The Mach System

This Chapter was first written in 1991 and has been modified over time

In this appendix, we examine the Mach operating system. Mach is designed to incorporate the many recent innovations in operating-system research to produce a fully functional, technically advanced system. Unlike UNIX, which was developed without regard for multiprocessing, Mach incorporates multiprocessing support throughout. This support is exceedingly flexible, accommodating shared-memory systems as well as systems with no memory shared between processors. Mach is designed to run on computer systems ranging from one processor to thousands of processors. In addition, it is easily ported to many varied computer architectures. A key goal of Mach is to be a distributed system capable of functioning on heterogeneous hardware.

Although many experimental operating systems are being designed, built, and used, Mach satisfies the needs of most users better than the others because it offers full compatibility with UNIX 4.3 BSD. This compatibility also gives us a unique opportunity to compare two functionally similar, but internally dissimilar, operating systems. Mach and UNIX differ in their emphases, so our Mach discussion does not exactly parallel our UNIX discussion. In addition, we do not include a section on the user interface, because that component is similar to the user interface in 4.3 BSD. As you will see, Mach provides the ability to layer emulation of other operating systems as well; other operating systems can even run concurrently with Mach.

Bibliographical Notes

The Accent operating system was described by [Rashid and Robertson (1981)]. A historical overview of the progression from an even earlier system, RIG, through Accent to Mach was given by [Rashid (1986)]. General discussions concerning the Mach model were offered by [Tevanian et al. (1989)].

[Accetta et al. (1986)] presented an overview of the original design of Mach. The Mach scheduler was described in detail by [Tevanian et al. (1987a)] and [Black (1990)]. An early version of the Mach shared memory and memory-mapping system was presented [Tevanian et al. (1987b)].

Bibliography

- [Accetta et al. (1986)] M. Accetta, R. Baron, W. Bolosky, D. B. Golub, R. Rashid, A. Tevanian, and M. Young, "Mach: A New Kernel Foundation for UNIX Development", *Proceedings of the Summer USENIX Conference* (1986), pages 93–112.
- [Black (1990)] D. L. Black, "Scheduling Support for Concurrency and Parallelism in the Mach Operating System", *IEEE Computer*, Volume 23, Number 5 (1990), pages 35–43.
- [Rashid (1986)] R. F. Rashid, "From RIG to Accent to Mach: The Evolution of a Network Operating System", *Proceedings of the ACM/IEEE Computer Society, Fall Joint Computer Conference* (1986), pages 1128–1137.
- [Rashid and Robertson (1981)] R. Rashid and G. Robertson, "Accent: A Communication-Oriented Network Operating System Kernel", *Proceedings of the ACM Symposium on Operating System Principles* (1981), pages 64–75.
- [Tevanian et al. (1987a)] A. Tevanian, Jr., R. F. Rashid, D. B. Golub, D. L. Black, E. Cooper, and M. W. Young, "Mach Threads and the Unix Kernel: The Battle for Control", *Proceedings of the Summer USENIX Conference* (1987).
- [Tevanian et al. (1987b)] A. Tevanian, Jr., R. F. Rashid, M. W. Young, D. B. Golub, M. R. Thompson, W. Bolosky, and R. Sanzi, "A UNIX Interface for Shared Memory and Memory Mapped Files Under Mach", Technical report, Carnegie-Mellon University (1987).
- [Tevanian et al. (1989)] A. Tevanian, Jr., and B. Smith, "Mach: The Model for Future Unix", *Byte* (1989).