CS217: Data Structures & Algorithm Analysis (DSAA)

Lecture #1

Getting Started

Prof. Pietro Oliveto
Department of Computer Science and Engineering
Southern University of Science and Technology (SUSTech)

olivetop@sustech.edu.cn
https://faculty.sustech.edu.cn/olivetop

Reading (that means homework!): read Chapter 1 and Chapter 2, Sections 2.1-2.2, (skip problems, exercises, and pseudocode conventions)

CSE217 (H): Data Structures & Algorithm Southern Analysis

1

3

Algorithms

- An algorithm is a well-defined computational procedure that takes some input and produces some output.
 - It is a tool for solving a well-specified computational problem.
- Example: the sorting problem
 - **Input**: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$.
 - **Output**: a permutation (reordering) $\langle a_1', a_2', ..., a_n' \rangle$ of the input sequence such that $a_1' \leq a_2' \leq \cdots \leq a_n'$.

A sequence like (31, 41, 59, 26, 41, 58) is called an **instance** of the sorting problem.

• We expect an algorithm to solve any instance of the problem

Aims of this lecture

- to set the scene for the analysis of algorithms
- to define correctness of algorithms and to demonstrate how to show that an algorithm is correct
- to show how the running time of an algorithm can be analysed
- to analyse InsertionSort as a simple sorting algorithm

CSE217 (H): Data Structures & Algorithm Southern Analysis

2

How we describe algorithms

We use an abstract language, pseudocode, for two reasons:

- 1. See that algorithms exist independent from any particular programming language
- 2. Focus on ideas rather than syntax issues, error-handling, etc.

"If you wish to implement any of the algorithms, you should find the translation of our pseudocode into your favourite programming language to be a fairly straightforward task.
[...]

We attempt to present each algorithm simply and directly without allowing the idiosyncrasies of a particular programming language to obscure its essence."

What's an ideal algorithm?

CSE217 (H): Data Structures & Algorithm Southern Analysis

How to measure time?

- Computers are different (clock rate, speed of memory...)
- Computer architecture can be complex (memory hierarchy, pipelining, multi-core...)
- Choice of programming language affects execution time
- We need a model that provides a good level of abstraction:
 - Gives a good idea about the time an algorithm needs
 - Allows us to compare different algorithms
 - Without us getting bogged down with details

Correctness

- An algorithm is **correct** if for every input instance it halts with the correct output. A correct algorithm **solves** the problem.
- ? How do you know whether an algorithm is correct?
- ? Who would you rather be?
 - Person A: "I designed an algorithm and I think it is correct."
 - Person B: "I tested my algorithm on 3 instances and it worked."
 - Person C: "I can prove that my algorithm is always correct."
- Ideally, all algorithms should be taught with a proof of correctness!

CSE217 (H): Data Structures & Algorithm Southern Analysis

6

> Random-access machine (RAM) model

- A generic random-access machine; instructions are executed one after another, with no concurrent operations
- Elementary operations:
 - Arithmetic: Add, subtract, multiply, divide, remainder
 - Logical operations, shifts, comparisons
 - Data movement: variable assignments (storing, retrieving)
 - Control instructions: loops, subroutine/method calls
- The RAM model assumes that each elementary operation takes the same amount of time (a constant independent of the problem size)
- The elementary operations are those commonly found in real computers

5

Runtime

- Common cost model: count the number of elementary operations in the RAM model.
- Assumes all operations take the same time.

Runtime of Algorithm A on instance I:

The number of elementary operations in the RAM model A takes on I.

- · But... don't get obsessed counting operations in detail
- We'll often abstract from constants (you'll see how)
- Focus on asymptotic growth of runtime with problem size
- We'll meet some Greek friends to help us: $\Theta, O, \Omega, o, \omega$

CSE217 (H): Data Structures & Algorithm Southern Analysis

9

> Example: InsertionSort

Idea: build up a sorted sequence by inserting the next element at the right position.

Like sorting a hand of cards!

CSE217 (H): Data Structures & Algorithm Southern Analysis

10

InsertionSort

$\overline{\text{InsertionSort}(A)}$

```
1: for j = 2 to A.length do
2: \ker A[j]
3: // \operatorname{Insert} A[j] into the sorted sequence A[1 \dots j-1].
4: i = j - 1
5: \operatorname{while} i > 0 and A[i] > \ker \operatorname{do}
6: A[i+1] = A[i]
7: i = i - 1
8: A[i+1] = \ker
```


11

Example for InsertionSort

	1	2	3	4	5	6
(a)	5	2	4	6	1	3
	V	\mathcal{M}				

Coming up

- 1. How do we know whether InsertionSort is always correct?
 - Proof by loop invariant
- 2. How long does InsertionSort take to run?
 - Naïve and messy approach for now to motivate a cleaner and easier way (next week).

CSE217 (H): Data Structures & Algorithm Southern Analysis

13

Loop invariant: Example

INSERT-ALL-FIVES(A, n)1: **for** i = 1 to n **do**2: A[i] = 5

- Loop invariant: "At the start of each iteration i of the for loop, each element of the subarray A[1..i-1] is a 5"
- Initialisation: For *i=1* the empty subarray has no elements (trivial).
- Maintenance: Loop invariant says that at step i of the for loop the subarray A[1..i-1] contains 5s. During the i_th iteration we insert a 5 in A[i], so by the end of the iteration the loop invariant still holds for step i+1.
- **Termination:** The algorithm terminates when *i=n+1*. Then the loop invariant for *i=n+1* says that all the elements of the subarray *A[1..n]* contain 5s, so the algorithm returns the correct output!

