PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-338956

(43) Date of publication of application: 10.12.1999

(51)Int.Cl.

G06K 7/00

G06K 7/10 G11B 19/06

(71)Applicant: VICTOR CO OF JAPAN LTD

(22)Date of filing:

(21)Application number: 10-141745

22.05.1998

(72)Inventor: SUZUKI YOSHIKI

(54) DISK BAR CODE DATA REPRODUCING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To precisely generate the time interval per bit of bar code data to be reproduced and the detection time of a synchronizing mark pattern by calculating the time interval of one bit of base code data corresponding to the measured rotational frequency of an optical disk based on time interval value information.

SOLUTION: A rotational speed detector 6 outputs a pulse corresponding to the rotational speed of a spindle motor 5 to disk rotational frequency measuring parts 513 and 516. When detecting it by the disk rotational frequency measuring part 513 that an optical disk is rotated with a prescribed frequency, a one-bit time interval calculation part 514 reads out the time interval value of each pattern in a memory part 515 and indicates a time interval for decoding of each pattern. A bar code decoder 13 decodes bar code data by the indicated time interval value and the detection interval value of a symbol mark pattern indicated from a synchronizing mark pattern time interval calculation part 517.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-338956

(43)公開日 平成11年(1999)12月10日

(51) Int.Cl. ⁸		識別記号	FΙ	····			· · · · · · · · · · · · · · · · · · ·		
G06K	7/00		G06K	7/00	G				
	= /				1	U			
	7/10			7/10	1	R			
0115					,	Y			
G11B	19/06	501	G11B	19/06 501L					
			審査論才	大	謝求項の数 2	OL	(全 10 頁)		
(21)出願番号		特願平10-141745	(71)出願人						
(22) 出願日		平成10年(1998) 5月22日			フター株式会社 製機浜市神奈川区	【守屋町	「3丁目12番		
			(72)発明者						
			(74)代理人		三好 秀和)		
		·							

(54) 【発明の名称】 ディスクバーコードデータ再生装置

(57) 【要約】

【課題】 パーコードデータの 1 ビットあたりの時間問題及びシンクマークパターンの検出問隔時間を精度よく作り出すこと。

【解決手段】 ディスク回転周波数測定部が図示しないディスクの回転周波数を検出すると、1 ビット時間間隔 第出部はメモリ部からディスクの回転周波数が24日2時のパーコードデータパターンの規格上取り得る時間問題を読み出し、これに基いて前記ディスク回転周波数に対応する1 ビット時間間隔を求めてパーコードデータデコーダに指示する。同様に、シンクマークパターン時間間隔算出部はメモリ部からディスク回転周波数が24日2時の規格上のシンクマークパターンの検出間隔時間を読み出し、これに基いて前記ディスクの回転周波数に対応するシンクマークパターンの時間間隔を求めてパーコードデータデコーダに指示する。

【特許請求の範囲】

【請求項1】 光ディスクから読み出されたバーコード データの1ビットの時間間隔及び同バーコードデータの 同期信号によって前記読み出されたバーコードデータを デコードするディスクバーコードデータ再生装置におい

前紀光ディスクの圓転周波数を測定する測定手段と、 前記光ディスクの基準回転周波数に対応して発生する前 記バーコードデータの正規の前記時間間隔値情報を格納 した記憶手段と、

前記測定手段により測定された前記光ディスクの回転周 波数に応じたバーコードデータの1ビットの時間間隔 を、前記記憶手段に格納されている前記時間開隔値情報 に基いて算出する算出手段とを備えたことを特徴とする ディスクバーコードデータ再生装置。

【請求項2】 光ディスクから読み出されたバーコード データの1ビットの時間間隔及び同バーコードデータの 同期信号によって前記読み出されたバーコードデータを デコードするディスクバーコードデータ再生装置におい て、

前記光ディスクの回転周波数を測定する測定手段と、 前記光ディスクの基準回転周波数に対応して発生する前 紀パーコードデータの同期信号の正規の検出間隔時間値 情報を格納した記憶手段と、

前記測定手段により測定された前記光ディスクの回転周 波数に応じた前記問期信号の検出間隔時間を、前記記憶 手段に格納されている前記同期信号の検出間隔時間値情 報に基いて算出する算出手段とを備えたことを特徴とす るディスクバーコードデータ再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスク等に通 常データとは別に記録されているバーコードデータを再 生するディスクバーコードデータ再生装置に関する。

