Programme de colle : semaine 11

I	Arithmétique	
	I.1	Questions de cours
		Enoncer et démontrer la propriété fondamentale de \mathbb{Z}
		Enoncer et démontrer le théorème de la division euclidienne
		Enoncer et démontrer le théorème de Bézout
		Enoncer et démontrer la proposition caractérisant le pgcd par les idéaux
	I.2	Exercices types
		Exercice type 1
		Exercice type 2
		Exercice type 3
II	Polynômes	
	II.1	Questions de cours
		Démontrer que $\mathbb{A}[X]$ est un anneau
		Enoncer et démontrer la formule de la dérivée d'un produit de deux polynômes.
		Enoncer la formule de Leibniz
		Enoncer la formule de la dérivée d'une composition de polynômes
	II.2	Exercices types
		Exercice type 1
		Exercice type 2

I Arithmétique

I.1 Questions de cours

Enoncer et démontrer la propriété fondamentale de \mathbb{Z} .

Théorème 12.1

Toute partie non vide et minorée de $\mathbb Z$ admet un plus petit élément.

Soit A une partie non vide et minorée de \mathbb{Z} .

On note \mathcal{M} l'ensemble des minorants de A.

Par hypothèse, $\mathcal{M} \neq \emptyset$.

Supposons par l'absurde que :

$$\forall a \in \mathbb{Z}, a \in \mathcal{M} \Rightarrow a+1 \in \mathcal{M}$$

D'après le principe de récurrence, si $a_0 \in \mathcal{M}$ est fixé :

$$\forall n \geq a_0, n \in \mathcal{M}$$

En particulier, pour $n \in A \ (A \neq \emptyset)$ on a :

$$n \ge a_0 \ (a_0 \ \text{est un minorant})$$

Donc $n \in \mathcal{M}$.

Donc $n+1 \in \mathcal{M}$.

Donc n+1 est un minorant de A.

Donc $n+1 \le n$.

Absurde.

Ainsi, on choisit $a \in \mathbb{Z}$ avec $a \in \mathcal{M}$ et $a + 1 \notin \mathcal{M}$.

On choisit donc $n \in A$ tel que :

$$a \le n < a + 1$$

Donc $n = a \in A$.

Donc $a = \min(A)$.

Enoncer et démontrer le théorème de la division euclidienne.

Soit $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$. Il existe un unique coupe $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que :

$$a = bq + r$$

avec $0 \le r < |b|$. Cette égalité est appelée division euclidienne de a par b, l'entier q est alors appelé quotient et l'entier r le reste, tandis que a porte le nom de dividende et b celui de diviseur.

Existence:

On suppose dans un premier temps que b > 0.

Soit $a \in \mathbb{Z}$.

On note $A = \{n \in \mathbb{Z}, bn \leq a\}$.

A est un sous-ensemble non vide de \mathbb{Z} et majoré.

Il admet donc un plus grand élément, noté q. On a donc $q \in A$ et $q + 1 \notin A$.

$$bq \le a < b(q+1)$$

donc
$$0 \le a - bq < b$$

On pose alors r = a - bq. L'exsitence est alors prouvée pour b > 0.

Si b < 0, alors -b > 0 et on choisit $(q, r) \in \mathbb{Z}^2$ tel que :

$$a = -b \times q + r$$
 avec $0 \le r < -b$

Le couple (-q, r) convient.

Unicité:

On suppose a = bq + r = bq' + r' avec $0 \le r,' < |b|$.

Donc b(q - q') = r' - r.

Done
$$b(q-q') = r - r$$
.
Done $b|x|q-q'| = |r'-r| < b|x|$.

Donc |q - q'| < 1.

Donc q = q'.

Puis r = r'.

Enoncer et démontrer le théorème de Bézout.

Soit a et b deux entiers. Alors a et b sont premiers entre eux si et seulement si il existe $(u,v) \in \mathbb{Z}^2$ tel que

$$au + bv = 1$$

On $\overline{\text{suppose } a}$ et b premiers entre eux.

