Binomial Theorem

Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Pascal's Triangle

Binomial Theorem

Practice Counting

Problem

Suppose we have a dataset of size n to train our ML model. We want to separate a testing dataset of size k from it. How many ways do we have to do it?

Problem

Suppose we have a dataset of size n to train our ML model. We want to separate a testing dataset of size k from it. How many ways do we have to do it?

• We want to pick a subset of size k from n element set

Problem

Suppose we have a dataset of size n to train our ML model. We want to separate a testing dataset of size k from it. How many ways do we have to do it?

- We want to pick a subset of size k from n element set
- We know the answer:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Let's look at the problem from another angle

- Let's look at the problem from another angle
- Consider one element A in the dataset

- Let's look at the problem from another angle
- Consider one element A in the dataset
- There are two types of testing datasets:

- Let's look at the problem from another angle
- Consider one element A in the dataset
- There are two types of testing datasets:
 - 1. Datasets containing A

- Let's look at the problem from another angle
- Consider one element A in the dataset
- There are two types of testing datasets:
 - 1. Datasets containing A
 - 2. Datasets not containing A

- Let's look at the problem from another angle
- Consider one element A in the dataset
- There are two types of testing datasets:
 - 1. Datasets containing A
 - 2. Datasets not containing A
- There are $\binom{n-1}{k-1}$ testing sets of the first type

- Let's look at the problem from another angle
- Consider one element A in the dataset
- There are two types of testing datasets:
 - 1. Datasets containing A
 - 2. Datasets not containing A
- There are $\binom{n-1}{k-1}$ testing sets of the first type
- There are $\binom{n-1}{k}$ testing sets of the second type

- Let's look at the problem from another angle
- Consider one element A in the dataset
- There are two types of testing datasets:
 - 1. Datasets containing A
 - 2. Datasets not containing A
- There are $\binom{n-1}{k-1}$ testing sets of the first type
- There are $\binom{n-1}{k}$ testing sets of the second type
- By the rule of sum we have $\binom{n-1}{k-1} + \binom{n-1}{k}$ testing sets in total

Problem

Suppose we have a dataset of size n to train our ML model. We want to separate a testing dataset of size k from it. How many ways do we have to do it?

• On one hand the answer is $\binom{n}{k}$

Problem

Suppose we have a dataset of size n to train our ML model. We want to separate a testing dataset of size k from it. How many ways do we have to do it?

- On one hand the answer is $\binom{n}{k}$
- On the other hand the answer is $\binom{n-1}{k-1} + \binom{n-1}{k}$

Problem

Suppose we have a dataset of size n to train our ML model. We want to separate a testing dataset of size k from it. How many ways do we have to do it?

- On one hand the answer is $\binom{n}{k}$
- On the other hand the answer is $\binom{n-1}{k-1} + \binom{n-1}{k}$
- Thus, we have

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• We can also check $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ by the direct calculation

- We can also check $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ by the direct calculation
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- We can also check $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ by the direct calculation
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}, \ \binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$

- We can also check $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ by the direct calculation
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- $\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!(n-k)!}$, $\binom{n-1}{k} = \frac{(n-1)!}{k!(n-k-1)!}$
- We get

$$\begin{split} \frac{(n-1)!}{(k-1)!(n-k)!} + \frac{(n-1)!}{k!(n-k-1)!} &= \\ \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) &= \\ \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{k+(n-k)}{(n-k)k}\right) &= \frac{n!}{k!(n-k)!} \end{split}$$

$$n = 0$$

$$n = 0$$
$$n = 1$$

$$n = 0$$

$$n = 1$$

$$n = 2$$

Code

```
C = dict() # C[n,k] is equal to n choose k

for n in range(8):
    C[n, 0] = 1
    C[n, n] = 1

    for k in range(1, n):
        C[n, k] = C[n - 1, k - 1] + C[n - 1, k]

print(C[7, 4])
```

Code

```
C = dict() # C[n,k] is equal to n choose k

for n in range(8):
    C[n, 0] = 1
    C[n, n] = 1

    for k in range(1, n):
        C[n, k] = C[n - 1, k - 1] + C[n - 1, k]

print(C[7, 4])
```

The output:

35

• We know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- We know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Not a good way to compute binomials

- We know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Not a good way to compute binomials
- A lot of operations, numbers can become large

