物理学院《大学物理 AII》期末考试题 A 卷

2021年1月26日 14:00-16:00

可能用到的物理常数

真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$,普朗克常量 $h = 6.63 \times 10^{-34} \text{ J s}$,电子质量 $m_e = 9.11 \times 10^{-31} \text{ kg}$,

真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}$, 基本电荷 $e = 1.60 \times 10^{-19} \text{ C}$, 质子质量 $m_p = 1.67 \times 10^{-27} \text{ kg}$.

- 一、选择题(共24分,单选,每题3分),请将正确答案在答题卡上圈出。
- 1. (3分)如图所示,在边长为a的正方形平面的中垂线上,距中心O点a/2处,有一电荷为a的正点电荷,则通过该平面的电场强度通量为

(A)
$$\frac{q}{6\varepsilon_0}$$
;

(B)
$$\frac{q}{12\varepsilon_0}$$
;

(C)
$$\frac{q}{24\varepsilon_0}$$
;

(D)
$$\frac{q}{48\varepsilon_0}$$
 °

- 2. $(3 \, \mathcal{G})$ 如图所示,在真空中半径分别为 R 和 2R 的两个同心球面,其上分别均匀地带有电荷+q 和 -3q。今将一电荷为+Q 的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为
- (A) $\frac{Qq}{4\pi\varepsilon_0 R}$;
- (B) $\frac{Qq}{2\pi\varepsilon_0 R}$;
- (C) $\frac{Qq}{8\pi\varepsilon_0 R}$;
- (D) $\frac{3Qq}{8\pi\varepsilon_0 R}$ °
- 3.(3 分)半径为 R 的圆周 C、D、E、F 处固定有四个电量均为 q 的点电荷,CD 与 EF 垂直,如图所示.此圆以角速度 ω 绕过 O 点与圆平面垂直的轴旋转时,在圆心 O 点产生的磁感强度大小为 B_1 ;它以同样的角速度绕 CD 轴旋转时,在
- O 点产生的磁感强度的大小为 B_2 ,则 B_1 与 B_2 间的关系为

(B)
$$B_1 = 2B_2$$
;

(C) $B_1 = \frac{1}{2}B_2$;

- 4. (3分) 在匀强磁场中,有两个平面线圈,其面积 $A_1 = 2A_2$,通有电流 $I_1 = 2I_2$,它们 所受的最大磁力矩之比 M_1/M_2 等于
- (A) 1;
- (B) 2;
- (C) 4;
- (D) $1/4_{\circ}$

5. (3分)有两个长直密绕螺线管,长度	更及线圈匝数均相同,半径分别为 r_1 和 r_2 。管内
充满均匀介质,其磁导率分别为μ1和μ2	。设 r_1 : r_2 =1:2, μ_1 : μ_2 =2:1,当将两只螺线管串
联在电路中通电稳定后,其自感系数之比 $L_1:L_2$ 与磁能之比 $W_{m1}:W_{m2}$ 分别为	
(A) $L_1:L_2=1:1$, $W_{m1}:W_{m2}=1:1$;	(B) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:1$;
(C) $L_1:L_2=1:2$, $W_{m1}:W_{m2}=1:2$;	(D) $L_1: L_2=2:1$, $W_{m1}: W_{m2}=2:1$.
6. (3 分) 一飞船以 $\frac{3}{5}c(c$ 表示真空中光速)的速度飞离地球。宇航员向地球发射了一无	
线电信号,经地球反射,40 s 后收到返回信号。则在地球反射信号时刻,飞船上测得地	
球离飞船的距离为	
(A) 40 c;	(B) 20 c;
(C) 16 c;	(D) 25 c _o
7. (3分) 氢原子中处于 $2p$ 状态的电子,描述其四个量子数 (n, l, m_l, m_s) 可能取的值	
为	
(A) $(3, 2, 1, -1/2);$	(B) $(2, 0, 0, 1/2);$
(C) $(2, 1, -1, -1/2);$	(D) $(1, 0, 0, 1/2)$.
8. (3分) N型半导体中杂质电子所形成的局部能级(也称施主能级),在能带结构中应	
处于	
(A) 满带中;	(B) 导带中;
(C) 禁带中,但接近满带顶;	(D) 禁带中,但接近导带底。
二、填空题(共 30 分),请将正确答案填写在答题卡对应划线上。	
$1.(4分)$ 两个同心的薄金属球壳,内、外球壳半径分别为 R_1 和 R_2 。球壳间充满两层均	
匀电介质,它们的相对介电常数分别为 ε_1 和 ε_2 。两层电介质的分界面半径为 R 。设内球	
壳带负电为 Q 。两层电介质的分界面处的电位移大小为; 电位移的方向	
为。	
2. (3分) 电容法测液面高度,在被测液体介质(相对介电常数为&) [] []	
中放入两个同轴圆筒形极板。大圆筒内半径为 R ,小圆筒外半径为 r ,	
圆筒的高度为 H ,该圆柱形电容器的电容量随筒内液面高度 h 的变	

