Microcontroller and Microprocessors Experiment - 2 Equation Solving and Boolean Reduction

Varun Singh Inda 16BEE0023

Equation Solving

Aim :- To solve the given equation $(5x^2 + 6xy + y^2 + 8)$

Procedure:-

- 1. Launch Keil uVision
- 2. Create a new project and load the NXP microcontroller P895V1RD2
- 3. Create a blank document and save the file with extension .asm
- 4. Load the saved .asm file under the target folder for the ongoing project.
- 5. Type the code and save the file once again
- 6. Build the target to check if there are any errors or warnings
- 7. If there are any errors, debug them and continue with step 8
- 8. Debug the program and note the values of accumulator and corresponding registers
- 9. Run the program and verify the updated values of the accumulator and corresponding registers

Code :-

MOV A, 20H

MOV B, A

MUL AB

MOV R0, B

MOV B, #05

MUL AB

MOV RO, B

MOV R1, A

MOV A, 20H

MOV B, 21H

MUL AB

MOV B, #06

MUL AB

MOV R2, B

MOV R3, A

MOV A, 21H MOV B, A MUL AB MOV B, #07 MUL AB MOV R4, B MOV R5, A MOV A, R1 ADD A, R3 ADDC A, R5 MOV R6, A MOV A, R0 ADDC A, R2 ADDC A, R4 MOV R7, A MOV A, R6 ADDC A, #08 MOV 22H, A MOV A, R7 SUBB A, #0 MOV 23H, A **END**

Pictures:-

Lab Pictures

<u>Conclusion:</u> Through Keil we can see that equation solving is not a big task and can be done in seconds using different values. The program ran successfully and the results were same as of theory.

Boolean Reduction

<u>Aim :-</u> To solve the given boolean expression using keil.

Procedure:-

- 1. Launch Keil uVision
- 2. Create a new project and load the NXP microcontroller P895V1RD2
- 3. Create a blank document and save the file with extension .asm
- 4. Load the saved .asm file under the target folder for the ongoing project.
- 5. Type the code and save the file once again
- 6. Build the target to check if there are any errors or warnings
- 7. If there are any errors, debug them and continue with step 8
- 8. Debug the program and note the values of accumulator and corresponding registers
- 9. Run the program and verify the updated values of the accumulator and corresponding registers

Logic :-

- Compute all the logic gates and store them in accumulators for further operations

For OR and NOR gates:

- Use ORL command to perform OR logic between A and B (A + B)
- Use CPL command after ORL command to obtain NOR logic ((A + B)')

For AND and NAND gates:

- Use ANL command to perform AND logic between A and B (AB)
- Use CPL command after ANL command to obtain NAND logic ((AB)')

For XOR gates:

- Use CPL command to obtain A' and B' and store them in 2 new Accumulators.
- Use ANL command to perform AND logic between A' and B and A and B' and obtain A'B and B'A and store them in Accumulators
- Use ORL command to perform OR logic between A'B and B'A to get the final XOR gate (A'B + B'A).

Code :-

```
Setb acc.0
Setb b.0
clr b.0; Value setting
mov c,b.0
anl c,b.0
cpl c
cpl c
mov acc.1,c; Module 1
```

mov c,b.0 orl c,acc.0 cpl c; Module 2 cpl b.0 orl c,b.0 orl c,acc.1; Module 3 and 4 cpl c end; Module 5

Pictures:-

Lab Pictures

<u>Conclusion:</u> The boolean reduction was done easily using Keil and the result matches with the theoretical result.