Sinais e Sistemas Electrónicos

Capítulo 6: Amplificadores operacionais (parte 2)

Sinais e Sistemas Electrónicos - 2021/2022

Sumário

- Resistência de entrada e resistência de saída num amplificador de tensão;
- Resistências de entrada e de saída das configurações inversora e não-inversora;
- Outras configurações do OpAmp
 - Seguidor de tensão;
 - Utilidade do seguidor de tensão;
 - Amplificador somador;
 - Amplificadores integrador e diferenciador;
 - OpAmp como comparador.

Resistências de entrada e de saída de amplificadores

E. Martins, DETI Universidade de Aveiro

6.2-3

Sinais e Sistemas Electrónicos - 2021/2022

Fonte de sinal, amplificador e carga

- Numa cadeia de amplificação como esta interessa sempre maximizar a eficiência com que o sinal é transferido...
 - > ... da fonte de sinal para a entrada do amplificador, e
 - ... da saída do amplificador para a carga.

Cadeia de amplificação: equivalente de Thévenin

• Substituindo cada um dos elementos da cadeia anterior pelo seu modelo, obtemos:

• No que se segue admitimos que o sinal a transferir da fonte de sinal para a carga é um sinal em tensão.

E. Martins, DETI Universidade de Aveiro

6.2-5

Sinais e Sistemas Electrónicos - 2021/2022

Máxima eficiência...

- A máxima eficiência será conseguida se todo o sinal produzido pela fonte de sinal aparecer na entrada do amplificador. Ou seja se $v_i = v_s$
- ullet ... e se todo o sinal produzido pelo amplificador aparecer na resistência de carga. Ou seja se $v_o = G v_i$

Eficiência da entrada do amplificador

... mas não é isso que acontece!

• A tensão que aparece efectivamente entre os terminais de entrada do amplificador é:

$$v_i = \frac{R_i}{R_i + R_S} v_S$$
 $\triangleright \text{Se } R_S = 100\Omega \text{ e } R_i = 500\Omega, \text{ então:}$ $v_i = 0.83v_S$

E. Martins, DETI Universidade de Aveiro

6.2-7

Sinais e Sistemas Electrónicos - 2021/2022

Eficiência da entrada do amplificador

• Para termos $v_i \approx v_s$, como é pretendido, precisamos de ter R_i muito elevado.

Em concreto deveremos ter $R_i >> R_S$:

$$v_i = \frac{1}{1 + \frac{R_S}{R_i}} v_S$$
 se $R_i >> R_S$, então $v_i \approx v_S$

Eficiência da saída do amplificador

• O raciocínio que fazemos relativamente à saída do amplificador é idêntico:

• A tensão v_o que aparece efectivamente na resistência de carga, R_L , é:

$$v_o = \frac{R_L}{R_L + R_o} G v_i$$

ightharpoonup Se $R_o = 10\Omega$ e $R_L = 1\Omega$, então:

$$v_{o} = 0.09Gv_{i}$$

 \triangleright Estamos pois muito longe de ter $v_0 = Gv_i$

E. Martins, DETI Universidade de Aveiro

6.2-9

Sinais e Sistemas Electrónicos - 2021/2022

Eficiência da saída do amplificador

• Para termos $v_o pprox Gv_i$, como pretendido, precisamos de ter R_o muito baixo.

Em concreto deveremos ter $R_o << R_L$:

$$v_o = \frac{1}{1 + \frac{R_o}{R_L}}Gv_i$$
 se $R_o << R_L$, então $v_o \approx Gv_i$

Conclusão: Máxima eficiência do amplificador

• Para maximizar a eficiência do acoplamento de sinal na entrada e na saída, um amplificador de tensão deve apresentar:

$$R_i >> R_S$$
 e $R_o << R_L$

E. Martins, DETI Universidade de Aveiro

6.2-11

Sinais e Sistemas Electrónicos - 2021/2022

Resistências de entrada (R_i) e de saída (R_o) das configurações inversora e não-inversora

R_i e R_o na configuração inversora

$$\label{eq:interpolation} \mathbf{mas} \ \mathbf{como} \quad \mathbf{i}_1 = \frac{\mathbf{v}_i - \mathbf{v}_d}{R_1} = \frac{\mathbf{v}_i}{R_1}$$

então
$$R_i = \frac{v_i}{i_1} = R_1$$

E. Martins, DETI Universidade de Aveiro

6.2-13

Sinais e Sistemas Electrónicos - 2021/2022

R_i e R_o na configuração não-inversora

Seguidor de tensão

E. Martins, DETI Universidade de Aveiro

6.2-15

Sinais e Sistemas Electrónicos - 2021/2022

Seguidor de tensão ou buffer

$$v_{out} = v_i$$

• Saída segue a entrada!

