TREE-LIKE GRAPHINGS

ZHAOSHEN ZHAI

ABSTRACT. We present a streamlined exposition of a construction presented in [CPTT23], where it is proven that every locally-finite Borel graph with each component a quasi-tree induces a canonical treeable equivalence relation. Write some more details...

1. Introduction

The purpose of this note is to provide a streamlined proof of a particular case of a construction presented in [CPTT23], in order to better understand the general formalism developed therein. We attempt to make this note self-contained, but nevertheless urge the reader to refer to the original paper for more detailed discussion and generalizations of the results we have selected to include here.

1.1. Treeings of equivalence relations. A countable Borel equivalence relation (CBER) on a standard Borel space X is a Borel equivalence relation $E \subseteq X^2$ with each class countable. We are interested in special types of graphings on a CBER $E \subseteq X^2$, i.e. a Borel graph $G \subseteq X^2$ whose connectedness relation is precisely E. For instance, a graphing of E such that each component is a tree is called a treeing of E, and the CBERs that admit a treeing are said to be treeable. The main results of [CPTT23] is to provide new sufficient criteria for treeability of CBERs, and in particular, they prove the following

Theorem A ([CPTT23, Theorem 1.1]). If a CBER admits a locally-finite graphing whose components are quasi-trees, then it is treeable.

Recall that metric spaces X and Y are *quasi-isometric* if they are isometric up to a bounded multiplicative and additive error, and X is a *quasi-tree* if it is quasi-isometric to a simplicial tree; see [Gro93] and [DK18].

- 1.2. **Outline of the proof.** Roughly speaking, the existence of a quasi-isometry $G|C \to T_C$ to a simplicial tree T_C for each component $C \subseteq X$ induces a collection $\mathcal{H}(C)$ of 'cuts' (subsets $H \subseteq C$ with finite boundary such that both H and $C \setminus H$ are connected), which are 'tree-like' in the sense that
 - 1. $\mathcal{H}(C)$ is finitely-separating: each pair $x, y \in C$ are separated by finitely-many $H \in \mathcal{H}(C)$, and
 - 2. $\mathcal{H}(C)$ is dense towards ends: each end in G|C has a neighborhood basis in $\mathcal{H}(C)$.

These cuts have the structure of a pocset with non-trivial points isolated, which in turn provide exactly the data to construct a 'median graph' whose vertices are 'ultrafilters' thereof. Condition (2) then ensures that this graph has finite 'hyperplanes', which allows us to apply a Borel 'cycle-cutting' algorithm and obtain a canonical spanning tree thereof. Each step above can be done in a uniform way to each component $C \subseteq G$, giving us the desired treeing of the CBER.

Remark. We follow [CPTT23, Convention 2.7], where for a family $\mathcal{H} \subseteq 2^X$ of subsets of a fixed set X, we write $\mathcal{H}^* \coloneqq \mathcal{H} \setminus \{\emptyset, X\}$ for the *non-trivial* elements of \mathcal{H} .

- 2. Detailed Constructions
- 2.1. Graphs with dense families of cuts. Let (X,G) be a locally-finite graph.
- 2.1.1. End compactification of graphs.

Date: July 24, 2024.

1

2.2. Pocsets of cuts. The family $\mathcal{H}_{\operatorname{diam} \partial \leq R}(X)$ of cuts have the following structure.

Definition 2.1. A posset $(P, \leq, \neg, 0)$ is a poset (P, \leq) equipped with an order-reversing involution $\neg: P \to P$ and a least element $0 \neq \neg 0$ such that 0 is the only lower-bound of $p, \neg p$ for every $p \in P$.

A profinite pocset is a pocset P equipped with a compact topology making \neg continuous and is totally order-disconnected, in the sense that if $p \not\leq q$, then there is a clopen upward-closed $U \subseteq P$ with $p \in U \not\ni q$.

Remark 2.2. Such a topology is automatically Hausdorff (if $p \neq q$, then either $p \not\leq q$ or $q \not\leq p$)

We are primarily interested in subpossets of 2^X , which has a canonical posset structure $(2^X, \subseteq, \neg, \varnothing)$.

Lemma 2.3. The pocset 2^X equipped with the product topology of the discrete space $2 := \{0,1\}$ is profinite, and admits a basis of 'cylinders': for each finite $A \subseteq X$ and $W \in 2^A$, the cylinder at W is

$$[W] := \left\{ H \in 2^X : H \cap A = W \right\}.$$

Proof.

Proposition 2.4. Let X be a set and $\mathcal{H} \subseteq 2^X$ be a subposet. If \mathcal{H} is finitely-separating, then $\mathcal{H} \subseteq 2^X$ is closed and every non-trivial element is isolated.

Proof.

- 2.3. The dual median graph of a pocset.
- 2.4. Spanning trees of median graphs with finite hyperplanes.

References

- [CPTT23] Ruiyuan Chen, Antoine Poulin, Ran Tao, and Anush Tserunyan, Tree-like graphings, wallings, and median graphings of equivalence relations (2023), available at https://arxiv.org/abs/2308.13010.
 - [Gro93] Mikhail Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 182, Cambridge University Press, 1993.
 - [DK18] Cornelia Druţu and Michael Kapovich, Geometric Group Theory, with appendix by Bogdan Nica, Vol. 63, American Mathematical Society Colloquium Publications, 2018.