IN-18-02 40383 D

THE DETERMINATION OF OPERATIONAL AND SUPPORT REQUIREMENTS AND COSTS DURING THE CONCEPTUAL DESIGN OF SPACE SYSTEMS

8111

INTERIM REPORT October 8, 1991

Prepared for

National Aeronautics and Space Administration

Langley Research Center

under

Grant No. NAG1-1-1327

Prepared by

Charles Ebeling

(NASA-CR-188817) THE DETERMINATION OF OPERATIONAL AND SUPPORT REQUIREMENTS AND COSTS DURING THE CONCEPTUAL DESIGN OF SPACE SYSTEMS (Dayton Univ.) 111 p CSCL 22B

N92-10037

Unclas G3/18 0040383

University of Dayton

Engineering Management and Systems Department

300 College Park

Dayton, Ohio 45469-0236

TABLE of CONTENTS

Table	of Contents i	
List o	of Tables	
I.	Introduction	
II.	Related Studies	
m.	Data Sources	
	A. Categories of Data 4	
	B. Military Data Systems)
	 US Air Force US Navy Reliability Analysis Center 	
	C. Commercial Aircraft 8	ţ
	 FAA Carrier A Manufacturer A Manufacturer B Other Sources 	
IV.	Methodology)
	A. Regression Analysis	1 2 3 4
V.	Prototype Example 1	5
	A. Data Base 1 B. Regression Analysis 1 C. Probability Distributions 2	5

VI.	Conclusion and Phase II Research	2
Biblio	graphy 3	4
Appe	ndices ,	
• •	A. AFALD Pamphlet 800-4 3	6
	B. MODAS	8
	C. LCOM 4	4
	D. 3-M 4	
	E. RAC	i 1
	F. FAA	
	G. CARRIER A	
	H. AIRCRAFT MANUFACTURER A	
	I. AIRCRAFT MANUFACTURER B	
	J. HUGHES' RADAR SPECIFICATIONS	
	K. CONTACTS	34
	L. REGRESSION ANALYSIS	37
	M. BASIC PROGRAM FOR DATA ANALYSIS)8

LIST OF TABLES

1.	Prototype Subsystems	17
2.	USAF Aircraft	18
3.	Prototype Independent Variables	19
4.	Data Set Listing (Mil Aircraft)	20
5.	Output Results for C-5A	21
6.	Correlation Matrix (Mil Aircraft)	23
7.	Means, Variances, and other Statistics (Mil Aircraft)	24
8-1.	Parametric Equations, Mean Flying Hours/Mainteneance Action	25
8-2.	Parametric Equations, Maintenance Man-Hrs/Flying Hr	26
9-1.	R&M Analysis Program - Input	27
9-2.	R&M Analysis Program - Output	28
10.	MODAS II Detail Maintenance Data Report	29
11.	Repair Time Observations	30
12.	Goodness of Fit Tests, Repair Time Distribution	31
13.	Crew Size Probability Distributions	33

THE DETERMINATION OF OPERATIONAL AND SUPPORT REQUIREMENTS AND COSTS DURING THE CONCEPTUAL DESIGN OF SPACE SYSTEMS

INTERIM REPORT

I. Introduction

The primary objective of this research is to develop a methodology for predicting operational and support parameters and costs of proposed space systems. This report addresses the first phase of this study which consists of: (1) the identification of data sources; (2) the development of a methodology for determining system reliability and maintainability parameters; (3) the implementation of the methodology through the use of prototypes; and (4) support in the development of an integrated computer model. This report documents the phase I results and identifies a direction to proceed to accomplish the overall objective.

II. Related Studies

Several previous studies provide insight and motivation for this research. These studies are discussed briefly below. Other research relevant to the second phase of this effort will be included in the final report.

The Supportability Assessment Model (SAM) developed by Rockwell International [18] provided much of the motivation for the development of the parametric equations as part of this research. Unfortunately, SAM is a proprietary model which restricts its availability. Only limited documentation may be found on the model. However, SAM does project maintenance action rates as a function of the dry (empty) weight of a vehicle. Dry weight is considered a surrogate for complexity. This projection is then modified by factors which consider the environment (e.g. space vs ground), technology (development year) and reliability procurement policies (high or low reliability specifications). Using Air Force Maintenance Data Collection (MDC) data (AFM 66-1) pertaining to the C-9A, C-141A and the C-5A, Rockwell derived a regression equation with maintenance actions per flying hour as a dependent variable and empty weight as an independent variable. Predictions from this equation for estimating spacecraft reliability are then adjusted by a evironmental factor derived from MIL-HDBK-217, Reliability Prediction of Electronic Equipment and a technology factor related to the development year.

What appears to be an enhancement to the original Rockwell SAM model is the Reliability/Maintainability (R/M) Analysis Methodology used by Rockwell in assessing the R&M of the Personnel Launch System, Advanced Manned Launch System (PLS/AMLS). [16] This analysis established regression equations between unscheduled maintenance actions and vehicle dry weight for several aircraft subsystems such as avionics, powerplants, electrical, hydraulic, structural and landing gear. Eight different aircraft including a bomber,

fighters and airlift (cargo) are used to generate examples of the correlations obtained between subsystem weight and maintenance actions per flying hour or per landing. Component removals are computed as a percent of the component maintenance actions in order to determine requirements for spares. Both a bottom-up and a top-down analysis is performed using Air Force, airline and orbiter data.

In a discussion on life cycle costing, Earles [6] presents one of the first successful parametric models for estimating maintenance manhours per flying hour (MH/FH). An estimate of the MH/FH for on-aircraft propulsion is obtained from a regression equation with the thrust/engine and number of engines as independent variables. Five tactical aircraft and the T-38 provided the source of data.

Another early study by Harmon, Pates, and Gregor [8] developed maintenance manhour per flying hour (MH/FH) estimates for tactical aircraft for use during conceptual and development design phases. Again, using AFM 66-1 data, MH/FH estimating relationships were derived using aircraft design and performance parameters. Using ten tactical aircraft, a data base covering maintenance manhours over a 6 month period was developed at the two-digit work unit code (WUC). Different independent variables were selected for each subsystem. For example, landing gear maintenance manhours was assumed to be related to kinetic energy and aircraft weight while the fuel system maintenance manhours was related to weight, number of engines and fuel quantity. Correlations above .90 were reported for each of the examples, however, only 5 to 7 data points (aircraft) were used in the analysis. Technology improvement factors are given for each WUC but details on their derivations are not provided.

Norris and Timmins [13] present another early study which focused on spacecraft performance during its orbital life. Component failure rates over time of 57 unmanned spacecraft were analyzed. Both a Duane reliability growth curve and a Weibull hazard rate function provided an adequate fit to the data. A decreasing failure rate over time was observed from the data during the first day following launch.

Decreasing failure rates were also reported in a study by Hecht and Florentino [9] and Hecht and Hecht [10] which focused on electronic systems of over 300 spacecraft. The study concluded that design and environmental causes of failures contributed the most to a decreasing failure rate. They computed Weibull shape and scale parameters for each of several failure classifications. Causes of spacecraft failures, their distribution by subsystem and critiality and mission type are also presented. A reliability prediction method is developed for electronic equipment operating in a space environment which is consistent with MIL-HDBK-217.

Peacore [15] discusses some reliability results pertaining to the Air Force's AWACS (E-3A) system. In flight failure rates were found to be decreasing with flight time which he believes to be characteristic of large multi-engine transport type aircraft. A model, developed by Boeing Aerospace Corporation and based upon B-52 data, has high early failure rates which decrease to a relatively constant rate after 10 hours of flight. The high early failures are attributed to environmental stresses during takeoff, failures occurring when initiating (e.g. turning on) and stabilizing equipment, failures undetected during testing, and maintenance induced failures.

One of the few papers addressing failure time and repair time probability distributions is presented by Ostrofsky.[14] However, only graphical examples of these distributions are provided with no results on fitted theoretical distributions reported.

A comprehensive report prepared for the Goddard Space Flight Center (NASA) by Bloomquist and Graham [4] describes the study of 44 unmanned orbital spacecraft. In fact, this study is an update of earlier studies conducted by the Planning Research Corporation (PRC) which addressed 350 spacecraft. In addition to providing an extensive data base of the 44 spacecraft, the report classified anomolies by satellite mission, subsystem, effect, and incident type (e.g. electrical or mechanical). Subsystem survival times were also computed in units of the spacecraft design life.

A report prepared by Hughes Aircraft for the Rome Air Development Center [12] addresses differences between predicted and demonstrated reliability and the observed field values (primarily MTBF). Prediction models for estimating the field MTBF were derived. The study contains a detailed description of the Air Force's MDC (AFM 66-1) and D056 data systems. The relationship between predicted and observed MTBF was established using multiple regression techniques. Of interest in this report is the derivation of a "K" factor (equipment use factor) to account for the differences between equipment flying hours and equipment operating hours. Equipment operating hours varied from 1.2 to 2.4 times the flying hours depending upon the aircraft.

Maintenance policies may have a significant effect on the maintenance manhours expended in supporting a space vehicle. Barnard and Matteson [3] describe a test conducted by the Navy to perform aircraft maintenance similar to that of the commercial airlines. Both scheduled maintenance manhours and aircraft downtime were significantly reduced while the quality of maintenance increased. Similar changes in maintenance policies may be contemplated as NASA transitions from the shuttle to the next generation of space transportation vehicles.

III. Data Sources

The principle approach to be used in establishing R&M estimates of new space systems is based upon comparability with existing systems. In this regard, many of the subsystems defined for manned space vehicles may be favorably compared to corresponding aircraft systems. Therefore, a primary source of data to support this analysis would be obtained from both commercial and military aircraft failure and repair data.

A. Categories of data.

The primary R&M data sought are:

- (1) Time between maintenance. This is the length of time in flying hours or sorties between maintenance actions on a particular subsystem or component. Both scheduled and unscheduled maintenance actions may be included. Unscheduled time between failures is usually characterized by the Mean Time Between Failures (MTBF).
- (2) Maintenance manhours per flying hours (MH/FH). This is sometimes referred to as the maintenance index (MI) and may be broken down into off-equipment (aircraft) and on-equipment (aircraft) manhours.
- (3) Maintenance Task Times. The length of time (usually in hours) to perform a particular task such as troubleshoot, remove and replace, perform minor maintenance, etc. This maintainability parameter is usually summarized at the subsystem or component level as the Mean Time to Repair (MTTR).
- (4) Maintenance crew sizes. The number of maintenance personnel required to perform a particular task. This number may vary depending upon the task, the particular component involved and the skill level of the personnel.

This data should be categorized by subsystem and/or component or Line Replaceable Unit (LRU) and aircraft type. Figure 1 identifies the major subsystems (2-digit work unit codes).

Figure 1

Air Force Work Unit Codes (WUC)

2-Digit Level

WUC SYS SYSTEM NOUN

03 *SCHED INSP LOOK PH

04 *SPECIAL INSP

11 STRUCTURES

12 EQUIP/FURNGS

13 LANDING GEAR

14 FLIGHT CONTROLS

23 POWER PLANT SYSTEM

24 AIRBORNE AUXY PWR

41 AIR CONDITIONING

42 ELECTRICAL POWER

44 LIGHTING SYSTEM

45 HYDRAULIC POWER

46 FUEL SYSTEM

47 OXYGEN

49 FIRE PROTECTION

51 INSTRUMENTS

52 AUTO FLIGHT

61 COMMUNICATIONS

62 *VHF COMMUNICATIONS

63 UHF SYSTEM

64 PASS ADDRESS SYS

65 • IFF

66 EMERG LOCT XMTR

68 *AFSAT COMM

69 *MISC COMM EQ

71 NAVIGATION

72 RADAR NAVIGATION

91 *EMERG EQUIP

97 *EXP DEV & COMP

B. Military Data Systems

1. US Air Force

Reliability and maintainability data for USAF aircraft originates with the Maintenance Data Collection (MDC) system as described in AFM 66-1. This data is collected at the base (squadron/wing) level (AFTO Form 349) and transmitted periodically to AF Logistics Command (AFLC). AFR 65-110 data (aircraft status reporting) reports flying hours and sorties for the same bases monthly. The D056 Product Performance System processes this data producing several R&M reports. D056 also provides data to the Maintenance and Operational Data Access System (MODAS) for on-line viewing and retrieval. ALD Pamphlet 800-4, Aircraft Historical Reliability and Maintainability Data summarizes the worldwide R&M data at the two-digit work unit code (WUC) in 6-month intervals (see Appendix A for an example). Currently Volumes I through VI covering the years 1972 through 1989 have been published.

The current OPR for ALD 800-4 is ALD(AFLC)/LSR, Wright-Patterson AFB, Ohio. However, with the consolidation of AFLC and the Air Force Systems Command (AFSC) scheduled for July 1992, this office may no longer exist. With the eventual implementation of REMIS (Reliability and Maintainability Information System), the D056 system along with MODAS will also be eliminated. It is not certain at this time what the final configuration and capabilities of REMIS will be.

The MODAS system (G063) is currently sponsored by AFLC/MMES, Wright-Patterson AFB, Ohio 45433. MODAS provides the user with access to various data bases through an interactive menu driven system. It is a Data Base Management System (DBMS) with some automated analytical capability. R&M information may be displayed by aircraft (MDS), WUC, level of WUC, base and by month. Examples of output products relevant to this research are provided in Appendix B.

In addition, to the above systems, a unique representation of aircraft R&M data exist in the form of Logistics Composite Model (LCOM) data bases. LCOM is a computer simulation model which simulates the operation of a squadron or wing of aircraft with random failures times and repair times of aircraft subsystems and components. LCOM data bases exist for most of the aircraft in the Air Force inventory although many of these data bases are several years old. This data is unique in that the failure times may be based upon several years of (AFM 66-1) data and repair times and crew sizes are often based upon field audits conducted at the unit's themselves. This data, which is usually collected at the 3 or 4 digit WUC level, is a refinement of the MDC data. Appendix C contains examples of the LCOM data forms. Most LCOM data bases may be obtained from ASD/ENSSC, Wright- Patterson AFB, Ohio.

2. US Navy

Report Title

The primary source of R&M data pertaining to Navy aircraft is the Aviation 3-M Information reports. The Navy Maintenance Support Office (NAMSO), is the central data bank for Aviation 3-M data. NAMSO is part of the Naval Sea Logistics Center. Although preformatted reports are published monthly, quarterly and annually, and are available on request, a potential user may also request the development of a new report. Most reports can be obtained on either hardcopy or microfiche. Magnetic tape may be obtained under a special request.

The following R&M reports have been identified as relevant to this research. Examples of each report may be found in Appendix D.

Report Number

<u>-</u>	•
Reliability and Maintainability Summary	NAMSO 4790.A7142-01
WUC System R&M Summary	NAMSO 4790.A7142-02
R&M Summary for selected WUCs	NAMSO 4790.A7142-03
R&M Trend Analysis Summary	NAMSO 4790.A7142-04
5-Digit WUC R&M Trend Analysis Summary	NAMSO 4790.A7142-05
R&M Summary for Selected Equipments	NAMSO 4790.A7298-01

The R&M Summary Report provides data similar to that available from the MODAS system. Summary statistics are reported by aircraft type at the 5-digit WUC and include mean flying hours between maintenance actions, maintenance manhours per flying hour, maintenance manhours per maintenance action, and elapsed maintenance time per maintenance action.

Of particular interest in this research is the WUC System R&M Summary. This report provides mean flying hours between maintenance actions, maintenance manhours per flying hour, maintenance manhours per maintenance action, and elapsed maintenance time per maintenance action by system level WUC (2-digit) for all appropriate aircraft. Similar R&M information is provided in the R&M Summary for selected WUCs. However, this report is at the 4-digit WUC and pertains only to engines and avionic components.

The two trend analysis reports provide MTBF and MH/FH information at the 4-digit and 5-digit WUC respectively. Multiple time periods may be displayed to produce trend data, and a comparative failure ranking of the WUC relative to all WUCs for the aircraft is computed.

The final report, R&M Summary for Selected Equipments, allows for R&M data to be presented at the 2nd and 4th level WUC by activity. This report would not add any new information not already available on the other reports other than the activity breakdown.

3. Reliability Analysis Center

The Reliability Analysis Center (RAC) is one of 21 DOD Information Analysis Centers (IAC). It is operated by IIT Research Institute in Rome, New York. As an IAC, RAC maintains data bases and studies concerning component reliability particularly that of electronic systems. The Center also conducts special studies, publishes newsletters, and offers training courses. An example of one of RAC's data bases is contained in Appendix E. In general, the items contained in RAC's data bases are individual parts rather than an entire component. Therefore, this data may not be very useful in this research.

C. Commercial Aircraft

1. Federal Aviation Agency (FAA)

Commercial sources of R&M data include both the airlines and the aerospace contractors. In addition, the Federal Aviation Agency (FAA) in Oklahoma City maintains a data base consisting of component failures by Airline Transport Association (ATA) code which corresponds to the military's WUC. The data base is very detailed with significant variability in reporting by the individual airlines. A narrative on each incident is included, but there is no quantitative data for estimating MTBF or MTTR. A sample of the FAA records may be found in Appendix F. This data is of limited use since there is no practical way to obtain failure rates or times of failure without additional information.

2. Commercial Airlines

Each airline maintains R&M data in a form useful to them. Carrier A is recognized as having the most complete reliability data on aircraft currently in use. A sample report is included in Appendix G. Failures (removals) per 1000 unit hours are provided by component. We are also in the process of obtaining data from a second carrier. They maintain three possibly relevant reports: a component removal report, a monthly alert report, and a reliability report pertaining to their current aircraft. Airlines generally consider this data proprietary.

3. Aerospace Contractors

An example of the type of data maintained by the major aerospace corporations may be found in Appendix H. This report from Manufacturer A highlights subsystem failures which significantly affect scheduled flights resulting in delays (exceeding 15 minutes), flight cancellations, diversions, and air turn backs. While this information is very useful in identfying problem areas, failure times cannot be computed from this report. Scheduled interruptions are Boeing's major measure of reliability. They maintain very little data on MTBF, MTTR or maintenance MH/FH.

Manufacturer B maintains a Data Exchange Program contains various reliability reports. This information is provided to commercial aircraft customers. Information contained in this report is obtained from participating airlines. Like the Manufacturer report, it focuses on events which result in excessive delays and cancellations. However, a component removal summary contains some MTBF information. Appendix I provides examples of these reports.

5. Other Sources

A secondary source of reliability data consists of subcontractors involved in the manufacture of particular aircraft subsystems and components. For example, Hughes Corporation which, among other things, makes radar systems for various aircraft. We were able to obtain the system specifications and reliability test results on four of their radar systems (see Appendix J). As additional information like this on other radar sets is obtained, a parametric estimation of MTBF is possible. We have requested similar input from other subcontractors including Harris Corporation (digital map generators, global positioning system) and E- Systems (electronic systems). Others are anticipated during Phase II of this research.

Other sources which are being pursued include Airbus Industries (Europe), The Society of Automotive Engineers (SAE) which has published a guidebook on rocket booster reliability, the Aeronautical Systems Division (Air Force Systems Command) concerning a comparative study on competing radar systems, and the Air Force Logistics Command's Reliability and Maintainability Information System (REMIS). This list will be expanded as other relevant sources of R&M data are identified. This expansion will also include booster rockets and other space systems during Phase II.

Various points of contact for the data sources identified above are summarized in Appendix K.

IV. Methodology

The primary objective of this phase of the research is to develop a methodology for estimating reliability and maintainability parameters for use in life cycle costing, supportability requirements determination and the assessment of operational capabilities and constraints. This methodology must be based upon the available data sources identified above. The basic approach is to use comparability analysis. That is, spacecraft subsystem and component failures and repairs are assumed to be similar to those of comparable aircraft subsystems and components. Therefore, if we can estimate aircraft equipment failure and repair parameters as a function of performance and design specifications, then with suitable adjustments to account for the differences in operating environment, we should be able to estimate the R&M parameters of a conceptual space vehicle once certain design and operating specifications have been defined. Adjustments may also be necessary to account for technological innovations.

A. Regression Analysis

Parametric R&M equations may be derived using regression analysis. In general, letting

$$Y = B_0 + B_1 X_1 + B_2 X_2 + ... + B_k X_k$$

where Y = R&M parameter of interest (e.g. MTBF)

and $X_j = jth$ design or performance specification (e.g. vehicle empty weight) j = 1, 2, ... k,

then

B₀, B₁, ..., B_k are the regression coefficients.

These are estimated by performing a least-squares fit of the equation against known paired values for Y and the corresponding $X_1, X_2, ... X_k$.

The following R&M parameters are candidates for estimation using this approach:

MFH/MA - Mean Flying Hours between Maintenance Actions

MS/MA - Mean Sorties (Missions) between Maintenance Actions

ML/MA - Mean Landings Between Maintenance Actions

MMH/FH - Maintenance Manhours per Flying Hour

MMH/S - Maintenance Manhours per Sortie (Mission)

MMH/L - Maintenance Manhours per Landing

MMH/MA - Maintenance Manhours per Maintenance Actions

ON-MMH/MA - On-equipment Maintenance Manhours per Maintenance Action

OFF-MMH/MA - Off-equipment Maintenance Manhours per Maintenance Action

EMT/MA - Elaspsed Maintenance Time per Maintenance Action (task time)

MCS/MA - Mean Crew Size per Maintenance Action

B. Mathematical Relationships

To estimate these parameters, it is necessary for the data system to maintain their historical values for each aircraft used in the analysis. Therefore, from a particular data source, it may only be possible to derive parametric equations for only a subset of these parameters. However, mathematical relationships among these parameters can be used. For example,

 $MS/MA = 1 / \{ [(1/MFH/MA) \times TOT FH] / TOT SORTIES \}$

 $ML/MA = 1 / \{[(1/MFH/MA) \times TOT FH] / TOT LANDINGS \}$

 $MMH/S = MMH/FH \times TOT FH/TOT SORTIES$

 $MMH/L = MMH/FH \times TOT FH/TOT LANDINGS$

 $TOT MA = 1/MFH/MA \times TOT FH$

MMH/MA = TOT MMH/TOT MA

ON-MMH/MA = (TOT ON-MMH)/TOT MA

OFF-MMH/MA = (TOT OFF-MMH)/TOT MA

MCS/MA = (MMH/MA)/(EMT/MA)

TOT MMH = TOT ON-MMH + TOT OFF-MMH

C. Spare Parts Requirements

In order to estimate spare parts requirements, it is necessary to distinguish between a failure resulting in a remove and (if a spare is available) replace action versus other maintenance actions such as on-aircraft troubleshoot and repair. Some data sources, such as the LCOM data bases, will provide this additional information. The MODAS system identifies maintenance actions by an action taken code one of which is a removal code. Most sources providing summary level information, however, will not. It may be possible, nevertheless, to estimate the percent of removals by computing the ratio of off-equipment manhours to total manhours since off-equipment work is a result of component removals. Therefore, let

Then the mean number of failures (MFAIL) per mission (sortie) can be estimated from

$$MFAIL = RR \times [1/MFH/MA \times MSN FH \times USE FAC]$$

where MSN FH = Average Mission Length (in flying hours)

and USE FAC = percent of mission time component is operating (may be greater than 100%)

Under the common assumption that the number of failures in a given time period follows a Poisson process, a spare parts level can now be found which will satisfy demands a specified percent of the time.

