实外 CCF CSP2022-J国庆模拟赛

(入门组:第1场)

时间: 2022年 10月 4日 14:00~17:30

(题目引用: CSP2019-J第二轮)

一. 题目概况

中文题目名称	数字游戏	交通换乘	纪念品	零件加工
英文题目与子目录名	number	transfer	souvenir	work
可执行文件名	number	transfer	souvenir	work
输入文件名	number.in	transfer.in	souvenir.in	work.in
输出文件名	number.out	transfer.out	souvenir.out	work.out
每个测试点时限	1秒	1秒	1秒	1 秒
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
附加样例文件	有	有	有	有
结果比较方式	全文	文比较(过滤行制	卡空格及文末回 车	Ξ)
题目类型	传统	传统	传统	传统
运行内存上限	256M	256M	256M	256M

二. 提交源程序文件名

对于 C++语言	number.cpp	transfer.cpp	souvenir.cpp	work.cpp
对于 C 语言	number.c	transfer.c	souvenir.c	work.c
对于 pascal 语言	number.pas	transfer.pas	souvenir.pas	work.pas

三. 编译命令(不包含任何优化开关)

C++语言	g++ -o number	g++ -o transfer	g++ -0	g++ -o work
	number.cpp -lm	transfer.cpp	souvenir	work.cpp -lm
		-lm	souvenir.cpp	
			-lm	
C 语言	gcc -o number	gcc -o transfer	gcc -o	gcc -o work
	number.c -lm	transfer.c -lm	souvenir	work.c -lm
			souvenir.c -lm	
Pascal 语言	fpc number.pas	fpc	fpc	fpc work.pas
		transfer.pas	souvenir.pas	

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 提交的程序代码文件的放置位置请参照各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。

- 5. 程序可使用的栈内存空间限制与题目的内存限制一致。
- 6. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 32GB。上述时限以此配置为准。
- 7. 只提供 Linux 格式附加样例文件。
- 8. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。
- 9. 最终评测时所用的编译命令中不含任何优化开关。

数字游戏

(number.cpp/c/pas)

【问题描述】

小 K 同学向小 P 同学发送了一个长度为 8 的 01 字符串来玩数字游戏,小 P 同学想要知道字符串中究竟有多少个 1。

注意: 01 字符串为每一个字符是 0 或者 1 的字符串,如"101"(不含双引号)为一个长度为 3 的 01 字符串。

【输入格式】

输入文件名为 number.in。

输入文件只有一行,一个长度为8的01字符串 s。

【输出格式】

输出文件名为 number.out。

输出文件只有一行,包含一个整数,即01字符串中字符1的个数。

【输入输出样例1】

number.in	number.out
00010100	2

见选手目录下的 number/number1.in 和 number/number1.ans。

【输入输出样例1说明】

该01字符串中有2个字符1。

【输入输出样例 2】

title.in	title.out
11111111	8

见选手目录下的 number/number2.in 和 number/number2.ans。

【输入输出样例 2 说明】

该01字符串中有8个字符1。

【输入输出样例 3】

见选手目录下的 number/number3.in 和 number/number3.ans。

【数据规模与约定】

对于 20% 的数据, 保证输入的字符全部为 0。

对于 100% 的数据,输入只可能包含字符 0 和字符 1,字符串长度固定为 8。

公交换乘

(transfer.cpp/c/pas)

【问题描述】

著名旅游城市 B 市为了鼓励大家采用公共交通方式出行,推出了一种地铁换乘公交车的优惠方案:

1. 在搭乘一次地铁后可以获得一张优惠票,有效期为 45 分钟,在有效期内可以 消耗这张优惠票,免费搭乘一次票价不超过地铁票价的公交车。在有效期内指 开始乘公交车的时间与开始乘地铁的时间之差小于等于 45 分钟,即:

$t_{bus} - t_{subwav} \le 45$

- 2. 搭乘地铁获得的优惠票可以累积,即可以连续搭乘若干次地铁后再连续使用优惠票搭乘公交车。
- 3. 搭乘公交车时,如果可以使用优惠票一定会使用优惠票;如果有多张优惠票满足条件,则优先消耗获得最早的优惠票。

现在你得到了小轩最近的公共交通出行记录,你能帮他算算他的花费吗?

