Kinematic viscosity of oi

Density of lube oil

Specific heat of lube oil

Specific heat of water

Thermal coductivity of lube oil at 55 C

Viscosity of lube oil

Cooling water inlet

Cooling water outlet

Oil inlet temp

Oil outlet temp

Temp difference of oil

Temp difference of water

Volumetric flow rate of oil

Heat balance

 $v_{oil} := 45.5 \cdot 10^{-2} \text{ St} = 4.55 \cdot 10^{-5} \text{ s Gy}$

 $\rho_{oil} := 869 \, \frac{\mathrm{kg}}{\mathrm{m}}$

 $c_{oil} := 2.1413 \frac{\text{kJ}}{\text{kg K}} = 2141.3 \frac{\text{Gy}}{\text{K}}$

 $c_{water} := 4.1868 \frac{kJ}{kg K} = 4186.8 \frac{Gy}{K}$

 $k_{oil} := 0.13 \frac{W}{m \text{ K}} = 0.13 \frac{N}{\text{s K}}$

 $\mu_{oil} := 15 \cdot 10^{-3}$ Pa s = 0.015 s Pa

Important

Assumed

Constants

 $T_{wi} := 35 \, ^{\circ}\text{C} = 308.15 \, \text{K}$

 $T_{wo} := 39 \, ^{\circ}\text{C} = 312.15 \, \text{K}$

 $T_{oi} := 65 \, ^{\circ}\text{C} = 338.15 \, \text{K}$

 $T_{oo} := 45 \, ^{\circ}\text{C} = 318.15 \, \text{K}$

 $\Delta t_1 := T_{oi} - T_{oo} = -253.15~^{\circ}\text{C}$ $\Delta T_1 := T_{oi} - T_{wo} = -247.15~^{\circ}\text{C}$

 $\Delta t_2 := T_{wo} - T_{wi} = -269.15$ °C $\Delta T_2 := T_{oo} - T_{wi} = -263.15$ °C

 $Q_{oil} := 450 \frac{L}{min}$

 $m_{oil} := Q_{oil} \cdot \rho_{oil} = 6.5175 \frac{\text{kg}}{\text{s}}$

$$t_2$$

Mass flow of water
$$m_{water} := \frac{\phi_t}{c_{water} \cdot \Delta t_2} = 16.6666 \frac{\text{kg}}{\text{s}}$$

$$\Delta T_{ln} := \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} = 16.745 \text{ K}$$

For first trial lets take

Number of tube side pass

$$N_p := 4$$

$$R := \frac{T_{oi} - T_{oo}}{T_{wo} - T_{wi}} = 5 \qquad S := \frac{T_{wo} - T_{wi}}{T_{oi} - T_{wi}} = 0.1333$$

From fig

If Ft is < 0.8 then selected config of HE is not appropiate

$$F_{t} := 0.95$$

Mean temp difference

$$\Delta T_m := F_t \cdot \Delta T_{1n} = 15.9077 \text{ K}$$

Assume overall heat transfer coeff

$$U := 400 \frac{W}{2} = 400 \frac{kg}{3}$$

Provisional area for heat transfer area for first trial cal

$$A := \frac{\phi_t}{U \cdot \Delta T_m} = 43.8653 \text{ m}^2$$

Assume tube diameter

$$d_o := 15.875 \text{ mm}$$

L := 3.048 m

Number of tubes

$$N_{t} := \frac{A}{\mathbf{m} \cdot d_{0} \cdot L} = 288.5641$$

A. For $P_r/d_o = 1.25$, Triange	Table 6.2 ular Pitch	Constants for	Eq. (6.1)		
No. of tube side passes	Stage 1 Deci	4.4.22sin	16 24 E		The second
k_1	0.319	0.249	0.175	0.0743	0.0365
n_1	2.142	2.207	2.285	2.499	2.675
3. For $P_r/d_o = 1.25$, Square	Table 6.3 Pitch	Constants for	Eq. (6.1)		
No. of tube side passes	1	2			and the same of th
140. of tube side passes	1	. 2	4	6	8
k ₁	0.215	0.156	0.158	0.0402	0.0331

