信号解析の数理

線型代数で信号を理解するために

calamari_dev

はじめに

準備中.

2022 年〇月

calamari_dev

目次

はじめに				
記号について				
第1章	準備と前提知識	1		
1.1	行列とベクトル空間 ベクトル空間/基底/内積/線型写像と表現行列/核と像/固有値と 固有空間/対角化 演習問題	1 11		
第2章	数ベクトル空間	13		
2.1	直交射影 直交射影/直交補空間/スペクトル定理	13		
2.2	最小二乗問題 操小二乗問題 操似逆行列	15		
2.3	離散フーリエ変換	15		
2.4	多重解像度解析	15		
2.A	主成分分析	15		
2.B	低ランク近似	15		
2.C	窓関数	15		
	演習問題	15		
第3章	ヒルベルト空間	17		
3.1	無限次元の線型空間 距離空間/ノルム線型空間/内積空間/ヒルベルト空間	17		
3.2	直交射影直交射影/直交補空間/正規直交列	18		

vi 目次

3.3	フーリエ級数展開	19
	フーリエ級数展開/フーリエ変換	
3.4	多重解像度解析	19
	多重解像度解析/ウェーブレット変換	
3.A	半ノルムと <i>IP</i> 空間	20
	演習問題	20
第 4 章	確率空間	21
4.1	確率空間	21
4.2	ウィナーフィルタ	21
4.3	カルマンフィルタ	21
4.A	カルーネン・レーベ変換	21
	演習問題	21
/ -		00
	プログラム例	23
A.1	C 言語	23
索引		27

記号について

書籍ごとに異なることが多い記号について,記号と定義の組を示す.表にない記号については、巻末の索引を参照のこと.

記号	定義					
N	自然数の全体集合 {1,2,}					
\mathbb{Z}	整数の全体集合 {, -2, -1, 0, 1, 2,}					
K	実数の全体集合 ℝ か複素数の全体集合 ℂ					
S^{c}	集合Sの補集合					
$\operatorname{cl} S$	集合 S の閉包					
δ_{ij}	クロネッカーのデルタ					
$\langle u, v \rangle$	ベクトル u , v の内積					
$\ oldsymbol{v}\ $	ベクトル ບ のノルム					
I	単位行列					
0	零行列					
\boldsymbol{M}^{T}	行列 M の転置行列					
M^{H}	行列 M のエルミート転置					
$\ oldsymbol{M}\ _{\mathrm{F}}$	行列 M のフロベニウスノルム					
$\mathcal{F}_{\mathbb{Z}_n} x$	信号 x の離散フーリエ変換					
$\mathcal{F}_{\mathbb{Z}} x$	信号 x の離散時間フーリエ変換					
$\hat{f_n}$	関数 f のフーリエ係数					
$\mathcal{F}f$	関数 f のフーリエ変換					

準備と前提知識

第1章では、素朴集合論・線型代数学・微分積分学で有名な事実を、本書で必要となるものに限って概観する.

1.1 行列とベクトル空間

1.1.1 ベクトル空間

以下,集合 $\mathbb K$ は実数の全体集合 $\mathbb R$ か,複素数の全体集合 $\mathbb C$ であるとする。 $\mathbb K$ 上のベクトル空間とは次のように定義される,加法とスカラー乗法が備わった集合のことである。

定義 1.1.1 (ベクトル空間) V を空でない集合とする。また、任意の $x,y \in V$ 、 $s \in \mathbb{K}$ について、和 $x+y \in V$ とスカラー倍 $sx \in V$ が定義されているとする。任意の $x,y,z \in V$ 、 $s,t \in \mathbb{K}$ に対する以下の条件を満たすとき、V は \mathbb{K} 上のベクトル空間(vector space)であるという。

- 1. (x + y) + z = x + (y + z)
- 2. x + y = y + x
- 3. ある $\mathbf{0} \in V$ が存在し、任意の $\mathbf{v} \in V$ に対して $\mathbf{v} + \mathbf{0} = \mathbf{v}$ を満たす
- 4. 各 $v \in V$ に対し、ある $w \in V$ が一意に存在してv + w = 0を満たす
- 5. (s+t)x = sx + tx
- 6. s(x + y) = sx + sy
- 7. $(st)\mathbf{x} = s(t\mathbf{x})$
- 8. 1x = x

しばしば Vの元をベクトル、 \mathbb{K} の元をスカラーと呼ぶ. また、定義 1.1.1 の

0 を**零ベクトル** (zero vector), \boldsymbol{w} を \boldsymbol{v} の加法逆元 (additive inverse) という. 通常, \boldsymbol{v} の加法逆元は $-\boldsymbol{v}$ と表される.

