Hai Wan<sup>1</sup>, Pingjia Liang<sup>1</sup>, Jianfeng Du<sup>2,3</sup>, Weilin Luo<sup>1</sup>, Rongzhen Ye<sup>1</sup>, Bo Peng<sup>1</sup>

<sup>1</sup>School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P.R.China <sup>2</sup>Guangdong University of Foreign Studies, Guangzhou 510006, P.R.China <sup>3</sup>Bigmath Technology, Shenzhen 518063, P.R.China

[□ ▷ ◆□ ▷ ◆돌 ▷ ◆돌 ▷ · ○ 오 ○

#### Content

- Motivation
- 2 Approach: TLTLf
- Preliminary Results
- 4 Conclusion and Future Work

Wan et al. (SYSU) TI.TI.f February 2024 Motivation

• • • • • • •

### Motivation

- 2 Approach: TLTLf
- Preliminary Results
- 4 Conclusion and Future Work



3/33

Wan et al. (SYSU) TLTLf February 2024

### Definition of Problem

Motivation
○●○○○
Background

Learning formulae to characterize the high-level behavior of a system from observation traces.

- focus on the *linear temporal logic on finite traces* (LTL $_f$ ) formula
- arbitrary form
- noisy data



Figure 1: Learning LTL<sub>f</sub> formulae from imperfect data.



Wan et al. (SYSU) TLTLf February 2024 3/

Motivation

Significance and Challenge

#### Wide applications:

- verification of system properties [3]
- 2 behavior classification [1]
- 3 explainable models<sup>[4]</sup>



Wan et al. (SYSU) TLTLf February 2024 4/3

Motivation

## Significance and Challenge

#### Wide applications:

- verification of system properties [3]
- 2 behavior classification [1]
- 3 explainable models [4]

#### Challenging task:

- 1 huge search space of the target formula in arbitrary form
- 2 wrong search bias resulting from noisy data



Wan et al. (SYSU) TLTLf February 2024 4/3

Motivation ○○○●○
Related Work

State-of-the-art (SOTA) approach to learn  $LTL_f$  formulae:

- SAT-based [1,6]
- based on bayesian inference [4]

They either assume a noise-free environment or restrict the hypothesis space by  $LTL_f$  templates.



Wan et al. (SYSU) TLTLf February 2024 5

Motivation ○○○●○
Related Work

State-of-the-art (SOTA) approach to learn  $LTL_f$  formulae:

- SAT-based [1,6]
- based on bayesian inference [4]

They either assume a noise-free environment or restrict the hypothesis space by  $LTL_f$  templates.

Gaglione et al. (2021)[2]:

MaxSAT-based approach

The scalability of them is limited in calling the MaxSAT solver.



Wan et al. (SYSU) TLTLf February 2024 5/

Motivation

○○○○

Related Work

State-of-the-art (SOTA) approach to learn LTL<sub>f</sub> formulae: Luo et al.  $(2022)^{[5]}$ :

■ GNN-based approach

Significant performance gap between the neural network and the interpreted formula.



Wan et al. (SYSU) TLTLf February 2024 6

Motivation

○○○○

Related Work

State-of-the-art (SOTA) approach to learn LTL<sub>f</sub> formulae: Luo et al.  $(2022)^{[5]}$ :

■ GNN-based approach

Significant performance gap between the neural network and the interpreted formula.

Developing new approaches based on  $neural\ networks$  to learn arbitrary  $LTL_f$  formulae from imperfect data.

- Motivation
- 2 Approach: TLTLf
- Preliminary Results
- Conclusion and Future Work



7/33

Wan et al. (SYSU) TI.TI.f February 2024

#### **Definition 1 (The parameter set of TLTLf)**

Let  $\mathbb P$  be a set of atomic propositions and  $L \in \mathbb N$ . The parameter set of TLTLf of size L is defined as  $\Gamma = \{(\Gamma_{\mathrm{right}})_{i,j} \in \mathbb R | 1 \le i \le L-2, i+2 \le j \le L\} \cup \{(\Gamma_{\mathrm{atom}})_{i,j} \in \mathbb R | 1 \le i \le L, 1 \le j \le |\mathbb P|\} \cup \{(\Gamma_{\neg})_i, (\Gamma_{\land})_i, (\Gamma_{\lor})_i, (\Gamma_{\lor})_i, (\Gamma_{\mathrm{none}})_i \in \mathbb R | 1 \le i \le L\}$ . For brevity, we also reuse  $\Gamma$  to denote an assignment of the parameter set  $\Gamma$  of TLTLf.



