Notes on Sheaves on Manifolds

大柴寿浩

- 1 one inch + \hoffset
- 3 \oddsidemargin = -10pt
- 5 \headheight = 20pt
- 7 \textheight = 604pt
- 9 \marginparsep = 18pt
- 11 \footskip = Opt
 \hoffset = Opt
 \paperwidth = 545pt
- 2 one inch + \voffset
- 4 \topmargin = 5pt
- 6 \headsep = 14pt
- 8 \textwidth = 369pt
- 10 \marginparwidth = 64pt
 \marginparpush = 16pt (not shown)
 \voffset = 0pt

\paperheight = 771pt

- 1 one inch + \hoffset
- 3 \evensidemargin = 54pt
- 5 \headheight = 20pt
- 7 \textheight = 604pt
- 9 \marginparsep = 18pt
- 11 \footskip = Opt
 \hoffset = Opt
 \paperwidth = 545pt
- 2 one inch + \voffset
- 4 \topmargin = 5pt
- 6 \headsep = 14pt
- 8 \textwidth = 369pt
- 10 \marginparwidth = 64pt
 \marginparpush = 16pt (not shown)

\voffset = Opt

\paperheight = 771pt

はじめに

2023 年度から始めた [KS90] のセミナーのノート.

記号

次の記号は断りなく使う.

- 添字: なんらかの族 $(a_i)_{i\in I}$ を $(a_i)_i$ とか (a_i) と略記することがある.
- 近傍:位相空間 X の点 x や部分集合 Z に対し、その開近傍系をそれぞれ I_x や I_Z で表す。これらは、包含関係の逆で有向順序集合をなす。

第1章

ホモロジー代数

1.3 複体の圏

℃を加法圏とする.

注意. 加法圏とは次の3つの条件(1)-(3)をみたす圏のことである.

- (1) どの対象 $X,Y \in \mathcal{C}$ に対しても $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ が加法群になり、どの対象 $X,Y,Z \in \mathcal{C}$ に対しても合成 \circ : $\operatorname{Hom}_{\mathscr{C}}(Y,Z) \times \operatorname{Hom}_{\mathscr{C}}(X,Y) \to \operatorname{Hom}_{\mathscr{C}}(X,Z)$ が双線型である.
- (2) 零対象 $0 \in \mathcal{C}$ が存在する. さらに $\operatorname{Hom}_{\mathcal{C}}(0,0) = 0$ が成り立つ.
- (3) 任意の対象 $X,Y \in \mathcal{C}$ に対して積と余積が存在し、さらにそれらは同型になる、 (それらを複積といい $X \oplus Y$ とかく、)

圏 $\mathscr C$ から、 $\mathscr C$ の対象の複体の圏 $\mathbb C(\mathscr C)$ を作ることができる。まず複体の定義をする。圏 $\mathscr C$ の対象のと射の列

$$(1.3.1) \cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow \cdots$$

を考える. この列 $X=((X^n)_{n\in \mathbf{Z}},(d_X^n)_{n\in \mathbf{Z}})$ が複体 (complex) であるとは、任意の $n\in \mathbf{Z}$ に対し

$$(1.3.2) d_X^{n+1} \circ d_X^n = 0$$

が成り立つことをいう.

圏 $\mathscr C$ の対象の複体 $X=((X^n),(d_X^n)),\ Y=((Y^n),(d_Y^n))$ の間の射を、 $\mathscr C$ の射の族 $(f^n\colon X^n\to Y^n)_{n\in \mathbf Z}$ で、図式

$$\cdots \longrightarrow X^{n} \xrightarrow{d_{X}^{n}} X^{n+1} \longrightarrow \cdots$$

$$\downarrow^{f^{n}} \qquad \downarrow^{f^{n+1}}$$

$$\cdots \longrightarrow Y^{n} \xrightarrow{d_{Y}^{n}} Y^{n+1} \longrightarrow \cdots$$

を可換にする, すなわちどの番号 $n \in \mathbb{Z}$ に対しても

$$(1.3.3) d_Y^n \circ f^n = f^{n+1} \circ d_X^n$$

が成り立つものとして定める.

以上の準備のもとで、 $\mathscr C$ の複体の圏 $\mathrm{C}(\mathscr C)$ を次のように定める.

- 対象: Ob(C(ℰ)) = {ℰの複体 }
- 射: $\operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y) = \{\mathscr{C} \ の複体の射 \}$

このとき、 $C(\mathscr{C})$ は加法圏になる.

圏になることの証明. $f\colon X\to Y$ と $g\colon Y\to Z$ を $\mathrm{C}(\mathscr{C})$ の射とする. f と g の合成 $g\circ f$ は $(g^n\circ f^n)_n$ で与えられる. これがうまくいくことは

が可換になることからわかる.

$$X$$
 の恒等射は $(id_{X^n})_n$ で与えられる.

加法圏になることの証明. $X と Y を \mathcal{C}$ の複体とする.

- (1) 射の集合のアーベル群構造 $f,g \in \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y)$ に対し,f+g が $(f^n+g^n)_n$ で 定まる.
- (2) 零対象の存在 $C(\mathscr{C})$ の零対象 0 は

$$\cdots \rightarrow 0 \xrightarrow{0} 0 \xrightarrow{0} 0 \rightarrow \cdots$$

で与えられる.

(3) 複積の存在 X と Y の複積 $X \oplus Y$ は

$$\cdots \longrightarrow X^{n-1} \oplus Y^{n-1} \xrightarrow{d_X^{n-1} \oplus d_Y^{n-1}} X^n \oplus Y^n \xrightarrow{d_X^n \oplus d_Y^n} X^{n+1} \oplus Y^{n+1} \longrightarrow \cdots$$

さらに \mathscr{C} がアーベル圏ならば、 $C(\mathscr{C})$ もアーベル圏になる.

注意. 加法圏 \mathscr{C} がアーベル圏であるとは次の条件 (4), (5) をみたすことをいう.

(4) 任意の \mathscr{C} の射 $f: X \to Y$ に対し、f の核 $\operatorname{Ker} f$ と余核 $\operatorname{Coker} f$ が存在する.

1.3 複体の圏

(5) 任意の $\mathscr C$ の射 $f: X \to Y$ に対し、自然に定まる射 $\operatorname{Coim} f \to \operatorname{Im} f$ は同型である.

証明. X と Y を C の複体とする.

(4) 核と余核の存在 複体の射 $f: X \to Y$ に対し、核 $\operatorname{Ker} f$ は $(\operatorname{Ker} f^n)_n$ で、余核 $\operatorname{Coker} f$ は $(\operatorname{Coker} f^n)_n$ で与えられる.

コメント (4/24). 「Ker f の differential の構成はどうなっていますか?」 次の図式を考える.

ここで、 ι^n は $\mathrm{Ker}\, f^n$ の普遍性から自然に定まる射である。 \overline{d}_X^n : $\mathrm{Ker}\, f^n \to \mathrm{Ker}\, f^{n+1}$ が $d_X^n \circ \iota^n$ によって定められることを示せば良い.

$$f^{n+1} \circ d_X^n \circ \iota^n = d_Y^n \circ f^{n+1} \circ \iota^n = d_Y^n \circ 0 = 0$$

より, $d_X^n \circ \iota^n$ は $\operatorname{Ker} f^{n+1}$ に値を取る. したがって, \overline{d}_X^n : $\operatorname{Ker} f^n \to \operatorname{Ker} f^{n+1}$ が定まる.

(5) 余像と像が同型になること 各次数 n ごとに $\mathrm{Coim}\, f^n \cong \mathrm{Im}\, f^n$ が成り立つことから 従う.

圏 $C(\mathscr{C})$ の充満部分圏 $C^+(\mathscr{C})$, $C^-(\mathscr{C})$, $C^b(\mathscr{C})$ を

$$Ob(C^{+}(\mathscr{C})) = \left\{ 0 \to X^{n} \xrightarrow{d_{X}^{n}} X^{n+1} \to \cdots \quad (n \ll 0) \right\},$$

$$Ob(C^{-}(\mathscr{C})) = \left\{ \cdots \to X^{n-1} \xrightarrow{d_{X}^{n-1}} X^{n} \to 0 \quad (n \gg 0) \right\},$$

$$Ob(C^{b}(\mathscr{C})) = \left\{ 0 \to X^{n} \to \cdots \to X^{m} \to 0 \quad (n \ll 0, m \gg 0) \right\}$$

で定める.