Let S = spare parts level to support a given mission

and p = desired percent of time demands are satisfied,

then find the smallest value for S such that F(S) > = p where

$$F(S) = \sum_{i=0}^{S} \exp(-MFAIL) \times \frac{MFAIL^{i}}{i!}$$

Finally, if n = number of missions per year, then for a given component, Total annual maintenance hours = $n \times MH/FH \times MSN FH \times USE FAC$ and

Total expected annual spares requirement = n x MFAIL.

D. Crew Size Determinations

From the Air Force data sources, crew size information is obtained as a result of individual maintenance task records found in the MODAS system. In order to obtain an average crew size and a crew size distribution, the following calculations are performed.

Let t_{1i} = start time of ith maintenance task

 t_{2i} = stop time of ith maintenance task

 c_i = assigned crew for ith maintenance task

P(c) = Probability of a crew size of c, c = 1,2,...,m

then

$$P(c) = \frac{\sum_{i \in c} (t_{2i} - t_{1}i)}{\sum_{all \ i} (t_{2i} - t_{1}i)}$$

where the summation in the numerator is over all maintenance task having a crew size of c and the summation in the denominator is taken over all maintenance tasks in the sample. Then the average crew size (ACS) is found by

$$ACS = \sum_{c} c P(c)$$

Once the average crew size has been determined, an average repair task time can be obtained by

$$EMT/MA = (MMH/MA) / ACS$$

Both the Air Force and Navy R&M reports provide sufficient information to compute most of the R&M parameters using the relationships presented above.

E. Vehicle Level R&M Performance

From the subsystem MTBF's, a vehicle MTBF may be obtained in the following manner.

$$VEH\ MA/MSN = \sum (1/MFH/MA_i) \times USE\ FAC_i \times MSN\ FH$$

$$VEH MFH/MA = MSN FH/(VEH MA/MSN)$$

where MFH/MA; = mean flying hours between maintenance

action for subsystem i and the summation is taken over all subsytems.

Total vehicle maintenance manhours per mission may be found from

$$VEH MMH = \sum MMH/FH_i \times USE FAC_i \times MSN FH$$

where MMH/FH_i = maintenance manhours per flying hour of the ith subsystem and the summation is taken over all subsystems.

F. Environmental and Technological Adjustments

Previous studies have shown a change in component failure rates as the environment changes from that of the ground and launch phases to the somewhat more benign space environment. To approaches have been identified to quantify this change. The first is to include an environmental factor in the regression model. This will require including historical data on comparable components operating in space. This data may be quite limited and will be explored during Phase II.

An alternate approach is to make use of some earlier research which concluded failure rates in space were decreasing with the Weibull failure distribution providing a reasonable model. If we assume failures during the launch activity are exponential (an assumption often used by the military), we can equate component reliability of the two models at the transition point, t_0 , between launch and obtaining orbit. Therefore

$$R(t_0) = \exp(-t_0/MTBF) = \exp[-(t_0/k)B]$$

where k is the Weibull scale parameter and B is the Weibull shape parameter.

If we can estimate, in general, the shape parameter (which is positive and less than 1 for a decreasing failure rate), then solving for k:

$$k = t_0 (t_0/MTBF)-1/B$$

and the MTBF for the resulting Weibull distribution is

MTBFw = $k\Gamma(1+1/B)$ where Γ is the gamma function

A technology adjustment factor may be derived by including the development year as a variable in the regression model. However, there is the problem of extrapolating beyond the data. One would expect the impact of technology to be monotonic but at a decreasing rate approaching some finite limit asymptotically. This behavior would suggest certain functional forms within the regression model.

V. Prototype Example

A. Data Base

In order to demonstrate the above methodology and to evaluate the resulting parametric equations, five subsystems found on Air Force aircraft were selected. Air Force subsystems were selected because of the immediate availability of Air Force R&M data. Final results will be based upon more extensive data sources.

Table 1 identifies the file subsystems and Table 2 lists the 21 aircraft comprising the test data base. Six independent variables were selected as R&M "drivers." This list will be updated and expanded during phase II. Table 3 defines the six independent variables. The variable year serves as a surogate for measuring the level of technology. Values for these independent variables were based upon references [7] and [11] and are presented in Table 4.

Dependent variable values reflecting various R&M parameters were based upon data contained in AFALD Pamphlet 800-4, Vol V and VI. AFALDP 800-4 provides MFH/MA and TOT MMH data by aircraft (mission-design-series) and subsystem (2-digit WUC) over a six month period. A BASIC program (Appendix M) was written to combine several 6-month periods into a single sample in order to obtain a more accurate estimate. This program also computed additional reliability measures using the mathematical relationships discussed in section III. The program was executed for each of the 21 aircraft and for each of the 5 subsystems. Table 5 provides examples of the output for the F-15 landing gear system and the C-5A electrical power systems.

B. Regression Analysis

Stepwise linear regression procedures were used to develop each of the parametric equations. A "best fit" was obtained by selecting the simplest mathematical model having a significant F value, a large R-squared value, and a small standard error. Generally, only independent variables which were significant (based upon a t-test) were

included in the final model. One exception was the inclusion of the variable YEAR if it increased the R-square value and decreased the standard error. By adding this variable to the model, a change in technology year would effect (although at times in a minor way) the estimated reliability. Nonlinear transformations of the independent variables were also included in the model if they significantly contributed to the prediction power of the equation. Generally these transformations consisted of squaring, taking logarithms or square roots of the variables.

TABLE I

Prototype Subsystems

SUBSYSTEM
WUC

ELECTRICAL POWER SYSTEMS AIRFRAME (STRUCTURAL) LANDING GEAR 13XXX 11XXX

HYDRAULIC SYSTEMS OXYGEN SYSTEMS 42XXX 45XXX 47XXX

TABLE 2

USAF Aircraft

COMMAND/CONTROL /TRAINERS	E-3A	E-4B	T-38						
CARGO/TANKERS	C-5A	C-9A	KC-10A	C-130E	KC-135A	C-141B			
BOMBERS	B-1B	B-52G	B-52H						
TACTICAL	A-7D	A-10A	F-4E	F-4G	F-5E	F-15	F-16 A/B	F-16 C/D	F-111A

TABLE 3

Prototype Independent Variables

TO-WGT - TAKE-OFF WEIGHT (1000 lbs)

EM-WGT - EMPTY (DRY) WEIGHT (1000 lbs)

CEIL - SERVICE (OPERATING) CEILING (1000 ft)

WING - WING AREA (1000 SQ ft)

LENGTH - VERTICAL LENGHT (ft)

YR - YEAR FIRST PROTOTYPE FLOWN

rh yr		9	.3 75.		. 58.	9		9	9			9			9	9				3	5 6	LC:
LENGTH		46	53.	147	161	9	2	231	₹	—	8	86	134	9	63	63	48	63	47		73.	
WG AREA	•	٠.	50	6	4		•	5.5	•	-	3.6	~		•	10	10	α	0.61			· ~	-
NG FOR AIRCRAFT CEILING		ာ	34.7	65	55.	55.	ಬ	15.	4	2	•	က	S	41.6	8.7	7.	51.	09				• 40 6 60 6 60 6 60
DATA SET LISTING DETAILED PROBLEM DATA LISTING FOR NASA - MASTER DATA BASE - MIL AIRCRAI MTBM TO-WGT EMPTY-WGT CE		6		92	173.	~	~	S	25	~	42.	~	90	48	0	0	<u></u> 5	- 00	7	· α	7.7.7	- c
DATA SI ID PROBLEM I TER DATA BA			50.	395.	488.	488.	33.	775.	728.	108.	590.	175.	316.	. c.	-		9.50	· α			. 4 6.	
DETAILE NASA - MAS MTBM			•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ROW LABEL		A - 7 D	A-10A	A-10A	B-15 R-52G	n 524	E - 2 c:	1	0 K 7	46 J	V - 10 V	NC-10A	C1130E	AC-130A	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 C		1 L		F-10A/D	F-16C/D	F-111A

Table 5

OUTPUT RESULTS FOR C-5A

TOT	FLYING-HRS	109290
TOT	SORTIES	2 7783
TOT	LANDINGS	8 541 3

WUC 11-AIRFRAME

TOTAL MAINTENANCE EVENTS TOTAL MAINTENANCE MANHOURS TOTAL ON-EQUIP MAINT TOTAL OFF-EQUIP MAINT	79877.98 433926 375729 58197
MEAN FLYING HR BTWN MAINT MEAN SORTIES BTWN MAINT MEAN LANDINGS BTWN MAINT MAN-HOURS PER FLY-HR MAN-HOURS PER SORTIE	1.368212 .347818 1.069294 3.970409 15.6184
MAN-HOURS PER MAINT ACTION ON-EQUIP MAN-HRS/MAINT ACTION OFF-EQUIP MAN-HRS/MAINT ACTION	

WUC 13-LAND-GEAR

TOTAL MAINTENANCE EVENTS TOTAL MAINTENANCE MANHOURS TOTAL ON-EQUIP MAINT TOTAL OFF-EQUIP MAINT	77016.03 452927 349654 103273
MEAN FLYING HR BTWN MAINT MEAN SORTIES BTWN MAINT MEAN LANDINGS BTWN MAINT MAN-HOURS PER FLY-HR MAN-HOURS PER SORTIE	1.419055 .3607431 1.109029 4.144268 16.30231
MAN-HOURS PER MAINT ACTION ON-EQUIP MAN-HRS/MAINT ACTION OFF-EQUIP MAN-HRS/MAINT ACTION	

Since the variables TO-WGT, EM-WGT, LENGTH, and WG-AREA were highly correlated with one another (see Table 6), it was generally undesirable to have more than one in the model at the same time. The multi-colinearity affect may cause the model to behave abnormally. For example, an increase in empty weight may cause reliability to increase. Therefore, if several of these variables were present and the signs in the regression model were in the wrong direction, one or more of the variables would be deleted from the model. Table 7 provides descriptive statistics on the independent variables.

An investigation of the residuals would, on occasion, identify one or more data points as outliers (two or more standard deviations from the mean). At times these outliers were deleted from the data base. This was based upon the strong possibility that the AFALDP 800-4 data was incomplete. This is particularly true for the Vol VI data which contains a warning to this effect. In processing AFM 66-1, the monthly tapes from the bases may not contain all of the failures logged for that month. On the other hand, the monthly flying hours and sorties reported through a different data system is almost always complete. The net result is an overstatement of the MTBF. This was normally the case when outliers were observed.

The derived parametric equations are presented in Table 8. The statistical analyses including the ANOVA table, t-tests on the coefficients, and a standardized residual table may be found in Appendix L. These equations were integrated into a single BASIC program which will compute the R&M parameters of a conceptual space vehicle as a function of its design and performance specifications. Table 9 illustrates the input and output of this program.

C. Probability Distributions

Since AFALDP 800-4 does not provide sufficient data to derive failure time, repair time or crew size probability distributions, the MODAS reports were evaluated for this purpose. These distributions are important in developing, for example, a computer simulation model of the support and operations of the space vehicle.

Using August 1990 data from the B1-B bomber, MODAS provided start and stop maintenance times for each failure record in the system (see Table 10). Using the repair times computed from these values, a Chi-square goodness of fit test was conducted to determine a suitable distribution. Because of the tendency to report times in whole hours (or 30 minute periods), the data had to be aggregated into four intervals. A significant fit was obtained using either the Weibull or lognormal distributions (see Tables 11 and 12). An empirical crew size distribution was obtained from the MODAS

Table 6

NASA - MASTER DATA BASE - MIL AIRCRAFT
CORRELATION(SAMPLE SIZE) MATRIX

	TO-WGT	EMPTY-WGT	CEILING			
TO-WGT EMPTY-WGT CEILING WG AREA LENGTH YR	1.000(21) 0.988(21) -0.217(21) 0.976(21) 0.970(21) -0.012(21)	0.988(21) 1.000(21) -0.224(21) 0.957(21) 0.971(21) 0.072(21)	-0.217(21) -0.224(21) 1.000(21) -0.283(21) -0.288(21) -0.013(21)			
	WG AREA	LENGTH	YR			

NASA - MASTER DATA BASE - MIL AIRCRAFT MEANS, VARIANCES, AND OTHER STATISTICS

Table 7

		TO-WGT	EMPTY-WGT	CEILING	WG AREA
No. of cases selected	:	21	21	21	21
Average	:	249.0667			1.9301
Standard deviation	:	245.8650			1.8647
Skewness	:		1.0683 0.2185		0.9491
Kurtosis	:	-0.4155	0.2185	-1.6063	-0.1506
PERCENTILES :					
Oth (Minimum)	:	12.1000	7.6000	33.0000	0.1700
5 th	:	13.4100	7.8100	33.0000	0.1716
25th (Lower Quartile)	:	46.0000	20.5000	34.8500	0.4405
50th (Median)	:	108.0000		45.0000	1.0000
75th (Upper Quartile)	:		173.0000		3.4000
95th	:	770.3000	349.3000	64.5000	6.1300
100th (Maximum)	:	775.0000	3 52.0000	65.0000	6.2000
		LENGTH	YR		
No. of cases selected	:	21	21		
Average	:	112.1000	69.8095		
Standard deviation	:	64.1190			
Skewness	:	0.6456	0.0818		
Kurtosis	:	-0.6684	-0.7263		
PERCENTILES :					
Oth (Minimum)		46.0000	56.0000		
5th	:	46.0000			
25th (Lower Quartile)	:	51.3000	64.0000		
50th (Median)	:	98.0000			
75th (Upper Quartile)	:	161.0000			
95th	•	246.3000	84.7000		
100th (Maximum)	:	248.0000	85.0000		

TABLE 8-1

PARAMETRIC EQUATIONS MEAN FLYING HRS/MAINTENANCE ACTION

MUC

11XXX:

MFH/MA = 23.22925 - 0.111771 CEIL + 12.6007 WING AIRFRAME

- 0.0576 LENGTH - 0.005075 YR

- 21.97399 SQR WING - 0.684188 WING^2

3XXX:

LANDING GEAR MFH/MA = 23.86407 - 1.409666 SQR LENGTH

42XXX:

ELEC PWR SYS MFH/MA = - 271.444 - 0.212449 TO-WGT + 0.533079 CEIL - 0.768166 YR

+ 28.35901 SQR LENGTH

+ 7697.175 1/LENGTH

45XXX:

HYDRAULICS MFH/MA = 49.40489 + 0.369793 TO-WGT - 0.49955 EM-WGT + 39.86846 WING

- 0.620174 LENGTH + 1.240129 YR

22.75922 MISSION - 157.5092 SQR WING

47XXX:

+ 18.61948 MISSION - 61.79837 SQR WING OXYGEN SYS MFH/MA = 260.1071 + 0.213175 TO-WGT

10.01940 MICOLON CO.: CC.:

- 19.19873 SOR LENGTH

TABLE 8-2

MAINTENANCE MAN-HRS/FLYING HR PARAMETRIC EQUATIONS

WUC

HXXX:

AIRFRAME MMH/FH = - 4.953856 - 0.01547. TO-WGT

+ 0.051091 CEIL - 2.934957 WING

+ 0.33163 SQR TO-WGT + 5.518674 SQR WING

+ 0.357075 WING^2

13XXX:

LANDING GEAR MMH/FH = - 53.66402 + 17.08925 LOG YR - 0.267969 YR + 0.094115 SQR LENGTH

42XXX:

ELEC PWR SYS MMH/MA = 11.30551 + 0.001867 EM-WGT + 0.263477 CEIL - 3.450736 SQR CEIL

45XXX:

HYDRAULICS MMH/MA = 0.926234 + 0.010833 CEIL - 0.586775 WING + 0.014184 LENGTH - 0.008041 YR

- 0.051832 MISSION + 1.779134 SQR WING

0.306858 SQR LENGTH

- 4.298343 1/LENGTH - 0.036333 SQR YR OXYGEN SYS MMH/FM = 0.452033 - 0.011884 MISSION 47XXX:

Table 9-1

R&M Analysis Program - Input

WELCOME TO THE NASA SPACE VEHICLE R&M ANALYSIS PROGRAM

ENTER PROJECT TITLE? EXAMPLE ENTER VEHICLE NAME? ADVANCED SPACE VEHICLE

OPERATIONAL/SUPPORT PARAMETERS

ENTER	TYPICAL MISSION TIME IN HOURS? 48	
ENTER	MISSION HOURS FOR LAUNCH AND ORBIT INSERTION? 5	
ENTER	MISSIONS PER YEAR? 20	
ENTER	MAX ORBIT IN MILES? 200	
ENTER	YEAR OF FIRST FLIGHT - E.G. 93? 94	
ENTER	SPARES SUPPORT AS A FRACTION OF FILLED DEMANDS?	. 9

DESIGN PARAMETERS

ENTER VEHICLE EMPTY WEIGHT IN 1000 POUNDS? 1100				
ENTER VEHICLE LENGTH IN FEET? 90				
ENTER MAX VEHICLE TAKE-OFF WEIGHT IN 1000 POUNDS? 130)			
ENTER WING AREA IN 1000'S SQ FT? 1.5				
SUBSYSTEM USE FACTOR				

WUC11-AIRFRAME	1	1
WUC13-LANDING GEAR	1	2
WUC42-ELECTRICAL	1.2	3
WUC45-HYDRAULIC	1	4
WUC47-OXYGEN SYS	1.1	5

DO YOU WISH TO CHANGE A USE FACTOR-Y/N?? SUBSYSTEM REMOVAL RATE

WUC11-AIRFRAME	. 2	1
WUC13-LANDING GEAR	.6	2
WUC42-ELECTRICAL	. 7	3
WUC45-HYDRAULIC	.8	4
WUC47-OXYGEN SYS	. 3	5

Table 9-2

R&M Analysis Program - Output

PROJ	ECT	EXA	MPI	Æ
------	-----	-----	-----	---

VEHICLE ADVANCED SPACE VEHICLE

DATE: 10-06-1991

INPUT PARAMETERS

MISSION TIME	72 HOURS
MISSIONS PER YR	20
MAX ORBIT	200 MILES
FIRST FLIGHT	90
EMPTY WEIGHT	100 1000 POUNDS
MAX TAKE-OFF WGT	130 1000 POUNDS
WING AREA	1.5 1000 SQ FEET
VRHICLE LENGTH	90 FEET

SUBSYSTEM RAM PARAMETERS

WUC	SYSTEM	MPHMA	MHFH	MANHRS/MSN
11*** 13*** 42*** 45***	AIRFRAME LANDING GEAR ELECTRICAL SYS HYDRAULICS SYS OXYGEN SYS	4.237383 10.49081 4.488701 38.49068 85.85588	1.713253 9.991109E-03 .3293533 7.964253E-02 2.393657E-02	123.3542 .7193599 23.71344 5.734263 1.723433

SUBSYSTEM MFHMA ADJUSTED FOR SPACE

WUC	SYSTEM	ADJ MFHMA
11***	AIRFRAME	4.473464
13***	LANDING GEAR	12.99671
42***	ELECTRICAL SYS	4.787213
45***	HYDRAULICS SYS	59.97994
47***	OXYCEN SYS	154.1365

VEHICLE R&M PARAMETERS- ADVANCED SPACE VEHICLE

TOTAL MANHOURS PER MISSION	160.1597
TOTAL MAINTENANCE ACTIONS	45.89617
MEAN MSN HOURS BTWN MAINT	1.568759
ANNUAL MAINTENANCE ACTIONS	917.9232
ANNUAL MAINTENANCE MANHRS	3203.195

RESULTS OF SPARES CALCULATIONS

Subsystems	MEAN DEMAND	STOCK LVL
WUC11-AIRFRAME	3.398324	6
WUC13-LANDING GRAR	4.117891	7
WUC42-ELECTRICAL	13.47383	18
WUC45-HYDRAULIC	1.496466	3
WUC47-OXYGEN SYS	. 2767429	1

STOCK LEVEL BASED UPON A .9 FILL RATE

Table 10

*** MODAS II ***

Record Type: A Detail Maintenance Data Report THU, SEP 19 1991 MDS: B001B 14:41:09

				_						Action
1		00000			42BA0)	799	2	 >> Н
i	170	00000		1200		6		799	_	
1	170	00000				•			D	H
1				0730		_		105	F	G
1	171	00000		0305		6		799	E	X
1	171	00994		1500		6		800	F	S
1	171	00994	1400	1500	42BAC	6		800	F	S
1	171	00000		2100	42BAD	1		169	F	R
1	171	01582		0 330	42BAH	1		718	В	R
1	171	00000	2330	0130	42BAH	2		105	F	G
1	171	00000	0005	0205	42BEO	6		799	E	X
1	171	00000	0905	1000	42BEA	6		799	F	T
1	171	00000	0630	0800	42BEA	6		799	F	U
1	171	00000	0805	0900	42BEA	6		799	F	U
1	172	01396	0900	0905	42BAA	1		615	F	R
1	175	00000	1400	1500	42BA0	2		105	M	G
1	175	00000	0900	1000	42BAH			105	F	G
1	175	00000		1000				105	F	Ğ
1	176	00000	1100	1200	42BA0	2		105	M	Ğ
1	176	00000		1400		_		105	M	G
1	176	00000	1400	1500	42BA0			105	M	G
1	178	00000		1300				799	F	X
1	178		0440	0500	42BAB			799	F	X
-	110		044U	0000	T & DAD	Ü		133	r	Α.

