Chapter 3Data and Signals

Dr. Mznah Al-Rodhaan

3-3 DIGITAL SIGNALS

Information can also be represented by a digital signal. For example, a 1 can be encoded as a positive voltage and a 0 as zero voltage. A digital signal can have more than two levels. In this case, we can send more than 1 bit for each level.

Topics discussed in this section:

Bit Rate
Bit Length
Digital Signal as a Composite Analog Signal
Application Layer

Figure 3.16 Two digital signals: one with two signal levels and the other with four signal levels

a. A digital signal with two levels

b. A digital signal with four levels

A digital signal has eight levels. How many bits are needed per level? We calculate the number of bits from the formula

Number of bits per level = $log_2 8 = 3$

Each signal level is represented by 3 bits.

A digital signal has nine levels. How many bits are needed per level? We calculate the number of bits by using the formula. (Log, L= number of bits in each level)

$$Log_2$$
 $9 = ? \Rightarrow Log_2$ $16 = 4$

Bit Rate

Most digital signals are nonperiodic.
Bit rate is the number of bits sent in 1s. (bps)

We need to download text documents at the rate of 100 pages per minute. What is the required bit rate of the channel?

Solution

A page is an average of 24 lines with 80 characters in each line. If we assume that one character requires 8 bits, the bit rate is

 $100 \times 24 \times 80 \times 8 = 1,636,000 \text{ bps} = 1.636 \text{ Mbps}$

A digitized voice channel, as we will see in Chapter 4, is made by digitizing a 4-kHz bandwidth analog voice signal. We need to sample the signal at twice the highest frequency (two samples per hertz). We assume that each sample requires 8 bits. What is the required bit rate?

Solution

The bit rate can be calculated as

 $2 \times 4000 \times 8 = 64,000 \text{ bps} = 64 \text{ kbps}$

What is the bit rate for high-definition TV (HDTV)?

Solution

HDTV uses digital signals to broadcast high quality video signals. The HDTV screen is normally a ratio of 16: 9. There are 1920 by 1080 pixels per screen, and the screen is renewed 30 times per second. Twenty-four bits represents one color pixel.

 $1920 \times 1080 \times 30 \times 24 = 1,492,992,000 \text{ or } 1.5 \text{ Gbps}$

The TV stations reduce this rate to 20 to 40 Mbps through compression.

Bit Length

Bit length is the distance one bit occupies on the transmission medium.

Bit Length = propagation speed x bit duration

If there are 16k bits/second, then the bit duration would be 1/16k of a second.

Digital signals as a composite Analog Signal

Figure 3.17 The time and frequency domains of periodic and nonperiodic digital signals.

a. Time and frequency domains of periodic digital signal

b. Time and frequency domains of nonperiodic digital signal

Transmission of Digital Signals

- Baseband transmission
- Broadband transmission

Baseband transmission is sending digital signals without converting them to analog signals.

A digital signal is a composite analog signal with an *infinite* bandwidth.

Low-pass channels

a. Low-pass channel, wide bandwidth

b. Low-pass channel, narrow bandwidth

Low-pass channels with wide bandwidth

Figure 3.20 Baseband transmission using a dedicated medium

Baseband transmission of a digital signal that preserves the shape of the digital signal is possible only if we have a low-pass channel with an infinite or very wide bandwidth.

A LAN uses dedicated channel where the entire bandwidth of the medium is used as one single channel. In a bus topology LAN with multipoint connections, only two stations can communicate with each other at each moment in time (timesharing); the other stations need to refrain from sending data.

In a star topology LAN, the entire channel between each station and the hub is used for communication between these two entities.

Figure 3.22 Simulating a digital signal with first three harmonics

Bandwidth = bit rate/2

Digital: bit rate N

O 1 0

Analog: f = N/2

In baseband transmission, the required bandwidth is proportional to the bit rate; if we need to send bits faster, we need more bandwidth.

 Table 3.2
 Bandwidth requirements

Bit Rate	Harmonic 1	Harmonics 1, 3	Harmonics 1, 3, 5
n = 1 kbps	B = 500 Hz	B = 1.5 kHz	B = 2.5 kHz
n = 10 kbps	B = 5 kHz	B = 15 kHz	B = 25 kHz
n = 100 kbps	B = 50 kHz	B = 150 kHz	B = 250 kHz

Example 3.22 X

We have a low-pass channel with bandwidth 100 kHz. What is the maximum bit rate of this channel?

