calculus

Навигация

- 1. Функциональные последовательности и ряды
- <u>2. Необходимое и достаточное условие равномерной сходимости функциональных</u> последовательностей и рядов
- <u>3. Непрерывность суммы функционального ряда и функциональных</u> последовательностей
- 4. Почленный переход к пределу в функциональных рядах
- 5. Почленное интегрирование функциональных рядов
- 6. Почленное дифференцирование функциональных рядов
- 7. Интеграл зависящий от параметра. Необходимые и достаточные условия равномерной сходимости функций. Непрерывность предельной функции
- <u>8. Предельный переход по параметру под знаком интеграла. Непрерывность интеграла по параметру.</u>
- 9. Дифференцирование интегралов по параметру
- 10. Интегрирование интегралов от параметра

1.

Функциональные последовательности и ряды

Последовательность, членами которой являются функции, определенные на одной и той же области X (X - область определения функций), называется функциональной последовательностью:

$$\{f_n(x)\} = f_1(x), f_2(x), \dots, f_n(x), \dots$$
 (1)

Если зафиксируем $x \in X$, то получим числовую последовательность.

Допустим, что при $\forall x \in X$ последовательность (1) имеет конечный предел. При других x предел будет другой. Заметим, что предел зависит от x и обозначим этот предел через f(x) :

$$f(x) = \lim_{n o \infty} f_n(x).$$

f(x) - предельная функция, которая зависит от x. Это называется поточечная ("по точкам") cxodumocmb.

При фиксированном x:

$$orall arepsilon > 0 \; \exists N(arepsilon), \, n > N : |f_n(x) - f(x)| < arepsilon.$$

Заметим, что при изменении x меняется N. Можно ли выбрать N таким образом, чтобы оно зависело только от ε , но не зависело от выбора x?

Определение равномерной сходимости

Если:

- 1. Для функциональной последовательности (1) существует предельная функция $\exists f(x) = \lim_{n \to \infty} f_n(x)$,
- 2. $orall arepsilon > 0 \; \exists N(arepsilon), \, n > N$ имеет место неравенство $|f_n(x) f(x)| < arepsilon \, orall x \in X$,

то мы скажем, что последовательность равномерно сходится к f(x) на множестве X ($f_n(x)
ightharpoonup f(x)$).

[Примеры]

Равномерная сходимость:

$$f_n(x)=rac{x}{1+n^2x^2},\quad 0\leq x\leq 1$$
 $f(x)=\lim_{n o\infty}f_n(x)=\lim_{n o\infty}rac{x}{1+n^2x^2}=\lim_{n o\infty}rac{rac{x}{n^2}}{rac{1}{n^2}+x^2}=0.$ $|f_n(x)-f(x)|=rac{x}{1+n^2x^2}=rac{1}{2n}\cdotrac{2nx}{1+n^2x^2}\leqrac{1}{2n}.$ $n>rac{1}{2arepsilon},\quad N(arepsilon)=\left\lfloorrac{1}{2arepsilon}
ight
floor.$

Данная последовательность равномерно сходится к предельной функции f(x).

Поточечная сходимость:

$$f_n(x) = rac{nx}{1+n^2x^2}, \quad 0 < x \le 1.$$
 $f(x) = \lim_{n o \infty} f_n(x) = \lim_{n o \infty} rac{nx}{1+n^2x^2} = 0.$ $|f_n(x) - f(x)| = rac{nx}{1+n^2x^2} < rac{1}{nx}.$

В данном случае равномерная сходимость отсутствует.

Функциональные ряды

Рассмотрим ряд, члены которого функции, определенные на множестве X:

$$\sum_{k=1}^{\infty}u_k(x).$$
 (3) $f_n(x)=u_1(x)+u_2(x)+\cdots+u_n(x).$

Если x фиксировано, то получается числовой ряд, а $f_n(x)$ - частичная сумма.

