Taylor series in multi-variables
Recall for ringle variable fundion f(x), it has a Taylor renies, expanded around of
it has a taylor renies, expanded around of
$\int V_{\alpha} X_{\alpha} =$
$f(n) = \sum_{n=0}^{\infty} \frac{f(n)}{n!} $ Taylor renies. N=0 Mdaurin Series.
where f (n) is the nth denisative dur
Which is valid for some neighborhood
o, which could be all of R for
certain functions.
For patial truite nums of the series.
$f(\pi) \approx \sum_{n=0}^{k} f^{(n)}(6) \approx n$
better with $k \to \infty$.
What about for multi-variable fundious?
California (May) and
Consider a function $f(n, y)$ and
Its behaviour noar (a, b)

we'll write h:= and R:= Dy, for the small variations for f about (a,b) will be $f(a+h,b+k) = \sum_{n=0}^{1} \frac{1}{n!} (D^n f) (a,b)$ where D is the differential operator $D = \lambda \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}$ and by Drf we mean $D^{r}f = D(D(D(\dots Df))$ n copies of D. SD T = f $Df = h \frac{\partial f}{\partial x} + k \frac{\partial f}{\partial y}$

 $D^{2}f = D(Df)$ = (h = h + k = h)(h = h + k = h)

$$= h^{2} \frac{\partial^{2} f}{\partial x^{2}} + h k \frac{\partial^{2} f}{\partial x \partial y} + k h \frac{\partial^{2} f}{\partial y \partial x}$$

$$+ k^{2} \frac{\partial^{2} f}{\partial y^{2}} + 2 h k \frac{\partial^{2} f}{\partial x \partial y} + k^{2} \frac{\partial^{2} f}{\partial y^{2}}$$
and in general
$$D^{n} f = \sum_{j=0}^{n} {n \choose j} h k \frac{\partial^{2} f}{\partial x^{j}} \frac{\partial^{2} f}{\partial y^{j}}$$
where ${n \choose j}$ is the binomial welficient in choose j $n!$

$${n \choose j} = \frac{1}{j! (n-j)!}$$

Example $f(x,y) = \sin(x+3y) + \cos(3x+y)$ Find the Taylor expansion of f

around $\left(\frac{\pi}{2} \right) 0 = \left(\frac{a}{b} \right) + 0$ get an approximation. f(T/2+h, R) ~ poly in h, k. $(D^{\circ}f)(\pi(z,0) = f(\pi(z,0))$ =3h+kFor DZf, we'll need $\frac{\partial f}{\partial n^2} = -\sin(n+3y) - 9\cos(3n+y) = -1$ $\frac{24}{34} = -9 \sin(n+3y) - \cos(3n+y) = -9$ $\frac{3^2 + 3}{3 \pi^3 y} = -3 \sin(\pi + 3y) - 3 \cos(3\pi + y) = -3$

 $\mathcal{D}(\mathcal{D}_{+})(\mathcal{T}/2,0) = -h^{2} - 9k^{2} - bhk$ So putting this together gives the order 2 approximation. f(=th, R) = 1 + 3h+ R - 1 h - 9 k - 3 h k Let's visualire lus uith computer. This all extends to 3 or more variables in "obrious" way say f(n, ..., xn) thon f(a,+h,, ---, an+hn) $= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{n=0}^{\infty} A_n \right) \left(a_1, \ldots, a_n \right)$

where $D = \sum_{j=1}^{N} h_j \frac{\partial}{\partial x_j}$ Optimisation in 2 variables. Finding and classifying conticul/stationary points on surface defined by f (x, y) $1-variable (ase <math>y=f(\pi)$ a_1 a_2 a_3 xThree types of conficel point local maximum (ai) local minimum (ar), inflection point (az), all characterised and were darnfied $\frac{df}{dn} = 0$ $lag \frac{d^2f}{dn^2}$ as

=> local mox. $\frac{d^2f}{dn^2}$ = local nin. $\frac{d^2f}{dx^2}$ | $a_2 > 0$ => infloction point $\frac{d+}{dx} \mid a_3 = 0$ For the surface z=f(x,y)Define a critical point is a point (a,b) where both partial derivatives vanish $\frac{\partial f}{\partial x}(a,b) = 0 \qquad \frac{\partial f}{\partial y}(a,b) = 0.$ So geometrically the tangent plane to the surface at (a,b) is horizontal. Again they come in three types local max. ("top of a hill")

6 10 cal min. ("bottom of a crater") Saddle point (mixture pa nun/mex) Again Hese are dannfied using serond-order denivatives The Hessian determinant is

$$f(n,y) = n^3 + 3ny^2 - 15n - 12y.$$
Find and classify its critical points.

$$\frac{2f}{2x} = 3x^2 + 3y^2 - 15$$

$$\frac{\partial f}{\partial y} = 6\pi y - 12$$

Tip: Look at simpler one first.

$$\frac{\partial f}{\partial y} > 0 \iff 6\pi y - 12 = 0.$$

Now examine If to under this armuption.

$$\frac{2f}{2\pi} = 0 \iff 3\pi + 3\left(\frac{2}{\pi}\right)^2 - 15 = 0$$

$$(=)$$
 $3\pi^2 + \frac{12}{\pi^2} - 15 = 0$

$$(=)$$
 $3x^{4} + 12 - 15x^{2} = 0$

$$(=)$$
 $\chi^{4} - 5\chi^{2} + 4 = 0$

(a)
$$(n^2-1)(n^2-4)=0$$

(a) $x=-1,+1,-2,+2$.

Combining these with $y=\frac{\pi}{2}$

we get four critical points.

 $(-1,-2), (1,2), (-2,-1), (2,1)$

Herrian determinant

 $D = \frac{34}{7n^2} \frac{34}{7y^2} - (\frac{34}{7n^2})^2$
 $= 6n 6n - (6g)^2$
 $= 36(x^2-36y^2)$
 $= 36(x^2-y^2)$.

 $D(-2,-1)=D(2,1)=36(3)$
 $\frac{34}{7n^2} = -12, at n=-2$
 $\frac{3n^2}{7n^2} = 12, at n=-2$

So $(-2,-1)$ is a local max.

and (2,1) is a local win. D(-1,-2) = D(1,2) = 36(-3)So (-1,-2) and (1,2) are both saddles. Let's conform all this