[0002]

【従来の技術】光ディスクは、コンパクトディスク(以 下CD) の発売以来、今日のDVDディスクに至まで、 数多くの種類が販売されてきた。近年この光ディスクの 複製防止や管理等の手段に用いるため、通常のデータと は別の記録方式により、バーコードデータやDVDディ スク用のバーコードデータであるDVDBCAデータが 少量のデータとして、光ディスクの内周部分に記録され たディスクが製造されるようになってきた。

【0003】このバーコードデータやDVDBCAデー クは、通常のデータに比べると記録方法が機械精度に頼 るものが多く、1ビットを記録するバーコードマークの 規格寸法範囲が広いため、全てのビットを正確に読むに は、正確な1ビット当たりの時間間隔を作り出すことが 必要であった。

生装置を有する光ディスク再生装置の構成例を示したブ ロック図である。光ディスク1は、バーコードデータ若 しくはDVDBCAデータが記録されたディスクであ る。上記ディスクの情報を読み出すために、光ピックア ップ2は、情報が記録された光ディスク1に対してレー ザー光を照射し、これにより反射した光量を検出するこ とによって光ディスク1に記録された情報を読み出す。

【0005】この時、光ピックアップ2から得られるフ ォーカスエラー信号でフオーカス制御回路 16及びフオ 一カス駆動回路20を駆動して、光ピックアップ2のア クチュエータを動作させてフォーカスサーボを行う。同 時に、回転速度検出装置16の値でスピンドル制御回路 15及びスピンドル駆動回路19を駆動してスピンドル モータ5を回転させる。若しくは任意の半径位置検出セ ンサ3とスレッドモータ4、スレッド制御回路18及び スレッド駆動回路22により光ピックアップ2を移動さ せた位置で光ピックアップ2から検出されるメインデー タの検出波形をもとに、スピンドル制御回路 1 5 及びス ピンドル駆動回路 19を駆動してスピンドルモータ6を 回転させる。

【0006】そしてバーコードデーク若しくはDVDB CAデータを検出するために、メインデータからのアド レス情報、若しくは任意の半径位置検出器3の値をもと に、スレッドモータオ、スレッド制御回路 18及びスレ ッド駆動回路22を使用して、光ピックアップ2をバー コードデータ或いはDVDBCAデータの記録されたデ ィスク半径位置に移動させる。

【0007】バーコードデータ若しくはDVDBCAデ ータを検出可能な位置で、光ビックアップ2から出力さ 30 れ、アンプ7、スライサ9を通した再生波形から、バー コード1ビット時間間隔算出装置10によって前記1ビ ットあたりの時間を算出する。更にバーコードシンクマ 一ク間隔算出装置11によってシンクマークパターン間 のシンクマークバターン保護窓を設定する。バーコード データデコーダー3は、上記1ビットあたりの時間間隔 とシンクマークパターン間のシンクマーク保護窓を用い て、バーコードデータのデコードを行う。

【0008】ここで、DVDBCAデータのデコードを 使用してDVDBCA1ピットあたりの時間間隔を作り 出すための具体的な説明を行う。例えば現状の光ピック アップ2がDVDBCAのデータエリア内にある時、メ インデータ波形がBCAデータのために正常に出力され ないため、過常のCLVスピンドルサーボは使用できな いが、DVD規格で使われているI倍速CLV時の24 Hュでディスク1が回転しているとする。この時光ピッ クアップ2から読み出されるBCAデータ波形は、図4 に示すような波形となるようにディスク」上に記録され

【0009】DVDBCAデータのデコードのため、図 【0004】図3は従来のディスクバーコードデータ再 50 5に示すようにDVD規格書に書かれたシンクマークS

Bbcaから始まるBCAプリアンブルデータが記録された1行を使用してDVDBCAデータの1ビットあたりの時間間隔を算出する方法を考える。

【0010】この1行のシンクマークエリアには図6に示すように、R2変調で記録されるエリアとPE-R2変調で記録されるエリアが有る。また、データのエリアはPE-R2変調で記録されている。R2変調とPE-R2変調は図7に示す如くである。

【0011】8チャンネルビットC8~C15で構成される固定シンクパターンがR2変調で記録されるエリアでは、「1」を記録する3つのチャンネビットC9, C10, C14がある。一方4データビットB0~B3で構成されるシンクコードはPE-R2変調で記録され、「0」を「1,0」に、「1」を「0,1」で記録する

