Операции над числами с ПТ

Сложение и вычитание

Основные этапы выполнения операций:

- 1) выборка и анализ операндов;
- 2) уравнивание порядков;
- 3) действия над мантиссами. Действие определяется по формуле:
 - •ДЕЙСТВИЕ = S1 \oplus S2 \oplus 0, при операции сложения;
 - •ДЕЙСТВИЕ = $S1 \oplus S2 \oplus 1$, при операции вычитания;
- 4) анализ и преобразование результата:
 - нуль;
 - •если результат отрицательный в ДК, то преобразовать в ПК;
 - •переполнение и т.д.;
- 5) нормализация результата;
- 6) формирование знака результата;
- 7) запись результата.

Рассмотрим подробнее некоторые этапы.

Уравнивание порядков

Прежде чем сделать операцию сложения мантисс, необходимо уравнять порядки. Порядок результата ЕЗ равен большему из Е1 и Е2. Для этого вначале dE = E1 - E2. Если dE > 0, находим производится сдвиг M2 на dE вправо (dec dE), если dE < 0, то сдвигаем M1 на dE вправо (inc dE). Уравнивание заканчивается при dE=0. Алгоритм уравнивания порядков приведен на рисунке.

Сложение мантисс и нормализация результата

Обработка мантисс зависит от их знаков и происходит в соответствии с таблицей 1, где Sm знак разности мантисс.

В зависимости от знаков операндов производим сложение или вычитание мантисс. Алгоритм сложения мантисс приведен на рисунке.

	Габлица 1		
S1	S2	Действие над мантиссами	S3
0	0	M1 + M2	0
0	1	M1 - M2	Sm
1	0	M2 - M1	Sm
1	1	M1 + M2	1

Операция сложения завершается нормализацией результата:

- если M3 получился в ДК, то M3 преобразуется в прямой код (ПК) M3 = not M3 + 1;
- если произошло переполнение мантиссы, то делаем <u>нормализацию вправо</u>: M3 = R1(M3), E3 = E3 + 1;
- если отсутствует явный бит в M3, то делаем <u>нормализацию влево</u>: M3 = Lk(M3), E3 = E3 k, где k число ведущих нулей.

Пример № 1

Выполнить сложение Z = X + Y

$$X = 30.5 Y = 25.25$$

Переводим X в CC=2 и нормализуем

$$Y = 30,5 = 1E.8h = 11110.1b = 1.11101 *2^4$$

$$\Pi = 4$$
; $E = 4 + 16383 = 4 + 3FFFh = 4003h$

S1		E1		M 1
0	100	0000 0000 0011		1.11101000000
79	78	64	63	0

Переводим Ү в СС=2 и нормализуем

$$Y = 25,25 = 19.4h = 11001.01b = 1.100101 *2^4$$

$$\Pi = 4$$
; E = 4 + 16383 = 4 + 3FFFh = 4003h

S2	E2	M2
0	100 0000 0000 0011	1.100101000000
79	78 64	63 0

Уравнивание порядков не требуется, т.к. E3 = E1 = E2

Складываем мантиссы

1.	1	1	1	0	1	0	0	00	M1
1.	1	0	0	1	0	1	0	00	M2
1.	0	1	1	1	1	1	0	00	M3

Произошло переполнение разрядной сетки, требуется нормализация вправо: содержимое мантиссы сдвигается вправо и E3 = E3 + 1

E3 = 4003h + 1 = 4004h

Результат Z

S3	E3	M3
0	100 0000 0000 0100	1.1011111100000
79	78 64	63 0

Находим десятичный эквивалент

 $\Pi 3 = 4004h - 3FFFh = 5$

Результат Z = 1.10111111 b *2⁵ = 1101111.11 b = 37.Ch = 3 * 16 + 7 + 12/16 = 55,75.

Пример № 2

Выполнить вычитание Z = X - Y

$$X = 30,5 \quad Y = 25,25$$

Переводим Х в СС=2 и нормализуем

$$Y = 30.5 = 1E.8h = 11110.1b = 1.11101 *2^4$$

$$\Pi = 4$$
; E = 4 + 16383 = 4 + 3FFFh = 4003h

S1		E1		M1
0	100	0000 0000 0011		1.11101000000
79	78	64	63	0

Переводим У в СС=2 и нормализуем

$$Y = 25,25 = 19.4h = 11001.01b = 1.100101 *2^4$$

$$\Pi = 4$$
; $E = 4 + 16383 = 4 + 3FFFh = 4003h$

S2	F	22		M2	
0	100 0000	0000 0011	1.10	0101000000	
79	78	64	63		0

Уравнивание порядков не требуется, т.к. E3 = E1 = E2

Вычитаем мантиссы

1.	1	1	1	0	1	0	0	00	M1
1.	1	0	0	1	0	1	0	00	M2
0.	0	1	0	1	0	1	0	00	M3

Старший разряд мантиссы = 0, требуется нормализация влево: содержимое мантиссы сдвигается влево на k=2 разрядов и E3 = E3 - 2.

