

Wi-Fi security

Segurança Informática em Redes e Sistemas 2022/23

Ricardo Chaves

Ack: Carlos Ribeiro, André Zúquete, Miguel Pardal, Miguel P. Correia

Secure communication: Data Link layer and below

Layers		Responsibility	Approach	Solutions
	Transaction	Local data manipulation applications	End-to-end security	PGP, PEM, S/MIME
OSI Layers	Application	Applications for remote data exchange		HTTPS, IMAPS SSH
	Presentation			
	Session			
	Transport	Operating Systems		TLS
	Network			IPsec
	Link	Devices	Link security	IEEE 802.11*
	Physical			

Roadmap

- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP

Roadmap

- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP

Wireless network challenges

- Inexistence of a controlled physical connection
- Worsens the problems of:
 - Eavesdropping of data exchanged
 - Breaking confidentiality
 - Impersonation of machines
 - Breaking *authenticity*

Wireless communication protocols

- Mobile phones
 - GSM
 - GPRS
 - UMTS
- Wireless home phones
 - DECT
- Data networks
 - Bluetooth (IEEE 802.15)
 - Wi-Fi (IEEE 802.11*)
 - where * = a, b, g, n, ...
 - standard for WLAN (Wireless Local Area Networks)

Roadmap

- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP

IEEE 802.11* Architecture

Station (STA)

- Device capable of connecting itself to a wireless network
- Each station has an identifier
 - Media Access Control (MAC) address

Access Point (AP)

 Device that allows the interconnection between a wireless network and other equipment or networks

Wireless network

 Network composed of stations (STA) and access points (APs) that communicate through radio signals

New Wi-Fi version names

- New versioning scheme, with sequential numbers
 - To replace the old, confusing standard names with letters, like "802.11ac"
- Wi-Fi versions
 - Wi-Fi 1 would have been 802.11b, released in 1999
 - Wi-Fi 2 would have been 802.11a, also released in 1999
 - Wi-Fi 3 would have been 802.11g, released in 2003
 - Wi-Fi 4 is 802.11n, released in 2009
 - Wi-Fi 5 is 802.11ac, released in 2014
 - Wi-Fi 6 is the new version, also known as 802.11ax.
 It was released in 2019

Wi-Fi security

- 1999
 - WEP Wired-Equivalent Privacy
- 2003
 - WPA Wi-Fi Protected Access
- 2004
 - WPA2 (802.11i)
- 2018
 - WPA3

IEEE 802.11* Security

- Initial very basic mechanisms and protocols
 - Service Set Identifier (SSID)
 - MAC Address Filtering
 - Wired Equivalent Privacy (WEP)
- Enterprise/campus authentication: 802.1X
 - Enhanced Authentication Protocol (EAP)
 - Protected EAP (PEAP)

IEEE 802.11* SSID (Service Set IDentifier)

- SSID = identifier/name of a wireless LAN
 - Used by the AP to restrict access of stations
 - Stations have to know and use the SSID of the AP that they are connected to
- Works like a weak password
 - Everyone knows it
 - It is exchanged in plaintext in each message
 - The AP announces it

CARLOS_5G_EXT CARLOS_EXT DIRECT-90-HP ENVY 5640 DIRECT-tFE0443180msDY **MEO** MEO-10F49A MEO-39E593 5GHz MEO-A10B05 MEO-B8A8FO MEO-B8A8F1-5G MEO-WiFi NOS-3610 NOS-5B53 NOS_Wi-Fi_Hotspots **SMC** Thomson724D8F Vodafone-D36C04 **ZON Repeater** ZON-5010 **ZON-E490**

IEEE 802.11* MAC Address Filtering

- Each Station has a distinct MAC
 - The idea was to be fixed but today can be changed
- Each AP is able to restrict the access of a Station according to their MAC, but:
 - MAC is transmitted in clear text and can be eavesdropped
 - MAC can be spoofed by an attacker

Roadmap

- Secure channels versus communication layers
- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP

IEEE 802.11*: WEP (Wired Equivalent Privacy)

Goal

- Protection of radio communications between stations and APs
- Confidentiality and integrity control

