Bias: Endangering Species and Performance

An Evaluation of SpeciesNet on Leopard Classification

Austin Kaburia*, Taliya Weinstein*, Andrianantenaina Zo Lalaina Andrianina * Equal Contribution

Introduction

- Wildlife is in crisis, with over 1 million species at risk of extinction and a 69% decline in global animal populations since 1970 [1].
- Camera traps deployed worldwide generate massive image datasets, offering an opportunity to monitor biodiversity.
- This research evaluates SpeciesNet [2], a deep learning model featuring an animal detector (MegaDetector) and classifier (EfficientNet V2 M), trained on global camera trap data, to assess its ability to identify endangered species.

Research Design and Methods

Training Dataset with IUCN categories

Recall Comparison on Leopard & Impala

Leopard Error Understanding with WildCLIP

a photo of an animal at night

Leopard vs Seval Fine Tuning Classification

. vai

Acknowledgements

We thank the entire ACVSS organising team for their guidance and support during the mentoring sessions, which helped us formulate the research project.

Discussion and Future Work

- Model failed on evaluating endangered species compared to least concern species
- Fine tuning improved the model performance
- Future work: a more rigourous analysis to establish more possible biases, look into fine tuning both the detector and classifier of SpeciesNet

Citations

[1] WWF (2024) Living Planet Report 2024 – A System in Peril. WWF, Gland, Switzerland [2] Gadot, T., et al. (2024). *IET Computer Vision*, 18(8), 1193-1208. https://doi.org/10.1049/cvi2.12318

[3] Appel, CL., et al. (2025) *Ecological Applications*.