Question 1	1 Find an antiderivative of $\frac{1}{2x+4}$	$\bar{\mathfrak{t}}$ with respect to x .	

Question 1 $\frac{1}{2}\log(|2x+4|)+1$ We arbitrarily choose our constant of integration to be 1. It can be any real number, including zero.

Question 2 equation 1 is: kx - 2y = k + 2

equation 2 is: 2x + y(k - 5) = 2

a. Find the values of *k* for which there are no solutions.

b. Find the values of *k* for which there is a unique solution.

Question 2

a. For the lines to be parallel, the ratios of coefficients between x and y must be the same:

$$\frac{k}{2} = \frac{-2}{k-5}$$
 $k^2 - 5k + 4 = 0$
 $k = 1, 4$

b.
$$k \neq 1, 4$$

Question 3 The function

$$f(x) = \begin{cases} \frac{2x}{7} - \frac{18}{35} & \text{for } x \in [0, 5] \\ 0 & \text{otherwise} \end{cases}$$

is a probability density function for the continuous random variable X.

	. I .		
a.	Find	Pr(X)	$r \geq \frac{5}{2}$).

b. Fin	nd the value	of a such that	Pr(X	$\leq a$)	$=-\frac{9}{20}$
---------------	--------------	----------------	------	------------	------------------

Question 3
a. =
$$\int_{\frac{5}{2}}^{5} \frac{2x}{7} - \frac{18}{35} dx$$

= $\left[\frac{x^2}{7} - \frac{18x}{35}\right]_{\frac{5}{2}}^{5}$
= $\frac{39}{28}$

b.
$$Pr(X \le a) = \int_0^a \frac{2x}{7} - \frac{18}{35} dx$$

 $= \left[\frac{x^2}{7} - \frac{18x}{35}\right]_0^a$
 $= \frac{a^2}{7} - \frac{18a}{35} - 0 = -\frac{9}{20}$
 $\frac{a^2}{7} - \frac{18a}{35} = -\frac{9}{20}$
 $a = \frac{3}{2}, \frac{21}{10}$
but $a \in [0, 5]$, so $a = \frac{3}{2}, \frac{21}{10}$

Question 4 The function

$$f(x) = \begin{cases} k(x-4)(x+3) & \text{for } x \in [-3,4] \\ 0 & \text{otherwise} \end{cases}$$

is a probability density function for the continuous random variable X.

	1		2	•
a.	Show	that	k =	$-\frac{6}{343}$.

-	

b. Find $Pr(X \le \frac{1}{2})$.		

a.
$$\int_{-3}^{4} k(x-4)(x+3) dx = 1$$
$$\left[\frac{kx^3}{3} - \frac{kx^2}{2} - 12kx\right]_{-3}^{4} = -\frac{104k}{3} - \frac{45k}{2} = -\frac{343k}{6} = 1$$
$$\therefore k = -\frac{6}{343}$$

b. =
$$\int_{-3}^{\frac{1}{2}} k(x-4)(x+3) dx$$

= $\left[\frac{kx^3}{3} - \frac{kx^2}{2} - 12kx\right]_{-3}^{\frac{1}{2}}$
= $-\frac{343k}{12}$

Question 5 Solve	$e^{2x} + 3e^x - 4$ for	or x.		

Question 5 Let $X = e^{x}$ $\therefore e^{2x} + 3e^{x} - 4 = X^{2} + 3X - 4$ = (X - 1)(X + 4) X = -4, 1but $X \ge 0$, so X = 1 $e^{x} = 1$ x = 0 **Question 6** Let X be a normally distributed random variable with mean 85 and variance 25 and let Z be the random variable with the standard normal distribution.

a. If $Pr(75 \le X \le 85) = a$, find $Pr(X \ge 95)$ in terms of a.

b. Find $Pr(X \ge 85)$.

c. Find c such that $Pr(X \ge c) = Pr(Z \ge \frac{2}{5})$.

