Data Reading

In [1]: # importing necessary libraries

import pandas as pd
import numpy as np

clinical_dataset = pd.read_excel("C:/Users/James/OneDrive/Desktop/wetransfer_c
clinical_dataset

Out[1]:

	subject_id	age	sex	weight	height	trt_grp	RESPONSE
0	SUBJ_001	46.000	Female	84.660	1.59000	DRUG	N
1	SUBJ_001	46.000	Female	84.660	1.59000	DRUG	N
2	SUBJ_002	47.000	Female	71.210	1.64000	DRUG	Υ
3	SUBJ_003	48.000	Female	69.850	1.73000	CONTROL	N
4	SUBJ_004	59.000	Female	62.940	1.50000	DRUG	Υ
767	SUBJ_767	53.000	Male	88.670	1.72000	DRUG	Υ
768	SUBJ_768	68.000	Female	80.290	1.63000	DRUG	Υ
769	SUBJ_A69	7.200	Female	22.310	1.19300	DRUG	N
770	SUBJ_A70	8.310	Female	24.220	1.27440	CONTROL	N
771	SUBJ_A71	7.854	Male	23.176	1.26343	CONTROL	N

772 rows × 7 columns

Out[2]:

	participant_id	protein_concentration
0	SUBJ_001	148.0
1	SUBJ_002	85.0
2	SUBJ_003	183.0
3	SUBJ_004	89.0
4	SUBJ_005	137.0
763	SUBJ_764	101.0
764	SUBJ_765	122.0
765	SUBJ_766	121.0
766	SUBJ_767	126.0
767	SUBJ_768	93.0

768 rows × 2 columns

Data Cleaning

In [3]: #checking information of the dataset
 clinical_dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 772 entries, 0 to 771
Data columns (total 7 columns):

	•		
#	Column	Non-Null Count	Dtype
0	subject_id	772 non-null	object
1	age	772 non-null	float64
2	sex	772 non-null	object
3	weight	761 non-null	float64
4	height	772 non-null	float64
5	trt_grp	772 non-null	object
6	RESPONSE	772 non-null	object

