Discrete Structures. CSCI-150. Spring 2014.

Homework 9.

Due Fri. Apr 11, 2014.

Problem 1

Let $A = \{1, 2, 3, 4\}$, and $B = \{2, 4, 6\}$. List all the elements of the set

(a) $A \cap B$, (b) $B \cup A$, (c) $A \setminus B$, (d) $B \setminus A$, (e) $A \times B$, (f) $B \times B$, (g) $\mathcal{P}(B)$.

Problem 2

Draw the diagrams (as we did in class) for all bijections from A to A when

- (a) $A = \{1\}$
- (b) $A = \{1, 2\}$
- (c) $A = \{1, 2, 3\}$
- (d) For this question, either repeat the task for $A = \{1, 2, 3, 4\}$, or derive a formula for the total number of bijections from A to A, when |A| = n.

Problem 3

Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ that is

- (a) one-to-one, but not onto,
- (b) onto, but not one-to-one,
- (c) neither one-to-one, nor onto,
- (d) onto and one-to-one (bijection), which is not the identity function f(x) = x.

When constructing the functions, try to define them by formulas. (Feel free to use such operations as absolute value, floor, ceiling, remainder, in addition to normal arithmetical operations).

By definition, \mathbb{N} is the set of all non-negative integers: $\mathbb{N} = \{0, 1, 2, \ldots\}$.

For each function, explain why they satisfy the required conditions.

Problem 4

Is the set $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ countable or uncountable?