Lecture 16: Differentiation

September 09, 2019

Sunil Kumar Gauttam

Department of Mathematics, LNMIIT

Let us try to understand what is meaning of the limit $\lim_{x\to c} \frac{f(x) - f(c)}{x - c}$. Define new function $g(x) := \frac{f(x) - f(c)}{x - c}$. This is not defined at x = c, Otherwise it is define at every point of the domain of f, which is the interval I.

Proposition 16.1 Let I be an interval (which is not a singleton), $c \in I$ and $f : I \to \mathbb{R}$ be function.

1.
$$\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$$
 exists $\iff \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists.

2. If f is differentiable at $c \in I$, then f is continuous at c.

Example 16.2 Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Show that f is differentiable only at x = 0. Find f'(0).

Solution: For $h \neq 0$,

$$\frac{f(0+h) - f(0)}{h} = \frac{f(h)}{h} = \begin{cases} h & \text{if } h \text{ is rational} \\ 0 & \text{if } h \text{ is irrational} \end{cases}$$

Hence for any sequence $(h_n) \in \mathbb{R} \setminus \{0\}$ which converges to 0, we have

$$\left| \frac{f(h_n)}{h_n} \right| \le |h_n| \implies \frac{f(h_n)}{h_n} \to 0.$$

Hence f'(0) = 0. Now we show that f is not continuous at any non-zero point, which in turn proves that at any non-zero point derivative does not exists. If $c \neq 0$ is a rational number then by density of irrationals in \mathbb{R} and Sandwich Theorem we can find a sequence (x_n) in \mathbb{R} of irrationals such that $x_n \to c$. Then $f(x_n) = 0$ for all $n \in \mathbb{N}$, while $f(c) = c^2 \neq 0$. On the other hand, if c is an irrational, then by density of rationals in \mathbb{R} and Sandwich Theorem we can find a sequence (x_n) in \mathbb{R} of rationals such that $x_n \to c$. Then $f(x_n) = x_n^2$ for all $n \in \mathbb{N}$, while f(c) = 0. Thus in both cases, $x_n \to c$, but $f(x_n) \nrightarrow f(c)$.

Example 16.3 If $f : \mathbb{R} \to \mathbb{R}$ is differentiable at $c \in \mathbb{R}$, show that $f'(c) = \lim_{n \to \infty} (n\{f(c+1/n) - f(c)\})$. However, show by example that the existence of the limit of this sequence does not imply the existence of f'(c).

Solution: Since f'(c) exists, by taking $h_n = 1/n$ which converges to zero, we must have $f'(c) = \lim_{n\to\infty} (n\{f(c+1/n) - f(c)\}).$

However, in Example 16.2, take $c = \sqrt{2}$. Then $\sqrt{2} + \frac{1}{n}$ is also irrational for each n (prove by contradiction). Now

$$f(\sqrt{2} + \frac{1}{n}) - f(0) = 0 - 0 \implies n\left(f(\sqrt{2} + \frac{1}{n}) - f(0)\right) = 0$$

Hence desired limit exists, but we have already proved that f is not continuous at every non-zero real number hence f'(2) does not exists.

Example 16.4 Let f(0) = 0 and f'(0) = 1. For a positive integer k, show that

$$\lim_{x \to 0} \frac{1}{x} \left\{ f(x) + f(\frac{x}{2}) + f(\frac{x}{3}) + \dots + f(\frac{x}{k}) \right\} = 1 + \frac{1}{2} + \dots + \frac{1}{k}$$

Solution: Write

$$\frac{f(x)}{x} = \frac{f(x) - f(0)}{x - 0}$$
$$\frac{f(x/2)}{x} = \frac{1}{2} \frac{f(x/2) - f(0)}{x/2 - 0}$$
$$\frac{f(x/k)}{x} = \frac{1}{k} \frac{f(x/k) - f(0)}{x/k - 0}$$

Also note that $x \to 0 \iff \frac{x}{2} \to 0 \iff \cdots \iff \frac{x}{k} \to 0$.

Differentiability and local extrema

Definition 16.5 Let $D \subset \mathbb{R}$ and $c \in D$. We say c is an interior point of the set D if there exists r > 0 such that $(c - r, c + r) \subset D$.

For example if D = [1, 2] then all the points in the interval (1, 2) are interior points of D but 1 and 2 are not interior points of D.

Definition 16.6 Let $D \subset \mathbb{R}$ and let c be an interior point of D. We say that a function $f: D \to \mathbb{R}$ has

- (a) local maximum at c if there exists $\delta > 0$ such that $(c \delta, c + \delta) \subset D$ and $f(x) \leq f(c)$ for all $x \in (c \delta, c + \delta)$.
- (b) local minimum at c if there exists $\delta > 0$ such that $(c \delta, c + \delta) \subset D$ and $f(x) \geq f(c)$ for all $x \in (c \delta, c + \delta)$.

A point c is said to be a local extremum (local extrema) if it is either a local maximum or a local minimum.

Definition 16.7 Let $D \subseteq \mathbb{R}$ and $f: D \to \mathbb{R}$ be a function. We say that

1. A point $c \in D$ is said to be a point of absolute maximum value (absolute maxima or global maxima) on D if

$$f(c) = \sup\{f(x) : x \in D\},\$$

2. A point $c \in D$ is said to be a point of absolute minimum value (absolute minima or global minima) on D if

$$f(c) = \inf\{f(x) : x \in D\}.$$

A point c is said to be a global extremum (global extrema) if it is either a global maximum or a global minimum.

Remark 16.8 Note that a local extremum need not be a global extremum. Similarly, a global extremum need not be a local extremum. The points of local minimum and local maximum should be "interior points" in the domain.

The points, c_1, c_3 , and c_5 are local maximum whereas c_2 and c_4 are points of local minimum. The point c_1 is the global maximum and c_4 is the global minimum.

Theorem 16.9 Let $D \subseteq \mathbb{R}$ and c be an interior point of D. If $f: D \to \mathbb{R}$ be differentiable at c and has a local extremum at c, then f'(c) = 0.