考试科目: 概率论与数理统计

考试科目: ____概率论与数理统计__ 开课单位: _____数学系_____

考试时长: _____2小时 _____ 命题教师: ____概率统计课程组 ____

题号	Dowt 1	Part 1 Part 2	Part 3					
赵与	rait i		1	2	3	4	5	6
分值								

本试卷共三大部分,满分100分(考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

第一部分 选择题(每题4分,总共20分)

Part One – Single Choice (4 marks each question, 20 marks in total)

1. 设随机变量 X 的概率密度为 f(x),且 f(-x) = f(x), F(x)是 X 的分布函数,则对任意 实数 a > 0 有()

(A)
$$F(-a) = 1 - \int_{0}^{a} f(x) dx$$
;

(B)
$$F(-a) = \frac{1}{2} - \int_0^a f(x) dx$$
;

(C)
$$F(-a) = F(a)$$
;

(D)
$$F(-a) = 2F(a) - 1$$
.

Assume the probability density function of random variable X is f(x), and f(-x) = f(x), F(x) is the distribution of the X. Then, given any real number a > 0, it has

(A)
$$F(-a) = 1 - \int_{0}^{a} f(x) dx$$
;

(B)
$$F(-a) = \frac{1}{2} - \int_0^a f(x) dx$$
;

(C)
$$F(-a) = F(a)$$
;

(D)
$$F(-a) = 2F(a) - 1$$
.

2. 随机变量 X 的可能值为 $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, 且E(X) = 0.1, D(X) = 0.89, 则对应于 x_1, x_2, x_3 的概率 p_1, p_2, p_3 为 ()

(A)
$$p_1 = 0.4$$
, $p_2 = 0.1$, $p_3 = 0.5$;

(B)
$$p_1 = 0.1$$
, $p_2 = 0.1$, $p_3 = 0.5$;

(C)
$$p_1 = 0.5$$
, $p_2 = 0.1$, $p_3 = 0.4$;

(D)
$$p_1 = 0.4$$
, $p_2 = 0.5$, $p_3 = 0.5$.

All the possible values of random variable X are $x_1 = -1$, $x_2 = 0$, $x_3 = 1$. Furthermore, E(X) = 0.1, D(X) = 0.89. What are the corresponding probabilities p_1 , p_2 , p_3 of the x_1 , x_2 , x_3 (

(A)
$$p_1 = 0.4$$
, $p_2 = 0.1$, $p_3 = 0.5$;

(B)
$$p_1 = 0.1$$
, $p_2 = 0.1$, $p_3 = 0.5$;

(C)
$$p_1 = 0.5$$
, $p_2 = 0.1$, $p_3 = 0.4$;

(D)
$$p_1 = 0.4$$
, $p_2 = 0.5$, $p_3 = 0.5$.

3. 设 X_1, X_2, \cdots 为独立随机变量序列,且 X_i 服从参数为 λ 的泊松分布, $i=1,2,\cdots$,则()

(A)
$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^n X_i - n\lambda}{n\lambda} \le x\right\} = \Phi(x);$$

- (B)当n充分大时, $\sum_{i=1}^{n} X_{i}$ 近似服从标准正态分布;
- (C)当n充分大时, $\sum_{i=1}^{n} X_{i}$ 近似服从 $N(n\lambda, n\lambda)$;
- (D)当n充分大时, $P(\sum_{i=1}^{n} X_{i} \le x) \approx \Phi(x)$.

Assume X_1, X_2, \cdots is a sequence of independent random variable. Furthermore, X_i follows Poisson distribution with the parameter of λ , $i=1,2,\cdots$, then (

(A)
$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^n X_i - n\lambda}{n\lambda} \le x\right\} = \Phi(x);$$

- (B) when n is big enough, $\sum_{i=1}^{n} X_i$ approximately follows standard normal distribution;
- (C) when *n* is big enough, $\sum_{i=1}^{n} X_{i}$ approximately follows $N(n\lambda, n\lambda)$;
- (D) when *n* is big enough, $P(\sum_{i=1}^{n} X_i \le x) \approx \Phi(x)$.

