03/09/2016

Kernels

continued

- Kernel Perceptrons
- Note: Everywhere below, we can replace X_i with $\phi(X_i)$

```
Perceptron Algorithm: while (some y_i X_i \cdot w < 0): w \leftarrow w + \epsilon y_i x_i while (still have test points z): f(z) \leftarrow w^T x
```

• Kernelize with $w = X^T a$; $X_i \cdot w = (XX^T a)_i = (Ka)_i$.

```
Dual Perceptron Algorithm: \begin{aligned} a &= [y_1,0,\dots,0]^T \\ K_{ij} &= K(X_i,X_j) \ \forall i,j \\ \text{while (some } y_i(Ka)_i \cdot w < 0): \\ a &\leftarrow a + \epsilon y_i \\ \text{while (still have test points } z): \\ f(z) &\leftarrow \sum_{j=1}^n a_j K(X_j,z) \end{aligned}
```

- Computing $K_{ij} \Leftarrow \mathcal{O}(n^2 d)$ time (kernel trick).
- Optimization for first while loop: maintain Ka, $\mathcal{O}(n)$ time.
- Second loop runs in $\mathcal{O}(nd)$ time or we can compute $w = X^T a$ once in $\mathcal{O}(nd')$ time and evaluate test points in $\mathcal{O}(d')$ time per point, where d' is the length of $\phi(\cdot)$.

Kernel Logistic Regression

• Stochastic gradient ascent step:

$$a_i \leftarrow a_i + \epsilon(y_i - s((Ka)_i))$$

• Gradient ascent step:

$$a \leftarrow a + \epsilon(y_i - s(Ka)) \Leftarrow$$
 applying s component-wise to vector Ka

• for each test point z: $h(z) \leftarrow s(\sum_{j=1}^{n} a_j k(X_j, z))$.

The Gaussian Kernel

- Gaussian kernel, aka radial basis function kernel
- There exists a $\phi(x)$ such that:

$$k(x,z) = e^{\left(-\frac{|x-z|^2}{2\sigma^2}\right)}$$

- Key observation: $h(z) = s(\sum_{j=1}^{n} a_j k(X_j, z))$ is a linear combination of Gaussian centered at samples.
- Very popular in practice:
 - Gives very smooth h
 - Behaves somewhat like k-nearest neighbor, but smoother.
 - Oscillates less than polynomial (depending on σ).
 - -k(x,z) can be interpreted as a "similarity measure" y value more influenced by points around it.
 - Gaussian is maximum when x = z, goes to 0 as distance increases.
 - Samples "vote" for value at z, but closer samples get bigger vote.
- σ trades off bias vs. variance:
 - larger $\sigma \to \text{wider Gaussians}$, smoother $h \to \text{more bias}$, less variance.
 - Choose by (cross)-validation.

Subset Selection

- All features increase variance, but not all features reduce bias.
- Idea: Identify poorly predictive features, ignore them (weight zero). Less over-fitting, lower test errors.
- 2nd motivation: Inference. Simpler models convey interpretable wisdom. Useful in all classification and regression methods. Sometimes it's hard: Different feature can partly encode some info. Combinatorially hard to choose best feature subset.
- \bullet Algorithm: Best subset selection. Try all 2^d-1 nonempty subsets of features. Choose the best model by cross-validation. This is very slow!
- Heuristic: Forward stepwise selection.
 - Start with <u>null model</u> (0 features); repeatedly add best feature. Repeat until test errors start increasing (due to over-fitting).
 - Requires training $\mathcal{O}(d^2)$ models instead of $\mathcal{O}(2^d)$.
 - Not perfect.
- Heuristic: Backward stepwise selection.
 - Start with all d features; repeatedly remove feature whose removal gives best reduction in test error.
 - Also trains $\mathcal{O}(d^2)$ models.
- If you think there's only a few good features do forward, if you think most features will be good do backwards.

Lasso (Tibsharani, 1996)

- Regression with regularization: (1) + (A) + ℓ_1 penalized mean loss (e) "Least absolute shrinkage and selection operator"
- Optimization problem:

Find w that minimizes
$$|Xw - y|^2 + \lambda |w'|_1$$

where
$$|w'|_1 = \sum_{i=1}^n |w_i|$$
.

- Recall ridge regression: isosurfaces of $|w'|_2^2$ are hyperspheres.
- The isosurfaces of $|w'|_1$ are cross-polytopes.

• The unit cross-polytope is the convex hull of all the positive and negative unit coordinate vectors.

• Algorithms to optimize: subgradient descent, least-angle regression (LARS), forward stagewise.