【输入格式】

输入文件名为 transfer.in。

输入文件的第一行包含一个正整数 n,代表乘车记录的数量。

接下来的 n 行,每行包含 3 个整数,相邻两数之间以一个空格分隔。第 i 行的 第 1 个整数代表第 i 条记录乘坐的交通工具,0 代表地铁,1 代表公交车;第 2 个整数代表第 i 条记录乘车的票价 $price_i$;第三个整数代表第 i 条记录开始乘车的时间 t_i (距 0 时刻的分钟数)。

我们保证出行记录是按照开始乘车的时间顺序给出的,且不会有两次乘车记录出现 在同一分钟。

【输出格式】

输出文件名为 transfer.out。

输出文件有一行,包含一个正整数,代表小轩出行的总花费

【输入输出样例1】

transfer.in	transfer.out	
6	36	
0 10 3		
1 5 46		
0 12 50		
1 3 96		
0 5 110		
1 6 135		

见选手目录下的 transfer/transfer1.in 和 transfer/transfer1.ans。

【输入输出样例1说明】

第一条记录,在第3分钟花费10元乘坐地铁。

第二条记录,在第 46 分钟乘坐公交车,可以使用第一条记录中乘坐地铁获得的优惠票,因此没有花费。

第三条记录,在第50分种花费12元乘坐地铁。

第四条记录,在第 96 分钟乘坐公交车,由于距离第三条记录中乘坐地铁已超过 45 分钟,所以优惠票已失效,花费 3 元乘坐公交车。

第五条记录,在第110分钟花费5元乘坐地铁。

第六条记录,在第 135 分钟乘坐公交车,由于此时手中只有第五条记录中乘坐地铁获得的优惠票有效,而本次公交车的票价为 6 元,高于第五条记录中地铁的票价 5 元,所以不能使用优惠票,花费 6 元乘坐公交车。

总共花费 36 元。

【输入输出样例 2】

transfer.in	transfer.out
6	32
0 5 1	
0 20 16	
0 7 23	
1 18 31	
1 4 38	
1 7 68	

见选手目录下的 transfer/transfer2.in 和 transfer/transfer2.ans。

【输入输出样例 2 说明】

第一条记录,在第1分钟花费5元乘坐地铁。

第二条记录,在第 16 分钟花费 20 元乘坐地铁。

第三条记录,在第23分钟花费7元乘坐地铁。

第四条记录,在第 31 分钟乘坐公交车,此时只有第二条记录中乘坐的地铁票价高于本次公交车票价,所以使用第二条记录中乘坐地铁获得的优惠票。

第五条记录,在第 38 分钟乘坐公交车,此时第一条和第三条记录中乘坐地铁获得的优惠票都可以使用,使用获得最早的优惠票,即第一条记录中乘坐地铁获得的优惠票。

第六条记录,在第 68 分钟乘坐公交车,使用第三条记录中乘坐地铁获得的优惠票。 总共花费 32 元。

【输入输出样例3】

见选手目录下的 transfer/transfer3.in 和 transfer/transfer3.ans。

【数据规模与约定】

对于 30% 的数据, $n \le 1,000$, $t_i \le 10^6$ 。

另有 15% 的数据, $t_i \leq 10^7$, $price_i$ 都相等。

另有 15% 的数据, $t_i \leq 10^9$, $price_i$ 都相等。

对于 100% 的数据, $n \le 10^5$, $t_i \le 10^9$, $1 \le price_i \le 1,000$ 。

纪念品

(souvenir.cpp/c/pas)

【问题描述】

小伟突然获得一种超能力,他知道未来 T 天 N 种纪念品每天的价格。某个纪念品的价格是指购买一个该纪念品所需的金币数量,以及卖出一个该纪念品换回的金币数量。每天,小伟可以进行以下两种交易**无限次**:

- 1. 任选一个纪念品, 若手上有足够金币, 以当日价格购买该纪念品;
- 2. 卖出持有的任意一个纪念品,以当日价格换回金币。

每天卖出纪念品换回的金币可以**立即**用于购买纪念品,当日购买的纪念品也可以**当 日卖出**换回金币。当然,一直持有纪念品也是可以的。

T 天之后,小伟的超能力消失。因此他一定会在第 T 天卖出**所有**纪念品换回金币。 小伟现在有 M 枚金币,他想要在超能力消失后拥有尽可能多的金币。

【输入格式】

输入文件名为 souvenir.in。

第一行包含三个正整数 T, N, M, 相邻两数之间以一个空格分开, 分别代表未来天数 T, 纪念品数量 N, 小伟现在拥有的金币数量 M。

接下来 T 行,每行包含 N 个正整数,相邻两数之间以一个空格分隔。第 i 行的 N 个正整数分别为 $P_{i,1}$, $P_{i,2}$,, $P_{i,N}$, 其中 $P_{i,j}$ 表示第 i 天第 j 种纪念品的价格。

【输出格式】

输出文件名为 souvenir.out。

输出仅一行,包含一个正整数,表示小伟在超能力消失后最多能拥有的金币数量。

【输入输出样例1】

souvenir.in	souvenir.out
6 1 100	305
50	
20	
25	
20	
25	
50	

见选手目录下的 souvenir/souvenir1.in 和 souvenir/souvenir1.ans。

【输入输出样例1说明】

最佳策略是:

第二天花光所有 100 枚金币买入 5 个纪念品 1;

第三天卖出5个纪念品1,获得金币125枚;

第四天买入6个纪念品1,剩余5枚金币;

第六天必须卖出所有纪念品换回 300 枚金币,第四天剩余 5 枚金币,共 305 枚金币。 超能力消失后,小伟最多拥有 305 枚金币。

【输入输出样例 2】

souvenir.in	souvenir.out
3 3 100	217
10 20 15	
15 17 13	
15 25 16	

见选手目录下的 souvenir/souvenir2.in 和 souvenir/souvenir2.ans。

【输入输出样例 2 说明】

最佳策略是:

第一天花光所有金币买入10个纪念品1;

第二天卖出全部纪念品 1 得到 150 枚金币并买入 8 个纪念品 2 和 1 个纪念品 3,剩余 1 枚金币;

第三天必须卖出所有纪念品换回 216 枚金币,第二天剩余 1 枚金币,共 217 枚金币。 超能力消失后,小伟最多拥有 217 枚金币。

【输入输出样例3】

见选手目录下的 souvenir/souvenir3.in 和 souvenir/souvenir3.ans。

【数据规模与约定】

对于 10% 的数据, T = 1。

对于 30% 的数据, $T \le 4$, $N \le 4$, $M \le 100$, 所有价格 $10 \le P_{i,j} \le 100$ 。

另有 15% 的数据, $T \le 100$, N = 1。

另有 15% 的数据, T = 2, $N \le 100$ 。

对于 100% 的数据, $T \le 100$, $N \le 100$, $M \le 10^3$, 所有价格 $1 \le P_{i,j} \le 10^4$, 数据保证任意时刻,小明手上的金币数不可能超过 10^4 。

加工零件

(work.cpp/c/pas)

【问题描述】

凯凯的工厂正在有条不紊地生产一种神奇的零件,神奇的零件的生产过程自然也很神奇。工厂里有n位工人,工人们从 $1\sim n$ 编号。某些工人之间存在双向的零件传送带。保证每两名工人之间最多只存在一条传送带。

如果 x 号工人想生产一个被加工到第 L(L > 1) 阶段的零件,则**所有**与 x 号工人有传送带**直接**相连的工人,都需要生产一个被加工到第 L-1 阶段的零件(但 x 号工人自己**无需**生产第 L-1 阶段的零件)。

如果 x 号工人想生产一个被加工到第 1 阶段的零件,则**所有**与 x 号工人有传送 带**直接**相连的工人,都需要为 x 号工人提供一个原材料。

轩轩是 1 号工人。现在给出 q 张工单,第 i 张工单表示编号为 a_i 的工人想生产一个第 L_i 阶段的零件。轩轩想知道对于每张工单,他是否需要给别人提供原材料。他知道聪明的你一定可以帮他计算出来!

