Computing for Big Data (BST-262)

Christine Choirat 2017-11-01

Contents

1	Intr	roduction				
	1.1	Logistics				
	1.2	Prerequisites				
	1.3	Rationale				
	1.4	Big data bottlenecks				
	1.5	Syllabus				
	1.6	Evaluation				
	1.7	Software tools and packages				
	1.8	Datasets				
	1.9	Contributing with GitHub				
	1.10	Before we start				
		Style				
2	Basi	ic tools 11				
	2.1	Command line tools				
	2.2	Makefiles				
	2.3	Git and GitHub				
3	Pacl	kages 19				
	3.1	Why?				
	3.2	Package structure				
	3.3	Building steps				
	3.4	Create an R package				
	3.5	R packages on GitHub				
	3.6	RStudio projects				
	3.7	Package workflow example				
	3.8	Unit testing				
	3.9	Continuous integration				
	3.10	Code coverage				
	3.11	Back to GitHub				
	3.12	Vignettes				
	0 1					
4	-	imization 45				
	4.1	Measuring performance				
	4.2	Improving performance				
	4.3	Vectorization				
	4.4	Parallelization				
	4.5	Introduction to C++				
	4.6	Rcpp packages				
5	Databases 61					
9		Overview 61				

4	4	CONTENTS

	5.3	SQL 61 noSQL 61 R interfaces 61
6	Big	data 63
	6.1	List of tools
	6.2	Data that fits in memory
	6.3	Data that doesn't fit in memory (but fits on drive)
	6.4	Pure R solutions
	6.5	Scaling up
7	Vis	ualization 67
	7.1	Principles of visualization
	7.2	Maps and GIS

Chapter 1

Introduction

1.1 Logistics

- Fall 2 course
- Tuesday and Thursday, 11:30am-1pm
- Contact info: Christine Choirat (cchoirat@iq.harvard.edu). Please use BST232 in the email title.
- TA's: Qian Di (qiandi@mail.harvard.edu) and Ben Sabath (mbsabath@hsph.harvard.edu)
- Office hours:
 - Ben: Tuesday 1:30-2:30pm
 - Qian: Thursday 10:30-11:30am
 - Christine: Tuesday 10:30-11:30am (office 437A)
- Course GitHub repository https://github.com/cchoirat/bigdata17
- Open file in folder book/index.html
- These course notes are work in progress.

1.2 Prerequisites

For BST262 (Computing for Big Data), we assume familiarity with the material covered in BST260 (Introduction to Data Science).

We will use R to present concepts that are mostly language-agnostic. We could have used Python, as in BST261 (Data Science II).

1.3 Rationale

- 1. Available data grows at a much faster rate than available computing capacity.
- 2. Statistical software programs such as R were not designed to handle datasets of massive size.

1.4 Big data bottlenecks

As described by Lim and Tjhi (2015), there are three bottlenecks:

- CPU
- RAM

• I/O

Exercise 1.1. Can you identify points 1–7 in the following code snippet?

```
data <- read.csv("mydata.csv")
totals <- colSums(data)
write.csv(totals, "totals.csv")</pre>
```

1.5 Syllabus

Part I – Good code still matters (even with lots of computing resources)

Week 1 - Basic tools

- Lecture 1. Unix scripting, make
- Lecture 2. Version control: Git and GitHub (guest lecture: Ista Zhan)

Week 2 - Creating and maintaining R packages

- Lecture 3. Rationale, package structure, available tools
- Lecture 4. Basics of software engineering: unit testing, code coverage, continuous integration

Week 3 - Software optimization

- Lecture 5. Measuring performance: profiling and benchmarking tools
- Lecture 6. Improving performance: an introduction to $\mathrm{C/C}{++}$, Rcpp

Part II – Scaling up (don't use big data tools for small data)

Week 4 – Databases

- Lecture 7. Overview of SQL (SQLite, PostgreSQL) and noSQL databases (HBase, MongoDB, Cassandra, BigTable, ...)
- Lecture 8. R database interfaces (in particular through dplyr and mongolite)

Week 5 - Analyzing data that does not fit in memory

- Lecture 9. Pure R solutions (sampling, ff and bigmemory, other interpreters). JVM solutions (h20, Spark)
- Lecture 10. An introduction to parallel computing; clusters and cloud computing. "Divide and Conquer" (MapReduce approaches)

Week 6 – Visualization

- Lecture 11. Principles of visualization (guest lecture: James Honaker)
- Lecture 12. Maps and GIS: principles of GIS, using R as a GIS, PostGIS

Weeks 7 & 8 - Guest lectures (order and precise schedule TBD)

- Software project management (Danny Brooke)
- R and Spark (Ellen Kraffmiller and Robert Treacy)
- Advanced GIS and remote sensing (TBD)
- Cluster architecture (William J. Horka)

1.6 Evaluation

Grades will be based on **two mandatory problem sets**. Each problem set will correspond to 50% (= 50 points) of the final grade. The first problem set will be available by the end of week 3 and the second problem set by the end of week 6.

1.6. EVALUATION 7

Figure 1.1: Steps to execute an R program, from @Lim2015, Chapter 1.

You will be required to submit problem set solutions within two weeks. Grades, and feedback when appropriate, will be returned two weeks after submission.

You will submit a markdown document that combines commented code for data analysis and detailed and structured explanations of the algorithms and software tools that you used.

1.7 Software tools and packages

We will mostly use R in this course. Some examples will be run in Python.

In general, we will use free and open-source software programs such as PostgreSQL / PostGIS or Spark.

1.8 Datasets

We have collected datasets to illustrate concepts. They are hosted on a Dropbox folder.

1.8.1 MovieLens

MovieLens by Harper and Konstan (2015, https://grouplens.org/datasets/movielens/) collects datasets from the website https://movielens.org/.

There are datasets of different sizes. We will use:

- 1. Small (1MB): https://grouplens.org/datasets/movielens/latest/
- 2. Benchmark (~190MB zipped): https://grouplens.org/datasets/movielens/20m/

1.8.2 Airlines data

The airlines dataset comes from the U.S. Department of Transportation and were used in the 2009 Data Expo of the American Statistical Association (ASA).

We will use a version curated by h2o: https://github.com/h2oai/h2o-2/wiki/Hacking-Airline-DataSet-with-H2O.

1.8.3 Insurance claims

Claims data contain Protected Health Information (PHI). There are strong privacy restrictions to store, use and share this type of data.

We will use synthetic data (Sample 1) from the Centers for Medicare and Medicaid Services (CMS).

