IMDB Movie Analysis

IMDB (Internet Movie Database) is a website that provides a comprehensive collection of information about films, TV shows, and video games. It is a popular source for movie analysis and reviews. IMDB users can rate and review movies, and these ratings are used to calculate a movie's overall score, which is displayed on the website.

IMDB Movie Analysis involves examining various aspects of a movie, including its storyline, characters, direction, cinematography, soundtrack, and overall production value. This analysis can help viewers understand the movie on a deeper level and appreciate its artistic and technical merits.

IMDB Movie Analysis typically involves analyzing a movie's plot and characters. The plot analysis examines the movie's overall story arc, its pacing, and its structure. The character analysis looks at the motivations, relationships, and development of the movie's main characters.

In addition to plot and character analysis, IMDB Movie Analysis may also examine the technical aspects of the movie, including its direction, cinematography, and editing. The analysis may also examine the movie's soundtrack, including the use of music and sound effects to enhance the emotional impact of the story.

Overall, IMDB Movie Analysis provides a way to explore the elements that make a movie great, and to appreciate the skill and artistry that goes into creating a memorable film.

My question is: What are the top movies of our generation and who are the directors and actors that worked on it and what are the reviews that they got?

The answers can be found in this report.

Task 1: Clean the dataset

Data cleaning, also known as data cleansing or data scrubbing, is the process of identifying and correcting errors, inconsistencies, and inaccuracies in data. It is an important step in preparing data for analysis or use in a database, as it ensures that the data is accurate, complete, and consistent.

Without proper data cleaning, the results of data analysis can be skewed or even completely incorrect, leading to flawed conclusions and decisions.

Null Values present Before

color	19	
director_name	104	
num_critic_for_reviews	50	
duration	15	
director_facebook_likes	104	
actor_3_facebook_likes	23	
actor_2_name	13	
actor_1_facebook_likes	7	
gross	884	
genres	0	
actor_1_name	7	
<pre>movie_title</pre>	0	
num_voted_users	0	
cast_total_facebook_likes	0	
actor_3_name	23	
facenumber_in_poster	13	
plot_keywords	153	
<pre>movie_imdb_link</pre>	0	
num_user_for_reviews	20	
language	12	
country	5	
content_rating	303	
budget	492	
title_year	108	
actor_2_facebook_likes	13	
imdb_score	0	
aspect_ratio	329	
<pre>movie_facebook_likes</pre>	0	
dtype: int64		

```
data.drop(["actor 1 facebook likes","duration", "actor 3 faceb
ook likes", "language",
           "gross", "facenumber in poster", "director facebook
likes", 'cast total facebook likes', 'movie facebook likes',
           'plot keywords', "movie imdb link", 'actor 2 faceboo
k likes'],axis=1,inplace=True)
#removing NaN value
data['color'] = data['color'].fillna("color")
data.replace({"actor 2 name":np.NaN,
              "actor 3 name":np.NaN,
              "actor 1 name":np.NaN,
              "country":np.NaN,
             "content rating":np.NaN}, value="None", inplace=Tr
ue)
data.replace({'director name':np.NaN},value="None",inplace=Tr
data['num critic for reviews'] = data['num critic for reviews']
.fillna(value=data['num critic for reviews'].mean())
data["aspect ratio"] = data['aspect ratio'].fillna(method='ffil
data.drop(data.index[4],inplace=True)
data['budget'] = data['budget'].fillna(data['budget'].mean())
data['num user for reviews'] = data['num user for reviews'].ast
ype('float64')
data['num user for reviews']=data['num user for reviews'].fil
lna(value=data['num user for reviews'].mean())
data['title year']=data['title year'].astype('float64')
data['title year']=data['title year'].fillna(value=data['num
user for reviews'].mean())
```

