P)$ =1.312×10 ⁻⁷ 18; $\alpha(P)$ =0.0001073 15 $\alpha(P)$ =0.0001073 in $\alpha(P)$ 0.0001073 in $\alpha(P)$ 0.00010
		1917.2 2	100‡ 4	439.564	2+	[E1]	1.23×10 ⁻³ 2	$\alpha(K)$ =0.000634 9; $\alpha(L)$ =9.21×10 ⁻⁵ 13; $\alpha(M)$ =2.103×10 ⁻⁵ 29 $\alpha(N)$ =5.25×10 ⁻⁶ 7; $\alpha(O)$ =9.94×10 ⁻⁷ 14; $\alpha(P)$ =7.78×10 ⁻⁸ 11; $\alpha(PF)$ =0.000475 7
		2357		0.0	0+	[E3]	0.00257 4	E _γ : From 1989Ga07 in 202 Hg(n,n'γ). α (K)=0.001875 26; α (L)=0.000318 4; α (M)=7.42×10 ⁻⁵ 10 α (N)=1.859×10 ⁻⁵ 26; α (O)=3.50×10 ⁻⁶ 5; α (P)=2.54×10 ⁻⁷ 4; α (IPF)=0.000278 4 E _γ : From 2019Ke01 in Coulomb Excitation.
2454.9		1495	100	959.89	2+			B(E3)(W.u.)=2.5 1 in Coulomb Excitation (2019Ke01). E_{γ} , I_{γ} : From 2019Ke01 in Coulomb Excitation.

γ (²⁰²Hg) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
2516.5	(2+)	2516.5 3	100	0.0	0+	[E2]	1.59×10 ⁻³ 2	$\alpha(K)$ =0.000903 13; $\alpha(L)$ =0.0001389 19; $\alpha(M)$ =3.20×10 ⁻⁵ 4 $\alpha(N)$ =8.00×10 ⁻⁶ 11; $\alpha(O)$ =1.512×10 ⁻⁶ 21; $\alpha(P)$ =1.164×10 ⁻⁷ 16; $\alpha(P)$ =0.000507 7
2681.0	(2+)	2681	100	0.0	0+	[E2]	1.55×10 ⁻³ 2	$\alpha(K)$ =0.000806 11; $\alpha(L)$ =0.0001232 17; $\alpha(M)$ =2.83×10 ⁻⁵ 4 $\alpha(N)$ =7.09×10 ⁻⁶ 10; $\alpha(O)$ =1.342×10 ⁻⁶ 19; $\alpha(P)$ =1.038×10 ⁻⁷ 15; $\alpha(IPF)$ =0.000582 8 B(E2)(W.u.)=0.200 21
2706.8	3-	914	5.0 6	1794.05	2+	[E1]	0.00271 4	E _γ ,I _γ : From 2019Ke01 in Coulomb Excitation. $\alpha(K)$ =0.002271 32; $\alpha(L)$ =0.000342 5; $\alpha(M)$ =7.84×10 ⁻⁵ 11 $\alpha(N)$ =1.956×10 ⁻⁵ 27; $\alpha(O)$ =3.68×10 ⁻⁶ 5; $\alpha(P)$ =2.74×10 ⁻⁷ 4 E _γ ,I _γ : From 2019Ke01 in Coulomb Excitation.
		1524	15.3 12	1182.24	2+	[E1]	1.29×10 ⁻³ 2	$\alpha(K)$ =0.000927 13; $\alpha(L)$ =0.0001359 19; $\alpha(M)$ =3.11×10 ⁻⁵ 4 $\alpha(N)$ =7.76×10 ⁻⁶ 11; $\alpha(O)$ =1.466×10 ⁻⁶ 21; $\alpha(P)$ =1.135×10 ⁻⁷ 16; $\alpha(IPF)$ =0.0001904 27
		1747	100.0 21	959.89	2+	(E1)	1.23×10 ⁻³ 2	E _{γ} I _{γ} : From 2019Ke01 in Coulomb Excitation. α (K)=0.000739 10; α (L)=0.0001076 15; α (M)=2.459×10 ⁻⁵ 34 α (N)=6.14×10 ⁻⁶ 9; α (O)=1.162×10 ⁻⁶ 16; α (P)=9.06×10 ⁻⁸ 13; α (IPF)=0.000351 5 E _{γ} I _{γ} : From 2019Ke01 in Coulomb Excitation.
		2264	25.1 10	439.564	2+	[E1]	1.29×10 ⁻³ 2	Mult.: $A_2=-0.17\ 2$, $A_4=0.04\ 3$ in 2019Ke01. $\alpha(K)=0.000484\ 7$; $\alpha(L)=7.00\times10^{-5}\ 10$; $\alpha(M)=1.597\times10^{-5}\ 22$ $\alpha(N)=3.99\times10^{-6}\ 6$; $\alpha(O)=7.56\times10^{-7}\ 11$; $\alpha(P)=5.96\times10^{-8}\ 8$; $\alpha(IPF)=0.000716\ 10$
		2709		0.0	0+	[E3]	2.15×10 ⁻³ 3	E _γ ,I _γ : From 2019Ke01 in Coulomb Excitation. $\alpha(K)$ =0.001433 20; $\alpha(L)$ =0.0002364 33; $\alpha(M)$ =5.49×10 ⁻⁵ 8 $\alpha(N)$ =1.376×10 ⁻⁵ 19; $\alpha(O)$ =2.59×10 ⁻⁶ 4; $\alpha(P)$ =1.929×10 ⁻⁷ 27; $\alpha(IPF)$ =0.000407 6 E _γ ,I _γ : From 2019Ke01 in Coulomb Excitation.
2821.2 3164.1	(11 ⁻) 3 ⁻	598.1 [#] 5 1980	100 [#] 100 8	2223.1 1182.24	(9 ⁻) 2 ⁺	[E1]	1.24×10 ⁻³ 2	$\alpha(K)$ =0.000601 8; $\alpha(L)$ =8.73×10 ⁻⁵ 12; $\alpha(M)$ =1.992×10 ⁻⁵ 28 $\alpha(N)$ =4.98×10 ⁻⁶ 7; $\alpha(O)$ =9.42×10 ⁻⁷ 13; $\alpha(P)$ =7.39×10 ⁻⁸ 10; $\alpha(PF)$ =0.000521 7
		3166		0.0	0+	[E3]	1.86×10 ⁻³ 3	$\alpha(K)=0.001063\ 15;\ \alpha(L)=0.0001708\ 24;\ \alpha(M)=3.95\times10^{-5}\ 6$ $\alpha(N)=9.90\times10^{-6}\ 14;\ \alpha(O)=1.871\times10^{-6}\ 26;\ \alpha(P)=1.419\times10^{-7}\ 20;$ $\alpha(IPF)=0.000573\ 8$ B(E3)(W.u.)=1.0 1 in Coulomb Excitation (2019Ke01).
3514.0 3777.3 3918.3	(12 ⁺) (13 ⁻)	692.8 [#] 5 956.1 [#] 5 404.3 [#] 5	100 [#] 100 [#] 100 [#]	2821.2 2821.2 3514.0	(11 ⁻) (11 ⁻) (12 ⁺)			