 \mathscr{C} の対象 X に対し $C(\mathscr{C})$ の対象

$$\cdots \to 0 \to X \to 0 \to \cdots$$

を対応させることによって、忠実充満な関手 $\mathscr{C} \hookrightarrow \mathrm{C}(\mathscr{C})$ が定まる. k を整数とする. \mathscr{C} の複体

$$X: \cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow \cdots$$

に対し、X[k] を $X[k]^n = X^{n+k}$, $d^n_{X[k]} = (-1)^k d^{n+k}_X$ で定める。図式でかくと

$$X[k]: \cdots \to X^{n+k-1} \xrightarrow{(-1)^k d_X^{n+k-1}} X^{n+k} \xrightarrow{(-1)^k d_X^{n+k}} X^{n+k+1} \to \cdots$$

のようになる. X から Y への射 $f: X \to Y$ に対し、 $f[k]: X[k] \to Y[k]$ を $f[k]^n = f^{n+k}$ で定める. X を X[k] に対応させることで関手 $[k]: C(\mathcal{C}) \to C(\mathcal{C})$ が定まる. この関手を次数 k のシフト関手と呼ぶ.

[k] が関手になることの証明. X[k] が複体になること:

$$(-1)^k d_X^{n+k} \circ (-1)^k d_X^{n+k-1} = (-1)^{2k} d_X^{n+k} \circ d_X^{n+k-1} = 0.$$

f[k] が複体の射になること:

$$\cdots \longrightarrow X^{n+k} \xrightarrow{(-1)^k d_X^{n+k}} X^{n+k+1} \longrightarrow \cdots$$

$$\downarrow^{f^{n+k}} \qquad \downarrow^{f^{n+k+1}} \downarrow$$

$$\cdots \longrightarrow Y^{n+k} \xrightarrow{(-1)^k d_Y^{n+k}} Y^{n+k+1} \longrightarrow \cdots$$

が可換になることを示せばよい.

$$f^{n+k+1} \circ (-1)^k d_X^{n+k+1} = (-1)^k f^{n+k+1} \circ d_X^{n+k+1} = (-1)^k d_Y^{n+k+1} \circ f^{n+k}.$$

[k] が合成を保つこと: $f: X \to Y, g: Y \to Z$ を複体の射とする. このとき

$$(g[k] \circ f[k])^n = g[k]^n \circ f[k]^n = g^{n+k} \circ f^{n+k} = (g \circ f)^{n+k} = (g \circ f)[k]^n$$

が成り立つ.

$$[k]$$
 が恒等射を保つこと: $\mathrm{id}_X[k]^n=\mathrm{id}_X^{n+k}=\mathrm{id}_{X[k]}^n$.

■ホモトピー \mathscr{C} の複体の圏 $\mathbb{C}(\mathscr{C})$ から、ホモトピックな射を同一視することによって、新たな圏 $\mathbb{K}(\mathscr{C})$ が得られる。まず準備。

 $C(\mathscr{C})$ を圏 \mathscr{C} の複体の圏とする. $X,Y \in C(\mathscr{C})$ とする. $f: X \to Y$ が 0 にホモトピックであるとは、 \mathscr{C} の射の族 $(s^n: X^n \to Y^{n-1})$ で、

(1.3.4)
$$f^n = d_Y^{n-1} \circ s^n + s^{n+1} \circ d_X^n \quad (n \in \mathbf{Z})$$

となるものが存在することをいう.

 $f,g:X\to Y$ に対し、f-g が 0 にホモトピックであるとき、f と g はホモトピックであるといい、 $f\simeq g$ とかく、f が 0 とホモトピックであることを $f\simeq 0$ で表す、このとき $s=(s^n)$ を f と g の間のホモトピーという、 \simeq は同値関係である、

証明. f, g, h を X から Y への \mathscr{C} の複体の射とする.

反射律 $(s^n = 0)$ が f と f の間のホモトピーを与える.

1.3 複体の圏 5

対称律 f と g の間のホモトピーを s とするとき, -s が g と f の間のホモトピーを与える.

推移律 $f \ge g$ の間のホモトピーを $s, g \ge h$ の間のホモトピーを $t \ge t$ とする.このとき,s+t が $f \ge h$ の間のホモトピーを与える.

命題 1.3.1. $X,Y \in C(\mathscr{C})$ に対し、 $\operatorname{Hom}_{C(\mathscr{C})}(X,Y)$ の加法部分群 $\operatorname{Ht}(X,Y)$ を

で定める. 複体の射 $f\colon X\to Y$ と $g\colon Y\to Z$ のどちらかが 0 にホモトピックならば,合成 $g\circ f$ は 0 にホモトピックになる. したがって,射の合成は次の写像をひきおこす.

$$\operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(Y,Z) \times \operatorname{Ht}(X,Y) \to \operatorname{Ht}(X,Z),$$

 $\operatorname{Ht}(Y,Z) \times \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y) \to \operatorname{Ht}(X,Z).$

証明. $f \in \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(X,Y), g \in \operatorname{Hom}_{\mathbf{C}(\mathscr{C})}(Y,Z)$ とする.

 $f \simeq 0$ のとき, $s \in 0$ とのホモトピーとすると, $g \circ f \geq 0$ との間のホモトピーは

$$(q^{n-1} \circ s^n : X^n \to Y^{n-1} \to Z^{n-1})_n$$

で与えられる.

 $g \simeq 0$ のとき, $t \geq 0$ とのホモトピーとすると, $g \circ f \geq 0$ との間のホモトピーは

$$(t^n \circ f^n \colon X^n \to Y^n \to Z^{n-1})_n$$

で与えられる.

以上の準備のもとで、圏 $\mathscr C$ のホモトピー圏 $K(\mathscr C)$ を次のように定める.

- 対象: $Ob(K(\mathscr{C})) = Ob(C(\mathscr{C}))$
- 射: $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(X,Y) = \operatorname{Hom}_{\mathsf{C}(\mathscr{C})}(X,Y)/\operatorname{Ht}(X,Y)$

 $K(\mathscr{C})$ は加法圏になる.

 $K(\mathscr{C})$ が加法圏になることの証明. 命題 1.3.1 より、射の合成がきちんと定まる.

各 $X,Y \in \mathsf{K}(\mathscr{C})$ に対する $\mathrm{Hom}_{\mathsf{K}(\mathscr{C})}(X,Y)$ のアーベル群構造は $\mathrm{Ht}(X,Y)$ による剰余群の構造として得られ、さらに命題 1.3.1 より、合成の双線型性が得られる.

零対象と複積は $\mathrm{C}(\mathscr{C})$ と同様である. $\hspace{1cm}\square$

圏 $K(\mathscr{C})$ の充満部分圏 $K^+(\mathscr{C})$, $K^-(\mathscr{C})$, $K^b(\mathscr{C})$ を,それぞれ $C^+(\mathscr{C})$, $C^-(\mathscr{C})$, $C^b(\mathscr{C})$ と同じ対象をとって定める.

■コホモロジー \mathscr{C} をアーベル圏とする. $X \in C(\mathscr{C})$ に対し,

$$Z^{k}(X) \coloneqq \operatorname{Ker} d_{X}^{k},$$

$$B^{k}(X) \coloneqq \operatorname{Im} d_{X}^{k-1},$$

$$H^{k}(X) \coloneqq \operatorname{Ker} d_{X}^{k} / \operatorname{Im} d_{X}^{k-1}$$

とおく. $H^k(X)$ を複体 X の k 次のコホモロジーという.

注意. 完全列 $0 \to X \to Y \to Z \to 0$ に対し、Z を Y の商対象といい、Y/X とかく. 一般に単射 $i: X \hookrightarrow Y$ の余核 Coker i を Y/X とかける.

任意のk に対し H^k は $C(\mathscr{C})$ から \mathscr{C} への加法関手を定める.

(1.3.6)
$$H^k(X) = H^0(X[k])$$

 $f\colon X\to Y$ が 0 とホモトピックならば、 $H^k(f)\colon H^k(X)\to H^k(Y)$ は 0. よって H^k は $\mathsf{K}(\mathscr{C})$ から \mathscr{C} への関手を定める.

