Lógica modal computacional

Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

1er cuatrimestre de 2017 Córdoba, Argentina

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Lógicas robustas

Muchas variantes de K también están en PSPACE

- ► K + nominales y @
- ▶ K + counting modalities $\langle r \rangle_{\geq n} \varphi$
- ► K + funciones parciales
- K + operadores de pasado $\langle r \rangle^{-1} \varphi$
- ▶ S4 (*r* es una relación transitiva), ...
- ▶ ¡pero cuidado con las combinaciones!

Los operadores "globales" nos suelen mover a EXPTIME

- ► **K** + la modalidad universal A
- ▶ **K** + el operador de clausura transitiva $\langle r \rangle^* \varphi$
- **.**...

Repaso

La última vez que nos vimos, vimos ...

- ▶ KAlt₁ es NP-completa (usando funciones de selección).
- ▶ K *no* tiene la propiedad de modelos polinimiales:
 - ightharpoonup Dimos una familia de fórmulas satisfacibles φ_k
 - ▶ Para cada k, $|\varphi_k| \in O(k^3)$
 - φ_k fuerza que sus modelos sean árboles binarios completos
 - Luego, todo modelo de φ_k tiene al menos 2^k nodos
- ▶ El problema de K-satisfacibilidad está en PSPACE:
 - ▶ Podemos adivinar de a una rama del modelo por vez.
 - Esto lo mostramos usando Hintikka sets.
 - La profundidad de una rama puede ser lineal en la fórmula.
 - ▶ Obtuvimos un algoritmo no-det. de espacio polinomial.
 - ▶ Y sabíamos que PSPACE = NPSPACE.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

¿Cómo probar si K es PSPACE-completa?

- ▶ Necesitamos probar que K es PSPACE-hard.
- ► Alcanza con poder reducir polinomialmente un problema PSPACE-completo.
- ▶ Usaremos el problema canónico: validez para QBF.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Quantified Boolean Formulas (QBF)

Sintáxis

- ► Sentencia: fórmula sin variables libres
- Forma prenexa: $Q_1p_1 \dots Q_np_n\theta(p_1,\dots,p_n)$, θ proposicional.

Semántica

$$\begin{array}{cccc} v \models p & \Leftrightarrow & v(p) = 1 \\ v \models \neg p & \Leftrightarrow & v(p) = 0 \\ v \models \varphi \lor \psi & \Leftrightarrow & v \models \varphi \land v \models \psi \\ v \models \varphi \land \psi & \Leftrightarrow & v \models \varphi \lor v \models \psi \\ v \models \exists p \varphi & \Leftrightarrow & v[p \mapsto 1] \models \varphi \land v[p \mapsto 0] \models \varphi \\ v \models \forall p \varphi & \Leftrightarrow & v[p \mapsto 1] \models \varphi \lor v[p \mapsto 0] \models \varphi \end{array}$$

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Validez de fórmulas de QBF

Teorema

Decidir la validez de una fórmula de QBF es un problema PSPACE-completo.

Ejercicio

Mostrar que model-checking de lógica de primer orden es PSPACE-hard.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Satisfacibilidad de K es PSPACE-completa

Validez de QBF equivale a encontrar un árbol...

Para
$$\forall p_0 \exists p_1(p_0 \leftrightarrow \neg p_1)$$
 tenemos el árbol
$$\exists p_1 \qquad 0/p_0 \bullet \\ p_0 \leftrightarrow \neg p_1 \qquad 1/p_1 \bullet \\ 0/p_0 \bullet \\ 0/p$$

¡Y vimos cómo forzar árboles binarios con una fórmula modal!

