International Olympiad in Informatics 2015

26th July - 2nd August 2015 Almaty, Kazakhstan Day 1

scales

Language: hy-AM

Կշեռք (Scales)

Ամինան ունի վեց մետաղադրամ` համարակալված 1-ից 6 թվերով։ Նա գիտի, որ բոլոր մետաղադրամների քաշերը տարբեր են։ Նա ցանկանում է դասավորել դրանք ըստ իրենց քաշի։ Դրա համար նա ստեղծել է նոր տիպի նժարավոր կշեռք։

Ավանդական նժարավոր կշեռքն ունի երկու նժար։ Այդ կշեռքից օգտվելու համար յուրաքանչյուր նժարին մեկական մետաղադրամ են դնում և պարզում, թե նրանցից որն է ավելի ծանր։

Ամինայի նոր կշեռքն ավելի բարդ է։ Այն ունի չորս նժար, որոնք նշված են $A,\,B,\,C$ և D տառերով։ Կա կշեռքի չորս տարբեր կարգավորում, որոնցից յուրաքանչյուրի դեպքում կարելի է ստանալ մետաղադրամների վերաբերյալ մեկ հարցի պատասխան։ Կշեռքն օգտագործելիս առաջին երեք կարգավորումների դեպքում Ամինան պետք է ճիշտ մեկական մետաղադրամ տեղադրի $A,\,B$ և C նժարների վրա, իսկ չորրորդ կարգավորման դեպքում` նաև ճիշտ մեկ մետաղարդամ D նժարի վրա։

Այդ չորս կարգավորումների միջոցով կարելի է ստանալ հետևյալ չորս հարցերի պատասխանները.

- 1. A, B և C նժարների վրա դրված մետաղադրամներից ո՞րն է ամենածանրը։
- 2. A, B և C նժարների վրա դրված մետաղադրամներից ո $^{\circ}$ րն է ամենաթեթևը։
- 3. A, B և C նժարների վրա դրված մետաղադրամներից ո՞րն է միջինը։ (Միջին ասելով այստեղ հասկանում ենք այն մետաղադրամը, որը երեքից ո՛չ ամենածանրն է, ո՛չ էլ ամենաթեթևը)։
- 4. A, B և C նժարների վրա դրված մետաղադրամներից դիտարկենք միայն նրանք, որոնք ավելի ծանր են, քան D նժարի վրա դրված կշռաքարը։ Եթե կան այդպիսի մետաղադրամներ, ո՞րն E նրանցից ամենաթեթևը։ Յակառակ դեպքում, այսինքն, եթե այդպիսի մետաղադրամներ չկան, A, B և C նժարներին դրված մետաղադրամներից ո՞րն E ամենաթեթևը։

Խնդիր

Գրեք ծրագիր, որը կդասավորի Ամինայի վեց մետաղադրամներն ըստ իրենց քաշի։ Ծրագիրը կարող է մետաղադրամների քաշերի վերաբերյալ հարցումներ անել Ամինայի կշեռքին` մետաղադրամների կշիռները համեմատելու համար։ Ձեր ծրագրին կտրվեն մի քանի թեստեր, որոնցից յուրաքանչ յուրը կհամապատասխանի վեց մետաղադրամների մի նոր բազմության։

Ձեր ծրագրում պետք է իրականացված լինեն init և orderCoins ֆունկցիաները։ Ամեն անգամ ձեր ծրագիրն աշխատացնելուց գրեյդերը նախ ճիշտ մեկ անգամ կկանչի init ֆունկցիան։ Այն ձեզ կտա թեստերի քանակը և հնարավորություն՝ կատարել փոփոխականների սկզբնարժեքավորում։ Դրանից հետո գրեյդերը յուրաքանչյուր թեստի համար կկանչի orderCoins() ֆունկցիան։

