

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

1983 CRC OCTANE NUMBER REQUIREMENT SURVEY

August 1983

DIIG EILE COPY

AD-A145 816

84 09 17 003

COORDINATING RESEARCH COUNCIL, INC. 219 PERIMETER CENTER PARKWAY, ATLANTA, GEORGIA 30346 The Coordinating Research Council, Inc. (CRC) is a nonprofit corporation supported by the petroleum and automotive equipment industries. CRC operates through committees made up of technical experts from industry and government who voluntarily participate. The four main areas of research within CRC are: air pollution (atmospheric and engineering studies); aviation fuels, lubricants, and equipment performance; heavy-duty vehicle fuels, lubricants, and equipment performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e.g., passenger cars). CRC's function is to provide the mechanism for joint research conducted by the two industries that will help in determining the optimum combinations of petroleum products and automotive equipment. CRC's work is limited to research that is mutually beneficial to the two industries involved, and all information is available to the public.

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

1983 CRC OCTANE NUMBER REQUIREMENT SURVEY (CRC Project No. CM-123-83)

IN FORMULATING AND APPROVING REPORTS, THE APPROPRIATE COMMITTEE OF THE COORDINATING RESEARCH COUNCIL, INC. HAS NOT INVESTIGATED OR CONSIDERED PATENTS WHICH MAY APPLY TO THE SUBJECT MATTER. PROSPECTIVE USERS OF THE REPORT ARE RESPONSIBLE FOR PROTECTING THEMSELVES AGAINST LIABILITY FOR INFRINGEMENT OF PATENTS.

Prepared by the

1983 Analysis Panel

of the

CRC Octane Number Requirement Survey Group

DHHK-70-810-1128

August 1984

Light-Duty Vehicle Fuel, Lubricant, and Equipment Research Committee of the

Coordinating Research Council, Inc.

ABSTRACT

In the 37th annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 383 1983 model vehicles, including 300 US vehicles and 83 imported vehicles. Fifteen laboratories participated in this Survey. Maximum octane number requirements were determined by testing under part-throttle conditions, as well as at maximum-throttle. Requirements are expressed as the Research octane number, Motor octane number, and (R+M)/2 octane number of the reference fuel which produced the least audible knock due to either spark or surface ignition, whichever was limiting. Estimated octane number requirements for the US vehicles are weighted in proportion to the 1983 vehicle model production figures and, for the imported models, in proportion to import sales volume in the United States.

TABLE OF CONTENTS

<u>TEXT</u>	. <u> </u>	age
	ABSTRACT	i
I.	INTRODUCTION	3
II.	SUMMARY	7
	A. Vehicles Tested B. Octane Number Requirements C. Maximum Octane Number Requirements at Part-Throttle D. Tank Fuel Knock Reported by Trained Raters E. Surface Ignition F. Road Octane Number Depreciation G. Speed Range Octane Number Requirements H. Gear Position for Maximum Requirements	10 10 10 11 11
III.	TEST VEHICLES	15
IV.	REFERENCE FUELS	19
	A. PR Fuels B. FBRU Reference Fuels C. FBRSU Reference Fuels	19
٧.	TEST TECHNIQUE	23
VI.	DISCUSSION OF RESULTS	27
	A. General. B. Distribution of Maximum Octane Number Requirements C. 1983 Part-Throttle Investigation D. Select Models E. Tank Fuel F. Surface Ignition G. Engine Speed for Maximum Octane Number Requirements H. Road Octane Number Depreciation of FBRU and FBRSU Fuels I. Speed Range Octane Number Requirement Gear Position for Maximum Poquirements	27 33 34 34 35 35 36 36

<u>TABLES</u>		Page
	·	
Table I	1983 Select Model SpecificationsDistribution of Odometer Mileage for Tested Vehicles	39 40
Table III	- 1983 Basic Timing Adjustments	40 41
Table IV	- Octane Number Requirements with 95% Confidence Limits	
1983 US and In	mported_Vehicles	
Table V	- Maximum Research, Motor, and (R+M)/2 Octane Number Requirements	43
1983 and 1982	US and Imported Vehicles	
	- Comparison of Maximum Research Octane Number	
Table VII	Requirements	44
iable All	- Comparison of Maximum Motor Octane Number Requirements	45
Table VIII	- Comparison of Maximum (R+M)/2 Octane Number	
	Requirements	46
1983 US and It	nported Cars	
Table IX	- Maximum Research, Motor, and (R+M)/2 Octane Number Requirements.	47
	Requirements	47
	US and Imported Cars	
Table X	- Comparison of Maximum Research Octane Number Requirements	40
Table XI	- Comparison of Maximum Motor Octane Number	40
	Requirements	49
Table XII	- Comparison of Maximum (R+M)/2 Octane Number	ΕO
	Requirements	50
1983 US Vehic		
Table XIII	- Maximum Research, Motor, and (R+M)/2 Octane Number	6.1
	Requirements	21
1983 and 1982	<u>US Vehicles</u>	
Table XIV	- Comparison of Maximum Research Octane Number Requirements	52
Table XV		32
	Requirements	53
Table XVI	- Comparison of Maximum (R+M)/2 Octane Number Requirements	EΛ
	Requirements	54
1983 US Cars		
Table XVII	- Maximum Research, Motor, and (R+M)/2 Octane Number	E E
	Requirements	55
1983 and 1982		
Table XVIII	- Comparison of Maximum Research Octane Number	E
Table XIX	Requirements Motor Octane Number	20
	Requirements	57
Table XX	- Comparison of Maximum (R+M)/2 Octane Number	E0
	Requirements	20

TABLES - (Continued)	<u>Page</u>
1983 Imported Vehicles	
Table XXI - Maximum Research, Motor, and (R+M)/2 Octane Number Requirements	59
1983 and 1982 Imported Vehicles	
Table XXII - Comparison of Maximum Research Octane Number	
Requirements	60
Table XXIII - Comparison of Maximum Motor Octane Number	61
Requirements	01
Requirements	62
All 1983 US and Imported Vehicles	
Table XXV - Maximum Octane Number Requirements (PR Fuels)	63
Table XXVI - Maximum Research, Motor, and (R+M)/2 Octane	
Number Requirements (FBRU Fuels)	64
Table XXVII - Maximum Research, Motor, and (R+M)/2 Octane	65
Number Requirements (FBRSU Fuels)	00
All 1983 US and Imported Cars	
Table XXVIII - Maximum Octane Number Requirements (PR Fuels)	66
Table XXIX - Maximum Research, Motor, and (R+M)/2 Octane	
Number Requirements (FBRU Fuels)	67
Table XXX - Maximum Research, Motor, and (R+M)/2 Octane	60
Number Requirements (FBRSU Fuels)	00
All 1983 US Vehicles	
Table XXXI - Maximum Octane Number Requirements (PR Fuels)	69
Table XXXII - Maximum Research, Motor, and (R+M)/2 Octane	
Number Requirements (FBRU Fuels)	70
Table XXXIII - Maximum Research, Motor, and (R+M)/2 Octane Number Requirements (FBRSU Fuels)	71
Number Requirements (FBRSO Fuers)	, ,
All 1983 US Cars	
Table XXXIV - Maximum Octane Number Requirements (PR Fuels)	72
Table XXXV - Maximum Research, Motor, and (R+M)/2 Octane	72
Number Requirements (FBRU Fuels)	/3
Number Requirements (FBRSU Fuels)	74
number negationers (ibnot i delb) i in interestination	• •
All 1983 Imported Vehicles	
Table XXXVII - Maximum Octane Number Requirements (PR Fuels)	75
Table XXXVIII - Maximum Research, Motor, and (R+M)/2 Octane	76
Number Requirements (FBRU Fuels)	70
Number Requirements (FBRSU Fuels)	77

:0

TABLES	
TRULES	Page
Table XL - Maximum Octane Number Requirements	70
- 1983 Select Models	
Table XLII - Tank-Fuel Knock Reported by Trained Observers	
Table XLIII - Engine Speeds for Maximum Octane Number	
Requirements - 1983 Select Models Table XLIV - Engine Speeds for Maximum Octane Number	01
Requirements - All 1983 Vehicles	82
Table XLV - Road Octane Depreciation of 1983 FBRU and FBRSU Fuels - All 1983 Vehicles	83
<u>FIGURES</u>	
Figure 1 - Distribution of Odometer Mileage for 1983 Model	
Vehicles Tested Figure 2 - Distribution of Maximum PR Fuel Requirements	84
Figure 2 - Distribution of Maximum PR Fuel Requirements - 1983 US and Imported Vehicles	85
Figure 3 - Distribution of Maximum FBRU RON Requirements	
- 1983 US and Imported Vehicles	87
Figure 4 - Distribution of Maximum FBRSU RON Requirements - 1983 US and Imported Vehicles	89
Figure 5 - Distribution of Maximum RON Requirements	
- 1983 US and Imported Vehicles	91
Figure 6 - Comparison of Maximum PR Fuel Requirements - 1983 and 1982 US and Imported Vehicles	03
Figure 7 - Comparison of Maximum FBRU Fuel Requirements	33
- 1983 and 1982 US and Imported Vehicles	94
Figure 8 - Comparison of Maximum FBRSU Fuel Requirements	0.5
- 1983 and 1982 US and Imported Vehicles Figure 9 - Distribution of Maximum RON Requirements	95
- 1983 US and Imported Cars	96
Figure 10 - Distribution of Maximum RON Requirements	
- 1983 US Vehicles Figure 11 - Comparison of Maximum PR Fuel Requirements	98
- 1983 and 1982 US Vehicles	100
Figure 12 - Comparison of Maximum FBRU Fuel Requirements	
- 1983 and 1982 US Vehicles	101
- 1983 and 1982 US Vehicles	102
Figure 14 - Distribution of Maximum RON Requiremetns	
- 1983 US Cars	103
Figure 15 - Distribution of Maximum RON Requirements - 1983 Imported Vehicles	105
Distribution of Passarch Octano Number Possimements	

APPENDICES

	Page
Appendix A - P	Participating Laboratories A-1
Appendix B - M	Membership: 1983 Analysis Panel
Appendix C - D	Data on 1983 Full-Boiling Range Reference Fuels C-1
Appendix D - P	Program
Appendix E - 1	1983 Octane Number Requirement Survey Data E-1
Appendix F - P	Procedures for Plotting Octane Number Requirement Distribution Data F-1
Appendix G - 0	Confidence Limits of Octane Number Requirement Distributions
	Octane Number Requirements of Knock Sensor-Equipped Vehicles H-1
Appendix I - M	Maximum Octane Number Requirements of Select Models I-1
Appendix J - S	Speed Range DataJ-1
Annendiy K - G	Sear Position for Maximum Octane Number Requirements K-1

I. INTRODUCTION

I. INTRODUCTION

In the 37th annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 383 1983 model vehicles, including sixteen knock sensor-equipped vehicles and five select models of special interest. Maximum octane number requirements were determined by testing under part-throttle conditions, as well as at maximum-throttle.* Although octane number requirements were determined according to the 50th percentile acceleration technique in the 1981 and 1982 Surveys, this technique was deleted from the 1983 program. This was replaced by extended part-throttle investigation. Surface ignition was reported, if present.

Passenger cars and light-duty trucks including non-commercial vans (1/2-3/4) ton without four-wheel drive) were tested to represent the 1983 vehicle population in the United States. This year's Survey includes analyses for the following vehicle categories:

- (1) US and Imported Vehicles -- 383 vehicles
- (2) US and Imported Cars -- 359 cars
- (3) US Vehicles -- 300 vehicles
- (4) US Cars -- 283 cars
- (5) Imported Vehicles -- 83 vehicles

It should be noted that the term "cars" designates passenger cars only, while the term "vehicles" includes passenger cars plus vans and light-duty trucks.

The order of testing reference fuels was the same as the 1982 Survey, which was as follows:

- Tank Fuel......1st
- Average Sensitivity Full-Boiling Range Unleaded (FBRU) Fuels......3rd
- Primary Reference (PR) Fuels.....4th

Fifteen laboratories participated in this Survey; they are listed in Appendix A. Members of the CRC Octane Number Requirement Survey Analysis Panel are identified in 'ppendix B.

^{*} Maximum-throttle is either full-throttle for manual transmissions or widest throttle position for automatic transmissions that does not cause the transmission to downshift (detent) in each individual car.

II. SUMMARY

II. SUMMARY

A. Vehicles Tested

Data were collected on 383 1983 vehicles. These vehicles consisted of 300 US vehicles and 83 imported vehicles. There were 283 US and 76 imported passenger cars. The remainder consisted of seventeen US and seven imported light-duty trucks and vans. The 1983 Survey included sufficient data for five specific models which were analyzed separately as select models. All select models had automatic transmissions. The average deposit mileage in this Survey was 11,374. The weighted average engine displacement and compression ratio were 3.10 $\mbox{\ensuremath{\mathfrak{L}}}$ and 8.66, respectively. Sixteen vehicles were equipped with knock sensors.

B. Octane Number Requirements

Requirements are expressed as the Research octane number (RON), Motor octane number (MON), and (R+M)/2 octane number of the reference fuel which produced the least audible knock due to either spark or surface ignition, whichever was limiting. Estimated octane number requirements for the US vehicles are weighted in proportion to the 1983 vehicle model production figures and, for the imported models, in proportion to import sales volume in the United States.

For the 1981 and 1982 Surveys, knocking tendencies were investigated at maximum-throttle and by the 50th percentile acceleration technique. For the 1983 Survey, the 50th percentile acceleration technique was eliminated. Part-throttle requirements were defined when their requirements were higher than the maximum-throttle requirements or, with FBRU fuels only, when they were within four octane numbers of maximum-throttle requirements. The maximum requirements reported for the 1983 Survey were determined by the same method used in prior Surveys (the greater of maximum-throttle or part-throttle). Maximum (high borderline) and minimum (low borderline) octane number requirements were reported for the knock sensor-equipped vehicles when determined.

This is the first Survey in which requirements for knock sensor-equipped vehicles were included in the distribution. The base analysis case for this report uses the maximum (high borderline) octane number requirements of these vehicles. The following table for FBRU fuels presents maximum 1983 octane number requirements and changes from 1982 for the five sample categories, at the 50 percent and 90 percent satisfaction levels.

FBRU OCTANE NUMBER REQUIREMENTS 1983* AND CHANGES FROM 1982

Maximum Octane Number Requirements

	RC	RON		MON		
Weighted Population	50%	90%	50%	90%		
	Sat.	Sat.	Sat.	Sat.		
All US and Imported Vehicles Δ from 1982	90.8	96.0	83.3	86.7		
	+1.2	+1.1	+0.7	+1.1		
All US and Imported Cars Δ from 1982	90.7	96.3	83.3	86.9		
	+1.0	+1.5	+0.7	+1.3		
All US Vehicles	90.6	95.8	83.2	86.5		
Δ from 1982	+1.0	+0.8	+0.6	+0.8		
All US Cars	90.6	96.1	83.2	86.8		
^ from 1982	+0.9	+1.3	+0.6	+1.3		
Imported Vehicles	91.3	96.5	83.7	87.0		
△from 1982	+1.6	+1.8	+1.1	+1.5		

The following table illustrates the impact of knock sensor-equipped vehicles on the five weighted populations for the FBRU fuel series. At the current market penetration levels, inclusion of the knock sensor-equipped vehicles at their maximum (high borderline) requirement reduces the population requirements relative to those calculated by excluding knock sensors on the order of 0.1 RON at low satisfaction levels, and increases the requirements the same order at high satisfaction levels. Calculating the population requirements with the minimum (low borderline) knock-sensor requirements reduces the requirements 0.2 to 0.4 RON.

^{*} Note: 1983 data include the maximum (high borderline) requirements for knock sensor-equipped vehicles.

KNOCK-SENSOR IMPACT ON WEIGHTED POPULATION FBRU RON REQUIREMENTS

RON Maximum Octane Number Requirements

Weighted Population		30% <u>Sat.</u>	50% Sat.	70% <u>Sat.</u>	90% <u>Sat.</u>
All US and Imported Vehicles (5.96%)*	KS-H**	89.1	90.8	92.4	96.0
	NKS	89.2	90.8	92.4	95.9
	KS-L	88.8	90.6	92.2	95.8
All US and Imported Cars (3.70%)	KS-H	89.1	90.7	92.5	96.3
	NKS	89.0	90.7	92.4	96.2
	KS-L	88.8	90.6	92.2	96.1
All US Vehicles (5.68%)	KS-H	89.0	90.6	92.2	95.8
	NKS	89.2	90.7	92.2	95.7
	KS-L	88.7	90.4	91.9	95.4
All US Cars (3.42%)	KS-H NKS KS-L	89.1 89.0 88.7	90.6 90.6 90.4	92.3 92.2 92.0	96.1 95.9 95.7
Imported Vehicles (0.28%)	KS-H NKS KS-L	89.5 89.4	91.3 91.3	93.1 93.0	96.4 96.3

Maximum octane requirements for the select models at the 50 percent and 90 percent satisfaction levels for FBRU fuels are summarized on the next page.

^{*} Knock sensors as normalized percent of total production for associated population.

^{**} KS-H = Knock Sensors - Maximum (High Borderline) Requirement

NKS = No Knock Sensors

KS-L = Knock Sensors - Minimum (Low Borderline) Requirement

SELECT MODELS

MAXIMUM FBRU OCTANE NUMBER REQUIREMENTS

•		RON		MON	
	_ No.	50%	90%	50%	90%
Select Model	<u>Tested</u>	<u>Sat.</u>	<u>Sat.</u>	<u>Sat.</u>	Sat.
NGA 238A3/HGA 238A3/					
IGA 238A3/LGA 238A3	18	91.9	99.6	84.1	89.4
NJP F20A3/LJP F20A3/					
GLP F20A3	22	95.0	98.0	86.0	88.0
OA4 216A3/MA4 216A3	16	91.9	95.2	84.1	86.1
OD3 238A3/OD3 238A4/					
MD3 238A3/0E3 238A3/					
OE3 238A4/ME3 238A4	21	88.8	93.3	82.0	85.0
PKC 222A3/KKC 222A3/					
DKC 222A3/KEC 222A3					
DEC 222A3	21	89.6	95.5	82.5	86.5

C. Maximum Octane Number Requirements at Part-Throttle

Incidence of part-throttle knock with FBRU greater than maximum-throttle knock was slightly higher in 1983 than in 1982. Maximum requirements occurred at part-throttle in 16.4 percent of all 1983 model vehicles with FBRU fuels (63 of 383 vehicles), compared with 12.0 percent in 1982 and 9.8 percent in 1981.

D. Tank Fuel Knock Reported by Trained Raters

In the 1983 Survey, 44.6 percent of the weighted vehicle population knocked on tank fuel, which compares with 41.6 percent in the 1982 Survey and 42.9 percent in the 1981 Survey.

E. Surface Ignition

There were three reports of surface ignition in the 1983 Survey.

F. Road Octane Number Depreciation

Road octane number depreciation of FBRU fuels in the range 88 to 98 RON varied from 1.2 to 2.6, compared with 0.9 to 2.5 in the 1982 Survey. Depreciation of FBRSU fuels in the range of 88 to 99 RON varied from 2.0 to 3.9, compared with 2.3 to 4.1 in last year's Survey.

G. Speed Range Octane Number Requirements

Octane number requirements across engine speed range were determined on 225 vehicles with primary reference fuels.

H. Gear Position for Maximum Requirements

Of the 383 vehicles tested, 77 percent were equipped with automatic transmissions and 23 percent were equipped with manual transmissions. Maximum requirements at maximum-throttle occurred in 83.4 percent of automatic transmission vehicles (11.9 percent in fourth gear, 52.9 percent in third gear, and 18.6 percent in second gear). Maximum requirements at maximum-throttle occurred in 84.1 percent of manual transmission vehicles (67.1 percent in fourth gear, 15.9 percent in third gear, and 1.1 percent in second gear).

III. TEST VEHICLES

III. TEST YEHICLES

This year's Survey tested a total of 383 1983 model vehicles, compared with 438 vehicles in the 1982 Survey. The analysis of the data included 359 passenger cars (283 US and 76 imports) and 24 non-commercial vans and light-duty trucks (17 US and 7 imports). Also included are sixteen knock sensor-equipped vehicles (twelve US passenger cars, three US trucks, and one imported car).

A sufficient amount of data (sixteen or more vehicles) was obtained for five specific engine models which were analyzed as select models. All select models had automatic transmissions, as shown in Table I.

In the 1983 Survey, 77 percent of the transmissions were automatic. Three-quarters of the automatics were three-speed, and the rest four-speed. The manual transmissions were divided into one-fifth four-speed and four-fifths five-speed. Ninety percent of the surveyed vehicles were air-conditioned.

Table II shows the distribution of odometer mileage for both the 1982 and 1983 Surveys. The 1983 distribution is shown as a bar chart in Figure 1. The average odometer mileage was 11,374. The weighted average displacement in 1983 was 3.10 $\,\mathrm{g}$, compared with 2.94 in 1982. The weighted average compression ratio in 1983 was 8.66, compared with 8.58 in 1982.

The basic timing was adjusted to the manufacturers' recommended setting prior to testing. A total of fifty-three vehicles were adjusted; twenty-three were more than ± 2 degrees off from the manufacturers' setting. The number of vehicles and their deviation in spark setting are shown in Table III.

Participants were requested to rate specific vehicle models in a pattern which would minimize data bias due to differences in testing and vehicle sampling. The United States was divided into four geographical areas with the requested ratings for a given model divided among laboratories within each geographical area.

IV. REFERENCE FUELS

IV. REFERENCE FUELS

Three series of reference fuels were used in the 1983 Survey: primary reference (PR) fuels; average sensitivity full-boiling range unleaded (FBRU) reference fuels with sensitivities similar to those of normal commercial gasoline; and high-sensitivity full-boiling range unleaded (FBRSU) reference fuels with sensitivities higher than the FBRU fuels.

A. PR Fuels

Isooctane and normal heptane, meeting ASTM specifications, were blended in two octane number increments from 76 to 82 RON, and in one octane number increments from 82 to 100 RON.

B. FBRU Reference Fuels

FBRU fuels were prepared from three base blends (RMFD-344-83, RMFD-345-83, and RMFD-346-83) in two octane number increments from 78 to 84 RON, and in one octane number increments from 84 to 102 RON.

The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are compared with those of the 1982 FBRU fuels in Appendix C, Table C-I. The physical inspections of the 1983 fuels were similar (in most instances) to those of the 1982 fuels; however, the aromatics content of the intermediate fuel is higher in 1983, while its saturates content is lower.

The composition and average laboratory octane data for the 1983 FBRU reference fuel series are presented in Appendix C, Table C-II, with the sensitivities compared with the 1982 fuels in Table C-III. The sensitivities of the 1983 fuels were similar to those of the 1982 fuels up to 90 octane, and had lower sensitivities than the 1982 fuels above 90 octane.

C. FBRSU Reference Fuels

FBRSU fuels were prepared from three base blends (RMFD-347-83, RMFD-348-83, and RMFD-349-83) in two octane number increments from 78 to 84 RON, and in one octane number increments from 84 to 102 RON.

The base blends were prepared from normal refinery components. Inspection data furnished by the supplier are compared with those of the 1982 base blends in Appendix C, Table C-IV.

The laboratory blending octane data for the 1983 FBRSU reference fuels are presented in Table C-V, with the sensitivities compared with the 1982 fuels in Table C-III. The sensitivities of the 1983 fuels were slightly lower than the 1982 fuels below 89 RON, and slighter higher above.

V. TEST TECHNIQUE

V. TEST TECHNIQUE

The test technique (CRC Designation E-15-83, Attachment 2 of Appendix D) specified that octane number requirements be determined at level road acceleration conditions. The order of fuel testing was tank fuel, FBRSU fuels, FBRU fuels, and PR fuels. Knocking tendencies were investigated using both maximum-throttle and part-throttle acceleration techniques. Part-throttle was investigated in each vehicle to determine if the part-throttle requirement was higher than the maximum maximum-throttle requirement. In these cases, the part-throttle requirement search was conducted with all three fuels. Part-throttle requirements were also determined with FBRU fuels down to four numbers below the maximum maximum-throttle requirements.

The 50th percentile acceleration technique, used in the 1981 and 1982 programs, was eliminated from the 1983 program.

The occurrence of other abnormal combustion noise, such as surface ignition, was also reported.

The octane number requirement of a vehicle is defined as the Research or Motor octane number of the highest octane test fuel producing borderline knock which is induced by spark or surface ignition. The maximum octane number requirement of the vehicle is defined as the highest requirement at maximum— or part—throttle. Maximum octane number requirements were obtained over the speed range with PR fuels only.

A modification of the E-15-83 technique was provided for vehicles equipped with knock sensors, and is appended to Attachment 2 of Appendix D. This technique identifies the highest octane fuel that gives borderline knock (maximum or high requirement) and the lowest octane fuel that gives borderline knock (minimum or low requirement).

VI. DISCUSSION OF RESULTS

A. General

Of the fifteen participating laboratories, four used level roads, ten used chassis dynamometers, and one laboratory used both. Sixty-seven percent of the cars were tested on chassis dynamometers.

Average test temperature was 72°F, with a barometric pressure average of 29.73 inches Hg and average humidity of 68.2 grains per pound. Test conditions for individual observations are reported in Appendix E.

B. <u>Distribution of Maximum Octane Number Requirements</u>

The octane number requirement data were used to prepare satisfaction curves and tables for the following samples of 1983 model vehicles: (1) US and Imported Vehicles; (2) US and Imported Cars; (3) US Vehicles; (4) US Cars; and (5) Imported Vehicles. Research and Motor octane number requirements for the five categories at 50 percent and 90 percent satisfaction are shown in Table IV. In preparing the curves and tables, the octane number requirement data were weighted in accordance with final 1983 model-year production data, and with US sales figures in the case of imports. Each curve and table, therefore, provides an estimate of the distribution of octane number requirements of the appropriate vehicle population on the road. The procedure for assigning weighting factors and for calculating the octane number requirement distributions is described in Appendix F.

Vehicles equipped with knock sensors were included in the 1983 models tested. The vehicles with knock sensors (knock-limiter devices) were tested for maximum (high borderline) octane number requirements and minimum (low borderline) octane number requirements. Octane number requirement distributions were calculated for each group of vehicles using the requirements from those vehicles with knock sensors rated at maximum (high borderline) requirement, with their ratings at minimum (low borderline) requirement, and with those vehicles with knock sensors excluded. The results are tabulated in Tables XXV through XXXIX. Maximum octane number requirements for the 1983 model vehicles were considered to be the requirements which included the knock sensor-equipped vehicles at the maximum (high borderline) requirement. The tabulated results of the individual knock sensor-equipped vehicles tested are reported in Appendix H.

1. US and Imported Vehicles

In the 1983 Survey, maximum octane number requirements were determined on 383 vehicles with FBRU fuels, and on 376 vehicles with FBRSU and PR fuels. Sixteen of the vehicles were equipped with knock sensors.

Maximum Research octane number requirements for all three reference fuels are shown in Figures 2a, 3a, 4a (rectangular coordinates) and 2b, 3b, 4b (probability plots). Each plot compares the requirements with knock-sensor ratings at the maximum (high borderline) level, at the minimum (low-borderline) level, and with knock sensor-equipped vehicles excluded. The maximum Research octane number requirements for all three reference fuels are plotted in Figures 5a (rectangular coordinates) and 5b (probability plot). The octane number requirement distributions for each case are very nearly the same. Maximum Research, Motor, and (R+M)/2 octane number requirements are listed in Table V. The 50 percent and 90 percent satisfaction level requirements are as follows:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Vehicles)

	50% Satisfied			% Satisfied 90% Sat		isfied	
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
PR	89.4	89.4	89.4	93.6	93.6	93.6	
FBRU	90.8	83.3	87.1	96.0	86.7	91.4	
FBRSU	91.5	81.6	86.5	97.4	85.5	91.4	

Comparisons of 1983 and 1982 Survey maximum Research, Motor, and (R+M)/2 octane number requirements are shown in Tables VI, VII, and VIII, respectively, for all three fuel series. Distributions of maximum RON requirements are shown in Figure 6 for PR fuels, Figure 7 for FBRU fuels, and Figure 8 for FBRSU fuels. The differences at the 50 percent and 90 percent satisfaction levels are summarized in the following table:

OCTANE NUMBER REQUIREMENTS OCTANE NUMBER REQUIREMENTS

(US and Imported Vehicles)

50% Satisfied			90	0% Satis	sfied	
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR FBRU	+0.6 +1.2	+0.6	+0.6 +1.0	+0.5 +1.1	+0.5	+0.5 +1.1
FBRSU	+0.3	+0.1	+0.2	+0.9	+0.5	+0.6

Confidence limits for maximum octane number requirement distributions are given in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements varied from ± 0.31 to ± 0.46 at the 50 percent satisfaction level, and from ± 0.42 to ± 0.63 at the 90 percent satisfaction level.

2. US and Imported Cars

Maximum octane number requirements were determined on 359 US and imported cars with FBRU fuels, and on 352 cars in the case of FBRSU and PR fuels. Thirteen of the vehicles were equipped with knock sensors.

Maximum Research, Motor, and (R+M)/2 octane number requirements on all three fuel series are given in Table IX. The maximum Research octane number requirement distributions for all three reference fuels are plotted in Figures 9a (rectangular coordinates) and 9b (probability plot). Maximum octane number requirements at the 50 percent and 90 percent satisfaction levels are summarized in the following table:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Cars)

50% Satisfied			90	0% Satis	sfied	
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	89.3	89.3	89.3	93.8	93.8	93.8
FBRU	90.7	83.3	87.0	96.3	86.9	91.6
FBRSU	91.4	81.6	86.5	97.7	85.7	91.7

The maximum Research octane number requirements for 1983 US and imported cars are compared with 1982 model-year data in Table X for PR, FBRU, and FBRSU fuels. Corresponding comparisons of Motor and (R+M)/2 octane number requirements are given in Tables XI and XII, respectively. Differences between 1983 and 1982 data at the 50 percent and 90 percent satisfaction levels are as follows:

OCTANE NUMBER REQUIREMENTS DIFFERENCES BETWEEN 1983 AND 1982 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Cars)

50% Satisfied			90	0% Satis	isfied	
Fuel	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	+0.6	+0.6	+0.6	+0.9	+0.9	+0.9
FBRU	+1.0	+0.7	+0.8	+1.5	+1.3	+1.4
FBRSU	+0.2	+0.1	+0.1	+1.0	+0.6	+0.8

Confidence limits for maximum octane number requirement distributions of 1983 US and imported cars are given in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements varied from ± 0.34 to ± 0.51 at the 50 percent satisfaction level, and from ± 0.46 to ± 0.69 at the 90 percent satisfaction level.

3. <u>US Vehicles</u>

Maximum octane number requirements were determined on 300 US vehicles with FBRU fuels, and on 293 vehicles with FBRSU and PR fuels.

Distributions of maximum Research octane number requirements are plotted in Figures 10a and 10b for the three fuel series. Research, Motor, and (R+M)/2 octane number requirements for the US vehicles are given in Table XIII. Octane number requirements at the 50 percent and 90 percent satisfaction levels are listed below:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Vehicles)

	50% Satisfied			90% Satisfied		
Fue l	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	89.0	89.0	89.0	92.7	92.7	92.7
FBRU	90.6	83.2	86.9	95.8	86.5	91.1
FBRSU	91.3	81.5	86.4	97.7	85.7	91.7

Comparisons of maximum octane number requirements of 1983 and 1982 US vehicles for the three fuel series are given in Tables XIV, XV, and XVI in terms of RON, MON, and (R+M)/2, respectively. Distributions of maximum Research octane number requirements are shown in Figure 11 for PR fuels, in Figure 12 for FBRU fuels, and in Figure 13 for FBRSU fuels. Differences between octane number requirements of 1983 and 1982 US vehicles at the 50 percent and 90 percent satisfaction levels are given in the following table:

DIFFERENCES BETWEEN 1983 AND 1982 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Vehicles)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	+0.4	+0.4	+0.4	0.0	0.0	0.0
FBRU	+1.0	+0.6	+0.8	+0.8	+0.8	+0.8
FBRSU	0.0	-0.1	0.0	+1.2	+0.8	+1.0

Confidence limits for maximum octane number requirement distributions of 1983 US vehicles are tabulated in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements were from ± 0.34 to ± 0.55 at the 50 percent satisfaction level, and from ± 0.45 to ± 0.74 at the 90 percent satisfaction level.

4. US Cars

Maximum octane number requirements were determined on 286 US cars with FBRU fuels, and on 279 cars with FBRSU and PR fuels.

Distributions at maximum Research octane number reguirements are plotted in Figures 14a (rectangular coordinates) and 14b (probability plot) for the three fuel series. Maximum Research, Motor, and (R+M)/2 octane number requirements for all three fuel series are given in Table XVII, and summarized below for the 50 percent and 90 percent satisfaction levels:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Cars)

	50% Satisfied			90% Satisfied		
<u>Fue1</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	88.9	88.9	88.9	92.7	92.7	92.7
FBRU	90.6	83.2	86.9	96.1	86.8	91.4
FBRSU	91.2	81.4	86.3	98.1	86.0	92.0

The maximum Research, Motor, and (R+M)/2 octane number requirements of US cars tested in the 1983 and 1982 Surveys are compared in Tables XVIII, XIX and XX, respectively, for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are as follows:

DIFFERENCES BETWEEN 1983 AND 1982 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Cars)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	+0.3	+0.3	+0.3	+0.3	+0.3	+0.3
FBRU	+0.9	+0.6	+0.7	+1.3	+1.3	+1.2
FBRSU	-0.1	-0.2	-0.2	+1.5	+1.0	+1.2

Confidence limits for maximum octane number requirement distributions of 1983 US cars are given in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements varied between ± 0.37 and ± 0.62 at the 50 percent satisfaction level, and between ± 0.50 and ± 0.83 at the 90 percent satisfaction level.

5. <u>Imported Vehicles</u>

Maximum octane number requirements were determined on eight-three imported vehicles with PR, FBRU, and FBRSU fuels. Maximum Research octane number requirements for all three reference fuel series are plotted in Figures 15a and 15b. Maximum octane number requirements in terms of RON, MON, and (R+M)/2 are given in Table XXI. The 50 percent and 90 percent satisfaction level maximum octane number requirements are listed in the following table:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(Imported Vehicles)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	90.4	90.4	90.4	96.3	96.3	96.3
FBRU	91.3	83.7	87.5	96.5	87.0	91.7
FBRSU	92.1	82.0	87.1	96.8	85.0	90.9

The maximum Research, Motor, and (R+M)/2 octane number requirements of imported vehicles in the 1983 and 1982 Surveys are compared in Tables XXII, XXIII, and XXIV, respectively, for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are as follows:

DIFFERENCES BETWEEN 1983 AND 1982 MAXIMUM OCTANE NUMBER REQUIREMENTS

(Imported Vehicles)

	50% Satisfied			90% Satisfied		
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR FBRU FBRSU	+1.0 +1.6 +1.2	+1.0 +1.1 +0.7	+1.0 +1.3 +1.0	+2.2 +1.8 0.0	+2.2 +1.5 -0.2	+2.2 +1.6 -0.1

Confidence limits for maximum octane number requirement distributions of 1983 imported vehicles are tabulated in Appendix G. Table G-I. The 95 percent confidence limits for Research octane number requirements were from ± 0.86 to ± 1.01 at the 50 percent satisfaction level, and from ± 1.16 to ± 1.36 at the 90 percent satisfaction level.

6. Maximum Requirements at Part-Throttle

The throttle positions for maximum octane number requirements of tested vehicles were reported as maximum-throttle or part-throttle. Maximum part-throttle requirements were defined when their requirements were higher than the maximum maximum-throttle requirements. The number and percentage of vehicles having FBRU part-throttle octane number requirements greater than maximum-throttle requirements are shown below, along with a comparison with the 1982 Survey. The percentages of all vehicles having maximum requirements at part-throttle were 16.4 percent in 1983, compared with 12.0 percent in 1982 and 9.8 percent in 1981.

VEHICLES HAVING FBRU PART-THROTTLE REQUIREMENTS > MAXIMUM-THROTTLE REQUIREMENTS

(1983 and 1982 US and Imported Vehicles)

	No. Vehicles Tested	No. of <u>Vehicles</u>	% of <u>Vehicles</u>
1983 US and Imported Vehicles	383	63	16.4
1982 US and Imported Vehicles	434	52	12.0

C. 1983 Part-Throttle Investigation

1. 50th Percentile Acceleration Technique

The 50th percentile acceleration technique, employed in the 1981 and 1982 Surveys, was discontinued for the 1983 Survey and replaced by an expanded search for part-throttle requirements, as described in the CRC E-15-83 Technique (Appendix D). Reference to the 50th percentile acceleration procedure may be found in the CRC E-15-83 Technique.

2. Part-Throttle Requirements

Of the 383 vehicles tested, 371 were tested for part-throttle requirements down to four octane numbers below maximum-throttle requirements with FBRU fuels. One of the part-throttle tested vehicles had a requirement below 78 RON, the lowest octane fuel available. Of the remaining, 71 vehicles (19 percent) had part-throttle requirements more than four octane numbers below the maximum-throttle requirements.

D. Select Models

Five select models, representing five engine-chassis combinations, were tested. The select models originally chosen for this year's Survey included one knock sensor-equipped model (see Appendix D, Table D-I); however, that model was tested without knock sensors since the manufacturer's production of that model was delayed. The delay in production precluded locating enough vehicles for testing with adequate mileage for stabilized octane number requirements. The identification and specifications of the engine-chassis combinations of the select models are given in Table I.

Maximum Research, Motor, and (R+M)/2 octane number requirements are shown for 50 percent and 90 percent satisfaction levels on PR, FBRU, and FBRSU fuels in Table XL. Maximum octane number requirements for each select model at various satisfaction levels are listed in Appendix I, Table I-I. Maximum Research, Motor, and (R+M)/2 octane number requirements for the individual cars of each select model are given in Table I-II.

Maximum Research octane number satisfaction curves for the five select models are shown in Figures 16 through 20 for all three fuel series. The data points plotted on the figures represent the maximum requirements obtained on FBRU reference fuels for individual cars. Each curve was constructed by use of the "Z" method, which is discussed in Appendix F. The 95 percent confidence limits for maximum requirements are shown in Appendix G, Table G-II.

E. Tank Fuel

As required by the program, tank fuel was tested for incidence of knock whenever an owners' questionnaire was obtained, although owners' questionnaires were required to be obtained only when the vehicle tested had a regular driver and the ignition timing did not have to be reset more than two degrees. To gain additional information, however, tank fuel ratings were made by many participants on many other vehicles which did not meet the restrictions listed.

1. Owner/Rater Comparison of Tank Fuel Knock

Although owners' questionnaires were obtained on a total of 149 vehicles, only 129 of these vehicles had both owner/rater tank fuel data with no change in spark timing. Of the 129 1983 vehicles, 59.7 percent were reported by trained raters to be knocking on tank fuel, whereas the owners reported 29.5 percent. This results in an owner/rater knock ratio of 0.49. The 59.7 percent of vehicles found to be knocking by trained raters in 1983 is higher than in the 1982 Survey. The owner/rater comparison of tank fuel knock data for 1983, along with previous Survey data back to 1976, is presented in Table XLI.

2. Objectionable Versus Unobjectionable Knock

Of the owners reporting knock with vehicles which had no change in spark timing, 42.1 percent found knock to be objectionable. This percentage of objectionable knock is lower than the 52.8 percent found in 1982, as shown in Table XLI.

3. Tank Fuel Knock Reported by Trained Raters

Tank fuel knock observations were reported by trained raters on 314 of the 383 test vehicles. The percentages of all 1983 vehicles and the select models knocking on tank fuel are shown in Table XLII. On a weighted basis, 44.6 percent of the 1983 vehicles tested knocked on tank fuel, compared with 41.6 percent in the 1982 Survey and 42.9 percent of the vehicles in the 1981 Survey. As shown in the table, two of the five select models tested had high knocking percentages of 75.0 and 90.9.

F. Surface Ignition

There were three reports of surface ignition in the 1983 Survey.

G. Engine Speed for Maximum Octane Number Requirements

Engine speeds at which maximum octane number requirements occurred for each select model are shown in Table XLIII for PR, FBRU, and FBRSU fuels. Weighted data for all 1983 vehicles are shown in Table XLIV and Figure 21.

H. Road Octane Number Depreciation of FBRU and FBRSU Fuels

Road octane number ratings and road octane number depreciation for FBRU and FBRSU fuels were determined from the octane number requirement data for all vehicles. The results are shown in Table XLV.

In this report, the road octane number rating of FBRU and FBRSU fuels is defined as the primary reference fuel octane level which satisfied the same percentage of vehicles. Depreciation values were established by subtracting the road octane number rating of the fuel from its Research octane number. Depreciation values of FBRU fuels in the range 88 to 98 RON varied from 1.2 to 2.6, compared with 0.9 to 2.5 in the 1982 Survey. Depreciation of FBRSU fuels in the range of 88 to 99 RON varied from 2.0 to 3.9, compared with 2.3 to 4.1 in last year's Survey.

I. Speed Range Octane Number Requirement

Primary reference fuel (PRF) octane number requirements were determined over a range of engine speeds from 1000 to 3750 rpm on 225 vehicles. Individual vehicle data are in Appendix J, Table J-I. For the five select models, speed range data were analyzed on 71 cars. The mean PRF octane number requirement, standard deviation, and number of observations within each speed range are in Table J-II. Mean PRF requirements for the five select models are plotted in Figures J-I through J-5.

J. Gear Position for Maximum Requirements

The throttle/gear position for maximum octane number requirements on FBRU fuels is shown in Appendix K. Of the 383 vehicles tested, 295 (77.0 percent) were equipped with automatic transmissions and 88 (23.0 percent) were equipped with manual transmissions.

Maximum requirements at maximum-throttle occurred in 83.4 percent of the automatic transmission vehicles (11.9 percent in fourth gear, 52.9 percent in third gear, and 18.6 percent in second gear). Maximum requirements at part-throttle occurred in 16.6 percent of the automatic transmission vehicles.

For manual transmission vehicles, 84.1 percent had maximum requirements at maximum-throttle (67.1 percent in fourth gear, 15.9 percent in third gear, and 1.1 percent in second gear). Maximum requirements at part-throttle occurred in 15.9 percent of manual transmission vehicles. Fifth gear for five-speed manual transmissions was not examined per program instructions.

TABLES
AND
FIGURES

TABLE I

1983 SELECT MODEL SPECIFICATIONS*

Mode1	Disp.	Engine Type	Brake HP	Carb. Bbl.	Comp. Ratio	Trans- mission
Chrysler Corporation: Aries/Reliant/LeBaron						
Dodge 600/E Class	2.2	L-4	94	2	9.0	Automatic
Ford Motor Company:						
Escort/Lynx (high output engine)	1.6	L-4	80	2	9.0	Automatic
Thunderbird/Cougar/ LTD/Marquis	3.8	V-6	110	2	8.6	Automatic
General Motors Corporation:						
Cavalier/Skyhawk/Cimarron	2.0	L-4	88	F.I.	9.3	Automatic
Monte Carlo/Bonneville/ Grand Prix/Cutlass/Regal	3.8	V-6	110	2	8.0	Automatic

^{*} None of the select model cars tested were equipped with knock sensors.

TABLE II

DISTRIBUTION OF ODOMETER MILEAGE

FOR TESTED VEHICLES

Mileage	No. of Vehicles Within 1983 Vehicles	Mileage Increments 1982 Vehicles
0 - 1,999	0	0
2,000 - 3,999	0	0
4,000 - 5,999	28	44
6,000 - 7,999	88	111
8,000 - 9,999	69	66
10,000 - 11,999	63	63
12,000 - 13,999	44	46
14,000 - 15,999	26	26
16,000 - 17,999	25	39
18,000 - 19,999	12	12
20,000 - 24,999	22	20
25,000 - 29,999	3	6
30,000 +	3	1
No. of Vehicles	383	434
Average Mileage	11,374	11,030

TABLE III

1983 BASIC TIMING ADJUSTMENTS

Degrees From Manufacturer's Setting	No. of V	<u>ehicles</u>
	+	-
1	2	4
2	16	8
3	4	4
4	6	2
5	2	0
6	1	2
7	0	1
8	0	0
9	1	0
10	0	0
11	0	0
		_
	32	21

TOTAL

53

TABLE IV

OCTANE NUMBER REQUIREMENTS WITH 95% CONFIDENCE LIMITS

	Weighted Population	Fuel	No. Vehicles	Research Octane 50% Sat. 90%	ane No. 90% Sat.	Motor Octane No. 50% Sat. 90% Sa	one No. 90% Sat.
¥a,	Maximum Octane Number Requirements						
•	US and Imported Vehicles	PR FBRU FBRSU	376 383 376	$\begin{array}{c} 89.4 + 0.31 \\ 90.8 \mp 0.39 \\ 91.5 \pm 0.46 \end{array}$	93.6 + 0.42 96.0 \mp 0.52 97.4 \pm 0.63	89.4 + 0.31 83.3 + 0.24 81.6 + 0.30	93.6 + 0.42 $86.7 + 0.33$ $85.5 + 0.41$
•	US and Imported Cars	PR FBRU FBRSU	352 359 352	89.2 + 0.34 90.7 + 0.43 91.4 + 0.51 91.4	93.8 + 0.46 $96.3 + 0.58$ $97.7 + 0.69$	89.2 ± 0.34 83.3 ± 0.27 81.6 ± 0.33	93.8 $\frac{+}{+}$ 0.46 86.9 $\frac{+}{+}$ 0.45 85.7 $\frac{+}{+}$ 0.45
•	US Vehicles	PR FBRU FBRSU	293 300 293	$\begin{array}{c} 88.9 \pm 0.34 \\ 90.6 \mp 0.42 \\ 91.3 \mp 0.55 \end{array}$	$\begin{array}{c} 92.7 + 0.45 \\ 95.8 + 0.57 \\ 97.7 + 0.74 \end{array}$	88.9 + 0.34 83.2 + 0.27 81.5 + 0.35	92.7 + 0.45 86.5 + 0.36 85.7 + 0.48
•	US Cars	PR FBRU FBRSU	279 286 279	88.9 + 0.37 = 90.6 + 0.46 = 91.2 + 0.62 =	92.7 + 0.50 $96.1 + 0.63$ $98.1 + 0.83$	$88.9 + 0.37 \\ 83.2 + 0.29 \\ 81.4 + 0.40$	$92.7 + 0.50 \\ 86.8 + 0.40 \\ 86.0 + 0.54$
•	Imported Vehicles	PR FBRU FBRSU	8 8 8 3 3 3	90.4 + 1.01 $91.3 + 0.89$ $92.1 + 0.86$	96.3 + 1.36 $96.5 + 1.21$ $96.8 + 1.16$	90.4 + 1.01 $83.7 + 0.57$ $82.0 + 0.56$	$96.3 + 1.36 \\ 87.0 + 0.77 \\ 85.0 + 0.76$

TABLE V

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 US and Imported Vehicles

	20		BRU Fue	els		BRSU F	uels
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
10	85.0	86.5	80.6	83.5	87.0	78.5	82.8
20	86.7	87.9	81.6	84.8	88.7	79.8	84.2
30	87.7	89.1	82.3	85.7	89.7	80.5	85.1
40	88.5	90.1	82.8	86.4	90.7	81.1	85.9
50	89.4	90.8	83.3	87.1	91.5	81.6	86.5
60	90.2	91.5	83.8	87.7	92.3	82.1	87.2
70	91.1	92.4	84.4	88.4	93.3	82.7	88.0
80	92.0	93.9	85.3	89.6	95.0	83.8	89.4
90	93.6	96.0	86.7	91.4	97.4	85.5	91.4
95	95.5	97.8	87.9	92.8	99.5	86.9	93.2
98	96.8	Н	Н	Н	Н	Н	Н
99	97.8	Н	н	Н	Н	Н	Н

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1983 and 1982 US and Imported Vehicles

TABLE VI

_	!	PR Fuels		FI	RU Fuel	S	FBI	RSU Fuel	<u>s</u>
Percent <u>Satisfied</u>	<u>1983</u>	1982	_Δ_	<u>1983</u>	<u>1982</u>	Δ_	<u>1983</u>	<u>1982</u>	
10	85.0	84.4	0.6	86.5	85.1	1.4	87.0	86.9	0.1
20	86.7	86.0	0.7	87.9	86.8	1.1	88.7	88.6	0.1
30	87.7	87.0	0.7	89.1	87.9	1.2	89.7	89.5	0.2
40	88.5	88.0	0.5	90.1	88.8	1.3	90.7	90.3	0.4
50	89.4	88.8	0.6	90.8	89.6	1.2	91.5	91.2	0.3
60	90.2	89.5	0.7	91.5	90.6	0.9	92.3	92.2	0.1
70	91.1	90.4	0.7	92.4	91.7	0.7	93.3	93.2	0.1
80	92.0	91.6	0.4	93.9	93.1	0.8	95.0	94.5	0.5
90	93.6	93.1	0.5	96.0	94.9	1.1	97.4	96.5	0.9
95	95.5	94.3	1.2	97.8	96.9	0.9	99.5	98.8	0.7
98	96.8	Н	-	н	99.5	-	Н	Н	-
99	97.8	н	_	н	н	_	н	н	_

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1983 and 1982 US and Imported Vehicles

TABLE VII

_	F	R Fuels		FE	RU Fuel	<u>s</u>	FBF	RSU Fue	<u>s</u>
Percent <u>Satisfied</u>	<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	1982	_Δ_	<u>1983</u>	<u>1982</u>	Δ
10	85.0	84.4	0.6	80.6	80.0	0.6	78.5	78.3	0.2
20	86.7	86.0	0.7	81.6	81.0	0.6	79.8	79.6	0.2
30	87.7	87.0	0.7	82.3	81.6	0.7	80.5	80.4	0.1
40	88.5	88.0	0.5	82.8	82.1	0.7	81.1	81.0	0.1
50	89.4	88.8	0.6	83.3	82.6	0.7	81.6	81.5	0.1
60	90.2	89.5	0.7	83.8	83.1	0.7	82.1	82.2	-0.1
70	91.1	90.4	0.7	84.4	83.6	0.8	82.7	82.8	-0.1
80	92.0	91.6	0.4	85.3	84.2	1.1	83.8	83.6	0.2
90	93.6	93.1	0.5	86.7	85.6	1.1	85.5	85.0	0.5
95	95.5	94.3	1.2	87.9	87.0	0.9	86.9	86.6	0.3
98	96.8	Н	-	Н	88.9	-	Н	н	-
aa	97.8	н	_	н	н	-	н	н	_

TABLE VIII

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 and 1982 US and Imported Vehicles

0		PR Fuels	<u> </u>	FE	RU Fuel	s	FBF	RSU Fuel	<u>s</u>
Percent Satisfied	<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	1982	_Δ_
10	85.0	84.4	0.6	83.5	82.5	1.0	82.8	82.6	0.2
20	86.7	86.0	0.7	84.8	83.9	0.9	84.2	84.1	0.1
30	87.7	87.0	0.7	85.7	84.8	0.9	85.1	84.9	0.2
40	88.5	88.0	0.5	86.4	85.4	1.0	85.9	85.6	0.3
50	89.4	88.8	0.6	87.1	86.1	1.0	86.5	86.3	0.2
60	90.2	89.5	0.7	87.7	86.8	0.9	87.2	87.2	0.0
70	91.1	90.4	0.7	88.4	87.8	0.6	88.0	88.0	0.0
80	92.0	91.6	0.4	89.6	88.7	0.9	89.4	89.0	0.4
90	93.6	93.1	0.5	91.4	90.3	1.1	91.4	90.8	0.6
95	95.5	94.3	1.2	92.8	92.0	0.8	93.2	92.7	0.5
98	96.8	Н	-	н	94.2	-	Н	Н	-
99	97.8	н	-	н	н	_	н	н	_

TABLE IX

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 US and Imported Cars

			FBRU Fue	els		FBRSU F	uels
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	<u>(R+M)/2</u>	RON	MON	<u>(R+M)/2</u>
10	84.7	86.3	80.5	83.4	86.8	78.3	82.5
20	86.5	87.9	81.5	84.7	88.7	79.8	84.2
30	87.5	89.1	82.3	85.7	89.7	80.5	85.1
40	88.4	90.1	82.8	86.4	90.6	81.1	85.9
50	89.3	90.7	83.3	87.0	91.4	81.6	86.5
60	90.0	91.5	83.8	87.7	92.3	82.1	87.2
70	91.0	92.5	84.4	88.5	93.4	82.8	88.1
80	92.0	94.0	85.4	89.7	95.4	84.1	89.8
90	93.8	96.3	86.9	91.6	97.7	85.7	91.7
95	95.7	98.2	88.1	93.2	100.1	87.4	93.7
98	97.0	Н	н	н	Н	Н	н
99	98.0	Н	Н	Н	н	н	H

TABLE X

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1983 and 1982 US and Imported Cars

Davaant		PR Fuels		F	RU Fuel	s	FBI	RSU Fuel	<u>s</u>
Percent <u>Satisfied</u>	1983	1982	Δ	1983	<u>1982</u>	Δ	1983	<u>1982</u>	Δ
10	84.7	84.4	0.3	86.3	85.1	1.2	86.8	86.8	0.0
20	86.5	85.9	0.6	87.9	86.7	1.2	88.7	88.5	0.2
30	87.5	87.1	0.4	89.1	87.9	1.2	89.7	89.5	0.2
40	88.4	88.0	0.4	90.1	88.9	1.2	90.6	90.3	0.3
50	89.3	88.7	0.6	90.7	89.7	1.0	91.4	91.2	0.2
60	90.0	89.4	0.6	91.5	90.6	0.9	92.3	92.2	0.1
70	91.0	90.2	0.8	92.5	91.7	0.8	93.4	93.2	0.2
80	92.0	91.4	0.6	94.0	93.0	1.0	95.4	94.4	1.0
90	93.8	92.9	0.9	96.3	94.8	1.5	97.7	96.7	1.0
95	95.7	94.0	1.7	98.2	97.3	0.9	100.1	99.1	1.0
98	97.0	96.7	0.3	Н	н	-	Н	н	-
99	98.0	н	_	н	н	_	н	н	_

