# Red Wine

SUMMARY STATISTICS AND DISTRIBUTIONS

# Summary Statistics Table

| _                    |             |             |              | ^        |         | A         |      |
|----------------------|-------------|-------------|--------------|----------|---------|-----------|------|
|                      | mean        | trim_mean   | sd           | median   | min     | max       | n T  |
| fixed acidity        | 8.31963727  | 8.15253708  | 1.741096318  | 7.90000  | 4.60000 | 15.90000  | 1599 |
| volatile acidity     | 0.52782051  | 0.51806792  | 0.179059704  | 0.52000  | 0.12000 | 1.58000   | 1599 |
| citric acid          | 0.27097561  | 0.26128806  | 0.194801137  | 0.26000  | 0.00000 | 1.00000   | 1599 |
| residual sugar       | 2.53880550  | 2.25835285  | 1.409928060  | 2.20000  | 0.90000 | 15.50000  | 1599 |
| chlorides            | 0.08746654  | 0.08023497  | 0.047065302  | 0.07900  | 0.01200 | 0.61100   | 1599 |
| free sulfur dioxide  | 15.87492183 | 14.57728337 | 10.460156970 | 14.00000 | 1.00000 | 72.00000  | 1599 |
| total sulfur dioxide | 46.46779237 | 41.84309133 | 32.895324478 | 38.00000 | 6.00000 | 289.00000 | 1599 |
| density              | 0.99674668  | 0.99673621  | 0.001887334  | 0.99675  | 0.99007 | 1.00369   | 1599 |
| рН                   | 3.31111320  | 3.30909446  | 0.154386465  | 3.31000  | 2.74000 | 4.01000   | 1599 |
| sulphates            | 0.65814884  | 0.63744731  | 0.169506980  | 0.62000  | 0.33000 | 2.00000   | 1599 |
| alcohol              | 10.42298311 | 10.31003123 | 1.065667582  | 10.20000 | 8.40000 | 14.90000  | 1599 |
| quality              | 5.63602251  | 5.58860265  | 0.807569440  | 6.00000  | 3.00000 | 8.00000   | 1599 |

### Initial Observations:

The sample size of this data is 1599, because there are this many observations. There are no missing observations for any column of data.

There are some outliers in this data. This is clear by taking the summary statistics of the data set. The max values in some of the variables are far larger than the other values in the same set. There are some concerns with the data quality, because outliers can cause the data to be misrepresented by summary statistics.

# Fixed Acidity

| ^             | mean <sup>‡</sup> | trim_mean <sup>‡</sup> | sd <sup>‡</sup> | median | min <sup>‡</sup> | max <sup>‡</sup> | n <sup>‡</sup> |
|---------------|-------------------|------------------------|-----------------|--------|------------------|------------------|----------------|
| fixed acidity | 8.319637          | 8.152537               | 1.741096        | 7.9    | 4.6              | 15.9             | 1599           |

#### Histogram for fixed acidity



The fixed acidity follows a close to normal distribution, though, there are many values significantly higher than the mean and a very large max value. Because the data is shaped this way, the trimmed mean will provide a more accurate way to describe the average of this data by removing some of the outliers on both ends.





# Volatile Acidity

| ^                | mean <sup>‡</sup> | trim_mean | sd <sup>‡</sup> | median <sup>‡</sup> | min <sup>‡</sup> | max  | n <sup>‡</sup> |
|------------------|-------------------|-----------|-----------------|---------------------|------------------|------|----------------|
| volatile acidity | 0.5278205         | 0.5180679 | 0.1790597       | 0.52                | 0.12             | 1.58 | 1599           |

### Histogram for voltatile acidity



Volatile acidity seems to follow a slightly skewed distribution. The histogram and extended upper whisker on the box plot gives this intuition as well as the mean being slightly higher than the median. There do not appear to be any significant outliers as the skew justifies a high max value.

### Histogram for fixed acidity



### Citric Acid

| •           | mean <sup>‡</sup> | trim_mean | sd <sup>‡</sup> | median | min <sup>‡</sup> | max <sup>‡</sup> | n <sup>‡</sup> |
|-------------|-------------------|-----------|-----------------|--------|------------------|------------------|----------------|
| citric acid | 0.2709756         | 0.2612881 | 0.1948011       | 0.26   | 0                | 1                | 1599           |





The curve for citric acid appears to be quite skewed given by the mean being greater than the median and the two plots, though the values seem to be quite uniform from 0.1 - 0.5. This could be due to a selection of wines having the characteristic of very low citric acid while most others tending to hover within the previously specified range of values.



# Residual Sugar

| ^              | mean <sup>‡</sup> | trim_mean <sup>‡</sup> | sd <sup>‡</sup> | median <sup>‡</sup> | min <sup>‡</sup> | max <sup>‡</sup> | n <sup>‡</sup> |
|----------------|-------------------|------------------------|-----------------|---------------------|------------------|------------------|----------------|
| residual sugar | 2.538806          | 2.258353               | 1.409928        | 2.2                 | 0.9              | 15.5             | 1599           |





The residual sugar distribution is sparse and wide. The values tend to hover between 1 and 3.5 while there is an extensive tale on the high end of the histogram and many values outside the interquartile range in the boxplot. These extended values are likely due to niche wine selections, vineyard locations, or processes. Some could be true outliers, but an additional explanations seems justified. A trimmed mean would be a good option to represent the majority of wines, because it seems the skew of this data is made up by only a small fraction of the observations.

