# RECORRIDO EN ANCHURA

De un Grafo NO dirigido

Permite encontrar caminos mínimos con el menor número de aristas desde un vértice los demás alcanzables desde él.



**ALBERTO VERDEJO** 

- En ocasiones estamos interesados en encontrar el camino más corto desde un origen s a otro vértice v (o a todos los vértices conectados a s).
- El recorrido en anchura (en inglés, breadth-first search) logra eso: primero visita todos los vértices alcanzables siguiendo una arista (a distancia 1); luego visita todos los vértices alcanzables utilizando dos aristas (a distancia 2); y así sucesivamente.
- Para lograrlo utiliza una cola donde guardar los vértices alcanzados pero que aún no se han explorado sus adyacentes.



|   | V | visitado | anterior          | A qué distancia e origen.  distancia | está cada vértice del |
|---|---|----------|-------------------|--------------------------------------|-----------------------|
| _ |   | Visitado | antendi           | distancia                            |                       |
|   | 0 | F        | D/7.(             | $\rightarrow$                        |                       |
|   | 1 | € 5      | // - //           | 1                                    |                       |
|   | 2 | F        | 1) - ( )          | 1                                    |                       |
|   | 3 | WEL      | '\-\              | 1101                                 |                       |
|   | 4 | F        | 71 <del>-</del> 1 | -                                    |                       |
|   | 5 | DE/      | ' ) l             |                                      |                       |
|   | 6 | OF I     | 77-I              | - 1                                  |                       |
|   |   |          |                   |                                      |                       |







| ٧ | visitado | anterior          | distancia |
|---|----------|-------------------|-----------|
| 0 | TV       | 7/7/              | 0         |
| 1 | F        | // - //           | 1         |
| 2 | F        | /) <del>/</del> / |           |
| 3 | VE/      | 1/-/              | 1101      |
| 4 | F        | 71 <del>-</del> 1 |           |
| 5 | )E/      | ' ) l             |           |
| 6 | F        | 7A I              | -3        |

Cola: 0

Mientras que la cola NO sea vacía, se saca el primero y recorremos sus vértices adyacentes NO visitados.



|                    | ٧              | visitado | anterior          | distancia |
|--------------------|----------------|----------|-------------------|-----------|
| 100                | 0              | T        | 7//               | 0         |
|                    | 1              | F        | // - //           | 1         |
|                    | <del>-</del> 2 | Т        | 0                 | 1         |
|                    | 3              | WE!      | ' -\              | 101       |
| No setabo          | 4              | F        | 71 <del>-</del> 1 |           |
| No estaba visitado | 5              | ()E/     | ' ) l             |           |
|                    | 6              | (F ∫     | 77A I             | 1.7       |
|                    |                |          |                   |           |
| Cola:              | 2              |          |                   |           |



| ٧ | visitado | anterior   | distancia |
|---|----------|------------|-----------|
| 0 | T        | 7/7/       | 0         |
| 1 | F        | / - /      | 1         |
| 2 | Т        | 0          | 1         |
| 3 | VE/      | 11-7       | _         |
| 4 | F        | 41- I      |           |
| 5 | )E/      | ' <u>}</u> |           |
| 6 | OF I     | 74 I       | -3        |





| V | visitado | anterior          | distancia |
|---|----------|-------------------|-----------|
| 0 | TV       | 7/7/              | 0         |
| 1 | T        | 0                 | 1         |
| 2 | T        | 0                 | 1         |
| 3 | VE/      | '\-\              | 1101      |
| 4 | F        | 41 <del>-</del> 1 |           |
| 5 | )E/      | ' ) l             |           |
| 6 | F        | <u> </u>          | 1.7       |
|   |          |                   |           |

Cola: 2 1



|         | ٧   | visitado | anterior          | distancia |
|---------|-----|----------|-------------------|-----------|
| lm      | 0   | TUL      | D/7//             | 0         |
|         | 1   | T.       | 0                 | 1         |
|         | 2   | T        | 0                 | 1         |
|         | 3   | W        | 1/-/              | 1101      |
|         | 4   | F        | 71 <del>-</del> 1 |           |
|         | 5   | I        | 0                 | 1         |
|         | 6   | HT)      | 71                |           |
| • Cola: | 2 1 | 5        |                   |           |

