

Halting Bad Data in Its Tracks

Real-time Quality Management for Data Mesh

Reach out

Martijn Beenker

- martijn.beenker@teamrockstars.nl
- in linkedin.com/in/martijnbeenker/
- github.com/LowerKees

Bad data: a case study

→ The directional flow of data

Why should you care?

Problem 1: quality issues spread like wildfire through a data mesh

Data Warehouse

Data Mesh

Quality issue examples:

- Double records being included in the set
- Domain values that seem invalid (outdoor temperature reads of 60C+, financial transaction amount > 100 mln), public transport speeds > 150 kmph.
- Misuse of fields
- Misuse of tables
-

ROCKSTARS IT

Problem 2: Your tables aren't what they seem...

```
df = spark.read.json("path/to/src")
     df.write.format("delta")
     .mode("overwrite")
.option("overwriteSchema", "true") # This changes the whole game
.saveAsTable("sales", "path/to/table")
```


Quiz time!

```
true_schema = StructType(
        StructField("id", StringType(), True),
       StructField("amt", DecimalType(16, 8), True),
       StructField("from", StringType(), True),
       StructField("to", StringType(), True),
        StructField("dts", TimestampType(), True),
string_schema = StructType(
        StructField("id", StringType(), True),
       StructField("amt", StringType(), True), # Changed to string
       StructField("from", StringType(), True),
       StructField("to", StringType(), True),
       StructField("dts", TimestampType(), True),
integer schema = StructType(
        StructField("id", StringType(), True),
        StructField("amt", DecimalType(16, 8), True),
       StructField("from", IntegerType(), True), # changed from string to integer
       StructField("to", StringType(), True),
       StructField("dts", TimestampType(), True),
```

ROCKSTARS IT

Problem 3: your code is riddled with runtime schema inspection

Go from this: To this:

```
def get_year(df: DataFrame, col_name: str) -> DataFrame:
    """Get the year from a date or timestamp column"""
    return df.withColumn("year", year(col(col_name)))
```


Clustering our problems

Recap

Data quality

- Owned by the data producer
- More expensive to check than schema issues

Schema

- Caused by flexibility of framework
- Owned by the data consumer
- Less expensive to check than schema issues

ROCKSTARS IT

Plotting data quality and assumption validation in the case

The directional flow of data

Adding a jobs and dq products swim lane

The directional flow of data

Plotting data quality and assumption jobs and groducts in the case study (level 1)

→ The directional flow of business data

Professionalize your poor man's approach...

- Well maintained
- Fits your current processing framework
- Allows for separation of checks and implementation
- Produces standardized outcome that can be parsed into a new data product

Plotting data quality and assumption jobs and good dq products in the case study

- The directional flow of business data
- The directional flow of data quality data

Conclusion

Summing up producer and consumer benefits

Producer

- 1. Create transparency on the subject of data quality
- Enable consumers to make data driven decisions in data usage
- 3. Enable data stewards to make data driven decisions
- 4. Perform expensive checks only once

Consumer

- 1. Safe-guard the integrity of your data product
 - Only read DQ checks that impact your data products
 - Add DQ checks that are uniquely yours
- 2. Reduce code complexity by minimizing the need for schema inspection

Is... is that it?

Yes: it's late and you want to go home

But...

- More scripts in the repo that we didn't discuss
- More slides in the deck that help with implementation (and navigating dependency hell) and determining the maturity level and matching approach
- More DQ issues in the repo for you to try out

Thank you very much for being here

Selecting a framework that's right for you

	Great expectations	Soda CL	Data contract cli	Pandera
Maintenance	Good	Sparsely	Good	Good
Fit processing framework	Supports Spark data frame	Doesn't support Spark data frames, requires a SQL interface.	Supports parquet, delta, json and csv formats	Only supports pandas data frames, so conversion is needed
Separates checks and interpretation	Yes	Yes	Yes	Yes, but validates at runtime using decorators
Standardized outcome	Json format available	Supports local output in JSON or CSV	Json format available	
Additional considerations	Heavy push to paid version	Heavy push to a paid version	Depends on availability of server type	Supports pandas, pyspark, polars, dask, modin

Great expectations

Soda core

pandera

Great Expectations terminology

Great expectations, pyspark, delta, python

sources

- https://martinfowler.com/articles/data-mesh-principles.html
- https://datacontract.com
- https://greatexpectations.io/expectations/

Maturity level of the organization

Technical next step

Level 5: I've never seen this...

Level 4: pipelines respond automatically to data quality findings

Level 3: data governance is guided by data driven quality insights

Level 2: teams write more robust pipelines based on validated schema assumptions

Level 1: no checks and balances

Automate verification of data contract compliance

Consume dq metrics and automate data processing response

Implement data quality metric publication and consumption

Implement input validation for consuming teams

Maturity level of the organization

Technical next step

Level 5: I've never seen this...

Level 4: pipelines respond automatically to data quality findings

Level 3: data governance is guided by data driven quality insights

Level 2: teams write more robust pipelines based on validated schema assumptions

Level 1: no checks and balances

Automate verification of data contract compliance

Consume dq metrics and automate data processing response

Implement data quality metric publication and consumption

Implement input validation for consuming teams

Maturity level of the organization

Technical next step

Level 5: I've never seen this...

Level 4: pipelines respond automatically to data quality findings

Level 3: data governance is guided by data driven quality insights

Level 2: teams write more robust pipelines based on validated schema assumptions

Level 1: no checks and balances

Automate verification of data contract compliance

Consume dq metrics and automate data processing response

Implement data quality metric publication and consumption

Implement input validation for consuming teams

Presentation Title

Maturity level of the organization

Technical next step

Level 5: I've never seen this...

Level 4: pipelines respond automatically to data quality findings

Level 3: data governance is guided by data driven quality insights

Level 2: teams write more robust pipelines based on validated schema assumptions

Level 1: no checks and balances

Automate verification of data contract compliance

Consume dq metrics and automate data processing response

Implement data quality metric publication and consumption

Implement input validation for consuming teams

A poor man's input validation

```
def check column names(
   actual schema: StructType,
   expected schema: StructType,
   error on additional cols: bool = False,
 -> None:
   expected column names = [field.name for field in expected schema]
   actual column names = [field.name for field in actual schema]
   not found = []
    for expected_column_name in expected_column_names:
       if expected column name not in actual column names:
           not_found.append(expected_column_name)
   if len(not found) > 0:
       raise ValueError(f"Expected column name(s) {not found} not found in source")
   if error on additional cols:
       check column names(
           actual schema=expected schema,
           expected schema=actual schema,
           error on additional cols=False,
```

ROCKSTARS IT

Pros

- Quick to build
- Matches your team's need
- Low code complexity

Cons:

- Harder to learn for newcomers
- Hard to standardize output over teams