UVOD U BAZE PODATAKA

I predavanje

Dr.sc. Emir Mešković

Stvarni svijet

Podaci

Obrada podataka - bankarstvo

- otvaranje računa
- novčane transakcije
- praćenje stanja na računu
- praćenje kupnji ostvarenih putem kreditnih kartica

Obrada podataka - telekomunikacije

- podaci o pozivima
- telefonski računi
- podaci o mreži
- lokacije korisnika

Obrada podataka - nauka

- podaci prikupljeni tokom istraživanja u fizici, biologiji, hemiji...
- medicinske statistike

Obrada podataka – sport

- podaci o takmičarima
- rezultati utakmica i utrka
- statistika

Obrada podataka – putovanja

- red vožnje / red letenja
- rezervacija karata
- kupnja karata
- slobodna i zauzeta mjesta

Informacija, podatak

- Informacija je sadržaj koji primaocu opisuje nove činjenice
- Taj sadržaj se materijalizira u obliku podataka koji služe za prikaz informacija u svrhu pohrane, prenosa i obrade
 - Podatak je skup simbola (znakova)
 - Sadržaj koji vrijedi čuvati, najčešće u elektronskom obliku
 - Poznata činjenica koju je moguće pohraniti
- Podatak izvan konteksta nema značenja
 - podatak: 35
- Podatak koji interpretiramo i odgovarajuće povežemo predstavlja informaciju koja nam omogućuje da obogatimo naše znanje o svijetu
 - informacija: broj studenata na kursu Baze podataka u trenutnoj akademskoj godini na FET-u je 35

Informacioni sistem

- Ukupna infrastruktura, organizacija, osoblje i komponente koje služe za prikupljanje, obradu, pohranu, prenos, prikaz, širenje i raspolaganje informacijama – [INFOSEC-99]
- Svrha mu je prikupljanje, obrada, pohranjivanje i distribucija informacija, koje su potrebne za praćenje rada i upravljanje organizacijskim sistemom ili nekim njegovim podsistemom
 - Informacioni sistem je aktivni sistem koji može (ali ne mora) koristiti savremenu informacionu tehnologiju
 - Centralni dio informacionog sistema je baza podataka

Baza podataka

- Skup povezanih podataka
- Skup podataka koji se koriste za prikaz informacija (informacija od interesa)
- Baza podataka predstavlja neko viđenje stvarnog svijeta
- Baza podataka je logički koherentni skup podataka koji imaju neko inherentno značenje
- Baza podataka se oblikuje, gradi i puni podacima za neku određenu namjenu, ima neke predodređene korisnike i neke unaprijed koncipirane primjene definisane prema potrebama korisnika

Baza podataka

Gio Wiederhold (1977)

 Kada neformalno govorimo o bazama podataka, pod tim podrazumijevamo skup međusobno povezanih podataka, računarsku opremu na kojoj su pohranjeni i skup programa pomoću kojih se obavljaju operacije nad njima

Max Vetter (1981)

Baza podataka je skup podataka koji su pohranjeni i organizovani tako da mogu zadovoljiti zahtjeve korisnika

Naphtali David Rishe (1992)

Baza podataka je izmjenjivo spremište informacija iz svijeta aplikacija, te programska podrška koja sakriva od korisnika fizičku organizaciju i reprezentaciju informacija. Informacijama pohranjenim u bazi podataka može se pristupati sa logičkog nivoa, bez potrebe za uključivanjem fizičkih koncepata implementacije

Baza podataka

▶ James Martin (1979)

Baza podataka je skup međusobno povezanih podataka, pohranjenih zajedno, uz isključenje bespotrebne redundancije, koji mogu zadovoljiti različite primjene. Podaci su pohranjeni na način neovisan o programima koji ih koriste. Prilikom dodavanja novih podataka, mijenjanja i pretraživanja postojećih podataka primjenjuje se zajednički i kontrolisani pristup. Podaci su strukturirani tako da služe kao osnova za razvoj budućih primjena.

Christopher J. Date (1995)

 Baza podataka sastoji se od nekog skupa perzistentnih podataka koje koriste aplikativni sistemi nekog projekta

Entitet

- ▶ Bilo šta, što ima suštinu ili bit
 - Osoba (student, radnik, nastavnik npr. student Pirić Deni)
 - Ostala živa bića (čovječija ribica, Pančićeva omorika)
 - Dbjekat iz stvarnog svijeta (mjesto, uređaj, zgrada npr. mjesto Velika Brijesnica)
 - Apstraktni pojam (boja, iskustvo, predmet npr. predmet Baze podataka)
 - Događaj situacija u kojoj se nešto dešava, desilo se ili se planira da će se desiti (npr. polaganje ispita, upis semestra)
 - Povezanost među objektima, osobama, pojmovima, događajima (student položio ispit iz predmeta kod nastavnika npr. Pirić Deni **položio** Baze podataka **kod** prof. Edina Pjanića)
- Nešto o čemu želimo prikupljati i pohranjivati podatke