dtypes: float64(3), object(4)
memory usage: 42.3+ KB

```
In [4]: #checking information of the age column
        clinical_dataset["age"].unique()
Out[4]: array([46.
                                              , 63.
                                                       , 77.
                                                               , 57.
                      , 47.
                              , 48.
                                      , 59.
                                                                       , 72.
                                      , 58.
                                              , 55.
                                                       , 65.
                73.
                      , 67.
                              , 53.
                                                               , 54.
                                                                       , 51.
                61.
                      , 56.
                              , 64.
                                      , 66.
                                              , 69.
                                                       , 70.
                                                               , 49.
                                                                       , 62.
                                      , 52.
                                              , 78.
                                                               , 43.
                68.
                      , 71.
                              , 60.
                                                       , 79.
                                                                       , 44.
                      , 39.
                                      , 50.
                76.
                              , 74.
                                              , 45.
                                                       , 75.
                                                               , 37.
                                                                       , 7.2
                8.31 , 7.854])
In [5]: #checking information of the age column
        clinical_dataset["age"].describe()
Out[5]: count
                  772.000000
        mean
                  61.580782
        std
                   7.866491
                   7.200000
        min
        25%
                  57.000000
        50%
                  62.000000
                   67.000000
        75%
        max
                  79.000000
        Name: age, dtype: float64
In [6]: # looking up a row in the age column
        clinical_dataset[(clinical_dataset["age"] == 7.2)]
Out[6]:
                              sex weight height trt_grp RESPONSE
             subject_id age
         769 SUBJ A69
                       7.2 Female
                                   22.31
                                          1.193 DRUG
                                                              Ν
In [7]: # deleting a row in the age column
        clinical_dataset = clinical_dataset.drop(769)
In [8]: #checking information of the dataset
        clinical_dataset.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 771 entries, 0 to 771
        Data columns (total 7 columns):
         #
             Column
                          Non-Null Count Dtype
             ----
                          -----
                                          ----
         ---
         0
             subject_id 771 non-null
                                          object
         1
                                          float64
             age
                          771 non-null
         2
             sex
                          771 non-null
                                          object
         3
                          760 non-null
                                          float64
             weight
         4
                                          float64
             height
                          771 non-null
         5
             trt_grp
                          771 non-null
                                          object
              RESPONSE
                          771 non-null
                                          object
        dtypes: float64(3), object(4)
        memory usage: 48.2+ KB
```

```
In [9]: # looking up a row in the age column
         clinical_dataset[(clinical_dataset["age"] == 8.31)]
Out[9]:
                                                   trt_grp RESPONSE
              subject_id age
                               sex weight height
          770 SUBJ A70 8.31 Female
                                     24.22 1.2744 CONTROL
                                                                  Ν
         # deleting a row in the age column
In [10]:
         clinical_dataset = clinical_dataset.drop(770)
In [11]: clinical_dataset[(clinical_dataset["age"] == 7.854)]
Out[11]:
              subject_id
                         age
                              sex weight
                                          height
                                                   trt_grp RESPONSE
          771 SUBJ A71 7.854 Male 23.176 1.26343 CONTROL
                                                                  Ν
In [12]: | # deleting a row in the age column
         clinical_dataset = clinical_dataset.drop(771)
In [13]: #checking information of the age column
         clinical_dataset["age"].unique()
Out[13]: array([46., 47., 48., 59., 63., 77., 57., 72., 73., 67., 53., 58., 55.,
                65., 54., 51., 61., 56., 64., 66., 69., 70., 49., 62., 68., 71.,
                60., 52., 78., 79., 43., 44., 76., 39., 74., 50., 45., 75., 37.])
In [14]: #changing the data type of the column
         clinical_dataset["age"] = clinical_dataset["age"].astype(int)
In [15]: #checking information of the age column
         clinical dataset["age"].unique()
Out[15]: array([46, 47, 48, 59, 63, 77, 57, 72, 73, 67, 53, 58, 55, 65, 54, 51, 61,
                56, 64, 66, 69, 70, 49, 62, 68, 71, 60, 52, 78, 79, 43, 44, 76, 39,
                74, 50, 45, 75, 37])
In [16]: #checking for null values
         clinical_dataset.isna().sum()
Out[16]: subject_id
                         0
                         0
         age
                         0
         sex
         weight
                        11
         height
                         0
         trt_grp
                         0
         RESPONSE
                         0
         dtype: int64
```

In [17]: #Displaying Nan Values
 clinical_dataset[clinical_dataset["weight"].isna()]

Out[17]:

subject_id	age	sex	weight	height	trt_grp	RESPONSE
SUBJ_010	73	Female	NaN	1.64	DRUG	Y
SUBJ_050	65	Male	NaN	1.71	DRUG	N
SUBJ_061	61	Male	NaN	1.79	CONTROL	N
SUBJ_082	65	Male	NaN	1.78	CONTROL	N
SUBJ_146	56	Female	NaN	1.57	CONTROL	N
SUBJ_372	67	Female	NaN	1.62	CONTROL	N
SUBJ_427	66	Male	NaN	1.83	CONTROL	N
SUBJ_495	60	Female	NaN	1.65	CONTROL	N
SUBJ_523	62	Female	NaN	1.60	DRUG	N
SUBJ_685	74	Male	NaN	1.81	CONTROL	N
SUBJ_707	72	Male	NaN	1.75	DRUG	Υ
	SUBJ_010 SUBJ_050 SUBJ_061 SUBJ_082 SUBJ_146 SUBJ_372 SUBJ_427 SUBJ_427 SUBJ_495 SUBJ_523 SUBJ_685	SUBJ_010 73 SUBJ_050 65 SUBJ_061 61 SUBJ_082 65 SUBJ_146 56 SUBJ_372 67 SUBJ_427 66 SUBJ_495 60 SUBJ_523 62 SUBJ_685 74	SUBJ_010 73 Female SUBJ_050 65 Male SUBJ_061 61 Male SUBJ_082 65 Male SUBJ_146 56 Female SUBJ_372 67 Female SUBJ_427 66 Male SUBJ_495 60 Female SUBJ_523 62 Female SUBJ_685 74 Male	SUBJ_010 73 Female NaN SUBJ_050 65 Male NaN SUBJ_061 61 Male NaN SUBJ_082 65 Male NaN SUBJ_146 56 Female NaN SUBJ_372 67 Female NaN SUBJ_427 66 Male NaN SUBJ_495 60 Female NaN SUBJ_523 62 Female NaN SUBJ_685 74 Male NaN	SUBJ_010 73 Female NaN 1.64 SUBJ_050 65 Male NaN 1.71 SUBJ_061 61 Male NaN 1.79 SUBJ_082 65 Male NaN 1.57 SUBJ_146 56 Female NaN 1.62 SUBJ_372 67 Female NaN 1.83 SUBJ_427 66 Male NaN 1.65 SUBJ_495 60 Female NaN 1.60 SUBJ_523 62 Female NaN 1.81 SUBJ_685 74 Male NaN 1.81	SUBJ_010 73 Female NaN 1.64 DRUG SUBJ_050 65 Male NaN 1.71 DRUG SUBJ_061 61 Male NaN 1.79 CONTROL SUBJ_082 65 Male NaN 1.57 CONTROL SUBJ_146 56 Female NaN 1.62 CONTROL SUBJ_372 67 Female NaN 1.83 CONTROL SUBJ_427 66 Male NaN 1.65 CONTROL SUBJ_495 60 Female NaN 1.60 DRUG SUBJ_523 62 Female NaN 1.81 CONTROL SUBJ_685 74 Male NaN 1.81 CONTROL

