Stabilité orbitale d'une somme de solitons et de breathers de l'équation de Korteweg-de Vries modifiée

Alexander Semenov¹

¹IRMA Université de Strasbourg

Séminaire de l'équipe Analyse 5 mai 2022

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Stabilité de quoi?

- De fonctions $u(t,\cdot) \in \mathscr{F}(\mathbb{R},\mathbb{R})$.
- Dont la loi d'évolution est donnée par l'équation de Korteweg-de Vries modifiée (mKdV) :

$$u_t + (u_{xx} + u^3)_x = 0.$$

• On *mesure* la distance entre deux fonctions $\mathbb{R} \to \mathbb{R}$ grâce à des normes de Sobolev :

$$||v||_{H^n}^2 := \int v^2 dx + \int v_x^2 dx + ... + \int (\partial_x^n v)^2 dx.$$

Stabilité de quoi?

- De fonctions $u(t,\cdot) \in \mathscr{F}(\mathbb{R},\mathbb{R})$.
- Dont la loi d'évolution est donnée par l'équation de Korteweg-de Vries modifiée (mKdV) :

$$u_t + (u_{xx} + u^3)_x = 0.$$

• On *mesure* la distance entre deux fonctions $\mathbb{R} \to \mathbb{R}$ grâce à des normes de Sobolev :

$$||v||_{H^n}^2 := \int v^2 dx + \int v_x^2 dx + ... + \int (\partial_x^n v)^2 dx.$$

Stabilité de quoi?

- De fonctions $u(t,\cdot) \in \mathscr{F}(\mathbb{R},\mathbb{R})$.
- Dont la loi d'évolution est donnée par l'équation de Korteweg-de Vries modifiée (mKdV) :

$$u_t + (u_{xx} + u^3)_x = 0.$$

• On *mesure* la distance entre deux fonctions $\mathbb{R} \to \mathbb{R}$ grâce à des normes de Sobolev :

$$||v||_{H^n}^2 := \int v^2 dx + \int v_x^2 dx + ... + \int (\partial_x^n v)^2 dx.$$

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

- Apparaît pour la première fois en 1967 dans un problème de physique, comme une généralisation de (KdV).
- Équation dispersive : pour sa partie linéaire, les fréquences différentes se propagent à des vitesses différentes vers la gauche.
- Non linéaire : le principe de superposition n'est pas vérifié.
- La nonlinéarité est à l'origine d'un phénomène de concentration (-> concurrence entre dispersion et concentration).
- Équation intégrable

- Apparaît pour la première fois en 1967 dans un problème de physique, comme une généralisation de (KdV).
- Équation dispersive : pour sa partie linéaire, les fréquences différentes se propagent à des vitesses différentes vers la gauche.
- Non linéaire : le principe de superposition n'est pas vérifié.
- La nonlinéarité est à l'origine d'un phénomène de concentration (-> concurrence entre dispersion et concentration).
- Équation intégrable

- Apparaît pour la première fois en 1967 dans un problème de physique, comme une généralisation de (KdV).
- Équation dispersive : pour sa partie linéaire, les fréquences différentes se propagent à des vitesses différentes vers la gauche.
- Non linéaire : le principe de superposition n'est pas vérifié.
- La nonlinéarité est à l'origine d'un phénomène de concentration
 (-> concurrence entre dispersion et concentration).
- Équation intégrable

- Apparaît pour la première fois en 1967 dans un problème de physique, comme une généralisation de (KdV).
- Équation dispersive : pour sa partie linéaire, les fréquences différentes se propagent à des vitesses différentes vers la gauche.
- Non linéaire : le principe de superposition n'est pas vérifié.
- La nonlinéarité est à l'origine d'un phénomène de concentration
 (-> concurrence entre dispersion et concentration).
- Equation intégrable

- Apparaît pour la première fois en 1967 dans un problème de physique, comme une généralisation de (KdV).
- Équation dispersive : pour sa partie linéaire, les fréquences différentes se propagent à des vitesses différentes vers la gauche.
- Non linéaire : le principe de superposition n'est pas vérifié.
- La nonlinéarité est à l'origine d'un phénomène de concentration
 (-> concurrence entre dispersion et concentration).
- Équation intégrable

Pour une solution u de (mKdV), les intégrales suivantes sont conservées au cours du temps :

La masse

$$M[u] := \frac{1}{2} \int u^2 dx,$$

L'énergie

$$E[u] := \frac{1}{2} \int u_x^2 dx - \frac{1}{4} \int u^4 dx,$$

$$F[u] := \frac{1}{2} \int u_{xx}^2 dx - \frac{5}{2} \int u^2 u_x^2 dx + \frac{1}{4} \int u^6 dx.$$

Pour une solution u de (mKdV), les intégrales suivantes sont conservées au cours du temps :

La masse

$$M[u] := \frac{1}{2} \int u^2 dx,$$

L'énergie

$$E[u] := \frac{1}{2} \int u_x^2 dx - \frac{1}{4} \int u^4 dx,$$

$$F[u] := \frac{1}{2} \int u_{xx}^2 dx - \frac{5}{2} \int u^2 u_x^2 dx + \frac{1}{4} \int u^6 dx.$$

Pour une solution u de (mKdV), les intégrales suivantes sont conservées au cours du temps :

La masse

$$M[u] := \frac{1}{2} \int u^2 dx,$$

L'énergie

$$E[u] := \frac{1}{2} \int u_x^2 dx - \frac{1}{4} \int u^4 dx,$$

$$F[u] := \frac{1}{2} \int u_{xx}^2 dx - \frac{5}{2} \int u^2 u_x^2 dx + \frac{1}{4} \int u^6 dx.$$

Pour une solution u de (mKdV), les intégrales suivantes sont conservées au cours du temps :

La masse

$$M[u] := \frac{1}{2} \int u^2 dx,$$

L'énergie

$$E[u] := \frac{1}{2} \int u_x^2 dx - \frac{1}{4} \int u^4 dx,$$

$$F[u] := \frac{1}{2} \int u_{xx}^2 dx - \frac{5}{2} \int u^2 u_x^2 dx + \frac{1}{4} \int u^6 dx.$$

Pour une solution u(t,x) de (mKdV),

- Translation en temps et en espace : pour $(t_0, x_0) \in \mathbb{R}^2$, $u(t + t_0, x + x_0)$ est aussi solution.
- Symétrie centrale : u(-t, -x) est aussi solution.
- Réflexion par rapport à l'axe des abscisses : -u(t,x) est aussi solution.
- Changement d'échelle : pour $\lambda > 0$, $\frac{1}{\lambda}u\left(\frac{t}{\lambda^3},\frac{x}{\lambda}\right)$ est aussi solution.

Pour une solution u(t,x) de (mKdV),

- Translation en temps et en espace : pour $(t_0, x_0) \in \mathbb{R}^2$, $u(t + t_0, x + x_0)$ est aussi solution.
- Symétrie centrale : u(-t, -x) est aussi solution.
- Réflexion par rapport à l'axe des abscisses : -u(t,x) est aussi solution.
- Changement d'échelle : pour $\lambda > 0$, $\frac{1}{\lambda}u\left(\frac{t}{\lambda^3},\frac{x}{\lambda}\right)$ est aussi solution.

Pour une solution u(t,x) de (mKdV),

- Translation en temps et en espace : pour $(t_0, x_0) \in \mathbb{R}^2$, $u(t+t_0, x+x_0)$ est aussi solution.
- Symétrie centrale : u(-t, -x) est aussi solution.
- Réflexion par rapport à l'axe des abscisses : -u(t,x) est aussi solution.
- Changement d'échelle : pour $\lambda > 0$, $\frac{1}{\lambda}u\left(\frac{t}{\lambda^3},\frac{x}{\lambda}\right)$ est aussi solution.

Pour une solution u(t,x) de (mKdV),

- Translation en temps et en espace : pour $(t_0, x_0) \in \mathbb{R}^2$, $u(t + t_0, x + x_0)$ est aussi solution.
- Symétrie centrale : u(-t, -x) est aussi solution.
- Réflexion par rapport à l'axe des abscisses : -u(t,x) est aussi solution.
- Changement d'échelle : pour $\lambda > 0$, $\frac{1}{\lambda}u\left(\frac{t}{\lambda^3},\frac{x}{\lambda}\right)$ est aussi solution.

Pour une solution u(t,x) de (mKdV),

- Translation en temps et en espace : pour $(t_0, x_0) \in \mathbb{R}^2$, $u(t + t_0, x + x_0)$ est aussi solution.
- Symétrie centrale : u(-t, -x) est aussi solution.
- Réflexion par rapport à l'axe des abscisses : -u(t,x) est aussi solution.
- Changement d'échelle : pour $\lambda > 0$, $\frac{1}{\lambda}u\left(\frac{t}{\lambda^3},\frac{x}{\lambda}\right)$ est aussi solution.

Pour une solution u(t,x) de (mKdV),

- Translation en temps et en espace : pour $(t_0, x_0) \in \mathbb{R}^2$, $u(t + t_0, x + x_0)$ est aussi solution.
- Symétrie centrale : u(-t, -x) est aussi solution.
- Réflexion par rapport à l'axe des abscisses : -u(t,x) est aussi solution.
- Changement d'échelle : pour $\lambda > 0$, $\frac{1}{\lambda}u\left(\frac{t}{\lambda^3},\frac{x}{\lambda}\right)$ est aussi solution.

