Pseudorandomness (V) & Key Exchange

601.642/442: Modern Cryptography

Fall 2020

PRF from PRG

Theorem (Goldreich-Goldwasser-Micali (GGM))

If pseudorandom generators exist then pseudorandom functions exist

• Notation: define G_0 and G_1 as

$$G(s) = G_0(s) \|G_1(s)\|$$

i.e., G_0 chooses left half of G and G_1 chooses right half

• Construction for *n*-bit inputs $x = x_1 x_2 \dots x_n$

$$F_k(x) = G_{x_n}(G_{x_{n-1}}(\dots(G_{x_1}(k))_{\dots}))$$

601.642/442: Modern Cryptography Pseudorandomness (V) & Key Exchar

PRF from PRG (contd.)

$$F_k(x) = G_{x_n}(G_{x_{n-1}}(\dots(G_{x_1}(k))_{\dots}))$$

- We can represent F_k as a binary tree of size 2^n
- \bullet The root corresponds to k
- Left and right child on level 1 and 2 are:

$$k_0 = G_0(k)$$
 and $k_1 = G_1(k)$

• Second level children:

$$k_{00} = G_0(k_0), \ k_{01} = G_1(k_0), \ k_{10} = G_0(k_1), \ k_{11} = G_1(k_1)$$

• At level $\ell, \, 2^{\ell}$ nodes, one for each path, denoted by $k_{x_1...x_{\ell}}$

601.642/442: Modern Cryptography Pseudorandomness (V) & Key Exchar

Proof Strategy

- Let's use Hybrid Arguments!
- <u>Problem</u>: If we replace each node in the tree one-by-one with random, then exponentially many hybrids. Hybrid lemma doesn't apply!
- **Observation:** Efficient adversary can only make polynomial queries
- Thus, only need to change polynomial number of nodes in the tree

Two layers of hybrids:

• First, define hybrids over the n levels in the tree. For every i, H_i is such that the nodes up to level i are random, but the nodes below are pseudorandom.

Two layers of hybrids:

- First, define hybrids over the n levels in the tree. For every i, H_i is such that the nodes up to level i are random, but the nodes below are pseudorandom.
- If H_1 and H_n are distinguishable with non-negligible advantage, then use hybrid lemma to find level i s.t. H_i and H_{i+1} are also distinguishable with non-negligible advantage

Two layers of hybrids:

- First, define hybrids over the n levels in the tree. For every i, H_i is such that the nodes up to level i are random, but the nodes below are pseudorandom.
- If H_1 and H_n are distinguishable with non-negligible advantage, then use hybrid lemma to find level i s.t. H_i and H_{i+1} are also distinguishable with non-negligible advantage
- Now, hybrid over the nodes in level i + 1 that are "affected" by adversary's queries, replacing each node one by one with random

Two layers of hybrids:

- First, define hybrids over the n levels in the tree. For every i, H_i is such that the nodes up to level i are random, but the nodes below are pseudorandom.
- If H_1 and H_n are distinguishable with non-negligible advantage, then use hybrid lemma to find level i s.t. H_i and H_{i+1} are also distinguishable with non-negligible advantage
- Now, hybrid over the nodes in level i + 1 that are "affected" by adversary's queries, replacing each node one by one with random
- Use hybrid lemma again to identify one node that is changed from pseudorandom to random and break PRG's security to get a contradiction

• Must make sure that all hybrids are implementable in polynomial time

- Must make sure that all hybrids are implementable in polynomial time
- Will use two key points to ensure this:

- Must make sure that all hybrids are implementable in polynomial time
- Will use two key points to ensure this:
 - 4 Adversary only makes polynomial number of queries

- Must make sure that all hybrids are implementable in polynomial time
- Will use two key points to ensure this:
 - 4 Adversary only makes polynomial number of queries
 - ② A random function can be efficiently implemented (using second method) if the number of queries are polynomial

- Must make sure that all hybrids are implementable in polynomial time
- Will use two key points to ensure this:
 - 4 Adversary only makes polynomial number of queries
 - ② A random function can be efficiently implemented (using second method) if the number of queries are polynomial
- Think: Formal proof?

