DOCUMENT SUMMARY

This review article by Schmelzle and Hall posits that the **target of rapamycin (TOR)** kinase is a central controller of cell growth. The paper summarizes evidence showing that **TOR** integrates signals from nutrients and growth factors to regulate a diverse set of processes essential for increasing cell mass, including translation, transcription, ribosome biogenesis, and protein degradation. By controlling these fundamental cellular activities, **TOR** plays a crucial, conserved role in coordinating cell growth with cell proliferation.

FILENAME

research review article cell growth tor signaling 2000

METADATA

Category: RESEARCH

Type: review_article

Relevance: Reference

Update Frequency: Static

Tags: #tor-signaling #cell-growth #mtor #rapamycin #cell-proliferation #pi3k #cancer-

biology #signal-transduction #cell-cycle

Related Docs: N/A

Supersedes: N/A

FORMATTED CONTENT

Schmelzle_&_Hall_2000_TOR_a_Central_Controller_of_Cell Growth

Tobias Schmelzle and Michael N. Hall

Department of Biochemistry, Biozentrum, University of Basel, Switzerland

Summary

Cell growth (increase in cell mass) and **cell proliferation** (increase in cell number) are distinct yet coupled processes that go hand-in-hand to give rise to an organ, organism, or tumor. Cyclin-dependent kinase(s) is the central regulator of **cell proliferation**. Is there an equivalent regulator for **cell growth**? Recent findings reveal that the **target of rapamycin (TOR)** controls an unusually abundant and diverse set of readouts all of which are important for **cell growth**, suggesting that this conserved kinase is such a central regulator.

Background

In the late 1960s, Lee Hartwell isolated approximately 400 temperature-sensitive yeast mutants which he then characterized for macromolecular synthesis (protein and RNA synthesis), cell division, and cell morphology (Hartwell, 1967). He subsequently chose to focus on the mutants that displayed defects in cell division, the now famous cdc mutants. Importantly, Hartwell made a distinction between **cell proliferation** and **cell** growth. Proliferation is cell division which leads to an increase in cell number. whereas growth is macromolecular synthesis which leads to an increase in cell mass or size. A fortunate consequence of Hartwell's decision to focus on cell division was that we now have a relatively sophisticated understanding of the mechanisms that control the cell cycle. An inadvertent and unfortunate fallout from this decision, however, was that the study of **cell growth**, and in particular the mechanisms that control it, have been largely neglected. To make matters worse and confusing, the distinction between growth and proliferation has also been lost; it is common to find in the literature the terms "growth" and "proliferation" incorrectly used interchangeably. Cell growth and **cell proliferation** are indeed separable and thus distinct processes, as revealed by Hartwell's mutants and others' studies (Hartwell, 1967; Mitchison, 1971; Thomas and Hall, 1997; Neufeld and Edgar, 1998; Conlon and Raff, 1999).

Growth is not simply an accumulation of mass. It is a carefully orchestrated accumulation of mass, occurring only at specific times and places. In the case of Hartwell's unicellular yeast, growth occurs only when nutrients are available and only at a discrete site on the cell surface (hence the name budding yeast). In neurons, growth in response to synaptic activity occurs specifically at the synapse. In metazoans, the problem of growth is compounded by the need to adhere to an overall body plan during development. For example, the different organs of the body need to grow to a specific size to maintain body proportions. To achieve an appropriate cell, organ, or organism size, cell growth must be coordinately controlled with cell proliferation and, in the case of metazoans, cell death. How is cell growth controlled, and how is this control integrated with that of cell proliferation and death?

In recent years, interest in **cell growth** has been rekindled as it has become apparent that elaborate mechanisms actively control **cell growth** in response to favorable conditions. **Cell growth** is not passively controlled simply by the availability of nutrients (building blocks), as was widely thought 30 years ago when Hartwell decided to focus on his cell division mutants, but by signaling pathways that impinge on general cell physiology to elicit balanced macromolecular synthesis. There is growing evidence that the **TOR kinase** plays a central role in controlling these pathways and thus the various readouts that determine **cell growth**.

