1.

2.

⑥ 🖻 ☆ 0 🕓 * G 🗆 🚯 :

← → C ① localhost:3000/country

Country Name: Singapore

Country Code: SIN

GDP: 397000000000

Inflation: 4

Country Inflation:6.7

- 4. Books(BookID, Title, Author, ISBN)
 - (a) Functional Dependencies:
 - (i) Primary Key → BookID
 - (ii) Non-trivial dependency: Author → Title
 - (iii) Non-trivial dependency: ISBN → Title, Author
 - (b) Redundant Data: This instance of the relation shows redundancy as two books have the exact same ISBN

BookID	Title	Author	ISBN
1	Intro to Databases	John Smith	123-456-789
2	Database Systems	Jane Doe	123-456-789

- (c) Anomalies:
 - (i) Update Anomaly: Say we need to update the author's name for a specific book. In the instance above where two books share the same ISBN, we would need to update multiple rows since Author is dependent on the ISBN.
 - (ii) Insertion Anomaly: Say we wanted to add a new book with a new ISBN but we don't have information about the author. We cannot do this as Author is dependent on ISBN.
 - (iii) Deletion Anomaly: If we were to delete a row for a book with specific ISBN, we could unintentionally remove information from books with the same ISBN.

5.

- (a) $X \rightarrow Y$ and $YW \rightarrow Z$, then $XW \rightarrow Z$
 - (i) Use Augmentation rule: If $Y \subseteq X$, then $XW \rightarrow YW$
 - (ii) Use Transitivity: If XW \rightarrow YW and YW \rightarrow Z, then XW \rightarrow Z
 - (iii) So, If $X \rightarrow Y$ and $YW \rightarrow YZ$, then $XW \rightarrow Z$
- (b) If $X \to YZ$, then $X \to Y$ and $X \to Z$
 - (i) Use Augmentation rule: If $Z \subseteq YZ$, then $X \to YZ$ implies $XZ \to YZ$
 - (ii) Use Reflexivity rule: If $YZ \subseteq YZ$, then $XZ \rightarrow \text{implies } X \rightarrow Z$
 - (iii) Use Augmentation rule: If $Y \subseteq YZ$, then $X \to Z$ implies $XY \to Z$
 - (iv) So, If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- (c) If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - (i) Use Augmentation rule: If $Z \subseteq Y$, then $X \to Y$ implies $XZ \to YZ$
 - (ii) Use Transitivity rule: If $X \rightarrow Y$ and $XZ \rightarrow YZ$, then $X \rightarrow YZ$

6.

- (a) R(a, b, c) where $a \rightarrow c$
 - (i) Candidate key: a
- (b) R(a, b, c, d) where $b \rightarrow c$ and $d \rightarrow a$
 - (i) Candidate key: (b, d)
- (c) R(a, b, c, d) where $a \rightarrow c$ and $c \rightarrow d$
 - (i) Candidate key: (a, c)
- (d) R(a, b, c, d, e)
 - (i) Candidate key: (c, b, d)

1. album relation:

- (a) Relational Schema:
 - album(title, year_recorded, record_label, group_id)
- (b) Non-key, non-trivial functional dependencies:
 - title -> year recorded
 - year recorded -> title
 - title, record_label -> group_id
 - group id -> title
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

2. music_group relation:

- (a) Relational Schema:
 - music_group(group_id, group_name, year_created)
- (b) Non-key, non-trivial functional dependencies:
 - group_id -> group_name
 - group_name -> group_id
 - year_created -> group_id
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

3. genre relation:

- (a) Relational Schema:
 - genre(genre label, genre descrip)
- (b) Non-key, non-trivial functional dependencies:
 - genre_label -> genre_descrip
 - genre descrip -> genre label
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

4. group genre relation:

- (a) Relational Schema:
 - group_genre(group_id, genre_label)
- (b) Non-key, non-trivial functional dependencies:
 - group_id -> genre_label
 - genre label -> group id
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

5. artist relation:

- (a) Relational Schema:
 - artist(artist id, artist name, birth year)
- (b) Non-key, non-trivial functional dependencies:
 - artist id -> artist name
 - artist_name -> artist_id
 - birth year -> artist id
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

6. group_membership relation:

- (a) Relational Schema:
 - group_membership(artist_id, group_id, start_year)
- (b) Non-key, non-trivial functional dependencies:
 - artist_id, group_id -> start_year
 - start_year -> artist_id, group_id
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

7. track relation:

- (a) Relational Schema:
 - track(track_id, track_name, year_rec)
- (b) Non-key, non-trivial functional dependencies:
 - track id -> track name
 - track name -> track id
 - year_rec -> track_id
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

8. song relation:

- (a) Relational Schema:
 - song(song title, year written, artist id)
- (b) Non-key, non-trivial functional dependencies:
 - song_title -> year_written
 - year written -> song title
 - artist_id -> song_title
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

- 9. track_artists relation:
- (a) Relational Schema:
 - track_artists(track_id, artist_id)
- (b) Non-key, non-trivial functional dependencies:
 - track_id -> artist_id
 - artist_id -> track_id
- (c) Corresponding Normal Form:
 - The relation is in at least the Third Normal Form (3NF) since there are no transitive dependencies or non-prime attributes dependent on part of a candidate key.

•