網路概論

第15版

15th Edition

第4篇網路層篇

第九章 IP路由

Networking Essentials 本投影片(下稱教用資源)僅授權給採用教用資源相關之旗標書籍為教科書之授課老師(下稱老師)專用,老師為教學使用之目的,得摘錄、編輯、重製教用資源(但使用量不得超過各該教用資源內容之80%)以製作為輔助教學之教學投影片,並於授課時搭配旗標書籍公開播放,但不得為網際網路公開傳輸之遠距教學、網路教學等之使用;除此之外,老師不得再授權予任何第三人使用,並不得將依此授權所製作之教學投影片之相關著作物移作他用。

著作權所有 ① 旗標公司

前言

- ◆ 9-1 什麼是 IP 路由?
- ◈ 9-2 路由表簡介
- ◆ 9-3 靜態與動態路由
- ◈ 實作練習:TRACERT 工具程式

IP 路由

為達成傳遞封包的目的,IP必須涵蓋以下兩類 規格:

- ◈ 靜態規格:包含 IP 封包的格式、IP 位址的規劃等等。我們在第 7 章已經介紹了這些主題。
- ◆ 動態規格:包含 IP 封包在網路之間傳送的 方式。這部份統稱為 IP 路由 (IP Routing)。

9-1 什麼是 IP 路由?

◆『路由』代表『路徑之由來』,在此指 IP 封包的傳輸路徑如何產生,也就是『路徑選 擇』(Path Selecting)。

9-1 什麼是 IP 路由?

什麼是 IP 路由?

- ◆ 9-1-1 路由器的特性
- ◈ 9-1-2 路由器的功能
- ◆ 9-1-3 IP 路由的過程
- ◆ 9-1-4 直接與間接傳遞

9-1-1 路由器的特性

- ◆ 路由器可連結多個網路, 還有轉送 IP 封包的能力
- ◆ 在整個 IP 封包的傳送過程中,通常必須經由多部路由器的合作,才能將 IP 封包送達目的節點
- ◆ 路由器作為 IP 封包的轉送裝置, 具有以下特性:
 - ◈ 具有兩個 (含) 以上的網路介面
 - ◆ 至少能解讀封包在 OSI 模型第 3 層 (網路層) 的 資訊
 - ◈ 具有路由表 (Routing Table)

9-1-2 路由器的功能

- ◆ 路由器最主要的功能就是轉送 IP 封包, 它會根據封包的目的 IP 位址, 為它選擇一條最佳路徑。
- ◈ 『路徑』主要是指下列兩種資訊:
 - ◈要經過路由器的哪個網路介面
 - ◈要再送到另一部路由器或是直接送到目的節點

路由器的功能

圖 9-2 為例, 每部主機與路由器的動作如下:

- ◆ A1 主機
 - ◈ 若 F1 位於 A1 主機所在的區域網路, A1將封包 直接送給 F1。
 - ≫若F1不在A1主機所在的區域網路,則A1根據 路由表,判斷出應將IP封包送至哪一部路由器。

◆ R1 路由器

- ◈解讀 IP 封包表頭的資訊。
- ◈ 讀取 IP 封包的目的位址。
- ≫若 F1 主機位於 R1 所連接的網路中,直接將 IP 封包傳送給 F1。
- ◈ 若 F1 主機位於遠端的網路,則必須從路由表判 斷應該將 IP 封包轉送給哪一部路由器處理。

♠ R2 路由器

- ◈ 判斷 IP 封包表頭的存活時間。
- ◈將封包送給R3路由器,再利用ARP取得R3的MAC位址。
- ◈將IP封包轉送至R3路由器。

◆ R3 路由器

- ◈ 判斷 IP 封包表頭的存活時間。
- ◈ 讀取 IP 封包的目的位址,並選擇最佳路徑。
- ◈將IP封包傳送給F1

9-1-4 直接與間接傳遞

- ◆ IP 封包的傳遞大致可分為『直接』與『間接』:
- ◆ 直接傳遞: 直接傳遞只在同一個網路內進行,因此在傳 遞過程中,不會通過路由器。
- ◆ 間接傳遞: IP 封包會傳至位於不同網路中的節點。會 先將 IP 封包轉送給適當的路由器。

9-2 路由表簡介

- ◇ 路由表其實是一個小型的資料庫,其中的每一筆路由紀錄,記載了通往每個節點或網路的路徑。
- ◆ 9-2-1 路由表的欄位
- ◈ 9-2-2 決定路徑的步驟

9-2-1 路由表的欄位

- ◆網路位址 (Network Destination)
- ◈網路遮罩 (Netmask)
- ◈ 閘道 (Gateway)
- ♦ 介面 (Interface)
- ◈ 成本 (Metric)

