

8-bit Single Chip Microcontroller

Preliminary

Overview

The LC86E4332 is a CMOS 8-bit single chip microcontroller with UVEPROM for the LC864300 series.

This microcontroller has the function and the pin description of the LC864300 series mask ROM version, and the 32K-byte EPROM. The program data is rewritable. It is suitable for developing programs.

Package Dimensions

unit: mm

3225-DIC52S

Features

(1) Option switching by EPROM data

The option function of the LC864300 series can be specified by the EPROM data. The functions of the trial pieces can be evaluated using the mass production board.

(2) Internal EPROM capacity : 32768 bytes (For program) : 16384 × 12 bits (For character)

(3) Internal RAM capacity : 384 bytes

Mask ROM version	PROM capacity	RAM capacity
LC864332	32512 bytes	384 bytes
LC864328	28672 bytes	384 bytes
LC864324	24576 bytes	384 bytes
LC864320	20480 bytes	384 bytes
LC864316	16384 bytes	384 bytes
LC864312	12288 bytes	384 bytes

(4) Operating supply voltage : 4.5 V to 5.5 V (5) Instruction cycle time : 0.99 µs to 40 µs (6) Operating temperature : $+10^{\circ}\text{C}$ to $+40^{\circ}\text{C}$

(7) The pin and the package compatible with the LC864300 series mask ROM version.

(8) Applicable mask ROM version : LC864332/LC864328/LC864324/LC864320/LC864316/LC864312

(9) Factory shipment : DIC52S

Notice for Use

When using, take notice of the followings.

(1) Differences between the LC86E4332 and the LC864300 series

Items	LC86E4332	LC864332/28/24/20/16/12		
Operation after reset releasing	The option is specified by degrees until 3 ms after going to a 'H' level to the reset terminal. The program is executed from 00H of the program counter.	The program is executed from 00H of the program counter immediately after going to a 'H' level to the reset terminal.		
Operating supply voltage range (VDD)	4.5 V to 5.5 V	4.5 V to 5.5 V		
Operating temperature range (Topr)	+10 to +40°C	–30 to +70°C		
Power dissipation	Refer to 'electrical characteristics' on the semiconductor news.			

Port configurations of LC86E4332 and LC864332/28/24/20/16/12 are identical during the reset operation. The LC86E4332 uses the program memory area of 256 bytes from 7F00H to 7FFFH to select the options. All LC86E4332 series' options can be specified with this configuration.

(2) Option

The option data is written with the option specifying program "SU86K.EXE". The option data is linked to the program area by the linkage loader "L86K.EXE".

(3) ROM space

The LC86E4332 and LC864300 series use the program memory area of 256 bytes from 7F00H to 7FFFH to select the options. The program memory capacity of this series is, at most, 32512 bytes addressed on 0000H to 7EFFH.

How to Use

(1) Create a programming data for LC86E4332

Programming data for EPROM of the LC86E4332 is required.

Debugged evaluation file (EVA file) must be converted to an INTEL-HEX formatted file (HEX file) with the file converter program EVA2HEX.EXE. The HEX file is used as the programming data for the LC86E4332.

(2) How to program for the EPROM

The LC86E4332 can be programmed by the EPROM programmer with attachment W86EP4164D.

· Recommended EPROM programmer

Manufacturer	EPROM programmer
Advantest	R4945, R4944, R4943
Andou	AF-9704
AVAL	PKW-1100, PKW-3000
Minato electronics	MODEL1890A

- "27010 (Vpp = 12.5 V) Intel high speed programming" mode should be adopted.
- A jumper (DASEC) must be set to 'OFF' at programming.
- There are two ways to program the data of the hexa-decimal file described above into the EPROM of the LC86E4332.
 - 1. How to program the program and the character data individually. First, the hexa-decimal data of 00h to 07FFFh is programmed into the address 00h to 07FFFh of the EPROM. Next, write the hexa-decimal data for character addressed 10000h to 17FFFh into the address of 10000h to 17FFFh.
 - 2. How to program the program and the character data simultaneously. First, copy the program data addressed from 00h to 07FFFh into the addresses 8000h to 0FFFFh with an EPROM

Next, write the data of 00h to 17FFFh into the EPROM of the LC86E4332.

An error will occur when the hexa-decimal data generated by the EVA2HEX program is programmed to the EPROM of the LC86E4332 directly.

