§ 16 \mathfrak{L}^p -Räume und \mathbb{L}^p -Räume

Stets in diesem Paragraphen: $\emptyset \neq X \in \mathfrak{B}_d$

Definition

Sei $p \in [1, +\infty]$.

$$p' := \begin{cases} \infty &, p = 1 \\ 1 &, p = \infty \\ \frac{p}{p-1} &, 1$$

Dann gilt: $\frac{1}{p} + \frac{1}{p'} = 1$ und $p = p' \Leftrightarrow p = 2$.

Hilfssatz

Seien $x, y \ge 0, p \in (1, \infty)$, dann gilt: $xy \le \frac{x^p}{p} + \frac{y^{p'}}{p'}$

Beweis

Für
$$t > 0$$
: $f(t) := \frac{t}{p} + \frac{1}{p'} - t^{\frac{1}{p}}$

Übung: $\min\{f(t) \mid t > 0\} = f(1) = 0$

D.h.:
$$t^{\frac{1}{p}} \le \frac{t}{p} + \frac{1}{p'} \quad \forall t > 0$$

Seien $u, v > 0, t := \frac{u}{v}$. Dann: $\frac{u^{\frac{1}{p}}}{v^{\frac{1}{p}}} \le \frac{u}{vp} + \frac{1}{p'}$. Daraus folgt $u^{\frac{1}{p}}v^{1-\frac{1}{p}} \le \frac{u}{p} + \frac{v}{p'} \implies u^{\frac{1}{p}}v^{\frac{1}{p'}} \le \frac{u}{p} + \frac{v}{p'}$

Seien
$$x, y > 0$$
: $u := x^p, v := y^{p'}$. Dann: $xy \le \frac{x^p}{p} + \frac{y^{p'}}{p'}$.

Im Falle x = 0 oder $y = \infty$ ist die Ungleichung trivialerweise richtig.

Erinnerung: Sei $f: X \to \mathbb{R}$ messbar und p > 0, so ist $|f|^p$ messbar (vgl. Kapitel 3).

Es gilt: $|f|^p \in \mathfrak{L}^1(X) \Leftrightarrow \int_X |f|^p \mathrm{d}x < \infty$

Definition

(1) Sei $p \in [1, \infty)$. $\mathfrak{L}^p(X) = \{f : X \to \mathbb{R} \mid f \text{ ist messbar und } \int_X |f|^p \mathrm{d}x < \infty\}.$

Für
$$f \in \mathfrak{L}^p(X)$$
: $||f||_p = \left(\int_X |f|^p dx\right)^{\frac{1}{p}}$

(2) $\mathfrak{L}^{\infty}(X) = \{f : X \to \mathbb{R} \mid f \text{ ist messbar und } f \text{ ist f.\"{u}. beschränkt} \}$

Für
$$f \in \mathfrak{L}^{\infty}(X)$$
: $||f||_{\infty} := \text{ess sup}_{x \in X} ||f(x)|| = \inf\{c > 0 \mid \exists \text{Nullmenge } N_c \subseteq X : |f(x)| \le c \, \forall x \in X \setminus N_c\}$

Bemerkung: Es sei $f \in \mathfrak{L}^{\infty}(X)$ und stetig. Außerdem habe jede in X offene, nichtleere Teilmenge positives Maß. Dann ist f auf X beschränkt und $\sup_{x \in X} |f(x)| = \text{ess } \sup_{x \in X} |f(x)|$.

Beweis

Übung (ist $N \subseteq X$ eine Nullmenge, so ist $N^{\circ} = \emptyset$ und $\overline{X \setminus N} = X$)

Beispiel

Sei
$$d=1, X=[1,\infty), p>1 \ (p<\infty), \ \alpha,\beta>0, \ f(x)=\frac{1}{x^{\alpha}}, \ g(x)=\frac{1}{x^{\beta}}$$

(1)

$$f \in \mathfrak{L}^p(X) \stackrel{4.14}{\iff} \int_1^\infty \frac{1}{x^{\alpha p}} \mathrm{d}x$$

konvergiert genau dann, wenn $\alpha p > 1 \Leftrightarrow \alpha > \frac{1}{p}$

(2)

$$fg \in \mathfrak{L}^1(X) \iff \int_1^\infty \frac{1}{x^{\alpha+\beta}} \mathrm{d}x$$

konvergiert genau dann, wenn $\alpha + \beta > 1$

Satz 16.1

Sei $p \in [1, \infty]$ und p' wie zu Anfang dieses Kapitels, also $\frac{1}{p} + \frac{1}{p'} = 1$.

(1) Sei $f \in \mathfrak{L}^p(X)$ und $g \in \mathfrak{L}^{p'}(X)$. Dann ist $fg \in \mathfrak{L}^1(X)$ und es gilt die **Höldersche** Ungleichung:

$$||fg||_1 \le ||f||_p \cdot ||g||_{p'}$$

Ist p = 2 ($\implies p' = 2$), so heißt obige Ungleichung auch Cauchy-Schwarzsche Ungleichung.