Atribut,

- Entitet posjeduje neke OSOBINE ili ATRIBUTE koji ga karakteriziraju
 - Za informacioni sistem studentske službe osobine studenta Pirić Deni su:
 - □ Broj indeksa, matični broj (JMBG), ime, prezime, datum rođenja, ...
 - Pirić Deni će u informacionom sistemu MUP-a biti opisan i atributima:
 - □ Boja kose, boja očiju, otisak prsta, ...
 - Izbor osobina (atributa) koji će se pratiti zavisi od namjene informacionog sistema

Domena i vrijednost atributa

 Svaki atribut može poprimiti vrijednost iz određenog skupa vrijednosti koji predstavlja DOMENU tog atributa

Elementarni podatak

- Baza podataka sadrži elementarne podatke koji su predstavljeni svojim vrijednostima
- Podatak dobiva značenje iz konteksta tumačenjem koju osobinu kojeg entiteta predstavlja
- Elementarni podatak zajedno sa svojim tumačenjem predstavlja činjenicu – izjavu da neki enetitet ima određenu vrijednost određene osobine

Skup entiteta

- Slični entiteti se svrstavaju u skupove entiteta
- Slični su oni entiteti kojima se posmatraju iste osobine
- Svi entiteti koji su članovi istog skupa imaju iste atribute
 - ▶ atributi entiteta ⇔ atributi skupa entiteta

Primarni ključ			Shema (atributi) Strani ključ		
Opis entiteta					
(n-torka)	Sifra	Naziv	LatNaziv	Razred	Porodica
	1234	Lasica	Mustela nivalis	01	21
	2345	Delfin	Tursiops truncatus	01	31
	3456	Kuna zlatica	Martes martes	01	21
	4567	Grgeč	Perca fluviatilis	02	41

Pohranjeni podaci (vrijednosti atributa)

Osnovni pojmovi u bazama entiteta

Skupovi entiteta

Zivotinja

Razred

Porodica

Modeliranje stvarnog svijeta

- Modeliranje stvarnog svijeta predstavlja preslikavanje stvarnog svijeta u oblik pogodan za računarsku obradu
- Baza podataka nekog informacionog sistema predstavlja sliku stvarnog organizacionog sistema
- Stvarni svijet, zbog njegove složenosti, ne možemo prikazati sa svim detaljima
- Stvarni svijet predstavlja se pojednostavljenim, zamjenskim modelom
- Model stvarnog svijeta predstavlja se uz pomoć nekog formalnog sistema
- Model podataka je formalni sistem koji se koristi kod modeliranja baza podataka

Model podataka

- Apstraktni model čija je svrha opisati kako se podaci mogu efikasno koristiti i predstavljati
- Formalni opis kako se podaci mogu koristiti i strukturirati
- Formalno definiše elemente podataka i veze među elementima podataka za domenu ili interes
- Formalni sistem koji se sastoji od:
 - ▶ skupa objekata osnovnih elemenata (kocepata) baze podataka
 - skupa operacija koje se provode nad tim objektima
 - skupa integritetskih ograničenja (integrity constraints)
 - Imlicitno ili eksplicitno definiraju skup konzistetnih stanja podataka, promjena stanja ili oboje
- SUBP se zasniva na određenom modelu podataka
- hijerarhijski, mrežni, relacijski, ER, objektni

Hijerarhijski model

- Organizuje polja ili slogove (podatke) u čvorove, povezane grupe podataka koje su slične porodičnom stablu.
- Čvorovi su tačke međusobno povezane odgovarajućim vezama.
- Razlikuje dva tipa slogova: slog roditelj i slog dijete. Slogovi roditelji su "nadređeni" slogovima djeci. Svaki slog dijete može imati samo jedan slog roditelj

Mrežni model

- Nastao je kao paralela hijerarhijskom modelu.
- To je fleksibilan način prikazivanja objekata i veza među njima.
- Sastoji se od niza slogova međusobno povezanim vezama.
- Slog sadrži podatke jedne pojave entiteta, a sastoji se od polja koji odgovaraju atributima.
- Svako polje sadrži samo jednu vrijednost atributa.
- U mrežnom modelu mogu se prikazivati samo veze jedan-više i više-više.

