

CATEGORICAL PREDICTORS

Two types of categorical predictors:

- Nominal: the predictor variable is composed of categorical options with no inherent ordering
 - Example: Using state of residence (Washington, Oregon, California) to predict housing prices
 - With this type of predictor, we've focused on testing differences between group means
- Ordinal: the predictor variable is composed of categorical options with an inherent ordering
 - Example: Using grade in school (4th, 5th, 6th) to predict emotional intelligence
 - With this type of predictor, we can test differences between group means, but we can also test whether there are certain trends (aka, patterns) in the group means

TRENDS IN THE GROUP MEANS

- Example: Say we collect data on which **age group** people belong to as well as how strongly they support **forgiveness of student loans**.
- Age group:
 - Under 18
 - 19-35
 - 36 and older
- There is an inherent ordering to the levels of age group (youngest to oldest).
- We could be interested in testing the pattern of how the means for each condition change.
 - Specifically, let's say we're interested in whether the pattern of change in the groups' means follows the pattern of a polynomial function.

TYPES OF POLYNOMIAL FUNCTIONS

TYPES OF POLYNOMIAL FUNCTIONS

• For each of these polynomial functions, you need the following number of levels of the categorical predictor to test for its trend in the pattern of the group means:

Type of Function	Number of Levels of Categorical Predictor Needed		
Linear	At least two groups		
Quadratic	Three groups		
Cubic	Four groups		
Quartic	Five groups		
Qunitic	Six groups		

TYPES OF POLYNOMIAL FUNCTIONS

- For our example, we are looking at how average support for the forgiveness of student loans changes across three age groups:
- Age group:
 - Under 18
 - 19–35
 - 36 and older
- The categorical predictor has **three groups** so we can test for a linear and a quadratic trend in the pattern of the groups' means
- Q: For this scenario, what pattern might you expect the pattern of the change in the groups' means to follow?

TRENDS IN THE GROUP MEANS

• Let's say we collected data from 18 participants, six of whom belonged to each of our three age groups. We asked them, on a scale from 1 to 10, how strongly they support forgiveness of student loans. Their raw scores are shown in the table below.

Age Group						
Under 18	19-35	36 and older				
4	9	5				
3	10	2				
5	8	1				
6	9	6				
3	10	3				
3	8	1				
$M_1 = 4$	$M_2 = 9$	$M_3 = 3$				

• The best way to initially examine whether the pattern of the group means follows a particular polynomial trend is by **graphing the group** means.

TRENDS IN THE GROUP MEANS

• Let's say we collected data from 18 participants, six of whom belonged to each of our three age We asked them, on a scale from 1 to 10, how strongly they support forgiveness of student loans raw scores are shown in the table below.

Age Group						
Under 18	19-35	36 and older				
4	9	5				
3	10	2				
5	8	1				
6	9	6				
3	10	3				
3	8	1				
$M_1 = 4$	$M_2 = 9$	$M_3 = 3$				

The pattern of change in the groups' means appears to follow the pattern of a quadratic function.

CONTRAST CODING

• For a categorical predictor with three levels, we need two contrast codes. We can also test for the significance of a linear trend and a quadratic trend in the data using the following set of contrast codes:

	Under 18 19-35		36 and older
LinearCC	-1	0	1
QuadraticCC	-1	2	-1

Question:

- How does the first contrast code test for a significant linear trend in the pattern of the group means?
- How does the second contrast code test for a significant quadratic trend in the pattern of the group means?

POLYNOMIAL CONTRAST CODES

FIGURE 8.16 Orthogonal polynomial contrast codes

Trend					Category	,			
Linear				1 -1		2 1			# of levels of categorical predictor contrast codes
			1		2		3		
Linear			-1		0		1		
Quadratic			-1		2		-1		
		1		2		3		4	
Linear		-3		-1		1		3	
Quadratic		1		-1		-1		1	
Cubic		-1		3		-3		1	
	1		2		3		4		5
Linear	-2		-1		0		1		2
Quadratic	2		-1		-2		-1		2
Cubic	-1		2		0		-2		1
Quartic	1		-4		6		-4		1

MODEL COMPARISON

First, let's test for the significance of a linear trend in the groups' means.

