Package 'EMD'

October 12, 2022

Version 1.5.9
Date 2021-12-30
Title Empirical Mode Decomposition and Hilbert Spectral Analysis
Author Donghoh Kim [aut, cre], Hee-Seok Oh [aut]
Maintainer Donghoh Kim <donghoh.kim@gmail.com></donghoh.kim@gmail.com>
Depends R (>= 3.0), fields (>= 6.9.1), locfit (>= 1.5-8)
Description For multiscale analysis, this package carries out empirical mode decomposition and Hilbert spectral analysis. For usage of EMD, see Kim and Oh, 2009 (Kim, D and Oh, HS. (2009) EMD: A Package for Empirical Mode Decomposition and Hilbert Spectrum, The R Journal, 1, 40-46).
License GPL (>= 3)
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-04 00:10:18 UTC
R topics documented:
cvimpute.by.mean

 emd
 4

 emd.pred
 6

 emd2d
 7

 emddenoise
 9

 extractimf
 11

 extrectimf2d
 12

 extrema
 14

 extrema2dC
 15

 hilbertspec
 16

 imageEMD
 17

 kospi200
 18

2 cvimpute.by.mean

cvim	pute.by.mean		Imp	out	ati	ior	ı b	y .	the	e n	ne	an	0	f ti	he	tи	0	ac	dja	ıce	ent	ve	ılı	ıes	5						
Index																															26
	sunspot	 	•				•	•		•							•	•	•				•	•			•	٠	•		25
	spectrogram .																														
	solar																														
	semd	 																													20
	lennon																														
	lena																														

Description

This function performs imputation by the mean of the two adjacent values for test dataset of cross-validation.

Usage

```
cvimpute.by.mean(y, impute.index)
```

Arguments

y observation impute.index test dataset index for cross-validation

Details

This function performs imputation by the mean of the two adjacent values for test dataset of cross-validation. See Kim et al. (2012) for detalis.

Value

yimpute imputed values by the mean of the two adjacent values

References

Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. *EURASIP Journal on Advances in Signal Processing*, **2012:168**, doi: 10.1186/1687-6180-2012-168.

See Also

cvtype, semd.

cvtype 3

cvtype	Generating test dataset index for cross-validation	

Description

This function generates test dataset index for cross-validation.

Usage

```
cvtype(n, cv.bsize=1, cv.kfold, cv.random=FALSE)
```

Arguments

n	the number of observation
cv.bsize	block size of cross-validation
cv.kfold	the number of fold of cross-validation
cv.random	whether or not random cross-validation scheme should be used. Set cv.random=TRUE for random cross-validation scheme

Details

This function provides index of test dataset according to various cross-validation scheme. One may construct K test datasets in a way that each testset consists of blocks of b consecutive data. Set cv.bsize = b for this. To select each fold at random, set cv.random = TRUE. See Kim et al. (2012) for detalis.

Value

matrix of which row is test dataset index for cross-validation

References

Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. *EURASIP Journal on Advances in Signal Processing*, **2012:168**, doi: 10.1186/1687-6180-2012-168.

```
# Traditional 4-fold cross-validation for 100 observations
cvtype(n=100, cv.bsize=1, cv.kfold=4, cv.random=FALSE)
# Random 4-fold cross-validation with block size 2 for 100 observations
cvtype(n=100, cv.bsize=2, cv.kfold=4, cv.random=TRUE)
```

4 emd

Empirical Mode Decomposition

Description

This function performs empirical mode decomposition.

Usage

```
emd(xt, tt=NULL, tol=sd(xt)*0.1^2, max.sift=20, stoprule="type1",
  boundary="periodic", sm="none", smlevels=c(1), spar=NULL, alpha=NULL,
  check=FALSE, max.imf=10, plot.imf=FALSE, interm=NULL, weight=NULL)
```

Arguments

xt	observation or signal observed at time tt
tt	observation index or time index
tol	tolerance for stopping rule of sifting. If $stoprule=type5$, the number of iteration for S stoppage criterion.
max.sift	the maximum number of sifting
stoprule	stopping rule of sifting. The type1 stopping rule indicates that absolute values of envelope mean must be less than the user-specified tolerance level in the sense that the local average of upper and lower envelope is zero. The stopping rules type2, type3, type4 and type5 are the stopping rules given by equation (5.5) of Huang et al. (1998), equation (11a), equation (11b) and S stoppage of Huang and Wu (2008), respectively.
boundary	specifies boundary condition from "none", "wave", "symmetric", "periodic" or "evenodd". See Zeng and He (2004) for evenodd boundary condition.
SM	specifies whether envelop is constructed by interpolation, spline smoothing, kernel smoothing, or local polynomial smoothing. Use "none" for interpolation, "spline" for spline smoothing, "kernel" for kernel smoothing, or "locfit" for local polynomial smoothing. See Kim et al. (2012) for details.
smlevels	specifies which level of the IMF is obtained by smoothing other than interpolation.
spar	specifies user-supplied smoothing parameter of spline smoothing, kernel smoothing, or local polynomial smoothing.
alpha	deprecated.
check	specifies whether the sifting process is displayed. If check=TRUE, click the plotting area to start the next step.
max.imf	the maximum number of IMF's
plot.imf	specifies whether each IMF is displayed. If $plot.imf=TRUE$, click the plotting area to start the next step.
interm	specifies vector of periods to be excluded from the IMF's to cope with mode mixing.
weight	deprecated.

emd 5

Details

This function performs empirical mode decomposition.

