(19) 日本国特許庁 (JP) (12) 公表特許公報(A)

(11)特許出願公表番号 特表2003-533869 (P2003-533869A)

(43)公表日 平成15年11月11日(2003.11.11)

(51) Int.Cl.7

識別記号

テーマコート*(参考)

H01L 21/3065 C23F 4/00

C 2 3 F 4/00

FΙ

A 4K057

H01L 21/302

105A 5F004

審査請求 未請求

予備審査請求 有

(全38頁)

(21)出願番号

特願2001-560445(P2001-560445)

(86) (22)出願日

平成13年2月16日(2001.2.16)

(85) 翻訳文提出日 平成14年8月15日(2002.8.15)

(86) 国際出願番号

PCT/US01/05194

(87) 国際公開番号

WO01/061750

(87) 国際公開日

平成13年8月23日(2001.8.23)

(31)優先権主張番号 09/506, 425

(32) 優先日

平成12年2月17日(2000, 2, 17)

(33)優先権主張国

米国(US)

(81) 指定国

EP(AT, BE, CH, CY,

DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE, TR), JP

(71)出願人 アプライド マテリアルズ インコーポレ

イテッド

アメリカ合衆国 カリフォルニア州

95052 サンタ クララ ピーオーポック

ス 450エイ

(72)発明者 ジョルダーニ サラ

オランダ エヌエルー2565 ペーハー デ

ン ハーグ ラノンケルストラート 341

(74)代理人 弁理士 中村 稔 (外9名)

最終頁に続く

(54) 【発明の名称】 キャピティをエッチングする方法

(57) 【要約】

本発明は、キャピティがその深さと少なくとも同程度の 幅を有する場合の基板にキャピティをエッチングする方 法に関する。我々は、キャピティのエッチング中にプロ セスチャンパの圧力を変えることによって、キャピティ の横方向のエッチングを制御することができ、一方、続 くエッチング中にキャピティからエッチングのプロセス **副産物を除去することを可能にすることを発見した。本** 発明の方法は、丸い形状か又は水平の楕円形を有するキ ャピティをエッチングするために用いることができる。 本発明の方法は、キャピティからエッチングの副産物の 除去が困難である場合、埋め込まれたキャビティのエッ チングに特に有用である。

【特許請求の範囲】

【請求項1】 基板にキャビティをエッチングする方法であって、

前記キャビティの最初のエッチングは、最初のプロセスチャンバの圧力を用いて行なわれ、かつ、前記キャビティの続くエッチングは、前記最初のプロセスチャンバの圧力より少なくとも25%低いプロセスチャンバの圧力を用いて行なわれ、それにより、前記キャビティのエッチング中に形成されるエッチング副産物が続くエッチング中に前記キャビティから除去されることを特徴とする方法。

【請求項2】 基板にキャビティをエッチングする方法であって、 前記方法は、

- a) キャビティの最初のエッチングステップ、該ステップ中に前記基板が最初の プロセスチャンバの圧力を用いてキャビティを形成するためにエッチングされ、
- b) 少なくとも1つの追加のエッチングステップ、該ステップ中に前記キャビティの続くエッチングが前記最初のプロセスチャンバの圧力より少なくとも25% 低いプロセスチャンバの圧力を用いて行なわれることを特徴とする方法。

【請求項3】 第2のエッチングステップが、前記最初のプロセスチャンバの圧力より約30%~約50%低い範囲内のプロセスチャンバの圧力を用いて行なわれることを特徴とする請求項2に記載の方法。

【請求項4】 前記第2のエッチングステップは、前記最初のプロセスチャンバの圧力より約30%低いプロセスチャンバの圧力を用いて行なわれることを特徴とする請求項3に記載の方法。

【請求項5】 前記方法は、さらに、エッチング仕上げステップを有し、前 記エッチング仕上げステップは、前記最初のプロセスチャンバの圧力の約80% ~約100%の範囲内のプロセスチャンバの圧力を用いて行なわれることを特徴 とする請求項2に記載の方法。

【請求項6】 前記方法は、さらに、第3のエッチングステップを有し、該ステップ中に前記キャビティの続くエッチングステップは、前記第2のエッチングステップの実施中に用いられるプロセスチャンバの圧力より少なくとも約40%低いプロセスチャンバの圧力を用いて行なわれることを特徴とする請求項3に記載の方法。

【請求項7】 前記第3のエッチングステップは、ステップb)の実施中に 用いられる前記プロセスチャンバの圧力の約40%~約50%の範囲内のプロセ スチャンバの圧力を用いて行なわれることを特徴とする請求項6に記載の方法。

【請求項8】 前記方法は、さらに、エッチング仕上げステップを有し、前 記エッチング仕上げステップは、前記最初のプロセスチャンバの圧力の約80% ~約100%の範囲内のプロセスチャンバの圧力を用いて行なわれることを特徴 とする請求項6に記載の方法。

【請求項9】 前記エッチング仕上げステップは、前記最初のプロセスチャンバの圧力の約90%のプロセスチャンバの圧力を用いて行なわれることを特徴とする請求項5又は請求項8に記載の方法。

【請求項10】 前記基板はシリコンを有し、且つ、エッチングは反応性フッ素種を含むプラズマを用いて行われることを特徴とする請求項2、請求項5、請求項6又は請求項8に記載の方法。

【請求項11】 前記プラズマは、SF6とArを含むソースガスから生成されることを特徴とする請求項10に記載の方法。

【請求項12】 前記プラズマソースガスは、さらに、Oz、HBr、Clz、Nz及びそれらの組合せから成るグループから選択される付加ガスを有することを特徴とする請求項11に記載の方法。

【請求項13】 エッチングは、SF6、CF4、C12、HBr、及びそれらの組合せからなるグループから選択されたガスを含むソースガスから生成されたプラズマを用いて行なわれることを特徴とする請求項請求項2、請求項5、請求項6又は請求項8に記載の方法。

【請求項14】 前記プラズマソースガスは、さらに、Ar、 O_2 、HBr、 Cl_2 、 N_2 及びそれらの組合せから成るグループから選択される付加ガスを有し、前記付加ガスは、xッチング中にプロフィールの制御を改善するのに充分な量与えられることを特徴とする請求項13に記載の方法。

【請求項15】 前記プラズマソースガスは、さらに、HeとXeから成る グループから選択された実質的に非反応性の希ガスを有することを特徴とする請 求項13に記載の方法。 【請求項16】 前記プラズマソースガスは、さらに、HeとXeから成るグループから選択された実質的に非反応性の、希ガスを有することを特徴とする請求項14に記載の方法。

【請求項17】 前記基板はポリシリコンを有し、且つ、エッチングはSF 5、C12及びそれらの組合せから成るグループから選択されたガスを含むソースガスから生成されるプラズマを用いて行なわれることを特徴とする請求項2に記載の方法。

【請求項18】 前記基板は二酸化シリコンを有し、且つ、エッチングはC F_4 、 NF_3 及びそれらの組合せから成るグループから選択されたガスを含むソースガスから生成されるプラズマを用いて行なわれ、且つ、エッチングは約50 $\mathbb C$ \sim 約100 $\mathbb C$ の範囲内の基板温度で行なわれることを特徴とする請求項2に記載の方法。

【請求項19】 前記基板は窒化シリコンを有し、且つ、エッチングはSF6を含むソースガスから生成されるプラズマを用いて行なわれることを特徴とする請求項2に記載の方法。

