Формальная криптография (конец XV века - начало XX века)

Аддитивный шифр

Заменим буквы алфавита числами, соответствующими их порядковым номерам в алфавите 0, 1, ..., n-1

Α	В	С	D	E	F	G	Н	ı	J	K	L	М	N	0	P	Q	R	S	Т	U	V	W	X	Υ	Z
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

n=26

- ullet Представим символы открытого текста P_i и шифротекста C_i соответствующими числами
- ullet Выбираем в качестве ключа число k
- ullet Шифрование символа: $C_i = (P_i + k) mod n$
- ullet Расшифровка символа: $P_i = (C_i k) mod n$
- ullet Случай k=3 шифр Цезаря

Пример атаки на аддитивный шифр

- Шифр уязвим к атакам методом «грубой силы»
- Множество ключей аддитивного шифра равно числу букв алфавита
- [●] Нулевой ключ, является бесполезным (зашифрованный текст будет совпадать с исходным текстом). Требуется перебор *n-1* возможных ключей

Мультипликативный шифр

Заменим буквы алфавита числами, соответствующими их порядковым номерам в алфавите 0, 1, ..., n-1

Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	V	W	X	Υ	Z
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

n = 26

- ullet Представим символы открытого текста P_i и шифротекста C_i соответствующими числами
- Выбираем в качестве ключа число $k, 1 \le k < n$,
- $k \times k^{-1} \equiv 1 \bmod n$ (существует мультипликативная инверсия)
- ullet Шифрование символа: $C_i = (P_i \times k) mod n$
- ullet Расшифровка символа: $P_i = (C_i \times k^{-1}) mod n$

Пример атаки на мультипликативный шифр

- Шифр уязвим к атаке методом «грубой силы»
- Множество ключей мультипликативного шифра равно числу ключей аддитивного шифра, имеющих мультипликативную инверсию, например для n=26:

k =	1	3	5	7	9	11	15	17	19	21	23	25
$k^{-1} =$	1	9	21	15	3	19	7	23	11	5	17	25

■ Требуется перебор в худшем случае n-1 возможных ключей

Аффинный шифр

- Является комбинацией аддитивного и мультипликативного шифров
- ullet Ключ состоит из двух частей k_1 и k_2
- ullet Шифрование символа: $C_i = (P_i \times k_1 + k_2) mod n$
- ullet Расшифровка символа: $P_i = ((C_i k_2) \times k_1^{-1}) mod n$
- ullet При $k_1=1$ аддитивный шифр
- ullet При $k_1 = -1$ и $k_2 = 25$ шифр Атбаш
- ullet При $k_2 = 0$ мультипликативный шифр

Примеры атак на аффинный шифр

- Сложность атаки «грубой силы» $\varphi(n) \times n$, $\varphi(n)$ функция Эйлера
- Атака на основе открытого или выбранного текста:
 - ullet Предполагаем, что известны биграмма $P_i P_{i+1}$ и ее шифр $\mathsf{C_i} \mathsf{C_{i+1}}$
 - Решаем систему уравнений:

$$\begin{cases} C_i = (P_i \times k_1 + k_2) \mod n \\ C_{i+1} = (P_{i+1} \times k_1 + k_2) \mod n \end{cases}$$

Определяем
$$k_1 = \Big((C_{i+1}-C_i) \times (P_{i+1}-P_i)^{-1}\Big) mod \ n$$
 , затем k_2

 В случае нескольких решений, ориентируемся на связность расшифрованного текста

Шифр моноалфавитной подстановки (substitution)

Открытый текст:

HELLO

OAGGJ

Пример атаки

- Сложность атаки «грубой силы» при n=26 составляет 26!, (примерно 4×10^{26})
- Возможна атака методом частотного анализа:
 - № Подсчитывается частота появления каждой буквы шифротекста
 - Полученное распределение частот сравнивается, например, со справочной таблицей частот для символов языка открытого текста
 - Выдвигаются гипотезы о соответствии букв открытого текста и шифротекста
 - Сделанные гипотезы проверяются с помощью справочных таблиц распределения биграмм и триграмм

