Information Retrieval

Course presentation

João Magalhães

Information retrieval

Voice based Search

Natural language understanding

Relevance vs similarity

What is the best algorithm to compute the relevance of documents for a given user information need?

Search architecture

Search architecture components

- **Crawl** data for storage
- Analyse documents and compute <u>meaningful</u> <u>representations of natural language</u>
- Store data in an <u>efficient</u> manner
- Process <u>user information needs</u>
- **Find answer** to user request

Mobile QA

- Hands-free devices favor a move to speech-based interaction.
- Voice-interaction favors dialogs.
- Voice interaction is nowadays a commodity.

Named entities

Question answering architecture

Question answering components

- <u>Collect</u> data for storage
- Analyse documents and compute <u>meaningful</u> <u>representations of natural language</u>
- Store data in an <u>efficient</u> manner
- Process <u>user question</u>
- Find candidate answers
- Extract correct answer

Conversational Search

- Alexa, Siri, Google Assistant...
- CS methods need to track the evolution of the information need in the conversation;
- It needs to identify salient information needed for the current turn in the conversation;
- Retrieval methods are required to retrieve the relevant information from a knowledge base (e.g. Wikipedia).

U: Tell me about the **Neverending Story film**.

A: ...

U: What is it about?

A: ...

U: Who was the author and when it was published?

A: ...

U: Who are the main characters?

A: ...

U: Did the horse horse Artax really die?

A: ...

Alexa TaskBot for Cooking

Alexa TaskBot for DIY

https://www.amazon.science/academic-engagements/ten-university-teams-selected-to-participate-in-alexa-prize-taskbot-challenge

Alexa, help me fix a scratch on my car

Sure, I am happy to help. I learned how to do this on WikiHow.com Scratches are easy to remove. Ready to get started?

Sure!

Won't it make the scratches worse?

Don't worry, spraying the fine scratches won't make them worse or damage your paint

Ok, done. What next?

Scrub the scratched area using soapy water and a sponge.

I did that, and rinsed off the soap. Easy!

That's great! Now Choose a rubbing compound and polish designed for cars.

Oh no! I don't have a rubbing compound. Is there something else I could use?

That's OK. I found this on a Website eurotechcarcare.com "Old-fashioned shoe polish is a great homemade recipe for fixing scratches in your car's exterior.". Would like to use it or try something else?

Schedule

Natural Language Processing and Search			
Week	#	Lecture	In-class labs
16-Sep-22	1	Introduction	
23-Sep-22	2	Text processing, PoS, NGRAMS, cosine distar	Project phase 1
30-Sep-22	3	Evaluation	Project phase 1
7-Oct-22	4	Language models	
14-Oct-22	5	Document categorization and ranking	
21-Oct-22	6	PoS and NE	Project phase 2
28-Oct-22	7	Word embeddings	Project phase 2
4-Nov-22	8	Contextual embeddings	
11-Nov-22	9	Question answering	
18-Nov-22	10	Expalinable NLP	Project phase 3
25-Nov-22	11	Project tips and feedback	Project phase 5
2-Dec-22	12	Computational Ethics for NLP	
9-Dec-22			
16-Dec-22			

References

Slides and articles provided during classes.

• Books:

Dan Jurafsky and James H. Martin, Speech and Language Processing (3rd ed. draft)

https://web.stanford.edu/~jurafsky/slp3/

C. D. Manning, P. Raghavan and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2008.

https://nlp.stanford.edu/IR-book/information-retrieval-book.html

Lecturers

Lectures: João Magalhães (jmag@fct.unl.pt)

Labs: David Semedo (<u>df.semedo@fct.unl.pt</u>)

 When sending messaging lecturers always identify the course name and your group ID.

Course grading

• The course has two mandatory components:

Laboratory (groups of 3 students): 60% (minimum grade > 10)

• Three phases, 20% per phase

Theoretical part (1 test or 1 exam):
40% (minimum grade > 8)

- Theory test/exam:
 - 1 Test or 1 Exam (dates do be defined)
- Additional rules:
 - You may use one sided A4 sheet <u>handwritten by you</u> with your notes.
 - It must be handed in at the end of the test.

Lab submission dates

Phase 1: Basic language models (20%)

- (13 October)
- Basic notions of text processing and similarity
- Language models
- Evaluation
- Phase 2: Info. extraction and search (20%)

(10 November)

- Entities extraction
- Learning to rank documents
- Phase 3: Neural language models (20%)

(8 December)

- Word embeddings and context embeddings
- Self-attention

Summary

- Context
- Objectives and plan
- Grading
- Labs