

Logaritmos y Exponenciales

Ejercicios de Logaritmos y Exponenciales Departamento de Matemáticas

1.- Calcular:

a)
$$\log_2 8$$

f)
$$\log_2 0.25$$

k)
$$\log_4 64 + \log_8 64$$

b)
$$\log_{3} 9$$

g)
$$\log_{0.5} 16$$

$$\log 0.1 - \log 0.01$$

$$\mathbf{p)} \quad \log_2 3 \times \log_3 4$$

c)
$$\log_4 2$$

h)
$$\log_{0.1} 100$$

m)
$$\log 5 + \log 20$$

q)
$$\log_{9} 25 \div \log_{3} 5$$

d)
$$\log_{27} 3$$

i)
$$\log_3 27 + \log_3 1$$

n)
$$\log 2 - \log 0.2$$

$$\frac{1}{3}$$

e)
$$\log_{5} 0.2$$

i)
$$\log_3 27 + \log_3 1$$

j) $\log_5 25 - \log_5 5$

$$\tilde{\mathbf{n}}$$
) $\log 32 / \log 2$

$$\mathbf{r)} \quad \log_a \sqrt[3]{a^2}$$

 $\log_{1/2} 2$

 $Sol: a) \ 3; \ b) \ 2; \ c) \ 0.5; \ d) \ 1 \ / \ 3; \ e) - 1; \ f) \ - 2; \ g) \ - \ 4; \ h) \ - \ 2; \ i) \ 3; \ j) \ 1; \ k) \ 5; \ l) \ 1; \ m) \ 2; \ n) \ 1; \ \bar{n}) \ 5; \ o) \ 0.25; \ p) \ 2; \ q) \ 1; \ r) \ 2/3; \ s) \ 2/3;$ **2.-** Determinar el valor de x en las siguientes expresiones:

a)
$$\log_3 81 = x$$

g)
$$\log_{x} 25 = -2$$

m)
$$\log_4 64 = (2x - 1)/3$$

b)
$$\log_{5} 0.2 = x$$

h)
$$\log_{2n+2} 81 = 2$$

$$\log_{5} 0.2 = x$$
 h) $\log_{2x+3} 81 = 2$ **n)** $\log_{6} [4(x-1)] = 2$

c)
$$\log_2 16 = x^3/2$$

i)
$$x + 2 = 10^{\log x}$$

$$\log_2 16 = x^3/2$$
 i) $x + 2 = 10^{\log 5}$ ñ) $\log_8 [2(x^3 + 5)] = 2$

d)
$$\log_2 x = -3$$
 j) $x = 10^{4 \log 2}$

i)
$$x = 10^{4 \log 2}$$

o)
$$x = \log 625 / \log 125$$

$$e) \quad \log_{7} x = 3$$

$$\mathbf{k}) \quad \mathbf{x} = \log 8 / \log 2$$

$$\log_7 x = 3$$
 k) $x = \log 8 / \log 2$ **p)** $\log (x + 1) / \log (x - 1) = 2$

s)

f)
$$\log_{x} 125 = 3$$

1)
$$\log_{9/16} x = 3/2$$
 q)

q)
$$\log (x - 7) / \log (x - 1) = 0.5$$

 $Sol: a) \ 4; \ b) \ -1; \ c) \ 2; \ d) \ 1/8; \ e) \ 343; \ f) \ 5; \ g) \ 1/5; \ h) \ 3; \ i) \ 3; \ j) \ 16; \ k) \ 3; \ l) \ 27/64; \ m) \ 5; \ n) \ 10; \ \tilde{n}) \ 3; \ o) \ 4/3; \ p) \ 3; \ q) \ 10$

