SEMESTER S1

INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Group A & B)

Course Code	GXEST104	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	4:0:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min
Prerequisites (if any)	None	Course Type	Group Core-Theory

Course Objectives:

- 1. Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits
- 2. Classify series and parallel magnetic circuits
- **3.** Analyse three phase AC systems
- 4. Describe the fundamental concepts of electronic components and devices
- **5.** Outline the principles of communication systems
- **6.** Identify various applications of modern electronics in the contemporary world

SYLLABUS

Module No.	Syllabus Description						
1	Elementary concepts of DC electric circuits: Current and Voltage Division Rule - Relative potential Capacitors & Inductors: V-I relations and Energy stored. Ohms Law and Kirchhoff's laws - numerical problems. Star-delta conversion (resistive networks only - derivation not required) - numerical problems. Analysis of DC Electric circuits: Mesh current method - matrix representation - Solution of network equations.	11					

	Node voltage methods-matrix representation-solution of network equations	
	by matrix methods - numerical problems.	
	Elementary Concepts of Magnetic circuits:	
	Magnetic Circuits: Basic Terminology: MMF, field strength, flux density, reluctance - Comparison between electric and magnetic circuits - Series	
	and parallel magnetic circuits with composite materials (numerical problems not needed)	
2	Electromagnetic Induction: Faraday's laws, Lenz's law- statically induced and dynamically induced emf — Self-inductance and mutual inductance, coefficient of coupling (numerical problems not needed) Alternating Current fundamentals: Generation of alternating voltages - Representation of sinusoidal waveforms: frequency, period, average value, RMS value and form factor-numerical problems AC Circuits: Phasor representation of sinusoidal quantities, Trigonometric, Rectangular, Polar and complex forms. Analysis of simple AC circuits: Purely resistive, inductive & capacitive circuits; Inductive and capacitive reactance, concept of impedance -numerical problems. RL, RC and RLC series circuits- power factor, active, reactive and apparent power. Simple numerical problems. Three phase AC systems: Generation of three phase voltages, advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents- numerical problems	11
3	Introduction to Electronic devices: Passive and active components in electronics	13
	Working of PN junction diode, V-I characteristics of PN Junction diode Zener diode and avalanche breakdown. Basics of Zener voltage regulator	

	B.1ech	2024 –S1/S2
	Block diagram of DC power supply, circuit and working of half wave, full	
	wave and bridge rectifiers, ripple factor (with and without capacitor	
	filters)	
	Construction, working and V-I Characteristics of BJT, Input output	
	characteristics of CE configuration, Comparison of CE, CB and CC	
	configurations	
	Concept of biasing and load line Transistor as a switch, Transistor as an	
	amplifier (Circuit Diagram and working)	
	RC coupled amplifier - Circuit diagram and frequency response	
	Introduction to FET, Construction and working of N-channel and P-	
	Channel MOSFETs	
	Modern Electronics and its applications:	
	General block diagram of a Communication system, Block diagram of	
	Fiber optic Communication system	
	Concept of AM and FM (No derivation required), Block diagram of AM and	
	FM super-heterodyne receiver	
	Basic concepts of Wired and Wireless communication, Block diagram	
	of GSM	
4	Comparison of 3G, 4G, 5G and 6G communication technologies Block	9
	diagrams of Electronic instrumentation system, Digital Multimeter,	
	Function generator	
	Introduction to CRO and Lissajous patterns	
	Applications of modern electronics – IoT based smart homes,	
	healthcare and agriculture (Case study only)	
	I .	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	
2 Questions from each	Each question carries 9 marks.	
module.	Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Apply fundamental concepts and circuit laws to solve simple DC/AC electric circuits	K2			
CO2	Classify series and parallel magnetic circuits	K2			
CO3	Analyse three phase AC systems	K2			
CO4	Describe the fundamental concepts of electronic components and devices	K2			
CO5	Outline the principles of communication systems	K2			
CO6	Identify various applications of modern electronics in the contemporary world	K2			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2											2
CO3	3	2										2
CO4	2	1										2
CO5	2											2
CO6	3		1			3	1					2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	he Author/s Name of the Publisher					
1	Basic Electrical Engineering	D P Kothari and I J Nagrath	Tata McGraw Hill	4/e 2019				
2	Schaum's Outline of Basic Electrical Engineering	J.J.Cathey and Syed A Nasar	Tata McGraw Hill	3/e 2010				
3	Basic Electronics: Principles and Applications	Chinmoy Saha, Arindham Halder and Debarati Ganguly	Cambridge University Press	1/e 2018				
4	Basic Electrical and Electronics Engineering	D. P. Kothari and I. J. Nagrath	McGraw Hill	2/e 2020				
5	The Internet of Things: How Smart TVs, Smart Cars, Smart Homes, and Smart Cities Are Changing the World	Michael Miller	QUE	1/e 2015				
6	Basic Electronics and Linear Circuits	N N Bhargava D C Kulshreshtha and S. C. Gupta	McGraw Hill	2/e 2017				
7	Electronic Communication SYstems	Kennedy and Davis	McGraw Hill	6/e 2017				

Reference Books							
Sl. No	Title of the Book	e of the Book Name of the Author/s Name of the Publisher		Edition and Year			
1	Basic Electrical Engineering	D C Kulshreshtha	Tata McGraw Hill	2/e 2019			
2	Electrical Engineering Fundamentals	Del Toro V	Pearson Education	2/e 2019			
3	Basic Electrical Engineering	T. K. Nagsarkar, M. S. Sukhija	Oxford Higher Education	3/e 2017			
4	Electronics: A Systems Approach	Neil Storey	Pearson	6e 2017			
5	Electronic Devices and Circuit Theory	Robert L. Boylestad and Louis Nashelsky	Pearson	11e 2015			
6	Principles of Electronic Communication Systems	Frenzel, L. E	MGH	4e 2016			
7	Internet of Things: Architecture and Design Principles	Raj Kamal	McGraw Hill	1/e 2017			
8	Electronic Communication	Dennis Roddy and John Coolen	Pearson	4/e 2008			