

GOVERNOR

Field of the Invention

[0001] This invention relates to a governor for use in controlling the rate at which fuel is supplied to a fuel pump, and thus for use in controlling the operation of an engine of the compression ignition type.

Background of the Invention

[0002] A governor for use with a diesel engine of an alternator and generator set typically includes a centrifugal weight mechanism arranged to rotate at a speed associated with engine speed and to act upon a spring biased lever. The lever is coupled to an angularly movable fuel metering valve such that movement of the lever is transmitted to the valve to adjust the setting of the valve. In particular, the governor is arranged such that, in the event that the load on the engine changes, a corresponding change in the fuelling of the engine is made to control the engine in such a manner that it operates at a substantially constant speed. It is known to provide the lever of the governor with a stabiliser device or damping arrangement which serves to damp oscillations of the engine under certain load and fuelling conditions which can otherwise adversely affect operation of the governor.

[0003] In order to permit the governor to be adaptable for use in, for example, different types of engine and with different types of engine fuel pump, the governor is arranged such that the governor arm has a longer stroke than is required to give the necessary variation in fuelling level. The metering valve is therefore moved through a region of "dead travel", in which no variation in fuelling occurs, before the region of travel in which

a variation in fuelling does occur is reached. However, if the lever arm is provided with a damping arrangement, movement of the metering valve through the region of dead travel can cause an undesirable delay in the change of fuelling from the maximum fuel setting to that necessary to achieve the desired speed upon engine start up.

5 [0004] Furthermore, in internal combustion engines provided with an overspeed protection device which is arranged to trip so as to halt engine operation in the event that the engine speed exceeds a predetermined, maximum safe speed at a given rate of engine rotation, any delay in control of fuelling due to movement of the metering valve through the region of dead travel can cause the overspeed protection device to trip inadvertently 10 upon engine start up. As a result, engine operation may be halted in undesirable circumstances.

[0005] It is an object of the present invention to provide a governor which alleviates this problem.

15

SUMMARY OF THE INVENTION AND ADVANTAGES

[0006] According to the present invention, there is provided a governor for use in an engine provided with an overspeed protection device arranged to trip in the event that engine speed exceeds a predetermined speed, the governor comprising a centrifugal weight mechanism comprising at least one weight coupled to an angularly adjustable 20 metering valve member through a lever member, the metering valve member being operable to control the level of fuelling of the associated engine, the governor further comprising a damping arrangement associated with the lever member which is arranged to damp oscillatory movement of the lever member, in use, and prevention means for

preventing the overspeed protection device associated with the engine tripping upon engine start up.

[0007] The engine typically comprises a drive shaft which is arranged to rotate at a speed associated with the engine, the or each weight being pivotable with respect to and 5 rotatable with the drive shaft, the or each weight being arranged to engage a washer member which is interposed between the or each weight and a thrust sleeve member which is cooperable with the lever member such that pivotal movement of the or each weight results in axial movement of the thrust sleeve member and, hence, pivotal movement of the lever member.

10 [0008] The metering valve member is arranged to have a range of travel including a region of dead travel in which substantially no variation in fuelling of the engine occurs.

[0009] In one embodiment of the invention, the prevention means comprise means for limiting the range of travel of the metering valve member.

[0010] The means for limiting the range of travel of the metering valve member may take 15 the form of an adjustment member associated with the lever member, the adjustment member acting on the lever member so as to limit the extent of movement of the lever member and, hence, the extent of angular movement of the metering valve member.

[0011] Typically, the adjustment member may take the form of an adjustment screw. Preferably, the adjustment screw is adjusted such that the metering valve member does not 20 move through the region of dead travel upon engine start up.

[0012] The invention provides the advantage that, as the extent of movement of the metering valve member is limited to only that region for which a variation in fuelling

occurs, there is no delay in control of fuelling upon engine start up. Hence, inadvertent tripping of the overspeed protection device is avoided.

[0013] The invention also provides the advantage that the governor can be adapted for use in engines of different type and with different kinds of engine fuel pump. It can also

5 be adjusted to compensate for manufacturing tolerances and can be adjusted throughout the service life of the governor to compensate for wear.

[0014] The adjustment member may be arranged to act directly on the lever member, or may be arranged to act on the damping arrangement associated with the lever member.

[0015] Preferably, the governor is provided with first resilient bias means for urging the

10 thrust sleeve member towards the thrust washer member upon engine start up. Typically, the first resilient bias means take the form of a first spring which may be arranged to act on the thrust sleeve member through the lever member.

