Growth Resilience

AJ Perez-Luque ((???))
2017 June

```
library("tidyverse")
library("dplR")
library("stringr")
library("knitr")
library('gtable')
library('grid')
library('gridExtra')
library('pander')
library('broom')
library('effects')
library('devtools')
# devtools::install_github("ajpelu/auxiliar")
library('car')
library('auxiliar')
library('WRS2')
library('MASS')
library('rcompanion')
```

Resilience

- Calcularemos las métricas resiliencia de (Lloret et al. 2011) sobre el crecimiento.
- Vamos a calcularlas sobre el BAI de cada árbol.
- Utilizaremos tres sitios: SJ, CAH y CAL (ver ./analysis/analysis_chronologies.md)

Prepare data

- Leer datos rwl de SJ y CA
- Leer datos de diametros de los focal tree

```
## There does not appear to be a header in the rwl file
## There are 48 series
## 1
             SNA0101
                           1947
                                    2016
                                           0.01
## 2
             SNA0102
                           1947
                                    2016
                                           0.01
## 3
             SNA0201
                           1946
                                    2016
                                           0.01
                                   2016
## 4
            SNA0202
                           1948
                                           0.01
## 5
             SNA0301
                           1949
                                    2016
                                           0.01
## 6
            SNA0302
                           1948
                                   2016
                                           0.01
## 7
             SNA0401
                           1947
                                    2016
                                           0.01
             SNA0402
                           1947
                                    2016
                                           0.01
## 8
## 9
             SNA0501
                           1953
                                   2016
                                           0.01
## 10
             SNA0502
                           1948
                                   2016
                                           0.01
## 11
             SNA0601
                           1948
                                    2016
                                           0.01
## 12
             SNA0602
                           1957
                                    2016
                                           0.01
## 13
             SNA0603
                           1947
                                    2012
                                           0.01
## 14
             SNA0701
                           1954
                                   2016
                                           0.01
```

```
## 15
                                             0.01
             SNA0702
                            1947
                                     2016
## 16
             SNA0801
                            1949
                                     2016
                                             0.01
## 17
             SNA0802
                            1951
                                     2016
                                             0.01
## 18
                                             0.01
             SNA0901
                            1947
                                     2016
## 19
             SNA0902
                            1947
                                     2016
                                             0.01
## 20
             SNA0903
                            1947
                                     2002
                                             0.01
## 21
             SNA1001
                            1950
                                     2016
                                             0.01
## 22
                                             0.01
             SNA1002
                            1953
                                     2016
## 23
             SNA1003
                            1948
                                     2008
                                             0.01
## 24
             SNA1101
                            1940
                                     2016
                                             0.01
## 25
             SNA1102
                            1929
                                     2016
                                             0.01
## 26
             SNA1103
                            1942
                                     1994
                                             0.01
## 27
             SNA1201
                            1929
                                     2016
                                             0.01
## 28
             SNA1202
                            1929
                                     2016
                                             0.01
## 29
             SNA1203
                            1927
                                     1983
                                             0.01
## 30
             SNA1301
                            1960
                                     2016
                                             0.01
## 31
                            1949
                                             0.01
             SNA1302
                                     2016
## 32
             SNA1303
                            1949
                                     2011
                                             0.01
## 33
             SNA1401
                            1930
                                     2016
                                             0.01
## 34
             SNA1402
                            1949
                                     2016
                                             0.01
## 35
             SNA1501
                            1952
                                     2016
                                             0.01
## 36
             SNA1502
                            1948
                                     2016
                                             0.01
## 37
             SNA1601
                                     2016
                                             0.01
                            1959
## 38
             SNA1602
                            1927
                                     2016
                                             0.01
## 39
                                             0.01
             SNA1701
                            1926
                                     2016
## 40
             SNA1702
                            1930
                                     2016
                                             0.01
## 41
             SNA1703
                            1931
                                     2016
                                             0.01
## 42
             SNA1801
                            1937
                                     2016
                                             0.01
## 43
             SNA1802
                            1936
                                             0.01
                                     2016
## 44
             SNA1901
                            1921
                                     2016
                                             0.01
## 45
             SNA1902
                            1924
                                     2016
                                             0.01
## 46
             SNA2001
                            1932
                                     2016
                                             0.01
## 47
             SNA2003
                            1932
                                     2016
                                             0.01
## 48
             SNA2002
                            1934
                                     2016
                                             0.01
## There does not appear to be a header in the rwl file
## There are 60 series
## 1
             SNB0101
                                             0.01
                            1899
                                     2016
## 2
             SNB0102
                            1902
                                     2016
                                             0.01
## 3
             SNB0201
                            1916
                                     2016
                                             0.01
## 4
                                             0.01
             SNB0202
                            1876
                                     2016
## 5
             SNB0301
                            1862
                                     2016
                                             0.01
## 6
             SNB0302
                            1862
                                     2016
                                             0.01
## 7
             SNB0401
                            1870
                                     2016
                                             0.01
## 8
             SNB0402
                            1866
                                     2016
                                             0.01
## 9
             SNB0501
                            1864
                                     2016
                                             0.01
             SNB0502g
## 10
                            1867
                                     2016
                                             0.01
## 11
             SNB0601
                            1860
                                     2016
                                             0.01
## 12
             SNB0602
                            1873
                                     2016
                                             0.01
## 13
                                             0.01
             SNB0701
                            1851
                                     2016
## 14
             SNB0702g
                            1861
                                     2016
                                             0.01
## 15
             SNB0801g
                            1851
                                     2016
                                             0.01
## 16
             SNB0802g
                                     2016
                                             0.01
                            1853
             SNB0901g
## 17
                            1836
                                     2016
                                             0.01
```

```
## 18
             SNB0902
                            1844
                                     2016
                                             0.01
## 19
                                     2016
             SNB1001
                            1868
                                             0.01
## 20
             SNB1002
                            1870
                                     2016
                                             0.01
                                     2016
## 21
                                             0.01
             SNB1101
                            1949
## 22
             SNB1102
                            1893
                                     2016
                                             0.01
## 23
             SNB1201
                            1867
                                     2016
                                             0.01
## 24
             SNB1202
                            1834
                                     2016
                                             0.01
## 25
             SNB1301
                            1865
                                     2016
                                             0.01
## 26
             SNB1302
                            1874
                                     2016
                                             0.01
## 27
             SNB1401
                            1843
                                     2016
                                             0.01
## 28
             SNB1402
                            1848
                                     2016
                                             0.01
## 29
             SNB1501
                            1898
                                     2016
                                             0.01
##
  30
             SNB1502
                            1927
                                     2016
                                             0.01
## 31
             SNB1601
                            1846
                                     2016
                                             0.01
## 32
             SNB1602
                            1857
                                     2016
                                             0.01
## 33
             SNB1701
                            1856
                                     2016
                                             0.01
## 34
             SNB1702
                            1853
                                     2016
                                             0.01
##
   35
             SNB1801
                            1827
                                     2016
                                             0.01
## 36
             SNB1802
                            1843
                                     2016
                                             0.01
## 37
             SNB1901
                            1888
                                     2016
                                             0.01
## 38
             SNB1902
                            1901
                                     2016
                                             0.01
## 39
             SNB2001
                            1830
                                     2016
                                             0.01
## 40
             SNB2002g
                            1837
                                     2016
                                             0.01
## 41
             SNB2101
                            1863
                                     2016
                                             0.01
## 42
             SNB2102
                            1858
                                     2016
                                             0.01
## 43
             SNB2201g
                            1819
                                     2016
                                             0.01
## 44
                            1822
                                     2016
             SNB2202g
                                             0.01
## 45
             SNB2301g
                            1832
                                     2016
                                             0.01
## 46
             SNB2302
                            1819
                                     2016
                                             0.01
## 47
             SNB2401
                            1829
                                     2016
                                             0.01
## 48
             SNB2402
                            1831
                                     2016
                                             0.01
## 49
             SNB2501
                            1831
                                     2016
                                             0.01
## 50
             SNB2502
                            1839
                                     2016
                                             0.01
## 51
             SNB2601
                            1872
                                     2016
                                             0.01
## 52
             SNB2602
                            1867
                                     2016
                                             0.01
## 53
             SNB2701
                            1865
                                     2016
                                             0.01
## 54
             SNB2702g
                            1863
                                     2016
                                             0.01
## 55
                                             0.01
             SNB2801
                            1860
                                     2016
## 56
             SNB2802
                            1866
                                     2016
                                             0.01
## 57
             SNB2901
                            1877
                                     2016
                                             0.01
## 58
             SNB2902
                            1892
                                     2016
                                             0.01
## 59
             SNB3001
                            1867
                                     2016
                                             0.01
## 60
             SNB3002
                            1874
                                     2016
                                             0.01
source(paste0(di, 'script/R/rw_byTree.R'))
source(paste0(di, 'script/R/bai_piovesan.R'))
source(paste0(di, 'script/R/baiResilience.R'))
```

• Crear dataframes rwl por cada sitio CA_High, CA_Low, SJ_High. SJ_Low

```
# Replace SNA by SJ and SNB by CA
names(ca) <- stringr::str_replace(names(ca), "SNB", "CA")
names(sj) <- stringr::str_replace(names(sj), "SNA", "SJ")
# Remove g in name of some cores of CA.</pre>
```

• Lectura y preparación de datos de diámetro

```
# Prepare Diameter data
# Compute diameter (mm)
compete <- compete %>%
  mutate(dn_mm = (perim_mm / pi))
# Change name focal according to loc
compete <- compete %>%
  mutate(id_focalLoc = stringr::str_replace_all(id_focal, c("A" = "SJ", "B" = "CA")))
# Get only focal trees, and only selected variables
ft <- compete %>%
 filter(sp=='Focal') %>%
 filter(id_focal!='Fresno') %>%
 dplyr::select(id_focal, id_focalLoc, loc, dn_mm, height_cm)
# Set levels of eleveation
ca_lowcode <- c(paste0('CA', str_pad(1:10, 2, pad='0')),</pre>
            paste0('CA', 26:30))
ca_highcode <- paste0('CA', 11:25)</pre>
ft <- ft %>%
  mutate(site = as.factor(
    ifelse(id focalLoc %in% ca lowcode, 'CAL',
           ifelse(id_focalLoc %in% ca_highcode, 'CAH', 'SJ'))))
```

