```
#Pandas
import pandas as pd
#Series pd.series(column,index)
A = ['SAKULJI', "DILEEP", "SHANKAR", "SHUBHAS", "SHIVA", "PRABHAS"]
index = [1,2,3,4,5,6]
B = pd.Series(A,index)
print(B)
         SAKULJI
     1
     2
          DILEEP
         SHANKAR
     3
         SHUBHAS
     4
     5
           SHIVA
         PRABHAS
     dtype: object
#loading csv
dia = pd.read_csv("/content/diabetcsv.csv")
print(dia)
\Box
         preg plas
                     pres
                           skin insu mass
                                             pedi age
                148
                       72
                             35
                                   0 33.6 0.627
                                                    50 tested positive
                                                    31 tested_negative
    1
            1
                 85
                       66
                             29
                                   0 26.6 0.351
     2
            8
                183
                       64
                             0
                                   0 23.3 0.672
                                                    32 tested_positive
            1
                 89
                       66
                             23
                                   94 28.1
                                            0.167
                                                    21 tested_negative
                137
                                168 43.1 2.288
                                                   33 tested_positive
            0
                       40
                             35
     4
     763
           10
                101
                       76
                             48
                                  180 32.9 0.171
                                                    63 tested_negative
     764
                                  0 36.8 0.340
                                                    27 tested_negative
            2
                122
                       70
                             27
                                                    30 tested_negative
     765
            5
                121
                       72
                                 112 26.2 0.245
                             23
     766
            1
                126
                       60
                              0
                                   0 30.1 0.349
                                                    47 tested_positive
                                   0 30.4 0.315
                                                    23 tested_negative
     [768 rows x 9 columns]
grad=pd.read_csv("/content/diabetcsv.csv")
```

	preg	plas	pres	skin	insu	mass	pedi	age	class
0	6	148	72	35	0	33.6	0.627	50	tested_positive
1	1	85	66	29	0	26.6	0.351	31	tested_negative
2	8	183	64	0	0	23.3	0.672	32	tested_positive
3	1	89	66	23	94	28.1	0.167	21	tested_negative
4	0	137	40	35	168	43.1	2.288	33	tested_positive
763	10	101	76	48	180	32.9	0.171	63	tested_negative
764	2	122	70	27	0	36.8	0.340	27	tested_negative
765	5	121	72	23	112	26.2	0.245	30	tested_negative
766	1	126	60	0	0	30.1	0.349	47	tested_positive
767	1	93	70	31	0	30.4	0.315	23	tested_negative

768 rows × 9 columns

dia = pd.read_csv("/content/demodt.txt") print(dia)

	State	Literacy	Cleanliness	Crime Rate	Good
0	А	92	90	54	0
1	В	56	67	50	1
2	C	78	85	62	0
3	D	63	72	48	1
4	Е	85	79	55	0
5	F	71	68	58	0
6	G	80	83	51	0
7	Н	67	74	47	1
8	I	89	88	53	0

9	J	58	65	49	1
10	K	82	81	60	0
11	L	75	78	57	0
12	М	69	70	46	1
13	N	87	86	52	0
14	0	61	63	45	1
15	P	93	91	56	0
16	Q	55	66	61	0
17	R	76	77	59	0
18	S	84	82	44	1
19	Т	70	69	50	1
20	U	94	92	57	0
21	V	59	64	52	0
22	W	83	80	43	1
23	Χ	74	76	63	0
24	Υ	68	73	41	1
25	Z	88	84	47	1

grad=pd.read_csv("/content/demodt.txt")
grad

	State	Literacy	Cleanliness	Crime_Rate	Good
0	А	92	90	54	0
1	В	56	67	50	1
2	С	78	85	62	0
3	D	63	72	48	1
4	Е	85	79	55	0
5	F	71	68	58	0
6	G	80	83	51	0
7	Н	67	74	47	1
8	1	89	88	53	0
9	J	58	65	49	1
10	K	82	81	60	0
11	L	75	78	57	0
12	М	69	70	46	1
13	N	87	86	52	0
14	0	61	63	45	1
15	Р	93	91	56	0
16	Q	55	66	61	0
17	R	76	77	59	0
18	S	84	82	44	1
19	Т	70	69	50	1
20	U	94	92	57	0
21	V	59	64	52	0
22	W	83	80	43	1
23	Х	74	76	63	0
24	Υ	68	73	41	1
25	Z	88	84	47	1