Concluding Remarks

- Efficient PRFs from concrete assumptions: [Naor-Reingold97], [Banerjee-Peikert-Rosen12]
- Constrained PRFs: PRFs with "punctured" keys that are disabled on certain inputs [Boneh-Waters13, Kiayias-Papadopoulos-Triandopoulos-Zacharias13, Boyle-Goldwasser-Ivan14, Sahai-Waters14]
- Related-key Security: Evaluation of $F_s(x)$ does not help in predicting $F_{s'}(x)$ [Bellare-Cash10]
- Key-homomorphic PRFs: Given $f_s(x)$ and $f_{s'}(x)$, compute $f_{g(s,s')}(x)$ [Boneh-Lewi-Montgomery-Raghunathan13]

Key Exchange

Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all $a,b,c\in G,$ we have $(a\bullet b)\bullet c=a\bullet (b\bullet c)$
 - Identity: There exists an element e such that for all $a \in G$, we have $e \bullet a = a$
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Abelian Groups: $a \bullet b$ equal to $b \bullet a$
- Example: $(\mathbb{Z}, +)$

Cyclic Groups

- A group (G, \cdot) is a cyclic group if it is generated by a single element
- That is: $G = \{1 = e = g^0, g^1, \dots, g^{n-1}\}$, where |G| = n. (Here we are implicitly considering multiplicative groups.)
- Written as: $G = \langle g \rangle$
- Order of G: n

Discrete Logarithm Problem

- Let (G, \cdot) be a cyclic group of order p with generator g, where p is an n-bit "safe prime" number (i.e., p = 2q + 1 for some large prime q).
- Given $(g, b = g^a)$, where $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$, it is hard to predict a

Discrete Logarithm Problem: Definition

Definition (Discrete Logarithm Problem)

Let (G,\cdot) be a cyclic group of order p (where p is a safe prime) with generator g, then for every non-uniform PPT adversary \mathcal{A} , there exists a negligible function ε such that

$$\Pr[a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}, a' \leftarrow \mathcal{A}(G, p, g, g^a) : a = a'] \leqslant \varepsilon$$

Computational Diffie-Hellman Assumption

- Let G be a cyclic group (G, \cdot) of order p with generator g, where p is an n-bit safe prime number.
- Give (g, g^a, g^b) to the adversary
- Hard to find g^{ab}

Computational Diffie-Hellman Assumption: Definition

Definition (Computational Diffie-Hellman Assumption)

Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator g, then for every non-uniform PPT adversary \mathcal{A} , there exists a negligible function ε such that

$$\Pr[a, b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}, y \leftarrow \mathcal{A}(G, p, q, q^a, q^b) : q^{ab} = y] \leqslant \varepsilon$$

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order p with generator g, where p is an n-bit safe prime number.
- $\bullet \ \mathrm{Pick} \ b \overset{\$}{\leftarrow} \{0,1\}$
- If b = 0, send (g, g^a, g^b, g^{ab}) , where $a, b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$
- If b = 1, send (g, g^a, g^b, g^r) , where $a, b, r \leftarrow \{0, \dots, p-1\}$
- \bullet Adversary has to guess b
- Effectively: $(g, g^a, g^b, g^{ab}) \approx (g, g^a, g^b, g^r)$, for $a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and any g

Decisional Diffie-Hellman Assumption: Definition

Definition (Decisional Diffie-Hellman Assumption)

Let (G,\cdot) be a cyclic group of order p (where p is a safe prime) with generator g, then the following two distributions are computationally indistinguishable:

- $\{a, b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\} : (G, p, g, g^a, g^b, g^{ab})\}$
- $\{a, b, r \overset{\$}{\leftarrow} \{0, \dots, p-1\} : (G, p, g, g^a, g^b, g^r)\}$

Relationship

Relationship

$$DDH \implies CDH \implies DL$$

Key Agreement

- Alice and Bob want to share a key.
- They want to establish a shared by sending each other messages over a channel.
- However, there is an adversary (Eavesdropper) that is eavesdropping on this channel and sees the messages that are sent over it.
- How to securely establish a shared key while keeping it hidden from the eavesdropper?

Key Agreement: Definition

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_A = (r_A, \tau)$ and Bob's view $V_B = (r_B, \tau)$
- Eavesdropper's view $V_E = \tau$
- Alice outputs k_A as a function of V_A and Bob outputs k_B as a function of V_R
- Correctness: $\Pr_{r_A,r_B}[k_A=k_B]\approx 1$
- Security: $(k_A, V_E) \equiv (k_B, V_E) \approx (r, \tau)$

• Let (G,\cdot) be a cyclic group of order p (where p is a safe prime) with generator q.

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator g.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob

- Let (G,\cdot) be a cyclic group of order p (where p is a safe prime) with generator q.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends q^b to Alice

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator g.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator g.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (g^a, g^b)

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator q.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends q^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (q^a, q^b)
- Correctness?

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator q.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (g^a, g^b)
- Correctness?
- Security? Use DDH to say that g^{ab} is hidden from adversary's view

- Let (G, \cdot) be a cyclic group of order p (where p is a safe prime) with generator q.
- Alice picks $a \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, p-1\}$ and sends q^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (g^a, g^b)
- Correctness?
- Security? Use DDH to say that q^{ab} is hidden from adversary's view
- Think: Is this scheme still secure if the adversary is allowed to modify the messages?