

≈£

ROYAL OBSERVATORY, GREENWICH,

London, S.E.

188

SIR.

I beg to inform you that the publication of the Royal Observatory mentioned on the opposite page to been forwarded to you by

Fost

and I beg to request you to be good enough to sign and return the accompanying receipt.*

Lam, Sir,

Your obedient Servant,

W. H. M. CHRISTIE,

Astronom r Ronal.

To & lampbell, Eng

· Non-compliance with this request will be interpreted as an intimation that similar works are not desired in future.

E & S (041 - 7 - 12 - 52

Jen pleit, leg

Accoupted francis for dender W.

Friday Jene 29, 1803. Faccifet dent

		ø
÷		

RESULTS

OF THE

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR

1881:

UNDER THE DIRECTION OF

SIR GEORGE BIDDELL AIRY, K.C.B. M.A. LL.D. D.C.L., LATE ASTRONOMER ROYAL.

AND

W. H. M. CHRISTIE, M.A. F.R.S., ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON:

PRINTED BY GEORGE E. B. EYRE AND WILLIAM SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY.

FOR HER MAJESTY'S STATIONERY OFFICE.

1883.

		1 100
INTRODUCTION. Personal Establishment and Arrangements		ini
	•	
General Description of the Buildings and Instruments		. iii
The Magnetical and Meteorological Observatory	•	iii
Positions of the Instruments		
Subjects of Observation	٠	. ri
Magnetic Instruments.		
Upper Declination Magnet		. vi
Its Suspension: Stand: Double Box: and Theodolite		. ri and vii
Its Collimator: Torsion Force of its Suspending Skein		. riii
Determination of the reading of the Azimuthal Circle of the Theodolite correspond	indii	277
to the Astronomical Meridian		
Method of Making and Reducing Observations for Magnetic Declination		
Lower Declination Magnet		
General principle of Photographic Registration		•
Arrangements for recording the Movements of the Declination Magnet	•	
Determination of Scale for measurement of Ordinates of the Photographic Curr		vii and viii
Horizontal Force Magnet		. auii
in the second se		viii and sic
Plune Mirror, Telescope, and Scale for Eye-observation		, air
Adjustment of the Magnet		
Eye-observations: Photographic Record		. xvii
Scale for measurement of Ordinates of the Photographic Caree		
Temperature coefficient		. rviii
VERTICAL FORCE MAGNET		. aviii
Supporting frame, Carrier, and Knife-edge		xviii amt six
Plane Mirror, Telescope, and Scale for Eye-observation		
Time of Vibration in the Vertical and Horizontal Planes		
Determination of the value of the Scale		
Eye-observations: Photographic Record		
Scale for measurement of Ordinates of the Photographic Curve		
Temperature coefficient		
	•	. xvii
DIP INSTRUMENT	•	
Detlexion Instrument	٠	. 3119
Duga W. Sarte		[a 2]

NTRODUCTION—concluded.									PAGE
EARTH CURRENT APPARATUS									227
Earth Connexions: Wire Civenits	•				•	•	٠	•	277
Arrangements for Photographic Registration									xxvi
Magnetic Reductions									xxvi
Treatment of the Photographic Curves									and xxvii
Measurement of Ordinates on Days of Magnetic Disturbance Results in terms of Gauss's Magnetic Unit									rxvii xxviri
Meteorological Instruments.									
Standard Baroueter									variii
Its Position: Diameter of Tube: Correction for Capillarity									rxviii
Correction for Index Error: Comparison with Kew Standa									xxix
Photographic Baroneter									erir
Arrangements for Photographic Registration									xxix
Determination of the Scale							٠		Jar
					•				
							٠		22°r
Revolving Frame: Standard Thermometer									3.22
Corrections for Index Error									rxxi
Photographic Dry and Wet Bulb Thermometers									axri
RADIATION THERMOMETERS									xxxii
EARTH THERMOMETERS									1xxii
Osler's Anemometer									raaiii
Method of registering the Direction and Pressure of the Wi	nd								rrxiii
Its Rain-gauge									xxxir
Robinson's Anemometer									rx.rir
Rain-Gauges									xxxir
Electrometer									xxxv
Instrument employed: general description									rxxvi
Method of collecting the Electricity of the Atmosphere									xvxvi
System of Registration									xxxvi
Sunshine Instrument									razerii
Ozonometer . ,									xxxrii
Meteorological Reductions									rxrviii
System of Reduction				,					xarriii
Deduction of the Temperature of the Dew-Paint, and of the a	legre	c of	. 11	mi	lity				xxxix
Rainfall: Clouds and Weather: Electricity									al to xlii
Meteorological Averages									xlii
Observations of Luminous Meteors									xliii
DETAILS OF THE PROPOSE SPING PROPESS									

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:—	PAGE
REDUCTION OF THE MAGNETIC OBSERVATIONS	(iii)
Table 1.—Mean Western Declination of the Magnet on each Astronomical Day	(iv)
TABLE II.—Mean Monthly Determination of the Western Declination of the Magnet at	()
every Hour of the Day	(iv)
Table III.—Mean Western Declination of the Magnet in each Month; and excess of Western Declination above 17°, converted into Westerly Force and expressed in terms of Gauss's Unit measured on the Metrical System; and Monthly Means of all the Diurnal Ranges of the Western Declination	(v)
Table IV.—Mean Horizontal Magnetic Force expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), nncorrected for Temperature, on each Astronomical Day	(v)
Table V.—Daily Means of Readings of the Thermometer placed within the box inclosing the	
Horizontal Force Magnetometer, for each Astronomical Day Table VI.—Mean Monthly Determination of the Horizontal Magnetic Force expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), uncorrected for Temperature, at every Hour of the Day	(vi) (vi)
Table VII.—Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer at each of the ordinary Hours of	(vii)
observation Table VIII.—Mean Horizontal Magnetic Force in each Month, uncorrected for Temperature, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), and also expressed in terms of Gauss's Unit measured on the Metrical System, and diminished by a Constant (1.55230 nearly); and Mean II.F. Temperature for each Month	,
Table IX.—Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, on each Astronomical Day	(vii) (vii)
Table X.—Daily Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnetometer, for each Astronomical Day	(viii)
Table X1.—Mean Monthly Determination of the Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, at every Hour of the Day	
TABLE XII.—Monthly Means of Readings of the Thermometer placed within the box in-	it (zi)
closing the Vertical Force Magnetometer at each of the ordinary Hours of observation	(ix)
Table XIII.—Mean Vertical Magnetic Force in each Month, uncorrected for Temperature, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), and also expressed in terms of Gauss's Unit measured on the Metrical System, and diminished by a Constant (4.19889 nearly); and Mean V.F.	
Temperature for each Month	(x)
Table XIV.—Mean, through the Range of Months, of the Monthly Mean Determinations of the Diurnal Inequalities of Declination, Horizontal Force, and Vertical Force.	(xi)

DESCRIPTION MACENERAL AND MUTECHOLOGICAL OBSUMMATIONS	PAGE
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—continue	ul.
Indications of Magnetometers on three Days of Great Magnetic Disterrance. Tables of the Values of Magnetic Declination, Horizontal Force, and Vertical Force, at numerous times, as inferred from the Measures of the Ordinates of the Photographic Curves, and corresponding expressions for these elements in terms of Gauss's Unit measured on the Metrical System; with frequent Readings of the Horizontal Force and	(iiiz)
Vertical Force Thermometers	(Xiv)
Results of Observations of the Magnetic Dip Dips observed	(xix) (xxii) (xiiix)
OBSERVATIONS OF DEFLEXION OF A MAGNET FOR ABSOLUTE MEASURE OF HORIZONTAL	
Force: Abstract of the Observations of Deflexion of a Magnet, and of Vibrations of the Deflecting Magnet fer Absolute Measure of Horizontal Force. Computation of the Values of Absolute Measure of Horizontal Force.	(xxv) (xxvi) (xxvii)
Results of Meteorological Observations	(xixx)
Daily Results of Meteorological Observations	(XXX)
Highest and Lowest Readings of the Barometer	(liv)
Absolute Maxima and Minima Readings of the Barometer for each Month	(lvi)
Monthly Results of Meteorological Elements	(lvii)
Monthly Mean Reading of the Barometer at every Hour of the Day	(lviii)
Monthly Mean Temperature of the Air at every Hour of the Day	(lviii)
Monthly Mean Temperature of Evaporation at every Hour of the Day	(lix)
Monthly Mean Temperature of the Dew-Point at every Hour of the Day	(lix)
Monthly Mean Degree of Humidity at every Hour of the Day Total Amount of Sunshine registered in each Hour of the Day in each month	(1x) (1x)
Earth Thermometers :—	
(1.) Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (24 French	
feet) below the surface of the soil, at Noon on every Day	(lxi)
(II.) Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French	
feet) below the surface of the soil, at Noon on every Day (III.) Reading of a Thermometer whose bulb is suak to the depth of 6°4 feet (6 French	(Ixi)
feet) below the surface of the soil, at Noon on every Day	(lxii)
(IV.) Reading of a Thermometer whose bulb is sunk to the depth of 3 2 feet (3 French	(1311)
feet) below the surface of the soil, at Xoon on every Day	(lxiii)
(V.) Reading of a Thermometer whose bulb is sunk to the depth of I inch below the	
surface of the soil, at Noon on every Day	(lxiv)
(VI.) Reading of a Thermometer within the case covering the Deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day	(lxv)
Abstract of the Changes of the Direction of the Wind, as derived from Osler's Anemometer	(lxvi)
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and	
Greatest and Least Hourly Measures, as derived from Robinson's Anemometer	(lxviii)

" Compbell -

		PAGE
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—con	celuded.	
Mean Electrical Potential of the Λtmosphere, derived from Thomson's Electrometer, each Civil Day	. (1	lxix)
meter, at every Hour of the Day	. ((lxx)
Amount of Rain collected in each Month by the different Rain Gauges	. (1	lxxi)
Observations of Luminous Meteors	. (Ix	xiii)

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS.

1881.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1881.

INTRODUCTION.

The observations from January 1 to August 14, contained in the present volume, were made and partly reduced under the superintendence of Sir G. B. Airy, K.C.B., as Astronomer Royal, before his resignation of that office on 1881 August 15.

§ 1. Personal Establishment and Arrangements.

During the year 1881 the establishment of Assistants in the Magnetical and Meteorological Department of the Royal Observatory consisted of William Ellis, Superintendent, and William Carpenter Nash, Assistant, who had the aid usually of four Computers. The names of the Computers who were employed at different times during the year 1881 are, John A. Greengrass, William Hugo, Ernest E. McClellan, George W. Stafford, Edwin Jeffery, and William J. Sanders.

Mr. Ellis controls and superintends the whole of the work of the Department. Mr. Nash attends generally to instrumental adjustments, the determination of the values of instrumental constants, and makes the more delicate magnetic observations. The routine magnetical and meteorological observations have been in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The Magnetical and Meteorological Observatory was erected in the year 1838. Its northern face is distant about 170 feet south-south-east from the nearest point of the South-East Dome, and about 35 feet south from the carpenters' workshop. It is based on concrete and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form is that of a cross, the arms of the cross being nearly in the directions of the cardinal magnetic points as they were in 1838. The northern arm is longer than the others, and is separated from them by a partition, and used as a computing room; the stove which warms this room, and its flue, are of copper. The remaining portion, consisting of the eastern, southern, and western arms, is known as the Upper Magnet Room. The upper declination magnet and its theodolite for determination

of absolute declination, are placed in the southern arm, an opening in the roof allowing circumpolar stars to be observed by the theodolite for determination of the position of the astronomical meridian. Both the magnet and its theodolite are supported on piers built from the ground. In the eastern arm is placed the Thomson electrometer for photographic record of the variations of atmospheric electricity, its water cistern being supported by a platform fixed to the western side of the southern arm, near the ceiling. The Standard barometer is suspended near the point of junction of the southern and western arms. The Sidereal clock, Grimalde and Johnson, is fixed at the junction of the eastern and southern arms, and there is in addition a mean solar chronometer, McCabe No. 649, for general use.

Until the year 1863 the horizontal and vertical force magnets were also located in the Upper Magnet Room, the upper declination magnet being up to that time employed for photographic record of the variations of declination, as well as for absolute measure of the element. But experience having shown that the horizontal and vertical force magnets were subject in the upper room to too great variations of temperature, a room known as the Magnet Basement was in the year 1864 excavated below the Upper Magnet Room, and the horizontal and vertical force magnets, as well as a new declination magnet for photographic record of declination. were mounted therein, in order that they might be less exposed to changes of temperature. The Magnet Basement is of the same dimensions as the Upper Magnet Room. The lower declination magnet and the horizontal force and vertical force magnets, as now located in the Basement, are used entirely for record of the variations of the respective magnetic elements. The declination magnet is suspended in the southern arm, immediately under the upper declination magnet, in order that the position of the latter should not be affected thereby; the horizontal and vertical force magnets are placed in the eastern and western arms respectively, in positions nearly underneath those which they occupied when in the Upper Magnet Room. All are mounted on or suspended from supports carried by piers built from the ground. A photographic barometer is fixed to the northern wall of the Basement, and an apparatus for photographic registration of earth currents is placed near the southern wall of the eastern arm. A clock of peculiar construction for interruption of the photographic traces at each hour is fixed to the pier which supports the upper declination theodolite. The mean-time clock is attached to the western wall of the On the northern wall, near the photographic barometer, is fixed the Sidereal standard clock of the Astronomical Observatory, Dent 1906, communicating with the chronograph and with clocks of the Astronomical Department by means of underground wires. This clock is placed in the Magnet Basement, because of its nearly uniform temperature.

The Basement is warmed when necessary by a gas stove (of copper), and ventilated

by means of a large copper tube nearly two feet in diameter, which receives the flues from the stove and all gas-lights and passes through the Upper Magnet Room to a revolving cowl above the roof. Each of the arms of the Basement has a well window facing the south, but these wells are usually closely stopped.

A platform erected above the roof of the Magnet House is used for the observation of meteors. The sunshine instrument and a rain gauge are placed on a table on this platform.

An apparatus for naphthalizing the gas used for the photographic registration is mounted in a small detached zine-built room adjacent to the computing room on its western side.

To the south of the Magnet House, in what is known as the Magnetic Ground, is an open shed, consisting principally of a roof supported on four posts, under which is placed the photographic dry-bulb and wet-bulb thermometer apparatus. On the roof of this shed there is fixed an ozone box and a rain gauge, and close to its north-western corner are placed the earth thermometers, the upper portions of which, projecting above the ground, are protected by a small wooden but. About 25 feet to the west of the photographic thermometers is situated the thermometer stand carrying the thermometers used for eye observations, and adjacent thereto on the north side are several rain gauges.

The Magnetic Ground is bounded on its south side by a range of seven rooms, known as the Magnetic Offices. No. 1 is used as a general store room, and in it is placed the Watchman's Clock; Nos. 2, 3, and 4 are used for photographic purposes in connexion with the Photoheliograph, placed in a dome adjoining No. 3, on its south side: Nos. 5 and 6 are store rooms. In No. 7 are placed the Dip Instrument and Deflexion apparatus.

To the south of the Magnetic Offices, in what is known as the South Ground, are placed the thermometers for solar and terrestrial radiation; they are laid on short grass, and freely exposed to the sky.

Two Anemometers, Osler's, giving continuous record of direction and pressure of wind and amount of rain, and Robinson's, giving continuous record of velocity, are fixed, the former above the north-western turret of the Octagon Room (the ancient part of the Observatory), the latter above the small building on the roof of the Octagon Room.

Regular observation of the principal magnetical and meteorological elements was commenced in the autumn of the year 1840, and has been continued, with some additions to the subjects of observation, to the present time. Until the end of the year 1847 observations were in general made every two hours, but at the beginning of the year 1848 these were superseded by the introduction of the method of photo-

graphic registration, by which means a continuous record of the various elements is obtained.

For information on many particulars concerning the history of the Magnetical and Meteorological Observatory, especially in regard to alterations not recited in this volume, which from time to time have been made, the reader is referred to the Introduction to the Magnetical and Meteorological Observations for the year 1880 and previous years, and to the Descriptions of the Buildings and Grounds, with accompanying Plans, given in the Volumes of Astronomical Observations for the years 1845 and 1862.

§ 3. Subjects of Observation in the year 1881.

These comprise determinations of absolute magnetic declination, horizontal force, and dip: continuous photographic record of the variations of declination, horizontal force, and vertical force, and of the earth currents indicated in two distinct lines of wire: eye observation of the ordinary meteorological instruments, including the barometer, dry and wet bulb thermometers, and radiation and earth thermometers; continuous photographic record of the variations of the barometer, dry and wet bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain; registration of the duration of sunshine, and amount of ozone; observation of some of the principal meteor showers; and general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud.

§ 4. Magnetic Instruments.

Upper Declination Magnet and its Theodolite.—The upper declination magnet is by Meyerstein of Göttingen; it is a bar of hard steel, 2 feet long, 1½ inch broad, and about ¼ inch thick, and is employed solely for the determination of absolute declination. The magnet carrier was also made by Meyerstein, since however altered by Troughton and Simms; the magnet is fixed therein by two pinching serews. To a stalk extending upwards from the magnet carrier is attached the torsion circle, which consists of two circular brass discs, one turning independently on the other on their common vertical axis, the lower and graduated portion being firmly fixed to the stalk of the magnet carrier; to the upper portion carrying the vernier is attached, by a hook, the suspension skein. This is of silk, and consists of several fibres united by juxtaposition, without apparent twist; its length is about 6 feet.

The magnet, with its suspending skein, &c., is carried by a braced wooden tripod stand, whose feet rest on slates covering brick piers, built from the ground and rising through the Magnet Basement nearly to the roof. The upper end of the suspension skein is attached to a short square wooden rod, sliding in the corresponding square hole of a fixed wooden bracket. To the upper end of the rod is fixed a leather strap, which, passing over two brass pulleys carried by the upper portion of the tripod stand, is attached to a cord which passes down to a small windlass fixed to the stand. Thus in raising or lowering the magnet, an operation necessary in determinations of its collimation error, no alteration is made in the length of the suspension skein. The magnet is inclosed in a double rectangular wooden box (one box within another), both boxes being covered with gilt paper on their exterior and interior sides, and having holes at their south and north ends, for illumination of the magnet-collimator and for viewing the collimator by the theodolite telescope respectively. The holes in the outer box are covered with glass. The magnet-collimator is formed by a diagonally placed cobweb cross, and a lens of 13 inches focal length and nearly 2 inches aperture, carried respectively by two sliding frames fixed by pinching screws to the south and north arms of the magnet. The cobweb cross is in the principal focus of the lens, and its image in the theodolite telescope is well seen. From the lower side of the magnet carrier a rod extends downwards, terminating below the magnet box in a horizontal brass bar immersed in water, for the purpose of checking small vibrations of the magnet.

The theodolite, by which the position of the upper declination magnet is observed, is by Troughton and Simms. It is planted about 7 feet north of the magnet. The radius of its horizontal circle is 8:3 inches, and the circle is divided to 5', and read, by three verniers, to 5". The theodolite has three foot-screws, which rest in brass channels let into the stone pier placed upon the brick pier which rises from the ground through the Magnet Basement. The length of the telescope is 21 inches, and the aperture of its object glass 2 inches: it is carried by a horizontal transit axis $10\frac{1}{2}$ inches long, supported on Y's carried by the central vertical axis of the theodolite. The eye-piece has one fixed horizontal wire and one vertical wire moved by a micrometer-screw, the field of view in the observation of stars being illuminated through the pivot of the transit-axis on that side of the telescope which carries the micrometer-head. The value of one division of the striding level is considered to be equal to 1".05. The opening in the roof of the Magnet House permits of observation of circumpolar stars as high as à Ursæ Minoris above the pole and as low as β Cephei below the pole. A fixed mark, consisting of a small hole in a plate of metal, placed on one of the buildings of the Astronomical Observatory, at a distance of about 270 feet from the theodolite, is, in addition, provided by which to check the continued steadiness of the theodolite.

The inequality of the pivots of the axis of the theodolite telescope was found from several independent determinations made at different times to be very small. It appears that when the level indicates the axis to be horizontal the pivot at the illuminated end of the axis is really too low by 1^{div}·3, equivalent to 1"·4.

The value in arc of one revolution of the telescope-micrometer is 1'.34".2.

The reading for the line of collimation of the theodolite telescope was found, by fifteen double observations, made on 1881 March 29, to be 100°217: 10 double observations made on 1881 September 8, gave 100°178. The value used throughout the year 1881 was 100°202, the same that was employed during the year 1880.

The error of collimation of the plane glass in front of the outer box of the declination-magnet at that end of the box towards the theodolite was determined by 10 double observations made on 1881 March 29, which showed that in the ordinary position of the glass the theodolite readings were diminished by 19".7. Another set of observations made on 1881 September 8, gave 18".6. The mean of these, 19".1, has been added to all readings throughout the year 1881.

The error of collimation of the magnet collimator is found by observing the position of the magnet, first with its collimator in the usual position (above the magnet), then with the collimator reversed (or with the magnet placed in its carrier with the collimator below), repeating the observations several times. The value used during the year 1881 was 26′. 7″8, being the mean of determinations made on 1878 December 10, 1879 December 9, 1880 October 26, and 1881 September 8, giving respectively 26′. 13″6, 26′. 2″2, 25′. 56″6, and 26′. 18″9. With the collimator in its usual position, above the magnet, the amount has to be subtracted from all readings.

The effect of torsion of the suspending skein is eliminated by turning the lower portion of the torsion-circle until a brass bar (of the same size as the magnet, and weighted with lead weights to be also of equal weight), inserted in place of the magnet, rests in the plane of the magnetic meridian. The brass bar is thus inserted from time to time as may appear necessary, and whenever the adjustment is found not to have been sufficiently close, the observed positions of the magnet are corrected for the amount by which the magnet is deflected from the meridian by the torsion force of the skein. Such correction is determined experimentally, with the magnet in position, by changing the reading of the torsion circle by a definite amount, usually 90°, thus giving the skein the same amount of azimuthal twist, and observing, by the theodolite, the displacement in the position of the magnet thereby produced, from which is derived the ratio of the torsion force of the skein to the earth's magnetic force. In this way the torsion force of the skein was, on 1879 December 9, found to be $\frac{1}{12}$ th part of the earth's magnetic force: on 1881 September 8, it was found to be $\frac{1}{12}$ th part. At all times of examination in the year 1881, however, the plane

in which the suspension skein was free from torsion so nearly coincided with the magnetic meridian that no correction of the absolute measures of magnetic declination for deviation of the plane of no torsion was at any time required.

The time of vibration of the upper declination magnet under the influence of terrestrial magnetism was found on 1880 December 29, to be 30°78, and on 1881 September 9, 31°30.

The reading of the azimuthal circle of the theodolite corresponding to the astronomical meridian is determined by occasional observation of the stars Polaris and & Ursæ Minoris, made generally at the time at which the observer attends in the evening for other duties. The error of level is found by application of the spirit level at the time of observation.

Observations for determining the reading of the circle corresponding to the astronomical meridian are made about once in each month; the fixed mark is usually observed weekly. The concluded mean reading of the circle for the south astronomical meridian, used during the year 1881 for reduction of the observations of the declination magnet, was until August 4, 27°. 5′. 38″·7; from August 5 until November 22, 27°. 4′. 23″·3; from November 22 until November 24, 27°. 4′. 2″·6; and from November 25 to the end of the year, 27°. 3′. 15″·0.

In regard to the manner of making and reducing observations made with the upper declination magnet, the observer on looking into the theodolite telescope sees the image of the diagonally placed cross of the magnet collimator vibrating alternately right and left. The time of vibration of the magnet being about 30 seconds. the observer first applies his eye to the telescope about one minute, or two vibrations, before the pre-arranged time of observation, and, with the vertical wire carried by the telescope-micrometer, bisects the magnet-cross at its next extreme limit of vibration, reading the micrometer. He similarly observes the next following extreme vibration, in the opposite direction, and so on, taking in all four readings. The mean of each pair of adjacent readings of the micrometer is taken, giving three means, and the mean of these three is taken as the adopted reading. In practice this is done by adding the first and fourth readings to twice the second and third, and dividing the sum by 6. Should the magnet be nearly free from vibration, two bisections only of the cross are made, one at the vibration next before the prearranged time, the other at the vibration following. The verniers of the theodolitecircle are then read. The excess of the adopted micrometer-reading above the reading for the line of collimation of the telescope being converted into arc and applied to the mean circle-reading, and also the corrections for collimation of the magnet and for collimation of the plane glass in front of its box, the concluded circle-reading corresponding to the position of the magnet is found. The difference

between this reading and the adopted reading of the circle for the south astronomical meridian gives, when, as is usually the case, no correction for torsion of the skein is necessary, the observed value of absolute declination, afterwards used for determining the value of the photographed base line on the photographic register of the lower declination magnet. The times of observation of the upper declination magnet are usually 1^h, 5^m, 3^h, 5^m, 9^h, 5 , and 21^h, 5^m of Greenwich mean time.

Lower Declination Magnet.—The lower declination magnet is used simply for the purpose of obtaining photographic register of the variations of magnetic declination. It is by Troughton and Simms, and is of the same dimensions as the upper declination magnet, being 2 feet long. $1\frac{1}{2}$ inch broad, and $\frac{1}{4}$ inch thick. The magnet is suspended, in the Magnet Basement, immediately below the upper declination magnet, in order that the absolute measure of declination by the upper magnet should not be affected by the proximity of the lower magnet.

The manner of suspension of the magnet is in general similar to that of the upper declination magnet, the suspension pulleys being carried by a small pier built on one of the crossed slates resting on the brick piers rising up from the ground. The length of free suspending skein is about 6 feet, but, unlike the arrangement adopted for the upper magnet, the skein is itself carried over the suspension pulleys. The position of the azimuthal plane in which the brass bar rests, when substituted for the magnet, is examined from time to time, and adjustment made as necessary, to keep this plane in or near the magnetic meridian, such exact adjustment as is required for the upper declination-magnet being not here necessary.

To destroy the small accidental vibrations to which the magnet would be otherwise liable, it is encircled by a damper consisting of a copper bar, about 1 inch square, which is bent into a long oval form, the plane of the oval being vertical; a lateral bend is made in the upper bar of the oval to avoid interference with the suspension piece of the magnet. The effect of the damper is to reduce the amplitude of the oscillation after every complete or double vibration of the magnet in the proportion of 5:2 nearly.

In regard to photographic arrangements, it may be convenient, before proceeding to speak of the details peculiar to each instrument, to remark that the general principle adopted for obtaining continuous photographic record is the same for all instruments. For the register of each indication an accurately turned cylinder of ebonite is provided, the axis of the cylinder being placed parallel to the direction of the change of indication to be registered. If, as is usually the case, there are two indications whose movements are in the same direction, both may be registered on the same cylinder: thus the movements in the case of magnetic declination and horizontal magnetic force, being both horizontal, can be registered on different parts of one cylinder with axis horizontal: so also can two different galvanic earth

currents. The movements in the case of vertical magnetic force, and of the barometer, being both vertical, can similarly be registered on different parts of one cylinder having its axis vertical, as also can the indications of the dry-bulb and wet-bulb thermometers. In the electrometer the movement is horizontal, for which a horizontal cylinder is provided, no other register being made on this cylinder.

The cylinder is in each case driven by chronometer or accurate clock-work to ensure uniform motion. The pivots of the horizontal cylinders turn on anti-friction wheels: the vertical cylinders rest on a circular plate turning on anti-friction wheels, the driving mechanism being placed below. A sheet of sensitized paper being wrapped round the cylinder, and a cylindrical glass cover, open at one end, slipped over it, the cylinder so prepared is placed in position, and connected with the clock-movement: it is then ready to receive the photographic record, the optical arrangements for producing which will be found explained in the special description of each particular instrument. The sheets are removed from the cylinders and fresh sheets supplied every day, usually at noon. On each sheet, where necessary, an invariable reference line is also photographed, the arrangements for which will be more particularly described in each special case. All parts of the apparatus and all parts of the paths of light are protected, as found necessary, by wood or zinc casings or tubes, blackened on the inside, in order to prevent stray exterior light from reaching the photographic paper.

Referring now specially to the lower declination magnet, there is attached to the magnet carrier, for the purpose of obtaining photographic register of the motions of the magnet, a concave mirror of speculum metal, 5 inches in diameter, which thus receives all the angular movements of the magnet. The revolving ebonite cylinder is $11\frac{1}{2}$ inches long and $14\frac{1}{4}$ inches in circumference: it is supported, in an approximately east and west position, on brass uprights carried by a metal plate, the whole being planted on a firm wooden platform, the supports of which rest on blocks driven into the ground. The platform is placed midway between the declination and horizontal force magnets, in order that the variations of magnetic declination and horizontal force may both be registered on the same cylinder, which makes one complete revolution in 26 hours.

The light used for obtaining the photographic record is that given by a flame of coal gas, charged with the vapour of coal naphtha. A vertical slit about 0ⁱⁿ·3 long and 0ⁱⁿ·01 wide, placed close to the light, is firmly supported on the pier which carries the magnet. It stands slightly out of the straight line joining the mirror and the registering cylinder, and its distance from the concave mirror of the magnet is about 25 inches. The distance of the axis of the registering cylinder from the concave mirror is 134·4 inches. Immediately above the cylinder, and parallel to its axis,

are placed two long reflecting prisms (each 11 inches in length) facing opposite ways towards the mirrors carried by the declination and horizontal force magnets respectively. The front surface of each prism is convex, being a portion of a horizontal cylinder. The light of the declination lamp, after passing through the vertical slit, falls on the concave mirror, and is thence reflected as a converging beam to form an image of the slit on the convex surface of the reflecting prism, by the action of which it is reflected downwards to the paper on the cylinder as a small spot of light. A small azimuthal adjustment of the concave mirror allows the position of the spot to be so adjusted that it shall fall not at the centre of the cylinder but rather towards its western side, in order that the declination trace shall not become mixed with that of horizontal force, which is made to fall towards the eastern side of the cylinder. The special advantage of the arrangement here described is that the registers of both magnets are made at the same part of the circumference of the cylinder, a line joining the two spots being parallel to its axis, so that when the traces on the paper are developed, the parts of the two registers which appear in juxtaposition correspond to the same Greenwich time.

By means of a small prism, fixed near to the registering cylinder, the light from another lamp is made to form a spot of light in a fixed position on the cylinder, so that, as the cylinder revolves, an invariable reference or base line is traced out on the paper, from which, in the interpretation of the records, the curve ordinates are measured.

A clock of special construction, arranged by Messrs. E. Dent and Co., acting upon a small shutter placed near the declination slit, cuts off the light from the mirror two minutes before each hour, and lets it in again two minutes after the hour, thus producing at each hour a visible interruption in the trace, and so ensuring accuracy as regards time scale. By means of another shutter the observer occasionally cuts off the light for a few minutes, registering the times at which it was cut off and at which it was again let in. The visible interruptions thus made at definite times in the trace obviate any possibility of error being made by wrong numeration of the hourly breaks.

The usual hour of changing the photographic sheet is noon, but on Sundays, and occasionally on other days, this rule is in some measure departed from. To obviate any uncertainty that might on such occasions arise from the mixing on the paper of the two ends of a trace slightly longer than 24 hours, it was, as has been mentioned, arranged that one revolution of the cylinder should be made in 26 hours. The actual length of 24 hours on the sheet is about 13°3 inches.

The scale for measurement of ordinates of the photographic curve is thus determined. The distance from the concave mirror to the surface of the cylinder,

in the actual path of the ray of light through the prism, is practically the same as the horizontal distance of the centre of the cylinder from the mirror, 134.4 inches. A movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror, representing a change of 1° of magnetic declination, is equal to 4.691 inches on the photographic paper. A small scale of pasteboard is therefore prepared, graduated on this unit to degrees and minutes. The ordinate of the curve as referred to the invariable base line being measured for the times at which absolute values of declination were determined by the upper declination magnet, usually four times daily, the apparent value of the invariable base line, as inferred from each observation, is found. The process assumes that the movements of the upper and lower declination magnets are precisely similar. The separate base line values being divided into groups, usually monthly. a mean base line value is adopted for use through each group. This adopted base line value is written upon every sheet. Then, by the same pasteboard scale, there is laid down, conveniently near to the photographic trace, a new base line, whose ordinate represents some whole number of degrees or other convenient quantity. Thus every sheet carries its own scale of magnetic measure.

On 1881 January 19, the suspension skein of the magnet gave way; it was replaced by a new one, and registration re-commenced on January 21. On June 28 the driving chronometer failed; it was in the hands of Messrs. E. Dent and Co. for repair until July 11, on which day registration was again commenced. From September 23 to 28 registration was again interrupted during alteration of the platform on which the registering apparatus is planted.

Horizontal Force Magnet.—The horizontal force magnet, for measure of the variations of horizontal magnetic force, was furnished by Meyerstein of Göttingen, and like the two declination magnets, is 2 feet long, $1\frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick. For support of its suspension skein the back and sides of its brick pier rise through the eastern arm of the Magnetic Basement to the Upper Magnet Room, being there covered by a slate slab, to the top of which a brass plate is attached, carrying, immediately above the magnet, two brass pulleys, with their axes in the same east and west line, and at the back of the pier, and opposite to these pulleys, two others, with their axes similarly in an east and west line: these constitute the upper suspension piece, and support the upper portions of the two branches of the suspension skein. The two lower pulleys, having their axes in the same horizontal plane, and their grooves in the same vertical plane, are attached to a small horizontal bar which forms the upper portion of the torsion circle: it carries the verniers for reading the torsion circle, and can be turned independently of the lower and graduated portion of the torsion circle, below which, and in rigid connexion with it, is the magnet carrier.

riv

The suspension skein is led under the two pulleys carried by the upper portion of the torsion circle, its two branches then rise up and pass over the front pulleys of the upper suspension piece, thence to and over the back pulleys, thence descending to a single pulley, round which the two branches are tied: from this pulley a cord goes to a small windlass fixed to the back of the pier. The effective length of each of the two branches of the suspension skein is about 7st 6ⁱⁿ. The distance between the branches of the skein, where they pass over the upper pulleys, is 1in-14: at the lower pulleys the distance between the branches is 0 in 80. The two branches are not intended to haug in one plane, but are to be so twisted that their torsion force will maintain the magnet in a direction very nearly east and west magnetic, the marked end being west. In this state an increase of horizontal magnetic force draws the marked end of the magnet towards the north, whilst a diminution of horizontal force allows the torsion force to draw the marked end towards the south. An oval copper bar, exactly similar to that used with the lower declination magnet, is applied also to the herizontal force magnet, for the purpose of diminishing the small accidental vibrations.

Below the magnet carrier there is attached a small plane mirror to which is directed a small telescope for the purpose of observing by reflexion the graduations of a horizontal opal glass scale, attached to the southern wall of the eastern arm of the basement. The magnet, with its plane mirror, hangs within a double rectangular box, covered with gilt paper in the same way as was described for the upper declination magnet. The numbers of the fixed scale increase from east to west, so that when the magnet is inserted in its usual position, with its marked end towards the west, increasing readings of the scale, as seen in the telescope, denote increasing horizontal force. The normal to the scale that meets the centre of the plane mirror is situated at the division 51 of the scale nearly, the distance of the scale from the centre of the plane mirror being 90°84 inches. The angle between the normal to the scale, which coincides nearly with the normal to the axis of the magnet, and the axis of the fixed telescope is about 38°, the plane of the mirror is therefore inclined to the axis of the magnet by about 19°.

To adjust the magnet so that it shall be truly transverse to the magnetic meridian, which position is necessary in order that the indications of the instrument may apply truly to changes in the magnitude of horizontal magnetic force, without regard to changes of direction, the time of vibration of the magnet and the reading of the fixed scale are determined for different readings of the torsion circle. In regard to the interpretation of such experiments the following explanation may be premised.

Suppose that the magnet is suspended in its carrier with its marked end in a magnetic westerly direction, not exactly west but in any westerly direction, and suppose that, by means of the fixed telescope, the reading of the scale is taken. The

position of the axis of the magnet is thereby defined. Now let the magnet be taken out of its carrier, and replaced with its marked end easterly. The terrestrial magnetic force will now act, as regards torsion, in the direction opposite to that in which it acted before, and the magnet will take up a different position. But by turning the torsion circle, and thereby changing the amount and direction of the torsion force produced by the oblique tension of the two branches of the suspending skein, the magnet may be made to take the same position as before, but with reversed direction of poles, which will be proved by the reading of the scale, as seen in the fixed telescope, being the same. The reading of the torsion circle will now be different, the effect of the operation being to give the difference of torsion circle reading for the same position of the magnet axis, but with the marked end opposite ways, without however affording any information as to whether the magnet axis is accurately transverse to the magnetic meridian, inasmuch as the same operation can be performed whether the magnet axis be transverse or not.

But there is another observation which will indicate whether the magnet axis is or is not accurately transverse. Let the time of vibration be, in addition, taken in each position of the magnet. Resolve the terrestrial magnetic force acting on the poles of the magnet into two parts, one transverse to the magnet, the other longitudinal. In the two positions of the magnet, marked end westerly and marked end easterly, the magnitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and, if there were no other force, the time of vibration would also be the same. But there is another force, the longitudinal force, and when the marked end is northerly this tends from the centre of the magnet's length, and when it is southerly it tends towards the centre of the magnet's length, and in a vibration of given extent this produces force, in one case increasing that due to the torsion, and in the other case diminishing it. The times of vibration will therefore be different. There is only one exception to this, which is when the magnet axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes.

The criterion then of the position truly transverse to the meridian is this. Find the readings of the torsion circle which, with the magnet in reversed positions, will give the same readings of the scale and the same time of vibration for the magnet. With such readings of the torsion circle the magnet is, in either position, transverse to the meridian, and the difference of readings is the difference between the position in which the terrestrial magnetism acting on the magnet twists it one way and the position in which the same force twists it the opposite way, and is therefore double of the angle due to the torsion force of the suspending lines when they, in either position, neutralize the force of terrestrial magnetism.

On 1880 December 30, the suspension skein, having shown signs of weakness.

was removed, and a new skein mounted. On December 31 the following observa-

1880, Day.		The Marked End of the Magnet.										
	West.				East.							
	Torsion- Circle Reading.	Scale Reading.	Difference of Seale Readings for change of 1° of Torsion- Circle Reading.	Mean of the Times of Vibration.	Torsion- Circle Reading.	Scale Reading.	Difference of Scale Readings for change of 1° of Torsion- Circle Reading.	Mean of the Times of Vibration.				
Dec. 31	° 144 145 146 147 148	36.80 45.26 53.15 62.09 70.15	8:46 7:89 8:94 8:06	21.30 21.12 20.94 20.74 20.54	227 228 229 230 231 232	32.52 40.07 47.35 55.32 63.26 71.93	7:55 7:28 7:97 7:94 8:67	20.50 20.62 20.76 20.90 21.00				

From these observations it appeared that the times of vibration and scale readings were sensibly the same when the torsion circle read 146°.15′, marked end west, and 230°.0′, marked end east, the difference being 83°.45′. Half this difference, or 41°.52′.5, is therefore the angle of torsion when the magnet is transverse to the meridian. The value similarly found from another set of observations made 1882 January 3, was 42°.9′.0. The value adopted in the reduction of the observations during the year 1881 was 42°.0′.

The adopted reading of torsion-circle, for transverse position of the magnet, the marked end being west, was 146° throughout the year.

The angle through which the magnet turns to produce a change of one division of scale reading, and the corresponding variation of horizontal force in terms of the whole horizontal force, is thus found.

The length of 30^{div}·85 of the fixed scale is exactly 12 inches, and the distance of the centre of the face of the plane mirror from the scale 90·84 inches; consequently the angle at the mirror subtended by one division of the scale is 14′.43″·2, or for change of one division of scale-reading the magnet is turned through an angle of 7′.21″·6.

The variation of horizontal force, in terms of the whole horizontal force, producing angular motion of the magnet corresponding to change of one division of scale reading = cotan, angle of torsion × value of one division in terms of radius. Using the numbers above given, the change of horizontal force corresponding to change of one division of scale-reading was found to be 0.002378, which value has

been used throughout the year 1881 for conversion of the observed scale-readings into parts of the whole horizontal force.

In regard to the manner of making observations with the horizontal force magnet. —A fine vertical wire is fixed in the field of view of the observing telescope, across which the graduations of the fixed scale, as reflected by the plane mirror carried by the magnet, are seen to pass alternately right and left as the magnet oscillates, and the scale reading for the extreme points of vibration is easily taken. The hours of observation are usually 1^h, 3^h, 9^h, and 21^h of Greenwich mean time. Remarking that the time of vibration of the magnet is about 20 seconds, and that the observer looks into the telescope about 40 seconds before the pre-arranged time, the manner of making the observation is generally similar to that already described for the upper declination magnet.

A thermometer, the bulb of which reaches considerably below the attached scale, is so planted in a nearly upright position on the outer magnet box that the bulb projects into the interior of the inner box containing the magnet. Readings of this thermometer are usually taken at 0^h, 1^h, 2^h, 3^h, 9^h, 21^h, 22^h, and 23^h. Its index error is insignificant.

The photographic record of the movements of the horizontal force magnet is made on the same revolving cylinder as is used for record of the motions of the lower declination magnet. And as described for that magnet, there is also attached to the carrier of the horizontal force magnet a concave mirror, 4 inches in diameter. The arrangements as regards lamp, slit, and other parts are precisely similar to those for the lower declination magnet already described, and may be perfectly understood by reference to that description (pages xi and xii), in which was incidentally included an explanation of some parts specially referring to register of horizontal force. The distance of the vertical slit from the concave mirror of the magnet is about 21 inches, and the distance of the axis of the registering cylinder from the concave mirror is 1368 inches, the slit standing slightly out of the straight line joining the mirror and the registering cylinder. The same invariable base line is used for measure of the horizontal force ordinates, and the register is similarly interrupted at each hour by the clock, and occasionally by the observer, for determination of time scale, the length of which is of course the same as that for declination.

The scale for measure of ordinates of the photographic curve is thus constructed. The distance from the concave mirror to the surface of the cylinder, in the actual path of the ray of light through the prism is (as for declination) practically the same as the horizontal distance of the centre of the cylinder from the mirror, or 136'8 inches. But, because of the reflexion at the concave mirror, the double of this measure, or 273'6 inches, is the distance that determines the extent of motion on

the cylinder of the spot of light, which in inches, for a change of 0.01 part of the whole horizontal force will therefore be 273.6 × tan, angle of torsion × 0.01. Taking for angle of torsion 42°, 0′ the movement of the spot of light on the cylinder for a change of 0.01 of horizontal force is thus found to be 2.464 inches, and with this unit the pasteboard scale for measure of the curve ordinates for the year 1881 was prepared. The ordinates being measured for the times at which eye observations of the scale were made, combination of the measured ordinates with the observed scale readings converted into parts of the whole horizontal force, gives an apparent value of the invariable base line for each observation. These being divided into groups, mean base line values are adopted, written on the sheets, and new base lines laid down, exactly in the same way as described for declination.

The indications of horizontal force are in a slight degree affected by the small changes of temperature to which the Magnetic Basement is subject. The temperature coefficient of the magnet was determined by artificially heating the Magnetic Basement to different temperatures, and observing the change of position of the magnet thereby produced. This process seems preferable to others in which was observed the effect which the magnet, when inclosed within a copper trough or box and artificially heated by hot water or hot air to different temperatures, produced on another suspended magnet, since the result obtained includes the entire effect of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself. Referring to previous volumes for details, it is sufficient here to state that from a series of experiments made in the early part of the year 1868 on the principle mentioned, it appeared that when the marked end of the horizontal force magnet was to the west (its ordinary position) a change of 1° of temperature (Fahrenheit) produced a change of '000174 of the whole horizontal force, a smaller number of observations made with the marked end of the magnet east indicating that a change of 1° of temperature produced a change of '000187 of horizontal force, increase of temperature in both cases being accompanied by decrease of magnetic force.

From June 28 to July 10 and from September 23 to 28 the register of horizontal force was interrupted for reasons which will be found mentioned on page xiii.

Vertical Force Magnet.—The vertical force magnet, for measure of the variations of vertical magnetic force, is by Troughton and Simms. It is lozenge shaped, being broad at the centre and pointed at the ends, and is mounted on a solid brick pier capped with stone, situated in the western arm of the basement, its position being nearly symmetrical with that of the horizontal force magnet in the eastern arm. The supporting frame consists of two pillars, connected at their bases, on whose tops are the agate planes upon which rest the extreme parts of the continuous steel knife edge, attached to the magnet carrier by clamps and pinching screws. The knife

edge, eight inches long, passes through an aperture in the magnet. The axis of the magnet is approximately transverse to the magnetic meridian, its marked end being east; its axis of vibration is thus nearly north and south magnetic. The magnet carrier is of iron; at its southern end there is fixed a small plane mirror for use in eye observations, whose plane makes with the axis of the magnet an angle of $52^{3\circ}_4$ nearly. A telescope fixed to the west side of the brick pier supporting the theodolite of the upper declination magnet is directed to the mirror, for observation by reflexion of the divisions of a vertical epal glass scale fixed to the pier that carries the telescope, very near to the telescope itself. The numbers of this fixed scale increase downwards, so that when the magnet is placed in its usual position with the marked end east, increasing readings of the scale, as seen in the telescope, denote increasing vertical force.

The magnet is placed excentrically between the bearing parts of its knife edge, nearer to the southern side, leaving a space of about four inches in the northern part of the iron frame, in which the concave mirror used for the photographic register is planted. Two serew stalks, earrying adjustible screw weights, are fixed to the magnet carrier, near its northern side; one stalk is horizontal, and a change in the position of the weight affects the position of equilibrium of the magnet; the other stalk is vertical, and change in the position of its weight affects the delicacy of the balance, and so varies the magnitude of its change of position produced by a given change in the vertical force of terrestrial magnetism.

The whole is enclosed in a rectangular box, resting upon the pier before mentioned, and having apertures, covered with glass, opposite to the two mirrors carried by the magnet.

The time of vibration of the magnet in the vertical plane is observed usually about once in each week, or more often should it appear to be desirable. From observations made on 30 days between January 1 and May 31, the time of vibration was found to be 16°-157, and from observations made on 35 days between June 1 and December 31, 15°-584.

The time of vibration of the magnet in the horizontal plane was taken to be 17°255, as determined from 500 vibrations on 1879 December 31, when the magnet with all its attached parts was suspended from a tripod in the Magnetic Office No. 6, its broad side being in a plane parallel to the horizon, so that its moment of inertia was the same as when it is in observation. A telescope, with a wire in its focus, being directed to the plane mirror carried by the magnet, a scale of numbers was placed on the floor, at right angles to the long axis of the magnet, which scale, by reflexion, could be seen in the fixed telescope. The magnet was observed only when swinging through a small are.

The length of the normal to the fixed vertical scale that meets the face of the plane mirror is 186.07 inches, and 30th .85 of the scale correspond to 12 inches.

Consequently the angle which one division of the scale subtends, as seen from the mirror, is 7. 11".2, or the angular movement of the normal to the mirror, corresponding to a change of one division of scale reading, is 3'. 35".6.

But the angular movement of the normal to the mirror is not the same as the angular movement of the magnet, but is less in the proportion of unity to the cosine of the angle which the normal to the mirror makes with the magnet, or in the proportion of unity to the sine of the angle which the plane of the mirror makes with the magnet. This angle, as already stated, is $52\frac{n}{4}$, therefore dividing the result just obtained, 3′.35″-6, by Sin. $52\frac{n}{4}$ °, the angular motion of the magnet corresponding to a change of one division of scale reading is found to be 4′.30″-9.

The variation of vertical force, in terms of the whole vertical force, producing angular motion of the magnet corresponding to change of one division of scale reading = Cotan, dip $\times \left(\frac{T}{T}\right)^2 \times$ value of one division in terms of radius, in which T is the time of vibration of the magnet in the horizontal plane, and T that in the vertical plane. From January 1 to May 31, assuming $T=17^{s\cdot255}$, $T=16^{\circ\cdot157}$, and dip = 67° , 35', the change of vertical force corresponding to change of one division of scale reading was found to be 0.000618; from June 1 to December 31, with the same value for T', and assuming $T=15^{\circ\cdot584}$, and dip = 67° , 34^{1}_{4} , it was found to be 0.000664. These values have been severally used during the periods mentioned for conversion of the observed scale readings into parts of the whole vertical force.

Remarking that the time of vibration of the vertical force magnet is about 16 seconds, the method of observing is precisely similar to that described for the horizontal force magnet, and the hours of observation are the same. The wire in the fixed telescope is here horizontal, and as the magnet oscillates the divisions of the scale are seen to pass upwards and downwards in the field of view.

In the same way as described for the horizontal force magnet a thermometer is provided whose bulb projects into the interior of the magnet box. Readings are taken usually at 0^h, 1^h, 2^h, 3^h, 9^h, 21^h, 22^h, and 23^h. Its index error is insignificant.

The photographic register of the movements of the vertical force magnet is made on a cylinder of the same size as that used for declination and horizontal force, driven also by chronometer movement. The cylinder is here placed vertical instead of horizontal, and opportunity is taken to register on the same cylinder the variations of the barometer. The slit is horizontal, and other arrangements are generally similar to those already described for declination and horizontal force. The concave mirror carried by the magnet is 4 inches in diameter, and the slit is distant from it about 22 inches, being placed a little out of the straight line joining the mirror and the registering cylinder. There is a slight deviation in the further optical

arrangements. Instead of a reflecting prism (as for declination and horizontal force) the converging horizontal beam from the concave mirror falls on a system of plano-convex cylindrical lenses, placed in front of the cylinder, with their axes parallel to that of the cylinder. The trace is made on the western side of the cylinder, the position of the magnet being so adjusted that the spot of light shall fall also on the lower part of the sheet. An invariable base line is photographed, and the record is interrupted at each hour by the clock, and occasionally by the observer, for establishment of time scale, in the same way as for the other magnets. The length of the time scale is the same as that for the other magnetic registers.

The scale for measure of ordinates of the photographic curve is determined as follows:—The distance from the concave mirror to the surface of the registering cylinder is 100·2 inches. But the double of this measure, or 200·4 inches, is the distance that determines the extent of motion on the cylinder of the spot of light, which, in inches, for a change of 0·01 part of the whole vertical force, will therefore be = 200·4 × tan. dip × $\binom{T}{T'}$ ² × 0·01. Using the values of T, T', and of dip, before given (page xv), the movement of the spot of light on the cylinder for a change of 0·01 of vertical force is thus found to be, for the period January 1 to May 31, 4·258 inches, and for the period June 1 to December 31, 3·959 inches, and with these units the scales for measure of the curve ordinates were constructed. Base line values are then determined, and written on the sheets, exactly in the same way as was described for horizontal force.

In regard to the temperature correction of the vertical force magnet, it is only necessary here to say that, according to a series of experiments made at the same time as, and in a similar manner to those for the horizontal force magnet (page xviii), it appeared that an increase of 1° of temperature (Fahrenheit) produced an apparent increase of 000880 of the whole vertical force. This is an amount of change not only much larger than has ever been before found, but it is also one which does not follow the usual law of increase of temperature producing loss of magnetic power. Yet since the effect produced is that due to the action of temperature on the various parts of the mounting of the magnet as well as on the magnet itself, the result should be superior to those found by action on the magnet alone, as in all former experiments. There would appear, therefore, to be no doubt of its accuracy in the actual case. And it is easy to see that an instrument, subjected to the effects of gravity working differentially on its two ends, is liable to great changes depending on temperature which have no connection with magnetism. For instance, if the point at which the magnet is grasped by its carrier is not absolutely coincident with its centre of gravity, a sensible change in the space intervening between the grasping point and the centre of gravity may be

produced by a small change of temperature, and a disturbance of equilibrium and a great change of apparent magnetic position will follow. In practice a nearly uniform temperature is as far as possible maintained.

DIP INSTRUMENT.—The instrument with which the observations of magnetic dip have been made during the year 1881 is that which is known as Airy's instrument. It is mounted on a stou, block of word in the Magnetic Office No. 7. The plan of the instrument was arranged by Sir G. B. Airy so that the points of the needles should be viewed by microscopes, and if necessary observed whilst the needles were in a state of vibration, that there should be power of employing needles of different lengths, and that the field of view of each microscope should be illuminated from the side opposite to the observer, in such way that the needle point should form a dark image in the bright field.

The instrument is adapted to the of servation of needles of 9 inches, 6 inches, and 3 inches in length. The main portion of the instrument, that in which the needle under observation is placed, consists of a square box made of gun metal (carefully selected to ensure freedom from iron), with back and front of glass. Six microscopes, so planted as to command the points of the three different lengths of needles, are attached to a horizontal axis which allows them to be turned round in the vertical plane so as to follow the points of the prodles in the different positions which in observation they take up. The object glasses and field glasses of the microscopes are within the front glass plate, their eve glasses being outside, and turning with them on the same axis. Upon the plane side of each field glass (the side next the object glass and on which the image of the needle point is formed) a scale is etched. And on the inner side of the front glass plate is a ched the graduated circle, divided to 10', and read by two verniers to 10". The verniers (thin plates of metal, with notches instead of lines, being thus adapted to transmitted light) are carried by the horizontal axis, inside of the front glass plate, their reading lenses, attached to the same axis, being outside. Proper clamp with slow motion is provided. The microscopes and vernicis are illuminated by one gas lamp, the light from which falling on eight corresponding prisms is thereby directed to each separate microscope and vernier. The prisms are carried belond the back glass plate on a circular frame in such way that, on reversion of the instrument in azimuth, the whole set of prisms can at one motion of the frame be shifted so as to bring each one again exposite to its proper microscope or vernier.

The whole of the app. ratus is planted upon a circular horizontal plate, admitting of rotation in azimuth: a graduated circle near the circumference of the plate is real by two fixed veniors.

A bress zent h point recelle, having points corresponding in position to the three different lengths of dip needles, is used to determine the zenith point for each particular length of needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by access of which the instrument is from time to time adjusted in level. The readings of the first-mentioned level are also regularly employed to correct the apparent value of dip for any small outstanding error of level: the correction seldom exceeds a very few seconds.