Solution

Bandwidth = bit rate/2

The maximum bit rate can be achieved if we use the first harmonic. The bit rate is 2 times the available bandwidth, or 200 kbps.

Broadband transmission

Digital signal → analog signal for transmission using modulation

Modulation uses bandpass channels.

Figure 3.23 Bandwidth of a bandpass channel

Dr. Mznah Al-Rodhaan

If the available channel is a bandpass channel, we cannot send the digital signal directly to the channel; we need to convert the digital signal to an analog signal before transmission.

Figure 3.24 Modulation of a digital signal for transmission on a bandpass channel

Sending computer data through a telephone subscriber line is an example of broadband transmission using modulation.

The line connecting a resident to the central telephone office.

These lines are designed to carry voice with a limited bandwidth.

The channel is considered a bandpass channel.

We convert the digital signal from the computer to an analog signal, and send the analog signal. We can install two converters to change the digital signal to analog and vice versa at the receiving end. The converter, in this case, is called a modem.

The digital cellular telephone. For better reception, digital cellular phones convert the analog voice signal to a digital signal. Although the bandwidth allocated to a company providing digital cellular phone service is very wide, we still cannot send the digital signal without conversion. The reason is that we only have a bandpass channel available between caller and callee. We need to convert the digitized voice to a composite analog signal before sending.

3-4 TRANSMISSION IMPAIRMENT

Transmission media are not perfect \rightarrow signal impairment This means that the signal at the beginning of the medium is not the same as the signal at the end of the medium.

Three causes of impairment are attenuation, distortion, and noise.

Topics discussed in this section:

Attenuation Distortion Noise

Figure 3.25 Causes of impairment

Figure 3.26 Attenuation

Dr. Mznah Al-Rodhaan

Suppose a signal travels through a transmission medium and its power is reduced to one-half. This means that P_2 is $(1/2)P_1$. In this case, the attenuation (loss of power) can be calculated as

$$10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{0.5P_1}{P_1} = 10 \log_{10} 0.5 = 10(-0.3) = -3 \text{ dB}$$

A loss of 3 dB (-3 dB) is equivalent to losing one-half the power.

A signal travels through an amplifier, and its power is increased 10 times. This means that $P_2 = 10P_1$. In this case, the amplification (gain of power) can be calculated as

$$10\log_{10}\frac{P_2}{P_1} = 10\log_{10}\frac{10P_1}{P_1}$$

$$= 10 \log_{10} 10 = 10(1) = 10 \text{ dB}$$

One reason that engineers use the decibel to measure the changes in the strength of a signal is that decibel numbers can be added (or subtracted) when we are measuring several points (cascading) instead of just two. In Figure 3.27 a signal travels from point 1 to point 4. In this case, the decibel value can be calculated as

Sometimes the decibel is used to measure signal power in milliwatts. In this case, it is referred to as dB_m and is calculated as $dB_m = 10 \log 10 \ P_m$, where P_m is the power in milliwatts.

Calculate the power of a signal with $dB_m = -30$.

Solution

We can calculate the power in the signal as

$$dB_{m} = 10 \log_{10} P_{m} = -30$$

$$\log_{10} P_{m} = -3 \qquad P_{m} = 10^{-3} \text{ mW}$$

Dr. Mznah Al-Rodhaan

The loss in a cable is usually defined in decibels per kilometer (dB/km). If the signal at the beginning of a cable with -0.3 dB/km has a power of 2 mW, what is the power of the signal at 5 km?

Solution

The loss in the cable in decibels is $5 \times (-0.3) = -1.5 \, dB$. We can calculate the power as

$$dB = 10 \log_{10} \frac{P_2}{P_1} = -1.5$$

$$\frac{P_2}{P_1} = 10^{-0.15} = 0.71$$

$$P_2 = 0.71P_1 = 0.7 \times 2 = 1.4 \text{ mW}$$

Figure 3.28 Distortion

Figure 3.29 Noise

The power of a signal is 10 mW and the power of the noise is 1 μ W; what are the values of SNR and SNR_{dB}?

