TOÁN RỜI RẠC PHƯƠNG PHÁP ĐẾM

NGUYỄN HẢI TRIỀU¹

 $^{1}\mathrm{B}$ ộ môn Kỹ thuật phần mềm, Khoa Công nghệ thông tin, Trường ĐH Nha Trang

NhaTrang, February 2022

Tổng quan

- 1 Các nguyên lý đếm cơ bản
- 2 Giải tích tổ hợp
- 3 Chỉnh hợp và tổ hợp suy rộng
- 4 Sinh các hoán vị và tổ hợp
- 6 Hệ thức truy hồi
- 6 Hàm sinh

Hệ thức truy hồi

Định nghĩa 5.1

Xét dãy số $\{a_1, a_2, ..., a_n, ...\}$ trong đó a_n là phần tử thứ n của dãy số. Hệ thức truy hồi của dãy số $\{a_n\}$ là hệ thức biểu diễn số hạng tổng quát a_n qua một hay nhiều số hạng đứng trước nó. Nghiệm của hệ thức truy hồi của $\{a_n\}$ là công thức biểu diễn của a_n qua giá trị của n.

Ví dụ 5.1

Một quần thể Corona virus sinh trưởng với số lượng tăng gấp đôi sau mỗi giờ. Nếu ban đầu chỉ có 1 cá thể thì sau 24 giờ số lượng của chúng là bao nhiêu?

Giải ví dụ 5.1

Số lượng cá thể virus theo giờ là một dãy số: 1, 2, 4, 8, 16,...Để xác định hệ thức truy hồi cho dãy số này, gọi a_n là số virus sau n giờ $(n \ge 0)$, khi đó a_{n-1} là số virus sau n-1 giờ. Ta có hệ thức sau:

$$\begin{cases} a_0 = 1, \\ a_n = 2a_{n-1}. \end{cases}$$

Công thức nghiệm cho dãy $\{a_n\}$ là

$$a_n = 2a_{n-1} = 2^2 a_{n-2} = 2^3 a_{n-3} = \dots = 2^n a_0$$

Trong đó, $a_0 = 1$ được gọi là điều kiện ban đầu hay điều kiện dừng của biểu thức đệ quy, $a_n = 2a_{n-1}$, (n = 1, 2, 3...) được gọi là thành phần truy hồi hay thành phần đệ quy.

Ví dụ 5.2

Xác định số hạng tiếp theo của dãy số 1, 3, 7, 15, ?

Ví dụ 5.2

Xác định số hạng tiếp theo của dãy số 1, 3, 7, 15, ? Gợi ý: Hệ thức truy hồi cho dãy là:

$$\begin{cases} a_1 = 1, \\ a_n = 2a_{n-1} + 1. \end{cases}$$

Công thức nghiệm của dãy là $a_n = 2^n - 1, n = 1, 2, 3...$ Vậy $a_5 = 31$

Giải hệ thức truy hồi

Các bài toán đếm thường được biểu diễn bằng một hệ thức truy hồi. Từ hệ thức truy hồi đó làm thể nào để xác định công thức nghiệm của nó? Và một hệ thức truy hồi có thể có nhiều nghiệm khác nhau.

Ví dụ 5.3

Chứng minh rằng $a_n = 5$, $a_n = 3n$ là các nghiệm của hệ thức truy hồi $a_n = 2a_{n-1} - a_{n-2}$.

Giải hệ thức truy hồi thường sử dụng 2 cách sau:

- Phương pháp lặp tìm nghiệm của hệ thức truy hồi
- Phương pháp tổng quát tìm nghiệm của hệ thức truy hồi

Phương pháp lặp tìm nghiệm

Ví dụ 5.4

Bài toán lãi kép: một người gửi M=10000 USD vào tài khoản của mình với lãi suất x=10% mỗi năm. Hỏi, sau 30 năm anh ta có bao nhiều tiền trong tài khoản?

Phương pháp lặp tìm nghiệm

Ví dụ 5.4

Bài toán lãi kép: một người gửi M=10000 USD vào tài khoản của mình với lãi suất x=10% mỗi năm. Hỏi, sau 30 năm anh ta có bao nhiều tiền trong tài khoản?

