Taller de R básico. Dia 4.

Viacheslav Shalisko

20 de octubre de 2016

A. Cargar la tabla de datos

Estructura de datos (tabla Datos_del_censo.csv):

- 1. Centro código del CU
- 2. Especie nombre científico
- 3. Codigo identificador único del arbol
- 4. AB área basal del árbol (dm²)
- 5. DTr diametro del tronco equivalente (cm)
- 6. Alt estatura del árbol (m)
- 7. DCop diametro promedio de la copa (m)
- 8. ExcCop excentricidad de la copa

```
arbolado <- read.csv("Materiales/Datos_del_censo.csv")</pre>
```

Partes B. y C. fueron tratados en la sesión anterior.

Continuación

D. Gráficas simples

Histogramas

Histográma de estaturas

str(H0)

```
## List of 6
## $ breaks : num [1:7] 0 2.5 5 7.5 10 20 30
## $ counts : int [1:6] 196 1529 1242 844 900 28
## $ density : num [1:6] 0.0165 0.1291 0.1048 0.0712 0.019 ...
## $ mids : num [1:6] 1.25 3.75 6.25 8.75 15 25
## $ xname : chr "arbolado$Alt"
## $ equidist: logi FALSE
## - attr(*, "class")= chr "histogram"
```

```
barplot(H0$counts, space = 0,
    col = c("lightblue","coral"),
    xlab = "Clases de estatura del árbol (m)", ylab = "Frecuencia",
    main = "Histográma de estaturas")
```

20/10/2016

Histográma de estaturas

Clases de estatura del árbol (m)

```
B0 <- barplot(H0$counts, space = 0, ylim = c(-100,1700),
    col = c("lightblue","coral"),
    xlab = "Clases de estatura del árbol (m)", ylab = "Frecuencia",
    main = "Histográma de estaturas")
axis(at = seq(from = 0, to = 6, by = 1),
    labels = c(0,2.5,5,7.5,10,20,30), side = 1)
text(B0, H0$counts + 0.05 * max(H0$counts), labels=round(H0$counts), cex = 0.8)</pre>
```

Histográma de estaturas


```
par(mfcol = c(1, 2))

hist(arbolado$Alt,
    col = c("lightblue"),
    xlab = "Clases de estatura del árbol (m)", ylab = "Frecuencia",
    main = "Histográma de estaturas", prob = FALSE)

plot(density(arbolado$Alt, na.rm = TRUE),
    col = c("lightblue"), lty=1, lwd=2,
    xlab = "Estatura del árbol (m)", ylab = "Densidad",
    main = "Distribución de estaturas")
```

Histográma de estaturas

Distribución de estaturas

Histográma de estaturas con gráfica de densidad de distribución


```
H2 <- hist(arbolado$Alt, ylim = c(-100,1700),
        col = c("lightblue"),
        xlab = "Clases de estatura del árbol (m)", ylab = "Frecuencia",
        main = "Histográma de estaturas con gráfica de densidad de distribución", prob = FALSE)

densidad <- density(arbolado$Alt, na.rm = TRUE)
densidad$y <- densidad$y*diff(H2$mids[1:2])*length(arbolado$Alt)
lines(densidad, col = c("coral"), lty=1, lwd=2)</pre>
```

Histográma de estaturas con gráfica de densidad de distribución

Histográma de estaturas con gráfica de distribución normal

Gráficas QQ

```
qqnorm(arbolado$Alt, col = "lightblue")
qqline(arbolado$Alt, col = "red")
```

Normal Q-Q Plot

Gráficas de caja

Estatura de árboles por centro

Área basal de árboles por centro

Gráficas de puntos

20/10/2016

Estatura de árboles vs. diametro del tronco

Estatura de árboles vs. diametro del tronco

Graficas de puntos pueden incluir grupos de datos

Estatura de árboles vs. diametro del tronco

E. Estructuras de control

Funciones

Sintáxis general de definición de las funciones

```
nombre_de_función <- function(variables_de_entrada) {
cuerpo de función donde se usan las variables de entrada y se genera valor de
salida
}
```

