Московский физико-технический институт (госудраственный университет)

Лабораторная работа по РТ цепям

Длинный цепи [23]

Талашкевич Даниил Александрович Группа Б01-009

Содержание

1	Исс	гледование параметров линии	
2	Исследование переходных процессов		
	2.1	Согласованная линия	
	2.2	Рассогласованный источник	
	2.3	Рассогласованная нагрузка	
		Рассогласованный источник и нагрузка	
		Емкостная нагрузка	
3	.Пит	гература	

1 Исследование параметров линии

Так как нет возможности собрать плату и измерить её параметры, выполнение этого пункта пропускаю.

2 Исследование переходных процессов

Исследования проводим в режиме Transient Micro Cap, с подготовленной моделью (файл TLine.cir), который содержит длинную линию с волновым сопротивлением w=50 Ом, без потерь, время распространения $\tau=\frac{l}{w}=10$ нс. Линия питается от источника единичного перепада напряжения V=1 В.

Наблюдаются напряжения в узлах e, u на входе и выходе линии (переменные v(e), v(u)) и входной/выходной токи i(s)/i(l) через виртуальные резисторы s, l с нулевыми сопротивлениями.

В этой модели (файле) Подготовлен вывод графиков амплитуд падающей волны на входе $A(0,t)=\frac{v(e)+50*i(s)}{2}$ и выходе $A(l,t)=\frac{v(u)+50*i(l)}{2}$ (плот 1), амплитуд отраженной волны на входе $B(0,t)=\frac{v^2(e)-50*i(s)}{2}$ и выходе $B(l,t)=\frac{v(u)-50*i(l)}{2}$ (плот 2), напряжений на входе и выходе v(e), v(u) (плот 3) и токов на входе и выходе v(e), v(u) (плот 3) и токов на входе и выходе v(e), v(u) (плот 3) и токов на входе и выходе v(e), v

Временной диапазон графиков выбран равным $20\tau(\tau = 10 \text{ нc})$.

2.1 Согласованная линия

На схеме установим $R_s = R_l = 50$ Ом, и выведем графики (через меню Analisys/Transient/Run). Проанализируем графики амплитуды падающей волны, напряжений и токов. А так же, измерив по графикам установившиеся значения v(u) и i(l)w, убедимся в том, что источник отдает в нагрузку предельную мощность:

$$P = v(u)i(l) = \frac{V^2}{4R_s}, V = 1 \text{ B}:$$

$$Pw = v(u)i(l)w = \frac{V^2}{4R_s}w = 0,25.$$

- 2.2 Рассогласованный источник
- 2.3 Рассогласованная нагрузка
- 2.4 Рассогласованный источник и нагрузка
- 2.5 Емкостная нагрузка
- 3 Литература
 - Григорьев А.А. Лекции по теории сигналов. М.: МФТИ, 2013.
 - Методические указания к работе №23(Длинный цепи).