Pokročilé metody rozpoznávání řeči

Přednáška 3
Fonémové HMM a jejich trénování rozpoznávání izolovaných slov

Kontrola nahrávek

TEXT: budeme žádat o dotaci která by mohla činit až dvacet dva milionů

ASR: budeme žádat o dotaci která by mohla činit až dvacet dva milionu

91.67(91.67) [H= 11, D= 0, S= 1, I= 0, N= 12, (OOV= 0)]

ASTr: 2 budeme žádat o dotaci kterábi mohla čiňit až dvacet dva milijonu 2

TEXT: utrpěly i parky a lesy kde vítr způsobil pády větví i stromů

ASR: utrpěli i paniky ale si kde vítr způsobil pády větví stromů

58.33(58.33) [H= 7, D= 1, S= 4, I= 0, N= 12, (OOV= 0)]

ASTr: 2 - utrpjeli i paniki ale si gde vítr spúsobil pádi vjetví stromú 2

TEXT: stíhání začalo v obvodu Poruba vozy se pak dostaly až do centra Ostravy

ASR: stíhání začalo v obvodu Poruba vozy se pak dostali až do centra Ostravy

92.31(92.31) [H= 12, D= 0, S= 1, I= 0, N= 13, (OOV= 0)]

ASTr: 2 st'íháňí začalo f obvodu poruba vozi sepag dostali aš do centra ostravi 2

TEXT: a protože sedmička je šťastné číslo vypadá to s tím komiksem zatím náramně

ASR: a protože je Sedmička šťastné číslo vypadá to s tím komiksem zatím náramně

92.31(84.62) [H= 12, D= 1, S= 0, I= 1, N= 13, (OOV= 0)]

ASTr: 2 - 0a protožeje sedmička šťastné číslo vipadá to sťím komiksem 2 zaťím náramňe 2

TEXT: pokud tedy někde vede cesta po frekventované silnici není to dost často naše vina

ASR: pokud tedy vede někde cesta po frekventované silnici není to dost často naše vina

92.86(85.71) [H= 13, D= 1, S= 0, I= 1, N= 14, (OOV= 0)]

ASTr: 2 pokut tedi vede ňegde 2 cesta po frekventované silňici neňíto dost často naše vina 2

Co byste měli mít připravené?

- Každý 100 nahrávek. Nahrávky by měly obsahovat všechny fonémy (Zkontrolujte si.)
- 2. Ke každé nahrávce TXT (textová podoba věty) soubor a PHN (fonetická podoba věty). Pokud soubor PHN obsahuje i symboly hluků (0,1,..5), nahraďte je symbolem ticha (-).
- 3. Ke každé nahrávce soubor LAB (automatická konverze z PHN).
- 4. Nahrávky si mezi sebou nasdílejte.
- 5. Z minulého semestru testovací sety SD a SI (nahrávky číslovek 0 až 9)
 - SD: 50 vlastních nahrávek
 - SI: nahrávky osob 30-49
- 6. Na e-learningu připravena další data pro trénování: Data-PMR-old.zip 15 osob x 100 nahrávek (WAV+TXT+PHN) celkem cca 2 hodiny

Skryté Markovovy modely (HMM)

Metoda HMM (Hidden Markov Model – skryté Markovovy modely) reprezentuje řeč (slovo, hlásku, celou promluvu) stavovým modelem s pravděpodobnostními parametry

Typická struktura slovního HMM – takzvaný levo-pravý model

- Q_s ... **stavy** (šipky naznačují možné přechody mezi nimi)
- a_{ij} **přechodová pravděpodobnost** pravděpodobnost, že (v aktuálním framu) model přejde ze stavu *i* do stavu *j*
- b_s(x)...výstupní pravděpodobnostní rozložení funkce určující pravděpodobnost, že příznakový vektor x patří ke stavu s (nejčastěji gaussovské rozložení)

Jak určit parametry výstupního rozložení?

