

Language: **Finnish** Day: 1

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Keskiviikko, 16. heinäkuuta 2008

- 1. tehtävä. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun BC keskipiste, leikkaa suoran BC pisteissä A_1 ja A_2 . Vastaavasti pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun CA keskipiste, leikkaa suoran CA pisteissä B_1 ja B_2 , ja pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun AB keskipiste, leikkaa suoran AB pisteissä C_1 ja C_2 . Osoita, että pisteet A_1 , A_2 , B_1 , B_2 , C_1 ja C_2 ovat samalla ympyrällä.
- 2. tehtävä. (a) Todista, että

$$\frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1$$

kaikille reaaliluvuille x, y ja z, jotka ovat eri suuria kuin 1 ja joille pätee xyz=1.

- (b) Osoita, että äärettömän monella rationaalilukukolmikolla x, y, z, missä kaikki luvut ovat eri suuria kuin 1 ja xyz=1, edellisessä epäyhtälössä vallitsee yhtäsuuruus.
- **3. tehtävä.** Osoita, että on olemassa äärettömän monta sellaista positiivista kokonaislukua n, jolle luvulla $n^2 + 1$ on lukua $2n + \sqrt{2n}$ suurempi alkutekijä.

Language: Finnish Työaikaa 4 tuntia 30 minuuttia.

Jokaisen tehtävän maksimipistemäärä on 7.

Language: **Finnish** Day: **2**

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Torstai, 17. heinäkuuta 2008

4. tehtävä. Määritä kaikki funktiot $f:(0,\infty)\to(0,\infty)$ (f on siis positiivisten reaalilukujen joukossa määritelty funktio, jonka arvot ovat positiivisia reaalilukuja), joille pätee

$$\frac{(f(w))^2 + (f(x))^2}{f(y^2) + f(z^2)} = \frac{w^2 + x^2}{y^2 + z^2}$$

kaikilla positiivisilla reaaliluvuilla w, x, y ja z, jotka toteuttavat ehdon wx = yz.

5. tehtävä. Olkoot n ja k, $k \ge n$, positiivisia kokonaislukuja, ja olkoon k-n parillinen. Olkoon annettuna 2n lamppua, jotka on varustettu numeroin $1, 2, \ldots, 2n$ ja joista jokainen voi palaa tai olla pimeänä. Aluksi kaikki lamput ovat pimeinä. Tarkastellaan askelista koostuvia jonoja. Jokaisella askeleella jonkin lampun tila vaihdetaan päinvastaiseksi (lamppu sytytetään tai sammutetaan).

Olkoon N kaikkien sellaisten k:sta askeleesta muodostuvien jonojen lukumäärä, jotka johtavat tilaan, jossa lamput $1, \ldots, n$ palavat ja lamput $n+1, \ldots, 2n$ ovat pimeinä.

Olkoon M kaikkien sellaisten k:sta askeleesta muodostuvien jonojen lukumäärä, jotka johtavat tilaan, jossa lamput $1, \ldots, n$ palavat ja lamput $n+1, \ldots, 2n$ ovat pimeinä, mutta lampuja $n+1, \ldots, 2n$ ei ole kertaakaan sytytetty.

Määritä suhde N/M.

6. tehtävä. Kuperassa nelikulmiossa ABCD on $BA \neq BC$. Kolmioiden ABC ja ADC sisään piirretyt ympyrät ovat ω_1 ja ω_2 . Oletetaan, että on olemassa ympyrä ω , joka sivuaa puolisuoraa BA eri puolella A:ta kuin B ja puolisuoraa BC eri puolella C:tä kuin B ja joka myös sivuaa suoria AD ja CD. Osoita, että ympyröiden ω_1 ja ω_2 yhteisten ulkopuolisten tangenttien leikkauspiste on ympyrällä ω .

Language: Finnish Työaikaa 4 tuntia 30 minuuttia.

Jokaisen tehtävän maksimipistemäärä on 7.