Пусть ряд (3) сходится при $\forall x \in X$:

$$\lim_{n o\infty} f_n(x) = f(x)$$
 (поточечная сходимость).

$$\left\{egin{array}{l} orall arepsilon>0 \ \exists N(arepsilon), \ n>N: |f_n(x)-f(x)|$$

Ряд (3) равномерно сходится на множестве X, если:

- 1. Последовательность частичных сумм имеет предельную функцию f(x) на X: $\exists f(x) = \lim_{n o \infty} f_n(x)$,
- $\text{2. } \forall \varepsilon > 0 \, \exists N(\varepsilon), \, n > N : |f_n(x) f(x)| < \varepsilon \iff |\varphi_n(x)| < \varepsilon \, \forall x \in X \, .$

2.

Необходимое и достаточное условие равномерной сходимости функциональных последовательностей и рядов

Теорема (Необходимое и достаточное условие равномерной сходимости последовательностей)

Для того, чтобы функциональная последовательность (1) имела предельную функцию и сходилась к этой функции равномерно относительно $x \in X$, необходимо и достаточно, чтобы:

[Доказательство]

1. Необходимость

Пусть $f_n(x)
ightrightarrows f(x)$ для $orall x \in X$. Тогда:

$$\forall \varepsilon > 0 \; \exists N(\varepsilon), \; n > N :$$

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}. \tag{5}$$

И если n+m>n>N, то:

$$|f_{n+m}(x)-f(x)|<rac{arepsilon}{2}.$$
 (6)

Следовательно:

$$|f_{n+m}(x)-f_n(x)|=|f_{n+m}(x)-f(x)+f(x)-f_n(x)|\leq |f_{n+m}(x)-f(x)|+|f(x)-f_n(x)|=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

2. Достаточность

$$orall arepsilon > 0 \; \exists N(arepsilon), \; n > N \; m = 1, 2, \ldots: \ |f_{n+m}(x) - f_n(x)| < arepsilon.$$

 $3a\phi u\kappa cupyem\ \forall x\in X.$ Так как при фиксированном x выполняется условие Больцано-Коши, то последовательность сходится.

При изменении x существует предельная функция $f(x)=\lim_{n o\infty}f_n(x)$ (поточечная сходимость).

Сделаем предельный переход $m o \infty$:

$$\lim_{m o \infty} f_{n+m}(x) = f(x).$$

Тогда:

$$|f(x)-f_n(x)|\leq arepsilon$$
 при $n>N$ и $orall x\in X.$

Следовательно, по 2-му условию:

$$f_n(x) \rightrightarrows f(x)$$
.

Признак Вейерштрасса

Теорема (Признак Вейерштрасса)

Пусть у нас есть функциональный ряд:

$$\sum_{k=1}^{\infty}u_k(x),$$

где каждый член ряда определен на X.

- 1. $|u_k(x)| \leq c_k \quad \forall x \in X$,
- 2. числовой ряд: $\sum_{k=1}^{\infty} c_k$ сходится.

extstyle ex

[Доказательство]

Рассмотрим сумму $(m \in \mathbb{N})$:

$$\sum_{k=n+1}^{n+m} u_k(x) \ = |u_{n+1}(x) + u_{n+2}(x) + \ldots + u_{n+m}(x)| \leq |u_{n+1}(x)| + |u_{n+2}(x)| + \ldots + |u_{n+m}(x)| \leq c_{n+1} + c_{n+2} + \ldots + c_{n+m}.$$

Из условия сходимости числового ряда:

$$orall arepsilon > 0 \; \exists N(arepsilon), \; n > N \; m = 1, 2, \ldots$$
 :

$$|c_{n+1}+c_{n+2}+\ldots+c_{n+m}|$$

Получаем:

$$\sum_{k=n+1}^{n+m} u_k(x) \ < c_{n+1} + c_{n+2} + \ldots + c_{n+m} < arepsilon.$$

Непрерывность суммы функционального ряда и функциональных последовательностей

Пусть имеем функциональный ряд

$$\sum_{n=1}^{\infty}u_n(x),$$

- $oxed{1}$. члены ряда определены на [a;b] и непрерывны на [a;b]
- 2. этот ряд равномерно сходится на [a;b].