Usage

- Uses shared symmetric keys of 40 or 104 bits
 - Defined by administrator and shared between stations
- Manual distribution of keys
- Uses a stream cipher: the RC4 algorithm

WEP message security

- Integrity and Confidentiality
 - Every message takes a CRC (Cyclic Redundant Check) value
 - and is encrypted using RC4 (stream cipher)

WEP problems (1/3)

- The AP is not authenticated
- Excessive use of the shared key
 - No key redistribution
- No control over the variation of the IV
 - Which allows ad-hoc repetition of ciphered messages previously sent, modified, or new messages
 - It is possible to repeat the same keystream

WEP problems (2/3)

- Repetition of IVs for the same SSID and the same Key
 - Same IV and Key ⇒ same keystream
 - XORing 2 cryptograms obtained with the same keystream,
 one obtains the XOR of the two messages and their CRC
 - C1 = M1 xor keystream(IV,K)
 - C2 = M2 xor keystream(IV,K)
 - C1 xor C2 = (M1 xor keystream(IV,K)) xor
 (M2 xor keystream(IV,K)) = M1 xor M2
 - IV has only 24 bits and sometimes is poorly managed
 - Constant (IEEE 802.11 standard states that IV update is optional)
 - 0 on reset (in some equipments)

WEP problems (3/3)

- Integrity control is weak
 - CRC-32 (Cyclic Redundancy Check) is a linear function
 - Changing nth bit of cryptogram,
 changes same nth bit in message,
 does a deterministic change of some bits of the CRC
 - Thus, the deciphered CRC can be tampered with by inverting the corresponding CRC bits in the cryptogram

WEP authentication

WEP authentication attacks

- Authenticating with the same keystream
 - AP sends message with nonce (M) in plaintext to good station
 - Good station ciphers nonce and sends it back in cryptogram C
 - Attacker observes C and M, so it can obtain 128 bytes of the keystream for a given IV: C = M xor keystream(IV,K)
 - Attacker sends authentication request and uses the keystream
 128 bytes (without knowing K) to encrypt the nonce

Roadmap

- Secure channels vs communication layers
- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP

WPA (Wi-Fi Protected Access)

Improvements over WEP:

- Master key has 128 bits and is never used to cipher data; temporary keys are derived from this master key (TKIP protocol)
- The size of the IV is increased to 48 bits
- Each packet is protected with a different key
- IV is used as a packet counter: TSC (TKIP Sequence Counter)
 - For each new (temporary) integrity key, TSC is reset
 - Out of order TSCs are discarded to prevent replay attacks
- CRC-32 (linear) is 'replaced' by MIChael, a Message Integrity Code
 - Computed over the entire unencrypted data in the frame and the source and destination MAC addresses
 - If two wrong MICs are sent within 60s, the key is renewed, to prevent trial-and-error attacks

TKIP (Temporal Key Integrity Protocol)

- RC4 stream cipher algorithm
 - Master key is subject to an initial key mixing with the IV of 48 bits
- MIC (Message Integrity Control) in every message
 - 64-bit message integrity check value
- Improved management of dynamic keys
 - PMK Pairwise Master Key (generated by 802.1X)
 - PTK Pairwise Transient Key
 - PTK = PRF-512(PMK, "Pairwise key expansion", ST_MAC, AP_MAC, SNonce, ANonce)
 - ST_MAC, AP_MAC station and AP MAC addresses
 - Nonce = PRF-256(random, "Init Counter", MAC, Time)
 - Ensures that every data packet is sent with a unique encryption key

WPA problems

- MIC does not protect the full packet
- In some cases, the same keystream is reused

- WPA was just a draft of the IEEE 802.11i standard, known as WPA2
 - Compatible with the same hardware devices as WEP

IEEE 802.11i a.k.a. WPA2

- WPA Wi-Fi Protected Access
 - TKIP Temporal Key Integrity Protocol
 - WPA-Personal / WPA-PSK uses a pre-shared key
 - WPA-Enterprise / WPA-802.1X uses 802.1X with all authentication methods seen above
- AES-CCMP AES, CTR, CBC-MAC
 - Advanced Encryption Standard (AES) in Counter mode (CTR)
 - CBC-MAC MAC function based on block cipher (AES) in Cipher Block Chaining (CBC) mode
 - CCM = CTR + CBC-MAC
 - CCMP = CCM + Padding

