PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 21. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 22. do 31. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

POPEZON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 21. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

Liczbą wymierną jest liczba:

$$\mathbf{A.3}^{\frac{1}{2}} \cdot \mathbf{4}^{-2} \cdot \mathbf{5}$$

B.
$$3^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot 5$$

B.
$$3^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot 5$$
 C. $9^{\frac{1}{2}} \cdot 4^{-\frac{1}{2}} \cdot 5^2$ **D.** $9^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot 5^2$

$$\mathbf{D}, 9^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} \cdot 5^2$$

Zadanie 2. (*1 pkt*)

Liczba 21 jest równa 0,3% liczby x. Wynika stąd, że:

A.
$$x = 700$$

B.
$$x = 7000$$

C.
$$x = 0.63$$

D.
$$x = 0.063$$

Zadanie 3. (1 pkt)

Jeśli $\log_3 5 = a \wedge \log_3 45 = b$, to liczba $\log_3 5 + \log_3 45$ jest równa:

$$\mathbf{A} \cdot a - b$$

B.
$$3^{ab}$$

C.
$$2a + 2$$

D.
$$a^2 + 2$$

Zadanie 4. (*1 pkt*)

W przedziale (3,729) potęg liczby 3 jest:

Zadanie 5. (*1 pkt*)

Wiadomo, że $x = \sqrt{9 + \sqrt{256}}$. Wynika stąd, że:

A.
$$x = 3 + 16$$

B.
$$x = 9 + 4$$

C.
$$x = 3 + 4$$

D.
$$x = 1 + 4$$

Zadanie 6. (*1 pkt*)

Dane są zbiory $A = \left(-\frac{3}{2}, 5\right)$ i B = N. Wówczas iloczyn zbiorów $A \cap B$ jest równy:

B.
$$(0, 4)$$

$$C.\{1,2,3,4\}$$

$$\mathbf{C.}\{1,2,3,4\}$$
 $\mathbf{D.}\{0,1,2,3,4\}$

Zadanie 7. (*1 pkt*)

Jeżeli $a = 2\sqrt{3} - \sqrt{5}$, to liczba odwrotna do a jest równa:

A.
$$\frac{1}{2\sqrt{3}} - \frac{1}{\sqrt{5}}$$

B.
$$-2\sqrt{3} + 5$$

B.
$$-2\sqrt{3} + 5$$
 C. $\frac{2\sqrt{3} + \sqrt{5}}{7}$ **D.** $\frac{2\sqrt{3} - \sqrt{5}}{7}$

D.
$$\frac{2\sqrt{3}-\sqrt{5}}{7}$$

Zadanie 8. (*1 pkt*)

Zbiór liczb, które na osi liczbowej są równoodległe od liczb (-6) i 10, można opisać za pomocą równania:

A.
$$|x+6| = |x-10|$$

B.
$$|x-6| = |x-10|$$

A.
$$|x+6| = |x-10|$$
 B. $|x-6| = |x-10|$ **C.** $|x+6| = |x+10|$ **D.** $|x-6| = |x+10|$

D.
$$|x-6| = |x+10|$$

Zadanie 9. (*1 pkt*)

Jeśli $x^2 + y^2 = 84$ i xy = 35, to kwadrat sumy liczb x, y jest równy:

Zadanie 10. (*1 pkt*)

Zbiorem rozwiązań nierówności $x^2 + 36 > 0$ jest:

$$\mathbf{A.}(-\infty,-6) \cup (6,+\infty) \quad \mathbf{B.}(6,+\infty)$$

$$\mathbf{B.}(6,+\infty)$$

$$\mathbf{C}.\emptyset$$

$$\mathbf{D}.R$$

Zadanie 11. (*1 pkt*)

Dziedziną wyrażenia wymiernego $W = \frac{3}{x} : \frac{x^2 - 25}{x + 2}$ jest zbiór: **A.** $R \setminus \{-5, -2, 0, 5\}$ **B.** $R \setminus \{-2, 0\}$ **C.** $R \setminus \{-5, 5\}$

A.
$$R \setminus \{-5, -2, 0, 5\}$$

B.
$$R \setminus \{-2, 0\}$$

$$\mathbb{C}.R \setminus \{-5,5\}$$

$$\mathbf{D}.R$$

Zadanie 12. (1 pkt)

Układ równań
$$\begin{cases} x - y = -3 \\ -4x + 4y = 8 \end{cases}$$

A. nie ma rozwiązania

B. ma nieskończenie wiele rozwiazań

C. ma rozwiązanie
$$\begin{cases} x = -1 \\ y = 1 \end{cases}$$

D. ma rozwiązanie
$$\begin{cases} x = -4 \\ y = -1 \end{cases}$$

Zadanie 13. (*1 pkt*)

Rozwiązaniem równania $\frac{(x^2-4)(x-4)}{(x-2)(x-3)}$ są liczby:

$$A. -2, 2, 3, 4$$

$$\mathbf{B}_{\bullet} - 2, 2, 4$$

$$C. -2, 4$$

Zadanie 14. (*1 pkt*)