(3) How to use the data security function

"Data security" is the function to disable the EPROM data from being read out.

The following is the process in order to execute data security function.

- 1. Set the jumper of attachment 'ON'.
- 2. Program again. The EPROM programmer will display an error. The error means that the data security functions normally. It is not a trouble of the EPROM programmer or the LSI.

Notes

- Data security is not executed when the data of all address have 'FF' at sequence 2 above.
- Data security cannot be executed by programming the sequential operation "BLANK=>PROGRAM=>VERIFY" at procedure 2 above.
- Set the jumper to 'OFF' after executing the data security.

W86EP4164D

Pin Assignment

Top view

System Block Diagram

Pin Description

- Port option can be specified by bit units.
- At port 0, 'Pull-up resistor provided' when specifying CMOS output. 'Pull-up resistor not provided' when specifying N-ch open drain output.
- At port 1, 'Programmable pull-up resistor provided' when specifying either CMOS or N-ch open drain output.

Pin Description Table

Pin name	Pin No.	I/O	Function description	Option	PROM mode
DVSS	9	_	Negative power supply for digital circuit		
CF1	10	1	Input terminal for ceramic resonator		
CF2	11	0	Output terminal for ceramic resonator		
DVDD	12	_	Positive power supply for digital circuit		
RES	17	1	Reset terminal		
LC1	18	ı	LC oscillation circuit input terminal		
LC2	19	0	LC oscillation circuit output terminal		
FILT	20	0	Filter terminal for PLL		
AVDD	21	_	Positive power supply for analog circuit		
AVSS	22	_	Negative power supply for analog circuit		
CVIN	23	1	Video signal input terminal		
VS	24	ı	Vertical synchronization signal input terminal		
HS	25	I	Horizontal synchronization signal input terminal		
1	26	0	Image intensity output		
R	27	0	Red (R) output terminal of RGB image output		A4 (*1)
G	28	0	Green (G) output terminal of RGB image output		A5 (*1)
В	29	0	Blue (B) output terminal of RGB image output		A6 (*1)
BL	30	0	Fast blanking control signal Switch TV image signal and caption/OSD image signal		A7 (*1)
PWM0 to PWM9	31 to 40	0	PWM0 to 9 output terminal 15 V withstand		PWM0 to 8 : A8 to A16 (*1) PWM9 : "L" fixed
Port 0 P00 to P07	45 to 52	I/O	8-bit Input/output port Input/output can be specified in nibble units HOLD release input Interrupt input	Pull-up resistor Provided/not provided (in bit units) Output Format CMOS/Nch-OD (in bit units)	
Port 1 P10 to P17	1 to 8	I/O	8-bit Input/output port Input/output can be specified in bit units. Other function P10 SIO0 data output P11 SIO0 data input /bus input/output P12 SIO0 clock input/output P17 Timer 1 (PWM) output	Output Format CMOS/Nch-OD (in bit units)	D0 to D7 (*2)

Pin name	Pin No.	I/O		Functi	on Descripti	on		Option		PROM	1 mode	
Port 7 P70 P71 to P73	41 42 to 44	I/O I	Other P70 P71 P72 P73	Nch-transistor output for watchdog timer 1 INT1 input/HOLD release input INT2 input/timer 0 event input				Pull-up provide not prov (in bit u	d/ vided	P71 : P72 :	P70 : VPP (*3) P71 : DASEC (*4) P72 : OE (*5) P73 : CE (*6)	
				Rise	Fall	Rise/Fall		H level	L level	Vector]	
			INT0	enable	enable	disable		enable	enable	03H		
			INT1	enable	enable	disable		enable	enable	0BH]	
			INT2	enable	enable	enable		disable	disable	13H		
			INT3	enable	enable	enable		disable	disable	1BH		
Port 9 P90 to P93	13 to 16	I	Other	4-bit input port External Other functions AD converter input port (4 lines)					I RGB input	A0 to	A3 (*3)	

^{*1} $An \rightarrow Address input$

· Port status in reset

Terminal	I/O	Pull-up resistor state at selecting pull-up option
Port 0	Input	Pull-up resistor OFF, ON after reset release
Port 1	Input	Programmable pull-up resistor OFF
Port 7	Input	Fixed pull-up resistor provided

*AVDD and AVSS are the power supply terminals for the analog operation block. DVDD and DVSS are the power supply terminals for the digital operation block. Connect as shown in the following figure to reduce the mutual noise influence.

