Singular Lorentz Transformations and Pure Radiation Fields

Kevin Maguire

April 21, 2014

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- \bigcirc $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation

Singular Lorentz Transformations and Pure Radiation Fields

014-04-21

Layout

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- \bigcirc $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation

Singular Lorentz Transformations and Pure Radiation Fields

14-04-21

Layout

Introduction: Lorentz Transformations
 Strange Minkowskian Line Element

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- \bigcirc $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation

Singular Lorentz Transformations and Pure Radiation Fields

4-04-21

└─_Layout

O Introduction: Lorentz Transformations
 Strange Minkowskian Line Element
 Singular Lorentz transformation

- Introduction: Lorentz Transformations
- Strange Minkowskian Line Element
- Singular Lorentz transformation
- **3** $SL(2,\mathbb{C})$ Matrices of the Lorentz Transformation

Singular Lorentz Transformations and Pure Radiation Fields

14-04-21

Layout

a Introduction: Lorentz Transformations
Strange Minkowskian Line Element
Singular Lorentz transformation
SIGL2 CI Milkstran of the Lorentz Transformation

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2 + y'^2 + z'^2 - t'^2 = x^2 + y^2 + z^2 - t^2$$

in the transformation

$$(x, y, z, t) \rightarrow (x', y', z', t')$$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group SO⁺(1,3)
- In general lorentz transformations

40.40.45.45. 5 .000.

Singular Lorentz Transformations and Pure Radiation Fields

Introduction: Lorentz Transformations

stroduction: Lorentz Transformations

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- –orthochronous means time is always positive and the direction of time is preserve
- ullet —Think of the standard Lornetz transformation, always two null directions at $x\pm$

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2 + y'^2 + z'^2 - t'^2 = x^2 + y^2 + z^2 - t^2$$

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group $SO^+(1,3)$
- In general lorentz transformations have two invariant null directions

Singular Lorentz Transformations and Pure Radiation Fields

14-04-

Introduction: Lorentz Transformations

A Lorentz transformation is defined by the preservation of the quadratic form.
$x'^2 + y'^2 + x'^2 - t'^2 = x^2 + y^2 + x^2 - t^2$
in the transformation
$(x, y, z, t) \rightarrow (x', y', z', t')$
u Take the Proper Orthochronous
Lorentz Transformations(POLTs)
which form the restricted Lorentz
group SO*(1.3)

troduction: Lorentz Transformations

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- –orthochronous means time is always positive and the direction of time is preserve
- ullet —Think of the standard Lornetz transformation, always two null directions at $x\pm$

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2 + y'^2 + z'^2 - t'^2 = x^2 + y^2 + z^2 - t^2$$

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group $SO^+(1,3)$
- In general lorentz transformations have two invariant null directions

Singular Lorentz Transformations and Pure Radiation Fields

Introduction: Lorentz Transformations

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- –orthochronous means time is always positive and the direction of time is preserve
- ullet -Think of the standard Lornetz transformation, always two null directions at $x\pm$

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2 + y'^2 + z'^2 - t'^2 = x^2 + y^2 + z^2 - t^2$$
.

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group SO⁺(1,3)
- In general lorentz transformations have two invariant null directions

Singular Lorentz Transformations and Pure Radiation Fields

14-04-2

Introduction: Lorentz Transformations

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- orthochronous means time is always positive and the direction of time is preserved.
- ullet -Think of the standard Lornetz transformation, always two null directions at $x\pm$

 A Lorentz transformation is defined by the preservation of the quadratic form

$$x'^2 + y'^2 + z'^2 - t'^2 = x^2 + y^2 + z^2 - t^2$$
.

in the transformation $(x, y, z, t) \rightarrow (x', y', z', t')$

- Take the Proper Orthochronous Lorentz Transformations(POLTs) which form the restricted Lorentz group SO⁺(1,3)
- In general lorentz transformations have two invariant null directions