The TOR Protein

TOR (target of rapamycin) was originally identified genetically by mutations in yeast, **TOR1-1** and **TOR2-1**, that confer resistance to the growth-inhibitory properties of the immunophilin-immunosuppressant complex **FKBP (FK506 binding protein)-rapamycin** (Heitman et al., 1991). The **TOR1** and **TOR2** genes encode the two large

(molecular weight ~280 kDa) and highly homologous (70% identical) **TOR1** and **TOR2** proteins (Kunz et al., 1993; Helliwell et al., 1994). The structurally and functionally conserved mammalian counterpart **mTOR** (also known as FRAP, RAFT, or RAPT) was subsequently discovered biochemically based on its **FKBP-rapamycin** binding properties (Brown et al., 1994; Chiu et al., 1994; Sabatini et al., 1994; Sabers et al., 1995). More recently, single **TOR** homologs have been found encoded in the fly and worm genomes.

The TORs contain a C-terminal region with strong homology to the catalytic domain of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol 4-kinase (Kunz et al., 1993; Keith and Schreiber, 1995) (Figure 1). Studies in yeast, flies, and mammals have revealed a TOR-related family of proteins which includes MEC1, TEL1, RAD3, MEI-41, DNA-PK, ATM, ATR, and TRRAP. All these proteins contain a characteristic C-terminal phosphatidylinositol (PI) kinase homology domain and have thus been termed PI kinase (PIK)-related kinases. The different PIK-related kinases are involved in diverse cellular functions, such as control of cell growth, cell cycle and DNA damage checkpoints, recombination and maintenance of telomere length. Accordingly, dysfunction of the PIK-related kinases results in a wide spectrum of severe diseases, ranging from cancer to immunodeficiency (Keith and Schreiber, 1995). Despite the homology to lipid kinases, none of the PIK-related kinases has been demonstrated to have lipid kinase activity, and both yeast and mammalian TOR, if not all the PIK-related kinases, are Ser/Thr protein kinases.

TOR Readouts

The immunosuppressant and antibiotic **rapamycin** potently inhibits growth in several evolutionarily diverse cells, suggesting that **TOR** has a conserved role in controlling **cell growth**. What are the growth-related readouts controlled by **TOR**? Early findings, as reviewed below, indicated that **TOR** is dedicated to activating translation initiation in response to nutrients. Within the last few years, yeast and mammalian **TOR** has been demonstrated to control several additional readouts, all of which are related to **cell growth**. These readouts include organization of the actin cytoskeleton, membrane traffic and protein degradation, PKC signaling, ribosome biogenesis, transcription, and, although more a consequence than a readout, cancer (Figure 2).

Translation Initiation

mTOR, in response to amino acids and growth factors, controls the mammalian translation machinery via activation of the p70s6k protein kinase and via inhibition of the elF4E inhibitor 4E-BP1 (also known as PHAS-I) (see Thomas and Hall, 1997; Hara et al., 1998) (Figure 3). Activation of p70s6k and resulting phosphorylation of the 40S ribosomal protein S6 ultimately drives translation of 5' TOP (terminal oligopyrimidine tract) mRNAs (Jefferies et al., 1997). These mRNAs constitute a small family of abundant transcripts (up to 20% of cellular mRNA) that encode primarily ribosomal proteins and components of the translational apparatus (Meyuhas et al., 1996).

Actin Organization

In yeast, **TOR2** (but not TOR1) additionally controls cell cycle-dependent polarization of the actin cytoskeleton. This **TOR2**-unique function is rapamycin-insensitive and mediates the polarized growth characteristic of budding yeast cells (Zheng et al., 1995; Schmidt et al., 1996).

Membrane Traffic and Protein Degradation

Delivery of nutrient transporters to the cell surface and uptake of nutrients are essential for **cell growth** and viability. These events are adapted to environmental conditions to optimize nutrient flow and **cell growth**. As part of the above mentioned starvation response occurring upon **TOR** inactivation, **rapamycin** also causes a severe decrease in amino acid import in yeast (Schmidt et al., 1998; Beck et al., 1999). **Autophagy** is the process by which cytoplasmic components are delivered in bulk to the lysosome/vacuole for degradation. Inactivation of **TOR** in yeast or mammalian cells leads to induction of **autophagy**, even in nutrient-rich medium, indicating that **TOR** negatively controls starvation-induced **autophagy** (Blommaart et al., 1995; Noda and Ohsumi, 1998).

Protein Kinase C Signaling

Protein Kinase C (PKC) family members play central regulatory roles in a multitude of cellular processes, including **cell growth** and **proliferation**, apoptosis and survival, and cytoskeletal remodeling. Recently, the phosphorylation of the conserved C-terminal hydrophobic site in classical PKC α and in novel PKC has been shown to be positively controlled by **TOR**.

