Simulated Annealing

Nik Bear Brown

In this lesson we'll learn the theory behind using simulated annealing as an optimization and search technique. We'll then use simulated annealing to search for a solution to the famous Travelling Salesman Problem in R.

Additional packages needed

To run the code you may need additional packages.

If necessary install the followings packages.

```
install.packages("ggplot2");
install.packages("stats");

require(ggplot2)

## Loading required package: ggplot2

require(stats)
```

Data

We will be using the R stats library mapping of distances between European cities to generate out data.

Simulated Annealing

A Simulated Annealing (SA) is a probabilistic search heuristic that mimics the process of cooling in thermodynamic systems. This heuristic is often used to generate useful solutions to optimization and search problems. The method is an adaptation of the Metropolis–Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by M.N. Rosenbluth and published in a paper by N. Metropolis et al. in 1953.

Basically simulated annealing perturbs the current solution and then checks to see whether the new solution is good or not. If its an improvement it will accept it and if the new solution is worse it may accept it with a probability inversely proportional to how much worse the new solution changes the current one. Compared to pure gradient descent the main difference is that SA allows "uphill" steps. Simulated annealing also differs from gradient descent in that a move is selected at random.

Gradient Descent

Metropolis-Hastings algorithm

Metropolis algorithm (symmetric proposal distribution) Let f(x) be a function that is proportional to the desired probability distribution P(x)

This algorithm proceeds by randomly attempting to move about the sample space, sometimes accepting the moves and sometimes remaining in place.

Perturb (randomly) the current state to a new state. ΔE is the difference in energy between current and new state.

If $\Delta E < 0$ (new state is lower), accept new state as current state If $\Delta E > 0$ accept new state with probability inversely proportional to the increase in system energy. Traditionally the change in Gibbs free energy is used for thermodynamic free energy systems.

This can be run for a fixed number of iterations or if the overall system energy can measured then it can be run until the overall system energy settles.

Simulated Annealing Pseudocode

Simulated Annealing uses the Metropolis–Hastings algorithm with a temperature parameter T that effects the acceptance probability of an "uphill" transition. At higher "temperatures" accepting "uphill" transitions is more probable. The algorithm starts initially with T set to a high value , and then it is decreased at each step following some annealing schedule—which is often specified by the user, but must end with T=0. At T=0 there is no chance of accepting "uphill" transitions and so it becomes gradient descent.

At a fixed temperature T:

Perturb (randomly) the current state to a new state. ΔE is the difference in energy between current and new state.

If $\Delta E < 0$ (new state is lower), accept new state as current state If $\Delta E > 0$ accept new state with probability inversely proportional to the increase in system energy as a function of T.

Eventually the systems evolves into thermal equilibrium at temperature T; then the formula mentioned before holds When equilibrium is reached, temperature T can be lowered and the process can be repeated.

Travelling Salesman Problem

The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city? It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science.

Travelling

Salesman Problem

Simulated Annealing to solve the Travelling Salesman Problem in R

Simulated Annealing to solve the Travelling Salesman Problem in R

<pre>CityDistMatx <- as.matrix(eurodist) CityDistMatx</pre>								
##	Athens	Barcelona	Brussels	Calais	Cherbourg	Cologne		
## Athens	0	3313	2963	3175	3339	2762		
## Barcelona	3313	0	1318	1326	1294	1498		
## Brussels	2963	1318	0	204	583	206		

## Calais	3175	1326	204	0	460	409
## Cherbourg	3339	1294	583	460	0	785
## Cologne	2762	1498	206	409	785	0
## Copenhagen	3276	2218	966	1136	1545	760
## Geneva	2610	803	677	747	853	1662
## Gibraltar	4485	1172	2256	2224	2047	2436
## Hamburg	2977	2018	597	714	1115	460
## Hook of Holland	3030	1490	172	330	731	269
## Lisbon	4532	1305	2084	2052	1827	2290
## Lyons	2753	645	690	739	789	714
## Madrid	3949	636	1558	1550	1347	1764
## Marseilles	2865	521	1011	1059	1101	1035
## Milan	2282	1014	925	1077	1209	911
## Munich	2179	1365	747	977	1160	583
## Paris	3000	1033	285	280	340	465
## Rome	817	1460	1511	1662	1794	1497
## Stockholm	3927	2868	1616	1786	2196	1403
## Vienna	1991	1802	1175	1381	1588	937
##	Copenhagen	Geneva	Gibraltar	Hamburg	Hook of	Holland
Lisbon						
## Athens	3276	2610	4485	2977		3030
4532						
## Barcelona	2218	803	1172	2018		1490
1305						
## Brussels	966	677	2256	597		172
2084						
## Calais	1136	747	2224	714		330
2052						
## Cherbourg	1545	853	2047	1115		731
1827						
## Cologne	760	1662	2436	460		269
2290			2404			
## Copenhagen	0	1418	3196	460		269
2971			40==			
## Geneva	1418	0	1975	1118		895
1936	2404	40==				
## Gibraltar	3196	1975	0	2897		2428
676	4.50	4440	2227	•		
## Hamburg	460	1118	2897	0		550
2671						
## Hook of Holland	269	895	2428	550		0
2280						
## Lisbon	2971	1936	676	2671		2280
0	4450	450	101-	4450		0.60
## Lyons	1458	158	1817	1159		863
1178	2400	4 4 3 6		2422		4700
## Madrid	2498	1439	698	2198		1730
668	4770	405	1600	4.470		1100
## Marseilles	1778	425	1693	1479		1183
1762						