γ (²⁰²Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α&	Comments
4156.4 4493.9		379.1 [#] 5 337.5 [#] 5	100 [#]	3777.3 4156.4	(13 ⁻)			
4648.0		729.7 [#] 5	100 [#]	3918.3			2	
4924	1-	4924 5	100	0.0	0+	E1	2.13×10 ⁻³ 3	$\alpha(K)$ =0.0001474 21; $\alpha(L)$ =2.092×10 ⁻⁵ 29; $\alpha(M)$ =4.76×10 ⁻⁶ 7 $\alpha(N)$ =1.190×10 ⁻⁶ 17; $\alpha(O)$ =2.260×10 ⁻⁷ 32; $\alpha(P)$ =1.814×10 ⁻⁸ 26; $\alpha(IPF)$ =0.001954 27 B(E1)(W.u.)=0.00108 18 Mult.: From A ₂ =0.51 2 and polarization [N(par)/N(ver)]=1.18 3 (1974Te01) in 202 Hg(γ,γ').
5490.3		842.3 [#] 5	100 [#]	4648.0				
5710.3		220.0 [#] 5	100 [#]	5490.3				
6339.3		629.0 [#] 5	100 [#]	5710.3				
7126.9		787.6 [#] 5	100 <mark>#</mark>	6339.3				
7663.5		536.6 [#] 5	100 [#]	7126.9				

[†] From 202 Hg(n,n' γ), unless otherwise stated. ‡ From Coulomb Excitation. # From 197 Au(HI,xn γ). @ From 201 Hg(n, γ), E=thermal.

[&]amp; Additional information 1.

^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Seq.(B): γ-ray cascade based on the (12⁺) state

