Supervised Learning (GI01/M055)

1. Introduction to supervised learning

Mark Herbster

3 October, 2016

University College London Department of Computer Science

References

Useful References

- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, T. Hastie, R. Tibshirani, & J. Friedman, Springer (2009)
- Understanding Machine Learning from Theory to Algorithms, S. Shalev-Shwartz and S. Ben-David, Cambridge University Press (2014)
- An Introduction to Support Vector Machines, J. Shawe-Taylor and N. Cristianini, Cambridge University Press (2000)
- Kernel Methods for Pattern Analysis, J. Shawe-Taylor, and N. Cristianini, Cambridge University Press (2004)
- Pattern Recognition and Machine Learning, C. Bishop, Springer (2006)

Course information

- 1. When: Mondays, 14:00-17:00
- 2. Questions: sl-support@cs.ucl.ac.uk

Assessment

- 1. Homework (25%) and Exam (75%)
- 2. 2 courseworks assignments (deliver them on-time, penalty otherwise)
- To pass the course, you must obtain an average of at least 50% when the homework and exam components are weighted together.

Prerequisites

- Calculus (real-valued functions, limits, derivatives, Taylor series, integrals,...)
- Elements of probability theory (random variables, expectation, variance, conditional probabilities, Bayes rule,...)
- Fundamentals of linear algebra (vectors, angles, matrices, eigenvectors/eigenvalues,...),
- A bit of optimization theory (convex functions, Lagrange multipliers)

Provisional course outline

- (Week 1) Key concepts (probabilistic formulation of learning from examples, loss function, learning algorithm, overfitting and underfitting, model selection, cross validation); two basic learning algorithms linear regression and k-NN;
- (Week 2) Regularisation, Kernels
- (Week 3) Online learning
- (Week 4) Lab on Regression and Kernels
- (Week 5) Support Vector Machines

Provisional course outline

- (Week 6) Gaussian Processes
- (Week 7) Decision Trees and Ensemble Learning
- (Week 8) Multi-task and Learning to Learn
- (Week 9) TBA
- (Week 10) Sparsity Methods

Today's plan

- The supervised learning problem
- Two learning algorithms: least squares and k-NN
- Probabilistic model, error function, optimal solutions
- Bias-Varaince tradeoff, NFL theorems
- Asymptotic Optimality of k-NN
- Hypothesis space, overfitting and underfitting
- Choice of the learning algorithm (Model selection)

Supervised Learning Problem

Given a set of **input/output** pairs (**training set**) we wish to compute the functional relationship between the input and the output

$$\mathbf{x} \longrightarrow \boxed{f} \longrightarrow \mathbf{y}$$

- Example 1: (people detection) given an image we wish to say if it depicts a person or not. The output is one of 2 possible categories
- Example 2: (pose estimation) we wish to predict the pose of a face image The output is a continuous number (here a real number describing the face rotation angle)

In both problems the input is a high dimensional vector \boldsymbol{x} representing pixel intensity/color

Why and when learning?

- The aim of learning is to develop software systems able to perform particular tasks such as people detection.
- Standard software engineering approach would be to specify the problem, develop an algorithm to compute the solution, and then implement efficiently.
- Problem with this approach is developing the algorithm:
 - No known criterion for distinguishing the images;
 - In many cases humans have no difficulty;
 - Typically problem is to specify the problem in logical terms.

Learning approach

- Learning attempts to infer the algorithm for a set of (labelled) examples in much the same way that children learn by being shown a set of examples (eg sports/non sports car).
- Attempts to isolate underlying structure from a set of examples. Approach should be
 - stable: finds something that is not chance part of set of examples
 - efficient: infers solution in time polynomial in the size of the data
 - robust: should not be too sensitive to mislabelled/noisy examples

People Detection Example

People detection example (cont.)

Data are sparse! Risk for overfitting!

