Cvičení 3 - Sdílení tepla - Válec a koule

Elektroenergetika 3

Petr Jílek

2024

Obsah

1	Vál	ec 🎒	2
	1.1	Odvození tepelného odporu	2
	1.2	Minimum tepelného odporu	4
	1.3	Ekonomie	6
	1.4	Číselný příklad 1 🥠	7
		1.4.1 Řešení	7
	1.5	Číselný příklad 2 🥒	7
		1.5.1 Řešení	7
2	Κοι	ıle 🌙 🔰	8
	2.1	Odvození tepelného odporu	8
	2.2	Minimum tepelného odporu	10
	2.3	Ekonomie	11
	2.4	Číselný příklad	11
		2.4.1 Řešení	11

Úprava značení

- Absolutní tepelný odpor: $R_{\vartheta A} \to R \; ({\rm K} \; {\rm W}^{-1})$
- Součinitel prostupu tepla: $U_\vartheta \to U \; ({\rm W} \; {\rm m}^{-2} \; {\rm K}^{-1})$

1 Válec

1.1 Odvození tepelného odporu

Tepelný odpor válce se skládá ze dvou částí:

- tepelný odpor vedení tepla v materiálu válce R_{λ} ,
- tepelný odpor přenosu tepla z povrchu válce do okolí R_U .

Tepelné schéma válce bude vypadat následovně:

Pro odvození tepelného odporu R_λ využijeme vztah pro absolutní tepelný odporR:

$$R = \frac{d}{\lambda \cdot S},$$

kde:

d - tloušťka materiálu (m),

 λ - tepelná vodivost materiálu (W m⁻¹ K⁻¹),

S - plocha přenosu tepla (m²).

Zde d nahradíme nekonečně malou částí poloměru válce:

$$d\to dr.$$

Dále S nahradíme plochou válce:

$$S \to 2\pi r \cdot l \cdot dr$$

kde:

r - poloměr válce (m),

l - délka válce (m).

Tepelný odpor dR_{λ} válce bude tedy:

$$dR_{\lambda} = \frac{dr}{\lambda \cdot 2\pi r \cdot l \cdot dr}.$$

Pro získání celkového odporu R_{λ} je třeba provést integraci od vnitřního poloměru izolace r_1 po vnější poloměr válce r_2 :

$$R_{\lambda} = \int_{r_1}^{r_2} \frac{1}{\lambda \cdot 2\pi r \cdot l} dr = \frac{1}{\lambda \cdot 2\pi \cdot l} \int_{r_1}^{r_2} \frac{1}{r} dr = \frac{1}{\lambda \cdot 2\pi \cdot l} \left[\ln|r| \right]_{r_1}^{r_2}$$

Jelikož poloměry r_1 a r_2 jsou kladné (záporné poloměry nedávají fyzikální smysl), můžeme absolutní hodnotu u logaritmu zanedbat:

$$R_{\lambda} = \frac{1}{\lambda \cdot 2\pi \cdot l} \left[\ln r \right]_{r_1}^{r_2} = \frac{1}{\lambda \cdot 2\pi \cdot l} \left(\ln r_2 - \ln r_1 \right) = \frac{1}{\lambda \cdot 2\pi \cdot l} \ln \frac{r_2}{r_1} = \frac{1}{2\pi l \lambda} \ln \frac{r_2}{r_1}.$$

Pro odpor přenosu tepla z povrchu válce do okolí R_U využijeme vztah pro odpor přenosu tepla R_U :

$$R_U = \frac{1}{U \cdot S},$$

kde:

U - součinitel prostupu tepla (W m⁻² K⁻¹).

Plochu S nahradíme plochou válce:

$$S \to 2\pi r_2 \cdot l$$
.

Odpor přenosu tepla z povrchu válce do okolí R_U bude tedy:

$$R_U = \frac{1}{U \cdot 2\pi r_2 \cdot l} = \frac{1}{2\pi l U r_2}.$$

Celkový tepelný odpor válce $R_{\vartheta,\Sigma}$ bude součtem obou odporů:

$$R_{\Sigma} = R_{\lambda} + R_{U} = \frac{1}{2\pi l \lambda} \ln \frac{r_2}{r_1} + \frac{1}{2\pi l U r_2}$$

