Normal Forms

R&G Chapter 19

Normal Forms

- Normal forms can help decide whether decomposition (i.e., splitting tables) will be needed to eliminate data redundancy.
 - If a relation is in a certain *normal form*, certain problems are avoided/minimized.
- Types: 1st, 2nd, 3rd, Boyce-Codd (3.5NF)
 - The higher the normal form is, the stricter constraints are put on the database

Normal Forms (NF)

- 1st NF (relational model)
- 2nd NF (free of partial dependency)
- 3rd NF
- Boyce-Codd (3.5NF)

3rd Normal Form

Transitive dependency

 There exist transitive dependency when a non-key attribute A determines another non-key attribute
 B.

3rd Normal form

- Relation R is said to be in 3rd Normal Form if both conditions are met:
 - No partial dependency (i.e., the relation R is in 2NF)
 - No transitive dependency: All non-key attributes of R are directly determined by a superkey.
 - In other word, for each given FD F: X->Y, it satisfies ONE of the following two conditions:
 - X is a superkey of R,
 - Y is a subset of some key (can be a single attribute)

Check Violation of 3rd Normal Form

There are 2 cases when a FD: X-> Y violates
 3NF

Case 1: X is a subset of a key K.

This is a partial dependency, as K -> Y too.

<u>Case 2</u>: X is not a subset of a key and Y is a non-key attribute.

This is a transitive dependency, as it has dependencies K
 ->X -> Y.

3NF example (1/2)

- $R = \{A, B, C\}$
- F= {A->B, B->AC}
- Does R satisfy 3NF?

3NF example (1/2)

- $R = \{A, B, C\}$
- F= {A->B, B->AC}
- Does R satisfy 3NF?
- Way of thinking
 - Step 1: find candidate keys of R
 - A+={ABC}, B+={BCA}
 - Candidate key: A, B
 - Step 2: find non-/key attributes
 - Key attributes: A, B
 - Non-key attribute: C

3NF example (2/2)

(Continue with the previous slide)

- Step 3: check 2NF violation
 - Each candidate key consists of only one attribute. There is no partial dependency
- Step 4: check 3NF violation
 - Is it true that for every single FD X->Y, either X is a key for R or Y is a subset of some key?
 - A->B: A is a key
 - B->AC: B is a key
- Answer: R satisfies 3NF

Shortcut Rules

- For any relation R
 - Rule #1: If all attributes of R are part of a key, R must be 2NF & 3NF (WHY?)
 - Rule #2: If R only contains singleton keys (i.e., each key only has one attribute), R must be at least 2NF

Boyce-Codd Normal Form (BCNF)

- Also called 3.5NF.
- ReIn R with FDs F is in BCNF if, for all X -> A in F+, it satisfies one of the conditions:
 - X is a superset of A (called a trivial FD), OR
 - X is a superkey for R.
- In other words: "All non-trivial FDs must be FDs of key constraints"

3NF VS BCNF

- Given Reln R and its FDs F, for each FD X -> A
 in F+,
 - 3NF requires that ONE of the following two condition is met
 - (a) X is a key for R, **OR**
 - (b) A is part of some key (A can be a single attribute)
 - BCNF requires:
 - X is a superkey.

3NF VS. BCNF: Example I

- **R(ABC)**
- Key of R: (A,B)
- F={C->B}
- Does R satisfy BCNF?

Does R satisfy 3NF?

3NF VS. BCNF: Example I

- **R(ABC)**
- Key of R: (A,B)
- F={C->B}
- Does R satisfy BCNF?
 - No, because in C->B, C is not a key
- Does R satisfy 3NF?
 - Yes, because B is a part of the key

3NF VS. BCNF: Example II

- R(ABC)
- F={AB->C, C->A}
- Which normal form does R satisfy?

Example of 3NF VS. BCNF

- R(ABC)
- F={AB->C, C->A}
- What normal form does R satisfy?
 - Step 1: Find the key of R:
 - AB, BC.
 - Step 2: Does it satisfy 2NF?
 - All attributes are part of some key, so it satisfies 2NF and 3NF (shortcut rule #1 on slide #10).
 - Step 3: Does it satisfy 3NF?
 - See above for 2NF
 - Step 4: Does it satisfy BCNF?
 - In C->A, C is not a key. So it does NOT satisfy BCNF.

Normal Form Summary

• Types: 1st, 2nd, 3rd, Boyce-Codd

Normal Form	Constraint
1NF	Atomic value
2NF	No partial dependency (i.e., there does not exist an FD X->A such that X is a subset of key and A is a non-key attr.)
3NF	No partial dependency & No transitive dependency (i.e., for each FD X->A, either X is a key or A is a subset of some key)
Boyce-Codd (3.5 NF)	All non-trivial FDs are key FDs (i.e., for each X->A, X is a superkey)