Pro zjednodušení výkladu uvažujme 1-rozměrný příznakový vektor x

Předpokládáme, že b_s(x) má gauss. rozdělení
$$b_s(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma_s} \exp \left[-\frac{(x - \mu_s)^2}{2\sigma_s^2} \right]$$

Mějme alespoň 2 nahrávky pro každé slovo (čím více nahrávek, tím lepší model získáme)

Pokud víme, které framy patří ke jednotlivým stavům (jak ukázáno na obrázku)

pak **stř. hodnotu** určíme jako
$$\mu_s = \frac{1}{N_s} \sum_{n=1}^{N_s} x_n$$
 a **rozptyl** jako $\sigma_s^2 = \frac{1}{N_s} \sum_{n=1}^{N_s} (x_n - \mu_s)^2$

kde N_s je počet framů přiřazených stavu s

Gaussovské rozložení pro vícepříznakový vektor x

$$b_s(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^P \det \Sigma_s}} \cdot \exp[-\frac{1}{2} (\mathbf{x} - \overline{\mathbf{x}}_s)^T \mathbf{\Sigma}_s^{-1} (\mathbf{x} - \overline{\mathbf{x}}_s)]$$

$$\mathbf{\mu}_{s} = \frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \mathbf{x}_{n}$$

$$\mathbf{\Sigma}_{s} = \frac{1}{N} \sum_{n=1}^{N_{s}} (\mathbf{x}_{n} - \mathbf{\mu}_{s}) (\mathbf{x}_{n} - \mathbf{\mu}_{s})^{T}$$

Význam parametrů u vícepříznakových vektorů

$$\mathbf{\mu}_s = \frac{1}{N_s} \sum_{n=1}^{N_s} \mathbf{x}_n$$

vektor středních hodnot (angl. Mean)

$$\Sigma_{s} = \frac{1}{N_{s}} \sum_{n=1}^{N_{s}} (\mathbf{x}_{n} - \boldsymbol{\mu}_{s}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{s})^{T}$$
 kovarianční matice (Covariance matrix)

$$\boldsymbol{\Sigma}_{s} = \begin{pmatrix} \rho_{11} & \rho_{12} & \dots & \rho_{1p} \\ \rho_{21} & \rho_{22} & & \rho_{2p} \\ \dots & & & & \\ \rho_{p1} & \rho_{p2} & & \rho_{pp} \end{pmatrix} \quad \begin{array}{l} \text{na hlavní diagonále leží rozptyly příznaků,} \\ \text{na ostatních pozicích jsou kovariance} \\ \text{("vzájemné rozptyly")} \\ \text{pro nekorelované příznaky jsou hodnoty} \\ \text{mimo diagonálu malé a lze je zanedbat} \\ \end{array}$$

Kepstrální příznaky se vyznačují malou vzájemnou korelovaností, a proto místo kompletní matice lze použít pouze vektor diagonálních hodnot, výpočet se pak významně usnadní a urychlí

Jak určit přechodové pravděpodobnosti?

Pravděpodobnost přechodu ze stavu s do s+1

kde *K* je počet výstupů ze stavu s (je vlastně roven počtu nahrávek *K* daného slova)

Pravděpodobnost setrvání (v tomtéž stavu s)

$$a_{ss+1} = \frac{K}{N_S}$$

$$a_{SS} = 1 - a_{SS+1}$$

Jak skutečně trénovat parametry HMM?

Ve skutečnosti nevíme který frame patří k jakému stavu. (Z tohoto důvodu se metodě HMM říká skryté markovské modely)

Metoda trénování HMM (tj určování jejich parametrů) je proto iterativní

1. Inicializační krok

Framy všech nahrávek daného slova jsou rovnoměrně přiděleny jednotl. stavům, z nich pak určíme stř. hodnoty, rozptyly a přechodové pravděpodobnosti

2. Přiřazovací krok

s využitím aktuálního modelu a Viterbiho algoritmu (popsán loni) nalezneme nové (už ne rovnoměrné ale obvykle lepší) přiřazení mezi framy a stavy

3. Reestimační krok

pro toto nové přiřazení určíme stř. hod., rozptyly a přechod. pravděpodobnosti

4. Opakování, případně konec

pokud se nové stř. hod., rozptyly a přech. pravd. liší od předchozích anebo pokud se celkové skóre modelu liší o více než ε od předešlého, anebo pokud je toto skóre horší než předešlé jdeme zpět na krok 2, jinak ukončíme trénování

Jak ještě lépe trénovat parametry HMM?