The needles in regular use are of the ordinary construction, they are two 9-inch needles, B₁ and B₂, two 6-inch needles, C₁ and C₂, and two 3-inch needles, D₁ and D₂. During the year 1881 the Naylor equatoreal occupied the same position in the South Ground as in the year 1880. Its proximity to the Dip and Deflexion instruments has, however, been shown (see Introduction, 1880, p. vi.) to exercise no appreciable influence on the indications of these instruments.

Deflexion Instrument.—The observations of deflexion of a magnet in combination with observations of vibration of the deflecting magnet, for determination of the absolute intensity of magnetism, are made with a unifilar instrument, which, with the exception of some slight modification of the mechanical arrangements, is similar to those issued from the Kew Observatory. It is mounted on a block of wood in the Magnetic Office No. 7, on the south side of the Dip instrument.

The deflected magnet, whose use is merely to ascertain the proportion which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism, is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to and rotating with the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflexion the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter: it is graduated to 10′, and read by two verniers to 10″.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts and generally the Kew notation are followed. Previous to the establishment of the instrument at the Royal Observatory the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by Professor Balfour Stewart, and have been since used in the reduction of all observations made with the instrument at Greenwich.

xxiv

The instrumental constants as thus furnished are as follows:—

The increase in the magnetic moment of the deflecting magnet produced by the inducing action of a magnetic force equal to unity of the English system of absolute measurement = $\mu = 0.00015587$.

The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35 Fahrenheit = q = 0.00013126 (t = 35) + 0.000000259 (t = 35)²: t representing the temperature at which the observation is made.

Moment of inertia of the deflecting magnet = K. At temperature 30° , log. K = 0.66643: at temperature $90^{\circ} = 0.66679$.

The distance on the deflection rod from 1° 0 cast to 1° 0 west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from 1° 3 cast to 1° 3 west is too long by 0.0053 inch.

The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ} = 0.66727$.

If, in the deflection observation, r= apparent distance of centre of deflecting magnet from deflected magnet, corrected for scale error and temperature (taking expansion of scale for $1^\circ = \cdot 00001$), and u= observed angle of deflexion, then putting $A_1 = \frac{1}{2} r^\circ \sin u \left\{ 1 + \frac{2\mu}{r^3} + q \right\}$, in which $r=1\cdot 0$ foot, and $A_2=$ corresponding expression for $r=1\cdot 3$ foot; $P=\frac{A_1-A_2}{A_1-\frac{A_1}{(1\cdot 3)^2}}$; but this is not convenient for logarithmic computation, especially as the logarithms of A_1 and A_2 are, in the calculation, first obtained. The difference between A_1 and A_2 being small, P may be taken equal to (Log. A_1 — Log. A_2) $\frac{1\cdot 69}{(1\cdot 69-1) \text{ modulus}} = (\text{Log. }A_1 - \text{Log. }A_2) \times 5\cdot 64$. A mean value of P is adopted from various observations; then m being the magnetic moment of the deflecting magnet, and X the Horizontal component of the Earth's magnetic force, $\frac{m}{X} = A_1 \times \left(1 - \frac{P}{1\cdot 69}\right)$ from that at distance 1·3 foot. The mean of these is adopted for the true value of $\frac{m}{Y}$.

For determination, from the observed vibrations, of the value of mX, let $T_1 =$ time of vibration of the deflecting magnet corrected for rate and are of vibration, then $T^2 = T_1^2 \left\{ 1 + \frac{H}{F} + \mu \frac{X}{m} - q \right\}$, in which $\frac{H}{F}$ is the ratio of the torsion force of the suspension thread of the deflecting magnet to the earth's directive force. And $mX = \frac{\pi^2 K}{T^2}$. The adopted time of vibration is the mean of 100 vibrations observed immediately before, and 100 observed immediately after the observations of deflexion.

From the combination of the values of $\frac{m}{X}$ and mX, m and X are immediately found. The computation is made with reference to English measure, taking as units the foot and grain, but it is desirable to express X also in metric measure. If the English foot be supposed equal to α times the millimètre and the grain equal to β times the milligramme, then for reduction to metric measure $\frac{m}{X}$ and mX must be multiplied by α^3 and $\alpha^2\beta$ respectively, or X must be multiplied by $\sqrt{\frac{\beta}{\alpha}}$. Taking the mètre as equal to 39:37079 inches, and the gramme as equal to 15:43249 grains, the factor by which X is to be multiplied in order to obtain X in metric measure is $0.46108 = \frac{1}{2.1689}$. The values of X in metric measures thus derived from those in English measure are given in the proper table. Values of X in terms of the centimètre and gramme, known as the C.G.S. unit (centimètre-gramme-second unit), are readily obtained by dividing those referred to the millimètre and milligramme by 10.

Earth Current Apparatus.—For observation of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which are occasionally very powerful, two insulated wires having earth connexions at Angerstein Wharf (on the bank of the River Thames near Charlton) and Lady Well for one circuit; and at the Morden College end of the Blackheath Tunnel and the North Kent East Junction of the South-Eastern Railway for the other circuit, have been employed. The connecting wires pass from the Royal Observatory to the Greenwich Railway Station and thence, by kind permission of the Directors of the South-Eastern Railway Company, along the lines of the South-Eastern Railway to the respective earths, in each case a copper plate. The direct distance between the earth plates of the Angerstein Wharf—Lady Well circuit is 3 miles, and the azimuth of the line, reckoning from magnetic north towards east, 50°; in the Blackheath—North Kent East circuit the direct distance is $2\frac{1}{3}$ miles, and the azimuth, from magnetic north towards west, 46°. The actual lengths of wire in the circuitous courses which the wires necessarily take in order to reach the Observatory registering apparatus are about $7\frac{1}{2}$ miles and 5 miles respectively. The identity of the four branches is tested from time to time as appears necessary. The Lady Well and North Kent East branches were not employed in the first part of the year 1881. the Angerstein Wharf and Blackheath branches, connected to earth at the Royal Observatory, being alone used until June 4. The registering apparatus was then dismantled for the purpose of making a change in the apparatus for photographic registration. On recommencing registration in November, the complete circuits, Angerstein Wharf-Lady Well and Blackheath-North Kent East, were again employed.

In each circuit at the Royal Observatory there is placed a horizontal galvanometer, having its magnet suspended by a hair. Each galvanometer coils contains 150 turns of No. 29 copper wire, or the double coil of each instrument consists of 300 turns of wire. For information in regard to the photographic arrangements as existing before the dismantling of the apparatus on June 4, see the Introduction for 1880. The following is a description of the improved arrangement brought into operation in November. The galvanometers are placed on opposite sides of the registering cylinder, which is of course horizontal. One galvanometer stands towards one end of the cylinder, and the other towards the other end, and each carries, on a light stalk extending downwards from its magnet, a small plane mirror. Immediately above the cylinder are placed two long reflecting prisms which, except that they are each but half the length of the cylinder, and are placed end to end, are generally similar to those used for magnetic declination and horizontal force, the front convex surface facing opposite ways, each one towards the mirror of its respective galvanometer. In each case the light of a gas lamp, passing through a vertical slit and a vertical cylindrical lens, falls upon the galvanometer mirror, which reflects the converging beam to the convex surface of the reflecting prism, by whose action it is made to form on the paper on the cylinder a small spot of light; thus all the azimuthal motions of the galvanometer magnet are registered. The extent of trace for each galvanometer is thus confined to half the length of the cylinder, which is of the same size as those used for the magnetic registers. The arrangements for turning the cylinder, automatically determining the time scale, and forming an invariable base line are similar to those which have been before described. When the traces on the paper are developed the parts of the registers which appear in juxtaposition correspond, as for declination and horizontal force, to the same Greenwich time, and the scale of time is of the same length as for the magnetic registers.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer in general to the astronomical day. Before proceeding to discuss the photographic records of magnetic declination, horizontal force, and vertical force, they were divided into two groups, one including all days on which the traces showed no particular disturbance, and which therefore were suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces were so irregular that it appeared impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are three days in the year 1881 which have been classed as days of great

disturbance, January 31 and September 12 and 13. There were no days of lesser disturbance requiring distinct mention.

Separating the days of great disturbance, the photographic sheets for the remaining quiet days (excepting January 7 for declination and horizontal force, and April 24 and October 20 for vertical force, when the photographic process failed) were thus treated. Through each photographic trace a pencil line was drawn representing the general form of the curve, without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour, the measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the astronomical day, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns giving the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day.

The temperature of the horizontal and vertical force magnetometers was maintained so nearly uniform through each day that the final determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude, although in regard to vertical force the magnitude of the temperature co-efficient introduces an element of some uncertainty. It was not possible under the circumstances to maintain similar uniformity of temperature through all the seasons. Following the principle adopted in recent years, the results are given uncorrected for temperature; corresponding tables of mean temperature being in all cases added. It is deemed best that in the yearly volumes the results should be thus given, as more easily admitting of independent examination. When, as is done from time to time, the results for series of years are collected for general discussion, the temperature corrections are duly taken into account.

In regard to the measurement of ordinates on disturbed days, it is only necessary to explain that the assistant charged with the translation of the curve ordinates into numbers, remarking the salient points of the curve, or the points which if connected by straight lines would produce a polygon not sensibly differing from the photographic curve, applies to each of these the scale proper for the element under consideration: its position on the time-scale determines the time, and the reading of the scale for the point of the photographic curve gives the quantity which is to be applied to the value of the new base-line; the ordinate reading so formed is printed in the tables without alteration, and, as regards horizontal and vertical force, is not corrected for temperature. The temperatures referring to the measures of horizontal and vertical force on days of disturbance are given for the ordinary hours of observation on the right-hand page of the section.

The variations of declination are given in the sexagesimal division of the circle.

xxriii Introduction to Greenwich Meteorological Observations, 1881.

and those of horizontal and vertical force in terms of the whole horizontal and vertical forces respectively. They are also expressed in terms of Gauss's magnetic unit, as referred to the metrical system of the millimètre-milligramme-second.

The factors for conversion from the former to the latter system of measures are as follows:—

For variation of declination, expressed in minutes, the factor is

II. F. metrical $\times \sin 1' = 1.805 \times \sin 1' = 0.0005251$,

For horizontal force

Variation of H. F. metrical = H. F. metrical Former H. F. \times former variation = 1°505 \times former variation, the former H. F. being = 1.

For vertical force

 $\label{eq:Variation} \mbox{Variation of V.F. metrical} \ = \ \frac{\mbox{V.F. metrical}}{\mbox{Former V.F.}} \times \ \mbox{former variation.}$

The former V. F. = 1, but the V. F. metrical = H. F. metrical \times tan dip. hence, taking dip = 67° . $34\frac{1}{2}'$,

Variation of V. F. metrical = $1.805 \times \tan 67^{\circ}$, $34\frac{1}{2}' \times$ former variation = $4.3738 \times$ former variation.

The values given in Tables III., VIII., and XIII. have also been converted into metrical values.

The measures as referred to the metrical unit (millimètre-milligramme-second) are convertible into measures on the centimètre-gramme-second (C. G.S.) system by dividing by 10.

In the Tables of magnetic dip, the result of each separate observation of dip with each of the six needles in ordinary use is given, and also the concluded monthly and yearly values for each needle.

The results of the observations for absolute measure of horizontal force require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument.

No discussion of earth current records is contained in the present volume.

§ 6. Meteorological Instruments.

STANDARD BAROMETER.—The standard barometer, mounted in 1840 on the southern wall of the western arm of the upper magnet room, is Newman No. 64. Its tube is 0°565 in diameter, and the depression of the mercury due to capillary action is 0°002, but no correction is applied on this account. The eistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected

image of the point as seen in the mercury. The scale is divided to 0ⁱⁿ·05, subdivided by vernier to 0ⁱⁿ·002.

The readings of this barometer until 1866 August 20 are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod, for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod comparison was again made with the same three barometers with the result that (all three auxiliary barometers giving accordant results) the readings of the standard, in its new state, required a correction of $-0^{\rm in}.006$, which correction has been applied to every observation, commencing on 1866 August 30.

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made, under the direction of the Kew Committee, by Mr. Whipple, Superintendent of the Kew Observatory, in the spring of the year 1877, showed that the difference between the two barometers (after applying to the Greenwich barometer readings the correction $-0^{\text{in}}.006$) did not exceed $0^{\text{in}}.001$. (Proceedings of the Royal Society, vol. 27, page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being 5th 2ⁱⁿ above Mr. Lloyd's reference mark in the then transit room, now the Astronomer Royal's official room (*Philosophical Transactions*, 1831).

The barometer is usually read at 21^h, 0^h, 3^h, 9^h (astronomical). Each reading is corrected by application of the index correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.—The barometric record is made on the same cylinder as is used for magnetic vertical force, the register being arranged to fall on the upper half of the cylinder, on its eastern side. A syphon barometer fixed to the northern wall of the Magnetic Basement is employed, the bore of the upper and lower extremities of the tube being about 1·1 inch. A metallic float is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of blackened mica, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet.

An invariable base line is traced on the sheet, and the record is interrupted at each hour by the clock and occasionally by the observer in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found = 4ⁱⁿ·39 on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the invariable base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, as for the magnetic registers.

As regards the effect of temperature, it will be understood from the construction of the apparatus that the photographic record is influenced only by the expansion of the column of mercury (about 4 inches in length) in the lower tube of the barometer, and from this circumstance, in combination with the near uniformity of temperature in the basement, no appreciable differential effect is produced on the photographic register.

DRY AND WET BULB THERMOMETERS .- The dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis fixed in the ground, in a position about 35 feet south of the south-west angle of the Magnetic Observatory, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zine, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth as necessary to keep the inclined side always towards the sun.

The corrections to be applied to all thermometers in ordinary use are determined from time to time as seems necessary, usually once each year, by comparison with the standard thermometer, No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry and wet bulb thermometers are Negretti and Zambra, Nos. 45354 and 45355 respectively. They require no correction.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. To the readings of No. 8527 for maximum temperature of the air has been applied a correction of $-0^{\circ}.9$; those of No. 4386 for minimum temperature of the air required no correction. The readings of No. 44285 for maximum temperature of evaporation received until April 16 no correction below 55°, and a correction of $-0^{\circ}.1$ above 55°; from April 17, a correction of $-0^{\circ}.1$ has been applied to all readings. The readings of No. 3627 for minimum temperature of evaporation, until April 16, have been corrected by $+0^{\circ}.9$; and from April 17, by $+1^{\circ}.2$.

The dry and wet bulb thermometers are usually read at 21^h , 0^h , 3^h , 9^h (astronomical). Readings of the maximum and minimum thermometers are usually taken at 21^h and 9^h . Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

Photographic Dry and Wet Bulb Thermometers.—About 28 feet south-south-east of the south-east angle of the Magnetic Observatory, and about 25 feet east-northeast of the stand carrying the thermometers for eye-observation already described, is an open shed, 10 ft. 6 in. square, standing upon posts 8 feet high, under which are placed the photographic thermometers, the dry-bulb towards the east and the wet-bulb towards the west. Their bulbs are 8 inches in length and 0.4 inch internal bore, and their centres are about 4 feet above the ground. A registering cylinder of ebonite, 10 inches long and 19 inches in circumference, is placed with its axis vertical between the stems of the two thermometers. The registers are made simultaneously on opposite sides of the cylinder, and to avoid any accidental overlapping of the two registers the cylinder is made to revolve once in about 52 hours. The thermometer frames are covered by metal plates having longitudinal slits, so that light can pass through the slit only above the surface of the mercury. At each degree a fine cross wire is placed, thicker at the decades of degrees, and also at 32°, 52°, and 72°. A gas lamp is placed about 9 inches from each thermometer (east of the dry-bulb and west of the wet-bulb), and in each case the light, condensed by a cylindrical lens with axis vertical, shines through the tube above the mercury, and forms a well-defined line of light upon the paper. As the cylinder revolves horizontally under the light passing through the thermometer tube, the paper thus receives a broad sheet of photographic trace, whose breadth, in the direction of the axis of the cylinder, varies with the varying height of the mercury in the thermometer tube. When the sheet is developed the whole of that part of the paper which in each case passed the slit above the mercury will show photographic trace, with thin white lines corresponding to the degrees, the lower part of the paper remaining white; thus the boundary of the photographic trace indicates the varying

xxxii Introduction to Greenwich Meteorological Observations, 1881.

temperature. The time scale is determined by interruption of the traces made by the observer at registered times. The length of 24 hours on each of the thermometer traces is about 9 inches.

Radiation Thermometers.—During the year 1881 the radiation thermometers were exposed on the grass south of the magnetic offices, in what is known as the South Ground. The thermometer for solar radiation is a self-registering mercurial maximum thermometer by Negretti and Zambra, No. 38592; its bulb is blackened, and the thermometer is enclosed in a glass sphere from which the air has been exhausted. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120. The thermometers are laid on short grass; they require no correction for index error.

Earth Thermometers.—These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed at the northwest corner of the photographic thermometer shed.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet (25.6 English feet) below the surface, then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, 8.5, 10.0, 11.0, and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is 1.9 inch, 1.1 inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. 1, 46.0 to 55.5; No. 2, 43.0 to 55.0; No. 3, 44.0 to 62.0; and for No. 4, 37.0 to 68.0.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small, in that part to which the scale is attached it is larger; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

In consequence of the ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, proper corresponding alteration being made in the positions of the

attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof; in the north face is a plate of glass, through which the readings are taken. Within the hut are two small thermometers, one, No. 5, with bulb one inch in the ground, another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every day at noon, and the readings are given without correction. The index errors of Nos. 1, 2, 3, and 4 are unknown; No. 5 appears to read too high by 0°·2, and No. 6 by 0°·4.

Osler's Anemometer. — This self-registering anemometer, devised by A. Follett Osler, is fixed above the north-western turret of the ancient part of the Observatory. For direction of the wind a large vane, from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers, running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour-lines. The vane is 60 feet above the adjacent ground, and 215 feet above the mean level of the sca. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board.

For the pressure of the wind the construction is as follows. At a distance of 2 feet below the vane there is placed a circular pressure plate having an area of $1\frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted the reader is referred to the Introduction for the year 1866. A short flexible chain, fixed to a cross bar in connexion with the pressure plate, passing over a pulley in the upper part of the shaft, is then attached to a copper wire running down the centre of the shaft to the registering table, just before reaching which the wire communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. The scale for pressure, in lbs. on the square foot, is experimentally determined from

time to time as appears necessary: the pressure pencil is brought to zero by a light spiral spring.

A rain gauge of peculiar construction forms part of the apparatus: this is described under the heading "Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is equal in length to that of the magnetic registers.

Robinson's Anemometer.—This instrument, mounted above the small building on the roof of the Oetagon Room, is constructed on the principle described by the late Dr. Robinson in the Transactions of the Royal Irish Arab my. Vol. XXII. The revolving hemispherical cups are 56 feet above the adjacent ground, and 211 feet above the mean level of the sea. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil, An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil, which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of one inch represents horizontal motion of the air through 100 miles.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is equal in length to that of Osler's Anemometer and the magnetic registers.

It is assumed, in accordance with the experiments made by Dr. Robinson, that the horizontal motion of the air is three times the space described by the centres of the cups. To verify this conclusion experiments were made in the year 1860 in Greenwich Park with the anemometer then in use, not the same as that now employed. The instrument was fixed to the end of a horizontal arm, which was made to revolve round a vertical axis. For more detailed account of these experiments see the Introduction for 1880. With the arm revolving in the direction N., E., S., W., opposite to the direction of rotation of the cups, for movement of the instrument through one mile 145 was registered; with the arm revolving in the direction N., W., S., E., in the same direction as the rotation of the cups, 0.97 was registered. This was considered to confirm sufficiently the accuracy of the theory.

RAIN GAUGES.—During the year 1881 eight rain-gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (lxxi) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening 10×20 inches, equal to 200 square inches. The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected, the water then discharges itself by means of the following modification of the syphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube there is loosely placed, in the receiver, a larger tube, closed at the top. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe—the only outlet. The water filling the bore of the pipe creates a partial vacuum in the globe sufficient to cause the longer leg of the syphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the ancmometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily.

Gauges Nos. 3, 4, and 5 are eight-inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily.

Gauges Nos. 6, 7, and 8 are also eight-inch circular gauges, placed on the ground south of the Magnetic Observatory; No. 6 is the old daily gauge, No. 7 the old mouthly gauge, and No. 8 an additional gauge brought into use in July 1881, as a check on the readings of Nos. 6 and 7, the monthly amounts collected by these gauges showing occasionally greater differences than seemed proper. All three gauges have been read daily since the beginning of July 1881.

The gauges are also read at midnight on the last day of each calendar month.

The action of the Crosley self-registering gauge, of which description will be found in the Introduction to 1880, became so unsatisfactory that the use of the gauge was discontinued in the year 1881.

Electrometer.—The electricity of the atmosphere is collected by means of a Thomson self-recording electrometer, constructed by Mr. White of Glasgow.

For a very full description of the principle of the electrometer reference may be

made to Sir William Thomson's "Report on Electrometers and Electrostatic Measurements," contained in the British Association Report for the year 1867. It will be sufficient here to give a general description of the instrument which, with its registering apparatus, is planted in the Upper Magnet Room on the slate slab which carries the suspension pulleys of the Horizontal Force Magnet. A thin flat needle of aluminium, carrying immediately above it a small light mirror, is suspended, on the bifilar principle, by two silk fibres from an insulated support within a large Leyden jar. A little strong sulphuric acid is placed in the bottom of the jar, and from the lower side of the needle depends a platinum wire, kept stretched by a weight, which connects the needle with the sulphuric acid, that is with the inner coating of the jar. A positive charge of electricity being given to the needle and jar, this charge is easily maintained at a constant potential by means of a small electric machine or replenisher forming part of the instrument, and by which the charge can be either increased or decreased at pleasure. A gauge is provided for the purpose of indicating at any moment the amount of charge. The needle hangs within four insulated quadrants, which may be supposed to be formed by cutting a circular flat brass box into quarters, and then slightly separating them. The opposite quadrants are placed in metallic connexion.

The electricity of the atmosphere is collected by means of Sir William Thomson's water-dropping apparatus. For this purpose a rectangular cistern of copper, capable of holding above 30 gallons of water, is placed near the ceiling on the west side of the south arm of the Upper Magnet Room. The cistern rests on four pillars of glass, each one encircled and nearly completely enclosed by a glass vessel containing sulphuric acid. A pipe passing out from the cistern, through the south face of the building, extends about six feet into the atmosphere, the nozzle from which the water flows being about ten feet above the ground; the water passing out through a very small hole, and breaking almost immediately into drops, the eistern is brought to the same electrical potential as that point of the atmosphere, which potential is, by means of a connecting wire, communicated to one of the pairs of electrometer quadrants, the other pair being connected to earth. The varying atmospheric potential thus influences the motions of the included needle, causing it to be deflected from zero in one direction or the other, according as the atmospheric potential is greater or less than that of the earth, that is according as it is positive or negative as respects that of the earth.

The small mirror carried by the needle is used for the purpose of obtaining photographic record of its motions. The light of a gas-lamp, falling through a slit upon the mirror, is thence reflected, and by means of a plano-convex cylindrical lens is brought to a focus at the surface of a horizontal cylinder turned by clock-work. A brass cylinder was used until March 1881, since which time an ebonite cylinder, nearly 7 inches long and 16 inches in circumference, has been employed. A second fixed mirror, by means of the same gas-lamp, causes an invariable reference line to be traced round the cylinder. The actual zero is

found by cutting off the cistern communication, and placing the pairs of quadrants in metallic connexion with each other and with earth. The break of register at each hour is made by the driving-clock of the electrometer cylinder itself. Other photographic arrangements are generally similar to those which have been described for other instruments.

On June 7 the bifilar suspension of the needle gave way; the suspension threads were renewed on June 13. The excursion of the needle for a given potential would since seem to be somewhat greater than before.

The scale of time is equal in length to that of the magnetic registers.

Inconvenience is sometimes caused by cobwebs making connexion between the cistern or its pipe and the walls of the building, and in winter, interruptions occasionally occur owing to the freezing of the water in the exit pipe.

Sunshine Instrument.—This instrument, contrived by Mr. J. F. Campbell, and kindly given by him to the Royal Observatory, consists of a very accurately formed sphere of glass, nearly 4 inches in diameter, supported concentrically within a well turned hemispherical metal bowl in such a manner that the image of the sun, formed when the sun shines, falls always on the concave surface of the bowl. A strip of blackened millboard being fixed in the bowl, the sun, when shining, burns away the surface at the points at which the image successively falls, by which means the record of periods of sunshine is obtained. The strip is removed after sunset, and a new one fixed ready for the following day. The place of the meridian is marked on the strip before removing it from the bowl. A series of time scales, suitable for different periods of the year, having been prepared, the proper scale is selected and placed against the record, which is then easily transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums during each hour (reckoning from apparent noon) through the month are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, neither is any register usually obtained when the sun's altitude is less than 5°. The instrument is placed on a table upon the platform above the Magnetic Observatory.

OZONOMETER.—This apparatus is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The box in which the papers are exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers exposed at 21^h, 3^h, and 9^h are collected respectively at 3^h, 9^h, and 21^h, and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10. The value of

seams, huse observations have been entors of on My Time Scales. The metanotogical dependent ment in 1882. 3 have adapted my Ogstern, once are much shing records for meny stations in

Stokes and Lectic Morlifical morlifical priced Sported Me

Simplicity of my invention of increased the cost dock's for the buys glass spheres from Feil of Pinnis and della them with eatronia Bruce water towns, which have to be much for each latitude hime being will intitude.

ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form the values for any given civil day, three-fourths of the value registered at 21^h, the values registered at 3^h and 9^h, and one-fourth of that registered at the following 21^h, are added together, the resulting sum (which appears in the tables of "Daily Results") being taken as the value referring to the civil day. The means of the 21^h, 3^h, and 9^h values, as observed, are also given for each month in the foot notes.

§ 7. Meteorological Reductions.

The results given in the Meteorological section refer in general to the civil day.

All results in regard to atmospheric pressure, temperature of air and of evaporation and deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye-observation of the ordinary maximum and minimum thermometers. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day, and the vertical argument through the days of a calendar month. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve in the way described for the magnetic registers (page xxxii), excepting that all days are included, no day being omitted on account of unusual electrical disturbance, it having been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. The ordinates of the pencil curve, drawn as described, were measured by a scale of inches, calling the zero 10:00 to avoid negative values: the scale is thus arbitrary. Numbers greater than 10:00 indicate positive potential. Then, for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value.

To correct the photographic values of barometer and dry and wet bulb thermometer for small instrumental error, the means of the photographic readings at $21^{\rm h}$, $0^{\rm h}$, $3^{\rm h}$, and $9^{\rm h}$ in each mouth are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye-observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and evaporation by use of Glaisher's Hygrometrical Tables. The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

Table of Factors by which the Difference between the Readings of the Dry-Bule and Wet-Bule Thermometers is to be Militiplied in order to produce the Corresponding Difference between the Dry-Bule Temperature and that of the Dry-Point.

Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.
Thermometer. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	8.78 8.78 8.78 8.77 8.76 8.75 8.62 8.53 8.34 8.14 7.60 7.28 6.93 6.53 6.08 5.61 5.12 4.63	33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	3°01 2°77 2°60 2°50 2°42 2°32 2°32 2°29 2°26 2°18 2°16 2°14 2°12 2°10 2°06 2°06	56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	1 '94 1 '92 1 '90 1 '80 1 '80 1 '87 1 '86 1 '85 1 '85 1 '85 1 '85 1 '87 1 '76 1 '77 1 '76 1 '75 1 '74 1 '72	79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	1 · 69 1 · 68 1 · 68 1 · 67 1 · 66 1 · 65 1 · 64 1 · 63 1 · 63 1 · 62 1 · 61 1 · 60 1 · 60 1 · 60 1 · 60 1 · 60
30 31 32	4.15 3.40 3.32	53 5 ₄ 55	1,38 1,38	76 77 78	1.40 1.40	99 100	1.22

In the same way the mean hourly values of the dew-point and degree of humidity in each month (pages (lix) and (lx)) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (lviii) and (lix)).

The excess of the mean temperature of the air on each day above the average of 20 years, given in the "Daily Results," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the numbers given in Table LXXVII. of the "Reduction of Greenwich Meteorological Observations, 1847–1873," which are similarly deduced from photographic records. The smoothed numbers are given in the following table.

Adopted Values of Mean Temperature of the Air, deduced from Twenty-four Hourly Readings on each Day, for every Day of the Year, as obtained from the Photographic Records for the Period 1849-1868.

Day of the Month,	January.	February.	March.	April.	May.	June.	July.	August.	September.	October,	November	Вессивег.
	38.1	3.	٥,	5. 3	0	57.5	000		0		0	41°5
1		40.5	40.3	45.3	18.7	57.5	61.6	62.6	60.0	54.7	47.0	41.9
3	37 . 9 37.8	40°6	40.4	45.1 46.1	48.0	57.7 57.9	61.4	62.7	59.8	54.4 54.0	46.4	41.8
	37.7	40.7	40.2	46.4	49.4	58.1	61.4	62.7	59.7	53.7	46.0	42.4
5 6	37.6	40.6	40.2	46.6	49.7	58.2	61.2	62.7	59·5	53.4	45.6	42.0
6	37.6	40.4	40.2	46.7	50.0	58.3	61.7	62.7	59.3	53.0	45.5	42.7
	37.6	40.5	40.6	46.8	50.3	58.4	61.0	62.7	5y o	52'7	44'7	42.8
7 8	37.7	39.9	40.6	46.8	50.6	58.5	62.2	62.7	58.8	52.5	44.3	42.8
9	37.7	39.6	40'7	46.9	50.8	58.5	62.2	62.7	58.2	52.3	43.8	42.8
10	37.8	39.3	40.7	46.9	511	58.6	62.7	62.7	58.3	521	43.4	42.7
11	37.9	39.1	40.8	47.0	51.4	58.7	62.9	62.7	58.1	51.9	43.0	42.5
1 2	38.1	38.9	40.8	47.1	51.8	58.8	63.1	62.6	58.0	51.7	42.6	42.5
13	38.3	38.8	40.0	47.5	52.1	58.9	63.3	62.3	5,7.8	51.6	42.3	41.8
1.4	38.3	38.7	41.0	47.4	52.2	591	63.4	62.4	57.6	51.4	42.0	41.5
15	38.4	38.7	41.1	47.5	25.0	59.3	63.4	62.3	57.4	51.3	41.8	41.1
16	38.5	38.8	41.5	47.6	53.3	59.5	63.2	62.1	57:3	51.5	41.6	40.8
17	38.6	38.9	41.3	47.8	53.7	59.7	63.2	61.9	57.1	21.1	41.2	40.2
18	38.8	39.0	41.4	47.9	24.1	29.9	63.4	61.8	56.0	510	41.2	40.3
19	38.9	39.2	41.4	48.0	24.4	60.2	63·3 63·2	61.6	56·8 56·6	50.8	41.4	10.0
20	39°1 39°3	39.3	41.2	48.1	54.7 55.0	60.8	63.0	61.3	56.4	50.6	41.3	39.8
2 2	39.5	39·5 39·6	41.6	48.5	55.3	61.1	62.0	61.3	55'2	50°4 50°1	41.1	39.6
23	39.6	39°7	41.3 41.8	48.3	55.5	61.4	62.8	61.3	56·1		41.0	39.4 39.3
24	39.7	39.8	42.0	48.3	55.7	61.7	62.7	61.1	55°a	49'7 49'4	41.0	39.3
25	39.8	39.9	42.3	48.4	55.9	619	62.7	61.0	55.8	49 1	40.0	39.3
26	39.9	10.0	42.6	48.4	56.1	62 0	62.7	60.0	55.7	48.8	40.8	30.1
27	40.0	40.1	43.0	48.4	56.3	62.0	62.6	60.8	55.5	48.5	40.8	39.0
28	40.1	40.3	43.4	48.5	56.5	61.0	62.6	60.7	55.4	48.5	40.0	38.8
20	40'2	'	43.8	48.5	56.3	61.8	62.6	60.6	55.3	4719	41.0	38.7
30	40.3		44.3	48.6		61.7	62.6	60.1	54.9	47.6	41.5	38.5
31	40'4		44.8	,	57.3	,	62.6	60.3	• •	47.3	•	38:3
Means	38.7	39.7	41.2	47'5	531	59.8	62.6	61.0	57:5	51.0	42.7	40.8

The daily register of rain contained in column 18 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is usually read at 21^h and 9^h. The continuous record of Osler's self-registering gauge shows whether the amounts measured at 21^h are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 21^h amount which should be placed to each civil day. The number of days of rain given in the foot notes, and in the abstract tables, pages (lvii) and (lxxi), is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded 0ⁱⁿ-005.

The indications of electricity are derived from Thomson's Electrometer. On some days, not necessary to be specified, during interruption or failure of photographic registration, the results depend on eye observations.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration.

The mean amount of cloud given in a foot note on the right-hand page, and in the abstract table, page (lvii), is the mean found from observations made usually at 21^{h} , 0^{h} , 3^{h} , and 9^{h} , of each day.

For understanding the divisions of time under the headings "Clouds and Weather" and "Electricity." the following remarks are necessary:—In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6 A.M., and those following it to the interval from 6 A.M. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10.

a denotes	s aurora borcalis	h der	otes ha	ze –
ci	cirrus	$_{ m slt-h}$	sli	ght haze
ci-cu	cirro-cumulus	$_{ m hl}$	ha	il
C1-S	cirro-stratus	1 .	lig	htning
eu	cumulus	li-el	lig	ht clouds
eu-s	cumulo- $stratus$	lu-co	lur	ar corona
d	dew	lu-ha	lui	ıar halo
hy-d	heavy dew	m	mi	st
f	fog	slt-m	sli	yht mist
slt-f	$slight\ fog$	n	nir	nbus
tk-f	$thick\ fog$	p-el	pa	rtially cloudy
fr	frost	r	rai	'n
ho-fr	hoar frost	e-r	·· con	tinued rain
g	gale	fr-r	fro	zen rain
hy-g	heavy gale	fq-r	fre	quent rain
glm	gloom	hy-r	hea	vy rain
gt-glm	$great\ gloom$	c-hy-r	· · con	tinued heavy rain

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1881.

m-r den	otes	misty rain	sc de	enotes	s scud
$_{ m fq\text{-}m\text{-}r}$	• • •	frequent misty rain	li-sc		light scud
oc-m-r	• • •	occasional misty rain	sl	•••	sleet
oc-r		occasional rain	sn		snow
$\operatorname{sh-r}$		shower of rain	oc-sn	•••	occasional snow
$\operatorname{shs-r}$		showers of rain	slt-sn		slight snow
slt-r		slight rain	so-ha	• • •	solar halo
oc-slt-r		occasional slight rain	sq		squall
th-r	• • •	thin rain	sqs	•••	squalls
$\mathbf{f}_{\mathbf{q}}$ - \mathbf{th} - \mathbf{r}		frequent thin rain	fq-sqs		frequent squalls
oc-th-r		occasional thin rain	hy-sqs		heavy squalls
hy-sh		heavy shower	fq-hy-sqs	•••	frequent heavy squalls
slt-sh		slight shower	oc-sqs	•••	occasional squalls
$\mathbf{f}q ext{-}\mathrm{shs}$		frequent showers	t	•••	thunder
hy-shs	•••	heavy showers	t-sm		thunder storm
fq-hy-shs	• • •	frequent heavy showers	$_{ m th-cl}$	•••	thin clouds
oc-hy-shs		occasional heavy showers	v	•••	variable
li-shs		light showers	vv	• • •	very variable
oc-shs	• • •	occasional showers	w	• • •	wind
s		stratus	st-w	•••	strong wind

The following is the notation employed for Electricity:—

N	denote	es negative	w c	lenote	es weak
P		positive	s		strong
\mathbf{m}		moderate	v		variable

The duplication of the letter denotes intensity of the modification described, thus, s s, is very strong; v v, very variable. O indicates no electricity, and a dash "—" accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in \S 6.

In regard to the comparisons of the extremes and means, &c. of meteorological elements with average values, contained in the foot notes, it may be mentioned that the photographic barometric results are compared with the corresponding barometric results, 1854–1873, and the photographic thermometric results and deductions therefrom with the corresponding thermometric results, 1849–1868 (see "Reduction of Greenwich Meteorological Observations 1847–1873"). Other deductions, from eye observations, are compared with averages for the period 1841–1880.

The tables of Meteorological Abstracts following the tables of "Daily Results," and the Observations of Luminous Meteors, require no particular explanation. In general only special meteor showers are watched for, such as those of August and November. The observers of meteors in the year 1881 were Mr. Ellis, Mr. Nash, Mr. Greengrass, Mr. Hugo, Mr. Stafford, and Mr. Jeffery; their observations are distinguished by the initials E, N, G, H, S, and J respectively.

§ 8. Details of the Photographic Process.

The paper used in 1881 was that known as Whatman's royal, a paper not specially prepared for photographic purposes.

First Operation.—Preliminary Preparation of the Paper.

The chemical solutions used in this process are the following:—

- (1.) Sixteen grains of iodide of potassium are dissolved in one ounce of distilled water.
- (2.) Twenty-four grains of bromide of potassium are dissolved in one ounce of distilled water.
- (3.) When the crystals are dissolved, the two solutions are mixed together, forming the bromo-iodising solution. The mixture will keep through any length of time. Immediately before use, it is filtered through filtering paper.

A quantity of the paper, sufficient for the consumption of several weeks, is treated in the following manner, sheet after sheet.

The sheet of paper is pinned by its four corners to a horizontal board. Upon the paper, a sufficient quantity (about 50 minims, or $\frac{5}{48}$ of an ounce troy) of the bromo-iodising solution is applied, by pouring it upon the paper in front of a glass rod, which is then moved to and fro till the whole surface is uniformly wetted by the solution. Or, the solution may be evenly distributed by means of a camel-hair brush.

The paper thus prepared is allowed to remain in a horizontal position for a few minutes, and is then hung up to dry in the air; when dry, it is placed in a drawer, and may be kept through any length of time.

Second Operation.—Rendering the Paper sensitive to the Action of Light.

A solution of nitrate of silver is prepared by dissolving 50 grains of crystallized nitrate of silver in one ounce of distilled water. Since the magnetic basement has been used for photography, 15 minims of acetic acid have always been added to the solution.

xliv Introduction to Greenwich Meteorological Observations, 1881.

Then the following operation is performed in a room illuminated by yellow light.

The paper is pinned upon a board somewhat smaller than itself, and by means of a glass rod its surface is wetted with 70 minims of the nitrate of silver solution. It is allowed to remain a short time in a horizontal position, and, if any part of the paper still shines from the presence of a part of the solution unabsorbed into its texture, the superfluous fluid is taken off by the application of blotting paper.

The paper, still damp, is immediately placed upon the cylinder, and is covered by the exterior glass tube, and the cylinder is mounted upon the revolving apparatus, to receive the spot of light formed by the mirror, which is carried by the magnet; or to receive the line of light passing through the thermometer tube.

Third Operation.—Development of the Photographic Trace.

When the paper is removed from the cylinder, it is placed as before upon a board, and a saturated solution of gallic acid, to which a few drops of aceto-nitrate of silver are occasionally added, is spread over the paper by means of a glass rod, and this action is continued until the trace is fully developed. The solutions are kept in the magnetic basement, and are always used at the temperature of that room. When the trace is well developed, the paper is placed in a vessel with water, and repeatedly washed with several changes of water; a brush being passed lightly over both sides of the paper to remove any crystalline deposit.

Fourth Operation.—Fixing the Photographic Trace.

The photograph is placed in a solution of byposulphite of soda, made by dissolving four or five ounces of the hyposulphite in a pint of water; it is plunged completely in the liquid, and allowed to remain from one to two hours, until the yellow tint of the iodide of silver is removed. After this the sheet is washed repeatedly with water, allowed to remain immersed in water for 24 hours, and afterwards placed within folds of cotton cloths till nearly dry. Finally it is either ironed, or placed between sheets of blotting-paper and pressed.

Royal Observatory, Greenwich, 1882 December 19.

W. H. M. CHRISTIE.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

MAGNETICAL OBSERVATIONS.

ROYAL OBSERVATORY, GREENWICH.

REDUCTION

OF THE

MAGNETIC OBSERVATIONS

(EXCLUDING THE DAYS OF GREAT MAGNETIC DISTURBANCE).

Table L.—Mean Western Declination of the Magnet on each Astronomical Day, as deduced from the Mean of Twentyfour Hourly Measures of Ordinates of the Photographic Register on that Day,

	1881.											
Days of	January.	February.	March.	April.	May.	${ m June}.$	July.	August.	September.	October.	November.	December.
the Month.	18	18	187	18	18	18	1 S°	187	18	189	18	183
,			- /		,			,	,	,	,	,
I	301	31.3	28.2	28.3	26.7	26.6		26.2	26.5	2510	2.510	25.4
2	29.8	30.4	28.0	2 S*1	2713	26.5		25.7	26.1	24'9	26.4	54.6
- 3	30.2	29.8	261	27.7	26°9	27.7		25'4	26.8	24.0	25.7	251
-4	30.7	31.0	30.8	27'9	26.5	26.6		26.5	26.0	24.5	2.50	25:3
5	3014	30.3	24.6	27.8	26.5	28.4		26.5	26.4	2.00	25.5	25.9
6	29'9	31.3	28.7	27.7	26.7	27.2		27.6	26.1	25.9	25*4	25.3
-		30.0	30.3	27.2	27.0	26.7		26.9	26.6	24.0	25.4	25.8
Ś	30.0	29.6	3012	27.7	25.8	26.0		26.3	26.6	251	26.0	26.4
q	29.6	29.6	29.4	28.0	28.0	27.2		26.3	27.3	2.00	26.2	26.3
10	30.0	29.5	29.6	28.1	26.a	27.1		26.3	26.8	25.0	26.0	250
1.1	300	29.8	29'7	27'7	26.6	27.7	2 - 2	26.6	25.7	25.2	25.4	25.6
12	30.2	30.1	28.8	26.8	26.4	27.5	25.4	25.6		24.0	2.5.6	26.1
1.3	29°9	29.5	30.3	28.3	26.8	26.0	26.7	26.5		25.8	25.6	25.4
1.4	29.4	30.0	29*7	27.7	26.4	27.0	25.0	26'1	25.7	25.8	25'4	26.3
1.5	29.7	30.5	29.5	27.8	25.2	26.0	27.2	26.1	26.3	26.0	25.7	25.2
16	20.2	30.3	29.6	27.4	27.4	26.3	26.2	26.6	26.4	26	25.5	25.0
17	20.5	30.3	29.7	27.5	27.6	25.7	271	26.1	25.2	25.5	26.0	25∙5
18	29.7	30.6	27.4	28.2	26.0	25.8	25.7	25.0	25.6	24.5	25.5	25.7
19		30.6	29.8	28.6	26.0	27.0	26.3	26.8	25.3	25.0	24.0	26.6
20		30.6	29.3	26.4	26.9	27.4	26.8	27.1	24.9	25.6	25.5	25.5
21	32*4	30.1	29*7	27.2	27.3	26.4	26.2	26.0	24.1	251	25.8	25.5
2 2	30.8	29.0	29*9	26.0	26.6	2 7 1	26.2	25.7	24.8	25.0	26.2	25.0
23	32.2	29.8	29.2	26.5	26.1	27.1	26.2	26.4		24.9	25'1	23.0
24	20.1	301	29.2	26.4	26.4	27.0	26.4	26.6		24.6	26.0	25.9
25	2012	30.7	29'7	26.7	25.4	25.8	26.8	26.5		25.8	25.6	24'9
26	28.4	31.3	29.2	27.1	24.2	26.4	26.5	26.8		28.0	25.6	24.6
27	31.6	28.6	29.3	29:3	25.3	26.6	26.7	26.3		26.8	25.0	25.0
28	31.7	29'7	28.7	26.0	24'5		26.0	26.1		26.6	25.8	24.6
	30.5	~97	28.0	26.0	24.5		26.0	25.2	2 4.2	26.3	25'4	24.0
29 30				27'0	24.7		25.2	25.2	24.4	27.5	22.5	22.5
31	2 9*9	†	29'0	2/0	25.0		25.0	25.3	*++	26.5	1	22.1
01	• •		-//		230		23 9	202		202		231

Table II.—Mean Monthly Determination of the Western Declination of the Magnet at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through the Month.

						1881.						
wird. Solur	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
Gipton Menn Tin	18	182	18°	180	18°	18°	18°	18°	180	18	187	18°
h O	32.7	3.3.6	34.0	32.3	31.5	32.0	31.8	32.4	31.8	36.6	29.0	28.0
1	33.7	34.6	35.6	3319	32.0	33.2	33.0	33.6	32.8	311	29.0	28.8
2	32.7	345	35.4	33.5	31.6	33.4	32.7	32.7	31.7	3616	29.0	28:3
3	31.5	33'4	34.3	31.0	30.3	32.7	30.0	30.8	20.8	2412	27.5	27.5
4	3114	316	31.9	30.4	29.0	314	29.3	28.2	28.1	27.5	26.7	26.7
5	310	311	30.2	28.7	2719	29*1	28.0	26.6	26.6	26.3	25.7	25.5
6	3513	30.8	2410	27.5	26.0	27.8	2,7*1	25.0	26.0	25.7	25'7	25.0
7	245	300	28.8	2 - 0	26.1	27.2	27.1	26.0	25.5	25.3	24.8	24.4
Ś	25'0	29*2	28.6	26.0	25.8	26.0	27.2	2.5.7	25.0	24'3	2.3.6	23.4
0	2.817	28.5	28.4	26.9	25'7	26.8	26.8	25.4	24.6	23:5	2.3.7	22'0
10	283	28.1	28.1	26.4	25.5	26.7	26.1	25.4	24.3	23.7	2.312	23.0
1.1	28.5	28*2	27:5	26.0	25.6	2614	26.0	25.4	24.3	23.8	2.3*4	23'3
12	28.5	28.7	27.4	20.0	25.7	2.70	25.0	25.0	24.2	24.1	23.0	23.6
13	25'0	280	27.4	26.2	25.5	25'4	24'4	24.8	24.5	240	24.4	2.3*0
1.4	29.4	29.3	27.6	26.4	25*4	25.4	24.6	24.5	23.9	24.0	24'7	24.8
1.5	29.7	29*2		26.0	25.2	2.5.2	24.0	24.3	23.7	24.0	25*3	2.5.6
16	29.0	29.3	2719 2715	25.8	2+++	2.4.2	23.6	23.7	23.8	24.4	25*2	25.8
1 "	2918	243	27'7	25*7	2 3 1	22.0	21'9	22'9	23.7	24.3	2.5°1	25.6
18	24.4	2912	2810	253	22.0	21'4	21.6	21.0	23.1	2 + 1	250	25.6
19	2999	211.2	27.5	2 1. 5	21.2	21.5	21.7	21.5	22.3	2 3 5	25*3	25.7
20	29.6	28.7	26.0	23.3	21'9	21'9	21'8	2.2*0	2119	22*7	251	25'4
21	29.6	28.6	26.0	24.2	23.5	253	2315	2.3.7	23.1	2.50	25.0	24.8
2.2	30.4	29.8	28℃	20.3	26.0	20.0	25.6	26.7	25.8	25.5	26.1	25.7
23	315	31.7	3019	29.2	29*1	29'3	2819	30.0	29.2	28.7	28.1	27.1

TABLE III.

1881

	1881.		
Month.	MEAN WESTERN DECENATION of the MAGNET IN EACH MONTH.	Exciss of Western December of the Mestern Agents of the Mestern of the Mestern of the Mestern of Guess's Unit measured on the Metarcal Sistem.	MONTHLY MEANS of all the DITENAL RANGES of the WESTERN DICLEANATON, as deduced from the Twenty-four Houtly Measures of each day.
	۰ ,		,
January	18. 30*2	0.04736	7.0
February	18. 30.2	.04736	8.5
March	18. 29.3	.04689	11.8
April		04395	11'4
May		.04232	1111
June		04563	13.4
July		.04537	12.7
August		*04526	12.7
September		*04505	12.4
October	18. 25.6	*04495	10.3
November	18. 25.6	.01492	9.3
December	18. 25'4	.01484	8.0
Mean	18. 27.1	0.0424	10'7

The unit adopted in column 3 is the Millimetre-Milligramme-Second Unit. To express the forces on the Centimetre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

Table IV.—Mean Horizontal Magnetic Force, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), uncorrected for Temperature, on each Astronomical Day; as deduced from the Mean of Twenty-four Hourly Measures of Ordinates of the Photographic Register on that Day.

	1	8	8	1	
--	---	---	---	---	--

Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November,	December.
d 1	0.12,10	0112683	0.13005	0.12082	0.13481	0.13125		0.13030	0.14086	0'14068	0.13073	0.13052
2	12775	112740	13000	12989	12967	13190		14027	14100	14102	13925	13912
3	.12778	12793	.12928	13026	13005	13217		14020	14109	14088	13920	113911
4	12773	12755	12960	*13021	13032	.13110		14075	14115	14026	13988	13948
5	12786	12816	12946	13022	13c57	13174		14002	14072	14027	14042	13928
6	12788	.12848	12945	.13016	13056	13178		14067	14087	13996	114034	13897
7		.13894	12970	*12998	.13012	13225		14030	14078	13958	14093	13886
8	*12783	12900	12930	*12998	.13011	13210		14058	14089	13976	13913	13756
9	12790	12921	12951	.13010	12936	13193		14127	14056	13973	13788	13788
10	12745	.13938	12975	.13061	.13013	1.3211		.14083	.14044	14003	13928	13796
11	12799	.13013	12999	13086	.13040	113207	013688	14091	14081	14050	13924	13930
12	.15852	.15895	12912	13084	12963	13257	13561	14070		.14041	13986	13892
13	.15855	12922	12907	13029	12925	13249	13629	.14020		14105	14023	13913
:4	12833	112974	.13013	.13016	12944	13270	13620	.14000	13768	14020	14012	13960
15	.12864	.15833	.15001	13040	12920	13276	.13665	.14092	*13824	14052	13986	.13993
16	.15825	.15858	12985	.13058	12960	13269	13673	14054	13924	14050	14002	.14003
1.7	12879	12805	13017	13021	13030	13325	13636	14075	13867	13947	.14004	.14001
1.8	12919	.13930	12985	12986	13077	.13588	13631	.141.00	.14010	13981	13978	14027
10	12920	12962	.13983	12975	13052	.13588	13662	.14184	14034	13970	13972	13994
20	12961	12917	13007	12909	13074	13265	13670	.14118	13943	13985	.14032	13970
2.1	13021	.15911	.13016	12886	13077	13279	13664	.14088	13942	13909	14051	·13g66
22	.13962	12939	13032	12915	.13018	13286	13832	.14023	.14019	.13938	.14018	.14032
2.3	12970	12921	.13068	12952	12975	113304	13863	14073		13942	13877	1.386.5
2 4	12902	12924	13041	12977	13054	13267	13809	.14149		13964	·13969	13937
2.5	12955	12975	13025	.15025	13156	13272	.13852	.14030		13995	13959	14002
26	12984	12928	12999	12980	13163	13231	.13818	.14050		.14086	13984	.13664
27	12925	.12788	13030	13043	.13131	13333	.13804	.14043		·13993	·13888	14013
28	12937	12929	12998	12960	.13112		13746	14087		14020	13923	.14015
29	.13919		13005	12920	13155		·13843	11090	.14048	.14044	1.3882	.14058
30	12909		.13003	12950	.13086		13839	.14042	14052	14063	.19935	*14019
31			12901	1	.13104		13922	.14081		13985		.11010

Table V.—Daily Means of Readings (usually eight on each Day) of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer, for each Astronomical Day.

						188	1.					
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
4	60.7	5q·8	57.2	61.1	63.0	68.1	0	65.2	63.9	63°·2	58.6	65.2
2	61.6	61.0	20.0	60.0	63.3	67.7		65.4	64.1	62.2	60.7	64.7
3	61.2	62.8	20.1	58.0	62.3	68.5		65.8	64.0	62.7	63.3	64.5
	61.1	62.0	60.7	59.6	63.1	68.0		67.2	65.4	63.2	65'1	63.6
4 5	60.3	610	62.0	60.8	63.7	64.7		67.8	65.6	62.4	65.2	63.5
6	59.0	58.5	63.1	60.8	65.3	63.8		67.1	65.6	64.3	64.6	63.1
7		58.0	62.2	60.8	65.4	62.0		67.0	65.6	65.0	64.0	64.6
8	60.7	59.8	61.2	62.2	64.5	62.5		65.9	66.3	64.1	64.4	64.8
9	61.2	60.8	61.0	62.7	62.0	62.7		64.3	65.8	63.6	63.7	64.6
10	60.0	60.7	63.0	62.7	61.7	62.9		64 2	65.5	6+.6	64.4	64.0
11	60.6	597	63.0	63.8	62.7	63.8	67.6	64.1	65.4	65.0	65.0	63.8
1.2	58.8	5917	61:3	64.0	63.9	64.6	68.9	64.4		64.7	64.8	63.2
13	55.5	5919	5g·8	64-1	65.0	64.2	69.3	64.3		64.4	64.8	62.3
14	54'4	60.2	60.3	63.4	65.7	63.9	70.7	64.0	66.6	63.4	64.8	62.9
15	55.4	60.0	60.4	62.3	65.0	64.7	71.9	64.7	65.9	61.0	63.8	62.7
16	53.8	60.8	60·3	63.2	64.2	65.8	71.7	66.3	65.3	61.5	63.3	62.5
17	52.8	615	61.0	64.1	64.3	66.5	70.8	66.1	66.3	61.3	63.5	61.9
18	53.7	62.9	62.0	63.9	65.1	65.2	71.0	65.6	67.1	60.9	63.0	61.6
19	54.4	60.8	61.7	62.5	64.4	64.5	71.3	65.2	66.6	60.7	62.8	62.8
20	53·3	60.1	60.9	62.3	64.4	65.1	67.6	651	67.9	62.5	63.0	62.9
21	51.8	59.8	59.8	62.2	65.3	65.5	66.2	64.4	67.9	63.4	63.5	63.2
2 2	52.8	5912	59.9	63.2	66.3	64.6	65.3	64.9	66.3	63.0	64.4	61.6
2.3	54.1	59.7	61.0	63.3	67.3	64.5	67.1	65•9		63.3	65.0	59*2
24	54.2	60.1	61.5	64.1	66.4	64.8	66.7	65.1		62.6	64.4	57.9
25	51.7	60.0	60.0	64.8	66.4	64.4	64.7	65.6		61.3	64.1	57.8
26	51.6	59.6	60.2	63•1	66.7	65 1	64.0	65.3		61.2	63.4	59.8
27	56.0	59.0	59.5	62.9	67.2	64.9	63.1	63.7		61.3	63.9	60.9
28	58.4	58.5	60.0	63.6	67.8		64.6	63.7		61.3	64.9	60.7
29	61.4		61.3	64.3	66.3		66.4	63.9	63.8	60.9	64.5	60.6
30	61.2		60.2	64.2	66.2		65.8	63.6	63.7	60.0	64.8	61.0
31			60.5	*	67.6		65.0	63.0		57.7		61.1

Table VI.—Mean Monthly Determination of the Horizontal Magnetic Force, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (o 86000 nearly), uncorrected for Temperature, at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through each Month.

