Problem statement

This assignment deals with link/edge prediction in networks. A network is represented as an undirected graph. Such a graph is viewed as G(V, E), where V is the set of nodes and E is the set of edges; there are no self edges or multiple edges. Let degree of node $x \in V, d(x)$ be given by

$$d(x) = |e: e \in E \text{ and } x \text{ is an end vertex of } e|.$$

Let U be the universal set containing all $\frac{|V| \cdot (|V|-1)}{2}$ possible edges, where |V| is the number of vertices. So, U - E is the set of **nonexistent edges** in G. We would like to predict K important **nonexistent edges** based on **ranking** the elements of U - E. Your implementation has to deal with two parts as explained below:

- Part1:
 - The compressed directory is contact-high-school-proj-graph.tar.gz and is available for download from

https://www.cs.cornell.edu/~arb/data/contact-high-school/index.html. Note: Be careful about the "tilde" character while doing copy-paste.

- There are two files in the folder/directory. You need to consider the file contact-high-school-proj-graph.txt only. There are 5,818 lines in the file; each line corresponds to a weighted edge of the graph in the form $i \ j \ w$ where i and j are the two nodes of the undirected edge and w is its weight.
- This dataset corresponds to a social network of 327 high school students and two nodes have an undirected edge between them if the associated students are friends. Observe that j values are listed in non-decreasing order.
- Note that there are 327 nodes in the graph. So, |V| = 327 and |E| = 5818 in G. Convert it into a binary graph by viewing all these w values to be equal to 1. Use this edge information to store the given undirected graph G as an adjacency list.
- Part2: Use the adjacency list to rank each of the nonexistent edges, that is elements of U-E, using the following four scoring functions and print the K top-ranked edges for a given K, in U-E, along with their respective scores in each case. Any edge $e \in U-E$ may be viewed as an ordered pair $< v^1, v^2 >$, where $v^1, v^2 \in V$ are the end vertices of edge e.
 - 1. Jaccard's coefficient (JC): For edge $e_i \in U E$, where $e_i = \langle v_i^1, v_i^2 \rangle$,

$$JC(e_i) = \frac{|\Gamma(v_i^1) \cap \Gamma(v_i^2)|}{|\Gamma(v_i^1) \cup \Gamma(v_i^2)|}$$

where $\Gamma(v)$ is the set of neighbors of the vertex v. For the edges $e_i, e_j \in U - E$, e_i is **more important** than e_j if $JC(e_i) > JC(e_j)$. Sort the edges in U - E by non-increasing value of their JC.

2. Katz's score (KS_{β}): For edge $e_i \in U - E$, where $e_i = \langle v_i^1, v_i^2 \rangle$,

$$KS_{\beta}(e_i) = \sum_{l=2}^{6} \beta^l \cdot |paths_{v_i^1, v_i^2}^l|$$

where $paths_{v_i^1,v_i^2}^l$ is the set of paths of length exactly l between v_i^1 and v_i^2 . Use a value of 0.1 for β in computing the KS score. Sort the edges in U - E by non-increasing value of their KS_{β} .

1

3. Hitting time (HT): For edge $e_i \in U - E$ where $e_i = \langle v_i^1, v_i^2 \rangle$, hitting time of e_i is given as

$$HT(e_i) = -R_{v_i^1, v_i^2} (1)$$

Here $R(v_i^1, v_i^2)$ denotes the expected time of random walk from v_i^1 to reach v_i^2 . Sort the edges in U - E by non-increasing value of their HT.

4. **rooted PageRank (PR** $_{\alpha}$): For edge $e_i \in U - E$ where $e_i = \langle v_i^1, v_i^2 \rangle$, $PR_{\alpha}(e_i)$ is defined as the stationary distribution weight of v_i^2 under the following random walk:

with probability α , jump to v_i^1 .

with probability $1 - \alpha$, go to random neighbor of current node.

Use a value of 0.2 for α in computing the PR. Sort the edges in U-E by non-increasing value of their PR_{α} .

Reference: David Liben-Nowell, Jon M. Kleinberg: The link prediction problem for social networks. CIKM 2003: 556-559.