exams

February 17, 2020

```
[1]: import pandas as pd
import numpy as np
import statsmodels.api as sm
```

```
/nfs/kshedden/python3/lib/python3.7/site-
packages/statsmodels/compat/pandas.py:23: FutureWarning: The Panel class is
removed from pandas. Accessing it from the top-level namespace will also be
removed in the next version
  data_klasses = (pandas.Series, pandas.DataFrame, pandas.Panel)
```

1 GEE analysis of test score data

Generalized estimating equations (GEE) can be used to analyze multilevel data that arises in educational research, for example when students taking a test are grouped into classrooms.

The examination data analyzed here are obtained from this page: http://www.bristol.ac.uk/cmm/learning/support/datasets/

The data are in fixed-width format, we can load it as follows:

```
[2]: colspecs = [(0, 5), (6, 10), (11, 12), (13, 16), (17, 20)]
    df = pd.read_fwf("../data/exam_scores/SCI.DAT", colspecs=colspecs, header=None)
    df.columns = ["schoolid", "subjectid", "gender", "score1", "score2"]
    df["female"] = 1*(df.gender == 1)
    df = df.dropna()
```

Here is a basic model looking at the scores on exam 1 by gender, using the default independence working correlation structure.

```
[3]: # A school-clustered model for exam score 1 with no correlation.
model1 = sm.GEE.from_formula("score1 ~ female", groups="schoolid", data=df)
rslt1 = model1.fit()
print(rslt1.summary())
```

```
GEE Regression Results
```

===
Dep. Variable: score1 No. Observations:

1905

Model: GEE No. clusters:

73

Method: Generalized Min. cluster size:

2

Estimating Equations Max. cluster size:

104

Family: Gaussian Mean cluster size:

26.1

Dependence structure: Independence Num. iterations:

2

Date: Mon, 17 Feb 2020 Scale:

451.997

Covariance type: robust Time:

19:21:02

=========		========	========		========	========
	coef	std err	z	P> z	[0.025	0.975]
Intercept	78.2136	1.864	41.960	0.000	74.560	81.867
female	-5.5292	1.183	-4.673		-7.848	-3.210
Skew:		-0.09		Kurtosis:		-0.0730
Centered skew:		0.19		Centered kurtosis:		0.1835

Here is the same mean structure model, now specifying that the students are exchangeably correlated within classrooms.

GEE Regression Results

===

Dep. Variable: score1 No. Observations:

1905

Model: GEE No. clusters:

73

Method: Generalized Min. cluster size:

2

Estimating Equations Max. cluster size:

104

Family: Gaussian Mean cluster size:

26.1

Dependence structure: Exchangeable Num. iterations:

1

Date: Mon, 17 Feb 2020 Scale:

456.642

Covariance type: robust Time:

19:21:03

	coef	std err	Z	P> z	[0.025	0.975]				
Intercept female	79.2582 -3.9121	1.561 0.922	50.764 -4.243	0.000 0.000	76.198 -5.719	82.318 -2.105				
Skew: Centered skew:		-0.09		Kurtosis: Centered kurtosis:						

The correlation between two observations in the same cluster is 0.422

Next we will pivot the exam scores so that each subject has two observations on a single "test" variable (one observation for the first test and one for the second test). This is a form of repeated measures, but since the tests are different, we also include a covariate indicating which test is being recorded. We now have two levels of repeated structure: two test scores per student, and multiple students per classroom. We can use a nested correlation structure to estimate the variance contributions from the two levels.

GEE Regression Results

===

Dep. Variable: score No. Observations:

3810

Model: GEE No. clusters:

73

Method: Generalized Min. cluster size:

4

Estimating Equations Max. cluster size:

208

Family: Gaussian Mean cluster size:

52.2

Dependence structure: Nested Num. iterations:

7

Date: Mon, 17 Feb 2020 Scale:

388.593

Covariance type: robust Time:

19:21:03

coef std err z P>|z| [0.025] 0.975] ______ Intercept 75.0859 1.629 46.081 0.000 71.892 78.280 test[T.score2] 4.0950 1.564 2.618 0.009 1.030 7.160 1.7597 0.899 1.958 0.050 -0.002 female 3.521 ______ -0.3370 Kurtosis: 0.2129 Centered skew: -0.1909 Centered kurtosis: 0.4841

Variance

 schoolid
 119.911185

 subjectid
 57.843633

 Residual
 210.837685