Smoothsort [1]

Smoothsort uses Leonardo heaps instead of binary heaps and operates similar to heapsort.

- L(0) = 1
- L(1) = 1
- L(n+2) = L(n) + L(n+1) + 1

$$L(n) = 1, 1, 3, 5, 9, 15, 25, 41, 67, 109$$

Smoothsort is worst case O(nlgn) like heapsort but O(n) when the input is sorted

Algorithm with unsorted data:

• Start:

• Increase Size By One:

20	8	19	13	5	15	1	16	11	18
[00]	[01]	[02]	[03]	[04]	[05]	[06]	[07]	[80]	[09]

• Increase Size By One and Selection Sort the Roots:

(8) (20)

• Increase Size By One and Merge:

• Increase Size By One, Selection Sort and Push Down:

• Increase Size By One, Merge and Push Down:

• Increase Size By One, Selection Sort the Roots and Push Down:

• Increase Size By One, Selection Sort the Roots and Push Down:

• Increase Size By One, Push Down, Selection Sort the Roots and Push Down:

[00] [01] [02] [03] [04] [05] [06] [07] [08] [09]

• Increase Size By One, Push Down:

• Increase Size By One, Selection Sort the Roots:

• Decrease Size By One:

• Decrease Size By One:

• Decrease Size By One, Selection Sort the Roots and Push Down:

• Decrease Size By Three, Selection Sort the Roots and Push Down:

• Decrease Size and selection sort the roots:

• Sort Complete:

1	5	8	11	13	15	16	18	19	20
[00]	[01]	[02]	[03]	[04]	[05]	[06]	[07]	[08]	[09]