

Fizyka 3.1 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ (ćwiczenie 84)

Sprawozdanie z Labolatorium

19 listopada 2023

Wydział i kierunek studiów

W12N, Automatyka i Robotyka

Termin zajęć

każdy wtorek, 15:15 - 16:55

Prowadzący

dr Krzysztof Gałkowski

Numer i temat ćwiczenia

84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Data ćwiczenia, termin oddania sprawozdania

 $14.11.2023,\ 21.11.2023$

Wykonawca

Adam Prystupa

1 Wstęp

Celem ćwiczenia jest wyznaczenie długości fali emisji światła emitowanego przez laser oraz obliczenie nieznanej stałej drugiej siatki dyfrakcyjnej z wykorzystaniem wcześniej wyznaczonej długości.

2 Wykaz przyrządów

- Laser emitujący czerwone światło
- Dwie siatki dyfrakcyjne "A" oraz "B"
- Ekran z podziałką milimetrową
- Szczelina

Rys 1: Schemat układu

3 Wykorzystane Wzory

3.1 Średnia odległość

3.1.1 Wzór

•
$$\overline{x}_{n,i} = \frac{x_{nli} + x_{npi}}{2}$$

•
$$\overline{x}_{n,i} = \frac{30,00+30,00}{2} = 30,00[mm]$$

3.1.2 Niepewność

•
$$u(\overline{x}_{n,i}) = \frac{dokladnosc}{\sqrt{3}}$$

•
$$u(\overline{x}_{n,i}) = \frac{\frac{1}{2} * 1}{\sqrt{3}} = 0,28867 \approx 0,29[mm]$$

3.2 Sinus kąta ugięcia

3.2.1 Wzór

•
$$sin\theta_{n,i} = \frac{\overline{x}_{n,i}}{\sqrt{\overline{x}_{n,i}^2 + L_i^2}}$$

•
$$sin\theta_{n,i} = \frac{30,00}{\sqrt{30,00^2 + 300,00^2}} = 0,0995023 \approx 0,09950$$

3.2.2 Niepewność

•
$$u_c(sin\theta_i) = \sqrt{\left(\frac{L_i\overline{x}_i}{(L_i^2 + \overline{x}_i^2)^{3/2}}\right)^2 u^2(L_i) + \left(\frac{L_i^2}{(L_i^2 + \overline{x}_i^2)^{3/2}}\right)^2 u^2(\overline{x}_i)}$$

•
$$u_c(sin\theta_i) = \sqrt{(\frac{300,00*30,00^2}{(300,00^2+30,00^2)^{3/2}})^2*0,29^2 + (\frac{300,00^2}{(300,00^2+30,00^2)^{3/2}})^2*0,29^2} = 0,00095412 \approx 0,00096412$$

3.3 Długość fali emisji światła emitowanego przez laser

3.3.1 Wzór

•
$$\lambda_{n,i} = \frac{d(sin\theta_{n,i})}{n}$$

•
$$\lambda_{n,i} = \frac{0.02*0.9950}{3} = 0.006633[mm] \approx 663, 3[nm]$$

3.4 Stała siatki dyfrakcji

3.4.1 Wzór

•
$$d = \frac{n\overline{\lambda}}{\overline{\sin\theta}}|_{n=1}$$

•
$$d = \frac{1*0,6638}{0,3235} = 2,052137 \approx 2,052[\mu m]$$

3.4.2 Niepewność

•
$$u_c(d) = \sqrt{\left(\frac{n}{\overline{sin\theta}}\right)^2 u^2(\overline{\lambda}) + \left(\frac{n\overline{\lambda}}{\overline{sin\theta}^2}\right)^2 u^2(\overline{sin\theta})}|_{n=1}$$

•
$$u_c(d) = \sqrt{(\frac{1}{0,3235})^2 * 0,0055^2 + (\frac{1*0,6638}{0,3235^2})^2 * 0,0095^2} = 0,06264 \approx 0,063[\mu m]$$

4 Wyniki Pomiarów

4.1 Wyniki pomiarów dla siatki dyfrakcyjnej A

L_i	$u(L_i)$	_	x_{lni}	$u(x_{lni})$	x_{pni}	$u(x_{pni})$
[mm]	[mm]	n	[mm]	[mm]	[mm]	[mm]
300,00	0,29	1	10,00	0,29	10,00	0,29
		2	20,00		20,00	
		3	30,00		30,00	
		4	40,00		40,00	
	0,29	1	11,50	0,29	11,50	0,29
350,00		2	23,00		23,00	
		3	34,50		34,50	
400,00	0,29	1	13,50	0,29	13,50	0,29
		2	27,00		27,00	
		3	40,00		40,00	
450,00	0,29	1	15,00	0,29	15,00	
		2	30,00		30,00	0,29
		3	45,00		45,00	
500,00	0,29	1	16,50	0,29	16,50	
		2	33,50		33,50	0,29
		3	50,00		50,00	
Siatka "A" posiada 50 lini/mm						
Stała siatki "A": d[mm]=				0,02		

