

DSA302

Isaac Wong, Ker Zi Yi, Megan Chong, Shawn Lim, Tan Zen Wei

TABLE OF CONTENTS

Presented by Megan

1.0	PART 1 Presented by Zen Wei & Ziyi	2.3	MODEL Presented by Shawn
2.1	DATA PRESENTATION Presented by Megan	2.4	DATA FITTING AND MODEL SELECTION Presented by Isaac
2.2	COMPARISON OF SPOT RATES	2.5	PREDICTION & REVIEW Presented by Isaac

UNDERSTANDING THE

Plot the Bond prices versus their maturities

_

$$\frac{\text{Equation 1}}{P(t) = 100 e^{-r(t)t}}$$

PART 1.2

Plot the empirical forward rates as computed in equation (3) versus maturities

PART 1.3

Smooth the empirical forward rates using second order and third order polynomials

Conclusion:
3rd order graph is better

PART 1.4

Estimate the empirical spot rates for t in (t1; tn) using equation (4)

Using the Cut() Function to Derive Time Intervals

- Split the time intervals into 116 equal parts
- Define values to be the upper limit of each interval
- Use these value in the formula for Spot Rates.

```
[1] "(0.341,0.618]" "(0.618,0.866]" "(0.866,1.11]" [4] "(1.11,1.36]" "(1.36,1.61]" "(1.61,1.86]" [7] "(1.86,2.11]" "(2.11,2.35]" "(2.35,2.6]"
```

$$r(t) = \frac{1}{t} \left[\sum_{i=1}^{j} f_{i-1}(t_i - t_{i-1}) + f_j(t - t_j) \right]$$

Plotting the Empirical Yield Curve

PART 1.5

Smooth the empirical spot rates using second order and third order polynomials

Smoothening using Higher Order Polynomials

To get a smoothened curved, we used the following equations:

Spot Rate =
$$\theta_0$$
 Maturity + θ_1 Maturity²
Spot Rate = θ_0 Maturity + θ_1 Maturity² + θ_2 Maturity³

- The lm() function was then used to minimise the sum of squared errors

Resulting Smoothed Curves

Our Comments

- Generally, the empirical yield curve is a standard upward sloping curve.
- However, the empirical spot rate seem to decrease after maturity => 25
- The 3rd order polynomial fits better when modelling both the empirical rates.

PART 2.1

DATA PRESENTATION

SVENY01	SVENY05	SVENY10	SVENY20	SVENY30
Min. :0.0828	Min. :0.2218	Min. : 0.5202	Min. : 0.9581	Min. : 1.250
1st Qu.:0.8794	1st Qu.:2.0398	1st Qu.: 2.9330	1st Qu.: 3.6734	1st Qu.: 3.727
Median :3.5109	Median :4.4592	Median : 4.8532	Median : 5.4626	Median : 5.399
Mean :3.5201	Mean :4.3786	Mean : 5.0441	Mean : 5.5147	Mean : 5.507
3rd Qu.:5.6410	3rd Qu.:6.3240	3rd Qu.: 6.7711	3rd Qu.: 7.2055	3rd Qu.: 7.297
Max. :9.8020	Max. :9.7455	Max. :10.1805	Max. :10.3236	Max. :10.429

Mean Yield Curve

SPOT RATES OVER TIME

SPOT RATES OVER TIME

PART 2.2

COMPARISON OF SPOT RATES

COMPARING SPOT RATES

Spot Rates over Time 10.0 Empirical Spot Rate Legend SVENY05 SVENY20 2.5 0.0 10000 15000 Time

COMPARING SPOT RATES

- Spot rates generally decreased over time
- Level of fluctuation higher for bonds with shorter maturity periods
- However there are some periods where 5 year spot rate exceeds 30 year spot rate, indicating bleak economic outlook

