

تمرین کامپیوتری شماره ۴ **معماری کامپیوتر** نیم سال اول ۱**۴۰۱**–۱۴۰۰

اعضای گروه:

سوگل گودرزی ۸۱۰۱۹۸۴۶۷ عرفان پناهی ۸۱۰۱۹۸۳۶۹

* مسير داده:

طبق مطالبی که در درس آموختیم برای پیاده سازی مسیر داده پردازنده به صورت پایپ لاین نیاز است که ساختار مسیر داده پردازنده تک مرحله ای را به گونه ای تغییر دهیم تا ساختار مربوط به هر مرحله (stage) در مسیر داده پایپ لاین مشخص شود. در این حالت باید بین stage ها از رجیسترهایی استفاده کنیم که این رجیسترها به منظور انتقال مناسب داده ها بین stage ها قرار می گیرند. پیاده سازی توضیحات گفته شده، در مسیر داده ای که در فایل ضمیمه شده است، قرار دارد.

* كنترلر:

ابتدا ALUop را طوری تعیین می کنیم تا بتواند با استفاده از Func ، سلکتور های ALU (ALUctrl) را بسازد:

OPC	ALUop	Func	ALU Operation
000000	00	000001	Add → 000
000000	00	000010	Sub → 001
000000	00	000100	And \rightarrow 010
000000	00	001000	Or → 011
000000	00	010000	Slt → 100
000001(addi)	01	1	Add → 000
000010(slti)	10	1	Slt → 100
000011(lw)	01	1	Add → 000
000100(sw)	01	- 1	Add \rightarrow 000
000101(beq)	11	1	Sub → 001

صفحهٔ 1

حال برای قسمت کنترلر ، سیگنال های کنترلی را طبق جدول زیر مقداردهی می کنیم:

	RegDs	jal	RegWrite	ALUSrc	ALUop	MemRead	MemWrite	MemtoReg	PCSrc	jmp	jr
	t										
R-T	1	0	1	0	00	0	0	0	0	0	0
addi	0	0	1	1	01	0	0	0	0	0	0
slti	0	0	1	1	10	0	0	0	0	0	0
lw	0	0	1	1	01	1	0	1	0	0	0
SW	0	0	0	1	01	0	1	0	0	0	0
j	0	0	0	0	00	0	0	0	0	1	0
jal	0	1	1	0	00	0	0	0	0	1	0
jr	0	0	0	0	00	0	0	0	0	0	1
beq	0	0	0	0	11	0	0	0	EQ	0	0

* الگوریتم پیدا کردن کوچکترین مقدار یک آرایه ۲۰ عنصری و اندیس آن:

```
array A[0:19];
Value = A[0];
Index =0;
for (int i=1;i<20;i++){
      if(Value > A[i]){
            Value = A[i];
            Index = i;
//Value: Minimum value of A
//Index: Index of Minimum value of A
```

* برنامه با زبان اسمبلی و زبان ماشین (باینری و هگزادسیمال):

برای انجام دستورات مناسب به منظور اینکه کوچکترین مقدار یک آرایه ۲۰ عنصری و همچنین اندیس آن را بیابیم و در آدرس های ۲۰۰۰ و ۲۰۰۴ حافظه بنویسیم، دستورات زیر را ابتدا به زبان کد ماشین نوشته سپس معادل باینری آن ها را پیدا کرده ایم و در آخر نیز آن ها را به اعداد هگزادسیمال تبدیل کرده و در فایل دستورات زیر می کنیم: Instructions.txt

Address	Instruction	Binary	Hexadecimal
0	addi R10,R0,0	0000-0100-0000-1010-0000-0000-0000	040a0000
1	addi R2,R0,0	0000-0100-0000-0010-0000-0000-0000	04020000
2	addi R20,R0,0	0000-0100-0001-0100-0000-0000-0000	04140000
3	addi R30,R0,1	0000-0100-0001-1110-0000-0000-0000-0001	041e0001
4	addi R5,R0,1	0000-0100-0000-0101-0000-0000-0000-0001	04050001
5	lw R1,R10(1000)	0000-1101-0100-0001-0000-0011-1110-1000	0d4103e8
6	Jal 400 //Loop	0010-0000-0000-0000-0000-0110-0100	20000064
7	NOP(add R0,R0,R0)	0000-0000-0000-0000-0000-0000-0001	0000001
8	sw R1,R0(2000)	0001-0000-0000-0001-0000-0111-1101-0000	100107d0
9	sw R2,R0(2004)	0001-0000-0000-0010-0000-0111-1101-0100	100207d4
•••			
100	beq R30,R5,3	0001-0111-1100-0101-0000-0000-0000-0011	17c50003
101	NOP(add R0,R0,R0)	0000-0000-0000-0000-0000-0000-0001	0000001
102	Jr R31	0001-1111-1110-0000-0000-0000-0000	1fe00000

