Fixed Points and Minimax Theorems

Joseph Newhall

14 Nov. 06

Definition 1: Suppose X, Y are nonempty sets and let $f: X \times Y \to \mathbb{R}$. We say f satisfies the minimax condition if

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)=\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Definition 1: Suppose X, Y are nonempty sets and let $f: X \times Y \to \mathbb{R}$. We say f satisfies the minimax condition if

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)=\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Main Question: Under what conditions on f, X and Y will f satisfy the minimax condition?

Definition 1: Suppose X, Y are nonempty sets and let $f: X \times Y \to \mathbb{R}$. We say f satisfies the minimax condition if

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)=\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Main Question: Under what conditions on f, X and Y will f satisfy the minimax condition? (some pictures)

Brouwer's Fixed Point Theorem: Let $f: D^n \to D^n$ be a continuous map. Then there is some $x \in D^n$ such that f(x) = x.

Brouwer's Fixed Point Theorem: Let $f: D^n \to D^n$ be a continuous map. Then there is some $x \in D^n$ such that f(x) = x.

Note: The theorem is still true if we replace D^n with any space homeomorphic to D^n .

1912: Brouwer proves his theorem for arbitrary n.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1937: Von Neumann solves a problem posed by Leon Walras,

concerning equilibria, using a generalization of Brouwer's Theorem.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1937: Von Neumann solves a problem posed by Leon Walras,

concerning equilibria, using a generalization of Brouwer's Theorem.

1941: Kakutani publishes his theorem.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1937: Von Neumann solves a problem posed by Leon Walras, concerning equilibria, using a generalization of Brouwer's Theorem.

1941: Kakutani publishes his theorem.

1944: Von Neumann proves his theorem. No fixed point theorem used.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1937: Von Neumann solves a problem posed by Leon Walras, concerning equilibria, using a generalization of Brouwer's Theorem.

1941: Kakutani publishes his theorem.

1944: Von Neumann proves his theorem. No fixed point theorem

used.

1950: John Nash writes his dissertation.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1937: Von Neumann solves a problem posed by Leon Walras, concerning equilibria, using a generalization of Brouwer's Theorem.

1941: Kakutani publishes his theorem.

1944: Von Neumann proves his theorem. No fixed point theorem used.

1950: John Nash writes his dissertation.

1952: John Nash publishes his theorem. Attributes the idea of

using Kakutani's Theorem to Dr. David Gale.

1912: Brouwer proves his theorem for arbitrary n.

1928: Von Neumann proves his first minimax theorem.

1937: Von Neumann solves a problem posed by Leon Walras, concerning equilibria, using a generalization of Brouwer's Theorem.

1941: Kakutani publishes his theorem.

1944: Von Neumann proves his theorem. No fixed point theorem used.

1950: John Nash writes his dissertation.

1952: John Nash publishes his theorem. Attributes the idea of

using Kakutani's Theorem to Dr. David Gale.

1952,1959: Fan Publishes his results concerning minimax theorems.

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \le \inf_{x \in X} \sup_{y \in Y} f(x, y).$$

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)\leq\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Proof: Inequality-ology

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)\leq\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Proof: Inequality-ology

Definition 2: Let X, Y be two nonempty sets. Let f be a real-valued function defined on $X \times Y$. We say $(\bar{x}, \bar{y}) \in X \times Y$ is a saddle point if

$$f(\bar{x}, y) \le f(\bar{x}, \bar{y}) \le f(x, \bar{y}), \forall x \in X, \forall y \in Y.$$

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)\leq\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Proof: Inequality-ology

Definition 2: Let X, Y be two nonempty sets. Let f be a real-valued function defined on $X \times Y$. We say $(\bar{x}, \bar{y}) \in X \times Y$ is a saddle point if

$$f(\bar{x}, y) \le f(\bar{x}, \bar{y}) \le f(x, \bar{y}), \forall x \in X, \forall y \in Y.$$

Proposition 2: Suppose X, Y are nonempty sets and let f be a real valued function on $X \times Y$. Then (\bar{x}, \bar{y}) is a saddle point if and only if

$$f(\bar{x}, \bar{y}) = \min_{x \in X} \sup_{y \in Y} f(x, y) = \max_{y \in Y} \inf_{x \in X} f(x, y).$$

$$\sup_{y\in Y}\inf_{x\in X}f(x,y)\leq\inf_{x\in X}\sup_{y\in Y}f(x,y).$$

Proof: Inequality-ology

Definition 2: Let X, Y be two nonempty sets. Let f be a real-valued function defined on $X \times Y$. We say $(\bar{x}, \bar{y}) \in X \times Y$ is a saddle point if

$$f(\bar{x}, y) \le f(\bar{x}, \bar{y}) \le f(x, \bar{y}), \forall x \in X, \forall y \in Y.$$

Proposition 2: Suppose X, Y are nonempty sets and let f be a real valued function on $X \times Y$. Then (\bar{x}, \bar{y}) is a saddle point if and only if

$$f(\bar{x}, \bar{y}) = \min_{x \in X} \sup_{y \in Y} f(x, y) = \max_{y \in Y} \inf_{x \in X} f(x, y).$$

Proof: More Inequality-ology

Proof:

Proof: For $x \in X$, define

$$F_{\times} = \{ y \in X | f(x,y) \ge f(y,y) \}.$$

Proof: For $x \in X$, define

$$F_{\times} = \{ y \in X | f(x,y) \ge f(y,y) \}.$$

Since f is continuous, F_x is closed $\forall x \in X$.

