PROBLEMAS DE CLASIFICACIÓN

CLASIFICACIÓN: Cuando aparece una nueva observación, identificar a qué categoría pertenece.

Ejemplo: Nos llega un email. Identificar si es spam o no es spam.

Dada una nueva observación, nos preguntamos si pertenece (1) o no pertenece (0) a una categoría dada.

La predicción de si pertenece o no se da con una probabilidad

Posibles evenes:

Matrit de confusion

CONDICION REAL.

1 (ONDICION REAL.

1 (ONDICION REAL.

1 (Perdadero (TP) Falsa (FP)

1 (Pasetivo (TP) positivo (FP)

1 (Posetivo (FN) (FR) (FROT)

1 (Error TIPOT)

1 (TN)

Si hacemos predicciones sobre una muestra de N elementos podemos obtener varios parámetros:

Precisión (Accuracy, ACC)

Tasa de detección (TPR)

ACC = N TP TPR = OVEN Tasa de verdaderos negativos (TNR)

TNR= TN+FP

lasa de verdaderos fregativos (TNIX

FPR= FP+TN

Tasa de falsa alarma (FPR)

		True condition				
	Total population	Condition positive	Condition negative	$\frac{\Gamma}{\Sigma} = \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True posit	uracy (ACC) = ive + Σ True negative tal population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False positive}{\sum Condition negative}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) = $\frac{\Sigma}{\Sigma}$ True negative $\frac{\Sigma}{\Sigma}$ Condition negative	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	$= \frac{LR+}{LR-}$	2 · <u>Precision · Recall</u> Precision + Recall

POC enace Todit

En general las predicciones se dan como una variable aleatoria continua X de forma que

$$TPR(T) = \int_{T}^{\infty} f_{0}(x) dx$$

$$FPR(T) = \int_{T}^{\infty} f_{0}(x) dx$$

$$\begin{cases} x > T \longrightarrow 1 \longrightarrow j_1 \\ x \leq \overline{1} \longrightarrow 0 \longrightarrow j_0 \end{cases}$$

R T (TRAIN, ECREPT)

El área debajo de la curva ROC informa de lo bueno que es el modelo predictivo:

A>0.5 BIEN A=0.5 RANDOM A<0.5 MAL

REGRESIÓN LO GISTICA

Odds ratio

Ejemplo.

Participación en una huelga por sexo:

Porcentaje de participación: 967/2989 = 18,8%

	HOMBRE	MUJER	TOTAL
NO SÍ	960 261	1057 206	2017 467
	1221	1263	2484

467/2017 = 0,232

Odd (los que sí, frente a los que no):

~ PARTI CIPANTES

M P=N

P 1-P

1-P

Podemos sacar los ODDs por separado:

ODD(participa/no participa)

$$OR = \frac{ODD_A}{OPD_B} = \frac{\frac{1}{1 - PA}}{\frac{PB}{1 - PB}}$$

Para estudiar los odds, nos interesa considerar la función LOGIT

0

$$COD(p) = \frac{P}{1-P}$$

Logit(p)= log(000)= log(
$$\frac{P}{1-P}$$
)

1

Volviendo al caso anterior:

		HOMBRE	MUJER	TOTAL
	NO	0,7862	0,8368	0,8119
	SÍ	0,2137	0,1631	0,1884
		1	1	1
(DDD	0,272	0,195	\vdash
LOGIT		-1,30	-1,63	

Regnesien løgistica

Datos, que pertenecen o no pertenecen a una variable categórica

× = Variables que umos par predein

[Idea]: Itacen un ejuste lineal a Logit (p)

logit(p)=
$$\gamma$$
 + βx $P = \frac{1}{1 + e^{-(\gamma + \beta x)}}$

En reg. lineal
$$y = \alpha + \beta \chi \qquad P = \frac{1}{1}$$

En reg. logistica
$$P = \frac{1}{1 + e^{-(9+\beta x)}}$$

Test

P + PROB. DE QUE PERTENEZCA Función logistica:

$$\sigma(t) = \frac{1}{1 + e^{-k}}$$

En el ejemplo anterior:

Mi target es estimar p, la probabilidad de hacer huelga.

Mi feature es

$$X=0$$
 - logit (HCMBRE) = $\alpha \Rightarrow \alpha = -1,30$

$$P = \frac{1}{1 + e^{1,30 + 0,33 \times}}$$

$$P(0) = 0.214$$

 $P(\Delta) = 0.163$

EJERCICIO:

Participación en la huelga por nivel de estudios

	Básicos	Medios	Universitarios
NO	1116	554	344
SI	138	182	145
	1254	736	489

Se pide: Hallar los ODDS, los logit y los parámetros de la regresión logística.

	\sim_1	N
BÁSICOL	0	C
MEDICS	1	O
UNIVERSITARICS	\circ	1

El ajute en a:
$$P = \frac{1}{1 + e^{(-9 + \beta_1 \times 1 + \beta_2 \times 2)}}$$

· Función de coste:

La regravien logistica tienel joure:

$$P = \frac{1}{1 + e^{-\vec{G} \cdot \vec{x} - \vec{\eta}}}$$

PROBABILIDATES ALTAS Z, B, pundia: J(G)= - 1 = [y; log (pi) + (1-yi) log (1-pi)] Los algoritmes de aptimitade (p. ej. el "greddent decent") halln MÍNIMO GLOBAL