1. Consider the following problem (P):

$$\min 3x_1 - 2x_2$$
subject to
$$-x_1 + 2x_2 \le 3$$

$$x_1 - 2x_2 \le 2$$

$$x_1 + x_2 \ge 1$$

$$x_1 \ge 0, x_2 \ge 0.$$

(a) Give a picture of Fea(P). Give all the extreme points and the distinct extreme directions of Fea(P). (No justification required).
 Soln: [1,0]^T, [2,0]^T, [0,1]^T, [0, ³/₂]^T are the extreme points.

Soln: $[1,0]^T$, $[2,0]^T$, $[0,1]^T$, $[0,\frac{\alpha}{2}]^T$ are the extreme points. $[2,1]^T$ or $\alpha[2,1]^T$, for any $\alpha>0$ is the only **distinct** extreme direction.

- (b) Check whether (P) has an optimal solution. If yes, then give an optimal solution. Soln: Since $\mathbf{c}^T\mathbf{d} = [3, -2][2, 1]^T = 4 > 0$, so (P) has an optimal solution and $[0, \frac{3}{2}]^T$ is the unique optimal solution.
- (c) If the objective function of (P) is written as $\min \mathbf{c}^T \mathbf{x}$, then **if possible** give a \mathbf{c}' such that the LPP with the above feasible region and objective function, $\min \mathbf{c}'^T \mathbf{x}$, has infinitely many optimal solutions, but only one optimal extreme point. **Soln:** Multiple correct answers, for example you can take $\mathbf{c}'^T = [-1, 2]^T$.
- (d) If Fea(P) is written as $A_{3\times 2}\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$, then by changing **exactly** one entry in \mathbf{b} , **if possible** give a \mathbf{b}' such that for no $\mathbf{c} \in \mathbb{R}^2$, min $\mathbf{c}^T\mathbf{x}$, subject to $A_{3\times 2}\mathbf{x} \leq \mathbf{b}'$, $\mathbf{x} \geq \mathbf{0}$, has optimal solution (A is unchanged). **Soln:** Multiple correct answers, for example you can take $\mathbf{b}' = [3, -4]^T$, then the new feasible region is the empty set. [3+2+1+1]
- 2. Let \mathbf{x}_0 be an optimal solution of the following problem (P): $\min \mathbf{c}^T \mathbf{x}$, subject to $A_{3\times 4}\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq \mathbf{0}$ (or $\tilde{A}\mathbf{x} \leq \tilde{b}$ where $\tilde{A} = \begin{bmatrix} A \\ -I \end{bmatrix}$ and $\tilde{b} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$. Check the correctness of the following statements with **brief** but **proper** justification.
 - (a) If $\mathbf{c} = [1, -1, 2, -3]^T$ then the second column of A has a positive entry. **Soln:** If every entry of the second column of A is non positive (or ≤ 0) then $\mathbf{d} = [0, 1, 0, 0]^T$ will be a direction of Fea(P) and $\mathbf{c}^T\mathbf{d} = -1 < 0$, which implies that (P) does not have an optimal solution, which contradicts that \mathbf{x}_0 is an optimal solution.
 - (b) If $\mathbf{x}_0 = [1, 2, 1, 3]^T$ then \mathbf{x}_0 is the **unique** optimal solution of (P). **Soln:** Since $\mathbf{x}_0 = [1, 2, 1, 3]^T$ can lie on atmost three LI defining hyperplanes of Fea(P) so \mathbf{x}_0 is not an extreme point. Since at least one extreme point must be an optimal solution so any convex combination of that optimal extreme point and \mathbf{x}_0 is again optimal for (P), so (P) has infinitely many optimal solutions.

(c) If \mathbf{x}' lies on **exactly** k, Linearly Independent defining hyperplanes of Fea(P) and \mathbf{d} is such that $\mathbf{x}' + 2\mathbf{d} \in Fea(P)$, then $\mathbf{x}' + \mathbf{d}$ cannot lie on k + 1, Linearly Independent defining hyperplanes of Fea(P).

Soln: If $\mathbf{x}' \in Fea(P)$ then the statement is True. Let $\mathbf{x}' + \mathbf{d}$ lie on k + 1, LI defining hyperplanes and a hyperplane H_0 with normal \mathbf{a}_0 on which \mathbf{x}' does not lie

Then $\mathbf{a}_{0}^{T}\mathbf{x}' < \tilde{b_{0}}$, and $\mathbf{a}_{0}^{T}(\mathbf{x}' + \mathbf{d}) = \tilde{b_{0}}$ which implies $\mathbf{a}_{0}^{T}\mathbf{d} > 0$ and $\mathbf{a}_{0}^{T}(\mathbf{x}' + 2\mathbf{d}) > \tilde{b_{0}}$ which is a contradiction.

However if \mathbf{x}' is not in Fea(P) then the statement is False. There are many examples to justify the claim.

So whatever be your assumption, $\mathbf{x}' \in Fea(P)$ or \mathbf{x}' not in Fea(P), if you have argued correctly or have given the correct example to prove your point you will get **full** credit.

(d) If $\mathbf{d}(\neq \mathbf{0})$ is such that for all $\mathbf{x} \in Fea(P)$ there exists $\alpha_x > 0$ (depending on \mathbf{x}) such that $\mathbf{x} + \alpha_x \mathbf{d} \in Fea(P)$, then Fea(P) is unbounded.

Soln: If Fea(P) is bounded then exists an $\alpha > 0$ such that $\mathbf{x}_0 + \alpha \mathbf{d}$ does not belong to Fea(P). Let $\gamma = \max\{\alpha > 0 : \mathbf{x}_0 + \alpha \mathbf{d} \in Fea(P)\}$, then due to the given condition, $\gamma > 0$ and $\mathbf{x}_0 + \gamma \mathbf{d} \in Fea(P)$.

For $\mathbf{x} = \mathbf{x}_0 + \gamma \mathbf{d}$ there exists no $\alpha_x > 0$ such that $\mathbf{x} + \alpha_x \mathbf{d} \in Fea(P)$, which is a contradiction.

(e) (Bonus question) If $\mathbf{d}_0(\neq \mathbf{0})$ is such that $\mathbf{x}_0 + \alpha \mathbf{d}_0$ is optimal for all $\alpha \geq 0$, then there exists $\tilde{\mathbf{a}}_{i_1}^T, \tilde{\mathbf{a}}_{i_2}^T, \tilde{\mathbf{a}}_{i_3}^T$ (rows of \tilde{A}), and $\beta_1, \beta_2, \beta_3$, real numbers such that $\mathbf{c} = \beta_1 \tilde{\mathbf{a}}_{i_1} + \beta_2 \tilde{\mathbf{a}}_{i_2} + \beta_3 \tilde{\mathbf{a}}_{i_3}$.

Soln: Since $\mathbf{c}^T(\mathbf{x}_0 + \alpha \mathbf{d}_0)$ is equal to the optimal value for all $\alpha \geq 0$, so $\mathbf{c}^T \mathbf{d}_0 = 0$. Since $\mathbf{x}_0 + \alpha \mathbf{d}_0 \in Fea(P)$ for all $\alpha \geq 0$ so \mathbf{d}_0 is a direction of Fea(P) and Fea(P) is unbounded.

So \mathbf{d}_0 can be written as a non negative linear combination of the extreme directions \mathbf{d}_j , $j = 1, \ldots, k$ of Fea(P).

Let $\mathbf{d}_0 = \sum_j \beta_j \mathbf{d}_j$, where $\beta_j \ge 0$, for all $j = 1, \dots, k$ and $\sum_j \beta_j > 0$ (**).

Since (P) has an optimal solution, $\mathbf{c}^T \mathbf{d}_j \geq 0$ for all j = 1, ..., k. Since $\mathbf{c}^T \mathbf{d}_0 = 0$, $\mathbf{c}^T \mathbf{d}_j = 0$ if $\beta_j > 0$ in (**).

WLOG let $\mathbf{c}^T \mathbf{d}_1 = 0$. Since \mathbf{d}_1 is an extreme direction, it is orthogonal to 4-1=3 LI rows of \tilde{A} .

Let those rows be $\tilde{\mathbf{a}}_{i_1}^T, \tilde{\mathbf{a}}_{i_2}^T, \tilde{\mathbf{a}}_{i_3}^T$.

If $\{\mathbf{c}, \tilde{\mathbf{a}}_{i_1}, \tilde{\mathbf{a}}_{i_2}, \tilde{\mathbf{a}}_{i_3}\}$ is LI then $\mathbf{d}_1 \in \mathbb{R}^4$ must be the zero vector (done in class) which is a contradiction, hence $\{\mathbf{c}, \tilde{\mathbf{a}}_{i_1}, \tilde{\mathbf{a}}_{i_2}, \tilde{\mathbf{a}}_{i_3}\}$ is LD.

Since $\{\tilde{\mathbf{a}}_{i_1}, \tilde{\mathbf{a}}_{i_2}, \tilde{\mathbf{a}}_{i_3}\}$ is LI, so there exists $\beta_1, \beta_2, \beta_3$, real numbers such that $\mathbf{c} = \beta_1 \tilde{\mathbf{a}}_{i_1} + \beta_2 \tilde{\mathbf{a}}_{i_2} + \beta_3 \tilde{\mathbf{a}}_{i_3}$.

(All parts in the above questions are independent)

[2+2+2+2+5]