Singular Lorentz Transformations and Pure Radiation Fields

14-04-2

Introduction: Lorentz Transformations

- -Proper is det 1 . preserves the orientation of spacial axes, preserves handedness
- orthochronous means time is always positive and the direction of time is preserved.
- ullet -Think of the standard Lornetz transformation, always two null directions at $x\pm$

add in the contents

Singular Lorentz Transformations and Pure Radiation Fields Layout

- derive a strange minkowskian line element
- making a complicated transformation that keeps a single null geodesic fixed look trivial

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 \left(\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2\right) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m)$$

• Make further coordinate transformations to obtain

$$\epsilon ds^2 = \frac{r^2}{\cosh^2 \mu \xi} (d\xi^2 + d\eta^2) - 2dudr - \left(\mu^2 - \frac{2k}{r}\right) du^2.$$

ullet Taking the limit as the energy, $\mu o 0$ gives The Kasner Solution

$$eds^{2} = r^{2}(d\xi^{2} + d\eta^{2}) - 2dudr - \frac{2k}{r}du^{2}$$

Singular Lorentz Transformations and Pure Radiation Fields

Strange Minkowskian Line Element

2014-04-21

e Minkowskian Line Element	
t with the Schwarzschild solution	
$\mathrm{cd} a^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d} r^2 + r^2 (\mathrm{d} \theta^2 + \sin^2 \theta \mathrm{d} \phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d} t^2.$	

- First we are going to derive a strange form of the Minkowskian line element.. of t vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- \bullet These transformations put the line element in a form where we can take the limit the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

• Make further coordinate transformations to obtain

$$\epsilon ds^2 = \frac{r^2}{\cosh^2 u\xi} (d\xi^2 + d\eta^2) - 2dudr - \left(\mu^2 - \frac{2k}{r}\right) du^2.$$

• Taking the limit as the energy, $\mu \to 0$ gives The Kasner Solution

$$eds^{2} = r^{2}(d\xi^{2} + d\eta^{2}) - 2dudr - \frac{2k}{r}du^{2}$$

Singular Lorentz Transformations and Pure Radiation Fields

itrange Minkowskian Line Element & Start with the Schwarzschild admins $akx^2 = \left(1 - \frac{2m}{r}\right)^{-1} dx^2 + r^2(d\theta^2 + \sin^2\theta dx^2) - \left(1 - \frac{2m}{r}\right) dx^2.$ A Make the Eddingson Finkelation coordinate transformation [2] $u = t - r - 2\min\{r - 2m\}.$

2014-04-21

- First we are going to derive a strange form of the Minkowskian line element.. of t vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- \bullet These transformations put the line element in a form where we can take the limit the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon \mathrm{d}s^2 = \frac{r^2}{\cosh^2 \mu \xi} (\mathrm{d}\xi^2 + \mathrm{d}\eta^2) - 2\mathrm{d}u\mathrm{d}r - \left(\mu^2 - \frac{2k}{r}\right) \mathrm{d}u^2.$$

• Taking the limit as the energy, $\mu \to 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2$$

Singular Lorentz Transformations and Pure Radiation Fields

Strange Minkowskian Line Element

Strange Minkowskian Line Element $ab = (1-\frac{2\pi}{3})^2 dx^2 + r^2(d\theta^2 + \omega x^2 h h^2) - \left(1-\frac{2\pi}{3}\right)^2 dx^2.$ A Main the Eddingsine Funktionic conformation [2] $a = (1-\frac{2\pi}{3})^2 dx^2 + r^2(d\theta^2 + \omega x^2 h h^2) - \left(1-\frac{2\pi}{3}\right)^2 dx^2.$ A Main the Eddingsine Funktionic conformation [2] $a = (1-r) - 2\pi h^2 (r) - \frac{2\pi}{3}$ $a = (1-r) - 2\pi h^2 (r) - \frac{2\pi}{3}$ $a = (1-r) - 2\pi h^2 (r) - \frac{2\pi}{3} h^2 (r) - \frac{$