【請求項20】 前記基板は金属を有し、且つ、エッチングはClzを含む ソースガスから生成されるプラズマを用いて行なわれることを特徴とする請求項 2に記載の方法。

【請求項21】 前記金属は、アルミニウム及びアルミニウム合金から成る グループから選択されることを特徴とする請求項20に記載の方法。

【請求項22】 前記基板はポリアミドを有し、且つ、エッチングはO₁と CF₄を含むソースガスから生成されるプラズマを用いて行なわれることを特徴 とする請求項20に記載の方法。

【請求項23】 前記方法は、前記キャビティをエッチングする前に、前記基板を所定の深さまでエッチングして、開口を形成するステップ、その後、前記開口の少なくとも側壁の上にコンフォーマル保護層を形成するステップを有し、且つ、前記保護層は、前記基板と異なるエッチングの選択性を有する材料を有し、前記キャビティは、前記開口の直下にあり、且つ、前記開口と連通するようにエッチングされ、且つ、キャビティは、前記保護層に対して前記基板を選択的に

エッチングするエッチャントガスを用いてエッチングされ、それにより前記保護層は、前記キャビティのエッチング中に前記開口のプロフィールを効果的に保つことを特徴とする請求項2、請求項5、請求項6、又は請求項8に記載の方法。

【請求項24】 前記基板はシリコンを有し、且つ、前記保護層はシリコン酸化物を有することを特徴とする請求項23に記載の方法。

【請求項25】 (a) 基板にキャビティをエッチングするための命令を記憶するメモリと、前記方法は、i) 最初のキャビティのエッチング、該エッチング中に前記基板は最初のプロセスチャンバの圧力を用いてキャビティを形成するためにエッチングされ、且つ、

- ii) 少なくとも1つの追加のエッチング、該エッチング中に前記キャビティの 続くエッチングは、前記最初のプロセスチャンバの圧力より少なくとも25%低 いプロセスチャンバの圧力を用いて行われ、
- (b) 前記メモリと通信し、前記メモリによって記憶された命令を実行するのに 適合したプロセッサと、
- (c) 前記メモリからの命令にしたがって、前記エッチングを実行するのに適合 したエッチングチャンバと、
- (d) 前記プロセッサと前記エッチングチャンバ間の通信を行なうのに適合したポートと、

を有することを特徴とする装置。

【請求項26】 請求項1又は請求項2の方法によって処理する基板におけるキャビティのエッチングを制御する装置をプログラムするために用いられる複数のプログラム命令を記録した記録媒体。

【発明の詳細な説明】

[0001]

(発明の属する技術分野)

本発明は、基板にキャビティをエッチングする方法に関し、特に、本発明は、 基板にキャビティの幅がキャビティの深さに等しいか、それより大きいキャビティをエッチングする方法に関する。

[0002]

(従来の技術)

Podlesnik他の、共有された1999年8月11日に出願された米国特許出願09/372,477号は、多くのいろいろなマイクロマシンニング(マイクロ機械加工)の応用に有用な、基板にマルチパートキャビティを形成する一般的な方法を提供している。Podlesnik他によって開示されたように、基板は、第1の所定の深さにエッチングされて、開口を形成する。その後、コンフォーマル保護層が形成された開口の少なくとも側壁に形成される。この保護層は、基板材料と異なるエッチングの選択性を有する材料を含む。必要に応じて、この保護層は、開口の底部の上にある保護層の部分を除去するために異方性にエッチングされる。一般的に、形成された開口の底部における基板の少なくとも一部は、続くエッチングを行う前に露出される。その後、更に、この基板は、保護層に対して基板を選択的にエッチングするエッチャントガスを用いてキャビティを形成するためにエッチングされる。

[0003]

ある応用のために、キャビティは形成された開口と異なる形状を有するように 形成されることが望ましい。例えば、キャビティに対する開口は、管状に形成されるが、一方、キャビティはその深さに等しいか、またはそれより大きい幅を有している(即ち、丸いか、水平の楕円形キャビティ)。この大きさのキャビティは、ドライエッチング技術を用いて形成するのは特に難しい。丸い形状のキャビティの形成は、以前はウエットエッチング技術を用いて行なっていた。しかし、近年では、プロセスの一体化および環境を配慮して、半導体製造産業はドライエッチング技術に向かう傾向にある。キャビティへのガス状のリアクタントを運び 、キャビティから反応副産物を運ぶことの困難性のために、ドライエッチング技 術の使用は、比較的少量による既に形成されたキャビティを広げるのには限界が ある。したがって、キャビティの深さに等しいか、またはそれより大きな幅を有 するキャビティの形成を生じさせるドライエッチング方法を提供することが望ま しい。 (垂直と対照的に) 横のエッチングは、エッチャント種の入射角、エッチ ャント種の平均自由行程、およびエッチングされるべき表面に達するエッチャン ト種の可能性を含むエッチングプロセス中の多くのファクタに依存している。更 に、エッチングプロセスの副産物は、常時除去されなければならないし、もし、 これらの副産物がエッチングされているキャビティにトラップされるなら、エッ チングは受け入れ難い程速度が低下するか、あるいは特に横方向においては完全。 に停止するかも知れない。従来のエッチングプロセスが用いられた場合、所望の 横方向のエッチング (もし、エッチングが停止する前にそれが行なわれるなら) ... は、一般に、望ましくない、深い垂直方向のエッチングによって達成される。し たがって、特に、埋められたキャビティのエッチング中に、キャビティを深くす ることなく、横方向のエッチングの所望量を可能にするために、エッチング副産 物がエッチングプロセス中のエッチングキャビティから排除される手段を提供す ることが重要である。

[0004]

(発明の概要)

本発明は、基板にキャビティをドライエッチングする方法を提供する。この方法は、少なくとも3・5:1と同程度の高いアスペクト比に対して有用であり、特に、形成されたキャビティの幅が基板に形成されたキャビティの深さに等しいか、それより大きい場合、即ちアスペクト比が1より小さい場合に有用である。

[0005]

我々は、形成されたキャビティの内部表面上にエッチングの副産物が付着するのを減少させるか、または避ける速度で、キャビティからエッチング副産物の除去を可能にするために、エッチングプロセスの実行中に特定の方法でプロセスチャンバの圧力を制御することが必要であることを発見した。これによって、形成されたキャビティの連続したエッチングを可能にする。一般に、本発明の方法は

、最初のプロセスチャンバの圧力を含む、少なくとも2つの異なるプロセスチャンバの圧力を用いて、キャビティをエッチングするステップと、続いて少なくとも1つの減少されたプロセスチャンバの圧力を用いて、キャビティを連続してエッチングするステップを有する。この減少したプロセスチャンバの圧力は、最初のプロセスチャンバの圧力より少なくとも25%低く、幾つかの実施の形態では、最初のプロセスチャンバの圧力より約30%~50%低い。エッチングされたキャビティの任意の仕上げまたは丸めは、キャビティの形成後に行なわれる。そのキャビティでは、プロセス圧力が増加されるが、増加の量は、一般に最初のチャンバの圧力の約90%までである。

[0006]

キャビティのエッチング中に、所定のエッチングステップ中にエッチング副産物を除去するために、プロセスチャンバの圧力は低下され、続いて上昇され、そして再び低下される。

[0007]

本発明の方法は、埋め込まれたキャビティのエッチングに特に有用である。キャビティは、一般に前に形成された開口の下に形成される。

[0008]

本発明の方法は、プロセスチャンバの圧力が徐々に低下されるか、又は上昇され、そして低下される場合、連続プロセスとして、あるいはマルチステッププロセスとして行なわれることができる。

[0009]