Ribosome Biogenesis and tRNA Synthesis

Ribosome synthesis, a major consumer of the cell's resources, is the classic growth-related readout. In mammalian cells, the **mTOR-p70s6k** signaling pathway induces synthesis of ribosomal proteins by stimulating translation of **5' TOP mRNAs**, as discussed above. **TOR** also regulates ribosome biogenesis in yeast.

Transcription

Upon nutrient limitation, yeast cells enter a quiescent (stationary) phase characterized not only by a reduction in protein synthesis and many other distinctive phenotypes, but also by an altered transcription pattern. **TOR**, in addition to positively controlling Pollimediated transcription of ribosomal protein genes, also negatively controls Pollimediated transcription specific to starved cells (Barbet et al., 1996; Beck and Hall, 1999; Cardenas et al., 1999; Hardwick et al., 1999).

Cancer

Several lines of evidence have implicated **mTOR** in cancer. First, although an oncogenic version of **mTOR** has yet to be found, many of the proteins linked to **TOR** signaling, such as **PI3K**, **PKB**, and **eIF4E**, have been identified in oncogenic versions or demonstrated to have transforming potential (see Thomas and Hall, 1997). Second, **mTOR** controls translation of **c-Myc**, a transcription factor often deregulated in tumors.

The involvement of **mTOR** signaling in cancer further illustrates the link between **cell growth** and **proliferation**.

TOR Effectors and Signaling Mechanisms

The **TOR** effectors and signaling mechanisms mediating the growth-related readouts described above are known in some, but not all cases. **mTOR** signals to the translation initiation machinery via **p70s6k** and **4E-BP1**, as described above. In yeast, **TOR** signals to the translation machinery via **TAP42**, an essential protein homologous to the murine a4 phosphoprotein.

Growth Control in Metazoans

All the studies reviewed above pertain to growth control in single cells, yeast and cultured mammalian cells. However, control of **cell growth** is also important in determining overall organ and body size in multicellular systems. Animals attain characteristic body size and proportions via the coordinate regulation of **cell growth**, **cell proliferation**, and cell death (Conlon and Raff, 1999).

Recent results from the fruit fly *Drosophila* have begun to answer this question and have, albeit so far only indirectly, implicated **TOR**. Manipulation of members of the **PI3K** signaling pathway in *Drosophila* alters organ and organism size, indicating that this pathway controls cell size (growth) and/or number (proliferation and death) (reviewed in Edgar, 1999 and in Weinkove and Leevers, 2000).

Concluding Remarks

The multitude and diversity of growth-related readouts controlled by **TOR** indicate that this conserved kinase may not be simply part of a single, linear, growth-controlling pathway. Indeed, as suggested by the findings described above, **TOR** may act radially on several different pathways. **TOR** may even be viewed primarily as a "cross-talker" that broadly integrates cell physiology to elicit balanced growth. Thus, **TOR** can be regarded as a central controller of **cell growth**.

Figures

- Figure 1. Architecture of a Generic TOR Protein: This figure shows the domain structure of a typical TOR protein, including HEAT repeats, a FAT domain, the FRB (FKBP-rapamycin binding) domain, a kinase domain, and a FATC domain.
- Figure 2. TOR Controls a Large and Diverse Set of Growth-Related Readouts: This diagram illustrates the central role of TOR, showing it activating translation, transcription, tRNA and ribosome biogenesis, and PKC signaling, while repressing nutrient transporter turnover and autophagy. It also shows a connection to actin organization.
- Figure 3. Model of mTOR Effectors and Signaling Pathways in Mammalian Cells: This figure depicts the signaling cascade where growth factors and amino

- acids activate mTOR, which in turn regulates translation via p70s6k and 4E-BP1. It also shows upstream inputs from the PI3K/PKB pathway.
- Figure 4. Model of TOR Effectors and Signaling Pathways in Yeast: This figure illustrates how nutrients activate TOR in yeast, which then signals through effectors like TAP42 and ROM2 to control translation, transcription, and actin organization.