【输入格式】

输入文件名为 work.in。

第一行两个正整数 n,m 和 q,分别表示工人的数目、传送带的数目和工单的数目。

接下来 m 行,每行两个正整数 u 和 v,表示编号为 u 和 v 的工人之间存在一条零件传输带。保证 $u \neq v$ 。

接下来 q 行,每行两个正整数 a 和 L,表示编号为 a 的工人想生产一个第 L 阶段的零件。

【输出格式】

输出文件名为 work.out。

共 q 行,每行一个字符串 "Yes" 或者 "No"。如果按照第 i 张工单生产,需要编号为 1 的轩轩提供原材料,则在第 i 行输出 "Yes"; 否则在第 i 行输出 "No"。注意输出**不**含引号。

【输入输出样例1】

work.in	work.out
3 2 6	No
1 2	Yes
2 3	No
1 1	Yes
2 1	No
3 1	Yes
1 2	
2 2	
3 2	

见选手目录下的 work/work1.in 和 work/work1.ans。

【输入输出样例1说明】

编号为 1 的工人想生产第 1 阶段的零件,需要编号为 2 的工人提供原材料。

编号为 2 的工人想生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。

编号为 3 的工人想生产第 1 阶段的零件,需要编号为 2 的工人提供原材料。

编号为 1 的工人想生产第 2 阶段的零件,需要编号为 2 的工人生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。

编号为 2 的工人想生产第 2 阶段的零件,需要编号为 1 和 3 的工人生产第 1 阶段的零件,他/她们都需要编号为 2 的工人提供原材料。

编号为 3 的工人想生产第 2 阶段的零件,需要编号为 2 的工人生产第 1 阶段的零件,需要编号为 1 和 3 的工人提供原材料。

【输入输出样例 2】

work.in	work.out
5 5 5	No
1 2	Yes
2 3	No
3 4	Yes
4 5	Yes
1 5	
1 1	
1 2	
1 3	
1 4	
1 5	

见选手目录下的 work/work2.in 和 work/work2.ans。

【输入输出样例 2 说明】

编号为 1 的工人想生产第 1 阶段的零件,需要编号为 2 和 5 的工人提供原材料。编号为 1 的工人想生产第 2 阶段的零件,需要编号为 2 和 5 的工人生产第 1 阶段的零件,需要编号为 1,3,4 的工人提供原材料。

编号为 1 的工人想生产第 3 阶段的零件,需要编号为 2 和 5 的工人生产第 2 阶段

的零件,需要编号为 1,3,4 的工人生产第 1 阶段的零件,需要编号为 2,3,4,5 的工人提供 原材料。

编号为 1 的工人想生产第 4 阶段的零件,需要编号为 2 和 5 的工人生产第 3 阶段的零件,需要编号为 1,3,4 的工人生产第 2 阶段的零件,需要编号为 2,3,4,5 的工人生产第 1 阶段的零件,需要全部工人提供原材料。

编号为 1 的工人想生产第 5 阶段的零件,需要编号为 2 和 5 的工人生产第 4 阶段的零件,需要编号为 1,3,4 的工人生产第 3 阶段的零件,需要编号为 2,3,4,5 的工人生产第 2 阶段的零件,需要全部工人生产第 1 阶段的零件,需要全部工人提供原材料。

【输入输出样例3】

见选手目录下的 work/work3.in 和 work/work3.ans。

【数据规模与约定】

共 20 个测试点。

 $1 \leq u, v, a \leq n$

测试点 $1\sim4$, $1\leq n, m\leq 1000$, q=3, L=1.

测试点 $5\sim 8$, $1\leq n, m\leq 1000$, q=3, $1\leq L\leq 10$ 。

测试点 $9\sim12$, $1\leq n, m, L\leq 1000$, $1\leq q\leq 100$ 。

测试点 $13\sim16$, $1\leq n, m, L\leq 1000$, $1\leq q\leq 10^5$ 。

测试点 $17\sim20$, $1\leq n,m,q\leq10^5$, $1\leq L\leq10^9$ 。