完全列たち

$$X^{k-1} \to Z^k(X) \to H^k(X) \to 0,$$

$$0 \to H^k(X) \to \operatorname{Coker} d_X^{k-1} \to X^{k+1},$$

$$0 \to Z^{k-1}(X) \to X^{k-1} \to B^k(X) \to 0,$$

$$0 \to B^k(X) \to X^k \to \operatorname{Coker} d_X^{k-1} \to 0,$$

$$0 \to H^k(X) \to \operatorname{Coker} d_X^{k-1} \xrightarrow{d_X^k} Z^{k+1}(X) \to H^{k+1}(X) \to 0.$$

命題 1.3.2. $0 \to X \to Y \to Z \to 0$ を $\mathbf{C}(\mathscr{C})$ の完全列とする. このとき, \mathscr{C} における次の長完全列が存在する.

$$\cdots \to H^n(X) \to H^n(Y) \to H^n(Z) \xrightarrow{\delta} H^{n+1}(X) \to \cdots$$

■切り落とし $X \in \mathcal{C}(\mathscr{C})$ と整数 n に対し、 $\tau^{\leq n}(X), \tau^{\geq n}(X) \in \mathcal{C}(\mathscr{C})$ を

(1.3.8)
$$\tau^{\geq n}(X) \colon \cdots 0 \to \operatorname{Coker} d^{n-1} \to X^{n+1} \to X^{n+2} \to \cdots$$

で定める.このとき、 $C(\mathscr{C})$ における次の射が得られる.

$$\tau^{\leq n}(X) \to X, \quad X \to \tau^{\geq n}(X),$$

また, $n' \le n$ ならば

$$\tau^{\leq n'}(X) \to \tau^{\leq n}(X), \quad \tau^{\geq n'}(X) \to \tau^{\geq n}(X).$$

- - 2. 自然な射 $H^k(X) \to H^k(\tau^{\geq n}(X))$ は $k \geq n$ ならば同型であり, k < n では $H^k(X) = 0$ である.

注意 1.3.4. ホモトピー同値

1.4 写像錐 7

1.4 写像錐

 \mathscr{C} を加法圏とし $f: X \to Y$ を $C(\mathscr{C})$ の射とする.

定義 1.4.1. f の写像錐 M(f) とは次で定まる $C(\mathscr{C})$ の対象である.

$$\begin{cases} M(f)^n = X^{n+1} \oplus Y^n, \\ d_{M(f)}^n = \begin{bmatrix} d_{X[1]}^n & 0 \\ f^{n+1} & d_Y^n \end{bmatrix} \end{cases}$$

射 $\alpha(f)$: $Y \to M(f)$ と $\beta(f)$: $M(f) \to X[1]$ を次で定める.

(1.4.1)
$$\alpha(f)^n = \begin{bmatrix} 0 \\ \mathrm{id}_{Y^n} \end{bmatrix},$$

$$\beta(f)^n = \begin{bmatrix} \operatorname{id}_{X^{n+1}} & 0 \end{bmatrix}.$$

コメント (4/24). 「どうして逆に $X \to M(f)$ や $M(f) \to Y$ じゃないんですか?」 例えば,逆に $\Gamma^n \colon M(f)^n \to Y^n$ を $\begin{bmatrix} 0 & \mathrm{id}_{Y^n} \end{bmatrix}$ で定めようとしても,

$$\begin{split} \Gamma^{n+1} \circ d^n_{M(f)} &= \begin{bmatrix} 0 & \mathrm{id}_{Y^n} \end{bmatrix} \begin{bmatrix} d^n_{X[1]} & 0 \\ f^{n+1} & d^n_Y \end{bmatrix} = \begin{bmatrix} f^{n+1} & d^n_Y \end{bmatrix}, \\ d^n_Y \circ \Gamma^n &= d^n_Y \circ \begin{bmatrix} 0 & \mathrm{id}_{Y^n} \end{bmatrix} = \begin{bmatrix} 0 & d^n_Y \end{bmatrix} \end{split}$$

となり、両者は一致しない.したがって、 Γ は複体の射にならない. $X \to M(f)$ も同様である.したがって、M(f) に対して定まる自然な射は α,β のようにせざるを得ない.

補題 1.4.2. 任意の $C(\mathcal{C})$ の射 $f\colon N\to Y$ に対し、 $\phi\colon X[1]\to M(\alpha(f))$ で次の条件をみたすものが存在する.

- 1. ϕ は $K(\mathscr{C})$ で同型である,
- 2. 次の図式は $K(\mathscr{C})$ で可換になる:

$$Y \xrightarrow{\alpha(f)} M(f) \xrightarrow{\beta(f)} X[1] \xrightarrow{-f[1]} Y[1]$$

$$\downarrow \operatorname{id}_{Y} \qquad \downarrow \operatorname{id}_{M(f)} \qquad \downarrow \phi \qquad \qquad \downarrow \operatorname{id}_{Y[1]}$$

$$Y \xrightarrow{\alpha(f)} M(f) \xrightarrow{\alpha(\alpha(f))} M(\alpha(f)) \xrightarrow{\beta(\alpha(f))} Y[1].$$

2023/05/01

1.5 三角圏

 \mathscr{C} を加法圏とし、 $T:\mathscr{C}\to\mathscr{C}$ を自己関手とする。 \mathscr{C} の三角とは射の列

$$X \to Y \to Z \to T(X)$$

のことである.

定義 1.5.1. 三角圏 $\mathscr C$ は次のデータ (1.5.1), (1.5.2) と規則 (TR0)–(TR5) からなる. 1.5.1

データ

(1.5.1) 加法圏 \mathscr{C} と自己関手 $T:\mathscr{C} \to \mathscr{C}$ の組,

(1.5.2) 特三角 (distinguished triangle) の族.

規則 (TR0) 特三角に同形な三角は特三角である.

- $(\operatorname{TR}1)$ 任意の対象 $X \in \mathscr{C}$ に対し, $X \xrightarrow{\operatorname{id}_X} X \longrightarrow 0 \longrightarrow T(X)$ は特三角である.
- (TR2) \mathscr{C} の任意の射 $f\colon X\to Y$ は特三角 $X\stackrel{f}{\to} Y\to Z\to T(X)$ に埋め込める. つまり $Z\in\mathscr{C}$ で $X\stackrel{f}{\to} Y\to Z\to T(X)$ が特三角となるものが存在する.
- $(TR3) \quad X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} T(X) \text{ が特三角であることと } Y \xrightarrow{g} Z \xrightarrow{h} T(X) \xrightarrow{-T(f)} T(Y) \text{ が特三角であることは同値である.}$
- (TR4) 2つの特三角 $X \xrightarrow{f} Y \to Z \to T(X), X' \xrightarrow{f'} Y' \to Z' \to T(X')$ に対し、可換図式

$$X \xrightarrow{f} Y$$

$$\downarrow u \qquad \qquad \downarrow v$$

$$X' \xrightarrow{f'} Y'$$

は特三角の射に埋め込める.

(TR5) (八面体公理). 3つの特三角

$$X \xrightarrow{f} Y \to Z' \to T(X),$$

$$Y \xrightarrow{g} Z \to X' \to T(Y),$$

$$X \xrightarrow{g \circ f} Z \to Y' \to T(X)$$

に対し,

1.6 圏の局所化

第2章

層

2.1 層の演算

2.1.1 部分集合から定まる関手

X を位相空間とする. Z を X の部分集合とし、 $j: Z \hookrightarrow X$ を包含写像とする.

■制限の一般的な定義 $F \in Sh(X)$ に対し,

(2.1.1)
$$F|_{Z} := j^{-1}F,$$
(2.1.2)
$$\Gamma(Z; F) := \Gamma\left(Z; j^{-1}F\right)$$

とおく. Z が開集合のとき,元の定義に一致する.

元の定義に一致することのチェック. $U \subset Z$ を開集合とすると,

$$\begin{split} \Gamma\left(U;j^{-1}F\right) &= \varinjlim_{j(U)\subset V} F(V) \\ &= F(j(U)) = F(U) = F|_{Z}(U) \end{split}$$

となる.

■順像を用いた閉集合での定義 Z が閉集合であるときを考える. このとき, $F \in \mathrm{Sh}(X)$ に対し,

$$F_Z := j_* j^{-1} F$$

とおく.

コメント 2.1.1. 池ノート [Ike21] や竹内 [Tak17] だと,固有順像 (2.1.2 項) を定義してから, $j_!j^{-1}F$ で切り落としを定義している.閉集合からの包含写像に対しては $j_!=j_*$ であり,これらの定義は一致する.

10 第2章 層

2.1.2 固有順像

 $f_!$: $\operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ について,f がプロパーなら $f_! \cong f_*$ である.つまり,コメント 2.1.1 の主張はもっと一般に f がプロパーなら成り立つ.

2.2 弱大域次元

アーベル層の圏はアーベル圏になる. したがって層の導来圏が考えられる.

・⊗・の導来関手を考えたいが、テンソルに関する複体が有界になるとは限らないので、 平坦分解の長さが有限になるという仮定をおく.

命題 **2.2.1.** *A* を環とする.