基板が(単結晶)シリコンの場合、エッチングは、一般に反応性フッ素種を含むプラズマを用いて行なわれる。エッチャントプラズマは、一般にプロセス装置に依存する流速で与えられる SF_6 とArを含むソースガスから生成される。 SF_6 : Ar の比は、約10:1~約 $2\cdot5:1$ の範囲内である。丸い形状のキャビティが必要であるなら、約4:1 の SF_6 : Ar の比が優れた結果を与える。Ar が SF_6 : に対する不活性キャリヤとして用いられ、また、基板バイアスに関連してイオン化されたAr が形成された開口を通して、およびキャビティへSF6から生成された反応性フッ素種をドライブするために用いることもできる。

[0010]

代わりの主なエッチャントガスは、例えば CF_4 、 $C1_2$ およびHBrのようなガスを含む。主なエッチャントガスのいずれもが単独で、または匹敵する他の主なエッチャントガスと組合せて用いることもできる。例えば、 CF_4 は SF_6 の代わりに用いることができるし、又は所望の効果を得るために、 SF_6 に加えることもできる。主なエッチャントガスは、表面の仕上げやキャビティのエッチングプロフィールを良好に制御するために、例えば、Ar、 O_2 、HBr、 $C1_2$ 又は N_2 のような付加ガスと組合せて用いることができる。所望された特別な効果に依存して、付加ガスが本発明の方法の全期間の間存在するか、又はあるステップ(複数ステップを含む)中のみに存在することができる。プラズマソースガスは、さらにAr、He 又はXe0 のような実質的に非反応性の、希ガスを含んでもよい。

[0011]

シリコン基板をエッチングするのに好適であり、それに限定するものではないソースガスの組合せの例は、 $SF_6/Ar/O_2$ 、 $SF_6/Ar/HBr$ 、 $SF_6/Ar/Cl_2$ 、及び SF_6/Cl_2 を含む。 CF_4 は SF_6 と置き換わることもでき、又はこれらのソースガスの組合わせのいずれかの SF_6 に加えることができる。

[0012]

基板がポリシリコンの場合、プラズマソースガスは、一般にSF。及び/又はC 1½を含む。二酸化シリコン基板に対しては、プラズマソースガスは、一般にCF₄は又はNF₃を含み、エッチングは、一般に約50℃~約100℃の範囲内の 温度で行なわれる。基板が窒化シリコンの場合、プラズマソースガスは、一般にSF。を含む。基板が金属(例えば、アルミニウム又はアルミニウム合金)の場合、プラズマソースガスは、一般にC1½を含む。基板がポリイミドの場合、プラズマソースガスは、一般にC1½を含む。これらの例の全ては、これらに限定されるものではない。

[0013]

フッ素含有エッチャントプラズマが 5 0 ℃以下の温度で用いられる場合、保護 /マスク層は、シリコン酸化物を含むのが好ましい。窒化シリコンの保護/マスク 層は、プラズマソースガスがフッ素を含まない場合に用いることができる。金属 又は合金の保護/マスク層は、プラズマソースガスが塩素を含まない場合に用い ることができる。

[0014]

(発明の実施の形態)

I. 定義

詳細な説明に入る前に、この明細書及び請求の範囲に用いられている単数形の "a"、"an"及び"the"は、明らかにそうでないかぎり複数の対象物を 含む。ガス構成物に対して示されている全ての%は、特に示されない限り、体積%である。

[0015]

本発明の説明に特に重要な特定の用語は以下に説明される。

用語"キャビティ"は、以下のものに限られないが、例えば、トレンチ、ボウル(bowls)、コンタクト、ビア、チューブ、ホール、スクエア(squares)、及び他の幾何学的形状を含む、基板におけるあらゆる三次元の窪み又は埋め込まれた空間を呼ぶが、それに限定されない。

[0016]

用語"偏心率"は、形成されたキャビティの幅とその深さの比を言う。例えば、完全に丸く形成されたキャビティ(即ち、キャビティの深さに完全に等しい幅を有する)は、偏心率が1である。

用語"ポリシリコン"は、多結晶シリコンを呼び、以下に限定されないが、例 えば砒素、リン、アンチモン、またはホウ素でドープされている。

用語"基板"は、従来知られているエッチング技術を用いてエッチングされる ことができるあらゆる材料を呼ぶ。

[0017]

II. 本発明を実施するための装置

本発明の方法は、一般に異方性及び等方性の双方のエッチングをすることができ、また2つの形式のエッチング間で行きつ戻りつ切替えることができるプラズマエッチング装置において行なわれる。このような装置の例は、カリフォルニア

州、サンタクララのアプライド社から利用することができるCENTURA DPS (登録商標) ポリシリコン・エッチング・システムである。1998年5月19日にHanawa他に与えられた米国特許第5,753,044号は、ここに説明される発明を実施するために用いることができるRFリアクターの一般的説明を含んでいる。

[0018]

III. 基板にキャビティを形成する方法

本発明は、基板にキャビティをドライエッチングする方法を提供する。この方法は、少なくとも3・5:1と同程度大きさのアスペクト比に対して有用であるけれども、形成されたキャビティの幅が基板に形成されたキャビティの深さに等しいか、それより大きい場合、即ちアスペクト比が1より小さい場合に、特に有用である。例えば、キャビティは丸い形状を有するようにエッチングすることができる。即ち、キャビティの幅はキャビティの深さと実質的に等しい。代わりに、キャビティは、水平の楕円形を有するようにエッチングすることもできる。即ち、キャビティの幅はキャビティの深さより実質的に大きい。

[0019]

我々は、キャビティの内部表面上にエッチングの副産物が付着するのを減少するか、または避ける速度で、キャビティからエッチング副産物の除去を可能にするために、エッチングプロセスの実行中に特定の方法でプロセスチャンバの圧力を制御することが必要であることを発見した。これによって、キャビティの連続したエッチングを可能にする。一般に、本発明の方法は、最初のプロセスチャンバの圧力を含む、少なくとも2つの異なるプロセスチャンバの圧力を用いて、形成されたキャビティをエッチングするステップと、続いて少なくとも1つの減少されたプロセスチャンバの圧力を用いて、キャビティを連続してエッチングするステップを有する。この減少したプロセスチャンバの圧力は、最初のプロセスチャンバの圧力より少なくとも25%低く、幾つかの実施の形態では、最初のプロセスチャンバの圧力より約30%~50%低い。プロセスチャンバの圧力は低下され、その後続いて上昇され、かつ再び低下されてもよい。この圧力変化によって、エッチングプロセス中に形成されたエッチング副産物が連続したエッチング

中にキャビティから除去されることができる。

[0020]

本発明の方法は、埋め込まれたキャビティのエッチングに特に有用である。キ ャビティは、一般に前に形成された開口の下に形成される。本発明の好適な実施 の形態の方法において、一般に、次のステップがキャビティをエッチングする前 に行なわれる。第1に、基板が所定の深さにエッチングされて開口を形成する。 その後、コンフォーマルな保護層が形成された開口の側壁の少なくとも一部上に 形成される。この保護層は、基板材料と異なるエッチングの選択性を有する材料 を有する。必要に応じて、この保護層はその後異方性にエッチングされて、形成 された開口の底部上にある保護層の部分を除去する。一般的に、形成された開口 の底部における基板の一部が形成された開口の底部の下に横方向に生じる、続く エッチングを行なう前に露出される。しかし、開口の底部上で基板を通して横方 向にエッチングするステップは、保護層が開口の上部のみを覆っている場合に用 いられる。保護/マスク層は、形成されたキャビティの続くエッチング中に形成 された開口の保護された部分のプロフィールを保つ。保護層を形成するための1 つの方法は、共有されたPodlesnik他の1999年8月11日に出願された米国 特許出願09/372,477号に詳細に説明されており、レファレンスによってここに取 り込まれる。

[0021]