3.- Calcula el valor de las siguientes expresiones:

a)
$$\log_2 \frac{\sqrt[6]{64} \cdot 4^2}{2^5 \cdot \sqrt[3]{512}}$$

b)
$$\log_3 \frac{27 \cdot \sqrt{729}}{81 \cdot \sqrt[3]{27}}$$

c)
$$\log_5 \frac{25 \cdot \sqrt[4]{625}}{125}$$

$$d) \log_7 \frac{49 \cdot \sqrt[3]{343}}{\sqrt{2401}}$$

a)
$$\log_2 \frac{\sqrt[6]{64 \cdot 4^2}}{2^5 \cdot \sqrt[3]{512}}$$
 b) $\log_3 \frac{27 \cdot \sqrt{729}}{81 \cdot \sqrt[3]{27}}$ c) $\log_5 \frac{25 \cdot \sqrt[4]{625}}{125}$ d) $\log_7 \frac{49 \cdot \sqrt[3]{343}}{\sqrt{2401}}$ e) $\log \left(\frac{0.01 \cdot \sqrt[3]{100}}{10^{-1} \cdot 0.1}\right)$

4.- Aplica las propiedades de los logaritmos para reducir estas expresiones a un solo logaritmo:

a)
$$\log a + \log b$$

f)
$$\log 2 + \log 3 + \log 4$$

f)
$$\log 2 + \log 3 + \log 4$$
 k) $\frac{1}{2} \log x - \frac{1}{3} \log y + \frac{1}{4} \log z$

b)
$$\log x - \log y$$

g)
$$\frac{1}{3}\log a - \frac{1}{2}\log b - \frac{1}{2}\log c$$
 l) $\log(a - b) - \log 3$

1)
$$\log(a - b) - \log 3$$

$$\mathbf{c)} \quad \frac{1}{2}\log x + \frac{1}{2}\log y$$

h)
$$\frac{3}{2}\log a + \frac{5}{2}\log b$$

h)
$$\frac{3}{2}\log a + \frac{5}{2}\log b$$
 m) $\log a - 4\log b + \frac{1}{5}(\log c - 2\log d)$

$$\mathbf{d}) \quad \log \mathbf{a} - \log \mathbf{x} - \log \mathbf{y}$$

i)
$$\log a + \frac{1}{2} \log b - 2 \log c$$
 n) $\frac{p}{n} \log a + \frac{q}{n} \log b$

$$\mathbf{n)} \quad \frac{p}{n} \log a + \frac{q}{n} \log b$$

i)
$$\log (a + b) + \log (a - b)$$

e)
$$\log p + \log q - \log r - \log s$$
 j) $\log (a + b) + \log (a - b)$ ñ) $\log_a ac + \log_d d^3 + \log_b b - \log_a c$

Sol: a) $\log (a \cdot b)$; b) $\log (x/y)$; c) $\log \sqrt{xy}$; d) $\log \left(\frac{a}{xy}\right)$; e) $\log \left(\frac{p \cdot q}{r \cdot s}\right)$ f) $\log 24$; g) $\log \frac{\sqrt[3]{a}}{\sqrt{b \cdot c}}$; h) $\log \sqrt{a^3 \cdot b^5}$; i) $\log \frac{a\sqrt{b}}{c^2}$;

j) $\log (a^2-b^2)$; k) $\log \left(\frac{\sqrt{x}}{\sqrt[3]{y}}, \sqrt[4]{z}\right)$ l) $\log \frac{a-b}{3}$; m) $\log \left(\frac{a}{b^4}, \sqrt[5]{\frac{c}{d^2}}\right)$; n) $\log \sqrt[\eta a^p \cdot b^q}$; ñ) 5 **5.-** Sabiendo que $\log 2 \approx 0,3$ y que $\log 3 \approx 0,48$ calcula los siguientes logaritmos:

1) log 4

2) log 5

3) log 6

log 8

8) log 24

12) log 40

16) log 75

Sol: 1) 0,6; 2) 0,7; 3) 0,78; 4) 0,9; 5) 1,08; 6) 1,18; 7) 1,26; 8) 1,38; 9) 1,4; 10) 1,48; 11) 1,56; 12) 1,6; 13) 1,66; 14) 1,78; 15) 1,86; 16) 1,88