Supervised Learning Model

Goal: Given training data (pattern, target) pairs

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

infer a function f_S such that

$$f_{\scriptscriptstyle S}(\boldsymbol{x}_i) \approx y_i$$

for the future data

$$S' = \{(\boldsymbol{x}_{m+1}, y_{m+1}), (\boldsymbol{x}_{m+2}, y_{m+2}), \ldots\}.$$

- Classification : $y \in \{-1, +1\}$; Regression : $y \in \mathbb{R}$
- \mathcal{X} : input space (eg, $\mathcal{X} \subseteq \mathbb{R}^d$), with elements $\mathbf{x}, \mathbf{x}', \mathbf{x}_i, \dots$
- \mathcal{Y} : output space, with elements y, y', y_i, \dots

Supervised learning problem: compute a function which "best describes" I/O relationship

Learning algorithm

- Training set: $S = \{(\mathbf{x}_i, y_i)_{i=1}^m\} \subseteq \mathcal{X} \times \mathcal{Y}$
- A learning algorithm is a mapping $S \mapsto f_S$
- A new input \mathbf{x} is predicted as $f_{\mathcal{S}}(\mathbf{x})$

Example Algorithms

- Linear Regression
- Neural Networks
- Decision Trees
- Support Vector Machines
- In the course we mainly deal with deterministic algorithms but we'll also comment on some randomized ones
- Today: we describe two simple learning algorithms: linear regression and k—nearest neighbours

Some Questions

- How is the data **collected**? (need assumptions!)
- How do we represent the inputs? (may require preprocessing step)
- How accurate is f_s on new data (study of generalization error)?
- Many algorithms may exist for a task. How do we choose?
- How "complex" is a learning task? (computational complexity, sample complexity)

Some difficulties/aspects of the learning process

- New inputs differ from the ones in the training set (look up tables do not work!)
- Inputs are measured with noise
- Output is not deterministically obtained by the input
- Input is often high dimensional but some components/variables may be irrelevant
- How can we incorporate prior knowledge?

Binary classification: an example

We describe two basic learning algorithms/models for classification which can be easily adapted to regression as well. We choose: $\mathcal{X} = \mathbb{R}^2$, $\mathbf{x} = (x_1, x_2)$ and $\mathcal{Y} = \{green, red\}$

Our first learning algorithm computes a **linear function**, $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b$ and classifies an input \mathbf{x} as

$$f(\mathbf{x}) = \left\{ egin{array}{ll} ext{red} & \mathbf{w}^{ op} \mathbf{x} + b > 0 \ \\ ext{green} & \mathbf{w}^{ op} \mathbf{x} + b \leq 0 \end{array}
ight.$$

Linear Regression (Least Squares)

- Emerged in response to problems in Astronomy and Navigation
- Motivated by the need to combine multiple noisy measurements
- Method first described by Gauss in 1794

Given the data set

$$S = \{((1,1),3),((2,3),7)\}$$

Then with the new input $x_3 = (4,2)$

how should we predict y_3 ?

Why? What Assumptions?

Model as a system of equations

$$w_1 + w_2 = 3$$
$$2w_1 + 3w_2 = 7$$

or more directly as

$$X\mathbf{w} = \mathbf{y}$$

with

$$X = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}; \quad \mathbf{y} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}$$

Solving in matlab

$$\mathbf{w} = X^{-1}\mathbf{y}$$

We now have the linear predictor

$$\hat{y} = \mathbf{w} \cdot \mathbf{x}$$

Thus predict $\hat{y}_3 = \mathbf{w} \cdot \mathbf{x}_3 = w_1 x_{3,1} + w_2 x_{3,2} = 4 \times 2 + 1 \times 2 = 10$.

What if?