dia = pd.read_excel("/content/diabetes.xlsx")
print(dia)

	preg	plas	pres	skin	insu	mass	pedi	age	class
0	6	148	72	35	0	33.6	0.627	50	tested_positive
1	1	85	66	29	0	26.6	0.351	31	tested_negative
2	8	183	64	0	0	23.3	0.672	32	tested_positive
3	1	89	66	23	94	28.1	0.167	21	tested_negative
4	0	137	40	35	168	43.1	2.288	33	tested_positive
763	10	101	76	48	180	32.9	0.171	63	tested negative

764	2	122	70	27	0	36.8	0.340	27	tested_negative
765	5	121	72	23	112	26.2	0.245	30	tested_negative
766	1	126	60	0	0	30.1	0.349	47	tested_positive
767	1	93	70	31	0	30.4	0.315	23	tested negative

[768 rows x 9 columns]

grad=pd.read_excel("/content/diabetes.xlsx")
grad

	preg	plas	pres	skin	insu	mass	pedi	age	class
0	6	148	72	35	0	33.6	0.627	50	tested_positive
1	1	85	66	29	0	26.6	0.351	31	tested_negative
2	8	183	64	0	0	23.3	0.672	32	tested_positive
3	1	89	66	23	94	28.1	0.167	21	tested_negative
4	0	137	40	35	168	43.1	2.288	33	tested_positive
763	10	101	76	48	180	32.9	0.171	63	tested_negative
764	2	122	70	27	0	36.8	0.340	27	tested_negative
765	5	121	72	23	112	26.2	0.245	30	tested_negative
766	1	126	60	0	0	30.1	0.349	47	tested_positive
767	1	93	70	31	0	30.4	0.315	23	tested_negative

768 rows × 9 columns

diax11=pd.read_excel("/content/diabetes.xlsx",sheet_name="dora")
diax11

	Dead	Alive
0	yes	no
1	yes	no
2	yes	no
3	yes	no
4	yes	no

diaxl1.describe()

	Dead	Alive
count	5	5
unique	1	1
top	yes	no
freq	5	5

Categorical distributions

2-d categorical distributions

diaxl1.describe()

	Dead	Alive
count	5	5
unique	1	1
top	yes	no
freq	5	5

print(dia.shape)#Return rows and columns
print(dia.shape[0])#only rows
print(dia.shape[1])#only columns

(768, 9) 768

 $\label{linear_csv} \mbox{dia1=pd.read_csv("/content/grades_withnulls.csv")} \\ \mbox{dia1}$

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	М	8.9	9.1	9.3	Α	1
2	Kissan	V	9.9	9.8	10.0	Α	0
3	Mary	N	7.7	8.0	NaN	В	0
4	Jeen	K	9.8	9.1	9.9	A+	1
5	Raj	М	8.9	9.1	9.3	А	1
6	Hassan	V	9.9	9.0	9.2	А	1
7	Mari	N	7.7	8.0	7.1	В	1
8	Jess	K	NaN	9.1	9.9	A+	1
9	Rajini	М	NaN	9.1	9.3	А	0
10	Kiran	V	NaN	9.3	9.2	А	0
11	Maya	N	7.7	8.0	7.1	В	0
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	М	8.9	9.1	9.3	Α	1
14	Riya	М	9.3	9.9	10.0	А	1
15	Sana	V	9.9	9.3	9.2	Α	0
16	Mark	N	7.7	8.0	7.0	В	0

 $\label{lem:grad} $\operatorname{grad}=\operatorname{pd.read_csv}("/\operatorname{content/grades_withnulls.csv"})$ $\operatorname{grad}$$

