Solving Kickstarter

Predicting Campaign Success with Support Vector Machines

Some Background...

What is Kickstarter?

- A crowdfunding platform
- An alternative, public method of gathering investments for an idea
- ☐ Founder Perry Chen: "A middle ground between patronage and commerce"

More Background...

How does Kickstarter work?

- Projects are created, along with a deadline and a minimum funding goal
- ☐ If a goal is not met, no funds are collected, and the project is deemed a failure
- ☐ Ideally, successful project creators use the investments they recieve to deliver the promised product

Our Data

Our algorithm made use of a list of over 300,000 recent kickstarter campaigns and their various attributes in a tabular format

Our Goal

Predicting Kickstarter Campaign Success

- Utilize campaign characteristics to observe what makes a campaign successful
- Find patterns, consistencies etc. in these attributes in order to accurately predict campaign success with applicable attributes
- Create a tool that can effectively predict outcome of any Kickstarter campaign

The Problem

Not all features or attributes are available before campaigns are decided

Our Approach

Titles - An Unconsidered Field

- Projects considering Kickstarter categories have been carried out before but the titles of the campaigns have been largely ignored
- The positivity score of a title can be calculated and utilized
- ☐ The **reading ease score** of a title can be calculated and utilized
- Do the positivity score and the reading ease score of a campaign significantly impact success?

Implementation

Tailor the dataset to fit our needs and train a model to derive accuracy

Tailoring our Dataset

Converting Textual Components

- Converted all textual components to a numeric value or to dummy values to feed into algorithm
- Sentiment Analysis Score calculated the net positivity score of the campaign title
- ☐ Flesch Kinaid Score calculated the net reading ease of the campaign title

Our Implementation

Machine Learning Models

- Linear Support Vector Classification it has flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples
- Random Forest Classifier fits a number of decision tree classifiers on various sub-samples of the dataset to calculate Feature Importance

Results

Reading Ease and Positivity of a campaign's title play a role in predicting campaign success

Feature Importance

Model Accuracy

66%

Accuracy in predicting campaign success or failure

In Conclusion

% of successful and failed projects by positivity

Flesch Kinaid Score vs. Success

Thank you!

Any Questions??