1.8.4 Census

Census data is commonly merged with administrative claims data such as Medicare. We will use data from the Census Bureau.

1.8.5 PM_{2.5} exposure

We will use PM_{2.5} exposure data from the EPA Air Quality System (AQS) to illustrate GIS linkage concepts.

1.8.6 Methylation

If there is enough interest, we might present methylation examples.

1.9 Contributing with GitHub

If you have suggestions, you can open a GitHub issue at https://github.com/cchoirat/bigdata17/issues. If you want to contribute, we welcome pull requests.

1.10 Before we start...

How much R do you know?

Introduction to R: http://tutorials.iq.harvard.edu/R/Rintro/Rintro.html

Regression models in R: http://tutorials.iq.harvard.edu/R/Rstatistics/Rstatistics.html

R graphics: http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html

R programming: http://tutorials.iq.harvard.edu/R/RProgramming/Rprogramming.html

1.11 Style

Reading: http://adv-r.had.co.nz/Style.html

Chapter 2

Basic tools

In this Chapter, we present basic tools that will be important when interacting with big data systems: the command-line interface (CLI) in a Unix shell and several utilities (less, awk, vi and make).

2.1 Command line tools

We assume some familiarity with the Unix shell, for example as in http://swcarpentry.github.io/shell-novice/.

We also assume that you have access to a shell, either because you use Linux or OS X or because you have the right tools on Windows (for example Cygwin or the Bash shell in Windows 10).

2.1.1 Why use the command line?

- Batch processing
- Cluster and cloud computing

2.1.2 Basic Unix tools

2.1.3 Useful tools

2.1.3.1 less

less is a pager that lets you view one page at a time files that can be very large.

File DE1_0_2008_to_2010_Carrier_Claims_Sample_1A.csv in Data17/SyntheticMedicare is 1.2GB. Even if we have enough RAM to process the data, less helps get a very quick sense of the data (variable names, separators, etc.)

2.1.3.2 awk

awk is a text-processing programming language available on most Unix systems. It can be used for data extraction.

2.1.3.3 vi

vi is a screen-based text editor available on almost all Unix systems. Most versions are actually Vim (that stands for "Vi IMproved").

There are many cheat sheets and tutorials available on-line (for example, the interactive http://www.openvim.com/). I invite you to learn basics vi commands.

2.1.4 Example

Let's apply some of the techniques described in Blackwell and Sen (2012) on Fisher's Iris data set saved in tab-delimited format. Of course, it is a small dataset easily processed with R:

```
iris <- read.table("~/Dropbox/Data17/iris/iris.tab")</pre>
head(iris, n = 5)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                           3.5
                                         1.4
                                                      0.2 setosa
## 2
               4.9
                           3.0
                                         1.4
                                                      0.2
                                                           setosa
## 3
               4.7
                           3.2
                                         1.3
                                                      0.2 setosa
## 4
               4.6
                           3.1
                                         1.5
                                                      0.2 setosa
## 5
              5.0
                           3.6
                                         1.4
                                                      0.2 setosa
```

In a shell, we can use: head -n 6 ~/Dropbox/Data17/iris/iris.tab

```
## "Sepal.Length"
                    "Sepal.Width"
                                     "Petal.Length"
                                                     "Petal.Width"
                                                                      "Species"
## "1"
       5.1 3.5 1.4 0.2 "setosa"
## "2"
        4.9 3
              1.4 0.2 "setosa"
## "3"
        4.7 3.2 1.3 0.2 "setosa"
## "4"
        4.6 3.1 1.5 0.2 "setosa"
            3.6 1.4 0.2 "setosa"
## "5"
```

Suppose we only need to select two variables in our model, Sepal.Length and Species. In R, we can use:

```
iris_subset <- iris[, c("Sepal.Length", "Species")]</pre>
```

or

```
iris_subset <- iris[, c(1, 5)]
head(iris_subset)</pre>
```

```
## Sepal.Length Species
## 1 5.1 setosa
## 2 4.9 setosa
## 3 4.7 setosa
## 4 4.6 setosa
## 5 5.0 setosa
## 6 5.4 setosa
```

With the tidyverse, we can use *pipes*. The %>% operator allows for performing chained operations.

```
suppressMessages(library(dplyr))
iris %>%
  select(1, 5) %>%
  head()
```

2.2. MAKEFILES 13

```
Sepal.Length Species
##
## 1
              5.1 setosa
## 2
              4.9
                   setosa
## 3
              4.7
                   setosa
## 4
              4.6
                   setosa
## 5
              5.0
                   setosa
## 6
              5.4
                   setosa
```

In a shell, the pipe operator to combine shell commands is | and we can use:

```
cut -f 1,5 ~/Dropbox/Data17/iris/iris.tab | head -n 7
```

```
## "Sepal.Length" "Species"

## "1" 0.2

## "2" 0.2

## "3" 0.2

## "4" 0.2

## "5" 0.2

## "6" 0.4
```

To keep observations with "Sepal.Length" greater than 5:

```
iris %>%
  filter(Sepal.Length > 5) %>%
  head()
```

```
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
                                                       0.2 setosa
               5.1
                            3.5
                                          1.4
## 2
                            3.9
               5.4
                                          1.7
                                                       0.4
                                                            setosa
## 3
               5.4
                            3.7
                                                       0.2
                                          1.5
                                                            setosa
               5.8
                            4.0
                                                       0.2
## 4
                                          1.2
                                                            setosa
                                                       0.4
## 5
               5.7
                            4.4
                                          1.5
                                                            setosa
## 6
               5.4
                            3.9
                                          1.3
                                                       0.4
                                                           setosa
```

In the shell, we can use the AWK programming language. We start from row NR 2 (we could start from row 1, it contains variable names) and select rows such that the second variable (Sepal.Length) is greater than 5.

```
awk 'NR == 2 || $2 > 5' ~/Dropbox/Data17/iris/iris.tab | head
```

```
## "1" 5.1 3.5 1.4 0.2 "setosa" ## "6" 5.4 3.9 1.7 0.4 "setosa" ## "11" 5.4 3.7 1.5 0.2 "setosa" ## "15" 5.8 4 1.2 0.2 "setosa" ## "16" 5.7 4.4 1.5 0.4 "setosa" ## "17" 5.4 3.9 1.3 0.4 "setosa" ## "18" 5.1 3.5 1.4 0.3 "setosa" ## "19" 5.7 3.8 1.7 0.3 "setosa" ## "20" 5.1 3.8 1.5 0.3 "setosa" ## "21" 5.4 3.4 1.7 0.2 "setosa"
```

Exercise 2.1. The iris dataset is also saved in .csv format at ~/Dropbox/Data17/iris/iris.csv. Use AWK and tail to select the last 5 observations where Sepal.Width is larger than 3.5 and Petal.Length is smaller than 1.5.