## Milan		1537	328		2185	1238		1	.098
2250 ## Munich		1104	591		2565	805			851
2507 ## Paris		1176	513	;	1971	877			457
1799 ## Rome		2050	995		2631	1751		1	.683
2700 ## Stockholm 3231		650	2068		3886	949		1	.500
## Vienna		1455	1019		2974	1155		1	205
2937 ##	Lyons	Madrid	Marse	illes	Milan	Munich	Paris	Rome	
Stockholm ## Athens 3927	2753	3949		2865	2282	2179	3000	817	
## Barcelona 2868	645	636		521	1014	1365	1033	1460	
## Brussels 1616	690	1558		1011	925	747	285	1511	
## Calais 1786	739	1550		1059	1077	977	280	1662	
## Cherbourg 2196	789	1347		1101	1209	1160	340	1794	
## Cologne 1403	714	1764		1035	911	583	465	1497	
## Copenhagen 650	1458	2498		1778	1537	1104	1176	2050	
## Geneva 2068	158	1439		425	328	591	513	995	
## Gibraltar 3886	1817	698		1693	2185	2565	1971	2631	
## Hamburg 949	1159	2198		1479	1238	805	877	1751	
## Hook of Holland 1500	863	1730		1183	1098	851	457	1683	
## Lisbon 3231	1178	668		1762	2250	2507	1799	2700	
## Lyons 2108	0	1281		320	328	724	471	1048	
## Madrid 3188	1281	0		1157	1724	2010	1273	2097	
## Marseilles 2428	320	1157		0	618	1109	792	1011	
## Milan 2187	328	1724		618	0	331	856	586	
## Munich 1754	724	2010		1109	331	0	821	946	
## Paris 1827	471	1273		792	856	821	0	1476	

```
## Rome
                     1048
                            2097
                                       1011
                                               586 946 1476 0
2707
## Stockholm
                     2108
                            3188
                                       2428 2187
                                                     1754 1827 2707
## Vienna
                    1157
                            2409
                                       1363
                                               898
                                                      428 1249 1209
2105
##
                   Vienna
## Athens
                      1991
## Barcelona
                     1802
## Brussels
                     1175
## Calais
                     1381
## Cherbourg
                     1588
## Cologne
                      937
## Copenhagen
                     1455
## Geneva
                     1019
## Gibraltar
                     2974
## Hamburg
                     1155
## Hook of Holland 1205
## Lisbon
                     2937
## Lyons
                     1157
## Madrid
                     2409
## Marseilles
                     1363
## Milan
                      898
## Munich
                      428
## Paris
                     1249
## Rome
                     1209
## Stockholm
                     2105
## Vienna
                         0
# Distance function
distance <- function(sq)</pre>
  { # Target function
  sq2 <- embed(sq, 2)
  return(as.numeric(sum(CityDistMatx[cbind(sq2[,2],sq2[,1])])))
}
# Generate new candidates
GenSeq <- function(sq) { # Generate new candidate sequence</pre>
  idx <- seq(2, NROW(CityDistMatx)-1, by=1)</pre>
  ChangePoints <- sample(idx, size=2, replace=FALSE)</pre>
  tmp <- sq[ChangePoints[1]]</pre>
  sq[ChangePoints[1]] <- sq[ChangePoints[2]]</pre>
  sq[ChangePoints[2]] <- tmp</pre>
  return(as.numeric(sq))
}
cities<-labels(eurodist)</pre>
cities
```

```
## [1] "Athens"
                           "Barcelona"
                                             "Brussels"
## [4] "Calais"
                           "Cherbourg"
                                             "Cologne"
                                             "Gibraltar"
## [7] "Copenhagen"
                           "Geneva"
## [10] "Hamburg"
                           "Hook of Holland" "Lisbon"
## [13] "Lyons"
                           "Madrid"
                                             "Marseilles"
## [16] "Milan"
                           "Munich"
                                             "Paris"
                          "Stockholm"
                                             "Vienna"
## [19] "Rome"
initial.tour <- c(1,2:NROW(CityDistMatx),1)</pre>
# Initial sequence
initial.tour
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1
initial.d<-distance(initial.tour)</pre>
initial.d
## [1] 29625
for(i in 1:length(initial.tour))
{
  print(cities[initial.tour[i]])
}
## [1] "Athens"
## [1] "Barcelona"
## [1] "Brussels"
## [1] "Calais"
## [1] "Cherbourg"
## [1] "Cologne"
## [1] "Copenhagen"
## [1] "Geneva"
## [1] "Gibraltar"
## [1] "Hamburg"
## [1] "Hook of Holland"
## [1] "Lisbon"
## [1] "Lyons"
## [1] "Madrid"
## [1] "Marseilles"
## [1] "Milan"
## [1] "Munich"
## [1] "Paris"
## [1] "Rome"
## [1] "Stockholm"
## [1] "Vienna"
## [1] "Athens"
set.seed(333) # chosen to get a good soln relatively quickly
# box-constrained optimization and simulated annealing
```

```
# method = "SANN" performs simulated annealing
# Method "SANN" is by default a variant of simulated annealing given in
Belisle (1992)
res <- optim(initial.tour, distance, GenSeq, method = "SANN",
             control = list(maxit = 30000, temp = 2000, trace = TRUE,
                            REPORT = 500))
## sann objective function values
                value 29625.000000
## initial
## iter
            5000 value 13044.000000
## iter 10000 value 13044.000000
## iter 15000 value 12907.000000
## iter 20000 value 12907.000000
## iter
          25000 value 12907.000000
## iter 29999 value 12907.000000
## final
                value 12907.000000
## sann stopped after 29999 iterations
res # Near optimum distance around 12842
## $par
## [1] 1 19 16 15 2 14 9 12 13 8 18 5 4 3 11 7 20 10 6 17 21
##
## $value
## [1] 12907
##
## $counts
## function gradient
##
      30000
                 NA
##
## $convergence
## [1] 0
##
## $message
## NULL
final.tour<-res$par
final.tour
## [1] 1 19 16 15 2 14 9 12 13 8 18 5 4 3 11 7 20 10 6 17 21
1
final.d<-distance(final.tour)</pre>
final.d
## [1] 12907
initial.d
## [1] 29625
```

```
final.d/initial.d
## [1] 0.4356793
cities.xy <- cmdscale(eurodist)</pre>
cities.xy
##
                           [,1]
                                      [,2]