化而改变。忽略电容器边缘效应。试写出电容量 C 与液面高度 h 的

关系式为_____。

- 3. (3 分) 有两个线圈,自感系数分别为 L_1 和 L_2 ,已知: L_1 =3 mH, L_2 =5 mH, 串联成 一个线圈后测得自感系数 L=11 mH,则两线圈的互感系数 $M=_____$ 。 4.(3 分)一同心系统置于真空中,外面为石英球壳,球壳内半径 R = 10 cm, 内壁敷半透明铝薄膜。中间为半径 r=5 cm 的钠球。今用波长 300 nm 的 单色光照射系统。钠的红限波长为 540 nm, 铝的红限波长为 296 nm。则 平衡时钠球所带的电量为。 5.(4分) 电磁场理论中,麦克斯韦提出的两个假设是 : 假设 \vec{H} 和 \vec{E} 分别表示磁场强度和电场强度,在没有自由电荷与传导电流的变化电磁场中,沿闭合环 路 l (设以环路 l 为边界的曲面面积为S) $\oint \vec{H} \cdot d\vec{l} =$ ______和 $\oint \vec{E} \cdot d\vec{l} =$ ________ 6. (4分) 在距地面 6000 m 处宇宙射线与高层大气相互作用,产生了一个具有 2×10⁻⁶ s 平均固有寿命的 μ 子,该 μ 子以 0.998c(其中 c 为光速)的速率沿垂直于地面方向朝地 面运动。地面上的观测者测定它在衰变以前能够走过的平均距离为;对相对 于μ子静止的观测者来说,μ子在衰变以前能否到达地面 (填写能或不能)。 7.(3 分)设电子的静止质量为 m_0 ,光速为 c。当电子的动能等于它的静止能量时,它 的德布罗意波长是λ=____。 8. (3 分) 当基态能级能量为-13.6 eV 的氢原子从某初始状态跃迁到激发能(从基态到 激发态所需的能量)为 10.19 eV的状态时,发射出光子的波长为 $\lambda = 486 \text{ nm}$,则该初始 状态的能级能量为 eV 和主量子数为。 9.(3分)在激发态能级上的钠原子,发射出波长为 589 nm 的光子的时间平均约为 10^{-8}s 。 根据不确定关系式 $\Delta E \cdot \Delta t \geq \hbar$,光子能量的不确定度为_____eV,发射波长的不 确定范围是_____nm。 三、计算题 (共 46 分),请将正确答案填写在答题卡对应题号答题区内,不可跨区答题!
- $1.(10 \, \mathcal{G})$ 如图所示,半径为 R 的导体球原为中性,现将一点电荷 q 放在导体球外离球 心 O 距离为 r_0 $(r_0 > R)$ 处,导体球内 P 点离点电荷 q 距离为 r处。试求:
 - (1) 导体球上的感应电荷在P 点处的电场强度和电势;
 - (2) 若导体球接地,导体表面上感应电荷 q' 是多少?

- 2. (10 分) 如图所示,将一均匀分布着电流的无限大载流平面放入均匀外磁场中,电流 方向与此磁场垂直。已知平面两侧的磁感应强度分别为 \vec{B}_1 和 \vec{B}_2 。 试求:
 - (1) 外磁场的磁感应强度 \vec{B}_0 的大小和方向;
 - (2) 面电流密度 i 的大小和方向;
 - (3) 该载流平面单位面积所受的磁场力的大小和方向。
- 3. (10 分) 如图所示, 在均匀磁场 \bar{B} 中有一等腰梯形金属框 abcd, 以匀角速度 ω 绕 OO'轴逆时针转动 (从上往下看), 金属框 abcd 的总电阻为 R, 其中 ab = 2 cm, bc = 4 cm, cd = 6cm, 当金属框线圈平面 与磁力线平行时, 试求:

- (1) 金属框中的电动势:
- (2) 金属框中 b 点与 c 点之间的电势差 U_{bc} 是多少?
- 4. (10 分) 宽为 a 的一维无限深方势阱中粒子的波函数为

$$\psi_n(x) = A \sin \frac{n\pi}{a} x$$
, $0 < x < a$, $\forall \vec{x}$:

- (1) 粒子处于基态时在 a/4 < x < a 区间内发现粒子的概率;
- (2) 无限深方势阱中粒子的能量。

(一维定态薛定谔方程为
$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + U(x)\psi = E\psi$$
)

5.(6 分) 两个点电荷位于 x 轴上,在它们形成的电场中,若取无限远的电势为零,则 在正x轴上上各点的电势如图中曲线所示, 当 $x\rightarrow 0$ 时, 电 势 ϕ →∞; 当 x→∞时, 电势 ϕ →0; 电势为零的点的坐标为 x_0 , 电势为极小值 $-\alpha_0$ 的点的坐标为 ax_0 (a>2), 试根据图 线提供的信息:

(2) 定量确定两个点电荷所带电量和在 x 轴的位置。

10'