ノート 定義 1.1.1 はごてごてしているように見えるが、それは和とスカラー倍について、 \mathbb{K}^n と同様に計算できるよう、ルールをつけ加えていった結果といえる. \diamondsuit

ついで、ベクトル空間にかかわる概念を2つ定義する. これらの関係については、すぐ後で説明する.

定義 1.1.2 (線型結合) V を \mathbb{K} 上のベクトル空間, $v_1, ..., v_n$ を V の元 とする. $c_1v_1 + \cdots + c_nv_n$ ($c_1, ..., c_n \in \mathbb{K}$) という形をした V の元を, $v_1, ..., v_n$ の線型結合 (linear combination) という.

定義 1.1.3 (部分空間) Vを K 上のベクトル空間, Wを V の空でない部分集合とする. W が V の加法とスカラー乗法について定義 1.1.1 の条件をすべて満たすとき, W は V の部分ベクトル空間 (vector subspace), あるいは単に部分空間 (subspace) であるという.

ある部分集合 $W \subset V$ が V の部分空間かどうか調べるには、命題 1.1.4 を使うとよい.

命題 1.1.4 Vを \mathbb{K} 上のベクトル空間, Wを V の空でない部分集合とする. このとき、次の命題は同値である.

- 1. W は V の部分空間である
- 2. 任意の $s \in \mathbb{K}$, $\mathbf{w}_1, \mathbf{w}_2 \in W$ に対して $s\mathbf{w}_1, \mathbf{w}_1 + \mathbf{w}_2 \in W$ である

例 1.1.5 *V* が № 上のベクトル空間なら, *V* 自身と **{0**} は *V* の部分空間である.

例 1.1.6 集合 $\mathbb{K}^n = \{[s_1 \cdots s_n]^\mathsf{T} \mid s_1, \dots, s_n \in \mathbb{K}\}$ は,通常の加法とスカラー乗法によって, \mathbb{K} 上のベクトル空間になる.

また、2つの部分空間 $W_1, W_2 \subset V$ があれば、それらを含むより大きな部分空間を作れる。

定義 1.1.7 (部分空間の和) V を K 上のベクトル空間, $W_1, W_2 \subset V$ を部分空間とする。 このとき,集合 $W = \{ \boldsymbol{w}_1 + \boldsymbol{w}_2 \mid \boldsymbol{w}_1 \in W_1, \ \boldsymbol{w}_2 \in W_2 \}$ は V の部分空間になる。 W を W_1 と W_2 の和(sum)といい, $W_1 + W_2$ と表記する.

特に $W_1 \cap W_2 = \{\mathbf{0}\}$ であるとき, $W_1 + W_2$ を W_1 と W_2 の**直和**(direct sum)という. 直和であることを強調したいときは,和 $W_1 + W_2$ を $W_1 \oplus W_2$ とも書く.

1.1.2 基底

任意のベクトル $\mathbf{x} = [x_1 \cdots x_n]^\mathsf{T} \in \mathbb{K}^n$ は,第 i 成分が 1,他の成分が 0 のベクトル \mathbf{e}_i を用いて $\mathbf{x} = x_1\mathbf{e}_1 + \cdots + x_n\mathbf{e}_n$ と表せる.すなわち,集合 $\mathcal{S}_n = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ は「 \mathbb{K}^n のすべての元を \mathcal{S}_n の元の線型結合で書ける」という 性質を持つ.