Wan et al. (SYSU) TLTLf February 2024 7

### LTL<sub>f</sub> Encoding of TLTLf

#### Definition 2 (LTL $_f$ encoding of TLTL $_f$ )

An LTL $_f$  encoding of TLTLf of size L is defined as  $\theta = \{(\theta_{\text{right}})_{i,j} \in \mathbb{R}^{(0,1)} | 1 \le i \le L-2, i+2 \le j \le L\} \cup \{(\theta_{\text{atom}})_{i,j} \in \mathbb{R}^{(0,1)} | 1 \le i \le L, 1 \le L\}$  $j \leq |\mathbb{P}| \cup \{(\theta_{\neg})_i, (\theta_{\land})_i, (\theta_{\lor})_i, (\theta_{\lor})_i, (\theta_{\lor})_i, (\theta_{\lor})_i \in \mathbb{R}^{(0,1)} | 1 \leq i \leq L \}$ , where  $\mathbb{R}^{(0,1)}$  denotes the real value range from 0 to 1.

Wan et al. (SYSU) TI.TI.f February 2024

### Example 1

Let  $\mathbb{P} = \{p_1, p_2\}$  and  $\theta$  be an LTL<sub>f</sub> encoding of TLTLf of size 3 where  $(\theta_{\neg})_1 = 0.8, (\theta_{\mathsf{X}})_1 = 0.3, (\theta_{\mathrm{atom}})_{2,1} = (\theta_{\mathrm{none}})_3 = 1$  and other parameters are assigned 0. The LTL f formula that  $\theta$  represents is the most likely to be  $\neg p_1$  while it may also be  $Xp_1$  since  $(\theta_{\rm X})_1 = 0.3.$ 



Wan et al. (SYSU) TI.TI.f February 2024

### $LTL_f$ Encoding of TLTLf

In fact, an arbitrary parameter assignment of TLTLf can be converted to an  $LTL_f$  encoding of TLTLf of the same size, as shown in the following equation.

$$(\theta_{\text{right}})_{i,j} = \frac{e^{(\Gamma_{\text{right}})_{i,j}}}{(\eta_{\text{right}})_i}, (\theta_{\text{atom}})_{i,j} = \frac{e^{(\Gamma_{\text{atom}})_{i,j}}}{(\eta_{\text{op}})_i}, (\theta_{\neg})_i = \frac{e^{(\Gamma_{\neg})_i}}{(\eta_{\text{op}})_i}, (\theta_{\wedge})_i = \frac{e^{(\Gamma_{\wedge})_i}}{(\eta_{\text{op}})_i}, (\theta_{\mathsf{X}})_i = \frac{e^{(\Gamma_{\mathsf{X}})_i}}{(\eta_{\text{op}})_i}, (\theta_{\mathsf{U}})_i = \frac{e^{(\Gamma_{\mathsf{U}})_i}}{(\eta_{\text{op}})_i}, (\theta_{\text{none}})_i = \frac{e^{(\Gamma_{\text{none}})_i}}{(\eta_{\text{op}})_i},$$

$$(1)$$

where

$$(\eta_{\text{right}})_{i} = \sum_{j=i+2}^{L} e^{(\Gamma_{\text{right}})_{i,j}} + \sum_{j=1}^{|\mathbb{P}|} e^{(\Gamma_{\text{atom}})_{i,j}} + e^{(\Gamma_{\text{none}})_{i}} + e^{(\Gamma_{\neg})_{i}} + e^{(\Gamma_{x})_{i}},$$

$$(\eta_{\text{op}})_{i} = \sum_{j=1}^{|\mathbb{P}|} e^{(\Gamma_{\text{atom}})_{i,j}} + e^{(\Gamma_{\text{none}})_{i}} + e^{(\Gamma_{\neg})_{i}} + e^{(\Gamma_{\wedge})_{i}} + e^{(\Gamma_{\vee})_{i}}.$$

$$(2)$$

Wan et al. (SYSU) TLTLf February 2024 10/33

Motivation

#### Inference of TLTLf

#### **Definition 3**

Let  $\mathbb{P}$  be a set of atomic propositions and  $\Gamma$  a parameter assignment of TLTLf of size  $L \in \mathbb{N}$ .  $\theta$  is constructed from  $\Gamma$  by Equation (1). Given a trace  $\pi = s_0, s_1, ..., s_n$  over  $\mathbb{P}$ , TLTLf computes satisfaction vectors  $x_i \in \mathbb{R}^L$  (where 0 < i < n) defined as follows:

