netGO User's Manual

Contact: Jinhwan Kim kjh0530@unist.ac.kr

2019-08-26

1. Introduction

netGO is an R-Shiny package for network-integrated pathway enrichment analysis. It also provides the conventional Fisher's exact test. Specifically, it provides user-interactive visualization of enrichment analysis results and related networks. The netGO package is available at Github (https://github.com/unistbig/netGO). Currently, netGO provides network and annotation geneset data for four species including human, mouse, yeast, and Arabidopsis thaliana. These data are all available from another repository (https://github.com/unistbig/netGO-Data/)

2. Installation and Example codes

1) Prerequisite R packages can be installed by simply executing the following R codes:

install.packages(c('devtools', 'Rcpp', 'shinyjs', 'DT','doParallel', 'foreach', 'parallel', 'htmlwidgets', 'googleVis', 'V8')) library(devtools) install_qithub('unistbig/shinyCyJS')

2) netGO can be installed and executed as follows:

library(devtools) # load devtools to use 'install_github' function install_github('unistbig/netGO') # install netGO library(netGO) # load netGO DownloadExampleData() # Download and load example datasets obj = netGO(genes = brca[1:20], genesets = genesets, network = network, genesetV = genesetV) # Executing netGO netGOVis(obj = obj, genes = brca[1:20], genesets = genesets, R = 50, network = network) # Visualization of the result

This example run may takes around 10 min in Desktop, and 15 \sim 25 min in Laptop (not including Download example data)

3. Data

Human, mouse, yeast and Arabidopsis data are available at https://github.com/unistbig/netGO-Data.

* Tip: Human STRING and MSigDB C2 data are directly loaded using 'DownloadExampleData()' function.

Species	Data Type	File name	Object name
Human	Network	1) Human/networkString.RData	network
		2) Human/networkHumannet.R	Data
	Gene-set (mSigDB C2)	Human/c2gs.RData	genesets
	Pre-calculated interaction data	1) For STRING,	
		Human/genesetVString1.RD	ata genesetV1
	NOTE: After downloading *1.RData and	Human/genesetVString2.RD	ata genesetV2
	*2.RData, genesetV1 and genesetV2	2) For HumanNet,	
	must be joined by a row!	Human/genesetVHumannet1	.RData genesetV1
	genesetV=rbind(genesetV1,genesetV2)	Human/genesetVHumannet	2.RData genesetV2
Mouse	Network	networkMousenet.RData	network
	Gene-set (KEGG)	KEGGmouse.RData	genesets
	Pre-calculated interaction data	genesetVMousenet.RData	genesetV
Yeast	Network	networkYeastnet.RData	network

	Gene-set (KEGG)	KEGGyeast.RData	genesets
Arabidopsis	Network	networkAranet.RData	network
	Gene-set (KEGG)	KEGGara.RData	genesets

Table M1. Network and gene-set data provided in netGO

4. Functions

The two main functions of netGO package are 'netGO' (<u>for enrichment test</u>) and 'netGOVis' (<u>for visualization of the test results</u>).

1) netGO

netGO function takes seven arguments: 1) genes, 2) genesets, 3) network, 4) genesetV, 5) alpha (optional) and 6) beta(optional) 7) nperm (optional). It returns the *p*-values and FDR of gene-sets (data.frame) derived from netGO and Fisher's exact test. Note that the members in genes (denoted by A, B, C here) should be given in gene symbols when using the default STRING and MSigDB data. Other types of gene names are also acceptable if the corresponding customized data (network and gene-set data) are uploaded. Descriptions of each argument are as follows:

- ① **genes**: A character vector of input genes (e.g., differentially expressed genes).
- 2 genesets: A list of gene-sets consisting of groups of genes (e.g., C2 category of MSigDB).
- 3 **network**: A numeric matrix of network data. The range of network score is [0,1].