2.2 Makefiles

make is a tool that helps put all the (interdependent) pieces of an analytic workflow together:

- data retrieving
- data cleaning
- analysis
- graphs
- reports
- ...

2.2.1 Simulate data in R

```
File simulate_data.R
```

```
head(data.frame(Y = Y, X1 = X1, X2 = X2))
```

```
## Y X1 X2

## 1 88.74430 46 11

## 2 125.77081 58 11

## 3 70.76396 38 10

## 4 110.32157 50 10

## 5 145.79546 62 11

## 6 109.45403 53 11
```

2.2.2 Create a plot in Python

```
File create_graph.py
import pandas as pd
import matplotlib.pyplot as plt

sim_data = pd.read_csv("sample_data.csv")

plt.figure()
sim_data.plot()
plt.savefig("plot.pdf", format = "pdf")
```

2.2. MAKEFILES 15

2.2.3 Run statistical model in R

We can estimate the model with R:

```
sim_data <- read.csv("sample_data.csv")</pre>
summary(lm(Y ~ X1 + X2, data = sim_data))
##
## Call:
## lm(formula = Y ~ X1 + X2, data = sim_data)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -8.3988 -1.9452 -0.0261 2.0216 9.1066
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.09087
                           2.54667
                                      3.57 0.000374 ***
## X1
               3.00531
                           0.01326
                                    226.68 < 2e-16 ***
## X2
               -4.94658
                           0.22876
                                   -21.62
                                           < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 2.936 on 997 degrees of freedom
## Multiple R-squared: 0.9811, Adjusted R-squared: 0.981
## F-statistic: 2.585e+04 on 2 and 997 DF, p-value: < 2.2e-16</pre>
```

2.2.4 Run statistical model in R

To save the output, we use the sink function.

File estimate_model.R

```
sink("estimation_summary.txt")
summary(lm(Y ~ X1 + X2, data = sim_data))
sink()
```

2.2.5 Makefile syntax

- make is a command that runs on a text file often named Makefile.
- A Makefile contains one or several blocks with the following structure:

```
targetfile: sourcefile(s)
[tab] command
```

2.2.6 Naive version

```
File: Makefile

sample_data.csv: simulate_data.R

R CMD BATCH simulate_data.R

plot.pdf: create_graph.py

python create_graph.py

estimation_summary.txt: estimate_model.R

R CMD BATCH estimate_model.R
```

A simple call to make only builds the first target (sample_data.csv). To build the other targets, we have to use: make plot.pdf and make estimation_summary.txt.

2.2.7 Making all targets

```
File: Makefile
all: analysis
analysis: sample_data.csv plot.pdf estimation_summary.txt
sample_data.csv: simulate_data.R
R CMD BATCH simulate_data.R

plot.pdf: create_graph.py
    python create_graph.py
estimation_summary.txt: estimate_model.R
```

2.3. GIT AND GITHUB

```
R CMD BATCH estimate_model.R
```

New data is simulated and saved in sample_data.csv. But plot.pdf and estimation_summary.txt are not updated.

2.2.8 Dealing with dependencies

• Problem plot.pdf and estimation_summary.txt depend on sample_data.csv.

• Solution: explicit dependencies.

```
File: Makefile

all: analysis

analysis: sample_data.csv plot.pdf estimation_summary.txt

sample_data.csv: simulate_data.R

R CMD BATCH simulate_data.R

plot.pdf: sample_data.csv create_graph.py

python create_graph.py

estimation_summary.txt: sample_data.csv estimate_model.R

R CMD BATCH estimate_model.R
```

2.3 Git and GitHub

Guest lecture by Ista Zahn.

Chapter 3

Packages

We strongly recommand Wickham (2015).

We assume the following packages are installed:

```
install.packages(c("devtools", "roxygen2", "testthat", "knitr"))
```

3.1 Why?

- Organize your code
- Distribute your code
- Keep versions of your code

3.2 Package structure

- Folder hierarchy
 - NAMESPACE: package import / export
 - DESCRIPTION: metadata
 - R/: R code
 - man/: object documentation (with short examples)
 - tests/
 - data/
 - src/: compiled code
 - vignettes/: manual-like documentation
 - inst/: installed files
 - demo/: longer examples
 - exec, po, tools

3.3 Building steps

- R CMD build
- R CMD INSTALL
- R CMD check

3.3.1 R CMD build

```
R CMD build --help
```

Build R packages from package sources in the directories specified by 'pkgdirs'

3.3.2 R CMD INSTALL

```
R CMD INSTALL --help
```

Install the add-on packages specified by pkgs. The elements of pkgs can be relative or absolute paths to directories with the package sources, or to gzipped package 'tar' archives. The library tree to install to can be specified via '-library'. By default, packages are installed in the library tree rooted at the first directory in .libPaths() for an R session run in the current environment.

3.3.3 R CMD check

```
R CMD check --help
```

http://r-pkgs.had.co.nz/check.html

Check R packages from package sources, which can be directories or package 'tar' archives with extension 'tar.gz', 'tar.bz2', 'tar.xz' or 'tgz'.

A variety of diagnostic checks on directory structure, index and control files are performed. The package is installed into the log directory and production of the package PDF manual is tested. All examples and tests provided by the package are tested to see if they run successfully. By default code in the vignettes is tested, as is re-building the vignette PDFs.

3.3.4 Building steps with devtools

• devtools::build

• devtools::install

• devtools::check

• and many others: load_all, document, test, run_examples, ...

3.4 Create an R package

3.4.1 utils::package.skeleton

```
package.skeleton() # "in "clean" session ("anRpackage")
package.skeleton("pkgname") # in "clean" session

set.seed(02138)
f <- function(x, y) x+y
g <- function(x, y) x-y
d <- data.frame(a = 1, b = 2)</pre>
```


Figure 3.1: Submitting to CRAN. It's not that bad...

```
e <- rnorm(1000)
package.skeleton(list = c("f", "g", "d", "e"), name = "pkgname")</pre>
```

3.4.2 devtools::create

```
devtools::create("path/to/package/pkgname")
```

Also from RStudio ('File -> New Project').