Table 11
Repair Time Observations

NASA B1-B WUC 42B TIME-TO-REPAIR

	ORDERED ARRAY	OF OBSERVATIONS	1	
5	5	5	5	5
5	5	10	10	15
20	20	20	20	20
25	25	30	30	30
30	30	30	30	30
30	30	30	30	30
30	30	30	30	30
30	30	30	30	30
30	30	30	30	30
40	5.5	60	60	60
60	60	60	60	60
60	60	60	60	60
60	80	60	60	60
60	80	60	60	60
60	60	60	60	60
60	60	60	60	60
60	60	60	60	60
60	60	60	60	60
60	60	60	60	60
60	60	90	90	90
90	90	90	90	90
90_	90	90	115	115
115	120	120	120	120
120	120	120	120	120
120	120	120	120	120
120	120	120	120	120
120	120	120	120	120
120	120	120	120	150
150	150	150	175	178
180	180	180	180	180
180	180	180	180	240
240	240	240	240	240
240	240	240	240	240
240	240	270	270	285
300	300	300	300	300
300	330	360	395	420
420	450	450	480	480

DESCRIPTIVE STATISTICS

SAMPLE SIZE	185	
VRAN	113.2432	
APPROX 90% CONF INTERVAL	100.8087	125.6778
MEDIAN	60	
VARIANCE	10570.67	
STANDARD DEVIATION	102.8138	
VARIANCE/MEAN RATIO	93.34486	
COEFFICIENT OF VARIATION	.9079022	
RANGE	475	
SKEWNESS-(B1)	1.605345	
10% CRITICAL VALUES FOR B1=0	2962482	.2962482
KURTOSIS-(B2)	5.298713	
10% CRIT VALUES FOR B2=3 (NORMAL)	2.407804	3.592497

Table 12

Goodness-of-Fit Tests

Repair Time Distributions

CHI-SQUARE COMPUTATION

WEIBULL WITH SCALE PARAMETER= 120 AND SHAPE PARAMETER= 1.17

CELL	LOWER	UPPER	OBS	EXP	(O-E)^2/E
1.00	0.00	41.37	46.00	46.25	0.00
2.00	41.37	87.73	51.00	46.25	0.49
3.00	87.73	158.64	46.00	46.25	0.00
4.00	158.64	9998.00	42.00	46.25	0.39

CHI-SQUARE STATISTIC= .8810811 DEGREES OF FREEDOM= 1
95% CRITICAL VALUE= 3.84 90% CRITICAL VALUE= 2.71
CANNOT REJECT AT 10% LEVEL

MEAN OF LOGNORMAL= 121.8989 WITH STND DEV= .9832414

CELL	LOWER	UPPER	OBS	EXP	(O-E)^2/E
1.00 -	993.00	3.88	45.00	46.25	0.03
2.00	3.66	4.32	5 2.0 0	46.25	0.71
3.00	4.32	4.98	42.00	46.25	0.39
4.00	4.98	999.00	48.00	46.25	0.00

CHI-SQUARE STATISTIC= 1.140841 DEGREES OF FREEDOM= 1
95% CRITICAL VALUE= 3.84 90% CRITICAL VALUE= 2.71
CANNOT REJECT AT 10% LEVEL

Detail Maintenance Data report report which identifies again the start and stop time of each maintenance activity along with the assigned crew size. Using the procedures discussed in Section III, the crew size distribution and average (mean) crew size were found (Table 13). Since this distribution was based on over 130 individual maintenance tasks, it is assumed to be representative of the crew size requirements for this particular component (AC power system) on B-1B.

An attempt to derive a failure time distribution from the MODAS data was more difficult. MODAS provides the julian date and time (although time does not appear to be very accurate) of each failure. However flying hours (and sorties) are reported monthly. Therefore it is impossible to determine from this data set the actual flying hours between failures. However, it may be possible to show in some cases that the number of failures per flying hour is Poisson by taking failures per month and converting to failures per flying hour. Therefore the time (flying hours) between failures would be exponential. This approach is currently being pursued.

VI. Conclusions and Phase II Research

From the above analysis and examples, useful data sources exist and meaningful parametric equations can be derived for major subsystems. The estimated R&M parameters can be utilized to provide overall vehicle reliability and maintainability parameters. Repair time and crew size distributions can also be obtained, however, failure time distributions will require further analysis.

The Phase II effort will:

- 1. Continue to expand upon the data sources,
- 2. Derive parametric equations for all major aircraft subsystems,
- 3. Develop parametric equations at the component level,
- 4. Explore failure time distributions,
- 5. Include booster rockets,
- 6. Develop costing procedures including spare parts determinations,
- 7. Further develop environmental (space) and technological factors for use in adjusting the R&M parameters.

Table 13

Crew Size Probability Distributions

Record Type: MDS: 80018	A		M O D A S Maintenance		*** Report	:	TUE	SEP	9 0: 24 19 3: 2 9:							
JCN (Julian Day)			Year (1 digit)		WUC	Maint	Taken	Disco	Mal	Failure (1,2 or 6)	Start Time	Time	Size	No.	Id	Cmd
208	0262	211	0		42BD0		χ.	F	002		1030	1630			JFSD	
211	0120	211	0	00541	42BDA	B	ς.	F	721	1	07 00	1000	13	6115	JFSD	Ø S
211	4151	211	2	00688	42BDA	₽	Ŧ	D	79 9	6	1500	1532	3	6118	JFSD	8 5
221	02 30 ,	221	Ø	22000	42B99	B	-	F	127	1	1420	1440	ੋ	5112	JFSD	0 S
221	023 6 ,	221	Ø	22000	42BAØ	Ð	X	F	7 99	6	1440	1500	3	6115	JFSD	0 S
221	023 6	221	Ø	Ø ØØØ Ø	42BAØ	В	¥	F	242	1	1400	1420	3	5115	TFSD	Ø S
222	2357	222	9	00000	428AØ	B	Ħ	0	7 99	6	08 00	1600		5064	FNWZ	0 8
221	3258	223	Ø	Ø ØØØØ	42BDØ	E	3	2	195	2	0700	1000	_	5080	PROE	0 5
223	2 038	223	3	20000	42BDB	B	=	F	781	1	1730	1930	_	6115	JFSD	9 5
32 5	4151	225	3	Ø ØØØØ	42BAA	B	•	F	79 9	6	1400	1500	2	6129	PROE	Ø S
225	415!	225	2	00000	42BAA	8	3	=	799	6	1500	1600	2	61 29	PRQE	9 5
225	2314	225	2	00000	42BDØ	B	3	Ē	1 05	2	1930	2000	2	5070	FNWZ	ØS
225	4052	225	3	20601	42BAC	B	7	두	450	1	1300	1600	3	6139	PROE	. 0 S
225	9 553	226	2	00000	42BAØ	9	x	D	7 99	6	0700	08 00	2	6093	FXBM	95
157	2199	226	20	00000	428AØ	В	Y	E-	799	6	1100	1 200	1 2	6126	PROE	. 05
204	0326	226	23	00000	42BAØ	B	*	F	7 99	6	2700	Ø9 00	2	6126	PROE	. ØS
225	5553	226	2	00927	42BAA	B	R	D	255	1	0005	0200	1 2	6093	FXBM	1 05
227	0559	227	9	00000	42BA0	B .	н	F	799	6	Ø 88 0	0900	2	2070	FNWZ	. Ø S
227	0251	227	ō	00000	42BA0	В	X	B	7 99	6	Ø7 00	0700	2	5062	FNWZ	. 09
208	0031	227	0	00000	42BA0	В	X.	F	7 99	6	2130	2400	13	6118	JFSD) 8 5
227	0299	227	2	22000			R	5	721	1	1200	1300	2	4058	FNWZ	. e s
207	0148	227	2	00000		_	X	В	799		2200	0000	0		JFSD	

PROBABILITY DISTRIBUTION FOR CREW SIZE

WORK	AFT IS UNIT CODE IS CLATURE IS		B-1B 42B** AC POWER	SYSTEM
CREW SIZE	PROB	CUM PROB		
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	0.11 0.52 0.33 0.03 0.01 0.01 0.00	0.11 0.63 0.96 0.99 0.99 1.00		

AVERAGE CREW SIZE IS 2.326485

BIBLIOGRAPHY

- 1. Aircraft Historical Reliability and Maintainability Data, Vols. V & VI, J. Osmanski, ed. Air Force Acquisition Logistics Center, Pamphlet 800-4. Dayton: Department of the Air Force, 1988, 1990.
- 2. Aviation 3-M Information Reports, NAVSEALOGCEN INSTR 4790.1. Mechanicsburg: Department of the Navy, 1988.
- 3. Barnard, R. A. and T. D. Matteson. "Military Aircraft Maintenance A New Concept." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 596-600. New York: Institute of Electrical and Electronic Engineers, 1975.
- 4. Bloomquist, C. and W. Graham. Analysis of Spacecraft On-orbit Anomalies and Lifetimes. For Goddard Space Flight Center Contract No. NAS 5-27279. Los Angeles: PRC Systems Service, 1983.
- 5. Brussell, E. R., K. R. Pope, and K. M. Tasugi. "Cost of Ownership Industry Viewpoint: Parametric Analysis of Operating and Support Costs." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 217-220. New York: Institute of Electrical and Electronic Engineers, 1975.
- 6. Earles, D. R. "LCC Commercial Application: Ten Years of Life Cycle Costing." Proceedings 1975 Annual Reliability and Maintainability Symposium pp. 74-85. New York: Institute of Electrical and Electronic Engineers, 1975.
- 7. Green, W. and G. Swanborough. Observer's Directory of Military Aircraft. New York: Arco Publishing, Inc., 1982.
- 8. Harmon, D. F., P. A. Pates, and D. Gregor. "Maintainability Estimating Relationships." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 18-25. New York: Institute of Electrical and Electronic Engineers, 1975.
- 9. Hecht, H. and E. Florentino. "Reliability Assessment of Spacecraft Electronics." 1987 Proceedings Annual Reliability and Maintainability Symposium pp. 341-345. New York: Institute of Electrical and Electronic Engineers, 1987.
- 10. Hecht, H. and M. Hecht. Reliability Prediction for Spacecraft. Rome Air Development Center Final Technical Report No. 85-229, 1985.
- 11. Jane's All the World's Aircraft, J. W. R. Taylor, ed. New York: McGraw-Hill Book Company, 1971-1990.

- 12. Kern, G. A. and T. M. Drnas. *Operational Influences on Reliability*. For Rome Air Development Center Contract No. RADC-TR-76-366. Culver City: Hughes Aircraft Company, 1975.
- 13. Norris, H. P. and A. R. Timmins. "Failure Rate Analysis of Goddard Space Flight Center: Spacecraft Performance During Orbital Life." *Proceedings 1976 Annual Reliability and Maintainability Symposium* pp. 120-125. New York: Institute of Electrical and Electronic Engineers, 1976.
- 14. Ostrofsy, B. "Development of I.L.S. Models from R and M Data." *Proceedings 1975 Annual Reliability and Maintainability Symposium* pp. 130-138. New York: Institute of Electrical and Electronic Engineers, 1975.
- 15. Peacore, E. J. "Reliability Developments AWACS." Proceedings 1975 Annual Reliability and Maintainability Symposium pp. 383-389. New York: Institute of Electrical and Electronic Engineers, 1975.
- 16. Personnel Launch System Advanced Manned Launch System (AMLS): PLS Reliability/Maintainability Analysis, Ehrlich, Jr., C. F., ed. For Langley Research Center Contract No. NAS1-18975. Los Angeles: Rockwell International Space Systems Division, 1990.
- 17. Personnel Launch System (PLS) Advanced Manned Launch System Study (PLS/AMLS): Final Oral Review. For Langley Research Center Contract No. NAS1-18975. Los Angeles: Rockwell International Space Systems Division, 1990.
- 18. Report on the Development of a Spacecraft Supportability Assessment Model. For Langley Research Center. Los Angeles: Rockwell International Space Systems Division, n.d.

APPENDIX A AFALD PAMPHLET 800-4

•	A	PALC	P 8	300-4		٧	ol	u	ıe	V			A	tt	BC	h	e	nt		3	F .	ואו נ	20			ri Fi				88	DLA
			1 1	OFF EQ	٥;	e30 -			224		9 9	384	34	~ (7	9 9	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2	0	•	ō				200			777		•	6285
			1	ON EQ 0	9965	6457	4359	4244	4474	7000	2280	2815	1315	743	2576			2701	1021	79	236	217	386	90	198		200	2,4	•	-	55149
		03	URS-	103	0	<u> </u>	8	1249	eo (9 (0	0	0	0	0 (0 0	7		o c	0	0	0	0	0	=	0 !	<u> </u>	۰;	•	9	1448
		: 14402			0	0 66	787	752	1124	1416	742	184	132	223	930	<u>0</u> ;	376	8	73	10	17	<u>.</u>	7	9	53	8	14	6	= '	0	9511
		LANDINGS	INTE	EQ CN	0	O (5)	139		~ ;		Z C		~	0	0	m (> c	ء د	,	0	0	0	0	0	0	0	4	0	0 (0	787
>	SEP 86	2		INDUCED DN EQ OFF	0	0 16			_	▼ :	- 0		•	•	•	₹ 1	~ 6				0	_	0	0	•	~	~	.	0	-	
SUMMARY	30	10726	NUMBER	ON EQ		0 24	1878	38	507		342		-	9	801	7-	2 6	# COC	707	7			-				~	9	~		8252
BILITY	86 TO		1	DFF EQ	0	0 890		252	76	\$.	- ç	362		1	0	.	0 :	2	> C	•	. 5	0	7	0	•	0	8	221	0	0	1953
AND MAINTAINABILITY	1 APR	SORTIES:	1 1 1	INHERENT ON EQ OFF	0	3946	1509	3092	2745	2121	142	2534	973	456	16 10	271	- 6	787	- C	, E	212	200	336	62	6	29	507	354	-	0	24489
RELIABILITY AND MA	REPORT PERIOD:	13126	TENANCE	T0T&L	000	00.	7 618	13.516	17.408	22.788	73.742	100 969	20.868	74.158	64.980	71.727	218.767	67.313		50 F04	170.00	184.873	98.692	279.277	312.524	375.029	99.439	36.	656.300	13126.000	1.495
AIRCRAFT SYSTEM RE	C009A	FLYING HOURS:	EEN-MAINTEN	INDUCED NO DEFECT	8	9.6	20 . Ye	93.09	66.29	88.28	267.88	88.28 278.03	33 S.	257.37	172.71	164.08	937.57	120.42	226.31		20.07 40.00 40.00	2625 20	1458.44	423.42	437.53	6563.00	729.22	504.85	1875.14	8	7.72
AIRCRAF	BIRCRAFT	17 FL	MEAN-TIME-BETWEEN-MAIN	INDUCED	8.	8.8	20.01	64.03	83.08	68.01	437.53	111.24	630.50	345.42	570.70	328.15	656.30	820.38	2187.67	937.87	3 8	3. 4.1.	1458.44	S	13126.00	4375.33	1450.44	4375.33	4375.33	13126.00	4.82
	•	AVG. INVENTORY:	MEAN	INHERENT	8	8.	20.70	21.12	33.15	56.09	135.32	60.48 11.78	20.77	149.16	128.69	218.77	525.04	190.23	144.24	99.44	77.87.			820 38	1193 27	437.53	125.01	195.91	1312.60	8	3.06
		AVG. IN		WUC SYS SYSTEM NOUN				LANDING GEAD		TURBO	-	-		A LIGHTING STSIEM	-		_		AUTOPILOT	4	Ė	2 VAF CUMMICALIONS			A FARBORNY COMMIN		APADIO NA				TOTAL SYSTEMS
				3 0	03	3	= :	? :	7	23	ñ	4	•	* *	4	7	Ť	2	ö	ŏ	5	Ď	óì	Ò	ö	5 6		7	-	2	

APPENDIX B MODAS

System Summary - Reliability

Date Range = July, 1991 TO July, 1991 , Base Code = ****

MDS/WUC = F015A /****

			F	Failur	e Coun	t		MT	BM	
System	Removal	MTBR	T1	T2	Т6	Total	T1	T2	Т6	Total
2 = POWER PLAN	865	7	682	45	1317	2044	9	141	4 -	3
03=LOOK PH SC	0	0	0	0	0	0	0	0	0	0
04=SPECIAL IN	0	0	0	0	0	0	0	0	0	0
11=AIRFRAME	37	171	215	20	247	482	29	317	25	13
12=CKPT & FUS	46	137	43	3	96	142	147	2114	66	44
13=LANDING GE	302	21	306	17	119	442	20	3 73	53	14
14=FLIGHT CON	81	78	118	10	120	248	53	634	52_	25
32=NOT DEFINE	0	0	0	0	8	8	0	0	792 .	792
41=AIR COND P	38	166	53	3	99	155	119	2114	64 -	. 40
42=ELECTRICAL	36	176	30	1	60	91	211	6343	105	69
43=NOT DEFINE	0	0	0	. 0	5	5	0	0	1268	1268
44=LIGHTING S	31	204	38	1	25	64	166	6343	2 53	99
45=HYD AN PNE	66	96	88	1	73	162	72	6343	86	39
46=FUEL SYSTE	85	74	77	3	147	227	82	2114	43	27
47=OXYGEN SYS	13	487	14	1	9	24	453	6343	704	264
49=MISC UTILI	19	333	11	1	36	48	576	6 343	176	132 .
51=INSTRUMENT	149	42	150	3	162	315	42	2114	39	. 20
52=AUTOPILOT	39	162	39	0	59	98	162	0	107	64
53=NOT DEFINE	0	0	0	0	1	1	0	0	6343	6343
54=NOT DEFINE	1	6343	1	0	0	1	6343	0	0	634 3
55=MALF ANAL	17	3 73	19	0	12	31	3 33	0	5 28	204
57=INTER GUID	18	352	66	4	31	101	96	1585	204	62
62=NOT DEFINE	0	0	1	0	0	1	6343	0	0	6 34 3
63=UHF COMMUN	89	71	169	5	90	264	37	1268	70	24
65=IFF	89	71	174	8	91	273	36	79 2	69	23
71=RADIO NAVI	112	56	113	1	120	234	56	6 343	52	27
74=FIRE CONTR	415	15	447	5	560	1012	14	1268	11	6
75=WPN DLVRY	91	69	90	2	3 73	465	70	3171	17	13
76=TAC ELEC W	116	54	163	0	116	279	38	0	54	22
91=EMERG EQUI	19	333	1	0	20	21	6343	0	317	302
92=TOW TARGET	0	0	0	0	0	0	0	0	0	0
97=EXPLOSIVE	123	51	3	1	124	128	2114	6 343	51	49
TOTAL	2897		3111	135	4120	7366				

System Summary - Maintainability

Date Range = August, 1989 TO July, 1991 MDS/WUC = F015B /***** F015A /*****

, Base Code = ****

MDS/WOC - FOIS		intenanc			On Equ	ip.	Off Ed	quip.
System	On-eq	Off-eq	Supp	Total	MH/FH	MMHTR	MHTR	MHTC
01=NOT DEFINE	0	0	549874	549874	3.464	0.000	0	0
2 = POWER PLAN	5 99911	289764	173219	1062894	6.697	9.334	40376	0
03=LOOK PH SC	0	0	721345	721345	4.545	0.000	0	0
04=SPECIAL IN	0	0	544554	544554	3.431	0.000	0	0
05=NOT DEFINE	0	0	447	447	0.003	0.000	0	0
06=NOT DEFINE	0	0	77327	77327	0.487	0.000	0	0
07=NOT DEFINE	0	. 0	44412	44412	0.280	0.000	0	0
08=NOT DEFINE	0	0	1034	1034	0.007	0.000	0 -	0
09=NOT DEFINE	0	4	195225	195229	1.230	0.000	0	0
10=NOT DEFINE	6	0	0	6	0.000	0.600	0 🖫	0
11=AIRFRAME	268809	6427	0	275236	1.734	3.846	3617	0
12=CKPT & FUS	50057	4522	0	54579	0.344	5.778	3 389	4
13=LANDING GE	70593	41831	0	112424	0.708	5.094	1 9236	0
14=FLIGHT CON	81141	9679	0	90820	0.572	6.670	5 387	1
15=NOT DEFINE	53	22	Ö	75	0.000	4.417	11	Ō
16=NOT DEFINE	25	60	ő	85	0.001	1.333	60	Ō
17=NOT DEFINE	9	21	Ö	30	0.000	2.250	0	Ö
18=NOT DEFINE	6	0	Ö	6	0.000	2.000	Ŏ	0
31=NOT DEFINE	76	Ö	Ö	76	0.000	3.455	Ŏ	Ō
32=NOT DEFINE	192	ž	ŏ	194	0.001	3.176	0 :	Ŏ
33=NOT DEFINE	33	4	ŏ	37	0.000	5.200	0	. 0
34=NOT DEFINE	33	18	ő	51	0.000	4.833	8	Ŏ
36=NOT DEFINE	5	0	0	5	0.000	5.000	ŏ	Ŏ
39=NOT DEFINE	21	0	0	21	0.000	2.000	ŏ	. 0
40=NOT DEFINE	3	0	0	3	0.000	0.000	Ŏ	ŏ
41=AIR COND P	46537	8391	0	54928	0.346	5.945	6787	Ō
42=ELECTRICAL	31397	25912	0	57309	0.361	6.465	22499	Ö
43=NOT DEFINE	335	25312	0	336	0.002	2.629	0	0
44=LIGHTING S	33792	5519	0	39311	0.248	3.126	4080	0
45=HYD AN PNE	53546	5627	0	5 9 173	0.373	5.961	3510	0
46=FUEL SYSTE	138550	7347	0	145897	0.919	13.417	1660	Õ
47=OXYGEN SYS	6246	1316	0	7562	0.048	3.739	5 28	0
48=NOT DEFINE	1033	1310	0	1033	0.007	13.800	0	Ŏ
49=MISC UTILI	13409	790	0	14199	0.089	8.214	317	ŏ
50=NOT DEFINE	528	0	0	528	0.003	1.000	0	ŏ
51=INSTRUMENT	43838	14741	0	5 85 79	0.369	4.678	4711	ŏ
52=AUTOPILOT	19660	11820	0	31480	0.198	7.998	7613	Ŏ
53=NOT DEFINE	4334	22	0	4356	0.027	6.414	7	Ŏ
54=NOT DEFINE	152	1		153	0.027	5.500	Ó	0
55=MALF ANAL	7908	5097	0	13005	0.082	4.224	2858	Ŏ
56=NOT DEFINE	2	0	0			0.000	0	0
57=INTER GUID	8441	5091	0	2 13532	0.000	3.471	3147	0
59=NOT DEFINE		0	0		0.085	1.000	0	0
	1		0	1	0.000		13	0
61=NOT DEFINE	2 6	16	0	18	0.000	0.000	12	0
62=NOT DEFINE		19 25204		25	0.000	2.000	16979	1
63=UHF COMMUN		25204		54330	0.342	3.316	41	Č
64=NOT DEFINE	77			120	0.001	4.714	3 2205	O
65=IFF	26519	40602		67121	0.423	3.140	32203	Č
66=NOT DEFINE					0.000	2.000	0	Č
69=NOT DEFINE		0		11	0.000	0.000	0	Č
70=NOT DEFINE		0	_		0.000	1.000	-	Č
71=RADIO NAVI	34342	28190	0	62532	0.394	4.096	13382	•

