

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Espaços Métricos

Renan Wenzel - 11169472

Professora - Thaís Jordão E-mail: tjordao@icmc.usp.br

28 de agosto de 2023

Conteúdo

0	Informações (Possivelmente) Uteis			
	0.1	Datas das Provas:	3	
	0.2		3	
1			4	
	1.1	Motivações	4	
2	Aula 02 - 10/08/2023			
	2.1	, and the state of	5	
	2.2	Uma nota histórica		
	2.3	Exercício 1 da Lista 1	5	
	2.4	Espaço de funções contínuas	5	
	2.5	Espaço euclidiano n-dimensional	6	
3	Aula 03 - 17/08/2023			
	3.1	Motivações	8	
	3.2	Similaridade de Métricas	8	
	3.3		8	
	3.4		9	
	3.5		9	
4	Aul	a 04 - 21/08/2023	2	
	4.1	Motivações	2	
	4.2	Subespaços Métricos e Distância entre Conjuntos		
	4.3	Topologia de Espaços Métricos		
5	Aul	a 05 - 24/08/2023	.5	
	5.1	Motivações	5	
	5.0	Dynamical des de Diâmetre		

0 Informações (Possivelmente) Úteis

0.1 Datas das Provas:

```
P1) 31/08 - Peso 1;
P2) 03/10 - Peso 2;
P3) 31/10 - Peso 2;
P4) 23/11 - Peso 3;
P5) 14/12 - Peso 3.
```

0.2 Bibliografia

- LIMA, E. L. "Espaços Métricos", Rio de Janeiro: Projeto Euclides, 2005.
- DOMINGUES, H. H. "Espaços Métricos e Introdução à Topologia", Atual Editora, 1982.

Monitoria

A ser definido.

1 Aula 01 - 08/08/2023

1.1 Motivações

• Introdução ao Material do Curso.

O que é um espaço métrico?

Ao longo deste curso, trabalharemos com um conjunto M não-vazio.

Definição. Uma função $d: M \times M \to \mathbb{R}$ é dita ser uma métrica em M se:

- *i*) $d(x,y) \ge 0, x,y \in M$;
- ii) $d(x,y) = 0 \Leftrightarrow x = y, x, y \in M;$
- iii) $d(x,y) = d(y,x), x, y \in M;$
- iv) $d(x,y) \le d(x,z) + d(z,y), x, y, z \in M$.

Neste caso, o par (M,d) é chamado espaço métrico.

Exemplo 1. 1) (\mathbb{R}, d) , em que $d : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ é dado por d(x, y) = |x - y|. É claro que, olhando para d(x, y), vale para quaisquer x, y reais que

$$d(x,y) = |x - y| = |-1(y - x)| = 1|y - x| = d(y,x).$$

Assim, resta verificarmos os itens dois e quatro da definição de métrica. Para o item (ii),

$$|x - y| = 0 \iff x = y.$$

Com relação ao último item, observe que

$$|x+y| \le |x| + |y|.$$

De fato, como $|a| \ge a$ para todo número real a,

$$|x+y|^2 = (x+y)^2 = x^2 + 2xy + y^2 \le x^2 + 2|x||y| + y^2 = (|x|+|y|)^2$$
.

Logo, tomando a raíz dos dois lados, seque a afirmação:

$$|x+y| \le |x| + |y|.$$

Com isso, temos

$$d(x,y) = |x-y| = |x-z+z-y| = |(x-z)-(y-z)| < |x-z|+|y-z|.$$

Portanto, $d(x,y) \leq d(x,z) + d(z,y)$, o que torna (\mathbb{R} , d) um espaço métrico.

2) Seja X um conjunto não-vazio. Definimos

$$d: X \times X \to [0, \infty)$$

por

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y. \end{cases}$$

Esta métrica é conhecida como métrica discreta. Verifiquemos as propriedades dela.

Com efeito, como a imagem dela pode ser apenas 0 ou 1, o item 1 é trivial. Por definição, a métrica vale 0 se, e somente se, x e y são iguais, tal que o item (ii) está feito. O item (iii) segue automaticamente se x e y são iguais. Caso eles sejam diferentes, temos d(x,y) = 1, d(y,x) = 1, ou seja, o item (iii) é válido para todos os casos. Por fim, a desigualdade triangular fica como exercício.

