If $X \sim \text{Bin}(n, p)$ then for large enough n, $X \sim \mathcal{N}(np, np(1-p))$.

Moment Generating Function of $X \sim Pois(\lambda)$

PMF: $P_X(x) = \frac{e^{-\lambda}\lambda^x}{x!}$

MGF;

 $M_X(t) = \mathbb{E}[e^{tx}] = \sum_{x=0}^{\infty} e^{tx} \frac{e^{-\lambda} \lambda^x}{x!}$ $= \sum_{x=0}^{\infty} e^{-\lambda} \frac{e^t \lambda}{x!}$

$$= \sum_{x=0}^{\infty} \frac{e^{-\lambda} (e^t \lambda)^x e^{-e^t \lambda} e^{e^t \lambda}}{x!} \cdots (1)$$
$$= e^{e^t \lambda - \lambda} = e^{(e^t - 1)\lambda}$$

where the above holds since (1); $\sum_{x=0}^{\infty} \frac{e^{-e^t \lambda} (e^t \lambda)^x}{x!} = 1$

So If $X_1, X_2, X_3, \dots, X_n$ are iid Pois(1) then the Distribution of $X_1 + X_2 + \dots + X_n$ is ?

when Random Variables are independent;

$$\begin{aligned} M_{X_1 + X_2 + \dots X_n}(t) &= M_{X_1}(t) M_{X_2}(t) \dots M_{X_n}(t) \\ &= \left(M_{X_1}(t) \right)^n \\ &= \left(e^{\left(e^t - 1 \right)} \right)^n \\ so, X_1 + X_2 + \dots + X_n \sim Pois(n) \end{aligned}$$

and for n longe enough; $X_1 + X_2 + \cdots + X_n \dot{\sim} N(n, n)$ So By Central Limit Theorem; If $X \sim \text{Pois}(n)$ then $X \dot{\sim} \mathcal{N}(n, n)$ for large enough n. {Use Continuity Correction}

 \rightarrow Gamma convergence to Normal; (Excercise) (1) MGF of Gamma (n, λ) (2) Show that the MGF of $X_1 + X_2 + \cdots + X_n$ is same as MGF of Gamma (n, λ) where X_1, X_n, \ldots, X_n are iid Expo (λ) . (3) Then by CLT for n large enough; $X_1 + X_2 + \cdots + X_n \sim \mathcal{N}\left(\frac{n}{\lambda}, \frac{n}{\lambda^2}\right)$

Suppose Z_1, Z_2, \ldots, Z_n are ind $\mathcal{N}(0,1)$ then $\bar{Z}_n = \frac{Z_1 + Z_n + \cdots + Z_n}{n}$ will have $\bar{Z}_n \sim N\left(0, \frac{1}{n}\right)$. Note that \bar{Z}_n and $\sum_{j=1}^n \left(Z_j - \bar{Z}_n\right)^2$ are independent and $\sum_{j=1}^n \left(Z_j - \bar{Z}_n\right)^2 \sim \chi_{n-1}^2$

For
$$n = 2$$
; $\bar{Z}_n = \frac{Z_1 + Z_2}{2}$ and $\sum_{j=1}^2 (Z_j - \bar{Z}_2)^2 = (Z_1 - \bar{Z}_2^2) + (Z_2 - \bar{Z}_2)^2$

$$= \left(Z_1 - \frac{Z_1 + Z_2}{2}\right)^2 + \left(Z_2 - \frac{Z_1 + Z_2}{2}\right)^2$$

$$= \left(\frac{Z_1 - Z_2}{2}\right)^2 + \left(\frac{Z_2 - Z_1}{2}\right)^2 = 2\left(\frac{Z_1 - Z_2}{2}\right)^2 = \left(\frac{Z_1 - Z_2}{\sqrt{2}}\right)^2$$

Note

$$\begin{split} Z_1 - Z_2 &\sim N(0,2) \\ \frac{Z_1 - Z_2}{\sqrt{2}} &\sim N(0,1) \\ \Rightarrow \left(\frac{Z_1 - Z_2}{\sqrt{2}}\right)^2 &\sim \chi_1^2(1) \end{split}$$

Now to show that \bar{Z}_2 and $\sum_{j=1}^2 (Zj - Z_n)^2$ are independent, we reed to show that $Z_1 + Z_2$ and $Z_1 - Z_2$, are independent since $\sum_{j=1}^2 (Zj - Zn)^2 = \left(\frac{Z_1 - Z_2}{\sqrt{2}}\right)^2$ is some function of Z_1 and Z_2 same as $\bar{Z}_2 = \frac{Z_1 + Z_2}{2}$ is a function of Z_1 and Z_2 .