- init(T)
 - $_{\mathbb{T}}$: Ծրագրի կատարման ընթացքում տրվող թեստերի քանակը։ $_{\mathbb{T}}$ -ն $_{\mathbb{T}}$ -և, $_{\mathbb{T}}$ տիրույթին պատկանող ամբողջ թիվ $_{\mathbb{T}}$:
 - Այս ֆունկցիան ոչինչ չի վերադարձնում։
- orderCoins()
 - Այս ֆունկցիան յուրաքանչյուր թեստի համար կանչվում է ճիշտ մեկ անգամ։
 - Uju \$nilyghwl wtinp t nwuwdnph Udhlwjh yznwpwptpp oqunwqnpôtind qptjntph htinyw \$nilyghwltpp` getHeaviest(), getLightest(), getMedian() u getNextLightest():
 - Չենց որ ֆունկցիան պարզի մետաղադրամների ճիշտ կարգը, նա պետք է այդ մասին հարորդի գրելոարին answer() ֆունկցիայի միջոցով:
 - answer() ֆունկցիան կանչելուց հետո orderCoins() ֆունկցիան պետք է ավարտվի: Այն ոչինչ չի վերադարձնում:

Դուք ձեր ծրագրում կարող եք օգտագործել գրեյդերի հետևյալ ֆունկցիաները.

- answer (Խ) ձեր ծրագիրը պետք է օգտագործի այս ֆունկցիանն գտնված պատասխանը գրեյդերին հաղորդելու համար:
 - พ: 6 երկարության զանգված, որը պարունակում է մետաղադրամների ճիշտ դասավորությունը։ w[0]-ից w[5]-ում պետք է պահել մետաղադրամների համարները (այսինքն, 1-ից 6 թվեր) մետաղադրամների քաշերի աճման կարգով։
 - Ձեր ծրագիրը պետք է կանչի այս ֆունկցիան միայն orderCoins()
 ֆունկցիայի ներսում, յուրաքանչյուր թեստի համար ճիշտ մեկ անգամ:
 - Այս ֆունկցիան վերադարձի արժեք չունի։
- getHeaviest (A, B, C), getLightest (A, B, C), getMedian (A, B, C) uրակք համապատասխանում են Ամինայի կշեռքի 1, 2 և 3 կարգավորումներին:
 - A, B, C: A, B և C նժարներին դրված մետաղադրամների համարները։ A- ն, B-ն և C-ն պետք է լինեն զույգ առ զույգ իրարից տարբեր ամբողջ թվեր` 1-ից և 6-ը ներառյալ։
 - Նշված ֆունկցիաները վերադարձնում են A, B և C թվերից մեկը`
 համապատասխան մետաղադրամի համարը։ Օրինակ, getHeaviest (A, B, C) ֆունկցիան վերադարձնում է երեք մետաղադրամներից մեծագույնի համարը։
- - ullet A, B, C, D. Յամապատասխանաբար A, B, C և D նժարներին դրված

մետաղադրամների համարները։ A-ն, B-ն, C-ն և D-ն պետք E լինեն $\mathbf{1}$ -ից $\mathbf{6}$ տիրույթին պատկանող իրարից տարբեր ամբողջ թվեր։

• Այս ֆունկցիան վերադարձնում է \mathbf{A} , \mathbf{B} և \mathbf{C} թվերից մեկը` կշեռքի գործածման 4-րդ կարգավորման դեպքում ընտրված մետաղադրամի համարը։ Այսինքն, եթե A, B և C նժարների վրա դրված մետաղադրամների մեջ կան D նժարի վրա դրված մետաղադրամից ծանր մետաղադրամներ, վերադարձնում է դրանցից ամենաթեթևի համարը։ Եթե այդպիսի մետաղադրամ չկա, պարզապես վերադարձնում է A, B և C նժարների վրա դրված մետաղադրամներից թեթևագույնի համարը։

Միավորներ

Այս խնդրում ենթախնդիրներ չկան։ Ձեր ծրագիրը միավոր կստանա կախված նրանից, թե քանի անգամ կշռում կկատարի (այսինքն, քանի անգամ կկանչի getLightest(), getHeaviest(), getMedian() և/կամ getNextLightest() ֆունկցիաները)։

Ձեր ծրագիրը կաշխատացվի մի քանի անգամ, յուրաքանչյուր անգամ որոշակի քանակությամբ թեստերի վրա։ Դիցուք, *r*-ը ցույց է տալիս, թե ձեր ծրագիրը քանի անգամ է աշխատացվել։ Այս թիվը ֆիքսված է թեստային տվյալներում։ Եթե ձեր ծրագիրն ամեն անգամ աշխատացնելուց գտնվի գոնե մեկ թեստ, որի դեպքում ծրագիրը սխալ կդասավորի մետաղադրամները կտրվի 0 միավոր։ Յակառակ դեպքում միավորի հաշվարկը կատարվում է հետևյալ կերպ.

