SYSTEM MODELLING AND SIMULATION [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2017 - 2018)					
	SEMESTER -				
Subject Code	17CS834	IA Marks		40	
Number of Lecture Hours/Week	3	Exam Marks		60	
Total Number of Lecture Hours	40	Exam Hours		03	
	CREDITS -	03			
Module – 1				Teaching Hours	
Introduction: When simulation appropriate, Advantages and disady Systems and system environment continuous systems, Model of a syst Simulation Simulation examples: Principles, Simulation Software: Event-Scheduling / Time-Advance Scheduling	vantages of Simular; Components tem; Types of M Simulation of Concepts in Dis	ulation; Areas of applic of a system; Discrete odels, Discrete-Event S queuing systems. Ge screte-Event Simulation	ation, e and ystem neral . The	08 Hours	
process, Empirical distributions. Queuing Models: Characteristics of measures of performance of queuing of queuing systems cont,Steady-queues,	butions. Conti queuing system g systems,Long-	nuous distributions,Pons,Queuing notation,Londrun measures of perform	g-run nance	08 Hours	
Module – 3 Random-NumberGeneration:Prop	perties of rando	om numbers: Generatio	on of	08 Hours	
pseudo-random numbers, Techniqu Random Numbers, Random-Varia Acceptance-Rejection technique.	es for generatin	ng random numbers,Tes	ts for		
Module – 4					
Input Modeling: Data Collection Parameter estimation, Goodness of process, Selecting input models with models. Estimation of Absolute Performs output analysis ,Stochastic nature of their estimation, Contd Module – 5	f Fit Tests, Fitti hout data, Multi ance: Types of	ing a non-stationary Povariate and Time-Series simulations with response	oisson input ect to	08 Hours	
Measures of performance and thei	r estimation Out	tnut analysis for termin	nating	ОВ Нопра	
Weasures of performance and their simulations Continued,Output anal Verification, Calibration And Verification and validation, Verification in Measures of performance and their simulations. Calibration And Verification and Verification in Measures of performance and their simulations.	ysis for steady-s Validation: Operation of simula	state simulations. timization: Model bui tion models, Verificati	lding, on of	08 Hours	
Course outcomes: The students sho	ould be able to:		L		
Course outcomes. The students sin.	dia de adie to.				

activities of a static system

- Describe the behavior of a dynamic system and create an analogous model for a dynamic system;
- Illustrate the operation of a dynamic system and make improvement according to the simulation results.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5 th Edition, Pearson Education, 2010.

Reference Books:

- 1. Lawrence M. Leemis, Stephen K. Park: Discrete Event Simulation: A First Course, Pearson Education, 2006.
- 2. Averill M. Law: Simulation Modeling and Analysis, 4th Edition, Tata McGraw-Hill, 2007