Probability Theory

MTH 664

Brian Cervantes Alvarez

2024-10-05

1.3.2. Prove Theorem 1.3.6 when n=2 by checking $\{X_1+X_2\leq x\}\in\mathcal{F}$.

Proof

Let $q \in \mathbb{Q}$. Then,

$$A = \bigcup_{q \leq x} \left(\left\{ \omega \in \Omega : X_1(\omega) \leq q \right\} \cap \left\{ \omega \in \Omega : X_2(\omega) \leq x - q \right\} \right).$$

Since $\mathbb Q$ is countable, the union is countable. The sets $\{\omega: X_1(\omega) \leq q\}$ and $\{\omega: X_2(\omega) \leq x-q\}$ are in $\mathcal F$ because X_1 and X_2 are measurable. Intersections and countable unions of sets in $\mathcal F$ are also in $\mathcal F$.

Therefore, $\{X_1+X_2\leq x\}\in\mathcal{F}.$