Դիցուք, Q-ն Ամինայի կշեռքի միջոցով ցանկացած վեց տարբեր մետաղադրամների հաջորդականություն կարգավորելու համար մինիմալ կշռումների քանակն L : Խնդիրն ավելի դժվար դարձնելու համար մենք այստեղ չենք բացահայտում Q-ի արժեքը:

Ենթադրենք ընդհանրապես բոլոր թեստերի վրա ձեր ծրագիրն աշխատացնելուց մաքսիմալ կշռումների քանակը Q+y է, որտեղ y-ը ամբողջ թիվ է։ Այդ դեպքում դիտարկենք ձեր ծրագրի մեկ գործարկում։ Դիցուք այս անգամ ծրագիրը աշխատացվել է T թեստերի վրա, և դրանցից մաքսիմալ կշռումների քանակը Q+x է, որտեղ x-ը ոչ բացասկան ամբողջ թիվ է։ (Եթե դուք բոլոր թեստերում կատարում եք Q-ից քիչ կշռումներ, ապա x=0)։ Այդ դեպքում ծրագրի այս գործարկման համար կտրվի $\frac{100}{r((x+y)/5+1)}$ միավոր, կլորացրած դեպի u

Մասնավորապես, եթե ձեր ծրագիրը ամեն անգամ աշխատացնելուց յուրաքանչյուր թեստի համար կատարի առավելագույնը Q կշռում, դուք կստանաք 100 միավոր։

Օրինակ

Ենթադրենք մետաղադրամներն ըստ քաշերի աճման կարգի դասավորված են հետևյալ կերպ. $3\ 4\ 6\ 2\ 1\ 5$

Ֆունկցիայի Վել կանչ	ւրադարձվող արժեք	Բացատրություն
------------------------	---------------------	---------------

Ֆունկցիայի կանչ	Վերադարձվող արժեք	Բացատրություն
getMedian(4, 5, 6)	6	6-րդ մետաղադրամը 4-րդ, 5-րդ և 6-րդ մետաղադրամներից միջինն է։
getHeaviest(3, 1, 2)	1	1-ին մետաղադրամը 1-ին, 2-րդ և 3-րդ մետաղադրամներից ամենածանրն է։
getNextLightest(2, 3, 4, 5)	3	2-րդ, 3-րդ և 4-րդ մետաղադրամները are all lighter than coin 5-րդ մետաղադրամից թեթև են, հետևաբար վերադարձվում է նրանցից ամենաթեթևը (3-րդը)։
getNextLightest(1, 6, 3, 4)	6	1-ն և 6-րդ մետաղադրամներն ավելի ծանր են, քան 4-րդը։ Նրանցից թեթևը 6-րդն է։
getHeaviest(3, 5, 6)	5	5-րդ մետաղադրամը 3-րդ, 5-րդ և 6-րդ մետաղադրամներից ամենածանրն է։
getMedian(1, 5, 6)	1	1-և մետաղավրամը 1-ին, 5-րդ և 6-րդ մետաղադրամներից միջինն է։
getMedian(2, 4, 6)	6	6-րդ մետաղադրամը 2-րդ, 4-րդ և 6-րդ մետաղադրամներից միջինն է։
answer([3, 4, 6, 2, 1, 5])		Ծրագիրն այս թեստի համար գտավ ճիշտ պատասխան։

Sample grader

The sample grader reads input in the following format:

- lacksquare line 1:T the number of test cases
- lacktriangledown each of the lines from ${\bf 2}$ to $T+{\bf 1}$: a sequence of ${\bf 6}$ distinct numbers from ${\bf 1}$ to ${\bf 6}$: the order of the coins from the lightest to the heaviest.

For instance, an input that consists of two test cases where the coins are ordered $1\ 2\ 3\ 4\ 5\ 6$ and $3\ 4\ 6\ 2\ 1\ 5$ looks as follows:

```
2
1 2 3 4 5 6
3 4 6 2 1 5
```

The sample grader prints the array that was passed as a parameter to the <code>answer()</code> function.