1881.												
Hour, Greenwich Hean Solar Time,	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
h O	0.12830	0.12740	0.12002	0'12900	0.12962	0.13122	0.13628	0.13001	0.13930	0.13051	0.13002	0.13013
1	.12868	12822	12936	12944	12988	13187	13698	14042	13987	13955	13929	.13927
2	.12879	12854	12971	12989	13016	13240	13755	14057	14017	13994	13942	13923
3	12883	12879	12993	13025	.13023	13277	*13795	14077	14041	14004	13948	13921
+	12876	.12884	12996	13041	.13080	13295	13799	11094	14047	.14013	13962	13927
5	.12870	.13888	12998	13047	13109	13316	13784	14109	14056	.14050	13970	13935
6	12865	12892	13004	13057	13119	13324	13783	14123	14078	.14038	13979	13936
7	.13860	12889	13006	13063	13114	13319	13787	14133	.14085	.14020	13980	13931
- 8	12856	12891	·1300g	.13063	13097	13366	13788	44135	14078	14045	13979	13929
9	12858	12894	.13016	13053	.13084	13286	13790	14131	14070	.14043	13983	*13934
10	.12866	12900	13016	1.3039	13075	13273	13786	14124	14062	14053	13992	13938
1.1	12863	12900	.13010	.13027	13060	13272	13780	14115	14059	.14063	13986	13943
12	12861	.13898	13003	.13012	13055	13272	13771	.14110	114053	14062	.13980	13947
1.3	12859	12897	13003	13008	13050	13270	13772	.14100	14047	.14065	13987	13962
14	.13863	112898	*12997	*13cc5	13047	13273	13771	.14099	11047	.14028	13988	13956
15	112871	12906	13003	13006	13045	13281	13773	.14099	114043	.14046	.13993	13961
16	12877	12919	13002	13009	13047	13283	13764	14096	14043	14050	.14011	13976
17	12891	12933	13004	.13000	13050	13266	13757	14085	14047	-14056	.14051	13996
18	12902	12937	110511	13011	13025	13231	13732	14065	14029	-14024	14025	.11015
19	12401	12928	13003	12992	12999	13193	13698	.14031	19991	.14030	13995	14002
20	12885	12900	12973	12955	12972	.13148	•13637	.13986	13938	13975	•13959	13977
2.1	.12849	12852	12915	12901	12943	13107	13594	13950	·13890	13921	13921	13945
2.2	112828	12807	12880	12862	12927	.13096	13570	13930	13868	13880	.13800	13914
2.3	.12822	12791	12871	.12862	12934	.13122	.13282	·13950	13881	.13882	13887	13908

Table VII.-Monthly Means of Readings of the Thermometer placed within the box inclosing the Horizontal Force Magnetometer, at each of the ordinary Hours of Observation.

Hour, Greenwich Mean Solar Time.	January.	February.	Marelı,	April.	May.	June.	July.	August.	September,	October.	November.	December.
1 2 3 9 2 I 2 2 2 3	56.8 56.8 56.9 57.2 57.6 56.9 56.9	60°2 60°3 60°4 60°4 60°2 60°2 60°2	60.6 60.7 60.8 60.9 61.3 61.0 60.8	62.4 62.5 62.7 62.8 63.2 62.5 62.4	64.8 65.0 65.3 65.5 65.7 64.3 64.5 64.6	64.0 65.1 65.4 65.6 66.0 64.0 64.2 64.4	67·5 67·7 68·0 68·3 68·8 66·7 66·8 67·1	65.0 65.2 65.5 65.7 66.1 64.4 64.5 64.7	65.5 65.7 65.9 66.0 66.4 65.3 65.3	62·5 62·6 62·7 62·8 63·0 62·1 62·1 62·1	63.6 63.7 63.8 63.9 64.1 63.9 63.9 63.9	62:3 62:4 62:5 62:6 62:6 62:2 62:1 62:1

TABLE VIII.

	1881.		
	MEAN HORIZONTAL MAGNETIC uncorrected for Tr		
Month.	Expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly).	Expressed in terms of Gauss's Unit measured on the Metrical System, and diminished by a Constant (1°55230 nearly).	Mean Temperature.
			0
January	0.12866	0.23223	57.0
February	*12881	23250	60.3
March	*12980	*23429	60.0
April	12995	23456	62.6
May	13035	.23528	65.0
June	.13242	.23902	65.0
July	· 13733	*24788	67.6
August	• 14068	·253g3	65.1
September	.14016	*25299	65.7
October	14012	25292	62.5

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

The value o 86000 of Horizontal Force corresponds to 1 55230 of Gauss's Unit on the Metrical (Millimetre-Milligramme-Second) system, and to

25210

125173

63.9

62.4

13967

13946

December

0.15523 on the C.G.S. system.

Table 1X .- Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, on each Astronomeal Day; as deduced from the Mean of TWENTY-FOUR HOURLY MEASURES OF ORDINATES OF the Photographic Register on that Day.

Days of the Month.	January.	February.	March.	April.	May.	June.	July.	Λ ugust.	September.	October.	November.	December.
d												
1	0.02754	0.02648	0.02385	0.03634	0.02788	0.03461	0.03112	0.03006	0.03836	0.02868	0.03102	0.02603
2	*02875	02798	*02521	*02513	*02834	03455	.03150	.03112	.02887	.02770	.02321	102685
3	.02849	.02961	*02508	.02419	.02724	03527	.03351	.03164	'02934	.02814	*02612	.03918
4	.02795	*02984	.02642	.02567	.02784	03520	.03531	.03246	*02952	.02768	.02823	*02532
5	*02 660	.02723	°02815	*02641	.02850	.03194	.03666	.03364	.02994	.02690	·02860	.02542
6	*02597	*02537	.02846	*02605	*03034	.03119	.03335	.03212	.03028	.02869	.02783	02522
7	.02668	.02456	.02752	.02599	*02993	.02963	.03048	.03164	.03039	*02917	*0272+	*02598
8	.02702	.02637	·02690	*02724	*02875	*02977	·o3c66	.03167	*03071	.02830	102792	.02643
9	.02694	.02735	.02742	*02801	*02742	.02956	*03189	*03014	*03048	.02795	.02780	·02635
10	.02678	.02697	·02881	.02816	.02640	102929	*03288	*02981	.03004	.02849	.05803	.02577

.02200

102655

.02678

28

29 30

31

.02470

.02624

02631

02547

.02562

.02809

102881

·02888

.03246

.03013

.02988

.03130

Table IX.—Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, &c .- concluded.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d 11	0.02638	0.05200	0.03882	0.02827	0.02682	0.03038	0.03380	0.02997	0.02085	0.02934	0.02828	0.02477
12	*02495	·02635 ·02608	*02743 *02630	*02852 *02867	02797	03037	.03545	102973		.02917 .02852	*02826	.02483
13	.03362	.02620	102678	02870	*03023	.02996	.03040	*029,5	.03111	02770	*02802	02482
14 15	102203	02020	.02694	02822	*02418	.03063	.03-69	102969	.03035	'02615	'02711	02402
16	.02064	02685	02719	.02824	102861	•03188	-03-55	.0313-	*02993	02522	·02678	'52417
17	.01998	.02678	.02733	.02023	102791	.03263	103642	.03092	.03103	°02536	0266-	'52413
18	.22032	.02814	·02808	102871	02852	.03138	.03673	.03083	.03194	.02462	102652	102304
19	'02077	02620	.02795	*02723	.02832	.03084	.03-42	.03032	03153	.02483	.02610	.02412
20	101970	.02578	.02739	*02708	*02828	.03120	·03395	.03043	.03247		.02640	*52385
21	.01821	.02518	02588	.02743	.02898	.03217	.03192	.03019	.03172	*02701	.03660	'02410
2 2	01942	*02504	02555	.02780	'02995	.03119	.03104	.03013	.03008	02711	.02648	.02237
23	.02028	.02544	02595	.02790	03003	.03102	.03228	.03101	.03074	*92762	02610	.03000
24	.02067	.02597	.02653		.02977	.03088	.03197	.03305	.03100	*02691	.02644	.01933
25	.01864	.02586	.02612	.02045	*02980	.03047	.03983	.03073	03125	02603	02658	.01903
26	.01915	.02588	02592	*02769	*03595	*03147	102975	.03983	.03089	·02568	*02572	.03108
27	.03391	.02572	.02930	.02718	'03123	.09159	.02871	.03011	•03060	.03414	·02557	102204

Table X .- Daily Means of Readings (usually eight on each Day) of the Thermometer placed within the box inclosing the VERTICAL FORCE MAGNETOMETER, for each ASTRONOMICAL DAY.

.03108

.03075

.03005

.03007

.03162

.03123

103082

.02882

.02873

*02897

.02793

.02993 .02957

.02934

*02410

.02407

.02294

.02136

.02647

.02619

.02660

.02176

.02189

.05100

1881.												
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	6°5	54·8	57.4	6°.8	63°0	68°9	65°7	65.4	63.3	63.9	58.5	64.4
1 2	61.6	61.3	59.6	59.6	63.1	68.9	66.2	65.7	64.0	63.0	60.3	63.8
3	61.2	63.2	59.6	58.8	62.5	60.1	67.2	65.0	64.4	63.6	63.3	63.3
	61.3	63.1	60.8	60.3	62.8	68.0	69.3	67.3	64.7	63.5	65.1	62.5
4 5	59.5	61.0	62.4	61.3	63.8	65.6	70'3	68.0	65.1	62.7	65.3	62.6
			62.5	60'4	65.2	64.6	67.6	67.0	65.2	64.4	64.6	62.4
6	59.0	58·7 58·3		61.1	65.1	63.4	64.6	66.6	65.5	65.0	64.1	63.3
7	59.8		61.7	62.3		63.3	64.6	65.8	65.8	64.1	64.4	63.3
8	60.3	60'1	60.7	63.2	64·2 62·8	63'1	66.5	64.4	65.7	63.6	63.8	63.3
ġ.	60.3	61.4	615			63.0	67.5	64.5	65.0	64.3	64.3	62.4
10	60.1	611	62.5	63.4	61.6		68.7		64.9	65.1	64.8	62.0
11	59.6	59.8	62.9	63.4	62.5	64.3		64.1			64.6	61.8
12	58.4	59.4	61.6	63.5	63.5	65.3	69.6	64.3		64.7		61.1
13	55.2	60.0	60.0	63.7	64.7	64.6	69.8	64.0	65.7	64.5	64.6	
1.4	5313	60.6	60.6	63.6	65.8	64.3	70'9	63:7	65.0	63.4	64·7 63·6	62.0
15	55.0	61.1	61.0	63'1	65.1	64.9	71.8	64.4		61.7		62.0
16	53.3	60.8	61.3	63.6	64.4	65.8	71.8	65.8	64.7	60.9	634	61.6
17	52.4	60.9	61.3	63.8	63.9	66.4	20.0	65.4	65.8	61.0	6.3.2	61.1
18	53:3	62.2	61.8	63.6	64.5	65.3	71.5	65.4	66.9	60.4	63.5	60.3
19	5412	60.5	61.8	62.4	63.9	64.0	71'2	65.3	66.6	61.0	63.0	61.4
20	5312	ნე•8	61'2	62.3	64.0	65.5	68.0	65.1	67.4		63.2	61.3
2.1	51.4	59:3	60.1	62.1	65.0	66.0	66.7	64.9	67.1	63.2	63.6	61.4
2 2	52.6	5819	59:8	62.8	66.2	65.2	65.6	65.3	65.4	63.4	63.9	60.0
2.3	541	59'7	60:-	63.0	67.1	65.4	66.8	65.9	65 9	63.5	63.3	57.5
24	53.9	601	60.8		66.3	65.3	66.1	65.0	67.2	6.3.2	63:3	36·1
2.)	51.5	60.1	60.5	64.4	66.4	64.9	64.3	65.6	66.7	62.3	63.5	20.4
26	5212	60.0	60.6	62.6	66.9	65.5	64.0	65.1	66.0	62.0	62.4	58.6
2.7	56.4	59:5	59.8	62.0	67:3	65.6	63.4	63.7	65.8	60.5	62.5	39.6
28	58.8	58.8	60.0	63.1	68.3	65.6	64.6	63.6	65.5	60.4	63.5	59.3
29	60.3		61.3	63.5	66.5	65.6	66.2	63.9	64.7	60.4	63.3	59.6
30	60.1		60.3	63.8	66.6	65.0	66.0	64.0	64.2	59.2	63.9	59.9
31			60.5		68.3		65.2	63.0	1	57.5	1	39.7

Table XI.—Mean Monthly Determination of the Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through each Month.

1881.

					-							
Hour, Greenwich Mem Solar Trans.	January.	February.	March,	Λ pril.	May.	June.	July.	August.	September,	October,	November.	December.
h	12				02			(2)			(2	266
0	0.02331	0.05654	0.03201	0.02672	0.03834	0.03024	0.03344	0.03968	0.02977	0.03638	0.05630	0.02366
1	02352	.03641	.02616	.02698	.05824	*03115	.03282	.03008	.03008	.03621	.02663	.02388
2	02369	.02654	.02644	·02730	.02911	·03155	.03326	.03045	.03030	*02671	.05984	*02407
3	.03380	·02665	.02675	102757	.02939	.03191	.03360	.03072	.03021	.02692	*02700	.02419
+	.03388	.02672	.02698	.02776	·02967	.03553	.03388	.03099	.03069	.02708	.02703	.02427
5	.05403	.02678	.02713	.02797	.02987	03243	.03398	.03115	.03082	'02711	.02708	.03431
6	.05 11 5	102585	02719	.03802	102336	.03256	.03408	.03112	.03093	.02718	.02709	*22435
7	.03414	·02680	.02722	.03800	102997	.03228	.03414	*03116	.03100	.02723	*02710	.02434
8	'02410	.02672	02715	.03814	.02993	·03256	.03412	.03122	.03106	.02720	*02707	.02428
9	10450	.02654	•02693	.02806	.02982	.03248	.03+14	.03117	.03100	.02712	*02700	.02412
10	.02395	.02646	.02687	.02794	02970	.03233	.03396	.03106	.03093	.02708	.02694	.03401
11	.02399	02651	.02694	.02800	.02966	.03211	*03377	.03092	03088	'02701	.02694	.02397
12	·02395	.02654	·02696	.02802	.02955	.03180	*03356	103082	.03080	.02695	.02690	.02393
13	·02395	.02653	.02692	02797	.03939	.03142	103325	.03062	.03064	.02680	.02680	.02377
1.4	.02389	.02649	.02685	.02786	.02920	.03117	*03302	.03020	·03050	.02666	.02667	.02366
15	·02386	.026++	.02672	*02771	.02903	.03093	.03283	.03033	.03042	.02653	.02658	.02359
16	02380	.02640	·02662	.02760	.02886	.03076	*03268	.03018	•>3031	.02644	.02652	·02350
17	.02372	·02633	.02657	.02748	102871	.03063	·03253	103005	.03023	·c2633	.02645	.02348
18	.02363	.02628	.02650	.02740	·02855	.03048	*03236	.02994	.03018	.02628	.02643	.02344
19	.02360	.02629	102651	*02731	.03844	103042	*03230	.02982	.03012	*02629	.02647	.02343
20	.02352	.02631	.02648	.02718	.02834	.03038	103225	102969	100500	.02622	.02650	.02342
21	.02343	.02625	02637	102702	.02831	.03037	.03225	02955	.02985	.03608	.02653	.02343
2.2	.02332	.02613	*02612	.02682	·02828	.03036	.03224	.02947	'02971	°02588	.02648	.02341
23	.02321	.03602	02593	.02663	.02824	.03041	.03223	.02943	02963	.02577	.02647	.02339
							1				1	1

Table XII.—Monthly Means of Readings of the Thermometer placed within the box inclosing the Vertical Force Magnetometer, at each of the ordinary Hours of Observation.

Hour, Greenwich Mean Solar Trace,	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
b	0		5	0	0	0	٥	0		0	0	0
0	56 7	60.4	6017	62.4	64.8	65.5	67.4	650	65.4	62.6	63.4	61.1
ı	56.8	60.5	60.9	62.6	65.0	65.8	67.6	65.3	65.6	62.8	63.5	61.3
2	56 ⁴ 9	60.2	61.0	62.7	65.3	65 9	67.9	65.5	65.7	62.9	63.3	61.4
.3	57.2	60.5	61.1	62.8	65.3	66.1	68.0	65.6	65.8	63.0	63.6	61.4
9	57.3	60.3	61.3	63.1	65.4	66.2	68.3	65.8	66.1	63.1	63.7	61.3
21	56.5	60.3	60.9	62.1	64.3	64.6	66.7	64.3	65.0	62.0	63.5	60.8
2 2	56.5	60.3	65.7	62.1	64.4	64.8	66.8	64.2	65'1	62.0	63.4	60.7
23	56.5	60.1	60.7	62.2	64.2	65.0	67.0	64.6	65.2	02.1	63.5	60.8

TABLE XIII.

	MEAN VERTICAL MAGNET MONTH, uncorrected for			
Month.	Expressed in terms of the MEAN VERTICAL FORCE for the Year, and diminished by a Constant (0°96000 nearly).	Expressed in terms of GAUSS'S UNIT measured on the METRICAL SYSTEM, and diminished by a Constant (4°19889 nearly).	Mean Temperature.	
January	0.02377	0.10392	。 56·8	
February	*02647	11577	60'4	
March	.02668	11669	60.9	
April	.02757	12059	62.5	
May	02013	12741	64.9	
June	.03141	13738	65.5	
July	·03316	14504	67.5	
August	.03042	13305	65.1	
September	.03043	13309	65.5	
October	.02665	11656	62.6	
November	.02675	11700	63.5	
December	·02383	10423	61.1	

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

The value o 96000 of Vertical Force corresponds to 4 19889 of Gauss's Unit on the Metrical (Millimetre-Milligramme-Second) system, and to 0 41989 on the C.G.S. system.

Commencing with the month of June a different value of the time of vibration of the magnet in the vertical plane was adopted in the reduction of the observations,

Table XIV.—Mean, through the Range of Months, of the Monthly Mean Deferminations of the Digrnal Inequalities of Declination, Horizontal Force, and Vertical Force, for the Year 1881.

(The Results for Horizontal Force and Vertical Force are not corrected for Temperature.)

January to December.

Hour, Greenwich Mean Solar Time.	Inequality of Declination.	Equivalent in terms of Gauss's Unit measured on the Metrical System.	Inequality of Horizontal Forc	Equivalent in terms of Gauss's Unit measured on the Metrical System.	Inequality of Vertical Force,	Equivalent in terms of Gauss's Unit measured on the Metrical System.
1		_			-	
h			_			
0	+ 4.57	+ 0.00240	- 0.0004 <u>0</u>	→ 0.00132	— o:ooo57	- 0.00540
1	+ 5.23	+ 290	- 38	- 69	— 27	- 118
2	+ 5.06	+ 266	- 9	– 16	0	0
3	+ 3.70	+ 194	+ 13	+ 23	+ 23	+ 101
4	+ 2.23	+ 117	+ 23	+ 42	+ 41	+ 179
5	+ 0.04	+ 49	+ 30	+ 54	+ 41 + 53	+ 232
6	+ 0.10	+ 10	+ 38	+ 69	+ 60	+ 262
7	- 0.31	– 16	+ 39	+ 70	+ 62	+ 271
8	— 0.82	- 43	+ 36	+ 65	+ 61	+ 267
9	- 1:13	- 59	+ 33	+ 60	+ 52	+ 227
10	- 1.38	- 72	+ 32	+ 58	+ 41	+ 179
11	- 1'42	- 75	+ 28	+ 51	+ 37	+ 162
12	- 145	- 76	+ 24	+ 43	+ 30	+ 131
13	- 1.44	- 76	+ 24	+ 43	+ 15	+ 66
14	- 1.58	- 67	+ 22	+ 40	+ 2	+ 9
15	- 1.53	- 65	+ 24	+ 43	- 11	- 48
16	- 1.21	- 79	+ 28	+ 51	- 22	– 96
17	- 1.08	- 104	+ 31	+ 56	- 31	- 136
18	- 2.36	- 124	+ 2+	+ 43		- 175
19	- 2.66	- 140	+ 2		- 40	
20	- 2.93	- 154	- 36	+ + - 65	- +4 - 50	- 192
21	- 2·26	- 119			- 5 ₇	- 219
22		- 11g - 15	- 79	- 143		- 249
23	- 0.36 + 2.36		- 107	- 193	- 67	- 293
23	+ 2.36	+ 124	- 103	- 186	- 7 +	- 324

Hour, Greenwich	Mean Readings of Thermometers.								
Mean Solar Time,	Horizontal Force,	Vertical Force,							
h	3	0							
0	63 .00	62 .95							
ı	63 16	63.14							
2	63.32	63.25							
3	63 .48	63:38							
9	63 . 78	63 .48							
2.1	62.79	62.58							
2 2	62.80	62 .61							
2.3	62.85	62.60							

The unit adopted in columns 3, 5, and 7 is the Millimètre-Milligramme-Second Unit. To express the inequalities on the Centimètre-Gramme Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left,

ROYAL OBSERVATORY, GREENWICH.

INDICATIONS

OF

MAGNETOMETERS

ON THREE DAYS OF GREAT MAGNETIC DISTURBANCE.

1881.

Greenwich en Solar Time.	Western Declina-	sverte) into Western and expressed in 28 Continues and a Section increased a 28 Continues and a system.	cenwich Solar Time	Tempe	died by a dand eted for rature.	awich olar Time.	tincorre Tempe	shed by n tant eted for rature.	Greenwich in Solar Time.	Western Declina-	ern Dechnation ertel into Wes- inl expressed in 8 Unit measured System.	twich lar Time.	(diminis Cons uncorre Tempe	rature.	Greenwich m Solar Time.	(diminis Cons uncorre Tempe	al Force shed by a stant) ected for erature.
Green Mean So	tion.	Lyness of West above 17 cours terly. Forces, in terms of Cours- on the Metricular	Ment No	Expressed in parts of the whole the prostal Force.	Expressed in terms of Gauss's Unit measured on the Morrical System.	Greenwie Mem Solar I	Expressed in parts of the whole Ver treat Force,	Expressed in terms of Gauss's Unit measured on the Metrical System.	Greet Mean Sol	tion.	Excess of Western above 172, converter terly Force, and e berms of Gauss's Un on the Metrical Syst	Greenwich Mean Solar Time	Expressed in parts of the whole Ho- rizontal Force.	Expressed in terms of Gauss's Unit mensured on the Metrical System.	Greenwich Meun Solar Time	Expressed in parts of the whole Yor- tient Force.	Expressed in terms of Gauss's Unit measured on the Metrical System.
Jan. 31			Jan. 31			Jan. 3:			Jan. 31			Jan. 31			Jan. 31		
h m	18. 32. 45	1.043-	ь m С. О	1248	.2252	6 m	.0262	11146	7.30	17. 56. 30	.0247	7. 15	1202	2170	11.45	.0267	1.1168
0. 8	30.50	.042.	0. 2	1246	.2249	0.30	.0362	1159	7.34	18. 1.20	.0323	7.20	1233	.2225		0263	1172
0.14	31.55	.04-8 .0483	0.29	1269	12290	0. 45 0. 57	*0265 *0267	1168	7.37 7.43	17. 57. 25	.0301	7.30 7.39	1186	2141	12. 5 12. 13	0266	11163
0.33	36.30	.0002	0. 54	1257	2269	1. 8	.0267	1168	7.46 8. 6	17. 53. 0	.0278	7.46	.1185	12134	12.29;	.0256	1119
0.40	3 5	.02004	1. 6	1246	.2240	1.22	02-0	1811		18. 39. 23	0522	7.50	1205	*2175	12. 45	.0266	1163
0. 4	36. 5 34.50	.0204	1.15	1252	12260	1.37 1.48	·0269	1176	8. 8 8. 12	34. 10 44. 50	.0220	7.52 7.58	1201	.5168	13. 15 13. 39	0270	1181
1. 6	36.40	.0208	1.23	1250	2256	2. 0	10271	1185	8. 25	7. 0	.0323	8. 5	1195	.2157	13. 53	10272	1190
1.13	10. 0	.0252	1.30	.1543	12243	2.37	.0276	1207	8.30	21. 0	'0425	8. 8	1217	2197	14-12	.0271	1185
1.18	39. 15 41. 45	0534	1.36	1252	.2254	3. 5 3. 13	.0283	1238	8.38 8.51	9.15	.0363	8.14	11154	2083	14. 28 15. 7	0272	.1182
1.36	37. 0	.0200	1. 55	1272	.2296	3.56	.0300	1351	9. 5	22.45	.0432	8. 27	1176	.2123	15. 25	0272	1190
1.42	36. 15	*0505	2. 0	1244	*2245	4. 5	.0301	1329	9. 8	22. 0	.0431	8.32	1196	12159	16. 23	.0271	1185
1.52 2.6	46. 0 37. 55	0557	2. 19	1265	2283	4.12 4.26	10305 10317	*1334 *1387	9.12 9.19	24. 5 23. 20	.0441	8, 43	1212	2188	16.3⊤ 17.47	0272	.1100
2.23	41.35	.0533	2.57	1288	-2324	4.34	.0320	1400	9.19	24.35	.0414	9. 6	1221	.5304	19. 7	.0274	1198
2.30	41.50	.0234	3. 26	1261	12276	` `	(†)		9.30	21.55	.0430	9.10	1230	12220	19.36	'0274	11198
2.38 2.45	38.40 39.25	0519	3.31 3.36	1267	·2287 ·2278	4. 57 5. q	.0319	1395	9.32	24. 0 22. 20	*0441	9.14	1223	2207	20. 7	0275	1190
3. 0	46.30	.0560	3. 49	1300	2347	5. 16	.0320	11400	9.45	24. 25	.0443	9. 25	1219	.5500	23. 22	0271	1185
3. 22	40. 5	0525	3, 55	.1222	12206	5. 25	.0302	1343	9.48	21.20	*0427	9.30	.1226	12213		(f)	
3, 36	42. 55 33. 15	.0241	3. 57 4. I	1227	2184	5, 33 5, 43	.0303	1325	10. 6	23, 25 23, 0	.0438	9.38	1219	2200			
3. 50	48. 25	0569	4.10	1260	2274	5.50	.0308	1347	10.12	21.20	.0427	9.45	1218	12198			
3. 56	32. 0	.0483	4. 15	1248	.2225	6. 0	0320	.1 400	10.17	21.40	.0429	9. 55	***	*2224	ł		
3, 58	32.45 25, 25	.0482	4.18	1241	2274	6.43	.0284		10. 28	18.50	.0414	10. 25	1233	.2225			
4. 15	42.50	.0210	4.24	1245	2247	6.47	.0310	1356	10.30	16.50	.0403	10.37	1220	.5505			
4-17	38. 40	.0210	4. 26	1240	.5538	6.50	.0303	1325	11. 0	23. 25	.c138	11. 0	.1552	'22C7			
4. 19	42. 45 31. 30	.0240	4.35 4.39	1269	2290	6.58	·0312	1365	11. 5	22.55 25. 0	.0149	11.25	1245	2247			
4.39	40.50	.0223	4.46	1245	2281	7. 4	.0316	1382	11. 24	22.30	'0434	11.59	1246	.2249			
4.45	28. 35	.0462	4.50	1234	222-	7.29	6335	1465	11.30	25. 5	.0440	12. 7	1233	*2225			
4. 50 4. 58	35. 15 28. 5	10500	4. 59 5. 12	1232	2260	7.37	*0290 *020**	1290 1299	11.48	19, 15	.0410	12. 15	1271	2294			
5. 10	39. 20	10022	0.24	1248	2252	7.43 7.52	10270	1299	12. 0	28.35	.0462	12.46	1258	2270			
5. 20	19. 0	.0412	5.30	1231	2222	8. 6	.0253	.1100	12.20	42.55	0541	12.50	.1363	.2279			
5. 32 5. 42	33. 5 18. 26. 25	*0488	5.47 5.56	11313	12370	8. 8	10266	1163	12. 42	21. 35	.0438	12.55	1259	12272			
	19. 7. 25	10669	0.59		12274	8, 12	10262	1146	12.55	23. 20 19. 35	.0418	13. 8		-226-			1
6. 7	18, 25, 30	10149	6. 5	11211	12240	8. 26	*0264	1154	13. 20	20. 0	.0150	13. 15	1257	12269			
6. 12	3e. 45 23. 5e	*C4**7		11211	12.25 ‡	8, 36	0281	1229	13, 34	23, 30	.0439	13. 25		2261			
6. 28	35. 25	10440	6. 23	11223	12216	8, 38 8, 46	10280	1225	13, 40	22. 0 26.40	°0431 °0456	13.38 13.46	1241	12240			
6.36	14.25	*03:41	6, 26	11206	12267	9. 3	10281	1229	14. 1	26.10	10453	14.14	1236	*2231			
6.41	29.35	.0120	6.35	1.33 /	12 17	9. 2.5	*0275	1203	14. 6	27. 0	'c457	14.19	11242	12242			1
6.4"	19. 0 23. 15	'043-	6.45	11256	12.34	9. 50	10276	11207	14.12	25. 45 26. 40	.0120 .0120	14. 21	1238	12234			
6.58	13.40	0.337	6.55	1,224	12209	10. 5	10277	11114	14. 24	26. 0	*C‡12	14.42	1243	2243			
7. 8	50.40	10582	6.59	11244	12.245	10.36	02"4	11198	14. 32	27.10	*0458	14.49	1240	122.38			
7.10	46.55	10552	7. 6	11205	12175	10.59	027.5	1203	14. 38	25. 55 26. 35	.0422	15. 8	1243	.2243			
/	45.0.7	0.,		1211	2200	11.16	.0274	.11è8	14.40	20, 0.1	0400	29	, 200	2204			
The	indications	are tal	on Francis		i				1 721	C 1 1 2	* k 1	and a book	*l 2020		1	on one H	

The indications are taken from the sheets of the Photographic Record. The Symbol *** denotes that the magnet has been generally in a state of slight agitation, and the Symbol (†) that the register has failed between the preceding and following readings.

For the Horizontal and Vertical Forces, increasing readings denote increasing forces.

The constant by which the values of Horizontal Force are diminished is o 8600 nearly, as expressed in parts of the whole Horizontal Force, equivalent to 15525 in terms of Gauss's Unit measured on the Metrical (Millimetre-Milligramme-Second) system. The corresponding constant for Vertical Force is 0 9600 nearly, equivalent to 4 1989 in terms of Gauss's Unit. To express the Metrical measures on the C.G.S. (Centimetre-Gramme-Second) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

January 31. The spot of light for Vertical Force was off the sheet in the direction of increasing force from 4^h, 34^m, till 4^h, 57^m, and again from 6^h, 0^m, till 6^h, 43^m, the value at 7^h, 29^m, for Vertical Force has been inferred.

Greenwich Mean Solar Time.	Western Declina- tion.	Excess of Western Declination above 11%, converted into Westerly Force, and expressed in terms of the measured on the Metrical Section.	Greenwich Mean Solar Time.	Horizonti oliminis Consi unicorre Tempes Value I Poces Control Foces Con	hed by a tant) eted for	Greenwich Mean Solar Time.	ednnim Con uncorr	Expressed in terms of Gaussian Control for Stantian of Gaussia Can be carred on the Metrical System.	Greenwich Mean Solar Time.	Western Declina- tion.	E = - 1	Greenwich Mean Solar Time.	(dmin Co nneor	Education of the following property of Comes of	Greenwich Mean Solar Time,	(dimini Con uncar	al Force sished by a stant) of Canaly (Canaly a stant) of Canaly (Canaly a stant) of Canaly System.
Jan.31 15. 3 15. 11 15. 28 15. 36 15. 59 16. 14 16. 24 16. 54 17. 8 17. 50 18. 18 19. 15 19. 15 19. 25 19. 40 19. 56 20. 26 20. 56 20. 56 21. 18 21. 42 22. 6 22. 21 22. 38 22. 42 23. 59	18. 25. 25 26. 0 33. 10 31. 50 31. 15 30. 35 33. 40 31. 20 *** 29. 55 30. 40 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 31. 0 29. 50 32. 50 30. 30 30. 35 32. 50 30. 30 30. 35 32. 50 30. 30 30. 35 32. 50 30. 30 30. 30 30. 35 30. 30 30. 30 30. 35 30. 30 30 30. 30 30 30. 30 30 30. 30 30 30. 30 30 30. 30 30 30. 30 30 30. 30 30 30 3	**************************************	Jan. 3 15, 36 15, 46 16, 20 16, 37 17, 2 17, 46 18, 24 18, 18 19, 7 19, 15 19, 36 19, 39 19, 54 20, 26 20, 38 21, 6 21, 43 22, 58 23, 59	11242 11239 11248 11248 11254 11256 11256 11256 11258 11243 11244 11244 11244 11244 11244 11253 11248	12242 12236 12235 12265 12265 12267 12267 1227 1227 1227 1227 1227 12	h m			Sept.12 1 m m 3. 37 3. 41 3. 50 4. 14 4. 24 4. 46 5. 30 6. 12 6. 17 6. 46 7. 16 7. 16 7. 50 7. 50 7. 57 8. 6 8. 24 8. 43 8. 52 9. 4 9. 26 9. 39 9. ‡2 9. 34 10. 30 10. 50	18. 33. 56 33. 11 34. 6 31. 33 31. 33 32. 26. 11 21. 6 21. 12. 56 11. 22 12. 56 11. 22 12. 56 11. 22 12. 6 12. 6 13. 22 14 15. 22 16. 20 17. 6 18. 6 12. 6 12. 6 12. 6 13. 24 14 18. 11. 16 17. 54, 44 18. 24, 5 19. 55	0 0492 0 0489 0 0481 0 0481 0 0481 0 0481 0 0453 0 0453 0 0453 0 0453 0 0375 0 0375	Sept.12 3. 36 3. 36 3. 37 3. 40 3. 51 7. 43 40 5. 30 6. 14 6. 55 7. 15 7. 20 6. 14 6. 55 7. 15 7. 20 7. 20 8. 30 8. 30 8. 30 8. 30 7. 10 7. 20 8. 20 8	1,38,3 1,36,3 1,36,3 1,36,5 1,37,7 1,37,6 1,38,3 1,400 1,410 1,400 1,400 1,400 1,39,3 1,39,3 1,400 1,39,3 1	*2496 *2469 *2464 *2486 *2484 *2527 *2522 *2496 *2525 *2538 *2570 *2522 *2486 *2512 *2518 *2514 *2523 *2531 *2523 *2531 *2514 *2525 *2511 *2527 *2523 *2531 *2514 *2527 *2523 *2531 *2570	Sept.12 h 18 6. 35 7. 50 8. 20 8. 20 8. 45 9. 8 9. 25 9. 42 10. 0 10. 32 10. 0 10. 58 11. 11 11. 27 11. 50 12. 18 12. 23 12. 46 13. 15 13. 25 14. 0 14. 35 15. 40 16. 6 17. 28	'0283 '0289 '0289 '0292 '0293 '0292 '0297	1356 1373 1356 1373 1373 1373 1281 1290 1272 1290 1272 1225 1225 1256 1256 1256 1256 1256 125
Sept.12 0. 0 0. 3c 0. 44 0. 48 0. 52 1. 10 1. 19 1. 20 1. 2. 52 2. 10 2. 34 2. 41 2. 47 2. 52 3. 3 3. 12 3. 19 3. 32	-	'0480 '0492 '0494 '0494 '0510 '0518 '0510 '0528 '0521 '0535 '0534 '0504 '0496 '0498	2.48	1395 1396 1490 1490 1399 1493 1493 1410 1415 1398 1412 1404 1409 1403 1403 1411 1383	2518 2527 2527 2523 2532 2553 2563 2544 2554	0. 49 1. 11 1. 18 1. 30 1. 45 1. 55 2. 5 2. 10 2. 20 2. 31 2. 40 3. 36 3. 55 4. 16 4. 45 5. 25 5. 38 5. 38 5. 38 5. 38 5. 38	**************************************	1281 1294 1303 1299 1307 1303 1321 1316 1321 1321 1321 1334 1338 1343 1343 1343 1343 1343 134	11. 5 11. 10 11. 28 11. 40 12. 0 12. 24 13. 19 13. 23 13. 4. 3 14. 19 14. 29 14. 39 14. 41 14. 59 15. 7 15. 25 15. 39 15. 49	6. c 16. 5. 16. c 16. 5. 16. c 17. 5. 16. c 17. 5. 17. 2. 17. 2. 17. 2. 17. 2. 17. 3. 19. c 17. 5. 17. 5. 19. c 17. 5. 19	0347 0369 0369 0364 0364 0364 0359 0359 0359 0359 0456 0466 0466 	8. 59 9. 12 9. 32 9. 47 10. 10 10. 19 10. 36 10. 53 11. 18 11. 28 11. 15 11. 56 11. 59 12. 5 12. 12. 40	1408 1363 1400 1372 1363 1365 1401 1337 1338 1396 1384 1388 1384 1388 1384 1388 1384 1388 1384 1388 1384	2412	18. 9 18. 17 18. 25 18. 36 19. 0 19. 10 19. 15 19. 15 19. 40 19. 5 20. 10 20. 18 20. 37 21. 28 21. 41 22. 12 22. 35 23. 2	10285 10286 10279 10275 10275 10273 10272 10265 10272 10279 10277 10280 10280 10288 10294 10297 10297 10297 10297	.1351
	Jan. 31 b m 0. 0 1. 0 2. 0	Reading Thermon Of H.F. Garage Color Co	of V.F.	Greenwich Mean Sola Time. Jan. 31 h m 3. 9 9. 0 21. 0	Ther Of H.	60.0	F. Mear T. Jan Jan 22. 23.		(10.1	Green	pt. t2	65 7	efers. of V. F.	Greenwiel Mean Sola Time. Sept. 12 k m 3. 0 9. 0	Ther r — Ther Of H. I	dings of mometer: F. Of V. Magn	s. F

Greenwich Mean Solat Time.	Western Declina- tion.	Excess of Western Dichards above II, concerted into Wes- lerly Energy and expressed in terms of Gaussi Chit menured on the Mchinel System.	Greenwich Mean Solar Time.	Const	hed by a ! tant)	Greenwich Mean Solar Time.	Vertical (duminist Course in large amounts) of the whole Vertical Force is the force of the course o	ned by a cant core for	Greenwich Mean Solar Time.	Western Declina- tion.	Lives of Wostern Declination above 17, converted only Western Perusasion 20, being a character of the neuroned on the Metric of System.	Greenwich Mean Solar Time.	(diminis Cons uncorre	tal Force died by a tant's setted for crature. On the location of the posterior of the post	Greenwich Mean Solar Time,	Cons	hed by a tant) eted for
Sept. 13 16. 7 16. 18 16. 22 16. 29 16. 35 16. 40 16. 48 16. 53 17. 13 17. 25 17. 41 17. 54 17. 56 18. 4	18. 17. 35 17. 20 16. 5 17. 30 17. 30 18. 20 17. 20 18. 25 21. 20 21. 20 22. 30 25. 30 26. 25 31. 45	.0401 .0401 .0482 .0477	Sept.12 13.30 13.58 14.3 14.22 14.45 14.45 15.15 15.25 15.28 15.38 15.53 15.55	1393 1379 1382 1378 1402 1392 1408 1408 1404 1405 1405 1402 1406 1408 1402 1406 1408	2514 2489 2495 2487 2531 2531 2531 2534 2541 2534 2541 2531 2533 2533 2533 2533	Sept 12 h m 23, 20 23, 20 23, 42 23, 59	-0305 -0305 -0306 -0304	1338 1334 1338 1329	b m			Sept. 12 22. 6 22. 12 22. 17 22. 24 22. 27 22. 42 22. 47 22. 50 22. 52 23. 3 23. 3 23. 20 23. 26 23. 50 23. 50 23. 50	1317 1330 1323 1332 1338 1364 1359 1351 1382 1351 1386 1374 1397 1390	12378 12401 12388 12405 12397 12462 12453 12462 12459 12439 12502 12480 12502 12509 12536			
18. 14 18. 19 18. 27 18. 40 19. 1 19. 7 19. 12 19. 24 19. 33 19. 35 20. 11 20. 20 20. 20 20. 40 21. 9 21. 47 22. 35 22. 10 21. 29 21. 47 22. 55 23. 2 23. 3 23. 16 23. 22 23. 39 23. 59	30, 25 36, 15 42, 10 30, 45 59, 10 55, 55 59, 5 40, 45 44, 20 30, 30 54, 45 55, 30 41, 20 42, 10 43, 30 44, 35 54, 40 43, 30 44, 35 33, 40 37, 22 33, 53 36, 52 32, 53 33, 25 35, 55	.0522 .0552 .0553 .0508 .0626 .0625 .0529 .0529 .0529 .0536 .0537 .0548 .0537 .0541 .0530 .0523 .0528 .0533 .0528 .0533 .0528 .0533 .0548 .0537 .0541 .0543 .0548 .0547 .0548	15. 59 16. 7 16. 45 16. 48 16. 59 17. 16 17. 26 17. 52 17. 57 18. 6 18. 10 18. 15 18. 19 18. 27 18. 37 18. 49 19. 12 19. 10 19. 13 19. 13 19. 32 19. 32 19. 32 20. 16 20. 22 20. 31 20. 47 21. 54	1399 1403 1396 1490 1399 1396 1414 1339 1346 1342 1347 1341 1348 1388 1288 1314 1280 1287 1272 1272 1272 1274 1306 1275 1274 1306 1275 1274 1306 1275 1274 1306 1275 1275 1275 1275 1275 1275 1275 1275	2525 2525 2520 2520 2525 2525 2525 2525				Sept.13 o. o o o. 9 o. 18 o. 24 o. 30 o. 37 o. 47 o. 56 1. 0 1. 18 1. 22 1. 35 1. 37 1. 45 1. 53 2. 10 2. 21 2. 32 2. 38 2. 52 3. 32 3. 37 3. 45 3. 52 3. 57 4. 13 4. 26 4. 43 4. 43	18, 29, 30 28, 25, 29, 30 28, 40 29, 50, 30, 30, 30, 30, 30, 30, 30, 30, 30, 3	10464 10470 10470 10470 10470 10473 10473 10493 10513 10513 10513 10513 10513 10513 10513 10513 10513 10513 10513 10513 10513	Sept. 13 o. 0 o. 10 o. 10 o. 19 o. 26 o. 29 o. 36 o. 40 o. 48 o. 56 i. 10 i. 27 i. 46 i. 48 i. 50 i. 10 i. 57 i. 46 i. 48 i. 50 i. 10 i. 27 i. 46 i. 48 i. 50 i. 22 i. 40 i. 2. 35 i. 40 i. 40 i. 50 i. 40 i. 48 i. 50 i. 50 i. 40 i. 50 i. 40 i. 50 i. 50 i. 40 i. 50 i. 50 i. 40 i. 50 i	11405 11342 11368 11362 11362 11362 11362 11362 11363 11463 11463 11463 11461 11361 11361 11362 11362 11362 11362 11362 11362 11362 11363 11362 11362 11362 11363 11362 11363 11362 11363 11364 11362 11363 11364	2536 2513 2523 2516 2513 2512 2505 2523 2505 2523 2505 2525 2541 2248 2525 2541 2245 2245 2245 2248 2245 2248 2248 2248	Sept. 13 0. 0 1. 16 1. 18 1. 33 1. 44 1. 53 2. 6 2. 13 2. 36 2. 13 3. 36 2. 43 3. 36 3. 36 3. 36 4. 33 3. 36 3. 36 3	10304 10303 10307 10308 10308 10308 10310 10313 10310 10313 10310 10313 10311 10313 10311 10313 10311 10321 10332 10341 10332 10341 10333	1329 1343 1329 1347 1338 1356 1356 1356 1356 1356 1356 1356 1356

The indications are taken from the sheets of the Photographic Record. The Symbol *** denotes that the magnet has been generally in a state of slight agitation, and the Symbol (†) that the register has failed between the preceding and following readings.

For the Horizontal and Vertical Forces, increasing readings denote increasing forces.

The constant by which the values of Horizontal Force are diminished is c-8600 nearly, as expressed in parts of the whole Horizontal Force, equivalent to 15523 in terms of Gauss's Unit measured on the Metrical (Millimetre-Milligramme-Second) system. The corresponding constant for Vertical Force is c-9600 nearly, equivalent to 4-1989 in terms of Gauss's Unit. To express the Metrical measures on the C.G.S. (Centimetre-Gramme-Second) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

September 12. The value at 19% 39%, for Horizontal Force has been inferred; from 20%, 3%, till 20%, 16%, the Horizontal Force spot of light was off the sheet in the direction of decreasing force.

September 13. The value for Western Declination at 66, 59m, is somewhat uncertain on account of faintness of the photographic trace.

Greenwich Mean Solar Time.	Western Declina- tion.	Express of Western Declaration above 12% converted into Was traffy Furence, with expressed in terms of Gans 3 of 1 of a new random the New 3 of 1 sections.	Greenwich Mean Folar Time.	(dimini Con- L incorr	tal Porce shed by a stant) setted for nature, one of a paratal or nature, and it is not one of the paratal of t	Greenwich Mean Solar Time.	(damnes Cens uncorre	Extressed in terms of Gaussia, Unit of Gaussia, Unit of Gaussia, Unit of Gaussian Method System.	Greenwich Mean Solar Time.	Western Declina- tion.	Execss of Western becomen a above it, converted a to Wes- terly Force, and expossed in terms of course. Fur measured on the Metrical System.	Greenwich Mean Solar Time.	Horizon: (diminis Consultation (diminis Consultation) and the World Horizon.	hed by a tant) cted for	Greenwich Mean Solar Time.	(diminis Cons	Expressed in terms of Gauss's Tittle and the trocaured on the trocaured on the Networks Stem.
Sept. 13 h m 4 + 47 4 + 55 4 - 59 5 - 22 5 - 32 5 - 48 5 - 55 6 - 36 6 - 62 6 - 28 6 - 36 6 - 40 6 - 48 6 - 59 7 - 18 7 - 57 8 - 10 8 - 10 9 - 7 9 - 17 9 - 27 9 - 33 9 - 7 9 - 17 9 - 27 9 - 33 10 - 40 11 - 2 11 - 10 11 - 2 11 - 10 11 - 2 11 - 11 11 - 26 11 - 31 11 - 46 12 - 15 12 - 24 12 - 49	18. 37. 50 37. 40 40. 0 31. 25 31. 50 31. 50 33. 30 26. 30 25. 40 25. 40 26. 25 23. 30 18. 27. 53 17. 57. 10 18. 17. 20 12. 55 28. 0 25. 5 24. 0 25. 5 24. 0 25. 5 24. 50 24. 55 38. 30 20. 20 21. 50 24. 55 38. 30 20. 20 21. 50 24. 55 38. 30 20. 20 21. 50 22. 50 20. 50 20. 50 20. 50	-5.13 -5.14 -5.15 -5.15 -5.16 -5.16 -5.16 -5.18	Sept. 13 1 + 23 + 3 + 3 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +	11408 11415 11406 11425 11407 11409 11396 11397 11392 11393 11316 11379 11387 11387 11388 11353 11416 11370 11414 11354 11366 11366 11360 11366 11370 11414 11352 11347 11366 11370 11414 11352 11347 11366 11370 11366 11370 11366 11370 11366 11366 11370 11366 11370 11366	12541 12554 12538 2572 12540 12523 12520 12520 12520 12520 12520 12520 12520 12520 12520 12520 12520 12520 12520 12520 12473 12473 12469 12477 12469 12473 1	Sept.13 7. 15 7. 20 7. 27 7. 38 7. 50 7. 38 7. 50 8. 15 8. 15 8. 15 8. 15 8. 15 10. 35 1	'0323 '0324 '0321 '0322 '0316 '0319 '0319 '0319 '0329 '0323 '0323 '0323 '0322 '0317 '0317 '0314 '0316 '0312 '0312 '0312 '0312 '0312 '0312 '0312 '0313 '0320 '0303 '0303 '0303 '0303 '0303 '0303 '0303	1413 1417 1409 1382 1395 1395 1499 1426 1439 1426 1439 1439 1439 1439 1439 1355 1409 1365 1365 1365 1387 1388	Sept.13 12. 53 13. 2 13. 13. 2 13. 13. 27 13. 40 14. 16 14. 23 14. 38 14. 48 14. 38 14. 48 15. 20 15. 28 15. 33 15. 50 16. 10 16. 20 16. 20 17. 30	18. 21. 0 19. 50 20. 55 22. 35 22. 25 23. 40 23. 30 24. 45 23. 35 25. 55 24. 10 25. 10 24. 10 25. 10 24. 10 25. 30 25. 35 25. 35 25. 35 24. 35 25. 35 24. 35 25. 35 24. 35 25. 35 24. 35 25. 30 24. 40 25. 10 24. 10 25. 10 24. 10 25. 10 24. 10 25. 10 25. 10 24. 10 25. 30 25. 20 24. 35 25. 35 25. 35 25. 30 25. 40 25. 30 25. 40 25. 50 25. 40 25. 50 26. 40 27. 55 26. 45 29. 55	.0425 .0419 .0452 .0452 .0433 .0433 .0433 .0436 .0445 .0444 .0446 .0436 .0441 .0436 .0442 .0442 .0446 .0442 .0446 .0439 .0445 .0446 .0439 .0446 .0439 .0448 .0449 .0448 .0449 .0448 .0448 .0449 .0448 .0448 .0448 .0448 .0448 .0448 .0448 .0446 .0436 .0436 .0436 .0436 .0448 .0449 .0448 .0448 .0448 .0448 .0448 .0446 .0436 .0436 .0436 .0436 .0436 .0436 .0448 .0448 .0448 .0448 .0446 .0436 .0436 .0436 .0436 .0436 .0436 .0436 .0436 .0448 .0448 .0446 .0436 .0446 .0436 .0446 .0436 .0448 .0448 .0446 .0436 .0446 .0436 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0436 .0446 .0456	Sept. 13 h h 12. 19 12. 19 12. 28 12. 48 12. 46 12. 55 13. 4 13. 36 14. 36 14. 36 14. 55 15. 21 15. 40 15. 51 15. 40 17. 40 17. 40 17. 57 18. 49 17. 57 19. 47 19. 53 20. 12 21. 40 21. 54 22. 18 22. 37 22. 18 22. 37 23. 6 23. 14 23. 59	1366 1367 1372 1378 1369 1374 1363 1371 1371 1372 1365 1379 1375 1379 1374 1375 1379 1374 1373 1377 1372 1377 1372 1378 1377 1372 1378 1377 1378 1378 1377 1378 1378 1378	*2,466 *2,468 *2,482 *2,477 *2,480 *2,480 *2,417 *2,480 *2,477 *2,464 *2,477 *2,464 *2,475 *2,482 *2,482 *2,482 *2,482 *2,482 *2,482 *2,482 *2,482 *2,483 *2,483 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,484 *2,486 *2,487 *2,486 *2,487 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486 *2,477 *2,486	h m		
		Greeny Mean S	olar e. Of	Readings hermome	f V.F.	reenwich Ican Solar Time.	Of H. F	lings of nometers.	Greenwie Mean Sol Time.	of II. F.		Greenw Mean So Time	ieh Tl blar - Of I	Readings of the remoment	rs. V. F.	-	
		Sept. 21. 6	1 2 6	gnet. M	agnet.	Sept. 13 h m o. o	65 3 65 6	65 °0	Sept. 13	66 · 1 67 · 0	Magnet. 65 · 6 66 · 0	Sept. 1 h m 22. 0 23. 0	3 66	·o 6	gnet.		

		14

ROYAL OBSERVATORY, GREENWICH.

RESULTS

ΟF

O B S E R V A T I O N S

OF THE

MAGNETIC DIP.

1881.