	MTBM (by type)	, Base Code =	
Failures	Reliability -	TO July, 1991	F015B /74F**
Failures selected are All		Date Range = August, 1989	MDS/WUC = F015A /74F**

•,

= *** Maint.	Cum	1 2	ന	8.51	4.	٠ ت	о	7	0	57	. 4	. 4	0.	Η.	o	. 7	φ.	ω.	. 7	. 7	7.82	. 7	φ.	7.90	6	
type) Base Code	3mo avg	1 2	٠.	8.51	. 5	9		. 7	. 4	φ.	0	. 4	6.83	4.	.	0.	∞	9 .	. 7		7.51	. 7	0	4.	٠ ت	1 1 1 1
MTBM (by	Monthly	1 2	.6	8.76	0	. 1	თ	. 7	. 7	.	. 7	9.	9	0.	5.34	4.	. 7	5	4.	. 7	. 4	2.	. 4	6		1 1 1 1
res abili ly, 1 B /7	unt	949	_	845	ည	∞	_	0	_	S	O	9	9	4	9	9	0	$^{\circ}$	2	\mathbf{o}	က	\mathfrak{S}	$\overline{}$	\mathbf{G}	0	19861
are All Fast, 1989 To Hours	1	77	310	51	657	197	855	465	179	916	909	292	998	608	121	822	504	049	667	2280	985	3660	4437	5127	5871	
selected ge = Augu = F015A Flight	Mo	7782	32	40	90	39	58	10	13	36	90	86	73	42	12	00	82	44	18	13	04	22	91	39	14	158719
Failures Date Ran MDS/WUC	Date	8 89	ω	8 0	Φ	2 8	g	0	တ	0	တ	တ	တ	6	0	0	6	2 9	တ	g	6	6	0	6	6	TOTAL

Marcon Indus Record Type: MDS: B001B	tries A	*** Detail 7	Maintenance	II Data	*** Report	• .	TUE,	Pag SEP 2	e: 1 4 1991 :29:05	~ ~ 10						
JCN (Julian Day)	JCN2 (Serial)	Day (Julian)	Year (1 digit)	Time	MUC	Type Maint	Action Taken		How Fa Mal (1	ailure 1,2 or 6)	Start Time	Stop Time	H Z I	11 B	ase d C	P 1
208)) Ø262		^	0000	42BD0	^ 		^	, 1 23 •			1630	(.o .1	٠.		03 0
211	0120	211	88	00541 00688	42BDA 42BDA	ם מ	r ⊢	LΩ	9 664		、 ₽3		. 4	118		່າຫ
221	3 5	221	· 60	2000	42B99	a :	: بــ	LL I	27		1420		40 4	ii i		ហ្វ
221	N	221	© 6	0 6	42BA0	m or	× >	L LL	7 4 7		1400			3 15	50.08	ນແ
221	3 1	222	9 5		42BA0	, m	. I	ن .	66		8888		200	69		យៈ
221	25	223	10	000	N	æ	9	8	10		00700			8 #		
223	10 E	223	5 ((4 (മാര	œ ⊦	L L	99		1750		6 6	1.05 2.05 2.05		0 CO
225	i N	225 225	9 8	9 8	42BAB	ם מ	- ၁	_ 11_	66		1500	9009		20		co:
225	7 F	225	9 69	999	I N		0	Ш	120		1930			9 1	FNWZ 0	ហ្វ
225	8	225	9	090	(A 1	a (oc :	ı.	9 0 0		9999		207	7 C	MER X	n co
225	ស្ល	226	6 6	88888	42BAØ	m a	× ×	ם ת	7.0		1100	200		. <u>.</u> .		ນ
157		226	2 62		1 (1	a 60	×	ı IL	66		0200	006		2	ROE	យ្គ (
225	50	226	1 69	92	1.3	В	Œ	Ω	ر ا را		6 0005	8 6 8 6 8 7		M F		យ ព
227	2	227	8	000	LA f	on c	: >	11 م	7 0					3 N		າ ເມ
227	2 2	227	S) 6	90	42540	. a	< ×	; ц	66		2130	400		m		ល
208	3 6	727	9 6		1 L.		: oc	. Д	21		1200	300		m		ញ :
207	14	227	8	00000	(1/4	8	×	a .	0 1	i	0000				JESD @	លៈព
211	15	227	8	978	N	Œ. i	- -	ΩI)))					n W		ເທ
227	15	227	© (00874	42BDA	.	· >-	Lα	7 0		1400	909		. ~		រ យ
227	23	228	9 5		ΛĽ	r a	< ×	o ir	66		2000	045		m		យ
208 227	9 5	228	8 8	00000	161	ıω	·I	. ц.	66		00700	888		ο.		ហម្
228	15	228	0	000	Ø.	.	⊢ 1	اخا	0 t		1730	997		- -		ກແ
228	₽	228	8	000	U (மை	<u>د</u> >	ш 6	. 0 U 0		2230	9 6 9 6 9 6		- m		າຫ
229	2	229	5 3 6	99999	42BAW	1 2 G	× >	3 6	37		2130	200		m	9	ហ
229	75	522	9 5	698	1 CA	. A	- 02	i C	2		2200	230		118 JF	20	ម ខ
226	1 6	230	. 6	000	L4	В	9	e i	<u> </u>		0700	200		וטיי פריח	삧	ເກີຍ
232	=	231	S	62	CA (മ	د >	د د	4 K		1500	0 4 4 5 E			XBX	្រ
232	= (232	86		4 ZBEH 4 2 B Q B	r a	< ×	a N	0.0		2000	000		. 10		ល
233 234 234	2 6	233	3 S	88	ın		: ×	ш	66		2300	400		σ.	74	ម្ចា ខេ
232	8 8	233	· 62	000	CA.	B	>	Ω	9		2130	000	9 4	" כי	FSD 6	ល ប
233	21	233	8	000	CA I	6 0.1	a . (ء نيا	9 19		999		0 4	. YII		ט ני
232	6	233	S (99999	42BEA	ם מב	ם פ	э ш	3 6		1600		O (O	870 F	Ø ZMN	ហ
225	~ 5	234	3 62		1 (1	a co	· ×	Ω	66		0200	730	9	16		យ ៖
233	21	234	8	20	42BEA	a	ហ	L I	0 I		0730	9 5	•0 •	M) 4		ט מ
232	8	234	Ø	000	42BEA	a	ග (∩ L	n .		12400		0 4	֓֜֝֞֜֜֝֓֜֜֝֓֓֓֓֓֓֓֜֝֝֡֓֓֓֓֡֝		ເນ
235	23	235	0	8 8	(1)	a a	œ =	ı lı	- 0 0 V		1000	9 60	0 40	- ш.	ACE O	າຫ
219	2	235	5 9 (0,400,00	4 ZEOH	ממ	2 A	LL	. 20		0060	100	•	13	_	យ
235	ບໍ່ເ	252	9 6		10	. m	. I	. 11	66		2000	400	IJ	74 F	_	យ
253	4 K	246	2 6	000	S		I	iL.	66		8	900	9	er i	_	យៈ !
23.5	16	236	. 69	000	42BAA	a	œ	u.	21		1400	630	4 1	38 7 T	9 7 M N	ם מנ
190	217	236	6	000	42BAH	.	3 1	u i	799 6		64 46 8 4 4 5	n 6	n n	<u> </u>		ព្យ
235	58	236	© 1	96	42BDA	m o	ם פ	LΩ	2 62 20 10		0000	900	9 4	. E	2 2 3 3 3 3	េយ
228	M t	236	6 3 (99999	42BDE	n a	א פ	υπ	3 6		8333	400	· M)	. 11.	. ~	S
235	38	7.20	9	3	1	3	•									

Marcon Industries Record Type: A

*** M O D A S II *** Detail Maintenance Data Report

MDS: B001B

Summary Report AUG 90

Cum. Total

Total Crew Total Units
Time Size Man-hours Produced

214.8 247 520.8 101

Marcon Industries Hit <RETURN> to continue, or "\$" to end output: Page: * *

e: A Detail Maintenance Data Report

M O D A S II Record Type: A MDS: B001B Summary Report

Cum. Total Crew Total Units
Time Size Man-hours Produced

162.0 180 306.8 88

MDS: B001B

Summary Report

Cum. Total Total
Total Crew Total Units
Time Size Man-hours Produced

295.9 349 757.6 Hit <RETURN> to continue, or "\$" to end output:

141

APPENDIX C LCOM

LCOM DATA BASE

Failure Rates 3-Digit WUC

	WUC		мтвғ		
15	F23ME*	^		_	
15	F23N**	C	6.50	٥.	X
15		Ç	32.03	Q.	X.
	F23NE*	Ç	91.00	0.	X
15	F23P**	Ç	18.21	0.	X
15	F23PE*	Ç	3.79	J.	X
15	F23R**	Ç	10.56	G.	X
15	F23RE*	C	5.35	J.	X
15	F240**	Ç	682.0	ũ.	X
15	F241**	Ç	184.0	3.	X
15	F242**	C	23.74	ů.	X
15	F243**	Ĉ	154.0	3.	
15	F411**	Č	30.99		X
15	F412**	Č		0.	X
15	F413**		30.01	0.	X
15	F414**	-	122.0	0.	X
15	F421**	0 5 0	298.0	٥.	X
15		Č	7.15	٥.	X
	F421E*	2	6.07	0.	X
15	F422**	C	129.0	٥.	X
15	F440**	С	954 . C	û.	X
15	F441**	C	8.21	0.	X
15	F442**	c	3.02	J.	X
15	F444**	C	251.0	0.	X
15	F451**	τ	3.64	ů.	X
15	F451E*	C	10.11	0.	X
15	F452**	C	165.0	õ.	X
15	F461**	C	1.00	ũ.	x
15	F461XX		30.20	6.	
15	F462**	000000	1.00	3.	X
15	F462XX	Ċ			X
15	F463**	•	29.10	0.	X
15	F463XX	•	1.00	0.	X
15	F464**	Č	74.56	٥.	X
15	F464XX	C	1.00	0.	X
15			30.59	٥.	X
	F465**	¢	1.00	0.	X
15	F465XX	C	129.0	0.	X
15	F466**	Ç	1.00	a.	X
15	F466XX	: : :	72.30	0.	X
_ 15	F467**	C	6.17	0.	X
15	F467??		1.00	0.	C
15	F457XX	C	22.94	٥.	X
15	F468**	C	6.87	ũ.	X
15	F469**	С	52.44	0.	X
15	F469??	C	1.00	0.	ĉ
15	F469XX	Č	170.4	3.	X
15	F47A**	Č	95.44		
15	F471**	Č		0.	X
15	F494**	Č	13.99	0.	X
15	F494E*	C	34.83	0.	X
15	F495**	C	6.50	٥.	X
, ,)	rwyjex	L	954.0	0.	X

LCOM DATA BASE Maintenance Task Times and Resource Requirements

Task MTTR VAR Specialist 21 1.000H .290HL 25 R24206 431X2 21 2.200H .638HL= lognormal 25 R24300 423X1 1 25 R24301 21 1.200H .348HL 42602 2 25 R24302 21 2.300H .557HL 431X2 2 25 R4CDWL 32 .800H .232HL 431X2 3 25 R41100 21 2.930H .341HL 2 423X1 21 .300H .232HL 2 25 R41101 431X2 21 1.000H .290HL 2 25 R41200 423X0 21 2.300H .312HL 25 R41201 423X1 2 25 R41300 21 1.000H .290HL 2 423X0 21 4.900H1.421HL 25 R41400 423X0 1 423X1 25 R41401 21 5.300H1.537HL 423X1 2 25 R421EG 21 3.000H .370HL 423X0 1 21 3.600H1.044HL 25 R421E1 423X0 2 25 R421E3 21 21 2.000H .580HL 25 R421TO 426T2 21 4.000H1.150HL 25 R42100 423X9 2 42602 1 .25 R42101 21 1.900H .551HL 423X3 2 25 R42102 21 2.500H .725HL 2 423X4 25 R42103 21 2.000H .530HL 2 42602 21 .900H .261HL 2 25 R42104 431X2 25 R42200 21 1.300H .377HL 423X9 2 21 3.000H1.450HL 25 R42201 2 423X0 423X4 21 1.400H .406HL 25 R42202 423X4 2 .500H .145HL 21 25 R44000 431X2 25 R44100 21 1.300H .377HL 1 431X2 1 423X0 25 R44101 21 1.200H .348HL 423X0 21 1.900H .551HL 25 R44102 423X4 .700H .203HL 25 R44103 21 431X2 1 21 1.600H .464HL 25 R44200 2 423XG 21 1.500H .435HL 1 431X2 25 R44201 423X0 1 21 2.700H .783HL 2 431X2 25 R44202 423X4 25 R44203 21 1.900H .551HL 2 423X4 2 25 R44204 21 1.500H .435HL 431P2 25 R44205 21 .700H .203HL 1 431X2 25. R4440C 21 2.000H .580HL 2 328X0 21 1.900H .551HL 25 R44401 2 423X0 25 R451E0 21 25 R45100 21 2.500H .725HL 423X0 1 423X4 25 R45101 21 2.200H .638HL 423X0 2 25 R45102 21 3.100H .899HL 2 423X4 _25_R45103 21 13.50H 3.91HL 423X4 2 431R2 1 25 R4520C 21 2.400H .696HL 423X4 2 25 R46100 21 9.500H2.755HL 2 423X3 423X0 1 25 R46101 21 2.400H .696HL 423X3 2 _25 R46200 21 5.800H1.682HL 1 423X3 423X0 423X0 25 R46201 21 1.000H .290HL 2 25 R46202 21 3.100H .899HL 2 423X3

LCOM DATA BASE

Maintenance Task Networks

	Start		Stop	Selection	
	Node	TASK	Node	Parameter	
3 2	CALUM		UM0007	FF410**	ENVIR. CONT. SYSTEM
	UM0007	R41***	R41001	E.44200	R & R FOR 41***
	UM0007	M41***	41001	£.19900	MINOR MAINT FOR 41***
	UM0007	H41***		£.35900	CND FOR 41***
	R41001	SHOP	R41002	5	SHOP NETWORK FOR 41***
	R41001	Q41***	441002	I	SHOP NETWORK FOR 41***
	R41002		T/4004		SHOP NETWORK FOR 41***
		G41*** T#3LVL	141001	5 2000	Shor Melande For Alaka
	141001		T (4 0 0 0	E.00000	
	I41001	THRLVL	141002	E1.000G	01100 050110 500 44
	141002	#41***	PCYCLE	E.33000	SHOP REPAIR FOR 41***
	141002	K41***	PCYCLE	E.3300C	RETEST OK FOR 41 ***
	141002	N41***	PDEPOT		NRTS FOR 41***
	CALUM			FF420**	ELECT. PWP. SYSTEM
	UMODES	842***	R42001	2.3030 0	R & R FOR 42***
30	0000MU	M42***		E.17300	MINOR MAINT FOR 42***
30	3000MU	H42***		E.02400	CND FOR 42***
3)	R42001	3 H D P	842002	o c	SHOP NETWORK FOR 42***
30	R42002	Q42***		I	SHOP NETWORK FOR 42***
30	R42002	G42***	142001	D	SHOP NETWORK FOR 42***
30	142001	TWOLVE		E.00000	
	142001	THREVE	142002	£1.0000	
	142002		PCYCLE	E.33000	SHOP REPAIR FOR 42***
	142002	K42***		E.33000	RETEST OK FOR 42***
	142002	N42***		E.34000	NRTS FOR 42***
	CALUM		UMD009	FF440**	LIGHTING SYSTEM
	UM0009	R44***	R44001	E.61800	R & R F03 44***
	UM0009	M44***	., 44661	E.33300	MINOR MAINT FOR 44**
	UM0009	H 44 * * *		E.04900	CND FOR 44**
	R44001	SHOP	R44002	0	SHOP NETWORK FOR 44**
	R44002	244***	444002	ī	SHOP NETWORK FOR 44**
30			144001		SHOP NETWORK FOR 44***
30		644*** TUDI VI	144001	0 E .0000 0	Shup Neigura fur 44 mm
		TWOLVL	****		
	144001	THRLVL	144002	E1.0000	21120 052412 500 //
	144002	¥44***	PCYCLE	E.33000	SHOP REPAIR FOR 44**
	144002	K44***	PCYCLE	E.33000	RETEST OK FOR 44**
30		N44***	PDEPOT	E.34000	NRTS FOR 44**
	CALUM		UM3010	FF450**	HYD. AND PHEU. SYSTEM
30		R45***	R 4 5 0 0 1	E.32700	R & R FOR 45★★★
30		M45***		E.53700	MINOR MAINT FOR 45***
30		H45***		E.03690	CND FOR 45***
	R45001	90H2	845002	อ	SHOP NETWORK FOR 45***
30	R45002	G45***		I	SHOP NETWORK FOR 45***
30	R45002	645***	I45001	ว	SHOP NETWORK FOR 45***
30	145001	LADEAE		6.00000	
30	145001	THRLVL	145002	E1.0000	

APPENDIX D

3-M

1 JANUARY 1988

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT IIILE - RELIABILITY AND MAINTAINABILITY SUMMARY

NAMSO 4790.A7142-01

FREQUENCY OF DISTRIBUTION - QUARTERLY

BY TYCOM/TOTAL NAVY HIGHLIGHIS OF REPORT - AIRCRAFT: BY TYPE/MODEL/SERIES

- DEPICTS RELIABILITY AND MAINTAINABILITY STATISTICS BASED ON AIRFRAME FLIGHT HOURS.
 - TOTAL MAINTENANCE ACTIONS AND FAILURES.
- MEAN FLIGHT HOURS BETWEEN MAINTENANCE ACTIONS (MFHBMA). MEAN FLIGHT HOURS BETWEEN FAILURES (MFHBF).
 - - MANHOUR EXPENDITURES.
- ASSEMBLY AND SYSTEM SUMMARIES.
- PRODUCED QUARTERLY ON THREE MONTH DATA BASE.

Published by

NAVY MAINTENANCE SUPPORT OFFICE

Mechanicsburg, PA 17055-0795 Naval Sea Logistics Center

PERIOD - JAN 87 THROUGH MAR 87 DATE - 21 MAY 87

NAVY RELIABILITY AND MAINTAINABILITY SUMMARY

NAMSO 4790.A7142-01 PAGE 560 ACFT - F/A-18A

									UNSCH	UNSCH	M/H	EMT
AIRCKAFI	. 401.4/1		TOTAL	TOTAL		M l. 1			MAIN	MAINT	PER	FER
			FL IGHT	MAINT		REPAIR	TOTAL	900	NAM	MAN HKS	NAN	ACT
MUC	NOMENCLOTURE	COMMAND	HOURS	ACTIONS	MFHBMA	FAILURE	FAILURE		2000			į
		, 4, 60	0.45	184	29 5	60	32	151.4	302	.062	- 8	-
754CD	BRU32/A BIRCROFT BOMB EJECTOR ROCK	CNAL		-	2.85	c	7	1.297.5	69	.027	6.3	
		FMFLAN	0.7	:	4.06	ω.	<u>.</u>	339.5	223	.051	0.	~
		CNAP	7 6			•	2	285.3	87	.030	₩.	* .
		- MP PAC	•	2 6	. 4	o c	2 C	•	-	•	9.9	=
		NASC	0/6		2 6	•	•	170.3	09		70	.
		NAVRES	289	77		:	4	267.1	A. A.		6	<u>.</u>
		TOTAL	16.296	996		•	5				ı	
			370 7	24	901.9	σ	Ξ	440.5	39	900	1.6	
754CE	BRU33/A BIRCRAFT BOMB EJECTUR KOCK	CNAL	7		26.7	· c	-	4.413.0	21	900.	1.7	-
		CNAP	2 t 4 t 4	2 9		· c	· α	356	99	.023	9.0	3 .6
		FMFPAC	2,853	20	136.3	، د	3		3	0		2 0
		TOTAL	16,296	56	291.0	3 1	5	0.8	-			:
		;	,	3	40	.,	4	110.1	362	.075	6.	7.
	TOTAL 754CO EJECTOR ASSEMBLIES/BOMB	CNAL	4,845	96.	2.0.0	<u>-</u>		865.0	95	.037	7.9	9 .
		FMFLANT	2,595	7	2.0.3	9	•	248 2	252	057	6.	-
		CNAP	4.413	132	33.4	5 ،	- 6	4 6			3.7	9
		FMFP&C	2,853	42	67.9	•	7.7	7.67	2 6		•	-
		NASC.	570	Q	14.3	0	0		271	617	- c	·
		MANDER	581	26	26.2	0	₹	170.3	16		7) ·	•
		TOTAL	16.296	446	36.5	31	91	179.1	1,063		2.4	-
				ć			~	0.818.0	35	.007	6 .	1.3
75E50	DIRCROFT PYLONS	CNAL	4,845	2 6	7.00	, 5	. 5	13.90 E	43	010	7.0	-
		CNAP	5.4.4	7 4	200	6	<u>.</u>	957.7	88	.005	9	0.
		101	10.230	3								
			470	15.4	3.5	81	20	242.3	300	.062	6 .	0
75E51	SUU63/@ AIRCROFT PYLON	CNAL	•		200	· c	2	882.6	139	032	7.0	₩.
		CNAP	9 C	- 4		· -	· e	951.0	7	0.015	9.0	~
		FMFPAC	•	<u> </u>	2 6	• •	•	670	99	116	0.6	•
		NASC	570	22		- •	- ;		, a	100	2.0	•
		TOTAL	16,296	274	96 96	7	5					
		ſ	۱	ا ا	-	•	ت	2		_	-	7
		•••	ں	<u> </u>	_	<u>-</u>	9 —	=	_	_		E
		1										

		The work unit code and its
	4	corresponding nomenclature.
_	4	Data for work unit codes are
		summarized at the system (2nd)
		and assembly/set (4th) levels.
	6	The major command or Navy-wide
	۵	total.
L	٠	Number of flight hours
_	٠	reported for the period.
L	2	Number of unscheduled mainte-
	7	nance actions initiated.

