考虑如下液位系统的模糊控制器设计。

- · 受控对象: 倒锥形容器的液位高度h
- · 检测装置: 测量容器底部压力来间接测量液位
- 执行机构:为保持液位高度h为设定值,控制进水电磁阀 V_1 的开启度,因此系统的执行机构就是电磁阀 V_1
- 模糊控制器: 从硬件角度看,是计算机 控制系统; 从软件角度看,应设计合适 的模糊控制算法。
- 为简单起见,假设电磁阀V₁的开启度与进术 量间呈线性关系。
- 注意: 受控对象是倒锥形容器, 其液位高度 h和进水量Q间的关系不是线性关系, 且有 实质性, 因此是较为复杂的控制对象。此类 控制对象采用模糊控制器是可取的方案。

?

- 1. 首先确定模糊控制器结构。为得到良好的控制性能,观测液位误差e和误差变化ec,控制量只有一个——电磁阀 V₁的开启电压u。因此,模糊控制器采用两输入单输出的二维结构。
- 2. 确定语言变量。需要确定的语言变量 有3个:误差e、误差变化ec和输出控 制电压u。
- ① 设液位给定高度h_d,实际高度h,则液位误差e=h_d-d,取其语言变量为E,论域X={-3, -2, -1, 0, +1, +2, +3}, 论域上模糊子集是A_i(i=1,2,...,7),相应语言值为{正大(PB), 正中(PM), 正小(PS), 零(Z), 负小(NS), 负中(NM), 负大(NB)}。分别表示当前水位h相对设定值h_d为:"极低"、"很低"、"偏低"、"正好"、"偏高"、"很高"、"极高"。
- ② 系统液位误差前后两次采样值变化量是ec=e₂-e₁=(h_d-h₁)-(h_d-h₂)=h₂-h₁,取其语言变量为EC,论域Y={-3, -2, -1, 0, +1, +2, +3},论域上的模糊子集是B_i(j=1,2,3,...,5),相应语言值为{正大(PB),正小(PS),零(Z),负小(NS),负大(NB)}。分别表示当前水位变化h₂-h₁为:"快速上升"、"上升"、"不变"、"下降"、"快速下降"。

- ③ <u>系统输出控制量u,取其语言变量为U</u>,论域 Z={-3, -2, -1, 0, +1, +2, +3}, 论域上 模糊子集是C_k(k=1,2,3,...,7), 相应语言值为 {正大(PB),正中(PM),正小(PS), 零(Z),负小(NS),负中(NM),负 大(NB)}。分别表示控制执行机构动作为: "发水位高限报警,并全关闭阀门V1"、 "阀门V1开度减小量大"、"阀门V1开度减小量小"、"阀门V1开度减小量大"、"阀门V1开度减 小量小"、"阀门V1开度增加量大"、 "发水位低限报警,并阀门V1开度增加量大"、 "发水位低限报警,并阀门V1开度均量大"。
- 3. 确定语言值隶属度函数。对上面各语言之给定其模糊化的隶属度函数,这里为简单起见选择三角形函数。

4. 建立模糊控制规则

- 1) If E=PB and EC=NB or NS or Z then U=NB
- 2) If E=PB and EC=PB or PS then U=NM
- 3) If E=PM and EC=NB or NS then U=NB
- 4) If E=PM and EC=PB then U=NS
- 5) If E=PM and EC=PS or Z then U=NM
- 6) If E=PS and EC=NB then U=NM
- 7) If E=PS and EC=NS or Z then U=NS
- 8) If E=PS and EC=PB or PS then U=Z
- 9) If E=Z and EC=NB or NS then U=NS
- 10) If E=Z and EC=PB or PS then U=PS
- 11) If E=Z and EC=Z then U=Z
- 12) If E=NS and EC=NB or NS then U=Z
- 13) If E=NS and EC=Z or PS then U=PS
- 14) If E=NS and EC=PB then U=PM
- 15) If E=NM and EC=NB then U=PS
- 16) If E=NM and EC=Z or NS then U=PM
- 17) If E=NB and EC=NS or NB then U=PM
- 18) If E=NM and EC=PB or PS then U=PB
- 19) If E=NB and EC=Z or PS or PB then U=PB