After

```
color
                                      0
                                            data.info()
director name
                                      0
                                            <class 'pandas.core.frame.DataFrame'>
num_critic for reviews
                                      0
                                            Int64Index: 5042 entries, 0 to 5042
actor 2 name
                                      0
                                            Data columns (total 16 columns):
                                                                         Non-Null Count Dtype
                                            # Column
                                      0
genres
                                                                         5042 non-null
actor 1 name
                                      0
                                                                         5042 non-null
movie title
                                      0
                                            2 num_critic_for_reviews 5042 non-null
3 actor_2_name 5042 non-null
num voted users
                                      0
                                                                                         object
                                            actor_z_name

genres

actor_1_name

movie_title

num_voted_users

actor_3_name

num_user_for_reviews

country

country
                                                                         5042 non-null
actor 3 name
                                      0
                                                                         5042 non-null
                                                                                         object
num_user_for_reviews
                                                                         5042 non-null
                                      0
                                                                                         object
                                                                         5042 non-null
                                                                                         int64
country
                                      0
                                                                         5042 non-null
                                                                                         object
                                                                         5042 non-null
content rating
                                                                                         float64
                                      0
                                                                         5042 non-null
                                                                                         object
budget
                                      0
                                             11 content rating
                                                                         5042 non-null
                                                                                         obiect
                                             12 budget
                                                                         5042 non-null
                                                                                         float64
title year
                                      0
                                                                         5042 non-null
                                             13 title_year
                                                                                         float64
imdb score
                                      0
                                            14 imdb score
                                                                         5042 non-null
                                                                                         float64
aspect_ratio
                                      0
                                             15 aspect ratio
                                                                         5042 non-null
                                                                                         float64
                                            dtypes: float64(6), int64(1), object(9)
dtype: int64
                                            memory usage: 669.6+ KB
```

Task 2: Movies with Highest Profit

These are the movies sorted according to Profit:

THES	oc arc i	the movies s	orted accord	ing to	110)11 L .			
	color	director_name	num_critic_for_	reviews		actor_2_name	gross		movie_title
0	Color	James Cameron		723.0	Jo	el David Moore	760505847.0		Avatar
29	Color	Colin Trevorrow		644.0		Judy Greer	652177271.0		Jurassic World
26	Color	James Cameron		315.0		Kate Winslet	658672302.0		Titanic
3024	Color	George Lucas		282.0		Peter Cushing	460935665.0	Star Wars: Episo	de IV - A New Hope
3080	Color	Steven Spielberg		215.0		Dee Wallace	434949459.0	E.T.	the Extra-Terrestrial
2334	Color	Katsuhiro Ôtomo		105.0	Robir	Atkin Downes	410388.0		Steamboy
2323	Color	Hayao Miyazaki		174.0	Jad	a Pinkett Smith	2298191.0		Princess Mononoke
3005	Color	Lajos Koltai		73.0	F	Péter Fancsikai	195888.0		Fateless
3859	Color	Chan-wook Park		202.0		Yeong-ae Lee	211667.0		Lady Vengeance
2988	Color	Joon-ho Bong		363.0		Kang-ho Song	2201412.0		The Host
co	untry	content_rating	budget	imdb_s	core	aspect_rati	io movie_fa	cebook_likes	Profit
	USA	PG-13	2.370000e+08		7.9	1.7	78	33000	5.235058e+08
	USA	PG-13	1.500000e+08		7.0	2.0	00	150000	5.021773e+08
	USA	PG-13	2.000000e+08		7.7	2.3	35	26000	4.586723e+08
	USA	PG	1.100000e+07		8.7	2.3	35	33000	4.499357e+08
	USA	PG	1.050000e+07		7.9	1.8	35	34000	4.244495e+08
	Japan	PG-13	2.127520e+09		6.9	1.8	35	973	-2.127110e+09
	Japan		2.400000e+09		8.4	1.8		11000	-2.397702e+09
	ingary	R			7.1	2.3		607	-2.499804e+09
South		R			7.7	2.3		4000	-4.199788e+09
South	Korea	R	1.221550e+10		7.0	1.8	35	7000	-1.221330e+10

Plotting Profit vs budget:

```
plt.scatter(profit_data['budget'], profit_data['Profit'])
plt.xlabel('Budget')
plt.ylabel('Profit')
plt.title('Profit vs Budget')
plt.show()
```



```
plt.boxplot(profit_data['Profit'])
plt.xlabel('Profit')
plt.title('Box Plot of Profit')
plt.show()
```


There are 5 outliers present which are the bottom 5 movies in the dataframe sorted by profit.

```
profit_data.sort_values("Profit", ascending=False).tail()
```

movie_title	Profit
Steamboy	-2.127110e+09
Princess Mononoke	-2.397702e+09
Fateless	-2.499804e+09
Lady Vengeance	-4.199788e+09
The Host	-1.221330e+10

