Analog IC Design Lab 01

LPF Simulation and MOSFET Characteristics

Part 1: Low Pass Filter Simulation (LPF)

1. Transient Analysis

- a. Design a first order low pass filter that has $R=1k\Omega$ and 1ns time constant.
- b. Apply a square wave input with $T_{high} = T_{low} = 5ns$ and $T_{rise} = T_{fall} = 100ps$.
- c. Report transient analysis results for two periods (use max time step = $T_{clk}/100$).
- d. Calculate rise and fall time (10% to 90%) using waveforms calculator.
- e. Compare simulation with analytical results in a table.
- f. Do parametric sweep for R=1: 1: $5k\Omega$. Report overlaid results. Comment on the results.

2. AC Analysis

- a. Report Bode Plot (magnitude and phase) for the previous LPF.
- b. Calculate DC gain and 3dB bandwidth using calculator expressions.
- c. Compare simulation with analytical results in a table.
- d. Do parametric sweep for $R=1,10,100,1000k\Omega$. Report overlaid results. Comment on the results.

3. Pole Zero Analysis

- a. Report pole zero analysis results from the AMS results browser.
- b. Find the pole frequency and compare it with the bandwidth calculated from AC analysis.

Part 2: MOSFET Characteristics

1. ID vs VGS

- a. Plot $I_D V_{GS}$ characteristics for NMOS device. Set $V_{DS} = V_{DD}$, and $V_{GS} = 0$: 10m: V_{DD} . Plot the results overlaid for the following:
 - Short channel device: $W=1\mu m$ and L=200nm
 - Long channel device: $W=10\mu m$ and $L=2\mu m$.
- b. Comment on the differences between short channel and long channel results.
 - Which one has higher current? Why?
 - Is the relation linear or quadratic? Why?
- c. Repeat for PMOS device. Comment on the differences between NMOS and PMOS.
 - Which one has higher current? Why?
 - What is the ratio between NMOS and PMOS currents?

Ain Shams University – Faculty of Engineering – ECE Dept. – Integrated Circuits Lab. Dr. Hesham Omran

2. g_m vs VGS

- a. Plot g_m vs V_{GS} for NMOS device. Set $V_{DS} = V_{DD}$, and $V_{GS} = 0$: 10m: V_{DD} . Plot the results overlaid for the following:
 - Short channel device: $W=1\mu m$ and L=200nm
 - Long channel device: $W=10\mu m$ and $L=2\mu m$.
- b. Comment on the differences between short channel and long channel results.
 - Does g_m increase linearly? Why?
 - Does g_m saturate? Why?

3. ID vs VDS

- a. Plot $I_D V_{DS}$ characteristics for NMOS device. Set $V_{DS} = 0$: 10m: V_{DD} , and $V_{GS} = 0$: 0.2: V_{DD} (nested sweep). Plot the results overlaid for the following:
 - Short channel device: $W = 1 \mu m$ and L = 200 nm
 - Long channel device: $W=10\mu m$ and $L=2\mu m$.
- b. Comment on the differences between short channel and long channel results.
 - Which one has higher current? Why?
 - Which one has higher slope in the saturation region? Why?
- c. Repeat for PMOS device. Comment on the differences between NMOS and PMOS.
 - Which one has higher current? Why?
 - What is the ratio between NMOS and PMOS currents?

4. g_m and r_o in Triode and Saturation

- a. Plot g_m and r_o vs V_{DS} for NMOS device. Use $W=10\mu m$ and $L=2\mu m$, $V_{DS}=0$: 10m: V_{DD} , and $V_{GS}=V_{DD}$.
- b. Comment on the variation of g_m vs V_{DS} .
 - In the first part of the curve, is the relation linear? Why?
 - Does g_m saturate? Why?
 - Where do you want to operate the transistor for analog amplifier applications?
- c. Comment on the variation of r_o vs V_{DS} .
 - Does r_o saturate? Why?
 - Where do you want to operate the transistor for analog amplifier applications?