

Bloque IV: El nivel de red

Tema 10: Subredes

Índice

- Bloque IV: El nivel de red
 - Tema 10: Subredes
 - Introducción
 - Máscara de subred
 - Direcciones de subred
 - Subredes de tamaño variable
 - DHCP
 - NAT

Lecturas recomendadas:

 Capítulo 4, sección 4.4.2, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.

Introducción

- Subredes: consiste en dividir una red en partes mas pequeñas.
 - Nivel jerárquico intermedio entre red y host.
 - Utiliza unos bits de la parte del identificador de host para la subred.
 - Organización jerárquica de la red→ Visión externa como una sola red, aunque dividida en subredes.
- Por ejemplo, partimos de una dirección clase C: 210.53.23.0
 - Tenemos una empresa y 4 departamentos.
 - Inicialmente no realizamos ningún tipo de división, porque la empresa es demasiado pequeña.

Introducción

- Pero la empresa crece, y cada departamento necesita una LAN
 → Solución: asignar aleatoriamente las direcciones IP.
- Problema: la tabla de enrutamiento para el router es enorme (necesito una entrada para cada máquina).

Introducción

Solución → Subredes: dividir el espacio de direcciones en 4 grupos.

Y en binario:

• **Identificador de subred**: con los 2 primeros bits del identificador de host, sabremos a que departamento (subred) pertenece una máquina.

Máscara de subred

- Indica cuantos bits forman el identificador de red y subred, y cuantos forman el identificador host.
 - Se ponen a 1 todos los bits correspondientes al identificador de red o subred.
 - Se ponen a 0 todos los bits correspondientes al identificador de host
- Cada máquina almacena su dirección IP y su máscara de subred.

- Una dirección IP siempre tiene una máscara asociada: 210.53.23.65 y 255.255.255.192
- Otra notación más breve: 210.53.23.65/26 (se utilizan 26 bits para identificador de red y subred).

Máscara de subred: Ejercicio

 Indica los bits de identificador de red, subred y host para las siguientes IPs y máscaras:

10.58.26.129 181.23.117.89 198.58.201.89

255.255.0.0 255.255.255.0 255.255.255.0

bits red: bits red: bits red:

bits subred: bits subred: bits subred:

bits host: bits host: bits host:

10.58.26.129 181.23.117.89 198.58.201.89

255.255.240.0 255.255.254.0 255.255.255.192

bits red: bits red: bits red:

bits subred: bits subred: bits subred:

bits host: bits host: bits host:

Direcciones de subred

 Direcciones IP reservadas: en cada subred hay dos direcciones reservadas → la dirección de subred y la de broadcast en la subred.

Dirección de subred:

- Dirección IP que identifica a una subred.
- Se calcula para cada subred poniendo a 0 el identificador de host.
- Coincide con la primera IP del rango.
- Es equivalente a: dirección IP AND máscara de subred.

Dirección de broadcast en la subred:

- Se calcula poniendo todo a 1 el identificador de host.
- Coincide con la última IP del rango.
- Representa a todas las máquinas de la subred.Nº

Direcciones de subred

Calcular las direcciones de subred y de broadcast del ejemplo:

Dir. Subred Dir. broadcast $00\ 000000 = 0$ 00 111111 = 63 Contabilidad: 01 111111 = 127 01 000000 = 64 I+D: Marketing: **10** 000000 = 128 <mark>10</mark> 111111 = 191 Desarrollo: **11** 000000 = 192 **11** 111111 = 255 ld. host

Subred	Rango	Máscara	Dir. subred	Dir. broadcast
Contabilidad	210.53.23.0-63	255.255.255.192	210.53.23.0	210.53.23.63
I+D	210.53.23.64-127	255.255.255.192	210.53.23.64	210.53.23.127
Marketing	210.53.23.128-191	255.255.255.192	210.53.23.128	210.53.23.191
Desarrollo	210.53.23.192-255	255.255.255.192	210.53.23.192	210.53.23.255

ld. subred

Direcciones de subred

• No subredes = 2^{bits subred}

 N^{o} hosts = $2^{bits host} - 2$

Subredes y hosts para una red clase C:

Bits subred	N° subredes	Bits host	Nº hosts	Máscara	Máscara binario
0	0	8	254	255.255.255.0	0000 0000
1	2	7	126	255.255.255.128	1000 0000
2	4	6	62	255.255.255.192	1100 0000
3	8	5	30	255.255.255.224	1110 0000
4	16	4	14	255.255.255.240	1111 0000
5	32	3	6	255.255.255.248	1111 1000
6	64	2	2	255.255.252	1111 1100
7	128	1	0	255.255.255.254	1111 1110
8	256	0	0	255.255.255	1111 1111

Subredes de tamaño variable

- Subredes de tamaño variable o sub-subredes:
 - El departamento de marketing (subred 210.53.23.128) se quiere subdividir en 4 subredes.