Baumův-Welchův (forward-backward) algoritmus

- framy nejsou *pevně a výlučně* přiřazeny k jednotlivým stavům,
- naopak, každý frame se s *jistou pravděpodobností* může podílet na parametrech všech stavů
- vztahy pro výpočet stř. hod., rozptylů a přechod. pravděpodobností nově obsahují ještě tzv. okupační pravděpodobnosti
- ty se dají určit na základě tzv. dopředné a zpětné pravděpodobnosti α a β
 přesné vztahy lze najít v HTKbook kapitola 8.

Praktický postup trénování HMM

- 1. Rovnoměrné rozdělení framů ke stavům, výpočet inicializačních hodnot parametrů
- 2. Iterační postup zpřesňování parametrů základním přístupem (2 10 iterací)
- 3. Iterační postup zpřesňování parametrů Baum-Welch algoritmem (2 10 iterací)

Fonémové HMM

Třístavová struktura modelu

přibližně odpovídá situaci:

- 1. stav přechod z předchozích fonémů
- 2. stav jádro fonému
- 3. stav přechod do dalších fonémů

(u monofonů mají 1. a 3. stavy velkou variabilitu, u trifonů pak mnohem menší

Struktura modelu používaná v HTK

celkem 5 stavů

- 1. a 5. stav je fiktivní (vstupní a výstupní)
 slouží ke snazší implementaci přechodů mezi modely hlásek
- 2.-4. stav význam jako výše

Slovní (a případně větné) modely složené z hláskových modelů

Trénování fonémových modelů v HTK (1)

1. Vytvoření prototypu modelu

textový popis struktury modelu s tagy a čísly (číselné hodnoty nehrají roli)

Prototyp se rozkopíruje do modelů všech hlásek a sloučením se vytvoří jediný soubor modelů

hmmdefs

```
<BeginHMM>
 <NumStates> 5
 <State> 2
    {\rm Mean} > 39
      0.0 0.0 0.0 ...
    <Variance> 39
      1.0 1.0 1.0 ...
 <State> 3
    \langle Mean \rangle 39
      0.0 0.0 0.0 ...
    <Variance> 39
      1.0 1.0 1.0 ...
 <State> 4
    {\rm Mean}>39
      0.0 0.0 0.0 ...
    <Variance> 39
      1.0 1.0 1.0 ...
 <TransP> 5
  0.0 1.0 0.0 0.0 0.0
 0.0 0.6 0.4 0.0 0.0
 0.0 0.0 0.6 0.4 0.0
  0.0 0.0 0.0 0.7 0.3
  0.0 0.0 0.0 0.0 0.0
<EndHMM>
```

Trénování fonémových modelů v HTK (2)

2. Je-li známé umístění hlásek v nahrávce

(v souboru *.lab jsou přesně uvedeny začátky a konce)

0000 3600 si

3600 4200 a

4200 4700 h

4700 5300 o

5300 5700 j

. . . .

Použije se program Hinit

 ten "vyřízne" všechny realizace každé hlásky a pro každou hlásku iterativně natrénuje parametry jejího modelu

Trénování fonémových modelů v HTK (3)

3. Není-li známé umístění hlásek

(v souboru *.lab nejsou uvedeny začátky a konce – resp. uvedeny fiktivní časy)

Použije se program **HCompV**

- ten provede tzv. Flat Start ("plochý start") přes všechny nahrávky určí hodnoty kovarianční matice (rozptyly) a umístí je do modelů všech hlásek

cílem je alespoň "nějak" inicializovat hodnoty parametrů

Trénování fonémových modelů v HTK (4)

4. Reestimace parametrů modelů

Použije se několik iterací programem **HERest**

- ten si na za základě informace v souboru *.lab sestaví model celé nahrávky zřetězením všech dílčích hláskových modelů
- pro každou nahrávku určí dílčí příspěvek
 k výpočtu parametrů pomocí B-W algoritmu,
- toto zopakuje se všemi nahrávkami
- na závěr každé iterace se spočítají hodnoty všech parametrů modelů
- toto se provede v několika iteracích za sebou

Texty k nastudování

HTKbook

Kapitola 3. A Tutorial Example of Using HTK

Kapitola 8. HMM Parameter Estimation

Podklady k předmětu PMR (trénování celoslov. modelů) – stačí modifikovat podle dnešní přednášky na e-learningu: Podklady_pro_trenovani_PMR.zip

