Interactive Visual Analysis with Dimensionality Reduction

Marcel Reinders, TUDelft

(Slides by: Thomas Höllt - Computer Graphics & Visualization - TUDelft)

Typical inspection of single cell data

- We have huge amounts of complex data (many cells x many genes)
- We want to reduce complexity for analysis
 - Clustering
 - Dimensionality Reduction

- We have huge amounts of complex data (many cells x many genes)
- We want to reduce complexity for analysis
 - Clustering
 - Dimensionality Reduction

- We have huge amounts of complex data (many cells x many genes)
- We want to reduce complexity for analysis
 - Clustering
 - Dimensionality Reduction

- We have huge amounts of complex data (many cells x many genes)
- We want to reduce complexity for analysis
 - Clustering
 - Dimensionality Reduction 2

gene 3

- We have huge amounts of complex data (many cells x many genes)
- We want to reduce complexity for analysis
 - Clustering

• Dimensionality Reduction 2

The case for interactive visual analysis

Numbers do not tell the whole story...

	A	E	3	С		D	
х	у	x	у	x	у	x	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

Statistics:

Mean(x): A=B=C=D=9 exact

Variance(x): A=B=C=D=11 exact

Mean(y): A=B=C=D=7.50 (2 decimals)

Variance(y): A=B=C=D=4.125 (+/-0.003)

Correlation(x,y): A=B=C=D=0.816 (3 decimals)

Numbers do not tell the whole story...

	A	E	3	С		D	
х	у	x	у	x	у	x	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

Do we look for the whole story?

Hypothesis-driven group: i) is there a statistically significant difference in the average number of steps taken by men and women, (ii) is there a negative correlation between the number of steps and the BMI for women, and (iii) is this correlation positive for men. If there was anything else they could conclude from the dataset Hypothesis free group: What do you conclude from the dataset?

Why Visualization for Data Exploration?

- Can't machines do (learn) that?
- Machine learning is great for
 - Well defined problems
 - Verifying Hypothesis
- ML not so great for
 - Finding the unknown
 - Fuzzy problems
 - Hypothesis generation

Algorithms

	PCA	linear	Matrix Factorization	
	ICA	linear	Matrix Factorization	
	MDS	non-linear	Matrix Factorization	
	cPCA	non-linear	Matrix Factorization	https://doi.org/10.1038/s41467-018-04608-8
	ZIFA	non-linear	Matrix Factorization	https://doi.org/10.1186/s13059-015-0805-z
	ZINB-WaVE	non-linear	Matrix Factorization	https://doi.org/10.1038/s41467-017-02554-5
	Diffusion maps	non-linear	Graph-based	https://doi.org/10.1073/pnas.0500334102
	Isomap	non-linear	Graph-based	https://doi.org/10.1126/science.290.5500.2319
	t-SNE	non-linear	Graph-based	https://lvdmaaten.github.io/publications/papers/
	HSNE	non-linear	Graph, hierarchical	https://dx.doi.org/10.1038/s41467-017-01689-9
	LargeVis	non-linear	Graph-based	arXiv:1602.00370
	UMAP	non-linear	Graph-based	arXiv:1802.03426
	PHATE	non-linear	Graph-based	https://doi.org/10.1101/120378
	scvis	non-linear	Autoencoder	https://doi.org/10.1038/s41467-018-04368-5
	VASC	non-linear	Autoencoder	https://doi.org/10.1016/j.gpb.2018.08.003

PCA Principal Component Analysis

PCA - Intuition

- Given a dataset, compute/measure a number of features
- These features represent an N-dimensional problem
- PCA finds a new coordinate system obtained from the previous one by translation and rotation only change the point of view
- Moves the center of the coordinate system with center of the data
- Moves the x-axis into the principal axis of variation
- Orders axes by amount of variation (importance)

PC1 explains >98% of the variance

1 PC thus represents 2 genes very well "Removing" redundancy

PC2 is nearly insignificant in this example Could be disregarded

Summary: PCA

- LINEAR method of dimensionality reduction
- The TOP principal components contain higher variance from the data
- Can be used as FILTERING, by selecting only the top significant PCs
- It is an interpretable/parametric dimensionality reduction

Problems:

- It performs poorly to separate cells in 0-inflated data types
- Cell sizes and sequencing depth are usually captured in the top PCs

t-SNE

t-distributed Stochastic Neighborhood Embedding

Manifold Learning

t-SNE Intuition

- Non-linear dimensionality reduction
 - Compute neighborhoods in hi-D
 - Model low-D to preserve neighborhoods
- Preserves local neighborhoods
 - Preserves high-D clusters!