- 1. 自由加群は射影加群である.
- 2. 射影加群は自由加群の自由加群の直和因子である.
- 3. 射影加群は平坦加群である.
- 4. $n \ge 0$ を整数とする. 次の条件 (a)–(b)^{op} は同値である.
 - (a) 任意の j > n, $N \in \text{Mod}(A^{\text{op}})$, $M \in \text{Mod}(A)$ に対し、 $\text{Tor}_{i}^{A}(N, M) = 0$
 - (b) 任意の $M \in Mod(A)$ に対し、分解

$$0 \to P^n \to \cdots \to P^0 \to M \to 0$$
 (P^j は平坦)

が存在する.

 $(b)^{op}$ 任意の $M \in Mod(A^{op})$ に対し、分解

$$0 \to P^n \to \cdots \to P^0 \to M \to 0$$
 (P^j は平坦)

が存在する.

証明. 1. M を自由加群とする. 左 A 加群の全射 g: N woheadrightarrow N' に対し,

$$g_* \colon \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(M,N')$$
 in $\operatorname{Mod}(\mathbf{Z})$

が全射であることを示す。 $\psi\colon M\to N'$ を A 加群の射とする。I を $M\cong A^{\oplus I}$ となる添字集合とすると任意の $m\in M$ は,M の生成系 (m_i) と $(a_i)_i\in A^{\oplus I}$ を用いて, $m=\sum_{i\in I}a_im_i$ とかける。このとき,

$$\psi(m) = \sum_{i} a_i \psi(m_i) \in N'$$

であり、g が全射なので、 $n \in N$ で

$$g(n) = \psi(m) = \sum_{i} a_i \psi(m_i), \quad \psi(m_i) = g(n_i)$$

2.2 弱大域次元 11

となるものがある. この $(n_i)_i$ に対して, $\phi: M \to N$ を

$$\phi(m_i) = n_i$$

で定めると,

$$(g_*(\phi))(m_i) = g \circ \phi(m_i) = g(n_i) = \psi(m_i)$$

となる.

2. P を射影加群とする. 自由加群 $A^{\oplus I}$ と全射 p: $A^{\oplus I}$ \rightarrow P が存在する. 実際, I=P として,p を $p((a_x)_{x\in P})=\sum_{x\in P}a_xx$ と定めればよい. $Q=\operatorname{Ker} p$ とすると,

$$0 \to Q \hookrightarrow A^{\oplus I} \twoheadrightarrow P \to 0$$

は完全列である.このとき,P が射影加群であることから, id_P に対して, $u\colon P\to A^{\oplus I}$ で

$$p_*(u) = p \circ u = \mathrm{id}_P$$

となる者が存在する. したがって、上の完全列は分裂し、 $A^{\oplus I} \cong P \oplus Q$ となる.

3. まず「自由 \Rightarrow 平坦」を示す. $F = A^{\bigoplus I}$ を自由加群とし、

$$0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow 0$$

を右 A 加群の完全系列とする.

$$0 \to N_1 \otimes A^{\bigoplus I} \to N_2 \otimes A^{\bigoplus I} \to N_3 \otimes A^{\bigoplus I} \to 0$$

において,

$$N_1 \otimes A^{\bigoplus I} \cong N_1^{\bigoplus I}, \quad N_2 \otimes A^{\bigoplus I} \cong N_2^{\bigoplus I}$$

であり、 $j: N_1 \to N_2$ は単射なので、

$$\bigoplus_{i \in I} j_i \colon N_1^{\bigoplus I} \to N_2^{\bigoplus I}$$

で

12 第 2 章 層

2.3 非特性変形補題

命題 **2.3.1** ([KS90, Prop. 2.5.1]). X を位相空間とし,Z を部分空間とする. F を X 上の層とし,自然な射

$$\psi \colon \varinjlim_{U \in I_Z} \Gamma(U; F) \to \Gamma(Z; F)$$

を考える.

- (i) ψ は単射である.
- (ii) X がハウスドルフで Z がコンパクトならば、 ψ は同型である.

命題 2.3.2 ([KS90, Prop. 1.12.4]).

$$\phi_k \colon H^k(\varinjlim X) \to \varprojlim H^k(X_n)$$

について, $H^{i-1}(X_n)$ が ML 条件を満たすならば, ϕ_k は一対一対応である.

命題 2.3.3 ([KS90, Prop. 1.12.6]). $(X_s, \rho_{s,t})$ を実数を添字とする射影系とする.

$$\lambda_s \colon X_s \to \varprojlim_{r < s} X_r, \quad \mu_s \colon \varinjlim_{t > s} X_t \to X_s$$

がどちらも単射(全射)ならば、すべての実数 $s_0 \le s_1$ に対し、 $\rho_{s_0,s_1}\colon X_{s_1}\to X_{s_0}$ は単射(全射)となる.

命題 **2.3.4** ([KS90, Prop. 2.7.2, 非特性変形補題]). X をハウスドルフ空間とし, $F \in \mathsf{D}^+(\mathbf{Z}_X)$ とする。また, $(U_t)_{t \in \mathbf{R}}$ を X の開集合の族で次の条件 (i)–(iii) をみたすものとする.

- (i) 任意の実数 t に対し、 $\bigcup_{s < t} U_s = U_t$ が成り立つ.
- (ii) 任意の実数 $s \le t$ に対し, $\overline{U_t U_s} \cap \text{supp } F$ はコンパクト集合である.
- (iii) 実数 s に対して $Z_s=\bigcap_{t>s}\overline{U_t-U_s}$ とおくとき,任意の実数 $s\leq t$ と任意の点 $x\in Z_s-U_t$ に対して $(\mathrm{R}\Gamma_{X-U_t}(F))_x=0$ が成り立つ.

このとき、任意の実数tに対して、次の同型が成り立つ。

$$R\Gamma\left(\bigcup_{s\in\mathbf{R}}U_s;F\right)\stackrel{\sim}{\longrightarrow} R\Gamma(U_t;F)$$

2.3 非特性変形補題 **13**

証明.次の条件を考える.

$$(a)_k^s : \lim_{\longrightarrow} H^k(U_t; F) \xrightarrow{\sim} H^k(U_s; F)$$

$$(a)_k^s : \lim_{t \to s} H^k(U_t; F) \xrightarrow{\sim} H^k(U_s; F)$$
$$(b)_k^t : \lim_{s < t} H^k(U_s; F) \xleftarrow{\sim} H^k(U_t; F)$$

任意の実数 s と任意の整数 k に対して $(a)_k^s$ が、任意の実数 t と任意の整数 $k < k_0$ に対 して $(b)_k^t$ が成り立つとする. このとき, k_0 に対し, $(b)_{k_0}^t$ が成り立つことを示す. 命題 2.3.3 より, $((a)_k^s$ の方が μ_s , $(b)_k^t$ の方が λ_t として)各次数 $k < k_0$ と各実数 $s \le t$ に 対し,

$$(2.3.1) H^k(U_t; F) \xrightarrow{\sim} H^k(U_s; F)$$

が成り立つ. このとき,tを固定して、射影系 $\left(H^{k_0-1}\left(U_{t-\frac{1}{n}};F\right)\right)_{n\in\mathbb{N}}$ を考えると、こ れは ML 条件をみたす.

::) 任意の $n \in \mathbb{N}$ に対し,

$$\rho_{n,p}\left(H^{k_0-1}\left(U_{t-\frac{1}{p}};F\right)\to H^{k_0-1}\left(U_{t-\frac{1}{n}};F\right)\right)$$

はすべて同形なので, 当然安定.

よって、命題 2.3.2 より $(b)_{k_0}^t$ が従う. k に関する帰納法により、どの $t \in \mathbf{R}$ と $k \in \mathbf{Z}$ に 対しても $(b)_k^t$ が成り立つ.

命題 2.7.1 を
$$\left(H^{k}\left(U_{n};F\right)\right)_{n\in\mathbf{N}}$$
 に用いると \leftarrow わかってない

kに関する帰納法で,定理の結論

$$R\Gamma\left(\bigcup_{s\in\mathbf{R}}U_s;F\right)\stackrel{\sim}{\longrightarrow} R\Gamma(U_t;F)$$

が従う.