3.4.3 Submit to CRAN

Reading: http://r-pkgs.had.co.nz/release.html

3.5 R packages on GitHub

Reading: http://r-pkgs.had.co.nz/git.html

- Version control
- Website, wiki, project management
- \bullet Easy install: install_github from devtools
- Collaboration
- Issue tracking

3.5.0.1 RStudio and GitHub integration

Command line

```
# git init # already run when creating package with RStudio
git add *
git commit -m "First commit"
git remote add origin https://github.com/cchoirat/Linreg
git push -u origin master
```

Create a new repository

A repository contains all the files for your project, including the revision history.

Figure 3.2: Create a new Linreg repository on GitHub

Figure 3.3: Create a new project in RStudio

Figure 3.4: Select R package

Figure 3.5: Create the Linreg R package as a Git repository

Figure 3.6: Automatically created files

Figure 3.7: Build tab in RStudio

Figure 3.8: Github webpage

Figure 3.9: Open a terminal

Figure 3.10: Github webpage is updated

3.5.1 .gitignore

```
RStudio default
```

- .Rproj.user
- .Rhistory
- .RData

GitHub default

```
# History files
.Rhistory
.Rapp.history

# Example code in package build process
*-Ex.R

# RStudio files
.Rproj.user/

# produced vignettes
vignettes/*.html
vignettes/*.pdf
```

3.6 RStudio projects

- .Rproj file extension, in our example Linreg.Rproj
- A project has its own:
 - R session
 - .Rprofile (e.g., to customize startup environment)
 - .Rhistory
- Default working directory is project directory
- Keeps track of project-specific recent files

3.6.1 Project options

```
Version: 1.0

RestoreWorkspace: Default
SaveWorkspace: Default
AlwaysSaveHistory: Default

EnableCodeIndexing: Yes
UseSpacesForTab: Yes
NumSpacesForTab: 2
Encoding: UTF-8

RnwWeave: knitr
LaTeX: pdfLaTeX

AutoAppendNewline: Yes
StripTrailingWhitespace: Yes

BuildType: Package
PackageUseDevtools: Yes
PackageInstallArgs: --no-multiarch --with-keep.source
```

3.6.2 Package documentation

- Functions and methods
- Vignettes
 - PDF
 - knitr

3.7 Package workflow example

Creating R Packages: A Tutorial (Friedrich Leisch, 2009)

Our example is adapted from https://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf.

3.7.1 Add linreg.R to R/ directory

```
linmodEst <- function(x, y) {</pre>
  ## CC: crossprod or a QR decomposition (as in the original version) are more efficient
  coef <- solve(t(x) %*% x) %*% t(x) %*% y</pre>
  print(coef)
  ## degrees of freedom and standard deviation of residuals
  df \leftarrow nrow(x) - ncol(x)
  sigma2 \leftarrow sum((y - x %*% coef) ^ 2) / df
  ## compute sigma^2 * (x'x)^{-1}
  vcov \leftarrow sigma2 * solve(t(x) %*% x)
  colnames(vcov) <- rownames(vcov) <- colnames(x)</pre>
  list(
    coefficients = coef,
    vcov = vcov,
    sigma = sqrt(sigma2),
    df = df
  )
}
```

3.7.2 Run our function

```
data(cats, package = "MASS")
linmodEst(cbind(1, cats$Bwt), cats$Hwt)
##
               [,1]
## [1,] -0.3566624
## [2,] 4.0340627
## $coefficients
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
## $vcov
              [,1]
## [1,] 0.4792475 -0.17058197
## [2,] -0.1705820 0.06263081
##
## $sigma
## [1] 1.452373
##
## $df
## [1] 142
We can compare the output with lm.
lm1 <- lm(Hwt ~ Bwt, data = cats)</pre>
lm1
##
## Call:
## lm(formula = Hwt ~ Bwt, data = cats)
##
```

```
## Coefficients:
## (Intercept)
                       Bwt.
      -0.3567
                    4.0341
coef(lm1)
## (Intercept)
                       Bwt
## -0.3566624 4.0340627
vcov(lm1)
##
               (Intercept)
## (Intercept)
                0.4792475 -0.17058197
               -0.1705820 0.06263081
## Bwt
summary(lm1)$sigma
## [1] 1.452373
```

3.7.3 Add ROxygen2 documentation

Reading: http://kbroman.org/pkg_primer/pages/docs.html

```
#' Linear regression
#'
#' Runs an OLS regression not unlike \code{\link{lm}}
#'
\#' @param y response vector (1 x n)
#' Oparam X covariate matrix (p x n) with no intercept
#' @return A list with 4 elements: coefficients, vcov, sigma, df
#'
#' @examples
#' data(mtcars)
#' X <- as.matrix(mtcars[, c("cyl", "disp", "hp")])
#' y <- mtcars[, "mpg"]
#' linmodEst(y, X)
#'
#' @export
#'
linmodEst <- function(x, y) {</pre>
  ## CC: crossprod or a QR decomposition (as in the original version) are more efficient
  coef <- solve(t(x) %*% x) %*% t(x) %*% y
  print(coef)
  ## degrees of freedom and standard deviation of residuals
  df \leftarrow nrow(x) - ncol(x)
  sigma2 \leftarrow sum((y - x \% * \% coef) ^ 2) / df
  ## compute sigma^2 * (x'x)^{-1}
  vcov <- sigma2 * solve(t(x) %*% x)</pre>
  colnames(vcov) <- rownames(vcov) <- colnames(x)</pre>
  list(
    coefficients = coef,
    vcov = vcov,
    sigma = sqrt(sigma2),
  df = df
```


Figure 3.11: Roxygen options

```
)
}
```

3.7.4 Configure Build Tools

3.7.5 man page

File 'man/linmodEst.Rd contains:

```
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/linreg.R
\name{linmodEst}
\alias{linmodEst}
\title{Linear regression}
\usage{
linmodEst(x, y)
}
\arguments{
\item{y}{response vector (1 x n)}

\item{X}{covariate matrix (p x n) with no intercept}
}
\value{
A list with 4 elements: coefficients, vcov, sigma, df
}
```

```
\description{
Runs an OLS regression not unlike \code{\link{lm}}
}
\examples{
data(mtcars)
X <- as.matrix(mtcars[, c("cyl", "disp", "hp")])
y <- mtcars[, "mpg"]
linmodEst(y, X)
}</pre>
```

3.7.6 Formatted output

3.7.7 DESCRIPTION

Reading: http://r-pkgs.had.co.nz/description.html

3.7.8 NAMESPACE

Reading: http://r-pkgs.had.co.nz/namespace.html, in particular Imports vs Suggests export's automatically generated when parsing ROxygen2 snippets

export(linmodEst)

- A scary hack
- A scary tree

3.7.9 S3 basics

Reading: http://adv-r.had.co.nz/S3.html

```
hello <- function() {
   s <- "Hello World!"
   class(s) <- "hi"
   return(s)
}
hello()</pre>
```

linmodEst {Linreg}

Linear regression

Description

Runs an OLS regression not unlike 1m

Usage

```
linmodEst(x, y)
```

Arguments

- y response vector (1 x n)
- x covariate matrix (p x n) with no intercept

Value

A list with 4 elements: coefficients, vcov, sigma, df

Examples

```
data(mtcars)
X <- as.matrix(mtcars[, c("cyl", "disp", "hp")])
y <- mtcars[, "mpg"]
linmodEst(y, X)</pre>
```



```
## [1] "Hello World!"
## attr(,"class")
## [1] "hi"
print.hi <- function(...) {
   print("Surprise!")
}
hello()</pre>
```

[1] "Surprise!"

