

Low Power Wide Area Networks for the Internet of Things

Framework, Performance Evaluation, and Challenges of LoRaWAN and NB-IoT

Samer Lahoud Melhem El Helou

ESIB, Saint Joseph University of Beirut, Lebanon

ICT 2018, Saint-Malo, France

Tutorial Outcomes

- How do LPWAN complement traditional cellular and short-range wireless technologies?
- What are the fundamental mechanisms that enable to meet the LPWAN requirements?
- What are the major design choices made in the LoRaWAN and NB-IoT specifications?
- How do we evaluate the performance of a LoRaWAN and NB-IoT deployment in terms of coverage and capacity?
- What are the recent research directions for radio resource management in LoRaWAN and NB-IoT?

Feedback and Material

- Feedback form
- Presentation slides are available

Outline

1 Performance Evaluation

Link Budget

Enhanced Network Capacity

- LoRa employs orthogonal spreading factors which enables multiple spread signals to be transmitted at the same time and on the same channel
- Modulated signals at different spreading factors appear as noise to the target receiver
- The equivalent capacity of a single 125 kHz LoRa channel is:

$$SF12 + SF11 + SF10 + SF9 + SF8 + SF7 + SF6$$

$$= 293 + 537 + 976 + 1757 + 3125 + 5468 + 9375$$

$$= 21531 \text{ b/s} = 21.321 \text{ kb/s}$$

- S n

Link Budget

- The link budget is a measure of all the gains and losses from the transmitter, through the propagation channel, to the target receiver
- The link budget of a network wireless link can be expressed as:

$$P_{Rx} = P_{Tx} + G_{System} - L_{System} - L_{Channel} - M$$

where:

 P_{Rx} = the expected received power

 P_{Tx} = the transmitted power

 G_{System} = system gains such as antenna gains

 L_{System} = system losses such as feed-line losses

 $L_{Channel}$ = losses due to the propagation channel

M = fading margin and protection margin

Coverage of LoRaWAN

Evaluation Scenario

Area

■ Surface: square of 8 Km × 8 Km

■ Number of end-devices: 1000

■ Distribution of end-devices: uniform

■ Single gateway

■ Environment type: urban

Radio link

■ Bandwidth: 125 kHz

■ Transmit power: 14 dBm

■ Gateway height: 30 m

■ End-device height: 1.5 m

■ Antenna gains: 3 dBi

■ Noise floor: -153 dBm

■ Pathloss: Okumura-Hata

lacksquare Shadow fading: lognormal $\mathcal{N}(0,8)$

Pathloss Model

■ Using the Okumura-Hata urban model, the pathloss between device i and the gateway is proportional to the logarithm of the distance d(i,g) in Km:

$$L_{Channel}(i) = A + B \log_{10}(d(i,g))$$

■ The two parameters A and B depend on the antenna heights ($h_b = 30$ m for the gateway, and $h_d = 1.5$ m for the end-device) and the central frequency $f_c = 868$ MHz

$$A = 69.55 + 26.16 \log_{10}(f_c) - 13.82 \log_{10}(h_b) - 3.2(\log 10(11.75h_m))^2 + 4.97$$

$$B = 44.9 - 6.55 \log_{10}(h_b)$$

Link Budget

- We consider
 - Transmit power: $P_{Tx} = 14 \text{ dBm}$
 - Sum of antenna gains: $G_{System} = 6 \text{ dBi}$
 - Fading and protection margin: M = 10 dB
 - Noise floor: N = -153 dBm
- For end-device i, we can now compute the received power $P_{RX}(i)$ and SNR:

$$P_{Rx}(i) = P_{Tx} + G_{System} - L_{Channel}(i) - M$$

 $SNR(i) = P_{Rx}(i) - N$

Spreading Factor Selection

■ The spreading factor is selected using the following matching table:

SNR Interval (dB)	Spreading Factor
$[-7.5, +\infty[$	7
[-10, -7.5[8
[-12.5, -10[9
[-15, -12.5[10
[-17.5, -15[11
[-20, -17.5[12
	•

■ Note that for SNR values lower that -20 dB, the end-device is considered out of coverage of the gateway

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	40.50	51.60	61.60	70.40	77.70	86.10

Spreading Factor and Time on Air

Energy

Multiple Gateways

Spreading Factor	7	8	9	10	11	12
Cumulative coverage (%)	88.70	94.50	97.60	99.20	99.60	100.00

Capacity of LoRaWAN

S O

ALOHA Model

ALOHA with duty cycle

$$\frac{\delta}{\tau} N \exp(-2N\frac{\delta}{\tau})$$

ALOHA with multiple receivers and perfect packet capture

$$\frac{\delta}{\tau} N \exp(-2N\frac{\delta}{\tau}) (1 + \sum_{n=2}^{N} \frac{(2N\frac{\delta}{\tau})^n}{n!} (1 - (1 - \frac{1}{n})^r))$$

ALOHA with multiple receivers and realistic packet capture

$$\frac{\delta}{\tau} N \exp(-2N\frac{\delta}{\tau}) \left(1 + \sum_{n=2}^{N} \frac{(2N\frac{\delta}{\tau})^n}{n!} \left(1 - \left(1 - \frac{K^{n-1}}{n}\right)^r\right)\right)$$

with

$$K = \frac{1}{2} 10^{-\frac{\Delta}{10\alpha}}$$