Day at Approximat 1881.	e Hour,	Needle.	Length of Needle.	Magnetic Dip.	Observer.	Day Approxin	and sate Hour,	Needle.	Length of Needle.	Magnetic Dip.	Observer
	d h			0 / 1/			d h			9 / //	1
January	4. 2	Ðт	3 inches	67. 34. 11	N	May	24. 2	D 2	3 inches	67.34.10	N
o anaan y	6. 2	1) 2	3 ,,	67. 35. 42	N	2.2	30. 3	Di	3 .,	67. 32. 58	2.
	15. 1	Ci	6	67.36.27	N		31. 0	Di	3	67.35.18	,
	22. I	C 2	6	67. 35. 13	N					,	
	25. 0	Ðт	3 ,,	67.36. 3	N	June	3. 3	C 1	6	67. 32. 14	
	25. 2	В 1	Q ,,	67.32.58	N	attile	9. 2	(2	("	67.34.10	N
	26. 2	D 2	3 ,,	67. 36. 52	N		10. 1	Ĉ i	6 "	67.34.40	N N
	31. 1	B 2	9 "	67. 35. 19	N		10. 2	Ď 2	3 ,,	67. 34. 38	N N
	31. 2	В 1	9 ,,	67. 38. 40	N		16. 2	Dт	3 ,,	67.36.35	N
	_	7.	1			1	21. 2	Вт	9 ,	67. 33. 18	, x
February	3. 2	Dı	3 "	67. 37. 27	N		22. 2	B 2	9 "	67.32. 9	N
	12. 1	C 2 D 2	6 ,,	67. 35. 28	N		29. 2	В 2	9 ,.	67.33. 7	N
	16. 2	C I	3 ,,	67. 37. 15 67. 36. 38	N		29. 3	1) 1	3 .,	67. 33. 46	N
	10. 2	Ві	6 ,,	67. 35. 12	N N		29. 23	В 1	9 .,	67.34.43	N
	23. 2	B 2	9 "	67. 34. 22	N N		30. 2	D 2	3 ,,	67.34.23	N
	24. I 24. 2	Dī	3 ,,	67. 35. 36	N		-				
	25. 1	В 2	3 ,,	67. 34. 33	N	July	5. 0	C 2	6 ,,	67. 35. 37	N
	25. 2	C 2	6 ,,	67.36. 8	N		5, 2	Сı	6 .,	67. 34. 58	N N
	25. 3	Ci	6 ,,	67. 35. 42	N	li di	12. 0	B 2	9 ,,	67. 33. 28	N
	28. 2	В 1	9 ",	67. 35. 19	N		14. 1	В 1	9	67. 33. 39	N
							15. 2	В 2	9 ,.	67. 33. 20	N
March	8. o	C 2	6 ,,	67. 33. 29	N		21. 2	Dт	3 ,,	67. 33. 37	N
	8. 1	D 2	3 ,,	67. 35. 54	N	i	26. 2	D 1	3	67. 35. 23	N
	10. 2	C 1	6 ,.	67. 34. 15	N		27. 1	D 2	3 ,,	67. 33. 46	N
	15. 2	Dı	3 ,,	67. 35. 47	N		27. 23	C 2 D 2	6	67. 36. 45	N
	16. 2	В 2 С 1	9 "	67. 34. 28 67. 35. 29	N N		28. I 28. 23	Di	2 /	67. 36. 27 67. 35. 48	N
	18. 1	D ₂	6 ,,	67. 35. 29	N N		20. 23	ъ.	J ,,	07. 55. 45	N
	23. 2	Bi		67.34.37	N N	August	9. 0	Ст	6 .,	67. 33. 54	N
	25. 1	B 2	9 "	67. 34. 20	N N	- Luguer	9. 2	C 2	6 ,,	67. 34. 40	N
	25. 2	C 2	6 ,,	67. 35. 52	N		16. 2	В 1	9 ,,	67. 32. 53	N
	30. 0	$\mathbf{C}_{\mathbf{I}}$	6 ,,	67.35.20	N		18. 2	C 2	6	67.34.12	N
	30. 2	Dт	3 ,,	67.35.18	N		19. 2	D 2	3	67. 33. 58	N
					1	ļ	22, 2	D 1	3 ,,	67. 33. 58	N
April	4. 2	C 2	6 ,,	67. 33. 56	N	1	25. 22	B 2	9 ,,	67. 34. 48	N
	7. 2	J) 2	3 ,,	67. 35. 33	N	1	26. 0	ВгСг	9 ,.	67. 33. 10	N
	8. 2	Bı	9 ,,	67.34.53	N		26. 2 30. 0	B 2	6	67. 33. 43	N
	18. 1	D 1 B 2	3 ,,	67. 34. 55 67. 34. 10	N N		30. 2	C 2	9 ,	67. 33. 3 67. 33. 30	N
	20. I 21. 0	Ci	9 "	67. 34. 12	N N	1	30. 23	Bi		67. 34. 14	N N
	21. 1	Ďi		67. 34. 29	N N		31. 2	D 2	9 ,.	67. 34. 23	N N
	21. 2	D 2	3 ,,	67. 35. 38	N			_		-7.04.20	- '
	28. 1	C 2	6 ,,	67. 35. 37	N	Septemb	r 1. 1	C 1	6 .,	67. 34. 40	N
	28. 2	Ст	6 ,,	67. 35. 19	N	1	6. 0	Вт	9 ,,	67. 32. 48	N
	28. 23	Вт	9 11	67.33.28	N		6. 2	B 2	9	67. 32. 0	N
	29. 2	D 2	3 ,,	67.34.40	N		9. 1	C 2	6 ,,	67.35. o	N
	.						9. 2	D 2	3 ,,	67. 34. 44	N
May	5. 23	B 2	Ģ	67. 33. I	N		16. 2	Dт	3 .,	67.35. 3	N
	6. 0	(`2	6 .,	67. 34. 10	N		20. 1	B 2	9	67. 32. 6	N
	6. 2	B 1	9 "	67.33.17	N		22. 1	(' I	6	67.35.27	N
	12. 2	C 1 D 1	6 ,,	67. 33. 45	N N		22. 2 28. 0	B 1		67. 34. 20 67. 33. 50	N
	13. 0	B 2	3 ,	67. 35. 29 67. 33. 4 2	N N		28. 2	Bı	9 .,	67. 33. 30	N
	21. I	D 2	9 "	67. 33. 23	N N		29. 1	C 2	9 .,	67. 35. 19	N N
	24. 0	Bi	9 ,,	67. 34. 10	N N		30. 0	D 2	3	67.35.30	N
	24. 1	В 2	9 ,,	67.34. 4	N N		30, 2	Ci	6 .,	67. 33. 59	N

The initial N is that of Mr. Nash.

Results of Observation	of Macrenia Din	on each Day of Ob	sarvetion—concluded
Trustility of Orbsert Alloy	S OF MEMORY FIRE DIL.	on each Day of On	servation—concentrated.

Day and Approximate Hour, 1881.	Needle.	Length of Needle.	Magnetic Dip.	Observer.	Day and Approximate Hour, 1881.	Needle.	Length of Needle,	Magnetic Dip.	Observer.
d h			0 1 11		d h			0 / //	
October 4. 2	C 2	6 inches	67. 33. 46	N	November 26. o	Вт	9 inches	67.32. 6	N
5. 2	Вт	9	67.30.56	N	26. 1	B 2	9	67. 32. 28	N
12. 0	Cı	6 .,	67. 35. 32	N	29. 0	(2	6 ,,	67.34.33	N
13. 0	Вт	9 ,	67.34.52	N	30. I	Dт	3 .,	67.33.37	2
13. 2	B 2	9 .,	67. 34. 38	N					
19. 1	(, 1	6	67. 35. 54	N	December 2. 1	CI	6	67. 34. 49	N
10. 2	€ 2	6 .,	67.35.33	N	6. 1	Dт	3 ,,	67. 35. 23	N
26. 0	1) 2	3	67.34.37	N	6. 2	D 2	3 .,	67.35.28	N
26. 2	Dт	3 .,	67. 33. 57	N	13. I	В 1	9 ,,	67.31.55	N
31. 2	CI	6 .,	67. 35. 36	N	13. 2	B 2	9 .,	67.33.6	N
					20. 2	C 2	6 ,,	67.35.39	N
November 5. 1	Dт	3 .,	67. 35. 5 9	N I	22. 1	Вт	9 ,,	67.33.47	Z
11. 2	CI	b ,,	67. 33. 45	N	22.23	C. I	6 ,,	6 ₇ . 33. 35	N
16. 2	C 2	6	67.34.47	Z	23. 2	C 2	6 ,,	67. 35. 29	N
17. 2	Вт	9 ,	67.34.28	N	29. 0	B 2	9 4	67.32.58	N
18. 1	B 2	9	67. 34. 39	N	29. 2	Dт	3 .,	67. 35. 49	N
18. 2	1) 2		67. 34. 44	N	30. 2	D 2	3 ,,	67.35. 2	N
24. 1	D 2	3 .,	67. 34. 50	N			1		1

The initial N is that of Mr. Nash.

MONTHLY MEANS OF MAGNETIC DIP.

Mouth, 1881.	B 1, 9-inch Needle.	Number of Observations.	B 2, 9-inch Needle.	Number of Observations.	C 1, 6-inch Needle.	Number of Observations.
	0 / //		0 / //	1	0 / //	
January	67. 35. 49	2	67. 35. 19	Ē	67. 36. 27	ı
February	67. 35. 15	2	67. 34. 28	2	67. 36. 10	2
March	67. 34. 37	ı	67.34.24	2	67.35. ı	3
April	67. 34. 10	2	67. 34. 10	1	67. 34. 45	2
May	67. 33. 43	2	67. 33. 36	3	67. 33. 45	I
June	67.34. 0	2	67. 32. 38	2	67.33.27	2
July	67. 33. 39	1	67. 33. 24	2	67. 34. 58	τ
August	67. 33. 27	3	67. 33. 57	2	67. 33. 48	2
September	67. 33. 19	2	67. 32. 32	3	67. 34. 42	3
October	67. 32. 54	2	67. 34. 38	I	67. 35. 41	3
November	67. 33. 17	2	67. 33. 33	2	67. 33. 45	ı
December	67.32.51	2	67.33. 2	2	67.34.12	2
Means	67. 33. 53	Sum 23	67. 33. 37	Sum 23	67. 34. 47	Sum 23
Month, 1881.	C 2, 6-inch Needle.	Number of Observations.	D 1, 3-inch Needle.	Number of Observations.	D 2, 3-inch Needle.	Number of Observations.
	0 / //		0 / //		0 / //	
January	67. 35. 13	1	67.35. 7	2	67. 36. 17	2
February	67.35.48	2	67.36.31	2	67. 37. 15	I
March	67. 35. 40	2	67. 35. 33	2	67. 35. 41	2
Λpril	67. 34. 47	2	67. 34. 42	2	67. 35. 17	3
May	67. 34. 10	1	67. 34. 35	3	67. 33. 47	2
June	67. 34. 10	1	67. 35. 20	2	67. 34. 30	2
July	67. 36. 11	2	67. 34. 56	3	67.35.6	2
August	67.34. 7	3	67. 33. 58	1	67.34.10	2
September	67. 34. 53	3	67.35. 3	1	67.35. 7	2
October	67. 34. 39	2	67. 33. 57	1	67. 34. 37	I
November	67. 34. 40	2 .	67. 34. 48	2	67.34.47	2

For this table the monthly means have been formed without reference to the hour at which the observation was made on each day. In combining the monthly results, to form the annual means, weights have been given proportional to the number of observations.

67.35. 5

 Sum

23

Sum

23

67.35.5

Sum

23

67.35. 1

YEARLY MEANS of MAGNETIC DIP for each of the NEEDLES, and GENERAL MEAN for the Year 1881.

	Lengths of the several Sets of Needles.	Needles.	Number of Observations with each Needle.	Mean Yearly Dip from Observations with each Needle.	Mean Yearly Dip from each Set of Needles.	Mean Yearly Dip from all the Sets of Needles.
Y		Вт	23	0 , "	0 1 11	0 , ,,
	9-inch Needles	В 2	23	67. 33. 53 67. 33. 37	67. 33. 45	
	ſ	Ст	23	67. 34. 47		
	6-inch Needles	C 2	23	67. 35. 1	67. 34. 54	67.34.35
	3-inch Needles	Dı	23	67.35. 5	67 . 35. 5	
	3-men recones	D 2	23	67. 35. 5	0,.00.	

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

DEFLEXION OF A MAGNET

FOF

ABSOLUTE MEASURE

OF

HORIZONTAL FORCE.

1881.

ABSTRACT of the OBSERVATIONS of DEFLEXION of a MAGNET for ABSOLUTE MEASURE OF HORIZONTAL FORCE.

Month and L	Day,	Distances of Centres of Magnets.	Temperature.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet.	Number of Vibrations.	Temperature.	Observer.
		ft.	0	0 1 11	:		0	
January	28	1.0	39 .6	10. 47. 56 4. 54. 2	5 ·63o 5 ·63o	100	40.1 38.8	N
February	26	1.9	46 •8	10. 47. 15 4. 53. 39	5 ·631 5 ·635	100	47 ° t 48 ° 9	N
March	29	1.0	53.1	10. 45. 39 4. 52. 46	5 ·632 5 ·632	100	53 · 4 57 · 8	N
April	29	1.0	57 .9	10. 44. 49 4. 52. 36	5 ·635 5 ·635	100	58 ·8 59 ·2	N
May	31	1.0	78.9	10. 41. 58 4. 51. 14	5 ·640 5 ·643	100	29 · 4	N
June	30	1.3	73.5	10. 43. 12 4. 51. 46	5·634 5·6 ₊₄	100	74 °9 75 °5	N
July	29	1.3	73.1	10. 42. 11 4. 51. 26	5 ·638 5 ·643	100	73·4 74·3	N
August	31	1.0	59 -5	10.44. 3 4.52. 9	5 ·645 5 ·639	100	59 ·3 59 ·5	N
September	2 7	1 ·0 1 ·3	61.4	10. 43. 35 4. 51. 52	5 ·633 5 ·634	100	58 ·4 64 ·9	N
October	29	1.3	46.3	10. 44. 21 4. 52. 25	5·638 5·638	100	45 ° 1 47 ° 4	N
November	29	1.3	50 '4	10. 44. 51 4. 52. 29	5 ·648 5 ·643	100	53 · 1 51 · 3	N
December	23	1.0	36 :3	10. 45. 30 4. 52. 49	5 ·645 5 ·640	100	36 · 9	N

The Deflecting Magnet is placed on the East side of the suspended Magnet, with its marked pole alternately E. and W., and it is placed on the West side with its pole alternately E. and W.; and the deflexion in the table above is the mean of the four deflexions observed in those positions of the magnets.

The lengths of 1 foot and 1.3 foot correspond to 304.8 and 396.2 millimetres respectively.

The initial N is that of Mr. Nash.

In the following calculations every observation is reduced to the temperature 35°.

COMPUTATION of the Values of Absolute Measure of Horizontal Force in the Year 1881.

					lu Eng	glish Measure.					In Metric Measure.
Month and D 1881,	oay,	$\begin{array}{c} \Lambda pparent \\ Value \\ of \\ \Lambda_1. \end{array}$	$egin{aligned} & \Lambda & ext{pparent} \ & \mathbf{Value} & ext{of} \ & & \Lambda_2, \end{aligned}$	Apparent Value of P.	Mean Value of P.	$\operatorname{Log.}rac{m}{X}$	Adopted Time of Vibration of Deflecting Magnet.	$\operatorname{Log}_{\cdot} m X_{\cdot}$	Value of m.	Value of X.	Value of X.
January	28	0.09374	0.04384	-0.00100	1	8•97336	5·6300	0.12810	0.3679	3.912	1.804
February	26	0.09376	0.09389	-0.00338		8.97337	5.6330	0.15827	0.3680	3.912	1.804
March	29	0.09363	0.09370	-0.00186		8.97265	5.6320	0.15894	o·368o	3.919	1.807
April	29	0.09323	0.09343	-0.00378		8.97261	5.6350	0.15873	0.3678	3.918	1.807
May	31	0.09352	0.09364	-0.00302		8.97227	5.6415	0.12921	0.3679	3.922	1.808
June	30	0.09361	0.09371	-0.00282	>-0.00313	8.97262	5.6390	0.15857	0.3678	3.917	1.806
July	29	0.09346	0.09360	-0.00384	-000312	8.97202	5.6402	0.15825	0.3674	3.918	1.807
August	31	0.09350	0.0936:	-0.00288		8.97214	5.6420	0.122.00	0*3669	3.912	1.804
September	27	0.09346	0.09355	-0.00226		8.97192	5.6335	0.12844	0.3674	3.920	1.807
October	29	0.09333	0*09348	-0.00392		8.97145	5.6380	0.12672	0.3665	3.914	1.802
November	29	0.09342	0.09322	-0.00362		8.97197	5.6422	0.15593	0.3664	3.908	1.802
December	23	0.09334	0.09342	-0.00293	J	8-97141	5.6425	0115540	0.3659	3.908	1.803
Means .			••							3•915	1.802

The value of X in column 10 is referred to the unit Foot-Grain-Second, and that in column 11 to the unit Millimètre-Milligramme-Second. To obtain X in the Centimètre-Gramme-Second (C.G.S.) unit, the value given in column 11 must be divided by 10, equivalent to shifting the decimal point one step towards the left.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS.

1881.

													_						_	
		MEIL.			TE	MPERAT	TRE.			the A	erence bet ar Temper	ature		TEMPERA				whose nothes		
MONTH	P' s	Values med to			Of the A	ır.		Evapo- ration.	Of the Dow Point.	3.1)	d Dew Po emperatu	1111		S Ruysa gristerine minomete fuith n	ms shown ang Mmt-	mshine.		S 20 S	olle.	
DAY. 1881.	the Month	Menn of 24 Hourly Val Convected and reduce 32 Edinenforth.	Indust,	Lowest.	Daily Range.	of 24 Hourly	Excess of Mean above Average of 20 Years.	of 24 Hourly	De- duce-I Mean Daily Value.	Daily Value.	Greatest of 24 Hourly Values.	of 24 Hourly		Burdrest in the Sun's Rays as shown by a Solf-Rogistering Maximum Thermoneter with that showed fully in yearno placed on the Grass.	Lowest on the Grassus, by a Self-Registering main Thermometer,	Darly Duration of Sunshine	Sun above Horizon,	Ecological Surfaces	Parly Amount of Oze	Electricity.
Jan. 1 2 3		95,15+ 96,55+ 96,10+	4.51	38.0 40.8 35.0	0 10:2 2:3 5:4	37:4	- 0.7 + 4.3 + 2.9	36.1 41.1 30.3	34.8 39.8 37.1	2.6 2.4 3.6	6.4 6.4	0.7	90	50°2 44°2 52°8	28.0 38.0 30.8	0.0	h ur- 7 9 7 9 7 9	0.000	0.0 c.0 1.0	ssP mP: sP mP: sP
5 6	In Equator	301236 301236	43.4	35°3 35°7 33°8	6·3 7·7 7·3	38·8 39·6 36·9	+ 1·1 + 2·0 - 0·7	3-10 37.6 34.4	34.6 35.0 30.8	4.5 4.6 6.1	5·7 8·8 10·8	1°5 1°6 3°6	85 84 79	46.4 65.3 68.3	30.9 30.9	0.0 5.4 2.0	7.0 8.0	0.000	0.0 2.8	sP:sP wP:sP mP:sP
7 8 9	First Qr.	30:3g5 30:352 30:143	38.4	30'8 30'2 33'0	10.6 8.2 5.5	33.0	- 2·5 - 3·8 - 2·6	33·3 32·3 33·7	30°5 29°5 31°5	4.6 4.4 3.6	8·1 7·8 9·1	2·3 2·8 0·8	82 84 86	50.0 50.0 61.4	25.4 25.6 30.7	5·7 c·o o·4		0,000 0,000 0,000	. }	sP : ssP ssP
1 : 1 1 1 2	Istrated I Smarth N	20.861 20.614 20.343	34.5 34.5	33°0 30°5 23°0	1°2 3°6 8°7	32.7	- 4·1 - 5·2 - 8·9	32.2	29.2 27.8 23.9	4.3 4.3	8.1 8.1	2.0 1.0	85 82 79	38·5 36·4 47·8	29.6 29.5	0.0 0.0	8·1 8·1	0.130	0.0	vP sP: vP vP, vX: sP
13 14 15	Apogee Full	291658 291666	32.8 25.3 24.8	14.0 12.0		21.7	-18.6 -11.8	25.6 21.4 19.2	21.8 19.5 17.3	4.6 2.2 2.2	5·1 4·4 9·4	0.0	83 93 92	41.8 35.2 41.8	18.8 14.0 12.6	0.0	8·3 8·3	0,000	0.0	· · · · · · · · · · · · · · · · · · ·
16 17 18		291635 291592 291076	30.4 31.1 54.6	17.7 12.7 26.2	6.0 18.4 4.2	2.310	-16.9 -15.6 -10.4	21.1	17.9 12.8 23.1	3·7 10·2 5·3	9:5 13:5 14:6	0.0 1.2 0.0	86 63 80	34°1 59°8 32°1	13·5 11·3 24·8	0.0	8·3 8·4	0.000	2.0	• • • • • • • • • • • • • • • • • • • •
117 20 21	In Equator	30,019 58,62(58,685	29°5 25°5 29°2	25.5 14.4 15.8	4.5 11.1 13.4	21'1	-11.6 -18.0 -17.6	21.1 50.6 52.0	25.8 17.3 17.3	1.4 3.8 1.2	3·8 7·7 10·8	0.0	94 84 83	31.7 32.4 83.0	25°0 10°2 10°7	0.0 0.0	8·4 8·5 8·5	0.000	0.0	•••
22 23 24	Last Qr.	30°031 30°036	3117 351 3010	17:3 30:0 23:3	5°1 6°7	32.0	-16·2 - 7·6 -13·8	22'9 30'8 25'8	20·5 28·0 23·3	2.8 4.0	7:3 7:3 2:8	0.0	89 84 97	31·7 +1·6 36·3	12'0 24'0 21'2	0.0	8·6 8·6 8·7	0,000	0.0	•••
25 26 27	Createst Lecenston S	291820 291470 291820	31.3 35.3 43.3	16.8 13.2 35.3	14'4 22'1 8'0	23.3	- 15.6 - 16.6 - 15.6	23.5 23.8 37.0	19.4 19.8 37.5	4.2 3.2 0.2	10.6 4.3 3.9	0.0 0.0 0.0	82 86 98	78.8 36.1 58.2	31.0 11.2 12.2	2·1	8:5 8:8 8:8	0.022	0.0 1.0	•••
28 24 30	Perigee New	28.85- 28.85- 28.63-	48.1 48.1 48.7	34.9 42.1 41.0	7°2 6°0 6·8	44.7	- 2·4 + 4·5 + 4·5	37.4 43.0 43.7	37.0 42.1 42.2	0.7 2.3 2.3	2.2 7.0 5.5	0.0	97 92 92	51.0 54.9 60.6	37.0 37.0 34.0	0.9	8.0 8.0	0.084 0.551 0.062	1.2 2.3 4.8	•••
31		29.350	20.0	34.8	15.3	41.2	+ 1.1	39.5	37.0	4.2	12'0	0.0	85	99.8	28.8	5.3	9.0	0.010	6.3	
Means		29.712	36.2	27.3	8.4	31.7	- 7'1	30.6	28.0	3	7'4	0.8	86.3	50·9	23°9	1'0	8.4	1.663	1	
Number of olumn for Reference	1	2	3	4	5	6	7	8	ģ	10	11	12	13	1 +	15	16	1 -	18	19	20

The values given in Columns $_{10}$, 4, 5, 14, and 15, are derived from eve-readings of self-registering thermometers.

The mean reading of the Baremeter (Column 2) and the mean temperatures of the Air and Evaporation (Column 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1840 to 1868. The temperature of the Dew Point (Column 9) and the Berree of Humidity (Column 17) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tubles. The mean difference between the Air and Dew Point Temperatures (Column 16) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Colmins 1) and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on January 7 and 8 for Air and Lyaporation Temperatures depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.

January 18. Violent snow-storm, with heavy gale of wind. The amount entered as rain (column 18) was estimated by afterwards ascertaining the average depth of snow on the ground, and making corresponding allowance,

The Electrometer was not in action from January 13 to 31.

The mean reading of the Lationeter for the month was 29th 712, being 0th of 7 lower than the average for the 20 years, 1854-1873.

Temperature of the Air.

The highest in the month was 50 00 on January 31; the lowest in the month was 1200 on January 17; and the range was 37003.

The mean of all the highest daily readings in the month was 36°2, being $7^{\circ} \circ lower$ than the average for the 40 years, 1841–1880. The mean of all the lowest daily readings in the month was $x_{1}^{\circ} \circ z_{1}^{\circ}$ being $6^{\circ} \circ z_{1}^{\circ}$ lower than the average for the 40 years, 1841–1880. The mean daily range was 8°9, being $6^{\circ} \circ z_{1}^{\circ}$ lower than the average for the 40 years, 1841–1880. The mean for the month was $x_{1}^{\circ} \circ z_{1}^{\circ}$ being $z_{1}^{\circ} \circ z_{1}^{\circ}$ lower than the average for the 20 years, 1840–1868.

	WIND AS DEDUC	ED FROM SELF-REGIST	RING .	ANEMO	METER	is.			
MONTII		OSLER'S.				ROBIN- SON'S.		CLOUDS AN	D WEATHER. •
and DAY, 1891.	General 1	irection,	Pres Sqt	sure or tare Fe	the oot.	lovement			
1004.	A.M.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Me of the Mir.		А.М.	Р.М.
Jan. 1 2 3	WSW SW SE	SW: WSW SE ENE	0,0	0°0 0°0	lbs. O*O O*O	miles. 233 68 107	pcl to 10, f	: 10, thcl : 10, f : 10, l	10 : 10 10, f : 10, sltf 6, cns, cicu, thcl: pcl, cus
4 5 6	ENE: NE NE ENE	NNE: NE NE ENE	0.3 14.0 19.0	0.0	0.0 1.0 2.2	197 517 571	pel w	: 7, cus : 5, cicu, ci : 1, ci, w	10 : o, d 4,eu,-s,ei,-s,ee: o, d : v, stw 2, ci, stw : 1, li,-el
7 8 9	ENE NE: NNE NNE	ENE:NE:NNE N: NNE NNE	4.0 5.3 0.6	0.0 0.0 0.0	0.0	295 267 221	o, hofr hofr pel	: 0 : 10 : 7, cus	0 : 0, hofr 7, cus, ci : 10 : 10 7, ci, cus : 10
10 11 12	NNE: N NNW SW: NNW: W	W: NNW: N W: SW WSW	0.0	0.0	0.0	170 175 278	10, sltsn 10, su	: 10, glm : 10, sltsn : 8, thcl	10, glm
13 14 15	$egin{array}{c} WSW:NNW \\ N:NE \\ SW:WSW \end{array}$	$N \\ N: SW \\ WSW: SW$	0.0	0.0 0.0 0.0	0.0	225 95 158	hofr o, m, hofr tkf, hofr	: 10, f, glm : 10, f : 3, licl, m, ho,-fr	to, glm, sn : li,-cl : 1, ho,-fr, m 10, f : 0, tkf 0, sltf : 5, cus, ho,-fr
16 17 18	WSW SSW: S: E E: ENE	SW E ENE	51.2 10.0 21.2	0.2	0.0	203 233 860	o, hofr 10, stw	: o, m, ho,-fr, f : 2, ci, s, f, ho,-fr : 10, sn, hy,-g	o, f : 0, sltm, hofr 5,thel,soha: 10 : 10 10, sn, hyg : 10, sn, stw
19 20 21	NE NNW: WSW ENE	NNE: N SW: SE: E E: NE	7.0 3.5 t.5	0.0	0.0	566 217 221	10, sltsn v o, hofr	: 10, sltsn : 4, thcl, f : 0, hofr	10, sltsn : 10, sn 5, cus, f, m, glm : 0, f 1, licl, cu : 0 : 8, thcl
22 23 24	NNE: N: WSW N NE: ENE	WSW: N N ESE	0.0	0.0	0.0	152 156 73	pcl, hofr 10, sltsn	: 10, f, sltsn : 10, sltf, sltsn : 10, f	9, eieu, thel, f, ocsu: 10 10 : 10 10, sltf, hofr : 10
25 26 27	E : ENE NE SSE	ENE: NE NE: E: SE SSW: SSE	0.2	0.0	0.0	135	o, hofr 10, r	: 7, eus, cicu : 7, hofr : 10, mr, f	6, cus, cicu : 0, hofr, m 10 : 10, sn, sl, r 10, f : 10, sltf, thr
29	NE: NNW: SW 88E: 8: 88W WSW: SW: 88W	88W: 8W	8.0 2.6	0.0	0.0	206 392 268	10, f	: 10, f. mr : 10, fqr : 6, eus, eieu	10 : v, ocsltr 10, se, fqr : 10, ocsls g,eus,eieu, fqsls: v, slsr
31	WSW: SW	88W : 88E	2.0	0.0	0.0	229	v	: 0	4,ei,cieu,ens: c. a : m, f, hofr
Means					0.2	256			
Number of Column for Reference	21	2.2	23	2.1	2.5	26		27	28

The mean Degree of Humidity for the month was 86.3, being 1 o less than

The mean Elastic Force of Vapour for the month was o'n 153, being o'n 054 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 187.8, being out 6 less than

The mean Weight of a Cubic Foot of Air for the mouth was 561 grains, being 9 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overeast sky by 10) was 6.8.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0:12. The maximum daily amount of Sunshine was 5:8 hours on January 21. The highest reading of the Solar Radiation Thermometer was 99 8 on January 31; and the lowest reading of the Terrestrial Radiation Thermometer was 10 2 on January 20.

the average for the 20 years, 1849-1868.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.1; for the 6 hours ending 3 p.m., 0.4; and for the 6 hours ending 9 p.m., 0.2.

The Proportions of Wind referred to the cardinal points were N. 10, E. 9, S. 6, and W. 6.

The Greatest Pressure of the Wind in the mouth was 51 the square foot on January 18. The mean daily Horizontal Movement of the Air for the mouth was 256 miles; the greatest daily value was 860 miles on January 18; and the least daily value 68 miles on January 2. Rain fell on 9 days in the mouth, amounting to 1'n 663, as measured by gauge No. 6 partly sunk below the ground; being o'n 409 less than the average fall for the

40 years, 1841-1880.

		BARO- MELER.			Т	MPFRAT	URE.			Diffe	rence bet	Ween		Teupera	TURE.			ches		
MONTH	Phases	fourly Values and reduced to eat).			Of the A	ır.			Of the Dew Point.	the A	ar Tempe d Dew Po emperatu	rature		s Rays as gastering miometer halb in he Grass.	as shown mg Mam- r.	Sunshine.		uge No.6,whose e is s inches L	some.	
and DAY, 1881.	of the Moon.	Mean of 24 Hourly (corrected and red 322 Fuluculeut).	Unchest.	Lowest.	Daily Range.	of 24 Hourly	Excess of Mean above Average of 20 Years.	Mean of 24 Hourly Values,	De- duced Mean Daily Value.	Mean Daily Value.	Greatest of 24 Hourly Values.	of 24 Hourly	Degree of Humidity (Suturation = 100)	Highest in the Sun's Roys as shown by a Self-Reastering Maximum. Thermometer with blackened in the Grass, yacuo placed on the Grass.	Lowest on the Grass as shown by a Self-Registering Mini- main Thermometer.	Daily Duration of S	San above Horizon.	Rain collected in Gauge receiving surface i above the Ground,	Daily Amount of Ozone.	Electricity.
Feb. 1	In Equator	29°667 29°608 29°47°2	37.6 49.1 54.0	32·5 32·4 46·4	5°1 16'7 7'6	48.9 41.0 22.1		35·1 41·2 47·4	35·1 40·4 45·7	0°0 1°5 3°2	0°5 3°6 5°3	0.0	100 94 89	45°0 55°3 69°5	30°2 32°4 44°0	0.0	9°1 9°2 9°2	o.007 o.078 o.012	6.2 6.2	— : mP, wN
4 5 6	First Qr.	29°256 29°266 29°705	40.2 42.4 40.1	44°5 37°2 23°7	3.0 8.5	47°C 42°7 35°8	+ 6·3 + 2·1 - 4·6	45°1 40°0 33°0	43.0 36.7 28.8	4.0 6.0	5°7 11°9 9'9	0:8 2:9 3:1	87 80 74	64.0 68.0 20.0	40°2 35°0 27.7	0°0 0°8 3°4	9°3 9°3 9°4	0.010	7.5 11.2	wP: mP mP, sN: vP, vN sP
8 9	Greatest Declination N	29.636 29.101 29.464	46.3 50.9 44.9	26·1 41·9 39·0	20°2	34·3 46·2 42·3	- 5°9 + 6°3 + 2°7	33·1 42·7 39·7	31°1 38°7 36°5	3·2 7·5 5·8	7:5 10:7 8:8	1.1 2.6 0.2	87 76 81	46.3 82.0 73.2	25.6 38.1 37.2	0.0 1.8	9°4 9°5 9°6	o.322 o.045 o.532	2.0	sP: vP, vN wP, wN: vP, wN mP: mP, sN
10 11 12	Apogee	28.887 29.11€ 29.83€	51°1 41°5 41°1	39°2 33°5 28°3	11°9 8°0 12°8	46.4 37.8 34.3	+ 7'1 - 1'3 - 4'4	43.9 35.6 31.9	41°1 32°6 27°6	5·3 5·2 6·9	11.0 6.8 13.4	0.4 0.4	83 82 75	84.7 69.3 93.3	30.8 30.0 34.2	1.2	9.6 9.7 9.8	0.030	712 918 618	wP, wN: mP, sN vP, vN: sP sP
13 14 15	Full	29.846 29.29c 29.611	40 ' 4 39'4 43·8	27.0 36.0 33.5	13°4 3'4 10'3	34°4 37°4 38°7	- +.4 - 1.3 - +.4	32°1 35°4 37°8	28·2 32·6 36·6	6.5 7.8 7.8	10°1 8°2 5°5	0.0	7.7 83 93	5 p 3 50.7 63.0	2.3·2 33·8 27·8	0,0	9,8 9,8	0.000	0.0	sP mP: mP, wN vP: ssP
16 17 18	In Equator	29.731 29.757 29.863	46.1 41.8 46.1	31°1 32°7 39°3	15°0 9°1 7°4	38.3 37.2 41.8	- 0.5 - 1.7 + 2.8	37.4 37.1 41.2	36.5 37.0 40.2	2.1	2.1 0.0	0.0	93 99 95	61.8 51.2 37.1	20°6 20°5 37°3	0.0	10,1	0.000	0.0	sP mP mP
19 25 21	Last Qr.	29'964 29'99 30'071	34.0 38.1 34.2	36:3 33:8 30:3	4°2 4°3 3°7	37*9 37*9 33*0	- 1°3 - 2°3 - 6°5	37.5 36.9 32.6	36.8 36.8 31.8	1'0 0'2 1'2	1.2 1.0 5.0	0.0	99 95	43°0 42°0 50°5	30°0 32°5 29°5	0.0	10.3	0.333	0.0	wP: vP, wN wN: wN: ssP, ssN ssP, ssN: mP: sP
22 23 24	beclimation S	29°991 30°094 30°094		32.1 32.1	5°.4 2°9 7°7	32.4 33.4 35.4	- 6.3 - 4.4	32.0 33.1 34.1	35.1 35.6 35.5	0.4 0.8 3.3	2·3 2·7 6·5	0.0	97 97 88	38.9 43.8 72.8	28·1 31·0 31·5	0.0	10.2 10.2 10.4	0.000	0.0 0.0 3.3	sP: wN, vP: sP mP: ssP, ssN sP
25 26 27	Perigee	29*96c 29*692 29*663	38·5 44·8 39·7	30°3 27°1 29°1	8°2 17°7 10°6		- 4.7 - 4.4 - 6.6	32.0 33.0 35.0	29°3 29°0 29°6	5·9 6·6 3·9	8.3 15.8 8.3	2.6 1.4 0.4	78 76 85	50.0 102.5 85.0	23·7 23·5 26·1	6.3	10.2	0.000	3.4	mP: mP, wN sP mP: sP
28	New	29.602	34.7	27.3	7.4	30.4	- 9'5	29.5	26.5	4.2	10.8	0.0	82	54.7	23.8	0.7	10.8	0,000	0.0	mP: sP
Means		29.661	42.5	33:5	ō.0	38.0	- 1.6	36.6	34.2	3.6	6.8	0.8	87.2	61.7	3019	0.0	9.9	2.446	3.4	
Number of 'olumn for Reference.	1 1	2	3	4	5	6	7	8	9	10	1.1	12	13	1+	15	16	17	18	19	20

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dev Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns (1 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on February 6 and 7 for Evaporation Temperature depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-teadings of self-registering thermometers.

The Electrometer was not in action on February 1

The mean reading of the Barometer for the month was 29" 661, being o" 171 lower than the average for the 20 years, (854-1873.

ENDOUGHLESS OF THE ALE

The highest in the month was 54 to on February 5; the lowest in the month was 26 to on February 7; and the range was 272 to

The mean of all the high a daily readings in the month was 42 15, being 30 to lower than the average for the 40 years, 1841-1880.

The mean of all the lowest daily readings in the mouth was $_{0.3}^{++}$, being $_{0.8}^{++}$ lower than the average for the 40 years, 1841–1880. The mean daily range was $_{0.9}^{++}$ 0, being $_{0.9}^{++}$ 1 has the average for the 40 years, 1841–1880.

The mean for the month was 38 to, being 1 to lower than the average for the 20 years, 1849-1868.

	WIND AS DEDUC	ED FROM SELF-REGISTI	ERING	Ахеме	METE	88			
		OSPER'S.				ROBIN- SON'S.		CLOUDS AN	D WEATHER.
MONTH			Proc	SUPI O	n tho	cut			
DAY, 1881.	General l	Direction.	Sq	sure o nare F	oot.	lovement			
	Λ.Μ.	Р.М.	Greatest,	Least.	Menn of 24 Hourly Measures.	Horizontal Me of the Arr.		А.М.	Р.М.
					ps.	miles.			
Feb. 1 2 3	WSW : SW 88E 88W	8W 88W 8 : 88E	2.1 2.0	0.0	0.0		10, ľ 10 10	: 10, f : 10, se, octhr : 10	10, f : 10, f 10, thr : v 9, sc, mr : 10, r
1 5 6	88E : 8 : 88W 8W : W NNW	$\begin{array}{c} 88W:8W \\ W8W:NW \\ NNW:8W \end{array}$	2.5 7.1 6.0	0.0	0.0	364 513 371	10 pcl	: 10, ocm,-r : p,-cl, shs,-r, glm : 1, ci	10 : v : v, sltr g.cus,cicu,slsr : 10, lisls 4, cicu, ci : 0, lofr, m
7 8 9	8 : 88E W8W W : NW	S: SSW: SW WSW: W: WNW NNW: SE		0.0		480 958 369	e, m, hofr v, stw pcl	: 10, sltsn : 10, se, g : 2, thcl	10, sn, w : 10, r, stw : v, w, lqshs 7,ei.eis.eus.stw : v, lishs 7,eieu.eus : 10, r : 10, fqr
10 11 12	$\begin{array}{c} \mathbf{SW} \\ \mathbf{SW} : \mathbf{NNE} \\ \mathbf{NNW} \end{array}$	W8W N: NNW N: NNE: 8	26.0 21.0 2.9	0.0	1.8	773 466 289	10, r slisr pcl	: 10, r : 10, sltr, glm : 1, cien, cus	10, n, se, stw : 10, shsr, hha 9 se, en-s, cien, ocsh : 1, licl, ocsh 6, cicu, cus, cu : 3, thcl, m, luha
13 14 15	88E : 8E 88E : 8E 88E : 8E	S: 88E 8E: 88E E8E: Calm	5·1 7·4 0·0	0.0		277 296 117	thcl, m, hofr 10 10, cr	: 6, cicu, cis, ci : 10, sltr : 10, cr	10 : 10, sltsn 10, r : 10, fpr 9, cus, cicu : 1, cus, f
16 17 18	Calm Calm: ENE: E ESE: Calm	E: ESE ENE:E:Calm NE:ENE	0.0 0.0 0.0	0.0	0.0	109 79 74	f o 10, f	: 10, f : 10, f : 10, f	9. sltf : v : 0 10, sltf : 10, lkf : 10, f 10 : 10
19 20 21	ENE: NE NNE: NE NE	NE: NNE NE N	0.2 1.8 1.5	0.0	0.0	243 331 319	10 10, P 10, Sh	: 10, mr : 10 : 10, sn, sl	10 : 10 : 10, r 10, hysh : 10 : 10, shr 10 : 10 : v
22 23 24	NW: W N: NNE NNE	NE: N NNE NNE	0.0	0.0	0.0	163 212 287	10 10 10	: 10, glm, mr, f : 10, sn, sl : 10	10, sltf, mr: 10 : 10 10, sn : 10, sn 9, ctcu, cus : 10
25 26 27	NNE: NE SW ENE: NE	NE: N: SW SSW: SSE: ESE ENE: NE: N		0.0 c.0 0.0	0.0	169 160 227	10 10 10	: 10 : 3, eien, hofr : 10, sn	10 : v, hofr : 10, sltf 3, ci, cicu : 10 : 10 10, sn : v, thcl, hofr
28	N: XXW	N:NNW	1.2	0.0	C.1	253	pel	: 10, 00811	8, cu, cu,-s, oc,-sn : o
Means					0.7	311			
Number of Column for Reference.	2.1	2 2	2.3	2+	25	26		27	23

The mean Temperature of Evaporation for the month was 360.6, being 11.3 lower than The mean Temperature of the Dew Point for the month was 34° 5, being o' 9 lower than

The mean Degree of Humidity for the month was 87:2, being 2:4 greater than

The mean Elastic Force of Vapour for the month was o'n 199, being o'n oos less than

The mean Weight of Vapour in a Cubic Foot of Ar for the month was 2853 3, being ost I less than

The mean Weight of a Cubic Foot of Air for the month was 552 grains, being 2 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 8.5.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was o og. The maximum daily amount of Sunshine was 6 3 hours on February 26. The highest reading of the Sobar Radiation Thermometer was 102 5 on February 26; and the lowest reading of the Terrestrial Radiation Thermometer was 23 2 on

the average for the 20 years, 1849-1868.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2°5; for the 6 hours ending 3 p.m., 0°4; and for the 6 hours ending 9 p.m., 0°5.

The Proportions of Wood referred to the cardinal points were N. 8, E. 6, S. 7, and W. 5. Two days were calm.

The Greatest Pressure of the Wind in the month was 28000 on the square foot on February 8. The mean daily Horizontal Movement of the Air for the month was 314 miles; the greatest daily value was 958 miles on February 8; and the least daily value 74 miles on February 18.

Rum tell on 18 days in the month, amounting to 2" 446, as measured by gauge No. 6 partly sunk below the ground; being 6" 979 greater than the average fall for the 40 years, 1841-1860.

		BAL - MELEE.			Tı	EMPERAT	TURE.			Duffe	erence lad	# cell		Temper				hose		
MONTH	Plans s	Hourdy Values and reduced to therb.			Of the A	iir.		Evapo-	Of the Dow Point.	the A	ar Tempe of Dew Po Semperati	rature	,	S Russas ensternic moneter bulb in le Grass.	ons shown our Mon- er.	Sunshine		upe No.6, w	of Ozone.	
DAY.		Mean of 24 Hourd (corporated and ne 52 Faltweethert).	High st.	Lowest.		of 24 Hourly	Excess of Mean above Average of 20 Years.	of 24 Hourly	De- duced Mean Daily Value.	Mean Darly Value.	01 24	of 24 Hamely	Degree of Humdity (Situration too).	Highest in the Sun's Rays as shown by a Self-Registering Maximum Thermoneter with planetened both in viruo planete on the Grass.	Lowest on the Grassus sl. by a Self-Registeriug 3 man Thermoneter.	Dady Duration of 8	Sun above Horizon.	Rain collected in Gauge N. receiving surface 18 above the Graund.	Daily Amount of O	Electricity.
			1		-	0	С	-	-	c	0						li at-			
Mar. 1 2 3	In Equator	291894 301066 291886	41.0	2917		34.8	- 8.3 - 5.6 - 3.9	32.6	2910	6.0 5.8 6.1	13°2 9°2	0°0 1°5 3°1	77 79 79	32°0	21'1 25'0 29'1	1.5	10'9	0,000	5.2	sP; vP sP sP
4 5 6		29:376 29:238 29:235	48·1 57·6 58·0	36·4 45·2 47·7	11.7	49.8	+ 11.5 + 0.3 + 11.5	48.9	48.0	1.1 1.8 3.6	6:7 7:8	0.0	96 94 88	51.2 84.5 21.2	33.6 42.3 38.6	0,0	11.1	0.425 0.768 0.002	15.0	wP, vN: vP, wN wP, wN wP
7 8 9		29:137 29:506 29:762	50.0	41'2		45.7	+11°5 + 5°1 + 7°5		30.0	4°2 5°8 4°2	9°7 10°7 7°2	0°2 1°7 0°6	85 81 86	100.6 86.5 69.6	44'0 37'0 35'7	1.0	11.3	o.044 o.192	3.2	wP : wP, wN mP, wN wP
10 11 12	$A_{ m Pegce}$	291866 291885 291832	58.3		9°4 14°2 15°0	510	+ 12.5 + 10.5 + 15.6	48.3		1.8 2.3 4.8	8.0 11.8 7.2	2.5 1.4 0.0	84 82 93	98.7 100°0 65°2	47.2 38.0 32.2	5.6	11.2		0.0	$\begin{array}{c} {\rm wP} \\ {\rm wP}: {\rm vP} \\ {\rm mP} \end{array}$
13 14 15	In Equat	29:7-4 29:728 30:038	54.5 48.6 54.5	38·3 36·0 33·3	13'0 12'9 21'4	42.1	+ 1.0 + 1.1 + 1.2	39.6	40°0 36°5 37°2	2°4 5°6 4°9	8°0 10'7 14'4	0.0 1.5 0.0	91 81 84	99'3 100'0 105'8	36·9 31·0 29·3	5.8	11.7	0.000		$\begin{array}{c} \mathbf{mP} \\ \mathbf{mP} \\ \mathbf{mP} \end{array}$
16 17 18	• •	30,345 30,359 30,510	56.3	29'4 34'4 40'7	30'4 21'8 19'1	44.8	+ 2·5 + 3·5 + 7·1	42.6		6·7 4·8 7·1	16·3 11·6 14·8	0.0	77 84 77	98.4 75.7 102.8	26.8 28.0 34.8	4.1	ΤΓĢ	0.000		mP : sP vP, wX sP
1 9 20 2 1		30:01- 29:541 29:541		40'2 39'0 32'7	17.6 14.3 13.4	45.8	+ 6.6 + 4.3 - 1.8	43.6	34.2 41.1 41.1	6·9 4·7 5·3	13.9 8.8 14.2	5.0 0.0	77 8 ₄ 8 ₂	92.0 76.6	35.5 34.0	0.3	12.1	0°000 0°017 0°060	0.0	vP sP: vP, wX vP, wX
22 23 24	Last Qr.	29.76c 29.76c 29.16c		30·5 28·7 30·7	9.2 19.6 9.2	3o 7	- 6.3 - 2.1 + 3.7	37.1		4·3 6·0 6·9	14.4	0°0 0°0 0°2	8 ₄ 79 77	79°0 77°3 75°2	26·3 25·2 34·0	0.8	12.3	0.110 0.119 0.029	1.8	ssP, ssN : vP sP : vP, vN vP, wN
25 26 27	Perigee	291286 291592 291764	43.3	290	14.3	34.8	- 3·1 - 7·8 - 7·8	35.4 32.5 32.5	30.4 28.8 28.3	8·8 6·0	14.0 14.0	0.0	71 78 75	96°0 79°0	27.3 24.0 20.1	2.0	12.5	0,000 0,000		vP, wN sP, sN mP
28 29 30	In Equate New	29*70 . 29*611 29*842	24.8	27.5 28.1 26.0	26.2	39:7	- 5.9 - 4.1 - 8.4	36.1	30°4 31°4 26°4	7°1 8°3 9°5	13'7 19'6 16'1	3·1	76 73 68	108·3 96·3	21.6	8.1	12.7	0,000	0.0	sP vP, wX sP: v P
31		29.814	46.3	32'7	13.6	38.5	- 6:3	34.8	29.8	8.7	16.5	2 ' 2	71	103.0	28.1	8:-	12.8	0,000	3.0	·P: mP
Mean-		29"," 2.	514	35.5	15%	+2.0	+ 1.0	40.5	3,71	5.5	12.2	0.8	81.1	89:5	31.0	3:7	11.8	1.835	3.1	
Number of Yolumn for Reference	1	2	3	+	5	6	-	S	y	10	11	I 2	13	14	15	16	17	18	19	20

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reach g of the Barometer for the month was 20% 725, being 000003 higher than the average for the 20 years, 1854-1873.

TEMPLEATURE OF THE ATE.

The highest in the month was 50 °8 on March 16 and 18; the lowest in the month was 24 °6 on March 27; and the range was 35 °2. The mean of all the highest daily readings in the month was 51 °1, being 1 °2 higher than the average for the 40 years, 1841–1886. The mean of all the lowest daily readings in the month was 35 °5, being 6 °2 higher than the average for the 40 years, 1841–1886.

The mean daily range was 13%, being 1 · o greater than the average for the 40 years, 1841–1880. The mean for the month was 42 · 6, being 1 · o greater than the average for the 20 years, 1849–1868.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hearly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The result on March 27 for Evaporation Temperature depends partly on values inferred from eye-observations, on account of accidental loss of photographic register.

	WIND AS DEDUC	CED FROM SPLE-REGIST	ERING	ANDM	OMPTE	K4.				
		Osler's.				Roman-		CLOUDS AND	WEATHER.	
MONTH and DAY,		Direction.	Pres Sq	sure o	n the	zontal Movement the Air.	·			
1551.	А.М.	Р.М.	Greatest.	Lenst.	Menn of 24 Hourly Mensures.	Horizontal M of the Air.		Λ.Μ.	P.V	I.
Mar. 1	NW: W: WSW WSW SE	NW: WSW N: ESE ESE: E	1.0 0.0	0.0	0°1 6°0 1°6	251 219 404	o, ho,-fr o, m	: 0 : 9 : 10		0 10 10
4 5 6	ESE: E S: SE: SW SW	E: ESE: 88W 8W: 88W: 88E 8W: 88W			0.3	254 298 417	10, r 10 10	: 10, r : 10, hy,-r : 10, oc,-sh: : 4, ci,-cu, ci	10, sltr	10, fqr 10, hyr 10, octhr
. 8	88W : 8W 8W : W8W : W 8W : W8W	SSW: SW: WSW WSW WSW	13°0 13°0	0,0	3·1 3·2	56 i	pcl 10 m, lishs	: 6, ens, cicu, w : 10, shr : 10, lishs, w	7. ci.cicu.ens.ocshs.stw; 0. cus. thcl. soha, shsr, hl; 10, W	9, orsh-, w 1,thel,luha,luco m 10, W
10 11 12	$egin{array}{c} WSW : W \ WSW \ SW : WSW \end{array}$	WSW WSW E	6.8 1.3	0.0	0.1	482 331 179	10 10 licl	: 10 : 10 : 10, f	ı. ci, eicu	10 2, luha 10
13 14 15	E: ESE ESE: E NNE: NE	E: ENE: NE ENE: E	0.0	0.0	0.0 0.0	295 195 179	01	: 10 : 5, cicu, thcl : 8, cicu, ci	5, thcl. ci, cicu :	1, h, luha 3, cien 1, fhcl, luha
16 17 18	Calm: ENE Calm SW: WSW	ENE : Calm W : SW SW : WSW	3.6 0.0	0.0	0.0	86 117 397	o li,-el	: 0, -lt,-f : 0, f : 7, ci, th,-el		o, f 3, cus
19 20 21		WSW: W: XXW XW: WSW: W	4.8	0.0		436 291 284	10 li,-el 10	: 8, cus : 10 : 9, ci, cns	1, thel : 10, 6e	
2 2 2 3 2 4	NW: WNW: SW SW: SSW SW: NNW: WNW	S: 88W WNW: WSW	5°2 7°0 4°4	o.o o.o	0.4	3 ₇₄ 383 409	pel o, d 10, er	: 10, 80 : 6, ci, th,-cl, 80,-ha : 10		o, hy,-d 10, sc, r v
25 26 27	WSW: WNW SW: WNW NE	W: WSW NE E: ENE	0.8	0.0	2.3	590 179 169	liel o, hofr o, hofr	: v, eicu, ens, sn, w : 2. thcl, h : 0, hofr	9. cus,cien,w: V 5. cu,cicu.thel, h,m, sn: 0	; 0 1, hofr 0
28 29 30	NE: ENU NNE: N NNE: NE	E: ESE: ENE N: NE ENE		0.0	o.† o.º	212 260 329	o pcl, f v	: 7, cieu, ci : 0, tkf : 6, cu, eus, cieu		pcl 10 4, cus
- 51	ENE: E	ENE	7.8	0.0	1.6	439	pel	: 6, eu, cieu	0 :	0
Means			··		0.6	3.36				
Number of Column for Reference	21	2 2	2.3	2 +	25 — -	26		27	2.8	

The mean Temperature of Evaporation for the month was 40 2, being 1 2 higher than

The mean Temperature of the Dew Point for the month was 37 11, being 1 11 higher than

The mean Degree of Humidity for the month was \$1.1, being 0.2 greater than

The mean Elastic Force of Vapour for the month was o'm 221, being o'm 009 greater than

The mean Weight of Vupour in a Cubic Foot of Air for the month was 2gr. 6, being ogr 1 greater than

The mean Weight of a Cubic Foot of Air for the month was 548 grains, being 2 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 5.9.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.31. The maximum daily amount of Sunshine was 9.5 hours on March 28. The highest reading of the Solar Radiation Thermometer was 1122 on March 30; and the lowest reading of the Terrestrial Radiation Thermometer was 2011 on March 27.

the average for the 20 years, 1849-1868.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2:2: for the 6 hours ending 3 p.m., 0:5: and for the 6 hours ending 9 p.m., 0 4.

The Proportions of Wind referred to the cardinal points were N. 4, E. 8, S. 7, and W. 11. One day was calm.

The Greatest Pressure of the Wind in the month was 20^{ths} 3 on the square foot on March 7. The mean daily Horizontal Movement of the Air for the month was 336 miles; the greatest daily value was 735 miles on March 9; and the least daily value 86 miles on March 16.

Rain fell on 11 days in the month, amounting to 11th 835, as measured by gauge No. 6 partly sunk below the ground; being 6th, 88 greater than the average fall for the 40 years, 1841-1880.