$$(x_{i})_{j} = \sigma(\sum_{k=1}^{|\mathbb{P}|} (\theta_{\text{atom}})_{j,k} I(p_{k} \in s_{i}) + (\theta_{\mathsf{X}})_{j} (x_{i+1})_{j+1} + (\theta_{\neg})_{j} \sigma(1 - (x_{i})_{j+1}) + (\theta_{\wedge})_{j} \sigma((x_{i})_{j+1} + (r_{i})_{j} - 1) + (\theta_{\mathsf{U}})_{j} ((r_{i})_{j} + \sigma((x_{i})_{j+1} + (x_{i+1})_{j} - 1))),$$
(3)

where

$$(r_i)_j = \sum_{k=L}^{j+2} (\theta_{\text{right}})_{j,k}(x_i)_k,$$

$$\sigma(x) = \min(1, \max(0, x)),$$

$$(4)$$

and  $(x_i)_{L+1} = 0$ ,  $(x_{n+1})_k = 0$  for all  $1 \le k \le L+1$ , and I(C) returns 1 if C is satisfied or 0 otherwise. By  $\mathrm{ESat}(\theta,\pi)$  we denote the satisfaction relation between  $\theta$  and  $\pi$ . Finally TLTLf outputs  $\mathrm{ESat}(\theta,\pi)$  as  $(x_0)_1$ .

February 2024 Wan et al. (SYSU) TI.TI.f

#### Example 2

Let  $\pi = \{p_1, p_2\}, \{p_2\}$  and  $\theta$  be the LTL f encoding of TLTLf given in Example 1. Then the satisfaction vector is  $x_0 = [0, 1, 0], x_1 = [0.8, 0, 0]$ . The inference output is  $ESat(\theta, \pi) = (x_0)_1 = 0.$ 



Wan et al. (SYSU) February 2024 TLTLf

Motivation

### The Faithful Subclass of $LTL_f$ Encoding

#### **Definition 4 (Faithful LTL**<sub>f</sub> encoding)

Let  $\theta$  be an LTL<sub>f</sub> encoding of TLTLf of size L.  $\theta$  is said to be *faithful* if it satisfies the following conditions:

- $\forall \gamma \in \theta : \gamma = 0 \lor \gamma = 1.$
- 2  $\forall i \in [1, L] : (\theta_{\text{none}})_i + \sum_{j=1}^{|\mathbb{P}|} (\theta_{\text{atom}})_{i,j} + (\theta_{\neg})_i + (\theta_{\wedge})_i + (\theta_{\mathsf{X}})_i + (\theta_{\mathsf{U}})_i = 1.$
- $\sum_{j=1}^{|\mathbb{P}|} (\theta_{\text{atom}})_{L,j} + (\theta_{\text{none}})_L = 1 \wedge \forall i \in [1, L-1] :$   $\sum_{j=i+2}^{L} (\theta_{\text{right}})_{i,j} + (\theta_{\text{none}})_i + \sum_{j=1}^{|\mathbb{P}|} (\theta_{\text{atom}})_{i,j} + (\theta_{\neg})_i + (\theta_{\mathsf{X}})_i = 1.$
- 4  $(\theta_{\text{none}})_1 = 0 \land \forall i \in [2, L]:$  $\sum_{j=1}^{i-2} (\theta_{\text{right}})_{j,i} + (\theta_{\neg})_{i-1} + (\theta_{\land})_{i-1} + (\theta_{X})_{i-1} + (\theta_{U})_{i-1} + (\theta_{\text{none}})_i = 1.$
- 5  $\forall i \in [1, L-1] : (\theta_{\text{none}})_{i+1} \ge (\theta_{\text{none}})_i$ .
- $\forall i \in [1, L), \forall j \in (i, L], \forall t \in (i, j), \forall t' \in (j, L] : (\theta_{\text{right}})_{i, j} + (\theta_{\text{right}})_{t, t'} \leq 1.$

Wan et al. (SYSU) TLTLf February 2024

### The Faithful Subclass of $LTL_f$ Encoding

#### Example 3

Consider the LTL<sub>f</sub> encoding  $\theta$  of TLTLf given in Example 1 again. A faithful LTL<sub>f</sub> encoding closed to  $\theta$  is  $\hat{\theta}$ , where  $(\hat{\theta}_{\neg})_1 = 1, (\hat{\theta}_{\mathbf{X}})_1 = 0, (\hat{\theta}_{\mathrm{atom}})_{2,1} = 1, (\hat{\theta}_{\mathrm{none}})_3 = 1$  and other parameters are assigned 0. The LTL<sub>f</sub> formula that  $\hat{\theta}$  represents is unique, which is  $\neg p_1$ .