Number of the organi Number of Confirmed action tak	Maintenance actions. Number of failures repaired at the organizational level. Number of maintenance actions confirmed as failures by the action taken code (B,C,Z or action taken code (B,C,Z or action).
---	---

2	Mean flight hours between
=	failures.
	Number of unscheduled mainte-
_	nance manhours reported on the
,	VIDS/MAF source document.
>	Maintenance manhours per
4	flight hour.
-	Maintenance manhours per
_	maintenance action.
2	Elapsed maintenance time per
Ε.	maintenance action.

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT HILE . WORK UNIT CODE SYSTEM RELIABILITY AND MAINTAINABILITY SUMMARY

NAMSO 4790.A7142-02 REPORT No. - FREQUENCY OF DISTRIBUTION - QUARTERLY

HIGHLIGHTS OF REPORT

- COMPARES SYSTEM PERFORMANCE FOR AN AIRCRAFT.
- SUMMARIZES RELIABILITY AND MAINTAINABILITY DATA BY MAJOR COMMAND, SPECIFIED WORK UNIT CODE AND AIRCRAFT.
- PROVIDES WORK UNIT CODE PERCENT OF TOTAL AIRCRAFT ACTIONS.

Published by

NAVY MAINTENANCE SUPPORT OFFICE Mechanicsburg, PA 17055-0795 Naval Sea Logistics Center

PERIOD - APR 87 THROUGH JUN 87 DATE - 21 AUG 87

NAVY WORK UNIT CODE SYSTEM RELIABILITY AND MAINTAINABILITY SUMMARY

NAMSO 4790.A7142-02 PAGE 281

FT MAN HOURS		ve			? •	3,6	e,	-	6.	-	.		•	e.	9.1	5.
DIAL ACTOT		00	o	-	-	-	ෆ	ო.	9.1	ភ	1.2	. .	J.	4	2.0	9.
WUC % OF 10TAL ACFT		7	. 49	u		. 65	-	ĸ.	6	0	9.	9.	ហ	e.	1 .5	0.1
WUC MAINT ACT		1.	. 6 .	σ) «	2.1	φ.	ĸ.	4.	9	2.1	1.5	7.	ī.	9.	1.3
EMT PER MAINT ACT		3,0	3.7	ď	4	. .	2.3	4.4	0.8	9.8	9.	4.	2.0	5.6	5.9	4.0
M/H PER Maint Act		5.2	6.4	10	9	12.8	4.0	2.1	22.2	14.8	6.0	7.2	ب د د	8.	8.3	8.8
MAINT M/H PER F/H		. 132	. 244	259	143	. 523	.080	.021	784	141	. 265	. 272	.045	030	. 485	.351
UNSCH MAINT MAN HOURS		201	4.300	691	2,113	295	56	11	2,149	118	73	862	951	101	1,356	7.585
MFHBF		84.5	9.69	0.68	93.6	141.0	230.3	398.5	49.9	210.3	91.3	67.3	314.1	660.8	31.0	39.5
TOTAL FAILURE		18	296	30	158	*	ю	2	55	4	e	47	67	ស	06	546
ML 1 REPAIR FAILURE	æs	Ξ	119	თ	59	8	-	7	7	0	-	15	37	7	30	213
MFHBMA	IFF SYSTEMS	39.0	26.4	46.8	42.5	24.5	49.4	9.66	28.3	105.1	22.8	26.4	77.4	157.3	17.0	19.5
TOTAL MAINT ACTIONS	ENCLATURE -	39	667	57	348	23	14	α	97	80	12	120	272	21	164	1, 109
TOTAL FLIGHT HOURS	WUC - 65000 NOMENCLATURE - IFF SYS	1,521	17.634	2,670	14,784	564	691	797	2.742	841	274	3, 163	21,044	3,304	2,794	21,582
AIRCRAFT	9 - 90g	KA-6D	A-6E	TA-7C	A-7E	EA-7L	C-2A	TC-4C	KC-130F	EC-1300	KC-130T	E-2C	F/A-18A	F/A-18B	F-4S	F - 146

1	System level work unit code
<	and nomenclature.
6	The identification of the
2	aircraft.
٧	Total flight hours for the
د	reporting period.
ع	Total system level maintenance
2	actions initiated.
•	Mean flight hours between
ч	maintenance actions.

	Number of repair actions
u	accomplished at the organ-
	izational level.
J	Number of maintenance actions
0	confirmed as failures.
=	Mean flight hours between
H	failures.
•	Manhours required for
_	unscheduled maintenance.

9

×	Maintenance manhours divided by flight hours.
-	Manhours per maintenance
1	action.

Elapsed maintenance time per maintenance action.
Percentage of effort performed on the WUC relative to that expended on the entire aircraft.

CATALOG

3-M AVIATION INFORMATION REPORTS

REPORT HILE . RELIABILITY AND MAINTAINABILITY SUMMARY FOR SELECTED WORK UNIT CODES

NAMSO 4790.A7142-03 REPORT No.

FREQUENCY OF DISTRIBUTION - QUARTERLY

HIGHLIGHTS OF REPORT

- PERMITS COMPARATIVE ANALYSIS OF ENGINES AND AVIONICS EQUIPMENT PERFORMANCE
 - WITHIN VARIOUS AIRCRAFT.
- PORTRAYS THE FOLLOWING INFORMATION FOR WORK UNIT CODES LISTED IN THIS REPORT: - RELIABILITY AND MAINTAINABILITY STATISTICS. - WUC PERCENT OF TOTAL AIRCRAFT MAINTENANCE ACTIONS, FAILURES AND - AIRCRAFT APPLICATION.
- EXCLUDES WORK UNIT CODES HAVING SIX OR LESS MAINTENANCE ACTIONS.

 Published by

NAVY MAINTENANCE SUPPORT OFFICE Mechanicsburg, PA 17055-0795 Naval Sea Logistics Center

PERIOD - DATE -	APR 87 1HR 21 AUG 87	THROUGH JUN 87 87		RELLAB.	ILIIY AND P FOR SELECTE	NAVY RECTABLLIY AND MANTAINABILITY SUMMARY FOR SELECTED WORK UNIT CODES	LIY SUMMARY F CODES					NAMSO	NAMSO 4790,67142 PAGE	7 1 12 F .
	TOTAL	TOTAL		MI 1 REPAIR	TOTAL		UNSCH MAINT MAN	MAINI M/H PER	M/H PER MAINT	CMI Per maini	WUC	% OF 10	101AI ACE1	
AIRCRAFT		ACTIONS	MFHBMA	FAILURE	FAILURE	MFHBF	HOURS	F/H	ACT	ACT	ACT	FAIL	FAIL	+ iOUP
- MUC	72360	NOMENCLATURE	- AN/APN141	I(V) ELECTE	1(V) ELECTRONIC ALTIMETER SET	METER SET								
EA-68	5, 164	24	215.2	01	12	430.3	56	.011	2.3	1.2	-	3.	-	ب
KA-6D A-6E	1.521	747	190.1 238.3	36	0 4	760.5 400.8	210	.009	1.7 2.8	- 9		- 7	- , -,	-, -,
TA-7C	2,670	134	19.9	6	55	48.5	634	. 238	4.7	3.5	2.0	9.	1.9	=
A-7E	14,784	33	379.1	7	19	778.1	279	0.09	7.1	£.3	-	-	-	- .
C-2A	691	01	69.1	-	4	172.8	314	. 454	31.4	5.1	4.	- .	4	9.
P-3B TOTAL	7,691	2.079	1,098.7 35.8	235	947	1,922.8 78.6	31 12, 153	.004	4. č. 8. š	3.6	0.0.	- 4	-0.	0, 1
- DOW	72380	NOMENCLATURE -	- AN/APN153	3(V) DOPPLER	ER RADAR NAV	IV SET								
ERA-38	455	18	25.3	-	7	65.0	268	588	9.41	7.6	1.3	7		6.1
A-4E A-4F	2.235	27 32	82.8 35.8	ها	Please refer	er to NAMSO	Report	4790. A7142-02		for for	format de	definitions	ons.	3.1
EA-6A	831	09	13.9	π	e differe	The difference between this report	en this re	port (N	(NAMSO 4790			and t	the	4.3
EA-68 A-6E	5,164	163 921	31.7	pr fi	eceding (preceding (NAMSO 4790.A7142-02) is that data is first four positions of the work unit code. In	0.A7142-02 of the wo	.02) is tha work unit	at dat			by the Report		1.2
A - 7E	14,784	5	1, 137.2	47	4790. A7142-02,	1142-02, the data	is s	is summarized	by th	a e		two positions	ns d	Ġ.
TC-4C	797	33	24.2	to	WOrk	it codes in	nt	engine	anda	avionic	equipments	ents.		2.2
P-3A P-38	730	10 213	73.0	22	130	59.2	2.598	338	12.2	E 6	4.	ស់	7.1	8.6.
TOTAL WUC -	51,467 72390 NOM	1,490 NOMENCLATURE -	34.5 - AN/APN154(~	SET SET	4.103	• • • • • • • • • • • • • • • • • • • •	ת ח		n.	:		-
	9.	=	328.7	m	S	723.2	7.8	.021	7.0	6.4	- .	-	- .	**
EA-68	5, 164	42	123.0	ō.	6 1	271.8	437	.085	4.01	4 c	ä	si e	si c	₹.
KA-6D A-6E	1,521	192	ສາ ຄ ຍ - ຄ. ສາ ຄ. ສາ	. 4 0	8.8	207.5	1.291	.073	6.7	4 4 0 6	. ci	, ci	. n	. 63
TA-7C A-7E	2.670	23 81	116.1 182.5	3 +	10 45	267.0 352.0	99 2 43	.037	4.0 6.0	2.0	ώ. 4 .	ښ ن	6.4	7 -
F - 14A TOTAL	21.582	205	105.3	52 153	85 253	253.9	918 3,13 6	.043	5.5 5.5	3.3			.; .;	7; 7 ;
) •														

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT INTE . RELIABILITY AND MAINTAINABILITY TREND ANALYSIS SUMMARY

EPORT Mo. - NAMSO 4790.A7142-04

FREQUENCY OF DISTRIBUTION - QUARTERLY

HIGHLIGHTS OF REPORT

- DEPICTS RELIABILITY AND MAINTAINABILITY STATISTICS FOR A 4-DIGIT WUC.
- PROVIDES FOR MULTIPLE TIME FRAMES FOR TREND ANALYSIS.
- INDICATES COMPARATIVE FAILURE RANKING OF THE WUC IN RELATION TO ALL WUCS FOR

Published by

NAVY MAINTENANCE SUPPORT OFFICE

Mechanicsburg, PA 17055-0795

PERIOD - APR 87 THROUGH JUN 87 DATE - 21 AUG 87

NAVY RELIABILITY AND MAINTAINABILITY TREND ANALYSIS SUMMARY

NAMSD 4790.A7142-04 PAGE 1376 ACFT - S-3A

FAIL	212121	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	98 8 7 7 7 7 8 8 9
EMT PER MAINT FI ACT RI	0.77.7.88.88	0.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	6.9 7.7 7.9 7.9 7.9 7.9 7.9 7.9
M/H EPPER PI	12.00 12.00 12.00 13.00 10.00	4 நை நை நே 4 நே பூ 7 ஐ ← ← பெ பெ பெ ப	10001100 4004400 4004400
		018 031 031 025 025 015	238 233 233 252 252 276 275
UNSCH MAINT M/H PER F/H			
UNSCH MAINT MAN HOURS	8,455 7,684 9,980 10,415 8,031	797 397 397 398 398 398 398 398 398 398 398 398 398	2.61 2.44 2.44 2.44 3.44 3.44 3.44 3.44 3.44
MFHBF	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	0.0816 4.0014 4.0014 6.	8 8 8 4 4 8 8 - 3 0 6 4 4 8 8 0 4 4 6 6 4 4 8 8
TOTAL FAILURE	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 7 6 6 4 8 6 6 9 4 0 1 0 8 6	136 234 182 2400 200 192 192
MLI REPAIR FAILURE	129 146 162 177 173 205		8 4 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9
	19.9 19.4 17.7 17.6 20.6 18.5	159.7 198.0 197.5 230.7 197.8 174.6	444 444 644 644 644 644 644 644 644 644
MFHBMA			
TOTAL MAINT ACTIONS	61.7 41.7 60.8 60.8 60.8 60.8	445 445 446 446 446 446 446 446 446 446	222 284 286 326 326 326 326 326 326 326 326
TOTAL FLIGHT HOURS	14, 253 13, 823 15, 825 13, 447 16, 447	11,020 14,253 13,823 15,805 13,824 14,47 16,447	
PERIOD	OCT86-DEC86 JUL86-SEP86 APR86-JUN86 JAN86-JAR86 OCT85-DEC85 JUL85-SEP85	APR87 - JUN87 - JAN87 - JAN87 - JUN86 - DEC86 JUL86 - SEP86 JAN86 - JUN86 - JUN86 - JUN86 - JUN85 - SEP85 JUL85 - SEP85	R APR87 - JUN87 JUN87 - JUN87 - JUN88 - JUL86 - SEP86 APR86 - JUN86 JUN86 JUN86 DCT85 - DEC85 JUL85 - SEP85
NOMENCLATURE	RADAR SET	729D AN/APN202 RADAR BEACON SET	729F OU78()/AP CONV CONT GROUP R APR87-10887-1087-1086-1086-1086-1086-1086-1086-1086-1086
NOMENC	727H AN/APS116() RADAR SET	I/APN202 RAI	178()/AP CI
on 3	727H AN	729D AN	729F OU

Please refer to NAMSO Report 4790.A7142-01 or 4790.A7142-02 for format definitions.

for the report. Multiple time periods may be included in the

report.

corresponding nomenclature. The reporting period selected

The first four positions of the work unit code and its

The comparative failure ranking of the work unit code for the specified period as compared with all work unit codes for the aircraft.

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT HILE - FIVE DIGIT WUC RELIABILITY AND MAINTAINABILITY TREND ANALYSIS SUMMARY

REPORT No. - NAMSO 4790.A7142-05

FREQUENCY OF DISTRIBUTION - QUARTERLY

HIGHLIGHTS OF REPORT

- DEPICTS RELIABILITY AND MAINTAINABILITY STATISTICS FOR A 5-DIGIT WUC.
- PROVIDES FOR MULTIPLE TIME FRAMES FOR TREND ANALYSIS.
- INDICATES COMPARATIVE FAILURE RANKING OF THE WUC IN RELATION TO ALL WUCS FOR THE AIRCRAFT.

Published by

NAVY MAINTENANCE SUPPORT OFFICE Naval Sea Logistics Center Mechanicsburg, PA 17055-0795

PER10D Date

- APR 87 THROUGH JUN 87 - 21 AUG 87

LANT NAVY
FIVE DIGIT WORK UNIT CODE RELIABILITY AND
MAINTAINABILITY TREND ANALYSIS SUMMARY

NAMSO 4790.A7142-05 PAGE 242

ACFT - A-6E

FAIL RANK 18 14 17 17 17 23 23 525-02-6 262 183 89 106 171 171 173 173 167 EMT PER MAINT ACT 0000-004 40040000 6 - 4 0 tb 4 -0 Ö 4044400 M/H PER MAINT ACT ~ ~ 6 6 8 6 6 6 7 ~ ~ 9.2 10.3 10.8 10.3 10.3 10.3 10.3 **6** 8 9 9 UNSCH MAINT M/H PER P . 188 . 273 . 216 . 193 230 143 388 340 020 029 029 013 000 001 161 464 007 331 1,086 1,733 1,512 1,341 1,427 1,560 1,028 939 2.130 2.274 3.043 3.976 2.798 2.246 2.246 42 126 203 155 76 3 49.3 57.6 50.8 41.6 43.7 60.6 **~ 80 60 80 4 €** € 576.8 396.3 212.6 231.8 355.0 356.9 356.9 255.3 68. 62. 67. 67. 85. TOTAL FAILURE 84 106 112 81 89 90 75 117 138 138 138 12 138 08 10 16 17 17 19 19 19 19 MLI REPAIR Failure 25 34 34 34 35 37 27 26 0-000000 30.4 333.7 38.0 31.9 42.9 43.3 9,00,0000 07960-88 MFHBMA 24. 28. 24. 22. 22. 25. 2224. 2333. 3334. 3355. 2555. TOTAL MAINT ACTIONS 190 226 226 208 208 183 176 176 176 232 221 283 283 353 264 217 TOTAL FLIGHT HOURS 5,768 6,340 7,015 6,954 5,768 6,340 7,015 6,954 6,035 6,395 6,395 6,035 6,782 6,395 6,574 5,768 6,340 7,015 6,954 6,035 6,395 6,395 JAN87-MAR87 OCT86-DEC86 JUL86-SEP86 JAN86-JUN886 JAN86-MAR86 OCT85-DEC85 APR87 - JUN87
JAN87 - MAR87
OCT86 - DEC86
JUL86 - SEP86
APR86 - JUN86
OCT85 - DEC85
JUL85 - SEP85 APR87 - JUN87
JAN87 - MAR87
OCT86 - DEC86
JUL86 - SEP86
APR86 - JUN86
OCT85 - DEC85
JUL85 - SEP85 APR87-JUN87 8 736G1 C9535/AS0155 COMPUTER CONTR 736G2 CV3163/ASQ155 A-D/D-A CDNVE 736G3 CV3163/ASQ155 A-D/D-A CDNV NOMENCL A TURE

first five positions of the work unit code and its The

for the report. Multiple time periods may be included in the corresponding nomenclature. The reporting period selected report

0

The comparative failure 9 4790.A7142-01 or 4790.A7142-02 Please refer to NAMSO Report

for format definitions

C

ranking of the work unit code for the specified period as compared with all work unit codes for the aircraft

CATALOG

OF

3-M AVIATION INFORMATION REPORTS

REPORT HITE . RELIABILITY AND MAINTAINABILITY SUMMARY FOR SELECTED EQUIPMENTS

REPORT No. - NAMSO 4790.A7298-01

FREQUENCY OF DISTRIBUTION - ON DEMAND

HIGHLIGHTS OF REPORT .

- ALLOWS RELIABILITY AND MAINTAINABILITY COMPARISON BY ACTIVITY, WORK UNIT CODE, AIRCRAFT OR OTHER VARIABLE PARAMETERS AS REQUESTED.
- CUSTOMER SELECTS AIRCRAFT, WORK UNIT CODES AND DATE RANGE.
- PROVIDES WUC ASSEMBLY AND SYSTEM SUMMARIES.

Published by

NAVY MAINTENANCE SUPPORT OFFICE
Naval Sea Logistics Center
Mechanicsburg, PA 17055-0795

PERIOD - MAY 87 THROUGH JUL 87 DATE - 17 OCT 87

¥UC

M/H EMI PER PER MAINT MAINI ACT ACT NAMSO 4790.A7298-0 PAGE 169 ACFT - SH-60B MAINI M/H PER F/H UNSCH MAINT MAN HOURS MFH8F TOTAL TOTAL MINT REPAIR TOTAL HOURS ACTIONS MFHBMA FAILURE FAILURE RELIABILITY AND MAINTAINABILITY SUMMARY FOR SELECTED EQUIPMENTS ACTIVITY NOMENCL A TURE AIRCRAFT - SH-608

)						ייטטאס אסויסיים אוויטאר יאורטער			1100 F		200
74191 C10	3486(74191 C10486()/ASQ164 CONTROL INDIC HSL-41	INDIC	HSL - 41	2.136	15	142.4	0	4	534.0	52
				HSL-43 DET 5	298	-	298.0	0	-	298.0	9
				HSL -43 DET 8	707	7	353.5	-	_	707.0	-
				HSL - 45	5 18	e	172.7	7	7	259.0	ō
				NATC ROTARY WIN	176	-	176.0	-	-	176.0	-
				TOTAL	6.468	22	294.0	₹	6	7.18.7	7.1
74192 C10487()/ASQ1)487()/ASQ164 CONTROL INDIC	INDIC	HSL -40	502	4	125.5	0	-	502.0	20
				HSL - 41	2, 136	₹	534.0	0	0	1.	7
				HSL-43 DET 11	387	7	193.5	-	7	193.5	56
				HSL -43	245	-	245.0	0	-	245.0	Ξ
				HSL-43 DET 5	298	7	149.0	0	0	;	7
				HSL-43 DET 8	707	-	707.0	-	-	707.0	0
				NATC ROTARY WIN	176	က	58.7	0	0	:	4
				TOTAL	6,468	11	380.5	7	ស	1,293.6	66
101	7419	TOT 74190 AN/ASQ164() CONTROL	ONTROL	HSL -40	502	4	125.5	0	-	502.0	20
				HSL - 44	276	-	276.0	0	0	:	-
				HSL-41	2, 136	19	112.4	0	₹	534.0	59
				HSL-43 DET 11	387	8	193.5	-	~	193.5	26
				HSL - 43	245	-	245.0	0	-	245.0	=
				HSL-43 DET 5	296	e	99.3	0	-	298.0	0 0
				HSL-43 DET 8	707	₹	176.8	8	7	353.5	7
				HSL - 45	5 18	m	172.7	7	7	259.0	ō
				NATC ROTARY WIN	176	₹	44.0	-	-	176.0	ស
				TOTAL	6.468	-	157.8	9	7	462.0	172

. - E

00-8-1-8-4

0040 0027 144 0045 0045 0003 0019

Z

9

9

40

2.6 1.1 3.7

5.22 2.23 2.23 8.33

.040 .144 .003 .006 .000 .000

6.6 6.5

024 021 0019 0019 0019

	Aircraft and work unit codes
•	as specified by the user.
<	Data for work unit codes are
	summarized at the system (2nd)
	and assembly/set (4th) levels.
	Variable data field as desired
æ	by user. Can include activity,
3	BU/SER, time trame, constants,
	etc.
٦	Number of flight hours
ر	reported.