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Solitons

• C'est une solution de (mKdV) qui est une bosse qui se propage à une vitesse constante c sans déformation, qui a un signe $\kappa \in \{-1,1\}$ et étant positionnée à x_0 en t=0:

$$R_{c,\kappa}(t,x;x_0) := \kappa Q_c(x-ct-x_0).$$

• Q_c doit être solution de l'équation elliptique :

$$Q_c'' - cQ_c + Q_c^3 = 0.$$

• Si c > 0, elle a une solution unique dans H^1 , aux translations et changements de signe près. On prend celle qui est positive et paire :

$$Q_c(x) := \frac{\sqrt{2c}}{\cosh(\sqrt{c}x)}$$

Solitons

• C'est une solution de (mKdV) qui est une bosse qui se propage à une vitesse constante c sans déformation, qui a un signe $\kappa \in \{-1,1\}$ et étant positionnée à x_0 en t=0:

$$R_{c,\kappa}(t,x;x_0) := \kappa Q_c(x-ct-x_0).$$

Q_c doit être solution de l'équation elliptique :

$$Q_c'' - cQ_c + Q_c^3 = 0.$$

• Si c > 0, elle a une solution unique dans H^1 , aux translations et changements de signe près. On prend celle qui est positive et paire :

$$Q_c(x) := \frac{\sqrt{2c}}{\cosh(\sqrt{c}x)}$$

Solitons

• C'est une solution de (mKdV) qui est une bosse qui se propage à une vitesse constante c sans déformation, qui a un signe $\kappa \in \{-1,1\}$ et étant positionnée à x_0 en t=0:

$$R_{c,\kappa}(t,x;x_0) := \kappa Q_c(x-ct-x_0).$$

• Q_c doit être solution de l'équation elliptique :

$$Q_c'' - cQ_c + Q_c^3 = 0.$$

• Si c > 0, elle a une solution unique dans H^1 , aux translations et changements de signe près. On prend celle qui est positive et paire :

$$Q_c(x) := \frac{\sqrt{2c}}{\cosh(\sqrt{c}x)}.$$

$$B_{\alpha,\beta}(t,x;x_1,x_2) := 2\sqrt{2}\partial_x \left[\arctan\left(\frac{\beta}{\alpha}\frac{\sin(\alpha y_1)}{\cosh(\beta y_2)}\right)\right],$$

- où $y_1 := x + \delta t + x_1$ (la phase), $y_2 := x + \gamma t + x_2$ (la position), $\delta := \alpha^2 3\beta^2$ (l'opposé de la pulsation) et $\gamma := 3\alpha^2 \beta^2$ (l'opposé de la vitesse).
- Un breather peut être borné par une enveloppe exponentielle.
- Contrairement aux solitons, un breather peut aller à gauche : c'est une des raisons pour lesquels il sera plus compliqué à traiter qu'un soliton.

$$B_{\alpha,\beta}(t,x;x_1,x_2) := 2\sqrt{2}\partial_x \left[\arctan\left(\frac{\beta}{\alpha}\frac{\sin(\alpha y_1)}{\cosh(\beta y_2)}\right)\right],$$

- où $y_1 := x + \delta t + x_1$ (la phase), $y_2 := x + \gamma t + x_2$ (la position), $\delta := \alpha^2 3\beta^2$ (l'opposé de la pulsation) et $\gamma := 3\alpha^2 \beta^2$ (l'opposé de la vitesse).
- Un breather peut être borné par une enveloppe exponentielle.
- Contrairement aux solitons, un breather peut aller à gauche : c'est une des raisons pour lesquels il sera plus compliqué à traiter qu'un soliton.

$$B_{\alpha,\beta}(t,x;x_1,x_2) := 2\sqrt{2}\partial_x \left[\arctan\left(\frac{\beta}{\alpha}\frac{\sin(\alpha y_1)}{\cosh(\beta y_2)}\right)\right],$$

- où $y_1 := x + \delta t + x_1$ (la phase), $y_2 := x + \gamma t + x_2$ (la position), $\delta := \alpha^2 3\beta^2$ (l'opposé de la pulsation) et $\gamma := 3\alpha^2 \beta^2$ (l'opposé de la vitesse).
- Un breather peut être borné par une enveloppe exponentielle.
- Contrairement aux solitons, un breather peut aller à gauche : c'est une des raisons pour lesquels il sera plus compliqué à traiter qu'un soliton.

$$B_{\alpha,\beta}(t,x;x_1,x_2) := 2\sqrt{2}\partial_x \left[\arctan\left(\frac{\beta}{\alpha}\frac{\sin(\alpha y_1)}{\cosh(\beta y_2)}\right)\right],$$

- où $y_1 := x + \delta t + x_1$ (la phase), $y_2 := x + \gamma t + x_2$ (la position), $\delta := \alpha^2 3\beta^2$ (l'opposé de la pulsation) et $\gamma := 3\alpha^2 \beta^2$ (l'opposé de la vitesse).
- Un breather peut être borné par une enveloppe exponentielle.
- Contrairement aux solitons, un breather peut aller à gauche : c'est une des raisons pour lesquels il sera plus compliqué à traiter qu'un soliton.

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Stabilité orbitale

- Une fonctionnelle de Lyapunov est une fonctionnelle \mathscr{F} définie sur l'ensemble des états d'un système à valeurs dans \mathbb{R} .
- On demande que \mathscr{F} soit constante ou décroissante pendant une évolution du système, i.e. $t \mapsto \mathscr{F}(X(t))$ est décroissante
- Quand on veut montrer la stabilité d'une certaine orbite \mathcal{O} , il convient de montrer que \mathscr{F} admet un minimum local sur \mathcal{O} , et en choissant une sous-variété V_{X_0} transverse à l'orbite en tout point X_0 de \mathcal{O} , de montrer que sa hessienne en X_0 restreinte à V_{X_0} est coercive.
- Ainsi, pour toute évolution X(t) qui se trouve dans un voisinnage de l'orbite, on choisit $X_0(X(t)) \in \mathcal{O}$ tel que $X(t) X_0(X(t)) \in V_{X_0}$ et on a alors :

$$||X(t) - X_0(X(t))||^2 \le C \mathscr{F}_{X_0(X(t))}''(X(t) - X_0(X(t)))$$

$$\simeq C \left(\mathscr{F}(X(t)) - \mathscr{F}(X_0(X(t)))\right).$$

- Une fonctionnelle de Lyapunov est une fonctionnelle \mathscr{F} définie sur l'ensemble des états d'un système à valeurs dans \mathbb{R} .
- On demande que \mathscr{F} soit constante ou décroissante pendant une évolution du système, i.e. $t \mapsto \mathscr{F}(X(t))$ est décroissante.
- Quand on veut montrer la stabilité d'une certaine orbite \mathcal{O} , il convient de montrer que \mathscr{F} admet un minimum local sur \mathcal{O} , et en choissant une sous-variété V_{X_0} transverse à l'orbite en tout point X_0 de \mathcal{O} , de montrer que sa hessienne en X_0 restreinte à V_{X_0} est coercive.
- Ainsi, pour toute évolution X(t) qui se trouve dans un voisinnage de l'orbite, on choisit $X_0(X(t)) \in \mathcal{O}$ tel que $X(t) X_0(X(t)) \in V_{X_0}$ et on a alors :

$$||X(t) - X_0(X(t))||^2 \le C \mathscr{F}''_{X_0(X(t))}(X(t) - X_0(X(t)))$$

$$\simeq C (\mathscr{F}(X(t)) - \mathscr{F}(X_0(X(t)))).$$

- Une fonctionnelle de Lyapunov est une fonctionnelle \mathscr{F} définie sur l'ensemble des états d'un système à valeurs dans \mathbb{R} .
- On demande que \mathscr{F} soit constante ou décroissante pendant une évolution du système, i.e. $t \mapsto \mathscr{F}(X(t))$ est décroissante.
- Quand on veut montrer la stabilité d'une certaine orbite \mathcal{O} , il convient de montrer que \mathscr{F} admet un minimum local sur \mathcal{O} , et en choissant une sous-variété V_{X_0} transverse à l'orbite en tout point X_0 de \mathcal{O} , de montrer que sa hessienne en X_0 restreinte à V_{X_0} est coercive.
- Ainsi, pour toute évolution X(t) qui se trouve dans un voisinnage de l'orbite, on choisit $X_0(X(t)) \in \mathcal{O}$ tel que $X(t) X_0(X(t)) \in V_{X_0}$ et on a alors :

$$||X(t) - X_0(X(t))||^2 \le C \mathscr{F}''_{X_0(X(t))}(X(t) - X_0(X(t)))$$

$$\simeq C \left(\mathscr{F}(X(t)) - \mathscr{F}(X_0(X(t))) \right).$$

- Une fonctionnelle de Lyapunov est une fonctionnelle $\mathscr F$ définie sur l'ensemble des états d'un système à valeurs dans $\mathbb R$.
- On demande que \mathscr{F} soit constante ou décroissante pendant une évolution du système, i.e. $t \mapsto \mathscr{F}(X(t))$ est décroissante.
- Quand on veut montrer la stabilité d'une certaine orbite \mathcal{O} , il convient de montrer que \mathscr{F} admet un minimum local sur \mathcal{O} , et en choissant une sous-variété V_{X_0} transverse à l'orbite en tout point X_0 de \mathcal{O} , de montrer que sa hessienne en X_0 restreinte à V_{X_0} est coercive.
- Ainsi, pour toute évolution X(t) qui se trouve dans un voisinnage de l'orbite, on choisit $X_0(X(t)) \in \mathscr{O}$ tel que $X(t) X_0(X(t)) \in V_{X_0}$ et on a alors :

$$||X(t)-X_0(X(t))||^2 \leq C\mathscr{F}_{X_0(X(t))}''(X(t)-X_0(X(t)))$$

$$\simeq C(\mathscr{F}(X(t))-\mathscr{F}(X_0(X(t)))).$$

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Stabilité orbitale

Théorème (Weinstein, Bona, Souganidis, Strauss)

Soit une solution u de (mKdV) dans $C(\mathbb{R}, H^1(\mathbb{R}))$. Soit $R_{c,\kappa}(t,x;x_0)$ un soliton. Il existe K>0 et $\varepsilon_0>0$ (indépendants de u) tels que pour tout $\varepsilon_0>\varepsilon>0$, si

$$||u(0) - R_{c,\kappa}(0,\cdot;x_0)||_{H^1} < \varepsilon,$$

alors il existe $t \longmapsto x_0(t)$ (une translation pour tout temps) telle que

$$\forall t \in \mathbb{R}, \qquad \|u(t) - R_{c,\kappa}(t,\cdot;x_0(t))\|_{H^1} < \kappa \varepsilon.$$

De plus,

$$\forall t \in \mathbb{R}, \quad |x_0'(t)| < K\varepsilon.$$

Stabilité orbitale

Théorème (Alejo, Muñoz)

