Devoir Surveillé n° 3. le 25 novembre.

Calculatrices interdites

Exercice 1:

On considère l'espace vectoriel normé $\mathcal{M}_n(\mathbb{R})$.

On note $\mathrm{GL}_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

On pourra utiliser librement dans cet exercice que l'application déterminant est continue sur $\mathcal{M}_n(\mathbb{R})$.

- 1. L'ensemble $GL_n(\mathbb{R})$ est-il fermé dans $\mathcal{M}_n(\mathbb{R})$?
- 2. Démontrer que l'ensemble $GL_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$.
- **3.** Soit M un élément de $\mathcal{M}_n(\mathbb{R})$, justifier que :

$$\exists \rho > 0, \quad \forall \lambda \in]0, \rho[, \quad M - \lambda I_n \in GL_n(\mathbb{R})$$

Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$

4. Application

Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, démontrer que les matrices A.B et B.A ont le même polynôme caractéristique.

A l'aide des matrices $A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$ et $B=\begin{pmatrix}0&0\\1&0\end{pmatrix}$, prouver que le résultat n'est pas vrai pour les polynômes minimaux.

5. Démontrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

On rappelle que l'image d'une partie connexe par arcs par une application continue est une partie connexe par arcs.

Problème

Objectifs

L'objectif de la **partie I** est de montrer l'existence d'un développement ternaire propre pour certains nombres réels. La **partie II** propose l'étude d'une série de fonctions où les coefficients du développement ternaire sont remplacés par une fonction continue. La **partie III** étudie des développements ternaires aléatoires : (non traitée ici). La **partie IV** définit et présente quelques propriétés de la fonction de Cantor-Lebesgue

Notations

On note T l'ensemble des suites réelles $t=(t_n)_{n\in\mathbb{N}^*}$ à valeurs dans $\{0,1,2\}$. On désigne par ℓ^{∞} l'ensemble des suites réelles $u=(u_n)_{n\in\mathbb{N}^*}$ bornées et on pose $||u||=\sup_{n\in\mathbb{N}^*}|u_n|$. On note |y| la partie entière d'un réel y.

Partie I - Développement ternaire

Étude de l'application σ

- Q1. Démontrer que ℓ^{∞} est un espace vectoriel réel et que $u \mapsto ||u||$ est une norme sur ℓ^{∞} .
- Q2. Pour $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$, montrer que la série de terme général $\frac{u_n}{3^n}$ est convergente. On note :

$$\sigma(u) = \sum_{n=1}^{+\infty} \frac{u_n}{3^n}.$$

- **Q3.** Démontrer que l'application σ est une forme linéaire continue sur ℓ^{∞} .
- **Q4.** Démontrer que si $t=(t_n)_{n\in\mathbb{N}^*}\in T$, alors le réel $\sigma(t)$ est dans l'intervalle [0,1].
- **Q5.** On note $\tau = (\tau_n)_{n \in \mathbb{N}^*}$ et $\tau' = (\tau'_n)_{n \in \mathbb{N}^*}$ les éléments de T définis par :

$$\tau_1 = 1 \text{ et } \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tau_n = 0 \qquad ; \qquad \tau_1' = 0 \text{ et } \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tau_n' = 2.$$

Calculer $\sigma(\tau)$ et $\sigma(\tau')$. L'application σ est-elle injective sur T?

Développement ternaire propre

On fixe $x \in [0, 1[$. On définit une suite $t(x) = (t_n(x))_{n \in \mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \ t_n(x) = \lfloor 3^n x \rfloor - 3 \mid 3^{n-1} x \mid .$$

- **Q6.** Démontrer que $t(x) \in T$.
- **Q7.** On définit deux suites réelles $(x_n)_{n\in\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \ x_n = \frac{\lfloor 3^n x \rfloor}{3^n} \text{ et } y_n = x_n + \frac{1}{3^n}.$$

Démontrer que les suites (x_n) et (y_n) sont adjacentes de limite x. En déduire que :

$$x = \sum_{n=1}^{+\infty} \frac{t_n(x)}{3^n}.$$

Que peut-on en conclure concernant l'application $\left\{ \begin{array}{ll} T & \longrightarrow & [0,1] \\ u & \longmapsto & \sigma(u) \end{array} \right.$?

La suite $t(x) = (t_n(x))_{n \in \mathbb{N}^*}$ est appelée développement ternaire propre de x.

Q8. Informatique pour tous. Écrire en langage Python une fonction flotVersTern(n,x) d'arguments un entier naturel n et un flottant x et qui renvoie sous forme d'une liste les n premiers chiffres $t_1(x), \ldots, t_n(x)$ définis dans la question précédente du développement ternaire de x.

Par exemple flotVersTern(4,0.5) renvoie [1,1,1,1].