In [18]: # Displaying the group of patients aged 73
clinical_dataset[(clinical_dataset["age"] == 73) & (clinical_dataset["sex"] ==

Out[18]:

	subject_id	age	sex	weight	height	trt_grp	RESPONSE
10	SUBJ_010	73	Female	NaN	1.64	DRUG	Υ
20	SUBJ_020	73	Female	94.38	1.65	DRUG	Υ
118	SUBJ_118	73	Female	86.98	1.61	CONTROL	N
258	SUBJ_258	73	Female	68.56	1.55	DRUG	Υ
265	SUBJ_265	73	Female	80.99	1.59	DRUG	N

```
In [19]: # Displaying the group of patients aged 73
clinical_dataset[(clinical_dataset["age"] == 73) & (clinical_dataset["sex"] ==
```

C:\Users\James\AppData\Local\Temp\ipykernel_9712\3400160153.py:2: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of nume ric only to silence this warning.

clinical_dataset[(clinical_dataset["age"] == 73) & (clinical_dataset["sex"]
== "Female")].mean()

Out[19]: age 73.0000 weight 82.7275 height 1.6080 dtype: float64

```
In [20]: #Replacing the Nan values individually
  clinical_dataset.at[10,"weight"] = 83.863
```

I used the mean of the groups of female patients aged 73 to replace the nan value and doing the same for the remainig nan values

```
In [21]: # Displaying the group of patients aged 65
         clinical_dataset[(clinical_dataset["age"] == 65) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\3343773379.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 65) & (clinical_dataset["sex"]
         == "Male")].mean()
Out[21]: age
                   65.000000
         weight
                   99.276471
         height
                    1.744211
         dtype: float64
In [22]: #Replacing the Nan values individually
         clinical dataset.at[50,"weight"] = 99.276471
In [23]: # Displaying the group of patients aged 61
         clinical dataset[(clinical dataset["age"] == 61) & (clinical dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel 9712\1356158029.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 61) & (clinical_dataset["sex"]
         == "Male")].mean()
Out[23]: age
                    61.00000
         weight
                   103.72875
         height
                     1.75200
         dtype: float64
In [24]: #Replacing the Nan values individually
```

