UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 1

1. Sea n un entero, $n \geq 3$. Demuestre que existe un único n-ciclo, salvo isomorfismo.

Demostración: Sean G y H ciclos de orden n.

Tomamos $V_G = (v_1, \dots, v_n, v_1)$ y $V_H = (v_1, \dots, v_n, v_1)$.

Como G y H son ciclos, sabemos que son 2-regular.

Es decir, podemos suponer que un vértice v_i de G con $i \in \{1, \dots, n\}$ es adyacente a dos vértices (digamos v_{i-1} y v_{i+1}). Notemos que $v_1 = v_n$.

Análogamente para H.

Ahora, como G y H son de orden n, definimos una función $\phi: V_G \to V_H$ dada por $\phi(v_i) = u_i$ para cada $i \in \{1, \dots, n\}$.

Claramente ϕ es una biyección.

Demostraremos que ϕ es un isomorfismo:

 \Rightarrow) Si $v_i v_j \in E_G$, entonces podemos suponer, sin pérdida de generalidad, que j = i + 1 o j = i - 1.

Por definición de ϕ , tenemos que $\phi(v_i) = u_i$ y $\phi(v_j) = u_j = u_{i+1}$ (análogamente cuando j = i - 1).

Como $u_i u_j = u_i u_{i+1} \in E_H$, concluimos que $\phi(v_i)\phi(v_j) \in E_H$.

 \Leftarrow) Reciprocamente, si $v_i v_j \notin E_G$, entonces $j \neq i+1$ y $j \neq i-1$. Se sigue que $\phi(v_i)\phi(v_j) = u_i u_j \notin E_H$.

Por lo tanto, demostramos que existe un único n-ciclo (salvo isomorfismo). QED

2. De un ejemplo de tres gráficas del mismo orden, mismo tamaño y misma sucesión de grados tales que cualesquiera dos de dichas gráficas no sean isomorfas, al menos una de ellas sea conexa, y al menos una sea inconexa.

A continuación se muestran las gráficas: $G_1, G_2 y G_3$:

con sucesiones orden 9, tamaño 8 y sucesión de grados (1, 1, 1, 2, 2, 2, 2, 2, 3).

3. Sea D una digráfica. Demuestre que

$$\sum_{v \in V_D} d^+(v) = \sum_{v \in V_D} d^-(v) = |A_D|.$$

Demostración: La demostración se dividirá en dos incisos:

$$\cdot) \sum_{v \in V_D} d^+(v) = |A_D|$$

Sea M_1 una matriz de incidencia de D, tal que:

$$M_1 = M_{ij}^+ = \left\{ egin{array}{ll} 1 & si & v_i \ es \ la \ cola \ de \ e_j \ \\ 0 & si & v_i \ no \ es \ la \ cola \ de \ e_j \end{array}
ight.$$

Ahora, supongamos que $V = \{v_1, \dots, v_n\}$ donde v_i corresponde al *i-ésimo* renglón de M_1 .

Sabemos que las entradas de cada columna de M_1 son igual a 1, que son las flechas e_j con un vértice llamado cola de la flecha. Por otro lado, las entradas del *i-ésimo* renglón de M_1 suman $d^+(v_i)$, ya que las entradas corresponden a todas las flechas de las cuales v_i es cola de dicha flecha.

Entonces, tenemos que:

$$|A_D| = \sum_{j=1}^{|A|} \sum_{i=1}^{|V|} M_{ij}^+$$

$$= \sum_{i=1}^{|V|} \sum_{j=1}^{|A|} M_{ij}^+$$

$$= \sum_{i=1}^{|V|} d^+(v_i)$$

$$= \sum_{v \in V} d^+(v)$$

De forma análoga se realiza el otro inciso.

$$\cdots) \sum_{v \in V_D} d^-(v) = |A_D|$$

Sea M_2 una matriz de incidencia de D, tal que:

$$M_2 = M_{ij}^- = \left\{ egin{array}{ll} 1 & si & v_i \ es \ la \ cabeza \ de \ e_j \ \\ 0 & si & v_i \ no \ es \ la \ cabeza \ de \ e_j \end{array}
ight.$$

Ahora, supongamos que $V = \{v_1, \dots, v_n\}$ donde v_i corresponde al *i-ésimo* renglón de M_1 .