Value

imf IMF's

residue residue signal after extracting IMF's from observations xt

nimf the number of IMF's

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Huang, N. E. and Wu, Z. (2008) A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. *Reviews of Geophysics*, **46**, RG2006.

Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. *EURASIP Journal on Advances in Signal Processing*, **2012:168**, doi: 10.1186/1687-6180-2012-168.

Zeng, K and He, M.-X. (2004) A simple boundary process technique for empirical mode decomposition. *Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium*, **6**, 4258–4261.

See Also

extrema, extractimf.

```
### Empirical Mode Decomposition
ndata <- 3000
tt2 <- seq(0, 9, length=ndata)
xt2 <- sin(pi * tt2) + sin(2* pi * tt2) + sin(6 * pi * tt2) + 0.5 * tt2

try <- emd(xt2, tt2, boundary="wave")

### Ploting the IMF's
par(mfrow=c(try$nimf+1, 1), mar=c(2,1,2,1))
rangeimf <- range(try$imf)
for(i in 1:try$nimf) {
    plot(tt2, try$imf[,i], type="1", xlab="", ylab="", ylim=rangeimf,
    main=paste(i, "-th IMF", sep="")); abline(h=0)
}
plot(tt2, try$residue, xlab="", ylab="", main="residue", type="1", axes=FALSE); box()</pre>
```

6 emd.pred

emd.pred Prediction by EMD and VAR model
emd.pred Prediction by EMD and VAR model

Description

This function calculates prediction values and confidence limits using EMD and VAR (vector autoregressive) model.

Usage

```
emd.pred(varpred, trendpred, ci = 0.95, figure = TRUE)
```

Arguments

varpred prediction result of IMF's by VAR model.

trendpred prediction result of residue by polynomial regression model.

ci confidence interval level.

figure specifies whether prediction result is displayed.

Details

This function calculates prediction values and confidence limits using EMD and VAR (vector autoregressive) model. See Kim et al. (2008) for details.

Value

fcst prediction values

lower limits of prediction upper upper limits of prediction

References

Kim, D, Paek, S.-H. and Oh, H.-S. (2008) A Hilbert-Huang Transform Approach for Predicting Cyber-Attacks. *Journal of the Korean Statistical Society*, **37**, 277–283, doi:10.1016/j.jkss.2008.02.006.

emd2d 7

emd2d	Bidimenasional Empirical Mode Decomposition	

Description

This function performs the bidimenasional empirical mode decomposition utilizing extrema detection based on the equivalence relation between neighboring pixels.

Usage

```
emd2d(z, x = NULL, y = NULL, tol = sd(c(z)) * 0.1^2, max.sift = 20, boundary = "reflexive", boundperc = 0.3, max.imf = 5, sm = "none", smlevels = 1, spar = NULL, weight = NULL, plot.imf = FALSE)
```

Arguments

Z	matrix of an image observed at (x, y)
x, y	locations of regular grid at which the values in z are measured
tol	tolerance for stopping rule of sifting
max.sift	the maximum number of sifting
boundary	specifies boundary condition from "none", "symmetric" or "reflexive".
boundperc	expand an image by adding specified percentage of image at the boundary when boundary condition is 'symmetric' or 'reflexive'.
max.imf	the maximum number of IMF's
SM	specifies whether envelop is constructed by interpolation, thin-plate smoothing, Kriging, local polynomial smoothing, or loess. Use "none" for interpolation, "Tps" for thin-plate smoothing, "mKrig" for Kriging, "locfit" for local polynomial smoothing, or "loess" for loess. See Kim et al. (2012) for details.
smlevels	specifies which level of the IMF is obtained by smoothing other than interpolation.
spar	specifies user-supplied smoothing parameter of thin-plate smoothing, Kriging, local polynomial smoothing, or loess.
weight	deprecated.
plot.imf	specifies whether each IMF is displayed. If $plot.imf=TRUE$, click the plotting area to start the next step.

Details

This function performs the bidimenasional empirical mode decomposition utilizing extrema detection based on the equivalence relation between neighboring pixels. See Kim et al. (2012) for details.

8 emd2d

Value

imf two dimensional IMF's
 residue residue image after extracting the IMF's
 maxindex index of maxima
 minindex index of minima
 number of IMF's

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Kim, D., Park, M. and Oh, H.-S. (2012) Bidimensional Statistical Empirical Mode Decomposition. *IEEE Signal Processing Letters*, **19**, 191–194, doi: 10.1109/LSP.2012.2186566.