基板は、一般に、しばしばシリコンである半導体基板であるが、しかし例えばポリシリコン、二酸化シリコン、窒化シリコン、金属(例えば、アルミニウム又はアルミニウム合金)、ポリイミド、砒素化ガリウム、カドミウム・インジウム・テルル化合物、ドープされたシリコン、ドープされたポリシリコン、ドープされた二酸化シリコン、タングステン、スピン・オン・グラス(SOG)、ポリマー、金属合金(例えば、A1/Si/Cu又はA1/Ti)、他の特別な基板(エンドユースアプリケーションに依存する)が考えられる。シリコン基板はドープされた領域(例えば、埋め込まれたドーパント層)を含む。ドープされた基板は、ドーパント及びエッチャント種に依存して、ドープされない基板より多くか、或いは少なくを容易にエッチングする。もし、シリコンが基板材料として用いら

れるなら、シリコン酸化物の保護層が、従来知られた技術 (例えば、Poldesnik 他によって説明されたもの) を用いて容易に形成される。

[0022]

本発明の方法は、プロセスチャンバの圧力が徐々に低下されるか、又は上昇され、そして低下される場合、連続プロセスとして、又はマルチステッププロセスとして行なわれる。

[0023]

本発明の方法の1つの実施の形態は、マルチステップのエッチング方法を含む。キャビティの最初のエッチングステップにおいて、ガス状のエッチャント種がキャビティをエッチングするために、その基板の少なくとも一部の上に保護層を有する、形成された開口を通して導入される。この実施の形態は、キャビティのエッチングは約20mTorr~約50mTorrの範囲内の最初のプロセスチャンバの圧力を用いて行なわれる場合、CENTURS DPS(登録商標)、または同様のプロセスチャンバを参照して説明される。所望の、所定の形状のキャビティに依存して、基板バイアスが所望の形状を得るのを助長するために印加される。増加した横のエッチングが必要とされる場合、約0W~約15Wの範囲にある低いバイアス電力が一般に用いられる。増加した垂直のエッチングが必要とされる場合、バイアス電力が増加がされ、そのバイアス電力は一般に約20W~約200Wの範囲にある。

[0024]

基板が(単結晶)シリコンの場合、エッチャングは、一般に反応性フッ素種を含むプラズマを用いて行なわれる。エッチャントプラズマは、一般にプロセスガスが依存する流速で、かつ、約10:1~約2·5:1の範囲内のSF6:Arの比で与えられるSF6及びArを含むソースガスから生成される。丸い形状のキャビティが必要な場合、約4:1のSF6:Arの比が優れた結果をもたらす。SF6対する不活性キャリアとしてArが用いられ、イオン化されたArが基板バイアスと共に用いられ、形成された開口を通して、及びキャビティへ下がるSF6から生成された反応性フッ素種をドライブする。垂直のエッチングが必要とされる場合、約20W~約200Wの範囲内のバイアス電力が一般に用いられ、横

方向のエッチングが必要とされる場合、約0W~約15Wの範囲内のバイアス電力が一般に用いられる。新しく形成されたキャビティは、続くエッチンステップの間反応チャンバとして用いられる。

[0025]

キャビティの最初のエッチングステップに対する代表的なプロセス条件は以下の範囲内にある:プロセスチャンバは、約 $20\,\mathrm{mTorr}$ ~約 $50\,\mathrm{mTorr}$ の範囲にあり;バイアス電力は、多くの横方向のエッチングに対して約 $0\,\mathrm{W}$ ~約 $15\,\mathrm{W}$ の範囲にあり;基板温度は、約 $20\,\mathrm{C}$ ~約 $50\,\mathrm{C}$ の範囲にあり;そして全体のガス流は、35,000立方センチメートルのチャンバ体積に対して少なくとも $100\,\mathrm{sccm}$ である。主なエッチャントガス源が SF_6 の場合、約 $50\,\mathrm{C}$ 0 SCcm 0 範囲にある SF_6 0 流速で、約 $2\cdot5:1$ ~約10:10 範囲にある SF_6 6: A r 0 ルで、 SF_6 6 は Ar と一般に結合される。

[0026]

他の主なエッチャントガスは、例えばCF4、C12およびHBrのようなガスを含む。主なエッチャントガスのすべては、単独で、又は匹敵する他の主なエッチャントガスと組合されて使用されることができる。例えば、CF4は、SF6に置き換えて使用されるか、或いは所望の効果を得るためにSF6に加えることができる。主なエッチャントガスは、表面の仕上げやキャビティのエッチングプロフィールに良好な制御を与えるために、例えば、Ar、O2、HBr、C12又はN2のような付加ガスと組合せて用いることができる。所望された特別な効果に依存して、付加ガスは本発明の方法の全期間の間存在するか、又はある一つのステップが複数ステップ中のみに存在することができる。プラズマソースガスは、さらに例えばAr、He又はXeのような実質的に非反応性の、希ガスを含むことができる。

[0027]

シリコン基板をエッチングするのに好適であり、それに限定されないソースガスの組合せの例は、 $SF_6/A_r/O_2$; $SF_6/A_r/HB_r$; $SF_6/A_r/C_{12}$; 及び SF_6/C_{12} を含む。 CF_4 は SF_6 と置き換わることもでき、又はこれらのソースガスの組合わせのいずれかにおいて SF_6 に加えられることができる。

[0028]

基板がポリシリコンの場合、プラズマソースガスは、一般にSF $_6$ 及び/又はC $_1$ 、を含む。基板が二酸化シリコン基板の場合、プラズマソースガスは、一般に $_1$ を含む。基板が三酸化シリコン基板の場合、プラズマソースガスは、一般に $_2$ と言う。基板が窒化シリコンの場合、プラズマソースガスは、一般に $_3$ を含む。基板が金属(例えば、アルミニウム又はアルミニウム合金)の場合、プラズマソースガスは、一般に $_3$ に $_4$ と含む。基板がポリイミドの場合、プラズマソースガスは、一般に $_4$ と言う。基板がポリイミドの場合、プラズマソースガスは、一般に $_4$ と言う。

[0029]

フッ素含有エッチャントプラズマが50℃以下の温度で用いられると、保護/マスク層は、シリコン酸化物を含むのが好ましい。窒化シリコンの保護/マスク層は、プラズマソースガスがフッ素を含まない場合に用いることができる。金属又は合金の保護/マスク層は、プラズマソースガスが塩素を含まない場合に用いることができる。

[0030]

シリコン基板におけるキャビティをエッチングする最初のステップに関して、上述された実施の形態に戻って、キャビティをエッチングする最初のステップ後に、第2のエッチングステップが行われ、キャビティが特定の方向に広げられる。この第2のエッチングステップにおいて用いられるプロセスチャンバの圧力は、最初のプロセスチャンバの圧力より約25~50%低いのが好ましい。丸く形成されたキャビティが必要とされる場合、約30%だけプロセスチャンバの圧力を減少することによって良好な結果を得る。約10mTorr~約25mTorrの範囲内のプロセスチャンバの圧力が第2のエッチングステップ中に一般に用いられる。保護された開口に対して横方向(水平な方向)にキャビティを広げるために、約0W~約15Wの範囲内のバイアス電力が一般に使用される。第2のエッチングステップにおいて用いられるプラズマソースガスは、一般に第1のエッチングステップにおいて用いられるものと同じである。第2のエッチングステップに対する代表的なプロセス条件は以下のとおりである:プロセスチャンバの圧力は10mTorr~約25mTorrの範囲にあり;ソース電力は約500W~約800Wの範囲にあり;ソース電力は約500W~約800Wの範囲にあり