- We know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Not a good way to compute binomials
- A lot of operations, numbers can become large
- We also know $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Computing Binomials

- We know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- Not a good way to compute binomials
- A lot of operations, numbers can become large
- We also know $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Much better to compute binomials

Computing Binomials

- We know $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
- · Not a good way to compute binomials
- A lot of operations, numbers can become large
- We also know $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Much better to compute binomials
- Another good option: $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$

Pascal's Triangle is Symmetric:

Pascal's Triangle is Symmetric:

Pascal's Triangle is Symmetric:

Theorem

$$\binom{n}{k} = \binom{n}{n-k}$$

Theorem

$$\binom{n}{k} = \binom{n}{n-k}$$

Proof

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$$

Theorem

If $k \le n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

Theorem

If $k \leq n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

· Indeed,

$$\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{k}{n-k+1} \cdot \frac{n!}{k!(n-k)!} < \binom{n}{k}$$

Theorem

If $k \leq n/2$

$$\binom{n}{k-1} < \binom{n}{k}$$

· Indeed,

$$\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{k}{n-k+1} \cdot \frac{n!}{k!(n-k)!} < \binom{n}{k}$$

• The last inequality follows from $\frac{k}{n-k+1} < 1$

Theorem

If
$$k \leq n/2$$

$$\binom{n}{k-1} < \binom{n}{k}$$

 $\binom{n}{k} > \binom{n}{k+1}$

Corollary

If
$$k \ge n/2$$

Binomial coefficients grow in the middle:

Outline

Pascal's Triangle

Binomial Theorem

Practice Counting

Binomial Theorem

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

Binomial Theorem

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

Binomial Theorem

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

Equivalently,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

• Let's open the brackets

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Let's open the brackets
- In each bracket there are two options to pick a summand

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- Let's open the brackets
- In each bracket there are two options to pick a summand
- 2^n summands in total

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- · Let's open the brackets
- In each bracket there are two options to pick a summand
- 2^n summands in total
- How many summands of the form $a^{n-k}b^k$?

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

• To get $a^{n-k}b^k$ we have to pick b in exactly k brackets

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- To get $a^{n-k}b^k$ we have to pick b in exactly k brackets
- How many ways do we have to pick k brackets among n in our expression?

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- To get $a^{n-k}b^k$ we have to pick b in exactly k brackets
- How many ways do we have to pick k brackets among n in our expression?
- This is exactly $\binom{n}{k}$

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- To get $a^{n-k}b^k$ we have to pick b in exactly k brackets
- How many ways do we have to pick k brackets among n in our expression?
- This is exactly $\binom{n}{k}$
- So we will have summand $a^{n-k}b^k$ with the coefficient $\binom{n}{k}$

$$\overbrace{(a+b)\cdot (a+b)\cdot (a+b)\cdot \ldots\cdot (a+b)}^n$$

- To get $a^{n-k}b^k$ we have to pick b in exactly k brackets
- How many ways do we have to pick k brackets among n in our expression?
- This is exactly $\binom{n}{k}$
- So we will have summand $a^{n-k}b^k$ with the coefficient $\binom{n}{k}$
- We have $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Set
$$a = b = 1$$
:

$$2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n}$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Set a = b = 1:

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n}$$

• Or equivalently, $2^n = \sum_{k=0}^n \binom{n}{k}$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Set a = b = 1:

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k} + \dots + \binom{n}{n}$$

- Or equivalently, $2^n = \sum_{k=0}^n \binom{n}{k}$
- The number of subsets is equal to 2^n

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Set a = 1, b = -1.

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Set a = 1, b = -1.

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$

• Or equivalently, $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$$

• Set a = 1, b = -1.

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}$$

- Or equivalently, $0 = \sum_{k=0}^{n} (-1)^k \binom{n}{k}$
- The number of odd size subsets is the same as the number of even size subsets.

Outline

Pascal's Triangle

Binomial Theorem

Practice Counting

Number of Hands

Problem

What is the number of 5-card hands dealt off of a standard 52-card deck?

Number of Hands

Problem

What is the number of 5-card hands dealt off of a standard 52-card deck?

Cards in the hand are unordered, so we pick a subset

Number of Hands

Problem

What is the number of 5-card hands dealt off of a standard 52-card deck?

