DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking

Trevor Norton

November 30, 2023

Molecular Docking Problem

- ▶ Biological function of proteins can be modulated by ligands binding to them.
- Molecular docking: predicting the position, orientation, and conformation of a ligand when bound to a target protein
- Approaches to docking:
 - Search-based methods: search space can be vast with rugged energy landscape
 - Deep learning methods: one-shot predictions that treat docking as regression problem. Much faster but no significant improvements in accuracy.

DiffDock

Figure: Overview of the DiffDock process [1]. Diffusion is carried out over the set of poses for a ligand. Then a confidence model is used to rank the potential poses.

Why use generative modeling?

- Regression models suffer when there is uncertainty as they will tend to average over the possibilities to reduce the expected error.
- Generative models can capture the distribution over the possible alternatives.

Problems with regression strategies

Figure: Uncertainty leads to regression models averaging over the possibilities. This leads to physically implausible poses and steric clashes.

Diffusion Scheme

- ▶ Want to diffuse on the set of ligand poses \mathcal{M}_c , keeping the protein fixed.
- ▶ Given a seed conformation $\mathbf{c} \in \mathbb{R}^{3n}$ of the ligand, any pose can be reached by a combination of (1) translations, (2) rotations, and (3) changes to torsion angles.
 - ▶ Translations: \mathbb{R}^3
 - ▶ Torsion angles: \mathbb{T}^m
 - Rotations: SO(3) (3 × 3 orthogonal matrices with determinant = 1)
- $ightharpoonup \mathbb{P} := \mathbb{R}^3 \times SO(3) \times \mathbb{T}^m$
- $lackbox{A}: \mathbb{P} imes \mathbb{R}^{3n} o \mathbb{R}^{3n}$ where $A(\cdot, \mathbf{c}): \mathbb{P} o \mathcal{M}_{\mathbf{c}}$ is a bijection
- ightharpoonup Thus it's sufficient to define diffusion on \mathbb{P} .

Diffusion Kernel

- ➤ To efficiently implement denoising score matching, we need to know the diffusion kernel. Here we use exploding variance with independent noise in each coordinate.
- Since $\mathbb{P}: \mathbb{R}^3 \times SO(3) \times \mathbb{T}^m$ is a product manifold, we can find the diffusion kernel on each of its components [2]:
 - $ightharpoonup \mathbb{R}^3 \longrightarrow \text{normal distribution}$
 - $ightharpoonup \mathbb{T}^m \longrightarrow \mathsf{wrapped} \mathsf{normal}$
 - ► $SO(3) \longrightarrow IGSO(3)$ (can be efficiently compute by a truncated infinite series).

Model Architecture

- Score model $\mathbf{s}(\mathbf{x}, \mathbf{y}, t)$ outputs vectors on the tangent space $T_{\mathbf{r}}\mathbb{R}^3 \oplus T_R SO(3) \oplus T_{\boldsymbol{\theta}}\mathbb{T}^m$
 - ▶ Two SE(3) equivariant vectors and one SE(3) invariant vector
- Confidence model $\mathbf{d}(\mathbf{x}, \mathbf{y})$ predicts a single scalar that is SE(3) invariant
- ▶ Score model operates on a coarse-grained representation of the protein with α -carbon atoms, while the confidence model operates on an all-atom structure.
- Structures are represented as heterogeneous geometric graphs
- ► Architectures are similar to *SE*(3)-equivariant convolutional networks over point clouds [3, 4].

Results

Table: The top half contains methods that directly find the pose; the bottom half those that use a pocket prediction method.

	-	Holo cryst	al protein	proteins Apo ESMFold proteins					
	Top-1 RMSD		Top-5 RMSD		Top-1 RMSD		Top-5 RMSD		Average
Method	%<2	Med.	%<2	Med.	%<2	Med.	%<2	Med.	Runtime (s)
GNINA	22.9	7.7	32.9	4.5	2.0	22.3	4.0	14.22	127
SMINA	18.7	7.1	29.3	4.6	3.4	15.4	6.9	10.0	126*
GLIDE	21.8	9.3							1405*
EQUIBIND	5.5	6.2	=	-	1.7	7.1	-	-	0.04
TANKBIND	20.4	4.0	24.5	3.4	10.4	5.4	14.7	4.3	0.7/2.5
P2Rank+SMINA	20.4	6.9	33.2	4.4	4.6	10.0	10.3	7.0	126*
P2Rank+GNINA	28.8	5.5	38.3	3.4	8.6	11.2	12.8	7.2	127
EQUIBIND+SMINA	23.2	6.5	38.6	3.4	4.3	8.3	11.7	5.8	126*
EQUIBIND+GNINA	28.8	4.9	39.1	3.1	10.2	8.8	18.6	5.6	127
DiffDock (10)	35.0	3.6	40.7	2.65	21.7	5.0	31.9	3.3	10
DiffDock (40)	38.2	3.3	44.7	2.40	20.3	5.1	31.3	3.3	40

References I

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola.

Diffdock: Diffusion steps, twists, and turns for molecular docking, 2023.

Emanuele Rodolà, Zorah Lähner, Alexander M Bronstein, Michael M Bronstein, and Justin Solomon.
Functional maps representation on product manifolds.
In *Computer Graphics Forum*, volume 38, pages 678–689.
Wiley Online Library, 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.

Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.

arXiv preprint, 2018.

References II

Euclidean neural networks: e3nn, 2020.