Altken Acceleration:

-> Used to accelerate convergence

Formula:

$$\frac{\lambda}{\chi_{k+2}} = \chi_k - \frac{(\chi_{k+1} - \chi_k)^2}{\chi_{k+2} - 2\chi_{k+1} + \chi_k}$$

 \Rightarrow starting from χ_0 , every 2 iteration acceleration occurs. eg: χ_2 , χ_4 , χ_6 ...

$$\chi_0 \rightarrow \chi_1 \rightarrow \chi_2 \rightarrow \hat{\chi}_2 \rightarrow \chi_3 \rightarrow \chi_4 \rightarrow \hat{\chi}_4 \rightarrow \chi_5 \rightarrow \chi_6$$

Example:

$$f(x) = \frac{1}{x} - 0.5$$
 [x_A is at 2]

 \Rightarrow construct a g(a) so that $\alpha=2$ is a fixed point of g(a).

$$g(x) = x + \frac{1}{16} \left(\frac{1}{x} - 0.5 \right)$$

$$9(2) = 2$$

$$9'(x) = 1 + \frac{1}{16} \left(-\frac{1}{2^2} \right)$$

> It is close to 1. It will converge, but it will be very slow.

 \Rightarrow lets start using $x_0 = 1.5$, keeping the calculations upto 7 s.f.

$$g(x) = x + \frac{1}{16}(\frac{1}{x} - 0.5), \alpha_0 = 1.5$$

$$\chi_1 = g(\chi_0) = 1.510417$$

$$\alpha_2 = 9(\alpha_1) = 1.520546$$

$$\alpha_3 = 9(\alpha_2) = 1.530400$$

$$x_{4} = g(x_{3}) =$$

Now, Applying Aitken Acceleration:

$$\hat{\chi}_{k+2} = \chi_{k} - \frac{(\chi_{k+1} - \chi_{k})^{2}}{\chi_{k+2} - 2\chi_{k+1} + \chi_{k}}$$

$$\chi_{o} \rightarrow \chi_{1} \rightarrow \chi_{2} \rightarrow \chi_{2} \rightarrow \chi_{3} \rightarrow \chi_{4} \rightarrow \chi_{4} \rightarrow \chi_{5} \rightarrow \chi_{6}$$

$$\uparrow_{Accelerate} \chi_{8} \leftarrow \chi_{7} \leftarrow \chi_{7} \leftarrow \chi_{6}$$

$$\chi_{8} \leftarrow \chi_{8} \leftarrow \chi_{7} \leftarrow \chi_{6}$$

$$\chi_0 = 1.5$$

 $\chi_1 = 9(\chi_0) = 1.510417$

$$\alpha_2 = 9(\alpha_1) = 1.520546$$

$$\hat{\chi}_{2} = \chi_{0} - \frac{(\chi_{1} - \chi_{0})^{2}}{\chi_{2} - 2\chi_{1} + \chi_{0}} = 1.877604$$

$$\alpha_3 = g(\hat{\alpha}_2) = 1.879641$$

$$x_4 = 9(x_3) = 1.881642$$

$$\hat{\alpha}_{4} = \hat{\alpha}_{2} - \frac{(\chi_{3} - \hat{\chi}_{1})^{2}}{\chi_{4} - 2\chi_{3} + \hat{\chi}_{2}} = 1.992634$$

For Secant Method / Quasi-Newton Method:

Newton's Method Recap:

$$\chi_{k+1} = \chi_k - \frac{f(\chi_k)}{f'(\chi_k)}$$

>> replace fran with backward diff.

backward differentiation =
$$\frac{f(x) - f(x-h)}{h}$$

$$= \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

=
$$\frac{f(\alpha_k) - f(\alpha_{k-1})}{\alpha_k - \alpha_{k-1}}$$
 } put this part instead of fice

: Iteration formula for Secont Mothod:

$$\chi_{k+1} = \chi_k - \frac{f(\chi_k)(\chi_k - \chi_{k-1})}{f(\chi_k) - f(\chi_{k-1})}$$

Note: We need 2 starting points for secont Method (20 and 21).

$$f(x) = \frac{1}{x} - 0.5$$
 $\alpha_0 = 0.25, \alpha_1 = 0.5$

$$\chi_{k+1} = \chi_k - \frac{f(\chi_k)(\chi_k - \chi_{k-1})}{f(\chi_k) - f(\chi_{k-1})}$$

$$= \chi_{k} - \frac{\left(\frac{1}{\chi_{k}} - 0.5\right) \left(\chi_{k} - \chi_{k-1}\right)}{\left(\frac{1}{\chi_{k}} - 0.5\right) - \left(\frac{1}{\chi_{k-1}} - 0.5\right)}$$

_ k	2K
0	0.25
1	0.5
2	(2. 6875
3	(1.01562)
Ч	(1-354022
5	31.68205
6	1.8973
7	1.98367
8	1.99916
12	2.00000

Example:

$$F(\alpha) = \alpha_k^2 - 2\alpha_k e^{-\alpha_k} + e^{-2\alpha_k} - C$$

Newtons Method Iteration Formula ?

$$\chi_{k+1} = \chi_{k} - \frac{\chi_{k}^{2} - 2\chi_{k}e^{-\chi_{k}} + e^{-2\chi_{k}}}{2\chi_{k} - 2e^{-\chi_{k}} + 2\chi_{k}e^{-\chi_{k}} - 2e^{-2\chi_{k}}} - 2$$

Aitken Acceleration?

$$\hat{\chi}_{k+2} = \chi_{k} - \frac{(\chi_{k+1} - \chi_{k})^{2}}{\chi_{k+2} - 2\chi_{k+1} + \chi_{k}}$$
 (3)

$$\chi_{o} \xrightarrow{eq.1} f(\chi_{o}) \xrightarrow{eq.2} \chi_{1} \xrightarrow{eq.1} f(\chi_{1}) \xrightarrow{eq.2} \chi_{2} \xrightarrow{eq.1} f(\chi_{2}) \xrightarrow{eq.3}$$

K	nu feau	if fcxxx) < 10 ⁻⁵ ?	
О	1 eq1 0.399576	No	
1	0-768941 eg 2 0.093292	ИО	
2	0.664590 eq1 > 0.022532	N6	
2	0.578651 eq1 > 3.2 ×10-4	N 6	
3	$\begin{array}{c} \downarrow \text{eq. 2} \\ 0.572885 \xrightarrow{\text{eq. 1}} \rightarrow 8 \times 10^{200} -5 \end{array}$	ЙФ	
Ч	0.570011 eq1 > 2 × 10 -5	No	
Ŷ	0.567154 -eq1 > 2.8 × 10 -10	Yes	
Answer: 2Cx = 0.56715 (upto 5 d.p).			