References

- Alessi_Kozlowski_Weng_et_al_1998_3-Phosphoinositidedependent_protein_kinase_1_(PDK1)_phosphorylates_and_activates_the_ p70_S6_kinase_in_vivo_and_in_vitro
- Andrade_&_Bork_1995_HEAT_repeats_in_the_Huntington's_disease_prote in
- Barbet_Schneider_Helliwell_et_al_1996_TOR_controls_translation_initiatio n_and_early_G1_progression_in_yeast
- Beck_&_Hall_1999_The_TOR_signalling_pathway_controls_nuclear_localiz ation_of_nutrient-regulated_transcription_factors
- Beck_Schmidt_&_Hall_1999_Starvation_induces_vacuolar_targeting_and_ degradation_of_the_tryptophan_permease_in_yeast
- Beretta_Gingras_Svitkin_et_al_1996_Rapamycin_blocks_the_phosphorylation_of_4E-BP1_and_inhibits_cap-dependent_initiation_of_translation
- Bertram_Zeng_Thorson_et_al_1998_The_14-3 3_proteins_positively_regulate_rapamycin-sensitive_signaling
- Blommaart_Luiken_Blommaart_et_al_1995_Phosphorylation_of_ribosomal _protein_S6_is_inhibitory_for_autophagy_in_isolated_rat_hepatocytes
- Bohni_Riesgo-Escovar_Oldham_et_al_1999_Autonomous_control_of_cell_and_organ_siz e by CHICO a Drosophila homolog of vertebrate IRS1-4
- Bosotti_Isacchi_&_Sonnhammer_2000_FAT_a_novel_domain_in_PIKrelated kinases
- Bromberg Wrzeszczynska Devgan et al 1999 Stat3 as an oncogene
- Brown_Albers_Shin_et_al_1994_A_mammalian_protein_targeted_by_G1-arresting_rapamycin-receptor_complex
- Brunet_Bonni_Zigmond_et_al_1999_Akt_promotes_cell_survival_by_phos phorylating_and_inhibiting_a_Forkhead_transcription_factor
- Brunn_Hudson_Sekulic_et_al_1997_Phosphorylation_of_the_translational_repressor_PHAS-I_by_the_mammalian_target_of_rapamycin
- Burnett_Barrow_Cohen_et_al_1998_RAFT1_phosphorylation_of_the_transl ational regulators p70 S6 kinase and 4E-BP1
- Cardenas_Cutler_Lorenz_et_al_1999_The_TOR_signaling_cascade_regulat es_gene_expression_in_response_to_nutrients
- Chen_Zheng_Brown_&_Schreiber_1995_Identification_of_an_11-kDa_FKBP12-rapamycin-binding_domain
- Chen_Peterson_&_Schreiber_1998_Alpha_4_associates_with_protein_pho sphatases_2A_4_and_6

- Chiu_Katz_&_Berlin_1994_RAPT1_a_mammalian_homolog_of_yeast_Tor_i nteracts_with_the_FKBP12/rapamycin_complex
- Choi_Chen_Schreiber_&_Clardy_1996_Structure_of_the_FKBP12rapamycin_complex_interacting_with_the_binding_domain_of_human_FR AP
- Conlon_&_Raff_1999_Size_control_in_animal_development
- Cosentino_Schmelzle_Haghighat_et_al_2000_Eap1p_a_novel_eukaryotic_t ranslation_initiation_factor_4Eassociated protein in Saccharomyces cerevisiae
- Dennis_Fumagalli_&Thomas_1999_Target_of_rapamycin(TOR)_balancing_ the_opposing_forces_of_protein_synthesis_and_degradation
- Di_Como_&_Arndt_1996_Nutrients_via_the_Tor_proteins_stimulate_the_as sociation_of_Tap42_with_type_2A_phosphatases
- Edgar_1999_From_small_flies_come_big_discoveries_about_size_control
- Gingras_Gygi_Raught_et_al_1999_Regulation_of_4E-BP1_phosphorylation_a_novel_two-step_mechanism
- Gorner_Durchschlag_Martinez-Pastor_et_al_1998_Nuclear_localization_of_the_C2H2_zinc_finger_protein_ Msn2p_is_regulated_by_stress_and_protein_kinase_A_activity
- Grewe_Gansauge_Schmid_et_al_1999_Regulation_of_cell_growth_and_cy clin_D1_expression_by_the_constitutively_active_FRAPp70s6K_pathway_in_human_pancreatic_cancer_cells
- Groves_Hanlon_Turowski_et_al_1999_The_structure_of_the_protein_phos phatase_2A_PR65/A_subunit
- Hara_Yonezawa_Kozlowski_et_al_1997_Regulation_of_elF-4E_BP1_phosphorylation_by_mTOR
- Hara_Yonezawa_Weng_et_al_1998_Amino_acid_sufficiency_and_mTOR_re gulate_p70_S6_kinase_and_elF-4E_BP1
- Hardwick_Kuruvilla_Tong_et_al_1999_Rapamycinmodulated_transcription_defines_the_subset_of_nutrientsensitive_signaling_pathways
- Hartwell_1967_Macromolecule_synthesis_in_temperaturesensitive_mutants_of_yeast
- Hashemolhosseini_Nagamine_Morley_et_al_1998_Rapamycin_inhibition_o f_the_G1_to_S_transition
- Heitman_Movva_&_Hall_1991_Targets_for_cell_cycle_arrest_by_the_immu nosuppressant_rapamycin_in_yeast
- Helliwell_Wagner_Kunz_et_al_1994_TOR1_and_TOR2_are_structurally_and_functionally_similar_but_not_identical
- Helliwell_Howald_Barbet_&_Hall_1998a_TOR2_is_part_of_two_related_sig naling_pathways
- Helliwell_Schmidt_Ohya_&_Hall_1998b_The_Rho1_effector_Pkc1_but_not_ Bni1_mediates_signalling_from_Tor2_to_the_actin_cytoskeleton
- Hosoi_Dilling_Liu_et_al_1998_Studies_on_the_mechanism_of_resistance_to_rapamycin_in_human_cancer_cells