圖 9-3 説明路由表欄位的網路環境

◈網路位址與網路遮罩:這兩個欄位的資訊 必須合起來解讀才有意義,代表的目的地 IP 位址的範圍

網路位址	網路遮罩	閘道	介面	成本
203.74.205.0	255.255.255.0			
203.74.206.0	255.255.255.0			
203.74.207.0	255.255.255.0			
203.74.208.0	255.255.255.0			

◈ 假設 R1 路由器中有一筆 A1 主機的路由記錄, 則網路位址與網路遮罩兩個欄位值如下:

◆介面:記錄路由器本身網路介面的 IP 位址

♥ 閘道:記錄要將 IP 封包轉送至哪一部路由器。若目的網路已直接連接在此一路由器, 代表毋須再將 IP 封包轉送給其他路由器,因此閘道欄位填入網路介面的 IP 位址即可

網路位址	網路遮罩	閘道	介面	成本
203.74.205.0	255.255.255.0	203.74.205.1	203.74.205.1	
203.74.206.0	255.255.255.0	203.74.206.1	203.74.206.1	
203.74.207.0	255.255.255.0	203.74.207.1	203.74.207.1	
203.74.208.0	255.255.255.0	203.74.206.2	203.74.206.1	
	這 早 ₽2	以中 と は と は と は は は は は は は は は は は は は は	1網敗介面位址	

這是 R2 路由器連接 B 網路的網路介面位址

- ◆ 成本:表示路徑的成本。路由器會挑選成本最小的路徑來使用
- ◆ 成本通常設為到達目的網路所須經過的躍程 (Hop) 數目。

圖 9-4 IP 封包從 X 傳到 Y, 要經過 2 部路由器。所以 hop 為 2, 而且成本 Metric=2

● 圖 9-3,以 R1 路由器為例,到 A、B、C 網路的路徑 為 1 個躍程;到 D 網路則為 2 個躍程:

網路位址	網路遮罩	閘道	介面	成本
203.74.205.0	255.255.255.0	203.74.205.1	203.74.205.1	1
203.74.206.0	255.255.255.0	203.74.206.1	203.74.206.1	1
203.74.207.0	255.255.255.0	203.74.207.1	203.74.207.1	1
203.74.208.0	255.255.255.0	203.74.206.2	203.74.206.1	2
		經文	過 2 部路由器,所以	↓ ↓是 2 個躍程

◈ 成本欄位在不同的路由協定,可能會有不同的意義

9-2-2 決定路徑的步驟

1. 將 IP 封包的目的 IP 位址與路由紀錄的網路 遮罩做位元 AND 運算

目的位址 (十進位) (二進位)	203	74	205	33
	11001011	01001010	11001101	00100001
網路遮罩 (十進位) (二進位)	255 11111111 	255 111111111	255 111111111	224 11100000
運算結果 (十進位)	203	74	205	32
	11001011	01001010	11001101	00100000

- ◆ 2. 將上述結果與路由紀錄的網路位址比較 若二者相同, 代表適合用這筆路由紀錄來轉 送此 IP 封包
- ◆ 3. 對每一筆路由紀錄重複第 1、2 步驟。若 找不到任何適用的紀錄,則使用預設路由

決定路徑的步驟

4.若有多筆符合的紀錄,則從中找出網路遮罩欄位中最多1的紀錄。

203.74.205.0 / 24 — 網路遮罩有 24 Bits 為 1 203.74.0.0 / 16 — 網路遮罩有 16 Bits 為 1

5. 找出成本最小的紀錄。

9-3 靜態與動態路由

- ◆ 靜態方式 (Static):由網管人員手動將路由 紀錄逐一加入路由表。適用於小型網路環 境
- ◆ 動態方式 (Dynamic):由路由協定自動建立 與維護路由表

靜態與動態路由

- ♦ 9-3-1 靜態路由
- ◈ 9-3-2 動態路由

9-3-1 靜態路由

◈ 範例1:1部路由器的環境

圖 9-5 1 部路由器的網路

範例1:1部路由器的環境

表 9-1 LAN1 與 LAN2 的網路位址與網路遮罩

網路	網路位址	網路遮罩
LAN 1	203.74.205.0	255.255.255.0
LAN 2	203.74.215.0	255.255.255.0

表 9-2 LAN1 與 LAN2 的網路位址與網路遮罩

介面	IP 位址	網路遮罩
If 1	203.74.205.1	255.255.255.0
If 2	203.74.215.1	255.255.255.0

◆ 若要讓 LAN 1 與 LAN 2 能夠互傳封包, 必須 在 R1 加入以下兩筆路由紀錄:

網路位址	網路遮罩	閘道	介面	成本
203.74.205.0	255.255.255.0	203.74.205.1	203.74.205.1	1
203.74.215.0	255.255.255.0	203.74.215.1	203.74.215.1	1