TABLE XI

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1983 and 1982 US and Imported Cars

Dawas m *		PR Fuels		F	RU Fuel	s	FB	RSU Fue	ls
Percent <u>Satisfied</u>	<u>1983</u>	1982	_Δ_	<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	1982	_Δ_
10	84.7	84.4	0.3	80.5	80.0	0.5	78.3	78.3	0.0
20	86.5	85.9	0.4	81.5	80.9	0.6	79.8	79.5	0.3
30	87.5	87.1	0.4	82.3	81.7	0.6	80.5	80.3	0.2
40	88.4	88.0	0.4	82.8	82.1	0.7	81.1	81.0	0.1
50	89.3	88.7	0.6	83.3	82.6	0.7	81.6	81.5	0.1
60	90.0	89.4	0.6	83.8	83.1	0.7	82.1	82.2	-0.1
70	91.0	90.2	0.8	84.4	83.6	0.8	82.8	82.8	0.0
80	92.0	91.4	0.6	85.4	84.2	1.2	84.1	83.6	0.5
90	93.8	92.9	0.9	86.9	85.6	1.3	85.7	85.1	0.6
95	95.7	94.0	1.7	88.1	87.3	0.8	87.4	86.9	0.5
98	97.0	96.7	0.3	Н	Н	-	Н	Н	-
99	98.0	н	_	н	н	_	н	н	_

TABLE XII

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 and 1982 US and Imported Cars

Dawaant		R Fuel:	<u> </u>	FI	BRU Fuel	<u> </u>	FBI	RSU Fue	ls
Percent Satisfied	<u>1983</u>	<u>1982</u>	Δ_	<u>1983</u>	1982		<u>1983</u>	<u>1982</u>	Δ
10	84.7	84.4	0.3	83.4	82.5	0.9	82.5	82.6	-0.1
20	86.5	85.9	0.6	84.7	83.8	0.9	84.2	84.0	0.2
30	87.5	87.1	0.4	85.7	84.8	0.9	85.1	84.9	0.2
40	88.4	88.0	0.4	86.4	85.5	0.9	85.9	85.6	0.3
50	89.3	88.7	0.6	87.0	86.2	0.8	86.5	86.4	0.1
60	90.0	89.4	0.6	87.7	86.8	0.9	87.2	87.2	0.0
70	91.0	90.2	0.8	88.5	87.6	0.9	88.1	88.0	0.1
80	92.0	91.4	0.6	89.7	88.6	1.1	89.8	89.0	0.8
90	93.8	92.9	0.9	91.6	90.2	1.4	91.7	90.9	0.8
95	95.7	94.0	1.7	93.2	92.3	0.9	93.7	93.0	0.7
98	97.0	96.7	0.3	Н	Н	-	Н	Н	-
99	98 0	н	_	н	ш	_	ш	н	_

TABLE XIII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 US Vehicles

Percent PR		1	FBRU Fue	els	FBRSU Fuels			
Percent <u>Satisfied</u>	Fuels	RON	MON	<u>(R+M)/2</u>	RON	MON	<u>(R+M)/2</u>	
10	85.0	86.4	80.5	83.4	86.8	78.4	82.6	
20	86.5	87.9	81.6	84.7	88.5	79.6	84.1	
30	87.4	89.0	82.2	85.6	89.5	80.3	84.9	
40	88.2	89.9	82.7	86.3	90.4	80.9	85.7	
50	89.0	90.6	83.2	86.9	91.3	81.5	86.4	
60	89.9	91.3	83.7	87.5	92.1	81.9	87.0	
70	90.7	92.2	84.2	88.2	93.1	82.5	87.8	
80	91.6	93.5	85.1	89.3	94.8	83.7	89.2	
90	92.7	95.8	86.5	91.1	97.7	85.7	91.7	
95	94.3	97.9	88.0	93.0	100.3	87.6	93.9	
98	95.5	Н	Н	н	н	Н	Н	
99	96.1	н	н	н	н	н	н	

TABLE XIV

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS 1983 and 1982 US Vehicles

	PR Fuels			F	FBRU Fuels			FBRSU Fuels		
Percent <u>Satisfied</u>	1983	1982		<u>1983</u>	<u>1982</u>	Δ_	<u>1983</u>	1982	_Δ_	
10	85.0	84.3	0.7	86.4	85.0	-0.6	86.8	86.7	0.1	
20	86.5	85.9	0.6	87.9	86.6	1.3	88.5	88.6	-0.1	
30	87.4	86.9	0.5	89.0	87.8	0.2	89.5	89.5	0.0	
40	88.2	87.8	0.4	89.9	88.8	1.1	90.4	90.3	0.1	
50	89.0	88.6	0.4	90.6	89.6	1.0	91.3	91.3	0.0	
60	89.9	89.3	0.6	91.3	90.6	0.7	92.1	92.3	-0.2	
70	90.7	90.0	0.7	92.2	91.7	0.5	93.1	93.3	-0.2	
80	91.6	91.1	0.5	93.5	93.1	0.4	94.8	94.5	0.3	
90	92.7	92.7	0.0	95.8	95.0	0.8	97.7	96.5	1.2	
95	94.3	93.8	0.5	97.9	96.6	1.3	100.3	98.4	1.9	
98	95.5	96.1	-0.6	Н	98.1	-	Н	99.9	-	
99	96.1	н	_	Н	98.7	_	н	н	_	

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1983 and 1982 US Vehicles

TABLE XV

	PR Fuels			FE	RU Fuel	<u>s</u>	FBRSU Fuels		
Percent Satisfied	1983	1982		<u>1983</u>	<u>1982</u>	Δ_	<u>1983</u>	<u>1982</u>	_Δ_
10	85.0	84.3	0.7	80.5	79.9	0.6	78.4	78.2	0.2
20	86.5	85.9	0.6	81.6	80.9	0.7	79.6	79.6	0.0
30	87.4	86.9	0.5	82.2	81.6	0.6	80.3	80.4	-0.1
40	88.2	87.8	0.4	82.7	82.1	0.6	80.9	81.0	-0.1
50	89.0	88.6	0.4	83.2	82.6	0.6	81.5	81.6	-0.1
60	89.9	89.3	0.6	83.7	83.1	0.6	81.9	82.3	-0.4
70	90.7	90.0	0.7	84.2	83.6	0.6	82.5	82.9	-0.4
80	91.6	91.1	0.5	85.1	84.3	0.8	83.7	83.6	0.1
90	92.7	92.7	0.0	86.5	85.7	0.8	85.7	84.9	0.8
95	94.3	93.8	0.5	88.0	86.8	1.2	87.6	86.4	1.2
98	95.5	96.1	-0.6	н	87.9	-	н	87.6	-
99	96.1	Н	-	н	88.3	-	н	н	_

TABLE XVI

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 and 1982 US Vehicles

Damasant		PR Fuels			RU Fuel	l s	FBRSU Fuels		
Percent Satisfied	<u>1983</u>	<u>1982</u>	Δ_	<u>1983</u>	1982	Δ	<u>1983</u>	1982	Δ
10	85.0	84.3	0.7	83.4	82.5	0.9	82.6	82.4	0.2
20	86.5	85.6	0.9	84.7	83.8	0.9	84.1	84.0	0.1
30	87.4	86.9	0.5	85.6	84.7	0.9	84.9	84.9	0.0
40	88.2	87.8	0.4	86.3	85.4	0.9	85.7	85.6	0.1
50	89.0	88.6	0.4	86.9	86.1	0.8	86.4	86.4	0.0
60	89.9	89.3	0.6	87.5	86.8	0.7	87.0	87.3	-0.3
70	90.7	90.0	0.7	88.2	87.6	0.6	87.8	88.1	-0.3
80	91.6	91.1	0.5	89.3	88.7	0.6	89.2	89.0	0.2
90	92.7	92.7	0.0	91.1	90.3	0.8	91.7	90.7	1.0
95	94.3	93.8	0.5	93.0	91.7	1.3	93.9	92.4	1.5
98	95.5	96.1	$C_{C_{2}}(G)$	Н	93.0	-	н	93.7	-
99	96.1	н	_	н	93.5	_	н	н	_

TABLE XVII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 US Cars

	Damant DD			els	FBRSU Fuels			
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	<u>(R+M)/2</u>	RON	MON	(R+M)/2	
10	84.7	86.1	80.4	83.3	86.5	78.2	82.4	
20	86.3	87.9	81.6	84.7	88.5	79.6	84.0	
30	87.2	89.1	82.2	85.7	89.6	80.4	85.0	
40	88.1	90.0	82.8	86.4	90.4	81.0	85.7	
50	88.9	90.6	83.2	86.9	91.2	81.4	86.3	
60	89.7	91.3	83.7	87.5	92.0	81.9	87.0	
70	90.5	92.3	84.3	88.3	93.3	82.7	88.0	
80	91.5	93.8	85.3	89.6	95.3	84.0	89.6	
90	92.7	96.1	86.8	91.4	98.1	86.0	92.0	
95	94.3	98.6	88.4	93.5	100.8	88.0	94.4	
98	95.6	Н	н	Н	н	Н	н	
99	96.2	Н	н	Н	Н	Н	Н	

TABLE XVIII

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS 1983 and 1982 US Cars

	PR Fuels			F	FBRU Fuels			FBRSU Fuels		
Percent <u>Satisfied</u>	<u>1983</u>	<u>1982</u>	Δ_	<u>1983</u>	<u>1982</u>		1983	<u>1982</u>	_Δ_	
10	84.7	84.4	0.3	86.1	85.0	1.1	86.5	86.7	-0.2	
20	86.3	85.9	0.4	87.9	86.6	1.3	88.5	88.4	0.1	
30	87.2	87.1	0.1	89.1	87.9	1.2	89.6	89.4	0.2	
40	88.1	87.9	0.2	90.0	88.9	1.1	90.4	90.3	0.1	
50	88.9	88.6	0.3	90.6	89.7	0.9	91.2	91.3	-0.1	
60	89.7	89.2	0.5	91.3	90.6	0.7	92.0	92.3	-0.3	
70	90.5	90.0	0.5	92.3	91.7	0.6	93.3	93.2	0.1	
80	91.5	90.9	0.6	93.8	93.0	0.8	95.3	94.5	0.8	
90	92.7	92.4	0.3	96.1	94.8	1.3	98.1	96.6	1.5	
95	94.3	93.4	0.9	98.6	96.8	1.8	100.8	98.7	2.1	
98	95.6	94.3	1.3	Н	98.3	-	Н	н	-	
99	96.2	95.0	1.2	н	98.9	-	н	н	_	

TABLE XIX

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1983 and 1982 US Cars

Dawaana	1	PR Fuels			FBRU Fuels			FBRSU Fuels		
Percent <u>Satisfied</u>	<u>1983</u>	1982	_Δ_	<u>1983</u>	1982	_Δ_	<u>1983</u>	<u>1982</u>	Δ_	
10	84.7	84.4	0.3	80.4	79.9	0.5	78.2	78.2	0.0	
20	86.3	85.9	0.4	81.6	80.9	0.7	79.6	79.5	0.1	
30	87.2	87.1	0.1	82.2	81.6	0.6	80.4	80.3	0.1	
40	88.1	87.9	0.2	82.8	82.2	0.6	81.0	81.0	0.0	
50	88.9	88.6	0.3	83.2	82.6	0.6	81.4	81.6	-0.2	
60	89.7	89.2	0.5	83.7	83.1	0.6	81.9	82.3	-0.4	
70	90.5	90.0	0.5	84.3	83.6	0.7	82.7	82.8	-0.1	
80	91.5	90.9	0.6	85.3	84.2	1.1	84.0	83.6	0.4	
90	92.7	92.4	0.3	86.8	85.5	1.3	86.0	85.0	1.0	
95	94.3	93.4	0.9	88.4	87.0	1.4	88.0	86.6	1.4	
98	95.6	94.3	1.3	н	88.0	-	Н	Н	-	
99	96.2	95.0	1.2	н	88.4	-	н	н	_	

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 and 1982 US Cars

TABLE XX

	PR Fuels			F	FBRU Fuels			FBRSU Fuels		
Percent Satisfied	<u>1983</u>	<u>1982</u>		<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	<u>1982</u>		
10	84.7	84.4	0.3	83.3	82.5	0.8	82.4	82.4	0.0	
20	86.3	85.9	0.4	84.7	83.7	1.0	84.0	84.0	0.0	
30	87.2	87.1	0.1	85.7	84.7	1.0	85.0	84.9	0.1	
40	88.1	87.9	0.2	86.4	85.5	0.9	85.7	85.7	0.0	
50	88.9	88.6	0.3	86.4	86.2	0.7	86.3	86.5	-0.2	
60	89.7	89.2	0.5	87.5	86.8	0.7	87.0	87.3	-0.3	
70	90.5	90.0	0.5	88.3	87.6	0.7	88.0	88.0	0.0	
80	91.5	90.9	0.6	89.6	88.6	1.0	89.6	89.0	0.6	
90	92.7	92.4	0.3	91.4	90.2	1.2	92.0	90.8	1.2	
95	94.3	93.4	0.9	93.5	91.9	1.6	94.4	92.6	1.8	
98	95.6	94.3	1.3	н	93.1	-	Н	Н	-	
qq	96.2	95.0	1 2	н	93.6	_	н	н	_	

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 Imported Vehicles

TABLE XXI

			BRU Fue	els	FRSU Fuels				
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
10	84.9	86.7	80.7	83.7	87.9	79.2	83.6		
20	87.6	88.0	81.6	84.8	89.4	80.3	84.9		
30	88.8	89.5	82.5	86.0	90.5	81.0	85.7		
40	89.7	90.5	83.2	86.8	91.3	81.5	86.4		
50	90.4	91.3	83.7	87.5	92.1	82.0	87.1		
60	91.3	92.0	84.1	88.1	92.8	82.4	87.6		
70	92.2	93.1	84.8	88.9	94.0	83.1	88.6		
80	93.8	94.7	85.8	90.3	95.5	84.2	89.8		
90	96.3	96.5	87.0	91.7	96.8	85.0	90.9		
95	97.5	97.6	87.7	92.6	97.8	85.8	91.8		
98	Н	Н	Н	Н	Н	Н	н		
99	Н	Н	н	Н	Н	Н	Н		

TABLE XXII

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1983 and 1982 Imported Vehicles

Daws +		PR Fuels			BRU Fuel	<u>s</u>	FBRSU Fuels		
Percent <u>Satisfied</u>	<u>1983</u>	1982	_Δ_	<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	1982	
10	84.9	84.7	0.2	86.7	85.4	1.3	87.9	87.5	0.4
20	87.6	86.2	1.4	88.0	87.2	0.8	89.4	88.8	0.6
30	88.8	87.4	1.4	89.5	88.1	1.4	90.5	89.6	0.9
40	89.7	88.5	1.2	90.5	88.9	1.6	91.3	90.2	1.1
50	90.4	89.4	1.0	91.3	89.7	1.6	92.1	90.9	1.2
60	91.3	90.3	1.0	92.0	90.6	1.4	92.8	91.8	1.0
70	92.2	91.3	0.9	93.1	91.6	1.5	94.0	92.9	1.1
80	93.8	92.5	1.3	94.7	92.9	1.8	95.5	94.4	1.1
90	96.3	94.1	2.2	96.5	94.7	1.8	96.8	96.8	0.0
95	97.5	Н	-	97.6	Н	-	97.8	н	-
98	н	Н	-	Н	Н	-	н	н	-
99	н	н	_	н	н	_	н	н	-

TABLE XXIII

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1983 and 1982 Imported Vehicles

0		PR Fuels			FBRU Fuels			FBRSU Fuels		
Percent <u>Satisfied</u>	1983	<u>1982</u>	_Δ_	<u>1983</u>	1982	Δ	<u>1983</u>	1982	_Δ	
10	84.9	84.7	0.2	80.7	80.1	0.6	79.2	78.8	0.4	
20	87.6	86.2	1.4	81.6	81.2	0.4	80.3	79.7	0.6	
30	88.8	87.4	1.4	82.5	81.8	0.7	81.0	80.4	0.6	
40	89.7	88.5	1.2	83.2	82.2	1.0	81.5	80.9	0.6	
50	90.4	89.4	1.0	83.7	82.6	1.1	82.0	81.3	0.7	
60	91.3	90.3	1.0	84.1	83.1	1.0	82.4	82.0	0.4	
70	92.2	91.3	0.9	84.8	83.5	1.3	83.1	82.6	0.5	
80	93.8	92.5	1.3	85.8	84.1	1.7	84.2	83.5	0.7	
90	96.3	94.1	2.2	87.0	85.5	1.5	85.0	85.2	-0.2	
95	97.5	Н	-	87.7	Н	-	85.8	Н	-	
98	н	Н	-	н	Н	-	Н	Н	-	
99	н	Н	_	н	н	_	н	н	-	

TABLE XXIV

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1983 and 1982 Imported Vehicles

D	!	PR Fuels			BRU Fuel	<u>s</u>	FBRSU Fuels		
Percent <u>Satisfied</u>	<u>1983</u>	<u>1982</u>	_Δ_	1983	<u>1982</u>		<u>1983</u>	1982	
10	84.9	84.7	0.2	83.7	82.7	1.0	83.6	83.1	0.5
20	87.6	86.2	1.4	84.8	84.2	0.6	84.9	84.3	0.6
30	88.8	87.4	1.4	86.0	85.0	1.0	85.7	85.0	0.7
40	89.7	88.5	1.2	86.8	85.5	1.3	86.4	85.6	0.8
50	90.4	89.4	1.0	87.5	86.2	1.3	87.1	86.1	1.0
60	91.3	90.3	1.0	88.1	86.8	1.3	87.6	86.9	0.7
70	92.2	91.3	0.9	88.9	87.6	1.3	88.6	87.8	0.8
80	93.8	92.5	1.3	90.3	88.5	1.8	89.8	89.0	0.8
90	96.3	94.1	2.2	91.7	90.1	1.6	90.9	91.0	-0.1
95	97.5	H	-	92.6	Н	-	91.8	Н	-
98	Н	Н	-	Н	н	-	Н	Н	-
99	н	н	_	н	н	_	н	н	_

TABLE XXV

MAXIMUM OCTANE NUMBER REQUIREMENTS

All 1983 US and Imported Vehicles

PR FUELS

No Knock Sensors RON	83.20	84.88	86.01	86.73	87.30	87.78	88.23	88.66	89.07	89.45	89.84	90.24	90.67	91.10	91.50	91.96	92.55	93.55	95.43	95.84	96.24	96.72	97.51	367
Knock Sensors (Low) RON	81.93	84.06	85.34	86.28	86.95	87.47	87.95	88.40	88.84	89.25	89.65	90.06	90.50	90.97	91.40	91.87	92.47	93.45	95.44	95.87	96.30	96.83	67.67	381
Knock Sensors (High) RON	83.26	85.00	86.08	86.69	87.21	87.66	88.09	88.54	88.98	89.38	89.78	90.20	90.64	91.08	91.50	91.96	92.56	93.61	95.46	95.87	96.30	96.83	97.84	383
% Satisfaction (Midpoint)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	0.06	95.0	0.96	97.0	98.0	0.66	No. of Vehicles

TABLE XXVI

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 US and Imported Vehicles

FBRU FUELS

	Knock (38	Knock Sensors, High (383 Vehicles)	, High les)	Knock (381	Knock Sensors, Low (381 Vehicles)	Low	No Kr (36	No Knock Sensors (367 Vehicles)	sors es)
% SATISFACTION (MIDPOINT)	RON	NOW	(R+M)/2	RON	NOW	(R+M)/2	RON	MON	(R:M)/2
0.00	84.81	79.47	82.14	82.96 85.66	78.17	80.57 82.88	04.75 88.44	79.42	82.08
5. 2	87.30	81.11	84.21	86.88	80.83	83.86	07.41	81.19	84.30
20.0	87.94	81.58	84.75	87.63	81.34	84.48	88.09	81.65	84.87
30.0	88.56	81.93	85, 24 85, 69	88.84	82.11	85.47	88.67 89.19	82.32	85.76
35.0	09.68	82.56	86.08	89.37	82.42	85.89	69.67	82.60	86.14
40.0	90.05	82.83	86.44	89.86	82.71	86.29	90.10	82.87	86.48
45.0	90.41	83.09	86.75	90.26	82.98	86.62	90,45	83.12	AG. 79
50.0		83.34	87.05	90.62	83.24	86.93	90.80		87.08
55.0	91.13	83.28	07.36	90.99	83.49	87.24	91.15	83.58	87.37
0.09	91.51	83.80		91.36	83.72	87.54	91.51	83.81	87.66
65.0	91.90	84.04	187.87	91.75		87.85	91.89		87.96
70.0	92.43	84.36	86.39	92.22	84.23	88.23	92.41	84.34	88.38
75.0	93.06	84.74		92.86	84.62	# / · 88	93.03	84.72	88.87
80.0	93.85	85.29	89.57	93.64	85. 15	89.40	93.80	85.20	89.53
85.0	94.77	85.86	90.32	94.55	85.73	90.14	94.07	85.80	90.24
0.06	96.03	86.72	91.38	95.79	86.55	91.17	95.93	86.65	91.29
95.0	97.80	87.86	N	97.58	87.70	92.64	97.74	87.82	92.78
98.0	98.40	88.32	93,36	98.17	88.14	93.16	98.34	89.27	93.31
97.0	99.40	89.08	94.24	98.96		93.86	99.27	88.99	94.13
0.86			l	100.98	90.29	95.63	ĺ	1	

TABLE XXVII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTAME NUMBER REQUIREMENTS

All 1983 US and Imported Vehicles

FBRSU FUELS

	Knock (36	Knock Sensors, High (383 Vehicles)	High les)	Knock (38	Knock Sensors, Low (381 Vehicles)	, Low es)	No (3	No Knock Sensors (367 Vehicles)	nsors les)
(SATISFACTION (MIDPOINT)	RON	NOW	(R+M)/2	NON .	MON	(R+M)/2	RON	MON	(R:M)/2
- C 15	A5 47	77.43	01.45	84.01	78.41	80.21	14.58	77.39	81.40
10.0	87.02	78.52	77. 20	86.28	78.00	82.14	86.95	78.46	82.70
15.0	68 03	79.32	69.67	87.52	78.91	83.21	88.12	79.38	83.75
20.0	88.67	TF. 77	84.22	88.34	79.54	83.94	88.79	79.05	84.32
25.0	89.22	80.15	84.69	88.93	79.95	84.44	89.32	80.22	84.77
30.0	89.70	80.49	85. 10	89.44	80.31	84.87	69.77	80.54	85. 10
35.0	90.17	80.80	85.49	16.68	80.64	85.27	90.23	80.84	85.53
40.0	90.65	81.09	85.87	90.40	80.94	85.67	90.69	81.12	85.91
45.0	91.09	81.35	86.22	90.89	81.23	90.98	91.12	81.37	86.25
50.0	91.48	81.59	86.53	91.31	81.49	86.40	91.50	81.60	86.55
55.0	91.86	81.02	86.84	91.71	81.72	86.72	91.87	81.82	86.85
0.09	92.28	82.07	87.18	92.12	81.97	87.05	92.28	82.07	87.17
65.0	92.74	82.34	87.54	92.57	82.24	87.41	92.71	82.33	87.52
70.0	93.31	82.69	88.00	93.06	82.54	87.80	13.24	82.64	87.94
75.0	94.06	B3.14	88.60	93.82	82.99	88.40	93.96	83.0B	80.52
80.0	95.00	03.80	119.40	94.74	83.62	89.18	94.06	B3, 70	89.28
85.0	96.23	04.66	90.44	96.00	84.50	90.25	96.12	84.59	90.36
0.06	97.40	85.48	91.44	97.12	85.29	91.20	97.31	85.41	91.36
95.0	99.45	86.91	93.10	99.22	86.75	92.98	99.50	86.95	93,73
0.56	100, 39	87.G1	94.00	100.20	87.46	93.83	100 44	A7 65	20 80

TABLE XXVIII

MAXIMUM OCTANE NUMBER REQUIREMENTS

All 1983 US and Imported Cars

PR FUELS

No Knock Sensors RON	82.86	84.59	85.67	86.42	87.01	87.51	87.98	88.43	88.86	89.25	89.62	90.00	90.44	90.90	91.38	91.90	92.54	93.63	95.61	96.04	96.38	96.85	97.64	346
Knock Sensors (Low) RON	82.34	84.33	85.41	86.24	86.83	87.35	87.82	88.27	88.71	89.13	89.51	89.89	90.33	90.81	91.30	91.84	92.50	93.61	95.67	60.96	96.48	97.00	97.83	357
Knock Sensors (High) RON	83.03	84.69	85.75	86.46	87.01	87.51	87.97	88.43	88.87	89.27	89.65	90.03	90.49	90.06	91.44	91.96	92.60	93.81	95.68	60.96	96.48	97.00	•	359
<pre>% Satisfaction (Midpoint)</pre>	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	0.06	95.0	0.96	97.0	98.0	0.66	No. of Vehicles

TABLE XXIX

MAXIMUM RESEARCH, MOTOR, AND (R+H)/2 OCTANE NUMBER REQUIREMENTS

All 1983 US and Imported Cars

FBRU FUELS

	Knock	Knock Sensors, High (359 Cars)	High (Knock	Knock Sensors, Low (357 Cars)	, Low s)	N _O	Knock Sensors (346 Cars)	sors
" CATICEACTION	NO	NG	(R+H)/2	RON	NOM	(R:M)/2	RON	NOM	(R1M)/2
(MIDFOINT)			1 1	 	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1 1 1 1
	1	70	4	84 15	79.01	81.58	84.47	79.23	81.85
)) (70.00	00 AR	76. Ca	60 C	80.29	83, 14	86.18	80.39	83.28
) (87.73		. VG	86.94	80.87	83.91	87.15	81.01	84.08
	27.78	81.52		87.58	81.31	84.45	87.81	81.46	84.64
2 4 6			0	88 16	81.70	84.93	88 . 42	81.85	85.14
0.00	000	B 2 25		88.77	82.06	85.42	88.99	82.20	83.60
0.1	90.00	82 . 43	20.00	89.32	82.39	85.86	89.51	82.51	86.01
	90.08	20.00	7	89.83	82.70	86.27	90.06	82.80	86.40
) C	00.00	83.08	86.74	90.24	82.96	86.60	90.35	83.04	86.70
	90.74	83.32	87.03	90.58	83.21	86.89	89.06	83.28	86.98
0.0		8.0.0 15.00		90.93	83.45	87.19	91.03	83.52	87.27
0.00		00.00		91.32	83.69	87.50	91.42	83.75	87.59
	0 10	14 OS	90.70	91.73	83.94	87.83	91.82	83.88	87.91
0 0	20.00	BA A1		92.25	84.25	88.25	92.38	84.33	88.35
	20.00	. 40		92 98	84.69	88.83	93.09	84.76	88.92
0.00	7.00	. עם ייעם	50.60	93 77	85.24	89.50	93.88	85.30	89.28
0.00	60.00	60.00	69.68	94 73	85.84	90.28	94.79	85.88	90.34
0.00	00.00	000	90.00	90 PB	86.74	91.40	96.15	86.79	91.47
0.06	200	00.00	91.39	0. CO	87.96	92, 95	98.05	88.04	93.05
0.00	7 - 00	5 0 0	93. 15		88 44	93.50	98.67	88.54	93.61
0.98	77.96	0.00	697.66	0.00			00	94	94, 73
97.0	100.17	89.64	94.90	99.72	24.5	70.40			

TABLE XXX

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 US and Imported Cars

FBRSU FUELS

	Knock	Knock Sensors, High (359 Cars)	High	Knock	Knock Sensors, Low (357 Cars)	., Low	No N	No Knock Sensors (346 Cars)	isors
(MIDPOINT)	RON	MOM	(R:M)/2	RON	MON	(R+M)/2	RON	MON	(R+M)/2
	85 2G	77 28	81 27	84.91	77.04	80.97	85.18	77.21	81.19
	86.75	78.32	82.54	86,56	78.19	82.37	86.67	78.27	82.47
, r	A 7 P. B. B. B.	79.20	83.54	87,58	78.96	83.27	87.79	79.14	83.46
20.00	88	29.76		88,33	79.53	83.93	88.57	79.70	84.14
20 S	89.05	80.17	84.71	88.92	79.95	84.43	89.17	80.12.	84.65
20.05	89 73	80.51	85. 12	89, 43	80.30	84.87	89.62	80.45	85.05
35.0	90 19	80 B 1	05.55	89.90	80.63	85.27	90.10	80.76	85.43
	90.62	8 1 07	85.00	90.37	80.92	85.64	90.54	81.02	85.78
, r	V O 10	81.33	86 18	90.82	81.19	96.00	96 . 06	81.28	86.12
0 0		81.56		91,24	81.45	86.34	91.36	81.52	86.44
o u	- X	8 180	AG 32		81.69	86.67	91.78	81.75	86.76
0.09	92 29	82 OZ	87 18	92.09	81.95	87.02	92.18	82.01	87.10
65.0	92 79	R2 37	E 1. 1. E	92.58	82.25	87.42	92.67	82.30	87.48
20.02	93.44	82.76	0 BB	93, 15	82.59	87.87	93.24	82.64	87.94
75.0	94 2B	83.30	90 .00	93.93	83.06	88.50	94.00	83, 10	88.55
0.0	95.42	84 10	20.00	95.08	83.86	89. 7	95. 13	83.89	89.51
e e	96	84 84	20.00	96.24	84.67	90.45	96.32	84.72	90.52
0.06	97 68	85 66	00.00	97.37	85.46	91.41	97.50	85.55	91.53
0.00	100 08	87.37	91.00	99.85	87.20	93.52	100.04	87.34	93.69
	100 88	88.01	27. VO	100.74	87.89	94.31	100.90	88.02	94 . 46

TABLE XXX1

MAXIMUM OCTANE NUMBER REQUIREMENTS

All 1983 US Vehicles

PR FUELS

No Knock Sensors RON	83.24	84.88	85.81	86.48	87.03	87.52	87.97	88.37	88.75	89.14	89.53	89.93	90.34	90.77	91.18	91.59	92.07	92.70	94.20	94.64	95.12	95.58	96.12	285
Knock Sensors (Low) RON	81.83	83.79	85.07	85.95	86.57	87.12	87.60	88.06	88.47	88.86	89.27	89.68	90.10	90.56	91.03	91.45	91.94	92.58	94.04	94.49	95.03	95.49	60.96	298
Knock Sensors (High) RON	83.31	85.01	85.91	86.48	86.95	87.40	87.81	88.22	88.63	89.04	89.14	89.85	90.28	90.73	91.17	91.58	92.07	92.70	94.25	94.64	95.08	95.52	60.96	300
% Satisfaction (Midpoint)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	0.06	95.0	0.96	97.0	98.0	0.66	No. of Vehicles

TABLE XXXII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 US Vehicles

FBRU FUELS

	Knock	Knock Sensors, High (300 Vehicles)	High es)	Knocl (29	Knock Sensors, Low (298 Vehicles)	, Low es)	No (2	No Knock Sensors (285 Vehicles)	sors es)
% SATISFACTION	non	NOW	(RIM)/2	RON	MON	(R+M)/2	RON	MOM	(RIM)/2
(MIDPOINT)	!	*	! ! ! !	! ! !	1 ! !		l I		
1 1		•		A 2 99	78 14	80.57	84.79	79.45	82.12
5.0		D ()	71.70		70 70	R2 5A	86.34	80.50	83.42
10.0	96.36	80.52	4.00	07.00 08.00	80 GR	83.65	87.43	81.20	84.31
15.0	87.76	80.18	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	67.63	91.00	R4 37	88.14	81.68	64.91
20.0	87.93	81.55	64.74 67.04			10.40	88.67	82.00	85.34
25.0	88.51	6 - 9	12.21	000	82.03	85.36	89.15	82.29	05.72
30.0	89.04	82.22	45.63	0.00	20.08	85 76	89,58	82.55	10.00
35.0	89.48	82.49	80.00	04.00	9.0	86 13	66 60	82.80	06.40
40.0	89.91	82.74	86.32	00.00		RG 47	90.33	83.03	90.08
45.0	90.27	82.99	80.63	90.08	. E. E.	86.78	90.67	83.27	96.97
50.0	90.01	03.23	615.92	27.00	20.00	87.06	00 16	83.50	87.25
55.0	90 16	83.47	07.22			87.00	90.16	83.71	87.54
0.09	91.33	83.70	87.52		03.00 23.00	87.67	91.73	83.94	07.83
0.29	91.72	83.93	18. 783 00. 00	100	84.06	87.99	92.18	84.21	80.20
70.0	92.19	84.22	7.88	92.58	84.43	88.50	92.82	84.59	88.71
75.0	92.83	84.50	88.71 00.01	03.50	06. 48	89.09	93.52	85.06	89.29
0.08	93.54	82 · 08	10.08	AL A0		89.81	94.37	85.62	90.00
85.0	94.44	85.66	90.03	0.00	8G 2B	90.84	95.07	86.47	91.07
0.06	95.76	86.53	- TG	01.C6	87.40	92.7A	97.99	87.99	92.99
95.0	97.94	87.96	92.95	711		93.48	98.82	80,05	93.74
0.00	98.83	80 · GG		P 00		. P.	61 001	89 68	94.92
0 . 6	100 25	A9 70	76, 90	88.80	90.40			٠	•

TABLE XXXIII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 US Vehicles

FBRSU FUELS

	Knock (30	Knock Sensors, High (300 Vehicles)	High es)	Knoc (2)	Knock Sensors, Low (298 Vehicles)	s, Low les)	No (2	No Knock Sensors (285 Vehicles)	nsors les)
SALISFACTION (MIDPOINT)	ROH	MON	(R+M)/2	NON	MON	(R+M)/2	RON	MON	(R+M)/2
0.8	85.46	77.42	81.44	83.46	76.02	79.74	85.41	77.39	81.40
0 01	86.79	70.35	82.57	85.88	77.72	81.80	86.70	78.29	82.50
0 51	87.79	79, 13	83.46	87.08	78.57	82.82	87.89	79.21	83.55
20.0	88.47	79.63	84.05	80.04	79.33	83.68	88.60	79.72	84.16
25.0	10.68	10.01	04.51	80.63	79.74	84.18	89.15	80.11	84.63
30.0	89.49	80.34	84.92	89.15	80.10	84.63	89.59	80.41	85.00
0.5.0	66.60	80.65	05.29	89.61	80.43	85.02	90.00	80.70	85.35
40.0	90.41	80.94	85.68	90.06	80.74	05.40	90.48	80.99	85.73
45.0	90 88	B1 23	86.05	90.57	81.04	85.80	90.94	81.26	BG. 10
0.05	91 28	0.1.47	00.37	91.05	81.33	86.19	91.31	81.49	86.40
0 55	91 65	81.69	06.67	91.44	81.57	86.50	91.68	81.71	86.69
0 09	90.06		86.99	91.84	81.80	86.82	97.06	81.94	87.00
0.89	92.54	02.22	87.30	92.30	82.08	07.19	92.52	82.21	87.37
20.0	93.07	82.54	87.81	92.81	02.39	87.60	93.01	82.51	07.76
75.0	93.80	82.98	80,39	93.48	02.79	88.14	93.72	82.93	86.32
0.00	94 78	80 65	89.21	94.39	83.37	88.88	94.64	83,55	89.09
85.0	16 96	84 65	90.43	95.73	84.31	90.02	90.04	84.53	90.29
0.06	67 73	85 71	91.72	97.37	85.46	91.42	97.64	85.65	91.65
0.50	100 32	87.55	60.66	100.13	87.40	93.77	100.41	87.62	94.01
0.59			1	100.92	88.04	94.48			1
0.00									

TABLE XXX1V

MAXIMUM OCTANE NUMBER REQUIREMENTS

All 1983 US Cars

PR FUELS

No Knock Sensors RON	82.90	84.58	85.50	86.18	86.70	87.19	87.67	88.11	88.51	88.90	89.27	89.63	90.02	90.47	90.97	91.45	92.01	92.67	94.11	94.59	95.12	95.66	96.17	27.1
Knock Sensors (Low) RON	82.33	84.26	85.22	85.97	86.50	86.98	87.47	87.93	88.34	88.73	89.12	89.49	89.87	90.32	90.83	91.34	91.92	92.59	94.00	94.48	95.05	95.59	96.15	281
Knock Sensors (High) RON	83.06	84.70	85.60	86.24	86.74	87.21	87.67	88.11	88.52	88.93	89.30	89.67	90.07	90.54	91.04	91.52	92.08	92.73	94.25	94.66	95.12	95.62	96.15	283
% Satisfaction (Midpoint)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	90.0	95.0	0.96	97.0	0.86	0.66	No. of Vehicles

TABLE XXXV

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 US Cars

FBRU FUELS

	Knock (Knock Sensors, High (283 Cars)	High)	Knock	Knock Sensors, Low (281 Cars)	Low	No	No Knock Sensors (271 Cars)	sors
SATISFACTION	RON	NOW	(RIM)/2	RON	MOM	(R+M)/2	RON	NOW	(R+M)/2
(MIDPOINT)	1 1 1 1	1 1 1 1	1 1 1 1 1 1	! ! !	; 1 1 1) 	1 1 5 6	1 1 1 1	
0.8	84.66	79.36	82.01	84.23	79.06	81.64	84.56	79.29	81.93
10.01	86.13	80.38	83.25	85.76	80.13	82.95	85.98	80.28	83.13
15.0	87.22	81.06	84.14	86.81	80.79	83.80	87.12	80.99	84.06
20.0	87.93	81.55	84.74	87.51	81.26	84.39	87.82	81.48	84.65
25.0	88.53	81.92	85.23	88.09	81.65	84.87	88.42	81.85	85.14
30.0	89.07	82.24	85.66	88.67	82 .00	85.34	88.96	82.18	85.57
35.0	89.52	82.51	86.02	89.19	82.32	85.76	89.43	82.46	85.95
40.0	89.95	82.77	96.36	89.66	82.60	86.13	89.88	82.73	96.30
45.0	90.29	83.01	86.65	90.09	82.86	86.47	90.24	82.96	86.60
20.0	90.62	83.23	86.93	90.42	83.09	86.76	90.56	83, 19	86.87
55.0	90.92	83.46	87.20	90.75	83.32	87.04	90.88	03.42	87.15
60.0	91.34	83.71	87.52	91.10	83.56	87.33	91.25	83.65	87.45
65.0	91.77	83.96	87.86	91.52	83.81	87.67	91.67	83.90	87.78
0.07	92.34	84.31	88.32	91.96	84.08	88.02	92.17	84.20	88.19
75.0	93.09	84.76	08.93	92.75	84.55	88.65	92.97	84.68	88.02
BO.0	93.82	85.27	89.55	93.53	85.07	89.30	93.70	85, 19	89.44
85.0	94.73	85.84	90.28	94.40	85.64	90.05	94.55	85.73	90.14
0.06	96.11	86.76	91.43	95.74	86.52	91.13	95.93	80.65	91.29
95.0	98.55	88.44	93.50	98.28	88.22	93.25	90.47	88.38	93.42
0.96	99.64	89.24	94.44	99.14	88.90	94.02	99.42	89.09	94.25
97.0	100.77	90.12	95, 45	100,49	89.89	95. 19	100.69	90.05	95.37

TABLE XXXVI

MAXIMUM RESEARCH, MOTOR, AND (R+H)/2 OCTANE NUMBER REQUIREMENTS

A11 1983 US Cars

FBRSU FUELS

	Knock	Knock Sensors, (283 Cars)	, High s)	Knock	Knock Sensors, Low (281 Cars)	, Low	No N	No Knock Sensors (271 Cars)	sors
% SATISFACTION	RON	NOM	(R+M)/2	RON	NOM	(R+M)/2	RON	MOM	(R:M)/2
(INTOLOTE)						1			1
5.0	85.29	77.30	81.29	84.88	77.02	80.95	85.20	77.24	81.22
0 01	86.53	78.17	82.35	86.30	78.01	82.16	86.44	78.10	02.27
0.81	87.57	78.96	83.27	87.26	78.71	85.98	87.45	78.86	83.18
20.0	88.45	79.61	84.03	88.06	79.34	83.70	88.35	79.54	83.94
25.0	89.09	80.08	84.58	88.62	79.78	84.21	08.99	79.99	84.49
0 00	89.56	80.39	84.98	89.17	80.12	84.65	89.40	80.32	84.89
0.55	90.00	80.70	85.35	89.63	80.44	85.04	09.08	80.62	05.25
40.0	90.42	80.95	85.89	90.04	80.74	85.41	90.31	80.89	02.60
0.13	90.84	81.20	86.02	90.52	81.01	85.77	90.73	81.14	85.93
50.0	91.23	_	86.34	90.96	81.28	86.12	91.13	81.38	86.26
55.0	91.63	81.68	86.65	91.37	81.52	86.45	91.53	81.62	96.57
60.0	92.04	81.92	86.98	91.79	81.77	86.78	91.93	81.00	AG. 89
65.0	92.84	82.28	87.46	92.31	82.08	87.20	92.47	82.18	07.33
10.0	93.32	82.69	88.00	92.93	82.46	87.70		82.55	87.82
75.0	94.14	83.20	88.67	93.73	82.94	88.33	93.67	83.02	88.44
80.0	95.25	83.98	09.62	94.77	83.64	89.20		83.73	89.32
85.0	96.62	84.93	90.78	96.10	84.61	90.38	96.32	84.72	90.52
0.06	98.09	85.96	92.03	97.70	82.69	91.70	97.90	85.83	91.00
O 12 B	100,83	87.96	04.40	100.68	87.84	94.26	000	60 60	0.4.47

TABLE XXXVII

MAXIMUM OCTANE NUMBER REQUIREMENTS

All 1983 Imported Vehicles

PR FUELS

No Knock Sensors RON	83.11	84.91	87.05	87.62	88.15	88.78	89.24	89.61	89.97	90.37	90.79	91.21	91.65	92.14	92.74	93.55	95.01	80.96	97.21	97.48	•	82
Knock Sensors (High) RON	83.13	84.94	87.07	87.64	88.19	88.82	89.27	89.65	90.01	90.42	90.84	91.27	91.73	92.24	92.85	93.75	95.21	96.30	97.54	97.88		83
Satisfaction (Midpoint)	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	0.09	65.0	70.0	75.0	80.0	85.0	0.06	95.0	0.96	0.76	lo. of Vehicles

TABLE XXXVIII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 Imported Vehicles

FBRU FUELS

	Knoc (8	Knock Sensors, High (83 Vehicles)	, High es)	No Kno (82	No Knock Sensors (82 Vehicles)	sors es)
% SATISFACTION	RON	NOM	(R:H)/2	RON	MON	(R+M)/2
		1 1	1 1 1	1 1 1 1	1 1 1	1 1 1 1 †
		10	81.47	66 .08	78.89	81.44
ņ ģ	04.04 04.04		83.69			63.67
) (-	84.29	87.37	81.16	84.27
0.00	07.70			87.94	81.56	84.75
0.07	7.00	٠.	82.38	88.69	R2.01	85.35
79.0		82 - CR	15.97	89.41	82.45	85.93
0.16	6.00		88.49	90.07	82.85	86.48
0.00	90.13		86.84	90.49	63, 14	86.81
) (F	60.00	80 Y	87.19	90.89	83.42	87.10
0.0		83.68	07.49	91.28	83.65	87.45
) (•	83.09	87.78	9.01	83.87	87.74
		84, 12	NO. DA	91.97	84.08	88.03
9.50	92.53	84.42	00.47	92.45	84.37	88.41
20.02	93.09	84.76	60.03	95.96	84.68	EN. 82
0.85	40.46	85, 42	89.73		85.32	89.60
	B4.71	85.82	90.27	94.57	85.74	90, 10
ان و د	10.00	86.38	90.97	92.36	86.25	90.80
2 6	96 45	86.97	91.71	96.26		91.56
0. R.	97,58		~	97.30	87.51	92.41
	97.88		92.80	97.64	87.75	92.69

TABLE XXXIX

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

All 1983 Imported Vehicles

FBRSU FUELS

	Knocl	Knock Sensors, High (83 Vehicles)	., High es)	No	No Knock Sensors (82 Vehicles)	nsors les)
% SATISFACTION	RON	MOM	(R+M)/2	RON		(R:M)/2
(MIDPOINT)	!	; ! !	1) 	1 1 1 1	
0.20	85.39	77.37	81.38	85.32	77.32	81.32
0.01	87.91	79.23	63.57	87.89	79.21	83.55
15.0	88.77	79.84	84.30	88.74	79.82	84.28
20.0	89.42	80.29	84.85	89.39	80.27	84.83
25.0	89.96	80.67	85.32	89.93	80.65	85.29
30.0	90.40	80.97	85.72	90.42	80.95	
35.0	90.91	81.25	80.00	90.88	81.23	86.05
40.0	91.34	81.50	06.42	91.30	81.48	86.39
45.0	91.75	81.75	80.75	91.71	81.72	86.71
50.0	92.13	81.98	07.05	92.09	81.95	87.02
55.0	p 47	82.18	67.33	9743	82.15	
60.0	92.82	82.39	67.60	92.77	82.36	87.56
85.0	93.33	82.70	88.02	93.23	82.64	87.93
70.0	94.04	83.13	98.59	83.93	83.06	88.49
75.0	94.71	83.60	69.15	94.59	83.51	89.05
80.0	95.51	84.10	09.03	95.39		09.73
85.0	96.21	84.65	90.43	96.19	84.63	90.41
90.0	96.75	85.03	90.08	90.75		90.89
95.0	97.81	85.70	91.78	97.82	85.78	91.80

TABLE XL

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

/2 No. FBRSU	87.7	90.4	87.2	84.8	86.5		94.9	93.6	90.1	88.6	92.1
(R+M)/2 Octane N FBRU F	88.0	90.5	88.0	85.4	86.1		94.5	93.0	90.6	89.1	91.0
or e No. FBRSU	ed	84.7	82.0	80.1	81.5	рә	88.4	87.3	84.3	83.3	86.0
Motor Octane FBRU	% Satisfied 84.1 82.	86.0	84.1	82.0	82.5	% Satisfied	89.4	88.0	86.1	85.0	86.5
Research ctane No. RU FBRSU	50 %	96.2	92.2	89.4	91.5	x 06	101.3	100.0	95.8	93.9	98.1
Research Octane No FBRU FB	91.9	95.0	91.9	88.8	9.68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.66	98.0	95.2	93.3	95.5
PR	88.4	91.8	91.2	87.4	87.0	1	94.1	95.0	93.9	91.9	92.1
No. Tested	18	22	16	21	21*		18	22	16	21	21*
Model	NGA 238A3/HGA 238A3/ IGA 238A3/LGA 238A3	NJP F20A3/LJP F20A3/ GJP F20A3	0A4 216A3/MA4 216A3	OD3 238A3/OD3 238A4/ MD3 238A3/OE3 238A3/ OE3 238A4/ME3 238A4	PKC 222A3/KKC 222A3/ DKC 222A3/KEC 222A3/ DEC 222A3		NGA 238A3/HGA 238A3/ IGA 238A3/LGA 238A3	NJP F20A3/LJP F20A3/ GJP F20A3	0A4 216A3/MA4 216A3	0D3 238A3/OD3 238A4/ MD3 238A3/OE3 238A3/ OE3 238A4/ME3 238A4	PKC 222A3/KKC 222A3/ DKC 222A3/KEC 222A3/ DEC 222A3

* FBRU; 20 cars tested for PRF and FBRSU Fuels

TABLE XLI

OWNER/RATER COMPARISON OF TANK FUEL KNOCK

(1976-1983 CRC Octane Number Requirement Surveys)

1976	Unleaded*	200		63.8	40.5	0.63		20.0	49.4
119		(4)		9	4	J		20	4
1977	Un]eaded*	225		54.7	29.3	0.54		10.2	34.8
1978	Unleaded* U	105		50.5	32.4	0.64		15.2	46.9
15	-			2	33	J		4	4
1979	Unleaded*	196		52.6	26.0	0.49		15.8	8.09
1980	Unleaded*	218		51.1	31.2	0.61		15.1	48.5
1981	Unleaded	149		43.6	29.5	0.68		12.1	40.9
1982	Unleaded	144		47.9	25.0	0.52		13.2	52.8
1983	Unleaded	129		59.7	29.5	0.49		12.4	42.1
	Fuel:	No. of Reports:	% Knocking	Trained Rater	Owner	Owner/Rater Ratio	% Owners Objecting	Based on Total Reports	Based on Those Reporting Knock

^{*} Some vehicles were designed for leaded fuels.

TABLE XLII

TANK-FUEL KNOCK REPORTED BY TRAINED OBSERVERS

I.	US and Imported Vehicles		Vehicle	es Tested on	Tank Fuel
	Model Year	No. in Survey	No. Tested	No. Knocking	% Knocking (Wtg. Avg.)
	1983	383	314		44.6
	1982	434	342		41.6
	1981	417	326		42.9
	1980	429	374		49.9
	1979	490	414		47.3
	1978	434	338		47.2
	1977	478	457		44.2
II.	1983 Select Models				% Knocking
	NGA 238A3/HGA 238A3/ IGA 238A3/LGA 238A3	18	14	6	42.9
	NJP F20A3/LJP F20A3/ GJP F20A3	22	22	20	90.9
	OA4 216A3/MA4 216A3	16	12	9	75.0
	OD3 238A3/OD3 238A4/ MD3 238A3/OE3 238A3/ OE3 238A4/ME3 238A4	21	16	2	12.5
	PKC 222A3/KKC 222A3/ DKC 222A3/KEC 222A3/ DEC 222A3	21	16	5	31.3

TABLE XLIII

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

Percent of Cars Having Maximum Requirements Within Specified Speed (rpm) Ranges

	Model:	NGA IGA	238A3/HGA 238A3/LGA	238A3 238A3	NJP	F20A3/LJP F20A3/ GJP F20A3	F20A3/	0A4 2	0A4 216A3/MA4 216A3	4 216A3
SPEED RANGE	Fue]:	8	FBRU	FBRSU	PR	FBRU	FBRSU	%	FBRU	FBRSU
1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher		12 76 12	11 61 28	6 61 28 5	9 14 14 40	32 32 27 18 5	23 9 32 13	31 38 19 6	63 19 6 12	44 31 19
No. of Cars		18	18	18	22	22	22	16	16	16
	Model:	003 MD3 0E3	238A3/0D3 238A3/0E3 238A4/ME3	238A4/ 238A3/ 238A4	PKC	222A3/KKC 222A3, 222A3/KEC 222A3, DEC 222A3	KKC 222A3/ KEC 222A3/ 222A3			
SPEED RANGE	Fuel:	R	FBRU	FBRSU	PR	FBRU	FBRSU		,	
1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199 3200 and Higher		38 29 19 14	52 24 14 5	48 24 14 5	35	4 28 8	35 30 30 5			
No. of Cars		21	21	21	20	21	20			

TABLE XLIV

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

Weighted % of Vehicles Having Requirements in Indicated (rpm) Ranges

All 1983 Vehicles

Maximum Requirements Engine Speed Range	PR <u>Fuels</u>	FBRU <u>Fuels</u>	FBRSU Fuels
1599 and Lower	24.9	26.9	25.2
1600 - 1999	37.3	34.1	28.2
2000 - 2399	19,7	16.4	17.5
2400 - 2799	10.5	12.9	16.5
2800 - 3199	5.4	6.2	6.9
3200 - 3599	2.2	2.9	4.3
3600 and Higher	0.0	0.6	1.4

TABLE XLV

ROAD OCTANE DEPRECIATION OF 1983 FBRU AND FBRSU FUELS

All 1983 Vehicles

Includes High Borderline Requirements for Knock Sensor-Equipped Vehicles

		FBRU F				FBRSU_F		
	~		Road		<i>a</i>	C 4	Road	0
RON	% Satisfied	Sensi- tivity	Octane Rating	Depre- ciation	% Satisfied	Sensi- tivity	Octane Rating	Depre- ciation
<u></u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>	<u></u>	<u> </u>
85	5.4	5.4	83.6	1.4	4.0	7.9	-	-
86	8.0	5.7	84.5	1.5	6.3	8.2	84.0	2.0
87	13.0	6.1	85.7	1.3	9.9	8.5	85.0	2.0
88	20.5	6.4	86.8	1.2	14.8	8.7	86.0	2.0
89	28.9	6.8	87.6	1.4	22.9	9.0	87.0	2.0
90	39.4	7.2	88.5	1.5	33.2	9.3	87.4	2.1
91	53.2	7.5	89.6	1.4	43.8	9.7	88.8	2.2
92	66.3	7.9	90.7	1.3	56.8	10.1	89.9	2.1
93	74.6	8.3	91.4	1.6	67.8	10.5	90.8	2.2
94	80.9	8.6	92.0	2.0	74.6	10.9	91.4	2.6
95	86.1	9.0	92.8	2.1	80.0	11.2	91.9	3.1
96	89.9	9.3	93.6	2.4	83.8	11.5	92.4	3.6
97	93.3	9.7	94.6	2.4	88.5	11.8	93.3	3.7
98	95.4	10.0	95.4	2.6	92.0	12.1	94.2	3.8
99	96.8	10.2	96.1	2.9	94.5	12.4	95.1	3.9
100	97.3	10.5	96.5	3.5	95.6	12.7	95.5	4.5
101	97.9	10.7	96.8	4.2	96.6	12.9	96.0	5.0

FIGURE 1
DISTRIBUTION OF ODOMETER MILEAGE
FOR 1983 MODEL VEHICLES TESTED

-85-Figure 2a

DISTRIBUTION OF MAXIMUM PR FUEL REQUIREMENTS
1983 U.S. AND IMPORTED VEHICLES

Figure 3a

DISTRIBUTION OF MAXIMUM FBRU RON REQUIREMENTS
1983 U.S. AND IMPORTED VEHICLES

PERCENT SATISFIED

Figure 4a

DISTRIBUTION OF MAXIMUM FBRSU RON REQUIREMENTS
1983 U.S. AND IMPORTED VEHICLES

Figure 5a
DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1983 U.S. AND IMPORTED VEHICLES

Figure 6

COMPARISON OF MAXIMUM PR FUEL REQUIREMENTS
1983 AND 1982 U.S. AND IMPORTED VEHICLES

Figure 7

COMPARISON OF MAXIMUM FBRU FUEL REQUIREMENTS
1983 AND 1982 U.S. AND IMPORTED VEHICLES

Figure 8

COMPARISON OF MAXIMUM FBRSU FUEL REQUIREMENTS
1983 AND 1982 U.S. AND IMPORTED VEHICLES

Figure 9a

DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1983 U.S. AND IMPORTED CARS

Figure 9b

PERCENT SATISFIED

Figure 10a

DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1983 U.S. VEHICLES

1983 CRC (COORDINATING RESEARCH COUNCIL INC) OCTANE NUMBER REQUIREMENT SURVEY(U) COORDINATING RESEARCH COUNCIL INC ATLANTA GA AUG 83 CRC-539 DAAK70-81-C-0128 F/G 21/4 AD-8145 816 2/3 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Figure 11

COMPARISON OF MAXIMUM PR FUEL REQUIREMENTS
1983 AND 1982 U.S. VEHICLES

Figure 12

COMPARISON OF MAXIMUM FBRU FUEL REQUIREMENTS
1983 AND 1982 U.S. VEHICLES

_____ 1983 -____ 1982

Figure 13

COMPARISON OF MAXIMUM FBRSU FUEL REQUIREMENTS
1983 AND 1982 U.S. VEHICLES

Figure 14a
DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1983 U.S. CARS

Figure 15a

DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1983 IMPORTED VEHICLES

Figure 16
DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS
1983 MODEL NGA 238A3/HGA 238A3/IGA 238A3/LGA 238A3 (18 CARS)

Figure 17
DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS 1983 MODEL NJP F20A3/LJP F20A3/GJP F20A3 (22 CARS)

D.,

DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS 1983 MODEL OA4 216A3/MA4 216 A3 (16 CARS)

1983 MODEL OD3 238A3/OD3 238A4/MD3 238A3/OE3 238A3/OE3 238A4/ME3 238A4/(21 CARS) DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS Figure 19

Figure 20
DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS
1983 MODEL PKC 222A3/KKC 222A3/DKC 222A3/KEC 222A3/DEC 222 A3
(21 CARS FBRU; 20 CARS PR AND FBRSU)

PR FUEL

Figure 21

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS
ALL 1983 VEHICLES

APPENDIX A

PARTICIPATING LABORATORIES

PARTICIPATING LABORATORIES

Eastern Area

Exxon Research and Engineering Company Linden, New Jersey

Gulf Research and Development Company Pittsburgh, Pennsylvania

Mobil Research and Development Corp. Paulsboro, New Jersey

Sun Company Marcus Hook, Pennsylvania

Texaco Inc. Beacon, New York

Toyota Motor Corporation Secaucus, New Jersey

East Central Area

Chrysler Corporation Highland Park, Michigan

Ford Motor Company Dearborn, Michigan

General Motors Corporation Warren, Michigan

Shell Canada Oakville, Ontario

Standard Oil Company (Ohio) Cleveland, Ohio

Western Area

Chevron Research Company Richmond, California

West Central Area

Amoco Oil Company Naperville, Illinois

Phillips Petroleum Company Bartlesville, Oklahoma

Shell Development Company Houston, Texas

APPENDIX B

MEMBERSHIP: 1983 ANALYSIS PANEL

1983 CRC OCTANE NUMBER REQUIREMENT SURYEY

1983 ANALYSIS PANEL

D. P. Barnard, Leader

J. L. Borzone

R. A. Bouffard

J. C. Callison

E. S. Corner

R. E. Dizak

M. J. Gorham

J. C. Ingamells

M. J. Mlotkowski

W. J. Most

K. R. Schaper

R. A. Wirth

Standard Oil Company (Ohio)

Mobil Research and Development Corp.

