

大数据导论 Introduction to Big Data

第4.1讲:数据的结构化表示

叶允明 计算机科学与技术学院 哈尔滨工业大学(深圳)

目录

- 数据的属性类型
- 单一类型数据的结构化表示
- 多源异构数据的结构化表示

结构化数据

对象

- 数据是数据对象的集合
- 数据对象用一组刻画对象基本特征的属性描述
 - > 对象也叫做记录、数据点、案例、样本、观测或实体等
- **属性 (attribute)** 是客观事物的性质或特性的计算机表示,而数据对象是由属性集合构成的
 - 例如: 眼球颜色因人而异,物体的温度随时间而变。
 - 属性也叫做变量、字段、特征或维。

属性

Ref. this table is from Han's book slides

属性值

类别型属性 (categorical attribute)

属性值定义域是一个固定、有限的符号或数字集合。

Domain("性别")={M, F}

Domain("职业")={教师,工程师,医生}

属性值间不可以做算术运算:定性属性

• 类别型属性 (categorical attribute) 的分类

▶ 标称型属性 (nominal attribute) : 无序

身份证号、性别、职业、颜色

▶ 有序型类别属性 (ordinal attribute) : 有大小、好坏等先后顺序的区别

学位: { "学士" 、 "硕士" 、 "博士" }

独热编码 (one-hot encoding)

职业-售货员	职业-教师	职业-白领
1	0	0
0	1	0
0	0	1

数值型属性 (numeric attribute)

属性值定义在实数集或整数集上。

年龄、每月工资、债务收入比

属性值间可以做算术运算:定量属性

- 数值型属性 (numeric attribute)
 - ▶ 区间标度型属性 (nominal attribute) : 有序

"摄氏温度"

"30℃比10℃高20℃"

属性值"0°C"并不代表无温度

"30℃的温度是10℃的三倍" 🗙

▶ 比率标度型属性 (nominal attribute) : 有序

"每月工资" 月薪1万元比月薪5000元多5000 月薪为0是有实际意义的

月薪1万是月薪5000的两倍

离散属性和连续属性

• 离散属性

- > 具有有限个值或无限可数个值
- > 例: 邮政编码, 计数或文档集合中的单词集
- 通常表示为整数变量
- > 注: 二元属性是离散属性的一种特殊情况

• 连续属性

- > 将实数作为属性值
- > 例: 温度, 高度, 或重量
- > 实践中, 实数值只能用有限的精度测量和表示
- > 连续属性通常用浮点变量表示

数据的结构化

• "数据的结构化"就是指将原始数据按照固定的"属性-值"序列逐行 排列各个数据对象,其结果就形成了"结构化数据"。

• 标准结构化数据的形式化定义:

$$D = \{x_1, x_2, ..., x_i, ..., x_m\}, (i = 1 ...m),$$

其中 $x_i = \{x_{i1}, x_{i2}, ..., x_{ij}, ..., x_{in}\} (j = 1 ...n), x_{ij} \in R$

单一类型数据的结构化表示

关系表数据的结构化表示

- 单个关系表数据的结构化
 - > 关系表数据是指以二维表形式存储的结构化数据

用户ID	性别	年龄	月薪	职业
1	男	45	5000	售货员
2	女	35	10000	教师
3	男	28	9000	白领

关系表数据的结构化表示

• 单个关系表数据的结构化

用户 ID	性别	年龄 月薪		职业
1	男	45	5000	售货员
2	女	35	10000	教师
3	男	28	9000	白领

用户 ID	性别	年龄	月薪	职业-售货员	职业-教师	职业-白领
1	1	45	5000	1	0	0
2	0	35	10000	0	1	0
3	1	28	9000	0	0	1

关系表数据的结构化表示

• 多个关系表数据的结构化

客户基本信息表

用户ID	性别	年龄	月薪	职业
1	男	45	5000	售货员
2	女	35	10000	教师
3	男	28	9000	白领

客户借贷记录信息表

用户ID	累计借款金额	累计借款 天数	是否存在逾期未还
1	20000	365	1
2	8000	30	0
3	15000	90	0

用户 ID	性别	年龄	月薪	职业-售货员	职业-教师	职业- 白领	累计借 款金额	累计借 款天数	是否存在逾 期未还
1	1	45	5000	1	0	0	10000	365	1
2	0	35	10000	0	1	0	8000	30	0
3	1	28	9000	0	0	1	15000	90	0

