Answers to Sample Problems for Calculus A(2) Midterm Exam

Junya Yagi

April 11, 2021

- 1. Do the following infinite series converge or diverge? Explain.

 - (a) $\sum_{n=1}^{\infty} \frac{n^3}{n^{2\cdot 9}+1}$ Diverges $a_n \neq 0$. (b) $\sum_{n=1}^{\infty} \frac{n^3}{n^{3\cdot 1}+1}$ Diverges since $\frac{n^3}{n^{3\cdot 1}+1} \geq \frac{n^3}{2n^{3\cdot 1}} = \frac{1}{n^{0\cdot 1}}$ (p-series with p=0.1). (c) $\sum_{n=1}^{\infty} \left(\frac{n+2}{3n+4}\right)^n$ Converges by the Root Test.

 - (d) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^2 + 1} n)$ Converges by the Alternating Series Test. (e) $\sum_{n=1}^{\infty} ((n+1)/n)^{n^2}/n$ Diverges by the Root Test.

 - (f) $\sum_{n=1}^{\infty} (\sqrt{n^2 + 1} n)$ Diverges since $1/(\sqrt{n^2 + 1} + n) \ge 1/(\sqrt{4n^2} + n) = 1/3n$. (g) $\sum_{n=1}^{\infty} 3^{-\ln n}$ Converges since $3^{-\ln n} = 1/n^{\ln 3}$.
- 2. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} x^{2n+1}/n(2^n+1)$. Converges for $|x| < \sqrt{2}$ by the Ratio Test. Diverges at $x = \pm \sqrt{2}$ since $\frac{2^n \sqrt{2}}{n(2^n + 1)} > 1/n$ for
- 3. Calculate the sum of the geometric series $\sum_{n=2}^{\infty} 3/2^n$. $\frac{3/4}{1-1/2} = \frac{3}{2}$.
- 4. Write down the Taylor series generated by $\cos x$ at $x = \pi/4$. Simple calculation.
- 5. Show $\sum_{k=0}^{\infty} (-1)^k (\pi/4)^{2k+1} / (2k+1)! = \sum_{k=0}^{\infty} (-1)^k (\pi/4)^{2k} / (2k)!$. Follows from $\sin(\pi/4) = \cos(\pi/4)$ and the Taylor series of $\cos x$ and $\sin x$.
- 6. Consider a triangle whose sides have length 6 cm, x cm and (10-x) cm. As function of x, for what value of x does the area become largest? Explain. Consider an ellipse whose foci are two of the vertices of the triangle.
- 7. Consider the hyperbola described by the equation $x^2/a^2 y^2/b^2 = 1$, a > 0, b > 0. Which of the following statements are true?
 - A. The eccentricity e is always greater than 1.
 - B. If P is a point on the hyperbola, and PF_1 and PF_2 are the distances from P to the two foci F_1 and F_2 , respectively, then $|PF_1 - PF_2|$ is independent of the choice of P.
 - C. The foci are located on the x-axis if a > b, and they are located on the y-axis if a < b. False.
 - D. The graph of the hyperbola is symmetric under both a reflection about the x-axis and a reflection about the y-axis. True.
- 8. Let $\mathbf{u}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + \mathbf{k}$ and $\mathbf{v}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{j} + 2\mathbf{k}$. All straightforward.
 - (a) Calculate the dot product $\mathbf{u} \cdot \mathbf{v}$.
 - (b) The cross product $\mathbf{u} \times \mathbf{v}$.
 - (c) Calculate the length of the trajectory whose velocity is equal to $\mathbf{v}(t)$, where the time t varies from t=0 to $t=2\pi$.