一般に、ベクトル空間 V の部分集合 S に対して、S の元の線型結合で書けるベクトルの全体集合を S が**生成する部分空間**(generated subspace)といい、 $\operatorname{span} S$ と表記する.この記法を使えば、先述した S_n が持つ性質を「 $\operatorname{span} S_n = \mathbb{K}^n$ が成り立つ」と言い換えられる.

 $\operatorname{span} S = \mathbb{K}^n$ を満たす集合 $S \subset \mathbb{K}^n$ は, S_n 以外にも無数にある.たとえば $\mathbb{K}^n = \mathbb{R}^2$ のとき,集合 $T = \{[1 \quad 1]^\mathsf{T}, [2 \quad -1]^\mathsf{T}, [-1 \quad 0]^\mathsf{T}\}$ が生成する部分空間 は \mathbb{R}^2 である.しかし, $S_2 = \{[1 \quad 0]^\mathsf{T}, [0 \quad 1]^\mathsf{T}\}$ の元の線型結合で \mathbb{R}^2 の元を表す方法はただ 1 通りであるのに対して,T はこの性質を持たない(図 1.1).

S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき,任意の $a_i,b_i\in\mathbb{K}$, $\mathbf{v}_i\in S$ について

$$\sum_{i=1}^k a_i \mathbf{v}_i = \sum_{i=1}^k b_i \mathbf{v}_i \implies \begin{bmatrix} a_1 & \cdots & a_k \end{bmatrix} = \begin{bmatrix} b_1 & \cdots & b_k \end{bmatrix}$$

が成立する. $b_1 = \cdots = b_k = 0$ とすると

$$a_1 \mathbf{v}_1 + \dots + a_k \mathbf{v}_k = \mathbf{0} \implies a_1 = \dots = a_k = 0$$
 (1.1)

が得られる.

任意の $a_1, \ldots, a_k \in \mathbb{K}$ に対して式(1.1) が成立するとき、 v_1, \ldots, v_k は**線型独立**であるという.特に、 $V = \operatorname{span} S$ かつ、S の元からなる有限個のベクトルの

図 1.1 $v_1, v_2, v_3 \in T$ の線型結合で $x = \begin{bmatrix} 3/2 & 0 \end{bmatrix}^\mathsf{T}$ を表した様子. 明らかに $x = (-3/2)v_3$ である一方, $x = (v_1 + v_2)/2 = (1/2)v_1 + (1/2)v_2$ も成り立つ.

組が常に線型独立であるとき、S は V の**基底**であるという.以上を定義 1.1.8、1.1.9 にまとめておく.

定義 1.1.8 (生成系・線型独立・線型従属) V を \mathbb{K} 上のベクトル空間, S を V の部分集合とする. また, $\boldsymbol{v}_1, \dots, \boldsymbol{v}_k$ を V の元とする.

- 1. V = span S であるとき、S を V の生成系(generating set)という
- 2. $\sum_{i=1}^k c_i v_i = \mathbf{0}$ を満たす $c_1, \dots, c_k \in \mathbb{K}$ の組が $c_1 = \dots = c_k = 0$ しかないとき, v_1, \dots, v_k は**線型独立**(linearly independent)であるという
- 3. $v_1, ..., v_k$ が線型独立でないとき、 $v_1, ..., v_k$ は**線型従属** (linearly dependent) であるという

定義 1.1.9 (基底) V を \mathbb{K} 上のベクトル空間, \mathcal{B} を V の部分集合とする。 \mathcal{B} が V の生成系かつ, \mathcal{B} に属する有限個のベクトル $\mathbf{v}_1, \dots, \mathbf{v}_k$ が常に線型独立であるとき, \mathcal{B} は V の基底(basis)であるという.

例 1.1.10 (標準基底) S_n は \mathbb{K}^n の基底である. S_n を \mathbb{K}^n の標準基底(standard basis) という.

さきほどの議論によれば、S の元の線型結合で $\operatorname{span} S$ の元を一意に表せるとき、任意の $a_1,\dots,a_k\in\mathbb{K}$ について式 (1.1) が成立する。すなわち、S は $\operatorname{span} S$ の基底である。実はこの逆も示せるので、次の命題が成立する.

命題 1.1.11 V を K 上のベクトル空間, S を V の部分集合とする. このとき、次の命題は同値である.

