

Sciences physiques

Classe: 3éme Sc Info

Loi de Coulomb (cours)

Nom du Prof : AZAIZI Jamel

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Sc physiques

I-Rappels:

- Un corps s'électrise par, ou par, par c.s...tact......, ou par
- Un corps électrisé porte une charge électrique (q), dont l'unité dans le S.I est le condond. (c). Elle peut être positione.
- Une charge négative est und'électrons, el une charge positive est und'électrons ; ainsi toute charge est nécessairement un multiple entier de la charge elémentaire e = 1,6.10⁻¹⁹ C.
 - ❖ Il y a toujours interaction entre deux charges voisines :

 - Deux charges de signe opposé . S. cathirent...

Cette interaction se fait par des forces à distance, appelées forces électriques ou électrostatiques ou forces

de Coulomb.

* 3ème loi de Newton : Si un corps A exerce une action $(\overline{F_{A/B}})$ sur un corps B ; ce dernier fait une réaction $(\overline{F_{B/A}})$ sur A, telle que $\overline{F_{A/B}} = -\overline{F_{B/A}}$. $\overline{F_{A/B}}$ et $\overline{F_{B/A}}$ sont les éléments de l'interac-

tion entre A et B.

❖ Un solide soumis à trois forces $\overrightarrow{F_1}$, $\overrightarrow{F_2}$ et $\overrightarrow{F_3}$ est en équilibre dans un repère donné si $\overrightarrow{F_1}$ + $\overrightarrow{F_2}$ + $\overrightarrow{F_3}$ = $\overrightarrow{0}$ ($\overrightarrow{F_1}$ + $\overrightarrow{F_2}$ - $\overrightarrow{F_2}$ - $\overrightarrow{F_3}$ = $\overrightarrow{0}$)

II- Loi de coulomb:

Entre deux objets ponctuels A et B, immobiles, portant respectivement les charges électriques q_A et q_B , s'établit une interaction électrique répulsive si les deux charges sont de même signes et attractive si les deux charges sont de signes contraires. Les éléments de l'interaction sont :

$$\overrightarrow{F_{A/B}}$$
 Force exercée par q_A sur q_B $\overrightarrow{F_{B/A}}$ Force exercée par q_B sur q_A

Elles sont portées par la droite (AB) et leur valeur commune est :.

$$\|\overrightarrow{F_{A/B}}\| = \|\overrightarrow{F_{B/P}}\| = K \cdot \frac{|\overrightarrow{q_A}| q_B|}{AB^2} \qquad (<) \qquad (<)$$

K est une constante dont la valeur ne dépend que de la nature du milieu dans lequel se trouvent les charges ; $K = 9.10^9 \; S.I$ dans le vide ou dans l'air (approximativement)

III-Application:

Toutes les charges électriques sont placées dans l'air où $K=9.10^9$ S.I. On donne $e=1,6.10^{-19}$ C Deux boules ponctuelles portant des charges $q_A=-3~\mu C$ et $q_B=3~\mu C$ sont fixées respectivement en A et en B comme le montre la figure ci-dessous.

- 1. La charge q_A a été créée par perte ou par gain d'électrons ? Calculer le nombre d'électrons perdus ou gagnés.
- 2. La charge q_B a été créée par perte ou par gain d'électrons ? Donner le nombre d'électrons perdus ou gagnés.
- 3. Représenter les deux éléments de l'interaction électrostatique entre les deux charges.
- 4. Sachant que ces deux charges interagissent par des forces d'intensité 8,1 N;
- a) Donner l'expression vectorielle de chaque force.
- b) Calculer, en cm, la valeur de la distance d = AB.