Now If, $\bar{Z}_n \sim \mathcal{N}\left(0, \frac{1}{n}\right)$ then $\sqrt{n}\bar{Z}_n \sim \mathcal{N}(0, 1)$ and it is independent of $\sum_{j=1}^n \left(Z_j - Z_n\right)^2$ too.

Now,
$$T = \frac{Z}{\sqrt{\frac{X}{n}}}$$
 where $Z \sim \mathcal{N}(0, 1)$ and $X \sim \chi_n^2$ and,

$$\Rightarrow \frac{\sqrt{n}\bar{Z}_n}{\sqrt{\frac{\Sigma(Z_j-Z_n)^2}{n-1}}} \sim t_{n-1} \text{ distribution with } n-1 \text{ deg of freedom}.$$

Now suppose $X_1, X_2, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, then

$$S_n^2 = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)^2}{n-1}$$

is the sample variance, when $\bar{X_n}$ is the sample mean, and the distribution of $\frac{(n-1)S_n^2}{\sigma^2} = \frac{\sum_{i=1}^n \left(X_i - \bar{X}\right)^2}{\sigma_2} \sim \chi_{n-1}^2.$

Note that,

$$\frac{(n-1)S_n^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$$
$$= \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma} - \frac{\bar{X}_n - \mu}{\sigma}\right)^2$$
$$= \sum_{i=1}^n \left(Z_i - \bar{Z}_n\right) \sim \chi_{n-1}^2$$

and

$$Z_i = \frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$
$$\bar{Z}_n = \frac{\sum \frac{X_i}{n} - \mu}{\sigma} = \frac{\sum \frac{(X_i - \mu)}{\sigma}}{n} = \bar{Z}_n$$

$$\bar{Z}_n = \frac{\sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)}{n} \text{ and } \frac{(n-1)s_n^2}{\sigma^2}$$
are independent by \cdots (1)
$$\bar{Z}_n = \frac{\bar{X}_n - \mu}{\sigma} \sim N\left(0, \frac{1}{n}\right)$$
then $\sqrt{n}\bar{Z}_n = \sqrt{n}\left(\frac{\bar{X}_n - \mu}{\sigma}\right) \sim \mathcal{N}(0, 1)$

$$\implies \frac{\sqrt{n}\left(\frac{\bar{X}_n - \mu}{\sigma}\right)}{\sqrt{\frac{(n-1)s_n^2}{\sigma^2(n-1)}}} = \frac{\sqrt{n}\left(\frac{\bar{X}_n - \mu}{\sigma}\right)}{\sqrt{\frac{(S_n)^2}{\sigma^2}}} \sim t_{n-1}$$

Now, $\frac{\sqrt{n}(\bar{x}_n-\mu)}{\sigma} \sim N(0,1)$ in this we can replace σ by S_n which will then give us t_{n-1} distribution and will have a fatter tail than $\mathcal{N}(0,1)$.

Statistics

Point Estimation

When we are trying to estimate a finite number of points or parameter; e.g; trying to estimate the average height of the class of some tudents, where average height = μ So population μ in the unknown parameter of interest. Say distribution of the whole Class's average height is $\mathcal{N}(\mu, 1)$ then we draw a sample $X_1, X_2, X_3, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$ then we find a reasonable function $h(X_1, X_2, \ldots, X_n)$ which will be equal to the estimator of μ .

one good estimator of μ is $\frac{X_1+X_2+\cdots+X_n}{n}$, the sample mean, and it is good estimator because by law of large numbers as $n\to\infty$ $\frac{X_1+X_2+\ldots X_n}{n}$ converges to μ in probability.

Biased and Unbiased Estimators

- (1) $\hat{H}_1 = X_1$ (is unbiased but not a very good estimator, since variance does not tend to 0)
- (2) $\hat{H}_2 = \frac{\sum_{i=1}^n X_i}{n}$ (is unbiased and also a good estimator)
- (3) $\hat{H}_3 = \frac{\sum_{i=1}^n X_i}{n} + \frac{1}{n}$ is a biased estimator.