P4 – ANTICIPEZ LES BESOINS EN CONSOMMATION ÉLECTRIQUE DE BÂTIMENTS

Etudiant: Luc Rogers

Mentor: Etienne Sanchez

Sommaire

- □ 1. Problématique
- □ 2. Nettoyage
- □ 3. Exploration
- □ 4. Feature engineering
- 5. Modélisations
 - □ k-NN
 - Lasso
 - Random Forest
 - Réseau de neurones
- □ 6. Comparatif

3 Problématique

Problématique

- Prédire les besoins énergétiques des bâtiments de la ville de Seattle
- Objectifs:
 - Prédire consommation d'énergie
 - Prédire émissions de CO2
 - Evaluer l'influence de l'ENERGY Star Score sur la prédiction des émissions

Base de données open source :

https://www.kaggle.com/city-of-seattle/sea-building-energy-benchmarking#2015-building-energy-benchmarking.csv

5 Nettoyage

Nettoyage

- □ Vérification des doublons → 0 doublons
- □ Sélection des variables avec < 30% de valeurs manquantes</p>
- □ Première sélection à la main → voir slide suivante
- Suppression des lignes avec targets vides
- Concaténation des deux années 2015 et 2016
 - Groupby sur la variable OSEBuildingID
 - Si doublon on ne garde que la ligne la mieux renseignée
- Suppression des valeurs aberrantes:
 - Total consommation ≥ Somme conso par type d'énergie
 - Valeurs négatives
 - Outliers: suppression à la main (voir slide correspondante)
 - → 25 colonnes supprimées
 - → 146 lignes supprimées (~4% du nombre total de bâtiments uniques)

Nettoyage - Variables sélectionnées:

- Données permettant la jointure des deux dataframes:
 - OSEBuildingID: ID du bâtiment
 - DataYear: année des relevés de consommation
- Données relatives à la problématique métier:
 - BuildingType : type du bâtiment (hôtel, caserne de pompier...)
 - PrimaryPropertyType : activité principale du bâtiment
 - Neighborhood: quartier
 - Latitude et Longitude
 - YearBuilt: année de construction
 - NumberofBuildings: nombre de bâtiments
 - NumberofFloors: nombre d'étages
 - PropertyGFATotal: surface totale
 - PropertyGFAParking: surface allouée au parking (consommation quasi nulle)
 - PropertyGFABuilding(s): surface allouée au bâtiment (information a priori redondante)
 - ListOfAllPropertyUseTypes: liste de toutes les activités du bâtiment
 - LargestPropertyUseType: activité dont la surface est la plus élevée
 - LargestPropertyUseTypeGFA: surface allouée à cette activité
 - ENERGYSTARScore: indice censé représenter la bonne utilisation des ressources énergétiques

Nettoyage

Suppression des outliers à la main:

Nettoyage

□ Suppression des outliers à la main:

→ Des distributions différentes selon le type de bâtiment

→ Des distributions différentes selon le type de bâtiment

→ On supprime les variables explicatives corrélées

→ Certaines features présentent une forte asymétrie positive

Feature Engineering

Feature engineering

- Traitement valeurs manquantes
 - Variable numérique → moyenne
 - Variable catégorielle → mode
- Transformation log(1+x) des features à forte asymétrie positive:

- Encodage des variables catégorielles
- Utilisation d'un scaler seulement pour les algorithmes le nécessitant

Feature engineering

Récapitulatif des transformations appliquées à chaque modèle:

Modèle	split random state=0	Transform Target	Cross validation	Scaling	ACP	Nombre hyper params
kNN	Χ	Χ	Χ	X	X	1
Lasso	Χ	Х	Χ	X	Χ	1
Random Forest	X	Х	X			2
Réseau neurones	X	Х	Х			4

Feature engineering

□ Différents jeux de données selon la cible à étudier

- Consommation énergétique:
 - X0: jeu de données <u>sans</u> ENERGY Star Score

- Emissions de CO2:
 - X1: jeu de données <u>sans</u> ENERGY Star Score
 - X2: jeu de données <u>avec</u> ENERGY Star Score