Aggregate RW by tree

- Agregar valores medios de RW por site (obtenemos sj_tree / caL_tree, caH_tree)
- ver fun rw_byTree o utilizar treeMean (dplR)

```
# Remember snc = structure of core name SJ0101 (site | tree | core)
sj_tree <- rw_byTree(sj, snc =c(2,2,2), locname = 'SJ')
caL_tree <- rw_byTree(caL, snc =c(2,2,2), locname = 'CA')
caH_tree <- rw_byTree(caH, snc =c(2,2,2), locname = 'CA')</pre>
```

• Crear diferentes dataset de diametro por sitio

```
diam <- ft %>%
  mutate(diameter = dn_mm,
    id = id_focalLoc) %>%
```

```
dplyr::select(id, diameter, site) %>%
    split(.$site)

d_caH <- diam$CAH[,c('id','diameter')]
d_caL <- diam$CAL[,c('id','diameter')]
d_sj <- diam$SJ[,c('id','diameter')]</pre>
```

Cómputo del BAI por site

• He construido una funcion para el computo del BAI, teniendo en cuenta la aproximación de (Piovesa et al. 2008). Es similar a bai.out

```
bai_sj <- bai_piovesan(rwdf = sj_tree, diam_df = d_sj)
bai_caH <- bai_piovesan(rwdf = caH_tree, diam_df = d_caH)
bai_caL <- bai_piovesan(rwdf = caL_tree, diam_df = d_caL)

# Set class to bai object
# Esto es para que funcionen algunas otras funciones de dplR
bais <- c('bai_sj', 'bai_caH', 'bai_caL')

for (i in bais){
    aux <- get(i)
    class(aux) <- c('rwl', 'data.frame')
    assign(i, aux)
}</pre>
```

Resilience

- Computar métricas de resiliencia BAI para los tres sitios.
- Computar tres eventos climáticos: 1995, 2005, 2012
- Computar dos ventanas temporales: 2 y 3

```
# Drought years
dyears <- c(1995, 2005, 2012)

# SJ

res_4_sj <- baiResilience(bai_sj, event_years = dyears, window = 4)
res_3_sj <- baiResilience(bai_sj, event_years = dyears, window = 3)
res_2_sj <- baiResilience(bai_sj, event_years = dyears, window = 2)

# caL

res_4_caL <- baiResilience(bai_caL, event_years = dyears, window = 4)
res_3_caL <- baiResilience(bai_caL, event_years = dyears, window = 3)
res_2_caL <- baiResilience(bai_caL, event_years = dyears, window = 2)

# caH

res_4_caH <- baiResilience(bai_caH, event_years = dyears, window = 4)
res_3_caH <- baiResilience(bai_caH, event_years = dyears, window = 3)
res_2_caH <- baiResilience(bai_caH, event_years = dyears, window = 3)
res_2_caH <- baiResilience(bai_caH, event_years = dyears, window = 2)</pre>
```

Computar correlaciones ventanas temporales

```
# Vector with objects name
obj <- c('res_2_sj', 'res_3_sj', 'res_4_sj',
         'res_2_caL', 'res_3_caL', 'res_4_caL',
         'res_2_caH', 'res_3_caH', 'res_4_caH')
correla_ws <- c()</pre>
for (i in obj){
  x <- get(i)
  xres <- x$resilience</pre>
  out <- xres %>%
    mutate(ws = paste0('ws_', as.character(str_extract(i, "([0-9])"))),
           site = str_replace(i, "res_[0-9]_", '')) %>%
    dplyr::select(-disturb_year, -tree)
  correla_ws <- bind_rows(correla_ws, out)</pre>
}
# Split by window size
correla <- correla_ws %>% split(.$ws)
# Change names
names(correla[["ws_2"]])[1:4] <- paste0(names(correla[["ws_2"]])[1:4], '2')
names(correla[["ws_3"]])[1:4] <- paste0(names(correla[["ws_3"]])[1:4], '3')
names(correla[["ws_4"]])[1:4] <- paste0(names(correla[["ws_4"]])[1:4], '4')
cor2 <- correla[["ws_2"]] %>% dplyr::select(-ws) %>% mutate(ind = row_number())
cor3 <- correla[["ws_3"]] %>% dplyr::select(-ws) %>% mutate(ind = row_number())
cor4 <- correla[["ws_4"]] %>% dplyr::select(-ws) %>% mutate(ind = row_number())
correlations <- inner_join(cor2, cor3, by='ind') %% inner_join(cor4, by='ind')</pre>
# Resistance
aux_coefs <- c()</pre>
model <- lm(rt2~rt3, data=correlations)</pre>
p_rt23 <- correlations %>% ggplot(aes(rt2, rt3)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rt (R2) = ', round(summary(model)$r.squared, 3))) +
 theme(legend.position = c(.2, .75))
aux <- as.data.frame(cbind('rt','2-3', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rt2~rt4, data=correlations)</pre>
p_rt24 <- correlations %>% ggplot(aes(rt2, rt4)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rt (R2) = ', round(summary(model)$r.squared, 3))) +
 theme(legend.position = 'none')
```

```
aux <- as.data.frame(cbind('rt','2-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rt3~rt4, data=correlations)</pre>
p_rt34 <- correlations %>% ggplot(aes(rt3, rt4)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rt (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = 'none')
aux <- as.data.frame(cbind('rt', '3-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
grid.arrange(p_rt23, p_rt24, p_rt34,ncol=3)
   rt (R2) = 0.917
                                     rt(R2) = 0.804
                                                                      rt(R2) = 0.954
 0.8
<del>1</del>3
                                 <u>‡</u>
                                                                   <del>7</del>
                                   0.5
# Recovery
model <- lm(rc2~rc3, data=correlations)</pre>
p_rc23 <- correlations %>% ggplot(aes(rc2, rc3)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rc (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = c(.2, .75))
aux <- as.data.frame(cbind('rc','2-3', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rc2~rc4, data=correlations)</pre>
p rc24 <- correlations %>% ggplot(aes(rc2, rc4)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
```

ggtitle(paste('rc (R2) = ', round(summary(model)\$r.squared, 3))) +

```
theme(legend.position = 'none')
aux <- as.data.frame(cbind('rc','2-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rc3~rc4, data=correlations)</pre>
p_rc34 <- correlations %>% ggplot(aes(rc3, rc4)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rc (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = 'none')
aux <- as.data.frame(cbind('rc','3-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
grid.arrange(p_rc23, p_rc24, p_rc34,ncol=3)
  rc(R2) = 0.94
                                   rc(R2) = 0.875
                                                                   rc(R2) = 0.977
င္ပ
                                5
                                                                 5
# Resilience
model <- lm(rs2~rs3, data=correlations)</pre>
p_rs23 <- correlations %>% ggplot(aes(rs2, rs3)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rs (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = c(.2, .75))
aux <- as.data.frame(cbind('rs','2-3', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rs2~rs4, data=correlations)</pre>
p_rs24 <- correlations %>% ggplot(aes(rs2, rs4)) +
```

```
geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rs (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = 'none')
aux <- as.data.frame(cbind('rs','2-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rs3~rs4, data=correlations)</pre>
p rs34 <- correlations %>% ggplot(aes(rs3, rs4)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rs (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = 'none')
aux <- as.data.frame(cbind('rs','3-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
grid.arrange(p_rs23, p_rs24, p_rs34,ncol=3)
  rs(R2) = 0.887
                                   rs(R2) = 0.764
                                                                   rs(R2) = 0.955
rs3
                                rs4
                                                                rs4
# Relative Resilience
model <- lm(rrs2~rrs3, data=correlations)</pre>
p_rrs23 <- correlations %>% ggplot(aes(rrs2, rrs3)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rrs (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = c(.2, .75))
aux <- as.data.frame(cbind('rrs','2-3', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rrs2~rrs4, data=correlations)</pre>
p_rrs24 <- correlations %>% ggplot(aes(rrs2, rrs4)) +
```

```
geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rrs (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = 'none')
aux <- as.data.frame(cbind('rrs','2-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
model <- lm(rrs3~rrs4, data=correlations)</pre>
p rrs34 <- correlations %>% ggplot(aes(rrs3, rrs4)) +
  geom_point(aes(colour=site.x)) + theme_bw() + geom_smooth(method = 'lm', se=FALSE) +
  ggtitle(paste('rrs (R2) = ', round(summary(model)$r.squared, 3))) +
  theme(legend.position = 'none')
aux <- as.data.frame(cbind('rrs','3-4', as.numeric(summary(model)$r.squared)))</pre>
aux_coefs <- rbind(aux_coefs, aux)</pre>
grid.arrange(p_rrs23, p_rrs24, p_rrs34,ncol=3)
  rrs(R2) = 0.914
                                                                    rrs(R2) = 0.979
                                   rrs(R2) = 0.848
rrs3
                                 rrs4
                                                                 rrs4
                                                                                 rrs3
names(aux_coefs) <- c('var', 'window_size', 'r2')</pre>
write.csv(aux_coefs, file=paste0(di, '/out/correla_resilience/correla_window_size.csv'), row.names = F)
```

aux_coefs %>% pander()

var	window_size	r2
rt	2-3	0.916882284149449
rt	2-4	0.804404303544226
rt	3-4	0.954056995082479
rc	2-3	0.940435462578806

var	window_size	r2
rc	2-4	0.875357103621433
rc	3-4	0.977309191655523
rs	2-3	0.887274876125786
rs	2-4	0.764147394080222
rs	3-4	0.955085073886915
rrs	2-3	0.914381250472491
rrs	2-4	0.848277808345292
rrs	3-4	0.978980936308473

Nos quedamos con 3 años de ventana temporal.