- First we are going to derive a strange form of the Minkowskian line element.. of t vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon \mathrm{d}s^2 = \frac{r^2}{\cosh^2 \mu \xi} (\mathrm{d}\xi^2 + \mathrm{d}\eta^2) - 2\mathrm{d}u\mathrm{d}r - \left(\mu^2 - \frac{2k}{r}\right) \mathrm{d}u^2.$$

ullet Taking the limit as the energy, $\mu o 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2.$$

Singular Lorentz Transformations and Pure Radiation Fields

Strange Minkowskian Line Element

Strange Minkowskian Line Element

a Stars with Schwarzschild scholars $a(x^2 - (1 - \frac{2\pi}{r})^2 d^2 x^2 x^2 (d^2 + u^2 du^2) - (1 - \frac{2\pi}{r}) dx^2.$ A Mate the Editorphic Frinkinin conclusion two-forwards [7] $w = x - x - 2\pi \ln(x^2 - 2m).$ • Make further conclusion two-forwards in the scholarschild schola

- First we are going to derive a strange form of the Minkowskian line element.. of t vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

Start with the Schwarzschild solution

$$\epsilon \mathrm{d}s^2 = \left(1 - \frac{2m}{r}\right)^{-1} \mathrm{d}r^2 + r^2 (\mathrm{d}\theta^2 + \sin^2\theta \mathrm{d}\phi^2) - \left(1 - \frac{2m}{r}\right) \mathrm{d}t^2.$$

• Make the Eddington-Finkelstein coordinate transformation [2]

$$u = t - r - 2m \ln(r - 2m).$$

Make further coordinate transformations to obtain

$$\epsilon \mathrm{d}s^2 = \frac{r^2}{\cosh^2 \mu \xi} (\mathrm{d}\xi^2 + \mathrm{d}\eta^2) - 2\mathrm{d}u\mathrm{d}r - \left(\mu^2 - \frac{2k}{r}\right) \mathrm{d}u^2.$$

ullet Taking the limit as the energy, $\mu o 0$ gives The Kasner Solution

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2dudr - \frac{2k}{r} du^2.$$

Singular Lorentz Transformations and Pure Radiation Fields

Strange Minkowskian Line Element

Strange Minkowskian Line Element

a Stars with Schwarzschild scholars $a(x^2 - (1 - \frac{2\pi}{r})^2 d^2 x^2 x^2 (d^2 + u^2 du^2) - (1 - \frac{2\pi}{r}) dx^2.$ A Mate the Editorphic Frinkinin conclusion two-forwards [7] $w = x - x - 2\pi \ln(x^2 - 2m).$ • Make further conclusion two-forwards in the scholarschild schola

- First we are going to derive a strange form of the Minkowskian line element.. of t vacuum field equations, which will be familiar to most of us
- to remove the coordinate singularity in the Schwarzchild solution
- These transformations put the line element in a form where we can take the limit the energy goes to 0
- It is easily shown with further coord transforms that this is Kasner, but it wont be done here

• Then with m = 0 the strange Minkowskian line element is obtained

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2du dr.$$

• It is easily shown that r = 0 gives

$$\epsilon ds^2 = 0.$$

and thus is a single null geodesic.

Singular Lorentz Transformations and Pure Radiation Fields

2014-04-2

finkowskian Line Element
th m = 0 the strange Minkowskian line element is obtained
$eds^{2} = r^{2}(d\xi^{2} + d\eta^{2}) - 2dadr.$

- Its easily shown with suitable coordinate transforms that this is minkowskian line element
- This is best shown by calculating the geodesic equations after the Eddington-Finkelstein coord transforms, all zero if u is proper time along the geodesic

• Then with m = 0 the strange Minkowskian line element is obtained

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2du dr.$$

• It is easily shown that r = 0 gives

$$\epsilon \mathrm{d}s^2 = 0.$$

and thus is a single null geodesic.