## Athens
                    2290.274680 1798.80293
## Barcelona
                   -825.382790 546.81148
## Brussels
                     59.183341 -367.08135
## Calais
                    -82.845973 -429.91466
## Cherbourg
                    -352.499435 -290.90843
                   293.689633 -405.31194
## Cologne
## Copenhagen
                   681.931545 -1108.64478
## Geneva
                     -9.423364
                                 240.40600
## Gibraltar
                  -2048.449113
                                  642.45854
## Hamburg
                    561.108970 -773.36929
## Hook of Holland 164.921799 -549.36704
## Lisbon
            -1935.040811
                                  49.12514
## Lyons
                   -226.423236
                                 187.08779
## Madrid
                  -1423.353697 305.87513
                   -299.498710
## Marseilles
                                 388.80726
## Milan
                    260.878046
                                 416.67381
## Munich
                    587.675679
                                  81.18224
## Paris
                    -156.836257 -211.13911
## Rome
                    709.413282 1109.36665
## Stockholm
                    839.445911 -1836.79055
## Vienna
                    911.230500
                                  205.93020
for(i in 1:length(final.tour))
{
  print(cities[final.tour[i]])
}
## [1] "Athens"
## [1] "Rome"
## [1] "Milan"
## [1] "Marseilles"
## [1] "Barcelona"
## [1] "Madrid"
## [1] "Gibraltar"
## [1] "Lisbon"
## [1] "Lyons"
## [1] "Geneva"
## [1] "Paris"
## [1] "Cherbourg"
## [1] "Calais"
## [1] "Brussels"
## [1] "Hook of Holland"
## [1] "Copenhagen"
```

```
## [1] "Stockholm"
## [1] "Hamburg"
## [1] "Cologne"
## [1] "Munich"
## [1] "Vienna"
## [1] "Athens"
rx <- range(x <- cities.xy[,1])</pre>
ry <- range(y <- -cities.xy[,2])</pre>
rx
## [1] -2048.449
                  2290.275
ry
## [1] -1798.803 1836.791
Х
##
                          Barcelona
                                            Brussels
                                                               Calais
            Athens
##
       2290.274680
                        -825.382790
                                           59.183341
                                                           -82.845973
##
         Cherbourg
                            Cologne
                                          Copenhagen
                                                               Geneva
##
       -352.499435
                         293.689633
                                          681.931545
                                                            -9.423364
##
         Gibraltar
                            Hamburg Hook of Holland
                                                               Lisbon
      -2048.449113
                                          164.921799
                                                         -1935.040811
##
                         561.108970
##
                                          Marseilles
                                                                Milan
              Lyons
                             Madrid
                                                           260.878046
##
       -226.423236
                       -1423.353697
                                         -299.498710
##
            Munich
                              Paris
                                                 Rome
                                                            Stockholm
                        -156.836257
##
        587.675679
                                          709.413282
                                                           839.445911
##
            Vienna
        911.230500
##
У
##
            Athens
                          Barcelona
                                            Brussels
                                                               Calais
##
       -1798.80293
                         -546.81148
                                           367.08135
                                                            429.91466
##
         Cherbourg
                            Cologne
                                          Copenhagen
                                                               Geneva
                                                           -240.40600
##
         290.90843
                          405.31194
                                          1108.64478
##
         Gibraltar
                            Hamburg Hook of Holland
                                                               Lisbon
                          773.36929
        -642.45854
                                           549.36704
                                                            -49.12514
##
##
              Lyons
                             Madrid
                                          Marseilles
                                                                Milan
##
        -187.08779
                         -305.87513
                                          -388.80726
                                                           -416.67381
                                                            Stockholm
##
            Munich
                               Paris
                                                 Rome
##
         -81.18224
                          211.13911
                                         -1109.36665
                                                           1836.79055
##
            Vienna
##
        -205.93020
initial.tour
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
```

```
## remove last element to draw arrows from point to point
s <-head(initial.tour, -1)
s

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

plot(x, y, type="n", asp=1, xlab="", ylab="", main="initial solution of traveling salesman problem")
arrows(x[s], y[s], x[s+1], y[s+1], col="green")
text(x, y, labels(cities), cex=0.8)</pre>
```