Question 6

a.
$$Pr(X \ge 95) = Pr(X \le 75) = Pr(X \le 85) - Pr(75 \le X \le 85)$$

= $(\frac{1}{2}) - (a) = -a + \frac{1}{2}$

b. $\frac{1}{2}$

c.
$$Pr(Z \ge \frac{2}{5}) = Pr(X \ge \frac{2}{5} \times 5 + 85) = Pr(X \ge 87)$$

 $\therefore c = 87$

Question 7 The graph of the function f is shown, where $f = \begin{cases} -4x^3 - 18x^2 - 24x - 13 & \text{for } x < 0 \\ 3 - \frac{1}{x - 2} & \text{for } x \ge 0 \end{cases}$

a. The stationary points of the function are labelled with their coordinates. Write down the domain of the derivative function f'.

b. By referring to the graph of f, sketch the graph of the function with rule $y = \left| -4x^3 - 18x^2 - 24x - 13 \right|$, for [-6,0). Label stationary points with their coordinates (do not attempt to find x-axis intercepts).

Question 7

a.
$$(-\infty,0) \cup (0,2) \cup (2,\infty)$$

b.

Question 8 Eva	luate $\int_{\frac{5}{6}}^{\frac{5}{6}}$	$\int_{\frac{5\pi}{6}}^{\pi} \sin(x) + 1 dx$	dx.
----------------	--	--	-----

Question 8
$$\int_{\frac{5\pi}{6}}^{\pi} \sin(x) + 1 \, dx = [x - \cos(x)]_{\frac{5\pi}{6}}^{\pi}$$
$$= 1 + \pi - (\frac{\sqrt{3}}{2} + \frac{5\pi}{6})$$
$$= -\frac{\sqrt{3}}{2} + \frac{\pi}{6} + 1$$

Question 9 Every Tuesday John goes to see a movie. he always goes to one of two nearby cinemas -
the Pollos or the Altiplano.
If he goes to the Pollos one Tuesday, the probability that he goes to the Altiplano the next week is
0.10. If he goes to the Altiplano one Tuesday, then the probability that he goes to the Pollos the next
Tuesday is 0.65.
On any given Tuesday the cinema he goes to depends only on the cinema he went to on the previous
Tuesday.
If he goes to the Pollos one Tuesday, what is the probability that he goes to the Pollos on exactly 2 of
the next 3 Tuesdays?
Question 9 Let <i>X</i> represent the number of times John goes to Pollos over the 3 Tuesdays
$Pr(X = 2) = Pr(X_0 = \text{Pollos}) \times Pr(X_1 = \text{Pollos}) \times Pr(X_2 = \text{Altiplano}) + Pr(X_0 = \text{Pollos}) \times Pr(X_1 = \text{Pollos}) \times Pr(X_1 = \text{Pollos}) \times Pr(X_2 = \text{Altiplano}) + Pr(X_0 = \text{Pollos}) \times Pr(X_1 = \text{Pollos}) \times Pr(X_1 = \text{Pollos}) \times Pr(X_2 = \text{Pollos}) \times Pr$
Altiplano) $\times Pr(X_2 = \text{Pollos})$
$= 0.90 \times 0.10 + 0.10 \times 0.65$

=0.1550

Question 10 When Emma drives to work each morning they pass a number of intersections with traffic lights. The number X of traffic lights that are green when Emma is driving to work is a random variable with probability distribution given by

X	0	1	2	3	4
$Pr(X = x_i)$	0.3	0.3	0.1	0.2	0.1

a. Find Var(X), the variance of X.

b.	What is the probability that the number of green traffic lights Emma gets is the same on each	n of 2
co	onsecutive days?	

c. Find Pr(X >= 2 | X >= 1).

a.
$$Var(X) = E(X^2) - (E(X))^2$$

$$= [0^2 \times \frac{3}{10} + 1^2 \times \frac{3}{10} + 2^2 \times \frac{1}{10} + 3^2 \times \frac{1}{5} + 4^2 \times \frac{1}{10}] - [0 \times \frac{3}{10} + 1 \times \frac{3}{10} + 2 \times \frac{1}{10} + 3 \times \frac{1}{5} + 4 \times \frac{1}{10}]^2$$