Частотные характеристики букв русского языка

Буква	Вероятность	Буква	Вероятность
a	0.079183	p	0.044470
б	0.017063	С	0.053261
В	0.043270	т	0.061753
r	0.017402	У	0.027981
д	0.030460	Φ	0.001879
е	0.084100	x	0.008934
ж	0.010468	ц	0.003616
8	0.017532	ч	0.014690
и	0.068290	ш	0.008142
й	0.011231	щ	0.003721
к	0.033586	ъ	0.000247
л	0.050010	ы	0.019640
м	0.032575	ь	0.019197
н	0.067195	9	0.003844
0	0.110789	ю	0.006050
п	0.028097	я	0.021324

Наиболее вероятные биграммы

```
"то", "ст", "но", "на", "по", "не", "ен", "ов",
"ко", "ни", "он", "ос", "ал", "ра", "от", "ли",
"ро", "ер", "го", "ка", "пр", "ол", "во", "ет",
"ес", "ре", "ло", "ан", "ор", "ом".
```

Наиболее вероятные триграммы

```
"ост", "что", "про", "его", "ени", "ого",
"ста", "ать", "ото", "при", "ест", "енн",
"это", "сто", "аза", "ств", "тор", "оро",
"ере", "оль", "как", "она", "ова", "был",
"али", "лся", "все", "вер", "тел", "льн".
```

Частотные характеристики букв английского языка

Буква	Вероятность	Буква	Вероятность
a	0.081716	n	0.068793
b	0.015979	0	0.076513
С	0.027389	p	0.018749
d	0.041704	q	0.001112
е	0.122352	r	0.060362
f	0.022916	s	0.063354
g	0.021081	t	0.089239
h	0.058286	u	0.028798
i	0.068545	v	0.010077
j	0.001982	W	0.021125
k	0.008695	х	0.001781
1	0.043247	У	0.019296
m	0.025913	Z	0.000996

Наиболее вероятные биграммы

```
"th", "he", "in", "er", "an", "re", "es", "nd",
"st", "on", "en", "ea", "at", "ed", "nt", "ha",
"to", "or", "ou", "ng", "et", "it", "ar", "te",
"is", "ti", "hi", "as", "of", "se".
```

Наиболее вероятные триграммы

```
"the", "and", "ing", "her", "tha", "ere",

"hat", "eth", "ent", "nth", "for", "his",

"thi", "ter", "int", "dth", "you", "all",

"hes", "ion", "ith", "oth", "est", "tth",

"oft", "ver", "sth", "ers", "fth", "rea".
```

Омофонический шифр (1401)

Α	В	С	D	Е	F	G	Н	ı	J	К	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
8.2	1.2	4.1	4.1	11.8	1.9	1.1	3.0	8.3	0.1	0.3	4.4	2.1	9.2	8.3	2.9	0.1	6.1	5.1	8.8	2.8	1.6	0.7	0.1	1.0	0.1
8	1	4	4	11	2	2	3	8	1	1	4	3	9	8	3	1	6	5	8	2	2	1	1	1	1
86, 3, 60, 14, 67, 42, 84, 41	36	95, 92, 38, 2	81, 48, 15, 80	98, 76, 40, 79, 75, 69, 62, 61, 82, 51, 5	68, 29	96, 21	47, 74, 99	46, 52, 19, 33, 93, 94, 89, 9	63	83	45, 57, 16, 13	0, 65, 72	24, 7, 34, 12, 26, 1, 32, 30, 73	44, 87, 77, 97, 18, 90, 10, 23	20, 22, 37	35	17, 39, 91, 11, 50, 25	64, 85, 27, 55, 58	71, 70, 28, 53, 43, 31, 66, 54	6, 49	78, 8	56	59	88	4

Алфавит открытого текста

Частота встречаемости букв

Кол-во омофонов (для 100 символов шифрующего алфавита)

Набор омофонов

Демонстрация омофонического шифра в CrypTool 1

Шифр Виженера (хи)

Открытый текст:

ПРИМЕРШИФРАВИЖЕНЕРА

> Шифротекст:

ШЪЖВПЪЦЯЭЪЮЩТСГГПЪЮ

Формальная модель шифра Виженера

Заменим буквы алфавита числами, соответствующими их порядковым номерам в алфавите 0, 1, ..., п

Α	Б	В	٢	Д	Е	Ж	3	И	К	Й	Л	М	Η	0	П	Р	С	Т	У	Ф	X	Ц	ᠴ	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

- ullet Представим символы открытого текста P_i , ключа K_i и шифротекста C_i соответствующими числами
- [●] Сформируем <u>гамму</u> повторением ключа

$$G = (K_1, ..., K_m) ... (K_1, ..., K_m)$$

- ullet Шифрование символа: $C_i = (P_i + G_i) \bmod n$
- ullet Расшифровка символа: $P_i = (C_i \text{-} G_i) \text{mod n}$

Криптоанализ шифра Виженера

- ullet Сложность атаки грубой силы $\frac{n!}{(n-m)!}$
- Шифр рассматриваться, как комбинации аддитивных шифров
- Первый этап анализа определение длины ключевого слова
- Второй этап анализа разделение шифротекста на части, зашифрованных одинаковым символом ключа и анализ полученных частей методами статистического анализа для поиска всех символов ключа

Этап 1: Автокорреляционный метод

- Метод позволяет отыскать длину ключевого слова в многоалфавитном шифре
- ullet Шифротекст, длиной L, выписывается в строку, а под ней выписываются строки, полученные сдвигом влево на t=1,2,3,... позиций. Для каждого t подсчитывается число n_t совпадений символов находящихся на одинаковых позициях в шифротексте и его версии со сдвигом t
- ullet Вычисляются автокорреляционные коэффициенты $K_t = rac{n_t}{L-t}$
- ullet Для сдвигов, кратных периоду ключа, коэффициенты K_t будут заметно больше, чем для сдвигов, не кратных периоду и иметь значение близкое к индексу совпадений используемого языка (для русского языка \sim 0.0553)
- ullet Соответствующие сдвиги t берутся в качестве оценки длины ключа

Пример использования автокорреляционного метода

У Шифротекст:

ШЪЖВПЪЦЯЭЪЮЩТСГГПЪЮ ЪЖВПЪЦЯЭЪЮЩТСГГПЪЮШ ЖВПЪЦЯЭЪЮЩТСГГПЪЮШЪ ВПЪЦЯЭЪЮЩТСГГПЪЮШЪЖ ПЪЦЯЭЪЮЩТСГГПЪЮШЪЖВ ЪЦЯЭЪЮЩТСГГПЪЮШЪЖВП ЦЯЭЪЮЩТСГГПЪЮШЪЖВПЪ ЯЭЪЮЩТСГГПЪЮШЪЖВПЪЦ ЭЪЮЩТСГГПЪЮШЪЖВПЪЦЯ

Этап 2: Статистический метод

Анализируются фрагменты шифротекста,
 зашифрованные одной и той же буквой шифра

По возможности (в случае больших текстов)
 применяются методы частотного анализа

Свойства рассмотренных шифров

- Симметричность отправитель и получатель обладают одинаковыми секретными ключами и одинаковыми алгоритмами для зашифрования и расшифрования
- Поточность каждый символ открытого текста преобразуется в символ зашифрованного текста в зависимости не только от используемого ключа, но и от расположения символа в потоке открытого текста
- Основаны преимущественно на операциях перестановки и замены (подстановки)

Шифр двойной перестановки

> Открытый текст:

ПРИМЕРМАРШРУТНЫЙШИФР

	5	4	3	1	2		1	2	3	4	5		1	2	3	4	5
2		Р	И	М	Ε	2	М	Ε	И	Р	П	1	Ф	Р	И	Ш	Й
4	Р	М	Α	Р	Е	4	Р	Ш	Α	М	Р	2	M	Е	И	Р	П
3	Р	У	Т	Н	Ы	3	Н	Ы	Т	У	Р	3	Н	Ы	Т	У	Р
1	Й	Ш	И	Ф	Р	1	Ф	Р	И	Ш	Й	4	Р	Ш	Α	М	Р