3.7.10 S3 and S4 generics

Reading: http://adv-r.had.co.nz/S4.html

```
linmod <- function(x, ...)
   UseMethod("linmod")

linmod.default <- function(x, y, ...) {
   x <- as.matrix(x)
   y <- as.numeric(y)
   est <- linmodEst(x, y)
   est$fitted.values <- as.vector(x %*% est$coefficients)
   est$residuals <- y - est$fitted.values
   est$call <- match.call()
   class(est) <- "linmod"
   return(est)
}</pre>
```

3.7.11 print

```
print.linmod <- function(x, ...) {</pre>
  cat("Call:\n")
  print(x$call)
  cat("\nCoefficients:\n")
  print(x$coefficients)
x <- cbind(Const = 1, Bwt = cats$Bwt)
y <- cats$Hw
mod1 \leftarrow linmod(x, y)
##
                [,1]
## Const -0.3566624
## Bwt
          4.0340627
mod1
## Call:
## linmod.default(x = x, y = y)
## Coefficients:
##
                [,1]
## Const -0.3566624
## Bwt
          4.0340627
```

3.7.12 Other methods

- summary.linmod
- print.summary.linmod
- predict.linmod
- plot.linmod
- coef.linmod, vcov.linmod, ...

Exercise 3.1. Write two functions that implement the coef.linmod and vcov.linmod methods.

3.7.13 Formulas and model frames

Reading: http://genomicsclass.github.io/book/pages/expressing_design_formula.html

model.frame (a generic function) and its methods return a data.frame with the variables needed to use formula and any ... arguments.

model.matrix creates a design (or model) matrix, e.g., by expanding factors to a set of dummy variables (depending on the contrasts) and expanding interactions similarly.

model.response returns the response of a model frame passed as optional arguments to model.frame.

Exercise 3.2. What is model.extract?

```
linmod.formula <- function(formula, data = list(), ...) {</pre>
 mf <- model.frame(formula = formula, data = data)</pre>
 x <- model.matrix(attr(mf, "terms"), data = mf)</pre>
 y <- model.response(mf)
 est <- linmod.default(x, y, ...)</pre>
  est$call <- match.call()</pre>
  est$formula <- formula
 return(est)
}
linmod(Hwt ~ - 1 + Bwt * Sex, data = cats)
Call:
linmod.formula(formula = Hwt ~ -1 + Bwt * Sex, data = cats)
Coefficients:
      Bwt
               SexF
                        SexM Bwt:SexM
2.636414 2.981312 -1.184088 1.676265
```

3.8 Unit testing

3.8.1 Unit tests and testthat

Reading: http://r-pkgs.had.co.nz/tests.html

In package directory:

```
devtools::use_testthat()
```

pre-populates test/testthat/

Test files should start with test to be processed.

3.8.2 test_coef.R

We're only showing your public repositories. You can find your private projects on travis-ci.com.

3.9 Continuous integration

Reading: http://r-pkgs.had.co.nz/check.html#travis

Website: https://travis-ci.org/

First step is to create a Travis account and link it to you GitHub account.

Travis will list all your public GitHub repositories for you to select the ones you want to test.

Calling

```
devtools::use_coverage(pkg = ".", type = c("codecov"))
```

creates the .travis.yml file:

```
# R for travis: see documentation at https://docs.travis-ci.com/user/languages/r
```

language: R
sudo: false
cache: packages

and pushing Linreg code to GitHub will automatically triggers a Travis build... which fails! To be continued...

3.10 Code coverage

Reading: https://walczak.org/2017/06/how-to-add-code-coverage-codecov-to-your-r-package/

Website: https://codecov.io/

Like Travis, codecov has to be linked to a GitHub account:

```
devtools::use_coverage(pkg = ".", type = c("codecov"))
creates the codecov.yml file:
comment: false
A call to
covr::codecov(token = "YOUR_TOKEN")
```

will give you code coverage information:

3.11 Back to GitHub

Badges can be added to README.md:

```
<!--- Badges ---->
[![Travis (LINUX) Build Status](https://travis-ci.org/cchoirat/Linreg.svg?branch=master)](https://travi
[![codecov](https://codecov.io/gh/cchoirat/Linreg/branch/master/graph/badge.svg)](https://codecov.io/gh
## `Linreg` package template

Based on "Creating R Packages: A Tutorial" (Friedrich Leisch, 2009)

- https://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf
```

are are automatically displayed on GitHub:

3.12 Vignettes

Reading: http://r-pkgs.had.co.nz/vignettes.html

Reading: http://kbroman.org/pkg_primer/pages/vignettes.html

Even if all the functions and datasets of your package are documented, it is still useful to have a more detailed illustration on how to use your package. A vignette is the right place to explain a worflow and a

3.12. VIGNETTES 41

cchoirat

No repositories covered yet.

Add a repository

≡

87.87%

87.87%

R/linreg.R

Project Totals (1 files)

0

0

4

29

29

33

33

3.12. VIGNETTES 43

statistical method.

Running:

```
devtools::use_vignette("my-linear-regression")
```

creates a vignettes folder and provide a template in RMarkdown format my-linear-regression.Rmd:

https://github.com/cchoirat/Linreg/blob/master/vignettes/my-linear-regression.Rmd

It also indicates in DESCRIPTION that vignettes should be built with knitr.

```
VignetteBuilder: knitr
```

The vignette is built into a HTML document with

```
devtools::build_vignettes()
```

```
Building Linreg vignettes
Moving my-linear-regression.html, my-linear-regression.R to inst/doc/
Copying my-linear-regression.Rmd to inst/doc/
```

The vignette is accessible with

```
vignette("my-linear-regression")
vignette("my-linear-regression", package = "Linreg")
```

Vignette Title

Vignette Author

2017-10-21

Vignettes are long form documentation commonly included in packages. Because they are part of the distribution of the package, they need to be as compact as possible. The html_vignette output type provides a custom style sheet (and tweaks some options) to ensure that the resulting html is as small as possible. The html_vignette format:

- · Never uses retina figures
- · Has a smaller default figure size
- Uses a custom CSS stylesheet instead of the default Twitter Bootstrap style

Vignette Info

Note the various macros within the vignette section of the metadata block above. These are required in order to instruct R how to build the vignette. Note that you should change the title field and the \VignetteIndexEntry to match the title of your vignette.