		BARO-			TE	MPERAT	URE.			D:e	erence bet		1	TEMPER.				whose		
молтн	Phases				Of the A	ır.		Of Evapo- ration.		the A	Air Tempe of Dew Po Temperate	rature int		Kays as preferred moneter halb in re-Grass,	ns shown ng Mmi-	mshine.		N. Z.	othe.	
and DAY, 1881.	of the Moon.	Mem. of 24 Hourly Values (e-prected and reduced to 32. Pahrenhott).	Dichest.	Lowest,	Range.	of 24 Hourly	Execss of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	Mean	Mean Duily Value.	Greatest of 24 Hourly Values,	of 24	Degree of Humidity (Saturation - 100).	Highest in the Sin's Rays as shown by a Self-Registering Maximum Thermometer with blackened bulb in vacuo placed on the Griss,	Lowest on the Grass as shown by a Self-Registering Mmm Thermometer,	Daily Duration of Sanshine	Sun ahove Hori on.	Rain collected ar Gauge receving surface above the Ground.	Daily Amount of Ozone.	Electricity,
Apr. 1	• •	29.618 29.667 29.841	20.0	31.6 36.4 32.8	19'7 13'6 11'2	41.4	- 3·6 - 4·3 - 8·7		33.3	7:6 8:1	0 16.2 17.0 17.2	0°0 2°1 5°6	76 74 67	106.2 106.8 102.2	26·5 32·9	7.1	130	0°002 0°000 0°000	0°0 0°0 2°0	wP: wP: mP
4 5 6	First Qr.	29.826 29.630 29.642	48.8	29'3 31'8 32'4	18:8 17:0	3915	- 7.8 - 7.1 - 6.2	35.9	30.0 31.5	8·6 8·3 8·4	16.9 16.9	2·5 2·2 3·1	71 73 72	119.8 108.0		4.4	13.2	0,000	0.0	mP mP:
7 8 9	Apogee	29*846 29*896 24*890	0.10	31.4	17.2	41.5	- 6.5 - 5.3 - 2.5	38.3	32°1 34°3 38°1	8·2 7·2 6·3	157 153 140	116 117 111	7.2 7.7 7.8	107°3 116°2 115°3	27°1 26°9 27°5	5.6	13.4	0.000	1.0	ml': sl' ml' ml'
10 11 12	In Equator	29:826 29:678 29:733		34·8 38·6 45·7	24.7 22.7 14.3		- 1'9 + 2'7 + 4'3	42°4 47°4 50°0	39.4 44.9 48.6	5.6 4.8 2.8	14.1 11.4 6.8	0.0	81 85 90	120°5 114°3 96°9	26,4 34.0	1.6	13.6	0.000	1.2	mP mP: — —: mP
13 14 15	Full	291724 291655 291742		45.6	16.4	52.1	+ 6·7 + 4·7 + 3·8	50°2 50°2	46.6 47.9 45.0	7:3 4:2 6:3	18.2 10.1 14.8	o:8 o:8 1:3	76 85 79	121°3 109°3 120°4	43.1 41.3 38.0	0.4	137	0.000	115	mP vP: mP wP: wP, wN
16 17 18	Greatest Declination S	29.815 29.825 29.791	58.9 66.0 64.2	38.0 38.0	20.8 28.0 25.3	52.4	+ 0.8 + 4.6 + 3.2	46·1 47·9 44·9	43.6 43.3 38.5	12.6 9.1 4.8	11.6 19.1 22.3	0°0 0°0 3°4	84 71 62	101°8 120°3 121°1	33.0	11.0	13.0	0,000	1.2	vP: mP wP: mP mP: vP, vX
19 20 21	Perigee Last Qr.	29.801 29.688 29.602	42'3 44'4 49'1	37.5 32.2 30.0	12.5		- 7.8 -10.0	36·3 35·6 35·8	31·3 32·2 32·6	8·9 5·9 5·6	12.0	3·9 o·8 o·0	70	62·3 79·0 106·1	36.0 20.0 20.3	012	141	0,000 0,000	1.5	wP, wX : vP sP : vP, wX sP : mP : wP, wX
22 23 24	in Equator	29.647 29.842 29.825	55.8	34.1	21.7	44'9	- 7·1 - 3·4 + 0·4	37.6 41.3 44.9	33·2 37·1 40·8	7:9 7:8 7:9	17.8 14.4 14.8	2°4 2°4 2°2	74 74 74	80.3 102.7 111.2	29.6 26.2 39.8	4.3	143		4.0	mP, wX : vP, wX sP: wP, vX: vX, vP vP, wX : vP
25 26 27		29.751 29.797 29.959	61°5 55°7 55°1			47:3	+ 3·7 - 1·1 - 1·3	48 ·2 43·5 43·2	14.2 39.3 38.8	7.9 8.0 8.3	14°2 16°6 13°0	1'4 2'2 3'0	75 75 74	80.9 80.9	41°9 34°9 33°5	3.4	145	0.038 0.131 0.000	0.0	wP: vP, vX sP: ssN,sP: wN,vP vP, wN
28 29 30	New	30°05q 29°966 29°64q	60.1	38·1 44·7 45·7	1.1.4	32.0	- 0.2 + 3.5 + 5.3	44°7 49°7 50°1	40.8 47.4 46.4	7:5 4:6 7:5	14'1 8'6 18'2	1°1 1°3 0°2	75 84 75	110.0 65.2 110.0	30.7 40.0 43.0	0.0	14.7	0.000 0.083 0.150	2.8	mP: wP, wX wP, wN: vP mP: mP, wX
Means		29"774	55.6	37.5	18.1	4.5.8	- 1.7	42.4	38.5	7:3	14.8	1.7	76.1	105.5	32.7	4'2	13.8	5nm 0.623	2.7	
Number of Column for Reference	1	2	3	4	5	6	7	8	9	10	11	1.2	13	14	15	16	17	18	19	20

The values given in Columns 3, 4, 5, (4, and)5 are derived from eye-readings of self-registering thermometers,

The mean reading of the Barometer for the month was 290-774, being on o29 lower than the average for the 20 years, 4854-1873.

TEMPTONICE OF THE ARE.

The highest in the month was 66 'r on April 13; the lowest in the month was 29 '3 on April 4; and the range was 56 '8.

The mean of all the highest daily readings in the month was 55 %, being 2 % lower than the average for the 40 years, 1841-1880.

The mean of all the lowest daily readings in the month was 37° 5, being 1 . 7 lower than the average for the 40 years, 1841-1880.

The mean duly range was (8) i, being 0 og less than the average for the 40 years, (841-4880.

The mean for the month was 45°8, being 1°7 lower than the average for the 20 years, 1849-1868.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humiday (Column 13) are deduced from the corresponding temperatures of the Arr and Exaporation by means of Ghishert Blygremetrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Column 11) and 12) are deduced from the 24 hourly photographic measures of the Dry-built and Wi-built Thermometers. The results on April 24 and 25 for the Barometer de pend partly on values inferred from eye-observations, on account of accidental loss of photographic register.

	WIND AS DEDUC	TED FROM SELF-REGISTI	ERING	Ахимс	METE	RS.	-		
		Ostor's.				ROBIN- SON'S,		CLOUDS AND	WEATHER.
MONTH			Draw	sure on		tur-			
DAY,	General !	Direction.	Sqr	uare Fe	101,	wenterd			
1881.			-		학습성	Horizontal M.		1.35	Р.М.
	Λ.Μ.	P.M.	Greatest	Least.	Mean of 24 Hourly Measures.	rizon The		Α.Μ.	1.31.
			- Ç	Les	¥ 212	===			
	3711	DND ND	Bs.	No.		miles,			
April 1	NE NE	ENE: NE NE	10.0		2,1	748	o pcl	: 2, ci, cis : 6, ci, cis, cien, w	3, cis, ci, cicu, w: 8, cus 3, ci, cicu, cu, stw: 6, stw
3	NE: ENE	ENE: NE	29.0	1.0	6.5	740	pel, w	: 4, ci, cien, stw	3, ci, cis, g : v
1	NE: ENE	ENE	20.0	0.0	5.2	623	v, w	: 1, cis, stw	z.cis.ci, cicu, soha. stw: 6, thcl
1 5	NE: ENE	ENE: NE	12.0	0.0	2.1	515	pel	: 7, cis, soha, w	7, cicu, cis, ci, w: 8, cus, cicu
6	NE: ENE	ENE: NE	0.0	0.0	1.8	497	0.1	: 7, cicu, cus, w	4, ci, ci,-cu, cu,-s, w: 0
7	NE: END	ENE: NE	17.0		3.3		0	: 5, cieu, cis, soha, w	3, cicn, ci, cis, se, stw: 0
8	NNE:NE:ENE ENE	ENE: ENE	13.5	0,0	0.5	406 260	licl	: 4, ci, ci,-cu, w : 7, ci,-cu, ci	6, ei, eien, ens : 10 5, en, eien, ei : 0
10	NNE: NE: E E: 8E: 8	E : ESE SSW	t'9 2.3	0.0	0.0	190	0	: 9, cu, cicu, h : 8, cicu, cis, sltr	o, h 10, sltr : 10
1 2		$\mathbf{SSW}:\mathbf{SSE}:\mathbf{SE}$		0.0	0.1	240	10, r	: 10, cr	9, cus, cicu : 6, cis, ci, luha
1.3	ESE	E: ENE	7:7	0.0	0.2	244	cis	: 7, ci, cicu	6,cis,ci,cicu,cus; 7, cis, thcl, s
14	ENE: E: 88E	88W	0.0	0.0	0.0	172	pcl, cis, s	: 10, mr	10, sltr : 8
1.5	SW	Variable	0.0	0.0	0.0	181	10	: 9	7, cus, cien, h : 10, m
16	S: NE: E	E	0.5	0.0	0.0	159	10, m	: 10, cus	g. eus, eieu : o, hyd
17	ENE: NE ENE: NE	$\begin{array}{c} \mathbf{E}:\ \mathbf{ENE}\\ \mathbf{NE}:\ \mathbf{NNE} \end{array}$	1.8	0.0	0.5	242	o thad p	: 2, ei, eis	3, cu : 0
18			12.0	0.0	1.8	517	thcl, m	: 8, ci, cis, cicu	ı, ci, cicu, w : 6, d
19	NNE	NNE N: NNW	10.7		3.1		10, W	: 10, W	10, W : 10
20	$\frac{NNM}{N}$	NNW: N: NE	3.2	0.0		300	0	: 10, ocsn : 9, eis	g.cicu,cu8: 10, 0csn : 0 7, cicu,cu8,ci,r.sn: 10, 0cr
22 23	$egin{array}{c} WSW: N \ NNW \end{array}$	$NW: \stackrel{N}{SW}: W$	3.3	0.0	0.3	217	10	: 10, glm : 5, eieu, eis, h	10. sltr : v, m q, cicu, cus, h : 10. fqr
24		XXW:WXW:SW		0,0	0.1	264	pcl	: 10	9, cicu, ci : v, m
2.5	SW	wsu:wxw	4.3	0.0	1.4	462	10	: 10, ocshr	10, shsr, 1 : 10
26	$WSW \pm WNW$	NW : NNW	7.0	0.0	0.4	348	pcl	: 10, lislis	7. cu-s, cu, shs-r, sl, hl, l, t; 0
27	W: WSW: NW	NW: SE: Calm	1.0	0.0	0.0	178	v	: 10, eieu, eus	10, sltf : v
28	Calm and Variable	8:88W	0.8	0.0	0.0	t53	v	: 0	8,eieu,ei,eus,glm: v
29	$88W \pm 8W$ $8W \pm 88W$	8W 8: 8W	2.4	0.0	0.3		10	: 10 : 5, cu, cus, cis	9, cus, cicu : 10, r
30	311 : 3311		4.4	0.0	07	375	10, sltr	: 5, cu, cus, cis	8, eu, cis, thcl, sohu: v, shsr
Means				٠.	1,5	357			
Number of Column for Reference.	21	2 2	23	24	25	26		27	28

The mean Temperature of Evaporation for the month was 4224, being 125 lower than

The mean Temperature of the Dew Point for the month was 38 5, being 10.8 lower than

The mean Degree of Humahty for the month was 76.1, being 0.8 less than

The mean Elastic Force of Vapour for the month was o'n 233, being o'n 017 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 25117, being 0512 less than

The mean Weight of a Cubic Foot of Air for the month was 546 grains, being 2 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overeast sky by 10) was 6.7.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.30. The maximum daily amount of Sunshine was 11.0 hours on April 4 and 17.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 121° 3 on April 13; and the lowest reading of the Terrestrial Radiation Thermometer was 24° 3 on April 4.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.6; for the 6 hours ending 3 p.m., 0.6; and for the 6 hours ending 9 p.m., 0.5.

The Proportions of Wind referred to the cardinal points were N. 9, E. 11, S. 5, and W. 4. One day was calm.

The Greatest Pressure of the Wind in the month was 29 on the square foot on April 3. The mean daily Horizontal Movement of the Air for the month was 357 miles; the greatest daily value was 748 miles on April 2; and the least daily value 153 miles on April 28.

Rain fell on 8 days in the month, amounting to on 623, as measured by gauge No. 6 partly sunk below the ground; being 1 n o52 less than the average fall for the 40 years, 1841-1880.

		BARO. METER.			T	EMPERAT				Diff	erence het	woon		TEMPER		<u> </u>		pos p	_	
MONTH	Phases				Of the A			Evapo-	Of the Dew Point.	the A	Air Tempe id Dew Po femperatu	rature unt		s Rays as spisterion monureler bulb in peteriose.	ns shown ing Mini-	Sunshme.		nge No.6, w]	othe.	
DAY, 1881.	the Moon.	Mean of 24 Bourly Values (corrected and reduced to 32 Enbremheet).	Highest.	Lowest		Mean of 24 Hourly Values.	Eyeess of Mean above Average of 20 Years.	of 24 Hourly	Mean	Mean Daily Value,	Greatest of 24 Hourly Values.	of 24	Degree of Humahty (Saturation - 100).	Highest in the Shit's Rays as shown by a Self-Registering Maximum Thermometer with blackened buth in vacuo placed on the Grass.	Lowest on the Grass by a Self-Register main Thermomet	Daily Duration of S	Sun above Horizon,	Rain collected in Gauge N recoving surface is above the Ground.	baily Amount of Ozone,	Electricity,
		in.		0		· c	0	1 0	0	0						irs.	.,	:		
May 1 2 3		29.903 29.481 29.803	59.3	42'0 44'3 36'3	12.0	20.5	+ 1.2 + 1.3 + 1.8	48.2	46.1	6·7 4·1 6·2	11.8	0.0	85 86 77	100.0	38·5 41·1 32·0	0.1	14.8		3.7	mP: mP: sP, sX sP, sN: mP: vN, vP mP: vP
4 5 6	Apogee First Qr.	30°127 30°127 30°127	66.9			46.0 51.0 57.7	- 3·4 + 2·2 + 7·7		41.9 44.9 21.6	4°1 7°4 6°1	9.6 17.1 13.3	0.0	8.7 7.6 80	110°3 122°2 127°8	26.2 35.3 46.1	4.2	15.0	0,000 0,000 0,030	2.3	vP: vP, sN ssP: wP, wN: mP mP: vP
7 8 9	in Equator	30:38c 30:454 30:426	69·2 66·2 59·3		24.6	56·4 53·3 48·4	+ 6·1 + 2·7 - 2·4	47.6	41'7 41'9 39'6	11'7 11'4 8'8	20.2 21.4 16.6	1.3 5.4	65 66 72	112'8 121'0 124'0		12.8	15.5		0.0	$\begin{array}{c} sP,wN:wN,vP\\ mP\\ vP\end{array}$
10 11 12		30°44¢ 30°415 30°231	59'3	30.0	28.1	45.8	- 5·6 - 5·6 - 0·7		36·1 37·6 42·3	9°4 8°2 8°8	15.0 16.5	0.0 9.3	70 73 72	101°0 115°0 129°2	28:5 21:9 28:2	- 4	15.3		3.0	vP ssP: vP, wN: sP sP: wN, mP: mP
13 14 15	Full Greatest Declination 8	29°999 29°823 29°575	73·8 69·7 64·2	+°'7 +1'8 +7''2	33·1 27·9 17·0	55.7	+ 4.1 + 3.2 + 1.0	50.3	44.0 42.0 44.0	12.2	16.7 18.6	2°4 2°2 0°2	64 67 75	121°9 123°6 115°1	33.0 35.8 44.2	3.0	15.2	0,000 0,000	7.7	vP, wN vP, wN mP: vN, mP
16 17 18	Perigee 	29°451 29°749 29°465	58·2 61·4 67·4	42.6 36.8 49.4	15.0 24.6 18.0		- 2.6 - 3.8 0.0	47.3	43·3 44·5 45	7.4 5.4 2.6	16.3 14.1	2.6 0.5	76 83 91	93'8 118'3 115'5	37.0 28.2 47.9	2.3	156	0.058	95	wP, wX: vX, vP sP: wP, wX: mP wP, wX: vP, wX
19 20 21	 Last Qr. In Equator	29.488 29.752 30.122	6.3·7 66·6 70·1	40.6 40.9 40.8	15.9 21.1 29.5	53.1	- 0.2 - 1.6 - 0.4	49.3	45°5 45°5 45°6	6·9 7·6 9·4	13.9 18.2 20.0	0.0	77 75 70	118°0 129°5 129°9	40.0	10.0	15*8	0.000	11.5	mP, wX: vP, wX vP: vP, vX mP: vP, wX
22 23 24		30°236 30°076 29°892	69°9 71°1 63°0	42.7 47.5 48.4	27.5 23.6 19.6	59.5	+ 1.3 + 4.0 + 2.2	23.0 23.1	46.0 47.3 46.9	12.5	22°3 24°3 20°7	0.8 c.4 3.5	67 64 6 7	138°0 135°7 135°3	38:3	13.6	υ'61	0,000 0,000 0,000	1412	mP: vP, wX mP: vX, mP mP
25 26 27	New	29:666 29:623 29:662		56.1 56.1	24.4 17.8 10.0	59:5	+ 2.8 + 3.4 + 4.5	57.6	51.9 55.9	6·8 3·6 3·9	22°1 8°3 7°0	0.0 0.0 1.2	78 89 87	134°7 108°0 83°9		113	1615	0.000 0.0_1 0.020	0.0	mP: vP. mX sP. sN: wP, wX wP, wX
28 29 30	Declination N	29.748 29.873 30.103	71.8 66.5 72.6	55.8 49.3 44.6		56.2	+ 5°0 - 0°6 + 2°0	54.7	53.3	2*9	7.6 23.8	0.0	84 90 66	121'7 113'3 130'2	4.300	0.1	16.1	0°271 0°287 0°000	0.0	vP. vN vP. ssN: vP, wN mP
31		30.165	78.3	44.6	33.7	62.9	+ 5.6	54.3	46.9	16.0	28-2	3.8	56	134.5	39.0	13.2	16.5	c.coo	0.0	sP: vP
Means		29.925	65:8	4.3.6	2 2 . 2	54.0	+ 0.0	50.0	46.1	7'9	16.6	0.0	75'2	110.1	37.6	6.5	15.6	1.611	5.2	
Number of Solumn for Reference.	1	2	3 .	4	5	6	7	8	9	10	11	1 2	1.3	14	15	16	17	18	19	20

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dev Point (Column 3) and the Degree of Humidity (Column 4) are deduced from the corresponding temperatures of the Air and Exaporation by means of Chiabber 11/18 grometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 12) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-built and Wet-built Thermometers.

The values given in Columns 3, 4, 5, (4, and (5 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was $29^{m} \cdot 925$, being $9^{m} \cdot 148$ higher than the average for the 20 years, 1854 - 1873.

The highest in the month was 78 '3 on May 31; the lowest in the month was 30 '0 on May 11; and the range was 47 '4

The mean of all the highest daily readings in the month was $65^{\circ}8$, being $1^{\circ}16$ higher than the average for the 40 years, 1841–1880. The mean of all the lowest daily readings in the month was $43^{\circ}6$, being $0^{\circ}1$ lower than the average for the 40 years, 1841–1880. The mean daily range was $22^{\circ}2$, heing $1^{\circ}8$ greater than the average for the 40 years, 1841–1880. The mean for the month was $54^{\circ}0$, heing $0^{\circ}9$ higher than the average for the 20 years, 1841–1886.

	WIND AS DEDUC	ED FROM SULT-ERGISTE	RING 1	NEMO	меткк	s.		
		Ostruk's.				Roma- son's.	CLOUDS AN	D WEATHER.
MONTH and DAY,	General Dir	ection.	Pres Sq	sure of nare Fo	ot.	Movement		
1881.	А.М.	Р.М.	Greatest.	Lenst.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	А.М.	Р.М.
May 1 2 3	SW Calm: NE: ENE NNE: N	88W E: ENE: NNE N: NNE	5.7 2.1 3.7	0°0 0°0	1bs, 0'7 0'1	382 205 285	0 : 10, shs-r 10, sh-r : 9, 8 10 : 6, eq, ci-eq, eqs	10 : 10, r g, ci.cieu, cus, h, ocr: 10, r g, cu, cus : 8
4 5 6	Calm: S: 88W WSW: 8W 8W	88W: W8W 8W 8W: W8W	3·1 3·7 4·6	0.0	0.3	299 302 399	pcl : 7;ei,eu,-s,cieu,lish o : pci, m, d : 7, cien, ci 10 : 8, cieu, eu,-s	
7 8 9	WSW: N: NW NE: NNE NNE: N	NNW: N: NE N: E N: NNE	2.c 1.8 0.0	0.0 0.0 0.0	0.8	174 207 344	o, m : 1, thcl, h : 1, eu pcl, s, eis : v, eieu, eis	o : o, luco o : o 4, cicu, cus : 8, cicu, cus
10	NNE: NE NNE: N NE	NE: ENE NNE: ESE: SE ESE: SE	3.3	0.0 c.0	0.0	349 157 124	10 : 9, cicu, cus 0 : 1,cis,cicu,h,soh 0 : 4, ci, h, soha	9, eu, ens : 0 3, ei, eis, h, soha : 0 6, eieu, ei, eu : 0
13 14 15	8W 8W: W8W 8W: 88W	$\begin{array}{c} \mathbf{sW} \\ \mathbf{WSW} : \mathbf{sW} \\ \mathbf{ssW} \end{array}$	1.6	0.0 0.0	1.8 0.0	233 282 459	c. m : 1, ci licl : 10, thcl, soha 10 : 10, thcl, soha	0 : 0 9, ci, cis, thcl : 10 10, W : v, cis, shr
16 17 18	SW: WSW WSW: S: SSW SSW	WSW:WXW:XXW 88W: 8W 88W	9.2 9.6 9.6	0.0 0.0 0.0	2.0 2.3 2.0	545 464 497	10, li,-shs : 10, li,-shs, sqs pcl : 8, ci, ei,-en 10, w : 10, r	9, eus, eu, lishs, w: v, eus, m 10, lishs, w: 10, mr, w 8,cicu,cis, eus; 9, eus, r: 10
19 20 21	$\begin{array}{c} 88W : 8W \\ 8W : W8W \\ 8W : W8W \end{array}$	8W 8W W8W: 88W	0.0 0.0	0.0	2°4 0°9 0°0	501 368 180	10, t : 4, cu o : 6, cicu, cus o : 3, thcl, cu	6, cu, cns, ci, soha, w: O 8, cus, cu, hysh, hl: O 5, cicu, ci, cus : 3, cis, cus
22 23 24	SSW: ESE: ENE ENE: E ENE: E	E: ENE E: ENE E: ENE	0.1 19.0 9.0	0.0	0.8 1.9	292 386 315	o, shm : o o o : o	o : o o, w : o ı, ei : pel, eus
25 26 27	ENE Calm: NW NNW: NW	ESE NW: W NNW: NW: WNW	0.0	0.0	0.0	59 99 161	10 : 3, cicn, ci n-cl, f : 10, r 10 : 10	9, cis, cu, soha, hysh: 2, m, tkf 9, cus, hysh: 10 10 : 10, lishs: 10
28 29 30	WSW: NNW N: ENE NE: E	NNE: SE E: NE ENE: E	3.4 3.0 3.4	0,0	0.0	172 228 255	10 : 4,thel,ci,cien,hys 10, ⁵ sltr : 10, hyr : 10, sltr 0 : 0	h 8,eus,ei,thel: hyr, l, t : 10 9,eus,eieu,fqthr: hysh : v • : •
31	NE	NNE: SE	1,0	0.0	0.0	154	0 : 0	1, thcl, cien : 0
Means		•••			0.6	286		
Number of Column for Reference.	2 1	2 2	23	24	25	26	27	28
Thor	nean Temperature of	Engageration for the	month	was -	o°·o	heing i	: L higher than	

The mean Temperature of Evaporation for the month was 50°0, being 1 1 higher than The mean Temperature of the Dew Point for the month was 46° 1, being 1° 0 higher than

The mean Degree of Humidity for the month was 75°2, being 0°2 less than

The mean Elastic Force of Vapour for the month was oin : 312, being oin oil greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3grs 5, being ogt 1 greater than

The mean Weight of a Cubic Foot of Air for the month was 539 grains, being a grain greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 5.4.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.42. The maximum daily amount of Sunshine was 13.9 hours on May 22.

The highest reading of the Solar Radiation Thermometer was 138 00 m May 22; and the lowest reading of the Terrestrial Radiation Thermometer was 21 9 m May 11.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3 0; for the 6 hours ending 3 p.m., 1 5; and for the 6 hours ending 9 p.m., 0 7.

The Proportions of Wind referred to the cardinal points were N. 8, E. 7, S. 8, and W. 7. One day was calm.

The Greatest Pressure of the Wind in the month was 10 lbs o on the square foot on May 23. The mean daily Horizontal Movement of the Air for the month was 286 miles; the greatest daily value was 545 miles on May 16; and the least daily value 59 miles on May 25.

the average for the 20 years, 1849-1868.

Rain fell on 13 days in the month, amounting to time 611, as measured by gauge No. 6 partly sunk below the ground; being on 418 less than the average fall for the 40 years, 1841-1880.

,		T	1						-								_			
MONTH	Phases	BARDA MLTER - Salpon			Of the A	EMPERA:	TURE.	Evapo-	Of the Dew Point,	the A	rence bet ur Tempe id Dew Po Jemperatu	rature aut		A Kays as busined or bulb in Grass.		Smshme.		nge No.6.whose is conclusi	per.	
DAY, 1881.	of the M ~ i.	Mean of 24 Hourly Velues (corrected and reduced to 3- Falmenheat),	Helical.	Lowest,	Duly Range,		Excess of Mean above Average of 20 Years.	of 24	Y	Mean Dady Value	Greatest of 24 Hourly Values.	of 24 Hourly	Degree of Humidity (Saturation 100).	Highest in the Sun's Rays as shown by a Self-Registering Maximum Thermometer with thinkened built in vacuo placed on the Grass.	Lowest on the Grassnashown by a Self Registering Mun- mum Thermoneter.	Daily Duration of St	Sun above Horrzon,	Ram collected in Gauge receiving surface a above the Ground,	Daily Amount of Oz	Electricity.
		ın,	į -	0	0	. 0	c	. 0		0	0	^		e	0	1 955	1,			
June 1 2 3	Apoger	30°937 29°932 29°932	80.0 21 81.1	47.0 49.0 50.0		63.2	+ 5·5 + 5·5 + 7·0	55°7 58°2 58°0	49°2 54°0 51°9	14.5 9.5 13.6	30°1 17°8 27°2	1°4 0°0 0°2	60 72 61	135 g 139 2 135 8	42°0 41°3 45°6	12.0	16:3	0,000 0,000 0,000	0.0 0.0	vP: vP. wN vP: sP vP. wX: vX. vP
† 5 6	Pirst Qua, er In requate.	2 / 810 20:436 20:200	83·9 63·5 62·6	54.0 52.0 45.2	29°0 10°6 17°4	56.3	+ 8.8 - 1.9 - 7.5	57.7 54.9 48.9	50°3 53°6 46°9	16·6 2·7 3·9	32·3 8·9 13·3	2:7	55 91 88	1 to o 87.8	47.0 47.2	0.0	10,4	0,420 0,401	12 2	vP: mP wP: vN, vP vP, ssN
7 8 9	· · · · · · · · · · · · · · · · · · ·	29:454 29:751 30:016	54.0 59.4 57.8	43.1 43.1	16.3 18.3		- 11.1 - 6.0 - 10.0	46·4 44·7 43·6	44.5 40.5 39.4	8·7 8·2	17.7	0.0 5.0 5.0	86 72 75	92°1 129°0 119°7	33·1 36·0 38·0	10.5	16.4	0.000	3.0	wP, wN: wP. sN:-
10 11 12	Greatest Dec 8. Full.	29*999 29*857 29*875	61'4 65'4 71'0	15°4 15°4 11°0	20°0 18°6	54.6	- 7'9 - 4'1 + 0'7	45.4 50.0 54.2	39.9 45.6 50.0	6.2 6.c 10.8	19'2 17'3 21'2	2'7 1'7 1'2	67 71 71	118:3	32.8 +2.6 +7.6	3.8	16.2	0.000	7.0	
13 14 15	Perigee	29.882 29.863 29.805	70°1 67°4 73°6	51.6 50.7 47.0	18.5 16.7 26.6	58·7 57·8 60·2	+ c.0 - 1.3 - 0.5	53·3 53·6 55·0	48.5 49.8 50.4	10°2 8°0 9°8	19.0 14.0	0.9	69 75 70	133°3	38.9 49.9 44.0	319	16.5	0.000 0.000 0.000	3.2	-: vN, vP wP, wN: wP wP, wN: vP, wN
16 17 18	In Lquater Last Quarter	29.779 29.747 29.690	73·3 72·2 66·4	52'1 56'9 56'4	21'2 15'3 10'0	62.5	+ 2.3 + 2.8 + 0.4	57°1 59'6 58'8	53·1 57·1 57·5	8·7 5·4 2·8	18·7 13·1 7·9	0.0	73 83 91	127.0 116.5 94.2	54.0 54.0	1.4	16.6	0.020	13.0	mP: vP vP, wN: vP, vN vP, vN: wP
19 20 21		29.637 29.606 29.432	72.5 70.6 73.4	54·3 53·8 56·4	16.8	61.0	+ 0.2 + 0.2 + 5.2	55.9 56.1 58.2	52.6 51.9 54.7	7°1 9°1 8°3	18'2 15'7 16'7	0.0	78 72 74	135°0 128°3 130°5	52°5 49°2 51°0	8.1	16.6	c.cco c.cco	12.2	mP mP: wP, wX: vP vP, wX
22 23 24		29°565 29°926 30°047	77.2 71.2 70.4	52.7 51.5 48.4	17.7 20.2 28.8	60.7	- 0.6 - 0.7 - 0.2	55·5 55·5	52.3 50.0 50.4	8·2 10·7 11·1	18.4	2.1 1.8 0.4	74 67 67	135.5 137.0 138.8	48.0 47.1 48.0	7.8	, 16.6	0°023 0°000 0°000	5*2	mP, wN mP: wP,wN; vN,vP mP; vP
25 26 27	Greatest Declination N New	29.882 29.977 29.802	65·9 75·0 64·2	47.5 48.5 54.0		60.0	- 4.5 - 5.0 - 5.4	54.0 55.3 55.3	51.4 21.4 21.4	4.8 8.1 4.8	13·3 17·6 9·5	0.0 0.0	84 75 84	115:6 131:1 94:6	36.9 43.2 49.6	7.4	16:5	0.000 0.000 0.122	4.8	sP: vP, vN: sP sP: vP sP: vP
28 29 30	$\Lambda_{ m pogee}$	29:897 30:062 30:082	70·1 73·7 76·2	50°1 47°2	19'2 23'6 29'2	60.0	- 2.2 - 0.0 - 1.2	54.1	48.8 48.2 49.2	10.6	17.6 22.7 21.2	1.3 3.2 0.6	68 63 66	132°7 144°5 145°3	14.7 4.5.8 38.8	10.0	10:5	0,000	0.0	sP: vP,wX: wX,sP sP: wP,wX: wX,sP sP: wP, wX: vP
Means		29.806	70.0	497	20.3	58.6	- 1.1	54.0	49.9	8.7	17.8	1.0	73.4	125'3	++.1	6.3	16.5	r.863	5.4	
Number of Jolumn for Reference.	1	2	3	4	5	6	7	8	9	10	11	1 2	13	14	15	16	17	18	19	20

The mean reading of the Baroweter (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 1) and (2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The amount of Sunshmo on June 19 was in part estimated, on account of wrong adjustment of the instrument.

The Electrometer was not in action from June 8 to 12.

The mean reading of the Barometer for the month was 29 " 806, being o'" 222 lower than the average for the 20 years, 1854-1873.

Temperature of the Air.

The highest in the month was 83° 9 on June 4; the lowest in the month was 38° 5 on June 9; and the range was 45° 4.

The mean of all the highest daily readings in the month was 70% o, being 1° o lower than the average for the 40 years, 1841-1880.

The mean of all the lowest daily readings in the month was 49 .7, being 0 .2 lower than the average for the 40 years, 1841-1880.

The mean daily range was 20° 3, being 0° 8 less than the average for the 40 years, 1841-1880.

The mean for the month was 58 °6, being 1 °1 lower than the average for the 20 years, 1849-1868.

	WIND IS DEDUCE	ED FROM SELF-REGISTE	RING	ANEMO	METEI	as.			
		Ost ER's.				ROBIN- SON'S.		CLOUDS AND) WEATHER.
and DAY.	General I	Direction.	Pres Sqi	sure on uare Fo	oot.	Movement			
1441.	Α.Μ.	P.M.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Move of the Air.		A.M.	Р.М.
_			lbs.	lbs.	lbs.	miles,			
June 1 2 3	Variable E: NE Calm: SW: N	NE: E E: ESE N:NNW:Variable	0.0	0,0	0.0	96 162 127	0	: 10, thcl, h, m : 1, cicu, ci : 0, h	1, ci, soha : 0, d 3, cicu, cu, ci : 3, cus, cis, s 0, h : v, thcl
4 5 6	NW: SW SW N: NNW	8W 88W: 8W: XE NNW: W: W8W	2.8 4.3 5.0	0.0	c·3	366	o pcl, s, a 10, fqr	: 7, thcl : 10 : 10, 00r	4, ci, cis, thcl : pcl, ci, thcl, s, n 10, r : 10, cr 9,cus,cieu,ocshs,t: 10, hyr, hl, t
7 8 9	NNW: N N: NNE NNW: N	NE: N NNE: N NNW: NE	2.0 4.1 5.0	0.0	0.1	251 363 284	10 pcl pcl	: 10, r : 6, cu, sltr, hl : 7, cicu, cu, cis	10, cus, fqshs : 7, cicu, licl 8, cu, cicu, shsh : 1, cis, d 6, cus, cu, ci, shsh : 10
10 11 12	NNW SE: SSE SW: WSW	SW : S SE : S : SW WSW : W	0'1	0.0	0.0	102	10 10 10	: v, eieu, ei, h : 7, liel, eieu : 7, eus, thel	9, cus, cicu, glm: 10 8,ci,cicu,cus,thcl: 10 6, cus, cicu, ci: 8, ci, cicu
13 14 15	NNW: NW ENE SW: SSW	N: ENE E: SE: SW SW: SSW	0.0	0.0	0.0	134	v, s, ci, liel 10 10, liel	: 3, cis. thcl, h : 2, cu, licl : 8, ci	6, cu, cu,-s, h : 5, cu,-s, s, th,-cl 7, cu, ci,-cu, cu,-s : 10 9, cu,-s, cu : t, s, ci,-s, d
16 17 18	S: SSE SSE: SSW SE: SSE	SSE: SE SSW: SSE: ESE S: SSE	0.2 2.1 0.2	0.0	0.0 0.1 0.0	225	pcl, cis, thcl 10, shr	: 10, cis : 10, cus : 10, r	g.eus.eu.ets.sltr : 10, sltr 10,eus.thcl.sola : 10, hyr 10, lishs : 10, oer
19 20 21		SW SSW: SE SSW	2·1 2·1 6·5	0.0	0.3	307	pel	: 9, eus, eicu : 6, eus, thcl, soha : 8, eu, eus, lishs	4, en, eus, : 1, euч 6, eus, eu, ci : 10 7, eus, eu : 8,eus,eieu,lish
22 23 24		WSW: NW: N	7·3 o·5 o·o	0.0	0.0	437 264 117	10 0 pel	: 9, shsr : 7, eu, eus : 3, eieu, eus, h	6, en, ei, -en, eu, -s, ei : 0 8, eu, -s, n, ei, -en : 5, ei, -s, th, -el, m 5, eu, eu, -s : 0
			0.0	0.0	0.0		0	: 9, cis, thcl, r : 9, licl, m, h : 10, r	10, fqthr : 0 8, cus, cicu : pcl : 10 10, cus, u, ocr : 10, ocsltr
28 29 30	WSW	WNW: WSW W: WSW SSW: S	1.2 1.0 0.0	0.0	0.0		10 : 0, li	h : 4, cns, cieu : v, cieu, h : 6, cieu, ci	8, cns, cicu : 9, thcl, s 7, cicu, cns, ci : 1, thcl 5, ci, cis, cicu : 3, ci, s, cis
Means					0.1	230			
Number of Column for Reference	r 21	2 2	23	24	25	26		27	28

The mean Temperature of Evaporation for the month was 54 .o, being 10 2 lower than

The mean Temperature of the Dew Point for the month was 49° 9, being 1° 3 lower than

The mean Degree of Humidity for the month was 73'4, being o'1 greater than

The mean Elastic Force of Vapour for the month was on 360, being on on less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4gre o, being our 2 less than

The mean Weight of a Cubic Foot of Air for the month was 532 grains, being I grain greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.6.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was o 38. The maximum daily amount of Sunshine was 13 o hours on June 4. The highest reading of the Solar Radiation Thermometer was 143° 3 on June 30; and the lowest reading of the Terrestrial Radiation Thermometer was 32 8 on June 10.

the average for the 20 years, 1849-1868.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2 9; for the 6 hours ending 3 p.m., 1 4; and for the 6 hours ending 9 p.m., U1.

The Preportions of Wind referred to the cardinal points were N. 6, E. 4, S. 11, and W. 8. One day was calm.

The Greatest Pressure of the Wind in the month was 7th 3 on the square foot on June 22. The mean daily Horizontal Movement of the Air for the month was 230 miles; the greatest daily value was 437 miles on June 22; and the least daily value 96 miles on June 1.

Rain fell on 9 days in the month, amounting to 110,863, as measured by gauge No. 6 partly sunk below the ground; being 010,188 less than the average fall for the 40 years, 1841-1880.

		BARO- METER.			TE	MPERATI	TRE.			Diffe	erence bet	reen		TEMPER!	TURE.			hose		
MONTH	Phases				Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	the A	erence bet ur Temper id Dew Po emperatur	ature int e.	ė	s Rays as gistering monerter bulb in ic Grass.	ns shown ing Mui- r.	ushme.		in Gauge No. 6, whose irfuce is 5 metres round.	one.	
and DAY, 1881.	of the Moon.	Mean of 24 Hourly Value (corrected and reduced to 32 Fabrenheat).	Highest.	Lowest.	Dail y Range.	Mean of 24 Hourly Values.	Excess of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value,	Mean Daily Value.	Greatest of 24 Hourly Values.	Least of 24 Hourly Values.		Highest in the Sun's Rays as shown by a Self-Registering Maximum Thermoneter with blackened buth in vacuo placed on the Grass.	Lowest on the Grass as shown by a Self-Registering Mun- man Thermometer.	Daily Duration of Sunshme.	Sun above Horizon.	Rain collected in Gam receiving surface above the Ground.	Daily Amount of Ozone.	Electricity.
		in	0	0	0	0	0	0	۰	0	0	۰		0	0	hours.		111.		
July 1 2 3	In Equator	29.974 29.971 29.974	82.6 77.1 84.7	54.6 . 54.7 55.2	28.0 23.4 29.2	65.2	+ 6.7 + 3.7 + 7.2	58.7 59.8 61.8	51.3 55.4 56.5	9.8 12.1	33.0 18.0	4'9 0'2 2'3	54 72 65	144.6	46.1 44.4 50.0	6.1	16.5	0.000	0.0	mP: wP, wN: vP, v vP: vN, mP mP: wP, wN: m
4 5 6	First Qr.	30°036 29°406 29°639	92.8	62.8 61.5	27·3 31·3 16·1	76.3	+ 12.7 + 14.8 + 1.9	67·3 68·1 61·4	62·3 59·6	11.8	22.2 27.0 10.3	0,0 0,4 5.3	67 63 87	148'9 156'5 102'1	51.6	10.8	16.4	0.894	1.2	mP: vP, wX mP: vP, sX vX: mP
7 8 9	Greatest Declination S.	29.896 29.822 29.822		49'2 51'4 49'2	16.9 14.4 25.1	57·3 57·6 59·6	- 4.6 - 4.6 - 2.9	52·3 54·4 55·5	47'7 51'5 51'9	9.6 6.1 7.7	13·5 10·5 16·4	3.5	70 80 76	113.0 112.5 133.4	42'1 44'5 41'4	0.3	16.3		8.0	mP: wP, wX mP: wP: vX, vI vP: wP, wX: wI
10 11 12	Full Perigee	29°944 30°027 29°912	79.6	56.0 54.2 54.8	18·1 25·4 31·4			57 . 4 58.6 62.5	52·3 51·8 56·8	11'2 15'3 13'1	22.3	2·3 5·7 3·0	67 58 62	123.8 141.1 146.6	47.8	13.8	16.2	0.000	6.2	mP: wP vP: — —: vP, vX
13 14 15	in Equator	30.06c 30.107 29.908	89.1	52'9 57'1 60'2	28.5 32.0 36.9		+ 3.4 + 7.8 + 15.0	61.0 65.7 68.7	56·4 61·5 62·0	10·3 9·7 16·4	17.5 21.6 31.7	2·6 0·4 2·3	7° 71 57	143.4 144.8 153.7	52.3	9.7	16.1	0.000	4.0	mP: vP,wN: wN,m vP vP: vP, vN
16 17 18	Last Qr.	29.884 29.898	85.3	61.8 61.0	22.5 24.2 31.3	71·3 71·1 74·2	+ 7.8 + 7.6 + 10.8	64·3 63·2 63·6	59.0 57.2 55.9	12·3 13·9 18·3	21.3 27.5 27.2	3·8 3·4 8·6	65 62 53	151.7 133.4 146.8		8.4	16.0	0.000	1'2	vP, s-X : vP, wX vP sP : vP: vP, w2
19 20 21		29.201 29.834	76.0	60°1 57°3 51°6	27.9 18.7 21.8		+ 10.9 + 2.8 - 1.6	65·8 59·6 53·8	59.7 54.4 47.2	14.2	23·8 21·4 27·4	4.0 2.9 4.6	61 66 60	136·2 127·0 139·2		4*1	15.0	0.000 0.000	0.0	sP: vN, vP vP, vN sP: vP, wN: wl
2 2 2 3 2 4	Greatest Declination N	29.786 29.776 29.681	73.6	52.0 54.3 56.5	10.3 10.9	57.0 62.0 63.5	- 5·9 + 0·8	55·6 59·2 60·1	54·3 56·1 57·3	2.7 6.8 6.2	8·2 16·5 12·1	0.0	91 79 80	88.7 130.8 113.2	42.5 47.5 52.4	2.0	15.8	0.037 0.048 0.003	3·8 1·0 7·0	vP, wN sP: vP, wN: v1 sP: mP
25 26 27	New Apogee	29.525 29.462 29.829		51.2 53.0 48.2	19.8 20.1 16.6	59°2 59°7 56°2	- 3·5 - 3·0 - 6·4	53·1 54·1 53·6	47.7 49.1 51.2	11.2 10.6 2.0	21.2 11.6	2·6 3·0 0·8	66 68 83	131.0 131.0	45.0 48.8 41.2	4.0	15.		0.0	mP: vP, wX: vI vP, wX: vX, vP mP, mX: vP, vX
28 29 30	in Equator	30.001 29.823 29.699		43.9 55.6 55.5	32.0 18.9	63.9	- 3.9 + 1.3 - 1.3	52*0 59'7 59'6	46.0 56.2 58.1	12.7 7.7 3.3	26·3 18·0 8·8	0°0 0°4 0°2	63 77 89	138·8 126·4 95·8	53.9	5.6	i5'5	0.030		sP: vP, wN vN, vP: mP mP, wN: vP
31		29.442	67.7	57.0	10.7	61.7	- 0.9	60.5	59.5	2.5	5.1	0.0	93	93.1	53*2	0.5	15.4	0.444	16.0	mP_* wN
Means		29.828	77'7	54.9	22.8	65.5	+ 2.9	59.7	55.1	10,4	19.7	2.3	70.3	130.5	48.1	6.8	16.0	2.137	3.0	
umber of	1	2	3	4	5	6	7	8	9	10	11	12	13	1.4	15	16	17	18	19	20

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 6) and the Degree of Hamidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 15) is the difference between the numbers in Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-built and Wet-built Thermometers. The results on July 5, 11, 18, 19, and 25 for Exporation Temperature depend partly on values inferred from eye-observations, and those on July 22 and 23 for Air and Evaporation Temperature deduced entirely from eye-observations, on account of accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the B counter for the month was $29^{\rm in} \cdot 828$, being $9^{\rm in} \cdot 919$ higher than the average for the 29 years, 1854-1873.

TEMPERATURE OF THE AIR.

- The highest in the mouth was 97° 1 on July 15; the lowest in the mouth was 43° 9 on July 28; and the range was 53 '2.
- The mean of all the highest daily readings in the month was 77° 7, being 5° 5 higher than the average for the 40 years, 1841-1880. The mean of all the lowest daily readings in the month was 54° 9, being 1° 7 higher than the average for the 40 years, 1841-1880.
- The mean of all the lowest daily readings in the month was \$4.79, height 1.77 inquer than the average for the 40 years, 1841-1880.
- The mean for the month was 65° 5, heing 2 '9 higher than the average for the 20 years, 1849-1868.

	WIND AS DEDUC	ED FROM SELF-REGISTS	EEING	ANEMO	METE	RS.		
		OSLER'S.				Robin- son's.	CLOUDS AN	D WEATHER.
MONTH and DAY,	General	Direction.	Pres Sq	ssure or	ot.	ovement		
ISSI.	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.	Λ.Μ.	Р.М.
July 1 2 3	SSE : SSW Calm: Variable:N SW	SW: NNW N: NE: Calm W: WSW	1bs. 4°0 0°0 3°1	1bs. 0°0 0°0	0°1 0°0 0°1	253 110 359	pcl : 7, thcl, cis o : 3, ci, cis h, m : 9, s, thcl, soha	1, ci : 6, cus 9, cns, cu, thcl, soha: v, thcl, h 8, cls, ci : 6, cis, ci : 1, s
4 5 6	WSW WSW: Variable Variable: SW	WSW SE WSW:W	0°7 0°3 5°2	0.0	0.0	296 126 415	v, s : pel,s,ci,-s,eu,-s: o o : o : o	0 : 0 a.ci.ci-s,th-cl.so.ha: licl : 10, tsm, r 10, s, sc : 10 : 0
7 8 9	WSW: W SW WSW	W: WSW SW: WSW WSW: SW	0.9 0.9 4.3	0.0	0°0 0°0	432 219 233	pel : 7, eus, eu 10 : 9, eus, cis pel : 7, eu, eus	9, cus, cu : pcl, soha : 7, cus 10, lishs : v 7, cus, sltr : 10, s
10 11 12	WSW: W: NW SW: SSW SSE: SSW	NW: SW 88W: S 8W: W: WNW	2.0 1.3 0.8	0.0 0.0 0.0	0.0	321 268 233	10 : 7, cu, cu,-s p,-cl : 6, li,-cl, ci,-cu li,-cl : 9, ci,-cu, n, slt,-r	4, cus : 7, cicu, cis, s 3, ci : 0 2, ci, cus, cu, cicu: 1, licł
13 14 15	WSW WSW: SW Calm: NE:SW	W: WSW: WNW SW: S Variable	0.0 0.0 1.1	0.0 0.0 0.0	0.0 0.0 0.0	306 13 5 115	o : 8.liel, cicu, soha o, sltm : v, m o : 2, thel, h, m	6, cis, ci, cicu, soha: o, sltm 2, cicu, ci, h : o 2, ci : 6, cus,cicu,cis,thci
16 17 18	NE ENE: NNE 8W: WSW	NE: E: SE WSW: SW WSW	0.0 0.0 0.0	0.0	0.0	180 130 246	pcl, s, cus, l, lishs : 2, licl 10 : 4, cu, thcl, h 0 : 0	7, cicu, ci, cus : 10 v, thcl, h : 0 4, licl : 1, thcl, s, cis
19 20 21	$egin{array}{c} WSW: NW \ NNW: N \end{array}$	N: NNW NW: NNW NE: SE	0.4	0.0 0.0 0.0	0.0 0.0 0.0	160 215 159	s, cis, licl : 3, licl, li to, l : 10, sltr s : 3, cis, m	7, cieu, thel, h : 10, m 9, ci, cus : 5, cus, cieu, s 1, ci : v, s, cis
22 23 24	88E: SW WSW SW	8W 8W 88W: 8W	2·5 2·4 7·0	0.0	0.2	284 298 372	10 : 10, 8, 8lt. r v, 8 : 9, cus, cicu, eis pcl : 10	10, sc, fqr : v 10, sltsh : v : 10, r 10, sltsh : 6, eus, sltsh
25 26 27	SW SW: NNW WSW: N: NNE	WSW: SW NW: N: SW NE: N	2.9 3.4 1.7	0.0 0.0	0.0 0.1	391 259 121	pel : 7, eus, 80ha o : 8, eus, eu, cien v : 10, glm	8, cus, cu, thcl : 10 6, cus, cu, cicu : 7, sltsh 9, cus, glm, slsr : 7, thcl, m
28 29 30	SW = SW : WSW = SSW : S	8W WSW: 8W: SSW 88W: 8W	3.8 3.8 2.2	0.0	0.1	281 397 268	o, m : 3, thcl 10, hyr : 7, cu, eus, sltsh v : 10, r	5, ci. cicu, cis, soha: 10 7, cus : 8 10, octhr : 8
31	SSW	SW:WSW:WNW	9.0	0.0	0,0	442	pcl : 10, hyr	10, se, lishs, w : 10, ocr
Means			٠.		0.1	259		
Number of Column for Reference.	2 1	2 2	23	24	25	26	27	28

The mean Temperature of Evaporation for the month was 59° 7, being 2 to higher than

The mean Temperature of the Dew Point for the month was 55° 1, being 1° 4 higher than

The mean Degree of Humidity for the month was 70.2, being 2.8 less than

The mean Elastic Force of Vapour for the month was o'a +34, being o'a o21 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4875.8, being ogr. 2 greater than

The mean Weight of a Cubic Foot of Air for the month was 525 grains, being 3 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.1.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.43. The maximum daily amount of Sunshine was 13.8 hours on July 11.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 156° 5 on July 28.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2 0; for the 6 hours ending 3 p.m., 0 6; and for the 6 hours ending 9 p.m., 0 4.

The Proportions of Wind referred to the cardinal points were N. 5, E. 2, S. 10, and W. 14.

The Greatest Pressure of the Wind in the month was $g^{\text{lis},q}$ on the square foot on July 31. The mean daily Horizontal Movement of the Air for the month was 259 miles; the greatest daily value was 442 miles on July 31; and the least daily value 110 miles on July 2.

Rain fell on 12 days in the month, amounting to 2in. 137, as measured by gauge No. 6 partly sunk below the ground; being oin. 301 less than the average fall for the 40 years, 1841-1880.

