CARTAS DE CONTROLE DE MÉDIA MÓVEL EXPONENCIALMENTE PONDERADA

- Média móvel com peso exponencial
- Carta de EWMA
- Carta MA

MÉDIA MÓVEL PONDERADA (COM PESO EXPONENCIAL)

A Carta de Média Móvel exponencialmente ponderada é definida como:

$$z_{i} = \lambda x_{i} + (1 - \lambda) z_{i-1}$$

Onde $0 < \lambda < 1$ é uma constante e o valor inicial (exigido com a primeira amostra em i=1) é o alvo do processo, de modo que:

$$z_0 = \mu_0 \quad \text{Algumas vezes, a média de dados preliminares \'e usada como o valor inicial da EWMA, de modo que } z_0 = \mu_0 \; .$$

Se as observações x, são variáveis aleatórias independentes com variância , então, a variância de z, é:

$$\sigma_{z_i}^2 = \sigma^2 \left(\frac{\lambda}{2 - \lambda} \right) \left[1 - (1 - \lambda)^{2i} \right]$$

MÉDIA MÓVEL PONDERADA (COM PESO EXPONENCIAL)

Para demonstrar que a EWMA Z_i é uma média ponderada de todas as médias de amostras anteriores, pode-se substituir z_{i-1} no membro direito da equação de z_i para obter:

$$z_{i} = \lambda \sum_{j=0}^{i-1} (1 - \lambda)^{j} x_{i-j} + (1 - \lambda)^{i} z_{0}$$

Os pesos $\lambda(1-\lambda)$ decrescem geometricamente com a idade

da média amostral:

$$\lambda (1-\lambda)^{j}:$$

$$para\begin{cases} j=0 & \Rightarrow 0.2(1-0.2)^{0} = 0.2\\ j=1 & \Rightarrow 0.2(1-0.2)^{1} = 0.16\\ j=2 & \Rightarrow 0.2(1-0.2)^{2} = 0.128\\ j=3 & \Rightarrow 0.2(1-0.2)^{3} = 0.1024 \end{cases}$$

Figura1: Pesos de médias de amostras passadas

CARTA DE CONTROLE EWMA

A Carta de Controle EWMA pode ser construída plotando-se **z**i versus o número da amostra **i** (ou tempo). A linha central e os limites de controle são como indicado ao lado.

$$LSC = \mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$

 $Linha\ Central = \mu_0$

$$LIC = \mu_0 - L\sigma\sqrt{\frac{\lambda}{(2-\lambda)} \left[1 - (1-\lambda)^{2i}\right]}$$

$$LSC = \mu_0 + L\sigma\sqrt{\frac{\lambda}{(2-\lambda)}}$$

$$LIC = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

		_	
Sample, i	(a) x _i	(b) x _i - 10	(c) $C_i = (x_i - 10) + C_{i-1}$
1	9.45	-0.55	-0.55
2	7.99	-2.01	-2.56
3	9.29	-0.71	-3.27
4	11.66	1.66	-1.61
5	12.16	2.16	0.55
6	10.18	0.18	0.73
7	8.04	-1.96	-1.23
8	11.46	1.46	0.23
9	9.20	-0.80	-0.57
10	10.34	0.34	-0.23
11	9.03	-0.97	-1.20
12	11.47	1.47	0.27
13	10.51	0.51	0.78
14	9.40	-0.60	0.18
15	10.08	0.08	0.26
16	9.37	-0.63	-0.37
17	10.62	0.62	0.25
18	10.31	0.31	0.56
19	8.52	-1.48	-0.92
20	10.84	0.84	-0.08
21	10.90	0.90	0.82
22	9.33	-0.67	0.15
23	12.29	2.29	2.44
24	11.50	1.50	3.94
25	10.60	0.60	4.54
26	11.08	1.08	5.62
27	10.38	0.38	6.00
28	11.62	1.62	7.62
29	11.31	1.31	8.93
30	10.52	0.52	9.45

Vamos calcular a Carta de Controle EWMA com λ =0.10 e L=2.7 para os dados da tabela 8.1.

Dados provenientes de uma distribuição normal com μ=10 e σ=1.

Tabela 8.1: Dados para o exemplo de Carta de Média Móvel Ponderada (o mesmo da Carta CUSUM)

- Lembre-se que o valor alvo para a média é μ_0 =10 e o desvio padrão é σ =1.
- Para ilustrar os cálculos considere a primeira observação, x1=9.45. O primeiro valor para a EWMA é:

$$z_i = \lambda x_i + (1 - \lambda) z_0$$

= 0.1(9.45) + 0.9(10)
= 9.945

 Assim, z₁=9.945 é o primeiro valor plotado na Carta de Controle na Figura 8.7. O segundo valor calculado de EWMA é:

$$z_2 = \lambda x_2 + (1 - \lambda)z_1$$

= 0.1(7.99) + 0.9(9.945)
= 9.7495

Limites de Controle - Periodo 1 :

$$LSC = \mu_0 + L\sigma\sqrt{\frac{\lambda}{(2-\lambda)}} \left[1 - (1-\lambda)^{2i}\right]$$

