ME453 - Homework 3

 $\begin{array}{c} {\rm Herman~Kolstad~Jakobsen} \\ 20196493 \end{array}$

November 12, 2019

Have	that
xT	$JJ^{T}x = (J^{T}x)^{T}(J^{T}x) = J^{T}x \geq 0$
So the	matrix JJT is positive semi-definite
This im	plies
	λ20 B

76)					5, 1,40
Let li & lj, and		*y :	17	- 4	. W.L.T 50 5
$(\omega)^{T})_{i} = \lambda_{i}$	(*)			ļ	2 2 2 2 2
$(JJ^{T}) \lor j = \lambda j$	(**)				and the same of th
Pre-multiplying (*)	with yt y	ields ,			2
$\lambda_i \vee_i^{T} \vee_i = \vee_i^{T} (\omega_i^{T})$	$v_i = (00)^T$	$)^{T}v_{c}=(\lambda$	$(v_i)^{T}$	$=\lambda$	V; V;
Thus					
$\lambda_i \forall_i \forall_i $				1	
$(\lambda_i - \lambda_j) \sqrt{v_i} v_i = 0$			_1,		7.
Since li # li, we	must ha	re			,
V; T v; = 0	i≠'s				
Hence, all eigenvectors	are or	thogonal	to e	each e	igenvector.

Problem 2a)	
We are given the rotation matrix	
R= Rz, Ry, BRz, Y	
Using the relationship	
$5(\omega) = \dot{R} R^{T}$	
we obtain	
$\dot{R} = S(\omega)R$	
Using this, and the product rule, we get	
R = R2, Ry, B R2, 8 + R2, Ry, B R2, 8 + R2, 0	
= 5(&k) RZ, Ry, B RZ, 8 + RZ, 8 5(Bj) Ry, B RZ, 8 +	
Expressing the angular velocities in the co	
R = S(xk) Rz, x Ry, B Rz, + S(Rz, x Bi) Rz, x Ry, & Rz, x +	S(R2, 2 84, 2 & k) RZ, 2 Ry, 2 R2,2
= [S(&k) + S(RZ, & Bj) + S(RZ, Ry, B & k	
Angular velocities expressed in the same	frame can be added
together, so	
R = S (& k + R2, & B j + R2, a Ry, 3 & k) R	
= S(u)R	
= ∞ R	
Thus	
w= S(xk+R2, Bj+R2, Ry, B+k)	
where	
ák = (o)	
[ca -sa 0][0] [-sa)	
$R_{z,\alpha} \dot{s} \dot{j} = \dot{s} \begin{pmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -s\alpha \\ -s\alpha \\ 0 \end{pmatrix}$	
	3

Rz, Rys jk =	ئ (ديد بمر ه	-5∝ <a>0	001	CB O -38	0 1	53° 0 c3°	00-	
=	y Ca	-3a ca 0	001	53 0 CB				
	ئي (ده در	(\$ J3 } \$						
Then					. , 4	- ;	4.3	
w= (0) + 2	- 35x \$ cx	+	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	25 ys 25 ys		* *		8
= \\ \(\cdot \cdot \sigma_{\text{S}} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$5~ \$c~					ψ,		÷
= [< , < ,]	- 5~	0	8			,		
8526	۲۵	0	8.					
ر2	0		Ĺά	. Iq				
where								
(Ca Sa	-5 ₄	0						
Jw = 5 x 5 g	Ca	0						
وع	0							
				+	Cooper	ed by (ComCo	1 1

Scanned by CamScanner

Problem 3

The Matlab code for this assignment is listed in lst 1.

3a)

By using forward kinematics, the homogeneous transformation matrices H_2^0 and H_e^0 were found. Since all the the joints are revolute, the translation velocity part of the Jacobian matrix of the end-effector is given by

$$J_v = \left[z_0^0 \times (P_e^0 - P_0^0) \quad | \quad z_1^0 \times (P_e^0 - P_1^0) \quad | \quad z_2^0 \times (P_e^0 - P_2^0) \right] \tag{1}$$

The position vectors and axis vectors can be easily obtained by looking at the third and fourth column of the corresponding homogeneous transformation matrix. Performing the cross-products then yields

$$J_v = \begin{bmatrix} -L_3c_1c_{23} - L_2c_1c_2 & L_3s_1s_{23} + L_2s_1s_2 & L_3s_1s_{23} \\ -L_3s_1c_{23} - L_2s_1c_2 & -L_3c_1s_{23} - L_2c_1s_2 & -L_3c_1s_{23} \\ 0 & L_3c_{23} + L_2c_2 & L_3c_{23} \end{bmatrix}$$
(2)

3b)

Using MATLAB, the determinant was calculated to be

$$det(J_v) = -L_2L_3(L_2c_2s_3 - L_3s_3 + L_3c_3^2s_2 + L_3c_2c_3s_3)$$
(3)

Applying algebra and trigonometric identities, the determinant can be rewritten as

$$det(J_v) = -L_2 L_3 s_3 (L_2 c_2 + L_3 c_{23}) \tag{4}$$

We can see from eq. (4) that the manipulator has singular position whenever

$$s_3 = 0 \implies \theta_3 = 0 \lor \theta_3 = \pi \tag{5}$$

and whenever

$$L_2c_2 + L_3c_{23} = 0 (6)$$

3c)

When J_v is rank deficient, we have that $N(J_v) \neq \phi$. As found in the previous task, the Jacobian is rank deficient in three different cases.

