Embedded Systems / Eingebettete Systeme

Studiengang Informatik Campus Minden

Matthias König

FH Bielefeld University of Applied Sciences

Beispiel einer bekannten Anwendung: Antiblockiersystem

- Verhindert beim Bremsen Blockieren der Räder
- Erhöhung der Sicherheit
- Harte Echtzeitanforderung
- Steuergerät (eingebettetes System), vier Geschwindigkeitssensoren, mindestens zwei hydraulische Aktoren

Sensoren für jedes Rad (Messung Rotationsgeschwindigkeiten)

CAN-Bus

Steuergerät (zwei sich gegenseitig überwachende Mikrocontroller)

Hydraulische Aktoren (Ventile zur Druckregelung der Bremsen)

Hardware/Software Codedesign

Entwurf Eingebetteter Systeme (nach Marwedel)

[Quelle: Marwedel, Eingebettete Systeme]

Wiederholung: Statecharts

Wiederholung: Statecharts

In Cnt: tick/x=x+1

Wiederholung: Statecharts

- Erweiterung von endlichen Automaten durch
 - Hierarchie / Modularität
 - Nebenläufigkeit

- Begrenzt einsetzbar für
 - komplexe Berechnungsverfahren
 - verteilte Systeme

Specification and Description Language (SDL)

Specification and Description Language SDL

- Für verteilte Systeme geeignete Modellierungssprache
- Im Standard Z. I 00ff der International Telecommunication Union definiert (erste Version 1980)
- Verbreitet im Telekommunikationsbereich
- Basiert auf
 - Zustandsautomaten
 - Asynchronen Nachrichtenaustausch
- · Unterstützt graphische und textuelle Repräsentation

SDL: Prozesse für Zustandsautomaten

SDL: Zusätzlich Operation auf Daten

Kann Bestandteil eines Prozesses sein

SDL: Asynchroner Nachrichtenaustausch

SDL: Prozess-Interaktionsdiagram

SDL: Angabe des Empfänger

 Durch Prozess-Identifikatoren (auch zu generierten Prozessen/OFFSPRING)

Count TO OFFSPRING

Explizit

Count VIA Ch I

Implizit

SDL: Hierarchie

- höchste Ebene: System
- unterste Ebene: Prozess-Interaktion
- kein Verschachteln von Prozessen

SDL: Timer

- SET definiert Timeout (Einfügen eines Signals in FIFO).
- Signal/Übergang erfolgt bei Zeitablauf, falls vorher keine Signaleingabe.

SDL-Beispiel: Computernetzwerk

Wiederholung: SDL

- Basiert auf
 - Zustandsautomaten
 - Asynchronen
 Nachrichtenaustausch
- Für verteilte Systeme ausgelegt
- Unterstützt graphische und textuelle Repräsentation

Prozess

SDL-Beispiel: Zugangskontrolle

SDL: Zusammenfassung

- Modell eines Zustandsautomaten (endlichen Automaten)
- Asynchroner Nachrichtenaustausch (non-blocking)
- · Vorteile:
 - Ausgelegt für verteilte Systeme
 - Werkzeuge verfügbar (s. http://www.sdl-forum.org)
- · Nachteile:
 - Reihenfolge der Signalabarbeitung nicht spezifiziert (nicht deterministisch)
 - Obere Schranke für FIFOs schwer bestimmbar
 - Nur weiche Zeitbedingungen möglich

Petrinetze

Petrinetze

- · Benannt nach Carl Adam Petri (Doktorarbeit 1962)
- Geeignet f
 ür verteilte Systeme
- Formale Prüfung möglich
- Kernelemente:
 - Bedingungen (oder Stellen)

- Ereignisse (oder Transitionen)

- Flussrelationen (oder Kanten)

- Marken (oder Token)

Gleis ist frei, Zug kann fahren.

Gleis ist belegt, Zug verlässt Gleis.

Konfliktsituation!

Beispiel ähnlich zu Zugriff auf gemeinsamen Speicher.