Plots Crecimiento

Boxplot with outliers

Mean + se


```
pgrowht <- g %>%
  mutate(disturb = dplyr::recode(disturb, dr = '1_dr', pre = '0_pre', post = '2_post')) %>%
  group_by(disturb, disturb_year, site) %>%
  summarise(mean = mean(mean_period),
            sd = sd(mean_period),
            se = sd/sqrt(length(mean_period))) %>%
  ggplot(aes(y=mean/100, x=disturb, colour=site)) +
  geom_errorbar(aes(ymin=mean/100 - se/100,
                    ymax=mean/100 + se/100),
                width = 0.15) +
  geom_point(size=3, aes(shape=site), fill='white') +
  geom_line(aes(group=site))+
  facet_wrap(~disturb_year, scales='free_y') +
  theme_bw() + ylab('BAI (cm2/year)') +
  theme(panel.grid = element_blank())
pgrowht
```


site	${\it disturb_year}$	disturb	mean	sd	se
SJ	1995	0_pre	4.949	2.402	0.5371
SJ	1995	1 _dr	3.102	1.395	0.3119
SJ	1995	2 _post	11.04	6.508	1.455
SJ	2005	0 _pre	15.04	5.522	1.235
SJ	2005	1 _dr	6.437	2.358	0.5273
SJ	2005	2 _post	6.967	2.41	0.5388
SJ	2012	0 _pre	13.67	6.458	1.444
SJ	2012	1 _dr	9.729	3.218	0.7196
SJ	2012	2 _post	13.8	4.651	1.04
caH	1995	0 _pre	20.08	24.07	6.215
caH	1995	1 _dr	9.923	9.846	2.542
caH	1995	2 _post	23.74	27.14	7.008
caH	2005	0 _pre	27.22	25.58	6.605
caH	2005	1 _dr	23.29	21.06	5.437
caH	2005	2 _post	20.96	21.79	5.627
caH	2012	0 _pre	31.76	32.29	8.336

site	disturb_year	disturb	mean	sd	se
caH	2012	1 _dr	24.02	25.33	6.541
caH	2012	2 _post	24.55	25.22	6.511
caL	1995	0 _pre	9.855	5.081	1.312
caL	1995	1_dr	5.577	2.23	0.5757
caL	1995	2 _post	10.07	5.501	1.42
caL	2005	0 _pre	13.7	6.73	1.738
caL	2005	1 _dr	12.19	6.549	1.691
caL	2005	2 _post	9.832	4.308	1.112
caL	2012	0 _pre	15.51	7.572	1.955
caL	2012	1_dr	14.45	7.411	1.914
caL	2012	2 _post	13.72	7.05	1.82

Anovas Resiliencia

```
# Prepara data
rsj <- res_3_sj$resilience %>% mutate(site='SJ')
rcaL<- res_3_caL$resilience %>% mutate(site='caL')
rcaH <- res_3_caH$resilience %>% mutate(site='caH')

re <- bind_rows(rsj, rcaL, rcaH)
re$disturb_year <- as.factor(re$disturb_year)
re$site <- as.factor(re$site)

# Export csv
write.csv(re, file=pasteO(di, 'data/resilience/resilience_bai.csv'), row.names = FALSE)</pre>
```

Asumptions

• Explorar si se cumplen los supuestos de normalidad y homocedasticidad. Tenemos que comprobar que cada uno de los grupos son normales (1995,2005,2012; site: SJ, CaH, CaL; e interactions)

```
#tests
fk <- fligner.test(myformula, data = df)
lv <- leveneTest(myformula, data = df)
# out
hv$fk_stat <- fk$statistic
hv$fk_pvalue <- fk$p.value
hv$lev_stat <- lv$`F value`[1]
hv$lev_pvalue <- lv$`Pr(>F)`[1]
hv$factor <- f
hv <- as.data.frame(hv)
row.names(hv) <- NULL

out_factores <- rbind(out_factores, hv)}
return(out_factores)
}</pre>
```

Normalidad

```
# See auxiliar::shapirosNormal
### Resilience
nrsA <- shapirosNormal(re, resp_var = rs, 'disturb_year')</pre>
nrsA$var <- 'rs'</pre>
nrsB <- shapirosNormal(re, resp_var = rs, 'site')</pre>
nrsB$var <- 'rs'</pre>
nrsAB <- shapirosNormal(re, resp_var = rs, c('disturb_year', 'site'))</pre>
nrsAB$var <- 'rs'</pre>
### Recovery
nrcA <- shapirosNormal(re, resp_var = rc, 'disturb_year')</pre>
nrcA$var <- 'rc'</pre>
nrcB <- shapirosNormal(re, resp_var = rc, 'site')</pre>
nrcB$var <- 'rc'</pre>
nrcAB <- shapirosNormal(re, resp_var = rc, c('disturb_year','site'))</pre>
nrcAB$var <- 'rc'</pre>
### Resistance
nrtA <- shapirosNormal(re, resp_var = rt, 'disturb_year')</pre>
nrtA$var <- 'rt'</pre>
nrtB <- shapirosNormal(re, resp_var = rt, 'site')</pre>
nrtB$var <- 'rt'</pre>
nrtAB <- shapirosNormal(re, resp_var = rt, c('disturb_year', 'site'))</pre>
nrtAB$var <- 'rt'</pre>
### Relative Resilience
nrrsA <- shapirosNormal(re, resp_var = rrs, 'disturb_year')</pre>
nrrsA$var <- 'rrs'</pre>
nrrsB <- shapirosNormal(re, resp_var = rrs, 'site')</pre>
nrrsB$var <- 'rrs'
nrrsAB <- shapirosNormal(re, resp_var = rrs, c('disturb_year','site'))</pre>
```

```
nrrsAB$var <- 'rrs'
normtestAB <- rbind(nrcAB, nrtAB, nrsAB, nrrsAB)
normtestAB %>% pander()
```

disturb_year	site	statistic	p_value	var
1995	SJ	0.7989	0.00083	rc
1995	$_{\mathrm{caH}}$	0.9388	0.3676	$_{\rm rc}$
1995	caL	0.8746	0.03943	rc
2005	SJ	0.9849	0.9806	$_{\rm rc}$
2005	caH	0.958	0.658	$_{\rm rc}$
2005	caL	0.928	0.2543	$_{\rm rc}$
2012	SJ	0.945	0.2979	$_{\rm rc}$
2012	caH	0.8691	0.03275	rc
2012	caL	0.9628	0.7418	rc
1995	SJ	0.9583	0.5109	rt
1995	caH	0.919	0.1861	rt
1995	caL	0.9581	0.6587	rt
2005	SJ	0.9286	0.1453	rt
2005	caH	0.9733	0.9033	rt
2005	caL	0.9632	0.7472	rt
2012	SJ	0.9597	0.5371	rt
2012	caH	0.9797	0.9676	rt
2012	caL	0.8614	0.02526	rt
1995	SJ	0.8921	0.02936	$_{\rm rs}$
1995	caH	0.8123	0.00531	$_{\rm rs}$
1995	caL	0.9826	0.9844	$_{\rm rs}$
2005	SJ	0.9191	0.09531	$_{\rm rs}$
2005	caH	0.9316	0.2887	$_{\rm rs}$
2005	caL	0.9163	0.1689	rs
2012	SJ	0.8959	0.0345	rs
2012	caH	0.9512	0.5435	rs
2012	caL	0.9275	0.2502	rs
1995	SJ	0.8511	0.00556	rrs
1995	caH	0.8753	0.04041	rrs
1995	caL	0.9468	0.4759	rrs
2005	SJ	0.9638	0.6222	rrs
2005	$_{\mathrm{caH}}$	0.9517	0.551	rrs
2005	caL	0.9489	0.5077	rrs
2012	SJ	0.9657	0.6639	rrs
2012	caH	0.7872	0.00253	rrs
2012	caL	0.9734	0.9052	rrs

• No se cumplen los requisitos de normalidad

Heterocedasticidad

```
## See auxiliar::homogetest
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('rs', 'rc', 'rt', 'rrs')
homo <- c()

for (i in responses){
   ht <- homogetest(resp_var = i, factores = factores, df = re)
   ht <- ht %>% mutate(response = i)
   homo <- rbind(homo, ht)
}

homo %>% pander()
```

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
35.03	2.472e-08	16.5	3.436e-07	disturb_year	rs
44.13	2.613e-10	19.31	3.573e-08	site	$_{ m rs}$
41.88	1.425 e - 06	9.072	5.231e-10	interaction(disturb_year,	rs
				site)	
35.96	1.557e-08	14.78	1.414e-06	$disturb_year$	rc
12.41	0.002015	5.564	0.004685	site	$_{\rm rc}$
62.94	1.232e-10	8.321	3.315e-09	interaction(disturb_year,	rc
				site)	
25.59	2.778e-06	15.59	7.267e-07	disturb_year	rt
0.6251	0.7316	0.3586	0.6993	site	rt
14.53	0.06902	1.782	0.08539	interaction(disturb_year,	rt
				site)	
40.59	1.537e-09	17.16	2.003e-07	disturb_year	rrs
13.99	0.0009147	7.446	0.0008313	site	rrs
54.08	6.67e-09	9.558	1.618e-10	interaction(disturb_year,	rrs
				site)	