Model Comparison

Model A:
$$Y_i = \beta_0 + \beta_1 \text{LinearCC}_i + \beta_2 \text{QuadraticCC}_i + \epsilon_i$$
 PA = 3

Model C:
$$Y_i = \beta_0 + \beta_2 QuadraticCC_i + \epsilon_i$$
 PC = 2

Null & Alternative Hypotheses:

 $\mathbf{H}_0: \boldsymbol{\beta}_1 = 0$

 $H_1: \beta_1 \neq 0$

Estimate of Model A and Model C:

Model A:
$$Y_i = \beta_0 + \beta_1 \text{LinearCC}_i + \beta_2 \text{QuadraticCC}_i + \epsilon_i$$

Estimate of Model A:

•
$$Y_i = 5.33 + -0.5 \star LinearCC_i + 1.83 \star QuadraticCC_i$$

Model C:
$$Y_i = \beta_0 + \beta_2 QuadraticCC_i + \epsilon_i$$

Estimate of Model C:

- $Y_i = 5.33 + 1.83 * Quadratic CC_i$
- Which model fits the data better?
 - Compare fit of Model A to fit of Model C

	Age Group	
Under 18	19-35	36 and older
4	9	5
3	10	2
5	8	1
6	9	6
3	10	3
3	8	1
$M_1 = 4$	$M_2 = 9$	$M_3 = 3$

	Under 18	19-35	36 and older
LinearCC	-1	0	1
QuadraticCC	-1	2	-1

$$SSE(A) = \Sigma (Y_i - Y'_i)^2$$

	Under 18	19-35	36 and older
LinearCC	-1	0	1
QuadraticCC	-1	2	-1

Y _i	$Y' = 5.33 + -0.5*LinearCC_i + 1.83*QuadraticCC_i$	(Y _i - Y')	(Y _i - Y') ²
4	5.33 + (-0.5*-1) + (1.83*-1) = 4	4 - 4 = 0	0
3	4	-1	1
5	4	1	1
6	4	2	4
3	4	-1	1
3	4	-1	1
9	5.33 + (-0.5*0) + (1.83*2) = 9	9 – 9 = 0	0
10	9	1	1
8	9	-1	1
9	9	0	0
10	9	1	1
8	9	-1	1
5	5.33 + (-0.5*1) + (1.83*-1) = 3	5 – 3 = 2	4
2	3	-1	1
1	3	-2	4
6	3	3	9
3	3	0	0
1	3	-2	4

SSE(A) = 34

$$SSE(C) = \Sigma (Y_i - Y'_i)^2$$

	Under 18	19-35	36 and older
LinearCC	-1	0	1
QuadraticCC	-1	2	-1

Y _i	Y' = 5.33 + 1.83*QuadraticCC _i	(Y _i - Y')	$(Y_i-Y')^2$
4	5.33 + (1.83*-1) = 3.5	4 – 3.5 = 0.5	0.25
3	3.5	-0.5	0.25
5	3.5	1.5	2.25
6	3.5	2.5	6.25
3	3.5	-0.5	0.25
3	3.5	-0.5	0.25
9	5.33 + (1.83*2) = 9	0	0
10	9	1	1
8	9	-1	1
9	9	0	0
10	9	1	1
8	9	-1	1
5	5.33 + (1.83*-1) = 3.5	1.5	2.25
2	3.5	-1.5	2.25
1	3.5	-2.5	6.25
6	3.5	2.5	6.25
3	3.5	-0.5	0.25
1	3.5	-2.5	6.25

CALCULATING F-STATISTIC

	SS	df	MS	F	p
LinearCC	SSR = 37-34 = 3	PA-PC = 3-2 = 1	MSR = 3/1 = 3	F = 3/2.2667 = 1.32	Use R to obtain
QuadraticCC					
Model A	SSE(A) = 34	n - PA = 18-3 = 15	MSE = 34/15 = 2.2667		

MODEL COMPARISON

Second, let's test the significance of a quadratic trend in the groups' means.