4. X_1, X_2, \cdots, X_n 是正态分布 $N(0, \sigma^2)$ 的一个样本,若统计量 $K\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ^2 的无偏估计,则 K 的值应该为(

(A)
$$\frac{1}{2n}$$
; (B) $\frac{1}{2n-1}$; (C) $\frac{1}{2n-2}$; (D) $\frac{1}{n-1}$.

 X_1, X_2, \cdots, X_n are the samples from the population $N(0, \sigma^2)$. If the statistics of 第3页/共11页

 $K\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ is a unbiased estimation of σ^2 , the value of K is (

- (A) $\frac{1}{2n}$; (B) $\frac{1}{2n-1}$; (C) $\frac{1}{2n-2}$; (D) $\frac{1}{n-1}$.

5. X_1, X_2, \cdots, X_n 来自正态总体 $N(0, \sigma^2)$ 的样本,现检验假设 $H_0: \sigma^2=1$; $H_1: \sigma^2 \neq 1$, 则选用 统计量()

- (A) $\frac{\overline{X}}{S}\sqrt{n}$; (B) $(n-1)S^2$; (C) $\sum_{i=1}^{n} X_i^2$; (D) $\sqrt{n}\bar{X}$.

 X_1,X_2,\cdots,X_n are the samples from the population $N(0,\sigma^2)$. If $H_0:\sigma^2=1$; $H_1:\sigma^2\neq 1$, which of the followings should be selected as the statistic ()

- $(\mathrm{A})^{\overline{X}}_{\overline{\varsigma}}\sqrt{n}; \qquad (\mathrm{B})(n-1)S^2; \qquad (\mathrm{C})\ \ \Sigma_{i=1}^n {X_i}^2; \qquad (\mathrm{D})\sqrt{n}\bar{X}.$

第二部分 填空题 (每空 2 分, 总共 20 分)

Part Two - Blank Filling (2 marks each blank, 20 marks in total)

1. 己知 $P(A) = \frac{1}{4}$, $P(BC|A) = \frac{1}{8}$, 则事件A, B, C至少有一个不发生的概率是______.

Given $P(A) = \frac{1}{4}$ and $P(BC|A) = \frac{1}{8}$, what is the probability that at least one of the events A, B, C doesn't happen ______.

2. 为从2个次品、8个正品的10个产品中将2个次品挑出,随机地从中逐个测试,则不超过4次测试就把2个挑出的概率为______.

There are 10 products containing 2 defective products. Randomly pick a product each time and check if it is defective or not. What is the probability of getting the two defective products by having less than 4 times picking ______.

Assume $f(x) = \begin{cases} Ax^2, 1 \le x \le 2 \\ Ax, 2 < x < 3 \\ 0, & others \end{cases}$ is the density function of a random variable. Then the value of the constant A =_____.

4. 设随机变量X和Y的相关系数为 0.9、若Z = X - 0.4、则Y和Z的相关系数为

The correlation coefficient of random variables X and Y is 0.9. Given Z = X - 0.4, what is the correlation coefficient of random variables Y and Z ______.

5. 设X服从参数为 $\lambda > 0$ 的泊松分布,且已知E[(X-1)(X-2)] = 1,则 $\lambda =$.

Assume X follows Poisson distribution with the parameter of $\lambda > 0$. Given E[(X-1)(X-2)] = 1, then $\lambda =$ _____.

6.	设随机变量 X 在区间[$-1,2$]上服从均匀分布,随机变量 $Y=$	$\begin{cases} 1, ~ \exists X > 0 \\ 0, ~ \exists X = 0 \\ \end{cases}$ 则Y的方差
		(−1, 若 <i>X</i> < 0
	D(Y) = .	

Random variable X follows U[-1,2]. Random variable $Y = \begin{cases} 1, & \text{when } X > 0 \\ 0, & \text{when } X = 0, \text{ what is } \\ -1, & \text{when } X < 0 \end{cases}$ the variance $D(Y) = \underline{\qquad}$.

7. 假设 $X, X_1, X_2, \cdots, X_{10}$ 是来自正态总体 $N(0, \sigma^2)$ 的样本, $Y^2 = \frac{1}{10} \sum_{i=1}^{10} X_i^2$,则X/Y服从的分布及参数为______.