Donc $\mathcal{D}_{a,b} = \{\pm 1\}.$

Soit r le dernier reste non nul dans l'algorithme d'Euclide,

$$\mathcal{D}_r = \mathcal{D}_{a,b} = \{\pm 1\}$$

Donc $r = \pm 1$.

D'après le théorème de Bézout, il existe deux entiers u et v tels que :

$$au + bv = 1$$

 \Leftarrow

Réciproquement, si au + bv = 1, alors pour tout $d \in \mathcal{D}_{a,b}$ d|au + bv donc d|1 donc $d = \pm 1$. Donc $\mathcal{D}_{a,b} = \{\pm 1\}$.

Enoncer et démontrer la proposition caractérisant le pgcd par les idéaux.

Propostion 12.37

Soit a et b deux entiers, alors d est le pgcd de a et b si et seulement si $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Soit $(a, b) \in \mathbb{Z}^2$. $a\mathbb{Z}$ et $b\mathbb{Z}$ dont des idéaux de \mathbb{Z} .

Donc $a\mathbb{Z} + b\mathbb{Z}$ est un idéal de \mathbb{Z} , donc en particulier un sous-groupe de \mathbb{Z} .

On choisit donc $d \geq 0$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.

Montrons que $d = pgcd(a, b) = a \wedge b$.

D'une part :

$$d \in d\mathbb{Z}$$

$$donc d = au + bv \text{ (avec } (u, v) \in \mathbb{Z}^2$$

$$e a\mathbb{Z} + b\mathbb{Z}$$
 or $a \wedge b|a \text{ et } a \wedge b|b$
$$donc a \wedge b|au + bv$$
 soit $a \wedge b|d$

D'autre part, $a \wedge b$ est le dernier reste non nul de l'algorithme d'Euclide, donc (12.23) :

$$a \wedge b = au + bv \text{ (avec } (u, v) \in \mathbb{Z}^2)$$

 $\in a\mathbb{Z} + b\mathbb{Z}$
 $\in d\mathbb{Z}$

Donc $d|a \wedge b$.

Ainsi, d et $a \wedge b$ sont positifs et associés, donc égaux.

I.2 Exercices types

Exercice type 1

Exercice 1

Soit $a \ge 2$ et $n \ge 2$. On suppose que $a^n - 1$ premier.

- 1. Proposer une factorisation non triviale de a^n-1 en produit de deux entiers et montrer que a=2.
- 2. Montrer de même que n est premier.
- 1. On a:

$$a^{n} - 1 = a^{n} - 1^{n}$$

$$= (a - 1) \sum_{k=0}^{n-1} a^{k} \times 1^{n-k-1}$$

$$= (a - 1) \sum_{k=0}^{n-1} a^{k}$$

Or $a^n - 1$ est premier, donc $a - 1 = a^n - 1$ ou $a - 1 = \sum_{k=0}^{n-1} a$.

Comme $a \ge 2$ et $n \ge 2$, $a^n - 1 \ne a - 1$.

 ${\bf Donc}:$

$$a^{n} - 1 = \sum_{k=0}^{n-1} a^{k}$$

$$\operatorname{donc} a - 1 = 1$$

$$\operatorname{soit} a = 2$$

2. On suppose que $n \notin \mathbb{P}$. Donc on choisit $(u, v) \in [2, n - 1]^2$ tel que :

$$n = uv$$

Ainsi on a:

$$2^{n} - 1 = (2^{u})^{v} - (1^{u})^{v}$$

$$= \underbrace{(2^{u} - 1)}_{\geq 2} \underbrace{\sum_{k=0}^{v-1} 2^{uk}}_{\geq 2}$$

$$\not\in \mathbb{P}$$

Donc n est premier.

