X1 指静脉模块规格手册

1	1 指静脉技术原理	3
	1.1 主要特性	3
	1.2 应用领域	3
2	2接口定义	4
3	3 硬件技术参数	5
4	4 外观尺寸图	5
5	5 使用注意事项	5
6	6 设备工作流程和串口调试工具	6
	6.1 设备工作流程简介	6
	6.2 串口模式测试 DEMO 使用简介	7
7	7 协议定义	9
	7.1 协议格式	9
	7.1.1 命令包格式	9
	7.1.2 应答包格式	9
	7.2 参数定义	10
	7.2.1 包类型定义	10
	7.2.2 包命令定义	10
	7.2.3 错误码定义	11
8	8 命令数据包详细定义	11
	8.1 打开设备	11
	8.2 设备关闭	13
	8.3 获取触摸状态	13
	8.4 建模	14
	8.5 完成建模	14
	8.6 认证	15
	8.7 验证指定 id 是否建模	15
	8.8 取消等待	16
	8.9 删除所有模板	16
	8.10 获取可用的模板 ID	17
	8.11 删除指定模板	17
	8. 12 设置延时	18
	8.13 获取用户数	18
	8. 14 恢复出厂设置	18
	8.15 获取系统信息	19
	8.16 上传模板	19
	8.17 下载模板	21
	8.18 采集图像	22
	8.19 获取设备唯一 ID	22
	8.20 设置设备 ID	23

1 指静脉技术原理

指静脉识别技术的基本原理是:通过指静脉识别仪取得个人手指静脉分布图,将特征值存储,然后进行匹配,进行个人身份鉴定的技术。手指中动态流过静脉血管中的血红蛋白,对波长在 700~1000nm 之间的近红外光线有一定得吸收作用,所以静脉中红血球吸收特定近红外线的这一特性,将近红外线照射手指,手指静脉附近透过的近红外光线较少,而其它位置较多,利用红外图形传感器采集透射手指后的近红外光线,获取手指内部的静脉图像。经过算法提取静脉特征值后,将采集的图像与标准样品特征值进行对比,从而实现了指静脉识别认证的过程。

1.1 主要特性

- 每个手指内部静脉血管特征,人人可用的活体特征,几乎无法伪造,安全性更高;
- 非接触特征采集,无读头磨损问题;
- 静脉特征采集与静脉识别二合一,集成度高;
- 指静脉模板大小<4K;
- 1:N 识别 及 1:1 认证功能(即指定一个模板认证及所有模板认证);
- 可脱机使用,无需主机控制即可自动识别;
- 可适当调节的安全等级;
- 可设置的设备编号;
- 根据手指肌肉和骨骼特性,专业设计近红外光源,自动调节光源强度,很好适应 大小粗细不同手指;
- 具有自学习功能,可有效解决由于温度或正常生长造成的血管膨胀和萎缩问题;
- 专利技术,自主静脉识别算法,专用SOC。

1.2 应用领域

指静脉门禁控制 指静脉签到、指静脉考勤机等 指静脉锁、指静脉保险柜等 指静脉 POS 终端机等手持设备应用 指静脉车把锁

2接口定义

图一:管脚排列顺序

管脚序号	管脚名称	功能描述
1	TXD	UART 通信信号输出, 3.3V 逻辑电平
2	RXD	UART 通信信号输入, 3.3V 逻辑电平
3	GND	接地信号
4	VCC	模块电源供电, 3.3V~5.5V 直流电源, 最大工作电流 150mA
5	VCC_TP	手指触摸感应供电, 3.3V 直流电源,最大工作电流 150uA, 待机电流小于 5uA
6	TPDET_OUT	手指触摸感应输出, 3.3V 逻辑电平, 高电平有效。
7	USB_DM	USB_DM 差分信号线,与 USB_DP 差分信号线一起实现 USB 通信
8	USB_DP	USB_DP 差分信号线,与 USB_DM 差分信号线一起实现 USB 通信

