商场中精确定位用户所在店铺

一、 研究动机

如今,商场规模越来越大。商场规模的扩大在某种程度上带来了两个方面的问题。一方面,对于用户来说,在一个店铺密集型的商场里如何找到自己的目标变得越来越困难。用户进入店铺以后,对店家的促销信息、新品推介等都不了解,在商场里购物的效率不高。另一方面,商场不熟悉每天每间店铺的客流量,不能做出最贴切的营销策略。

因此,能够精确判断用户所在店铺变得尤为重要。精确定位用户所在的店铺也是当前研究的一个难题。在真实生活中,当用户在商场环境中打开手机的时候,存在定位信号不准、环境信息不全、店铺信息缺失、不同店铺空间距离太近等挑战。GPS 在室外定位中有着广泛的应用,但是在室内环境里,GPS 信号会受到墙体等障碍物的阻隔而失效。在这种情况下,需要使用 WIFI 环境信息、店铺信息等其他数据对用户所在店铺进行判断。

本项目目标为:在已知商场店铺相关信息、用户所处的 GPS 位置和周围的 WIFI 等环境信息的情况下,精确判断用户当前所在的店铺。

本项目的应用场景如下: 当用户走入商场的某家餐厅时, 手机自动弹出该餐厅的优惠券; 当用户走入商场服装店时, 手机可以自动推荐这家店铺里用户喜欢的衣服; 当用户路过商场 的一家珠宝店时, 手机可以自动提示用户心仪了很久的一款钻戒已经有货。

本项目的研究意义在于:精确定位用户所在店铺,以在正确的时间、正确的地点给用户最有效的服务。

二、 问题描述

训练集大小: 596967(2017-08-2014:00之前的行为数据)

测试集大小: 451608(2017-08-2014:00及之后的行为数据)

输入: row id, user id, mall id, time stamp, longitude, latitude, wifi infos

输出: shop id

三、 特征提取方法

因为每一个测试数据的 mall id 是知道的, 所以特征提取针对于某个 mall 来做。

1. 提取所有 WIFI 信息

训练数据中,每个行为数据都有一个 WIFI 信息表,记录了这个行为记录发生时,有什么 WIFI,这些 WIFI 的信号强度,以及用户是否有连接这个 WIFI。

我们需要统计某个 mall 存在多少不同的 WIFI, 然后用这些 WIFI 的强度作为每个行为 数据的特征,这个 mall 的每个 WIFI 作为一个特征列。

假设某个 mall 共有 r 行行为数据,这个 mall 的所有店铺共有 n 个不同的 WIFI: 则提取所有 WIFI 信息结果如下表所示:

Row_id	WIFI_1	WIFI_2	WIFI_3	WIFI_4	 WIFI_n
1				NaN	
2		NaN	NaN		
3			NaN		
	NaN		NaN	NaN	
				NaN	
					 NaN
r			NaN	NaN	

其中, NaN 表示当前行为数据没有这个 WIFI。

2. 提取稳定 WIFI 信息 (降维)

这个时候,会发现,对于某个 mall,提取的 WIFI 列数可能有好几千列。WIFI 中有位置比较固定的稳定 WIFI,也有用户自带的移动 WIFI,必须将不稳定的噪音 WIFI 过滤掉。

我们提出了一种提取稳定 WIFI 的方法。这个方法基于这样的思想:如果一个 WIFI 属于用户自带的移动 WIFI,那么它出现在行为数据的次数肯定不多。

因此,我们删除出现次数小于 m(其中 m < r)的 WIFI 列,例如 WIFI_2、WIFI_4 出现的次数较少,会被过滤掉。经过实验,最后的 m 设为 20。可以把原来好几千列的 WIFI 数据降为几百列。

提取稳定 WIFI 信息结果如下表所示:

Row_id	WIFI_1	WIFI_3	•••	WIFI_n
1			•••	
2		NaN		
3		NaN		
	NaN	NaN		
			•••	
				NaN
r		NaN		

3. WIFI 信号强度的变换

为了便于分析,我们将 WIFI 信号强度变换为 0-100,这样,WIFI 强度为 NaN 的记录就可以填充为 0,表示没有这个 WIFI。

变换方式为:对于某一列 WIFI,记录所有行为数据中该 WIFI 强度的最大值为 max,强度最小值为 min,则对于某一行行为数据,假设其原来的 WIFI 强度为signal_{old},变换之后的 WIFI 强度记为signal_{new}。则变换公式可以表示为:

$$\mathrm{Signal}_{\mathrm{new}} = \frac{100 \times (signal_{old} - min)}{\mathrm{max} - min}$$

4. 提取周末/非周末属性

下图表示所有行为数据中,周一到周日出现的频次直方图。

可以看到,周六周日的行为数据比较多,说明人流量较大,这时候的 WIFI 环境更加复

杂。因此,增加 weekend 属性,以区分周末/非周末数据。周六周日的 weekend 属性值为 1,周一到周五的 weekend 属性值为 0。

5. 提取繁忙/非繁忙时间段属性

下图表示所有行为数据中,一天二十四小时,每个小时出现的频次直方图。

可以看到,12点、19点、18点、13点的行为数据较多,说明人流量大,这时候的 WIFI 环境更加复杂。因此,增加 busy 属性,以区分繁忙/非繁忙时间段的数据。时间段属于12、19、18、13的行为数据,busy 属性记录为1,其他时间的行为数据,busy 属性记录为0。