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	М	8.9	9.1	9.3	А	1
2	Kissan	V	9.9	9.8	10.0	А	0
3	Mary	N	7.7	8.0	NaN	В	0
4	Jeen	K	9.8	9.1	9.9	A+	1
5	Raj	М	8.9	9.1	9.3	Α	1
6	Hassan	V	9.9	9.0	9.2	А	1
7	Mari	N	7.7	8.0	7.1	В	1
8	Jess	K	NaN	9.1	9.9	A+	1
9	Rajini	М	NaN	9.1	9.3	Α	0
10	Kiran	V	NaN	9.3	9.2	А	0
11	Maya	N	7.7	8.0	7.1	В	0
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	М	8.9	9.1	9.3	Α	1
14	Riya	М	9.3	9.9	10.0	Α	1
15	Sana	V	9.9	9.3	9.2	Α	0
16	Mark	N	7.7	8.0	7.0	В	0

print(df2.drop_duplicates())#changes are not reflected
print(df2)

df2.drop_duplicates(inplace=True)#changes reflected
print(df2)

```
Traceback (most recent call last)
     <ipython-input-1-9cfc545544f7> in <cell line: 1>()
     ---> 1 print(df2.drop_duplicates())#changes are not reflected
          2 print(df2)
          3 df2.drop_duplicates(inplace=True)#changes reflected
          4 print(df2)
     NameError: name 'df2' is not defined
df2.tail()#by default value is 5
df2.head()#by default value is 5
df2.head(2)
df2.tail(2)
#columns
col=list(df2.columns)
print(col)
dem=pd.read_excel("/content/diabetes.xlsx", sheet_name="dora")
gradescsv=pd.read_csv("/content/grades_withnulls.csv")
dem.describe()
print(dem.shape)#returns no of rows and columns
print(dem.shape[0])#returns no of rows if 0
print(dem.shape[1])#returns no of columns if 1
print(gradescsv.isnull())#returns where null values are present. NaN is nothing but not a number
#syntax is variable.isnull()
print(gradescsv.isnull().sum())#returns the total no of true(true in the sense null) values in every column
#data cleaning is nothing but removing null values
#it can be done in two ways
#save the returned data in another file or use inplace=True
print(gradescsv.dropna())#returns the file with deleted rows of NaN values but the new file is not replaced with the original one
print(gradescsv)
gc=gradescsv.dropna()
print(gc)
gradescsv.dropna(inplace=True)
print(gradescsv)
         Names Initials SEM1 SEM2 SEM3 Grade Placed
     0
                        9.8 10.0 9.9 A+
           Joe
     1
        Rajesh
                     M 8.9
                               9.1
                                    9.3
        Kissan
                     V
                         9.9
                               9.8
                                    10.0
          Jeen
                        9.8 9.1 9.9
     5
           Rai
                     М
                        8.9
                               9.1
                                    9.3
                                                    1
     6
        Hassan
                     V
                         9.9
                               9.0
                                     9.2
                                                    1
          Mari
                         7.7
                               8.0
                                     7.1
     11
          Mava
                     Ν
                         7.7
                               8.0
                                     7.1
                                            В
                                                    0
                         9.8
     12
         Jolin
                     K
                               9.1
                                     9.9
                                            A+
                                                    1
                        8.9
                                     9.3
     13 Rajesh
                               9.1
     14
                         9.3
                               9.9
                                    10.0
          Riya
     15
          Sana
                     V
                         9.9
                               9.3
                                    9.2
          Mark
                      N 7.7
                               8.0
                                     7.0
     16
         Names Initials SEM1 SEM2
                                    SEM3 Grade Placed
     0
           Joe
                        9.8 10.0
                                    9.9
                     K
                                            Α+
                                                   1
     1
        Rajesh
                     М
                        8.9
                               9.1
                                    9.3
     2
                     V
                               9.8
                                    10.0
                         9.9
     3
                         7.7
                               8.0 NaN
          Mary
                     N
     4
          Jeen
                     K
                         9.8
                               9.1
                                     9.9
                                            A+
                                                    1
     5
                      Μ
                         8.9
                               9.1
                                     9.3
           Raj
                         9.9
                               9.0
                                     9.2
     6
        Hassan
                     N
          Mari
                         7.7
                               8.0
                                     7.1
                                            В
     8
          Jess
                     Κ
                         NaN
                               9.1
                                     9.9
                                            A+
                                                    1
        Rajini
                         NaN
                               9.1
                                     9.3
     10
                     ٧
                         NaN
                               9.3
                                     9.2
         Kiran
     11
          Mava
                     N
                         7.7
                               8.0
                                     7.1
                                            B
     12
         Jolin
                         9.8
                               9.1
                                     9.9
     13
        Rajesh
                         8.9
                               9.1
                                     9.3
     14
          Riya
                     Μ
                         9.3
                               9.9 10.0
     15
          Sana
                     V
                        9.9
                               9.3
                                    9.2
     16
          Mark
                      Ν
                         7.7
                               8.0
                                     7.0
                                             В
         Names Initials SEM1 SEM2 SEM3 Grade Placed
     a
           Joe
                     K
                         9.8 10.0
                                    9.9
                                                    1
     1
        Rajesh
                         8.9
                               9.1
                                     9.3
                                                    1
```

