# Definition: Subgroup

## Subgroup

A **subgroup** of a Group G is a Set  $H \subseteq G$  that is itself a group under the same operation as G.

### Formal Definition

Let  $(G,\cdot)$  be a group. A non-empty subset  $H\subseteq G$  is a subgroup of G if:

- 1. Closure: For all  $a, b \in H$ , we have  $a \cdot b \in H$
- 2. **Identity**: The identity element e of G is in H
- 3. **Inverses**: For all  $a \in H$ , the inverse  $a^{-1} \in H$

We denote this as  $H \leq G$ .

#### Subgroup Test

A subset H of a group G is a subgroup if and only if: - H is non-empty - For all  $a,b\in H$ , we have  $a\cdot b^{-1}\in H$ 

### **Properties**

- Every group G has at least two subgroups: the trivial subgroup  $\{e\}$  and G itself
- The intersection of any collection of subgroups is a subgroup
- Subgroups inherit associativity from the parent group

# Dependency Graph



Local dependency graph