SCHOLA CUROPACA

EUROPEAN BACCALAUREATE 2013

CHEMISTRY

DATE: 11 June 2013

DURATION OF THE EXAM:

3 hours (180 minutes)

PERMITTED EQUIPMENT:

Calculator used in mathematics, in 'Press-to-Test' mode or

Calculator (non-programmable and non-graphing)

INSTRUCTIONS:

- Answer two A questions and two B questions.
- Indicate which four questions you have answered by putting crosses in the appropriate place on the sheet supplied.
- Use a separate answer sheet for each of the four main questions.

1/17 EN

	Question A1				
	Page 1/3	Marks			
a)	Ascorbic acid, known as vitamin C, is present in many fruits and vegetables.				
	A prolonged deficiency in vitamin C can lead to scurvy, a disease which particularly leads to loss of teeth.				
	For simplicity, ascorbic acid, which has the molecular formula $C_6H_8O_6$, will be depicted as the monoprotic acid HA.				
	i. Give the definition of an acid according to Brønsted-Lowry theory.	1 mark			
	ii. Write the equation for the reaction of HA with water.	2 marks			
	iii. Give the expression for the acid dissociation constant, $K_{\rm a}$, for HA(aq).	1 mark			
b)	The pH of a solution of ascorbic acid, HA(aq), is 2.00.				
	Calculate the ratio $\frac{[A^{-}(aq)]}{[HA(aq)]}$ at equilibrium and deduce which of the	3 marks			
	two species is predominant in this solution.				
	Given: pK_a of $HA(aq) = 4.10$				
c)	During a practical session a student determined the <u>average</u> amount (percentage by mass) of ascorbic acid in one tablet in a certain brand of vitamin supplements.				
	She used the following method :				
	 She dissolved <u>five</u> tablets, with a total mass of 2.50 g, in distilled water and made up the total volume of the solution to exactly 1.00 dm³ at a temperature of 25 °C. 				
	 She titrated 20.0 cm³ of this solution with a 1.00 x 10⁻² mol dm⁻³ aqueous solution of sodium hydroxide, NaOH(aq), and followed the reaction with a pH meter. 				
	i. Give two reasons to explain why is it sensible to carry out the titration using a solution prepared from several tablets of this brand of vitamin supplements.	2 marks			

	Ques	tion A1	
		Page 2/3	Marks
	graph below shows the ch droxide solution added, <i>V</i> (ange in pH as a function of volume (NaOH).	
pH 14			
12			
10			
8			
6			
4			
2			
0	2 4 6 8 1	0 12 14 16 18 20 V(NaOH) / cm ³	
ii. the in	of this titration graph, dete	ion.	1 mar
iii. the ph	I at the half-equivalence p	oint.	1 mar
iv. the pl	I at the equivalence point.		1 mar
	ost appropriate indicator, f vyour choice.	rom the following, for this titration.	2 mark
	Indicator	pH range	
	Bromophenol blue	3.0 – 4.6	
	Cresol red	7.2 – 8.8	
	Alizarin yellow	10.2 – 12.0.	
By carrying of	out the necessary calculation	ons, determine:	
vi. the ini		ascorbic acid in the titrated	2 mark
	tial mass (in g) of ascorbio	c acid in 1.00 dm ³ of the titrated	2 mark

		Question A1	
		Page 3/3	Marks
		ne mass (in g) of ascorbic acid on average in one tablet of this and of vitamin tablets.	1 mark
		e average percentage by mass of ascorbic acid in one tablet of s brand of vitamin supplements.	1 mark
	<u>Given:</u>	Molar atomic masses (g mol ⁻¹): H : 1.01	
d)	Certain ta	ablets of vitamin C come in effervescent form.	
	•	tain a mixture of ascorbic acid, HA(s) and sodium carbonate, NaHCO ₃ (s).	
		vescence occurs when the tablet is dissolved in water. This is of a reaction which takes place between these two nts.	
	i . Gi	ve the equation for this reaction.	2 marks
	ii. Ide	entify the gas responsible for the effervescence.	1 mark
	iii. lde	entify the two acid-conjugate base couples concerned.	2 marks