 $^{202}_{80}{\rm Hg}_{122}$

band

 6^+

4+

Full Evaluation C. J. Chiara and F. Kondov NDS II.1,141 (2010)			Туре	Auth	History or Citation Literature Cutoff Date
Note: Current evaluation has used the following Q record -344.3 13 7492.4 17 8836 3 -512 20 2003Au03.				_	
Cross Reference (XREF) Flags				$S(p)=8836 \ 3; \ Q(\alpha)=-$	-514 21 2012Wa38
A 204 Au β decay F 204 Hg(d,pny) K 205 Tl(e,e'p)					²⁰⁴ Hg Levels
B 204Hg(e,d') B 208Hg(e,d') B 20Hg(e,d') B				<u>C</u>	cross Reference (XREF) Flags
Charge distribution studied: Δ <r²> Charge distribution studied: Δ<r²> Co²¹Hg, ¹Hg, ¹Hg,</r²></r²>		-a†		B 204 Tl ε decay C 204 Hg(e,e') D 204 Hg(n,n' γ) E 204 Hg(p,p')	G 204 Hg(d,d') L 205 Tl(μ^- ,n γ) H 204 Hg(α,α') M 205 Tl(d, 3 He) I 204 Hg(9 Be, 9 Be' γ) N 208 Pb(d, 6 Li) J Coulomb excitation
(1989BuZP), Δ <r2>(30.4 Hg, ^4 Hg)=0.298 28, 0.271 26, 0.194 19, 0.182 23, 0.099 28 for A = 198-202, respectively (1978Le09), Δ<r2>(30.4 Hg, ³⁶Meg)=-0.107 5 (1999GaZX). Other: 1979Ha08. Isotope shifts: 1977Du03, 1975Ro10, 1972Bo09. Additional information 1. Q=0.40 20; μ=0.67 9 XREF: G(443)N(430). F: 436.551/ E2 10 0°; L(d, ³He)=2, vector analyzing power. B(E2)?: 0.427 3, weighted average of 0.429 4 in (e,e') (1989BuZP) and 0.427 6 (1979Bo16) and 0.423 5 (1981Es03) in Coul. ex. T1/2: From B(E2)?: 0.427 3, weighted average of 0.429 4 in (e,e') (1989BuZP) and 0.427 6 (1979Bo16) and 0.423 5 (1981Es03) in Coul. ex. T1/2: From B(E2)?: 0.427 3, weighted average of 0.429 4 in (e,e') (4989BuZP) and 0.427 6 (1979Bo16) and 0.423 5 (1981Es03) in Coul. ex. T1/2: From B(E2)/4-0.427 3. Additional information 2. Q: From Coul. ex., assuming negligible contributions from low-lying unobserved states (1981Es03). Other: 0.39 20 or 0.24 20, depending on positive or negative interference of the E2 matrix elements (1979Bo16). μ: This value is deduced by the evaluators from μ/¹⁹⁸Hg)=0.75 5 (average of 1995Br34 and 1990Ba40) and μ/²⁰⁴Hg)/μ(¹⁹⁸Hg)=0.89 10. Note that g(²⁰⁴Hg)/g(¹⁹⁸Hg)=0.95 11 in 1974bo01, but ω²τ_c is changed by evaluators from 4 for s⁻¹ 8 (1974bo01) to 41 nr -17 , due to change in T1/2(437-keV level) from 36 ps 2 to 40.3 ps 3. Others (renormalized to the same μ(¹⁹⁸Hg) value): 0.55 10 (1970Ka09) by IMPAC method and 0.62 18 (1986Ko02) by TF method. β₂=0.061 from optical model in (α,α') - 0.069 from coupled-channels analysis in (p,p'). The sign convention in (α,α') is not explained; in (p,p') it is based on the sign for ¹⁹⁸Hg. XREF: G(1140)N(1085). Fi 691.74p E2 to 2 t2: population in Coul. ex., (e,e'), and (p,p'). B(E2)†=0.218 16 (1985Ag01). Other: 0.34 11 (1981Es03). Both values were deduced by the evaluators from B(E2)(4* to 2*)=0.121 9 (1985Ag01). B(E4)†=0.045 6 from (e,e'). 1635.76 10 0⁺ CDE K M XREF: E(1632)K(1640)M(1630), F^{**}: 1199.2γ (E2) to 2*; L(d, ³He)=0; no γ to 0⁺ g.s. is observed.</r2></r2>					
XREF: G(443)N(430). JF: 436.551γ Ez to 0+; L(d,³He)=2, vector analyzing power. B(E2)↑: 0.427 3, weighted average of 0.429 4 in (e,e') (1989BuZP) and 0.427 6 (1979Bo16) and 0.423 5 (1981Es03) in Coul. ex. T _{1/2} : From B(E2)1=0.427 3. Additional information 2. Q: From Coul. ex., assuming negligible contributions from low-lying unobserved states (1981Es03). Other: 0.39 20 or 0.24 20, depending on positive or negative interference of the E2 matrix elements (1979Bo16). μ: This value is deduced by the evaluators from μ (198Hg)=0.75 5 (average of 1995Br34 and 1990Ba40) and μ (20 ¹⁴ Hg)/ μ (188Hg)=0.89 10. Note that g(20 ¹⁴ Hg)/ μ (198Hg)=0.95 11 in 1974Do01, but ω 2τ _c is changed by evaluators from 4.6 ns ⁻¹ 8 (1974Do01) to 4.1 ns ⁻¹ 7, due to change in T _{1/2} (437-keV level) from 36 ps 2 to 40.3 ps 3. Others (renormalized to the same μ (198Hg) value): 0.55 10 (1970Ka09) by IMPAC method and 0.62 8 (1986Ko02) by TF method. β ₂ =0.061 from optical model in (α,α'), -0.069 from coupled-channels analysis in (p,p'). The sign convention in (α,α') is not explained; in (p,p') it based on the sign for ¹⁹⁸ Hg. XREF: G(1140)N(1085). JF: 691.74γ E2 to 2°; population in Coul. ex., (e,e'), and (p,p'). B(E2)↑=0.218 16 (1985Ag01), Other: 0.34 11 (1981Es03). Both values were deduced by the evaluators from B(E2)(4* to 2*)=0.121 9 (1985Ag01). B(E4)↑=0.045 6 from (e,e'). XREF: E(1632)K(1640)M(1630). JF: 1199.2γ (E2) to 2°; L(d,³He)=0; no γ to 0° g.s. is observed. M(E0){e(mp²}=1.1.7.		·			(1989BuZP), $\Delta < r^2 > (^{204}\text{Hg}, ^A\text{Hg}) = 0.298\ 28,\ 0.271\ 26,\ 0.194\ 19,\ 0.182\ 23,\ 0.099\ 28$ for A=198-202, respectively (1978Le09), $\Delta < r^2 > (^{204}\text{Hg}, ^{206}\text{Hg}) = -0.107\ 5$ (1999GaZX). Other: 1979Ha08. Isotope shifts: 1977Du03, 1975Ro10, 1972Bo09. Additional information 1.
J ^π : 691.74γ E2 to 2+; population in Coul. ex., (e,e'), and (p,p'). B(E2)↑=0.218 <i>16</i> (1985Ag01). Other: 0.34 <i>11</i> (1981Es03). Both values were deduced by the evaluators from B(E2)(4+ to 2+)=0.121 9 (1985Ag01) and 0.19 6 (1981Es03). T _{1/2} : From B(E2)(4+ to 2+)=0.121 9 (1985Ag01). B(E4)↑=0.045 6 from (e,e'). XREF: E(1632)K(1640)M(1630). J ^π : 1199.2γ (E2) to 2+; L(d, ³ He)=0; no γ to 0+ g.s. is observed. M(E0)[e(fm) ²]=1.1 7.	430.332 0	2	40.5 ps 3	A CDEFGRIJ LIN	XREF: G(443)N(430). J ^π : 436.551γ E2 to 0 ⁺ ; L(d, ³ He)=2, vector analyzing power. B(E2)↑: 0.427 3, weighted average of 0.429 4 in (e,e') (1989BuZP) and 0.427 6 (1979Bo16) and 0.423 5 (1981Es03) in Coul. ex. T _{1/2} : From B(E2)↑=0.427 3. Additional information 2. Q: From Coul. ex., assuming negligible contributions from low-lying unobserved states (1981Es03). Other: 0.39 20 or 0.24 20, depending on positive or negative interference of the E2 matrix elements (1979Bo16). μ : This value is deduced by the evaluators from μ (198Hg)=0.75 5 (average of 1995Br34 and 1990Ba40) and μ (204Hg)/ μ (198Hg)=0.89 10. Note that g(204Hg)/g(198Hg)=0.95 11 in 1974Do01, but $\omega^2 \tau_c$ is changed by evaluators from 4.6 ns ⁻¹ 8 (1974Do01) to 4.1 ns ⁻¹ 7, due to change in T _{1/2} (437-keV level) from 36 ps 2 to 40.3 ps 3. Others (renormalized to the same μ (198Hg) value): 0.55 10 (1970Ka09) by IMPAC method and 0.62 18 (1986Ko02) by TF method. β_2 =0.061 from optical model in (α , α'), -0.069 from coupled-channels analysis in (p,p'). The sign convention in (α , α') is not explained; in
1635.76 10 0 ⁺ CDE K M XREF: E(1632)K(1640)M(1630). J^{π} : 1199.2 γ (E2) to 2 ⁺ ; L(d, ³ He)=0; no γ to 0 ⁺ g.s. is observed. $M(E0)[e(fm)^2]=1.1$ 7.	1128.23 11	4+	2.91 ps <i>21</i>	A CDEFGHIJ LMN	XREF: G(1140)N(1085). J ^π : 691.74 γ E2 to 2+; population in Coul. ex., (e,e'), and (p,p'). B(E2)↑=0.218 <i>16</i> (1985Ag01). Other: 0.34 <i>11</i> (1981Es03). Both values were deduced by the evaluators from B(E2)(4+ to 2+)=0.121 9 (1985Ag01) and 0.19 6 (1981Es03). T _{1/2} : From B(E2)(4+ to 2+)=0.121 9 (1985Ag01).
	1635.76 <i>10</i>	0+		CDE K M	XREF: E(1632)K(1640)M(1630). J^{π} : 1199.2 γ (E2) to 2 ⁺ ; L(d, ³ He)=0; no γ to 0 ⁺ g.s. is observed.
	1716.76 <i>10</i>	(2+)		DE	