1.2 Minimum tepelného odporu

Pro nalezení extrému tepelného odporu R_{Σ} podle poloměru válce r_2 je třeba zjistit, kdy bude derivace R_{Σ} podle r_2 rovna nule:

$$\frac{dR_{\Sigma}}{dr_2} = 0.$$

Derivace R_{Σ} podle r_2 bude:

$$\frac{dR_{\Sigma}}{dr_2} = \frac{dR_{\lambda}}{dr_2} + \frac{dR_U}{dr_2}.$$

Derivace R_{λ} podle r_2 bude:

$$\frac{dR_{\lambda}}{dr_2} = \frac{d}{dr_2} \left(\frac{1}{2\pi l \lambda} \ln \frac{r_2}{r_1} \right) = \frac{d}{dr_2} \left(\frac{1}{2\pi l \lambda} \left(\ln r_2 - \ln r_1 \right) \right) =$$

$$= \frac{d}{dr_2} \left(\frac{1}{2\pi l \lambda} \ln r_2 \right) = \frac{1}{2\pi l \lambda r_2}.$$

Derivace R_U podle r_2 bude:

$$\frac{dR_U}{dr_2} = \frac{d}{dr_2} \left(\frac{1}{2\pi l U r_2} \right) = -\frac{1}{2\pi l U r_2^2}.$$

Derivace R_{Σ} podle r_2 bude tedy:

$$\frac{dR_{\Sigma}}{dr_2} = \frac{1}{2\pi l \lambda r_2} - \frac{1}{2\pi l U r_2^2}.$$

Nyní můžeme zjistit, kdy bude derivace R_{Σ} podle r_2 rovna nule:

$$\frac{1}{2\pi l\lambda r_2}-\frac{1}{2\pi lUr_2^2}=0$$

$$\frac{1}{\lambda r_2} - \frac{1}{Ur_2^2} = 0$$

$$\frac{1}{\lambda r_2} = \frac{1}{Ur_2^2}$$
$$\frac{r_2}{\lambda} = \frac{1}{U}$$
$$r_2 = \frac{\lambda}{U}.$$

V další části budeme zkoumat, zda se jedná o minimum nebo maximum. K tomu využijeme druhou derivaci R_{Σ} podle r_2 :

$$\frac{d^2R_{\Sigma}}{dr_2^2} = \frac{d}{dr_2} \left(\frac{1}{2\pi l \lambda r_2} - \frac{1}{2\pi l U r_2^2} \right) = -\frac{1}{2\pi l \lambda r_2^2} + \frac{1}{\pi l U r_2^3}.$$

Nyní dosadíme $r_2 = \frac{\lambda}{U}$:

$$\begin{split} &-\frac{1}{2\pi l\lambda\left(\frac{\lambda}{U}\right)^2}+\frac{1}{\pi lU\left(\frac{\lambda}{U}\right)^3}=-\frac{1}{2\pi l\lambda\frac{\lambda^2}{U^2}}+\frac{1}{\pi lU\frac{\lambda^3}{U^3}}=\\ &=-\frac{U^2}{2\pi l\lambda^3}+\frac{U^2}{\pi l\lambda^3}=\frac{-U^2+2U^2}{2\pi l\lambda^3}=\frac{U^2}{2\pi l\lambda^3}. \end{split}$$

Hodnoty U a λ jsou kladné, tudíž druhá derivace je kladná. To znamená, že se jedná o minimum.

Závislost tepelného odporu R_{Σ} na poloměru válce r_2

1.3 Ekonomie

Nyní můžeme porovnat rozdíl v rychlosti růstu tepelného odporu R_{Σ} a objemu izolace v závislosti na poloměru válce r_2 . Řešíme objem izolace, jelikož při konstrukci se platí za objem materiálu. Pro objem izolace platí:

$$V = \pi(r_2^2 - r_1^2) \cdot l = \pi r_2^2 \cdot l - \pi r_1^2 \cdot l.$$

Nyní provedeme zjednodušení vzorce podobně jako se provádí u časové složitosti algoritmů. Zkoumáme rychlost růstu objemu izolace v závislosti na poloměru válce r_2 , tudíž vyřadíme konstantní členy, čímž dostaneme:

$$V \sim \pi r_2^2 \cdot l$$
.

Dále vyřadíme všechny násobící konstanty, čímž dostaneme:

$$V \sim r_2^2$$
.

Zde dostáváme, že objem roste s druhou mocninou poloměru válce r_2 . Pro odpor R_{Σ} platí:

$$R_{\Sigma} = \frac{1}{2\pi l \lambda} \ln \frac{r_2}{r_1} + \frac{1}{2\pi l U r_2}.$$

Zde druhý člen jde do nuly, když r_2 jde do nekonečna, tudíž ho můžeme vyřadit. Zbyde nám:

$$R_{\Sigma} \sim \frac{1}{2\pi l \lambda} \ln \frac{r_2}{r_1}.$$

Dále můžeme vyřadit konstantní členy a dostaneme:

$$R_{\Sigma} \sim \ln r_2$$
.

