ДИНАМИЧЕСКАЯ МОДЕЛЬ ПОЧВЕННОЙ АГРЕГАЦИИ

Н.А. Васильева 1 , А.А. Владимиров 1,5 , А.П. Смирнов 3 , С.А. Матвеев 3 , Е.Е. Тыртышников 4 , А.В. Юдина 1,2 , Е.Ю. Милановский 1,2 , Е.В. Шеин 1,2

¹Почвенный институт им. В.В. Докучаева, Москва; ²Факультет почвоведения, МГУ им. М.В. Ломоносова, Москва; ³ Факультет вычислительной математики и кибернетики, МГУ им. М.В. Ломоносова, Москва; ⁴Институт вычислительной математики, Москва; ⁵Объединенный институт ядерных исследований, Дубна e-mail: nadezda.vasilyeva@gmail.com

Почвенные биохимические взаимодействия на микроуровне, происходящие в обратной связи с физической агрегацией частиц, приводят к формированию почвенных режимов, наблюдаемых на макроуровне. Это важное явление является интересным случаем самоорганизации в сложных системах. В настоящем исследовании мы разработали физически-обоснованную математическую модель почвенной агрегации, учитывающую известные биологические нелинейные обратные связи с физическими факторами среды. Согласно нашим предшествующим экспериментальным исследованиям, органического вещества к воде является важным свойством, влияющим на структуры почвы. Поэтому, смачиваемость органического вещества почвы принята за основной критерий различия между типами органического вещества в нашей модели. Локальная часть математической модели сформулирована В виде системы нелинейных обыкновенных дифференциальных уравнений, включающих кинетические уравнения реакций для биологических процессов и коагуляции/адсорбции/адгезии и уравнения агрегации-фрагментации типа Смолуховского. Для параметризации модели применен быстрый алгоритм численного решения для такого типа уравнений, разработанный авторами. В дополнение к собственным экспериментальным и литературным данным распределений агрегатов по размеру в почвах с известными физическими свойствами, для параметризации данной модели поставлен специальный эксперимент по получению распределений микроагрегатов по размеру с применением лазерной дифрактометрии и анализа формы капли и теплоты смачивания. Настоящая динамическая модель почвенной агрегации разрабатывается далее как распределенная модель для описания формирования структуры в почвенном профиле. Полная модель имеет целью описание механизмов влияния почвенной структуры на скорость разложения органического вещества на макроскопическом уровне (оцениваемого по величине гетеротрофного дыхания почвы и устойчивому динамическому равновесию содержания в ней органического вещества) и прогнозирование изменений почвенных свойств при внешних воздействиях.