	Ī	BARO- MEIFE.			TE	MPERAT	TRE.			Diff	rence bet	ween		TEMPERA				whose mehrs		
MONTH	Phases				Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	the .	or Temper id Dew Po 'emperatu	ature		s Rays as gastering mometer both in ic Grass,	ns shewn mg Mun- r.	urshme.		60.6 5	one.	
and DAY,	the Moon.	Mean of 24 Hourly Values (correctedand reduced to 32 Fabreathert).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess of Mean above Average of 20 Years,	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean Darly Value.	Greatest of 24 Hourly Values.	Least of 24 Hourly Values.		Highest in the Sun's Rays as shown by a Self-It gestering Maximum Themaoneter with blackened both in vacuo placed on the Grass.	Lowest on the Grassus shown by a Self-Registering Mini- minn Thermoneter.	baily Duration of Surshme.	Sun above Horizon,	Ram collected in Gauge 2 receiving surface is above the Ground.	Daily Amount of Ozone.	Electricity.
		in.	0		0	0	0	0			0	٥		0	0		hours.			
Aug. 1	First Qr.	29.624 29.91 30.062	72·8 75·5 73·6	49°5 55°0 50°2	23.3	61.4 63.0	- 0.8 + 0.3 - 1.5	57.0 57.8 58.4	53°2 53°4 55°4	9.6 6.5	17.6 16.9 13.3	0.4	75 71 80	126.8	41.4 51.3 42.6	3.3	15.3	0.000	0.0	sP: wP: sP, ssN vP: vP, vN mP: wP, wN: wP
± 5 6	Greatest Beclination S	35'116 29'884 29'921	83°0 85°4 76°9	28.3 21.3 28.3	24.7 34.2 21.4	66·5 68·4 63·8		62.0 62.1 58.1	59·5 57·2 53·3	7°0, 11°2	18.4 23.2 20.1	0.0	79 66 69	133.0 130.3 138.0	53·8 39·7 49 · 6	7.5 12.3 8.5	151	0.000	4.0	vP sP: wP, wX: mP mP: vP, wX
7 8 9	Perigee: Full	29'944 29'625 29'475	76·1 78·7 7 2 ·4	50.0 54.3 52.8	26·1 24·5 19·6	62.0 62.7 59.9	- 0.4 - 0.4	56.8 59.8 56.0	52·3 57·4 52·6	9.7 5.3 7.3	17.0 17.3 15.8	0.0	71 83 77	127.0 133.8 123.4	39.9 47.9 47.0	10.4 2.9 3.7	150	0.010	15.5	mP mP: wP: ssN, vP mP,mN: wP,wN: vP
10 11 12	In Equator	29°657 29°769 29°584	70°4 70°1 60°4	54·3 50·0 53·0	16·1 20·1 7·4	59·9 59·9 56·1	- 2·8 - 2·8 - 6·5	55·7 55·5 55·6	52.0 51.6 55.1	7.9 8.3 1.0	16.0 14.6	2°7 1°5 0°0	76 74 97	72.2 72.2	48·3 42·9 52·1	2·8 6·6 0·0	14.8		6.0	sP: vP: wN, vP sP: wP, wN: vP vP: vP, vX
13 14 15	••	29°516 29°64° 29°668	59.5 63.3 68.1	47.8 52.3 52.1	16.0 11.0	54°4 56°6 57°2	- 8·1 - 5·8 - 5·1	51·5 52·8 54·1	48.7 49.3 51.2	5·7 7·3 6·0	13·5 11·6 13·5	1.4 4.6	81 77 81	92:3 89:3 117:9	42.9 49.6 47.6	2.2	146	0.000	c.0	vP, wN wP: mP sP: vP: mP
16 17 18	Last Qr.	29*434 29*286 29*452	68.1	55 g 53 5 53 1	16·2 14·6 15·7	60·6 58·3 58·8	- 1.5 - 3.6 - 3.0	58·4 55·3 55·2	56·5 52·6 52·0	5·7 6·8	11.7 14.8 13.3	0.6 0.5	87 81 78	123·2 123·2	53·6 50·0 49·3	5.2	14.4	0.000 0.000 0.043	0.0	vP, wN vP, wN: vP, ssN wP: wP, wN: mP
19 20 21	••	29*447 29*634	67.0 70.4 65.0	51.0 48.0 48.3	16.2 22.4 16.7	58·4 57·5 54·9	- 3·2 - 3·9 - 6·4	56·1 52·8 53·5	54.0 48.5 52.1	4°4 9°0 2°8	12°4 17°3 11°6	0.0 1.2 1.0	85 72 90	107°0 123°2 100°3	46.0 43.0 46.0	8.0	14'3	0.000	2.4	mP, mX: wP: mP sP: vP, wX: vP vP, wX: sP. sX
22 23 24	Apogee New	29.694 29.533 29.512	71'4 69'2 65'6	47.0 55.0 51.6	24.4 14.5 14.0	57·8 59·6 57·8	- 3·5 - 1·6 - 3·3	55°0 57°4 54°6	52·5 55·5 51·8	5·3 4·1 6·0	15.5 12.4 14.8	0,0	82 87 81	127.6 114.9 108.3	+2.7 52.6 47.5	6·7 1·2 7·5	141	0.103	6.7	mP: mP, mN: sP mP: vP, sN vP, mN
25 26 27	In Equator	29°514 29°588 29°580	64.4 70.3 66.4	51.6 52.6 49.6	12.8 17.6 16.6	56.3 56.3 56.3	- 2°7 + 0°1 - 4°6	57°4 57°7 52°6	56.6 54.8 49.2	1°7 6°2 7°0	5·1 15·5	0.0	94 81 78	07.8 123.3 116.0	4°0 49°0 11°0	0°0 9°7 7°8	13.0	0.300 0.332 0.000	13.2	mP: wP, wX wP: mP: sP, sX sP: wP, wN: vP
28 29 30	••	29.898 29.849 29.675	68·3 62·0 69·7	50.0 50.0	25.2 12.0 17.5	54.9 57.0 58.8	- 5·8 - 3·6 - 1·6	50·8 55·6 56·9	46.9 54.3 55.2	8.0 2.7 3.6	18·4 5·1 9·7	0.7 0.0	74 91 88	112.8 88.3	37·1 45·9 50·5	0.1		0.000 0.540 0.085	15'5	-: mP, wN vP: vP, sN vP, wN: vP, vN
31		29'951	57.5	49.6	7'9	52.5	- 7.8	49*9	47.3	5.2	11.5	2.0	83	90.3	44.6	c.8	13.6	0.010	1.2	vP
Means		29:673	69.7	51.6	18.5	59.2	- 2·6	55.9	53.0	6.3	13.0	0.0	80.3	114.7	46.6	4.2	14.5	3.888	†.1	
Number of Jolumn for Reference.	ı	2	3	4	5	6	7	8	9	10	11	1 2	1.3	14	15	16	17	18	19	20

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11) and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29 " 1073, being o " 126 lower than the average for the 20 years, 1854-1873.

The highest in the month was 85°4 on August 5; the lowest in the month was 43°4 on August 28; and the range was 42°3. The mean of all the highest daily readings in the month was 69°7, being 3°43 lower than the average for the 40 years, 1841–1880. The mean of all the bovest daily readings in the month was 51°6, being 1°77 lower than the average for the 40 years, 1841–1880. The mean daily range was 18°2, being 1°57 loss than the average for the 40 years, 1841–1880. The mean for the month was 59°2, being 2°6 lower than the average for the 20 years, 1849–1868.

	WIND AS DEDUC	ED FROM SELF-REGIST	ERI-MT						
MONTH		OSLER'S,				ROBIN- SON'S.		CLOUDS AND	WEATHER.
and DAY,	General !	Direction.	Pre-	sure o	oot.	izontal Movement the Air.			
1981.	А.М.	Р.М.	Grentest.	Least.	Mean of 24 Hourly Measures.	Horizontal N		A.M.	Р.М.
Aug. 1	WNW: 8W: 8 N: NE 8W	SE: NE Variable SW	1bs. 0°0 1°2 3°1	0°0 0°0	0,0 0,0 1ps	miles, 119 140 292	pcl 10 v	: 3, ei : 10 : 10, thel	9, cus, cicu, ci : 10, fqr 7, cicu, ci, cus : 7, d, m 10, thcl : 0, ii
4 5 6	SW SSW WSW	W8W; 88W 88W; W8W W8W	0.2 0.0	0.0	0°0 0°0 0°2	226 205 319	pel o s	: 10 : v, h : 0 : 2, eu	2, eu, cieu, h : o o : v, cus, cieu, liel 7, eu, eus : o, d
7 8 9	WSW : SW SSW : SW SW : WSW	8W : 88W 8W : 88W W: WNW: WSW	1.0 1.7 7.4	0.0	0.1	244 318 495	o pel pel, shr	: 10, liel : 7, eieu, eis : 10, se	v, liel : 1, liel 8,ens,eien,ei: 10, r : v, 0er 7, ens, eieu : 9, eus, eieu
10 11 12	SW WSW SW: SE	WSW: WNW SW:WSW:NNW Calm: SW: N	6.0 7.6 0.0	0.0	0.0	408 507 109	10 0 10, sltr	: 10 : 4, cu, ci : 10, hyr	10 : v : 0 9, cus, w : 10, se, ocr 10, chyr, gtglm : 10, cr
13 14 15	NNW: NW WSW: W: WNW WSW	WXW: W: WSW WXW WSW: SW	4.0 5.3 1.2	0.0	0.0	347 355 286	10	: 7, ens : 10 : 8, eus	10 : 10, 8, eus 10, eus : 10 8,eus,cieu.eu.octhr: 10, octhr
16 17 18	WSW WSW WSW: WXW: W	8W W8W: 8W NW: 8W: 88W	1,5 1,0	0.0	0.0	203 362 300	10 10, 00r 10, 8	: 10, m : 7, eu, cieu, eus : 8, eus	7.eu.ens.cicu: 10, mr : 10, r 8. ou, cus. shsr : v, s. cus. shsr 8. cus. cu, cicu : v, cus. ci
19 20 21	88W: 88E: 8 W8W 8: 88W	SW: WSW WSW: SW: SSW Variable	8.0 2.7 0.2	0.0	0.0 0.1 0.3	425 284 118	pel o 10	: 10, r : 10, fqmr : licl : 6, ci, so,-ha : 8, cns, cis	$\begin{array}{llllllllllllllllllllllllllllllllllll$
22 23 24	SSW: SW: WSW SE WSW	W8W; 88W 8E; 8W W8W; 8W	2.8 0.0	0.0	0.0	196 137 434	pel 10 10, sltr	: 10 : 6, cu : 10.8,ci8,sltr: 6,cu8,cicu,ci : 8, cu8, cicu, licl	$ \begin{array}{lll} 7.cu.cu.ss.cicu,hy.ssh: & g \\ 10, & r & : 10, & r \\ 7.cu.ss.cicu,cu,lishs,l.t: & 0 \\ \end{array} $
25 26 27	SW: SSW: S SW: WSW SW: WSW	SSW SW NW: NNW	7.6 12.0 0.0	0.0	0.0 1.2 1.4	164 548 218	0 10, ocr 0	: 10, r : pcl.cicu.ens: 8,cicu,cus.w : 4, cu, cicu	to, se, iishs, w : 10, ftjr, w : 10, ocr, w sections unradicable : 8, cus, hyshs : v, thcl 8, cicu, cus, cu : v, l
28 29 30	SW: WSW S: SSW SSE: WSW	WSW; SW; SSW SSW W; NNW; N	5.6 1.7 3.6	0.0	0.3	264 384 290	0 v 10, r	: 0 : 5,thcl,-ltm : 10, se, fqr : 10	6, cu, thel : v, ens, cieu 10, se, octhr : 10, r 7, cu, cus, ci, m, h : 10, sltr
31	N	NNW	2.6	0,0	0.1	358	10	: 10, lishs	9, eus, cieu : v, eis, thr
Means					0.3	302			
Number of Column for Reference.	21	2 2	23	24	25	26		27	28

The mean Temperature of the Dew Point for the month was 53 .0, being 12.4 lower than

the average for the 20 years, 1849-1868.

The mean Degree of Humidity for the month was 80°3, being 3°8 greater than

The mean Elastic Force of Vapour for the month was oin 403, being oin out less than

The mean Weight of Vanour in a Cubic Fact of Air for the month was 4grs. 5, being our 2 less than

The mean Weight of a Culne Foot of Air for the mouth was 529 grains, being 1 grain greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.4.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.31. The maximum daily amount of Sunshine was 12.3 hours on August 5. The highest reading of the Solar Radiation Thermometee was 139 *3 on August 5; and the lowest reading of the Terrestrial Radiation Thermometee was 37 *1 on August 28. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1.8; for the 6 hours ending 3 p.m., 1.5; and for the 6 hours ending 9 p.m., 1.5.

The Proportions of Wind referred to the cardinal points were N. 3, E. 1, S. 12, and W. 15.

The Greatest Pressure of the Wind in the month was 12 'boo on the square foot on August 26. The mean daily Horizontal Movement of the Air for the month was 302 miles; the greatest daily value was 548 miles on August 26; and the least daily value 109 miles on August 12.

Rain fell on 17 days in the month, amounting to 3" 888, as measured by gauge No. 6 party sunk below the ground; being 1" 433 greater than the average fall for the 40 years, 1841-1880.

		BARO- METER.			Tı	EMPERAT	TRE.			Diff	erence bet	ween		TEMPERA				whose		
MONTH	Phases				Of the A	ìr.		Of Evapo- ration.	Of the Dew Point.	the 2	ar Tempe d Dew Po emperatu	nture		Rays us gesteroug manueler bulb m e Grass.	asshown ng Muni- r.	Sundhine.		.X0.6	one.	
and DAY, 1881,	of the Moon,	Mean of 24 Honrly Values (correctedand reduced to 32 Palizenbi (t).	Highest.	Low-st.	Darly Range,	Mean of 24 Hourly Values.	Excess of Mean above Average of co Years.	of 24 Hourly	Mean	Mean Daily Value.	Greatest of 24 Hourly Values.	of 24 Hourly		Highest in the Sun's Rays as shown by a Soft-Registering Maximum "Premiumerer with thackened build in varing placed on the Grass.	Lowest on the Grassas shown by a Self-Registering Muni- mum Thermometer.	Daily Duration of St	Sun above Horizon,	Ram collected in Course receiving surface above the Ground,	Daily Amount of Ozone.	Electricity.
Sept. 1	First Qr.	30.000 29.956 29.847	57'0 59'2 62'0	46.8 20.4 46.0	8.0 8.8 12.2	53.4 53.0 52.1	- 6.1	25.1	47°9 50°3 51°9	4'2 3.6 3.5	9°4 8°2	0.0 0.0 0.2	85 87 89	95.0 76.6 80.0	44.8 49.5 43.5	0.1	13.4	0,001	0.0	mP: vP, wX wP: vP mP: wP, wN: mI
5 6	 Perigee	29:724 29:542 29:375	62.7	44.5 44.5	18:8 13:7 12:9	54°1 *56°0 58°3	- 3.2 - 3.2	52°4 54°3 55°2	50'7 52'7 53'4	3:3 3:4	8.4 8.4	0,0	88 89 81	03.0 03.0	38·9 39·6 50·7	0.0	13·3 13·2	0.188	0°0 2°0 13°0	mP: vP vP: mP, wN wP.wN: vP.sN: m
7 8 9	Full In Figure	29°481 29°574 29°704	65.0	52°2 47°8 47°4	15'4 17'2 18'7	57·5 56·9 56·9	- 1.2 - 1.6	55·5 54·4 54·4	53°7 51°9 52°1	7.8 7.8	11.3 11.3	0.3	87 84 84	95.3 95.3	47.0 41.7 39.2	0.0		0.002	0.0	-: wN, vP wP: vP -: wN, wP: vI
10 11 12	••	29.823 29.792 29.833	58.9	47'5 51'2 53'4	11.0	53·9 54·1 55·3	- 4.4 - 4.0 - 5.7	53.2 54.2	51°1 52°3 53°1	2·8 1·3 2·2	5·7 4·2 6·1	0.0	94 93	82·7 76·6 73·2	39.2 50.5 52.0	0.0	12'9	0.055	0.0	mX : wP, wX : w wP : wP,wX : wX,v
13 14 15	Greatest Declinate ii N Last Qr.	291927 291943 291935	64.1 68.4 68.1	51.0 49.2 47.6	17.1 19.2 16.5	56.0 56.8 54.1	- 3.3 - 0.8 - 1.8	54°1 53°6 52°8	52·3 50·6 51·5	3·- 6·2 2·6	11.3 14.0	1.0	88 80 91	08.0 110.3 108.4	46.0 42.0 40.3	7.1	12.7	0.000	0.0	vP mP: vP, wN vP, vX: wX, vl
16 17 18	Apogee	30°013 29°839 29°521	63·1 67·9 72·9	24.0 48.0 40.0	23°1 19°9 18°9	51.6 57.7 61.1	- 5.7 + 0.6 + 4.2	50°0 54°6 58°8	20.8 21.8 48.4	3·3 5·9 4·3	11.6 17.2 13.1	0.1	89 81 86	85·1 113·6 112·3	35·5 39·0 49·2	5.4	12.2	0.001	6.0 5.0	vP, wN mP: sP, vN ssP, ssN: mP
1 9 2 0 2 1		29.650 29.626 29.309	69°1 70°4 66°1	51°3 49°9 52°2	17:8 20:5 13:9	60'1 59'0 59'1	+ 3·3 + 3·0 + 3·7	584 577 577	56·3 54·7 56·5	3·8 4·9 2·6	10:3 11:7 8:4	0.0	88 84 92	03.4 135.4 110.0	48.0 43.3 44.0	4.0	12.3		3.0 1.0	wP, wN : vP vP : mP : wP — : sP
22 23 24	In Equator New	29*421 29*777 29*989	59'7 61'8 66'1	54.8 54.8	10°7 8°8 11°3	53°5 53°9 5~°9	- 2°7 - 0°2 + 2°0	51*9 55*1 56*5	50°4 54°4 55°2	3·1 1·5 2·7	7°2 4°6 7°4	0.0	89 94 91	70°1 82°2 103°6	49.2 49.8 46.0	0.0	12.0	0.236	5.3 c.o	mP; wP,wN; sN,v wP wP; wP, wN
25 26 27	••	29:879 29:926 30:014	65·4 65·4	50.0 47.3 47.4	20°4 18°1 16°8	550	+ 3.9 - 0.7 - 2.3	57·3 52·8 51·2	55·2 50·7 49·4	4·5 4·3 3·6	12.4	0.0 0.0	86 86 87	117°2 117°5 105°1	45.0 40.5 39.8	2.9		0.364 0.000 0.003	0.0	wP: mP mP: vP, wN mP: vP, wN
28 29 30	Greation is First Qr.	30°143 30°215 30°196	64.8 64.1	42°5 40°5 39°0		51°5	- 3·1 - 3·7 - 4·4	50·3 49·8 49·0	48·3 48·1 47·4	4.0 3.4 3.1	12.8 11.2 13.1	0.0 0.0	86 89 90	115°0 115°2 117°2	34.8 36.0 31.7	5.2	11.7 11.6		0.0	wP: vP vP: mP mP
Means		29.800	64.6	48.8	15.8	55.7	- 1·8	53.7	51.9	3.7	10:3	0:3	87.6	ðñ.8	43.5	2.2	12.6	2.188	1.4	
umber of olumn for teference.	1	2	3	+	5	6	7	8	9	10	11	1 2	13	14	1.5	16	17	18	19	20

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 0) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The nean aith rense between the Air and Dew Point Temperatures (Column 12) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29 ". Soo, being o' o 13 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 72 '9 on September 18; the lowest in the month was 39° to on September 30; and the range was 33° 19.

The mean of all the highest daily readings in the month was 64 · 6, being 3 · 6 lower than the average for the 40 years, 1841-1886.

The mean of all the lowest daily readings in the menth was 482.8, being or 4 lower than the average for the 40 years, 1841-1880.

The mean daily range was 15 18, 1 cing 2006 has than the average for the 40 years, 1841-1880.

The mean for the month was 55%, being 11.8 lower than the average for the 20 years, 1849-1868.

	WIND AS DEDUC	CED TROM SELF-REGISTE	RING .	Anemo	METER	s,	0		
		Obleg's.				Romas-		CLOUDS AN	D WEATHER.
and DAY.	General	Direction.	Pres Sqi	sure on nare Fo	ot.	izontal Movement the Air.			
1031,	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal of the An		А.М.	Р.М.
Sept. 1	NNW N NNW	NNW: N N NNW: NW: N	0.0 0.1 1ps	0.0	0.0	467 402 208	10 : 10, e	ens, s : 8, ens : 10 : 10, octhr	10, octhr : 10, sltr 10, ocsltr : 10, sltr 9, clcu : v, licl, m, d
1 5 6	NW: 8W ENE 8E: 8W	SW: NE E: ESE: ENE SSW: SE: E		0.0	0°0 0°0	118 196 291	v pel 10, hyr	: 10, m : 10, sltr : 5,cis,licl,cien,lishs	10, m, glm : 8 : v, d 10, cus : 10 : 10, hyr genesci-cucusitish: p,-cl : 10, r
7 8 9	NE: NNW SW: ENE NW: NNW	WSW: SSW NE:NNW:NW NNW: NNE		0.0	0.0	139 132 170	10, s 10, cus, cis 10, sltr	: 10, sltl', glm : 8, liel, eis, tkf, m, d : 9, eieu, eis, ei	7, en.cien.eus.,h.sht.r: v, licl, eus, cis 10, cis, li, ocshtr: 10, fqmr 9, cus.cieu.cu,h: 9, cicu : 3,cicu,d,h
10 11 12	NNW N NNW: NW	N: NNE WNW: NNW	1.0	0.0	0.0	264 301 217		: 9, ocmr -ltr : 10, sltr : 10, glm	10, fqmr : 10, r 10, sltsh : 10 10, fqthr : 10, ocsltr
13 14 15	NNW : SW SW : WSW Calm	SW: SSW WSW: NW: Calm N: NNE			0.0	149 164 73	s, thel, m pel, m, d	: 10, m, sltf : 3, ci : 10, tkf, m, sltr	6, cicu, cu, ci. cus: 1, s, thcl, m, tuha 7, cus, cicu, ci : 4, cus, s, m, d 6,(thcl,cus,cu,cicn: 4, thcl, m, d
16 17 18	Calm 88E: 8 Variable: Calm		0°0 1°2 0°0	0.0	0.0	69 181 147	o, m, d o, f' 10, fqhyr	: tkf, d : 5, ei : 8, eus, eu, sltr	2,thei,eus,sltf,h: 0, f 7, ci, cieu, cus : 10 3, cieu, h, tkf : 7,cus,cieu,l,sltr
19 20 21	SW 88E E: 8E: 8	WSW: SW: SSW SE: E SSW: SW	0.8 0.0	0.0 0.0 0.0	o.o o.o o.o	216 197 197	v v 10.tsm,hyr: 10	: 9, shr : 8, liel, eien : 10, se, fqr	8,cus.cicn.ghn,sltsh: 0, d 8,cu,cns,ci,cicu,cis: 10, l, r 10 : v, thcl, h
22 23 24	WSW NNW: NE NE: ESE: SE	WSW: W: NNW E: ENE 88E: 88W: 8	3·0 0·7 0·2	0.0	0.0	304 208 149	10	: 10, m : 10 : 8, cis	10, thel : 10, r : 10, thr 10 : 10, sltr 10, cns, cu : 10, hyr
25 26 27	8: W8W 8W: 88W 8W: W8W	W8W: 8W NW: 8W W8W: NW: Calm	0.0 0.8	0.0	0.0	259 214 146	10, er pel v	: 10, r : 10, s, cis : 10, m, sltf, sltr	7, cu, ci : 0 8, cu,-s, ci,-cu, shr: 0, m, d 9, cu,-s, cu : 0, m, t, hyd
28 29 30	Calm: N: NE Calm Calm: NE	NE: Calm SE: 8 ENE: ESE	0.0	0.0	0.0	102 74 105	o, f, d o, f o, hy,-d, f	: 0, f' : 0, f' : 0, tkf'	2, eu : o, sltf, hyd 5, cieu, eus, eu : 3, cieu, hyd 4, eu, eus : o, d, sltf
Means					0.1	195	į		
Number of Column for Reference,	2 [2 2	23	24	25	26		27	28

The mean Temperature of Ecaporation for the month was 53° 7, being 0° 6 lower than

the average for the 20 years, 1849-1868.

The mean Temperature of the Dew Point for the month was 51 '9, being 0° 5 higher than

The mean Degree of Humidity for the month was 87.6, being 7.5 greater than

The mean Elastic Force of Vapour for the month was out 386, being out on greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4000-3, being out 1 greater than

The mean Weight of a Cubic Foot of Air for the month was 535 grains, being 3 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.1.

The mean proportion of Sanshine for the month (constant sanshine being represented by 1) was 0.20. The maximum daily amount of Sanshine was 9.7 hours on September 6.

The highest reading of the Solar Radiation Thermometer was 125 '4 on September 20; and the lowest reading of the Terrestrial Radiation Thermometer was 312.7 on September 30.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1 0; for the 6 hours ending 3 p.m., 0 3; and for the 6 hours ending 9 p.m., 0 t.

The Proportions of Wood referred to the cardinal points were N. 9, E. 4, S. 8, and W. 7. Two days were calm.

The Greatest Pressure of the Wind in the month was goan on the square foot on September 1. The mean daily Horizontal Movement of the for the month was 195 miles; the greatest daily value was 467 miles on September 1; and the least daily value 69 miles on September 16.

Rain (3ll on 15 days in the month, amounting to 2m 188, as measured by gauge No. 6 partly sunk below the ground; being o'm 107 less than the average fall for the 40 years, 1841-1880.

		BARO-			r _E	MPIRAT	URE.			Deff	erence bet	Wern		Temple	VIURE.	1		whee		(Carly), and galactic field of the Carlo
MONTH	Pins. s	/-			orth A	Lir.		L'agra-	On the Dow Point,	the A	or Temper of Dew Po Cemperatu	ature int	- 4	s Rays as gryferme moneter halb m	reshown are Mini-	Sunshine.	1	No.6	olle.	
and DAY, 1881.	of the Minn.	Wean of 24 Hourly Value (corrected and reduced) 32 Enhirembert).	Beleat	Lowest	Daily Range.	Mean of 24 Hourly Values,	Excess of Mean above Average of 20 Years.	Hourly	duced Mean		Greatest of 24 Hourly Values.	of 24 Hourl	of Hr	Highest in the Sin's Eavy as shown by a Soff-Recostering Maximum "Premionicter with Diackerned bulb in vacuo placed on the Grass.	Lowest on the Grasses I by a Self-Registeracy mann Thermometer.	Bady Duration of 8	Sun above Horizon.	Rain Collected in Games preciving surface is above the Ground,	Daily Amount of Oz	Electricity.
Oct. 1 2 3		30°095 29°992 29°992	65.3	38.3 +2.0 +2.0	24.2 18.3		- 4.6 - 4.5 - 4.4	47'7 47'2 47'4	45.0 42.3 42.3	7.6 7.6	14'4 14'4 15'2	0.0	8. ₊ 82 85	111'5 165'6 125'0	32°7 31°8 30°5	9·3	$-11^{\circ}5$	0,000	0.0	mP
4 5 6	Perigee In Equator		56.5 48.9 53.5	39:3 35:0 35:2	18.3 15.0	42.5	- 6.9 - 10.8 - 2.9	14.8 40.8 44.9	41.1 38.8 43.4	6·7 3·7 2·7	15'4 10'1 5'8	0.9	78 87 91	81:3 81:3 60:0	31·2 26·6 26·1	173	11.3	0.000	0,0	mP, mN: wN, sP sP: vP: sP ssP: wN, wP: m1
7 8 9		301276 291886 291637	47.0	45.0 44.0 43.0	3.0 8.2	48.7 45.8 46.6	- 4.0 - 6.7 - 5.7	45.9 45.9 46.5	45°5 45°4 45°1	5.5 0.4 1.2	2·5 5·3	0.0	82 99 95	96.8 57.2 71.4	36.8 43.1 39.2	0.0	11.0	0.000 0.672 0.002	2.0	wP: sP wN: sN, vP wP: mP, wN
10 11 12		29:827 29:617 29:635	62.4	16.1 16.0 38.0	13.4 13.2		- 3.9 + 3.4 - 0.3	46·1 53·2 49·1	43.8 51.5 46.4	4°4 4°1 4°7	9.6 6.7 7.8	1.2 1.2	85 87 84	81.2 88.0 84.3	32.2 42.0 40.1	0,5	10.0	0,051	5.5	sP: mP wP mP: mP, mX
13 14 15	Last Qr.	29:597 29:121 29:785	55'0 59'4 50'2	44.0 43.9 37.2	13.0 12.2		- 2.5 + 1.0 - 8.6	47.0 49.6 39.9	44.4 45.0 36.2	5.0 7.4 6.2	12.6 14.0 11.7	0.0 0.0	84 76 79	87.7 92.5 88.0	37°2 37°7 31°9	БT	10.2	0.344 0.042 0.042	12.5	mP: mP, wN
16 17 18	Apogee	30.108 30.514 30.108	46.8 54.5 52.8	30.8 30.8	16.0 28.3 21.4	39.2	- 8.0 -11.9 -12.0	36·3 37·5 40·8	33·7 35·3 38·2	4.8 3.0 4.2	11.6 13.4 11.8	0.0 0.0	84 86 83	75.5 101.0 102.5	25.0 51.0 52.0	6.3	10.2	0,000 0,000 0,000	0.0	
19 20 21	In Equator	29:952 29:634 29:456	52.0	37.0 38.0 43.3	13·5 13·1 5·4	45.4	- 7.7 - 4.9 - 4.2	40.6 42.3 45.0	37.6 38.4 44.5	5·5 7·3 1·5	8.0 11.4 11.2	o.2 3.0 0.0	81 76 95	93·2 88·4 62·6	29.8 32.7 42.2	7'1		0.000 0.000 0.500	5.2	 : mP wP, wN: mP: wP
22 23 24	New	29:242 29:47 ·	25.0 25.0 25.0	14.2 18.0 12.2	5·5 4·0 3·6	49.8	- 2.2 + 0.1 - 5.4	47.3 49.8 46.6	46'9 49'8 46'3	0.0	5.2 0.8 5.2	0,0 0,0	97 100 98	54.6 65.9 51.8	43.0 42.3 44.0	0.0	10.5 10.5	0.328 0.328	4°5 4°2 0°0	·· ··
25 26 27	for at the limits and	2 3'02 29'89 30'038	51.0 40.1	37.6 37.9 37.0	131	43.5 43.5 43.8	- 5.3	41.8 39.9	39.8 39.8 38.1	3·7 3·2	8·8 9·0 7·3	o.ò o.o o.o	86 87 89	92.8 88.7 64.4	32.0 31.0 30.0		9,8 10,0	0.000 0.000 0.000	0.3	-: vP, wX: sP mP: sP sP, vX
28 24 30	First Qr.		+7°1 ++'6 ++'4	34.3 32.0 31.3	9.6	38·5 37·0	- 6.4	39.5 37.1 35.1	36·3 35·2 32·4	5·3 4·6	10.1	0.0	81 83 84	76:5 85:4 77:8	26.7 30.0 25.0	3.8 1.0	9.8 9.8 9.7	0.000	1.0	SP: vP sP sP
31	Perigee	29,002	42.2	2619	15.8	33.4 -	-13.9	32.6	31.1	2.3	8.8	0.0	91	61.7	19.6	2*2	917	0.000	0.8	sP: vP: ssP
Means unbered				Jyto		45*4	- 5'7	43.5	41.4	4.0	9.2	0.2			33.1	-	10.6	2.211		• • • • • • • • • • • • • • • • • • • •
Jump for a	1	2	.5	-1	5	6 ,	7	8	9	10	11	1.2	13	14	15	16	17	18	19	20

The reads are vita the civil day

The mean reading of the Barometer for the month was 29 to 829, being othe 109 higher than the average for the 20 years, 1854-1873.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column a) at the Degree of Humidity (Column 7) are deduced from the corresponding temperatures of the Air and Evaporation by means of Gaishier's Hygrometrical Tables, he mean difference between the Air and Dow Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic marries of the Dry-bulb and Wet-bulb Thermometers. The results on October 18, 19, 23, and 31 for Evaporation Temperature depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The Cectrometer was not in action from October 14 to 19 and again from October 22 to 24.

TIMPLEATURE OF THE AIR.

The highest in the month was 63.00 in October 1; the lowest in the month was 26.20 in October 17; and the range was 36.8. The mean of all the highest dady readings in the month was 52.24, being 5.08 lower than the average for the 40 years, 1841–1880. The mean of all the lowest daily readings in the month was 30.0, being 4.06 lower than the average for the 40 years, 1841–1880. The mean daily range was 13.44, being 1.20 is shan the average for the 40 years, 1841–1880.

The mean for the month was 45 '4, being 5 '7 lower than the average for the 20 years, 1849-1868.

WIND AS DEDU	OD FROM SELF-REGIST	ERING	ANEM	очете	RS.		
	Oster's.					CLOUDS AN	D WEATHER.
General	Direction.	Pres Sqi	iare Fe	ot.	lovement		
А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures,	Horizontal M	A.M.	Р.М.
Calm: ENE NE: ENE NE: ENE	ENE: NE ENE: NE E: ENE	2°0 1°8 2°9	0.0	0°1 0°1 0°3	226 278 248	o, f : o, tkf : 1, cicu o, d : o : 3, cicu, ci pcl : v , licl, cicu	1, cicn : 0 : 0, hyd 6, cicu, cus : v, cus, cis, s 7, cu, cus : 1, cicu : v
ENE : E N : NNE W : NW	NE: NNE NE: E: WSW N	5.6 1.3 4.8	0.0	0.0	309 178 303	10 : 8, ens, en, eien, lishs pel : 8, eien, eus m : 10, glm, sltf, thr	5, cicu, cus, cu : v, cicu, cus, d 8, cus, cicu, se : o, m, hofr, shtf 10, thr : 10 : 1, licl
$\frac{N}{8W:NE}$ $N:NW:W8W$	NNE: NE WSW: W	0.8 2.0 5.0	0.0	0.1	192 235 255	10, thel : v, cis, cus, ci 10, sltf, r : 10, r, gtglm 10, se : 10, sltf	10 : 10, sktf 10, fqr : 10, sc, fqr 10 : v, sktr
WSW SW WSW	SW WSW WSW	2.4 4.2 2.3	0.0 0.0 0.0	0.8	341 451 420	o, h, d : 10, thcl, soha 10, sltr : 8, cns, licl v : 9, licl, cis	o, liel, cus, ci : 10,thel,cus,luha,slt1 10, liqr : pcl : 0 10, liqr : 10, li,-shs
WSW: W SW: WSW WSW: W:WNW	WSW: SW: S WSW: WNW: W WNW	14.0 23.0 4.5	0.0	1,1 10,1 0,4	359 999 434	10 : 7, ci, ci,-cu, soha 10, w : 10,8c,hysh,8t,-w; 8c,cu,-8,8c,hy2 0 : 2, li,-cl, ci,-cu	9, cu, ci, ci, cu, cu, s; 10, lly, r 7, cu, s, ci, cu, lly, g; 2, ci, cu, li, el, w 4,cu, s, cu, ci, cu, glm, slt, r; 0
WSW: NW SE: E: SSW ESE: SE	NNW: 8 S: SE ESE	0.0	0.0 0.0 0.0	0°0 0°2	147 102 210	o, hofr o, hofr, sltf : o, hofr, sltf : o, hofr	6,licl,sltf: o, h, f : o,sltf,holi 3.cicu,ei,eis,soha: o, hofr, f 1, ei : 2, thel
ESE: E ESE: E ENE: E	E E ENE: E	6.0 16.5 5.0	0.0	0'7 2'1 0'1	320 492 220	o : 1, cicu v : 6, cus, cicu, w 10, r : 10, r	3, cicu, cu : v, licl, m 2,cicu,ci,w: 0 : 9 10, mr : 10
ESE: E ENE: E	ESE E: ENE ENE	8.0 1.0 5.0	0.0 0.0 0.0	0.0 0.5	381 230 312	10, sltr : 10, r 10, hyr : 10, chyr 10 : 10, ocmr	10, fqr : 10, fqr : 10 10 : 10, mr 10, ocmr : 10
$egin{array}{c} \mathbf{NE} \\ \mathbf{N:NE} \\ \mathbf{NE} \end{array}$	NNE: N NE NNE	1.2 5.0	0.0	0°5 0°1	371 283 245	10 : 7, cns, cien, slt1 0 : 2, thel, cis pel : 9, cus	v,eus,cieu,cu,sltsh: 5, eus 8,n,eus,cieu,sltr: v, sltr 10, sltr : 10, sltr
N N NNW: N	N NNE: N NNE: NE	1°4 4°2 1°4	0,0	0.3 0.3	220 313 289	p.·cl : 8, cus 10 : 10, sl 0, hofr : 0, h	3.eieu.ci.slth: 10 : 10 6, n, eu, cieu : 0, hofr 6, eus. eieu : hofr
Variable : Calm	SE	0,0	0,0	0,0	107	o, ho,-fr : o, f, ho,-fr	4, cicu, cus : v, thcl,hofr,huha
			••	0.4	306		
2 1	2 2	23	2.4	25	26	27	28
	Calm: ENE NE: ENE NE: ENE NE: ENE ENE: E N: NNE W: NW N SW: NE N: NW: WSW WSW: WSW WSW: WSW WSW: WSW WSW: WSW ESE: SE ESE ESE ESE ESE: E ENE: E ENE: E NE N: NE NSE NN NNW: N	Calm : ENE ENE : NE ENE : NE ENE : ENE ENE : ENE ENE : ENE ENE : NE ENE : NE ENE : NE ENE : ENE ENE : ENE : ENE : ENE : ENE : ENE ENE : EN	A.M. P.M. Press Sep	Calm : ENE ENE : NE Pressure or Square For Square	A.M. P.M.	A.M. P.M.	Calm: ENE ENE: NE Pressure on the square Foot.

The mean Temperature of Evaporation for the month was 43° 5, being 5° 4 lower than

The mean Temperature of the Dew Point for the month was 41° 4, being 5° 4 lower than

The mean Degree of Humidity for the month was 86.6, being 0.5 greater than

The mean Elastic Force of Vapour for the month was oin 261, being oin ofo less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3cts. o, being out 6 less than

The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 8 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky hy 10) was 6.1.

The mean proportion of Sanshine for the month (constant sunshine being represented by 1) was 0 29. The maximum daily amount of Sanshine was 9 3 hours on October 2.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 125 o on October 3; and the lowest reading of the Terrestrial Radiation Thermometer was 19 6 on October 31.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1 0; for the 6 hours ending 3 p.m., 0 2; and for the 6 hours ending 9 p.m., 0 4.

The Proportions of Wind referred to the cardinal points were N. 10, E. 10, S. 4, and W. 6. One day was calm.

The Greatest Pressure of the Wind in the mouth was 53 to on the square foot on October 14. The mean daily Horizontal Mexement of the Air for the mouth was 306 miles; the greatest daily value was 699 miles on October 14; and the least daily value 102 miles on October 17.

Rain fell on 13 days in the mouth, amounting to 2" 711, as measured by gauge No. 6 partly sunk below the ground; being o" 227 less than the average full for the 40 years, 1841-1880.

		BARO-	1		ΤE	MPERAT	URU.			Diffe	erence bets	Weett		Темрек				whose inches		
мохтн	Phases	mly Values reduced to			Of the A	ī.		Of Evapo- ration,	Of the Dew Point,	the A	ur Temper id Dew Po 'emperatui	nture int		s Rays as gistering mometer balb in ie Grass.	as shown mg Mm- r.	Sunshme.		ge No.6,w	one.	
and DAY, (SS),	ef the Moon,	Mean of 24 Hourly (corrected and red 32 Tehrenbeit).	flighest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	Mean	Mean Durly Value.	Greatest of 24 Hourly Values.	of 24 Hourly	Degree of Humidity (Saturation - 100	Highest in the Smr's Rays as shown by a Soft Registering Maximum Theoremoter with blackeried bulb in vario placed on the Grisss.	Lowest on the Grass as shown by a Self-Rogistering Minimum Thermometer.	Daily Daration of S	Sun above Horizon.	Rain collected in Gauge No. 6, perceiving surface is 5 above the Ground.	Daily Amount of Ozone.	Electricity,
Nov. 1	In Equator	29.699 29.640 29.630	42'1	30°1 33°0 36°1	8.7 9.1 17.0	35·2 37·9 43·9	- 11.8 - 8.8 - 11.8	33·5 36·2 43·5	30.8 33.9 43.0	4.4	7'4 6'4 4'3	o.2 o.8 o.0	84 86 97	49°3 71°8 59°4	22°1 29°0 35°7	0.0	0.5	0.041 0.000 0.083	0.0	mP: mN, mP sP mP, wN; wP
4 5 6		29.758 29.830 29.992	63.3	49'4 53'8 42'3	9.5 13.8	56·2 57·5 51·9	+11.0	55.6 55.1 51.1	55·1 52·9 50·3	1.0 4.0	6.4 11.5 4.0	0.0	96 85 94	82°0 82°1 70°9	40.6 43.8 32.6	0.7	9.1	0.068	0.0	
7 8 9	2	30.036 30.023 29.908	53.1	49'7	3.4 11.0		+ 4.9 + 7.1 + 3.2	49°2 46°1	48.8 51.2 45.1	0.8 0.2 1.0	2.6 1.4	0.0	97 99 94	73.0 61.0 73.0	35.0 48.0 35.0	0°0 3°6	9.2	0.000	0.0	wP wP wP: mP
11112		29.900 30.061 29.993	57.4	49.9	5	53.7	+10'7 +11'8	51.7 52.1 52.4		3·7 3·2 4·0	5·7 9·3	0°9 1'4 0'6	87 89 86	66·2 67·0 86·6	32'9 45'5 47'8	0.0	9.0	0.000	2.0	$\begin{array}{c} {\rm wP} \\ {\rm wP} \colon {\rm mP} \colon {\rm wP} \\ {\rm wP} \end{array}$
13 14 15	Apoges Last Quarter:	30.508 30.180 59.882	53.3	46.8	6.5	50 a	+ 11.1 + 8.9 + 7.7	51·5 50·3 47'7	49.6 49.2 45.8	3·8 1·2 3·7	7°2 2°4 7°6	0.0	87 96 88	88.8 59.3 83.2	45·2 44·0 38·5	0.0	8.9	0.000 0.000 0.000	0.8	wP wP wP
16 17 18	In Equator	29.780 29.636 30.109			11.1 12.4 11.1	50°5	+ 3.1 + 3.0 + 3.1	48·3 47·5 42·3	45.8 44.4 40.7	4'9 6'1 2'9	8·4 10·8 8·4	1.8 0.0	84 80 90	77°4 82°9 69°9	38·1 36·5 27·0	2°1 4°9 3°7	8.7	0.123	5.2	wP: wP, wN wP: vP: sP vP
19 20 21	New	30°028 29°831 29°525			5.7 14.0	51.3	+ 6.7 + 10.0 + 10.5	48·8 49·5 46·1	43·9 47·7 45·9	4°2 3°6 5°8	8·4 10·2	2.1 1.6 3.8	86 88 81	84.2 84.0 81.5	35·1 35·2 41·7	2.4	8.6	0,140 0,000 0,000	6.0	wP: mP wP wP, wN: mP
22 23 24	Greatest Declination S.	29.625 29.770 29.852	$54^{\circ}1$	41.0	13.1	48.5	+ 7.5	48.6 46.3 47.0	4.5·6 43·9 44·8	6.0 4.6 4.2	11.8	1.6 0.6 1.7	80 85 86	67.8 82.0 62.0	34.0 34.4 33.2	3.4	8.4	0.030 0.030	2.2	wP: mP: sP vP, wN: sP mP: wP
25 26 27	Perigee 	29.537 29.263 28.845	53·2 54·7 55·0		13.7	47'2	+ 9.7 + 6.4 + 7.6	49.8 45.5 45.1	49°0 43°6 41°5	1.6 3.0 6.9	3·4 9·2 11·1	0°2 1°8	94 88 77	54°5 93°5 74°1	35.2 35.2 40.0	3.5	8.3	0.303	4.0	wP, wN: wN: ml vP: wP -: wP, wN: vP, v
28 29 30	First Qr. In Equator	29.173 29.803 29.919	47.1	35.5	11.7 11.6 10.9	41.2	+ 0.2	40.6	41.4 39.5 41.4	6·1 2·6	9.5 4.0	3·5 o·o	80 93 90	92.6 72.2 56.3	34.5 26.9 27.5	4.2	8.3	0.005 0.000	0.2	wP, wN : wP : mI mP : sP : sP mP
Meaus		29.782	54.0	42.8	3.112	10.0	+ 6.3	47.4	45.6	3.5	7.2	1.0	88.3	24.1	36.4	1.8	3.8	2.265	4.0	
umber of lumn for	1	2	3	+	5	6	7	8	9	10	11	1 2	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Drysbulb and Wetsbulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29'" +782, being o'" +011 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 63° 3 on November 5; the lowest in the month was 33° 1 on November 1; and the range was 33° 2. The mean of all the highest daily readings in the month was 54° 10, being 5° 3 higher than the average for the 40 years, 1841–1880.

The mean of all the lowest daily readings in the month was 42 38, being 5 6 higher than the average for the 40 years, 1841-1880.

The mean daily range was 1122, being 023 less than the average for the 40 years, 1841-1880.

The mean for the month was 49 .0, being 6 .3 higher than the average for the 20 years, 1849-1868.

	WIND AS DEDUC	TED TROM SELF-REGIST	PERING	ANEM	METE	RS.		
		OSLER'S.				ROBIN- SON'S.		CLOUDS AND WEATHER.
MONTH and DAY,	General	Direction,	Pres Sq	ssure or uare F		lovement		
1851.	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Arr.	А.М.	Р.М.
Nov. 1	ESE: SE E: ESE E: ESE: SE	88E; E8E E8E 8E; 8W	2°2 2°6 0°0	1bs. 0°0 0°0 0°0	0°1 0°2 0°0	197 246 189		sltsn cis, soha cis, soha r, m 10, sn, r : t0 : v. cis, s 8.cis, cicu,h,soha: t0 10, fqr : 10, sc, f
5 6	S: SW S: SSW SSW: WNW	88W : 8 88W : 8W W : 8W	2.6 5.8	0.0	o·3 o·5	309 330 146		cicu
7 8 9	Calm: NE Calm: E E	E : Calm E : E8 E E : E8 E	0.0	0.0 0.0 0.0	0.0	115 126 109		ocr slt-f, mr ci, m
10 11 12	\$W: WSW \$W \$SW: SW: WSW	WSW SSW WSW : SW	2.5 1.5 3.8	0.0	0.0	344 291 433	10 : 10	se, mr
13 14 15	WSW SW SSW	SW SW: S SSW: WSW	2·3 1·4 2·5	0.0	0°4 0°2	354 248 389	10 : 5, 10 : 10 10 : 10	cicu, cis. ci 6.cus.cicu.ei: 1 : 10 10 : 10 7, cicu. cus : 1, licl
16 17 18	SW: SSW SW: WSW WSW: Calm	SSW WSW SSE	9°9 0°1	0.0 0.0	2°4 2°1 0°0	627 575 153	pcl, w : 0,	ei, cieu, w
19 20 21	S: SSW SSW: SW SSW: SW	88W : 8 8W : 88W 8W : 88W	2.8 4.0 20.0	o.o o.o	o·3 o·2 2·6	311 343 643	o, d : 9	cus, ci, se 3, ci, cicu : 0 : 0, d 4, cus, cu : 0 : v,cus,sltsc, r, stw 5, cus, cu, cicu : t0, ocsltr
22 23 24	SW: WSW S: SW S: SSW	$\begin{array}{c} \mathbf{SW:S} \\ \mathbf{SW:SSW} \\ \mathbf{SSW} \end{array}$	14°0 4°7 7°0	o.o o.o o.o	1.9 0.2	530 358 484	o, d : 10,	cis, solin, w sltr g,cien,cns,cis; 0 : 0, d q,ci,cicu,cu: vv, sltr : 0, d to : 10, r
25 26 27	SW: 88W WSW: 8W	8: 8W 8: 88W 8W: 88W	5·2 35·0 37·5	0.0	0.0 7.0	423 643 815	pel : 1,	se, er s, eis, ei r, hy,-sqs 10, er : 10 9,eus,eieu,se,soha,r,stw: 10, g, r vv, eis, shsr, w : v, hy,-sh, sqs, l
28 29 30	88W: 8W 8W 88E	SW SW: S SSE	34.0	0.0 0.0 0.0	2·3 0·0 0·4	541 216 324		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Means					0.0	361		
Number of Column for Reference.	21	2.2	23	2+	25	26	27	28

The mean Temperature of Evaporation for the month was 470.4, being 6 .2 higher than

The mean Temperature of the Dew Point for the month was 45° 6, being 6° 3 higher than

The mean Degree of Humidity for the month was 88:2, being 0:9 greater than

The mean Elastic Force of Vapour for the month was oin 306, being oin of6 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3ms 5, being over 7 greater than

The mean Weight of a Cubic Foot of Air for the month was 542 grains, being 7 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.4.

The mean proportion of Sunshine for the month (constant sunshine heing represented by 1) was 0 20. The maximum daily amount of Sunshine was 5 6 hours on November 12.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 93.5 on November 26; and the lowest reading of the Terrestrial Radiation Thermometer was 22.1 on November 1.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2.9; for the 6 hours ending 3 p.m., 0.4; and for the 6 hours ending 9 p.m., 0.7.

The Proportions of Wind referred to the cardinal points were N. o, E. 4, S. 16, and W. q. One day was calm.

The Greatest Pressure of the Wind in the month was 3710s 5 on the square foot on November 27. The mean daily Horizontal Movement of the Air for the month was 361 miles; the greatest daily value was 815 miles on November 27; and the least daily value in 109 miles on November 9.

Rain fell on 16 days in the month, amounting to 210 265, as measured by gauge No. 6 partly sunk below the ground; being o'n 037 greater than the average fall for the 40 years, 1841-1880.

		BARD- METER.			T	EMPERA	TURE.			Diff	erence het	W (502)		TEMPER.				whose mehrs		
MONTH	Plases	Values read to			Of the .	Air.		Evapo-	Of the Dew Point.	the A	Air Tempe id Dew Pe emperatu	rature int		Rays as gretoring monuefor halls in reference	ns shown uz Mmi- r.	mshine.		No.6	116.	
and DAY, 1881.	of the Moon.	Memorf 24 Hourly (corrected and reduced: 32 Enterphort)	Highest.	Lowest.	Daily	Housel		Hourl	duced Mean	Mean Daily Value.	Greates of 24 Hourly Values.	of 24 Hourl	Degree of Humidity (Saturation = 100).	Highest in the Sun's Raysas shown by a Self-Registering Maximum Thermonder with therebened both in vaccin placed on the Griss.	Lowest on the Grass as- by a Soff-Registering man Thermoneter.	Pady Duration of Sunshine,	Sun above Houren.	Ernverdforfed in Garige receiving surface above the Ground,	Doly Agrend of Ocore	Electricity.
		10.			0	0			0	0	0	۰		0	35.8		٠	211	٠.	DYDY
Dec. 1 2 3		29:859 30:079 30:031	46.5 53.7 48.5		9°4 17°7 12°3	471		45.3		3·8 3·5	6·2 7·4	1.8	92 88 87	63.8 60.1 40.5	29.7	0.0 3.3 2.5	8.1	0,000	0.5	wP, vX: vP, w? mP wP: mP: sP
5	Fall	301070 301009 291964		39.2	7'7 9'4 15'2		- 1·1 + 2·8 + 1·4	39.8 44.7 43.0	37.9 43.9 41.7	3·4 1·5 2·4	6.4 6.4	0.7	93 93	51.9 76.8	27°0 21°0 27°2	0.0 0.0	8.0	0.030	3.5	mP: mP: wP, w wP: mP mP: wP
7 8 9		29.530 29.530 29.447		34.0	9.6 3.5	38·3 37·6	- 4.2	43·3 37·0 37·3	35·2 36·9	2·6 3·1	6·3 6·8 2·4	0.0	91 89 97	65.6 81.8 42.6	30·5 27·3 27·8	1.1 5.0	7'9	0.327 0.000 0.207	0.0	wP, wX: mP: sl sP: ssP mP, mX: vP, wX
10	Apogee	29.439 29.522 29.694	36.6		5.0 5.9 4.7	33·7 34·5 37·0	- 9.0 - 8.0 - 5.2	33·5 33·9 36·3	33·2 33·0 35·3	0.2 1.2	2·8 3·1	0°0 0°8 0°2	98 91 94	38·4 45·3 40·9	29°4 26°7 30°0	0.0	7.8		0.0	vP, mX mP, wX : vP, w2 wP, wX : vX, m
13 14 15	In Equator Last Quarter	30.104 30.682 29.822	43.3	30·3 35·3 35·7	814 1310 514	34.7 37.3 39.5	- 7·1 - 4·0 - 1·6	34.1 36.4 34.1	34.0 34.0	1.6 2.6 2.3	4.8 9.9 4.1	0.0	91 91 92	62·8 75·0 46·2	22.5 25.5 35.0	0.5 3.8	7.8	0.000	1.2	mP: vP mP: vP, mN wN, wP: vP, m
16 17 18		29.579 29.070 29.084	52.1		5:7 11:1 16:0	45.0 45.0	+ 1.8 + 2.4 + 0.1	39.3 44.1 39.0	38·7 +2·0 36·0	2·9 6·0	3.7 9.2 12.8	0°7 2°0 1°0	92 86 80	47°1 73°5 71°6	34'2 36'6 31'0	5·2 1·2 5·0	7.7	0.328	2°0 11°2 7°2	wP: wP, wX wX, wP wX, wP: sP
19 20 21	Greatest Declination S New	29:365 23:907 29:450	44.1		8.0 6.2 10.2	30.2 41.8 40.0	- 0.1 - 0.0	37.8 39.3 36.5	34.0 36.2 32.6	5·1 5·6 6·9	10.1 12.3 9.5	2·3 1·1 4·8	82 82 77	79°5 82°6 62°3	29:1 31:4 25:3	5.2 3.0		0,030 0,415 0,030	6.0 1.2 0.0	mP: vP wP, wX: vP, vX mP, wX: sP
22 23 24	Perigee	29.791 30.348		26.0	8·3 6 16·9	30.4 30.0	- 6.3 - 8.4 - 8.9	32·3 30·7 29·9	30.6 30.2 28.6	2.6 0.7 1.8	5'1 4'1 4'2	0.0	90 98 92	46.8 39.4 49.8	23'+ 19'8 19'5	0,0 0,0	7:7	0,000	0.0	$\frac{sP}{mP}$
25 26 27	 In Equator First Qr.	30:338 30:398 30:429	45.2 42.4 43.8	27.5 43.3 40.6	16·3 2·1 4·9	3.5·5 +4·2 +2·8	- 3·7 + 5·1 + 3·8	34·3 43·6	32.4 42.9 41.9	3·1 1·3	5:7 2:0 2:4	0.0	8a 95 97	43.8 47.0 48.1	17:2 33:6 39:5	0.0	7.8	0.020 0.018 0.000	0.0 2.3 0.7	mP wP wP
28 29 30		30.282 30.052 29.821	42.6 45.8	37:3 39:1 35:5	5·3 6·7 8·9	39.8 +2.7 +1.2	+ 1.0 + 4.0 + 2.7	39.5 41.7 40.1	39·1 40·5 38·7	0.2 2.2 2.2	5·3 5·1	o.o o.o	98 92 91	27.0 48.3 45.9	36·1 32·2 28·8	0.0	7.8	0.000	0.0	wP wP wP
31		29.720	44.5		6.4		+ 3.4	40.2		2.7	5.3	0.0	91	10	29.6	0.0			1.3	w1
eans		29.821	44.0	34.9	9.1	39.9	- 0.9	38.7	37.2	2.6	5.5	0.7	90.8	58.0	29.1	1.5	7:8	2°495	5.5	
mber of umn for erence.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

The results apply to the civil day.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Hamidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 12) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.

The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 29h 221, being oin 030 higher than the average for the 20 years, 1854-1873.

The highest in the month was \$3; 7 on December 2; the lowest in the month was \$1° 6 on December 24; and the range was \$32° 1. The mean of all the highest daily readings in the month was \$44° 0, being 0° 4 lower than the average for the 40 years, 1841–1880. The mean of all the lowest daily readings in the month was \$4* 0, being 0° 1 lower than the average for the 40 years, 1841–1880.

The mean daily range was 9'11, being 0 3 less than the average for the 40 years, 1841-1880.

The mean for the month was 39 . 9, being o . 9 lower than the average for the 20 years, 1849-1868.