(2) $\mathfrak{L}^p(X)$ ist ein reeller Vektorraum und für $f,g\in\mathfrak{L}^p(X)$ gilt die **Minkowskische** Ungleichung:

$$||f + g||_p \le ||f||_p + ||g||_p$$

Beweis

(1) Unterscheide die folgenden Fälle:

Fall 1: p=1 (also $p'=\infty$) oder $p=\infty$ (also p'=1). Etwa $p=1, p'=\infty$.

Sei c > 0 und $N_c \subseteq X$ Nullmenge mit: $|g(x)| \le c \, \forall x \in X \setminus N_c$. $\tilde{g} := \mathbb{1}_{X \setminus N_c} \cdot g$

Dann: $g = \tilde{g}$ fast überall und $|\tilde{g}| \leq c$ auf X. Weiter: $fg = f\tilde{g}$ fast überall, bzw. $|fg| = |f\tilde{g}|$ fast überall.

Dann:

$$\int_X |fg| \mathrm{d}x = \int_X |f\tilde{g}| \mathrm{d}x = \int_X |f| \underbrace{|\tilde{g}|}_{\leq c} \mathrm{d}x \leq \int_X |f| \mathrm{d}x = c \cdot \|f\|_1 < \infty$$

Also: $fg \in \mathfrak{L}^1(X)$ und $||fg||_1 \le c||f||_1$. Übergang zum Infimum über alle c > 0 liefert: $||fg||_1 \le ||g||_{\infty} \cdot ||f||_1$

Fall 2: Sei $1 . Ist <math>||f||_p = 0$ oder $||g||_{p'} = 0$, so ist f = 0 fast überall oder g = 0 fast überall. Daraus folgt: |fg| = 0 fast überall. Mit 5.2 folgt: $\int_X |fg| dx = 0$. Daraus folgen die Behauptungen.

Sei $||f||_p > 0$ und $||g||_{p'} > 0$.

Aus obigem Hilfssatz:

$$\frac{|f(x)|}{\|f\|_p} \cdot \frac{|g(x)|}{\|g\|_{p'}} \le \frac{1}{p} \frac{|f(x)|^p}{\|f\|_p^p} + \frac{1}{p'} \frac{|g(x)|^{p'}}{\|g\|_{p'}^{p'}} \quad \forall x \in X$$

Integration liefert:

$$\frac{1}{\|f\|_{p} \cdot \|g\|_{p'}} \int_{X} |f(x)g(x)| dx \leq \frac{1}{p} \cdot \frac{1}{\|f\|_{p}^{p}} \int_{X} |f|^{p} dx + \frac{1}{p'} \cdot \frac{1}{\|g\|_{p'}^{p'}} \int_{X} |g|^{p'} dx$$

$$= \frac{1}{p} + \frac{1}{p'}$$

$$= 1 < \infty$$

Daraus folgt: $fg \in \mathfrak{L}^1(X)$ und

$$\frac{\|fg\|_1}{\|f\|_p \cdot \|g\|_p} \le 1 \Leftrightarrow \|fg\|_1 \le \|f\|_p \cdot \|g\|_p$$

(2) Klar: Ist $f \in \mathfrak{L}^p(X)$ und $\alpha \in \mathbb{R}$, so ist $\alpha f \in \mathfrak{L}^p(X)$

Fall 1: p = 1: Mit 4.11 folgt: $\mathfrak{L}^1(X)$ ist ein reeller Vektorraum.

Seien $f, g \in \mathfrak{L}^1(X)$. Dann: $|f + g| \leq |f| + |g|$ auf X. Damit:

$$\int_{X} |f + g| \mathrm{d}x \le \int_{X} |f| \mathrm{d}x + \int_{X} |g| \mathrm{d}x$$

Fall 2: $p = \infty$: Seien $f, g \in \mathfrak{L}^{\infty}(X)$. Seien $c_1, c_2 > 0$ und $N_1, N_2 \subseteq X$ Nullmengen und $|f(x)| \leq c_1 \forall x \in X \setminus N_1, |g(x)| \leq c_2 \forall x \in X \setminus N_2$.

 $N = N_1 \cup N_2$ ist eine Nullmenge. Dann: $|f(x) + g(x)| \le |f(x)| + |g(x)| \le c_1 + c_2 \forall x \in X \setminus N$. Es folgt: $f + g \in \mathfrak{L}^{\infty}(X)$ und $||f + g||_{\infty} \le c_1 + c_2$.

Übergang zum Infimum über alle solche c_1 , bzw. c_2 , liefert: $||f+g||_{\infty} \leq ||f||_{\infty} + ||g||_{\infty}$.

Fall 3: Sei $1 und <math>f, g \in \mathfrak{L}^p(X)$. Es ist $|f + g|^p \le (|f| + |g|)^p \le (2 \max\{|f|, |g|\})^p \le 2^p (|f|^p + |g|^p)$ auf X. Mit 4.9 folgt: $|f + g|^p \in \mathfrak{L}^1(X) \implies f + g \in \mathfrak{L}^p(X)$

 $p' = \frac{p}{p-1}$; $h := |f+g|^{p-1}$, dann: $h^{p'} = (|f+g|^{p-1})^{\frac{p}{p-1}} = |f+g|^p \in \mathfrak{L}^1(X)$. Dann ist $h \in \mathfrak{L}^{p'}(X)$. Also: $h \in \mathfrak{L}^{p'}(X)$, $f \in \mathfrak{L}^p(X)$ (und $\frac{1}{p} + \frac{1}{p'} = 1$).