- 1. S の元の線型結合で span S の元を一意に表せる
- 2. S は span S の基底である

Vの基底で有限集合のものがあるとき,Vは**有限次元**(finite-dimensional)であるという。Vが有限次元なら,Vの基底はすべて有限集合で,その元の個数は等しい。すなわち,元の個数 # \mathcal{B} は基底 \mathcal{B} のとりかたによらず定まる。# \mathcal{B} を V の次元(dimension)といい,dim V と表記する¹⁾。

基底に関連して、次の命題が成り立つ.

命題 1.1.12 (基底の延長) V を \mathbb{K} 上の n 次元ベクトル空間とする. k < n 個のベクトル $v_1, \ldots, v_k \in V$ が線型独立なら,集合 $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ が V の基底になる $v_{k+1}, \ldots, v_n \in V$ が存在する.

1.1.3 内積

 \mathbb{R}^3 において,ベクトルの長さとなす角はドット積 $(x_1,x_2,x_3)\cdot (y_1,y_2,y_3)=\sum_{i=1}^3 x_i y_i$ から計算できた.定義 1.1.13 は,こうした幾何的な考察を,より多くのベクトル空間へと適用可能にする.

定義 1.1.13 (内積) V を \mathbb{K} 上のベクトル空間とする. $\langle _, _ \rangle$ が V の内積 (inner product) であるとは,任意の $\lambda \in \mathbb{K}$, $x,y,z \in V$ に対し, $\langle _, _ \rangle$ が 以下の条件を満たすことをいう.

- 1. $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 2. $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$
- 3. $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, $[\langle \mathbf{x}, \mathbf{x} \rangle = 0 \iff \mathbf{x} = \mathbf{0}]$

内積が備わっているベクトル空間のことを**内積空間**(inner product space) という. また、 $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0$ であるとき、ベクトル \boldsymbol{v} と \boldsymbol{w} は**直交**するという.

¹⁾ *V* が有限次元でないときも基底は存在する(証明は文献[3]).

ノート 定義により、 $\mathbf{0}$ は任意のベクトルと直交する.この事実は直感にそぐわないかもしれないが、 $\mathbf{0}$ だけを特別扱いするとかえって面倒である. \diamondsuit

例 1.1.14 (標準内積) $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = \boldsymbol{v}_1^\mathsf{T} \overline{\boldsymbol{v}_2} \; (\boldsymbol{v}_1, \boldsymbol{v}_2 \in \mathbb{K}^n)$ とすると, $\langle _, _ \rangle$ は \mathbb{K}^n の内積になる. $\langle _, _ \rangle$ を \mathbb{K}^n の標準内積という.

定義1.1.15は、本書の中核をなす重要な概念である、

定義 1.1.15 (正規直交系,正規直交基底) V を内積空間とする. 集合 $\mathcal{B} \subset V$ が正規直交系(orthonormal system; ONS)であるとは,任意の $e_1,e_2 \in \mathcal{B}$ が条件

$$\langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle = \begin{cases} 1 & (\boldsymbol{e}_1 = \boldsymbol{e}_2), \\ 0 & (\boldsymbol{e}_1 \neq \boldsymbol{e}_2) \end{cases}$$

を満たすことをいう.また, \mathcal{B} が V の基底であるとき, \mathcal{B} は**正規直交基底** (orthonormal basis; ONB) であるという.

 \mathcal{B} が正規直交系なら、有限個の $\mathbf{e}_1, \dots, \mathbf{e}_k \in \mathcal{B}$ は常に線型独立である. よって、 \mathcal{B} が基底であることを見るには、 $V = \operatorname{span} \mathcal{B}$ だけ確認すればよい.

また,内積空間に属する線型独立なベクトルの組があれば,それらから正規 直交系を作れる.

命題 1.1.16 Vを内積空間とする. $v_1, \dots, v_k \in V$ が線型独立なら、式

$$u_1 = v_1, \quad u_i = v_i - \sum_{i=1}^{i-1} \frac{\langle u_j, v_j \rangle}{\langle u_j, u_j \rangle} u_j \quad (i = 2, \dots, k)$$

でベクトル u_1,\dots,u_k を定義すると、集合 $\{u_i/\sqrt{\langle u_i,u_i\rangle}|i=1,\dots,k\}$ は正規直交系になる.