19

Modélisations

- kNN
- Lasso
- Random Forest
- Neural Network

Modélisations - kNN

- k-NN Méthode des k plus proches voisins
- Illustration du concept:

Modélisations - kNN

- □ k-NN Méthode des k plus proches voisins
 - On trouve l'hyperparamètre k par validation croisée

- Globalement peu efficace sur ce jeu de données
- Temps de calcul assez faibles, facilité de paramétrage (un seul hyperparamètre)

Modélisations – Random Forest

□ Random Forest:

Modélisations – Random Forest

Random Forest – exemple d'arbre de décision

```
PropertyGFATotal <= 11.51
                                                                                mse = 5615.723
                                                                                 samples = 1047
                                                                                 value = 57.032
                          LargestPropertyUseType_Supermarket/Grocery Store <= 0.5
                                                                                                              NumberofFloors <= 2.674
                                                                                                                  mse = 9475.848
                                              mse = 2701.773
                                               samples = 829
                                                                                                                   samples = 218
                                                                                                                  value = 136.912
                                               value = 37.331
                 LargestPropertyUseType Hotel <= 0.5
                                                            ENERGYSTARScore <= 6 PrimaryPropertyType K-12 School <= 0.5
                                                                                                                                Longitude <= -122.345
                           mse = 2002.546
                                                                  mse = 9633.068
                                                                                                 mse = 8020.172
                                                                                                                                  mse = 11391.035
                            samples = 817
                                                                   samples = 12
                                                                                                  samples = 190
                                                                                                                                    samples = 28
                            value = 34.233
                                                                  value = 222.591
                                                                                                 value = 124.895
                                                                                                                                   value = 224.041
          ENERGYSTARScore <= Number of Floors <= 2.013 Year Neighborhoo Largest Property Use Type | ENERGYSTA Property GFATotal <= 12. Latitude <= 47.613
                mse = 1673.585
                                                                                                                                            mse = 8161.791
                                      mse = 11163.911
                                                                         m٤
                                                                                       mse = 7374.037
                                                                                                            mse = 2
                                                                                                                         mse = 7137.335
                                                            mse
                 samples = 804
                                       samples = 13
                                                            sa
                                                                          5
                                                                                       samples = 176
                                                                                                             sample
                                                                                                                           samples = 3
                                                                                                                                             samples = 25
                 value = 32.572
                                      value = 154.072
                                                            valu
                                                                                       value = 115.752
                                                                                                            value =
                                                                                                                          value = 341.244
                                                                                                                                             value = 194.74
Bui LargestPropertyUseType ENERGYST/ NumberofFloc YearBuilt Longitude
                                                                            PropertyGF/ NumberofFloo Latitude NumberofF
                                                                                                                           Latitut Property( PropertyGFAParking <= 10.986
                      mse
                                 mse =
                                           mse = 46
                                                     mse = 1
                                                                 mse =
                                                                                 mse =
                                                                                            mse = 30
                                                                                                      mse =
                                                                                                                 mse =
                                                                                                                              ms
                                                                                                                                       mse
                                                                                                                                                  mse = 2012.534
                                                                        sar
                                                                                                                        SE
                                                                                                                                                   samples = 9
                                             sample
                                                        samp
                                                                   sam
                                                                                  samp
                                                                                              sample
                                                                                                         sam
                                                                                                                   sam
                                                                       valu
                                                                                                                        val
                       val
                                 value
                                            value = 2
                                                      value =
                                                                 value:
                                                                                 value
                                                                                             value = 3
                                                                                                       value
                                                                                                                 value
                                                                                                                                                  value = 116.348
```

- → Exemple d'arbre de décision
- → Permet de faire ressortir les variables les plus utiles

Modélisations - Random Forest

Random Forest

- → Avantages: converge très facilement
- → Optimum sur la profondeur des arbres utilisés pour éviter sur-apprentissage