2.3 Understanding the Model

*Original equation as seen in the project pdf (NSS model)

$$r(t) = \theta_0 + \theta_1 \begin{bmatrix} \frac{1 - e^{-\theta_2 t}}{\theta_2 t} \end{bmatrix} + \frac{\theta_2}{\theta_3} \begin{bmatrix} \frac{1 - e^{-\theta_2 t}}{\theta_3 t} - e^{-\theta_3 t} \end{bmatrix} + \frac{\theta_4}{\theta_5} \begin{bmatrix} \frac{1 - e^{-\theta_5 t}}{\theta_5 t} - e^{-\theta_5 t} \end{bmatrix}$$

*Re-writing 9 in terms of B

NS model
$$y_t(\tau) = \beta$$

NS model
$$y_{t}(\tau) = \beta_{1,t} + \beta_{2,t} \left(\frac{1-e^{\frac{\tau}{\lambda_{1,t}}}}{\frac{\tau}{\lambda_{1,t}}} \right) + \beta_{3,t} \left(\frac{1-e^{\frac{\tau}{\lambda_{1,t}}}}{\frac{\tau}{\lambda_{1,t}}} \right) + \beta_{4,t} \left[\frac{1-e^{\frac{\tau}{\lambda_{2,t}}}}{\frac{\tau}{\lambda_{2,t}}} - e^{-\frac{\tau}{\lambda_{2,t}}} \right] + \beta_{4,t} \left[\frac{1-e^{\frac{\tau}{\lambda_{2,t}}}}}{\frac{\tau}{\lambda_{2,t}}} - e^{-\frac{\tau}{\lambda_{2,t}}} \right] + \beta_{4,t} \left[\frac{1-e^{\frac{\tau}{\lambda_{2,t}}}}{\frac{\tau}{\lambda_{2,t}}} - e^{-\frac{\tau}{\lambda_{2,t}}} \right] + \beta_{4,t} \left[\frac{1-e^{\frac{\tau}{\lambda_{2,t}$$

**The NS model does not have the second medium term component (θ_4/θ_5) and the 2nd decay rate (θ_5)

Table 1: Understanding the models

The equations above are rewritten from the project paper so we can interpret them more easily.

Components	Description	Sensitivity
Long-term component	This is the component on $\theta_{_0}\;$ because it is constant at 1 and remains the same for every maturity.	θ _{0 t} (Level factor sensitivity)
Short-term component	This is the component [(1-exp(- θ_3 t))/ θ_3 t)] on θ_1 because it starts at 1 but then decays to zero at an exponential rate. The rate of this decay is determined by θ_3 t, where a smaller value means a faster rate of decay	θ ₁ (slope factor sensitivity
Medium-term component	This is the component[$(1-\exp(-\theta_3t))/(\theta_3t))$) -exp $(-\theta_3t_1)$] on θ_2/θ_3 , which starts at 0, increases for medium maturities and then decays to zero again thereby creating a hump-shape. The θ_3t component determines at which rate the medium term component reaches its maximum	θ_{j}/θ_{j} (curvature factor sensitivity)
Rate of decay	The rate of decay is $\theta_3 t = \tau/\lambda_+$	NA

2.3 Understanding the Model

Table 1: Understanding the models

The equations above are rewritten from the project paper so we can interpret them more easily.

Components	Description	Sensitivity
2nd medium-term component	This is the component[(1-exp(- θ_3 t))/(θ_3 t)) -exp(- θ_3 t)] on θ_4/θ_5 , which starts at 0, increases for medium maturities and then decays to zero again thereby creating a hump-shape. The θ_5 t component determines at which rate the medium term component reaches its maximum	θ _g /θ _{St} (2nd curvature factor sensitivity)
2nd rate of decay	The second rate of decay is ${m \theta}_{\text{s}}$ t= ${m au}/{m \lambda}_{2,t}$	NA

 As the NSS model has an additional medium term component, it is able to fit term structure shapes that <u>have</u> more than one local maximum or minimum along the maturity spectrum more easily.