• Overdetermined:

$$S = \{((1,1),3),((2,3),7),((2,1),3)\}$$

• Underdetermined:

$$\mathcal{S} = \{((1,1,2),3), ((2,4,3),7)\}$$

Minimize square error - 1

Find a linear predictor $\hat{y} = \boldsymbol{w} \cdot \boldsymbol{x}$ to minimize the square error over the data $\mathcal{S} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_m, y_m)\}$ thus

Minimize:
$$\sum_{i=1}^{m} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

Minimize square error – 2

Thus given,

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}$$

with $\mathbf{x} \in \mathbb{R}^n$ we may represent the pattern and target vectors with the matrices

$$X = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{pmatrix} \text{ and } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

MSE in Matrix Notation

Thus in matrix notation the *empirical* mean (square) error of the linear predictor $\hat{y} = \mathbf{w} \cdot \mathbf{x}$ on the data sequence \mathcal{S} is

$$\mathcal{E}_{emp}(\mathcal{S}, \mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

$$= \frac{1}{m} \sum_{i=1}^{m} (y_i - \sum_{j=1}^{n} w_j x_{i,j})^2$$

$$= \frac{1}{m} (X \mathbf{w} - \mathbf{y})^{\top} (X \mathbf{w} - \mathbf{y})$$

MSE minimization. General Case

To compute the minimum we solve for

$$\nabla_{\mathbf{w}} \, \mathcal{E}_{emp}(\mathcal{S}, \mathbf{w}) = \mathbf{0}.$$

recalling that

$$\nabla_{\mathbf{W}} = \begin{pmatrix} \frac{\partial}{\partial_{\mathsf{W}_1}} \\ \vdots \\ \frac{\partial}{\partial_{\mathsf{W}_n}} \end{pmatrix}$$

Thus we need to solve,

$$\nabla_{\mathbf{w}} \left[(X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y}) \right] = \mathbf{0}$$

$$\left(\sum_{i=1}^{m} \frac{\partial}{\partial w_{i}} \left(\sum_{j=1}^{n} X_{ij} w_{j} - y_{i} \right)^{2}, \dots, \sum_{i=1}^{m} \frac{\partial}{\partial w_{n}} \left(\sum_{j=1}^{n} X_{ij} w_{j} - y_{i} \right)^{2} \right)^{T} = \mathbf{0}$$

Normal equations

Consider the 2-d case (n = 2)

$$\mathcal{E}_{emp}(\mathcal{S}, \mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

Note that:

$$\frac{\partial \mathcal{E}_{emp}(\mathcal{S}, \mathbf{w})}{\partial w_k} = \frac{2}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_i - y_i) \frac{\partial (\mathbf{w}^{\top} \mathbf{x}_i)}{\partial w_k} = \frac{2}{m} \sum_{i=1}^{m} (\mathbf{w}^{\top} \mathbf{x}_i - y_i) x_{ik}$$

Hence, to find $\mathbf{w} = (w_1, w_2)^{\top}$ we need to solve the *linear system* of equations

$$\sum_{i=1}^{m} (x_{ik}x_{i1}w_1 + x_{ik}x_{i2}w_2) = \sum_{i=1}^{m} x_{ik}y_i, \quad k = 1, 2$$

Normal equations (cont.)

In vector notations:

$$\sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \boldsymbol{w} = \sum_{i=1}^{m} \boldsymbol{x}_{i} y_{i}$$

In matrix notation:

$$X^{\mathsf{T}}X\mathbf{w} = X^{\mathsf{T}}\mathbf{y}$$

where

$$X^{\top} = \begin{bmatrix} x_{11} & \cdots & x_{m1} \\ \vdots & \ddots & \vdots \\ x_{1n} & \cdots & x_{mn} \end{bmatrix} \equiv \begin{bmatrix} \boldsymbol{x}_1, \cdots, \boldsymbol{x}_m \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Least square solution

$$X^{\mathsf{T}}X\mathbf{w} = X^{\mathsf{T}}\mathbf{y}$$

For the time being we will assume that the matrix $X^{T}X$ is invertible, so we conclude that

$$\mathbf{w} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

Otherwise, the solution may not be unique...