Exercice type 2

Exercice 2

- 1. (a) Factoriser $a^{2n+1} + b^{2n+1}$ par a + b pour tout $n \in \mathbb{N}$ et $(a, b) \in \mathbb{C}^2$.
 - (b) Pour tout $n \in \mathbb{N}^*$, montrer que si $2^n + 1$ est premier, alors n est une puissance de 2. Pour tout $n \in \mathbb{N}$, on pose $F_n = 2^{2^n} + 1$ (n-ème nombre de Fermat).
- 2. (a) Montrer que pour tout $n \in \mathbb{N}$,

$$F_{n+1} = F_0 \times \dots \times F_n + 2$$

(b) En déduire que F_m et F_n sont premiers entre eux pour tout m et n entiers naturels distincts.

1. (a)

$$a^{2n+1} + b^{2n+1} = (a+b) \sum_{k=0}^{2n} (-1)^k a^k b^{2n-k}$$

(b) Par contraposée. On suppose que n n'est pas une puissance de 2. On choisit $(q,p)\in\mathbb{N}^*\times\mathbb{N}$ tel que :

$$n = (2q+1)2^p$$

On a alors:

$$2^{n} + 1 = (2^{2^{p}})^{2q+1} + 1^{2q+1}$$
$$= (2^{2^{p}} + 1) \sum_{k=0}^{2q} (-1)^{k} (2^{2p})^{k}$$

Or ces facteurs sont strictement supérieurs à 1, donc $2^n + 1$ n'est pas premier.

2. (a) Soit $n \in \mathbb{N}$

$$P(n)$$
: " $F_{n+1} = F_0 \times ... \times F_n + 2$ "

Pour n = 0, $F_1 = 2^{2^1} + 1 = 5 = (2^{2^0} + 1) + 2 = F_0 + 2$ donc P(0) est vrai. Soit $n \in \mathbb{N}$. On suppose que P(n) est vrai.

$$\begin{split} F_{n+2} &= 2^{2^{n+2}} + 1 \\ &= (2^{2^{n+1}})^2 + 1 \\ &= (F_{n+1} - 1)^2 + 1 \\ &= F_{n+1}(F_{n+1} - 2) + 1 + 1 \\ &= F_{n+1} \times \prod_{k=0}^{n} F_k + 2 \text{ (Hypothèse de récurrence)} \\ &= \left[\prod_{k=0}^{n+1} F_k + 2 \right] \end{split}$$

P(n+1) est vrai, donc d'après le principe de récurrence :

$$\forall n \in \mathbb{N}, P(n)$$

(b)

$$F_n \wedge F_m = F_n \wedge \left(\prod_{m=1}^{k=0} F_k + 2\right)$$
$$= F_n \wedge 2 \text{ (car } n \in [0, m-1])$$
$$= 1 \text{ (car } F_n \text{ est impair)}$$

Donc F_n et F_m sont premiers entre eux.

Exercice type 3

Exercice 3

Soit $p \in \mathbb{P}$.

1. Montrer que

$$\forall y \in [\![1,p-1]\!], \exists ! x \in [\![1,p-1]\!], xy \equiv 1[p]$$

2. En déduire le théorème de Wilson :

$$(p-1)! \equiv -1[p]$$

3. On suppose p impair. Montrer que

$$\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv (-1)^{\frac{p+1}{2}}[p]$$

II Polynômes

II.1 Questions de cours

Démontrer que $\mathbb{A}[X]$ est un anneau.

Théorème 13.7

La somme et le produit définis ci-dessus munissent $\mathbb{A}[X]$ d'une structure d'anneau commutatif.

suites d'éléments de $\mathbb A$

- $(\mathbb{A}[X], +)$ est un sous-groupe de ($\mathbb{A}^{\mathbb{N}}$, +) abélien donc est bien un sous-groupe abélien.
- Montrons que \times est associative. Soit $(P, R, Q) \in \mathbb{A}[X]$. On note $P = (p_k)_{k \in \mathbb{N}}$, $R = (r_k)_{k \in \mathbb{N}}$, $Q = (q_k)_{k \in \mathbb{N}}$. Soit $n \in \mathbb{N}$.

$$(P \times (RQ))_n = \sum_{k=0}^n p_k (RQ)_{n-k}$$

$$= \sum_{i+j=n} p_i (RQ)_j$$

$$= \sum_{i+j=n} \left(p_i \sum_{k+l=j} r_k q_l \right)$$

$$= \sum_{i+k+l=n} p_i r_k q_l$$

$$= ((PR) \times Q)_n$$

— Notons $E = (1, 0, ...) = (\delta_{0n})_{n \in \mathbb{N}}$.