See Also

```
extrema2dC, extractimf2d.
```

```
data(lena)
z \leftarrow lena[seq(1, 512, by=4), seq(1, 512, by=4)]
image(z, main="Lena", xlab="", ylab="", col=gray(0:100/100), axes=FALSE)
## Not run:
lenadecom <- emd2d(z, max.imf = 4)
imageEMD(z=z, emdz=lenadecom, extrema=TRUE, col=gray(0:100/100))
## End(Not run)
### Test Image
ndata <- 128
x \leftarrow y \leftarrow seq(0, 9, length=ndata)
meanf1 <- outer(sin(2 * pi * x), sin(2 * pi * y))
meanf2 <- outer(sin(0.5 * pi * x), sin(0.5 * pi * y))
meanf <- meanf1 + meanf2</pre>
snr <- 2
set.seed(77)
zn <- meanf + matrix(rnorm(ndata^2, 0, sd(c(meanf))/snr), ncol=ndata)</pre>
rangezn <- range(c(meanf1, meanf2, meanf, zn))</pre>
par(mfrow=c(2,2), mar=0.1 + c(0, 0.25, 3, 0.25))
image(meanf1, main="high frequency component", xlab="", ylab="", zlim=rangezn,
    col=gray(100:0/100), axes=FALSE)
image(meanf2, main="low frequency component", xlab="", ylab="", zlim=rangezn,
    col=gray(100:0/100), axes=FALSE)
image(meanf, main="test image", xlab="", ylab="", zlim=rangezn, col=gray(100:0/100), axes=FALSE)
```

emddenoise 9

```
image(zn, main="noisy image", xlab="", ylab="", zlim=rangezn, col=gray(100:0/100), axes=FALSE)

## Not run:
out <- emd2d(zn, max.imf=3, sm="locfit", smlevels=1, spar=0.004125)
par(mfcol=c(3,1), mar=0.1 + c(0, 0.25, 0.25, 0.25))
image(out$imf[[1]], main="", xlab="", ylab="", col=gray(100:0/100), zlim=rangezn, axes=FALSE)
image(out$imf[[2]], main="", xlab="", ylab="", col=gray(100:0/100), zlim=rangezn, axes=FALSE)
image(out$imf[[3]], main="", xlab="", ylab="", col=gray(100:0/100), zlim=rangezn, axes=FALSE)
## End(Not run)</pre>
```

emddenoise

Denoising by EMD and Thresholding

Description

This function performs denoising by empirical mode decomposition and thresholding.

Usage

```
emddenoise(xt, tt = NULL, cv.index, cv.level, cv.tol = 0.1^3,
    cv.maxiter = 20, by.imf = FALSE, emd.tol = sd(xt) * 0.1^2,
    max.sift = 20, stoprule = "type1", boundary = "periodic",
    max.imf = 10)
```

Arguments

xt	observation or signal observed at time tt
tt	observation index or time index
cv.index	test dataset index according to cross-validation scheme
cv.level	levels to be thresholded
cv.tol	tolerance for the optimization step of cross-validation
cv.maxiter	maximum iteration for the optimization step of cross-validation
by.imf	specifies whether shrinkage is performed by each IMS or not.
emd.tol	tolerance for stopping rule of sifting. If stoprule=type5, the number of iteration for S stoppage criterion.
max.sift	the maximum number of sifting
stoprule	stopping rule of sifting. The type1 stopping rule indicates that absolute values of envelope mean must be less than the user-specified tolerance level in the sense that the local average of upper and lower envelope is zero. The stopping rules type2, type3, type4 and type5 are the stopping rules given by equation (5.5) of Huang et al. (1998), equation (11a), equation (11b) and S stoppage of Huang and Wu (2008), respectively.
boundary	specifies boundary condition from "none", "wave", "symmetric", "periodic" or "evenodd". See Zeng and He (2004) for evenodd boundary condition.
max.imf	the maximum number of IMF's

10 emddenoise

Details

This function performs denoising by empirical mode decomposition and cross-validation. See Kim and Oh (2006) for details.

Value

dxt denoised signal
optlambda threshold values by cross-validation
lambdaconv sequence of lambda's by cross-validation
perr sequence of prediction error by cross-validation
demd denoised IMF's and residue
niter the number of iteration for optimal threshold value

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Huang, N. E. and Wu, Z. (2008) A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. *Reviews of Geophysics*, **46**, RG2006.

Kim, D. and Oh, H.-S. (2006) Hierarchical Smoothing Technique by Empirical Mode Decomposition (Korean). *The Korean Journal of Applied Statistics*, **19**, 319–330.

Zeng, K and He, M.-X. (2004) A simple boundary process technique for empirical mode decomposition. *Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium*, **6**, 4258–4261.

