

Narrow Band for IoT

Isabella Mi Hyun Kim, Vu Diep 5ISS_A2 2019-2020

SUMMARY

l.	Introduction	. 3
II.	Physical Layer	4
•	Frequencies, BW & Data Rate	
•	Modes of operation	
•	Modulation	
•	Channel access	
II.	MAC Layer	. 8
•	Power consumption	
•	Security	
V.	Overview	17

Introduction

 Narrowband IoT (NB-IoT) is a Low Power Wide Area Network (LPWAN) radio technology standard developed by 3GPP (3rd Generation Partnership Project) to enable a wide range of cellular devices and IoT services

• Release 13 was launched in June 2016

 Main goal: achieve indoor/outdoor coverage, low cost, long battery life, and to support massive machine-type communication (mMTC)

• In competition with networks like LoRa and Sigfox

Physical Layer - Frequencies, BW & Data Rate

 Only uses licensed LTE frequency bands, differently from Sigfox and LoRa that use Unlicensed ISM (Industrial Scientific and Medical) bands

• Frequency band of 180 kHz bandwidth => low cost

• Data rate for transmission is limited at 250 Kbits/s

					-		
E-UTRA		1	erating band	Downlink (DL	9 4	200	Duplex
Operating	BS receive		BS transmit			Mode	
Band	UE transmit			UE receive			
Dana	F _{UL_low}	-	F _{UL_high}	F _{DL_low}	-	F _{DL_high}	
1	1920 MHz	200	1980 MHz	2110 MHz	-	2170 MHz	HD-FDD
2	1850 MHz	-	1910 MHz	1930 MHz	-	1990 MHz	HD-FDD
3	1710 MHz	770	1785 MHz	1805 MHz	-	1880 MHz	HD-FDD
5	824 MHz	-	849 MHz	869 MHz	-	894MHz	HD-FDD
8	880 MHz	-	915 MHz	925 MHz	-	960 MHz	HD-FDD
11	1427.9 MHz	-	1447.9 MHz	1475.9 MHz	-	1495.9 MHz	HD-FDD
12	699 MHz	100	716 MHz	729 MHz	-	746 MHz	HD-FDD
13	777 MHz	-	787 MHz	746 MHz	-	756 MHz	HD-FDD
17	704 MHz	-	716 MHz	734 MHz	-	746 MHz	HD-FDD
18	815 MHz	227	830 MHz	860 MHz	_	875 MHz	HD-FDD
19	830 MHz	-	845 MHz	875 MHz	-	890 MHz	HD-FDD
20	832 MHz	=	862 MHz	791 MHz	-	821 MHz	HD-FDD
25	1850 MHz	-	1915 MHz	1930 MHz	-	1995 MHz	HD-FDD
26	814 MHz	=	849 MHz	859 MHz	-	894 MHz	HD-FDD
28	703 MHz	-	748 MHz	758 MHz	-	803 MHz	HD-FDD
31	452.5 MHz	-	457.5 MHz	462.5 MHz	-	467.5 MHz	HD-FDD
66	1710 MHz	_	1780 MHz	2110 MHz	_	2200 MHz	HD-FDD
70	1695 MHz	-	1710 MHz	1995 MHz	-	2020 MHz	HD-FDD

Physical Layer - Modes of operation

Flexible deployment with 3 modes of operation:

Physical layer - Modulation

NB-IoT employs the quadrature phase-shift keying (QPSK) modulation, with different methods:

- For downlink => Orthogonal Frequency-Division Multiple Access (OFDMA)
- For uplink => Single-Carrier Frequency Division Multiple Access (SC-FDMA)

Physical layer - Channel access

For downlink we have 3 channels:

- NPBCH, the narrowband physical broadcast channel
- NPDCCH, the narrow band physical downlink control channel
- NPDSCH, the narrow band physical downlink shared channel

For the uperlink we have 2 channels:

- NPUSCH, the narrowband physical uplink shared channel
- NPRACH, the narrowband physical random-access channel

MAC Layer

Power Consumption

Security

U-Blox Sara N211 NB-loT chip

Theoretical number: "10 years of connectivity with a single battery"

Theoretical number: "10 years of connectivity with a single battery"

Without Power Saving Mode (PSM)

OVERALL RESULTS FROM THE NB-IOT EXPERIMENTAL STUDY							
	Packet Interval	Avg. Current Consum.	Expec. Batt. Life				
Comm. Netw. A	30 s	27.7 mA	8.16 days				
Comm. Netw. B	30 s	57.7 mA	5.00 days				
Priv. Netw.	30 s	20.4 mA	9.97 days				

Theoretical number: "10 years of connectivity with a single battery"

Packet Interval

ACHIEVABLE NB-IOT BATTERY LIFETIME IN OPTIMIZED NETWORK CONFIGURATIONS

PSM Active

Optimized Peripheral

Comm Netw A 30 s 10.69 days 21.9 days 5 m 222.65 days 12.81 days 1 h 13.08 days 4.62 years 1 d 10.89 years 13.10 days Comm. Netw. B 30 s 6.00 days 7.3 days 5 m 76.65 days 11.72 days 1 h 12.97 days 2.12 years 13.10 days 1 d 9.77 years 18.25 days Priv Netw 30 s 9.97 days 5 m 12.70 days 175.2 days 1 h 13.07 days 4.01 years 13.10 days 10.73 years

With Power Saving Mode (PSM)

<u>Authentication</u>: The data which are sent to the cloud are authorized and are not replaced with another.

<u>Encryption</u>: External observer cannot understand the exchanged messages. Only the cloud with the decryption key can retrieve the messages.

Non-manipulation: The exchanged messages are not altered

Overview

Comparison between the different LWAN technologies (NB-IoT, Sigfox and LoRa):

Quality of service

- Sigfox and LoRa employ unlicensed spectra and asynchronous communication protocols
- **NB-IoT assures QoS** employs a licensed spectra and an LTE-based synchronous protocol

Energy consumption & Latency

- NB-IoT presents a **higher consumption of energy** due to its synchronous protocol and QoS
- NB-IoT presents a lower latency than LoRa and Sigfox

Overview

Scalability & Payload

- NB-IoT allows connectivity of up to **100K devices** per cell (compared to 50K per cell for Sigfox and LoRa)
- NB-IoT allows the transmission of up to **1600 bytes** of data (LoRa allows 243 bytes of data and Sigfox 12 bytes of data)

Range

- Sigfox: 10 km (in urban area), 40 km (in rural)
- LoRa: 5 km (urban) and 20 km (rural)
- NB-IoT: 1 km (urban), 10 km (rural) => lowest range

for your

Attention

