

·NYUNDAI

HY62256A-(I) Series

32Kx8bit CMOS SRAM

Description

The HY62256A/HY62256A-I is a high-speed, low power and 32,786 x 8-bits **CMOS Static Random** Access Memory fabricated using Hyundai's high performance CMOS process technology. The HY62256A/HY62256A-I has a data retention mode that guarantees data to remain valid at the minimum power supply voltage of 2.0 volt. Using the CMOS technology, supply voltages from 2.0 to 5.5 volt has little effect on supply current in the data retention mode. The HY62256A/HY62256A-I is suitable for use in low voltage operation and battery back-up

application.

Features

- Fully static operation and Tri-state outputs
- TTL compatible inputs and outputs
- Low power consumption -2.0V(min.) data retention
- Standard pin configuration -28 pin 600 mil PDIP
 - -28 pin 330 mil SOP
 - -28 pin 8x13.4 mm TSOP-1 (standard and reversed)

Product No.	Voltage (V)	Speed	Operation		Standby Current(uA)		Temperature	
	(V)	(ns)	Current(mA)		L	LL	(°C)	
HY62256A	5.0	55/70/85	50	1mA	100	25	0-70(Normal)	
HY62256A-I	5.0	55/70/85	50	1mA	100	-	-40-85(E.T.)	
Note 1. E T. Extended Temperature, Normal: Normal Temperature 2. Current value is max.								
Features Pins Ratings Timing Package Ordering								

3101 North First Street, San Jose, CA 95134 Phone: 408-232-8000 URL: http://www.hea.com/

SRAM Data Sheets | Memory Products | email: DRAMSRAMmemory@hea.com

Copyright © 1997 Hyundai Electronics America.

PIN INFORMATION

PIN DESCRIPTION						
Pin Name Pin Function						
/CS	Chip Select					
/WE	Write Enable					
/OE	Output Enable					
A0-A14	Address Inputs					
I/O1-I/O8	Data Input/Output					
Vcc	Power(+5.0V)					
Vss	Vss Ground					
Features Pins Ratings Timing Package Ordering						

Phone: 408-232-8000 URL: http://www.hea.com/

SRAM Data Sheets | Memory Products | email: DRAMSRAMmemory@hea.com

Copyright © 1997 Hyundai Electronics America.

RATINGS INFORMATION

ABSOLUTE MAXIMUM RATING (1)							
Symbol	Parameter	Rating	Unit	Remark			
VCC VIN VOUT	Power Supply Input/Output Voltage	-0.5 to 7.0	V				
Та	On a mation a Transport	0 to 70	°C	HY62256A			
	Operating Temperature	-40 to 85	°C	HY62256A-I			
Tstg	Storage Temperature	-65 to 150	°C				
PD	Power Dissipation	1.0	W				
Iout	Data OutPut Current	50	mA				
Tsolder	Lead Soldering Temperature & Time	260 /10	°C / sec				

Note

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is stress rating only and the functional operation of the device under these or any other conditions above those indicated in the operation of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect reliability.

ENDED DC OPERATING O°C / Ta= -40°C to 85°C (E.		NS		
Parameter	Min	Тур	Max	Unit
Power Supply Voltage	4.5	5.0	5.5	V
Input High Voltage	2.2	-	Vcc+0.5	V
Input Low Voltage	-0.5(1)	-	0.8	V
	O°C / TA= -40°C to 85°C (E. Parameter Power Supply Voltage Input High Voltage	Parameter Min Power Supply Voltage 4.5 Input High Voltage 2.2	Parameter Min Typ Power Supply Voltage 4.5 5.0 Input High Voltage 2.2 -	Power Supply Voltage Input High Voltage O°C / TA= -40°C to 85°C (E.T.) Min Typ Max 4.5 5.0 5.5 Vcc+0.5

TRUTH TABLE								
/CS	CS /WE /OE		MODE	I/O OPERATION				
Н	X	X	Standby	High-Z				
L	Н	Н	Output Disabled	High-Z				
L	Н	L	Read	Data Out				
L	L	X	Write	Data In				

Note:

1. H=VIH, L=VIL, X=Don't Care

<u>Features</u> | <u>Pins</u> | <u>Ratings</u> | <u>Timing</u> | <u>Package</u> | <u>Ordering</u>

DC CHARACTERISTICS

Vcc = 5V ?% $T_A = 0$ °C to 70°C (Normal) / -40°C to 85°C (E.T.) unless otherwise specified

