

Leveraging the Mobile Cloud for Travel Demand

Andre Carrel, Jerry Jariyasunant, Raja Sengupta, Joan Walker

UC Berkeley

The Data Deluge

GPS

Web browsing history

Accelerometer

WiFi and cell towers

Environmental sensors

Bluetooth: Interactions with people

Phone call and message history

Social networks

Calendars

App usage

External body sensors

Transportation System

Transit routes (GTFS), Next bus, Real time 511, Google, Waze

Activity system

Parcels, Yelp

Sentiment

Tweets

Research Agenda

Net diary
Low respondent
burden data

collection

XLab Mobile

- Innocuous collection of travel and activity data
- Taking the lab into the real world
- Time- and location-specific flow of information

Travel
Demand
Modeling

Behavior Change

Net Diary

Infer

- Activity locations
- Timing
- Mode
- (Purpose, Carpool)

Components

- Smartphone-based
- No/low data entry
- Minimal use of battery

The Quantified Traveler System

- Energy consumption very important for longer surveys
- Majority of users actively manage apps to improve battery life

Sparseness of Data

Example of 1 person day

371 *location* points

- GPS
- Cell tower
- Wifi

Avg 30 points/hour

Sparseness of Data

8 location points to detect this 12 minute bike trip

Status

- 80+ test subjects
 45,000+ miles of travel
- Battery drain
 - 33 hour battery life
 - Average phone use
 - Net diary with 2 hours of travel
 - 29 of 31 users
 did not notice drain

Inference Algorithms

Trips

- Phone-based state machine (Accelerometer, WiFi beacons)
- Start/end location and start/end time
 - First guess: State machine
 - Second guess: Recalculation based on all trip traces
 - Start/end location aided by "Hotspots" (weighted clustering)

Route

- Filtered for accuracy, Google API
- Removal of loops

Mode

- Random forest classifier on speed and trip characteristics
- Map matching for transit

Status / Accuracy

Based on 6 people, 1850 trips

- Trips: 2% missed; 2% added
- Start/end location
 - Hotspot (64% of activities)
 Avg error 25 meters
 Stdev 100 meters
 - Non-hotspot (36% of activities)
 Avg error 200 meters
 Stdev 600 meters
- Start/end time:

84% accurate within 6 minutes

- Route
 - 94% match for drivers
 - 45% match for BART
- Mode:13.8% corrected by users

Research Agenda

Behavior Change

Quantified Traveler

Preliminary results from 117 subjects

Increase in walking
Decrease in driving
Increase in awareness
Increase in attitude

(p-value 0.03)

(p-value 0.08)

(p-value 0.001) (p-value 0.03)

breakdowns

How You Get Around

By Number of Trips

timelines

about

By Time (min)

tripography

By Distance (mi)

Research Agenda

Travel Demand Modeling Modality Styles

Travel Demand Modeling Modality Styles

Thank you for your interest!

Questions, comments?