

专注于商业智能BI和大数据的垂直社区平台

假设检验的基本概念(二)

Allen

www.hellobi.com

课程目录

- 假设检验的两类错误
- 显著性检验问题、显著性水平
- 求解引例
- 假设检验的一般步骤
- 小结

引例

设某厂生成一种灯泡,其寿命服从正态分布 x~N(μ,4000),过去较长时间来看,灯泡的平均寿命为1500小时。但是现在采用新生产线后,从生产的灯泡中随机抽取了25只,测得平均寿命为1700小时。问采用新生产线后,灯泡的寿命是否显著提高?

假设检验的两类错误

- 两种可能性:
- 1.若 H_0 为真,但是子样观察值仍然落入到拒绝域C中,那么这种假设检验的结果就是错误的
- 2.若 H_1 为真,但是子样观察值仍然落入非拒绝域 C^* 中,那么这种假设检验的结果也是错误的

假设检验的两类错误——第一类错误

- 第一类错误: 当^{H₀}为真,但是子样观察值仍然落入到拒绝域^C中,那么按照给定的检验法则,应当拒绝 H₀,就将这种错误称为第一类错误。
 其发生的概率称为犯第一类错误的概率或称拒真概率,通常记为α即: P⟨拒绝H₀|H₀为真⟩=α
- 引例中母体分布为 $X \sim N(\mu,40000)$, 若记 $\mu_0 = 1500$, 则原假设可表示为 $H_0 : \mu = \mu_0$ 备择假设可表示为 $H_1 : \mu > \mu_0$, 那么犯第一类错误的概率 α 为: $P\langle (x_1, x_2, \dots, x_n) \in C | \mu = \mu_0 \rangle = \alpha$

假设检验的两类错误——第二类错误

• 第二类错误:当 H_1 为真,但是子样观察值仍然落入非拒绝域 C^* 中,那么按照给定的检验法则,应当接受 H_0 ,就将这种错误称为第二类错误。其发生的概率称为犯第二类错误的概率或称受伪概率,通常记为 β 即:

$$P\langle$$
接受 $H_0|H_1$ 为真 $\rangle = \beta$

• 引例中母体分布为 $X \sim N(\mu,40000)$,若记 $\mu_0 = 1500$,则原假设可表示为 $H_0 : \mu = \mu_0$ 备择假设可表示为 $H_1 : \mu > \mu_0$,那么犯第二类错误的概率 β 为:

$$P\langle (x_1, x_2, \dots, x_n) \in C^* \mid \mu > \mu_0 \rangle = \beta$$

假设检验的两类错误

• 假设检验的两类错误见如下表格:

		母体情况	
		H ₀ 为真	H ₁ 为真
子样	∈临界域(拒绝#₀)	犯第一类错误	正确
	⊭临界域 (接受H₀)	正确	犯第二类错误

显著性检验问题、显著性水平

- 理想情况下,是找到一个临界域 c 使得范两类错误的概率 α 和 β 都很小,但是在样本容量 n 固定的情况下,两类错误都很小是不可能的,否则就会导致样本容量很大
- 显著性检验问题:如果只对犯第一类错误的概率加以限制,而不考虑 范第二类错误的概率,这种统计假设检验问题就称为显著性检验问题, 对给定的犯第一类错误的概率α 称为显著性水平

显著性检验问题、显著性水平

- 如果一个检验确定,那么临界域 C 和补集 $^{C^{*}}$ 就完全确定,那么在实际中就要寻找检验统计量 $^{t=t(X_{1},X_{2},\cdots,X_{n})}$,记为 $^{F}=\{t=t(x_{1},x_{2},\cdots,x_{n});(x_{1},x_{2},\cdots,x_{n})\in C\}$ 和 $F^{*}=\{t=t(x_{1},x_{2},\cdots,x_{n});(x_{1},x_{2},\cdots,x_{n})\in C^{*}\}$
- 于是子样空间划分问题变为检验统计量求值问题,即: $P\langle t \in F | H_0 \rangle \exists p \rangle = P\langle (x_1, x_2, \cdots, x_n) \in C | H_0 \rangle \exists p \rangle = \alpha \, \mathbb{1} P\langle t \in F^* | H_1 \rangle \exists p \rangle = P\langle (x_1, x_2, \cdots, x_n) \in C^* | H_1 \rangle \exists p \rangle = \beta$
- 如果在 H_0 成立的条件下,统计量t 的分布已知,那么对于给定 α 就可以通过等式 $P(t \in F | H_0$ 为真 $) = \alpha$ 来确定区域F

求解引例

- 若原假设 $H_0: \mu=1500$ 为真,那么样本容量为25的子样均值 \bar{x} 服从 $N\left(\mu_0, \frac{\sigma_0^2}{n}\right) = N(1500,1600)$ 分布,如果假设 $H_1: \mu>1500$ 为真,子样均值 \bar{x} 比 μ_0 大的可能性就大,那么子样观察值所得均值比 μ_0 大到什么程度才认为拒绝原假设
- 如果取 $u=\frac{\overline{X}-\mu_0}{\sigma_0/\sqrt{n}}=\frac{\overline{X}-1500}{40}$ 作为检验统计量,那么在原假设为真时u 服从 N(0,1) 分布, 于是对于给定显著性水平 α 有 $P(u \ge u_{1-\alpha}) = \alpha$

 $u_{1-\alpha}$ 是 N(0,1) 的 $1-\alpha$ 分位数

求解引例

- 由上可知当子样观测值算出的 $u(x_1, x_2, \cdots, x_n) > u_{1-\alpha}$ 时就拒绝原假设 H_0 。这样如果取显著性水平 $\alpha = 0.05$,从标准正态分布表中就可查得 $u_{1-\alpha} = 1.65$,从而得到临界域为 $C = \left\{ (x_1, x_2, \cdots, x_n) : \frac{\bar{x} 1500}{40} \ge 1.65 \right\}$ 即 $C = \left\{ (x_1, x_2, \cdots, x_n) : \bar{x} \ge 1566 \right\}$
- 这样如果一次抽样的观测值 $(x_1,x_2,\cdots,x_n)\in C$,就拒绝原假设 H_0 ,这时犯第一类错误的概率是 $\alpha=0.05$,由于观测到的灯泡寿命均值是1700,所以就拒绝原假设

假设检验的一般步骤

• 1.根据实际问题要求建立原假设#。和备择假设#。

原假设 $H_0: \mu = 1500$ 和备择假设 $H_1: \mu > 1500$

• 2.选取合适的检验统计量使其在#。为真时不含未知参数,可求分位数

检验统计量
$$u=\frac{\overline{X}-\mu_0}{\sigma_0/\sqrt{n}}=\frac{\overline{X}-1500}{40}$$
 服从标准正态分布

3.给定显著性水平 α (一般为0.1,0.05,0.01等),求出临界域

显著性水平 $\alpha = 0.05$ 求出临界域 $C = \{(x_1, x_2, \dots, x_n): \bar{x} \ge 1566\}$

• 4.若子样观测值算得的u 值在临界域中,则拒绝原假设 H_0 ,否则接受 H_0

观测值1700落在临界域中,就拒绝原假设

小结

- 假设检验的两类错误
- 显著性检验问题、显著性水平
- 求解引例
- 假设检验的一般步骤
- 小结