Q9. Informatique pour tous. Si $\ell = [\ell_1, \dots, \ell_n]$ est une suite finie d'entiers de $\{0; 1; 2\}$, on la complète avec des 0 pour en faire un élément de T encore noté ℓ .

Écrire en langage Python une fonction ternVersFlot(ℓ) d'arguments une liste d'entiers ℓ . Cette fonction renvoie en sortie le flottant $\sigma(\ell)$.

Par exemple ternVersFlot([1,1,1,1]) renvoie 0.493827......

Q10. Informatique pour tous. Si $\ell = [\ell_1, \dots, \ell_n]$ est une suite finie d'entiers de $\{0; 1; 2\}$, on lui ajoute un élément égal à -1 si la somme $l_1 + \dots + \ell_n$ est paire et un élément égal à -2 sinon. Ce dernier élément permet alors d'essayer de détecter d'éventuelles erreurs de transmission.

Écrire en langage Python une fonction $\mathtt{ajout}(\ell)$ qui ajoute à la liste ℓ un élément comme expliqué précédemment et qui renvoie la nouvelle liste.

Écrire en langage Python une fonction $verif(\ell)$ qui renvoie True si la valeur du dernier élément de ℓ est correcte et False sinon.

Par exemple ajout([1,0,2,1,0]) renvoie [1,0,2,1,0,-1] et verif([1,0,2,1,0,-2]) renvoie False.

Partie II - Étude d'une fonction définie par une série

Dans cette partie, on définit une fonction φ à l'aide d'un développement en série analogue au développement ternaire propre d'un réel, mais où la suite $(t_n)_{n\in\mathbb{N}^*}$ est remplacée par une fonction numérique à valeurs dans l'intervalle [0,2].

Pour tout réel x on pose :

$$\varphi(x) = \sum_{n=1}^{+\infty} \frac{1 + \sin(nx)}{3^n}.$$

Étude de l'application φ

- **Q11.** Démontrer que φ est définie et de classe \mathcal{C}^1 sur \mathbb{R} .
- **Q12.** Pour tout x réel, justifier l'écriture : $\varphi(x) = \frac{1}{2} + \operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right)$. En déduire une expression simple de $\varphi(x)$ en fonction de $\sin(x)$ et $\cos(x)$.
- **Q13.** Pour $x \in \mathbb{R}$, en déduire une expression simple de $\sum_{n=1}^{+\infty} \frac{n \cos(nx)}{3^n}$ en fonction de $\cos(x)$.

Q14. À l'aide de $\int_0^\pi \varphi(x)dx$ démontrer que :

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} dx = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} + 1}{n3^{n+1}}.$$

Puis en calculant la somme de la série du second membre, en déduire $\int_0^\pi \frac{\sin(x)}{10-6\cos(x)} dx$.

Q15. Retrouver la valeur de cette intégrale par un calcul direct.

Partie III - Développements ternaires aléatoires

Partie IV - Fonction de Cantor-Lebesgue

Dans cette partie, on va définir et étudier la fonction de Cantor-Lebesgue.

Étude d'une suite de fonctions

On note f_0 la fonction définie sur [0,1] par $f_0(x)=x$. Pour tout entier $n\in\mathbb{N}$, on pose :

$$\forall x \in [0,1], \ f_{n+1}(x) = \begin{cases} \frac{f_n(3x)}{2} & \text{si } x \in [0,\frac{1}{3}] \\ \frac{1}{2} & \text{si } x \in [\frac{1}{3},\frac{2}{3}[\\ \frac{1}{2} + \frac{f_n(3x-2)}{2} & \text{si } x \in [\frac{2}{3},1] \end{cases}$$

- **Q16.** Représenter l'allure graphique des fonctions f_0 , f_1 et f_2 sur trois schémas différents (pour f_2 on envisagera sept sous-intervalles de [0,1]). Pour tout $n \in \mathbb{N}$, démontrer que f_n est à valeurs dans [0,1].
- Q17. Informatique. Écrire en langage Python une fonction récursive cantor(n,x) qui renvoie la valeur de $f_n(x)$.
- **Q18.** Pour tout entier $n \in \mathbb{N}$, démontrer que :

$$\forall x \in [0,1], |f_{n+1}(x) - f_n(x)| \le \frac{1}{3 \times 2^{n+1}}.$$

Q19. En déduire que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1].

La limite de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ est notée f. On l'appelle fonction de Cantor-Lebesgue.

Q20. Démontrer que la fonction f est à valeurs dans [0,1] et qu'elle est croissante et continue sur [0,1]. Démontrer aussi qu'elle est surjective de [0,1] vers [0,1].

La fonction f est aussi nommée « escalier du diable ». Les développements ternaires étudiés en début de problème permettent d'obtenir une expression analytique de f(x).