Soit u une solution de (mKdV) dans $C(\mathbb{R}, H^2(\mathbb{R}))$. Soit $B_{\alpha,\beta}(t,x;x_1,x_2)$ un breather. Il existe K>0 et $\varepsilon_0>0$ (indépendants de u) tel que pour tout $\varepsilon_0>\varepsilon>0$, si

$$||u(0) - B_{\alpha,\beta}(0,\cdot;x_1,x_2)||_{H^2} < \varepsilon,$$

alors il existe $t \mapsto x_1(t)$ et $t \mapsto x_2(t)$ tels que

$$\forall t \in \mathbb{R}, \qquad \|u(t) - B_{\alpha,\beta}(t,\cdot;x_1(t),x_2(t))\|_{H^2} < K\varepsilon.$$

De plus,

$$\forall t \in \mathbb{R}, \qquad |x_1'(t)| + |x_2'(t)| < K\varepsilon.$$

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

- Orbite dont on veut montrer la stabilité : $\{R_{c,\kappa}(\cdot,x_0),x_0\in\mathbb{R}\}.$
- Fonctionnelle de Lyapunov :

$$\mathcal{H}[u] := E[u] + cM[u].$$

- Nous allons montrer que \mathcal{H} admet un minimum local en $R_{c,\kappa}$ et que la hessienne de \mathcal{H} en $R_{c,\kappa}$ restreinte au sous-espace orthogonal à l'orbite est coercive.
- Le sous-espace orthogonal à l'orbite en $R_{c,\kappa}$ est le sous-espace orthogonal à $R'_{c,\kappa}$.

- Orbite dont on veut montrer la stabilité : $\{R_{c,\kappa}(\cdot,x_0),x_0\in\mathbb{R}\}.$
- Fonctionnelle de Lyapunov :

$$\mathscr{H}[u] := E[u] + cM[u].$$

- Nous allons montrer que \mathscr{H} admet un minimum local en $R_{c,\kappa}$ et que la hessienne de \mathscr{H} en $R_{c,\kappa}$ restreinte au sous-espace orthogonal à l'orbite est coercive.
- Le sous-espace orthogonal à l'orbite en $R_{c,\kappa}$ est le sous-espace orthogonal à $R'_{c,\kappa}$.

- Orbite dont on veut montrer la stabilité : $\{R_{c,\kappa}(\cdot,x_0),x_0\in\mathbb{R}\}.$
- Fonctionnelle de Lyapunov :

$$\mathscr{H}[u] := E[u] + cM[u].$$

- Nous allons montrer que \mathscr{H} admet un minimum local en $R_{c,\kappa}$ et que la hessienne de \mathscr{H} en $R_{c,\kappa}$ restreinte au sous-espace orthogonal à l'orbite est coercive.
- Le sous-espace orthogonal à l'orbite en $R_{c,\kappa}$ est le sous-espace orthogonal à $R'_{c,\kappa}$.

- Orbite dont on veut montrer la stabilité : $\{R_{c,\kappa}(\cdot,x_0),x_0\in\mathbb{R}\}.$
- Fonctionnelle de Lyapunov :

$$\mathscr{H}[u] := E[u] + cM[u].$$

- Nous allons montrer que \mathscr{H} admet un minimum local en $R_{c,\kappa}$ et que la hessienne de \mathscr{H} en $R_{c,\kappa}$ restreinte au sous-espace orthogonal à l'orbite est coercive.
- Le sous-espace orthogonal à l'orbite en $R_{c,\kappa}$ est le sous-espace orthogonal à $R'_{c,\kappa}$.

• Pour $w \in H^1$ petit, calculons

$$\mathscr{H}[R_{c,\kappa}+w]=E[R_{c,\kappa}+w]+cM[R_{c,\kappa}+w].$$

Ainsi,

$$\mathcal{H}[R_{c,\kappa} + w] = \mathcal{H}[R_{c,\kappa}] + O(\|w\|_{H^{1}}^{3})$$

$$+ \int (-R_{c,\kappa}'' - R_{c,\kappa}^{3} + cR_{c,\kappa}) w$$

$$+ \frac{1}{2} \int w_{x}^{2} - \frac{3}{2} \int R_{c,\kappa}^{2} w^{2} + \frac{c}{2} \int w^{2}.$$

• $R_{c,\kappa}$ est un point critique, d'après l'équation elliptique. Il reste à faire l'étude spectrale de la hessienne :

$$\mathscr{Q}[w] := \frac{1}{2} \int w_{\mathsf{x}}^2 - \frac{3}{2} \int R_{c,\kappa}^2 w^2 + \frac{c}{2} \int w^2 = \int w \mathscr{L}[w].$$

• Pour $w \in H^1$ petit, calculons

$$\mathscr{H}[R_{c,\kappa}+w]=E[R_{c,\kappa}+w]+cM[R_{c,\kappa}+w].$$

Ainsi,

$$\mathcal{H}[R_{c,\kappa} + w] = \mathcal{H}[R_{c,\kappa}] + O(\|w\|_{H^{1}}^{3})$$

$$+ \int (-R_{c,\kappa}'' - R_{c,\kappa}^{3} + cR_{c,\kappa}) w$$

$$+ \frac{1}{2} \int w_{x}^{2} - \frac{3}{2} \int R_{c,\kappa}^{2} w^{2} + \frac{c}{2} \int w^{2}.$$

• $R_{c,\kappa}$ est un point critique, d'après l'équation elliptique. Il reste à faire l'étude spectrale de la hessienne :

$$\mathscr{Q}[w] := \frac{1}{2} \int w_{x}^{2} - \frac{3}{2} \int R_{c,\kappa}^{2} w^{2} + \frac{c}{2} \int w^{2} = \int w \mathscr{L}[w].$$

• Pour $w \in H^1$ petit, calculons

$$\mathscr{H}[R_{c,\kappa}+w]=E[R_{c,\kappa}+w]+cM[R_{c,\kappa}+w].$$

Ainsi,

$$\mathcal{H}[R_{c,\kappa} + w] = \mathcal{H}[R_{c,\kappa}] + O(\|w\|_{H^{1}}^{3})$$

$$+ \int \left(-R_{c,\kappa}'' - R_{c,\kappa}^{3} + cR_{c,\kappa}\right) w$$

$$+ \frac{1}{2} \int w_{x}^{2} - \frac{3}{2} \int R_{c,\kappa}^{2} w^{2} + \frac{c}{2} \int w^{2}.$$

• $R_{c,\kappa}$ est un point critique, d'après l'équation elliptique. Il reste à faire l'étude spectrale de la hessienne :

$$\mathscr{Q}[w] := \frac{1}{2} \int w_x^2 - \frac{3}{2} \int R_{c,\kappa}^2 w^2 + \frac{c}{2} \int w^2 = \int w \mathscr{L}[w].$$

ullet L'opérateur auto-adjoint $\mathscr L$ s'écrit comme

$$\mathscr{L}[w] := -\frac{1}{2}w_{\mathsf{x}\mathsf{x}} - \frac{3}{2}R_{c,\kappa}^2w + \frac{c}{2}w.$$

Il s'agit d'une perturbation compacte de

$$\mathcal{L}_0[w] := -\frac{1}{2}w_{xx} + \frac{c}{2}w.$$

- En Fourier, cet opérateur correspond à la multiplication par $\frac{1}{2}\xi^2 + \frac{c}{2}$. On voit que son spectre essentiel correspond à $[\frac{c}{2}, +\infty[$. Il s'agit donc aussi du spectre essentiel de \mathscr{L} .
- En dérivant l'équation elliptique, on voit que

$$\mathscr{L}[R'_{c,\kappa}]=0.$$

ullet L'opérateur auto-adjoint $\mathscr L$ s'écrit comme

$$\mathscr{L}[w] := -\frac{1}{2}w_{xx} - \frac{3}{2}R_{c,\kappa}^2w + \frac{c}{2}w.$$

• Il s'agit d'une perturbation compacte de

$$\mathscr{L}_0[w] := -\frac{1}{2}w_{xx} + \frac{c}{2}w.$$

- En Fourier, cet opérateur correspond à la multiplication par $\frac{1}{2}\xi^2 + \frac{c}{2}$. On voit que son spectre essentiel correspond à $[\frac{c}{2}, +\infty[$. Il s'agit donc aussi du spectre essentiel de \mathscr{L} .
- En dérivant l'équation elliptique, on voit que

$$\mathscr{L}[R'_{c,\kappa}]=0.$$

ullet L'opérateur auto-adjoint $\mathscr L$ s'écrit comme

$$\mathscr{L}[w] := -\frac{1}{2}w_{\mathsf{x}\mathsf{x}} - \frac{3}{2}R_{c,\kappa}^2w + \frac{c}{2}w.$$

Il s'agit d'une perturbation compacte de

$$\mathscr{L}_0[w] := -\frac{1}{2}w_{xx} + \frac{c}{2}w.$$

- En Fourier, cet opérateur correspond à la multiplication par $\frac{1}{2}\xi^2 + \frac{c}{2}$. On voit que son spectre essentiel correspond à $\left[\frac{c}{2}, +\infty\right[$. Il s'agit donc aussi du spectre essentiel de \mathscr{L} .
- En dérivant l'équation elliptique, on voit que

ullet L'opérateur auto-adjoint $\mathscr L$ s'écrit comme

$$\mathscr{L}[w] := -\frac{1}{2}w_{xx} - \frac{3}{2}R_{c,\kappa}^2w + \frac{c}{2}w.$$

Il s'agit d'une perturbation compacte de

$$\mathscr{L}_0[w] := -\frac{1}{2}w_{xx} + \frac{c}{2}w.$$

- En Fourier, cet opérateur correspond à la multiplication par $\frac{1}{2}\xi^2 + \frac{c}{2}$. On voit que son spectre essentiel correspond à $\left[\frac{c}{2}, +\infty\right[$. Il s'agit donc aussi du spectre essentiel de \mathscr{L} .
- En dérivant l'équation elliptique, on voit que

$$\mathscr{L}[R'_{c,\kappa}]=0.$$

- On montre que le noyau de \mathscr{L} est $Vect(R'_{c,\kappa})$ et que \mathscr{L} a une valeur propre négative.
- \mathscr{L} est coercive sur le sous-espace orthogonal à $R_{c,\kappa}$ et $R'_{c,\kappa}$.
- Ainsi, si $\int wR'_{c,\kappa} = 0$ et $\int wR_{c,\kappa} = 0$, alors on a :

$$||w||_{H^1}^2 \le C\mathcal{Q}[w].$$

- Il faut écrire la norme H^1 pour pouvoir licitement approximer la fonctionnelle de Lyapunov par \mathcal{Q} .
- Les arguments statiques ne suffisent donc pas pour finir la preuve (il y a une direction négative de trop!). Il nous faut un argument dynamique.