Singular Lorentz Transformations and Pure Radiation Fields

- Its easily shown with suitable coordinate transforms that this is minkowskian line element
- This is best shown by calculating the geodesic equations after the Eddington-Finkelstein coord transforms, all zero if u is proper time along the geodesic

• Then with m = 0 the strange Minkowskian line element is obtained

$$\epsilon ds^2 = r^2 (d\xi^2 + d\eta^2) - 2du dr.$$

• It is easily shown that r = 0 gives

$$\epsilon \mathrm{d}s^2 = 0.$$

and thus is a single null geodesic.

Singular Lorentz Transformations and Pure Radiation Fields

- Its easily shown with suitable coordinate transforms that this is minkowskian line element
- This is best shown by calculating the geodesic equations after the Eddington-Finkelstein coord transforms, all zero if u is proper time along the geodesic

add in the contents

Singular Lorentz Transformations and Pure Radiation Fields	Layout	
onigural Estante Transformations and Fare Tradation Fishes		
Layout	add in the contents	

LTs that leave one null invariant direction are constructed

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

• Addition of complex numbers is commutative, and w has two parameters, so the singular Lorentz transformations form a 2-parameter abelian subgroup of the Lorentz group.

Singular Lorentz Transformations and Pure Radiation Fields

Singular Lorentz Transformation

ingular Lorentz Transformation		
element[3]	arameter $\zeta := \xi + i\eta$, to get the new line $e^2 = e^2 d\zeta d\zeta^2 - 2dudr$.	

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $x' - t' = -r = z - t,$
 $x' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

• Addition of complex numbers is commutative, and *w* has two parameters, so the singular Lorentz transformations form a 2-parameter abelian subgroup of the Lorentz group

Singular Lorentz Transformations and Pure Radiation Fields

Singular Lorentz Transformation

lefter an arbitrary complex parameter $\zeta := \zeta + i\eta$, to get the new line lement[1] $= \kappa dx^2 = r^2 d\zeta d\zeta^2 - 2 c t dr^2$. Be transformation $\zeta \to \zeta + w$, where $w \in C$ is then trivial and leaves the right still geodesic r = 0 invariant.

ingular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

• Addition of complex numbers is commutative, and *w* has two parameters, so the singular Lorentz transformations form a 2-parameter abelian subgroup of the Lorentz group

Singular Lorentz Transformations and Pure Radiation Fields

Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

• Addition of complex numbers is commutative, and w has two parameters, so the singular Lorentz transformations form a 2-parameter abelian subgroup of the Lorentz group

Singular Lorentz Transformations and Pure Radiation Fields

Singular Lorentz Transformation

* The transformation (c = (w - w - w - w) = 1 to the trivial and larves the side algorithm (c = (w - w) + w = w = 1) to the trivial and larves the side algorithm (c = (w - w) + w = 1). It claims to confidents the transformation becomes d = (w - w - w) + (w -

Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

• Define an arbitrary complex parameter $\zeta := \xi + i\eta$, to get the new line element[3]

$$\epsilon ds^2 = r^2 d\zeta d\overline{\zeta} - 2dudr.$$

- The transformation $\zeta \to \zeta + w$, where $w \in \mathbb{C}$ is then trivial and leaves the single null geodesic r = 0 invariant.
- In Cartesian coordinates this transformation becomes

$$x' + iy' = x + iy + w(t - z),$$

 $z' - t' = -r = z - t,$
 $z' + t' = z + t + w(x - iy) + w(x + iy) + w\bar{w}(t - z).$

• Addition of complex numbers is commutative, and w has two parameters, so the singular Lorentz transformations form a 2-parameter abelian subgroup of the Lorentz group

Singular Lorentz Transformations and Pure Radiation Fields

Singular Lorentz Transformation

we have confident to (-1, -1, -1) and (-1, -1) and (-1, -1) and (-1, -1) and (-1, -1) are the weight and genotice -1 are the weight and (-1, -1) and (-1, -1) are the weight and (-1, -1) are the weight -1 and -1 are the weight -1 are the weigh