表一: 管脚说明

3 硬件技术参数

项目	参数描述
存储空间	32M Bytes NOR Flash; 32M Bytes DDR
模板大小	4K Bytes
工作电压	3. 3V∼5. 5V
工作电流	150mA Maximum
静态工作电流	小于 5uA
静电能力	接触放电: ±6KV; 空气放电: ±12KV
工作环境	工作温度: -30℃~60℃ 工作湿度: 20%RH~90%RH
存储环境	存储温度: -40℃~80℃ 工作湿度: 10%RH~95%RH

表二:基本参数

4 外观尺寸图

图二: 外观图

图三:尺寸图

5 使用注意事项

- 1,使用时手指自然伸直,保证指尖接触到感应器,且整个手指贴合在采集窗口上;不得按压手指,不得手指置于采集窗口内。
- 2,测试时,手握模块会引起模块误判,请将模块固定在桌面再进行操作;
- 3,建议采集手指为食指,中指,无名指;
- 4, 金属对触摸有很强干扰, 请保证模块指尖所对应的整面远离金属 2mm 以上, 且手指自然放置时该手指远离金属 2mm 以上。

6设备工作流程和串口调试工具

6.1 设备工作流程简介

6.1.1 建模流程

6.1.2 认证流程

6.2 串口模式测试 DEMO 使用简介

第一步: 建模

- 选择正确的串口和波特率 (默认 115200)
- 打开设备
- 开始建模

2019-04-28 18:12:34 打开串口成功 2019-04-28 18:12:35 设备打开成功 2019-04-28 18:12:38 采集第一次完成 2019-04-28 18:12:41 采集第二次完成 2019-04-28 18:12:43 采集第三次完成 2019-04-28 18:12:44 建模成功 id = 14

第二步: 认证

- 选择正确的串口和波特率 (默认 115200)
- 打开设备
- 开始认证

2019-04-28 18:15:24 打开串口成功 2019-04-28 18:15:25 设备打开成功 2019-04-28 18:15:28 采集第一次完成 2019-04-28 18:15:31 采集第三次完成 2019-04-28 18:15:33 采集第三次完成 2019-04-28 18:15:34 谜模成功 id = 14 2019-04-28 18:15:39 认证成功 id = 14 2019-04-28 18:15:40 认证成功 id = 14 2019-04-28 18:15:40 认证成功 id = 14 2019-04-28 18:15:42 认证成功 id = 14

指令测试

有些指令需要参数,可以在后面的编辑框填入(通讯模式默认为串口)

参数名称	参数说明				
系统信息	显示设备所有信息				
设备ID	修改设备ID(默认为255)				
设置手指状态	检查手指状态是否按下				
设置重复认证	设置是否允许重复认证				
设置延时时间	设置检测手指状态的超时时间(默认10S)				
设置相同手指检查	设置是否允许相同手指检查				
获取无用ID	获取空位置ID				
获取总用户数和模板数	获取用户登录数量和模板数量信息				
获取指定用户信息	获取指定用户的登录信息				
清除指定用户信息	清除指定用户的所有信息				
清除所有用户信息	清除所有用户的信息				
恢复出厂					

7协议定义

7.1 协议格式

```
串口数据包由包头、数据段、校验和三部分组成。包类型包含以下四种类型:
typedef enum
{
    COMMOND_PACKET = 0x01, //命令包
    DATA_PACKET = 0x02, //数据包
    RESPOND_PACKET = 0x07, //应答包
    DATA_FINISH_PACKET = 0x08 //数据结束包
} packet_type_t;
```

此类型对应协议中的第 6 字节(包类型),其中命令包和应答包都是固定 24 字节的长度,也就是"数据长度"域(第 7-8 字节)固定为 15,它包含了校验和在内,即填写 0x0F00,协议采用小端模式,因此 pack[7]=0x0F,pack[8]=0x00。协议中不用的域请填充 0x00。数据包和数据结束包长度不固定,详情请参考以下协议说明。

