03-08 - Cálculo Complexo

Dado $z_0\in\Omega$, com $\Omega\subset\mathbb{C}$ aberto e $f:\Omega\longmapsto\mathbb{C}$. Dizemos que f é contínua em z_0 se para todo $\epsilon>0$ existe $\delta>0$ tal que se $|z-z_0|<\delta$ então $|f(z)-f(z_0)|<\epsilon$.

Diemos que f é holomorfa em $z_o \in \Omega$ se o limite

$$\lim_{h\longmapsto 0}rac{f(z_0+h)-f(z_0)}{h}=f'(z_0)$$

existir quando $h \longmapsto 0$.

Nota

Se tem limite é holomorfa.

Se é expressa como uma série de função convergente é analítica.

Se $f'(z_0)$ existe,

$$f(z_0+h)-f(z)-hf'(z_0)=h\Psi(h)$$

(divide por h). Aqui, $\Psi(h) \longmapsto 0$ se $h \longmapsto 0$.

Logo f é contínua em z_0 .

Exemplos de funções holomorfas:

$$f(z)=z^n$$

$$\frac{(z+h)^n - f^n}{h} = \frac{(z^n + nz^{n-1}h + \ldots + h^n) - z^n}{h} = \frac{\cancel{h}(nz^{n-1} + \ldots + h^{n-1})}{\cancel{h}} = nz$$

Sabendo que $h \longmapsto 0$, $f'(z) = nz^{n-1}$.

Um exemplo de uma função que não é holomorfa é f(z)=|z|.

Outro exemplo de uma função não holomorfa é $f(z) = \bar{z}$.

Demonstração:

$$\lim_{h\longmapsto 0}rac{ar{(z+h)}-ar{z}}{h}=rac{ar{h}}{h}$$

Se $h \in \mathbb{R}$ então $\lim = 1$, se $h \in \mathbb{C}$ então $\lim = -1$. Como os limites divergem, a função não é derivável e portanto não é holomorfa.

Função exponencial

$$f(z):=1+z+rac{z^2}{2!}+\ldots+rac{z^n}{n!}+\ldots$$
 $e^z:=\sum_{n=0}^\inftyrac{z^n}{n!}$

Essa série é absolutamente convergente, isto é,

$$\sum_{n=0}^{\infty}rac{|z|^n}{n!}=e^{|z|}.$$

Logo, a série é convergente e define uma função holomorfa cuja derivada $(e^z)'=e^z$.

Definimos uma série como a soma de infinitas parcelas

$$a_1+a_2+\ldots=\sum_{n=1}^\infty a_n$$

Onde os somatórios parciais são

$$s_n = a_1 + a_2 + \ldots + a_n$$

 (s_n) é uma sequência em \mathbb{C} . Dizemos que

$$\lim_{n\longmapsto\infty}s_n=s_\infty$$

o questionamento é se esse limite existe. Em outras palavras, queremos saber se dado um $\epsilon>0$, existe $n\geq n_0$ tal que $|s_\infty-s_n|<\epsilon$. Uma sequência (a_n) , $a_n\in\mathbb{C}$ é chamada sequência de Cauchy se $\forall \epsilon>0$ existir $n_0>0$ tal que se $m,n>n_0$ então

$$|a_m-a_n|<\epsilon.$$

Teorema: Seja a_n uma sequência em \mathbb{C} . Ela é convergente se, e somente se, for uma sequência de Cauchy.

Demonstração:

Seja A a convergência de a_n .

i) Dade $\epsilon>0$ existe $n_0>0$ tal que se $n>n_0$, então $|a_n-A|<\epsilon.$ Para $m>n_0$:

$$|a_n-A-a_m+A| \leq |a_n-A| + |a_m-A| \leq \epsilon + \epsilon.$$

ii)Suponha que a sequência seja de Cauchy, então

$$(a_n)=a_1,a_2,\ldots,a_n$$

O limite sperior dessa sequência é $lim(sup(an))=\alpha_n=max\{a_1,\dots a_n\}$. Conforme n cresce, α_n também cresce.

Mostraremos que $\alpha_n \to A$.

Para $k > 1: a_k, a_{k+1}, a_{k+2}, \dots$

A sequência α_n^k também converge para A.

$$A=\lim_{n\longmapsto\infty}sup(a_n))=\lim_{n\longmapsto\infty}A_n$$

Características: para cada $\epsilon>0$ existe $n_0>0$ t $alque\$a_n< A+\epsilon orall n\geq n_0$

Daqui, $a_n < A_n < A + \epsilon$

Lembrete: $A_n \geq A - \epsilon$ não pode acontecer.

Existem infinitos $n \geq 0$ tais que $a_n \geq A - \epsilon$

$$a=\lim_{n\longmapsto 0}inf(a_n)$$

Se, e somente se, $\lim inf(a_n) = \lim sup(a_n)$ então a série converge. Supondo que $A \neq a$ chegamos a uma contradição.

Série de Sequência

$$\sum_{n=0}^{\infty}a_nz^n$$

$$S_m = \sum_{n=0}^m a_n z^n$$

é uma função convergente. S_m convergem. Sendo

$$f_n:\Omega o\mathbb{C}$$

a sequência $f_n(z_0)convergea\$f(z_0)$ se $orall \epsilon>0\exists n_0$ tal que se $n>n_0$. $|f_n(z_0)-f(z_0)|<\epsilon(*).$

 f_n converge em $z_0\in\Omega$.

 $f_n \to f$ uniformemente se (*) vale para todo $z \in \Omega$. O limite de uma sequência uniforme de funções contínuas é uma função continua.

Como f_n é contínua em $z_0\in\Omega.$ Dado $\epsilon>0$ existe δ tal que se

$$|z-z_0|<\delta$$

então $|f_n(z)-f(z_0)|<\epsilon$

Queremos mostrar que f é contínua:

Existe n_0 tal que se

$$egin{aligned} &:= |f(z) - f(z_0)| \leq |f(z) - f_n(z_0)| + |f_n(z) - f_n(z_0)| + |f_n(z_0) - f(z_0)| \ &\leq \epsilon + \epsilon + \epsilon \end{aligned}$$

Dizemos que $f_n(z)$ é convergente se para todo $z\in\Omega$, $(f_n(z))$ é uma sequência de Cauchy, isto é, dado $\epsilon>0 \exists n_0$ tal que $|f_n(z)-f_m(z)|<\epsilon$, para $m,n>n_0$.

Exemplos de séries de potências:

•
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

•
$$1+z+z^2+\ldots+z^n=\sum_{n=0}^{\infty}z^n=\frac{1}{1-z}$$

diverge

$$rac{1}{r} = \lim_{n o \infty} sup |a_n|^{1/n}$$