Task 3: Top 250 movies

```
df = df[df['num_voted_users'] > 25000]
df=df.sort_values("imdb_score",ascending=False)
df['IMDb_Top_250'] = (df['imdb_score'].rank(ascending=False, method='first') <= 250).astype(int)
df['Rank'] = df['imdb_score'].rank(ascending=False, method='first').a
stype(int)
df.head(253)</pre>
```

movie_title	imdb_score	aspect_ratio	IMDb_Top_250	Razik
The Shawshank Redemption	9.3	1.85	1	1
The Godfather	9.2	1.85	1	2
Fargo	9.0	1.78	1	3
The Dark Knight	9.0	2.35	1	4
The Godfather: Part II	9.0	1.85		5
The Hustler	8.0	2.35	1	249
District 9	8.0	1.85	1	250
Boyhood	8.0	1.85	0	251
Dallas Buyers Club	8.0	2.35	0	252
A Fistful of Dollars	8.0	2.35	0	253

The top 250 movies have been ranked here and they have beenmarked as 1 as they are part of the top 250 in the IMDb_Top_250.

Top Movies not in the english language:

Top_Foreign_Lang_Film = dftop_250['language']!="English"]
Top_Foreign_Lang_Film[['Rank', 'movie_title', 'imdb_score', 'language']]

language	imdb_score	movie_title	Rank	
Italian	8.9	The Good, the Bad and the Ugly	6	4498
Japanese	8.7	Seven Samurai	23	4747
Portuguese	8.7	City of God	25	4029
Japanese	8.6	Spirited Away	27	2373
Hindi	8.5	Airlift	42	3870
German	8.5	The Lives of Others	55	4259
Persian	8.5	Children of Heaven	60	4921
Korean	8.4	Oldboy	64	4105
Persian	8.4	A Separation	73	4659
Hindi	8.4	Rang De Basanti	75	3685
German	8.4	Das Boot	77	2970
Japanese	8.4	Princess Mononoke	79	2323
Telugu	8.4	Baahubali: The Beginning	82	1329
French	8.4	Amélie	83	1298
German	8.3	Downfall	87	2829
Danish	8.3	The Hunt	99	4033
German	8.3	Metropolis	100	2734
Spanish	8.2	Pan's Labyrinth	118	2551
French	8.2	Incendies	119	3550
Japanese	8.2	Howl's Moving Castle	128	2047
Spanish	8.2	The Secret in Their Eyes	130	4000
Hindi	8.2	Lage Raho Munna Bhai	146	4160
Russian	8.1	Solaris	157	1061
Danish	8.1	The Celebration	161	4461
Portuguese	8.1	Elite Squad	178	3553
Spanish	8.1	The Sea Inside	181	2830
Japanese	8.1	Akira	191	3423
Korean	8.1	Tae Guk Gi: The Brotherhood of War	192	2914
Spanish	8.1	Amores Perros	195	4267
French	8.0	The Diving Bell and the Butterfly	206	2802
Hindi	8.0	My Name Is Khan	221	3344

Task 4: Best Directors

```
dirdf=data.copy()
director_scores = dirdf.groupby('director_name')['imdb_score'].mean()
.reset_index()
director_scores = director_scores.sort_values(by=['imdb_score', 'director_name'], ascending=[False, True])
top10directors = director_scores.head(10)['director_name'].tolist()
dirdf['top10director'] = dirdf['director_name'].apply(lambda x: 1 if x in top10directors else 0)
dirdf.sort_values(['top10director', 'imdb_score', 'director_name'], ascending=[False, False, True]).head(10)
director_scores.head(10)
```

Here are the top 10 best directors:

	director_name	imdb_score
1083	John Blanchard	9.5
299	Cary Bell	8.7
1619	Mitchell Altieri	8.7
2011	Sadyk Sher-Niyaz	8.7
315	Charles Chaplin	8.6
1605	Mike Mayhall	8.6
428	Damien Chazelle	8.5
1416	Majid Majidi	8.5
1835	Raja Menon	8.5
1979	Ron Fricke	8.5