Exxon Research and Engineering Company

Amoco Oil Company

Consultant

Gulf Research and Development Company

Union Oil Company

Chevron Research Company

Mobil Oil Corporation

Exxon Research and Engineering Company

Consultant

Sun Tech, Inc.

APPENDIX C

DATA ON 1983
FULL-BOILING RANGE REFERENCE FUELS

TABLE C-I

SUPPLIERS' FUEL INSPECTIONS

COMPARISON OF 1982 AND 1983 FBRU FUELS

	Low-00 Base 1 RMFD 344-83		Interme Octa Base B RMFD 345-83	ne	High-O Base B RMFD 346-83	
Laboratory Inspection						
Distillation, °F IBP 10% Evap. 30% Evap. 50% Evap. 70% Evap. 90% Evap. End Point	93 123 159 195 233 297 390	97 130 164 196 233 295 374	95 123 162 210 257 317 414	93 121 167 206 235 313 398	95 125 181 235 261 294 385	99 134 189 225 245 285 388
Gravity, °API	66.3	66.6	59.1	62.1	51.1	52.7
RVP, psi	8.5	8.7	8.6	9.0	8.5	8.2
Lead, g/gal.	<0.003	<0.03	<0.003	<0.03	<0.003	<0.03
Oxidation Stabilitiy, hr	. >24	>24	>24	>24	>24	>24
Hydrocarbon Type, Vol. %						
Aromatics Olefins Saturates	20.0 2.0 78.0	20.7 0.5 78.8	37.0 3.0 60.0	12.8 6.3 80.9	57.0 1.0 42.0	55.5 3.0 41.5
Research Octane Number	77.4	76.9	90.6	90.5	102.8	101.5
Motor Octane Number	73.7	72.9	82.9	82.8	91.8	90.3
Sensitivity	3.7	4.0	7.7	7.7	11.0	11.2

TABLE C-II

OCTANE NUMBERS AND COMPOSITIONS FOR 1983 FBRU FUELS

Blending Data Composition,

	ν	olume Percen	t		
	RMFD	RMFD	RMFD		
RON	<u>344-83</u>	<u>345-83</u>	346-83	MON	SEN
70	25	•		74.0	2.0
78	96	4		74.2	3.8
80	82	18		75.8	4.2
82	67	33		77.4	4.6
84	52	48		78.9	5.1
85	44	56		79.6	5.
86	36	64		80.3	5.7
87	29	71		80.9	6.1
88	21	79		81.6	6.4
89	13	87		82.2	6.8
90	5	95		82.8	7.2
91		97	3	83.5	7.5
92		90	10	84.1	7.9
93		83	17	84.7	8.3
94		76	24	85.4	8.6
95		69	31	86.0	9.0
96		61	39	86.7	9.3
97		53	47	87.3	9.7
98		44	56	88.0	10.0
99		35	65	88.0	10.2
100		27	73	89.5	10.5
101		19	81	90.3	10.7
102		9	91	91.2	10.8

SENSITIVITIES OF 1982 AND 1983 FBRU AND FBRSU FUELS

TABLE C-III

_		FBRU			FBRSU	
Research	1002	1002		1002	1002	
Octane No.	<u>1983</u>	<u>1982</u>	_Δ_	<u>1983</u>	<u>1982</u>	
78	3.8	4.0	-0.2	6.3	6.2	0.1
80	4.2	4.2	0.0	6.8	6.8	0.0
82	4.6	4.4	0.2	7.0	7.3	-0.3
84	5.1	4.8	0.3	7.6	7.8	-0.2
85	5.4	5.1	0.3	7.9	8.1	-0.2
86	5.7	5.5	0.2	8.2	8.3	-0.1
87	6.1	5.9	0.2	8.5	8.6	-0.1
88	6.4	6.3	0.1	8.7	8.9	-0.2
89	6.8	6.8	0.0	9.0	9.1	-0.1
90	7.2	7.2	0.0	9.3	9.2	0.1
91	7.5	7.7	-0.2	9.7	9.6	0.1
92	7.9	8.3	-0.4	10.1	9.9	0.2
93	8.3	8.8	-0.5	10.5	10.3	0.2
94	8.6	9.0	-0.4	10.9	10.7	0.2
95	9.0	9.3	-0.3	11.2	11.1	0.1
96	9.3	9.6	-0.3	11.5	11.4	0.1
97	9.7	9.9	-0.2	11.8	11.7	0.1
98	10.0	10.2	-0.2	12.1	12.0	0.1
99	10.2	10.5	-0.3	12.4	12.2	0.2
100	10.5	10.7	-0.2	12.7	12.4	0.3
101	10.7	10.8	-0.1	12.9	12.7	0.2
102	10.8			13.1		

TABLE C-IV

SUPPLIERS' FUEL INSPECTIONS

COMPARISON OF 1983 AND 1982 FBRSU FUELS

	Low-Oc Base E RMFD 347-83		Interme Octa Base B RMFD 348-83	ne	High-(<u>Base B</u> RMFD 349-83	
Laboratory Inspection						
Distillation, °F IBP 10% Evap. 30% Evap. 50% Evap. 70% Evap. 90% Evap. End Point	93 126 174 217 263 345 420	103 133 163 200 244 363 425	97 124 167 217 269 331 415	97 134 178 218 261 332 412	97 136 186 215 268 325 425	93 127 177 245 280 334 398
Gravity, °API	62.9	63.6	57.8	56.0	45.8	49.6
RVP, psi	8.1	7.6	8.8	8.4	8.8	7.9
Lead, g/gal.	<0.003	<0.03	<0.003	<0.03	<0.003	<0.03
Oxidation Stabilitiy, hr	. >24	>24	>24	>24	>24	>24
Hydrocarbon Type, Vol. %						
Aromatics Olefins Saturates	18.0 27.0 55.0	15.8 31.5 52.7	39.0 5.0 56.0	31.6 11.9 56.5	62.0 2.0 36.0	52.5 3.5 44.0
Research Octane Number	76.2	77.5	90.2	90.1	102.2	101.5
Motor Octane Number	70.4	71.5	80.5	80.5	89.1	88.3
Sensitivity	5.8	6.0	9.9	9.5	13.1	13.2

TABLE C-V

OCTANE NUMBERS AND COMPOSITIONS FOR 1983 FBRSU FUELS

Blending Data Composition, Volume Percent

<u>347-83</u>	<u> 348-83</u>	<u>349-83</u>	<u>MON</u> _	<u>sen</u>
89	11		71.7	6.3
75	25		73.2	6.8
59			75.0	7.0
45			76.4	7.6
	62			7.9
				8.2
24	76		78.5	8.5
1.5	0.4		70.0	
16				8.7
9				9.0
2				9.3
				9.7
				10.1
				10.5
	/4	26	83.1	10.9
	66	34	83.8	11.2
				11.5
	49	51		11.8
	41	59	85.9	12.1
	31	69	86.6	12.4
	22	78	87.3	12.7
	12	88	88.1	12.9
	3	97	88.9	13.1
	89 75 59	RMFD 347-83 348-83 89 11 75 25 59 41 45 55 38 62 31 69 24 76 16 84 9 91 2 98 95 88 81 74 66 58 49 41 31	RMFD RMFD RMFD 347-83 348-83 349-83 89 11 75 25 59 41 45 55 38 62 31 69 24 76 16 84 9 91 2 98 95 5 88 12 81 19 74 26 66 34 49 51 41 59 31 69 22 78	347-83 348-83 349-83 MON 89 11 71.7 75 25 73.2 59 41 75.0 45 55 76.4 38 62 77.1 31 69 77.8 24 76 78.5 16 84 79.3 9 91 80.0 2 98 80.7 95 5 81.3 95 5 81.3 81 19 82.5 74 26 83.1 66 34 83.8 58 42 84.5 49 51 85.2 41 59 85.9 31 69 86.6

APPENDIX D

PROGRAM

COORDINATING RESEARCH COUNCIL

NCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

PROGRAM

for the

1983 CRC OCTANE NUMBER REQUIREMENT SURVEY

CRC Project No. CM-123-83

June 1983

TABLE OF CONTENTS

TEXT OF	PROGRAM	<u>Page</u>
I.	INTRODUCTION	.D-3
II.	GEOGRAPHICAL AREAS	.D-3
III.	VEHICLES	.D-4
IV.	FUELS	.D-4
٧.	TEST TECHNIQUE	. D- 5
VI.	DATA FORMS	.D-6
VII.	REPORTING RESULTS	.D-6
INDEX OF	TABLES	
TABLE	D-I - Design Specifications for 1984 Select Models	. D-7
TABLE	D-II - Limiting Specifications for 1984 Full-Boiling Range Reference Fuels	.D-8
INDEX OF	ATTACHMENTS	
ATTAC	HMENT 1 - Owner's Questionnaire	.D-9
ATTAC	HMENT 2 - Technique for Determination of Octane Number Requirements of Light-Duty Vehicles	. D-11

I. INTRODUCTION

The 1983 program of the CRC Light-Duty Octane Number Requirement Survey Group will consist of a survey of the octane number requirements of 1983 model domestic and imported vehicles. For the purposes of this program, the designation "passenger vehicles" will include passenger cars, light-duty (<8500 lb/3856 kg GVW) pickup trucks, and vans. Approximately 450 vehicles will be tested. Most of these vehicles will be sampled in proportion to their relative production or import volume, to provide data from which to estimate the distribution of octane number requirements for the 1983 model vehicle population in the United States. In addition, select models of special interest will be tested in sufficient numbers to estimate their requirement distributions.

Knocking characteristics will be investigated with three series of reference fuels. Tank fuel knock will also be evaluated. Maximum octane number requirements, whether at maximum-throttle or part-throttle, will be established for each vehicle using high sensitivity unleaded full-boiling range reference (FBRSU) fuels, average sensitivity unleaded full-boiling range reference (FBRU) fuels, and primary reference (PR) fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement.

Octane requirements throughout the speed range will be obtained with PR fuels only.

II. GEOGRAPHICAL AREAS

As in previous years, the 1983 Survey will be conducted on a nationwide basis. The country has been divided into four geographical areas. Participants located in New York, New Jersey, Delaware, and Pennsylvania have been included in the Eastern Area; those located in Ohio, Michigan, and Kentucky comprise the East Central Area; those in Illinois, Texas, and Oklahoma comprise the West Central Area; and California participants make up the Western Area. A coordinator has been appointed for each area as follows:

Eastern AreaW.	J. Most
East Central Area	
West Central AreaJ.	
Western Area	WIISZ

The area coordinators will contact their area participants periodically regarding the progress of the survey. To expedite this, it is suggested that participants send copies of all correspondence concerning the survey to the area coordinators. This program outlines the survey in broad terms. If more detailed information is desired, it is suggested that the participant contact his area coordinator.

III. VEHICLES

A total of approximately 450 vehicles will be tested in the 1983 Survey. By requesting each participating laboratory to test approximately 25 vehicles and assuming 18 participants, the 450-vehicle total is obtained. These will be divided into two groups: (1) the statistical group, sampled in proportion to US car model production or import volume, and (2) select models of special interest. Approximately 20 of each of these select models will be tested to provide an estimate of the octane requirement distribution of each model. Some of these 20 vehicles will be those already included in the statistical group, and the remainder will be additional vehicles added to the program.

The desired number of vehicles to be tested in each category is as follows:

Statistica	1 Group			400
Additional	Select	Model	Group	_50
			Total	450

A detailed breakdown of the specific models and the number of each model to be tested will be circulated to the participants in May 1983 after an estimate of vehicle model production has been obtained. Design specifications for select models to be tested in the 1983 Survey are shown in Table D-1. Selection of these vehicles has been based on new or modified design characteristics that might have a significant effect on octane number requirements and high sales volume which allows individual treatment without additional testing.

Wherever possible, specific vehicle assignments to individual participating laboratories will be made in a pattern which tends to minimize data bias. This will be accomplished by apportioning cars of a given model among the four geographical areas, and subsequently among the laboratories within each area, in order to minimize the effect of non-random factors on the results of the Survey.

IV. FUELS

A. Full-Boiling Range Reference Fuels

Two full-boiling range reference fuel series will be used to define the vehicle octane number requirements. The two series will be unleaded and of varying sensitivity. One series will be comparable to the average sensitivity of unleaded commercial fuels (FBRU); the other series (FBRSU) will be about two numbers higher in sensitivity than the FBRU fuels. The Research octane number (RON) range for both fuel series is 77 to 102.

The two series will be blended in increments of two RON up to 84, and one RON above 84 from three base fuels for each series. The base fuels are compounded from normal refinery gasoline components. Limiting specifications for each base fuel for both series are shown in Table D-II.

Research and Motor ratings will be determined for incremental blends of each fuel series by all participants to provide data for establishment of blending curves. The average ratings and blending curves will be circulated to all participants.

B. Primary Reference Fuels

Blends of ASTM-grade isooctane and normal heptane will be prepared in two octane number increments from 76 to 82, and one octane number increments from 82 to 100.

C. Tank Gasoline

Research and Motor octane ratings will be obtained only on gasoline samples from the tank of vehicles with owner questionnaire (Attachment 1). Owner's Questionnaire should be deleted when:

- the vehicle does not have a regular driver;
- the ignition timing had to be reset more than two degrees.

V. TEST TECHNIQUE

All tests are to be conducted using the technique entitled, "Technique for Determination of Octane Number Requirements of Light-Duty Vehicles" (CRC Designation E-15-83). A copy of this technique is included as Attachment 2 to this program. Octane number requirement investigations are to be conducted in all vehicles under level road conditions. Any vehicle obviously in poor mechanical condition or with malfunctioning emission control devices should not be considered for test work. The vehicles must have a minimum of 6000 deposit miles (9656 km), and preferably be privately owned and operated. Vehicles previously used for fuel road octane rating must not be employed in this survey.

Data should be reported on each vehicle tested, even though knock was not encountered on any of the fuels.

The order in which the fuels are to be tested is as follows:

1) Tank fuel; 2) FBRSU; 3) FBRU; 4) PR.

VI. DATA FORMS

The test results on each vehicle will be reported on data forms DFMF-11-1183, DFMF-12-1183, DFMF-19-1183, and DFMF-26-1183. Copies of these forms will be mailed to all participants from the CRC office with instructions for their use. Additional instructions are included in the E-15-83 technique.

VII. REPORTING RESULTS

The data forms for each vehicle tested should be submitted to the Coordinating Research Council, Inc., 219 Perimeter Center Parkway, Atlanta, Georgia 30346, as soon as possible, but not later than October 31, 1983.

TABLE D-I

DESIGN SPECIFICATIONS FOR 1983 SELECT MODELS

Transmission Type	Automatic	Automatic	Automatic	Automatic	Automatic
BH9	94	80	112	110	06
Comp. Ratio	0.6	0.6	8.65	8.0	9.0
Carb. Bbls.	~	~	~	8	181
No. of Cylinders	₹	4	9	9	4
Engine Displ. Litres	2.2	1.640	3.8	3.8*	2.0
Make & Model	Reliant/Aries Dodge 600/ Chrysler E.S.	Escort/Lynx EXP/LN7	LTD/Marquis T-Bird/XR7	Malibu/Regal Cutlass/Bonneville Grand Prix/Monte Carlo	Skyhawk/Cimarron J-2000/Cavalier

* Engine manufactured by Buick Division, equipped with knock sensor.

TABLE D-II

LIMITING SPECIFICATIONS FOR 1983 FULL-BOILING RANGE REFERENCE FUELS*

	์ วั	Unleaded Average Sensitivity Reference Fuels (FBRU)	e Sensitivit els (FBRU)	>	Unleade Refere	Unleaded High Sensitivity Reference Fuels (FBRSU)	ivity IRSU)
Inspection Tests	RMF	RMFD 344	RMFD 345	RMFD 346	RMFD 347	RMFD 348	RMFD 349
ASTM Distillation, °F(°C)	o	(30 0)	S	G	G	Ş	G
107, Fil.	115-158 (46.1-70.0)	115-158	115-158	115-158	115-158	115-158
30% Evap.	150-190 (65.6- 87.8)	150-190	150-190	150-190	150-190	150-190
50% Evan.	195-250	90.6-121.1)	195-250	195-250	195-250	195-250	195-250
70% Evap.	230-300	110.0 - 148.9)	230-300	230-300	230-300	230-300	230-300
90% Evap.	285-374 (140.6-190.0)	285-374	285-374	285-374	285-374	285-374
End Point, Max.	437	(225)	437	43/	43/	43/	43/
RVP, psi (KPa) Lead, g/gal (g/l)	7-9 <0.03	$\begin{pmatrix} 48-62 \\ < 0.008 \end{pmatrix}$	7-9	7-9 <0.03	7-9 <0.03	7-9 <0.03	7-9 <0.03
Oxidation Stability, Minutes, Min.	1440		1440	1440	1440	1440	1440
Hydrocarbon Type, Vol. % Aromatics, Max.**	50		35	55	35	45	65
Ulefins, Max. Saturates	20 Remainder	·	15 Remainder	10 Remainder	35 Remainder	25 Remainder	ro Remainder
Octane Number Research Sensitivity***	$\frac{77}{4.0} + \frac{1}{4.5}$		$\frac{90 + 1}{7.7 + .5}$	$102 + 1 \\ 11.0 + .5$	$\frac{77 + 1}{6.0 + .5}$	90 + 1 $9.7 \pm .5$	$102 + 1 \\ 13.0 + .5$
Color	Clear		Green	Red	Yellow	Deep Purple	Light Blue

All fuels to contain minimum 5 PTB of a 100% active antioxidant and 5 PTB of corrosion inhibitor. No manganese added. Note:

Minimum of two units sensitivity difference between corresponding fuels of each series.

Oxygenates are not to be used as fuel components. To be compounded from normal refinery components. 1% maximum Benzene or legal.

Sensitivities are shown for the mean Research octane number. ***

CRC OCTANE NUMBER REQUIREMENT SURVEY

OWNER'S QUESTIONNAIRE

OWNER:
Your vehicle is being tested for fuel octane number requirements by a Coordinating Research Council activity. To help analyze the data, we would like the person who has recently been driving the vehicle to answer the following questions:
1. What grade of unleaded fuel do you normally use?
Regular Premium Mixture
2. Has any engine knock (ping) been encountered with the fuel that is now in the tank?
Yes No
3. Did you consider the knock (ping) objectionable?
Yes No
Vehicle Make License No
Vahiala Idantification No

Attachment 2

TECHNIQUE FOR DETERMINATION

OF OCTANE NUMBER REQUIREMENTS

OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-83)

June 1983

TECHNIQUE FOR DETERMINATION OF OCTANE NUMBER REQUIREMENTS OF LIGHT DUTY VEHICLES

(CRC Designation E-15-83 - Including Annexes A and B)

A. GENERAL

The technique provides for the determination of maximum octane number requirements, whether at maximum-throttle or part-throttle, of a vehicle in terms of borderline spark knock and surface ignition knock on two series of full-boiling range reference fuels as well as on primary reference fuels. If the maximum requirement is at maximum-throttle, then part-throttle requirements are investigated with only FBRU fuels of up to, and including, four octane numbers lower than the maximum requirement. It also provides octane requirements throughout the speed range on primary reference fuels.

Spark knock and surface ignition of tank fuel will also be determined.

B. DEFINITION OF TERMS

- 1. The following definitions of knock were approved by the CFR and CLR Committees on June 8, 1954, and will be used in this technique. Knock is the noise associated with autoignition* of a portion of the fuel-air mixture ahead of the advancing flame front. The flame front is presupposed to be moving at normal velocity. With this definition, the source of the normal flame front is immaterial; it may be the result of surface ignition or spark ignition.
 - a. Spark Knock: A knock which is recurrent and repeatable in terms of audibility. It is controllable by the spark advance; advancing the spark increases the knock intensity, and retarding the spark reduces the intensity. This definition does not include surface ignition knock.
 - b. Surface Ignition Knock: Knock which has been preceded by a surface ignition. It is not controllable by spark advance.** It may or may not be recurrent and repeatable.

^{*} Autoignition: The spontaneous ignition and the resulting very rapid reaction of a portion or all of the fuel-air mixture. The flame speed is many, many times greater than that which follows normal spark ignition. There is no time reference for autoignition.

^{**} For the purpose of this program, it is not intended that surface ignition knock be identified by manipulation of the spark advance.

- 2. The following definitions of knock intensity were specifically adopted for use in this technique:
 - a. No Knock: This means no spark knock or surface ignition knock.
 - b. <u>Borderline Knock</u>: This means spark knock of lowest audible intensity, recurrent surface ignition knock of borderline intensity, or infrequent (three or less) surface ignition knocks regardless of intensity.
 - c. Above Borderline Knock: This means greater than borderline spark knock, recurrent surface ignition knock greater than borderline intensity, or frequent (four or more) surface ignition knocks regardless of intensity.

3. Definition of Accelerations

Accelerations are made at <u>maximum-throttle</u> and <u>part-throttle</u> conditions which are defined below:

- a. Maximum-Throttle: The throttle is depressed and held at either full-throttle or the widest throttle position that does not cause the transmission to downshift (detent) throughout the acceleration in each of the required test gears listed in 0.3.d.(1)(a). The detent manifold vacuum obtainable on a given model is determined by the transmission characteristics. For manual transmissions, the throttle is depressed fully throughout the acceleration.
- b. Part-Throttle: The throttle is depressed and regulated throughout the acceleration to maintain a desired, constant critical manifold vacuum in highest gear. Part-throttle will constitute any throttle position above detent vacuum (above full-throttle vacuum for manual transmissions) up to the highest road-load vacuum.

C. VEHICLE PREPARATION

The following vehicle preparation steps should be completed before any octane tests are run. Detailed procedures for each adjustment can be found in the manufacturers' shop manuals.

1. Record vehicle identification number and emission control type, Federal, Altitude, or California. Fill in heading on data sheet DFMF-11-1183. (For knock sensor vehicles, use data sheet DFMF-26-1183.) Ford emission calibration numbers are to be recorded.

- Inspect all vacuum lines and air pump hoses for appropriate connections. Also, check to see if PCV valve, distributor vacuum delay valve, EGR valve, and heated inlet air mechanism are functioning. Engine must be warmed up for these checks.
- 3. Record engine idle speed and observe anti-dieseling solenoid operation. Adjust to manufacturers' recommended specifications as specified on the under-hood decal.
- 4. Observe and record basic spark timing at recommended engine speed. Adjust to manufacturers' recommended setting as specified on the under-hood decal.
- Crankcase oil, radiator coolant, automatic transmission fluid, and battery fluid levels shall be maintained as recommended by the manufacturer.
- 6. A calibrated tachometer graduated in 100 rpm (or smaller) increments and capable of indicating engine speed from 0-5000 rpm shall be installed on each vehicle.
- One calibrated vacuum gage, graduated in one-half inch of mercury (or smaller) increments and capable of indicating vacuum from 0-24 inches of mercury (0-81 KPa) shall be connected to the intake manifold.
- 8. An auxiliary fuel system shall be provided to supply test fuels to the engine. Caution shall be taken to avoid placing auxiliary fuel lines in locations which promote vapor lock. If vehicles with carbureted engines have tank return fuel lines, this return line should be blocked off. Disconnect fuel tank vent line at evaporation control system canister. Instructions for fuel handling with fuel injection systems are given in Annex A.
- 9. For vehicles with owner questionnaire completed, a sample of the tank gasoline shall be withdrawn for determination of Research and Motor method octane number ratings.

D. TEST PROCEDURE

Engine Warm-Up

- a. To stabilize engine temeratures, a minimum of ten miles of warm-up is required. The test vehicle should be operated at 55 mph (88 kph) in top gear with a minimum of full-throttle operation.
- b. During the warm-up period, the general mechanical condition of the vehicle should be checked to insure satisfactory and safe operation during test work.

2. Fuel Changeover

Caution: Because of the installation of catalytic devices on these vehicles, permanent damage may result if the engine runs lean or stalls. Therefore, changeover from one fuel to another must be accomplished without running the carburetor or fuel injection system dry. Fuel handling procedures for vehicles equipped with fuel injection systems are explained in Annex A.

To eliminate contamination of the new fuel with residual amounts of the previous fuel, flush system twice with new fuel.

After fuel changeover, make one maximum-throttle acceleration before beginning Vehicle Rating Procedure.

3. Details of Observations

a. Operating Conditions

All octane number requirements will be determined under level road acceleration conditions.

Tests will be conducted on moderately dry days, preferably at ambient temperatures above $60^{\circ}F$ (15.5°C). Tests should not be conducted during periods of high humidity such as prevail when rain is threatening or during or immediately after a rain storm. Laboratories with control capabilities should target for $70^{\circ}F$ (21°C) air temperature and 50 grains of water per pound (7.14 gm/kg) of dry air whenever possible.

Air-conditioned vehicles will be tested with air conditioner turned ON. (Normal setting, low fan.) Air conditioner will be ON at all times.

b. Order of Fuel Testing

- 1) Tank
- 2) FBRSU
- 3) FBRU
- 4) Primary

c. Determination of Knock Intensity

Octane requirements will be established by evaluating the occurrence of knock in terms of knock intensity: "N" for none, "B" for borderline, and "A" for above borderline. Establishment of representative knock intensity for a given fuel will be accomplished with the fewest number of accelerations possible. As defined below, the first two duplicating accelerations are sufficient with "N" and "B" intensity.

Number	of Accele	rations	Representative Rating
<u>1</u>	<u>2</u>	<u>3</u>	
N N B B	N B B N B	N B B	N N B B A

All subsequent accelerations will normally be discontinued when "A" knock intensity is experienced, and testing continued with a higher octane number fuel in that series. An exception will be made if "A" knock is experienced on the highest octane fuel which knocks in the engine. In this case, it may be necessary to run additional accelerations to determine the speed of maximum knock intensity. If "A" knock is experienced at initiation of acceleration, as limited by transmission characteristics, this speed will be considered the speed of maximum knock. Otherwise, the midpoint between knock-in and knock-out will be considered the speed of maximum knock. When establishing knock-in and knock-out, back off on the throttle between points to eliminate "A" knock. Tip-in knock and knock at shift points should be ignored.

d. <u>Determination of Octane Requirements</u>

Tests should be run to 60 mph (97 kph) unless required to terminate at 55 mph (88 kph) because of legal speed limits.

The procedure for knock sensor-equipped cars is shown in Annex B.

(1) Vehicle Operating Procedure

(a) Establishment of Automatic Transmission Characteristics (for Maximum-Throttle Accelerations)

Obtain the transmission downshift characteristics of engine rpm and manifold vacuum at 25, 35, 45, and 55 mph (40, 56, 72, and 88 kph) incremental speeds (as obtainable in each gear), by movement of the throttle through the detent, i.e., downshift, throttle position. Also determine the minimum attainable road speed. These characteristics are to be determined for each of the gears specified in the table below. For transmissions with converter clutches, determine the minimum road speed for clutch application. initial speed and at 10 mph (16 kph), increments up to about 60 mph (97 kph) determine minimum vacuums for application. Record all road speed/ engine rpm/vacuum measurements from above on data sheet.

The vehicle brakes may be applied lightly, if necessary, to maintain vehicle speed, except when converter clutch engagement is desired, in vehicles so equipped.

The selection of required test gears, and test gear/converter clutch combinations (if applicable) for various types of transmissions are listed below. Transmissions not explicitly described should be tested in a manner as similar as possible to those listed. Automatic transmission vehicles should be tested with the gear selector in D or O.

TRANSMISSION GEAR SELECTION

AUTOMATICS

Place the selector in "D" or "O" and check for critical condition.

Туре	Gears to be Tested
GM 4-speed	4th gear, converter clutch engaged 3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged

Туре	Gears to be Tested
GM 3-speed	3rd gear, converter clutch engaged 3rd gear, converter clutch disengaged 2nd gear, converter clutch disengaged
Ford 4-speed overdrive	4th gear 3rd gear 2nd gear
Other 3-speed	3rd gear 2nd gear
MANUALS	
5-speed 4-speed 3-speed	4th and 3rd gears 4th and 3rd gears 3rd and 2nd gears

(b) <u>Maximum-Throttle Requirements - Automatic</u> Transmissions

For maximum-throttle accelerations in <u>each</u> of the gears and gear/converter clutch combinations specified above, accelerate at the detent/application condition according to the speed versus vacuum profiles determined in (a) from the minimum obtainable speed up to 60 mph (97 kph). If the transmission downshifts, abort and start the acceleration again. Start with the highest gear or gear/clutch combination and proceed in descending order.

(c) <u>Maximum-Throttle Requirements - Manual Transmissions</u>

Select the highest gear as specified in the table above. Start at the lowest speed from which the vehicle will accelerate smoothly or 30 mph (48 kph), whichever is higher, and depress the throttle full throughout the acceleration up to 60 mph (97 kph).

Select the next lower gear specified in the table above and accelerate at full throttle from the minimum speed from which the vehicle will accelerate smoothly up to 60 mph (97 kph).

(d) Part-Throttle Requirements (Both Automatic and Manual Transmissions)

Select the highest gear or highest gear/converter clutch combination specified in the table above. To obtain the critical part-throttle vacuum, first operate at road load (constant speed)*, at 25, 35, 45, and 55 mph (40, 56, 72, and 88 kph) incremental speeds (if obtainable in the specified gear). At each speed, move the throttle (in 3 to 5 seconds) from the road-load vacuum to:

- full-throttle vacuum for manual transmissions;
- 2. detent vacuum for automatic transmissions without converter clutches;
- 3. one inch Hg (3.4 kpa) above the minimum vacuum at which the converter clutch disengages for so-equipped automatic transmissions.

The vehicle brakes may be applied lightly, if necessary, to maintain vehicle speed during throttle fanning, except for vehicles with converter clutch transmissions or EGR cut-outs.

If knocking occurs within any of the vacuum ranges, establish the manifold vacuum which gives maximum knock intensity. This is the critical vacuum to be used for all subsequent constant-vacuum part-throttle accelerations from the minimum obtainable speed in the test gear to 60 mph (97 kph), or until he vehicle ceases to accelerate*.

(2) Tank Fuel Observations on Vehicles with Owner's Questionnaire

Investigate for maximum-throttle and part-throttle knock as detailed in Item 3d(1). Define maximum knock intensity as per Item 3c. Record maximum knock intensity, speed of maximum knock intensity, and manifold vacuum at each operating condition.

^{*} To stabilize vacuum advance in vehicles with vacuum delay devices, operate at road load for 40 seconds before fanning the throttle or starting the acceleration.

(3) <u>Vehicle Rating Procedure (for Rater)</u>

Knock rating should be performed while in a normal seated position (head above instrument panel) with floor mats in place.

- Step 1 Using a fuel estimated to give borderline knock in a given fuel series, investigate for incidence of knock under conditions as described in D.3.d.(1)(b) above, and D.3.d.(1)(c) above, whichever is applicable.
- Step 2 If no knock occurs, go to a lower octane number blend in that series and repeat Step 1.
- Step 3 If knock occurs at one or more of the operating conditions in Step 1, continue investigation at the critical condition(s) with higher octane blends until highest octane fuel giving knock is determined within one octane number or one blend. Record maximum knock intensity on all fuels. Record speed of maximum knock intensity and manifold vacuum on highest octane fuel that knocks.
- Step 4 Using the lowest octane blend that did not knock in Step 3, investigate for incidence of part-throttle knock as described in D.3.d.(1)(d). If knock occurs, continue investigation at critical vacuum until requirement is defined. Record maximum knock intensity and critical manifold vacuum on all fuels, and speed of maximum knock intensity on highest octane fuel that knocks.
- Step 5 With FBRU fuel only, if no knock occurs in Step 4, go to a lower octane number blend and repeat Step 4. Discontinue part-throttle investigation if knock is not observed with a fuel four octane numbers lower than determined in Step 3.

The rating procedure is given in arrow diagram form on page D-24.

(4) Octane Number Requirement Over Speed Range

Octane requirements over the speed range will be obtained on primary reference fuels only using throttle position for maximum requirements. These will be established by recording the knock-in and knock-out points during maximum requirement acceleration with each incremental fuel investigated. It may be necessary to test one or two additional lower octane fuels to describe the knocking characteristics over the speed range. Accelerate at maximum requirement throttle position from minimum obtainable speed as determined in 3d(1)(a), up to 3750 rpm, if necessary, in order to define requirements. These should be run to 60 mph (97) kph) unless required to terminate at 55 mph (88 kph) because of legal speed limits. If 3750 rpm cannot be attained in top gear, accelerations shall be discontinued and resumed in the next highest gear from 500 rpm below the engine speed at which top gear accelerations were determined.

When "A" knock is experienced, continue the acceleration, but back off on the throttle to maintain "B" knock until just prior to the knock-out point.

E. INTERPRETATION OF DATA

The data will be recorded on data sheet DFMF-11-1183 (DFMF-26-1183 for knock sensor-equipped vehicles). Octane requirements for all reference fuels shall be determined as follows:

- If the knock intensity of the highest fuel giving knock is borderline, the requirement shall be reported as the octane number of that fuel.
- If the knock intensity of the highest fuel giving knock is above borderline, the requirement shall be reported as one-half the difference between the fuel giving knock and the next highest fuel.
- 3. If the octane requirement in high gear is equal to the requirement in passing gear, report the highest gear data.
- 4. For part-throttle requirements, report the data from the highest manifold vacuum observations.

Speed range data shall be reported on data sheet DFMF-11-1183 as the engine speed of knock-in and knock-out for the octane number of the primary reference fuel tested.

Record data on all fuels tested, even though knock was not encountered. When transferring data to the summary block, record the higher requirement, either part-throttle or maximum-throttle condition for all fuels. If the higher requirement is not part-throttle, record the part-throttle FBRU requirement. Use proper letter designation (see footnotes on data sheet) to designate requirements outside of the reference fuel limits or FBRU part-throttle requirement more than four numbers below maximum.

Requirements for the various engine speeds will be determined by fitting a smooth curve through the knock-in and knock-out points on work form DFMF-12-1183. Primary reference fuel requirements at various engine speeds should be reported to the nearest one-half octane number and recorded on the speed range summary block.

It is important that the vehicle identification number (VIN) of each vehicle tested be recorded on all data sheets to provide a means of cross-indexing.

بدؤلي

ANNEX A to the CRC E-15-83 TECHNIQUE

PROCEDURE FOR SETTING UP VEHICLES
WITH FUEL INJECTION

ANNEX A

TO THE CRC E-15-83 TECHNIQUE

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- VEHICLES EQUIPPED WITH MULTIPLE-PORT FUEL INJECTION

- To run octane requirements on fuel-injected vehicles it is necessary to run an external fuel line to the inlet of the vehicle fuel injection pump.
- 2. The fuel return line from the engine to the fuel tank must be disconnected after the fuel pressure regulator (in engine compartment) and before the fuel tank. An auxiliary line long enough to reach the cans must be added to the fuel return line.
- 3. Make certain that the fuel tank connections are plugged; this means both the normal fuel pump inlet line and the normal fuel return line connection. On vehicles with an in-tank booster pump, this pump must be shut off so it cannot run during the time the vehicle is operating on the external fuel system. If this pump is not disconnected, it will be destroyed.
- 4. An electric fuel pump (Bendix type acceptable) must be used to draw fuel from the reference fuel can to supply the fuel injection pump on the vehicle. Caution must be exercised to keep the fuel line between the reference fuel cans and the vehicle fuel injection pump full of fuel. If very much air gets into this line, the fuel injection system will become air bound and it is difficult to get the air out of the system.
- 5. Once the fuel injection pump line and return line have been disconnected, all subsequent operations must be done from an external fuel source.
- 6. It is possible to use three-way valves in the fuel line between the fuel pump and the fuel tank and between the return line and the fuel tank. When used, the operator must change the return line valve to the auxiliary fuel system while the engine is shut down, to avoid building up excessive pressure in the return line which could damage both the fuel pressure regulator and injection pump.
- 7. When changing from one reference fuel to another, the following steps must be followed:
 - a. Put fuel inlet line in reference fuel tank with the return line going to a slop fuel can. Do not keep fuel inlet line out of the fuel can any longer than is necessary to move it from one can to the next. DO NOT RUN OUT OF FUEL.

- b. Observe the fuel stream in the fuel return line. As soon as a steady flow of fuel is observed, move the fuel return line to an empty one-quart can (0.946 \pm). Allow one quart (0.946 \pm) of fuel to flow into this can before inserting the return line into the chosen reference fuel can. This operation should take about 60 seconds.
- c. When going to the next reference fuel, it will be necessary to repeat Steps a and b.

The fuel injection pumps on most vehicles pump between 30 and 50 gallons (114-189 $^{\ell}$ /h) of fuel per hour. Therefore, Steps a and b should be followed very closely or there will be gross reference fuel contamination, or you will use a lot more reference fuel than is required to run each test. If Steps a and b are followed exactly, you will be discarding to slop about two quarts (1.892 $^{\ell}$) of reference fuel each time you change reference fuels. The two quarts (1.892 $^{\ell}$) to slop will be at least as much fuel as is consumed to obtain the reference fuel rating.

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- VEHICLES EQUIPPED WITH THROTTLE-BODY FUEL INJECTION

The General Motors throttle-body fuel injection system is shown in the attached schematic drawing. The fuel supply system consists of an in-tank electric fuel pump, a full-flow fuel filter mounted on the vehicle frame, a fuel pressure regulator integral with the throttle body, fuel supply and return lines, and two fuel injectors. The injection timing and amount of fuel supplied is controlled by an electronic control module (not shown in figure). To prepare a vehicle with this system for octane requirement testing, an auxiliary electric fuel pump must be installed. The fuel pressure regulator controls fuel pressure at the injectors to a nominal 10.5 psi; therefore, an auxiliary pump capable of at least 10.5 psi outlet pressure must be used for satisfactory engine operation. The following procedure is recommended for preparing a vehicle with throttle-body fuel injection for octane requirement testing and for changing reference fuels during such testing:

- 1. Disconnect and plug the fuel supply and fuel return lines at the locations shown in the figure. Install an additional line between the fuel supply line and the outlet of the auxiliary pump. Connect the inlet of the auxiliary pump to the reference fuel can. Connect the fuel return line to the reference fuel can through a tee at the auxiliary pump inlet. All auxiliary fuel lines are indicated by dashed lines in the figure.
- 2. An optional arrangement would be to use three-way selector valves in the fuel supply and fuel return lines at the locations where auxiliary fuel lines are connected. When these valves are used, the operator must change the valves to the external fuel system while the engine is shut off to avoid building up excessive pressure in the fuel return line.
- 3. Disconnect the in-tank fuel pump so it cannot run during the time the vehicle is operating on the external fuel system. If this pump is not disconnected, it may be destroyed.
- 4. When changing from one reference fuel to another, the followign steps should be followed:
 - a. Disconenct fuel inlet line from reference fuel can and run engine a short time; do not run out of fuel since this will introduce air into the fuel injection system, and excessive cranking will be required to restart the engine.
 - b. Insert fuel inlet line in desired reference fuel can; operate vehicle for two miles at a maximum speed of 55 mph during which time four part-throttle accelerations are made. This must be done to ensure that the vehicle fuel system has been purged and contains the desired reference fuel for octane rating.
 - When changing to another reference fuel, repeat Steps a and b.

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS
-- VEHICLES EQUIPPED WITH THROTTLE-SODY FUEL INJECTION - (Continued)

PROCEDURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS -- FORD VEHICLES EQUIPPED WITH CENTRAL FUEL INJECTION SYSTEM

A vehicle schematic of one of Ford's central fuel injection systems is shown on the following drawing (other systems vary in configuration dependent upon engine/model type - see note 1). This fuel system consists of: an electric in-tank fuel pump, primary and secondary full-flow fuel filters, throttle-body assembly with integral fuel pressure regulator and two fuel injectors, fuel supply and return lines. The following procedure is recommended for preparing the vehicle for octane requirement testing:

- 1. Relieve pressure in fuel system using valve provided on throttle body. Fuel supply lines will remain pressurized for long periods of time after engine shut down. Disconnect and cap the fuel supply and fuel return lines leading from the fuel tank. Access to connection points may be obtained through either the: rear wheel wells, underbody, or engine compartment, dependent upon vehicle type. Install additional lines to the open supply and return lines and lead these lines back into the vehicle.
- 2. Connect the added fuel supply line to an auxiliary fuel pump. The fuel pressure regulator in the throttle body controls fuel pressure to a nominal 39.9 psi; therefore, it requires an auxiliary fuel pump capable of providing at least 45 psi outlet pressure (see note 1). The added 5.1 psi is needed to sufficiently overcome the pressure head and line restriction losses. Connect a supply line to the auxiliary pump from the reference fuel can. A fuel filter may be required between the auxiliary pump and reference fuel can to protect the pump. Also, connect the added fuel return line to the fuel reference can and vent the reference can to outside the vehicle.
- 3. Disconnect the electrical supply to the electric in-tank fuel pump, either by disconnecting the plug on the fuel tank or by disarming the inertia switch located in the trunk. Failure to disarm the in-tank fuel pump may result in a damaged pump. The voltage supplied to the inertia switch may be used as an electrical source for the auxiliary fuel pump. This voltage source is controlled by the on-board computer allowing the auxiliary pump to respond the same as would the in-tank fuel pump. When making this connection, do not "splice" into the wire, instead connect the wire lead to the connector.
- 4. When changing from one reference fuel to another, the following steps should be followed, or else reference fuels may become contaminated:
 - a. With the engine shut off, disconnect the fuel return line from the reference fuel can and connect it to an extra empty can. Connect the fuel pump supply line to the new reference fuel can and run the engine for approximately 30 seconds, purging the old reference fuel into the extra can (timing is dependent upon length of added fuel lines). After the sytem is purged, shut the engine off and connect the fuel return line to the new reference fuel can forming a closed fuel loop. Now the vehicle is ready to be tested on the desired reference fuel.
 - b. When changing to another reference fuel, repeat Step a.

PROCECURE FOR SETTING UP VEHICLES AND HANDLING REFERENCE FUELS
-- FORD VEHICLES EQUIPPED WITH CENTRAL FUEL INJECTION SYSTEM - (Continued)

CENTRAL FUEL INJECTION FUEL SYSTEM

(5.OL LINCOLN/MARK VI)

1/ NOTE:

Some vehicles have both a low pressure in-tank fuel pump and a high pressure under body fuel pump. The on-board high pressure pump may be used if supplied with an auxiliary pump. In all cases, it is required that on-board pumps not used, be disarmed. The inertia switch located in the rear of the vehicle will disarm both pumps. Fuel lines on some vehicles may be accessed only in the engine compartment, or by dropping the fuel tank.

ANNEX B to the CRC E-15-83 TECHNIQUE

ONR MEASUREMENT WITH KNOCK SENSOR-EQUIPPED VEHICLES

ANNEX B

TO THE CRC E-15-83 TECHNIQUE

ONR MEASUREMENT WITH KNOCK SENSOR-EQUIPPED VEHICLES AUDIBLE KNOCK TECHNIQUE

Integrated electronic controls on some vehicles precludes the use of instrumentation to measure spark retard with knock sensor-equipped vehicles. Being integrated with other systems in the vehicle, there is no reference to a base spark advance; therefore, an audible knock technique must be used.

The audible technique will be used on all knock sensor-equipped vehicles.

Prepare the vehicle according to Section C (Vehicle Preparation) of the E-15-83 Technique. Make tank fuel observations as described in D.3.d(2) of the technique.

Using an estimated non-knocking fuel, accelerate as defined in paragraph B-3. Using lower octane fuels, determine the fuels for the following conditions:

- 1. Highest octane fuel that gives borderline knock (Maximum Requirement).
- 2. Lowest octane fuel that gives borderline knock (Minimum Requirement).

These are to be determined with FBRSU, FBRU, and PR fuels. Data should be recorded on data form DFMF-26-1183. Use a separate data form for each reference fuel series.