Prandtl number cal

selecting BEM type heat exchanger and triangular pitch

$$P_t := 1.25$$

$$d_{o} = 15.875 \text{ mm}$$

Tube bundle diameter

$$D_b := d_o \cdot \left(\frac{N_t}{k_1}\right)^{\frac{1}{n_1}} = 406.1445 \text{ mm}$$

Let the diameter clearane between shell ID and Db be

C := 12 mm

Shell ID

$$D_i := D_b + C = 418.1445 \text{ mm}$$

Evaluation of hi

Tube side flow area

 $d_i := 13.3858 \text{ mm}$

$$a_t := \left(\frac{480}{N_p}\right) \cdot \frac{\pi}{4} \cdot d_i^2 = 0.016887 \text{ m}^2$$

Tube side mass velocity

$$G_t := \frac{m_{water}}{a_t} = 986.9305 \frac{kg}{2}$$

$$\mu_{water} := 0.73 \cdot 10^{-3}$$
 Pas

Reynolds number in tubes

$$Re_t := \frac{d_i \cdot G_t}{\mu_{water}} = 18097.06$$

$$Pr_{oil} := \frac{c_{oil} \cdot \mu_{oil}}{k_{oil}} = 247.0731$$

$$Pr_{oil} := \frac{c_{oil} \cdot \mu_{oil}}{k_{oil}} = 247.0731$$

$$k_{water} := 0.628 \; \frac{\mathrm{W}}{\mathrm{m \; K}}$$

$$\textit{Pr}_{\textit{water}} := \frac{c_{\textit{water}} \cdot \mu_{\textit{water}}}{k_{\textit{water}}} = 4.8668$$

Using sieder tate equation

$$Nu_{sieder} := 1.86 \cdot \left(Re_t \cdot Pr_{oil} \cdot \frac{d_i}{L} \right)^{0.33} \cdot \left(\frac{\mu_{oil}}{\mu_{water}} \right)^{0.14} = 74.1329$$

$$h_{isieder} := Nu_{sieder} \cdot \frac{k_{oil}}{d_i} = 719.9632 \cdot \frac{W}{m \cdot K}$$

Using dittus bolter equation

$$Nu_{dittus} := 0.023 \cdot Re_{t}^{0.8} \cdot Pr_{water}^{0.33} \cdot \left(\frac{\mu_{oil}}{\mu_{water}}\right)^{0.14} = 150.797$$

$$h_{idittus} := Nu_{dittus} \cdot \frac{k_{water}}{d_i} = 7074.7018 \cdot \frac{W}{m \cdot K}$$

Evaluation of ho

$$x := 1.25$$

Shell Side flow area
$$X := 1.25$$
 $B_S := \frac{D_i}{5} = 83.6289 \text{ mm}$

$$P_1 := x \cdot d_0$$

$$A_s := \left(\frac{P_1 - d_o}{P_1}\right) \cdot D_i \cdot B_s = 0.00699 \text{ m}^2$$

Shell side mass velocity

$$G_s := \frac{m_{oil}}{A_s} = 931.8977 \frac{\text{kg}}{\text{m} \text{ s}}$$

$$u_s := \frac{G_s}{\rho_{ojl}} = 1.0724 \frac{m}{s}$$

Shell side equivalent diameter for triagular pitch

$$d_{e} := \frac{1.1}{d_{o}} \cdot \left(P_{I}^{2} - \left(0.907 \cdot d_{o}^{2} \right) \right) = 11.4467 \text{ mm}$$