Gọi a_n là số tiền có trong tài khoản sau n năm. Số tiền này bằng số tiền trong tài khoản của năm thứ n-1 là a_{n-1} cộng với tiền lãi của năm thứ n, tức là xa_{n-1} . Vậy ta nhận được hệ thức truy hồi sau:

$$a_0 = M$$
, $a_n = (1+x)a_{n-1}$, $n = 1, 2, 3...$

Bằng phương pháp lặp các phần tử của dãy từ hệ thức truy hồi, ta thu được nghiệm như sau

$$a_n = (1+x)^n M$$

Phương pháp lặp tìm nghiêm

Ví du 5.5

Bài toán Tháp Hà Nôi: có 3 tháp A, B, C và n đĩa với đường kính đôi một khác nhau. Nguyên tắc đặt đĩa vào tháp là: mỗi đĩa chỉ được chồng lên đĩa lớn hơn nó và mỗi lần chỉ chuyển một đĩa từ tháp này sang tháp khác. Hãy xác định số lần chuyển n > 1 đĩa ở tháp A sang tháp C thông qua tháp trung gian B.

Bài toán Tháp Hà Nội

n = 1

Gọi a_n là số lần phải chuyển n đĩa từ A sang C mượn B làm trung gian. Với n=1 thì $a_1=1$ là điều đầu của dãy truy hồi.

n > 1

Nguyên tắc chuyển như sau:

- ta cần chuyển n-1 đĩa trên cùng (để lại đĩa to nhất) từ A sang B mượn C làm trung gian, số lần phải chuyển là a_{n-1} .
- chuyển đĩa to nhất còn lại ở A sang C mất 1 lần chuyển..
- \bullet chuyển n-1 đĩa từ B sang C mượn A làm trung gian, số lần phải chuyển là a_{n-1}

Bài toán Tháp Hà Nội

n > 1

Như vậy, số lần chuyển n đĩa từ A sang C mượn B làm trung gian là

$$a_n = 2a_{n-1} + 1$$
, $a_1 = 1$, $n \ge 1$.

Sử dụng phép lặp các phần tử của hệ thức trên:

$$a_1 = 1$$

$$a_2 = 2a_1 + 1 = 2 + 1$$

$$a_3 = 2a_2 + 1 = 2(2+1) + 1 = 2^2 + 2 + 1$$

Một cách qui nạp, ta được:

$$a_n = 2^{n-1} + 2^{n-2} + \dots + 2 + 1 = 2^n - 1, \quad n \ge 1.$$

Định nghĩa hàm sinh

Trong thực tế, một số bài toán rời rạc về dãy số, tập hợp thường rất khó giải quyết. Vì vậy chúng ta có thể sử dụng hàm sinh chuyển những bài toán này thành những bài toán về hàm số để dễ dàng giải quyết hơn.

Định nghĩa 6.1

Hàm sinh thường của dãy số vô hạn $a_n = \{a_0, a_1, a_2, ...\}, n \ge 0$ là chuỗi

$$G(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

Định nghĩa hàm sinh

Nếu dãy là hữu hạn $a_m=a_0,a_1,...,a_m$ thì các hệ số từ a_{m+1} trở đi sẽ bằng 0. Hàm sinh của dãy trở thành đa thức bậc m.

Định nghĩa 6.2

Sự tương ứng giữa một dãy số và hàm sinh bằng dấu được kí hiệu bằng dấu \Leftrightarrow

Ví dụ 6.1

- $\{0, 0, 0, 0, ..., \} \Leftrightarrow 0 + 0.x + 0.x^2 + 0.x^3 + ... = 0$
- $\{3, 4, 1, 8, 0, ..., \}$ $\Leftrightarrow 3 + 4.x + 1.x^2 + 8.x^3 + 0.x^4 + ... = 8x^3 + x^2 + 4x + 3$

Ví dụ 6.2

Công thức tính tổng của cấp số nhân lùi vô hạn có dạng

$$1 + z + z^2 + \dots = \frac{1}{1 - z}$$

 $với \ |z| < 1$. Công thức này cho chúng ta công thức tường minh cho hàm sinh của các dãy số

