## TECNOLOGÍA DE COMPUTADORES. CURSO 2021/22. PRÁCTICA Nº 2: MÓDULOS COMBINACIONALES.

Días 25 de octubre, 2, 3, y 4 de noviembre.

## SOLUCIÓN

## 2.- Segunda parte: comprobación de una función booleana con el simulador

Diseñar y montar un circuito digital que implemente la función booleana  $F = A \cdot B \cdot C + B \cdot C'$  usando los dos módulos combinacionales del apartado anterior, es decir un DEC 3x8 y las puertas que necesites, y un MUX 8x1, ambos tomados de la librería de Logisim.

| A | В | C | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |



## 3.- Tercera parte: Diseño de una función lógica usando subcircuitos

1) Crear el subcircuito "dec2x4" que contenga un DEC 2x4 implementado con puertas lógicas. No olvidar añadir una entrada Enable. Todas las entradas y salidas deben ser activas a nivel alto. Hacer uso de tutorial de Logisim (haciendo clic en *Help → Tutorial → Subcircuits*) para aprender cómo se crean y usan los subcircuitos en Logisim.



2) Implementa un circuito cuya entrada es un número binario de 2 bits  $(N_1 \ y \ N_0)$  y cuya salida sea el cuadrado de dicho número más el propio número más 4  $(S=N^2+N+4)$  si el número de entrada es impar  $(N_0=1)$  y el cuadrado más 7  $(S=N^2+7)$  en el resto de casos  $(N_0=0)$ . Utilizar el subcircuito "dec2x4" y las puertas necesarias.

| N <sub>1</sub> | No | S <sub>4</sub> | <b>S</b> <sub>3</sub> | $S_2$ | S <sub>1</sub> | S <sub>0</sub> |
|----------------|----|----------------|-----------------------|-------|----------------|----------------|
| 0              | 0  | 0              | 0                     | 1     | 1              | 1              |
| 0              | 1  | 0              | 0                     | 1     | 1              | 0              |
| 1              | 0  | 0              | 1                     | 0     | 1              | 1              |
| 1              | 1  | 1              | 0                     | 0     | 0              | 0              |

