Truth level input for learning with dark Higgs model (bug-fixed)

Philipp Gadow (DESY) 19.04.2021

Motivation

Active learning R&D benefits from iterations with quick feedback on which model configuration is excluded and which still is viable:

This is provided by a truth-based implementation of the ETmiss + h(bb) search.

- Truth-based implementation neglects time-consuming detector simulation.
- Using a HTCondor batch system for parallel execution, a grid of 42 points can be evaluated in less than three hours, including signal generation, TRUTH derivation production, running the truth implementation and estimating limits
- The truth implementation has <u>limited precision</u> compared to the full RECAST but can be useful for prototyping or for exploration of the parameter space.

Workflow

signal generation truth-level analysis limits / sensitivity estimate generate events and estimate **sensitivity** evaluate product of compute **cross-section** based on exclusion detector acceptance using ATLAS MC limits on E_{τ}^{miss} + h(bb) and selection production software cross-section provided efficiency using by full Run-2 search truth-level implementation of analysis selection in input parameters: **SimpleAnalysis** Z' boson mass result: dark Higgs boson mass "sensitivity" dark matter particle mass if sensitivity is larger than coupling gx 1, the signal point is coupling gs

expected to be excluded

Exclusion heatmap

Full Run 2 MonoH RECAST

Proper RECAST (E. Skorda)

Estimate using SimpleAnalysis truth level implementation and E_{T}^{miss} + h(bb) limits

Exclusion contour

Full Run 2 MonoH RECAST

Proper RECAST (E. Skorda)

Estimate using SimpleAnalysis truth level implementation and E_T^{miss} + h(bb) limits ⁵

Drawbacks

- simplified description of analysis on truth level
 - e.g. complicated selection requirements such as extended tau veto had to be neglected
 - currently, no smearing is applied
- sensitivity estimate is based on E_T^{miss} + h(bb) cross-section limits
 - therefore, implicit assumption that Higgs mass equals 125 GeV
 - explains large discrepancies for small dark Higgs boson mass when comparing RECAST to truth level implementation

Potential improvements

- could consider pyhf likelihood instead of cross-section limits
 - thus, avoiding the implicit assumption which is clearly wrong for low dark Higgs masses

additional material

How does this sensitivity computation work?

Original idea proposed by Oleg Brandt and his students (see talk by <u>S. Suchek</u>).

- 1. Compute cross-section for signal point
- 2. Calculate product of acceptance and efficiency for signal point on truth-level, neglecting detector effects for each bin defined in E_T^{miss} and b-tag multiplicity.
- 3. In each bin, compute $S_i = \frac{\sigma \ \left(pp \to \mathsf{s} + E_T^{\mathrm{miss}}\right)_{\scriptscriptstyle \mathsf{dark} \, \mathsf{Higgs}} \cdot \mathrm{BR} \left(\mathsf{s} \to b\bar{b}\right)_{\scriptscriptstyle \mathsf{dark} \, \mathsf{Higgs}} \cdot \left(\mathcal{A} \cdot \varepsilon\right)_i}{\sigma_i \left(pp \to h + E_T^{\mathrm{miss}} \to b\bar{b} + E_T^{\mathrm{miss}}\right)_{\mathrm{obs}}}$
- 4. The total sensitivity is the sum over all S_i in all bins (which are denoted by i)

Cross-section limits on E_T^{miss} + h(bb)

Model-independent upper limits on the visible cross-section

$$\sigma_{\text{vis},h(bb)+DM} \equiv \sigma_{h+DM} \times B(h \to bb) \times A \times \epsilon$$

in the different signal regions.

Figure from <u>ATLAS-CONF-2021-006</u>

SimpleAnalysis implementation

- consider TRUTH1 derivations as inputs which include large-radius jets based on TruthParticles and variable-radius track jets based on charged truth particles
- truth object definition similar as in reco-level E_T^{miss} + h(bb) search

SimpleAnalysis object definition 1/3

```
auto baselineElectrons = event->getElectrons(7, 2.47, ELooseBLLH | EIsoFixedCutLoose);
auto baselineMuons = event->getMuons(7, 2.5, MuLoose | MuIsoFixedCutLoose);
auto baselineTaus = event->qetTaus(20, 2.5, TauRNNVeryLoose);
auto centralJets = event->getJets(20., 2.5, PFlowJet | JVTMedium);
auto forwardJets = event->getJets(30., 4.5);
forwardJets = filterCrack(forwardJets, 2.5, 4.5);
sortObjectsByPt(centralJets);
sortObjectsByPt(forwardJets);
auto allJets = centralJets + forwardJets;
auto fatJets = event->getFatJets(200., 2.0);
auto trackJets = event->getTrackJets(10., 2.5);
```