Loop invariants

- A popular way of proving correctness of algorithms with loops.
- A loop invariant is a statement that is always true and that reflects the progress
 of the algorithm towards producing a correct output.
 - Example: "After i iterations of the loop, at least i things are nice."
 - The hard bit is finding out what is "nice" for your algorithm!
 - **Initialisation:** the loop invariant is true at initialisation.
 - Often trivial: "After 0 iterations of the loop, at least 0 things are nice."
 - Maintenance: if the loop invariant is true after i iterations, it is also true after i+1 iterations.
 - Need to prove that the loop turns *i* nice things into *i+1* nice things.
 - Termination: when the algorithm terminates, the loop invariant tells that the algorithm is correct.
 - "When terminating, all is nice and that means the output is correct!"

CSE217 (H): Data Structures & Algorithm Southern Analysis

14

Correctness of InsertionSort

- Loop invariant: "At the start of each iteration of the for loop of lines 1-8, the subarray A[1..j-1] consists of the elements originally in A[1..j-1], but in sorted order."
- Initialisation: For j=2 the subarray A[1] is the original A[1] and it is sorted (trivially).
- Maintenance: The while loop moves A[j-1], A[j-2], ... one position to the right and inserts A[j] at the correct position i+1. Then A[1..j] contains the original A[1..j], but in sorted order:

$$\underbrace{A[1] \leq A[2] \leq \cdots \leq A[i-1] \leq A[i]}_{\text{sorted before}} \underbrace{A[i+1] \leq A[i+1] \leq A[i+2] \leq \cdots \leq A[j]}_{\text{from while loop}}$$

• **Termination:** The for loop ends when j=n+1. Then the loop invariant for j=n+1 says that the array contains the original A[1..n] in sorted order!

Runtime of InsertionSort

Cost

Times

INSERTIONSORT(A) 1: for j = 2 to A.length do

1: for
$$j=2$$
 to A.len

2:
$$\ker = A[j]$$

3:
$$//$$
 Insert $A[j]$ into ...

4:
$$i = j - 1$$

5: **while**
$$i > 0$$
 and $A[i] > \text{key do}$

$$6: A[i+1] = A[i]$$

7:
$$i = i - 1$$

8:
$$A[i+1] = \ker$$

Define t_i as the number of times the while loop is executed for that j.

CSE217 (H): Data Structures & Algorithm Southern Analysis

Runtime of InsertionSort

- How to analyse the runtime of InsertionSort (in a naïve way):
 - Assume that line i is run in time (cost) C_i .
 - Count the number of times that line is executed.
 - \circ Use t_i for the number of times the while loop was executed
 - Sum up products of costs and times.
- Result (it's messy; our Greek friends will help keep things tidy):

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Runtime of InsertionSort

Insi	ERTIONSORT (A)	Cost	Times
1:	for $j = 2$ to A.length do	c_1	n
2:	$\ker = A[j]$	c_2	n-1
3:	// Insert $A[j]$ into		
4:	i = j - 1	c_4	n-1
5:	while $i > 0$ and $A[i] > \text{key do}$	<i>c</i> ₅	$t_2 + t_3 + \dots = \sum_{j=2}^n t_j$
6:	A[i+1] = A[i]	<i>c</i> ₆	$(t_2-1) + (t_3-1) + \dots = \sum_{j=1}^{n} (t_j-1)$
7:	i = i - 1		J=Z n
8:	$A[i+1] = \ker$	c ₇	$(t_2-1) + (t_3-1) + \dots = \sum_{j=2}^{n} (t_j-1)$
		c_8	n-1

Define t_i as the number of times the while loop is executed for that j.

CSE217 (H): Data Structures & Algorithm Southern Analysis

18

> Runtime of InsertionSort: Best case

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Best case: the array is sorted, $t_i = 1$ (1x head of while loop)

$$T(n) = c_1 n + c_2 (n - 1) + c_4 (n - 1) + c_5 (n - 1) + c_8 (n - 1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$
= $an + b$

for constants a, b composed of c_1 , c_2 , etc.

Note: an + b is a linear function in n.

17

Runtime of InsertionSort: Worst case

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Worst case: the array is reverse sorted, $t_i = j$

The following formula is very helpful:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

So

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad \text{and} \quad \sum_{j=2}^{n} (j-1) = \sum_{j=1}^{n-1} j = \frac{(n-1)n}{2}$$

CSE217 (H): Data Structures & Algorithm Southern Analysis

21

23

Summary

- Correctness means that an algorithm always produces the intended output for any input.
- Runtime describes the number of elementary operations in a RAM machine.
- Seen InsertionSort as a first example of an algorithm
 - Idea: build up sorted sequence by slotting in the next element.
 - Used a loop invariant to prove that the algorithm is correct.
 - A loop invariant is a statement that is always true.
 - Captures the progress towards producing a correct output at termination.
 - Analysed the runtime of InsertionSort.

CSE217 (H): Data Structures & Algorithm Southern Analysis

Runtime of InsertionSort: Worst case (2)

Worst case: the array is reverse sorted, $t_j = j$

Using these formulas gives

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

$$= an^2 + bn + c$$

For constants a, b, c composed of c_1 , c_2 , etc.

Note: a **quadratic function** in *n*

CSE217 (H): Data Structures & Algorithm Southern Analysis

22