Wan et al. (SYSU) TLTLf February 2024 14/3

### Faithful LTL<sub>f</sub> Encoding vs LTL<sub>f</sub> Formula

For an arbitrary LTL<sub>f</sub> formula  $\phi$ , we introduce a function to encode  $\phi$  into a parameter assignment of TLTLf of an equal or greater size, formalized in the following Definition 5.

#### **Definition 5**

Let  $\phi$  be an LTL<sub>f</sub> formula,  $T(\phi)$  its syntax tree, and pretravel $(T(\phi)) = v_1, v_2, \dots, v_L$ . The function for encoding  $\phi$  into a parameter assignment of TLTLf of size L' > L, denoted by  $\theta_{\phi(L')}$ , is defined as follows:

- $\blacksquare \ \forall 1 \leq i \leq L : (\theta_{\text{right}})_{i,j} = 1 \text{ if } v_i \text{ is the right child of } v_i \text{ and } (\theta_{\text{right}})_{i,j} = 0 \text{ otherwise.}$
- $\blacksquare \ \forall 1 \leq i \leq L : (\theta_{atom})_{i,j} = 1 \text{ if } v_i = v_{p_i} \text{ and } (\theta_{atom})_{i,j} = 0 \text{ otherwise.}$
- $\blacksquare \forall 1 \leq i \leq L : (\theta_{\beta})_i = 1 \text{ if } v_i = v_{\beta} \text{ and } (\theta_{\beta})_i = 0 \text{ otherwise, where } \beta \in \{\neg, \land, \mathsf{X}, \mathsf{U}\}.$
- $\blacksquare \forall L < i \le L' : (\theta_{\text{none}})_i = 1, (\theta_{\text{right}})_{i,i} = 0, (\theta_{\text{atom}})_{i,j} = 0, (\theta_{\beta})_i = 0, \text{ where}$  $\beta \in \{\neg, \wedge, X, U\}.$

4 D > 4 D > 4 D > 4 D >

Wan et al. (SYSU) TI.TI.f February 2024 15/33

### Faithful LTL<sub>f</sub> Encoding vs LTL<sub>f</sub> Formula

Approach: TLTLf

#### Example 4

Let  $\phi$  be  $p_1 \mathsf{UX} p_2$ . We have  $\operatorname{pretravel}(T(\phi)) = v_{\mathsf{U}}, v_{p_1}, v_{\mathsf{X}}, v_{p_2}$ . Then in the encoding  $\theta_{\phi(5)}$ , we have  $(\theta_{\rm U})_1 = 1$ ,  $(\theta_{\rm atom})_{2,1} = 1$ ,  $(\theta_{\rm X})_3 = 1$ ,  $(\theta_{\rm atom})_{4,2} = 1$ ,  $(\theta_{\rm right})_{1,3} = 1$ ,  $(\theta_{\rm none})_5 = 1$ , and other parameters are assigned 0.

#### Lemma 1

Let  $\phi$  be an LTL<sub>f</sub> formula, then  $\theta_{\phi(L')}$  is a faithful LTL<sub>f</sub> encoding of TLTLf of size L'.



16 / 33 Wan et al. (SYSU) TI.TI.f February 2024

The following Definition 6 shows how to decode a faithful LTL<sub>f</sub> encoding to a symbol sequence.

#### **Definition 6**

LTL & Encoding and Inference

Let  $\theta$  be a faithful LTL<sub>f</sub> encoding of TLTLf of size L. The decoding function  $decode(\theta) = o_1 \dots o_L$  is defined as follows:

$$o_{i} = \begin{cases} p_{j}, & (\theta_{\text{atom}})_{i,j} = 1, \\ \beta, & (\theta_{\beta})_{i} = 1, \beta \in \{\neg, \land, \mathsf{X}, \mathsf{U}\}, \\ \epsilon, & (\theta_{\text{none}})_{i} = 1. \end{cases}$$

$$(5)$$

4 □ > 4 □ > 4 □ > 4 □ > ...

