Interactions

Is the relationship between X and Y different when you consider values of **Z**? $Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$

 $Z = 0 \implies Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 Z X$

 $=\beta_0 + \beta_1 X$

 $= \beta_0 + \beta_1 X + \beta_2 \cdot 0 + \beta_3 \cdot 0$

 $Z = 1 \implies Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 Z X$

 $= \beta_0 + \beta_1 X + \beta_2 \cdot 1 + \beta_3 \cdot 1 \cdot X$

 $= (\beta_0 + \beta_2) + (\beta_1 + \beta_3)X$

different intercepts

different slope

Interactions

Is the relationship between **X** and **Y** different when you consider values of **Z**?

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z$$

$$Z = 0 \implies Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 Z X$$

$$= \beta_0 + \beta_1 X + \beta_2 \cdot 0 + \beta_3 \cdot 0$$

$$Z = 1 \implies Y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 Z X$$
$$= \beta_0 + \beta_1 X + \beta_2 \cdot 1 + \beta_3 \cdot 1 \cdot X$$
$$= (\beta_0 + \beta_2) + (\beta_1 + \beta_3) X$$

different intercepts

different slope

Interactions

Income	Limit	Rating	Cards	Age	Education Own	Student	Married	Region	Balance
14.891	3606	283	2	34	11 No	No	Yes	South	333
106.025	6645	483	3	82	15 Yes	Yes	Yes	West	903
104.593	7075	514	4	71	11 No	No	No	West	580
148.924	9504	681	3	36	11 Yes	No	No	West	964
55.882	4897	357	2	68	16 No	No	Yes	South	331
80.180	8047	569	4	77	10 No	No	No	South	1151

[Source: First six rows of dataset "Credit", ISLR2]

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \times X_2)$$