METODY MONTE CARLO

Metoda Monte Carlo

- Simulační metoda založená na užití stochastických procesů a generování náhodných čísel
 - opakované náhodné vzorkování pro získání numerických výsledků
- Historie
 - × poprvé v projektu Manhattan (Los Alamos 1944, E. Fermi)
 - výzkum dynamiky řetězových reakcí vysoce obohaceného uranu
 - John von Neumann, Stanislaw Ulam a Nicholas Metropolis
 - nedokázali vyřešit metodami teoretické fyziky
 - navrhli výpočet pomocí metody Monte Carlo
 - × ENIAC, MANIAC
- Vlastnosti
 - × numerická metoda
 - nelze řešit analyticky
 - x možné řešit libovolné matematické úlohy
 - nejen úlohy pravděpodobnostního charakteru
- K realizaci náhodného pokusu na počítači potřebujeme mít k dispozici nějakou náhodnou veličinu

Využití metody Monte Carlo

- × dnes mnoho oblastí vědy a inženýrství
- různé typy aplikací
- obecné úlohy
 - x numerická integrace
 - × geometrické úlohy
- počítačová fyzika a fyzikální modelování
 - × termodynamika
 - x stochastické molekulární simulace
 - × vývoj na strukturální úrovni
- počítačová grafika
 - x realistické osvětlení scény
- finanční inženýrství
 - × optimalizace portfolia akcií
- mnohé jiné oblasti
 - × výzkum nových léků
 - × ekonofyzika, sociofyzika atd.

3kV2kV

10kV

Metoda Monte Carlo

Princip

- × výsledky počítány na základě opakovaného náhodného výběru vzorků a statistické analýzy
- \times modelování takové náhodné veličiny X, že její střední hodnota E(X) je rovna hledané hodnotě a

$$E(X) = a$$

× pomocí mnohonásobného opakování **náhodných pokusů** lze získat střední hodnotu hledané veličiny

$$a = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- známe-li rozdělení pravděpodobností pro dílčí procesy jevu, můžeme modelovat rozdělení pravděpodobnosti určité konfigurace systému
 - simulace pohybu částic v tekutině pomocí modelu tuhých koulí

opakuje experiment s náhodně zvolenými daty s velkým počtem opakování za účelem získání souhrnné statistiky z výsledků experimentu

Monte Carlo – postup

- Postup:
- 1. Analýza problému a vytvoření modelu
 - × popis jevu pomocí náhodné veličiny
 - x minimální, maximální hodnoty, omezení, ...
 - imes např. budu určovat π z podílu obsahu čtverce a kruhu
- 2. Generování a transformace náhodné veličiny (rozehrání)
 - × z rozdělení, které jevu odpovídá
 - × Gauss, rovnoměrné, trojúhelníkové, Poissonovo, atd.
 - × např. budu generovat body rozmístěné rovnoměrně
- 3. Opakování předchozího kroku a zpracování
 - × např. počítání bodů uvnitř kruhu
- 4. Statistické vyhodnocení výsledků
 - × souhrnné statistiky, histogramy, intervaly spolehlivosti
 - × např. podíl obsahů

Buffonova úloha o jehle

- Buffonova úloha o jehle
 - × George-Louis Leclerc, Comte de Buffon, 1777

Jaká je pravděpodobnost P, že jehla protne jednu z čar?

$$\times$$
 $P = \frac{2d}{t\pi}$, $P \approx \frac{n}{n_0} \rightarrow \pi \approx 2d\frac{n_0}{n}$

- × n: celkový počet hodů jehly
- imes n_0 : kolikrát jehla protne jednu z čar

Pomocí mnohonásobných náhodných pokusů lze spočítat číslo π s <u>libovolnou přesností</u>

Buffonova úloha o jehle

- Buffonova úloha o jehle
 - Chyba metody Monte Carlo by měla klesat proporčně k převrácené hodnotě odmocniny z počtu kroků

 $\epsilon \sim \frac{1}{\sqrt{n_0}}$

Výsledky pro N pokusů

Počet pokusů N	Získané číslo π
10	3,333333333333334
100	3,030303030303030
1 000	3,129890453834116
10 000	3,106554830692762
100 000	3,139027529271432
1 000 000	3,142583738071931
10 000 000	3,141338395495446
100 000 000	3,141720284443186
1 000 000 000	3,141666595285384

