Navigating a 10x10 Grid

By Karingattil Sagar Thomas, Vitthal Vinod Tiwary

2022A7PS0156H, 2022A3PS0553H

Problem Statement

We have chosen a problem involving navigating a 10x10 grid, starting from the top-left corner at position (0,0) with the objective of reaching the bottom-right corner at position (9,9). The grid contains special cells with distinct properties:

• Cliffs (Kill States):

- These cells act as **cliff cells** that result in an immediate penalty of -20 and teleport the player back to the starting position (0,0).
- The cliffs are located at the following positions:

```
(0,4), (0,5), (0,6), (0,7), (0,8), (1,4), (1,5), (1,6), (1,7), (1,8), (3,1), (4,1), (5,1), (6,1), (7,1), (3,2), (4,2), (5,2), (6,2), (7,2), (6,4), (6,5), (6,6), (6,7), (6,8), (7,4), (7,5), (7,6), (7,7), (7,8)
```

• Goal State:

- The **goal** is to reach the cell at (9,9).
- Reaching this state completes the game with a **reward of 0**.

• Regular Cells:

Moving to any other cell (except the goal) results in a reward of
1 for each step taken.

Objective

The player starts at the **initial position** (0,0) and must find a path to the **goal state at** (9,9) while avoiding the cliffs. The objective is to **minimize** the total penalty incurred during the journey and reach the goal with the fewest steps possible.

Grid Layout

$R\C$	0	1	2	3	4	5	6	7	8	9
0	S				X	X	X	X	X	
1										
2										X
3	X		X							X
4	Χ		X							Χ
5	X		X							X
6	Χ		X		X	Χ	X			Χ
7	X		X			X				
8						X				
9										Т

Table 1: 10x10 Grid Layout

Q-Learning

Q-Learning is an **off-policy reinforcement learning** algorithm used to learn the optimal action-value function, which helps the agent make the best decisions in a given environment. Unlike on-policy methods, Q-Learning updates the policy independently of the actions taken, enabling it to learn from simulated or random experiences.

The Q-value function, Q(s, a), estimates the expected cumulative reward of taking action a in state s and following the optimal policy thereafter. The update rule for Q-Learning is given by:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(R_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$

where:

- $Q(s_t, a_t)$ is the current estimate of the Q-value for state s_t and action a_t .
- α is the **learning rate**, which determines how much new information overrides the old value. Typical values range between 0 and 1.
- R_{t+1} is the reward received after taking action a_t in state s_t .
- γ is the **discount factor**, controlling the importance of future rewards (here, $\gamma = 0.8$).
- $\max_{a'} Q(s_{t+1}, a')$ is the estimated optimal future reward for the next state s_{t+1} .

Epsilon-Greedy Policy

To balance exploration and exploitation, the agent follows an **epsilon-greedy policy**. This policy ensures that the agent explores new actions with some probability ϵ while exploiting the best-known action most of the time.

The epsilon-greedy policy is defined as:

$$\pi(s, a) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}, & \text{if } a = \arg\max_{a'} Q(s, a') \\ \frac{\epsilon}{|\mathcal{A}(s)|}, & \text{otherwise} \end{cases}$$

where:

- $\pi(s,a)$ is the probability of taking action a in state s under the policy.
- Q(s, a') is the Q-value for action a' in state s.
- $\epsilon = 0.2$ is the exploration parameter, which ensures the agent takes random actions 20% of the time.
- $|\mathcal{A}(s)|$ is the number of available actions in state s.

Learning Process

The Q-Learning process consists of the following steps:

- 1. Initialize Q(s, a) arbitrarily for all state-action pairs.
- 2. For each episode, start at the initial state and select actions using the epsilon-greedy policy.
- 3. Update the Q-values using the Q-Learning update rule.
- 4. Continue until convergence or for a fixed number of episodes.

With Q-Learning, the goal is to learn the optimal Q-values, which allows the agent to derive the optimal policy for navigating the environment efficiently.

Double, Triple, and Quadruple Q-Learning

While standard Q-Learning can suffer from overestimation bias due to the use of the same Q-values for both action selection and value estimation, Double, Triple, and Quadruple Q-Learning introduce multiple Q-value estimators to address this bias and improve learning stability.

Double Q-Learning

In **Double Q-Learning**, two separate Q-value tables, Q_1 and Q_2 , are maintained. These tables alternate during updates, reducing the bias caused by overestimation. The update rule for Double Q-Learning is:

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha \left(R_{t+1} + \gamma Q_2(s_{t+1}, \arg \max_{a'} Q_1(s_{t+1}, a')) - Q_1(s_t, a_t) \right)$$

or vice versa, swapping Q_1 and Q_2 during updates. Key Differences:

- Two Q-tables $(Q_1 \text{ and } Q_2)$ are maintained to reduce overestimation bias.
- During each update, one Q-table selects the action, while the other estimates the value.

Triple Q-Learning

Triple Q-Learning extends the idea further by introducing a third Q-value estimator, Q_3 . This improves stability in environments with high variability. The update for one of the tables, say Q_1 , is:

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha \left(R_{t+1} + \gamma Q_i(s_{t+1}, \arg \max_{a'} Q_j(s_{t+1}, a')) - Q_1(s_t, a_t) \right)$$
 where $i, j \in \{2, 3\}$, and $i \neq j$.
Key Differences:

- Three Q-tables (Q_1, Q_2, Q_3) are used to improve stability.
- Updates use two Q-tables: one for action selection and another for value estimation.

Quadruple Q-Learning

In **Quadruple Q-Learning**, four Q-value estimators, Q_1, Q_2, Q_3 , and Q_4 , are maintained. This method further reduces the risk of overestimation and increases robustness in complex environments.

