

First Look at Week 1

Laurie McClymont

Flavour Tagging Algorithm Meeting 28/05/15

Aims

- First data available in Week 1 (Next Week!)
- We want to look at this data and see if the b-Tagging variables are performing as expected.

Process

- Valerio Produces NTuples using Run2BtagOptimisationFramework.
- I have code that reads the NTuples and fills histograms with quantities from the NTuples.
- Code takes ~10 mins to run over NTuples.

Samples

user.vdao.mc15_13TeV.*.Pythia8EvtGen_jetjet_JZ*W .merge.AOD.*.BTAGNTUP_OrigV5slim_BTAGSTREAM/

- A week 1 dijet sample for comparison to data.
- 2,161,636 split into 10 JZ slices each containing ~200,000 events.
- JZ slices must be re-weighted to get smooth jet-P_T spectrum.

Details/Cuts

- 20 < P_T < 4600 GeV
- Leading and Sub-Leading Jet Only
- |eta| < 2.5
- JVT > 0.941
- njets ≥ 2
- LabDr_HadF matching

Di-jet sample re-weighting

Jets

user.vdao.mc15_13TeV.*.Pythia8EvtGen_jetjet_JZ*W.
merge.AOD.*.BTAGNTUP_OrigV5slim_BTAGSTREAM/

$Total = \frac{mcwg*(Filter Eff.)*(CS[fb])*(Lumi[fb-1])}{(# Events)}$

```
Slice and Energy
Xs (fb)
             Eff.
7.8420E+13 1.0240E+00
                        #JZ0W 0-20 GeV
7.8420E+13 6.7198E-04
                        #JZ1W 20-60 GeV
2.4334E+12 3.3264E-04
                       #JZ2W 60-160 GeV
2.6454E+10 3.1953E-04
                       #JZ3W 160-400 GeV
2.5464E+08 5.3009E-04
                        #JZ4W 400-800 GeV
4.5536E+06 9.2325E-04
                       #JZ5W 800-1300 GeV
2.5752E+05 9.4016E-04
                        #JZ6W 1300-1800 GeV
1.6214E+04 3.9282E-04
                        #JZ7W 1800-2500 GeV
6.2505E+02 1.0162E-02
                       #JZ8W 2500-3200 GeV
1.9640E+01 1.2054E-02
                       #JZ9W 3200-3900 GeV
1.1961E+00 5.8935E-03
                       #JZ10W 3900-4600 GeV
4.2260E-02 2.7015E-03
                       #JZ11W 4600-5300 GeV
                        #JZ12W 5300-7000 GeV
1.0370E-03 4.2502E-04
```


Jets

Jets

Jet P_⊤ [GeV]

Jet P_T = 20-300 GeV

Xs (fb)	Eff.	Slice	and Energy
7.8420E+13	1.0240E+00	#JZ0W	0-20 GeV
7.8420E+13	6.7198E-04	#JZ1W	20-60 GeV
2.4334E+12	3.3264E-04	#JZ2W	60-160 GeV
2.6454E+10	3.1953E-04	#JZ3W	160-400 GeV
2.5464E+08	5.3009E-04	#JZ4W	400-800 GeV

JZ1W - 20-60 GeV

JZ2W - 60-160 GeV

To Do

- Still work to do!
- We want to better understand shape of the discriminants.
 - Plot Leading Jet Only
 - Plot P_T slices
 - mv2c00/mv2c10
 - Show the under-fill bin algorithms have no output.
- Understand Sample
 - PV Distributions.
 - JVT Distributions.