2 Aula 02 - 10/08/2023

2.1 Motivações

- Exemplos de espaços métricos;
- Similaridade entre métricas:
- Produto de espaços métricos.

2.2 Uma nota histórica

Algumas dessas informações podem ser vistas com mais detalhe do livro de espaços métricos de Jean Cerqueira, do IME.

Para um contexto temporal, em 1906, Maurice Fréchet publicou sua tese de doutorado, nomeada "Sus quelques du calcul functionnel". A seguir, em 1910, David Hilbert faz sua tentativa de axiomatizar as ideias vistas na tese de Fréchet e, dois anos depois, Felix Hausdorff, trabalhando no conceito de separação de pontos a partir do ponto de vista de conjuntos, acaba contribuindo com essa axiomatização. Antes disso, Henri Poincaré, havia sistematizado as ideias de forma prototípica. Outro nome mencionável é o de Pavel Urysohnn, responsável por aprofundar-se na parte da separação de pontos.

2.3 Exercício 1 da Lista 1

Considere $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ definida por

$$d((x_1, x_2), (y_1, y_2)) = |x_2 - y_2|.$$

Então, d não é uma métrica. Chequemos este fato.

Com efeito, considere x um número real qualquer. Assim,

$$d((1,x),(2,x)) = |x-x| = 0.$$

No entanto, $(1, \mathbf{x})$ não é igual a $(2, \mathbf{x})$, ou seja, já falha logo na primeira condição de métrica! Portanto, concluisse que d não pode ser métrica. Analogamente, definindo $d': \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ por $d'((x_1, x_2), (y_1, y_2)) = |x_1 - y_1|$, ela também não será métrica.

Obs.: Definiremos, ainda essa aula, a métrica $d_s: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ por

$$d_s((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|,$$

a qual torna (\mathbb{R}^2, d_s) num espaço métrico. Mostremos isso. Os itens (i), (ii) e (iii) da definição de métrica estão trivialmente cumpridos. Para a desigualdade triangular, observe que

$$d((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$$

$$\leq |x_1 - z_1| + |z_1 - y_1| + |x_2 - z_2| + |x_2 - y_2|$$

$$= d((x_1, x_2), (z_1, z_2)) + d((z_1, z_2), (y_1, y_2))$$

2.4 Espaço de funções contínuas

Considere o intervalo I=[0, 1] e tome o conjunto

$$C(I, \mathbb{R}) := \{ f : I \to \mathbb{R} : f \text{ continua} \}.$$

Então, são métrica em $\mathcal{C}(I,\mathbb{R})$ as funções $d:\mathcal{C}(I,\mathbb{R})\to [0,\infty), (f,g)\mapsto \sup_{x\in I}\{|f(x)-g(x)|\}$ e $\rho:\mathcal{C}(I,\mathbb{R})\times\mathcal{C}(I,\mathbb{R})\to [0,+\infty)$ definida por

$$\rho(f,g) = \int_0^1 |f(x) - g(x)| dx, \quad f, g \in \mathcal{C}(I, \mathbb{R}).$$

Mostremos que elas são métricas, começando pela d.

Observe que, se d(f,g) = 0,, então

$$|f(y) - g(y)| \le \sup_{x \in I} \{|f(x) - g(x)|\} \quad \forall y \in I.$$

Logo, |f(y) - g(y)| = 0 para todo y em I, garantindo que f e g são as mesmas. Para a desigualdade triangular, observe que, para qualquer y em I, e h em $\mathcal{C}(I, \mathbb{R})$, vale que

$$|f(y) \pm h(y) - g(y)| \le |f(y) - h(y)| + |h(y) - g(y)|.$$

Tomando o supremo, obtemos

$$d(f,g) \le d(f,h) + d(h,g).$$

Assim, $(\mathcal{C}(I,\mathbb{R}),d)$ é um espaço métrico.

