WORKSHEET 13

MATH 101

Fulbright University, Ho Chi Minh City, Vietnam

Optimization

Theorem 1 (First derivative test). Suppose that f is a continuous function over an interval I containing a critical point c. If f is differentiable over I, except possibly at point c, then f(c) satisfies one of the following descriptions:

- (1) If f' changes sign from positive when x < c to negative when x > c, then f(c) is a local maximum of f.
- (2) If f' changes sign from negative when x < c to positive when x > c, then f(c) is a local minimum of f.
- (3) If f' has the same sign for x < c and x > c, then f(c) is neither a local maximum nor a local minimum of f.

Theorem 2 (Closed interval method). To find the absolute extrema of a continuous function f on a closed interval [a,b] we follow the following steps:

- (1) Find the critical points and the values of f at those points
- (2) Find the values of f at the end points
- (3) Compare all the values from the above steps to find absolute max/min

Definition 1. Let f be a function that is differentiable over an interval I. If f' is increasing over I, we say f is concave up. If f' is decreasing over I, we say f is concave down. The point where f changes concavity is called inflection point.

Theorem 3. Let f be a function that is twice differentiable over an interval I.

- (1) If f''(x) > 0, then f is concave up.
- (2) If f''(x) < 0, then f is concave down.

Theorem 4 (Second derivative test). Suppose f'(c) = 0 and f'' is continuous over an interval I containing c.

- (1) If f''(c) > 0, then f has a local minimum at c.
- (2) If f''(c) < 0, then f has a local maximum at c.
- (3) If f''(c) = 0, the test is inconclusive.

Date: October 21, 2024.

Question 1. Determine:

- \bullet Intervals where f is increasing/decreasing
- \bullet Local minima/maxima of f
- \bullet Intervals where f is concave up and concave down
- Inflection points of f
- Sketch curve

(1)
$$f(x) = \sin(\pi x) - \cos(\pi x)$$
 over $[-1, 1]$

(2)
$$f(x) = \sqrt{x} \ln x \text{ over } x > 0$$

 ${\bf Question} \ {\bf 2.} \ {\it Consider} \ {\it an inscribed rectangle in the ellipse}$

$$\frac{x^2}{4} + y^2 = 1.$$

What should the dimensions of the rectangle be to maximize its area? What is the maximum area?

Question 3. Let's learn some business.

Let p(x) be the price per unit that the company can charge if it sells x units. Then p is called the **demand function** (or **price function**) and we would expect it to be a decreasing function of x. (More units sold corresponds to a lower price.)

If x units are sold and the price per unit is p(x), then the total revenue is

$$R(x) = x \cdot p(x)$$

where R(x) is called the **revenue function**.

A store has been selling 200 flat-screen TVs a week at \$350 each. A market survey indicates that for each \$10 rebate offered to buyers, the number of TVs sold will increase by 20 a week.

Find the demand function and the revenue function. How large a rebate should the store offer to maximize its revenue?