「0」を「1,0」に、「1」を「0,1」で記録する ので、4データビットのシンクコードは8チャンネルビ ットとなり、4つの「1」を記録するチャンネルビット が発生する。

【0012】1行に記録されるデータは4パイトでPE-RZ変調で、「0」を「1,0」に、「1」を「0,1」で記録すると、4×8×2=64チャンネルビットとなり、4×8=32の「1」を記録するチャンネルビットが発生する。

【0013】よってシンクマークSBbcaから始まる 1行に記録されるデータは、8チャンネルビット+8チャンネルビット+64チャンネルビット=80チャンネルビット ルビット(固定シンクバターン)(シンクコード)(プリアンプルデータ)である。この内、「1」を記録するチャンネルビットは、3+4+32=39チャンネルビットとなる。

【0014】DVD規格は、「1」を記録するチャンネ 30 ルビット間に対して24Hz(1440rpm)でディスク1を回転させた時、8.89n±1.50 (μ sec)の設差を持つことを許可している(図4参照)。データパルスのエッジ間隔では、最大8.89n±2.00 (μ sec)まで許されるが、データパルスのLowレベルの中間点から次のLowレベルの中間点までは、8.89n+1.50 (μ sec)と規定されているので、考えやすくするために8.89n+1.50 (μ sec)を使用して考える。

【0015】もしここで、最大の誤差8.89n+1.50 (μ s c c)を持つプリアンブルバターンが記録された1行を24H z で回転する光ディスク1から検出すると、1行を検出する時間は誤差の合計と誤差が0である時の1行を検出する時間とを加算したものとなる。

【0016】即ち、記錄觀光の合計は $1.5(\mu sec) \times 39$ チャンネルビット(「1」を記録するチャンネルビット)= $58.5(\mu sec)$ である。この時の誤差が0 の時に、この1 行を検出する時間は $8.89(\mu sec) \times 80$ チャンネルビット= $711.2(\mu sec)$ となる。

【0017】よって $711.2(\mu sec)+58.5(\mu sec)=769.7(\mu sec)$ をプリアンプルパターンが記録された1行に記録された80チャンネルビットで割ったものが1ビットあたりの時間間隔となる。

[0018]

【数1】769. 7 (μ s e c) /80チャンネルビット=9. 62 (μ s c c)

この規格では、変調方式から誤差を可能とするパターン が4種類あるため、上記で求めた値をもとに4種類を判 別する表を作ると以下の様になる。

[0019]

(8.89 n ± 1.5 (μ s e c) n = 1~4のため) パターン1 ~14.43 (μ s e c) パターン2 14.44~24.05 (μ s e c) パターン3 24.06~33.67 (μ s e c) パターン4 33.68~ (μ s e c) ここで、規格上実際に各パターンが取りうる値は、以下のようになる。

[0020]

パターン1 6.89~10.89 (μ s e c)
パターン2 15.78~19.78 (μ s e c)
パターン3 24.67~28.67 (μ s e c)
パターン4 33.56~37.56 (μ s e c)
このような検出方法では、シンクマークSBb c a から始まる1行に記録されるデータから求めた1ビットあたりの時間間隔と、規格上実際に各パターンが取り得る値とを比較すると、パターン4のデータとパターン3のデータを誤検出する可能性があることが分かった。

0 [0021]

【発明が解決しようとする課題】上記のような従来のディスクバーコードデータ再生装置は、通常回転したディスクから再生したバーコードデータパターンから1ビットあたりの時間間隔を作り出し、この時間間隔を用いてバーコードデータのデコードを行う。しかし、このような再生装置では、1ビットを記録するバーコードデークの規格寸法範囲が広いため、再生されるバーコードデークハターンから1ビットあたりの時間間隔を作り出す可能性がある。図3の従来例では、パターン4のデータとハターン3のデータを誤検出する可能性があり、このような誤検出に基いて、バーコードデータをデコードすると、データエラーが発生してしまうという問題があった。

【0022】また、再生されるパーコードデータからパーコードの同期信号であるシンクマークパターンの検出問題時間を作り出した時、パーコードマークの規格寸法範囲が広いため、作り出されるシンクマークの検出問題時間の精度が悪く、このようなシンクマークを用いてパラの一コードデータをデコードすると、やはりデータエラー