February 2024 Wan et al. (SYSU) TI.TI.f

### Faithful LTL<sub>f</sub> Encoding vs LTL<sub>f</sub> Formula

#### Example 5

Consider  $\phi$  and  $\theta_{\phi(5)}$  in Example 4 again. Since

$$(\theta_{\rm U})_1=1, (\theta_{\rm atom})_{2,1}=1, (\theta_{\rm X})_3=1, (\theta_{\rm atom})_{4,2}=1$$
 and  $(\theta_{\rm none})_5=1$ , We have  ${
m decode}(\theta_{\phi(5)})={
m U}p_1{
m X}p_2$ , which is exactly the prefix form of  $\phi$ .



18/33 Wan et al. (SYSU) TI.TI.f February 2024

### Faithful LTL $_f$ Encoding vs LTL $_f$ Formula

The following Theorem 2 shows that the decoding method always results in the prefix form of an  $LTL_f$  formula.

#### Theorem 2

For every faithful LTL<sub>f</sub> encoding  $\theta$  of TLTLf,  $\operatorname{decode}(\theta)$  is the prefix form of a certain LTL<sub>f</sub> formula.



Wan et al. (SYSU) TLTLf February 2024 19/33

The decoding method is both subjective (Theorem 3) and injective (Theorem 4), which shows that faithful  $LTL_f$  encodings and the prefix forms of  $LTL_f$  formulae have one-to-one correspondence

#### Theorem 3

LTL & Encoding and Inference

For any LTL<sub>f</sub> formula  $\phi$  with  $\operatorname{pretravel}(T(\phi)) = v_1, v_2, ..., v_L$  and any  $L' \geq L$ , there exists a faithful LTL<sub>f</sub> encoding  $\theta$  of size L' such that  $\operatorname{decode}(\theta) = \operatorname{pre}(\phi)$ .

#### Theorem 4

Given two different faithful LTL<sub>f</sub> encodings of the same size, namely  $\theta_1$  and  $\theta_2$ ,  $\operatorname{decode}(\theta_1) \neq \operatorname{decode}(\theta_2)$ .



Wan et al. (SYSU) TLTLf February 2024 20 / 33

### Framework of TLTLf

For learning LTL $_f$  formulae, we first build TLTLf parameterized by an LTL $_f$  encoding and then train it to distinguish positive traces from negative traces. Afterwards, we give an algorithm to extract the formula from TLTL $_f$ 

Wan et al. (SYSU) TLTLf February 2024 21

### Classification Objective

For each trace  $\pi$  in the set of positive traces  $\Pi^+$  and the set of negative traces  $\Pi^-$ , we use the LTL  $_f$  encoding  $\theta$  to infer the satisfaction relation. The classification objective is:

$$\zeta_1 = \sum_{\pi \in \Pi} (\operatorname{ESat}(\theta, \pi) - \mathsf{lab}(\pi))^2, \tag{6}$$

where  $\forall \pi \in \Pi^+$ ,  $lab(\pi) = 1$  and  $\forall \pi \in \Pi^-$ ,  $lab(\pi) = 0$ .



22/33 Wan et al. (SYSU) TI.TI.f February 2024

23 / 33

### Regularization Terms

The regularization terms are formulated as:

Approach: TLTLf

$$\zeta_{2} = \sum_{i=2}^{L} (\sum_{j=1}^{i-2} (\theta_{\text{right}})_{j,i} + (\theta_{\neg})_{i-1} + (\theta_{\wedge})_{i-1} 
+ (\theta_{\mathsf{X}})_{i-1} + (\theta_{\mathsf{U}})_{i-1} + (\theta_{\text{none}})_{i} - 1)^{2}, 
\zeta_{3} = \sum_{i=1}^{L-1} \text{Relu}((\theta_{\text{none}})_{i} - (\theta_{\text{none}})_{i+1}), 
\zeta_{4} = \sum_{i=1}^{L-2} \sum_{j=i+2}^{L} \sum_{t=i+1}^{j-1} \sum_{t'=j+1}^{L} \text{Relu}((\theta_{\text{right}})_{i,j} + (\theta_{\text{right}})_{t,t'} - 1).$$
(7)

They are obtained from the corresponding conditions by converting constraints like x=y to  $(x-y)^2$  and x>y to Relu(y-x).



