Números complejos

Ing. Viviana CAPPELLO

El conjunto de los **números complejos** se designa con la letra mayúscula **C**.

 $C=\{(a,b)/a\in R \land b\in R\}$

La unidad imaginaria: Se llama así al número $\sqrt{-1}$ y se designa por la letra i.

$$\sqrt{-4} = \sqrt{4} \cdot \sqrt{-1} = 2i$$

Números imaginarios

Un **número imaginario** se denota por **b***i*, donde **b** es un número real, e *i* es la unidad imaginaria. Con los **números imaginarios** podemos calcular raíces con índice par y radicando negativo.

$$x^2 + 9 = 0$$

$$x^2 = -9$$

$$x^2 = \pm \sqrt{-9} = \pm 3i$$

Potencias de la unidad imaginaria

 $i^0 = 1$

 $i^1 = i$

 $i^2 = -1$

 $i^3 = -i$

Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto vale una determinada potencia de *i*, se divide el exponente entre 4, y el resto es el exponente de la potencia equivalente a la dada.

i²²

22 4

2.5

$$i^{22} = (i^4)^5 \cdot i^2 = -1$$

Formas de escritura de un número complejo

Números complejos en forma de par ordenado: (a,b), par porque son 2 elementos, y ordenado porque la primera componente hace referencia a la parte real y la segunda a la parte imaginaria del número.

Números complejos en forma binómica: a + bi

El número a se llama parte real del número complejo.

El número **b** se llama **parte imaginaria** del **número complejo**.

Si b = 0 el **número complejo** se reduce a un **número real** ya que a + 0i = a.

Si a = 0 el **número complejo** se reduce a **bi**, y se dice que es un **número imaginario puro**.

Los **números complejos a + bi** y **-a - bi** se llaman **opuestos**.

Los números complejos z = a + bi y z = a - bi se llaman conjugados.

Dos números complejos son iguales cuando tienen la misma componente real y la misma componente imaginaria.

Representación gráfica de números complejos

Los **números complejos** se representan en ejes cartesianos. El **eje X** se llama **eje real** y el **Y**, **eje imaginario**. **El número complejo a +** *bi* se representa:

Por el punto (a,b), que recibe el nombre de afijo,

Los afijos de los números reales se sitúan sobre el eje real, X. Y los imaginarios sobre el eje imaginario, Y.

Ing. Viviana CAPPELLO

Operaciones con números complejos en la forma binómica

Suma algebraica de números complejos

La suma algebraica de números complejos se realiza **sumando y/o restando partes reales entre sí y partes imaginarias entre sí.**

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$
 $(a + bi) - (c + di) = (a - c) + (b - d)i$

$$(5+2i)+(-8+3i)-(4-2i)=(5-8-4)+(2+3+2)i=-7+7i$$

Producto de números complejos

El producto de los números complejos se realiza aplicando la propiedad **distributiva** y teniendo en cuenta que $i^2 = -1$.

$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$

$$(5+2i) \cdot (2-3i) = 10-15i+4i-6i^2 = 10-11i+6=16-11i$$

Cociente de números complejos

El cociente de números complejos se resuelve multiplicando numerador y denominador por el conjugado de éste. El objetivo es eliminar la i del denominador (análogo procedimiento al de racionalización)

$$\frac{a+bi}{c+di} = \frac{(a+bi) \cdot (c-di)}{(c+di) \cdot (c-di)} = \frac{(ac+bd) + (bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

$$\frac{3+2i}{1-2i} = \frac{\left(3+2i\right)\cdot\left(1+2i\right)}{\left(1-2i\right)\cdot\left(1+2i\right)} = \frac{3+6i+2i+4i^2}{1-\left(2i\right)^2} = \frac{3+8i-4}{1+4} = -\frac{1}{5} + \frac{8}{5}i$$

Números complejos en forma polar

Módulo de un número complejo

El módulo de un número complejo es la distancia determinada por el origen de coordenadas y su afijo. Se designa por |z|.

$$z = a + bi$$

$$r = |z| = \sqrt{a^2 + b^2}$$

Ing. Viviana CAPPELLO

Argumento de un número complejo

El argumento de un número complejo es el ángulo que forma el módulo del complejo con el eje real. Se designa por arg(z).

$$\alpha = arctg \frac{b}{a} \Rightarrow \begin{cases} \frac{+b}{+a} = \alpha & \frac{+b}{-a} = 180^{\circ} - \alpha \\ \frac{-b}{-a} = 180^{\circ} + \alpha & \frac{-b}{+a} = 360^{\circ} - \alpha \end{cases}$$

Expresión de un número complejo en forma polar.