- On montre que le noyau de \mathscr{L} est $Vect(R'_{c,\kappa})$ et que \mathscr{L} a une valeur propre négative.
- $\mathscr L$ est coercive sur le sous-espace orthogonal à $R_{c,\kappa}$ et $R'_{c,\kappa}$.
- Ainsi, si $\int wR'_{c,\kappa} = 0$ et $\int wR_{c,\kappa} = 0$, alors on a :

$$||w||_{H^1}^2 \le C\mathscr{Q}[w].$$

- Il faut écrire la norme H^1 pour pouvoir licitement approximer la fonctionnelle de Lyapunov par \mathcal{Q} .
- Les arguments statiques ne suffisent donc pas pour finir la preuve (il y a une direction négative de trop!). Il nous faut un argument dynamique.

- On montre que le noyau de \mathscr{L} est $Vect(R'_{c,\kappa})$ et que \mathscr{L} a une valeur propre négative.
- ullet est coercive sur le sous-espace orthogonal à $R_{c,\kappa}$ et $R'_{c,\kappa}$.
- Ainsi, si $\int wR'_{c,\kappa} = 0$ et $\int wR_{c,\kappa} = 0$, alors on a :

$$||w||_{H^1}^2 \le C \mathscr{Q}[w].$$

- Il faut écrire la norme H^1 pour pouvoir licitement approximer la fonctionnelle de Lyapunov par \mathcal{Q} .
- Les arguments statiques ne suffisent donc pas pour finir la preuve (il y a une direction négative de trop!). Il nous faut un argument dynamique.

- On montre que le noyau de \mathscr{L} est $Vect(R'_{c,\kappa})$ et que \mathscr{L} a une valeur propre négative.
- \mathscr{L} est coercive sur le sous-espace orthogonal à $R_{c,\kappa}$ et $R'_{c,\kappa}$.
- Ainsi, si $\int wR'_{c,\kappa} = 0$ et $\int wR_{c,\kappa} = 0$, alors on a :

$$||w||_{H^1}^2 \leq C\mathscr{Q}[w].$$

- Il faut écrire la norme H^1 pour pouvoir licitement approximer la fonctionnelle de Lyapunov par \mathcal{Q} .
- Les arguments statiques ne suffisent donc pas pour finir la preuve (il y a une direction négative de trop!). Il nous faut un argument dynamique.

- On montre que le noyau de \mathscr{L} est $Vect(R'_{c,\kappa})$ et que \mathscr{L} a une valeur propre négative.
- \mathscr{L} est coercive sur le sous-espace orthogonal à $R_{c,\kappa}$ et $R'_{c,\kappa}$.
- Ainsi, si $\int w R'_{c,\kappa} = 0$ et $\int w R_{c,\kappa} = 0$, alors on a :

$$||w||_{H^1}^2 \leq C\mathscr{Q}[w].$$

- Il faut écrire la norme H^1 pour pouvoir licitement approximer la fonctionnelle de Lyapunov par \mathcal{Q} .
- Les arguments statiques ne suffisent donc pas pour finir la preuve (il y a une direction négative de trop!). Il nous faut un argument dynamique.

- Pour tout temps t>0, on associe une translation $\widetilde{R_{c,\kappa}}=R_{c,\kappa}(t,\cdot;x_0(t))$ de $R_{c,\kappa}$ telle que $w(t):=u(t)-\widetilde{R_{c,\kappa}}$ est orthogonale à $\widetilde{R_{c,\kappa}}$.
- Comme cela, on se place dans l'hyperplan orthogonal à l'orbite.
- L'idéal pour avoir la stabilité est qu'on ait $\int w(t)R_{c,\kappa} = 0$.
- Mais si

$$I(t) := \frac{\left| \int w(t) \widetilde{R_{c,\kappa}} dx \right|}{\|w(t)\|_{H^1}}$$

- Pour tout temps t > 0, on associe une translation $\widetilde{R_{c,\kappa}} = R_{c,\kappa}(t,\cdot;x_0(t))$ de $R_{c,\kappa}$ telle que $w(t) := u(t) \widetilde{R_{c,\kappa}}$ est orthogonale à $\widetilde{R_{c,\kappa}}'$.
- Comme cela, on se place dans l'hyperplan orthogonal à l'orbite.
- L'idéal pour avoir la stabilité est qu'on ait $\int w(t)R_{c,\kappa} = 0$.
- Mais si

$$I(t) := \frac{\left| \int w(t) \widetilde{R_{c,\kappa}} dx \right|}{\|w(t)\|_{H^1}}$$

- Pour tout temps t > 0, on associe une translation $\widetilde{R_{c,\kappa}} = R_{c,\kappa}(t,\cdot;x_0(t))$ de $R_{c,\kappa}$ telle que $w(t) := u(t) \widetilde{R_{c,\kappa}}$ est orthogonale à $\widetilde{R_{c,\kappa}}$.
- Comme cela, on se place dans l'hyperplan orthogonal à l'orbite.
- L'idéal pour avoir la stabilité est qu'on ait $\int w(t) R_{c,\kappa} = 0$.
- Mais si

$$I(t) := \frac{\left| \int w(t) \widetilde{R_{c,\kappa}} dx \right|}{\|w(t)\|_{H^1}}$$

- Pour tout temps t > 0, on associe une translation $\widetilde{R_{c,\kappa}} = R_{c,\kappa}(t,\cdot;x_0(t))$ de $R_{c,\kappa}$ telle que $w(t) := u(t) \widetilde{R_{c,\kappa}}$ est orthogonale à $\widetilde{R_{c,\kappa}}$.
- Comme cela, on se place dans l'hyperplan orthogonal à l'orbite.
- L'idéal pour avoir la stabilité est qu'on ait $\int w(t) R_{c,\kappa} = 0$.
- Mais si

$$I(t) := \frac{\left| \int w(t) \widetilde{R_{c,\kappa}} dx \right|}{\|w(t)\|_{H^1}}$$

- Pour tout temps t > 0, on associe une translation $\widetilde{R_{c,\kappa}} = R_{c,\kappa}(t,\cdot;x_0(t))$ de $R_{c,\kappa}$ telle que $w(t) := u(t) \widetilde{R_{c,\kappa}}$ est orthogonale à $\widetilde{R_{c,\kappa}}$.
- Comme cela, on se place dans l'hyperplan orthogonal à l'orbite.
- L'idéal pour avoir la stabilité est qu'on ait $\int w(t) R_{c,\kappa} = 0$.
- Mais si

$$I(t) := \frac{\left| \int w(t) \widetilde{R_{c,\kappa}} dx \right|}{\|w(t)\|_{H^1}}$$

- Stratégie : Montrer que soit $||w(t)||_{H^1}$ reste suffisamment bornée, soit I(t) est suffisamment petite.
- *Idée* : Observer M[u(t)] :

$$\frac{1}{2} \int u^2 = \frac{1}{2} \int \widetilde{R_{c,\kappa}}^2 + \int w(t) \widetilde{R_{c,\kappa}} + \frac{1}{2} \int w(t)^2$$

Donc,

$$\frac{d}{dt} \int w(t) \widetilde{R_{c,\kappa}} = -\frac{1}{2} \frac{d}{dt} \int w(t)^2$$

$$\left| \int w(t) \widetilde{R_{c,\kappa}} \right| \le C \left(\left| \int w(0) \widetilde{R_{c,\kappa}} \right| + \|w(0)\|_{H^1}^2 + \|w(t)\|_{H^1}^2 \right)$$

$$\le C \left(\|w(0)\|_{H^1} + \|w(t)\|_{H^1}^2 \right).$$

- Stratégie : Montrer que soit $||w(t)||_{H^1}$ reste suffisamment bornée, soit I(t) est suffisamment petite.
- *Idée* : Observer M[u(t)] :

$$\frac{1}{2}\int u^2 = \frac{1}{2}\int \widetilde{R_{c,\kappa}}^2 + \int w(t)\widetilde{R_{c,\kappa}} + \frac{1}{2}\int w(t)^2.$$

Donc,

$$\frac{d}{dt}\int w(t)\widetilde{R_{c,\kappa}} = -\frac{1}{2}\frac{d}{dt}\int w(t)^{2}.$$

$$\left| \int w(t) \widetilde{R_{c,\kappa}} \right| \le C \left(\left| \int w(0) \widetilde{R_{c,\kappa}} \right| + \|w(0)\|_{H^1}^2 + \|w(t)\|_{H^1}^2 \right)$$

$$\le C \left(\|w(0)\|_{H^1} + \|w(t)\|_{H^1}^2 \right).$$

- Stratégie : Montrer que soit $||w(t)||_{H^1}$ reste suffisamment bornée, soit I(t) est suffisamment petite.
- *Idée* : Observer M[u(t)] :

$$\frac{1}{2}\int u^2 = \frac{1}{2}\int \widetilde{R_{c,\kappa}}^2 + \int w(t)\widetilde{R_{c,\kappa}} + \frac{1}{2}\int w(t)^2.$$

Donc,

$$\frac{d}{dt}\int w(t)\widetilde{R_{c,\kappa}} = -\frac{1}{2}\frac{d}{dt}\int w(t)^2.$$

$$\left| \int w(t) \widetilde{R_{c,\kappa}} \right| \le C \left(\left| \int w(0) \widetilde{R_{c,\kappa}} \right| + \|w(0)\|_{H^1}^2 + \|w(t)\|_{H^1}^2 \right)$$

$$\le C \left(\|w(0)\|_{H^1} + \|w(t)\|_{H^1}^2 \right).$$

- Stratégie : Montrer que soit $||w(t)||_{H^1}$ reste suffisamment bornée, soit I(t) est suffisamment petite.
- *Idée* : Observer M[u(t)] :

$$\frac{1}{2}\int u^2 = \frac{1}{2}\int \widetilde{R_{c,\kappa}}^2 + \int w(t)\widetilde{R_{c,\kappa}} + \frac{1}{2}\int w(t)^2.$$