A+

1

9.9

9.3

9.8 10.0

9.1

9.1

9.9

8.9

K 9.8

2

4

Kissan

Jeen

6	Hassan	V	9.9	9.0	9.2	Α	1
7	Mari	N	7.7	8.0	7.1	В	1
11	Maya	N	7.7	8.0	7.1	В	0
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	M	8.9	9.1	9.3	Α	1
14	Riya	M	9.3	9.9	10.0	Α	1
15	Sana	V	9.9	9.3	9.2	Α	0
16	Mark	N	7.7	8.0	7.0	В	0
	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	M	8.9	9.1	9.3	Α	1
2	Kissan	V	9.9	9.8	10.0	Α	0
4	Jeen	K	9.8	9.1	9.9	A+	1
5	Raj	M	8.9	9.1	9.3	Α	1
6	Hassan	V	9.9	9.0	9.2	Α	1
7	Mari	N	7.7	8.0	7.1	В	1
11	Maya	N	7.7	8.0	7.1	В	0
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	М	8.9	9.1	9.3	Α	1
14	Riya	M	9.3	9.9	10.0	Α	1

df1=pd.read_csv("/content/grades_withnulls.csv")
df1.fillna(555,inplace=True)#Changes are saved
df1

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	М	8.9	9.1	9.3	Α	1
2	Kissan	V	9.9	9.8	10.0	Α	0
3	Mary	N	7.7	8.0	555.0	В	0
4	Jeen	K	9.8	9.1	9.9	A+	1
5	Raj	М	8.9	9.1	9.3	Α	1
6	Hassan	V	9.9	9.0	9.2	Α	1
7	Mari	N	7.7	8.0	7.1	В	1
8	Jess	K	555.0	9.1	9.9	A+	1
9	Rajini	М	555.0	9.1	9.3	Α	0
10	Kiran	V	555.0	9.3	9.2	Α	0
11	Maya	N	7.7	8.0	7.1	В	0
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	М	8.9	9.1	9.3	Α	1
14	Riya	М	9.3	9.9	10.0	Α	1
15	Sana	V	9.9	9.3	9.2	Α	0
16	Mark	N	7.7	8.0	7.0	В	0

df1=pd.read_csv("/content/grades_withnulls.csv")
mv=df1['SEM1'].mean()
print(mv)
df1.fillna(mv,inplace=True)
df1

8.992857142857144

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.800000	10.0	9.900000	A+	1
1	Rajesh	М	8.900000	9.1	9.300000	Α	1
2	Kissan	V	9.900000	9.8	10.000000	Α	0
3	Mary	N	7.700000	8.0	8.992857	В	0
4	Jeen	K	9.800000	9.1	9.900000	A+	1
5	Raj	М	8.900000	9.1	9.300000	Α	1
6	Hassan	V	9.900000	9.0	9.200000	Α	1
7	Mari	N	7.700000	8.0	7.100000	В	1
8	Jess	K	8.992857	9.1	9.900000	A+	1
9	Rajini	М	8.992857	9.1	9.300000	Α	0
10	Kiran	V	8.992857	9.3	9.200000	Α	0
11	Maya	N	7.700000	8.0	7.100000	В	0
12	Jolin	K	9.800000	9.1	9.900000	A+	1
13	Rajesh	М	8.900000	9.1	9.300000	Α	1
14	Riya	М	9.300000	9.9	10.000000	Α	1
15	Sana	V	9.900000	9.3	9.200000	Α	0
16	Mark	N	7.700000	8.0	7.000000	В	0

#Access The Data

#iloc-integer location,index

#loc-fields name,index

#dfname.loc[index]-->rows

#dfname.loc[st::stop]-->range of rows

#dfname.loc[row_index,col_index]-->rows and columns mydf=pd.read_csv("/content/grades_withnulls.csv")

mydf.loc[5]

