	Variable	Description
High-level inputs	$p_{\mathrm{T}}^{\mathrm{LC}}$	Calorimeter-based estimate of $\tau_{\rm had\text{-}vis}$ candidate $p_{\rm T}$.
	$f_{\rm cent}$	Ratio of $E_{\rm T}$ deposited in calorimeter cells (at EM scale) in cones of $\Delta R < 0.1$ and $\Delta R < 0.2$ about the $\tau_{\rm had\text{-}vis}$ axis.
	$f_{\text{leadtrack}}^{-1}$	Ratio of $E_{\rm T}$ deposited in calorimeter cells (at EM scale) in a cone of $\Delta R < 0.2$ about the $\tau_{\rm had\text{-}vis}$ axis and the $p_{\rm T}$ of the $p_{\rm T}$ -leading $core$ track.
	$\Delta R_{\rm max}$	Maximum ΔR between <i>core</i> tracks and the $\tau_{\rm had\text{-}vis}$ axis.
	$ S_{\mathrm{leadtrack}} $	Transverse impact parameter significance of the $p_{\rm T}$ -leading track. Only considered for 1-prong $\tau_{\rm had\text{-}vis}$ candidates.
	$S_{ m T}^{ m flight}$	Transverse flight path significance. Only considered for 3-prong $\tau_{\text{had-vis}}$ candidates.
	$f_{ m iso}^{ m track}$	Ratio of the scalar sum of $p_{\rm T}$ of <i>isolation</i> tracks and the scalar sum of $p_{\rm T}$ of <i>core</i> and <i>isolation</i> tracks.
	$f_{ m track}^{ m EM}$	Ratio of the energy in EM clusters † and the scalar sum of momenta of <i>core</i> tracks.
	$p_{\mathrm{T}}^{\mathrm{EM+track}}/p_{\mathrm{T}}$	$p_{\rm T}$ of the $ au_{\rm had-vis}$ estimated from the momenta of <i>core</i> tracks and the two most energetic EM clusters divided by the $p_{\rm T}$ of the calorimetric measurement.
	m ^{EM+track}	Invariant mass of the system of $core$ tracks and the two most energetic EM clusters [†] .
	m^{track}	Invariant mass of the system of $core$ tracks. Only considered for 3-prong $\tau_{\text{had-vis}}$ candidates.
Track inputs	$p_{\mathrm{T}}^{\mathrm{jet seed}}$	p_{T} of the jet seeding the $ au_{\mathrm{had-vis}}$ candidate.
	$p_{\mathrm{T}}^{\mathrm{track}}$	$p_{\rm T}$ of the track.
	$\Delta \eta^{ m track}$	Difference in η between track and $\tau_{\text{had-vis}}$ axis.
	$\Delta\phi^{ m track}$	Angle between track and $ au_{ m had-vis}$ axis in the transverse plane.
	$ d_0^{ ext{track}} $	Absolute value of the transverse track impact parameter.
	$ z_0^{\text{track}}\sin\theta $	Absolute value of the product of longitudinal track impact parameter and the sine of the polar angle of the track.
	$N_{\mathrm{IBL\ hits}}$	Number of hits on the track in the IBL.
	$N_{\rm Pixel\ hits}$	Number of hits on the track in pixel detector layers (excl. IBL).
	$N_{ m SCT\ hits}$	Number of hits on the track in SCT layers.
Cluster inputs	$p_{ m T}^{ m jet~seed}$	p_{T} of the jet seeding the $ au_{\mathrm{had-vis}}$ candidate.
	$E_{\mathrm{T}}^{\mathrm{cluster}}$	$E_{\rm T}$ of the cluster.
	$\Delta\eta^{ m cluster}$	Difference in η between cluster and $\tau_{\text{had-vis}}$ axis.
	$\Delta\phi^{ m cluster}$	Angle between cluster and $\tau_{\text{had-vis}}$ axis in the transverse plane.
	$\lambda_{ m cluster}$	Longitudinal distance of the cluster barycentre from the calorimeter front face.
	$\langle \lambda^2 \rangle_{\rm cluster}$	Second longitudinal cluster moment.
	$\langle r^2 \rangle_{\rm cluster}$	Second radial cluster moment.