Kullback - Leibler divergence

Short talk - 04/10/2021

KL expression

Richard Leibler

Discrete version:

$$D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Continuous version:

$$D_{KL}(p||q) = \int_{-\infty}^{+\infty} p(x) \log \frac{p(x)}{q(x)} dx$$

If there exists $x \in \mathcal{X}$ such that q(x) = 0 and $p(x) \neq 0$ then $D(p||q) = +\infty$

$$\log \frac{p(x)}{q(x)}$$

- Positive if $p(x) \ge q(x)$
- Null if p(x) = q(x)
- Negative if $q(x) \ge p(x)$

Penalties are weighted by p:

$$D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

Keep in mind that the above functions are probability densities:

$$\sum_{x \in \mathcal{X}} p(x) = 1 \quad \text{and} \sum_{x \in \mathcal{X}} q(x) = 1$$

$D_{\mathit{KL}}(p\|q) \geq 0$ and equality holds if p = q

$$-D_{KL}(p||q) = -\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \sum_{x \in \mathcal{X}} p(x) \log \frac{q(x)}{p(x)}$$

$$\leq \log \sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)} = 0 \qquad \text{(Jensen inequality)}$$

 $D_{KL}(p||q) = 0$ if equality in Jensen inequality i.e. $p = cq \rightarrow p = q$ since p and q sum to 1.

Definition of a distance

Any function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ such that :

•
$$\forall (a,b) \in \mathcal{X}^2$$
, $d(a,b) = 0 \iff a = b$

•
$$\forall (a,b) \in \mathcal{X}^2$$
, $d(a,b) = d(b,a)$

•
$$\forall (a, b, c) \in \mathcal{X}^3$$
, $d(a, c) \leq d(a, b) + d(b, c)$

$D_{KL}(p||q)$ is not a distance!

Information theory intuition:

$$D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x)\log p(x) - \sum_{x \in \mathcal{X}} p(x)\log q(x)$$

$$H(p)$$

$$H_p(q)$$

If we knew the true distribution p of the random variable, we could construct a code with average description length H(p).

If, instead, we used the code for a distribution q, we would need $H(p) + D_{KL}(p||q)$ bits on the average to describe the random variable.

Let $x_1, \ldots, x_N \in \mathcal{X}$ be N i.i.d. observations of a random variable X

$$\hat{p}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta(x - x_i)$$

Let p_{θ} be a parameterized distribution on \mathcal{X}

$$D_{KL}(\hat{p}||p_{\theta}) = \sum_{x \in \mathcal{X}} \hat{p}(x) \log \frac{\hat{p}(x)}{p_{\theta}(x)} = -H(\hat{p}) - \sum_{x \in \mathcal{X}} \hat{p}(x) \log p_{\theta}(x)$$

$$= -H(\hat{p}) - \sum_{x \in \mathcal{X}} \sum_{i=1}^{N} \delta(x - x_i) \log p_{\theta}(x) = -H(\hat{p}) - \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(x_i)$$

Maximizing the likelihood $p_{\theta}(x) \iff \text{Minimizing } D_{\text{KL}}(\hat{p} \| p_{\theta})$

Pinsker's inequality

Total variation distance

$$\delta(p,q) = \sup_{A \in \mathscr{F}} |p(A) - q(A)|$$

$$\delta(p,q) \le \sqrt{\frac{1}{2}} D_{KL}(p||q)$$

In practice

Let x_i be samples from p(x):

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{i=0}^{N} \log \frac{p(x_i)}{q(x_i)} = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = D_{KL}(p||q)$$