

Week 35: Lecture 2 Introduction to first step analysis

Geir-Arne Fuglstad

August 26, 2020

Simulating Markov chains

Input:

- $-i_0$: starting state
- P: transition probability matrix
- T: number of time steps

Algorithm:

Output: One realization x_0, x_1, \dots, x_T .

Simulating Markov chains

Input:

- i₀: starting state
- P: transition probability matrix
- T: number of time steps

Algorithm:

1. Set
$$x_0 = i_0$$

Output: One realization x_0, x_1, \dots, x_T .

Simulating Markov chains

Input:

- $-i_0$: starting state
- P: transition probability matrix
- T: number of time steps

Algorithm:

- 1. Set $x_0 = i_0$
- 2. for n = 1 ... T
- 3. Simulate x_n from $X_n | X_{n-1} = x_{n-1}$
- 4. end

Output: One realization x_0, x_1, \dots, x_T .

Section 3.3: Examples

Example: Ehrenfest urn model

We have N = 100 balls divided into two containers labelled A and B. At each time step n, one ball is selected at random and moved to the other container. Let Y_n denote the number of balls in container A at time n, and define $X_n = Y_n - 50$. Find the transition probabilities, and simulate and plot one realization of $\{X_n : n = 0, 1, \dots, 500\}$.

Section 3.4: First step analysis

6

Motivation

Definition (Absorbing state)

For a Markov chain, a state i such that $P_{ij} = 0 \ \forall j \neq i$ is called **absorbing**.

6

Motivation

Definition (Absorbing state)

For a Markov chain, a state i such that $P_{ij} = 0 \ \forall j \neq i$ is called **absorbing**.

Motivating example

Let $\{X_n\}$ be a Markov chain with transition probability matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{bmatrix},$$

where $\alpha, \beta, \gamma > 0$ and $\beta = 1 - \alpha - \gamma$. Assume $x_0 = 1$.

6

Motivation

Definition (Absorbing state)

For a Markov chain, a state i such that $P_{ij} = 0 \ \forall j \neq i$ is called **absorbing**.

Motivating example

Let $\{X_n\}$ be a Markov chain with transition probability matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{bmatrix},$$

where $\alpha, \beta, \gamma > 0$ and $\beta = 1 - \alpha - \gamma$. Assume $x_0 = 1$.

Q1: What is the expected time until absorption?

Motivation

Definition (Absorbing state)

For a Markov chain, a state i such that $P_{ij} = 0 \ \forall j \neq i$ is called **absorbing**.

Motivating example

Let $\{X_n\}$ be a Markov chain with transition probability matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{bmatrix},$$

where $\alpha, \beta, \gamma > 0$ and $\beta = 1 - \alpha - \gamma$. Assume $x_0 = 1$.

Q1: What is the expected time until absorption?

Q2: What is the probabibility to be absorbed in state 0?

Example 1

Let $\{X_n\}$ be a Markov chain with transition probability matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.4 & 0.3 & 0.2 & 0.1 \\ 0.1 & 0.3 & 0.3 & 0.3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

The starting state is $x_0 = 1$. Calculate the probability to be absorbed in state 0.