Styles

The html_vignette template includes a basic CSS theme. To override this theme you can specify your own CSS in the document metadata as follows:

output:

rmarkdown::html_vignette:
 css: mystyles.css

Chapter 4

Optimization

In this Chapter, we will see how to measure and improve code performance.

4.1 Measuring performance

4.1.1 Benchmarking

Reading: http://adv-r.had.co.nz/Performance.html#microbenchmarking

There are several ways to benchmark code (see http://www.alexejgossmann.com/benchmarking_r/) from system.time to dedicated packages such as rbenchmark (Kusnierczyk (2012)) or microbenchmark (Mersmann (2015)).

Let's start with an example from Wickham (2014).

```
library(microbenchmark)
m <- microbenchmark(
  times = 1000, # default is 100

"[32, 11]" = mtcars[32, 11],

"$carb[32]" = mtcars$carb[32],

"[[c(11, 32)]]" = mtcars[[c(11, 32)]],

"[[11]][32]" = mtcars[[11]][32],

".subset2" = .subset2(mtcars, 11)[32]
)</pre>
```

```
## Unit: nanoseconds
##
             expr min
                            lq
                                    mean median
                                                       uq
                                                            max neval
##
         [32, 11] 8984 10217.0 11442.767 10732.0 11444.0 61564
##
        $carb[32] 4811
                        5833.5 6712.092
                                          6331.5
                                                   6915.5 24905
    [[c(11, 32)]] 3715
##
                        4684.5
                                5441.555
                                           5091.5
                                                  5574.5 56755
                                                                 1000
       [[11]][32] 3415
                        4445.0
                                5216.520
                                          4839.5
                                                   5300.0 45114
                                                                 1000
         .subset2 203
                         274.5
                                 369.895
                                           326.0
                                                    392.0 10066
ggplot2::autoplot(m)
```


4.1.2 Profiling and optimization

 $Reading: \ http://adv-r.had.co.nz/Profiling.html\#measure-perf$

Let's compare three ways of estimating a linear regression: with built-in 1m and with two functions we defined in package Linreg in Chapter 3.

```
data(cats, package = "MASS")
fit1 <- lm(Hwt ~ Bwt, data = cats)</pre>
fit2 <- linmod(Hwt ~ Bwt, data = cats)</pre>
fit3 <- linmodEst(cbind(1, cats$Bwt), cats$Hwt)</pre>
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
all.equal(round(coef(fit1), 5), round(coef(fit2), 5))
## [1] "names for target but not for current"
## [2] "Attributes: < names for current but not for target >"
## [3] "Attributes: < Length mismatch: comparison on first 0 components >"
## [4] "target is numeric, current is matrix"
all.equal(round(coef(fit1), 5), round(fit3$coefficients, 5), check.names = FALSE)
## [1] "Attributes: < names for current but not for target >"
## [2] "Attributes: < Length mismatch: comparison on first 0 components >"
## [3] "target is numeric, current is matrix"
```

```
m <- microbenchmark(</pre>
  fit1 <- lm(Hwt ~ Bwt, data = cats),
  fit2 <- linmod(Hwt ~ Bwt, data = cats),</pre>
 fit3 <- linmodEst(cbind(1, cats$Bwt), cats$Hwt)</pre>
  # custom checks can be performed with the 'check' argument
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
               [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
               [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
               [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
## [1,] -0.3566624
## [2,] 4.0340627
##
               [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
```

[2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1]## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1]

[2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1]## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1]## [1,] -0.3566624 ## [2,] 4.0340627 [,1]## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1]

[2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 [,1]## [1,] -0.3566624 ## [2,] 4.0340627 [,1] ## [1,] -0.3566624 ## [2,] 4.0340627 ## [,1]

```
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
```

```
## [2,] 4.0340627
              [,1]
##
## [1,] -0.3566624
## [2,] 4.0340627
             [,1]
## [1,] -0.3566624
## [2,] 4.0340627
             [,1]
## [1,] -0.3566624
## [2,] 4.0340627
             [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
            [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
             [,1]
## [1,] -0.3566624
## [2,] 4.0340627
         [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
             [,1]
## [1,] -0.3566624
## [2,] 4.0340627
             [,1]
## [1,] -0.3566624
## [2,] 4.0340627
            [,1]
## [1,] -0.3566624
## [2,] 4.0340627
##
              [,1]
## [1,] -0.3566624
## [2,] 4.0340627
         [,1]
## [1,] -0.3566624
## [2,] 4.0340627
```

```
## Unit: microseconds

## expr min lq mean

## fit1 <- lm(Hwt ~ Bwt, data = cats) 658.620 679.1640 732.7279

## fit2 <- linmod(Hwt ~ Bwt, data = cats) 533.705 546.0485 568.7039

## fit3 <- linmodEst(cbind(1, cats$Bwt), cats$Hwt) 98.062 110.5850 124.2243

## median uq max neval

## 689.2440 709.548 2666.826 100

## 552.4515 567.820 721.017 100

## 123.7310 132.465 249.417 100

ggplot2::autoplot(m)
```


4.2 Improving performance

- Vectorize
- Parallelize
- Use a faster language (C/C++, Fortran, ...)
- Use different tools (as in Chapter 6)