Relacijski model

- Teorijski zasnovao E.F. Codd krajem 60-tih godina
- Prve realizacije na računaru su bile suviše spore i neefikasne
- Današnja većina DBMSova koristi relacijski model
- Zasniva se na matematičkoj teoriji relacija
- Bavi se pitanjima:
 - Kako predstaviti podatke?
 - Koji su dozvoljeni podaci?
 - Što možemo činiti s podacima?

struktura podataka

integritet podataka

manipulacija podacima

ER model

- Model entiteti-veze (Entity-Relationship model)
- Postrelacijski model
- Zadržava dobra svojstva relacijskog modela
- Objekti ER modela su entiteti i veze među njima na logičkom nivou

Objektno-orijentisani model

- OBJEKAT
- KLASA hijerarhijski organizovane
- ▶ PROTOKOL definisan skupom poruka
- ▶ PORUKA način komunikacije među objektima
- METOD
- Apstraktni tipovi podataka (Abstract Data Type)
- Učahurivanje (Encapsulation)
- Nasljeđivanje (Inheritance)
- Ponovno korištenje (Reusability)

Objektno-relacijski model

- Zadržava dobra svojstva relacijskog modela
- Objektna svojstva kao što su:
 - Apstraktni tipovi podataka (Abstract Data Type)
 - Učahurivanje (Encapsulation)
 - Nasljeđivanje (Inheritance)
 - Ponovno korištenje (Reusability)

XML i XML baze podataka

- XML dokumenti polustrukturirani dokumenti
- Primjer

```
<?xml version="1.0" encoding="UTF-8"?>
<poruke>
  <poruka>
        <odKoga>Pirić Deni</odKoga>
        <kome>Edin Pjanić</kome>
        <naslov>Prijava za ispit iz Baza podataka
                 11.06.</naslov>
        <tekst>Poništio sam ispit iz Baza podataka
ocjena 9 (90 bodova) i želio bih raditi
         poňovo završni ispiť za ocjenu 10.</tekst>
  </poruka>
  <poruka>
        <odKoga>Mešić Maja</odKoga>
<kome>Emir Mešković</kome>
        <naslov>Konsultacije - SQL</naslov>
<tekst>Kako dohvatiti sve organizacijske
         jedinice koje imaju nadređenu org.
jedinicu.</tekst>
  </poruka>
</poruke>
```

XML i XML baze podataka

- Pohrana XML dokumenta
 - Relacijske baze podataka
 - XML baze podataka
- ▶ 2 načina preslikavanja XML ↔ RDB
 - struktura XML dokumenta se razlaže u tablice
 - može biti vrlo složeno i sporo
 - dopušta pretraživanje prema kriterijima
 - cijeli XML dokument se sprema u jedno polje
 - sporo pretraživanje (potrebni posebni moduli)
 - dohvat podataka nepraktičan i neefikasan
 - ipak, spremanje u bazu je vrlo brzo i jednostavno
- XML baze podataka
 - Pohranjuju XML dokumente na prirodan način
 - Održavaju hijerarhiju i značenje XML dokumenta
 - Omogućuju indeksiranje

Arhitektura baze podataka

- Opis baze podataka nastaje tokom procesa oblikovanja baze podataka – model baze podataka
- Shema (struktura) baze podataka se opisuje na tri nivoa apstrakcije:
 - Na konceptualnom nivou opisuje se
 - KONCEPTUALNA SHEMA
 - Na unutarnjem nivou opisuje se
 - INTERNA SHEMA
 - Na vanjskom nivou opisuju se
 - EKSTERNE SHEME
- Jedna baza podataka ima jednu konceptualnu, jednu internu i (najčešće) više eksternih shema
- Shema baze podataka se relativno rijetko mijenja
- Sadržaj ili instanca baze podataka (skup svih podataka baze podataka u određenom trenutku) se ČESTO mijenja

Opis baze podataka na tri nivoa

Konceptualna shema

- često se koristi i naziv LOGIČKA SHEMA
- sadrži opis svih entiteta i veza, atributa, domena i integritetska ograničenja
- konceptualna shema se može opisati korištenjem modela podataka, npr. relacijskog ili ER modela

Interna shema

 opisuje detalje fizičke strukture pohrane i metode pristupa podacima: kako su podaci pohranjeni i koje se metode koriste za pristup podacima

Fizička nezavisnost podataka

izmjena interne sheme ne utiče na konceptualnu shemu

Eksterna shema

- eksterna shema opisuje "pogled" na dio baze podataka koji je namijenjen specifičnoj grupi korisnika
- osnova za opis eksternih shema je konceptualna shema

Logička nezavisnost podataka

izmjena konceptualne sheme ne mora izazvati izmjenu eksternih shema → izmjena konceptualne sheme ne utiče na korisnike i aplikacijske programe koji ih koriste

Razlika između fizičke i logičke organizacije podataka

Razlika između fizičke i logičke organizacije podataka

Sistem za upravljanje bazama podataka - SUBP

- Database Management System DBMS
- Sakriva od korisnika detalje fizičke pohrane podataka
- Omogućava definiciju i rukovanje podacima
 - ▶ DDL Data Definition Language
 - ▶ DML Data Manipulation Language
- Obavlja funkciju zaštite podataka
 - Integritet podataka
 - Pristup podacima autorizacija, sigurnost
 - Kontrola paralelnog pristupa
 - Dbnova u slučaju razrušenja
- Optimizacija upita