

UCB008 - APPLIED CHEMISTRY

Molecular Spectroscopy Series Lecture - VI

UV-Visible Spectroscopy – λ_{max} and Conjugation

by

Prof. Ranjana Prakash

School of Chemistry and Biochemistry
Thapar Institute of Engineering and Technology
Patiala -147004, India

Ranjana Prakash

Learning Outcomes

At the end of this session participants should be able to:

• Understand the effect of conjugation on λ_{max}

How conjugation causes bathochromic shift....

- More the number of double bonds in conjugation, longer wavelength photon is required for transition.
- Thus, energy requirement for electronic transition decreases.
- Compounds having <u>></u> 8 double bonds in conjugation will appear coloured to human eye.
- Energy requirement for $\pi \rightarrow \pi^*$ transitions decreases as the conjugation increases and can reach the visible region of the spectrum which make the compounds coloured.

How conjugation causes bathochromic shift....

- An electronic transition is from bonding molecular orbital to antibonding molecular orbital.
- Energetically favored electron promotion will be from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO).
- This results in excited state.

Relative energies of orbitals - electronic spectroscopy

Kemp, W., Organic Spectroscopy, Palgrave Publ.

Ranjana Prakash

Effect of conjugation on relative energies of molecular orbitals

How conjugation causes bathochromic shift....

- When two double bonds are conjugated, the four patomic orbitals combine to generate four π -molecular orbitals (two are bonding and two are antibonding).
- When two double bonds are in conjugation the energy level of HOMO is raised and that of LUMO is lowered.
- The energetically most favorable $\pi \to \pi^*$ excitation occurs from the highest energy bonding pi-orbital (HOMO π_2) to the lowest energy antibonding pi-orbital (LUMO π_3^*).
- In a similar manner, the three double bonds of a conjugated triene create six π molecular orbitals, half bonding and half antibonding.

In the next session.....

• Development of colour in organic compounds