Optimización de la Calidad en la Producción de Chips

Un Enfoque Basado en Datos

Pasos a seguir en un proceso de análisis de datos

1. Preguntar

- 1. ¿Qué tipo de respuestas basadas en datos quiere su cliente y qué le pide que consiga?
 - Cliente: Una fábrica de chips que busca identificar patrones en los defectos de producción para mejorar la calidad y reducir costos.
 - Objetivo: Presentar un análisis para predecir productos defectuosos y priorizar áreas de mejora.
- 2. ¿Cuáles son los factores clave que intervienen en la tarea empresarial que está investigando?
 - Factores: Sensores de producción, condiciones ambientales, y métricas del proceso (temperatura, presión, tiempo).
- 3. ¿Qué tipo de datos serán apropiados para su análisis?
 - Datos históricos de producción que incluyan parámetros de los sensores y etiquetas de calidad (defectuoso/no defectuoso).
- 4. ¿Dónde obtendrá esos datos?
 - Usaremos los datos previamente estudiados de https://www.kaggle.com/datasets/paresh2047/uci-semcom y simularemos un contexto realista de adquisición (p. ej., recopilados de sensores IoT en la planta).
- 5. ¿Quién es su público y qué materiales le ayudarán a presentárselo efectivamente?
 - Público: Directores de calidad y operaciones de la fábrica.
 - Materiales: Visualizaciones de datos claras, resultados de los modelos predictivos y recomendaciones prácticas.

2. Preparar

Revisaremos y documentaremos los datos existentes, asegurándonos de que sean adecuados para este caso práctico.

1. Descripción de las fuentes de datos:

- Conjunto de datos "Kaggle" https://www.kaggle.com/datasets/paresh2047/uci-semcom, Propietario: Paresh Mathur, uci-secom.csv. Contiene registros de sensores y etiquetas de calidad.
- Variables: Sensores (X1, X2, ..., X596) y etiqueta (1 = defectuoso, 0 = no defectuoso).

2. Integridad de los datos:

- Verificar valores faltantes, duplicados y rangos inconsistentes.
- Documentar cualquier problema y su solución (p. ej., imputación, eliminación de outliers).

3. Procesar

1. Script básico:

• Entrenaremos un modelo simple (p. ej., Logistic Regression) para establecer una línea base de predicción de productos defectuosos.

2. Script con hiperparámetros:

 Optimización de parámetros clave en modelos más complejos, como Random Forest o Gradient Boosting.

3. Script XGBoost:

• Aplicación de XGBoost para maximizar la precisión y analizar la importancia de las características.

4. Preparación de los datos para los modelos:

- Se imputaron los valores faltantes con la mediana de cada columna para evitar sesgos en las características numéricas.
- Random Forest puede manejar datos imputados con facilidad porque utiliza árboles de decisión.
- XGBoost maneja valores faltantes automáticamente durante el entrenamiento. Busca el valor óptimo en los nodos de decisión cuando encuentra un valor NaN

4. Analizar

Realizaremos un análisis profundo de los resultados obtenidos:

1. Métricas clave:

• Precisión, recall, F1-score y matriz de confusión para evaluar cada modelo.

2. Análisis de importancia de características:

• Identificar qué sensores son críticos para predecir defectos.

5. Compartir

Prepararemos una presentación clara con los resultados y visualizaciones relevantes:

1. Visualizaciones:

- Gráficas de importancia de características.
- Comparación de desempeño entre los tres modelos.
- Ejemplo de predicciones en datos reales.

2. **Informe final**:

• Resumen de hallazgos clave y recomendaciones para mejorar la calidad del proceso.

6. Actuar

Basándonos en el análisis, propondríamos acciones específicas, como:

1. Optimización de sensores:

• Monitorear más de cerca los sensores críticos identificados.

2. Automatización del control de calidad:

• Implementar el modelo XGBoost en la línea de producción para alertar sobre posibles defectos en tiempo real.

3. **Próximos pasos**:

• Recopilar más datos y explorar nuevos factores (p. ej., cambios en el equipo o en el entorno).