103	NOP(add R0,R0,R0)	0000-0000-0000-0000-0000-0000-0001	0000001
104	addi R10,R10,4	0000-0101-0100-1010-0000-0000-0000-0100	054a0004
105	addi R20,R20,1	0000-0110-1001-0100-0000-0000-0000-0001	06940001
106	lw R3,R10(1000)	0000-1101-0100-0011-0000-0011-1110-1000	0d4303e8
107	slt R4,R1,R3	0000-0000-0010-0011-0010-0000-0001-0000	00232010
108	slti R5,R20,19	0000-1010-1000-0101-0000-0000-0001-0011	0a850013
109	addi R25,R0,400	0000-0100-0001-1001-0000-0001-1001-0000	04190190
110	beq R4,R30,3	0001-0111-1100-0100-0000-0000-00011	17c40003
111	NOP(add R0,R0,R0)	0000-0000-0000-0000-0000-0000-0001	0000001
112	add R1,R3,R0	0000-0000-0110-0000-0000-1000-0000-0001	00600801
113	add R2,R20,R0	0000-0010-1000-0000-0001-0000-0000-0001	02801001
114	Jr R25	0001-1111-0010-0000-0000-0000-0000	1f200000
115	NOP(add R0,R0,R0)	0000-0000-0000-0000-0000-0000-0001	0000001

* داده های تست:

درنهایت نیز داده هایی بعنوان مثال مانند تصویر زیر به برنامه می دهیم و خروجی را مشاهده می کنیم که نشان می دهد برنامه به درستی کار می کند:

-b	s.log 🔀 🔚 Data.txt 🖸	4 🕝	■ New Dat	
		-1::		
246	AAAAAAA	1::1	493	XXXXXXX
247	XXXXXXX	100	494	XXXXXXX
248	XXXXXXX	1881	495	XXXXXXX
249	XXXXXXX	100	496	XXXXXXX
250	XXXXXXX	1::1	497	XXXXXXX
251	00000107	1881	498	XXXXXXX
252	0000040		499	XXXXXXX
253	00000002	1::1	500	XXXXXXX
254	0000004	1::1	501	XXXXXXX
255	00000005	1881	502	XXXXXXX
256	0000006		503	XXXXXXX
257	0000000c	1::1	504	00000002
258	0000008	1::1	505	00000002
259	00000009	1881	506	XXXXXXX
260	0000000a	188	507	XXXXXXX
261	0000100b	100	508	XXXXXXX
262	00000003	1::1	509	XXXXXXX
263	0001000d	188	510	XXXXXXX
264	0000000e	188	511	XXXXXXX
265	0000000f	1::1	512	XXXXXXX
266	00000020	5	513	XXXXXXX
267	00000011	5	514	XXXXXXX
268	00000012	5	515	XXXXXXX
269	01000013	5	516	XXXXXXX
270	0000015	5	517	XXXXXXX
271		5	518	XXXXXXX
	آدرس های ۱۰۰۰ تا ۱۰۷۶ (داده ها)			آدرس های ۲۰۰۰ و ۲۰۰۴ (نتیجه)

E change.log ☑ E Data.txt ☑	√	☐ NewDa	ata.txt 🗵
244 xxxxxxx	^	488	xxxxxxxx
245 xxxxxxxx		489	xxxxxxx
246 xxxxxxxx		490	xxxxxxx
247 xxxxxxxx		491	xxxxxxx
248 xxxxxxxx		492	xxxxxxx
249 xxxxxxxx		493	XXXXXXX
250 xxxxxxxx		494	XXXXXXX
251 00000107		495	XXXXXXX
252 00000040		496	XXXXXXX
253 00000003		497	XXXXXXX
254 00000004		498	XXXXXXX
255 90000005		499	XXXXXXX
256 00000006		500	XXXXXXX
257 00000001		501	XXXXXXX
258 00000008		502	XXXXXXX
259 00000009		503	XXXXXXX
260 0000000a		504	80000011
261 0000000b		505	0000010
262 0000000c		506	XXXXXXX
263 0001000d		507	XXXXXXX
264 0000000e		508	XXXXXXX
265 0000000f		509	XXXXXXX
266 00000020		510	XXXXXXX
267 80000011		511	XXXXXXX
268 00000012		512	XXXXXXX
269 01000013		513	XXXXXXX
270 00000015		514	XXXXXXX
271		515	XXXXXXX
آدرس های ۱۰۰۰ تا ۱۰۷۶ (داده ها)			آدرس های ۲۰۰۰ و ۲۰۰۴ (نتیجه)

