Statitics

Measures of Dispersion

This gives a measure of the dispersion of the observation around the measure of central tendency of the data collected.

Range

Range of a data = Maximum value - Minimum value.

Mean Deviation

Mean deviation of central tendancy 'a' of a data is given by

 $M.D(a) = \frac{\text{Sum of absolute values of deviations from 'a'}}{\text{Number of observations}} - Mean(\bar{x}) = \frac{\sum\limits_{i=1}^{n} f_i x_i}{\sum\limits_{i=1}^{n} f_i}$

• Ungrouped data

Mean deviation for the data $x_1, x_2, x_3, ..., x_n$

$$M.D(a) = \frac{\sum_{i=1}^{n} |x_i - a|}{n}$$

$$- Mean(\bar{x}) = \frac{\sum_{i=1}^{n} x_i}{n}$$

– Median is $\frac{n+1}{2}^{th}$ term when n is odd ,mean of $\frac{n}{2}^{th}$ and $\frac{n}{2}+1^{th}$ term when

• Grouped Discrete frequency distribution

Mean deviation for the data $x_1, x_2, ..., x_n$ occurring with frequencies $f_1, f_2, ..., f_n$ respectively is

$$M.D(a) = \frac{\sum_{i=1}^{n} f_i |x_i - a|}{\sum_{i=1}^{n} f_i}$$

$$- Mean(\bar{x}) = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

- To find the median form a column for cumulative frequencies

Grouped **Continuous** frequency distribution

A continuous frequency distribution is a series in which the data are classified into different class-intervals without gaps alongwith their respective frequencies.

To find the Mean deviation about a central tendancy 'a', choose x_i as midpoint of the intervals and convert it into Discrete.

$$- Mean(\bar{x}) = \frac{\sum\limits_{i=1}^{n} f_i x_i}{\sum\limits_{i=1}^{n} f_i}$$

- median = $l + \frac{c(\frac{N}{2} - f_0)}{f_1}$ l -lower limit of the median class f_0 - Cumulative frequency of the class preceding the median class.

 f_1 - Cumulative frequency of the median class.

c - width of the interval $N - \sum_{i=0}^{n} f_i$

$$N - \sum_{n=0}^{\infty} f_i$$

Shortcut method for finding mean of frequency distribution

- 1. Select an assumed mean 'a' (value close to middle)
- 2. substract assumed mean from eaach
- 3. choose appropriate h and divide each $x_i - a$ by h and define it as d_i
- 4. find mean using the fromula

$$\bar{x} = a + \frac{\sum_{i=1}^{i=1} f_i d_i}{N} \times h$$

Variance and Standard Deviation

standard deviation = $\sqrt{variance}$

Ungrouped Data

variance for the data $x_1, x_2, x_3, ..., x_n$ is $\sigma^2 = \frac{1}{n} \sum_{n=0}^{i=1} (x_i - \bar{x})^2$

Grouped frequency distribution

Variance for the data $x_1, x_2, ..., x_n$ occurring with frequencies $f_1, f_2, ..., f_n$ respectively is

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} f_{i}(x_{i} - \bar{x})^{2}$$

Another formula for standard deviation

$$\sigma = \frac{1}{N} \sqrt{N \sum_{i=1}^{i=1} f_i x_i^2 - (\sum_{i=1}^{i=1} f_i x_i)^2}$$

Shortcut method to find variance and standard deviation

Let the assumed mean be 'A' and the scale be reduced to $\frac{1}{h}$ times (h being the width of class-intervals). Let the step-deviations or the new values be y_i .

$$y_i = \frac{x_i - A}{h}$$

then

$$\sigma = \frac{h}{N} \sqrt{N \sum_{i=1}^{i=1} f_i y_i^2 - (\sum_{i=1}^{i=1} f_i y_i)^2}$$