Torda сумма ряда также будет непрерывной функцией на [a;b].

[Доказательство] Возьмём $\forall x_0 \in [a;b]$ и докажем, что f(x) непрерывна в этой точке.

$$egin{align} f_n(x) &= u_1(x) + u_2(x) + \dots + u_n(x) \ &f(x) &= f_n(x) + arphi_n(x) & (2) \ &f(x_0) &= f_n(x_0) + arphi_n(x_0) & (3) \ &(2) - (3) &= f(x) - f(x_0) &= f_n(x) - f_n(x_0) + arphi_n(x) - arphi_n(x) - arphi_n(x) &= f_n(x) - f_n(x_0) + |arphi_n(x)| &= |f(x) - f(x_0)| &= |f(x) - f_n(x_0)| + |arphi_n(x)| + |arphi_n(x_0)| &= |f(x) - f_n(x_0)| &= |f$$

Ряд равномерно сходится на [a;b] \Rightarrow orall arepsilon > 0 $\exists N(arepsilon)$, n>N :

$$|arphi_n(x)| \leq rac{arepsilon}{3}$$
 для $orall x \in [a;b]$ (6) $|arphi_n(x_0)| \leq rac{arepsilon}{3}$ (7)

 $f_n(x)$ — сумма конечного числа непрерывных функций $\Rightarrow f_n(x)$ — непрерывная функция, в частности в точке x_0 . То по определению:

$$orall arepsilon > 0 \;\; \exists \delta(arepsilon) > 0 : |x-x_0| < \delta \;\; \Rightarrow \;\; |f_n(x)-f_n(x_0)| < rac{arepsilon}{3} \quad (8)$$

Получим, что

$$orall arepsilon > 0 \;\; \exists \delta(arepsilon) > 0 : |x - x_0| < \delta \;\; \Rightarrow \;\; |f(x) - f(x_0)| < arepsilon$$

(используя (6), (7), (8))

 $\Rightarrow f(x)$ непрерывна в точке x_0 . lacktriangle

эта теорема достаточна, но не необходима

Приведём пример ряда, состоящего из непрерывных функций, этот ряд неравномерно сходится, но тем не менее сумма является непрерывной функцией.

Пример:

$$\sum_{n=1}^{\infty} \left[\frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2} \right], \quad 0 \leq x \leq 1$$

$$u_n(x) = rac{nx}{1+n^2x^2} - rac{(n-1)x}{1+(n-1)^2x^2}$$
 $f_n(x) = \sum_{k=1}^n u_k(x) = u_1(x) + u_2(x) + \dots + u_n(x)$
 $= rac{x}{1+x^2} - 0 + rac{2x}{1+2^2x^2} - rac{x}{1+x^2} + \dots + rac{nx}{1+n^2x^2} - rac{(n-1)x}{1+(n-1)^2x^2}$
 $= rac{nx}{1+n^2x^2}$
 $f(x) = \lim_{n o \infty} rac{nx}{1+n^2x^2} = 0$

Ряд неравномерно сходится, $u_n(x)$ непрерывны, f(x) непрерывна на [0;1]. \square

4.

Почленный переход к пределу в функциональных рядах

Точка a является для множества X точкой сгущения (предельной точкой), если $(a-\delta;a+\delta)$ имеется точка из X, отличная от a.

Теорема (о почленном переходе к пределу)

- 1. Пусть имеем ряд $\sum_{n=1}^\infty u_n(x)$, каждый член которого определён на множестве X.
- 2. a точка сгущения для множества X
- 3. $\lim_{x o a}u_n(x)=c_n$ для $orall n=1,2,\ldots$
- 4. Этот функциональный ряд равномерно сходится на X.