4.3 Vectorization

Let's take an example from a blog post (that seems to be gone). It's used in Wickham (2014, Section Case studies).

```
vacc1a <- function(age, female, ily) {
  p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily
  p <- p * if (female) 1.25 else 0.75
  p <- max(0, p)
  p <- min(1, p)
  p
}
set.seed(1959)
n <- 1000</pre>
```

```
age \leftarrow rnorm(n, mean = 50, sd = 10)
female <- sample(c(T, F), n, rep = TRUE)</pre>
ily \leftarrow sample(c(T, F), n, prob = c(0.8, 0.2), rep = TRUE)
vacc1a(age[1], female[1], ily[1])
## [1] 0.1667005
vacc1a(age[2], female[2], ily[2])
## [1] 0.4045439
vacc1a(age[3], female[3], ily[3])
## [1] 0.2699324
vacc1a is not designed for vector inputs
vacc1a(age, female, ily)
## Warning in if (female) 1.25 else 0.75: the condition has length > 1 and
## only the first element will be used
## [1] 0.2526293
It should be called
vacc1a(age[1], female[1], ily[1])
## [1] 0.1667005
vacc1a(age[2], female[2], ily[2])
## [1] 0.4045439
vacc1a(age[3], female[3], ily[3])
## [1] 0.2699324
We can use a loop:
out <- numeric(n)
for (i in 1:n)
  out[i] <- vacc1a(age[i], female[i], ily[i])</pre>
or one of the apply functions:
vacc0<- function(age, female, ily) {</pre>
  sapply(1:n, function(i) vacc1a(age[i], female[i], ily[i]))
out0 <- vacc0(age, female, ily)
all.equal(out, out0)
## [1] TRUE
But, it's convenient for the function to support vector inputs, instead of relying on users writing their own
```

But, it's convenient for the function to support vector inputs, instead of relying on users writing their own wrappers. We can loop inside the function body.

```
vacc1 <- function(age, female, ily) {
  n <- length(age)
  out <- numeric(n)</pre>
```

```
for (i in seq_len(n)) {
   out[i] <- vacc1a(age[i], female[i], ily[i])
}
  out
}</pre>
```

or we can rely on base R functions that accept vector inputs

```
vacc2 <- function(age, female, ily) {
  p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily
  p <- p * ifelse(female, 1.25, 0.75)
  p <- pmax(0, p)
  p <- pmin(1, p)
  p
}</pre>
```

4.4 Parallelization

```
library(parallel)
cores <- detectCores()</pre>
cores
## [1] 4
vacc3 <- function(age, female, ily) {</pre>
  mcmapply(function(i) vacc1a(age[i], female[i], ily[i]), 1:n, mc.cores = cores - 1)
out3 <- vacc3(age, female, ily)
library(microbenchmark)
m <- microbenchmark(</pre>
  vacc0 = vacc0(age, female, ily),
  vacc1 = vacc1(age, female, ily),
  vacc2 = vacc2(age, female, ily),
  vacc3 = vacc3(age, female, ily)
)
## Unit: microseconds
    expr
               min
                            lq
                                     mean
                                              median
                                                             uq
## vacc0 2385.520 3055.3875 3983.5677
                                           3512.1135 4146.2655 11812.545
## vacc1 2001.636 2201.2780 2811.2800
                                           2468.4745 2878.0900 9597.621
                                 682.1359
                                            205.9785
## vacc2 104.259
                     156.0255
                                                      836.2655 7473.581
## vacc3 13582.382 16612.2100 20978.5883 18597.0795 22641.4960 52274.626
##
  neval
##
      100
##
      100
##
      100
##
      100
ggplot2::autoplot(m)
```


So, what's going on?

We will talk more about parallelization tools and techniques in Chapter '?(bigdata).

4.5 Introduction to C++

- C++ is a very powerful object-oriented language.
- Many tutorials are available on-line, for example http://www.cplusplus.com/doc/tutorial/.
- R is interreted, C++ is compiled and typically much faster (in loops for examples).
- Our introduction to C++ is from an R perspective. Python (and most interpreted languages) can be extended with C++ too.

4.5.1 Rcpp

Reading: http://adv-r.had.co.nz/Rcpp.html

- Rcpp Eddelbuettel (2013) makes it very easy to use C++ code in R (for example to speed up a function or to wrap methods already implemented in C++).
- Rcpp provides "syntactic sugar" that makes is easy to leverage C++ even without a deep knowledge of it.
- To use Rcpp, you need a C++ compiler:
 - Windows: Rtools

```
- OS X: Xcode
```

4.5.2 Hello World!

```
library(Rcpp)
cppFunction('void hello(){
  Rprintf("Hello, world!");
}')
hello
## function ()
## invisible(.Primitive(".Call")(<pointer: 0x109804cc0>))
hello()
## Hello, world!
Rprintf is the counterpart of C++ printf function.
Let's take the first example of Wickham (2014), Section Getting started with C++.
cppFunction('int add(int x, int y, int z) {
  int sum = x + y + z;
  return sum;
}')
We have to specify the input type and the output type. As expected
add(1, 2, 3)
returns 6. How about?
add(1.1, 2.2, 3.3)
cppFunction('double addd(double x, double y, double z) {
  double sum = x + y + z;
  return sum;
}')
With addd we do get 6.6:
addd(1.1, 2.2, 3.3)
```

4.5.3 sourceCpp

When C++ code takes more than a couple of lines, it's more convenient to create a stand-alone C++ source file.

From the RStudio default template:

```
#include <Rcpp.h>
using namespace Rcpp;

NumericVector timesTwo(NumericVector x) {
  return x * 2;
}
```

⁻ Linux: r-base-dev from package manager

```
/*** R
timesTwo(42)
*/
```

From R, we can use sourceCpp to access timesTwo in R:

```
sourceCpp("src/times-two.cpp")
timesTwo(100)
```

4.5.4 Data types

```
int double bool string
NumericVector LogicalVector IntegerVector CharacterVector
NumericMatrix IntegerMatrix LogicalMatrix CharacterMatrix
NA_REAL NA_INTEGER NA_STRING NA_LOGICAL
List DataFrame Function
```

4.5.5 Sugar

-x'

Reading: http://adv-r.had.co.nz/Rcpp.html#rcpp-sugar.

• Vectorization of +, *, -, /, pow, <, <=, >, >=, ==, !=, !

Exercise 4.1. Can you write an Rcpp function similar to addd but accepting vector arguments?

```
cppFunction('NumericVector addv(NumericVector x, NumericVector y, NumericVector z) {
   NumericVector sum = x + y + z;
   return sum;
}')
```

4.5.6 Example (continued)

4.6. RCPP PACKAGES 59

```
NumericVector out(n);

for(int i = 0; i < n; ++i) {
   out[i] = vacc3a(age[i], female[i], ily[i]);
}

return out;
}</pre>
```

4.5.7 Back to Linreg

- armadillo is a very powerful C++ linear algebra library: http://arma.sourceforge.net/
- It can be used in Rcpp via the RcppArmadillo package.