APPENDIX E

1983 OCTANE NUMBER REQUIREMENT SURVEY DATA

GLOSSARY

(For Appendix E Only)

Emission Certification (EMCT): A Altitude C California

c callforn F Federal

r rederal

B Both California and Altitude

Knock Sensor: Y Yes

N No

Air Conditioner: Y Yes

NO No

Spark Advance: + Before Top Center

After Top Center

Test Fuel: 1 Tank Fuel

2 FBRSU 3 FBRU 4 PR

Octane Number Requirements: (expressed as Research ON)

Less than lowest available ON for FBRU and FBRSU fuels and less than 76 for PR fuels

H Higher than highest available ON for FBRU and FBRSU fuels and higher than 97 ON for

PR fuels

Part-throttle requirement greater than four numbers below maximum-throttle requirement

Noise Type (NTYPE): K Spark Knock

S Surface Ignition

B Both Spark Knock and Surface Ignition

Throttle: M Maximum

P Part

Gear: 1-5 Manual and Automatic

Manifold Vacuum (MV): Inches Hg

Owner Reported Knock (OWKNK): Y Yes, Not Objectionable

O Objectionable

N No

Rater-Reported Noise Intensity

(NINT):

N None

B Borderline

A Above Borderline

			VEHICLE		DESCRIPTION	7		ž	WEATHER			TANE	NUMBE	OCTANE NUMBER REQUIREMENT DATA	JIREME	Y	ATA	;	4	TANK FUEL INFORMATION	EL 11	AFOR!	MATE	Z :	1
		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		1	1	f l ;	, [!	!		¥	- 5		Ą	ART TH	PART THROTTLE				·	1	RATER	2	!
OBS LAB	LAB	MODEL	E KWK	X Z I	4 ₩ Ø 1	NCE NCE TST	ODOM	AMB TMP E	BAROM F	HUR C	0C1	Z->CM1	@ m < x :	Ž.	28 28			ירשכים :	037871	OCT N	N NOT	ZP>AUI	G m ≪ K	# 1	≥ :
-	29	29 BA7 F17MS	ř S	89 2.	* *	10	6087	6	30.29	60 62 64 44	88 88 68 68 60 78 60 78 60 78 78 78 78 78 78 78 78 78 78 78 78 78	X	4 2800	888	F 000			-			_	z			
30	•	BA8 F 18M5	₹	æ .5	⊕ + ≻	6 0 +	9891	87	29 . 18	21 2 4	885.0 86.0 4.0	7	4 1500 4 1750 3 1900	888 800 900 900	0. 85.0	◀	1500	2.0 1	ā Z	96.28	8. 8. 8.	z			
33	•	DEC 222A3	A3 F	6	V +10 +10	+	7745	79 ?	29.24	101 3	88.0 90.0 87.0	X	3 2200 3 2250 1 2 2200	000 000 000 000 000	88 80.0 9.0	6	1950	3. T	9	92.38	82.0	z			
165	•	DEC 222A3	A3 F N	ල ග	>	+10 +10	8968	78 :	30, 16	75 2 4	98.0 100.0 92.0	X X X T T Z	3 2450 3 2500 1 3 2450	00 00 00 00 00 00 00 00	0. 88.0 89.0	6	2450	5.0 1							
362		31 DEC 222A3	A3 N	6	Y +10 +10	+ 10	4224	60	28.74	130 3	9 0.0	χ σ	3 1800	4	0.08 0.	m	1800	4.0 1							
284	28	DKC 222A3	A3 F N	9 0	Y +10 +10	+ 10	20175	92	29.38	50 6 4	88.0 90.0 89.0	7.7.7 3.2.2	1 2 2100 1 2 2200 1 2 2100	888	000							¥	2 20	2050	- 0
256	€0	DKG 228A3	A3 F N	8 .2	Y + 7	+ 7	14624	37	29.77	68 8 4	82.0 84.0 80.0	777 222	1 2 2600 1 2 2500 1 2 2600		uuu m			-				z			
166		6 DMP 252A3	A3 T	6 0	Y +13 +16	+ 16	12600	11	29 . 89	105 3 4	### 69 0.0	0 *** ••*	3 1450 3 1500 1 2 1450	50 8 .0 50 4 .0 50 -	000	6	1450	0	z	4.88	88 . 2	¥	5 11	1500	©

			VEHICLE DESCRIPTION	E DESC	RIPT	101 101		.=	WEATHER		OCT	SE R	OCTANE NUMBER REQUIREMENT	ROUIR	EMENT	DATA	; ;	*	TANK FUEL INFORMATION	INFOR	MATIO	z	:
	•) 1 1 1 1 1	1	: : : : :	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	: : : : :	; ;	 	; ;	i	MAXIMUM			PART	THROTTLE				1	RATER	~	!
			w		_	SPARK ADVANCE	ш			u.;	2 - 2	•	; ; ;	! ! !			L. 2		<u>ş</u>	Z + >	G H		!
80 X	S S	MODEL	C KK		< = & .	AS AS RCD 1ST	ODOM T MILES	AMB	BAROM		50	- I & :	M H	≥	- P	A RPM	¥ ₹	(2×)		2F:	R RPM	AN I	~!
7	₹	GC8 F41A4	r F	. 10.	>	+10 +10	0 6864	88	29.23	89 175 62 64 44	84.0	777 522 040	1950 2000 2000	0 <u></u> 0 ru ru ru	0.08	1800	0.	2	91.6 82.	Z T			
148	23 (23 GCB F41A4	Z L	.		V +10 +10	0 7620	e e	28.56	66 6 4	0.10	777 222 444	1800 1800 1800	000	0.68	4 2000	2.0 1			m	4 1600		6.
149	23 (23 GC8 F41A4	Z L	ec Tu		Y +10 +10	0 8358	18	28.52	133 3 2	86.0 86.0 10.0 85.0	7	1600 2400 1600	000	83.0	4 1500	2.0 1			z			
277	80	GC8 F41A4	Z L		+ ≻	Y +10 +10	0 6152	8	29.85	9 7 8 4	85.0 8 86.0 1	*** *** ***	1900 1850 1850	000	u.		-			z			
150	23 (23 GJP F20A3	E E	С	>	0	0 8261	ų,	28.65	52 2 4	95.0 p	*** *** ***	1600 3600 1700	2.5	93.0	3 1600	3.6 1			¥	3 2700	•	80 .
151	23	23 GJP F20A3	E R	න ල	>	•	0 7981	98	28 . 45	76 3 2	95.0 P	*** *** 666	2700 2700 1700	44%	6 0.	3 1600	6. 0.			¥ 4	3 1600	8	ĸ.
06	n.	GKB F41A4	4 r x	ເກ ໝໍ		Y +10 +10	0 7042	6 7	30.00	8 2 4	87.0 F 87.0 F 86.0 F	*** *** ***	1950 1850 1950	8. 8. 2. 8. 8. 0.	4.		-	2 2	2 82.	Z M			
3. 15.	26	26 HAR F25A3	E T	89 .2	+ >	+ co	8 7824	17	29 . 86	68 2 4	88.0 89.0 10.0 10.0	*** *** ***	1650 1550 1650	000	85.0	3 1650	2.0 1	Ġ	91.8 82.0	z			

1			\$	+				ιυ Ο			
TANK FUEL INFORMATION	RATER		A A	1350				1500			
ş	~	9	4 4 .	•				e			
0		Z+>		∡		-	•	¥		-	-
A		2 -	· Z F ·	_		Z -	2	₹		Z	Z
JE I		9				8 3.		8			
		13				ro.		0			
3		2	RES			<u>~</u>		95.0			
•		032				· z		0			
i		4=			-	-	-	-	-	-	-
			≩	io.	6. 86	⊙		0.			
1	F		7		Ş	8					
DATA	PART THROTTLE		S		1500	1500		1750			
<u>-</u>	1	0 L		m	<u>ო</u>	m		m			
¥ .	A	1	1 00		91.0	0. 88		96.0	L	L.	
IRE	_	1	8-								
OCTANE NUMBER REQUIREMENT		t	≩		 	000	<u></u> ri	80 RD O	000	9 9 9	0 0 0
ER			RPM		888		82				
7	3		2	1500	1600 1700 1700	1950 1700 1800	2050	1750 1750 1900	2900 2900 2900	2600 2600 2500	2250 2150 2200
3	MAXIMUM	•	_	** ** **	999	ოოო	m m	666	999	999	~~~
AR.	≨	Z ->		777 552	XXX	XXX	7 7 2 2	XXX TTE	XXX ZZZ	XXX	XXX SIS
C] 									
		1	₩ 100 100 100 100 100 100 100 100 100 10	94.0 97.0	91.0 92.0 90.0	89.0 90.0 87.0	78.0 78.0 L	96.0 100.0 90.0	90.0 92.0 88.0	91.0 90.0 90.0	88 88 80 80 80 4 0 0 0
	l .	L =	י בי שו	664	W W 4	6 4 4	w 44	w w 4	6 44	004	6 4 4
			3	ą,	13	75		4	5	 mo	න භ
WEATHER				66	1 0	6 .	Q	7	6 .		9
EAT			BAROM	88	29 . 95	88	29 . 40	30.24	29	28.43	28
3			AMB Tap		72	83	*	70	75 ;	72 ;	79
			ODOM	12856	8887	7686	12911	16471	14895	7474	18935
		*** *	Z								
_		SPARK	AS AS CO TST	10	Y +10 +10	÷ 15	+	. .	60 +	to +	6 0 +
ă	;	SPARK	RC0		6	1	.	÷ 2	60	o	•
<u> </u>		•	œ :	· + · >	→	+ >	Y +13 +15	÷ ≻	+ >	+ >	+ >
SCA				SO SO							
9			α. U	80 R0	. 5	8 .0	6 0	O .	0.6	o .	89
CLE			KNK	Z	z	z	Z	7	7	z	-
VEHICLE DESCRIPTION	! !	w a	1 U F	<u> </u>	L.	<u>.</u>	Ľ	Z L	Z U	Z L	Z L
5	! !		٠	£3	9	e g	2	5	2	5	6
			MODEL	38	287	86	387	386	5	48	49
				×	~	4	~	A 2	0	0	ر ن
	;			23 HAX 228A3	6 HF1 228A3	4 HGA 238A3	46 HGA 238A3	7 HGA 238A3	41 HJO F18A3	23 HJO F18A3	48 HTC 218A3
			S S	23	•	•	8	7	=	23	6
			08S 1		196	89	241	335	8	136	242
			ō -	· 🐱	=	.,	ñ	Ä		¥	ñ

VENTURE OFFICE AND AND THE COLUMN AN
SPARK ADVANCE F
I AS AS ODOM AMB E OCT C.R. R RCD TST MILES TWP BAROM HUM L NO
V +15 +15 6052 68 28.75 76 3 86.0 2 87.0 4 85.0
Y +15 +15 7146 80 30.02 89 3 88.0 2 91.0 4 88.0
Y +15 +15 15490 75 30.11 58 3 96.0 2 99.0 4 92.0
Y +15 +15 5985 76 29.75 120 3 84.0 2 84.0 4 80.0
Y + B + B 8390 71 30.08 69 3 90.5 2 92.0 4 88.0
Y + 8 + 8 11585 70 28.58 110 3 93.0 2 94.0 4 90.0
Y + B + B 20042 77 29.89 105 3 96.0 2 97.0 4 92.0
Y + 8 + 8 9155 73 29.52 74 3 87.0 2 87.0 4 85.0

1			≩			1 0		2.0	4		
TANK FUEL INFORMATION	RATER		Z I			1700		1200	1000		
FA	Ž	· • • • • • • • • • • • • • • • • • • •	,								
8		Z ->	- C III			¥		₹	₹ 4		
¥		1	2 P 1			.	z	- 60	•	z	Z
-	!		1!						រភ		
FUEL	ì	ş	5			82.0			88		
E ;		5							69		
Z X		ξ	RES MOT			93.1			97.		
2											
	}		ころしってはと	-	-	Z -	-	_	z	_	_
	•				<u>6</u>					0	
1	W) !	≩ ;	.	on.	io O	3.0	4 , 0	4	4 :0	3.0
	PART THROTTLE	;	3	٥	0	0	٥	E.	0	0	10
Z	2		M	2000	1700	1500	₫	\$	1000	1850	1375
2	=		1 1 2 2 4 4	6	٠ 1	6	4 1400	91.0 4 1400	-	ه -	£
Ę							ò	ò	ò		
3	PAR	:	P Q C 1	0 . 86	97.0	.	68 6.0	Ë	98 0	84.0	86.0
ğ			• ;								
픙		! !	≩ :	6 6 6 6	0 0 m	- 50 - 60 - 60 - 60 - 60 - 60 - 60 - 60 - 6	 • • • •	444	0.0.0	2 . 2 . 2 .	1. 1. 1. 10 10 10
OCTANE NUMBER REQUIREMENT DATA		;	'								
Ä	! _ !	!	ROW	2000 1900 2000	1700 1700 1800	1500 1500 1800	1500 1500	1800 1900 1750	\$ \$ \$ \$ \$ \$	2100 2100 2200	2050 2050 2050
3	MAXIMUM	i	•				5.5.		555		
Z	XIM		481	m m m		m m m	444		444	000	
ž	3	; Z=:	- I E :	* * * * * * * *	*** •• *	XXX	XXX III	XXX	* * * * • • *	***	SEE
5	i			000	000		000	000	000		
0		l []	₩ 100 100 100 100 100 100 100 100 100 10	98.0 100.0 92.0	97.0 101.0 90.0	91.0 92.0 89.0	0.0 88 0.0 88 0.0	91.0 93.0 90.0	98.0 9.00 0.10	87.0 88.0 86.0	86.0 85.0 85.0
	;	1	•								
		L :		6 4 4	₩ 6 4	10 62 64 44		0 0 4 4	6 4 4	6 6 4	644
	1			\$	80	NO NO	52	8	90	6	62
WEATHER	:			စ္ထ	8	2	9	e 6	6	6	*
F			BAROH	30.30	8. 8.	29.97	28.68	28.63	88	29.33	29 . 34
¥	:						~				
	;		\$ <u>\$</u>	2	<u>r</u>	7.	8	9	S _S	7	76
	!		ES :	80	8	22	8	60	7	22	6
	1		ODOM	13368	14078	7925	16400	11838	10284	10752	7393
	:	141				٥					
_	:	SPARK ADVANCE	AS TST	÷ ñ	+15 +15	+20 +20	+18 +20	+16 +20	+20 +20	Y +20 +20	Y +20 +20
ğ		33	AS AS RCD TS	+12	ត	2	9	9	2	2	2
1	;	_					+	+		Ŧ	*
VEHICLE DESCRIPTION	:	'	< ⊢ & :	>	>	>	>	>	>		
ĘŠ	i J		a z	o.	© •	6	O.	8	0 8	O.	6
			-	•	40	40	•	∞	•	€	₩
2	i		KEN	z	z	z	z	z	Z	z	z
Ξ	!		= ∪ ⊢ ,	14.	1	4	<u>.</u>	<u>.</u>	<u> </u>	<u> </u>	<u></u>
>	;		1	6	e	m	•	•	•	•	
	!		MODEL	IBA 238A3	IBA 238A3	IBY 450A3	ð	Š	IBY 450A4	Ø	ě
	;			23	8	₩.	छा च	4 N	4	4. R)	4.
				8	BA	*	*	P	6	₩	ž
	'		.	5	₩	₩ UD	23 IBY 450A4	23 IBY 450A4	9	46 IBY 450A4	46 18Y 450A4
			LAB No	a a	_	٠,	N	8	w w	4	¥
			S ON	199	200	87	139	140	<u> </u>	*	ស្ម
			5	5	ž	₩.	←	7	201	244	245

, , ,		,	VEF	VEHICLE	E DE	DESCRIPTION	PTIO	3	! ! !	!	WEAT	WEATHER	1	1	8	¥.	¥ .	NUMBER OF STREET	BER A	OCTANE NUMBER REQUIREMENT DATA	REM	EN		DATA		•	!	TANK FUEL INFORMATION	2			20	T T	8		
MODEL C KNK CODE T SEN C.R	E C KK	S KN S KN S KN	KAK		~ 1	⋖∺ ⊄∶	_	SPARK ADVANCE AS AS RCD TST	ODOM MILES	OH AMB		BAROM H	E E E	; • ;	52	X -> L W	PIH.	MAXIMUM TE TE R R	A A	≩	PAF OCT NO	PART C		PART THROTTLE G G CT A NO R RPM M	· > ·		OBYZY!	OCI RES	Ξ ! ̄ .	N N	ZHZH	Z ->	2 }	RPM	≩	
26 18Y 450A4 F N 8.0	Z	Z	z	.			+20	Y +20 +20	12014	14 79	9 30.08		65 4		89 0.08 88.0	***	III	4 4 4 E E E	1800 1800 1800	0 ii 0	60	68 69	•	1050	e 0.	0	_	85 85	6. 60	85.0	Z					
ICY 450A4 F N 8.0	z	z	z	œ.	_	> 0	+ 16	1 +20	17180	17 08		29 . 95	60 24		88.0 89.0 87.0	***	III	4 E E	1050 1950 1900	3.0	80	88 .0	•	8	€.0	0	_									
23 ICY 450A4 F N 8.0	r Z	r Z	z	so	~		Y +18	+20	13131		70 28.	5	86 2 4		91.0 92.0 89.0	***	ZZZ	222	2300 2300 2300	444	06	90.0	•	1500	3.0	0	_				Z					
8 ICY 450A4 F N 8.0	Z.	Z.	Z	so	_	>	+ 18	+18 +20	12460	30 75	5 29.74		86 2.4		91.0 91.0 89.0	***	O O X	***	000 000 000	4 4 6 0 0 8	2	0	•	91.0 4 1000	•	0	_									
7 IEY 450A4 F N 8.0	Z Z	Z Z	z	eci	_		+20	Y +20 +20	12843	13 70	0 30.30		60 6 4		92.0 92.0 88.0	***	222	3 22	1850 1750 2200	1.7	92	92.0	4	1850	€.0	0	0	92	92.0 82.4	4	⋖	∡		1800	1.7	
41 IGA 238A3 C N 8.0	Z	Z	z	œ i	_	>	+13	+ + 5	13040	10 72	2 29.96		72 3 2		91.0 91.5 89.0	X X X	IIX	555	1750 1750 1750	000	8 0	88 0.	က	1750	2.0	0	_				•	ო ¥		1750		
IGA 238A3 F N 8.0	Z	Z	z	eci eci	_	>	+12	+12 +15	, 22046	18 72	2 29.83		8 13 4	98.0 100.0 93.0	0.00	XXX	0 4 E	8 8 8 8 8 4 8 4 8 4 8 4 8 4 8 8 8 8 8 8	1600 1600 1700	ρι ε Ο Ο Ο ε	80 61	0. 86	က	1600	n. O	0	_									
6 IGA 238A3 F N 8.0	r.	r.	z	œi e	_		+ 10	Y +15 +15	1 1081	11 79	9 30.04		90 90 4	-	00.0 H 92.0	XXX	0. C. X	3 20	2000 2000 1900	000	100.0		က	2000	6	0	0	97.1		86 8.	⋖	ო ¥		2100	o.	0

			VEHICLE		DESCRIPTION	3		*	WEATHER			CTAN	OCTANE NUMBER REQUIREMENT DATA	BER R	EQUIR	EMENT	PA	•	1	1	TANK FUEL INFORMATION	E I		MATIO	3	;
	•			1	1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	! ! ! !	: ! !	; ; ;	; !	ı	2				PART		PART THROTTLE	! !!			•		RATER	K	1
			ш			SPARK ADVANCE				ш;		z – 3	9	! ! !	;		Gu		!		1		Z ->	(3 11		
08S L	LAB	MODEL	C KNK	C	4 H & 1	AS AS RCD TST	ODOM	A F	BAROM	HUN L	200	1 M 40 -	444	RPM	≥	NO 001	,	RPM	E	, , ,		; _ ;		. ¥ ¥ .	¥ :	≩ :
205	•	IGA 238A3	Z L	o.	Y + 15	ະ ຄ±	16510	~	29.88	22 4	II.	***	668 666	1550 1800 1550	000	I	9 1	1550	9 .0							
240	8	46 IGA 238A3	Z L	6 0.	Y +15	5 + 15	17204	90	29.38	0 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	87.5 88.0 96.0	×××	566 666 EEE	2050 2100 2050	000	87.0	m	1775	6.0			-	z			
247	9	46 IGA 238A3	Z L	88	Y +15	5 + 1 5	15477	*	29 . 40	8 4 6 4 4	87.0 87.0 86.0	×××	888 888 888	2050 2100 2250	000	8 . 0	0	2000	3.0 1			-	z			
272	6	IGA 238A3	Z L	9	+	+15 +15	10788	70	30.24	28 28 24	90.0 92.0 88.0	XXX	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1650 1750 1650	 6 6 6	98 0.	6	1600	4.0			-	z			
273	6 0	IGA 238A3	E T	O .	Y + 15	5 + 15	, 22520	75	29 . 95	77 3	93.0 94.0 0.0	***	2 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	1700 1650 1750	<u> </u>	91.0	m	1550	0.0 1			_	2	3 17	1750	_ ro
318	26 1GY	IGY 450A3	Z L	8 .0	¥ + 5	+20 +20	14429	77	29 . 85	100 3	89.0 89.0 87.0	×××	8 Z Z	1725 1800 1750	+ + + • • • •	99 0.	m	1450	2. 15		80 80 80	2. 2.	z			
38	4	IGY 450A4	T S	8	Y +2	Y +20 +20	7742	86	28.00	108 3 2 4	86.0 87.0 86.0	***	222 888 887	1800 2000 1900	444	82.0	▼	1250	3.0 1	z	92.6	83.1	z			
2	58	29 IJO F18A3	E E	O. 80	+ >	60 + 60	26055	0,	30.08	60 2 4	98.0 101.0	\times \times \times	2 4 2 8 8 8 8 8 8	2 100 2 100 2 8 00	8 8 -	98 ·	m	2100	6.0	_			¥	3 21	2100	9

			VE	VEHICLE	DES	DESCRIPTION	110N			3	WEATHER			OCT.	Z Z	•	R REG	REQUIREMENT DATA	#ENT	DATA	1	i	TANK FUEL INFORMATION	FUEL		RMAT	3	1 1	
		1					1	;	1 1			:		1	MAX	MAXIMUM	1	i i i	PART	PART THROTTLE	i				;	2	- 1	;	
280 NO	LAB	MODEL	;	E C KNK	, , , , , , , , , , , , , , , , , , ,	< ₩ Œ +	SPARK ADVANCE AS AS RCD TST		ODOM	AAB	BAROM	HOM	L	52	- 1 × 1	R R R R R R R R R R R R R R R R R R R	AN .	, ,	OCT A NO R	2) M	「しまり」	RES	70 M		o m < ∝	R M	≩	
206	•	8 IJO F18MS		Z	6)	>	60 +	œ +	0986	6	30.44	80	0.64 0.00 0.00 0.00 0.00	93.0 92.0	7	4 2500 4 3000 4 2400	000		92.0 4	1800	1.0	Z	92 . 3	8 3.4	m	▼	2300	•	
o	G	IXR F25A3		Z	8.2	>	60 +	co +	24867	92	29.91	22	0.01 ± 0.00 0	92.0 94.0	A A A A	2 2750 2 2750 2 2700		000	ı.			-							
248	6	46 IXR F25A3		Z	8 0	>	60	60 +	6200	76	29.65	08	ω α 4 ∞ ο α	88.0 90.0 64.0	XXX III	3 2700 3 2700 3 2600		<u> </u>				-			6	m ∞	2600	. 8	
274	@	IXR F25A3		Z L	6	>	60 +	∞ +	11645	75	29.97	37	0 6 4 0 0 ∞	90.0 91.0 84.0	XXX EEE	2 2550 2 2500 2 2750		0.00	88 O.	3 1750	6.0	~			6	%	2500	0.	^
234	₹	46 KEC 222A3		Z L	6 ,		y +10 +10	+ 10	6832	75	29.20	70	644	78.0 79.5 78.0	XXX	2 2500 2 2750 2 2550		<u>ក ក ក</u> ស ស ស				-			Z				
359	31	KEC 222M5	2MS	Z	e	>	+10 +10	+ 10	4641	8	28.71	108	© 64 ®	82.0	∡	4 1000		6. O. 88	82.0	4 1000	0 4 0	-							
360		31 KEC 222	222M5	Z	0 · 6		Y +10 +10	+10	6747	78	28.90	47	© 4 4 0	90.0	X	4 1500		B 0. ♣	90.0	4 1500	• • • • • • • • • • • • • • • • • • •	-							
32		4 KKC 222A3	2A3	Z L	6		N +10 +10	+ 10	56 16	78	29.10 118	E	© 64 44	89.0 92.0 87.0	⊼ X X び び ≇	888	2150 3 2150 3 2150 0	6. 6. 6. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	0. 0.	3 2150	81 60	-	z	. 4 82.	z «				

			>	VEHTCLE		DESCRIPTION	PT 10	¥		_	WEATHER	E R		20	TANE		OCTANE NUMBER REQUIREMENT DATA	OUIRE	MENT	ă	;	1	- !	FANK FUEL			5 ;	5	1
	•	,				1		!		1			;	1	MA	MAXIMUM			PARI	#	PART THROTTLE					į	2	RATER	
							S S	SPARK	,					i ! !	z-	5	: ! !	: !		•		. .	033	į	5	Z ->			
OBS LAB	LAB	MODEL	ᇳ.	7 Z C)		4 ⊷ 0	_	AS AS	ODOM	A AMB	BAROM	# HUM	z ruc	5 9	> C U	₩ ≪ &	Z Z	2	9 00	w ≪ ∝	RPH	· >	4Z¥	RES	2 5	2 F		RPM	≩
7 20 70	2 in	0 CODE	2 A 3	Z :	-			0+ 0+				(88.0 68.0 68.0	XXX	1 000	2000 3700 1900	1	87.0	ı m	•	0		.	8	2			
161	©	KKC 222A3	2 A 3	Z L	Ġ	0. 0.	+ 1	V +10 +10	0 8053	13 78	29.80	101 01	2 6 4 4	96.0 98.0 0.10	*** ***	000	1800 1850	5.50 	98.0	0	900	0	-						
235	6	46 KKC 222A3	2A3	Z u.		0.6	÷ ≻	+ on	9 17872	2 78	3 29.42		0 6 4 4	81.0 83.0 79.0	\times \times \times	666 888 E EE	2600 2550 2450	000					-			z			
255	60	8 KKC 22	222A3	Z L		0.	+	Y +10 +10	0 6070	07	0 29.91		6 6 4	86.0 86.0 82.0	* **	N N N N N N E E E	1950 2000 2300	n n 0	u.				-			Z			
301	28	26 KKC 222A3	22 A 3	Z L		8	¥ +1	9.00 Y +10 +10	0 16207	07 83		29.94 118	8 6 2 4	87.0 89.0 87.0	***	N N N	1750 1500 1850	n n n	85.0	60	1500	•	-	92.0 82	83.	æ m			
328		7 KKC 222A3	22A3	2 L		6	× +	Y +10 +10	14465		70 30.40		56 6 4 4	98 90 0 0 0	\times	000 000	2450 2600 2500	0.00	0.40	က	2450	•	+			⋖	∞	2600	8.0
361		31 KKC 2%	222M5	r Z		O.	∓ ≻	Y +10 +10	10 5634		83 28	. 76	9 4 6 4	88	о. Ж	6 8	3000	2.0	88.0	4	950	3.0	-						
162		6 KKG 226A3	26A3	Z L		8	+ > -	7 +	7 17159		69 29.89		58 2.2	86.0 0.68 0.0	\times	NON EEE	2200 2500 2200	- 	80 10 0	6	2500		-						

			VE	TCLE	VEHICLE DESCRIPTION	RIPTI	3			WEATHER	æ		OCTA	NE NE	UMBER	OCTANE NUMBER REQUIREMENT DATA	REGEN	2	:	į	4	TANK FUEL INFORMATION	Z	ORM		1	
		; ; ! !	! !	1 ! !	! ! !	; ; ; ;) 	 	; ,)))	1	- -	MAXIMUM	3	1	PAR						;		RATER	1	
			_	14.1			SPARK ADVANCE	ш				· •:	2-:			i		l			037			Ø 4 Z ⊢ >			
08S	S S	MODEL		K KNK		I AS	AS AS	ODOM T MILES	S THP	BAROM	HUM		OCT P	- I & .	R P	≩	2 €	.	RPM	. r. mc	" Z	RES MOT	- Z - :	- 6 11 1	R P	≩	
	• •	6 KKG 226A3	1	2.	40	+ >	+	-		28 . 8		6 W 4	88 85 0 0 0 0 0 X X X	2 Z Z	1800 2400 2300	6. 1. 1. 6. 8. 8.	8 0.4	60	2300	2.0 1							
40	80	8 KLC 222A3		Z	o.	-	Y +10 +10	0 11195	ئ 83	30.05	119	6 4 4	98.0 99.0 K 7.0.1	6 6 E	2500 2500 2000	44-	0. 98	က	2500	4.0 4		,					
Q	•	LAE 230A3		Z	80 Iù	>	414 414	4 13770	0 75	5 29. 13	ä	6 4 4	92.0 K 94.0 K 89.0 K	6 6 6 6 6 6	1500 1450 1450	4 4 4 0 0 0	92.0	m	1500	4.0 1	0	93.7 83.3	ය ෆ	ო ¥	1575	4 .0	_
207	10	LAE 230A3		Z	80 70	Y + 15	5 + 15	5 6226	8 75	30.00	57	⇔ 4	90.0 92.0 7 X X	₽₽ ₹	1500 1600 1600	20 cm	90.0	6	1500	10. 10.	2	93.1 82	¥,				
294	28	28 LAE 230A3		Z	មា ខ ា	- -	Y +15 +15	5 15139		70 29.36	80	60 4 4	91.0 K 91.0 K 87.0 K	X Z Z	1800 1700 1700	 	8 0.0	6	1800	3.0 1			Z				
319	26	LAE 230A3		Z	80 80	-	+15 +15	5 5132	2 78	1 29.82	97	60 64	889.0 89.0 7 0.0 86.0 7 X	222 200	1150 1150 1200	0.7 0.7 0.7	88 0.	ო	1600	5.0	•	91.3 82	ø. 2				
2	29	29 LAE 230A4		Z L	æ ₁υ	Y + 15	5 + 15	5 12200	0, 00	30.07	in On	0 N 4	84.5 K 86.0 K 82.0 K	0 0 E	1850 1750 2000	6.0	₩ 4. ₩	m	1650	6.0	z		Z				
<u>ā</u>	29	29 LAE 230A4		Z	ه. س	-	+15 +15	5 6555		70 30.29	ů O	6 6 4	89.5 K 91.5 K 87.0 K	666	1450 1400 1450	6.00	66 65	ო	1450	6.0			Z				

VEH	VEHICLE DI	DESCRIPTION	PTION	1	3	WEATHER	;	OCTANE NUMBER		REQUIREMENT	FENT	DATA	;	TANK	FUEL	INFORMATION	ATION	:
TO SER	e	< ∺ ≪ +	SPARK ADVANCE AS AS RCD TST	ODON	AMB TMP B	BAROM H		MAXIMUM N T G Y T E OCT P H A NO E R R R	X :		l- 1	7.	M N N N N N N N N N N N N N N N N N N N	DCT RES	NO N	ZH ZH ZH Z	RATER	2
F 8.2	ú	>	÷ •	8 10006	78 2	28.50	5 6 6 7	94.0 98.0 7 X X X X X X X X X X X X X X X X X X X	2700 1 2700 1 1800 1	4 4 4 9	90.03	2000	23 25 24			K K	1600	4 .
Σ 8 2	8	>	+ co +	8 15755	6	70 30.02	62 3 4	94.04 97.06 8 9 30.09 90.00 M M	1750 1 1950 5 1900 1	1. 12. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	94.03	1850	ευ Ο. Α.	8 .	82.2	A 7	3000	-
7 N 8.0		>	+13 +15	5 8648	57	29.97	28 2 4	98.0 K P 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3 P 3 P	1900 8 2000 8 2800 0	8.0 98.0 4.0	B. 0 3	1900	8.0 1					
F & 8.0 ×		-	+18 +20	0 12616	76	28.39	96 2 4	88 0.08 3 X X O.08 8 8 8 0.0 8 8 8 0.0 8 8 8 8 8 8 8 8	1900 1900 1900 0	8. 6. 0 8. 8. 8.	88.0 4	1100	3.0 1			z		
F N 8.0		•	Y +23 +20	0 13080	*	29.86 1	6 4 4	90.09 91.0 X X X X X X X X X X X X X X X X X X X	1700 1900 1700	1.0 1.0 1.0	9.0 •	1000	2.2 1 N	93.2	83.0	z		
ж 0.80		_	Y +20 +20	0 12912	4.	29.28	82 24 4	88 0.48 7 0.48 7 0.48 7 X 0.48 8 X X 0.48	2175 1 2250 1 2150 1	1.0 85 1.0 1.0	5.0 9.0	1975	2.0 1			z		
× 0.80		<u> </u>	+11 +20	0 11339	4	28.54	84 8 8 8	91.0 K M 3 98.0 K M 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1800 1800 1800	0.1.0 0.0.0	90.0	1150	3.0 1			z		
0 80 2		_	Y +20 +20	0 6958	75	29.72	88 88 84 84	0.00 0.00 7 7 7 2 2 2	1200 1200 1200 2	9 0 9	90.0	1200	2.2 1 4	N 82.9	83.0	Z		

			VEH	VEHICLE DESCRIPTION	ESCR!	(PTIO	ž		*	WEATHER	۔		OCTA	3	MBER	OCTANE NUMBER REQUIREMENT DATA	REMEN	T DA	TA		₹.	TANK FUEL INFORMATION	INT	DRMA.	MATION	1
		; ; ; ;	1 1 1			f 1 1	1	t ! !	; ; ;	1	! ! !		-	MAXIMUM	5		PAR	F	PART THROTTLE	.	 			2	RATER	
			w S			-	SPARK					<u>.</u>	Z⊢>	G #	 	! !	! : !	G r	: ! ! !	1 1	037	- T- S- C- T	Z F	5 L		
088 00 :	3 2	MODEL	= O F	SEN		A AS	AS TST	ODOM	AMB	BAROM	출 :	- 8	NOCT P		RPM	¥	DCT ¥0		RPM		1 1 22 2 1	RES MOT	4 Z = 1	44	RPM	≩
6	7	LGA 238A3	A3 C	Z	æ 0. æ		+15 +15	7187	12	30.06	82	6 4 4 8 8 8 8 9 8	89.08 89.08 7 X X	000 ZZZ	1750 1750 1750	000	u_			-			6	ო ¥	1750	1 .0
211		6 LGA 238A3	A3 F	z	0. 80	Y +10	+10 +15	21869	ரை ம	29 . 98	2	3 101 2 H 4 95	101.0 X X X 95.0 X	5 4 5 5 4 4	1700 1700 1800	0.04	101.0		3 1700 11.0	1.0 1						
212	w	LGA 238A3	A3 F	æ	8.0	× + 13	+13 +15	24618	8 2	29 . 86	102	6 2 4 9 9 9 9 9 9	95.0 K 96.0 K 92.0 K	9 6 9 E E E	1700 2500 1700	404	93.0	ო	1850	3.7 1						
275	60	LGA 238A3	A3	2	69 0.	Y + 15	+15 +15	23829	8	29.48	4	6 2 4 9 9 9	90.0 90.0 86.0 K	0 0 0 E E E	1650 1600 1800	444	86.0	ო	1550	3.53 -			Z			
276	30	LGA 238A3	A3 F	æ 2	69 0.	Y + 15	+15 +15	21015	75	30.06	2	6 4 4 9 9 9	90.0 90.0 K 86.0 K	N N N E E E	2100 2000 1800	0 0 0 8	L			-			Z			
337		7 LGA 238A3	A3 F	æ Z	8 .0 ×	+ 15	÷ + 15	11225	7	30.00	on Vo	6 6 8 6 8 8	88.0 K	e e e	1250 1250 1600	000	88 0.	m	1150	6.0	o Z	93.4 83.0	•	ო ¥	1300	8
7		29 LJP F20A3	A3 F	on Z	۶ ۳.	Y +10	+10 +10	7915	6	29.94	80	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	94.0 K 95.0 K 92.0 K	8 8 E	2400 2400 2300	ក ក. ក. ស ស ស	91.0	ო	2100	4.8 1	6 0 ≻	92.4 83.9	⋖	ო ¥	2300	. Ri
145		23 LJP F20A3	A3	z	که. دی	•	0	69 16	74	28.45	0 4	6 9 9 9 9 9 9	94.0 K 96.0 K 91.0 K	8 E E	2800 2800 2800	000	93.0	ო	1700	3.55 T			⋖	ო ¥	3 1700	9

VEHICLE DI	VEHICLE						SCA	DESCRIPTION	NO	;	1	1	¥	WEATHER	æ	1	;	2	ANE :	E NOMB	198E	OCTANE NUMBER REQUIREMENT DATA	SUT !	EMEN	7	ATA	;	- ;	TANK FUEL INFORMATION	FUEL	N		A I	AT10	- !	!
SPARK E ADVANCE MDDEL G KNK I AS AS ODOM AWB CODE T SEN G.R. R RCD TST MILES TWP	SPARK E ADVANCE MDDEL G KNK I AS AS ODOM AWB CODE T SEN G.R. R RCD TST MILES TWP	SPARK A A C KNK I AS AS ODOM AWB T SEN C.R. R RCD TST MILES TWP	SPARK A A C KNK I AS AS ODOM AWB T SEN C.R. R RCD TST MILES TWP	SPARK ADVANCE A	SPARK ADVANCE A I AS AS ODOM AWB C.R. R RCD TST MILES TWP	SPARK ADVANCE A I AS AS ODOM AWB R RCD TST MILES TWP	SPARK ADVANCE AS AS ODOM AMB RCD TST MILES TMP	INCE AS ODOM ANB TST NILES TMP	ODOM AMB MILES TMP	AMB TMP	AMB TMP			BAROM	E !	21	SC SC		A LEGI	MAXIMUM H G H R R R R R R R	· <u>T</u>	=	1 1	2 C C C C C C C C C C C C C C C C C C C	P GM4K	RPM	; >; ; = ===============================	034241	DCT RES	7 V V V V V V V V V V V V V V V V V V V	1 ZHZH!	2->4W	æ @ m < æ	RATER	-	≥ .
7 LJP F20A3 F N 9.3 Y O O 6268 71 3	FN 9.3 Y O O 6268 71	FN 9.3 Y O O 6268 71	FN 9.3 Y O O 6268 71	N 9.3 Y O O 6268 71	9.3 Y O O 6268 71	Y 0 0 6268 71	0 0 6268 71	0 6268 71	6268 71	17	17		m	30.28	9 82	6 6 6 4	94.0 96.0		XXX	0 4 0	3350 4400 3050		0.0.0	Ø. 4 °	m	2 150	0.	0	4.	94.1 84.0	∢ 0	¥	4	3800		a 0
23 LJO F18A3 FN 9.0 Y + 8 + 8 8008 63	FN 9.0 Y + 8 + 8 8008 63	FN 9.0 Y + 8 + 8 8008 63	FN 9.0 Y + 8 + 8 8008 63	N 9.0 Y + 8 + 8 8008 63	9.0 Y + 8 + 8 8008 63	Y + 8 + 8 8008 63	+ 8 + 8 8008 63	8 + 8 8008 63	8 8008 63	63	63		8	28.52	89	60 60 44	90.0 91.0 0.0		XXX	000	2600 2600 2600		0 0 0 0 0	87.0	e	2 100	6.0	-			Z	_				
41 LXR F25A3 C N 8.2 V + 8 + 8 7545 72	CN 8.2 V + 8 + 8 7545 72	CN 8.2 V + 8 + 8 7545 72	CN 8.2 V + 8 + 8 7545 72	N 8.2 Y + 8 + 8 7545 72	8.2 Y + 8 + 8 7545 72	Y + 8 + 8 7545 72	+ 8 + 8 7545 72	8 + 8 7545 72	8 7545 72	72	72		က	30. 16	9 67	6 4 4	90.0 91.0 87.0		XXX	000	2700 2700 2700		444	L			-	_			Z	_				
28 LXR F25A3 F N 8.2 Y + 8 + 8 16090 70 2	FN 8.2 Y + 8 + 8 16090 70	FN 8.2 Y + 8 + 8 16090 70	FN 8.2 Y + 8 + 8 16090 70	N 8.2 Y + 8 + 8 16090 70	8.2 Y + 8 + 8 16090 70	.2 Y + 8 + 8 16090 70	+ 8 + 8 16090 70	+ 8 16090 70	8 16090 70	70	70	2		29.38		50 4 2 3	89.0 90.0 87.0		XXX	888	2550 2550 2500		0.00	86.0	m	2000	5.0	-			2	z				
23 LXX 228A3 F N 8.5 Y + 9 +10 12248 58	FN 8.5 Y + 9 +10 12248 58	FN 8.5 Y + 9 +10 12248 58	FN 8.5 Y + 9 +10 12248 58	N 8.5 Y + 9 +10 12248 58	8.5 Y + 9 +10 12248 58	Y + 9 +10 12248 58	+ 9 +10 12248 56	9 +10 12248 58	12248 56	12248 56	tu Ø		~	28.41	- 64	4 6 4 4	94.0 95.0 0.0		አአአ ቦናደ	, n n n	1300 1300 1300		n. n. − o o æ	9. 0. 4. 0	e C	1300	5.0	-			•	×	m	1350		3.0
26 LXX 228A3 F N 8.5 V +10 +10 13277 74	F N 8.5 Y +10 +10 13277	F N 8.5 Y +10 +10 13277	F N 8.5 Y +10 +10 13277	N 8.5 Y +10 +10 13277	8.5 Y +10 +10 13277	Y +10 +10 13277	+10 +10 13277	13277	13277			*	77	30. 12		4 2 4 2 3	90.0 91.0 89.0		XXX ZZZ		1250 1300 1300		ស ស ស ស ស ស	90.0	ო 0	1250	0	-	95.	5 82.8		x	ო	1200		~
46 MA2 216A3 F N 9.0 Y +10 +1C 13741 75	F N 9.0 Y +10 +16 13741 75	F N 9.0 Y +10 +16 13741 75	F N 9.0 Y +10 +16 13741 75	N 9.0 Y +10 +16 13741 75	9.0 Y +10 +16 13741 75	Y +10 +16 13741 75	13741 75	13741 75	13741 75	75	75		64	29.34	•	644	88.0 88.0 87.0		XXX		1850 1850 1800		0.0.0	87.5	e No	1700	3.0	-			•	z				
8 MAZ 216A3 F N 9.0 Y +10 +10 18809 67	F N 9.0 Y +10 +10 18809 67	F N 9.0 Y +10 +10 18809 67	F N 9.0 Y +10 +10 18809 67	N 9.0 Y +10 +10 18809 67	9.0 Y +10 +10 18809 67	Y +10 +10 18809 67	18809 67	18809 67	18809 67	18809 67	67		~	29.85		88 8 4 4	89 0.09 0.00 0.00		XXX	000	1600 1450 1800		444	88.0	e 0	1350	9.0	_			-	z				

						E-12					
:	1		≩		0		0 N		0.7		
3	RATER		M M		1500		2200		1850		
MATIO	Z.	40			₽		9 5		4		
	i		- C W -		¥		¥		<u>×</u>		
Ž	i	ZH	Z 1	Z	6		•		6	Z	Z
		_	1 0	8 .	9.		82.4		84.4	82.8	
2		2	. ! .	8 8 3	3 82		6 0			6 0	
TANK FUEL INFORMATION		100	RES	92.2	91.3		91.0		8.06	6	
¥ :			' '			_		_			
;		r= 2×5	122 122	Z	z -	z -	-	Z	Z +	-	-
i	;			. 0.	2.0	rū.	ru.	ю	0	9.0	ru.
į	2		* ;			7	-		NO.		en -
4	PART THROTTLE		A C	1400	2000	1300	1300	2200	1600	1650	1900
DATA	THRO	es	'	÷	ج 8	e e	e ⊕	7 ₹	e e	e ₩	ю —
Ę	E		_ I						<u>.</u>	<u></u>	
	PAR		100 X	0. 88	6 0. T	<u>e</u> 0.	92.0	93.0	80	E C	85.0
UIR) 	•		00-	மகை	មាខាធា	0010		000	<u>ក ក ក</u> ស ស ស
OCTANE NUMBER REQUIREMENT DATA		! !	₹ .	0.00 E.E.4.	0.0 0.0 1.	2.0 0.9 9.9	2. 2. 2. 10. 10. 10.	0 0 E	0.7		
æ		;	Z .	1450 1700 1400	2400 2500 2200	1300 2400 1950	1300 1300 1350	2200 2100 2100	1900 1900 1900	2300 2400 2300	2000 1850 1900
NE I	MAXIMUM	!	œ ;	454				212			
Z	×	9 4			e e e	0 0 0 4 3 2	# # # #	4 4 4	222	000 222	8 2 2 2 2 2 3 2
A	3	Z + >	- T & :	***	\times	\times	\times	***	X	\times	***
5		1 	-0	88 0.88 0.0 0.0	91.0 93.0 92.0	91.0 90.0 80.5	92.0 90.0 91.0	93.0 91.0 92.0	89.0 89.0 90.0	86.0 87.0 87.0	85.0 86.0 48.0
_		• !	00 ₹	80 80 80	93	9 8	9 4 9	93 92	888	878	0 0 0 10 0 4
	:	L :	ירשכ		6 6 4	w w 4	₩ N 4	₩ M 4	_ 6 4 4	 4	₩ ₩ ₩ 4
	! !		HUN	50	₹.	70	50	20	9	8	88
WEATHER	; !			*	-	31	4 .	7.4	.62	4	.92
¥			BAROM	29.64	29.31	29.31	29		62	29	29.
¥				_	70 ;	70	6	70 29.47	20	6	75
	1			1							
	! !		ODOM	. 63	9344	2191	3535	7422	1226	8697	6044
	1		Ī	ı		-	-		_		
	1	SPARK ADVANCE	AS	; 60 i +	Y +14 +14	+14 +14	Y +14 +14	N +15 +15	Y +10 +10	Y +10 +10	+10 +10
8	1	SPARK DVANC	AS AS RCD TS		4	4	4	₹ <u></u>	5	5	5
4			< & & & & & & &	i + ı >-	+	+ ≻	+	+	<u>+</u>	÷	+ >
VEHICLE DESCRIPTION		`									
DES	;		2		6	O.	6	0. 6	8 5	60 60	8 . 8
w	!		KNK	!							
#IC	!	114	~ C Z	. Z	Z L	Z	Z	Z	Z L	Z Z	2 L
VE	}	-	20-	,							
	;		<u> </u>	- W	6 43	2 16A3	6A3	69 11	8 A 3	GAS.	8A.
	!		MODEL	2.	2	21	2	Ē	23	5	23
	1			EA2	¥A¥	#A#	MA4 216A3	MAS F16MS	8 83	X X	MD3 238A3
	•		9 2	32 MA2 216M4	32 MA4 216A3	32 MA4	32 1	32 1	32 MB3 238A3	32 MCX 133A3	60
			_	1							_
			NO S	117	118	119	120	121	122	123	261
			_	•							

1			≩						O . B		1 .0
TANK FUEL INFORMATION	RATER		RPM						1500		2600
A	Z		,								
E		٠	4 4 4 1						6		8
7		2->		z	z			z	2 2	z	5
=				-				©			
Ē		ş		87	86. 3			82.	82 . 5		
<u>.</u>	!		-	o	-						
ž		ţ	ES S	95.9	97.1			92.4	91.7		
TA	!		' '					Z	2		
	į		ころしょいだん	≻	z	-	-	-	-	-	-
	! :	:	,	ю	₩	9.0	~		<u>•</u>		
	4		₹ ;	e e	-	Ó	ĸ		-		
•	PART THROTTLE		RPA	8	8	8	2200		1200		
A	11480	!	2	1100	1200	1000	Š		2		
-	-	9	1 4 K :		₩	4	ო		e		
ĒX	¥	:	52	93.0	93.0 4	90.0	. 0.	<u>.</u>	90.0	<u></u>	11.
2		Ì	5	Š	Ġ.	6	6	-	ŏ	•	_
OCTANE NUMBER REQUIREMENT DATA	!	:	. !	600 000	000	444	4 4 4	444	000	000	000
Ä		į	≩	ดดด		000	N N N				
쫎	; []	! !	A P	800	1050 1100 1200	1000 1500 1000	1900 2200 2000	1350 1350 1350	1050 1050 1300	2700 2600 2600	2600 2650 2600
Ī		!	2	- III	5 = 5	5 10 5	222	£ £ £	500	26 27	8 8 8
Z	MAXIME	, G			444	444	888		440	000	000
¥	₹ .		- I & :	XXX ZZZ	*** ***	X X X Z Z Z	* * * * = = =	*** ***	XXX	XXX EEE	7
5	į					ono	000		000		000
0	!	, !	52	94.0 93.0	94.0 93.0 92.0	90.0 88.5 88.0	92.0 93.0 91.0	88.0 88.0 87.0	91.0 90.0 90.0	89.0 90.0 84.0	90.0 91.0 86.0
	1	1 IL. :		604	6 6 4	© 01 €	604	60 K 4	664	© 01 4	0 4 €
	:		HUR		22	83	ις α	80 80	ž.	16	12
œ	į										
WEATHER	į		BAROM		30.24	30 . 20	29.94	~	29.48	29.78	6
Æ	!			8	8		. 6	8	53	29	20
_	ļ		AMB	87	89	រភ <mark>យ</mark>	82	70 30.18	70	78	75
	,						0		N	60	
	!		ODOM MILES	10602	14989	7586	10200	4147	9782	13808	16247
	į		-								
	:	SPARK ADVANCE	AS TST	+20 +20	V +20 +20	Y +20 +20	Y +10 +10	+12 +12	+ 18 + 18	•• +	60 +
중	•	SPARK DVANC	1	. •	o O	Ó	ò	0		œ	
114	:	S &	_	‡	÷	7	Ŧ	Ŧ		+	+
DESCRIPTION	!		< - K	>	>	>	>	>	>	>	>
ESC	;				₩.	*	6 0	60	₩.	89 7.	8.7
	1				60	€0	60	60	•	∞	60
2	;		SEN	z	Z	z	Z	z	Z	Z	z
VEHICLE	!	ш	TU -	ı <u>L</u>	<u>.</u>	14.	Ľ.	u.	L.	<u>u. </u>	u.
>	;			¦ •	4	4	ю	4	4	ю.	Ю
	!		MODEL	¥ o	ĕ	80	8	₩.	₩	Ν̈́	Σ
	;		2 5		E.	Ë	~	8	<u>r.</u>	2	E
	;			MEF F50A4	8 WEF F50A4	6 WEF F50A4	MEX 133A3	5 ME3 238A4	32 MFF F50A4	NAR F25A3	8 NAR F25A3
	•			_	50	≠ છ	<u>α</u>	r.	7	2 6 0	~
				; !	=	-	*		C		
				179	180	18	182	79	124	262	263
			o ⁻	· -	-	-	-		-	Ö	Ñ

					E-17	7				
		3	. 0		6.	6.		. 0.		
8	RATER	M dd	1800		2500	2700		1000		
A	Ž	! '								
₹ :	!	SMARI	(f)		m	8		₹		
		Z Z L L L L L L L L	8 0 *	z	2 0	2 0		∞ ★		2
Ħ.	!			_		_		_		-
¥ .	:	NON NOT	83.8		98					
	:	<u> </u>			•					
TANK FUEL INFORMATION		OCT	92.3		97.0 86.4					
		03757			Z					
	! !		-	-	-	_	_	-	-	-
	۳,	≩			6.0	9	ri O	2.0	6 .	
¥	THROTTLE	M M	1800		1900	400	1050	8	8	
ă	PART THROT	G M A K	6			e E	4	4 1000	4 1200	
Ë	PART	;			100.0 3	o,				
	•	ig 문	69 .0	<u></u>	8	92.0	88.0	0. 68	5.	4
E	! !			000	000	000	من معن معن	000	m m ≠	000
OCTANE NUMBER REQUIREMENT DATA		}	~ ~ 0 . 0	0.00	9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00	6.4.	1.0	000	- 44 000
ER	_	M d	2000 2100 2300	2600 2600 2600	1900 1900 1600	2700 1550 1600	2 5 5 5 8 6 5 8	1500 1000 1000	1200 3300 1900	2050 2050 2000
3	MAXIMUM	!			61 91	25 15 16	====	5 2 5	33	222
Z	Ž	. GHAR!	888	888	өөө	8 8 8	444	404	4 0 0	0 m m
₹	2	PIE	XXX ZZZ	XXX	* * * * • • • =	XXX XPZ	XXX	7	A A A E E E	XXX
Ž	:				000					
_		100 200	90.0 93.0 88.0	88 86 6 8 6 0	0.00 0.10 0.00	92.0 94.0 88.0	90.0 91.0 88.0	91.0 90.0 90.0	91.5 92.0 90.0	88 0.0 85 0.0 85 0.0
	:	r=m-1	© 64 4	0 N 4	W W 4	w 44	60 4 4	® 01 €	6 W 4	604
~	 	E :	62	80	33	96	ru A	102	52	29
WEATHER	<u>.</u>	BAROM	92	83	50	6 0	8	28.43	24	32
EA	:	BAROM	28	29.83	30.50	29.95	30.00	œ.	30.24	30.35
3	<u>;</u>	AMB	70 29.92	22	22	78	6	89	88	6
	•			Ñ	0	4	~			
	; ; ;	ODOM		9692	Y +10 +10 15030	11804	8992	7745	17584	8758
	! !			5	9	Y +10 +10 11	w	•	ယ	to
ž) (SPARK ADVANCE AS AS RCD TST	+10 +10	V + 10 + 10	•	•	÷ 19	+ co	+ 19	+
Ë	!	ADV AS		-	Ŧ	-	+	+	+	10 +
VEHICLE DESCRIPTION	! ! !	<	>	>	>	>	>	>	>	>
SC	! !		8 0	ru.	ro.	īv.	•	•	•	9
5	ì		s	œ .	c	e	6 0	89 19	6	6
Ä) •	KAK	z	-	-	_	_	_	_	_
Ĭ	i !	# Z O F :		2 U	Z L	Z L	Z L	Z L	Z L	Z L
Ž	!	;								
	1	<u> </u>	29 NAX 228A3	728A3	NAX 228A3	8 NAX 228A3	NBH 450A4	NBH 450A4	NBH 450A4	NBH 450A4
	!	MODEL	22	22	22	22	4 ₩	4 ₩	4 R	Ž.
			¥	٩	¥	¥	I	Ħ	蓋	=
	ı		Z o	ž	ž vo	z	Ž	Ž	Ž	Z
		S S		7	•	•	រហ	23	Φ	∞
		08 S	5	22	# 65	264	80	129	88	265
		•				**		_	_	•

			VEH	VEHICLE	DESCRIPTION	11911	3			WEATHER	Ä		2	TANE	OCTANE NUMBER REQUIREMENT DATA	IR REC	UIRE	MENT	DATA			TAK	TANK FUEL		INFORMATION	ATION	1
	•		1 1 1	1 1 1			; !					, , ! !		Æ	MAXIMUM			PART	PART THROTTLE		; ;) 			2	RATER	;
			W 2 (SPARK					, r > 1		+: Z+>:	G W •		;				r ⊃ t		Z	ZHZ	_		
2 SB S	E SE	CODE	_ }	SEN	ر ا ا	R RCD	AS AS RCD TST	ODOM T MILES	S TEP	BAROM	M HUM		2	TW:	A RPM	M.	- :	202	M H	₹		RES	MOT	2 1	Z W 1	M .	≩ :
266	₹ •	NBH 450A4	A F	z	6 0	+ >	÷	6 10180	98	3 29.64	4 107	n 44	88 0.0 0.0 0.0 0.0	7 7 7 2 3 2	2 2850 2 3050 4 1150		0 0 0 0 0 0 0 0 0	86.0	1200	6. 10.	-			Z			
305	20 2	26 NBH 450A4	A4 F	z	.	+ -	+	8 7522	2 75	30.25	8 2	w 44	92.0 91.0	SEE	4 1050 4 1000 4 1100		60 O	4 0.	91.0 4 1100	9.0	-	2	91.3 82.6	z s			
308	Z 60 7	26 NBH 450A4	*	Z	89 19	+ >	+	6 31958	8 78	3 29.98	89 89	884	88.0 88.0	777 222	4 1050 4 1050 3 1850		0.00	87.0 4	1200	2.0	-			z			
332	Z ^	7 NBH 450A4	4	z	6 0	+ >	99 + 99	3 14761	1 72	30.36	92	W W 4	91.0 92.0 89.0	XXX	4 1150 4 1300 4 2050		2.0 0.0 9	90.0	1150	2.0	Z -	4.19	4 83.2	<	ю Ж	2450	0.7
187	Z	6 NB9 238A3	A3 F	z	6 0	>	0	0 7415		60 30.08	₹	© 64 4	94.0 94.0 92.0	XXX III	3 1800 3 1250 3 1700		0 - 0 8 8 8	91.0 3	1500	3.0	-						
130	23 23	23 NFH 450A4	4 4	z	19 .	+ >	+	6 8882	54	1 28.47	7 60	W W 4	91.0 94.0 89.0	XXX	4 1300 2 3400 4 1500		4.0.4	91.0	100	2.4	-			<u> </u>	₹	1200	1.2
53	Ž T	41 NF1 228A3	ر پ	z		*	+10 +10	0 12274	6 0	29.94	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	m c4	94.5 95.0 92.0	X X X Z Z Z	2 3250 2 3250 2 3250		0.00	92.0 3	3200	2.0	-			•	м М	3250	. 0
~	Σ ທ	5 NF1 228A3	£3 F	z	.	-	Y +10 +10	9596		70 28.85	2	664	98.0 100.0 94.0	XXX EEE	3 1900 3 1900 3 1900		0 8 8 8 9	97.0 3	3 2000		5.0 1 0		93.6 83.9 ·	<	κ 6	1900	د ھ