Task 5 : Popular Genres

Popular genres according movies in he top 250 created by the top 10 directors.

```
top250movies = df.head(250)
top10directors = director_scores['director_name'].head(10).tolist()
topmovies = top250movies[top250movies['director_name'].isin(top10directors)]
genres1 = topmovies['genres'].str.split('|', expand=True).stack().reset_index(level=1, drop=True)
popular_genres1 = genres1.value_counts().sort_values(ascending=False)
popular_genres1
```

Drama	4
Family	2
Comedy	1
Action	1
History	1
Thriller	1
War	1
Music	1
dtype: int@	54

Genres ranked according to the top 250 movies:

```
genres2 = top250movies['genres'].str.split('|', expand=True).stack().
reset_index(level=1, drop=True)
popular_genres2 = genres2.value_counts().sort_values(ascending=False)
popular_genres2
```

Drama Adventure Thriller Crime Action Comedy Sci-Fi Romance Biography	173 66 56 51 50 41 40 35 30	Mystery Family Animation History Sport Horror Western Musical Documentary Music Film-Noir	28 24 20 18 9 8 7 5 3
Fantasy	30	Film-Noir dtype: int64	1

Task 6

A) Create three new columns namely, Meryl_Streep, Leo_Caprio, and Brad_Pitt which contain the movies in which the actors: 'Meryl Streep', 'Leonardo DiCaprio', and 'Brad Pitt' are the lead actors. Use only the actor_1_name column for extraction. Also, make sure that you use the names 'Meryl Streep', 'Leonardo DiCaprio', and 'Brad Pitt' for the said extraction.

Append the rows of all these columns and store them in a new column named Combined.

```
actdata=data.copy()
for index,i in actdata.iterrows():
   if i['actor_1_name'] in ["Brad Pitt","Leonardo DiCaprio","Meryl Ste
ep"]:
    print(i['movie_title']+"--- "+i['actor_1_name'])
```

The 3 actors have worked in all these movies:

```
Titanic --- Leonardo DiCaprio
The Great Gatsby --- Leonardo DiCaprio
Inception --- Leonardo DiCaprio
The Curious Case of Benjamin Button --- Brad Pitt
Troy --- Brad Pitt
The Revenant --- Leonardo DiCaprio
Ocean's Twelve --- Brad Pitt
Mr. & Mrs. Smith --- Brad Pitt
The Aviator --- Leonardo DiCaprio
Django Unchained --- Leonardo DiCaprio
Blood Diamond --- Leonardo DiCaprio
The Wolf of Wall Street --- Leonardo DiCaprio
Gangs of New York --- Leonardo DiCaprio
The Departed --- Leonardo DiCaprio
Spy Game --- Brad Pitt
Ocean's Eleven --- Brad Pitt
Shutter Island --- Leonardo DiCaprio
Fury --- Brad Pitt
Seven Years in Tibet --- Brad Pitt
Body of Lies --- Leonardo DiCaprio
Fight Club --- Brad Pitt
Sinbad: Legend of the Seven Seas --- Brad Pitt
Catch Me If You Can --- Leonardo DiCaprio
Interview with the Vampire: The Vampire Chronicles --- Brad Pitt
The Beach --- Leonardo DiCaprio
Revolutionary Road --- Leonardo DiCaprio
The Man in the Iron Mask --- Leonardo DiCaprio
J. Edgar --- Leonardo DiCaprio
The Tree of Life --- Brad Pitt
The Quick and the Dead --- Leonardo DiCaprio
The Assassination of Jesse James by the Coward Robert Ford --- Brad Pitt
Marvin's Room --- Leonardo DiCaprio
Babel --- Brad Pitt
By the Sea --- Brad Pitt
Killing Them Softly --- Brad Pitt
Romeo + Juliet --- Leonardo DiCaprio
True Romance --- Brad Pitt
The Great Gatsby --- Leonardo DiCaprio
Johnny Suede --- Brad Pitt
```

```
# create new columns for each actor and extract the movies where they
were the lead actor
actdata['Meryl_Streep'] = actdata.apply(lambda row: row['movie_title'
] if 'Meryl Streep' in row['actor_1_name'] else '', axis=1)
actdata['Leo_Caprio'] = actdata.apply(lambda row: row['movie_title']
if 'Leonardo DiCaprio' in row['actor_1_name'] else '', axis=1)
actdata['Brad_Pitt'] = actdata.apply(lambda row: row['movie_title'] i
f 'Brad Pitt' in row['actor_1_name'] else '', axis=1)
actdata['Combined'] = actdata.apply(lambda row: row if (('Meryl Stree
p' in row['actor_1_name']) or ('Leonardo DiCaprio' in row['actor_1_na
me']) or ('Brad Pitt' in row['actor_1_name'])) else '', axis=1)
```