正規直交系を作る命題 1.1.16 の方法を**グラム・シュミットの直交化法** (Gram-Schmidt orthogonalization) という. 命題 1.1.16 から, 有限次元の内積空間は常に正規直交基底を持つ.

1.1.4 線型写像と表現行列

Vは有限次元であるとする.命題 1.1.11 によれば、Vの基底 $\mathcal{B} = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_m \}$ $(m = \dim V)$ をとることで、任意の $\boldsymbol{x} \in V$ を

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_m \mathbf{v}_m \quad (c_1, \dots, c_m \in \mathbb{K})$$
 (1.2)

の形で一意に表せる.言い換えると,V の各元 x に式 (1.2) の $[c_1 \cdots c_m]^\mathsf{T}$ を割り当てる写像 $\phi: V \to \mathbb{K}^m$ を定義でき,それは単射 2)である.この写像 ϕ は,次に定義する「線型写像」の 1 例である.

定義 1.1.17 (線型写像) $V \ge W \ge \mathbb{K}$ 上のベクトル空間とする. 写像 $f: V \to W$ が以下の条件を満たすとき, f は線型写像 (linear mapping) であるという.

- 1. 任意の $x, y \in V$ に対して f(x + y) = f(x) + f(y)
- 2. 任意の $x \in V$, $c \in \mathbb{K}$ に対してf(cx) = cf(x)

W を \mathbb{K} 上の有限次元ベクトル空間とする. W の基底 $\mathcal{B}'=\{\pmb{w}_1,\dots,\pmb{w}_n\}$ $(n=\dim W)$ をとると、 ϕ と同様

$$\mathbf{y} = d_1 \mathbf{w}_1 + \dots + d_n \mathbf{w}_n \iff \psi(\mathbf{y}) = \begin{bmatrix} d_1 & \dots & d_n \end{bmatrix}^\mathsf{T}$$

を満たす線型写像 $\psi:W \to \mathbb{K}^n$ が定義できる.

 ϕ と ψ を利用すると、V から W への任意の線型写像 f を、対応する行列によって表現できる。 $\mathbf{x} \in V$ を任意にとる。 $\phi(\mathbf{x}) = [c_1 \ \cdots \ c_m]^\mathsf{T}$ とおくと

$$f(\mathbf{x}) = f\left(\sum_{i=1}^{m} c_i \mathbf{v}_i\right) = \sum_{i=1}^{m} c_i f(\mathbf{v}_i)$$

であるから

$$\psi(f(\boldsymbol{x})) = \sum_{i=1}^{m} c_i \psi(f(\boldsymbol{v}_i)) = \begin{bmatrix} \psi(f(\boldsymbol{v}_1)) & \cdots & \psi(f(\boldsymbol{v}_m)) \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}$$

²⁾ 写像 f の定義域に属する任意の x,y について、命題「 $f(x)=f(y) \implies x=y$ 」が成立するとき、f は**単射**(injection)であるという.

となる. よって,
$$\mathbf{A} = [\psi(f(\mathbf{v}_1)) \cdots \psi(f(\mathbf{v}_m))]$$
 とおくと, 式
$$\psi(f(\mathbf{x})) = T(\phi(\mathbf{x})) \quad (T(\mathbf{x}) = \mathbf{A}\mathbf{x}) \tag{1.3}$$

が成り立つ.

ここまでの議論をまとめると、次のようになる. V の $V \longrightarrow W$ 基底 \mathcal{B} と、W の基底 \mathcal{B}' をとるごとに、 $n \times m$ 行列 $\mathbf{A} = [\psi(f(\mathbf{v}_1)) \cdots \psi(f(\mathbf{v}_m))]$ を定義でき、 \mathbf{A} は式(1.3) を満たす.この \mathbf{A} を、基底 \mathbf{B} と \mathbf{B}' に関する f の表現行 **列** (representation matrix) という.