P BAROM HAM L. NO E R R RPM NV NO RPM RPM NV LK RES 0 29.98 138 3 89.0 K M 3 1850 2.0 3 30.16 85 3 88.0 K M 3 1700 2.5 4 88.0 K M 3 1700 0.8 4 87.0 K M 3 1700 0.8 4 87.0 K M 3 1500 0.8 5 98.0 113 3 83.0 K M 3 1500 0.4 5 98.0 K M 3 1500 0.8 6 98.0 K M 3 1500 0.8 7 29.95 113 3 83.0 K M 3 1500 0.4 8 91.0 K M 3 1800 0.4 8 90.0 K M 2 1850 0.5					VEHIC	VEHICLE DESCRIPTION	ESCRI	PTION	_		3	WEATHER	~		- OC	TANE	OCTANE NUMBER REQUIREMENT	ER RE(QUIRE	MENT	DATA				TANK FUEL	FUEL	INT	INFORMATION	ATION	i	
28 NF1 228A3 F N 8.5 Y +10 +10 18900 80 28.98 138 3 89.0 K M 3 1550 2.0 80.0 3 1850 8.0 1 N 83.0 T Y F E S			! ! !	; ; ;	1 	! ! !	! ! !	; } ! !					! !) i	,		CIMUM			PART		OTTE	: :	i				è	RATER		
28 NF1 228A3 F N 8.5 Y +10 +10 18900 80 29.98 136 3 89.0 K M 3 1850 2.0 7 NF1 228A3 F N 8.5 Y +10 +10 18908 70 30.52 82 3 98.0 K M 3 1800 2.0 7 NF1 228A3 F N 8.5 Y +10 +10 6998 70 30.52 82 3 98.0 K M 3 1700 2.5 8 18 0 K M 3 1700 0.8 F 4 8 7 0 0 9571 53 28.66 43 3 93.0 K M 3 1700 0.8 6 NG8 238A3 F N 8.6 Y 0 0 6824 72 29.85 113 3 83.0 K M 3 1600 0.4 9 10 K M 3 1600 0.5 9 10 K M 3 1600 0.8 9 10 K M 3	S 0 :	- '	:	DOEL				ADV.		ODOM	AMB	BAROM		. FDM1.	200	1	! '	! '	;	52	; ;	! !	1 1	OBYZY	1 22 1	8 5	ZHZH!	Q M < R	3	≩	
7 NF1 228A3 F N 8.5 Y +10 +10 6998 70 30.52 62 3 86.0 K M 3 2150 2.5 98.0 3 1850 3.0 1 N 92.0 2 8 0 0 K M 3 2050 2.5 4 80.0 K M 3 1700 0.8 F 1 N 94.0 23 84.0 K M 3 1700 0.8 F 1 N 94.0 23 84.0 K M 3 1700 0.8 F 1 N 94.0 E W 2 338A3 F N 8.6 Y - 2 0 13660 64 30.00 54 3 97.0 K M 3 1600 1.5 97.0 3 1700 3.0 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07		Ž.	228A3	L.			+ 50	410	18900		29 . 98			88 89 0.88 0.00	XXX				0 9			o.	_	e,	80 33 10	Z				
4 10 K 3 1700 0.8 F 10 K 3 170	33		Z L	228A3	u _	60			+ 10	8 6 6 8		30.52	62		88 80 0 0 0 0 0	***				9 .0			o,		92.0	82.4	¥ -	6	2250	2.5	
53 NG9 238A3 F N 8.6 Y 0 0 9571 53 28.66 43 3 93.0 K M 3 1700 2.0 4 91.0 K M 3 1500 1.5 5 94.0 K M 3 1700 2.0 4 91.0 K M 3 1500 1.5 5 94.0 K M 3 1500 2.0 6 NG9 238A3 F N 8.6 Y - 2 0 13660 64 30.00 54 3 97.0 K M 3 1600 1.5 8 NG9 238A3 F N 8.6 Y 0 0 6824 72 29.95 113 3 93.0 K M 3 1500 3.2 8 NG9 238A3 F N 8.6 Y 0 0 11980 77 29.80 110 3 92.0 K M 3 1800 0.4 9 1.0 K M 3 1775 1.0 1 9 1.0 K M 3 1775 1.0 1 9 1.0 K M 3 1775 0.5 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ιο Φ		NGA	238A3	ပ			2	÷ 15	9467		30. 16	8 5		88.0 89.0 87.0	***			eo. eo. eo.	ı			-		0.76	4	z				
6 NGS 238A3 F N 8.6 Y - 2 0 13660 64 30.00 54 3 97.0 K N 3 1600 1.5 97.0 3 1700 3.0 1 6 NGS 238A3 F N 8.6 Y 0 0 6824 72 29.95 113 3 93.0 K N 3 1500 3.2 7 98.0 K N 3 1600 0.6 8 NGS 238A3 F N 8.6 Y 0 0 6824 72 29.95 113 3 93.0 K N 3 1500 3.2 9 NGS 238A3 F N 8.6 Y 0 0 11980 77 29.80 110 3 92.0 K N 3 1800 0.4 2 92.0 K N 3 1800 0.4 2 91.0 K N 3 1775 1.0 F 4 91.0 K N 3 1775 1.0 F 7 90.0 K N 2 1650 0.5	3		65	238A3	L			0	0	9571		28.66	4		93.0 94.0	XXX							0.0	_			m	G	1700	2.0	_
6 NG9 238A3 F N 8.6 Y O O 6824 72 29.95 113 3 93.0 K M 3 1500 3.2 92.0 3 1650 4.0 1 N 4 91.0 K M 3 1400 3.2 4 91.0 K M 3 1400 3.2 4 91.0 K M 3 1400 3.2 82.0 K M 3 1800 0.4 91.0 3 1600 3.0 1 4 91.0 K M 3 1800 0.4 4 91.0 K M 3 1775 1.0 F 1 4 90.0 K M 2 1750 0.5 4 90.0 K M 2 1750 0.5 4 90.0 K M 2 1750 0.5	80			238A3	L			1	•	13660		30 · 00	1 0		97.0 98.0 95.0	×××		0	nú rui æ	o,				_							
6 NG9 238A3 F N 8.6 Y O O 1198O 77 29.80 110 3 82.0 K M 3 1800 0.4 91.0 3 1800 3.0 1 2 92.0 K M 3 1800 0.4 4 91.0 K M 3 1800 0.4 28 NG9 238A3 F N 8.6 Y O 0 21370 83 29.97 124 3 91.0 K M 2 1750 0.5 4 90.0 K M 2 1650 0.5	Ø Ø		85N	238A3	ı.			•	•	6824		29 . 95			83.0 92.0	***		~~~	લં લં લં	o,					93.0	83.4	*	m	1300	3.2	
28 NG9 238A3 F N 8.6 Y O O 2137O 83 29.97 124 3 91.0 K M 3 1775 1.0 F 1 91 2 91.0 K M 2 1750 0.5 4 90.0 K M 2 1650 0.5	8	9	85N	238A3	u.			•		11980		29.80	5		92.0 91.0	XXX		000	444					_							
	8		89 %	238A3	L			•		21370		29.97	124		0.00	***			ဝ်ကဲက်	L			-	_	8. 8.	82.1	z				

:	:		≩ :	10	2.0		4.	0.8	6.3		5 .0
Z.	<u>æ</u>		RPM		1650		1700	2100			2200
INFORMATION	RATER		2	1800					2750		
1		Z ⊢ >	· C W ·	× ×	κ ×		χ	× ∞	× 7		რ ¥
N.			ZH	62	\$	z	•	⋖	⋖	Z	⋖
			101		89 .	82.3	8.		.,		85.0
FUEL		Ş	X	82	7 84	6 0	3 82		. 88. 82.		. 0
TANK		Ş		92.0	95.7	92.0	91 .3		5		න ග
_			. Z Y :						۵	_	>
	l 1	. L S		₩.	<u>,</u>	-	<u>.</u>	6. 0.	o. -	_	<u>.</u>
	1	! ! !	₹		m		m		n		•
DATA	THROTTL	i 1	RPM		1650		1550	1600	1500		1750
3	E		4 & i		6		ო	m	e		e
EN	PART	;	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ı.	92.0	i.	94 .0	8. R.	100.0	L.	O . 86
IRE	_	i	8-								
REQU		!	≩ :	- 0 0 Ri Ri Ri	2 0 ii 0	0 8 8 8	0.7 0.7 0.7	2.7. 2.2.	6 6 6 6 6 6	0 0 0 N N N	000
	*	1	Z P	1600 1600 1600	1700 1850 1750	1600 1650 1650	1750 1750 1850	2700 2600 2800	1500 1475 1500	2900 2900 2900	1800 1700
3	MAXIMUM		'	644	646	000 	0 0 0 	888	666	000	000
¥	Ž		- I & '	222	III	XXX	III	* * *	6 6 6	111	TTT
Z L	[Z F>	. .	000 7 # #	000 XXX	000 XXX	000 777	000 XXX	о о яяя	000 XXX	000 XXX
5	!	!	50	90.0 90.0	9 99 99 90 50 50 00 00 00	90.0 88.0 0.88	98.0 93.0 0.0	95.0 97.0	0.00 E 86.0	90.0 90.0 88.0	98.0 100.0 94.0
		· -=		W 44	644	6 4 4	6 4 4	e u 4	W W 4	6 4 4	6 4 A
			Ŧ:	5	116	80	74	80	80 130	80	₩.
WEATHER	į		BAROM	30 . 18	30.04	29.98	30 . 05	<u>e</u> .	29.09	30 . 06	30.70
ÆA1			BAR	9	30		30	20	29		8
•	-		M T	2	9	78	ő	20	6 0	78	70
	1		DOOM	25110	9945	9386	4423	24870	6327	7 102	6638
	}					-					
	1	폿폿	AS TST	0	•	•	0	•	0	•	•
VEHICLE DESCRIPTION	1	SPARK ADVANCE	AS AS	•	•	0	0	•	0	0	•
RIP	i		< - a	>	>	>	>	>	Z	>	>
ESC	1		ب م	8 9	60	6 0	6 0	ر .	ල ග	8.3	න ප
Ā	1			• •	60	40	•	o	ø.	O 3	on .
ũ	1		SEN	z	Z	Z	Z	Z	2	2	Z
/EH	1	ш	Z U -	. L .	L	4	ii.	L.	L	ပ	i.
	1			BA3	8A3	8A3	8A3	0A3	0 A 3	0A3	5 NJP F20A3
	į		MODEL	3	23	23	23	F2	T.	F	F2
				69	65	65	6 9 N	d C X	NJP F20A3	A S	Z S
	•		KO KO	26 NG9 238A3	26 NG9 238A3	28 NG9 238A3	26 NG9 238A3	29 NJP F20A3	4	41 NJP F20A3	Ω —
				1				Ξ	35	in In	82
			08S	308	310	311	314	-	co.	ur	~

1			2 .55	2.0	9.0 0	3	0.0	0.	2.0	<u>.</u>
INFORMATION	RATER	RPE	1550	2050	1650	2700	2700	3300	1900	1650
¥ X	ex	GEAR	6	e	m	m	e	N	က	m
Ç			¥	¥	¥	¥	¥	×	×	¥
	<u>'</u>	2 HZ H ;	⋖	⋖	⋖	•	•	₩		⋖
FUEL		9 5	82.3	9						
2				6						
TANK		OCT	92.2	94.0 83.4						
7		, ,								
		F T L L L L L L L L L L L L L L L L L L	0	-	_	_	_	_	_	_
			•	0	o.	N	0	u,	0	0
	<u> </u>	≩	₹	÷	÷	က်	က်	₹	ĸ	€.0
	Ē	7	9	2	٥	8	Q	Q	9	Q
DATA	E	26	1800	1900	1800	2000	1700	1700	2150	1800
	F	ଓଲା ଏ ଅ ।	m	m	ო	0	m	m	6	m
	AR	52	o .	o.	o.	93.0	o.	o.	95.0	o,
ZE E	۵	₽ <u>6</u>	8	85	92	6	94	92	6	92
REQUIREMENT			666	000	មាមមា	444	000	000	000	ស្រស
REC		₹ ;	6 6 6 6 6 6	444	0 0 0 N N N	444	3.0 0.0 0.0	44.	999	 n n n
		M da	1550 1550 1550	1900 1900 1850	888	888	1700 1550 2800	888	888	000
60		8	<u> </u>	9 9 5	2800 2800 2800	2800 2600 2800	1700 1550 2800	1700 1850 2800	2150 2200 2000	2750 2650 2650
Ž	MAXIMUM	Оп∢к≀	000	000	000	ოო ო	600	იიი	იიი	888
3	¥		*** ***	*	XXX	XXX EEE		0. C Z	444	111
Ę							000 XXX	000 XXX	000 XXX	000 XXX
•		200	99.0 100.0 97.0	93.0 94.0 89.0	94.0 98.0 91.0	95.0 98.0 92.0	94.0 94.0 87.0	92.0 92.0 87.0	9 55 5	95.0 97.0 92.0
	i '		₩ W 4	0 W 4	₩ W 4	0 W 4	₩ W 4	0 0 4	® N ♥	0 N 4
,	i İ		20 20	S	92	6		6	000	00
œ		HE !					8		un .	SU.
WEATHER		BAROM	30. 10	30.03	(I)	29.90	29.70	29.87	05	25
ĒÀ	i i	BAR	e S	9	78	29	29	98	29.02	29.
-		AMB	70	7.1	2	75	6	7	6	70 29.25
	1									
		8 H :	5016	9210	9146	10069	7918	9984	2498	10482
		3 1			o n	₽	7	o	12	5
		NRK NNCE AS TST	0	0	0	•	•	0	0	•
3		SPARK ADVANCE AS AS RCD TST	0	0	0	•	0	0	0	0
PTI									_	_
VEHICLE DESCRIPTION		∢ ₩ Œ ;	>	>	>	>	>	>	>	>
ESC		C. 7.	න භ	6	6 .	න භ	6	හ. භ	ල ල	ල ග
•	!		9	0	o	on .	o	a	ø.	on .
2		KNK	Z	z	z	Z	Z	z	z	z
H	! !	M Z O F ·	L	<u>u</u>	i.	<u>.</u>	<u>.</u>	<u> </u>	<u>.</u>	щ.
>			rg.	g	m ₂	m	6	ю	e	
		MODEL	20A	20A	20A	X0	20 A	20A	20A	¥0¥
	! !	2 0	ii .	ï	ii.	iii	iii	ii.	2	2
	:	! ! !	NJP F20A3	5 NJP F20A3	3	NJP F20A3	8 NJP F20A3	8 NJP F20A3	3	Ş
		8 S	ro -	ru —	23 NJP F20A3	6	-	 60	28 NJP F20A3	28 NJP F20A3
		-	_							
		SEC	60	æ 4	132	191	267	268	289	290
		•			-	-	• •	**	4	4

231 28 MAP 720A3 F M 8.3 Y O 0 13415 70 28 43 50 3 80 0.0 K M 3 2700 1.5 8 4.0 1 10 10 10 10 10 10 10 10 10 10 10 10		;		2	•	ĸ.	0.		0.7			
28 Num F20A3 F N 8.3 Y O 0 12415 72 30.27 68 3 81.0 K N 3 2000 0.7 M 8.0 K N 3 2000 0.8 M 9.0 K N 3 2000 0.7 M 9.0 K N 3 2000 0.0 M 9.0	2	æ										
28 Num F20A3 F N 8.3 Y O 0 12415 72 30.27 68 3 81.0 K N 3 2000 0.7 M 8.0 K N 3 2000 0.8 M 9.0 K N 3 2000 0.7 M 9.0 K N 3 2000 0.0 M 9.0	110	ATE		2	270	240	187		200			
28 MJP F20A3 F N 9.3 Y 0 0 12415 72 9.4 6 8 8 9 9 0 0 K N 3 1850 6 0 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	2		91	4 €	m	e						
28 MJP F20A3 F N 9.3 Y 0 0 12415 72 9.4 6 8 8 9 9 0 0 K N 3 1850 6 0 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	₩.							7		~	_	-
28 MJP F20A3 F N 9.3 Y 0 0 12415 72 9.4 6 8 8 9 9 0 0 K N 3 1850 6 0 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	= ;			1 1	•	_			m		•	-
28 MJP F20A3 F N 9.3 Y 0 0 12415 72 9.4 6 8 8 9 9 0 0 K N 3 1850 6 0 7 7 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	3		9				83.	82.	83.	86.		
28 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA4 F N 9.3 Y O 0 12415 73 30.27 88 3 90.0 K M 3 1850 1.0 7 MJP FZOA4 F N 9.3 Y O 0 12415 70.29 84 60.3 86.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.3 Y O 0 12415 70.29 84 60.3 86.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.3 Y O 0 12415 70.29 84 60.3 86.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.3 Y O 0 12415 70.29 84 60.3 86.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.3 Y O 0 12415 70.29 84 60.3 86.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.3 Y O 0 12415 70.29 84 60.3 86.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 130 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y Y 8 10.0 K M 3 1850 1.0 8 MJP FZOA4 F N 9.4 Y	¥		{	امات			-	ro.	o,	80		
28 MJP FZOA3 F N 9.3 Y O 0 12415 73 30.27 86 3 93.0 K M 3 1500 0.7 M 1 10 0.7	3		(1 65 1			87	8	2	8		
28 MJP FZOA3 F N 8.3 Y O 0 12415 73 30.27 88 3 8.0 K N 3 1700 0.7 8 7.0 C 28.41 70 28.81 108 3 84.0 K N 3 1850 1.0 84.0 3 1750						>			Z	Z	Z	
28 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.7 7 1250 28 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.7 7 1250 28 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.0 84.0 3 1700 28 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.0 84.0 3 1700 28 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.0 84.0 3 1700 29 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.0 84.0 3 1700 29 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.0 84.0 3 1700 29 MJP F20A3 F N 8.3 Y O 0 12415 73 30.27 88 3 80.0 K M 3 700 0.0 84.0 3 1700 29 MJP F20A3 F N 8.3 Y O 0 13810 82 28.91 108 3 80.0 K M 3 700 0.7 84.0 3 1700 29 MJP F20A3 F N 8.3 Y O 0 13810 82 28.91 108 3 80.0 K M 3 1800 0.7 84.0 3 1700 29 MJP F20A4 F N 8.3 Y O 0 13810 82 28.91 108 3 80.0 K M 3 1800 0.0 7 84.0 3 1700 29 MJP F20A4 F N 8.3 Y O 0 13810 82 28.91 108 3 80.0 K M 3 1800 0.0 7 84.0 3 1700 20 MJP F20A4 F N 8.3 Y O 0 13810 82 28.90 50.3 K M 3 1800 0.0 7 84.0 3 1800 20 MJP F20A4 F N 8.4 K B + B 1306B 72 30.2 Z B 83 0.0 K M 3 1800 0.0 7 88.0 C M 3 1800 20 MJP F20A4 F N 8.4 K B + B 1306B 72 30.2 Z B 83 0.0 K M 3 1800 0.0 5 20 MJP F20A4 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 5.0 88.0 S 0.0 K M 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 5.0 88.0 S 0.0 K M 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 20 MJP F20A5 F N 8.4 K B + B 1306B 70 28.97 B 13 88.0 K P 3 1500 20 MJP F20A5 F N 8.4 K P 8.8 B 130 K M 3 1500 20 MJP F20A5 F N 8.4 K P 8.9 B 1306B 70 28.9 B 1306 K M 3 1500 20 MJP F20A5 F N 8.4 K P 8.9 B 1306B 70 28.9 B 1306 K M 3 1500 20 MJP F20A5 F N 8.4 K P 8.9 K M 3 1500 20 MJP F20A5 F N 8.9 K M 3 1500 20 MJP F20A5 F N 8.9 K M 3 1500) 1 1	L .								-	-
28 NJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 86 3 90.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.80 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 0 13910 82 29.80 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0		u,		≩ ¦	ro.	•	Ť	Ä	÷	Ö.		ν. O
28 NJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 86 3 90.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.80 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 0 13910 82 29.80 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0	_	Ē			2	8	Ĭυ.	8	9	8		2
28 NJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 86 3 90.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 2800 0.7 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 94.0 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.80 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.3 Y 0 0 0 13910 82 29.80 K N 3 1850 1.0 94.0 3 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A3 F N 9.4 K N 9 1850 1.8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0 8 8 NJP F20A K N 9 1850 5.0	AT.	ž		2	ž.	220	191	170	125	130		<u>₹</u>
28 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 99.0 K M 3 1650 1.0 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 99.0 K M 3 2700 1.0 8 2 91.0 K M 3 2700 0.0 7 8 2 91.0 K M 3 2700	E :		0	4 4 4 .		6						
28 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 99.0 K M 3 1650 1.0 8 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.81 108 3 99.0 K M 3 2700 1.0 8 2 91.0 K M 3 2700 0.0 7 8 2 91.0 K M 3 2700	E	\$		52	.	6.	6.	4 .0	4 0	.	ı.	8 0
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88	IRE			- ;								
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88	5 0		 	≩ :	000	T. T. T.		000	, , , , , , , , , , , , , , , , , , ,	999	10 to 10	000
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88	~			,	000	000						
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88			 - 	<u>a</u>	227 227 2059	287	17 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	25 05 85 20 02 30	888	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88	2		9	4 €								
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88	3	3										
SPANK LAB MODEL C KNK ADVANCE LAB MODEL C KNK I AS AS ODOM AND RED TST MILES TWP BARON HUN L N 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 28 NJP F20A3 F N 9.3 Y 0 0 15065 70 29.23 50 3 93 29 NJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 94 5 NJP F20A4 F N 9.3 Y 0 0 0 13910 82 29.91 108 3 99 29 NJP F20A4 F N 9.3 Y 0 0 0 4014 69 29.90 50 3 90 29 NJP F20A4 F N 9.4 N 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88 29 NJP F20A4 F N 9.4 Y 6 6 6 6968 70 29.97 61 3 88	Š											
SPARK LAB HODEL C KNK I AS AS ODOM AND LAB HODEL C KNK I AS AS ODOM AND LAB HODEL C KNK I AS AS ODOM AND LAB HODEL C KNK I AS AS ODOM AND LAB FZOA3 F N 9.3 Y 0 0 12415 73 30.27 86 3 28 NJP FZOA3 F N 9.3 Y 0 0 12415 73 30.27 86 3 28 NJP FZOA3 F N 9.3 Y 0 0 13910 82 29.91 108 3 29 NJC 218A3 F N 9.3 Y 0 0 4014 69 29.90 50 3 29 NJC 218A3 F N 9.4 N + 6 + 6 13066 70 29.97 61 3 29 NJC 218A3 F N 9.4 Y + 6 + 6 8966 70 29.97 61 3				52	8 8 9	97.	93. 92.	94.	96. 96.	90. 88.	90. 92.	886. 896.
28 MJP F20A3 F N 9.3 Y 0 0 12415 77 29.23 28 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A4 F N 9.3 Y 0 0 28873 70 29.94 29 MJC 218A3 F N 9.4 N 6 6 6 13066 72 30.22			N. :	ָרשכּ	004		60 0 4	w 4 4	6 K 4	644		
28 MJP F20A3 F N 9.3 Y 0 0 12415 770 29.23 28 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 29 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 30 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 31 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 32 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 33 MJP F20A3 F N 9.3 Y 0 0 12415 73 30.27 34 MJP F20A3 F N 9.3 Y 0 0 13910 82 29.91 35 MJP F20M4 F N 9.3 Y 0 0 28873 70 29.94 36 MJP F20M4 F N 9.3 Y 0 0 28873 70 29.94		• •		3:	20	20	99	108	9	90	6 0	.
28 NJP F20A3 F N 9.3 Y O 0 15065 70 28 NJP F20A3 F N 9.3 Y O 0 15065 70 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83	H.	! !			23	6	27		*	8	22	7
28 NJP F20A3 F N 9.3 Y O 0 15065 70 28 NJP F20A3 F N 9.3 Y O 0 15065 70 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 15415 73 7 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 82 5 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 13910 83 7 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83 8 NJP F20A3 F N 9.3 Y O 0 0 13910 83	EATI	1		¥ .	 9	g	<u></u>	e: 62	o. 60		<u>8</u>	
LAB MODEL C KMK ADVANCE LAB MODEL C KMK I AS AS ODOM A ADVANCE ND CODE T SEN C.R. R RCD TST MILES THE CODE 28 NJP F20A3 F N 9.3 Y 0 0 15065 28 NJP F20A3 F N 9.3 Y 0 0 13910 7 NJP F20A3 F N 9.3 Y 0 0 13910 5 NJP F20A4 F N 9.3 Y 0 0 4014 5 NJP F20A4 F N 9.3 Y 0 0 4014 5 NJP F20A4 F N 9.3 Y 0 0 4014 29 NTC 216A3 F N 9.4 Y 8 + 8 9968	3					õ			0			
SPARK LAB MODEL C KNK I AS AS NO CODE T SEN C.R. R RCD TST 28 NJP F20A3 F N 9.3 Y 0 0 28 NJP F20A3 F N 9.3 Y 0 0 7 NJP F20A3 F N 9.3 Y 0 0 7 NJP F20A3 F N 9.3 Y 0 0 9 NJC 218A3 F N 9.4 N 6 + 8 29 NJC 218A3 F N 9.4 Y 8 + 8		i										
SPARK LAB MODEL C KNK I AS AS NO CODE T SEN C.R. R RCD TST 28 NJP F20A3 F N 9.3 Y 0 0 28 NJP F20A3 F N 9.3 Y 0 0 7 NJP F20A3 F N 9.3 Y 0 0 7 NJP F20A3 F N 9.3 Y 0 0 9 NJC 218A3 F N 9.4 N 6 + 8 29 NJC 218A3 F N 9.4 Y 8 + 8					8	90	4.	9	1873	5	990	996
28 MJP F20A3 F N 9.3 Y 0 28 MJP F20A3 F N 9.3 Y 0 29 MJP F20A3 F N 9.3 Y 0 2 MJP F20A4 F N 9.3 Y 0 2 MJP F20A4 F N 9.3 Y 0			•••								_	
28 MJP F20A3 F N 9.3 Y 0 28 MJP F20A3 F N 9.3 Y 0 29 MJP F20A3 F N 9.3 Y 0 2 MJP F20A4 F N 9.3 Y 0 2 MJP F20A4 F N 9.3 Y 0	_	•	¥Ş	AS T	0	•	0	0	•	0		
1.4B HODEL C KNK I A A LAB CODE T SEN C.R. R I SEN C.R. R SEN C.R.	ð		SP	48 :	•	•	•	•	•	0		Φ.
28 NJP F20A3 28 NJP F20A3 28 NJP F20A3 29 NJC 218A3 29 NTC 218A3	IP	, , ,		_	>	>	>	>	>	>		
28 NJP F20A3 28 NJP F20A3 28 NJP F20A3 29 NJC 218A3 29 NTC 218A3	SCR	<u> </u>		انعم								
28 NJP F20A3 28 NJP F20A3 28 NJP F20A3 29 NJC 218A3 29 NTC 218A3	90	! !			•	•	•	.	.; es	o	6	on on
28 NJP F20A3 28 NJP F20A3 28 NJP F20A3 29 NJC 218A3 29 NTC 218A3	J	•		YES!	-	-	-	-	-	_ 、	_	_
28 NJP F20A3 28 NJP F20A3 28 NJP F20A3 29 NJC 218A3 29 NTC 218A3	Ħ	1	ш ;									
	5			. !	G	g	eg.	g	eg.	•	6	
		t t			20A	20 A	20 A	20 A	20 A	20	16 A	76A
) 		₽8;	<u>. </u>	<u>v.</u>	<u>. </u>	<u>. </u>	u_ Q.	<u>u</u>	6	N
		1		;	3	3	3	3	3	3	N	N,
				S S	78	78	98	28	7	NO.	59	29
3 3 3 5					Ξ	2	<u>2</u>	<u>e</u>	2	ις.	N	m
				5~;	8	7	m	ัต	e e	w.	-	-

			VE	HICLE	VEHICLE DESCRIPTION	CRIP	202	-		1	WEATHER	œ	1	20	T AME	OCTANE NUMBER		REQUIREMENT	REMEN	•	DATA		i	TA	TANK FUEL		FOR	INFORMATION	3	1
										; !		1	'		¥	3	I		PART	F	THROTTLE	1				! !	 1 1	Z		1
				ws		-	SPARK	WCE						l	+ Z⊢>		•		,	(5 u			r: 0≯7	Ę	<u> </u>		Z ->	(J) II		
SBS ON ;	N O	MODEL	:	C KNK	2 T		S C	AS TST	DDOM	AMB	BAROM	¥ ;	, , , , ,	OCT NO		1 < & ;	AP A	≩	5 5	148	RPM	≩		; ~ ;	X		2 H I		RPM	≩
36	₹	NTC 216A3		Z	6	>	6 0 +	(C) +	7004	50	29.33	7.60	0 4 4	84.0 84.0 82.0	***	8 8 8	2 150 1850 2000	- 2 - 0 10 0	82.0	60	1875	B	Z -	98	2 85 5	ø.	z			
80 80	∓	41 NTC 218A3		Z	6	>	5 0	10 +	11397	63	30 . 06	99	w 44	88.0 89.0 86.0	XXX See	000	2700 2700 2650		L				-			•	z			
80	in	5 NTC 216A3		Z	₹.	>	5 +	5 0 +	13865	70	29.92	4.	0 N 4	90.5 91.0 90.0	*** ***	000	2500 2500 2500	444	89.0	m	2 100	3.8	-							
133	73	23 NTC 216A3		Z	₹.	>	6 0 +	6 +	7416	48	28 . 48	30	644	90.0 90.0 88.0	777 III	6 - 6	2400 1800 2400	0 70 0 0 0 0 0 0	88.0	m	1900	3.0	-			2	z			
192	— ©	6 NTC 216A3		Z	6 . ₹ .	>	φ +	6 0 +	8370	77	30.11	78	60 4 4	93.0 94.0 91.0	XXX EEE	555	2800 2800 2800	440	92.0	က	2400	2.5	-							
269	— ©	8 NTC 216A3		Z	Q. 4.	>	60 +	10	19864	80	29.86	=	884	86.0 87.0 84.0	XXX	0 0 0 1 1 1	1700 1750 1750	0.00	82.0	ო	1900	3.0	-			2	z			
293	88	28 NTC 216A3		Z	.	>	6 0	9	9624	02	29.53	50	6 4 4	86.0 86.0 85.0	XXX	888	2000 2100 2300	<u> </u>	80 0.0	6	2000	3.0	-			4	z			
193	60	8 NTC 216M4		Z	Q .	z	60 +	∞ +	15091	89	29.91	78	© 44	92.0 92.0	XXX XXX	244	2200 1800 1900	# * # #	92.0	4	1900	2.0	z	83	.6 82		¥	ه ب	1600	.

					E-24					
		≩	1.2	4.0	÷.				5.	9.0
3	8	RPK	2000	2800	2700				1800	1500
ATI	RATER	•								←
2		Z P > C W I	∡	ω	<u>ო</u>				∞	¥
			•	₹	₹	z	z		5	•
1		1 - 1	۲.						.	m
3		모(모)	82						82	*
¥		OCT HES	93.3						90.8	89 . 88 .
TANK FUEL INFORMATION		OCI RES	6			,			ŏ	ŏ
•		032221	Z						Z	Z
	:	F3#1	-	-	-	-	_	_	_	_
		À	2 .0			•	9	6 .0	89 . 88	6
	; ==	! '				0	0	•	Q	Q
ITA	THROT	3	4 1700			1850	1200	1600	1700	1800
2	F	ош∢с	4			က	eo	ო	ಣ	6
E	PART	52	93.0			8 6 .0	0	97.0	9 0.0	9 0.
E.	1	59	83	L.		8	87	6	ĕ	6
OCTANE NUMBER REQUIREMENT DATA			પં પ <u>ં</u> પં	000	ໜ່ານ ໜ່	<u> </u>	8 9 9 9 9 9	9 9 0	6. ∡ 6.	0 0 0
Ä	į	}							200	
æ	Ì	RPM	1800 2500 1600	2600 2600 2600	2700 2650 2850	2600 2600 2600	1200 1200 1250	1800 1300 1800	1700 1700 1750	1600 1700 1500
8	MAXIMIM	~ ;	8 to 8							
Z	5	GHAKI	777	000 222	000 111	222	8	000 242	000 222	66
Ž	Ì		***	***	***	***	***	***	XXX	***
5	!	-01	93.0 93.0	98.0 98.0 0.88	92.0 94.0 90.0	87.0 90.0 86.0	87.0 87.0 85.0	97.0 98.0 94.0	92.0 92.0 91.0	94.0 91.0 91.0
•		20 OCT	9 9 9	0 0 0 0 0 0	9 9 9 9 9 9	87 90 86	87.88	0 0 0 0 4	92	9 9 9
	į	FDMT	604	6 4 4	® 64 €	6 W 4	₩ W 4	n 0 4	6 U 4	60 04
	:	E :	108	83	82	8	8	73	53	S.
8	•			9	9	2	ø	52	2	6
WEATHER	}	BAROM	30.04	30.06	29.49	29 . 72	28 . 26	30 . 25	29.42	29.63
¥	1	-				78 2		7.7 B	70 2	70 2
	į	AMB	25	77	75	Ē	8.7			
VEHICLE DESCRIPTION	1	DOM	8 6 10	88 85	066	157	6004	8308	5456	9414
	}	E L	Ø)	198	179	8	ŏ	m	ŭ	ò
	}		60	•	80	ap	5	5	5	5
		SPARK ADVANCE AS AS RCD TST	+	+ 80	7	+ co	Y +10 +10	Y +10 +10	N +10 +10	N +10 +10
	;	ADVA ADVA ABVA AS	60 +	+	+	+	7	+	-	Ŧ
	;	< ₩ 2 1	2	>	>	>	>	>	Z	Z
	1	æ	6	8 .2	8 9 77	89 . 2	ත භ	æ ru	0.6	0.0
	i	4		æ	∞	60	60	∞	on .	o
	-	KAK	z	2	z	Z	Z	Z	z	Z
		MECH!	_	Ü	<u>u</u>	<u>.</u>	<u>. </u>	u.	<u>u_</u>	•
	į		±	9	6	2	9	9	53	53
	!	MODEL	10 X	25A	25,4	F25A3	284	228A3	16	9
	:	MODE	NTC 216M4	u .	er.	ox.	×	×	77	4
	;		Ĭ	X	46 NXR F25A3	8 XX	23 NXX 228A3	NXX 0	32 0A2 216A3	32 OA2 216A3
		LAB		41 NXR F25A3	6	60	23	100	32	32
			1			0		ហ	•	-
		200 S	191	52	240	270	134	195	8	5

			VEHI	CLE	VEHICLE DESCRIPTION	RIPT	NO				WEATHER	œ		ပ်	TANE	3	JER A	OCTANE NUMBER REQUIREMENT DATA	EMEN	ă				¥¥.	TANK FUEL INFORMATION	ŽI.		MTIO	z	i
		1 1 1 1 1 1 1	!	1 1	! !	! ! :	•		! ! !		! ! !) ; !		, 	¥	MAXIMUM	_		PAR	1	. 7= 1	<u>.</u>						TE	æ	
			w				SPARK ADVANCI	주 ਨ ਜ					1) 1 1 1	•		 	1	! ! !	9) !				Z	ان : ط 2			:
08 NO	NO NO	MODEL	Z U ⊢	SEN	S.	∢ ⋈ 않			ODOM MILES	폴프		₹	- m -	-0	> C W - I K	₩ 4 &		>		M 4 5	2		T E X	RES	Z X	+Z+	- 6 m m ≪ ≪	M.	I	>
102		6 0A2 216A3	: LL.	2	0.0	· >	+16 +10	' -	8705	73	30.09	02	. 604	88 88 60 00 00 00 00 00 00 00 00 00 00 00 00 0	. .		1400	444	0.88	, 6	1400	8	. Z	97.2	, 6 0	. 6	ı J	! !	! !	! !
236	6	46 0A2 216A3	•	z	o .	+	Y +10 +10	_	12550	47	29.15	8	w ~ 4	90.08 90.0 0.0	XXX SEE	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 2000 2100	0.00					-			Z				
329	7	7 0A2 216A3	u.	Z	o	+	Y +10 +10	_	18173	72	30.23	8 13	w w 4	93.0 94.0 92.0	7XX CSE	3 25	1950 2500 2400	0.00	93.0	က	1950	2.0	Z F	8 .	82	⋖ •	დ ჯ	2500	0	o.
102	32	32 0A2 216M4	u.	z	O .	+ >	+ 65	6	18366	70	29.54	SS S	© 01 €	88.0 86.0 88.0	XXX FEF	444 664	1500	0.00	88 . O	₹	1500	0.	z	91.8	83	z 0.				
103	32	32 0A2 216M4	u.	z	o.	*	+ 65	80	7780	92	29.27	52	ω ω 4 α α α	93.0 91.0 0.19	XXX	644 554	1500	000	91.0 4	•	1200	2.0	2	8.18	83	2	ო ¥	6		0.5
168	w	6 0A2 216M4	4	z	0.6	>	+ eo	•	12169	79	30.04	6	ω ω 4 α. α. α.	90.0 89.0 89.0	XXX	4 4 4	900	444	90.0	4	1800	8 .	-							
w	58	29 0A4 216A3	4	z	O.	+ >	V +14 +14	-	10695	70	30.07	iù eò	w 4. 4. ∞ 9. 9. 9.	95.0 94.5 95.0	X X X E E E	6 6 6 5 1 1 1	1000 1100 1150	444	95.0	က	100	9. 0	-			⋖	κ	1 00		4.2
8	4	0A4 216A3	<u></u>	z	0. 0.	+ >	+14 +1	•	5302	79	29 . 32	102	6 6 4	888 0.0.88 0.0.0.0	XXX Ess	2 5 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1850 1850 2050	4.00	87.0	က	1350	2.0	z -	97.2	e L	Z.				

1	1		EH	2	VEHICLE DESCRIPTION	SCR	IPT	No.	:	,	ļ	WEATHER	E R	!	1	2	OCTANE		UMBER	NUMBER REQUIREMENT	UIREI	EN :		DATA		•	;	TAK.	FUEL		M	A	INFORMATION	*	:
MODEL	;		MEOF :	KAK	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		X X	SPARK ADVANCE AS AS RCD TST		ODOW	APE	BAR		HUN		58	Z ->		I 🕰 I	AM .		PART OCT NO		THROTTLE			OBXZXI	OCT RES	;	ON LON	ZHZHI	GMAKI	RATER	-	≥ .
41 DA4 216A3	BA3		ပ	z	o		÷ >	V +14 +14	4	6178	47	30.05		8 8 8 2 4		93.0 0.0 0.0	XXX	000 222	60 81 00 80 00 81	 ev rev rev		Ľ.									6	м С	1800	8	ř.
5 0A4 216A3	8A3		L	z	6		÷ >	V +14 +14	7	7161	20	30.30		52 2 4		92.0 93.0 92.0	XXX	000 222	1300 1350 1900	0.00 0.00		91.0	es es	1300	•	0	>	93.	.2 82	8	e	e ~	1350		9.0
5 0A4 216A3	BA 3		14.	z	O.		÷ ≻	Y +14 +14	4	5898	07	30.00		54 8 4		97.0 98.0 94.0	XXX	ოოო გ.გ.გ.	1700 1850 1800	3.00	97	7.0	ო	1700	7.0	0	Z	93.	.0 82	4.	¥	ຕ ~	2100		B. 0
32 OA4 216A3	BA 3		L	z	o		÷ ≻	Y +14 +14	4	10968	20	29.68		50 8 2 4		91.0 90.0 89.0	***	0 0 0 4 4 4	1300 1300 2400	0 0 0 0 0 0 0 0 0		0.10	m	1300	8	<u>.</u>	z	8	.9 82	e. 6.	6	<i>m</i> ✓	1300		2 .0
32 OA4 216A3	6A3		L .	z	67		÷ ≻	Y +14 +14	7	8642	20	29.34		6 6 7 4		90.0 90.0 89.0	XXX	999 888	1300 1850 1800	2.0 8.4.4		90.0	m	1300	m	6. L	Z	.	.3 82	2.5	z				
6 0A4 216A3	6 A 3		L.	z	6		÷ ≻	Y +14 +14	4	7320	ស	29.65		28 2 4		94.0 94.0 93.0	XXX	000 E E E	1500 1500 1900	8 8 8 8 8 8 8 8 9		93.0	m	1500	e,	eo 									
6 0A4 216A3	6A 3	_	u_	z	6		+ -	Y +14 +14	-	7144	80	30.20		33 8 4		92.0 91.0 92.0	***	000 EEE	2000 2000 2000		60 00 2	- 0.	6	1900	m	o T									
6 0A4 216A3	BA 3		L	z	6		÷ -	Y +14 +14	*	6540	82	30.11		70 2 4		94.0 95.0 93.0	***	0 0 0 E E E	1200 2200 1200	-0-		94.0	m	1200	2.0	0									

					E-27					
;	1	2	.		o. 3			9.0		
TANK FUEL INFORMATION	RATER	RPM	1450		3800			1600		
MA:	2	७ ■ ◆ ₹ ;	m		N			4		
8	!	2	¥		¥			¥	_	_
2	i	ZHZHI	80	Z	⋖	Z		∢	Z	Z
إي		NO N				82.8			86.6	
\frac{1}{2} \cdot \frac{1}{2}					88 73	ώ Ο			œ 	
¥		OCT RES			. 8	93.0			97.1	
¥:		0 2			5	Ø			on .	
		037571			Z	Z	_	_	Z Z	_
į	i		-	_	-	_	•	o. -	ė _	0
! !		≥	. 0	3.0	2.0		.	e.	e.	3.0
	—	! '					0	•	•	មា
¥.	ZQ.	RPH	1300	1400	2050		3400	1900	2000	1825
DATA	F	G M A CC I		د	6		4	4	*	4
¥	ART	! .					ò		o.	ru.
	Z	0CT	91.0	86.0	90.0	11.	91.0	0.66	93.0	80 50 70
REQUIREMENT DATA	1	, ,						00-	444	000
쮼	t	} }	<u> </u>	000	0.00 6.4.6	000	000	9.00	000	0.00
	!	: ·					000	000	000	999
OCTANE NUMBER	3	R PR	1500 1350 1550	1500 1300	2750 2650 3150	2150 2150 2150	3400 3400 2000	1900 1900 1600	2000 2800 2100	1700 2100 1850
3	MAXIMUM	GM4K;	666	666	888	444	444	444	444	444
<u>د</u> س	¥	FIE	III	IZZ	III	ZII	• • •	O O X	III	III
ş	<u> </u>	ZHHEW	XXX	\times	***	xxx	***	***	***	XXX
2	į	52	92.0 94.0 90.0	87.0 88.0 87.0	94.0 94.0	90.0 91.0 89.0	91.0 90.0 90.0	99.0 98.0 91.0	94.0 96.0 94.0	87.0 86.0 86.0
		9C1	9 9 9	88.8	9 9 9	စ် စ် စိ	6 6 6	6 6 6	ல் 6 6	es 60 60
	ì	FDMT	60 4 4	664	60 64	604	w 4 4	6 G 4	664	W M 4
	1	HUM !	53	20	10	69	51	8	24	50
2	1		60	-	0	4	ø,	<u>=</u>	6	ø
WEATHER		<u> </u>	29.66	io.	30.40	30.04	29.29	29.9	30.53	70 29.38
ÆA	:			59						8
_		AMB	70	70	71	7.	70	70	52	2
	1	ZV.	-	រោ	7	φ.	7	Ξ	8	Ξ
	!	ODOM	108 1	1785	8777	6236	040	23831	8828	10341
	i		2	-			-		10	-
	-	SPARK ADVANCE AS AS RCD TST	+14 +14	+14 +14	+14 +14	+12	+14 +10 10407	+15 +15	t.	Y +10 +10
Š		SPARK ADVANC AS AS RCD TS	₹	4	•	+ 12	4	1 0	+ 15	5
I	-	SP ADV	Ŧ						+ >	÷
<u> </u>	:	∢∺α :	Z	>	>	>	>	>		
DESCRIPTION	;	2 2	O.	O .	O.	O. 69	0.6	O.	0. 6	O. 60
	1		o	5 1	<i>0</i> 1	<i>0</i>	3 ,	.	•	•
VEHICLE	i	KNK	Z	z	2	z	z	Z	z	Z
I	1	M 2 0 F	L	L .	L	Ų	I 4.	L	L.	L .
>	1	. !	9	8	9	ស្	សិ	ស៊ិ	ē.	Σ.
	:	MODEL	16 /	1 9	16/	<u>o</u>	9	F 16M5	F 16M5	<u>5</u>
	i	MODEL	N	~	7	~	7	IC	E.	in.
	!	, ,	0A4 216A3	0A4 216A3	7 0A4 216A3	0 A 4	0 A 4	0 A .	0A5	OA
		92	_	28	~	41 0A4 216M5	32 0A4 216M5	29 OA5	Φ.	28 OA5 F16MS
		LAB			_				4.	
		SEC	257	285	330	9	5	7	172	286
		0	.4	/4	• • •					

	3								
INFORMATION	RATER	1							
A .	S H A K	1							
Z.	ZHZH	2	Z		z		z	z	z
	8 N	1 1 1	98.0		83.0		e.	83.0	
FUEL		i					3 82		
TANK	OCT	i !	97.2		90.3		91.3	91.2	
F.	03727	i 1	0		z			z	
			-	-	-		-	-	-
	<u>u</u> ≥	9.0	2. 5	.	÷.	.	. 8	4.0	
	1 N	1800	2400	1700	1600	2000	1925	8	
DAT	¥ ~ ~							4 1400	
Ę	A A A A	· •	e 0	•	•	e 0	e 0	•	
REME	PA PA	87.0	88 0.0	93.0	86.0	88.0	88.0	87.0	L.
OCTANE NUMBER REQUIREMENT DATA	}	000	444	7.00 7.00	000	0.00	0 0 0 0 0	0 00 88	0.0
BER F	RP R	1800 1750 1750	2000 2000 2400	2100 1800 1800	1600 2600 2000	2000 1700 2100	1800 1925 1800	2400 2600 2100	2750
3	MAXIMUM T G T E H A R R R		ห์หัห ๓๓๓	2 - -	# # # # # # # #	8 - K	200	8 5 6 9 9 9	9 10
2	XX -IX	EEX	III		III	ZIZ	XXX	III	x :
CTA	_ Z->@w	i 000	N O O	000 XXX	000 XXX	000 XXX	000 XXX	000 XXX	> 0 0
•	59	88 0.09 0.00	88.5 89.0 87.0	9 4 0 . 4 0 . 5 0 . 5	86.0 87.0 86.0	88.0 89.0 87.0	90.0 90.0 89.0	88.0 87.0 86.0	0.06
	. E	500 500 500 500 500 500 500 500 500 500	E 64	6 4 4	ω ω ω 4	4 604	# 6 4 4	∞ ພ ທ ∢	ი ი ლ
œ	NOT .	1	29.80 101	<u>r</u>	N C	28.90 104	40	S.	89
WEATHER	BAROM	29.29	8	29.62	29 . 54	8.	30. 17	29 . 13	29.97
WEA				29		78			
	AMB	5	78	70	70	.	7.4	7.1	83
	ODOM	9540	6082	6912	2045	9712	9314	8825	3942
	; -	1			-				-
7	SPARK DVANCE AS AS	÷	+	63 +	7	+ 10	+ 10	+20	+10
T I O	SPARK ADVANCE AS AS RCD TST	. 	x 0	+ •	+12 +10	+10 +10	+ 10 + 10	+20 +20	Y +10 +10
RIP	4 H &	· >	Z	>	>	>	>	>	>
DESCRIPTION		0.0	o	o .	en.	6 0 (9)	6 9	₹	89.
	1	, 6	O)	이	€0	æ	∞	∞	60
VEHICLE	C KNK	2	Z L	Z L	Z «	Z	Z L	Z	Z
VE	1 ! !	1						•	
	MODEL	16M	23A:	23M	450M5	238A3	33A;	F50A4	38 A 🌣
	₹8	0A5 F16MS	OBA 123A3	0BA 123M4	Ī	e 6	= ×		3
	i 		80	8	H80	083	26 OCX 133A3	00F	41 OD3 238A3
	LAB	, 60 , 74	8	32	32	ø	26	32	
	SBO	287	173	107	80	174	302	109	50

I			≩							6	0 8:
INFORMATION	RATER	 	RPM							1900	1700
MATI	ž	. G L								2	2
8		Z ->								×	¥
Z		Z F	12F		Z		Z	Z		Δ.	•
UEL	 	9	10		82.7			80 10 1		8 2.8	82.6
TANK FUEL		120			93.0			9 .06		. e	4.
Z	! !		1 = 1					on .			
		~ = = = = = = = = = = = = = = = = = = =		-	1 0	-	-	-	z -	Z	Z
	W		¥ :		1.7	4 .0	හ ග		. 0		
٤	THROTTLE	; b l	RPM		1900	1500	1900		1200		
Š	E		,			e €	6 1		e €		
¥	PART				e 0						
REME	¥ d) ! !	1 2 3 3	L.	91.0	93.0	78.0	ı.	90.0	N.	<u>.</u>
OCTANE NUMBER REQUIREMENT DATA	• • •	:	≩	000	ក ក ក ស ល ស	004	 R R R	444	000	000	0 0 0 Ri Ri Ri
BER I	3	: ! !	M d	1700 1800 1800	1800 1900	1500 1500 1600	2000 2000 2050	000 000 000	1200 1200 1200	1850 1850 1850	1600 1600 1800
ş	MAXIMUM			444	000 	666	888	000 	666 444	444	444
¥	Š			222	FFE	Q & Z	XIX	III	•••	* = 2	III
T.		Z ->	_	***	XXX	***	***	***	***	***	XXX
8) 	!	50	90.0 91.0 89.0	91.0 91.0 90.0	93.0 93.0	79.0 80.0 78.0	92.0 93.0 93.0	90.06 89.0 88.0	91.0 91.0 90.0	90.0 90.0 90.0
	1 !	! !	ירה: בס	® ® ®	0 0 4 0 0 0	0 0 0 0	6 4 4 F 8 F	യ യ യ	ω ω 4 . Ψ ∞ ∞	୍ ଜର ଜର ୍	0 0 0 0 0 0 0
	!		E :	n 4	73	9	6	20	រព ព	4	27
ÆR	!			<u>o</u>	ις.		2	2	o.	60	g
WEATHER	;		¥ ;	30. 10	30 . 25	29.84	29.22	.		6.	29.06
¥	:							70 29.63	70 29.20	70 29.28	0
	<u>.</u>		A AMB	20	77 0	88	77 6				0,
	i 1		ODOM	10685	8400	6720	6219	4870	10248	4785	9421
		¥Ş Ş		+10 +10	9	9	9	+12 +12	+ 12	+10 +10	+10 +10
Š	1	SPARK ADVANCE	1	9	<u>o</u>	9	+12 +10	~	2	9	<u>.</u>
IPT			I AS	÷ >	V +10 +10	V +10 +10	+ >	+ ≻	Y +12	+	∓ ≻
SCR	;		ر ا به	ø	•	60	60	•	60	100	
90	}			∞ ⊙	8 0.	6 0	80	6 0	60	60	.
Ä	į		SEN	-	_	_	_	_	_	_	_
VEHICLE DESCRIPTION	1	w :	Z () - :	Z L	Z u.	Z L	Z L	Z L	Z L	Z L	Z L
>	į		;	A3	A3	A3	A3	A 4	¥	A 3	A 3
	1		MODEL	238	238	238A3	38	238	238A4	133	133
	1		₹ 5	003 238A3	0D3 238A3	8	ε. 	8	8	*	0EX 133A3
	;		1		5	003	46 OD3 238A3	32 OD3 238A4	32 003	32 DEX 133A3	8
			8 2 S	ស	€	Ø					32
			08 S	78	175	176	237	110	11	112	113

1	1	A		6						
TANK FUEL INFORMATION	RATER	MPM		2100						
\$	2			N						
10.	ł	2 H > 4 W	_	¥	_			z	z	z
E (•	ZHZH	z ••	⋖	Z	Z		_	•	nu.
필:		NO N	82.							2
			o.							īŪ.
3		OC.	6							20
•		OBYZXI	>		2					>
,	,	ういほしょ	ro 	-	20 T	-	9	2	<u>.</u>	o.
1	<u> </u>		=		ต่		Ö	4	9	က်
DATA	6	RPM	2200		1750		2000	1250	1250	1250
	F	G m < 5€ ;	m		m		m	6	•	◀
	PART		91.0	L	7.0	L.	69.0	88.0	O .	90.0
REP	-	50 8	6		87				80	
REQUIREMENT		≩	44.4	000	0.04	0 0 0 0 0	444	 10 10 10	0.0	0 × 0
	_	M d	2150 2050 2100	2000 2100 2050	1850 1850 1600	1600 1600 1600	2000 2000 2000	1300 1350 1350	1250 1300 1200	1250 2500 1250
OCTANE NUMBER	; ≩	1 1	888	222	226	222	888 000	000 222	444	404
Z	X	P T R .	222	EEE	222	# # # # # # # # # # # # # # # # # # #	3 R 2	XXX		4.2.4
¥	-	Z->4	***	***	***	***	~ × × ×	****	X X X	X X X
	,	128	92.0 87.5 88.0	95.0 98.0 94.0	88.0 91.0 87.0	87.5 89.0 86.0	89.0 89.0 89.0	86.0 88.0 82.0	88.0 87.0 86.0	90.0 86.0 87.0
	!	; 5 ;						w 44.	© 44 □ □ □ □	ω ω ∢
		まった ひをしょ	53 4	37 3	65 2 4	61 8 2 3	<u>π</u> ε α 4	69	68	0g
œ	! !	HUM					115			
WEATHER	† ! ;	BAROM	96	30.31	30.22	30.02	29.84	29.98	30 . 0 6	29.57
WEA	1		29							
-	1	AMB	6	80	72	70	80	74	70	20
	•	ODOM	7379	11609	13056	21297	10437	17128	12817	9640
	}	81	7.	=	1 3	2	Ď	17	12	6
	•	SS EE	5	5	12	5	5	5	+ 12	+12
8	į	SPARK ADVANCE AS AS RCD TST	+10 +10	V +10 +10	+12 +12	Y +16 +10	Y +10 +10	+12 +12	Y +12 +12	Y +12 +12
DESCRIPTION	į	-	-	+	÷ >-	*	÷	÷ >-	+	<u>+</u>
<u>R</u>	;	≪∺ ₩;								
OES	;	e i	6 0	85 90	∞	6 0 60	∞	8 9	8 0	8
Ä	-	KNK		_	_		_	_	_	_
VEHICLE	!	ことが	r Z	Z	Z	≵ ∪	Z L	Z L	Z	r Z
VE	1	}					ю		4	
	-	MODEL	0EX 133A3	OEX 133A3	238A3	238A3	OE3 238A3	238A3	238A4	38A
	i F	MODE	ï	¥	ю Ю	, M	6	6 6	3	9
	į			0E)	29 OE3	41 DE3	OE;	0E3	0E3	32 OE3 238A4
		LAB	32	60	29	7	w	60	5	32
		NO NO	<u> </u>	258	on.	ពី	177	259	œ	51.5
		-								

) 	\(\)		6. 10			0.		6	
TANK FUEL INFORMATION	RATER	! ! !	RPM	i i i	400			400		2250	
7		<i>'</i>	14 K	ı	₩			₩		84	
N.		ZE	- 2 -	ı Z	4	z	z	6 0 *X		∞ ¥	z
-			_ ; _	. 48	82.7			82.6		83.0	82.6
FUE					82						8 2
ž			RES	8 · O	9 3. ↑			91.2		92.2	91.3
7			,	ı		_		cn .			o n
1	; ;	O 3 :	3 M J X X X	Z -	-	Z -		-	-	Z	-
		;	>	0	3.0	0.	3.0		9. O	2.0	4.
į	1					e -					
Y.	PART THROTTLE	, 	RPM	1350	1300	2800	1400		1650	1150	89.0 4 1100
۵	=	ı	4 8	•	•	4	4		4	4	•
EN	PAR	; !	-0	87.0	95.0	84 . 0	88 0.	L	92.0	90.0	0.
IRE	_	į	8-	1			ä	_		6	
EQU		! ! !		0 6 6	0.00 0.80	2.2.2 ខេត្ត	000	0.0 %	0. + 0	0 0 0 0 0 0	8 B B
OCTANE NUMBER REQUIREMENT DATA		! ! !	RPM	1350 1300 2650	1300 1300 2300	2800 3100 2500	1450 1400 1400	950 950 1400	1650 2500 2000	2200 2400 1800	1150 1150
	MAXIMUM	<u>.</u>		* -				_			
M.	AXI	•	-IK W K K		4 4 W	000 EXE	1 1 1 4 4 4	E E E	7 3 2 4 4 4 4	2 Z Z Z	2 2 2 6 6 4
₹	.	Z H			***	***	***	***	***	***	***
8		! !	<u> </u>	87.0 86.0	95.0 96.0 91.0	84.0 86.0 82.0	90.0 90.0 90.0	91.0 93.0 88.0	92.0 94.0 90.0	93.0 93.0 92.0	90.0 90.0 89.0
			0	•							
	' 	.	HON I	. 60 60 60 60 60	75 3 4	104 3	50 2 4	56 3 4	59 8 4	64 4	124 2 4
ER.				ı 6 0	Ļ		eg .		-		
VEATHER	;		BAROM	29.68	30.27	29.30	29.53	29.77	30.41	29 . 35	29.97
¥	:			1 0	7.9.3	74 2	70 2	68 2	70 3	77 2	87 2
	! ! !			1							
	!		ODOM	11156	17384	7661	15266	4823	9104	6726	6865
	l 1						4.			_	_
z		SPARK	1	+12 +12	Y +12 +12	+12 +12	+ 12	V +12 +12	+ 12	+20 +20	Y +20 +20
TIO	:	A S	AS	+12	+12	+12	+12	+ 12	œ +	+20	+20
RIP			< ∺ «	>	>	>	>	>	>	>-	>
VEHICLE DESCRIPTION			Ċ ĸ	60	8 9	150 60	8 9	9	89 99	40. 44.	æ. 4.
m	į				•	•	•	6	40	•	₩.
101				Z	Z	Z	Z	Z	Z	Z	Z
VE			Z O F	1 1			i.	L.		i.	L.
	1		<u> </u>	18A	8A4	844	238A4	8A4	8A4	F50A4	0A4
	!		MODEL	53	23	23	23	23	23	r.	ř.
	;			OE3 238A4	0E3 238A4	0E3 238A4	0E3	OE3	7 OE3 238A4	OFF	OFF
			RO S	32	60	6	8	26 OE3 238A4	7	4	26 OFF F50A4
			-	1	æ				Ξ.	37	
			0 Z	1. 16	178	238	288	303	331	e	304