7.1.1 命令包格式

			包头域	数据域	校验和域		
域分类	起始字节	包序号	号 地址 包类型 数据长度		包含命令,命令参数	checksum	
对应字节	[0]-[1]	[2]-[3]	[4]-[5]	[6] [7]-[8]		[9]-[21]	[22]-[23]
备注	[0]=0x01	[2]=0x00	[4]=0xFF	A	- 人 白 斗 笆 标 ii	A和包含的标范围	
台 往	[1]=0xEF	[3]=0x00	[5]=0xFF	-[5] [6] [7]-[8] [9]-[21] [22]- 0xFF 命令包计算校验和包含的域范围			

校验和计算方法:

7.1.2 应答包格式

			包头域	数	(据域	校验和域		
域分类	起始位 序号 地址			包类型	数据长度	错误码	参数	checksum
对应字节	[0]-[1]	[2]-[3]	[4]-[5]	[6]	[7]-[8]	[9]	[10]-[21]	[22]-[23]
备注	计算校验							

7.2 参数定义

7.2.1 包类型定义

名称	值
命令包	0x01
数据包	0x02
应答包	0x07
数据结束包	0x08

7.2.2 包命令定义

名称	值
打开设备	0x00
关闭设备	0x01
获取触摸状态	0x03
建模	0x04
建模完成	0x05
认证	0x07
删除单个模板	0x09
删除所有模板	0x0A
设置超时	0x0E
设置检查重复注册	0x0F
设置检查同一手指	0x10
查看是否存在指定模板	0x12
取消当前正在执行的动作	0x13
取图	0x14
设置设备 id	0x17
重启设备	0x18
查询设备可用的模板 ID	0x1A
恢复出厂设置	0x1C
获取系统信息	0x1D
获取用户注册信息	0x1E
读取信息	0x1F
写入信息	0x20
读取数据	0x21
写入数据	0x22
获取设备唯一 ID	0x39

7.2.3 错误码定义

名称	简称	值
成功	RESULT_OK	0x00
没有找到可用的设备	RESULT_DEVICE_NOT_FOUND	0x01
设备没有打开	RESULT_DEVICE_NOT_OPEN	0x02
设备已经打开	RESULT_DEVICE_OPENED	0x03
指静脉质量评估太差	RESULT_QUALITY_LOW	0x04
放入了不同的手指	RESULT_DIFF_FINGER	0x05
手指已经注册	RESULT_FINGER_ROLLED	0x06
参数错误	RESULT_WRONG_PARA	0x07
超时退出	RESULT_TIMEOUT	0x08
包校验和错误	RESULT_CHECKCHECKSUM_ERROR	0x09
注册的 id 已经存在	RESULT_ID_EXIST	0x0A
数据校验出错	RESULT_DATA_ERROR	0x0B
用户 id 不存在	RESULT_EMPTY_ID	0x0C
还没采图	RESULT_NO_FRAME	0x0D
错误的图片	RESULT_ERROR_IMAGE	0x10
认证失败	RESULT_IDENTIFY_FAIL	0x11
前后两次放置的手指相似度太高	RESULT_HIGH_SIMILARITY	0x12
被取消	RESULT_BE_CANCELED	0x13
特征提取失败	RESULT_EXTRACTION_FAIL	0x14
未知错误	RESULT_UNKOWN_ERROR	0xFF

8命令数据包详细定义

8.1 打开设备

超始字节	包序列号	访问地址	包类型	数据长度	命令	参数	其它数据	校验和
[0]-[1]	[2]-[3]	[4]-[5]	[6]	[7]-[8]	[9]	[10]	[11]-[21]	[22]-[23]
[0]=0x01	[2]=0x00	[4]=0xFF	[6]=0x	[7]=0x0F	[9]=0x	[10]=0x01	全 部 填	[22]=0x11
[1]=0xEF	[3]=0x00	[5]=0xFF	01	[8]=0x00	00		0x00	[23]=0x00

校验码 checkchecksum 为从【包类型】到【其它数据】的字节算术和,请参考 $7.1.1^{-7}.1.2$,以下不再重复说明。

例图:

应答包:

超始字节	包序列号	访问地址	包类型	数据长度	结果	其它数据	校验和
[0]-[1]	[2]-[3]	[4]-[5]	[6]	[7]-[8]	[9]	[10]-[21]	[22]-[23]
[0]=0x01	[2]=0x00	[4]=0xFF	[6]=0x07	[7]=0x0F	[9]=0x00, OK	全部为 0x00	
[1]=0xEF	[3]=0x00	[5]=0xFF		[8]=0x00	[9]=0x01,失败		

成功应答时, 校验和[22]=0x11, [23]=0x00

代码示例:

```
void openDev()
    int len;
    unsigned char packet [24];
    unsigned char recvData[24];
    unsigned int checkchecksum = 0;
    //包头
    data[0]=0x01;
    data[1]=0xef;
    //序号
    data[2]=0x01;
    data[3]=0x00;
    //地址
    data[4]=0xff;
    data[5]=0xff;
    //类型
    data[6] = COMMOND_PACKET;
    //长度
    data[7]=0x0f;
    data[8]=0x00;
    //命令号
    data[9] = CMD_DEV_OPEN;
    //参数
    data[10]=OFFLINE_MODE;
    data[11]=0;
    //计算校验和
    len = ([8] << 8) + [7];
    checksum = packet[6] + packet [7] + packet [8];
    for (i = 0; i < len - 2; i++)//len 为"数据长度",len=([8] << 8) + [7]
        checksum += packet [i + 9];
    packet [len + 7] = checksum & 0xFF;
    packet [len + 8] = checksum >> 8;
    //发送命令
    rs232_send(packet);
    if (rs232_recv(recvData)) {
        Checksum();
        if (recvData[9] == RESULT_OK) {
            printf("设备打开成功");
            return TRUE;
```

8.2 设备关闭

(这里发送关闭指令前, 先发送两次取消等待指令, 再发送设备关闭指令)

超始字节	包序列号	访问地址	包类型	数据长度	命令	其它数据	校验和
[0]-[1]	[2]-[3]	[4]-[5]	[6]	[7]-[8]	[9]	[10]-[21]	[22]-[23]
[0]=0x01	[2]=0x00	[4]=0xFF	[6]=0x01	[7]=0x0F	[9]=0x01	全部填 0x00	[22]=0x11
[1]=0xEF	[3]=0x00	[5]=0xFF		[8]=0x00			[23]=0x00

例图:

+400us	<u> </u>	+60	0us	+	800us			*******	+200	Ous	+4	00us		-600us		+800	us		VIII SANSAN	4	-200us		+400us
0x01 0	XEF	0x04	0x0A	0xFF	0xFF	0x01	0x0F	0x00	0x01	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x11	0x00
		П	1 በበ			ו וו]			1		1		

设备回复:

超始字节	包序列号	访问地址	包类型	数据长度	结果	其它数据	校验和
[0]-[1]	[2]-[3]	[4]-[5]	[6]	[7]-[8]	[9]	[10]-[21]	[22]-[23]
[0]=0x01	[2]=0x00	[4]=0xFF	[6]=0x07	[7]=0x0F	[9]=0x00, OK	全部为 0x00	
[1]=0xEF	[3]=0x00	[5]=0xFF		[8]=0x00	[9]=0x01,失败		

注:上表命令中,未作特殊说明的字节都填 0x00,由于 word 页宽有限以后的命令说明采用十六进制表示,比如这里的颜色[10]-[11],绿灯表示为 0x0001,小端模式。

例图:

8.3 获取触摸状态

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x03	\	

校验码为从 type 到结束的字节算术和

例图:

设备回复:

Sig	Seq	adr	type	length	result	state	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10	11-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00 (ok)	0: 未按		
						1:按下去		

8.4 建模

发送的包:

sig	Seq	adr	Туре	length	cmd	curModel	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10	11-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x04	当前建模步骤(0~2)		

例图:

-200us +3	00us +	100us -	-500us	+600us	+700ı	ıs +801)us +90	0us	+	-100us	+200us	+300u	s +400	us +50	Ous +6	00us +	/00us -	-800us	+900us		+100	us +20	0us +300
0x01	0xEF	0x01	0x4F	0xFF	0xFF	0x01	0x0F	0x00	0x04	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x14	0x00

