

3D Point Clouds
Lecture 4 – Clustering &
Model Fitting

Aptiv 自动驾驶 新加坡国立大学 博士 清华大学 本科

- 1. Clustering Spectral Clustering
- 2. Clustering Mean-Shift and DBSCAN
- 3. Model Fitting LSQ
- 4. Model Fitting Hough Transform
- 5. Model Fitting RANSAC

- K-Means
 - Euclidean distance
 - Hard assignment
 - No modeling for a cluster
 - Pre-defined cluster number k
- **GMM**
 - Euclidean distance
 - Probability formulation soft clustering
 - Mean and variance estimation for each cluster
 - Pre-defined cluster number k
- Spectral Clustering
 - · Works with connectivity
 - Heuristic to determine cluster number *k*

Unnormalized Spectral Clustering

- 1. Build the graph to get adjacency matrix $W \in \mathbb{R}^{n \times n}$
- 2. Compute unnormalized Laplacian *L*
- 3. Compute the first (smallest) k eigenvectors v_1, \dots, v_k of L
- 4. Let $V \in \mathbb{R}^{n \times k}$ be the matrix contraining the vectors v_1, \dots, v_k as columns
- 5. For $i=1,\cdots n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of V
- 6. Cluster the points $\{y_i \in \mathbb{R}^k\}$ with k-means algorithm into clusters C_1, \dots, C_k
- 7. The final output clusters are A_1, \dots, A_k where $A_i = \{j | y_j \in C_i\}$

- $lue{}$ Selection of k can be done by eigenvalue analysis
- lacktriangle Most stable clustering is given by the value of k that maximizes the eigen-gap
 - Eigengap is the difference between consecutive eigenvalues
 - $\Delta_k = |\lambda_k \lambda_{k-1}|$

Normalized Spectral Clustering

Unnormalized Spectral Clustering -> approximated RatioCut

$$\operatorname{RatioCut}(A_1,\ldots,A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i,\overline{A}_i)}{|A_i|}$$

Normalized Spectral Clustering -> approximated NormalizedCut

$$\operatorname{Ncut}(A_1,\ldots,A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i,\overline{A}_i)}{\operatorname{vol}(A_i)}$$

Min-cut: Partition graph G = (V, E) into two sets A, B, such that the weights of edges connecting A, B is minimum

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

lockloss Min-cut for k partitions. \bar{A}_i is the complement of subset $A_i \subset V$

$$cut(A_1, \dots, A_k) = \sum_{i=1}^k cut(A_i, \overline{A_i})$$

S Graph Min-cut

Naïve min-cut suffers from degenerate results

- Solution:
 - Add constrains that the partition A_i can not be too small
- How to evaluate the size of a partition A_i ?

Graph Min-cut – Size of *A*

Number of vertices in A

$$|A| :=$$
 the number of vertices in A

Sum of weights in *A*

$$\operatorname{vol}(A) := \sum_{i \in A} d_i$$

$$\operatorname{vol}(A) := \sum_{i \in A} d_i$$
 $d_i = \sum_{j=1}^n w_{ij}$ Weight sum for node i

- Unnormalized Spectral Clustering -> approximated RatioCut
 - Constrains the cluster have similar size
 - Size(A) = |A|

- Normalized Spectral Clustering -> approximated NormalizedCut
 - Constrains the cluster have similar size
 - Size(A) = vol(A)
 - Vol(A) is large means nodes are closely connected inside A → A's element is similar.

Spectral Clustering – Laplacian Matrix

- Degree matrix D
 - A diagonal matrix with degrees d_1, \cdots, d_n on the diagonal
 - $d_i = \sum_{j=1}^n w_{ij}$ is the row sum of adjacency matrix $W \rightarrow$ "how many edges are connected to node i"
- Unnormalized graph Laplacian matrix L = D W
- Normalized graph Laplacian matrix

•
$$L_{\text{sym}} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$

•
$$L_{rw} = D^{-1}L = I - D^{-1}W$$

- Why do we need Laplacian matrix L?
 - Its eigenvalues / eigenvectors has some good properties.
 - One 0 eigenvalue → one connected component
 - Corresponding eigenvectors → which node belongs to that connected components

Why do we need Laplacian matrix L?