	Page 1/3	Mark
a)	Calcium ions, Ca ²⁺ (aq), are involved in the biochemical mechanisms associated with blood clotting.	
	Calcium oxalate, CaC ₂ O ₄ (s), is a salt which is insoluble in water.	
	Use is made of this property when determining the amount of calcium ions, $Ca^{2+}(aq)$, present in blood.	1
	The following method is used to determine this amount:	
	 The calcium ions are extracted from blood serum by precipitating them as calcium oxalate. 	I
	 The precipitate of calcium oxalate, is reacted with a strong acid which converts it into a soluble calcium salt and oxalic acid H₂C₂O₄(aq). The solution obtained is colourless. 	
	 The oxalic acid released during the course of this reaction is titrated with an acidified solution of potassium permanganate KMnO₄(aq). During this titration manganese(II) ions, Mn²⁺(aq), and carbon dioxide, CO₂(g), are formed. 	,
	It was established that the titration of the oxalic acid obtained from one 5.00 cm ³ sample of blood required 24.2 cm ³ of 2.00 x 10 ⁻⁴ mol dm ⁻³ potassium permanganate solution.	
	 Give the two half-equations and the overall redox equation for the reaction taking place during the titration. 	3 mark
	ii. Describe the observation which shows that the equivalence point has been reached during the titration.	1 mar
	iii. Calculate the initial amount (in mol) of oxalic acid, present in the titrated sample.	2 mark
	 iv. Calculate the concentration by mass of calcium ions, expressed in mg cm⁻³, in the blood serum. 	2 mark
	Given: Molar atomic mass (g mol ⁻¹):	
	Ca: 40.0	

			Question A	A2		
					Page 2/3	Marks
b)	 b) Iodine, I₂, in either aqueous or alcoholic solution, is used as disinfectant in surgery. Oxalic acid, H₂C₂O₄(aq), can be used to remove iodine stains on surgical material and clothing. 					
		i between oxalic acid iodide ions, l⁻(aq).	d and iodi	ne produc	es carbon dioxide,	
		mine the oxidation nu ing species :	mbers of c	arbon and	iodine in the	2 marks
		$H_2C_2O_4$	CO2	KI	I ₂	
	 ii. Give the half-equation for the conversion of iodine, I₂(aq), into iodide ions and the overall equation for the redox reaction between iodine and oxalic acid . 			3 marks		
	•	in why iodine is only s ny organic solvents si			<u> </u>	2 marks
	iv. Refer to the table of standard electrode potentials below to choose <u>one</u> reactant that could theoretically be used instead of oxalic acid to remove iodine stains. Justify your choice and give the equation for the half-reaction that involves your chosen reactant.			3 marks		
		Redox cou	ple	<i>E</i> ^e / V		
		Cl ₂ (aq) / Cl ⁻	(aq)	+ 1.36		
		O ₂ (g) / H ₂ C)(l)	+ 1.23		
		I ₂ (aq) / I¯(a	aq)	+ 0.54		
l			, ,			
		CIO¯(aq) / Cl ₂	<u>₂</u> (aq)	+ 0.42		

		Question	n A2		
				Page 3/3	Marks
c)	A solution of electrodes.	potassium iodide, Kl(aq),	was electrolys	ed using inert	
		e half-equations for the e and specify the polarity of		•	3 marks
		the minimum theoretical variation the electrolysis to occur?	oltage that mus	t be applied in	1 mark
		e the volume of hydrogen gourrent of 2.00×10^{-1} A is pa			3 marks
		μ.			
	<u>Given</u> :				
	<u></u>	redox potentials:			
	•	·			
		Redox couple	E°/V	1	
		$O_2(g) / H_2O(I)$	+ 1.23		
		I ₂ (aq) / I ⁻ (aq)	+ 0.54		
		$H_2O(I) / H_2(g)$	- 0.83	1	
		K⁺(aq) / K(s)	- 2.92		
			_ L	•	
	1 Faraday	$v(F) = 9.65 \times 10^4 \text{ C mol}^{-1}$			
	Molar volu experime	ume of a gas measured und nt = 24.5 dm³ mol ⁻¹ .	er the condition	s of the	

	Question A3	
	Page 1/3	Marks
a)	Methanoic acid, HCOOH(aq), commonly known as formic acid, is present in the venom of ants in proportions ranging from 25 to 72% by mass, depending upon the species of ant.	
	 Show that an aqueous solution of methanoic acid containing 72 g of methanoic acid in 100 cm³ of solution has a concentration of approximately 16 mol dm⁻³. 	2 marks
	A dilute solution of ammonia, $NH_3(aq)$, can be used to relieve the effect of ant bites.	
	ii. Explain this property and give the corresponding equation.	2 marks
	iii. Calculate the mass of ammonia required to prepare 100 cm ³ of an aqueous solution with a pH of 11.4.	4 marks
	Given: Molar atomic masses (g mol ⁻¹): H: 1.01 C: 12.0 N: 14.0 O: 16.0 p K_b of ammonia = 4.75 p K_w of water = 14.0	
b)	When calculating the pH of an aqueous solution of methanoic acid with an initial concentration of 1.00×10^{-1} mol dm ⁻³ it is usual to approximate that the equilibrium concentration of the methanoic acid is unchanged at 1.00×10^{-1} mol dm ⁻³ .	
	i. Explain qualitatively why the use of this approximation is justified.	2 marks
	ii. Calculate the pH of 1.00×10^{-1} mol dm ⁻³ methanoic acid. Given : K_a of methanoic acid = 1.78×10^{-4} .	2 marks