Comment:

In matlab use

$$w = X \setminus y$$

Going back to "b" (adding a bias term)

Substituting \mathbf{x}^{\top} by $(\mathbf{x}^{\top}, 1)$ and \mathbf{w}^{\top} by (\mathbf{w}^{\top}, b) , the above system of equations can be expressed in matrix form as (exercise):

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} + \mathbf{X}^{\mathsf{T}}\mathbf{1}b = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $\mathbf{1}^{\mathsf{T}}\mathbf{X}\mathbf{w} + mb = \mathbf{1}^{\mathsf{T}}\mathbf{y}$

that is
$$\begin{bmatrix} \mathbf{X}^{\top}\mathbf{X} & \mathbf{X}^{\top}\mathbf{1} \\ \mathbf{1}^{\top}\mathbf{X} & m \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{X}^{\top}\mathbf{y} \\ \mathbf{1}^{\top}\mathbf{y} \end{bmatrix}$$

where $\mathbf{1} = (1, 1, \dots, 1)^{\mathsf{T}}$, an $m \times 1$ vector of "ones"

MSE minimization. An easy example - 1

Suppose we are given the data

$$S = \{(1, y_1), (1, y_2), \dots, (1, y_m)\}$$

i.e.
$$x_1 = x_2 \dots x_m = 1$$
.

What is the interpretation of the \mathbf{w} that minimizes $\mathcal{E}_{emp}(\mathcal{S}, \mathbf{w})$?

MSE minimization. An easy example - 2

Given (w is a scalar as the data are 1-d)

$$\mathcal{E}_{emp}(\mathcal{S}, w) = \frac{1}{m} \sum_{i=1}^{m} (y_i - w)^2$$

to compute the minimum we solve for

$$\frac{\partial}{\partial w} \mathcal{E}_{emp}(\mathcal{S}, w) = 0.$$

Solving for w we have

$$\frac{\partial}{\partial w} \frac{1}{m} \sum_{i=1}^{m} (y_i - w)^2 = -\frac{1}{m} 2 \sum_{i=1}^{m} (y_i - w) = 0,$$

hence $w = \frac{1}{m} \sum_{i=1}^{m} y_i$ is the minimizer.

A different approach: k-nearest neighbours

Let N(x; k) be the set of k nearest training inputs to x and

$$I_{\mathbf{x}} = \{i : \mathbf{x}_i \in N(\mathbf{x}; k)\}$$

the corresponding index set

$$f(\mathbf{x}) = \begin{cases} \text{red} & \text{if } \frac{1}{k} \sum_{i \in I_{\mathbf{x}}} y_i > \frac{1}{2} \\ \\ \text{green} & \text{if } \frac{1}{k} \sum_{i \in I_{\mathbf{x}}} y_i \leq \frac{1}{2} \end{cases}$$

- Closeness is measured using a metric (eg, Euclidean dist.)
- Local rule (compute local majority vote)
- Decision boundary is non-linear

Note: for regression we set $f(\mathbf{x}) = \frac{1}{k} \sum_{i \in I_{\mathbf{x}}} y_i$ (a "local mean")

k-NN: the effect of k

• The smaller *k* the more irregular the decision boundary

$$k = 15$$

$$k = 1$$

• How to choose *k*? later...

Perspectives on supervised learning

Overview

We consider three influential ideas that underpin SL.

- 1. What is an optimal predictor? The Bayes estimator.
- 2. The bias and variance of a learning algorithm.
- 3. The non-existence of optimal learning algorithm (without assumptions). NFL theorems.