6.- Expresa en función de log 2 y de log 3 las siguientes expresiones:

a) log 14,4

c) log 3600

e) $\log \frac{\sqrt{5,4}}{12.8}$

$$\mathbf{g}) \quad \log\left(\sqrt{3,2}\cdot\sqrt{1,6}\right)$$

d)
$$\log \sqrt{5,76}$$

f)
$$\log \frac{1}{6561}$$

h)
$$\log \sqrt[3]{\frac{9}{2}}$$

Sol: a) 4log 2+2log 3-1; b) 4log 2+log 3-3; c) 2(log2+log3)+2; d) 3log 2+log 3-1; e) ½+3/2 log 3-13/2 log 2; f) -8log 3; g) 9/2 log 2-1; h) 2/3 log 3-1/3 log 2

Logaritmos y Exponenciales

7.- Expresa en forma de logaritmo cada igualdad:

a)
$$4^x = 16$$

b)
$$10^x = 1,48$$

c)
$$a^x = \frac{b \cdot c}{d}$$

a)
$$4^{x} = 16$$
 b) $10^{x} = 1{,}48$ c) $a^{x} = \frac{b \cdot c}{d}$ d) $p^{x} = \frac{a+b}{a-b}$

$$e)\left(\frac{2}{3}\right)^x = \frac{27}{8}$$

Sol:
$$a)\log_4 16 = x$$

$$b)\log 1,48=x$$

$$c)\log_a \frac{b \cdot c}{d} = x$$

Sol:
$$a)\log_4 16 = x$$
 $b)\log 1,48 = x$ $c)\log_a \frac{b \cdot c}{d} = x$ $d)\log_p \frac{a+b}{a-b} = x$ $e)\log_2 \frac{27}{8} = x$

$$e)\log_{\frac{2}{3}}\frac{27}{8} =$$

8.- Expresa en la forma exponencial las siguientes igualdades:

a)
$$\log_a x = y$$

b)
$$\log_{10} 1000 = 3$$

c)
$$\log_a a^2 = 1$$

a)
$$\log_a x = y$$
 b) $\log_{10} 1000 = x$ c) $\log_a a^2 = 2$ d) $\log_{\frac{1}{2}} \frac{1}{8} = 3$

$$e) \log_{\frac{p}{a}} q = -1$$

e)
$$\log_{p} q = -1$$
 f) $\log_{x-y} (x^3 - 3x^2y + 3xy^2 - y^3) = 3$

Sol: a)
$$a^y = x$$
; b) $10^x = 1000$; c) $a^2 = a^2$; d) $\left(\frac{1}{2}\right)^3 = \frac{1}{2^3} = \frac{1}{8}$; e) $p = q^2$; f) $(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$

9.- Determina el valor de ${m x}$ en las siguientes ecuaciones logarítmicas y exponenciales:

a)
$$\log 4x = 3 \cdot \log 2 + 4 \cdot \log 3$$

g)
$$\frac{\log(7+x^2)}{\log(x-4)} = 2$$

b)
$$\log(2x-4) = 2$$

h)
$$2 \cdot \log (3x-4) = \log 100 + \log (2x+1)^2$$

c)
$$2 \cdot \log (3-x) = -1$$

i)
$$\log_2(x^2-1) - \log_2(x+1) = 2$$

d)
$$\log (x+1) + \log x = \log (x+9)$$

i)
$$\log^2 x - 3\log x = -2$$

e)
$$\log (x+3) = \log 2 - \log (x+2)$$

k)
$$2 \cdot \log(x+5) = \log(x+7)$$

f)
$$\log (x^2+15) = \log (x+3) + \log x$$

$$\log \sqrt{x-1} = \log(x+1) - \log \sqrt{x+4}$$

Sol: a) 162; b) 52; c) No; d) 3; e) 4 y 1; f) 5; g) 9/8; h) No sol; i) 5; j) 10 y 100; k) -3; l) 5

