BPE_
aaabcaabdeab
DA=aa B=ab
ABCAbdeB
3) vocab= SA, B, b, c, d, e g
<u> </u>
NB inference
271/2
y = augmax Po(xly) Ply)
y = augmax Po(x/y)Ply) y = Y = Ply)
n C
= argmax TT Po(xily)
4 E
= argmax = log Po (xily)
ger 7=1 cd
Score of each word
<u> </u>

MLG for NB

Likelihood function

$$L(\theta, \alpha) = \sum_{i=1}^{N} (\log P(X^{(i)}, y^{(i)}; \theta, \alpha))$$
 $= \sum_{i=1}^{N} \log P(X^{(i)} | y^{(i)}; \theta) P(y^{(i)}; \alpha)$
 $\theta \in \mathbb{R}^{2 \times |V|} \quad \text{s.t.} \quad \Sigma_{i}(\theta_{i}, y) = |$
 $\theta \in \mathbb{R}$
 $P(y^{(i)}; \theta) = \{ \alpha \quad \text{if } y^{(i)} = |$
 $L(\alpha) \quad \text{is concave.}$
 $L(\alpha) \quad \text{is co$

MLE for LR L(w) = \(\frac{\text{N}}{\text{Ling}} \text{P(y'') | \(\chi^{(i)} \) \(\text{w}\)} = = y(i) log 1 (1- w.4cxi) + (1-y(i)) log[1- 1+e-w.4x] by 1+e-2 Oplo4

Df(A) ≤ 0 Je L(w) comere? No closed-form solution! $\frac{1}{1} = \frac{1}{1} = \frac{1}$ 5] -> 1 ("in" = WIN) 14/41

Error decomposition

Why small norms?

| W. X - M. (X+ QX) |

=1w.0x1

£ 1/11/110 x1