Singular Lorentz Transformation

- This is what we want, An LT which leaves one null invariant.
- The use in the previous coord transforms was to make this transformation look trivial
- So this is what the seemingly trivial transformation looks like in cartesians
- Again its clear that r = 0 keeps one direction fixed, as then z=t
- but it doesn't work both ways, not all 2 parameter abelian subgroups are singular lorentz transformations

add in the contents

- Singular Lorentz Transformations and Pure Radiation Fields

 Layout

 add in the carbons
 - shown here that there is a 2 to 1 correspondence between SL(2,C) and POLTs
 - first show there 1 to 1 correspondence between points in Minkowskian space time and Hermitian matrices

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right)$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - v^2 - z^2$$

It is also closely related to spinors

$$A = [t\mathbb{I}_2 - \vec{x} \cdot \vec{\sigma}].$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SI(2, \mathbb{C})$

Singular Lorentz Transformations and Pure Radiation Fields

 $-SL(2,\mathbb{C})$ Matrices of the POLT

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- Where σ are the pauli matirces which form a basis for the Lie algebra of SU(2)
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This mean it has determinant 1. **write it on the board**

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - v^2 - z^2$$

It is also closely related to spinors

$$A = [t\mathbb{I}_2 - \vec{x} \cdot \vec{\sigma}].$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SI(2, \mathbb{C})$

Singular Lorentz Transformations and Pure Radiation Fields

 \sqsubseteq $SL(2,\mathbb{C})$ Matrices of the POLT

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- Where σ are the pauli matirces which form a basis for the Lie algebra of SU(2)
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This mean it has determinant 1. **write it on the board**

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

It is also closely related to spinors

$$A = [t\mathbb{I}_2 - \vec{x} \cdot \vec{\sigma}].$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SI(2,\mathbb{C})$

Singular Lorentz Transformations and Pure Radiation Fields

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- Where σ are the pauli matirces which form a basis for the Lie algebra of SU(2)
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This mean it has determinant 1. **write it on the board**

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• It is also closely related to spinors

$$A = [t\mathbb{I}_2 - \vec{x} \cdot \vec{\sigma}].$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SL(2,\mathbb{C})$

Singular Lorentz Transformations and Pure Radiation Fields

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- Where σ are the pauli matirces which form a basis for the Lie algebra of SU(2)
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This mean it has determinant 1. **write it on the board**

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• It is also closely related to spinors

$$A = [t\mathbb{I}_2 - \vec{x} \cdot \vec{\sigma}].$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SL(2,\mathbb{C})$

Singular Lorentz Transformations and Pure Radiation Fields

 \subseteq $SL(2,\mathbb{C})$ Matrices of the POLT

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- Where σ are the pauli matirces which form a basis for the Lie algebra of SU(2)
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This mean it has determinant 1. **write it on the board**

- There is a one to one correspondence between points in Minkowskian space-time and Hermitian matrices
- Contruct the following matrix

$$A = \left(\begin{array}{cc} t - z & x + iy \\ x - iy & t + z \end{array}\right),$$

• This is useful as its determinant is the Lorentz quadratic form modulo a sign

$$\det(A(\vec{x})) = t^2 - x^2 - y^2 - z^2.$$

• It is also closely related to spinors

$$A = [t\mathbb{I}_2 - \vec{x} \cdot \vec{\sigma}].$$

• Construct the transformation $A(\vec{x}') = UA(\vec{x})U^{\dagger}$, where

$$U = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right),$$

is an element of $SL(2,\mathbb{C})$

Singular Lorentz Transformations and Pure Radiation Fields

 \subseteq $SL(2,\mathbb{C})$ Matrices of the POLT

- Complex Hermitian matrices have 4 independant components, so the element of such a matrix can be used to represent points in Minkowskian space-time.
- Where σ are the pauli matirces which form a basis for the Lie algebra of SU(2)
- where $\alpha, \beta, \gamma, \delta$ are complex its an element of the special linear group. This mean it has determinant 1. **write it on the board**