- Tampoco se cumplen los requisitos de homogeneidad de varianzas entre grupos
- Probamos a transformar los datos con log y reanalizar los supuestos de homocedasticidad

```
factores <- c('disturb_year', 'site', 'interaction(disturb_year, site)')
responses <- c('logrs', 'logrc', 'logrt', 'logrrs')
homo_log <- c()

re <- re %>%
    mutate(
    logrs = log(rs),
    logrc = log(rc),
    logrt = log(rc),
    logrrs = log(rrs)
)
```

```
for (i in responses){
   ht <- homogetest(resp_var = i, factores = factores, df = re)
   ht <- ht %>% mutate(response = i)
   homo_log <- rbind(homo_log, ht)
}
homo_log %>% pander()
```

fk_stat	fk_pvalue	lev_stat	lev_pvalue	factor	response
18.09	0.000118	9.431	0.0001401	disturb_year	logrs
41.3	1.077e-09	30.45	8.633e-12	site	$\log rs$
22.44	0.004155	3.336	0.001586	interaction(disturb_year,	$\log rs$
				site)	
8.671	0.01309	6.408	0.002147	disturb_year	logrc
5.079	0.0789	2.769	0.06602	site	logrc
25.48	0.001286	4.143	0.0001806	interaction(disturb_year,	logrc
				site)	
8.671	0.01309	6.408	0.002147	disturb_year	logrt
5.079	0.0789	2.769	0.06602	site	logrt
25.48	0.001286	4.143	0.0001806	interaction(disturb_year,	logrt
				site)	
2.434	0.2961	1.511	0.2256	disturb_year	$\log rrs$
2.644	0.2666	0.9344	0.3961	site	logrrs
5.803	0.6692	0.694	0.696	interaction(disturb_year,	logrrs
				site)	

• Tampoco se cumplen

Custom functions

```
out <- c()
  out$model_coeff <- model_coeff</pre>
  out$model_summary <- model_summary</pre>
  out$mymodel <- mymodel</pre>
  return(out)
}
# Post-Hoc comparison
phc <- function(mymodel, resp_var){</pre>
  require(lsmeans)
  # Disturb Event
  ph_event <- lsmeans(mymodel, pairwise ~ disturb_year, adjust = "bon")</pre>
  # differences letters
  cld_event <- cld(ph_event, alpha</pre>
                                      = 0.01,
                    Letters = letters,
                    adjust = "bon")
  # Site
  ph_site <- lsmeans(mymodel, pairwise ~ site, adjust = "bon")</pre>
  cld_site <- cld(ph_site, alpha = 0.01,</pre>
                  Letters = letters,
                  adjust = "bon")
  # interaction
  ph_i <- lsmeans(mymodel, pairwise ~ disturb_year:site, adjust = "bon")</pre>
  cld_i \leftarrow cld(ph_i, alpha = 0.01,
                  Letters = letters,
                  adjust = "bon")
  # Objets for plot
  aux_ph_site <- as.data.frame(summary(ph_site$lsmeans))</pre>
  aux_ph_site <- aux_ph_site %>% mutate(var = resp_var)
  aux_ph_event <- as.data.frame(summary(ph_event$lsmeans))</pre>
  aux ph event <- aux ph event %>% mutate(var = resp var)
  aux_ph_i <- as.data.frame(summary(ph_i$lsmeans))</pre>
  aux_ph_i <- aux_ph_i %>% mutate(var = resp_var)
  # Return objects
  cat('\n### Event ###\n')
  print(ph_event)
  print(cld_event)
  cat('\n### Clu pop ###\n')
  print(ph_site)
  print(cld_site)
  cat('\n### Event:Clu pop ###\n')
  print(ph_i)
  return(list(aux_ph_site, aux_ph_event, aux_ph_i, cld_site, cld_event, cld_i))
```

OJO SOLO 2005 y 2012

```
# Only 2005 and 2012
re <- re %>% filter(disturb_year != 1995) %>% as.data.frame()
vars <- c('disturb_year','site')
re$disturb_year <- factor(re$disturb_year)</pre>
```

Recovery

Table 6: ANOVA table: rc

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	1.316	1.316	32.78	0
site	2	2.847	1.424	35.45	0
disturb_year:site	2	0.1961	0.09805	2.442	0.09253
Residuals	94	3.775	0.04016		

```
gm <- aov_rc$model_summary
gm <- apply(gm, 1, formatC, digits = 2, format = "f") %>% t()
colnames(gm) <- paste0("$",c("R^2","\mathrm{adj}R^2","\sigma_e","F","p","df_m","\mathrm{logLik}","AI
rownames(gm) <- "Statistic"
pander(t(gm))</pre>
```

	Statistic
R^2	0.54
$\mathrm{adj}R^2$	0.51
σ_e	0.20
F	21.71
p	0.00
df_m	6.00
$\log \mathrm{Lik}$	21.95
AIC	-29.89
BIC	-11.66
dev	3.77
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rc$mymodel</pre>
postH_rc <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
##
## ### Event ###
## $1smeans
## disturb_year
                                   SE df lower.CL upper.CL
                    lsmean
                 0.9460722 0.02860151 94 0.8892832 1.002861
                 1.1643064 0.02860151 94 1.1075175 1.221095
## 2012
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
##
## $contrasts
## contrast
                  estimate
                                   SE df t.ratio p.value
   2005 - 2012 -0.2182343 0.04044865 94 -5.395 <.0001
##
## Results are averaged over the levels of: site
##
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL .group
## 2005
                 0.9460722 0.02860151 94 0.8809216 1.011223
## 2012
                 1.1643064 0.02860151 94 1.0991558 1.229457
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
##
## ### Clu pop ###
## $1smeans
## site
                           SE df lower.CL upper.CL
           lsmean
        1.2803536 0.03168543 94 1.2174414 1.3432657
   caH 0.9853013 0.03658718 94 0.9126566 1.0579460
   caL 0.8999131 0.03658718 94 0.8272684 0.9725578
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                 SE df t.ratio p.value
              estimate
## SJ - caH 0.29505228 0.04840029 94
                                        6.096 <.0001
## SJ - caL 0.38044051 0.04840029 94
                                        7.860 < .0001
## caH - caL 0.08538823 0.05174209 94
                                        1.650 0.3067
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
## site
            lsmean
                           SE df lower.CL upper.CL .group
##
  caL 0.8999131 0.03658718 94 0.8107290 0.9890971 a
  caH 0.9853013 0.03658718 94 0.8961172 1.0744854
         1.2803536 0.03168543 94 1.2031179 1.3575893
##
## Results are averaged over the levels of: disturb_year
```

```
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                        lsmean
                                      SE df lower.CL upper.CL
                     1.1150292 0.04480996 94 1.0260579 1.2040004
##
   2005
                SJ
                SJ
## 2012
                     1.4456780 0.04480996 94 1.3567068 1.5346492
## 2005
                caH 0.8836738 0.05174209 94 0.7809387 0.9864089
## 2012
                caH 1.0869288 0.05174209 94 0.9841937 1.1896639
                caL 0.8395136 0.05174209 94 0.7367785 0.9422487
## 2005
## 2012
                caL 0.9603126 0.05174209 94 0.8575774 1.0630477
##
## Confidence level used: 0.95
##
## $contrasts
## contrast
                                          SE df t.ratio p.value
                          estimate
   2005,SJ - 2012,SJ
                       -0.33064881 0.06337085 94 -5.218 <.0001
## 2005,SJ - 2005,caH 0.23135538 0.06844835 94
                                                 3.380 0.0159
## 2005,SJ - 2012,caH 0.02810037 0.06844835 94
                                                  0.411 1.0000
## 2005,SJ - 2005,caL 0.27551559 0.06844835 94
                                                  4.025 0.0017
## 2005,SJ - 2012,caL 0.15471662 0.06844835 94
                                                  2.260 0.3916
## 2012,SJ - 2005,caH 0.56200419 0.06844835 94
                                                  8.211 <.0001
## 2012,SJ - 2012,caH 0.35874918 0.06844835 94
                                                  5.241 <.0001
## 2012,SJ - 2005,caL 0.60616440 0.06844835 94
                                                  8.856 <.0001
## 2012,SJ - 2012,caL
                                                  7.091 <.0001
                        0.48536543 0.06844835 94
## 2005,caH - 2012,caH -0.20325501 0.07317436 94 -2.778 0.0991
## 2005,caH - 2005,caL 0.04416021 0.07317436 94
                                                  0.603 1.0000
##
   2005, caH - 2012, caL -0.07663876 0.07317436 94
                                                -1.047 1.0000
## 2012,caH - 2005,caL 0.24741522 0.07317436 94
                                                  3.381 0.0158
## 2012,caH - 2012,caL 0.12661625 0.07317436 94
                                                  1.730 1.0000
## 2005,caL - 2012,caL -0.12079897 0.07317436 94 -1.651 1.0000
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resistance

Table 8: ANOVA table: rt

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.2122	0.2122	9.867	0.00225
site	2	1.666	0.833	38.74	0
disturb_year:site	2	0.8604	0.4302	20.01	0
Residuals	94	2.021	0.0215		

