Fundamental Concepts of Analysis

Week 1 Notes (e)

shaozewxy

September 2022

Summary

- 1. 16.2 Establish bounded and monotone equals convergence.
- 2. 16.3 16.4 Use the 16.2 to prove convergence without finding the limit.
- 3. 16.5 16.6 Use 16.2 to prove $(1+1/n)^n$ converges and define the limit to be e.
- 4. 16.7 Another example of using 16.2 to prove $n^{1/n}$ converges.

16 Monotone Sequences and e

Previously to prove that a sequence $\{a_n\}$ converges, we need to know the limit I.

Here we find a method to prove convergence without knowing the limit beforehand.

Definition of monotonicity

Given $\{a_n\}$, we say that $\{a_n\}$ is increasing/decreasing if $a_n \leq a_{n+1}(a_n \geq a_{n+1})$. In either case, we say that $\{a_n\}$ is monotone.

In the case where the equality is not necessary, we say $\{a_n\}$ is **strictly increasing** ing(decreasing), and also **strictly monotone**.

16.2 Monotone sequense is convergent iff bounded

Proof:

We prove the case for **increasing** since the decreasing will be similar.

Suppose $\{a_n\}$ is increasing and convergent then obviously it is bounded.

Therefore only NTS that if $\{a_n\}$ is increasing and bounded, then $\{a_n\}$ convergent:

We denote $X = \{x | x \text{ upper bound of } a_n\}$. Since $\{a_n\}$ bounded above, so we know that X not empty and X is trivially bounded below by a_1 .

Therefore we claim that $L = \inf X$ exists, and it is the limit of $\{a_n\}$.

Suppose $\exists \epsilon > 0$ such that $\forall N \in \mathbf{P}, \exists n > N \in \mathbf{P}$ such that $|L - a_n| = L - a_n > 0$

Then we can see that $\forall n \in \mathbf{P}$, take N = n, then $\exists n' > N = n \in \mathbf{P}$ such that $L - a_{n'} > \epsilon$. Since $\{a_n\}$ increasing, and n' > n, we have $a_n < a_{n'} < L - \epsilon$.

This shows that $L - \epsilon$ is an upper bound of $\{a_n\}$ and contradiction, therefore no such ϵ exists.

Therefore we can also prove convergence by showing a sequence is bounded and monotone.

16.3

IF |a| < 1, then $\lim_{n \to \infty} a^n = 0$.

Proof:

First suppose 0 < a < 1, then we know that a^n is bounded above by 1 and below by 0. Therefore a^n is bounded and decreasing.

Therefore $L = \lim_{n \to \infty} a^n$ exsits.

We have that

$$L = \lim_{n \to \infty} a^n = \lim_{n \to \infty} a^{n+1} = a \lim_{n \to \infty} a^n = aL$$

Therefore if $L \neq 0$, we have a = 1, which is a contradiction.

We conclude that L=0.

For the case where -1 < a < 0, we take the subsequence of $a^{2n} = (a^2)^n$, which becomes the first case.

16.4

If a > 0, then $\lim_{n \to \infty} a^{1/n} = 1$.

Proof:

Suppose $a \ge 1$, then $\{a^{1/n}\}$ is decreasing and bounded below by 1. Therefore $L = \lim_{n \to \infty} a^{1/n}$ exists.

We know that

$$\lim_{n\to\infty}a^{2/n}=\lim_{n\to\infty}a^{1/n}\cdot a^{1/n}=(\lim_{n\to\infty}a^{1/n})^2=L^2$$

Now $\{a^{2/2n}\}$ is a subsequence of $\{a^{2/n}\}$ and therefore has limit L^2 .

But $\{a^{2/2n}\}=\{a^{1/n}\}$ by definition, therefore $L=L^2$. Since $L\neq 0$, we know that L=1.

For the case where 0 < a < 1, we have

$$\lim_{n \to \infty} a^{1/n} = \lim_{n \to \infty} \left(\frac{1}{\frac{1}{a}}\right)^{1/n}$$
$$= \frac{1}{\lim_{n \to \infty} (\frac{1}{a})^{1/n}}$$
$$= \frac{1}{1} = 1$$

Given these two examples of proving convergence before calculating the limit, we can look at how to define e.

16.5

Given $0 \le a < b$, we have

$$\frac{b^{n+1} - a^{n+1}}{b - a} < (n+1)b^n$$

Proof:

We know that

$$(b^{n+1} - a^{n+1}) = (b - a) \left(\sum_{i=0}^{n} b^{i} a^{n-i} \right)$$

Therefore,

$$\frac{b^{n+1} - a^{n+1}}{b - a} = \sum_{i=0}^{n} b^{i} a^{n-i} < (n+1)b^{n}$$

16.6 Defining e

The sequence $\{(1+1/n)^n\}$ is increasing and convergent. The limit is denote e.

Proof:

We denote the sequence $\{x_n\}$ with b = 1 + 1/n, a = 1 + 1/(n+1).

We reorganize the inequality to

$$b^{n}(b - (n+1)(b-a)) < a^{n+1}$$

We denote X = (b - (n+1)(b-a)) the cross step term.

In this case X = (1 + 1/n - 1/n) = 1.

Therefroe $b^n = x_n < a^{n+1} = x_{n+1}$, i.e $\{x_n\}$ increasing.

Now we NTS it is bounde above:

Let a = 1, b = 1 + 1/2n, then X = 1/2, then

$$\left(1 + \frac{1}{2n}\right)^n X < 1$$

$$\left(1 + \frac{1}{2n}\right)^n < 2$$

$$\left(1 + \frac{1}{2n}\right)^{2n} < 4$$

Since $\{x_n\}$ is increasin, we know that $\forall n \in \mathbf{P}, x_n = (1+1/n)^n < x_{2n} = (1+1/2n)^{2n} = 4$.

Therefore $\{x_n\}$ is bouned above and converges.

16.7

The sequence $\{n^{1/n}\}_{n=3}^{\infty}$ is decreasing and $\lim_{n\to\infty} n^{1/n} = 1$.

Proof:

First we NTS $\{n^{1/n}\}$ decreasing.

$$(n+1)^{1/(n+1)} \le n^{1/n} \iff$$

$$((n+1)^{1/(n+1)})^{n(n+1)} \le (n^{1/n})^{n(n+1)} \iff$$

$$(n+1)^n \le n^{n+1} \iff$$

$$\left(\frac{n+1}{n}\right)^n \le n \iff$$

$$\left(1 + \frac{1}{n}\right)^n \le n$$

From 16.6 we know that $\left(1+\frac{1}{n}\right)^n \leq 4$ therefore for $n \geq 4 \in \mathbf{P}, \{n^{1/n}\}$ is

decreasing.

Since it is also bounded below by 1, we know $L = \lim_{n \to \infty} n^{1/n}$ exists.

Now we have

$$L = \lim_{n \to \infty} (2n)^{1/2n}$$

$$= \lim_{n \to \infty} 2^{1/2n} n^{1/2n}$$

$$= \lim_{n \to \infty} 2^{1/2n} \left(\lim_{n \to \infty} n^{1/n}\right)^2$$

$$= 1 \cdot L^2$$

Therefore since $L \neq 0$, we know that L = 1.