	Α	В	С
Α	0	0.1	0.76
В	0.1	0	0.324
С	0.76	0.324	0

Figure M1. Example for network data

@ genesetV: A numeric matrix of pre-calculated interaction data between genes and gene-sets. The matrix dimension becomes [{# of genes} X {# of gene-sets}]. This matrix can be obtained using BuildGenesetV function with the network and gene-set objects as input arguments. Calculating this matrix corresponds to the preprocessing step of netGO.

genesetV = BuildGenesetV(network, genesets)

	GS1	GS2	GS3
Α	0.837	1.647	0.074
В	0	1.750	0.113
С	0.464	0.486	0.442

Figure M2. Example for genesetV.

- (5) **alpha** (optional): A numeric parameter weights how much network score will be effected (See (1) in the main text). The value is positive numeric value with > 1 and the default is 20.
- 6 beta (optional): A numeric parameter balancing the weights between the relative and absolute network scores (See (1) in the main text). The value is between 0 and 1 and the default is 0.5.
- nperm (optional): The number of resampling. Default is 10,000.

2) netGOVis

netGOVis also takes six input arguments: 1) obj, 2) genes, 3) genesets, 4) network, 5) R (optional), 6) Q (optional). This function visualizes the test results on web browser (google chrome is recommended). The resulting network graphs and table are downloadable.

- ① obj: data frame of the test results obtained from 'netGO' function. It consists of five columns including 1) gene-set name and p-values and FDR calculated from 2) netGO (netGOP, netGOFDR) and 3) Fisher's exact test (FisherP, FisherFDR) and 4) each gene-set's overlap score (overlap_score) and 5) network score (network_score).
- ② R (optional): Gene-set rank threshold, default is 50 (Top 50 gene-sets in either method will be displayed).
 This parameter has higher priority than Q parameter.
- ③ Q (optional): Gene-set Q-value threshold, default is 1. (Gene-sets with Q-values below this threshold will be displayed)
- ④ genes, genesets, network: the same arguments in the 'netGO' function.

5. Network visualization

netGO visualization page consists of three parts such as Network, Table, and Bubble.

- 1) **Network** panel displays the input genes, selected gene-set, and the network connections between the two.
 - Sky blue nodes represent input genes (e.g., DE genes)
 - Yellow nodes represent genes in the selected gene-set
 - Green nodes represent the intersection of input genes and the gene-set.
 - The edge width represents the strength of interaction between two nodes.
 - * Green Nodes without edges are discarded.
 - * The gene-set can be selected by clicking on the gene-set name in the Table on the right side.
 - * The users can download the graph image as SVG format.
- 2) Table contains the names of gene-sets and their p-values evaluated from netGO and Fisher's exact test, respectively. It is downloadable by clicking the 'Download Table' button in the upper right of the table (Figure M3).

Figure M3. Table panel that shows the list of significant gene-sets

3) **Bubble** module plots the bubble chart of significant gene-sets. Bubble module plots the bubble chart of significant gene-sets. The overlap (x-axis) and network scores (y-axis) of each significant gene-sets are represented. The size of bubbles represents the significance level of each gene-set. The sum of the two

scores is the integrated score $P(T \rightarrow A)$ as follows:

$$P(T \to A) = \frac{|T \cap A|}{|T|} + \frac{\alpha}{|T|} \sum_{x \in T - A} AI(x, A)^{\beta} \cdot RI(x, A)^{1 - \beta}$$
Overlap score

Network score

Where

$$AI(x,A) = \frac{1}{|A|} \sum_{y \in A} I(x,y)$$

$$RI(x,A) = \frac{1}{|N(x)|} \sum_{y \in A} I(x,y)$$

T and A are target and annotation gene-sets, respectively; $|\cdot|$ denotes the size of a set; I(x,y) represents the interaction score between x and y genes normalized to unit interval [0,1]; N(x) is the set of all scores of interactions to x and |N(x)| is their summation.

Note that high network score means a dense interaction between input genes and gene-set.

- The size of bubble represents the significance of each gene-set ($-\log_{10}p-value$).
- Colors of bubble indicate the method that detected the gene-set as significant.

Figure M4. netGO interface