Снижение размерности

RS School Machine Learning course

Зачем нужно снижать размерность

- ullet Обычно наблюдения даны в \mathbb{R}^d .
- «Проклятие размерности»: при больших d падает эффективность алгоритмов и перестаёт работать геометрическая интуиция.
 - У многих классов моделей время обучения зависит линейно от \emph{d}
 - Разреженность данных: желательно, чтобы наблюдений в обучающей выборке было хотя бы в несколько раз больше d
 - Евклидово расстояние теряет чувствительность с ростом \emph{d}
- Чтобы справиться с «проклятием размерности», данные отображают в $\mathbb{R}^{d'}$, $d' \ll d$.
- ullet Когда d'=2, можно визуализировать на плоскости.

Методы снижения размерности

- Отбор признаков (feature selection):
 - по статистическим свойствам
 - по скоррелированности друг с другом
 - по предсказательной силе модели на подмножестве признаков...
- Выделение признаков (feature extraction) сегодня о нём.
- Линейные методы: искомое отображение $\mathbb{R}^d o \mathbb{R}^{d'}$ можно представить матрицей d imes d'.
 - Метод главных компонент
- Нелинейные методы: отображение из произвольного метрического пространства, не обязательно записывается в явном виде.
 - ⊳ Многомерное шкалирование
 - t-SNE
 - ▶ UMAP

Метод главных компонент

- > Центрируем данные: вычтем среднее по каждому признаку.
- ▶ Найдём такую прямую, проходящую через ноль, проекции точек на которую дают наибольшую дисперсию.
- ⊳ Среди всех перпендикуляров к ней опять найдём такую, что проекции точек на неё дают наибольшую дисперсию.
- ightarrow ...И так далее, пока не наберётся d'.
- ightharpoonup Можно продолжать до размерности d, получим новый базис в исходном пространстве.
- Это метод главных компонент (principal components analysis, PCA).
 - На практике обычно выполняют сингулярное разложение матрицы данных или считают собственные вектора ковариационной матрицы.

Многомерное шкалирование

- Что если попробовать как можно точнее сохранить расстояния между точками?
- ightharpoonup Пусть x_1, \ldots, x_N исходные точки в (X, ρ) .
- ightharpoonup Заведём проекции этих точек $y_1, \, \dots, \, y_N$ в $\mathbb{R}^{d'}$.
- ightharpoonup Вычислим все попарные расстояния ho_{ij} между исходными точками и δ_{ij} между проекциями, где δ обычное евклидово расстояние.
- Минимизируем

$$\sum_{i} \sum_{j} (\rho_{ij} - \delta_{ij})^2$$

- можно градиентным спуском, двигая проекции.
- Это многомерное шкалирование (multidimensional scaling).

t-SNE

- Дальнейшее развитие этой идеи алгоритм t-SNE (t-distributed stochastic neighbor embedding).
- ρ_{ij} между исходными точками и δ_{ij} между проекциями записываются через распределения вероятностей.
- Минимизируется расстояние между распределениями (KL-divergence).

UMAP

- ightharpoonup Параметр n число соседей.
- Строится ориентированный взвешенный граф:
 - вершины точки данных
 - из каждой вершины исходит n рёбер к ближайшим соседям
 - сумма весов рёбер ограничена константой
- ightarrow Веса рёбер симметризуются \Rightarrow пропадает ориентация.
- ightharpoonup Граф вкладывается в $\mathbb{R}^{d'}$, используется force-directed алгоритм: вершины притягиваются и отталкиваются, в зависимости от весов рёбер.