#### TURNO DE VISITAR LOS ADYACENTES DEL 2.



| ٧ | visitado | anterior          | distancia |
|---|----------|-------------------|-----------|
| 0 | TV       | 7/7/              | 0         |
| 1 | Ţ        | 0                 | 1         |
| 2 | T        | 0                 | 1         |
| 3 | VE/      | '\-\              | 1101      |
| 4 | F        | 71 <del>-</del> 1 |           |
| 5 | M        | 0                 | 1         |
| 6 | F        | 77 I              | 1.7       |
|   |          |                   |           |

Cola: 2 1 5



| ٧ | visitado | anterior          | distancia |
|---|----------|-------------------|-----------|
| 0 | TV       | D/ <u>-</u> //    | 0         |
| 1 |          | 0                 | 1         |
| 2 | T        | 0                 | 1         |
| 3 | V5/      | '\-\              | 1101      |
| 4 | F        | 41 <del>-</del> 1 | -         |
| 5 | M        | 0                 | 1         |
| 6 | _(F   '  | 77A I             | - 1       |
|   |          |                   |           |

Cola: 2 1 5



| ٧ | visitado | anterior          | distancia |
|---|----------|-------------------|-----------|
| 0 | TV       | 7/7/              | 0         |
| 1 | Ţ        | 0                 | 1         |
| 2 | T        | 0                 | 1         |
| 3 | VEL      | 1/-/              | 1101      |
| 4 | F        | 71 <del>-</del> 1 |           |
| 5 | M        | 0                 | 1         |
| 6 | OF I     | 71                |           |

Cola: 1 5



|       | V   | visitado | anterior | distancia |                                          |
|-------|-----|----------|----------|-----------|------------------------------------------|
|       | 0   | TV       | D/4/     | 0 <       |                                          |
|       | 1   | T.       | 0        | 1         | Dos aristas<br>lo separan<br>del origen. |
|       | 2   | T        | 0        | 1         | del origen.                              |
|       | 3   | 7/5/     | 2        | 2         | ,                                        |
|       | 4   | F        | _        | _         |                                          |
|       | 5   | )I/      | 0        | 1         |                                          |
|       | 6   | () F   ' | 77A I    |           |                                          |
|       |     |          |          |           |                                          |
| Cola: | 1 5 | 5 3      |          |           |                                          |





| ٧ | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | T        | 7/7/(    | 0         |
| 1 | T.       | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | V5/      | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 | M        | 0        | 1         |
| 6 | (F /     | 77 I     |           |
|   |          |          |           |

Cola: 1 5 3 4



| visitado | anterior    | distancia               |
|----------|-------------|-------------------------|
| TV       | 7/7/        | 0                       |
| Ţ        | 0           | 1                       |
| Т        | 0           | 1                       |
| ひまん      | 2           | 2                       |
| T        | 2           | 2                       |
| M        | 0           | 1                       |
| /F /     | <u> </u>    | -3                      |
|          | T<br>T<br>T | T – T 0 T 0 T 2 T 2 T 0 |

Cola: 5 3 4



| V | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | TV       | 7/7/     | 0         |
| 1 | τ        | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | V.F.     | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 | M        | 0        | 1         |
| 6 | F        | . TA 1   | 17        |

Cola: 5 3 4



| V | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | T        | 7//      | 0         |
| 1 | T        | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | V.F.     | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 |          | 0        | 1         |
| 6 | F        | 74 I     | 1.7       |

Cola: 3 4



| ٧ | visitado     | anterior | distancia |
|---|--------------|----------|-----------|
| 0 | TV           | D/4/     | 0         |
| 1 | $\mathbf{t}$ | 0        | 1         |
| 2 | T            | 0        | 1         |
| 3 | 7/5/         | 2        | 2         |
| 4 | T            | 2        | 2         |
| 5 | 71/          | 0        | 1         |
| 6 | F /          | 74 I     | 1.7       |

Cola: 3 4



| V   | visitado | anterior | distancia |
|-----|----------|----------|-----------|
| 0   | TV       | D/4/     | 0         |
| _ 1 | T .      | 0        | 1         |
| 2   | T        | 0        | 1         |
| 3   | 7/5/     | 2        | 2         |
| 4   | T        | 2        | 2         |
| 5   | M        | 0        | 1         |
| 6   | F        | 74 I     | 1.7       |

sacamos el 4 de la cola y visitamos su adyacente.