り;バイアス電力は約0W~約15Wの範囲にあり、基板温度は約20℃~約500℃の範囲にあり、そして全ガス流は(35,000ccのチャンバ体積に対して)少なくとも 100 sccmの全ガス流である。効率のため、エッチャントソースガスは SF_6/A r であり、ここで、 $SF_6:A$ r の比は約 $2\cdot 5:1$ ~約10:1であり、 $SF_6:0$ 流速は約50 sccm~約150 sccmの範囲にある。

[0031]

任意の第3のエッチングステップにおいて、プロセスチャンバの圧力は更に減 少される。一般に、このステップは仕上げ又は丸めのステップである。プロセス チャンバの圧力は、一般に第2のエッチングステップ中に用いられるプロセスチ ャンバの圧力より約40~50%低い。丸め形成キャビティが必要とされるとき 、第2のエッチングステップで用いられるプロセスチャンバの圧力から約50% だけプロセスチャンバの圧力を減少することによって、優れた結果をもたらす。 約5 mTorr~約12 mTorrの範囲内のプロセスチャンバの圧力が一般に用いられ、 優れた結果が約8mTorrを用いて得られた。任意の第3のエッチングステップに 用いられるプラズマソースガスは、一般に第1と第2のエッチングステップに用 いられるものと同じである。第3のステップに対する代表的なプロセス条件は、 以下のとおりである:プロセスチャンバの圧力は、約5 mTorr~約12 mTorrの範 囲である;バイアス電力は、約0W~約10Wの範囲である;基板温度は約20 ℃~約50℃の範囲にあり;SF。:A r 比が約2·5:1~約10:1の範囲に あり、SF₆の流速が約50sccm~約150sccmの範囲にあるSF₆/Arエッチ ャントガス、及び (3,500ccのチャンバ体積に対して) 少なくとも 1 0 0 sccmの 全ガス流。

[0032]

任意のエッチング仕上げ又は丸めステップにおいて、プロセスチャンバの圧力は増加され、キャビティに第2エッチングステップ及び(もし、適用できるなら)第3のエッチングステップ中のエッチングプロセスの副産物を除去した後、キャビティの表面における反応性種の増加した濃度を与える。エッチングの仕上げステップ中に用いられるプロセスチャンバの圧力は必要でないが、しかし、一般に、第1のステップに対する最初のプロセスチャンバの圧力より低い。丸め形成

キャビティが必要とされるとき、最初のプロセスチャンバの圧力の約90%へプロセスチャンバの圧力を増加することは優れた結果をもたらす。約18mTorr~約45mTorrの範囲内のプロセスチャンバの圧力が一般に任意のエッチング仕上げステップ中に用いられる。

[0033]

エッチングの仕上げステップに用いられるプラズマソースガスは、所望の表面仕上げ(丸め)又は化学組成物を与える全ての組成物でよい。表面の粗さが唯一の心配であるなら、仕上げステップのためのプラズマソースガスは、前のエッチングステップに用いられた成分と同じものを有する。しかし、プラズマソースガスの成分の相対的な量を調整することができる。例えば、エッチャント種は、前述され、アルゴンと共に用いられるフッ素含有種である。しかし、エッチング仕上げステップに用いられるプラズマソースガスにおけるフッ素種とアルゴンの比は、前のステップに用いられたものより一般に低い。エッチング仕上げステップにおいて、プラズマソースガスのSF6:Arの比は、一般に約1・5:1と約5:1の範囲内である。

[0034]

丸め形成キャビティが必要とされるとき、約2·5:1~約3:1のSF6:Arの比は優れた結果をもたらす。驚くべきことに、我々は、2·0:1のSF6:Arの比はよい結果をもたらさないことを発見した。

[0035]

エッチングステップのための代表的なプロセス条件は、以下のとおりである:プロセスチャンバの圧力は、約 $18\,\text{mTorr}$ ~約 $45\,\text{mTorr}$ の範囲である;バイアス電力は、約 $0\,\text{W}$ ~約 $15\,\text{W}$ の範囲である;基板温度は約 $20\,\text{C}$ ~約 $50\,\text{C}$ の範囲である;上述された SF。: Ar比、ここで SF。の流速が約 $50\,\text{sccm}$ ~約 $150\,\text{sccm}$ の範囲にあり、および(3,500ccのチャンバ体積に対して)少なくとも $11\,\text{C}$ 0 sccmの全ガス流である。

[0036]

本発明の方法内でのより一般的な期間において、開口は基板に形成され、その 後形成された開口のプロフィール(即ち、形状)は、形成された開口の内面の少 なくとも1部の上の保護層(一般には、コンフォーマル層)の形成によって保たれる。続いて、開口の下にキャビティがいろいろなプロセスチャンバの圧力で行なわれるマルチステップ方法を用いてエッチングされる。

[0037]

形成された開口の少なくとも1部上の保護層の形成は、一般に開口の形状を保 ち、そして形成されたキャビティのエッチング中に良好な制御を可能にする。

[0038]

図1A~図1Dは本発明の一般的な方法を示す。図1Aを参照すると、開口104が、基板の材料に依存して、従来知られたエッチング技術を用いて所定の深さAまで基板102にエッチングされる。例えば、従来の有機ホトレジスト、非有機ハードマスク、又はそれらの組合わせを用いて、開口104を形成するためにパターンエッチングされるが、これらに限定されない。

[0039]

前述のように、基板 1 0 2 は従来知られた技術を用いてエッチングされることができるあらゆる材料を含む。本発明の一般的な概念は、他の基板材料の使用に適用されるが、ここに与えられた例はシリコンを参照している。

[0040]

図1Bを参照すると、コンフォーマル保護層106が、保護層の組成物に依存して、従来知られた技術を用いて形成された開口104の少なくとも側壁に形成される。この保護層106は開口の底部110までの全ての部分に達している。しかし、ある状況、例えば非常に高いアスペクト比(≥20:1)の場合は、保護層106は、フィーチャサイズに依存して、形成された開口の底部110に堆積されないかも知れない。

[0041]

このコンフォーマル保護層は、いろいろな処理ステップ中に堆積される反応副産物の構成された層とは区別される、開口の内面上にゆっくりと形成される。副産物の層が開口の内面上に存在する場合には、副産物の層は、もし、その存在が有用な目的を果たすなら、そのまま残すことができ、或いは、それが続く処理ステップのじゃまをするならば、保護層の適用前に除くことができる。

[0042]

この保護層106は、基板と異なるエッチングの選択性を有する材料を含む。 シリコン基板の場合、代表的な保護/マスク層は、シリコン酸化物、窒化シリコン、シリコン・オキシナイトライド(silicon oxynitride)、窒化チタン、アルミニウム、ダイアモンド、およびポリイミドを有するが、これらに限定されない。 シリコン酸化物及び窒化シリコンは、シリコンに対して優れたエッチングの選択性を与える。

[0043]

シリコン酸化物基板の場合、代表的な保護/マスク層は、ポリシリコン、窒化 シリコン、窒化チタン、アルミニウム、ダイアモンド、及びポリイミドを有する が、これらに限定されない。ポリシリコン及び窒化シリコンは、シリコン酸化物 に対して優れたエッチングの選択性を与える。

[0044]

窒化シリコン基板の場合、代表的な保護/マスク層は、ポリシリコン、シリコン酸化物、窒化チタン、アルミニウム、ダイアモンド、及びポリイミドを有するが、これらに限定されない。ポリシリコン及びシリコン酸化物は、窒化シリコンに対して優れたエッチングの選択性を与える。

[0045]

アルミニウム基板の場合、代表的な保護/マスク層は、ポリイミド、窒化チタン、シリコン酸化物、及び窒化シリコンを有するが、これらに限定されない。ポリイミド、シリコン酸化物、及び窒化シリコンは、アルミニウムに対して優れたエッチングの選択性を与える。