Výpočet čísla π – čtvrtkruh

- Mějme jednotkovou kružnici, resp. 1/4 jednotkové kružnice
- Obsah čtverce $S_{\square} = r^2$
- Obsah čtvrtkruhu $S_{\rm o}=rac{\pi r^2}{4}$

$$S_0 = \frac{\pi r^2}{4} \to \frac{S_0}{r^2} = \frac{\pi}{4} \Rightarrow \frac{S_0}{S_{\Box}} = \frac{\pi}{4}$$

$$\pi\cong\frac{4n'}{N}$$

Výpočet čísla π – čtvrtkruh

- Generujeme bod $P = P(\xi, \gamma)$
- (ξ, γ) jsou náhodná čísla z intervalu (0,1)
- Úspěšný pokus

$$\times$$
 | r_{0P} | < 1 \Rightarrow $n' = n' + 1$

Počet pokusů N	Získané číslo π
10	3,2000
100	3,1600
1000	3,1000
10000	3,1444

$$\pi \cong \frac{4n'}{N}$$

výsledek pro 1000 pokusů

Výpočet určitého integrálu

Metoda Monte Carlo – lze spočítat obsah nebo objem oblasti, tedy i určitý integrál

Výpočet určitého integrálu

$$I = \int_{a}^{b} f(x) \mathrm{d}x$$

- Dvě metody
 - × geometrická
 - pomocí střední hodnoty

Metoda Monte Carlo pracuje obvykle se střední hodnotou sledované veličiny

Výpočet určitého integrálu – geom. metoda

- Výpočet určitého integrálu geometrická metoda
 - × integrál obsah plochy pod křivkou funkce f(x) na intervalu (a,b)
 - × funkce f(x) je na (a,b):
 - omezená
 - spojitá
 - imes označme f_{sup} supremum funkce (ξ, φ) náhodná čísla z intervalu (a,b) a $(0,f_{sup})$
- Postup výpočtu
 - × generujeme celkem n dvojic (ξ_i, φ_i)
 - × počítáme pokusy pod křivkou (n'): jestliže platí $\varphi_i < f(\xi_i)$, potom n' = n' + 1
- Výsledná hodnota integrálu:

$$I \approx f_{sup}(b-a)\frac{n'}{n}$$

Určitý integrál – věta o střední hodnotě

ullet Necht' funkce f(x) je spojitá a nezáporná na intervalu $\langle a,b
angle$

Pak existuje číslo $\xi \in \langle a, b \rangle$ tak, že platí:

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a)$$

- × existuje bod ξ , kde obsah plochy pod křivkou = obsahu obdélníku daného (b-a) $f(\xi)$
- Hodnota

$$f(\xi) = \frac{1}{(b-a)} \int_{a}^{b} f(x) dx = \langle f \rangle$$

vyjadřuje střední hodnotu $\langle f \rangle$ funkce f(x) na intervalu $\langle a,b \rangle$

Výpočet určitého integrálu – stř. hodnota

Výpočet určitého integrálu – střední hodnota

$$\int_{b}^{a} f(x) dx = (b - a)\langle f \rangle$$

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(\xi_i)$$

- imes hodnoty ξ_i budeme generovat
- \times ξ náhodné číslo z intervalu (a,b)
 - rovnoměrně rozdělené

Výpočet určitého integrálu – srovnání

Střední hodnota

$$I \approx (b-a)\frac{1}{N} \sum_{i=1}^{N} f(\xi_i)$$

Geometrická metoda

$$I \approx f_{sup}(b-a)\frac{n'}{n}$$

- Geometrická metoda má větší rozptyl
 - × je (zpravidla) méně přesná
 - x nemusí být méně efektivní (celkový počet pokusů)

Náhodný posun částice

- Generování bodu na kružnici (2D): Polární soustava souřadnic
 - × Zobrazení z (x, y) do (r, φ) pomocí transformace

