Data-Integrated Stochastic Block Models

Carter Allen October 28, 2019

Motivation

Currently, we wish to better understand the gene networks related to **systemic sclerosis** (a.k.a *scleroderma* or *SSc*).

SSc is a chronic autoimmune disease involving fibrosis across multiple body systems. Currently, the etiology remains unknown and there are *no effective treatments available*.

Since SSc is a complex disease, genetic signals from experiments are often weak and widespread, posing challenges for classical network models.

<u>Goal</u>: Extend statistical models for network data to the data integration setting to address the issue of weak & widespread signal.

The Stochastic Block Model

The **stochastic block model** (SBM) is a generative model for network data. A simple, symmetric, and non-reflexive graph G is said to follow an SBM(n, P, b) if

- 1. **G** has *n* nodes (vertices) denoted by $\mathcal{N} = \{\eta_1, \eta_2, \dots \eta_n\}$.
- 2. Each node has exactly one label, denoted b_i for i = 1,...,n.
- 3. An edge exists between nodes η_i and η_j randomly with probability \mathbf{P}_{b_i,b_i} for i=1,...,n and j=i+1,...,n.

Note: Often an additional parameter π is introduced to control the size of each community.

Bayesian inference procedures for the SBM fall into two camps: Parametric and Non-parametric inference.

<u>Parametric Bayesian Inference</u> assumes the number of blocks *B*, and hence the dimension of the entire model, is known. These models generally have the following hierarchy.

 $\pi \sim \text{Dirichlet}(B, \alpha)$

 $P_{ab} \sim \text{Beta}(\beta_1, \beta_2)$

 $G_{ij} | B, \mathbf{P}, \boldsymbol{\pi} \sim \text{Bernoulli}(P_{b_i, b_j})$

Non-parametric Bayesian Inference allows the model dimension *B* to be estimated from the data.

In graph-tool, a Python library with extensive features for working with network data and fitting SBMs, the non-parametric approach is used.

In principle, allowing *B* to vary greatly complicates model estimation. However, Piexoto (the author of graph-tool) outlines an efficient framework in several papers.

Suppose interest lies primarily in estimating the community labeling vector **b**.

$$P(\mathbf{b} \mid \mathbf{G}) = \frac{P(\mathbf{G} \mid \mathbf{b})P(\mathbf{b})}{P(\mathbf{G})},$$

where $P(\mathbf{G} | \mathbf{b}) = \int_{\theta} P(\mathbf{G} | \boldsymbol{\theta}, \mathbf{b}) P(\boldsymbol{\theta} | \mathbf{b}) d\boldsymbol{\theta}$, and $P(\mathbf{G})$ is a normalizing constant with respect to \mathbf{b} .

First, what is a good choice for $P(\mathbf{b})$?

Let $P(\mathbf{b}) = P(\mathbf{b} | \mathbf{n})P(\mathbf{n} | B)P(B)$, where $\mathbf{n} = (n_1, n_2, \dots n_B)$ encodes the number of nodes in each community. We let

$$P(\mathbf{b} \mid \mathbf{n}) = \left(\frac{N!}{\prod_{r=1}^{B} n_r!}\right)^{-1} \quad P(\mathbf{n} \mid B) = \binom{N-1}{B-1}^{-1} \quad P(B) = \frac{1}{N}.$$

P(B) assigns equal probability to all $B \in \{1,...,N\}$.

 $P(\mathbf{n} | B)$ gives equal probability to each of the possible ways to divide N total counts into B non-empty bins.

 $P(\mathbf{b} \mid \mathbf{n})$ gives equal probability to all possible arrangements of \mathbf{n} .

Having dealt with $P(\mathbf{b})$, we must specify the form of $P(\mathbf{G} \mid \mathbf{b})$. Recall,

$$P(\mathbf{G} \mid \mathbf{b}) = \int_{\theta} P(\mathbf{G} \mid \boldsymbol{\theta}, \mathbf{b}) P(\boldsymbol{\theta} \mid \mathbf{b}) d\boldsymbol{\theta},$$

where θ are the parameters that control the placement of edges in the graph G.

The simplest SBM places edges according to independent Bernoulli trials, leading to the likelihood

$$P(\mathbf{G} \mid \mathbf{b}, \mathbf{P}) = \prod_{i < j} P_{b_i, b_j}^{G_{ij}} (1 - P_{b_i, b_j})^{1 - G_{ij}}.$$

Piexoto chooses to generalize the simple SBM to accommodate multigraphs, allowing for multiple edges between any two nodes.

A natural model for edge placement in this case is Poisson. Thus,

$$P(\mathbf{G} | \lambda, \mathbf{b}) = \prod_{i < j} \frac{e^{-\lambda_{b_i, b_j}} \lambda_{b_i, b_j}^{G_{ij}}}{G_{ij}!} \times \prod_{i} \frac{e^{-\lambda_{b_i, b_i}/2} (\lambda_{b_i, b_i}/2)^{G_{ii}/2}}{G_{ii}/2!},$$

where $\lambda_{r,s}$ is the average number of edges between any two nodes in communities r and s, and we also allow for *reflexive*, but *still* undirected edges.

