The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #07

Question 1 (Intermediate Level)

Let A be an $n \times n$ matrix, n > 1.

- (a)* Show that adj A is nonsingular if and only if A is nonsingular.
- (b) Find $\det(\operatorname{adj} A)$.
- (c) Show that if A is nonsingular, then $(adj A)^{-1} = adj (A^{-1})$.

Question 2 (Intermediate Level)

$$\text{Let } A = \begin{pmatrix} a & 1 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 4 & 3 & 2 \\ 0 & -2 & -1 & a \end{pmatrix}.$$

- (a) Find the determinant of A in terms of a.
- (b) Find all values of a such that $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions. Now suppose a = 0.
- (c) Find the inverse of A.
- (d) If B is a 4×4 matrix such that adj B = A. Find det B and B.

Question 3 (Advanced Level)

Let
$$A = \begin{pmatrix} -1-k & -1 & 3 \\ 3 & 2-k & -6 \\ -1 & 0 & 1-k \end{pmatrix}$$
, where k is a real number and $k \neq 1$.

- (a) Find A^{-1} by using the formula $A^{-1} = \frac{\operatorname{adj} A}{\det A}$, where $\operatorname{adj} A$ is the adjoint matrix;
- (b) Use part (a) of this question, or otherwise, to determine the matrix B such that

$$\begin{pmatrix} -1 & -1 & 3 \\ 3 & 2 & -6 \\ -1 & 0 & 1 \end{pmatrix} + 2B = \begin{pmatrix} -1 & -1 & 3 \\ 3 & 2 & -6 \\ -1 & 0 & 1 \end{pmatrix} B$$

Question 4 (Exam Level)

(a) Find the value of b such that the system of linear equations

$$\begin{pmatrix} 1 & 2 & -4 & 3 \\ 3 & 3 & 1 & 1 \\ -4 & -5 & -4 & 3 \\ -1 & -5 & 10 & -4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ b \end{pmatrix}$$

is consistent. Find all solutions of the system when it is consistent.

(8 marks)

- (b) Let $\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 1 & 1 & p \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ q \end{pmatrix}$, where p, q are given scalars.
 - (i) Compute the det (\mathbf{A}). Hence, or otherwise, find the value of p such that \mathbf{A} is singular.
 - (ii) Find A^{-1} when p = 1.
 - (iii) Determine the value(s) of p and q such that
 - (a) Ax = b has one and only one solution;
 - (β) Ax = b has infinitely many solutions;
 - (γ) **Ax** = **b** has no solution.

Justify your answer.

(12 marks)

Question 5 (Exam Level)

Let
$$\mathbf{A} = \begin{pmatrix} 0 & 2 & 6 & 4 \\ 1 & -2 & -13 & -4 \\ -2 & 4 & 17 & 1 \\ -2 & 2 & 11 & -3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 0 \\ p \\ q \\ -2 \end{pmatrix}$, where p, q are given scalars.

Using elementary row operations, find the values of p and q such that

- (i) Ax = b has no solution;
- (ii) Ax = b has infinitely many solutions;
- (iii) $\mathbf{A}\mathbf{x} = \mathbf{b}$ has one and only one solution. (10 marks)

Question 6 (Standard Level)

Consider the following system of linear equations

$$\begin{bmatrix} 1 & -1 & 1 \\ 3 & 1 & 4a - 1 \\ 2 & a & a + 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$

Determine all possible value(s) of a such that the system is

- (a) consistent with infinitely many solutions;
- (b) consistent with one and only one solution;
- (c) inconsistent.

Solve the system when it has unique solution.

Question 7 (Standard Level)

Consider
$$\begin{bmatrix} 1 & 1 & -1 \\ -a & -1 & a \\ a^2 & 1 & -a \end{bmatrix} \mathbf{x} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- (a) Find all values of a such that the system is consistent for any values of b_1 , b_2 , and b_3 .
- (b) When a = 0, find all values of b_1 , b_2 , and b_3 so that the linear system is consistent.
- (c) When a = 1 and $b_1 = b_2 = b_3 = 0$, find all solutions of the linear system.

Question 8 (Smart Level)

Find the determinant and inverse of the following matrix

$$A = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

where $a_1, a_2, ..., a_n$ are nonzero real numbers.

Question 9 (Puzzle Level)

Consider
$$\begin{pmatrix} 1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{pmatrix}$$
 $\mathbf{x} = \begin{pmatrix} 3 \\ 1 \\ 1 \\ 1 \end{pmatrix}$. Find conditions on α , β and γ such that the linear system is

consistent. When will the system have a unique solution? When will the system have infinitely many solutions?

Question 10 (Puzzle Level)

Consider

$$\begin{pmatrix} 1 & 1 & 1 \\ (b+1) & 1 & (ab+a) \\ (b+1)^2 & 1 & a^2(b+1)^2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ cb+c \\ c^2(b+1)^2 \end{pmatrix}$$

Here $a, b, c \in \mathbb{R}$. Determine the values of a, b, c such that the linear system is

- (a) consistent with infinitely many solutions;
- (b) consistent with one and only one solution;
- (c) inconsistent.

Question 11 (Intermediate Level)

Let
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 and I the 3×3 identity matrix.

- (a) Compute A^n for positive integer n.
- (b) Compute $(A + I)^{1120}$.

Question 12 (Concept)

Let A and B be $n \times n$ matrices. Is the following true? Justify your answer.

(a)
$$(A + B) (A - B) = A^2 - B^2$$

(b)
$$(A + B)^2 = A^2 + 2AB + B^2$$