Names Raj Initials М 8.9 SEM1 SEM2 9.1 SEM3 9.3 Grade Placed 1

Name: 5, dtype: object

#range of records

#df.loc[i,j] range of records mydf.loc[0:5]#first five record

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	М	8.9	9.1	9.3	Α	1
2	Kissan	V	9.9	9.8	10.0	Α	0
3	Mary	N	7.7	8.0	NaN	В	0
4	Jeen	K	9.8	9.1	9.9	A+	1
5	Raj	М	8.9	9.1	9.3	Α	1

mydf.iloc[5:9,0:4]

	Names	Initials	SEM1	SEM2
5	Raj	М	8.9	9.1
6	Hassan	V	9.9	9.0
7	Mari	N	7.7	8.0
8	Jess	K	NaN	9.1

mydf[mydf.SEM3==9.3]

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
1	Rajesh	М	8.9	9.1	9.3	Α	1
5	Raj	М	8.9	9.1	9.3	Α	1
9	Rajini	М	NaN	9.1	9.3	Α	0
13	Rajesh	М	8.9	9.1	9.3	Α	1

Categorical distributions

2-d distributions

Time series

Faceted distributions

<string>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `leg

< <string>:5: FutureWarning:

#DISPLAYING THE DATA BASED UPON THE CONDITION
mydf.loc[mydf.SEM1>9.5,'Names']

0	Joe
2	Kissan
4	Jeen
6	Hassan
12	Jolin
15	Sana
A1	

Name: Names, dtype: object

#print the grades of the students who scored more than 9 in SEM3
import pandas as pd
mydf=pd.read_csv("/content/grades_withnulls.csv")
mydf.loc[mydf.SEM3>9,"Grade"]

Α+ 1 Α 2 Α 4 Α+ Α 6 Α 8 Α+ Α 10 Α 12 A+ 13 Α 14 Α 15 Α

Name: Grade, dtype: object

mydf.drop_duplicates
mydf

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	М	8.9	9.1	9.3	Α	1
2	Kissan	V	9.9	9.8	10.0	А	0
3	Mary	N	7.7	8.0	NaN	В	0
4	Jeen	K	9.8	9.1	9.9	A+	1
5	Raj	М	8.9	9.1	9.3	Α	1
6	Hassan	V	9.9	9.0	9.2	Α	1
7	Mari	N	7.7	8.0	7.1	В	1
8	Jess	K	NaN	9.1	9.9	A+	1
9	Rajini	М	NaN	9.1	9.3	Α	0
10	Kiran	V	NaN	9.3	9.2	Α	0
11	Maya	N	7.7	8.0	7.1	В	0
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	М	8.9	9.1	9.3	Α	1
14	Riya	М	9.3	9.9	10.0	Α	1
15	Sana	V	9.9	9.3	9.2	Α	0
16	Mark	N	7.7	8.0	7.0	В	0

mydf.head()#top five

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.8	10.0	9.9	A+	1
1	Rajesh	М	8.9	9.1	9.3	Α	1
2	Kissan	V	9.9	9.8	10.0	Α	0
3	Mary	N	7.7	8.0	NaN	В	0
4	Jeen	K	9.8	9.1	9.9	A+	1

mydf.tail()#last five

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
12	Jolin	K	9.8	9.1	9.9	A+	1
13	Rajesh	М	8.9	9.1	9.3	Α	1
14	Riya	М	9.3	9.9	10.0	Α	1
15	Sana	V	9.9	9.3	9.2	Α	0
16	Mark	N	7.7	8.0	7.0	В	0

