Analysis of a Complex Kind Week 4

Lecture 2: Conformal Mappings

Petra Bonfert-Taylor

What Is A Conformal Mapping?

Intuitively, a conformal mapping is a "mapping that preserves angles between curves".

To make this precise, we need to define curves as well as angles between curves.

Paths

Definition

A *path* in the complex plane from a point *A* to a point *B* is a continuous function $\gamma: [a,b] \to \mathbb{C}$ such that $\gamma(a) = A$ and $\gamma(b) = B$.

Examples:

$$\gamma(t) = (2+i) + e^{it}, 0 \le t \le \pi
= \underbrace{(2+\cos t)}_{x(t)} + i\underbrace{(1+\sin t)}_{y(t)}$$

Examples

$$\gamma(t) = (2+i) + t(-3-5i), \ 0 \le t \le 1$$

$$= (2-3t) + i(1-5t)$$

$$\gamma(t) = te^{it}, \ 0 \le t \le 3\pi
= (t \cos t) + i(t \sin t)$$

Curves

Definition

A path $\gamma:[a,b]\to\mathbb{C}$ is *smooth* if the functions x(t) and y(t) in the representation $\gamma(t)=x(t)+iy(t)$ are smooth, that is, have as many derivatives as desired.

In the above examples, (1), (2), and (3) are smooth, whereas (4) is *piecewise smooth*, i.e. put together ("concatenated") from finitely many smooth paths.

The term *curve* is typically used for a smooth or piecewise smooth path.

If $\gamma = x + iy : [a, b] \to \mathbb{C}$ is a smooth curve and $t_0 \in (a, b)$, then

$$\gamma'(t_0) = x'(t_0) + iy'(t_0)$$

is a tangent vector to γ at $z_0 = \gamma(t_0)$.

The Angle Between Curves

Definition

Let γ_1 and γ_2 be two smooth curves, intersecting at a point z_0 . The *angle* between the two curves at z_0 is defined as the angle between the two tangent vectors at z_0 .

Example

Let
$$\gamma_1:[0,\pi] \to \mathbb{C}$$
, $\gamma_1(t)=e^{it}$ and

$$\gamma_2:\left[rac{\pi}{2},rac{3\pi}{2}
ight)
ightarrow\mathbb{C},\,\gamma_2(t)=2+\mathit{i}+2e^{\mathit{i}t}.$$

Then $\gamma_1\left(\frac{\pi}{2}\right) = \gamma_2(\pi) = i$. Furthermore,

$$\gamma_1'(t) = ie^{it}, \quad \gamma_1'\left(\frac{\pi}{2}\right) = ie^{i\frac{\pi}{2}} = i^2 = -1,$$

 $\gamma_2'(t) = 2ie^{it}, \quad \gamma_2'(\pi) = 2ie^{i\pi} = 2i(-1)$
 $= -2i.$

The angle between these curves at *i* is thus $\frac{\pi}{2}$.

Conformality

Definition

A function is conformal if it preserves angles between curves. More precisely, a smooth complex-valued function g is *conformal at* z_0 if whenever γ_1 and γ_2 are two curves that intersect at z_0 with non-zero tangents, then $g \circ \gamma_1$ and $g \circ \gamma_2$ have non-zero tangents at $g(z_0)$ that intersect at the same angle.

A *conformal mapping* of a domain D onto V is a continuously differentiable mapping that is conformal at each point in D and maps D one-to-one onto V.

Analytic Functions

Theorem

If $f:U\to\mathbb{C}$ is analytic and if $z_0\in U$ such that $f'(z_0)\neq 0$, then f is conformal at z_0 .

Reason: If $\gamma:[a,b]\to U$ is a curve in U with $\gamma(t_0)=z_0$ for some $t_0\in(a,b)$, then

$$(f \circ \gamma)'(t_0) = f'(\gamma(t_0)) \cdot \gamma'(t_0) = \underbrace{f'(z_0)}_{\in \mathbb{C} \setminus \{0\}} \cdot \gamma'(t_0).$$

Thus $(f \circ \gamma)'(t_0)$ is obtained from $\gamma'(t_0)$ via multiplication by $f'(z_0)$ (= rotation & stretching).

If γ_1 , γ_2 are two curves in U through z_0 with tangent vectors $\gamma_1'(t_1)$ and $\gamma_2'(t_2)$, then $(f \circ \gamma_1)'(t_1)$ and $(f \circ \gamma_2)'(t_2)$ are both obtained from $\gamma_1'(t_1)$ and $\gamma_2'(t_2)$, respectively, via multiplication by $f'(z_0)$. The angle between them is thus preserved.

Examples

• $f(z) = z^2$ maps $U = \{z \in \mathbb{C} \mid \text{Re } z > 0\}$ conformally onto $\mathbb{C} \setminus (-\infty, 0]$.

More Examples

• $f(z) = e^z$ is conformal at each point in \mathbb{C} (f is analytic in \mathbb{C} and $f'(z) \neq 0$ in \mathbb{C}). Since f is not one-to-one in \mathbb{C} , it is not a conformal mapping from \mathbb{C} onto $\mathbb{C} \setminus \{0\}$.

However, if you choose $D = \{z \mid 0 < \text{Im } z < 2\pi\}$, then f maps D conformally onto $f(D) = \mathbb{C} \setminus [0, \infty)$.

More Examples

• $f(z) = \overline{z}$ is one-to-one and onto from \mathbb{C} to \mathbb{C} , however, angles between curves are reversed in orientation:

f is thus not conformal anywhere.