Introduction

Fall 2024

Maryam Abdolali

Syllabus - Topics we are going to cover!

- **Feature Engineering**
 - Cleaning & Transforming data
- Association Rule Mining
 - Apriori
 - Eclat
- Mining patterns using machine learning
 - Supervised
 - ► k-Nearest Neighbors
 - Linear Regression
 - ► Logistic Regression
 - ► Support Vector Machines (SVMs)
 - Decision Trees and Random Forests
 - Neural networks

- Unsupervised
 - Clustering
 - **K**-Means
 - **DBSCAN**
 - ► Hierarchical Cluster Analysis (HCA)
 - ▶ Visualization and dimensionality reduction
 - Principal Component Analysis (PCA)
 - ► t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Anomaly detection and novelty detection
 - One-class SVM
 - Isolation Forest

Main Textbooks & Grading

What is even Data Mining?

Data mining is the process of **discovering/mining patterns** in **large data sets** involving methods at the intersection of machine learning, statistics and database systems

data mining can transform raw data into valuable insights

Pattern Discovery
A retail store analyzes
customer purchase data
and discovers that people
who buy bread often also
buy butter.

Apriori Algorithm

Anomaly Detection
A credit card company uses
data mining to detect
fraudulent transactions.
One-Class SVM

Predictive Analysis

An e-commerce website uses historical data on customer behavior to predict which products are likely to be popular in the upcoming holiday season, allowing them to stock accordingly.

<u>Linear Regression, ARIMA</u>

Decision Making
A bank uses data mining to analyze loan applicants' to decide on whom to approve for loans.

ML: Decision Trees

Knowledge Discovery

In healthcare, researchers analyze patient data to discover that certain lifestyle factors significantly increase the risk of developing diabetes.

Statistical Analysis (e.g., t-test)

Why do we need to "mine"?

- The Explosive Growth of Data:
 - Data collection and data availability
 - ▶ Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - ▶ Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube, social media, mobile devices, ...
- We are drowning in data, but starving for knowledge!

What is Machine Learning?

Machine learning is the science (and art) of programming computers so they can *learn from data*.

Traditional Programming

Machine Learning

- What exactly does it mean for a machine to learn something?
 - I downloaded a copy of Wikipedia, has my computer really learned something?

The goal of ML: Generalization

- Real world Example
- Consider two college students diligently preparing for their final exam.

Extraordinary Ellie:

- whose preparation consisted entirely of memorizing the answers to previous years' exam questions.
- ▶ Ellie has an extraordinary memory, and thus could perfectly recall the answer to any *previously seen* question, she might nevertheless freeze when faced with a new (*previously unseen*) question.

Inductive Irene:

with comparably poor memorization skills, but a knack for picking up patterns.

- If the exam truly consisted of recycled questions from a previous year, Ellie would handily outperform Irene.
- However, even if the exam consisted entirely of fresh questions, Irene might maintain her 90% average.

Why ML?

Example: Spam Filtering

Traditional what spam typically looks Launch! Study the Write rules Evaluate problem Analyze errors your program will likely become a long list of

Machine Learning is great for:

- Problems for which existing solutions require a lot of fine-tuning or long lists of rules
- Complex problems for which using a traditional approach yields no good solution.
- Fluctuating environments: a Machine Learning system can adapt to new data.
- Getting insights about complex problems and large amounts of data.(data mining)

Types of Machine Learning Systems

Whether or not they are trained with human supervision

In *supervised learning*, the training set you feed to the algorithm includes the desired solutions, called *labels*

In *unsupervised learning*, as you might guess, the training data is unlabeled

-cont-

Labeling data is **time-consuming** and **costly**, you will often have plenty of unlabeled instances, and few labeled instances. Some algorithms can deal with data that's *partially labeled*. This is called *semi-supervised learning*

Reinforcement Learning

Reinforcement Learning is a very different beast. The agent can observe the environment, select and perform actions, and get rewards in return. It learns by itself what is the best strategy, called a *policy*, to get the most reward over time.

We cover this in AI course!

Types of machine learning systems

- Batch Learning:
 - ▶ It must be trained using all the available data.
 - If new data arrives, you need to train a new version of the system from scratch on the full dataset.
 - ▶ But computationally inefficient
- In online learning, you train the system incrementally by feeding it data instances sequentially

Types of machine learning systems

- Instance-based learning: the system learns the examples by heart, then generalizes to new cases by using a similarity measure to compare them to the learned examples
- Another way to generalize from a set of examples is to build a model of these examples and then use that model to make *predictions*

Typical Machine Learning pipeline

Data Collection

• Data collection: gathering raw data from different sources like databases, files, APIs

Exploratory Data Analysis (EDA)

- Data Cleaning: imputation, deduplication, and outlier detection
- **Data Transformation:** encoding categorical variables into numerical features, scaling numerical features to a similar range
- Univariate Analysis: graphical or non-graphical methods by finding specific mathematical values in a single feature or column
- Bivariate Analysis: explores the connection between variables

Feature Engineering

• Feature creation & selection

Model Selection & Training

• Model selection: choosing a suitable machine learning algorithm

• Fitting Model: Train the selected model on the training dataset with the selected algorithm and refine parameters to optimize the performance

Model Evaluation & Validation

- quantify model performance
- find optimal hyperparameters

Main Challenges of Machine Learning

"bad data"

- Insufficient Quantity of Training Data
- Nonrepresentative Training Data
 - "Your training data be representative of the new cases you want to generalize to"
 - ► Famous Example: US presidential election in 1936
- Poor-Quality Data
 - > errors, outliers, and noise
- Irrelevant Features
 - ► Garbage in, garbage out
 - ➤ Your system will only be capable of learning if the training data contains enough relevant features and not too many irrelevant ones.

"bad model"

Overfitting/underfitting (we will dive into this later)