- Its eigenvalues / eigenvectors has some good properties.
 - One 0 eigenvalue → one connected component
 - Corresponding eigenvectors → which node belongs to that connected components

Image source: https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

- •
- Why do we need Laplacian matrix L?
- Its eigenvalues / eigenvectors has some good properties.
 - One 0 eigenvalue → one connected component
 - Corresponding eigenvectors → which node belongs to that connected components

Image source: https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

Spectral Clustering – Graph Cut View

Unnormalized graph Laplacian matrix L=D-W

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every vector $f \in \mathbb{R}^n$ we have

$$f^T L f = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2$$

- 2. *L* is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$.
- 4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

\$ Proposition 1.1

1. For every vector $f \in \mathbb{R}^n$ we have $f^T L f = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n w_{ij} (f_i - f_j)^2$

$$f^{T}Lf = f^{T}Df - f^{T}Wf$$

$$= \sum_{i=1}^{n} f_{i}^{2}d_{i} - \sum_{i=1}^{n} \sum_{j=1}^{n} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_{i}f_{i}^{2} - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} f_{i}f_{j}w_{ij} + \sum_{j=1}^{n} d_{j}f_{j}^{2} \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}f_{i}^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} f_{i}f_{j}w_{ij} + \sum_{j=1}^{n} \sum_{i=1}^{n} w_{ji}f_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(f_{i} - f_{j})^{2}$$

Proposition 1.2 & 1.3 & 1.4

- 2. L is symmetric and positive semi-definite.
 - L = D W, D, W are symmetric
 - $f^T L f \geq 0$, $\forall f \in \mathbb{R}^n$
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1.

$$Lf = (D - W)f = [\cdots, d_i f_i - \sum_{j=1}^n w_{ij} f_j, \cdots]^T = 0 \cdot f, \ f = 1$$

$$d_i = \sum_{j=1}^n w_{ij}$$

4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

Direct result of 2 & 3

Proposition 2 (Number of connected components) Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

Spectral Clustering

• Wait, the eigenvector of the following graph is NOT constant one?

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$.

- $Lx = \lambda x$
- $Lx_1 + Lx_2 = \lambda_1 x_1 + \lambda_2 x_2$
- $\lambda_1 = \lambda_2 = 0$
- $L(x_1 + x_2) = \lambda(x_1 + x_2)$

 $x_1 + x_2$

Proposition 2 (Number of connected components) Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

- Consider k = 1, i.e., G is a connected graph
- Assume f is eigenvector associated with eigenvalue 0

$$f^T L f = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n w_{ij} (f_i - f_j)^2 = f^T \cdot 0 = 0$$

• $\forall i, j, f_i = f_i$ is the only choice to satisfy the above equation.

Spectral Clustering – Graph Cut View

$$f^{T}Lf = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (f_i - f_j)^2 = f^{T} \cdot 0 = 0$$

Graph

Connectivity / Similarity matrix

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$f^{T}Lf = (f_{1} - f_{2})^{2} + (f_{2} - f_{3})^{2} + (f_{3} - f_{4})^{2} + (f_{4} - f_{5})^{2} + (f_{5} - f_{6})^{2} = 0$$

=

$$f_1 = f_2 = f_f = f_4 = f_5 = f_6$$

That is, the smallest eigenvector is constant vector

Proposition 2 (Number of connected components) Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

- Consider $k \ge 2$, reorganize L into block diagonal matrix on the left
- The spectrum of L is the union of spectrum of L_i . So the 0-eigenvalue eigenvectors of L is shown on the right

$$L = egin{pmatrix} L_1 & & & & & \ & L_2 & & & & \ & & \ddots & & & \ & & & L_k \end{pmatrix}$$

$$\begin{bmatrix} \mathbb{1}_1 & 0 & \cdots & 0 \\ 0 & \mathbb{1}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \mathbb{1}_k \end{bmatrix}$$

Spectral Clustering – Graph Cut Definition

For two disjoint subsets, $A, B \subset V$ For k disjoint subsets, A_1, \dots, A_k

$$\operatorname{cut}(A,B) = \sum_{i \in A, j \in B} w_{ij}. \qquad \operatorname{cut}(A_1, \dots, A_k) = \sum_{i=1}^k \operatorname{cut}(A_i, \overline{A}_i)$$

Unnormalized Spectral Clustering -> approximated RatioCut

RatioCut
$$(A_1, \dots, A_k) = \sum_{i=1}^k \frac{\text{cut}(A_i, \overline{A}_i)}{|A_i|}$$