Optimal Supervised Learning

Model: We assume that the data is obtained by sampling **i.i.d.** from a **fixed but unknown** probability density P(x, y)

Expected error:

$$\mathcal{E}(f) := \mathbf{E}\left[(y - f(\mathbf{x}))^2\right] = \int (y - f(\mathbf{x}))^2 dP(\mathbf{x}, y)$$

Our goal is to minimize \mathcal{E}

Optimal solution: $f^* := \operatorname{argmin}_f \mathcal{E}(f)$ (called *Bayes estimator*)

Problem A: in order to compute f^* we need to know P!

Note: for binary classification with $\mathcal{Y} = \{0,1\}$ and $f : \mathcal{X} \to \mathcal{Y}$, $\mathcal{E}(f)$ counts the average number of mistakes of f (aka expected misclassification error)

Bayes estimator for square loss

Let us compute the optimal solution f^* for regression $\mathcal{Y} = \mathbb{R}$. Using the decomposition $P(y, \mathbf{x}) = P(y|\mathbf{x})P(\mathbf{x})$ we have

$$\mathcal{E}(f) = \int_{\mathcal{X}} \left\{ \int_{\mathcal{Y}} (y - f(\mathbf{x}))^2 dP(y|\mathbf{x}) \right\} dP(\mathbf{x})$$

So we may see that f^* is

$$f^*(\boldsymbol{x}) = \int_{\mathcal{Y}} y dP(y|\boldsymbol{x})$$

Deriving the Bayes estimator for square loss

Deriving f^* with lighter notation,

$$\mathcal{E}(f) := \sum_{x \in X} \sum_{y \in Y} (y - f(x))^2 p(x, y)$$

and $\mathcal{E}(f)$ is the expected error of an arbitrary predictor f. Separating

$$\mathcal{E}(f) = \sum_{x \in X} [\sum_{y \in Y} (y - f(x))^2 p(y|x)] p(x)$$

now let's find the value of $f^*(x)$ at a specific value. Set x = x' then we have

$$\mathcal{E}(f(x')) = [\sum_{y \in Y} (y - f(x'))^2 p(y|x')] p(x')$$

Use $e := \mathcal{E}(f(x'))$ and z := f(x'), repl. "=" with " \propto " rem. p(x')

$$e \propto \sum_{y \in Y} (y - z)^2 p(y|x')$$

Derivation – continued

To find the minimum we differentiate e w.r.t. z

$$\frac{\partial e}{\partial z} = -2\sum_{y \in Y} (y - z) p(y|x').$$

Setting equal to zero and solving,

$$0 = \sum_{y \in Y} yp(y|x') - \sum_{y \in Y} zp(y|x') = \sum_{y \in Y} yp(y|x') - z$$

which implies

$$z = \sum_{y \in Y} y p(y|x')$$

and hence

$$f^*(x) = \sum_{y \in Y} yp(y|x) = E[y|x].$$

Bias and Variance of a learning algorithm

 We now additionally assume there exists some underlying function F such that

$$y = F(x) + \epsilon$$

where ϵ is white noise, i.e., $E[\epsilon] = 0$ and finite variance.

- Thus the optimal prediction is $f^*(x) := E[y|x] = F(x)$ with square loss.
- We would like to understand the expected error by an arbitrary learner $A_{\mathcal{S}}(x)$ (we now drop the \mathcal{S} for convenience).
- Our goal will be to understand the expected error at x'

$$\mathcal{E}(A(x')) = E[(y' - A(x'))^2]$$

where y' is a sample from P(Y|x').

