

Las Americas Institute of Technology

Nombre:

Jesus Alberto Beato Pimentel.

Matricula:

2023-1283.

Institución académica:

Instituto Tecnológico de las Américas (ITLA).

Materia:

Física Aplicada 1.

Tema del trabajo:

Primer parcial.

Maestra/o:

Lidia Noelia Almonte Rosario.

Fecha:

04/10/2023.

Instituto Tecnológico de las Américas

Departamento de Ciencias Básicas y Humanidades "AÑO ESCOLAR 2021"

Primer Parcial

Nombre: Jesus Alberto Beato Pimentel.

Matricula: 2023-1283.

Desarrollar los siguientes ejercicios:

1) Una paloma vuela hacia norte, su distancia tomando como referencia una torre está dada por

$$x(t) = 14m +$$
 (6m 0.0250m 3 s)
 $t - (s_3) t$

¿Cuál es la velocidad instantánea de la paloma cuando t = 9s

- 2) Un hombre corre con aceleración constante y cubre la distancia de 60 m entre dos puntos en 7 segundos. Su rapidez al pasar por el segundo punto es 16 m/s
- a) ¿Qué rapidez tenía en el primer punto?
- b) ¿Qué aceleración lleva?

$$x - x_0 = \left(\frac{v_{0x} + v_x}{2}\right)t$$

$$v_x = v_{0x} + a_x t$$

abre la distamin de con punto la 16m/a	
A Que repeder Temia em el A Que aceleración Monra?)	d- vit + 2 a+2
16m/s = U; + a + 7s Ui = 16m/s - 7a 16 = Ui + 7(-1.06)	60m = 112 - 49 a + 2 a . (45)2 60m = 9(16-7a) + 2 a . 49 60m = 112 - 49 a + 2 a
16 = V: - 7.35 Vi = 16 + 7.35 Vi = 23.36 m/s	60m = 117 - 4/2 a - 2/2 A = 60 - 117 - 99 A = - 57
UF = 23.35 m/s + (1.05).7	a = -52.2 = -1.05 m/s2
NF=/16m/9/	

3) La aceleración de una motocicleta está dada por $a_x(t) = At - Bt^2$ donde $a_x(t) = At - Bt^2$ do

3) La cuelonación de nona antiocedata otá dada per $3 \times 4 \times 8 \times 3 \times 8 \times 3 \times 4 \times 8 \times 3 \times 8 \times 3 \times 4 \times 4 \times 8 \times 3 \times 4 \times 4$

4) Calcule el ángulo entre estos pares de vectores y calcule la dirección del vector B

$$\vec{A} = -2.00\hat{\imath} + 5.00\hat{\jmath}$$
 $B = 2.00\hat{\imath} - 4.00\hat{\jmath}$

4) Palade al angulo entre calcule la dirección del se calcule la	E = 2.008 - 4.003			
$ A = \sqrt{(-2.00)^2 + (5.00)^2} = \sqrt{4.00 + 25.00} = \sqrt{29}$ $ B = \sqrt{(2.00)^2 + (-4.00)^2} = \sqrt{4.00 + 16.00} = \sqrt{20} = 4.47$ $ C_{02}(0) - A \cdot B = -24.00 = -0.948$ $ A B = (5.29)(4.47)$				
Cos (B) = -0.948 0 = Cos (-0.948) = 161.44	B = 2.001 = 4.003 B 4:47 B=(0.4171-0.8943)			

5) Un automóvil mantiene una aceleración constante de $7m/s^2$ si su velocidad inicial era de 20m/s al norte ¿Cuál será su velocidad después de 5s?

5) (la culomorel m Em/s² Le Su se Cual Será Le re	rantieme is relocided e	ma redenación mucal ena do lespués do 50	constante de 20m/s al morte
V:	= U; + af = 20m/s Fm/s ² 53		UF = 20m/s + UF = 55 m/s	