Normalized Spectral Clustering -> approximated NormalizedCut

$$\operatorname{Ncut}(A_1, \dots, A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

• The problem is simplified into

$$\min_{A \subset V} \operatorname{RatioCut}(A, \bar{A}) = \min_{A \subset V} \left(\frac{\operatorname{cut}(A, \bar{A})}{|A|} + \frac{\operatorname{cut}(\bar{A}, A)}{|\bar{A}|} \right)$$

• Given a subset $A \subset V$, construct a vector $f = [f_1, \cdots, f_n]^T \in \mathbb{R}^n$

$$f_i = egin{cases} \sqrt{|\overline{A}|/|A|} & ext{if } v_i \in A \ -\sqrt{|A|/|\overline{A}|} & ext{if } v_i \in \overline{A}. \end{cases}$$

f determines the results of graph cut, but how to solve f?

$$\begin{cases} v_i \in A & \text{if } f_i \ge 0 \\ v_i \in \overline{A} & \text{if } f_i < 0. \end{cases}$$

Apply Proposition 1.1

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i} - f_{j})^{2}$$

$$= \frac{1}{2} \sum_{i \in A, j \in \overline{A}} w_{ij} \left(\sqrt{\frac{|\overline{A}|}{|A|}} + \sqrt{\frac{|A|}{|\overline{A}|}} \right)^{2} + \frac{1}{2} \sum_{i \in \overline{A}, j \in A} w_{ij} \left(-\sqrt{\frac{|\overline{A}|}{|A|}} - \sqrt{\frac{|A|}{|\overline{A}|}} \right)^{2}$$

$$= \operatorname{cut}(A, \overline{A}) \left(\frac{|\overline{A}|}{|A|} + \frac{|A|}{|\overline{A}|} + 2 \right)$$

$$= \operatorname{cut}(A, \overline{A}) \left(\frac{|A| + |\overline{A}|}{|A|} + \frac{|A| + |\overline{A}|}{|\overline{A}|} \right)$$

$$= |V| \cdot \operatorname{RatioCut}(A, \overline{A}).$$

In addition, f is orthogonal to constant vector \mathbb{I}

$$\sum_{i=1}^{n} f_i = \sum_{i \in A} \sqrt{\frac{|\overline{A}|}{|A|}} - \sum_{i \in \overline{A}} \sqrt{\frac{|A|}{|\overline{A}|}} = |A| \sqrt{\frac{|\overline{A}|}{|A|}} - |\overline{A}| \sqrt{\frac{|A|}{|\overline{A}|}} = 0.$$

$$||f|| = \sqrt{n}$$

$$||f||^2 = \sum_{i=1}^n f_i^2 = |A| \frac{|\overline{A}|}{|A|} + |\overline{A}| \frac{|A|}{|\overline{A}|} = |\overline{A}| + |A| = n.$$

Now the problem is converted to:

$$\min_{A \subset V} f^T L f, \ s.t., \ f \perp \mathbb{1}, \|f\| = \sqrt{n}, \qquad \qquad f_i = \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A \\ -\sqrt{|A|/|\overline{A}|} & \text{if } v_i \in \overline{A}. \end{cases}$$

Approximation by dropping the last condition:

$$\min_{A \subset V} f^T L f, \ s.t., \ f \perp \mathbb{1}, \|f\| = \sqrt{n}$$

- We are solving $\displaystyle \min_{A\subset V} f^T L f, \; s.t., \; f\perp \mathbb{1}, \|f\|=\sqrt{n}$
- L is symmetric and Positive Semi-Definite
- Recall the Rayleigh Quotients

Given a symmetric matrix $A \in S^n$,

$$egin{aligned} \lambda_{\min}(A) & \leq rac{x^TAx}{x^Tx} \leq \lambda_{\max}(A), orall x
eq 0 \ \lambda_{\max}(A) & = \max_{x:\|x\|_2 = 1} x^TAx \ \lambda_{\min}(A) & = \min_{x:\|x\|_2 = 1} x^TAx \end{aligned}$$

The maximum and minimum are attained for $x = u_1$ and for $x = u_n$, respectively, where u_1 and u_n are the largest and smallest eigenvector of A, respectively.