Useful Lemma and Corollary

Lemma

$$E[(Z - E[Z])^2] = E[Z^2] - E[Z]^2$$

Proof

$$E[(Z - E[Z])^{2}] = E[Z^{2} - 2ZE[Z] + E[Z]^{2}]$$

$$E[(Z - E[Z])^{2}] = E[Z^{2}] - 2E[Z]^{2} + E[Z]^{2}$$

$$= E[Z^{2}] - E[Z]^{2}$$

Corollary

$$E[Z^2] = E[(Z - E[Z])^2] + E[Z]^2$$

Decomposing $\mathcal{E}(a(x'))$

$$E[(y' - A(x'))^{2}] = E[(y')^{2} - 2y'A(x') + A(x')^{2}]$$

$$= E[(y' - f^{*}(x'))^{2}] + f^{*}(x')^{2} +$$

$$- 2f^{*}(x')E[A(x')] +$$

$$E[(A(x') - E[A(x')])^{2}] + E[A(x')]^{2}$$

$$= E[(y' - f^{*}(x'))^{2}] + [Bayes error]$$

$$(f^{*}(x') - E[A(x')])^{2} + [bias^{2}]$$

$$E[(A(x') - E[A(x')])^{2}] [variance]$$

- Bayes error : $E[(y' f^*(x'))^2]$ is the irreducible noise.
- Bias : $f^*(x') E[A(x')]$ describes the discrepancy between the algorithm and "truth"
- Variance: E[(A(x') E[A(x')])²]
 captures the variance of the algorithm between training sets

Bias and Variance Dilemma

- The bias and variance tend to trade off against one another
- Many parameters better flexibility to fit the data thus low bias but high variance
- Few parameters give high bias but the fit between different data sets will not change much thus low variance
- Caveat: this exact decomposition only holds for the square loss.

Optimal Algorithms and No Free Lunch Theorems

- Is there an optimal machine learning algorithm?
- I.e., an algorithm that does almost as well as the bayes estimator.
- There are a variety of such (NFL) results showing that no such algorithm exists.
- We give an example NFL Theorem in classification setting

Bayes estimator for classification

More generally the *Bayes classifier* (estimator) is the minimiser of the expected loss

for C-class classification, f* (called the Bayes classifier) is

$$f^*(\mathbf{x}) = \underset{c \in \{1,\dots,C\}}{\operatorname{argmax}} P(Y = c | \mathbf{x})$$

where the loss is 0 if we predict correctly and 1 otherwise.

• The Bayes error rate (optimal) is then

$$\int (1 - P(Y = f^*(\mathbf{x})|\mathbf{x})) dP(\mathbf{x})$$

Challenge: What is the Bayes estimator of

$$\mathcal{E}(f) := \sum_{x \in X} \sum_{y \in Y} |y - f(x)| p(x, y)$$

An NFL theorem for classification

Theorem (Shalez-Shwartz and Ben-David 2014, Section 5.1)

Let $A_{\mathcal{S}}$ be any learning algorithm for binary classification $\mathcal{Y} = \{0,1\}$ over the domain \mathcal{X} . Let $m < |\mathcal{X}|/2$ then there exists some distribution P over $\mathcal{X} \times \{0,1\}$ such that,

- 1. There exists a function $f: \mathcal{X} \to \{0,1\}$ the Bayes error is 0.
- 2. With respect to a random draw S of m examples from P and a draw of a m+1st example (x',y') we have that

$$Prob[A_S(x') \neq y'] \geq 1/4$$

- 1. Can you sketch a proof?
- 2. What are the implications?

Asymptotic Optimality of *k***-NN**

Revisiting k-NN

k-NN attempts approximate $P(Y = c | \mathbf{x})$ as $\frac{|\{i: y_i = c, i \in I_x\}|}{k}$

- Expectation is replaced by averaging over sample data
- Conditioning at x is relaxed to conditioning on some region close to x

As the number of samples goes to infinity $(m \to \infty)$ 1-NN and k-NN become "good" estimators.

1-NN is near asymptotically optimal

Theorem

As the number samples goes to infinity the error rate is no more than twice the Bayes error rate.

Proof Sketch

Abbreviate notation $P(c|\mathbf{x}) := P(Y = c|\mathbf{x})$.