Suppose $X, X_1, X_2, \dots, X_{10}$ are samples from population $N(0, \sigma^2)$, $Y^2 = \frac{1}{10} \sum_{i=1}^{10} X_i^2$, what distribution does X/Y follow

8. 设随机变量X的数学期望 $E(X) = \mu$, 方差 $D(X) = \sigma^2$, 则由切比雪夫不等式, 有 $P(|X - \mu| \ge 3\sigma) \le$

The expectation of random variable X is $E(X) = \mu$, variance $D(X) = \sigma^2$. In terms of Chebyshev Inequality, then $P(|X - \mu| \ge 3\sigma) \le$ _____.

Suppose random variables $X_1, X_2, \cdots, X_n, \cdots$ are independent, Their density functions are $f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x \geq 0 \\ 0, & x < 0 \end{cases}$. Thus, when n is big enough, what distribution does the random variable $Z_n = \frac{1}{n}\sum_{i=1}^n X_i$ approximately follow ______. (Identify the distribution and its parameters)

10. 设 X_1, X_2, \cdots, X_m 为来自二项分布总体b(n, p)的样本, \bar{X} 和 S^2 分别为样本均值和样本方差.记统计量 $T = \bar{X} - S^2$,则E(T) =

Suppose X_1, X_2, \dots, X_m are samples from population b(n, p), \bar{X} and S^2 are the sample mean and variance respectively. If a statistic $T = \bar{X} - S^2$, then $E(T) = \underline{\hspace{1cm}}$.

第三部分 大题 (每题 10 分,总共 60 分)

Part Three – Question Answering (10 marks each question, 60 marks in total)

1. 将 3 个一样的球随机地放入 4 个杯子中去, 求杯中球的最大个数分别为 1, 2, 3 的概率.

Throw 3 same balls randomly into 4 cups. What is the probability when the maximum number in any cup is 1, 2 or 3?

2. 离散型随机变量 X 的频率函数为:

X	а	1	4
p	а	$\frac{1}{4}$	b

且 己 知

$$E(X) = \frac{3}{2}.$$

- a) 求常数 a 和 b 的值;
- b) 设Y = 2X + 1, 求Y的方差D(Y).

The frequent function of discrete random variable X is as follow,

X	а	1	4
p	а	$\frac{1}{4}$	b

and
$$E(X) = \frac{3}{2}$$
.

- a) What is the value of the constants a and b?
- b) If Y = 2X + 1, what is D(Y)?
- 3. 已知随机变量X和Y分别服从正态分布N(1,9)和N(0,16),且X和Y形成二维正态分

布,它的相关系数
$$\rho_{XY} = -1/2$$
。设 $Z = \frac{X}{3} + \frac{Y}{2}$.

a) 求Z的数学期望E(Z)和方差D(Z);

- b) 求X与Z的相关系数 ρ_{xz} ;
- c) 问 X 与 Z 是否相关?它们也相互独立吗?为什么?

Random variables X and Y follow its normal distribution N(1,9) and N(0,16) respectively. Furthermore, X and Y form two dimensional normal and its correlation coefficient of is $\rho_{XY} = -1/2$, and $Z = \frac{X}{3} + \frac{Y}{2}$,

- a) What is the expectation E(Z)? What is the variance D(Z)?
- b) What is the correlation coefficient ρ_{XZ} ?
- c) Are the random variables X and Z related? Are they independent? Why?
- 4. 设 $X_1,X_2,...,X_n$ 为取自总体X的样本, $x_1,x_2,...,x_n$ 为样本观察值,总体的概率密度函数为

$$f(x) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1, \theta > 1\\ 0, & x \le 1 \end{cases}$$

求参数 θ 的矩估计量和最大似然估计量.

Suppose $X_1, X_2, ..., X_n$ are samples from a population X, $x_1, x_2, ..., x_n$ are the observed values. The probability density function of the population is as follow.

$$f(x) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1, \theta > 1\\ 0, & x \le 1 \end{cases}$$

What are Moment Estimation and Maximum Likelihood Estimation of the parameter θ ?

- 5. 车间生产滚珠的直径服从正态分布. 从车间生产的产品中随机取出 9 个,得样本均值为 $\bar{X}=15.3$,样本方差为 $s^2=0.36$.
 - a) 求总体方差 σ^2 的 0.95 双侧置信区间;
 - b) 在显著性水平为 0.05 下判断是否可以认为该车间生产滚珠直径均值 μ 是 15. (分位点见试卷最后附表)

A workshop produces rolling balls. The diameter of the rolling balls follows normal

distribution. Randomly picked 9 balls from the products, got the measurement of sample mean $\bar{X} = 15.3$ and the variance $s^2 = 0.36$.

