

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова»

(БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

Факультет	И	Информационные и управляющие системы
	шифр	наименование
Кафедра	И4	Радиоэлектронные системы управления
	шифр	наименование
Дисциплина	Математическая статистика и случайные величины	

Лабораторная работа №3

«Моделирование некоторых случайных распределений с помощью базовых случайных величин в пакете MATHCAD»

ВЫПОЛНИЛ студент группы И465

<u>Масюта А.А.</u> Фамилия И.О.

ВАРИАНТ № 10 ПРЕПОДАВАТЕЛЬ

<u>Мартынова Т.Е.</u> Фамилия И.О.

Краткие сведения из теории

Нормальное распределение. Наиболее употребительный метод моделирования нормального распределения – метод суммирования. Моделирующая формула

 $x_i = m_x + \sigma_x(\sum_{i=1}^{12} r_i - 6), \ r_i \in R[0,1],$ дает случайную величину, распределённую нормально с математическим ожиданием $M[X] = m_x$ и дисперсией $D[X] = \sigma^2$. Для моделирования стандартной нормальной случайной величины применяется формула

$$x_i = \sum_{i=1}^{12} r_i - 6$$

Задание: смоделировать нормальное распределение, используя базовые случайные величины в пакете MATHCAD.

Ход Работы

ORIGIN:= 1

$$n := 100$$

 $a := 2$
 $\sigma 1 := 1.5$

$$normal(a, \sigma 1, s) := \begin{bmatrix} for & i \in 1...s \\ r \leftarrow runif(12, 0, 1) \\ x_i \leftarrow a + \sigma 1 \cdot \left[\sum_{j=1}^{12} r_j + (-6) \right] \\ x \end{bmatrix}$$

 $z := normal(a, \sigma 1, n)$

		1
	1	-0.268
z =	2	1.929
	3	3.68
	4	2.528
	5	1.559
	6	3.701
	7	3.783
	8	-0.665
	9	2.146
	10	2.568
	11	3.57
	12	0.044
	13	2.357
	14	2.159
	15	0.436
	16	

 $x := rnorm(n, a, \sigma 1)$

 $f(zz) := dnorm(zz, a, \sigma 1)$

Плотность вероятности

 $F(zz) := pnorm(zz, a, \sigma 1)$

Функция распределения

$$m := mean(z)$$

$$m = 2.03$$
 ìàòîæ

$$med := median(z)$$

$$med = 2.161$$

$$D := var(z)$$

$$D = 2.524$$
 äèñïåðñ

$$\sigma := stdev(z)$$

$$\sigma = 1.589$$

$$xmin := min(z)$$

$$xmin = -1.707$$

$$xmax := max(z)$$

$$xmax = 4.874$$

$$E \coloneqq 0.477\sqrt{2} \cdot \sigma$$

$$E = 1.072$$

$$R := xmax - xmir$$

$$R = 6.581$$

$$N = 1 + 3.322\log(n)$$

$$N = 7.644$$

$$nn := 7$$

hh := histogram(nn, z)

$$mteor := a$$

$$mteor = 2$$

$$Dteor := (\sigma 1)^2$$

$$Dteor = 2.25$$

Вывод: Теоретические данные практически совпадают с расчетными величинами, рассчитанные в пакете Mathcad.