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
1828.71 <i>11</i>	(2-)		A DF I L	J^{π} : From excitation function in $(n,n'\gamma)$; 1280.2 γ (M1+E2) to 2 ⁺ . Additional information 3.
				J^{π} : 1392.15 γ (E1) to 2 ⁺ ; intense feeding of this level in 204 Au β^- decay (J^{π} =2 ⁻) favors J^{π} =(1 ⁻ ,2,3 ⁻); absence of observed γ to 0 ⁺ g.s. and the lack of population in (e,e') and (p,p') favor 2 ⁻ ; excit. function in (n,n' γ) indicates J=(2).
1841.38 <i>11</i>	1+		A DE I LM	In XREF: E(1836)M(1840)n(1810). J^{π} : 1404.82γ M1+E2 to 2 ⁺ ; 1841.38γ M1 to 0 ⁺ ; L(d, ³ He)=2. Additional information 4.
1851.26 <i>10</i>	(2,3)+		A DFGI	n XREF: n(1810). J^{π} : 723.0 γ M1+E2 to 4 ⁺ and 1414.9 γ M1+E2 to 2 ⁺ indicate J^{π} =3 ⁺ . However, their corresponding excit. functions in (n,n' γ) suggest J=2 for the 1851 keV level; 1851.7 γ to 0 ⁺ g.s. is observed tentatively only in 204 Au β^- decay. If this is confirmed, 3 ⁺ can be ruled out. Additional information 5.
1947.69 <i>11</i>	2+		A CD F IJ LM	
1989.36 <i>10</i>	(2+)		A CDEF IJ L	XREF: C(1974)E(1985). J^{π} : 1552.8 γ to 2 ⁺ ; population in Coul. ex., (e,e'), and (p,p') favors natural-parity levels; direct population in 204 Au β^- decay (J^{π} =(2 ⁻)) rules out 4 ⁺ . Additional information 7.
2088.51 10	2+		A cD m	TTD TTD (40.4F 40.00) (40.40)
2094.46 20	(3)+		cDE m	TTD TTD (40.45 40.00) T(40.00) (40.40)
2117.47 9	2+		A cD I m	
2131.26 20	$(1^+,2^+)$		cDe m	XREF: $c(2124)e(2137)m(2120)$. J^{π} : 1694.7 γ to 2 ⁺ ; $L(d,^{3}He)=2$, but it is an unresolved doublet.
2140.86 <i>10</i>	(1+,2+,3+)		A cDe L	Additional information 9. XREF: $c(2124,2200)e(2137)$. J^{π} : 1704.3 γ (M1+E2) to 2 ⁺ ; direct population in ²⁰⁴ Au β ⁻ decay $(J^{\pi}=(2^{-}))$.
2191.01 15	6+	0.30 ps 4	cDEF IJ L	Additional information 10. XREF: $c(2200)E(2183)$. J^{π} : 1062.8 γ E2 to 4 ⁺ ; $L(p,p')=6$. Additional information 11. $T_{1/2}$: From B(E2)(6 ⁺ to 4 ⁺)=0.139 <i>17</i> (1985Ag01).
2235.94 <i>15</i>	3,4,5		cD F I	n XREF: $c(2200)n(2240)$. J^{π} : 1107.7 γ D to 4 ⁺ ;
2262.97 15	5-		CDEF hI LM	J^{π} : 1134.7 γ E1 to 4 ⁺ ; population in (e,e') and (p,p'). Additional information 13. B(E5) \uparrow : 0.041 9 from (e,e') (1989BuZP).
2264.36 18	(1,2,3)		A D h LM	Possible configuration= $\pi[(s_{1/2})^{-1}(h_{11/2})^{-1}]\nu[(p_{1/2})^{-2}]_{0+}$. In XREF: $h(2272)M(2250)n(2240)$. J^{π} : 1827.80 γ to 2^+ ; excit. function in $(n,n'\gamma)$; direct population in 20^4 Au β^- decay $(J^{\pi}=(2^-))$ makes 0^+ and 4^+ unlikely.
2295.66 10			D	The process (v. (2)) makes of und i unintery.

E(level) [†]	$\mathrm{J}^{\pi\ddagger}$	T _{1/2}	XREF	Comments
2300.20 14	$(2^+,3)$		A DF I	J^{π} : 1172.0 γ to 4 ⁺ , 1863.3 γ to 2 ⁺ ; J≤2 from excit. function in
2300.65 19	7-	6.8 ns <i>3</i>	C EF I L	 (n,n'γ). XREF: C(2299)E(2293). J^π: 109.6γ E1 to 6⁺; population in (e,e') and (p,p'). T_{1/2}: Weighted average of 6.7 ns 5 from (d,pnγ) (1984Sc19) and 6.9 ns 3 from (⁹Be, ⁹Be'γ) (1994Po21). B(E7)↑: 32×10⁻⁴ 13 from (e,e'). Additional information 14. Possible configuration: admixture of π[(s_{1/2})⁻²]₀₊ν[(p_{1/2})⁻¹(i_{13/2})⁻¹]
2359 [#] 5	(0^+)		СК	and $\pi[(d_{3/2})^{-1}(h_{11/2})^{-1}]\nu[(p_{1/2})^{-2}]_{0+}$. XREF: K(2370).
2385.9 4	1+,2+		A cD M	J^{π} : L(e,e'p)=(0). XREF: c(2397)M(2380). J^{π} : 2385.9γ to 0 ⁺ ; L(d, ³ He)=0+2.
2395.6 4	1,2,3		A C E	Additional information 15. XREF: c(2397)E(2398). J^{π} : 1959.0 γ to 2 ⁺ ; direct population in ²⁰⁴ Au β^- decay (J^{π} =(2 ⁻)) rules out 0 ⁺ and 4 ⁺ .
2465.46 20	(2)+		A CDE M	Additional information 16. XREF: C(2462)E(2463)M(2470). J^{π} : 2028.9 γ to 2 ⁺ ; L(d, ³ He)=2 and population in (e,e') and (p,p')
2514.44 23	(2+,4+,6+)		CDE IJ	favor 2^+ . XREF: C(2507)E(2509). J^{π} : 1386.2 γ M1,E2 to 4^+ ; population in (e,e') and (p,p') rules out 3^+ and 5^+ .
2568.84 <i>15</i>	3+,5+		CD	Additional information 17. XREF: C(2570). J ^{π} : 1440.6 γ M1+E2 to 4 ⁺ ; A ₂ <0 for 1440.6 γ rules out Δ J=0
2628.26 10	(1+)		cD K	transition. XREF: c(2590)K(2620).
2657.3 6	(2) ⁺		c I M	J^{π} : 2191.7 γ D to 2 ⁺ ; L(e,e'p)=(0). XREF: c(2590)M(2650).
2675.25 19	3-		CDE HIJ	 J^π: 1529.1γ to 4⁺; L(d,³He)=0+2. B(E3)↑=0.40 3 XREF: C(2673)E(2672)H(2674). J^π: Population in (e,e'), (α,α'), (p,p'), and Coul. ex. Collective octupole vibration. Additional information 18. B(E3)↑: Weighted average of 0.42 4 in (e,e') (1989BuZP) and 0.37 4 in Coul. ex. (1991Li03). β₃=0.076 from optical model in (α,α'), 0.089 from coupled-channels analysis in (p,p').
2710 [@] 4 2724.1 6	(≥5)		E c F I n	
2726.6 3	$(2^+,3)$		A c L n	J ^π : 423.5 γ to 7 ⁻ . XREF: c(2719,2730)n(2740). J ^π : 1598.4 γ to 4 ⁺ , 897.9 γ to (2 ⁻); direct population in ²⁰⁴ Au β ⁻
2761.2 4	(5)-		C EF I LMn	decay (J^{π} =(2 ⁻)) makes 4 ⁻ assignment unlikely. XREF: E(2759)M(2770)n(2740,2800). J ^{π} : 461.0 γ to 7 ⁻ , 497.7 γ to 5 ⁻ ; L(d, ³ He)=2+5; population in (p,p') and (e,e') favors 5 ⁻ .
2812.83 24	3-		A C E n	

²⁰⁴Hg Levels (continued)