10.- Resuelve las siguientes ecuaciones exponenciales y logarítmicas:

a)
$$\log_3(x+2) + \log_3(x-4) = 3$$

b)
$$2^{2+x} - 2^{1+x} + 2^x = \frac{3}{2}$$
 c) $\log_3\left(\frac{x+1}{2x-1}\right) = 2$ **d)** $e^x - 6e^{-x} = 1$

$$\log_3\left(\frac{x+1}{2x-1}\right) = 2$$

d)
$$e^x - 6e^{-x} = 1$$

e)
$$\log 2 + \log (11 - x^2) = 2\log (5 - x)$$
 f) $\log_3 (3^x + 8) = 2$ g) $3^x - 3^{1-x} = 2$ h) $2^{2x} - 2^x = 12$

$$\log_3(3^x + 8) = 2$$

g)
$$3^x - 3^{1-x} = 2$$

h)
$$2^{2x} - 2^x = 12$$

i)
$$3\log x - \log 30 = \log \frac{x^2}{5}$$

j)
$$\log(5\log 100) = x$$
 k) $3^{2x-1} - 3^2 = 18$ **l**) $7^{3x-2} = 1$

k)
$$3^{2x-1} - 3^2 = 18$$

1)
$$7^{3x-2} = 1$$

Sol: a)
$$x = 7$$
 b) $x = -1$ c) $x = \frac{10}{17}$ d) $x = \ln 3$ e)
$$\begin{cases} x_1 = 3 \\ x_2 = \frac{1}{3} \end{cases}$$
 f) $x = 0$ g) $x = 1$ h) $x = 2$ i) $x = 6$ j) $x = 1$ k) $x = 2$ l) $x = \frac{2}{3}$

11.- Calcula el valor de x en estas igualdades:

a)
$$\log 3^x = 2$$

b)
$$\log x^2 = -2$$

c)
$$7^x = 115$$

d)
$$5^{-x} = 3$$

e)
$$e^{x-2} = e^{2(x-1)}$$

a)
$$\log 3^x = 2$$
 b) $\log x^2 = -2$ **c)** $7^x = 115$ **d)** $5^{-x} = 3$ **e)** $e^{x-2} = e^{2(x-1)}$ **f)** $\log_x 32 = \frac{5}{2}$ **g)** $\log_9 x = 2$

Sol: **a)** 4,19; **b)** $\pm 0,1$; **c)** 2,438; **d)** -0,683; **e)** 0; **f)** 4; **g)** 81

12.- Resuelve las siguientes ecuaciones logarítmicas:

a)
$$\log \sqrt{3x+1} - \log \sqrt{2x-3} = 1 - \log 5$$

$$\log \sqrt{3x+1} - \log \sqrt{2x-3} = 1 - \log 5 \quad \textbf{e}) \quad \log \left(x + \sqrt{x^2 - 1}\right) = -\log \left(x - \sqrt{x^2 - 1}\right) \quad \textbf{i)} \quad 2\log(x) = 3 + \log \left(\frac{x}{10}\right)$$

$$i) \qquad 2\log(x) = 3 + \log\left(\frac{x}{10}\right)$$

b)
$$\log(2^{2-x})^{2+x} + \log(1250) = 4$$

b)
$$\log(2^{2-x})^{2+x} + \log(1250) = 4$$
 f) $5\log\frac{x}{2} + 2\log\frac{x}{3} = 3\cdot\log x - \log\frac{32}{9}$ **j)** $\log(x) + \log 5 = 2$

$$\mathbf{j)} \qquad \log(x) + \log 5 = 2$$

c)
$$\log_2 x \cdot \log_x 2x \cdot \log_{2x} y = \log_x x$$

c)
$$\log_2 x \cdot \log_x 2x \cdot \log_{2x} y = \log_x x^2$$
 g) $\frac{\log 2 + \log(11 - x^2)}{\log(5 - x)} = 2$

$$\mathbf{k}) \quad \log(3-x^2) = \log 2 + \log x$$

d)
$$(x^2 - 4x + 7) \log 5 + \log 16 = 4$$
 h) $3 \log x - \log 32 = \log \left(\frac{x}{2}\right)$

h)
$$3 \cdot \log x - \log 32 = \log \left(\frac{x}{2}\right)$$

1)
$$2\log x - \log(x^2 - 6) = 1$$

Sol: a) 11/5; b) 1 y -1; c) x>0 y=4; d) 1 y 3; e) identidad; f) 3; g) 3 y 1/3; h) 4; i) 10; j) 20; k) 1; l) $\frac{2\sqrt{15}}{3}$

