Outline of the Talk

Part 1: Preliminaries of Python

2 Part 2: Scientific Libraries

Part 3: Object Oriented Programming

• Goal: faster array processing

- Goal: faster array processing
 - Example: create an array with million entries and process them add, compute average

- Goal: faster array processing
 - Example: create an array with million entries and process them add, compute average
 - Classic python must use loop which is much slower than C or Fortran
 - numpy does precisely that accesses the optimized C or Fortran code by sending the relevant portion of the python code

- Goal: faster array processing
 - Example: create an array with million entries and process them add, compute average
 - ▶ Classic python must use loop which is much slower than C or Fortran
 - numpy does precisely that accesses the optimized C or Fortran code by sending the relevant portion of the python code
 - the relevant portions are sent in batches therefore your code should be vectorized as much as possible
 - ▶ and use numpy functions for them

- Goal: faster array processing
 - ► Example: create an array with million entries and process them add, compute average
 - Classic python must use loop which is much slower than C or Fortran
 - ▶ numpy does precisely that accesses the optimized C or Fortran code by sending the relevant portion of the python code
 - ▶ the relevant portions are sent in batches therefore your code should be vectorized as much as possible
 - and use numpy functions for them
- A ton of useful functions on arrays
 - linspace, amax, argmax, ones, zeros, sum, mean, var, std, cumsum, cumprod and many more
 - random gives a bunch of random variables randn, beta, binomial, dirichlet, exponential

Swaprava Nath

Scientific Tools: scipy

- numpy ⊂ scipy
- built on top of numpy for more focused scientific programming, e.g.,
 - ▶ linear algebra
 - numerical integration
 - interpolation
 - optimization
 - distributions and random number generation
 - signal processing
- similar ideas of using python over C and Fortran subroutines
- particularly useful for statistical methods scipy.stats
- two specific functions bisect and newton

Plotting: matplotlib

Features:

- high quality 2D and 3D plots
- output in all the usual formats (PDF, PNG, EPS, SVG etc.)
- LATEX integration
- fine grained control over all aspects of presentation
- animation
- and many more

Some example usage of matplotlib

Data Handling: pandas

- Pandas is a package of fast, efficient data analysis tools for Python
- Similar to numpy that defines the basic array data type and fundamental operations on arrays
- pandas defines fundamental structures for working with data, and
- endows them with *methods* that facilitate operations such as
 - reading in data
 - adjusting indices
 - working with dates and time series
 - ▶ sorting, grouping, re-ordering, slicing, and general data manipulations
 - dealing with missing value
- Two fundamental data types: series and dataframe
 - series: an array of (possibly dissimilar) objects with generalized index not as space consuming as dictionaries
 - dataframe: a matrix with generalized index and various methods for data handling