6 of 21 05/06/2023, 01:01

clinical_dataset.at[61,"weight"] = 103.72875

```
In [25]: # Displaying the group of patients aged 65
         clinical_dataset[(clinical_dataset["age"] == 65) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\3343773379.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 65) & (clinical_dataset["sex"]
         == "Male")].mean()
Out[25]: age
                   65.000000
         weight
                   99.276471
         height
                    1.744211
         dtype: float64
In [26]: #Replacing the Nan values individually
         clinical_dataset.at[82,"weight"] = 99.276471
In [27]: # Displaying the group of patients aged 56
         clinical_dataset[(clinical_dataset["age"] == 56) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\1152700976.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 56) & (clinical_dataset["sex"]
         == "Female")].mean()
Out[27]: age
                   56.000000
         weight
                   88.405000
         height
                    1.602174
         dtype: float64
In [28]: #Replacing the Nan values individually
         clinical_dataset.at[146,"weight"] = 88.405000
In [29]: # Displaying the group of patients aged 67
         clinical_dataset[(clinical_dataset["age"] == 67) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\3718369951.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 67) & (clinical_dataset["sex"]
         == "Female")].mean()
Out[29]: age
                   67.000000
         weight
                   83.613333
         height
                    1.612400
         dtype: float64
```

```
In [30]: #Replacing the Nan values individually
         clinical_dataset.at[372,"weight"] = 83.613333
In [31]: # Displaying the group of patients aged 66
         clinical_dataset[(clinical_dataset["age"] == 66) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\2347124795.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 66) & (clinical_dataset["sex"]
         == "Male")].mean()
Out[31]: age
                   66.000000
                   99.812222
         weight
         height
                    1.784211
         dtype: float64
In [32]: #Replacing the Nan values individually
         clinical_dataset.at[427,"weight"] = 99.812222
In [33]: # Displaying the group of patients aged 60
         clinical_dataset[(clinical_dataset["age"] == 60) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\3051124930.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 60) & (clinical_dataset["sex"]
         == "Female")].mean()
Out[33]: age
                   60.000000
         weight
                   89.025909
         height
                    1.620870
         dtype: float64
In [34]: #Replacing the Nan values individually
         clinical_dataset.at[495,"weight"] = 89.025909
```

```
In [35]: # Displaying the group of patients aged 62
         clinical_dataset[(clinical_dataset["age"] == 62) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\3223133000.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 62) & (clinical_dataset["sex"]
         == "Female")].mean()
Out[35]: age
                   62.00000
         weight
                   82.33800
         height
                    1.59125
         dtype: float64
In [36]: #Replacing the Nan values individually
         clinical_dataset.at[523,"weight"] = 82.33800
In [37]: # Displaying the group of patients aged 74
         clinical_dataset[(clinical_dataset["age"] == 74) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\4168779951.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric_onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 74) & (clinical_dataset["sex"]
         == "Male")].mean()
Out[37]: age
                   74.0000
         weight
                   86.6275
                    1.7580
         height
         dtype: float64
In [38]: #Replacing the Nan values individually
         clinical_dataset.at[685,"weight"] = 86.6275
In [39]: # Displaying the group of patients aged 72
         clinical_dataset[(clinical_dataset["age"] == 72) & (clinical_dataset["sex"] ==
         C:\Users\James\AppData\Local\Temp\ipykernel_9712\1537195054.py:2: FutureWarni
         ng: The default value of numeric_only in DataFrame.mean is deprecated. In a f
         uture version, it will default to False. In addition, specifying 'numeric onl
         y=None' is deprecated. Select only valid columns or specify the value of nume
         ric_only to silence this warning.
           clinical_dataset[(clinical_dataset["age"] == 72) & (clinical_dataset["sex"]
         == "Male")].mean()
Out[39]: age
                   72.000000
         weight
                   96.942500
         height
                    1.753333
         dtype: float64
```

```
In [40]: #Replacing the Nan values individually
          clinical_dataset.at[707,"weight"] = 96.942500
In [41]: |#checking for duplicated entries
          clinical_dataset.duplicated().sum()
Out[41]: 1
          clinical_dataset = clinical_dataset.drop_duplicates()
In [43]: #checking for duplicated entries
          clinical_dataset.duplicated().sum()
Out[43]: 0
In [44]: #checking for null values
          clinical_dataset.isna().sum()
Out[44]: subject_id
                         0
                         0
          age
                         0
          sex
                         0
          weight
          height
                         0
                         0
          trt_grp
          RESPONSE
          dtype: int64
In [45]: #Getting dataframe information
          clinical_dataset.describe()
Out[45]:
                       age
                               weight
                                          height
           count 768.000000
                           768.000000 768.000000
           mean
                  61.811198
                            91.397538
                                        1.679271
                   7.107447
                            21.995748
             std
                                        0.097888
            min
                  37.000000
                             46.170000
                                        1.420000
            25%
                  57.000000
                            75.932500
                                        1.600000
            50%
                  62.000000
                             88.985000
                                        1.680000
            75%
                  67.000000
                            104.400000
                                        1.760000
            max
                  79.000000 182.500000
                                        1.940000
In [46]:
          #checking for null values
          protein_dataset.isna().sum()
Out[46]:
                                     0
          participant_id
          protein_concentration
                                     5
          dtype: int64
```

```
In [47]: #Displaying Nan Values
protein_dataset[protein_dataset["protein_concentration"].isna()]
```