The expected (Bayes) error of the Bayes classifer (at x) is

$$1 - \max_{c \in \{1,\ldots,C\}} P(c|\boldsymbol{x})$$

and the expected rate of 1-NN (at x) is

$$\sum_{c=1}^{C} P(c|\boldsymbol{x}_{nn})[1-P(c|\boldsymbol{x})].$$

Proof Sketch – continued

Proof Sketch

Observe that as the number samples goes to infinity, $m \to \infty$,

$$P(c|\mathbf{x}) \approx P(c|\mathbf{x}_{nn})$$

thus the expected rate of 1-NN (at x) is

$$\sum_{c=1}^{C} P(c|\mathbf{x})[1 - P(c|\mathbf{x})].$$

We need to show

$$\sum_{c=1}^{C} P(c|\mathbf{x})[1 - P(c|\mathbf{x})] \le 2[1 - \max_{c \in \{1, \dots, C\}} P(c|\mathbf{x})]$$

Proof Sketch – continued

Proof Sketch – continued

Let $c^* = \operatorname{argmax}_{c \in \{1, \dots, C\}} P(c|\mathbf{x})$ and $p^* = P(c^*|\mathbf{x})$. Observe that

$$\sum_{c=1}^{C} P(c|\mathbf{x})[1 - P(c|\mathbf{x})] = \sum_{c \neq c^*}^{C} P(c|\mathbf{x})[1 - P(c|\mathbf{x})] + p^*(1 - p^*)$$

$$\leq (C - 1)\frac{1 - p^*}{C - 1}[1 - \frac{1 - p^*}{C - 1}] + p^*(1 - p^*)$$

$$= (1 - p^*)[1 - \frac{1 - p^*}{C - 1} + p^*]$$

Where the second line follows since the sum is maximised when all "P(c|x)" have the same value. And since $p^* < 1$ we are done.

k-NN is asymptotically optimal

One can show that $\mathcal{E}(k-NN) \to \mathcal{E}(f^*)$ as $m \to \infty$ provided that:

- 1. $k(m) \rightarrow \infty$
- $2. \ \frac{k(m)}{m} \to 0$

Weakness: the rate of convergence depends exponentially on the input dimension. An example of the **curse of dimensionality**.

Reference for 1-NN near optimality

Cover & Hart: Nearest Neighbor Pattern Classification, 1967

Linear regression vs. k-NN (informal)

- Parametric vs. non-parametric
- Global vs. local
- Linear vs. non-linear
- Bias / variance considerations:
 - LR relies heavily on linear assumption (may have large bias) k-NN does not
 - LR is stable (solution does not change much if data are perturbed) 1-NN isn't!
- k-NN sensitive to input dimension d: if d is high, the inputs tends to be far away from each other!

Hypothesis Space

Solving the "Problem A"

 $P(\mathbf{x}, \mathbf{y})$ is unknown \Rightarrow cannot compute $f^* = \operatorname{argmin}_f \mathcal{E}(f)$

We are only given a sample (training set) from P

A natural approach: we approximate the expected error $\mathcal{E}(f)$ by the empirical error

$$\mathcal{E}_{emp}(\mathcal{S}, f) = \frac{1}{m} \sum_{i=1}^{m} (y_i - f(\mathbf{x}_i))^2$$

Problem B: If we minimize \mathcal{E}_{emp} over all possible functions, we can always find a function with zero empirical error! (if the Bayes error is zero).

Why is this a problem?

Solving the "Problem B"

A Proposed solution: we introduce a restricted space of functions $\mathcal H$ called the **hypothesis space**

We minimize $\mathcal{E}_{emp}(\mathcal{S}, f)$ within \mathcal{H} . That is, our learning algorithm is:

$$f_{\mathcal{S}} = \operatorname{argmin}_{f \in \mathcal{H}} \mathcal{E}_{emp}(\mathcal{S}, f)$$

This approach is usually called **empirical error (risk) minimization**

For example (Least Squares):

$$\mathcal{H} = \{ f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} : \mathbf{w} \in \mathbb{R}^n \}$$

Problem C: How do we choose a space \mathcal{H} (discuss later)?