Modélisations - Lasso

□ Régression Lasso – feature selection

- → Gain faible sur l'erreur
- → Environ la moitié des features peuvent être supprimées

Modélisations - Lasso

Régression Lasso

→ Permet la sélection des features pertinentes

Modélisations – Réseau de neurones

Réseau de neurones séquentiel:

- Feed forward
- Réputé pour traiter efficacement systèmes non linéaires (traitement de l'image, ...)
- Descente du gradient (risque d'optimum local différent en fonction de l'initialisation)

Modélisations – Réseau de neurones

- Réseau de neurones séquentiel
 - Résultats grid search:

		X0 (Conso énergie)					
	epochs	100	300	600			
grid search	batch_size	32	48	64			
	n_layer	5	10	15			
	n_unit	5	10	20			

	epochs	300
choix	batch_size	64
optimal	n_layer	10
	n_unit	5

X1 (CO2 sans ESS)					
epochs	200	300			
batch_size	48	64			
n_layer	10	12			
n_unit	5	7			

epochs	200
batch_size	64
n_layer	10
n_unit	7

X2 (X2 (CO2 avec ESS)					
epochs	200	300				
batch_size	48	64				
n_layer	10	12				
n_unit	5	7				

epochs	300
batch_size	64
n_layer	10
n_unit	5

- → Paramétrage très coûteux en calculs/temps de réglage
- → Mais: les meilleures performances

Comparatif Comparatif

Comparatif

	Target	Features	Modèle	Hyperparamètre	Hyp. Opt.	R2	Temps calcul (s)
0	SiteEnergyUse(kBtu)	df_X0	k-NN	n_neighbors	10	0.497	8.30
1	TotalGHGEmissions	df_X1	k-NN	n_neighbors	13	0.333	6.15
2	TotalGHGEmissions	df_X2	k-NN	n_neighbors	10	0.339	6.36
3	SiteEnergyUse(kBtu)	df_X0	Lasso	alpha	5.59E-03	0.606	16.78
4	TotalGHGEmissions	df_X1	Lasso	alpha	2.92E-03	0.402	11.87
5	TotalGHGEmissions	df_X2	Lasso	alpha	2.92E-03	0.481	12.02
6	SiteEnergyUse(kBtu)	df_X0	Random Forest	(n_estimators, max_depth)	(36, 11)	0.672	134.37
7	TotalGHGEmissions	df_X1	Random Forest	(n_estimators, max_depth)	(41, 10)	0.436	98.69
8	TotalGHGEmissions	df_X2	Random Forest	(n_estimators, max_depth)	(41, 11)	0.425	103.60
9	${\sf SiteEnergyUse}({\sf kBtu})$	df_X0	Neural Network	$(epochs,batch_size,n_layers,n_units)$	$ \{ \text{'kr}_\texttt{batch_size': 64, 'kr}_\texttt{epochs': 300, 'kr}\ \\$	0.674	7012.48
10	TotalGHGEmissions	df_X1	Neural Network	(epochs, batch_size, n_layers, n_units)	$ \{ \text{'kr}_\text{batch_size': 64, 'kr}_\text{epochs': 200, 'kr}\ \\$	0.512	512.05
11	TotalGHGEmissions	df_X2	Neural Network	(epochs, batch_size, n_layers, n_units)	{'krbatch_size': 64, 'krepochs': 300, 'kr	0.580	539.78

