

AHT15溫濕度感測器 數據回傳序列埠

古都土城仔綠電創能與智動養殖之跨界整合永續淨零發展計畫

目錄

- ESP 32 環境設定
- AHT15(溫濕度感測器)介紹
- ESP32 v.s AHT15電路連接:
- 全部程式碼
- 程式講解
- 最終執行成果

ESP 32 環境設定

○本次所使用的程式開發環境為Arduino IDE

ohttps://www.arduino.cc/en/software

Arduino IDE 2.2.1

The new major release of the Arduino IDE is faster and even more powerful! In addition to a more modern editor and a more responsive interface it features autocompletion, code navigation, and even a live debugger.

For more details, please refer to the **Arduino IDE 2.0 documentation**.

Nightly builds with the latest bugfixes are available through the section below.

SOURCE CODE

The Arduino IDE 2.0 is open source and its source code is hosted on **GitHub**.

由於ESP32 並非Arduino 原廠製作的裝置,而是樂鑫開發的相容裝置,因此必須再安裝ESP32 相容性套件,才能讓Arduino IDE 認識ESP32 晶片。

下載好後,找到主程式arduino.exe,直接點兩下執行Arduino IDE 開啟主程式後,選擇功能表的檔案/ 偏好設定,開啟偏好設定視窗。在額外開發板管理員輸入以下網址:

https://dl.espressif.com/dl/package_esp32_index.json

接著點選工具/開發板/開發板管理員,即出現開發板管理員視窗,輸入關鍵字ESP32,即可篩選ESP32 相容性套件。找到ESP32 Arduino 並往下拉即可在下方找到最新的ESP32 系列主板。大部分的ESP32 開發板都可以擇通用型號「ESP32WroverModule」來開發即可。上傳速度「Upload speed」請務必保持921600。

CH341SER.EXE

CH341SER.EXE

适用范围	版本	上传时间	资料大小
CH340G, CH340T, CH34 0C, CH340N, CH340K, CH 340E, CH340B, CH341 A, CH341F, CH341T, CH3 41B, CH341C, CH341U	3.8	2023-03-16	642KB

USB转串口Windows一键式安装驱动程序,支持CH340和CH341,支持32/64位Windows 11/10/8.1/8/7/VISTA/XP,SER VER 2022/2019/2016/2012/2008/2003,2000/ME/98,通过微软数字签名认证,支持USB转UART的3线和9线SERIAL 串口等,用于随产品发行到最终用户。

完成環境設定後,可以透過MicroUSB線連接ESP32及電腦USB插槽,當插入USB後,出現需要安裝USB驅動程式,目前ESP32主要有CP210x或CH340兩種版本,而傳統UNO則是CH340,目前windows或MAC系統沒有內建驅動程式,因此當接上ESP32的USB後,尚需安裝驅動程式。

驅動程式網址:

https://www.wch.cn/downloads/CH341SER_EXE.html

完成上述的設定之後,ESP32 的Arduino 開發環境算是安裝完畢。

AHT15(溫濕度感測器)介紹

ATH15溫濕度感測器擁有以下特點:

- 1.具有防水防塵性能,使得它能在惡劣環境下使用。
- 2.有數字輸出,並使用I²C介面。
- 3.擁有優異的長期穩定性。
- 4. 温度的精度±0.3℃, 濕度在25℃環境下精度±2%。

ESP32 v.s AHT15電路連接:

- 1. 連接電源:連接VCC腳位到 ESP32的 3.3V 腳位。
- 2. GND 腳位連接到 ESP32 的 GND 腳位。
- 3. I²C 連接: 連接SDA 腳位到 ESP32 的 SDA 腳位。
- 4. SCL 腳位連接到 ESP32 的 SCL 腳位。

- 1.AHT15 的工作電壓一般是 3.3V,如果連接到 5V 的電源,可能會導致感測器損壞。
- 2.ESP32 的 SDA 和 SCL 腳位通常是 GPIO21 (SDA) 和 GPIO22 (SCL)。

