

Space X Landing Analysis

Ismael Coulibaly 2022 February 17

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

Methodologies

- Data Collection
- Data Wrangling and formatting
- EDA and visualisation
 - EDA with Data Visualisation
 - EDA with SQL
- Visual analytics with Folium
- Dasboard Presentation with Plotly dash
- Machine Learning Predictive Analysis

Results

- EDA results
- Interactive review of the dashboard
- Predictions results insights

INTRODUCTION

Context

• SpaceX company stated on their websites that the Falcon 9 rocket launches Costis around 62 M dollars while other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Being able to determine if the first stage will land will help determine the cost of a launch. Thus helping our company (SPACEY) to compete with SpaceX

Problems to solve through this analysis

- What parameters determines the most a successful land?
- In Which conditions or company should experiment in order to get the best results

DATA WRANGLING METHODOLOGY

The data Collection was done by making a request to the SpaceX API Ensuring a better accuracy about veracity of entries

```
In [6]: spacex_url="https://api.spacexdata.com/v4/launches/past"
In [7]: response = requests.get(spacex_url)
```

Reformatting

• Data was given in a json format so basics reformatting was needed

```
In [11]: # Use json_normalize meethod to convert the json result into a dataframe
    data=response.json()
    data=pd.json_normalize(data)
```

As only data of Falcon 9 is revelant for us we make a filter

```
In [27]: # Hint data['BoosterVersion']!='Falcon 1'
   mask=data['BoosterVersion']!='Falcon 1'
   data_falcon9=data[mask]
```


Missing Values

- First Enquiry about the numbers of Missing Values
 - As a result landing pad has the most entries with nan = 26
- Dealing with missing values
 - For doing so we fill any missing value with the mean value of the columns getting our final data clean

n [30]: # Calculate the mean value of PayloadMass column mean= data['PayloadMass'].mean() data.replace({np.nan:mean}) # Replace the np.nan values with its mean value

Out[30]:

1	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPa
0	1	2006- 03-24	Falcon 1	20.000000	LEO	Kwajalein Atoll	None None	1	False	False	False	5919.165341
1	2	2007- 03-21	Falcon 1	5919.165341	LEO	Kwajalein Atoll	None None	1	False	False	False	5919.165341
2	4	2008- 09-28	Falcon 1	165.000000	LEO	Kwajalein Atoll	None None	1	False	False	False	5919.165341
3	5	2009- 07-13	Falcon 1	200.000000	LEO	Kwajalein Atoll	None None	1	False	False	False	5919.165341
4	6	2010- 06-04	Falcon 9	5919.165341	LEO	CCSFS SLC 40	None None	1	False	False	False	5919.165341
89	102	2020- 09-03	Falcon 9	15600.000000	VLEO	KSC LC 39A	True ASDS	2	True	True	True	5e9e3032383ecb6bb234e7c
90	103	2020- 10-06	Falcon 9	15600.000000	VLEO	KSC LC 39A	True ASDS	3	True	True	True	5e9e3032383ecb6bb234e7c
91	104	2020- 10-18	Falcon 9	15600.000000	VLEO	KSC LC 39A	True ASDS	6	True	True	True	5e9e3032383ecb6bb234e7c
92	105	2020- 10-24	Falcon 9	15600.000000	VLEO	CCSFS SLC 40	True ASDS	3	True	True	True	5e9e3033383ecbb9e534e7c
93	106	2020- 11-05	Falcon 9	3681.000000	MEO	CCSFS SLC 40	True ASDS	1	True	False	True	5e9e3032383ecb6bb234e7c

In [29]: data_falcon9.isnull().sum()

BoosterVersion PayloadMass

LaunchSite

GridFins Reused Legs LandingPad Block

Serial Longitude

Latitude dtype: int64

Out[29]: FlightNumber

94 rows × 17 columns

EDA AND VISUALISATION METHODOLOGY

 EDA and visualization methodolo gy using libraries

• EDA with SQL

EDA

Determining the number of each launch Sites

```
In [12]: # Apply value_counts() on column LaunchSite
    df['LaunchSite'].value_counts()
```

Out[12]: CCAFS SLC 40 55 KSC LC 39A 22 VAFB SLC 4E 13

Name: LaunchSite, dtype: int64

- Determining numbers of orbits
 - Each launch site aims to an orbit

EDA

Create a Landing Label

• Label Creation is helpful for letting know to the predictions algorithm 'what defines success 'in our case 1 for success and 0 for failure

