THE IEEE CONFERENCE I.D -43278

IEEE's 3rd INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (12CT) PUNE -

Towards Designing an Adaptive Framework for Facial Image Quality Estimation at Edge

Alisha Shahane Aditya Deshpande Darshana Gadre Mrunmayi Deshpande

Department of Computer Engineering MIT College of Engineering, Pune

I2CT Pune, 7th April 2018

Outline

Introduction

OpenFace

ChokePoint Dataset

MatchScore Distribution

ML Approach

Dataset

Classification

Neural Network

Deep Learning

Need for Deep Learning

Convolutional Neural Network

Conclusion

OpenFace

- ► A general-purpose face recognition library
- ▶ It is a Python and Torch implementation of face recognition with deep neural networks
- Compares two images to give a MatchScore in the range of 0 to 4, with 0 being the best MatchScore

OpenFace

ChokePoint Dataset

- Staged experiment
- Specially designed for security applications
- Number of Subjects: 29
- ► Total number of images: 64,204
- ▶ Number of images used: 29,022

Genuine Impostor MatchScore Distribution

Edge Computing

Framework to run before matcher

- Maximum processing at Edge
- Reduced Latency

ML Approach

- ► Feature Extraction using Amazon Rekognition
- Features
 - 1. Brightness
 - 2. Sharpness
 - 3. Face Area
 - 4. Eyes Distance
 - Mouth Distance and so on

Dataset

	Brightness	FaceArea	Sharpness	EyesDistance	MouthDistance	Eyeglass	EyesOpen	Gender	Moustache	Beard	MatchScore	Quality
0	28.721546	1.003208	162.066102	0.326623	0.266900	0	2	0	0	0	0.008	0
1	30.817011	0.955632	50.472411	0.329842	0.227280	0	2	0	1	0	0.009	0
2	49.386166	0.721411	58.588165	0.350090	0.283679	0	0	1	0	0	0.010	0
3	37.276478	0.748891	254.853094	0.339438	0.221756	0	1	1	0	0	0.010	0
4	33.498543	0.748891	273.242966	0.302376	0.216229	2	2	0	0	0	0.010	0
5	42.453091	0.591716	49.957179	0.314596	0.228642	0	1	1	0	0	0.010	0
6	45.174900	0.791073	64.809343	0.334807	0.267335	0	1	1	0	0	0.011	0
7	28.935623	1.187541	233.220835	0.337993	0.248478	0	1	1	0	0	0.012	0
В	29.668480	0.947799	64.632192	0.329297	0.321298	0	1	0	0	0	0.012	0
9	0.000000	0.000000	259.192189	0.000000	0.000000	2	2	0	1	1	0.012	0
10	23.603483	0.849115	37.685119	0.317771	0.267990	0	2	1	0	0	0.013	0
11	18.563124	0.791073	101.640405	0.347660	0.288419	0	1	1	0	0	0.013	0
12	48.151733	0.776884	278.662218	0.304013	0.222630	2	2	0	0	0	0.013	0
13	42.102028	0.735086	53.975158	0.327796	0.237176	0	2	0	1	0	0.013	0
14	24.985128	0.834412	274.403006	0.299895	0.219765	2	1	0	0	0	0.014	0
15	40.099644	0.748891	108.402428	0.322537	0.252055	0	2	1	0	0	0.014	0
16	26.610985	0.987221	309.142608	0.340208	0.250482	0	1	0	1	1	0.014	0
17	42.403271	0.674541	89.104172	0.324571	0.284493	0	2	1	0	0	0.014	0
18	38.684399	0.748891	253.544569	0.335448	0.272425	0	1	1	0	0	0.014	0
19	25.665012	0.762823	51.227891	0.318734	0.240523	0	1	0	1	0	0.014	0
20	41.338806	0.924556	87.074197	0.328622	0.263917	0	2	0	0	0	0.014	0
21	42.598389	0.783947	47.470539	0.336709	0.271968	0	1	1	0	0	0.015	0
22	33.043808	0.909211	283.820081	0.345020	0.281379	0	1	1	0	0	0.015	0
23	28.809786	1.205069	62.700858	0.339794	0.280091	0	1	0	0	0	0.015	0
24	54.263733	0.629276	217.894609	0.269618	0.173196	2	1	0	0	0	0.016	0
25	40.374470	1.019323	30.355622	0.326990	0.232846	0	1	0	1	1	0.016	0
26	35.820786	0.893995	264.883790	0.318421	0.257727	0	1	1	0	0	0.016	0
27	29.320204	0.819837	66.953666	0.341541	0.286928	0	1	0	0	0	0.016	0
28	38.708790	0.955632	110.281486	0.339712	0.254853	0	1	0	0	0	0.016	0
29	0.000000	0.000000	78.465355	0.000000	0.000000	2	2	0	0	0	0.016	0
28975	40.514614	0.748891	264.313076	0.332188	0.235584	0	1	0	0	0	3.000	1
28976	44.890583	0.735086	57.306533	0.347297	0.224702	0	2	0	0	0	3.000	1
28977	44.446518	0.776884	194.556226	0.338546	0.243247	0	2	0	0	0	3.000	1
28978	41.821259	0.849115	40.172824	0.327721	0.267921	1	2	0	0	0	3.000	1

Classification

Algorithm	f1-score
Gaussian NB	0.66
Decision Tree	0.68
Random Forest	0.62
SVM	0.66
KNN	0.66

Classification Algorithms and f1-score

Classification Result

Neural Network

Model Summary

Layer	Output Shape	Param
dense_1(Dense)	(None, 10)	110
$dropout_1(Dropout)$	(None, 10)	0
dense_2(Dense)	(None, 5)	55
dropout_2(Dropout)	(None, 5)	0
dense_3(Dense)	(None, 2)	12
dropout_3(Dropout)	(None, 2)	0
dense_4(Dense)	(None, 1)	3

Total params: 180

Trainable params: 180

Non-trainable params: 0

NN Result

Need for Deep Learning

Captured Image

Feature Vector

Brightness	Face Area	Focus Measure	Eyes Distance	Mouth Distance	
33.79	1.09	26.45	0.32	0.27	

Need for Deep Learning

Feature Vector

Brightness	Face Area	Focus Measure	Eyes Distance	Mouth Distance	
24.28	1.03	201.78	0.34	0.255	

CNN Architecture

CNN Result

Conclusion

- Matcher specific image quality estimation
- Processing at logical extremes of a network
- Applications in security domain
- Future Scope

Thank You!