Subred	Rango	Máscara	Dir. subred	Dir. subred
Marketing 1	210.53.23.128-143	255.255.255.240	10 00 0000	210.53.23.128
Marketing 2	210.53.23.144-159	255.255.255.240	10 01 0000	210.53.23.144
Marketing 3	210.53.23.160-175	255.255.255.240	10 10 0000	210.53.23.160
Marketing 4	210.53.23.176-191	255.255.255.240	10 11 0000	210.53.23.176

Subredes: Ejercicio 1

- Queremos organizar la red de nuestra empresa, teniendo en cuenta la siguiente distribución por departamentos:
 - Dpto. contabilidad: 12 ordenadores
 - Dpto. I+D: 18 ordenadores
 - Dpto. desarrollo: 21 ordenadores
 - Análisis: 8 ordenadores
 - Implementación: 13 ordenadores
 - Dpto. marketing: 10 ordenadores
 - Dpto. administración: 10 ordenadores
- Disponemos de una dirección clase C: 195.35.12.0
- Calcular la máscara de subred, id de red y rango de IPs de cada subred.

Subredes: Ejercicio 2

 Calcular las máscaras de subred, id subred y dirección de broadcast de subred, de A, B y C


```
33 = 0010 0001
```

12 = 0000 1100

41 = 0010 1001

Subred	Máscara (bin)	Máscara
Α		
В		
С		

158 = 1001 1110

144 = 1001 0000

Subred	Id. subred (bin)	ld. subred
Α		
В		
С		

211 = 1101 0011

212 = 1101 0100

Subred	Broadcast (bin)	Broadcast
А		
В		
С		

DHCP: Funcionamiento

- Modelo cliente-servidor basado en UDP: puerto 67 para el servidor y 68 para el cliente.
- Mensajes DHCP: el cliente incluye un identificador de transacción en el mensaje de descubrimiento, que deberá ser repetido en los siguientes.
 - Discovery: mensaje difundido en la red por el cliente para descubrir el/los servidores DHCP.
 - Offer: mensaje que contiene la dirección IP que el servidor ofrece al cliente DHCP.
 - Incluye la dirección MAC del cliente, la IP ofertada, la máscara, el tiempo de validez y la dirección del servidor.
 - Request: el cliente seleccionará una dirección de las ofertadas.
 - En caso de existir varios servidores, se indica el servidor del que se acepta la oferta.
 - Acknowledgement: el servidor confirma la solicitud del cliente y le indica cualquier otra información solicitada por el cliente.
- El cliente no tiene dirección IP → Todos los mensajes tienen como destino la dirección de broadcast 255.255.255.255

DHCP

- Una vez que la red está organizada ⇒ Asignar direcciones IP.
 - Normalmente, a los routers se les asigna manualmente.
 - ¿Y a los hosts …?
- Dynamic Host Configuration Protocol: permite asignar direcciones IP dinámica y automáticamente a los hosts (**plug-and-play**):
 - Las direcciones IP se asignan durante un tiempo limitado (desde horas a días), después es necesario renovarlas.
 - También incluye otros parámetros como máscaras de subred, router por defecto (antes se utilizaba ICMP o BOOTP) y servidores DNS.
- Se basa en el modelo cliente-servidor
 - Cliente DHCP: cualquier máquina "nueva" en la red que se esté iniciando y necesite una configuración de red
 - Servidor DHCP: garantiza que todas las direcciones IP son únicas (durante su tiempo de vida).
- Métodos de asignación de direcciones:
 - Estática o manual: se asigna una dirección IP a una máquina concreta (en base a su dirección MAC). Evita que se conecten clientes no identificados.
 - Dinámica: se utiliza un rango de direcciones IP y cada ordenador de la red está configurada para solicitar su dirección IP al iniciarse la interfaz.
 - Permite la reutilización dinámica de las direcciones IP.
 - Facilita la instalación de nuevas máquinas en la red.
 - Automática: similar al modo Dinámico, pero un equipo siempre obtiene la misma IP.

DHCP: Alternativa

- ¿Y qué pasa si no hay un servidor DHCP en mi red?
- Se definen las direcciones IP link-local: 169.254.0.0/16
- APIPA (Automatic Private IP Addressing): permiten a un host auto-asignarse una IP para poder operar en una LAN cuando no hay ningún tipo de servidor disponible:
 - Se escoge una IP del rango aleatoriamente.
 - Se comprueba mediante ARP que nadie la tiene asignada.
 - En cuanto obtiene una IP "válida", deja de usarse.