Satisfacibilidad de K es PSPACE-completa

Repasemos nuestros ladrillos

 $ightharpoonup B_i$ fuerza dos sucesores, uno para cada valor de p_i :

$$B_i := \Diamond p_{i+1} \wedge \Diamond \neg p_{i+1}$$

▶ S_i propaga los valores de p_i y $\neg p_i$ al siguiente nivel:

$$S_i := (p_i \to \Box p_i) \land (\neg p_i \to \Box \neg p_i)$$

 $ightharpoonup L_{ki}$ asegura que un nodo esté en el nivel i y sólo en ese:

$$L_{ki} := \bigwedge_{j \in \{0...k\} \setminus \{i\}} \neg l_j \wedge l_i$$

Satisfacibilidad de K es PSPACE-completa

La reducción de QBF-validez a K-satisfacibilidad

Dada $\varphi = Q_1 p_1 \dots Q_k p_k \theta(p_1 \dots p_k), f(\varphi)$ es la conjunción de:

Notar que $f(\varphi)$ es computable en tiempo polinomial

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Satisfacibilidad de K es PSPACE-completa

Teorema

 φ es válida en QBF sii $f(\varphi)$ es K-satisfacible.

Corolario

Satisfacibilidad de K es PSPACE-completa.

Se puede mostrar un resultado más general

"Toda lógica entre K y S4 es PSPACE-completa".

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

K + A, agregamos la modalidad universal.

Semántica

- $\blacktriangleright \mathcal{M}, w \models \mathsf{A}\varphi \operatorname{sii} \mathcal{M}, v \models \varphi \operatorname{para} \operatorname{todo} v$
- $ightharpoonup \mathcal{M}, w \models \mathsf{E}\varphi \ \mathrm{sii} \ \mathcal{M}, v \models \varphi \ \mathrm{para} \ \mathrm{algún} \ v$
- ► E es un "diamante" y A es un "box".
- ▶ Se pueden pensar como modalidades sobre una relación total.

Aspectos computacionales de K + A

Model checking

- I. Es decidible
- II. Está en PTIME (e.g., usando programación dinámica)
- III. Es fácil de implementar de manera eficiente

¿Por qué es menos complejo en K + A que en primer orden?

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Aspectos computacionales de K + A

Satisfacibilidad

- I. Es decidible (reducción a FO2)
- II. ¿Podemos ver que está en PSPACE como hicimos con K?

III.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Modelos "exponencialmente profundos" en $\mathsf{K} + \mathsf{A}$

Sumando en base 2

Idea para construir κ_n

- ▶ Usamos *n* proposiciones q_0, \ldots, q_{n-1} .
- ▶ Cada asignación codifica un número entre 0 y $2^n 1$
- Queremos que un nodo a nivel i tenga una asignación que codifique i

¿Cómo se suma 1 en binario?

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

► El caso fácil (el dígito menos significativo es 0):

► El caso general:

10011011

Carlos Areces & Raul Fervari

Modelos "exponencialmente profundos" en K + AIntuición

Vamos a ver que...

- Para cada n > 0 existe una fórmula κ_n tal que:
 - \triangleright κ_n es satisfacible
 - ▶ Todo modelo para κ_n tiene una rama con al menos 2^n nodos

De donde se concluye que...

- ▶ No podemos repetir la prueba de PSPACE para K
- ▶ (donde adivinábamos de a una rama del modelo por vez)

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Modelos "exponencialmente profundos" en K + A

Ladrillos para armar κ_n

INC_i

- ▶ Fuerza el valor del siguiente nivel (sumando 1),
- ightharpoonup pero sólo si el valor del actual tiene el primer 0 en el bit i
- Caso fácil

$$INC_0 := \neg q_0 \to (\Box q_0 \land \bigwedge_{j>0} ((q_j \to \Box q_j) \land (\neg q_j \to \Box \neg q_j)))$$

Caso general

 $\begin{array}{c|c} i & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \land & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \land & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \land & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigwedge_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1} \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1}) \land \bigcap_{j=0}^i \neg q_j) \land \\ \bullet & \left(\Box (q_{i+1}) \land \bigcap_{$

Modelos "exponencialmente profundos" en K + A

Finalmente, κ_n

Definimos κ_n como

$$(\neg q_{n-1} \wedge \cdots \wedge \neg q_0) \wedge \mathsf{A}(\bigwedge_{i=0}^{n-1} \mathsf{INC}_i) \wedge \mathsf{A} \diamondsuit \top$$

- \triangleright κ_n tiene tamaño $\mathcal{O}(n^2)$ pero todo modelo que la satisfaga tiene un camino sin repeticiones de longitud 2^n .
- ► La misma técnica se puede usar sobre otras modalidades "globales" (e.g., operador de clausura transitiva)

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Satisfacibilidad de K + A está en EXPTIME

- \blacktriangleright Sabemos que si φ es satisfacible, tiene modelo exponencial.
- ► Veremos que, además:
 - ▶ hay una cantidad exponencial de modelos a considerar, y
 - cada uno de estos modelos es exponencial
 - y se puede construir en una cantidad de pasos exponencial.
- ► Esto nos da un algoritmo determinístico que corre en tiempo exponencial.
- La técnica se llama "eliminación de Hintikka sets".

