EJERCICIOS TEMA 5

СОСОМО

EJERCICIO 1.

Analice los distintos parámetros que permiten calibrar el modelo de estimación COCOMO II:

$$esfuerzo = 2.94 * KSLOC^{0.91+0.01} \sum_{j=1}^{5} SF_{j} * \prod_{i=1}^{17} EM_{i}$$

- 5 factores de escala [SF: scale factors]

- 1. Precedencia (PREC): Indica el grado de experiencia de los desarrolladores con este proyecto.
- 2. Flexibilidad (FLEX): Nivel de exigencia en los plazos y requisitos del desarrollo.
- 3. Resolución de riesgo (RESL): Cantidad de riesgos del proyecto y la posibilidad de contenerlos.
- 4. Cohesión de equipo (TEAM): Calidad de las relaciones entre miembros del equipo y su productividad conjunta.
- 5. Madured del proceso (PMAT): Se puede calcular basándose en la madurez de la organización basada en CMM y la otra es organizada por las 18 áreas claves de proceso (KPAs)

- <u>17</u> multiplicadores de esfuerzo [EM: effort multipliers]

PRODUCTO

- 1. RELY: Medida del grado en el que el software debe realizar la función que se pretende en un periodo de tiempo.
- 2. DATA: Esta medida intenta capturar el efector que tienen los requisitos de grandes cantidades de datos en el desarrollo del producto.
- 3. CPLX: Complejidad del producto. La complejidad se divide en cinco áreas de las cuales se cogen las más apropiadas para el proyecto y se hace una media de ellas.
- 4. RUSE: Esfuerzo adicional necesario para construir componentes que se desea que sean reusados en proyectos futuros.
- 5. DOCU: Cantidad de documentación necesaria por ciclos de vida del proyecto.

PLATAFORMA

- 6. TIME: Límite de tiempo impuesto sobre un sistema software.
- 7. STOR: Límite de almacenamiento principal en el sistema.
- 8. PVOL: Volatilidad de la plataforma. Es la frecuencia de los cambios que hay que realizar en la plataforma.

PERSONAL

- 9. ACAP: Capacidad de análisis de los analistas del equipo de desarrollo.
- 10. PCAP: Capacidad de los programadores.
- 11. AEXP: Experiencia en aplicaciones de los miembros del equipo de desarrollo.
- 12. PEXP: Experiencia en la plataforma de desarrollo.
- 13. LTEX: Experiencia con el lenguaje de desarrollo y con las herramientas.
- 14. PCON: Rotación anual de personal en el proyecto.

PROYECTO

- 15. TOOL: Calidad de las herramientas de desarrollo.
- 16. SITE: Calidad de las comunicaciones entre distintos sitios de desarrollo.
- 17. SCED: Restricción de plazos.

EJERCICIO 2

Para proyectos del mismo tamaño (en KSLOC), compruebe el efecto que tiene el ajuste de dichos parámetros en diferentes escenarios. En particular, realice estimaciones para los siguientes proyectos:

- Aplicación web desarrollada por un equipo experimentado en el uso de las herramientas necesarias para el proyecto.

Results

Software Development (Elaboration and Construction)

Effort = 28.8 Person-months Schedule = 11.1 Months Cost = \$28849

Total Equivalent Size = 10000 SLOC

Acquisition Phase Distribution

Phase	Effort (Person- months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	1.7	1.4	1.2	\$1731
Elaboration	6.9	4.2	1.7	\$6924
Construction	21.9	7.0	3.2	\$21926
Transition	3.5	1.4	2.5	\$3462

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	0.2	0.8	2.2	0.5
Environment/CM	0.2	0.6	1.1	0.2
Requirements	0.7	1.2	1.8	0.1
Design	0.3	2.5	3.5	0.1
Implementation	0.1	0.9	7.5	0.7
Assessment	0.1	0.7	5.3	0.8
Deployment	0.1	0.2	0.7	1.0

Solo he cambiado el "use of software tools" a "very high".