Mit der Hölderschen Ungleichung folgt: $||f \cdot f_1|| \le ||f||_p ||h||_{p'} \implies \int_X h|f| dx \le ||f||_p \left(\int_X h^{p'} dx\right)^{\frac{1}{p'}}$. Dann:

$$\int_{X} |f||f + g|^{p-1} dx \le ||f||_{p} \left(\int_{X} \left(|f + g|^{p-1} \right)^{p'} dx \right)^{\frac{1}{p'}}$$

$$= ||f||_{p} \left(||f + g||_{p}^{p} \right)^{\frac{1}{p'}}$$

$$= ||f||_{p} ||f + g||_{p}^{p-1}$$

Genauso: $\int_X |g||f+g|^{p-1} dx \le ||g||_p ||f+g||_p^{p+1}$

Dann:

$$\begin{split} \|f + g\|_p^p &= \int_X |f + g|^p \mathrm{d}x \\ &= \int_X |f + g| |f + g|^{p-1} \mathrm{d}x \\ &= \int_X |f| |f + g|^{p-1} \mathrm{d}x + \int_X |g| |f + g|^{p-1} \mathrm{d}x \\ &\leq (\|f\|_p + \|g\|_p) \|f + g\|_p^{p-1} \end{split}$$

Teilen durch $\|f+g\|_p^{p-1}$ liefert die Minkowski-Ungleichung.

Satz 16.2

Sei $\lambda_d(X) < \infty$, $p, q \ge 1$ und $p \le q \le \infty$. Dann ist $\mathfrak{L}^q(X) \subseteq \mathfrak{L}^p(X)$ und es gilt:

$$\forall f \in \mathfrak{L}^q(X) : ||f||_p \le \lambda_d(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q$$

Beweis

Sei $f \in \mathfrak{L}^q(X)$.

Fall p = q: Klar.

Fall $q = \infty$: Leichte Übung!

Fall $p < q < \infty$:

Sei $r := \frac{q}{p} > 1$, dann ist $\frac{1}{r'} = 1 - \frac{p}{q}$. Aus $|f|^{pr} = |f|^q \in \mathfrak{L}^1(X)$ folgt $|f|^p \in \mathfrak{L}^r(X)$. Definiere $g := \mathbb{1}_X$, dann ist $g \in \mathfrak{L}^{r'}(X)$, da $\lambda_d(X) < \infty$. Wegen 16.1 gilt dann:

$$g\cdot |f|^p\in \mathfrak{L}^1(X)\implies |f|^p\in \mathfrak{L}^1(X)\implies f\in \mathfrak{L}^p(X)$$

Aus der Hölderschen Ungleichung folgt:

$$||f||_{p}^{p} = ||g \cdot |f|^{p}||_{1}$$

$$\leq ||g||_{r'} \cdot |||f|^{p}||_{r}$$

$$= \left(\int_{X} g^{r'} dx\right)^{\frac{1}{r'}} \cdot \left(\int_{X} |f|^{pr} dx\right)^{\frac{1}{r}}$$

$$= \lambda_{d}(X)^{\frac{1}{r'}} \cdot \left(\int_{X} |f|^{q} dx\right)^{\frac{p}{q}}$$

$$= \lambda_{d}(X)^{1-\frac{p}{q}} \cdot ||f||_{q}^{p}$$

Also gilt:

$$||f||_p \le \lambda_d(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q$$

Beispiel

(1) Sei $X := (0,1], 1 \le p < q < \infty$ (also $\frac{1}{q} < \frac{1}{p}$) und $f(x) := \frac{1}{x^{\alpha}}$ ($\alpha > 0$). Dann gilt nach 4.14 und Analysis I:

$$f \in \mathfrak{L}^p(X) \iff \int_0^1 \frac{1}{x^{\alpha p}} \, \mathrm{d}x \text{ konvergient}$$

$$\iff \alpha p < 1$$

$$\iff \alpha < \frac{1}{p}$$

Sei $\frac{1}{q} < \alpha < \frac{1}{p}$, dann ist $f \in \mathfrak{L}^p(X)$ und $f \notin \mathfrak{L}^q(X)$. D.h. $\mathfrak{L}^p(X) \not\subseteq \mathfrak{L}^q(X)$ und aus 16.2 folgt $\mathfrak{L}^q(X) \subseteq \mathfrak{L}^p(X)$.