- $A(\vec{x}')$ and $A(\vec{x})$ have the same determinant so the above transformation preserves the Lorentz quadratic form, thus is a Lorentz transformation.
- Write this transformation component wise

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix},$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha} + (x+iy)\bar{\beta} & (t-z)\bar{\gamma} + (x+iy)\bar{\delta} \\ (x-iy)\bar{\alpha} + (t+z)\bar{\beta} & (x-iy)\bar{\gamma} + (t+z)\bar{\delta} \end{pmatrix}.$$

• Thus the general relations

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta\bar{\alpha} + (t + z)\beta\bar{\beta},$$

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta},$$

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}.$$

Singular Lorentz Transformations and Pure Radiation Fields

 $SL(2,\mathbb{C})$ Matrices of the POLT

- This is becasue the determinant of U is 1
- I want to show you an example calcualtion of U, to do this we write in componen form

- $A(\vec{x}')$ and $A(\vec{x})$ have the same determinant so the above transformation preserves the Lorentz quadratic form, thus is a Lorentz transformation.
- Write this transformation component wise

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix},$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha} + (x+iy)\bar{\beta} & (t-z)\bar{\gamma} + (x+iy)\bar{\delta} \\ (x-iy)\bar{\alpha} + (t+z)\bar{\beta} & (x-iy)\bar{\gamma} + (t+z)\bar{\delta} \end{pmatrix}.$$

Thus the general relations

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta\bar{\alpha} + (t + z)\beta\bar{\beta},$$

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta},$$

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}.$$

Singular Lorentz Transformations and Pure Radiation Fields

L $SL(2,\mathbb{C})$ Matrices of the POLT

serves the Lorentz quadratic form, thus n a \(\) Lorentz transformation. The this transformation component wise $\begin{pmatrix} z' - z' & x' + \hat{p}' \\ z' - \hat{p}' & z' + \hat{x}' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} z - x + \hat{p}' \\ x - \hat{p}' & z' + z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix} \begin{pmatrix} z - \hat{p} + (x + \hat{p}) \hat{\beta} \\ z - \hat{p} + (x + \hat{p}) \hat{\beta} \end{pmatrix}$

SL(2 C) Matrices of the POLT

- This is becasue the determinant of U is 1
- I want to show you an example calcualtion of U, to do this we write in componen form

- $A(\vec{x}')$ and $A(\vec{x})$ have the same determinant so the above transformation preserves the Lorentz quadratic form, thus is a Lorentz transformation.
- Write this transformation component wise

$$\begin{pmatrix} t'-z' & x'+iy' \\ x'-iy' & t'+z' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} t-z & x+iy \\ x-iy & t+z \end{pmatrix} \begin{pmatrix} \bar{\alpha} & \bar{\gamma} \\ \bar{\beta} & \bar{\delta} \end{pmatrix},$$

$$= \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} (t-z)\bar{\alpha} + (x+iy)\bar{\beta} & (t-z)\bar{\gamma} + (x+iy)\bar{\delta} \\ (x-iy)\bar{\alpha} + (t+z)\bar{\beta} & (x-iy)\bar{\gamma} + (t+z)\bar{\delta} \end{pmatrix}.$$

• Thus the general relations

$$t' - z' = (t - z)\alpha\bar{\alpha} + (x + iy)\alpha\bar{\beta} + (x - iy)\beta\bar{\alpha} + (t + z)\beta\bar{\beta},$$

$$x' + iy' = (t - z)\alpha\bar{\gamma} + (x + iy)\alpha\bar{\delta} + (x - iy)\beta\bar{\gamma} + (t + z)\beta\bar{\delta},$$

$$t' + z' = (t - z)\gamma\bar{\gamma} + (x + iy)\gamma\bar{\delta} + (x - iy)\delta\bar{\gamma} + (t + z)\delta\bar{\delta}.$$