Logaritmos y Exponenciales

Departamento de Matemáticas

13.- Resuelve las siguientes ecuaciones logarítmicas:

a)
$$\log(2x-7) - \log(x-1) = \log 5$$

d)
$$2 \cdot \log x - 2 \cdot \log(x+1) = 0$$

g)
$$\frac{\log(16-x^2)}{\log(3x-4)} = 2$$

b)
$$\log x - \log(x+3) = 2 \cdot \log(x+1)$$

$$\log x - \log(x+3) = 2 \cdot \log(x+1)$$
 e) $\log x = \frac{2 - \log(x)}{\log(x)}$

h)
$$\frac{\log(35-x^2)}{\log(5-x)} = 3$$

c)
$$4\log\left(\frac{x}{5}\right) + \log\left(\frac{625}{4}\right) = 2 \cdot \log(x)$$
 f) $\log(25 - x^3) - 3\log(4 - x) = 0$

f)
$$\log(25-x^3)-3\log(4-x)=0$$

i)
$$\log_5 x + \frac{\log_5 125}{\log_5 x} = \frac{7}{2}$$

Sol: a) -2/3; b) 1; c) 2; d) -1/2; e) 10; f) $\frac{4 \pm \sqrt{3}}{2}$; g) 12/5; h) $5 - \sqrt{10}$; i) 25 y $5\sqrt{5}$

14.- Simplifica las siguientes expresiones exponenciales:

a)
$$3^{x+2} \cdot 9^{x-1} \cdot 3^2$$

b)
$$2^{x-1} \cdot 2^{x^2-1} \cdot 2^{3-x}$$

c)
$$\frac{4^{x-2}}{8^{x-1}}$$

d)
$$\left(5^{4^x}\right)^{8^{x+1}} - \left(5^{2^{2x+1}}\right)^{2^{3x+1}}$$

e)
$$\frac{2^{x+1} + 3 \cdot 2^{x-1}}{4^{x-2}}$$

$$\mathbf{f)} \quad \frac{e^{x-1} + e^{x+3}}{e^{4x}}$$

$$\mathbf{g)} \quad \frac{4^{x} \cdot 2^{3-x}}{2^{x+1} + 2^{x-1}}$$

h)
$$\frac{e^{x+1}-e^{x-2}}{e^{2x-1}}$$

a)
$$3^{x+2} \cdot 9^{x-1} \cdot 3^2$$
 b) $2^{x-1} \cdot 2^{x^2-1} \cdot 2^{3-x}$ **c)** $\frac{4^{x-2}}{8^{x-1}}$ **d)** $\left(5^{4^x}\right)^{8^{x+1}} - \left(5^{2^{2x+1}}\right)^{2^{3x+2}}$ **e)** $\frac{2^{x+1} + 3 \cdot 2^{x-1}}{4^{x-2}}$ **f)** $\frac{e^{x-1} + e^{x+3}}{e^{4x}}$ **g)** $\frac{4^x \cdot 2^{3-x}}{2^{x+1} + 2^{x-1}}$ **h)** $\frac{e^{x+1} - e^{x-2}}{e^{2x-1}}$ **i)** $\frac{2^{m+3} + 3 \cdot 2^{m+1} - 5 \cdot 2^{m+2}}{2^{m-1} + 3 \cdot 2^{m-2} - 4 \cdot 2^{m-3}}$ **j)** $\frac{3^{x+1} + 3^x}{2 \cdot 9^x}$

j)
$$\frac{3^{x+1}+3^x}{2\cdot 9^x}$$

Sol: a) 3^{3x+2} ; b) 2^{x^2+1} ; c) 2^{-x-1} ; d) 0; e) $7 \cdot 2^{3-x}$; f) $(e^3 + e^{-1}) \cdot e^{-3x}$; g) $\frac{16}{5}$; h) $(e^3 - 1) \cdot e^{-x-1}$; i) -8; j) $2 \cdot 3^{-x}$

