Algebra 2R, lista 5.

Zadania domowe: zasady jak zwykle. Dodatkowo: nie wolno oddawać ani deklarować rozwiązań podpunktów oznaczonych minusem (-). p oznacza zawsze charakterystykę ciała.

- 1. Załóżmy, że char(K) = p > 0, $K \subset L$ jest rozszerzeniem algebraicznym ciał oraz $a \in L \setminus K$. Udowodnić, że a^{p^l} jest rozdzielczy nad K dla pewnego $l \ge 0$.
- 2. Niech $K \subset L \subset M \subset \hat{K}$, $[M:K] < \infty$ i $a \in L$. Udowodnić, że (a) $Tr_{M/K}(a) = [M:L] \cdot Tr_{L/K}(a)$, $N_{M/K}(a) = N_{L/K}(a)^{[M:L]}$, (b)* $Tr_{M/K} = Tr_{L/K} \circ Tr_{M/L}$, $N_{M/K} = N_{L/K} \circ N_{M/L}$.
- 3. Załóżmy, że $a \in L$ jest algebraiczny nad K, L = K[a] i $W(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ jest wielomianem minimalnym a nad K. Udowodnić (wprost z definicji), że
 - (a) $Tr_{L/K}(a) = a_{n-1}, N_{L/K}(a) = (-1)^n a_0,$
 - (b) $W(X) = (-1)^n \varphi(x)$, gdzie $\varphi(x)$ to wielomian charakterystyczny przekształcenia K-liniowego $f_a: L \to L$.
- 4. (a) Udowodnić, że automorfizm Frobeniusa $Fr(x) = x^p$. jest generatorem grupy $G(F(p^n)/F(p))$.
 - (b) Dla $m|n, F(p) \subset F(p^m) \subset F(p^n)$. Niech $\Phi : G(F(p^n)/F(p)) \to G(F(p^m)/F(p))$ będzie obcięciem do $F(p^n)$. Wskazać generator grupy $Ker(\Phi) = G(F(p^n)/F(p^m))$.
 - (c)* Wskazać element $g \in G(F(p)/F(p))$, który nie jest potęgą automorfizmu Frobeniusa. Udowodnić, że Aut(F(p)) ma moc 2^{\aleph_0} .
- 5. Załóżmy, że $K \subseteq L_1, L_2 \subseteq \hat{K}$ i $K \subseteq L_i$ są (skończonymi) rozszerzeniami Galois.
 - (a) Udowodnić, że rozszerzenie $K \subseteq L_1 \cdot L_2$ jest Galois.
 - (b) Udowodnić, że jeśli $G(L_1/K)$ i $G(L_2/K)$ są abelowe, to $G(L_1L_2/K)$ też jest abelowa.
 - (c) Gdy $L_1 \cap L_2 = K$, udowodnić, że $G(L_1L_2/L_1) \cong G(L_2/K)^1$
 - (d) Gdy $L_1 \cap L_2 = K$, udowodnić, że $G(L_1L_2/K) \cong G(L_1/K) \times G(L_2/K)$.
- 6. Udowodnić, że każda grupa skończona G jest izomorficzna z grupą Galois pewnego rozszerzenia Galois.²
- 7. (a) Załóżmy, że L jest skończonym rozszerzeniem ciała \mathbb{Q} , stopnia nieparzystego. Udowodnić, że L jest izomorficzne nad \mathbb{Q} z podciałem ciała \mathbb{R} .
 - (b)
– Udowodnić, że każde skończone rozszerzenie $L \supset \mathbb{R}$ ma stopie
ń będący

 $^{^{1}}$ wsk: rozważyć obcięcie do L_{2} . Wykorzystać związek między rzędem grupy Galois i stopniem rozszerzenia Galois.

 $^{^2}$ wsk: Na mocy tw. Cayleya możemy założyć, że $G < S(\{X_1, \dots, X_n\})$ dla pewnego n.Rozważyć ciało $K(X_1, \dots, X_n).$

potęgą 2.³

- (c)– Udowodnić, że C jest algebraicznie domknięte.⁴
- 8. * Udowodnić, że każda skończona grupa abelowa jest grupą Galois pewnego rozszerzenia Q (otwarty jest problem, czy można pominąć założenie abelowości, tzw. Odwrotny Problem Galois Inverse Galois Problem).⁵
- 9. Załóżmy, że A jest strukturą algebraiczną, H < Aut(A) i $f \in Aut(A)$. Niech $A^H = \{a \in A : \forall g \in H, \ g(a) = a\}$. Udowodnić szczegółowo, że $f(A^H) = A^{H^f}$, gdzie $H^f = fHf^{-1}$ jest sprzężeniem H względem f.

 $[\]overline{\ \ \ }^3$ wsk: bso $L\supset \mathbb{R}$ jest Galois. Rozważyć 2-podgrupę SylovaH< G(L/R)oraz rozszerzenie $L^H\supset \mathbb{R}$

 $^{^4}$ wsk: jeśli nie, to istnieje rozszerzenie Galois $L \supset \mathbb{C}$ stopnia 2^n . G(L/K) jest nilpotentna (jako 2-grupa), zawiera więc podgrupę H indeksu 2. Rozważyć L^H .

 $^{^5}$ wsk: udowodnić, że każda skończona grupa abelowa jest homomorficznym obrazem pewnej grupy Z_n^* . W tym celu użyć (bez dowodu) twierdzenia Dedekinda, że w każdym ciągu arytmetycznym jest nieskończenie wiele liczb pierwszych.