آدرس های ۱۰۰۰ تا ۱۰۷۶ (داده ها)

آدرس های ۲۰۰۰ و ۲۰۰۴ (نتیجه)

* طراحی پردازنده با سیگنال کنترلی برای فلاش کردن:

در طراحی قبلی برای اینکه bubble هایی که در درس توضیح داده شدند را به منظور برطرف سازی مخاطره های کنترلی اضافه کنیم، نیاز بود که دستورهای NOP را بعد از دستورات پرشی (beq, j, jr, jal) قرار دهیم. حال یک سیگنال کنترلی به نام IF_Flush به پردازنده اضافه می کنیم که این امر را برای ما انجام دهد. یعنی هر گاه در مسیر برنامه مدنظر، دستور پرشی تشخیص داده شود و حتما نیاز باشد پرش به آدرس مطلوب انجام شود، آن گاه این سیگنال توسط کنترلر set می شود تا bubble های مورد نیاز که همان دستورات NOP هستند، بعد از این دستورات پرشی به صورت خودکار توسط خود پردازنده تولید شوند. این سیگنال کنترلی همانطور ک از شکل مسیر داده مشخص است به رجیستر بین دو مرحله IP و IP متصل است و هرگاه مقدار آن یک شود، دستور NOP تولید شده و به مرحله ID می رود و بعد از دیکود شدن در این مرحله، به تک تک مراحل بعدی نیز منتقل می شود و مسیر اجرای برنامه به درستی صورت می گیرد.

* كنترلر:

جدول مربوط به کنترلر برنامه در حالت جدید با قرار دادن سیگنال IF_Flush به صورت زیر تغییر می کند:

	RegDs	jal	RegWrite	ALUSrc	ALUop	MemRead	MemWrite	MemtoReg	PCSrc	jmp	jr	IF_Flus
	t											h
R-T	1	0	1	0	00	0	0	0	0	0	0	0
addi	0	0	1	1	01	0	0	0	0	0	0	0
slti	0	0	1	1	10	0	0	0	0	0	0	0
lw	0	0	1	1	01	1	0	1	0	0	0	0
SW	0	0	0	1	01	0	1	0	0	0	0	0
j	0	0	0	0	00	0	0	0	0	1	0	1
jal	0	1	1	0	00	0	0	0	0	1	0	1
jr	0	0	0	0	00	0	0	0	0	0	1	1
beq	0	0	0	0	11	0	0	0	EQ	0	0	1

* برنامه با زبان اسمبلی و زبان ماشین (باینری و هگزادسیمال):

در این حالت دیگر نیاز به اضافه کردن دستورات NOP به فایل Instructions نیست و این دستورات توسط خود پردازنده در صورت نیاز اضافه می شوند. پس دستورات الگوریتم برنامه به صورت زیر تغییر می کنند:

Address	Instruction	Binary	Hexadecimal
0	addi R10,R0,0	0000-0100-0000-1010-0000-0000-0000-0000	040a0000
1	addi R2,R0,0	0000-0100-0000-0010-0000-0000-0000	04020000
2	addi R20,R0,0	0000-0100-0001-0100-0000-0000-0000-0000	04140000
3	addi R30,R0,1	0000-0100-0001-1110-0000-0000-0000-0001	041e0001
4	addi R5,R0,1	0000-0100-0000-0101-0000-0000-0000-0001	04050001
5	lw R1,R10(1000)	0000-1101-0100-0001-0000-0011-1110-1000	0d4103e8
6	Jal 400 //Loop	0010-0000-0000-0000-0000-0110-0100	20000064
7	sw R1,R0(2000)	0001-0000-0000-0001-0000-0111-1101-0000	100107d0
8	sw R2,R0(2004)	0001-0000-0000-0010-0000-0111-1101-0100	100207d4
100	beq R30,R5,3	0001-0111-1100-0101-0000-0000-0000-0011	17c50003
101	Jr R31	0001-1111-1110-0000-0000-0000-0000	1fe00000
102	addi R10,R10,4	0000-0101-0100-1010-0000-0000-0000-0100	054a0004
103	addi R20,R20,1	0000-0110-1001-0100-0000-0000-0000-0001	06940001