$$= \frac{41}{10} - \frac{3}{2}^2 = \frac{37}{20}$$

b.
$$Pr(X \text{ is the same number 2 days in a row}) = Pr(X = 0)^2 + Pr(X = 1)^2 + Pr(X = 2)^2 + Pr(X = 3)^2 + Pr(X = 4)^2 = (\frac{3}{10})^2 + (\frac{3}{10})^2 + (\frac{1}{10})^2 + (\frac{1}{5})^2 + (\frac{1}{10})^2 = \frac{6}{25}$$

c.
$$Pr(X >= 2 | X >= 1) = \frac{Pr(X >= 2 \cap X >= 1)}{Pr(X >= 1)}$$

= $\frac{\frac{2}{5}}{\frac{7}{10}} = \frac{4}{7}$

d.
$$Pr(X_1 + X_2 = 2) = Pr(ball_1 = 0 \cap ball_2 = 2) + Pr(ball_1 = 1 \cap ball_2 = 1) + Pr(ball_1 = 2 \cap ball_2 = 0)$$

= $\frac{3}{100} + \frac{9}{100} + \frac{3}{100}$
= $\frac{3}{20}$

Question 11	State the amplitude and period of the function $f, R \to R, f(x) = 3\sin(2\pi(x+1)) - 2$
Question 11 The period	The amplitude is 3 is $\frac{1}{2}$

uestion 12	Solve the equa	ation $2\log(2x -$	$+2)-\log(3x-$	$+3) = \log\left(-x\right)$	+2) for x .	

Question 12
$$\log\left(\frac{(2x+2)^2}{3x+3}\right) = \log(-x+2)$$

Question 12
$$\log\left(\frac{(2x+2)^2}{3x+3}\right) = \log\left(-x+2\right)$$

$$\therefore \frac{(2x+2)^2}{3x+3} = -x+2$$

$$4x^2 + 8x + 4 = -3x^2 + 3x + 6$$

$$7x^2 + 5x - 2 = 0$$

$$x = -1, \frac{2}{7}$$
but $x = -1$ is an invalid solution since a log can only accept positive values

$$\therefore x = \frac{2}{7}$$

Question 13 The discrete random variable X has the probability distribution

X	-1	0	1	2
$Pr(X = x_i)$	$\frac{1}{4} \left(8k^2 + 1 \right)$	$\frac{k}{4}$	$\frac{k}{2}(2k+1)$	$\frac{k}{2}$

Find the value of k.

Question 13
$$E(X) = \sum_{i=1}^{n} x_i \times Pr(X = x_i) = 3k^2 + \frac{5k}{4} + \frac{1}{4} = 1$$

 $3k^2 + \frac{5k}{4} - \frac{3}{4} = 0$
 $24k^2 + 10k - 6 = 0$
 $k = \frac{-10 \pm \sqrt{10^2 - 4 \times 24 \times (-6)}}{2 \times 24} = \frac{1}{3}, -\frac{3}{4}$
but $k > 0$ so $k = \frac{1}{3}$

Question 14 The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$T\begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -4 \\ 0 \end{bmatrix}$$

The image of the curve $y = 2e^{-x+2} - 2$ under the transformation T has equation $y = ae^{bx+c} + d$. Find the values of a, b, c, d.

Question 14 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x-4 \\ 3y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' + 4 \\ \frac{y'}{3} \end{bmatrix}$$

$$\therefore y = 2e^{-x+2} - 2 \text{ transforms to } \frac{y'}{3} = 2e^{-x'+4+2} - 2$$
The transformed equation is $y = 6e^{-x-2} - 6$

$$\therefore a = 6, b = -1, c = -2, d = -6$$

Question 15 6 identical balls are numbered 1, 2, 3, 4, 5 and 6 and put into a box. A ball is randomly drawn from the box, and not returned to the box. A second balls is then randomly drawn from the box.

a. Find the probability that the values of the balls are 3 and 1, respectively.

b.	What is the	probability	that the sum	of the nun	bers on the	e 2 balls is	8?
~•	TT TICCE IS CITE	procuonity	tilet tile seill	or the man	iceis on the	– – • • • • • • • • • • • • • • • • • •	

c.	Given that the sum	of the numbers	on the	2 balls is 9	what is the	probability	that the	second is
nı	ımbered 5?							