 $(a)_k^s$ の証明 $\ X$ を $\mathrm{supp}\, F$ におきかえて、どの実数 $s \leq t$ に対しても $\overline{U_t - U_s}$ はコンパ クトとしてよい.次の d.t. を考える*1.

$$R\Gamma_{(X-U_t)}(F)|_{Z_s} \to R\Gamma_{(X-U_s)}(F)|_{Z_s} \to R\Gamma_{(U_t-U_s)}(F)|_{Z_s} \xrightarrow{+1} .$$

仮定 (iii) より、左と真ん中の 2 つは 0 なので、d.t. の性質から、 $\mathrm{R}\Gamma_{(U_t-U_s)}(F)|_{Z_s}=0$ と なる. したがって、任意の $k \in \mathbf{Z}$ と $t \ge s$ に対し、

$$0 = H^{k}(Z_{s}; R\Gamma_{(U_{t}-U_{s})}(F))$$

$$= \varinjlim_{U \supset Z_{s}} H^{k}(U \cap U_{t}; R\Gamma_{X-U_{s}}(F))$$

$$R\Gamma_{Z'}(F) \to R\Gamma_Z(F) \to R\Gamma_{Z-Z'}(F) \xrightarrow{+1}$$

を用いる. 但し, Z は X の局所閉集合, Z' は Z の閉集合である.

^{*1 [}KS90, (2.6.32)] Ø d.t.

14 第 2 章 層

となる.

 $\mathrm{R}\Gamma_{U_t-U_s}(F)$ は X 上の層で,それを Z_s に制限した $\mathrm{R}\Gamma_{U_t-U_s}(F)|_{Z_s}$ は Z_s 上の層である. Z_s での大域切断 $\mathrm{R}\Gamma(Z_s;\mathrm{R}\Gamma_{U_t-U_s}(F)|_{Z_s})$ のコホモロジーを とっているので,[KS90, Notations 2.6.8] の 2 番目の記号を用いることに なる.

 Z_s はハウスドルフ空間 X のコンパクト集合 $\overline{U_t-U_s}$ の共通部分として表されているので,コンパクトである(X の置き換えがここに効いている). したがって, $[KS90, Remark\ 2.6.9\ (ii)]$ の場合に当てはまり,そこでの記号を用いて書くと

$$H^{j}(Z;F) \simeq \varinjlim_{U \in I_{Z}} H^{j}(U;F)$$

が成り立つ. これが上の式の2つ目の変形. 詳しく書くと,

$$H^{k}(Z_{s}; R\Gamma_{U_{t}-U_{s}}(F)) = \varinjlim_{U \in I_{Z}} H^{k}(U; R\Gamma_{U_{t}-U_{s}}(F))$$
$$= \varinjlim_{U \in I_{Z}} H^{k}(U \cap U_{t}; R\Gamma_{X-U_{s}}(F))$$

ここで,2 つ目の変形は次のように考える. U_t-U_s に台を持つ層の U 上の切断は $U\cap U_t$ 上で切断を考えても同じ.台の方も,U が Z_s に十分近ければ $X-U_s$ で考えても同じ.

2.9 実・複素多様体上の層の例

ここで層の例をいくつか挙げる. そのうちの大部分については 11 章で詳しい説明を与えることにする.

2.9.1 層 \mathscr{C}_{X}^{0}

位相空間 X において,X の開集合 U に対し複素数値連続関数の空間 $C^0(U)$ を対応させ,制限射を通常の関数の制限で定めた前層は明らかに層になる.この層を \mathscr{C}_X^0 で表す.定数層 \mathbf{Z}_X は \mathbf{Z} 値関数のなす \mathscr{C}_X^0 の部分層とみなせる.

2.9.2 層 $\mathcal{L}^1_{\mathrm{loc},dx}$

U をユークリッド空間 \mathbf{R}^n の開集合とし, $L^1(U;dx)$ を \mathbf{R}^n 上のルベーグ測度 dx に関する U 上の可積分関数の空間とする.前層 $U\mapsto L^1(U;dx)$ は層ではない.この前層から誘導された \mathbf{R}^n 上の層を $\mathcal{L}^1_{\mathrm{loc},dx}$ で表す.

2.9.3 環付き空間

環付き空間 (X, \mathscr{A}_X) とは位相空間 X に環の層 \mathscr{A}_X をあわせたものをいう.環付き空間の射 $f\colon (Y, \mathscr{A}_Y) \to (X, \mathscr{A}_X)$ は連続写像 $f\colon X \to Y$ に環の層の射 $f^{-1}\mathscr{A}_X \to \mathscr{A}_Y$ をあわせたものをいう.A が環で \mathscr{A}_X が A 代数の層である(すなわち層の射 $A_X \to \mathscr{A}_X$ が存在する)とき, (X, \mathscr{A}_X) を A 環付き空間と呼ぶ.

2.9.4 C^{α} 多様体

 α を整数 $0 \le \alpha < \infty$ または $\alpha = \omega$ とする. \mathbf{R}^n 上の複素数値 C^α 級関数(C^ω のとき 実解析的関数)の層を $C^\alpha_{\mathbf{R}^n}$ で表す. n 次元実 C^α 多様体 M とは,無限遠点で可算な局所 コンパクト空間 M と環の層 C^α_M の組で, \mathbf{C} 環付き空間として $(\mathbf{R}^n, C^\alpha_{\mathbf{R}^n})$ と局所的に同型であるものをいう.

 $\dim X$ (または $\dim_{\mathbf{R}} X$)で実多様体 X の次元を表す。文献によっては層 C_M^ω を \mathscr{A}_M で表すことも多い。

微分幾何学の基礎的な課程として Guillemin-Pollack[GP74] を挙げる.

2.9.5 向きづけ、微分形式、密度

 C^0 多様体 M 上の層として,向きづけ層 or_M を考えることも必要になってくる. or_M は \mathbf{Z}_M と局所的に同型な層であり,M の向きが存在する場合,その向きを選ぶことと同型 $\mathrm{or}_M\cong \mathbf{Z}_M$ を選ぶことが同義となるようなものである. or_M については次章で詳しくしらべる.

いま, $\alpha=\infty$ または $\alpha=\omega$ とし,p を整数とする. C_M^α を係数にもつ p 次微分形式の層を $C_M^{\alpha,(p)}$ とおく.また外微分を $d\colon C_M^{\alpha,(p)}\to C_M^{\alpha,(p+1)}$ で表す.

 (x_1,\ldots,x_n) が M 上の局所座標系であるとする. このとき, p 形式 f は次の形にただ一通りに表されるのであった.

$$f = \sum_{|I|=p} f_I dx_I,$$

ここに, $I = \{i_1, \dots, i_p\} \subset \{1, \dots, n\}$, $(i_1 < i_2 < \dots < i_p)$, $dx_I = dx_{i_1} \wedge \dots \wedge dx_{i_p}$ で, f_I は C_M^{α} の切断である。このとき,

$$df = \sum_{i=1}^{n} \sum_{|I|=p} \frac{\partial f_I}{\partial x_i} dx_i \wedge dx_I$$

となるのであった. もうひとつ層を導入する.

$$\mathscr{V}_M^{\alpha} \coloneqq C_M^{\alpha,(n)} \otimes \operatorname{or}_M$$

 $(\alpha = \infty$ または $\alpha = \omega$) とおき, M 上の C^{α} 密度の層とよぶ.

コンパクト台をもつ C^∞ 密度は積分することができる. \int_M で積分写像

(2.9.1)
$$\int_{M} : \Gamma_{c}(M; \mathscr{V}_{M}^{\infty}) \to \mathbf{C}$$

を表す. $C_M^{\alpha,(p)}$ と \mathcal{Y}_M^{α} は C_M^{α} 加群の層である.

「1 の分割」の存在から,層 C_M^{α} , $C^{\alpha,(p)}$, \mathscr{V}_M^{α} は $\alpha \neq \omega$ に対しては c 柔軟であることが従う.層 C_M^{ω} , $C^{\omega,(p)}$, \mathscr{V}_M^{ω} は関手 $\Gamma(M;\cdot)$ に対し非輪状,すなわち j>0 に対し $H^j(M;C_M^{\omega})=0$ である.Grauert[G58] を参照.

