

ΠΟΛΥΤΕΧΝΙΚΉ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΏΝ ΜΗΧΑΝΙΚΏΝ ΤΟΜΈΑΣ ΚΑΤΑΣΚΕΥΏΝ

Αντισεισμικός σχεδιασμός 3-όροφου επίπεδου πλαισίου δύο ίσων ανοιγμάτων

Μάθημα: Σύνθεση και Σχεδιασμός Κατασκευών Οπλισμένου Σκυροδέματος Υπεύθυνος: Διονύσης Μπισκίνης Εργασία 2/2

> Αλέξανδρος Καναβός Α.Μ.: 1034637

Περιεχόμενα

1	Εισαγωγή	1
	1.1 Ορισμός του προβλήματος	1
	1.2 Δεδομένα	1
2	Επίλυση	3
	2.1 Διαστασιολόγηση διαμήκων οπλισμών των δοκών του 1ου ορόφου	3
Bı	ιβλιογραφία	5

1. Εισαγωγή

1.1 Ορισμός του προβλήματος

Η παρούσα αναφορά πραγματεύεται το πρόβλημα αντισεισμικού σχεδιασμού 3όροφου επίπεδου πλαισίου δύο ανοιγμάτων. Στις ενότητες που ακολουθούν παρουσιάζονται τα δεδομένα, όπως αυτά προκύπτουν από την ελαστική στατική ανάλυση της κατασκευής και παραμετρικοποιημένα με τον αριθμό μητρώου του συγγραφέα της εν λόγω αναφοράς, και τα ζητούμενα του προβλήματος. Στο δεύτερο μέρος γίνεται η αναλυτική επίλυση του προβλήματος και παρουσιάζονται τα αποτελέσματα αυτής.

1.2 Δεδομένα

Τα δεδομένα του προβλήματος που αφορούν τα εντατικά μεγέθη (στο καθαρό μήκος των μελών) και προέκυψαν από την ελαστική στατική ανάλυση της κατασκευής, φαίνονται στους πίνακες παρακάτω (Πίν. 1.3, 1.2, ;;). Επιπλέον δεδομένα του προβλήματος είναι επιγραμματικά τα εξής.

- Το ύψος ορόφου είναι 3m και τα ανοίγματα 6m (από μέσο στήριξης σε μέσο στήριξης).
- Το μεσαίο υποστύλωμα έχει διατομή $0.4m \times 0.4m$ και τα ακραία $0.35m \times 0.35m$.
- Οι δοκοί έχουν διατομή $0.3m \times 0.6m$ και οι πλάκες έχουν πάχος 0.15m.
- Κατηγορία Πλαστιμότητας Μέση κατά Ευρωκώδικα 8 (ΚΠΜ).
- Σκυρόδεμα C25/30 και χάλυβας B500C.

Assignment 2/2

	$M_{1,2}$	$M_{2,1}$	$M_{2,3}$	$M_{3,2}$	$M_{4,5}$	$M_{5,4}$	$M_{5,6}$	$M_{6,5}$	$M_{7,8}$	$M_{8,7}$	$M_{8,9}$	$M_{9,8}$
+E	65	-58.5	58.5	-65	110	-104.5	104.5	-110	130	-123.5	123.5	-130
-E	-65	58.5	-58.5	65	-110	104.5	-104.5	110	-130	123.5	-123.5	130
$G + \psi_2 Q$	-50	-100	-100	-50	-70	-95	-95	-70	-60	-100	-100	-60
1.35G + 1.5Q	-85	-170	-170	-85	-119	-161.5	-161.5	-119	-102	-170	-170	-102

Πίνακας 1.1: Ροπές δοκών στις παρειές των κόμβων (KNm)

	$M_{1,4}$	$M_{4,1}$	$M_{2,5}$	$M_{5,2}$	$M_{3,6}$	$M_{6,3}$	$M_{4,7}$	$M_{7,4}$	$M_{5,8}$	$M_{8,5}$	$M_{6,9}$	$M_{9,6}$	$M_{7,10}$	$M_{10,7}$	$M_{8,11}$	$M_{11,8}$	$M_{9,12}$	$M_{12,9}$
+E	40	-36	80	-72	-40	36	65	-58.5	110	-99	-65	58.5	65	-85	110	-130	-65	85
-E	-40	36	-80	72	40	-36	-65	58.5	-110	99	65	-58.5	-65	85	-110	130	65	-85
$G + \psi_2 Q$	-45	40	0	0	-45	40	-35	36	0	0	-35	36	-28	20	0	0	-28	20

Πίνακας 1.2: Ροπές υποστυλωμάτων στις παρειές των κόμβων (ΚΝm)

	$N_{1,4}$	$N_{4,7}$	$N_{7,10}$	$N_{2,5}$	$N_{5,8}$	$N_{8,11}$	$N_{3,6}$	$N_{6,9}$	$N_{9,12}$
+E	20	60	120	0	0	0	-20	-60	-120
-E	-20	-60	-120	0	0	0	20	60	120
$G + \psi_2 Q$	-140	-300	-420	-350	-700	-1050	-140	-300	-420
1.35G + 1.5Q	-238	-510	-714	-595	-1190	-1785	-238	-510	-714

Πίνακας 1.3: Αξονικές δυνάμεις μελών (ΚΝ)

2. Επίλυση

2.1 Διαστασιολόγηση διαμήκων οπλισμών των δοκών του 1ου ορόφου

Βιβλιογραφία

- Μπισκίνης Διονύσης. Στοιχεία Θεμεβίωσης: Υποβογισμός και Κατασκευαστική
 Διαμόρφωση. Πάτρα, Ελλάδα: Ψηφιακό αρχείο σημειώσεων, 2021.
- Φαρδής Μιχαήλ. Μαθήματα οπθισμένου σκυροδέματος Μέρος ΙΙΙ. Πάτρα, Ελλάδα: Τμήμα Εκτυπώσεων Τυπογραφείου Πανεπιστημίου Πατρών, 2018.