	Question A3	
	Page 2/3	Marks
c)	A fuel cell using methanoic acid is constructed. Methanoic acid has several advantages over using traditional fuels such as methanol or hydrogen. It is less toxic than methanol and is easier to store than hydrogen. The diagram below represents a simplified version of a functioning fuel cell which uses methanoic acid.	
	Electrode X Electrode Y Methanoic acid HCOOH(I) Froduct A O ₂ (g) (from air)	
	 i. Determine the oxidation number of carbon in methanoic acid, HCOOH. 	1 mark
	ii. Knowing that carbon dioxide is formed at electrode X, give the half equation for the reaction which produces it, and state whether this is an oxidation or reduction process.	2 marks
	iii. State the polarity of electrode X and explain your answer.	1 mark
	iv. Give the half-equation for the reaction taking place at electrode Y and identify product A.	3 marks

Question A3				
			Page 3/3	Marks
ele	Identify the chemical species which is transferred from one electrode to the other through the electrolyte, and state the direction of its movement.			2 marks
	ve the overall equation for the orking cell.	e reaction taking pl	ace in the	1 mark
	llculate the e.m.f. of the cell wandard conditions.	hen it is functionin	g under	1 mark
aci	 viii. Knowing that the fuel cell consumes 1.00 x 10⁻¹ g of methanoic acid per hour determine the current (in mA) produced by the cell. Given: The standard redox potentials of the relevant couples. 			2 marks
<u> </u>			1	
	Redox couple	<i>E</i> ⁰ / V		
	$O_2(g) / H_2O(I)$	+ 1.23		
	CO ₂ (g) / HCOOH(I)	- 0.20		
1	Faraday (<i>F</i>) = 9.65 x 10 ⁴ C ı	mol ⁻¹		

	Question B1		
	Page 1/2	Marks	
a)	a) Propanone, also known as acetone, is a constituent of some nail varnish removers.		
	i. Give the structural formula of propanone.	1 mark	
	 ii. Give the structural formulas of the two isomeric alcohols with the molecular formula C₃H₈O. 	2 marks	
	iii. State the name of the isomer that can be oxidised to propanone and name the two possible organic oxidation products of the other isomer.	3 marks	
b)	Four carboxylic acids have the molecular formula C ₅ H ₁₀ O ₂ .		
	 Give the structural formula of the isomer which is chiral and identify its asymmetric carbon atom with an asterisk (*). 	2 marks	
	Two of the four acids considered in this question are valeric acid and isovaleric acid.		
	CH ₃ CH ₂ CH ₂ COOH (CH ₃) ₂ CHCH ₂ COOH		
	Valeric acid Isovaleric acid		
	ii. Give the IUPAC name of isovaleric acid.	1 mark	
	The boiling points of valeric acid and isovaleric acid are 186°C and 176°C respectively.		
	iii. Explain the difference between the boiling points.	2 marks	
	Valeric acid and isovaleric acid occur in the roots of the medicinal plant valerian. They can be extracted using an aqueous solution of sodium carbonate, Na ₂ CO ₃ (aq).		
	iv. Give the equation for the reaction between valeric acid and sodium carbonate.	2 marks	

Question B1	
Page 2/2	Marks
Isovaleric acid is produced in the human body as a result of amino acid metabolism. It can cause feet to smell bad.	
v. Calculate the concentration of isovaleric acid (in mol dm ⁻³) if 5.00x10 ⁻⁶ dm ³ of liquid isovaleric acid is vaporised in 80.0 dm ³ of air at 20.0 °C at a pressure of one atmosphere.	3 marks
Given: Molar atomic masses (g mol ⁻¹): H: 1.01 C: 12.0 O: 16.0	
Density of liquid isovaleric acid = $9.50 \times 10^{-1} \text{ kg dm}^{-3}$ at $20.0 ^{\circ}\text{C}$, 1 atm.	
Carboxylic acids react with alcohols to form esters, which can be used in flavourings and perfumes.	
vi. Give the equation for the reaction between valeric acid and ethanol using simplified structural formulas.	2 marks
vii. State the necessary conditions for this esterification reaction.	2 marks
viii. Describe the mechanism of this reaction by using appropriate equations and by using curly arrows to show the movement of electron pairs.	3 marks
ix. Show how the isotope ¹⁸ O can be used to support this mechanism.	2 marks