	WIND AS DEDUC	ED FROM SELF-REGISTI	ERING	ANEM	OMETE	1			
		OSLEE'S.				ROBIN- SON'S.		CLOUDS AN	D WEATHER.
MONTH and DAY, 1881.	General l	Direction.	Pres Sq	sure or	ot.	Hovement			
1551.	Λ.Μ.	Р.М.	Greatest,	Least.	Mean of 24 Hourly Measures,	Horizontal Mo		А.М.	Р.М.
			lbs.	11	11.5.	miles.			
Dec. 1 2 3	SE SW S: SSE	WSW: W SSW SSE	1.9	0.0 0.0 0.0	0.1 0.5 0.1	285 323 264	o, d pel	: 10, r : 4, cieu : 1, liel, ci	10, slt,-r : p,-cl, r : 0, d 6, ci,-cu, cu,-s : 6, ci,-cu, li,-cl, slt,-1 3, ci, ei,-cu : 2, li,-cl, lu,-ha
± 5 6	88E: 8 8 8W: 8	88W : 8 88W : WXW :W8W 88W	0.6 1.8 7.8	0.0	0.1	245 276 402	10 10, se liel	: 10 : 10, r : 6,thcl,cls,s,ho,-fr,so,-ha	10 : 10, se, oethr 9, se, r : 0, m : 0, hyd 9, s, ci, se, soha : 10, se, thr, w
7 8 9	SSW: XW: WSW WSW: SW SE: S	WSW: SW SW: S SE: S: N	0.0 0.2 4.0	0.0	0.0	320 229 63	10, hyr 0, d 10	: 10 : 4, cicu, hofr : 10, hyr, f, glm	5,cis,eus,ei: 0 : 0, d 5,cis,eis,ei. eu: 0 : s,ei.eu.hofr,d.slt 10, r, gtglm: 10, sltf : v, licl
10 11 12	NE: NNE N: WSW: W NNW: NW	NNE: N W: WSW NNW: ENE	0.0	0.0	0.0	227	10	: 10, sn : 0, m, sltf, hofr : 10, r, sltm	10, sn, thr, glm : 10 g, sltf, sltr : 10, sltr 10, fqthr, glm : 10, m
13 14 15	ESE: ENE SW: SSE SSW: SSE	NE: Calm: SW SSW SSE	0.3	0.0	0.1 0.0		o, m, hofr 10, f 10, r	: 1, ci, hofr, tkf : 4, cus, sltf, hofr : 10, sltr	6, cicu, cis, f : 10, tkf, hofr 5, cicu, ci, cus : 10, sltr 10, sc, sltr : 10, lishs
16 17 18	\$\$E: \$\$W: \$ \$\$W: \$W \$W: \$W: W\$W	S: SSE SW: WSW WSW	21.0 21.0	0.0	0.4 0.4	319 668 759	10. lishs 10 10. liyr, liysqs	: 10, lishs : 10, ocr, w : 1, thcl, stw	10, se, fq-fh-r : 10, r, w 10, se, fq-r, stw : 10, w, r 2, ci-cu, w : 0
1 9 2 0 2 1	SW: WSW SSE: WSW WNW: W: WSW	W8W : 8W : 8 W8W W : W8W	2.9 12.8 18.0	0.0	0·3 4·1 2·3	+24 736 526	o thel ; hy.	: o, ho,-fr -r, i, t : 1, iise, w : 5, ci	z.cicu, ci.s., so.ha, lishs : V, cus, m 3, lise, ci, stw : 10, ocr, stw 3, thcl : 0, sltf
22 23 24	SW: Calm: NE N: NNW Calm: E: SE	NE: N SW: SE: Calm SSE	0.3	0.0	0.0	159 102 138	o, m, hofr o, f, hofr o, tkf, hofr	: 10, sltf, hofr : 0, h, sltf, hofr : 10, f, hofr	9, cis, ci, s, sltf : 0, hofr, sltf 0, f, h, hofr : 0, f, hofr 10, cicu, cis, cus : 0, hofr, m
25 26 27	SSE: SSW SW WSW	88W : 8W - W8W - W8W : 8W	2,5 1,2 5,5	0.0	0.0	279 295 285	m, hofr 10	: 10 : 10, sltr : 10	10 : 10 10, 00mr : 10 10 : 10
28 29 30	8W : W8W 88W 88W : 8W	WSW : SW SSW SW : SSW	0.3	0.0	0.0	296	10 0 10	: 10, m, mr : 10 : 10, s	10, ocmr : v, ocmr 10 : 0 : 10, se 8, ci, cicu : licl, luco : pcl, hofi
31	88E: 88W	88E: 8	0.3	0.0	0.0	158	10	: 10	10 : 10 : pcl, sc
Means					0.1	297	3		1
Number of Column for Reference,	. 41	22	23	2.4	25	26		27	28

The mean Temperature of Evaporation for the month was 38 . 7, being 0 . 6 lower than

the average for the 20 years, 1849-1868.

The mean Temperature of the Dew Point for the month was 372 2, being 0 2 lower than

The mean Degree of Humidity for the month was 90.8, being 3.0 greater than

The mean Elastic Force of Vapour for the month was oin 222, being oin 002 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 2grs 6, being the same as

The mean Weight of a Cubic Foot of Air for the month was 553 grains, being 2 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.1.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was o 15. The maximum daily amount of Sunshine was 5 2 hours on December 3, 18, and 19.

The highest reading of the Solar Radiation Thermometer was 93' 8 on December 3; and the lowest reading of the Terrestrial Radiation Thermometer was 17' 2 on December 25. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 1'4; for the 6 hours ending 3 p.m., 0'2; and for the 6 hours ending 9 p.m., 0'6.

The Proportions of Wind referred to the cardinal points were N. 3, E. 3, S. 15, and W. 10.

The Greatest Pressure of the Wind in the month was 21th o on the square foot on December 17. The mean daily Horizontal Movement of the Air for the month was 297 miles: the greatest daily value was 759 miles on December 18: and the least daily value 63 miles on December 9.

Rain fell on 15 days in the month, amounting to 2in 495, as measured by gauge No. 6 partly snnk below the ground; being 0in 706 greater than the average fall for the 40 years, 1841-1880.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

	MAXIMA.			MINIMA.			MAXIMA.		MINIMA.	
Mean So	te Greenwich lar Time,	Reading.	Mean So	te Greenwich plar Time, 881.	Reading.	Mean	ate Greenwich Solar Time, 1881.	Reading.	Approximate Greenwich Mean Solar Time. 1881.	Reading.
	d h m	in.		d h m	in.		d h m	ın.	d h m	in.
January	2.11. 0	30 •260	January	4. 16. 20	30 · 060	April	28. 8.20	30.095	April 30, 7, 45	29.469
	7. 8.15	30 .437		11. 18. 50	29.303	May	0. 19. 40	29 .234	May 1. 18. 20	29 '448
	13. 22. 25	29 .700		15. 7.45	29 • 561		3. 15. 15	29 •934	4. 5. 30	29.830
	16.12. 0	29.696		18. 5. 10	28 • 955		7. 19. 50	30.480	9. 5. 10	30.406
	21.11.20	30 •143		22. 8.30:	29 •960		10. 10. 50	30 .497	15. 16. 35	29.535
	23. 22. 10	30 .133		27. 17. 15	28.820		16. 16. 35	29 .870	18, 16, 30	29 '423
	28. 4.10	29 015		29. 3.30	28.696		21.20. 0	30.285	25. 15. 50	29 120
February	1.10. 0	29 .780	February	2. 2.55	29 .206		30. 19. 40	30.510	June 5, 15, 0	29 255
	2.11.10	29.585	1 containly	4. 18. 10	29 209	June	9. 11. 40	30 .069	11. 1.30	29 .836
	6. 14. 20	29 .966		7. 18. 20	28 '981		13. 10. 15	29 •905	20. 16. 10	29 386
	8. 23. 10	29 •395		10. 16. 0	28 .745		23. 17. 20	30.001	25. 5. 10	29 .835
	12. 10. 20	29 '927		14. 5. 10	29.519		26. 0. 0	30 .021	27. 4.10	29 '735
	21. 0. 0	30.099		22. 3.30	29 954		29. 12. 10	30 * 155	July 1. 4. 15	
	23. 21. 0	30 *1 20		27. 22. 0:	29 ·56g	July	3. 21. 50	30.070	5. 22. 0	29 .794 29 .519
March	2. 7.45	30.154	March		29 210		6. 23. 20	29 .922	8. 5. 0	
	5. 4.20	29.284	March	4. 19. 40: 5. 13. 25	29 065		10.13. 0	30 *07 1	11. 23. 45	29.776
	6. 6.40	29 .335			28 960		13. 20. 50	30 •160	15. 6. 0	29.875
	8. 13. 40	29 .812		7. 4.45			16. 23. 0	29 •939		
	10. 9.55	29 933		8. 21. 5	29.712		21.11. 0	29 .875	19. 6. 0	29.624
	17.13. 0	30 .375		13. 17. 30	29.670		22. 23. 15	29.825	22. 7.10	29 '714
	22. 8.30	29 .875		21. 4.30	29.502		27.20. 0	30 .062	25. 16. 53	29.358
	26. 21. 30	29.800		23. 15. 30	29 '080	August	3. 21. 0	30.164	31. 5. 0	29 '333
	30, 10, 5	29 •906	A	29. 3.30	29 .531		6. 10. 35	30 .033	August 5. 7. 20 8. 13. 30	29 '770
$\Lambda_{ m pril}$	3. g. 35	29.878	April	1. 4.45	29 • 536		9. 9.30	29.680		29.319
	7.12.50	29 '929		5. 16. 10	29 •573		10. 20. 15	29 .866	10. 2.35	29.282
	12. 9.30	29 .770		11. 0.35	29.657		14. 9. 5	29 .720	12.8. 35	29 430
	16. 18. 40	29.855		13. 17. 0	29.614		18. 9.55	29.632	17. 13. 25	29 .524
	18. 22. 0	29 '819		18. 3.45	29 .750	1	20. 2.15	29 '780	19. 2.55	29.296
	22.22. 0	29*921		21. 16. 0:	29 .280		21, 21, 45	29.715	21. 2.30	29 .550
	24. 8. 0	29 .887		23. 14. 40	29 714		24. 12. 40	29.691	23. 13. 30;	29.360
	26. 21. 10	29 •996		25. 3.25	29 .687		28. 9.50	29 1991	25. 16. 0	29.204
				27. 5.50	29 922				29. 16. 45	29.596

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records—continued.

	MAXIMA.			MINIMA.			MAXIMA.		MINIMA.	
Mean So	e Greenwich lar Time, 81.	Reading.		e Greenwich dar Time, 881.	Reading.	Approximate Mean Sol 188	ar Time,	Reading.	Approximate Greenwich Mean Solar Time, 1881.	Reading
	d h m	m.		d h m	ш.		d h m	ın.	d h m	în.
August	31. 10. 10	30.035	September	5, 16, 10	29 '321	November	13. 8.30	30.260	November 15. 2.50	29 .795
September	10. 0.10	29 .838		11. 3. 0	29 '774		15. 13. 55	29 *937	16. 15. 55	29.793
	15. 20. 20	30 · 056		18. 3. 45:	29 774		18. 9.10	30 183	20, 20, 20	29 404
	19. 10. 10	29.748		20. 19. 0	29 '274		21. 6.30	29.621	21. 15. 40	29 340
	23. 22. 0	30 .023		24. 17. 35	29.850		22. 8.30	29.812	22. 20. 40	2 9 . 668
	28. 21. 40	30.541	October	2. 17. 0	29 •961		23. 12. 10	29.952	25. 2.40	29 .404
October	3, 21. 5	30 °03 I		4. 17. 10	29 •967		25. 10. 45	29 487	26. 13. 5	28.714
	6. 23. 25	30 -330		9. 3. 0	29.615		29.11. 5	29.980	December 0.23. 0	29:775
	9. 22. 10	29 886		11. 2.10	29 .555	December	1. 22. 45	30.102	3. 1. 0	30.014
	11. 19. 15	29 .693		12. 13. 50	29 .566		3. 22. 40	30.089	5. 1.40	29 934
	12. 22. 25	29.695		13. 19. 40	28.875		5.14. 0	30.102	6. 15. 10	29 .573
	16. 12. o	30 ·246 30 ·065		22. 6.15	29:118		7. 14. 40	29 799	9. 3. 0:	29 '387
	30. 9. 20	30 .002		28. 17. 40	29 '912		13. 8. 10	30.190	17. 3.30	28.840
November	6. 11. 40	30.108	November	3. 3.15	29.579		17. 9. 10	28 *997	17. 16. 50	28.571
	7. 21. 35	30 '052		7. 7.20	29 '972		23. 11. 0	29 '414 30 '395	19.18.40	28 .685
	10. 20. 35	30.107		9.12.45	29 *820		26. 22. 20	30 3g3	24. 13. 55	30 •305
		00 107		11.16. 0	29.895		20. 22. 20	30 403		

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading without sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period, the symbol: denoting that the reading has been sensibly the same through a period of more than one hour. The reading at April 24^d, 8^b, 0^m, has been inferred, on account of partial loss of photographic register.

Absolute Maxima and Minima Readings of the Barometer for each Month in the Year 1881. [Extracted from the preceding Table.]

1881.	Readings of t	he Barometer.	Range of Reading
MONTH.	Maxima.	Minima.	in each Month.
	in.	ın.	in.
January	30 .437	28 ·696	1 *7+1
February	30.120	28:745	1 '375
March	30 +375	28 *960	1 '415
April	30.002	29 '469	0.626
May	30 *497	29.235	1 . 262
Jane	30 155	29.255	0.000
July	30.160	29 '333	0.82
August	30.164	29.204	o ·g60
September	30.541	29.274	0.967
October	30 .330	28.875	1 .422
November	30.260	28.714	1 ·546
December	30 •463	28.571	1 .892

The highest reading in the year was 30ⁱⁿ⁺497 on May 10.

The lowest reading in the year was 28 in 571 on December 18.

The range of reading in the year was 1 in 226.

MONTHLY RESULTS of METEOROLOGICAL ELEMENTS for the YEAR 1881.

	Mean Readir	ıg				Темрека	TURE OF	THE	Mr.					_	Mean		Mean	Mean Degree o
1881, Монти.	of the Barometer		est. L	owest.	Range in the Month.	Mean of the Highes	tl	ie	Jean Da Range		MonthI Mean.	M-A	excess of ean above verage of to Years.	e	mperate of aporatio	Į t	Fempera- ure of the Jew Point.	Humidity (Saturation
	in.				0	0			0						0		0	
lanuary	29.712	50	0	12.7	37.3	36 . 2	2 7	.3	8.9		31.7	0	- 7:1		30.6		28.0	86.3
February	29.661	54	0	26.1	27.9	42.5	33	• 5	9.0		38.0	-	- 1.6		36.6		34.5	87.2
March	29.725	59	8	24.6	35 1 2	51.1	3.5	•5	15.6		42.6		+ 1.0		40.5		37.1	81.1
April	29'774	66	1	29.3	36.8	55.6	37	.2	18.1		$_{4}5 \cdot 8$		- 1.7		42.4		38.5	76.1
Мау	29,922	78	3	30.9	47.4	65.8	+3	.6	22.2		54.0		+ 0.9		50.0		46.1	75.3
June	29.806	83	.0	38.5	45,4	70.0	49	7	20.3	;	58.6	1.	1.1		54.0		49.9	73.4
July	29.828	97	1	43.9	53.2	7717	54	. 9	22.8	3	65.5		+ 2,0		59.7		55° i	70.5
August	29.673	85	+	43.1	42.3	69.7	51	.6	18:2	!	59.2		- 2.6		55.9		53.0	80.3
September.	29.800	7 2	• 9	39.0	33.9	64.6	48	8.8	1518	3	5517		- 1.8	;	53.7		51*9	87.6
October	29.829	63	.0	26.2	36.8	521	. 30	.0	13*.	1	45.4		— 5·7		43.5		41.4	86.6
November .	29.782	63	.3	30'1	33.2	54.0	4:	. 8	1111	2	49.0		+ 6.3	;	+7°+		45.6	88.3
December .	29.821	53	7	21.6	32.1	44.0	3.	. 9	9.	1	39.9		— o.č	•	38.7		37 · 2	90.8
Means	29.778	H:g1	nest.	Lowest.	Annual Rang	57.0	4	.6	151.	+	48.8		— o.)	46.1		43.3	81.9
			-		1	RA	IN.						11	IND,		-		
		Mean	Mean		Mean			-			P	Oal	r's Ane	on a mata				Fron
1881,	Mean Elastic	Weight of Vapour	Weight of a	Mean Amount	Amount	Number	Amount collected in a								1	or IIS.		Robin son's Anen
Монти,	Foree of Vapour.	in a Cubic Foot of Air.	Cubie Foot of Air,	of Ozone,	of Cloud. (0-10.)	Days.	Gauge whose receiving Surface is 5 Inches				refer	red to	ice of ea		nd,	Number of Calm or nearly Calm Hours.	Mean Dai Pressnr on the Squa	ily meter
							above the Ground.	N.	N.E.	Е.	S.E.	s.	s.w.	w.	N.W.	Number nearly	Foot.	Mean Hori Move
January	in. 0.153	grs.	grs. 561	1.7	6.8	9	in. 1.663	h 118]1 [QO	h 98	ь 51	h 52	h 145	ь 54	h 36	h	ns.	nale 256
February		2.3	552	3.4	8.5	18	2'446	106	117	42	78	82	111	37	60	39	0.60	311
March		2.6	548	3.1	5.0	11	1.835	27	99	123	44	26	212	149	36	28		336
April		2.7	546	2.7	6.4	8	0.623	84	230	127	19	67	99	35	47	12	1	357
•		3.5	539	5.2	5.4	13	1.611	99	134	98	21	40	238	50	33	31		286
May		7,0	532	5.4	6.6		1.863	83	134	33	68	115	233	53	62	31		230
June		4.8	525	3.0	6.1	9		71		11	37	47	326	142	53	8		250
July		4.2	529	4.1		12	2°137 3°888	50	49				349		53	C		
August		4.3	535		7 ' 4	17		131	68	1 52	41 54	89 80	156	147 48		40		195
September.	1	3.0	547	1.4	7.1	15	2.188	135	184	132	53			7.5	28			1
October		3.5				13	2.711	133	3			189	335	36	2 0	14		
November . December .		2.6	542 553	7.0	7°4 7°1	16 15	2,492	38	36	72 15	78	188	266	88	26	2 9		
Sums			ļ			156	 25·725	012	1163	807	508	001	2574	914	527	241		_ <u></u>
-	•••					1.50		2+4		100,	1	774	/+		/		1	
Means	. 0'291	3.3	5+2	3.5	6.8						1					٠.	0.23	29

^{*} Mean for 30 days.

MONTHLY MEAN READING of the BAROMETER at every Hour of the DAY, as deduced from the Photographic Records.

Hour, Greenwich						1881	١.						Yearly
Mean Solar Time (Civil reck (time).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means.
Midnight	301734	29.666	10	1B	1B.	111	111.	10	in.	10	in	in .	in.
1b, a.m.	291724		297.26	29.788	29'921	20.811	29.848	29.668	29.804	29.842	29.787	29.832	29.785
	29'721	29.656	29,724	29.783	29.918	29.809	29.842	29.666	29.799	29.839	29.778	29'825	29.780
1 2	29,718		29.719	29.778	29.916	24.803	29.835	29.661	29**93	29.833	29.776	29.822	29.776
3 .,	297715	29.649	29.715	29.776	29914	29.802	29.834	29.662	29.787	29.828	29.767	29.814	29.772
1 4 "	29",12	29.645	29.713	29'772	39,914	29.803	29.830		29,784	29.826	29.764	29.807	29.769
4	29.708	29.645	29.713	29.773	29.920	291800	29.831	29.666	29.786	29'825	29.764	29.802	29,770
-	29.706	291644	29.717	29.779	29.926	29.810	29.834	29.674	29.790	29.824	291764	29.806	29.773
8	29'710	29'647	29'727	29.785	29.931	29.813	29.838	29.680	29.797	29.829	29,70	29.810	29.778
1	29719	29.654	29.732	29.786	29.934	29/815	29.841	29.686	29.804	29.835	29.778	29.819	29.784
9	291725	29.661	29.737	29.789	29.932	29.816	29.841	29.688	29.809	29.837	29:786	29.827	29,788
10 ,,	29.730	29.665	29.743	29.787	29.936	29.817	29.838	29.68	29.811	24.838	29,793	29.835	29.790
Noon	29.729	29.673	29.746	29.783	29.933	20.816	29.834	29.684	29.808	29.832	29'794	29.832	29.789
1 1	29.721	29.672	29.740	29.773	29.928	29.812	29.829	29.679	29.804	29829	29.786	29.824	29.783
	291709	29.667	29'731	29.770	29'925	20.80	29.822	29.675	29.798	23.821	29.780	29.817	29.777
2 "	29,200	29.629	29.718	29'762	29,051	29.800	29.819	29.672	29.795	29.812	29.776	29.813	29'771
5	29.699	29.657	29,710	29.735	29.915	29.799	29.814	29.666	29,231	29.812	29.776	29.814	29.767
1 + "	29.700	29.657	29.708	29.752	29'911.	29.793	29.809	29 663	29.792	29.812	29.78	29.818	29.766
9 "	29,201	29.660	20,10	29.754	29,008	29.790	29.807	29.660	291795	29.821	29.782	29.822	29.768
6	29.704	29'664	29.212	29.757	29.913	29*792	29.806	29.663	291799	29.830	29-88	29.824	29.771
7 "	29.707	20.668	20,725	29'765	29,850	29'795	29.810	29.667	24.806	29.835	29.791	29.827	29.776
8 .,	30.408	29.670	29.730	29'774	29.930	29.800	29.818	29.677	24.810	29.836	29.794	29.827	29.781
9 "	29.707	29.671	29.731	29.780	29.938	24.808	29.825	29.681	29.812	29.836	29.797	29.830	29.785
10 ,,	29.706	29.671	29.731	29.781	29.940	20.811	29.830	29.686	29.812	29.834	29.796	29.830	29.786
11 ,,	29.706	29.671	29,730	29.782	29.941	29.809	29.833	29.687	29.812	29,834	29,793	29.831	29.786
Means	29.712	29.661	29.725	29.774	29'925	29.806	29.828	29.673	29.800	29.829	29:782	29.821	29.778
Number of Days employed.	31	28	31	30	31	30	31	31	30	31	30	31	

MONTHLY MEAN TEMPERATURE of the Air at every Hour of the Day, as deduced from the Photographic Records.

Hour, Greenwich Mean Solar						18	81.						Yearly
Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means.
Midnight	311	37.1	39.6	11.0	48°.3	53.0	60.0	55.5	52.1	43.7	47.5	3g·1	45·6
1h. a.m.	31.0	3-1	39.5	40.8	47.5	52.6	59'1	55.0	52.0	43.2	42	39.1	45.3
2 ,,	30.8	36.7	391	4C.8	47.0	52'2	58.5	54.5	51'9	43.0	47'4	3912	45.1
3 ,,	30.4	36.6	38.8	40.2	46.5	51.7	58.0	541	51.5	42.7	47.6	391	44.8
4	30.2	36.7	38:-	40.1	16.0	51.6	57:7	53.7	51.4	42.5	47.8	300	44.6
5 ,	300	36.8	38.5	39.8	46.5	52.0	58.0	53.7	51.5	42.0	48.0	38.8	44.6
6 ,,	2419	36.9	38.4	40.4	48.2	53.6	59'4	54.5	5117	41.8	47.9	38.9	45'1
7	29'7	36.9	38.7	15.0	50·8	55'9	61.8	55'9	52.6	41.0	47.8	38.8	46.1
8 .,	29.5	37.2	10.0	44.2	53.0	58	64.0	5719	53.9	43.5	48.0	38.6	47.5
9 .,	35.2	37.7	42.3	47:3	56.6	613	67:3	60.3	55.8	+6.0	48.8	39.2	49.4
10 .,	31:1	38.4	44.1	49.9	58.7	62.7	64.3	61'9	5717	47.8	50.0	40'1	510
11 .,	32.4	30.2	45.8	51.4	60.3	64.3	71.4	63.5	1 593	49.3	51.3	41.0	52.4
Noon	33-7	39.7	4712	52.6	61.5	65.4	73.0	64.8	60.6	50.4	520	41.3	53.6
1 b. p.m.	34.4	10.1	48.1	53.1	61.0	65.7	74.3	65.8	61.4	50.0	5213	42'3	54'2
2 .,	34.7	10.1	10.0	52.0	62.1	65.5	74.6	66.1	62.1	50.5	52'3	42.5	54.4
3 .,	34.2	40.2	48.9	52.8	62'1	65%	74.6	65.5	621	49'4	51.5	41'0	54.1
4 ···	33.5	10.0	48.0	51.6	61.3	65.5	74.1	64.8	61.3	48.6	50'4	41.3	53.4
5 .,	33.0	393	10.1	50.2	60.0	641	72.7	63.5	59.5	46.0	49.6	40.2	521
6	3215	38.6	44.5	48.4	58.0	62.0	70.8	620	57.7	45.7	491	10.1	50.8
7	32.1	38.1	43.0	46·1	55.8	60.1	68.6	60.3	55.9	44.9	48.7	347	49.5
8 .,	31.6	3717	42'0	44.3	53.2	57.9	65.0	58.7	54.7	44.2	48.3	39.5	48.5
9 .,	31.4	37'4	41'2	43.4	51.6	56.0	63.0	57.5	53.5	43.8	48.1	39.3	47.3
10	3112	37.1	40.2	42.6	55'5	5417	62.4	56.2	52'9	43.3	48	391	46.6
11	3112	36°g	40.3	41.9	49.9	53.6	65.6	55.8	52.0	43.3	48	39.1	46.1
Means	31	38.0	42.6	45.8	24.0	58.6	65.9	5912	55· ,	45.4	49.0	3919	48.8
Number / of Days employed, (31	28	31	30	31	30	29	31	30	31	30	31	

MONTHLY MEAN TEMPERATURE of EVAPORATION at every Hour of the Day, as deduced from the Photographic Records, 1881. Hour. Yearly Mean Solar Time (Civil Means. January. February. March. April. May. June, July. August. September. October. November. December. reckoning). 57.4 Midnight 30.3 36.1 38.3 39.6 46.8 51.6 53.9 51.6 42.7 461 38.3 44'4 1h, a,m. 46.2 56 q36.0 38:2 $5 \, \mathrm{r}_4$ 53.7 30.2 39.5 516 42'4 46.2 38.4 44'2 38.4 45.7 42.2 44.0 30.1 35.7 380 39.5 50.9 56.4 53.1 46.2 51.435.7 45.2 37.8 39.3 50.5 56·i 3 29.7 520 46.6 38.3 ٠, āш 41.9 4.5.8 37.9 45.1 415 43.6 29.6 35.9 38.9 50.4 55.7 52.5 510 46.7 38.2 ٠, 38.7 52.4 29.5 36.0 37.7 45.4 50.6 56.0 41.3 46.7 38.0 436 5 510 43.9 6 29.3 35.8 37.7 391 46.8 51.7 56.8 52.8 51.5 41'1 46.7 38.0 ٠, 53**·**9 35.8 38.0 40°2 53.1 58.1 46.6 29.1 48.4 51.8 414 37.9 44.2 ٠, 42°C 42.3 8 29.0 36°1 38.7 20.1 54.4 59.6 5512 52.8 16.2 37.8 45.4 ٠, 43.5 36.4 40.5 55.5 47.3 51.6 56.3 60.7 541 441 38.1 46.4 Q. ,, 29.4 45.2 6r5 47.3 10 300 3-0 41.3 44.8 53.0 55.9 57.0 55.3 48.0 38.8 ٠. 37.4 37.9 42.0 56.7 57.8 45.8 310 45.7 53.6 62.6 56.2 48.7 39.4 48°1 1.1 ٠, 46 i 58.7 39.9 Noon 32.1 42.7 54.2 57.1 63.5 56.7 46.7 49.2 48.7 43.2 46.6 46.7 49'3 1h. p.m. 32.6 38.0 54.3 57.1 64.1 50.3 57.0 40.3 49.0 43.7 32.8 38.1 46.4 54'4 57.0 64°1 59.7 57·3 5--5 46.5 49.2 40.4 491 ٠, 43.8 46.3 3 32.6 38.1 54.557.2 64.1 59.7 46.0 48.7 ٠, 39.9 49.0 57.0 32.1 37.7 43.2 45.8 54.0 63.4 59'2 56.9 45.3 48.2 396 48.5 ,, 44.6 37.4 53.2 47.8 31.7 42.4 44.7 56.5 62.7 58.5 56·1 391 47'9 ٠, 55.6 57.9 47.6 6 31.4 36.9 41.2 43.8 52.3 61.7 55.2 43.8 38.9 47'2 ,, 43.2 36.5 42.6 60.8 57.1 47.3 46.5 31.1 40.6 51.3 54.7 54.1 38.6 ,, 8 36.3 41.6 59.8 56.2 43.0 47'1 45.9 30.8 39.9 49.9 53.9 53.3 38.2 ,, 42.5 45.3 48.9 38.4 30.5 36∙ι 39.4 41'1 52.8 59.0 55.3 52.6 46.0 q •• 38.9 01 30.4 35.9 40.6 48.2 52.3 58.4 54.8 52.2 42.3 46.7 38.2 44'9 ,, 47.5 30.3 35.8 38.7 57.6 46.6 40.3 51.9 54.3 519 42.3 38.3 11 ** 44.6 30.6 53.7 43.5 38.7 46.1 Means 36.6 50.0 54.0 .ig*q 40.3 42.4 55.0 4714 Number of Days employed. 31 28 31 30 31 30 30 29 30 31

MONTHLY MEAN TEMPERATURE of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.

Hour, Greenwich						188	31.						Yearly
Mean Solar I'me (Civil reckoning).	January.	February.	March.	April,	May.	June.	July.	August.	September,	October.	November.	December.	Means
Midnight	28.3	34.7	36.6	37.8	45.5	50.5	55.1	52.4	51.1	41.5	11.9	37.3	42.9
Ih. a.m.	28.0	34.5	36.5	37.9	44.8	50.3	54.9	52.4	51'2	41.4	45.1	37.5	42.9
2 ,,	28.2	34.3	36.6	37.9	44.3	49.6	54.5	517	50.0	41.2	14'9	37.4	42.6
3 ,,	27.7	34.5	36.5	37.6	44.1	49.3	54.4	517	50.7	40.0	45.5	37.3	42.5
+	27.8	34.8	36.9	37.4	44'1	49.2	53.9	51.3	50.6	40.7	45.5	37.2	42.4
Ś.,	27.9	34.9	36.6	37.3	44.2	49.2	54.2	51.1	50.2	40.5	45.3	37.0	42.4
6 ,,	27.6	34.3	36.8	37.5	4.5.3	49'9	54.5	51.4	50.4	40.3	45.4	36.8	42.5
7 ,,	27.3	34.3	37.1	38.0	45.0	50.5	55.0	5210	510	408	45.3	36.7	42.8
8 ,,	27.4	34.6	37.0	39.0	46.4	5o·5	55.3	52.8	51'7	40.0	45.3	36.7	43.1
9	27.0	34.7	3,-6	39.2	47.0	50.5	55.5	52.9	52.5	41'9	456	36.7	43.4
01	27.1	351	38.0	39.4	47'9	50.1	55.4	52.8	53.1	42.3	45'9	37'1	43.7
11 ,,	28.0	35°1	37.6	39.8	47.7	20.4	55.9	53.1	53.4	42.1	46.0	37.4	43.9
Noon	29.2	35.6	37.7	39.6	47'9	5o:3	56.5	53.6	53.4	42.8	46.3	37.5	44'2
1 h, p.m.	29.5	35.3	37.8	40.1	47.8	50.1	56.7	54.0	53.2	42.6	46.3	37.9	44.3
2 ,,	29.2	35.1	38.0	39.9	47.8	500	56.5	54.5	53.2	42.3	46.1	37 9	44.5
3 ,,	29.8	35.0	38.3	39.8	48.0	50.5	56.2	55'0	53.6	42.4	45.8	37.5	44.3
4 ,,	29.5	54'7	37.9	39.9	47.7	50.0	55·6	54.2	53·1	41.7	45.9	37.5	44.0
5 ,,	29'1	34.9	37.9	38.9	47.2	50.3	55.3	54.3	53.1	42.0	45.0	37.3	43.8
6 ,,	29.1	34.6	38.0	38.8	47*2	50.1	54.7	54.4	53.0	41.6	46.0	37.4	43.7
7 ,,	28.8	34.3	37.7	38.6	46•9	49'7	54.7	54.3	52.4	41.2	45.8	37.2	43.5
8 ,,	29.0	34.4	37.3	38.4	46.6	50.3	54.8	54.0	519	41.6	45.8	37.2	43.4
9 ,,	28.3	34.3	37.1	38.4	46.5	49.8	54.9	53.3	51.7	40.0	45.6	37.2	43.1
10 ,,	28.4	34.5	36.9	38.2	45.8	50.0	55.0	53.3	51.5	41.1	45.2	37.0	43.1
II +,	28.0	34.3	36.4	38.3	45.4	5o·3	54.8	52.9	21.5	41.1	45.3	37.3	43.0
Means	28.3	34.7	37.3	38.7	46.3	500	55.3	53.1	52.0	41.5	45.6	37.2	43.3

MONTHLY MEAN DEGREE of HUMIDITY (Saturation = 100) at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.

**.						18.	81.						
Hour, Greenwich Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November	December.	Yearl Mean
Midnight	83	91	90	89	89	90	84	90	9.7	92	92	94	90
1h. a.m.	87	90	90	90	91	92	8-	0.1	97	94	93	94	1.6
2 .,	90	92	91	90	0.1	91	86	90	97	94	9.2	94	92
3 .,	Sq	93	93	80	93	9.2	88	9.2	97	9+	93	94	92
4	90	9.3	94	90	94	92	8-	9.2	97	94	92	94	9.2
	9.1	93	94	9.1	94	90	87	0.1	96	94	9.1	94	92
6	90	91	94	90	93	87	85	90	96	94	9.2	0.3	91
7	90	91	94	86	84	83	79	8.8	95	96	92	9.3	89
8 .	91	110	90	81	75	7.5	71	83	92	90	91	94	85
9	87	80 .	84	7.4	-0	68	66	7.7	89	87	89	91	81
10 ,,	8.4	88	79	67	6-	65	61	7.2	85	83	86	00	7.7
11 .,	84	86	7.3	6.5	6.3	61	58	69	82	76	8.2	87	74
Noon	84	86	70	62	61	53	56	67	77 75	76	81	86	7.2
rh. p.m.	82	8.3	68	62	65	57	55	66		75	80	85	71
2 ,,	78	82	66	62	5g	57	54	66	73	75	80	84	70
3 .,	79	81	67	62	60	56	54	69	7.4	77	81	85	71
4	84	82	68	65	61	57	53	70	75	78	85	87	72
5 .,	85	8.5	73	66	63	61	54	73	80	84	88	89	
6 .,	87	87	77	70	6-	65	5~	~ ~	84	86	90	90	7.8
7 ,,	87	86	8 2	76	72	68	61	81	8.8	87	90	91	81
8 .,	89	88	84	79	-8	76	63	8.4	90	9.1	9.2	92	84
9 ,,	87	89	86	82	82	85	3	86	94	90	9.2	93	86
10 ,,	88	89	88	8.5	84	8+	7.7	89	95	92	92	93	88
11 .,	86	9.1	83	83	87	89	81	90	96	92	9.2	94	80
eans	87	88	83	78	76	75		81	88	87	89	91	83

Total Amount of Sunshine registered in each Hour of the Day in each Month, as derived from the Records of Campbell's Self-registering Instrument, for the Year 1881.

1881,					Re	gistered	l Durati	ion of S	un-hine	e in the	Hour en	ading					Total registered Duration	Correspond- ing aggre- gate Period	Mean Altitude
Month.	5 ^h . a.m.	6 ^h . a.m.	, a.m.	8h. a.m.	9 ^k . a.m	10h. a.m.	11h, a.m.	Noon.	1 ^h . p.m.	21. p.m.	3 ^h . p.m.	th. p.m.	54. p.m.	6 ^h . p.m.	7 ⁶ . p.m	8h. pan.	of Sun- shine in each Month.	during which the Sun was above Horizon,	of the Sun at Noon.
	h	h	h	h	h	h	h	h	h	h	h	h	h	h	h	h	h	h	0
January					0.3	3.4	4 ' 4	6.1	6.8	6.3	4.1	0.4		• •	• •		31.8	259.1	18
February.				0.3	1.2	3.0	3'4	2.6	4.4	4.1	2.1	0.0					26.1	277.9	26
March			1.0	3.4	6.5	12.2	13.7	15.6	13.9	14.0	12.8	12'4	8.1	1.3			115.8	366.9	37
April			2 5	5.0	10.7	12.6	15.1	14.3	14.4	11.5	11.7	11.0	917	7.4	0 ' 2		126.1	414.9	48
Мау	0.5	7.0	11.8	14.7	17'1	19.6	18.2	16.2	16.1	16.7	16.4	:3.7	15.3	13'2	5.4	0.3	202.3	482.1	57
June	1.0	9.8	14.2	14'9	16.1	15.2	16.6	17.9	16.0	14.4	1119	13.2	12.4	9.6	2.2		185.7	494.2	62
July	0.8	9.7	15.3	18.3	16.0	17.2	18.2	18.3	18.8	17.8	16.0	14.7	12'2	10.8	7.1	0.3	211'5	496.8	60
August		0.6	6.4	11.3	12.7	12.5	14.0	12.7	15.7	12.8	11.2	10.3	9.2	5.7	1.4		140.1	449.1	52
S_{eptember}			0.1	1.1	3.0	5.3	8.2	7.8	S - 7	11.6	9.4	10.6	6.6	0.2			73.8	3-6.9	41
October				2 . 5	9.2	12:3	13.0	12.4	13.4	13.2	10'2	7.5	3 · 2				96.6	328.7	30
November					1:3	4 · S	8.8	10.2	11.2	10.6	6.3	1.7		٠			5512	264.4	20
December		١			0.1	1.11	L	8.2	6	7.3	2.3						36.1	242.7	16

The hours are reckoned from apparent noon.

The total registered duration of sunshine during the year was 1301°0 hours; the corresponding aggregate period during which the Sun was alove the horizon was 4454°0 hours; the mean proportion for the year (constant sunshine =1) was therefore 0°292.

by time scale gives a pricture of Sunstine and Count

0708

2t (24 French feet) below the surface of the soil, at Noon tear.

ly. August. September. October. November. December. 0 0 49.68 51.64 52 .28 50 .72 52 17 **92** 50 · 75 50 · 78 52 .18 52:30 .91 49.72 51.67 49 ·75 51.67 52 .22 52.28 **.**97 Cloud Sunor to 50.82 51 70 52 .26 52 .26 .08 49.82 10' 50.85 51.71 52.28 52 *27 49.83 *O2 50 °90 51 .73 52 .27 52 .26 51 .76 52 .27 49.86 .04 50 92 52 '24 50.96 51 .77 51 .80 52 .27 52 23 .06 49 '90 51 .00 52 .27 52'21 .07 49 '92 49 .96 51.83 52 31 52 17 .10 51 '02 14 50.00 51.05 51.87 52 .32 52 '23 Sconstina 51.88 52.32 52 18 15 51 '09 50.02 52 .34 .17 50.05 51 12 51.90 52 17 50.08 52 .32 .20 51.17 52.18 51 '93 .23 50 12 51.17 51 93 52 '32 52 17 1.23 50.16 51 '22 51 '93 52 .33 52:17 51 97 52 16 ·37 ·32 50 19 51 .26 52:33 50 .23 51.30 51 99 52.31 52.14 50-27 , .33 51 .32 52 00 52 .33 52 13 1.34 50.30 51.36 52 .03 52.34 52 12 .36 50.34 51:37 52 '04 52 .33 52 '11 .38 50 .38 51 40 52 .05 52 .33 52 '08 .42 50.42 51 45 52 '07 52 .32 52 .07 50.44 52 09 52 .33 . 46 51 46 52 .06 50.48 51.49 1.47 52 '10 52 .33 52 .06 1.20 50.52 51 '51 52 12 52 '30 52 '06 1.52 50 '55 52 12 52 .30 31.54 52 '05 52 13 , .56 50.59 51.57 52 .32 52 .03 52 '14 4.58 50 .62 51 57 52 '02 52 . 29 3.61 50.66 51 60 52 16 52 . 28 52 '00 9.64 50.68 52 15 51 98

feet (12 French feet) below the surface of the soil, at Noon $Y_{\rm car}.$

51 '93

52 .30

52 15

51.19

Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August,	September.	October.	November.	December
d	0	0	0	0	0	0	0	0		0	0	c
1	50.10	47 '77	46 .12	45.98	46 . 58	48 '43	5t ·32	54.40	55 .80	55.70	54.28	52.50
2	50 '05	47.69	46.10	45.98	16.60	48.54	51 '40	54.49	55.80	55 71	54 '22	52 49
3	49 '98	47 '59	46.10	45.98	46 63	48.61	51.50	54 .59	55.81	55 .70	54.14	52 46
+	49 '90	47 *49	46.08	45.98	46.68	48 .70	51 63	51.69	55.83	55.67	51.16	52 38
5	49.83	47.38	46.04	45.99	46 .71	48.79	51.42	54.78	55.87	55 60	54.00	52 136
6	49.80	47 '24	46 .00	45 '97	46 6	48.84	51 '72	54:77	55 00	55.61	5.3 197	52 131
7	49.73	47 19	45 g t	45.98	46.80	48 95	51.80	54.86	55.87	55.62	53.88	52 *23
S	49.67	47.10	18.54	45.98	46 .86	49.04	51.90	54 93	55 89	55.59	53 178	52 1

9.26

50 17

values is 50°.50.

MONTHLY	MEAN DEGREE	of Hus	HDITY (Saturation = 1
			corresponding A

Greenwich Mean Solar					
Time (Civil reckoning).	January.	February.	March.	April.	May
Midnight	83	qı	go	89	89
1 h. a.m.	87	90	90	90	91
2 .,	90	92	91	90	91
2 ., 3 .,	89	93	9.3	89	93
4 ··· 5 ··	90	9.3	94	00	94
	91	93	94	91	94
6	40	91	94	90	90
7 ···	90	91	94	86	84
8 .,	91	00	90	8 t	75
9	87	89	84	7.4	70
10 .,	84	88	79	67	6-
11 .,	8+	86	73	65	63
Noon	84	86	70	62	61
rh, p.m.	8.2	83	68	6.2	65
3 .,	78	82	66	62	59
.3 .,	79	81	67	62	60
4 ·· 5 ··	84	82	68	65	61
5 ,	85	85	73	66	63
6 .,	87	87	77	70	67
7 8	87	86	8 2	76	7.2
8 ,,	89	88	84	7.9	78
9 ,,	87	89	86	8.2	8.2
10	88	89	88	85	84
11 .,	86	91	83	88	8,
Means	87	88	83	78	76

Total Amount of Sunshine registered in each Hour SELF-REGISTERIN

1881,					Re	gistere	Durat	ion of S										
Month.	5 ^h , a.m.	6 ^ь . а.т.	7 ^h . a.m.	8 ^h . a.m.	9 ^h . a.m	10 ^h . a.m.	11 th , a.m.	Noon.										
	h	h	h	h	h	h		h										
January , , . February ,		• •			1.2													
March			1.0		6.5													
April					10.2													
May	0.3																	
June	1.0	9.8	14.2	14'9	16.1	15.2	16.6	17.9										
July	0.8	9.7	15.3	18.3	16.0	17.2	18.2	18.3	18.8 17.8	16.0	14.7	12.2	10.8	7:1	0.3	211.2	496.8	6
August		0.6	0.4	11.3	12'7	12.5	11.0	12:7	15.7 12.8	11.2	10.3	9.2	5.7	1.4		140.1	449.1	5.
			0.1	1 * 1	3.0	5.3	8.2	7.8	8:7 11:6	9.4	10.6	6.6	0.2			73.8	3-6.9	4
			0 1															
September											7:5	3.2				96.6	328.7	30
				2.5	9.2	12.3	13.0	12.4	13.4 13.5	10.2						96·6 55·2	328.7 264.4	30

The hours are reckoned from apparent noon.

The total registered duration of sun-hine during the year was 1501°0 hours; the corresponding aggregate period during which the Sun was allove the horizon was 4454°0 hours; the mean proportion for the year (constant sunshine =1) was therefore 0°292.

by time Scale gives a picture of Sunshine and Coul

(1.)—Reading of a Thermometer whose bulb is sunk to the depth of 25.6 feet (2.4 French feet) below the surface of the soil, at Noon on every Day of the Year.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	J	0		0	0	0	0	0	0	0		0
ı	52 '01	51.26	50 •37	49 44	48.87	48 .66	48 .92	49.68	50 .72	51.64	52 17	52 * 28
2	52 '01	51 .25	5o ·35	49 42	48.85	48.67	48.94	49.72	50.75	51 .67	52 18	52 .30
3	51.98	51 24	50.30	49 .38	48.85	48 .67	48 97	49.75	50.78	51.67	52.22	52.28
4 5	51 '96	51 '22	50 • 27	49.36	48 .83	48.67	48 98	49.78	50.82	51.70	52 . 26	52 .26
5	51 93	51.18	50 .56	49 .35	48.82	48.66	49.01	49.82	50.85	51.71	52.58	52 . 27
6	51 '92	51.12	50.23	49 *31	48.82	48 ·66	49 .03	49 .83	50.90	51 .73	52 .27	52 . 26
7	51.87	51 11	50.16	49 . 26	48.82	48.65	49.04	49 .86	50 92	51 .76	52 '27	52 '24
8	51 .85	21.11	50 15	49 *27	48.80	48.66	49.00	49.90	50 .96	51 77	52 .27	52 23
9	51 '83	51 '07	50.10	49 *26	48.78	48 .66	49 '07	49 92	21.00	51 '80	52 .27	52 '21
10	51.80	51 .03	50 '08	49.52	48.77	48.68	49.10	49 96	51 '02	51.83	52 .31	52.17
11	51 '77	51.00	50.03	49 .23	48 .76	48.68	49*14	50.00	51.05	51.87	52 -32	52 .23
12	51.74	50.97	50.00	49 20	48.75	48 .70	49.15	50.03	51.09	51.88	52 .32	52 18
13	51 '71	20.94	49 '96	49.18	48.24	48.40	49.17	50 '05	51 12	51 · 90	52 .34	52 17
14	51.68	20.01	49.93	49 17	48 73	48 . 72	49.20	50.08	21.12	51 · 93	52 .32	23.18
15	51.65	55.87	49.89	49 15	48.73	48.77	49.53	50 12	51.12	51 93	52 .32	52 17
16	51 63	50.84	49 *87	49 12	48 '71	48.74	49 *25	50 16	51 .22	51 '93	52 .33	52 17
17	51 .62	50 ·81	49.84	49.12	48 . 72	48.24	49 *27	50.19	51.26	51 '97	52 ·33	52 16
18	51 .60	50 .77	49.83	49.10	48.70	48.72	49 '32	50 '23	51.30	51 99	52 .31	52 14
19	51 '56	50 .75	49.78	49 .07	48.70	48 .75	49.33	50.27	51 '32	52 00	52 •33	52 13
20	51 .21	50.71	49 • 75	49.04	48.70	48·76	49.34	50.30	51 .36	52 .03	52 .34	52.12
21	51.45	50.65	49 '71	49 '02	48.69	48 '77	49 .36	50.34	51 -37	52 .04	52.33	52 11
2 2	51 42	50 .64	49.68	49 .00	48.68	48 79	49.38	5o ·38	51.40	52 °05	52 .33	52 .08
23	51 43	50.60	49.67	49.00	48 .69	48 .79	49 '42	50.42	51 45	52 *07	52 .32	52 '07
2.4	51 ·3 9	50.56	49.64	48.98	48.67	48.82	49.46	50.44	51 46	52 09	52 .33	52 •06
25	51 .37	50.54	49.60	48 .97	48 .67	48.83	49 '47	50.48	51.49	52.10	52 .33	52 .06
26	51 • 57	50 .49	49 • 57	48 '95	48.66	48.84	49.50	50.52	51.21	52.12	52 .30	52.06
27	51 .37	50.44	49 55	48 93	48.66	48.86	49.72	50 . 55	51.24	52 12	52 .30	52 .02
28	51.35	50.40	49 • 54	48 '92	48.56	48 .87	49.56	20.20	51.57	52 13	52 .32	52 .03
29	51 .34		49 • 50	48 '92	48 66	48.88	49 . 58	50 .62	51.57	52 14	52 .59	52 .03
30 31	51 '32		49 47	48.90	48.66	48 .03	49 '61	50.66	51 .60	52 16	52 . 28	52 .00
31	51 .31		49.45		48.66		49.64	50 .68		52.15		51 .98
Means.	51.64	50 .88	49.89	49.14	48 .4	48 .74	49 • 26	50 .17	51.19	51 '93	52 '30	52 15
	1	l l		(T)	n of the tv	1			1			!

(IL)—Reading of a Thermometer whose bulb is sunk to the depth of 12.3 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December,
d	0	0	0	0	0	0	0	0		0	0	0
1	50.10	47 '77	46.12	45 .98	46.28	48 '43	51 '32	54.40	55.80	55 '70	54 . 2 3	52 -50
2	50 °05	47 .69	46.10	45.98	46.60	48.54	51 40	54 49	55 .80	55.71	54.22	52 '49
3	49, 98	47 '59	46.10	45.98	46 .63	48.61	51.50	54 .59	55.81	55.70	54.14	52 46
ź	49 '90	47 '49	46 .08	45.98	46.68	48 .70	51.63	51.69	55.83	55 67	54 16	52.38
5	49.83	47.38	46.04	42.99	46 . 71	48.29	51 *72	54.78	55 .87	55 60	24.00	52 ·36
6	49.80	47 '24	46.00	45 '97	46.76	48.84	51 72	54 .77	55 100	55.61	53 -97	52 : 31
7	49.73	47 19	45 91	45 *98	46.80	48 .95	51.80	54.86	55 .87	55.62	53.88	52 *2.3
8	49 '67	47 '10	45.81	45.98	46 .86	49.04	51 '90	54 93	55.89	55 ·59	53.78	52 10

(II.)--Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year—concluded.

						1881.						
Days of he Month.	January.	February.	March.	April,	May.	June.	July.	August.	September.	October.	November,	December.
d		0	0	0	0		J	0	0	0	0	
9 10	49 .01 49 .25	47 °00 46 °97	45 79 45 75	46 °00 45 °97	46 ·88	49 *18 49 *29	52 '00 52 '11	54 192 55 100	55 ·90 55 ·85	55 •56 55 •5 ₇	53 ·69 53 ·62	52 °12 52 °06
11 12 13 14 15	49 '47 49 '41 49 '34 49 '28 49 '21	46 ·86 46 ·80 46 ·78 46 ·71 46 ·68	45.70 45.66 45.67 45.62 45.61	46 .00 45 .00 46 .00 46 .00	46 *97 47 *03 47 *09 47 *13 47 *19	49 '40 49 '52 49 '65 49 '77 49 '88	52 ·25 52 ·35 52 ·47 52 ·58 52 ·71	55 °09 55 '13 55 '20 55 '29	55 ·84 55 ·85 55 ·87 55 ·88 55 ·81	55 •59 55 •54 55 •49 55 •47 55 •39	53·53 53·47 53·39 53·29 53·21	51 *99 51 *98 51 *87 51 *84 51 *78
16 17 18 19 20	49 18 49 10 49 01 48 93 48 83	46 ·63 46 ·56 46 ·54 46 ·50 46 ·49	45 ·63 45 ·64 45 ·68 45 ·69 45 ·70	46 °09 46 °03 46 °08 46 °08	47 ·25 47 ·32 47 ·38 47 ·43 47 ·50	49 '97 50 '05 50 '12 50 '21 50 '30	52 •79 52 •83 52 •99 53 •09 53 •10	55 ·36 55 ·40 55 ·45 55 ·50 55 ·54	55 ·83 55 ·88 55 ·89 55 ·86 55 ·87	55 ·30 55 ·30 55 ·26 55 ·20 55 ·18	53 · 16 53 · 10 53 · 00 53 · 00 52 · 99	51 .70 51 .63 51 .56 51 .48 51 .37
21 22 23 24 25	48 · 75 48 · 70 48 · 63 48 · 54 48 · 43	46 *42 46 *42 46 *36 46 *34 46 *30	45 .70 45 .72 45 .78 45 .79 45 .80	46 ·11 46 ·17 46 ·22 46 ·26 46 ·31	47 ·59 47 ·66 47 ·77 47 ·81 47 ·89	50 · 39 50 · 48 50 · 54 50 · 67 50 · 70	53 ·20 53 ·29 53 ·42 53 ·57 53 ·64	55 ·58 55 ·64 55 ·69 55 ·67 55 ·70	55 ·81 55 ·77 55 ·77 55 ·79 55 ·78	55 ·10 55 ·02 54 ·90 54 ·83	52 ·93 52 ·90 52 ·86 52 ·82 52 ·79	51 *27 51 *14 51 *06 50 *98 50 *92
26 27 28 29 30 31	48 · 36 48 · 30 48 · 19 48 · 09 47 · 99 47 · 89	46 · 22 46 · 13	45 ·83 45 ·84 45 ·90 45 ·90 45 ·96	46 · 36 46 · 40 46 · 44 46 · 49 46 · 54	47 '95 48 '03 48 '10 48 '18 48 '26 48 '34	50 ·83 50 ·88 51 ·00 51 ·19 51 ·22	53 '76 53 '85 54 '00 54 '10 54 '19 54 '29	55 ·74 55 ·73 55 ·76 55 ·79 55 ·81 55 ·76	55 · 78 55 · 73 55 · 71 55 · 72 55 · 71	54 .77 54 .68 54 .61 54 .51 54 .43 54 .33	52 ·71 52 ·68 52 ·66 52 ·57 52 ·52	50 ·87 50 ·78 50 ·70 50 ·64 50 ·52 50 ·47
		46.80	45.82	46 .11	47 .33	49 .84	52 .76	55.27	55 .82	55 .23	53:31	51.60

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6:4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0		0	0		•	0	0	0			0
1	47 .60	43.48	43.61	45 .22	47.68	52 .44	56 50	60.33	59 .40	57 .97	53 .03	51.68
2	47 .60	43.46+	43.50	45.19	47.74	52.64	56 • 58	60:32	59:35	57 87	52 '83	51.57
.3	47.21	43.45	43 43*	45.18	47 .86	52 .84	56 .70	60 •30	59 28	5 7 • 79	52 60	51.44
4	47:40	43 '47 "	43.38	45 19	48.00	53 10	56 '90	60.30	59 *20	57.63	52 43	51 30
5	47 31	43.21	43 ·36*	45 .20	48 '13	53 .31	57.10	60.34	59 10	57 *47	52 20	51 '22
6	47:30	43.61	43 '35*	45 '23	48 .23	53.67	57 19	60.26	59.01	57 .37	52 '01	51.10
7	.17 *20	43.79	43 '37"	4.5 .27	48:30	53.83	57 41	60 •36	. 58 90	57.24	51.94	50 '98
S	47 11	43.89	43 '42 "	45:30	48 41	54.06	57 '73	60 • 46	58.83	57 *02	51 95	50.80
9	47.00	43 '92	43.53%	45 * 35	48.58	54 '20	57 '98	60.15	58.80	56 .83	52 '00	50 .68
10	40.01	43 *92	43.66*	45 41	48.76	54 '27	58.12	60 • 50	58.70	56 · 58	52 .06	50 •53
1.1	46 .76	43.00	43.80	45.48	48 *97	54.29	58 - 26	60.59	58 -67	56 . 56	52.10	50.39
1.2	46.61	14 00	44 '02	45.57	19.20	54 29	58 - 31	60.52	58 •64	56 .32	52 13	50 *20
13	46:47	44 109	44 - 27	45.70	49.37	54 35	58 38	60 • 57	58.60	56 -12	52 '20	50 ·00
1.4	46 32	44.14	44.20	45.87	49 44	54 .27	58 50	60 53	58 • 57	56 .01	52 '21	49.80
ιδ	46 10	44 11	44.70	46 '01	49.58	54 35	58 71	60.50	58 41	55 .83	52 .27	49.61

The symbol * indicates that the reading was estimated, in consequence of the fluid having gone out of range of the scale,

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6°4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year—concluded.