- Cards in the hand are unordered, so we pick a subset
- The answer is $\binom{52}{5} = 2598960$

Two Hearts and Three Spades

Problem

What is the number of 5-card hands with two hearts and three spades?

Two Hearts and Three Spades

Problem

What is the number of 5-card hands with two hearts and three spades?

 We need two cards from the set of 13 and 3 cards among other 13

Two Hearts and Three Spades

Problem

What is the number of 5-card hands with two hearts and three spades?

- We need two cards from the set of 13 and 3 cards among other 13
- The answer is $\binom{13}{2}\binom{13}{3} = 22308$

Problem

Problem

What is the number of non-negative integers with at most four digits at least one of which is equal to 7?

It is not clear how to compute this

Problem

- It is not clear how to compute this
- But it is easy to compute the opposite!

Problem

- It is not clear how to compute this
- But it is easy to compute the opposite!
- There are 9^4 numbers with no digits equal to 7

Problem

- It is not clear how to compute this
- But it is easy to compute the opposite!
- There are 9^4 numbers with no digits equal to 7
- The answer is $10^4 9^4 = 3439$

Problem

How many four-digit numbers are there such that their digits are decreasing? Three-digit numbers are also four-digit, they just start with 0

Problem

How many four-digit numbers are there such that their digits are decreasing? Three-digit numbers are also four-digit, they just start with 0

 If we try to count options for each position and apply the product rule, there are problems

Problem

How many four-digit numbers are there such that their digits are decreasing? Three-digit numbers are also four-digit, they just start with 0

- If we try to count options for each position and apply the product rule, there are problems
- 10 options for the first position, but for the second the number of options depends on the first number

Problem

How many four-digit numbers are there such that their digits are decreasing? Three-digit numbers are also four-digit, they just start with 0

- If we try to count options for each position and apply the product rule, there are problems
- 10 options for the first position, but for the second the number of options depends on the first number
- Idea: look from the other side

• We pick digits from 0 to 9 to be in our number

- We pick digits from 0 to 9 to be in our number
- Once we picked four distinct digits, our number is uniquely determined

- We pick digits from 0 to 9 to be in our number
- Once we picked four distinct digits, our number is uniquely determined

7 4 3 2

Picked 3, 4, 2, 7

- We pick digits from 0 to 9 to be in our number
- Once we picked four distinct digits, our number is uniquely determined

- We pick digits from 0 to 9 to be in our number
- Once we picked four distinct digits, our number is uniquely determined
- Order of picks does not matter

- We pick digits from 0 to 9 to be in our number
- Once we picked four distinct digits, our number is uniquely determined
- · Order of picks does not matter
- We have combinations of size 4 from 10 options

- We pick digits from 0 to 9 to be in our number
- Once we picked four distinct digits, our number is uniquely determined
- · Order of picks does not matter
- We have combinations of size 4 from 10 options
- The answer is $\binom{10}{4} = 210$

Piece on a Chessboard

A piece can move one step up or one step to the right. What is the number of ways of getting from the cell [0,0] (bottom left corner) to the cell [3,5]?

• There are exactly eight moves

- There are exactly eight moves
- Three of them should be to the right, while the remaining five should go up

- There are exactly eight moves
- Three of them should be to the right, while the remaining five should go up
- Moreover, any such combination of three moves to the right and five moves up is a valid way of getting to the cell [3,5]

- There are exactly eight moves
- Three of them should be to the right, while the remaining five should go up
- Moreover, any such combination of three moves to the right and five moves up is a valid way of getting to the cell [3,5]
- We need to pick a subset of 3 moves among 8 moves

- There are exactly eight moves
- Three of them should be to the right, while the remaining five should go up
- Moreover, any such combination of three moves to the right and five moves up is a valid way of getting to the cell [3,5]
- We need to pick a subset of 3 moves among 8 moves
- The answer is $\binom{8}{3} = 56$

We studied binomial coefficients extensively

- We studied binomial coefficients extensively
- They have several mathematical and combinatorial interpretations

- We studied binomial coefficients extensively
- They have several mathematical and combinatorial interpretations
- We have practiced to apply our knowledge

- We studied binomial coefficients extensively
- They have several mathematical and combinatorial interpretations
- · We have practiced to apply our knowledge
- In the next lesson we will see one more standard combinatorial setting