Donc,

$$\frac{d}{dt}\int w(t)\widetilde{R_{c,\kappa}}=-\frac{1}{2}\frac{d}{dt}\int w(t)^2.$$

$$\left| \int w(t) \widetilde{R_{c,\kappa}} \right| \leq C \left(\left| \int w(0) \widetilde{R_{c,\kappa}} \right| + \|w(0)\|_{H^1}^2 + \|w(t)\|_{H^1}^2 \right) \\ \leq C \left(\|w(0)\|_{H^1} + \|w(t)\|_{H^1}^2 \right).$$

Ainsi,

$$I(t) \leq C \left(\frac{\|w(0)\|_{H^1}}{\|w(t)\|_{H^1}} + \|w(t)\|_{H^1} \right).$$

- Deux comportements possibles : 1er cas : $\|w(t)\|_{H^1} \le K\varepsilon$ pour tout temps.
- 2e cas : à partir d'un certain temps, $\|w(t)\|_{H^1}$ dépasse $K\varepsilon$. Alors,

$$I(t) \leq C\left(\frac{1}{K} + K\varepsilon\right).$$

Ainsi,

$$I(t) \leq C \left(\frac{\|w(0)\|_{H^1}}{\|w(t)\|_{H^1}} + \|w(t)\|_{H^1} \right).$$

- Deux comportements possibles : 1er cas : $\|w(t)\|_{H^1} \le K\varepsilon$ pour tout temps.
- 2e cas : à partir d'un certain temps, $\|w(t)\|_{H^1}$ dépasse $K\varepsilon$. Alors,

$$I(t) \leq C\left(\frac{1}{K} + K\varepsilon\right).$$

Ainsi,

$$I(t) \leq C \left(\frac{\|w(0)\|_{H^1}}{\|w(t)\|_{H^1}} + \|w(t)\|_{H^1} \right).$$

- Deux comportements possibles : 1er cas : $\|w(t)\|_{H^1} \le K\varepsilon$ pour tout temps.
- 2e cas : à partir d'un certain temps, $\|w(t)\|_{H^1}$ dépasse $K\varepsilon$. Alors,

$$I(t) \leq C\left(\frac{1}{K} + K\varepsilon\right).$$

Ainsi,

$$I(t) \leq C \left(\frac{\|w(0)\|_{H^1}}{\|w(t)\|_{H^1}} + \|w(t)\|_{H^1} \right).$$

- Deux comportements possibles : 1er cas : $\|w(t)\|_{H^1} \le K\varepsilon$ pour tout temps.
- 2e cas : à partir d'un certain temps, $\|w(t)\|_{H^1}$ dépasse $K\varepsilon$. Alors,

$$I(t) \leq C\left(\frac{1}{K} + K\varepsilon\right).$$

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- 2 Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Dans le cas des breathers

• Alejo et Muñoz ont trouvé une équation elliptique vérifiée par un breather $B:=B_{\alpha,\beta}$:

$$B_{xxxx} + 5BB_x^2 + 5B^2B_{xx} + \frac{3}{2}B^5$$
$$-2(\beta^2 - \alpha^2)(B_{xx} + B^3) + (\alpha^2 + \beta^2)^2B = 0.$$

Fonctionnelle de Lyapunov :

$$\mathcal{H}[u] := F[u] + 2(\beta^2 - \alpha^2)E[u] + (\alpha^2 + \beta^2)^2M[u].$$

- L'orbite est $\{B_{\alpha,\beta}(\cdot;x_1,x_2),(x_1,x_2)\in\mathbb{R}^2\}.$
- On veut donc montrer que la hessienne de \mathscr{H} en B est coercive lorsqu'elle est restreinte à au sous-espace orthogonal a l'orbite, i.e. à $\partial_{x_1}B$ et à $\partial_{x_2}B$.

• Alejo et Muñoz ont trouvé une équation elliptique vérifiée par un breather $B:=B_{\alpha,\beta}$:

$$B_{xxxx} + 5BB_x^2 + 5B^2B_{xx} + \frac{3}{2}B^5$$
$$-2(\beta^2 - \alpha^2)(B_{xx} + B^3) + (\alpha^2 + \beta^2)^2B = 0.$$

Fonctionnelle de Lyapunov :

$$\mathscr{H}[u] := F[u] + 2(\beta^2 - \alpha^2)E[u] + (\alpha^2 + \beta^2)^2M[u].$$

- L'orbite est $\{B_{\alpha,\beta}(\cdot;x_1,x_2),(x_1,x_2)\in\mathbb{R}^2\}.$
- On veut donc montrer que la hessienne de \mathscr{H} en B est coercive lorsqu'elle est restreinte à au sous-espace orthogonal a l'orbite, i.e. à $\partial_{x_1}B$ et à $\partial_{x_2}B$.

• Alejo et Muñoz ont trouvé une équation elliptique vérifiée par un breather $B:=B_{\alpha,\beta}$:

$$B_{xxxx} + 5BB_x^2 + 5B^2B_{xx} + \frac{3}{2}B^5$$
$$-2(\beta^2 - \alpha^2)(B_{xx} + B^3) + (\alpha^2 + \beta^2)^2B = 0.$$

Fonctionnelle de Lyapunov :

$$\mathscr{H}[u] := F[u] + 2(\beta^2 - \alpha^2)E[u] + (\alpha^2 + \beta^2)^2M[u].$$

- L'orbite est $\{B_{\alpha,\beta}(\cdot;x_1,x_2),(x_1,x_2)\in\mathbb{R}^2\}.$
- On veut donc montrer que la hessienne de \mathcal{H} en B est coercive lorsqu'elle est restreinte à au sous-espace orthogonal l'orbite, i.e. à $\partial_{x_1}B$ et à $\partial_{x_2}B$.

• Alejo et Muñoz ont trouvé une équation elliptique vérifiée par un breather $B:=B_{\alpha,\beta}$:

$$B_{xxxx} + 5BB_x^2 + 5B^2B_{xx} + \frac{3}{2}B^5$$
$$-2(\beta^2 - \alpha^2)(B_{xx} + B^3) + (\alpha^2 + \beta^2)^2B = 0.$$

Fonctionnelle de Lyapunov :

$$\mathscr{H}[u] := F[u] + 2(\beta^2 - \alpha^2)E[u] + (\alpha^2 + \beta^2)^2M[u].$$

- L'orbite est $\{B_{\alpha,\beta}(\cdot;x_1,x_2),(x_1,x_2)\in\mathbb{R}^2\}.$
- On veut donc montrer que la hessienne de \mathscr{H} en B est coercive lorsqu'elle est restreinte à au sous-espace orthogonal à l'orbite, i.e. à $\partial_{x_1}B$ et à $\partial_{x_2}B$.

- Comme avant, B est un point critique de \mathscr{H} grâce à l'équation elliptique.
- On se ramène à l'étude spectrale de la hessienne :

$$\mathcal{Q}[w] := \frac{1}{2} \int w_{xx}^2 - \frac{5}{2} \int B^2 w_x^2 + \frac{5}{2} \int B_x^2 w^2 + 5 \int B B_{xx} w^2 + \frac{15}{4} \int B^4 w^2 + (\beta^2 - \alpha^2) \left(\int w_x^2 - 3 \int B^2 w^2 \right) + (\alpha^2 + \beta^2)^2 \frac{1}{2} \int w^2 = \int w \mathcal{L}[w].$$

- On trouve que \mathscr{Q} est coercive lorsqu'elle est restreinte au sous-espace orthogonal à $\partial_{x_1}B$, $\partial_{x_2}B$ et B.
- Là aussi, il nous faut un argument dynamique pour avoir un contrôle sur ∫ wB(t). En fait, c'est exactement le même que dans le cas du soliton.

- Comme avant, B est un point critique de \mathscr{H} grâce à l'équation elliptique.
- On se ramène à l'étude spectrale de la hessienne :

$$\mathscr{Q}[w] := \frac{1}{2} \int w_{xx}^2 - \frac{5}{2} \int B^2 w_x^2 + \frac{5}{2} \int B_x^2 w^2 + 5 \int B B_{xx} w^2 + \frac{15}{4} \int B^4 w^2 + (\beta^2 - \alpha^2) \left(\int w_x^2 - 3 \int B^2 w^2 \right) + (\alpha^2 + \beta^2)^2 \frac{1}{2} \int w^2 = \int w \mathscr{L}[w].$$

- On trouve que \mathscr{Q} est coercive lorsqu'elle est restreinte au sous-espace orthogonal à $\partial_{x_1}B$, $\partial_{x_2}B$ et B.
- Là aussi, il nous faut un argument dynamique pour avoir un contrôle sur ∫ wB(t). En fait, c'est exactement le même que dans le cas du soliton.

- Comme avant, B est un point critique de \mathscr{H} grâce à l'équation elliptique.
- On se ramène à l'étude spectrale de la hessienne :

$$\mathscr{Q}[w] := \frac{1}{2} \int w_{xx}^2 - \frac{5}{2} \int B^2 w_x^2 + \frac{5}{2} \int B_x^2 w^2 + 5 \int B B_{xx} w^2 + \frac{15}{4} \int B^4 w^2 + (\beta^2 - \alpha^2) \left(\int w_x^2 - 3 \int B^2 w^2 \right) + (\alpha^2 + \beta^2)^2 \frac{1}{2} \int w^2 = \int w \mathscr{L}[w].$$

- On trouve que \mathscr{Q} est coercive lorsqu'elle est restreinte au sous-espace orthogonal à $\partial_{x_1}B$, $\partial_{x_2}B$ et B.
- Là aussi, il nous faut un argument dynamique pour avoir un contrôle sur ∫ wB(t). En fait, c'est exactement le même que dans le cas du soliton.