校验码为从 type 到结束的字节算术和

设备回复:

sig	Seq	adr	Туре	length	Result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		
					0x04:需要调整手指		
					0x05:手指不同		
					0x06:手指已注册		
					0x07:参数不对		
					0x08:超时		

例图:

注意: 当回复状态码是 0x04(需要调整手指),这个时候当前指令还在继续

8.5 完成建模

发送的包:

# T								
sig	Seq	adr	Туре	length	cmd	Id (4)	Data	Checks
								um
0-1	2-3	4-5	6	7-8	9	10-13	14-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x05	0:设备自定		
						其它:上位机产生		

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Index	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-13	14-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	模板 id		
					0x07:建模失败			
					0x0a:指定 id 已经存在			
					0x0D:还没采图			

例图:

8.6 认证

发送的包:

sig	Seq	adr	Туре	length	cmd	IdMin	IdMax	Data	Checksu
									m
0-1	2-3	4-5	6	7-8	9	10-13	14-17	18-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x07	可选	可选		

IdMin 和 IdMax 为可选参数,如果有设定,并且 IdMax>IdMin,那么就会从只搜索从 IdMin 到 IdMax 的模板

校验码为从 type 到结束的字节算术和

例图:

00us +	800us	+20	0us +4	00us +60	0us +800us	+21	00us +	400us +600us
0x01 0xEF	0x01 0x0C 0	xFF 0xFF 0x01	0x0F 0x00	0x07 0x00 0	x00 0x00 0x00 0x00	0x00 0x00 0x00	0x00 0x00 (0x00 0x00 0x17 0x00
设备回复	夏:							
Sig	Seq	adr	type	length	result	Index	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-13	14-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	模板 id		
					0x04:调整手指			
					0x08:超时			
					0x11:认证失败			

例图:

8.7 验证指定 id 是否建模

发送的包:

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x12		

例图:

校验码为从 type 到结束的字节算术和 设备回复:

Sig	Seq	adr	type	length	result	count	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10	11-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	个数		
					0xff:没有			

例图:

8.8 取消等待

正对正在建模采集中,或认证,机器会处于等待状态加了这条取消的指令 发送的包:

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x13		

校验码为从 type 到结束的字节算术和

例图:

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		

例图:

8.9 删除所有模板

(先发送获取用户数和模板数,再发送删除所有模板指令)

发送的包:

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x0a		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00 (ok)		

例图:

| 0x01 | 0x6F | 0x11 | 0x6F | 0x6F | 0x6F | 0x6F | 0x60F | 0x6

8.10 获取可用的模板 ID

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x1A		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Id(4)	Data(8)	Checksum
0-1	2-3	4-5	6	7-8	9	10-13	14-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	用户 id		
					0xff:fail			

例图:

8.11 删除指定模板

发送的包:

sig	Seq	adr	Туре	length	cmd	Id	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-13	14-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x09	模板 id		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

7.7							
Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		

8.12 设置延时

建模或认证时,如果手指一直没有按下去,超过这个时间也会退出

sig	Seq	adr	Туре	length	cmd	Id	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10	11-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x0e	延时(单位秒)		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		

例图:

8.13 获取用户数

发送的包:

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x1e		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	userCount	modelCount	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-13	14-17	18-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	用户数	模板数		

例图:

8.14 恢复出厂设置

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x1c		

| 10x3 | 10x5 | 10x0 | 10x4 | 10x7 | 10x7 | 10x0 |

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		

例图:

8.15 获取系统信息

sig	Seq	adr	Туре	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x1d		

例图:

003 | 0000 | 000

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Content	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-20	21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	10:main version		
						11:sub version		
						12:device id		
						13:baud rate		
						14-15:level		
						16:time out		
						17:check dup		
						18:check same finger		
						19:usb mode		
						20:read error		

例图:

0x01 0xEF 0x0E 0x0A 0xFF 0xFF 0x0F 0x0F 0x00 0x00 0x01 0x28 0xFF 0x10 0x62 0x02 0x0A 0x00 0x01 0x02 0x00 0x0F 0x01