Solution The values of SNR and SNR_{dB} can be calculated as follows:

$$SNR = \frac{10,000 \ \mu\text{W}}{1 \ \text{mW}} = 10,000$$
$$SNR_{dB} = 10 \log_{10} 10,000 = 10 \log_{10} 10^4 = 40$$

The values of SNR and SNR_{dB} for a noiseless channel are

$$SNR = \frac{\text{signal power}}{0} = \infty$$
$$SNR_{dB} = 10 \log_{10} \infty = \infty$$

We can never achieve this ratio in real life; it is an ideal.

Figure 3.30 Two cases of SNR: a high SNR and a low SNR

a. Large SNR

3-5 DATA RATE LIMITS

- A very important consideration in data communications is how fast we can send data, in bits per second, over a channel. Data rate depends on three factors:
 - 1. The bandwidth available
 - 2. The level of the signals we use
 - 3. The quality of the channel (the level of noise)

Topics discussed in this section:

Noiseless Channel: Nyquist Bit Rate

Noisy Channel: Shannon Capacity

Using Both Limits

Noiseless Channel: Nyquist Bit Rate

Bit Rate = $2 \times Bandwidth \times log_2 L$

Increasing the levels of a signal may reduce the reliability of the system.

Does the Nyquist theorem bit rate agree with the intuitive bit rate described in baseband transmission? Solution

They match when we have only two levels. We said, in baseband transmission, the bit rate is 2 times the bandwidth if we use only the first harmonic in the worst case.

The Nyquist formula is more general. It can be applied to baseband transmission and modulation. Also, it can be applied when we have two or more levels of signals.

Consider a noiseless channel with a bandwidth of 3000 Hz, transmitting a signal with two signal levels. The maximum bit rate can be calculated as

BitRate = $2 \times 3000 \times \log_2 2 = 6000$ bps

Consider the same noiseless channel transmitting a signal with four signal levels (for each level, we send 2 bits). The maximum bit rate can be calculated as

BitRate = $2 \times 3000 \times \log_2 4 = 12,000$ bps

We need to send 265 kbps over a noiseless channel with a bandwidth of 20 kHz. How many signal levels do we need?

Solution

We can use the Nyquist formula as shown:

$$265,000 = 2 \times 20,000 \times \log_2 L$$

 $\log_2 L = 6.625$ $L = 2^{6.625} = 98.7$ levels

Since this result is not a power of 2, we need to either increase the number of levels or reduce the bit rate. If we have 128 levels, the bit rate is 280 kbps. If we have 64 levels, the bit rate is 240 kbps.

Noisy Channel: Shannon Capacity

Capacity(Max Bit Rate) = $2 \times Bandwidth \times log_2 (1+SNR)$

Consider an extremely noisy channel in which the value of the signal-to-noise ratio is almost zero. In other words, the noise is so strong that the signal is faint. For this channel the capacity C is calculated as

$$C = B \log_2 (1 + SNR) = B \log_2 (1 + 0) = B \log_2 1 = B \times 0 = 0$$

This means that the capacity of this channel is zero regardless of the bandwidth. In other words, we cannot receive any data through this channel.

We can calculate the theoretical highest bit rate of a regular telephone line. A telephone line normally has a bandwidth of 3000. The signal-to-noise ratio is usually 3162. For this channel the capacity is calculated as

$$C = B \log_2 (1 + \text{SNR}) = 3000 \log_2 (1 + 3162) = 3000 \log_2 3163$$

= $3000 \times 11.62 = 34,860 \text{ bps}$

This means that the highest bit rate for a telephone line is 34.860 kbps. If we want to send data faster than this, we can either increase the bandwidth of the line or improve the signal-to-noise ratio.