Zde vidíme, že odpor roste logaritmicky s poloměrem válce r_2 . Pokud porovnáme rychlost růstu objemu izolace a rychlost růstu odporu R_{Σ} , zjistíme, že objem izolace roste rychleji než odpor R_{Σ} . To znamená, že při dimenzování izolace je třeba brát v potaz i ekonomické hledisko, jelikož při velkém přidání izolace nám dramaticky může narůst cena, ale odpor R_{Σ} se nám příliš nezmění.

1.4 Číselný příklad 1 🌽

Mějme izolovaný vodič v rozvaděči, kde tepelná vodivost izolace je $\lambda = 0.159~{\rm W~m^{-1}~K^{-1}}$, součinitel prostupu tepla do okolí je $U = 10~{\rm W~m^{-2}~K^{-1}}$ Vypočítejte vnější poloměr válce r_2 , kdy bude tepelný odpor R_{Σ} minimální.

1.4.1 Řešení

Dosadíme do vzorce pro minimum tepelného odporu R_{Σ} :

$$r_2 = \frac{\lambda}{U} = \frac{0.159}{10} = 0.0159 \text{ m} = 1,59 \text{ cm}.$$

Z výsledku můžeme říct, že pokud máme vodič o poloměru r_1 , který je menší, než 1,59 cm, pak pokud přidáme izolaci tak, aby vnější poloměr byl 1,59 cm, tak bude izolovaný vodič lépe odvádět teplo do okolí.

1.5 Číselný příklad 2

Izolace horkovodního potrubí má tepelnou vodivost $\lambda = 0.02~{\rm W~m^{-1}~K^{-1}}$ a součinitel prostupu tepla do okolí je $U = 5~{\rm W~m^{-2}~K^{-1}}$. Vypočítejte vnější poloměr válce r_2 , kdy bude tepelný odpor R_{Σ} minimální.

1.5.1 Řešení

Dosadíme do vzorce pro minimum tepelného odporu R_{Σ} :

$$r_2 = \frac{\lambda}{U} = \frac{0.02}{5} = 0.004 \text{ m} = 0.4 \text{ cm}.$$

Z výsledku můžeme říct, že by vnitřní poloměr potrubí r_1 měl být menší než $0.4~\rm cm,$ aby bylo výhodné přidat izolaci. Nicméně takto malý poloměr potrubí se v praxi nevyskytuje.

2 Koule

2.1 Odvození tepelného odporu

Tepelný odpor koule se skládá ze dvou částí:

- odpor vedení tepla v materiálu koule R_{λ} ,
- odpor přenosu tepla z povrchu koule do okolí R_U .

Tepelné schéma koule bude vypadat následovně:

Pro odvození tepelného odporu R_{λ} využijeme vztah pro tepelný odpor R:

$$R_{\vartheta} = \frac{d}{\lambda \cdot S},$$

kde:

d - tloušťka materiálu (m),

 λ - tepelná vodivost materiálu (W m⁻¹ K⁻¹),

S - plocha přenosu tepla (m²).

Zde d nahradíme nekonečně malou částí poloměru koule:

$$d \rightarrow dr$$
.

Dále S nahradíme plochou koule:

$$S \to 4\pi r^2$$
.

Tepelný odpor dR_{ϑ} koule bude tedy:

$$dR_{\lambda} = \frac{dr}{\lambda \cdot 4\pi r^2}.$$

Pro získání celkového odporu R_{λ} je třeba provést integraci od vnitřního poloměru izolace r_1 po vnější poloměr koule r_2 :

$$R_{\lambda} = \int_{r_1}^{r_2} \frac{1}{\lambda \cdot 4\pi r^2} dr = \frac{1}{\lambda \cdot 4\pi} \int_{r_1}^{r_2} \frac{1}{r^2} dr = \frac{1}{\lambda \cdot 4\pi} \left[-\frac{1}{r} \right]_{r_1}^{r_2}$$

Po dosazení mezí integrace dostaneme:

$$R_{\lambda} = \frac{1}{\lambda \cdot 4\pi} \left(-\frac{1}{r_2} + \frac{1}{r_1} \right) = \frac{1}{\lambda \cdot 4\pi} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{1}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Pro odpor přenosu tepla z povrchu koule do okolí R_U využijeme vztah pro odpor přenosu tepla R_U :

$$R_U = \frac{1}{U \cdot S},$$

kde:

U - koeficient prostupu tepla (W/m²·K).

Plochu S nahradíme plochou koule:

$$S \rightarrow 4\pi r_2^2$$
.