• Na realidade, este circuito é um caso particular da configuração não-inversora.

$$G \equiv \frac{v_{out}}{v_i} = 1 + \frac{R_2}{R_1}$$

• Se
$$R_1 = \infty$$
 e $R_2 = 0$...

$$G \equiv \frac{v_{out}}{v_i} = 1$$

Seguidor de tensão

• Mas que utilidade poderá ter um circuito com ganho = 1?

• Tal como a configuração não-inversora, este circuito também apresenta $R_i = \infty$ e $R_o = 0$, sendo útil quando queremos ligar um circuito com resistência de saída elevada a outro com resistência de entrada baixa.

E. Martins, DETI Universidade de Aveiro

6.2-17

Sinais e Sistemas Electrónicos - 2021/2022

Utilidade do seguidor de tensão

- Suponhamos uma fonte de sinal ligada a uma carga;
- Para conseguimos maximizar a eficiência do acoplamento entre a fonte e a carga (de forma a ter $v_o \approx v_i$), é necessário que:

$$R_L >> R_S$$

o que não é o caso.

$$v_o = \frac{1K}{1K + 100K} v_I \approx 0.01 v_I$$

 v_o vai ser apenas uma pequena fracção de v_i !

Utilidade do seguidor de tensão

• Problema resolve-se com um *buffer* entre a fonte de sinal e a carga:

• Como $R_{\theta} = \theta$ então $V_0 \approx V_I$

E. Martins, DETI Universidade de Aveiro

6.2-19

Sinais e Sistemas Electrónicos - 2021/2022

Amplificador somador

Amplificador somador

$$v_{out} = K_1 v_1 + K_2 v_2 + ... + K_n v_n$$

• Saída é uma soma ponderada das tensões de entrada.

E. Martins, DETI Universidade de Aveiro

6.2-21

Sinais e Sistemas Electrónicos - 2021/2022

Amplificador somador

Amplificador somador

Conjugando as expressões anteriores obtemos

$$v_{out} = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + ... + \frac{R_f}{R_n}v_n\right)$$

- Saída é portanto a soma ponderada dos sinais de entrada;
- Coeficientes de cada entrada podem ser ajustados individualmente.

E. Martins, DETI Universidade de Aveiro

6.2-23

Sinais e Sistemas Electrónicos – 2021/2022

Amplificadores integrador e diferenciador

Configurações inversoras com impedâncias

• Se substituirmos, na configuração inversora, as resistências R_1 e R_2 por impedâncias (de condensadores ou bobinas) obtemos amplificadores com ganho dependente da frequência.

E. Martins, DETI Universidade de Aveiro

6.2-25

Sinais e Sistemas Electrónicos – 2021/2022

Configuração integradora

- Aqui a resistência de feedback R_2 é substituída por um condensador.
- A tensão de saída é proporcional ao integral do sinal de entrada.

Análise da configuração integradora

• Aplicando KVL à malha de entrada

$$-v_i + R.i + 0 = 0$$

$$\Leftrightarrow i = \frac{v_i}{R}$$

Para a malha de saída:

$$v_C + v_{out} = 0 \iff v_{out} = -v_C = -\left(\frac{1}{C} \int_0^t i dt + v_C(0)\right)$$

Substituindo a equação anterior

$$v_{out} = -\left(\frac{1}{RC} \int_{0}^{t} v_{i} dt + v_{C}(0)\right)$$
• RC é a constante de tempo de integração.

E. Martins, DETI Universidade de Aveiro

6.2-27

Sinais e Sistemas Electrónicos - 2021/2022

 Uma aplicação: conversão de ondas quadradas em triangulares.

1 ms

Assumindo $v_C(\theta) = \theta V$

Configuração integradora

- Ganho do circuito diminui com a frequência circuito é um filtro passa baixo;
- Ganho é unitário para $\omega_1 = 1/RC$.