15.- Resuelve las siguientes ecuaciones exponenciales:

a)
$$2^{3x} = 0.5^{3x+2}$$

$$2^{3x} = 0.5^{3x+2}$$
 e) $3^x + 3^{x+2} = 30$

i)
$$3^x - 3^{x-1} + 3^{x-2} = 21$$

m)
$$3^x = 2^x$$

b)
$$3^{4-x^2} = \frac{1}{9}$$

b)
$$3^{4-x^2} = \frac{1}{9}$$
 f) $5^{x+1} + 5^x + 5^{x-1} = \frac{31}{5}$ **j)** $3^{x^2} \cdot 3^{-2} = 9$ **n)** $5^{x-1} = 2 + \frac{3}{5^{x-2}}$ **c)** $\frac{4^{x-1}}{2^{x+2}} = 186$ **g)** $\frac{5^{x^2+1}}{25^{x+2}} = 3125$ **k)** $3^{-x} - 3^{-x} = \frac{728}{27}$ **o)** $2^x + \frac{1}{2^{x-2}} = 5$

$$3^{x^2} \cdot 3^{-2} = 9$$

$$\mathbf{n)} \quad 5^{x-1} = 2 + \frac{1}{5^{x-2}}$$

$$\mathbf{c)} \quad \frac{4^{x-1}}{2^{x+2}} = 186$$

$$\mathbf{g)} \quad \frac{5^{x+1}}{25^{x+2}} = 3125$$

k)
$$3^{-x} - 3^{-x} = \frac{728}{27}$$

$$\mathbf{o)} \qquad 2^x + \frac{1}{2^{x-2}} = 5$$

d)
$$7^{x+2} = 5.764.801$$
 h) $2^{2x} - 5 \cdot 2^x + 4 = 0$ **l)** $5^{x^2} \cdot 25^{x-1} = 5^{3x}$ **p)** $e^{x+1} - 2^{3-x} = 0$

h)
$$2^{2x} - 5 \cdot 2^x + 4 = 0$$

1)
$$5^{x^2} \cdot 25^{x-1} = 5^{3}$$

p)
$$e^{x+1} - 2^{3-x} = 0$$

Sol: **a)** -1/3; **b)** $\pm \sqrt{6}$; **c)** 11,54; **d)** 6; **e)** 1; **f)** 0; **g)** -2 y 4; **h)** 0 y 2; **i)** 3; **j)** ± 2 ; **k)** No; **l)** -1 y y; **m)** No; **n)** 2; **o)** 0 y 2; **p)** $\frac{3 \ln(2) - 1}{1 + \ln 2}$

16.- Resuelve las siguientes ecuaciones exponenciales:

a)
$$3^x + 3^{1-x} = 4$$

e)
$$9^x - 2 \cdot 3^{x+2} + 81 = 0$$

i)
$$10^{3-x} = 1$$

b)
$$4^{x+1} + 2^{x+3} - 320 = 0$$

b)
$$4^{x+1} + 2^{x+3} - 320 = 0$$
 f) $2^{2x} + 2^{2x-1} + 2^{2(x-1)} + 2^{2x-3} + 2^{2(x-2)} = 1984$

k)
$$2^{x+1} = 16^x$$

c)
$$3^{2(x+1)} - 28 \cdot 3^x + 3 = 0$$

g)
$$2^{x-1} + 2^{x-2} + 2^{x-3} + 2^{x-4} = 960$$

1)
$$2^{x-1} + 2^x + 2^{x+1} = 7$$

d)
$$4 \cdot e^{-3x} - 5 \cdot e^{-x} + e^x = 0$$

h)
$$5^{2x-1} = \sqrt[3]{25^{x^2-\frac{1}{4}}}$$
 i) $27^{4x+9} = 81^{8x-7}$

$$27^{4x+9} = 81^{8x-7}$$

m)
$$2^{1-x^2} = \frac{1}{8}$$

Sol: *a*) 0 y 1; *b*) 3; *c*) -2 y 1; *d*) 0 y ln2; *e*) 2; *f*) 5; *g*) 10; *h*) $\frac{1}{2}$ y 5/2; *i*) 11/4; *j*) 3; *k*) 1/3; *l*)1; *m*) ± 2