Тогда:

$$1.$$
 $\sum_{n=1}^{\infty}c_{n}=C$ сходится

$$2. \lim_{x \to a} f(x) = C$$

Почленный переход под знаком суммы:

$$\lim_{x o a}f(x)=C\quad\Longleftrightarrow\quad \lim_{x o a}\sum_{k=1}^\infty u_k(x)=\sum_{k=1}^\infty c_k=\sum_{k=1}^\infty \lim_{x o a}u_k(x)$$

[Доказательство]

Докажем 1-ое (необходимое и достаточное условие):

$$orall arepsilon>0 \quad \exists N(arepsilon), \quad n>N, \quad m=1,2,\ldots \ |u_{n+1}(x)+u_{n+2}(x)+\cdots+u_{n+m}(x)|$$

при x o a переходим к пределу:

$$|c_{n+1}+c_{n+2}+\cdots+c_{n+m}| \leq arepsilon \quad (2)$$
 $\Rightarrow \sum_{n=1}^{\infty} c_n = C.$

Докажем 2-ое:

$$egin{align} f(x) &= f_n(x) + arphi_n(x) \quad (3) \ & C &= C_n + \gamma_n \quad (4) \ & f(x) - C &= f_n(x) - C_n + arphi_n(x) - \gamma_n \ & |f(x) - C| \leq |f_n(x) - C_n| + |arphi_n(x)| + |\gamma_n| \quad (5) \ \end{pmatrix}$$

Так как функциональный ряд равномерно сходится, то

$$orall arepsilon > 0 \quad \exists N_1(arepsilon), \quad n > N_1 \quad \Rightarrow \quad |arphi_n(x)| < rac{arepsilon}{3}, \quad orall x \in X \quad (6)$$

И так как

$$\sum_{n=1}^{\infty} c_n$$
 сходится, то

$$\begin{array}{lll} \forall \varepsilon>0 & \exists N_2(\varepsilon), & n>N_2 & \Rightarrow & |\gamma_n|<\frac{\varepsilon}{3} & (7) \\ & N=\max(N_1,N_2), & n>N \\ & \lim_{x\to a}f_n(x)=\lim_{x\to a}\sum_{k=1}^nu_k(x)=\sum_{k=1}^nc_k=C_n \\ \\ \forall \varepsilon>0 & \exists \delta(\varepsilon)>0: |x-a|<\delta & \Rightarrow & |f_n(x)-C_n|<\frac{\varepsilon}{3} & (8) \\ \\ \forall \varepsilon>0 & \exists \delta(\varepsilon)>0, & |x-a|<\delta & \Rightarrow \\ & (5)=|f(x)-C|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon \\ & \Rightarrow (\textit{HoKowu})\lim_{x\to a}f(x)=C. \end{array}$$

5.

Почленное интегрирование функциональных рядов

Имеем ряд $\sum_{n=1}^{\infty}u_{n}(x)$.

Функции $u_n(x)$ непрерывны на [a;b] и ряд сходится. Когда можно интеграл от суммы заменить почленным интегрированием?

Теорема (достаточное условие)

- 1. Пусть имеем ряд $\sum_{n=1}^{\infty}u_n(x)$ (1), члены ряда непрерывны на [a;b].
- 2. ряд (1) равномерно сходится на [a;b].

Тогда справедлива формула:

$$\int_a^b f(x) \, dx = \int_a^b \left\{ \sum_{n=1}^\infty u_n(x) \right\} dx = \sum_{n=1}^\infty \int_a^b u_n(x) \, dx = \int_a^b u_1(x) \, dx + \int_a^b u_2(x) \, dx + \dots$$
 (2)

Заметим, что все интегралы в этой формуле существуют.

[Доказательство]

$$f(x) = f_n(x) + \varphi_n(x), \quad (3)$$

где

$$f_n(x)=u_1(x)+u_2(x)+\cdots+u_n(x),$$

$$arphi_n(x) = \sum_{k=n+1}^\infty u_k(x)$$
 (равн. сх.).