2.9.6 分布と超関数

 C^{∞} 多様体 M 上にはシュワルツ分布の層 $\mathcal{D}b_M$ が自然に定まる(Schwartz[S66],de Rham[R55] を参照)。 $\mathcal{D}b_M$ は \mathfrak{c} 柔軟層であり, $\Gamma_c(M;\mathcal{D}b_M)$ は $\Gamma(M;\mathcal{V}_M^{\infty})$ の双対位相線形空間である。 ただし, $\Gamma(M;\mathcal{V}_M^{\infty})$ にはフレシェ空間としての自然な位相を入れている。

 C^{ω} 多様体 M 上にも同様に佐藤超関数の層 \mathcal{B}_{M} が自然に定まる(佐藤 [Sa59] を参照)。 \mathcal{B}_{M} は脆弱層であり, $\Gamma_{c}(M;\mathcal{B}_{M})$ は $\Gamma(M;\mathcal{V}_{M}^{\omega})$ の双対位相線形空間である。ただし, $\Gamma(M;\mathcal{V}_{M}^{\omega})$ には DFS 空間としての自然な位相を入れている(Martineau と Schapira に 詳細な解説がある)。 しかし,佐藤による構成は純粋にコホモロジーによるものである。 後ほど 2.9.13 項で復習する。

積分写像 (2.9.1) はペアリング

$$(2.9.2) \qquad \Gamma(M; C_M^{\infty}) \times \Gamma_c(M; \mathscr{V}_M^{\infty}) \longrightarrow \mathbf{C}$$

$$(f,g) \qquad \longmapsto \int_M fg$$

を定める。このペアリングから C_M^∞ から $\mathscr{D}b_M$ への層の射がひきおこされ,この射が単射であることも示せる。さらに,実解析多様体 M の上では,単射 $\Gamma(M;\mathcal{V}_M^\omega) \to \Gamma(M;\mathcal{V}_M^\infty)$ から射 $\mathscr{D}b_M \to \mathscr{B}_M$ が引き起こされ,こちらも単射であることがわかる.

分布係数のp形式の層 $\mathscr{D}_{M}^{(p)}\coloneqq C_{M}^{\infty,(p)}\otimes_{C_{M}^{\infty}}\mathscr{D}b_{M}$ や超関数係数のp形式の層 $\mathscr{B}_{M}^{(p)}\coloneqq C_{M}^{\omega,(p)}\otimes_{C_{M}^{\infty}}\mathscr{B}_{M}$ も定義することができる。 $\mathscr{D}b_{M}^{(p)}$ は \mathbf{c} 柔軟層, $\mathscr{B}_{M}^{(p)}$ は脆弱層である。

2.9.7 ド・ラーム複体

M を C^{∞} 多様体とする. ポアンカレの補題より, 系列

$$(2.9.3) 0 \to \mathbf{C}_M \to C_M^{\infty,(0)} \xrightarrow{J} \cdots \to C_M^{\infty,(n)} \to 0$$

は完全である. したがって、 \mathbf{C}_M は \mathbf{c} 柔軟層のなす複体と擬同形である.

(2.9.4)
$$\mathbf{C}_M \xrightarrow{\mathrm{qis}} \left(0 \to C_M^{\infty,(0)} \xrightarrow{d} \cdots \to C_M^{\infty,(n)} \to 0 \right).$$

これによってコホモロジー群 $H^j(M; \mathbf{C}_M)$ や $H^j_c(M; \mathbf{C}_M)$ を具体的に計算することができる. 例えば,(2.9.4) に $\mathrm{R}\Gamma(M; \cdot)$ を適用することで,同型

$$(2.9.5) R\Gamma(M; \mathbf{C}_M) \cong \left(0 \to \Gamma\left(M; C_M^{\infty, (0)}\right) \xrightarrow{d} \cdots \to \Gamma\left(M; C_M^{\infty, (n)}\right) \to 0\right)$$

が得られる. C_M^∞ を $\mathcal{D}b_M$ に取り替えても同じ結果が得られる. M が実解析的なら, C_M^∞ を C_M^∞ や \mathcal{B}_M に取り替えることで同じ結果が従う. しかし, C_M^ω は c 柔軟ではなく $\Gamma(M;\cdot)$ 非輪状でしかないので注意が必要である. 他方, \mathcal{B}_M は c 柔軟であるのみならず脆弱でもあるので,これを用いて M の局所閉集合 Z に対する相対コホモロジー群 $H_Z^j(M;\mathbf{C}_M)$ を具体的に計算することができる.

複体 (2.9.3) を M のド・ラーム複体と呼ぶ.

2.9.8 複素多様体

 $\mathcal{O}_{\mathbf{C}^n}$ で \mathbf{C}^n 上の正則関数のなす層を表す. n 次元複素多様体 X は \mathbf{C} 環付き空間 (X, \mathcal{O}_X) で $(\mathbf{C}^n, \mathcal{O}_{\mathbf{C}^n})$ と局所的に同型であるものをいう.

複素多様体 X の次元を $\dim_{\mathbf{C}} X$ で表す。複素微分幾何学の基本的な概念についての参考文献として Wells を挙げる。解析幾何学のさらなる展開については Banica-Stanasila の本を勧める。

 $\mathscr{O}_X^{(p)}$ で X 上の正則 p 形式のなす層を表し、 ∂ で正則微分を表す。 Ω_X を次のように定めることも多い。

(2.9.6)
$$\Omega_X := \mathscr{O}_X^{(p)} \otimes \operatorname{or}_X$$

ただし or_X は X 上の向きづけ層である.ポアンカレの補題は正則関数係数の場合にも成り立ったので層 \mathbf{C}_M は複体

$$(2.9.7) 0 \to \mathscr{O}_X^{(0)} \xrightarrow{2} \cdots \to \mathscr{O}_X^{(n)} \to 0$$

と擬同形である.

2.9.9 ドルボー複体

 (X, \mathcal{O}_X) を複素多様体とする. $(\overline{X}, \mathcal{O}_{\overline{X}})$ で位相空間 X に X 上の反正則関数のなす層 $\mathcal{O}_{\overline{X}}$ をあわせたものを表す. (ただし $f\colon X\to \mathbf{C}$ が反正則であるとは, \mathbf{C} 上の複素共役写像との合成が正則であることであった.) 従って $(\overline{X}, \mathcal{O}_{\overline{X}})$ も複素多様体となる.

 $X^{\mathbf{R}}$ で X を実解析多様体とみなしたものを表す. $X^{\mathbf{R}}$ を $X \times \overline{X}$ の対角集合と同一視すれば, $X \times \overline{X}$ は $X^{\mathbf{R}}$ の複素化であるといえる. 実際,

$$(2.9.8) \mathscr{O}_{X \times \overline{X}}|_{Y\mathbf{R}} \cong C_{X\mathbf{R}}^{\omega}$$

である. $X \times \overline{X}$ 上で X の正則微分 ∂ と \overline{X} の $\overline{\partial}$ を考えることができる. よって, $X \times \overline{X}$ 上の微分 d は $d = \partial + \overline{\partial}$ と分解できる. この分解から層 $C_{X^{\mathbf{R}}}^{\alpha,(r)}$ ($\alpha = \infty$ または $\alpha = \omega$

18 第 2 章 層

とする)の分解

$$C_{X^{\mathbf{R}}}^{\alpha,(r)} = \bigoplus_{p+q=r} C_X^{\alpha,(p,q)}$$

が引き起こされる。ただし, $C_X^{lpha,(p,q)}$ は X 上の (p,q) 形式のなす層である。X の局所正則座標系 (z_1,\ldots,z_n) において, $C_X^{lpha,(p,q)}$ の切断 f は次の形にただ一通りに表される。

$$f = \sum_{|I|=p, |J|=q} f_{I,J} dz_I \wedge d\overline{z}_J$$

ただし、2.9.5 項と同様に、 $dz_I=dz_{i_1}\wedge\cdots\wedge dz_{i_p}$ 、 $d\overline{z}_J=d\overline{z}_{j_1}\wedge\cdots\wedge d\overline{z}_{j_q}$ である.とくに

$$\partial f = \sum_{I} \sum_{J} \sum_{i=1}^{n} \frac{\partial f_{I,J}}{\partial z_{i}} dz_{i} \wedge dz_{I} \wedge d\overline{z}_{J}$$

である. ドルボーの補題によれば、複体

$$0 \to \mathscr{O}_X^{(p)} \to C_X^{\infty,(p,0)} \xrightarrow{\bar{\partial}} C_X^{\infty,(p,1)} \to \cdots \to C_X^{\infty,(p,n)} \to 0$$

は完全である. $C_X^{\infty,(p,q)}$ を $C_X^{\omega,(p,q)}$ や $\mathscr{D}b_X^{(p,q)}$, 或いは $\mathscr{B}_X^{(p,q)}$ に取り替えた場合にも同様の結果がある. 特に $\mathcal{O}_X^{(p)}$ は脆弱層の複体

$$(2.9.9) 0 \to \mathscr{B}_{X}^{(p,0)} \xrightarrow{\bar{\partial}} \cdots \to \mathscr{B}_{X}^{(p,n)} \to 0$$

と擬同形である(Komatsu, Schapira を参照). この複体 (2.9.9) は入射 \mathcal{O}_X 加群の複体 であることが Golovin によって示されている.