- Comme avant, B est un point critique de \mathscr{H} grâce à l'équation elliptique.
- On se ramène à l'étude spectrale de la hessienne :

$$\mathscr{Q}[w] := \frac{1}{2} \int w_{xx}^2 - \frac{5}{2} \int B^2 w_x^2 + \frac{5}{2} \int B_x^2 w^2 + 5 \int B B_{xx} w^2 + \frac{15}{4} \int B^4 w^2 + (\beta^2 - \alpha^2) \left(\int w_x^2 - 3 \int B^2 w^2 \right) + (\alpha^2 + \beta^2)^2 \frac{1}{2} \int w^2 = \int w \mathscr{L}[w].$$

- On trouve que \mathscr{Q} est coercive lorsqu'elle est restreinte au sous-espace orthogonal à $\partial_{x_1} B$, $\partial_{x_2} B$ et B.
- Là aussi, il nous faut un argument dynamique pour avoir un contrôle sur $\int wB(t)$. En fait, c'est exactement le même que dans le cas du soliton.

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Eléments de preuve
 - Corollaires du théorème

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Eléments de preuve
 - Corollaires du théorème

La somme

• On se donne K breathers (notés $B_1,...,B_K$ de paramètres α_k,β_k) et L solitons (notés $R_1,...,R_L$ de paramètres c_l et signes κ_l) de (mKdV). On les suppose de vitesses deux à deux distinctes. Ceci nous autorise à les ranger par ordre croissant de vitesses : $P_1,...,P_J$ (avec J=K+L). On note v_j la vitesse de $P_j, \ x_j(t)$ la position de P_j et

$$P = \sum_{j=1}^{J} P_j.$$

• Ici, l'orbite de P est

$$\{\sum_{k=1}^{K} B_{\alpha_{k},\beta_{k}}(\cdot;x_{1,k},x_{2,k}) + \sum_{l=1}^{L} R_{c_{l},\kappa_{l}}(\cdot;x_{0,l}), (x_{1,k},x_{2,k},x_{0,l}) \in \mathbb{R}^{2K+L}\}$$

est paramétrée par 2K + L paramètres.

La somme

• On se donne K breathers (notés $B_1,...,B_K$ de paramètres α_k,β_k) et L solitons (notés $R_1,...,R_L$ de paramètres c_l et signes κ_l) de (mKdV). On les suppose de vitesses deux à deux distinctes. Ceci nous autorise à les ranger par ordre croissant de vitesses : $P_1,...,P_J$ (avec J=K+L). On note v_j la vitesse de $P_j, \kappa_j(t)$ la position de P_j et

$$P = \sum_{j=1}^{J} P_j.$$

• Ici, l'orbite de P est

$$\{\sum_{k=1}^K B_{\alpha_k,\beta_k}(\cdot;x_{1,k},x_{2,k}) + \sum_{l=1}^L R_{c_l,\kappa_l}(\cdot;x_{0,l}), (x_{1,k},x_{2,k},x_{0,l}) \in \mathbb{R}^{2K+L}\}$$

est paramétrée par 2K + L paramètres.

Stabilité orbitale

Théorème (S.)

Si $v_2 > 0$, il existe $A_0, \theta_0, D_0, a_0 > 0$ tels qu'on a ce qui suit. Soit u une solution H^2 de (mKdV), $D \ge D_0$ et $a \in [0, a_0]$ tels que

$$||u(0) - P(0)||_{H^2} \le a$$
, et $\forall j = 1, ..., J$, $x_j(0) > x_{j-1}(0) + D$.

Alors.

$$\forall t \geq 0, \quad \|u(t) - \widetilde{P}(t)\|_{H^2} \leq A_0(a + e^{-\theta_0 D}),$$

où P correspond à P modifié avec des paramètres de translation $x_{0,l}(t), x_{1,k}(t), x_{2,k}(t)$ définis pour tout $t \ge 0$. De plus,

$$\forall t \geq 0, \quad \sum_{l=1}^{L} |x_{0,l}'(t)| + \sum_{k=1}^{K} \left(|x_{1,k}'(t)| + |x_{2,k}'(t)| \right) \leq C A_0 \left(a + e^{-\theta_0 D} \right).$$

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Considérer un soliton au niveau H^2

- Pour $R_{c,\kappa}$, on peut prendre la fonctionnelle de Lyapunov correspondant à un breather (dégénéré) de paramètres $\alpha=0$ et $\beta=\sqrt{c}$.
- La hessienne \mathcal{Q} a alors un noyau de dimension 2 engendré par $R'_{c,\kappa}$ et $\partial_c R_{c,\kappa}$. Elle n'a pas de valeurs propres négatives.
- On peut affirmer que si $\int wR_{c,\kappa} = \int wR'_{c,\kappa} = 0$, alors

$$||w||_{H^2}^2 \le C\mathcal{Q}[w].$$

Considérer un soliton au niveau H^2

- Pour $R_{c,\kappa}$, on peut prendre la fonctionnelle de Lyapunov correspondant à un breather (dégénéré) de paramètres $\alpha=0$ et $\beta=\sqrt{c}$.
- La hessienne \mathscr{Q} a alors un noyau de dimension 2 engendré par $R'_{c,\kappa}$ et $\partial_c R_{c,\kappa}$. Elle n'a pas de valeurs propres négatives.
- On peut affirmer que si $\int wR_{c,\kappa} = \int wR'_{c,\kappa} = 0$, alors

$$||w||_{H^2}^2 \le C\mathcal{Q}[w].$$

Considérer un soliton au niveau H²

- Pour $R_{c,\kappa}$, on peut prendre la fonctionnelle de Lyapunov correspondant à un breather (dégénéré) de paramètres $\alpha=0$ et $\beta=\sqrt{c}$.
- La hessienne \mathscr{Q} a alors un noyau de dimension 2 engendré par $R'_{c,\kappa}$ et $\partial_c R_{c,\kappa}$. Elle n'a pas de valeurs propres négatives.
- On peut affirmer que si $\int wR_{c,\kappa} = \int wR'_{c,\kappa} = 0$, alors

$$||w||_{H^2}^2 \leq C\mathscr{Q}[w].$$

Considérer un soliton au niveau H^2

- Pour $R_{c,\kappa}$, on peut prendre la fonctionnelle de Lyapunov correspondant à un breather (dégénéré) de paramètres $\alpha=0$ et $\beta=\sqrt{c}$.
- La hessienne \mathcal{Q} a alors un noyau de dimension 2 engendré par $R'_{c,\kappa}$ et $\partial_c R_{c,\kappa}$. Elle n'a pas de valeurs propres négatives.
- On peut affirmer que si $\int wR_{c,\kappa} = \int wR'_{c,\kappa} = 0$, alors

$$||w||_{H^2}^2 \le C\mathscr{Q}[w].$$

• On choisit les translations $x_{0,l}(t), x_{1,k}(t), x_{2,k}(t)$ de sorte à ce que $w(t) = u(t) - \widetilde{P}(t)$ soit orthogonal à l'orbite. Autrement dit,

$$\int w(t)\partial_x \widetilde{R_k} = \int w(t)\partial_{x_1} \widetilde{B_k} = \int w(t)\partial_{x_2} \widetilde{B_k} = 0.$$

Profil de filtration :

$$\Psi(x) := \frac{2}{\pi} \arctan\left(\exp\left(\sqrt{\sigma}x/2\right)\right),$$

où $\sigma > 0$ est à choisir judicieusement.

ullet Pour $j\geq 2$, on pose $m_j(t):=rac{\widetilde{x_{j-1}}(t)+\widetilde{x_j}(t)}{2}$, et

$$\Phi_j(t,x) = \Psi(x - m_j(t)), \quad \Phi_1 = 1.$$

• On choisit les translations $x_{0,l}(t), x_{1,k}(t), x_{2,k}(t)$ de sorte à ce que $w(t) = u(t) - \widetilde{P}(t)$ soit orthogonal à l'orbite. Autrement dit,

$$\int w(t)\partial_x \widetilde{R_k} = \int w(t)\partial_{x_1} \widetilde{B_k} = \int w(t)\partial_{x_2} \widetilde{B_k} = 0.$$

Profil de filtration :

$$\Psi(x) := \frac{2}{\pi} \arctan\left(\exp\left(\sqrt{\sigma}x/2\right)\right),$$

où $\sigma > 0$ est à choisir judicieusement.

• Pour $j \geq 2$, on pose $m_j(t) := \frac{\widetilde{x_{j-1}}(t) + \widetilde{x_j}(t)}{2}$, et

$$\Phi_j(t,x) = \Psi(x - m_j(t)), \quad \Phi_1 = 1.$$

• On choisit les translations $x_{0,l}(t), x_{1,k}(t), x_{2,k}(t)$ de sorte à ce que $w(t) = u(t) - \widetilde{P}(t)$ soit orthogonal à l'orbite. Autrement dit,

$$\int w(t)\partial_x \widetilde{R_k} = \int w(t)\partial_{x_1} \widetilde{B_k} = \int w(t)\partial_{x_2} \widetilde{B_k} = 0.$$

Profil de filtration :

$$\Psi(x) := \frac{2}{\pi} \arctan\left(\exp\left(\sqrt{\sigma}x/2\right)\right),$$

où $\sigma > 0$ est à choisir judicieusement.

• Pour $j \geq 2$, on pose $m_j(t) := \frac{\widetilde{x_{j-1}}(t) + \widetilde{x_j}(t)}{2}$, et

$$\Phi_i(t,x) = \Psi(x - m_i(t)), \quad \Phi_1 = 1.$$

 Récurrence finie : en raisonnant de droite à gauche, on montre que

$$\int \left(w^2 + w_x^2 + w_{xx}^2\right) \Phi_j + \left| \int w(t) \widetilde{P}_j - \int w(0) \widetilde{P}_j \right| \leq \left[A_0 \left(a + e^{-\theta_0 D} \right) \right]^2$$

en sachant que, pour tout i > j

$$\int \left(w^2 + w_x^2 + w_{xx}^2\right) \Phi_i + \left| \int w(t) \widetilde{P}_i - \int w(0) \widetilde{P}_i \right| \leq \left[A_0 \left(a + e^{-\theta_0 D} \right) \right]^2$$

• Lois de conservation localisées M_j , E_j et F_j :

$$M_j[u](t) := \frac{1}{2} \int u^2 \Phi_j dx.$$

• Mais, grâce à la *monotonie* de Φ_j , on prouve que M_j , E_j et F_j sont presque-décroissantes (décroissantes à des termes bornables par $e^{-\theta_0 D}$).

