CO 456: Introduction to Game Theory

University of Waterloo Martin Pei Fall 2020

Marco Yang

Last updated: September 11, 2020

CO 456 Contents

Contents

1	Course Administration	1
2	Impartial Games	2
	Nim	2
	Impartial games	3
	Winning strategy	5
3	Equivalent Games (I)	6
	Game sums	6
	Game equivalences	7
	Losing games and empty Nim	8

CO 456 1 Course Administration

Lecture 1: Course Administration

See the course outline.

Lecture 2: Impartial Games

Nim

We are given some piles of chips. Two players play alternately. On a player's turn, they pick a pile and remove at least 1 chip from it. The first player who cannot make a move loses.

Example

- 1, 1, 2.
 - Player I removes 2 chips from the last pile.
 - Player II removes a 1-chip pile.
 - Player I removes the last chip.
 - Player II has no move and loses.
 - Player I has a winning strategy.

This is a winning game or winning position.

- 5, 5.
 - Regardless of Player I's move, Player II can mirror it on the other pile.
 - Player II always has a move, so Player I loses.
 - Player I always loses (i.e. Player II has a winning strategy).

This is a losing game or losing position.

- 5, 7.
 - Player I first equalizes piles (here, removing 2 from the pile of 7).
 - Player II loses (by the previous case).

This is a winning game.

Lemma 2.1

In instances of Nim with two piles of n, m chips, it is a winning game if and only if $n \neq m$.

Impartial games

Nim is an impartial game.

Definition — impartial game

Conditions for an impartial game:

- 1. There are two players, Player I (who starts) and Player II.
- 2. There are several positions and a starting position.
- 3. A player performs one of a set of allowable moves, which depends only on the current position and not on the player (hence "impartial"). Each possible move generates an option.
- 4. The players move alternately.
- 5. There is complete information.
- 6. There are no chance moves.
- 7. The first player with no available move loses.
- 8. The rules guarantee that games end.

Example

Games which are not impartial:

- Tic-tac-toe (violates 7—may tie)
- Chess (violates 3—may only move your pieces)
- Poker (violates 5—cards hidden)
- Monopoly (violates 6—relies on dice rolls)

Example

Let G = (1, 1, 2) be a Nim game. There are 4 possible moves, hence 4 possible options.

Each H_i is itself another Nim game.

Note: we can define an impartial game by its position and options recursively.

Definition — game simplicity

A game H that is reachable from game G by a sequence of allowable moves is **simpler** than G.

Example

Other impartial games:

- Subtraction game
 - One pile of chips.
 - Valid move: remove 1, 2, or 3 chips.
- Rook game
 - $-m \times n$ chess board with a rook at (i, j).
 - Valid move: move the rook any number of spaces up or left.
- Green hackenbush game
 - Graph connected to the floor at some vertices.
 - Valid move: remove an edge of the graph, then any components no longer connected to the floor.

Spoiler: all impartial games are essentially Nim games.

Winning strategy

Lemma 2.2

In any game G, either Player I or Player II has a winning strategy.

Proof.

By induction on simplicity of G.

If G has no allowable moves, then Player I loses, so Player II has a winning strategy. Assume G has allowable moves and the lemma holds for all games simpler than G. Among all options of G, if Player I has a winning strategy in one of them, Player I will move to that option and win. Otherwise, Player II has a winning strategy for all options, so Player II wins regardless of Player I's move.

That is, every impartial game G is either a winning game or a losing game.

Example

Winning game of Nim (at least one winning move):

Losing game of Nim (no winning moves):

Note: we assume players play perfectly. If there is a winning move, then they will take it.

Lecture 3: Equivalent Games (I)

Game sums

Definition — game sum

Let G and H be two games with respective options G_1, \ldots, G_m and H_1, \ldots, H_n . We define G + H as the game with options

$$G_1 + H, \ldots, G_m + H, G + H_1, \ldots, G + H_n$$
.

Example

We denote *n to be a game of Nim with one pile of n chips. Then *1 + *1 + *2 is a Nim game with three piles of 1, 1, and 2 chips.

