Matrices et Applications linéaires

Matrices

Exercice 1: Calculer

$$A = \begin{pmatrix} -5 & 1 & 2 \\ 0 & 2 & -1 \\ 2 & -1 & 6 \end{pmatrix} - 3 \begin{pmatrix} 5 & -1 & -4 \\ 2 & 1 & 0 \\ -2 & -3 & 1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & -5 & 2 \\ 0 & 2 & -1 \\ 2 & 6 & -1 \end{pmatrix} \cdot \begin{pmatrix} 5 & -1 & 0 \\ 2 & 0 & 1 \\ -2 & -3 & 1 \end{pmatrix}.$$

Exercice 2 : Calculer tous les produits possibles de deux matrices (en prenant éventuellement deux fois la même) parmi

$$A = \begin{pmatrix} 3 & 1 \\ 3 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 3 \\ 0 & -3 \\ 2 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 2 \\ -1 \end{pmatrix},$$

$$E = \begin{pmatrix} 2 & -1 & 3 \end{pmatrix}, \quad F = \begin{pmatrix} 7 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 3 & 2 \\ -4 & 1 & 5 \\ 0 & 1 & 3 \end{pmatrix}.$$

Exercice 3: On considère les matrices

$$A = \begin{pmatrix} 0 & -1 \\ 0 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 4 & -1 \\ 5 & 4 \end{pmatrix} \qquad D = \begin{pmatrix} 2 & 5 \\ 5 & 4 \end{pmatrix}$$

Calculer AB, AC et AD. Que peut-on en déduire ?

Exercice 4: Soit $E = \mathbb{R}^2$, muni de la base canonique $\mathbb{B} = \{e_1, e_2\}$.

- (a) Écrire la matrice $R(\theta)$ de la rotation d'angle θ autour de l'origine (0,0) dans la base \mathbb{B} .
- (b) Montrer que $R(\theta)R(\theta') = R(\theta + \theta')$.
- (c) En déduire l'expression de $R(\theta)^{-1}$.
- (d) Écrire la matrice S_1 de la réflexion par rapport à l'axe Ox_1 dans la base \mathbb{B} . Que vaut S_1^{-1} ?
- (e) Calculer $S(\theta) = R(\theta)S_1R(\theta)^{-1}$. Déterminer l'ensemble des $x \in \mathbb{R}^2$ tels que $S(\theta)x = x$. Quelle est l'interprétation géométrique de $S(\theta)$?

Exercice 5 : On considère $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 . En déduire que A est inversible et calculer son inverse.
- 2. Combien le système suivant a-t-il de solutions ? Les déterminer s'il y en a:

(S)
$$\begin{cases} y + z = 1 \\ x + z = 2 \\ x + y = 3. \end{cases}$$

Exercice 6 : Calculer, s'il existe, l'inverse des matrices suivantes à l'aide de la méthode du pivot de Gauss.

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & \bar{\alpha} & \bar{\alpha}^2 \\ \alpha & 1 & \bar{\alpha} \\ \alpha^2 & \alpha & 1 \end{pmatrix} \text{ avec } \alpha \in \mathbb{C},$$

$$E = \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 7 & -2 & 5 \\ -4 & -1 & 4 & 1 \\ 2 & 1 & 0 & -1 \\ 1 & -1 & 3 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & 1 & 1 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 0 & 1 & 2 & \dots & n-1 \\ & \ddots & \ddots & \ddots & \vdots \\ \vdots & & 0 & 1 & 2 \\ 0 & \dots & \dots & 0 & 1 \end{pmatrix}.$$

Exercice 7: Classement des pages web par Google

On appelle Page Rank (PR) de la page web A le nombre PR(A) vérifiant l'équation suivante:

$$PR(A) = \frac{1}{2P} + \frac{1}{2} \left(\frac{PR(P_1)}{N(P_1)} + \frac{PR(P_{k(A)})}{N(P_{k(A)})} \right)$$

où P est le nombre total de pages considéré, les P_i sont les pages qui ont un lien sortant vers A et $N(P_i)$ est le nombre de liens sortants de la page P_i .

