CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF TECHNOLOGY & ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS362: COMPUTER NETWORKS

Credit and Hours:

Teaching Scheme	Theory	Practical	Total	Credit
Hours/week	3	2	5	4
Marks	100	50	150	·

Outline of the Course:

Sr. No.	Title of the unit	Minimum Number of Hours
1	Introduction to Computer Networks	04
2	Data Link Layer	08
3	Medium Access Control Sub Layer	10
4	Network Layer	12
5	Transport Layer	08
6	Application Layer	03

Total Hours (Theory): 45

Total Hours (Lab): 30

Total Hours: 75

© CHARUSAT 2021 Page **115** of **173**

Det 1	ailed Syllabus: Introduction to Computer Networks	04 Hours	09%
1.1	Uses of computer network		
1.2	network hardware, network software		
1.3	OSI model, TCP/IP model, Comparison of OSI and TCP/IP model		
1.4	Example network		
2	Data Link Layer	08 Hours	18%
2.1	Design Issues		
2.2	framing, error control, flow control		
2.3	Error detection and correction		
2.4	Elementary data link protocols		
2.5	simplex, stop and wait, sliding window protocol, HDLC		
3	Medium Access Control Sub Layer	10 Hours	22%
3.1	The channel allocation problem, Multiple Access protocols: ALOHA,		
	CSMA, Collision Free Protocols,		
3.2	Limited Contention Protocols, Wavelength Division Multiple		
	Access Protocols		
3.3	Wireless LAN protocols; Ethernet: Traditional Ethernet, Switched		
	Ethernet, Fast Ethernet, Gigabit Ethernet, IEEE 802.2: LLC, Data		
	link layer switching		
4	Network Layer	12 Hours	27%
4.1	Implementation of connection oriented and connection less service,		
	Comparison of virtual circuit and datagram subnets, Routing		
	algorithms		
4.2	Shortest path routing, Flooding, Distance vector routing, Link state		
	routing, Hierarchical routing, Broadcast routing, Multicast routing,		
	Routing for mobile host		
4.3	Routing in ad hoc network, Congestion control algorithms		
4.4	principles, Prevention policies Congestion control in virtual circuit subnets, Congestion control in		

© CHARUSAT 2021 Page **116** of **173**

datagram subnets, Load shedding,

4.5 virtual circuit, Connectionless internetworking, Tunneling,

Internetwork routing and fragmentation

- 4.6 The network layer in the internet: The IP protocol, IPaddresses
- 4.7 Internet control protocol, OSPF, BGP

5 Transport Layer

08 Hours 18%

- 5.1 The transport service: Services provided to the upper layers
- 5.2 Transport service primitives, Socket elements of transport protocols addressing
- 5.3 Connection establishment, Connection release, Flow control
- 5.4 Multiplexing, Crash recovery the transport protocol: UDP, TCP

6 Application Layer

03 Hours 06%

- 6.1 DNS: The DNS name space, Resource records, Nameservers
- 6.2 Electronic mail: Architecture and services
- 6.3 World Wide Web: Architectural overview, HTTP.

Course Outcome:

After completion of the course students will be able to

	iter completion of the course students will be use to
CO1	Analyze layered network architecture and passage of data over communication
	links
CO2	Analyze delay models in Data Networks using Queueing Systems for messaging
	and delay sensitive applications
CO3	Design and analyze routing algorithms for Internet and multi-hop autonomous
	networks
CO4	Analyze flow and rate control algorithms between a sender and receiver in wide
	area networks
CO5	Apply the network fundamentals to analyze performance.
CO6	Use key networking algorithms in simulation.

Course Articulation Matrix:

	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	3	1	-	-	-	-	-	-	-	2	-
CO2	3	3	1	3	1	-	-	-	-	-	-	-	1	-

© CHARUSAT 2021 Page **117** of **173**

CO3	3	3	1	3	1	-	-	-	-	-	-	-	1	-
CO4	3	3	1	3	1	=	-	-	-	=	=	-	1	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	1	-	1	1	3	1	1	1	1	1	1	1	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)Ifthere is no correlation, put "-"

Recommended Study Material:

***** Text Books:

1. Computer Network, Andrew S. Tanenbaum, Prentice Hall PTR

***** Reference Books:

- Introduction to Data Communication and Networking by Behrouz Forouzan, McGraw Hill
- 2. Data and Computer Communications, William Stallings, Prentice Hall

***** Reference Books:

- 1. http://www.cisco.com
- 2. http://compnetworking.about.com

© CHARUSAT 2021 Page **118** of **173**