Travaux Dirigés d'électronique numérique

Année Universitaire: 2020–2021

Pr. El- Hanaoui

Feuille de TD N° 1 : Systèmes de numération

Exercice 1: Conversion

- 1. Convertir les mots binaires $(11010111)_2$, et $(1101101)_2$ en décimal.
- 2. Même question pour le mot $(1011111101011111000010000000)_2$.
- 3. Convertir $(21)_{10}$ et $(255)_{10}$ en binaire.
- 4. Convertir $(11100101001010111)_2$, et $(11111110010101010111)_2$ en hexadécimal.
- 5. Convertir $(12A5)_{16}$, $(FC9E)_{16}$, $(CF9E)_{16}$, et $(8372)_{16}$ en binaire puis en décimal.

Exercice 2 : Nombres signés

Soient les quatre nombres hexadécimaux codés sur 8 bits suivants : $(46)_{16}$, $(C6)_{16}$, $(24)_{16}$, $(CB)_{16}$

- 1. Convertir ces nombres en décimal en considérant les deux cas : a). non signés, et b). signés.
- 2. Convertir ces nombres sur 16 bits en considérant les cas précités.

Exercice 3 : Arithmétique

- 1. Effectuer les opérations suivantes en limitant le résultat à quatre chiffres significatifs et en indiquant l'état de la retenue : $(1253+7253)_{10}$, $(2345+8765)_{10}$, $(7854-2345)_{10}$, $(2345-7854)_{10}$. Commenter les résultats obtenus.
- 2. Effectuer les opérations suivantes (tous les nombres sur 8 bits en CA 2): $(56+2C)_{16}$, $(56-2C)_{16}$, $(2C-56)_{16}$, $(8C-24)_{16}$, $(24-8C)_{16}$. Indiquer les valeurs des retenues C_6 et C_7 ainsi que de l'overflow.
- 3. Représenter en code **BCD** les nombres : 199, et 124, puis effectuer leur somme.

Exercice 4 : Flottants, Norme IEEE 754

- 1. Quels sont les plus petit et grand nombres réels représentables selon la norme IEEE 754 simple précision ?
- 2. Coder les réels suivants selon la norme IEEE 754 32 bits: 8, 9, 1.5, 3.14, -6.625, et 125.
- 3. En virgule fixe, décoder le nombre binaire 11.011.
- 4. En virgule flottante normalisée, coder en binaire au format simple précision le réel 12.575, puis effectuer le codage inverse.

- 5. Convertir en décimal, les nombres hexadécimaux réels données sous format IEEE 754 $\,$ 32 bits : 42E48000 , $\,3F880000$, $\,C7F00000$ $\,BFC00000$, $\,C0900000$ 80000008 .
- 6. Étant donnés les nombres ($0.10010 \cdot 10^{101}$)2, et ($0.11010 \cdot 10^{1}$)2, effectuer leurs somme et produit en virgule flottante.

Corrigé de Feuille de TD N° 1 : Systèmes de numération

Exercice 1 : Conversion

1. Convertissons en décimal les mots binaires suivants, en adoptant l'écriture polynomiale $(11010111)_2$, et $(1101101)_2$.

1.a- On obtient:

$$110101111 = 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

$$110101111 = 215$$

1.b- De même.

$$1101101 = 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{0}$$

$$\boxed{1101101 = 109}$$

2. Même question pour le mot $(1011111101011111000010000000)_2$. On écrit ce mot sous sa forme polynomiale de base 16, on obtient :

$$110\ 1111\ 1010\ 1111\ 0000\ 1000\ 0000\ =\ 6FAF080_{16}$$

$$110\ 1111\ 1010\ 1111\ 0000\ 1000\ 0000\ =\ 6\cdot 16^6\ +\ 15\cdot 16^5\ +\ 10\cdot 16^4\ +\ 15\cdot 16^3\ +\ 8\cdot 16^1$$

Cette valeur correspond à la fréquence du signal d'horloge CLK, de la carte DE1 de FPGA (CLS : Voir plus loin).