Agora, analisando a questão de ρ , se $\rho(f,g) = 0$, então

$$\int_{0}^{1} |f(x) - g(x)| dx = 0$$

Como o Teorema da Conservação de Sinal implicaria em $\int_0^1 |f(x)-g(x)|dx>0$ se |f(x)-g(x)|>0 para algum x em I. Logo, |f(x)-g(x)|=0 para todo x em I. Para mostrar a desigualdade triangular, considere $f,g,h\in\mathcal{C}(I,\mathbb{R})$. Temos, para todo $x\in I$,

$$|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|$$

Integrando os dois lados da desigualdade,

$$\int_0^1 |f(x) - g(x)| \le \int_0^1 |f(x) - h(x)| dx + \int_0^1 |h(x) - g(x)| dx,$$

de onde segue a desigualdade triangular. Portanto, $(\mathcal{C}(I,\mathbb{R}),\rho)$ é um espaço métrico.

2.5 Espaço euclidiano n-dimensional

Seja n um natural, $n \ge 1$. O espaço euclidiano é

$$\mathbb{R}^n := \{(x_1, \cdots, x_n) : x_i \in \mathbb{R}, i = 1, 2, \cdots, n\},\$$

munido da métrica usual/euclidiana, definida por

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}},$$

em que $x=(x_1,x_2,\cdots,x_n)$ e $y=(y_1,y_2,\cdots,y_n$ são elementos de \mathbb{R}^n . Sobre \mathbb{R}^n , podemos considerar duas outras métricas, a métrica da soma e do máximo. Definimo-las, respectivamente, por

$$d_s(x,y) := \sum_{i=1}^n |x_i - y_i|$$
$$d_m(x,y) := \max\{|x_i - y_i|, i = 1, 2, \dots, n\},$$

para $x=(x_1,x_2,\cdots,x_n)$ e $y=(y_1,y_2,\cdots,y_n$ são elementos de \mathbb{R}^n . Vamos mostrar que a primeira d é métrica.

Pra começar, não é difícil ver que os itens (i) e (ii) da definição são satisfeitos. Para mostrar a desigualdade triangular, será necessário utilizar Cauchy-Schwarz:

<u>Lema</u> (Desigualdade de Cauchy-Schwars). $Dados~(x_1,\cdots,x_n)~e~(y_1,\cdots,y_n),~vale~a~desigualdade$

$$\sum_{i=1}^{n} |x_i \cdot y_i| \le \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |y_i|^2\right)^{\frac{1}{2}}$$

Prova. Observe que, dados $x, y \in \mathbb{R}$, vale que $2xy \le x^2 + y^2$. Temos, para $x = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}}$ e $y = (\sum_{i=1}^n |y_i|^2)^{\frac{1}{2}}$. Com isso, aplicando a desigualdade vista para $\frac{|x_i|}{x}$ e $\frac{|y_i|}{y}$, ganhamos

$$2\frac{|x_i||y_i|}{xy} \le \frac{|x_i|^2}{x^2} + \frac{|y_i|^2}{y^2}.$$

Somando de $i = 1, \dots, n$, obtemos

$$\frac{2}{xy} \sum_{i=1}^{n} |x_i| |y_i| \le \frac{1}{x^2} \sum_{i=1}^{n} |x_i|^2 + \frac{1}{y^2} \sum_{i=1}^{n} |y_i|^2 = 1 + 1 = 2.$$

Portanto, isolando a soma à esquerda, temos

$$\sum_{i=1}^{n} |x_i||y_i| \le \frac{2}{2} \cdot xy = xy. \blacksquare$$

A desigualdade triangular seguirá do seguinte

$$\begin{aligned} \left[d(\overline{x}, \overline{y})\right]^2 &= \sum_{i=1}^n (x_i - y_i)^2 = \sum_{i=1}^n (x_i - z_i + z_i - y_i)^2 \\ &= \sum_{i=1}^n (x_i - z_i)^2 + 2\sum_{i=1}^n (x_i - z_i)(z_i - y_i) + \sum_{i=1}^n (z_i - y_i)^2 \\ &\leq \sum_{i=1}^n (x_i - z_i)^2 + 2\left(\sum_{i=1}^n |x_i - z_i|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n |z_i - y_i|^2\right)^{\frac{1}{2}} + \sum_{i=1}^n (z_i - y_i)^2 \\ &= \left[d(\overline{x}, \overline{y})\right]^2 + 2d(\overline{x}, \overline{z})d(\overline{z}, \overline{y}) + \left[d(\overline{z}, \overline{y})\right]^2 \\ &= (d(\overline{x}, \overline{z}) + d(\overline{z}, \overline{y}))^2. \end{aligned}$$

O fim da prova da desigualdade triangular é um exercício.