[0046]

有機基板、例えば、ポリイミド、SILK、又はBCB基板の場合、代表的な保護/マスク層は、シリコン酸化物、窒化シリコン、アルミニウム、及び窒化チタンを有するが、これらに限定されない。シリコン酸化物、及び窒化シリコンは、ポリイミド、SILK、及びBCBに対して優れたエッチングの選択性を与える。

[0047]

開口104の内面上の保護層106の厚さは、エッチングされるべきフィーチャのサイズ、フィーチャのアスペクト比、及び保護層と基板間のエッチング速度の相違に依存する。1~2μmの与えられたフィーチャサイズに対して、一般的な保護層は、約1000Å~約2000Åの範囲にある厚さを有する。特定の応用に対して必要な保護層の厚さは、既知の技術に照らして、最小の実験で決めることができる。

[0048]

図1Cを参照すると、保護層106は異方性エッチングされ、開口104の底部108上にある保護層の部分を除去している。異方性エッチングは、従来知られた装置及び技術を用いて行なわれる。

[0049]

その後、本発明の方法にしたがって、キャビティが開口の下にある基板にエッチングされる。本発明の方法を行なっている間、保護層に対して基板を選択的にエッチングする(基板は、保護層より非常に速い速度でエッチングされる)エッチャントが選ばれる。保護層は、下にあるキャビティのエッチング中に開口のプロフィールを効果的に保護する。

[0050]

基板がシリコンの場合、本発明の好適な実施の形態の第1のステップにしたがって、下にあるキャビティをエッチングするために、ガス状のエッチント種が形成された開口を通して導入される。キャビティのエッチングは、一般に約20mT orr~約50mTorrの範囲内の比較的高いプロセスチャンバの圧力を用いて行なわれる。一般に、所望の異方性(即ち、水平に対する垂直エッチング)の程度に依存する電圧の大きさを有する基板バイアス電圧が印加される。電圧が高ければ高いほど、エッチングは垂直で大きくなる。増加された垂直エッチングが望まれるなら、約20W~約200Wの範囲の高いバイアス電力が一般に用いられる。増加された横方向のエッチングが望まれるなら、約0W~約15Wの範囲にある低いバイアス電力が一般に用いられる。

[0051]

基板がシリコンで、保護層がシリコン酸化物の場合、エッチングは、一般に反

応性フッ素種を含むプラズマを用いて行なわれる。エッチャントプラズマは、一般にプロセス装置に依存する流速で、約10:1と約2·5:1の範囲内のSF6:Arの比で、SF6とArを含むソースガスから生成される。丸く形成されるキャビティが必要とされる場合、約4:1のSF6:Arの比が優れた結果をもたらす。ArはSF6に対する化学的に不活性なキャリアとして用いられ、基板バイアスと共にイオン化されたアルゴンが用いられ、開口を通して、及びキャビティへ下がるSF6から生成される反応性フッ素種をドライブする。さらに、高いエネルギーのアルゴン種がエッチングプロセスを支援して、基板に物理的攻撃を加える。新しく形成されたキャビティは、続くエッチングステップ中に反応チャンバとして用いられる。

[0052]

プラズマソースガスは、更に、例えばキャビティの形状や表面仕上げのようなキャビティのいろいろな特性を制御するために付加ガスを含む。代表的な付加ガスは、O2、HBr、C1zおよびNzを含むが、これらに制限されない。例えば、O2のプラズマソースガスへの付加は粗い内面を有するキャビティを生じ、C1zの付加は滑らかな内面を生じる。HBrは、キャビティのエッチング中に効果的なプロフィールの制御を行なう。所望される特定の効果に依存して、付加ガスは本発明の方法の全期間中に存在するか、或いはあるステップ又は複数のステップ中のにみ存在してもよい。例えば、特定の仕上げが最終形成されるキャビティの表面上に必要である場合、一般的に、例えば、O2又はC1zのような付加ガスが以下に述べられる最終仕上げステップ中に加えられる。

[0053]

キャビティの最初のエッチングステップ後に、第2のエッチングステップが行なわれ、その間プロセスチャンバの圧力はキャビティからのエッチング副産物の除去を可能にするために、減少される。これにより、続くフレッシュなエッチャント種の導入を可能にし、形成されるキャビティの内面上にエッチング副産物が堆積するのを防止する。第2のエッチングステップに用いられるプロセスチャンバの圧力は、一般に、最初のキャビティのエッチングステップ中のプロセスチャンバの圧力より約30%低い。一般に第2のエッチン中に、約10mTorr~約2

5 mTorrの範囲内のプロセスチャンバの圧力が用いられる。例として、丸め形成キャビティが必要なら、最初のエッチングステップにおけるプロセスチャンバの圧力から約25~50%だけプロセスチャンバの圧力を減少することによって、優れた結果をもたらすが、この例に限らない。丸め形成キャビティを得るためには、約0W~約15Wの範囲内のバイアス電力が代表的である。連続したエッチング中に用いられるプラズマソースガスは異なっていてもよいが、プロセスを簡単にするために、キャビティの最初のエッチング中に用いられるものと同じであるのが好ましい。例えば、さらに、上述した付加ガスが連続したエッチング中にプラズマソースガスに含まれてもよい。

[0054]

任意の第3のエッチングステップにおいて、プロセスチャンバの圧力は、さらに減少される。この第3のエッチングステップに用いられるプロセスチャンバの圧力は、一般に第2のエッチングステップ中に用いられるプロセスチャンバの圧力より約40~50%低い。例として、丸め形成キャビティが必要なら、第2のエッチングステップに用いられるプロセスチャンバの圧力から約50%だけプロセスチャンバの圧力を減少することによって、優れた結果をもたらすが、この例に限らない。一般に、約5mTorr~約12mTorrの範囲内のプロセスチャンバの圧力が任意の第3のエッチングステップ中に用いられる。キャビティが横方向にさらに拡大される必要があるなら、一般に約0W~約10Wの範囲内のバイアス電力が用いられる。プロセスを簡単にするために、任意の第3のエッチングステップに用いられるプラズマソースガスは、一般にキャビティの最初のエッチングに用いられたものと同様である。

[0055]

任意のエッチング仕上げステップにおいて、プロセスチャンバの圧力は、増加され、第2及び任意の第3のエッチングステップ中にエッチングプロセスの副産物の除去によって、濃度の減少に続いて反応種の増加した濃度を形成されたキャビティに与える。このエッチング仕上げステップ中に用いられるプロセスチャンバの圧力は、キャビティの最初のエッチングステップ中のプロセスチャンバの圧力より低いが、必ずしも低くなくてもよい。例として、エッチング仕上げステッ

プにおいて、プロセスチャンバの圧力は、キャビティの最初のエッチングステップ中に用いられるプロセスチャンバの圧力の約80~100%まで増加されるが、この例に限らない。丸め形成キャビティが必要なら、最初のエッチングステップのプロセスチャンバの圧力の約90%までプロセスチャンバの圧力を増加することによって、優れた結果をもたらす。一般に、約18mTorr~約45mTorrの範囲内のプロセスチャンバの圧力が任意のエッチング仕上げステップ中に用いられる。このステップの重点が横方向のエッチングであるなら、一般に約0W~約15Wの範囲内のバイアス電力が用いられる。エッチング仕上げステップに用いられるプラズマソースガスは、最初及び第2のステップに用いられたものと同様である。

[0056]