	Statistic
R^2	0.58
$adjR^2$	0.55
σ_e	0.15
F	25.47
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	53.18
AIC	-92.35
BIC	-74.11
dev	2.02
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rt$mymodel</pre>
postH_rt <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                   lsmean
                                   SE df lower.CL upper.CL
                0.7483129 0.02092964 94 0.7067567 0.7898692
## 2005
                0.8166033 0.02092964 94 0.7750470 0.8581596
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                    SE df t.ratio p.value
## 2005 - 2012 -0.06829036 0.02959898 94 -2.307 0.0232
## Results are averaged over the levels of: site
##
                                   SE df lower.CL upper.CL .group
## disturb_year
                    lsmean
## 2005
                 0.7483129 0.02092964 94 0.7006379 0.7959880 a
##
   2012
                 0.8166033 0.02092964 94 0.7689282 0.8642784 a
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
   site
                          SE df lower.CL upper.CL
           lsmean
        0.6139485 0.02318635 94 0.5679114 0.6599855
   caH 0.8196809 0.02677329 94 0.7665219 0.8728399
##
   caL 0.9137450 0.02677329 94 0.8605860 0.9669040
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
  contrast
                estimate
                                 SE df t.ratio p.value
## SJ - caH -0.20573248 0.03541773 94 -5.809 <.0001
   SJ - caL -0.29979653 0.03541773 94 -8.465 <.0001
   caH - caL -0.09406405 0.03786314 94 -2.484 0.0442
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                          SE df lower.CL upper.CL .group
   site
           lsmean
##
   SJ
        0.6139485 0.02318635 94 0.5574299 0.6704670
##
   caH 0.8196809 0.02677329 94 0.7544190 0.8849429
   caL 0.9137450 0.02677329 94 0.8484830 0.9790069
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                        lsmean
                                       SE df lower.CL upper.CL
## 2005
                     0.4606116 0.03279045 94 0.3955054 0.5257178
## 2012
                     0.7672853 0.03279045 94 0.7021791 0.8323915
                S.I
##
   2005
                caH 0.8845609 0.03786314 94 0.8093827 0.9597391
## 2012
                caH 0.7548010 0.03786314 94 0.6796228 0.8299791
##
  2005
                caL 0.8997663 0.03786314 94 0.8245881 0.9749444
##
   2012
                caL 0.9277237 0.03786314 94 0.8525455 1.0029018
##
## Confidence level used: 0.95
##
## $contrasts
   contrast
                          estimate
                                           SE df t.ratio p.value
   2005,SJ - 2012,SJ
                       -0.30667361 0.04637269 94
                                                  -6.613 <.0001
   2005,SJ - 2005,caH
                       -0.42394925 0.05008823 94
                                                  -8.464 <.0001
   2005,SJ - 2012,caH
                                                  -5.873
                                                          <.0001
##
                       -0.29418931 0.05008823 94
##
   2005,SJ - 2005,caL
                       -0.43915464 0.05008823 94
                                                  -8.768 <.0001
##
   2005,SJ - 2012,caL
                       -0.46711203 0.05008823 94
                                                  -9.326 <.0001
   2012,SJ - 2005,caH
                       -0.11727564 0.05008823 94
                                                  -2.341 0.3199
##
   2012,SJ - 2012,caH
                        0.01248430 0.05008823 94
                                                   0.249 1.0000
## 2012,SJ - 2005,caL
                       -0.13248102 0.05008823 94
                                                  -2.645 0.1436
## 2012,SJ - 2012,caL -0.16043842 0.05008823 94
                                                  -3.203 0.0278
## 2005,caH - 2012,caH 0.12975994 0.05354657 94
                                                   2.423 0.2594
## 2005,caH - 2005,caL -0.01520539 0.05354657 94 -0.284 1.0000
```

```
## 2005,caH - 2012,caL -0.04316278 0.05354657 94 -0.806 1.0000
## 2012,caH - 2005,caL -0.14496533 0.05354657 94 -2.707 0.1209
## 2012,caH - 2012,caL -0.17292272 0.05354657 94 -3.229 0.0256
## 2005,caL - 2012,caL -0.02795739 0.05354657 94 -0.522 1.0000
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

 pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Relative Resilience

Table 10: ANOVA table: rrs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	0.93	0.93	47.8	0
site	2	1.39	0.6952	35.73	0
disturb_year:site	2	0.145	0.07252	3.727	0.02769
Residuals	94	1.829	0.01946		

	Statistic
R^2	0.57
$\mathrm{adj}R^2$	0.55
σ_e	0.14
F	25.34
p	0.00
df_m	6.00
$\log \mathrm{Lik}$	58.18
AIC	-102.35
BIC	-84.12
dev	1.83
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rrs$mymodel</pre>
postH_rrs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                      lsmean
                                      SE df
                                                lower.CL
                                                            upper.CL
                 \hbox{-0.07268135} \ 0.01990865 \ 94 \ \hbox{-0.11221043} \ \hbox{-0.03315226}
## 2005
                  0.11047515 0.01990865 94 0.07094607 0.15000424
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                    SE df t.ratio p.value
## 2005 - 2012 -0.1831565 0.02815508 94 -6.505 <.0001
## Results are averaged over the levels of: site
##
## disturb_year
                      lsmean
                                      SE df
                                                lower.CL
                                                            upper.CL .group
## 2005
                 -0.07268135 0.01990865 94 -0.11803071 -0.02733199 a
##
    2012
                  0.11047515 0.01990865 94 0.06512579 0.15582451
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
                             SE df
##
   site
                                      lower.CL
                                                  upper.CL
              lsmean
         0.17544720 0.02205526 94 0.13165595
                                               0.21923844
##
   SJ
   caH -0.02596381 0.02546723 94 -0.07652958 0.02460197
##
##
        -0.09279268 0.02546723 94 -0.14335846 -0.04222691
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
   contrast
                                 SE df t.ratio p.value
                estimate
   SJ - caH 0.20141101 0.03368997 94
                                         5.978 <.0001
   SJ - caL 0.26823988 0.03368997 94
                                         7.962 < .0001
   caH - caL 0.06682887 0.03601610 94
##
                                         1.856 0.2000
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                             SE df
                                      lower.CL
   site
              lsmean
                                                  upper.CL .group
##
   caL
        -0.09279268 0.02546723 94 -0.15487101 -0.03071435
##
   caH -0.02596381 0.02546723 94 -0.08804214 0.03611452
         0.17544720 0.02205526 94 0.12168579 0.22920861
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                          SE df
                                                   lower.CL
                                                               upper.CL
                           1smean
## 2005
                 SJ
                       0.03528048 0.03119085 94 -0.02664969
                                                             0.09721065
## 2012
                 SJ
                       0.31561391 0.03119085 94 0.25368374
                                                             0.37754408
##
   2005
                     -0.11035142 0.03601610 94 -0.18186223 -0.03884062
                 caH
##
   2012
                       0.05842381 0.03601610 94 -0.01308700 0.12993461
                 caH
##
  2005
                 caL -0.14297310 0.03601610 94 -0.21448390 -0.07146230
##
   2012
                 caL -0.04261226 0.03601610 94 -0.11412307 0.02889854
##
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                           estimate
                                            SE df t.ratio p.value
   2005,SJ - 2012,SJ
                        -0.28033343 0.04411053 94
                                                          <.0001
##
                                                  -6.355
   2005,SJ - 2005,caH
                        0.14563191 0.04764482 94
                                                    3.057 0.0437
   2005,SJ - 2012,caH
                                                   -0.486
##
                       -0.02314333 0.04764482 94
                                                          1.0000
##
   2005,SJ - 2005,caL
                        0.17825358 0.04764482 94
                                                    3.741 0.0047
##
   2005,SJ - 2012,caL
                        0.07789274 0.04764482 94
                                                    1.635 1.0000
   2012,SJ - 2005,caH
                        0.42596534 0.04764482 94
                                                    8.940 <.0001
##
   2012,SJ - 2012,caH
                        0.25719010 0.04764482 94
                                                    5.398 < .0001
## 2012,SJ - 2005,caL
                        0.45858701 0.04764482 94
                                                    9.625
                                                          <.0001
## 2012,SJ - 2012,caL
                         0.35822618 0.04764482 94
                                                    7.519 <.0001
## 2005,caH - 2012,caH -0.16877523 0.05093445 94
                                                   -3.314 0.0196
## 2005,caH - 2005,caL 0.03262167 0.05093445 94
                                                    0.640 1.0000
```

```
## 2005,caH - 2012,caL -0.06773916 0.05093445 94 -1.330 1.0000
## 2012,caH - 2005,caL 0.20139691 0.05093445 94 3.954 0.0022
## 2012,caH - 2012,caL 0.10103607 0.05093445 94 1.984 0.7532
## 2005,caL - 2012,caL -0.10036083 0.05093445 94 -1.970 0.7760
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

 pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot

Resilience

Table 12: ANOVA table: rs

term	df	sumsq	meansq	statistic	p.value
disturb_year	1	2.031	2.031	66.58	0
site	2	0.01885	0.00942	0.309	0.7349
disturb_year:site	2	1.55	0.775	25.41	0
Residuals	94	2.867	0.0305		