Symbol	P	arameter	Test Conditi	on	Min	Typ	Max	Unit
Ili	Input Lea	kage Current			-1	-	1	uA
Ilo	Output Leakage Current		/CS=VIH or	$/OE=V_{IH} \text{ or } /WE =$			1	uA
Icc	Operating Power Supply Current		oly /CS= Vil., Vin=Vih or Vil., Ii/o= - 0mA		_	30	50	mA
Iccı	Average Operating Current		/CS = V _{IL} Min. Duty Cycle = 100%, I _{I/O} =0mA		_	40	70	mA
Isb	TTL Standby Current (TTL Inputs)		$/CS = V_{IH} V_{IN} = V_{IH}$ or V_{IL}		_	0.4	2	mA
	CMOC	HY62256A	/CC > V		-	-	1	mA
	CMOS Standby		/CS >= Vcc- 0.2V V _{IN} <= 0.2V or LL	L	_	2	100	uA
Isb1	Current			LL	_	1	25	uA
	(CMOS	H11/600564 I	$V_{IN} >=$		_	_	1	mA
	Input)	HY62256A-I	Vcc-0.2V	L	_	2	100	uA
Vol	Output Low Voltage		IoL= 2.1 mA		_	_	0.4	V
Vон	Output H	igh Voltage	Іон = 1mA		2.4	_	-	V
Note: Ty	pical values	s are at $Vcc = 5.0$	$V T_A = 25^{\circ}C$					

AC CHARACTERISTICS

 $Vcc = 5V(\pm)10\%$, Ta = 0°C to 70°C (Normal)/ -40°C to 85°C (E.T.) unless otherwise specified.

ш	0 . 1 . 1	D	-55		-70		-85		Tin:4
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
RE	EAD CYC	LE							
1	tRC	Read Cycle Time	55	-	70	-	85	-	ns
2	tAA	Address Access Time	-	55	_	70	_	85	ns
3	tACS	Chip Select Access Time	-	55	-	70	-	85	ns
4	tOE	Output Enable to Output Valid	_	30	_	35	_	45	ns
5	tCLZ	Chip Select to Output in Low Z	5	_	5	_	5	_	ns
6	tOLZ	Output Enable to Output in Low Z	5	_	5	_	5	_	ns
7	tCHZ	Chip Deselection to Output in High Z	0	20	0	30	0	30	ns
8	tOHZ	Out Disable to Output in High Z	0	20	0	30	0	30	ns
9	tOH	Output Hold from Address Change	5	-	5	-	5	-	ns
Wl	RITE CY	CLE							
10	tWC	Write Cycle Time	55	-	70	_	85	_	ns
11	tCW	Chip Selection to End of Write	50	_	65	_	75	_	ns
12	tAW	Address Valid to End of Write	50	_	65	-	75	_	ns
13	tAS	Address Set-up Time	0	-	0	-	0	_	ns
14	tWP	Write Pulse Width	40	-	50	_	55	_	ns
15	tWR	Write Recovery Time	0	-	0	-	0	-	ns
16	tWHZ	Write to Output in High Z	0	20	0	30	0	30	ns
17	tDW	Data to Write Time Overlap	25	-	35	-	40	-	ns
18	tDH	Data Hold from Write Time	0	-	0	-	0	-	ns
19	tOW	Output Active from End of Write	5	_	5	_	5	-	ns

AC TEST CONDITIONS

 $T_A = 0$ °C to 70°C (Normal) / -40°C to 85°C (E.T.) unless otherwise specified.

1A = 0 C 10 70 C	(140111a1) / -40 C to 65 C	(L.1.) unicss otherwise specificu.			
PA	RAMETER	VALUE			
Input Pulse Level		0.8V to 2.4V			
Input Rise and Fall Time		5ns			
Input and Output	Timing Reference Levels	1.5V			
Output Load	70/85/100ns	CL = 100pF + 1TTL Load			
Output Load	55ns	CL = 50pF + 1TTL Load			

CAPACITANCE								
$TAA = 25 ^{\circ}C, f = 1.0MHz$								
Symbol	Parameter	Condition	Max	Unit				
Cin	Input Capacitance	$V_{IN} = 0V$	6	pF				
Ci/o	Input/Output Capacitance V _{I/O} = 0V 8 pF							
Note: These	Note: These parameters are sampled and not 100% tested							
Features Pins Ratings Timing Package Ordering								

3101 North First Street, San Jose, CA 95134 Phone: 408-232-8000 URL: http://www.hea.com/

SRAM Data Sheets | Memory Products | email: DRAMSRAMmemory@hea.com

Copyright © 1997 Hyundai Electronics America.

TIMING INFORMATION

TIMING DIAGRAM

READ CYCLE 1

Note (READ CYCLE):

- 1. tchz and tohz are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tcHz max. is less than tcLz min. both for a given device and from device to device.
- 3. /WE is high for the read cycle.

