

Cost understanding

Support document

I. Differences between prototype and mass production

Different types of manufacturing processes: Machining (Milling, Turning), Laser and waterjet cut, 3D printing, Stamping, Foundry, Forging, Broaching, Weldments, Injection molding, ...

Comparison of 3D printing versus conventional production: cost versus complexity

Comparison of 3D printing versus conventional production: cost versus size of series

II. Resource and cost planning

Global resource planning

See V cycle drawing.

End of	Previsionnal date	Real date	Delay (in days)
High level design	6 sept. 2018	13 sept. 2018	7 days
Detailed design	13 nov. 2018	20 nov. 2018	7 days
Fabrication & unit testing	15 feb. 2019	8 mar. 2019	21 days
System testing & integration	16 mar. 2019	5 apr. 2019	20 days
Roll out	10 apr. 2019	10 apr. 2019	0 days
First testing	20 apr. 2019	27 apr. 2019	7 days

Detailed resource planning

Utilisation of Gantts to plan and monitor the work.

Car:	Department :	Supervisor :	Version	1 On time						
STUF'2019 - Optimus	\$2 : Powertrain	Clement Emerique CEE	V1.5 of 22/11/18	o	Late					
				2	Co	mp	ete	d		
				Nov.			Dec			
System/ Project	Phase	Actions	Supervisor	Lead		WK 45	WK 46	WK 47	WK 48	WK 49
INTAKE Production 8 Supply		Contacter Romain G. pour explorer les pistes d'amélioration	CEE							
		Discuter les pistes d'amélioration avec Emilien et Clément C	CEE							
	Design	Maquette Plenum	CEE							
	Design	Validation par Romain G.	CEE							
		Calculs éléments finis et CFD	CEE							
	Validation par les académiciens	CEE								
	Prévoir créneau de production	CEE			0	0				
	Lancer la phase de fabrication	CEE			8		0	2		
		Processus de vérification	CEE					0	0	
	Supply	Intégration sur Vulcanix	CEE							
		Test sur banc	CEE							
		Intégration sur Optimus	CEE			4				
		Exploration do nistos d'amálioration	IDD / MADV			<u> </u>			Ш	

Example of Gantt layout

Manufacturing planning

• Gantt of the production phase (Manufacturing_Gantt)

BOISARD LA MACHE LASER

• Excel of the repartition of the production between our partners, sponsors and suppliers (Manufacturing_framework)

Production framework

LASMECA

Introduction

ALUMINIUM

Statistiques

Production framework layout

2 D75x25

LA MACHE PRODUCTIQUE

2017 T4

ALPEN TECH

CENTRALE | HPC | AQUACL

Cost planning

See Previsionnal Expenses drawing.

Availability of budget during the year

System	Previsionnal	Real	Differences (€)	Differences (%)
Suspension	12 630,00 €	19 480,00 €	6 850,00 €	35%
Powertrain	14 680,00 €	14 046,00 €	-634,00€	-5%
Electrical	6 810,00 €	6 893,00 €	83,00€	1%
Frame & body	880,00€	2 005,00 €	1 125,00 €	56%
Miscellaneous	11 400,00 €	9 994,00 €	-1 406,00 €	-14%
Total	46 400,00 €	52 418,00 €	6 018,00 €	11%
Budget	51 800,00 €	52 600,00 €		
Financial provisions	5 400,00 €	182,00€		

Summary of previsionnal and real expenses

III. Financial and production risk management

An example of a financial risk

Supply of wheels' bearings:

- Delay of delivery from a partnership due to absence of stock
 - o Initially planned on March
 - o Delivery delayed to the beginning of June
- To respect the roll-out deadline, wheels bearings supplied with the budget
 - o Diminution of the financial provision

An example of a production risk

A fire destroyed the workshops of our partner during the manufacturing of the uprights and hubs. The team reacted quickly to move the production to another partner and to the university workshop.

Fire in the workshops of our partner Boisard

IV. Make or buy decisions

See ratio of price versus weight saved.

Diagram to illustrate buy and made decisions