- Inui_Sanjo_Maeda_et_al_1998_Ig_receptor_binding_protein_1_(alpha4)_is_ associated_with_a_rapamycin-sensitive_signal_transduction
- Isotani_Hara_Tokunaga_et_al_1999_Immunopurified_mammalian_target_of _rapamycin_phosphorylates_and_activates_p70_S6_kinase_alpha_in_vitro
- Jefferies_Fumagalli_Dennis_et_al_1997_Rapamycin_suppresses_5'TOP_m RNA translation
- Jiang_&_Broach_1999_Tor_proteins_and_protein_phosphatase_2A_recipr ocally_regulate_Tap42
- Johnston_Prober_Edgar_et_al_1999_Drosophila_myc_regulates_cellular_g rowth_during_development
- Keith_&_Schreiber_1995_PIKrelated_kinases_DNA_repair_recombination_and_cell_cycle_checkpoints
- Kops_de_Ruiter_De_Vries-Smits_et_al_1999_Direct_control_of_the_Forkhead_transcription_factor_A FX_by_protein_kinase_B
- Kumar_Pandey_Sabatini_et_al_2000_Functional_interaction_between_RAF T1/FRAP/mTOR and protein kinase Cdelta
- Kunz_Henriquez_Schneider_et_al_1993_Target_of_rapamycin_in_yeast_T OR2
- Leevers_1999_Perspectives_cell_biology_All_creatures_great_and_small
- Leevers_Weinkove_MacDougall_et_al_1996_The_Drosophila_phosphoinos itide_3-kinase_Dp110_promotes_cell_growth
- Leicht_Simm_Bertsch_&_Hoppe_1996_Okadaic_acid_induces_cellular_hypertrophy_in_AKR-2B_fibroblasts
- Luo_Marx_Kiyokawa_et_al_1996_Rapamycin_resistance_tied_to_defective _regulation_of_p27Kip1
- Mahajan_1994_Modulation_of_transcription_of_rRNA_genes_by_rapamycin
- Meyuhas_Avni_&_Shama_1996_Translational_control_of_ribosomal_protein_mRNAs_in_eukaryotes
- Mitchison_1971_The_Biology_of_the_Cell_Cycle
- Mizushima_Noda_Yoshimori_et_al_1998_A_protein_conjugation_system_e ssential for autophagy
- Montagne_Stewart_Stocker_et_al_1999_Drosophila_S6_kinase_a_regulator _of_cell_size
- Murata_Wu_&_Brautigan_1997_B_cell_receptorassociated_protein_alpha4_displays_rapamycin-sensitive_binding
- Nanahoshi_Nishiuma_Tsujishita_et_al_1998_Regulation_of_protein_phosp hatase_2A_catalytic_activity_by_alpha4_protein
- Nave_Ouwens_Withers_et_al_1999_Mammalian_target_of_rapamycin_is_a _direct_target_for_protein_kinase_B
- Neufeld_&_Edgar_1998_Connections_between_growth_and_the_cell_cycle
- Noda_&_Ohsumi_1998_Tor_a_phosphatidylinositol_kinase_homologue_co ntrols autophagy in yeast
- Nourse_Firpo_Flanagan_et_al_1994_Interleukin-2mediated_elimination_of_the_p27Kip1_cyclin-dependent_kinase_inhibitor