- $\{1, 1, 1, 1, ...\} \Leftrightarrow 1 + x + x^2 + x^3 + ... = 1/(1-x)$
- $\{1, -1, 1, -1, ...\} \Leftrightarrow 1 x + x^2 x^3 + ... = 1/(1+x)$
- $\{1, a, a^2, a^3, ...\} \Leftrightarrow 1 + ax + a^2x^2 + a^3x^3 + ... = 1/(1 ax)$
- $\{1, 0, 1, 0, ...\} \Leftrightarrow 1 + x^2 + x^4 + ... = 1/(1 x^2)$

Ví dụ 6.3

Tìm công thức tổng quát cho dãy $(y_n, n \ge 0)$ với $y_0 = 1$ và $y_n = ay_{n-1} + b^n, \forall n \ge 1.$

Ví dụ 6.3

Tìm công thức tổng quát cho dãy $(y_n, n \ge 0)$ với $y_0 = 1$ và $y_n = ay_{n-1} + b^n, \forall n \ge 1.$

 $G
otin \dot{y}$

- **1** Đặt hàm sinh của đãy y_n là $G(x) = \sum_{n=0}^{\infty} y_n x^n$
- ② Sau một vài biến đổi, sử dụng phương pháp đồng nhất hệ số, ta thu được hàm sinh tổng quát

$$G(x) = \sum_{n=0}^{\infty} \frac{a^{n+1} - b^{n+1}}{a - b} x^n$$

3 Vậy công thức tổng quát của dãy

$$y_n = \frac{a^{n+1} - b^{n+1}}{a - b}$$

Các phép toán trên hàm sinh

Các phép toán thực hiện trên dãy số thì cũng có thể thực hiện trên hàm sinh tương ứng của chúng. Cho F(x), G(x) là hàm sinh của a_n và b_n , các phép toán:

nhân với hằng số

$$cF(x) = \sum_{n=0}^{\infty} ca_n x^n$$

Ví dụ 6.4

$$\begin{array}{l} a_n = \{1, 1, 1, 1, \ldots\} \Leftrightarrow \frac{1}{1-x} \Rightarrow 2a_n = \{2, 2, 2, 2, \ldots\} \Leftrightarrow \frac{2}{1-x} \\ a_n = \{1, a, a^2, a^3\} \Leftrightarrow \frac{1}{1-ax} \Rightarrow aa_n = \{a, a^2, 3a^3, 3a^4\} \Leftrightarrow \frac{a}{1-ax} \end{array}$$

 cộng hai hàm sinh tương ứng với việc cộng các số hạng của dãy số theo đúng chỉ số

$$F(x) + G(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n$$

Ví dụ 6.5

$$a_n = \{1, 1, 1, 1, ...\} \Leftrightarrow F(x) = \frac{1}{1-x}; \quad b_n = \{1, -1, 1, -1, ...\} \Leftrightarrow G(x) = \frac{1}{1+x}$$

$$F(x) + G(x) = \frac{2}{1 - x^2} \Leftrightarrow a_n + b_n = \{2, 0, 2, 0, ...\}$$

 \bullet dịch chuyển sang phải k bước bằng cách thêm k số 0 vào đầu.

$$x^k F(x) = \sum_{n=k}^{\infty} a_{n-k} x^n$$

Ví dụ 6.6

Cho $a_n = \{1, 1, 1, 1, ...\} \Leftrightarrow \frac{1}{1-x}$, dịch chuyển a_n sang phải k bước: $a_n = \{0, 0, ..., 0, 1, 1, 1, 1\} \Leftrightarrow x^k(1 + x + x^2 + x^3) = \frac{x^k}{1-x}$

Nhận xét: thêm k số 0 vào đầu dãy số tương ứng với việc hàm sinh nhân với x^k .