Sabemos que las entradas de cada columna de M_1 son igual a 1, que son las flechas e_j con un vértice llamado cabeza de la flecha. Por otro lado, las entradas del *i-ésimo* renglón de M_1 suman $d^-(v_i)$, ya que las entradas corresponden a todas las flechas de las cuales v_i es cabeza de dicha flecha.

Entonces, tenemos que:

$$|A_D| = \sum_{j=1}^{|A|} \sum_{i=1}^{|V|} M_{ij}^-$$

$$= \sum_{i=1}^{|V|} \sum_{j=1}^{|A|} M_{ij}^-$$

$$= \sum_{i=1}^{|V|} d^-(v_i)$$

$$= \sum_{v \in V} d^-(v)$$

Por lo tanto, queda demostrado que:

$$\sum_{v \in V_D} d^+(v) = \sum_{v \in V_D} d^-(v) = |A_D|$$

QED

- 4. Sea n un entero positivo. Definimos a la $Reticula\ Booleana,\ BL_n$, como la gráfica cuyo conjunto de vértices es el conjunto de todos los posibles subconjuntos de $\{1, \dots, n\}$, donde dos subconjuntos X y Y son adyacentes si y sólo si su diferencia simétrica tiene exactamente un elemento.
 - (a) Dibuje BL_1, BL_2, BL_3 y BL_4 . Gráfica representativa de BL_1 :

Gráfica representativa de BL_2 :

Gráfica representativa de BL_3 :

Gráfica representativa de BL_4 :

(b) Determine $|V_{BL_n}|$ y $|E_{BL_n}|$. (Justifique su respuesta).

Veamos que la cantidad de vértices es igual a la cantidad de subconjuntos que se pueden formar de la retícula BL_n , esto es el conjunto potencia de $\{1, \dots, n\}$. Por lo que:

$$|V_{BL_n}| = |P(\{1, \cdots, n\})| = 2^n$$

Mientras que es un tanto más empírica la forma en la que se obtiene la cardinalidad de E_{BL_n} , veamos la siguiente tabla con las primeras retículas:

1 7-1 1	// -1:
Valor de n	# de aristas
$n=1 \Rightarrow$	1 arista
$n=2 \Rightarrow$	4 arista
$n=3 \Rightarrow$	12 arista
$n=4 \Rightarrow$	32 arista

Nótese que:

$$1 \cdot 1 = 1 \cdot 2^{1-1} = 1$$

$$2 \cdot 2 = 2 \cdot 2^{2-1} = 4$$

$$3 \cdot 4 = 3 \cdot 2^{3-1} = 12$$

$$4 \cdot 8 = 4 \cdot 2^{4-1} = 32$$

Podemos deducir que $|E_{BL_n}| = n \cdot 2^{n-1}$.

En general, las retículas booleanas son n-regulares, pues para un $x \in V_{BL_{n-1}}$ con BL_{n-1} siendo n-regular, el BL_n tendrá a x relacionado con al menos n-1 elementos (son con los que ya se relacionaba en BL_{n-1}) y x se relacionará con el conjunto de tamaño |x|+1 (el cuál sólo es uno, pues este es $x \cup \{n\}$) y concluimos que BL_n es n-regular, pues cada x se relaciona con (n-1)+1 elemento.

Luego hay n aristas por cada vértice (los cuáles son 2^n , como ya vimos) y por el inciso (c) tenemos que BL_n es bipartita. Esto aunado al hecho de que es n-regular, nos da partes en BL_n de igual cardinalidad. De lo anterior hay una cantidad de aristas igual a n por cada una de las partes. Es decir:

$$|E_{BL_n}| = n \cdot \frac{2^n}{2}$$
$$= n \cdot 2^{n-1}$$

$$|V_{BL_n}| = 2^n \text{ y } |E_{BL_n}| = n \cdot 2^{n-1}$$

(c) Demuestre que BL_n es bipartita para cualquier $n \in \mathbb{Z}^+$.

Demostración: Sea $A = \{1, \dots, n\}$ conjunto con $n \in \mathbb{Z}^+$.

Veamos que podemos particionar nuestra BL_n en los conjuntos X y Y de tal forma que X contenga los subconjuntos de BL_n tales que su cardinalidad es 2k, donde $2k \in A$ y Y tal que contenga los subconjuntos de BL_n de cardinalidad 2k-1, donde $2k-1 \in A$.