^{*2} Data I/O

^{*3} Power for programming

^{*4} Memory select input/output for data security

^{*5} Output Enable input

^{*6} Chip Enable input

Specifications

1. Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS} = 0~V$

Paran	neter	Symbol	Pins	Conditions			Rating	S	Unit
					V _{DD} [V]	min	typ	max	
Supply v	oltage	V _{DD} max	DVDD, AVDD	DVDD=AVDD		-0.3		+7.0	V
Input voltage		V ₁ (1)	• P71, 72, 73 • Port 9 • RES,HS,VS,CVIN			-0.3		V _{DD} +0.3	
Output v	oltage	V⊙(1)	R, G, B, BL, I, FILT			-0.3		V _{DD} +0.3	
		V _○ (2)	PWM0 to PWM9			-0.3		+15	
Input/out voltage	put	V _{IO}	Ports 0, 1, P70			-0.3		V _{DD} +0.3	
High- level output current	Peak output current	Іорн(1)	Ports 0, 1	Pull-up MOS transistor output At each pin		- 2			mA
		I _{ОРН} (2)	Ports 0, 1	CMOS output At each pin		-4			
		Іорн(3)	R, G, B, BL, I	CMOS output At each pin		- 5			
	Total	Σ loah(1)	Port 1	The total of all pins		-10			
	output current	Σ Ioah(2)	Port 0	The total of all pins		-10			
		Σ Ioah(3)	R, G, B, BL, I	The total of all pins		-15			
Low-	Peak	IOPL(1)	Ports 0, 1	At each pin				20	
level output	output current	I _{OPL} (2)	P70	At each pin				30	
current	carrent	Iopl (3)	• R, G, B, BL, I • PWM0 to PWM9	At each pin				5	
	Total	Σ loal(1)	Port 0	The total of all pins				40	
	output currrent	Σ loal(2)	Port 1, P70	The total of all pins				40	
	Cament	∑l _{OAL} (3)	R, G, B, BL, I	The total of all pins				15	
		Σ I _{OAL} (4)	PWM0 to PWM9	The total of all pins				30	
Maximum power dissipation		Pd max	DIC52S	Ta = +10 to +40°C				430	mW
Operating temperat	g ure range	Topr				+10		+40	°C
Storage temperat	ure range	Tstg				-55		+125	

^{*}DVSS and AVSS must be supplied the same voltage, V_{SS} . DVDD and AVDD must be supplied the same voltage, V_{DD} .

 $\mathbf{V}_{\text{SS}} = \mathbf{D}\mathbf{V}\mathbf{S}\mathbf{S} = \mathbf{A}\mathbf{V}\mathbf{S}\mathbf{S}$ $\mathbf{V}_{\text{DD}} = \mathbf{D}\mathbf{V}\mathbf{D}\mathbf{D} = \mathbf{A}\mathbf{V}\mathbf{D}\mathbf{D}$

2. Recommended Operating Range at Ta = +10 $^{\circ}C$ to +40 $^{\circ}C,~V_{SS}$ = 0 V

Parameter	Symbol	Pins	Conditions			Ratings	S	Unit
				V _{DD} [V]	min	typ	max	
Operating supply voltage range	V _{DD}	DVDD, AVDD	0.97 μs ≤ tCYC tCYC ≤ 1.02 μs		4.5		5.5	V
Hold voltage	V HD	DVDD, AVDD	RAMs and the registers hold data at HOLD mode.		2.0		5.5	
Input high-level	V⊪(1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	0.6V _{DD}		V _{DD}	
voltage	V _{IH} (2)	• Port 1 (Schmitt) • <u>P72, 73</u> • HS, VS	Output disable	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V⊮(3)	• P70 port input / interrupt • P71 • RES (Schmitt)	Output N-channel transistor OFF	4.5 to 5.5	0.75V _{DD}		V _{DD}	
	V _{IH} (4)	P70 Watchdog timer input	Output N-channel transistor OFF	4.5 to 5.5	V _{DD} -0.5		V _{DD}	
	V _{IH} (5)	Port 9 port input		4.5 to 5.5	0.7V _{DD}		V _{DD}	
Input low-level	V _{IL} (1)	Port 0 (Schmitt)	Output disable	4.5 to 5.5	Vss		0.2V _{DD}	
voltage	Vı∟(2)	• Port 1 (Schmitt) • P72, 73 • HS, VS • Port 9	Output disable	4.5 to 5.5	Vss		0.25V _{DD}	
	V _{IL} (3)	• P70 port input / interrupt • P71 • RES (Schmitt)	N-channel transistor OFF	4.5 to 5.5	Vss		0.25V _{DD}	
	Vı∟(4)	P70 Watchdog timer input	N-channel transistor OFF	4.5 to 5.5	V ss		0.6V _{DD}	
	V _{IL} (5)	Port 9 port input		4.5 to 5.5	Vss		0.3V _{DD}	
CVIN input amplitude	Vcvin	CVIN		5.0	1Vp-p –3dB	1Vp-p	1Vp-p +3dB	Vp-p
Operation cycle	tCYC(1)		OSD function	4.5 to 5.5	0.97	1	1.02	μs
time	tCYC(2)		Except OSD function	4.5 to 5.5	0.97		40	