5. 确定模糊关系 R_L

U C _k EC B _j	A ₁ PB	A ₂ PM	A ₃ PS	A ₄ Z	A ₅ NS	A ₆ NM	A ₇ NB
B ₁ PB	NM C6	NS C ₅ R ₄	Z C ₄	PS <i>C</i> ₃	PM C ₂ R ₁₄	PB C ₁	PB
B ₂ PS	R2	NM C ₆	R ₆	R ₁₀	P5 <i>C</i> ₃	R ₁₈	<i>C</i> ₁
B ₃ Z	NB	R ₅	NS <i>C</i> ₅	Z C ₄ R ₁₁	R ₁₃	PM <i>C</i> ₂	R ₁₉
B ₄ NS	<i>C</i> ₇	NB <i>C</i> ₇	R ₇	NS <i>C</i> ₅	Z C ₄	R ₁₆	PM <i>C</i> ₂
B ₅ NB	R ₁	R ₃	NM <i>C</i> ₆ R ₆	R_9	R ₁₂	P5 C ₃ R ₁₅	R ₁₇

W

W

计算模糊关系R,为计算方便起见,先将由图给出的模糊隶属度函数以矢量形式表示,列成表。并以计算 R_1 为例。

模糊	生や	:A的	隶	属	度	遂	粉
1大191	\nearrow	[17]	1	四切	X	2	双

μ _A (x) 等级	-3	-2	-1	0	+1	+2	+3
PB A ₁	0	0	0	0	0.30	0.65	1
PM A ₂	0	0	0	0.3	0.65	1	0.6
PS A ₃	0	0	0.3	0.65	1	0.65	0.3
Z A ₄	0	0.3	0.65	1	0.65	0.3	0
NS A ₅	0.3	0.65	1	0.65	0.3	0	0
NM A ₆	0.6	1	0.65	0.3	0	0	0
NB A ₇	1	0.65	0.3	0	0	0	0

模糊集合B的隶属度函数

W

							Va
μ _B (x) 等级 EC	-3	-2	-1	0	+1	+2	+3
PB B ₁	0	0	0	0.25	0.5	0.75	1
PS B ₂	0	0	0.3	0.65	1	0.7	0.4
ZB_3	0	0.3	0.65	1	0.65	0.3	0
NS B ₄	0.4	0.7	1	0.65	0.3	0	0
NB B ₅	1	0.75	0.5	0.25	0	0	0

模糊集合C的隶属度函数

μ _C (x) 等级	-3	-2	-1	0	+1	+2	+3
PB C ₁	0	0	0	0	0.30	0.65	1
PM C ₂	0	0	0	0.35	0.65	1	0.7
PS C ₃	0	0	0.35	0.65	1	0.7	0.4
Z C ₄	0	0.3	0.65	1	0.65	0.3	0
NS C ₅	0.4	0.7	1	0.65	0.35	0	0
NM C ₆	0.7	1	0.65	0.35	0	0	0
NB C ₇	1	0.65	0.3	0	0	0	0

在求 R_{B1} 之前先求出"并集" $\bigcup_{j=3}^{5} B_{j}$

$$\bigcup_{j=3}^{5} B_j = B_3 \vee B_4 \vee B_5 = [1 , 0.75 , 1 , 1 , 0.65 , 0.3 , 0]$$

同样可求得 R_{A1} 和 R_{B1} (1=2, 3, …, 19),并按 $R_A = \bigcup_{l=1}^{19} R_{Al} \pi R_B = \bigcup_{l=1}^{19} R_{Bl}$ 求得

$$R_{A} = \begin{bmatrix} 0 & 0.3 & 0.35 & 0.6 & 0.65 & 1 & 1 \\ 0.3 & 0.3 & 0.65 & 0.65 & 1 & 1 & 1 \\ 0.4 & 0.65 & 0.65 & 1 & 1 & 1 & 0.7 \\ 0.65 & 0.7 & 1 & 1 & 1 & 0.7 & 0.65 \\ 0.7 & 1 & 1 & 1 & 0.65 & 0.65 & 0.4 \\ 1 & 1 & 1 & 0.65 & 0.65 & 0.35 & 0.3 \\ 1 & 1 & 0.65 & 0.65 & 0.35 & 0.3 & 0 \end{bmatrix}$$

$$R_{B} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 1 & 0.7 & 1 & 1 & 0.65 & 1 & 0.7 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0.7 & 1 & 0.65 & 1 & 1 & 0.7 & 1 \\ 0.7 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 \\ 0.7 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

