REPORT DOCUMENTATION PAGE					OMB No. 0704-0188
date needed, end completing and revi this burden to Department of Defense,	ewing this collection of . Washington Headqua thet notwithstanding an	information. Send comments reg ters Services, Directorate for Info y other provision of law, no perso	arding this burden estimete or emation Operations end Report in shall be subject to any penall	eny other espect of this s (0704-0188), 1215 J	arching existing deta sources, gathering and maintaining the collection of information, including suggestions for reducing efferson Davis Highwey, Suite 1204, Arlington, VA 22202-with e collection of information if it does not display e currently
1. REPORT DATE (DD-MM- 09/09/2013 4. TITLE AND SUBTITLE	YYYY)	2. REPORT TYPE nterim Research Pe		(Monthly) A	DATES COVERED (From - To) August 1 - August 31, 2013 a. CONTRACT NUMBER
Expeditionary Light Armor Seeding Development				N	b. GRANT NUMBER 00014-13-1-0219 c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)	······			5	d. PROJECT NUMBER
Shridhar Yarlagadda, Bazle Haque				e. TASK NUMBER	
					f. WORK UNIT NUMBER
7. PERFORMING ORGANIZ UNIVERSITY OF DELA OFFICE OF THE VICE 220 HULLIHEN HALL NEWARK, DE 19716-0	WARE PROVOST F				PERFORMING ORGANIZATION REPORT NUMBER ONTHLY-5
9. SPONSORING / MONITO	RING AGENCY I	IAME(S) AND ADDRES	S(ES)	10	D. SPONSOR/MONITOR'S ACRONYM(S)
Office of Naval Research				0	NR
875 North Randolph Str Arlington, VA 22203-19				1	1. SPONSOR/MONITOR'S REPORT NUMBER(S)
Approved for Public Rel		tion is Unlimited.			
targets with .30cal AP N	12 projectile us vere conducte ere modified is	sing SPH elements. d based on the DoP n order to achieve be	experiments descreter data agreeme	ribed in refere nt	targets and ceramic-faced aluminum
15. SUBJECT TERMS					
	762x39 PS P	rojectile, SPH, Alum	ninum 5083, SiC, D	oP Expemine	ts, AutoDyn Simulations
16. SECURITY CLASSIFICA			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Shridhar Yarlagadda
a. REPORT b. Al	BSTRACT	c. THIS PAGE	UU	27	19b. TELEPHONE NUMBER (include area code) 302-831-4941
					Standard Form 298 (Rev. 8-98)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

20/309/6045

MONTHLY REPORT AUGUST 2013

MODELING AND SIMULATION OF CERAMIC ARRAYS TO IMPROVE BALLAISTIC PERFORMANCE

MONTHLY REPORT FOR AUGUST 2013

☐ Quarter-symmetric model is used in AutoDyn to simulate DoP experiments on aluminum targets and ceramic-faced aluminum targets with .30cal AP M2 projectile using SPH elements. ■ Model validation runs were conducted based on the DoP experiments described in reference -ARL-TR-2219, 2000. ☐ Boundary conditions were modified in order to achieve better data agreement ☐ Further analysis will be conducted to determine the effect of material properties on DoP

DOP OF .30cal PROJECTILE INTO MONOLITHIC ALUMINUM (Ref: ARL-TR-2219, 2000.)

2013 © University of Delaware

 $V_P = 400 - 900 \text{ m/s}$

DOP OF .30cal PROJECTILE INTO CERAMIC-FACED TARGET (Ref: ARL-TR-2219, 2000.)

 $t_{Al} = 76.2 \text{ mm}$

H = 20.0 mm

 $V_P = 841 \pm 15 \text{ m/s}$

2013 © University of Delaware

30AP-M2 PROJECTILE MASS PROPERTIES

Component	Material	Weight (g)
Jacket	Gilding Metal	4.2
Core	Hardened Steel - RC 63	5.3
Point Filler	Lead	0.8
Base Filler	Lead	0.5
Total Weight		10.8

SOLID MODEL OF .30cal AP M2 PROJECTILE

MATERIAL PROPERTIES – AI 5083

Experimental AI 5083

	AI 5083
Density (g/cm³)	2.65
Tensile Strength (MPa)	377.1
Yield Strength (MPa)	318.5
Elongation (%)	9.3

Ref: MTL TR-86-14, 1986. ARL-TR-2219, 2000.

AutoDyn Al 5083

Equation of State	Linear	
Reference density	2.70000E+00(g/cm3)	
Bulk Modulus	5.83300E+11 (ubar)	
Reference Temperature	2.93000E+02(K)	
Specific Heat	9.10000E+06 (erg/gK)	
Thermal Conductivity	0.00000E+00()	
Strength	Johnson Cook	
Shear Modulus	2.69200E+11 (ubar)	
Yield Stress	1.67000E+09 (ubar)	
Hardening Constant	5.96000E+09 (ubar)	
Hardening Exponent	5.51000E-01 (none)	
Strain Rate Constant	1.00000E-03 (none)	
Thermal Softening Exponent	8.59000E-01 (none)	
Melting Temperature	8.93000E+02 (K)	
Ref. Strain Rate (/s)	1.00000E+00 (none)	
Strain Rate Correction	1st Order	
Failure	None	
Erosion	None	
Material Cutoffs		
Maximum Expansion	1.00000E-01 (none)	
Minimum Density Factor	1.00000E-05 (none)	
Minimum Density Factor (SPH)	2.00000E-01 (none)	
Maximum Density Factor (SPH)	3.00000E+00 (none)	
Minimum Soundspeed	1.00000E-04 (cm/s)	
Maximum Soundspeed (SPH)	1.01000E+20 (cm/s)	
Maximum Temperature	1.00000E+16(K)	

2013 © University of Delaware

MATERIAL PROPERTIES - SiC

Experimental SiC

	TO THE RESERVE THE PROPERTY OF THE PERSON OF
	SiC
Density (g/cm ³)	3.20
Elastic Modulus (GPa)	455
Shear Modulus (GPa)	195
Longitudinal Wave Velocity (km/s)	12.3
Poisson's Ratio	0.14
Hardness (kg/mm ²)	2700
Compressive Strength (MPa)	3410

Ref: ARL-TR-2219, 2000.

