TABLE 4.1 A Short Table of (Unilateral) Laplace Transforms

No.	x(t)	X(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
. 5	$e^{\lambda t}u(t)$	$\frac{1}{s-\lambda}$
6	$te^{\lambda t}u(t)$	$\frac{1}{(s-\lambda)^2}$
7	$t^n e^{\lambda t} u(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$
8a	$\cos bt u(t)$	$\frac{s}{s^2+b^2}$
8b	$\sin bt u(t)$	$\frac{b}{s^2+b^2}$
9 a	$e^{-at}\cos bt u(t)$	$\frac{s+a}{(s+a)^2+b^2}$
9Ь	$e^{-at}\sin bt u(t)$	$\frac{b}{(s+a)^2+b^2}$
0a	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{(r\cos\theta)s + (ar\cos\theta - br\sin\theta)}{s^2 + 2as + (a^2 + b^2)}$
0 ь	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{0.5re^{j\theta}}{s+a-jb} + \frac{0.5re^{-j\theta}}{s+a+jb}$
Oc	$re^{-at}\cos(bt+\theta)u(t)$	$\frac{As+B}{s^2+2as+c}$
	$r = \sqrt{\frac{A^2c + B^2 - 2ABa}{c - a^2}}$	
	$\theta = \tan^{-1}\left(\frac{Aa - B}{A\sqrt{c - a^2}}\right)$	
	$b = \sqrt{c - a^2}$	·
	$e^{-at}\left[A\cos bt + \frac{B-Aa}{b}\sin bt\right]u(t)$	$\frac{As+B}{s^2+2as+c}$
	$b = \sqrt{c - a^2}$	