2.3.1 Importance of 6 (sensitivity values)

Parameter 0	Low θ	High 0
θ ₁ (slope factor) is used for the identification of spread strategies.	Low value (negative value) → steep upward sloping yield curve→ curve get flatter over longer maturity	High value(positive value) → inverted sloping yield curve with a negative slope → curve get steeper over longer maturity
$\mathbf{\theta}_2/\mathbf{\theta}_3 \& \mathbf{\theta}_4/\mathbf{\theta}_5$ (curvature factor) is used for the identification of interest rate term structure curvatures strategies	Low value (absolute value) →increase in yield curve 's curvature is expected→indicates steepening is expected	High value (absolute) value→reduction in yield curve 's curvature is expected→indicates flattening is expected

Table 4: Importance of ϑ

Strategy for θ values

- According to the diagram above, where $\theta 1=\beta 2$ and $\theta 2/\theta 3=\beta 3$.
- A short or long position can be determined for short or long maturities.
- Short position = sell stock (anticipate value to fall in short run)
- Long position = buy stock (anticipate value to fall in short run)

SHORT TERM

β	2 Sho	rt maturi	ty Long matu	rity		rategy for θ
Low	Sho	rt	Long		va	lues
High	E	BUY	SELL		• Accor	ding to the diagram above, $\theta 1 = \beta 2$ and $\theta 2/\theta 3 = \beta 3$.
MIDDLE TERM	3 Mid	dle matu	rity (%)			t or long position can be nined for short or long
Low	Sho	rt			1	ties.
High	Е	BUY		1		osition = selling high now, in of buying low later position = buying low now, in of selling high later
					ime to maturity fonths + years)	

2.3 Understanding the Model

*Original equation as seen in the project pdf (NSS model)

$$r(t) = \theta_0 + \theta_1 \left[\frac{1 - e^{-\theta_3 t}}{\theta_1 t} \right] + \frac{\theta_2}{\theta_3} \left[\frac{1 - e^{-\theta_3 t}}{\theta_1 t} - e^{-\theta_3 t} \right] + \frac{\theta_4}{\theta_4} \left[\frac{1 - e^{-\theta_3 t}}{\theta_2 t} - e^{-\theta_3 t} \right]$$

*Re-writing $\boldsymbol{\theta}$ in terms of $\boldsymbol{\beta}$

$$y_{t}(\tau) = \beta_{1,t} + \beta_{2,t} \left[\frac{1 - e^{\frac{\tau}{\lambda_{1,t}}}}{\frac{1}{\lambda_{1,t}}} \right] + \beta_{3,t} \left[\frac{1 - e^{\frac{\tau}{\lambda_{1,t}}}}{\frac{1}{\lambda_{1,t}}} - e^{-\frac{\tau}{\lambda_{1,t}}} \right] + \beta_{4,t} \left[\frac{1 - e^{\frac{\tau}{\lambda_{2,t}}}}{\frac{1}{\lambda_{2,t}}} - e^{-\frac{\tau}{\lambda_{2,t}}} \right]$$

 $\pmb{\theta}_0 = \beta_{1,t}; \;\; \pmb{\theta}_1 = \beta_{2,t}; \;\; \pmb{\theta}_2 / \pmb{\theta}_3 = \beta_{3,t}; \;\; \pmb{\theta}_3 = -\tau/\lambda_{1,t}; \;\; \pmb{\theta}_4 / \pmb{\theta}_5 = \beta_{4,t}; \; \pmb{\theta}_5 = -\tau/\lambda_{2,t}$

**The NS model does not have the second medium term component(θ_4/θ_5) and the 2nd decay rate (θ_5)

Table 1: Understanding the models

The equations above are rewritten from the project paper so we can interpret them more easily.

Components	Description	Sensitivity
Long-term component	This is the component on $\theta_{\text{o}}\;$ because it is constant at 1 and remains the same for every maturity.	θ _{0 τ} (Level factor sensitivity)
Short-term component	This is the component $[(1-\exp(-\theta_3 t))/\theta_3 t)]$ on θ_1 because it starts at 1 but then decays to zero at an exponential rate. The rate of this decay is determined by $\theta_3 t$, where a smaller value means a faster rate of decay	θ ₁ (slope factor sensitivity
Medium-term component	This is the component[(1-exp(- θ_3 t))/ (θ_3 t))) -exp(- θ_3 t _t)] on θ_2/θ_3 , which starts at 0, increases for medium maturities and then decays to zero again thereby creating a hump-shape. The θ_3 t component determines at which rate the medium term component reaches its maximum	Θ_{j}/Θ_{j} (curvature factor sensitivity)
Rate of decay	The rate of decay is $\theta_{\text{3}} t = \tau/\lambda_{\text{t}}$	NA