Proof: For $x \in X$, define

$$F_{\times} = \{ y \in X | f(x,y) \ge f(y,y) \}.$$

Since f is continuous, F_x is closed $\forall x \in X$. We need to show $\bigcap_{x \in X} F_x \neq \emptyset$.

Proof: For $x \in X$, define

$$F_{\times} = \{ y \in X | f(x,y) \ge f(y,y) \}.$$

Since f is continuous, F_x is closed $\forall x \in X$. We need to show $\bigcap_{x \in X} F_x \neq \emptyset$. Since X is compact and each F_x is closed, it is enough to show $\{F_x\}$ satisfies the Finite Intersection Condition

4D > 4B > 4B > 4B > B 990

Proof: For $x \in X$, define

$$F_{x} = \{y \in X | f(x,y) \ge f(y,y)\}.$$

Since f is continuous, F_x is closed $\forall x \in X$. We need to show $\bigcap_{x \in X} F_x \neq \emptyset$. Since X is compact and each F_x is closed, it is enough to show $\{F_x\}$ satisfies the Finite Intersection Condition, i.e., for any $x_1, ..., x_n \in X$, $\bigcap_{i=1}^n F_{x_i} \neq \emptyset$.

Proof: For $x \in X$, define

$$F_{x} = \{y \in X | f(x,y) \ge f(y,y)\}.$$

Since f is continuous, F_x is closed $\forall x \in X$. We need to show $\bigcap_{x \in X} F_x \neq \emptyset$. Since X is compact and each F_x is closed, it is enough

to show $\{F_x\}$ satisfies the Finite Intersection Condition, i.e., for

any
$$x_1,...,x_n \in X, \bigcap^n F_{x_i} \neq \emptyset$$
.

Let $\{x_1,...,x_n\}\subseteq X$ and let $K=co(x_1,...,x_n)$ be their convex hull.

Proof: For $x \in X$, define

$$F_{x} = \{y \in X | f(x,y) \ge f(y,y)\}.$$

Since f is continuous, F_X is closed $\forall x \in X$. We need to show $\bigcap_{x \in X} F_X \neq \emptyset$. Since X is compact and each F_X is closed, it is enough

to show $\{F_x\}$ satisfies the Finite Intersection Condition, i.e., for

any
$$x_1,...,x_n \in X$$
, $\bigcap_{i=1}^n F_{x_i} \neq \emptyset$.

Let $\{x_1,...,x_n\}\subseteq X$ and let $K=co(x_1,...,x_n)$ be their convex hull. Since X is convex, $K\subseteq X$.

For each i=1,2,...,n, define $g_i:K\to\mathbb{R}$ via $g_i(y)=\max\{f(y,y)-f(x_i,y),0\}$, for $y\in K$. Then each g_i is continuous and non-negative.

For any $y \in K$, write $y = \sum_{i=1}^{n} a_i x_i$, where $a_i \ge 0$ and $\sum_{i=1}^{n} a_i = 1$.

Then TFAE:

- a) $f(x_i, y) \ge f(y, y)$, for i = 1, 2, ..., n
- b) $g_i(y) = 0$, for i = 1, 2, ..., n
- c) $a_i \sum_{k=1}^n g_k(y) = g_i(y)$, for i = 1, 2, ..., n

Next, let $S=\{(a_1,...,a_n)\in\mathbb{R}^n|a_i\geq 0,\sum a_i=1\}$ Then S is a compact subset of \mathbb{R}^n . Let $\psi:S\to S$ via $\psi(a_1,...,a_n)=(a'_1,...,a'_n)$, where

$$a'_{i} = \frac{a_{i} + g_{i}(\sum_{j=1}^{n} a_{j} x_{j})}{1 + \sum_{k=1}^{n} g_{k}(\sum_{j=1}^{n} a_{j} x_{j})}$$

Note that ψ really doe map into S. Also, ψ is continuous since each component function is continuous. Since ψ is a continuous map from the compact S into itself,the Brouwer Fixed Point Theorem says ψ must have some fixed point, $(a_1,...,a_n)$. Let $y = \sum_{i=1}^n a_i x_i$. Then for each i = 1,...n

$$a_i = \frac{a_i + g_i(y)}{1 + \sum_{k=1}^n g_k(y)}$$

$$\Rightarrow a_i \sum_{k=1}^n g_k(y) = g_i(y)$$

But this is condition (c) from above, which is equivalent to

$$f(x_i, y) \ge f(y, y)$$
, for $i = 1, 2, ..., n$.