Так как ряд равномерно сходится, остаточный ряд тоже равномерно сходится и члены ряда непрерывные функции, то $\varphi_n(x)$ непрерывна.

 $f_n(x)$ непрерывна как сумма непрерывных функций. Поэтому имеем право проинтегрировать обе части равенства (3):

$$\int_a^b f(x)\,dx = \int_a^b f_n(x)\,dx + \int_a^b arphi_n(x)\,dx \quad (4)$$

Следовательно,

$$\int_a^b f(x)\,dx - \int_a^b f_n(x)\,dx = \int_a^b arphi_n(x)\,dx.$$

Нам нужно показать, что

$$egin{aligned} &\lim_{n o\infty}\int_a^barphi_n(x)\,dx=0 \quad (5). \ \ orall arepsilon>0 \;\; \exists N(arepsilon),\; n>N \quad \Rightarrow \quad |arphi_n(x)|$$

что равносильно (5).

Тогда из формулы (4) будет следовать, что предел левой части также стремится к 0 и это будет означать, что:

$$\lim_{n o\infty}\int_a^b f_n(x)\,dx = \int_a^b f(x)\,dx.$$

Но

$$egin{aligned} &\lim_{n o\infty}\int_a^b f_n(x)\,dx = \lim_{n o\infty}\int_a^b ig[u_1(x)+u_2(x)+\cdots+u_n(x)ig]\,dx \ &= \int_a^b u_1(x)\,dx + \int_a^b u_2(x)\,dx + \cdots = \sum_{n=1}^\infty \int_a^b u_n(x)\,dx, \end{aligned}$$

то есть

$$\int_a^b f(x)\,dx = \sum_{n=1}^\infty \int_a^b u_n(x)\,dx.$$

Запишем (2) в следующем виде:

$$\int_a^b f(x)\,dx = \int_a^b \Bigl(\sum_{k=1}^\infty u_k(x)\Bigr)\,dx = \sum_{k=1}^\infty \int_a^b u_k(x)\,dx = \lim_{n o\infty} \sum_{k=1}^n \int_a^b u_k(x)\,dx$$

(как сумма конечного числа слагаемых)

$$=\lim_{n o\infty}\int_a^b\Bigl(\sum_{k=1}^nu_k(x)\Bigr)\,dx=\lim_{n o\infty}\int_a^bf_n(x)\,dx\quad (6)$$

Условие равномерной сходимости рядов достаточно, но не необходимо.

[Пример:]

$$egin{align} \sum_{n=1}^{\infty} \Big[rac{nx}{1+n^2x^2} - rac{(n-1)x}{1+(n-1)^2x^2}\Big]. \ f_n(x) &= rac{nx}{1+n^2x^2} \quad \Rightarrow \quad f_n(x)
ightarrow 0 \quad x \in [0;1]. \end{array}$$

Проверим соотношение (6) для этого ряда:

$$egin{aligned} &\lim_{n o\infty}\int_0^1rac{nx}{1+n^2x^2}\,dx = \lim_{n o\infty}rac{1}{2n}\int_0^1rac{d(n^2x^2+1)}{1+n^2x^2} = \lim_{n o\infty}rac{1}{2n}\Big[\ln(1+n^2x^2)\Big]_0^1 \ &= \lim_{n o\infty}rac{1}{2n}\ln(1+n^2) = \lim_{n o\infty}rac{\ln(1+n^2)}{2n} = 0 = \int_0^10\,dx = 0. \end{aligned}$$

(6) выполняется, но ряд неравномерно сходится. Поэтому равномерная сходимость для почленного интегрирования является достаточным, но не необходимым условием.

6.

Почленное дифференцирование функциональных рядов

Теорема (достаточное условие).

- 1. Пусть дан ряд $\sum_{k=1}^\infty u_k(x),$ члены которого определены и непрерывны на [a;b]
- 2. $u_k(x)$ для $k=1,2,\ldots$ имеют непрерывные производные.
- 3. сам ряд $\sum_{k=1}^{\infty}u_k(x)$ сходится на [a;b] (поточечно)
- 4. ряд $\sum_{k=1}^{\infty} u_k'(x)$ равномерно сходится на [a;b].