✓ As insight we notice that we have around 66% of Success Rate

EDA WITH SQL

- Using SQL to enquiry the database stored on, IBM Db2 cloud
 - Listing unique Launching sites
 - Display the total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - List the date when the first successful landing outcome in ground pad was achieved.
 - List the names of the booster versions which have carried the maximum payload mass

Predicttive ANalysis methodology

	• 1		•	
\mathbf{R}	ui		In	O
D	uп	lu		K
				\mathbf{O}

Building model

- Loading and Standardize data
- Split in train and test sdataset
- Applying SVM, decision tree ,logistic regression and KNN algorithm
- Fit the model using GridSearchCV

Evaluating

Evaluating model

- Get accuracy
- Plot Confusion Matrix

Improving

Improving the model

 Udsing hyperparameter tuning to try to get the best performing model

Finding

Finding the best model by ranking them based on accuracy

RESULTS

- EDA with visualization
- EDA with SQL results
- interactive map with Folium
- Plotly Dash dashboard
- Predictive analysis results

✓ This indicates
The more a site have launches the more they will be successful

✓ Success
Rate was
increasing
from 2013 till
2021

Display average payload mass carried by booster version F9 v1.1

```
]: %sql SELECT AVG(payload_mass__kg_ ) FROM SPACEXTBL WHERE booster_version LIKE 'F9 v1.1%'
```

* ibm_db_sa://bnx43768:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb Done.

]: **1** 2534

✓ Average payload mass is about 2534 Kg

List the date when the first successful landing outcome in ground pad was acheived.

Hint:Use min function

```
%sql SELECT MIN (DATE)\
FROM SPACEXTBL \
WHERE landing_outcome='Success (ground pad)'
```

* ibm_db_sa://bnx43768:***@2d46b6b4-cbf6-40eb-bbce-6251e6ba0300.bs2io90l08kqb1od8lcg.databases.appdomain.cloud:32328/bludb Done.

2015-12-22

Representing each Launch Sites an NASA center on the Map

Number of launch on each Sites

Visualisation of Successful and uncessfull lanch on Western sites

Visualization of Successful and unsuccessful landing on Western sites

Plotly DASHBOARD

Succes Rates of all sites

All Sites

Success Rate by Launch Sites

KSC LC-39A
CCAFS LC-40
VAFB SLC-4E
CCAFS SLC-40

Success Rate of CCAFS LC-40

Success Rate by Launch Sites

26.9%

73.1%

Succes Rate of VAFB SLC-4B

Succes Rate of KSC LC-39A

Success Rate of CCAFS SLC-40

Success Corellation by Payload Mass & Bosster Version

Payload_Mass_(kg)

Predictive Analysis Results

Predictive analysis results

>After choosing the best parameters for each algorithm

```
In [15]: parameters ={"C":[0.01,0.1,1],'penalty':['12'], 'solver':['lbfgs']}# L1 Lasso L2 ridge
         lr=LogisticRegression()
         logreg cv = GridSearchCV(lr, parameters,cv=10)
         logreg cv.fit(X train, Y train)
  Out[15]: GridSearchCV(cv=10, estimator=LogisticRegression(),
                         param_grid={'C': [0.01, 0.1, 1], 'penalty': ['l2'],
                                     'solver': ['lbfgs']})
```

Predictive analysis results

✓ Logistic Regression Model perform better with an accuracy of around 83%

```
In [43]: models=['logreg','svm','tree','kNN']
         results = [logreg_cv.score(X_test,Y_test),svm_cv.score(X_test,Y_test),tree_cv.score(X_test,Y_test),knn_cv.score(X_test,Y_test)]
         results_df=pd.DataFrame(list(zip(models,results)),columns= ['Model name' , 'Results'])
         results df.sort values('Results',ascending=False)
  Out[43]:
```

```
Model name Results
     logreg 0.833333
      svm 0.833333
      kNN 0.833333
       tree 0.777778
```

Predictive analysis results

Confusion Matrix Analysis

✓ We got 3 False positives values

OVERALL FINDINGS

SSO, GEO and ES-L1 have 100% Success Rate

The more a site have launches the more they will be successful

After 2020 success rates have been decreasing

Average payload mass is about 2534 Kg

We achieved 83% accuracy using Logistic Regression

3 False Positive

CONCLUSION

3 Classifiers performed well(logreg, SVM and Knn)

Space X succes rates tend to increase over the year meaning the learning process from previous launches is effective

SSO, GEO and ES-L1 are the best orbits for test

KSC LC-39 A is the best launching site among all the availables