To complete the specification of $P(\mathbf{G} | \mathbf{b})$, we must choose the form of $P(\boldsymbol{\theta} | \mathbf{b})$, or in case of the Poisson model, $P(\lambda | \mathbf{b})$.

A natural choice is the **exponential** distribution. We let

$$\lambda_{rs} \mid \mathbf{b} \sim \operatorname{exponential}(\bar{\lambda}_{rs}),$$

for $r \leq s$ and where $\bar{\lambda}_{rs}$ is the average number of edges between any two nodes in blocks r and s, which we assume is

$$\bar{\lambda}_{rs} = \frac{\bar{\lambda}(1+\delta_{rs})}{n_r n_s}$$
, where $\bar{\lambda} = \frac{2E}{B(B+1)}$.

The Bayesian model is now fully specified and can be estimated using standard techniques that sample from

$$P(\mathbf{b} | \mathbf{G}) \propto P(\mathbf{G} | \mathbf{b})P(\mathbf{b})$$
.

However, through integration of $P(G | \lambda, b)P(\lambda | b)$ with respect to λ and various combinatorial derivations, Piexoto is able to claim

$$P(\mathbf{G} \mid \mathbf{b})P(\mathbf{b}) = P(\mathbf{G} \mid \mathbf{e}, \mathbf{b})P(\mathbf{e}, \mathbf{b}) = 2^{-\Sigma},$$

where Σ is known as the **description length**, a concept borrowed from information theory. So, <u>minimizing</u> Σ <u>maximizes</u> $P(\mathbf{b} \mid \mathbf{G})$.

MCMC Sampling

The graph-tool package includes functions for MCMC sampling of model parameters. In general, we sample the posterior distribution of **b** as follows.

- 1) For node η_i (i = 1,...,n): randomly select η_j from the neighbors of η_i and record its community membership b_i .
- 2) Randomly draw a proposal community for η_i , namely b_i , from the B possibilities with uniform probability.
- 3) Accept the proposal b_i with probability R_j (more details later).
- 4) If b_i is rejected, choose edge e_k randomly from all edges incident upon η_j and assign $b_i = b_k$, where b_k is the community membership of η_k , the node connected to b_j by e_k .

MCMC Sampling

$$P(b_i \to b_{i^*} | b_j) = \frac{(1 - R_j)E_{i^*j}}{E_j} + \frac{R_j}{B},$$

$$R_j = \frac{\epsilon B}{E_i + \epsilon B},$$

 E_{i*j} is the number of edges between communities b_{i*} and b_{j} .

$$E_j = \sum_{i^*} E_{i^*j}.$$

 $\epsilon > 0$ is a tuning parameter used to control the acceptance probabilities.

MCMC Sampling

- 1) Select η_i and a random neighbor η_j : η_i
- 2) Randomly propose a new b_i : η_i
- 3) Accept or reject b_i : η_i or η_i
- 4) If reject b_i , choose $b_i = b_k$:

Simulation Studies

Sampling SBMs

In general, we sample a graph **G** from an SBM $(n, \mathbf{P}, \mathbf{b})$ as follows.

- 1. Define the set of nodes of \mathbf{G} , $\mathcal{N} = \{\eta_1, \eta_2, \dots, \eta_n\}$, and label them according to $\mathbf{b} = \{b_1, b_2, \dots, b_n\}$, where $b_i \in \{1, \dots, B\}$.
- 2. For all pairs of nodes, (η_i, η_j) subject to i < j, randomly place an edge between η_i and η_j with probability \mathbf{P}_{b_i,b_i} .

Note: The resultant graph **G** is simple, symmetric, and non-reflexive.

Data Integration

Under each setting of n and P, graphs G_1 and G_2 are integrated into the graph G using the edge union approach.

That is, the set of edges in G, denoted by \mathscr{E} , is equal to $\mathscr{E}_1 \cup \mathscr{E}_2$, where \mathscr{E}_1 and \mathscr{E}_2 are the sets of edges in G_1 and G_2 , respectively.

Edge Union:

- 1. Since G_1 and G_2 share the same node set, so will G. So, initialize G by setting $G = G_1$. Thus, $\mathscr{E} = \mathscr{E}_1$.
- 2. For $e \in \mathcal{E}_2$, add e to \mathcal{E} if $e \notin \mathcal{E}_1$.

Edge Union Example

$$n = 100$$

 $\mathbf{P}_{ii} = 0.12; \ \mathbf{P}_{ij} = 0.01$

Simulation Settings

Sample graphs G_1 and G_2 from SBM $(n, \mathbf{P}, \mathbf{b})$ under varying settings of n and \mathbf{P} .

Specifically, $n_1 = 50$, $n_2 = 100$, and

$$\mathbf{P}_1 = \begin{bmatrix} 0.5 & 0.1 & 0.1 \\ 0.1 & 0.5 & 0.1 \\ 0.1 & 0.1 & 0.5 \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} 0.3 & 0.1 & 0.1 \\ 0.1 & 0.3 & 0.1 \\ 0.1 & 0.1 & 0.3 \end{bmatrix}.$$

Thus we have 8 total graphs; one iid pair for each combination of n and \mathbf{P} .