Тогда справедлива формула:

$$f'(x) = \left(\sum_{k=1}^{\infty} u_k(x)\right)' = \sum_{k=1}^{\infty} u'_k(x).$$
 (1)

[Доказательство]

Обозначим

$$f(x) \; = \; \sum_{k=1}^\infty u_k(x) \;\;\;$$
 и $\;\; f^*(x) \; = \; \sum_{k=1}^\infty u_k'(x).$

 $u_k'(x)$ непрерывны и их ряд сходится равномерно

 $\Rightarrow f^*(x)$ есть равномерно сходящийся ряд непрерывных функций

 $\Rightarrow f^*(x)$ непрерывна на [a;b].

Рассмотрим интеграл от a до z, где $z \in [a;b]$:

$$\int_a^z f^*(t) dt = \int_a^z \sum_{k=1}^\infty u_k'(t) dt = \sum_{k=1}^\infty \int_a^z u_k'(t) dt.$$

Вторая часть по условию равномерной сходимости

Каждый $\int_a^z u_k'(t)\,dt$ равен $\left[u_k(t)\right]_a^z=u_k(z)-u_k(a)$. Тогда

$$\sum_{k=1}^{\infty} \int_a^z u_k'(t) \, dt \ = \ \sum_{k=1}^{\infty} ig(u_k(z) - u_k(a) ig) \ = \ \sum_{k=1}^{\infty} u_k(z) \ - \ \sum_{k=1}^{\infty} u_k(a) \ = \ f(z) - f(a).$$

Таким образом получаем:

$$\int_a^z f^*(t) \, dt \ = \ f(z) \ - \ f(a).$$

Это означает, что функция f(x) (при фиксированном a) имеет производную $f^*(x)$ на [a;b]. Следовательно, дифференцируя обе части равенства по x (учитывая свойство интегралов с переменным верхним пределом $\int_a^x f^*(t)\,dt = f(x)-f(a)$), мы приходим к

$$rac{d}{dx} \Bigl[\int_a^x f^*(t) \, dt \Bigr] \; = \; f^*(x)$$
 и $rac{d}{dx} \bigl[f(x) - f(a) \bigr] \; = \; f'(x).$

Значит,

$$f'(x)=f^*(x)=\sum_{k=1}^\infty u_k'(x).$$

Что и требовалось доказать. ■

7.

Интеграл зависящий от параметра. Необходимые и достаточные условия равномерной сходимости функций. Непрерывность предельной функции

Пусть имеем функцию от двух переменных f(x,y), где $x\in [a;b]$, $y\in Y$. Пусть при \forall фиксированном y существует

$$\int_a^b f(x,y)\,dx.$$

Меняя y, мы получим другое значение. Будем считать, что этот интеграл существует для всех $y \in Y$. Этот интеграл называется функцией от параметра y:

$$I(y) = \int_a^b f(x,y) \, dx.$$

Равномерное стремление к предельной функции

Пусть функция f(x,y) определена на некотором двумерном множестве $M=X\times Y$, и множество Y имеет конечную точку сгущения y_0 .

Определение (для конечного y_0). Если для функции f(x,y):

- $\exists \lim_{y o y_0} f(x,y) = arphi(x)$, $\,\,orall x\in X$.
- 2. orall arepsilon>0 , не зависящее от x , что как только $|y-y_0|<\delta \implies |f(x,y)-arphi(x)|<arepsilon$ $orall x\in X$.

Тогда $f(x,y)\Longrightarrow arphi(x)\ orall x\in X$ (равномерно сходится относительно x) при $y o y_0$.

Пусть функция f(x,y) определена на некотором двумерном множестве $M=X\times Y$, и множество Y имеет **бесконечную** точку сгущения $y_0=+\infty$ (или $-\infty$).