3 Aula 03 - 17/08/2023

3.1 Motivações

- Métricas similares;
- Produtos de Espaços Métricos;
- Espaços vetoriais normados;
- Desigualdade de Hölder e de Minkowski.

3.2 Similaridade de Métricas

<u>Definição</u>. Seja M um conjunto não vazio. Duas métricas d e ρ em M são similares se existem $c_1, c_2 > 0$ tais que

$$c_1 d(x, y) \le \rho(x, y) \le c_2 d(x, y)$$

Exemplo 2. Seja d a métrica usual e δ a métrica discreta em \mathbb{R} . Para todo c positivo, existem x, y em \mathbb{R} tais que $d(x,y) > c\delta(x,y)$, ou seja, não vale $d(z,w) \leq c\delta(z,w)$ para todos z, w reais.

De fato, dado c > 0, tome x = 2c e y = c - 1. Tem-se d(x, y) = c + 1 e $\delta(x, y) = 1$. Logo, não são similares.

Proposição. Para quaisquer x, y em \mathbb{R}^n , vale a designaldade

$$d_m(x,y) \le d(x,y) \le d_s(x,y) \le nd_m(x,y)$$

Prova. Seja $x = (x_1, x_2, \dots, x_n), y = (y_1, \dots, y_n)$. Temos:

$$d_m(x,y) = \max\left\{ (|x_i - y_i|^2)^{\frac{1}{2}} \right\} \le \left(\sum_{i=1}^n |x_i - y_i|^2 \right)^{\frac{1}{2}} = d(x,y)$$

e também $d_s(x,y) = \sum_{i=1}^n |x_i - y_i| \le n \max \{|x_i - y_i|\}$, provando a desigualdade do meio

$$(d(x,y))^{2} = \sum_{i=1}^{n} (x_{i} - y_{i})^{2} = \underbrace{\left(\sum_{i=1}^{n} |x_{i} - y_{i}|\right)}_{d_{s}(x,y)^{2}} - A, \quad A \ge 0,$$

de onde segue que $(d(x,y))^2 \le (d_s(x,y))^2 - A$ e prova a desigualdade.

3.3 Produto de Espaços Métricos

Considere $(M_1, d_2), (M_2, d_2), \cdots, (M_n, d_n)$ espaços métricos. Para $M = \prod_{i=1}^n M_i$ e definimos as métricas anteriores

•
$$d(x,y) = \left\{ \sum_{i=1}^{n} [d_i(x_i, y_i)]^2 \right\}^{\frac{1}{2}}$$

- $d_s(x,y) = \sum_{i=1}^n d_i(x_i,y_i);$
- $\bullet \ d_{max}(x,y) = \max\{d_i(x_i,y_i)\}.$

Exemplo 3. Tome $M = \mathcal{C}(I, \mathbb{R}) \times \mathbb{R}$. Se x = (f, s), y = (h, t), então

$$d_m(x,y) = \max \left\{ \rho(f,h), d(s,t) \right\}$$

3.4 Espaços Vetoriais Normados

Definição. Dado V um espaço vetorial, uma norma em V é uma função $||\cdot||:V\to [0,+\infty)$ que satisfaz

- $i) ||\vec{v}|| = 0 \iff \vec{v} = 0;$
- $|ii\rangle ||\lambda \vec{v}|| = |\lambda|||\vec{v}||;$
- $||\vec{v} + \vec{w}|| \le ||\vec{v}|| + ||\vec{w}||.$

Exemplo 4. Seja $(\mathbb{R}^{2n}, +, \cdot)$ é um espaço vetorial $e \mid |\cdot|| : \mathbb{R}^n \to [0, \infty)$ dada por

$$x \mapsto ||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Exemplo 5. Considere $(C(I, \mathbb{R}), +, \cdot)$ e defina $||f||_{\infty} = \max \{|f(x)| : x \in I\}, f \in C(I, \mathbb{R})$. Isto define uma norma em $C(I, \mathbb{R})$.