(2) Sei $X:=[1,\infty),\ p=1,\ q\in(1,\infty)$ und $f(x):=\frac{1}{x}$. Dann gilt nach 4.14 und Analysis I: $f\not\in \mathfrak{L}^p(X)$ und $f\in \mathfrak{L}^q(X)$. D.h. also $\mathfrak{L}^q(X)\not\subseteq \mathfrak{L}^p(X)$. Definiere $g(x):=\mathbbm{1}_{[1,2)}\cdot (2-x)^{-\frac{1}{q}}$. Übung: $g\in \mathfrak{L}^p(X)$ und $g\not\in \mathfrak{L}^q(X)$. D.h. also $\mathfrak{L}^p(X)\not\subseteq \mathfrak{L}^q(X)$.

Satz 16.3 (Satz von Lebesgue (\mathfrak{L}^p -Version))

Sei $1 \leq p < \infty$, $f: X \to \mathbb{R}$ sei messbar, $g: X \to [0, \infty]$ integrierbar und (f_n) eine Folge in $\mathfrak{L}^p(X)$ mit den Eigenschaften:

- (1) $f_n \to f$ f.ü. auf X
- (2) $\forall n \in \mathbb{N} : |f_n|^p \leq g$ f.ü. auf X.

Dann ist $f \in \mathfrak{L}^p(X)$ und es gilt

$$||f_n - f||_p \stackrel{n \to \infty}{\to} 0$$

Beweis

Aus (i) und (ii) folgt: $|f|^p \leq g$ f.ü. Im Paragraphen 5 haben wir gesehen, dass dann gilt:

$$\int_{Y} |f|^p \, \mathrm{d}x \le \int_{Y} g \, \mathrm{d}x < \infty$$

(denn g ist nach Voraussetzung integrierbar). Daraus folgt: $f \in \mathfrak{L}^p(X)$.

Setze $g_n := |f_n - f|^p$. Aus (i): $g_n \to 0$ f.ü. Es sind $f_n, f \in \mathcal{L}^p(X)$ (ersteres nach Voraussetzung, zweiteres haben wir gerade gezeigt), und weil $\mathcal{L}^p(X)$ ein reeller Vektorraum ist (16.1(2)), folgt:

$$f_n - f \in \mathfrak{L}^p(X)$$

Also $g_n \in \mathfrak{L}^1(X)$. Es ist

$$0 \le g_n \le (|f_n| + |f|)^p \le \left(g^{\frac{1}{p}} + g^{\frac{1}{p}}\right)^p = \left(2g^{\frac{1}{p}}\right)^p = 2^p g$$
 f.ü.

Mit 6.2 folgt schließlich:

$$\underbrace{\int_X g_n \, \mathrm{d}x}_{=\|f_n - f\|_p^p} \to 0.$$

Aus 16.1 folgt: $\mathfrak{L}^p(X)$ ist ein reeller Vektorraum (VR), wobei für $f,g\in\mathfrak{L}^p(X)$ gilt:

$$\|\alpha f\|_p = |\alpha| \cdot \|f\|_p \quad (\alpha \in \mathbb{R})$$

$$||f + g||_p \le ||f||_p + ||g||_p$$

Aber $\|\cdot\|_p$ ist **keine** Norm auf $\mathfrak{L}^p(X)$! Denn aus $\|f\|_p=0$ folgt nur f=0 f.ü.

Definition

Es sei $\mathcal{N} := \{ f : X \to \mathbb{R} \mid f \text{ ist messbar und } f = 0 \text{ f.ü.} \}$, dann ist \mathcal{N} ein Untervektorraum von $\mathfrak{L}^p(X)$. Definiere

$$L^p(X) := \mathfrak{L}^p(X) / \mathcal{N} = \{\hat{f} = f + \mathcal{N} \mid f \in \mathfrak{L}^p(X)\}$$

Aus der Linearen Algebra ist bekannt, dass $L^p(X)$ durch die Skalarmultiplikation

$$\alpha \cdot \hat{f} := \widehat{\alpha f}$$

und die Addition

$$\hat{f} + \hat{g} := \widehat{f + g}$$

zu einem Vektorraum über \mathbb{R} wird.

Setze für $\hat{f} \in L^1(X)$:

$$\int_X \hat{f}(x) \, dx := \int_X f(x) \, dx$$

dabei ist diese Definition unabhängig von der Wahl des Repräsentanten $f \in \mathfrak{L}^1(X)$ von \hat{f} , denn: ist auch noch $g \in \mathfrak{L}^1(X)$ und $\hat{g} = \hat{f}$, so ist $f - g \in \mathcal{N}$, also f - g = 0 f.ü. und damit: $\int_X f \, \mathrm{d}x = \int_X g \, \mathrm{d}x$.

Für $\hat{f} \in L^p(X)$ definiere

$$\|\hat{f}\|_p := \|f\|_p$$

wobei diese Definition unabhängig ist von der Wahl des Repräsentanten $f \in \mathfrak{L}^p(X)$ von \hat{f} .