^{*} Vp-p : Peak-to-peak voltage

Parameter	Symbol	Pins	Conditions			Ratings	5	Unit
				V _{DD} [V]	min	typ	max	
Oscillation frequency range (Note 1)	FmCF(1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 1.	4.5 to 5.5	11.76	12	12.24	MHz
	FmCF(2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 1.		11.84	12.08	12.32	
	FmLC	LC1, LC2	14.11 MHz (LC oscillation) Refer to Figure 2.	4.5 to 5.5		14.11		
	FmRC		RC oscillation	4.5 to 5.5	0.4	0.8	3.0	
Oscillation stable time period (Note 2)	tmsCF(1)	CF1, CF2	12 MHz (ceramic resonator oscillation) Refer to Figure 3.	4.5 to 5.5		0.02	0.2	ms
	tmsCF(2)		12.08 MHz (ceramic resonator oscillation) Refer to Figure 3.			0.02	0.2	

- (Note 1) Refer to Table 1 and Table 2 for oscillation constant.
- (Note 2) The oscillation stable time period refers to the time it takes to oscillate stably after the following conditions.
 - 1. Applying the first supply voltage.
 - 2. Release of the HOLD mode.
 - 3. Release of the stopping of the main-clock oscillation.

Refer to Figure 3 for details.

3. Electrical Characteristics at $Ta=+10^{\circ}C$ to $+40^{\circ}C$, $~V_{SS}=0~V$

Parameter	Symbol	Pins	Conditions			Ratings	5	Unit
				V _{DD} [V]	min	typ	max	
Input high-level current	I _H (1)	Port 1 Port 0 without pull-up MOS transistor	Output disable Pull-up MOS transistor OFF V _{IN} = V _{DD} (including the off-leak current of the output transistor)	4.5 to 5.5			1	μА
	Ін(2)	Port 7 without pull-up MOS transistor Port 9 RES HS,√S	V _{IN} = V _{DD}	4.5 to 5.5			1	
Input low-level current	I∟(1)	Port 1 Port 0 without pull-up MOS transistor	Output disable Pull-up MOS transistor OFF VIN = Vss (including the off-leak current of the output transistor)	4.5 to 5.5	-1			
	I _{IL} (2)	Port 7 without pull-up MOS transistor Port 9	V _{IN} = V _{SS}	4.5 to 5.5	-1			
	I _{IL} (3)	• RES • HS,VS	V _{IN} = V _{SS}	4.5 to 5.5	-1			
Output high-level voltage	Vон(1)	CMOS output of ports 0, 1	loн = -1.0 mA	4.5 to 5.5	V _{DD} -1			٧
	Vон(2)	R, G, B, BL, I	I _{OH} = -0.1 mA	4.5 to 5.5	V _{DD} -0.5			
Output low-level	V _{○L} (1)	Ports 0, 1	I _{OL} = 10 mA	4.5 to 5.5			1.5	
voltage	V _{○L} (2)	Ports 0, 1	IoL = 1.6 mA The total current of the ports 0, 1 is 40 mA or less.	4.5 to 5.5			0.4	
	V _{○L} (3)	• R, G, B, BL, I	IoL = 3.0 mA PWM0 to PWM9 The current of any unmeasured pin is 3 mA or less.	4.5 to 5.5			0.4	
	V _○ (4)	P70	I _{OL} = 1 mA	4.5 to 5.5			0.4	
Pull-up MOS tran- sistor resistance	Rpu	• Ports 0, 1 • Port 7	V _{OH} = 0.9V _{DD}	4.5 to 5.5	13	38	80	kΩ
Output off-leakage current	loff	PWM0 to PWM9	V _{OUT} = 13.5 V	4.5 to 5.5			5	μA
Hysteresis voltage	V _{HIS}	• Ports 0, 1 • Port 7 • RES • HS,VS	Output disable	4.5 to 5.5		0.1V _{DD}		V