a.
$$Pr(ball_1 = 3 \cap ball_2 = 1) = \frac{1}{6} \times \frac{1}{5} = \frac{1}{30}$$

b.
$$Pr(\text{sum} = 8) = 2! \times Pr(ball_1 = 2 \cap ball_2 = 6) + 2! \times Pr(ball_1 = 3 \cap ball_2 = 5) = 2 \times \frac{1}{30} + 2 \times \frac{1}{30} = \frac{2}{15}$$

c.
$$Pr(\text{sum} = 9) = 2! \times Pr(ball_1 = 3 \cap ball_2 = 6) + 2! \times Pr(ball_1 = 4 \cap ball_2 = 5)$$

 $= 2 \times \frac{1}{30} + 2 \times \frac{1}{30}$
 $= \frac{2}{15}$
 $Pr(ball_2 = 5 \cap \text{sum} = 9) = Pr(ball_1 = 4 \cap ball_2 = 5)$
 $= \frac{1}{30}$
 $Pr(ball_2 = 5 | sum = 9) = \frac{Pr(ball_2 = 5 \cap sum = 9)}{Pr(sum = 9)} = \frac{\frac{1}{30}}{\frac{2}{15}} = \frac{1}{4}$

Question 16 Sketch the graph of $f: [-4,5] \to R$, $f(x) = 3 + \frac{1}{x}$. Label the axes intercepts and endpoints with their coordinates.

a. Find the coordinates of the image of the point $(4, \frac{13}{4})$ under a translation of 1 in the positive direction of the x-axis, followed by a dilation of factor 2 from the y-axis.

b. Find the equation of the image of the graph of f under a translation of 1 in the positive direction of the x-axis, followed by a dilation of factor 1 from the y-axis.

a.
$$(x, y) \to (x+1, y) \to (2x+2, y)$$

 $\therefore (4, \frac{13}{4}) \to (1, \frac{13}{4})$

$$(x, y) \rightarrow (x+1, y) \rightarrow (x+1, \frac{y}{2})$$

b. Let our new
$$(x, y)$$
 coordinates be (x', y') . $(x, y) \rightarrow (x+1, y) \rightarrow (x+1, \frac{y}{2})$ Hence, $\begin{bmatrix} x+1 \\ \frac{y}{2} \end{bmatrix} \rightarrow (x', y')$ and $(x, y) \rightarrow (x'-1, 2y')$ Now we apply the mapping to the equation: $2y' = 3 + \frac{1}{x'-1}$ Hence our mapped equation is $y = \frac{3}{2} + \frac{1}{2x-2}$.

$$2y' = 3 + \frac{1}{x'-1}$$

nestion 17 The area of the region bounded by the y-axis, the x-axis, the curve $y = 2e^{-2x-1}$ ne line $x = C$, where C is a negative real constant, is $-\frac{1}{e} + e^{-\frac{1}{3}} + \frac{5}{3}$. Find C.	1+5 and

Question 17 A =
$$\int_{C}^{0} 2e^{-2x-1} + 5 dx$$

= $\left[5x - e^{-2x-1}\right]_{C}^{0}$
= $-\frac{1}{e} - (5C - e^{-2C-1}) = -\frac{1}{e} + e^{-\frac{1}{3}} + \frac{5}{3}$
 $C = -\frac{1}{3}$

Question of f .	18 Let $f: (-\infty)$	$(\frac{1}{2}) \rightarrow R$, where	$ef(x) = -3\log$	(-2x+1)-2.	Find f^{-1} , the in	nverse function

Question 18
$$d_{f^{-1}} = r_f = (-\infty, \infty)$$

 $f^{-1}(x) = -\frac{1}{2}e^{-\frac{x}{3} - \frac{2}{3}} + \frac{1}{2}$

Question 19

a. Let $f(x) = (2x^2 + 3x)^4$. Find f'(x).

b. If $f(x) = x\cos(2x)$, find $f'(\frac{\pi}{2})$.

