P.f micro	$\Omega = \sum_{\text{microstates } s} 1$
Entropy micro	$S = k_B \log \Omega$
Temperature	$rac{1}{T} = rac{\partial S}{\partial E} \Big _{V,N}$
Diff. Form	$dE = TdS - PdV + \mu dN$
Diff. Form	$dF = -SdT - PdV + \mu dN$
Perfect gas	
Entropy	$S = k_B N \left(\log \left(\frac{V}{N} \left(\frac{4\pi mE}{3Nh^2} \right)^{3/2} \right) + \frac{5}{2} \right)$
Energy	$E = \frac{3}{2}Nk_BT$
Calorific Capacity	$C_V = \frac{3}{2}Nk_B$
Pressure	$\frac{N}{V}k_BT$
Chemical potential	$\mu = k_B T \log(N\lambda^3)$
De Broglie Wavelength	$\lambda = \sqrt{\frac{h^2}{2\pi m k_B T}}$ $Z = \frac{1}{N!} \int d\Gamma e^{-\beta \mathcal{H}(\Gamma)}$
Canonical Partition Function	$Z = \frac{1}{N!} \int d\Gamma e^{-\beta \mathcal{H}(\Gamma)}$
Energy	$E = -\frac{\partial}{\partial \beta} \log Z$
Free energy	$F = E - TS$ and $F = -k_B T \log Z$
Calorific Capacity	$\langle (E - \bar{E})^2 \rangle = k_B T^2 C_V$
Grand Canonical Partition Function	$\frac{\langle (E - \bar{E})^2 \rangle = k_B T^2 C_V}{\Theta = \sum_{\text{microstates } s} e^{-\beta (E_s - \mu N_s)} = \sum_N e^{\beta \mu N} Z_N}$
Grand Potential	$\Omega = -k_B T \log \Theta$
Free energy	$\Omega = F - \mu N$
Gibbs Duhem	$\Omega F - \mu N = -pV$
Free enthalpy	$G = F + PV = \mu N$ so $\mu = \frac{G}{N}$
Diff. Enthalpy	$dG = Nd\mu + \mu dN$
Useful Gibbs Duhem	$N\mathrm{d}\mu = -S\mathrm{d}T + V\mathrm{d}P$
Quantum Grand Can. P.F.	$\ln \Theta = -\tau \sum_{k} \ln (1 - \tau e^{\dot{\beta}(\mu - \varepsilon_k)}), \tau = 1 \text{ bosons}, \tau = -1 \text{ fermions}$