Out[47]:

	participant_id	protein_concentration
75	SUBJ_076	NaN
182	SUBJ_183	NaN
342	SUBJ_343	NaN
349	SUBJ_350	NaN
502	SUBJ_503	NaN

```
In [48]: #Getting dataframe information
    protein_dataset.describe()
```

Out[48]:

protein_concentration count 763.000000 121.686763 mean 30.535641 std min 44.000000 25% 99.000000 50% 117.000000 75% 141.000000 max 199.000000

```
In [49]: # replacing nan values with the mean
protein_dataset["protein_concentration"].fillna(protein_dataset["protein_conce
```

```
In [50]: #checking for null values
protein_dataset.isna().sum()
```

```
Out[50]: participant_id 0 protein_concentration 0 dtype: int64
```

Creating New Variables

```
In [51]: # Renaming the participant_id to subject_id
protein_dataset.rename(columns={"participant_id": "subject_id"}, inplace=True)
```

In [52]: # merging the clinical dataset with the protein dataset
 clinical_dataset = pd.merge(clinical_dataset, protein_dataset, on="subject_id"
 clinical_dataset

Out[52]:

	subject_id	age	sex	weight	height	trt_grp	RESPONSE	protein_concentration
0	SUBJ_001	46	Female	84.66	1.59	DRUG	N	148.0
1	SUBJ_002	47	Female	71.21	1.64	DRUG	Υ	85.0
2	SUBJ_003	48	Female	69.85	1.73	CONTROL	N	183.0
3	SUBJ_004	59	Female	62.94	1.50	DRUG	Υ	89.0
4	SUBJ_005	59	Female	113.91	1.63	CONTROL	N	137.0
763	SUBJ_764	61	Female	82.95	1.59	CONTROL	Υ	101.0
764	SUBJ_765	65	Male	112.86	1.76	DRUG	N	122.0
765	SUBJ_766	60	Male	81.03	1.77	DRUG	N	121.0
766	SUBJ_767	53	Male	88.67	1.72	DRUG	Υ	126.0
767	SUBJ_768	68	Female	80.29	1.63	DRUG	Υ	93.0

768 rows × 8 columns

In [53]: # Calculating and creating the BMI of patients
 clinical_dataset["BMI_subject"] = clinical_dataset["weight"] / (clinical_datas

In [54]: clinical_dataset

Out[54]:

	subject_id	age	sex	weight	height	trt_grp	RESPONSE	protein_concentration	ВМІ
0	SUBJ_001	46	Female	84.66	1.59	DRUG	N	148.0	3
1	SUBJ_002	47	Female	71.21	1.64	DRUG	Υ	85.0	2
2	SUBJ_003	48	Female	69.85	1.73	CONTROL	N	183.0	2
3	SUBJ_004	59	Female	62.94	1.50	DRUG	Υ	89.0	2
4	SUBJ_005	59	Female	113.91	1.63	CONTROL	N	137.0	4
763	SUBJ_764	61	Female	82.95	1.59	CONTROL	Υ	101.0	3
764	SUBJ_765	65	Male	112.86	1.76	DRUG	N	122.0	3
765	SUBJ_766	60	Male	81.03	1.77	DRUG	N	121.0	2
766	SUBJ_767	53	Male	88.67	1.72	DRUG	Υ	126.0	2
767	SUBJ_768	68	Female	80.29	1.63	DRUG	Υ	93.0	3

