

Reminders

Assignment #4 is due Friday

https://github.com/dilevin/CSC2549-a4-cloth-simulation

Assignment #5 is live and is due on 8/11 https://github.com/dilevin/CSC2549-a5-rigid-bodies

Graphics Reading Group

Seminar Room in BA5166 (Dynamic Graphics Project) Wednesdays 11am

Let's Talk about Final Projects

30% of your final grade

Two components

Presentation – 15% of the mark

Due date: November 27th

Write up in SIGGRAPH style - 15% of the mark

Due date: December 16th

Final Presentation Guide

Duration: 5-6 minutes with 2-3 minutes for question

Content:

Problem Statement (1 Slide)

Related Work (1-2 Slides)

Methodology (as many slides as you need)

Results or Anticipated Results (at least one slide)

Example

The Two Approaches

1. "Maximal" Coordinates Rigid Body has R, P
Constraints

2. "Reduced" Coordinates

Rigid body has DOF that allow joint mation

Maximal Coordinates

The Simplest Joint: Spherical Joint

$$x^{A}(\overline{x}, A) = R^{A} \overline{x}_{joint} + p^{A} e$$
 $x^{B}(\overline{x}, B) = R^{B} \overline{x}_{joint} + p^{B} = 0$
 $C = R^{A} \overline{x}_{joint} - R^{B} \overline{x}_{joint} + p^{A} - p^{B} = 0$
 $C(q^{E}) = 0$
 $C(q^{E}) + cd^{2} \overline{x}_{j} + cd^{2} \overline{x}_{j$

Constrained Equations of Motion

Step 1: Compute \hat{q} Step 1. S: enforce $\frac{2c}{2q} \hat{q} = 0$ Step 2: Update q

$$\frac{dk}{dt} = R^{4} \left(\frac{x_{join}}{x_{join}} \right) R^{4} \left(\frac{x_{join}}{x_{jo$$

Solve at the Velocity Level Exponential $RSPTW = \gamma = [nsnto][w] - [v]...$ MA O J (QUA) THE MALE MAN AMALE MAN

Might = of + stG T & + Mat & E 12

Gill = O Const Count Force

Other Joint Types: Hinge Joint

is aligned rw v Add retirens to 1 5 = 0 convert to world spa. a ATRA r WATRAS

Other Joint Types: Prismatic Joint

Maximal Method Pros and Cons

Pros:

1. Relatively easy to implement and solve (just use standard linear solvers more or less).

Cons:

1. Constraint Drift -- can be fixed with extra work like Baumgarte Stabilization or Post-Stabilization

2. The systems you solve get large. Every rigid body adds a rotation and translation to the proceedings, and every joint adds at least one constraint.

Joints using Reduced Coordinates

Remove constrained degrees of freedom from dynamics

equations

Reduced Coordinates

Maximal Rotations map to the coord Reduced Roktons man to the potent - from B to world 2018 RAIA >W Kingl

Simple Reduced Coordinate Example

The Joint Graph

6 - joint - body

$$\begin{array}{lll}
x &=& \mathbb{R}^{A} \mathbb{R}^{B} \times \mathbb{B} \\
\frac{dx}{dt} &=& \mathbb{R}^{A} \mathbb{C} \Lambda^{A} \mathbb{R}^{B} \times \mathbb{B} + \mathbb{R}^{A} \mathbb{R}^{B} \mathbb{C} \Lambda^{B} \mathbb{C} \mathbb{R}^{B} \times \mathbb{B} \\
&=& \mathbb{R}^{A} \mathbb{C} \mathbb{C}^{B} \times \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{A} \times \mathbb{C}^{A} + \mathbb{R}^{A} \mathbb{R}^{B} \mathbb{C} \times \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \times \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \times \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{A} \times \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{C}^{A} \mathbb{C}^{B} \mathbb{C}^{A} \mathbb{$$

B From 6 -> crealed T= 2 SputudV = 297 LBBR SPCXBJERT BRCXBJTdVLB9 T= Z Tc = zqT LTR MA MOME PRINTAGE

BUSION I PRINCIPAL

BUSION I P

LB= CIIOO ...] L4= Ct 000 ... 7 Lc = [III 000...7 Lis lower transular

Solving Equations of Motion on the Joint Graph

LT PT MR L
$$g^{t} = f^t$$

(1) LT $y = f^t$

Featherstones

$$\begin{bmatrix}
I & I & I \\
Y^1 & Y^2 & Y^2
\end{bmatrix} = \begin{bmatrix}
F_2 \\
F_3 & Y^2
\end{bmatrix} = \begin{bmatrix}
F_4 \\
F_5 & Y^2
\end{bmatrix} = \begin{bmatrix}
F_4 \\
F_5 & Y^2
\end{bmatrix} = \begin{bmatrix}
F_5 \\
F_7 & Y^2
\end{bmatrix} = \begin{bmatrix}
F_7 \\
F_7 &$$

Reduced Method Pros and Cons

Pros:

1. Constraints are always satisfied

Cons:

1. The linear algebra and the implementations get tricky

2. Basic methods are limited to structures with tree like topology

Next Week

Collision Resolution and Final Assignment