Espacios Hilbertianos

Cristo Daniel Alvarado

13 de febrero de 2024

Índice general

1.	Espacios Hilbertianos	2
	1.1. Conceptos básicos. Proyecciones ortogonales	2

Capítulo 1

Espacios Hilbertianos

1.1. Conceptos básicos. Proyecciones ortogonales

Definición 1.1.1

Sea H un espacio vectorial sobre el campo \mathbb{K} . Decimos que H es un **espacio prehilbertiano** si está dotado de una aplicación $(\bar{x}, \bar{y}) \mapsto (\bar{x}|\bar{y})$ con las propiedades siguientes:

- 1. $\forall \bar{y} \in H$ fijo, $\bar{x} \mapsto (\bar{x} | \bar{y})$ es una aplicación lineal de H en \mathbb{K} , o sea
- 2. $(\bar{y}|\bar{x}) = (\bar{x}|\bar{y})$, para todo $\bar{x} \in H$.
- 3. $(\bar{x}, \bar{x}) \geq 0$, para todo $\bar{x} \in H$.
- 4. $(\bar{x}, \bar{x}) = 0$ si y sólo si $\bar{x} = 0$.

Observación 1.1.1

Si $\mathbb{K} = \mathbb{R}$, entonces 1) y 2) implican que $\forall \bar{x} \in H$ fijo, la aplicación $\bar{y} \mapsto (\bar{x}, \bar{y})$ de H en \mathbb{R} eslineal. En este caso se dice que $(\bar{x}, \bar{y}) \mapsto (\bar{x} | \bar{y})$ es una **forma bilineal sobre** H.

Si $K\mathbb{L} = \mathbb{C}$, entonces

$$(\overrightarrow{x}, \overrightarrow{y_1} + \overrightarrow{y_2}) = (\overrightarrow{x}, \overrightarrow{y_1}) + (\overrightarrow{x}, \overrightarrow{y_2})(\overrightarrow{x}, \alpha \overrightarrow{y}) = \overline{x}(\overrightarrow{x}, \overrightarrow{y})$$

Se dice que $\overrightarrow{y} \mapsto (\overrightarrow{x}|\overrightarrow{y})$ es entonces semilineal y que $(\overrightarrow{x}, \overrightarrow{y}) \mapsto (\overrightarrow{x}|\overrightarrow{y})$ es sesquilineal. La aplicación $(\overrightarrow{x}, \overrightarrow{y}) \mapsto (\overrightarrow{x}|\overrightarrow{y})$ se llama **producto escalar sobre** H.

Definición 1.1.2

Para todo $\overrightarrow{x} \in H$ se define la **norma de** \overrightarrow{x} como: $|x| = \sqrt{(\overrightarrow{x}|\overrightarrow{x})}$.

Ejemplo 1.1.1

Sea $H = \mathbb{K}^n$

Ejemplo 1.1.2

Sea $S \subseteq \mathbb{R}^n$ medible y sea $H = L_2(S, \mathbb{K})$. Para todo $f, g \in H$ se define

$$(f|g) = \int_{S} f\bar{g}$$

La integral existe por Holder con $p=p^*=2$. Este es un producto escalar sobre H y, en este caso:

$$|f| = \left[\int_{S} |f|^2\right]^{\frac{1}{2}} = \mathcal{N}_2(f), \quad \forall f \in H$$

Ejemplo 1.1.3

Sea $H=l_2(\mathbb{K})$ el espacio de sucesoines en \mathbb{K} que son cuadrado sumables, entonces $\overrightarrow{x}=(x_1,x_2,\ldots)\in l_2(\mathbb{K})$ si y sólo si

$$\sum_{i=1}^{\infty} |x_i|^2 < \infty$$

 $l_2(\mathbb{K})$ es un espacio prehilbertiano con el producto escalar:

$$(\overrightarrow{x}|\overrightarrow{y}) = \sum_{i=1}^{\infty} x_i \overline{y_i}$$

donde la serie es convergente por Holder. En este caso:

$$\|\overrightarrow{x}\| = \left[\sum_{i=1}^{\infty} |x_i|^2\right]^{\frac{1}{2}} = \mathcal{N}_2(\overrightarrow{x}), \quad \forall \overrightarrow{x} \in l_2(\mathbb{K})$$
 (1.1)

Demostración:		
Entorno de Prueba	-	
Solución:		
Entorno de Solución		
Teorema 1.1.1 (Nombre) Teorema		
Proposición 1.1.1 (Nombre) Proposición		
Corolario 1.1.1 (Nombre) Corolario		
Lema 1.1.1 (Nombre) Lema		
Definición 1.1.3 (Nombre) Definición		
Observación 1.1.2 (Nombre) Observación		
Ejemplo 1.1.4 (Nombre) Ejemplo		
Ejercicio 1.1.1 (Nombre) Ejercicio		