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad \varphi \in (0, 2\pi)$$

Náhodný posun částice

- Generování bodu na kouli (3D): Sférická soustava souřadnic
 - × Zobrazení z (x, y, z) do (r, φ, ϑ) pomoci transformace

$$x = r \cos \theta \sin \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

$$\varphi \in (0,2\pi), \quad \vartheta \in (0,\pi)$$

Simulace ideálního plynu

- Model ideálního plynu
 - x mezičásticový potenciál lze popsat Lennard-Jonesovým vzorcem
 - \times síla $F = -\nabla V$

Způsoby řešení

- Molekulární dynamika
 - × řešení pohybových rovnic
 - aktualizují se polohy částic
 na základě sil působících mezi nim
 - × možnost sledovat časový vývoj systému
- Monte Carlo
 - × generování náhodných konfigurací systému
 - přijetí či odmítnutí na základě kritérií
 - × pouze posunutí částic bez ohledu na interakce
 - × studium rovnovážných termodyn. vlastností

Simulace ideálního plynu

- Postup simulace vývoje polohy ideálního plynu:
 - × 1. vygeneruj náhodně částice v simulačním boxu
 - × 2. posuň náhodně vybranou částici
 - × 3. pokud se energie zmenšila, částici tam ponech
 - × 4. pokud se zhoršila, akceptujeme posun s určitou pravděpodobností
 - je určena Metropolisovým algoritmem a závisí na teplotě systému
 - × 5. pokračuj do konce iteračního cyklu

- Ověření funkčnosti
 - × vykreslení vývoje energie
 - × uspořádat molekuly na počátku nevýhodně
 - a porovnat s koncovým stavem (viz obr.)
 - molekuly v nevýhodné původní poloze (modrá) a v koncové (oranžová)

Optimalizace portfolia akcií

- Chceme rozložit finance do vybraných akcií, ale nevíme, kolik do jakých akcií investovat
- Můžeme spočítat určité příznaky
 - x na základě analýzy časového vývoje historických dat o akciích
 - dají informaci o volatilitě (rozptylu) ceny akcie a riziku, které z investice plyne

Postup

- vygenerujeme náhodné rozložení portfolia
- zkoumáme, které z mnoha pokusů o rozložení dopadly nejlépe
 - z pohledu očekávané návratnosti a míře očekávaného rizika
- × o tom vypovídá tzv. Sharpeho poměr

lsingův model magnetismu

- Model interakce mezi magnetickými momenty ve feromagnetické látce
 - × spiny se mohou nacházet ve dvou hodnotách (up $\sigma_i = 1$, down $\sigma_i = -1$)
 - × spiny se nacházejí ve mřížce a mohou interagovat se svými sousedy
 - × stejně natočené spiny mají v páru nižší energii než při opačném natočení
 - × systém se snaží dostat do stavu s minimální energií

$$H = -\sum_{\langle i,j\rangle} J \,\sigma_i \sigma_j$$

- Závislost na teplotě
 - 1. při vysoké teplotě spin snadno změní orientaci a systém je málo organizovaný
 - 2. při nízké teplotě jsou upřednostňovány stavy s nižší energií
 - vytvoří se malé zarovnané domény
 - 3. pokud se velikost domén zvětší, jednotlivé momenty se přidají k celkovému magnetickému poli
- Cíl
 - × jak bude vypadat výsledné natočení spinů v daném čase

Metody MC v počítačové grafice

- Aproximace řešení stochastickým vzorkováním
- Vyšetřování trajektorie od pozorovatele nebo od zdroje světla

 $f(x, \omega_r, \omega_i)$ dvousměrná odrazová distribuční funkce (BRDF)

$$L_r(x, \omega_r) = \int f(x, \omega_r, \omega_i) L_i(x, \omega_i) \cos \Theta d\omega_i$$
 odražená radiance BRDF vstupní radiance promítnutá na kolmou plochu

Metody MC v počítačové grafice

Výhody

- libovolně definované zobrazované objekty
- × bez předzpracování
- × jakákoliv BRDF
- × nestranné výsledné řešení
- × nízká paměťová náročnost

Nevýhody

- × pomalá konvergence
- × přesnost roste s odmocninou chyba metody klesá s počtem pokusů N jako
- \times empirická složitost $O(\log(n))$

sá s počtem pokusů N jako artheta \sim (n počet objektů)