17.- Despeja el valor de x en la expresión: $\log x - \log y = \log(x - y)$

Sol:
$$x = \frac{y^2}{y-1}$$

18.- Resuelve los siguientes sistemas de ecuaciones:

(a)
$$\begin{cases} x + y = 5 \\ 2^{x} - 2^{y} = 14 \end{cases}$$

d)
$$\begin{cases} 3 \cdot 2^{x-1} - 2^{y-2} = 4 \\ 4 \cdot 2^{x+1} - 3 \cdot 2^{y} = 8 \end{cases}$$

$$\begin{cases} 2^{x} + 2^{y} = 5 \\ 2^{x} - 3 \cdot 2^{y} = -3 \end{cases}$$

$$\begin{cases} 3 \cdot 2^{x-1} - 2^{y-2} = 4 \\ 4 \cdot 2^{x+1} - 3 \cdot 2^{y} = 8 \end{cases} \quad \begin{cases} 2^{x} + 2^{y} = 5 \\ 2^{x} - 3 \cdot 2^{y} = -3 \end{cases} \quad \text{i)} \quad \begin{cases} x - y = 9 \\ \log x + \log y = 1 \end{cases}$$

$$\begin{cases}
7^{2x+3y} = 7^{-1} \\
7^{-4x-5y} = 7^{-1}
\end{cases}$$

e)
$$\begin{cases} 2^{x} + 5^{y} = 9 \\ 2^{x+2} + 5^{y+1} = 41 \end{cases}$$

$$\begin{cases} x - y - 3 \\ \log_2 x + \log_2 y = 7 \end{cases}$$

$$\begin{cases} \log x + \log y = 3 \\ 1 \end{cases}$$

$$\begin{cases} 7^{2x+3y} = 7^{-1} \\ 7^{-4x-5y} = 7^{-1} \end{cases}$$
e)
$$\begin{cases} 2^{x} + 5^{y} = 9 \\ 2^{x+2} + 5^{y+1} = 41 \end{cases}$$
h)
$$\begin{cases} x - y = 8 \\ \log_{2} x + \log_{2} y = 7 \end{cases}$$
e)
$$\begin{cases} \log x + \log y = 3 \\ \log x - \log y = 1 \end{cases}$$
f)
$$\begin{cases} x - y = 8 \\ 2^{x+2} + 5^{y+1} = 41 \end{cases}$$
i)
$$\begin{cases} 3x + 2y = 64 \\ \log x - \log y = 1 \end{cases}$$
l)
$$\begin{cases} 2\log(x) + \log(y) = 5 \\ \log(x - y) = 1 \end{cases}$$

$$\begin{cases} x - y = 3 \\ 2^x - 2^y = \frac{7}{4} \end{cases}$$

$$\mathbf{i)} \qquad \begin{cases} 3x + 2y = 64 \\ \log x - \log y = 1 \end{cases}$$

1)
$$\begin{cases} 2\log(x) + \log(y) = 5 \\ \log(x \cdot y) = 1 \end{cases}$$

Sol: **a)** x=4; y=1; **b)** x=4; y=-3; **c)** x=7; y=4; **d)** x=2; y=3 **e)** x=2; y=1; **f)** x=1; y=-2; **g)** $x=\frac{\log 3}{\log 2}$; y=1; **h)** x=16; y=8;

i) x=20; y=2; j) x=10; y=1; k) x=100; y=10; l) x=10; y=1000.

19.- Utilizando la fórmula del cambio de base se pide:

- **a)** Demostrar que $\log_a b \cdot \log_b a = 1$
- **b)** Hallar la relación entre el logaritmo neperiano y el logaritmo decimal.
- c) Expresar log₂x en función de log x
- **d)** Razona por qué log₄ 5 es un número irracional.

Sol: c) $\log_2 x = 3.3219 \log (x)$