AES CCMP (Counter Mode with CBC-MAC)

PN – packet number, similar to the TSC (TKIP Sequence Counter)

Integrity protection: AES CBC-MAC

Confidentiality protection: AES Counter Mode

Comparison WEP vs WPA vs WPA2

	WEP	WPA (TKIP)	WPA2 (AES-CCMP)
Cipher	RC4	RC4	AES CTR
Key size	40 or 104 bits	128 bits encryption,64 bits authentication	128 bits
Key lifetime	24-bit IV, wrap	48-bit IV	48-bit IV
Frame data integrity	CRC-32	MIChael	CBC-MAC
Frame header integrity	None	MIChael	CBC-MAC
Replay detection	None	IV sequencing	IV sequencing
Key management	None	EAP / 802.1X	EAP / 802.1X

WPA3

- Defined 2018
 - Required since July 2020
- Uses an equivalent 192-bit cryptographic strength in WPA3-Enterprise mode (AES-256 in GCM mode with SHA-384 as HMAC)
 - Still mandates the use of CCMP-128 (AES-128 in CCM mode) as the minimum encryption algorithm in WPA3-Personal mode
- The WPA3 standard also replaces the Pre-Shared Key exchange with Simultaneous Authentication of Equals as defined in IEEE 802.11-2016
 - More secure initial key exchange in personal mode
 - Forward secrecy
 - Mitigate security issues posed by weak passwords
 - Simplify the process of setting up devices with no display interface
- Protection of management frames as specified in the IEEE 802.11w amendment

Roadmap

- Secure channels versus communication layers
- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP

IEEE 802.1X

- Authentication model for IEEE 802 networks
 - Wired and wireless
 - Data link layer mutual authentication
- Standard for port-based network access control (NAC)
 - Permits or not an entity to logically connect to a port/LAN
 - Logically because physically it already connected somehow
- Originally designed for larger scale networks
 - College campus, etc.
 - Extended model for wireless networks
- Does authentication + key distribution

802.1X: Participants

802.1X: Pre-authentication state

802.1X: Post-authentication state

802.1X stages for wireless networks

1. WEP association between Station and AP

The protocol we have seen before: authentication request, etc.

EAP (Extensible Authentication Protocol)

- Authentication and key establishment between Station and Authentication Server; produces MSK (Master Session Key)
- It is a meta-protocol: there are several variations

802.1X encapsulates and extends EAP for IEEE 802 networks

3. Four-way handshake

- Mutual authentication of Station and AP using nonces and MSK
- Derive Temporary Key (TK) to be used for secure communication
- Validation of stage 1 requests and responses

EAP

(Extensible Authentication Protocol)

- Initially designed for PPP (Point-to-Point Protocol)
 - Targeted at 802.1 (for wired networks)
- AP is not involved
 - Only allows the passage of EAP messages
 - The use of different authentication protocols does not imply modification to APs
- EAP was not designed for wireless networks
 - The communication between Stations and APs must be protected during EAP with WEP
 - Mutual authentication may not exist
 - A Station can be tricked by a more powerful AP

EAP – Types of requests

- Type 1: User identity
- Type 2: Message for the user
 - ACK
 - E.g. password about to expire
- Type 3: NAK
- Type 4: MD5 Challenge
- Type 5: One-time password
- Type 6: Cards
 - SecurID, etc.
- Type 13: TLS

802.1X architecture

Distribution of keys with 802.1X

EAP Protocols

- PAP, CHAP
 - Used by PPP; no mutual authentication, only user authentication
 - We have seen them when we talked about Authentication
- EAP-TLS
 - Requires certificates for both parties
- PEAP, EAP-TTLS
 - Both use TLS tunnels
- LEAP
 - Proprietary (CISCO)

Summary

- Wireless networks
- Wi-Fi / WLANs
 - WEP
 - WPA
 - 802.1X and EAP