Fourier Analysis 04-23

Review.

Thm (Uniqueness)

Let
$$U(x,y) \in C^2(|\mathbb{R} \times |\mathbb{R}_+) \cap C(|\overline{\mathbb{R} \times |\mathbb{R}_+})$$
.

Moreover, suppose
$$U(x,y) \rightarrow 0$$
 as $|x| + y \rightarrow +\infty$

Then U(x,y) =0 on RxR+.

For example: If letting U(x,y) = y,

(Mean value property of harmonic functions) Lemma

Let Ω be an open set in \mathbb{R}^2 . Let

 $U \in C^2(\Omega)$. Suppose $B_R(x,y) \subseteq \Omega$

where $\beta_{R}(x_{0}, y_{0}) := \left\{ (x_{1}y) \in \mathbb{R}^{2} : (x_{1}x_{0})^{2} + (y_{1}y_{0})^{2} \in \mathbb{R}^{2} \right\}$

Then $\forall o < r < R$, $U(x_0, y_0) = \frac{1}{2\pi} \int_0^{2\pi} U(x_0 + r \cos \theta, y_0 + r \sin \theta) d\theta$

Maximum principle for harmonic functions.

. Let $\Omega \subset \mathbb{R}^2$ be open and connected. Suppose $U \in C^2(\Omega)$ and $\Delta U = 0$.

If furthermore \mathcal{U} takes the maximum (or minimum) at some point $(x_0, y_0) \in \Omega$. Then \mathcal{U} is constant on Ω .

Proof. Let
$$\gamma = \mathcal{U}(x_0, y_0) = \sup_{(x,y) \in \Omega} \mathcal{U}(x,y)$$
.
Set $\widehat{\Lambda} = \{(x,y) \in \Omega : \mathcal{U}(x,y) = \gamma\}$.

Then $(x_0, y_0) \in \mathfrak{A}$, so $\mathfrak{A} \neq \emptyset$.

As $U \in C(\Omega)$, Ω is a relatively closed in Ω , that is, if $(x_n, y_n) \in \Omega$ converges to some $(x, y) \in \Omega$, then $(x, y) \in \Omega$. Hence, $\Omega \setminus \Omega = \{(x_1 y) \in \Omega : U(x_1 y) < \gamma\}$ is open.

Next we prove that I is open. To this end, let (x, y,) & I. Choose r >0 such that $B_r(x_i, y_i) \subset \Omega$. By the mean value property, for any 0 < r' < r, $\frac{1}{2\pi} \int_{0}^{2\pi} u(\mathbf{x}_{i} + r' \cos \theta, y_{i} + r' \sin \theta) d\theta = \emptyset$.

By the maximality of P, we have $\mathcal{U}(x_1 + r'\cos\theta, y_1 + r'\sin\theta) = \gamma$ for all o≤r<r, o≤0<2π. Therefore $\left\{ (x,y): \quad \left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}< r^{2}\right\} \subset \widetilde{\mathcal{X}},$

So I is open.

As Ω is connected, both $\widetilde{\Omega}$ and $\Omega\backslash\widetilde{\Omega}$ are open, we have $\widehat{\Omega}=\Omega$.

Corollary: Let Ω be a bounded open region on \mathbb{R}^2 . Suppose $U \in \mathbb{C}^2(\Omega) \cap \mathbb{C}(\overline{\Omega})$ and $\Delta U = 0$ Moreover suppose U = 0 on $\partial \Omega$. Then U = 0 on Ω .

Proof. Sina Ω is compact, So U take

Smaximum value in Ω. If both these two
minimum value

Values are taken on dΩ, then U=0 pn Ω.

Otherwise if one of them is taken in Ω , then U is constant on $\overline{\Omega} \Rightarrow U \equiv 0$ on $\overline{\Omega}$.

Poisson summation formula.

Let $f \in M(IR)$ and suppose also that $\widehat{f} \in M(R)$

Set $F(x) = \sum_{n \in \mathbb{Z}} f(x+n)$. Then

F is a continuous 1- perodic function on IR.