が発生してしまうという問題があった。

【0023】本発明は、上述の如き従来の問題点を解決するためになされたもので、その目的は、再生されるバーコードデータの1ビットあたりの時間間隔及びシンクマークバターンの検出間隔時間を精度よく作り出すことができ、それ故、バーコードデータを正確にデコードすることができるディスクバーコードデータ再生装置を提供することである。

[0024]

【課題を解決するための手段】上記目的を達成するため 10 に、第1の発明の特徴は、光ディスクから読み出された バーコードデータの1 ビットの時間間隔及び同バーコードデータの同期信号によって前記読み出されたバーコードデータをデコードするディスクバーコードデータ再生 装置において、前記光ディスクの回転周波数を測定する 測定手段と、前記光ディスクの基準回転周波数に対応して発生する前記バーコードデータの正規の前記時間間隔値情報を格納した記憶手段と、前記測定手段により測定された前記光ディスクの回転周波数に応じたバーコード データの1 ビットの時間間隔を、前記記憶手段に格納さ 20 れている前記時間間隔値情報に基いて算出する算出手段とを備えたことにある。

【0025】この第1の発明によれば、前記光ディスクの回転周波数が決まると、前記パーコードデータパターンの正規の時間間隔値情報より、この時再生されるパーコードデータの1ビットの時間間隔の範囲がパターン毎に決まってしまう。従って、前記算出手段は前記測定手段により測定された前記光ディスクの回転周波数に応じた再生パーコードデータの1ビットの時間間隔を、前記記憶手段に格納されている前記パーコードデータパターンの正規の時間間隔値情報、若しくはこれら値を演算して得た情報から間違いなく算出する。この1ビットの時間間隔を用いて再生パーコードデータをデコードすれば、再生パーコードデータのパターンを間違いなく判定して、常に正確なデコードを行なうことができる。

【0026】第2の発明の特徴は、光ディスクから読み出されたバーコードデータの1ビットの時間間隔及び間バーコードデータの同期信号によって前記読み出されたバーコードデータをデコードするディスクバーコードデータ再生装置において、前記光ディスクの回転周波数を測定する測定手段と、前記光ディスクの周期信号の正規の検出間隔時間値情報を格納した記憶手段と、前記測定手段により測定された前記光ディスクの回転周波数に応じた前記同期信号の検出間隔時間を前記記億手段に格納されている前記同期信号の検出間隔時間値情報に基いて算出する算出手段とを備えたことにある。

【0027】この第2の発明によれば、前記光ディスク い回転周波数が決まると、この時再生されるバーコード データの同期信号であるシンクマークパターンの検出問 隔時間の範囲は、バーコードデータのシンクマークパターンの正規の検出間隔時間値情報よりその範囲が決まってしまう。従って、前記算出手段は前記測定手段により測定された前記光ディスクの回転周波数に応じたバーコードデータのシンクマークパターンの検出間隔時間を前記1億手段に格納されている前記シンクマークパターンの正規の検出間隔時間値情報、若しくはこれら値を演算して得た情報から間違いなく算出する。このシンクマークの検出間隔時間を用いてシンクマーク間のシンク保護窓を設定すれば、バーコードデータを精度よくデコード

【0028】第3の発明の前記測定手段の特徴は、ホール素子等を用いたディスク回転用モータからのホール素子出力信号を測定することによって、ディスク回転周波数を求めることにある。

することができる。

【0029】この第3の発明によれば、ディスク回転用モータからのホール素子出力信号はモータの回転数に比例しているため、ホール素子出力信号の周波数からディスク回転周波数が検出される。

【0030】第4の発明の特徴は、光ディスクから読み出されたバーコードデータの1ビットの時間間隔及び同バーコードデータの同期信号によって前記読み出されたバーコードデータをデコードするディスクバーコードデータ再生方法において、前記光ディスクの回転周波数に対応する前記パーコードデータパクーンの規格上取り得る時間間隔値に基いて前記光ディスクの回転周波数に応じたバーコードデータの1ビットの時間間隔を求める過程を含むことにある。

【0031】第5の発明の特徴は、光ディスクから読み出されたバーコードデークの1ビットの時間開隔及び同パーコードデータの同期信号によって前記読み出されたバーコードデータをデコードするディスクバーコードデーク再生方法において、前記光ディスクの回転周波数に対応する前記バーコードデータの同期信号の規格上の検出間隔時間値に基いて前記光ディスクの回転周波数に応じた前記同期信号の検出間隔時間を求める過程を含むことにある。