一般に、エッチング仕上げステップに用いられるプラズマソースガスは、最初及び第2のエッチングステップに用いられるものと同様の成分を有する。しかし、アルゴンの流速を増加するか、エッチング仕上げステップに用いられるプラズマソースガスにおけるフッ素種とアルゴンの比を低下することは、高いキャリアの流れを与え、エッチャントがキャビティへ走行し、望むように反応することを保証する。もし、不働態種(例えば、HBr又はOz)がガス混合物に加えられないなら、又、(上述したように)アルゴン中のSF。の適当な希釈があるなら、キャビティの滑らかな内面が得られるであろう。プラズマソースガスへのOzの付加は、キャビティの内面上に幾らかの粗さを生じるであろう。一方、Clzの付加はキャビティの滑らかな表面を生じる。

[0057]

エッチングの仕上げステップにおいて、プラズマソースガスのSF6:Arの 比は、一般に約5:1と約1·5:1の範囲内にある。丸め形成キャビティが必 要なら、約3:1~約2·5:1のSF6:Arの比が良好な結果をもたらす。

[0058]

図1Dは、本発明の方法を用いる形成されるキャビティ110のエッチングごの図1Cの構造を示す。キャビティ110はエッチングされ、幅Bと深さCを有するが、ここで幅Bは深さCに等しいか、それよりも大きい。図1Dに示される

ように、キャビティ110は、開口104の直ぐ下にあり、開口104と連続的に繋がっている。保護層106は、本発明の方法を用いて下にあるキャビテイ106のエッチング中に開口104のプロフィールを効果的に保持する。図1Dに示されたキャビティは、幅Bが深さCとほぼ等しくなるようにエッチングされており、実質的に丸く形成されたキャビティの形状を生じる。

[0059]

比較のために、本発明の好適な実施の形態の方法の各ステップに対する代表的なプロセス条件が以下の表 1 に示される。

[0060]

【表 1】

表1 形成されるキャビティのエッチング中の代表的なプロセス条件

プロセス条件	ステップ1	ステップ2	ステップ3	ステップ4
全ガス流 (sccm)	≥100	≧100	≥100	≧ 1
SF ₆ の流速(sccm)	50-150	50-150	50-150	50-150
SF ₆ :Arの流速比	10:1-1.5:1	10:1-1.5:1	10:1-1.5:1	10:1-1.5:1
基板温度 (℃)	20-50	20-50	20-50	20-50
プロセスチャンバの	20-50	10-25	5-12	18-45
圧力(mTorr)				
ソース電力 (W)	600-900	500-800	350-650	500-800
バイアス電力 (W)	20-200	0-15	0-10	0-15

[0061]

プロセスチャンバの圧力のどんな数の減少、基板バイアス電圧の変化、及びプラズマソースガスの組成及び/又はプラズマソース電力の変化でも、所望のキャビティをエッチングするために用いることができる。

[0062]

図2は、曲線202によって表される従来のエッチングプロセスを用いてエッ

チングされたキャビティに対して、及び曲線 2 0 4 によって表される本発明の方法を用いてエッチングされたキャビティに対して、上にある開口の幅の関数として偏心率(即ち、キャビティの深さによって除されたその幅)のグラフ 2 0 0 を示す。図 2 に示されるように、与えられた開口の幅に対して、本発明の方法を用いてエッチングされたキャビティは、従来のエッチングプロセスを用いてエッチングされたものより大きな偏心率を有する。例えば、 2 μ m の開口幅に対して、本発明の方法を用いてエッチングされたキャビティは、約1・0 8 の偏心率を有し、これに対して、従来のエッチングプロセスを用いてエッチングされたキャビティは、約0・9 2 の偏心率を有する。これは、本発明の方法を用いてエッチングされたキャビティはその深さより広くすることができるが、従来の方法を用いてエッチングされたキャビティはその幅より深いことを示している。

[0063]

本発明の方法は、多くのいろいろな応用に有用である。本発明の方法は、開口や変化する形状を有する開口の下にキャビティを有する構造を設けることが必要であり、又は望ましい場合、及び開口の大きさについて厳密な制御を維持することが必要である場合など、あらゆるところに適用される。例えば、本発明の方法は、いろいろな化学的又は生物学的分析(例えば、ゲノムテスト)の性能に対するテストチップのマイクロ機械加工のために用いることができる。ここで、テスト試薬がチップにエッチングされた複数のキャビティに含まれる。本発明の方法は、又、インクジェットプリンターに使用するための静電的に制御されるノズルのマイクロ機械加工に用いることができる。インクはキャビティに含まれ、開口はノズルとして機能する。本発明の方法は、いろいろなデバイスの固定の、及び再生できるマイクロ機械加工のために提供し、開口(例えば、ノズルの直径)の臨界寸法についての優れた制御を可能にする。特定のアプリケーションに使用するための本発明の一般的な方法を改造することは、過度の実験を行なう必要もなく、特定のアプリケーションが属する分野の当業者の能力の範囲内であろう。

[0064]

図3Aと図3Bは、それぞれ、本発明の方法を用いて得られることができる丸い(即ち、幅=深さ)及び水平の楕円(即ち、幅>深さ)形状のキャビティプロ

フィールの例を示す。

[0065]

図3Cは、形成されたキャビティ間の基板材料を除去するための、密接するキャビティ302と304の連続した等方性エッチングによって得られる二重球形プロフィールを示す。キャビティ間の基板材料を除去することによって、シリコン "アイランド"305が開口308、310間に形成される。シリコンアイランドか、キャビティ自身のいずれかが、たとえば、光電子工学に関するデバイスの光学的相互接続用ウエーブガイドとして、または加速度計用カンチレバーとして使用することができる。

[0066]

0・8から2・0μmまでの開口の深さ、及び3・5から4・5μmまでの開口の幅で、本発明の方法を用いて、我々は、約1のキャビティの偏心率を維持しつつ上にある開口の幅より2・5から4倍大きい幅を有するキャビティを形成することができた。我々は、約3・5:1より小さい初期のアスペクト比(即ち、開口の深さ:開口の幅)を有するいろいろなフィーチャを形成するのに成功した。我々は、非常に高いアスペクト比で同様の結果を達成することができる可能性がある。

$[0\ 0\ 6\ 7]$

好ましくは、本発明を実行するために使用される装置は、コンピュータによって制御されるように適合される。図4はコンピュータ400を示す。コンピュータ400はプロセッサ402、命令406を記憶するのに適合したメモリ404、及び1つ又はそれ以上のポート408を有する。プロセッサ402はメモリ404と通信し、及び命令を実行するのに適合している。ポート408はエッチングチャンバ412と通信するのに適合している。チャンバ412はポート408を介してプロセッサ402から受信した信号にしたがって、プロセスステップを実行するように適合している。好ましくは、コンピュータ402はエッチングプロセスの供給ガスの成分及び供給速度、プロセス温度、チャンバの圧力、各プロセスステップのための時間、及び他の同様の機能を制御することができる。好ましくは、コンピュータ402はチャンバの状態、又はエッチングされている基板

の状態を記し、したがって、プロセス変数に順応する測定値を受信するのに適合している。プロセス変数のこのプログラムされた制御によって、所定の使用アプリケーションに必要な所定のデバイスのエッチングプロフィールの生産を可能にする。

[0068]

当業者は、プラズマソースガスにおける不活性ガスに対する活性エッチャントの比を変えて、及びプラズマソース電力と基板バイアス電力を変化して、高い、又は低いチャンバの圧力でエッチングステップの組合わせが、所定の形状を有するキャビティを得るために使用されることができることを認めるであろう。上述の好適な実施の形態は、本発明の範囲を限定するために意図されていない。したがって、当業者は、本発明の開示に照らして、請求項に記載された本発明の主題と一致するようにこれらの実施の形態を拡張すべきである。

