PRESENTATION TO

1991 NASA AEROSPACE BATTERY WORKSHOP

OCTOBER 29-31, 1991 U.S. SPACE & ROCKET CENTER HUNTSVILLE, AL PULSED POWER MOLTEN SALT BATTERY

CONTRACT NO. F33615-88-C-2911

AERO PROPULSION LABORATORY
WRIGHT LABORATORY, WL/POOS-2
WRIGHT PATTERSON AIR FORCE BASE, OH 45433

S.D. ARGADE

TECHNOCHEM COMPANY 203-A CREEK RIDGE RD. GREENSBORO, NC 27406

PRECEDING PAGE BLANK NOT FILMED

CHLORINE CATHODES

UNIT CELL DEVELOPMENT

CELL STACK DEVELOPMENT

CHLORINE CATHODES

UNIT CELL DEVELOPMENT

CELL STACK DEVELOPMENT

PHASE II PROGRAM GOALS

Develop and demonstrate a Li/Al/chlorine molten salt battery design

Develop improved chlorine cathodes

Develop unit cell design

Demonstrate a stack/battery design

CHLORINE CATHODES

UNIT CELL DEVELOPMENT CELL STACK DEVELOPMENT

CHLORINE CATHODES

Uniform Pore Size Distribution

Good Permeability to Chlorine

Activated Surface

Electrochemical Activation

Discharge characteristics for a Li-Al/carbon 8-9-2 absorbed chlorine cell under test cycle 1 regime, 250 mA for 200 sec followed by 1 A current

Cathode Performance Summary

- Single Pulsing
- Repetitive Pulsing
- Steady State Discharge
- 5 sec Pulse 200 sec Steady State Load +
- ms bulses Steady State Load + 100, 10

CHLORINE CATHODES

UNIT CELL DEVELOPMENT

CELL STACK DEVELOPMENT

Cell Development

- Test Hardware
- Glass Enclosure Cell
- Anode Wafer in Stainless Steel or Ni Cup, Nickel leads
- Cathode rests on EB salt wafer backed by graphite current collector
- Chlorine fed to the wafer-ambient pressure
- Test Regime
- Steady discharge load + 400 10 ms pulses + 200 100 ms pulses

CHLORINE CATHODES

UNIT CELL DEVELOPMENT

CELL STACK DEVELOPMENT

1. Anode Current Collector 2. Li-Al Anode 3. Salt Wafer 4. Carbon Cathode 5. Grafoil 6. Nickel Cup 7. Cathode Current Collector with Chlorine Feed Tube

BATTERY DESIGN PARAMETERS

POWER DENSITY 4A DC, 24A PULSE REGIME

	kW/kg	kW/kg	kW/L	kW/L
	10 ms	100 ms	10 ms	100 ms
Cell	3.9	3.2	4.3	3.5
Stack (5-cell)	3.9	3.1	4.3	3.4
Battery	1.7	1.4	1.7	1.4

ENERGY DENSITY 4A DC, 24 A PULSE REGIME

		Wh/ka	Mh/I
le 102 le 183 37 42	CELL		
e	1 cycle	102	112
3Y 95	2 cycle	183	201
3Y 42	STACK	95	104
	BATTERY	42	43

INTRODUCTION CHLORINE CATHODES UNIT CELL DEVELOPMENT CELL STACK DEVELOPMENT

- Carbon Cathodes with chlorine work well
- Li-Alloy/chlorine at 450 deg. C, 1atm
- High Power capability
- High energy density
- DC + pulsing 600 pulses
- No initial peak
- Can go to red heat without burn-up

- Electrochemical performance at the cell and cell stack level under demanding test regime
- Engineering and full prototype development advancing this technology is warranted

-	

Nickel-Hydrogen Technologies Session

Organizers: Joe Stockel

Office of Research & Development

Michelle Manzo

NASA Lewis Research Center

PRECEDING PAGE BLANK NOT FILMED

•	