_	Number of unscheduled mainte-
2	nance actions initiated.
3	Mean flight hours between
4	maintenance actions.
	Number of failures repaired at
	the organizational level and
•	total failures at all levels.
•	Mean flight hours between
9	failures.

	Number of unscheduled mainte-
=	nance manhours reported on the
	VIDS/NAF source document.
-	Maintenance manhours per
_	flight hour.
>	Maintenance manhours per
4	maintenance action.
_	Elapsed maintenance time per
_	maintenance action.

APPENDIX E RAC

5.6 MICROCIRCUITS, SAW DEVICES

DESCRIPTIONSurface Acoustic Wave Devices

$\lambda_{\rm p}$ = 2.1 $\pi_{\rm Q}$ $\pi_{\rm E}$ Failures/10⁶ Hours

Quality Factor - π_{Q}

Screening Level	πQ
10 Temperature Cycles (-55°C to +125°C) with end point electrical tests at temperature extremes.	.10
None beyond best commerical practices.	1.0

Environmental Factor - π_{F}

	<u>"E</u>
Environment	π _E
GB	.5
G _F	2. 0
G _F	4.0
N _S	4.0
N _U	6. 0
AIC	4.0
A _{IF}	5.0
AUC	5.0
AUF	8.0
A _{RW}	8. 0
SF	.50
M _F	5.0
M_L	12
Mլ Cլ	220

S

5.7 MICROCIRCUIT. MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

- 1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required control and detection elements (e.g., generators, various gates and detectors).
- A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include external support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the failure rate model is:

$$\lambda_p = \lambda_1 + \lambda_2$$
 Failures/10⁶ Hours

where:

 λ_1 = Failure Rate of the Control and Detection Structure

$$\lambda_1 = \pi_{Q} [N_{C}C_{11}\pi_{T1}\pi_{W} + (N_{C}C_{21} + C_{2})\pi_{E}]\pi_{D}\pi_{L}$$

 λ_2 = Failure Rate of the Memory Storage Area

$$\lambda_2 = \pi_Q N_C (C_{12} \pi_{T2} + C_{22} \pi_E) \pi_L$$

Chips Per Package - N_C

N_C = Number of Bubble Chips per Packaged Device

Temperature Factor – π_T

$$\pi_{T} = (.1) \exp \left[\frac{-Ea}{8.63 \times 10^{-5}} \left(\frac{1}{T_{J} + 273} - \frac{1}{298} \right) \right]$$

Use:

 $E_a = .8$ to Calculate π_{T1}

 $E_a = .55$ to Calculate π_{T2}

 T_J = Junction Temperature (°C), 25 $\leq T_J \leq 175$

T_J = T_{CASE} + 10°C

Device Complexity Failure Rates for Control and Detection Structure - C₁₁ and C₂₁

$$C_{11} = .00095(N_1)^{.40}$$

$$C_{21} = .0001(N_1)^{.226}$$

 N_1 = Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $N_1 \le 1000$

Ordering No.: NPRD-91

NONELECTRONIC PARTS RELIABILITY DATA 1991

Prepared by:

William Denson, Greg Chandler, William Crowell, & Rick Wanner

Reliability Analysis Center PO Box 4700 Rome, NY 13440 8200

Under contract to:

Rome Laboratory
Griffiss AFB, NY 13441-5700

Reliability Analysis Center

A DoD Information Analysis Center

Approved for Public Release, Distribution Unlimited

NPRD-91					Part	Summaries	2-1
Part Description	Qual Lev		Data Source	Fail Per E6 Hours	Total Failed	Operating Hours (E6)	Detail Page
Absorber, Surge	Com	GB	13567-021	< 0.0210	o	47.5696	3-1
Accelerometer (Summary)				24.8331			
Accelerometer				49.2154			
	Com	AI.	.m.n. 400	89.0991	2.0		
			NPRD-092 NPRD-096	534 .1592 14. 86 20	86 7	0.1610 0.4710	3-1 3-1
	Mil			42.5082		3.2.2.	
		AI	16953-000	168.5923 111.1108	65	0.5850	3-1
			25199-000	280.5080	2094	7.4650	3-1
		DOB.	NPRD-106 13253-000	153.7490 0.4342	367 143	2.3870 329.3300	3-1 3-1
		CH.	13233-000	49.2490	143	329.3300	3-1
			25199-000	277.8615	182	0.6550	3-1
			NPRD-067 NPRD-084	12.1951 35.6761	2 301	0.1640 8.4370	3-1 3-1
			NPRD-095	< 27.0270	Ō	0.0370	3-1
	Unk	SF	10219-034	< 8.9286 46.6686	0	0.1120	3-1
	3.2 0	A	14182-001	236.6061	-		3-1
		g Sf	14182-001 14182-001	52. 5229 8.1790	-		3-1 3-1
•							•
Accelerometer, Angular				1.3034			
	Kil	DOR		4.0922		4 4534	
			11233-000 13253-000	< 3.9683 < 0.2028	0	0.2520 4.9300	
			NPRD-106	113.4017	22	0.1940	
	Unic	A	14182-001	20.3839 113.4016	•		3-1
		GF	14182-001	3.6640	•		3-1
Accelerometer, Forced Balanced	Unk	CM	18459-000	26.6332	." 8	0.3004	3-1
Accelerometer.Linear				5.6467			
	Mil		NPRD-106	37. 8108 603.1720	114	0.1890	3-1
		DOR		< 0.3539	***	0.1030	3-1
			11233-000	< 7.9365	0	0.1260	
			13253-000 NPRD-111	< 2.2222 < 0.4444	0	0.4500 2.2500	
	Unk			34.8105			-
		A GF	14182-001 14182-001		-		3-1
Accelerometer, Pendulum (Summary)				4.0543			
	Com Mil	λI DOE	ì	3,7037 1,9234			
	Unie			6.0210			
		y Y	7	3.7040 13.5800			
		GF		1.9240			
Accelerometer, Pendulum				2.4999		_	
	Com Mil		NPRD-079	3.7037 1. 92 34	1	0.2700	3-1
	Mli	DO	R 13253-000	1.9231	6		
			NPRD-061	1.9237	6	3 - 1196	3-1

APPENDIX F FAA

SERVICE DIFFICULTY REPORT DATA FOR THE PERIOD OF JANUARY 1, 1985 TO DATE OF PRINT BOEING 767 GROUP CABIN EMERGENCY SLIDES

FOR MARY ELLEN MILLER CO	CONTROL NU	NUMBER P1-06-0201	SORIED BY OPERATOR, 767	OR,767 MODEL	DATE	OF PRINT IS	S AUG 0	1661 '6	PAGE 3
COMP MAKE COMP	HODEL P. Serial P.	ec ec	CONDITION LOCATION	ACFT WODEL ENG ACFT SERIAL ENG	MODEL P	ROP HODEL	1 08GN SP 11	PP NAT	SGO NNUM CONTROL NO
2565 STL - FLIGHT 720 - AT DEPARTURE, CHECK NORMAL, FLIGHT DISPATCHED.		SQUIB RIGHT HAND OVERW CHECK C-6D 3/17/	MONT TEST OVERWING SLIDE SING SLIDE SQUID BB LAX.	767231 22870 Would Not Test. C	CLEANED CONN	A CONNECTOR ON POWER	TWAA K A ODOOO (0 00000 1 0 00000 1 0 0 0	TXC 6071W 880523015NH
SQUIB JFK - FLIGHT 826 - DURING PREFLIGHT, D RIGHT BATTERY PACK CONNECTIONS. OP	S PREFLIG RECTIONS.	CIRCUIT LEFT AND RIG CHECKS NORMA	FAILED TEST 767231 BATTERY CONNECT 22570 HT OVERWING EMERGENCY ESCAPE L. CHECK C-18 7/26/88 LAX.		SLIDE FAILED SQ	SQUIB TEST. R	TWAA K L A GOGOG GOGOG Reseated Left an	K L 0 00000 LEFT AN	INC 60714 880902184NH
2565 PICO 101654101 AT ROUTINE 3 YEAR SCHEDULED OVERHAUL THE 767 ATIONS DURING INFLATION TEST, THE FIRST SEAM PPORTING TUBES, THE SUBSEQUENT SEAM FIALURE O SLIDE.	ID1654101 HEDULED OVERH ION TEST. THE SUBSEQUENT SE	THE 767 LEFT IST SEAM FAIL IALURE OCCUR	FAILED TUBE SUPPORTING TUBE OFFWING SLIDE WINDER FESULTED IN RED OURING AN ES	ED ORTING TUBE WING SLIDE MR25703-3, SERIAL NR L54-020, E) RESULTED IN A FUNCTIONABLE SLIDE DISABLING DURING AN ESTIMATED TWO MINUTE TIME PERIOD	NR LS4-020, E .ide disabling :e time period	PERIEN Only A After	UALA K A DODOO CED IWO SEAM PORTION OF	A DO	_
2565 PICO Maintenance Reported the Door Ound Pressure Cylinder Leaking N BY PICO.	٠, ٠	BOTTLE 130104127 1 LEFT DOOR SLIDE P AT 90 DEGREE ELBOW	LEAKING DOOR LI PRESSURE GAUGE PRI 4 ON GAUGE. O-RIN	767222 21880 1GE PRESSURE READING ZERO O-RING AND BACKUP RING HJ	. REPL/	SLIDE	UALA K D A 19192 19192 ASSEMBLY. S/D - F DURING INSTALLATIO	K 0 2 19192 3/0 - F ALLATIO	INS 620UA 881014013NH
2565 SLIDE PRESSURE AT DOOR IR	IS LOW	8077LE 130104 . S/B - REPLACED	LOW PRESSURE DOOR IN SLIDE SLIDE ASSEMBLY BI	767222 21874 OTILE PRESSURE BE	BELOW LIMIT.	ND OTHER DIS	UALA K A DODDO ISCREPANCY	K 0 10 00000 17.	INS 613UA 890728035NH
BFG000RIC Flight 96	0.3 SL 10E	BOTTLE HAS LOW PRESSURE.	LOW PRESSURE 2R DOOR S/D - REPLACED :	767222 21868 SLIDE PER HH 25-6	-66-01.		UALA K A ODOOO	0 00000 0	INS 607UA 900420032NH
S PICO 2 RIGHT DOOR PICO.		PACKING Pressure Low. S/D	MISINSTALLED BOTTLE GAUGE O-RING AND BACKUP	767222 21865 RING FOR ELBOW	ON GAUGE RE	A REVERSED DURING	0000 1000	K 0 10 00000 11 LATION	INS 604UA 881028034NH
2565 PICO 130104127 DOOR IR SLIDE BOTTLE PRESSURE O.	0,	KING S/D - PACKING	MISINSTALLED BOTTLE GAUGE And backup Ring I	767222 21862 For Elbow on Gauge	REVERSED	DURING INST	UALA K A ODGOO Installation B	0 00000 0 000000 87 PIC	INS 601UA 881028035NM
SLIDE NR 1 LEFT SLIDE PRESSURE LOW. S/D - REPLACEO 1 Prepared by operational systems branch avn 120		u	LOW PRESSURE 76 NR 1 ENTRY DOOR 21 FT SLIDE ASSEMBLY.	7222 075 Reservoir	PRESSURE BELOW	LIMIT. NO D	UALA K A DOGOG OGO GTHER DISCREPA	K 0 00 00 00 00 00 00 00 00 00 00 00 00	INS 614UA 890505055NH

APPENDIX G CARRIER A

INDICATES SHOP DATA INCOMPLETE

					Massassessa Liveral Co					ž.				*
20 % 20 - 1										-		1:		
28/1				i.				:		÷				
 8.‱6												:		
*** \							100 May 1			:				
										:				
							100 km 100 km 100 km 100 km							
7	2. 8 . 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	.08 .08 62 .18	2	1.06	£0. ₹0.	82 . 23		71 01.	85.00. 00.00	26 .05	70	13	<u>e</u> 6	
AGN 12 12	■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6000 00000 00000	12.1.000000000	:	-4ō	o	1.000			-		_	~ ~	
SUMM 3 NO	PR	27. 27.	W .44		4 0 8 0	5 2		₩.	8 4 4 0	- 0		დ -	M O	
4	Charle MCC Ash. January		The December 1	9	~ 90 90	. <u></u>	<u>a</u>	_ 9		<u> e</u>	1000	m		
ALS JUC 91	PR 'S		0 10 0 10 0	- 0	70	დ - .	-	•		•		~ -	-0	
SEMOV JUN 91	23 * 23	, 6. – 8.	- 0.0 %				6	3,	9 K		70	. 13	70000	
	10:00 m		~		. 4 6	8	<u></u>	- 00	4 10 - 0	-05	ariba il All'	13	.4 	
FLEE ATUR 9		-12 67			্ন বিজ্ঞা	80	ກັບ : 	<u></u>		•	0			
		. 1000 000 000	2 4 8 8		4 4 4	<u> </u>	5	-0	. CO. CO.		~ ~	-0	***	
> # - 0 \ 4 0 1 3	× 8 € 5	~ 6. → F	25 1.62 1.36	- 9	r Bag Hadis Hodingswiff	7.	25		22	2 0	**************************************	3. 19		
73.7 1001	N 85 -	_	0 24 4 0 70		2.2		50	- 6) 	205	: Ano : 4 : : 3:00: 4	33	4 6	2000000
Z H O	Z Z		i i i Caratigo			•			• Andrews	-,		•	•	*
	→ ~ 7	" — "	- 8	-	- "	7	*	-		က	7 T	-		-
— ···	SH SH	EL AC	2 2	AC	A E	EL	: :	RQ	∀ ₹	RC	n ∞ m	EL	i .	
POR	œ		<u></u>					502			gg			
2	Z X	A A	GAR	1 SK	BAR	AP)		8 12	BAC	APE	g	LS1	SP	
MO V	N G S	S Z	ပ္က နွ	∑	O 5	₩ C		Œ	8 0 0	₩	₹	C	20	
RE											O.	_		
TURE			E S	0					Lo S	I	INIT ME	CREW		
AIR LINES PREMATURE REMOVAL	TEMP		CONT CBN TEMP CNTRL-W/TEMP 35 DEGREES INCLUDED WITH 30143	VALVE-PRESS REG AIR S/O	MODULE-CABIN TEMP SEPARATOR-WATER		L. Marie		ACCESSORY UNIT AUTOPILOT ACCY UNIT A/P SWITCHING	TRANSDUCER-AIL CONT WH	AUTOPILOT LAT CNT LIMIT MEC MECHANISM-AUTOPILOT	SERVO MOTOR A/P JACKSCREW		
S	R ≪ T	CLE	CONT CBN TEMP CNTRL-W/TEMP 35 DEG	. A	X X		TOTALS		SWIT	CO	AUTOPILOT LAT CNT L MECHANISM-AUTOPILOT	ي م		
LIN	F. Z	MACHINE-AIR CYCLE VALVE A/C MIX	CONT CBN TEMP 3 CNTRL-W/TEMP 3 INCLUDED WITH	SRE	IN	Ā	CHAPTER 21 TOTALS		A/P	-AIL	AUTG	R A	Z	
Z	ONEN -RA	MACHINE-AIR C	× × O	RES	CAB	VLV AIR TEMP	CHAPTER 21 T	٥	# # #	JCER	T SE	AOTO	ACT-MACH TRIN	
	OMPC	HINE VE V	RI-Y	VE-F	A A	AIR	P E	\ \ <u>\</u>	ESSC Y UN	NSDL	OP II	0	-MAC	
أساله	0 2	MAC VAL	CON	VAL	S S P	٧٢٨	왕(1	LINS	O D	TRA		SER	ACT	
3	NOTE COMPONENT NAME CONTROL-RAM AIR						\sim \sim 1	,	-		en.			
تخ	4													
<u>و</u> ک	MR NO (21)626	21550 21601 21610	21620 21624 21624 21646	21661	21691	21721	(1	22001	22006 22007	22008	22101	22121	22 122 22 122 22 123	22126
T TO SALVE	(a)	ก พะน	N ≈ N × N	. u	N * N	6	(4) %	20 % C	22	n 6	2,	7	52

— — — — — — — — — — — — — — — — — — —	- 1000 m						14. E						11:11:11:11:11:11:11:11:11:11:11:11:11:		1.000 1 00	
- 1 1000m 1000 ロート	and the second		an have a		er (Alfrédie) er tues etak		44.									
4																
JOB 4									Victory Victory							
⊃ 0000 ± 00000 	ja fiji				1344											
à							1 7 de 1 2 d						4.37			
							4.4						n dinimi Program			
													Avent Safeta			
		_														
o v o o	v æ	o 5	4040		4 <u></u> 0)	- 2 % 8		အ <u>ဥ</u>	21	0 - 0 • 6	4 0	000 784 007			
2 Z Z Z	g. 9			•						••	14.4					
SUMMA!	v æ	- 6	-6-6		, <u> </u>		0 7		္မင္း	5	80	و د ج				
SUN	Α <u>σ</u>						· · · · · · · · · · · · · · · · · · ·		•		•					
A T	νœ	c)		i P O skar					,	ı ·····•		6 ×			
LS 100 100	P		•		4.0					- è	4.0		= 0			
	v æ		+ 6		, S				_ 2	• •	2		• 0 0			
REMOV.	X Q								- 0	W.C	•		~ ~ m 0			
— : ш.>- -	S & S				2 - 2				2 2	2 6	3.00	2 0				
A A B	G				•				•		• Market Land 1981 1		rige 📥			
P A A -	7 X X X X X X X X X X X X X X X X X X X		e soute to appear to the south of the southo		4		2 70	<u>.</u>	o H	- 6	,	- 5				
. Q. ◀	o oc∷	_	. 12		ທ ∵⊂								·			
	× &	4 4			V 4	•	- C						0 0 10 -			
737 99 - 60 1 -	να				n Navagori. Hear iΩ no n		· · · · · · · · · · · · · · · · · · ·						- 0 · · · -			
Z	2 2							•					0.00			
		_			10 10 00 00 00 00 00 00 00 00 00 00 00 0	٠.										
	5	•				(4				4		G		-		-
	F ⊗ A	Z	X Q		Z V	AC	ပ္မ	AC	T Q	AC	ပ္ရ	AC	ပ္က မွ			
TX.	ທ		—			ស				-		ົ				
о	A N	OUR	OC P		DUR AC	20	ည် ပု ပ	NMB	<u>ਬ</u> ਼ੁੁੁੂ ~	00	8 ပ	205	8 8			
		ರ	ರ 🚡		ა ე <u>გ</u>	80	8 2	>	S F	ВА	81 82 4 4	8	B S			
REMOVAL	D B S	Š	3 3		S S	20	8 8	Σ	3 3	Č	გ გ	Σ	8.8			
R.							ACTUATOR-GROUND SPOILER-RH ACT-CRO SPOILER OTBD LOCK						12 (4.000) 12 (1.000) 14 (1.000)			
200000000000000000000000000000000000000						TRAILING EDGE FLAP CNTL VLV	# X	0/	ACT-AUTO SPEED BRAKE VALVE-HYD CONTROL		ACTUATOR-INBD GRND SPOILER ACTUATOR-GRDUND SPOILER-LH	LEADING EDGE SLAT ACTIVATOR	ACCY UNIT-POS IND UNIT-FLAP/SLAT ACCESSORY			
PREMATURE			TRANS-FLAP POS LT Valve-T É FLAP FLOW REG		30	1	4 5	VALVE-MLG GRD SPOILER B/O		E.R.	2 2	<u>``</u>	g			
X E			3	33	Z Z	ວ	,	LEF	Ä	10,	S	ACI	ES			
	≘ /o	R		758	ಕ್ಷಣ	LAF	g	POI	88. OL	S	S N	ΑT	A C			
LINES	AA P	08	S	Z Z	ITI	ii.	S E	o s	ED NTR	GHT		SL	S T			
	F 7	م م	ے ۔ م	H	P0 8	EDG	GRO POI	S.	88 C		2 Z	JGE	S			
AIR	Ne Se	-LA	Z	٩		2	- S	AL G	2 ₽	- K	œ <u>.</u>	<u> </u>	T &			
	Z	12-1		9	7[Ē	CR	Ē-	₹ <u>i</u>	ATC	ATC	N	5 4			
	ರಿಷ	TRANS-FLAP POS RT	RA V	INCLUDED WITH 27583	IND-FLAP POSITION VALVE-T.E. FLAP CON	RAI	בי בי	ALV	5 2	ACTUATOR-FLIGHT SPOILER	2 2	EAD	λ Ni CC			
	NOTE COMPONENT NAME 1 VALVE-OB FLAP S/O	-	- > -	-	ne sweet o	_	₹ ≪ ₹	>	4 »>	Á	વે ∞વે.	_	₹ 5			
	TON.	-				8	:•				-	7	- ···· ×			
^				ı	+											
ر فور	MR NO (2)	28	27559 27580	182	27583 27590	95	± 60 ₽ 4	4	80 50 50	92	98.6	05	N D	47	ى ئ ئە ئ	90
د: رود	£ (2)	27558	275	27582	27583 27590	27595	27615 27634	27644	27681 27680	27695	27696 27697	27805	27842 27845	27847	27849 27854	27890
	ب		1800 KAR 00		14.46				300000		100000000000000000000000000000000000000		190,000,000	• •	5 00000 T	••

