Université de Monastir Institut Supérieur D'Informatique et de Mathématiques de Monastir Dépt. de Mathématiques A.U: 2023-2024 L1 INFO Algèbre 2 14 Mars 2024

Devoir Surveillé

Exercice 1:

- 1. Ecrire la matrice $A = (a_{ij})$ dans les deux cas suivants:
 - (a) A de type (4,2) et $a_{ij} = j i$.
 - (b) A est triangulaire supérieure d'ordre 3 et $\begin{cases} a_{ij} = -3i & \text{si } j \neq i \\ a_{ij} = i+1 & \text{sinon} \end{cases}$
- 2. Répondre par vrai ou faux en justifiant dans les deux cas
 - (a) La trace d'une matrice antisymétrique est nulle.
 - (b) Soit A et M deux matrices carrées telle que A.M = 0 alors A=0 ou M=0.
 - (c) Soit A et M deux matrices carrées telle que A est inversible et A.M = 0 alors M = 0.
 - (d) Soit $A \in \mathcal{M}_{3,5}(K)$ et $M \in \mathcal{M}_{4,5}(K)$. Alors M. tA est une matrice carrée.

Exercice 2:

On considère $B_1=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 et $B_2=(u_1,u_2)$ la base canonique de \mathbb{R}^2 . Soit f l'application linéaire définie de \mathbb{R}^3 dans \mathbb{R}^2 par:

$$\forall (x,y,z) \in \mathbb{R}^3, \ f(x,y,z) = (x-y+2z, \ -2y+z).$$

- 1. Ecrire $A = mat(f, B_1, B_2)$.
- 2. Effectuer, lorsque cela est possible, les opérations suivantes:

$$(A+5I_2)$$
, ${}^tA.A$, $A.({}^tA-2I_3)$, $A.{}^tA$, $tr({}^tA.A)$, $tr(A.{}^tA-2I_3)$.

- 3. Soit $S = A \cdot {}^{t}A 6I_{2}$.
 - (a) Calculer $S^2 + S 10I_2$.
 - (b) En déduire que S est inversible et donner son inverse S^{-1} .
- 4. Soit $N = {}^{t}A . A 5I_3$.

On considère g l'endomorphisme de \mathbb{R}^3 dont la matrice relativement à la base canonique B_1 est N. (c-à-d: $N = mat(g, B_1)$).

(a) Donner l'expression de g(x,y,z) , pour tout $(x,y,z) \in \mathbb{R}^3$.

On considère les vecteurs: $e'_1 = e_2$, $e'_2 = e_3$, $e'_3 = e_1$.

- (b) Vérifier que $B_1' = (e_1', e_2', e_3')$ est une base de \mathbb{R}^3 .
- (c) Ecrire la matrice de passage $P = pass(B_1, B'_1)$.
- (d) Déterminer $M = mat(g, B'_1)$ la matrice de g relativement à la base B'_1 .
- (e) Ecrire la relation entre M et N à l'aide de la matrice de passage P.