K dispozici na e-learningu: HTK-trenovani-skripty.zip (skripty v Perlu + příklady některých souborů)

HTK – princip rozpoznávání řeči

Rozpoznávání izolovaných slov a spojité řeči (sekvence)

Prostředí HTK je zaměřeno na rozpoznávání spojité řeči (sekvence slov),

 izolovaná slova jsou brána jako speciální případ (jako sekvence ticho – slovo – ticho)

HTK – slovník a slovní síť

Slovník definuje seznam slov a z jakých (dílčích) jednotek se skládají

Příklady: slovník pro rozpoznávání číslic vytvořený z celoslovních a hláskových jednotek

```
jednotka
slovo
                                      slovo
                                            iednotky
NULA nula
                                      NULA nula
JEDNA jedna
                                      JEDNA jedna
DVA dva
                                      DVA dva
DEVET de
                                      DEVET deviet
            sil symbol pro ticho
                                      SENT-END [] sil
SENT-START []
              sil
                                      SENT-START [] sil
```

Gramatika – symbolický popis povolených sekvencí slov

Slovní síť – interní popis mezislovních přechodů

HParse grammar wordnet

HTK – rozpoznávání

Pro rozpoznávání se použije program HVite

Příklad volání:

HVite -H hmm6/hmmdefs -S test.scp -i recout.mlf -w wordnet -p -70.0 -s 0 dict models0

Ve výše uvedeném příkladu je

```
hmmdefs ... soubor obsahující všechny natrénované modely v 6. iteraci test.scp .... seznam zparametrizovaných testovacích nahrávek dict ... slovník, wordnet ...síť, models0 ... seznam použitých modelů
```

Výstup je v souboru recout.mlf a vypadá následovně

"D:/HTK/DATA/0000_MVL/c0_p0000_s04.rec" 0 6700000 SENT-START -4.080025 6700000 11900000 NULA -877.901184 11900000 19800000 SENT-END 17.283134

"D:/HTK/DATA/0000_MVL/c1_p0000_s04.rec" 0 5900000 SENT-START -8.679775 5900000 13200000 JEDNA -1429.232910 13200000 19800000 SENT-END 22.320038

HTK – vyhodnocování experimentů

Pro vyhodnocování se použije program HResult

Příklad volání:

HResults -e ??? SENT-START -e ??? SENT-END -t -I testref.mlf models0 recout.mlf

Ve výše uvedeném příkladu je

recout.mlf ... výstup rozpoznávače, testref.mlf ... soubor obsahující slova v každé nahrávce

Výstup vypadá následovně

Aligned transcription: D:/HTK/DATA/0000_MVL/c2_p0000_s04.lab vs D:/HTK/DATA/0000_MVL/c2_p0000_s04.rec

LAB: DVA REC: NULA

Aligned transcription: D:/HTK/DATA/0000_MVL/c5_p0000_s04.lab vs D:/HTK/DATA/0000_MVL/c5_p0000_s04.rec

LAB: PET REC: DEVET

....

========= HTK Results Analysis ==============

Date: Fri Mar 29 14:31:16 2019

Ref : testref.mlf Rec : recout.mlf

----- Overall Results -----

SENT: %Correct=90.00 [H=45, S=5, N=50]

WORD: %Corr=90.00, Acc=90.00 [H=45, D=0, S=5, I=0, N=50]

Úloha do příště

Rozpoznávač číslic založený na HTK

- 1) Vytvořte si potřebné soubory a skripty (nebo dávky) pro trénování fonémových modelů a následné rozpoznávání slov.
- 2) Na **vašich vlastních datech** (zparametrizovaných pomocí HCopy) si natrénujte fonémové modely (všechny hlásky a ticho)
- 3) Na nahrávkách číslic z minulého semestru proveďte testy rozpoznávání (SD s vlastními daty a SI s daty ostatních mluvčích)
- 4) Nyní **rozšiřte trénovací sadu** o data sdílená mezi vámi a o data z elearningu (15 x 100 vět) a natrénujte opět fonémové modely.
- 5) S těmito modely proveďte podobný experiment jako ad 3)
- 6) Do konce neděle mi zašlete výsledky.