Physics 231 Mechanics

Equation list for Exam II and Final

Chapter 5 Newtons Laws of Motion

Newton's First law: if $\vec{F}_{net} = 0$, \vec{v} is constant in an inertial frame of reference.

Newton's Second Law: $\vec{a} = \frac{\vec{F}}{m}$

Newton's Third Law:. $\vec{F}_{12} = -\vec{F}_{21}$

Gravitational Force (near Earth's surface). $\vec{F}_g = m\vec{g}$

Kinetic Friction $f_k = \mu_k N$

Static Friction $f_s = F_{app}$ if $F_{app} \le f_{s,max}$ where $f_{s,max} = \mu_s N$

Chapter 6 Circular Motion and Other Applications of Newton's Laws

For an object in uniform circular motion, $\Sigma \vec{F} = m \vec{a_c} = \vec{F_c}$

Centripetal force: $\vec{F}_c = m \frac{v^2}{r} (-\hat{r})$

Tension in a pendulum string (non-uniform circular motion): $T = mg\cos\theta + m\frac{v^2}{r}$

Resistive forces

1. force proportional to velocity: $\vec{R} = -b\vec{v}$

2. force proportional to v^2 : $R = \frac{1}{2} D \rho A v^2$

Chapter 7 Systems and Environments

Work: $W = F \Delta r \cos \theta = F_{\parallel} \Delta r = \vec{F} \cdot \vec{r}$ (for a constant force)

Work: $W = \int \vec{F} \cdot d\vec{r}$

Force by a spring (Hooke's Law): $F_s = -kx$

Work done by a spring: $W = \frac{1}{2} kx_i^2 - \frac{1}{2} kx_f^2$

Work – kinetic energy theorem: $W_{net} = K_f - K_i = \Delta K$

Gravitational Potential Energy (near surface of Earth): $U_g = mgy$ (y increases upward, g >0)

Potential Energy of a Spring: $U_s = \frac{1}{2}kx^2$

Work by a conservative force: $W_c = U_i - U_f = -\Delta U$

Mechanical energy: $E_{mech} = K + U$

Potential energy due to any conservative force: $U_f - U_i = -\int_{x_i}^{x_f} \overrightarrow{F}_x dx$

Obtain a force from a potential energy function: $F_x = -\frac{dU}{dx}$

Chapter 8 Conservation of Energy

For a non-isolated system, $\Delta E_{system} = \Sigma T$

where $\Sigma T = W + Q + T_{MW} + T_{MT} + T_{ET} + T_{ER}$ are transfer energies.

For an isolated system, $\Delta E_{system} = 0$

For an isolated system with only mechanical energy: $\Delta E_{mech} = 0 = \Delta K + \Delta U$

For a non-isolated system with no change in potential energy, and friction and other forces are

present: $\Delta K = \sum W_{other forces} - f_k d$

Internal energy change of a closed system with friction: $\Delta E_{intern} = f_k d$

For an isolated system with changes in potential energy and friction: $\Delta E_{mech} = -f_k d$

For a non-isolated system ...: $\Delta E_{mech} = + \Sigma W_{other forces} - f_k d$

Power: $P = \frac{dE}{dt}$

Power expended by a force: $P = \vec{F} \cdot \vec{v}$

Average power by a force that did work W: $P_{avg} = \frac{W}{\Delta t}$

Chapter 9. Linear momentum and collisions

Linear momentum: $\vec{p} = m\vec{v}$

Momentum and force: $\vec{F} = \frac{d\vec{p}}{dt}$

Conservation of momentum: $\vec{p}_{tot} = constant$ or $\Sigma \vec{p}_{j,initial} = \Sigma \vec{p}_{j,final}$

Impulse: $\vec{I} = \Delta \vec{p}$ or $\vec{I} = \int \vec{F}_{net} dt$

Types of collisions (all obey conservation of momentum):

a) elastic: kinetic energy is conserved

b) inelastic: kinetic energy is not conserved

c) perfectly inelastic: kinetic energy is not conserved and particles stick together Center of mass for discrete masses:

$$x_{com} = \frac{\sum m_i x_i}{M_{tot}}$$
 and $y_{com} = \frac{\sum m_i x_i}{M_{tot}}$

Center of mass for continuous, extended masses:

$$\vec{r}_{CM} = \frac{1}{M} \int \vec{r} dm$$

For a system of particles:

$$\vec{p}_{tot} = M_{tot} \vec{v}_{CM}$$

Chapter 10. Rotation of a Rigid Object

Angular position: $\theta = \frac{s}{r}$ (where s is arclength)

Angular speed: $\omega = \frac{d\theta}{dt}$

Angular acceleration: $\alpha = \frac{d \omega}{dt}$

Relate to translational quantities: $v=r\omega$, $a_t=r\alpha$ and $a_c=\frac{v^2}{r}=r\omega^2$

(Ch. 10 cont.)

Angular kinematic equations for constant angular acceleration:

$$\begin{aligned} & \omega_f \!=\! \omega_i \!+\! \alpha \, t \\ & \theta_f \!=\! \theta_i \!+\! \omega_i t \!+\! \frac{1}{2} \, \alpha t^2 \\ & \omega_f^2 \!=\! \omega_i^2 \!+\! 2 \, \alpha (\theta_f \!-\! \theta_i) \\ & \theta_f \!=\! \theta_i \!+\! \frac{1}{2} (\omega_i \!-\! \omega_f) t \end{aligned}$$

Rotational kinetic energy: $K_R = \frac{1}{2}I\omega^2$

 $I = \sum m_i r_i^2$ (for discrete masses) Moment of inertia:

Moment of inertia: $I = \int r^2 dm$ (for continuous masses)

Mass density: linear mass density, λ , surface mass density, σ , volume mass density ρ Parallel-axis theorem: $I = I_{CM} + MD^2$

Torque: $\tau = rF \sin \theta$ $\tau_{net} = I \alpha$ Torque:

Total kinetic energy: $K_{tot} = K_{trans} + K_{rot}$ For an object that rolls without slipping:

 $\Delta s = R \Delta \theta$ $v_{CM} = R \omega$ $a_{CM} = R \alpha$

Chapter 11 Angular Momentum

Torque (as a vector): $\vec{\tau} = \vec{r} \times \vec{F}$

Angular momentum: $\vec{L} = \vec{r} \times \vec{p} = mvr \sin \theta$

Angular momentum and angular quantities: $L=I\omega$

 $\tau_{net} = \frac{dL}{dt}$ Angular momentum and torque:

Conservation of Angular momentum: $\vec{L}_{init} = \vec{L}_{fin}$ (for an isolated system)