0.	0	1	0	1	0	1	0	00	M3
1.	0	1	0	1	0	0	0	00	М3 после сдвига

E3 = 4003h - 2 = 4001h

Результат Z

S3		E3		M3
0	100	0000 0000 0001		1.01010000000
79	78	64	63	0

Находим десятичный эквивалент

$$\Pi 3 = 4001h - 3FFFh = 2$$

Результат
$$Z = 1.0101 \text{ b} *2^2 = 101.01 \text{ b} = 5.4 \text{ h} = 5.25.$$

Пример № 3

Выполнить сложение Z = X + Y

$$X = 30.5 Y = -31.25$$

Переводим Х в СС=2 и нормализуем

$$Y = 30,5 = 1E.8h = 11110.1b = 1.11101 *2^4$$

$$\Pi = 4$$
; E = 4 + 16383 = 4 + 3FFFh = 4003h

S1		E 1		M 1
0	100	0000 0000 0011		1.11101000000
79	78	64	63	0

Переводим У в СС=2 и нормализуем

$$Y = -31,25 = -1F.4h = -11111.01b = -1.111101 *2^4$$

$$\Pi = 4$$
; $E = 4 + 16383 = 4 + 3FFFh = 4003h$

S2		E2	M 2	2
1	100 000	00 0000 0011	1.11110100	0000
79	78	64	63	0

E1 = E2, уравнивать порядки не требуется. E3 = E2 = E1

$$M3 = M1 + (-M2) = M1 - M2$$

Вычитаем мантиссы

1.	1	1	1	0	1	0	0	00	M1
1.	1	1	1	1	0	1	0	00	M2
1.	1	1	1	1	0	1	0	00	M3

Мантисса результата М3 получилась в ДК

Переводим в ПК

1	1	1	1	1	0	1	0	00	М3 в ДК
0.	0	0	0	0	1	1	0	00	М3 в ПК

Старший разряд мантиссы = 0, требуется нормализация влево: содержимое мантиссы сдвигается влево на k = 5 разрядов и E3 = E3 - 5 = 4003h - 5 = 3FFEh

0.	0	0	0	0	1	1	0	00	М3 до сдвига
1.	1	0	0	0	0	0	0	00	М3 после сдвига

Результат Z

S3	E3	M3			
1	011 1111 1111 1110	1.1000000000 0			
79	78 64	63 0			

Находим десятичный эквивалент

$$\Pi 3 = 3FFE - 3FFF = -1$$

Результат $Z = -1.100000 \text{ b} *2^{-1} = -0.11 \text{ b} = -0.75.$

Структурная схема блока сложения-вычитания

Регистры операндов RG1 и RG2 и регистр суммы RG3 подразделяются на субрегистры знаков (S1, S2, S3), порядков (E1, E2, E3) и мантисс (M1, M2, M3). Сумматор мантисс SME выполняет операции над мантиссами.

Сумматор порядков SME выполняет операции вычитания порядков E1-E2, а также передачу E1 или E2 на выход SME.

Схема обработки знаков определяет действие над мантиссами и знак результата S3 в зависимости от операции, знаков операндов S1, S2 и знака разности мантисс Sm.

Конвейерный сумматор с ПТ

Конвейерный сумматор представлен на рисунке

Умножение и деление чисел плавающей точкой

Основные этапы выполнения операций:

- 1) выборка и анализ операндов;
- 2) при умножении порядки складываются, а при делении вычитаются. При этом надо учитывать, что порядки смещены, следующим образом: E3=E1+E2 16383, при умножении и E3=E1-E2 + 16383;
- 3) над мантиссами выполняется операция умножения или деления;
- 4) анализ и преобразование результата:
- 5) нормализация результата;
- 6) формирование знака результата по формуле S3=S1 \oplus S2;
- 7) запись результата.

Структурная схема блока умножения

Схема умножения приведена на рисунке, где RG1, RG2, RG3 - регистры множимого, множителя и произведения соответственно. Схема обработки знаков вычисляет знак произведения S3=S1 \oplus S2. Сумматор SME вычисляет порядок произведения E3=E1+E2 – 16383.

MULT умножает мантиссы по одному из известных алгоритмов.

