

PHYS101 EXPERIMENT 1. MEASUREMENT AND ERRORS

Arda Tavusbay ID#: 21902722 Section: 002	Name & Surname :	Tavusbay	ID#: 21902722	Section: 004
--	------------------	----------	---------------	--------------

Data & Results Part A: [25]

Length (mm)		Breadth (MM)		Thickness (MM)	
L	ΔL	В	ΔΒ	T	ΔΤ
100.5	±0.025	58.65	0.025	0.95	10,005

Table a1: Dimensional measurements

$\Delta L/L$	ΔΒ/Β	ΔΤ/Τ
D, 025%	0,043.1.	0,5%

Percentage error for Length: L-100 = 0.025.100 = 0,00497562

Percentage error for Brecotth: AB -100 2 0.025 -100 = 0,04262575

Percentage error for Thickness: AT. 100 = 0.005. 100 = 0,52631579

v (mm³)	ΔV (WW3)	$\Delta V/V$
56.10 ²	± 3.10 ²	0.5%

Table a3: Volume with errors

V (Volume) & L & B + T (Inichness)

$$\Delta V = \sqrt{\frac{\Delta L}{L}}^2 + \frac{\Delta B}{B}^2 + \frac{\Delta T}{T}^{2}} \cdot V = \sqrt[3]{\frac{0.025}{50.65}}^2 + \frac{0.025}{50.65}}^2 + \frac{0.025}{0.95}^2 \cdot (56.10^2) = 29.60$$

$$\Delta V_{V} = \frac{29.100}{5692} = 0.5178 - 0.00528624688$$

PHYS101 EXPERIMENT 1. MEASUREMENT AND ERRORS

Name & Surname: ARDA TAYUSBAY	ID#: 21902722	Section: QQL
-------------------------------	---------------	--------------

w (g)	AW (3)	ΔW/W
7.71	± 0.005	0.06%

Table a4: Weight with errors

Percentage error for weight =
$$\frac{\Delta w}{w}$$
. 100 = $\frac{0.005}{3.71}$. 100 = 0.06485084

$$\frac{7.71}{56.10^{2}} = \frac{93/\text{mm}^{3}}{1.4.10^{-3}} = \frac{493/\text{mm}^{3}}{7.10^{-6}} = \frac{49/p}{0.5\%}$$

Table a5: Density with errors

$$\frac{\Delta P}{P} = \sqrt{\left(\frac{\Delta W}{W}\right)^2 + \left(\frac{\Delta V}{V}\right)^2} = \sqrt{\left(\frac{0.005}{9.71}\right)^2 + \left(\frac{0.029}{5.6}\right)^2}$$

Data & Results Part B: [15]

Number of Papers N	5	10	15	ಖ೦	25
Thickness of Stack $T \pm \Delta T$ (mm)	0,05 <u>+</u> 0.225	0.105+0.025	0.155+0.025	9.205 <u>+</u> 0.925	0.255+0.025

Thickness of 1 poper => 0.01 mm

Thickness of a single y the best line: 0.05/5 = 0.01mm' poper: 0.01mm ± 0.025 mm = 1m of = 1day = 1day = 0.025mm Thickness of a single >

Am = |M-m/=/0.01-0.0125/ = 0.0025mm