768 rows × 9 columns

Data Aggregation

```
In [55]: # Comparing mean age in two treatment groups
          grouped_data = clinical_dataset.groupby("trt_grp")["age"].mean()
In [56]: # displaying the data
         grouped_data
Out[56]: trt_grp
          CONTROL
                     61.862338
          DRUG
                     61.759791
          Name: age, dtype: float64
In [57]: | # Comparing mean age in Responders vs non-responders groups
          grouped_data = clinical_dataset.groupby("RESPONSE")["age"].mean()
In [58]: # displaying the data
         grouped_data
Out[58]: RESPONSE
               61.748848
          Ν
          Υ
               61.892216
         Name: age, dtype: float64
In [59]: # Comparing mean age for control vs drug group
         treatment_data = clinical_dataset[clinical_dataset["trt_grp"].isin(["CONTROL",
         grouped_data = treatment_data.groupby(["trt_grp", "RESPONSE"])["age"].mean()
         group1_non_responders = grouped_data.loc[("CONTROL", "N")]
         group1_responders = grouped_data.loc[("CONTROL", "Y")]
group2_non_responders = grouped_data.loc[("DRUG", "N")]
         group2_responders = grouped_data.loc[("DRUG", "Y")]
In [60]: # displaying the mean age of the group
         grouped_data
Out[60]: trt_grp RESPONSE
          CONTROL
                   Ν
                                62.042146
                                61.483871
                   Υ
          DRUG
                                61.306358
                                62.133333
          Name: age, dtype: float64
In [61]:
         # Comparing mean weight in Responders vs non-responders groups
         grouped_data = clinical_dataset.groupby("RESPONSE")["weight"].mean()
```

```
In [62]: grouped_data
Out[62]: RESPONSE
              89.975700
              93.245076
         Υ
         Name: weight, dtype: float64
In [63]: # Comparing mean weight in two treatment groups
         grouped_data = clinical_dataset.groupby("trt_grp")["weight"].mean()
In [64]: |grouped_data
Out[64]: trt_grp
         CONTROL
                    91.956232
         DRUG
                    90.835927
         Name: weight, dtype: float64
In [65]: # Comparing mean weight in Responders vs non-responders groups
         grouped_data = clinical_dataset.groupby("RESPONSE")["protein_concentration"].m
In [66]: grouped_data
Out[66]: RESPONSE
              134.884932
         Ν
         Υ
              104.537046
         Name: protein_concentration, dtype: float64
In [67]: # Comparing mean protein concentration in two treatment groups
         grouped_data = clinical_dataset.groupby("trt_grp")["protein_concentration"].me
In [68]: grouped_data
Out[68]: trt_grp
         CONTROL
                    121.297888
         DRUG
                    122.077669
         Name: protein_concentration, dtype: float64
```

Data Visualization

```
In [69]: import seaborn as sns
import matplotlib.pyplot as plt

# Plotting Age by Response (Separated by Treatment Group)
sns.boxplot(x="RESPONSE", y="age", hue="trt_grp", data=clinical_dataset)
plt.title("Boxplot of Age by Response (Separated by Treatment Group)")
plt.xlabel("Response")
plt.ylabel("Age")
plt.show()
```



```
In [70]: # Plotting Weight by Response (Separated by Treatment Group)
sns.boxplot(x="RESPONSE", y="weight", hue="trt_grp", data=clinical_dataset)
plt.title("Boxplot of Weight by Response (Separated by Treatment Group)")
plt.xlabel("Response")
plt.ylabel("Weight")
plt.show()
```


In [71]: # Plotting Protein Concentration by Response (Separated by Treatment Group)
sns.boxplot(x="RESPONSE", y="protein_concentration", hue="trt_grp", data=clini
plt.title("Boxplot of Protein Concentration by Response (Separated by Treatmen
plt.xlabel("Response")
plt.ylabel("Protein Concentration")
plt.show()