Here are the Brad_pitt and Combined columns for movies in which Brad Pitt starred: Similar outputs can also be viewed for the other 2 actors.

index	actor_1_name	Brad_Pitt	Combined
101	Brad Pitt	The Curious Case of Benjamin Button	color Color director_name David Fincher num_critic_for_reviews 362.0 actor_2_name_Jason Flemyng genres DramajFantasyjRomance actor_1_name Brad Pitt movie_title The Curious Case of Benjamin Button num_voted_users 459346 actor_3_name_Julia Ormond num_user_for_reviews 822.0 country USA content_rating PG-13 budget 150000000.0 title_year 2008.0 imdb_score 7.8 aspect_ratio 2.35 Meryl_Streep Leo_Caprio Brad_Pitt The Curious Case of Benjamin Button_Name: 101, dtype: object
147	Brad Pitt	Troy	color Color director_name Wolfgang Petersen num_critic_for_reviews 220.0 actor_2_name Orlando Bloom genres Adventure actor_1_name Brad Pitt movie_title Troy num_voted_users 381672 actor_3_name Julian Glover num_user_for_reviews 1694.0 country USA content_rating R budget 175000000.0 title_year 2004.0 imdb_score 7.2 aspect_ratio 2.35 Meryl_Streep Leo_Caprio Brad_Pitt Troy Name: 147, dtype: object
254	Brad Pitt	Ocean's Twelve	color Color director_name Steven Soderbergh num_critic_for_reviews 198.0 actor_2_name Julia Roberts genres Crime[Thriller actor_1_name Brad Pitt movie_title Ocean's Twelve num_voted_users 284852 actor_3_name Mini Anden num_user_for_reviews 627.0 country USA content_rating PG-13 budget 110000000.0 title_year 2004.0 imdb_score 6.4 aspect_ratio 2.35 Menyl_Streep Leo_Caprio Brad_Pitt Ocean's Twelve Name: 254, dtype: object
255	Brad Pitt	Mr. & Mrs. Smith	color Color director_name Doug Liman num_critic_for_reviews 233.0 actor_2_name Angelina Jolie Pitt genres Action Comedy Crime Romance Thriller actor_1_name Brad Pitt movie_title Mr. & Mrs. Smith_num_voted_users 348861 actor_3_name Stephanie March num_user_for_reviews 798.0 country USA content_rating PG-13 budget 120000000.0 title_year 2005.0 imdb_score 6.5 aspect_ratio 2.35 Meryl_Streep Leo_Caprio Brad_Pitt Mr. & Mrs. Smith_Name: 255, dtype: object
382	Brad Pitt	Spy Game	color Color director_name Tony Scott num_critic_for_reviews 142.0 actor_2_name Stephen Dillane genres Action(Crime)Thriller actor_1_name Brad Pitt movie_title Spy Game num_voted_users 121259 actor_3_name Catherine McComrack num_user_for_reviews 361.0 country Germany content_rating R budget 92000000 0 title_year 2001.0 imdb_score 7.0 aspect_ratio 2.35 Menyl_Streep Leo_Caprio Brad_Pitt Spy Game Name: 382, dtype: object
400	Brad Pitt	Ocean's Eleven	color Color director_name Steven Soderbergh num_critic_for_reviews 186.0 actor_2_name Bernie Mac genres Crime Thriller actor_1_name Brad Pitt movie_title Ocean's Eleven num_voted_users 402645 actor_3_name Elliott Gould num_user_for_reviews 845.0 country USA content_rating PG-13 budget 85000000.0 title_year 2001.0 imdb_score 7.8 aspect_ratio 2.35 Menyl_Streep Leo_Caprio Brad_Pitt Ocean's Eleven Name: 400, dtype: object
470	Brad Pitt	Fury	color Color director_name David Ayer num_critic_for_reviews 406.0 actor_2_name Logan Lerman genres Action Drama War actor_1_name Brad Pitt movie_title Fury_num_voted_users 303185 actor_3_name_Jim Parrack num_user_for_reviews 701.0 country USA content_rating R budget 68000000.0 title_year 2014.0 imdb_score 7.6 aspect_ratio 2.35 Meryl_Streep Leo_Caprio Brad_Pitt Fury_Name: 470, dtype: object
611	Brad Pitt	Seven Years in Tibet	color Color director_name Jean-Jacques Annaud num_critic_for_reviews 76.0 actor_2_name Mako genres Adventure Biography Drama History War actor_1_name Brad Pitt movie_title Seven Years in Tibet_num_voted_users 96385 actor_3_name Victor Wong num_user_for_reviews 119.0 country USA content_rating PG-13 budget 70000000.0 title_year 1997.0 imdb_score 7.0 aspect_ratio 2.35 Meryl_Streep Leo_Caprio Brad_Pitt Seven Years in Tibet_Name: 611, dtype: object

