Name: Nimra Nasu

Reg No: 19-CP-35

Operating System

Lab: 13 (Question)

Question: 1

Consider the following system snapshot using the data structure in the Banker's algorithm, with resources A, B, C and D, and Processes Po to Pu.

_					A State of
		Max			
	A	В	C	D	A
Po	7	0	2	1	4
Pi	1	6	5	0	1
P2	3	3	4	6	1
P3	1	5	6	2	0
Py	2	4	3	2	0

		Alloc	atta	n
	A	В	C	D
	4	0	0	1
	1	1	0	0
	1	0	4	5
ı	0	4	2	1
	0	3	1	2

Ne	ed		
A	B	c	D

B	C	D
2	2	1
	-	2

using the Banker's Algorithm, answer the following questions. while executing the Banker's algorithm, if there are multiple Processes that may complete on a given cycle. Please choose the one with the lowest index.

a) How many resources of type A, B, C, D are there?

Answer:

Resources of type A = 9

Resources of type B = 10

Resources of type C = 9

Resources of type D = 10

					2	
6) what	t are the	conter	utz of	the	Need	matrix?
	Max		Alloc	ation		Need
	1 D C	.0	AP	C	n	A B

	N	lax			All	م	tion	Ne	ed			
	A	В	C	. D	A	B	C	D	A	B	C	D
Po	7	0	2	1	4	0	0	1	3	0	2	0
P,	1	6	5	0	1	1	0	0	0	5	5	0
Pz	3	3	4	6	1	0	4	5	2	3	0	1
P3	1	5	6	2	0	4	2	1	1	1	4	1
P4	2	4	3	2	0	3	1	2	2	1	2	0

c) Is the system in a safe state? why?

m= available = 4

n = process = 5

Available = (3,2,2,1)

Finish =	false	false	false	false	False
	0	1	2	3	4

for i = 0

Needo = 3,0,2,0

Finish [0] is false and Need. < Available (3,0,2,0) (3,2,2,1)

so Po must be kept in safe state

Available = Available + Allocation.

= (3,2,2,1) (4,0,0,1)

Available = (7, 2, 2, 2)

Finish = True False False False False

For i = 1

Need, = 0,5,5,0

Finish [1] is false and Need, < Available (0.5,5,0) (7,2,2,2)

so P, must be kept in safe state.

Available - Available + Allocation, (7,2,2,2) (1,1,0,0) = (8,3,2,2) Anish = True True Falso False False For i = 2 Need = 2,3,0,1 Finish [2] is false and Need 2 < Available (2,30,1) (8,3,2,2) So P, must be Kept in sofe stale Available = Available + Allocation, (8,3,2,2) (1,0,4,5) = (9,3,6,7) Finish = True True False False For i = 3 Needs = 1,1,4,1 Finish [3] is false and Needs < Available (1,1,4,1) (9,3,6,7)so P3 must be kept in safe state Available = Available + Allocation ; (9,3,6,7) (0,4,2,1) = (9,7,8,8) Finish = True True True False For i = 4 Need 4 = 2,1,2,0

Finish [4] is false and Needy < Available (2,1,2,0) (9,7,8,8) so by must be kept in safe state

Available = Available + Allocation4 (9,7,88) (0,3,1,2) = (9, 10, 9,16), yes it is safe state and

Safe sequence will be Po, Pi, Pz, Ps, Py

d) if a request from process Pz arrives for additional resources
of (0,2,0,0) can the Banker's algorithm grant the request
immediately? why? show the new system state & other criteria.

	1	lax			Allo cation					eed		Available			
	A	В	C	D	А	В	C	D	A	B	CD	AB	C	D	
Po	7	0	2	1	4	0	0	1	3	0	20	30	2	1	
Pr	1	6	5	0	1	1	0	0	0	5	50				
P2	3	3	4	6	1	2	4	5	2	1	01				
P ₃	1	-	6		0	4	2	1	1	1	41				
P4	2	4	3		0	3	-	2	2	-1	20				

Step 1:

Available = 3,0,2,1

Finish = False False False False

step:2

For i = 0

Need = 3,0,2,0

Finish [0] is false and Needo < Available (3,0,2,0) (3,0,2,1)

so Po must be kept in some state

Available = Available + Allocations (3,0,2,1) (4,0,0,1)

= (7,0,2,2) -> True

For i=1

Need, = 0, 5,5,0

Finish (1) is false and Need, < Available (0/5/5/0) (7,0,2,2)

```
So P, must be kept in safe state

Available = Available + Allocation:

(7,0,2,2) (1,1,0,0)

= (8,1,2,2) \longrightarrow True

For i=2

Need: = 2,1,0,1

Finish [2] is false and Need: \angle Available

(2,1,0,1) (8,1,2,2)

so P: must be kept in safe state

Available = Available + Allocation:

(8,1,2,2) (1,2,4,5)

= (9,3,6,7) \longrightarrow True
```

For i= 3 Need3 = 1,1,4,1

Finish [3] is false and Need; < Available (1,1,4,1) (9,3,6,7)

So By must be kept in safe state
Available = Available + Allocation;

(9,3,6,7) (0,4,2,1)

= (9,1,8,8) - True

For i= 4

Need 4 = 2,1,2,0

Finish [4] is false and Need 4 < Available (2,1,2,0) (9,7,8,8)

So Py must be kept in safe stale
Avoilable = Avoilable + Allocation 4

(9,7,8,8) (0,3,12)

= (9, 10, 9,10) - True

New system is also in sofe state. so Ro, Pi, P2, P3, P4 e) Given the original state , if a process py arrives for additional resources of (0,2,0,0). can Banker's algorithm grant the request immediately? why?

		Mar		U	AU	lo cati	on		N	eed			Available			
	A	В	C	D	A	B	c	D	A	B	C	D	A	В	C	D
Po	7	0	2	1	4	0	0	1	3	0	2	0	3	0	2	1
P,	1	6	5	0	1	1	0	0	0	5	5	0				
P2	3	3	4	6	1	0	4	5	2	3	0	1				
ρ3	1	5	6	2	0	4	2	1	1	1	4	1	Hills			
Py	2	4	3	2	0	5	1	2	2	1	2	0				

Safe sequence will be :- Po, P1, P2, P2, P4