 Récurrence finie : en raisonnant de droite à gauche, on montre que

$$\int \left(w^2 + w_x^2 + w_{xx}^2\right) \Phi_j + \left| \int w(t) \widetilde{P}_j - \int w(0) \widetilde{P}_j \right| \leq \left[A_0 \left(a + e^{-\theta_0 D} \right) \right]^2$$

en sachant que, pour tout i>j

$$\int \left(w^2 + w_x^2 + w_{xx}^2\right) \Phi_i + \left| \int w(t) \widetilde{P}_i - \int w(0) \widetilde{P}_i \right| \leq \left[A_0 \left(a + e^{-\theta_0 D} \right) \right]^2$$

ullet Lois de conservation localisées M_j , E_j et F_j :

$$M_j[u](t) := \frac{1}{2} \int u^2 \Phi_j dx.$$

• Mais, grâce à la *monotonie* de Φ_j , on prouve que M_j , E_j et F_j sont presque-décroissantes (décroissantes à des termes bornables par $e^{-\theta_0 D}$).

 Récurrence finie : en raisonnant de droite à gauche, on montre que

$$\int \left(w^2 + w_x^2 + w_{xx}^2\right) \Phi_j + \left| \int w(t) \widetilde{P}_j - \int w(0) \widetilde{P}_j \right| \leq \left[A_0 \left(a + e^{-\theta_0 D} \right) \right]^2$$

en sachant que, pour tout i > j

$$\int \left(w^2 + w_x^2 + w_{xx}^2\right) \Phi_i + \left| \int w(t) \widetilde{P}_i - \int w(0) \widetilde{P}_i \right| \leq \left[A_0 \left(a + e^{-\theta_0 D} \right) \right]^2$$

ullet Lois de conservation localisées M_j , E_j et F_j :

$$M_j[u](t) := \frac{1}{2} \int u^2 \Phi_j dx.$$

• Mais, grâce à la *monotonie* de Φ_j , on prouve que M_j , E_j et F_j sont presque-décroissantes (décroissantes à des termes bornables par $e^{-\theta_0 D}$).

 On définit une fonctionnelle de Lyapunov (presque-décroissante) localisée autour de P_j de la manière suivante :

$$\mathscr{H}_{j}(t) := F_{j}(t) + 2(b_{j}^{2} - a_{j}^{2}) E_{j}(t) + (a_{j}^{2} + b_{j}^{2})^{2} M_{j}(t),$$

où $(a_{j}, b_{j}) = (\alpha_{k}, \beta_{k})$ si $P_{j} = B_{k}$ et $(a_{j}, b_{j}) = (0, \sqrt{c_{l}})$ si $P_{j} = R_{l}$.

- Comme d'habitude, on fait un développement de Taylor d'ordre 2 en w de \mathcal{H}_j en écrivant $u = \widetilde{P} + w$. On peut négliger le terme linéaire, grâce à l'équation elliptique et à l'hypothèse de récurrence.
- L'idée est qu'on se ramène à l'étude spectrale de \mathcal{Q}_j , où on borne les termes associés aux P_i , pour i>j, grâce à l'hypothèse de récurrence.

 On définit une fonctionnelle de Lyapunov (presque-décroissante) localisée autour de P_j de la manière suivante :

$$\mathscr{H}_{j}(t) := F_{j}(t) + 2(b_{j}^{2} - a_{j}^{2}) E_{j}(t) + (a_{j}^{2} + b_{j}^{2})^{2} M_{j}(t),$$

où $(a_{j}, b_{j}) = (\alpha_{k}, \beta_{k})$ si $P_{j} = B_{k}$ et $(a_{j}, b_{j}) = (0, \sqrt{c_{l}})$ si $P_{j} = R_{l}.$

- Comme d'habitude, on fait un développement de Taylor d'ordre 2 en w de \mathscr{H}_j en écrivant $u = \widetilde{P} + w$. On peut négliger le terme linéaire, grâce à l'équation elliptique et à l'hypothèse de récurrence.
- L'idée est qu'on se ramène à l'étude spectrale de \mathcal{Q}_j , où on borne les termes associés aux P_i , pour i > j, grâce à l'hypothèse de récurrence.

 On définit une fonctionnelle de Lyapunov (presque-décroissante) localisée autour de P_j de la manière suivante :

$$\mathscr{H}_{j}(t) := F_{j}(t) + 2(b_{j}^{2} - a_{j}^{2}) E_{j}(t) + (a_{j}^{2} + b_{j}^{2})^{2} M_{j}(t),$$

où $(a_{j}, b_{j}) = (\alpha_{k}, \beta_{k})$ si $P_{j} = B_{k}$ et $(a_{j}, b_{j}) = (0, \sqrt{c_{l}})$ si $P_{j} = R_{l}$.

- Comme d'habitude, on fait un développement de Taylor d'ordre 2 en w de \mathscr{H}_j en écrivant $u = \widetilde{P} + w$. On peut négliger le terme linéaire, grâce à l'équation elliptique et à l'hypothèse de récurrence.
- L'idée est qu'on se ramène à l'étude spectrale de \mathcal{Q}_j , où on borne les termes associés aux P_i , pour i > j, grâce à l'hypothèse de récurrence.

- Pour finir, il reste à faire l'étude de $\int \widetilde{P}_j w$ (de plus, c'est utile pour les estimées sur les termes linéaires de la récurrence).
- On développe la masse :

$$\frac{1}{2} \int u^2 \Phi_j = \frac{1}{2} \int \widetilde{P}^2 \Phi_j + \int w(t) \widetilde{P} \Phi_j + \frac{1}{2} \int w(t)^2 \Phi_j$$
$$\simeq \frac{1}{2} \sum_{i=j}^J \int \widetilde{P_i}^2 + \sum_{i=j}^J \int w(t) \widetilde{P_i} + \frac{1}{2} \int w(t)^2 \Phi_j.$$

• Ainsi, par hypothèse de récurrence et presque-décroissance de la M_j ,

$$\int w(t)\widetilde{P}_{j} \leq \int w(0)\widetilde{P}_{j} - \frac{1}{2}\int w(t)^{2}\Phi_{j} + \frac{1}{2}\int w(0)^{2}\Phi_{j}.$$

- Pour finir, il reste à faire l'étude de $\int \widetilde{P}_j w$ (de plus, c'est utile pour les estimées sur les termes linéaires de la récurrence).
- On développe la masse :

$$\frac{1}{2}\int u^2 \Phi_j = \frac{1}{2}\int \widetilde{P}^2 \Phi_j + \int w(t)\widetilde{P}\Phi_j + \frac{1}{2}\int w(t)^2 \Phi_j$$
$$\simeq \frac{1}{2}\sum_{i=j}^J \int \widetilde{P_i}^2 + \sum_{i=j}^J \int w(t)\widetilde{P_i} + \frac{1}{2}\int w(t)^2 \Phi_j.$$

• Ainsi, par hypothèse de récurrence et presque-décroissance de la M_j ,

$$\int w(t)\widetilde{P}_{j} \leq \int w(0)\widetilde{P}_{j} - \frac{1}{2}\int w(t)^{2}\Phi_{j} + \frac{1}{2}\int w(0)^{2}\Phi_{j}.$$

- Pour finir, il reste à faire l'étude de $\int \widetilde{P}_j w$ (de plus, c'est utile pour les estimées sur les termes linéaires de la récurrence).
- On développe la masse :

$$\frac{1}{2}\int u^2 \Phi_j = \frac{1}{2}\int \widetilde{P}^2 \Phi_j + \int w(t)\widetilde{P}\Phi_j + \frac{1}{2}\int w(t)^2 \Phi_j$$
$$\simeq \frac{1}{2}\sum_{i=j}^J \int \widetilde{P_i}^2 + \sum_{i=j}^J \int w(t)\widetilde{P_i} + \frac{1}{2}\int w(t)^2 \Phi_j.$$

• Ainsi, par hypothèse de récurrence et presque-décroissance de la M_j ,

$$\int w(t)\widetilde{P}_j \leq \int w(0)\widetilde{P}_j - \frac{1}{2}\int w(t)^2 \Phi_j + \frac{1}{2}\int w(0)^2 \Phi_j.$$

Sommaire

- Présentation des notions
 - Équation considérée (loi d'évolution)
 - Objets considérés
 - Stabilité orbitale
- Stabilité orbitale des solitons et des breathers
 - Énoncés des théorèmes
 - Éléments de preuve de la stabilité orbitale des solitons
 - Éléments de preuve de la stabilité orbitale des breathers
- Stabilité orbitale d'une somme de solitons et de breathers de (mKdV) et conséquences
 - Énoncé du résultat
 - Éléments de preuve
 - Corollaires du théorème

Multi-breather

Définition

On dit que p est un multi-breather associé à P lorsque

$$||p(t)-P(t)||_{H^2} \longrightarrow_{t\to+\infty} 0.$$

p est donnée par une formule (intégrabilité de mKdV) et vérifie

$$\|p(t)-\overline{P}(t)\|_{H^2}\longrightarrow_{t\to-\infty}0,$$

où \overline{P} correspond à la somme P où chaque objet a d'autres paramètres de translation.

 Les décalages dûs à une collisions peuvent elles aussi être exprimées explicitement.

Multi-breather

Définition

On dit que p est un multi-breather associé à P lorsque

$$||p(t)-P(t)||_{H^2}\longrightarrow_{t\to+\infty}0.$$

p est donnée par une formule (intégrabilité de mKdV) et vérifie

$$\|p(t)-\overline{P}(t)\|_{H^2}\longrightarrow_{t\to-\infty}0,$$

où \overline{P} correspond à la somme P où chaque objet a d'autres paramètres de translation.