範例2:2部路由器的環境

圖 9-6 2 部路由器的網路

表 9-3 LAN 1 \ LAN 2 與 LAN 3 的網路位址與網路遮罩

網路	網路位址	網路遮罩
LAN 1	203.74.205.0	255.255.255.0
LAN 2	203.74.215.0	255.255.255.0
LAN 3	203.74.225.0	255.255.255.0

表 9-4 R1 介面的 IP 位址與網路遮罩

介面	IP 位址	網路遮罩
If 1	203.74.205.1	255.255.255.0
If 2	203.74.215.1	255.255.255.0

表 9-5 R2 介面的 IP 位址與網路遮罩

介面	IP 位址	網路遮罩
If 1	203.74.215.2	255.255.255.0
If 2	203.74.225.1	255.255.255.0

● 要讓 3 個網路能正常運作, 則必須分別在 R1 與 R2 加入適當的路由紀錄。

網路位址	網路遮罩	閘道	介面	成本		
203.74.205.0	255.255.255.0	203.74.205.1	203.74.205.1	1		
203.74.215.0	255.255.255.0	203.74.215.1	203.74.215.1	1		
203.74.225.0	255.255.255.0	203.74.215.2	203.74.215.1	2		
T						

◆ 第3筆紀錄閘道欄位必須填入 R2 連接 LAN 2的介面 IP 位址。

網路位址	網路遮罩	閘道	介面	成本
	這是	是 R1 If 2 的 IP [/]	位址	
203.74.205.0	255.255.255.0	203.74.215.1	203.74.215.2	2
203.74.215.0	255.255.255.0	203.74.215.2	203.74.215.2	1
203.74.225.0	255.255.255.0	203.74.225.1	203.74.225.1	1

範例3:2部路由器+預設路由

圖 9-7 2 部路由器 + 預設路由的網路

2部路由器+預設路由

表 9-6 R3 介面的 IP 位址與網路遮罩

介面	IP 位址	網路遮罩
If 1	203.74.215.3	255.255.255.0
If 2	203.149.175.9	255.255.255.0

◈ R1 與 R2 路由器要另外建立『預設路由』

2部路由器+預設路由

2部路由器+預設路由

▶ R3 是 3 個網路聯外的閘道,要有這 3 個網路的路 由紀錄:

9-3-2 動態路由

◆ 距離向量演算法: 路由器交換路由表,找出最佳路徑

- 1. 收到的路由紀錄中, 是否有我沒有記錄到的資料?
- 2. 此筆紀錄是不是由同一部路由器所發出?
- 3. 比對路徑成本。

實際可走的路徑有2條

- 1. LAN1 → R1 路由器→ R2 路由器→ LAN2
- 2. LAN1 → R1 路由器→ R3 路由器→ R4 路由器→ LAN2

◆ 鏈接狀態演算法 依 SPF 演算法建立整個網路的樹狀結構,依 此決定後續傳送路徑

圖 9-10 鏈接狀態演算法示意圖

- ◈ 常見動態路由協定:
 - ◈距離向量路由協定
 - ◈鏈接狀態路由協定
 - ◈網際網路路由協定
 - **\oint{\oint}**

實作練習: TRACERT 工具程式

TRACERT 工具程式

TRACERT 工具程式

TRACERT [參數] [網址或 IP 位址]

參數	意義
-d	TRACERT 預設會執行 DNS 反向查詢。若不要反向查詢,請使用此參數。
-h <存活時間>	TRACERT 每次發出回應要求時存活時間會加 1。本參數可設定存活時間最大值,預設為 30。
-w <等待時間>	等待傳送逾時或回應答覆的時間。<等待時間> 的單位為千分之一秒, 預設值為 1000, 亦即 1 秒。

TRACERT 工具程式

每部路由器回應 3 次. 因此有3 個回應時間

◆ TRACERT 範例

C:\> tracert 168.95.192.1

在上限 30 個躍點上

追蹤完成

```
追蹤 hntp1.hinet.net [168.95.192.1] 的路由:
  <1 ms <1 ms <1 ms 192.168.0.3
  39 ms 35 ms 32 ms 220-130-148-254.HINET-IP.hinet.net [220.130.149.254]
3 53 ms 31 ms 30 ms
                     tp-s2-c76r5.router.hinet.net [168.95.82.194]
4 37 ms 37 ms 43 ms
                      tp-s2-c12r1.router.hinet.net [211.22.34.78]
 31 ms 31 ms 51 ms
                     tp-s2-c6r10.router.hinet.net [211.22.35.37]
6 31 ms 31 ms 31 ms 210.59.204.198
  31 ms 30 ms 31 ms
                      hntp1.hinet.net [168.95.192.1]
```