DD2430 Final presentation

Group 10 - Project 14

Introduction

- Self-grooming behavior
- The study of behavior is essential for the understanding of the brain
- Mice serve as models for us humans
- Computer vision framework for behavior analysis
- In collaboration with Fisone laboratory at Karolinska Institutet

Problem Description

- Detection, tracking and quantification of mice self-grooming behavior
- DeepLabCut for pose-estimation extraction given video input
- Model self-grooming behavior through pose-estimates using machine learning/statistical models

Implementation Steps

parameter analysis

Data Collection

Analysis

Behaviour Modelling

Results and Evaluation

Methods Utilized:

TDA

LSTM

Record Raw Videos

Record Raw Videos

Extract General Behaviour Frames

Select and Train DLC Model

DLC Training

Select Pretrained Network

- ResNet 101
- ResNet 50

Record Raw Videos

Extrac Beł Fr

If Grooming markers are not accurate:

- Extract more grooming frames
- Re-label the frames
- Merge with previous dataset
- Re-Train with initial weights from previous training

Select and Train DLC Model Predict and Evaluate Tracking

Repeat Process for Grooming

Data

- Video
 - Resolution: 1920 x 1080
 - 50 FPS
 - Recorded for the same Mouse
 - Around 3 hrs of recording, i.e 540,000 frames
 - DLC trained for 120,0000 iterations, which took around 15-16 hours
- Information contained in each predicted marker
 - Bodypart id
 - Frame id
 - Position in frame: (x,y)
 - Likelihood of prediction
- For example:
 - For a video with *N* number of frames
 - Given that, 8 body parts are tracked
 - We obtain, (N x 3) x 8 unique marker points

Observed Trends

 Grooming behaviour is much less frequent as compared to other behaviours

- Mouse mostly grooms in one corner of the cage
- Distinct point clusters,
 corresponding to motion and
 stationary behaviours

Trajectories

TDA Based Model - Persistent Homology

Persistence Barcodes Illustration

doi: https://doi.org/10.1371/journal.pone.0126383.g004

Model Setting - Stable Ranks Computation

- Sliding window of size 2 seconds (100 frames) with 1 second overlap
- Each sliding window: a point cloud of 16 points in 100 dimensional space
- Pairwise distances measured by correlation metric

$$d(x,y) = 1 - \frac{x_c \cdot y_c}{\|x_c\| \|y_c\|}$$

A modified correlation metric with '+' sign to replace '-' is also tested

- Stable ranks for barcodes $\{(a_i < b_i) | i = 1, ..., r\}$

$$\widehat{\operatorname{rank}}(t) = \{\text{number of bars s.t. } b_i - a_i \ge t\}$$

H0 Homology is considered

Illustration of Behaviour Segment Signature

Model Setting - Classifiers

SVM with homology stable rank kernel, balanced class weights

homology stable rank kernel definition (Frontiers in Applied Mathematics and Statistics, 2021):

$$K_d(X,Y) = \int_0^\infty \widehat{\operatorname{rank}}_d(X) \widehat{\operatorname{rank}}_d(Y) dt$$

k-Nearest Neighbours with interleaving distances, subsampling equal size of grooming & non-grooming

Interleaving distances definition:

$$d_{\bowtie}(f,g) = \inf\{v|f(x) \ge g(x+v) \text{ and } g(x) \ge f(x+v) \text{ for any } x\}$$

Best Results

9-NN on ARIMA filtered trajectories, default correlation metric

	Train	Validation	Test
f1 Grooming	0.83	0.50	0.48
f1 Non-grooming	0.83	0.79	0.90
Weighted Average Accuracy	0.83	0.73	0.86

Findings, Limitations and Future Work

- Grooming precision is low due to large FP (false positives)
- kNN performs better than SVM
- Pairwise correlations are variant to motion directions
- In future: designing a new coordinate system for mouse which captures angle invariance and reflexivity

LSTM-Based Model

Many to many network.

The network is composed of the following blocks:

- Pre-processing block;
- 2. Bidirectional LSTM encoder;
- 3. Attention mechanism;
- 4. Unidirectional LSTM decoder;
- 5. Fully Connected Network + LogSoftmax.

For simplicity, we only tuned the following:

- Pre-processing technique
- Sequence length

Pre-processing Techniques

Three distinct techniques have been evaluated:

- Recentering with respect to frame center (see image);
- Recentering with respect to sequence center;
- Normalization

LSTM - Evaluation and Test

Behaviour Prediction Example

With LSTM With TDA

Conclusion

Results

- Moderate accuracy in separation of grooming and non-grooming behaviors

Future work

- Robustness and generalizability
- Different experimental settings

Challenges

Low quality mice recordings

Implementation Steps

Challenges

- Lack of data with good quality
- Need to collect more videos in better conditions
- De-noising still needs improvement
- Have to start with behaviour modelling asap due to time limit
 - Have done some research on it

Tracking points of interest are hidden

Noise in trajectories due to wrong predictions

Implementation Steps

PARTIALLY DONE

TO BE DONE

Previous Work (Remove)

- Inspired by study of Joel Sjöbom et al. at Lund university [1]
 - Studied neural circuits
- Deep learning methods for behavior modeling [2, 3]
 - Long short-term memory networks (LSTM)
 - Recurrent convolutional neural networks (CRNN)

- 1. Joel Sjöbom, Martin Tamté, Pär Halje, Ivani Brys, and Per Petersson. Cortical and striatal circuits together encode transitions in natural behavior. Science Advances, 6(41):eabc1173, 2020.
- 2. Koji Kobayashi, Seiji Matsushita, Naoyuki Shimizu, Sakura Masuko, Masahito Yamamoto, and Takahisa Murata. Automated detection of mouse scratching behaviour using convolutional recurrent neural network. Nature research, 2021.
- 3. Elsbeth A. van Dam, Lucas P.J.J. Noldus, and Marcel A.J. van Gerven. Deep learning improves automated rodent behavior recognition within a specific experimental setup. Journal of Neuroscience Methods, 332:108536, 2020.