- a) What is the two-sided Confidence Interval of the population variance σ^2 with the significance level 0.95?
- b) with the significance level 0.05, should we decide that the diameter μ of the rolling balls produced by the workshop is 15?

(significance level $\alpha = 0.05$, corresponding quantiles can be found in the following tables)

6. 用两种方法(A 和 B)测定冰自-72 度转变为 0 度的水的融化热(以 cal/g 计)。测得的 样本均值和样本方差如下:

A 方法:
$$n_1=10$$
, 均值 $\overline{x}_1=\frac{1}{10}\sum_{i=1}^{10}x_i=60$,样本方差 $s_1^2=\frac{1}{9}\sum_{i=1}^{10}(x_i-\overline{x}_1)^2=3$;

B 方法:
$$n_2 = 15$$
, 均值 $\overline{y}_2 = \frac{1}{15}\sum_{i=1}^{15}y_i = 70$,样本方差 $s_2^2 = \frac{1}{14}\sum_{i=1}^{15}(y_i - \overline{y}_2)^2 = 2$;

假设 A 方法的数据服从 $N(\mu_1, \sigma_1^2)$,B 方法的数据服从 $N(\mu_2, \sigma_2^2)$,并这两个样本相互独立, $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均未知。问:是否可以认为 A,B 两种方法的总体方差有显著差异?请给出该假设检验问题的检验方法与计算过程。(显著性水平 $\alpha=0.05$,分位点见试卷最后附表)。

There are two measurement methods: A method and B method, for measuring the fusion heat (cal/g) when ice at -72°C transforms into water at 0°C. The sample mean and sample variance obtained by the two methods are as follows:

A method:
$$n_1=10$$
, $\overline{x}_1=\frac{1}{10}\sum_{i=1}^{10}x_i=60$, $s_1^2=\frac{1}{9}\sum_{i=1}^{10}(x_i-\overline{x}_1)^2=3$;

B method:
$$n_2 = 15$$
, $\overline{y}_2 = \frac{1}{15} \sum_{i=1}^{15} y_i = 70$, $s_2^2 = \frac{1}{14} \sum_{i=1}^{15} (y_i - \overline{y}_2)^2 = 2$;

Suppose that samples obtained by A method follow $N(\mu_1, \sigma_1^2)$, and by B method follow $N(\mu_2, \sigma_2^2)$. The two sets of samples are independent, $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ are all unknown. Should

we. Do the two populations variance σ^2 have difference? State the hypotheses and give the detail of the testing process (significance level $\alpha = 0.05$, corresponding quantiles can be found in the following tables)

附表:

表 1: F分布表 $P(F(n_1, n_2) \ge x) = 0.975$

(*(*),**2) = **)							
(n ₁ ,n ₂) 取值	(n_1, n_2) = (9,14)	(n_1, n_2) = (9,15)	(n_1, n_2) = (10,14)	(n_1, n_2) = (10,15)			
x取值	0.2633	0.2653	0.2817	0.2840			

表 2: F分布表 $P(F(n_1, n_2) \ge x) = 0.025$

(n ₁ , n ₂)	(n_1, n_2)	(n_1, n_2)	(n_1, n_2)	(n_1, n_2)	
取值	= (9,14)	= (9,15)	= (10,14)	= (10,15)	
x取值	3.2093	3.1227	3.1469	3.0602	

表 3: t分布表 $P(t(n) \ge x) = 0.975$

自由度n取值	8	9	10	14	15	16
x取值	2.3060	2.2621	2.2281	2.1447	2.1314	2.1199

表 4: χ^2 分布表: $P(\chi^2(m) \ge x) = 0.025$

自由度 m 取值	6	7	8	9	10
x取值	14.4493	16.0127	17.5345	19.0227	20.4831

表 5: χ^2 分布表: $P(\chi^2(m) \ge x) = 0.975$

自由度 m 取值	6	7	8	9	10
x 取值	1.2373	1.6898	2.1797	2.7003	3.2469