Existen la dos formas de definición de las funciones:

- a) en una sola linea
- b) con el bloque encerrado en los símbolos {}

Las funciones pueden ser anónimas o tener el nombre

```
# función para quetar los espacios en principio y al final de una cadena de texto
trim <- function(x) gsub("^\\s+\", "", x)

# función para poner primera letra de una cadena de texto como mayuscula y otras como minusculas
simpleCap <- function(x) {
   paste(toupper(substr(x, 1, 1)), tolower(substr(x, 2, nchar(x))), sep="")
}</pre>
```

Aplicacion de las funciones para depurar nombres de las especies

```
lista_especies <- unique(as.character(arbolado$Especie))
length(lista_especies)</pre>
```

```
## [1] 150
```

```
arbolado$Especie <- sapply(as.character(arbolado$Especie), simpleCap)
arbolado$Especie <- sapply(arbolado$Especie, trim)
lista_depurada_especies <- unique(arbolado$Especie)
arbolado$Especie <- as.factor(arbolado$Especie)
length(lista_depurada_especies)</pre>
```

```
## [1] 144
```

Elementos de control de flujo de ejecución

- 1. if, else, else if estructuras condicionales
- 2. for ciclos (loops, bucles) con un número predeterminado de iteraciones
- 3. while ciclos con un número indefinido de iteraciones
- 4. repeat ciclos con un número infinito de iteraciones (se usan rara vez, principalmente en elementos de interface de usuario)
- 5. next, return elementos que permiten interrimpir o saltar iteraciones en los ciclos

Sintáxis general de las estructuras condicionales

```
if(condición lógica) {
  código para caso que la condición se cumple
} else {
  código para caso que la condición no se cumple
}
```

Sintáxis general de los ciclos con numero predeterminado de elementos

```
for(iterador in rango_de_posibles_valores_del_iterador) {
  código del cuerpo de ciclo, donde se puede utilizar iterador como una variable
}
```

Ejemplo:

```
for(i in 1:length(lista_depurada_especies)){
    # seleccionar registros que corresponden a una especie determinada
    tabla_especie <- arbolado[arbolado$Especie == lista_depurada_especies[i],]</pre>
    # verificar que número de árboles de la especie es mayór que 50
    if(dim(tabla especie)[1] > 50) {
       # imprimir nombre de especie y número de árboles
       cat(paste("<h4><i>",lista_depurada_especies[i],"</i></h4>"))
       cat(paste('<code>',"n =",dim(tabla especie)[1],"</code>"))
       # especificar lienzo para tres graficas
       par(mfcol = c(1, 3))
       # dibujar tres gráficas
       boxplot(tabla_especie$Alt,
          col = "coral", main = "Estatura de árboles", ylab = "Estatura (m)")
       boxplot(log(tabla_especie$DTr),
          col = "lightblue", main = "Diametro del tronco", ylab = "Log del diametro de tronco (c
m)")
      plot(tabla especie$Alt ~ log(tabla especie$DTr),
          col = "coral", main = "Estatura vs. diametro del tronco",
          ylab = "Estatura (m)", xlab = "Log del diametro del tronco (cm)")
}
```

Pithecellobium dulce

```
n = 107
```


Acacia macracantha

n = 176

Pithecellobium lanceolatum

Salix bonplandiana

n = 139

Tabebuia rosea

Terminalia catappa

n = 110

Enterolobium cyclocarpum

Guazuma ulmifolia

n = 329

Ficus benjamina

Cocus nucifera

n = 157

Arecastrum romanzoffianum

Dypsis lutescens

n = 82

Acacia farnesiana

Eucalyptus camaldulensis

n = 58

Casuarina equisetifolia

Cupressus sempervirens

n = 77

Fraxinus uhdei

Jacaranda mimosifolia

n = 70

Quercus resinosa

Acacia pennatula

n = 167

Lippia umbellata

Eysenhardtia polystachya

n = 245

Pinus devoniana