See Also

cvtype, emd.

```
ndata <- 1024
tt <- seq(0, 9, length=ndata)
meanf <- (sin(pi*tt) + sin(2*pi*tt) + sin(6*pi*tt)) * (0.0<tt & tt<=3.0) +
    (sin(pi*tt) + sin(6*pi*tt)) * (3.0<tt & tt<=6.0) +
    (sin(pi*tt) + sin(6*pi*tt) + sin(12*pi*tt)) * (6.0<tt & tt<=9.0)
snr <- 3.0
sigma <- c(sd(meanf[tt<=3]) / snr, sd(meanf[tt<=6 & tt>3]) / snr,
sd(meanf[tt>6]) / snr)
set.seed(1)
error <- c(rnorm(sum(tt<=3), 0, sigma[1]),
rnorm(sum(tt<=6 & tt>3), 0, sigma[2]), rnorm(sum(tt>6), 0, sigma[3]))
xt <- meanf + error

cv.index <- cvtype(n=ndata, cv.kfold=2, cv.random=FALSE)$cv.index
## Not run:</pre>
```

extractimf 11

```
try10 <- emddenoise(xt, cv.index=cv.index, cv.level=2, by.imf=TRUE)
par(mfrow=c(2, 1), mar=c(2, 1, 2, 1))
plot(xt, type="1", main="noisy signal")
lines(meanf, lty=2)
plot(try10$dxt, type="1", main="denoised signal")
lines(meanf, lty=2)
## End(Not run)</pre>
```

extractimf

Intrinsic Mode Function

Description

This function extracts intrinsic mode function from given a signal.

Usage

```
extractimf(residue, tt=NULL, tol=sd(residue)*0.1^2, max.sift=20,
    stoprule="type1", boundary="periodic", sm="none", spar=NULL,
    alpha=NULL, check=FALSE, weight=NULL)
```

Arguments

residue	observation or signal observed at time tt
tt	observation index or time index
tol	tolerance for stopping rule of sifting. If $stoprule=type5$, the number of iteration for S stoppage criterion.
max.sift	the maximum number of sifting
stoprule	stopping rule of sifting. The type1 stopping rule indicates that absolute values of envelope mean must be less than the user-specified tolerance level in the sense that the local average of upper and lower envelope is zero. The stopping rules type2, type3, type4 and type5 are the stopping rules given by equation (5.5) of Huang et al. (1998), equation (11a), equation (11b) and S stoppage of Huang and Wu (2008), respectively.
boundary	specifies boundary condition from "none", "wave", "symmetric", "periodic" or "evenodd". See Zeng and He (2004) for evenodd boundary condition.
SM	specifies whether envelop is constructed by interpolation, spline smoothing, kernel smoothing, or local polynomial smoothing. Use "none" for interpolation, "spline" for spline smoothing, "kernel" for kernel smoothing, or "locfit" for local polynomial smoothing. See Kim et al. (2012) for details.
spar	specifies user-supplied smoothing parameter of spline smoothing, kernel smoothing, or local polynomial smoothing.
alpha	deprecated.
check	specifies whether the sifting process is displayed. If check=TRUE, click the plotting area to start the next step.
weight	deprecated.

12 extractimf2d

Details

This function extracts intrinsic mode function from given a signal.

Value

imf imf

residue residue signal after extracting the finest imf from residue

niter the number of iteration to obtain the imf

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Huang, N. E. and Wu, Z. (2008) A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. *Reviews of Geophysics*, **46**, RG2006.

Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. *EURASIP Journal on Advances in Signal Processing*, **2012:168**, doi: 10.1186/1687-6180-2012-168.

Zeng, K and He, M.-X. (2004) A simple boundary process technique for empirical mode decomposition. *Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium*, **6**, 4258–4261.

See Also

```
extrema.emd.
```

Examples

```
### Generating a signal
ndata <- 3000
par(mfrow=c(1,1), mar=c(1,1,1,1))
tt2 <- seq(0, 9, length=ndata)
xt2 <- sin(pi * tt2) + sin(2* pi * tt2) + sin(6 * pi * tt2) + 0.5 * tt2
plot(tt2, xt2, xlab="", ylab="", type="1", axes=FALSE); box()
### Extracting the first IMF by sifting process
tryimf <- extractimf(xt2, tt2, check=FALSE)</pre>
```

extractimf2d

Bidimensional Intrinsic Mode Function

Description

This function extracts the bidimensional intrinsic mode function from given an image utilizing extrema detection based on the equivalence relation between neighboring pixels.

extractimf2d 13

Usage

```
extractimf2d(residue, x=NULL, y=NULL, nnrow=nrow(residue),
    nncol=ncol(residue), tol=sd(c(residue))*0.1^2,
    max.sift=20, boundary="reflexive", boundperc=0.3,
    sm="none", spar=NULL, weight=NULL, check=FALSE)
```

Arguments

residue matrix of an image observed at (x, y)

x, y locations of regular grid at which the values in residue are measured

nnrow the number of row of an input image
nncol the number of column of an input image
tol tolerance for stopping rule of sifting
max.sift the maximum number of sifting

boundary specifies boundary condition from "none", "symmetric" or "reflexive".

boundperc expand an image by adding specified percentage of image at the boundary when

boundary condition is 'symmetric' or 'reflexive'.

sm specifies whether envelop is constructed by interpolation, thin-plate smoothing,

Kriging, local polynomial smoothing, or loess. Use "none" for interpolation, "Tps" for thin-plate smoothing, "mKrig" for Kriging, "locfit" for local polyno-

mial smoothing, or "loess" for loess.

spar specifies user-supplied smoothing parameter of thin-plate smoothing, Kriging,

local polynomial smoothing, or loess.

weight deprecated.

check specifies whether the sifting process is displayed. If check=TRUE, click the plot-

ting area to start the next step.