- How can we get clusters?

$$\begin{cases} v_i \in A & \text{if } f_i \ge 0 \\ v_i \in \overline{A} & \text{if } f_i < 0. \end{cases}$$

$$f_i = egin{cases} \sqrt{|\overline{A}|/|A|} & ext{if } v_i \in A \ -\sqrt{|A|/|\overline{A}|} & ext{if } v_i \in \overline{A}. \end{cases}$$

- \bigcirc Run k-means on f.
 - In practice, run k-means on the first two eigenvectors
 - First eigenvector is graph connectivity, which helps as well

Construction the indication matrix $H \in \mathbb{R}^{n \times k}$, where,

$$h_{i,j} = \begin{cases} 1/\sqrt{|A_i|} & \text{if } i \in A_j \\ 0 & \text{otherwise.} \end{cases}$$

 $lue{}$ A vertex belongs one cluster only \Rightarrow H has orthonormal columns $H^TH=I$

$$H = egin{bmatrix} rac{1}{\sqrt{4}} & 0 & 0 \ rac{1}{\sqrt{4}} & 0 & 0 \ rac{1}{\sqrt{4}} & 0 & 0 \ rac{1}{\sqrt{4}} & 0 & 0 \ 0 & rac{1}{\sqrt{1}} & 0 \ 0 & 0 & rac{1}{\sqrt{1}} \end{bmatrix}$$

Construction the indication matrix $H \in \mathbb{R}^{n \times k}$, where,

$$h_{i,j} = \begin{cases} 1/\sqrt{|A_i|} & \text{if } i \in A_j \\ 0 & \text{otherwise.} \end{cases}$$

- lacktriangle A vertex belongs one cluster only $\rightarrow H$ has orthonormal columns $H^TH = I$
- lacktriangle Denote the row vector as $h_i \in \mathbb{R}^k$, $i=1,\cdots,n$
- Following similar calculations as k=2, we have,

$$h_i^T L h_i = rac{ ext{cut}(|A_i|, |A_i|)}{|A_i|}, \ h_i^T L h_i = (H^T L H)_{ii}$$

Recall the definition of RatioCut, we have

$$ext{RatioCut}(A_1,\cdots,A_k) = \sum_{i=1}^k rac{ ext{cut}(A_i,ar{A}_i)}{|A_i|} \ = \sum_{i=1}^k h_i^T L h_i = \sum_{i=1}^k (H^T L H)_{ii} = ext{Tr}(H^T L H)$$

Now the problem is transformed into

$$\min_{A_1, \dots, A_k} \operatorname{Tr}(H^T L H) \text{ s.t., } H^T H = I, \quad h_{i,j} = \begin{cases} 1/\sqrt{|A_i|} & \text{if } i \in A_j \\ 0 & \text{otherwise.} \end{cases}$$

 $lue{}$ Approximation by dropping our H construction,

$$\min_{A_1, \cdots, A_k} \operatorname{Tr}(H^T L H)$$
 s.t., $H^T H = I$

- A more general form of Rayleigh Quotients, gives the solution:
 - *H* contains the first *k* eigenvectors of *L* as columns
- $lue{f O}$ Apply k-means on the rows of H because of the approximation

$$h_{i,j} = \begin{cases} 1/\sqrt{|A_i|} & \text{if } i \in A_j \\ 0 & \text{otherwise} \end{cases}$$

Normalized Spectral Clustering

- The derivation is similar
- The goal is Normalized Cut on the graph
- Unnormalized Spectral Clustering -> approximated RatioCut

RatioCut
$$(A_1, \dots, A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i, \overline{A}_i)}{|A_i|}$$

Normalized Spectral Clustering -> approximated NormalizedCut

$$\operatorname{Ncut}(A_1,\ldots,A_k) = \sum_{i=1}^k \frac{\operatorname{cut}(A_i,\overline{A}_i)}{\operatorname{vol}(A_i)}$$

Intuition of Spectral Cluster

RatioCut or NormalizedCut

- Cut the graph into disjoint subsets with minimum cutting weights
- The size of the each subset should not be too small.