Für $\hat{f}, \hat{g} \in L^2(X)$ setze

$$(\hat{f}|\hat{g}) := \int_X f(x)g(x) \, \mathrm{d}x$$

(auch diese Definition ist Repräsentanten-unabhängig) (Beachte: $f \cdot g \in \mathfrak{L}^1(X)$)

Dann gilt:

- (1) $L^p(X)$ ist unter $\|\cdot\|_p$ ein normierter Raum (NR).
- (2) Für $\hat{f}, \hat{g} \in L^2(X)$ gilt:

$$|(\hat{f}|\hat{g})| = |\int_X f(x)g(x) \, dx| \le \int_X |fg| \, dx = ||fg||_1 \stackrel{16.1}{\le} ||f||_2 ||g||_2 = ||\hat{f}||_2 ||\hat{g}||_2$$

(Cauchy-Schwarzsche Ungleichung)

Nachrechnen: $(\hat{f}|\hat{g})$ definiert ein Skalarprodukt auf $L^2(X)$. Es gilt:

$$(\hat{f}|\hat{f}) = \int_X f(x)^2 dx = ||\hat{f}||_2^2$$

Also: $\|\hat{f}\|_2 = \sqrt{(\hat{f}|\hat{f})}$

Definition

Sei $(B, \|\cdot\|)$ ein normierter Raum. Gilt mit einem Skalarprodukt $(\cdot|\cdot)$ auf B:

$$||v|| = \sqrt{(v|v)} \quad \forall v \in B \tag{*}$$

so heißt B ein **Prähilbertraum**. Ist B ein Banachraum mit (*), so heißt B ein **Hilbertraum**.

Vereinbarung: ab jetzt sei stets in diesem Paragraphen $1 \le p < \infty$.

Bemerkung: Seien $f, f_n \in \mathfrak{L}^p(X)$

- (1) $||f_n f||_p = ||\hat{f}_n \hat{f}||_p \to 0$ genau dann, wenn (\hat{f}_n) eine konvergente Folge im normierten Raum $L^p(X)$ mit dem Grenzwert \hat{f} ist.
- (2) (\hat{f}_n) ist eine **Cauchyfolge** (CF) in $L^p(X)$ genau dann, wenn für jedes $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ exitiert mit:

$$\|\hat{f}_n - \hat{f}_m\|_p = \|f_n - f_m\|_p < \varepsilon \quad \forall n, m \ge n_0$$
 (*)

(3) Wie in Analysis II zeigt man: gilt $||f_n - f||_p = ||\hat{f}_n - \hat{f}||_p \to 0$, so ist (\hat{f}_n) eine Cauchyfolge in $L^p(X)$.

Satz 16.4 (Satz von Riesz-Fischer)

 (f_n) sei eine Cauchyfolge in $L^p(X)$, das heißt es gilt (*) aus obiger Bemerkung (2). Dann existiert ein $f \in \mathfrak{L}^p(X)$ und eine Teilfolge (f_{n_j}) von (f_n) mit:

- (1) $f_{n_i} \to f$ fast überall auf X.
- (2) $||f_n f||_p \to 0 \ (n \to \infty).$

Das heißt $L^p(X)$ ist ein Banachraum ($L^2(X)$ ist ein Hilbertraum).

Bemerkung: Voraussetzungen und Bezeichnungen seien wie in 16.4. Im Allgmeinen wird nicht gelten, dass fast überall $f_n \to f$ ist.

Beispiel

Sei X = [0,1] und (I_n) sei die folgende Folge von Intervallen:

$$I_1 = \begin{bmatrix} 0, 1 \end{bmatrix}, I_2 = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}, I_3 = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}, I_4 = \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix}, I_5 = \begin{bmatrix} \frac{1}{4}, \frac{1}{2} \end{bmatrix}, I_6 = \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}, I_7 = \begin{bmatrix} \frac{3}{4}, 1 \end{bmatrix}, \dots$$

Es sei $f_n := \mathbbm{1}_{I_n}$, sodass $\int_X f_n dx = \int_{I_n} 1 dx = \lambda_1(I_n) \to 0$. Also $\hat{f}_n \in L^1(X)$ und $\|\hat{f}_n - \hat{0}\|_1 \to 0$. Ist $x \in X$, so gilt: $x \in I_n$ für unendlich viele $n \in \mathbb{N}$. Daraus folgt, dass eine Teilfolge I_{n_j} mit $x \in I_{n_j}$ für jedes $j \in \mathbb{N}$ existiert. Somit ist $f_{n_j}(x) = 1$ für jedes $j \in \mathbb{N}$ und deshalb gilt fast überall $f_n \nrightarrow 0$.

Beweis (von 16.4)

Setze $\varepsilon_j := \frac{1}{2^j}$ $(j \in \mathbb{N})$. Zu ε_1 existiert ein $n_1 \in \mathbb{N}$ mit $||f_l - f_{n_1}||_p < \varepsilon_1$ für alle $l \ge n_1$. Zu ε_2 existiert ein $n_2 \in \mathbb{N}$ mit $n_2 > n_2$ und $||f_l - f_{n_2}||_p < \varepsilon_2$ für alle $l \ge n_2$. Etc. Wir erhalten eine Teilfolge (f_{n_i}) mit

$$(+)$$
 $||f_l - f_{n_i}||_p < \varepsilon_j$ für alle $l \ge n_j$ mit $j \in \mathbb{N}$