Details

This function extracts the bidimensional intrinsic mode function from given image utilizing extrema detection based on the equivalence relation between neighboring pixels. See Kim et al. (2012) for details. See Kim et al. (2012) for details.

Value

imf two dimensional IMF

residue residue signal after extracting the finest IMF from residue

maxindex index of maxima
minindex index of minima

niter number of iteration obtaining the IMF

14 extrema

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Kim, D., Park, M. and Oh, H.-S. (2012) Bidimensional Statistical Empirical Mode Decomposition. *IEEE Signal Processing Letters*, **19**, 191–194, doi: 10.1109/LSP.2012.2186566.

See Also

```
extrema2dC, emd2d.
```

Examples

```
data(lena)
z <- lena[seq(1, 512, by=4), seq(1, 512, by=4)]
## Not run:
lenaimf1 <- extractimf2d(z, check=FALSE)
## End(Not run)</pre>
```

extrema

Finding Local Extrema and Zero-crossings

Description

This function indentifies extrema and zero-crossings.

Usage

```
extrema(y, ndata = length(y), ndatam1 = ndata - 1)
```

Arguments

y input signal

ndata the number of observation ndatam1 the number of observation - 1

Details

This function indentifies extrema and zero-crossings.

extrema2dC 15

Value

minindex	matrix of time index at which local minima are attained. Each row specifies a starting and ending time index of a local minimum
maxindex	matrix of time index at which local maxima are attained. Each row specifies a starting and ending time index of a local maximum.
nextreme	the number of extrema
cross	matrix of time index of zero-crossings. Each row specifies a starting and ending time index of zero-crossings.
ncross	the number of zero-crossings

See Also

```
extrema2dC, extractimf, emd.
```

Examples

```
y \leftarrow c(0, 1, 2, 1, -1, 1:4, 5, 6, 0, -4, -6, -5:5, -2:2)

\#y \leftarrow c(0, 0, 0, 1, -1, 1:4, 4, 4, 0, 0, 0, -5:5, -2:2, 2, 2)

\#y \leftarrow c(0, 0, 0, 1, -1, 1:4, 4, 4, 0, 0, 0, -5:5, -2:2, 0, 0)

plot(y, type = "b"); abline(h = 0)

extrema(y)
```

extrema2dC

Finding Local Extrema

Description

This function finds the bidimensional local extrema based on the equivalence relation between neighboring pixels.

Usage

```
extrema2dC(z, nnrow=nrow(z), nncol=ncol(z))
```

Arguments

Z	matrix of an input image
nnrow	the number of row of an input image
nncol	the number of column of an input image

Details

This function finds the bidimensional local extrema based on the equivalence relation between neighboring pixels. See Kim et al. (2012) for details.

16 hilbertspec

Value

minindex index of minima. Each row specifies index of local minimum.

maxindex index of maxima. Each row specifies index of local maximum.

References

Kim, D., Park, M. and Oh, H.-S. (2012) Bidimensional Statistical Empirical Mode Decomposition. *IEEE Signal Processing Letters*, **19**, 191–194, doi: 10.1109/LSP.2012.2186566.

See Also

```
extrema, , extractimf2d, emd2d.
```

Examples

```
data(lena)
z <- lena[seq(1, 512, by=4), seq(1, 512, by=4)]

par(mfrow=c(1,3), mar=c(0, 0.5, 2, 0.5))
image(z, main="Lena", xlab="", ylab="", col=gray(0:100/100), axes=FALSE)

example <- extrema2dC(z=z)
localmin <- matrix(256, 128, 128)
localmin[example$minindex] <- z[example$minindex]
image(localmin, main="Local minimum", xlab="", ylab="", col=gray(0:100/100), axes=FALSE)

localmax <- matrix(0, 128, 128)
localmax[example$maxindex] <- z[example$maxindex]
image(localmax, main="Local maximum", xlab="", ylab="", col=gray(0:100/100), axes=FALSE)</pre>
```

hilbertspec

Hilbert Transform and Instantaneous Frequency

Description

This function calculates the amplitude and instantaneous frequency using Hilbert transform.

Usage

```
hilbertspec(xt, tt=NULL, central=FALSE)
```

Arguments

xt matrix of multiple signals. Each column represents a signal.

tt observation index or time index

central If central=TRUE, use central difference method to calculate the instantaneous

frequency

imageEMD 17

Details

This function calculates the amplitude and instantaneous frequency using Hilbert transform.