则总的模糊关系按 R = R_A ∩ R_B 求得

R	$=R_A$	$\bigcap R_{_{\mathrm{B}}}$					
	0	0.3	0.35	0.6	0.65	1	1
	0.3	0.3	0.65	0.65	0.75	0.75	0.7
	0.4	0.65	0.65	1	0.65	1	0.7
=	0.65	0.7	1	1	1	0.7	0.65
	0.7	1	0.65	1	0.65	0.65	0.4
	0.7	0.75	0.75	0.65	0.65	0.35	0.3
	0.7	1	0.65	0.6	0.35	0.3	0

6. 模糊推理和解模糊

在求得所设计模糊控制器的模糊关系R以后, 可以由合成推理方法求解输出控制量模糊值 矢量。设系统当前偏差是e*和偏差变化是ec*, 则对于第1条规则的输出控制量为

$$U_1 = e^* \circ R_{A_1} \cap ec^* \circ R_{B_1} (1 = 1, 2, ..., 19)$$

因此控制器总的输出量是 $U = \bigcup_{i=1}^{19} U_i = \bigvee_{i=1}^{19} U_i$

也可以写成
$$U = \bigcup_{l=1}^{19} U_{l} = \bigcup_{l=1}^{19} (e^{*} \circ R_{A_{l}} \cap ec^{*} \circ R_{B_{l}})$$

$$= (e^{*} \circ \bigcup_{l=1}^{19} R_{A_{l}}) \cap (ec^{*} \circ \bigcup_{l=1}^{19} R_{B_{l}})$$

1) 当e*=NS(负小),即系统水位实际高度h 比给定值h_d略微高一点,而ec*=PS(正小), 即系统水位稍有增高趋势,则这时的控制量应 该是

对于上面得到的控制器输出模糊矢量

$$U = \frac{0.65}{-3} + \frac{0.65}{-2} + \frac{0.65}{-1} + \frac{1}{0} + \frac{1}{1} + \frac{0.7}{2} + \frac{0.7}{3}$$

由于具有两个相邻的隶属度最大值,因此采用最大隶属度法解模糊时,取它们的平均值为

$$u^* = \frac{0+1}{2} = +0.5$$
(等级)

从图c可知:此时模糊控制器的输出u*值对应于子集 C_4 或 C_3 (即Z或PS),使阀门 V_1 开度暂时不变或作少量的减小。

2)当e*=NS(负小),即系统水位实际高度h 比给定值h_d略微高一点,而ec*=PB(正大), 即系统水位仍有很快增高趋势,则这时的控制 量应该是

对于上面得到的控制器输出模糊矢量

$$U = \frac{0.65}{-3} + \frac{0.65}{-2} + \frac{0.65}{-1} + \frac{1}{0} + \frac{1}{1} + \frac{1}{2} + \frac{0.7}{3}$$

由于具有多个相邻的隶属度最大值,因此采用最大 隶属度法解模糊时,取它们的平均值为

$$u^* = \frac{0+1+2}{3} = +1(9\%)$$

从图c可知:此时模糊控制器的输出u*值对应于子集 C_3 (即PS),使阀门 V_1 开度作少量的减小。

- · 比较1)和2)两种情况,液位系统的水位误差均为e*=NS(负小),即系统水位实际高度h比给定值h_d略微高一点;同时,误差变化ec*的情况略有不同,前者是ec*=PS(正小),系统水位稍有增高趋势;而后者是ec*=PB(正大),系统水位有很快增高的动向。
- 因此模糊控制器经过模糊推理和解模糊的结果, 其输出控制策略也有不同:
- 针对情况1)是可以使阀门V₁开度暂时不变,由 于液位系统水位控制具有时滞性,因此,尽管 当前系统水位稍有增高的趋势,但即使阀门V₁ 开度暂时不变,系统水位有可能停止增高,或 作少量减少,使进水量略有减小,从而等待液 位下降;
- 针对情况2)应该使阀门V₁开度马上做少量减小, 使进水量立刻减少,从而促使液位马上下降, 否则水位还会继续增高。
- 由此可见,模糊控制器具有与专家或熟练操作人员极为相似的思维和智慧,可以选择最为合适的控制策略。