#### Histogram for residual sugar



### Chlorides

| *         | mean       | trim_mean  | sd <sup>‡</sup> | median | min <sup>‡</sup> | max <sup>‡</sup> | n <sup>‡</sup> |
|-----------|------------|------------|-----------------|--------|------------------|------------------|----------------|
| chlorides | 0.08746654 | 0.08023497 | 0.0470653       | 0.079  | 0.012            | 0.611            | 1599           |

#### Histogram for chlorides



This is another category which has a very sparse distribution. For the most part, the distribution looks normal when trimming off the outliers. Some of these outliers, again, seem like they could be explained by a niche cause. As with residual sugar, the trimmed mean would be a good option for summarizing the average.



### Free Sulfur Dioxide

| ^                   | mean <sup>‡</sup> | trim_mean <sup>‡</sup> | sd <sup>‡</sup> | median <sup>‡</sup> | min <sup>‡</sup> | max <sup>‡</sup> | n <sup>‡</sup> |
|---------------------|-------------------|------------------------|-----------------|---------------------|------------------|------------------|----------------|
| free sulfur dioxide | 15.87492          | 14.57728               | 10.46016        | 14                  | 1                | 72               | 1599           |





Sulfur dioxide follows a positively skewed distribution as indicated by the plots and the high mean value relative to the median. Even though the distribution is skewed, some of these high values do not appear justified by its skewedness. At least the maximum value appears as though it should be considered an outlier. As revealed by the boxplot, there are a few other points which hover significantly over the high values. Because this distribution is skewed, the best option to summarize the average of this data would be the median.

### Histogram for free sulfur dioxide



### Total Sulfur Dioxide

| ^                    | mean <sup>‡</sup> | trim_mean <sup>‡</sup> | sd <sup>‡</sup> | median <sup>‡</sup> | min <sup>‡</sup> | max <sup>‡</sup> | n <sup>‡</sup> |
|----------------------|-------------------|------------------------|-----------------|---------------------|------------------|------------------|----------------|
| total sulfur dioxide | 46.46779          | 41.84309               | 32.89532        | 38                  | 6                | 289              | 1599           |



The distribution for total sulfur dioxide is reminiscent of free sulfur dioxide. The distribution is neatly skewed with just a few outliers on the high end that is revealed by the boxplot.



# Density

| ^       | mean <sup>‡</sup> | trim_mean | sd <sup>‡</sup> | median 🗘 | min <sup>‡</sup> | max     | n <sup>‡</sup> |
|---------|-------------------|-----------|-----------------|----------|------------------|---------|----------------|
| density | 0.9967467         | 0.9967362 | 0.001887334     | 0.99675  | 0.99007          | 1.00369 | 1599           |



The distribution for the density of the wine follows a normal distribution. The intuition for this is gained by looking at the equal lengths on the whiskers of the box plot, the symmetric curve of the histogram, and very close mean-median values relative to the standard deviation. There do not appear to be any significant outliers so the mean would summarize the average adequately.



# рН

| ^  | mean     | trim_mean . | sd <sup>‡</sup> | median 🗘 | min <sup>‡</sup> | max  | n <sup>‡</sup> |
|----|----------|-------------|-----------------|----------|------------------|------|----------------|
| рН | 3.311113 | 3.309094    | 0.1543865       | 3.31     | 2.74             | 4.01 | 1599           |

#### Histogram for pH



The pH distribution curve follows a normal distribution. In this case, it does appear there are some outliers on the high and low end as indicated by the whiskers and standard deviation. The maximum value is about 4.5 standard deviations away from the mean and the minimum value is 3.7 standard deviation. The trimmed mean would be a great way to summarize the average here.



# Sulphates

| ^         | mean <sup>‡</sup> | trim_mean <sup>‡</sup> | sd <sup>‡</sup> | median <sup>‡</sup> | min <sup>‡</sup> | max | n <sup>‡</sup> |
|-----------|-------------------|------------------------|-----------------|---------------------|------------------|-----|----------------|
| sulphates | 0.6581488         | 0.6374473              | 0.169507        | 0.62                | 0.33             | 2   | 1599           |





The distribution of sulphates follows a skewed distribution, and it contains multiple outliers on the high end. The outliers are clear when you look at the box plot, because they sit far above the values on the high end. Using the median would be the best option for summarizing the average of this data.



### Alcohol Content

| ^       | mean     | trim_mean <sup>‡</sup> | sd <sup>‡</sup> | median 🗘 | min <sup>‡</sup> | max  | n <sup>‡</sup> |
|---------|----------|------------------------|-----------------|----------|------------------|------|----------------|
| alcohol | 10.42298 | 10.31003               | 1.065668        | 10.2     | 8.4              | 14.9 | 1599           |





The distribution of the alcohol content follows a neatly skewed distribution. There does not appear to be any blatant outliers. The median would be the best option to summarize the average of this data.