 $f\colon Y\to X$ を複素多様体の間の射とする.環付き空間の射の定義より,f は層の射 $f^{-1}\mathscr{O}_X\to\mathscr{O}_Y$ をひきおこす.もうひとつ,導来圏 $\mathsf{D^+}(\mathbf{C}_X)$ では射

(2.9.10)
$$Rf_! \Omega_Y[\dim_{\mathbf{C}} Y] \to \Omega_X[\dim_{\mathbf{C}} X]$$

が定義される. この射は以下のように表される.

 $n=\dim_{\mathbf{C}}X,\ m=\dim_{\mathbf{C}}Y,\ l=m-n$ とおく、射 $f^{-1}C_X^{\infty,(m-p,m-q)}$ \to $C_Y^{\infty,(m-p,m-q)}$ から双対性より射

$$(2.9.11) f_! \mathscr{D}b_Y^{(p,q)} \otimes \operatorname{or}_Y \to \mathscr{D}b_X^{(p-l,q-l)} \otimes \operatorname{or}_X$$

が定まる.よって,(2.9.11) と Ω_Y , Ω_X のドルボー分解から (2.9.10) が誘導される.

2.9.11 \mathcal{O}_X のコホモロジー

Hörmander が \mathcal{O}_X のコホモロジーについて詳しく調べている. Ω が \mathbf{C}^n の開集合であるとする. 任意の j>0 に対し $H^j(\Omega;\mathcal{O}_X)=0$ であるとき, Ω は擬凸であるという. たとえば,凸領域は擬凸であり,n=1 なら,任意の領域が擬凸となる. 最後の主張は次のように一般化できる.

(2.9.12)
$$\begin{cases} \Omega \ \text{が} \ \mathbf{C}^n \ \text{の開集合ならば、任意の} \ j \geqq n \ \text{に対し、} \\ H^j(\Omega; \mathscr{O}_{\mathbf{C}^n}) = 0 \\ \text{が成り立つ.} \end{cases}$$

ドルボー分解と、方程式 $\sum_{j=1}^n \frac{\partial}{\partial z_j} \frac{\partial}{\partial \bar{z}_j} f = g$ が $\Gamma(\Omega; C^\infty_{\mathbf{R}^{2n}})$ でいつでも解けるという事実とを用いた (2.9.12) の証明が Malgrange[1] で述べられている.

X を n 次元複素多様体とし,Z を X の局所閉部分集合とする. $x \in Z - \operatorname{Int} Z$ ならば, $j \notin [1,n]$ に対し

$$(2.9.13) H_Z^j(\mathscr{O}_X)_x = 0$$

となる. 実際, j=0 の場合, これは「解析接続の原理」そのものであり, j>n の場合は, (2.9.12) から, 或いは (2.9.9) から従う (すなわち \mathcal{O}_X の脆弱次元は n である).

Martineau と柏原による $H_Z^j(\mathcal{O}_X)$ が消滅するための規準がある (SKK も参照). $X=\mathbb{C}^n$ とし Z を X の部分閉凸集合とする. $x\in Z$ のとき,

$$\begin{cases} x を通る d 次元アフィン空間 L で, $L \cap Z$ が
$$L$$
 における x の近傍となるものが存在しないとき
$$H_Z^j(\mathscr{O}_X)_x = 0 \quad \text{for } j \leqq n-d.$$$$

2.9.12 正則関数の境界値

 Ω を C^2 境界をもつ \mathbf{C}^n の強擬凸開部分集合とする. $\partial\Omega$ 上で局所的には,正則座標変換で Ω を \mathbf{C}^n の強凸開集合にうつすものが存在する.

 $j: \Omega \hookrightarrow \bar{\Omega}$ をうめこみとする. $\bar{\Omega}$ 上で次の特三角を得る.

(2.9.15)
$$\mathscr{O}_X|_{\bar{\Omega}} \to \mathrm{R}j_*\mathscr{O}_{\Omega} \underset{+1}{\to} \mathrm{R}\Gamma_{\partial\Omega}(\mathscr{O}_X|_{\bar{\Omega}}) \to .$$

 $H^0_{\partial\Omega}(\mathscr{O}_X|_{\bar\Omega})=0$ なので、前層 $U\mapsto H^1_{U\cap\partial\Omega}(U\cap\bar\Omega;\mathscr{O}_X|_{\bar\Omega})$ は層 $H^1_{\partial\Omega}(\mathscr{O}_X|_{\bar\Omega})$ と同じである.(Ex II.13)さらに,k>0 に対し $\mathrm{R}^k j_*\mathscr{O}_\Omega=0$ なので,k>1 に対し $H^k_{\partial\Omega}(\mathscr{O}_X|_{\bar\Omega})=0$ である.また,次の(2.9.16)も成り立つ.

$$H^1_{\partial O}(\mathscr{O}_X|_{\bar{O}})$$
 は脆弱層である.

20 第 2 章 層

(2.9.16) を証明するために、命題 2.4.10 から Ω が強凸であると仮定してよい. U を \mathbb{C}^n の凸開部分集合とする. 特三角 (2.9.15) に関手 $\mathrm{R}\Gamma(U;\cdot)$ を適用することで、

$$\Gamma(U \cap \bar{\Omega}; H^1_{\partial\Omega}(\mathscr{O}_X|_{\bar{\Omega}})) \cong \mathscr{O}_X(\Omega \cap U)/\mathscr{O}_X(\bar{\Omega} \cap U)$$

であることがわかる. 実際, $U\cap \bar{\Omega}$ が U の凸開近傍の基本系をもつことから, k>0 に対し $H^k(U\cap \bar{\Omega};\mathscr{O}_X)=0$ である.

 ω を $\partial\Omega$ の開部分集合とする. ${\bf C}^n$ の凸開部分集合 U で, $U\cap\bar\Omega=\omega$ かつ $U\cup\Omega$ が凸となるものが存在する. このとき, マイヤー・ヴィートリス列

$$0 \to \mathscr{O}_X(U \cup \Omega) \to \mathscr{O}_X(U) \oplus \mathscr{O}_X(\Omega) \to \mathscr{O}_X(U \cap \Omega) \to 0$$

は完全であり、写像 $\mathcal{O}_X(\Omega)/\mathcal{O}_X(\bar{\Omega}) \to \mathcal{O}_X(\Omega \cap U)/\mathcal{O}_X(\bar{\Omega} \cap U)$ は全射である. 以上で (2.9.16) が示せた.

2.9.13 佐藤超関数

M を n 次元実解析多様体とし、X を M の複素化とする. (X は M の近傍として一意に定まるのであった.) 佐藤超関数の層 \mathcal{B}_M を

(2.9.17)
$$\mathscr{B}_M := H_M^n(\mathscr{O}_X) \otimes \operatorname{or}_{M/X}$$

で定める. ただし, $\operatorname{or}_{M/X}=\operatorname{or}_M\otimes\operatorname{or}_X$ である. (2.9.14) により、複体 $\operatorname{R}\Gamma_M(\mathscr{O}_X)[n]$ は次数 0 に集中しているので、

$$\mathscr{B}_M \cong \mathrm{R}\Gamma_M(\mathscr{O}_X)[n] \otimes \mathrm{or}_{M/X}$$

が成り立つ。層 $H_M^j(\mathcal{O}_X)$ は j < n で 0 なので,(Exercise II.13 より)前層 $U \mapsto H_{U\cap M}^j(U;\mathcal{O}_X)$ は層になり,これは \mathcal{B}_M と等しくなる。(\mathcal{B}_M は X 上の層であるが,これを M に制限したものと同一視することが多い.)さらに,(2.9.12)より, \mathcal{B}_M が脆弱層であることも従う.この層は 2.9.6 項で述べたものと一致する.(XI 章でさらに詳しく述べる.)

2.9.14 局所定数層の例

 $X={f C}$ とし,z を X の正則座標とする。 α を複素数とし,P を正則微分作用素 $z\frac{\partial}{\partial z}-\alpha$ とする。 X 上の層の複体

$$(2.9.18) F := 0 \to \mathscr{O}_X \xrightarrow{P} \mathscr{O}_X \to 0$$

を考える.層 $H^0(F)|_{X-\{0\}}\cong \mathrm{Ker}(P)|_{X-\{0\}}$ は局所定数層である.実際, $X-\{0\}$ の任意の連結かつ単連結な開集合 U の上で, $H^0(F)|_U$ は, z^{α} (の分枝)で生成される定数層 \mathbf{C}_U と同型である.しかし, $\alpha\notin \mathbf{Z}$ の場合, $X-\{0\}$ 上の 0 でない正則関数 f で Pf=0 をみたすものは存在しないので, $\Gamma(X-\{0\};H^0(F))=0$ である. $\alpha\in \mathbf{Z}$ に対しては以下のようになる.

$$H^0(F)|_{X-\{0\}}$$
: 階数 1 の局所定数層.
$$H^0(F)|_{\{0\}}=0,$$
 $H^1(F)=0.$

 $\alpha = 0, 1, 2, \dots$ のとき,

$$H^0(F) \cong \mathbf{C}_X,$$

 $H^1(F) = \mathbf{C}_{\{0\}}.$

 $\alpha = -1, -2, \dots$ \emptyset ξ ξ ,

$$H^0(F) \cong \mathbf{C}_{X-\{0\}},$$

 $H^1(F) = 0.$

複体 F は「偏屈層」と呼ばれるものの簡単な例になっている.このような複体については VIII 章と X 章で調べる.