APPENDIX H AIRCRAFT MANUFACTURER A

SYSTEM SCHEDULE INTERRUPTION SUMMARY

						SCH INT
ATA SYSTEM	DELAYS>15'	CXIN	ATB	DIV	SCH INT	REV DEP
01 AIRCRAFT 08 LEVELING & WEIGHING	3.00	0.00	0.00	0.00	H	0.004
21 AIR CONDITIONING 22 AUTOMATIC FLIGHT	ο. Μ	0.0	• •	0.00	ο· κ·	. 20
	9.	0.	0.	0.	7.6	.15
24 ELECTRICAL POWER 25 EQUIP & FURNISHINGS	30.70	0.00	0.00	0.00	30	0.043
26 FIRE PROTECTION	7.5	0.	0.	0.	9.5	.04
	.5	٠ د	ω,	0.	5.4	.33
28 FUEL 20 HYDDAHLTC DOMER	237.33	3.00	1.00	0.00	4 2 2 2	0.341
	, ∞,	0	0.	0.	1.8	.01
31 INDICATING/RECORDING	2.4	0	0.	0.	7.4	.13
	124.33	2.00	3.50	0.00	129.83	0.182
33 AIRCRAFT LIGHTING	0.0	0.	0	0.	0.0	.02
34 NAVIGATION	0.0	0.	0	0.	4.0	11
35 OXYGEN	0.	0.	0.	0.	6.0	.00
		3.00	00.0	0.00	118.43	0.166
38 WATER & WASTE	2.8	0	0.	0	2.8	90.
45 CENTRAL MAINT SYS	0.	0.	0.	0	0.	.01
49 AUXILIARY POWER	5.5	•	0.	0.	5.5	.07
52 DOORS	35.33	1.00	00.0	00.0	36.33	0.051
53 FUSELAGE	0.	•	<u> </u>	0	0.	.00
54 NACELLES & PYLONS	ψ.	•	0.	0.	ب	00.
BCAG RELIABILITY & MAINTA REPORT: 331 (09-06-91)	& MAINTAINABILITY ENGI	ENGINEERING DEI	G PERIOD: DEPARTURES:	08-01-90 71,331	THROUGH	07-31-91

SYSTEM SCHEDULE INTERRUPTION SUMMARY

SCH INT

ATA	SYSTEM	DELAYS>15'		ATB	DIV	SCH INT	PER 100 REV DEP
7.7	E TING	5.67	1.00	0.00	0.00	6.67	0.009
F	POWER PLANT	0.20	0.00	0.00	0.00	٠	00.
1.5	ENCTINE (MPG COMP)	36.58	2.00	2.00	0.50	41.08	.05
73	ENGINE FUEL & CTRL	204.17	7.00	1.33	0.00	·	. 29
7.4	RNCTUR IGNITION	٠,	0.00	0.00	00.0	7.0	.02
, K		50.83	0.00	0.33	0.00	1.1	.07
7.0		ف	0.00	00.0	0.00	9	0.009
77		16.33	2.50	00.0	00.0	& &	. 02
8	ENCTINE EXHAUST	\sim	1.00	.5	00.0	5.2	.07
7 0	_		3.00	1.00	1.50	55.58	0.078
80		69.50	0.00	0.	00.0	0.5	.09
TOT	TOTALS ATA 01 THRU 57	1582.05	28.50	14.83	5.00	1630.38	2.286
10	TOTALS ATA 71 THRU 80	503.95	15.50	•	2.00	78. 78.	•
TOT	TOTALS	2086.00	44.00	22.00	7.00	2159.00	3.027

⁰⁸⁻⁰¹⁻⁹⁰ TERODGH 07-31-91 BCAG RELIABILITY & MAINTAINABILITY ENGINEERING PERIOD: REPORT: 331 (09-06-91) FILL FOR FILL F

INTERRUPTION SUMMARY SYSTEM SCHEDULE

(DELATS > 15 MIM, CANCELLATIONS. AIR TURNBACES AND DIVERSIONS)

07-31-91 国ND ING PERIOD

PREVIOUS 12 MONTHS

SYSTEM SCHEDULE INTERRUPTION SUMMARY

(DELATS > 15 MIN, CANCELLATIONS, AIR TURNBACKS AND DIVERSIONS)

PERIOD ENDING 07-31-91

					LAS	r 12 b	DNTHS		PREVIOUS		12 MONTHS	E
							X0000000					
ATA	SYSTEM	LAST 12	PEEV 12 0	0	SCH.	0.2	PER 0.	100 DE	DEPARTURES 0.4	ES		٥٦
25	EQUIP & FURNISHINGS	30.7	18.2	20000		••••				*******		
26	FIRE PROTECTION	29.5	22.3	20000		•••••	•••••			•••••		-
33	AIRCRAFT LIGHTING	20.0	17.7	- 88								
44	ENGINE INDICATING	18.8	0.9	¥8			••••••			••••		
74	ENGINE IGNITION	17.0	8.3	ž:			*****		****			
22	AUTOMATIC FLIGHT	16.3	13.8	<u> </u>	••••		•••••		•••••	••••••		
30	ICE & RAIN PROTECT	11.8	18.3	N X	• • •							
45	CENTRAL MAINT SYS	7.0	8.0	I			•••••			•••••		
57	WING	6.7	5.0	=		• • • • • • •	••••••					
94	ENGINE CONTROLS	6.5	16.2	I								
35	OXYGEN	6.0	6.7	I.		••••••	•		•••••	•••••		
01	AIRCRAFT	3.0	3.0			•••••						
53	FUSELAGE	8.0	2.0			•••••						
80	LEVELING & WEIGHING	1.0	0.0		•••••	•••••						
71	POWER PLANT	0.8	1.0		•••••	*****			•••••	•		
						•						
												- [

APPENDIX I AIRCRAFT MANUFACTURER B

LGMD-240 /90-22/06/90 IN-SERVICE DATA MANAGEMENT

DELAYS >15 HINUTES

DELAYS >15 MINUTES

DATA PERIOD: 1 / 1 / 89 THRU 31 / 12 / 89 INCLUSIVE

. . . SYSTEM MECHANICAL DELAY AND CANCELLATION ANALYSIS

ATA	ATA CHAPTER		9	RATE 100	×	× HO	9	HOURS 100	% HOUR	HOURS/	
SYS		RANK	INCIDENTS	REV.DEPT	RATE	RATE	HOURS	REV. DEPT	RATE	INCIDENT	RELIABILITY
	ANDTHE CEAD	-	682.917	.287	8.714	8.714	962.960	404.	8.636	1.41	99.713
7 6	ELECTOTIAL DOMES	• ~	587.752	247	7.500	16.213	897.071	.377	8.045	1.53	99.753
2		•	557.166	. 234	7.109	23.323	522.108	. 219	4.682	\$.	99.766
	NYDBAM TO POWER	•	553.633	. 232	7.067	30.389	1022.013	.429	9.165	1.85	99.768
	FI TENT CONTIONS	1 0	534.668	522 .	6.822	37.212	929.855	390	8.339	1.74	99.776
	FIEL SYSTEMS	•	468.667	.197	5.980	43.192	661.379	. 278	5.931	1.41	99.803
2 2	DODES	^	434.083	. 182	5.539	48.730	424.001	.178	3.802	96.	99.818
2	ENCINE - GENERAL	•	342.549	*	4.371	53.101	750.158	.315	6.727	2.19	99.856
	FORT PRENT /FILENTSHINGS	•	310.334	. 130	3.960	57.061	221.864	.093	1.990	17.	99.870
3 2	DAELMATTC SYSTEM	10	295.868	. 124	3.775	60.836	412.743	.173	3.701	1.40	99.876
? ?	SACTAE FLEL & CONTROL	=		.121	3.675	64.511	562.067	. 236	5.040	1.95	99.879
2 5	EXHALS I	72	271.616	114	3.466	67.977	363.541	191	w.460	1.41	99.886
2	ATR CONDITIONING	13	262.081	. 110	3.344	71.321	359.334	. 151	3.225	1.37	99.890
×	LIGHTS	14	244.777	. 103	3.123	74.445	291.976	. 123	2.618	1.1	748.00
: :	ALTO FLIGHT	15	229.915	.097	2.934	77.378	217.637	160.	1.952	. . 5	4a.403
1	ENCTUE INDICATION	2	227.998	960.	5.404	80.287	374.098	.157	3.355	1	\$06 · 66
	COMMENTATIONS	12	193.722	.083	2.472	82.759	164.818	.069	1.478	38 .	99.919
3 2	HATED ANACTE	2	152.666	30.	1.46	24.707	143.708	090	1.264	¥.	40.936
9	ATSENDAR AINTITARY DOMER	=	146.381	.062	1.893	86.601	110.769	.047	. 493	.75	99.938
;	AIRDONNE AUNITARI FUNE	2	139.901	.059	1.785	86.386	220.895	.093	1.981	7.58	13.43
: :	THE PAIN DOUTETION	2	131.083	.055	1.673	90.02	14.574	.061	1.297	1.10	19.42
2 4	FIRE DOUTECTION	22	97.642	.041	1.246	91.304	156.571	990.	1.404	1.60	99.950
3	CTABITAC BACTAE	23	85.334	.036	1.089	92.393	208.2%	.087	1.868	2. \$	49. 66
3 %	ENGTHE CONTROLS	2	83.334	.035	1.063	93.456	138.602	.056	1.243	1.66	99.965
: ;	FACTAE ATP	2	80.251	.034	1.024	\$.480	161.328	990.	1.447	2.01	99.966
9 5	Bruss of AMT GENERAL	2	79.367	.033	1.013	95.493	128.636	.054	1.154	1.62	99.967
: 3	MINDER FEMALES	22	56.500	.025	.746	96.239	105.681	ž	¥.	1.61	99.975
	MINES	28	£.000	.023	.689	96.928	X.318	\$	į	1.75	99.977
2	TOWTTON ENGINE	2	53.000	.022	.676	97.605	169.96	.041	. 867	1.82	99.978
¥ ×	SACE TO SECUL	80	46.333	.020	.617	98.221	40.41	.017	.367	59.	99.980
? 2	FIRE AGE - GENERAL	3	44.393	.019	. 566	96.788	77.046	.032	169.	1.7	99.981
3 5	THETHERITE	32	34.500	.014	4.	937.66	37.108	910.	. 333	8	99.360
1 1	MACELLES APVIONS STRUCTURE	8	27.000	.01	.345	99.673	34.108	•10 .	.306	1.26	99.90
3 2	COCCIAL TARDECTION & CHECK	M	20.000	900	. 255	99.828	70.258	.029	.630	3.51	99.992
9 49 10 10 10 10 10 10 10 10 10 10 10 10 10	STABILIZERS	8	13.500	•00.	.172	100.000	23.908	010	.214	1.77	*****
}			•			-	11161 074	187 7	000 001	1 42	012 70
ALL	AIRCRAFT		7837.167	3.290	100 · 000		11151.07	100		1	
				-			-		:		
CAN	CANCELLATION HOURS ARE BASED ON AVERAGE FLIGHT LENGTH BY AIRLINE	VERAGE	FLIGHT LEN	GTH BY AIR	LINE						

CANCELLATION HOURS ARE BASED ON AVERAGE FLIGHT LENGTH BY AIRLINE

TOTAL REPORTED DEPARTURES FOR THE PERIOD = 236214

LGMD-241 /90-22/06/90 IN-SERVICE DATA MANAGEMENT DELAYS > 15 MINUTES

DELAYS > 15 MINUTES

DELAY AND CANCELLATION EVENTS FOR THE PERIOD

CHARGEABLE EVENTS

DATA PERIOD: 1 / 1 / 89 THRU 31 / 12 / 89 INCLUSIVE

ATA	DESCRIPTION	FREG	5 5 4 ₹	T FUS A/C	8	EVENT	EVNT	JUST	EVENT LENGTH TYPE JUST (MRS)	STATION	FLGT
242101	83 ENG GENERATOR INDP; REPLACED 83 ENG GENERATOR.	.50 165 -30	- 591	2	⋖	69/10/02	DLY 46	9.	.89	.89 DALLAS/FT MORTH,	in i
242101	242101 83 ENGINE GENERATOR MOULD NOT PARALLEL; REPLACED 83 ENG GENERATOR.	2	 991	2	•	69/20/9	2	;	ų.	LOS ANGELES,CALI	ĸ
242101	242101 \$1 ENG GENERATOR OFF LIGHT ON, UNABLE TO RESET. DIACARDED, LATER, REPLACED \$1 ENG GENERATOR.	1.00 51 -10	2	2	∞.	14/05/89	DLY 43	4 3	8 .	.80 LA GUARDIA,NEH Y	99
242101	242101 83 GENERATOR FAILED ON PUSHOUT; PLACARDED, LATER, BEDIACED 83 FMC GENERATOR.	1.00 49 -10	•	9	6	18/05/89	DLY 43	43	.57	.57 ROME,ITALY	92
242101	242101 82 GEN DFF LIGHT ILLUM ON ROLL OUT, PLCD 82 GEN INDP. 242101 82 GEN DROPPED OFF LINE; PLACARDED 82 GEN INDP.	.25 162 -10 .33 319 -10	791	22	۵ ت	4/08/84	DLY 43 DLY 43		1.28	.17 CHICAGO,ILLINDIS 235 1.28 DENVER,COLORADO 1232	235

SUPPLARY OF EVENTS CONTAINED IN THIS REPORT

*	TOTAL		4.07
	oTs	0000	00.
HOURS	97 S	8 88	8
	\$	5 6 6 6	6 -
	DELAY	.00 1.73 1.28	3.17
*	TOTAL	2.50 .35 .33	3.58
	OTS	8 8 8 8	00.
INCIDENTS	SUB	6 8 8 8	8.
	ğ	6. 6. 6.	8
*	DELAY	2 . 50 2 . 50 3 . 55 3 . 55	3.08
	8	< @ U B	TOTAL

CANCELLATION HOURS ARE BASED ON AVERAGE FLIGHT LENGTH BY AIRLINE CARRY OF A STATEMENT OF ANY STATEMENT OF AN

REPORT NO. LGMU-257 AIRCRAFT LOGRE	PORT /	ACTION TAKEN DETAIL	
ATA/MCL FUSE REPORT NUMBER NO. DATE A TA DESCRIPTION	FLIGHT STA NUMBER	FINAL ACT DEFERRED DELAY SOURCE DATE	AWTG RPF DAYS
*** CONTINUED	D FROM PREVIOUS	OUS PAGE ***	
CONDITION: NO 2 ENG HAS HIGH OIL CONSUMPTION	ACTION	ACCOMPLISH LEAK CHECK PER M/M 71-96-18 IF NO LE AKS FOUND ACCOMPLISH LEAK CHECK PER M/M 72-65-00 PAGE 501 AND PAGE 502E CONT DFRD KIT9007 NIS	
		COMPUTED ENGINE OIL CONSUMPTION. NR 3 ENG 0.90 PINTS PER HOUR. WITHIN LIMITS PER GPM 8-08 PG 1. NO VISIBLE LKS FOUND 10179AA29 0835 19MAY TUL PRI=1 KITX002017	
		CPNKITXOD4QTY 1KITXOD5QTY 1KITXOD5QTY 1**CPNKITXOD6QTY 1	
920000 1 900519 MISCELLANEOUS	TUL 0	6H 900519	•
CONDITION: SPECIAL ENGINEERING REQUEST	ACTION	VOID-N/A. 10191AA2C 1200 19MAY TUL PRI=1	
274000 1 900520 HORIZONTAL STABILIZER	DF¥ 5	PR 900520	•
CONDITION; THE STAB ALIGNEMENT MARK DOES NOT LINE UP WITH THE LONG TRIM SET AT ZDEGREE NOSE UP	ACTION.	CKD JACKSCREW MEASUREMENT PER M/.M 27-40-00 MUNET 28-15/16 INCHES PAINT MARKS TO BE CORRECTED ON OVERNTE TECH SERV NOTIFIED COCKPIT IND IN C/C IS CORRECT	
274000 1 900520 HORIZONTAL STABILIZER	TUL 0	GM 900520	•
CONDITION: STABILIZER EXTERNAL BLACK STRIPS DO NOT ALIGN A T 2 DEG STAB NOSEUP.	ACTION	N: MTC IN IAH CONFIRMED STABILIZER POSITION INDICATION IS CORRECT IN THE COCKPIT. ACCOMPLISHED: JACKSCREW MEASUREMENT IN PRIMARY PROCEDURE PER JACKSCREW MEASUREMENT IN PRIMARY PROCEDURE PER MM 27-40-00 P601. OK TO FLY TO 0/N FOR NEW STRIPE. 1. SET STAB TO 2 DEG NOSE UP AND PER PR OCEDURES IN MM 27-40-00 P603 STEP J26) PAINT ON NEW STRIPE AS REQUIRED AFTER REMOVING INCORR ECT STRIPE REMOVED OLD STRIPE REPAINT NEW STRIPE AT 2 DEG NOSE HIGH -UP.	
324300 1 900520 MAIN WHEEL BRAKES	DFW 116	PR 900520	0
CONDITION, SYS I BRAKE PRESS GAUGE READS 750PSI AT GATE WI TH BOTH AUX HYD PUMPS ON	ACTION	CKED BOTH BRAKE ACCUM AND FOUND SERVICED TO COR RECT PSI:CKED:SYS:WITH BOTH PUMPS ON AND SYS SW IN ON: FOUND: BRAKE PRESS NORMAL APPROVED FOR SER VICE	

OPERATOR FLIGHT P	TOR X _ T HOURS: NGS:	32003 10859	COM LGPQ	IMPARATIVE PORT PERI IMD-0256	MAINTENAN OD : JANUA	INCE REUUI	IREMENT 190 THRU	TS U FEBRUARY	1990		OPERATOR FLIGHT HO LANDINGS:	YOURS	27.5	969 821
			SORI	4	T A OR	DER								
ļ			OPERATOR ************************************	**************************************	***	**************************************	XXXXX	***	OPERATOR KKKKKKKK	********	光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光光	KKKKK	XXXX	XXXXX
ATA MECL MECL MECL MECL MECL MECL MECL MECL	SYSTEM D	DESCRIPTION	PILOT	1.06 COUNT	RATE PER 1000 FH	PERCENT TOTAL	IT RANK	MTBMA	PILOT	LOG COUNT	RATE PER 1000 FH	PERCEN Total	RANK	MTBMA
OHI-INDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDU	SPECIAL INS SPECIAL INS SPECIAL INS SPECIAL INS SPECIAL INS SPECIAL INS SPECIAL INS SPECIAL INS SPECIAL IND SPECIAL IND SPECIA	SPECIAL INSPECTION CLEANING GENERAL PLACARDS SERVICING AIR CONDITIONING AUTO FLIGHT COMMUNICATIONS FLIGHT CONTROLS FIRE PROTECTION FLIGHT CONTROLS FIRE AND CONTROL INDONS FIRE AND CONTROL STABILIZERS MINDONS MINDONS MINDONS MINDONS MINDONS FUEL AND CONTROL IGNITION ENGINE ENGINE CONTROL IGNITION ENGINE ENGINE CONTROL STABILIZERS MINDONS MINGS ENGINE CONTROL IGNITION ENGINE ENGINE CONTROL IGNITION ENGINE MISCELLANEOUS 1011	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA NAME NE PROPERSONGING ASSESSED ON NAME OF PARTICULAR OF	10000000000000000000000000000000000000		NUND HELLUNG IH I NUNGHNUNGHUGUNH V486rungherolosingsigengengengengengengengengengengengengeng	4. UA UNUA DE LIMEA LI UA	CONSTRUCTION OF THE SECTION OF THE S	S. T. COURSE ORDER THE TOTAL THE S. T. T. COURSE ORDER THE TOTAL THE S. T. T. COURSE ORDER THE SERVICE ORDER TOTAL THE S. T. C.	2010 10 10 10 10 10 10 10 10 10 10 10 10		WWW I HITHTING HAMBERS WAS SELECTED AND TO SEL	SOUS CHANDER WASHINGTON WASHINGTON THE TO SUND CHANDER CONTRACTION OF SUNDERCOUNTS AND SUND

APPENDIX J HUGHES RADAR SPECIFICATIONS

Hughes Radar Systems

System	Year of Intro.	Weight (Ibs)	vol.	LRU's	SRU's	Electrical Comp.	Active Comp.	Reliability MFT/Ver. failure (hrs)
F14A(AWG-9WCS)	73	1260 28.4	28.4	26	553	38,369	12,410	7
F15(APG 63)	74	516	9.0	6	125	19,255	8,529	25
F18(APG 65)	8	346	10.2	ß	29	13,500	6,000	75
F15E(APG 70)	87	564	8.7	æ	102	15,946	5,726	40

• AWG 9 WCS is only complete weapons system the others are just radar systems. AWG 9 WCS was developed for the F108 (mid 60's) and the Navy wanted it for the F14A.