Thus
$$y \in \bigcap_{i=1}^n F_{x_i} \Rightarrow \bigcap_{i=1}^n F_{x_i} \neq \emptyset \Rightarrow \bigcap_{x \in X} F_x \neq \emptyset$$
.

Lemma 2: Suppose L_1, L_2 are topological vector spaces and suppose $X_1 \subseteq L_1, X_2 \subseteq L_2$ are nonempty compact convex subsets. Let $f_1, f_2 : X = X_1 \times X_2 \to \mathbb{R}$ be continuous functions such that $f_1(x,y)$ is concave in x for each fixed y and $f_2(x,y)$ is concave in y for each fixed x. Then there exists $\hat{x} = (\hat{x_1}, \hat{x_2}) \in X$ such that

$$f_1(\hat{x_1}, \hat{x_2}) = \max_{x_1 \in X_1} f(x_1, \hat{x_2})$$
 and $f_2(\hat{x_1}, \hat{x_2}) = \max_{x_2 \in X_2} f(\hat{x_1}, x_2).$

Lemma 2: Suppose L_1, L_2 are topological vector spaces and suppose $X_1 \subseteq L_1, X_2 \subseteq L_2$ are nonempty compact convex subsets. Let $f_1, f_2 : X = X_1 \times X_2 \to \mathbb{R}$ be continuous functions such that $f_1(x,y)$ is concave in x for each fixed y and $f_2(x,y)$ is concave in y for each fixed x. Then there exists $\hat{x} = (\hat{x_1}, \hat{x_2}) \in X$ such that

$$f_1(\hat{x_1}, \hat{x_2}) = \max_{x_1 \in X_1} f(x_1, \hat{x_2})$$
 and $f_2(\hat{x_1}, \hat{x_2}) = \max_{x_2 \in X_2} f(\hat{x_1}, x_2).$

Proof: Apply the previous lemma to $g: X \times X \to \mathbb{R}$ given by

$$g(x, y) = f_1(x_1, y_2) + f_2(y_1, x_2)$$
, where $x = (x_1, x_2)$; $y = (y_1, y_2)$.

This gives an $\hat{x} = (\hat{x_1}, \hat{x_2})$. Check that this works.

Theorem(Fan 1959): Let X, Y be nonempty compact convex sets, each in a topological vector space. Suppose that f is real-valued continuous function on $X \times Y$ such that for each fixed $y \in Y$, f(x,y) is a convex function of x, and for each fixed $x \in X$, f(x,y) is a concave function of y. Then there exists $\bar{x} \in X$ and $\bar{y} \in Y$ such that (\bar{x},\bar{y}) is a saddle point of f, i.e.

$$f(\bar{x}, \bar{y}) = \min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Theorem(Fan 1959): Let X, Y be nonempty compact convex sets, each in a topological vector space. Suppose that f is real-valued continuous function on $X \times Y$ such that for each fixed $y \in Y$, f(x,y) is a convex function of x, and for each fixed $x \in X$, f(x,y) is a concave function of y. Then there exists $\bar{x} \in X$ and $\bar{y} \in Y$ such that (\bar{x},\bar{y}) is a saddle point of f, i.e.

$$f(\bar{x}, \bar{y}) = \min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Proof: Apply lemma 2 to $f_1 = -f$ and $f_2 = f$. Check it all works.

Theorem (Von Neumann): Let c_{ik} be an arbitrary set of real numbers, $1 \le i \le n, 1 \le k \le m$. Define the sets

$$S = {\vec{\xi} = (\xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^n | \xi_i \ge 0, \sum_{i=1}^n \xi_i = 1}$$

$$T = {\vec{\eta} = (\eta_1, \eta_2, ..., \eta_m) \in \mathbb{R}^m | \eta_k \ge 0, \sum_{k=1}^m \eta_k = 1}$$

Define $K: S \times T \to \mathbb{R}$ via $K(\vec{\xi}, \vec{\eta}) = \sum_{i=1}^{n} \sum_{k=1}^{m} c_{ik} \xi_i \eta_k$. Then there exists $(\vec{\xi}_o, \vec{\eta}_o) \in S \times T$ such that

$$K(\vec{\xi_o}, \vec{\eta_o}) = \min_{\vec{\xi} \in S} \max_{\vec{\eta} \in T} K(\vec{\xi}, \vec{\eta}) = \max_{\vec{\eta} \in T} \min_{\vec{\xi} \in S} K(\vec{\xi}, \vec{\eta})$$

