SAMPLING VOCALS USING DEEP LEARNING METHODS TO ISOLATE HUMAN VOICES

Darren Fok 301461164

Chris Sim 301448214

Tony Chen 301458138

Nicholas Lagasse 301451354

ENSC 429 - Group 3

METHODOLOGY AND ANALYSIS

ENGINEERING DESIGN / APPROACH

Milestones, project distribution, iterative design layout

IMPLEMENTATION

Wrote initial drafts of pre/post processing scripts, training notebook, and main.py file

ITERATION DESIGN

Tried different loss methods, input training file formats, number of epochs, training set size

FINAL VERSION

Usable Trained Model

ENGINEERING DESIGN

PROJECT ENVIRONMENT

Python, Github

WORK DISTRIBUTION

Data Gathering, Coding, Testing

MILESTONES

File Conversion, Model Creation

DATA CONVERSION

mp3, wav, xlsx, npy

IMPLEMENTATION

- Short Time Fourier Transform (STFT) performed on mixed source .wav file
 - Logarithm taken of magnitude of result
- Log-mag stored in **.npy** for speed, compact size and stability
- .npy file fed into .pth model file, which outputs .npy file with isolated vocals
- Output .npy converted back to .wav file with isolated vocals via inverse STFT and Griffin-Lim algorithm

DISCRETE TIME ANALYSIS

Short Time Fourier Transform (STFT)

Creation of Spectrogram Matrix Object via Short Time Fourier Transform of Audio Signal

$$STFT\{x[n]\} = \sum_{n=0}^{N-1} x[n]w[n-m]e^{-i\omega n}$$

- Records the Fourier Transform of a signal as it changes over time
- Continuous time version of STFT uses windows to segment the signal
- Discrete time version splits up signal into chunks and then applies the Fourier transform to each chunk
- The Fourier transforms of each chunk are then stored into a matrix which can then be saved for U-Net Modelling

ITERATION DESIGN

- Used U-Net training to attempt to create a model that can separate detected vocals from instrumental audio
- Epoch Data from training used to improve and iterate on U-net parameters
 - Specifically, the SDR (Signal Distortion Ratio)
 and Loss factors
- Formatting of file conversion pipeline was also improved upon
- XLSX to .npy arrays for spectrogram storage
- Rectangular Complex STFT to Log Magnitude STFT
- Different loss functions to improve metrics

