

Termodinámica-PEP1-Solucionario

Dr.(c) Miguel Cajahuanca Primer Semestre 2025

Indicaciones

- Lea atentamente los enunciados de los problemas.
- Cada problema será evaluado en la escala del 0 al 20. La nota final del examen se obtiene sumando las notas parciales de cada pregunta.
- Es importante para una buena corrección que todos sus cálculos y comentarios estén debidamente justificados y ordenados.

Problema 1

Se tiene un depósito de $54\,\mathrm{L}$ de volumen. La presión en el recipiente es de $12\,\mathrm{atm}$ y la temperatura, de $27\,^\circ\mathrm{C}$, estando lleno de oxígeno dicho depósito. Suponiendo que se cumplen las leyes de los gases ideales:

1.1	Calcular la masa de oxígeno presente en el recipiente, m_{O_2} , expresada en kilogramos.	4 pts
	Solución: Se utiliza la ecuación de los gases ideales: $PV = nRT \Rightarrow n = \frac{PV}{RT}$	
	Cálculo del número de moles: $n=\frac{12\times 1.01\times 10^5\times 54\times 10^{-3}}{8.31\times 300.15}\approx 26~\text{mol}$	
	Cálculo de la masa: $m = n \cdot M_{O_2} = 26 \times 0.032 \approx \boxed{0.83 \text{ kg}}$	

1.2	Calcular el número de moles en el recipiente, n_{O_2} .	4 pts
	Solución: $n \approx 26 \text{ mol}$	

1.3	Calcular la densidad del oxígeno, ρ_{O_2} .	6 pts
	Solución: La densidad de un gas se define como: m	
	$\rho = \frac{m}{V}$	
	De la pregunta 1.1 ya conocemos la masa:	
	$m = 0.83 \text{ kg}, V = 54 \text{ L} = 54 \times 10^{-3} \text{ m}^3$	
	Entonces: $\rho = \frac{0.83}{0.054} \approx \boxed{15.4 \text{ kg/m}^3}$	

1.4	Calcular cuánto debe variar la temperatura, ΔT , para que la densidad del gas disminuya en un $\eta=5\%$ de su valor actual.	6 pts
	Solución: Sabemos que la densidad de un gas ideal se relaciona con la temperatura mediante la expresión:	
	$\rho = \frac{PM}{RT} \Rightarrow \rho \propto \frac{1}{T}$	
	Si queremos una disminución del 5%, entonces:	
	$ \rho_{\text{final}} = 0.95 \cdot \rho $	
	Esto implica: $\frac{\rho_{\rm final}}{\rho} = \frac{T}{T + \Delta T} = 0.95$	
	Despejamos ΔT :	
	$\frac{T}{T + \Delta T} = 0.95 \Rightarrow T = 0.95(T + \Delta T)$	
	$T = 0.95T + 0.95\Delta T \Rightarrow 0.05T = 0.95\Delta T \Rightarrow \Delta T = \frac{0.05T}{0.95}$	
	Con $T = 300.15 \text{ K}$:	
	$\Delta T = \frac{0.05 \times 300.15}{0.95} \approx \boxed{15.8 \text{ K}}$	

Recordar

$$R = 8.31 \ \frac{\rm J}{\rm mol \cdot K}, \qquad M_{\rm O_2} = 32 \ \frac{\rm g}{\rm mol}, \qquad 1 \ {\rm atm} = 1.01 \times 10^5 \ {\rm Pa}$$

Problema 2

Un gas ideal monoatómico se expande a presión constante desde un estado inicial a temperatura T_1 a otro final a T_2 . El proceso se realiza aportando una cantidad de calor Q lentamente y se determina de forma experimental la variación de volumen ΔV .

En función de T_1 , T_2 , Q y ΔV , calcular:

2.1	Calcular el número de moles del gas n .	4 pts
	Solución: Para un gas ideal monoatómico en expansión a presión constante, el calor suministrado es:	
	$Q = nC_p \Delta T$	
	donde $C_p = \frac{5}{2}R$ es el calor específico molar a presión constante para un gas monoatómico, y $\Delta T = T_2 - T_1$. Entonces:	
	$Q = n \cdot \frac{5}{2}R(T_2 - T_1) \Rightarrow n = \frac{2Q}{5R(T_2 - T_1)}$	
	Por lo tanto, el número de moles del gas es:	
	$n = \frac{2Q}{5R(T_2 - T_1)}$	