Números complejos en forma trigonométrica.

A partir de la forma polar es muy fácil pasar a una nueva forma denominada trigonométrica.

$$a + bi = r_{\alpha} = r (\cos \alpha + i \sin \alpha)$$

$$a = r \cdot \cos \alpha$$
 $b = r \cdot \sin \alpha$

Binómica
$$z = a + bi$$
Polar $z = r_{\alpha}$ trigonométrica $z = r (\cos \alpha + i \sin \alpha)$

Ejemplos: Pasar a la forma polar y trigonométrica:

Ejemplo 1:

$$z = 1 + \sqrt{3}i$$

$$|z| = \sqrt{1^2 + (\sqrt{3})^2} = 2$$

$$\alpha = \text{arc tg } \frac{+\sqrt{3}}{+1} = 60^{\circ}$$

$$z = 2_{60^{\circ}} = 2(\cos 60^{\circ} + i \sin 60^{\circ})$$

Ejemplo 2:

$$z = -1 + \sqrt{3}i$$

$$|z| = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$

$$\alpha = arc tg \frac{\pm\sqrt{3}}{-1} = 120^{\circ}$$

$$z = 2_{120^{\circ}} = 2(\cos 120^{\circ} + i \sin 120^{\circ})$$

Ejemplo 3:

$$z = -1 - \sqrt{3}i$$

$$|z| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$$

$$\alpha = arc tg \frac{-\sqrt{3}}{-1} = 240^{\circ}$$

$$z = 2_{2409}$$

Ejemplo 4:

$$z = 1 - \sqrt{3}i$$

$$|z| = \sqrt{1^2 + (-\sqrt{3})^2} = 2$$

$$\alpha = \text{arc tg } \frac{-\sqrt{3}}{+1} = 300^{\circ}$$

Pasar a la forma binómica:

$$z = 2_{120^{\circ}}$$

Para pasar de la forma polar a la binómica, tenemos que pasar en primer lugar a la forma trigonométrica

$$r_{\alpha} = r (\cos \alpha + i \sin \alpha)$$

$$z = 2 \cdot (\cos 120^{\circ} + i \sin 120^{\circ})$$

$$a = 2 \cdot \cos 120^{\circ} = 2\left(-\frac{1}{2}\right) = -1$$

$$b = 2 \cdot sen120^{\circ} = 2\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$$

$$z = -1 + \sqrt{3}i$$

Producto y cociente de complejos en forma polar

La multiplicación de dos números complejos es otro número complejo tal que:

Su módulo es el producto de los módulos. Su argumento es la suma de los argumentos.

$$r_{\alpha}\cdot r_{\beta}'=\left(r\cdot r'\right)_{\alpha+\beta}$$

$$6_{45^{\circ}} \cdot 3_{15^{\circ}} = 18_{60^{\circ}}$$

La división de dos números complejos es otro número complejo tal que:

Su módulo es el cociente de los módulos. Su argumento es la diferencia de los argumentos.

$$\frac{\mathbf{r}_{\alpha}}{\mathbf{r}_{\beta}'} = \left(\frac{\mathbf{r}}{\cdot \mathbf{r}'}\right)_{\alpha - \beta}$$

$$6_{45^{\circ}}:3_{15^{\circ}}=2_{30^{\circ}}$$

Interpretación geométrica del producto de números complejos.

