Higher-Order unification for free

Reusing the meta-language unification for the object language

Fissore Davide & Enrico Tassi

September 10, 2024

Supported by ANR-17-EURE-0004

Context

Metaprogramming for type-class resolution

- Our goal:
 - Type-class solver for Coq in Elpi
- Our problem:
 - ▶ The Elpi's unification algorithm differs from Coq's one
- Our contribution:
 - Reusing the meta-language unification for the object language

Goal Decision ($\forall x$: fin 7, nfact x 3).

(* q *)

```
Goal Decision (\forall x: fin 7, nfact x 3). (* g *)
```

- Back-chain to forall_dec with
- $\{A \mapsto \text{fin 7}; P \mapsto \lambda x.(\text{nfact } x 3)\}$

Goal Decision ($\forall x$: fin 7, nfact x 3). (* g *)

• $\{A \mapsto fin\ 7; P \mapsto \lambda x.(nfact\ x\ 3)\}$

```
Goal Decision (\forall x: fin 7, nfact x 3). (* q *)
```

- $\{A \mapsto fin\ 7; P \mapsto \lambda x. (nfact\ x\ 3)\}$
- subgoals:

```
Finite (fin 7) and (\forall x:A, Decision ((\lambda x.(nfact x 3)) x))
```

Coq terms in elpi

Coq	Elpi
f∙a	app["f", "a"]
$\lambda x. \lambda y. F_{xy}$	lam x\ lam y\ app[F, x, y]
$\lambda x. F_x a$	lam x\ app[F, x, "a"]

Note on unification:

- In coq: $\lambda x.F_x$ unifies with $\lambda x.f \times 3$
- In elpi: "lam $x \neq F$, x" can't unify with "lam $x \neq F$, x, x]"
- But, "lam $x\F x$ " unifies with "lam $x\app [f, x, 3]$ "

The above type-class problem in elpi

```
Instance forall_dec: \forall A \ P, Finite A \rightarrow (* \ r3 \ *) (\forall x : A, \ Decision \ (P \ x)) \rightarrow Decision \ (\forall x : A, \ P \ x).

Goal Decision (\forall x : \text{fin } 7, \text{ nfact } x \ 3).

(* \ g \ *)
```

The above type-class problem in elpi

The above type-class problem in elpi

Solving the goal in elpi

Solving the goal in elpi

NOTE: Elpi can unify (P x) with app["nfact", x, "3"]

The idea

Compilation and simulation

What we propose

- Compilation:
 - ▶ Recognize *problematic subterms* $p_1, ..., p_n$
 - ▶ Replace p_i with fresh unification variables X_i
 - ightharpoonup Link p_i with X_i
- Q Runtime:
 - ▶ Unify p_i and X_i only when some conditions hold
 - Decompile remaining links

NOTE: This unification strategy is generalizable to any meta-language when manipulating terms of the object language

Some notations

- P: the unification problems in the object language (ol)
- Q: the unification problems in the meta-language (ml)
- M, L: the map store, the link store
- A link in \mathbb{L} is like $X =_{\odot} t$
- A mapping in \mathbb{M} is like $\{X \mapsto t\}$

- $\operatorname{run}_o(\mathbb{P}, n) \mapsto \rho$: the run of n unif pb in the ol
- $\operatorname{run}_m(\mathbb{P}, n) \mapsto \rho'$: the run of n unif pb in the ml
- $\operatorname{step}_o(\mathbb{P}, p, \rho_{p-1}) \mapsto \rho_p$: the execution of a unif pb in ol
- $\operatorname{step}_m(\mathbb{Q}, p, \sigma_{p-1}, \mathbb{L}_{p-1}) \mapsto (\sigma_p, \mathbb{L}_p)$

Proven properties

Run Equivalence $\forall \mathbb{P}, \forall n, \text{ if } \mathbb{P} \subseteq \mathcal{L}$

$$\operatorname{run}_o(\mathbb{P},n)\mapsto \rho\wedge\operatorname{run}_m(\mathbb{P},n)\mapsto \rho'\Rightarrow \forall s\in\mathbb{P}, \rho s=_o\rho' s$$

Simulation fidelity In the context of run_o and run_m , if $\mathbb{P} \subset \mathcal{L}$ we have that $\forall p \in 1 \dots n$,

$$\operatorname{step}_o(\mathbb{P}, \rho, \rho_{p-1}) \mapsto \rho_p \Leftrightarrow \operatorname{step}_m(\mathbb{Q}, \rho, \sigma_{p-1}, \mathbb{L}_{p-1}) \mapsto (\sigma_p, \mathbb{L}_p)$$