3. La conversion de $(21)_{10}$ et $(255)_{10}$ en binaire est issue des divisions successives par 2. Les reports r_i représenteront les bits associés à ces nombres ; en général,

$$\mathbf{N}_{10} = (q_{k-1}r_{k-1}\dots r_1r_0)_2$$

On illustre cette conversion par le tableau 1. Le tableau 1 montre que :

résultats de $\div 2:q_i$	Nombre	Reports	r_i
	$N_{10} = 21$	1	r_0
q_0	10	0	r_1
q_1	5	1	r_2
q_2	2	0	r_3
q_3	1	1	q_3

TABLE 1 -

$$\mathbf{21}_{10} = 10101_2$$

De même pour

$$\mathbf{255}_{10} = 111111111_2$$

(Remarquer ici que ts les bits = 1; en effet $255_{10} = 2^n - 1$ avec n = 8).

DEC	BIN	HEX
0	0000	0
1 1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Table 2 -

4. Il s'agit ds cette question de convertir en hexadécimal, les mots binaires suivants : $(11100101001010111)_2$, $(1111110010100101111)_2$.

L'idée ici consiste à faire des regroupements de 4 bits à partir du poids faible. Ensuite, on remplace chaque regroupement par la valeur Héxa correspondante.

On rappelle la table de conversion 2, qui montre le passage entre systèmes DEC-BIN-HEX. On tire alors.

1111 1100 1010 0101 0111 = FCA57

5. Faisons l'opération inverse, qui permet de passer de l'hexadécimal : , $(FC9E)_{16}$, $(CF9E)_{16}$, et $(8372)_{16}$ en binaire puis en décimal. On obtient :

$$(12A5)_{16} = 0001\ 0010\ 1010\ 0101 = 4773$$

Idem pour les autres cas.

Exercice 2 : Nombres non signés, signés

- 1- Soient 4 nombres hexadécimaux de taille $\,8\,$ bits : (46) , $\,(C6)$, $\,(24)$, et $\,(CB)$. Convertissons les en décimal en considérant les cas :
- 1.a- non signé (Positif) : La dynamique des nombres N représentables dans ce cas, est donnée par l'encadrement :

$$0 \le N \le 2^{n=8} - 1$$
; i.e $0 \le N \le 255$

Les résultats de cette conversion sont portés dans le tableau 3.

1.b- Signé (positif ou négatif): L'intervalle des valeurs qu'on peut représenter en CA2 est tel que :

$$-2^{n-1} \le N \le 2^{n-1} - 1$$
; i.e $-128 \le N \le 127$

Les résultats de cette conversion sont portés dans le tableau 4. (En effet, $N+2^8=N\pmod{2^8}$)

Nombre Hexa	Nombre DEC correspondant
(46)	70
(C6)	198
(24)	36
(CB)	203

Table 3 -

Nombre Hexa	Nombre DEC correspondant
(46)	70
(C6)	58
(24)	36
(CB)	53

TABLE 4 -

2. Changeons la taille des nombres de 8 à 16 bits. On complète à partir du bit de poids fort (MSB= bit de signe) avec des 0 si N est positif, avec des 1 dans le cas contraire. Les résultats sont résumés dans les tableau 5.

Nombre Hexa	Nombre Hexa (Cas NS)	Nombre Hexa (S)
(46)	(0046)	(0046)
(C6)	(00C6)	(FFC6)
(24)	(0024)	(0024)
(CB)	(00CB)	(FFCB)

TABLE 5 -

Exercice 3 : Arithmétique

1. Effectuons les opérations classiques suivantes en limitant le résultat à 4 chiffres significatifs, et en indiquant l'état de la retenue Co:

1253 + 7253 = 8506 (Co = 0; resultat Juste);
2345 + 8765 = 1110 (Co
$$\neq$$
 0; resultat Faux)
7854 - 2345 = 5509 (Co = 0; resultat V);
2345 - 7854 = 4491 (Co \neq 0; resultat F)

N.B : Ce résultat est rectifié en prenant le complément de 4491, affecté du signe -; soit : $-(10^4-4491)=-5509$

2. Effectuons maintenant les opérations suivantes, tout en indiquant les valeurs des retenues r_6 et r_7 ainsi que de l'overflow (débordement de calculs OVF). Tous les nombres hexa sont de taille 8 bits, et représentés en système CA 2. Le CA 2 permet en effet de transformer une soustraction en addition.