Setze $g_j := f_{n_{j+1}} - f_{n_j} \ (j \in \mathbb{N})$. Klar: $g_l \in \mathfrak{L}^p(X)$. Für $N \in \mathbb{N}$:

$$S_N := \int_X \left(\sum_{j=1}^N |g_j(x)|^p \right)^{\frac{1}{p}}$$

Dann:

$$S_N = \left\| \sum_{j=1}^N |g_j| \right\|_p \le \sum_{j=1}^N \|g_j\|_p \le \sum_{j=1}^N \varepsilon_j = \sum_{j=1}^N \frac{1}{2^j} \le 1$$

Setze

$$g(x) := \sum_{j=1}^{\infty} |g_j(x)| \text{ für } x \in X$$

Es ist $g \ge 0$ und messbar. Weiter gilt:

$$0 \le \int_X g^p dx = \int_X \lim_{N \to \infty} \left(\sum_{j=1}^N |g_j| \right)^p dx \stackrel{\textbf{6.2}}{\le} \liminf_{N \to \infty} S_N^p \le 1$$

Somit ist g^p ist integrierbar. Aus 5.2 folgt, dass eine Nullmenge $N_1 \subseteq X$ existiert mit $0 \le g^p(x) < \infty$ für alle $x \in X \setminus N_1$. Es ist dann auch $0 \le g(x) < \infty$ für alle $x \in X \setminus N_1$ und somit folgt nach Konstruktion von g, dass $\sum_{j=1}^{\infty} g_j dx$ konvergiert absolut in jedem $x \in X \setminus N_1$. Aus Analysis I folgt, dass damit $\sum_{j=1}^{\infty} g_j dx$ in jedem $x \in X \setminus N_1$ konvergiert.

Für $m \in \mathbb{N}$:

$$\sum_{j=1}^{m-1} g_j = f_{n_m} - f_{n_1} \implies f_{n_m} = \sum_{j=1}^{m-1} g_j + f_{n_1}$$

Deshalb ist (f_{n_m}) konvergent (in \mathbb{R}) für alle $x \in X \setminus N_1$.

$$f(x) := \begin{cases} \lim_{m \to \infty} f_{n_m}(x) &, x \in X \setminus N_1 \\ 0 &, x \in N_1 \end{cases}$$

Aus §3 ist bekannt, dass f messbar ist. Klar: $f_{n_m} \to f$ fast überall und $f(X) \subseteq \mathbb{R}$. Es ist $f_{n_m} = \sum_{j=1}^{m-1} g_j + f_{n_1}$ und somit

$$|f_{n_m}| = |f_{n_1}| + \sum_{j=1}^{m-1} g_j \le |f_{n_1}| + |g|$$

Wie im Beweis von Satz 16.1 folgern wir

$$|f_{n_m}|^p \le 2^p (|f_{n_1}|^p + g^p) =: \tilde{g}$$

 $f_{n_1} \in \mathfrak{L}^p(X), g^p$ ist integrierbar. Aus 16.3 folgt, dass $f \in \mathfrak{L}^p(X)$ und

$$||f_{n_m} - f||_p \to 0 \ (m \to \infty)$$

Sei nun $\varepsilon > 0$. Wähle $m \in M$ so, dass $\frac{1}{2^m} < \frac{\varepsilon}{2}$ und $||f - f_{n_m}||_p < \frac{\varepsilon}{2}$. Für $l \ge n_m$ gilt:

$$||f_l - f||_p = ||f_l - f_{n_m} + f_{n_m} - f||_p \le ||f_l - f_{n_m}||_p + ||f_{n_m} - f||_p < \frac{1}{2^m} + \frac{\varepsilon}{2} < \varepsilon$$

Das heißt

$$||f_l - f||_p \to 0 \ (l \to \infty)$$

Satz 16.5

Sei auch noch $1 \leq q < \infty$. (f_n) sei eine Folge in $\mathfrak{L}^p(X) \cap \mathfrak{L}^q(X)$. Es sei

$$f \in \mathfrak{L}^p(X)$$
 und $g \in \mathfrak{L}^q(X)$

Weiter gelte:

$$||f_n - f||_p \to 0 \text{ und } ||f_n - g||_q \to 0 \ (n \to \infty)$$

Dann ist fast überall f = g.

Beweis

1. Aus Bemerkung (3) vor 16.4 folgt, dass (\hat{f}_n) ist eine Cachyfolge in $L^p(X)$. Wegen 16.4 existiert dann ein $\varphi \in \mathfrak{L}^p(X)$ und eine Teilfolge (f_{n_j}) mit: $f_{n_j} \to \varphi$ fast überall und $||f_n - \varphi||_p \to 0$

$$||f - \varphi||_p = ||f - f_n + f_n - \varphi||_p \le ||f - f_n||_p + ||f_n - \varphi||_p \to 0 \quad (n \to \infty)$$