Определение (для бесконечного y_0). Если для функции f(x,y):

- 1. $\exists \lim_{y o +\infty (-\infty)} f(x,y) = arphi(x)$, $orall x \in X$.
- 2. orall arepsilon>0 $\exists \Delta(arepsilon)>0$, не зависящее от x , что как только $y>\Delta$ (или $y<-\Delta$) $\Longrightarrow |f(x,y)-arphi(x)|<arepsilon\ orall x$.

То $f(x,y)\Longrightarrow arphi(x)\; orall x\in X$ (равномерно сходится относительно x) при $y o +\infty$ (или $y o -\infty$).

Необходимое и достаточное условие

Теорема (необходимое и достаточное условие) для конечного y_0

Пусть функция f(x,y) определена на некотором двумерном множестве $M=X\times Y$, и множество Y имеет точку сгущения y_0 . Для того, чтобы f(x,y) при $y\to y_0$ имело бы предельную функцию $\varphi(x)$ и стремилась бы к ней равномерно, **необходимо и достаточно**, чтобы

Доказательство (для конечного y_0)

1. Необходимость.

Допустим, (1) и (2) (см. определение равномерной сходимости) выполняются, т.е. $\lim_{y\to y_0}f(x,y)=\varphi(x)$. Тогда $f(x,y)\Rightarrow \varphi(x)$ относительно x при $y\to y_0$.

Воспользуемся определением равномерной сходимости:

$$orall arepsilon > 0 \;\; \exists \delta(arepsilon) > 0, \; ext{не зависящее от} \; x: \; |y-y_0| < \delta \implies |f(x,y)-arphi(x)| < rac{arepsilon}{2} \quad orall x \in X.$$

Аналогично для y':

$$|y'-y_0|<\delta \implies |f(x,y')-arphi(x)|<rac{arepsilon}{2} \quad orall x\in X.$$

Тогда

$$||f(x,y')-f(x,y)|| = ||f(x,y')-arphi(x)+arphi(x)-f(x,y)|| \leq ||f(x,y')-arphi(x)||+|arphi(x)-f(x,y)|| < rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon,$$

2. Достаточность.

Пусть выполняется условие (1). Зафиксируем $\forall z \in X$. Зафиксируем y так, чтобы $|y-y_0|<\delta$. Переходим к пределу при $y\to y_0$ в (1):

$$|\varphi(x) - f(x,z)| \le \varepsilon \quad \forall x \in X \quad (4)$$

 $\implies f(x,y) \Rightarrow arphi(x)$ относительно x при $y o y_0$.

Теорема (для бесконечного y_0)

Для того, чтобы f(x,y) при $y\to y_0=+\infty$ (или $-\infty$) имело бы предельную функцию $\varphi(x)$ и стремилось бы к ней равномерно в области X, необходимо и достаточно, чтобы

Непрерывность предельной функции

Теорема. В качестве X возьмём [a;b]. Пусть f(x,y) при \forall фиксированном $y\in Y$ непрерывна на X и известно, что при $y\to y_0$ $f(x,y)\Longrightarrow \varphi(x)$. Тогда $\varphi(x)$ также будет непрерывной функцией на X.

Доказательство.

Рассмотрим последовательность $\{y_n\} o y_0$, $y_n \in Y$. По условию $f(x,y) \Longrightarrow \varphi(x)$ при $y o y_0$, то есть

$$orall arepsilon > 0$$
 д $\delta(arepsilon) > 0$, не зависящее от $x, \ |y-y_0| < \delta \implies |f(x,y)-arphi(x)| < arepsilon \ \ orall x \in [a;b].$

Выберем n — большое, чтобы $|y_n-y_0|<\delta$. Тогда

$$|f(x,y_n)-arphi(x)|$$

Определим

$$\psi_n(x) = f(x,y_n) \;\; \Rightarrow \;\; \psi_n(x) \mathop{\longrightarrow}\limits_{n o \infty} arphi(x).$$

Но $\psi_n(x)=f(x,y_n)$ — непрерывна на [a;b], значит $\psi_n o \varphi$ равномерно, а потому $\varphi(x)$ будет непрерывна на [a;b].