	Statistic
R^2	0.56
$adjR^2$	0.53
σ_e	0.17
F	23.60
p	0.00
$d\!f_m$	6.00
$\log \mathrm{Lik}$	35.70
AIC	-57.41
BIC	-39.17
dev	2.87
df_e	94.00

```
# Post hoc Define model
mymodel <- aov_rs$mymodel</pre>
postH_rs <- phc(mymodel = mymodel, resp_var = resp_var)</pre>
## ### Event ###
## $1smeans
## disturb_year
                    lsmean
                                   SE df lower.CL upper.CL
                 0.6756316 0.02492546 94 0.6261415 0.7251217
## 2005
                 0.9270785 0.02492546 94 0.8775884 0.9765685
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## $contrasts
## contrast
                  estimate
                                   SE df t.ratio p.value
## 2005 - 2012 -0.2514469 0.03524992 94 -7.133 <.0001
## Results are averaged over the levels of: site
##
                                   SE df lower.CL upper.CL .group
## disturb_year
                    lsmean
## 2005
                 0.6756316 0.02492546 94 0.6188546 0.7324086 a
##
   2012
                 0.9270785 \ 0.02492546 \ 94 \ 0.8703014 \ 0.9838555
##
## Results are averaged over the levels of: site
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## significance level used: alpha = 0.01
## ### Clu pop ###
```

```
## $1smeans
   site
                          SE df lower.CL upper.CL
           lsmean
        0.7893957 0.02761300 94 0.7345694 0.8442219
   caH 0.7937171 0.03188475 94 0.7304092 0.8570250
##
   caL 0.8209523 0.03188475 94 0.7576444 0.8842602
##
## Results are averaged over the levels of: disturb year
## Confidence level used: 0.95
##
## $contrasts
   contrast
                 estimate
                                  SE df t.ratio p.value
## SJ - caH -0.004321471 0.04217956 94
                                         -0.102 1.0000
   SJ - caL -0.031556651 0.04217956 94 -0.748 1.0000
   caH - caL -0.027235180 0.04509185 94 -0.604 1.0000
##
##
## Results are averaged over the levels of: disturb_year
## P value adjustment: bonferroni method for 3 tests
##
##
                          SE df lower.CL upper.CL .group
   site
           lsmean
##
   SJ
        0.7893957 0.02761300 94 0.7220868 0.8567045
##
   caH 0.7937171 0.03188475 94 0.7159956 0.8714387
   caL 0.8209523 0.03188475 94 0.7432308 0.8986738
##
## Results are averaged over the levels of: disturb_year
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 3 estimates
## P value adjustment: bonferroni method for 3 tests
## significance level used: alpha = 0.01
##
## ### Event:Clu pop ###
## $1smeans
## disturb_year site
                                       SE df lower.CL upper.CL
                        lsmean
## 2005
                     0.4958921 0.03905068 94 0.4183561 0.5734282
## 2012
                     1.0828992 0.03905068 94 1.0053631 1.1604352
                S.I
##
   2005
                caH 0.7742095 0.04509185 94 0.6846786 0.8637404
## 2012
                caH 0.8132248 0.04509185 94 0.7236938 0.9027557
##
  2005
                caL 0.7567932 0.04509185 94 0.6672623 0.8463241
##
   2012
                caL 0.8851114 0.04509185 94 0.7955805 0.9746423
##
## Confidence level used: 0.95
##
## $contrasts
##
   contrast
                          estimate
                                           SE df t.ratio p.value
   2005,SJ - 2012,SJ
                       -0.58700705 0.05522601 94 -10.629 <.0001
##
   2005,SJ - 2005,caH
                       -0.27831735 0.05965091 94
                                                  -4.666 0.0002
   2005,SJ - 2012,caH
                                                  -5.320
##
                       -0.31733264 0.05965091 94
                                                          <.0001
##
   2005,SJ - 2005,caL
                       -0.26090106 0.05965091 94
                                                  -4.374 0.0005
##
   2005,SJ - 2012,caL
                       -0.38921929 0.05965091 94
                                                  -6.525 <.0001
   2012,SJ - 2005,caH
                        0.30868970 0.05965091 94
                                                   5.175 < .0001
##
   2012,SJ - 2012,caH
                        0.26967441 0.05965091 94
                                                   4.521 0.0003
## 2012,SJ - 2005,caL
                        0.32610599 0.05965091 94
                                                   5.467
                                                          <.0001
## 2012,SJ - 2012,caL
                        0.19778776 0.05965091 94
                                                   3.316 0.0195
## 2005,caH - 2012,caH -0.03901529 0.06376950 94
                                                  -0.612 1.0000
## 2005,caH - 2005,caL 0.01741629 0.06376950 94
                                                   0.273 1.0000
```

```
## 2005,caH - 2012,caL -0.11090194 0.06376950 94 -1.739 1.0000
## 2012,caH - 2005,caL 0.05643158 0.06376950 94 0.885 1.0000
## 2012,caH - 2012,caL -0.07188665 0.06376950 94 -1.127 1.0000
## 2005,caL - 2012,caL -0.12831823 0.06376950 94 -2.012 0.7059
##
## P value adjustment: bonferroni method for 15 tests
ps
```

site effect plot

 pd

disturb_year effect plot

picollapse

disturb_year*site effect plot

рi

disturb_year*site effect plot


```
plot_mds <- means_distub_site %>%
    ggplot(aes(x=site, y=lsmean, group=disturb_year, colour=disturb_year)) +
    geom_point(aes(shape=disturb_year), size=3) +
    geom_line() +
    theme_bw() + xlab('') + ylab('') +
    facet_wrap(~var, scales='free_y', ncol = 1) +
```

```
geom_text(aes(y=lsmean+SE, label=letras), nudge_x = 0.15)+
  theme(strip.background = element_rect(colour = "black", fill = "white"),
        legend.position = c(0.8, 0.93),
        legend.background = element_blank()) +
  scale_colour_manual(values = c(micolor, "red"))
plot mdsSE <- plot mds + geom errorbar(mierrorbarSE, size=.5, width=.15)</pre>
plot_mdsCI <- plot_mds + geom_errorbar(mierrorbar, size=.5, width=.15)</pre>
pdf(paste0(di, 'out/fig/resilience/interaction_plotsSE.pdf'), width=9, height = 9)
grid.arrange(plot_mdSE, plot_msSE, plot_mdsSE, ncol=3)
dev.off()
## pdf
##
pdf(paste0(di, 'out/fig/resilience/interaction_plotsCI.pdf'), width=9, height = 9)
grid.arrange(plot_mdCI, plot_msCI, plot_mdsCI, ncol=3)
dev.off()
## pdf
##
aovas_coeff <- aov_rc$model_coeff %>% mutate(var = 'rc') %>%
  bind_rows(aov_rt$model_coeff %>% mutate(var = 'rt')) %>%
  bind_rows(aov_rs$model_coeff %>% mutate(var = 'rs')) %>%
  bind_rows(aov_rrs$model_coeff%>% mutate(var = 'rrs'))
write.csv(aovas_coeff, file=paste0(di, '/out/anovas_resilience/anovas_statistics.csv'), row.names = F)
aovas_coeff %>% pander()
```

term	df	sumsq	meansq	statistic	p.value	var
disturb_year	1	1.316	1.316	32.78	1.228e-07	$_{ m rc}$
site	2	2.847	1.424	35.45	3.373e-12	rc
disturb_year:site	2	0.1961	0.09805	2.442	0.09253	rc
Residuals	94	3.775	0.04016	NA	NA	$_{\rm rc}$
$disturb_year$	1	0.2122	0.2122	9.867	0.00225	rt
site	2	1.666	0.833	38.74	5.363e-13	rt
$disturb_year:site$	2	0.8604	0.4302	20.01	5.77e-08	rt
Residuals	94	2.021	0.0215	NA	NA	rt
$disturb_year$	1	2.031	2.031	66.58	1.474e-12	$_{\rm rs}$
site	2	0.01885	0.009425	0.309	0.7349	$_{\rm rs}$
$disturb_year:site$	2	1.55	0.775	25.41	1.506e-09	$_{\rm rs}$
Residuals	94	2.867	0.0305	NA	NA	$_{\rm rs}$
$disturb_year$	1	0.93	0.93	47.8	5.63e-10	rrs
site	2	1.39	0.6952	35.73	2.874e-12	rrs
$disturb_year:site$	2	0.145	0.07252	3.727	0.02769	rrs
Residuals	94	1.829	0.01946	NA	NA	rrs

```
aovas_model_summary <- aov_rc$model_summary %>% mutate(var = 'rc') %>%
bind_rows(aov_rt$model_summary %>% mutate(var = 'rt')) %>%
bind_rows(aov_rs$model_summary %>% mutate(var = 'rs')) %>%
```

	rc	rt	rs	rrs
R^2	0.5359434	0.5753458	0.5566473	0.5741044
$\mathrm{adj}R^2$	0.5112596	0.5527578	0.5330647	0.5514503
σ_e	0.2003962	0.1466433	0.1746400	0.1394897
F	21.71230	25.47131	23.60416	25.34227
p	2.166716e-14	3.707920e-16	2.678847e-15	4.239928e-16
df_m	6	6	6	6
$\log \mathrm{Lik}$	21.94579	53.17511	35.70279	58.17634
AIC	-29.89157	-92.35023	-57.40558	-102.35268
BIC	-11.65538	-74.11404	-39.16939	-84.11649
dev	3.774913	2.021401	2.866917	1.828994
df_e	94	94	94	94
variable	rc	rt	rs	rrs

ROBUST ANOVA

- Ver Wilcox (2005, 2012)
- Vamos a realizar un Robust factorial ANOVA. En concreto:
- Two-way robust factorial ANOVA on M-estimator
- pkg WRS2

```
# Produce Huber M-estimators and confidence intervals by group
mest <- groupwiseHuber(formulaFull, data = df, ci.type = 'wald', conf.level = alpha)</pre>
mest_a <- groupwiseHuber(formula_A, data = df, ci.type = 'wald', conf.level = alpha)
mest_b <- groupwiseHuber(formula_B, data = df, ci.type = 'wald', conf.level = alpha)</pre>
# Two-way robust analysis
x <- pbad2way(formulaFull, data = df, est = "mom", nboot = nboot)
pbad2way(rs ~ disturb_year + site + disturb_year:site, data = df,
         est = "mom", nboot = nboot)
out_ra <- data.frame(</pre>
  term = c(x$varnames[2],
           x$varnames[3],
           paste0(x$varnames[2], ':', x$varnames[3])),
  p_value = c(x$A.p.value, x$B.p.value, x$AB.p.value))
# post-hoc
## factor A
pha <- pairwiseRobustTest(formula_A, data = df, est = "mom",</pre>
                           nboot = nboot, method="bonferroni")
## factor B
phb <- pairwiseRobustTest(formula_B, data = df, est = "mom",</pre>
                           nboot = nboot, method="bonferroni")
## interaction effect (AB)
phab <- pairwiseRobustTest(formula_AB, data = df, est = "mom",</pre>
                           nboot = nboot, method="bonferroni")
ph <- rbind(pha, phb, phab)
phRWS2 <- mcp2a(formulaFull, data=df, est = "mom", nboot = nboot)</pre>
out <- list()
out$mest <- mest # Huber M-estimators and Confidence Intervals
out$mest a <- mest a
out$mest_b <- mest_b
out$ra <- out_ra # Output for Two-way robust analysis (M-estimators)</pre>
out$ph <- ph # posthoc comparison usinng pairwiseRobustTest</pre>
out$pha <- pha
out$phb <- phb
out$phab <- phab
print(out_ra)
print(phRWS2)
return(out)
# if (exists('letters_phb')) {
# letters_phb <- letters_phb} else {</pre>
```