Note que $||f||_{\infty} = 0 = \max\{|f(x)|\}$. Logo, $|f(y)| = |f|_{\infty} = 0$ para todo y em I e f(y) = 0 para todo y em I. Isso demonstra a primeira propriedade. Para a segunda propriedade,

$$||\lambda f||_{\infty} = \max\{|\lambda f(x)| : x \in I\} = |\lambda|||f||_{\infty}$$

pelas propriedades de módulo. Por fim, temos

 $||f+g||_{\infty} = \max\{|f(x)+g(x)|: x \in I\} \leq \max\{|f(x)|+|g(x)|: x \in I\} \leq \max\{|f(x)|\} + \max\{|g(x)|\} \leq ||f||_{\infty} + ||g||_{\infty} = \max\{|f(x)+g(x)|: x \in I\} \leq \max\{|f(x)-g(x)|: x \in I\} \leq \max\{|f(x)-g(x)$

Exemplo 6. Definiremos a norma p em \mathbb{R}^n . Se $p = \infty$, coloquemos

$$||x||_{\infty} = \sup\{|x_i| : 1 \le i \le n\}.$$

Se $p \neq \infty$, definimos

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

3.5 A Desigualdade de Minkowski

<u>Lema.</u> Se $p,q \in (1,\infty)$ é tal que $\frac{1}{p} + \frac{1}{q} = 1$ e $a,b \in [0,\infty)$, então

$$a^{\frac{1}{p}} + b^{\frac{1}{q}} \le \frac{a}{q} + \frac{b}{q}.$$

Prova. Se b > 0, então $\frac{a^{\frac{1}{p}} + b^{\frac{1}{q}}}{b} = \frac{a}{bp} + \frac{1}{q}$, isto é,

$$\left(\frac{a}{b}\right)^{\frac{1}{p}} \le \frac{a}{bp} + \frac{1}{q}.$$

Tomando $z = \frac{a}{b}$ e $\alpha = \frac{1}{p}$, segue que $t^{\alpha} \leq \alpha t + 1 - \alpha$. Com isso, defina $f_{\alpha} : \mathbb{R}^+ \to \mathbb{R}$ por

$$f_{\alpha}(t) = \alpha t + 1 - \alpha - z^{\alpha}.$$

Segue que $f_{\alpha}(t) \geq 0$ pela sua derivada.

<u>Lema</u> (Desigualdade de Hölder). Se $p \in (1, \infty), q \in (1, \infty)$ é tal que $\frac{1}{p} + \frac{1}{q} = 1$ e $a, b \in [0, \infty)$, então

$$\sum_{i=1}^{n} |x_i y_i| \le \left[\sum_{i=1}^{n} |x_i|^p \right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} |y_i|^q \right]^{\frac{1}{q}}$$

para todo $x = (x_1, \dots, y_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

Prova. Se x = 0 ou y = 0, a designal dade é trivial. Se $x \neq 0$ e $y \neq 0$, então defina

$$a_j = \frac{|x_j|^p}{\sum\limits_{i=1}^n |x_i|^p} \quad b_j = \frac{|y_j|^q}{\sum\limits_{i=1}^n |y_i|^q}.$$

Observamos que $\sum_{j=1}^{n} a_j = \sum_{j=1}^{n} b_j = 1$. Aplicando a desigualdade de Young,

$$a_j^{\frac{1}{p}}b_j^{\frac{1}{q}} = \frac{|x_jy_j|}{\left[\sum_{i=1}^n |x_i|^p\right]^{\frac{1}{p}}\left[\sum_{i=1}^n |y_i|^q\right]^{\frac{1}{q}}} \le \frac{1}{p}a_j + \frac{1}{q}b_j,$$

 $para j = 1, \cdots, n. Assim,$

$$\frac{\sum_{j=1}^{n} |x_j y_j|}{\left[\sum_{i=1}^{n} |x_i|^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^{n} |y_i|^q\right]^{\frac{1}{q}}} \le \frac{1}{p} + \frac{1}{q} = 1,$$

donde segue a desigualdade.