2.2	Calcular la presión del gas P .	4 pts
	Solución: al inicio:	
	$PV_1 = nRT_1 \tag{1}$	
	al final: $PV_2 = nRT_2 \tag{2}$	
	de (1) y (2): $P = \frac{nR(T_2 - T_1)}{\Delta V} $ (3)	
	de 2.1 conocemos de manera explicita el valor de n :	
	$P = \frac{2Q}{5\Delta V}$	

2.3	Calcular el volumen inicial V_1 .	4 pts
	Solución: Como el gas se comporta idealmente y el proceso ocurre a presión constante, podemos usar la relación:	
	$\frac{V_1}{T_1} = \frac{V_2}{T_2} \Rightarrow V_1 = \frac{T_1}{T_2} \cdot V_2$	
	Sabemos que:	
	$V_2 = V_1 + \Delta V \Rightarrow V_1 = \frac{T_1}{T_2} \cdot (V_1 + \Delta V)$	
	Despejando V_1 :	
	$V_1 = \frac{T_1}{T_2}V_1 + \frac{T_1}{T_2}\Delta V \Rightarrow V_1\left(1 - \frac{T_1}{T_2}\right) = \frac{T_1}{T_2}\Delta V$	
	Finalmente: $V_1 = \frac{T_1 \Delta V}{T_2 - T_1}$	

2.4	Calcular el trabajo realizado por el gas $W_{1\rightarrow 2}$.	4 pts
	Solución: El trabajo realizado por un gas ideal durante una expansión a presión constante es: $W_{1\to 2}=P\Delta V$ de ${\bf 2.2}$ sabemos que: $2O$	
	$P = \frac{2Q}{5\Delta V}$ Finalmente: $W_{1\rightarrow 2} = \frac{2}{5}Q$	

2.5	Calcular variación de energia interna $\Delta U_{1\rightarrow 2}$.	4 pts
	Solución: de la primera ley de la termodinámica sabemos que:	
	$Q = W_{1\to 2} + \Delta U \tag{4}$	
	de (4): $\Delta U = Q - W_{1\to 2}$	
	de 2.4 sabemos que: $W_{1\rightarrow 2} = \frac{2}{5} Q$	
	Finalmente: $\Delta U = \frac{3}{5}Q$	

Problema 3

Una muestra de 0.4 moles de un gas ideal experimenta diversos cambios al ir del estado a al estado b, al estado c y de regreso al estado a, a lo largo del ciclo mostrado en el siguiente diagrama P-V:

La trayectoria ab es una expansión a temperatura constante (expansión isotérmica).

3.1	Demostrar que $W_{a\to b} = nRT \ln\left(\frac{V_b}{V_a}\right)$	4 pts
	Solución: Para un proceso de expansión isotérmica de un gas ideal a temperatura constante T , el trabajo realizado por el gas está dado por:	
	$W = \int_{V_a}^{V_b} P dV$	
	Usamos la ecuación de estado de los gases ideales para sustituir P :	
	$P = \frac{nRT}{V} \Rightarrow W = \int_{V_a}^{V_b} \frac{nRT}{V} dV$	
	Como n, R y T son constantes durante el proceso:	
	$W = nRT \int_{V_a}^{V_b} \frac{1}{V} dV = nRT \left[\ln V \right]_{V_a}^{V_b}$	
	Finalmente: $W_{a \to b} = nRT \ln \left(\frac{V_b}{V_a} \right)$	

El calor específico molar a volumen constante del gas es $C_v = 20.8~\mathrm{J/(mol\cdot K)}.$

3.2	Calcular las temperaturas en los estados $a, b y c$; es decir, determinar $T_a, T_b y T_c$.	3 pts
	Solución: Usamos la ecuación de estado del gas ideal:	
	$T = \frac{PV}{nR}$	
	Datos:	
	$P_a = 2.4 \text{ atm} = 2.424 \times 10^5 \text{ Pa}, V_a = 12 \times 10^{-3} \text{ m}^3$	
	$P_b = 0.6 \text{ atm} = 0.606 \times 10^5 \text{ Pa}, V_b = 48 \times 10^{-3} \text{ m}^3$	
	$P_c = 0.6 \text{ atm} = 0.606 \times 10^5 \text{ Pa}, V_c = 12 \times 10^{-3} \text{ m}^3$	
	$n=0.4 \text{ mol}, R=8.31 \text{ J/(mol\cdot K)}$ Cálculo de temperaturas:	
	$T_a = \frac{2.424 \times 10^5 \cdot 12 \times 10^{-3}}{0.4 \cdot 8.31} \approx \boxed{875.8 \text{ K}}$	
	$T_b = \frac{0.606 \times 10^5 \cdot 48 \times 10^{-3}}{0.4 \cdot 8.31} \approx \boxed{875.8 \text{ K}}$	
	$T_c = \frac{0.606 \times 10^5 \cdot 12 \times 10^{-3}}{0.4 \cdot 8.31} \approx \boxed{218.9 \text{ K}}$	
	Esto confirma que la trayectoria ab es isotérmica, ya que $T_a = T_b$.	