Al multiplicar un número complejo $z=r_{\alpha}$ por 1_{β} se gira z un ángulo β alrededor del origen.

$$r_{\alpha} \cdot 1_{\beta} = r_{\alpha + \beta}$$

Ing. Viviana CAPPELLO

Potencia de número complejo

La potencia n-ésima de número complejo es otro número complejo tal que:

Su módulo es la potencia n-ésima del módulo. Su argumento es n veces el argumento dado.

$$\left(\boldsymbol{r}_{\alpha}\right)^{n}=\left(\boldsymbol{r}\right)^{n}_{-n\cdot\alpha}$$

$$(2_{30^{\circ}})^4 = 16_{120^{\circ}}$$

Esta operación conviene hacerla siempre en forma polar.

A partir del modo de cálculo de las potencias de números complejos se obtiene la Fórmula de Moivre

$$[r(\cos\alpha + i sen \alpha)]^n = r^n \cdot (\cos n\alpha + i sen n\alpha)$$

Raíz de números complejos

$$\sqrt{r_a}$$

La raíz enésima de número complejo es otro número complejo tal que:

Su módulo es la raíz enésima del módulo.

$$\mathbf{r}' = \sqrt[q]{\mathbf{r}}$$

Su argumento es:

Números complejos

Ing. Viviana CAPPELLO

$$\alpha' = \frac{\alpha + 2\pi k}{n}$$

$$k = 0,1,2,3,...$$
 (n-1)

Al igual que las potencias, las raíces conviene que se hagan expresando el número complejo en forma polar.

$$\sqrt[6]{1+i}$$

$$|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

$$\alpha = arc \ tg \ \frac{+1}{+1} = 45^{\circ}$$

$$z = (\sqrt{2})_{45^{\circ}}$$

$$\sqrt[6]{\left(\sqrt{2}\right)_{45^{\circ}}}$$

$$|Z'| = \sqrt[6]{\left(\sqrt{2}\right)} = \sqrt[12]{2}$$

$$\alpha = \frac{45^{o} + 360^{o}k}{6} \begin{cases} k = 0 & \alpha_{1} = 7^{o} \ 30^{\circ} & z_{1}' = {12/2 \choose \sqrt{2}}_{7^{\circ} 30'} \\ k = 1 & \alpha_{2} = 67^{o} \ 30^{\circ} & z_{2}' = {12/2 \choose \sqrt{2}}_{67^{\circ} 30'} \\ k = 2 & \alpha_{3} = 127^{o} \ 30^{\circ} & z_{3}' = {12/2 \choose \sqrt{2}}_{127^{\circ} 30'} \\ k = 3 & \alpha_{4} = 187^{o} \ 30^{\circ} & z_{4}' = {12/2 \choose \sqrt{2}}_{187^{\circ} 30'} \\ k = 4 & \alpha_{5} = 247^{o} \ 30^{\circ} & z_{6}' = {12/2 \choose \sqrt{2}}_{247^{\circ} 30'} \\ k = 5 & \alpha_{6} = 307^{o} \ 30^{\circ} & z_{6}' = {12/2 \choose \sqrt{2}}_{307^{\circ} 30'} \end{cases}$$

Números complejos

Ing. Viviana CAPPELLO

Para complementar la lectura de esta breve teoría se sugiere ver en Youtube los siguientes videos explicativos:

- https://youtu.be/VIvjiSuB7Mo
- https://youtu.be/3OcUtgPobNA
- https://youtu.be/4bid1cw676Q
- https://youtu.be/XxV8SYFES-c
- https://youtu.be/BGKRzMRR_yQ
- https://youtu.be/YQuDN2MUKkk
- https://youtu.be/IK1SaP8uvVM
- https://youtu.be/QNmzekX20tY

Bibliografía obligatoria y recomendada:

- Armando Rojo: Álgebra I y II
- Hector Di Caro: Álgebra y Geometría Analítica.
- Sagastume Berra, G. Fernández: Álgebra y Cálculo Numérico.
- Lentin, Rivaud: Álgebra Moderna
- Donato Di Pietro: Geometría Analítica.
- Ch. H. Lehmann Geometría Analítica.
- Louis Leithold El Cálculo con Geometría
- P. Smith, A. Gale Elementos de G. Analítica