Proposição. Se $p \in [1, \infty)$, então

$$\left[\sum_{i=1}^{n} |x_i + y_i|^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{n} |x_i|^p\right]^{\frac{1}{p}} + \left[\sum_{i=1}^{n} |y_i|^p\right]^{\frac{1}{p}},$$

para todo $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

Prova. Os casos $p = 1, \infty$ são deixados como exercício. Se $p \in (1, \infty)$, então

$$\left[\sum_{i=1}^{n} |x_i + y_i|^p\right]^{\frac{1}{p}} \le \left[\sum_{i=1}^{n} (|x_i| + |y_i|)^p\right]^{\frac{1}{p}}.$$

Podemos escrever

$$(|x_i| + |y_i|)^p = (|x_i| + |y_i|)^{p-1}|x_i| + (|x_i| + |y_i|)^{p-1}|y_i|, \quad i = 1, \dots, n.$$

Somando os elementos à esquerda da desigualdade anterior, obtemos

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p = x_n + y_n$$

com

$$x_n + y_n := \sum_{i=1}^n (|x_i| + |y_i|)^{p-1} |x_i| + \sum_{i=1}^n (|x_i| + |y_i|)^{p-1} |y_i|.$$

Aplicando a Desigualdade de Hölder, temos

$$x_n \le \left[\sum_{i=1}^n |x_i|^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^n (|x_i| + |y_i|)^{(p-1)q}\right]^{\frac{1}{q}}$$
$$\le \left[\sum_{i=1}^n |x_i|^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^n (|x_i| + |y_i|)^p\right]^{\frac{1}{q}}.$$

De forma análoga, temos

$$y_n \le \left[\sum_{i=1}^n |y_i|^p\right]^{\frac{1}{p}} \left[\sum_{i=1}^n (|x_i| + |y_i|)^p\right]^{\frac{1}{q}}.$$

Portanto,

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p = x_n + y_n \le \cdots . \quad \blacksquare$$

Exemplo 7. Dado $p \in [0, \infty], (\mathbb{R}^n, d_p)$ é um espaço métrico, em que d_p está representando a métrica induzida por $||\cdot||_p$. Então, para p=2, recuperamos o espaço euclidiano n-dimensional.

4 Aula 04 - 21/08/2023

4.1 Motivações

- Subespaços métricos e distância entre conjuntos;
- Conjuntos limitados, abertos e fechados;
- A topologia de espaços métricos.

4.2 Subespaços Métricos e Distância entre Conjuntos

<u>Definição.</u> Seja (X, d) um espaço métrico e $M \subseteq X$. Então, $d|_{M}M \times M : \to \mathbb{R}$ define uma métrica, chamada métrica induzida em M. Isso faz de $(M, d|_{M})$ um subespaço métrico. \square

Além da distância entre pontos, pode-se falar da distância entre um ponto e um subconjunto do espaço métrico e da distância entre dois subconjuntos de um espaço métrico. Para isso, considere (X, ρ) um espaço métrico, $x \in X$ e $E, F \subseteq X$. Definimos, então,

$$d(x, E) := \inf\{\rho(x, e) : e \in E\}$$

$$d(E, F) := \inf\{d(e, F) : e \in E\}.$$

Observação: O nome "distância", aqui, não é sinônimo de métrico. De fato, há um exercício na lista que mostra que a distância entre conjuntos **NÃO** é simétrica, ou seja, não define uma métrica.

Proposição. Seja (X, ρ) um espaço métrico e $E \subseteq X$. Então,

$$|d(x, E) - d(y, E)| \le \rho(x, y) \quad \forall x, y \in X.$$

Prova. Note que, para todo e em E,

$$d(x,E) < \rho(x,e) < \rho(x,y) + \rho(y,E).$$

Logo, para todo $x, y \in X$,

$$d(x, E) < \rho(x, y) + d(y, E)$$
.

Assim, temos

$$d(x, E) - d(y, E) < \rho(x, y).$$

Analogamente,

$$d(y, E) - d(x, E) \le \rho(x, y)$$

Portanto.

$$|d(x,E) - d(y,E)| \le \rho(x,y)$$
.

Exemplo 8. Considere $(\mathbb{R}, |\cdot|), A = (-1, 0]$ e x = -2. Por definição,

$$d(x, A) = \inf\{|-2 - a| : a \in A\} = \inf\{|2 + a| : a \in A\} = 1 \quad [d(-2, 1 + \varepsilon) = 1 + \varepsilon \forall \varepsilon > 0]$$

No entanto, d(-2, a) > 1 para todo a em A.