 $\label{lem:column} \begin{tabular}{ll} \begi$

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed	Average
0	Joe	K	9.800000	10.0	9.900000	A+	1	9.900000
1	Rajesh	М	8.900000	9.1	9.300000	Α	1	9.100000
2	Kissan	٧	9.900000	9.8	10.000000	Α	0	9.900000
3	Mary	N	7.700000	8.0	8.992857	В	0	8.230952
4	Jeen	K	9.800000	9.1	9.900000	A+	1	9.600000
5	Raj	М	8.900000	9.1	9.300000	Α	1	9.100000
6	Hassan	٧	9.900000	9.0	9.200000	А	1	9.366667
7	Mari	N	7.700000	8.0	7.100000	В	1	7.600000
8	Jess	K	8.992857	9.1	9.900000	A+	1	9.330952
9	Rajini	М	8.992857	9.1	9.300000	Α	0	9.130952
10	Kiran	٧	8.992857	9.3	9.200000	Α	0	9.164286
11	Maya	N	7.700000	8.0	7.100000	В	0	7.600000
12	Jolin	K	9.800000	9.1	9.900000	A+	1	9.600000
13	Rajesh	М	8.900000	9.1	9.300000	Α	1	9.100000
14	Riya	М	9.300000	9.9	10.000000	Α	1	9.733333
15	Sana	V	9.900000	9.3	9.200000	А	0	9.466667
16	Mark	N	7.700000	8.0	7.000000	В	0	7.566667

mydf["Conduct"]="Good"
mydf["Average"]=(mydf["SEM1"]+mydf["SEM2"]+mydf["SEM3"])/3
mydf[['SEM1','SEM2']].plot.line()
mydf[['SEM1','SEM2']].plot.line(subplots=True)
mydf.plot.line()
mydf.plot.line(subplots=True)

mydf

8.992857142857144

	Names	Initials	SEM1	SEM2	SEM3	Grade	Placed
0	Joe	K	9.800000	10.0	9.900000	A+	1
1	Rajesh	М	8.900000	9.1	9.300000	Α	1
2	Kissan	V	9.900000	9.8	10.000000	Α	0
3	Mary	N	7.700000	8.0	8.992857	В	0
4	Jeen	K	9.800000	9.1	9.900000	A+	1
5	Raj	М	8.900000	9.1	9.300000	Α	1
6	Hassan	V	9.900000	9.0	9.200000	Α	1
7	Mari	N	7.700000	8.0	7.100000	В	1
8	Jess	K	8.992857	9.1	9.900000	A+	1
9	Rajini	М	8.992857	9.1	9.300000	Α	0
10	Kiran	V	8.992857	9.3	9.200000	Α	0
11	Maya	N	7.700000	8.0	7.100000	В	0
12	Jolin	K	9.800000	9.1	9.900000	A+	1
13	Rajesh	М	8.900000	9.1	9.300000	Α	1
14	Riya	М	9.300000	9.9	10.000000	Α	1
15	Sana	V	9.900000	9.3	9.200000	Α	0
16	Mark	N	7.700000	8.0	7.000000	В	0

mydf.plot(kind="line",x="Names",y="Average")
mydf.plot(kind="scatter",x="Names",y="Average")

mydf.plot(kind="hist",x="Names",y="Average")
mydf.plot(kind="scatter",x="Names",y="Average")


```
mydf.to_csv("mydf.csv")

df=pd.read_csv("/content/mydf.csv")

import seaborn as sns
p1=sns.lineplot(y="Names",x="SEM1",data=df)
```


#col-->Graphs are separeted based on this col
sns.relplot(data=df,x="SEM1",y="SEM2",col="Placed",marker='*')

#create a relational plot using age as y axis and index as x axis separated by class
df1=pd.read_excel("/content/diabetes.xlsx")
df1['index']=range(0,768)
df1

	preg	plas	pres	skin	insu	mass	pedi	age	class	index
0	6	148	72	35	0	33.6	0.627	50	tested_positive	0
1	1	85	66	29	0	26.6	0.351	31	tested_negative	1
2	8	183	64	0	0	23.3	0.672	32	tested_positive	2
3	1	89	66	23	94	28.1	0.167	21	tested_negative	3
4	0	137	40	35	168	43.1	2.288	33	tested_positive	4
•••										
763	10	101	76	48	180	32.9	0.171	63	tested_negative	763
764	2	122	70	27	0	36.8	0.340	27	tested_negative	764
765	5	121	72	23	112	26.2	0.245	30	tested_negative	765
766	1	126	60	0	0	30.1	0.349	47	tested_positive	766
767	1	93	70	31	0	30.4	0.315	23	tested_negative	767

768 rows × 10 columns

sns.relplot(data=df1,x="index",y="age",col="class",marker=">")

sns.load_dataset("tips")

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

tips=sns.load_dataset("tips")
sns.relplot(data=tips,x="total_bill",y="tip",hue="smoker",style="time",palette="dark")

dj=sns.load_dataset("dowjones")
dj