			REF		Comments
					J ^π : From L=3 in (p,p'), (e,e'); 2376.26 γ to 2 ⁺ . B(E3)↑: From (e,e'). β_3 =0.046 from coupled-channels analysis in (p,p').
2866 [@] 4 2908.6 6	(≥2)	c E c	I	m m	XREF: c(2883)m(2890). XREF: c(2883,2925)m(2890).
2914.3 6	(≥3)	С	I		J^{π} : 1780.4 γ to 4 ⁺ . XREF: c(2883,2925).
3021 [@] 4	4+&	СЕ		n	J ^π : 651.3γ to 5 ⁻ . B(E4)↑=0.040 <i>13</i> XREF: C(3017)n(3040). B(E4)↑: From (e,e').
3033.2 6	(4,5,6)		Ι	Mn	Additional information 19. XREF: $M(3050)n(3040)$. J^{π} : 770.2 γ to 5 ⁻ ; $L(d,^{3}He)=2+5$. Additional information 20.
3112 [@] 4	(4+)	CE			XREF: $C(3096)$. J^{π} : From (p,p') .
3174.0 <i>6</i> 3190 <i>15</i>	(2)+	С	Ι	M	XREF: C(3187). E(level): From (d, 3 He). J^{π} : L(d, 3 He)=2; population in (e,e') favors 2 ⁺ .
3227 [@] 4	(5 ⁻)	CE			XREF: C(3222). J^{π} : From (p,p').
3315 [@] 4	(3 ⁻)&	CE			B(E3)↑=0.109 13 XREF: C(3316). E(level): a multiplet 3320 keV 15 level is observed in (d, ³ He) with L=2+5, neither component of which is consistent with J ^π =3 ⁻ deduced in (e,e') and (p,p') for this
	P-				level. $B(E3)\uparrow$: From (e,e') . Additional information 21. β_3 =0.048 from coupled-channels analysis in (p,p') .
3364 [@] 4	5-&	CE			B(E5)\(\frac{1}{2}\)=0.036 5 XREF: C(3361). B(E5)\(\frac{1}{2}\): From (e,e'). Additional information 22.
3417 [@] 4		c E			XREF: c(3426).
3439 [@] 4		c E			XREF: c(3426).
3468 10	(2)+	С		M	E(level): Weighted average of 3475 14 in (e,e') and 3460 15 in (d, ³ He). J^{π} : L(d, ³ He)=2; population in (e,e') favors 2^{+} .
3496 [@] 5		c E			XREF: c(3539).
3528 [@] 6		c E		n	XREF: c(3539)n(3550).
3585 [@] 4		c E		mn	XREF: c(3539,3594)m(3600)n(3550).
3618 [@] 6		c E		m	XREF: c(3594)m(3600).
3664 [@] 9 3689.3 8		CE	I		XREF: C(3670).
3697 [@] 5		E			ATTER COMME
3712 [@] 7		CE			XREF: C(3720).
3750 [@] 4 3779 [@] 4	(a) ±	сЕ		.,	XREF: c(3750,3820).
	(2)+	сЕ		M	XREF: $c(3750,3820)M(3770)$. J^{π} : $L(d,^{3}He)=2$; possible observation in (e,e') and (p,p') favors 2^{+} .
3833 8	(0.0)	сЕ			XREF: c(3820).
3869 [@] 7	$(0,2)^+$	CE		M	XREF: C(3860)M(3890).

Continued on next page (footnotes at end of table)

E(level) [†]	Jπ‡	XREF	Comments
			J^{π} : L(d, 3 He)=0+2; possible observation in (e,e') and (p,p') favors (0,2) ⁺ . Additional information 23.
3923 [@] 9		CE	XREF: C(3919).
3954 [@] 10		CE	XREF: C(3968).
4033 [#] <i>15</i>		С	
4113 [@] 5	4+&	СЕ	B(E4)↑=0.054 <i>6</i> XREF: C(4100). B(E4)↑: From (e,e'). Additional information 24.
4164 [@] 5		CE	XREF: C(4147).
4225 [@] 6		CE	XREF: C(4210).
4262 [@] 5		CE	XREF: C(4245).Levels observed in (e,e') and in (p,p') do not overlap within uncertainties and may be two distinct states.
4321 [@] 6		E	
4356 [@] 6		CE	XREF: C(4348).
≈4380 [#]		С	
4406 [@] 6		CE	XREF: C(4413).
4493 [#] 9		С	
4539 [#] 7		С	
≈4610 [#]		С	
4663 [#] 27		C	
4.70×10 ^{3#} 10		С	
4723 [#] 7		С	
4815 [#] <i>13</i>		С	
4895 [#] 24		С	
4915 <mark>#</mark> 26		C	
4960 [#] <i>60</i>		C	

[†] From a least-squares fit to E γ , unless otherwise specified. ‡ Specific arguments are presented with each level. For J^{π} assignments based on (e,e') and (p,p') data, natural-parity states were excited preferentially.

From (e,e').

@ From (p,p').

& Based on L transfer in (p,p'), and from (e,e').

Additional information 25.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
436.552	2+	436.551 8	100	0	0+	E2	0.0378	$\alpha(K)$ =0.0263 4; $\alpha(L)$ =0.00870 13; $\alpha(M)$ =0.00216 3; $\alpha(N+)$ =0.000636 9 $\alpha(N)$ =0.000538 8; $\alpha(O)$ =9.50×10 ⁻⁵ 14; $\alpha(P)$ =3.47×10 ⁻⁶ 5 B(E2)(W.u.)=11.96 9 E _{γ} ,1 $_{\gamma}$: From $(\mu^{-}, n\gamma)$. Mult.: From $\gamma(\theta)$ in (d,pn γ) and (n,n γ). Additional information 26.
1128.23	4+	691.74 <i>15</i>	100	436.552	2+	E2	0.01285	B(E2)(W.u.)=17.0 13 α (K)=0.00991 14; α (L)=0.00224 4; α (M)=0.000538 8; α (N+)=0.0001603 23 α (N)=0.0001345 19; α (O)=2.45×10 ⁻⁵ 4; α (P)=1.313×10 ⁻⁶ 19 E _{γ} : From 204 Au β ⁻ decay. Mult.: From $\gamma(\theta)$ in (n,n' γ) and (9 Be, 9 Be' γ). Additional information 27.
1635.76	0+	1199.2 <i>I</i>	100	436.552	2+	(E2)	0.00425 6	$\alpha(K) = 0.00346 5; \ \alpha(L) = 0.000607 9; \ \alpha(M) = 0.0001422 \ 20; \ \alpha(N+) = 4.66 \times 10^{-5} \ 7$ $\alpha(N) = 3.56 \times 10^{-5} \ 5; \ \alpha(O) = 6.63 \times 10^{-6} \ 10; \ \alpha(P) = 4.52 \times 10^{-7} \ 7; \ \alpha(IPF) = 3.95 \times 10^{-6} \ 6$
1716.76	(2+)	1280.2 <i>1</i>	100	436.552	2+	(M1+E2)	0.0060 22	Mult.: Isotropic $\gamma(\theta)$ to 2 ⁺ in $(n,n'\gamma)$ consistent with E2 from 0 ⁺ initial level. $\alpha(K)=0.0049$ 19; $\alpha(L)=0.0008$ 3; $\alpha(M)=0.00019$ 7; $\alpha(N+)=7.4\times10^{-5}$ 24 $\alpha(N)=4.7\times10^{-5}$ 16; $\alpha(O)=9.E-6$ 3; $\alpha(P)=7.E-7$ 3; $\alpha(IPF)=1.8\times10^{-5}$ 5 Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$.
1828.71	(2-)	1392.15 11	100	436.552	2+	(E1)	0.001391 20	$\alpha(K)$ =0.001080 16 ; $\alpha(L)$ =0.0001589 23 ; $\alpha(M)$ =3.63×10 ⁻⁵ 5 ; $\alpha(N+)$ =0.000115 $\alpha(N)$ =9.08×10 ⁻⁶ 13 ; $\alpha(O)$ =1.714×10 ⁻⁶ 24 ; $\alpha(P)$ =1.320×10 ⁻⁷ 19 ; $\alpha(IPF)$ =0.0001042 15 E _{γ} : From 204 Au β^- decay. Mult.: ΔJ =0 dipole from excit. function and $\gamma(\theta)$ in $(n,n'\gamma)$, electric character inferred from likely parity deduced for initial state. In $(^9Be, ^9Be'\gamma)$ data, an opposite sign for A ₂ is reported, and hence, ΔJ =1 dipole, which is inconsistent with $(n,n'\gamma)$. The evidence more strongly supports the former assignment.
1841.38	1+	1404.82 12	100 5	436.552	2+	M1+E2	0.0048 17	with (ii, ii) The evidence infore strongly supports the former assignment. $\alpha(K)=0.0040\ 14;\ \alpha(L)=0.00064\ 21;\ \alpha(M)=0.00015\ 5;\ \alpha(N+)=0.00010\ 3$ $\alpha(N)=3.7\times10^{-5}\ 12;\ \alpha(O)=7.1\times10^{-6}\ 23;\ \alpha(P)=5.3\times10^{-7}\ 20;\ \alpha(IPF)=5.0\times10^{-5}\ 12$ $E_{\gamma}I_{\gamma}$: From 2^{04} Au β^- decay. Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$.
		1841.38 <i>19</i>	69 3	0	0+	M1	0.00357 5	$\alpha(K)$ =0.00271 4; $\alpha(L)$ =0.000429 6; $\alpha(M)$ =9.90×10 ⁻⁵ 14; $\alpha(N+)$ =0.000339 5 $\alpha(N)$ =2.48×10 ⁻⁵ 4; $\alpha(O)$ =4.71×10 ⁻⁶ 7; $\alpha(P)$ =3.70×10 ⁻⁷ 6; $\alpha(IPF)$ =0.000310 5 $E_{\gamma}I_{\gamma}$: From $\gamma(\theta)$ in $(n,n'\gamma)$.