Corolário. Seja (X, ρ) um espaço métrico. Vale a desigualdade

$$|\rho(x,z) - \rho(y,z)| \le \rho(x,y).$$

Prova. Seja $E = \{z\}$. Pela proposição, o resultado já segue.

4.3 Topologia de Espaços Métricos

Definição. Seja (X,d) um espaço métrico. Dado x em X e r > 0, o conjunto

$$B_r(x) := \{ y \in X : d(x, y) < r \}$$

é chamado bola aberta de centro em x e raio r. O conjunto

$$D_r(x) := \{ y \in X : d(x, y) \le r \}$$

 \acute{e} chamado bola fechada de centro em x e raio r. \square

Exemplo 9. Considere (\mathbb{R}^2, d_p) , em que $d_p(x, y) = ||x - y||_p, 1 \le p \le \infty$.

$$d_2((x_1, y_1), (x_2, y_2)) = [(x_1 - x_2)^2 + (y_1 - y_2)^2]^{\frac{1}{2}} \Rightarrow B_1(0) = \{(x, y) \in \mathbb{R}^2 : d_2((0, 0), (x, y)) < 1\}$$

$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\} \Rightarrow B_1(0) = \{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} < 1\}$$

$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - y_1| + |x_2 - y_2| \Rightarrow B_1(0) = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}$$

<u>Definição.</u> Seja (X, d) um espaço métrico e x um ponto de X. Chamamos x de ponto isolado se existe r > 0 tal que $B_r(x) = \{x\}$. \square

Exemplo 10. Seja $S = [0,1] \cup \{2\}$ munido da métrica usual, induzida da reta. Temos

$$B_{\frac{1}{2}}(2) = \{ y \in S : |x - 2| < \frac{1}{2} \} = \{ 2 \}.$$

Exemplo 11. Seja $X \neq \emptyset$ e d a métrica discreta. Então,

- Todo ponto é isolado;
- $D_r(x) = \{x\} \text{ se } r > 1;$
- $B_1(x) = \{x\} \ e \ D_1(x) = X;$
- $B_r(x) = X$ se r > 1. De fato, $D_r(x) = \{y \in X : d(x,y) \le r\}$. Por isso, se r = 1, $D_1(x) = X$. Pela mesma lógica, prova-se os outros itens.

Exemplo 12. i) Dado (\mathbb{R}, d) , d a métrica usual, nenhum ponto é isolado e $B_r(x) = (x - r, x + r), x \in \mathbb{R}, r > 0$.

- ii) Se M = [0,2] com métrica induzida, $B_1(0) = [0,1)$.
- iii) Se $M = \mathbb{Z}$ com a métrica induzida, então $B_1(n) = \{n\}$
- iv) Se $M = \{\frac{1}{n} : n \in \mathbb{N}, n \neq 0\} \cup \{0\}$, com a métrica induzida, então $B_1(0) \neq \{0\}$ para todo r > 0. Neste caso, se $n, m \neq 0$, então existe r > 0 tal que $B_r\left(\frac{1}{n}\right) = \{\frac{1}{n}\}$ e $B_r\left(\frac{1}{m}\right) = \{\frac{1}{m}\}$. Porém, para qualquer r > 0, seja n_0 tal que $0 < \frac{1}{n_0} < \frac{r}{2}$ e $\frac{1}{n_0} \in B_r(0)$. Portanto, $B_r(0) \neq \{0\}$ para todo r > 0.

Exemplo 13. Considere $(C([a,b]), ||\cdot||_{\infty}, com ||f||_{\infty} = \sup\{|f(x)| : x \in [a,b]\}$. Seja $h \in C([a,b])$ e r > 0.

$$B_r(h) = \{ f \in C([a,b]) : ||f - h||_{\infty} < r \} = \{ f \in C([a,b]) : \max_{x \in [a,b]} \{ |f(x) - h(x)| \} < r \}.$$

Definição. Um subconjunto $M \neq \emptyset$ de um espaço métrico (X, d) é limitado se

$$diam(X) := \sup\{d(x, y) : x, y \in X\} < \infty.$$

Neste caso, diam(X) é chamado diâmetro de X. Caso contrário, diz-se que M é ilimitado e $diam(X) = \infty$. \square

