COMP229: Introduction to Data Science Lecture 12: Kuratowski's criterion of planarity

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

Planar graphs

Definition 12.1. An abstract graph that can be embedded (drawn without intersections) in the plane \mathbb{R}^2 (or, equivalently S^2) is called *planar*.

Each of the graphs in the picture has 4 vertices.

Which of them are planar by the definition above?

Criterion for planar graphs

Claim 12.2. [Kuratowski's criterion of planarity] A graph G is planar if and only if G has no (subdivisions of) subgraphs K_5 and $K_{3,3}$, which are called Kuratowski's *forbidden* subgraphs.

We'll prove the easier "only if" part: if a graph G contains K_5 or $K_{3,3}$, then G isn't planar. It's enough to prove that K_5 or $K_{3,3}$ aren't planar.

A proof by contradiction

When we need to prove a claim for all objects, e.g. any continuous map $K_5 \to \mathbb{R}^2$ has intersections in the image, a typical way is by contradiction.

Assume that the graph $K_5 \subset \mathbb{R}^2$ is embedded.

This embedded graph K_5 has V=5 vertices and E=10 edges. Use Euler's formula to find the number F of faces (connected regions of \mathbb{R}^2-K_5).

Counting edges twice

Euler's formula V - E + F = 2 for the connected graph $K_5 \subset \mathbb{R}^2$ with V = 5, E = 10 gives F = 7.

Claim 12.3. Each of 7 (hypothetical) faces of a graph $K_5 \subset \mathbb{R}^2$ has at least 3 boundary edges.

Proof. K_5 has no loops (edges connecting a vertex to itself) and no double edges (two different edges between the same pair of vertices).

Do you already see a contradiction?

Why is K_5 not planar?

If each of 7 faces of $K_5 \subset \mathbb{R}^2$ has at least 3 boundary edges, the total number of edges is at least $7 \times 3 = 21$. We counted each edge twice, because every edge belongs to the boundaries of 2 faces. The double number of edges is $2E \geq 21$.

However, K_5 has 10 edges, which contradicts $2E \ge 21$ and proves that K_5 isn't planar.

Why is $K_{3,3}$ not planar?

Try the similar approach by contradiction.

Assume that there is an embedding $K_{3,3} \subset \mathbb{R}^2$.

The graph has V=6 vertices, E=9 edges and F=5 faces by Euler's formula V-E+F=2.

If each of F=5 faces has at least 3 edges, the double number of edges is $2E \ge 5 \times 3 = 15$.

$K_{3,3}$ is indeed not planar

 $K_{3,3}$ is bipartite, hence two types of vertices (square/round dots) alternate and any cycle has an even number (minimum 4, not 3) of edges.

The double number of edges counted over 5 faces is $2E > 5 \times 4 = 20$, which contradicts E = 9.

What graphs can we embed in 3 dimensions?

3 dimensions are enough

Claim 12.4. Any graph can be embedded in \mathbb{R}^3 .

Proof. When we draw an intersection with one edge going over another edge, we implicitly show (a plane projection) of an embedding $G \subset \mathbb{R}^3$

Draw any graph with only double intersections between edges. Such a drawing (in a general position) can be obtained by a slight perturbation. At every crossing, push one arc into the 3rd dimension, keep another arc in the plane.

3 half-planes are enough

Claim 12.5. Any graph G can be embedded in B.

Proof. Draw a curve α without self-intersections that goes once through all overcrossing arcs. Deform \mathbb{R}^2 to make α straight. Push overcrossing arcs to the 3rd half-plane glued along α .

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Are the graphs K_5 and $K_{3,3}$ not planar, because their drawings below have intersections?

Answer to the quiz and summary

Answer. No, these drawings prove nothing. K_5 and $K_{3,3}$ are not planar, because they have no possible drawings without self-intersections (by Kuratowski's criterion of planarity).

- A *planar* graph: can be embedded (drawn without intersections) in the plane \mathbb{R}^2 .
- A graph G is planar if and only if G contains no (subdivisions of) the graphs K_5 and $K_{3,3}$. The "only if" part follows from Euler's formula.
- Any graph can be drawn in \mathbb{R}^3 , in 3 pages.