> Шифротекст:

ФРИШЙМЕИРПНЫТУРРШАМР

Пример атаки

- Для расшифровки применим частотный анализ биграмм
- Предпринимаются попытки определить размер столбца, поскольку известно, что длина шифротекста кратна этому размеру
- Отсев гипотез при перестановках основывается на обнаружении запретных биграмм
- Выбранный вариант перестановки может оказаться ложным (существуют анаграммы, например КЛОУН-КОЛУН-КУЛОН-УКЛОН)
- Желательно знание фрагментов открытого текста

Шифр Плейфера (1914)

Открытый текст:

LL	G	D	В	Α
Q	M	Н	E	C
U	R	N	I	F
X	V	S	0	K
Z	Υ	W	Т	Р

> Шифротекст:

Матрица-ключ

Пример атаки

- Сложность атаки «грубой силы» 25!
- Шифр скрывает частоту отдельных букв
- Возможна атака, основанная на анализе частоты биграмм, чтобы найти ключ
- Атака существенно упрощается, если известен фрагмент исходного текста, например, стандартная форма обращение к адресату (Dear Sirs)

Шифр Хилла: зашифрование (1929)

> Открытый текст:

HILLCIPHEREXAMPLES

Α	В	С	D	Е	F	G	Ι	1	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

7	8	11
11	2	8
15	7	4
17	4	23
0	12	15
11	4	18

6	24	1
13	16	10
20	17	15

Шифрующая матрица

366	483	252
252	432	151
261	540	145
614	863	402
456	447	345
478	634	321

2	15	18
18	16	21
1	20	15
16	5	12
14	5	7
10	10	9
10	10	9

(mod26)

Жифротекст:

CPSSQVBUPQFMOFHKKJ

Шифр Хилла: расшифрование(1929)

> Шифротекст:

CPSSQVBUPQFMOFHKKJ

Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

2	15	18
18	16	21
1	20	15
16	5	12
14	5	7
10	10	9

8	5	10
21	8	21
21	12	8

709	346	479
921	470	684
743	345	550
485	264	361
364	194	301
479	238	382

7	8	11
11	2	8
15	7	4
17	4	23
0	12	15
11	4	18

(mod26)

Открытый текст:

HILLCIPHEREXAMPLES

Шифр Хилла: свойства шифрующей матрицы

- В общем случае матрица шифрования квадратная *т х т*, где
 т − размер блока текста, подлежащего зашифрованию
- Матрица обратима в том и только в том случае, когда ее детерминант не равен нулю и не имеет общих делителей с основанием модуля
- ullet Обратная матрица M^{-1} является мультипликативной инверсией M в \mathbf{Z}_{26} (см. «Модульная арифметика»)

$$M \times M^{-1} \equiv I \mod 26$$

Пример атаки

- ullet Сложность атаки методом «грубой силы» в худшем случае $n^{m imes m}$
- Шифр не сохраняет статистику обычного текста
- № Возможна атака на ключ на основе знания исходного текста:
 - extstyle ex

 - extstyle ex
 - ho В случае неудачи выбирается другой размер блока m

Комбинированный шифр ADFGVX (1918)

∜Шаг 1: Замена

Открытый текст: CIPHEREXAMPLE

	Α	D	F	G	V	x
A 4	Ą	В	4	D	Е	F
D	G	Н		J	K	L
F	М	N	0	Р	Q	R
G	S	Т	U	٧	W	X
V	Υ	Z	0	1	2	3
X	4	5	6	7	8	9

AF DF FG DD AV FX AV GX AA FA FG DX AV

Комбинированный шифр ADFGVX (1918)

❖Шаг 2: Перестановка

Текущий текст: AF DF FG DD AV FX AV GX AA FA FG DX AV

0	U	U R K		E	Y
3	5	4	2	1	6
А	F	D	F	F	G
D	D	А	٧	F	X
А	٧	G	X	А	А
F	Α	F	G	D	X
А	V				

Е	K	0	R	٦	Υ
1	2	3	4	5	6
F	F	Α	D	F	G
F	V	D	Α	D	Х
Α	X	А	G	V	Α
D	G	F	F	А	Х
		А		V	

Шифротекст:

FFADF VXGAD AFADA GFFDV AVGXA X

Почему шифр назван ADFGVX?