Table 2: NS model

Table of results

Graphs	NS model (θ)	NSS model($oldsymbol{ heta}$)
NSTheta0 vs NSSTheta0 over time Thetas NSSTheta0 over time Thetas NSSTheta0 NSSTheta0 NSSTheta0 NSSTheta0 NSSTheta0 NSSTheta0 NSSTheta0 NSSTheta0 NSSTheta0	$oldsymbol{ heta}_0$ decreases over time	θ ₀ decreases over time, but more volatile here
NSTheta1.xs NSSTheta1 over time Thetas NSSHeta1 Thetas NSSHeta1 Thetas NSSHeta1 Thetas NSSHeta1	$oldsymbol{ heta}_1$ is volatile	$oldsymbol{ heta}_1$ is more volatile here
NS(Theta3) vs NSS(Theta2/Theta3) over time Thetas 162, Insta2/Insta3 1855_Insta2Insta3 1855_Insta2Insta3 1855_Insta2Insta3	θ_2/θ_3 is volatile	$\mathbf{\theta}_2/\mathbf{\theta}_3$ is more volatile

0 Results

- The level for both models are <u>generally</u> <u>constant</u>. However, the NSS model is able to <u>capture more of the level's volatility</u> over time
- Value <u>alternates between positive and</u> <u>negative</u>. Tells you that the yield curve changes from upwards sloping to downward sloping

 Tells you yield curve <u>shifts between</u> <u>getting flatter and steeper</u> (signals). NSS was able to capture the curvature's volatility during GFC 2008 & Black wednesday 1992

 θ_4/θ_5 is only volatile at some points

The curvature for the second medium component is generally constant but volatile during crises such as GFC 2008 and Black Wednesday (1992)

Conclusion

- In conclusion, as NSS adds a fourth factor to <u>raise the flexibility</u> of in-sample fit, it allows it to <u>better view the volatility of the yield curve</u>. This is evidenced that in 1992 (Black Wednesday), the volatility was better captured by the NSS model.
- Additionally, looking at the curvature factors (θ 2/ θ 3=B3 & θ 4/ θ 5=B4) and the slope factors(θ 1= β 2), the aforementioned strategies can be adopted when trading.

Table 5: Table of results

DATA FITTING & MODEL SELECTION

MODEL FITTING

- Minimize the sum of squared errors non linearly for both NS and NSS
- We took advantage of the "YieldCurve" package but rewrote the source code to output SSR, AIC and BIC for Model Selection

MODEL FITTING - Sample re-written code

```
NSFit <- function (rate, maturity)
  rate <- try.xts(rate, error = as.matrix)
  if (ncol(rate) = 1)
    rate <- matrix(as.vector(rate), 1, nrow(rate))
 pillars.number <- length(maturity)</pre>
  lambdaValues <- seq(maturity[1], maturity[pillars.number],</pre>
                     by = 0.5
 FinalResults <- matrix(0, nrow(rate), 7)
 colnames(FinalResults) <- c("beta_0", "beta_1",</pre>
                             "beta_2", "lambda", "SSR", "AIC", "BIC")
 i <- 1
 while (j <= nrow(rate)) {
   InterResults <- matrix(0, length(lambdaValues), 7)</pre>
   for (i in 1:length(lambdaValues))
      lambdaTemp \leftarrow optimize(.FactorBeta2, interval = c(0.001,
                                                      1), maturity = lambdaValues[i], maximum = TRUE)$maximum
     InterEstimation <- NSestimator(as.numeric(rate[j,</pre>

 maturity, lambdaTemp)

     Retacoet <- InterEstimation SPar
     AIC <- InterEstimation SAIC
     BIC <- InterEstimation$BIC
```

MODEL SELECTION

• Visually examine the fit of both models

MODEL SELECTION

 Compute the BIC, MSE and MSFE (more on MSFE later) for both models.