3) 又当e*=PM(正中),即系统水位实际高度h比给定值hd低得较多时,而ec*=NB(负大),即系统水位仍在很快下降,则此时的控制量应该是

$$U = e^{\circ} \circ R_{A} \cap ec^{\circ} \circ R_{B}$$

$$= (0 \ 0 \ 0 \ 0.3 \ 0.65 \ 1 \ 0.65 \ 0.65 \ 1 \ 1 \ 1 \ 0.4 \ 0.65 \ 0.65 \ 1 \ 1 \ 1 \ 1 \ 0.7 \ 0.65 \ 0.65 \ 0.4 \ 1 \ 1 \ 1 \ 0.65 \ 0.65 \ 0.35 \ 0.3 \ 0.3 \ 0.35 \ 0.65 \ 0.4 \ 1 \ 1 \ 1 \ 0.65 \ 0.65 \ 0.35 \ 0.3 \ 0$$

对于上面得到的控制器输出模糊矢量为

$$U = \frac{1}{-3} + \frac{1}{-2} + \frac{1}{-1} + \frac{0.65}{0} + \frac{0.65}{1} + \frac{0.65}{2} + \frac{0.4}{3}$$

同样,由于具有多个相邻的最大隶属度值,因此采用最大隶属度法解模糊时,取它们的平均值为:

$$u^* = \frac{-3 + (-2) + (-1)}{3} = -2(3\%)$$

由图c可知:此时输出u*值对应于子集C₆(即NM),应 该使阀门V1开度量有较大增加,使进水量加大,从而 使液位较快速升级。 根据语音变量**E**和**E**C论域的量化等级,按照上面合成推理和解模糊方法,可以得到一个容量为**7**×**7**(**49**点)的模糊控制查询表(采用最大隶属度法解模糊)。

U E	-3	-2	-1	0	+1	+2	+3
-3	+2.5	+2	+1	0	-1	-2	-2.5
-2	+2.5/+2	+2	+1	0/-0.5	-1/-0.5	-2	-2.5/-3
-1	+2	+2	?	-0.5	0/-0.5	?	-3
0	+2.5	+2	+1	0	-1	-2	-2.5
1	+3	?	+0.5	+0.5	?	-2	-2
2	+3/+2.5	+2	+0.5/+1	+0.5/0	-1	-2/-1.5	-2
3	+2.5	+2	+1	0	-1	-1.5	-2

- ① 输入EC为等级-2时,输出U的解模糊值可以取和EC为-1和-3时相同,这可以从图b知道,由于当ec为等级-2时,隶属度值最大的是取模糊子集B4或B5都可以,因此,其输出值必然和ec为-1/-3时相同。同样道理,当EC为等级+2时,输出U的解模糊值可以取和EC为+1或+3相同;
- ② 当输入E为等级-2且EC等级为+1时,输出U的解模糊值为不确定,用?表示。 因为此时推理得到的输出模糊矢量 U=[0.4, 0.65, 0.65, 0.65, 1.0, 0.7, 1.0],两个最大隶属度值1.0并不 相邻,因此,不宜采用最大隶属度法 解模糊。采用加权平均法解模糊时, 得到下页所示模糊控制查询表。

U E	-3	-2	-1	0	+1	+2	+3
-3	+0.769	+0.533	+0.212	0	-0.212	-0.533	-0.946
-2	+0.769 /0.575	+0.533 /0.347	+0.212 /0.168	0/- 0.056	-0,212/- 0,112	- 0.533/- 0.446	- 0.946/- 0.872
-1	+0.575	+0.347	+0.168	-0.056	-0.112	-0.446	- 0.872
0	+0.769	+0.533	+0.212	0	-0.212	-0.533	-0.946
1	+0.682	0.05	+0.112	+0.056	- 0.533	- 0.347	0.802
2	+0.682/ +0.769	+0.05/ 0.533	+0.112/+ 0.212	+0.05 6/0	- 0.533/ -0.212	0.347/- 0.386	0.802
3	+0.769	+0.533	+0.212	0	-0.212	- 0.386	0.802