• đạo hàm: nếu dãy $a_n = \{a_0, a_1, a_2, ...\} \Leftrightarrow F(x)$ thì

$$\frac{dF(x)}{dx} = \sum_{n=1}^{\infty} n a_n x^{n-1} \Leftrightarrow \{a_1, 2a_2, 3a_3, ...\}$$

Ví du 6.7

$$Tinh \frac{d}{dx} \left[\{1, 1, 1, 1, ...\} \Leftrightarrow 1 + x + x^2 + x^3 + ... = \frac{1}{1 - x} \right]$$
$$1 + 2x + 3x^2 + 4x^3 + ... = \frac{1}{(1 - x)^2}$$
$$\{1, 2, 3, 4, ...\} \Leftrightarrow \frac{1}{(1 - x)^2}$$

Ta tìm được hàm sinh cho dãy số $\{1, 2, 3, 4, ...\}$

• quy tắc xoắn (nhân): cho hai chuỗi hội tụ a_n , b_n . Chuỗi c_n được gọi là chuỗi tích của 2 chuỗi a_n , b_n khi

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Vậy chuỗi lũy thừa tích của hai hàm sinh F(x) và G(x) là

$$C(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n.$$

Để tìm dãy số a_n , ta xét hàm sinh bởi dãy a_n là $F(x) = \sum_{n=0}^{\infty} a_n x^n$. Dựa vào đặc điểm truy hồi của dãy a_n ta tìm được F(x), sau đó sử dụng đồng nhất thức sẽ thu được dãy a_n .

Dãy số Fibonacci

Dãy Fibonacci được xác định bởi công thức truy hồi

$$f_0 = 0;$$
 $f_1 = 1;$ $f_n = f_{n-1} + f_{n-2},$ $\forall n \ge 2$

Để tìm công thức tổng quát của dãy Fibonacci, ta sẽ thực hiện 2 bước sau:

- 1 Tìm hàm sinh cho dãy số Fibonacci.
- 2 Tìm công thức tổng quát cho các hệ số của hàm sinh.

Dãy số Fibonacci

Tìm hàm sinh cho dãy số Fibonacci:

$$F(x) = \sum_{n=0}^{\infty} f_n x^n = f_0 + f_1 x + \sum_{n=2}^{\infty} (f_{n-1} + f_{n-2}) x^n$$

$$= x + x \sum_{n=2}^{\infty} f_{n-1} x^{n-1} + x^2 \sum_{n=2}^{\infty} f_{n-2} x^{n-2}$$

$$= x + x \sum_{n=1}^{\infty} f_n x^n + x^2 \sum_{n=0}^{\infty} f_n x^n$$

$$= x + x F(x) + x^2 F(x)$$

$$\Rightarrow F(x) = \frac{x}{1 - x - x^2}$$

Dãy số Fibonacci

Tìm công thức tổng quát cho các hệ số của hàm sinh: sử dụng phương pháp đồng nhất hệ số, phân tích hàm F(x) thành tổng của hai phân số. Đặt mẫu của F(x)

$$1 - x - x^2 = (1 - \alpha x)(1 - \beta x)$$

Giải hệ phương trình $\alpha+\beta=-1$, $\alpha\beta=-1$, ta được $\alpha=(1+\sqrt{5})/2$, $\beta=(1-\sqrt{5})/2$ và $\alpha-\beta=\sqrt{5}$. Hàm sinh được viết lại như sau

$$F(x) = \frac{1}{\alpha - \beta} \left(\frac{1}{1 - \alpha x} - \frac{1}{1 - \beta x} \right) = \frac{1}{\sqrt{5}} \sum_{n=0}^{\infty} (\alpha^n - \beta^n) x^n$$

Dãy số Fibonacci

Công thức tính số hạng tổng quát của dãy Fibonacci là

$$f_n = \frac{1}{\sqrt{5}} \left(\alpha^n - \beta^n \right)$$
$$= \frac{1}{\sqrt{5}} \left[\left(\frac{(1+\sqrt{5})}{2} \right)^n - \left(\frac{(1-\sqrt{5})}{2} \right)^n \right]$$

Một số dãy truy hồi loại khác

Bài tập nâng cao

Tìm số hạng tổng quát của dãy x_n thỏa mãn

$$\begin{cases} x_0 = x_1 = 0, \\ x_{n+2} - 6x_{n+1} + 9x_n = 2^n + n \end{cases}$$

