Question 1. Define the predicates

P(n): For any set A, if |A| = n then $|\mathcal{P}(A)| = 2^n$

$$Q(A, n): |A| = n \Longrightarrow |\mathcal{P}(A)| = 2^n$$

a) Prove $\forall n \in \mathbb{N}, P(n)$.

Proof. Base Case. To show P(0), consider any set A such that |A| = 0. Then $A = \emptyset$ and its only subset is \emptyset . Thus $|\mathcal{P}(A)| = 1 = 2^0$, verifying that P(0) is true.

Induction Step. Suppose P(k) holds for some $k \in \mathbb{N}$. Now P(k+1) will be proven to hold. Let A be a set such that |A| = k+1. k+1 is at least 1, so A possesses at least one element, which will be denoted as a.

Consider the set $A \setminus \{a\}$. Since $|A \setminus \{a\}| = k$, by the induction hypothesis,

$$|\mathcal{P}(A \setminus \{a\})| = 2^k$$

Notice that $\mathcal{P}(A \setminus \{a\})$ contains all the subsets of A that do not contain a. The remaining subsets must all contain a. The remaining subsets of A can be obtained by taking every individual element in $\mathcal{P}(A \setminus \{a\})$ and unioning it with $\{a\}$. Thus A contains twice as many subsets as $A \setminus \{a\}$. In mathematical terms,

$$|\mathcal{P}(A)| = 2 \cdot |\mathcal{P}(A \setminus \{a\})| = 2 \cdot 2^k = 2^{k+1}$$

It has been shown that P(k+1) holds.

By the principle of simple induction, $\forall n \in \mathbb{N}, P(n)$.

b) Prove that for every set $A, \forall n \in \mathbb{N}, Q(n)$. This method does not work. Here is the attempt at the proof:

Proof. Fix a set A. Proceed with using simple induction.

Base Case. Let n = 0. To show Q(A, n) holds, suppose that |A| = 0. Then $A = \emptyset$. Thus $\mathcal{P}(A) = \{\emptyset\} \implies |\mathcal{P}(A)| = 1 = 2^0$.

Thus Q(A, 0).

Induction Step. Suppose that Q(A, k) holds for some $k \in \mathbb{N}$. To show Q(A, k+1), suppose |A| = k+1. However, this is where the problem arises.

The induction hypothesis cannot be utilised since our assumption requires |A| = k + 1, while the condition to use the induction hypothesis is |A| = k.

Thus the proof by induction cannot be continued.

Question 2. Let $n, m \in \mathbb{N}$. Let A, B be arbitrary finite sets of size m and n respectively.

a) How many fuctions are there with domain A and co-domain B? It can be shown using simple induction on m that the answer to this question is n^m .

Proof. For $n, m \in \mathbb{N}$, define the predicate

P(m): $\forall n \in \mathbb{N}$, there are n^m functions with finite domain of size m and finite co-domain of size n. Fix $m \in \mathbb{N}$.

Base Case. Let m = 0. There are no functions that can map to nothing, therefore the number of functions is $0^n = 0$.

Induction Step. Suppose that P(n,k) holds for every $n \in \mathbb{N}$, but only for some $k \in \mathbb{N}$. Let A, B be finite sets such that |A| = k + 1 and |B| = n. A contains at least one element a. Consider the set $A \setminus \{a\}$. By the induction hypothesis, there are n^k functions with domain $A \setminus \{a\}$ and co-domain B. For every such function f_k and some $b \in B$, define a new function

$$f_b(x) = \begin{cases} f_k(x), & \text{if } x \in A \setminus \{a\}; \\ b, & \text{if } x = a; \end{cases}$$

Every function that maps elements from A to B can be written in this form. Thus there are $n^k * n = n^{k+1}$ fuctions that map from A to B.

b) Use part (a) to prove the original statement in Q1 directly without the use of induction.

Proof. Let A be a set such that |A| = n. Every subset A' of A can be defined as a function f that maps elements of A to $\{0,1\}$:

For any
$$a \in A$$
, if $a \in A'$, $f(a) = 1$. Otherwise, $f(a) = 0$

From the previous part, there are 2^n different functions with domain A and co-domain $\{0,1\}$, which also means that there are 2^n subsets of A, which implies that $\mathcal{P}(A) = 2^n$.