On considère le cas où la page A pointe vers la page B, la page B pointe vers A et C, la page C pointe vers B et D et la page D pointe vers C.

- (a) Écrire le système linéaire 4x4 lié au cas ci-dessus.
- (b) Le résoudre.

Applications linéaires

Exercice 8: Déterminer lesquelles des applications suivantes sont linéaires

- (a) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x y + 1,$
- (b) $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (2x + y, x y),
- (b) $f: \mathbb{R} \to \mathbb{R}$, f(x,y) = (2x + y, x y), (c) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (xy,x,y), (d) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (2x + y + z, y z, x + y), (e) $f: \mathbb{R}^2 \to \mathbb{R}^4$, f(x,y) = (y,0,x 7y, x + y), (f) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^2 + y^2 + z^2$.

Déterminer, pour chaque application linéaire, son noyau, son rang et son image.

Exercice 9: On considère l'application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ dont la matrice dans la base canonique est

$$A = \begin{pmatrix} -1 & -3 & 4 & -4 \\ -2 & -6 & 0 & -4 \\ 1 & 3 & -2 & 3 \end{pmatrix}$$

- (a) Déterminer le novau et l'image de f.
- (b) Trouver des bases de ces sous-espaces.
- (c) Vérifier le théorème du rang.

Exercice 10: Soit E un espace vectoriel et soient E_1 et E_2 deux sous-espaces vectoriels de dimension finie de E. On définit l'application $f: E_1 \times E_2 \to E$ par $f(x_1, x_2) = x_1 + x_2$.

- (a) Montrer que f est linéaire.
- (b) Déterminer le novau et l'image de f.
- (c) Que donne le théorème du rang?

Exercice 11:

On considère l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie pour tout $(x, y, z) \in \mathbb{R}^3$ par

$$f(x, y, z) = (y - z, -2x - y + z, -2x - y + z).$$

- 1. Écrire la matrice $[f]_{\mathcal{C}}^{\mathcal{C}}$ de f dans la base canonique $\mathcal{C} = (e_1, e_2, e_3)$ de \mathbb{R}^3 .
- 2. Résoudre le système

$$[f]_{\mathcal{C}}^{\mathcal{C}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

En déduire le noyau de f. Donner une base de ce sous-espace vectoriel.

3. Déterminer les conditions nécessaires et suffisantes sur les réels b_1 , b_2 et b_3 pour que le système suivant ait au moins une solution:

$$[f]_{\mathcal{C}}^{\mathcal{C}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

En déduire l'image de f. Donner une base de ce sous-espace vectoriel.

4. L'application f est-elle injective? Surjective?

Exercice 12 : Soit E un espace vectoriel de dimension 3 et $\mathcal{E} = (e_1, e_2, e_3)$ une base de E. On considère l'application linéaire f de E dans E dont la matrice $[f]_{\mathcal{E}}^{\mathcal{E}}$ dans la base \mathcal{E} est :

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 2 & -1 & 2 \end{pmatrix}.$$

- 1. Déterminer l'image par f d'un vecteur v de coordonnées (x,y,z) dans la base \mathcal{E} .
- 2. Écrire la matrice $[f]_{\mathcal{E}'}^{\mathcal{E}'}$ de f dans la base $\mathcal{E}' = (e_3, e_2, e_1)$.
- 3. Écrire la matrice $[f]_{\mathcal{F}}^{\mathcal{F}}$ de f dans la base $\mathcal{F} = (e_1 + e_3, e_3, e_2 e_3)$.

Exercice 13 : Soit E un espace vectoriel de dimension 3, $\mathbb{B} = \{e_1, e_2, e_3\}$ une base de E, et t un paramètre réel. Montrer qu'il existe une unique application linéaire $f: E \to E$ telle que

$$\begin{cases} f(e_1) = e_1 + e_2, \\ f(e_2) = e_1 - e_2, \\ f(e_3) = e_1 + te_3. \end{cases}$$

Donner l'image par f du vecteur $x = x_1e_1 + x_2e_2 + x_3e_3$ et la matrice de f dans la base \mathbb{B} . Pour quelle(s) valeur(s) du paramètre t l'application f est-elle injective, surjective, respectivement bijective?

