

## TREE DISTRIBUTION APPROXIMATORS

## Why

We want to approximate a given distribution with one which factors according to a tree.

## Definition

Given  $q: A \to [0,1]$ , we want to find a distribution p on A and tree T on  $\{1, \ldots, n\}$  to

minimize 
$$d_{kl}(q,p)$$

subject to p factors according to T.

where  $d_{kl}$  is the relative entropy as a criterion of approximation. We call such a distribution a tree distribution approximator (or tree approximator) and we call the tree the approximator tree.

## Result

**Prop. 1.** Let  $A_1, \ldots, A_n$  be finite non-empty sets. Define  $A = \prod_{i=1}^n A_i$ . Let  $q: A \to [0,1]$  a distribution and T a tree on  $\{1,\ldots,n\}$ . The distribution  $p_T^*: A \to [0,1]$  defined by

$$p_T^* = q_1 \prod_{i \neq 1} q_{i|\text{pa } i}$$

minimizes the relative entropy with q among all distributions on A which factor according to T.

*Proof.* Let  $p: A \to [0,1]$  be a distribution which factors according to T. First, express

$$p = p_1 \prod_{i \neq i} p_{i|\text{pa } i}$$

where pa i is the parent of vertex i in T rooted at vertex 1 (i = 2, ..., n).

Second, recall that the relative entropy of q with p is H(q, p) - H(q). Since H(q) does not depend on p, p is a minimizer of the relative of q with p if and only if p is a minimizer of H(q, p). Third, express

$$\begin{split} H(q,p) &= -\sum_{a \in A} q(a) \log p(a) \\ &= -\sum_{a \in A} q(a) \left( \log p_1(a_1) + \sum_{i \neq 1} \log p_{i|\text{pa}\,i}(a_i, a_{\text{pa}\,i}) \right) \\ &= H(q_1, p_1) + \sum_{i \neq 1} \sum_{\substack{a_{\text{pa}\,i} \in A_{\text{pa}\,i} \\ i \neq 1}} q_{\text{pa}\,i}(a_{\text{pa}\,i}) H\left(q_{i|\text{pa}\,i}(\cdot, a_{\text{pa}\,i}), p_{i|\text{pa}\,i}(\cdot, a_{\text{pa}\,i})\right) \end{split}$$

which separates across  $p_1$  an  $p_{i|\text{pa}\,i}(\cdot,a_{\text{pa}\,i})$  for  $i=2,\ldots,n$  and  $a_{pa_i}\in A_{\text{pa}\,i}$ .

Fourth, recall  $H(\cdot,\cdot) \geq 0$  and is zero on repeated pairs. By this, we mean, for example,  $H(p_1,p_1)=0$ . So  $p_1=q_1$  and  $p_{i|pa\,i}=q_{i|pa\,i}$  are solutions.

Proposition 1 states the form of an optimal approximator given a tree. A natural next question is to select the tree.

