Politechnika Łódzka	Instytut Informatyki Stosowanej
Laboratorium Sztı	ucznej Inteligencji
Projektowanie systemu sterowania r rozmy	

Opracował:

Dr inż. Piotr Urbanek.

1. Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z procedurą projektowania prostego regulatora metodami logiki rozmytej (*fuzzy logic*) i zastosowanie go do układu regulacji temperatury pomieszczenia.

2. Etapy projektowania układu rozmytego

Typowy schemat działania klasycznego układu rozmytego Mamdani'ego pokazuje rys. 1.

Rys. 1. Schemat działania układu rozmytego.

Projektowanie układu sprowadza się zatem do zdefiniowania operacji wykonywanych w poszczególnych krokach. Poprawne działanie układu, np. regulatora rozmytego, zależy przede wszystkim od właściwego określenia liczby i parametrów funkcji przynależności wielkości wejściowych i wyjściowych do zbiorów rozmytych oraz od zdefiniowania operacji wnioskowania rozmytego w poszczególnych regułach, których liczba waha się od kilku do kilkudziesięciu.

3. Schemat układu klimatyzacji pomieszczenia.

Schemat układu klimatyzacji, który na podstawie zmierzonych wartości temperatury i wilgotności wyznacza sygnał sterujący odpowiadający intensywności chłodzenia danego pomieszczenia przedstawiony jest na rys. 2.

Rys. 2. Schemat układu sterowania klimatyzatorem w pomieszczeniu.

Przykładowa reguła:

IF temperatura jest wysoka **AND** wilgotność jest duża **THEN** intensywność chłodzenia jest duża

Klasyczny regulator rozmyty zbudowany jest z następujących bloków:

Rys. 3. Blok sterowania Gdzie blok wnioskowania składa się z szeregu reguł:

Rys. 4. Blok wnioskowania.

Przykładowe reguły rozmyte pozwalające sterować klimatyzatorem przedstawione są w tabeli 1.

Tabela I. Neguly IOZIIIVle.	Tabela	1.	Regulv	rozmyte.
-----------------------------	--------	----	--------	----------

temperatura		wilgotność		moc
zimno	AND	sucho	THEN	niska
zimno	AND	normalnie	THEN	niska
zimno	AND	mokro	THEN	średnia
średnio	AND	sucho	THEN	niska
średnio	AND	normalnie	THEN	średnia

temperatura		wilgotność		moc
średnio	AND	mokro	THEN	duża
gorąco	AND	sucho	THEN	duża
gorąco	AND	normalnie	THEN	duża
gorąco	AND	mokro	THEN	duża

4. Zadanie.

- 1. Utworzyć reguły sterowania klimatyzatorem w pomieszczeniu.
- Określić funkcje przynależności dla zaproponowanych zmiennych lingwistycznych na wejściu sterownika (temperatura i wilgotność).
 Przykładowe funkcje przynależności opisujące temperaturę mogą być następujące:

Oczywiście liczba zmiennych, ich opis oraz kształt mogą się różnić.

Wartości wilgotności powietrza można określić korzystając z wykresu zależności temperatura-wilgotość (wzięte ze strony https://www.termocert.com.pl/ocena-komfortu-cieplnego/wilgotnosc-powietrza.html):

- 3. Określić blok reguł sterujących mocą klimatyzatora.
- 4. Określić liczbę oraz kształt funkcji przynależności opisujących moc wyjściową regulatora. Przykładowo, moc mała może oznaczać 1 kW, średnia 2kW, duża 3kW.

- 5. Wykorzystując bibliotekę skyfuzzy (https://pythonhosted.org/scikit-fuzzy/) napisać program wyznaczający wartość mocy w kW na wyjściu sterownika w zależności od aktualnej temperatury i wilgotności w pomieszczeniu.
- 6. W sprawozdaniu zamieścić:
 - a. Wygenerowane w wykonanym programie wykresy wejściowych funkcji przynależności oraz funkcji wyjściowej.
 - b. Przykłady obliczeń zwracanych przez program (podobnie jak w programie "napiwek".
 - c. Kod programu przesłany jako oddzielny plik.