イロト (間) (目) (目) (目) (の)

Singular Lorentz Transformations and Pure Radiation Fields

 $\cup SL(2,\mathbb{C})$ Matrices of the POLT

SL(2 C) Matrices of the POLT

- This is becasue the determinant of U is 1
- I want to show you an example calcualtion of U, to do this we write in componen form

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0$$
 $\gamma = \bar{w}a, \qquad \delta = \alpha$

So there are always two possible choices of U

$$U=\pm \left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

Singular Lorentz Transformations and Pure Radiation Fields

Example: Singular Lorentz transformation

Value the singular Lorentz transformation from earlier t'-z'=t-z, $x'+\dot{y}''=x+\dot{y}+w(t-x),$ $t'+x'=t+x+w(x-\dot{y})+\ddot{w}(x+\dot{y})+w\ddot{w}(t-x).$

xample: Singular Lorentz transformation

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- ullet A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}a, \qquad \delta = \alpha.$

So there are always two possible choices of U

$$U=\pm \left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

Singular Lorentz Transformations and Pure Radiation Fields

Example: Singular Lorentz transformation

 $\sqrt{1}$ bit the singular Lorentz transformation from earlier $t'-t'=t-x, \\ x'+y''=x+iy+w(t-x), \\ t'+x''=x+iy+w(t-x), \\ t'+x''=x+ix+w(t-x), \\ t'+x''=x+ix+w(t-x), \\ u'''=x+ix+u'''=x+ix+u''''=x+ix+u''''=x+ix+u''''=x+ix+u'''=x+ix+u'''=x+ix+u'''=x+ix+u'''=x+ix+u'''=x+ix+u''=x+i$

xample: Singular Lorentz transformation

 $=\pm 1$, $\beta = 0$, $= \bar{w}s$, $\delta = \alpha$.

- ullet Where we have also used det(U)=1
- becasue the sign doesn't matter is still a solution Eqn(27)
- A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

 Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}a, \qquad \delta = \alpha.$

So there are always two possible choices of U

$$U=\pm\left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

1014012121212121

Singular Lorentz Transformations and Pure Radiation Fields

Example: Singular Lorentz transformation

$$\label{eq:problem} \begin{split} \nabla \text{Take the singular Lorentz transformation from earlier} & i'-z' = t-z,\\ & x' + p' = x+p' + w(t-z),\\ & i'+z' = t+z+w(x-p') + \delta(x+p') + w\delta(t-z). \end{split}$$
 a Equate coefficient on the RHS of the quation with the RHS of the generalizations on the previous slide to obtain

xample: Singular Lorentz transformation

always two possible choices of U $U=\pm \left(\begin{array}{cc} 1 & 0 \\ \bar{w} & 1 \end{array}\right)$

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- ullet A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}a, \qquad \delta = \alpha.$

So there are always two possible choices of U

$$U=\pm\left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

Singular Lorentz Transformations and Pure Radiation Fields

Example: Singular Lorentz transformation

 $\begin{array}{ll} x-y=x-x,\\ x'+y'=x-y-w(y-x),\\ x'+x'=x-x-w(y-x)+w(x-y)+w(x-y)+w(x'-x),\\ \end{array}$ If some confidence on the SPG of the equation with the SPG of the general electron on the previous data to class. $\begin{array}{ll} x=\pm 1, & \beta=0,\\ y=ab, & \beta=a,\\ z=ab, & \beta=a,\\ \end{array}$ So there are along the ground electric of $U=\frac{1}{4}, & 0,\\ U=\frac{1}{4}, & 0,\\ \end{array}$

xample: Singular Lorentz transformation

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- ullet A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

• Take the singular Lorentz transformation from earlier

$$t' - z' = t - z,$$

 $x' + iy' = x + iy + w(t - z),$
 $t' + z' = t + z + w(x - iy) + \bar{w}(x + iy) + w\bar{w}(t - z).$