Estimating Model Dimension

To evaluate the ability of the data-integrated SBM to estimate B, the number of communities, we compare the estimates \hat{B} , \hat{B}_1 , and \hat{B}_2 obtained by fitting a SBM to \mathbf{G} , \mathbf{G}_1 , and \mathbf{G}_2 , respectively.

For
$$i = 1,...,I$$
:

- 1. Generate G_i , G_{1i} , and G_{2i} as described previously.
- 2. Obtain \hat{B}_i , \hat{B}_{1i} , and \hat{B}_{2i} from the minimum the description length criterion.
- 3. Store \hat{B}_i , \hat{B}_{1i} , and \hat{B}_{2i} .

Table 1: Simulation results for SBMs fit to G, G_1 , and G_2 under P_1 and P_2 , with n = 50. The proportion of correctly specified models and the average number of clusters estimated are shown.

	\mathbf{P}_1		\mathbf{P}_2	
I = 100	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$
G	0.85	2.85	0.00	1.01
G_1	0.47	2.50	0.00	1.00
G_2	0.42	2.38	0.00	1.00

Table 2: Simulation results for SBMs fit to G, G_1 , and G_2 under P_1 and P_2 , with n = 100. The proportion of correctly specified models and the average number of clusters estimated are shown.

	\mathbf{P}_1		\mathbf{P}_2	
I = 100	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$	$\frac{1}{I} \sum_{i=1}^{I} 1_{\hat{B}=B}$	$\frac{1}{I} \sum_{i=1}^{I} \hat{B}$
G	1.00	3.00	0.97	2.99
G_1	1.00	3.00	0.23	1.70
G_2	0.99	3.01	0.19	1.76

<u>Goal</u>: assess the classification performance of the data integrated SBM (i.e., how often are nodes assigned to the correct communities?).

The problem of **label switching** complicates the calculation of sensitivity and specificity.

Since *B* is estimated by the model, *B* may vary from one MCMC iteration to the next, making it difficult to apply relabeling algorithms to MCMC samples.

<u>Solution</u>: assess the posterior distribution of cluster assignments for each node in the network.

For each node η_i , we plot the posterior probabilities $P(b_i = 1), P(b_i = 2), \dots, P(b_i = B)$ as small pie charts.

To assess the classification performance of the data integrated SBM using edge union integration, we conduct the following simulation.

Setting 1: Sparse networks with high signal to noise.

Setting 2: Sparse networks with low signal to noise.

Setting 3: Dense networks with high signal to noise.

Setting 4: Dense networks with low signal to noise.

In each setting, we fix n = 100, draw G_1 and G_2 , and use edge union to form G. We fit SBMs to G, G_1 , and G_2 and examine classification performance qualitatively.

Setting 1

$$\mathbf{P}_{ii} = 0.10; \ \mathbf{P}_{ij} = 0.01$$

Estimating Model Dimension

Setting 1

$$\mathbf{P}_{ii} = 0.10; \ \mathbf{P}_{ij} = 0.01$$

Setting 2

$$\mathbf{P}_{ii} = 0.03; \ \mathbf{P}_{ij} = 0.01$$

Estimating Model Dimension

Setting 2

$$\mathbf{P}_{ii} = 0.03; \ \mathbf{P}_{ij} = 0.01$$

Setting 3

$$\mathbf{P}_{ii} = 0.50; \ \mathbf{P}_{ij} = 0.10$$

Estimating Model Dimension

Setting 3

$$\mathbf{P}_{ii} = 0.50; \ \mathbf{P}_{ij} = 0.10$$

Setting 4

 $\mathbf{P}_{ii} = 0.30; \ \mathbf{P}_{ij} = 0.10$

Setting 4

 $\mathbf{P}_{ii} = 0.30; \ \mathbf{P}_{ij} = 0.10$

Summary of Results

- 1. The edge union approach to data integration improves the ability of the SBM to perform community detection.
- 2. Improvements are most noticeable in dense networks with low signal to noise ratio or in sparse networks with high signal to noise ratio.
- 3. In dense networks with high signal to noise ratio, data integrated SBMs perform no worse than non-data integrated SBMs.

Other Approaches

We implemented a few other approaches to data integration, which performed surprisingly poorly.

Multigraph SBM: We form G by combining all edges in G_1 and G_2 , allowing for multiple edges between any two nodes.

<u>Weighted SBM</u>: We construct G with Binomial edge weights corresponding to the number of times the edge appeared in G_1 and G_2 .

Both approaches tend to overestimate *B* since they tend to cluster all nodes with multiple or weighted edges together.

Limitations and Future Work

- 1. Better quantify classification performance.
- 2. Relax the restrictions placed on the priors in the graph-tool package.
- 3. Assess performance on real data.
- 4. Apply to SSc data.

Thanks!