8.16 上传模板

1. 设置将写入的数据信息

发送的包:

sig	Seq	adr	Туре	length	cmd	dataType	Size	Index	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10	11-14	15-18	19-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x20	1:模板	数 据	模 板		

					ı
			$+\Lambda$: 4	ı
			入小	10	ı
					1

校验码为从 type 到结束的字节算术和

例图:

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		
					0x07:参数		
					不对		

例图:

2. 写入数据

循环写发的数据包:

sig	Seq	adr	Туре	length	Data	Checksum
0-1	2-3	4-5	6	7-8	9-?	
0xef01	0x0000	写的数据位置	0x02	小于 512		

发送的包:

例图:

结束时发送的包:

sig	Seq	adr	Туре	length	Data	Checksum
0-1	2-3	4-5	6	7-8	9-?	
0xef01	0x0000	写的数据位置	0x08	小于 512		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		

8.17 下载模板

分为两步:

1. 设置要读的模板信息:

发送的包:

sig	Seq	adr	Тур	lengt	cmd	dataTyp	Size	Index	Data	Checksum
			е	h		е				
0-1	2-3	4-5	6	7-8	9	10	11-14	15-18	19-21	22-23
0xef01	0x0000	0xff	0x0	0x000	0x1f	1:模板	每 次	模板 id		
		ff	1	f			读 取			
							的大			
							小			

校验码为从 type 到结束的字节算术和

例图:

+800us			+100us	+200us	+300ι	ıs +40	00us +5	500us -	+600us	+700us	+800u	s +900	us		.00us +	200us -	+300us	+400us	+500L	ıs +600	us +70	0us +8	00us +90
0x01	0xEF	0x65	0x1C	0xFF	0xFF	0x01	0x0F	0x00	0x1F	0x01	0x80	0x00	0x00	0x00	0x01	0x00	0x00	0x00	0x00	0x00	0x00	0xB1	0x00
				-																			

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		
					0x0c:空id		

例图:

2. 读取数据

循环读取发的包:

发送的包:

sig	Seq	adr	Туре	length	cmd	dataType	Size	Index	Data	Check
										sum
0-1	2-3	4-5	6	7-8	9	10	11-14	15-18	19-21	22-23
0xef01	0x0	读取的数据	0x01	0x000f	0x21	1:模板	模 板	模 板		
	000	位置					大小	id		

校验码为从 type 到结束的字节算术和

例图:

出错时设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xfff	0x07	0x000f	0x07:参数不对		
		f					

读取成功:

Sig Seq	adr	type	length	Data	Checksum
---------	-----	------	--------	------	----------

0-1	2-3	4-5	6	7-8	
0xef01	0x0000	位置	0x02:数据包	不定长	
			0x08:数据结束		

例图:

8.18 采集图像

建模或认证,可以先发本指令进行采图,然后再按流程操作,作用是采完图 后可以提示用户拿开手指,而不必等待建模或认证的指令完成

发送的包:

sig	Seq	adr	Туре	length	cmd	current	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-11	12-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x14	采集第几张图		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		
					0x04:需要调整		
					0x07:参数不对		
					0x08:超时		

例图:

8.19 获取设备唯一 ID

发送的包:

sig	Seq	adr	Type	length	cmd	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x39		

例图:

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-25	26-27
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok	设备唯一 ID	

8.20 设置设备 ID

发送的包:

sig	Seq	adr	Туре	length	cmd	Id	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10	11-21	22-23
0xef01	0x0000	0xffff	0x01	0x000f	0x17	设备 ID		

例图: [10]=需要设置的 ID (例图是 10)

	1200	,43		0003		00000		1000	45				20003		1000	ĕ		ous		00003			
0x01	0xEF	0x03	0x0A	0xFF	0xFF	0x01	0x0F	0x00	0x17	0x0A	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x31	0x00
		Π																				ПΠ	

校验码为从 type 到结束的字节算术和

设备回复:

Sig	Seq	adr	type	length	result	Data	Checksum
0-1	2-3	4-5	6	7-8	9	10-25	26-27
0xef01	0x0000	0xffff	0x07	0x000f	0x00:ok		