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Satisfacibilidad de K + A está en EXPTIME

Hintikka sets - repaso

Clausura de un conjunto de fórmulas Σ (Cl(Σ))

$$\operatorname{Cl}(\Sigma) = \{\varphi \mid \varphi \text{ ocurre en } \Sigma\} \cup \{\overline{\varphi} \mid \varphi \text{ ocurre en } \Sigma\}$$

Intuición

 $Cl(\Sigma)$ es el conjunto de "fórmulas relevantes" de Σ .

Hintikka sets

Decimos que $H \subseteq Cl(\Sigma)$ es un *Hintikka set para* Σ si cumple:

I.
$$\varphi \in Cl(\Sigma) \Rightarrow \varphi \in H \text{ sii } \overline{\varphi} \notin H$$

II.
$$\varphi \wedge \psi \in Cl(\Sigma) \Rightarrow \varphi \wedge \psi \in H \text{ sii } \varphi \in H \text{ y } \psi \in H$$

III.
$$\mathsf{E}\varphi\in\mathsf{Cl}(\Sigma)\Rightarrow\varphi\in H$$
 implica $\mathsf{E}\varphi\in H$

Satisfacibilidad de K + A está en EXPTIME

 $Hin_C(\Sigma)$

Notación

- $\Box(C) = \{ \varphi \mid \Box \varphi \in C \}$
- $A(C) = \{ \varphi \mid A\varphi \in C \}$
- $Hin(\Sigma) = \{H \mid H \text{ es un Hinitkka set para } \Sigma\}$
- $\qquad \qquad \pmb{\vdash} \; \mathit{Hin}_{\mathcal{C}}(\Sigma) = \{ \textit{H} \mid \textit{H} \in \mathit{Hin}(\Sigma) \; \mathsf{y} \; \mathsf{A}(\textit{H}) = \textit{C} \}$

Idea

- ▶ Para cada $C \subseteq A(Cl(\Sigma))$, intentamos armar un modelo \mathcal{M}_C .
- ▶ Si \mathcal{M}_C está definido, entonces $\mathcal{M} \models \mathsf{A}\varphi \ \forall \varphi \in C$.
- ► La idea es ver que:

 Σ es satisfacible sii $\exists C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$ tal que $\mathcal{M}_C, w \models \Sigma$

Satisfacibilidad de K + A está en EXPTIME

Eliminación de Hintikka sets

Caso base: \mathcal{M}_C^0 .

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $V_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R_C^0$ sii $\forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma)$ implica $\Diamond \varphi \in H$.
- $V_C^0(p) = \{ H \in W_C^0 \mid p \in H \}$

Paso de eliminación: \mathcal{M}_C^{n+1}

- ▶ Supongamos que \mathcal{M}_C^n está definido (i.e., $W_C^n \neq \emptyset$).
- ▶ Decimos que H es satisfecho en n si, para todo φ :
 - I. $\Diamond \varphi \in H$ implies $\exists H' \in W_C^n$ tal que $\varphi \in H'$ y $(H, H') \in R_C^n$.
 - II. $\exists \varphi \in H \text{ implica } \exists H' \in W_C^n \text{ tal que } \varphi \in H'.$
- $ightharpoonup \mathcal{M}_C^{n+1}$: restricción de \mathcal{M}_C^n a los $H \in \mathcal{W}_C^n$ satisfechos en n.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Satisfacibilidad de K + A está en EXPTIME