100321

【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明のディスクバーコードデータ再生装置の一実施の形態を示したブロック図である。但し、図3に示した従来例と同一の部分は同一符号を付し、適宜説明を省略する。ディスクバーコード再生装置51は、1ビットの時間間隔算出装置511とシンクマーク間隔算出装置512から成っている。

【0033】1ビットの時間間隔算出装置511は光ディスク1の回転周波数を測定するディスク回転周波数測定部513、ディスクの回転周波数に対応したパーコードデークの1ビットの時間間隔を算出する1ビット時間間隔算出部514及び前記パーコードデータの1ビット

の時間間隔を算出するためのデータを保持するメモリ部 514を有している。

【0034】シンクマーク間隔算出装置512は光ディスク1の回転周波数を測定するディスク回転周波数測定部516、ディスクの回転周波数に対応したシンクマークパターンの検出間隔時間を算出するシンクマークパターン時間間隔算出部517及び前記シンクマークパターンの検出間隔時間の算出のためのデータを保持するメモリ部518を有している。

【0035】なお、ディスク回転周波数測定部513、516は共通で、メモリ部514、518も共通であってもよい。又、ディスクバーコードデータ再生装置51は、通常、CPUとメモリより成っている。

【0036】光ディスク1を回転させるスピンドルモータ5の回転速度は回転速度検出装置6により検出され、その検出パルスがディスクバーコードデータ再生装置51に出力される。又、1ビット時間間隔算出部514により算出されたバーコードデータの1ビット時間間隔及びシンクマークパターン時間間隔算出部517で算出されたシンクマークパターンの検出間隔時間はバーコードデータデコーダ13に出力される。残りの図示されない構成部分は図3に示した装置と同様である。

【0037】図2は図1に示したディスクバーコードデータ再生装置を有する光ディスク再生装置の構成例を示したブロック図である。但し、図4に示した従来例と問一部分には同一符号を付し、適宜説明を省略する。ディスクバーコードデータ再生装置51は回転速度検出装置6により検出されたスピンドルモーク5の回転速度に基*

*いて光ディスク1から光ピックアップ2により読み出されたデータに含まれるディスクバーコードデータ1ビット時間間隔を求め、これをバーコードデータデコーダ13に指示する。

8

【0038】これと同時に、ディスクバーコードデータ 再生装置51は前記スピンドルモータ5の回転速度に基 いてシンクマークパターンの検出問隔時間を算出し、こ れをバーコードデータデコーダ13に指示する。バーコ ードデータデコーダ13は光ピックアップ2から読み出 10 されるデータで、アンプ7、スライサ9を通して入力さ れるバーコードデータを上記したバーコードデータ1ビ ット時間間隔及びシンクマークパターンの検出間隔時間 によってデコードする。

【0039】次に本実施の形態の動作について説明する。通常のCLVスピンドルサーボは使用できないが、スピンドルモータ5はDVD規格で使われている1倍速CLV時の24日2で回転し、従って光ディスク1も24日2で回転しているものとする。

【0040】この時、回転速度検出装置6はスピンドル20 モータ5のホール素子の信号からその回転速度を検出し、回転速度に応じたパルスをディスクパーコード再生装置51のディスク回転周波数測定部513、516に出力する。メモリ部515には24日2でディスクが回転している時に、パーコードデークパターン(BCAデータパターンに同じ)が取りうる以下の規格上の時間間隔値(24日2時のパーコードデータパターンが実際に取りうる値)が予め格納されている。

[0041]

パターン 1 6.89~10.89 (μ sec) ((8.89×1) ± 2 μ sec) パターン 2 15.78~19.78 (μ sec) ((8.89×2) ± 2 μ sec) パターン 3 2 4.67~28.67 (μ sec) ((8.89×3) ± 2 μ sec) パターン 4 3 3.56~37.56 (μ sec) ((8.89×4) ± 2 μ sec)

これらのパターン1~4は、図2に示す如くであり、パターン1は「1,0」のデータ部分、パターン2は「0,0」のデータ部分、パターン3は「0,1」のデータ部分である。パターン4は「1,0,0,0,1」のシンクマーク部分である。パターン1~3は、RE-RZ変調であり、パターン4はRZ変調である。