On a pour tout $n \in \mathbb{N}$:

$$(E \times P)_n = \sum_{i+j=n} E_i \times P_j$$
$$= \sum_{i+j=n} \delta_{0i} \times P_j$$
$$= P_n \ (i = 0, j = n)$$
$$= (P \times E)_n$$

Donc E est l'élément neutre de $\mathbb{A}[X]$.

$$\begin{split} [P \times (R+Q)]_n &= \sum_{i+j=n} p_i (R+q)_j \\ &= \sum_{i+j=n} p_i (r_j + a_j) \\ &= \sum_{i+j=n} p_i r_j + \sum_{i+j=n} p_i q_j \\ &= (PR)_n + (PQ)_n \\ &= [PR + PQ]_n \end{split}$$

Donc \times est distributive sur +.

— Comme A est commutatif:

$$\sum_{i+j=n} p_i q_j = \sum_{i+j=n} q_j p_i$$

Donc \times est commutatif.

Enoncer et démontrer la formule de la dérivée d'un produit de deux polynômes. Enoncer la formule de Leibniz.

Propostion 13.26

— Soit P et Q deux polynômes à coefficients dans \mathbb{A} . Alors

$$(PQ)' = P'Q + Q'P.$$

— Soit P_1, \ldots, P_n des polynômes à coefficients dans \mathbb{A} , alors

$$(P_1 \dots P_n)' = \sum_{i=1}^n P_1 \dots P_{i-1} P_i' P_{i+1} \dots P_n.$$

— Formule de Leibniz : Soit P et Q deux polynômes à coefficients dans $\mathbb A$ et $n \in \mathbb N$. Alors

$$(PQ)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P^{(k)} Q^{(n-k)}.$$

— Soit
$$P = \sum_{k \ge 0} a_k X^k, P' = \sum_{k \ge 1} k a_k X^{k-1}$$
 et $Q = \sum_{k \ge 0} b_k X^k, Q' = \sum_{k \ge 1} k b_k X^{k-1}$.
On a :

$$PQ = \sum_{k \ge 0} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) X^n$$

Donc:

$$(PQ)' = \sum_{n \{geq1} \left[n \sum_{k=0}^{n} a_k b_{n-k} \right] X^{n-1}$$
et $P'Q = \sum_{n \geq 0} \left[\sum_{k=0}^{n} (k+1) a_{k+1} b_{n-k} \right] X^n$
et $PQ' = \sum_{n \geq 0} \left[\sum_{k=0}^{n} a_k (n-k+1) b_{n-k+1} \right] X^n$
donc $P'Q + Q'P = \sum_{n \geq 0} \left[\sum_{k=0}^{n} (k+1) a_{k+1} b_{n-k} \right] X^n + \sum_{n \geq 0} \left[\sum_{k=0}^{n} (n-k+1) a_k b_{n-k+1} \right] X^n$

$$= \sum_{n \geq 0} \left[\sum_{k=1}^{n+1} k a_k b_{n-k+1} \right] X^n + \sum_{n \geq 0} \left[\sum_{k=0}^{n} (n-k+1) a_k b_{n-k+1} \right] X^n$$

$$= \sum_{n \geq 0} \left[(n+1) a_{n+1} b_0 + \sum_{k=1}^{n} (n+1) a_k b_{n-k+1} + (n+1) a_0 b_{n+1} \right] X^n$$

$$= \sum_{n \geq 0} \left[(n+1) \sum_{k=0}^{n+1} a_k b_{n-k+1} \right] X^n$$

— Récurrence immédiate.