Thm 1 (Poisson Summation formula)

 $F(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2\pi i n x}, \quad \forall x \in \mathbb{R}.$

In particular

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \widehat{f}(n).$$

Pf. We first calculate the Fourier Coefficients of F on the unit circle.

$$\widehat{F}(n) = \int_0^1 F(x) e^{-2\pi i n x} dx$$

$$= \int_{0}^{1} \sum_{m \in \mathbb{Z}} f(x+m) e^{-2\pi i n X} dx$$
$$= \sum_{m \in \mathbb{Z}} \int_{0}^{1} f(x+m) e^{-2\pi i n X} dx$$

$$= \sum_{m \in \mathbb{Z}} \int_{0}^{1} f(x+m) e^{-2\pi i n x} dx$$

$$= \sum_{m \in \mathbb{Z}} \int_{0}^{m+1} f(y) e^{-2\pi i n (y-m)} dy$$

$$= \sum_{m \in \mathbb{Z}} \int_{m}^{m+1} f(y) e^{-2\pi i n y} dy$$

$$= \int_{m}^{\infty} f(y) e^{-2\pi i n y} dy$$

$$= \int_{-\infty}^{\infty} f(y) e^{-2\pi i n y} dy$$
$$= \hat{f}(n).$$

Since
$$f \in M(R)$$
, $\Sigma[f(n)] < \infty$,

So
$$F(x) = \sum_{n \in \mathbb{Z}} \widehat{F}(n) e^{2\pi i n x}$$

$$= \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2\pi i n x}$$

$$= \sum_{n \in \mathbb{Z}} \widehat{f}(n) e^{2\pi i n x}$$

 $f(3) = e^{-2\pi|3|\cdot y}$ By Poisson summation formula; we have

 $(\frac{\beta}{100}) \equiv \beta_y(x)$.

Let $f(x) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$ (4>0)

By Poisson summation formula; we have
$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} f(n) e^{2\pi i n \times 2\pi i n}$$

$$\sum_{n \in \mathbb{Z}} f(x+n) = \sum_{n \in \mathbb{Z}} f(n) e^{2\pi i n x}$$

$$\lim_{n \in \mathbb{Z}} \frac{y}{(x+n)^2 + y^2} = \sum_{n \in \mathbb{Z}} e^{-2\pi i n x}$$

$$\lim_{n \in \mathbb{Z}} \frac{y}{(x+n)^2 + y^2} = \sum_{n \in \mathbb{Z}} e^{2\pi i n x}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{-2\pi |n| y}{e^{2\pi i}}$$
Letting $x = 0$ gives
$$\frac{y}{(x+n)^2 + y^2} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$
Letting $x = 0$ gives
$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$\frac{y}{\ln e} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i}}{e^{2\pi i}}$$

$$= |+2 \sum_{n=1}^{\infty} e^{-2\pi |n| y}$$

$$= |+2 \cdot \frac{e^{-2\pi y}}{|-e^{-2\pi y}|}$$

$$= \frac{|+e^{-2\pi y}|}{|-e^{-2\pi y}|}$$

Letting
$$y=1$$
 gives
$$\frac{1}{n^2+1} = \pi \cdot \frac{1+e^{-2\pi}}{1-e^{-2\pi}}.$$
 $n \in \mathbb{Z}$

$$\frac{1}{\sum_{n \in \mathbb{Z}} \frac{1}{n^2 + y^2}} = \frac{\pi}{y} \cdot \frac{1 + e^{-2\pi y}}{1 - e^{-2\pi y}}$$

$$\frac{1}{n^2+y^2} =$$

$$\Theta(s) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 s}, \quad s > 0$$

It satisfies the following property

$$\int_{-\frac{1}{2}}^{-\frac{1}{2}} \cdot O\left(\frac{1}{s}\right) = O(s) , s > 0.$$

To see this, let

$$-\pi x^{2} \cdot s$$

$$f(x) = e \qquad (s>0)$$

$$\left(\begin{array}{cccc} e^{-\pi x^2} & G & e^{-\pi x^2} \end{array}\right)$$

$$f(x) \xrightarrow{\mathcal{F}} \frac{1}{\sqrt{5}} e^{-\pi \left(\frac{3}{\sqrt{5}}\right)^2}$$

$$= \frac{1}{\sqrt{5}} e^{-\pi \frac{3}{5} \frac{3}{5}}$$

By Poisson Summation formula
$$\sum f(n) = \sum f(n)$$

$$\sum_{n} f(n) = \sum_{n} f(n)$$
i.e.
$$\sum_{n} e^{-\pi n^2 s} = \sum_{n} \sqrt{s} e^{-\pi n^2 s}$$

i.e.
$$\sum_{n} e^{-\pi n^2 s} = \sum_{n} \int_{s} e^{-\pi n^2 s}$$