						1881.						
Days of the Month.	January,	February.	March.	April.	May.	June.	July.	August.	September,	October.	November.	December
d	0	0	0	v	0	0	v	0	0	0	0	0
16 17 18 19 20 21 22 23 24 25	46 00 45 80 45 60 45 35 45 15 45 00 44 79 44 58 44 42	44 '03 43 '96 43 '96 43 '96 44 '00 44 '01 44 '01 43 '97	44 '85 45 '00 45 '10 45 '19 45 '23 45 '32 45 '41 45 '53 45 '57	46 · 21 46 · 45 46 · 67 46 · 87 47 · 05 47 · 23 47 · 38 47 · 43 47 · 43	49 '72' 49 '92' 50 '09 '50 '20 '50 '31' 50 '46' 50 '54' 50 '68' 50 '80	54 '45 54 '55 54 '67 54 '83 55 '01 55 '18 55 '31 55 '50 55 '69	53 ·84 59 ·00 59 ·33 59 ·59 59 ·68 59 ·92 60 ·10 60 ·30 60 ·46 60 ·46	60 '40 60 '27 60 '18 60 '12 60 '09 60 '02 60 '01 59 '95 59 '84	58 ·38 58 ·40 58 ·33 58 ·22 58 ·18 58 ·12 58 ·12 58 ·12 58 ·19 58 ·19	55 · 70 55 · 64 55 · 49 55 · 26 55 · 01 54 · 78 54 · 78 54 · 58 54 · 58 54 · 58 55 · 29 53 · 95 53 · 88	52 '32 52 '33 52 '37 52 '40 52 '40 52 '32 52 '26 52 '20 52 '19	49 '41 49 '22 48 '84 48 '68 48 '54 48 '54 48 '36 48 '30 48 '20
26 27 28 29 30 31	44 '24 44 '09 43 '92 43 '80 43 '57* 43 '51'	43 ·80 43 ·70 43 ·66	45 · 53 45 · 50 45 · 48 45 · 41 45 · 33 45 · 28	47 * 45 47 * 43 47 * 48 47 * 51 47 * 58 47 * 62	50 · 98 51 · 12 51 · 36 51 · 59 51 · 80 52 · 05 52 · 28	55 ·79 55 ·98 56 ·09 56 ·19 56 ·30 56 ·40	60 · 50 60 · 44 65 · 50 60 · 47 60 · 39 60 · 31	59.80 59.79 59.70 59.64 59.59 59.44	58 · 15 58 · 10 58 · 10 58 · 09 58 · 03	53 ·82 53 ·72 53 ·67 53 ·51 53 ·40 53 ·20	52 · 14 52 · 06 51 · 83 51 · 81 51 · 78 51 · 72	48 ·10 47 ·92 47 ·73 47 ·57 47 ·47 47 ·40 47 ·32
Means.	45.77	43.85	44 .22	46.30	49.75	54.60	58 .86	60 •15	58.54	55 •63	52 '20	49 *44

The symbol * indicates that the reading was estimated, in consequence of the fluid having gone out of range of the scale.

(IV.)—Reading of a Thermometer whose bulb is sunk to the depth of 3·2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
d	0	0	0	0	0	0	0	0	0	0	0	0
1 2 3 4 5	43 ·86 43 ·41 43 ·38 43 ·42 43 ·32	38 ·90 39 ·20 39 ·44 40 ·11 40 ·79	39 ·50 39 ·20 38 ·98 38 ·90 39 ·06	42 ·62 42 ·78 43 ·03 43 ·20 43 ·21	47 .78 48 .07 48 .30 48 .41 48 .32	55 ·87 56 ·52 57 ·19 57 ·88 58 ·30	59.65 60.19 60.82 61.32 62.07	62 ·88 62 ·71 62 ·80 62 ·92 63 ·30	59 '93 59 '60 59 '27 59 '09 58 '90	57 ·42 57 ·17 56 ·83 56 ·50 56 ·20	48 · 43 47 · 83 47 · 48 47 · 50 48 · 09	48 · 52 48 · 40 48 · 24 48 · 16 47 · 83
6 7 8 9	43 ·30 43 ·09 42 ·69 42 ·30 42 ·12	40 .00 40 .00 41 .03 41 .00	39 ·85 40 ·93 41 ·92 42 ·45 42 ·69	43 ·25 43 ·45 43 ·63 43 ·80 44 ·10	48 .46 49 .13 49 .80 50 .30 50 .58	58 · 38 57 · 93 57 · 27 56 · 60 56 · 18	62 .67 63 .11 62 .68 62 .22 61 .80	63 ·53 63 ·90 63 ·97 63 ·80 63 ·59	58 ·82 58 ·86 59 ·04 59 ·09 59 ·00	55 .70 55 .16 54 .41 54 .10	48 ·83 49 ·50 49 ·68 49 ·97 50 ·11	47 '72 47 '49 47 '49 47 '10 46 '58
11 12 13 14 15	41 ·86 41 ·65 41 ·28 40 ·85 40 ·50	41 '29 41 '40 41 '07 40 '61 40 '40	43 ·19 43 ·73 44 ·08 44 ·12 44 ·13	44 '51 44 '93 45 '50 46 '69	50.66 50.60 50.69 51.00 51.50	55.87 55.88 56.20 56.61 57.00	61 · 81 62 · 10 62 · 59 63 · 10 63 · 72	63 · 31 62 · 90 62 · 62 62 · 09 61 · 68	58 ·88 58 ·60 58 ·45 58 ·42 58 ·31	53 ·80 53 ·90 53 ·81 53 ·80	50 '49 50 '79 50 '95 51 '02	46.02 43.24 43.24 44.89 44.53
16 17 18 19	40 °09 39 °62 39 °22 38 °78 38 °58	40 · 43 40 · 47 40 · 50 40 · 77 41 · 00	44 '10 44 '02 44 '03 44 '10 44 '40	47.05 47.41 47.70 48.04 47.98	51 ·79 51 ·83 51 ·60 51 ·65 51 ·81	57 · 30 57 · 70 58 · 08 58 · 30 58 · 47	64 · 40 64 · 91 65 · 42 65 · 73 65 · 80	61 ·45 61 ·42 61 ·48 61 ·48 61 ·39	58 ·26 58 ·04 57 ·94 58 ·10 58 ·40	53 ·37 52 ·70 51 ·93 51 ·49 51 ·20	51 '01 50 '90 50 '85 50 '43 50 '21	44 *45 44 *36 44 *36 44 *33

(IV.)—Reading of a Thermometer whose bulb is sunk to the depth of 3·2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year—concluded.

						1881.						1
Days of he Month	January.	February.	March.	April.	May.	June.	July.	August.	September,	October.	November.	December
0	0	0		-	0	0	0	0	0	0	0	0
21	38:38	40.02	44 '54	47 .55	52 .03	58 *72	65.89	61.18	58 • 53	51.00	50.09	44.10
2.2	38 .29	40.77	44.20	47 '01	52 20	59.10	65.49	61.14	58.70	50 •96	50 13	41 00
2.3	38 10	40.37	44.06	46 .72	52 .60	59:37	65.13	60.90	58 • 53	50.74	50 '22	43.61
2.4	37.80	40.10	43.60	46 ·55	53 · 1 i	59 '53	64 *68	60.80	58 .41	50.89	50 13	43.10
2.5	37 .80	39 '90	43.60	46 .68	53.70	59 •54	64 •34	60 .71	28 .41	51 '03	49.96	42 .60
26	37.79	39 '79	43.50	46.92	54.50	59.64	64 .03	60.59	58 .55	50.93	49.98	42 '22
27	37 .70	39.72	43 15	47 .06	54 .53	59 - 39	63.70	60.60	58 .50	50 61	49 72	42.34
28	37.60	39.66	42 79	47 *02	54.82	59.35	63.58	60.51	58 .28	50 ·33	49 50	42 '74
2 ()	37.52		42.61	47 '05	55 10	59 .27	63.09	60.31	57 '98	49 99	49.31	43.08
29 30	37.60		42.61	47.30	55 •33	59.34	62.98	60 *20	57.70	49.69	48.94	43.20
31	38.37		42 .60		55 '40		63.00	60.02		49.08		43.32
Means.	40.33	40.43	42 .61	45 ·62	51.46	57 .89	63 .29	61.94	58 .62	53 .02	49 '74	45.16

(V.)—Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d		0	0	0	0	0	0		0			0
1	37.4	37.0	34 '0	41.8	50 .5	62 '1	66 %	61.3	56.3	53 • 5	39 .2	45.4
2	40.8	38.9	34.8	43.2	51 '0	63 .7	65 ·ı	63.0	56 1	53.0	40.9	46.0
3	41.2	4+ *2	35 •6	40.9	48.3	64.0	66 •4	68 .5	56.3	53 '2	41.9	45 3
5	40.0	44.0	38 *2	41.1	48.3	65 · 2	69.8	65 · 1 67 • 3	56 .1	53 °0 49 °3	50 · 2 52 · 2	43 · 1 45 · 8
.)	40.0	42.0	43.0	41.4	52 0	03.0	72 '0	07.3	30 0	49 3	32 2	40 0
6	30 0	37.4	45 *7	43 0	54.7	56 • 3	68 %	66 .0	1.85	49 1	52 0	43.5
7 8	37 9	36 0	48 .3	44 '2	54.0	54 .2	61.9	65 1	58 •3	20.9	49 2	45.3
1	36 1	42 0	45.0	44 .0	54.0	53 5	62.7	66.0	57 •9	50 0	53.6	42 2
9	37.5	41.0	45 T	45.1	53 .2	53 •0	61.7	61.9	58.6	48.6	49 T	38.8
10	37 *4	44.2	47 .6	40.0	21.0	24.0	62 •9	62.2	57 1	48.5	310	
11	36 • 3	39.1	47.5	49.1	49 '2	55 .0	65 .8	61.2	56.0	53 .7	51 .8	37 .8
12	33 • 5	37 0	46.0	49.5	52 .8	59.0	67 • 9	60.0	57.0	52 0	52 .7	39 0
1.3	33 .0	36 • 2	44.3	51.3	54 •3	59 •8	67 .2	58 .2	56 8	50.1	52 .3	37 .8
14	31 '2	38.0	44.0	51.8	55.4	59.3	68 .7	58.4	57.3	53.0	51 '4	38 • 2
15	29 0	38.9	42 •3	51 %	56 •2	61.1	72 '7	59 •3	56 0	48.3	20.1	40.2
16	29:5	38 • 2	42 '2	50 7	52 .8	62 .7	72.3	61.4	54.2	43.2	50.0	40.3
17	28 4	37 -5	43.0	50 .0	53.0	63.3	70.4	61.0	57.1	43.9	50 '2	43.0
18	29 0*	40.4	44.3	52.6	54.2	61.3	71.7	59 • 9	59.0	41.0	45.0	42.1
19	28.5*	38 8	46.0	46.0	54.0	61.0	72.6	61.0	60.0	45.6	48:3	40.3
20	28 .0*	39 •7	46.5	44 .1	54.3	62 •3	68.0	58 '9	59.8	4 6 · 8	49 • 1	40.9
21	29.0*	36.0	43.0	43.0	53 .9	63 · 2	65.0	60.8	60.1	47 *2	49 '9	40.1
22	30 0*	35 .7	39 3	43.8	56.3	62 9	64.6	59.6	56 .4	47 °9	50 '9	36 .8
2.3	32 0	35 7	40.8	45.0	58 .0	62.4	64 .7	61 .7	57 0	49 4	49 .5	35 •2
2.4	30.6	35.5	44.0	47 °O	58.0	63.0	66.0	60.0	58 .7	49.0	48.3	34 ·8 35 ·5
25	30 .4	36 .7	41.0	5o · o	60.0	62 .1	63 %	59 .6	60.0	47 *0	5o · 3	33.3

The symbol * indicates that the reading was estimated.

(V.)—Reading of a Thermona ter whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year—concluded.

						1881.						
Days of the Month.	January.	February.	March.	April.	May.	June,	July.	August.	September.	October.	November.	December
d 26 27 28 29 30 31	29 °0 32 °8 32 °4 37 °5 40 °0 39 °3	36 · 5 36 · 3 35 · 0	38 · 7 38 · 3 38 · 9 39 · 8 39 · 7 40 · 8	47 °6 47 °1 48 °3 50 °2 52 °0	59 ·3 59 ·9 60 ·0 59 ·0 58 ·0 59 ·8	60 · 3 61 · 2 60 · 1 61 · 2 62 · 6	63 · 1 62 · 1 60 · 0 63 · 6 64 · 0 62 · 0	61 °0 58 °9 57 °3 59 °6 60 °0 57 °3	58 °0 55 °9 54 °5 54 °1 54 °0	46 · 5 44 · 9 44 · 8 43 · 9 41 · 7 38 · 8	46 · 2 46 · 5 47 · 2 44 · 0 44 · 8	40.8 41.8 40.6 42.0 41.8 41.8
Means.	34.1	38 • 5	42.3	46.7	54.7	60.4	66 • 2	61 .3	57 '2	48.0	48 •6	40.9

(VI.)—Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day of the Year.

the Month. d	of January.	February.	March.	April.	May.	1881. June.	T.,1					
1 38.5 35. 2 42.8 43. 3 41.4 45. 4 40.6 48. 4 10.1 42. 6 40.4 37. 7 39.8 35. 8 34.9 47. 9 37.2 43. 10 33.6 38. 11 33.6 38. 12 30.6 38. 13 30.3 39. 14 24.7 39. 15 20.5 40. 16 22.6 41. 17 25.0 38. 18 28.5 44. 19 26.0 37. 20 21.8 38. 21 27.6 37. 22 22.0 33. 23 33.0 35. 24 27.6 37. 25 27.5 37. 26 23.9 39.	banuary.	reordary.	march.	April.	May.	June.	July.	August.	September.	October.	November.	December
2	0	0	0	0	0	0	0	0	0	0	0	0
3		35 '4	36 •3	48.8	54.8	74.2	78 ·o	67.8	56 •3	59 .2	37 .8	45·8
4 40.6 48.4 5 41.1 42.4 6 40.4 37.7 7 39.8 35.7 8 34.9 47.7 9 37.2 43.7 10 34.0 49.7 11 33.2 36.3 12 30.6 38.3 13 30.3 39.1 14 24.7 39.1 15 20.5 40.1 16 22.6 41.3 17 25.0 38.3 18 28.5 44.1 19 26.0 37.3 20 21.8 38.3 21 27.6 34.3 22 20.0 33.3 23 33.0 35.3 24 27.6 37.3 25 27.5 37.3 26 23.9 39.1 27 41.3 37.3 27 41.3			39 ·5 38 ·8	47 ·8	57 •4	74.3	74 '9	69.7	57 1	58 1	41.3	51 '7
3 41.1 42. 6 40.4 37. 7 39.8 35. 8 34.9 47. 9 37.2 43. 10 34.0 49. 11 33.2 36. 12 30.6 38. 13 30.3 39. 14 24.7 39. 15 20.5 40. 16 22.6 41. 17 25.0 38. 18 28.5 44. 19 26.0 37. 20 21.8 38. 21 27.6 34. 22 22.0 33. 23 33.0 35. 24 27.6 37. 25 27.5 37. 26 23.9 39. 27 41.3 37. 26 23.9 39. 27 41.3 37.		48.9	42.5	45.3	49 °2 53 °0	73 °2 77 °4	77 °0 81 °9	69 ·9 73 ·0	56 ·1 58 ·o	59 ·8 54 ·5	44.2 58.6	48 ·6
8 34 9 47 47 49 49 49 49 49 49 49 49 49 49 49 49 49		42.6	51 .8	45.2	61 .5	63.8	85.4	79.8	61.5	47 '3	59 .9	47 .8
8 34 9 47 47 49 49 49 49 49 49 49 49 49 49 49 49 49		37.7	52.3	47 .3	64.0	54 •5	67.0	68 .4	62.3	51.0	54.3	46.6
9 37 2 43 3 10 49 11 33 12 36 12 36 13 30 13 30 14 24 77 39 15 20 5 38 18 28 5 14 17 25 10 20 21 8 38 12 22 22 10 33 23 33 10 35 12 27 5 37 26 23 39 39 12 17 26 23 37 27 26 23 37 27 27 27 27 27 27 27 27 27 27 27 27 27			56.0	48 · 9	63 ·2	52 · 5	60.4	70 '3	60 '1	52.8	53.8	45.0
10		43.5	47 4 50 7	53 ·o	56 • 9	5 5 '2	63 ·7 67 ·0	61.8 61.8	61 · 5	47 °2 48 °3	51 °0 51 °2	43.8 39.8
12		49.0	57.5	56 •3	52 ·o	57 .1	67.6	63.2	57.0	52.5	55.8	33 -7
13		36 .5	52.0	28.9	54.0	63.0	7± °0	65 ·o	54 '9	60 • 2	55 ·5	33.3
14 24.7 39.40.15 22.5 40.16 22.6 38.18 28.5 44.19 26.0 37.20 21.8 38.20 21.20 22.20 33.20 35.24 27.6 37.25 27.5 37.26 23.39.30.35.20 27.41.33 37.26 23.39.30.35.20 27.27.5 37.26 23.39.39.30.30.30.30.30.30.30.30.30.30.30.30.30.			48 °0 45 °2	55 · 2 63 · 3	63 ·4 66 ·8	66 ·3 67 ·2	75 ·9 75 ·8	57 ·8 57 ·8	58 · 1	56 •2	56 •8	38·5 35·5
15		39 .7	49.0	39.7	64.0	65.8	79 1	60.0	62 '9	51 '4 55 '1	57 ·8 52 ·1	41.2
17		10.1	48.5	58.2	63·4	71.0	87.3	63.5	55.0	48.6	53.2	41.7
18		41.3	49 '4	58 '0	52.5	70 .0	81.8	66 •2	57 .2	44.0	53.6	42 '0
19 26 0 37 38 38 20 21 8 38 22 22 20 33 35 24 27 5 37 25 27 5 37 26 23 37 27 41 3 37 37 37 37 37 37 37 37 37 37 37 37 3	25.0		48 · 3 52 · 0	61.6	59 · 1	68 · 3 62 · 9	75·3 83·9	63·3 61·8	65 ·8 67 •6	53 · 1 53 · 2	52 ·8 45 ·0	46.5
20 21.8 38. 21 27.6 34. 22 22.0 33. 23 33.0 35. 24 27.6 37. 25 27.5 37. 26 23.9 39. 27 41.3 37.	26.0	37.5	53 •0	41.8	60.2	67.4	83.5	65.1	64.7	50.8	52 .8	41 ·8
22 22 0 33 0 35 0 35 0 24 27 5 37 0 37 0 26 23 0 39 0 39 0 27 41 3 37 0 37 0 27 41 3 37 0 37 0 37 0 37 0 37 0 37 0 37 0 3	21.8	38 •3	51 '5	41.3	62 '1	68 .7	66 -4	65 ·o	66 9	5 2 · 6	54 •9	41 2
23 33 ° 0 35 ° 0 24 27 ° 6 37 ° 0 37		34 '2	43.5	44.6	63.3	68 .0	67 .8	64.8	62 .2	48.9	51.7	40.7
24 27.6 37.7 25 27.5 37. 26 23.9 39. 27 41.3 37.			35 •4	46.9	67 ·6	69.0	63 ·2	66 ·9	56 · 4	20.2 48.4	52 *8	34 ·3 31 ·5
25 27.5 37. 26 23.9 39.5 27 41.3 37.		37.0	47 .3	53.0	66.5	71 9	70 0	62.2	64.4	48.3	53 ·4	35 · 2
27 41.3 37.		37 .8	42 *9	36 · 4	70.9	63.6	66.5	62 1	65.7	47 .3	ŏ1 ·7	36 •7
		39.0	40.3	52 0	64.2	66 • 2	67 .2	66 •6	63 .4	+7 .8	47:3	44.3
			42 °1 44 °7	52 ·3 56 ·4	63·3 63·0	63.4	63 .3	61.9	57 '2	44.0	47 1	+2 +
29 47.0		54 0	45.8	28 .1	62 '4	64 ·3	69.2	62 '0 61 '8	59 ·0	46.8	51 ·8	+0 °0
30 46.2	46 2		44 °9 45 °6	60 .6	68 •2	70 '2	65 .2	65.0	59.2	41.7	46.4	43:3
31 45.8	45.8		45 · 6		71.9		63.5	56 • 5		35.3		43.6
Means . 33 4 39 .	15. 33.4	39 •9	46 .4	52 .6	61.5	66 · I	72.2	65 · I	60 .3	50 .5	51.4	41.2

ABSTRACT of the CHANGES of the DIRECTION of the WIND, as derived from the Records of Osler's Anemometer.

1881,		on of the ind.	Apparent	Times of Shifts	Amount	Monthly of Mo		1881,	Directio Wi		Apparent	or chille	Amount	Monthly of Me	
Month.	At beginning of Month.	1 +	Motion.	of the Recording Pencil.	of Motion.	Direct.	Retro- grade.	Mouth.	At beginning of Month.	At end of Month.	Motion.	of the Recording Pencil.	of Motion.	Direct.	Retro grade
January	w.s.w.	w.s.w.	0	d h m 17. 0. 0 21. 0. 0 23. 21. 0 25. 21. 0 27. 0. 0 27. 21. 10	- 360 + 360 + 360 + 360	0	0	June	S.E.	S.S.E	-337½	d h m 1. 2.55 3. 0. 0 3. 21. 5 11. 0. 0 11. 8. 0 14. 2.45	+ 360 + 360 - 720 + 360 + 360		0
February .	w.s.w.	N.N.W.	+ 90	9. 8.40 14. 8.45 15.21.50 18. 2.50 25. 8.45 27. 0. 0	- 360 + 720 + 360 + 360	1170		.	s a n	N. W.	2.5	15. 0. 0 19. 21. 0 24. 0. 0 24. 2. 50 26. 7. 45	+ 720 - 360 - 360 - 360		
March	N.N.W.	N.E.	+ 67½	3. 0. 0 3. 8. 40 4. 0. 0 4. 8. 40 15. 2. 45 16. 21. 5 17. 0. 0 23. 0. 0 26. 8. 50 27. 8. 5 31. 8. 40	- 720 - 360 + 360 - 360 + 720 + 360 - 720 - 360		65212	July	S.S.E.	W . X. W .	+133	1. 2. 40 1. 21. 0 3. 0. 0 5. 0. 0 5. 2. 30 14. 3. 0 14. 21. 10 15. 3. 0 17. 0. 0 17. 7. 15 20. 10. 0 21. 0. 0	+ 720 + 360 + 360 - 720 + 720 - 360 - 360 - 360 + 360 + 360	495	
April	N.E.	S.W.	-180	6. o. o 8. 2, 50 8. 21. o 11. 2, 50 13. o. o 14. 8. 45 15. 7, 45 15. 21. o 21. 21. o 23. 1, 40 27, 21. 10 28. o. o	- 360 + 360 + 360 - 360 + 360 - 360 + 360 + 360 + 360		180	August	W.N.W.	N.N.W.	+ 45	29. O. O 1. 0. O 1. 1.50 2. 8.15 12. O. O 12. 8.15 17. 21. O 18. 21. O 23. O. O 23. O. O 23. 9.50	+ 360 - 720 - 360 + 360 - 360 - 360 - 360 - 360 - 360 - 360 + 360		1035
Мау	s.w.	S.E.	+270	1. 21. 0 3. 21. 0 8. 21. 10 10. 2. 55 11. 2. 50 13. 0. 0 15. 7. 45 21. 0. 0 23. 2. 40 25. 21. 10 30. 8. 40 31. 0. 0	+ 360 - 360 + 360 + 360 + 360 - 720 + 360 + 720 + 360	2430		September	N.N.W.	E.N.E.	+ 90	28. 0. 0 4. C. 0 6. 0. 0 6. 21. 10 14. 9. 40 14. 21. 10 18. 0. 0 18. 8. 10 20. 0. 0 21. 0. 0 22. 8. 20	- 360 + 360 - 360 + 360 - 360 + 720 + 360 - 360 + 360	1170	

The sign 4 implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., &c., or in direct motion; the sign - implies that the change has taken place in the order N., W., S., E., N., &c., or in retrograde motion.

The times of shifts of the recording pencil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or has travelled out of range.

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer—concluded,

1881, Month.	Directio Wi At beginning of Month.		Apparent Motion.	Times of Shifts of the Recording Peneil,	Amount of Motion.		tion.	1881, Month.	Direction Wind At beginning of Month.		Apparent Motion.	Times of Shifts of the Recording Pencil.	Amount of Motion.		
September —cont. October		S.E.	o + 67½	d h m 25. o. o 27. 21. o 2. 8. 50 3. 2. 45	+ 360 + 360 - 360		0	November			-337½	d h m 2. 2.50 3. 9.15 10. 0.30 18. 0. 0	+ 360 + 360	3821	o
				17. 0. 0 20. 0. 0 20. 9. 45 21. 21. 15 30. 21. 5 31. 0. 0	- 360 + 360 + 360 - 360	787 j		December	S.S.E.	S.S.W.	+ 45	6. 21. 0 9. 8. 45 10. 0. 0 13. 9. 10 21. 21. 0	+ 360 - 360 + 360	405	

The sign + implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., &c., or in direct motion; the sign - implies that the change has taken place in the order N., W., S., E., N., &c., or in retrograde motion.

The times of shifts of the recording pencil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or has travelled out of range.

The whole excess of direct motion for the year was 4995°.

The revolution-counter which is attached to the vertical spindle of the vane, whose readings increase with change of direction of the wind in direct motion, and decrease with change of direction in retrograde motion, gave the following readings:—

On 1881, December 314, 12h 49 o Implying an excess of direct motion, during the year, of 13 g revolutions, or 5004°.

Mean Houria Measures of the Horizonfal Movement of the Air in each Month, and Greafest and Least Houriay Measures, as derived from the Records of Robinson's Anemometer.

						18	81.						Mean f
Hour ending	January.	February.	March.	April	May.	June.	July.	August.	September.	October.	November.	December,	the Yea
ħ	Miles.	Miles.	Miles,	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles.	Miles
1 a.m.	10.6	11.9	12.9	13.4	9.2	7 '2	8.6	10.0	7 .3	10.2	14.6	12'1	10.7
2 a.m.	10.2	11.5	12.9	12:4	8.8	6.9	8 • 5	11.2	6.9	10.2	14.3	12 1	10.2
3 a.m.	9 . ñ	н 5	12 '0	13.0	ġ.o	7 '0	8 .4	10.7	7 .5	10.9	14.1	11.6	10.2
4 a.m.	10.1	12.1	12 5	11.7	9 •3	7 '1	8 .7	10.6	6.9	10.5	13.9	10.4	10.3
5 a.m.	9 •9	12.4	12 '3	11.6	8.0	7 '7	9 . 5	10.3	6.9	10 '2	14.6	11.1	10.4
6 a.m.	10.5	12.5	12 1	11.8	9.5	7 .6	8 :3	10.1	7 '2	10.2	14.0	10.4	10.3
7 a.m.	1.01	12 +	12 '1	12.5	9.9	8 . 2	9.3	10.6	6.7	10.9	15 %	11.1	10.7
S a.m.	9 *7	12.4	12.3	13.6	11.1	8.9	10.3	11.1	7 '4	11.3	14.9	11.2	111:
9 a.m.	9 · 6	12.8	12.8	14.7	12.5	9.8	10.7	12.4	7 .2	12.4	15.2	12 °	11 '
io a.m.	9.1	13.4	13.3	15.7	12.7	10.3	10.4	13.3	8 1	13.2	15.6	11.8	12:
11 a.m.	10.1	14.1	15.1	17 '2	14 5	11.1	11'2	13 -7	8.5	15.1	16.0	13.1	13.
Noon.	n •3	14.9	16.4	17.*9	14.3	11.6	8.11	15.0	9 • 2	16.2	17.0	12 ' 9	14.
1 p.m.	11.0	14.5	16.0	18.5	15*1	11.9	11.8	15.0	8 • 6	16 1	16.7	13.2	14.
2 p.m.	12 2	15.3	15 '8	18.1	15.6	12.1	12 '9	15.2	10.0	16.6	17.1	14.3	14.0
3 p.m.	11 '9	15.0	15.7	18.3	15.5	12 *2	13.2	15.1	9 '9	17.0	16.3	14.1	14.5
4 p.m.	11.7	15.0	16 .5	18.5	16.3	12.5	13 '9	14.6	10.3	16.5	15.1	14.0	14 %
5 p.m.	11.7	13.9	16.3	18	15.3	11.0	13.8	14.6	9.4	14 '4	14.4	12.6	13 '
6 p.m.	12 '0	13.5	15.1	17.5	11.6	12 '2	13 •2	14.1	9 •2	13.5	14.0	12.5	13 '.
7 p.m.	11.3	13.6	14.5	15.3	13.2	10.6	13.1	12.7	8.6	12.2	14.6	12:3	12 .7
8 p.m.	11.74	12 '0	14.0	1.1 '2	11.6	9.8	12 .0	12.2	9.0	12 '0	15.3	13.4	12 3
9 p.m.	10.8	12 '0	13.8	13.8	10.5	8 · 3	10.7	12.6	8.0	12.1	14.4	13.1	11 '
10 p.m.	10.1	11.7	13.4	13.3	10 '0	7 '8	9*9	12.4	7 .8	11.2	14.8	12 •3	11 12
11 p.m.	10.1	11:3	13.7	13.3	9 '4	8 .2	9.8	11.6	7.4	11 '7	14.6	12.5	11.3
Midnight.	10.6	11.3	13.6	13.4	9.4	7 '9	9.0	11.4	7 •3	10.8	14.5	12 '5	11.0
eans	10.7	13.0	14.0	14 '9	11.9	9.6	10.8	12.6	8 .1	1 2 *8	15.0	12 '4	12
reatest Hourly }	47	52	42	42	33	30	29	33	26	61	53	50	
east Hourly \	0	0	0	ı	0	0	0	0	0	0	0	0	

MEAN ELECTRICAL POTENTIAL of the Atmosphere, derived from Thomson's Electrometer, for each Civil Day, as deduced from Twenty-four Hourly Measures of Ordinates of the Photographic Register on that Day.

(The scale employed is arbitrary; the zero reading is 10,000, and numbers greater than 10,000 indicate positive potential.)

1881.

		1										
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	Decembe
J												
1	10.655		10 '436	10.136	10.237	10.293	10.169	10.404	10.592	10.274	10.330	10.11
2	10.336		10.213	10.039	10.127	10.387	10.148	10.075	10.217	10.299	10.649	10.50
3	10.412	10.082	10.437	10.524	10.306	9.993	10.352	10.244	10.360	10.264	10.272	10.3
+	10.260	10.160	9 *992	10.581	10.550	10.503	10 .367	10.307	10.375	10 .563	10.049	10.5
5	10.313	9 :950	10.035	10 •335	10.372	10.083	10.589	10.389	10.584	10.547	10.101	10.1
6	10.342	10.411	10.115	10.305	10.554	9.443	9.720	10.568	10.126	10'413	10.141	10.1
7	10.464	10 '313	10.086	10.310	10.194		10 '243	10.348		10.387	10 133	10.3
8		10 1145	10.184	10.202	10.333		10.186	10.063	10.134	9.790	10.020	10.6
9	10.622	10.227	10.140	10.315	10.338		10.162	10.278	10.036	10.577	10.50	10.1
10	10.209	10.132	611.01	10.385	10.309		10.260	10.357	10.164	10.453	10.120	10.3
11	10.478	10 177	10.508	10 *273	10.386			10.342	10.102	10.180	10.110	10.5
12	10.452	10.546	10 .528		10.341			10.065		10.101	10.079	9.6
13		10.480	10.556	10.284	10.168		10.272	10 *249	10 '334	10.123	10.088	10.
1.4		10.510	10.308	10.243	10.565	10.139	10.426	10.318	10.418		10.072	10.
15		10.380	10.346	10 '123	9.845	10 157	10.223	10 '443	10.101		10.112	9 9
16		10.400	10 '397	10.208	9.975	10.345	10.12	10.398	10,514		10.008	9 '9
17		10.300	10.129	10 .233	10.270	10.103	10.316	9.939	10.445		10.329	9.9
18		10 • 267	10 .393	10.061	10.100	10.052	10.372	10.501	10.127		10.408	10.
19		10.101	10.321	10.177	10.531	10.252	10.000	10.510	10.292		10.262	10.
20		9.825	10 .334	10.301	10.247	10.103	10.064	10.414	10.259		10.122	10.
2 1		9.812	10.508	10.319	10.552	10.135	10.302	10.350		10.155	10.230	10.
2 2		10.396	10.374	10.142	10.512	10.301	10.598	10.463	10.110		10.412	10.0
2.3		10 '252	10.236	10 '057	10.062	10.018	10.327	10 .525	10.118		10.400	10 *
2.+		10.388	10.188	10.231	10.550	10.303	10.418	10.390	10,117		10.269	10 %
25		10 •317	10.287	10.128	10.521	10.148	10.564	10.239	10 '201		10.070	10 .3
26		10 .463	10.160	9 .825	9 .889	10.456	10.152	10.523	10.192	10.464	10.544	10.0
27		10.419	10.382	10.176	9 965	10.411	10.186	10.311	10.300	10.470		10.0
28		10.474	10,414	10 155	10.025	10 359	10 '407		10.540	10.216	10.172	10.1
29			10.562	10.206	10.082	10.340	10.106	10.083	10.375	10.562	10.248	10.1
30		ì	10.416	10.120	10.324	10.442	10.379	10.091	10:345	10.743	10 306	10.1
31			10.272		10.351		10.137	10.458	,	10.612		10.1
Ieans -	10.468	10.256	10.562	10.511	10.500	10.199	10.531	10.273	10 '234	10.320	10.552	10 '2

The mean of the twelve monthly values is 10.262.

MONTHLY MEAN ELECTRICAL POTENTIAL of the Atmosphere, derived from Thomson's Electrometer, at every Hour of the Day, as deduced from the Photographic Records.

(The scale employed is arbitrary; the zero reading is 10,000, and numbers greater than 10,000 indicate positive potential.)

Hour, Greenwich Mean Solar						18	81.						Yearly
Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Means
Midnight	10.447	10 '274	10.340	10.306	10.345	10.329	10.363	10.442	10.307	10.414	10.542	10.237	10.33
1 ^h . a.m.	10.446	10.529	10.349	10.588	10:347	10.354	10.588	10,412	10.581	10.396	10.512	10.222	10.3
2	10,440	10.510	10.305	10.524	10.328	10.343	10 '270	10.381	10.563	10.336	10.100	10.195	10.5
3 .,	10,451	10.530	10.303	10.534	10.594	10.276	10.596	10.359	10.540	10.331	10.162	10.185	10.5
4 "	10.383	10 '220	10.563	10.561	10.273	10.542	10.334	10.329	10 '219	10.325	10.133	10.164	10 .5
5 ,,	10.380	10.527	10.589	10.529	10.536	10.599	10.336	10.376	10.301	10.319	10,100	10 155	10.5
6	10.413	10.12	10.585	10.521	10.328	10.588	10.329	10:382	10.501	10.210	10.108	10.135	10 '2
7	10.316	10.112	10.598	10.51	10.558	10.369	10,411	10.455	10.188	10.585	10.153	10.124	10.5
8 .,	10.401	10,511	10 .529	10.529	10 .536	10.303	10.373	10.456	10.179	10.590	10.123	10.133	10.5
9 .,	10.412	10.500	10.558	10.199	10.237	10.184	10.300	10.369	10.121	10.555	10.128	10.169	10.3
o .,	10.426	10.525	10.1122	10.151	10.132	10.102	10.182	10.542	10,111	10.200	10.226	10.129	10.1
1	10.440	10.5228	10.120	10.064	9 996	10.078	10.039	10.515	10.142	10.583	10 .527	10.511	10.1
Coon	10.4.74	10.348	10.554	10,101	10.029	10.032	10.067	10.224	10.128	10.308	10.580	10.522	10 '
1 h. p.m.	10.466	10.593	10.543	10,033	10.010	10.064	10.073	10.502	10.518	10.341	10.586	10.505	10.5
2 ,,	10.485	10.300	10.237	10.092	10.025	10.036	10.001	10.144	10.5 12	10.329	10.585	10.520	10.3
3 .,	10:475	10:338	10-17-6	10.062	10.037	10.000	9 '985	10.003	10.55-	10.354	10.528	10.581	10.1
4	10.224	10.373	10.545	10.093	10.013	10.060	10.070	9 .860	10.530	10.398	10.582	10.304	10 '2
5 .,	10.2339	10:303	10 '205	10.146	10.001	10.076	10.080	10.002	10 .5 5 2	10 *383	10 .276	10.331	10.3
, ., l	t ∩ 1542	15:313	10 1 55	10.100	10.085	10.088	10.001	10 % 55	10.183	10 '373	10.530	10.356	10.3
,	10.612	10:332	10.520	10.247	10 '212	10.178	10.086	10,510	10 '313	10 '300	10.303	10 '337	10.3
s	10.593	10:339	10:346	8c2: 01	10.363	10.503	10.217	10.538	10 -355	10.428	10 .593	10.267	10 %
g .,	10.21-	10.540	10:367	10.309	10.346	10.242	10.346	10.565	10 :333	10.206	10.522	10.565	10 %
·	1537	10.503	10 1359	10:326	10 *344	10.552	10 '412	10:381	10:317	10.489	10.323	10 .526	10 %
ı	10.471	10.183	10.331	10.319	10.329	10.374	10,411	10 '.422	10.581	10.411	10.542	10.559	1013
cans -	10.468	10.5256	10.362	10.511	10.500	10.133	10.531	10.273	10.534	10.320	10.552	10.535	10.5
unher of] Days em- }	1.1	26	Ĵ1	29	31	23	29	30	27	20	29	31	

Amount of Rain collected in each Month of the Year 1881.

				Monthly	Amount of Rai	n collected in cac	h Gauge.		
1881, MONTH.	Number of Rainy Days.	Self- registering Gauge of Osler's Anemometer.	Second Gauge at Osler's Anemonicter.	On the Roof of the Octagon Room.	On the Roof of the Magnetic Observatory.	On the Roof of the Photographic Thermometer She l.	Gauges p	artly sunk in t	he ground.
		No. 1.	No. 2.	No. 3.	No. 4.	No. 5.	No. 6,	No. 7.	No. 8.
		in,	in.	in.	in.	ın.	in.	ın.	in.
January	1	0.708	0 •760	1 .034	1 '067	1 150	1 .663	1 .348	
February	18	1,103	1 '344	1.792	1.924	2 .367	2 .446	2 .350	
March	11	1.140	1 *228	1.407	1.204	1.401	1 .835	1 .690	
April	8	0 298	0.360	0.461	0.260	0.612	0.623	0.480	
May	13	0.875	0.955	1 '241	1 *396	1.542	1.9.1	1 .363	
June	9	1 .505	1 .505	1.649	1 '724	ı ·837	1 '863	1 .630	
July	12	1 .238	1 '574	1 .842	1 '992	2 *072	2 137	1 *980	2 .048
August	17	2 .752	2 *943	3.342	3.589	3 .783	3.888	3 .732	3 .749
September	15	1 •523	1 .283	1 .822	2 '017	2 128	2 .188	2.108	2 .07
October	13	2 .003	2 *2 1 2	2 .305	2 '425	2.692	2 '711	2.572	2 .690
November	16	0.988	1 '007	1 *413	1 '797	2 '1 2 7	2 . 265	2 . 2 7 2	2 . 28
December	15	1 *250	1 '376	1 *822	2 '107	2 .380	2 '495	2 *428	2 . 450
Sums	156	15.382	16.634	20 · 133	22 .135	24 .391	25.725	23 •953	
Height of ground.	}	ft. 115. 50. 8	fr. in. 50. 8	5t. in. 38. 4	ft. in. 21.9	ft. in. 10.0	ft. in. 0. 5	ft. in. 0. 5	ft. in 0. 5
Surface above mean sea level.	}	ft in. 205.6	205. 6	ft in. 193. 2	176.7	ft. in. 164. 10	155.3	tt. m. 155. 3	ft. in. 155. 3

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

LUMINOUS METEORS.

1881.

Month and D	ay,	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. Refe
		h m s				,		0	
March	1	9. 22. 34	S.	1	Bluish-white		Slight	i	1
	.,	9.49.26	S.	3	White		None		
June	19	10.12. 0	N.	2	White	0.6			١.
, 1111	19	10.12. 0		_			• • •	1	
Nugu~t	10	9.41.10	J.	3	Bluish-white White	0.2	Fine Train	15 6	
	,,	9.51.53	N. J.	> 1	Bluish-white	0.2	None	20	
	. •	10. 2.21	J.	3	Bluish-white	0.5	None	20	'
	-+	10. 3.40		i i		0.5	None		
	••	10. 9.35	J. J.	1 2	White Bright Yellow	1	None	10	1
	>1	10. 23. 1	J.		White		None	20	1
	**	10.40.47		I I				5	1
	٠,	10.41.11	N.	Jupiter	White	0.4	Train		
	**	10. 48. 33	J. Х.	2	Bluish-white	1.5 0.5	None	30 5	1
	2.5	10. 54. 1		2	White	0.5	None		1
	••	10.57.	11.	2	White	0.3	N	10	1
	**	11. 4.10	N.	3	Bluish-white	0.4	None	5	ī
	••	11. 4.20	N.	I	Bluish-white	0.6	Train	1 2	1
	**	11. 9.56	N.	2	White	0.4	Train	3	1
	٠,	11. 10. 51	J.	3	White	0.2	None	10	1
		11.29.29	J.	2	White	0.2	None	10	1
	,,	11.30.29	N.	1	White	1	Train	15	2
	,,	11.36.36	.J.	> 1	Bluish-white	1	Slight	20	2
	,,	11. 37. 10	N.	2	White	0.5	Train	6	2
		11.48.56	N., J.	1	Bluish-white	0.4	None	12	2
	,,	11.51.20	N.	2	White	0.2	None	9	2
	7.7	12. 3.57	N.	1	White	0.7	Train	12	2
	• •	12. 24. 55	N., J.	> 1	White	0.5	Slight	6	2
	,,	12. 34. 31	X.	2	White	0.2	Slight	5	2
	**		N.	2	White	0.2	Train	10	2
	**	12.45.35	J.	2	Bluish-white	0.2	None		2
	**	12. 45. 57	N.	> 1	White	1	Fine	7 15] 3
	••	12.49.32	X.		White	1 +	Train	12	3
	.,	12.58.30	X.	> 1	White	0.2	Slight		3
	**	13. 4. 20 13. 10. 25	N.	2 > 1	White	0.2	Slight	7 5	3
	**	10.10.20							
aigust	1.8	9. 16. ±	H.	Arcturus × 3	Bluish-white	2	Splendid	30	1 3
	,*	9.17.50	N.	> 1	White	0.4	Train	15	1 3
ugu-t	21	8. 50. ±	Е.	> Venus	Bluish-white	i		15	3
ngust	2.4	8. 25.	11.	1	Bluish-white	ı	None	10	
45.00		10.44.	II.	2	White	0.5	None	5	
	**	10.57.30	11.	3	Bluish-white	1	None	10	3
	**	11.31. 0	N.	1	White	i	Train	10	
.ugust	26	8, 52, 45	N.	> t	White	1.2	Train	30	
ngust	2 -	q. 37. 35	N.	2	White	0.5	Train	12	
eptember	3	8. 23. 57	N.	2	White	0.4	None	7	
eptember	18	7. 45.	11.	> 1	Bluish-white	2	Slight	30	4
eptember		9. 38. 20	N.	2	White	0:5		5	1
eptenner October	6	9. 38. 20	H.	> 1	White	0.5	None	10	4
October October			N.		Blue	1.2	Fine	20±	1
	1.4	10. 6.		> 1			None		4
etober	17	9. 14. 42	G.	3 2	White Bluish-white	o*5 o*5	None None	1.5	4

No. for Refer- ence.	Path of Meteor through the Stars.
1 2	Shot from a point near θ Leonis downwards, inclining to right. Shot from a point to right of β Persei to a point midway between γ and β Trianguli.
3	From direction of Arcturus towards ζ Boötis.
4 5 6 7 8 9 10 11 12	Appeared a little above α Ursa Majoris and disappeared to the left of and above δ Ursa Majoris. Appeared about 10° above Capella, and pursued a path parallel to Capella and β Auriga, moving from direction of γ Persei. Appeared midway between β Ursa Minoris and λ Draconis, passed beneath α Draconis, and disappeared a little above η Ursa Majoris. Appeared midway between β Ursa Minoris and κ Draconis, passed beneath α Draconis, and disappeared a little above η Ursa Majoris. Appeared below δ Cassiopeia, and fell slantingly towards north. [Majoris (path similar to that of preceding meteor). Appeared a little above Capella, disappeared a little below β Auriga. Appeared near ξ Aquilæ and shot vertically downwards, disappearing before reaching the horizon. Passed 10° below α Arietis, moving from direction of α Persei. Shot from near Polaris and disappeared near α Ursa Majoris. Moved towards β Ursa Majoris from direction of Perseus.
14 15	From direction of α Persei shot across ϵ Cassiopeia. From direction of Persens passed at angle of 45° between Jupiter and Saturn.
16 17 18	Passed across α Andromedæ towards α Pegasi. From a point about 1 to right of centre of line joining α and γ Persei, moved towards γ Andromedæ. [Mr. Hugo describes the meteor as having "shot from direction of a point midway between α and γ Persei, towards a point about 2 below Appeared midway between Polaris and α Urse Majoris, disappearing to the right of α Urse Majoris. [γ Andromedæ."]
19 20 21 22 23 24 25	Appeared about 12° above, and disappeared a little to right of Jupiter. Passed across γ Pegasi at right angles to line joining γ and β Pegasi from direction of Perseus. [Mr. Hugo describes the meteor Appeared above α Urse Majoris and passed between γ and δ Urse Majoris. [as having "shot from direction of γ Andromedae. Passed between α and γ Cassiopciae, moving from direction of γ Andromedae. [towards γ Pegasi."] From direction of δ Ursæ Majoris moved on path parallel to ϵ and ξ Ursæ Majoris. From direction of δ Ursæ Majoris fell northwards at right angles to δ and ϵ Ursæ Majoris. Fell vertically about 15° to right of Saturn.
26 27 28 29 30 31 32 33	From a point about 4° below and to left of Jupiter fell towards horizon at an angle of 45° (moving to right). From a point about 2° to left of γ Cassiopeias moved northwards at right angles to line joining γ and β Cassiopeias. Appeared 10° above ζ and γ Ursæ Majoris, and moved westwards parallel to line joining those stars. Appeared a little to right of α Ursæ Majoris, and disappeared near but below β Ursæ Majoris. Appeared about 15° to left of γ Ursæ Majoris, and fell to left at an angle of 45° towards horizon, moving from direction of Passed midway between η Draconis and η Ursæ Majoris, moving from direction of β Ursæ Minoris. [η Draconis. Passed almost midway between γ Draconis and α Lyræ, and nearly at right angles to line joining γ and β Draconis, moving Appeared about 15° below ζ Ursæ Majoris, moving at angle of 45° to left, from direction of δ Ursæ Majoris. [downwards.
34 35	Passed near β Ursæ Minoris to a point a few degrees above Polaris, when it burst, showing a bright blue colour. Moved from direction of λ Aquilæ towards ζ Ophiuchi.
36	From direction of γ Boötis shot vertically downwards, nearly bisecting line joining α Canum Venaticorum and Arcturus.
37 38 39 40	From direction of α Cassiopeia passed 1 to right of β Andromedæ. From direction of α Cygni passed a little above ζ Cygni. From direction of β Ursæ Minoris shot 1° to right of ζ Ursæ Majoris. Fell vertically from a point nearly midway between δ and ζ Herculis to β Herculis.
4 I	From direction of a point midway between Polaris and γ Cephei disappeared at δ Persei.
42	From direction of a point nearly midway between Polaris and β Ursæ Minoris passed across ζ Ursæ Majoris.
43	Moving from direction of a Ursa Minoris, passed midway between Polaris and a Ursa Majoris across a space in which no stars
44	Shot from α Lyrae in continuation of a line joining α Lyræ and a point 2° to right of δ Cygni.
45	Passed midway between α Lyra and γ Draconis, moving from direction of a point between γ and η Cygni.
₄ 6	Moving from direction of Polaris towards a point about 5° to right of a Ursæ Majoris.
47	Fell nearly vertically, passing midway between β and η Draconis and close to τ Herculis.
48 49	From a point near β Ursæ Majoris moved towards χ Ursæ Majoris. Appeared near ε Cassiopeiæ, moved in direction of α Cephei.

Month and 1 1881.	Day.	Greenwich Mean Solar Time.	Observer,	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. fo Refer ence
		h m s				s		0	
October	17	10.20. 0	G.	1	Bluish-white	0.6	Slight	10	1
	**	1c. 23. o	G.	3	Bluish-white	0.2	None	20	2
		10.41. 0	G,	1	Bluish-white	0.7	Train	1.2	3
	••	10. 50. 10	G.	1	Blue	1	Very fine	15	4
October	1 S	9, 12, 51	H.	3	Bluish-white	0.2	None	5	5
	,,	9. 17. 31	H.	3	White	1	None	15	6
	,,	9. 21. 23	H.	2	Bluish-white	0.2	Slight	5	7
	••	9. 24. 41	H.	2	Yellow	0.5	None	2	8
	,•	9. 49. 23	11.	2	Bluish-white	0.3	None	.3	9
	,.	10. 7.59	H.	1	Red	1	Train	5	10
	,,	11. 3.14	N.	2	Bluish-white	0.2	Train	10	11
t)etober	19	9. 2.20	II.	2	Blui-h-white	1	None	10	12
	,,	9. 33. 24	H.	3	Bluish-white	0.2	None	8	13
	,,	9.37. 2	H.	ī	Red	1	None	10	14
	,,	9. 53. 29	H.	1	Bluish-white	1	None	10	15
	,,	10. 6.54	II.	ı	Bluish-white	1	Train	15	16
October	29	10. 5.44	N	> 1	Yellowish	2	Fine	25	17
November	17	10. 1.30	11.	> 1	Yellowish	2	Slight	30	18
November	28	8. 52. 12	11.	> 1	Yellowish	2	Noue	30	19
	٠,	10. 19. 15	11.	2	Yellowish	0.2	None	5	20
	٠,	10.22.47	II.	3	Bluish-white	0.2	None	5	21
	,,	10. 54. 37	H.	3 increasing to >1	Red	3	Fine	2.5	22
	"	11.14.10	11.	3	Red	0.3	None	5	23
December	31	9. 24. 37	N.	> 1	White	0.5		7	2.4

No, for Refer- ence.	Path of Meteor through the Stars.
1 2 3 4	From α Ursa Majoris, disappeared between γ and ε Ursa Majoris. From Aldebaran to β Triangali. From direction of α Aquila, passed across ε Aquila. Shot from α Pers ci, disappearing between γ and β Cassiopeiæ.
5 6 7 8 9	Moving from direction of β Camelopardali across δ Aurigae. From direction of Polaris shot between η and ε Draconis. Shot from β Porsei towards a point midway between α and δ Persei. From δ Andromedae moved vertically downwards. From direction of ε Ceti to a point δ to right of β Ceti. Shot from ζ Ursae Majoris to a point about ε^2 above η Ursae Majoris. From near λ Tauri passed across ρ Tauri.
12 13 14 15 16	Shot across 41 Arietis towards a point a few degrees to left of Saturn. Shot across 3 Persei from direction of a point midway between α and β Camelopardali. From a point 5° below 5 Ursæ Majoris towards a point midway between α and β Ursæ Majoris. Moved from direction of γ Ursæ Majoris across γ Ursæ Majoris. From a point 2° to right of α Delphini, disappeared near ξ Aquilæ.
17	From direction of a point midway between the Pleiades and Aldebaran to a point about 20° below γ Ceti.
18	Moving towards horizon, crossing a line joining γ and ϵ Cygni at right angles.
19 20 21 22 23	From direction of a Cephei shot between β and η Pegasi. From direction of a point 3° above Mars passed near γ Geminorum. Passed 1° below Aldebaran, moving from direction of ι Auriga. From direction of β Tauri passed across a point 1° above θ Geminorum. From a point 2° below ε Geminorum passed across γ Geminorum.
2.4	From a point about 10° or 12° below β Cassiopeia moved we stward at an inclination of 45 .