Veamos qué pasa cuando dos subconjuntos en BL_n se relacionan, es decir, son adyacentes en BL_n .

- Su diferencia simétrica es 1.

Dados dos subconjuntos en BL_n , uno de ellos debe tener cardinalidad n+1 o n-1 y el otro de cardinalidad n tal que se cumple que uno de ellos es subconjunto del otro.

Notemos que en X están todos los subconjuntos de cardinalidad par.

Por tanto, la diferencia simétrica entre cualesquiera 2 subconjuntos distintos en X es:

- A lo menos un conjunto de cardinalidad 2.

De lo anterior, tenemos que ningún subconjunto en X cumple ser adyacente mediante la definición de BL_n .

Ahora notemos que, en Y están todos los subconjuntos de BL_n que tienen cardinalidad impar

Por lo tanto, la diferencia simétrica en cualesquiera dos subconjuntos distintos en Y es:

- Al menos un conjunto de cardinalidad 2.

Entonces tenemos que: 2k+1-(2k-1)=2 y como Y es un conjunto, no se tiene dos conjuntos iguales a los cuales relacionar.

Por lo anterior y por la definición de diferencia simétrica, no existen dos conjuntos advacentes en Y.

$$\therefore$$
 BL_n es bipartita en X y Y , i.e. $BL_n[X,Y]$ QED

- 5. Sea G[X,Y] una gráfica bipartita.
 - (a) Demuestre que $\sum_{v \in X} d(v) = \sum_{v \in Y} d(v)$.

Demostración: (Inducción sobre |Y|)

Sea G una gráfica bipartita G[X,Y] y sea r cualquier Entero tal que |X|=r.

• PASO BASE: (n = 1)

Así, tenemos $G[X, Y_1]$ donde |X| = r y |Y| = 1.

Como G es bipartita, todo vértice de X se relaciona con el único elemento de Y.

Por lo que $\sum_{v \in X} d(v) = r$ y el grado del único vértice en Y es igual a r. Por lo tanto, $\sum_{v \in X} d(v) = r = \sum_{v \in Y_1} d(v)$.

- Hipótesis de Inducción: (n = k)Supongamos que $G[X, Y_k]$ es una gráfica bipartita y $\sum_{v \in X} d(v) = \sum_{v \in Y_k} d(v)$.
- PASO INDUCTIVO: (n = k + 1)

Sea $G[X, Y_{k+1}]$ función bipartita.

Demostraremos que $\sum_{v \in X} d(v) = \sum_{v \in Y_{k+1}} d(v)$. Por hipótesis de inducción, tenemos que $\sum_{v \in X} d(v) = \sum_{v \in Y_k} d(v)$. Luego, si agregamos un vértice a Y_k , tenemos que $|Y_k| + 1 = |Y_{k+1}|$.

Por defición de gráfica bipartita, existirán vértices de X que son advacentes con el nuevo vértice en Y.

Sea q el número de nuevas relaciones entre X y el nuevo vértice en Y.

Vemos que el grado del nuevo vértice en Y es igual a q.

Entonces:

$$\sum_{v \in X} d(v) = \sum_{v \in Y_k} d(v) + q = \sum_{v \in Y_{k+1}} d(v)$$

Por lo tanto, para toda G tenemos que $\sum_{v \in X} d(v) = \sum_{v \in Y} d(v)$. QED

(b) Demuestre que si G es k-regular, con $k \ge 1$, entonces |X| = |Y|.

Demostración: Dada G una gráfica k-regular G[X,Y] bipartita. Sabemos que por ser bipartita y k-regular, se cumple que:

- Al menos $\left|V_{G}\right|=2,$ pues una gráfica tiene como mínimo un elemento. Además, por ser bipartita debe relacionarse con al menos un elemento en la partición ajena a ella misma.
- Todos los vértices tienen grado k.

En el caso mínimo $|V_G|=2$, hay una relación entre dos vértices (cada uno de ellos pertenecientes a su respectiva parte).

Entonces, al ser k-regular, tenemos que el grado de estos vértices es al menos 1.

Por lo tanto, $k \geq 1$.