【0042】それ故、1ビット時間間隔算出部514はディスク回転周波数測定部513によって光ディスク1が24H2で回転していることを検知すると、メモリ部515にアクセスして、メモリ部515内の前記各バクーンの時間間隔値を読み出し、バーコードデータデコーダ13に対して各バターンをデコードするための時間間隔を指示する。バーコードデータデコーダ13は指示された時間間隔値及び別途シンクマークバターン時間間隔算出部517から指示されたシンクマークバターンの検出間隔時間によってバーコードデータのデコードを行う

【0043】この時、各パターンを識別する時間間隔値 50

は規格で定められた値そのものなので、パーコードデータデコーダ 1 3 はパーコードデータを正確にデコードすることができる。パーコードデータデコーダ 1 3 は光ディスク 1 から読み出されたパーコードデータの 1 ビットの間隔が例えば 8 μ sec であれば、これはパターン 1 と 判定し、「1, 0 1 とデコードする。

【0044】次に回転速度検出装置6からの信号により ディスク回転周波数測定部513がX日えでディスクが 回転していると検出した場合、光ディスク1がX日えで 回転した時にバーコードデータバターンが実際に取りう る値は、24日えの値を元に1ビット時間間隔算出部5 14が演算して求め、この求めた値Y1~Y4に基い て、ディスクがX日えで回転している際の各バターンを デコードするための時間間隔をバーコードデータデコー ダ13に対して指示する。

【0045】ここで、1ビット時間間隔算出部514で の演算は次のようになる。

50 [0046]

【数2】パターン1の場合、Y1 (μsec) = 8.8 9 (μsec) × (24Hz/XHz) ± 2.00 (μ sec) × (24Hz/XHz)

パターン2の場合、Y2 (μ s e c) = 8. 89×2 (μ s e c) × (24Hz/XHz) ±2. 00 (μ s e c) × (24Hz/XHz)

バターン3の場合、Y3 (μ s e c) = 8. 89×3 (μ s c c) × (24H z/XH z) ± 2. 00 (μ s e c) × (24H z/XH z)

パターン4の場合、Y4 (μ s e c) = 8. 89×4 (μ s c c) × (24H z/XHz) ± 2. 00 (μ s e c) × (24Hz/XHz)

以上の方法によって光ディスク1の回転速度に対応して、バーコードデータデコーダ13に対して各パターンをデコードするための時間間隔を指示することが可能であり、正確にデコードすることができる。

【0047】一方、バーコードデータには、データバターン間にシンクマークパターンが挿入されており、デーク検出やデータアドレスに使用される。通常、バーコードデータデコーダ13はシンクバターン検出のために一定間隔毎にシンクパターン検出窓を設定して、シンクマークバターンが正常に検出されたかを判断する。

【0048】本例のシンクマークパターン時間間隔算出部517はメモリ部518に格納されている24Hェのシンクマークパターンの検出間隔時間の規格値を使用することによって、一定間隔毎にシンクマークパターンが検出されるべき時間間隔を算出し、バーコードデータデコーダ13に指示するため、バーコードデークデコーダ13は正確な位置にシンクマークパターン検出窓を生成する

【0049】ここで、DVD 規格より 24Hz で光ディスク」が回転した時のシンクマークパターンの間隔時間はバーコードデータに誤差がない場合、8.89 (μ sec) × 80 チャンネルビット= 711.2 (μ sec) で、この 711.2 (μ sec) 後に、次のシンクマークパターンが出現する。

【0050】バーコードデータの誤差の最大を、±2.0 (μ s c c) ×39チャンネルビット (1を記録するチャンネルビット) = ±78 (μ s e c) のようにすると、シンクマークパターンの出現後、711.2 (μ s c c) ±78 (μ s c c) のところにシンクマークパターンの検出窓を開ければよいことになる。これらの値をメモリ部518に格納しておく。

【0051】ディスク回転周波数測定部513がディスクの回転周波数24H2を検出した時はシンクマークパターン時間間隔算出部517が上記の値をメモリ部518から読み出し、パーコードデータデコーダ13に指示することによって、正確な位置にシンクマークパターンの検出窓を生成することができる。