Somit ist $||f - \varphi||_p = 0$ und deshalb fast überall $f = \varphi$. Also gilt fast überall $f_{n_j} \to f$. Das heißt, dass es eine Nullmenge $N_1 \subseteq X$ gibt, für die gilt:

$$f_{n_i}(x) \to f(x)$$
 für alle $x \in X \setminus N_1$

2. Setze $g_j := f_{n_j}$, dann gilt $||g_j - g||_q \to 0 \ (j \to \infty)$. Wie im ersten Schritt zeigt man, dass eine Nullmenge $N_2 \subseteq X$ und eine Teilmenge (g_{j_k}) existiert mit, für die gilt:

$$g_{i_k}(x) \to g(x)$$
 für alle $x \in X \setminus N_2$

Wir wissen, dass $N := N_1 \cup N_2$ eine Nullmenge ist. Sei nun $x \in X \setminus N$. Dann folgt aus dem ersten Schritt $f_{n_j}(x) \to f(x)$ und daraus

$$\underbrace{f_{n_{j_k}}(x)}_{=g_{n_{j_k}}(x)} \to f(x)$$

Aus dem Zweiten Schritt folgt dann, dass $f_{n_{j_k}}(x) \to g(x)$ und somit f(x) = g(x).

Bemerkung: Seien $f_n, f \in \mathfrak{L}^p(X)$ und es gelte $||f_n - f||_p \to 0 \ (n \to \infty)$. Der Beweis von 16.5 zeigt, dass eine Teilfolge (f_{n_j}) von (f_n) existiert mit $f_{n_j} \to f$ fast überall.

Bemerkung: Konvergenz im Sinne der Norm $\|\cdot\|_p$ und punktweise Konvergenz fast überall haben im Allgemeinen **nichts** miteinander zu tun!

Beispiel

Sei (f_n) wie im Beispiel vor 16.4. Also $||f_n - 0||_p \to 0$, aber $f_n \nrightarrow 0$ fast überall.

Beispiel

Sei X = [0, 1] und f_n sei wie im Bild. f_n ist stetig, also messbar.

$$\int_X f_n dx = 1 \text{ für alle } n \in \mathbb{N}$$

Somit ist $f_n \in \mathfrak{L}^1(X)$.

$$f_n(x) \to \begin{cases} 0, x \in (0, 1] \\ 1, x = 0 \end{cases}$$

Damit gilt fast überall $f_n \to 0$, aber $||f_n - 0||_1 = 1 \to 0 \ (n \to \infty)$

Definition

Seien $(E, \|\cdot\|_1), (F, \|\cdot\|_2)$ normierte Räume.

(1) Sei (x_n) eine Folge in E und $s_n := x_1 + x_2 + \cdots + x_n \ (n \in \mathbb{N})$. Dann heißt (s_n) eine **unendliche Reihe** und wird mit

$$\sum_{n=1}^{\infty} x_n$$

bezeichnet. $\sum_{n=1}^{\infty} x_n$ heißt konvergent genau dann, wenn (s_n) konvergiert. In diesem Fall ist

$$\sum_{n=1}^{\infty} x_n := \lim_{n \to \infty} s_n$$

(2) $\Phi: E \to F$ sei eine Abbildung. Φ heißt **stetig** in $x_0 \in E$ genau dann, wenn für jede konvergente Folge (x_n) in E mit $x_n \to x_0$ gilt:

$$\Phi(x_n) \to \Phi(x_0)$$

 Φ heißt auf E stetig genau dann, wenn Φ ist in jedem $x \in E$ stetig.

(3) Für $(x,y) \in E \times E$ setze

$$\|(x,y)\| := \sqrt{\|x\|_1^2 + \|y\|_1^2}$$

Dann ist $\|\cdot\|$ eine Norm auf $E \times E$ (nachrechnen!). Weiter gilt, dass $E \times E$ genau dann ein Banachraum ist, wenn E einer ist. Für eine Folge $((x_n, y_n))$ in $E \times E$ und $(x, y) \in E \times E$ gilt

$$(x_n, y_n) \stackrel{\|\cdot\|}{\rightarrow} (x, y) \iff x_n \stackrel{\|\cdot\|}{\rightarrow} x \land y_n \stackrel{\|\cdot\|}{\rightarrow} y$$

Bemerkung: Ist (x_n) eine konvergente Folge in E, so ist (x_n) beschränkt $(d.h. \exists c > 0 : ||x_n||_1 \le c \forall n \in \mathbb{N})$.

(Beweis wie in Ana I)

Vereinbarung: Für den Rest dieser Vorlesung schreiben wir (meist) f statt \hat{f} und identifizieren $\mathfrak{L}^p(X)$ mit $L^p(X)$. Ebenso schreiben wir $\int_X f \, dx$ statt $\int_X \hat{f} \, dx$ und (f|g) statt $(\hat{f}|\hat{g})$.