Ahora usando el resultado de 5(a), sabemos que:

$$\sum_{v \in X} d(v) = \sum_{v \in Y} d(v)$$

Como cada vértice tiene grado k, podemos hacer lo siguiente:

$$|X| = \frac{\sum_{v \in X} d(v)}{k}$$
 y $|Y| = \frac{\sum_{v \in Y} d(v)}{k}$

Así, concluimos que:

$$|X| = |Y|$$

QED

Puntos Extra

- 1. Sea G = [X, Y] una gráfica bipartita con |X| = r y |Y| = s.
 - (a) Demuestre que $|E| \leq rs$.

Demostración: (Inducción sobre |Y|)

Sea r cualquier Entero tal que |X| = r.

- PASO BASE: (n = 1)Sea $G(V_1, E_1)$ tal que G[X, Y], con |Y| = 1. Se sigue por vacuidad que, MAX $\{|E_1|\} = r$ (pues todo elemento de X solo se puede relacionar al único vértice en Y).
- Hipótesis de inducción: (n = k)Supongamos que existe $G(V_k, E_k)$ tal que G[X, Y], con |X| = r y |Y| = k. Entonces: $MAX\{|E_k|\} = rk$.
- PASO INDUCTIVO: (n = k + 1)Sea $G(V_{(k+1)}, E_{(k+1)})$ tal que G[X, Y], con |X| = r y |Y| = k + 1. Entonces: MAX $\{|E_{(k+1)}|\} = r(k+1)$.

Por Hipótesis de inducción, $G(V_k, E_k)$ tal que G[X, Y], con |X| = r y |Y| = k, por lo que MAX $\{|Ek|\} = rk$. Agregando un vértice a Y, tenemos que |V(k+1)| = 1 + |Vk|. Así, se tiene que MAX $\{|E(k+1)|\} = MAX\{|Ek|\} + k$ (donde k son las nuevas relaciones entre el vértice que se agregó y todos los vértices de X).

Entonces:

$$MAX\{|Ek|\} + k = rk + r = r(k+1)$$

Por lo anterior, tenemos que MAX $\{|E(k+1)|\} = r(k+1)$.

Por lo tanto, para toda G(V, E) si G[X, Y] con |X| = r y |Y| = s, $MAX\{|E|\} = rs$. \square

(b) Deduzca que $|E| \leq \frac{|V|^2}{4}$.

Demostración: Demostraremos que $rs \leq (|V|^2)/4$.

Sabemos que para toda gráfica G[X,Y], |X|=r y |Y|=s con r,s que pertenecen a los Enteros.

Por un Teorema de Cálculo $(x^2>0),\ 0\leqslant (r-s)^2\Longrightarrow 0\leqslant r^2+s^2-2rs\Longrightarrow 2rs\leqslant r^2+s^2\Longrightarrow 4rs\leqslant r^2+s^2+2rs\Longrightarrow 4rs\leqslant (r+s)^2\Longrightarrow rs\leqslant ((r+s)^2)/4$ y r+s=|X|+|Y| por lo que por definición de particion $|X|+|Y|=|V|\Longrightarrow (|V|^2)/4$ por inciso (a) tenemos que: $|E|\leqslant rs\leqslant (|V|^2)/4$ por lo tanto $|E|\leqslant (|V|^2)/4$

(c) Describa a las gráficas bipartitas que cumplen la igualdad en el inciso anterior. Justifique su respuesta. SOLUCION

Debemos ver donde se cumple la igualdad $|E| = (|V|^2)/4$

Sea $|V|=|X|+|Y|=r+s\Longrightarrow$ por la demostración del inciso del inciso (b) y (a) tenemos que si $0\leqslant (r-s)^2\Longrightarrow |E|\leqslant rs\leqslant (|V|^2)/4\Longrightarrow$ si $0=(r-s)^2\Longrightarrow 0=r-s\Longrightarrow s=r\Longrightarrow rs=(|V|^2)/4$ y si G es una gráfica bipartita completa $\Longrightarrow |E|=rs=(|V|^2)/4$ por lo tanto, si las particiones de la gráfica tienen el mismo número de elementos y tambien la gráfica es bipartita completa se cumple la desigualdad $|E|=(|V|^2)/4$

Ejemplo: rs = 9

 G_1

$$|E| = 9$$
$$|V| = 9 \Longrightarrow |V|^2/4 = 36/4 = 9$$