【図面の簡単な説明】

【図1A】

本発明の一般的な方法を行なうための最初の構造100を示し、その構造は、 第1の所定の深さAまで基板102にエッチング形成された開口104である。

【図1B】

図1Aの構造に続いて、開口104の側壁108と底部110にコンフォーマルな保護層106の形成を示す。

【図1C】

図1Bの構造に続いて、保護層が異方性にエッチングされ、開口104の底部 108の上にある保護層の一部を除去した構造を示す。

【図1D】

図1Cの構造に続いて、開口104の下にキャビティ110を形成するために、本発明のマルチステップエッチング方法を用いて、基板102がエッチングされた構造を示す。キャビティは、幅B及び深さCを有するようにエッチングされ、幅Bは深さCに等しいか、又はそれより大きい。特に、ここでは、幅Bは深さCに等しく、キャビティ110は図示されたように丸く形成されている。

【図2】

上にある開口の幅の関数としての偏心率(即ち、キャビティの深さで除されたその幅)のフラグ200を示し、曲線202は従来のエッチングプロセスを用いてエッチングされたキャビティを示し、曲線204は本発明の方法を用いてエッチングされたキャビティを示す。

【図3A】

本発明の方法を用いて得られることができる丸いキャビティの例を示す。

【図3B】

本発明の方法を用いて得られることができる水平の楕円形キャビティの例を示す。

【図3C】

キャビティ間の基板材料を除去するために、近接するキャビティ302と304の連続した異方性エッチングによって得られた二重球形プロフィールを示す。キャビティ間の基板材料を除去することによって、シリコンの"アイランド"106が開口308と310間に形成される。このようなシリコンのアイランドは、例えば、DRAMキャパシタ、オプトエレクトロニックス集積回路における光接続、マイクロ機械加工、及びサブミクロンSOI (silicon-on-insulator:絶縁体状に形成されたシリコン構造)のアップりケーションに有用である。

【図4】

本発明の方法を行なうために用いられる装置のコンピュータ制御のための要素を含む本発明を実施する装置の概略図を示す。

【図1A】

【図1B】

【図1C】

【図1D】

FIG. 1D

【図3A】

FIG. 3A

【図3B】

FIG. 3B

[図3C]

【国際調査報告】

	INTERNATIONAL SEARCH REP	ORT			
		Interr nal Ap	pilcation No		
	SOLVED OF OUR LEAST WATER	PC 17US 0	PCT/US 01/05194		
IPC 7	FICATION OF SUBJECT MATTER H01L21/306 B81B3/00				
	International Palant Classification (IPC) or to both national classification	and IPC			
	SEARCHED cumenistics searched (classification system followed by classification sy	rmhele)			
IPC 7	HOIL				
Documenta	ion searched other than minimum documentation to the extent that such o	focuments are included in the fields s	searched		
Electronic d	ata base consulted during the international search (name of data base an	d, where practical, search terms use	d)		
EPO-In	ternal, PAJ, INSPEC				
C. DOCUM	NTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant	passages	Fictovest to claim No.		
X	EP 0 908 936 A (SIEMENS AG ;IBM (ÜS) 14 April 1999 (1999-04-14) paragraph '0024!))	1-3,10, 13-16		
x	EP 0 727 807 A (APPLIED MATERIALS IN 21 August 1996 (1996-08-21) cited in the application the whole document	25			
X	EP 0 884 401 A (APPLIED MATERIALS IN 16 December 1998 (1998-12-16) the whole document	JC)	25,26		
	-/				
X Furth	er documents are listed in the continuation of box C.	Palent family members are listed	In annex.		
Special categories of died documents: 'A' document defining the general state of the art which is not considered to be of particular relevance. 'E' earlier document but published on or after the International filing date. 'L' document which may those doubts on priority claim(s) or which is cled to establish the publication date of another distallon or other special reason (as specified). 'O' document referring to an oral disclosure, use, exhibition or other means. 'P' document published prior to the international filing date but		The later document published after the International Sing date or priority date and not in conflict with the application but clied to unduration the principle or through underlying the invention. X* document of particular relevance; the claimed Invention carnot be considered novel or cannot be considered to involve an invention step when the document is taken atone involve an invention step when the document invention cannot be considered to involve an invention of cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person striked in the art.			
later than the priority date claimed Take than the priority date claimed Date of the actual completion of the international search Date of the actual completion of the international search repo					
4 September 2001		14/09/2001			
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiasn 2 NL - 2280 HV Pilswift		athorized officer			
- DCT 4E1	Tel. (+31-70) 340-2040, Tx. 31 551 epo nt. Fax: (+31-70) 340-3018	Königstein, C			

ı

page 1 of 2

(

INTERNATIONAL SEARCH REPORT

Interr nai Application No PCT/US 01/05194 C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category * Citation of document, with indication, where appropriate, of the relevant passages PINTO R ET AL: "Reactive ion etching in SF6 gas mixtures"
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY, MANCHESTER, NEW HAMPSHIRE, US, vol. 134, no. 1, January 1987 (1987-01), pages 165-175, XP002135036
ISSN: 0013-4651
The whole document 2,10-14 A the whole document PATENT ABSTRACTS OF JAPAN vol. 018, no. 324 (E-1564), 20 June 1994 (1994-06-20) 2 JP 06 077175 A (SONY CORP), 18 March 1994 (1994-03-18) 2,18,19 abstract PATENT ABSTRACTS OF JAPAN vol. 017, no. 453 (E-1417), 19 August 1993 (1993-08-19) & JP 05 102142 A (SONY CORP), 23 April 1993 (1993-04-23) abstract 2,20,21 Α PATENT ABSTRACTS OF JAPAN vol. 015, no. 470 (E-1139), 28 November 1991 (1991-11-28) & JP 03 203326 A (SONY CORP), 5 September 1991 (1991-09-05) 1,2,5,6 Α abstract PATENT ABSTRACTS OF JAPAN vol. 007, no. 247 (E-208), 2 November 1983 (1983-11-02) & JP 58 134445 A (SUWA SEIKOSHA KK), 10 August 1983 (1983-08-10) 1,2,23, 24 Α abstract

page 2 of 2

1

Form PCT/SA/216 (continuation of ascend cheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (patent family arrows) (July 1992)

Information on patent family members

Interr nal Application No PCT/US 01/05194

Patent document cited in search repor	1	Publication date	Patent (amily member(s)	Publication date
EP 0908936	A	14-04-1999	US 5891807 A	06-04-1999
			CN 1212455 A	31-03-1999
			JP 11162949 A	18-06-1999
EP 0727807	Α	21-08-1996	US 5753044 A	19-05-1998
			AT 184729 T	15-10-1999
			DE 69604212 D	21-10-1999
			DE 69604212 T	23-03-2000
			JP 8321490 A	03-12-1996
			US 5779926 A	14-07-1998
			US 5777289 A	07-07-1998
			US 6270617 B	07-08-2001
			US 6248250 B	19-06-2001
EP 0884401	Α	16-12-1998	JP 11016845 A	22-01-1999
			US 6121161 A	19-09-2000
JP 06077175	A	18-03-1994	JP 3082329 B	28-08-2000
JP 05102142	Α	23-04-1993	NONE	
JP 03203326	A	05-09-1991	NONE	
JP 58134445	A	10-08-1983	NONE	

フロントページの続き

Fターム(参考) 4K057 DA11 DB05 DB06 DB20 DD01

DE01 DE08 DE09 DE11 DE14

DE20 DG08 DN01 DN03 DN10

5F004 AA16 CA02 CA04 DA00 DA01

DA04 DA17 DA18 DA22 DA23

DA25 DA26 DB01 DB02 DB03

DB07 DB08 DB09 DB25 EA05

EA06 EA07 EA28 EA37 EB04

EB05

(