なお、 $\mathcal B$ の元を並べる順序に応じて、式(1.2) の c_1,\dots,c_n の順序も変化するので、 ϕ は $\mathcal B$ に対して一意ではない。 ϕ は $\mathcal B$ の元を並べる順序を決めて初めて定まる。本書では、 $\mathcal B=\{\pmb v_1,\dots,\pmb v_n\}$ のような書き方をした場合、 $\mathcal B$ の元を $\pmb v_i$ の添え字 i について昇順に並べると決めておく。

例 1.1.18 (形式的な微分) n 次以下の 1 変数多項式全体 $V_n = \{c_0 + c_1 x + \cdots + c_n x^n \mid c_0, \dots, c_n \in \mathbb{R}\}$ は、 \mathbb{R} 上の n+1 次元ベクトル空間である。また、写像 $D: V_3 \to V_2$ を

$$D(c_0 + c_1 x + c_2 x^2) = c_1 + 2c_2 x \quad (c_0, c_1, c_2 \in \mathbb{R})$$

で定義すると、これは線型写像になる. V_n の基底として $\mathcal{B}_n = \{1, x, ..., x^n\}$ を とったとき、基底 \mathcal{B}_3 と \mathcal{B}_2 に関する D の表現行列は $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ である. \diamondsuit

1.1.5 核と像

線型写像に付随して、重要なベクトル空間が2つ定まる.

定義 1.1.19 (核,像) $f: V \to W$ を線型写像とする.

- 1. 集合 $\{v \in V | f(v) = 0\}$ を f の核 (kernel) といい, Ker f と表す
- 2. 集合 $\{f(\mathbf{v}) \mid \mathbf{v} \in V\}$ を f の像 (image) といい、 $\operatorname{Im} f$ と表す

一般に、 $\operatorname{Ker} f$ と $\operatorname{Im} f$ はそれぞれ V と W の部分空間になる。 $\operatorname{Ker} f$ について、次の命題が成立する。

命題 1.1.20 $f: V \to W$ を線型写像とする.このとき,f が単射であることと, $Ker f = \{\mathbf{0}\}$ が成立することは同値である.

証明 $f(\mathbf{0}) = f(\mathbf{0} + \mathbf{0}) = f(\mathbf{0}) + f(\mathbf{0})$ なので, $f(\mathbf{0}) = \mathbf{0}$ である. よって, f が単射なら $f(\mathbf{v}) = \mathbf{0} \iff \mathbf{v} = \mathbf{0}$ だから, $\operatorname{Ker} f = \{\mathbf{0}\}$ である.

また、 $v_1, v_2 \in V$ が $f(v_1) = f(v_2)$ を満たせば $f(v_1-v_2) = f(v_1)-f(v_2) =$ **0** である.よって、Ker $f = \{0\}$ なら $v_1 - v_2 = 0$ 、 $v_1 = v_2$ である.すなわち、Ker $f = \{0\}$ なら f は単射である.

1.1.6 固有値と固有空間

対角化に向けて、固有値に関連する事項を整理する.

定義 1.1.21 (固有値,固有ベクトル) A を n 次正方行列とする。複素数 λ と 0 でないベクトル $x \in \mathbb{C}^n$ が式 $Ax = \lambda x$ を満たすとき、 λ を A の固有値 (eigenvalue) という。また、x を A の(固有値 λ に属する)固有ベクトル (eigenvector) という。

例 1.1.22 $x_1 = [1 + i \ 2]^\mathsf{T}, x_2 = [1 - i \ 2]^\mathsf{T}$ は $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ の固有ベクトル である.実際 $Ax_1 = ix_1, Ax_2 = -ix_2$ である.

定義 1.1.21 を満たす λ を見つけるには、次の命題 1.1.23 を利用するとよい.

命題 1.1.23 λ が正方行列 A の固有値であることと, $\det(\lambda I - A) = 0$ であることは同値である.ただし, $\det A$ は A の行列式である.

n 次多項式 $P(\lambda) = \det(\lambda I - A)$ を A の固有多項式(characteristic polynomial)という。 命題 1.1.23 から,集合 $\{\lambda \in \mathbb{C} \mid P(\lambda) = 0\}$ は A の固有値の全体集合である.

