

Neighborhood Operations

CS 355: Interactive Graphics and Image Processing

Neighborhood Operations

- Output pixel value is a function of that pixel and its neighbors
- Possible operations: sum, weighted sum, average, weighted average, min, max, median, ...
- Most common workhorse in image processing

$$I'(x,y) = f \begin{pmatrix} I(x-1,y-1) & , & I(x,y-1) & , & I(x+1,y-1) & , \\ I(x-1,y) & , & I(x,y) & , & I(x+1,y) & , \\ I(x-1,y+1) & , & I(x,y+1) & , & I(x+1,y+1) \end{pmatrix}$$

- Most common is to multiply each of the pixels in the neighborhood by a respective weight and add them together
- The local weights are called a mask or kernel

I(x-1,y-1)	I(x,y-1)	I(x+1,y-1)
I(x-1,y)	l(x,y)	I(x+1,y)
I(x-1,y+1)	I(x,y+1)	I(x+1,y+1)

w(-1,-1)	w(0,-1)	w(1,-1)
w(-1,0)	w(0,0)	w(1,0)
w(-1,1)	w(0,1)	w(1,1)

I(x-1,y-1)	I(x,y-1)	I(x+1,y-1)
I(x-1,y)	l(x,y)	I(x+1,y)
I(x-1,y+1)	I(x,y+1)	I(x+1,y+1)

$$w(-1,-1)$$
 $w(0,-1)$ $w(1,-1)$ $w(-1,0)$ $w(0,0)$ $w(1,0)$ $w(-1,1)$ $w(0,1)$ $w(1,1)$

$$I'(x,y) = \sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) I(x+s,y+t)$$

Convolution

I(x-1,y-1)	I(x,y-1)	I(x+1,y-1)
I(x-1,y)	l(x,y)	I(x+1,y)
I(x-1,y+1)	I(x,y+1)	I(x+1,y+1)

w(1,1)	w(0,1)	w(-1,1)
w(1,0)	w(0,0)	w(-1,0)
w(1,-1)	w(0,-1)	w(-1,-1)

$$I'(x,y) = \sum_{s=-1}^{1} \sum_{t=-1}^{1} w(s,t) I(x-s,y-t)$$

Convolution is the same thing with the mask flipped

Spatial Filtering and Convolution

- Technically, spatial filtering is correlation, different from convolution
- They are the same up to flipping the mask/kernel
- Most people casually use them interchangeably (be careful with the details)

w(-1,-1)	w(0,-1)	w(1,-1)
w(-1,0)	w(0,0)	w(1,0)
w(-1,1)	w(0,1)	w(1,1)

w(1,1)	w(0,1)	w(-1,1)
w(1,0)	w(0,0)	w(-1,0)
w(1,-1)	w(0,-1)	w(-1,-1)

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

notation for convolution operator

$$I' = I * w$$

- What do you do outside the image boundaries?
 - Assume zero (tends to darken)
 - Assume some other constant value
 - Wrap around
 - Assume same as closest still in image
 - Or just don't go there

- Applications:
 - Blurring
 - Sharpening
 - Edge detection
 - and many more...

Smoothing

- If we can average multiple images together to remove noise, why not average *multiple pixels*?
- What does this assume?
- Same as using a larger aperture
- Reduces noise
- Causes blurring

Smoothing

- Any kernel with all positive weights does smoothing / blurring
- To average rather than add, divide by the sum of the weights
- Can be any size (larger means more blurring)

1	1	1
1	1	1
1	1	1

1	1	1
1	2	1
1	1	1

1	2	1
2	4	2
1	2	1

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

$$I'(x,y) = \frac{\sum_{s} \sum_{t} w(s,t) \ I(x+s,y+t)}{\sum_{s} \sum_{t} w(s,t)}$$

Smoothing

Nonlinear Smoothing

- Spatial filtering is linear, but many neighborhood operators are not
- Some do noise reduction:
 - Trimmed mean
 - Median filter
 - Bilateral filtering (or other adaptive weights)
- These try to be less sensitive to outliers and/or respect edges

Median Filtering

- Output is the <u>median</u> (not the mean) of the neighborhood pixels
 - More robust to outliers (great for "salt and pepper" noise)
 - Tries to respect edges (goes with local majority)
 - But often rounds corners or loses very small/thin things

Median Filtering

Original

Mean

Median

Bilateral Filtering

- Spatial adapt the weights of the mask
 - Closer neighbors get more weight
 - More similar neighbors get more weight
- One of many similar approaches that use this idea, but this is the most popular now
- More computationally expensive

Bilateral Filtering

Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) © 2002 ACM: (a) noisy step edge input; (b) domain filter (Gaussian); (c) range filter (similarity to center pixel value); (d) bilateral filter; (e) filtered step edge output; (f) 3D distance between pixels.

Anisotropic Diffusion

Iteratively diffuse (blur) based on neighbor similarity

Coming up...

- More neighborhood operations:
 - sharpening
 - edge detection
- Interpolation
- Geometric operations:
 - · resizing, rotating, warping