| V              | visitado | anterior | distancia |
|----------------|----------|----------|-----------|
| 0              | TV       | DZ((     | 0         |
| 1              |          | 0        | 1         |
| 2              | T        | 0        | 1         |
| 3              | 7/5/     | 2        | 2         |
| 4              | T        | 2        | 2         |
| 5              | M        | 0        | 1         |
| <del>-</del> 6 | F        | <u> </u> | 13        |
|                |          |          |           |



| ٧ | visitado     | anterior | distancia |
|---|--------------|----------|-----------|
| 0 | TV           | 7//      | 0         |
| 1 | $\mathbf{t}$ | 0        | 1         |
| 2 | T            | 0        | 1         |
| 3 | V.F.         | 2        | 2         |
| 4 | T            | 2        | 2         |
| 5 |              | 0        | 1         |
| 6 | F            | 74 I     |           |



| ٧ | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | T/V      | 7//      | 0         |
| 1 | T.       | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | 7/5/     | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 | M        | 0        | 1         |
| 6 | (T)      | 4        | 3         |
|   |          |          |           |



| ٧ | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | T        | 7//      | 0         |
| 1 | T        | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | 7/5/     | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 | )II      | 0        | 1         |
| 6 | T I      | 4        | 3         |
|   |          |          |           |



| V | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | T        | 7/7/     | 0         |
| 1 | T .      | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | 7/5/     | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 | M        | 0        | 1         |
| 6 | (T)      | 4        | 3         |
|   |          |          |           |



| ٧ | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | T        | 7//      | 0         |
| 1 | T        | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | 7/5/     | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 | )II      | 0        | 1         |
| 6 | T I      | 4        | 3         |
|   |          |          |           |



| ٧ | visitado | anterior | distancia |
|---|----------|----------|-----------|
| 0 | TV       | 7//      | 0         |
| 1 | T.       | 0        | 1         |
| 2 | T        | 0        | 1         |
| 3 | 7/J      | 2        | 2         |
| 4 | T        | 2        | 2         |
| 5 |          | 0        | 1         |
| 6 | <b>T</b> | 4        | (3)       |

Cola:

Como el grafo es conexo hemos conseguido visitar todos los vértices.

```
class CaminoMasCorto
public:
                                           orgien
                                                         vector de visitados.
   CaminoMasCorto(Grafo const& g, int s) : visit(g.V(), false),
                                                     ant(g.V()), dist(g.V()), s(s) {
       bfs(g); Recorrido en ANCHURA.
                                                      apuntar los anteriores
                                                                      vector de distancias
                                                                                       origen
   // ¿hay camino del origen a v?
   bool hayCamino(int v) const {
      return visit[v];
                           Si hay camino es que esta marcado.
```

```
// número de aristas entre s y v
int distancia(int v) const {
   return dist[v]; So esta marcado como visitado podemos saber a qué distancia esta-
// devuelve el camino más corto desde el origen a v (si existe)
Camino camino(int v) const {
    if (!hayCamino(v)) throw std::domain_error("No existe camino");
    Camino cam;
    for (int x = v; x != s; x = ant[x])
         cam.push_front(x);
    cam.push_front(s);
                                                De v hasta el anterior hasta llegar a s.
    return cam;
```

```
private:
    std::vector<bool> visit; // visit[v] = ¿hay camino de s a v?
    std::vector<int> ant; // ant[v] = último vértice antes de llegar a v
    std::vector<int> dist; // dist[v] = aristas en el camino s-v más corto
    int s;
```

```
void bfs(Grafo const& g) {
    std::queue<int> q; cola
    dist[s] = 0; visit[s] = true; origen distancia 0 y visitado
    q.push(s); Añade a la cola el origen
    while (!q.empty()) { Mientras que la cola NO sea vacía...
        int v = q.front(); q.pop(); Lo eliminamos de la cola
        for (int w : g.ady(v)) { Recorremos todos los adyacentes.
            if (!visit[w]) { Si no están visitados
                ant[w] = v; dist[w] = dist[v] + 1; visit[w] = true;
                q.push(w);
                                                 Están a una distancia 1 + que v y se marcan como visitados, y los
                                                 metemos en la colita.
```

Cada vértice se añade solo 1 vez a la cola. Cuando sale de la cola se recorren los adyacentes, esto es lineal en el número de aristas. A esto se le suma el recorrer todos los vertices a través del for. Por tanto O(V+A)

#### Recorrido en anchura: corrección y coste

El recorrido en anchura encuentra caminos más cortos a todos los vértices conectados con el origen s, en un tiempo en O(V + A) (en el caso peor).