						E-32	•				
			≩	o :					2. S		<u>.</u>
2	RATER		RPM	1500					2000		1650
3	2	69 111 a	,	6					8		6
2		2 → > 0		¥					¥		¥
INFORMATION	;		2 1- 1	⋖	z	z		z	2	z	•
UEL		2	Ē					82.			82.
TANK FUEL		OCT	RES					93.0 82.7			92.0 82.1
¥	! !	03¥						or ≻			
	: 	FD	, <u></u> 1	-	-	-	-	-	<u>.</u>	- 10	0.
	, ,		₹ ;	•			r o 0	λυ Ο	4	₹	m
DATA	PART THROTTLE		MPM :	1650			1900	2300	1850	1650	1700
20 ==	1		< E	e			m	m	ო	e	e
ENE	PA		52	93.0	•	11 -	87.0	98 0.0	92.0	80 · 0	89 O
REQUIREMENT		, l l	≩	0.40	80 80 80	444	6 0 0 0 0 0	n n 0 0 0 4	2, 2, 2, 10, 10, 10,	0 # V	0 0 0 0 0 0
Æ	_		M !	1650 1750	2400 2400 2400	2100 2100 2100	1850 1900 1900	2300 1800 2000	1950 1950 2000	1950 1800 1950	1700 1850 1700
3	MAXIMUM		•								
Z	Z		< ≪ :	6 6 Z	000 222	222	202 202	# # #	000 222	8 C E	6 6 6 6 6 6 6 6
Ž	3	1		***	***	***	***	***	XXX	***	XXX
ğ		1	-0:	000	000	000	000	000	000	000	89.0 91.0 87.0
J			2	93.0 90.0 90.0	88.0 89.0 87.0	91.0 9.0 0.0 0.0	87.0 89.0 85.0	96.0 97.0	92.0 94.0 84.0	90.0 92.0 86.0	89 10 10 10
	i	W 3	2 ·	60 M A	e 6 4 4	m 6 4 4	₩ 604		10 60 0 €	6 4 4	# 6 4 4
			₹ :	83	27 2	8 78	a A	7 7 7	98	80	48 7
WEATHER	į		BAROM	30 . 32	30.08 30.00	30 · 08	83	29.82	29.62	29.75	30.07
Æ	1						29				
			E SE	27	72	7	70	7.4	70	7.	80
	}		DDOM	6555	8687	9075	8945	1924	9709	6103	8146
	; !		3	•	***			-	_	-	-
종			AS AS	+10 +10	Y +10 +10	8 +10	Y +10 +10	+10 +10	Y +10 +10	Y +10 +10	V +10 +10
PTI	!		GZ 1	>	7	+	7	-	7	Ŧ	Ŧ
DESCRIPTION		<	# & ! & :			> 0					
	!		X Z ,	9	6	6	o o	6	o.	.0	O. Ø
VEHICLE	1	w 2	SEN SEN	Z u.	2 U	Z U	Z L	Z L	Z L	Z L	Z u
VE	-		1								
	:		MODEL	22 A	22A	22A	22 A	222A3	22A	22A	22A
	1		200E	Ñ	Ä	Ä	7	,; ,;	8	6	
	1		}	29 PKC 222A3	41 PKC 222A3	41 PKC 222A3	PKC 222A3	6 PKC	8 PKC 222A3	PKC 222A3	26 PKC 222A3
			Z S	29			ហ	ø		∞ .	
			08 P	•	8	47	74	157	253	254	30

	1		EHICL	VEHICLE DESCRIPTION	CRIP	TION			3	WEATHER	æ	Ì	8	CTAN	7	UNBER	OCTANE NUMBER REQUIREMENT	UIRE	MEN		DATA	!	;	¥ ;	¥!	FUEL 1	NFO	INFORMATION	NO	
1) ! !	 			 					,			MAXIMUM	5		1	PART		THROTTLE	<u> </u>					į	MA :	RATER	}
			w 3			SPARK ADVANCE	* <u>A</u>					L :		Z ->	9 4					G u			<u>.</u> :	022	1	5	Z ->	6 n		
MODEL			C KNK	¥ Z :	4 m æ 1	AS AS RCD 1ST		ODOM MILES	A P	BAROM	₹;	, , r. m.c.	200	- G. W :	- Z & .	5	¥ ;		20 SCT		RP H	≩	. r. m.c.	; = ;		2 5		- i	RP :	2
7 PKC 222A3	2A3		Z	o .	>	+10 +10		11570	92	30. 14	99	₩ ₩ 4	88 8.0 20.0 0.0	***	34	2450 2500 2500	0.00		94 .0	6	2450	.	-							
PKC 222M4	2M 4		Z	O.		Y +10 +10	•	15833	8	29.77	- 64	w 44	100.0 # 0.0	0 0 XXX	0 0 Z 4 4 4	1800 1700 1300	440		100.0	4	1800	€.0	-	ø 0	4. 4 B	84.1	¥	4	2000	4 .0
31 PKG 222M4	2 <u>H</u> 4		r Z	6		N +10 +10		5757	72	29.10	112	₩ W W	88.0	×	о Т	000	-	8 0,	84.0	6	1000	4 .0	-							
31 PKC 222MS	2MS		Z	6		Y +10 +10		8252	80	28.80	108	₩ 62 44	84.0	¥	Z	1000	#. #.		84.0	•	950	₹	-							
PLC 222A3	2 × 3	_	Z	o.	>	+10 +10		10413	6	30.32	ະນ ອອ	w w 4 4	98.0 89.0	7 X X	E D E	1800 1700 1800	~ 4.0 Rive		96.0	m	1600	A. Ni	-				¥	# ₩	1500	iv
PLC 222A3	2 A.		Z	6		Y +10 +10		6434	73 ;	29.30	99	₩ ₩ 44	94.0 96.0 90.0	2	T T Z	1700 1750 1800	44-	9 0 N	9 . 0	ო	1100	€.0	-	a Z	 8	82.6	¥	e =	1850	•
PLC 222A3	2 ×	м .	Z L	o 6		Y +10 +10		15049	8	30.08	∓	₩ M 4	97.0 H 92.0	***	4 4 A	2200 2200 2200	0.00 0.00 4.		97.0	က	2200	6 .0	-		9 3. 4 B	88 60 81	¥	6 6	2200	ro O
PLC 222M5	<u>2</u>	10	Z L	6		N +10 +10		8463	80	29.84	10	6 4	91.0 96.0 89.0	***	0 0 Z 4 4 4	2000 2000 1700	2.00		91.0	•	2000	7.0	-	o Z	83.55 83.55	84. 8	a	∓	1800	99

		! ! !	<u>¥</u>	0.7						6	
INFORMATION	RATER	i f i	A A	2300						4000	
3	2		; X X F	6						e	
200		Z ->		¥						¥	
		2	4 Z F :	<	z		Z	Z	2	⋖	Z
_			1 - 1							ب	
FUEL		9								80	
¥		į	اماز	,						.	
TANK		•	ES ES							92	
_	i	033	. Z Z i							0	
	1		ירהנ	-	-	-	-	-	••	-	-
		<u> </u>	≩ :			0	3.0	9. 0.	0	0.4	•
	THROTTLE					e			ın		~
•	ō	•	M I			2700	2100	2150	2000	1900	1800
M	THROT	;	2 ;								
=			u < œ :			en -	e •	e •	e •	4	4
¥	PART	i	52	<u>. </u>	L.	0.68	84 . 0	84 .0	87.0	92.0	0.88
E		i	• ;						60	o o	
OCTANE NUMBER REQUIREMENT DATA		!	}	0.7 0.7	000	000	000 ໝີໜີໜີ	0.00	10 to 10	4.6.4	O O O N N N
2		;	•								
36	_	!	RP	2500 2300 2300	3250 3250 3250	2900 2900 2800	3150 3100 3000	2300 2300 2200	2400 2400 2000	1900 3800 1800	1850 1950 1700
3	MAXIMIM	i !	'								===
Z	AXI			000 EEE	N N N	222 222	8 E E E	000 222	000 222	Z Z Z 4 W 4	111
ž	3	Z ->		***	XXX	$\times \times \times$	XXX	***	***	***	XXX
짇		;	E 0 1	o ru o	88 89 0.0 86 0.0	90.0 91.0 89.0	87.0 88.0 86.0	86.0 88.0 85.5	89.0 90.0 86.0	92.0 94.0 91.0	90.0 90.0 90.0
		1	58	95.	80 80 80 80 80 80	00 00 00 00 00 00 00 00 00 00 00 00 00	88 88 86	8 8 8 8 8 8	8 0 8 0 0 8	92 94 91	8 8 8
	•	<u>.</u>		6 4	6 W 4	n u 4	60 M 4	6 6 4	6 G 4	W W 4	664
	! !		Ĭ:	6	67	75	23	S S	20	9	S S
æ	<u>.</u>			on .	60	60	-	10	0	60	~
Ħ	!		BAROM	30 . 29	30.08	30.16	.31	-	.30	30 . 26	. 32
WEATHER	į						29	70 29.18	28		29
	! !		AMB	70	72	78	72	20	70	63	70
	!			ğ	ŗ.	o o	œ.	<u>o</u>	រេ	6	=
			ODOM	17802	15197	0649	6456	10449	106 15	14 19	17701
	!		24. 1	-	=	_	•	=	=	-	-
		χŽ	AS TST			60 +				60	
8	:	SPARK ADVANCE	1 _			60				80	
E	; ; ; ;					+				+	
VEHICLE DESCRIPTION	!	•	< = 2 :	>	>	>	>	>	>	>	>
ES	;			₩.	€ 0	60 .	œ,	∞ .	∞ .	₩.	® ,
	:			60	∞	60	60	∞	80	60	60
5	į		SEN	z	Z	Z	Z	z	z	2	z
Ξ	! !	w :		L .	ပ	L.	L .	4	L	<u></u>	L
>	i 1		. :	Ö	9	g	eg.	e	rg.	<u>ι</u>	<u>u</u>
	, ;		MODEL	Ž	<u> </u>	4	7	4	4	4	‡
	!		3 8		<u>u</u>	L.	L .	L .	L.	L.	L
	, ,		;	RAG F14A3	RAE	RAG F14A3	RAB F14A3	RAE	RAE	RAG F 14M5	RAG F14MS
			S S	58	41 RAB F14A3	6	6 0	28 RAG F14A3	28 RAB F14A3	6	28
							_			_	
			OBS	N	₹.	25 25	251	281	282	156	283
			- '			•	••	••	**	-	.4

			>	<u>u</u> !	VEHICLE		DES	22	DESCRIPTION	NO.		1		WEA	WEATHER	1		50	TAN	Z	OCTANE NUMBER		REQUIREMENT DATA	EN	DA	ITA			1	TANK	FUEL	INF	DR.	INFORMATION	2	;
SPARK E ADVANCE M A MODEL C KNK I AS AS CODE T SEN C.R. R RCD TST	C EN	C EN	C EN	KNK SEN C.R.	C I I I I I I I I I I I I I I I I I I I	∢∺ « ·	∢∺ « ·		S S S S S S S S S S S S S S S S S S S	24:22		ODOM	AMB		W !	H	#3#1	00.T	S->CH	MAXIMUM T G T E H A A R R R	RPM) N	. 0 ;	PART OCT NO	T GMAK	PART THROTTLE	<u> </u>	アリミシュ	0>XXX:	ES SC	N N 1	ZHZHI	Z->0m4K:	RATER	·	≩
40 RAG F14M5 A N 8.8 N	© © 22 ≪	© © 22 ≪	© © 22 ≪	50 60 22	60 60			_				9020	‡		29.76	2	6 2 4 9 9 9	95.0 96.0 92.0	XXX	8 E E	3800 3500 3000	000	000					-				, a	ო ჯ	3500		0.0
40 RAB F14MS A N 8.8 N	2 2 4	2 2 4	2 2 4	60 60 2	&			_				22500		60 29.98	86	6 4 4	6 9 9 9 57 52 52 52 52 52 52 52 52 52 52 52 52 52	93.5 97.5 92.5	***	* * * * * * * * * * * * * * * * * * *	2000 2000	000		92.5	•	2400	ю 0.	-				¥	ω	4200		0.0
29 RC5 242A3 F N 9.2 Y + B + B :	242A3 F N 9.2 Y + B + 6	F N 9.2 Y + 6 + 6	F N 9.2 Y + 6 + 6	N 9.2 Y + 8 + 6	9.2 Y + 6 + 6	9 + 8 + ≻	9 + 8 + ≻	69 + 59 +	(0)	0	• •	20000	70	59	. 92	8 4 4	42 94 94.	94.0 97.0 94.0	XXX	0 0 0 E E E	1350 1850 1600	000	82 88 82 42	o :	m	1700	6	-	•	92.7	84 .0	⋖	⊼ ω	1600	v	0
RCS 242A3 F N 9.2 Y + 6 + 6 2	242A3 F N 9.2 Y + 6 + 6	F N 9.2 Y + G + G	F N 9.2 Y + G + G	N 9.2 Y + G + 6	9.2 Y + G + G	9 + 9 + >	9 + 9 + >	99 + 99 +	6	œ	Ř	20674	70		30.10	6 4 4		91.0 92.0 89.0	***	000 222	1500 1700 1500	000		ic.				-				40	ო ¥	1500		s .
SGF F50A4 F N 8.4 Y +20 +20 1:	F N 8.4 Y +20 +20	F N 8.4 Y +20 +20	F N 8.4 Y +20 +20	N 8.4 Y +20 +20	8.4 Y +20 +20	Y +20 +20	Y +20 +20				=	13682	02		29.32	50		87.0 89.0 87.0	XXX	000 EXE	2400 2300 1500	 		86.0	4	4 1200	3.0	-	a Z	91.2	83.0	Z				
SHF F50A4 F N 8.4 Y +20 +20 1	F N 8.4 Y +20 +20	F N 8.4 Y +20 +20	F N 8.4 Y +20 +20	N 8.4 Y +20 +20	8.4 Y +20 +20	Y +20 +20	Y +20 +20				_	14600	77		30.02	6 4 8 4		93.0 92.0 93.0	***	2 2 2 4 4 4	1000 1050 1050	000		92.0	♥	000	. .	-								
SHF F50A4 F N 8.4 Y +20 +20	ж 8.	ж 8.	ж 8.	x & 4.	æ 4.			+20 +20	0 +20	50		9791	4	79	8	50 3		92.0 92.0 91.0	×××	0 0 0	1800 1700 1700	~	n. 4. 4. 9	90.0	•	1200	ක	*				Z				
41 NTLH 450A3 C N 8.8 Y + 4 + 6	8.8 Y + 4 + 6	8.8 Y + + + + 6.8	8.8 Y + + + + 6.8	8.8 Y + + + + 6.8	8.6 Y + 4 + 6	, + + 0	, + + 0	+ 4 +	ထ	ထ		9487	06	29.97	.	30 3		94.0 95.5	XXX	NNN EEE	2200 2200 2200		666	ı.				-	on ≻	92.3	83.0	<	×	2200	-	0

			VE	VEHICLE		DESCRIPTION	T10N			-	WEATHER	œ		00	ANE		ER RI	OCTANE MIMBER REQUIREMENT DATA	EMEN	T DA	¥	:		TANK FUEL INFORMATION	FL 1	N ON	MATI	3	
		4 L 1 1			; ; ;	! ! !	; ; 6	1 	i ; i 1	, ! !)) ! !			MAX	MAXIMUM		1 1 1 1 1	PA	=	PART THROTTLE	! !					RATER	E E	
OBS	LAB	MODEL	1	E KNK T SEN	<u>د</u> ن	<	SPARK ADVANCE AS AS RCD TST	NCE NCE	ODOM	AMB	BAROM	HUM	. F387:		- TE:	Q M K K I	M M	, , , , , , , , , , , , , , , , , , ,	100 NO	G M K K	M P	≩	#2#1: 0≯XXX:	DCT N	0 F	ZHZHZ:	∂ m 4 € !	#	2
152	23	23 NTSA 219M4	9M4 F	Z	80 RU	Z	60 +	© +	86 j S	5	28.75	26	© 64 4	89.0 90.0 9.0	XXX ZZZ	444	1200 1200 1200 0	0.7 0.7	89.0	◀	1200	2.0	-			z			
341	-	7 NTSB 228A3	8A3 F	Z	.	>	+12 +12	+ 12	8049	7	30.32	80	6 4 4	98.0	XXX	0 0 0 2 5 5 2 5 5	1250 1850 1250		95. 0	ო	1250	0.	-			¥	9 18	1800	æ.
53	23	23 NTSB 228A4	8A4 F	Z	80 10	>	+12 +12		10365	4	28 . 40	‡	60 04	92.0 93.0	XXX ZZZ	4 1200 4 1200 4 1200		000	90.0	4	1200	3.0	-			8	4	1200	2.0
154	23	NTSB 228M5	8MS F	Z	60 FU	>	+	œ +	44293	57	28.78	35	6 6 4	92.0 92.0	XXX ZZZ	4 1300 4 1300 4 1300		000	91.0 4 1200	;		6.	-			2 0 ⊼	4	1300	0.3
42	•	OTLA 123A3	3A3 F	z	0.6	Z	60 +	c c +	8068	78	29.16	8	0 W 4	0.00	XXX III	3 2800 3 2550 3 2750		6 6 6 6 6 6	87.0 3	რ ო	2200	8. 0.	Z ~	90.0 82.9	8. 8.	20	3 28	2850	.
126	32	OTLA 123A3	3A3 F	z 	6 0	>	4	cc +	11119	70	29.62	ů,	6 64	0.00	XXX ZZZ	3 2800 3 3000 3 2900	888	6 6 6	L			•	_						
340	7	7 OTLY 149A3	9A3 F	Z	80 50		N +14 +10	0	5036	2	30.28	57	© 4 4	93.0	XXX	3 2250 3 2350 3 2250		0.00	ı.			•	_						
321	26	26 OTMG V258A3F N	58A3F	z	6 0	>	+19 +19		10411	79	29.98	138	6 4	90.0 92.0 89.0	XXX	3 2200 2 2900 2 2900		2.00	L			•	-	92.08	82.5	z			

			>	EHIC	VEHICLE DESCRIPTION	ESCR	IPT	Š			3	WEATHER	œ		5	A PE	OCTANE NUMBER REQUIREMENT DATA	Z REQ	JIREM		DATA			2	TANK FUEL INFORMATION		FOR SE	MTIO	Z	!
		! ! !	1 1 1 1 1	, ,	! ! !	! ! !	! !	! !	 	! ! !) 		! ! !			MAX	MAXIMUM		ā	P. T.	PART THROTTLE	7.) 		RATER	œ	
				w 3				SPARK	7 H ((L=	, — ! !	ſ	G L			GM					OCT NO	_	Z->			
08 00	KO	į	MODEL		KNK	C. P.	- B	AS AS RCD TST	2 , 1	ODOM	AM :	BAROM	5 :	- ;	58	I & 1	R RPM	₹ ;	9CT		RPH	≩		1 1		1 1	• ₽ Ⅲ •	RPM	1	}
63		ОТМУ	41 DTMY 149M4	2 U	40	œ.	z			7527	22	30 · 00	72	© 4 4 © © ©	91.0 92.0 91.0	*** ***	4 1600 4 1600 4 1600	000	u.				z	_		Z				
5	I O		OVHG V258A3F	3F N		ස ල	+ >	+ 4	60	5029	75	29.90		ω 4. ∞ ω ω	91.0 I 92.0 I 90.0 I	777 322	2 1900 2 1900 2 1900	000	0.08	6 6	1650	rų eo	-							
92	v		OVMI 250A4	r Z		*	+ >	+ 40	40	10239	72	30 · 00	82	0. 4. 0. 0. 0.	92.0 1.5 1.5 1.5	777 322	4 1300 4 1300 4 1300	000	e	ni 4	1300	9.0	Z	96.8	8 86.0	z 0				
127	32	DVMI	250A4	Z L		₹.	+ >	+ &	60	5254	02	29.61	20	ω ω α α ω ω ω	92.0 H	*** * ₽ *	3 1100 3 1200 3 1100	2.0.2	2 8 8 2 9 2	0	1200	9.0	2 	93.6	8	īv. S				
128	32	32 OVMI	250A4	Z L	65	•	+ >	+ co	æ æ	16991	02	29.55	ŝ	6 6 4 9 9 9 9	92.0 H 93.0 H 93.0 H	XXX XXX	4 1500 4 1500	0.00	92.0	0 4	1350	1.2	>	6 0	€.	က အ	×	1400		2.
6	ស	C 216M4	5 M6	Z L	60	rū.	+ >	10 +	ம	32015	60	30.62	ss O	w	90.0 P	777 222	4 1400 4 1300 1400	0.00					-							
342	7	ರಿ	222M5	Z L	o n	o,	+ Z	+ so	6	6177	02	30. 10	6	& 64 € 0 00 0	92.0 P	*** *** ***	4 1800 3 1900	0.00	90.0	ó. 4	1750	•	z	8	.2 83	5. A	¥	2600		o .
213	œ	E 216A3	3A3	Z L	on .	₹.	+ >	# #	ت 1	16566	11	29.80 110		© 64 € © 60 €	89.0 89.0 89.0	***	3 2800 3 3000 3 2100	444	0.88	0	2300	4.4	-							

	- ER		RPM MV	2650 1.0		600 2.0	700 2.0	1750 0.8		1500 1.0	3300 1.8
MATERIAL TOTAL	4 H	0 w < 2 ⊢ ≻ 0	LW I	8 8 3 2	z	¥ 4	A 4	₹ 4	z	₩ ¥	A A
בר ב		2	S MOT	1.3 82.6	.2 83.0	. 83.9	5 83.5	9 82.9	93.0 82.3	93.0 82.8	3.0 82.8
				<u>.</u>	2 8 93	1 N 92	Z 6 6	1 Y 92	ö Z	ö Z T	N P
	7LE		2		2.0	2.0	2.0		0.8	4.1	0 2.0
	THROTTLE	ф m	R RPM		3 2400	₩ 800	4 850		4 1500	94.0 4 2000	92.0 4 1500
IREMEN	PART		2 S	L	87.0	0.88	96.5	L	93.0		
N REOL	1		RPM MV	222	3200 1.2 3200 1.2 2250 1.2	650 0.1 650 0.1 650 0.1	850 2.0 850 2.0 800 2.0	1750 0.8 1750 0.8 1750 0.8	1500 0.6 1900 0.8 1600 0.8	1800 1.2 1600 1.0 1500 1.0	3600 1.8 3700 1.8
OCTANE NUMBER REQUIREMENT	MAXIMIN	z + >	Z ₩!	90.0 B M 3 2600 91.0 K M 3 2250 91.0 B M 3 2150	88.0 K M 3 3200 90.0 K M 3 3200 89.0 K M 3 2250	98.0 K M 3 G	96.5 KP 4 89.0 KP 4 897.5 KP 4 89	95.0 K M 4 17 96.5 K M 4 17 84.0 K M 4 17	93.0 K M 4 15 92.0 K M 4 19 93.0 K M 4 16	94.0 K M 4 18 93.0 K M 4 16 94.0 K M 4 15	93.0 K M 3 36 95.0 K M 3 37
	1		E OCT	88 8 3 6 4 4 9 9 9 9	88 C 4. 4.	8 8 8 8 4 9 9 9	62 3 2 4 96	67 67 64 69 99	21 22 22 4 22 99	121 2 9 8 4 9	28 2.3 9.9
WEATHER			TMP BAROM HUM	85 29.95	72 29.90 1	70 30.32	70 29.82 (72 29.94 (80 29.87 1	74 29.82 1	69 29.89
			ODOM A	8484	5886	9646	7688	21974	6293	6897	6971
VEHICLE DESCRIPTION		SPARK ADVANCE	I AS AS	10 10 1 1	ru + *	> + 5 + 5	Y + 13 + 13	N - 2 - 2	មា + មា + 2	ທ + + >	\$ + \$ + \$
E DESCR			X Z I	6	4 .	4 .	₹ ø	₹	⊕	0 4.	9
VEHICL		w 3	C KNK	r S	r.	Z L	Z L	Σ U	Z L	Z	Z
1	 		MODEL	E 216A3	2 16A3	2 16M5	2 16M5	2 16M5	216M5	2 16M5	216M5
,	;		LAS NO	36	7 E	29 E	29 E	4 E	6 0 Ш	10	ю ш
			280 NO	322	343	85	9	80	214	215	218

			VEHICLE	E DESC	DESCRIPTION	NOI			WEATHER	œ	1	OCTA		MBER	OCTANE NUMBER REQUIREMENT DATA	REMENT	DATA	1		18	TANK FUEL INFORMATION	INFO	RMAT	8	ļ
		1 1 5 7 1 1				 						_	MAXIMUM	3		PAR	PART THROTTLE	TTLE	; ; ;				Æ	RATER	
			w :			SPARK ADVANCE	ш			_ •	ı	Z ⊢>	9.	 			g ı			ţ	9	2->	.		! !
OBS	Z S	MODEL	C KNK	¥ Z.	< = & .	AS AS RCD TST	ODOM T MILES	OM AMB	BAROM	¥ ;	_ Q	NOCT P	- I & :	RPM	≩	1 00	R R PK	Z	 	; 🛎 ;	_ ; ,	-Z- i	4 4 4 ·	RPM	≩ :
217	0	E 218M5	Z L	₹ 9	* Z	+ 10	5 10072	72 81	1 29.90	40	6 6 6 6 6 6	92.5 K 93.0 K 92.0 K	222 444	2400 1700	444	92.0	4 1300		10: 2	92.4	4 83.4	z			
218	6	E 216M5	Z L	6	+ 2	+ +	5 8852	52 88	3 30. 13	50	6 4 4 9 9 9	90.08 90.00 7 X X	222 444	1600 1600 1600	 • • • •	91.0	4 1500		2.0 ± ×	83.0	0 82.1	z -			
50	29 E	E 220M5	Z L	80 10	>	0	0 11579	79 70	29.97	9	6 4 4 9 9 9	98.0 98.0 7 X X	444	800 700 700	0 W O 4 O 4	0. 88	4 B00		0.0 L	. 85	න ස	89. X	•	700	9. 0.
219	6	E 220M5	Z L	80 IO	>	0	0 10019	63	3 30.28	Q	6 2 4 8 8 8 7 8	86.0 K 87.0 K 87.0 K	717	2000 2100 1600	444	86.0	4 2050		1.6 1.8	93.7	*	z -			
9	.	E F22A3	Z U	ស ខ	+ >	+	8 6985	35 78	3 29.98	80	6 2 4 7 8 8 8 7 8 9 8	87.0 K 88.0 K 87.0 K	m m m	2900 2900 2900	0.7	•			-			z			
220	90	E F22M5	N U	80 10	+ >	+	8 12537	37 68	3 29.91	82	6 2 4 9 9 9 9 9 9 9	96.0 K 97.0 K 96.0 K	444	1900 2000 2000	000	98.0	4 1700	6 .	.5 ≻	93.	83.	Α Α Ε	4	2000	2.0
221	Φ	E F24A4	T.	∞ 	+ >	+	8 10886	36 75	5 29.90	97	6 2 4 9 9 9 1 9 9 9	90.0 K 91.0 K 89.5 K	2 2 2 4 4 4	1800 1800 1800	0 4 0	90.0	4 1800	2.	-			z			
67	1	41 E F24M5	Z U	69. 69.	+ >	÷ so	8 8505	5 74	30.02	73	6 4 4 9 9 9 9 8 8 9 9 9 8 8 9 9 9 9 9 9 9	90.0 K 92.0 K 89.0 K	X	2500 2500 2500	0 0 0 Ri Ri Ri	L.			z	8	.4 83.4	z •			

			VEHICLE DESCRIPTION	E DES	SCRIF	¥110	7		_	WEATHER	œ		8	TANE	Ž	MBER	OCTANE NUMBER REQUIREMENT DATA	REMEN	5				-	TANK FUEL		INF	DR.	INFORMATION	-	
		; ; ; ;	: : : :	1	;	1	1	t t ;	;	† ! ! !	!	! !	•	3	MAXIMUM	3		PART TH		ROTT		ı		1 1 1	 	; ;	-	RATER	~	!!
0 N	8 S	MODEL	E C KNK	¥ ¥ ;	< ₩ Ø ·		SPARK ADVANCE AS AS RCD TST	ODDOM	AMB	BAROM	HUM	, רם הרי ,	59	Z->441	PIX:	A d	≩	00. N O	GMAK	A M	≥	月がほしょ	03XZX	OCT I	N N N N N N N N N N N N N N N N N N N	_	Z->0m/2:	RPK	N .	!
2	29	E F28M5	Z 1L	∞ €:	≻	& +	co +	6264	70	30.07	28	60 64	96.0 86.5 80.0	XXX	444	8 80 00 50 00 00 00	000	95.0 0	4	750	÷.	-	8 2	ď	86.0	∢	∡	80	-	IO.
250	5	46 J 313M5	Z L	ල ග	≻	•	•	7466	78	29.20	72	W W 4	91.0 90.0 89.0	***	444	1300 1350 1500	0 0 0 Ri rui ru					-				z				
344	_	7 J 313MS	Z	6		Y +15 +20	+20	16151	17	30.70	8	60 04	III	77X	0 0 0 E E E	2200 2100 2300	0 0 0	0.00	₹	2450	2.0	-								
222	œ	J 315A3	Z L	6	>	+21 +18	+ 18	8300	83	30. 00.	75	0 N 4	88 88 0.00 0.00	XXX	000 222	2800 2500 2500	***	88.0	m	2600	.	-	ö Z	92.0	82.0	Z				
22	29	J 315M5	Z L	.		N + 18 + 18	+ 18	13066	4	29 . 88	88	60 64	95.0 98.0 94.0	XXX	000 ZZZ	6	000	ı.				-	66 C	92.1 84.1	1.1	<	▼	750	4.0	₹.
0	ທ	5 (* 315MS	Z u	ත ල		Y +18 +18	+ 18	7714	70	30. 10	<u>r</u>	₩ 4	94.0 95.0 94.0	***	000 EEE	1500 1500 1600	000	L				-								
223	œ	J 315M5	r.	6. 6.		N + 18 + 18	+	10595	7.0	29.97	28	6 4	97.0 97.0 97.0	***	444	1300 1300 1300	444	97.0	₹	1300	0.	-	ŭ Z	83.0	82.5	⋖	¥	2200	4.0	4
e S	ທົ	J 318A4	Z L	66		Y +16 +16	+ 16	5118		70 30.04	55	604	94.0 93.0	***	NNN	3300 3300 3300	4.6.4					-	ž	9.98	86.8	•	× 7	3000	-	4

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

			VEHI	VEHICLE	DESCRIPTION	RIPT	NO.			3	WEATHER	œ		OCT	ANE	-5	R REO	UIREM	ENT	DATA		į	Z :	TANK FUEL INFORMATION			ATIO	2	1
				!	1	-			!			! !	!	; ; ;	MAX	MAXIMUM) 	-	PART	PART THROTTLE	TTLE				•		RATER	~	;
			w:				SPARK	¥Ş.					; 	•	Z ->		! ! ! !	1 1 1		1			o :×<0	_		Z - > 0	em		
	K K	MODEL	ELC∃	SEN	ر ا	< C	AS AS RCD TST	· - ·	DDOM	AMB	BAROM	E :		150 150 150 150 150 150 150 150 150 150	2 M I	8	₹ ;			8	X		Z Z Z	TOM S	Z F !	. m .	RPM	¥:	>
323	, 9 8	J 318A4	. L.	-	60	>		5	10282	0	29.86	136	w 4	87.0 88.0 87.0	777 ZZZ	4 2975 4 2900 3 3400	800 22.2. 10.10 10.10 10.10		85.0 4	4 2500	0.4	-	2	91.2 82	2 6	_			
23	58	J 318M5	N F	Z	60	z	, ,	8	13203	02	70 29.97	8	6 6 A	97.0 98.0 98.0	XXX EEE	4 800 3 1300 4 750	000		85.0 4.0	800	N	ni T	8 2	9 3.0 83.7		×	7	700	
89	\$	41 J 318MS	ν U	Z	∞ •	Z	N +10 +12	+12	6874	79	30. 10	25	⇔ 6 6 4	88 90.0 88.0	XXX XXX	4 1700 4 1700 4 1700		000	!			-			•	z			
224	₩.	J 318M5	ro r	z	€ 0	>	+16 +16	+ 16	9207	87	29.73	8	60 4 4	91.0 90.0 90.0	7	4 1500 4 1500 4 1400	000		9 0.0 8	1500		1.0	ă Z	93.0 82.	•	z			
225	æ	J 318M5	δī r	z	æ €0	>	+18 +16		10047		75 30.04 108	108	60 4 ★	92.0 92.0	***	4 2500 4 2500 4 1700		00 0.0 8.	o .	91.0 4 2100		-	z		_	z			
228	10	J 318MS	δ. r	2	5 0	>	Y +16 +16	+	11560	82	30.00	27.	m ~ 4	91.0 92.0 92.0	7	4 1900 1900 1900		6.6.6	0.0	4 1900		80.	ä Z	83.48	93.0	z			
296	28	J 318MS		Z	60	>	÷	1 1 1 0 1 0 1 0 1 0 1 0 0 1 0	10601	20	29.33	50	8 4 4	93.0 93.0 92.0	XXX SEE	4 1650 4 1650 4 1700		000	0. 0.	4 1550		2.0 1				×	4 6	1800	0.
69	7	Q 216M5		z o	o. •	>	œ +	co +	10775	7.7	30.01	1 78	® 01 €	92.0 92.0 90.0	***	4 1500 4 1500 1 4 1500		0.00	ij.			-				*	4 5	1500	0.

			VEHICLE DESCRIPTION	CLE	DESC	RIP	TION	_			WEA	WEATHER		,	OCT	¥	OCTANE NUMBER REQUIREMENT DATA	RRE	OUTR	MEN	DAT		!	1	TANK FUEL INFORMATION	JEL I	INFOR	MATION	3	
		; ; ; ; ; ;] { { } !	• • •	! !	 	! ! !	, i i i) 6 1	; ; ;						MAX	MAXIMUM			PART	¥	PART THROTTLE						RATER	<u>ب</u>	
			ш 3			-	SPARK ADVANCE	NC R								Z >>		! ! !	; ; ;	! !	G #		L 2		į	ş		Q 4		;
OBS NO	35	MODEL	E O ⊢ :	KEN	ر ان	< m & 1	AS AS RCD TS	AS TST	ODOM	AMB		BAROM P		• ;	700 X	- I & ı	RRPM	N I	1	50 20 20 20 20 20 20 20 20 20 20 20 20 20	,	RPM	. ∟ m c	. Z × i		2 5	- Q W :	'	M.	≥ :
345	-	Q 218M4	L.	z	8.7	>		o s +	11096	27		29 . 96	8 4 6 4 4		91.0 93.0	777 222	4 1950 3 3550 4 1850		0.4.0	0.08	4 6	1800	2.0 1	z	91.2	8 3	¥	9	3400	4. 6.
227	•	T 215A3	L	z	O.	z	10	5 0	17688	5	29.86	8	72 2 4		88.0 I 88.0 I 87.0 I	XXX EEE	3 2600 3 2700 3 2600			88.0	3 28	2800	ro							
278	•	T 215A3	•	Z	o. •	÷	in +	L O +	8238	 10		29.20	6 6 6 4		87.01 88.01 85.01	777 222	3 2250 3 2250 2 2800		m	u.			-				2			
348	₽ 0	T 215A3	N .	z	o	>	in	1 0	28629		5 29 . 19	9	88 8		88 80 0 0 80 0 1	XXX EEE	3 2500 3 2300 3 2600		000	87.0	e	2300	3.0 1				z			
2.	8	T 215M5	•	z	• •	*	in	in +	15035	70	30.32	3	58 2 4		98.0 P	XXX EEE	2 1500 3 1500 3 1300		0.00	97.0	4	1200	2.0 1	0	9 2.3 &	84. ‡	¥ <	4	000	2.0
6	-	T 215M5	U	2	• •	*	+12	un +	10389	2	30.12	2	68 83 4 2 3		91.0	XXX EEE	4 1750 4 1750 4 1750		80 80 80 80 80 80	90.0	•	1750	÷.	2	8 9.08	83.0	¥	4	1750	• •
2	s n	T 215M5	•	2	O :	2	•	•	77 10	27	30. 18	9	88 8 4 4		91.0 H	***	1600 1650		000	90.0 4 1600	4 16		3.0 1	2	93.0 82.9	9.	*	#	1600	-
9 46	•	T 215M5	L	2	O:	+	•	in +	1018		70 30.30				91.0 93.0 91.0	XXX EEE	4 1850 3 1850 4 1950		0.0 0.7 0.8	L			-	z			¥ <	3 22	2250 (7.0

1		VEHICLE DESCRIPTION	E DE	SCRIPTI	TION	1	1	7	WEATHER	:		CTAN	ANE NUMBE	BER	EQUI	OCTANE NUMBER REQUIREMENT DATA	T DATA	j	1	TA	¥	UEL II	E COME	MATION	_ ;
1											1	I	MAXIMUM	3		PAR	1	PART THROTTLE	!					RATER	
		w		_	SPARK ADVANCE	×۵				<u>u.</u> ;)	· _	9			i I I	3 1						1		
LAB	MODEL	30⊢ ;	KNK SEN C.R.	4 H & I	AS AS RCD TST		ODOM A	AMB TIMP B	BAROM	HE	82	, m v		M M	≩	58	M 4 5 1	.		XZX;	RES N	Z 10	-2F:	M I	2
B0 T	2 1 SMS	Z Z	6	>	# #	5 42	12932	73 2	29.56	58 6 4	96.0 97.0 95.0	***	211 444 999	2 100 2050 2200	60 60 60	6 0 .	•	2000	2.0.1	.	92.7 8	82.2	¥ ¥	2800	o
⊢ So	216A3	Z L	O. 60	>	+ 10 +	ស	14511	70 29.92	9.92	5 4 4	91.0 92.0 90.0	\times	777 777 777	2700 2700 2750	444	L			-						
⊢	2 16A3	Z L	o	>	+ 90 +	ហ	13820	80 2	29.87	112 3 2	0.00	***	777 777 777	2700 2800 2400	000	88 0	m	2200	2.5 1						
⊢	2 16 A 3	Z L	6	>-	+ •	ια ·	9470	18	29.67	87 3	91.0 92.0 88.0	***	222 222	3000 2900 2950	444	80 80 . O	က	1950	4.0			_	8 2	3000	1.2
⊢ 60	216A3	E.	O.	, ,	+ ທ +	8 5	13957	74 29	29.98	69 2 4	90.0 92.0 89.0	***	777 777 777	2400 2400 2350	<u> </u>	88.0	က	2250 3	3.0			-	€ ¥	2300	£.
26 1	216A3	Z L	6	>	+ 10 +	L O	7583	77 30	30.00 100	100 2 4	92.0 93.0 90.0	XXX	000 000 XXX	3450 3450 3000	4.00	91.0	ო	2200	7	GI.	91.28	82.6	₩ ₩	2100	8 .
60 T	2 16A3	E.	O.	>	+ in +	ID.	9625	65 29	29.37	75 3 4	88.0 87.0	***	222 233 242	1500 2600 2200	0 0 0 0 0 0	87.0	6	2500	6. E			_	e ¥	2800	6. 10.
€0 1	216A3	Z	O.	>	+ 60 +	រោ	22817	71 30	30.08	56 2 4	92.0 95.0 90.0	\times	335 355 255	2800 3050 3000		92.0	3 26	2650 2	2.0 1	9	8 3.3 8	82.2	₩ ¥	3300	6 .0

			VEHIC		SCRIP	TION			WEATHER	æ	-	OCTANE	7	HBER	REQUIREMENT	EMENT	DATA	1		TANK FUEL	- 1	NFOR	INFORMATION	2	;
		1 1 1 1 1	1 1 1 1 1 1	! ! ! ! ! !)))		! !		-	. 35 :	1		PART	THROT	TLE			 		RATER	æ	1
			w S		-	SPARK	بېر ن				! !	Z ->		i 1 1 1	, , , ,	! !	ı	} ; ;	¥ ≤ 0	50	ş	Z ->			•
SBO :	2 S	MODEL	: → C: :	KNK SEN C.R.	: α :	AS AS RCD TST		₹	P BAROM	¥ ;	E OCT	,	1 K I	Z Z	≩	50	R RPM	2		1	¥01	6 m ·	R RPM	*	> ;
₹	•	T 216M4	Z L	0 6	>	+ 10 +	5 6062	82 86	8 28.93	6	2 8 9 1 8 9	92.0 K 70.0 K 70.0 K	222 646	1550 1550 1550	646	0.08	1800	6	z	4.	88.0	z			
11	=	T 216M5	Z U	0. 6	Z	+ vs +	5 12422	22 70	30.00	99	3 92 4 93	92.0 K 93.0 K 92.0 K	444	1750 1750 1750	000	L			>	8 2 8	82.9	¥	4 1750	0	æ,
354	90	T 216M5	Z	0.0	Z	+ 7 +	5 98 13	13 72	2 30.40	99	3 88 4 90	88.0 91.0 K 90.0 K	444	2800 2350 2100	9 9 9	0.85	4 1750	2.0	0	93.3	8 3. 1	×	3-2300	•	
229	•	T F20A4	Z	8.7	*	+ in	5 7039	39 58	30.18	60 3		89.08 30.08 30.08	440	2000 1900 2300	000 Rin 4	87.0	4 1900	0.7	z	93.1	83.7	z			
230	₩.	T F24A4	Z	0.	>	+ vo +	5 8574	27 72	29.83	813		88 88 0.88 3.0.0 7.7.7	404	2300 2300 2300	000	0.88	4 2250	1.2	-						
25	59	T 224M5	Z L	O.	÷ >	+ 10	5 9130	30 70	30.08	62 3	0 0 0 0 0 0	n in o	444	1000 1100 1050	000	in on	1000	3.0	0	95.8	84.0	×	4 850	6	o.
72	1 1	T 224M5	Z U	O.	÷ >	+ un	5 11719	19 74	1 30.18	6 6 6 4		92.0 K 90.0 K	444	8 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	L			-			60	1800	0	6
231	•	T 224M5	Z u.	o. 6	÷ >	+ e	5 21660	80 79	30.27	8 8 8 4	0 0 0 4 N N	o no xxx	400	1250 1200 1300	444	0.40	4 1600	6	z -	8 3.6	0.	 ∡	3 1300	o	₹.

			VEHICLE DESCRIPTION	יוני היי	ESCR	IPTI	ž			3	WEATHER	~	_	3CTA	Z	OCTANE NUMBER REQUIREMENT DATA	REQ	UIREM	EN	DATA			7	TANK FUEL INFORMATION	1		AMA	3		
		; ; ; ;	;		!	1	1	! !			! !	! !	!	<u> </u>	MAXIMUM	XIMUM	! ! !	. C.	ART	PART THROTTLE	11E	! •	i 8 1	; ; ; !	1		;	RATER		
			w			-	SPARK	iei				.	; ; 1	ZH	•		, 	1 - - -			1 1 1 1				9		1			
SBS ON	I NO	MODEL	30F:	KNK SEN C	S.	A I AS	AS AS RCD TST		ODOM A	AME	BAROM	E E	58	. ш 	⊢ I ≪ :	M .	<u> </u>	9 ;	K P F	R P H	≩ ;	, rac	***	DCT N		HZH	M < K	RPM	≩	
347	7	T 224M5	Z L		0 6	* * Z	+ +	5 13842		8	30.02	80 80 80 44	90.00	600 ***	111	1950 2200 2150	000		91.0 4	1950	2.0	-	Z Z	95 . 9 8	82.4	¥	0	2000	0.3	
355	E0 T	T 224M5	Z L		0.8	* + >	+ E	53 G27	6768	69 89	30 . 10	80 2 2 4	92.0	000 ***	222 004	1800	000		82.0 4	1550	2.0	-	ā Z	91.78	82.2	¥ ∢	m	18 00	0 Ni	
36	29	T F28A4	Z		6 9	÷ >	÷	8 11621	221	70 2	29.86	62 3	8 8 8 6 0 0 0	000 ***	II I I	1900 1900	22.0		90.0	1900	4 .0	-	6	92.8	83.7	*	m	8 00	2.0	
27	59	T F28A4	Z L	•	6	₩ + >-	÷ 60	8 11422		70 3	30.08	62 2 4	92.0	RiOO XXX	E Z Z	2000	222		90.0	1900	4 .0	-	6 ≻	92.7 8	0.78	2	e	2100	7.2	
232	Φ	T F28A4	Z L		∞ ∞	¥ +10	+10 +10		9777	62 3	30.48	62 2 4	83.0	000 ***	E E E	2800 3000 2800						-	ž	96 . 2	86.7	z				
297	28	T F28A4	Z L	€0		7 + 10	+10 +10	0 10469		70 2	29.56	50 3	8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 ***	222	2200 1900 2000	000 000		80.0	1700	4 .0	-				z				
298	58	T F28A4	Z L		80 80	Y +10	+10 +10	0 14846		70 2	29 . 46	50 3	83.0 79.0	000 ***	111	2400 2400 2600	0.00		4 0.08	2300	ss O	-				z				
299	28	T F28A4	Z L		80 80	Y +10	+10 +10	10801		2 07	29.34	50 3		78.0 X 77.0 X	2 Z Z	2800 2700 2800	 ru ru ru	10 10 10 T				-				z				

						E-46					
;	;		ş) (1			0 8				
TANK FUEL INFORMATION	RATER		RPM	! ! !			2700				
¥	Z						8				
		Z ->	. O. W	r 1			¥				
¥			.z -	Z	z	Z	•	Z	2		Z
_ :			ı —	<u>}</u>		88 . 2					
3		3	9	1 			83				
7		į	. i))		98 .5	9 3.6 83.0				
₹ :	 	•	RES	•		8	8				
		033	ZZ	1		Z			Z		
i		L :	.		-	_	-	-	-	_	-
				2.0		8 .	1.2	7.5		2.0	2.0
- 1	#			•							
DATA	5		•	: 8		Š	8	8		3300	3250
5	Ŧ		4 2	3 2000		4 2700	6	4 2800		₩	
Ę	ART	l					91.0 3 2650			o	83.0 4
	2		5	0.4		98.0	5	89 50 10	•	93.0	8
E I		! !		, , noo	000		10 10 10		10 10 10		000
Ä		<u>'</u>	≩	200 200	000	000	0 0 0 N N N	0 0 0 10 10 10	0 0 0 m m m	000	000
OCTANE NUMBER REQUIREMENT DATA		;	7		222	222	222	222	222	888	222
#	3)) 	7	200 1300 1300	3000 3000 3100	2800 2500	2650 2600 2750	2800 2800 2900	0 0 0 0 0 0 0	3300 3050 3300	3250 3400 3400
3	MAXIMUM		u < &		60 60	444	666	444	444	444	444
뿔	₹		- I &	1 222	X	212	III	***	III	222	* • •
Ŧ	i !	; z - >	- G. W	, 000	7 X X	222 222	X X X	***	2 2 2 2 2 3 3 3	2 X X X	20°
8			100	444	83.0 83.0	86.0 87.0 86.0	0.48 0.70 0.00	88.0 90.0 87.5	87.0 90.0 84.0	83.0 84.5	83.0 83.0 8.0
		•	0	'							
	; ,	- :	Z L	. 604	4 6 6 6	0 0 4 4	O ⊕ 44	4 6 6 4	8 6 4	80 60 64	20 3
~	:		Ĭ		7	33	6	7	8	8	ñ
WEATHER	į		ş	; 9	8	42	23	97	8	80	\$
E	;		BAROM	29.38	28 . 82	30.42	30.23	29.97	29 . 88	30.08	29 . 49
3	1		1 A B	1 10	10	52	99	93	75	72	80
	i			1							
	, 1		ODOM	269	590	443	790	850	943	428	8
	!		말	122	in in	7	87	108	80	Ξ	8
	!	주 A	ST	+10 +10 12269	+ 10 + 10	+12 +10	+15 +15	+15 +15	60	Y +20 +20 11	Y +20 +20
₹	į	SP ARK ADVANCE	AS AS RCD TST		ŏ	~	ς.	r in	+ co	ŏ	0
PII	!	S &	_	+10	Ŧ	-	Ŧ	Ŧ	+	7	7
VEHICLE DESCRIPTION	; 6 ! !	•	4 m &	· >	>	>	>	>	Z	>	>
ES(į		S.	60 1 60	60	60 60	e.	. 3 . 3	O.	.	★
ш С	-				€	€0	•	ø	6	o	0
ฮ	!		KNK	Z	Z	z	Z	Z	Z	z	z
E	į.	ш ;	K O F		•	•	*	•	<u></u>	L.	L
>	:		1	1						10	10
	!		MODEL	¥	¥	ā	.	E	ž	ZR 411M5	Ĭ
	;		뭁당	F 28	F28	F 28		28	2 15M4	=	=
	ĺ			; <u>-</u>	-	T F28MS	×	×	N .	ZR	ZR
			2 2	80 T F28A4	40 T F28A4	•	26 X F18A3	40 X F 18M5	29	L O	40 ZR 411MS
			_	•		~				_	
			08 08 00 00	350	365	233	325	366	78	86	367
				•			-	•			

			VEHIC	נה ס	VEHICLE DESCRIPTION	PTIO	z		_	WEATHER	œ		OCT	ANE	LMBER	REQU	OCTANE NUMBER REQUIREMENT DATA	T DA	DATA			TANK FUEL INFORMATION	UEL	INF	RMAT	2	1
	•	! ! !	1 1 1	1 1 1) 	!		1 	! ! !	; ; ; ; ;	! ! !	;) 	MAXIMUM	XIMUM		PAR	=	PART THROTTLE	.					2	RATER	
			ш			A S	SPARK ADVANCE					i L		2 -	! ! ! !) 		5		• • • • • • • • • • • • • • • • • • •				ı			
08 S	E 28	MODEL	30 ⊢ ;	SENC	C.R.	_	AS AS RCD 1ST	ODOM	AMB	BAROM	E I		NOCT	≻₽8: ⊢##:	R P M	<u> </u>	S C	'	RP H		1	RES	9 5	- A W	M < K :	RPM	≩
6	LO .	ET 222M4	L .		Z M		+	7670		30.2		w c/ 4	10 10 O	777 777 440		1.1.0	90.0	•	1450	10	z	96.7	87.1	Z			
59	29 KT	(T 226A3	Z L		B.2 ×	+12	+ 12	6813	2	30. 12	5,	w 4 4	92.0 94.0 88.0	*** *** ~ ~ ~	1800 1800 1800	000	0.	m	1800	4.0	Z -	9 .9	80 - -	8	m	1800	8
73	÷	TT 224M4	n S		2 O G	+	15	6609	6	29.88	76	© 44 €	92.0	*** *** 444	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	<u>.</u>			-	Z	92.9	83.0	2	4	1600	.
‡	4	TT 224M5	Z L		. 0. .	+ +	ក	59 15	8	28.09	69	604	88.0 0.08 0.0.88	*** *** ***	1550 1700 1500	000	0.	•	1500	2.0 1	z	 	82.6	2	6	1600	o. 2
326	26 1	26 TT 224M5	E E		. 0.0	+ 10	tù Tù	11236	7	30.25	69	6 4	91.0 90.08	7	1450 1450 1600	000	0.68	•	1425	ru.	z	92.2	82.7	6	4	1500	
351	60 1	60 TT 224MS	Z L		≻ 0.	60 +	60 +	7528	75	29.04	113	644	90.08	777 222 444	1600	0.00	87.5	•	400	9.0	-			2 0	•	400	-
356	60 11	T 224M5	E E		2 0 6	+	un +	15300	6	29.8	ω ω	w 4 4	96.0 96.0 10.0	7	2150 2400 2150	0.00	0.	₹	2300	2.0	>	82.3	82.1	¥ •	n	3200	°.
509	n T	5 HGA 238A3	L	¥ # 8.0	≻	+13	+13 +13	13722		70 30.13	20	0.04	92.0	*** *** 444	. 000 g. 1	000	L			-	_						

			VEHICLE	101		DESCRIPTION	IPT	30			3	WEATHER	œ			ST.	¥		R RE	JUIR	MENT	OCTANE NUMBER REQUIREMENT DATA			~	TANK FUEL INFORMATION	FUEL		OR	ATIO	z	:
		; 1 1 1 1 1	 	; !	•			; ; ;	; !	!	! !	l 1 1 1) 	<u>.</u>			MAXIMUM	3			PAR		DTTLE	الما					-	RATER	æ	. !
!	!					•		SPARK			•			, FD1		Z->		 	i i i	;	į	с ш •		!	#3!	0CT	2	Z + 2	2 -> C			
SEC SEC	2 S	CODE	0 ⊢ ∤	SEN	O,		R RCD	AS AS RCD TST	- 1	MILES	1 P	BAROM	E :		32	,	< & .	RPR	=	- i	32	'	RPH M	>	2 * '	RES	9	Z 1- 1	K & I	A	1	≩ :
10	ĸ	HGA 238A3	e F	۲ ۱	© •		Y +13	13 +13	_	3722	20	70 30.13	9	60 04	82.0 84.0 82.0	X X X	nnn Ere	1800 1800 1800		0.00	4			~	_							
501		41 IGA 238A3		C Y	0 · 8 · ·		Y + 15	5 + 15		6042	70	70 30.28	67	60 4 4	88 90.0 87.0	X X X	000 EEE	1700 1700 1700		222	•			~	_			2				
502		41 IGA 238A3	ပ	>	L 8.0		Ŧ	Y +15 +15		6042	2	70 30.28	69.	m 4 4	85.0 87.0	***	8 M M	1700 1700 1700		444	u.			-	_			Z				
527		31 KL8 222M5	Ω Γ	>	15. 65. 15.		X + 15	15 +15		4660	*	28 . 80	60	64	9. 0 . 0	¥	•	2000		0.	6 . 0	4 2000		6.	-							
819	28	LAE 230A3	<u>რ</u>	⊥	8.5		Y +15	5 + 15	-	5245	6	70 29.48	50	0 N 4	90.0 92.0 86.0	***	000 Z Z Z	1900 1500		r. r. r. r. r. r.	87.0	3 1700		3.0 1	-							
520		28 LAE 230A3	€ F	>	r 8.5		≻	+15 +15	_	5245	70	70 29.48	8	6 4 4	L 80.0 77.0	**	8 E	1500 1200		E E	ي.			-	_							
513		23 LB4 441A4	u .	-	0. 80 11		Ξ	Y +15 +15	-	1248	es es	28 . 45	‡	n 4 4	98.0 98.0	***	0 0 0 2 2 2	2300 2300 2300			u.			-	_			6	ღ	2200		8 9.
514		23 LB4 441A4	A.	۲ د	66		Ŧ	Y +15 +15	-	1248	80 80	28 . 45	‡	0 W 4	87.0 88.0 87.0	X X X	Z Z Z	2200 2300 2200		0 0 0 8 8 8	4.			-	_			60	۳ ۳	2200		89.