Petrinetz-Beispiel: Semaphor

Petrinetz-Beispiel: Semaphor

Petrinetze: Arten

- Bedingungs-/Ereignisnetz
 - Höchstens eine Marke pro Bedingung
- Stellen-/Transitionennetz
 - Mehrere Marken pro Bedingung möglich
 - Kantengewichtungen
- Prädikat-/Ereignisnetz
 - Marken sind identifizierbar
 - Bedingungen sind Variablen/Funktionen zuordenbar

Bedingungs-/Ereignisnetz: Formale Beschreibung

• Netz N = (C, E, F) mit:

- C und E sind disjunkte Mengen.
- $F \subseteq (E \times C) \cup (C \times E)$ ist Flussrelation.
- · C ist Menge der Bedingungen.
- E ist Menge der Ereignisse.
- x ∈ (C υ E): Vorbedingungen {y|yFx}, Nachbedingungen {y|xFy}

Petrinetz: Formale Beschreibungen

- · Verwendung zur Herleitung von Eigenschaften:
 - Erreichbarkeit (ist Zustand von Anfangszustand erreichbar?)
 - Lebendigkeit (kann weiter geschaltet werden?)

Stellen-/Transitionennetz

- Schalten nur, wenn
 - Vorbedingung erfüllt, bei Anzahl Marken >= Kantengewicht,
 - Nachbedingung erfüllt, Kapazität für Marken ausreichend
- · Schalten nicht zwangsläufig (nicht deterministisch, wenn mehrere aktiviert)

Prädikat-/Ereignisnetz

- erreichen Verringerung der Netzgröße
- unterscheidbare Marker
- Bedingungen mit Funktionen versehen

Veranschaulichung am "Philosophenproblem":

- •n > I Philosophen am runden Tisch
- n Gabeln und n Teller
- Philosoph kann denken oder essen
- Philosoph benötigt zum Essen beide Gabeln neben Teller

Philosophenproblem: Bedingungs-/Ereignisnetz


```
x∈{1,2,3}
tx: x denkt
ex: x isst
fx: Gabel x ist frei
```

Philosophenproblem: Prädikat-/Ereignisnetz

· Variablen für Philosophen (pl, p2, p3) und Gabeln (f1, f2, f3)

x: Philosoph

l: linke Gabel

r: rechte Gabel

t: denkt

e: isst

f: Gabel ist frei

Petrinetz-Beispiel: Klimaanlage

Figure 3: Specification of Climate Control

Petrinetz-Erweiterungen

- UML Aktivitätsdiagramme können als Erweiterungen von Petrinetze angesehen werden.
- Horizontale Balken stehen für Transitionen/Ereignisse.

[Quelle: Kobryn, UML 2001: a standardization odyssey, 1999]

Petrinetze: Zusammenfassung

- · Vorteile:
 - Geeignet für verteilte Systeme
 - Formale Beweise von Eigenschaften möglich
- Nachteile:
 - Keine Unterstützung von Zeitbedingungen
 - Kein Hierarchiekonzept
- UML Aktivitätsdiagramme sind prinzipiell erweiterte Petrinetze

Wenig bekannte Anwendung: Intelligente Toilette

- Embedded System am unerwarteten Platz
- Steuerung von
 Geruchsabsaugung und
 Reinigung
- Regelung von Druck- und Temperatursensoren, Ventilen, Boiler, Fön
- Stand-by-Betrieb

[Quelle: M. Schmid, Programmierung per Blockschaltbild, Computer & Automation 14.02.2012]

Literatur / Quellen

- Rolv Braek, SDL basics, Computer Networks and ISDN Systems, Vol. 28, Juni 1996, S. 1585-1602, Elsevier
- A. **Thums**, G. Schellhorn, F. Ortmeier, W. Reif, Interactive verification of statecharts. In H. Ehrig, editor, Integration of Software Specification Techniques for Applications in Engineering, pages 355 373. Springer LNCS 3147, 2004
- Cris Kobryn, UML 2001, UML 2001: a standardization odyssey, CACM, Vol. 42, Oktober 1999, S. 29-37
- M. Schmid, Programmierung per Blockschaltbild, Computer & Automation 14.02.2012, URL: http://www.computer-automation.de/steuerungsebene/industrie-pc/fachwissen/article/85810/0/Programmierung_per_Blockschaltbild/
- Peter Marwedel, Eingebettete Systeme, Springer-Verlag, 2008
- C. Rust, F. Stappert, R. Bernhardi-Grisson, Petri Net Based Design of Reconfigurable Embedded Real-Time Systems, In Kleinjohann, Kim, Kleinjohann, Rettberg, editors, Design and Analysis of Distributed Embedded Systems, pages 41–50. Kluwer Academic Publishers, 2002
- Wikipedia, Anti-lock braking system, URL: http://en.wikipedia.org/wiki/Anti-lock_braking_system
- Stand aller Internetquellen: 27.04.2012