4.2 Obliczenia dla siatki dyfrakcyjnej A

$L_{n,i}$	$u(L_{n,i})$	n	$\overline{x_{n,i}}$	$u(\overline{x_{n,i})}$	$\sin heta_{n,i}$	$u(\sin \theta_{n,i})$	$\lambda_{n,i}$
[mm]	[mm]		[mm]	[mm]		10,05	[nm]
300,00	0,29	1	10,00	0,29	0,03331	0,00097	666,3
300,00	0,29	2	20,00	0,29	0,06652	0,00096	665,2
300,00	0,29	3	30,00	0,29	0,09950	0,00096	663,4
300,00	0,29	4	40,00	0,29	0,13216	0,00095	660,9
350,00	0,29	1	11,50	0,29	0,03284	0,00097	656,8
350,00	0,29	2	23,00	0,29	0,06557	0,00096	655,8
350,00	0,29	3	34,50	0,29	0,09810	0,00095	654
400,00	0,29	1	13,50	0,29	0,03373	0,00097	674,7
400,00	0,29	2	27,00	0,29	0,06735	0,00096	673,5
400,00	0,29	3	40,00	0,29	0,09950	0,00095	663,4
450,00	0,29	1	15,00	0,29	0,03331	0,00096	666,3
450,00	0,29	2	30,00	0,29	0,06652	0,00096	665,2
450,00	0,29	3	45,00	0,29	0,09950	0,00095	663,4
500,00	0,29	1	16,50	0,29	0,03298	0,00096	659,7
500,00	0,29	2	33,50	0,29	0,06685	0,00096	668,6
500,00	0,29	3	50,00	0,29	0,09950	0,00094	663,4
Wartość średnia λ [nm]						663,8	
Odchylenie standardowe u(λ) [nm]						5,5	

4.3 Wyniki pomiarów dla siatki dyfrakcyjnej B

L_i	$u(L_i)$	n	x_{li}	$u(x_{li})$	x_{pi}	$u(x_{pi})$
[mm]	[mm]	n	[mm]	[mm]	[mm]	[mm]
50,00	0,29	1	18,50	0,29	18,50	0,29
70,00	0,29	2	25,00	0,29	25,00	0,29
90,00	0,29	3	32,00	0,29	32,00	0,29
110,00	0,29	4	39,00	0,29	39,00	0,29
130,00	0,29	5	43,50	0,29	43,50	0,29
150,00	0,29	6	49,50	0,29	49,50	0,29
170,00	0,29	7	57,00	0,29	57,00	0,29
190,00	0,29	8	63,50	0,29	63,50	0,29
210,00	0,29	9	70,00	0,29	70,00	0,29
230,00	0,29	10	77,00	0,29	77,00	0,29
250,00	0,29	11	84,00	0,29	84,00	0,29
270,00	0,29	12	91,00	0,29	91,00	0,29
290,00	0,29	13	98,00	0,29	98,00	0,29
310,00	0,29	14	105,00	0,29	105,00	0,29
330,00	0,29	15	112,00	0,29	112,00	0,29

4.4 Obliczenia dla siatki dyfrakcyjnej B

$\overline{x_i}$ [mm]	$u(\overline{x_i})$ [mm]	$\sin heta_i$	$u(\sin \theta_i)$
18,50	0,29	0,3470	0,0051
25,00	0,29	0,3363	0,0037
32,00	0,29	0,3350	0,0029
39,00	0,29	0,3342	0,0024
43,50	0,29	0,3173	0,0020
49,50	0,29	0,3134	0,0018
57,00	0,29	0,3179	0,0016
63,50	0,29	0,3170	0,0014
70,00	0,29	0,3162	0,0013
77,00	0,29	0,3175	0,0012
84,00	0,29	0,3185	0,0011
91,00	0,29	0,31938	0,00097
98,00	0,29	0,32015	0,00090
105,00	0,29	0,32081	0,00090
112,00	0,29	0,32139	0,00079
Wartość ś	0,3235		
Odchylenie	0,0095		
Stała siatk	2,052		
	0,063		

5 Wnioski

- Obliczona wartość średnia długości fali światła wynosi $\lambda = 663, 8 \pm 5, 5[nm]$. Wartość znajduje się w przedziale światła czerwonego (od 627nm do 780nm). Zgadza się to z obserwacjami i pozwala stwierdzić ze znacznym prawdopodobieństwem, że pomiary i obliczenia zostały wykonane poprawnie.
- Stała siatki B wynosi $d=2,0521\pm0,06264\mu m$. Stała siatki dyfrakcyjne są zazwyczaj stałymi całkowitymi o równej wartości. Możemy więc przypuszczać, że nasza siatka posiadała stałą równą $d=2\mu m$ Przy wzroście wartości stałej siatki dyfrakcyjnej, odległości pomiędzy kolejnymi rzędami dyfrakcyjnymi ulegają zmniejszeniu.

6 Źródła

- Instrukcja ze strony LPF https://lpf.wppt.pwr.edu.pl/instrukcje/cwn084.pdf
- Informacje odnośnie długości światła widzialnego https://lenalighting.pl/o-nas/baza-wiedzy/941-widmo-promieniowania-widzialnego