Odpor přenosu tepla z povrchu koule do okolí R_U bude tedy:

$$R_U = \frac{1}{U \cdot 4\pi r_2^2} = \frac{1}{4\pi U r_2^2}.$$

Celkový tepelný odpor koule R_{Σ} bude součtem obou odporů:

$$R_{\Sigma} = R_{\lambda} + R_{U} = \frac{1}{4\pi\lambda} \left(\frac{1}{r_{1}} - \frac{1}{r_{2}} \right) + \frac{1}{4\pi U r_{2}^{2}}$$

Nyní pojďme vyšetřit limitu odporu pro r_2 jdoucí do nekonečna:

$$\lim_{r_2 \to \infty} R_{\Sigma} = \lim_{r_2 \to \infty} \left(\frac{1}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) + \frac{1}{4\pi U r_2^2} \right)$$

Členy, kde se vyskytuje r_2 ve jmenovateli, jdou do nuly, čímž dostaneme:

$$\lim_{r_2 \to \infty} R_{\Sigma} = \frac{1}{4\pi \lambda r_1}.$$

Zde vidíme, že koule nelze úplně izolovat, jelikož při nekonečné izolaci bude mít koule stále nějaký odpor.

2.2 Minimum tepelného odporu

Pro nalezení extrému tepelného odporu R_{Σ} podle poloměru koule r_2 je třeba zjistit, kdy bude derivace R_{Σ} podle r_2 rovna nule:

$$\frac{dR_{\Sigma}}{dr_2} = 0.$$

Derivace R_{Σ} podle r_2 bude:

$$\frac{dR_{\Sigma}}{dr_2} = \frac{dR_{\lambda}}{dr_2} + \frac{dR_U}{dr_2}.$$

Derivace R_{λ} podle r_2 bude:

$$\frac{dR_{\lambda}}{dr_2} = \frac{d}{dr_2} \left(\frac{1}{4\pi\lambda} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \right) = \frac{1}{4\pi\lambda r_2^2}$$

Derivace R_U podle r_2 bude:

$$\frac{dR_U}{dr_2} = \frac{d}{dr_2} \left(\frac{1}{4\pi U r_2^2} \right) = -\frac{2}{4\pi U r_2^3} = -\frac{1}{2\pi U r_2^3}.$$

Derivace R_{Σ} podle r_2 bude tedy:

$$\frac{dR_{\Sigma}}{dr_2} = \frac{1}{4\pi\lambda r_2^2} - \frac{1}{2\pi U r_2^3}.$$

Nyní můžeme zjistit, kdy bude derivace R_{Σ} podle r_2 rovna nule:

$$\frac{1}{4\pi\lambda r_2^2} - \frac{1}{2\pi U r_2^3} = 0$$

$$\frac{1}{4\lambda r_2^2} - \frac{1}{2Ur_2^3} = 0$$

$$\frac{1}{4\lambda r_2^2} = \frac{1}{2Ur_2^3}$$

$$\frac{1}{\lambda r_2^2} = \frac{2}{Ur_2^3}$$

$$\frac{r_2}{\lambda} = \frac{2}{U}$$

$$r_2 = \frac{2\lambda}{U}$$

V další části budeme zkoumat, zda se jedná o minimum nebo maximum. K tomu využijeme druhou derivaci R_{Σ} podle r_2 :

Závislost tepelného odporu R_{Σ} na poloměru koule r_2

2.3 Ekonomie

Nyní můžeme porovnat rozdíl v rychlosti růstu tepelného odporu R_{Σ} a objemu izolace v závislosti na poloměru koule r_2 .

$$V = \frac{4}{3}\pi(r_2^3 - r_1^3).$$

Po zjednodušení dostaneme:

$$V \sim r_2^3$$
.

Rychlost růstu objemu izolace je kubická a jde do někonečna, zatímco tepelný odpor dosáhne limitní hodnoty.

2.4 Číselný příklad

Mějme izolovanou kouli, kde tepelná vodivost izolace je $\lambda=0.159~{\rm W~m^{-1}~K^{-1}},$ součinitel prostupu tepla do okolí je $U=10~{\rm W~m^{-2}~K^{-1}}$ Vypočítejte vnější poloměr koule r_2 , kdy bude tepelný odpor R_{Σ} minimální.

2.4.1 Řešení

Dosadíme do vzorce pro minimum tepelného odporu R_{Σ} :

$$r_2 = \frac{2\lambda}{U} = \frac{2 \cdot 0.159}{10} = 0.0318 \text{ m} = 3.18 \text{ cm}.$$