Same wartości ujemne przyjmuje funkcja:

A.
$$f(x) = |-x - 2|$$

B.
$$f(x) = -|x| - 2$$

C.
$$f(x) = -|x+2|$$

Zadanie 15. (*1 pkt*)

Zbiorem wartości funkcji $f(x) = x^2 + bx + 4$ jest $(0, +\infty)$. Wynika stąd, że:

A.
$$b = -2 \lor b = -2$$

B.
$$b = 2$$

$$C_{\bullet} h = 4 \lor h = -4$$

D.
$$b = 4$$

Zadanie 16. (*1 pkt*)

Funkcja wykładnicza $f(x) = 125^x$ nie przyjmuje wartości:

$${\bf A.}\,0$$

Zadanie 17. (*1 pkt*)

Dany jest ciąg o wyrazie ogólnym $a_n = \frac{2n-3}{n+1}$. Wynika stąd, że: **A.** $a_{n+1} = \frac{2n-1}{n+1}$ **B.** $a_{n+1} = \frac{2n-1}{n+2}$ **C.** $a_{n+1} = \frac{2n-2}{n+1}$ **D.** $a_{n+1} = \frac{2n-2}{n+2}$

A.
$$a_{n+1} = \frac{2n-1}{n+1}$$

B.
$$a_{n+1} = \frac{2n-1}{n+2}$$

C.
$$a_{n+1} = \frac{2n-2}{n+1}$$

D.
$$a_{n+1} = \frac{2n-2}{n+2}$$

Zadanie 18. (1 pkt)

Wyrazami ciągu są liczby naturalne dwucyfrowe, które przy dzieleniu przez 5 dają resztę 4. Dziesiąty wraz tego ciągu jest równy:

Zadanie 19. (*1 pkt*)

Rozwiązaniem równania 2 + 4 + 6 + ... 2n = 930 jest liczba n równa:

Zadanie 20. (1 pkt)

Pierwszy wyraz ciągu geometrycznego jest równy $\sqrt{3}$, a iloraz q=-1. Suma stu jeden wyrazów tego ciągu jest równa:

A. $-\sqrt{3}$

B. 0

 $\mathbf{C}.\sqrt{3}$

D. $2\sqrt{3}$

Zadanie 21. (1 pkt)

Liczba przekątnych wielokąta wypukłego jest 4 razy większa od liczby jego boków. Wynika stąd, że liczba boków tego wielokąta jest równa:

A.8

B. 9

C.10

D. 11

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 22. do 31. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 22. (2 pkt)

Dla pewnego kata ostrego α spełniony jest warunek $\sin \alpha + \cos \alpha = \frac{3\sqrt{5}}{5}$. Oblicz $\sin \alpha \cos \alpha$.

Zadanie 23. (2 *pkt*)

Koło i kwadrat mają równe obwody. Wykaż, że pierwsza z tych figur ma większe pole.

Zadanie 24. (2 pkt)

W okrąg o środku *S* wpisany jest trójkąt równoramienny *ABC* o kącie między ramionami *AC* i *BC* równym 40°. Przez wierzchołek *B* i środek okręgu *S* poprowadzono prostą, która przecięła bok *AC* trójkąta w punkcie *D*. Wyznacz miarę kąta *CDB*.

Zadanie 25. (2 *pkt*)

Oblicz długość boku kwadratu wpisanego w trójkąt równoboczny o boku a.

Zadanie 26. (2 *pkt*)

Krawędzie prostopadłościanu wychodzące z jednego wierzchołka tworzą ciąg arytmetyczny o pierwszym wyrazie 5 i różnicy 2. Wyznacz pole powierzchni całkowitej tego prostopadłościanu.

Zadanie 27. (2 *pkt*)

Rozwiąż nierówność $-2x^2 + x - 3 < 0$.

Zadanie 28. (2 pkt)

Z urny, w której jest 5 kul czerwonych i 7 czarnych wyjęto dwa razy po jednej kuli bez zwracania. Oblicz prawdopodobieństwo, że wyjęto kule w różnych kolorach.

Zadanie 29. (*4 pkt*)
Tabela przedstawia pewne dane i ich liczebność:

Wartość danej	-4	2	4	7	20
Liczebność	7	2	3	6	2

- a) Oblicz średnią arytmetyczną tych danych.
- b) Podaj medianę.
- c) Oblicz odchylenie standardowe.

Zadanie 30. (6 pkt) Dany jest odcinek o końcach A = (-4, 2), B = (8, -4).

- a) Wyznacz równanie okręgu o średnicy *AB*.b) Wyznacz równanie średnicy prostopadłej do średnicy *AB*.

Zadanie 31. (*5 pkt*)

Dany jest ostrosłup prawidłowy trójkątny. Promień okręgu opisanego na podstawie tego ostrosłupa jest równy $2\sqrt{3}$. Ściana boczna jest nachylona do płaszczyzny podstawy ostrosłupa pod kątem 60°. Oblicz objętość i pole powierzchni bocznej tego ostrosłupa.