initial solution of traveling salesman problem


```
plot(x, y, type="n", asp=1, xlab="", ylab="", main="initial solution of
traveling salesman problem")
arrows(x[s], y[s], x[s+1], y[s+1], col="green")
text(x, y, labels(cities), cex=0.8)
text(x, y, labels(eurodist), cex=0.8)
```

initial solution of traveling salesman problem


```
final.tour
   [1] 1 19 16 15 2 14 9 12 13 8 18 5 4 3 11 7 20 10 6 17 21
1
## draw lines from point to point
s <-head(final.tour, -1)</pre>
s
   [1] 1 19 16 15 2 14 9 12 13 8 18 5 4 3 11 7 20 10 6 17 21
df = data.frame(x[s],y[s])
df
##
                          x.s.
                                      y.s.
## Athens
                    2290.274680 -1798.80293
## Rome
                    709.413282 -1109.36665
## Milan
                                -416.67381
                     260.878046
## Marseilles
                    -299.498710
                               -388.80726
## Barcelona
                    -825.382790
                               -546.81148
## Madrid
                   -1423.353697 -305.87513
## Gibraltar
                   -2048.449113 -642.45854
## Lisbon
                   -1935.040811
                                  -49.12514
## Lyons
                   -226.423236 -187.08779
```

```
## Geneva
                      -9.423364 -240.40600
## Paris
                    -156.836257
                                  211.13911
## Cherbourg
                    -352.499435
                                  290.90843
## Calais
                     -82.845973
                                  429.91466
                                  367.08135
## Brussels
                      59.183341
## Hook of Holland
                     164.921799
                                  549.36704
## Copenhagen
                     681.931545 1108.64478
## Stockholm
                     839.445911 1836.79055
## Hamburg
                     561.108970
                                  773.36929
## Cologne
                     293.689633
                                  405.31194
## Munich
                     587.675679
                                  -81.18224
## Vienna
                     911.230500 -205.93020
plot(x, y, type="n", asp=1, xlab="", ylab="", main="optimized simulated
annealing traveling salesman problem")
lines(df$x, df$y, col="red")
text(x, y, labels(cities), cex=0.8)
```

ptimized simulated annealing traveling salesman pro


```
plot(x, y, type="n", asp=1, xlab="", ylab="", main="optimized simulated
annealing traveling salesman problem")
lines(df$x, df$y, col="red")
text(x, y, labels(cities), cex=0.8)
text(x, y, labels(eurodist), cex=0.8)
```

ptimized simulated annealing traveling salesman pro

Resources

- The Traveling Salesman with Simulated Annealing, R, and Shiny
- Simulated Annealing Feature Selection