- Parekh_Ziegler_Yonezawa_et_al_1999_Mammalian_TOR_controls_one_of_ two_kinase_pathways_acting_upon_nPKCdelta_and_nPKCepsilon
- Parekh_Ziegler_&_Parker_2000_Multiple_pathways_control_protein_kinase _C_phosphorylation
- Penuel_&_Martin_1999_Transformation_by_v-Src_Ras-MAPK_and_PI3K-mTOR_mediate_parallel_pathways
- Peterson_Desai_Hardwick_&_Schreiber_1999_Protein_phosphatase_2A_in teracts with the 70-kDa S6 kinase
- Peterson_Beal_Comb_&Schreiber_2000_FKBP12-Rapamycinassociated_protein(FRAP)_autophosphorylates_at_serine_2481
- Polymenis_&_Schmidt_1997_Coupling_of_cell_division_to_cell_growth_by _translational_control_of_the_G1_cyclin_CLN3_in_yeast
- Powers_&_Walter_1999_Regulation_of_ribosome_biogenesis_by_the_rapa mycin-sensitive_TOR-signaling_pathway
- Prober_&_Edgar_2000_Ras1_promotes_cellular_growth_in_the_Drosophila _wing
- Pullen_&_Thomas_1997_The_modular_phosphorylation_and_activation_of _p70s6k
- Pullen_Dennis_Andjelkovic_et_al_1998_Phosphorylation_and_activation_o f_p70s6k_by_PDK1
- Sabatini_Erdjument-Bromage_Lui_et_al_1994_RAFT1_a_mammalian_protein_that_binds_to_FK BP12
- Sabatini_Barrow_Blackshaw_et_al_1999_Interaction_of_RAFT1_with_geph yrin_required_for_rapamycin-sensitive_signaling
- Sabers_Martin_Brunn_et_al_1995_Isolation_of_a_protein_target_of_the_F KBP12-rapamycin_complex
- Schmidt 1999 The role of c-myc in cellular growth control
- Schmidt_Kunz_&_Hall_1996_TOR2_is_required_for_organization_of_the_a ctin_cytoskeleton_in_yeast
- Schmidt_Bickle_Beck_&_Hall_1997_The_yeast_phosphatidylinositol_kinas e_homolog_TOR2_activates_RHO1_and_RHO2
- Schmidt_Beck_Koller_et_al_1998_The_TOR_nutrient_signalling_pathway_ phosphorylates_NPR1
- Scott_Brunn_Kohn_et_al_1998_Evidence_of_insulinstimulated_phosphorylation_and_activation_of_the_mammalian_target_of_ rapamycin
- Sonenberg_&_Gingras_1998_The_mRNA_5'_cap-binding_protein_elF4E_and_control_of_cell_growth
- Stan_McLaughlin_Cafferkey_et_al_1994_Interaction_between_FKBP12-rapamycin_and_TOR
- Thomas_&_Hall_1997_TOR_signalling_and_control_of_cell_growth
- Vanhaesebroeck & Alessi 2000 The PI3K-PDK1 connection
- Verdu_Buratovich_Wilder_&_Birnbaum_1999_Cellautonomous_regulation_of_cell_and_organ_growth_in_Drosophila_by_Akt /PKB

- Warner_1999_The_economics_of_ribosome_biosynthesis_in_yeast
- Weinkove & Leevers 2000 The genetic control of organ growth
- Weinkove_Neufeld_Twardzik_et_al_1999_Regulation_of_imaginal_disc_cell _size_cell_number_and_organ_size
- Weng_Kozlowski_Belham_et_al_1998_Regulation_of_the_p70_S6_kinase_ by_phosphorylation_in_vivo
- West_Stoneley_&_Willis_1998_Translational_induction_of_the_cmyc oncogene
- White_1997_Regulation_of_RNA_polymerases_I_and_III_by_the_retinoblas toma_protein
- Yokogami_Wakisaka_Avruch_&_Reeves_2000_Serine_phosphorylation_an d_maximal_activation_of_STAT3
- Zaffran_Chartier_Gallant_et_al_1998_A_Drosophila_RNA_helicase_gene_pi tchoune
- Zaragoza_Ghavidel_Heitman_&_Schultz_1998_Rapamycin_induces_the_G O_program_of_transcriptional_repression_in_yeast
- Zheng_Florentino_Chen_et_al_1995_TOR_kinase_domains_are_required_f or two distinct functions
- Ziegler_Parekh_Le_Good_et_al_1999_Rapamycinsensitive_phosphorylation_of_PKC