$$(56) + (2C) = 0101\ 0110 + 0010\ 1100 = 1000\ 0010$$

 $(56) + (2C) = (82) ; r_6 = 1; r_7 = 0; OVF = 1$

(56)
$$-(2C) = 0101\ 0110 + 1101\ 0011 + 1 = 0010\ 1010$$

(56) $-(2C) = (2A)$; $\mathbf{r}_6 = 1$; $r_7 = 1$; $OVF = 0$
(2C) $-(56) = 0010\ 1100 + 1010\ 1001 + 1 = 1101\ 0110$
(2C) $-(56) = (\mathbf{D6})$; $\mathbf{r}_6 = 0$; $r_7 = 0$; $OVF = 0$

Idem pour les autres cas,

$$(8C) - (24) = (68)$$
; OVF = 1; $(24) - (8C) = (98)$; OVF = 1

3. Représentons en code **BCD** (Binary Coded Decimal) les nombres : 199, et 124, on obtient facilement :

$$199 = 0001\ 1001\ 1001$$
$$124 = 0001\ 0010\ 0100$$

Effectuons ensuite leur somme, càd:

N.B : Un ajout de 6 étant appliqué aux codes invalides 1101, et 1100, apparus suite à l'opération d'addition bit à bit.

Exercice 4: Flottants, Norme IEEE 754

1. Déterminons l'intervalle I des nombres réels représentables selon la norme **IEEE** -754 - 1985 simple précision. X: Nombre flottant.

$$X = (-1)^s \cdot 2^{E_x - E_0} \cdot 1, F \cdots$$

où s est le signe de X, E_x-E_0 est l'exposant entier signé, codé en binaire décalé ; $E_0=2^{m_E-1}-1$ et $F\cdots$ est la partie fractionnaire de la valeur absolue de la mantisse. Le format de virgule flottante Simple précision étant sur 32 bits : $(m_E,m_F)=(8,23)$. On a :

$$1 \le E_X \le 2^{m_E} - 2 = 2 \cdot E_0$$
$$1 - E_0 \le E_X - E_0 \le E_0$$

Et,

$$1 \leq 1, F \leq 2 - 2^{-m_F}$$

Ce qui permet d'écrire,

$$2^{1-E_0} \le |X| \le (2-2^{-m_F}) \cdot 2^{E_0}$$

 $\mathbf{I} = \left[2^{1-E_0}, 2^{1+E_0}\right]; E_0 = 127$

- 2. Représentons les réels suivants selon la norme IEEE 754 32 bits : 8, 9, 1.5, 3.14, -6.625, et 125.
- ♦ Le réel 8 est positif, le bit de signe est 0 ;
- \diamond On convertit 8 (sans signe) en binaire, on obtient : $1000, 0 = 1, 0 \cdot 2^3$
- ♦ L'exposant est égal à 3, et on doit décaler puis convertir en binaire : 3+127 = 130 codé par 10000010;
- ♦ Au final 8 est codé par

 ∇ Le réel 3, 14 a est 0 comme bit de signe;

- ∇ Conversion en binaire donne :11,001 = 1,1001 \cdot 2¹
- ∇ L'exposant est égal à 1, et on doit décaler puis convertir en binaire : 1+127=128 codé par 100000000;
- ∇ Au final 3, 14 est codé par, (Idem pour le reste des cas.)

0 10000000 100100000000000000000000

3. Décodons en virgule fixe, le nombre binaire 11.011. Pour ce faire, on écrit (forme polynomiale) : $11,011=1\cdot 2^1+1\cdot 2^0+1\cdot 2^{-2}+1\cdot 2^{-3}$. On obtient,

4. Je vous laisse le soin de mq la représentation au format SP du réel 12.575 est :

0 01000010 100100000000000000000000

Effectuer ensuite le codage inverse.

- - \diamond Le signe de l'hexadécimal réel : S=0;
 - \diamond L'exposant en binaire décalé est égal à 133, Soit : $E_X = 133 127 = 6$;
 - ♦ La partie après la virgule, sur 23 bits est $F = 2^{-1} + 2^{-2} + 2^{-5} + 2^{-7}$
 - \diamond Au final $(42E48000)_{16}$ représente le décimal

42E48000 = (-1)⁰
$$2^6 (1 + 2^{-1} + 2^{-2} + 2^{-5} + 2^{-7}) = 114, 25$$

À vous de faire des efforts!

6. Étant donnés les nombres ($0.10010 \cdot 10^{101}$) $_2$, et ($0.11010 \cdot 10^1$) $_2$, vérifier que leurs somme et produit en virgule flottante, sont respectivement : ($0.10011101 \cdot 10^{101}$) $_2$, et ($0.1110101 \cdot 10^{11}$) $_2$.