Beispiel 16.6

(1) Die Abbildung $\Phi: L^p(X) \to \mathbb{R}$, definiert durch

$$\Phi(f) := ||f||_p$$

ist stetig auf $L^p(X)$. D.h. für $f_n, f \in L^p(X)$ mit $f_n \stackrel{\|\cdot\|_p}{\to} f$ gilt $\|f_n\|_p \to \|f\|_p$, also

$$\int_X |f_n|^p \, \mathrm{d}x \to \int_X |f|^p \, \mathrm{d}x$$

Beweis

Aus Analysis II §17 folgt:

$$|\|f_n\|_p - \|f\|_p| \le \|f_n - f\|_p \overset{n \to \infty}{\to} 0$$

(2) Die Abbildung $\Phi: L^1(X) \to \mathbb{R}$ definiert durch

$$\Phi(f) := \int_X f \, \mathrm{d}x$$

ist stetig auf $L^1(X)$. D.h. aus $f_n, f \in L^1(X)$ und $f_n \stackrel{\|\cdot\|_1}{\to} f$ folgt

$$\int_X f_n \, \mathrm{d}x \to \int_X f \, \mathrm{d}x$$

Beweis

Es gilt:

$$\left| \int_{X} f_{n} \, dx - \int_{X} f \, dx \right| = \left| \int_{X} f_{n} - f \, dx \right|$$

$$\leq \int_{X} \left| f_{n} - f \right| \, dx$$

$$= \left\| f_{n} - f \right\|_{1} \overset{n \to \infty}{\to} 0$$

(3) Die Abbildung $\Phi: L^2(X) \times L^2(X) \to \mathbb{R}$ definiert durch

$$\Phi(f,g) := (f|g)$$

ist stetig auf $L^2(X) \times L^2(X)$. D.h. für $f_n, g_n, f, g \in L^2(X)$ mit $f_n \stackrel{\|\cdot\|_2}{\to} f$ und $g_n \stackrel{\|\cdot\|_2}{\to} g$ gilt $(f_n|g_n) \stackrel{n \to \infty}{\to} (f|g)$

Beweis

Es gilt:

$$|(f_n|g_n) - (f|g)| = |(f_n|g_n) - (f_n|g) + (f_n|g) - (f|g)|$$

$$= |(f_n|g_n - g) + (f_n - f|g)|$$

$$\leq |(f_n|g_n - g)| + |(f_n - f|g)|$$

$$\leq ||f_n||_2 \cdot ||g_n - g||_2 + ||f_n - f||_2 \cdot ||g||_2 \xrightarrow{n \to \infty} 0$$

Satz 16.7

Sei $f = f_+ - f_- \in L^p(X)$ und (g_n) und (h_n) seien zulässige Folgen für f_+ bzw. f_- (d.h. g_n, h_n einfach, $0 \le g_n \le g_{n+1}, g_n \to f_+, 0 \le h_n \le h_{n+1}, h_n \to f_-$). Setze $f_n := g_n - h_n$. Dann sind $f_n, g_n, h_n \in L^p(X)$ und es gilt:

$$||g_n - f_+||_p \to 0$$
 $||h_n - f_-||_p \to 0$ $||f_n - f||_p \to 0$

Beweis

Es genügt den Fall $f \geq 0$ zu betrachten (also $f = f_+, f_- \equiv 0$). Sei also (f_n) zulässig für f. Definiere $\varphi := |f_n - f|^p$. Es ist klar, dass punktweise gilt $\varphi_n \to 0$. Außerdem gilt:

$$0 \le \varphi_n \le (|f_n| + |f|)^p$$
$$= |f_n + f|^p \le (2f)^p$$
$$= 2^p f^p =: g$$

Dann ist $g \in L^1(X)$ integrierbar.

Aus 4.9 folgt:

$$\varphi \in L^1(X) \implies f_n - f \in L^p(X)$$

 $\implies f_n = (f_n - f) + f \in L^p(X)$

Aus 6.2 folgt:

$$\int_X \varphi_n \, dx \to 0 \implies ||f_n - f||_p^p \to 0$$

Definition

(1) Sei $f: X \to \mathbb{R}$. Dann heißt

$$\operatorname{supp}(f) := \overline{\{x \in X \mid f(x) \neq 0\}}$$

der Träger von f

(2) $C_c(X,\mathbb{R}) := \{ f \in C(X,\mathbb{R}) \mid \text{supp}(f) \subseteq X \text{ und supp}(f) \text{ kompakt} \}$

Satz 16.8

- (1) $C_c(X,\mathbb{R}) \subseteq L^p(X)$
- (2) Ist X offen, so liegt $C_c(X,\mathbb{R})$ dicht in $L^p(X)$, d.h. ist $f \in L^p(X)$ und $\varepsilon > 0$, so existiert $g \in C_c(X,\mathbb{R})$ mit $||f g||_p < \varepsilon$.

Beweis

(1) Sei $f \in C_c(C, \mathbb{R})$ und $K := \operatorname{supp}(f)$, dann ist $K \subseteq X$ kompakt, also $K \in \mathfrak{B}_d$. Es gilt für alle $x \in X \setminus K$ f(x) = 0 und damit folgt aus $4.12 \int_K |f|^p dx < \infty$. Dann gilt:

$$\int_X |f|^p \, \mathrm{d}x = \int_{X \setminus K} |f|^p \, \mathrm{d}x + \int_K |f|^p \, \mathrm{d}x = \int_K |f|^p \, \mathrm{d}x < \infty$$

Also ist $f \in L^p(X)$.

(2) Siehe Übungsblatt 13.