The update rule for one of the Q-tables, say Q_1 , is:

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha \left(R_{t+1} + \gamma Q_i(s_{t+1}, \arg \max_{a'} Q_j(s_{t+1}, a')) - Q_1(s_t, a_t) \right)$$
where $i, j \in \{2, 3, 4\}$, and $i \neq j$.
Key Differences:

- Four Q-tables (Q_1, Q_2, Q_3, Q_4) are maintained.
- Similar to Triple Q-Learning, updates use two of the remaining Q-tables for action selection and value estimation.
- This method offers improved robustness for environments with high uncertainty or noise.

Summary of Differences from Simple Q-Learning

- Multiple Q-Tables: Unlike simple Q-Learning, which uses a single Q-table, these methods introduce multiple Q-tables to reduce overestimation bias.
- Action-Value Decoupling: Action selection and value estimation are decoupled by using different Q-tables.
- Improved Stability: Triple and Quadruple Q-Learning offer greater stability and robustness, particularly in stochastic environments.

1 Summary of Code Functionality

1.1 Initialization

The code defines a 10×10 grid with different types of states:

- Goal State: Located at (9,9), with a reward of 0.
- Initial State: Set at (0,0).
- Kill States: Specific grid positions where the agent resets to the initial state and receives a reward of -20.
- Other States: All other states have a reward of -1.

The code also defines a discount factor $\gamma = 0.8$, learning rate $\alpha = 0.1$, and an ϵ -greedy policy with decay.

1.2 Functions

- find_first_occurrence_index(episode, target_tuple): Finds the first occurrence of a specific state-action pair in an episode.
- sum_rewards_from_index(episode, start_index): Calculates the total discounted reward from a given starting point.
- get_next_state(state, action): Determines the next state based on the current state and action taken.

• generate_episode(policy, epsilon, counting): Generates an episode using a given policy, handling state transitions and rewards. If the agent exceeds a threshold number of steps, the episode is restarted.

1.3 Q-Learning Algorithm

- Initializes the action-value function Q and ϵ -greedy policy.
- Updates the policy to select actions that maximize Q values, with exploration controlled by ϵ .
- For each episode, state-action pairs are used to update Q based on the observed rewards and the maximum value of future states.
- Decays ϵ over time to reduce exploration.

1.4 Double Q-Learning Algorithm

- Maintains two action-value functions, Q_1 and Q_2 , to mitigate overestimation of state-action values.
- Updates Q_1 or Q_2 at random, using the other function to select the best next action.
- Combines Q_1 and Q_2 to create the final policy.
- Decays ϵ gradually over episodes.

1.5 Triple Q-Learning Algorithm

• Similar to double Q-learning but with three action-value functions, Q_1 , Q_2 , and Q_3 .

1.6 Quadruple Q-Learning Algorithm

• similar to triple Q-Learning but with four action value functions

1.7 Policy and Episode Management

- The policies for each algorithm are updated based on the learned Q values to be more greedy over time.
- Episodes are generated using the current policy and stored for training purposes.

1.8 Data Collection and Visualization

- Runs experiments across multiple episodes to evaluate the performance of each policy.
- Collects metrics such as rewards, episode lengths, and Q-values.
- Visualizes the results by plotting graphs of performance metrics against the number of episodes.
- Fits best-fit lines to analyze trends and performance improvements over time.

Q-Learning Variations: Single, Double, Triple, and Quadruple Q-Learning Models

Scatter Plot with Best Fit Lines for R_Q Values Observations:

- Q1 (Single Q-learning): Shows a modest increasing trend with E-values.
- Q2 (Double Q-learning): Demonstrates a clear upward trend, suggesting better performance over episodes.
- Q3 (Triple Q-learning): Shows a downward trend, possibly indicating performance degradation over time.

Figure 1: Rewards for different Q-learning variants

• Q4 (Quadruple Q-learning): Exhibits a slight positive trend but fluctuates more compared to Q1 or Q2.

Performance Analysis:

- Double Q-learning (Q2) performs best, showing consistent improvement without overestimation bias.
- Single Q-learning (Q1) remains stable but improves slower than Q2.
- Triple Q-learning (Q3) struggles, possibly due to the complexity of managing multiple Q-tables, leading to instability.
- Quadruple Q-learning (Q4) has mixed results, with both improvement and instability, reflecting the diminishing returns of adding more estimators.

Average Episode Lengths vs E-Values

Observations:

- Q3 (Triple Q-learning): Shows very high spikes, indicating instability and large variations in episode lengths.
- Q1, Q2, and Q4: Have more stable trends, with Q2 maintaining the shortest average lengths throughout.

Figure 2: Average Length of variants of q at each epsiode

- Q1 (Single Q-learning): Demonstrates steady, though not optimal, performance.
- Q4 (Quadruple Q-learning): Fluctuates between Q2's low values and Q3's high spikes, showing inconsistent behavior.

Performance Insights:

- Double Q-learning (Q2) is the most efficient, with shorter average lengths indicating faster convergence.
- Triple Q-learning (Q3) struggles with stability, possibly due to the added complexity.
- Quadruple Q-learning (Q4) achieves some improvement but lacks consistency, suggesting increased overhead without significant benefit.

Overall Analysis and Recommendation

• Double Q-learning (Q2) is the optimal approach, offering a good balance of simplicity and performance. Its ability to mitigate over-

estimation bias and achieve faster convergence makes it the preferred model.

- Single Q-learning (Q1) is suitable for simpler tasks where performance demands are low.
- Triple (Q3) and Quadruple (Q4) Q-learning introduce unnecessary complexity and instability, making them less practical unless a specific need arises.

Conclusion: This detailed analysis highlights that while multiple Q-value estimators can improve performance, there is a trade-off between complexity and effectiveness. Double Q-learning strikes the best balance, making it a recommended choice for most applications.