Value

amplitude matrix of amplitudes for multiple signals xt
instantfreq matrix of instantaneous frequencies for multiple signals xt
energy cumulative energy of multiple signals

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Dasios, A., Astin, T. R. and McCann C. (2001) Compressional-wave Q estimation from full-waveform sonic data. *Geophysical Prospecting*, **49**, 353–373.

See Also

spectrogram.

Examples

```
tt <- seq(0, 0.1, length = 2001)[1:2000]
f1 <- 1776; f2 <- 1000
xt <- sin(2*pi*f1*tt) * (tt <= 0.033 | tt >= 0.067) + sin(2*pi*f2*tt)
### Before treating intermittence
interm1 <- emd(xt, tt, boundary="wave", max.imf=2, plot.imf=FALSE)
### After treating intermittence
interm2 <- emd(xt, tt, boundary="wave", max.imf=2, plot.imf=FALSE,
interm=0.0007)

par(mfrow=c(2,1), mar=c(2,2,2,1))
test1 <- hilbertspec(interm1$imf)
spectrogram(test1$amplitude[,1], test1$instantfreq[,1])

test2 <- hilbertspec(interm2$imf, tt=tt)
spectrogram(test2$amplitude[,1], test2$instantfreq[,1])</pre>
```

imageEMD

Plot of Bidimenasional Empirical Mode Decomposition Result

Description

This function draws plots of input image, IMF's, residue and extrema.

18 kospi200

Usage

```
imageEMD(z = z, emdz, extrema = FALSE, ...)
```

Arguments

z matrix of an image emdz decomposition result

extrema specifies whether the extrma is displayed according to the level of IMF

... the usual arguments to the image function

Details

This function draws plots of input image, IMF's, residue and extrema.

Examples

```
data(lena)
z <- lena[seq(1, 512, by=4), seq(1, 512, by=4)]
image(z, main="Lena", xlab="", ylab="", col=gray(0:100/100), axes=FALSE)
## Not run:
lenadecom <- emd2d(z, max.imf = 4)
imageEMD(z=z, emdz=lenadecom, extrema=TRUE, col=gray(0:100/100))
## End(Not run)</pre>
```

kospi200

Korea Stock Price Index 200

Description

the weekly KOSPI 200 index from January, 1990 to February, 2007.

Usage

```
data(kospi200)
```

Format

A list of date and KOSPI200 index

Details

See Kim and Oh (2009) for the analysis for kospi200 data using EMD.

References

Kim, D. and Oh, H.-S. (2009) A Multi-Resolution Approach to Non-Stationary Financial Time Series Using the Hilbert-Huang Transform. *The Korean Journal of Applied Statistics*, **22**, 499–513.

lena 19

Examples

```
data(kospi200)
names(kospi200)
plot(kospi200$date, kospi200$index, type="1")
```

lena

Gray Lena image

Description

A 512x512 gray image of Lena.

Usage

data(lena)

Format

A 512x512 matrix.

Examples

```
data(lena)
image(lena, col=gray(0:100/100), axes=FALSE)
```

lennon

Gray John Lennon image

Description

A 256x256 gray image of John Lennon.

Usage

```
data(lennon)
```

Format

A 256x256 matrix.

```
data(lennon)
image(lennon, col=gray(100:0/100), axes=FALSE)
```

20 semd

semd	Statistical Empirical Mode Decomposition	

Description

This function performs empirical mode decomposition using spline smoothing not interpolation for sifting process. The smoothing parameter is automatically determined by cross-validation.

Usage

```
semd(xt, tt=NULL, cv.kfold, cv.tol=0.1^1, cv.maxiter=20,
   emd.tol=sd(xt)*0.1^2, max.sift=20, stoprule="type1", boundary="periodic",
   smlevels=1, max.imf=10)
```

Arguments

xt	observation or signal observed at time tt
tt	observation index or time index
cv.kfold	the number of fold of cross-validation
cv.tol	tolerance for cross-validation
cv.maxiter	maximum iteration for cross-validation
emd.tol	tolerance for stopping rule of sifting. If $stoprule=type5$, the number of iteration for S stoppage criterion.
max.sift	the maximum number of sifting
stoprule	stopping rule of sifting. The type1 stopping rule indicates that absolute values of envelope mean must be less than the user-specified tolerance level in the sense that the local average of upper and lower envelope is zero. The stopping rules type2, type3, type4 and type5 are the stopping rules given by equation (5.5) of Huang et al. (1998), equation (11a), equation (11b) and S stoppage of Huang and Wu (2008), respectively.
boundary	specifies boundary condition from "none", "wave", "symmetric", "periodic" or "evenodd". See Zeng and He (2004) for evenodd boundary condition.
smlevels	specifies which level of the IMF is obtained by smoothing spline.
max.imf	the maximum number of IMF's

Details

This function performs empirical mode decomposition using spline smoothing not interpolation for sifting process. The smoothing parameter is automatically determined by cross-validation. Optimization is done by golden section search. See Kim et al. (2012) for details.

semd 21

Value

imf IMF's
 residue residue signal after extracting IMF's from observations xt
 nimf the number of IMF's
 optlambda smoothing parameter minimizing prediction errors of cross-validation
 lambdaconv a sequence of smoothing parameters for searching optimal smoothing papameter

perr prediction errors of cross-validation according to lambdaconv

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

Huang, N. E. and Wu, Z. (2008) A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. *Reviews of Geophysics*, **46**, RG2006.