Wan et al. (SYSU) TI.TI.f February 2024

### Objective

The final objective to be minimized is:

$$\zeta = \zeta_1 + \alpha_1 \zeta_2 + \alpha_2 \zeta_3 + \alpha_3 \zeta_4, \tag{8}$$

where  $\alpha_1, \alpha_2, \alpha_3$  are coefficients for regularization terms.



Wan et al. (SYSU) TLTLf February 2024 24

For any  $1 \le i \le L$ , interpret a sub-formula from  $\theta$ .

- First recommend a set of candidate formulae based on the product of relevant parameters.
- Then select the best formula based on a expensive metric, i.e., the discrimination effect for the traces.

Wan et al. (SYSU) February 2024 25 / 33 TLTLf

- Motivation
- 2 Approach: TLTLf
- Preliminary Results
- 4 Conclusion and Future Work

26/33

### Setting

#### Benchmarks:

- $\bullet$  5 domains for  $k_f \in \{3, 6, 9, 12, 15\}$
- For each domain, 50 datasets
- For each dataset,
  - $\blacksquare$  randomly target formulahas  $k_f$  sub-formulae of non-atomic propositions
  - $\blacksquare$  randomly 250/250 positive/negative traces as the training set
  - $\blacksquare$  randomly 500/500 positive/negative traces as the test set

Wan et al. (SYSU) February 2024 26 / 33 TLTLf

#### Benchmarks:

- $\bullet$  5 domains for  $k_f \in \{3, 6, 9, 12, 15\}$
- For each domain, 50 datasets
- For each dataset.
  - $\blacksquare$  randomly target formulahas  $k_f$  sub-formulae of non-atomic propositions
  - $\blacksquare$  randomly 250/250 positive/negative traces as the training set
  - $\blacksquare$  randomly 500/500 positive/negative traces as the test set

#### Benchmarks (imperfect):

- randomly chose some traces from the benchmarks and give them wrong labels
- imperfect rate



26 / 33 Wan et al. (SYSU) TI.TI.f February 2024

## Setting

#### Competitors:

Table 1: Details about SOTA approaches.

| approach                | imperfect data | arbitrary formulae |
|-------------------------|----------------|--------------------|
| C.&M. [1]               | ×              | ✓                  |
| BayesLTL <sup>[4]</sup> | ✓              | ×                  |
| MaxSAT-DT[2]            | ✓              | ✓                  |
| GLTLf [5]               | ✓              | ✓                  |
| TLTLf (Ours)            | ✓              | ✓                  |

Wan et al. (SYSU) February 2024 27 / 33 TLTLf

### Setting

Setting

#### Competitors:

Table 1: Details about SOTA approaches.

| approach                 | imperfect data | arbitrary formulae |
|--------------------------|----------------|--------------------|
| C.&M. [1]                | ×              | ✓                  |
| BayesLTL <sup>[4]</sup>  | ✓              | ×                  |
| MaxSAT-DT <sup>[2]</sup> | ✓              | ✓                  |
| GLTLf [5]                | ✓              | ✓                  |
| TLTLf (Ours)             | ✓              | ✓                  |

#### Tasks:

 $\blacksquare$  All approaches first learn an LTL $_f$  formula from the training set and then are compared by evaluating the classification effect of the learned formulae on the test set.

Wan et al. (SYSU) TLTLf February 2024 27

### Comparisons across datasets

Result Analysis

Table 2: Experimental results for L=10 across different approaches. Acc stands for the average accuracy (%) for successful cases.  $F_1$  stands for the average  $F_1$  score (%) for successful cases.  $F_2$  stands for the number of cases out of total 50 cases that are successfully solved within the time limit.