γ (²⁰⁴Hg) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	$\underline{\mathbf{J}_f^\pi}$	Mult.	α^{\dagger}	Comments
1851.26	$(2,3)^+$	723.00 16	100 3	1128.23	4+	M1+E2	0.023 12	$\alpha(K)$ =0.019 10; $\alpha(L)$ =0.0033 14; $\alpha(M)$ =0.0008 3; $\alpha(N+)$ =0.00024 10 $\alpha(N)$ =0.00020 8; $\alpha(O)$ =3.7×10 ⁻⁵ 15; $\alpha(P)$ =2.6×10 ⁻⁶ 14
		1414.72 <i>11</i>	39.3 12	436.552	2+	M1+E2	0.0048 17	E _γ ,I _γ : From ²⁰⁴ Au $β$ ⁻ decay. Additional information 28. Mult.: From $γ(θ)$ in (n,n'γ). α(K)=0.0039 14; $α(L)$ =0.00063 21; $α(M)$ =0.00015 5; $α(N+)$ =0.00010 3 α(N)=3.7×10 ⁻⁵ 12; $α(O)$ =6.9×10 ⁻⁶ 23; $α(P)$ =5.3×10 ⁻⁷ 20; $α(PF)$ =5.3×10 ⁻⁵ 13
1947.69	2+	1851.7 # <i>4</i> 1511.10 <i>I2</i>	≤1.2 100 <i>3</i>	0 436.552	0 ⁺ 2 ⁺	[M1+E2]	0.0041 14	E _γ ,I _γ : From ²⁰⁴ Au $β$ ⁻ decay. Additional information 29. Mult.: From $γ(θ)$ in $(n,n'γ)$. E _γ ,I _γ : From ²⁰⁴ Au $β$ ⁻ . α(K)=0.0034 II ; $α(L)$ =0.00054 $I7$; $α(M)$ =0.00013 4 ; $α(N+)$ =0.00013 $4α(N)$ =3.1×10 ⁻⁵ $I0$; $α(O)$ =5.9×10 ⁻⁶ $I9$; $α(P)$ =4.5×10 ⁻⁷ $I6$; $α(IPF)$ =8.9×10 ⁻⁵ I =22 Additional information 30.
		1947.76 20	5.3 4	0	0+	[E2]	0.00197 3	E _γ ,I _γ : From ²⁰⁴ Au $β^-$ decay. Mult.: Inferred from known $J^{π'}$ s of initial and final levels, consistent with $γ(θ)$ in $(n,n'γ)$. $α(K)=0.001432$ 20; $α(L)=0.000227$ 4; $α(M)=5.24×10^{-5}$ 8; $α(N+)=0.000259$ 4 $α(N)=1.311×10^{-5}$ 19; $α(O)=2.47×10^{-6}$ 4; $α(P)=1.85×10^{-7}$ 3; $α(IPF)=0.000243$ 4
1989.36 2088.51	(2 ⁺) 2 ⁺	1552.8 <i>I</i> 2088.5 <i>I</i>	100 100	436.552	2 ⁺ 0 ⁺	E2	0.00183 3	Additional information 31. $E_{\gamma}J_{\gamma}$: From 204 Au β^- decay. Mult.: $\gamma(\theta)$ in $(n,n'\gamma)$ rules out ΔJ =1 E1 assignment. $\alpha(K)$ =0.001263 18; $\alpha(L)$ =0.000198 3; $\alpha(M)$ =4.57×10 ⁻⁵ 7; $\alpha(N+)$ =0.000322 5
2094.46	(3) ⁺	1657.9 2	100	436.552	2+	M1+E2	0.0034 10	$\alpha(N)=1.144\times10^{-5}\ 16;\ \alpha(O)=2.16\times10^{-6}\ 3;\ \alpha(P)=1.631\times10^{-7}\ 23;$ $\alpha(IPF)=0.000308\ 5$ Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$. $\alpha(K)=0.0027\ 8;\ \alpha(L)=0.00044\ 13;\ \alpha(M)=0.00010\ 3;\ \alpha(N+)=0.00019\ 5$ $\alpha(N)=2.5\times10^{-5}\ 8;\ \alpha(O)=4.8\times10^{-6}\ 14;\ \alpha(P)=3.7\times10^{-7}\ 12;\ \alpha(IPF)=0.00016\ 4$ Additional information 32.
2117.47	2+	1680.9 <i>I</i>	100 9	436.552	2+	M1+E2	0.0034 10	Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$. $\alpha(K)=0.0026\ 8$; $\alpha(L)=0.00042\ 12$; $\alpha(M)=0.00010\ 3$; $\alpha(N+)=0.00020\ 5$ $\alpha(N)=2.4\times10^{-5}\ 7$; $\alpha(O)=4.6\times10^{-6}\ 14$; $\alpha(P)=3.5\times10^{-7}\ 12$; $\alpha(IPF)=0.00017\ 4$
		2117.5 2	41 9	0	0+	E2	0.00180 3	Additional information 33. Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$. $\alpha(K)=0.001232$ 18; $\alpha(L)=0.000193$ 3; $\alpha(M)=4.45\times10^{-5}$ 7; $\alpha(N+)=0.000335$