SimpleAnalysis object definition 2/3

```
auto radiusCalcJet = [](const AnalysisObject &, const AnalysisObject &muon) {
auto radiusCalcMuon = [](const AnalysisObject &muon, const AnalysisObject &) {
baselineTaus = overlapRemoval(baselineTaus, baselineElectrons, 0.2);
baselineElectrons = overlapRemoval(baselineElectrons, baselineMuons, 0.01);
centralJets = overlapRemoval(centralJets, baselineElectrons, 0.2, NOT(BTaq77DL1));
baselineElectrons = overlapRemoval(baselineElectrons, centralJets, 0.4);
centralJets = overlapRemoval(centralJets, baselineMuons, radiusCalcJet, LessThan3Tracks);
baselineMuons = overlapRemoval(baselineMuons, centralJets, radiusCalcMuon);
centralJets = overlapRemoval(centralJets, baselineTaus, 0.2);
fatJets = overlapRemoval(fatJets, baselineElectrons, 1.0);
```

SimpleAnalysis object definition 3/3

```
auto bjets = filterObjects(centralJets, 20., 2.5, BTag77DL1);
auto btrackjets = filterObjects(trackJets, 20., 2.5, BTag77DL1);
auto baselineLeptons = baselineElectrons + baselineMuons;
sortObjectsByPt(bjets);
sortObjectsByPt (btrackjets);
sortObjectsByPt(centralJets);
sortObjectsByPt(baselineLeptons);
```

SimpleAnalysis event reconstruction 1/2

```
float dphiMin3 = minDphi(metVec, allJets, 3);
float mt min = 0;
 for (const auto &jet : bjets) {
  if (metVec.DeltaR(jet) < mindR) {</pre>
    mt min = calcMT(jet, metVec);
  if (metVec.DeltaR(jet) > maxdR) {
    maxdR = metVec.DeltaR(jet);
    mt max = calcMT(jet, metVec);
```

SimpleAnalysis event reconstruction 2/2

```
int nBJetsMerged = 0;
      nBJetsMerged++;
  if (nBjets >= 2) {
    ptHiggs = (bjets[0]+bjets[1]).Pt();
```

SimpleAnalysis event selection 1/2

```
bool evtsel leptonVeto = (baselineLeptons.size() == 0);
bool evtsel tauVeto = (baselineTaus.size() == 0);
bool evtsel extendedTauVeto = true; // TODO: implement
bool evtsel minDPhi20 = (dphiMin3 > 20. * M PI / 180.);
bool evtsel met500 = (met > 500.);
bool evtsel massRange merged = (mHiggs > 50. && mHiggs < 270.);
bool evtsel metleq500 = (met <= 500.);</pre>
bool evtsel njets = (centralJets.size() >=2);
bool evtsel nbjets = (nBjets >=2);
bool evtsel ptHiggs = ((met <= 350. && ptHiggs > 100) || (met > 350. && ptHiggs > 300));
bool evtsel mt mindR = (mt min > 170.);
bool evtsel mt maxdR = (mt max > 200.);
bool evtsel metSig = (metSignificance > 12.);
bool evtsel njets max = ((nBjets == 2 && centralJets.size() <= 4) || (nBjets >= 3 && centralJets.size() <= 5));
bool evtsel massRange resolved = (mHiggs > 50. && mHiggs < 280.);
```

SimpleAnalysis event selection 2/2

```
bool passMerged = evtsel met500 && evtsel massRange merged;
bool passResolved = evtsel metleq500 && evtsel njets && evtsel nbjets && evtsel ptHiggs && \
               evtsel mt mindR && evtsel mt maxdR && evtsel metSig && evtsel njets max && \
               evtsel massRange resolved;
if (passMerged) {
  if (nBJetsMerged == 2 && met > 500 && met <= 750) accept("MET500750 2b");
  if (nBJetsMerged == 2 \&\& met > 750) accept("MET750 2b");
  if (nBJetsMerged >= 3 && met > 500 ) accept("MET500 3b");
  if (nBjets == 2 && met > 150 && met <= 200) accept ("MET150200 2b");
  if (nBjets == 2 && met > 200 && met <= 350) accept("MET200350 2b");
  if (nBjets == 2 && met > 350 && met <= 500) accept("MET350500 2b");
  if (nBjets >= 3 && met > 150 && met <= 200) accept("MET150200 3b");
  if (nBjets >= 3 && met > 200 && met <= 350) accept("MET200350 3b");
  if (nBjets >= 3 && met > 350 && met <= 500) accept("MET350500 3b");
```

Truth-level distributions for m_{Z} =.5 TeV, m_{s} =90 GeV

Explanation of the structure:

- 1. $E_{\tau}^{\text{miss}} > 500 \text{ GeV}$: merged selection
- 2. Higgs p_T requirement for $E_T^{miss} < 350 \text{ GeV}$ and $350 \text{ GeV} < E_T^{miss} < 500 \text{ GeV}$ different ((met <= 350. && ptHiggs > 100) | | (met > 350. && ptHiggs > 300));