Shell side reynolds number

$$Re_s := \frac{d_e \cdot G_s}{\mu_{oil}} = 711.14 \qquad Pr_{oil} = 247$$

From above fig for 25% baffle cut

$$J_h := 2 \cdot 10^{-2}$$

$$Nu := J_h \cdot Re_s \cdot Pr_{oil} \cdot \left(\frac{\mu_{oil}}{\mu_{water}}\right)^{0.14} = 136.2643$$

$$h_o := Nu \cdot \frac{k_{oil}}{d_e} = 1547.5561 \cdot \frac{W}{m \cdot K}$$

Calculation of overall heat transfer coeff

Shell side HTC

 $h_o = 1547.5561 \frac{W}{m \ K}$

OD of tube

 $d_{o} = 15.875 \text{ mm}$

ID of tube

 $d_i = 13.3858 \text{ mm}$

Thermal conductivity of tube wall material

$$k_{_{\mathbb{W}}} := 50 \, \frac{\mathbb{W}}{\mathbb{m} \, \mathbb{K}}$$

Fouling coeff for tube side fluid

$$h_{id} \coloneqq 5000 \; \frac{\mathrm{W}}{\mathrm{m}^2} \; \mathrm{K}$$

Fouling coeff for shell side fluid

$$h_{od} := 3000 \frac{\text{W}}{2}$$

Fluid	Fouling coefficient W/(m ² °C)	Fluid	Fouling coefficient W/(m ² °C)
Cooling water	3000–6000	Light Hydrocarbon	5000
Demineralized water	8000-10 000	Heavy Hydrocarbon	3000
Soft water	5000-8000	Aqueous Organic Solution	5000
Steam	4000-10 000	Vegetable oils	3000
Steam condensate	1500-5000	Caustic Solutions	5000
Brine	3000-5000	Gasoline	5000
Air	5000-10 000	Kerosene	3000-5000
Organic vapours	10 000	Light gas oil	3000-5000
Organic liquids	5000	Heavy gas oil	2000-3000
Heavy hydrocarbons	2000	Naphthas	5000
Aqueous salt solutions	3000-5000	Coal flue gas	1000

Overall HTC based on outside area of tubes

$$U_{o} := \frac{1}{\left(\frac{1}{h_{o}}\right) + \left(\frac{1}{h_{od}}\right) + \frac{d_{o} \cdot \ln \left(\frac{d_{o}}{d_{i}}\right)}{2 \cdot k_{w}} + \left(\frac{d_{o}}{d_{i} \cdot h_{id}}\right) + \left(\frac{d_{o}}{d_{i} \cdot h_{idittus}}\right)} = 708.5094 \frac{W}{\frac{2}{m} \text{ K}}$$

Heat transfer area required

$$A_r := \frac{\phi_t}{U_o \cdot \Delta T_m} = 24.7648 \text{ m}^2$$

% excess heat transfer area

$$Excess_{area} := \left(\frac{A}{A_r} - 1\right) = 77.1274 \%$$

Shell side pressure drop

Shell side friction factor for the different value of baffle cut $J_f \coloneqq 7.7 \cdot 10^{-2}$

shell inside diameter

$$D_s := 0.418 \text{ m}$$

Density of shell fluid

$$\rho_{water} := 869 \frac{\text{kg}}{3}$$

$$\Delta P_{S} := 8 \cdot J_{f} \cdot \left(\frac{D_{S}}{d_{e}}\right) \cdot \left(\frac{L}{B_{S}}\right) \cdot \frac{\rho_{water} \cdot u_{S}}{2} \cdot \left(\frac{\mu_{oil}}{\mu_{water}}\right)^{-0.14} = 268.3092 \text{ kPa}$$

Tube side pressure drop

m = 0.25 for Re ≤ 2100 or m = 0.14 for Re > 2100

m := 0.14

$$u_t := \frac{G_t}{\rho_{water}} = 1.1357 \frac{m}{s}$$

$$\Delta P_{t} := N_{p} \cdot \left[\left(8 \cdot J_{f} \cdot \left(\frac{L}{d_{i}} \right) \cdot \left(\frac{\mu_{oil}}{\mu_{water}} \right) \right)^{-m} + 2.5 \right] \cdot \left(\frac{\rho_{water} \cdot u_{t}}{2} \right) = 6.3392 \text{ kPa}$$