Theorem (Von Neumann): Let c_{ik} be an arbitrary set of real numbers, $1 \le i \le n, 1 \le k \le m$. Define the sets

$$S = {\vec{\xi} = (\xi_1, \xi_2, ..., \xi_n) \in \mathbb{R}^n | \xi_i \ge 0, \sum_{i=1}^n \xi_i = 1}$$

$$T = {\vec{\eta} = (\eta_1, \eta_2, ..., \eta_m) \in \mathbb{R}^m | \eta_k \ge 0, \sum_{k=1}^m \eta_k = 1}$$

Define $K: S \times T \to \mathbb{R}$ via $K(\vec{\xi}, \vec{\eta}) = \sum_{i=1}^{n} \sum_{k=1}^{m} c_{ik} \xi_i \eta_k$. Then there exists $(\vec{\xi}_o, \vec{\eta}_o) \in S \times T$ such that

$$K(\vec{\xi_o}, \vec{\eta_o}) = \min_{\vec{\xi} \in S} \max_{\vec{\eta} \in T} K(\vec{\xi}, \vec{\eta}) = \max_{\vec{\eta} \in T} \min_{\vec{\xi} \in S} K(\vec{\xi}, \vec{\eta})$$

Proof: Use Fan's Theorem: S & T are compact convex subsets and K is linear in $\vec{\xi}$ for fixed $\vec{\eta}$ (and thus convex in $\vec{\xi}$ for fixed $\vec{\eta}$) and linear in $\vec{\eta}$ for fixed $\vec{\xi}$ (and thus concave in $\vec{\eta}$ for fixed $\vec{\xi}$).

Lemma 3(Fan,1952): Let X, Y be nonempty compact convex sets, each in a topological vector space. Suppose that f is a real-valued continuous function on $X \times Y$ such that for each fixed $y \in Y$, f(x,y) is a lower semicontinuous function of x, and for each fixed $x \in X$, f(x,y) is an upper semicontinuous function of y. Then

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$$

holds if and only if the following condition is satisfied: For any two finite sets $\{x_1, x_2, ..., x_n\} \subseteq X$ and $\{y_1, y_2, ..., y_m\} \subseteq Y$, there exists $(x_o, y_o) \in X \times Y$ such that

$$f(x_o, y_k) \le f(x_i, y_o), 1 \le i \le n, 1 \le k \le m.$$

Lemma 3(Fan,1952): Let X, Y be nonempty compact convex sets, each in a topological vector space. Suppose that f is a real-valued continuous function on $X \times Y$ such that for each fixed $y \in Y$, f(x,y) is a lower semicontinuous function of x, and for each fixed $x \in X$, f(x,y) is an upper semicontinuous function of y. Then

$$\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$$

holds if and only if the following condition is satisfied: For any two finite sets $\{x_1, x_2, ..., x_n\} \subseteq X$ and $\{y_1, y_2, ..., y_m\} \subseteq Y$, there exists $(x_o, y_o) \in X \times Y$ such that

$$f(x_o, y_k) \leq f(x_i, y_o), 1 \leq i \leq n, 1 \leq k \leq m.$$

Proof: Similar to the proof of the Main Lemma.

Theorem(Fan 1959): Let X, Y be nonempty compact convex sets, each in a topological vector space and let f be a real-valued function on $X \times Y$. Suppose that for each fixed $y \in Y$, f(x,y) is a continuous convex function of x, and for each fixed $x \in X$, f(x,y) is a continuous concave function of y. Then there exists $\bar{x} \in X$ and $\bar{y} \in Y$ such that (\bar{x},\bar{y}) is a saddle point of f, i.e.

$$f(\bar{x}, \bar{y}) = \min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Theorem(Fan 1959): Let X, Y be nonempty compact convex sets, each in a topological vector space and let f be a real-valued function on $X \times Y$. Suppose that for each fixed $y \in Y$, f(x,y) is a continuous convex function of x, and for each fixed $x \in X$, f(x,y) is a continuous concave function of y. Then there exists $\bar{x} \in X$ and $\bar{y} \in Y$ such that (\bar{x},\bar{y}) is a saddle point of f, i.e.

$$f(\bar{x}, \bar{y}) = \min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y).$$

Proof: Use lemma 3 and Von Neumann's Theorem.

Bibliography

- [1] Lorin W. Woo, Maximal Points of Convex Sets in Locally Convex Topological Vector Spaces, 1999
- [2] Ky Fan, Minimax Theorems, Proc. Nat. Acad. Sci. 39:42-47
- [3] John Nash, Equilibrium Points in *N*-Person Games, *Proc. Nat. Acad. Sci*.36:48-49
- [4] James R. Munkres, *Topology, 2nd Edition*, Prentice Hall Inc.,1975