Chapitre 1 – Rappels de probabilités – Travaux Dirigés

Exercice 1.

Chacune des affirmations suivantes est-elle vraie ou fausse?

- (a) Si $\Omega = \{1, 2, 3\}$, alors $\mathscr{T} = \{\emptyset, \Omega, \{1\}, \{2, 3\}\}$ est une tribu sur Ω .
- (b) Si Ω est un univers et $A, B \subset \Omega$, alors $\{\emptyset, \Omega, A, A^c, B, B^c\}$ est une tribu sur Ω .
- (c) Si A et B sont deux événements tels que $\mathbb{P}(A) + \mathbb{P}(B) = 1$ alors $A = B^{c}$.
- (d) Si A et B sont deux événements indépendants alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- (e) Si A et B sont deux événements tels que $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$, alors A et B sont incompatibles.
- (f) Si A₁, A₂, A₃ sont des événements mutuellement indépendants, ils sont indépendants deux à deux.
- (g) Si A_1 , A_2 , A_3 sont indépendants deux à deux, ils sont mutuellement indépendants.

Exercice 2.

Une usine produit des voitures chaque semaine, du lundi au vendredi. La probabilité d'un défaut est : 10% sur les voitures produites le lundi ou le mardi, 20% le mercredi ou le jeudi, 30% le vendredi. Le nombre de voitures produites est le même d'un jour à l'autre.

- 1. Quelle proportion des voitures présente un défaut ?
- 2. Avec quelle probabilité une voiture présentant un défaut a-t-elle été produite un jeudi ?

Exercice 3.

Dans une ville, la proportion d'hommes est p (0) et celle de femmes <math>1-p; la proportion de riches est q (0 < q < 1) et celle de pauvres 1-q. Par ailleurs, 60% des hommes sont riches et 60% des riches sont des hommes. La richesse est-elle équitablement répartie entre hommes et femmes ?

Exercice 4.

John cherche un document dans un classeur à sept dossiers. La probabilité que le document soit dans le classeur est p. Sachant que John a déjà examiné six dossiers en vain, avec quelle probabilité le document est-il dans le septième dossier ?

Exercice 5.

Arth rentre chez lui mais il ne sait plus quelle clef ouvre son appartement, parmi les n clefs de son trousseau. Avec quelle probabilité lui faudra-t-il k essais pour trouver la bonne clef dans chacune des statégies suivantes?

- (i) Arth essaie successivement une clef choisie au hasard sans se rappeler les clefs déjà testées.
- (ii) Arth essaie une clef choisie au hasard en écartant la clef qui vient d'être testée.
- (iii) Arth essaie une clef choisie au hasard en écartant toutes les clefs déjà testées.

Exercice 6.

On lance une pièce indéfiniment. On note A_n : le lancer n donne Pile.

- 1. Interprétez les événements : (i) $\bigcap_{k=5}^{+\infty} A_k$ (ii) $(\bigcap_{k=1}^4 A_k^c) \cap (\bigcap_{k=5}^{+\infty} A_k)$ (iii) $\bigcup_{k=5}^{+\infty} A_k$.
- 2. Ecrire à l'aide des événements A_n :
 - (i) On obtient Pile au moins une fois après le lancer n.
 - (ii) On n'obtient plus que Pile après le lancer n.
 - (iii) On n'obtient plus que Pile à partir d'un certain lancer.

Exercice 7.

 $(A_n)_{n\in\mathbb{N}}$ est une suite d'événements d'une tribu \mathscr{T} . $A=\bigcap_{n=0}^{+\infty}(\bigcup_{k=n}^{+\infty}A_k),\ B=\bigcup_{n=0}^{+\infty}(\bigcap_{k=n}^{+\infty}A_k),\ C=(\bigcup_{n=0}^{+\infty}(A_n\cap A_{n+1}))^c$.

- 1. Montrez que A, B, C sont des événements et interprétez-les.
- 2. Calculez la probabilité de A en supposant : $\mathbb{P}(A_n) = 1/2^n$.

A. Lourme, Faculté d'économie, gestion & AES, Université de Bordeaux

Exercice 8.

On dispose d'urnes : U_2, U_3, \ldots contenant chacune des boules rouges et des boules noires. On tire successivement une boule de U_2, U_3 , etc. jusqu'à obtenir pour la première fois une boule noire.

On note A: aucune boule noire n'est jamais tirée; A_n : les tirages des urnes 2 à n n'amènent que des boules rouges.

- 1. Exprimez A en fonction des événements A_n .
- 2. Pour $n \geq 2$, U_n contient n boules dont une seule est noire.
 - (a) Calculez $\mathbb{P}(A_n)$.
 - (b) Calculez $\mathbb{P}(A)$.
- 3. Pour $n \geq 2$, U_n contient n^2 boules dont une seule est noire.
 - (a) Montrez que $\mathbb{P}(A_n) = (n+1)/(2n)$.
 - (b) Déduisez-en $\mathbb{P}(A)$.

Exercice 9.

Un signal binaire est transmis par n composants. Chaque composant le modifie avec probabilité p ($0). On note <math>p_n$ la probabilité que le signal ne soit pas altéré par la chaîne de transmission ; par convention $p_0 = 1$.

- 1. Montrez que $p_{n+1} = (1-2p)p_n + p$.
- 2. Exprimez p_n en fonction de n.
- 3. Déterminez et interprétez la limite de (p_n) .

Exercice 10.

Jules et Paul disputent une partie de tennis selon la règle suivante : une balle gagnée apporte un point ; la partie s'arrête quand l'un des joueurs a deux points d'avance sur l'autre.

1. Après 2n balles, la partie n'est pas terminée ; se peut-il Jules et Paul ne soient pas à égalité ?

On note A_n : après 2n balles, Jules et Paul sont à égalité et $p_n = \mathbb{P}(A_n)$.

- 2. (a) Déterminez une relation de récurrence entre p_n et p_{n+1} .
 - (b) Déduisez-en p_n en fonction de n.
- 3. Avec quelle probabilité Jules gagne-t-il la partie?