NAT: Direcciones privadas

- Cuando contratamos una banda ancha, mi ISP me proporciona una dirección IP, pero ¿y si quiero conectar más de un dispositivo a Internet?
 - Varios PCs, consolas, teléfonos, TV, ...
- Direcciones IP públicas: identifican unívocamente un dispositivo en Internet.
- Direcciones IP privadas: exclusivamente para uso interno.
 - Los dispositivos de la red privada se pueden comunicar entre si con esas direcciones.
 - Pero no se pueden comunicar con el exterior (Internet) ⇒
 Solución: NAT.
- Rangos de direcciones IP privadas:
 - Clase A: **10.0.0.0** (1 red)
 - Clase B: 172.16.0.0 172.31.0.0 (16 redes)
 - Clase C: 192.168.0.0 192.168.255.0 (256 redes)

NAT: Direcciones privadas

 Red doméstica A, utilizando una dirección privada.

 Red doméstica B, utilizando una dirección pública.

NAT: Direcciones privadas

- Network Address Translation: consiste en modificar la dirección IP origen y/o destino de un datagrama IP al pasar a través de un router o firewall:
 - Permite a múltiples máquinas en una red privada acceder a Internet usando una única dirección IP pública.
- Surge debido a dos problemas: escasez de direcciones IP y escalabilidad del enrutamiento.
 - También ofrece seguridad: no se admiten conexiones desde fuera.
- Tipos de NAT:
 - NAPT (Network Address Port Translation): múltiples máquinas comparten una única dirección IP pública → La traducción se realiza mapeando números de puerto.
 - Basic NAT (o NAT estático o NAT 1 a 1): sólo se realiza el mapeo de direcciones IP → Cada dirección IP privada tiene asignada una dirección IP pública.

- Configuración típica:
 - La red interna (intranet) utiliza una dirección IP privada.
 - El router de la red tiene una interfaz con IP privada (conectada a la red interna) y otra interfaz con IP pública (conectada a Internet).
 - El router se encarga de realizar NAT e incluye un firewall.
 - Desde Internet parece que la comunicación se está realizando directamente con el router.
 - Los servidores públicos se incluyen en una red independiente (DMZ).

- DMZ (DeMilitarized Zone): parte de una red que se sitúa entre la red interna de una organización e Internet:
 - Se permiten las conexiones desde las redes externa e interna al DMZ.
 - Desde el DMZ sólo se permiten las conexiones a la red externa →
 Esto protege la red interna en caso de que una máquina de la DMZ
 sea comprometida.
 - En la DMZ se incluyen todos los servidores accesibles desde el exterior: servidor Web, correo electrónico, DNS, ...
- Firewall: dispositivo configurado para permitir, denegar o actuar de intermediario en las comunicaciones de una red.
 - Puede ser hardware o software.
 - Permite controlar el tráfico entre redes de diferentes zonas de confianza.
 - Normalmente, separa una red interna (intranet: alto nivel de confianza) de una red externa (Internet: confianza nula), evitando accesos irregulares a la red interna.
 - Por ejemplo: *iptables*.

NAPT: Funcionamiento

NAPT: Funcionamiento

NAPT: Funcionamiento

Ventajas:

- Seguridad: no se permiten conexiones bidireccionales: una máquina interna debe iniciar la conexión con una máquina de Internet → Evita conexiones maliciosas desde el exterior.
- Solución para la escasez de direcciones IPv4:
 - Utilizar direcciones IP públicas sólo para máquinas que requieran conexión bidireccional a Internet.
 - Direcciones privadas para las máquinas que sólo se conectan a Internet.

Inconvenientes:

- No existe una conectividad extremo a extremo real:
 - Se usan los números de puerto para direccionar hosts, no procesos.
 - Los routers sólo deberían implementar hasta el nivel de red.
- Es un parche para la escasez de direcciones, cuando IPv6 soluciona el problema de raíz.
- NAT Traversal: plantea problemas en las aplicaciones que requieren que se inicien conexiones desde el exterior (p.e. FTP) → Desarrollo de técnicas específicas para estos casos (p.e. FTP pasivo).

NAT y UPnP

- Universal Plug and Play
- Solución para NAT Traversal:
 - Un host puede descubrir y configurar un router NAT de su red.
 - Permite a hosts externos iniciar comunicaciones TCP o UDP con hosts de una red privada a través de NAT.
- Funcionamiento:
 - Una aplicación de un host privado puede solicitar la correspondencia NAT entre su IP privada y puerto privado, con la IP pública (del router NAT) y un puerto público.
 - Si el router NAT acepta la solicitud, se crea la asociación → Se pueden conectar desde el exterior.
 - Además, la aplicación puede conocer la IP y el puerto público y anunciarlos.