3.3	Calcular la variación de la energía interna en los procesos ab, bc y ca ; es decir, determinar $\Delta U_{ab}, \Delta U_{bc}$ y ΔU_{ca} .	4 pts
	Solución: La energía interna de un gas ideal depende solo de la temperatura:	
	$\Delta U = nC_v(T_{\rm final} - T_{\rm inicial})$ Donde $C_v = 20.8$ J/(mol·K), y según la pregunta 3.2:	
	$T_a = T_b = 875.8 \text{ K}, T_c = 218.9 \text{ K}, n = 0.4 \text{ mol}$	
	Proceso ab (isotérmico):	
	$\Delta U_{ab} = \boxed{0 \text{ J}}$	
	Proceso bc:	
	$\Delta U_{bc} = 0.4 \cdot 20.8 \cdot (218.9 - 875.8) = 0.4 \cdot 20.8 \cdot (-656.9) \approx -5472.7 \text{ J}$	
	$\Delta U_{bc} \approx -5.47 \times 10^3 \text{ J}$	
	Proceso ca:	
	$\Delta U_{ca} = 0.4 \cdot 20.8 \cdot (875.8 - 218.9) = 0.4 \cdot 20.8 \cdot 656.9 \approx 5472.7 \text{ J}$	
	$\Delta U_{ca} \approx 5.47 \times 10^3 \text{ J}$	

3.4	Calcular el trabajo en los procesos ab, bc y ca ; es decir, determinar $W_{a\to b}, W_{b\to c}$ y $W_{c\to a}$.	4 pts
	Solución: Proceso ab: expansión isotérmica.	
	$W_{ab} = nRT \ln \left(\frac{V_b}{V_a}\right)$	
	$W_{ab} = 0.4 \cdot 8.31 \cdot 875.8 \cdot 1.386 \approx 4041.2 \text{ J} \Rightarrow W_{ab} \approx 4.04 \times 10^3 \text{ J}$	
	Proceso bc: compresión a presión constante (isóbara).	
	$W_{bc} = P \cdot (V_c - V_b)$	
	Donde:	
	$P = 0.6 \text{ atm} = 0.606 \times 10^5 \text{ Pa}, V_c = 12 \times 10^{-3}, V_b = 48 \times 10^{-3}$	
	$W_{bc} = 0.606 \times 10^5 \cdot (12 - 48) \times 10^{-3} = 0.606 \times 10^5 \cdot (-36 \times 10^{-3})$	
	$W_{bc} \approx -2181.6 \text{ J} \Rightarrow \boxed{W_{bc} \approx -2.18 \times 10^3 \text{ J}}$	
	Proceso ca: volumen constante (isócora).	
	$W_{ca} = 0 \text{ J} \Rightarrow \boxed{W_{ca} = 0}$	

3.5	Calcular la eficiencia del proceso abca.	5 pts
	Solución: La eficiencia η de un ciclo termodinámico se define como:	
	$\eta = rac{W_{ m neto}}{Q_{ m absorbido}}$	
	Trabajo neto:	
	$W_{\text{neto}} = W_{ab} + W_{bc} + W_{ca}$	
	$W_{\text{neto}} = 4.04 \times 10^3 + (-2.18 \times 10^3) + 0 = \boxed{1.86 \times 10^3 \text{ J}}$	
	Calor absorbido: Solo en los procesos donde el sistema gana energía: - En ab : $\Delta U = 0$, $W > 0 \Rightarrow Q_{ab} = W_{ab} = 4.04 \times 10^3 \text{ J}$ - En ca : $\Delta U > 0$, $W = 0 \Rightarrow Q_{ca} = \Delta U_{ca} = 5.47 \times 10^3 \text{ J}$ Entonces:	
	$Q_{\text{absorbido}} = Q_{ab} + Q_{ca} = 4.04 \times 10^3 + 5.47 \times 10^3 = 9.51 \times 10^3 \text{ J}$	
	Eficiencia:	
	$\eta = \frac{1.86 \times 10^3}{9.51 \times 10^3} \approx \boxed{0.1956} \Rightarrow \boxed{19.6\%}$	

Sugerencia:

$$\int \frac{1}{x} \, dx = \ln|x| + C$$