

Introduction to Internet Architecture – Limitations of Current Internet

Future Internet Communication Technologies

Prof. Dr. Panagiotis Papadimitriou

Internet Users in the World by Geographic Regions - 2015

Source: Internet World Stats - www.internetworldstats.com/stats.htm 3,366,261,156 Internet users estimated for November 30, 2015 Copyright © 2016, Miniwatts Marketing Group

Internet World Penetration Rates by Geographic Regions - November 2015

Source: Internet World Stats - www.internetworldststs.com/stats.htm Penetration Rates are based on a world population of 7,259,902,243 and 3,366,261,156 estimated Internet users on November 30, 2015. Copyright © 2016, Miniwatts Marketing Group

- Proliferation of internet applications:
 - Web, e-mail, FTP
 - Multimedia streaming, IPTV
 - Internet telephony (Skype, FaceTime, etc.)
 - Video conferencing
 - Online gaming
 - Remote terminal access
 - File distribution (peer-to-peer)
- It is very hard to predict the applications of tomorrow:
 - The evolution of the applications has been quite surprising so far

Application	Throughput	Packet Loss	Delay
Web	Elastic	No loss	Tolerant
File transfer	Elastic	No loss	Tolerant
E-mail	Elastic	No loss	Tolerant
Real-time video	100Kbps – 5Mbps	Tolerant	150 ms
Video on-demand	100Kbps – 5Mbps	Tolerant	some secs
Internet telephony	8Kbps – 128Kbps	Tolerant	100 ms

Internet Infrastructure

- Internet is composed of Autonomous Systems (ASes)
 - "Network of networks"
- Autonomous System (AS):
 - Independently administrative domain
 - More than 47,000 ASes
 - Internet Service Providers (ISPs)
 - Content Distribution Networks
 - Enterprise Networks
 - University Campus Networks

Internet Infrastructure Overview

- Internet Core:
 - Mesh of interconnected routers
 - Infrastructure offered by multiple ISPs

Internet Infrastructure Overview

- Internet Core:
 - Mesh of interconnected routers
 - Infrastructure offered by multiple ISPs
- Access Networks:
 - Connectivity service offered by ISPs or mobile operators

Internet Infrastructure Overview

- Internet Core:
 - Mesh of interconnected routers
 - Infrastructure offered by multiple ISPs
- Access Networks:
 - Connectivity service offered by ISPs or mobile operators
- End-systems:
 - Desktops, laptops, PDAs, other mobile terminals
 - Run applications (web, email, voice, video, etc.)

Tier-1 ISPs

Transit-free networks that peer with other Tier-1 ISPs

e.g., Sprint, Verizon, AT&T, Deutsche Telekom

Tier-2 ISPs

Peer with other ISPs but still purchase IP transit to reach at least some portion of the Internet

Peer with at least one Tier-1 ISP

Tier-3 ISPs

Solely purchase transit from other ISPs to reach the Internet

Peer with at least one Tier-2 ISP

Internet Paths Across Transit Providers

Figure from Computer Networking, A Top-Down Approach

 A Point of Presence (PoP) consists of access and backbone routers in a specific physical location (i.e., a city or large metropolitan area)

- Data plane:
 - Forwards packets from input to output (speed)
- Control plane:
 - Runs routing protocols to compute the paths that packets will follow

Institut für Kommunikations-Technik

Internet Layering

- Application:
 - Network application protocols
 - HTTP, FTP, SMTP, DNS, etc.
- Transport:
 - End-to-end data transfer
 - TCP, UDP
- Network:
 - Routing and packet forwarding between end-hosts
 - IP, OSPF, RIP, BGP, etc.
- Link:
 - Data transfer between a pair of neighboring nodes
 - Ethernet, PPP
- Physical:
 - Bits coding into signals for transmission over medium

Application	
Transport	
Network	
Link	

Physical

Limitations of Current Internet

- Address space depletion:
 - IANA's primary address pool was exhausted on February 3, 2011 when the last 5 blocks were allocated to the 5 Regional Internet Registries
 - IPv6 is only partially deployed
 - Network address translation (NAT) is currently the solution
- Lack of Quality-of-Service (QoS) support:
 - Hard to deploy QoS mechanisms (e.g., RSVP, DiffServ) across ISPs
 - Best-effort data delivery (i.e., no guarantees in terms of throughput or latency)
- Security:
 - Viruses, worms, spyware,
 - Denial of Service (DoS) attacks
 - Very hard to combat distributed DoS (DDoS) attacks which are launched by botnets

- Spam:
 - Content-based spam filters yield many false-positives
- Application deployment issues:
 - Middleboxes (e.g., NAT, firewall, IDS) violate Internet layering
 - They process packets above layer 3 (e.g., inspect or rewrite port numbers) without being the end-points of a connection
 - Applications tunneled over HTTP to pass firewalls
 - Hard to deploy TCP-incompatible transport protocols
- Lack of persistent data names:
 - When data is moved, the name is no longer valid
 - Currently addressed with DNS and HTTP redirections

Mobility

- Proliferation of mobile devices and applications
- Users want to access Internet without service disruption on-the-go
- Limited support for mobility (e.g., Mobile IP)

Multi-homing

- User devices (e.g., laptops, mobile phones) may have multiple interfaces (e.g., Wifi and 3G)
- Splitting traffic between interfaces can significantly increase throughput and provide resilience
- Multi-path routing and congestion control have not been yet deployed in the Internet

Architectural Ossification

- New technologies have been deployed only at the edge:
 - Congestion control protocols
 - Content distribution
 - Overlay routing
 - Peer-to-peer protocols
- The Internet core has remained almost unchanged:
 - Same protocols: IP(v4), BGP, DNS

Why the Internet has not evolved?

IPv4 was designed to be extensible (via the "Options" field)

Protocol version		ader gth	Type of Service	Total length			
Identification				Flags	Fragment offset		
Time-to-l	ive	Upper-layer protocol		Header checksum			
Source IP address							
Destination IP address							
Options (if any)							
Data							

Packets with IP options are likely to be dropped:

Option	# Paths	Success Rate
No option	17.457	100.00
Timestamp	6.049	34.65
Record Route	9.430	54.02

R. Fonseca, et al., "IP Options are not an option", 2005

- Packets with IP options have to be processed on the slow path:
 - Packet processing on the slow path is resource intensive
 - Network operators may prefer to configure the routers to drop packets with options to prevent the router's CPU overload
 - Cisco routers include a "drop-options" command

- IPv6 separates the use of options:
 - hop-by hop option header
 - end-to-end option header
- Hop-by-hop headers are intended for intermediate routers, and thus are the only ones that affect the Internet core
- Unfortunately, IPv6 deployment is very slow

References

- M. Handley, Why the Internet only just works, BT Journal 2006
- A. Feldmann, Internet Clean-Slate Design: What and Why?, ACM CCR 2007
- R. Fonseca, et al., **IP Options are not an option**, 2005