Assignment 1

MA3.101: Linear Algebra (Spring 2019)

Submission Deadline: 2nd Feb, 2019

Total Marks: 50

January 26, 2019

Question 1

Let \mathbb{R}^{∞} denote the vector space of all sequences of real numbers. (Addition and scalar multiplication are defined coordinate-wise.) In each of the following, a subset of \mathbb{R}^{∞} is described. Verify whether the set is a subspace of \mathbb{R}^{∞} or not.

- 1. Sequences that are absolutely summable. (A sequence (x_k) is absolutely summable if $\sum_{k=1}^{\infty} |x_k| < \infty$).
- 2. Bounded sequences. (A sequence (x_k) is bounded if there is a positive number M such that $|x_k| \leq M$ for every k).
- 3. Arithmetic progressions. (A sequence (x_k) is arithmetic if it is of the form (a, a+k, a+2k, a+3k,...) for some constant k).
- 4. Geometric progressions. (A sequence (x_k) is geometric if it is of the form $(a, ka, k^2a, k^3a, \ldots)$ for some constant k).

Question 2

Let V be the set of real numbers. Regard V as a vector space over the field of rational numbers, with the usual operations. Prove that this vector space is not finite dimensional.

Question 3

In the space C[0,1] define the vectors f, g, and h by f(x) = x, $g(x) = e^x$ and $h(x) = e^{-x}$ for $0 \le x \le 1$. Use the definition of linear independence to show that the functions f, g, and h are linearly independent.

Question 4

Let V be the vector space of all 2×2 matrices over \mathbb{R} . Let W_1 be the set of matrices of the form

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix}$$

and let W_2 be the set of matrices of the form

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix}$$

1. Prove that W_1 and W_2 are subspaces of V.

2. Find the dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$. Also exhibit a basis for each of them.

Question 5

Let W_1 and W_2 be subspaces of vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Prove that for each vector $\mathbf{a} \in V$, there are unique vector $\mathbf{a}_1 \in W_1$ and $\mathbf{a}_2 \in W_2$ such that $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2$.

Question 6

Suppose that W_1, W_2, W_3 are subspaces of a vector space.

- 1. Is it always true that $W_1 \cap (W_2 + W_3) = W_1 \cap W_2 + W_1 \cap W_3$? Prove the statement, or disprove using a counterexample.
- 2. Prove that $W_1 \cap (W_2 + (W_1 \cap W_3)) = (W_1 \cap W_2) + (W_1 \cap W_3)$.

Question 7

- 1. Under what conditions on the scalar x are the vectors (1+x,1-x) and (1-x,1+x) in \mathbb{C}^2 linearly dependent?
- 2. Under what conditions on the scalar x are the vectors (x, 1, 0), (1, x, 1), and (0, 1, x) in \mathbb{R}^3 linearly dependent?
- 3. What is the answer to (2) for \mathbb{Q}^3 in the place of \mathbb{R}^3 ?

Question 8

Let $\mathbb{Q}(\sqrt{2})$ be the set of all real numbers of the form $\alpha + \beta\sqrt{2}$, where α and β are rational.

- 1. Is $\mathbb{Q}(\sqrt{2})$ a field?
- 2. Answer (1) if α and β are taken from integers only.
- 3. Is $\mathbb{Q}(\sqrt{2})$ a vector space over \mathbb{Q} ? If so, describe a basis for $\mathbb{Q}(\sqrt{2})$.

Question 9

1. Let \mathbb{Z}_p denote the set of all integers modulo p, with the operations addition and multiplication $mod\ p$. Show that \mathbb{Z}_p is a field if and only if p is prime. (*Hint:* The only trouble lies perhaps in showing that multiplicative inverse exists for all non-zero elements of \mathbb{Z}_p if p is prime. To show the multiplicative inverse use the fact that for any two integers a, b, there exists two integers l, s such that

$$la + sb = gcd(a, b).$$

Now take a = p, the prime number, and b to be the element in \mathbb{Z}_p for which you want to find an inverse. Do $mod\ p$ on both sides and see what happens.)

- 2. Consider the set $\mathbb{Z}_p[x]$ consisting of all polynomials with coefficients coming from \mathbb{Z}_p , p being a prime. A polynomial $g(x) \in \mathbb{Z}_p[x]$ is said to be *irreducible* if g(x) has no nontrivial factors (i.e., r(x) divides g(x) if and only if r(x) = cg(x) or r(x) = c, for some non-zero constant c). Let \mathbb{Z}_{p^m} denote the set of polynomials in $\mathbb{Z}_p[x]$ (modulo g(x)) (where g(x) is a degree m irreducible polynomial). In other words, we take all the polynomials in $\mathbb{Z}_p[x]$ and divide each of them by g(x), and take only the remainders in \mathbb{Z}_{p^m} . Show that \mathbb{Z}_{p^m} is a field under addition and multiplication modulo g(x). Hint: If you could do part (1) then this follows similarly. Again, you may want to use the following fact for the multiplicative inverse.
 - For any two polynomials a(x) and b(x) in $\mathbb{Z}_p[x]$, there exists polynomials l(x) and s(x) in $\mathbb{Z}_p[x]$ such that

$$l(x)a(x) + s(x)b(x) = \gcd(a(x), b(x)).$$

Question 10

- 1. Show that a basis of a subspace W is (a) a maximal independent subset of W (b) a minimal spanning set of W.
- 2. Let W be a subspace of V with a basis $\{\alpha_i : i = 1, ..., m\}$. Let $\beta \in V \setminus W$ (in V but not in W). Show that the set $\{\alpha_i + \beta : i = 1, ..., m\}$ spans an m dimensional subspace of V.