The signal-to-noise ratio is often given in decibels. Assume that $SNR_{dB} = 36$ and the channel bandwidth is 2 MHz. The theoretical channel capacity can be calculated as

$$SNR_{dB} = 10 \log_{10} SNR$$
 \longrightarrow $SNR = 10^{SNR_{dB}/10}$ \longrightarrow $SNR = 10^{3.6} = 3981$ $C = B \log_2 (1 + SNR) = 2 \times 10^6 \times \log_2 3982 = 24 \text{ Mbps}$

For practical purposes, when the SNR is very high, we can assume that SNR + 1 is almost the same as SNR. In these cases, the theoretical channel capacity can be simplified to

$$C = B \times \frac{\text{SNR}_{\text{dB}}}{3}$$

For example, we can calculate the theoretical capacity of the previous example as

$$C = 2 \text{ MHz} \times \frac{36}{3} = 24 \text{ Mbps}$$

We have a channel with a 1-MHz bandwidth. The SNR for this channel is 63. What are the appropriate bit rate and signal level?

Solution

First, we use the Shannon formula to find the upper limit.

$$C = B \log_2 (1 + \text{SNR}) = 10^6 \log_2 (1 + 63) = 10^6 \log_2 64 = 6 \text{ Mbps}$$

Example 3.41 (continued)

The Shannon formula gives us 6 Mbps, the upper limit. For better performance we choose something lower, 4 Mbps, for example. Then we use the Nyquist formula to find the number of signal levels.

$$4 \text{ Mbps} = 2 \times 1 \text{ MHz} \times \log_2 L \longrightarrow L = 4$$

The Shannon capacity gives us the upper limit; the Nyquist formula tells us how many signal levels we need.

3-6 PERFORMANCE

One important issue in networking is the performance of the network—how good is it? We discuss quality of service, an overall measurement of network performance, in greater detail in Chapter 24. In this section, we introduce terms that we need for future chapters.

Topics discussed in this section:

Bandwidth

Throughput

Latency (Delay)

Bandwidth-Delay Product X

In networking, we use the term bandwidth in two contexts.

- □ The first, bandwidth in hertz, refers to the range of frequencies in a composite signal or the range of frequencies that a channel can pass.
- The second, bandwidth in bits per second, refers to the speed of bit transmission in a channel or link.

The bandwidth of a subscriber line is 4 kHz, for voice or data. The bandwidth of this line for data transmission can be up to 56,000 bps using a sophisticated modem to change the digital signal to analog.

If the telephone company improves the quality of the line and increases the bandwidth to 8 kHz, we can send 112,000 bps by using the same technology as mentioned in Example 3.42.

A network with bandwidth of 10 Mbps can pass only an average of 12,000 frames per minute with each frame carrying an average of 10,000 bits. What is the throughput of this network?

Solution

We can calculate the throughput as

Throughput =
$$\frac{12,000 \times 10,000}{60}$$
 = 2 Mbps

The throughput is almost one-fifth of the bandwidth in this case.

What is the propagation time if the distance between the two points is 12,000 km? Assume the propagation speed to be $2.4 \times 108 \text{ m/s}$ in cable.

Solution

We can calculate the propagation time as

Propagation time =
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$

The example shows that a bit can go over the Atlantic Ocean in only 50 ms if there is a direct cable between the source and the destination.

What are the propagation time and the transmission time for a 2.5-kbyte message (an e-mail) if the bandwidth of the network is 1 Gbps? Assume that the distance between the sender and the receiver is 12,000 km and that light travels at 2.4×108 m/s.

Solution

We can calculate the propagation and transmission time as shown on the next slide:

Example 3.46 (continued)

Propagation time =
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$
Transmission time =
$$\frac{2500 \times 8}{10^9} = 0.020 \text{ ms}$$

Transmission time =
$$\frac{2500 \times 8}{10^9}$$
 = 0.020 ms

Note that in this case, because the message is short and the bandwidth is high, the dominant factor is the propagation time, not the transmission time. The transmission time can be ignored.

What are the propagation time and the transmission time for a 5-Mbyte message (an image) if the bandwidth of the network is 1 Mbps? Assume that the distance between the sender and the receiver is 12,000 km and that light travels at 2.4×10^8 m/s.

Solution

We can calculate the propagation and transmission times as shown on the next slide.

Example 3.47 (continued)

Propagation time =
$$\frac{12,000 \times 1000}{2.4 \times 10^8} = 50 \text{ ms}$$

Transmission time = $\frac{5,000,000 \times 8}{10^6} = 40 \text{ s}$

Note that in this case, because the message is very long and the bandwidth is not very high, the dominant factor is the transmission time, not the propagation time. The propagation time can be ignored.