- Middleware de alto rendimiento para las construcción de sistemas distribuidos heterogéneos.

Results

Software Development (Elaboration and Construction)

Effort = 37.0 Person-months Schedule = 12.1 Months Cost = \$36986

Total Equivalent Size = 10000 SLOC

Acquisition Phase Distribution

Phase	Effort (Person- months)	Schedule (Months)	Average Staff	Cost (Dollars)
Inception	2.2	1.5	1.5	\$2219
Elaboration	8.9	4.5	2.0	\$8877
Construction	28.1	7.6	3.7	\$28110
Transition	4.4	1.5	2.9	\$4438

Software Effort Distribution for RUP/MBASE (Person-Months)

Phase/Activity	Inception	Elaboration	Construction	Transition
Management	0.3	1.1	2.8	0.6
Environment/CM	0.2	0.7	1.4	0.2
Requirements	0.8	1.6	2.2	0.2
Design	0.4	3.2	4.5	0.2
Implementation	0.2	1.2	9.6	0.8
Assessment	0.2	0.9	6.7	1.1
Deployment	0.1	0.3	0.8	1.3

Lo he dejado todo en nominal porque no indica las características del equipo de desarrollo.

- Sistema empotrado para una plataforma hardware actualmente en desarrollo (totalmente novedosa).

Configuración de los parámetros para este proyecto:

Resultado de la estimación:

Se puede observar que a mayores impedimentos en el desarrollo mayor es el coste del proyecto y viceversa.

EJERCICIO 3:

Elabore una tabla en la que se recojan los valores numéricos adecuados de los distintos parámetros para cada uno de los escenarios planteados:

Usando los parámetros que aparecen en la tabla de la página 89 de las transparencias y usando los parámetros elegidos para cada proyecto en la página web de Cocomo:

PARAMETRO	WEBAPP	MIDLEWARE	HARDWARE
SF1 PREC	3,72	3,72	6,20
SF2 FLEX	3,04	3,04	3,04
SF3 RESL	4,24	4,24	4,24
SF4 TEAM	3,29	3,29	3,29
SF5 PMAT	4,68	4,68	4,68
∑SFj	18,97	18,97	21,45
EM1 RELY	1,00	1,00	1,00
EM2 DATA	1,00	1,00	1,00
EM3 CPLX	1,00	1,00	1,74
EM4 RUSE	1,00	1,00	1,00
EM 5 DOCU	1,00	1,00	1,00
EM 6 TIME	1,00	1,00	1,00
EM 7 STOR	1,00	1,00	1,00
EM 8 PVOL	1,00	1,00	1,00
EM 9 ACAP	1,00	1,00	1,00
EM 10 PCAP	1,00	1,00	1,00
EM 11 PCON	1,00	1,00	1,00
EM 12 APEX	1,00	1,00	1,00
EM 13 PLEX	1,00	1,00	1,00
EM 14 LTEX	0,84	1,00	1,20
EM 15 TOOL	1,00	1,00	1,00
EM 16 SITE	1,00	1,00	1,00
EM 17 SCED	1,00	1,00	1,00
∏ЕМі	0,84	1,00	2,088

EJERCICIO 4:

Utilizando la expresión general del modelo COCOMO II

$$esfuerzo = 2.94 * KSLOC^{0.91+0.01\sum_{j=1}^{5} SF_{j}} * \prod\nolimits_{i=1}^{17} EM_{i}$$

estime el esfuerzo necesario para <u>desarrollar</u> un proyecto de 10 KSLOC, 100 KSLOC y 1000 KSLOC en cada uno de los escenarios anteriores y rellene la siguiente tabla:

TAMAÑO	WEBAPP	MIDLEWARE	HARDWARE
10 KSLOC	31,069	36,99	81,77
100 KSLOC	390,86	465,32	1089,13
1000 KSLOC	4917,299	5853,93	14507,007