AutoDyn SiC

Equation of State	Polynomial		
Reference density	3.21500E+00 (g/cm3)		
Bulk Modulus A1	2.20000E+12 (ubar)		
Parameter A2	3.61000E+12 (ubar)		
Parameter A3	0.00000E+00 (ubar)		
Parameter B0	0.00000E+00 (none)		
Parameter B1	0.00000E+00 (none)		
Parameter T1	2.20000E+12 (ubar)		
Parameter T2	0.00000E+00 (ubar)		
Reference Temperature	2.93000E+02 (K)		
Specific Heat	0.00000E+00 (erg/gK)		
Thermal Conductivity	0.00000E+00 ()		
Strength	Johnson-Holmquist		
Shear Modulus	1.93500E+12 (ubar)		
Model Type	Segmented (JH1)		
Hugoniot Elastic Limit, HEL	1.17000E+11 (ubar)		
Intact Strength Constant, S1	7.10000E+10 (ubar)		
Intact Strength Constant, P1	2.50000E+10 (ubar)		
Intact Strength Constant, S2	1.22000E+11 (ubar)		
Intact Strength Constant, P2	1.00000E+11 (ubar)		
Strain Rate Constant, C	9.00000E-03 (none)		
Max. Fracture Strength, SFMAX	1.30000E+10 (ubar)		
Failed Strength Constant, ALPHA	4.00000E-01 (none)		
Failure	Johnson Holmquist		
Hydro Tensile Limit	-7.50000E+09 (ubar)		
Model Type	Segmented (JH1)		
Damage Constant, EFMAX	1.20000E+00 (none)		
Damage Constant, P3	9.97500E+11 (ubar)		
Bulking Constant, Beta	1.00000E+00 (none)		
Damage Type	Instantaneous (JH1)		
Tensile Failure	Hydro (Pmin)		

AUTODYN QUARTER-SYMMETRIC MODEL

- ☐ Smoothed-particle hydrodynamics (SPH) used for all parts
- ☐ Target size = 0.50-mm totaling 351k elements
- ☐ Clamp boundary condition used at end of aluminum to secure the target

SHOT NO. 3002, V=834 m/s, t_c =1.25 mm

t = 0.01587 ms

 $t = 0.03314 \; ms$

t = 0.04902 ms

2013 © University of Delaware

SHOT NO. 3002, V=834 m/s, t_c =1.25 mm

t = 0.1144 ms

AutoDyn DOP = 43.38 mmExperimental DOP = 40.1 mm

SHOT NO. 3002 PROJECTILE KINETIC ENERGY vs. TIME

QUARTER-SYMMETRIC AUTODYN MODEL

- ☐ Smoothed-particle hydrodynamics (SPH) used
- ☐ Element zoning necessary for computation
- ☐ Projectile and inside target zone element size = 0.30-mm
- ☐ 343k total elements
- ☐ Clamp boundary condition used at end of target

TARGET ELEMENT ZONING – FRONT VIEW

Total: 343k elements

SHOT NO. 2784, V=829 m/s

Trial 1: Zoned Mesh Target

(318.5 MPa)

DoP = 56.75 mm

DoP = 50.93 mm

Trial 2: Increased Al yield strength

Literature DoP = 44.4 mm

Problem: Stress wave propagation at border creates large target deflections

2013 © University of Delaware

MODIFIED QUARTER-SYMMETRIC MODEL

Adding clamp boundary conditions to the outer faces of the target reduces the effect of the stress wave propagation on target failure

FULLY CLAMPED MODEL CROSS-SECTION

Total: 343k elements

SHOT NO. 2784, V=829 m/s

t = 0.010 ms

Measured DoP = 41.30 mm Literature DoP = 44.40 mm

Uncertainty= 6.98%

t = 0.022 ms

t = 0.101 ms

2013 © University of Delaware

SHOT NO. 2784 PROJECTILE KINETIC ENERGY vs. TIME

SHOT NO. 3048, V=829 m/s, t_c =5.08 mm

SHOT NO. 3048, V=829 m/s, $t_c=5.08 \text{ mm}$

t = 0.0047 ms

Projectile defeated in SiC tile, no DoP. Agrees with literature.

t = 0.0025 ms

t = 0.0435 ms

SHOT NO. 3048 PROJECTILE KINETIC ENERGY vs. TIME

SHOT NO. 3005, V=843 m/s, t_c =2.59 mm

t = 0.016 ms

Measured DoP = 27.40 mm

Literature DoP = 22.80 mm

Uncertainty= 20.2%

Conclusion: Material properties of SiC may need to be adjusted to achieve better data agreement

t = 0.025 ms

 $t = 0.101 \, \text{ms}$

2013 © University of Delaware

SHOT NO. 3005 PROJECTILE KINETIC ENERGY vs. TIME

PENETRATION INTO MONOLITHIC ALUMINUM vs. STRIKE VELOCITY (Ref: ARL-TR-2219, 2000.)

RESIDUAL PENETRATION AREAL DENSITY vs. CERAMIC AREAL DENSITY (Ref: ARL-TR-2219, 2000.)

