Cover Sheet for Submission of Maths Examinations Summer 2020

We would advise preparing your coversheets with your CID, Module Name and Code and Date, before the exams are due to take place.

CID: 01738166

Module Name: Linear Algebra and Groups

Module Code: MATH40003

Date: 07/05/2020

Questions Answered (in the file):

Please tick next to the question or questions you have answered in this file.

Q1	
Q2	
Q3	✓
Q4	
Q5	
Q6	

(Note: this is a coversheet for all students - not all students will have exams with 6 questions. Please tick the boxes which are appropriate for your exam and/or the file you are submitting).

(Optional) Page Numbers for each question;

Page Number	Question Answered

If handwritten, please complete in CAPITAL Letters, in Blue or Black Ink, ensuring the cover sheet is legible.

[D: 01738166 | UATH40003 Question 3 Page 1 (a) | . . U is not empty if using eu, then useur eu - closed under addition · if u & U and DEIR, than Doue U - closed under multiple Clearly Un is a subset of V. Check subspace 'test':

of(x)= ao => Un is not emply · Let $d(x) = \sum_{i=0}^{n} \alpha_i x^i$, $\alpha_{i+1} = 2\alpha_i$ dor some α_0 . $fg(x) = \sum_{i=0}^{n} \beta_i x^i, \beta_{i+1} = 2\beta_i$ du some β_0 . Then $f(x)+g(x) = \sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} b_i x^i = \sum_{i=0}^{n} (a_i x^i + b_i x^i) = \sum_{i=0}^{n} (a_i + b_i) x^i \in U_n$ · led f(x) be as above and lelik. We have $\lambda d(r) = \lambda \sum_{i=0}^{n} a_i \times i = \lambda \sum_{i=0}^{n} (\lambda a_i) \times i \in U_n = 1$ Un is a subspace of V. A basis for un is {1, x, x2, ..., xn}: - is LI MARION WORLD SELLEN - spans un (c) * Tis linear (=) - T preserves addition: T(vs+vz)=T(v1)+T(vz), tvs, vz & V - T preserves me scalar mult : the V and delR , T(XV)= AT(V) * Ker (7) = { v e V : T(v) = 0} * Im(T) = { T(V): V(V) * . Ov - the null vector & Ker(7) => Ker(7) is not empty · U=1 un ∈ \$ Ker(7) => T(u1)=T(u2)=0 => T(u1)+T(u2)=0 => T(u1+u2) =0 => VI+u2 & Ker (T)

CID: 01738166 MATH40003 Question 3 Page 2

•
$$\lambda \in \mathbb{R}$$
, $v \in Ker(\overline{1})$,

PROPOSITION

$$T(\lambda v) = \lambda T(v) = \lambda . 0 = 0 \Rightarrow T(\lambda v) = 0$$

$$(linear) = \lambda \lambda v \in Ker(\overline{1})$$

=)
$$|\langle er(7) \rangle|$$
 is a subspace of V We have $a_n = 2^n a_0 = 3 \quad a_0 = 2^{-1} a_1^2$, V_1^2 as in (6)

$$20T_{n}\left(\frac{1}{x}(x)+\frac{1}{y}(x)\right)=T_{n}\left(\frac{2}{x}(a_{i}+b_{i})x^{i}\right)=\frac{2}{x}\frac{2}{x}\frac{2}{x}\frac{1}{(a_{0}+b_{0})}x^{i}$$

$$= \sum_{i=0}^{n+1} (a_0 \times i + \sum_{i=0}^{n+1} (b_0 \times i - T_n(H_n)) \cdot T_n(y_{(n)})$$

$$T_n(\lambda H(x)) = T_n(\lambda \sum_{i=0}^{n} a_i x^i) = T_n(\sum_{i=0}^{n} \lambda a_i x^i) = \sum_{i=0}^{n} 2^i (\lambda a_i x^i)$$

$$= \sum_{i=0}^{n-1} 2^{i} \lambda \underline{\alpha_0} x^{i} = \lambda \sum_{i=0}^{n-1} \alpha_0 x^{i} = \lambda \operatorname{In}(d(x))$$