Comparatif

Target = Consommation énergétique

	Target	Features	Modèle	Hyperparamètre	Hyp. Opt.	R2	Temps calcul (s)
0	SiteEnergyUse(kBtu)	df_X0	k-NN	n_neighbors	10	0.497	8.30
1	TotalGHGEmissions	df_X1	k-NN	n_neighbors	13	0.333	6.15
2	TotalGHGEmissions	df_X2	k-NN	n_neighbors	10	0.339	6.36
3	SiteEnergyUse(kBtu)	df_X0	Lasso	alpha	5.59E-03	0.606	16.78
4	TotalGHGEmissions	df_X1	Lasso	alpha	2.92E-03	0.402	11.87
5	TotalGHGEmissions	df_X2	Lasso	alpha	2.92E-03	0.481	12.02
6	SiteEnergyUse(kBtu)	df_X0	Random Forest	(n_estimators, max_depth)	(36, 11)	0.672	134.37
7	TotalGHGEmissions	df_X1	Random Forest	(n_estimators, max_depth)	(41, 10)	0.436	98.69
8	TotalGHGEmissions	df_X2	Random Forest	(n_estimators, max_depth)	(41, 11)	0.425	103.60
9	SiteEnergyUse(kBtu)	df_X0	Neural Network	(epochs, batch_size, n_layers, n_units)	$ \label{linear_condition} \mbox{\ensuremath{\it like} r_batch_size': 64, "kr_epochs': 300, "kr\} $	0.674	7012.48
10	TotalGHGEmissions	df_X1	Neural Network	(epochs, batch_size, n_layers, n_units)	$\label{eq:continuous} \mbox{\ensuremath{$($'kr_batch_size': 64, $'$kr$_epochs': 200, $'$kr$\}}$	0.512	512.05
11	TotalGHGEmissions	df_X2	Neural Network	(epochs, batch_size, n_layers, n_units)	{'krbatch_size': 64, 'krepochs': 300, 'kr	0.580	539.78

- → Random Forest aussi précis que Neural Network, R²=0,672
- → Mais temps de calcul et paramétrages beaucoup plus simples!

Comparatif

Target = Emissions CO2

	Target	Features	Modèle	Hyperparamètre	Hyp. Opt.	R2	Temps calcul (s)
0	SiteEnergyUse(kBtu)	df_X0	k-NN	n_neighbors	10	0.497	8.30
1	TotalGHGEmissions	df_X1	k-NN	n_neighbors	13	0.333	6.15
2	TotalGHGEmissions	df_X2	k-NN	n_neighbors	10	0.339	6.36
3	SiteEnergyUse(kBtu)	df_X0	Lasso	alpha	5.59E-03	0.606	16.78
4	TotalGHGEmissions	df_X1	Lasso	alpha	2.92E-03	0.402	11.87
5	TotalGHGEmissions	df_X2	Lasso	alpha	2.92E-03	0.481	12.02
6	SiteEnergyUse(kBtu)	df_X0	Random Forest	(n_estimators, max_depth)	(36, 11)	0.672	134.37
7	TotalGHGEmissions	df_X1	Random Forest	(n_estimators, max_depth)	(41, 10)	0.436	98.69
8	TotalGHGEmissions	df_X2	Random Forest	(n_estimators, max_depth)	(41, 11)	0.425	103.60
9	SiteEnergyUse(kBtu)	df_X0	Neural Network	(epochs, batch_size, n_layers, n_units)	{'krbatch_size': 64, 'krepochs': 300, 'kr	0.674	7012.48
10	TotalGHGEmissions	df_X1	Neural Network	(epochs, batch_size, n_layers, n_units)	{'krbatch_size': 64, 'krepochs': 200, 'kr	0.512	512.05
11	TotalGHGEmissions	df_X2	Neural Network	(epochs, batch_size, n_layers, n_units)	{'krbatch_size': 64, 'krepochs': 300, 'kr	0.580	539.78

Conclusion

- Modèles retenus selon le score:
 - Consommation électrique: Random Forest
 - Emissions de CO2: Réseau de neurones séquentiel
- Amélioration des scores de prédiction en fonction de la complexité du modèle
- □ Mais parfois gain assez faible et non pertinent (RF ⇔ NN)
- Sans les données sur la consommation la prédiction des émissions devient bien plus difficile
- Utilité de l'ENERGY STAR Score démontrée

Merci de votre attention

Annexe

R² score pour kNN en fonction de N composantes ACP