Exercise 4.2. Can you write an Rcpp function similar to linmodEst?

```
linmodEst <- function(x, y) {</pre>
  ## CC: crossprod or a QR decomposition (as in the original version) are more efficient
  coef <- solve(t(x) %*% x) %*% t(x) %*% y</pre>
  print(coef)
  ## degrees of freedom and standard deviation of residuals
  df \leftarrow nrow(x) - ncol(x)
  sigma2 \leftarrow sum((y - x %*% coef)^2) / df
  ## compute sigma^2 * (x'x)^{-1}
  vcov \leftarrow sigma2 * solve(t(x) %*% x)
  colnames(vcov) <- rownames(vcov) <- colnames(x)</pre>
  list(
    coefficients = coef,
    vcov = vcov,
    sigma = sqrt(sigma2),
    df = df
  )
```

4.6 Rcpp packages

Readings: - https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-package.pdf - http://adv-r.had.co.nz/Rcpp.html#rcpp-package

Chapter 5

Databases

- 5.1 Overview
- 5.2 SQL
- 5.3 noSQL
- 5.4 R interfaces

Chapter 6

Big data

6.1 List of tools

Reading: Varian (2014) (PDF available)

Spark? h2o? More? Let's go back to the bottlenecks

- CPU
- RAM
- I/O

6.2 Data that fits in memory

6.2.1 Faster I/O

Reading: https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html data.table provides an enhanced of a data.frame and faster I/O with fread and fwrite.

To read the 0.5GB ratings file from MovieLens

```
library(data.table)
system.time(ratings <- fread("~/Dropbox/Data17/ml-20m/ratings.csv"))

takes

Read 20000263 rows and 4 (of 4) columns from 0.497 GB file in 00:00:05
    user system elapsed
    4.007    0.229    4.244

while
system.time(ratings <- read.csv("~/Dropbox/Data17/ml-20m/ratings.csv"))

takes</pre>
```

```
user system elapsed 85.199 2.711 90.997
```

There are ways to improve the speed of read.csv (for example, but specifying column types). But in general fread is much faster.

64 CHAPTER 6. BIG DATA

Tools for Manipulating Big Data

Google name	Analog	Description	
Google File System	Hadoop File System	This system supports files so large that they must be distributed across hundreds or even thousands of computers.	
Bigtable	Cassandra	This is a table of data that lives in the Google File System. It too can stretch over many computers.	
MapReduce	Hadoop	This is a system for accessing and manipulating data in large data structures such as Bigtables. MapReduce allows you to access the data in parallel, using hundreds or thousands of machines to extract the data you are interested in. The query is "mapped" to the machines and is then applied in parallel to different shards of the data. The partial calculations are then combined ("reduced") to create the summary table you are interested in.	
Sawzall	Pig	This is a language for creating MapReduce jobs.	
Go	None	Go is flexible open-source, general-purpose computer language that makes it easier to do parallel data processing.	
Dremel, BigQuery	Hive, Drill, Impala	This is a tool that allows data queries to be written in a simplified form of of Structured Query Language (SQL). With Dremel it is possible to run an SQL query on a petabtye of data (1,000 terabytes) in a few seconds.	

Table 6.1: I/O comparison

package	function.	speed	output
base	read.csv	slow	data.frame
data.table	fread	very fast	data.table
readr	read_csv	fast	tibble

```
library(readr) # in tidyverse
system.time(ratings <- read_csv("~/Dropbox/Data17/ml-20m/ratings.csv"))</pre>
```

```
user system elapsed 10.290 3.037 18.450
```

also tends to perform better than read.csv.

- 6.2.2 Reference vs copy
- 6.3 Data that doesn't fit in memory (but fits on drive)
- 6.4 Pure R solutions
- 6.4.1 Sampling
- 6.4.2 bigmemory
- 6.4.3 Database connections and lazy evaluation
- 6.5 Scaling up
- 6.5.1 Parallel computing and clusters
- 6.5.2 Cloud computing
- 6.5.3 Spark

Reading: https://spark.rstudio.com/

```
library(sparklyr)
spark_install(version = "2.1.0")

conf <- spark_config()
conf$`sparklyr.shell.driver-memory` <- "32G"
conf$spark.memory.fraction <- 0.5
sc <- spark_connect(master = "local")

library(dplyr)
iris_tbl <- copy_to(sc, iris)
flights_tbl <- copy_to(sc, nycflights13::flights, "flights")</pre>
```

66 CHAPTER 6. BIG DATA

```
batting_tbl <- copy_to(sc, Lahman::Batting, "batting")</pre>
src_tbls(sc)
top_rows <- read.csv("~/Dropbox/Data17/AirFlights/allyears.csv", nrows = 5)</pre>
file_columns <- top_rows %>%
 purrr::map(function(x)"character")
rm(top_rows)
sp_flights <- spark_read_csv(sc,</pre>
                              name = "flights2",
                              path = "~/Dropbox/Data17/AirFlights/allyears.csv",
                              memory = FALSE,
                              columns = file_columns,
                              infer_schema = FALSE)
flights_table <- sp_flights %>%
  mutate(DepDelay = as.numeric(DepDelay),
         ArrDelay = as.numeric(ArrDelay),
         SchedDeparture = as.numeric(CRSDepTime)) %>%
  select(Origin, Dest, SchedDeparture, ArrDelay, DepDelay, Month, DayofMonth)
flights_table %>% head
Cache data:
sp_flights %>%
 tally # takes a looooong time
123534969...
subset_table <- flights_table %>%
  compute("flights_subset")
subset_table %>%
 tally # a bit faster.
123534969 as well!
lm(arr_delay ~ distance, data = flights_tbl)
ml_linear_regression(subset_table, response = "ArrDelay", features = "SchedDeparture")
```

TODOL change the config arguments of the connection

6.5.4 h2o and Sparkling Water

Reading: https://spark.rstudio.com/h2o.html

6.5.5 More?

GPU

Chapter 7

Visualization

- 7.1 Principles of visualization
- 7.2 Maps and GIS

Bibliography

Blackwell, M. and Sen, M. (2012). Large datasets and you: A field guide. *The Political Methodologist*, 20(1):2–5.

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. ISBN 978-1-4614-6867-7.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context. *ACM Trans. Interact. Intell. Syst.*, 5(4):19:1–19:19.

Kusnierczyk, W. (2012). rbenchmark: Benchmarking routine for R. R package version 1.0.0.

Lim, A. and Tjhi, W. (2015). R High Performance Programming. Community experience distilled. Packt Publishing.

Mersmann, O. (2015). microbenchmark: Accurate Timing Functions. R package version 1.4-2.1.

Varian, H. (2014). Big data: New tricks for econometrics. Journal of Economic Perspectives, 28(2):3–28.

Wickham, H. (2014). Advanced R. Chapman & Hall/CRC The R Series. Taylor & Francis.

Wickham, H. (2015). R Packages. O'Reilly Media, Inc., 1st edition.