文本数据的结构化表示

- 标准结构化数据——数值矩阵
 - 文本数据高维、稀疏
 - > 结构化表示: 词频法

Text_1: "背包设计的很好看,质量很好,价格便宜"

Text_2: "这是我买过性价比最高的背包,很好看"

分词

Text_1: "背包\设计\的\很\好看\,\质量\很\好\,\价格\便宜"

Text_2: "这\是\我\买\过\性价比\最高\的\背包\,\很\好看\"

文本数据的结构化表示

> 词频法

Text_1: "背包\设计\的\很\好看\,\质量\很\好\,\价格\便宜"

Text_2: "这\是\我\买\过\性价比\最高\的\背包\,\很\好看\"

统计词频

																性
词语									背	设	好	质	价	便	最	
.	很	的	好	这	是	我	买	过)	,,	*	Ð	16		上	价
文本									包	计	看	量	格	宜	高	比
																7
Text_1	2	1	1	0	0	0	0	0	1	1	1	1	1	1	0	0
Text_2	1	1	0	1	1	1	1	1	1	0	1	0	0	0	1	1

图像数据的结构化表示

- 标准结构化数据——数值矩阵
 - > 数字图像与视频数据
 - ✓ 结构化表示: 扁平化

单通道灰度图像的结构化表示

图像数据的结构化表示

• 标准结构化数据——数值矩阵

> 数字图像与视频数据

✓ 结构化表示: 扁平化

多通道彩色图像的结构化表示

时序数据的结构化表示

- 时间序列数据(time series data),是在不同的时间间隔观测同一数据对象,将 其属性值相继排列所形成的序列
- 单通道时序数据

单通道:股票的"每日收盘价"的涨跌情况

时序数据的结构化表示

• 多通道时序数据

多通道: 股票的"每日开盘价"、"每日收盘价"、"每日最高价"、"每日最低价"涨跌情况

空间数据的结构化表示

- 空间数据:用于描述现实世界中空间物体的位置、形态、大小、分布等特征信息的数据。
 - ✓ 非对象模型 / 矢量模型 (点、线、面)
 - √ 场模型 / 栅格模型 (二维矩阵或张量(高维矩阵))

空间数据的结构化表示

空间数据的结构化表示: 先将空间场数据网格化为数值矩阵数据, 再将矩阵数据逐行拼接得到向量。

多源异构数据的统一结构化表示

多源异构数据的结构化表示

- 输入数据来自多个来源、且包含多种类型——多源异构
 - > 电商平台商品销售额预测
 - ✓ 商品的基本属性数据:商品ID、商品的大类、商品单价、颜色、尺寸等,属于关系表类型的数据
 - ✓ 商品描述数据: 对每个商品 (对应于每个商品ID) 的文字描述,属于文本数据;
 - ✓ 商品的展示图片:每个商品 (对应于每个商品ID)的外观图,属于图像数据。

多源异构数据的结构化表示

商品的展示图片

多元关系表拼接

商品描述数据

"2020新款红色时尚牛皮包,洋气百搭" ──词频法→ [0, 2, 2, 0, 0, 0, 1, 0, …, 1, 0]

向量维度:56857(总词数)

拼接

商品ID	商品价格	商品类别		
312	99. 9	服饰		

商品的基本属性数据

广告ID	商品ID	开始时间	结束时间			
12	312	2020/5/31 17:00	2020/5/31 21:00			
25	312	2020/6/1 17:00	2020/6/1 21:00			

▶ [99.9, 0, 1, 0, 0, 0, 8] 向量维度:7

> 各自应用结构化表示方法 生成子向量

子向量拼接 成异构数据统一表示向量

原始数据

致谢

• 一小部分图表、文字参考教材、互联网资料,仅供公益性的学习参考

,在此表示感谢!如有版权要求请联系:yym@hit.edu.cn,谢谢!