

PYTHON LINEAR REGRESSION MODEL CHEAT SHEET

WHICH LIBRARIES TO IMPORT

import namey as up

import matulotlib.ovulot as olt

from sklears.preprocessing import StandardScales from sklears, model selection import train test solit from sklears.linear_model import LinearRegression from sklears, setrios import r2 score

from sklears.metrics import mean_squared_error as mme from sklears.metrics import mean absolute error as mae

PRELIMINARY OPERATIONS

df.head()

TRAIN THE MODEL

Nedf.drop('col1', axis:1) Foreste of features X train. X test. v train. v test «train test split(X, v.test size=0.3.

random_state+123) scaler=StandardScaler().fit(X train)

X train sc = scaler.transform(X train) X_test_sc = scaler.transform(X_test)

model = LinearRegression() model.fit (X_ train, y_train) strain/fit the model model.intercept_

v pred train/model.oredict(% train) y_pred=model.predict(X_test)

our model only to training set NOT to the test set

STANDARDIZATION: We wont to apply the exact some scaling

extremely low training error

MAR = mae(y_train,y_pred_train) #meon obsolute error MER = mse(y_train,y_pred_train) #meon aquored error

sns.displot(df, x="col1")

fig. ax = plt.subplots(2.2. figsize = (10.13)) sns.histplot(x=df["verb_SAT"], kde = frue, ax=ax[0,0]) sns.histplot(x=df['high_SPA'], kde = True, ax=ax[0,1]) sns.bistplot(x=df['cosp_SPA'], kde = frue, ax=ax[1,0])

sns.histplot(x=df['math_SAT'], kde = frue, ax=ax[1,1])

mask = no.zeros like(corr)

f. ax = plt.subplots(figsize=(*, ?)) ax = sus.heatmap(corr, mask-mask,cmap='coolwarm', vmin-1.vmax-1.annot-True, square-True)

plt.figure(figsize=(10,5)) ane.recolor/x+'v ored'.v+'v test', doto-result. scotter kwer("color": "#C#A2C#"). line kwer