Fidelity ricovery In the context of run_o and run_m , if $\rho_{n-1}\mathbb{P}_n \subset \mathcal{L}$ (even if $\mathbb{P}_n \not\subset \mathcal{L}$) then

$$\operatorname{step}_o(\mathbb{P}, p, \rho_{p-1}) \mapsto \rho_p \Leftrightarrow \operatorname{step}_m(\mathbb{Q}, p, \sigma_{p-1}, \mathbb{L}_{p-1}) \mapsto (\sigma_p, \mathbb{L}_p)$$

Problematic subterms recognition: $\diamond \beta$

A HO variable in the pattern fragment:

- X_x becomes A x with mapping $X \mapsto A^1$
- Decompilation: transform the lambda abstraction of the meta language to the lambda abstraction of the object one.
- For example, if $\{A \mapsto (x \setminus f \cdot x \cdot a)\}$, then decompilation produces the following substitution $\{X \mapsto \lambda x.f \cdot x \cdot a\}$

Problematic subterms recognition: $\diamond \eta$

- $\lambda x.s \in \Diamond \eta$, if $\exists \rho, \rho(\lambda x.s)$ is an η -redex
- Detection of $\diamond \eta$ terms is not trivial:

```
\lambda x.f \cdot (A \cdot x) \qquad \qquad \in \diamond \eta \quad \rho = \{ A \mapsto \lambda x.x \}
\lambda x.f \cdot (A \cdot x) \cdot x \qquad \qquad \in \diamond \eta \quad \rho = \{ A \mapsto \lambda x.a \}
\lambda x.f \cdot x \cdot (A \cdot x) \qquad \qquad \notin \diamond \eta \qquad \qquad \neq \diamond \eta
\lambda x.\lambda y.f \cdot (A \cdot x) \cdot (B \cdot y \cdot x) \qquad \in \diamond \eta \quad \rho = \{ A \mapsto \lambda x.x ; B \mapsto \lambda y.\lambda x.y \}
```

 \bullet Need of some primitives like may-contract-to and occurs-rigidly

Problematic subterms recognition: $\diamond \eta$ link progression

- Several conditions: like lhs is assigned to a rigid term, two η -link with same lhs, the rhs becomes outside $\diamond \eta$. . .
- These conditions guarantee the prefixed properties !
- An example:

$$\mathbb{P} = \{ \lambda x. X \cdot x \simeq_{o} f \}$$

$$\mathbb{Q} = \{ A \simeq_{m} f \}$$

$$\mathbb{M} = \{ X \mapsto B^{1} \}$$

$$\mathbb{L} = \{ \vdash A =_{\eta} \lambda x. B_{x} \}$$

- After unification of A with f, the lhs of the link is assigned, the link is triggered and $\lambda x.B_x$ is unified with $\lambda x.f \cdot x$
- That is $\{B_x \mapsto f\}$
- Decompilation will assign $\lambda x.f \cdot x$ to X

Problematic subterms recognition: $\diamond \mathcal{L}$

- We have a term not in \mathcal{L}
- Example:

$$\mathbb{P} = \{ X \simeq_o \lambda x.a \quad (X \circ a) \simeq_o a \}$$

$$\mathbb{Q} = \{ A \simeq_m \lambda x.a \quad B \simeq_m a \}$$

$$\mathbb{M} = \{ X \mapsto A^0 \}$$

$$\mathbb{L} = \{ \vdash B =_{\mathcal{L}} (A \cdot a) \}$$

- After unification of A with $\lambda x.a$, the rhs of the link is in \mathcal{L} , the link is triggered and B is unified to a
- Decompilation will assign $\lambda x.a$ to A

Going further: the CHR

- Elpi is a dialect of λ -prolog with CHR
- CHR allows to suspend goals and resume them on given condition
- This fits well our notion of link: a suspended unification problem

Conclusion

- Takes advantage of the unification capabilities of the meta language at the price of handling problematic sub-terms on the side.
- As a result our encoding takes advantage of indexing data structures and mode analysis for clause filtering.
- It is worth mentioning that we replace terms with variables only when it is strictly needed, leaving the rest of the term structure intact and hence indexable.
- Our approach is flexible enough to accommodate different strategies and heuristics to handle terms outside the pattern fragment