L-system in M4

https://github.com/jkubin/L-system

OpenAlt 2018
Josef Kubín

Contents

- What is L-system
- Chomsky grammar and L-system
- Fractals
- Turtle graphic
- L-system in M4
- Koch curve
- Fibonacci tree

What is L-system (Lindenmayer-system)

- Aristid Lindenmayer (1968)
- Parallel rewriting system
 - A type of formal grammar
- DOL-system
 - Deterministic Context Free L-system
 - My implementation in M4
- {D,P,E,T}{O,I}L-system

Aristid Lindenmayer (1925-1989)

L-system example (anabeana catenula)

```
V: {A, B}
ω: Α
P: A \rightarrow AB
   B \rightarrow A
  n = 0:
  n = 1:
  n = 2: A B
  n = 3: A B A A B
```

n = 4: A B A A B A B A

L-system

$$G = (V, \omega, P)$$

V: alphabet, a finite set of variables and constants

ω: start, **axiom** or initiator $ω ∈ V^+$

P: a fin. set of production (rewrite) rules,

P⊂ V×V*

Chomsky grammar

$$G = (N, \Sigma, P, S)$$

N: fin. set of nonterminal symbols

Σ: fin. set of terminal symbols

$$N \cap \Sigma = \emptyset$$

P: fin. set of production (rewrite) rules

$$(N \cup \Sigma)^* N (N \cup \Sigma)^* \rightarrow (N \cup \Sigma)^*$$

S: is the start symbol

$$S \in N$$

Chomsky Hierarchy

L-system and Chomsky Grammar main difference

- L-system
 - rewriting rules are applied in parallel
- Chomsky
 - rewriting rules are applied sequentially

Fractals

- 1) Self-similarity
 - Parts resemble the whole
- 2) Simple rules to generate
 - Seems to be very complicated

L-system in M4

```
A \rightarrow AB
```

$$B \rightarrow A$$

$$A \rightarrow A$$

$$B \rightarrow B$$

```
define(`A', `ifelse(`$1', `0', ``A'', `A(decr($1))B(decr($1))')')
define(`B', `ifelse(`$1', `0', ``B'', `A(decr($1))')')
```

$$A(4) \rightarrow ... \rightarrow ABAABABA$$

L-system in M4

```
A \rightarrow AB
B \rightarrow A
A \rightarrow A
B \rightarrow B
RULE(`A', `AB', `A')
RULE(`B', `A', `B')
$ m4 lsys.m4 algae.m4
ABAABABA
```

Koch curve (1904)

Helge von Koch (1870-1924)

Koch curve

Self similarity:

Koch curve L-system

ANGLE: 60

VARS: F

AXIOM: F

RULE: $F \rightarrow F+F--F+F$

Koch curve L-system in M4

```
ANGLE(60)
VARS(`F')
AXIOM(`KOCH', `F')
RULE(`F', `F+F--F+F', `F')
KOCH(3) \rightarrow F(3)
F(3) \rightarrow F(2)+F(2)--F(2)+F(2)
F(2) \rightarrow F(1)+F(1)--F(1)+F(1)
F(1) \rightarrow F(0)+F(0)--F(0)+F(0)
F(0) \rightarrow F
```

Koch curve L-system in M4

\$ m4 lsys.m4 koch_curve.mc | turtle_plotter

Turtle graphic

- Logo educational programming language
 - Known for using turtle graphic (turtle writes lines)
- L-system symbols are turtle graphic commands
 - Przemyslaw Prusinkiewicz (1986)

Turtle graphics (2D) in L-system

- F move forward a step d (a line is drawn)
- f move forward a step d (without drawing a line)
- + turn to the left by angle δ
- turn to the right by angle δ
- [push current turtle state on the stack
-] pop a state from the stack and set turtle

Turtle graphics (3D) in L-system

- & pitch down by angle δ
- $^{\wedge}$ pitch up by angle δ
- **** roll left by angle δ
- I roll right by angle δ
- turn around

Hilbert curve

\$ m4 lsys.m4 hilbert_curve.mc | turtle_plotter

Hilbert 3D curve

\$ m4 lsys.m4 hilbert_curve_three_dim.mc

Fibonacci Sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

21

Fibonacci tree

\$ m4 lsys.m4 fibonacci_tree.mc | turtle_plotter

References

https://cs.wikipedia.org/wiki/Helge_von_Koch

https://p2irc.usask.ca/profiles/theme-3/przemyslaw-prusinkiewicz.php

https://da.wikipedia.org/wiki/Leonardo_da_Pisa

https://learnodo-newtonic.com/fibonacci-facts

https://i.stack.imgur.com/Ed8DZ.png

Děkuji za pozornost!

https://github.com/jkubin/L-system

Nezapomeňte vyplnit anketu! OpenAlt 2018

Josef Kubín