EIH zürich - Department of Computer Science

Optimal circuits for Streamed Linear Permutations Using RAM

François Serre, Thomas Holenstein, and Markus Püschel

Motivation: Folding FFTs

Pease FFT on n elements, folded with w ports

Area: $O(w \log n)$

Throughput: $w \frac{\text{samples}}{\text{cycle}}$

We generate switching-optimal Verilog designs for these permutations

Overview of our method

Problem is phrased as a matrix factorization

Bit reversal is a "linear" permutation

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\uparrow$$

$$x$$

$$P \cdot x$$

$$P = \begin{pmatrix} & & 1 \\ & 1 \\ 1 & & \end{pmatrix}$$

Other linear permutations

Other linear permutations

- Identity
- Bit reversal
- Stride permutations (perfect shuffle, matrix transpositions)
- Hadamard reordering
- Gray code reordering

Blocking the matrix

Bit-reversal on $2^n = 8$ elements, $2^t = 4$ cycles, $2^k = 2$ ports

$$P = \begin{pmatrix} & & 1 \\ & 1 & \\ \hline & 1 & \\ \end{pmatrix}$$

Bit-reversal on $2^n = 8$ elements, $2^t = 2$ cycles, $2^k = 4$ ports

$$P = \begin{pmatrix} & & 1 \\ \hline & 1 \\ 1 & & \end{pmatrix}$$

A lower bound on the number of switches

Theorem

Considering
$$P = \begin{pmatrix} P_4 & P_3 \\ P_2 & P_1 \end{pmatrix}$$
 such that P_1 is $k \times k$,

Implementing P with 2^k ports requires at least 2^{k-1} rk P_2 switches.

Proof: see paper

Blocking the matrix

Bit-reversal on $2^n = 8$ elements, $2^t = 4$ cycles, $2^k = 2$ ports

$$P = \begin{pmatrix} & & 1 \\ & 1 & \\ \hline & 1 & \\ \end{pmatrix}$$

Requires 1 switch

Bit-reversal on $2^n = 8$ elements, $2^t = 2$ cycles, $2^k = 4$ ports

$$P = \left(\begin{array}{c|c} & 1 \\ \hline & 1 \\ \hline & 1 \end{array}\right)$$

Requires 2 switches

This bound is sharp!

Related Work

RAM bank 4 RAM bank 5 RAM bank 6 RAM bank 7 RAM bank 7 RAM bank 3 Memory block RAM bank 3

- Milder et al., Automatic generation of streaming datapaths for arbitrary fixed permutations, DATE'09
- Chen et al., Automatic generation of high throughput energy efficient streaming architectures for arbitrary fixed permutations, FPL'15

RAM bank 0 RAM bank 1 RAM bank 2 RAM bank 3 SNW Memory block SNW

- Püschel et al., Permuting streaming data using RAMs, JACM'09
- Chen et al., Energy and memory efficient mapping of bitonic sorting on FPGA, FPGA'15

Building blocks

We need to decompose a general matrix into these.

General linear permutation

2^{k-1} rk P_2 switches

Example: bit reversal: 1 switch

$$\begin{pmatrix} & & 1 \\ & 1 & \\ \hline & 1 & \\ \end{pmatrix} = \begin{pmatrix} 1 & & 1 \\ & & 1 \\ \hline & & 1 \end{pmatrix} \begin{pmatrix} 1 & & \\ & & 1 \\ \hline & & & 1 \end{pmatrix} \begin{pmatrix} 1 & & 1 \\ & & & 1 \\ \hline & & & & 1 \end{pmatrix}$$

 2^{k-1} max(rk P_2 , n - rk P_4 - rk P_1) switches

Example: bit reversal: 2 switches

$$\left(\begin{array}{c|c} & 1 \\ \hline 1 & \end{array}\right) = \left(\begin{array}{c|c} 1 & \\ \hline 1 & 1 \end{array}\right) \left(\begin{array}{c|c} 1 & 1 \\ \hline & 1 \end{array}\right) \left(\begin{array}{c|c} 1 & 1 \\ \hline & 1 \end{array}\right)$$

Results

Bit-reversal, 2ⁿ = 2048 on Xilinx Virtex-7 FPGA

Throughput [Gbits/s]

Conclusion

- Exact routing complexity of streaming linear permutations
- Two architectures:

- Always switching optimal
- Uses a memory capacity of twice the dataset

- Almost always switching optimal
- Uses a memory capacity equal to the dataset