|           | $k_f = 3$ |                    |            | $k_f = 6$ |                    | $k_f = 9$  |        | $k_f = 12$ |            |        | $k_f = 15$ |            |        |           |            |
|-----------|-----------|--------------------|------------|-----------|--------------------|------------|--------|------------|------------|--------|------------|------------|--------|-----------|------------|
|           | Acc(%)    | F <sub>1</sub> (%) | $N_{ m s}$ | Acc(%)    | F <sub>1</sub> (%) | $N_{ m s}$ | Acc(%) | $F_1(\%)$  | $N_{ m s}$ | Acc(%) | $F_1(\%)$  | $N_{ m s}$ | Acc(%) | $F_1(\%)$ | $N_{ m s}$ |
| MaxSAT-DT | 100       | 100                | 49         | 100       | 100                | 19         | 100    | 100        | 8          | 100    | 100        | 5          | 100    | 100       | 5          |
| C.&M.     | 99.77     | 99.77              | 50         | 97.93     | 96.79              | 47         | 97.14  | 95.55      | 35         | 95.10  | 91.91      | 20         | 93.74  | 87.49     | 8          |
| BayesLTL  | 85.19     | 85.96              | 50         | 77.94     | 76.78              | 50         | 74.08  | 75.73      | 50         | 72.77  | 73.47      | 50         | 74.85  | 77.32     | 50         |
| GLTLf     | 94.34     | 94.27              | 50         | 90.09     | 90.37              | 50         | 84.02  | 83.29      | 50         | 83.08  | 83.21      | 50         | 83.07  | 83.50     | 50         |
| TLTLf     | 98.00     | 97.92              | 50         | 95.38     | 95.47              | 50         | 91.90  | 91.33      | 50         | 89.59  | 88.98      | 50         | 90.40  | 90.22     | 50         |

- TLTLf significantly surpasses BayesLTL and GLTLf.
- Although MaxSAT-DT and C.&M. are in the lead, they cannot solve long formulae.

Wan et al. (SYSU) TLTLf February 2024 28/33

### Comparisons on Imperfect Data

Result Analysis

- TLTLf performs better then other approaches on imperfect data.
- TLTLf can handle long formulae with higher performance compared to other approaches.



Figure 2: Accuracy achieved by different imperfect rates. The results are averaged by 5 datasets with  $k_f \in \{3,6,9,12,15\}.$ 

Wan et al. (SYSU) TLTLf February 2024 29/33

### Comparison on the Performance of Interpreting.

Result Analysis

- Both TLTLf and GLTLf involve two parts network training and interpreting, so we compare the performance gap between the two parts for TLTLf with that for GLTLf.
- TLTLf has a smaller performance gap than GLTLf.
- This result suggests that the neural model underpinned TLTLf is more interpretable.



Figure 3: Network accuracy and the accuracy of formula interpreted from the network.

Wan et al. (SYSU) TLTLf February 2024 30 / 33

- Motivation
- Approach: TLTLf
- Preliminary Results
- 4 Conclusion and Future Work



### Conclusion and Future Work

#### Conclusion:

- We have proposed TLTLf parameterized by the  $LTL_f$  encoding to simulate  $LTL_f$  inference. TLTLf bridges the gap between the concise tree-structured syntax and the complex  $LTL_f$  semantics.
- 2 We have identified the faithful  $LTL_f$  encoding, which has a one-to-one correspondence to the prefix form of  $LTL_f$  formulae.
- Experiment results demonstrate that TLTLf achieves the SOTA performance and yields  $LTL_f$  formulae more consistent with the learnt neural network than existing approaches do.

#### Future work:

I Future work will extend our approach to LTL or other formal languages.



Wan et al. (SYSU) TLTLf February 2024 31 /

#### References I

- [1] Camacho, A.; and McIlraith, S. A. 2019. Learning Interpretable Models Expressed in Linear Temporal Logic. In *ICAPS*, 621–630.
- [2] Gaglione, J.; Neider, D.; Roy, R.; Topcu, U.; and Xu, Z. 2021. Learning Linear Temporal Properties from Noisy Data: A MaxSAT-Based Approach. In ATVA, volume 12971, 74–90.
- [3] Kasenberg, D.; and Scheutz, M. 2017. Interpretable apprenticeship learning with temporal logic specifications. In CDC, 4914–4921.
- [4] Kim, J.; Muise, C.; Shah, A.; Agarwal, S.; and Shah, J. 2019. Bayesian Inference of Linear Temporal Logic Specifications for Contrastive Explanations. In *IJCAI*, 5591–5598.
- [5] Luo, W.; Liang, P.; Du, J.; Wan, H.; Peng, B.; and Zhang, D. 2022. Bridging LTLf Inference to GNN Inference for Learning LTLf Formulae. In AAAI. 9849–9857.
- [6] Neider, D.; and Gayran, I. 2018. Learning Linear Temporal Properties. In FMCAD, 1-10.

References

Wan et al. (SYSU) TLTLf February 2024 3:

# Thank you for your listening!



Wan et al. (SYSU) TLTLf February 2024