2. Dimension Reduction

Project the n-dimension data into lower dimension space (spectral/eigenvector domain)

Original data

Projected data

\$

Spectral Clustering - Summary

- Complexity: $O(n^3)$
 - This is the complexity of eigen decomposition
 - K-means complexity is $O(n^2)$
- Advantage
 - No assumption on cluster shape
 - Works with similarity, including Euclidean, connectivity
 - Works with any dimensional data
 - Able to estimate the number of clusters
- Disadvantage
 - Computational expensive
 - Can be alleviated using sparse similarity matrix and sparse eigen solver

- Sliding windows hill climbing
 - "Hill" is density

- 1. Randomly select a circle with radius r
- 2. Move the circle to the center of the points inside
- 3. Repeat step-2 until it doesn't move
- Repeat step-1,2,3. Remove overlapping circles
 - If circles overlap, select the one with most points
- 5. Determine clusters by finding the nearest circle center (similar to k-means)

Parameters: radius r

Mean Shift – Summary

- Complexity $O(T \cdot n \cdot log(n))$
 - T is number of centers
 - $n \cdot \log(n)$ is the complexity of radius based neighbor search, given 2D/3D data with kd-tree/octree
- Advantage
 - Automatically determines cluster numbers
 - Single parameter
 - Robust to outliers
- Disadvantage
 - · Hill climbing easily falls in local minima
 - Depends on initialization
 - Assumes clusters are in ellipse shape
 - Mainly works in Euclidean space
 - Doesn't scale with high dimensional data

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Preparation: all points labeled as unvisited

Parameters: distance r, min_samples

- 1. Randomly select a unvisited point p, find its neighborhood within r
- 2. Number of points within $r \ge \min_s amples$?
 - Yes. p is a core point, Create a cluster C, go to step 3, mark p as visited.
 - No. Mark p as noise and visited.
- 3. Go through points within its r-neighborhood, label it as $\mathcal C$
 - If it is a *core point*, set it as the "new p", repeat step-3
- 4. Remove cluster C from the database, go to step-1
- 5. Terminate when all points are visited.

Red: Core points. point number within circle > 4

Yellow: Border points. Still part of the cluster because it is within r of a core point, but does not meet the min_points criteria

Blue: Noise point. Not assigned to a cluster.

S DBSCAN – Summary

- Complexity $O(n \cdot \log(n))$
 - Radius NN search for each point
- Advantage
 - No assumption on cluster shape
 - Automatically determines cluster numbers
 - Robust to outliers
- Disadvantage
 - Doesn't work well with varying density
 - DBSCAN assume high density clusters are separated by some low density points
 - Mainly works in Euclidean space
 - Doesn't scale with high dimensional data

	K-Means	GMM	Spectral	Mean Shift	DBSCAN
Metric	Euclidean	Euclidean	Similarity	Density /Euclidean	Density /Euclidean
# of clusters	Pre-defined	Pre-defined	Heuristic	Automatic	Automatic
Robustness to outlier	Bad	Medium	Good	Good	Good
High dimension data	Medium	Medium	Good	Bad	Bad
Complexity	$O(t \cdot k \cdot n \cdot d)$ t: iteration k: # of clusters n: # of data d: dimension	$O(t \cdot k \cdot n \cdot d)$ t: iteration k: # of clusters n: # of data d: dimension	$O(n^3)$ n: # of data	O(Tnlog(n)) n: # of data T: # of centers	$O(n \cdot \log(n))$ n: # of data

- Take line fitting as example
- Approaches:
 - Least Square
 - Hough Transform
 - Random Sample Consensus (RANSAC)

\$ Model Fitting

- If we know the inlier points
 - Least Square
- What if there is small amount of outliers?
 - Robust Least Square, e.g., robust loss function
 - Hough Transform
 - RANSAC
- What if there are lots of outliers / more than one models in data?
 - Hough Transform
 - RANSAC

- Given a set of points $\{p_1, \cdots p_n\}$, fine a line that fit the point set best.
- Consider 2-dimension, $p_i \in \mathbb{R}^2$, line model is ax + by + c = 0
- Definition of "fit" minimize the perpendicular distance

$$E = \sum_{i=1}^{n} (ax_i + by_i + c)^2$$

Re-organize the problem into standard least-square optimization (sometimes called homogeneous equations):

$$\hat{\mathbf{x}} = [\hat{a}, \hat{b}, \hat{c}]^T = \min_{\mathbf{x}} ||A\mathbf{x}||_2^2, \text{ s.t. } ||\mathbf{x}||_2 = 1$$

$$A = egin{bmatrix} x_1 & y_1 & 1 \ dots & dots & dots \ x_n & y_n & 1 \end{bmatrix}, \ \mathbf{x} = [a,b,c]^T$$