【0052】一方、ディスク回転周波数測定部516が 50

ディスク回転数XHzを測定した場合は、 $Y(\mu sec) = 711.2(\mu sec) × (24Hz/XHz)、<math>Z(\mu sec) = \pm 78(\mu sec) × (24Hz/XHz/XHz)$ となるため、シンクマークバターン出現後、 $Y\pm Z(\mu sec)$ のところにシンクマークバターンの検出窓を開ければよいことになる。これらの演算をシンクマークバターン時間間隔算出部517が行うことによって、ディスク回転周波数が任意の値を採った場合

も、正確な位置にシンクマークパターンの検出窓を開け

10

【0053】本実施の形態によれば、光ディスク1の回転数を検出し、この回転数に応じてバーコードデータの規格上の時間間隔よりバーコードデータ1ビット時間間隔を求め、この1ビット時間間隔をバーコードデータデコーダ13に指示するため、パターン間の誤検出が有り得ず、常に精度の高い1ビット時間間隔で、バーコードデータをデータエラーの発生無しで正確にデコードする

【0054】又、検出した光ディスク1の回転数に応じて、規格上のシンクマークパターンの検出間隔時間よりシンクマークパターンの検出間隔時間を算出し、これをパーコードデータデコーダ13に指示するため、常に正確なタイミングでシンクマーク検出窓を設定することができ、パーコードデータのデコードをエラー無しで正確に行うことができる。

[0055]

ことができる。

10 ることができる。

【発明の効果】以上詳細に説明したように、本発明のディスクバーコード再生装置によれば、再生バーコードデータの1ビットあたりの時間問隔及びシンクマークバターンの検出間隔時間を精度よく作り出すことができ、バーコードデータの正確なデコードを行うことができる。

【図面の簡単な説明】

【図1】本発明のディスクバーコードデータ再生装置の ・実施の形態を示したブロック図である。

【図2】図1に示したディスクバーコードデータ再生装置を有する光ディスク再生装置の構成例を示したブロック図である。

【図3】図」に示したメモリ部に格納されるDVDBC Aチャンネルデータパターン例を示した波形図である。

7 【図4】従来のディスクバーコードデータ再生装置を有する光ディスク装置の構成例を示したブロック図である。

【図5】図4に示した光ビックアップから読み出される バーコードデータ波形例を示した図である。

【図6】DVD規格書の内容例を示した表図である。

【図7】図6に示した1行のシンクマークエリアの詳細例を示した表図である。

【図8】従来のR2変調とPE・R2変調の波形例を示した図である。

【符号の説明】

(7)

特開平11-338956

11

5 スピンドルモータ

6 回転速度検出装置

13 バーコードデータデコーダ

51 ディスクバーコードデータ再生装置

5 1 1 1ビットの時間間隔算出装置

512 シンクマーク間隔算出装置

513、516 ディスク回転周波数測定部

12

514 1ビット時間間隔算出部

515、518 メモリ部

517 シンクマークパターン時間間隔算出部

【図1】

【図2】

[図3]

[図4]

[|图8]

【図6】

BCAポストアンブル(全て55H)

RSbca14

RSbca15

1Byte シンクマーク 4Byte データ 1チャンネルピット 0 SBbca BCAプリアンブル(全てDOH) 117 RSbca1 10 11 12 13 RZ変調 RSbca1 15 16 17 RSbcat 1チャンネルピット **RSbce1** RSbcs2 1チャンネルピット RSbca2 RSbcn2 PE-RZ 変換の時 0 → 1,0 1 → 0,1に変換される。 RSbca2 PE-RZ変調 RSbca3 4nf7 1≾n≤12 RSbca3 1チャンネルピット 1データピット RSbcan : RSbean : RSbcan RSbcan RSbcn13 RSbca13 : 417 RSbca13

【図7】

	固定シンクパターン (チャンネルピット)							シングコード (データピット)				
	CIS	C14	C13	C12	C11	CIO	C9	C8	83	B 2	231	ÞО
SBbas	0	1	0	0	0	. 1	1	0	0	_ 0	0	0
RSbcal	D	1	- 0	0	0	1	1	0	0	0	0	0
RSb ca2	0	1	0	0	0	1	1	0	0	0	0	0
:	1	:	:	;	:	:	-:_		:		:	:
:	:	;	:	:	:	:		:	:	_ :		: _
:	:	:	:	:	•	:	:	: [:	- :		•
RSb c s 15	0	1	0	0	0	1	1	0	1			1
	RZ変偽で配縁される							PERZ変調で配録される				