第3章

Poincaré-Verdier 双対性

3.1 上付きびっくり

[B+84, V, 6.1] A に対し、全射 $P \rightarrow A$ で、P が零で延長した層 R_U の直和であるものが存在する.

補題 **3.1.1.** [B+84, V. Proposition 6.5] $S,A \in Sh(X)$ とする. S が c 柔軟であり,S,A のどちらかは平坦であるとする. このとき, $A\otimes S$ は c 柔軟である.

証明. 完全列

$$(3.1.1) 0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to A \to 0$$

で $0 \leq j \leq n-1$ に対し, P_j が層 R_U の直和となり,したがって平坦となるものがある.系列

$$(3.1.2) 0 \to P_n \otimes S \to P_{n-1} \otimes S \to \cdots \to P_0 \otimes S \to A \otimes S \to 0$$

についても、S が平坦であることから、あるいは、A が平坦であれば系列 (3.1.1) の各項が平坦となることから完全になる.

補題 **3.1.2.** [B+84, VI. Théorème 3.5] G が $\mathbf{K}^+(Y)$ の対象ならば、 $f_K^!(G)$ は $\mathbf{K}^+(X)$ の対象である.

証明. $(U_{\alpha})_{\alpha \in \Lambda}$ を X の開集合族とする. $U = \bigcup_{\alpha \in \Lambda} U_{\alpha}$, $U_{\alpha\beta} = U_{\alpha} \cap U_{\beta}$ とおき, 系列

$$0 \to f_K^!(G)(U) \xrightarrow{\varphi} \prod_{\alpha \in \Lambda} f_K^!(G)(U_\alpha) \xrightarrow{\psi} \prod_{(\alpha,\beta) \in \Lambda \times \Lambda} f_K^!(G)(U_{\alpha\beta})$$

を考える. ここに,

$$\varphi(s) = (\rho_{U_{\alpha}, U}(s))_{\alpha \in \Lambda},$$

$$\psi\left(\left(s_{\alpha}\right)_{\alpha \in \Lambda}\right) = \left(\rho_{U_{\alpha\beta}, U_{\alpha}}\left(s_{\alpha}\right) - \rho_{U_{\alpha\beta}, U_{\beta}}\left(s_{\beta}\right)\right)_{(\alpha, \beta) \in \Lambda \times \Lambda}$$

である. この系列が完全であることを示す.

3.1.1 構成

X,Y を局所コンパクト空間とし、 $f:Y\to X$ を連続写像とする。A を大域次元が有限な可換環とする。 $F\in \mathsf{D}^+(A_X),G\in \mathsf{D}^+(A_Y)$ とする。

 $Rf_!$: $D^+(A_Y) \to D^+(A_X)$ の右随伴関手 $f^!$: $D^+(A_X) \to D^+(A_Y)$ を構成する. まず、 開集合 $V \subset Y$ に対し、 $f^!F$ の V 上の切断に関する条件を見てみる.

$$R\Gamma(V; f^!F) = R \operatorname{Hom}_{A_V}(A_V, f^!F) = R \operatorname{Hom}_{A_V}(Rf_!A_V, F)$$

となることから、 $f^!F$ は $V \mapsto \mathrm{R}\operatorname{Hom}_{A_X}(\mathrm{R}f_!A_V,F)$ という対応でなければならない。 $\mathrm{R}f_!$ を計算するには c 柔軟分解 $A_V \sim K$ を取ればよく、さらに F が入射的であれば、

$$R \operatorname{Hom}_{A_X}(Rf_!A_V, F) = \operatorname{Hom}_{A_X}(f_!K_V, F)$$

となって, 結局

$$R\Gamma(V; f^!F) = \operatorname{Hom}_{A_X}(f_!K_V, F)$$

とできる.

■ f に関する仮定

定義 3.1.3. Y 上の層 G が f 柔軟であるとは、各点 $x \in X$ に対し、 $G|_{f^{-1}(x)}$ が c 柔軟であることをいう.

G が f 柔軟であることと、任意の開部分集合 $V \subset Y$ と $j \neq 0$ に対し、 $\mathbf{R}^j f_! G_V = 0$ となることと同値である.

次を仮定する.

$$(3.1.3)$$
 $f_!: \operatorname{Mod}(\mathbf{Z}_Y) \to \operatorname{Mod}(\mathbf{Z}_X)$ のコホモロジー次元は有限である.

つまり、整数 $r \ge 0$ で、全ての j > r に対し $\mathbf{R}^j f_! = 0$ となるものが存在する. (3.1.3) は次の条件と同値である.

(3.1.4)
$$\begin{cases} \text{任意の } G \in \text{Sh}(Y) \text{ に対し,完全列} \\ 0 \to G \to G^0 \to \cdots \to G^r \to 0 \\ \text{で,どの } G^j \text{も } f \text{ 柔軟であるものが存在する.} \end{cases}$$

$$\begin{cases} 完全列 \ G^0 \to \cdots \to G^r \to 0 \\ \text{において, } j < r \ \text{に対し} \ G^j \ \text{が} \ f \ \text{柔軟ならば,} \\ G^r \ \text{が} \ f \ \text{柔軟となる.} \end{cases}$$

 $f_!$ のコホモロジー次元が $\le r$ となるのは、任意の $x \in X$ に対し、 $\Gamma_c(f^{-1}(x);\cdot)$ のコホモロジー次元が $\le r$ となるときである。実際、 $f_!|_{f^{-1}(x)}F = \Gamma_c(f^{-1}(x);F) = 0$ となるので、

3.1 上付きびっくり 25

■構成 以上の仮定は,

$$R\Gamma(V; f^!F) = \operatorname{Hom}_{A_X}(f_!K_V, F)$$

の構成をするためだった. $f_!K_V$ の分解をしたくて、その長さが有限になるという仮定である.

さて、K を \mathbf{Z}_Y 加群、F を A_X 加群とする.このとき、A 加群の前層 $f_K^!F$ を次で定める. $V \in \mathsf{Open}(Y)$ に対し、

$$(f_K^!F)(V) := \operatorname{Hom}_{A_X} \left(f_! \left(A_Y \underset{\mathbf{Z}_Y}{\otimes} K_V \right), F \right)$$

とする. 制限射は $K_{V'} \to K_V$ から引き起こされるもの.

補題 3.1.4. K を平坦かつ f 柔軟な \mathbf{Z}_Y 加群とする.

- (i) Y 上の任意の層 G に対し $G \otimes_{\mathbf{Z}_Y} K$ は f 柔軟である.
- (ii) $G \mapsto f_!(G \otimes_{\mathbf{Z}_Y} K)$ は $\operatorname{Mod}(\mathbf{Z}_Y)$ から $\operatorname{Mod}(\mathbf{Z}_X)$ への完全関手である.

証明. (i) Y 上の任意の層 G は分解

$$\rightarrow G^{-r} \rightarrow \cdots \rightarrow G^0 \rightarrow G \rightarrow 0$$

で、各 G^j が \mathbf{Z}_V の直和となるものが存在する.

aa

参考文献

- [B+84] Borel, *Intersection Cohomology*, Progress in Mathematics, 50, Birkhäuser, 1984.
- [G58] Grauert, On Levi's problem and the embedding of real analytic manifolds, Ann. Math. 68, 460–472 (1958).
- [GP74] Victor Guillemin, Alan Pollack, Differential Topology, Prentice-Hall, 1974.
- [KS90] Masaki Kashiwara, Pierre Schapira, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990.
- [KS06] Masaki Kashiwara, Pierre Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006.
- [R55] de Rham, Vari'et'es différentiables, Hermann, Paris, 1955.
- [Sa59] Mikio Sato, Theory of Hyperfunctions, 1959–60.
- [S66] Schwartz, Théorie de distributions, Hermann, Paris, 1966.
- [Sh16] 志甫淳, 層とホモロジー代数, 共立出版, 2016.
- [Ike21] 池祐一, 超局所層理論概説, 2021.
- [Tak17] 竹内潔, D 加群, 共立出版, 2017.