			≩	7:					. 10		9. 0
INFORMATION	RATER		RPM	1600					1500		1700
\$	Z	(5)	4 & K	6					ю —		6
8		Z ->		¥					¥		¥
Ž		Z+	4 2 F I	<			Z		•		•
ي.	!		5 5	85.6							82.6
5		\$									
TANK FUEL		ξ	RES	 -							91.2
ξ	!		, E	1 0							•
			42¥ I								
	, , ,		, rmc	-	-	-	-	-	<u>,</u>	-	<u>6</u>
	m,	! !	≩ :							3.0	ν. ·
	E		•						•	•	•
AT A	THROTTLE	! ! !	RP						1700	1300	1700
à			4 2 2						m	m	e
	PART		52						9 0.0	0	0.66
E	•	! ! !	200		L	L	L	LL.	8	90	6
3		!	≩ :	040			000	000	n n n	10 10 10	0 10 0
×			1	000	000	000	000	000			
9	3	!	M M	1700 1750 1800	2000 1900	2000 1900	1850 1800 1700	1700 1650 1550	1900 1700 1750	1500 1450 1550	1700 1700 2000
Z	MAXIMUM	G 8		8 8 8	999	200	~ ~ ~	000	999	000	ოოო
ž	¥	; Z ->		XXX	XXX EZZ	XXX EZZ	777 222	XXX ZZZ	7	*** ***	XXX
5	!	!									
_	•	:	0CT	93.0 94.0 0.13.0	93.0 96.0 90.0	91.0 96.0 89.0	87.0 87.0 86.0	82.0 82.0 80.0	92.0 94.0	88 88 0.0 0.0	101.0 101.0 95.0
	! !	4 :	י ב י רשכ	6 64	w 4.4	644	4	C 0 4	6 4 4	644	n 4 4
			呈:	70	47	47	S.	5 0	Sp.	30	30
WEATHER	, 1 1		BAROM	31	5	5	38	36	28	33	22
EAT	1		¥ ;	30.3	30. 10	30. 10	29 . 36	29 . 36	29.28	29.28	30.22
>	!		AND TE	6	73	73	6	5	0,	6	
	i										
	1		ODOM	86 18	9570	9570	15580	5580	1328	1328	6939
	:		Z '	-				-	8	8	_
	1	SPARK ADVANCE	AS TST	÷	+ 15	+ 15	+15	1 15	+ 15	+	+ 15
3	1	SPARK DVANC	AS AS RCD TS	÷	2	2	+ 5	ū	<u>ν</u>	ro To	<u> </u>
1	1				Y +12	+12		+ 15	+ 15	+ 15	+ 15
DESCRIPTION	:		< ⊷ æ :	>		>	>	>	>	>	>
SES	!		2	© •	O . 8	6	8	O. 80	6	©	6 0 .0
	į			I	ı	ت ت	I	<u>.</u>	I	J	I
ក្ត	,		SEN	>	>	>	>	>	± ≻	>	>
VEHICLE	!	w :	EOF :	L	u.	L	L	<u>. </u>	•	•	<u>.</u>
_	1		الريا	A 3	A3	A3	A3	A 3	A3	A3	A 3
	:		MODEL	LGA 238A3	238	238A3	238	238	238	238	LGA 238A3
	!		,	 \$	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 ≰	<u>*</u>	<u> </u>
	;			2	5 LGA 238A3	S LGA	28 LGA 238A3	28 LGA 238A3	28 LGA 238A3	28 LGA 238A3	Ž
			Z S	58	In .	S	58	58	28	28	26
			8 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00	503	504	Ξ	2	2	X	ស្ត
			8~;	ŭ	ŭ	ឆ	521	522	523	524	525

			≩								
TANK FUEL INFORMATION	RATER		RPM .								
TAM	2	9,	4 € 1								
FO		2 - :	- 4 W -		z				z	z	
		_			~				₹.		
FUE			2 5						8	82	
ž		į	E S						92.0	92.0 82.4	
2		033	. Z Z Z						z	z	
			- w -	-	-	-	-	-	-	-	-
	W	! !	≩	10	€.0	4.0	.	2.0	0.	10	
	· 🛏 '	; ;	RPM		8	1800	100	8	1150	00	
DATA	£		'		1800			1000		4 1150	
Ä	PART	51	,	6	88.0 4	•	ю 0	▼ 0	0 4	o,	
REM	2	•	25	87.0	99	85.0	91.0	90.0	78.0	78.0	L
EQUI		! !	>		000	000	000	000	0 4 4	9 6 6	000
OCTANE NUMBER REQUIREMENT DATA	1	t ! !	_ '								
	Ī	, , ,	'		2000 2150 2000	1700 1600 1550	_	_	1000 1750 1800	1800 1800 1900	644 600 600
Z	MAXIMUM		- I & :	O O O	222 444	222 444	8 E E	M M M E E E	# # # # 4 10 10	4 W W	222
¥		Z -:	- a w	***	***	***	***	***	***	***	\times
8	t i	 	1 00€	90.0 89.0 0.0	90.0 91.0 87.0	87.0 88.0 84.0	94.0 94.0 92.0	94.0 94.0 9.0	81.0 82.0 81.0	81.0 81.0 81.0	92.0 93.0
	! !	;	•								
	! !	L :		8 8 4	50 2.2.4	50 4.03	48 4 4	6 6 6 4	56 4	58 2 4	8 8 6 4 4
E				ı							
WEATHER	! !		BAROM	30.22	6. 6.	60. 10.	28.50	28.50	30. 15	6	30.48
3	; t		AMB		70 29.55	70 29.55	99	99	6	70 30.15	75 3
	:				g	98		86		33	
	1		ODOM	6833	15606	15606	5939	5939	10563	10563	7282
	;	¥ Š	AS	+ -	10	6 0	100 +	6 0	+	₹	5 9
NOI	f 1 1	SPARK ADVANCE	AS AS RCD TST		•	Φ	-	7	•	6	to
1 PT	:		' Œ	· +	+ >	+ >	+ >	+ >	+ ≻	+ >	+ Z
DESCRIPTION			ت ت	8 0	in G	ru.	O.	6 0.6	10	6 0	
	1				o I	8	ø I	9	€ 0 T	8	F Y H 8.6
ដ	1		KAK	>	>	>	>	>	I >	>	-
VEHICLE	! !	ш ;	E U F	. L .	L.	L	11 .	•	<u>.</u>	1	L.
	!		<u> </u>	8A3	044	0A4	7 A 4	7 A 4	50A	50A	NOS
	1		MODEL	23	ī.	r.	i.	ŗ.	Ī	Ī	Ŧ
	! !			rey	NFS	XFS S	8 }	∞ Ż	NTLH 450A4	NTLH 450A4	S NTMH 450M4
			Z S	26 LGA 238A3	28 NFS F50A4	28 NFS F50A4	23 NY8 F57A4	23 NY8 F57A4	N)	ro —	n)
			08 L	526	517	818	1.0	512	505	508	507
			0	· w	ND .	L O	in.	In .	LC .	L O	Ø.

			VEH	ICLE	VEHICLE DESCRIPTION	CRIP	1108	_		_	WEATHER	2		OCTA	z y	FABER	REQU	OCTANE NUMBER REQUIREMENT DATA		ITA			TANK FUEL INFORMATION	JEL 1	X OF	MATIC	Z
		; ; ; ;	1 1 1	† - -)) 1	!	!	:	1	:	! !	!	: ! ! !	MAXIMUM	3	6 t 6	PA	1 1	PART THROTTLE	, m	; ! ! !	; ; ; ; ; ; ;			RATER	2
280 0N	DBS LAB	MODEL CODE	₩ Ξ Ο⊢ ;		KNK SEN C.R.	4 m & :	SPARK ADVANCE AS AS RCD TST		ODCM	AMB TMP	BAROM	E I	E 3 W - 1	Z - > 0.00	-IE:	M M	2	9C	2 m < c	2	}	OBXXX:	OCT N	MOT TOM	ZHZH!	2 m 4 x 1	RPM MV
508		S NTMH 450M4 F Y	7 7	> -	85	2	10	6 0 +	7282	78	30.48		# # # # #	88 88 60 0 0 7 X X	111	444 666 600	000	is.				-					
10 10		23 NVMH 450A4 F V H	A A	± >	6 0	>	*	4	17375	6	28.75		94 8 8 8	87.0 K 88.0 K 87.0 K	X	1800 2000 1800	± ± ± ∞ 4 ∞		85.0 4 1700		9.0 0	-			z		
816		23 NVMH 450A4 F V L 8.6	A4 F	>	8 9	>	4	▼	17375		46 28.75		34	82.0 K 82.0 K 82.0 K	Z Z Z	1800 2000 1700	÷ ÷ ÷		78.0 4 1700		3.0	-					
528		40 A TF20M5	L	≖ ≻	10		Y +20 +20	+20	8320	78	29.72	2 104	4 6 4	98.0 96.0 7 X X	E H E 4 W 4	2800 4000 2800	000					z	97.0 88.0 B	98.0	¥	4 2750	0. 0
529	4	529 40 A TF20M5		7 1	F Y L 8.5	>	Y +20 +20	+20	8320		79 29.72 104	2 0	4 64	96.0 36.0 36.0 36.0 4 X X X		2900 4000 2800	000					z	97.0 86.0 B	88.0	¥	4 2750	0.0

APPENDIX F

PROCEDURES FOR PLOTTING
OCTANE NUMBER REQUIREMENT DISTRIBUTION DATA

WEIGHTED VEHICLE/CAR POPULATIONS

Weighting factors for each vehicle model were developed from information supplied by the US vehicle manufacturers and from information published (Ward's Automotive Reports) for imported vehicles. These weight factors were proportioned to the relative production and/or sales volumes of the vehicles tested.

For any vehicle having octane requirements lower (L) than the lowest octane number fuel available within a given fuel series, a number 0.5 Research/0.4 Motor lower was assigned. Similarly, for any vehicle having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 0.5 Research/0.4 Motor higher was assigned.

The weighting factors of each vehicle model were divided by the number of vehicles tested to calculate individual vehicle weight factors. The octane requirements for each vehicle were then arranged in increasing order with the appropriate individual weighting factors. The percent of vehicles at each octane requirement level represents the summation of all vehicle weighting factors before that level, plus one-half the sum of the weighting factors at that level. The individual vehicle weighting factors are adjusted so that the summation of all weighting factors is 100.00 for any vehicle population of interest. The midpoint percentiles are plotted versus octane number requirement on arithmetic probability paper and a distribution curve is drawn through the points. These distributions are then plotted point to point on Cartesian coordinates for figures shown in the survey report.

SELECT CAR MODELS

For individual car models, the octane number requirement distribution curves were plotted by the "Z" method as described in "Statistical Estimation of the Gasoline Octane Number Requirement of New Model Automobiles," C. S. Brinegar and R. R. Miller, <u>Technometrics</u>, Vol. 2, No. 1, February 1960.

The procedure is as follows:

For any cars having octane requirements lower (L) than the lowest octane number fuel available within a given fuel level, a number 1.0 Research/0.7 Motor lower was assigned. Similarly, for individual cars having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 1.5 Research/1.1 Motor higher was assigned.

Using all observed and estimated octane number values, calculate the mean (\overline{X}) and the standard deviation (s) from the data for each car model.

1.
$$\overline{X} = \frac{\sum X_{i}}{n}$$

$$s = \sqrt{\frac{1}{n-1} \left[\sum_{i=1}^{n} A_{i}^{2} - \left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)^{2}\right]}$$

Where $X_i = 0$ ctane number requirement of i^{th} car of a given model n = Number of cars of that model.

2. Estimate octane number requirements at the percentiles of interest from octane number requirement distribution data by

$$0.N. = \overline{X} + ks$$

Where k is selected from normal distribution tables.

Values of k used to calculate percentiles in this report are:

Percentile	<u>k</u>
5	-1.645
10	-1.282
20	-0.842
30	-0.524
40	-0.253
50	0
60	+0.253
70	+0.524
80	+0.842
90	+1.282
95	+1.645

The requirements were arranged in increasing order and plotted on arithmetic probability paper; the percent satisfaction for any car is calculated by the following relationship:

Percent satisfied:
$$i^{th}$$
 car = $\frac{(i-0.5)}{N}$ 100

Where N is the total number of cars tested for a given fuel and i is an integer having increasing values from 1 to N.

3. For this report, straight-line octane number requirement versus percent car satisfaction curves for the select models were drawn via a two-point plot of the mean and standard deviation. From inspection of the curves, revised L and H values may be indicated. An alternate method to obtain the octane number requirement/percent satisfied curves is to fair a curve through plotted points.

APPENDIX 6

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT_DISTRIBUTIONS

Octane number requirements of vehicles presented in this survey are determined at the levels that satisfy certain percentages of specific vehicle populations. In many cases, the recorded octane number requirement is followed by a plus and minus limit, referred to as the confidence interval. These limits give the interval within which the requirement for that satisfaction level would be expected 95 percent of the time in replicate testing.

At the 50 percent satisfaction level, the 95 percent confidence interval is calculated as follows:

$$CI = +ts/\sqrt{n}$$

where t = Students t at the proper number of degrees of freedom*

- s = Standard deviation, calculated directly from the data or estimated as the difference between the 84.16th and 50th percentiles (assuming normal distribution)
- n = Number of vehicles in population.

At other satisfaction levels:

$$CI = +ts\sqrt{1/n + k^2/[2(n-1)]}$$

At the 90 percent satisfaction level, k = 1.2817. For other satisfaction levels, appropriate values for k may be found in the standard statistical tables.

Degrees of Freedom	t	Degrees of Freedom	t
1	12.706	18	2.101
1 2 3	4.393	19	2.093
3	3.182	20	2.086
4	2.776	21	2.080
5	2.571	22	2.074
4 5 6 7	2.447	23	2.069
7	2.365	24	2.064
8 9	2.306	25	2.060
9	2.262	26	2.056
10	2.228	27	2.052
11	2.201	28	2.048
12	2.179	29	2.045
13	2.160	30	2.042
14	2.145	40	2.021
15	2.131	60	2.000
16	2.120	120	1.980
17	2.110	∞	1.960

^{*} Distribution of t for probability = 0.05.

** Degrees of Freedom = (n-1).

TABLE 6-1

95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

1983 Weighted Population Groups

				Std.	Std. Dev.	952 RO	95% Confidence Limits	nce Limit	SIX
Population	Fuel	c	4	RON	MON	20%	306	20%	306
US and Imported Vehicles									
Including Knock Sensors	PR	376	1.966	3.07	3.07	0.31	0.42	0.31	0.42
Maximum (high border-	FBRU	383	1.966	3.86	2.43	0.39	0.52	0.24	0.33
line) Kequirement	FBKSU	3/6	1.900	4.38	2.30	0.40	6.03	0.30	1.41
Including Knock Sensors	P.R	375	1.966	3.11	3.11	0.32	0.43	0.32	0.43
Minimum (low-border-	FBRU	381	1.966	3.79	2.40	0.38	0.52	0.24	0.33
line) Requirement	FBRSU	375	1.966	4.53	2.90	0.46	0.62	0.29	0.40
Excluding Knock Sensors	PR	361	1.967	2.99	2.99	0.31	0.42	0.31	0.45
	FBRU	367	1.967	3.73	2.35	0.38	0.52	0.24	0.33
	FBRSU	361	1.967	4.46	2.88	0.46	0.62	0.30	0.40
US and Imported Cars									
Including Knock Sensors	PR	352	1.967	3.26	3.26	0.34	0.46	0.34	0.46
Maximum (high border-	FBRU	359	1.967	4.11	2.60	0.43	0.58	0.27	0.36
line) Requirement	FBRSU	352	1.967	4.89	3.17	0.51	0.69	0.33	0.45
Including Knock Sensors	P.R	351	1.967	3.29	3.29	0.35	0.47	0.35	0.47
Minimum (low border-	FBRU	357	1.967	4.01	2.56	0.42	0.56	0.27	0.36
line) Requirement	FBRSU	351	1.967	4.85	3.13	0.51	0.69	0.33	0.44
Excluding Knock Sensors	PR	340	1.967	3.17	3.17	0.34	0.46	0.34	0.46
n	FBRU	346	1.967	3.96	2.51	0.42	0.56	0.27	0.36
	FBRSU	340	1.967	4.79	3.09	0.51	0.69	0.33	0.44

ē
Ē
F
೭
1
7
Ċ
TABLE G

				Std. Dev.	Dev.	95% RON	95% Confidence Limits	nce Limit	its
Population	Fuel	=	 	RON	MON	20%	306	20%	206
US Vehicles									
Including Knock Sensors Maximum (high border-	PR FBRU	300	1.968	3.70	2.92	0.34	0.45	0.34	0.45
ine) keduirement	LENSO	62	7.300	•	5	5.0	†	3	}
Including Knock Sensors Ninimum (low border- line) Requirement	PR FBRU FBRSU	292 298 292	1.968 1.968 1.968	2.97 3.58 4.52	2.97 2.30 2.88	0.34 0.41 0.52	0.46 0.55 0.70	0.34 0.26 0.33	0.46 0.35 0.45
Excluding Knock Sensors	PR FBRU FBRSII	279 285 279	1.969	2.83 3.57 4.56	2.83	0.33	0.45	0.33	0.45 0.36 0.47
US Cars		ì							
Including Knock Sensors Maximum (high border- line) Requirement	PR FBRU FBRSU	276 283 276	1.969 1.968 1.969	3.12 3.97 5.19	3.12 2.52 3.36	0.37 0.46 0.62	0.50 0.63 0.83	0.37 0.29 0.40	0.50 0.40 0.54
Including Knock Sensors Minimum (low border- line) Requirement	PR FBRU FBRSU	275 281 275	1.969 1.969 1.969	3.15 3.86 5.03	3.15 2.48 3.22	0.37 0.45 0.60	0.50 0.61 0.81	0.37 0.29 0.38	0.50 0.39 0.52
Excluding Knock Sensors Imported Vehicles	PR FBRU FBRSU	265 271 265	1.969 1.969 1.969	3.00 3.85 5.01	3.00 2.45 3.22	0.36 0.46 0.61	0.49 0.62 0.82	0.36 0.29 0.39	0.49 0.40 0.53
Including Knock Sensors Maximum (high border- line) Requirement	PR FBRU FBRSU	83 83	1.988 1.988 1.988	4.62 4.10 3.94	4.62 2.61 2.58	1.01 0.89 0.86	1.36 1.21 1.16	1.01 0.57 0.56	1.36 0.77 0.76
Excluding Knock Sensors	PR FBRU FBRSU	82 82 82	1.989 1.989 1.989	4.48 3.96 3.96	4.48 2.51 2.59	0.98 0.87 0.87	1.33 1.18 1.18	0.98 0.55 0.57	1.33 0.75 0.75

TABLE 6-11

95% CONFIDENCE LIMITS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

1983 Select Models

ts 90%	3.50 3.27 3.65	1.50 0.93 1.22	1.59 1.17 1.29	2.22 1.45 1.54	2.51 1.94 2.27
nce Limi	2.55	1.10	1.16	1.62	1.84
MO	2.38	0.68	0.85	1.06	1.42
50%	2.66	0.89	0.94	1.13	1.66
80N MON MON WON 50% 9	3.50	1.50	1.59	2.22	2.51
	4.76	1.40	1.84	2.16	2.86
	5.22	1.77	2.02	2.22	3.31
95% 80%	2.55 3.47 3.81	1.10 1.02 1.30	1.16 1.34 1.47	1.62 1.58 1.63	1.84 2.10 2.42
MON	4.421	2.481	2.173	3.568	3.927
	4.123	1.537	1.603	2.339	3.120
	4.601	2.014	1.763	2.479	3.548
Std. Dev. (s)	4.421	2.481	2.173	3.568	3.927
	6.011	2.309	2.516	3.476	4.610
	6.593	2.922	2.763	3.575	5.173
44	2.160	2.080	2.131	2.086	2.093
	2.160	2.080	2.131	2.086	2.086
	2.160	2.080	2.131	2.086	2.093
=	14 14	22 22 22	16 16 16	21 21 21	20 21 20
Fuel	PR	PR	PR	PR	PR
	FBRU	FBRU	FBRU	FBRU	FBRU
	FBRSU	FBRSU	FBRSU	FBRSU	FBRSU
	238A3/ 238A3	F20A3/	216A3	238A4/ 238A3/ 238A4	222A3/ 222A3/
Model	238A3/HGA 2 238A3/LGA 2	F20A3/LJP F20A3/ F20A3	216A3/MA4 216A3	OD3 238A3/OD3 238A4/ MD3 238A3/OE3 238A3/ OE3 238A4/ME3 238A4	222A3/KKC 2 222A3/KEC 2 222A3
	NGA 2 IGA 2	NJP F GJP F	0A4 2	003 2 MD3 2 0E3 2	PK3 2 DKC 2 DEC 2

APPENDIX H

OCTANE NUMBER REQUIREMENTS

OF KNOCK SENSOR-EQUIPPED VEHICLES

TABLE H-I

OCTANE NUMBER REQUIREMENTS

OF KNOCK SENSOR-EQUIPPED VEHICLES*

			Reference		565	,
Model Code	FBRS High**	Low **	FBR <u>High</u> **	Low_**	PRF High**	Low **
NTLH 450A4	82.0	81.0	81.0	81.0	81.0	81.0
LGA 238A3	87.0	82.0	87.0	82.0	86.0	80.0
NVMH 450A4	88.0	82.0	87.0	82.0	87.0	82.0
IGA 238A3	90.0	87.0	89.0	85.0	87.0	85.0
NFS F50A4	91.0	88.0	90.0	87.0	87.0	84.0
LAE 230A3	92.0	80.0	90.0	L	86.0	77.0
NTMH 450M4	93.0	89.0	92.0	88.0	92.0	88.0
LGA 238A3	94.0	88.0	92.0	88.0	89.0	86.0
HGA 238A3	94.0	84.0	92.0	82.0	90.0	82.0
LGA 238A3	96.0	96.0	93.0	91.0	90.0	89.0
LGA 238A3	96.0	~-	93.0		94.5	
KL8 222M5		~-	94.0			
NY8 F57A4	94.0	94.0	94.0	94.0	92.0	91.0
LB4 441A4	98.0	88.0	96.0	87.0	92.0	87.0
A TF20M5	96.0	96.0	98.0	96.0	Н	98.0
LGA 238A3	101.0	89.0	101.0	90.0	95.0	89.0

Listed in order of increasing octane number requirement.

^{**} High = Maximum (high borderline) Requirement Low = Minimum (low borderline) Requirement

APPENDIX I

MAXIMUM OCTANE NUMER REQUIREMENTS
OF SELECT MODELS

TABLE I-I

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

MODEL: NGA 238A3/HGA 238A3/1GA 238A3/LGA 238A3

	1		FBRU			FBRSU	
Percent Satisfied	PRF ON	RON	MON	RON MON (R+M)/2	RON	MON	RON MON (R+M)/2
တ	81.1	82.0	77.3	79.7	82.0	75.0	78.5
10	82.7	84.2	78.8	81.5	84.4	9.9/	80.5
20	84.7	86.8	80.6	83.7	87.3	78.7	83.0
30	86.1	88.7	81.9	85.3	89.4	80.1	84.8
40	87.3	90.4	83.0	86.7	91.2	81.4	86.3
90	88.4	91.9	84.1	88.0	92.9	82.5	87.7
09	89.5	93.4	85.1	89.3	94.5	83.7	89.1
70	7.06	95.0	86.2	9.06	96.3	84.9	9.06
80	92.1	97.0	87.5	92.2	98.4	86.4	92.4
06	94.1	9.66	89.4	94.5	101.3	88.4	94.9
95	95.7	101.8	6.06	96.3	103.7	90.1	6.96

TABLE 1-1 (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

MODEL: NJP F20A3/LJP F20A3/GJP F20A3

	i		FBRU			FBRSU	
Percent Satisfied	ON	RON	MON	RON MON (R+M)/2	RON	MOM	RON MON (R+M)/2
က	87.7	91.2	83.5	87.3	91.4	81.4	86.4
10	88.6	92.0	84.1	88.0	92.5	82.1	87.3
20	89.7	93.1	84.8	88.9	93.7	83.0	88.4
30	90.5	93.8	85.2	89.5	94.7	83.6	89.2
40	91.2	94.4	85.7	0.06	95.5	84.2	89.8
20	91.8	95.0	86.0	90.5	96.2	84.7	90.4
09	92.4	92.6	86.4	91.0	6.96	85.2	91.1
70	93.1	96.2	86.9	91.5	7.76	85.7	91.7
80	93.9	6.96	87.3	92.2	98.7	86.4	92.5
06	95.0	98.0	88.0	93.0	100.0	87.3	93.6
95	95.9	98.8	88.6	93.7	101.0	88.0	94.5

TABLE I-I (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

MODEL: 0A4 216A3/MA4 216A3

	1		FBRU			FBRSU	
Percent Satisfied	PRF ON	RON	MON	RON MON (R+M)/2	RON	MON	RON MON (R+M)/2
2	87.6	87.8	81.4	84.6	87.7	79.1	83.4
10	88.4	88.7	82.0	85.3	88.7	79.8	84.2
20	89.3	89.8	82.7	86.2	89.9	PO.6	85.2
30	0.06	9.06	83.2	86.9	8.06	81.1	86.0
40	90.6	91.3	83.7	87.5	91.5	81.6	9.98
20	91.2	91.9	84.1	88.0	92.2	82.0	87.2
09	91.7	95.6	84.5	88.5	92.9	82.5	87.7
70	92.3	93.3	84.9	89.1	93.7	83.0	88.4
80	93.0	94.1	85.4	89.7	94.5	83.5	89.1
06	93.9	95.2	86.1	9.06	95.8	84.3	90.1
96	94.7	96.1	86.7	91.4	8.96	84.9	6.06

TABLE I-I (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

MODEL: 003 238A3/003 238A4/MD3 238A3/0E3 238A3/0E3 238A4/ME3 238A4

,	!		FBRU			FBRSU	
Percent Satisfied	ON FE	RON		(R+M)/2	RON	MON	(R+M)/2
22	81.5	83.1	78.2		83.5	0.97	8.6/
10	82.8	84.4			84.8	6.97	80.9
20	84.4	85.9		83.0	86.3	78.0	82.2
30	85.5	87.0	80.8	83.9	87.5	78.8	83.2
40	86.5	88.0	81.4	84.7	88.5	79.5	84.0
90	87.4	88.8	82.0	85.4	89.4	80.1	84.8
09	88.3	89.7	82.6	86.2	90.3	80.7	85.5
. 70	89.2	7.06	83.3	86.9	91.2	81.4	86.3
80	90.4		84.0	87.9	92.4	82.2	87.3
06	91.9		85.0	89.1	93.9	83.3	88.6
95	93.2		85.9	90.2	95.2	84.2	89.7

TABLE I-I (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1983 SELECT MODELS

MODEL: PKC 222A3/KKC 222A3/DKC 222A3/KEC 222A3/DEC 222A3

	9		FBRU			FBRSU	
Percent Satisfied	ON THE	RON	MON	RON MON (R+M)/2	RON	MON	RON MON (R+M)/2
5	80.6	82.0	77.4	79.7	83.0	75.7	79.4
10	82.0	83.7	78.5	81.1	84.9	77.0	81.0
20	83.7	85.7	79.9	82.8	87.1	78.5	82.9
30	85.0	87.2	80.9	84.1	88.8	9.6/	84.3
40	86.1	88.5	81.7	85.1	90.2	80.6	85.4
20	87.0	9.68	82.5	86.1	91.5	81.5	86.5
09	88.0	8.06	83.3	87.1	92.8	82.4	97.6
70	89.1	92.0	84.2	88.1	94.2	83.4	88.8
80	90.4	93.5	85.2	89.3	95.9	84.5	90.2
06	92.1	95.5	86.5	91.0	98.1	86.0	92.1
95	93.5	97.2	87.7	92.4	100.0	87.3	93.7

TABLE 1-11

MAXINUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1983 SELECT MODEL NGA 238A3/HGA 238A3/IGA 238A3/LGA 238A3

	Č		FBRU			FBRSU		
	S S	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Percent Satisfied
	ب	78.0	74.2	76.1	78.0	71.7	74.8	2.78
2	86.0	87.0	80.9	84.0	87.0	78.5	82.8	8.33
3	86.0	87.5	81.2	84.4	88.0	79.3	83.6	13.89
4	86.0	88.0	81.6	84.8	89.0	80.0	84.5	19.44
2	86.0	89.0	82.2	85.6	89.0	80.0	84.5	25.00
9	87.0	89.0	82.2	85.6	89.5	80.4	84.9	30.56
7	87.0	89.0	82.2	85.6	90.0	80.7	85.4	36.11
80	88.0	0.06	82.8	86.4	90.0	80.7	85.4	41.67
6	88.0	90.0	82.8	86.4	90.0	80.7	85.4	47.22
0	88.0	90.0	82.8	86.4	91.5	81.6	9.98	52.78
1	89.0	91.0	83.5	87.2	92.0	81.9	87.0	58.33
2	89.0	93.0	84.7	88.8	94.0	83.1	88.6	63.89
3	90.0	95.0	86.0	90.5	96.0	84.5	90.5	69.44
4	92.0	96.0	86.7	91.4	100.0	87.3	93.6	75.00
2	92.0	0.86	88.0	93.0	100.0	87.3	93.6	80.56
9	93.0	100.0	89.5	94.8	=	I	×	86.11
7	94.0	101.0	90.3	95.6	I	I	Ŧ	91.67
8	95.0	=	=	I	I	æ	I	97.22
z	18		18			18		
an	88.389	91.899	84.067	87.978	92.861	82.533	87.700	
s	4.421	6.011	4.123	5.058	6.593	4.601	5.592	

TABLE 1-11 (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF

1983 SELECT MODEL NJP F20A3/LJP F20A3/GJP F20A3

	i		FBRU			FBRSU		ć
-	N N	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Percent Satisfied
1	87.0	90.0	82.8	86.4	90.0	80.7	85.4	2.27
2	87.0	92.0	84.1	88.0	92.0	81.9	87.0	6.82
က	88.0	93.0	84.7	88.8	93.0	82.5	87.8	11.36
4	89.0	93.0	84.7	88.8	94.0	83.1	88.6	15.91
2	91.0	94.0	85.4	89.7	94.0	83.1	88.6	20,45
9	91.0	94.0	85.4	89.7	94.0	83.1	88.6	25.00
7	92.0	94.0	85.4	89.7	95 0	83.8	89.4	29,55
8	92.0	94.0	85.4	89.7	95.0	83.8	89.4	34.09
6	92.0	94.0	85.4	89.7	0.96	84.5	90.5	38.64
10	92.0	94.0	85.4	89.7	0.96	84.5	90.2	43.18
11	92.0	95.0	86.0	90.5	0.96	84.5	90.2	47.73
12	92.0	95.0	86.0	90.5	0.96	84.5	90.2	52.27
13	92.0	95.0	86.0	90.5	0.96	84.5	90.2	56.82
14	92.0	95.0	86.0	90.5	0.96	84.5	90.2	61.36
15	92.0	95.0	86.0	90.5	97.0	85.2	91.1	65.91
16	92.0	95.0	86.0	90.5	97.0	85.2	91.1	70.45
17	92.0	0.96	86.7	91.4	98.0	85.9	92.0	75.00
18	94.0	97.0	87.3	92.2	99.0	9.98	92.8	79,55
19	94.0	98.0	88.0	93.0	100.0	87.3	93.6	84.09
20	94.0	98.0	88.0	93.0	100.0	87.3	93.6	88.64
21	0.96	0.66	88.8	93.9	100.0	87.3	93.6	93,48
22	97.0	100.0	89.5	94.8	I	I	×	97.83
z	22		22			22		
Mean	91.818	95.000	86.045	90.523	96.205	84.686	90.441	
S	2.481	2.309	1.537	1.939	2.922	2.014	2.445	

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF

1983 SELECT MODEL 0A4 216A3/MA4 216A3

			FBRU			FBRSU		•
-	ON PRE	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Percent Satisfied
1	87.0	87.0	80.9	84.0	88.0	79.3	83.6	3.13
. ~	0.88	88.0	81.6	84.8	88.0	79.3	83.6	9.38
ı m	89.0	90.0	82.8	86.4	90.0	80.7	85.4	15.63
4	0.68	91.0	83.5	87.2	90.0	80.7	85.4	21.88
. .	0.06	91.0	83.5	87.2	90.0	80.7	85.4	28.13
9	90.5	91.0	83.5	87.2	90.0	80.7	85.4	34.38
7	91.0	91.0	83.5	87.2	91.0	81.3	86.2	40.63
. ∞	91.0	92.0	84.1	88.0	93.0	82.5	87.8	46.88
0	92.0	92.0	84.1	88.0	93.0	82.5	87.8	53,13
10	92.0	92.0	84.1	88.0	93.0	82.5	87.8	59.38
1	92.0	92.0	84.1	88.0	94.0	83.1	88.6	65.63
12	92.0	94.0	85.4	89.7	94.0	83.1	88.6	71.88
13	93.0	94.0	85.4	89.7	94.0	83.1	88.6	78.13
14	93.0	94.0	85.4	89.7	94.5	83.4	89.0	84.38
15	94.0	95.0	86.0	90.5	95.0	83.8	89.4	90.63
16	95.0	97.0	87.3	92.2	98.0	85.9	92.0	96.88
Z	16		16			16		
Mean	91.156	91.938	84.075	87.975	92.219	82.038	87.163	
v	2.173	2.516	1.603	2.075	2.763	1.763	2.279	

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF

1983 SELECT MODEL OD3 238A3/0D3 238A4/MD3 238A3/0E3 238A3/0E3 238A4/ME3 238A4

	Satisfied	2,38	7.14	11.90	16.67	21.43	26.19	30.95	35.71	40.48	45.24	20.00	54.76	59.52	64.29	69.05	73.81	78.57	83.33	88.10	95.86	97.62			
	(R+M)/2	9.92	81.9	81.9	81.9	81.9	82.8	83.6	84.1	84.5	84.5	84.5	85.4	85.4	86.2	86.2	86.2	87.8	87.8	87.8	88.6	90.2		84.752	3.035
FBRSU	MON	73.2	77.8	77.8	77.8	77.8	78.5	79.3	9.6	80.0	80.0	80.0	80.7	80.7	81.3	81.3	81.3	82.5	82.5	82.5	83.1	84.5	21	80.105	2.479
	RON	80.0	86.0	86.0	86.0	86.0	87.0	88.0	88.5	89.0	89.0	89.0	90.0	90.0	91.0	91.0	91.0	93.0	93.0	93.0	94.0	0.96		89.357	3.575
	(R+M)/2	77.0	81.4	82.3	83.2	84.0	84.4	84.8	84.8	84.8	85.6	86.4	86.4	86.4	86.4	86.4	87.2	87.2	88.0	88.0	88.8	90.5		85.429	2.895
FBRU	MON	75.0	78.9	9.6	80.3	80.9	81.2	81.6	81.6	81.6	82.2	82.8	82.8	82.8	82.8	85.8	83.5	83.5	84.1	84.1	84.7	86.0	21	82.038	2.339
	RON	79.0	84.0	85.0	86.0	87.0	87.5	88.0	88.0	88.0	89.0	90.0	90.0	90.0	90.0	0.06	91.0	91.0	92.0	92.0	93.0	95.0		88.833	3.476
L 6	3 8	78.0	82.0	82.0	84.0	86.0	86.0	86.0	87.0	87.0	87.0	88.0	89.0	89.0	89.0	89.5	90.0	90.0	90.0	91.0	91.0	93.0	21	87.357	3.568
	-	-	~	က	4	2	9	7	æ	6	10	11	12	13	14	15	16	17	18	19	50	21	Z	Mean	s

TABLE I-II (Continued)

MAXIMUM OCTAME NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF

3	2
2000	
Ċ	•
١	
Ě	
c	
Š	Ì
TOTAL STORES	
ţ	
5	
ì	7
177/ 64000	۱
6	•
ŧ	_
è	
3	•
į	•
Š	١
į	
1	:
Š	•
•	•
1 4741 - 4000 ANA! CECCO 4740	į
6	١
TOTAL TOTAL	i
ξ	į
2	١
ŧ	
Ĺ	
į	,
•	٠
ż	

				FBRU				FBRSU		
	PRF S	Percent Satisfied	RON	MON	(R+M)/2	Percent Satisfied	RON	MOM	(R+M)/2	Percent Satisfied
7	78.0	2.50	78.0	74.2	76.1	2.38	79.5	72.8	76.2	2.50
~	79.0	7.50	81.0	9.9/	78.8	7.14	83.0	75.7	79.4	7.50
m	82.0	12.50	86.0	80.3	83.2	11.90	86.0	77.8	81.9	12.50
4	84.0	17.50	87.0	80.9	84.0	16.67	89.0	80.0	84.5	17.50
· w	85.0	22.50	87.0	80.9	84.0	21.43	89.0	80.0	84.5	22.50
ص ہ	86.0	27.50	88.0	81.6	84.8	26.19	89.0	80.0	84.5	27.50
7	87.0	32.50	88.0	81.6	84.8	30.95	89.5	80.4	84.9	32.50
ဆ	87.0	37.50	88.0	81.6	84.8	35.71	90.0	80.7	85.4	37.50
5	87.0	42.50	89.0	82.2	85.6	40.48	90.0	80.7	85.4	42.50
10	87.0	47.50	89.0	82.2	85.6	45.24	91.0	81.3	86.2	47.50
11	87.0	52.50	89.0	82.2	85.6	50.00	91.0	81.3	86.2	52.50
12	88.0	57.50	90.0	82.8	86.4	54.76	92.0	81.9	87.0	57.50
13	89.0	62.50	0.06	85.8	86.4	59.52	92.0	81.9	87.0	62.50
14	89.0	67.50	91.0	83.5	87.2	64.29	94.0	83.1	88.6	67.50
15	0.06	72.50	92.0	84.1	88.0	69.05	0.96	84.5	90.2	72.50
16	90.0	77.50	93.0	84.7	88.8	73.81	0.96	84.5	90.2	77.50
17	91.0	82.50	94.0	85.4	89.7	78.57	97.0	85.2	91.1	82.50
18	91.0	87.50	94.0	85.4	89.7	83.33	98.0	85.9	92.0	87.50
19	92.0	92.50	96.0	86.7	91.4	88.10	98.0	85.9	92.0	92.50
20	92.0	97.50	0.96	86.7	91.4	92.86	100.0	87.3	93.6	97.50
21			0.96	86.7	91.4	97.62				
z	20			21				50		
Mean	87.050		89.619	82.529	86.081		91.500	81.500	86.540	
v	3.927		4.610	3.120	3.865		5.173	3.548	4.348	

APPENDIX J

SPEED RANGE DATA

٦	•
۲	>
_	j
~	3
=	
₹	-
TARIF	-
Į	-
Ĭ	-
Ĭ	-
ΙΔΤ	-
TAI	
IV	
Ι	
Ž	

			_				_		_			J-1			_								
	3750		82.0	82.5	78.5		79.0		80.0						82.0								
M	3500	84.0	82.5	83.5	80.5	78.0	80.0		80.5		79.5				83.0								81.0
AT RI	3250	84.0	82.5	84.5	79.0	77.0	80.5		81.0		80.0		87.0		83.8							8 . 5	82.0
	3000	84.5	83.0	85.0	82.0	78.0	81.0		81.5	85.0	80.5		88.0		94.0	84.0	83.0	84.0				82.5	83.2
REQUIREMENTS,	2750	84.5	83.5	88.0	83.0	79.5	8 7. 1. 50		82.0	85.0	81.5	84.5	87.5	82.0	84.5	86.0	85.0	85.0				83.5	84.6
REG		85.0	83.5	86.5	85.0	80.0	82.0		83.0	85.0	83.0	86.3	86.0	83.0	84.5	88.0	82.0	85.0	85.0		83.0	84.0	86.0
NUMBER	2250 2500	85.55	84.0	87.0	89.0	~	82.0		84.0	85.0	84.5	88.0	~	85.0	84.0	87.5	~	85.5	87.0	83.0	85.5	85.0	87.3
OCTANE	2000	86.0	84.0	87.0	88.0		82.0	81.5	85.0 8	85.0	86.5	90.08		85.0 8	ω,	85.5		87.0	87.0	85.0	87.58	86.5	87.0 8
R.F. 00	1750 2	86.5	84.0 8	86.5	81.0		82.0	83.5	84.5	87.0	87.0 8	89.4		•		•		89.08	84.0 8	83.0 8	88.0.88	87.0 8	86.0 8
	1500 1	86.5	83.5	85.58	•		81.5	81.58	82.0 8	87.0 8	86.0.8	87.0 8						•	€	∞	88.0.88	∞	84.5 8
PRIMARY	1250 1	84.5	83.0 8	•			80.5	••	••	•	••	84.0 8									87.0 8		•
		82.0 8	82.0 8				•					€0									άο		
	HE	80	17	101	3 50	53	3 85	95	6	88	1 75	- 64	8 1	85	28	69	7.	55	633	1 62	69	9	60
	BAROM	30.29	29.18	29.24	29.36	29.77	29.23	29.85	30.00	71 29.86	28.94	70 30.24	29.94	29.40	30.11	30.08	29.52	29.97	29.33	29.34	30.08	29.95	70 30.30
		70	87	79	70	75	88	86	70		82	20	75	79	75	71	73	71	7	78	79	71	
	MILES	6087	9891	7745	20175	14624	6864	6152	7042	7824	7686	16471	14895	18935	15490	8390	9155	7925	10752	7393	12014	17180	Y +20 +20 12843
AD!	AS TST	+	+	+ 10	+10	+ 7	+ 10	0+	+ 0	60	+15	+ 15	60 +	6 0	+ 15	60 +	60	+20 +20	+20	+20 +20	+20 +20	+16 +20	+20
S	R RCD	€ + Z	÷ +	Y +10 +10	Y +10 +10	Y + 7	V +10 +10	Y +10 +10	Y +10	× + 8	Y +15	Y +15	8 + ×	+	Y +15	¥ + 8	∀	Y +20	Y +20 +20	Y +20	Y +20	Y +16	+20
	2 2	~	W)	0.0	0.0	2.2	89 .U	8. S	89 .51	8.2	8.0	8.0	9.0	₩.	. S	7	8.2	8.0	8.0	8.0	8.0	8.0	
× 50		2 2	æ Z L	Z	Z	8	2 2	2 2	Z	Z	Z	Z	z	œ Z	Z	2	z	Z	Z	Z	Z	Z	F N 8.0
W Z '									A4 F	A3 F	43 F	F3 F	13 C	13 F	13 F	13 C	13 F	13 F	¥	74 F	7	<u> </u>	
	CODE	BA7 F17M5	F 18M5	: 222A3	: 222A3	1 226A3	F41A4	F41A4	F41A4	26 HAR F25A3	238A3	238A3	F18A3	216A3	230A3	F25A3	F25A3	450A3	450A4	450A4	450A4	450A4	450A4
ı	.	29 BA7	4 BA8	4 DEC	B DKC	8 DKG	4 GC8	8 GC8	5 GK8	3 HAR	4 HGA	7 HGA	41 HJ0	48 HTC	8 IAE	41 IAR	B IAR	5 1BY	3 187	3 18Y	3 187	5 1CY	7 IEY
	S S :	7	30		4 28												3 46		48	5 46	7 26		
	2		ñ	33	284	258	=	277	80	315	38	335	58	242	271	53	243	87	244	245	317	80	336

TABLE J-1	(Continued)