104	lw R3,R10(1000)	0000-1101-0100-0011-0000-0011-1110-1000	0d4303e8
105	slt R4,R1,R3	0000-0000-0010-0011-0010-0000-0001-0000	00232010
106	slti R5,R20,19	0000-1010-1000-0101-0000-0000-0001-0011	0a850013
107	addi R25,R0,400	0000-0100-0001-1001-0000-0001-1001-0000	04190190
108	beq R4,R30,3	0001-0111-1100-0100-0000-0000-00011	17c40003
109	add R1,R3,R0	0000-0000-0110-0000-0000-1000-0000-0001	00600801
110	add R2,R20,R0	0000-0010-1000-0000-0001-0000-0000-0001	02801001
111	Jr R25	0001-1111-0010-0000-0000-0000-0000	1f200000

* داده های تست:

درنهایت نیز همان داده هایی را که در برنامه قبلی برای سنجش صحت کارکرد برنامه داده بودیم را در اینجا به پردازنده می دهیم و مشاهده می کنیم که برنامه به درستی کار می کند:

☐ change.log ☑ ☐ Data.txt ☑	HewData.txt ⊠
246 xxxxxxxx	^ 493 xxxxxxxx
247 xxxxxxxx	494 xxxxxxxx
248 xxxxxxxx	495 xxxxxxxx
249 xxxxxxxx	496 xxxxxxxx
250 xxxxxxxx	497 xxxxxxxx
251 00000107	498 xxxxxxxx
252 00000040	499 xxxxxxxx
253 00000002	500 xxxxxxxx
254 00000004	501 xxxxxxxx
255 00000005	502 xxxxxxxx
256 00000006	503 xxxxxxxx
257 0000000c	504 00000002
258 00000008	505 00000002
259 00000009	506 xxxxxxxx
260 0000000a	507 xxxxxxxx
261 0000100b	508 xxxxxxxx
262 00000003	509 xxxxxxxx
263 0001000d	510 xxxxxxxx
264 0000000e	511 xxxxxxxx
265 0000000f	512 xxxxxxxx
266 00000020	513 xxxxxxxx
267 00000011	514 xxxxxxxx
268 00000012	515 xxxxxxxx
269 01000013	516 xxxxxxxx
270 00000015	517 xxxxxxxx
271	518 xxxxxxxx
آدرس های ۱۰۰۰ تا ۱۰۷۶ (داده ها)	آدرس های ۲۰۰۰ و ۲۰۰۴ (نتیجه)

E change.log ⊠ E Data.txt ⊠		■ NewDa	ata.txt 🗵
244 xxxxxxx	^	488	xxxxxxx
245 xxxxxxxx		489	xxxxxxx
246 xxxxxxx		490	xxxxxxx
247 xxxxxxxx		491	xxxxxxx
248 xxxxxxxx		492	xxxxxxx
249 xxxxxxxx		493	xxxxxxx
250 xxxxxxxx		494	XXXXXXX
251 00000107		495	XXXXXXX
252 00000040		496	XXXXXXX
253 00000003		497	XXXXXXX
254 00000004		498	XXXXXXX
255 90000005		499	XXXXXXX
256 00000006		500	XXXXXXX
257 00000001		501	XXXXXXX
258 00000008		502	XXXXXXX
259 00000009		503	XXXXXXX
260 0000000a		504	80000011
261 0000000b		505	0000010
262 0000000c		506	XXXXXXX
263 0001000d		507	XXXXXXX
264 0000000e		508	XXXXXXX
265 0000000f		509	XXXXXXX
266 00000020		510	XXXXXXX
267 80000011		511	XXXXXXX
268 00000012		512	XXXXXXX
269 01000013		513	XXXXXXX
270 00000015		514	XXXXXXX
271		515	XXXXXXX
آدرس های ۱۰۰۰ تا ۱۰۷۶ (داده ها)			آدرس های ۲۰۰۰ و ۲۰۰۴ (نتیجه)

صفحهٔ 12