$$= 10 + 2.7(1)\sqrt{\frac{0.1}{(2-0.1)}} \left[1 - (1-0.1)^{2(1)}\right]$$

$$= 10.27$$

$$LIC = \mu_0 - L\sigma\sqrt{\frac{\lambda}{(2-\lambda)}} \left[1 - (1-\lambda)^{2i}\right]$$

$$= 10 - 2.7(1)\sqrt{\frac{0.1}{(2-0.1)}} \left[1 - (1-0.1)^{2(1)}\right]$$

$$= 9.73$$

Limites de Controle em Estado Estacionário:

$$LSC = \mu_0 + L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

$$= 10 + 2.7(1) \sqrt{\frac{0.1}{(2-0.1)}}$$

$$= 10.62$$

$$LIC = \mu_0 - L\sigma \sqrt{\frac{\lambda}{(2-\lambda)}}$$

$$= 10 - 2.7(1) \sqrt{\frac{0.1}{(2-0.1)}}$$

$$= 9.38$$

Figura 2: A Carta de Controle EWMA para o Exemplo 1

PROJETO DA CARTA PARA EWMA

Deslocamento na média (múltiplo de σ)	$L = 3.054$ $\lambda = 0.40$	2.998 0.25	2.962 0.20	2.814 0.10	2.615 0.05
0	500	500	500	500	500
0.25	224	170	150	106	84.1
0.50	71.2	48.2	41.8	31.3	28.8
0.75	28.4	20.1	18.2	15.9	16.4
1.00	14.3	11.1	10.5	10.3	11.4
1.50	5.9	5.5	5.5	6.1	7.1
2.00	3.5	3.6	3.7	4.4	5.2
2.50	2.5	2.7	2.9	3.4	4.2
3.00	2.0	2.3	2.4	2.9	3.5
4.00	1.4	1.7	1.9	2.2	2.7

Tabela 1: Comprimento Médio de Sequência (CMS ou ARL) para vários esquemas de controle EWMA (adaptado de Lucas e Saccusi (1990))

ROBUSTEZ DA CARTA EWMA PARA DADOS DE PROCESSOS NÃO-NORMAIS (DISTRIB. GAMMA)

		EWMA		Shewhart	
$L = \frac{\lambda}{L}$	0.05 2.492	0.1 2.703	0.2 2.86	1 3.00	
Normal	370.4	370.8	370.5	370.4	CMS
Gam(4, 1)	372	341	259	97	(ARL)
Gam(3, 1)	372	332	238	85	
Gam(2, 1)	372	315	208	71	_
Gam(1, 1)	369	274	163	55	
Gam(0.5, 1)	357	229	131	45	

"Aumenta o "peso no presente"

Tabela 2: Comprimento Médio de Sequência (CMS ou ARL) para Cartas de Controle EWMA e Cartas de Controle de Shewhart Individuais para Várias **Distribuições Gamma**.

intervalo

ROBUSTEZ DA CARTA EWMA PARA DADOS DE PROCESSOS NÃO-NORMAIS (DISTRIB. T)

$\lambda \atop L$		Shewhart		
	0.05 2.492	0.1 2.703	0.2 2.86	1 3.00
Normal	370.4	370.8	370.5	370.4
t ₅₀	369	365	353	283
t ₄₀	369	363	348	266
t ₃₀	368	361	341	242
t ₂₀	367	355	325	204
t ₁₅	365	349	310	176
t ₁₀	361	335	280	137
t ₈	358	324	259	117
t ₆	351	305	229	96
t_4	343	274	188	76

Tabela 3: Comprimento Médio de Sequência (CMS ou ARL) para Cartas de Controle EWMA e Cartas de Controle de Shewhart Individuais para Várias **Distribuições t.**

SUB-GRUPOS RACIONAIS

- A Carta de Controle EWMA é frequentemente usada com medições individuais.
- Entretanto, se subgrupos racionais de tamanho n>1 são tomados, então simplesmente substitua:

$$x_i \operatorname{com} \overline{x_i} = \sigma \operatorname{com} \sigma_{\overline{x}} = \sqrt[\sigma]{n}$$

EXTENSÕES DA CARTA DE CONTROLE EWMA

- Característica de rápida resposta inicial
- Monitoramento de variabilidade
- Monitoramento de dados contados
- Comportamento da EWMA como um preditor do nível de operação do processo

A CARTA DE CONTROLE PARA MÉDIA MÓVEL - MA

$$M_{i} = \frac{x_{i} + x_{i-1} + \dots + x_{i-w+1}}{w}$$

$$LSC = \mu_{0} + \frac{3\sigma}{\sqrt{w}}$$

$$LIC = \mu_{0} - \frac{3\sigma}{\sqrt{w}}$$

A CARTA DE CONTROLE PARA MÉDIA MÓVEL - MA

Figura 3: A Carta de Controle EWMA com w=5 para o Exemplo 8.3

BIBLIOGRAFIA

- **1. Douglas C. Montgomery**: *Introduction to Statistical Quality Control*, 4th Edition.
- 2. Manzic, C. L.: "Statistical Process Control: Practical Guides for Measurement and Control", ISA, 1995.