Eliminación de Hintikka sets – \mathcal{M}_C

- ▶ Como $Hin_C(\Sigma)$ es finito y $W^{n+1} \subseteq W^n$, el proceso converge.
- ▶ Pero notar que W^{n+1} podría estar vacío.
- ▶ \mathcal{M}_C es la estructura tal que $\mathcal{M}^{n+1} = \mathcal{M}^n$ (cuando $W^n \neq \emptyset$).
- ▶ $|Hin_C(\Sigma)|$ es exponencial en $|\Sigma|$, luego podemos obtener \mathcal{M}_C en $O(2^{|\Sigma|})$ pasos.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

Satisfacibilidad de K + A está en EXPTIME

Eliminación de Hintikka sets – algunos lemas

Lema

Si \mathcal{M}_C está definido (con $C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces $\forall H \in W_C$:

- I. $\forall \Diamond \chi \in Cl(\Sigma), \Diamond \chi \in H \text{ sii } \exists H' \in W, \chi \in H' \text{ y } (H, H') \in R_C.$
- II. $\forall \ \mathsf{E}\chi \in \mathsf{Cl}(\Sigma), \ \mathsf{E}\chi \in H \ \mathsf{sii} \ \exists \ H' \in W, \ \chi \in H'.$

Demostración

- \Rightarrow) Si no valiera, H habría sido eliminado.
- \Leftarrow) I. \mathcal{M}_C es un refinamiento de $\mathcal{M}_0 \Rightarrow (H, H') \in R_C^0 \Rightarrow \Diamond \chi \in H$.
 - II. $\chi \in H' \Rightarrow \mathsf{E}\chi \in H' \Rightarrow \mathsf{A}\neg \chi \not\in H' \Rightarrow \mathsf{A}\neg \chi \not\in H \Rightarrow \mathsf{E}\chi \in H.$

Satisfacibilidad de K + A está en EXPTIME

Eliminación de Hintikka sets – algunos lemas

Lema (Truth lemma)

Si \mathcal{M}_C está definido (con $C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces vale:

$$\mathcal{M}_C, H \models \varphi \Leftrightarrow \varphi \in H$$

para todo $H \in W_C$ y todo $\varphi \in Cl(\Sigma)$.

Demostración

• Sale fácil por inducción en φ , usando el lema anterior.

Satisfacibilidad de K + A está en EXPTIME

Eliminación de Hintikka sets – ¿para qué?

Teorema

 Σ es satisfacible sii existen $C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma \subseteq H$.

Demostración

- (=) Consecuencia directa del Truth Lemma.
- ⇒) Idea:
 - ▶ Dado $\mathcal{M}, w \models \Sigma$, definir $H_{\nu} = \{ \varphi \mid \mathcal{M}, \nu \models \varphi \text{ y } \varphi \in \text{Cl}(\Sigma) \} \text{ y armar } \mathcal{M}' = \langle W', R', V' \rangle \text{ tal que:}$

$$W' = \{H_{\nu} \mid \nu \in W\}
 R' = \{(H_{\nu}, H_{\nu'}) \mid (\nu, \nu') \in R\}
 V'(p) = \{H_{\nu} \mid p \in H_{\nu}\}$$

- ▶ Ver que i) $\mathcal{M}', H_w \models \Sigma$ y ii) $\exists C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma)) \forall v, H_v \in \mathit{Hin}_C(\Sigma)$.
- Observar que todo H_v está en \mathcal{M}_C (suponer que hay un mínimo

: Lógica modal computacique tue eliminado y llegar a jun absurdo)

Carlos Areces & Raul Fervari

Satisfacibilidad de K + A está en EXPTIME

Un algoritmo determinístico basado en eliminación de Hintikka sets

Observaciones

- ▶ EsSat(Σ) computa K + A-satisfacibilidad de Σ (finito).
- $\blacktriangleright |\mathsf{A}(\mathsf{Cl}(\Sigma))| \in O(2^{|\Sigma|}).$
- ▶ Computar \mathcal{M}_C y recorrer su dominio lleva $O(2^{|\Sigma|})$ pasos.
- ▶ Luego, el algoritmo requiere $O(2^{|\Sigma|})$ pasos.

: Lógica modal computacional Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari