МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

ТЕМА: Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр. 9383	-	Гордон Д.А.
Преподаватель		Ефремов М.А

Санкт-Петербург

2020

Цель работы.

Разработать программу на языке ассемблер по организации ветвящихся процессов.

Текст задания.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Таблица 2	Таблица 3		
/ 15-2*i , при a>b f1 = <	/ min(i1,i2), при k=0 f1 = <		
\ 3*i+4 , при a<=b	\ max(i1,i2), при k/=0		
/ - (4*i+3) , при a>b f2 = <	/ max(i1,10-i2), при k<0 f2 = <		
12 = < \ 6*i -10, при a<=b	\ i1 - i2 , при k>=0		
/7 - 4*i , при a>b	/ i1 + i2 , при k=0 f3 = <		
∖8-6*і, при а<=b	\ min(i1,i2), при k/=0		
$f4 = < \begin{pmatrix} / -(6*i - 4) , при a > b \\ / 3*(i+2) , при a <= b \end{pmatrix}$	/ min (i1 - i2 , 2), при k<0 f4 = <		
∖ 3*(i+2), при а<=b	\ max(-6, -i2), при k>=0		
/ 20 - 4*i , при a>b f5 = <	/ min(i1 , 6), при k=0 f5 = <		
\ -(6*I - 6), при a<=b	\ i1 + i2 , при k/=0		
/ 2*(i+1) -4 , при a>b f6 = <	/ i1 - i2 , при k<0 f6 = <		
\ 5 - 3*(i+1), при a<=b	\ max(7, i2), при k>=0		
f7 = < / -(4*i -5) , при a>b	/ i1 + i2 , при k<0 f7 = <		
\ 10 - 3*i , при a<=b	\ max(6, i1), при k>=0		
f8 = < / - (6*i+8) , при a>b \ 9 -3*(i-1), при a<=b	f8 = < / i1 - i2 , при k<0		
\ 9 -3*(i-1), при a<=b	$\mbox{max}(4, i2 -3),$ при k>=0		

Таблица 4

№ студента	Шифр задания	№ студента	Шифр задания
1	1.2.1	14	3.4.2
2	1.3.2	15	3.5.3
3	1.4.3	16	3.6.4
4	1.5.4	17	3.7.5
5	1.6.5	18	3.8.6
6	1.7.6	19	4.5.7
7	1.8.7	20	4.6.8
8	2.3.8	21	4.7.2
9	2.4.7	22	4.8.3
10	2.5.6	23	5.6.4
11	2.6.5	24	5.7.5
12	2.7.4	25	5.8.6
13	2.8.3	26	6.8.1

Шифр задания – 1, 4, 3

$$f1 = <$$
 / 15-2*i , при a>b
 $3*i+4$, при a<=b
 $-6*i-4$, при a>b
 $f4 = <$ / $-(6*i-4)$, при a>b
 $-6*i-4$, при a>b
 $-6*i-4$, при a>b
 $-6*i-4$, при a>b
 $-6*i-4$, при b=0
 $-6*i-4$, при b=0
 $-6*i-4$, при k=0
 $-6*i-4$, при k=0
 $-6*i-4$, при k=0
 $-6*i-4$, при k=0
 $-6*i-4$, при k=0

Тестирование.

a	b	i	k	F1	F4	F3
3	4	1	0	7	9	16
4	3	-1	-1	17	10	10

Выводы

Была разработана программа на языке ассемблер, которая с помощью условных переходов высчитывала значения функций.

ПРИЛОЖЕНИЕ КОД ПРИЛОЖЕНИЯ

L3.asm:

EOFLine EQU '\$' ; Определение символьной константы a EQU 2 B EQU 1 I EQU 3 K EQU 0 "Конец строки" ; Стек программы AStack SEGMENT STACK DW 12 DUP(?) ; Отводится 12 слов памяти AStack ENDS ; Данные программы DATA **SEGMENT** ; Директивы описания данных F1 DW 0 F2 DW 0 F3 DW 0 DATA ENDS ; Код программы CODE **SEGMENT** ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура Main PROC FAR ;\ Сохранение адреса начала PSP в стеке push DS sub AX,AX ; > для последующего восстановления по ;/команде ret, завершающей процедуру push AX ;записываем условие для F1 MOV AX,a ; Заносим значение а

; Вычитаем из а значение b

SUB AX,b

```
cmp ax,0
               ; Сравниваем полученное а с 0
                ; Переход к M1, если a>0
    Jg Metkal
    MOV AX,I
                 ; Заносим значение і
    SHL AX,1
                ; Сдвиг на 16 (умножаем на 2)
          MOV BX,I
    ADD AX,BX
                   ; 2*i + i = 3i
    ;Mov BX,4
    ADD AX,4
                 ; Сложение (3*i + 4)
                  ; Присваиваем F1 значение Ax
    MOV F1,AX
    CMP F1,AX
    JE Fun2
Metka1:
    mov AX,I
    SHL AX,1
                ; 2*i
    MOV BX,15
    SUB BX,AX
                ; 15 - 2*i
    MOV F1,BX
                  ; Присваиваем F1 значение Bx
    ; записываем условие для F2
    Fun2:
    JG Metka2
                ; Переход к M1, если a>0
                ; Заносим значение і
    mov AX,I
    SHL AX,1
                ; Сдвиг на 16 (умножаем на 2)
          MOV BX,I
    ADD AX,BX
                  ; 2*i + i = 3*i
    ;MOV BX,6
    ADD AX,6
                3*(i+2) = 3*i + 6
    MOV F2,Ax
                 ; Присваиваем F2 значение Ax
    CMP F2,Ax
                 ; Сравнение результата
               ; Переход, если равно
    JE Fun3
Metka2:
    MOV AX,I
    SHL AX,1
                ; 2*i
          SHL AX,1
                     ; 2*i
          MOV BX,I
    ADD AX,BX
                 ; 5*i
          ADD AX,BX
                         ; 6*i
          MOV BX,4
                 ; 4 - 6*i
    SUB BX,AX
    MOV F2,BX
                  ; Присваиваем F2 значение Ax
    ; записываем условие для F3
```

```
Fun3:
    MOV AX,K ;
    CMP AX,0
    JNE Metka3 ; Если к/=0, то переход
    mov AX,F1
    mov BX,F2
    ADD BX,AX ; i1 + i2
    CMP BX,0
    JG Metka4
                              ; i1 + i2 \le 0
    хог BX, 0FFFFh; инверсия всех битов
                   ; добавляем 1
           inc BX
    mov F3,BX
          RET
             ; i1 + i2 > 0
 Metka4:
    mov F3,BX
                  ; ответ записываем в F3
          RET
 Metka3:
    MOV AX,F1
    MOV BX,F2
    SUB BX,AX
    CMP BX,0
           JG Metka5;
                    ; i2 \le i1
           MOV F3,AX
    ret
Metka5:
    MOV BX,F2 ; i2 > i1
    MOV F3,BX
    ret ; Выход в DOS по команде,
            ; находящейся в 1-ом слове PSP.
CODE
        ENDS
Main
       ENDP
    END main
```

L3.lst:

Microsoft (R) Macro Assembler Version 5.10

Page 1-1 EOFLine EQU '\$' ; ОпределенЙ = 0024□символьной константы a EQU 2 = 0002B EQU 1 = 0001I EQU 3 = 0003K EQU 0 "КонЙ = 0000Остроки" ; Стек программы 0000 AStack SEGMENT STACK 0000 000C[DW 12 DUP(?) ; Отводится 12 слов памяти ????] 0018 AStack ENDS ; Данные программы 0000 DATA **SEGMENT** ; Директивы описания данн ЫΧ 0000 0000 F1 DW 0 0002 0000 F2 DW 0 0004 0000 F3 DW 0 0006 DATA **ENDS** ; Код программы 0000 CODE **SEGMENT** ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 PROC FAR Main push DS 0000 1E ;\ Сохранени е адреса начала PSP в стеке

1/29/21 17:03:13

sub AX,AX ;> для послеЙ
მ₫9ҳ□ᢄ•восстановления по
push AX ;/команде ret, завершающей процедуру
;записываем условие
для F1
MOV AX,а ; Заносим знЙ
ëŘ→□□a
SUB AX,b ; Вычитаем иЙ
значение b
стр ах,0 ; Сравниваем
полученное а с 0
Jg Metka1 ; Переход к М

Page 1-2

	1, если а>0
000F B8 0003	МОV АХ,І ; Заносим знЙ
0001 B 0 0003	, ,
0010 D1 F0	ëR→□□i
0012 D1 E0	SHL AX,1 ; Сдвиг на 16
0014 PR 0000	(умножаем на 2)
0014 BB 0003	MOV BX,I
0017 03 C3	ADD AX,BX ; $2*i + i = 3i$
0019 BB 0004	Mov BX,4 ;
001C 03 C3	ADD AX,BX ; Сложение (3*
0015 100000	i+4)
001E A3 0000 R	MOV F1, АХ ; Присваивае
0021 20 0 C 0000 P	м F1 значение Ax
0021 39 06 0000 R	CMP F1,AX
0025 74 0E	JE Fun2
0027	Metka1: ;
0027 B8 0003	mov AX,I ;
002A D1 E0	SHL AX,1 ; 2*i
002C BB 000F	MOV BX,15
002F 2B D8	SUB BX,AX ; 15 - 2*i
0031 89 1E 0000 R	MOV F1,ВХ ; Присваивае
	м F1 значение Вх
	; записываем условие
0025	для F2
0035	Fun2:
0035 7F 18	JG Metka2 ; Переход к М
0027 D0 0002	1, если а>0
0037 B8 0003	mov AX,I ; Заносим знЙ
	ëŘ→□□i
003A D1 E0	SHL AX,1 ; Сдвиг на 1б
	(умножаем на 2)
003C BB 0003	MOV BX,I
003F 03 C3	ADD AX,BX ; $2*i + i = 3*i$
0041 BB 0006	MOV BX,6
0044 03 C3	ADD AX,BX ; $3*(i+2) = 3*i + 6$
0046 A3 0002 R	MOV F2, Ах ; Присваивае
	м F2 значение Ax
0049 39 06 0002 R	СМР F2, Ax ; Сравнение э
	11

Р⊐́́Ðӧ҈ĐёĐЍ

004D 74 17		JE Fun3 ; Переход, ес
	ли равно	
004F	Metka2:	•
004F B8 0003		MOV AX,I ;
0052 D1 E0		SHL AX,1 ; 2*i
0054 D1 E0		SHL AX,1 ; $2*i$
0056 BB 0003		MOV BX,I
0059 03 C3		ADD AX,BX ; 5*i
005B 03 C3		ADD AX,BX ; 6*i
005D BB 0004		MOV BX,4
0060 2B D8		SUB BX,AX ; 4 - 6*i
0062 89 1E 0002 R		MOV F2,ВХ ; Присваивае
	F-0	_

м F2 значение Ax

; записываем условие для F3

0066	Fun3:
0066 B8 0000	MOV AX,K ;
0069 3D 0000	CMP AX,0;
006C 75 1C	JNE Metka3 ; Если к/=0, то
	переход
006E A1 0000 R	mov AX,F1 ;
0071 8B 1E 0002 R	mov BX,F2 ;
0075 03 D8	ADD BX,AX ; $i1 + i2$
0077 83 FB 00	CMP BX,0 ;
007A 7F 09	JG Metka4 ;
	$; i1 + i2 \le 0$
007C 83 F3 FF	хог BX, 0FFFFh; инверсия вэ
	□¸Šбитов
007F 43	inc BX ; добавл
	яем 1
0080 89 1E 0004 R	mov F3,BX ;
0084 CB	RET ;
0085	Metka4: ; $i1 + i2 > 0$
0085 89 1E 0004 R	$mov F3,BX$; ответ \dot{M}
	́è ́□ ́□Ăè ∆□в F3
0089 CB	RET ;
008A	Metka3: ;
008A A1 0000 R	MOV AX,F1 ;
008D 8B 1E 0002 R	MOV BX,F2 ;
0091 2B D8	SUB BX,AX ;
0093 83 FB 00	CMP BX,0 ;
0096 7F 04	JG Metka5 ;
	; i2 <
	= i1
0098 A3 0004 R	MOV F3,AX
009B CB	ret
009C	Metka5: ;
009C 8B 1E 0002 R	MOV BX,F2 ; $i2 > i1$
00A0 89 1E 0004 R	MOV F3,BX ;
00A4 CB	ret ; Выход в DOS п
	10

о команде,

; находящейс

я в 1-ом слове PSP.

00A5 CODE ENDS 0000 Main ENDP

END main

Segments and Groups:

	N a m e	Lengt	h	Aligi	nComb	oine Class	
CODE.	X		00A5	PARA	A		
Symbols	:						
	N a m e	Type	Valu	e	Attr		
Α		NUM	BER	0002			
В		NUM	BER	0001			
EOFLIN	Е		NUM	BER	0024		
F2 F3 FUN2		L WC L WC L NE	ORD ORD AR	0002 0004 0035	DAT. DAT. COD	A A E	
I		NUM	BER	0003			
K		NUM	BER	0000			
METKA METKA METKA METKA	1	 	L NE L NE L NE L NE	AR AR AR	0027 004F 008A 0085	CODE CODE CODE CODE CODE	Length = 0000
@FILEN			TEXT				

117 Source Lines 117 Total Lines 24 Symbols

48072 + 455091 Bytes symbol space free

- 0 Warning Errors 0 Severe Errors