請實做以下兩種不同 feature 的模型,回答第 (1)~(3) 題:

- (1) 抽全部 9 小時内的污染源 feature 當作一次項(加 bias)
- (2) 抽全部 9 小時内 pm2.5 的一次項當作 feature(加 bias)

備註:

- a. NR 請皆設為 0, 其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- c. 第 1-3 題請都以題目給訂的兩種 model 來回答
- d. 同學可以先把 model 訓練好,kaggle 死線之後便可以無限上傳。
- e. 根據助教時間的公式表示, (1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1

1. (2%)記錄誤差值 (RMSE)(根據 kaggle public+private 分數), 討論兩種 feature 的影響

feature 類型	全部污染源	只有 PM2.5 的一次項
public 分數	5.52052	5.79810
private 分數	7.07749	7.10913

選用全部污染源的誤差較小,推測是因為 feature 較多,不會受到單獨資料的影響,且 PM2.5 濃度也非一獨立事件。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

分數(public/private)	全部污染源	只有 PM2.5 的一次項
9 小時	5.52052 / 7.07749	5.79810 / 7.10913
5 小時	5.93168 / 7.06710	6.18407 / 7.12622

抽取前9小時得出的結果普遍較好,推測是因為有更多的資訊去進行 model 建立,使得預測較為準確。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

分數(public/private)	全部污染源	只有 PM2.5 的一次項
λ = 10000	5.69632 / 7.15834	5.99082 / 7.30048
λ = 1000	5.54694 / 7.07299	5.82638 / 7.12283
λ = 100	5.52418 / 7.07512	5.8114 / 7.1142
λ = 10	5.5209 / 7.07717	5.81083 / 7.11517
λ = 1	5.52056 / 7.07746	5.8108 / 7.1153
λ = 0.1	5.52052 / 7.07749	5.8108 / 7.11532
$\lambda = 0.01$	5.52052 / 7.07749	5.8108 / 7.11532
$\lambda = 0.001$	5.52052 / 7.07749	5.8108 / 7.11532
$\lambda = 0.0001$	5.52052 / 7.07749	5.8108 / 7.11532

由上可知, λ 過小時對結果並沒有顯著的影響,但當 λ 慢慢增大,雖然 public 部份的 測資誤差會加大,private 部份卻會減少。當達到一定大小後,便必定造成誤差增加。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N} \left(\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w} \right)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ \dots \ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ \dots \ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ? 請選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^TX)yX^T$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^TX)^{-1}yX^T$

Ans: C