Parameter	Symbol	Pins	Conditions			Ratings		Unit
				V _{DD} [V]	min	typ	max	
Input clamp voltage	VCLMP	CVIN		5.0	2.3	2.5	2.7	V
Pin capacitance	СР	All pins	• f = 1 MHz • Unmeasured terminals for the input are set to Vss level. • Ta = 25°C	4.5 to 5.5		10		pF

4. Serial Input/Output Characteristics at Ta = +10 $^{\circ}C$ to +40 $^{\circ}C$, $~V_{SS}$ = 0 V

P	arame	eter	Symbol	Pins	Conditions			Ratings		Unit
						V _{DD} [V]	min	typ	max	
		Cycle	tCKCY(1)	• SCK0	Refer to Figure 5.	4.5 to 5.5	2			tCYC
	Input clock	Low- level pulse width	tCKL(1)	• SCLK0			1			
l clock	Serial clock	High- level pulse width	tCKH(1)				1			
eria		Cycle	tCKCY(2)	• SCK0		4.5 to 5.5	2			
0)	Output clock	Low- level pulse width	tCKL(2)	• SCLK0	(1 kΩ) when open drain outputRefer to Figure 5.			1/2tCKCY		
	Out	High- level pulse width	tCKH(2)					1/2tCKCY		
nput	Data time	a set-up	tICK	• SI0	Data set-up to SCK0 rising	4.5 to 5.5	0.1			μs
Serial input	Data time	a hold	tCKI		Data hold from SCK0 rising Refer to Figure 5.	4.5 to 5.5	0.1			
output	time (Exter serial Output time (Intern	Dutput delay tCKO(1) • SO0 ime (External serial clock)		Use a pull-up resistor (1 kΩ) when open drain output Data set-up to SCK0	4.5 to 5.5			7/12tCYC +0.2	μѕ	
Serial		Output delay		tCKO(2)		falling • Data hold from SCK0 falling • Refer to Figure 5.	4.5 to 5.5			1/3tCYC +0.2

5. Pulse Input Conditions at $Ta = +10^{\circ}C$ to $+40^{\circ}C$, $V_{SS} = 0$ V

Parameter	eter Symbol Pins Conditions			Ratings			Unit	
				V _{DD} [V]	min	typ	max	
High/low level pulse width	tPIH(1) tPIL(1)	• INT0, INT1 • INT2/T0IN	Interrupt acceptable Timer0-countable	4.5 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INT3/T0IN (The noise rejection clock is set to 1/1)	Interrupt acceptable Timer0-countable	4.5 to 5.5	2			
	tPIH(3) tPIL(3)	INT3/T0IN (The noise rejection clock is set to 1/16)	Interrupt acceptable Timer0-countable	4.5 to 5.5	32			
	tPIL(4)	RES	Reset acceptable	4.5 to 5.5	200			μs
	tPIH(5) tPIL(5)	HS, VS	Display position controllable Each active edge of HS, VS must be more than 1tCYC. Refer to Figure 7.	4.5 to 5.5	10			tCYC
Rising/falling time	tTHL tTLH	HS	Refer to Figure 7.	4.5 to 5.5			500	ns
Horizontal pull-in range	FH	HS	The monitor point in Figure 10 is 1/2 V _{DD} .	4.5 to 5.5	15.23	15.73	16.23	kHz