Resilience

```
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
                           p_value
                  term
## 1
          disturb_year 0.000000000
## 2
                  site 0.387000000
## 3 disturb_year:site 0.002333333
```

```
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                        psihat ci.lower ci.upper p-value
## disturb_year1
                      -0.66998 -0.97679 -0.45182 0.00000
                      -0.17216 -0.35069 0.14657 0.16933
## site1
## site2
                      -0.13328 -0.34062 0.14250 0.15500
                       0.03889 -0.20104 0.19615 0.48900
## site3
## disturb_year1:site1 -0.46693 -0.77465 -0.27194 0.00000
## disturb_year1:site2 -0.31564 -0.64915 -0.17700 0.00000
## disturb_year1:site3  0.15129 -0.09442  0.30994  0.12967
Rs Letters
x <-rars
cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01)
##
     Group Letter MonoLetter
## 1
        25
                а
## 2
      212
cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01)
## Error: No significant differences.
cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01)
       Group Letter MonoLetter
## 1
      25.SJ
                 a
## 2 212.SJ
                 b
                             b
## 3 25.caH
```

Recovery

4 212.caH

5 25.caL

6 212.caL

b

b

b

h

b

b

b

```
rarc <- robustANOVA(df=re, resp_var='rc', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
```

```
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
                  term p_value
## 1
          disturb_year 0.0000000
## 2
                  site 0.0000000
## 3 disturb_year:site 0.1103333
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
                         psihat ci.lower ci.upper p-value
##
## disturb_year1
                       -0.66711 -0.93820 -0.43296 0.00000
## site1
                        0.55891 0.31706 0.82280 0.00000
## site2
                        0.77967 0.55622 1.04044 0.00000
## site3
                        0.22076 0.04039
                                          0.41187 0.00600
## disturb_year1:site1 -0.09620 -0.37858 0.12712 0.16267
## disturb_year1:site2 -0.22864 -0.47713
                                          0.00636 0.02000
## disturb_year1:site3 -0.13244 -0.29751 0.07566 0.10233
Rc Letters
x <-rarc
cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01)
     Group Letter MonoLetter
## 1
        25
                a
                           b
       212
cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01)
##
     Group Letter MonoLetter
## 1
       SJ
                a
## 2
       caH
                b
                           b
## 3
       caL
                b
                           b
cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01)
##
       Group Letter MonoLetter
## 1
       25.SJ
                 ab
## 2 212.SJ
                  a
                            а
## 3 25.caH
                  b
                             b
## 4 212.caH
                  b
                             b
## 5 25.caL
                  b
                             b
## 6 212.caL
                  b
```

Resistance

```
rart <- robustANOVA(df=re, resp_var='rt', factores=factores,</pre>
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
                  term p_value
## 1
                         0.03
          disturb_year
                          0.00
                  site
## 3 disturb_year:site
                          0.00
## Call:
## mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)
##
##
                         psihat ci.lower ci.upper p-value
                       -0.22274 -0.42835 -0.03137 0.01567
## disturb_year1
## site1
                       -0.43120 -0.62443 -0.24446 0.00000
## site2
                       -0.59768 -0.80335 -0.44207 0.00000
## site3
                       -0.16648 -0.33531 -0.03738 0.00367
## disturb_year1:site1 -0.49622 -0.65830 -0.29071 0.00000
## disturb_year1:site2 -0.31961 -0.50850 -0.14224 0.00067
## disturb_year1:site3  0.17661  0.00272  0.30185  0.01600
Rt Letters
x <-rart
cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01)
## Error: No significant differences.
```

```
cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01)
##
     Group Letter MonoLetter
## 1
        SJ
                a
## 2
       caH
                b
                           b
## 3
       caL
                b
                           b
cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01)
       Group Letter MonoLetter
##
## 1
       25.SJ
                 a
                           a
## 2 212.SJ
                            bc
                 bc
## 3 25.caH
                 bc
                            bc
## 4 212.caH
                 b
                            b
## 5 25.caL
                 bc
                            bc
## 6 212.caL
                  С
Relative Resilience
rarrs <- robustANOVA(df=re, resp_var='rrs', factores=factores,
              alpha = 0.95, nboot = 3000, treshold = 0.01)
## [1] "comparison 1 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
##
##
## [1] "comparison 1 ..."
## [1] "comparison 2 ..."
## [1] "comparison 3 ..."
## [1] "comparison 4 ..."
## [1] "comparison 5 ..."
## [1] "comparison 6 ..."
## [1] "comparison 7 ..."
## [1] "comparison 8 ..."
## [1] "comparison 9 ..."
## [1] "comparison 10 ..."
## [1] "comparison 11 ..."
## [1] "comparison 12 ..."
## [1] "comparison 13 ..."
## [1] "comparison 14 ..."
## [1] "comparison 15 ..."
##
##
##
                  term
                        p_value
          disturb_year 0.0000000
## 1
                  site 0.0000000
## 3 disturb_year:site 0.1073333
```

mcp2a(formula = formulaFull, data = df, est = "mom", nboot = nboot)

Call:

```
## site1
                       0.38674 0.20053 0.55708 0.00000
                       0.55080 0.40886 0.73211 0.00000
## site2
## site3
                       0.16406 0.01979 0.35071 0.01000
## disturb_year1:site1 -0.07004 -0.28012 0.07136 0.10767
## disturb_year1:site2 -0.16885 -0.35463 -0.02702 0.00400
## disturb_year1:site3 -0.09881 -0.25424 0.08479 0.13767
Rt Letters
x <-rarrs
cldList(comparison = x$pha$Comparison, p.value = x$pha$p.adjust, threshold = 0.01)
     Group Letter MonoLetter
## 1
       25
               a
## 2
      212
cldList(comparison = x$phb$Comparison, p.value = x$phb$p.adjust, threshold = 0.01)
    Group Letter MonoLetter
## 1
       SJ
               a
## 2
      саН
              ab
                         ab
## 3
      caL
               b
                          b
cldList(comparison = x$phab$Comparison, p.value = x$phab$p.adjust, threshold = 0.01)
##
      Group Letter MonoLetter
## 1
      25.SJ
                 a
## 2 212.SJ
                 b
                            h
## 3 25.caH
```

psihat ci.lower ci.upper p-value -0.56395 -0.75068 -0.36376 0.00000

Estimadores de huber

4 212.caH

5 25.caL

6 212.caL

a

a

a

a

##

disturb_year1

```
rars$mest$var <- 'rs'</pre>
rarc$mest$var <- 'rc'
rart$mest$var <- 'rt'</pre>
rarrs$mest$var <- 'rrs'
mhuber <- rbind(rarc$mest, rart$mest, rars$mest, rarrs$mest)</pre>
mhuber %>% pander()
```

${\it disturb_year}$	site	\mathbf{n}	M.Huber	lower.ci	upper.ci	var
2005	SJ	20	1.112	1	1.224	$_{ m rc}$
2005	caH	15	0.8866	0.8003	0.973	rc
2005	caL	15	0.8321	0.7326	0.9315	rc
2012	SJ	20	1.446	1.322	1.569	rc
2012	caH	15	1.107	1.026	1.188	rc
2012	caL	15	0.952	0.8889	1.015	rc

disturb_year	site	n	M.Huber	lower.ci	upper.ci	var
2005	SJ	20	0.4454	0.3751	0.5158	$_{ m rt}$
2005	caH	15	0.8921	0.8091	0.9751	rt
2005	caL	15	0.9012	0.8132	0.9892	rt
2012	SJ	20	0.7687	0.6839	0.8534	rt
2012	caH	15	0.7534	0.6864	0.8204	rt
2012	caL	15	0.9263	0.9001	0.9526	rt
2005	SJ	20	0.4888	0.4213	0.5562	rs
2005	caH	15	0.7895	0.6913	0.8878	rs
2005	caL	15	0.7303	0.6118	0.8489	rs
2012	SJ	20	1.031	0.93	1.132	rs
2012	caH	15	0.8132	0.7413	0.8852	rs
2012	caL	15	0.8761	0.8394	0.9129	rs
2005	SJ	20	0.0426	-0.006558	0.09177	rrs
2005	caH	15	-0.1075	-0.1893	-0.02565	rrs
2005	caL	15	-0.1424	-0.2264	-0.05831	rrs
2012	SJ	20	0.3206	0.229	0.4122	rrs
2012	caH	15	0.08191	0.02746	0.1364	rrs
2012	caL	15	-0.0443	-0.1071	0.01848	rrs

```
rars$mest_a$var <- 'rs'
rarc$mest_a$var <- 'rc'
rart$mest_a$var <- 'rt'
rarrs$mest_a$var <- 'rrs'

mhuber_a <- rbind(rarc$mest_a, rart$mest_a, rarrs$mest_a)
mhuber_a %>% pander()
```

disturb_year	n	M.Huber	lower.ci	upper.ci	var
2005	50	0.9462	0.8794	1.013	rc
2012	50	1.161	1.081	1.24	$_{\rm rc}$
2005	50	0.721	0.6437	0.7984	rt
2012	50	0.8193	0.7758	0.8628	rt
2005	50	0.653	0.5852	0.7209	rs
2012	50	0.9107	0.8648	0.9567	rs
2005	50	-0.05594	-0.09931	-0.01257	rrs
2012	50	0.1223	0.05958	0.185	rrs

```
rars$mest_b$var <- 'rc'
rarc$mest_b$var <- 'rc'
rart$mest_b$var <- 'rt'
rarrs$mest_b$var <- 'rrs'

mhuber_b <- rbind(rarc$mest_b, rart$mest_b, rarrs$mest_b)
mhuber_b %>% pander()
```

site	n	M.Huber	lower.ci	upper.ci	var
SJ	40	1.282	1.179	1.386	rc
caH	30	0.9962	0.9171	1.075	$_{\rm rc}$
caL	30	0.8972	0.8431	0.9514	rc

site	n	M.Huber	lower.ci	upper.ci	var
SJ	40	0.6116	0.5387	0.6846	$_{ m rt}$
caH	30	0.8157	0.7549	0.8764	rt
caL	30	0.9209	0.8834	0.9584	rt
SJ	40	0.7694	0.6524	0.8864	rs
caH	30	0.7975	0.7439	0.8511	rs
caL	30	0.8172	0.7553	0.8791	rs
SJ	40	0.1656	0.09482	0.2364	rrs
caH	30	-0.006329	-0.06678	0.05412	rrs
caL	30	-0.09387	-0.1455	-0.04226	rrs