系 1.1.24 任意の n 次正方行列 A は、相異なる固有値を少なくとも 1 個、多くとも n 個もつ.

証明 $\det(\lambda I - A) = 0$ は λ に関する n 次方程式なので、解は存在しても n 個

以下である.また、代数学の基本定理より解は少なくとも1つ存在する. □

定義 1.1.25 (固有空間) 定義 1.1.21 の A, λ について, 集合

$$E_{\lambda}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{C}^n \mid \mathbf{A}\mathbf{x} = \lambda \mathbf{x} \}$$

は \mathbb{C}^n の部分空間になる. 部分空間 $E_{\lambda}(\mathbf{A})$ を, \mathbf{A} の(固有値 λ に属する) **固有空間**(eigenspace)という.

固有空間は次の性質を持つ.

命題 1.1.26 λ_1 , λ_2 を正方行列 A の固有値とする. このとき, 次の命題が成立する.

- 1. $\mathbf{x} \in E_{\lambda_1}(\mathbf{A}) \implies \mathbf{A}\mathbf{x} \in E_{\lambda_1}(\mathbf{A})$
- 2. $\lambda_1 \neq \lambda_2 \implies E_{\lambda_1}(\mathbf{A}) \cap E_{\lambda_2}(\mathbf{A}) = \{\mathbf{0}\}\$

証明 後半のみ示す. $A\mathbf{0} = \lambda_1 \mathbf{0} = \lambda_2 \mathbf{0} = \mathbf{0}$ なので, $\mathbf{0} \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$ である. また, 任意に $\mathbf{x} \in E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$ をとると, $A\mathbf{x} = \lambda_1 \mathbf{x} = \lambda_2 \mathbf{x}$ だから $(\lambda_1 - \lambda_2)\mathbf{x} = \mathbf{0}$ である. $\lambda_1 \neq \lambda_2$ なので $\mathbf{x} = \mathbf{0}$ である. よって, $E_{\lambda_1}(A) \cap E_{\lambda_2}(A)$ は $\mathbf{0}$ 以外に元を持たない.

1.1.7 対角化

適当な n 次正則行列 P, 対角行列 Λ の組を見つけて, $n \times n$ 行列 Λ を $\Lambda = P\Lambda P^{-1}$ の形で書くことを Λ の対角化 (diagonalization) という. Λ が 対角化可能である必要十分条件は、次の命題 1.1.27 で与えられる.

命題 1.1.27 n 次正方行列 A の固有値全体を $\{\lambda_1,\dots,\lambda_k\}$ とおく. ただし, $i\neq j$ ならば $\lambda_i\neq \lambda_j$ とする. このとき, 次の命題は同値である.

- 1. A の固有ベクトルのみからなる \mathbb{K}^n の基底が存在する
- 2. $\mathbb{K}^n = E_{\lambda_1}(\mathbf{A}) \oplus \cdots \oplus E_{\lambda_k}(\mathbf{A})$ が成立する
- 3. n 次正則行列 P、対角行列 Λ が存在して $\Lambda = P^{-1}AP$ を満たす

演習問題

数ベクトル空間

第2章で書く予定のことを並べておく.

2.1 直交射影

2.1.1 直交射影

- 2.1.2 直交補空間
- 2.1.3 スペクトル定理
- 2.2 最小二乗問題
- 2.2.1 最小二乗問題
- 2.2.2 特異値分解
- 2.2.3 擬似逆行列
- 2.3 離散フーリエ変換
- 2.4 多重解像度解析
- 2.A 主成分分析
- 2.B 低ランク近似
- 2.C 窓関数

ヒルベルト空間

第3章で書く予定のことを並べておく.

3.1 無限次元の線型空間

3.1.1 距離空間

3.1.2 ノルム線型空間

3.1.3 内積空間

3.1.4 ヒルベルト空間

3.2 直交射影

3.2.1 直交射影

- 3.2.2 直交補空間
- 3.2.3 正規直交列
- 3.3 フーリエ級数展開
- 3.3.1 フーリエ級数展開
- 3.3.2 フーリエ変換
- 3.4 多重解像度解析
- 3.4.1 多重解像度解析

3.4.2 ウェーブレット変換

3.A 半ノルムと LP 空間

演習問題

確率空間

第4章で書く予定のことを並べておく.