Kim, D., Kim, K.-O. and Oh, H.-S. (2012) Extending the Scope of Empirical Mode Decomposition using Smoothing. *EURASIP Journal on Advances in Signal Processing*, **2012:168**, doi: 10.1186/1687-6180-2012-168.

Zeng, K and He, M.-X. (2004) A simple boundary process technique for empirical mode decomposition. *Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium*, **6**, 4258–4261.

See Also

extractimf, emd.

```
ndata <- 2048
tt <- seq(0, 9, length=ndata)
xt <- sin(pi * tt) + sin(2* pi * tt) + sin(6 * pi * tt) + 0.5 * tt
set.seed(1)
xt <- xt + rnorm(ndata, 0, sd(xt)/5)
## Not run:
### Empirical Mode Decomposition by Interpolation
emdbyint <- emd(xt, tt, max.imf = 5, boundary = "wave")</pre>
### Empirical Mode Decomposition by Smoothing
emdbysm <- semd(xt, tt, cv.kfold=4, boundary="wave", smlevels=1, max.imf=5)</pre>
par(mfcol=c(6,2), mar=c(2,2,2,1), oma=c(0,0,2,0))
rangext <- range(xt); rangeimf <- rangext - mean(rangext)</pre>
plot(tt, xt, xlab="", ylab="", main="signal", ylim=rangext, type="l")
mtext("Decomposition by EMD", side = 3, line = 2, cex=0.85, font=2)
plot(tt, emdbyint$imf[,1], xlab="", ylab="", main="imf 1", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,2], xlab="", ylab="", main="imf 2", ylim=rangeimf, type="l")
abline(h=0, lty=2)
```

22 solar

```
plot(tt, emdbyint$imf[,3], xlab="", ylab="", main="imf 3", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,4], xlab="", ylab="", main="imf 4", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbyint$imf[,5]+emdbyint$residue, xlab="", ylab="", main="remaining signal",
   ylim=rangext, type="1")
plot(tt, xt, xlab="", ylab="", main="signal", ylim=rangext, type="l")
mtext("Decomposition by SEMD", side = 3, line = 2, cex=0.85, font=2)
plot(tt, emdbysm$imf[,1], xlab="", ylab="", main="noise", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$imf[,2], xlab="", ylab="", main="imf 1", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$imf[,3], xlab="", ylab="", main="imf 2", ylim=rangeimf, type="l")
abline(h=0, lty=2)
plot(tt, emdbysm$imf[,4], xlab="", ylab="", main="imf 3", ylim=rangeimf, type="1")
abline(h=0, lty=2)
plot(tt, emdbysm$residue, xlab="", ylab="", main="residue", ylim=rangext, type="l")
## End(Not run)
```

solar

Solar Irradiance Proxy Data

Description

solar irradiance proxy data.

Hoyt and Schatten (1993) reconstructed solar irradiance (from 1700 through 1997) using the amplitude of the 11-year solar cycle together with a long term trend estimated from solar-like stars. They put relatively more weight on the length of the 11-year cycle.

Lean et al. (1995) reconstructed solar irradiance (from 1610 through 2000) using the amplitude of the 11-year solar cycle and a long term trend estimated from solar-like stars.

10-Beryllium (10Be) is measured in polar ice from 1424 through 1985. 10-Beryllium (10Be) is produced in the atmosphere by incoming cosmic ray flux, which in turn is influenced by the solar activity. The higher the solar activity, the lower the flux of cosmic radiation entering the earth atmosphere and therefore the lower the production rate of 10Be. The short atmospheric lifetime of 10Be of one to two years (Beer et al. 1994) allows the tracking of solar activity changes and offers an alternative way to the sunspot based techniques for the analysis of the amplitude and length of the solar cycle as well as for low frequency variations.

Usage

```
data(solar.hs)
data(solar.lean)
data(beryllium)
```

Format

A list of year and solar (solar irradiance proxy data) for solar.hs and solar.lean A list of year and be (10-Beryllium) for beryllium

spectrogram 23

References

Beer, J., Baumgartner, S., Dittrich-Hannen, B., Hauenstein, J., Kubik, P., Lukasczyk, C., Mende, W., Stellmacher, R. and Suter, M. (1994) Solar variability traced by cosmogenic isotopes. *In: Pap, J.M., FrQohlich, C., Hudson, H.S., Solanki, S. (Eds.), The Sun as a Variable Star: Solar and Stellar Irradiance Variations*, Cambridge University Press, Cambridge, 291–300.