Case 1

This singular position is obtained when $\theta_3 = 0$. Using MATLAB, we obtain the following basis for the null space of the Jacobian

$$Null(J_v) = span \left\{ \begin{bmatrix} 0\\ -2/5\\ 1 \end{bmatrix} \right\}$$
 (7)

In this configuration the manipulator has its third joint fully extended. It is therefore intuitive that no values of θ_1 lies in the null space of J_v . A rotation around the z_0 -axis will impose a movement in the end-effector. The last two elements of the vector spanning the null space represents a linear relationship between θ_2 and θ_3 . In order to keep the end-effector still, a decrease in θ_2 imposes an increase in θ_3 . By looking at a drawing of the manipulator in this configuration, the linear relationship between the two angular velocities makes sense. The ratio between the two angular velocities is a consequence of non-equal link lengths.

Case 2

This singular position is obtained when $\theta_3 = \pi$. The basis for the null space of the Jacobian is in this case the following

$$Null(J_v) = span \left\{ \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \right\}$$
 (8)

In this configuration the manipulator has its third joint fully contracted. Equal to the previous case, a rotation around the z_0 -axis will impose a movement in end-effector. Picturing the manipulator in this configuration, the linear relationship between $\dot{\theta_2}$ and $\dot{\theta_3}$ is sensible. If θ_2 increases, θ_3 must also increase in order to make end-effector still.

Case 3

This singular position is obtained when $L_2c_2 + L_3c_{23} = 0$. The expression can be rewritten into the following expression

$$\theta_3 = \cos^{-1}\left(-\frac{L_2}{L_3}\cos\theta_2\right) - \theta_2 \tag{9}$$

The basis of the null space of Jacobian is in this case the following

$$Null(J_v) = span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
 (10)

This singular configuration is shown in the textbook, where it is illustrated that the end-effector lies on the z_0 -axis. Looking at the figure, it becomes clear that the only rotation that will not impose a movement in the end-effector is a rotation around the z_0 -axis.

Code

```
Listing 1: Code for problem 3
   clc; clear; close all;
  % Parameters
   syms theta1 theta2 theta3 L1 L2 L3 real;
  % Problem 3a
  % Forward kinematics
   H01 = DH_{\text{matrix}}(L1, \text{theta1+sym}(pi)/2, 0, \text{sym}(pi)/2);
  H12 = DH_{\text{matrix}}(0, \text{theta2}, L2, 0);
   H2e = DH_{matrix}(0, theta3, L3, 0);
14
  H02 = H01*H12;
   H0e = H02*H2e;
16
  % Extract position
  P01 = H01(1:3,4);
  P02 = H02(1:3,4);
   P0e = H0e(1:3,4);
22
  \% Extract z-axis
   z0 = [0 \ 0 \ 1];
   z1 = H01(1:3,3);
   z\,2\ =\ H02\,(\,1\,{:}\,3\ ,3\,)\ ;
   ze = H0e(1:3,3);
  % Every joint is revolute
  % Calculate translation velocity part of Jacobian matrix
       of end-effector
   Jv = [cross(z0, P0e) cross(z1, (P0e-P01)) cross(z2, (P0e-P02))]
       ))];
32
33
  % Problem 3b
35
  % Calculate determinant
   detJv = simplify(det(Jv));
37
38
  % Applying further algebraic manipulation and
       trigonometric identities on the determinant gives
```

```
condition for
          % singular configuration
41
          % Problem 3c
43
           Jv = simplify(subs(Jv, [L1 L2 L3], [0.5 1.5 1]));
45
46
           \% Case 1, theta3 = 0
47
           Jv1 = subs(Jv, theta3, 0);
            nullsp1 = null(Jv1);
49
50
          \% Case 2, theta3 = pi
           Jv2 = subs(Jv, theta3, pi);
            nullsp2 = null(Jv2);
53
          \% \text{ Case } 3, \text{ L2c2} + \text{L3c23} = 0
          % The expression can be rewritten as
          \% theta3 = acos(-L2/L3*cos(theta2))-theta2
           Jv3 = subs(Jv, theta3, acos(-L2/L3*cos(theta2))-theta2);
           Jv3 = simplify(subs(Jv3, [L1 L2 L3], [0.5 1.5 1]));
            nullsp3 = null(Jv3);
62
           % Functions
63
64
            function M = DH_matrix(d, theta, a, alpha) % Calculate
65
                           Denavit-Hartenberg Matrix
                            M = [\cos(theta) - \sin(theta) * \cos(alpha) \sin(theta) * \sin(thet
66
                                            (alpha) a*cos(theta); sin(theta) cos(theta)*cos(
                                            alpha) -cos(theta)*sin(alpha) a*sin(theta); 0 sin(
                                            alpha) cos(alpha) d; 0 0 0 1];
          end
```