- The solution is obvious: $[a, b, c]^T$ is the eigenvector of the smallest eigenvalues of A
 - Given A is full column rank, i.e., $n \ge 3$

- Many model fitting problem can be formulated as least square (LSQ) optimization problem.
- Linear LSQ problem $A\mathbf{x}=0$ $\hat{\mathbf{x}}=\min_{\mathbf{x}}\|A\mathbf{x}\|_{2}^{2}, \text{s.t., } \|\mathbf{x}\|_{2}=1 \text{ , } A\in\mathbb{R}^{n\times m}, \text{ } \mathbf{x}\in\mathbb{R}^{m}$
 - Solution given by eigenvector of the smallest eigenvalue of A
- Linear LSQ problem Ax = b:

$$\hat{\mathbf{x}} = \min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_{2}^{2}, \ A \in \mathbb{R}^{n \times m}, \ \mathbf{x} \in \mathbb{R}^{m}, \ \mathbf{b} \in \mathbb{R}^{n}$$

- In the case that $n \ge m$, the solution is given by $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$
- Linear LSQ problem Ax = b, s.t., Cx = 0

\$ Limitations of LSQ

Sensitive to Outlier

LSQ with No Outlier

LSQ with One Outlier

\$ Loss functions

Typical loss functions

• L1.
$$\rho = |s|$$

• L2.
$$\rho = s^2$$

• Cauchy.
$$\rho = \log(1 + |s|)$$

• Huber.
$$\rho = \begin{cases} s^2, \ |s| < \delta \\ 2\delta(|s| - \frac{1}{2}\delta), \ otherwise \end{cases}$$

• etc.

- Robust loss functions like Huber, Cauchy reduce the effect of outliers
- However, the problem becomes *non-linear*!

A general formulation of LSQ

$$\mathbf{\hat{x}} = \min_{\mathbf{x}} \, \|f(\mathbf{x})\|^2$$

- Function f is the non-linear function
 - e.g., coupling the robust loss function with linear LSQ
- Optimization methods
 - Gradient descent
 - Gauss-Newton
 - Levenberg-Marquardt

S Model Fitting

- Least Square / Robust Least Square
 - No outlier / few outlier
 - Simple and fast
- What if:
 - Lots of outliers
 - More than one models in the data, e.g., more than one line.
- Hough Transform
- Random Sample Consensus (RANSAC)

\$ Hough Transform

- Discretize parameter spaces into bins
- For each data point, vote the bins that can generate this data point
- Find the bins with most votes

\$ Hough Transform

- A point in the Euclidean space → A line in the parameter space
- Select the bin with most votes

- Model parameterization. E.g., for a line
 - y = ax + b is non-uniform, can't represent vertical lines (a is infinity)
 - $x\cos\theta + y\sin\theta = r$ is a better model with parameters $\{\theta, r\}$
- Selection of resolution
 - Tradeoff between speed and precision
- Apply smoothing at the parameter space before searching for the highest vote
 - E.g., Gaussian smooth
 - Reduce the effect of noise

Hough Transform – Extension for Circles

The circle model with parameters $\{a, b, r\}$

$$(x-a)^2 + (y-b)^2 = r^2$$

- Each point (x, y) fills a set of parameter bins for $\{a, b, r\}$ that fulfills the above function.
- How to find those bins?
 - Fix $r = r_i$
 - Uniformly sample a set of $\{\theta_1, \dots \theta_k\}$
 - Each θ_i generates a set of $\{a, b\}$
 - $a = x r_i \cos \theta_i$
 - $b = y r_i \sin \theta_j$

Hough Transform – Extension for Circles

3 points in Euclidean space: [0, 0], [1,1], [1, 0]

Each point corresponds to a "cone" in Hough space

S Hough Transform – Summary

- Advantage
 - Robust to noise
 - Robust to missing points of the shape
 - Can be extended to lots of models
- Disadvantage
 - Doesn't scale well with complicated models
 - Usually works for models with less than 3 unknown parameters

一般只用在二维或者三维的情形下,模型参数要小于三个

- Simple and works well in practice
- Works well with complicated models

1. Randomly select a sample (minimal subset of points required to solve the model)

$$p_0 = (x_0, y_0), p_1 = (x_1, y_1)$$

2. Solve the line model

$$x = x_0 + at$$
$$y = y_0 + bt$$

where,

$$p_0 = [x_0, y_0]^T, n = [a, b]^T$$

$$\Delta x = x_1 - x_0, \Delta y = y_1 - y_0$$

$$\Delta x = at, \Delta y = bt \rightarrow \frac{\Delta x}{\Delta y} = \frac{a}{b}$$