	NSS Model	NS Model
% of time chosen by BIC	97%	3%
MSE	0.0000644	0.00229
MSFE	0.00352	0.00987

PART 2.5 PREDICTION

PREDICTION

- Research (Swanson & Xiong, May 2018) has shown that NS and NSS models are the best performers for mean square forecast error (MSFE).
- We took inspiration from their prediction protocol to get our test MSFE as well as predict the spot rates for September 2020

MSFE DERIVATION

- Split Data and fit NS / NSS model to Training Data Test set = Aug 2020
- 2) Fit best ARIMA model to each parameter based on BIC $\beta'_{t} = c + \varphi_{1}\beta'_{t-1} + \dots + \varphi_{p}\beta'_{t-p} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}$
- 3) Then, predict the parameters for Aug 2020
- —— 4) Predict the spot rates for Aug 2020 for both NS and NSS

$$\begin{split} \widehat{y}_{t+h}(\tau) &= \widehat{\beta}_{1,t+h}^f + \widehat{\beta}_{2,t+h}^f \cdot \left[\frac{1 - \exp(-\lambda_t \tau)}{\lambda_t \tau} \right] + \widehat{\beta}_{3,t+h}^f \cdot \left[\frac{1 - \exp(-\lambda_t \tau)}{\lambda_t \tau} - \exp(-\lambda_t \tau) \right], \\ \widehat{y}_{t+h}(\tau) &= \widehat{\beta}_{1,t+h}^f + \widehat{\beta}_{2,t+h}^f \cdot \left[\frac{1 - \exp(-\lambda_{1,t} \tau)}{\lambda_{1,t} \tau} \right] + \widehat{\beta}_{3,t+h}^f \cdot \left[\frac{1 - \exp(-\lambda_{1,t} \tau)}{\lambda_{1,t} \tau} - \exp(-\lambda_{1,t} \tau) \right] \\ &+ \widehat{\beta}_{4,t+h}^f \cdot \left[\frac{1 - \exp(-\lambda_{2,t} \tau)}{\lambda_{2,t} \tau} - \exp(-\lambda_{2,t} \tau) \right] \end{split}$$

5) Get MSFE: $MSFE_h(\tau) = \sum_{t=1}^{P} (\hat{y}_{t+h}(\tau) - y_{t+h}(\tau))^2$ NSS: 0.00352, NS = 0.00987

PREDICTED YIELD CURVES FOR SEP 2020

- Standard upward sloping Yield Curve for all maturities
- However, spot rates are still much lower than pre COVID-19 levels.
- Light at the end of the tunnel amidst COVID-19.

PROJECT REVIEW / FOLLOW UPS

- Given the volatility of the parameters of the NSS models, we can consider an ARIMA-GARCH model instead or intervention models to capture the historical crises
- Can consider using Vector Autoregressions (ie other bonds as predictors) instead of ARIMA
- Can the models be used for real time data? Swanson and Xiong (2018) proposing using real time data and diffusion indexes in the DNS model

PROJECT REVIEW / FOLLOW UPS

The Diffusion Index Formula is

Diffusion Index (DI) = (Advances - Declines) + PDIV

where:

Advances = Number of stocks moving higher

Declines = Number of stocks moving lower

PDIV = Previous DI value

PROJECT REVIEW / FOLLOW UPS

• Diffusion Index and Modifications to DNS model by Swanson and Xiong (2018)

$$\begin{pmatrix} F_{y,t+h} \\ x_t \end{pmatrix} = \begin{pmatrix} c_y \\ c_x \end{pmatrix} + \begin{bmatrix} \Gamma_y & \Gamma_x \\ 0 & \Gamma_{xx} \end{bmatrix} \begin{pmatrix} F_{y,t} \\ F_{x,t} \end{pmatrix} + \begin{pmatrix} e_{y,t+h} \\ e_{x,t} \end{pmatrix}$$
Diffusion Index

THANK YOU

Do you have any questions?

@imagineisaac, @ziyiker, @_meganchong, @shawn.55555, @zenwayyy