Pairwise comparison

```
rars$ph$var <- 'rs'
rarc$ph$var <- 'rc'
rart$ph$var <- 'rt'
rarrs$ph$var <- 'rrs'

pairwise <- rbind(rarc$ph, rart$ph, rarrs$ph)
pairwise %>% pander()
```

Comparison	Statistic	p.value	p.adjust	var
2005 - 2012 = 0	-0.1672	0.003333	0.003333	rc
SJ - caH = 0	0.2808	0	0	rc
SJ - caL = 0	0.3926	0	0	rc
caH - caL = 0	0.1118	0.02933	0.08799	rc
2005.SJ - 2012.SJ = 0	-0.3306	0.002	0.03	$_{\rm rc}$
2005.SJ - 2005.caH = 0	0.2314	0.01667	0.25	$_{\rm rc}$
2005.SJ - 2012.caH = 0	-0.003094	0.8993	1	rc
2005.SJ - 2005.caL = 0	0.2755	0.001333	0.02	rc
2005.SJ - 2012.caL = 0	0.1735	0.02467	0.37	rc
2012.SJ - 2005.caH = 0	0.562	0	0	rc
2012.SJ - 2012.caH = 0	0.3276	0	0	rc
2012.SJ - 2005.caL = 0	0.6062	0	0	$_{\rm rc}$
2012.SJ - 2012.caL = 0	0.5042	0	0	rc
2005.caH - 2012.caH = 0	-0.2344	0.001333	0.02	rc
2005.caH - 2005.caL = 0	0.04416	0.4007	1	rc
2005.caH - 2012.caL = 0	-0.05785	0.3347	1	rc
2012.caH - 2005.caL = 0	0.2786	0.0006667	0.01	rc
2012.caH - 2012.caL = 0	0.1766	0.005333	0.08	rc
2005.caL - 2012.caL = 0	-0.102	0.05333	0.8	rc
2005 - 2012 = 0	-0.107	0.09533	0.09533	rt
SJ - caH = 0	-0.1948	0.0006667	0.002	rt
SJ - caL = 0	-0.3104	0	0	rt
caH - caL = 0	-0.1156	0.004	0.012	rt
2005.SJ - 2012.SJ = 0	-0.3462	0	0	rt
2005.SJ - 2005.caH = 0	-0.4637	0	0	rt
2005.SJ - 2012.caH = 0	-0.3137	0	0	rt
2005.SJ - 2005.caL = 0	-0.4586	0	0	rt
2005.SJ - 2012.caL = 0	-0.4852	0	0	rt
2012.SJ - 2005.caH = 0	-0.1175	0.1147	1	rt

Comparison	Statistic	p.value	p.adjust	var
2012.SJ - 2012.caH = 0	0.03251	0.6847	1	$_{ m rt}$
2012.SJ - 2005.caL = 0	-0.1125	0.07133	1	rt
2012.SJ - 2012.caL = 0	-0.139	0.008667	0.13	$_{ m rt}$
2005.caH - 2012.caH = 0	0.15	0.014	0.21	$_{ m rt}$
2005.caH - 2005.caL = 0	0.005064	0.8427	1	$_{ m rt}$
2005.caH - 2012.caL = 0	-0.02152	0.404	1	rt
2012.caH - 2005.caL = 0	-0.145	0.003333	0.05	rt
2012.caH - 2012.caL = 0	-0.1715	0	0	rt
2005.caL - 2012.caL = 0	-0.02658	0.6593	1	rt
2005 - 2012 = 0	-0.2266	0	0	$_{\rm rs}$
SJ - caH = 0	-0.004321	0.8107	1	$_{\rm rs}$
SJ - caL = 0	-0.008101	0.5813	1	$_{\rm rs}$
caH - caL = 0	-0.00378	0.6033	1	$_{\rm rs}$
2005.SJ - 2012.SJ = 0	-0.4842	0	0	$_{\rm rs}$
2005.SJ - 2005.caH = 0	-0.3195	0	0	rs
2005.SJ - 2012.caH = 0	-0.3368	0	0	$_{\rm rs}$
2005.SJ - 2005.caL = 0	-0.2245	0	0	$_{\rm rs}$
2005.SJ - 2012.caL = 0	-0.393	0	0	rs
2012.SJ - 2005.caH = 0	0.1646	0.012	0.18	$_{\rm rs}$
2012.SJ - 2012.caH = 0	0.1474	0.01933	0.29	$_{\rm rs}$
2012.SJ - 2005.caL = 0	0.2597	0.0006667	0.01	$_{\rm rs}$
2012.SJ - 2012.caL = 0	0.09118	0.036	0.54	$_{ m rs}$
2005.caH - 2012.caH = 0	-0.01725	0.5947	1	rs
2005.caH - 2005.caL = 0	0.09509	0.4887	1	rs
2005.caH - 2012.caL = 0	-0.07345	0.1153	1	$_{\rm rs}$
2012.caH - 2005.caL = 0	0.1123	0.2473	1	rs
2012.caH - 2012.caL = 0	-0.0562	0.2007	1	rs
2005.caL - 2012.caL = 0	-0.1685	0.02	0.3	rs
2005 - 2012 = 0	-0.1766	0.0006667	0.0006667	rrs
SJ - caH = 0	0.1318	0.012	0.036	rrs
SJ - caL = 0	0.2463	0	0	rrs
caH - caL = 0	0.1145	0.074	0.222	rrs
2005.SJ - 2012.SJ = 0	-0.2676	0	0	rrs
2005.SJ - 2005.caH = 0	0.1584	0.01933	0.29	rrs
2005.SJ - 2012.caH = 0	-0.03922	0.2473	1	rrs
2005.SJ - 2005.caL = 0	0.191	0.002667	0.04	rrs
2005.SJ - 2012.caL = 0	0.09221	0.03133	0.47	rrs
2012.SJ - 2005.caH = 0	0.426	0	0	rrs
2012.SJ - 2012.caH = 0	0.2284	0	0	rrs
2012.SJ - 2005.caL = 0	0.4586	0	0	rrs
2012.SJ - 2012.caL = 0	0.3598	0	0	rrs
2005.caH - 2012.caH = 0	-0.1976	0.0006667	0.01	rrs
2005.caH - 2005.caL = 0	0.03262	0.4713	1	rrs
2005.caH - 2012.caL = 0	-0.06614	0.4153	1	rrs
2012.caH - 2005.caL = 0	0.2302	0.0006667	0.01	rrs
2012.caH - 2012.caL = 0	0.1314	0.003333	0.05	rrs
2005.caL - 2012.caL = 0	-0.09876	0.05333	0.8	rrs

Interaction plot

Response \sim (x=Drought)

```
mhuber<- mhuber %>%
  mutate(var_sorted = case_when(var == "rc" ~ "1_rc",
                                var == "rt" ~ "0 rt",
                                var == "rs" ~ "2_rs",
                                var == "rrs" ~ "3_rrs"))
pd <- position_dodge(.2)</pre>
robust_plot_evi_drought <- ggplot(mhuber, aes(x=disturb_year, y=M.Huber, color = site, group=site, fill
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=site,color=site, linetype=site), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                 '1_rc' = 'Recovery',
                                 '2_rs' = 'Resilience',
                                 '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue','red')) +
  scale_fill_manual(values=c('black','blue','red')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed", 'dashed')) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
                                        fill='white'),
        legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_evi_drought
```



```
dev.off()
```

pdf

Response \sim (x=site)

```
pd <- position_dodge(.2)</pre>
robust_plot_evi_site <- ggplot(mhuber, aes(x=site, y=M.Huber, color = disturb_year, group=disturb_year,
  geom_errorbar(aes(ymin=lower.ci, ymax=upper.ci),
                width=.1, size=0.7, position=pd) +
  geom_line(aes(group=disturb_year,color=disturb_year, linetype=disturb_year), position=pd) +
  geom_point(shape=21, size=3.5, position=pd) +
  facet_wrap(~var_sorted, nrow = 2, scales = 'free_y',
             labeller=as_labeller(c('0_rt' = 'Resistance',
                                  '1_rc' = 'Recovery',
                                  '2_rs' = 'Resilience',
                                  '3_rrs' = 'Relative Resilience'))) +
  scale_color_manual(values=c('black','blue')) +
  scale_fill_manual(values=c('black','blue')) + theme_bw() +
  scale_linetype_manual(values=c("solid", "dashed")) +
  theme(panel.grid.minor = element_blank(),
        strip.background = element_rect(colour='black',
```

```
fill='white'),
        legend.position="bottom") +
  ylab('') + xlab('Drought event')
robust_plot_evi_site
                      Resistance
                                                                         Recovery
                                                  1 4
8.0
0.6
                                                  1.0
                      Resilience
                                                                       Relative Resilience
                                                  0.4
                                                  0.2
0.8
                                                  0.0
                                              Drought event
                                         disturb_year - 2005 - 2012
pdf(paste0(di, 'out/fig/resilience/robust_plot_evi_site.pdf'), width=9, height = 9)
robust_plot_evi_site
dev.off()
## pdf
##
     2
# Export data
write.csv(mhuber, file=paste0(di, '/out/anovas_resilience/robust_mhuber.csv'), row.names = F)
write.csv(mhuber_a, file=paste0(di, '/out/anovas_resilience/robust_mhuber_a.csv'), row.names = F)
write.csv(mhuber_b, file=paste0(di, '/out/anovas_resilience/robust_mhuber_b.csv'), row.names = F)
write.csv(pairwise, file=paste0(di, '/out/anovas_resilience/robust_pairwise.csv'), row.names = F)
```

References

Lloret, F., E. G. Keeling, and A. Sala. 2011. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–1920.

Piovesa, G., F. Biondi, A. D. Filippo, A. Alessandrini, and M. Maugeri. 2008. Drought-driven growth

reduction in old beech (fagus sylvatica l.) forests of the central apennines, italy. Global Change Biology 14:1265-1281.