Lec. 11 (10/27/2022) Convex Optimization Problems Standard: min f(x) $x \in \mathcal{K}$ We say the above standard form is a convex optimization problem if and only if (iff) The objective f(.) is a Convex function

· The feasible set 2 is a convex set

Some standard convex optimization problems: (Standard forms) Linear program (LP) Quadratie program (QP) Quadratically constrained quadratic program (QCQP) Second order come program (SOCP) Semidefinite program (SDP)
Geometrie program (GP), det/logdet maximization
(logdet)

Linkar Program (LP) $f(x'',x'') = \overline{C}_{\perp} x$ min $\langle \underline{C}, \underline{x} \rangle$ Nector imper product $Z \in \mathbb{R}^n$ $Z \in \mathbb{R}^n$ $Z \in \mathbb{R}^n$ st. Az Zb - (e/ementronise vector)
inequality Objective : $f(x) = \langle \underline{c}, \underline{x} \rangle$ linear function in X X = Poily hedron (intersection of · Constraint: finite number halfspaces to of thinkar inequalities hope former and teanalities) Lec. 6 (p.5-6)

Quadratic Program (QP) $\frac{1}{2}$ $x^T A x + \langle b, x \rangle + c \rangle$ where min $\begin{cases} A \in S_+^n \\ \Leftrightarrow A > 0 \end{cases}$ $\underline{x} \in \mathbb{R}^n$ $P_{\underline{x}} \leq \underline{\psi}$ S.t. • Objective: f(x) is a convex quadratic function function 2 = Polyhedron · Constraint

Quadratically Constrained (QCQP)
Quadratic Program

min $\frac{1}{2} x^T A x + \langle b, x \rangle + c$, A > 0 $x \in \mathbb{R}^n$

St. $\frac{1}{2} \times^{T} M_{i} \times + \langle M_{i}, x \rangle + \gamma_{i}^{*} \leq 0 + i = 1,...,m$ where $M_{i} > 0 + i$

min f, \times (Sometimes can consider $\times \in \mathbb{R}^n$ (Sometimes can consider \times Convex quadratic in the objective) 8.t. $\|A_i \times + \underline{b}_i\|_2 \leq \langle \underline{c}_i, \underline{x} \rangle + \underline{d}_i$ ₩i=1,..., m where $A \in \mathbb{R}^{n_i \times n_i}$ $F \times \leq g$ FE RPXM e Objective function: linear

· Constraint set: $\mathcal{K} = Intersection of polyhedron with ...$

Second Order Come Programs (SOCP)

Where $(A; \underline{x} + \underline{b};, \langle \underline{c};, \underline{x} \rangle + \underline{d};)$ N;+1 défines the 1th second order cone in R Lec. 5 (p. 14) Lec. 6 (p. 1) · If Ai = O + i=1,...,m, then SOCP my LP · If c; = 0 + i=1,..., m then SO ep ~ Q cap

Second order cone

Semidefinite Prigrams (SDP) Two different standard forms min tr(CTX) min (C, X) Form (*): s.t. tr(ArX) < br $\langle A_{\kappa}, X \rangle \leq b_{\kappa}$ + K=1,...,m + K=1,..., m

Looks like LP

· Objective fanction: linear · Constraint set: X is intersection of pos. Semi définite come voiter half spaces and hyperplanes affine slice of pos servi définite cone