Exemplo 14. Seja (X,d) métrico. Para todo x em X e r>0, $B_r(x)$ é ilimitado e, além disso, diam $(B_r(x)) \le \overline{2r}$, o que segue da relação $d(y,z) \le d(y,x) + d(x,z) \le r+r=2r$. Além disso, se $(X,||\cdot||)$ é um espaço vetorial normado e a métrica d é induzida pela norma, então diam $(B_r(x))=2r$. Com efeito, seja s<2r. Tome y em X com $x \ne 0$. Definimos

$$v = \frac{t}{||y||}y,$$

para algum t satisfazendo s < 2t < 2r. Neste caso, $x - v, x + v \in B_r(x)$ e

$$d(x + v, x - v) = 2||v|| = 2t > s,$$

ou seja, a afirmação feita está garantida.

5 Aula 05 - 24/08/2023

5.1 Motivações

- Propriedades do diâmetro;
- Exemplo de limitado;
- Conjuntos abertos;
- Propriedade dos abertos.

5.2 Propriedades do Diâmetro

Exemplo 15. A função

$$\rho_p(x,y) = \frac{||x-y||_p}{1+||x-y||_p}, \quad \forall x, y \in \mathbb{R}^n$$

é uma métrica em \mathbb{R}^n . Para ver isso, comece definindo $f(t) = \frac{t}{1+t}$ e exiba que essa função é crescente, de forma que $f(||x-y||_p \le f(||x-z||_p + ||z-y||_p)$. Com essa métrica, afirmamos que o seguinte ocorre:

$$\mathbb{R}^n = B_1(0)$$
 & $diam(\mathbb{R}^n) \leq 1$.

A inclusão $B_1(0) \subseteq \mathbb{R}^n$ é automática. Por outro lado, seja $y \in \mathbb{R}^n$. Temos

$$\rho_p(y,0) = \frac{||y||_p}{1 + ||y||_p} < 1. \Rightarrow \mathbb{R}^n \subseteq B_1(0).$$

Portanto, \mathbb{R}^n é limitado no espaço métrico (\mathbb{R}^n, ρ_p) , mas não é limitado em (\mathbb{R}^n, d_p) .

Vale uma observação - apesar dessa diferença entre ρ_p e d_p , veremos futuramente que as duas métricas induzem a mesma estrutura de formato do espaço - em outras palavras, a mesma topologia.

Proposição. Seja (X, ρ) um espaço métrico.

- 1) $E \subseteq X$ é limitado se, e somente se, existe r > 0 tal que $E \subseteq B_r(x)$ para todo $x \in E$.
- 2) Se $E \subseteq X$ é limitado e não-vazio, então

$$diam(E) = \inf\{r > 0 : E \subseteq B_r(x), x \in E\}.$$

<u>Prova.</u> $1 \Rightarrow$) A volta é simples, segue das propriedades do supremo. Por outro lado, se E é limitado, então $diam(E) < \infty$. Seja r = 2diam(E) e $B_r(x) \supseteq E$ para todo x em E. De fato, se $e \in E$, temos

$$d(e, x) \le diam(E) < r.$$

 $2 \Rightarrow$) Seja $A = \{r > 0 : E \subseteq B_r(x), x \in E\}$. Mostremos que $diam(E) = \inf(A)$. Se r > diam(E) e $x \notin um$ ponto de E, então

$$d(x,y) \le diam(E) < r \quad \forall y \in E,$$

logo, $E \subseteq B_r(x)$. Assim, o intervalo $(diam(E), \infty) \subseteq A$. Deste modo, $\inf(A) \leq diam(E)$. Por outro lado, se r < diam(E), então existem $x, y \in E$ tais que

$$d(x,y) > r$$
, $y \notin B_r(x)$, & $r \notin A$.

Consequentemente, $(0, diam(E)) \cap A = \emptyset$. Portanto, $diam(E) = \inf(A)$.

<u>Definição.</u> Seja (X,d) um espaço métrico. Um subconjunto $E\subseteq X$ é dito aberto em (X,d) se, para cada x em E, existir $r_x>0$ tal que $B_{r_x}(x)\subseteq E$. \square