[0016] The provision of the first resilient bias means provides the advantage that, even though the metering valve member is at the end of the region of dead travel upon engine

15 start up, the weights adopt their radially innermost position.

[0017] The governor preferably comprises further resilient bias means which serve to urge the lever member against the thrust sleeve member, thereby serving to urge the thrust sleeve member towards the or each weight. The further resilient bias means typically take the form of a further spring.

20 **[0018]** The provision of the further spring serves to urge the lever member into engagement with the thrust sleeve member such that, upon engine start-up, the thrust washer member rotates with the or each weight.

[0019] The damping arrangement may take the form of a hydraulic damping arrangement which may comprise a damping piston, a working chamber for receiving a fluid, whereby fluid pressure within the working chamber acts on a surface associated with the damping piston, and a restricted outlet for permitting fluid to flow into and out of the working chamber at a relatively low rate.

[0020] Preferably, the damping piston is slidable within a bore provided in a housing against a damping spring means, the bore defining a working chamber for receiving a fluid which applies a force on the damping piston to oppose the damping force.

[0021] The damping arrangement may include an anchor member which is adjustable to vary a pre-load of the damping spring means.

[0022] In one embodiment of the invention, the damping arrangement may be provided with by-pass means to permit fluid to flow out of the working chamber at a higher, relatively unrestricted rate, thereby by-passing the restricted outlet and causing the damping arrangement to be disabled.

[0023] For example, the damping arrangement may be provided with an additional outlet through which fluid can flow at a relatively unrestricted rate compared to the rate of flow of fluid through the restricted outlet, the damping piston being movable between a first position in which the additional outlet is obscured by the damping piston, in which case the damping arrangement is enabled, and a second position in which the additional outlet is not obscured by the damping piston, the additional outlet thereby providing a by-pass flow path for fluid flowing into and out of the working chamber to disable operation of the damping arrangement.

[0024] Preferably, the by-pass flow path may be defined, in part, by a passage provided in the damping piston in communication with the working chamber and whereby, when the damping piston is in the second position, the passage communicates with the additional outlet.

5 [0025] Preferably, the damping spring means is arranged such that the damping arrangement is disabled during movement of the metering valve member through the region of dead travel upon engine start up.

[0026] In this embodiment of the invention, as the damping arrangement is disabled upon engine start up when the metering valve member moves through the region of dead travel,

10 inadvertent tripping of the overspeed protection device is avoided.

[0027] The damping arrangement may further comprise a further adjustment member for adjusting the damping spring means such that the damping piston occupies a position in which the working chamber communicates with the additional outlet during the dead travel region of the metering valve member.

15

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

20 [0029] Figure 1 is a diagrammatic view of a governor in accordance with an embodiment of the invention;

[0030] Figures 2 is a diagram to illustrate the variation in engine speed with time for an engine in which the governor in Figure 1 may be used; and

[0031] Figure 3 is a diagrammatic view of a part of a governor in accordance with an alternative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

5 [0032] Referring to Figure 1, there is shown a governor including a centrifugal weight mechanism 10 mounted upon a drive shaft 11 which is arranged to rotate at a speed associated with the operating speed of an associated engine, for example camshaft or crankshaft speed. The drive shaft 11 carries a cage 12, the cage being rotatable with the drive shaft 11. The weight mechanism includes a plurality of weights 13 which are
10 pivotally mounted within the cage 12, each of the weights 13 including a projection 14 which is engagable with an end surface of a thrust sleeve member 15 carried by and axially adjustable relative to the drive shaft 11. A thrust washer member 16 encircles the drive shaft 11, the thrust washer 16 being interposed between the projections 14 of the weights 13 and a free end region of the thrust sleeve 15. The drive shaft 11 is also provided with
15 an annular groove (not shown in Figure 1) within which a rubber ring is seated to provide a clutch mechanism, as described in EP 0 760 423 A1, the contents of which are incorporated herein by reference.

[0033] The thrust sleeve member 15 abuts a lever member or governor arm 18, the lever member 18 being pivotal about a further arm 20. The lever arm 18 is coupled to a
20 governor spring 25, the governor spring 25 being arranged to engage a throttle member 27 which is adjustable to vary the pre-load applied to the governor spring 25. For clarity, only a part of the governor spring 25 is shown in Figure 1, such that the coupling between the lever member 18 and the spring 25 cannot be seen.