Data Modelling(using decision tree)


```
In [73]: from sklearn.model_selection import train_test_split # train_test_split is nee
         from sklearn.preprocessing import MinMaxScaler # for normalisation or standard
         from sklearn.preprocessing import LabelEncoder
         # Convert target variable to numerical using label encoding
         label_encoder = LabelEncoder()
         clinical_dataset['RESPONSE'] = label_encoder.fit_transform(clinical_dataset['R
         clinical_dataset['trt_grp'] = label_encoder.fit_transform(clinical_dataset['tr
         clinical_dataset['sex'] = label_encoder.fit_transform(clinical_dataset['sex'])
          clinical_dataset['subject_id'] = label_encoder.fit_transform(clinical_dataset[
In [74]: clinical_dataset.head()
Out[74]:
             subject_id age sex weight height trt_grp RESPONSE protein_concentration BMI_subject
          0
                        46
                                 84.66
                                        1.59
                                                                            148.0
                                                                                    33.487599
          1
                    1
                        47
                                71.21
                                        1.64
                                                 1
                                                            1
                                                                             85.0
                             0
                                                                                    26.476056
          2
                    2
                        48
                             0
                                69.85
                                        1.73
                                                            0
                                                                            183.0
                                                                                    23.338568
                        59
                                62.94
                                        1.50
                                                            1
                                                                             89.0
                                                                                    27.973333
                        59
                             0 113.91
                                        1.63
                                                 0
                                                            0
                                                                            137.0
                                                                                    42.873273
In [75]: # Split data into input and output variables
         X = clinical_dataset.drop('RESPONSE', axis=1)
         y = clinical_dataset['RESPONSE']
In [76]: # import SMOTE
         from imblearn.over_sampling import SMOTE
```

```
In [76]: # import SMOTE
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42, k_neighbors = 2) # The object is created
# apply SMOTE to resample the dataset
X, y = sm.fit_resample(X, y)
```

In [77]: # Plot of the dataset bal_clinical_dataset = pd.concat([X, y], axis = 1) # creating a dataframe for fig, ax=plt.subplots(1,2,figsize=(15,6)) # creating the axis shell for subplot a = sns.countplot(x='RESPONSE',data=bal_clinical_dataset, ax=ax[0]) # assignin a= bal_clinical_dataset['RESPONSE'].value_counts().plot.pie(autopct="%1.1f%%",


```
In [78]: # Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando

#scaling our dataset
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

In [79]: # importing our libraries and classifiers
 from sklearn.tree import DecisionTreeClassifier
 from sklearn.metrics import classification_report, confusion_matrix
 from sklearn.model_selection import cross_val_score
 from sklearn.model_selection import StratifiedKFold

```
In [80]: # Fit decision tree classifier #training process
    clf = DecisionTreeClassifier()

# Define cross-validation strategy
    cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

# Perform cross-validation
    scores = cross_val_score(clf, X, y, cv=cv)
```

```
In [81]: # Print mean and standard deviation of scores
         print('Cross-validation scores: ', scores)
         print('Mean score: ', scores.mean())
         print('Standard deviation: ', scores.std())
         Cross-validation scores: [0.7183908 0.74137931 0.7183908 0.69364162 0.7167
         6301]
         Mean score: 0.7177131087635373
         Standard deviation: 0.015108586829342682
In [82]: clf.fit(X_train, y_train)
Out[82]:
          ▼ DecisionTreeClassifier
          DecisionTreeClassifier()
In [83]: # Make predictions on testing data
         y_pred = clf.predict(X)
         # Print classification report
         print('Classification Report:')
         print(classification_report(y, y_pred))
         Classification Report:
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.94
                                      0.93
                                                 0.94
                                                            434
                    1
                            0.93
                                      0.94
                                                 0.94
                                                            434
                                                 0.94
                                                            868
             accuracy
                            0.94
                                      0.94
                                                 0.94
                                                            868
            macro avg
         weighted avg
                            0.94
                                      0.94
                                                 0.94
                                                            868
In [84]: # Print confusion matrix
         print('Confusion Matrix:')
         print(confusion_matrix(y, y_pred))
         Confusion Matrix:
         [[405 29]
          [ 24 410]]
```

the confusion matrix above shows the number of correctly classified enteries for each class from genre 0 to 1 which corresponds to the total number of Responses (Y OR N). from the first row starting form the left we see 403 enteries have been correctly classified for Response 0 which is "N" or non-responders and we see 31 entries wrongly classified. For next column we see 27 enteries wrong classified as Response 1 and 407 entries correctly classified as Responders or "Y" . the precision score of this model is in the 93% which shows promise with some tuning and more data to further test the model it can be used to correctly predict response.

overall the model performed well in classifying the dataset.

21 of 21