- 1. Randomly select a minimal subset of points required to solve the model
- 2. Solve the model
- 3. Compute error function for each point $p_i = (x_i, y_i)$

$$d_i = \frac{n^T(p_i - p_0)}{\|n\|_2}$$

- 1. Randomly select a minimal subset of points required to solve the model
- 2. Solve the model
- 3. Compute error function for each point $p_i = (x_i, y_i)$
- 4. Count the points consistent with the model, $d_i < \tau$ (inlier)

- 1. Randomly select a minimal subset of points required to solve the model
- 2. Solve the model
- 3. Compute error function for each point $p_i = (x_i, y_i)$
- 4. Count the points consistent with the model, $d_i < \tau$
- 5. Repeat step 1-4 for *N* iterations, choose the model with most inlier points

S RANSAC – Line Fitting

- $lue{lue{\Gamma}}$ Distance threshold au
 - Usually chosen empirically
 - Chi-square distribution χ^2
- \bigcirc Number of iterations N
 - Choose N so that with probability p, as least one random sample is free from outliers, e.g., p=0.99

- Assume the error between data point and model is Gaussian distribution $d \sim \mathcal{N}(0, \sigma^2)$
- χ^2 distribution sum of squares of k independent standard normal distribution. Assume 95% confidence that the point is an inlier
 - 1DoF χ_1^2 for 2D/3D line fitting or 3D plane fitting. The error is perpendicular distance

•
$$\tau = \sqrt{3.84\sigma^2}$$

• 2DoF χ_2^2 for 2D point distance, because the distance is $\Delta x^2 + \Delta y^2$

•
$$\tau = \sqrt{5.99\sigma^2}$$

• 3DoF χ_3^2 for 3D point distance, because the distance is $\Delta x^2 + \Delta y^2 + \Delta z^2$

•
$$\tau = \sqrt{7.81\sigma^2}$$

Degrees of freedom (df)	χ^2 value $^{[19]}$										
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.63	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.61	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.81	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001

https://en.wikipedia.org/wiki/Chi-squared distribution

RANSAC – Number of Iterations N

- \bullet : outlier ratio (probability that a point is an outlier)
- \circ s: number of points in a sample (e.g., in line fitting a sample contains 2 points)
- \bigcirc N: sample number N (number of RANSAC iteration)
- p: confidence we get at least a good sample that is free from outliers

$$(1 - (1 - e)^s)^N = 1 - p$$
 $(1 - (1 - e)^s)^N = 1 - p$ $(1 - (1 - e)^s)^N = 1 - p$

Probability of choosing s inliers in a row

Probability that one or more points are outliers

Probability that N samples are contaminated

RANSAC – Number of Iterations N

Iteration number N is given by

$$N = \frac{log(1-p)}{log(1-(1-e)^s)}$$

Table for p = 0.99

	proportion of outliers e								
S	5%	10%	20%	25%	30%	40%	50%		
2	2	3	5	6	7	11	17		
3	3	4	7	9	11	19	35		
4	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		

S RANSAC - Practical Tricks

- \bigcirc Don't need to perform N samples/iterations
 - Terminate when the inlier ratio reach the expected inlier ratio $T = (1 e) \cdot total_num_of_data_points$
- Run LSQ to refine the model after selecting the final model and inlier points

\$ RANSAC - Summary

- Advantages
 - Simple and general
 - Usually works well in practice, even with low inlier ratio like 10%
- Disadvantages
 - Need to determine the inlier threshold au
 - Need large number of samples when inlier ratio is low

\$ Homework

- Object detection pipeline for lidar
 - Use KITTI 3D object detection dataset, select 3 point clouds, do the followings.
 - Step 1. Remove the ground from the lidar points. Visualize ground as blue.
 - Any method you want LSQ, Hough, RANSAC
 - Step 2. Clustering over the remaining points. Visualize the clusters with random colors.
 - Any method you want
 - Step 3. Classification over the clusters
 - Homework of Lecture 5
 - Step 4. Report the detection precision-recall for three categories: vehicle, pedestrian, cyclist
 - Homework of Lecture 5