6. A/D Converter Characteristics at Ta = +10 $^{\circ}C$ to +40 $^{\circ}C,~V_{SS}$ = 0 V

Parameter	Symbol	Pins	Conditions			Ratings		
				V _{DD} [V]	min	typ	max	
Resolution	N			4.5 to 5.5		5		bit
Absolute precision	ET		(Note 3)	4.5 to 5.5		±1/4	±3/4	LSB
Conversion time	tCAD	From Vref selection to when the result is output	1 bit conversion time = 2tCYC	4.5 to 5.5		2		μs
Reference current	I _{REF}		(Regulate the ladder resistor)	4.5 to 5.5		1.0	2.0	mA
Analog input voltage range	V _{AIN}	AN0 to AN3		4.5 to 5.5	V _{SS}		V _{DD}	٧
Analog port input	I _{AINH}		$V_{AIN} = V_{DD}$	4.5 to 5.5			1	μA
current	I _{AINL}		V _{AIN} = V _{SS}	4.5 to 5.5	-1			

(Note 3) Absolute precision excepts quantizing error ($\pm 1/2$ LSB).

7. Current Drain Characteristics at $Ta = +10^{\circ} C~to~+40^{\circ} C$, $~V_{SS} = 0~V$

Parameter	Symbol	Pins	Conditions		Ratings			Unit
				V _{DD} [V]	min	typ	max	
Current drain during basic operation (Note 4)	IDDOP(1)	DVDD, AVDD	FmCF = 12 MHz or FmCF = 12.08 MHz when ceramic resonator oscillation FmLC = 14.11 MHz when LC oscillation System clock: CF oscillation Internal RC oscillation stops	4.5 to 5.5		25	38	mA
Current drain in HALT mode (Note 4)	IDDHALT(1)	DVDD, AVDD	HALT mode FmCF = 12 MHz or FmCF = 12.08 MHz when ceramic resonator oscillation FmLC = 0 Hz (when oscillation stops) System clock: CF oscillation Internal RC oscillation stops.	4.5 to 5.5		5	10	mA
	Iddhalt(2)	DVDD, AVDD	HALT mode FmCF = 0 MHz (when oscillation stops) FmLC = 0 Hz (when oscillation stops) System clock: Internal RC	4.5 to 5.5		600	1200	μΑ
Current drain in HOLD mode (Note 4)	Іррногр	DVDD, AVDD	HOLD mode All oscillation stops.	4.5 to 5.5		0.05	20	μА

(Note 4) The currents to the output transistors and the pull-up MOS transistors are ignored.

Oscillation types	Manufacturer	Oscillator	C1	C2
12 MHz ceramic resonator	Murata	CSA12.0MTZ	33 pF	33 pF
oscillation		CST12.0MTW	on	chip
	Kyocera	KBR-12.0M	33 pF	33 pF
12.08 MHz ceramic resonator	Murata	CSA12.0MTZ021	33 pF	33 pF
oscillation		CST12.0MTW021	on	chip
	Kyocera	KBR-12.08M	33 pF	33 pF

^{*} Both C1 and C2 must use K rank (±10%) and SL characteristics.

Table 1. Ceramic Resonator Oscillation Guaranteed Constant (main-clock)

Oscillation types	L	C3	C4	
14.11 MHz LC oscillation	4.7 μH	33 pF	45 pF (Trimmer)	
	4.7 μH ±10% (Variable)	33 pF	33 pF	

^{*} See Figures 11 and 12.

Table 2. LC oscillation Guaranteed Constant (OSD clock)

- (Notes) Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest pattern length.
 - If you use other oscillators herein, we provide no guarantee for the characteristics.
 - Adjust the voltage of monitor point in Figure 10 to $1/2 V_{DD} \pm 10\%$ by the LC oscillation constant 'L' or 'C' to lock the PLL circuit.

Main clock

Figure 1 Ceramic Resonator Oscillation

OSD clock

Figure 2 LC Resonator Oscillation

Figure 3 Oscillation Stable Time

Figure 4 Reset Circuit

< AC timing point >

Figure 5 Serial Input/output Test Condition

Figure 6 Pulse Input Timing Condition - 1

Figure 7 Pulse Input Timing Condition - 2

Figure 8 Recommended Interface Circuit

Figure 9 CVIN Recommended Circuit

Figure 10 FILT Recommended Circuit

(Note) • Place the parts connected FILT terminal as close to the FILT as possible with the shortest pattern length on the board.

Figure 11 FILT-LC Oscillation Frequency(1)

Figure 12 FILT-LC Oscillation Frequency(2)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 1998. Specifications and information herein are subject to change without notice.