1500 1500 1500 1500 2150 2500 2750 3000 3250 3500 3750	MOSE OF A SPK	E K SPK ADV	E K SPK ADV	SPK ADV	SPK ADV	SPK ADV	SPK ADV	AD! AD		3	AMB	5			PRI	PRIMARY	8	OCTANE	4	NUMBER R	REQU	REQUIREMENTS	YS.	AT R	RPM	
80.5 87.0 88.0 85.0 84.0 82.5 82.0 84.0 82.5 84.0 82.5 84.0 82.5 86.0 84.0 82.0 84.0 82.5 82.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 82.0 82.0 82.0 82.0 82.0 82.0 82	C.R. R RCD TST MILES T	T.N.C.R. R.RCD TST MILES TWP BARON	T.N.C.R. R.RCD TST MILES TWP BARON	C.R. R RCD 1ST MILES THP BAROM	C.R. R RCD 1ST MILES THP BAROM	R RCD TST MILES TWP BAROM	RCD TST MILES TWP BAROM	TST MILES TWP BAROM	MILES THP BARON	TMP BAROM	BAROM		Ħ;	000		•	•		•	•	•	. '		3250		3750
80.5 87.0 87.0 85.0 84.0 83.0 82.5 84.0 83.0 82.5 83.0 84.0 83.0 84.0 83.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84	41 IGA 238A3 C N 8.0 V +13 +15 13040 72 29.98 72	C N 8.0 Y +13 +15 13040 72 29.98	C N 8.0 Y +13 +15 13040 72 29.98	N 8.0 V +13 +15 13040 72 29.98	8.0 V +13 +15 13040 72 29.98	Y +13 +15 13040 72 29.96	+13 +15 13040 72 29.86	13040 72 29.98	13040 72 29.98	72 29.96	29.96		72			87.(ıo.						
80.5 87.0 85.0 84.0 83.0 82.5 84.0 82.5 82.5 86.0 86.0 84.0 83.0 82.5 86.0 86.0 84.0 83.0 82.5 80.0 14.5 86.0 84.0 82.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14	46 IGA 238A3 F N 8.0 Y +15 +15 17204 80 29.38 104	238A3 F N 8.0 Y +15 +15 17204 80 29.38	238A3 F N 8.0 Y +15 +15 17204 80 29.38	N 8.0 V +15 +15 17204 80 29.38	8.0 Y +15 +15 17204 80 29.38	Y +15 +15 17204 80 29.38	+15 +15 17204 80 29.38	+15 17204 80 29.38	17204 80 29.38	80 29.38	29.38		104				83.			0						
86.5 87.0 87.0 84.5 84.0 83.0 82.5 82.5 83.0 82.5 83.0 83.0 83.5 83.0 84.0 84.0 83.0 82.5 83.0 85.5 83.0 84.0 82.0 84.0 82.0 84.0 82.0 84.0 82.0 82.0 82.0 82.0 82.0 82.0 82.0 82	46 IGA 238A3 F N 8.0 Y +15 +15 15477 74 29.40 64	F N 8.0 Y +15 +15 15477 74 29.40	F N 8.0 Y +15 +15 15477 74 29.40	N 8.0 Y +15 +15 15477 74 29.40	Y +15 +15 15477 74 29.40	Y +15 +15 15477 74 29.40	+15 +15 15477 74 29.40	+15 15477 74 29.40	15477 74 29.40	74 29.40	29.40		4				93.(o.						
80.5 87.0 87.0 88.0 84.5 86.0 84.0 82.0 80.5 79.0 78.0 77.5 86.2 86.0 84.0 82.0 80.5 79.0 77.5 86.5 86.0 84.0 82.0 81.0 89.0 85.5 84.0 87.5 86.0 87.0 87.0 86.5 86.0 87.0 87.0 86.5 86.0 87.0 87.0 86.5 86.0 87.0 87.0 87.0 86.5 86.0 87.0 87.0 87.0 86.5 86.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87	8 IGA 238A3 F N 8.0 Y +15 +15 10788 70 30.24 29	F N 8.0 Y +15 +15 10788 70 30.24	F N 8.0 Y +15 +15 10788 70 30.24	N 8.0 Y +15 +15 10788 70 30.24	8.0 Y +15 +15 10788 70 30.24	Y +15 +15 10788 70 30.24	+15 +15 10788 70 30.24	+15 10788 70 30.24	10788 70 30.24	70 30.24	30.24		29				85.						82.5			
80.5 87.0 87.0 88.0 84.0 82.0 80.5 79.0 77.5 83.0 85.5 86.0 84.0 82.0 80.5 79.0 77.5 84.5 86.5 89.0 91.0 89.0 88.5 84.0 84.5 86.0 81.0 82.0 84.5 80.0 80.5 87.0 84.5 86.0 87.0 87.0 86.5 86.5 84.5 84.0 83.0 86.5 87.0 87.0 86.5 85.0 84.5 84.0 83.0 86.5 87.0 86.5 85.0 84.0 82.5 81.0 80.0 86.5 87.0 86.5 85.5 85.0 84.0 82.5 81.0 85.7 86.5 87.0 86.5 85.5 85.0 84.0 82.5 81.0 85.7 86.0 87.5 87.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0	8 IGA 238A3 F N 8.0 Y +15 +15 22520 75 29.95 77	238A3 F N 8.0 Y +15 +15 22520 75 29.95	238A3 F N 8.0 Y +15 +15 22520 75 29.95	8.0 Y +15 +15 22520 75 29.95	8.0 Y +15 +15 22520 75 29.95	Y +15 +15 22520 75 29.95	+15 22520 75 29.95	+15 22520 75 29.95	22520 75 29.95	75 29.95	29.95		11				. 88			so.						
83.0 85.5 86.0 84.0 82.0 80.5 79.0 77.5 84.0 87.0 88.5 84.0 87.0 86.5 89.0 91.0 90.5 90.0 85.8 84.0 87.0 87.0 86.5 85.0 84.5 84.0 87.0 87.0 87.5 85.5 85.0 84.5 84.0 87.0 87.0 87.5 85.5 85.0 84.5 87.0 87.0 87.0 87.5 87.0 88.5 85.0 84.5 84.0 87.0 87.0 87.5 87.5 87.0 88.4 87.4 88.7 88.0 87.0 87.0 87.5 87.5 87.0 88.4 87.4 88.7 88.0 87.0 88.0 87.0 88.5 87.0 88.4 87.4 88.7 88.0 87.0 88.0 87.0 88.5 87.0 88.4 87.4 88.7 88.0 87.0 88.0 87.0 88.5 87.0 88.4 87.4 88.7 88.0 87.0 87	28 IGY 450A3 F N 8.00 Y +20 +20 14429 77 29.85 100	450A3 F N 8.00 Y +20 +20 14429 77 29.85	450A3 F N 8.00 Y +20 +20 14429 77 29.85	N 8.00 Y +20 +20 14429 77 29.85	8.00 Y +20 +20 14429 77 29.85	77 29.85	77 29.85	77 29.85	77 29.85	77 29.85	29.85		8		80.	87			•							
86.5 89.0 90.0 91.0 89.0 86.5 84.0 87.5 88.5 90.0 91.0 90.5 90.0 88.5 87.0 84.5 86.0 87.0 87.0 86.5 84.5 82.0 84.5 84.0 83.0 86.5 87.0 87.0 86.5 86.0 84.5 84.0 83.0 83.0 86.5 87.0 87.5 86.5 85.5 85.0 84.0 84.0 83.5 86.5 87.0 86.5 85.5 85.0 84.0 82.5 81.0 85.5 86.5 87.0 86.5 85.5 85.0 84.0 82.5 81.0 82.5 86.0 87.0 86.5 85.5 85.0 84.0 82.5 81.0 83.5 86.0 87.0 86.0 85.5 85.0 84.5 84.0 83.5 83.5 86.0 87.0 86.0 85.5 85.0 84.5 84.0 83.5 83.5 86.0 87.0 86.0 85.5<	4 IGY 450A4 F N 8.0 Y +20 +20 7742 96 29.00 108	450A4 F N 8.0 Y +20 +20 7742 96 29.00	450A4 F N 8.0 Y +20 +20 7742 96 29.00	8.0 Y +20 +20 7742 96 29.00	8.0 Y +20 +20 7742 96 29.00	Y +20 +20 7742 96 29.00	+20 7742 96 29.00	+20 7742 96 29.00	7742 96 29.00	96 29.00	29.00		108			83.(0.84	78.0	77.5	
86.5 86.0 91.0 90.5 90.0 88.5 87.0 84.5 86.0 87.0 84.0 82.0 84.5 84.0 88.5 84.0 83.0 86.5 86.0 87.0 86.5 85.5 85.0 84.5 84.0 83.0 86.5 87.0 86.5 85.5 85.0 84.0 84.0 83.5 86.5 87.0 86.5 85.5 85.0 84.0 84.0 83.5 86.5 87.0 86.5 85.5 85.0 84.0 82.5 81.0 86.0 87.0 86.5 85.5 85.0 84.0 85.5 81.0 85.7 86.0 87.0 86.0 85.5 85.0 84.0 85.5 85.0 86.0 87.0 86.0 85.5 85.0 84.0 85.5 83.5 86.0 87.0 86.0 85.0 85.0 84.0 83.5 83.5 86.0 87.0 86.0 85.0 85.0 85.0 84.0 83.5 83.5<	29 IJO F18A3 F N 9.0 Y + 8 + 8 28055 70 30.06 80	F18A3 F N 9.0 Y + 8 + 8 28055 70 30.08	F18A3 F N 9.0 Y + 8 + 8 28055 70 30.08	N 9.0 Y + 8 + 8 28055 70 30.08	9.0 Y + 8 + 8 26055 70 30.08	Y + 8 + 8 26055 70 30.08	+ 8 + 8 26055 70 30.06	+ 8 28055 70 30.08	26055 70 30.06	70 30.08	30.08		90					86.1					89.0	85.5	84.0	
84.5 86.0 87.0 84.0 82.0 84.5 84.0 83.0 83.5 86.0 84.5 84.0 83.0 83.5 86.0 87.0 87.0 86.5 86.0 84.5 84.0 84.0 83.0 83.5 86.5 87.0 87.0 87.0 86.5 85.5 85.0 84.5 84.0 84.0 83.5 86.5 86.0 87.0 87.0 87.0 87.0 87.0 88.4 87.4 86.7 86.0 85.7 8	5 IXR F25A3 F N 8.2 Y + 8 + 8 24867 70 29.91 52	F25A3 F N 8.2 Y + 8 + 8 24867 70 29.91	F25A3 F N 8.2 Y + 8 + 8 24867 70 29.91	N 8.2 Y + 8 + 8 24867 70 29.91	8.2 Y + 8 + 8 24867 70 29.91	Y + 8 + 8 24867 70 29.91	+ 8 + 8 24867 70 29.91	+ 8 24867 70 29.91	24867 70 29.91	70 29.91	29.91		52					87.1					80.5	90.0	88.5	87.0
86.5 86.0 87.0 86.5 86.0 85.0 84.5 84.0 83.5 83.0 86.5 84.5 84.0 83.5 85.0 84.5 84.0 83.5 83.5 86.0 85.0 84.5 84.0 83.5 83.5 86.0 87.0 87.0 86.5 85.5 85.0 84.5 84.0 83.5 83.5 86.0 87.0 87.0 86.5 85.5 85.0 84.5 84.0 82.5 81.0 80.0 88.4 87.4 86.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.7 86.0 85.5 85.0 84.5 84.0 83.5 83.5 85.0 86.0 83.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85	46 IXR F25A3 F N 8.2 Y + 8 + 8 6200 76 29.65 80	F25A3 F N 8.2 Y + 8 + 8 6200 76 29.65	F25A3 F N 8.2 Y + 8 + 8 6200 76 29.65	N 8.2 Y + 8 + 8 6200 76 29.65	8.2 Y + 8 + 8 6200 76 29.65	Y + 8 + 8 6200 76 29.65	+ 8 + 8 6200 76 29.65	+ 8 6200 76 29.65	6200 76 29.65	76 29.65	29.65		80						81.			2.0				
84.5 86.0 87.0 87.0 86.5 86.0 84.5 84.0 83.0 86.5 86.0 86.5 85.5 85.0 84.0 84.0 83.5 86.5 76.0 77.5 78.0 78.0 76.0 76.0 78.0 78.0 76.0 86.5 87.0 87.0 86.5 87.0 81.5 80.0 84.0 82.5 81.0 80.0 86.0 87.0 86.5 85.5 85.0 84.0 82.5 81.0 80.0 85.7 86.0 87.0 86.0 85.5 85.0 84.5 84.0 83.5 83.5 86.0 87.0 86.0 87.0 86.0 87.0 87.5 87.0 87.5 87.0 86.0 86.0 87.0 86.0 87.5 87.0 87.5 87.0 87.5 87.0 87.5 86.0 86.0 87.0 86.0 87.0 87.5 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.0 87.	8 IXR F25A3 F N 8.2 V + 8 + 8 11645 75 29.97 37	F25A3 F N 8.2 V + 8 + 8 11645 75 29.97	F25A3 F N 8.2 V + 8 + 8 11645 75 29.97	N 8.2 Y + 8 + 8 11645 75 29.97	8.2 Y + 8 + 8 11645 75 29.97	V + 8 + 8 11645 75 29.97	+ 8 + 8 11645 75 29.97	+ 8 11645 75 29.97	11645 75 29.97	75 29.97	29.97		37							82			82.0	80.5		U-Z
86.5 86.5 85.5 85.0 84.5 84.0 84.0 86.5 76.0 77.5 78.0 78.0 76.0 78.0 78.0 78.0 86.5 87.0 87.0 82.5 85.0 84.0 82.5 81.0 86.5 87.0 86.5 85.5 85.0 84.0 82.5 81.0 86.0 87.5 86.0 85.5 85.0 84.5 84.0 83.5 86.0 87.5 86.0 85.5 85.0 84.5 84.0 83.5 86.0 87.0 86.0 87.5 81.5 81.5 80.0 83.5	4 KKC 222A3 F N 9.0 N +10 +10 5818 87 29.10 118	222A3 F N 9.0 N +10 +10 5816 87 29.10	222A3 F N 9.0 N +10 +10 5816 87 29.10	N 9.0 N +10 +10 5816 87 29.10	8.0 N +10 +10 5818 87 29.10	N +10 +10 5818 87 29.10	5816 87 29.10	5816 87 29.10	5816 87 29.10	87 29.10	29.10		118			84.							85.0	84.5	84.0	
86.5 87.0 87.0 88.5 85.0 84.0 82.5 81.0 86.5 87.0 87.0 86.5 85.5 84.0 82.5 81.0 86.5 87.0 87.5 90.0 88.4 87.4 86.7 86.0 89.0 87.5 87.0 86.0 85.5 85.0 84.5 84.0 83.5 86.0 87.0 86.0 87.5 81.5 81.0 78.5 82.5 86.0 83.0 85.0 84.5 81.5 80.0 83.5	5 KKC 222A3 F N 9 O Y +10 +10 4055 70 29 88 52	222A3 F N 9.0 Y +10 +10 4055 70 29.88	222A3 F N 9.0 Y +10 +10 4055 70 29.88	N 9.0 Y +10 +10 4055 70 29.88	9.0 Y +10 +10 4055 70 29.88	Y +10 +10 4055 70 29.88	+10 4055 70 29.88	+10 4055 70 29.88	4055 70 29.88	70 29.88	29.88		22					88.					84.5	84.0	84.0	83.5
86.5 87.0 87.0 81.5 80.5 80.0 78.0 86.5 87.0 87.5 90.0 88.4 87.4 86.7 81.0 89.0 87.5 86.0 88.6 87.5 88.0 84.5 84.0 83.5 86.0 87.0 88.0 87.0 88.0 87.5 84.5 84.0 83.5 86.0 83.0 83.0 83.5 84.5 84.0 83.5 86.0 83.0 83.0 83.5 84.5 84.0 83.5	46 KKC 222A3 F N 9.0 Y + 9 + 9 17872 76 29.42 70	222A3 F N 9.0 Y + 9 + 9 17872 76 29.42	222A3 F N 9.0 Y + 9 + 9 17872 76 29.42	N 9.0 Y + 9 + 9 17872 76 29.42	9.0 Y + 9 + 9 17872 76 29.42	Y + 9 + 9 17872 76 29.42	+ 9 + 9 17872 76 29.42	+ 9 17872 76 29.42	17872 76 29.42	76 29.42	29.42		92	ر			76.					0.8				
86.5 87.0 87.0 86.5 85.5 85.0 84.0 82.5 81.0 87.2 87.0 86.5 85.6 87.4 86.7 86.0 86.0 87.5 87.0 85.5 85.0 84.5 84.0 83.5 86.0 87.0 86.0 87.0 81.5 81.0 79.5 78.5 86.0 83.0 85.0 84.0 82.5 81.5 80.0 80.0	8 KKC 222A3 F N 9.0 Y +10 +10 6070 70 29.91 40	222A3 F N 9.0 Y +10 +10 6070 70 29.91	222A3 F N 9.0 Y +10 +10 6070 70 29.91	N 9.0 Y +10 +10 6070 70 29.91	9.0 Y +10 +10 8070 70 29.91	Y +10 +10 6070 70 29.91	6070 70 29.91	6070 70 29.91	6070 70 29.91	70 29.91	29.91		Q					82.(80.5	80.0	79.0	78.5
89.0 87.5 87.0 88.0 85.5 85.0 84.5 84.0 83.5 86.0 86.0 87.0 88.0 87.0 88.0 87.0 88.0 87.0 88.0 87.0 88.0 87.0 88.0 87.0 88.0 87.0 88.0 87.0 87	26 KKC 222A3 F N 9.0 Y +10 +10 16207 83 29.94 118	222A3 F N 9.0 Y +10 +10 18207 83 29.94	222A3 F N 9.0 Y +10 +10 18207 83 29.94	N 9.0 Y +10 +10 16207 83 29.94	9.0 Y +10 +10 16207 83 29.94	Y +10 +10 16207 83 29.94	16207 83 29.94	16207 83 29.94	16207 83 29.94	83 29.94	29.94		118	85.0									84.0	82.5	81.0	0.0
86.0 87.5 87.0 86.0 85.5 85.0 84.5 84.0 83.5 86.0 83.5 85.0 81.5 81.0 79.5 78.5 85.0 85.5 85.0 81.5 81.0 79.5 78.5	7 KKC 222A3 F N 9.0 Y +10 +10 14465 70 30.40 56	222A3 F N 9.0 Y +10 +10 14465 70 30.40	222A3 F N 9.0 Y +10 +10 14465 70 30.40	N 9.0 Y +10 +10 14465 70 30.40	9.0 Y +10 +10 14465 70 30.40	Y +10 +10 14465 70 30.40	+10 +10 14465 70 30.40	14465 70 30.40	14465 70 30.40	70 30.40	30.40		56						87.				87.4	86.7	86.0	85.7
86.0 83.0 82.0 81.5 81.0 79.5 85.0 84.0 82.5 81.5	4 LAE 230A3 F N 8.5 V +14 +14 13770 75 29.13 91	230A3 F N 8.5 Y +14 +14 13770 75 29.13	230A3 F N 8.5 Y +14 +14 13770 75 29.13	N 8.5 Y +14 +14 13770 75 29.13	8.5 Y +14 +14 13770 75 29.13	Y +14 +14 13770 75 29.13	+14 +14 13770 75 29.13	+14 13770 75 29.13	13770 75 29.13	75 29.13	29.13		91			89.(84.5	84.0	83.5	83.5
86.0 83.0 82.0 81.5 81.0 79.5 85.0 84.0 82.5 81.5	28 LAE 230A3 F N 8.5 Y +15 +15 15139 70 29.36 50	230A3 F N 8.5 Y +15 +15 15139 70 29.36	230A3 F N 8.5 Y +15 +15 15139 70 29.36	N 8.5 Y +15 +15 15139 70 29.36	8.5 Y +15 +15 15139 70 29.36	Y +15 +15 15139 70 29.36	+15 +15 15139 70 29.36	+15 15139 70 29.36	15139 70 29.36	70 29.36	29.36		20			86.			6							
84.0 82.5 81.5	26 LAE 230A3 F N 8.5 V +15 +15 5132 78 29.82 97	230A3 F N 8.5 Y +15 +15 5132 78 29.82	230A3 F N 8.5 Y +15 +15 5132 78 29.82	N 8.5 Y +15 +15 5132 78 29.82	8.5 Y +15 +15 5132 78 29.82	Y +15 +15 5132 78 29.82	+15 +15 5132 78 29.82	+15 5132 78 29.82	5132 78 29.82	78 29.82	29.82		87		86.(0								
84.0 82.5 81.5	29 LAE 230A4 F N 8.5 Y +15 +15 12200 70 30.07 59	230A4 F N 8.5 Y +15 +15 12200 70 30.07	230A4 F N 8.5 Y +15 +15 12200 70 30.07	N 8.5 Y +15 +15 12200 70 30.07	8.5 Y +15 +15 12200 70 30.07	Y +15 +15 12200 70 30.07	+15 +15 12200 70 30.07	+15 12200 70 30.07	12200 70 30.07	70 30.07	30.07		60					82.(78.5			
	29 LAE 230A4 F N 8.5 Y +15 +15 6555 70 30.29 59	230A4 F N 8.5 Y +15 +15 6555 70 30.29	230A4 F N 8.5 Y +15 +15 6555 70 30.29	N 8.5 Y +15 +15 6555 70 30.29	8.5 Y +15 +15 6555 70 30.29	Y +15 +15 6555 70 30.29	+15 +15 6555 70 30.29	+15 6555 70 30.29	6555 70 30.29	70 30.29	30.29		58					85.0					0.08			

85.0 85.0 84.5 83.5 83.0 82.0 82.0

86.5

83.0 86.0

75 29.92

8 MD3 238A3

261

260

263

													0-0		
	1	3750	84.0							89.0					
	3	3500	85.0						87.0	90.0	85.0	81.0			
	AT RPM	3250	86.8						88.0	4.16	86.0	83.0	82.0		
	i	•	88 .0				80.0		89.0	92.0	86.5	84.5	83.0		86.0
	JIREME		0.08				0.18	84.2	80.5	0.06	87.0	86.5	84.0		86.5
	REOL	2500	87.5			76.5	82.0	84.6	91.5	•	87.0	88.0	85.0	85.0	87.5
	PRIMARY R.F. OCTANE NUMBER REQUIREMENTS,	1000 1250 1500 1750 2000 2250 2500 2750	84.0				83.0	85.0	91.0		88.5	84.0	86.0	88.0	88.0
	TANE	8	•		86.0	81.0 78.5	85.0	85.5			86.0	~	87.0	87.0	88.3
		1750 2		0.2	89.08	82.58	86.0 8	87.0 8			85.0 8		88.0.8	85.0 8	89.08
	æ	-		8	6	œ	ž				80			ä	
	MARY	1500		84.0 82.0	86.0			88.0					89.0		89.0
-1 ed)		1250		82.0				85.8					88.0		
TABLE J-1 (Continued)		9						84.0							
-5		HT:	62	82	78	84	4	28	90	62	67	20	42		99
		BAROM HUM	70 30.02	74 29.28	71 30.08	80 29.48	75 30.08	71 30.00	70 29.94	71 30.28	72 30.16	70 29.38	74 30.12	29.34	67 29.85
			70 3	74 2	71 3	80 2	75 3	71 3	70 2	71.3	72 3	70 2	74 3	75 2	67 2
		ODOM A	15755	Y +20 +20 12912	7187	23829	21015	11225	7915	6268	7545	16090	13277	Y +10 +10 13741	Y +10 +10 18809
		AS TST M		20 1		15 2	15 2	+15 -1		0	•	+ 80 -	5	101	101
	SPK A	S C C	65 + 60 +	÷ 02	Y +15 +15	Y +15 +15	Y +15 +15	+ 51	Y +10 +10	0	+	00	Y +10 +10	5	5
	•	R RCD	+ >	¥ ≻	+	+	+	Y +15	+	>	+	+ >	+	+	+
		ن ا	80	0.	0.8	0.8	8	8	6	ල. මේ	8.2	8.3	8.5	0.6	0
	M Z X N	uz:	2	Z	Z	2	Z	Z	Z L	Z	Z	Z	Z	Z	F N 9.0
		MODEL	7 LAR F25A3	LCY 450A4	LGA 238A3	238A3	LGA 238A3	LGA 238A3	F20A3	7 LJP F20A3	41 LXR F25A3	F25A3	228A3	218A3	MA2 216A3
		_ 0	LAR	rcv	LGA	LGA	LGA	LGA	9	ل چ	LXR	LXR	LXX	MA2	MA2
		2 2	1	9	=	•	•	7	58	7	7	28	26	9	60
		Sec	338	249	5	275	276	337	17	338	83	295	320	239	280

E3 238A4	E3 238A4 F N 8.6 Y +12 +12	>	+12 +1	2 4147	17 70 30.18	238		86.5	86.5 87.0 86.0 85.5 85.0 85.0 84.5 83.5 83.0 82.0 82.0	86.0	85.5	85.0	85.0	84.5	83.5	83.0	82.0	82.0	
AR F25A3	AR F25A3 F N 8.2 V + 8 + 8 13808	>	+ 60	8 1380	8 78 29.78	97							84.0	83.5	84.0 83.5 82.0 80.5 79.0	80.5	79.0		
AR F25A3	AR F25A3 F N 8.2 V + 8 + 8 16247	>	# 60	8 1624	75 29.99	11							86.0	85.5	86.0 85.5 63.5 82.0 80.0	82.0	80.0		
AX 228A3	AX 228A3 F N 8.5 Y +10 +10	>	110 +1	0 6010	70 29.92	62		83.5	83.5 85.0 87.0 88.0 87.5 87.0 84.0	87.0	88.0	87.5	87.0	84.0					
AX 228A3	AX 228A3 C N 8.5 Y +10 +10	>	110 +1	0 9692	12 72 29.93	88					84.0	85.0	86.0	84.0 85.0 86.0 86.0 85.0	85.0				
AX 228A3	AX 228A3 F N 8.5 Y +10 +10	>	110 +1	0 11804	04 76 29.95	33							86.0	86.0	86.0 86.0 85.0 83.0 82.5 82.0	83.0	82.5	82.0	
BH 450A4	BH 450A4 F N B.6 Y + 6 + 6	>	+ 00	6 8992	70 30.00 54	54	88.0	88.0	88.0 88.0 88.0 88.0 87.5 87.5 87.0 87.0 86.5 86.0	88.0	88.0	87.5	87.5	87.0	87.0	86.5	86.0		
BH 450A4	BH 450A4 F N 8.6 Y + 6 + 6	>	+	6 8758	58 70 30.35 29	58					84.0	83.5	83.0	82.0	84.0 83.5 83.0 82.0 81.5 80.5	80.5			

٦-	(pani
بد	itin
AB	ဒ္ဌ
	$\overline{}$

												J-4											
1	3750					87.0	87.0		84.3								87.0		90.0	91.0	86.5	85.0	
T	3500		85.0		83.0	91.0	87.5		85.0		82.0						88.0		90.0	92.0	87.0	86.0	
AT RPM	3250	82.5	85.0		84.1	92.0	88.0		82.8		83.5						89.0	86.5	90.0	92.0	87.5	86.5	
NTS.	3000	84.0	83.5		85.3	91.0	89.0		88.3		85.0					92.0	90.0	87.5	80.5	92.5	88.0	87.0	86.0
REQUIREMENTS,	2750	84.5	86.5		86.4	87.0	89.5		86.9		86.0					95.0	91.0	87.5	91.0	93.0	88.0	87.0	87.0
	8	85.0	87.0		87.6		90.5		87.5		86.5		87.0			88.0	91.5	86.0	91.5	93.0	88.5		85.5
NUMBER	2250 2	85 83	88.0	85.0	88.6		91.5		88.2		87.0		90.5		89.0	87.0	92.0		92.0	93.5	88.0		
OCTANE	2000	80 53 54	89.0	86.5	88.0		94.0		88.0	85.0	88.0	88.0	92.5	84.0	93.0	86.5	92.0		93.0	94.5	89.0		
я. г.	1750	86.0	90.0	87.0	84.0		93.5	87.5		87.0	90.0	90.0	93.0	88.0	93.0	86.0	94.0		94.0	95.5	89.0		
	1500	86.0	80.5	86.0				88.0		86.0	90.0	90.0	91.0	88.0	92.0		98.0			97.0			
PRIMARY	1250	86.0	91.0								88.5	89.0		87.5	90.5								
	902	82.0	9.0								87.0	88.0											
•	HUM	107	85	8	56	82	52	136	62	88	124	116	116	80	24	9	82	80	4 8	28	55	8	43
	BAROM F	29.64	30.25	29.98	30.38	29.84	28.85		30.52	30.16	29.97	30.18	30.04	29.98	30.05	29.91	29.09	30.08	30.70	30.10	0.03		29.87
!	AMB TMP BY	86 25	75 30	78 29	72 30	81 25	70 28	80 29.98	70 30	73 30	83 26	84 30	80 30	79 26	64 30	70 28	88 29	78 3(70 30	70 30	71 30.03	80 29.70	71 28
	MILES	10180	7522	31958	14761	2274	8596	8900	6998	9467	21370	25110	9945	19386	4423	24870	6327	7 102	8638	5016	9210	7918	9984
_	AS TST M	+ 6	9	÷	+ 6	Y +10 +10 1227	+ 10	+10 +10 18900	+10		0	0	0	0	0	0	0	0	0	0	0	0	0
	AS RCD	5 0	9	10	\$	10	9	01+	+10	+15 +15	0	0	0	0	0	0	0	0	0	0	0	0	•
⋖	- 4	>	>	>	>		>	>	>	>	>	>	>	>	>	>	z	>	>	>	>	>	>
	ر ا	8 9	8.6	89.	8.6	8 0	60	60 10	.	8	8	80.	89	89.	80	9 .3	9.3	9.3	8 .3	9.3	6	6 .3	6
その人	U P	Z	Z	Z	Z	2	Z	Z	Z	Z	Z	Z L	Z	Z L	Z	Z	Z	S	Z	Z	Z	Z	Z 4
	MODEL	MBH 450A4	NBH 450A4	NBH 450A4	NBH 450A4	228A3	228A3	228A3	228A3	238A3	238A3	238A3	238A3	238A3	238A3	F20A3	F20A3	F20A3	F20A3	F20A3	F20A3	F20A3	F20A3
	≇ ℧	Ĭ	ij	I	Ī	NF1	NF1	NF1	NF .	NGA	NG9	NG9 3	MG9 2	NG9 2	NG9	N. P	N. P	NJP R	P. P.	N.	3	3	4.54 4.
	2 S	60	26 1	26	7	=	in.	28 1	7	=	26 1	26	26)	28	26	29	7	=	ī,	S.	ທ	œ	œ
	S 02	266	305	306	332	53	18	307	333	20	308	308	310	311	314	=	35	88	82	83	8	267	268

■ できるので ■ 一名の公共 ■ 「おなら A ■ なおながら M できるが、 M で

According to Section 18 to Section 18

										•		>											
			m 1 7 4	•	SPK	ADV						9	704MT-00		OCT AME		STATES BEAUTOEMENT	101121	MENTE	14	700		
40	4			< ►							1 1 1	;	- ;	. :		į	NOTES R		GULFERENIS,				
2	2	3000 C00E	N.C.R.	· 22 ·		TST			BAROM	E :	1000	1250	0 1	1750	2000	2250	2500	2750	3000	3250	3500	3750	
289	2 28 28	NJP F20A3	6	>	_	_	∞		29.05	90				88.0	82.0	9.0						83.0	
290	Ž 88	NJP F20A3	F 89.3	>	0	0	10482	20	29.25	20						86.0	91.0	92.0	88.8	87.2	86.0	84.5	
291	28 R	NJP F20A3	K 99.3	>	0	0	23841	20	29.23	20							94.8	93.5	92.5	82.0	89.0	89.5	
292	28 1	NJP F20A3	F N 9.3	>	0	0	15065	70	29.43	20						89.0	93.0	9.0	90.0				
312	26 R	NJP F20A3	F 89.3	>	0	0	12415	73	30.27	9			91.0	91.0	90.5	90.5	91.5	92.0	92.0	91.5	90.5		
313	26 A	NUP F20A3	F N 9.3	>	0	0	13910	87	29.91	108				81.5	90.0	85.0							
334	Ź	NJP F20A3	R 99.3	>	0	0	8873	20	29.94	9				87.0	92.5	92.3	4.1	90.5	89.8	89.0	88.5	88.1	
8	ž	NJP F20M4	F N 9.3	>	0	0	4014	69	29.90	20			88.0	87.0	86.0	85.0	85.0	84.5	84.0	84.0	84.0	83.0	
12	29 N	NTC 218A3	4.6 Z	Z	9	6	13066	72	30.22	89				88.0	87.0	8 . 5	85.0	84.5	84.0	_			
13	29 N	NTC 218A3	4.6 N P	>	œ +	9 0	6968	02	29.97	19					86.0	86.0	86.0	85.5	84.5	83.5			
36	7	NTC 218A3	4.6 N	>	+ 9	80	7004	18	29.33	97	,		78.0	80.5	82.0	81.5	81.0	80.5	80.0	78.5	78.5	78.0	J-!
50	1	NTC 216A3	C N 9.4	>	6	9	11397	63	30.06	89						84.5	86.0	88.0	85.0				5
86	z in	NTC 218A3	F N 9.4	>	+ 9 +	•	13865	9	29.92	54			86.0	87.0	87.0	88.0	90.0	88	87.5	87.0	87.0	86.0	
269	80	NTC 216A3	F N 9.4	>	+ 8 +	•	19864	80	29.88	=			82.0	84.0	83.5	83.0	82.5	81.5	80.0	_			
293	28 N	NTC 216A3	4.6 N	>	+	6	9624	92	29.53	20				80.0	83.0	84.0	83.0	82.0					
57	5	NXR F25A3	C N 8.2	>	+ 80 +	∞	19885	11	30.08	83						94.5	96.0	94.5	94.0				
240	8	NXR F25A3	F N 8.2	>	+ 2	89 +	17990	75	29.49	82							83.0	85.0	83.0				
270	2	NXR F25A3	F N 8.2	>	œ +	6 0	18157	76	29.72	06						83.5	86.0	85.5	83.5	82.5			
236	48 0/	0A2 216A3	F N 9.0	>	+10 +10		12550	7	29 . 15	40				88.0	89.0	89.0	88.0						
329	7 0/	DA2 216A3	F N 9.0	>	+ 0+	+10 +	18173	72	30.23	83					90.0	92.0	91.8	89.8	88.0	87.9	86.0	85.	
100	29 0/	0A4 216A3	F N 9.0	>	+14+	+14 1	10695	2	30.07	80		95.0	94.0	92.5	90.5	86.5							
34	4	4 0A4 216A3	F N 9.0		Y +14 +14		5302	79	29.32	102		83.5	85.5	87.0	88.0	87.0	88.0	85.0	84.5	84.0	84.0	83.5	

TABLE J-1 (Continued)

C. N. R. R. D. T. S. MILLER TREAD RANGE NAME NAME NAME NAME NAME NAME NAME NAM		ğ	日記 (大公元			ADV	7	9			,	PRI	PRIMARY	84	OCTANE	NUMBER	:	REQUIREMENTS	ENTS,	AT	RPM	! ! !	
DAM 218A3 F N B.O. Y + 14 + 14 T4 B.O. T4 B.O. T4 B.O. TA DOLA 218A3 TA DOLA 218A33 TA DOLA 218A333 TA DOLA 218A333 TA DOLA 218A333	į			- ec :						HUM	1000	1250	1500	1750	2000	4		•		•	3500	3750	
OAM 2188A 1 F N B.C. O Y +144 +14 S NB 1 A.C. O B.C. O B	1 0A4 21	18A3	Z		#		6178		0.05	69		68.0	80.5	91.0	91.0	90.5							
OAZ 218A3 F N B.O.	0A4	18A3	Z	>	+	+14	7181	70 3	00.30	52		90.0	91.0	92.0	92.0				87.5		86.5	86.0	
OAM 2 1864 F N 9.0 N 44 4 4 14 1 10 2 9.6 53 A 4.0 A 5.0 A 5.0 </td <td>0A4</td> <td>18A3</td> <td>Z</td> <td></td> <td>*</td> <td></td> <td>5896</td> <td>70 3</td> <td>90.00</td> <td>54</td> <td></td> <td>93.0</td> <td>93.5</td> <td>94.0</td> <td>93.0</td> <td></td> <td></td> <td></td> <td>92.0</td> <td></td> <td></td> <td>91.0</td> <td></td>	0A4	18A3	Z		*		5896	70 3	90.00	54		93.0	93.5	94.0	93.0				92.0			91.0	
CAM 2 1643 F N 80 F N 80 F N 90 F N 80 F N 90 F N 80 F N 90 F N 80 F N	0A4	16A3	Z		+		1081	70 2	99.68	53						88.0			84.0		82.5		
CAM 2 16465 N S S S S S S S S S S S S S S S S S S S	0A4	16A3	Z		+ +	+1+	11785	70 2	19.51	20	84.0	87.0	87.0	85.0	84.0	84.0							
CAN S 16NS CAN S 20	OA4	16A3	Z	>	7		8777	71 3	0.40	19						87.5			92.0		89.4	87.9	
CASE FIRMS N B.C Y + 15 + 15 + 238 31 TO 29 + 31 GP.C		16MS	C N 9.0		+12		6236	71 3	90.0	60			88.0	88.5	89.0				87.5		86.0		
CASE FIGNER F N B.O. Y + 10 + 10 10341 70 29.38 50 R.O. 84.0 84.0 83.0 82.0 70.2 80.0	OAS	16M5	Z	>		+15 2	13831	70 2	16.6	9	87.0	88.5	91.0	91.0	91.0				88.0		85.0	83.5	
CLX 133.24 F N S<	0A5	16M5	Z		0	+10 1	10341	70 2	9.36	20			85.0	86.0	84.0								
CCX 133A3 F N S F N S </td <td>0A5</td> <td>16M5</td> <td>Z</td> <td>></td> <td></td> <td></td> <td>9540</td> <td>70 2</td> <td>9.29</td> <td>20</td> <td></td> <td></td> <td>86.0</td> <td>89.2</td> <td>85.7</td> <td>84.2</td> <td></td> <td></td> <td>8.15</td> <td></td> <td></td> <td>77.5</td> <td></td>	0A5	16M5	Z	>			9540	70 2	9.29	20			86.0	89.2	85.7	84.2			8.15			77.5	
CD3 238A3 C N 8.6 Y + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 1	X	33A3	Z		+ 10		9314	74 3		40			89.0	89.0	89.0				87.5				J-6
CDS 238A3 F N 8.6 F N	003	38A3	Z	>	÷ 10		13942		9.97	89					86.5				89.0		86.5)
DE3 238A3 F N 8.6 V +10 +10 +10 1809 80 30.31 37 81.5 81.5 91.0 90.0 89.0 87.5 88.0 DE3 238A3 F N 8.6 V +12 +12 13056 72 30.22 65 41.0 86.0 85.0 84.5 84.0 83.5 84.0 89.0 DE3 238A3 F N 8.6 V +12 +12 12617 70 30.06 62 41.0 87.0 84.5 84.0 87.0 84.5 84.0 87.0 84.0 87.0 84.0 87.0 84.0 87.0 84.0 87.0 87.0 84.0 87.0 <	003	38A3	Z		10	+10 1	10685	70 3	0. 10	54		88.0	87.5	88.0	88.0								
0E3 238A3 F N 8.6 V + 12 + 12 13056 72 30.22 65 65 84.5 84.5 84.5 84.5 84.5 85.0 85.0 85.5 84.5 84.0 85.5 84.5 84.5 84.0 85.0 84.5 84.5 84.0 85.0 84.5 84.0 85.0 84.5 84.0 85.0 84.5 84.0 85.0 85.0 84.5 84.0 85.0	OEX	33A3	Z	>	9	+ 10 1	11609	80 3	10.31	37				88	91.0	90.0			88.0				
DE3 238A3 C N 8.6 Y +16 +10 121297 70 30.02 61 85.5 86.0 85.5 85.0 84.5 84.0 84.5 84.0 85.5 85.0 84.5 84.0 86.0 85.5 85.0 84.5 84.0 85.0 84.5 84.0 85.0 84.5 84.0 85.0 84.5 84.0 86.0 85.0 84.5 84.0 86.0 85.0 84.0 86.0 85.0 84.0 86.0 85.0 84.0 86.0 85.0 84.0 86.0 85.0 84.0 86.0 85.0 84.0 86.0	0E3	38A3	Z			+12 1		72 3	10.22	65				87.0	86.0				83.5				
DE3 238A3 F N 8.6 Y +12 +12 12617 70 30.06 62 R +0 81.0 81.0 80.5 79.5 78.5 78.5 78.5 78.0 <td>0E3</td> <td>38A3</td> <td>Z</td> <td>></td> <td>+16</td> <td>+10 2</td> <td>1297</td> <td>70 3</td> <td>0.02</td> <td>.</td> <td></td> <td></td> <td>85 10 10</td> <td>86.0</td> <td>86.0</td> <td></td> <td></td> <td></td> <td>84.0</td> <td></td> <td></td> <td></td> <td></td>	0E3	38A3	Z	>	+16	+10 2	1297	70 3	0.02	.			85 10 10	86.0	86.0				84.0				
DE3 238A4 F N 8.6 Y +12 +12 12817 70 30.06 62 84.5 84.5 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 85.0 84.0 86.0 85.0 84.0 86.0 85.0 86.0 85.0 86.0 85.0 86.0	0E3	38A3	Z	>	+12	+12 1	17128	74 2	86.68	69		81.0	82.0	81.0	80.5								
0E3 238A4 F N 8.6 Y +12 +12 78.1 78.0 82.0 78.0 <td>0E3</td> <td>38A4</td> <td>Z</td> <td>></td> <td></td> <td></td> <td>12617</td> <td>70 3</td> <td>90.08</td> <td>62</td> <td></td> <td></td> <td>85.0</td> <td>84.5</td> <td>84.0</td> <td></td> <td></td> <td></td> <td>82.0</td> <td></td> <td></td> <td></td> <td></td>	0E3	38A4	Z	>			12617	70 3	90.08	62			85.0	84.5	84.0				82.0				
0E3 238A4 F N 8.6 Y +12 +12 15286 70 29.53 50 84.0 90.0 86.0 85.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 88.0	0£3	38A4	Z	>	+12		7661	74 2		104						79.0							
DE3 238A4 F N 8.6 Y +12 +12 4823 68 29.77 56 88.0 88.0 86.0 85.0 84.5 84.0 84.0 84.0 0E3 238A4 F N 8.6 Y + 8 +12 9104 70 30.41 59 84.3 85.0 86.1 88.0 80.0 89.8 88.2 87.0 86.0 85.0 84.3	0E3	38A4	Z	>	+12				9.53	20		84.0	90.0	86.0	85.0								
0E3 238A4 F N 8.6 Y + 8 +12 9104 70 30.41 59 84.3 85.0 86.1 88.0 90.0 89.8 88.2 87.0 86.0 85.0 84.3	0E3	38A4	Z		+12	+12			9.77	58	88.0	88.0	88.0	86.0	85.0								
	0E3	38A4	Z	>	∞		9104	70 3	0.41	23	84.3	85.0	86.1	88.0	90.0	89.8	88				84.3	83.9	

A A BODE	BODE		日 2 C ス S F	< ⊢	SPK ADV	V. : 4	AMB AMB			;	PR	PRIMARY	ez .	DCTANE	- 1	NUMBER R	REQUIREMENTS	MENTS,	AŦ	M M	! ! !
CODE TNC.R. R.R.	T C. S. T.	C.R.	ez :			4		BAROM	A HUM	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
4 DFF F50A4 F N B.4 Y +20	F N 8.4 Y	X 80 4.	>	+20	+20 +20	20 6726	26 77	29.35	48	88.0	90.0	9. 1.5	92.0	91.5	91.0	90.0	88.0	88.0	87.0	85.5	84.5
28 OFF F50A4 F N 8.4 Y +20	F50A4 F N 8.4 Y	N 8.4 Y	>	+20	+	+20 6865	55 87	29.87	124	89.0	89.0	88 .5	88.0	88.0	87.5	87.0	88.0	85.5	84.5	84.0	
41 PKC 222A3 C N 9.0 Y +10	222A3 C N 9.0	0 60 Z		9	+	Y +10 +10 18687	87 72	30.00	27 0			83.0	85.0	86.5	87.0	87.0	86.5	85.0	83.5		
41 PKC 222A3 C N 9.0 Y + 8	222A3 C N 9.0 Y +	+ Y 0.6 N	+	*		+10 9075	75 74	30.08	87 8				87.0	89.0	88.5	5 87.0	_				
5 PKC 222A3 F N 9.0 Y +10 +10	222A3 F N 9.0	0. 8.		01+	7	10 8945	45 70	29.93	3 54					85.0	85.0	85.0	84.5	84.0	83.5	83.0	82.0
8 PKC 222A3 F N 9.0 Y +10	222A3 F N 9.0 Y	Y 0.6 N	>	÷	-	+10 +10 18103	03 74	29.75	9					84.0	84.0	82.0	80.5	79.5	79.0	78.0	
28 PKC 222A3 F N 9.0 Y +10	F N 9.0 Y	¥ 0.8 X	>	0	Ξ	+10 +10 18146	16 80	30.07	84			83.0	87.0	86.5	86.0	85.5	85.0	85.0	85.0	84.5	83.0
7 PKC 222A3 F N 9.0 Y +10 +	222A3 F N 9.0 Y	N 9.0 Y	>	+ 10	-	+10 +10 11570	70 70	30.14	56						89.5	5 92.6	91.0	4.68	87.8	87.0	86.2
29 PLC 222A3 F N 9.0 Y +10 +10 10413	222A3 F N 9.0	0 B N		+ 00 +	-	10 1041	13 70	30.32	28	83.5	85.0	86.5	88.5	89.0	87.0	85.0	83.5				
4 PLC 222A3 F N 9.0 Y +10 +10	222A3 F N 9.0 Y	Y 0.6 N	>	01	Ξ	10 6434	34 73	29.30	99 (87.0	90.0	89.5	88	87.0	88.0	85.0	84.0	83.0	82.5
29 RAG F14A3 F N 8.8 Y	80 80 80	60 80 Z	>			17802	02 70	30.29	28						92.0	92.0	92.0	90.0	87.5	87.0	J-7
41 RAG F14A3 C N 8.8 Y	F14A3 C N 8.8	80 80 22	-			15197	97 72	30.08	8 67									85.0	86.0	85.5	85.0
8 RAG F14A3 F N B.8 Y	F14A3 F N B.8	80 80 20	>			6456	58 72	29.31	1 23								85.0	86.5	86.0	85.0	84.0
28 RAG F14A3 F N 8.8 Y	F14A3 F N 8.8	80 80 Z	>			10449	19 70	29.16	20					85.0	85.5	84.5	84.1	83.2	82.0	81.2	78.5
28 RAG F14A3 F N 8.8 Y	F14A3 F N 8.8	8 8	>			10615	15 70	29.30	05 0			83.0	85.0	86.0	85.0	84.0	82.0	_			
28 RAG F14M5 F N 8.8 Y	F14M5 FN 8.8	8 R	>			17701	01 70	29.32	20			89.0	90.0	89.0	86.5	85.5	84.5	83.5	82.5	81.5	80.5
40 RAB F14M5 A N 8.8 N	F14M5 A N 8.8	8 · 8	z			9020	20 44	29.76	3 21							89.0	91.0	92.0	91.5	90.0	88.5
40 RAG F14M5 A N 8.8 N	F14M5 A N 8.8	8 8 8	z			22500	90 80	29.98	06			90.0	92.0	93.0	92.5	92.0	91.5	91.0	90.0	89.5	
29 RC5 242A3 F N 9.2 Y + 6	F N 9.2 Y + 6	N 9.2 Y + 6	4	ιO	+	6 20000	00 00	29.92	09			88.5	92.0								
8 RC5 242A3 F N 9.2 Y + 6	242A3 F N 9.2 Y +	N 9.2 Y +	+		+	6 20674	74 70	30.10	40				83.0	84.0	83.5	82.5	81.5	80.5	80.0		
41 NTLH 450A3 C N 8.6 Y + 4	8.6 × +	8.6 × +	+ >		+	6 9487	37 90	29.97	30			90.0	91.0	92.0	92.0	92.0	91.0	90.0	_		
7 NTSB 228A3 F N 8.5 Y +12 +12	228A3 F N 8.5 Y	F N 8.5 Y	>	+ 12	+	12 8049	19 71	30.32	09		95.6	93.5	90.8				85.0	88.8	.5	89.0	86.8

	_
_	T
i i	ŭ
Ċ	ž
_	Ē
ш	-
\equiv	¥
9	_
	0
\vdash	ŭ
	$\overline{}$

												J-8											
;	3750	82.5				85.0	84.0		84.3	90.0	85.2					85.0			96.0		84.0	90.0	87.0
MdM	3500	83 .55	84.0			86.0	83.0	84.5	84.9	90.0	85.8			92.5		86.0			96.9		85.5	92.0	87.0
AT R	3250	85.0	85.0			86.5	86.0	85.0	85.5	90.0	₩. ₩			93.0		86 . 5			97.8		88.5	93.0	87.0
NTS.	3000	8 . 9	86.2	89.0		86.5	86.5	98.0	86.3	90.0	87.0			93.0	80.0	87.0	88.0		98 8 . 8		88.0	92.5	87.0
REQUIREMENTS	2750	88.0	88.0	88.5		87.0	87.0	86.5	87.3	90.0	87.8	86.5	88.0	93.6	80.0	87.0	89.0		99.5		89.0	91.5	88.0
	2500		89.8			87.0	87.5	87.5	88.8	80.5	88.8	88.0	90.0	93.6	80.0	88.5	88.0	87.5	I		90.5	90.5	85.0
NUMBER	i '		91.4		90.0	88.0.88	88.0 8	88.0 8	80.08	91.0	89.3 8	89.08	91.0	94.0 9	80.5	86.0 8	89.08	88.0.88	_	88.5	91.5	89.5	•
	! !	8																	I				
OCTANE	2000	85.5	87.2		90.5	90.0	88.5	90.0	91.2	90.0	86.0	90.0	91.5	94.0	81.0	84.5	88.0	89.0	I	90.0	93.0	89.0	
R. F.	1750	84.0			91.0	89.0	88.0	91.5	90.0			91.5	92.5	9.0	81.5			90.5	0.88	91.0	93.5		
PRIMARY	1500	82.0			91.0	86.5	89.0	92.0				92.5	94.0	93.5	82.0			92.0	95. S	92.0	94.0		
981	1250				80.5		91.0	91.5				94.0	95.0	93.0	83.5			94.0		93.5			
	000											95.5	95.0		95.5			96.0		94.0			
•	НГМ	83	57	138	72	29	82	20	91	88	50 60	58	62	67	80	80	73	59	56	89	5	15 15	136
	BAROM H	29.16	30.28	29.98 1	30.00	29.90	30.00	30.62	30.10	29.95	29.90	30.32	. 92	29.94	78.6	29.98	30.02	30.07	0.70	29.88	30.10	30.04	29.86
!	AMB TMP B/		71 30	79 28	72 30	75 29	72 30	69 3(70 30	85 29	72 29	70 3(70 29.92	72 29	70 29.97	78 29	74 30	70 30	71 30.70	74 29	70 9	70 30	80 2
•		8908	5036	10411	7527	5029	10239	32015	6177	8494	5886	9846	7688	21974	11579	6985	8505	6264	8151	13066	77.14	5118	0282
. .	2	, ee	0+		• -	∞	60	LO	+10	ហ	ın	ın	I D	8	0	∞	a	80	+15 +20 16151	85	+18	+ 16	+16 +16 10282
		, 6	+ + + ×	Y +19 +19		+	+	÷	6	in	+ In	10		7	0	*	6 0	*	+ 61	+18 +18	+18+	+ 16 +	16
S <	 Œ	; + ; z	z	+	z	+	+	+	+ Z	-	+	+	+	Z	>	+	+	+	>	z	>	>	>
		0.0	.	80	6 0	8.3	₹.	8 0	0.0	4.	4.	4.	₹.	4.	80 170	8	6 0	8 0	6 9	9	න ල	80	80.
E N		Z	Z		Z	Z.	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	S	Z	Z	Z	Z	Z	Z
	<u></u>	343		58A3	9M4	58A3		_	ō	_	_					_						_	_
	MODEL CODE	OTLA 123A3 F N	OTLY 149A3	OTMG V258A3F N	41 OTMY 149M4	OVHG V258A3F N	OVMI 250A4	2 16M4	CP 222MS	216A3	216A3	2 16M5	2 16MS	2 16M5	220M5	F22A3	F24M5	F28M5	313M5	3 15M5	315M5	318A4	318A4
		. •	7	26 0	1	6	8	19	7	26 E	7 E	29 E	29 E	41 E	29 E	41 E	41 E	29 E	٦ ي	29 J	ر د	S	26 J
		2	340	321	63	16	85	69	342	322	343	8	6	65	50	99	67	21	344	22	94	9 15	323

Š	M M M		Ø : `	SPK ADV	2	9		•	1	PRI	PRIMARY		OCTANE	NUMBER	:	REQUIREMENTS	NTS,	AT RPM	7	
, AC					3		BAROM	HCH :	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
Z.		0.	+	₩ +	6768	80	30.10	8				86.2	92.0	91.8	90.0	88.7	87.8	6.9	86.3	86.0
Z		8 0	+	+	11621	70	29.86	62				88.5	90.0	89.5	87.5	86.5	85.0			
Z		8 9	+	+	111422	70	70 30.08	62					90.0	89.0	87.5	86.5	85.0	84.5		
Z		80	+	+10 +10	10489	20	29.56	00	_	_	_	77.0	81.0	77.0	76.0	75.0	_	_	ب	_
Z		8.8	+	+10 +10	14846	70	29.48	90	ب	ب		_	_	77.0	78.0	79.0	0.94	ر	_	۔
-	Z	80.	+	+10 +10	10801	70	29.34	20	ب	ب	ب.	_	_	78.0	0.77	77.0	76.0	ب	_	_
<u>.</u>	Z	60	+	+10 +10	5590	32	29.82	‡							81.0	82.5	83.5	82.5	81.0	79.5
ı.	z	6	+	+15 +15	8790	99	30.23	90							88.0	91.0	0.18	90.0	88.0	
ı	z	6	+	+15 +15	10850	62	29.97	‡				82.5	83.5	85.0	86.0	87.0	87.0	86.5	85.5	84.5
<u>.</u>	z	0.0	+ Z	es + es	8943	75	29.88	88	84.0	84.0	84.0	83.5	83.0	82.0	81.5	80.5				
_	z	4.0	>	20 +20	+20 +20 11428	72	30.08	98			_	78.5	0.77	78.0	78.5	79.5	80.0	81.0	80.5	J-1 ب
<u>.</u>	ż	4.0	≻	+20 +20	9800	38	29.49	20										81.0	81.0	80.5
ī	z	æ.	+ Z	+ +	7670	9	30.23	52		93.0	93.0	91.0	90.0	89.5	83.0	88.5	88.0	87.5	87.5	87.0
ī	z	8.2	+	+12 +12	68 13	20	30.12	72				88.0	88.0	87.0	88.0	85.5	85.0	84.5	83.0	
υ	z	0.6	+ Z	÷ 5	6099	8	29.88	9/		90.0	91.0	91.5	. 18 15.	91.0	91.0	90.0				
L	z	0.6	+ >	5 +	5915	83	29.09	63			88.0	88 . 51	88.0	87.5	87.0	88.0	85.5	84.5	84.0	83.0
<u>.</u>	Z	0.6	>	5+ 5+	11236	72	30.25	63		88.0	90.0	90.0	89.5	88.0	86.0	84.5	84.0	84.5	85.0	85.0
Ŀ	z	9.0	+ Z	15 +	15300	20	29.81	80				85.0	91.2	90.3	89.8	88.8	88.1	87.5	87.0	86.5
L	>	8 .0	+	+13 +13	13722	70	30.13	20				90.0	80.0	77.5	ij					
ΰ	-	0.8	÷ >	+15 +15	6042	70	30.28	87			85.0	87.0	86.5	85.0						
u.	>	80 .01	→	+15 +15	15245	70	29.48	20	-1	77.0	80.0	86.0	_	_		_	_	ب	_	_
•	>	8.0	+	+12 +15	9570	73	30.10	41			86.0	88.5	90.0	85.0	83.0	80.5	79.0	78.0		

	-
_	τ
1	٩
7	=
-	2
ш	
_	+
8	_
æ	_
-	ع
•	$\overline{}$

8			₩ ()	SPK A	ADV		9				PRI	MARY	E	OCTANE	NUMB	R.	QUIREM	ENTS,	PRIMARY R.F. OCTANE NUMBER REQUIREMENTS, AT RPM	¥	
2 2	CODE	TN C.R. R RCD TST	- E	A CO	AS CO	MILES		LES TMP BAROM HUN	HUM :	1000	1250	1500	1750	2000	2250	2500	2750	3000	1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750	3500	3750
521	1 LGA 238A	28 LGA 238A3 F V 8.0 V +15 +15 15580 70 29.36 50	+ >	÷ 51	15 15	580	70	19.36	20			83.0	98.0	85.5	84.0	78.0	_	-	83.0 86.0 85.5 84.0 79.0 L L L L	۰	٠
523	1 LGA 238A:	28 LGA 238A3 F Y 8.0 Y +15 +15 213	+	+ 51	15 21	1328	70	28 70 29.28	20	٠	85.0	87.0	89.0	. 85.0 87.0 89.0 87.0 85.0	85.0						
517	NFS F50A	28 NFS F50A4 F Y 9.5 Y + 6 + 6 158	+	+ 10	.	8	70	70 29.55 50	000			84.0	99.0	84.0 88.0 89.0 85.0 84.0	85.0	84.0					
305	NTLH 4504	5 NTLH 450A4 F Y 8.8 Y + 6 + 4 105	+	*	4	563	92	63 70 30.15 56	28			ب	78.0	L 78.0 80.0 L	ب						
201	NTMH 450	5 NTMH 450M4 F Y 8.8 N + 6 + 6	+ Z	+	6 728	7282	75	82 75 30.48 48	8		91.0	92.0	89.0	87.0	87.0	87.0	86.5	86.5	91.0 92.0 89.0 87.0 87.0 87.0 86.5 86.5 86.0 85.5 85.0	85.5	85.0

TABLE J-II

PRF SPEED RANGE CALCULATED DATA - 1983 SELECT MODELS

		0-	14		
3750	1 1 1	86.6 2.71 11	87.1 3.16 4	$\begin{array}{c} 83.0 \\ 1.34 \\ 2 \end{array}$	82.3 2.52 11
3500	79.5	87.8 2.54 13	86.8 3.72 5	84.3 2.25 3	82.8 2.70 12
3250		88.5 2.72 14	87.4 4.02 5	85.3 2.52 3	83.4 2.69 13
3000		89.2 2.60 17	88.0 3.89 5	84.7 2.48 6	84.3 2.60 13
2750	82.5 1.70 6	90.1 2.65 17	88.5 2.83 6	84.7 2.88 9	84.5 3.48 15
rpm 2500	82.6 3.09 9	90.1 2.90 15	89.1 2.22 6	84.8 3.15 10	85.0 2.77 16
Engine 2250	84.1 2.76 15	89.5 2.91 13	88.3 2.71 8	84.8 3.36 11	86.2 2.84 16
2000		90.6 2.78 10	89.8 3.28 6	85.7 2.48 11	86.1 3.22 14
1750	86.7 2.21 17		90.3 3.48 6	85.7 2.33 10	85.4 4.05 10
1500	85.9 1.37 10	93.0 4.24 4	90.3 3.42 6	85.7 2.96 9	85.2 1.75 7
1250	84.9 1.27 2	1 1 1	89.6 4.13 6	84.1 3.33 7	85.8 1.06 2
1000	84.0	1 1 1	84.0	86.2 8 2.62 2	84.3 1.06 2
	Mean SD N	Mean SD N	Mean SD N	Mean SD N	Mean SD N
au	238A3/ 238A3	F20A3/	216A3	238A4/ 238A3/ 238A4	222A3/ 222A3/
Model Code	238A3/HGA 238A3/ 238A3/LGA 238A3	NJP F20A3/LJP F20A3/ GJP F20A3	0A4 216A3/MA4 216A3	238A3/0D3 238A4/ 238A3/0E3 238A3/ 238A4/ME3 238A4	PKC 222A3/KKC 222A3/ DKC 222A3/KEC 222A3/ DEC 222A3
	NGA 2 IGA 2	NJP F	0A4 2	003 2 MD3 2 0E3 2	PKC 2 DKC 2 DEC 2

SD = Standard Deviation; N = Number of Observations

FIGURE J-1

1983 SELECT MODEL: NGA 238A3/HGA 238A3 IGA 238A3/LGA 238A3

FIGURE J-2

1983 SELECT MODEL: NJP F20A3 LJP F20A3 GJP F20A3

FIGURE J-3

1983 SELECT MODEL: 0A4 216A3 MA4 216A3

FIGURE J-4

1983 SELECT MODEL: 0D3 238A3/0D3 238A4

MD3 238A3/0E3 238A3 0E3 238A4/ME3 238A4

FIGURE J-5

1983 SELECT MODEL: PKC 222A3/KKC 222A3 DKC 222A3/KEC 222A3 DEC 222A3

APPENDIX K

GEAR POSITION FOR MAXIMUM OCTANE NUMBER REQUIREMENTS

TABLE K-I

THROTTLE/GEAR POSITION FOR 1983 MAXIMUM

FBRU OCTANE NUMBER REQUIREMENTS

Throttle Position	Transmission Ty	pe & Gear	No. of Vehicles	% of <u>Vehicles</u>
*********	Automatic Tr	ansmission-		
Maximum	4-Speed:	4th 3rd 2nd	35 25 5	11.9 8.5 1.7
	3-Speed:	3rd 2nd	131 50	44.4 16.9
Part	4-Speed:	4th 3rd	7	2.4 1.0
	3-Speed	3rd	39	13.2
			295	100.0
	Manual Tran	smission		
Maximum	5-Speed:	4th 3rd 2nd	46 10 1	52.3 11.4 1.1
	4-Speed:	4th 3rd	13 4	14.8 4.5
Part	5-Speed:	4th	12	13.6
	4-Speed:	4th	2	2.3
			88	100.0

END

FILMED

10-84

DTIC