 $G\phi i \ \acute{y}: f(x) = \frac{x^2}{(1-3x)^2} \left(\frac{1}{1-2x} + \frac{x}{(1-x)^2}\right)$. Công thức tính số hạng tổng quát của dãy là:

$$x_n = \frac{2^{n+2} + n + 1 + 5(n-3)3^n}{4}$$

Một số dãy truy hồi loại khác

Bài tập nâng cao

Tìm dãy a_n thỏa mãn

$$\begin{cases} a_0 = 0, & a_1 = 2 \\ a_{n+2} = -4a_{n+1} - 8a_n \end{cases}$$

 $G\phi i \ \acute{y}: f = \frac{1}{2i} \sum_{n\geq 0} \left[(-2+2i)^n - (-2-2i)^n \right] x^n$. Công thức tính số hạng tổng quát của dãy là:

$$a_n = \frac{(-2+2i)^n - (-2-2i)^n}{2i} = (-2\sqrt{2})^n \sin\frac{n\pi}{4}$$

Ý tưởng dùng hàm sinh của những bài toán đếm là đi tìm hệ số của x_k trong khai triển của hàm sinh với k là số phần tử được chọn ra từ n đối tượng với điều kiện ràng buộc cho trước.

Bài toán chọn các phần tử phân biệt

Có bao nhiêu cách chọn k phần tử phân biệt từ tập hợp n phần tử bằng cách sử dụng hàm sinh. Để giải quyết bài toán này, đầu tiên ta hãy xét tập hợp có một phần tử $\{a_1\}$:

1 cách chọn 0 phần tử

1 cách chọn 1 phần tử

0 cách chọn 2 phần tử trở lên

Vậy hàm sinh cho số cách chọn k phần tử từ tập $\{a_1\}$ là 1+x.

Bài toán chọn các phần tử phân biệt

Tiếp tục xét tập 2 phần tử $\{a_1, a_2\}$ ta có:

1 cách chọn 0 phần tử

2 cách chọn 1 phần tử

1 cách chọn 2 phần tử

0 cách chọn 3 phần tử trở lên

Hàm sinh cho số cách chọn k phần tử từ tập $\{a_1, a_2\}$ là:

$$1 + 2x + x^2 = (1+x)^2 = (1+x)(1+x)$$

Tiếp tục áp dụng quy tắc này ta sẽ thu được hàm sinh cho số cách chọn các phần tử từ tập n phần tử:

$$(1+x)(1+x)...(1+x) = (1+x)^n$$

Bài toán chọn các phần tử phân biệt

Như vậy hệ số của x^n trong $(1+x)^n$ là C_n^k (trong khai triển đa thức phần trước đã học) và bằng số cách chọn k phần tử phân biệt từ tập n phần tử.

Ví dụ 6.8

Trong một buổi quyên góp sách cho các trẻ em nghèo của Đại học Nha Trang, chỉ tiêu của Hội sinh viên đề ra là phải quyên góp được 10 quyển sách. Có 15 bạn quyên góp sách với 13 người đầu chỉ có 1 quyển sách (nghĩa là tối đa quyên góp được 1 quyển), 2 người sau chỉ có 2 quyển sách (nghĩa là tối đa quyên góp được 2 quyển). Tìm số cách quyên góp sách bằng cách sử dụng hàm sinh sao cho thỏa yêu cầu của Hội sinh viên.

Hướng dẫn ví dụ 6.8

 $F(x)=(1+x)^{13},\,G(x)=(1+x+x^2)^2$ lần lượt là hàm sinh cho cách chọn tối đa 1 quyển sách từ 13 người và 2 quyển sách từ 2 người. Từ đó ta có cách chọn ra 10 quyển sách thỏa yêu cầu đề bài là hệ số của x^{10} trong khai triển

$$F(x)G(x) = (1+x)^{13}(1+x+x^2)^2$$
$$= \sum_{i=0}^{13} C_{13}^i x^{13-i} \cdot (x^4 + 2x^3 + 3x^2 + 2x + 1)$$

Từ đó suy ra được hệ số của x^{10} là

$$C_{13}^3 + 2C_{13}^4 + 3C_{13}^5 + 2C_{13}^6 + C_{13}^7$$

Tài liệu tham khảo

- L.V. Luyen
 Bài giảng Toán Rời Rạc. Trường DH KHTN Tp.HCM.
 (2018), chương 3.
- Giáo trình Toán rời rạc Giáo trình Toán Rời Rạc. *Trường ĐHSP Huế. (2003), 22-35.*
- N.T. Nhựt Bài giảng Toán Rời Rạc. *Trường ĐH KHTN Tp.HCM. (2011)*.