[0034] In use, when the engine is operating at a relatively low speed, and hence the shaft 11 rotates at a relatively low speed, the action of the governor spring 25 upon the lever member 18 applies a force to the thrust sleeve 15 urging the thrust sleeve 15 towards the left in the orientation illustrated in Figure 1, engagement between the thrust sleeve 15 and 5 the weights 13, through the thrust washer 16 and the rubber ring of the clutch mechanism, ensuring the weights 13 occupy a radially inner position. As the engine speed increases, the centrifugal force resulting from the increased speed of rotation of the shaft 11 urges the weights 13 to pivot towards radially outer positions, such movement causing translation of the thrust sleeve 15 and pivotal movement of the lever member 18 against 10 the action of the governor spring 25.

[0035] A further spring 34 may also be provided which serves to urge the lever member 18 into engagement with the thrust sleeve 15 such that, upon engine start up, the thrust washer 16 is urged against the rubber ring of the clutch mechanism, thereby ensuring the thrust washer 16 rotates with the weights 13. The provision of the further spring 34 may 15 be desirable in this embodiment of the invention, and particularly if the aforementioned clutch mechanism is provided, as it ensures the thrust washer 16 is urged into engagement with the rubber ring of the clutch mechanism upon engine-start up. The spring rate of the further spring 34 is selected such that the force acting on the lever member 18 (taking into account the lever ratio) does not impede the effect of the governor spring 25 when the 20 engine is running. Thus, the further spring 34 is collapsed before the metering valve member 23 reaches the end of the region of dead travel.

[0036] The lever member 18 is coupled through a conventional coupling arrangement to a metering valve member 23 forming part of a metering valve arrangement, the metering

valve member being angularly movable through a range of movement in response to pivotal movement of the lever member 18 so as to vary the level of fuelling to the engine.

Angular movement of the metering valve member varies the amount by which an outlet of the metering valve arrangement is obscured so as to vary the rate of flow of fuel

5 through the metering valve arrangement, as would be familiar to a person skilled in the art.

In the view shown in Figure 1, it will be appreciated that the coupling between the lever member 18 and the metering valve member 23 is not visible.

[0037] The lever member 18 is provided with a damping arrangement or stabiliser device, referred to generally as 24, comprising a housing 26 provided with a bore within which

10 a damping piston 28 is slidable. One end of the damping piston 28 is in abutment or connection with damping spring means in the form of a damping spring 21, the other end of the damping piston 28 being exposed to fluid pressure within a working chamber 30.

A force due to fluid pressure within the working chamber 30 serves to oppose the biasing force of the damping spring 21. The damping spring 21 engages an anchor member 22

15 which is adjustable to vary the pre-load applied to the damping spring 21. The housing 26 is provided with a restricted outlet (not shown) which permits fluid to flow into and out of the working chamber 30 at a relatively low rate as the damping piston 28 moves within the bore of the housing 26, the damping arrangement 24 therefore taking the form of a conventional hydraulic damping arrangement which serves to damp oscillations of the

20 lever member 18.

[0038] The governor also includes an adjustment member in the form of an adjustment screw 32 which is arranged to engage the housing 26 of the damping arrangement 24 so as to limit the extent of pivotal movement of the lever member 18. By adjusting the

position of the adjustment member 32 so as to limit the range of pivotal movement of the lever member 18, the extent of travel of the metering valve member 23 is also limited. It will therefore be appreciated that it is possible to adjust the adjustment screw 32 so as to ensure the metering valve member 23 does not pass through the region of dead travel, in 5 which no variation in the level of fuelling occurs, upon engine start up.

[0039] In conventional governor arrangements, it is known to arrange the lever member such that it has a stroke which causes movement of the metering valve member beyond the region of travel in which a variation in fuelling occurs. This enables the governor to be adapted relatively easily for use in engines of different type, and to compensate for 10 manufacturing tolerances and wear during the service life of the governor. However, the metering valve member must therefore pass through a region of dead travel before a variation in fuelling level is achieved, thereby causing a delay in fuelling control upon engine start up. In engines in which an overspeed protection device is provided to limit the engine start up speed such that it does not exceed a predetermined, safe speed, this 15 delay can cause the overspeed protection device to trip, thereby halting engine operation inadvertently. By way of example, Figure 2 illustrates the relationship between engine speed and time upon engine start up in an engine for which a conventional governor is employed, and in which Trace A represents engine speed when there is a relatively long delay in fuelling control upon engine start up due to movement of the metering valve 20 member through the region of dead travel. Typically, the overspeed protection device is arranged to trip if engine speed exceeds a predetermined safe speed at a given engine rotation rate of between 9% and 11% above nominal engine speed. It can be seen that

engine speed upon engine start up exceeds that at which the overspeed protection device trips, thereby causing engine operation to be halted inadvertently.