Если имеем последовательность непрерывных функций $\{\psi_n(x)\}\subset [a;b]$, которая равномерно сходится к $\varphi(x)$, то предельная функция $\varphi(x)$ будет также непрерывна на [a;b].

Предельный переход по параметру под знаком интеграла. Непрерывность интеграла по параметру.

Рассмотрим интеграл

$$I(y) = \int_a^b f(x,y) \, dx.$$

Если

1. f(x,y) $orall y \in Y$ непрерывна по $x \in [a,b]$

2.
$$f(x,y) \xrightarrow{pавномерно} arphi(x)$$
 при $y o y_0$

тогда

$$\lim_{y o y_0}I(y)=\lim_{y o y_0}\int_a^bf(x,y)dx=\int_a^barphi(x)dx=\int_a^b\lim_{y o y_0}f(x,y)dx$$

[Доказательство]

arphi(x) непрерывная функция $\Rightarrow \exists \int_a^b arphi(x) dx$

Из 2. имеем

$$\begin{split} \forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \quad |y - y_0| < \delta \ \, = > |f(x,y) - \varphi(x)| < \varepsilon \quad \forall x \in X \\ |\int_a^b f(x,y) dx - \int_a^b \varphi(x) dx| = |\int_a^b (f(x,y) - \varphi(x)) dx| \leq \int_a^b |f(x,y) - \varphi(x)| dx < \varepsilon(b-a) \\ \Rightarrow \lim_{y \to y_0} \int_a^b f(x,y) dx = \int_a^b \varphi(x) dx \Rightarrow \\ \Rightarrow \forall \varepsilon > 0 \quad \exists \delta(\varepsilon) > 0 \quad |y - y_0| < \delta \quad |\int_a^b f(x,y) dx - \int_a^b \varphi(x) dx| < \varepsilon \end{split}$$

Непрерывность функции I(y)

Теорема:

Пусть f(x,y) непрерывна по совокупности в прямоугольнике $\left[a,b;c,d\right]$

Тогда $I(y) = \int_a^b f(x,y) dx$ непрерывна на отрезке [c,d]

[Доказательство]

Так как f(x,y) непрерывна по совокупности в прямоугольнике [a,b;c,d], то она будет равномерно непрерывна по теореме Кантора

$$orall arepsilon > 0 \quad \exists \delta(arepsilon) > 0 \quad orall \left(x',y'
ight), \left(x'',y''
ight) \in [a,b;c,d]$$

$$egin{aligned} |x''-x'| < \delta & |y''-y'| < \delta & \Rightarrow \ & \Rightarrow |\int_a^b f(x'',y'') dx - \int_a^b f(x',y') dx| < arepsilon \end{aligned}$$

Возьмем

$$x''=x'=x$$
 $(orall x\in [a,b])$, $y'=y_0$ $(orall y_0\in [c,d])$, $y''=y$ и подставим

Получили

$$egin{aligned} orall arepsilon > 0 & \exists \delta(arepsilon) > 0 & |y-y_0| < \delta & \Rightarrow \ & \Rightarrow |\int_a^b f(x,y) dx - \int_a^b f(x,y_0) dx| < arepsilon \end{aligned}$$

Это означает, что $f(x,y) \xrightarrow{paвномерно} f(x,y_0)$

Сделаем предельный переход согласно теореме

$$\lim_{y o y_0}I(y)=\lim_{y o y_0}\int_a^bf(x,y)dx=\int_a^b\lim_{y o y_0}f(x,y)dx=\int_a^bf(x,y_0)dx=I(y_0)\Rightarrow$$

 \Rightarrow в силу того, что y_0 произвольная точка из [c,d], то I(y) непрерывна на [c,d]