

CS120: Computer Networks

Lecture 5. ACK

Zhice Yang

The ACK Mechanism

• For ACK Transmitter: an acknowledgement (ACK for short) is a small control frame that a protocol sends back to its peer saying that it has received the earlier frame

 For ACK Receiver: the receipt of an acknowledgement indicates to the sender of the original frame that its frame was successfully

delivered.

Have you heard that?

ACK Schemes

- Stop-and-Wait
- Sliding Window

• Case 0: (understanding the timeline)

- Case 1: Frame Loss
 - Sender time out
 - Sender retransmits

- Case 2: ACK Loss
 - Sender time out
 - Sender retransmits

- Case 2: ACK Loss
 - Sender time out
 - Sender retransmits
- Duplicated Frames
 - Solution: frame number

- Case 3: ACK Late
 - Sender time out
 - Sender retransmits

Demo: Stop-and-Wait

• https://www2.tkn.tu-berlin.de/teaching/rn/animations/gbn_sr/

How about NACK?

- Negative ACK
 - Receiver sends NACK to indicate frame loss through sequence number
 - If frame loss is after sender's idle
 - The receiver has no way to notice the loss

- Efficiency Problem
 - 1.5Mbps bandwidth
 - 45ms RTT
 - 1KB frame
 - Effective Rate = 1024*8/(1024*8/1.5Mbps+45ms) about 160kbps
- Solution
 - Pipeline

How Many Packets Can be Piped?

Delay × Bandwidth

Delay

Bandwidth

Delay × Bandwidth

Use to judge whether the link has been fully utilized

Link type	Bandwidth (typical)	One-way distance (typical)	Round-trip delay	RTT imes Bandwidth
Dial-up	56 kbps	10 km	87 μs	5 bits
Wireless LAN	54 Mbps	50 m	0.33 μs	18 bits
Satellite	45 Mbps	35,000 km	230 ms	10 Mb
Cross-country fiber	10 Gbps	4,000 km	40 ms	400 Mb

Delay × Bandwidth

- Efficiency Problem
 - 1.5Mbps bandwidth
 - 45ms RTT
 - 1KB Frame
 - Effective Rate = 160kbps
- Solution
 - Pipeline
 - Full pipe situation:
 - 1.5Mbps*45ms/1kB = 8 frames in flight

Sliding Window – pipelined transmitting

- Sender Buffer
 - Retransmit
- Receiver Buffer
 - Handle out-of-order frames

Sender Buffer:

Receiver Buffer:

- Sender Protocol
 - Always maintain LFS LAR <= SWS
 - When an ACK with sequence number #SeqNum arrives
 - If #SeqNum ≤ LAR or #SeqNum > LFS
 - No action
 - If LFR < #SeqNum ≤ LAF
 - Move LAR to #SeqNum, increase LFS to send new packet
 - Associate a timer with each frame sender transmits
 - If timeout

- Receiver Protocol
 - Always maintain LAF LFR <= RWS
 - When a frame with sequence number #SeqNum arrives
 - If #SeqNum ≤ LFR or #SeqNum > LAF
 - Discard frame, send accumulative ACK.
 - If LFR < #SeqNum ≤ LAF
 - Accept frame, send accumulative ACK, modify LFT and LAF.

Accumulative Ack

- If frame #3 is received
 - Ack #7, move LFR to 7, move LAF to 13
- If frame #8 is received
 - Ack #2

ack for 1,2,3,4, lost

Receiver 1 2 3 4 5 6 7 8 9 10

ack 4 received, slide window to 5

Sender

Receiver

- Determine Window Size
 - Send Window Size: Pipeline depth
 - Delay × Bandwidth
 - Receive Window Size: Flow control

- Determine Window Size
 - SWS: Pipeline depth
 - Delay × Bandwidth
 - RWS: Flow control
- Determine SeqNum range
 - if RWS = 1
 - MaxSeqNum >= SWS+1
 - if SWS = RWS
 - MaxSeqNum >= 2*SWS

Demo

- Sliding Window code in TCP /net/ipv4/
- Change Sliding Window Scheme
 - Show current congestion control scheme
 cat /proc/sys/net/ipv4/tcp_congestion_control
 - Show/change available congestion control scheme sysctl net.ipv4.tcp_available_congestion_control[=XX]
- https://www2.tkn.tu-berlin.de/teaching/rn/animations/gbn_sr/

Reference

- Textbook 1.5.2
- Textbook 2.5