Qiaobo Li

Department of Computer Science, University of Illinois at Urbana-Champaign +1 4479021225 | qiaobol2@illinois.edu

Graduation year: May 2027

EDUCATION

PEKING UNIVERSITY 09/2018-06/2022

School of Mathematical Sciences

- Undergraduate, Major in Statistics and Probability, Overall GPA: 3.79/4; Major GPA:3.80/4
- Programming & Software: C, C++, Python, MATLAB, R; Latex
- English Proficiency: TOEFL 110, GRE Verbal 157, Quantitative 170, Writing 3.5

Awards and Honors

Academic Excellence Award, Peking University

Annual Scholarship, Peking University

11/2020&11/2021

3rd Prize in Chinese Mathematical Olympiad

2nd Prize in Chinese Mathematics Competition

11/2019

University of Illinois at Urbana-Champaign

08/2022-present

Department of Computer Science

- Ph.D., Major in Computer Science, Overall GPA (till now): 3.95/4
- Programming & Software: C, C++, Python, Pytorch, MATLAB, R; Latex
- Research interests: Federated Learning, Trustworthy Machine Learning, Deep Learning Theory, High-dimensional statistics.

Main Course and Score

Deep Learning Theory 4/4 Trustworthy ML 4/4
Adv Topics in Sec, Priv and ML 4/4 Adv Topics in NLP 4/4

RESEARCH EXPERIENCE

Understanding learning/generalization landscape for GD on multi-task/single-task learning	07/2021-08/2023
Supervised by Prof. Quanquan Gu, Department of Computer Science, UCLA	
Trustworthy Machine Learning	02/2023-08/2023
Supervised by Prof. Han Thao. Department of Computer Science, UILIC	

Supervised by Prof. Han Zhao, Department of Computer Science, UIUC

Geometric Structures and Others in Machine Learning 09/2023-present

Supervised by Prof. Arindam Banerjee, Department of Computer Science, UIUC

WORK EXPERIENCE

Machine Learning Engineer Intern

 $05/2025\hbox{-}08/2025$

Responsible Recommendation System, TikTok Inc.

Kev Contributions:

- Select state-of-the-art vision—language models and appropriate fine-tuning methods and aim to achieve acceptable accuracy on the given datasets.
- Explore strategies for imbalanced datasets, such as combining class-specific fine-tuned models and rebalancing the dataset through resampling or reweighting.
- Compare and analyze how different frame-extraction strategies affect video classification performance of vision-language models.
- Design and study a router that dispatches video inputs between larger and smaller vision—language models to balance accuracy and computational cost.

Recognition: Exceeds Expectations (E) performance rating.

PUBLICATIONS

• Sketched Gaussian Mechanism for Private Federated Learning

Qiaobo Li, Zhijie Chen, Arindam Banerjee NeurIPS Spotlight, 2025

Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis

Zhijie Chen, Qiaobo Li, Arindam Banerjee

NeurIPS Poster, 2025

• On the Power of Multitask Representation Learning with Gradient Descent

Qiaobo Li, Zixiang Chen, Yihe Deng, Yiwen Kou, Yuan Cao, Quanquan Gu AISTATS Poster, 2025

Loss Gradient Gaussian Width based Generalization and Optimization Guarantees

Arindam Banerjee, Qiaobo Li, Yingxue Zhou AISTATS Oral, 2025

Differentially Private Post-Processing for Fair Regression

Ruicheng Xian, Qiaobo Li, Gautam Kamath, Han Zhao ICML Poster, 2024

• Sketching for Distributed Deep Learning: A Sharper Analysis

Mayank Shrivastava, Berivan Isik, Qiaobo Li, Sanmi Koyejo, Arindam Banerjee NeurIPS Poster, 2024

Sketched Gaussian Mechanism on Matrix for Private Federated LoRA

Qiaobo Li, Zhijie Chen, Arindam Banerjee Openreview, 2025

Beyond Johnson-Lindenstrauss: Uniform Bounds for Sketched Bilinear Forms

Rohan Deb, Qiaobo Li, Mayank Shrivastava, Arindam Banerjee Openreview, 2025

Coding Projects

• Federated Learning with Communication-Efficient and Private Algorithms

• **Objective**: Advance federated learning by developing a novel algorithm and benchmarking it against state-of-the-art communication-efficient and differentially private methods for both vision and language tasks.

• Key Contributions:

- O Designed and implemented different communication-efficient and private federated learning algorithms, leveraging sketching techniques to enhance communication efficiency.
- Conducted rigorous evaluations of the algorithm alongside FetchSGD and 1bit-ADAM, benchmarking performance on vision and language tasks:
 - Trained ResNet101 and fine-tuned ViT-based model on CIFAR-10 for vision tasks.
 - Fine-tuned **BERT** on **SST2** from the GLUE benchmark for sentiment analysis.
- o Investigated spectral properties of optimization dynamics to gain insights into model optimization behavior during training and fine-tuning by analyzing loss Hessian and predictor Hessian spectrum structures using the SLQ algorithm, revealing trends in curvature and stability.
- Demonstrated improvements in accuracy, convergence speed, and resource utilization, while
 maintaining competitive communication overhead across diverse server optimizers, including SGD,
 SGD with momentum, ADAM, and AdaClip

• Fair and Private Post-Processing for Regressors

• Objective: Developed and conducted a fair and private post-processing algorithm to process regressors on the Communities & Crime and Law School datasets.

• Key Contributions:

- o Investigated and quantified trade-offs among **test error**, **fairness violation**, and **differential privacy** by implementing **differential privacy mechanisms** and fairness-aware evaluation metrics.
- o Enhanced model performance while balancing **privacy guarantees** and **fairness constraints** through systematic analysis of the interplay between privacy loss (ε), fairness measures, and predictive accuracy.

Loss Gradient Gaussian Width: Generalization and Optimization Guarantees

• **Objective**: Analyze generalization and optimization trends during training by investigating gradient and featurizer properties across models and datasets.

• Key Contributions:

- o Trained ResNet18, Feedforward Networks (FFN), and CNN on CIFAR-10, MNIST, and Fashion-MNIST using SGD, ADAM, and ADAMW.
- Conducted comprehensive gradient analyses, identifying trends in Gradient Domination Ratio, L2 norm of gradients, and L0/L1 norms of featurizers, and examined gradient coordinate structures to understand their relationship to generalization performance.
- Assessed the interplay between model architectures, optimizers, and dataset characteristics, providing insights into how these factors influence optimization dynamics and generalization behavior.