• Equate coefficients on the RHS of this equation with the RHS of the general relations on the previous slide to obtain

$$\alpha = \pm 1, \qquad \beta = 0,$$
 $\gamma = \bar{w}a, \qquad \delta = \alpha.$

So there are always two possible choices of U

$$U=\pm\left(egin{array}{cc} 1 & 0 \ ar{w} & 1 \end{array}
ight)$$

• Thus there is a 2 to 1 correspondence between elements of $SL(2,\mathbb{C})$ and POLTs

Singular Lorentz Transformations and Pure Radiation Fields

Example: Singular Lorentz transformation

 $\begin{array}{ll} x-y=x-x,\\ x'+y'=x-y-w(y-x),\\ x'+x'=x-x-w(y-x)+w(x-y)+w(x-y)+w(x'-x),\\ \end{array}$ If some confidence on the SPG of the equation with the SPG of the general electron on the previous data to class. $\begin{array}{ll} x=\pm 1, & \beta=0,\\ y=ab, & \beta=a,\\ z=ab, & \beta=a,\\ \end{array}$ So there are along the ground electric of $U=\frac{1}{4}, & 0,\\ U=\frac{1}{4}, & 0,\\ \end{array}$

xample: Singular Lorentz transformation

- Where we have also used det(U) = 1
- becasue the sign doesn't matter is still a solution Eqn(27)
- ullet A,A' are points in Minkowskian space time, and $\pm U$ are POLTs

temp

Singular Lorentz Transformations and Pure Radiation Fields

└─_temp

temp

• temp

Singular Lorentz Transformations and Pure Radiation Fields

References

- 1 J.L. Synge "Relativity: The Special Theory" North Holland Publishing Company (1965)
- 2 D. Finkelstein "Past-Future Asymmetry of the Gravitational Field of a Point Particle" - Phys. Rev. Vol 110, (1958) http://journals.aps.org/pr/pdf/10.1103/PhysRev.110.965
- 3 P.A. Hogan, C.Barrabès "Advanced General Relativity: Gravity Waves, Spinning Particles and Black Holes" - Oxford University Press (May 2013)
- 4 I. Robinson "Spherical Gravitational Waves" Phys.Rev.Lett. 4 (1960) 431-432
 - http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.4.431
- 5 P.A Hogan, C. Barrabès "Singular Null Hypersurfaces" World Scientific Pub Co Inc (April 2004)
- 6 R. Penrose, W. Rindler "Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields" - Cambridge University Press, (Feb 1987)
- 7 Tristan Needham "Visual Complex Analysis" Clarendon Press, Oxford (1997)
- 8 Various Authors "Space-Time and Geometry: The Alfred Schild Lectures" -University of Texas Press (March 21, 2012)

Singular Lorentz Transformations and Pure Radiation Fields

References

1 J.L. Synge - "Relativity: The Special Theory" - North Holland Publishis

Company (1965)

2 D. Finishtein - "Past-Future Asymmetry of the Gravitational Field of a Po

Particle" - Phys. Rev. Vol 110. (1958) http://journals.aps.org/pr/pdf/10.1103/PhysRev.110.968 P.A. Hogan, C.Barrabès - "Advanced General Relativity: Gravity Wave

Spinning Particles and Black Holes" - Oxford University Press (May 201) I. Robinson "Spherical Gravitational Waves" - Phys. Rev. Lett. 4 (1960)

http://iournals.aps.ors/prl/pdf/10.1103/PhysRevLett.4.431 P.A Hogan, C. Barrabin - "Singular Null Hypersurfaces" - World Scientifi Pub Co Inc (April 2004) 6 R. Penrose, W. Rindler - "Spinors and Space-Time: Volume 1, Two-Spino

Calculus and Relativistic Fields" - Cambridge University Press, (Feb 1987)

Various Authors - "Space-Time and Geometry: The Alfred Schild Lectures" University of Texas Press (March 21, 2012)