ÉTUDE ET MODÉLISATION DE LA PROPAGATION D'UNE RUMEUR DANS UN RÉSEAU SOCIAL

THÈME TIPE 2018-2019: TRANSPORTS

Problème de maximisation d'influence:

Comment trouver les personnes amenant à la plus grande diffusion de la rumeur?

Plan

- 1. Modélisation du problème
- 2. L'algorithme glouton
- 3. Amélioration de l'algorithme glouton
- 4. Une approche différente
- 5. Résultats expérimentaux

Modélisation du problème

Propagation

* Linear Threshold (LT):

Modélisation du problème

Propagation

- * Linear Threshold (LT):
- * Independent Cascade (IC):

Modélisation du problème

Formalisation

- * G = (V, E), V = [1,n]
- * Noeuds actifs à l'instant i : Ai
- * Fonction d'influence : $\sigma(A) = E(|A_t|)$, t instant final
- * Problème : Trouver A de taille k qui maximise σ

Algorithme glouton

Présentation

```
Initialiser S = \emptyset
Tant que |S| < k:
Choisir v tel que \sigma(S \cup \{v\}) - \sigma(S) soit maximal S = S \cup \{v\}
```

Théorème 1: $\sigma(S)$ ≥ (1 - 1/e) $\sigma(O)$ ≈ 0,63 $\sigma(O)$

Algorithme glouton

Preuve de $\sigma(S) \ge (1 - 1/e) \sigma(O)$

f sous-modulaire: $X \subset Y \Rightarrow f(X \cup \{e\}) - f(X) > f(Y \cup \{e\}) - f(Y)$

Théorème 2: f sous-modulaire, positive et croissante ⇒

 $f(S_{glouton}) \ge (1 - 1/e) f(O)$

Théorème 3: σ est sous-modulaire

Amélioration de l'algorithme glouton

Complexité temporelle

```
Initialiser S \leftarrow \emptyset, u \leftarrow 0, \max \leftarrow 0

k \longrightarrow Tant que |S| < k:

n \longrightarrow Pour v allant de 1 à n, v \notin S:

r \times m \longrightarrow gain \leftarrow \sigma(S \cup \{v\}) - \sigma(S)

Si gain > max alors u \leftarrow v, \max \leftarrow gain

S \leftarrow S \cup \{u\}
```

O(knrm)

Amélioration de l'algorithme glouton

Algorithme 2 : CELF

```
Initialiser S ← Ø, tas ← Ø
Pour v allant de 1 à n:
    insérer ((\sigma(v), v), tas)
S ← retirer max(tas)
Tant que |S| < k:
    (gain, noeud max) ← retirer max(tas)
    insérer (σ(S υ {noeud max}) - σ(S), tas)
    (nouveau gain, nouveau noeud max) ← max(tas)
    Tant que noeud max != nouveau noeud max :
         (gain, noeud max) ← retirer max(tas)
        insérer (\sigma(S \cup \{noeud max\}) - \sigma(S), tas)
        nouveau gain, nouveau noeud max) ← max(tas)
    (gain, u) ← retirer max(tas)
    S \leftarrow S \cup \{u\}
```

Une approche différente

Algorithme 3 : Degré_max

```
Initialiser S ← Ø, tas ← Ø
Pour v de 1 à n:
    insérer((degre(v), v), tas)

Tant que |S| < k:
    d, u = retirer_max(tas)
S ← S ∪ {u}</pre>
```

Une approche différente

Une amélioration : Degree Discount

- * Si v voisin de u actif ⇒ moins intéressant
- * Quand u devient actif, $dv \leftarrow 2tv + (dv tv)tv \times p$ (tv = voisins actifs, <math>dv = degré de v)

Implémentation

Opérations nécessaires CELF, Degree Discount

	Liste	Tas
Ajouter	O(1)	O(log n)
Rechercher max	O(n)	O(1)
Supprimer max	O(n)	O(log n)

Comparaison des modèles

influence(k), temps(k) sur graphe fb des étudiants d'une université US

Comparaison des algorithmes

influence(k), temps(k) pour CELF et greedy => étude uniquement de CELF dans la suite

Comparaison des algorithmes

influence(k), temps(k) pour CELF, DegreeDiscount, DegreMax

Conclusion

	CELF	Degree Discount
Besoin d'un résultat optimal		X
Grand réseau/ temps limité	X	U

- * Autres modèles: General Cascade, General Threshold
- * Paramètres:

Théorème 2

Lemme : Soient $S_1, ..., S_k$ les ensembles produits par l'algorithme glouton On a $\sigma(S_{i+1}) - \sigma(S_i) \ge 1/k \times (\sigma(O) - \sigma(S_i))$

