Review3: Introduction to Elliptic Curves and Modular Forms

Lee Jinhyeong

Abstract

Last assignment, we defined g_2, g_3, G_4, G_6 as coefficients of elliptic functions. However, these functions can be examples of modular forms for Γ . In this assignment we are going to calculate some examples of modular forms.

Recall the definition and properties of modular forms and cusp forms.

Definition 1. Let f(z) be a holomorphic function on \mathbb{H} and $k \in \mathbb{Z}$. The function f(z) is a modular form of weight k if $f(\tau)$ is holomorphic at every cusps and $f(\gamma\tau)(c\tau+d)^{-k}=f(\tau)$ for all $\gamma \in \Gamma$. In addition, if $f(\tau)$ vanishes at all cusps, the function f(z) is called a cusp form. Also we denote the set of modular forms of weight k as $M_k(\Gamma)$, denote the set of cusp forms of weight k as $S_k(\Gamma)$

Proposition 1. If weight is even(= 2k), then $f(\tau)(d\tau)^{\bigotimes k}$ is invariant.

Proof. This is from the fact that $\frac{d\gamma\tau}{d\tau} = \frac{d}{d\tau}(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^{-2}$. Thus, we have $f(\tau) = (c\tau+d)^{-2k}f(\gamma\tau) = (\frac{d\gamma\tau}{d\tau})^k f(\gamma\tau)$.

Remark that since $\overline{\Gamma}$ is generated by $S=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ and $T=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, the definition of modular forms can be represented as $f(S\tau)=f(\tau)$ and $f(T\tau)=(-\tau)^kf(\tau)$. It is equivalent to $f(-\frac{1}{\tau})=(\tau)^kf(\tau)$ and $f(\tau+1)=f(\tau)$. We can understand the Eisenstein series as an example

Definition 2. Let k be an even integer greater than 2, define the Eisenstein series as

$$G_k(\tau) = \sum_{m,n}' \frac{1}{(m\tau + n)^k}$$

, where $\sum_{m,n}'$ implies the summation for every integers m,n except (0,0).

It is the same as the definition of $G_k(L) = \sum_{m,n}^{\prime} \frac{1}{(m\omega_1 + n\omega_2)^k}$ where L is the lattice generated by $1, \tau$.

Proposition 2. $G_k \in M_k(\Gamma)$

of modular forms.

Proof. First, k > 2 implies $G_k(\tau)$ converges absolutely and uniformly on compact sets. Thus $G_k(\tau)$ defines holomorphic functions on \mathbb{H} . We can easily check that $G_k(\tau + 1) = G_k(\tau)$. Also we have

$$\lim_{\tau \to i\infty} \sum_{m,n}' (m\tau + n)^{-k} = \sum_{n \neq 0} n^{-k} = 2\zeta(k) < \infty.$$

Thus, $f(\tau)$ is holomorphic at ∞ . Also, $\tau^{-k}G_k(-\frac{1}{\tau}) = \sum_{m,n}' (-m+n\tau)^{-k} = G_k(\tau)$. Thus, $G_k(\tau) \in M_k(\Gamma)$.

Since $f(\tau)$ is meromorphic at infinity, the Fourier expansion of $f(\tau) = \sum_{n \in \mathbb{Z}} a_n q^n$ has at most finite non-zero a_n 's for negative n's, where $q = e^{2\pi i \tau}$. This expansion is called "q-expansion" of modular form.

Proposition 3. $G_k(\tau)$ has q-expansion

$$G_k(\tau) = 2\zeta(k) \left(1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n \right)$$

where B_k implies Bernoulli numbers, i.e. $\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!}$.

Proof. We have $\pi \cot(\pi a) = \frac{1}{a} + \sum_{n=1}^{\infty} \left(\frac{1}{a+n} + \frac{1}{a-n} \right) = \frac{1}{a} + \sum_{n \in \mathbb{N}} \frac{2a}{a^2 - n^2}$. By differentiate both sides, we get $\sum_{n \in \mathbb{Z}} \frac{1}{(a+n)^k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{n \in \mathbb{N}} n^{k-1} e^{2\pi i n a}$.