READ CYCLE 2

Note (READ CYCLE):

- 1. /WE is high for the read cycle.
- 2. Device is continuously selected /CS= V_{IL}.
- 3. $/OE = V_{IL}$

WRITE CYCLE 1 (/OE Clocked)

WRITE CYCLE 2 (/OE Low Fixed)

Notes (WRITE CYCLE):

- 1. A write occurs during the overlap of a low /CS and a low /WE. A write begins at the latest transition among /CS going low and /WE going low: A write ends at the earliest transition among /CS going high and /WE going high. twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the later of /CS going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twr is measured from the end of write to the address change. twr is applied in case a write ends as /CS, or /WE going high.
- 5. If /OE and /WE are in the read mode during this period, and the I/O pins are in the output low-Z state, input of opposite phase of the output must not be applied because bus contention can occur.
- 6. If /CS goes low simultaneously with /WE going low, or after /WE going low, the outputs remain in high impedance state.
- 7. Dout is the same phase of latest written data in this write cycle.
- 8. Dout is the read data of the new address.

DATA 1	RETENTION	CHARACTERIS	TIC					
$T_A = 0^{\circ}C$	to 70°C (norm	nal) /-40°C to 85°C	C (E.T.)					
Symbol	Par	ameter	Test Condi	ition	Min	Тур	Max	Unit
VDR	Vcc for Data I	Re! ention	/CS >= Vcc-0.2V Vss <= V _{IN} <= Vcc		2	-	_	V
	Retention Current	HY62256A	Vcc = 3.0V /CS >= Vcc	L	_	1	50	uA
Iccdr			-0.2V	LL	-	1	15(2)	uA
		HY62256A-1	Vss <= Vin <= Vcc	L	_	1	50	uA
tCDR	CDR Chip Disable to Data Retention Time		See Data Retention Timing		0	-	-	ns
tR	Operating Rec	overy Time	Diagram		tRC(3)	-	-	ns

Notes

- 1. Typical values are under the condition of $T_A = 25^{\circ}C$
- 2. 3uA max. at TA = 0°C to 40°C
- 3. tRC is read cycle time.

RELIABILITY SPEC.						
	TEST MODE	TEST SPEC.				
ECD	HBM	>= 2000V				
ESD	MM	>= 250V				
LATCHID		<= -100mA				
LATCH-UP		>= 100mA				
	Features Pins Rat	ings Timing Package Ordering				

3101 North First Street, San Jose, CA 95134 Phone: 408-232-8000 URL: http://www.hea.com/

SRAM Data Sheets | Memory Products | email: DRAMSRAMmemory@hea.com

Copyright © 1997 Hyundai Electronics America.

PACKAGE INFORMATION

3101 North First Street, San Jose, CA 95134 Phone: 408-232-8000 URL: http://www.hea.com/

SRAM Data Sheets | Memory Products | email: DRAMSRAMmemory@hea.com

Copyright © 1997 Hyundai Electronics America.

ORDERING INFORMATION

Part No.	Speed	Power	Temp.	Package
HY62256AP	55/70/85			PDIP
HY62256ALP	55/70/85	L-part		PDIP
HY62256ALLP	55/70/85	LL-part		PDIP
HY62256AJ	55/70/85			SOP
HY62256ALJ	55/70/85	L-part		SOP
HY62256ALLJ	55/70/85	LL-part		SOP
HY62256AT1	55/70/85			TSOP-I Standard
HY62256ALT1	55/70/85	L-part		TSOP-I Standard
HY62256ALLT1	55/70/85	LL-part		TSOP-I Standard
HY62256AR1	55/70/85			TSOP-I Reversed
HY62256ALR1	55/70/85	L-part		TSOP-I Reversed
HY62256ALLR1	55/70/85	LL-part		TSOP-I Reversed
HY62256AP-I	55/70/85		E.T.	PDIP
HY62256ALP-I	55/70/85	L-part	E.T.	PDIP
HY62256AJ-I	55/70/85		E.T.	SOP
HY62256ALJ-I	55/70/85	L-part	E.T.	SOP
HY62256AT1-I	55/70/85		E .T.	TSOP-I
HY62256ALT1-I	55/70/85	L-part	E.T.	TSOP-I
HY62256AR2-I	55/70/85		E.T.	TSOP-I Reversed
HY62256ALR2-I	55/70/85	L-part	E.T.	TSOP-I Reversed
Feature	es Pins Ratio	ngs Timing	Package	Ordering Ordering

3101 North First Street, San Jose, CA 95134 Phone: 408-232-8000 URL: http://www.hea.com/

SRAM Data Sheets | Memory Products | email: DRAMSRAMmemory@hea.com

Copyright © 1997 Hyundai Electronics America.