

By: Michelle Nguyền, Manisha Prakash, Chelsea Lang, Matthew Woods

Background:

- Injury Biomechanics
- Reason for choosing the topic:
 - California Motorcyclist Population
- According to Centers of Disease Control and Prevention:
 - Helmets reduce the risk of death by 37% and head injury by 69%
- States that employ universal helmet laws:
 - Saves more lives on average than those without helmet law or partial

Prior Methods:

 Biomechanical Evaluation of Motorcycle Helmets: Protection against Head and Brain Injuries:

Prior Methods Continued

• Impact Analysis of the Skull with and without Helmet:

Summary of Project:

- Comparing the dispersion of force on skull with and without a helmet
 - Standard motorcycle helmet
- Analysis of force on frontal bone skull
 - Observing a linear force impact
- Simplifications Made:
 - Using spheres to model the skull and the helmet
 - Ignored viscoelasticity of skin as a factor and any analysis of the brain/cerebrospinal fluids

How the Experiment was Tested:

- Experiment 1: Without Helmet
 - Impact Condition:
 - Radius of Skull: 8.8 cm
 - Applied Pressure (N/m²):-200 (y-direction), -500(z-direction)
- Experiment 2: With Helmet
 - Materials (from MatWeb):
 - Polystyrene EPS Foam
 - Carbon Fiber Outer Shell

Property	Polystyrene EPS Foam	Carbon Fiber Outer Shell	Skull
Density (kg/m^3)	100	1.43	1.5
Young's Modulus (MPa)	80	52	5000
Poisson's Ratio	.1	.07	.3

What We Analyzed:

Without Helmet:

With Helmet:

Results/Discussion:

- Bare Skull vs Skull with a Helmet Result:
 - Helmets significantly decrease the consequences on the human skull
- Other Factors to be Considered:
 - Other factors to be considered (cushioning/distribution of skin/hair)
 - Data will vary according to helmet model (thickness/hardness/flexibility)
 - Necessary to run more tests varying the materials and dimensions

Questions?

Sources:

- https://www.statista.com/statistics/191002/number-of-registered-motorcycles-in-thee-us-by-state/
- https://www.cdc.gov/motorvehiclesafety/mc/index.html
- https://www.omicsonline.org/open-access/biomechanical-evaluation-of-motorcycl e-helmets-protection-against-head-and-brain-injuries-2090-2697-1000137-94548.
 html
- https://www.ncbi.nlm.nih.gov/books/NBK224915/
- https://www.simscale.com/projects/ahmedhussain18/human_skull_impact_- with and_without_helmet/
- http://article.sapub.org/10.5923.j.safety.20160501.02.html#Sec2
- http://www.matweb.com/

Respective Contributions:

Michelle Nguyền: Background Research, Presentation, Methodology, Written Report

Chelsea Lang: Background Research, COMSOL Simulation, Methodology, Written Report

Manisha Prakash: CAD Model, Simulation, Written Report

Matthew Woods: Comsol Model, Simulation, Written Report