Flash

GPIO39

GPIO35

#include <Wire.h> // 匯入Wire函式庫,用於I2C通訊

```
#define AHT15_ADDRESS 0x38 // 定義AHT15感測器的I2C地址
#define AHT15_RESET OxBA // 定義重置命令的值
#define AHT15_INIT OxBE // 定義初始化命令的值
#define AHT15_START_MEASUREMENT 0xAC // 定義開始測量命令的值
void setup() { // 設定函數,在程式開始時執行一次
 Wire begin(); // 啟用Wire函式庫
 Serial begin(115200); // 啟動序列通訊鮑率115200
 // Reset sensor
 Wire.beginTransmission(AHT15_ADDRESS); // 開始向AHT15_ADDRESS發送數據
 Wire.write(AHT15_RESET); // 發送重置命令
 if (Wire.endTransmission()!= ∅) { // 如果傳輸結束並返回錯誤
   Serial.println("重置錯誤"); // 顯示錯誤信息
   while(1); // 進入無窮迴圈
 delay(20); // 等待20毫秒
```



```
// Initialize sensor
 Wire beginTransmission(AHT15_ADDRESS); // 開始向AHT15_ADDRESS發送數據
 Wire write(AHT15_INIT); // 發送初始化命令
 Wire write(0x08); // 發送額外的初始化數據
 Wire write(0x00); // 發送額外的初始化數據
 if (Wire.endTransmission()!= ∅) { // 如果傳輸結束並返回錯誤
   Serial.println("初始化錯誤"); // 顯示錯誤信息
   while(1); // 進入無窮迴圈
 delay(10); // 等待10毫秒
void loop() { // 主迴圈, 會不斷重複執行
 // Start measurement
 Wire.beginTransmission(AHT15_ADDRESS); // 開始向AHT15_ADDRESS發送數據
 Wire.write(AHT15_START_MEASUREMENT); // 發送開始測量命令
 Wire.write(0x33); // 發送額外的開始測量數據
 Wire.write(0x00); // 發送額外的開始測量數據
 if (Wire endTransmission()!= ∅) { // 如果傳輸結束並返回錯誤
   Serial println("測量失敗"); // 顯示錯誤信息
   delay(1000); // 等待1000毫秒
   return; // 返回,跳過此次迴圈的剩餘部分
 delay(80); // 等待80毫秒以完成測量
```



```
// Read data
 Wire requestFrom(AHT15_ADDRESS, 6); // 從AHT15_ADDRESS請求6個字節的數據
 if (Wire available()!= 6) { // 如果可用數據不是6個字節
   Serial println("讀取錯誤"); // 顯示錯誤信息
   return; // 返回,跳過此次迴圈的剩餘部分
 uint8_t data[6]; // 創建一個用於存儲數據的陣列
 for (int i = 0; i < 6; i++) { // 對於每個字節
   data[i] = Wire read(); // 讀取並存儲數據
 // Calculate humidity and temperature
 // 計算原始濕度值
 uint32_t rawHumidity = ((uint32_t)data[1] << 12) | ((uint32_t)data[2] << 4) | (data[3] >> 4);
 float humidity = rawHumidity * 100.0 / (1 << 20); // 轉換原始濕度值為百分比
 // 計算原始溫度值
 uint32 t rawTemperature = ((uint32 t)data[3] \& 0xF) << 16) | ((uint32 t)data[4] << 8) |
data[5];
 float temperature = ((200.0 * rawTemperature) / (1 << 20)) - 50; // 轉換原始溫度值為攝氏度
```



```
// Print results
 Serial.print("Humidity:");
 Serial.print(humidity); // 顯示濕度值
 Serial.print("% , ");
 Serial.print("Temperature: ");
 Serial.print(temperature); // 顯示溫度值
 Serial.println("°C");
 delay(2000); // 等待2秒
```



```
#include <Wire.h>

#define AHT15_ADDRESS 0x38

#define AHT15_RESET 0xBA

#define AHT15_INIT 0xBE

#define AHT15_START_MEASUREMENT 0xAC
```

#include <Wire.h>

這行代碼引入了Wire程式庫,該庫允許ESP32通過 I2C 通訊協議與 I2C 設備進行通信。

```
#define AHT15_ADDRESS 0x38
#define AHT15_RESET 0xBA
#define AHT15_INIT 0xBE
#define AHT15_START_MEASUREMENT 0xAC
```