 Les décalages dûs à une collisions peuvent elles aussi être exprimées explicitement.

Multi-breather

Définition

On dit que p est un multi-breather associé à P lorsque

$$\|p(t)-P(t)\|_{H^2}\longrightarrow_{t\to+\infty}0.$$

p est donnée par une formule (intégrabilité de mKdV) et vérifie

$$\|p(t)-\overline{P}(t)\|_{H^2}\longrightarrow_{t\to-\infty}0,$$

où \overline{P} correspond à la somme P où chaque objet a d'autres paramètres de translation.

 Les décalages dûs à une collisions peuvent elles aussi être exprimées explicitement.

Quelques formules

• La formule d'un 2-soliton de (mKdV) est donnée par :

$$p(t,x) := -2\sqrt{2} \frac{\partial}{\partial x} \arctan \left[\frac{\sqrt{c_1} + \sqrt{c_2}}{|\sqrt{c_1} - \sqrt{c_2}|} \frac{\cosh(y_1)}{\sinh(y_2)} \right],$$

où
$$y_1 := \frac{\sqrt{c_1}c_1 - \sqrt{c_2}c_2}{2}t - \frac{\sqrt{c_1} - \sqrt{c_2}}{2}x + x_1$$
 et $y_2 := -\frac{\sqrt{c_1}c_1 + c_2\sqrt{c_2}}{2}t + \frac{\sqrt{c_1} + \sqrt{c_2}}{2}t + x_2$.

- Lorsque 2 objets se rencontrent, l'objet le plus rapide subit un décalage vers la droite et l'objet le plus lent - vers la gauche.
- Dans le cas où c'est deux solitons, la formule donant le décalage de R_1 est

$$\frac{2}{\sqrt{c_1}} \ln \left(\frac{\sqrt{c_1} + \sqrt{c_2}}{|\sqrt{c_1} - \sqrt{c_2}|} \right).$$

Quelques formules

La formule d'un 2-soliton de (mKdV) est donnée par :

$$p(t,x) := -2\sqrt{2} \frac{\partial}{\partial x} \arctan \left[\frac{\sqrt{c_1} + \sqrt{c_2}}{|\sqrt{c_1} - \sqrt{c_2}|} \frac{\cosh(y_1)}{\sinh(y_2)} \right],$$

où
$$y_1 := \frac{\sqrt{c_1}c_1 - \sqrt{c_2}c_2}{2}t - \frac{\sqrt{c_1} - \sqrt{c_2}}{2}x + x_1$$
 et $y_2 := -\frac{\sqrt{c_1}c_1 + c_2\sqrt{c_2}}{2}t + \frac{\sqrt{c_1} + \sqrt{c_2}}{2}t + x_2$.

- Lorsque 2 objets se rencontrent, l'objet le plus rapide subit un décalage vers la droite et l'objet le plus lent - vers la gauche.
- Dans le cas où c'est deux solitons, la formule donant le décalage de R₁ est

$$\frac{2}{\sqrt{c_1}} \ln \left(\frac{\sqrt{c_1} + \sqrt{c_2}}{|\sqrt{c_1} - \sqrt{c_2}|} \right)$$

Quelques formules

• La formule d'un 2-soliton de (mKdV) est donnée par :

$$p(t,x) := -2\sqrt{2} \frac{\partial}{\partial x} \arctan \left[\frac{\sqrt{c_1} + \sqrt{c_2}}{|\sqrt{c_1} - \sqrt{c_2}|} \frac{\cosh(y_1)}{\sinh(y_2)} \right],$$

où
$$y_1 := \frac{\sqrt{c_1}c_1 - \sqrt{c_2}c_2}{2}t - \frac{\sqrt{c_1} - \sqrt{c_2}}{2}x + x_1$$
 et $y_2 := -\frac{\sqrt{c_1}c_1 + c_2\sqrt{c_2}}{2}t + \frac{\sqrt{c_1} + \sqrt{c_2}}{2}t + x_2$.

- Lorsque 2 objets se rencontrent, l'objet le plus rapide subit un décalage vers la droite et l'objet le plus lent - vers la gauche.
- Dans le cas où c'est deux solitons, la formule donant le décalage de R_1 est

$$\frac{2}{\sqrt{c_1}} \ln \left(\frac{\sqrt{c_1} + \sqrt{c_2}}{|\sqrt{c_1} - \sqrt{c_2}|} \right).$$

Stabilité d'un multi-breather

Corollaire (S.)

Soit p le multi-breather associé à P par la formule. On suppose que $v_2 > 0$. Il existe $a_0, A_0 > 0$ tels qu'on a ce qui suit. Soit u une solution H^2 de (mKdV), et $a \in [0, a_0]$ tels que

$$||u(0)-p(0)||_{H^2} \leq a.$$

Alors,

$$\forall t \in \mathbb{R}, \quad \|u(t) - \widetilde{p}(t)\|_{H^2} \leq A_0 a,$$

où \widetilde{p} correspond à p modifié avec des paramètres de translation $x_{0,l}(t), x_{1,k}(t), x_{2,k}(t)$ définis pour tout $t \in \mathbb{R}$.

Pourquoi a-t-on pu enlever l'hypothèse de découplage?

- Grâce à l'uniforme continuité du flot de (mKdV)!
- Au bout d'un certain temps T les différents objets seront suffisamment découplés. Si on arrive à faire en sorte que $\|u(T) p(T)\|_{H^2}$ est suffisamment petite, le corollaire sera une conséquence immédiate du théorème.
- Il suffit de choisir $||u(0) p(0)||_{H^2}$ encore plus petite (en fonction de T, lui-même dépendant des paramètres de translation initiaux des objets), de sorte à pouvoir contrôler $||u(T) p(T)||_{H^2}$ par uniforme continuité du flot.

Pourquoi a-t-on pu enlever l'hypothèse de découplage?

- Grâce à l'uniforme continuité du flot de (mKdV)!
- Au bout d'un certain temps T les différents objets seront suffisamment découplés. Si on arrive à faire en sorte que $\|u(T) p(T)\|_{H^2}$ est suffisamment petite, le corollaire sera une conséquence immédiate du théorème.
- Il suffit de choisir $||u(0) p(0)||_{H^2}$ encore plus petite (en fonction de T, lui-même dépendant des paramètres de translation initiaux des objets), de sorte à pouvoir contrôler $||u(T) p(T)||_{H^2}$ par uniforme continuité du flot.

Pourquoi a-t-on pu enlever l'hypothèse de découplage?

- Grâce à l'uniforme continuité du flot de (mKdV)!
- Au bout d'un certain temps T les différents objets seront suffisamment découplés. Si on arrive à faire en sorte que $\|u(T) p(T)\|_{H^2}$ est suffisamment petite, le corollaire sera une conséquence immédiate du théorème.
- Il suffit de choisir $||u(0) p(0)||_{H^2}$ encore plus petite (en fonction de T, lui-même dépendant des paramètres de translation initiaux des objets), de sorte à pouvoir contrôler $||u(T) p(T)||_{H^2}$ par uniforme continuité du flot.

Corollaire (S.)

Si $v_2 > 0$, il existe un unique multi-breather p associé à P.

Démonstration.

Soit u un autre multi-breather associé à P (pour $t \to +\infty$).

Alors, pour $a_0 > a > 0$, il existe un temps T_a tel que

$$\|u(T_a)-p(T_a)\|_{H^2}\leq a.$$

Par stabilité de p,

$$\forall t \in \mathbb{R}, \quad \|u(t) - \widetilde{p}(t)\|_{H^2} \leq A_0 a.$$

En prenant a de plus en plus petit, on trouve que u(0) est égal à un multi-breather donné par la formule, donc u=p partout.

Corollaire (S.)

Si $v_2 > 0$, il existe un unique multi-breather p associé à P.

Démonstration.

Soit u un autre multi-breather associé à P (pour $t \to +\infty$).

Alors, pour $a_0 > a > 0$, il existe un temps T_a tel que

$$\|u(T_a)-p(T_a)\|_{H^2}\leq a.$$

Par stabilité de p,

$$\forall t \in \mathbb{R}, \quad \|u(t) - \widetilde{p}(t)\|_{H^2} \leq A_0 a.$$

En prenant a de plus en plus petit, on trouve que u(0) est égal à ur multi-breather donné par la formule, donc u=p partout.

Corollaire (S.)

Si $v_2 > 0$, il existe un unique multi-breather p associé à P.

Démonstration.

Soit u un autre multi-breather associé à P (pour $t \to +\infty$). Alors, pour $a_0 > a > 0$, il existe un temps T_a tel que

$$||u(T_a) - p(T_a)||_{H^2} \le a.$$

Par stabilité de p,

$$\forall t \in \mathbb{R}, \quad \|u(t) - \widetilde{p}(t)\|_{H^2} \le A_0 a.$$

En prenant a de plus en plus petit, on trouve que u(0) est égal à ur multi-breather donné par la formule, donc u=p partout.

Corollaire (S.)

Si $v_2 > 0$, il existe un unique multi-breather p associé à P.

Démonstration.

Soit u un autre multi-breather associé à P (pour $t \to +\infty$). Alors, pour $a_0 > a > 0$, il existe un temps T_a tel que

$$||u(T_a) - p(T_a)||_{H^2} \le a.$$

Par stabilité de p,

$$\forall t \in \mathbb{R}, \quad \|u(t) - \widetilde{p}(t)\|_{H^2} \leq A_0 a.$$

En prenant a de plus en plus petit, on trouve que u(0) est égal à un multi-breather donné par la formule, donc u=p partout.

Corollaire (S.)

Si $v_2 > 0$, il existe un unique multi-breather p associé à P.

Démonstration.

Soit u un autre multi-breather associé à P (pour $t \to +\infty$). Alors, pour $a_0 > a > 0$, il existe un temps T_a tel que

$$||u(T_a) - p(T_a)||_{H^2} \le a.$$

Par stabilité de p,

$$\forall t \in \mathbb{R}, \quad \|u(t) - \widetilde{p}(t)\|_{H^2} \leq A_0 a.$$

En prenant a de plus en plus petit, on trouve que u(0) est égal à un multi-breather donné par la formule, donc u=p partout.