Example

Let #n be the subtraction game with n chips. Then *5 + #7 is the game where a move is either to remove at least 1 chip from the pile of 5 (Nim) or to remove 1, 2, or 3 chips from the pile of 7 (subtraction game).

Lemma 3.1

Let \mathcal{G} be the set of all impartial games. Then for all $G, H, J \in \mathcal{G}$,

- 1. $G + H \in \mathcal{G}$ (closure)
- 2. (G+H)+J=G+(H+J) (associativity)
- 3. There exists an identity $0 \in \mathcal{G}$ (the game with no options) where G + 0 = 0 + G = G.
- 4. G + H = H + G (symmetry)

Note: \mathcal{G} is an abelian group, except for an inverse element.

Game equivalences

Definition — game equivalence

Two games G and H are equivalent if for any game J, G+J and H+J have the same outcome (*i.e.*, both are winning games or both are losing games). Notation: $G \equiv H$.

Example

 $*3 \equiv *3$. Since *3 + J is the same game as *3 + J, they have the same outcome.

 $*3 \not\equiv *4. *3 + *3$ is a winning game but *4 + *3 is a losing game (Lemma 2.1).

Lemma 3.2

 $*n \equiv *m \text{ if and only if } n = m.$

Lemma 3.3

The relation \equiv is an equivalence relation. That is, for all $G, H, K \in \mathcal{G}$,

- 1. $G \equiv G$ (reflexivity).
- 2. $G \equiv H$ if and only if $H \equiv G$ (symmetry).
- 3. If $G \equiv H$ and $H \equiv J$, then $G \equiv J$ (transitivity).

Exercise 3.4

Prove that if $G \equiv H$, then $G + J \equiv H + J$ for any game J.

Proof.

Consider any games J and K. Let M = J + K. Then G + J + K = G + M and H + J + K = H + M. Since $G \equiv H$, G + M and H + M have the same outcome. But then (G + J) + K and (H + J) + K have the same outcome by Lemma 3.1. K was arbitrary, so $G + J \equiv H + J$.

Losing games and empty Nim

Nim with one pile *n is a losing game if and only if n = 0.

Theorem 3.5

G is a losing game if and only if $G \equiv *0$.

Corollary 3.6

If G is a losing game, then J and J + G have the same outcome for any game J.

Proof.

Since G is a losing game, $G \equiv *0$ by Theorem 3.5. Then $J + G \equiv J + *0 \equiv J$ by Exercise 3.4 and Lemma 3.1, so J and J + G have the same outcome.

Example

- 1. Recall *5 + *5 and *7 + *7 are losing games. Corollary 3.6 says *5 + *5 + *7 + *7 is also a losing game. (Player I moves in either *5 + *5 or *7 + *7. Player II plays a winning move in the same part by equalizing piles.)
- 2. $\underbrace{*1 + *1 + *2}_{\text{winning}} + \underbrace{*5 + *5}_{\text{losing}}$ is a winning game by Corollary 3.6. (Player I removes *2, leaving a similar game to the previous.)

Proof (Theorem 3.5).

- (\iff) If $G \equiv *0$, then G + *0 has the same outcome as *0 + *0. But *0 + *0 is a losing game, so G is a losing game.
- (\Longrightarrow) Suppose G is a losing game. We show G+J and $*0+J\equiv J$ have the same outcome.
 - 1 Suppose J is a losing game. We show "if G and J are both losing games, then G + J is a losing game" by induction on simplicity of G + J.

When G+J has no options, G and J have no options, so G, J, and G+J are all losing games. Assume G+J has some otpions and the statement holds for simpler games. WLOG, Player I moves on G, resulting in G'+J. G is a losing game, so G' is a winning game. Player II makes a winning move from G' to G'', resulting in G''+J. Then G'' is a losing game, so by induction G''+J is a losing game. Player I loses, so G+J is a losing game.

② Suppose J is a winning game, so J as a winning move to J'. Player I moves from G+J to G+J'. G and J' are both losing games, so by ① G+J' is a losing game. Player II loses, so Player I wins and G+J is a winning game.