Beer, J., Mende, W. and Stellmacher, R. (2000) The role of the sun in climate forcing. *Quaternary Science Reviews*, **19**, 403–415.

Hoyt, D. V and, Schatten, K. H. (1993) A discussion of plausible solar irradiance variations, 1700–1992. *Journal of Geophysical Research*, **98** (A11), 18,895–18,906.

Lean, J. L., Beer, J. and Bradley, R. S. (1995) Reconstruction of solar irradiance since 1610: Implications for climate change. *Geophysical Research Letters*, **22** (**23**), 3195–3198.

Oh, H-S, Ammann, C. M., Naveau, P., Nychka, D. and Otto-Bliesner, B. L. (2003) Multi-resolution time series analysis applied to solar irradiance and climate reconstructions. *Journal of Atmospheric and Solar-Terrestrial Physics*, **65**, 191–201.

Examples

```
data(solar.hs)
names(solar.hs)
plot(solar.hs$year, solar.hs$solar, type="l")

data(solar.lean)
names(solar.lean)
plot(solar.lean$year, solar.lean$solar, type="l")

data(beryllium)
names(beryllium)
plot(beryllium$year, beryllium$be, type="l")
```

spectrogram

Spectrogram

Description

This function produces image of amplitude by time index and instantaneous frequency. The horizontal axis represents time, the vertical axis is instantaneous frequency, and the color of each point in the image represents amplitude of a particular frequency at a particular time.

Usage

```
spectrogram(amplitude, freq, tt = NULL, multi = FALSE,
nlevel = NULL, size = NULL)
```

24 spectrogram

Arguments

amplitude vector or matrix of amplitudes for multiple signals

freq vector or matrix of instantaneous frequencies for multiple signals

tt observation index or time index

multi specifies whether spectrograms of multiple signals are separated or not.

nlevel the number of color levels used in legend strip

size vector of image size.

Details

This function produces image of amplitude by time index and instantaneous frequency. The horizontal axis represents time, the vertical axis is instantaneous frequency, and the color of each point in the image represents amplitude of a particular frequency at a particular time.

Value

image

References

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H. (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. *Proceedings of the Royal Society London A*, **454**, 903–995.

See Also

hilbertspec.

```
tt <- seq(0, 0.1, length = 2001)[1:2000]
f1 <- 1776; f2 <- 1000
xt <- sin(2*pi*f1*tt) * (tt <= 0.033 | tt >= 0.067) + sin(2*pi*f2*tt)
### Before treating intermittence
interm1 <- emd(xt, tt, boundary="wave", max.imf=2, plot.imf=FALSE)
### After treating intermittence
interm2 <- emd(xt, tt, boundary="wave", max.imf=2, plot.imf=FALSE,
interm=0.0007)

par(mfrow=c(2,1), mar=c(2,2,2,1))
test1 <- hilbertspec(interm1$imf)
spectrogram(test1$amplitude[,1], test1$instantfreq[,1])

test2 <- hilbertspec(interm2$imf, tt=tt)
spectrogram(test2$amplitude[,1], test2$instantfreq[,1])</pre>
```

sunspot 25

sunspot

Sunspot Data

Description

sunspot from 1610 through 1995.

Usage

```
data(sunspot)
```

Format

A list of year and sunspot

References

Oh, H-S, Ammann, C. M., Naveau, P., Nychka, D. and Otto-Bliesner, B. L. (2003) Multi-resolution time series analysis applied to solar irradiance and climate reconstructions. *Journal of Atmospheric and Solar-Terrestrial Physics*, **65**, 191–201.

```
data(sunspot)
names(sunspot)
plot(sunspot$year, sunspot$sunspot, type="1")
```

Index

* datasets kospi 200, 18	lena, 19 lennon, 19
lena, 19 lennon, 19 solar, 22 sunspot, 25	semd, 2, 20 solar, 22 solar irradiance(solar), 22
* nonparametric cvimpute.by.mean, 2 cvtype, 3 emd, 4 emd.pred, 6 emd2d, 7 emddenoise, 9 extractimf, 11 extractimf2d, 12 extrema, 14 extrema2dC, 15 hilbertspec, 16 imageEMD, 17 semd, 20 spectrogram, 23	solar.hs (solar), 22 solar.lean (solar), 22 spectrogram, 17, 23 sunspot, 25
beryllium(solar), 22	
<pre>cvimpute.by.mean, 2 cvtype, 2, 3, 10</pre>	
emd, 4, 10, 12, 15, 21 emd.pred, 6 emd2d, 7, 14, 16 emddenoise, 9 extractimf, 5, 11, 15, 21 extractimf2d, 8, 12, 16 extrema, 5, 12, 14, 16 extrema2dC, 8, 14, 15, 15	
hilbertspec, 16, 24	
imageEMD, 17	
kospi200, 18	