E. Martins, DETI Universidade de Aveiro

6.2 - 29

Sinais e Sistemas Electrónicos - 2021/2022

Configuração integradora

- Em DC (ω = θ) o ganho do integrador é infinito (condensador é um circuito aberto).
- Ou seja, qualquer tensão DC na entrada, por pequena que seja, produz, mais tarde ou mais cedo, a saturação da saída.

Configuração integradora

• Para evitar este problema é costume usar-se o integrador com uma resistência de valor elevado em paralelo com o condensador.

Agora o ganho em DC é

$$\left| \frac{v_{out}}{v_i} \right|_{\omega=0} = \frac{R_F}{R}$$

• ... no entanto, assim, o integrador já não é ideal.

E. Martins, DETI Universidade de Aveiro

6.2-31

Sinais e Sistemas Electrónicos - 2021/2022

Configuração diferenciadora

• Trocando a resistência e o condensador obtemos um circuito que produz uma saída proporcional à derivada do sinal de entrada.

OpAmp como comparador

E. Martins, DETI Universidade de Aveiro

6.2-33

Sinais e Sistemas Electrónicos - 2021/2022

Comparador

 Devido ao ganho muito elevado, um OpAmp pode ser usado em loop aberto (sem feedback) como comparador de tensões.

Se:
$$V_{CC} = -V_{EE} = 15V$$

 $A = 10^5$

$$v_{\text{max}} - v_{\text{min}} = \frac{30}{10^5} = 0.3 mV$$

• Portanto a região linear pode considerar-se quase vertical.

Comparador

$$v_0 = \begin{cases} V_{CC} & \text{se } v_I < V_{REF} \\ V_{EE} & \text{se } v_I > V_{REF} \end{cases}$$

• Circuito tem uma saída binária resultante da comparação das duas tensões de entrada.

NOTA: assumindo que as tensões de saturação são V_{CC} e V_{EE} , o que nem sempre acontece!

E. Martins, DETI Universidade de Aveiro

6.2-35

Sinais e Sistemas Electrónicos – 2021/2022

Comparador com feedback regenerativo

Os comparadores em loop aberto
 não são aconselhados quando o sinal
 v_I têm muito ruído.

• Isto pode acontecer, por exemplo, se o sinal v_I vier dum sensor de temperatura.

Comparador com feedback regenerativo

Precisamos dum comparador com dois níveis de comparação:

$$V_H$$
 – quando v_I sobe;
 V_L – quando v_I desce

$$V_H - V_L$$
: histerese

Assim temos uma comutação limpa!

E. Martins, DETI Universidade de Aveiro

6.2-37

Sinais e Sistemas Electrónicos - 2021/2022

Comparador com feedback regenerativo

Este comparador obtém-se usando feedback positivo. A tensão de comparação depende do estado da saída.

$$V_{H} = \frac{R_{2}}{R_{1} + R_{2}} V_{REF} + \frac{R_{1}}{R_{1} + R_{2}} V_{CC}$$

$$V_{L} = \frac{R_{2}}{R_{1} + R_{2}} V_{REF} + \frac{R_{1}}{R_{1} + R_{2}} V_{EE}$$

•
$$V_H$$
 e V_L obtêm-se por Sobreposição... $v^+ = \frac{R_2}{R_1 + R_2} V_{REF} + \frac{R_1}{R_1 + R_2} v_o$

$$V_{L} = \frac{R_{2}}{R_{1} + R_{2}} V_{REF} + \frac{R_{1}}{R_{1} + R_{2}} V_{EE}$$

Comparador com feedback regenerativo - projeto

 Pretendemos obter a característica com os valores indicados.

Dos resultados anteriores...

$$V_{H} - V_{L} = \frac{R_{1}}{R_{1} + R_{2}} (V_{CC} - V_{EE})$$

donde se tira $R_2/R_1 = 89$

e.g.
$$R_2 = 82K + 6K8$$
; $R_1 = 1K$

$$V_A = \frac{V_H + V_L}{2}$$
 Usando as expressões anteriores: $V_A = \frac{R_2}{R_1 + R_2} V_{REF}$

donde
$$V_{REF} = \left(1 + \frac{R_1}{R_2}\right)V_A = \left(1 + \frac{1}{89}\right)3.5 = 3.54V$$

E. Martins, DETI Universidade de Aveiro