APPENDIX K CONTACTS

Government:

FAA
Operations Systems Branch, AVN-120
PO Box 25082
Oklahoma City, Oklahoma 73125

US Air Force:

Rome Laboratory/ERSR (MIL HNDBK-217) Griffiss AFB, NY 13441-5700

Aeronautical Systems Division/ENACR (System Reliability) Wright-Patterson AFB, OH 45433

HQ Air Force Logistics Command/ENIS (MODAS & REMIS) WPAFB, OH 45433

Acquisition Logistics Division (ALD Pamphlet 800-4) WPAFB, OH 45433

Aeronautical Systems Division/ENSSC (LCOM) WPAFB, OH 45433

Reliability Analysis Center (RAC) PO Box 4700 Rome, NY 13440-8200

Naval Air Systems Command (AIR-4114) Washington, DC 20361

Naval Maintenance Support Office Naval Sea Logistics Center, Code 61 5450 Carlisle Pike PO Box 2060 Mechanicsburg, PA 17055-0795

Commercial:

Airbus Industrie of North America 593 Herndon Parkway Herndon, VA 22070

American Institute of Aeronautics and Astronautics (AIAA) 37 L'Enfant Promenade SW Washington, DC 20024

Commercial (continued)

Boeing Commercial Air Planes PO Box 3707 Seattle, WA 98124

Boeing Computer Services 7990 Boeing Court Vienna, VA 22182-3999

Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, CA 90846

E-Systems PO Box 1056 Greenville, TX 75401

Harris Corporation 4141 Col. Glenn Dayton, OH 45431

Harris Corporation Government Aerospace Systems Division PO Box 9400 Melbourne, FL 32902

Hughes Aircraft Company Radar Systems Group PO Box 92426 Los Angeles, CA 90009

Society of Automotive Engineers (SAE), Inc. 400 Commonwealth Dr. Warrendale, PA 15096-0001

United Airlines
San Francisco International Airport (MOC/SF Airport)
San Francisco, CA 91428

US Air 173 Industry Dr. Pittsburgh, PA 15275

APPENDIX L REGRESSION ANALYSIS

NASA - AIRFRAME WUC 11 VOL VI MEAN FLYING HRS/MA REGRESSION FUNCTION & ANOVA FOR FH/MA

FH/MA = 23.22925 - 0.111771 CEILING + 12.6007 WG AREA

- 0.0576 LENGTH - 0.005075 YR

- 21.97399 SQR WING - 0.684188 WING^2

R-Squared = 0.86312 Adjusted R-Squared = 0.824011 Standard error of estimate = 0.892543

Number of cases used = 28

Source	9S	df	MS	F Value	Sig Prob
Regression Residual	105.48950 16.72930	6 21	17.58158 0.79663	22.06984	0.000000
Total	122.21880	27			

NASA - AIRFRAME WUC 11 VOL VI MEAN FLYING HRS/MA REGRESSION COEFFICIENTS FOR FH/MA

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant	23.22925	2.73826	8.48323	0.00000
CEILING	-0.11177	0.01871	-5.97400	0.00006
WG AREA	12.60070	2.13428	5.90396	0.00007
LENGTH	-0.05760	0.02039	-2.82506	0.010143
YR	-0.00508	0.02758	-0.18404	0.855748 *
SQR WING	-21.97399	3.89834	-5.63676	0.000014
WING ²	-0.68419	0.15520	-4.40857	0.000245

^{*} indicates that the variable is marked for leaving

Standard error of estimate = 0.892543 Durbin-Watson statistic = 2.541273

NASA - AIRFRAME WUC 11 MAN-HOURS PER FLYING HOUR REGRESSION FUNCTION & ANOVA FOR MMH/FH

MMH/FH = - 4.953856 - 0.01547 TO-WGT + 0.051091 CEILING - 2.934957 WG AREA + 0.33163 SQR TOWGT + 5.518674 SQR WING + 0.357075 WING^2

R-Squared = 0.897902 Adjusted R-Squared = 0.875213 Standard error of estimate = 0.314785

Number of cases used = 34

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	23.52889 2.67542	6 27	3.92148 0.09909	39.57510	0.000000
Total	26.20431	3 3			

NASA - AIRFRAME WUC 11 MAN-HOURS PER FLYING HOUR REGRESSION COEFFICIENTS FOR MMH/FH

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant	-4.95386	0.66707	-7.42626	0.00 000 0
TO-WGT	-0.01547	0.00408	-3.79119	0.000767
CEILING	0.05109	0.00590	8.66663	0.00000
WG AREA	-2.93496	0.96563	-3.03943	0.005215
SOR TOWGT	0.33163	0.15647	2.11946	0.043392
SQR WING	5.51867	2.42052	2.27996	0.030728
WINGTE	0.35707	0.05155	6.92612	0.00000

Standard error of estimate = 0.314785 Durbin-Watson statistic = 2.588316

> ORIGINAL PAGE IS OF POOR QUALITY

NASA - LANDING GEAR WUC 13xxx MEAN FLYING HRS BTWN MA REGRESSION FUNCTION & ANOVA FOR MFH/MA

MFH/MA = 23.86407 - 1.409666 SQR LENGTH

R-Squared = 0.815936 Adjusted R-Squared = 0.809119 Standard error of estimate = 2.099274

Number of cases used = 29

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	527.46120 118.98770	1 27	527.46120 4.40695	119.68840	0.000000
Total	646.44890	28			

NASA - LANDING GEAR WUC 13xxx MEAN FLYING HRS BTWN MA REGRESSION COEFFICIENTS FOR MFH/MA

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant	23.86407	1.40073	17.03687	0.000000
SQR LENGTH	-1.40967	0.12885	-10.94022	

Standard error of estimate = 2.099274 Durbin-Watson statistic = 1.518892

NASA - LANDING GEAR WUC 13xxx MAINT MAN-HRS PER FLY HR REGRESSION FUNCTION & ANOVA FOR MMH/FH

MMH/FH = - 53.66402 + 17.08925 LOG YR - 0.267969 YEAR + 0.094115 SQR LENGTH

R-Squared = 0.781544 Adjusted R-Squared = 0.745134 Standard error of estimate = 0.190247

Number of cases used = 22

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	2.33075 0.65149	3 18	0.77692 0.03619	21.46547	0.000003
Total	2.98223	21			

NASA - LANDING GEAR WUC 13xxx MAINT MAN-HRS PER FLY HR REGRESSION COEFFICIENTS FOR MMH/FH

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant LOG YR	-53.66402 17.08925	23.81530 7.37032	-2.25334 2.31866	0.036946
YEAR	-0.26797	0.10740	-2.49516	0.032380
SQR LENGTH	0.09412	0.01528	6.16133	0.000008

Standard error of estimate = 0.190247 Durbin-Watson statistic = 2.144961

NASA - ELEC PWR SYS WUC 42xxx MEAN FLYING HRS/MA REGRESSION FUNCTION & ANOVA FOR MFH/MA

MFH/MA = - 271.444 - 0.212449 TO-WGT + 0.533079 CEILING - 0.768166 YR + 28.35901 SQR LENGTH + 7697.175 1/LENGTH

R-Squared = 0.790956 Adjusted R-Squared = 0.747405 Standard error of estimate = 9.591888

Number of cases used = 30

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	8354.74600 2208.10400	5 24	1670.94900 92.00432	18.16164	0.000000
Total	10562.85000	29			

NASA - ELEC PWR SYS WUC 42xxx MEAN FLYING HRS/MA REGRESSION COEFFICIENTS FOR MFH/MA

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant	-271.44400	72.83025	-3.72708	0.001047
TO-WGT	-0.21245	0.04830	-4.39864	0.000192
CEILING	0.53308	0.20267	2.63033	0.014662
YR	-0.76817	0.30845	-2.49041	0.020078
SOR LENGTH	28.35901	6.74457	4.20472	0.000314
1/LENGTH	76 9 7.17500	1570.56900	4.90088	0.000053

Standard error of estimate = 9.591888 Durbin-Watson statistic = 1.138776

NASA - ELEC PWR SYS WUC 42xxx MAINT MAN-HOURS PER FLY HRS REGRESSION FUNCTION & ANOVA FOR MMH/FH

MMH/FH = 11.30551 + 0.001867 EMPTY-WGT + 0.263477 CEILING - 3.450736 SQR CEIL

R-Squared = 0.869046 Adjusted R-Squared = 0.854496 Standard error of estimate = 0.076739

Number of cases used = 31

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	1.05516 0.15900	3 27	0.35172 0.00589	59.72 65 1	0.00000
Total	1.21415	30			

NASA - ELEC PWR SYS WUC 42xxx MAINT MAN-HOURS PER FLY HRS REGRESSION COEFFICIENTS FOR MMH/FH

Variable	Coefficient	Std Error	t Value	Two-Si ded Sig Prob
Constant	11.30551	1.90648	5.93005	0.000002
EMPTY-WGT	0.00187	1.46506E-04	12.74554	0.000000
CEILING	0.26348	0.04256	6.19022	0.000001
SQR CEIL	-3.45074	0.57345	-6.01754	0.000002

Standard error of estimate = 0.076739 Durbin-Watson statistic = 2.071562

NASA - HYDRAULICS SYS WUC 45xxx MEAN FLY-HRS BTWN MA REGRESSION FUNCTION & ANOVA FOR MFH/MA

MFH/MA = 49.40489 + 0.369793 TO-WGT - 0.49955 EMPTY-WGT

+ 39.86846 WG AREA - 0.620174 LENGTH

+ 1.240129 YR + 22.75922 MISSION

- 157.5092 SQR WING

R-Squared = 0.890941 Adjusted R-Squared = 0.860404

Standard error of estimate = 10.52203

Number of cases used = 33

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	22611.26000 2767.82800	7 25	32 3 0.18000 110.71310	29.17612	0.00000
Total	25379.09000	32			

REGRESSION COEFFICIENTS FOR MFH/MA

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant	49.40489	22.09663	2.23586	0.034527
TO-WGT	0.36979	0.07613	4.85717	0.000054
EMPTY-WGT	-0.49955	0.17883	-2.79337	0.009862
WG AREA	39.86 84 6	7.85063	5 .0783 7	0.000030
LENGTH	-0.62017	0.31237	-1.98536	0.058177
YR	1.24013	0.33120	3.74437	0.000952
MISSION	22.75922	3.16591	7.18885	0.000000
SOR WING	-157.50920	23.47045	-6.71096	0.00000

Standard error of estimate = 10.52203 Durbin-Watson statistic = 2.047476

NASA - HYDRAULICS SYS WUC 45xxx MAINT MAN-HRS/ FLYING HR REGRESSION FUNCTION & ANOVA FOR MMH/FH

MMH/FH = 0.926234 + 0.010833 CEILING - 0.586775 WG AREA

+ 0.014184 LENGTH - 0.008041 YR

- 0.051832 MISSION + 1.779134 SQR WING

- 0.306858 SQR LENGTH

R-Squared = 0.800059 Adjusted R-Squared = 0.748222

Standard error of estimate = 0.082175

Number of cases used = 35

Source	SS	df	MS	F Value	Sig Prob
Regression Residual	0.72955 0.18232	7 27	0.10422 0.00675	15.43423	0.000000
Total	0.91188	34			

NASA - HYDRAULICS SYS WUC 45xxx MAINT MAN-HRS/ FLYING HR REGRESSION COEFFICIENTS FOR MMH/FH

Variable	Coefficient	Std Error	t Value	Two-Si ded Sig Prob
Constant	0.92623	0.60164	1.53950	0.135320
CEILING	0.01083	0.00219	4.95746	0.000034
WG AREA	-0.58678	0.12768	-4.59571	0.000090
LENGTH	0.01418	0.00688	2.06238	0.048914
YR	-0.00804	0.00270	-2.97683	0.006081
MISSION	-0.05183	0.03011	-1.72139	0.096621
SQR WING	1.77913	0.32371	5.49606	0.000008
SQR LENGTH	-0.30686	0.13465	-2.27889	0.030800

Standard error of estimate = 0.082175 Durbin-Watson statistic = 1.770126

NASA - OXYGEN SYS WUC 47xxx MEAN FLYING HRS PER MA REGRESSION FUNCTION & ANOVA FOR MFH/MA

MFH/MA = 260.1071 + 0.213175 TO-WGT + 18.61948 MISSION - 61.79837 SQR WING - 19.19873 SQR LENGTH

R-Squared = 0.723401 Adjusted R-Squared = 0.688826 Standard error of estimate = 24.73121

Number of cases used = 37

Source	SS	df	MS	F Value	Sig Prob
•	51188.02000 19572.25000		12797.01000 611.63280	20.92269	0.00000
Total	70760.27000	36			

NASA - OXYGEN SYS WUC 47xxx MEAN FLYING HRS PER MA REGRESSION COEFFICIENTS FOR MFH/MA

Variable	Coefficient	Std Error	t Value	Two-Sided Sig Prob
Constant	260.10710	40.77314	6.37937	0.000000
TO-WGT	0.21318	0.06735	3.16517	0.003392
MISSION	18.61948	6.67361	2.79002	0.008808
SOR WING	-61.79837	34.14871	-1.80968	0.079747
SOR LENGTH	-19.19873	7.55555	-2.54101	0.016101

Standard error of estimate = 24.73121 Durbin-Watson statistic = 1.170085

NASA - OXYGEN SYS WUC 47xxx MAINT MAN-HRS/ FLYING HR REGRESSION FUNCTION & ANOVA FOR MMH/FH

MMH/FH = 0.452033 - 0.011884 MISSION - 4.298343 1/LENGTH - 0.036333 SQR YR

R-Squared = 0.629656 Adjusted R-Squared = 0.591345 Standard error of estimate = 0.023763

Number of cases used = 33

Source	SS ⁻	đf	MS	F Value	Sig Prob
Regression Residual	0.02784 0.01638	3 29	0.00928 5.64686E-04	16.43521	0.000001
Total	0.04422	32			

NASA - OXYGEN SYS WUC 47xxx MAINT MAN-HRS/ FLYING HR REGRESSION COEFFICIENTS FOR MMH/FH

Variable	Coefficient	S td Error	t Value	Two-Sid ed Sig Prob
Constant	0.45203	0.08086	5.59023	0.000004
MISSION	-0.01188	0.00612	-1.94260	0.061832
1/LENGTH	-4.29834	0.88130	-4.87730	0.000036
SQR YR	-0.03633	0.00912	-3.98282	0.000419

Standard error of estimate = 0.023763 Durbin-Watson statistic = 2.446844

APPENDIX M BASIC PROGRAM FOR DATA ANALYSIS

Appendix M

Basic Program for Data Analysis

AFALDP 800-4

```
10 'PROGRAM COMBINES 6 MONTH DATA FROM ALDP 800-4
20 'COMPUTES R&M STATS FOR VARIOUS 2-DIGIT WUC'S
30 KEY OFF:CLS:COLOR 3
40 PRINT TAB(20) "CALCULATION OF AIRCRAFT R&OOM PARAMETERS"
50 PRINT:PRINT
60 DIM MTBM(10,10),MMH(10,10),WUC$(10)
70 FOR J=1 TO 5
80 READ WUC$(J)
90 NEXT J
100 INPUT "ENTER AIRCRAFT"; AC$
110 INPUT "ENTER NUMBER OF 6-MONTH INTERVALS"; NUM
120 FOR I=1 TO NUM
130 PRINT "ENTER FLYING HOURS FOR "; I; "6-MONTH PERIOD"
140 INPUT FH(I)
150 PRINT "ENTER SORTIES FOR ";I;"6-MONTH PERIOD"
160 INPUT S(I)
170 PRINT "ENTER LANDINGS FOR "; I; "6-MONTH PERIOD"
180 INPUT L(I)
190 FOR J=1 TO 5
200 PRINT "ENTER MTBM FOR"; WUC$(J)
210 INPUT MTBM(I,J)
220 PRINT "ENTER ON-EQUIP MMH FOR"; WUC$(J)
230 INPUT MMH(I,J)
240 PRINT "ENTER OFF-EQUIP MMH FOR"; WUC$(J)
250 INPUT OMMH(I,J)
260 PRINT
270 NEXT J
280 NEXT I
290 CLS:COLOR 2
300 PRINT TAB(20) "OUTPUT RESULTS FOR "; AC$
310 LPRINT TAB(20) "OUTPUT RESULTS FOR "; AC$
320 PRINT
330 LPRINT
340 FOR I=1 TO NUM
350 TFH=TFH+FH(I)
360 TS=TS+S(I)
370 TL=TL+L(I)
375 NEXT I
380 PRINT TAB(10) "TOT FLYING-HRS"; TAB(40) TFH
390 LPRINT TAB(10) "TOT FLYING-HRS"; TAB(40) TFH
400 PRINT TAB(10) "TOT SORTIES"; TAB(40) TS
410 LPRINT TAB(10) "TOT SORTIES"; TAB(40) TS
420 PRINT TAB(10) "TOT LANDINGS"; TAB(40) TL
430 LPRINT TAB(10) "TOT LANDINGS"; TAB(40) TL
440 PRINT:LPRINT
450 FOR J=1 TO 5
```

460 FOR I=1 TO NUM

```
470 TMAINT(J) = TMAINT(J) + (1/MTBM(I,J)) * FH(I)
480 TMMH(J) = TMMH(J) + MMH(I,J)
490 TOMMH(J) = TOMMH(J) + OMMH(I, J)
500 NEXT I
510 TOTMH(J) = TMMH(J) + TOMMH(J)
520 MFHBM(J)=TFH/TMAINT(J)
530 MSBM(J)=TS/TMAINT(J)
540 MLBM(J)=TL/TMAINT(J)
550 MHFH(J)=TOTMH(J)/TFH
560 \text{ MHS}(J) = \text{TOTMH}(J)/\text{TS}
570 PRINT: PRINT
580 LPRINT: LPRINT
590 PRINT TAB(10) "WUC ": WUC$(J): PRINT
600 LPRINT TAB(10) "WUC "; WUC$(J):LPRINT
610 PRINT TAB(15) "TOTAL MAINTENANCE EVENTS"; TAB(50) TMAINT(J)
620 LPRINT TAB(15) "TOTAL MAINTENANCE EVENTS"; TAB(50) TMAINT(J)
630 PRINT TAB(15) "TOTAL MAINTENANCE MANHOURS"; TAB(50) TOTMH(J)
640 LPRINT TAB(15) "TOTAL MAINTENANCE MANHOURS"; TAB(50) TOTMH(J)
650 PRINT TAB(20) "TOTAL ON-EQUIP MAINT"; TAB(50) TMMH(J)
660 LPRINT TAB(20) "TOTAL ON-EQUIP MAINT"; TAB(50) TMMH(J)
670 PRINT TAB(20) "TOTAL OFF-EQUIP MAINT"; TAB(50) TOMMH(J)
680 LPRINT TAB(20) "TOTAL OFF-EQUIP MAINT"; TAB(50) TOMMH(J)
690 PRINT: COLOR 12
700 LPRINT
710 PRINT TAB(15) "MEAN FLYING HR BTWN MAINT"; TAB(50) MFHBM(J)
720 LPRINT TAB(15) "MEAN FLYING HR BTWN MAINT"; TAB(50) MFHBM(J)
730 PRINT TAB(15) "MEAN SORTIES BTWN MAINT"; TAB(50) MSBM(J)
740 LPRINT TAB(15) "MEAN SORTIES BTWN MAINT"; TAB(50) MSBM(J)
750 PRINT TAB(15) "MEAN LANDINGS BTWN MAINT": TAB(50) MLBM(J)
760 LPRINT TAB(15) "MEAN LANDINGS BTWN MAINT"; TAB(50) MLBM(J)
770 PRINT TAB(15) "MAN-HOURS PER FLY-HR"; TAB(50) MHFH(J)
780 LPRINT TAB(15) "MAN-HOURS PER FLY-HR"; TAB(50) MHFH(J)
790 PRINT TAB(15) "MAN-HOURS PER SORTIE"; TAB(50) MHS(J)
800 LPRINT TAB(15) "MAN-HOURS PER SORTIE"; TAB(50) MHS(J)
810 PRINT:LPRINT
820 MHPF(J)=TOTMH(J)/TMAINT(J)
830 MHPFON(J)=TMMH(J)/TMAINT(J)
840 OMHPF(J)=TOMMH(J)/TMAINT(J)
850 PRINT TAB(15) "MAN-HOURS PER MAINT ACTION"; TAB(50) MHPF(J)
860 LPRINT TAB(15) "MAN-HOURS PER MAINT ACTION"; TAB(50) MHPF(J)
870 PRINT TAB(20) "ON-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) MHPFON(J)
880 LPRINT TAB(20) "ON-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) MHPFON(J)
890 PRINT TAB(20) "OFF-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) OMHPF(J)
900 LPRINT TAB(20) "OFF-EQUIP MAN-HRS/MAINT ACTION"; TAB(50) OMHPF(J)
910 PRINT
915 LPRINT: LPRINT
920 NEXT J
930 COLOR 3
935 GOSUB 1000
```

940 END

```
950 DATA 11-AIRFRAME
960 DATA 13-LAND-GEAR
970 DATA 42-ELEC-PWR
980 DATA 45-HYDRAULICS
990 DATA 47-OX-SYS
1000 ' SUBROUTINE TO PROVIDE ECHO CHECK
1010 LPRINT: LPRINT: LPRINT TAB(20) "ECHO CHECK OF INPUT DATA": LPRINT
1020 LPRINT TAB(1) "PERIOD"; TAB(20) "MTBM"; TAB(36) "ON-EQUIP MH"; TAB(50) "OFF-EQ
UIP MH":LPRINT
1030 FOR J=1 TO 5
1040 LPRINT:LPRINT TAB(10) WUC$(J)
1050 FOR I=1 TO NUM
1060 LPRINT TAB(1) I; TAB(20) MTBM(I,J); TAB(36) MMH(I,J); TAB(50) OMMH(I,J)
1070 NEXT I
1080 LPRINT
1090 NEXT J
1100 LPRINT: LPRINT TAB(20) "VALIDATION CHECK": LPRINT
1120 LPRINT TAB(1) "PERIOD"; TAB(20) "ON-EQUIP MH/FH"; TAB(50) "OFF-EQUIP MH/FH":L
PRINT
1130 FOR J=1 TO 5
1140 LPRINT: LPRINT TAB(10) WUC$(J)
1150 FOR I=1 TO NUM
1160 LPRINT TAB(1) I; TAB(20) MMH(I,J)/FH(I); TAB(50) OMMH(I,J)/FH(I)
1170 NEXT I
1180 LPRINT
1190 NEXT J
```

1200 RETURN