Preuve: Par croissance, $\sigma(S_i \cup O) \geq \sigma(O)$

Or
$$\sigma(S_i \cup O) = \sigma(S_i) + \sum_{j=1}^k \sigma(S_i \cup \{o_1, \dots, o_j\}) - \sigma(S_i \cup \{o_1, \dots, o_{j-1}\})$$

et
$$\sigma(S_i \cup \{o_1, \dots, o_j\}) - \sigma(S_i \cup \{o_1, \dots, o_{j-1}\}) \le \sigma(S_i \cup o_j) - \sigma(S_i)$$

Comme $\sigma(S_i \cup o_j) \leq \sigma(S_{i+1})$, on a $\sigma(O) \leq \sigma(S_i) + k \times (\sigma(S_{i+1}) - \sigma(S_i))$

Preuve du théorème 2 :

On a donc
$$\sigma(O) - \sigma(S_i) - (\sigma(O) - \sigma(S_{i+1})) \ge 1/k \times (\sigma(O) - \sigma(S_i))$$

$$\sigma(O) - \sigma(S_{i+1}) \le (1 - 1/k) \times (\sigma(O) - \sigma(S_i))$$

$$\sigma(O) - \sigma(S_k) \le (1 - 1/k)^k \times \sigma(O)$$

$$\sigma(O) - \sigma(S_k) \le 1/e \times \sigma(O)$$

et finalement $\sigma(S_k) \ge (1 - 1/e) \times \sigma(O)$

Théorème 3

Triggering Set Model: Pour chaque v, T_v contient les noeuds capables d'activer v

Sous modularité dans ce modèle IC et LT sont des instances de ce modèle

Diffusion: Linear threshold

```
def diffusion(L, A):
    L : liste d'adjacence contenant les couples (voisins, poids)
    A : ensemble de depart
    renvoie la liste des noeuds actifs à la fin du processus
    n = len(L)
    seuils = sp.random.rand(n)
    somme = [0 for i in range(n)]
    actifs = copy.deepcopy(A)
    est actif = [False for i in range(n)]
    for u in actifs:
        est actif[u] = True
    nouveaux actifs = copy.deepcopy(A)
    #Tant que des noeuds deviennent actifs on continue:
    while len(nouveaux actifs) > 0:
        prochains actifs = []
        """Pour chaque noeud qui vient d'être activé
        on essaye d'activer ses voisins"""
        for u in nouveaux actifs:
            for v, p in L[u]:
                if not est actif[v]:
                    somme[v] += p
                    if somme[v] >= seuils[v]:
                        est actif[v] = True
                        actifs.append(v)
                        prochains actifs.append(v)
        nouveaux actifs = copy.deepcopy(prochains actifs)
    return actifs
```

Diffusion: Independent Cascade

```
def diffusion (L, p, A): #p : probabilité de propagation
    n = len(L)
    actifs = copy.deepcopy(A)
    nouveaux actifs = copy.deepcopy(A)
    est actif = [False for i in range(n)]
    for u in actifs:
        est actif[u] = True
    while len (nouveaux actifs) > 0:
        prochains actifs = []
        for u in nouveaux actifs:
            for v in L[u]:
                if not est actif[v]:
                    if random.random() <= p:</pre>
                        est actif[v] = True
                        actifs.append(v)
                        prochains actifs.append(v)
        nouveaux actifs = copy.deepcopy(prochains actifs)
    return actifs
```

```
def sigma(L, p, A, iterations):
    s = 0
    for i in range(iterations):
        influence = len(diffusion(L, p, A))
        s += influence
    return s/iterations
```

```
def algo_glouton(L, p, k, iterations):
    A = []
    for i in range(k):
        x, influence = noeud_optimal(L, p, A, iterations)
        A.append(x)
    return A
```

```
def degre_max(L, k):
    n = len(L)
    tas = []
    indices = [0 for i in range(n)]
    choisis = []
    for v in range(n):
        inserer(tas, indices, (degre(L, v), v))
    for i in range(k):
        _, u = retirer_max(tas, indices)
        choisis.append(u)
    return choisis
```

CELF

```
def celf(L, k, p, iterations):
   n = len(L)
   gains marginaux = []
   indices = [0 for i in range(n)]
   for v in range(n):
        s = (sigma(L, p, [v], iterations), v)
       inserer (gains marginaux, indices, s)
    influence, noeud max = retirer max (gains marginaux, indices)
    choisis = [noeud max]
    for i in range (k-1):
       , noeud courant = retirer max(gains marginaux, indices)
       nouvelle influence = sigma(L, p, choisis + [noeud courant], iterations)
        inserer (gains marginaux, indices, (nouvelle influence - influence, noeud courant))
        while gains marginaux[0][1] != noeud courant: #Tant que la racine ne reste pas racine
            , noeud courant = retirer max(gains marginaux, indices)
            nouvelle influence = sigma(L, p, choisis + [noeud courant], iterations)
            inserer (gains marginaux, indices, (nouvelle influence - influence, noeud courant))
        influence = nouvelle influence
        choisis.append(noeud courant)
        retirer max(gains marginaux, indices)
    return choisis
```