United College of Engineering and Research, Allahabad Department of Computer Science & Engineering B.Tech.

Discrete Structure and Theory of Logic (KCS-303) Assignment-5

Q. No.	Question	СО	Bloom's level
1	Show that there does not exist a graph with 5 vertices with degrees 1, 3, 4, 2, 3 respectively.	CO5	L2
2	Define planar graph. Prove that for any connected planar graph, $v-e+r=2$ Where v , e , r is the number of vertices, edges, and regions of the graph respectively.	CO5	L2
3	Find the adjacency matrix A = [a _{ij}] of graph given in following figure:-	CO5	L2
4	What are the degrees and what are the neighborhoods of the vertices in the graphs G and H displayed in Figure ?	CO5	L2
5	Are the graphs G and H displayed in the figure bipartite?	CO5	L3

	g e d e d		
	G H		
6	What are the chromatic numbers of the graphs G and H shown in figure	CO5	L2
	G H		
7	Define Multigraph. Explain with example in brief.	CO5	L2
8	Let G be a graph with 10 vertices. If 4 vertices has degree 4 and 6 vertices has degree 5, then find the number of edges of G.	CO5	L3
9	Which of the following simple graph have a Hamiltonian circuit or, if not a Hamiltonian path?	CO5	L2
	G1 G2 G3		
10	i. Homomorphism and Isomorphism graphsii. Euler and Hamiltonian Graphiii. Planar and Complete bipartite graph	CO5	L2

