Generalized Reed-Solomon Codes

John McCall

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

April 12, 2014

Overview

- Data transmission has become vital in today's society.
- Transmission methods are not perfect.
- Error correcting codes help to alleviate the burden of transmission.

Outline

- Defining our Field
- Codes
- Generalized Reed-Solomon Codes
- Conclusion

Outline

- Defining our Field
- Codes
- 3 Generalized Reed-Solomon Codes
- Conclusion

Introducing \mathbb{F}_{64}

The finite field of 64 elements.
[Insert picture of ASCII table showing the elements]

Representation of our Elements

- Each element is encoded as a 6-bit binary string.
- We can represent that string as a polynomial in $\mathbb{F}_2[x]$.

For example:

• $\# \to 000011 \to x + 1$

Addition in \mathbb{F}_{64}

- Regular polynomial addition, but the coefficients are added modulo 2.
- $(x^4 + x^2 + x + 1) + (x^3 + x + 1) = x^4 + x^3 + x^2$.

Multiplication in \mathbb{F}_{64}

- Similar to regular multiplication, except the result cannot be larger than degree 5.
- We have to use an irreducible polynomial to mod out terms that are of too high a degree.
- The polynomial: $x^6 + x + 1 \rightarrow x^6 = x + 1$.

Multiplication Example

•
$$(x^5 + x^2 + x + 1)(x^4 + x)$$

$$= x^9 + x^6 + x^6 + x^5 + x^4 + x^3 + x^2 + x$$

$$= x^9 + x^5 + x^4 + x^3 + x^2 + x$$

$$\bullet = (x^6)(x^3) + x^5 + x^4 + x^3 + x^2 + x$$

$$\bullet = (x+1)(x^3) + x^5 + x^4 + x^3 + x^2 + x$$

$$\bullet = x^4 + x^3 + x^5 + x^4 + x^3 + x^2 + x$$

$$\bullet = x^5 + x^2 + x$$

Multiplication Table

[Insert Multiplication Table Here]

Outline

- Defining our Field
- Codes
 - Cyclic Redundancy Check
- Generalized Reed-Solomon Codes
- 4 Conclusion

Introduction to Codes

A *code* is a rule for converting information from one representation into another.

- \bullet $A \rightarrow 0$
- B → 1
- :
- $Z \rightarrow 25$

Encoding

Encoding is the act of conversion, following the rules of the code.

 \bullet HELLO \rightarrow 8 5 12 12 15

Errors

Random errors are a type of error that corrupts individual symbols during transmission.

• 8 5 1**2** 12 15 \rightarrow 8 5 1**9** 12 15

Burst errors are errors that corrupt a large chunk of symbols.

ullet 8 5 **12 12 15** o 8 5 **19 24** 5

Error Correction

Error detecting codes are a type of code that can detect when these errors occur.

Error correcting codes are a type of code that can correct these errors.

Introduction to CRC

- Used to detect accidental changes in data.
- Appends a check value to the message prior to transmission.
- After transmission the check value is recomputed and compared to the original value.

Application and Integrity

- CRC is good at detecting random errors and burst errors.
- It is not suitable for detecting intentional modifications to the data.

Example

To compute a binary CRC with a 3-bit check value:

- Start with our message encoded in binary: 11010011101100
- Find a irreducible polynomial of degree 3: $x^3 + x + 1 \rightarrow 1011$

Coming soon:

The remainder of the CRC example.

Outline

- Defining our Field
- Codes
- Generalized Reed-Solomon Codes
 - Reed-Solomon Codes
 - Generalized Reed-Solomon Codes
 - Encoding GRS Codes
 - Decoding GRS Codes
- 4 Conclusion

History

- Introduced in 1960 by I.S. Reed and G. Solomon.
- Useful in practical applications and mathematically interesting.
- Used CD players and deep-space communications.

- Reed-Solomon (RS) codes are a liner, error correcting code.
- A RS-code is capable of correcting $\frac{n-k}{2}$ symbol errors. Where n is the total number of symbols, and k is the number of data symbols.
- Great at correcting burst errors.

Representation

A message encoded using an RS-code is a polynomial with the message symbols embedded in the coefficients.

For our example, the polynomial would be in in $\mathbb{F}_{64}[x]$ and is our codeword.

•
$$H + Ex + Lx^2 + Lx^3 + Ox^4$$
.

Generalized Reed-Solomon Codes

- There is an alternate representation, known as Generalized Reed-Solomon (GRS) Codes.
- distinct points and multiplied by a scalar.

• In this representation the message polynomial is evaluated at n

- The result is a *n*-dimensional vector, which is used as the codeword.
- This is the representation that will be used for the remainder of the presentation.

Outline

- Defining our Field
- Codes
- 3 Generalized Reed-Solomon Codes
- Conclusion

Final Thoughts

Questions