Enoncer la formule de la dérivée d'une composition de polynômes.

Propostion 13.28

Soit P et Q dans $\mathbb{A}[X]$, alors

$$(Q \circ P)' = P' \times (Q' \circ P)$$

Soit
$$Q = \sum_{k \ge 0} a_k X^k$$
.
Ainsi $Q \circ P = \sum_{k \ge 0} a_k p^k$.

Donc:

$$(Q \circ P)' = \sum_{k \ge 0} a_k (p_k)' (13.24)$$

$$= \sum_{k \ge 1} k a_k p' p^{k-1} (13.27)$$

$$= P' \times \sum_{k \ge 1} k a_k p^{k-1}$$

$$= P' \times O' \circ P$$

II.2 Exercices types

Exercice type 1

Exercice 1

Simplifier $\sum_{k=0}^{r} {a \choose k} {b \choose r-k}$ pour tout $a, b, r \in \mathbb{N}$.

Soit $(a, b) \in \mathbb{N}^2$.

$$(1+X)^{a}(1+X)^{b} = (1+X)^{a+b}$$
 donc $\left(\sum_{k=0}^{a} \binom{a}{k} X^{k}\right) \left(\sum_{k=0}^{b} \binom{b}{k} X^{k}\right) = \sum_{k=0}^{a+b} \binom{a+b}{k} X^{k}$

Soit $r \in \mathbb{N}$. On identifie les coefficients en X^r , et on obtient :

$$\sum_{k=0}^r \binom{a}{k} \binom{b}{r-k} = \binom{a+b}{n}$$

Exercice type 2

Exercice 3

Résoudre les équations suivantes :

- 1. X(X+1)P'' + (X+2)P' P = 0, d'inconnue $P \in \mathbb{R}[X]$.
- 2. P(2X) = P'(X)P''(X) d'inconnue $P \in \mathbb{C}[X]$.
- 1. Par analyse-synthèse.

Analyse : On suppose que $\deg P \geq 2$

Soit a_n le coefficient constant. On obtient :

$$(n^2 - 1)a_n X^n + \ldots = 0$$

Abusrde.

Donc $\deg P < 2$.

Synthèse : Soit P = aX + b.

$$Psd' \Leftrightarrow a(X+2) - (aX+b) = 0$$

 $\Leftrightarrow 2a - b = 0$
 $donc S = R(X+2)$

2. Par analyse-synthèse.

Analyse : On suppose P solution de P(2X) = P'(X)P''(X).

C est intègre est de caractéristique nulle donc :

$$\deg P(2X) = \deg P'(X) + \deg P''(X)$$
 donc
$$\deg P \leq 3$$

Synthèse : Soit $(a, b, c, d) \in \mathbb{C}^4$ et $P = aX^3 + bX^2 + cX + d$.

$$P(2X) = P'(X)P''(X) \Leftrightarrow 8aX^3 + 4bX^2 + 2cX + d = (3aX^2 + 2bX + c)(6aX + 2b)$$

$$\Leftrightarrow 8aX^3 + 4bX^2 + 2cX + d = 18a^2X^3 + 18abX^2 + (4b^2 + 6ac)X + 2bc$$

$$\Leftrightarrow \begin{cases} 8a = 18a^2 \\ 4b = 18ab \\ 2c = 4b^2 + 6ac \\ d = 2bc \end{cases}$$

$$\Leftrightarrow \begin{cases} a = \frac{4}{9} \\ b = 0 \\ c = 0d = 0 \end{cases} \quad \text{ou} \begin{cases} a = 0 \\ b = 0 \\ c = 0 \\ d = 0 \end{cases}$$

$$\Leftrightarrow \mathcal{S} = \left\{ 0, \frac{4}{9}X^3 \right\}$$