這段程式碼分別代表定義了AHT15的重置、初始化、測量、開始測量等命令的十六進制值。


```
void setup() {
       Wire.begin();//啟用Wire函式庫
       Serial.begin(115200);// 啟動序列通訊鮑率115200
10
       // Reset sensor
       Wire.beginTransmission(AHT15_ADDRESS);
       Wire.write(AHT15_RESET);
       if (Wire.endTransmission() != 0) {
         Serial.println("重置錯誤");
        while(1);
19
       delay(20);
       // Initialize sensor
       Wire.beginTransmission(AHT15_ADDRESS);
       Wire.write(AHT15_INIT);
      Wire.write(0x08);
       Wire.write(0x00);
       if (Wire.endTransmission() != 0) {
        Serial.println("初始化錯誤");
        while(1);
       delay(10);
```

- viod setup() 副程式只會在啟動板子後執行一次。
- Serial.begin 代表啟動序列監控視窗,能顯示文字或數據。
- 板子與序列監控視窗的傳輸鮑率(Baud)須設定同為 115200,否則會出現亂碼。
- 程式碼包含重置及初始化的偵錯程序。


```
33
     void loop() {
34
       // Start measurement
35
       Wire.beginTransmission(AHT15_ADDRESS);
       Wire.write(AHT15_START_MEASUREMENT);
36
       Wire.write(0x33);
       Wire.write(0x00);
38
       if (Wire.endTransmission() != 0) {
39
40
         Serial.println("測量失敗");
41
         delay(1000);
42
         return;
43
44
       delay(80);
45
46
       // Read data
       Wire.requestFrom(AHT15_ADDRESS, 6);
47
       if (Wire.available() != 6) {
48
         Serial.println("讀取錯誤");
49
50
         return;
```

void loop() 迴圈副程式在執行完setup 之後,就會執行loop 內"{}" 的程式碼,要注意的是Arduino的loop 是沒有停止條件的,也就是說這是一個無窮迴圈。

第一段是在寫板子給感測器的開始測量指令是否正常,當數據錯誤將顯示錯誤訊息。

第二段程式碼是在讀取從感測器返回的數據。先請求6個字節的數據,再檢查是否有6個字節的數據可用。如果不是,它會打印出一個錯誤訊息。

上半段程式碼的目的是從感測器讀取數據並將其存儲在一個陣列中。

中段的程式碼是將感測器的原始濕度值數據進行轉換 float humidity = rawHumidity * 100.0 / (1 << 20); 是在將原始濕度值轉換為百分比。

下半段程式碼是將感測器的原始溫度值轉換為為攝氏度。 float temperature = ((200.0 * rawTemperature) / (1 << 20)) - 50; 是在將原始溫度值映射到一個範圍為<math>-50到150的範圍內。

```
52     uint8_t data[6];
53     for (int i = 0; i < 6; i++) {
54         | data[i] = Wire.read();
55     }
56
57         // Calculate humidity and temperature
58         uint32_t rawHumidity = ((uint32_t)data[1] << 12) | ((uint32_t)data[2] << 4) | (data[3] >> 4);
59         float humidity = rawHumidity * 100.0 / (1 << 20);
60
61         uint32_t rawTemperature = (((uint32_t)data[3] & 0xF) << 16) | ((uint32_t)data[4] << 8) | data[5];
62         float temperature = ((200.0 * rawTemperature) / (1 << 20)) - 50;</pre>
```


這段程式碼是再輸前面所運算出的溫濕度,並顯示在序列埠監視窗,等待兩秒後使整個程式重新執行,無限循環。

```
// Print results
Serial.print("Humidity: ");
Serial.print(humidity);
Serial.print("% , ");
Serial.print("Temperature: ");
Serial.print(temperature);
Serial.println("°C");

delay(2000);
```

最終執行成果

```
12:50:44.643 -> Humidity: 47.79% , Temperature: 22.80°C
12:50:46.727 -> Humidity: 47.89% , Temperature: 22.79°C
12:50:48.820 -> Humidity: 48.08% , Temperature: 22.81°C
12:50:50.879 -> Humidity: 48.08% , Temperature: 22.80°C
12:50:52.965 -> Humidity: 48.62% , Temperature: 22.80°C
```


城碳温温

古都土城仔綠電創能與智動養殖之跨界整合永續淨零發展計畫