Ejemplo 2

Sea $f: \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x^2 - y^2$ y sea S la circunferencia de radio unidad con centro en el origen. Determinar los extremos de f|S.

Solución

El conjunto S es la curva de nivel de g con valor 1, donde $g: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + y^2$. Como ya hemos estudiado ambas funciones en los ejemplos anteriores, conocemos sus curvas de nivel, las cuales se muestran en la Figura 3.4.4. En dos dimensiones, la condición de que $\nabla f = \lambda \nabla g$ en \mathbf{x}_0 —es decir, que ∇f y ∇g sean paralelos en \mathbf{x}_0 —es lo mismo que pedir que las curvas de nivel sean tangentes en \mathbf{x}_0 (¿por qué?). Por tanto, los puntos de extremo de f|S son $(0,\pm 1)$ y $(\pm 1,0)$. Evaluando f, encontramos que $(0,\pm 1)$ son puntos de mínimo y $(\pm 1,0)$ son puntos de máximo.

Resolvemos este problema también analíticamente mediante el método de los multiplicadores de Lagrange. Evidentemente,

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x, -2y) \quad \text{y} \quad \nabla g(x,y) = (2x, 2y).$$

Figura 3.4.4 Geometría asociada con el problema de hallar los puntos de extremo de $x^2 - y^2$ on $S = \{(x, y) \mid x^2 + y^2 = 1\}$.

Obsérvese que $\nabla g(x,y) \neq \mathbf{0}$ if $x^2 + y^2 = 1$. Por tanto, de acuerdo con el teorema de los multiplicadores de Lagrange, tenemos que determinar un λ tal que

$$(2x, -2y) = \lambda(2x, 2y)$$
 y $(x, y) \in S$, es decir, $x^2 + y^2 = 1$.

Estas condiciones nos llevan a tres ecuaciones que podemos resolver para las tres incógnitas x,y y λ . A partir de $2x=\lambda 2x$, concluimos que bien x=0 o $\lambda=1$. Si x=0, entonces $y=\pm 1$ y $-2y=\lambda 2y$ implica $\lambda=-1$. Si $\lambda=1$, entonces y=0 y $x=\pm 1$. Así, obtenemos los puntos $(0,\pm 1)$ y $(\pm 1,0)$, como antes. Como ya hemos mencionado, este método solo localiza los puntos de extremo potenciales; si son puntos de máximo, de mínimo, o nada debe determinarse por otros medios, como, por ejemplo, argumentos geométricos o el criterio de la derivada segunda que se proporciona más adelante. 9

⁹En estos ejemplos, $\nabla g(\mathbf{x}_0) \neq \mathbf{0}$ en la superficie S, como exige el teorema de los multiplicadores de Lagrange. Si $\nabla g(\mathbf{x}_0)$ fuera igual a cero para algún \mathbf{x}_0 en S, entonces habría que incluirlo entre los posibles puntos de extremo.