Exercice 14 : Soit E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même. Montrer que les deux assertions suivantes sont équivalentes :

- (i) $\operatorname{Ker} f = \operatorname{Im} f$.
- (ii) $f^2 = 0$ et $n = 2 \operatorname{rg}(f)$.

Exercices pour aller plus loin

Exercice 15: (a) Comparer les produits matriciels $\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ et $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$.

(b) Même question pour $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ et $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Exhiber des matrices 2×2 telles que AB = BA, respectivement $AB \neq BA$.

Exercice 16 : Soient E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même. On suppose qu'il existe $m \in \mathbb{N}^*$ tel que $f^m = 0$ et $f^{m-1} \neq 0$.

- (a) Soit $x \in E$ tel que $f^{m-1}(x) \neq 0$. Montrer que la famille $\mathbb{F} = \{x, f(x), f^2(x), \dots, f^{m-1}(x)\}$ est libre.
- (b) En déduire que $m \leq n$. Quand \mathbb{F} est-elle une base de E?

Exercice 17: Montrer que la dérivée est une application linéaire de l'espace vectoriel des fonctions $f: \mathbb{R} \to \mathbb{R}$ continûment dérivables dans l'espace des fonctions $f: \mathbb{R} \to \mathbb{R}$ continues. Déterminer son noyau et son image.

Exercice 18: Soient E, F des espaces vectoriels de dimension finie et $f, g \in \mathbb{L}(E, F)$.

- (a) Montrer que $rg(f+g) \le rg(f) + rg(g)$.
- (b) En déduire que $|\operatorname{rg}(f) \operatorname{rg}(g)| \le \operatorname{rg}(f+g)$.

Exercices complémentaires

Exercice 19: On note
$$A = \begin{pmatrix} 2 & 1 & 5 \\ 1 & 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 2 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 3 \\ -1 & -1 \end{pmatrix}$.

- 1. Parmi AC, BA, BC, CA, AB et CB, quels sont les produits licites ? Calculer ces derniers.
- 2. Le produit matriciel est-il commutatif ? Justifier la réponse à l'aide de la question précédente.
- 3. Vérifier que (AB)C = A(BC).

Exercice 20 : On considère la matrice $A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 1 \\ -1 & -2 & -1 \end{pmatrix}$.

- 1. Calculer A^2 puis A^3 .
- 2. Calculer $A^3 3A^2 2A$, en déduire que A est inversible et déterminer A^{-1} .
- 3. Résoudre le système $\begin{cases} x + y z = 1 \\ 2x + 3y + z = 2 \\ -x 2y z = 3. \end{cases}$

Exercice 21: On munit l'espace vectoriel \mathbb{R}^3 de sa base canonique

$$\mathcal{E}_3 = (e_1, e_2, e_3) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)),$$

et l'espace vectoriel \mathbb{R}^4 de sa base canonique

$$\mathcal{F}_4 = (f_1, f_2, f_3, f_4) = ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)).$$

On considère alors l'application linéaire ϕ de \mathbb{R}^3 dans \mathbb{R}^4 donnée par

$$\phi(x,y,z) = (y-z, x-z, 4y-4z, x-z),$$

pour tout $(x, y, z) \in \mathbb{R}^3$.

- 1. Donner $[\phi]_{\mathcal{F}_4}^{\mathcal{E}_3}$, la matrice de ϕ dans les bases \mathcal{E}_3 et \mathcal{F}_4 .
- 2. Déterminer $Ker(\phi)$, le noyau de ϕ , et en donner une base.
- 3. Déterminer $Im(\phi)$ et en donner une base.
- 4. Donner la matrice de ϕ dans les nouvelles bases

$$\mathcal{B} = (b_1, b_2, b_3) = ((1, 0, 0), (0, 1, 0), (1, 1, 1)),$$

et

$$C = (c_1, c_2, c_3, c_4) = ((0, 1, 0, 1), (1, 0, 4, 0), (0, 0, 1, 0), (0, 0, 0, 1)).$$