B) Find the critic favourite and audience favourite actors.

```
actor_group = data.groupby('actor_1_name')
actor_mean = actor_group[['num_critic_for_reviews', 'num_user_for_reviews']].mean()
actor_mean
```

Here are the actors with their critic and user review ratings:

	num_critic_for_reviews	num_user_for_reviews
actor_1_name		
50 Cent	98.000000	284.000000
A.J. Buckley	298.000000	345.000000
Aaliyah	137.000000	695.000000
Aasif Mandvi	210.000000	147.000000
Abbie Cornish	270.333333	184.666667
Zoë Kravitz	114.666667	93.666667
Zuhair Haddad	5.000000	1.000000
Álex Angulo	9.000000	7.000000
Ólafur Darri Ólafsson	16.000000	19.000000
Óscar Jaenada	186.000000	139.000000

```
critic_df = actor_mean.sort_values('num_critic_for_reviews', ascendin
g=False)
print(critic_df["num_critic_for_reviews"])
```

Here are the top actors ranked according to critic reviews:

Phaldut Sharma	738.0
Peter Capaldi	654.0
Craig Stark	596.0
Bérénice Bejo	576.0
Suraj Sharma	552.0
Mike Stanley	1.0
Mike Beckingham	1.0
Marcello Mastroianni	1.0
Manny Perez	1.0
Carrie Bradstreet	1.0

```
audience_df = actor_mean.sort_values('num_user_for_reviews', ascendin
g=False)
audience_df["num_user_for_reviews"]
```

Here are the actors ranked according to user reviews:

Heather Donahue	3400.0
Christo Jivkov	2814.0
Steve Bastoni	2789.0
Phaldut Sharma	1885.0
Keir Dullea	1736.0
Jon Brion	1.0
Patrick O'Donnell	1.0
Mary Kate Wiles	1.0
Paul Hickert	1.0
Claire Gordon-Harper	1.0

C) Change in number of voted users over decades using barplot.

```
chartdata=data.copy()
bins = [1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010, 2
020]
labels = ['1920s', '1930s', '1940s', '1950s', '1960s', '1970s', '1980
s', '1990s', '2000s', '2010s']
chartdata['decade'] = pd.cut(chartdata['title_year'], bins=bins, labe
ls=labels)
df_by_decade = chartdata.groupby('decade')['num_voted_users'].sum().r
eset_index()
df by decade
```

Here are the number of votes cumulated every decade:

	decade	num_voted_users
0	1920s	132420
1	1930s	1233065
2	1940s	962634
3	1950s	2175102
4	1960s	4819970
5	1970s	13740773
6	1980s	24616391
7	1990s	80028936
8	2000s	186323739
9	2010s	104763014

```
plt.bar(df_by_decade['decade'], df_by_decade['num_voted_users'])
plt.xlabel('Decade')
plt.ylabel('Number of Voted Users')
plt.title('Change in Number of Voted Users over Decades')
plt.show()
```


Summary

This project was about IMDB Movie Analysis for which I used Python and Google Colab. I revised my Python skills and how to perform EDA thouroughly.

Thank You-Devansh Mathur