Question B2	
Page	1/2 Marks
a) Biogenic amines are a group of substances that are present in severa foods e.g. smoked salmon and chocolate. Lack of the enzyme diamine oxidase, known by the acronym of DAO, can produce problems break down biogenic amines. This can lead to high concentrations of histam which can cause an allergic reaction.	o ing
NH ₂	
Histamine Tryptamine	
NH ₂ NH ₂	
Serotonin Phenylethylamine Phenylamine or aniling	ne
 i. Describe the difference between a primary amine, a secondary amine and a tertiary amine. 	3 marks
ii. Copy the formula for tryptamine, circle and name the two types amine present in the molecule.	of 2 marks
iii. Compared to tryptamine, serotonin has another functional group.	p. 1 mark
iv. Explain why histamine is more soluble in water than phenylethylamine.	2 marks
v. Explain why phenylethylamine is a stronger base than phenylamine.	2 marks

Question B2							
		Page 2/2	Marks				
b)	b) The structural formulas of glycine and alanine are given below.						
		H ₂ N - CH ₂ -COOH Glycine H ₂ N - CH-COOH CH ₃ Alanine					
	i. Give the IUPAC names for glycine and alanine.						
	ii. The iso-electric point for glycine is 5.97. Give the structural formula of the predominant form of glycine at pH 2.00 and explain your answer.						
	One of the two amino acid molecules above is chiral						
	iii. Define the term chiral and identify which of the two amino acid molecules is chiral.						
	iv. Describe how the enantiomers of a chiral amino acid can be distinguished practically.						
	V.	Give the structural formulas of the two possible dipeptides which can be formed when one molecule of glycine and one molecule of alanine react together.	2 marks				
c)	A polyamide is formed by the reaction between 1,6-diaminohexane and hexane-1,6-dioic acid.						
	i.	Give the structural formulas of 1,6-diaminohexane and hexane-1,6-dioic acid.	2 marks				
	ii.	Give the structural formula of the repeating unit in this polymer.	2 marks				
	iii.	State the common name of this polyamide.	1 mark				

Question B3					
	Page 1/3	Marks			
a)	One of the principle constituents of animal fat is glyceryl trioleate (or triolein).				
	$H_2C - O - CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3$				
	HC - O - CO - (CH2)7 - CH = CH - (CH2)7 - CH3				
	$H_2C - O - CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3$				
	Glyceryl trioleate				
	Hydrolysis of this fat with an excess of a solution of potassium hydroxide, KOH(aq) produces potassium oleate.				
	i. Give the equation for this reaction using structural formulas.	2 marks			
	This preparation of soap is carried out in two stages.				
	Stage 1: Production of the potassium oleate Stage 2: Extraction and purification				
	During the first stage the following apparatus is used :				
	→ water ← water				
Reflux apparatus					
	ii. Suggest two advantages of using the reflux apparatus.	2 marks			

Question B3							
Page 2/3							
In the second stage the reaction mixture is added to a salt solution. The precipitate formed is then filtered under reduced pressure, washed with a small amount distilled water, and then dried.							
Reaction mixture Salt solution Extraction of potassium							
	a precipitate	,	Nachina th	o notoccium			
Washing the potassium oleate precipitate							
iii. Using the information given in the table below explain why salt solution is used in the second stage and not ethanol.							
	Glyce triole	•	tassium droxide	Potassium oleate			
Solubility in dist water	tilled insolu	ble	soluble	soluble			
Solubility in eth	anol solub	ole s	soluble	soluble			
Solubility in s	alt insolu	ble	soluble	slightly soluble			
iv. Explain why distilled water is used to wash the precipitate and why as small amount of distilled water as possible should be used.							
v. Calculate the maximum mass of potassium oleate (in g) that can be obtained during the saponification of 8.85 g of glyceryl trioleate.							
vi. Knowing that 8.64 g of potassium oleate were formed calculate the percentage yield by mass of this saponification reaction.							
Given : Molai	trioleate = 885						
Molar atomic masses (g mol ⁻¹):							
H : 1.	01 C : 12.0	O : 16.0	K : 39.1				

Question B3								
	Page 3/3	Marks						
b)	The oleate ion can be represented as:							
	H ₃ C 0-							
	Part 1 Part 2							
	i. Explain why Part 1 is hydrophobic and why Part 2 is hydrophilic.	2 marks						
	ii. Explain the cleaning action of soap. Support your explanation with relevant diagrams.	3 marks						
	iii. Explain what happens when a solution of potassium oleate is added to hard water and give the relevant equation.							
c)	Compound C is a red compound formed in the following reaction							
	$ \bigcirc -\stackrel{+}{N} \equiv N + \bigcirc \bigcirc - \bigcirc - \bigcirc - \bigcirc N $ $ \bigcirc O^{-} \longrightarrow N $ $ \bigcirc OH $							
	Compound A Compound B Compound C							
	i. Name the group of dyes that compound C belongs to.	1 mark						
	ii. Name three functional groups present in a molecule of compound C.							
	iii. Give two reasons to explain why Compound C is coloured.	2 marks						