TensorFlow

- Introduction -

Aug. 2019

Ando Ki, Ph.D. adki@future-ds.com

Table of contents

- Introduction to TensorFlow
 - ▶ Deep-Learning Package Design Choices
 - ► TensorFlow architecture
 - TensorFlow configuration
 - ► TensorFlow from Google
 - ▶ Tensorflow model

(2)

Deep-Learning Package Design Choices

- Model specification
 - Configuration file
 - e.g. Caffe, DistBelief, CNTK
 - Programmatic generation
 - Torch: Python
 - Theano: Python
 - TensorFlow: Python
 - ⇒ Tiny-Dnn: C++

- For programmatic models, choice of highlevel language:
 - ► Lua (Torch)
 - Python (Theano, TensorFlow)
 - ⇒ Theano: Academic
 - ⇒ TensorFlow: Google
 - ► C/C++
 - Caffe
 - Mxnet

(3)

TensorFlow architecture

- Core in C++
 - ▶ Lowest level API (TensorFlow core): provide complete programming control
- Different front ends for specifying/driving the computation
 - ► Higher level API on top of the TensorFlow core
 - ▶ Python and C++

"TensorFlow: A System for Machine Learning on Heterogeneous Systems" by Jeff Dean / Google Brain team

(4)

TensorFlow configuration Single process configuration single process Session Run client client master master session Execute Subgraph subgraph worker worker GPU 1 GPU 0 CPU 0 GPU₂ Distributed configuration client: construct graph master: execute operations client (based on your code) (based on TensorFlow's code) x = tf.placeholder(tf.float32, [None W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) return executed result Execute worker worker worker sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) process 3 process 1 process 2

TensorFlow from Google

- TensorFlow is not a language
 - It is a framework which has algorithms for solving machine learning and deep learning problems.
- The core of TensorFlow is the dataflow graph representing computations.
 - ► TensorFlow is an open source <u>library for numerical computation using data flow graphs</u>
 - Nodes represent operations (ops), and
 - the edges represent tensors (multi-dimensional arrays, the backbone of TensorFlow).
 - The entire dataflow graph is a complete description of computations, which occur within a session, and are executed on devices (CPUs or GPUs).
- TensorFlow provides Python front-end
 - where tensors are represented internally as familiar numpy ndarray objects.
 - ► TensorFlow relies on highly-optimized C++ for its computation at its heart, i.e., TensoFlow core.
- The algorithmic engine is build over C++, on top of which there is a Python API acting as a bridge to call the C++ engine.
 - All operations are done outside of Python.
 - In short a Python programming interface to make life simpler for a developer so that he can readily use the underlying engine without worrying much about its internal intricacies.

(6)

TensorFlow model

- Big idea
 - express a numeric computation as a graph, where tensors (data) flow through the graph
 - Graph: Data (Tensors) flow through the graph
 - Nodes: mathematical operationsedges: multi-dimensional arrays

Nodes: ReLU, Add, MatMul Edges: b, W, x

- Tensor: N-dimensional array
 - 0-dimension: Scalar
 - 1-dimension: Vector (1-d tensor)2-dimension: Matrix (2-d tensor)
 - N-dimension: Tensor

- Flow: Computation based on data flow graphs
- Tensors flow through the graph
 - ► →TensorFlow
 - edges represent the tensors (data)
 - nodes represent the processing

(7

㈜퓨쳐디자인시스템 34051 대전광역시 유성구 문지로 193, KAIST 문지캠퍼스, F723호 (042) 864-0211~0212 / contact@future-ds.com / www.future-ds.com

Future Design Systems, Inc.

Faculty Wing F723, KAIST Munji Campus, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Korea +82-042-864-0211~0212 / contact@future-ds.com / www.future-ds.com

