Lógica Aula 3

Leliane Nunes de Barros

2018

leliane@ime.usp.br

(recordando) Fórmulas bem formadas (fbf)

- Átomos
- Se φ é fbf, então $(\neg \varphi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \lor \psi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \wedge \psi)$ é fbf

(recordando) Fórmulas bem formadas (fbf)

- Átomos
- Se φ é fbf, então $(\neg \varphi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \lor \psi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \wedge \psi)$ é fbf
- Se φ e ψ são fbfs, então $(\varphi \to \psi)$ é fbf

Backus Naur Form (BNF)

$$\varphi ::= p|(\neg \varphi)|(\varphi \lor \varphi)|(\varphi \land \varphi)|(\varphi \to \varphi)$$

(recordando) Dedução Natural

Dedução Natural: coleção de regras de reescrita (prova) que permite derivar (inferir) novas fórmulas a partir de fórmulas existentes.

(recordando) Dedução Natural

Dedução Natural: coleção de regras de reescrita (prova) que permite derivar (inferir) novas fórmulas a partir de fórmulas existentes.

O argumento (sequente) válido:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

significa que existe uma derivação usando dedução natural em que:

- $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n$ são as premissas e
- ullet ψ é a conclusão.

(recordando) Dedução Natural

Dedução Natural: coleção de regras de reescrita (prova) que permite derivar (inferir) novas fórmulas a partir de fórmulas existentes.

O argumento (sequente) válido:

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

significa que existe uma derivação usando dedução natural em que:

- $\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n$ são as premissas e
- ψ é a conclusão.

Dedução Natural é um sistema formal com regras formais de prova de argumentos!

(recordando) Dedução Natural - Regras da conjunção

Introdução do A

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge_i$$

(Se derivamos ϕ e ψ , então podemos concluir $\phi \wedge \psi$.)

(recordando) Dedução Natural - Regras da conjunção

Introdução do A

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge_i$$

(Se derivamos ϕ e ψ , então podemos concluir $\phi \wedge \psi$.)

Eliminação do ^

$$\frac{\phi \wedge \psi}{\phi} \wedge_{\mathsf{e}_1} \qquad \qquad \frac{\phi \wedge \psi}{\psi} \wedge_{\mathsf{e}_2}$$

(Se derivamos $\phi \wedge \psi$ então podemos concluir ϕ .) (Se derivamos $\phi \wedge \psi$ então podemos concluir ψ .)

Regras da dupla negação

"Não é verdade que não está chovendo!"

Eliminação do ¬¬

$$\frac{\neg \neg \phi}{\phi} \neg \neg_e$$

Regras da dupla negação

"Não é verdade que não está chovendo!"

Eliminação do ¬¬

$$\frac{\neg \phi}{\phi}$$
 $\neg \neg e$

Introdução do ¬¬

$$\frac{\phi}{\neg \neg \phi} \neg \neg_i$$

Regras da dupla negação

"Não é verdade que não está chovendo!"

Eliminação do ¬¬

$$\frac{\neg \neg \phi}{\phi}$$
 $\neg \neg e$

Introdução do ¬¬

$$\frac{\phi}{\neg \neg \phi} \neg \neg_i$$

Exemplo: prove que o argumento:

$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

é válido.

Regras de eliminação da implicação: →e

Modus Ponens (MP)

$$\frac{\phi \qquad \phi \to \psi}{\psi} \to_e$$

Regras de eliminação da implicação: \rightarrow_e

Modus Ponens (MP)

$$\frac{\phi \qquad \phi \to \psi}{\psi} \to_e$$

Modus Tollens (MT)

$$\frac{\phi \to \psi \qquad \neg \psi}{\neg \phi} MT$$

•
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

- $p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$
- $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

•
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

•
$$p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$$

$$\bullet \ \neg p \rightarrow q, \neg q \vdash p$$

•
$$p, p \rightarrow q, p \rightarrow (q \rightarrow r) \vdash r$$

•
$$p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$$

•
$$\neg p \rightarrow q, \neg q \vdash p$$

•
$$\neg\neg p \rightarrow (\neg q \rightarrow r), p, \neg r \vdash q$$

Introdução da Implicação

•
$$p \rightarrow q \vdash \neg q \rightarrow \neg p$$

$$\bullet \ \neg q \to \neg p \vdash p \to \neg \neg q$$

Pode aninhar

Pode aninhar

Pode aninhar

Pode aninhar

Não pode cruzar

Quando aplicamos uma regra

$$\frac{\phi_1 \quad \dots \quad \phi_n}{\psi}$$

as fórmulas $\phi_1,...,\phi_n$ devem pertencer ao **escopo**, isto é, devem ter sido derivadas dentro da caixa atual ou de uma caixa externa que contém a caixa atual.

Quando aplicamos uma regra

$$\frac{\phi_1 \quad \dots \quad \phi_n}{\psi}$$

as fórmulas $\phi_1,...,\phi_n$ devem pertencer ao **escopo**, isto é, devem ter sido derivadas dentro da caixa atual ou de uma caixa externa que contém a caixa atual.

(Comparável ao escopo de variáveis em linguagend se programação)

•
$$q \rightarrow r, \neg q \rightarrow \neg p \vdash p \rightarrow r$$

•
$$q \rightarrow r, \neg q \rightarrow \neg p \vdash p \rightarrow r$$

$$\bullet \ q \to r \vdash \left(\neg q \to \neg p \right) \to \left(p \to r \right)$$

•
$$q \rightarrow r, \neg q \rightarrow \neg p \vdash p \rightarrow r$$

•
$$q \rightarrow r \vdash (\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)$$

$$\bullet \vdash (q \to r) \to ((\neg q \to \neg p) \to (p \to r))$$

Dedução

De uma prova para

$$\varphi_1, \varphi_2, \varphi_3, ..., \varphi_n \vdash \psi$$

obtemos uma prova para

$$\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\varphi_3 \rightarrow ... (\varphi_n \rightarrow \psi)...))$$

(e vice-versa).