- 4.1 確率空間
- 4.2 ウィナーフィルタ
- 4.3 カルマンフィルタ
- 4.A カルーネン・レーベ変換

演習問題

プログラム例

A.1 C 言語

以下のプログラムは C11 に準拠している. まず, 動作はするものの不作法 なプログラムを示す.

```
#include <math.h>
#include <sndfile.h>
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  int samplerate = 44100;
  int frames = 4 * samplerate;
  SF_INFO sfinfo = {.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16,
                    .channels = 1,
                    .samplerate = samplerate,
                    .frames = frames};
  SNDFILE *file = sf_open("charp.wav", SFM_WRITE, &sfinfo);
  double *buffer = malloc(sizeof(double) * frames);
  double pi = 3.141592653589793;
  double max_omega = 523.25 * 2.0 * pi / samplerate;
  for (int i = 0; i < frames; i++) {
    buffer[i] = sin(max\_omega * i * i / (2.0 * frames));
  sf_write_double(file, buffer, frames);
  sf_close(file);
 free(buffer);
 return 0:
3
```

```
gcc charp.c -lm -lsndfile -std=c11
```

手元でちょっとした実験をしたいだけなら、上のプログラムでも問題ない. しかし、誰かに使われる可能性があるのなら、次のように例外処理をきちんと 行うほうがよい.

```
#include <math.h>
#include <sndfile.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  const uint32_t samplerate = 44100;
  const uint32_t frames = 4 * samplerate;
  SNDFILE *const file =
      sf_open("charp.wav", SFM_WRITE,
              &(SF_INFO){.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16,
                          .channels = 1,
                          .samplerate = samplerate,
                          .frames = frames{);
  if (file == NULL) {
    fprintf(stderr, "failed to open \"charp.wav\".\n");
   return 1;
  }
 double *const buffer = malloc(sizeof(double) * frames);
  if (buffer == NULL) {
    fprintf(stderr, "malloc failed.\n");
   sf_close(file);
   return 1;
  7
  const double pi = 3.141592653589793;
  const double max_omega = 523.25 * 2.0 * pi / samplerate;
  for (uint32_t i = 0; i < frames; i++) {</pre>
   buffer[i] = sin(max\_omega * i * i / (2.0 * frames));
  3
```

```
if (sf_write_double(file, buffer, frames) != frames) {
   fprintf(stderr, "%s\n", sf_strerror(file));
   sf_close(file);
   free(buffer);
   return 1;
}

sf_close(file);
  free(buffer);
  return 0;
}
```

26 参考文献

参考文献

- [1] 齋藤正彦. 線型代数入門. 東京大学出版会, 2020, 274p., (基礎数学, 1).
- [2] 松坂和夫. 集合·位相入門. 岩波書店, 2018, 329p.
- [3] 雪江明彦. 環と体とガロア理論. 日本評論社, 2019, 300p., (代数学, 2).

索引 27

索引

【記号】		固有多項式	9	【な】	1
$\dim V$	5	固有値	9	内積	5
$\operatorname{Im} f$	8	固有ベクトル	9	内積空間	5
⟨ <u>_</u> , <u>_</u> ⟩	5	[さ]			
Ker f	8	次元	5	【は	1
span S	3	正規直交基底	6	表現行列	8
$E_{\lambda}(A)$	10	正規直交系	6	標準基底	4
$W_1 + W_2$	3	零ベクトル	2	標準内積	6
$W_1 \oplus W_2$	3	線型結合	2	部分空間	2
74.3		線型写像	7	生成する―	3
【か】 核	0	線型従属	4	―の直和	3
	8	線型独立	4	—の和	3
加法逆元	2	像	8	ベクトル空間	1
基底	4			部分—	→ 部分空間
行列式	9	【た】		,	
グラム・シュミットの直交		対角化	10		
化法	6	単射	7	(や)	1
固有空間	10	直交	5	有限次元	5