- **a.** Let $f(x) = (2x^2 + 3x)^4 = u^4, u = 2x^2 + 3x$ $f'(x) = \frac{dy}{du} \times \frac{du}{dx} = 4u^3 \times u'$ $f'(x) = 4x^3 (2x+3)^3 (4x+3)$
- **b.** $f'(x) = -2x\sin(2x) + \cos(2x)$ $f'(\frac{\pi}{2}) = -2x\sin(2x) + \cos(2x)$ $\sin(2\frac{\pi}{2}) = 0, \cos(2\frac{\pi}{2}) = -1$ $f'(\frac{\pi}{2}) = -1$

Question 20	Solve the	equation	$\tan(-x)$	$=\frac{\sqrt{3}}{3}$ for	$\mathbf{r} \ x \in \left(-\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2},\frac{\pi}{2}\right)$.		

Question 20 $-x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ The base solution for $\tan(x) = \frac{\sqrt{3}}{3}$ is $\frac{\pi}{6}$ $\therefore -x = \frac{\pi}{6}$ $= \frac{\pi}{6}$ $-x = \frac{\pi}{6} + 1$ $x = -1 - \frac{\pi}{6}$

Question 21 A rocket is flying vertically towards outer-space at a constant rate, forming a right-angled
with an observer standing 400km away from the position where the rocket launched. The rocket's
altitude is is increasing at a rate of 80km per minute. Find the rate of change of the angle of the
observer's view between the launch position and the rocket's current location when the angle is $\frac{\pi}{3}$
radians. Give an exact answer, with units of radians per minute.

Question 21 $\frac{dh}{dt} = 80$ $\frac{dh}{d\theta} = 400 \tan^2(\theta) + 400$ $\frac{d\theta}{dh} = \frac{1}{\frac{dh}{d\theta}} = \frac{1}{400 \tan^2(\theta) + 400}$ $\frac{d\theta}{dt} = \frac{d\theta}{dh} \times \frac{dh}{dt}$ $\therefore \frac{d\theta}{dt} = \frac{80}{400 \tan^2(\theta) + 400}$ $\frac{d\theta}{dt} (\frac{\pi}{3}) = \frac{1}{20} \text{radians/minute}$

Question 22 Find p given that $\int_{-1}^{0} \frac{1}{2x-2} dx = \frac{1}{2} \log(p)$									

Question 22
$$\left[\frac{1}{2}\log(|2x-2|)\right]_{-1}^{0}$$

= $\frac{1}{2}\log(2) - \frac{1}{2}\log(4)$
= $\frac{1}{2}\log\left(\frac{1}{2}\right)$
 $\therefore p = \frac{1}{2}$.

Question 23

a. Use the relationship $f(x+h) \approx f(x) + hf'(x)$ for a small positive value of h, to find an approximate value for 2.08^2 .

b. Explain why this approximate value is less than than the exact value for 2.08^2 .

Question 23

a.
$$y = x^2, y' = 2x$$

$$y(2) = 4$$

$$y'(2) = 4$$

$$\therefore$$
 y(2.08) \approx 0.08 \times 4 + 4 = 4.32

b. The function is convex at x = 2 since the second derivative $\frac{d^2x}{dy^2}(2) = 2$ is greater than than 0. Therefore, the gradient of x^2 increases as x moves from 2 to 2.08 and as a result, linear approximation underestimates the true value of 2.08^2

Question 24 Let $f(x) = x\cos(x)$.

- **a.** Find f'(x).
- **b.** Use the result of part a. to find the value of $\int_{\frac{4\pi}{3}}^{\frac{5\pi}{3}} x \sin(x) dx$.

a.
$$f'(x) = -x\sin(x) + \cos(x)$$

b.
$$x \sin(x) = -f'(x) + \cos(x)$$

$$\int_{\frac{4\pi}{3}}^{\frac{5\pi}{3}} x \sin(x) dx = \int_{\frac{4\pi}{3}}^{\frac{5\pi}{3}} -f'(x) + \cos(x) dx$$

$$= [-f(x) + \sin(x)]_{\frac{4\pi}{3}}^{\frac{5\pi}{3}}$$

$$= [-x \cos(x) + \sin(x)]_{\frac{4\pi}{3}}^{\frac{5\pi}{3}}$$

$$= -\frac{5\pi}{6} - \frac{\sqrt{3}}{2} - (-\frac{\sqrt{3}}{2} + \frac{2\pi}{3})$$

$$= -\frac{3\pi}{2}$$