

Università Degli Studi Di L'Aquila

Secondo Parziale di Algoritmi e Strutture Dati con Laboratorio Martedì 29 Gennaio 2008 - Proff. Guido Proietti e Giovanna Melideo

DCL	ivi i tuoi dati \Longrightarrow	Cogne	ome:			Nome:	 	N	latricola:	 	
ESERCIZ	IO 1 (Teoria): D	omande	a ris	posta m	ultipla						
	Questa parte è c								_		

Pre soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una x la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la × erroneamente apposta (ovvero, in questo modo ⊗) e rifare la x sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Dati due elementi u, v appartenenti ad un universo totalmente ordinato U, una funzione hash $h(\cdot)$ si dice perfetta se: a) $u = v \implies h(u) \neq h(v)$ b) $u \neq v \Rightarrow h(u) = h(v)$ c) $u = v \Rightarrow$ h(u) = h(v)d) $u \neq v \Rightarrow h(u) \neq h(v)$
- 2. Siano X e Y due stringhe di lunghezza m ed n. Qual è la complessità dell'algoritmo per la determinazione della distanza tra X e Y basato sulla tecnica della programmazione dinamica?
 - a) O(mn)b) O(n) c) O(m+n)d) O(m)
- 3. Qual è il minimo numero di archi da eliminare nel seguente grafo per renderlo non connesso: a) 0 b) 1 c) 2
- 4. Quanti archi vanno aggiunti al grafo di cui alla domanda (3) per renderlo completo? b) 7 c) 14 d) 21
- 5. La visita in profondità del grafo di cui alla domanda (3) eseguita partendo dal nodo f restituisce un albero DFS di altezza al più:
- 6. Si consideri il grafo di cui alla domanda (3), e si orientino gli archi dal nodo con lettera minore al nodo con lettera maggiore secondo l'ordine alfabetico. Qual è la distanza tra il nodo a e il nodo g? $d) +\infty$ b) 10 c) 2
- 7. Dato un grafo completo con n vertici rappresentato tramite liste di adiacenza, l'algoritmo di Dijkstra realizzato con heap binario
 - a) $\Theta(n^2)$ c) $O(n^2)$ d) $O(n^2 \log n)$ b) $\Theta(m+n\log n)$
- 8. L'algoritmo di Floyd e Warshall applicato ad un grafo pesato con un numero di archi $m = \Theta(n \log n)$, ha complessità: b) $\Theta(n+m)$ c) $\Theta(n^2 \log n)$ d) $O(m \log n)$
- 9. L'operazione Union(A, B) di 2 insiemi disgiunti A, B di O(n) elementi con alberi QuickFind con l'euristica dell'unione pesata costa nel caso peggiore:
 - b) $\Theta(1)$ c) $\Theta(n \log n)$ d) O(n)
- 10. Dato il grafo di domanda (3), l'algoritmo di Prim, partendo dal nodo a, inserisce come terzo arco:

.)	(c,d)	b) (b,g)	c) (c,g)	d) (d, e)

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										0
d										

ESERCIZIO 2 (Laboratorio): Giovanna!