Model Comparison

Model A:
$$Y_i = \beta_0 + \beta_1 \text{LinearCC}_i + \beta_2 \text{QuadraticCC}_i + \epsilon_i$$
 PA = 3

Model C:
$$Y_i = \beta_0 + \beta_1 \text{LinearCC}_i + \epsilon_i$$
 PC = 2

Null & Alternative Hypotheses:

 $H_0: \beta_2 = 0$

 $H_1: \beta_2 \neq 0$

Estimate of Model A and Model C:

Model A:
$$Y_i = \beta_0 + \beta_1 \text{LinearCC}_i + \beta_2 \text{QuadraticCC}_i + \epsilon_i$$

Estimate of Model A:

- $Y_i = 5.33 + -0.5 \times LinearCC_i + 1.83 \times QuadraticCC_i$
 - Model A hasn't changed!

Model C:
$$Y_i = \beta_0 + \beta_1 LinearCC_i + \varepsilon_i$$

Estimate of Model C:

• $Y_i = 5.33 + -0.5 \times LinearCC_i$

	Age Group	
Under 18	19-35	36 and older
4	9	5
3	10	2
5	8	1
6	9	6
3	10	3
3	8	1
$M_1 = 4$	$M_2 = 9$	$M_3 = 3$

	Under 18	19-35	36 and older
LinearCC	-1	0	1
QuadraticCC	-1	2	-1

$$SSE(C) = \Sigma (Y_i - Y'_i)^2$$

	Under 18	19-35	36 and older
LinearCC	-1	0	1
QuadraticCC	-1	2	-1

Y _i	Y' = 5.33 + -0.5*LinearCC _i	(Y _i - Y')	(Y _i - Y') ²
4	5.33 + (-0.5*-1) = 5.83	-1.83	3.3489
3	5.83	-2.83	8.0089
5	5.83	-0.83	0.6889
6	5.83	0.17	0.0289
3	5.83	-2.83	8.0089
3	5.83	-2.83	8.0089
9	5.33 + (-0.5*0) = 5.33	3.67	13.4689
10	5.33	4.67	21.8089
8	5.33	2.67	7.1289
9	5.33	3.67	13.4689
10	5.33	4.67	21.8089
8	5.33	2.67	7.1289
5	5.33 + (-0.5*1) = 4.83	0.17	0.0289
2	4.83	-2.83	8.0089
1	4.83	-3.83	14.6689
6	4.83	1.17	1.3689
3	4.83	-1.83	3.3489
1	4.83	-3.83	14.6689

SSE(C) = 155

CALCULATING F-STATISTIC

	SS	df	MS	$oldsymbol{F}$	p
LinearCC	SSR = 37-34 = 3	PA-PC = 3-2 = 1	MSR = 3/1 = 3	F = 3/2.2667 = 1.32	Use R to obtain
QuadraticCC	SSR = 155-34 = 121	PA-PC = 3-2 = 1	MSR = 121/1 = 121	F = 121/2.2667 = 53.38	Use R to obtain
Model A	SSE(A) = 34	n – PA = 18-3 = 15	MSE = 34/15 = 2.2667		

PERFORMING THE ANALYSIS IN R

• anova() table

```
Analysis of Variance Table

Response: forgiveness

Df Sum Sq Mean Sq F value Pr(>F)

linearCC 1 3 3.000 1.3235 0.268

quadCC 1 121 121.000 53.3824 2.583e-06 ***

Residuals 15 34 2.267

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- There was not a significant linear trend in the pattern of the group means, F(1, 15) = 1.32, p = .268.
- There was a significant quadratic trend in the pattern of the group means, F(1, 15) = 53.38, p < .001.

PERFORMING THE ANALYSIS IN R

• summary() table

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.3333 0.3549 15.029 1.89e-10 ***
linearCC -0.5000 0.4346 -1.150 0.268
quadCC 1.8333 0.2509 7.306 2.58e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.506 on 15 degrees of freedom
Multiple R-squared: 0.7848, Adjusted R-squared: 0.7561
F-statistic: 27.35 on 2 and 15 DF, p-value: 9.912e-06
```

- The full model including the linear and quadratic trends for age groups accounted for a significant amount of variance in people's support for the forgiveness of student loans, $R^2 = 0.78$, F(2, 15) = 27.35, p < .001.
- Specifically, there was no significant linear trend, b = -0.50, t(15) = -1.15, p = .268, but there was a significant quadratic trend in the pattern of the group means, b = 1.83, t(15) = 7.31, p < .001.