Буква	Код
Α	
D	
F	
G	
V	
X	

Пример атаки

- Атаки основаны знании фрагментов открытого текста:
 - На основе анализа 2-х и более сообщений с одинаковым начальным текстом
 - На основе анализа 2-х и более сообщений с одинаковым окончанием
 - На основе сообщений одинакового размера
- Определяется перестановка, а затем частотным анализом шифрующая матрица

Шифр Вернама (1917)

Одноразовый шифровальный блокнот -one-time pad (OTP): $C=P\oplus K$; $P=C\oplus K$

Одноразовая зашифровка и расшифровка

> Открытый текст:

Ключ:

Жифротекст:

P	1	1	0	1	0	0	1	1	1	0	0
K	1	0	0	1	1	0	0	1	1	0	0
С	0	1	0	0	1	0	1	0	0	0	0

Зашифровка

Расшифровка

$$P=C\oplus K$$

х	У	х 😛 у
0	0	0
0	1	1
1	0	1
1	1	0

Требования к одноразовому блокноту

- [●] Должен состоять из действительно случайных значений
- <u>Должен</u> использоваться только один раз
- <u>Должен</u> безопасно передаваться получателю
- Должен быть надежно защищен, как на стороне отправителя, так и на стороне получателя

Атака на двухразовый блокнот

$$\bullet$$
 $C_1 = P_1 \oplus K$; $C_2 = P_2 \oplus K$

$$\bullet$$
 $C_1 \oplus P_1 = C_2 \oplus P_2$

$$P_1 = C_1 \oplus C_2 \oplus P_2$$

Шифровальная машина (1923)

- Клавиатура для ввода исходного текста или шифровки
- Коммутационная панель (штекеры)для начальной подстановки символов
- Ламповая панель для индикации результатов
- Роторы (диски) с 26 контактами и внутренней прошивкой для реализации подстановки
- Рефлектор для обеспечения единообразия процесса зашифрования и расшифрования

Модель машины «Энигма»

Ключ:

- ❖ Порядок следования роторов
- Исходные положение каждого ротора
- Настройка коммуникационной панели

Зашифровка и расшифровка

Шифротекст: D

Поворот диска 1

- Исходный текст: АА
- Шифротекст: DB
 - Поворот диска 1

Пример атаки на машину «Энигма»

- ullet Сложность атаки «грубой силы» для количества пар коммутаций $m=10\,$ составляет $pprox 2^{64}$ вариантов
- № Возможна атака с известным открытым текстом:
 - https://habrahabr.ru/post/269519/
 - В паре открытый текст-шифротекст находятся циклы

													14								22	23
w	e	t	t	е	r	v	0	r	h	е	r	s	a	9	e	b	i	S	k)	a	У	a
r	w	i	v	t	у	r	е	s	×	b	f	0	g	K	Ц	n	q	b	a	i	s	е

- При наличии циклов, задачу взлома можно разделить на простые составные части:

 - оиск соединений коммутационной панели при известных установках роторов (моноалфавитная подстановка) $\approx 2^{47}$

Принципы Керкгоффса (1883)

- система должна быть не раскрываемой, если не теоретически, то хотя бы
 практически
- система должна быть простой. Она не должна требовать ни запоминания длинного перечня правил, ни большого умственного напряжения
- компрометация системы не должна причинять неудобства ее пользователям
- 🕯 секретный ключ должен быть легко запоминаемым без каких либо записей
- криптограмма должна быть представлена в такой форме, чтобы ее можно было передать по телеграфу
- аппаратура шифрования должна быть портативной и такой, чтобы ее мог обслуживать один человек