6. 最终特征

最后,使用经度、纬度、稳定 WIFI 列、周末/非周末、繁忙/非繁忙时间段这些属性作为特征去训练我们的分类器

四、 算法

1. 随机森林

可以直接使用随机森林进行店铺多分类。

随机森林的基本想是:随机森林是一个包含多个决策树的分类器,随机森林的输出类别由个别树输出的类别的众数而定。之所以叫随机森林,是因为这些决策树的形成采用了随机的方法。

随机森林建立一个决策树的流程如下:

1) 采用有放回的方式,对原始训练进行行采样,得到一个新的训练集,用该训练集训

练一个决策树。在每次决定用哪个特征对数据集进行划分的时候,并不是选所有特征上的划分信息增益最大的那个特征,而是先进行一个列采样,从采样出来的特征 里面选最好的那个特征。

2) 对采样之后的数据使用完全分裂的方式建立决策树。完全分裂的意思是: 所有样本 指向同一个分类或者列采样的特征不足以继续分裂。

2. 逻辑回归

普通的逻辑回归只能针对二分类问题,而我们这个店铺分类是一个多分类问题。因此, 我们把我们的多分类问题,转化成多个二分类问题,然后用逻辑回归求解。

当我们把问题看成多分类的时候,对于某个 mall,我们训练得到一个多分类器。当我们把问题看成二分类的时候,对于某个 mall,假设这个 mall 有 k 个店铺(假设店铺 id 为 1~k),则我们可以训练得到 k 个不同的二分类器。

每个二分类器的建立方法为:对于店铺 id 为 c 的店铺建立一个二分类器,则把店铺 id 为 c 的所有行为数据作为正样本,二分类类别标记为 1,其余店铺标记不为 c 的所有行为数据作为负样本,二分类类别标记为 0。

得到 k 个不同的二分类器后,针对一个测试样本,我们需要找到这 k 个分类函数输出值最大的那一个,即为测试样本的标记:

$$\arg \max_{c} h_{c}(x) c = 1, 2, ..., k$$

3. xgboost

Boosting 分类器属于集成学习模型,它基本思想是把成百上千个分类准确率较低的树模型组合起来,成为一个准确率很高的模型。这个模型会不断地迭代,每次迭代就生成一颗新的树。

GBDT(Gradient Boosting Decision Tree)又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。GBDT 的核心在于,每一棵树学的是之前所有树结论和的残差,这个残差就是一个加预测值后能得真实值的累加量。与随机森林不同,随机森林采用多数投票输出结果;而 GBDT 则是将所有结果累加起来,或者加权累加起来。

XGBoost 的全称为 eXtreme Gradient Boosting,是 GBDT 的一种高效实现,XGBoost 中的基学习器除了可以是 CART (gbtree) 也可以是线性分类器 (gblinear)。

XGBoost 对 GBDT 的改进:

1. 避免过拟合

目标函数之外加上了正则化项整体求最优解,用以权衡目标函数的下降和模型的复杂程度,避免过拟合。基学习为 CART 时,正则化项与树的叶子节点的数量 T 和叶子节点的值有关。

2. 二阶的泰勒展开,精度更高

不同于传统的 GBDT 只利用了一阶的导数信息的方式, XGBoost 对损失函数做了二阶的 泰勒展开, 精度更高。

3. 列抽样 (column subsampling)

xgboost 借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是 xgboost 异于传统 gbdt 的一个特性。

4. 对缺失值的处理

对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。

5. xgboost 工具支持并行

xgboost 的并行不是 tree 粒度的并行,xgboost 也是一次迭代完才能进行下一次迭代的(第t 次迭代的代价函数里包含了前面 t-1 次迭代的预测值)。xgboost 的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost 在训练之前,预先对数据进行了排序,然后保存为 block 结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个 block 结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。

6. 可并行的近似直方图算法

树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以 xgboost 还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。

4. Bagging 集成学习

Bagging 算法是机器学习领域的一种集成学习算法,其主要思想是集成多个模型的预测结果,从而提高算法的稳定性,避免过拟合现象的产生。

Bagging 的主要流程:

- 1) 假设训练集大小为 N
- 2) Bagging 算法从中均匀、有放回地选出 m 个大小为 n 的子集,作为新的训练集。
- 3) 在每个训练集上,都可以训练得到一个模型。
- 4) 最后,一共得到 m 个模型。
- 5) 在分类问题中,通过 m 个模型取多数票的方法,即可得到分类结果。

我们使用 Bagging 集成了随机森林、逻辑回归、xgboost 三个模型,以提高我们分类器的分类效果。

五、 实验结果

算法	正确率
randomforest-baseline	0.875463
随机森林(WIFI + 经纬度)	
randomforest-w-b	0.876621
随机森林(WIFI + weekend + busy + 经纬度)	
ovr-lr-w-b	0.821002
逻辑回归(WIFI + weekend + busy + 经纬度)	
xgboost-baseline	0.875463
xgboost(WIFI + 经纬度)	
xgboost-w-b	0.875748
xgboost(WIFI + weekend + busy + 经纬度)	
Bagging 集成	0.884415
(randomforest-w-b、ovr-lr-w-b、xgboost-w-b)	