γ (²⁰⁴Hg) (continued)

$E_i(level)$	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	$\underline{\mathbf{J}_f^{\pi}}$	Mult.	α^{\dagger}	Comments
2131.26	$(1^+,2^+)$	1694.7 2	100	436.552	2+			5 $\alpha(N)=1.114\times10^{-5}\ 16;\ \alpha(O)=2.10\times10^{-6}\ 3;\ \alpha(P)=1.591\times10^{-7}\ 23;\ \alpha(IPF)=0.000321\ 5$ Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$.
2140.86	$(1^+,2^+,3^+)$	1704.7 <i>2</i>	100	436.552		(M1+E2)	0.0033 10	$\alpha(K)=0.0026$ 8; $\alpha(L)=0.00041$ 12; $\alpha(M)=9.E-5$ 3; $\alpha(N+)=0.00021$ 5
2110.00	(1 ,2 ,3)	1701.51	100	130.332	2	(1411 122)	0.0033 10	$\alpha(N)=2.4\times10^{-5}$ 7; $\alpha(O)=4.5\times10^{-6}$ 13; $\alpha(P)=3.4\times10^{-7}$ 11; $\alpha(IPF)=0.00018$ 5 Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$.
2191.01	6+	1062.8 <i>I</i>	100	1128.23	4+	E2	0.00536 8	$\alpha(K)=0.00433$ 6; $\alpha(L)=0.000791$ 11; $\alpha(M)=0.000186$ 3; $\alpha(N+)=5.57\times10^{-5}$ 8
								$\alpha(N)=4.65\times10^{-5}\ 7$; $\alpha(O)=8.64\times10^{-6}\ 12$; $\alpha(P)=5.67\times10^{-7}\ 8$ B(E2)(W.u.)=20 3 Additional information 34. Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$ and from Coul. ex.
2235.94	3,4,5	1107.7 <i>I</i>	100	1128.23	4+	D		Mult.: From $\gamma(\theta)$ in (${}^9\text{Be}, {}^9\text{Be}'\gamma$) and $(n,n'\gamma)$. Additional information 35.
2262.97	5-	1134.7 <i>I</i>	100	1128.23	4+	E1	0.00184 3	$\alpha(K)$ =0.001540 22; $\alpha(L)$ =0.000229 4; $\alpha(M)$ =5.24×10 ⁻⁵ 8; $\alpha(N+)$ =1.87×10 ⁻⁵ 3
								$\alpha(N)=1.308\times10^{-5}$ 19; $\alpha(O)=2.47\times10^{-6}$ 4; $\alpha(P)=1.87\times10^{-7}$ 3; $\alpha(IPF)=3.01\times10^{-6}$ 5 Additional information 36.
								Mult.: From ce and $\gamma(\theta)$ in (d,pn γ), and supported by $\gamma(\theta)$ in (n,n' γ) and (${}^{9}\text{Be}, {}^{9}\text{Be}'\gamma$).
2264.36 2295.66	(1,2,3)	1827.80 <i>18</i> 1859.1 <i>1</i>	100 100	436.552 436.552				E_{γ} : From ²⁰⁴ Au β^- decay.
2300.20	$(2^+,3)$	1839.1 <i>1</i> 1172.0 <i>1</i>	100 11	1128.23				
2300.20	(2,3)	1863.3 <i>3</i>	21.7 22	436.552				
2300.65	7-	(36.7)	21.7 22	2262.97	5-	[E2]	620	E_{γ} : From levels evergy difference; γ not observed, but inferred to exist in (${}^{9}Be, {}^{9}Be'\gamma$) based on coin. relationships.
		109.68 <i>12</i>	100	2191.01	6+	E1	0.335	$\alpha(K)$ =0.269 4; $\alpha(L)$ =0.0510 8; $\alpha(M)$ =0.01192 17; $\alpha(N+)$ =0.00349 5 $\alpha(N)$ =0.00294 5; $\alpha(O)$ =0.000523 8; $\alpha(P)$ =2.65×10 ⁻⁵ 4 B(E1)(W.u.)=1.63×10 ⁻⁵ 8
2225	14 O4	0005.3.4	100	2	0.4			 Additional information 37. E_γ,I_γ: From (μ⁻,nγ). Mult.: From ce in (d,pnγ); stretched nature of transition is not confirmed in (d,pnγ), but it can be inferred from the known J^π's of the initial and final states.
2385.9	1 ⁺ ,2 ⁺ 1,2,3	2385.9 <i>4</i> 554.7 [#] <i>3</i>	100 100 <i>17</i>	0 1841.38	0 ⁺ 1 ⁺			E_{γ} , I_{γ} : From ²⁰⁴ Au β^- .
2395.6								