Choosing a Hypothesis Space (returning to prob. "C")

Given the training data $y_i = f^*(\mathbf{x}_i) + \epsilon_i$, the goal is to compute an "approximation" of f^* .

We look for an approximant of f^* within a prescribed hypothesis space $\mathcal H$

- Unless prior knowledge is available on f^* (eg, f^* is linear) we cannot expect $f^* \in \mathcal{H}$
- Choosing H "very large" leads to overfitting! (we'll see an example of this in a moment)

Summary

- Data S sampled i.i.d from P (fixed but unknown)
- f^* is what we want, f_S is what we get
- Different approaches to attempt to estimate/approximate f*:
 - Minimize \mathcal{E}_{emp} in some restricted space of functions (eg, linear)
 - Compute local approximation of f* (k-NN)
 - Estimate P and then use Bayes rule...

Model Selection

Polynomial fitting

As an example of hypothesis spaces of increasing "complexity" consider regression in one dimension

$$H_{0} = \{f(x) = b : b \in \mathbb{R}\}$$

$$H_{1} = \{f(x) = ax + b : a, b \in \mathbb{R}\}$$

$$H_{2} = \{f(x) = a_{1}x + a_{2}x^{2} + b : a_{1}, a_{2}, b \in \mathbb{R}\}$$

$$\vdots$$

$$H_{n} = \{f(x) = \sum_{\ell=1}^{n} a_{\ell}x^{\ell} + b : a_{1}, \dots, a_{n}, b \in \mathbb{R}\}$$

Consider minimizing the empirical error in \mathcal{H}_r (r= "polynomial degree")

Polynomial fitting (simulation)

r = 0, 1, 2, 3, 4, 5. As r increases the fit to the data improves (empirical error decreases)

Overfitting vs. Underfitting

- Compare the empirical error (solid line) with expected error (dashed line)
 - r small: underfitting
 - r large: overfitting
- The larger r the lower the empirical error of f_S! ⇒ We cannot rely on the training error!

k-NN: the effect of k

• The smaller *k* the more irregular the decision boundary

$$k = 15$$

$$k = 1$$

• How to choose *k*? later...

k-NN: the effect of k

 $\frac{m}{k}$ large: overfitting versus $\frac{m}{k}$ small: underfitting

Model Selection

- 1. How to choose *k* in *k*-NN?
- 2. How to choose the degree *r* for polynomial regression?
- 3. The simplest approach is to use part of the training data (say 2/3) for training and the rest as a validation set for each \mathcal{H}_r
- 4. Another approach is K-fold cross-validation see next slide
- 5. Then choose the "best" *r* relative to the error(s) on the validation set
- 6. We will return to model selection later in the course

Cross-validation

- 1. we split the data in *K* parts (of roughly equal sizes)
- 2. repeatedly train on K-1 parts and test on the part "left out"
- 3. average the errors of K "validation" sets to give so-called cross-validation error
- 4. smaller K is less expensive but poorer estimate as size of training set is smaller and random fluctuations larger

For a dataset of size m, m -fold cross-validation is referred to as leave-one-out (LOO) testing

Cross-validation comments

- Cross validation is good in "practice."
- There are a variety of theoretical-based approaches (not covered today)
- Examples
 - 1. "Bayesian" model selection via the "evidence"
 - 2. Structural Risk Mininimization

Other learning paradigms

Supervised learning is not the only learning setup!

- Online learning: we observe the data sequentially and we make a prediction and update are learner after every datum
- Active learning: we are given many inputs and we can choose which ones to request a label
- Unsupervised learning: we have only input examples.
 Here we may want to find data clusters, estimate the probability density of the data, find important features/variable (dimensionality reduction problem), detect anomalies, etc.
- Semi-supervised learning: the 'learning environment" may give us access to many input examples but only few of them are labeled