Also, we have $a\pi \cot(\pi a) = a\pi i \left(\frac{e^{\pi i a} + e^{-\pi i a}}{e^{\pi i a} - e^{-\pi i a}}\right) = a\pi i \left(1 + \frac{2}{e^{2\pi i a} - 1}\right)$. By replacing $2\pi i a$ by x, we get $a\pi \cot(\pi a) = \frac{x}{2} + \frac{x}{e^x - 1} = \frac{x}{2} + \sum_{k=0}^{\infty} B_k \frac{x^k}{k!}$. Compare with the formula

$$a\pi \cot(\pi a) = 1 - \frac{2}{n^2} \sum_{n \in \mathbb{N}} \frac{a^2}{1 - (\frac{a^2}{n^2})} = 1 - 2 \sum_{n \ge 1} \sum_{k \ge 1} \frac{a^{2k}}{n^{2k}}$$

, we get $\zeta(k) = -\frac{(2\pi i)^k}{2} \frac{B_k}{k!}$ for positive even k. Finally, replacing a by $m\tau$, we get

$$\sum_{n \in \mathbb{Z}} \frac{1}{(m\tau + n)^k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{n \in \mathbb{N}} n^{k-1} e^{2\pi i n m \tau} = -\frac{2k}{B_k} \zeta(k) \sum_{n \in \mathbb{N}} n^{k-1} q^{nm} = -\frac{2k}{B_k} \zeta(k) \sum_{n \in \mathbb{N}} \sum_{d \mid n} d^{k-1} q^n$$

$$= -\frac{2k}{B_k} \zeta(k) \sum_{n \in \mathbb{N}} \sigma_{k-1}(n) q^n, \text{ where } \sigma_{k-1}(n) = \sum_{d|n} d^{k-1}.$$

Thus, it is natural to define "normalized Eisenstein series" as $E_k(\tau) = \frac{1}{2\zeta(k)}G_k(\tau)$.

Proposition 4. The normalized Eisenstein series, $E_k(\tau)$ can be expressed as

$$E_k(\tau) = \frac{1}{2} \sum_{(m,n)=1} \frac{1}{(m\tau + n)^k}.$$

Proof. By absolute convergence of the series, we can change the order of summation freely. Thus,

$$\zeta(k) \sum_{(m,n)=1} \frac{1}{(m\tau+n)^k} = \sum_{d\in\mathbb{N}} \frac{1}{d^k} \sum_{(m,n)=1} \frac{1}{(m\tau+n)^k} = \sum_{d\in\mathbb{N}} \sum_{(m,n)=1} \frac{1}{(dm\tau+dn)^k}$$
$$= \sum_{m,n}' \frac{1}{(m\tau+n)^k} = G_k(\tau).$$

Recall that we have defined $g_2(\tau)$ and $g_3(\tau)$ from differential equation of Weierstrass \mathfrak{P} -function, $\mathfrak{P}'(z)^2 = f(\mathfrak{P}(z))$ where $f(x) = 4x^3 - g_2x - g_3$.

Proposition 5. Of course, $g_2(\tau)$ and $g_3(\tau)$ are modular forms, and $g_2(\tau) = 60G_4(\tau) = \frac{4}{3}\pi^4 E_4(\tau)$, $g_3(\tau) = 140G_6(\tau) = \frac{8}{27}\pi^6 E_6(\tau)$.

Since for nontrivial lattices, the equation $f(x) = 4x^3 - g_2x - g_3$ should have distinct solutions, which means the discriminant is nonvanishing for nontrivial τ . Thus we can define the discriminant modular form $\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2$. Then we can check it is not a trivial form and the constant term is zero. Thus $\Delta(\tau)$ is a cusp form.

Proposition 6. $\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2 = \frac{(2\pi)^{12}}{1728} (E_4(\tau)^3 - E_6(\tau)^2)$ is a cusp form of weight 12.

In addition we can check easily from $E_4(\tau) = 1 + 240 \sum_{n \in \mathbb{N}} \sigma_3(n) q^n$ and $E_6(\tau) = 1 - 504 \sum_{n \in \mathbb{N}} \sigma_5(n) q^n$, $(2\pi)^{-12} \Delta(\tau)$ has rational q-expansion with (the coefficient of q) = 1.

In next assignment, we are going to find $M_k(\Gamma)$ and $S_k(\Gamma)$ for the case $\Gamma = SL_2(\mathbb{Z})$ and check that the discriminant modular form is a cusp form of the smallest weight.