[0040] The present invention provides the advantage that, by adjusting the adjustment member 32 to limit the extent of pivotal movement of the lever member 18, and hence the 5 extent of angular movement of the metering valve member 23 to that beyond the region of dead travel, it is possible to avoid such a delay upon engine start up. Referring to Figure 2, Trace B represents engine speed as a function of time when the adjustment member 32 is adjusted to limit the range of angular movement of the metering valve member 23 to that beyond the region of dead travel, thereby avoiding any delay in control 10 of fuelling upon engine start up. The present invention therefore prevents the overspeed protection device from tripping inadvertently.

[0041] It will further be appreciated that the adjustment member 32 can be adjusted to suit the particular application of the governor, depending on the range of metering valve member movement over which a variation in fuelling level occurs. The governor can 15 therefore be adapted readily for use in different engine types and with different engine fuel pumps. Differences in manufacturing tolerance can also be compensated for by adjusting the adjustment member 32 to limit the extent of movement of the metering valve member 23, as required.

[0042] One potential drawback of providing the adjustment screw 32 to limit the extent 20 of movement of the lever member 18 is that the governor spring 25 may be prevented from urging the thrust washer 16 against the rubber ring of the clutch mechanism upon engine start-up. The provision of the further spring 34, however, overcomes this problem.

[0043] In an alternative embodiment to that shown in Figure 1, the adjustment member 32 may be arranged to co-operate directly with the lever member 18. For example, the adjustment member may extend generally parallel to the drive shaft 11, the adjustment member 32 engaging a region of the lever member underneath the damping arrangement 5 24 in the orientation shown in Figure 1. However, the illustrated embodiment provides the advantage that construction of the governor is simplified.

[0044] In a further alternative embodiment to that shown in Figure 1, an additional member may be arranged between the adjustment member 32 and the damping arrangement. In this case the adjustment member 32 acts on the additional member, rather 10 than on the damping arrangement 24, so as to prevent damage being caused to the damping arrangement 24.

[0045] Figure 3 shows an alternative embodiment of the invention, in which the need for the adjustment member 32 in Figure 1 is removed. The damping arrangement 24 is shown in further detail in Figure 3, similar parts to those shown in Figure 1 being denoted with 15 like reference numerals. The housing 26 for the damping arrangement 24 is provided with first and second outlets 36, 38 respectively, the first outlet 36 having a restricted diameter and serving to permit fluid flow only at a relatively low rate. The second outlet 38 has a greater diameter than the first outlet 36 and the damping piston 28 is provided with a passage 40 such that, depending upon the position of the damping piston 28 within the 20 bore provided in the housing 26, fluid within the working chamber 30 is either able to flow through the passage 40 provided in the damping piston 28 and through the second outlet 38 or, if the damping piston 28 obscures the second outlet 38, is able to flow through the

restricted outlet 36 such that oscillatory movement of the lever member 18 is damped, as described previously.

[0046] The damping spring 21 is provided with an adjustment member 42, such as an anchorage screw, the position of the adjustment member 42 being adjustable so as to 5 adjust the position of the damping spring 21. By adjusting the position of the damping spring 21 such that the damping piston 28 occupies a position in which the working chamber 30 communicates with the second outlet 38 during the dead travel region of the metering valve member 23, the damping arrangement 24 is disabled and the delay in control of fuelling can be avoided, thereby ensuring that the overspeed protection device 10 does not inadvertently trip. In the position illustrated in Figure 3, the working chamber 30 does not communicate with the second outlet 38 as it is obscured by the damping piston 28, in which case the flow of fluid from the working chamber 30 is restricted by the 15 first outlet 36. However, if the damping piston 28 is urged towards the left in the illustration shown by the adjustment member 42, the working chamber 30 is brought into communication with the second outlet 38, through the passage 40, such that the restricted outlet 36 is by-passed. As the restricted outlet 36 is by-passed, fluid is able to flow into and out of the working chamber 30 at a relatively high rate, such that the damping arrangement 24 will no longer provide a damping function.

[0047] In an alternative embodiment to that shown in Figure 3, the spring 21 and the 20 damping piston 28 may be in abutment or connection with the lever member 18. In addition, in either arrangement the housing 26 of the damping arrangement 24 may be in connection with the adjustment screw 42.

[0048] Although in the embodiment shown in Figure 3, the by-pass flow path is defined, in part, by a passage provided in the damping piston, it will be appreciated that the damping arrangement may be configured in a different manner to define the by-pass means.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054