 ∞

γ (²⁰⁴Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	${\rm J}_{_f}^\pi$	Mult.	$lpha^\dagger$	Comments
2395.6 2465.46 2514.44 2568.84	1,2,3 (2) ⁺ (2 ⁺ ,4 ⁺ ,6 ⁺) 3 ⁺ ,5 ⁺	1959.0 <i>4</i> 2028.9 2 1386.2 2 1440.6 <i>I</i>	≤10 100 100 100	436.552 436.552 1128.23 1128.23	2+	M1,E2 M1+E2	0.0046 16	E _γ ,I _γ : From ²⁰⁴ Au β^- . Additional information 38. Mult.: $\gamma(\theta)$ in (n,n'γ) rules out ΔJ =1 E1 assignment. $\alpha(K)$ =0.0037 13; $\alpha(L)$ =0.00061 20; $\alpha(M)$ =0.00014 5; $\alpha(N+)$ =0.00010 3 $\alpha(N)$ =3.5×10 ⁻⁵ 12; $\alpha(O)$ =6.6×10 ⁻⁶ 22; $\alpha(P)$ =5.0×10 ⁻⁷ 19; $\alpha(IPF)$ =6.2×10 ⁻⁵ 15
2628.26	(1 ⁺)	2191.7 <i>1</i>	100	436.552	2+	D		Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$. Mult.: From $\gamma(\theta)$ in $(n,n'\gamma)$.
2657.3	$(2)^{+}$	1529.1 5	100	1128.23	4 ⁺	D		E_{γ} , I_{γ} : From $(^{9}$ Be, 9 Be' γ).
2675.25	3-	1547.0 2	79 16	1128.23	4+	[E1]	0.001283 18	$\alpha(K)=0.000904 \ 13; \ \alpha(L)=0.0001324 \ 19; \ \alpha(M)=3.03\times10^{-5} \ 5; \ \alpha(N+)=0.000215 \ \alpha(N)=7.56\times10^{-6} \ 11; \ \alpha(O)=1.429\times10^{-6} \ 20; \ \alpha(P)=1.107\times10^{-7} \ 16; \ \alpha(IPF)=0.000206 \ 3$
			100.00	104 770			0.00404.40	Additional information 39. Mult.: Inferred from known $J^{\pi'}$ s of initial and final states, supported by $\gamma(\theta)$ in $(n,n'\gamma)$.
		2238.7 3	100 20	436.552	2*	[E1]	0.001284 18	$\alpha(K)=0.000493\ 7;\ \alpha(L)=7.13\times10^{-5}\ 10;\ \alpha(M)=1.627\times10^{-5}\ 23;\ \alpha(N+)=0.000704$ $\alpha(N)=4.07\times10^{-6}\ 6;\ \alpha(O)=7.70\times10^{-7}\ 11;\ \alpha(P)=6.07\times10^{-8}\ 9;\ \alpha(IPF)=0.000699\ 10$ Additional information 40. Mult.: Inferred from known $J^{\pi\prime}$'s of initial and final states, supported by
2724.1	(≥5)	423.5 5	100	2300.65	7-			$\gamma(\theta)$ in $(n,n'\gamma)$. $(d,pn\gamma)$ tentatively placed a 460.5 γ from this level parallel to the 423.5 γ . Evaluators have moved it to the 2761.2-keV level based on observation of 461.0 γ in $({}^{9}\text{Be}, {}^{9}\text{Be}'\gamma)$.
2726.6	$(2^+,3)$	897.9 <i>6</i> 1598.4 <i>3</i>	81 <i>51</i> 100 <i>19</i>	1828.71 1128.23	(2 ⁻) 4 ⁺			E_{γ} , I_{γ} : From 204 Au β^- . E_{γ} , I_{γ} : From 204 Au β^- .
2761.2	(5)-	461.0 <i>5</i> 497.7 <i>5</i>	53 100	2300.65 2262.97	7- 5-			Additional information 41. Additional information 42.
		569.5# 10	≈30	2191.01	6 ⁺			Observed in (d,pnγ), but placed tentatively in the level scheme. This transition was not confirmed in (${}^{9}\text{Be}, {}^{9}\text{Be}'\gamma$), where a contaminant 570γ was identified. I _γ : Normalized to 497.7γ in (d,pnγ).
2812.83	3-	2376.26 24	100	436.552	2+	[E1]	0.001321 19	$\alpha(K)=0.000448\ 7;\ \alpha(L)=6.47\times10^{-5}\ 9;\ \alpha(M)=1.476\times10^{-5}\ 21;\ \alpha(N+)=0.000793\ 1$ $\alpha(N)=3.69\times10^{-6}\ 6;\ \alpha(O)=6.99\times10^{-7}\ 10;\ \alpha(P)=5.52\times10^{-8}\ 8;\ \alpha(IPF)=0.000789\ 11$ Additional information 43. $E_{\gamma}I_{\gamma}$: From 204 Au β^- .

γ (²⁰⁴Hg) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
2908.6	(≥2)	1780.4 5	100	1128.23	4+
2914.3	(≥3)	651.3 5	100	2262.97	5-
3033.2	$(4,5,6)^{-}$	770.2 5	100	2262.97	5-
3174.0		911.0 5	100	2262.97	5-
3689.3		965.2 5	100	2724.1	(≥5)

[†] Additional information 44. [‡] From 204 Hg(n,n' γ) for levels below 2.7 MeV, and from 204 Hg(9 Be, 9 Be' γ) for levels above 2.7 MeV, unless otherwise noted. [#] Placement of transition in the level scheme is uncertain.

$\begin{array}{cccc} \underline{Adopted\ Levels, Gammas} & & & \\ \underline{Level\ Scheme} & & & & \\ \underline{I_{\gamma} < 2\% \times I_{\gamma}^{max}} \\ & & & & \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \\ \underline{I_{\gamma} > 10\% \times I_{\gamma}^{max}} \\ & & & \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \\ & & & \\ \end{array}$ Intensities: Type not specified $\begin{array}{cccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$

	٠.				
н	1	S	tc	11	'V

Type Author Citation Literature Cutoff Date
Full Evaluation M. Shamsuzzoha Basunia NDS 121, 561 (2014) 31-Mar-2014

 $Q(\beta^-)=3880~SY;~S(n)=4790~SY;~S(p)=10190~SY;~Q(\alpha)=1840~SY~~2012Wa38$ $\Delta Q(\beta^-)=200~(syst),~\Delta S(n)=250~(syst),~\Delta S(p)=450~(syst),~\Delta Q(\alpha)=360~(syst)~2012Wa38.$

²¹⁰Hg Levels

Cross Reference (XREF) Flags

A 210 Hg IT decay (2.1 μ s) B 210 Hg IT decay (2 μ s)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0	0+		AB	
643	(2^{+})		AB	
(663)	(3 ⁻)	2.1 μs 7	AB	 J^π: (3⁻) in 2013Go10, based on unobserved but expected highly converted 20 keV γ-ray feeding the (2⁺) state, 663γ to 0⁺ g.s., and calculated reduced transition strengths. Shell model calculation can not reliably predict the location of a 3⁻ state, because it does not allow core excitations and also the 3⁻ state in the lead region is very fragmented as mentioned in 2013Go10. For ²⁰⁸Pb, ²¹⁰Pb, and ²¹⁴Pb nuclides 3⁻ state is prediction at much energy. T_{1/2}: From 663γ(t).
1196	(4^{+})		В	
1366	(6^{+})		В	
x+1366	(8^{+})	$2 \mu s I$	В	$T_{1/2}$: From 553 γ (t). Other: 2.0 μ s 4 (from 643 γ (t)).

 $^{^{\}dagger}$ From $\gamma\text{-ray}$ energy and feeding.

$\gamma(^{210}\text{Hg})$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
643	(2^{+})	643	100	0.0	0+		
(663)	(3^{-})	(20)	75 [†] 16	643	(2^{+})	[E1]	$B(E1)(W.u.)=4.9\times10^{-6}$ 22
		663	100 [†] <i>16</i>	0.0	0^{+}	[E3]	B(E3)(W.u.)=2.2 9
1196	(4^{+})	553	100	643	(2^{+})		
1366	(6^+)	170	100	1196	(4^{+})		
x+1366	(8+)	У					E_{γ} : 20 < Y < 80 keV suggested in 2013Go10. Upper limit from x-ray measurements – the 71 keV identified as characteristics K_{α} x ray following 170 keV γ -ray. Lower limit from systematics.

[†] From branching ratio 0.43 9 and 0.57 9 for 663- and 20-keV γ rays, respectively (Table 2 – 2013Go10).

 $^{^{\}ddagger}$ From shell model calculation and γ ray feeding, except otherwise noted.

Legend

Level Scheme