*actually also not great with Swiss Roll

t-SNE in Brief

 $p_{j|i}$ and $q_{j|i}$ measure the <u>conditional probability</u> that a point i would pick point j as it's nearest neighbor, in high (p) and low (q) dimensional space respectively.

Sidestep: Graphs

This is <u>GRAPH</u> (a.k.a. network)

t-SNE in Brief

t-SNE in Brief

- 2 major computation parts in tSNE
 - compute high dimensional neighborhoods
 - optimize low dimensional neighborhoods
- Computationally intensive
- Several parameters
 - Some can severely impact results

https://distill.pub/2016/misread-tsne/

t-SNE Parameters

- Perplexity
- Number of iterations
- Initialization
- Learning rate

. . .

https://distill.pub/2016/misread-tsne/

t-SNE Parameters

- Perplexity
- Number of iterations
- Learning rate
- Theta (for BH t-SNE)

. . .

Important Notes

- Typically, the optimization is initialized randomly
 Multiple runs will produce different results
- The cost function never reaches the minimum
- t-SNE optimizes the distance between close points (<u>local embedding</u>)

 Distances within a group are slightly meaningful, but not between groups!
- To add more samples, you need to re-run the algorithm from start.

t-SNE Implementations

- Many Implementations available
- Fast Fourier Transform-accelerated

https://www.nature.com/articles/s41592-018-0308-4

Implementations

Below, implementations of t-SNE in various languages are available for download. Some of these implementations were developed by me, and some by other contributors. For the standard t-SNE method, implementations in Matlab, C++, CUDA, Python, Torch, R, Julia, and JavaScript are available. In addition, we provide a Matlab implementation of parametric t-SNE (described here). Finally, we provide a Barnes-Hut implementation of t-SNE (described here), which is the fastest t-SNE implementation to date, and which scales much better to big data sets.

You are free to use, modify, or redistribute this software in any way you want, but only for non-commercial purposes. The use of the software is at your own risk; the authors are not responsible for any damage as a result from errors in the software.

NOTE: t-SNE is now built-in functionality in Matlab and in SPSS!

Matlab implementation (user guide)	All platforms		
CUDA implementation (by David, Roshan, and Forrest; see paper)	All platforms		
Python implementation	All platforms		
Go implementation (by Daniel Salvadori)	All platforms		
Torch implementation	All platforms		
Julia implementation (by Leif Jonsson)	All platforms		
Java implementation (by Leif Jonsson)	All platforms		
R implementation (by <u>Justin</u>)	All platforms		
JavaScript implementation (by Andrej; online demonstration)	All platforms		
Parametric t-SNE (outdated; see here)	All platforms		
Barnes-Hut t-SNE (C++, Matlab, Python, Torch, and R wrappers; see here)	All platforms / Github		
MNIST Dataset	Matlab file		

https://lvdmaaten.github.io/tsne/

GPU t-SNE

pip install nptsne

https://pypi.org/project/nptsne/ https://www.github.com/biovault/

Summary: t-SNE

- NON-LINEAR method of dimensionality reduction
- It is the current GOLD-STANDARD method in single cell data (including scRNA-seq)
- Can be run from the top PCs (e.g.: PC1 to PC10)

Problems:

- It does not learn an explicit function to map new points
- It's cost function is not convex This means that the optimal t-SNE cannot be computed
- Many hyper-parameters need to be defined empirically (dataset-specific)
- It does not preserve global structure (in practice)

Hierarchical SNE

Pezzotti et al., Computer Graphics Forum, 2016 Van Unen, Höllt, Pezzotti, et al., Nature Communications, 2017 https://www.cytosplore.org

UMAP

Uniform Manifold Approximation and Projection

UMAP Intuition

- Similar principle as t-SNE
- Initializes with a non-heuristic "guess"
 - Same result every time
- Resolves global structure somewhat better (due to initialization)

UMAP in Brief

UMAP Parameters

UMAP Parameters

- Number of neighbors
- Number of iterations
- Minimun Distance (low-D)
- Metrics

. . .

https://jlmelville.github.io/uwot/umap-simple.html

Summary: UMAP

- NON-LINEAR method of dimensionality reduction
- Very efficient to compute
- Can be run from the top PCs (e.g.: PC1 to PC10)
- Is not randomly initialized and allows
- It should preserve global structure

Problems:

- It is designed to group cells stronger than t-SNE to show meaningful larger distances
- Similar number of hyper-parameters as t-SNE

www.cytosplore.org graphics.tudelft.nl @thomashollt

Acknowledgements: STW / NWO Grant 12720 VAnPIRe LKEB, IHB, LCBC @ LUMC CGV @ TU Delft