QEMU and SystemC

March 2011

QUF'11 Grenoble Màrius Montón

Outline

- > Introduction
- > Objectives
- Virtual Platforms and SystemC
- Checkpointing for SystemC
- Conclusions

Introduction – Virtual Platforms

- Functional models of physical platforms
- Target SW unable to distinguish virtual platform from real HW
- Run SW or OS on Virtual HW
- Develop SW for non-existing HW
- Simulate complex system interconnectivity

Introduction – Virtual Platforms

Introduction – Virtual Platforms

Virtual Platform Design

Virtual Platform Design

Generic Virtual Platform Diagram

Introduction – SystemC & TLM-2

- SystemC language for systems description (HW mainly)
- OSCI simulator
- TLM-2 standarizes communication model
 - Sockets to emulate any memory-mapped bus
- De facto standard for system modeling

Introduction – VP Languages

- Different Virtual Platforms uses different languages (C, C++, DLM, ...) and APIs
- HW engineers know (or should) SystemC, not other languages
- ▶ Different VP → Rewrite own models
- No interoperability

Objectives

- Add SystemC-TLM to any Virtual Platform
 - Different strategies to add two simulators
 - Add SystemC-TLM support to an open-sourced VP
- Add checkpointing support to SystemC
 - C++ not checkpointable
 - Overcome limitations

Generic Virtual Platform Diagram

Virtual Platforms and SystemC

- Link together two simulators
- Synchronization strategy
- Generic bridge
- Support for generic TLM-2 devices
 - LT, AT, DMI...

Virtual Platforms and SystemC

Link together two simulators SystemC Synch VP Virtual time

Virtual Platforms and SystemC

QEMU-SC

- Transition from RTL to TLM
- \rightarrow Generic fabric bus (TLM) \rightarrow any architecture
- > QEMU master and SystemC slave (simulation)
 - QEMU manages simulation
- Focus on few SystemC devices

QEMU-SC

Synchronization

- Only synchronize when needed (sc_start())
 - When SystemC devices are accessed
 - When pending event in current simulation time
 - SystemC events list
 - When I/O to/from SystemC device
 - Capture or notify all I/O in SystemC device
 - QuantumKeeper asks to
 - To adhere to standard

Communication

- P QEMU works with zero-delay communication
 - CPU accesses one device and the device responds immediately
- Fit to LT devices
- Need to manage AT devices
 - Special synchronization
 - Finish all protocol phases before return to VP

Communication - LT

Communication - AT

Synchronization

- Manage external I/O from/to SC device
 - Devices use QEMU callbacks for I/O
 - Bridge knows when a I/O is performed
 - Synchronize simulators
- Continue SystemC simulation when
 - VP time arrives to first SC event
 - Every quantum time (TLM-2)
- Advance SystemC time until transaction ends

QBox

- Change simulation manager
 - QEMU becomes simulator slave
- SystemC manages simulation
- QEMU is a TLM-2 Initiator module
- Easy integration
- Focus on many SystemC models

QBox

QBox internal architecture

QBox complex example

Test & results

- Different tests and examples
 - Validate implementation
 - Extract performance metrics
- Results for performance
 - relatives to same system in native language
 - C in QEMU & Qbox

QEMU-SC Test System

QEMU-SC Results

- > No acc.
- No acc. w/ drivers
- QEMU style 1 acc.
- SystemC 1 acc.
- Proprietable Pr
- SystemC 2 acc.
- SystemC skel. (1 acc.)
 - SystemC skel. (2 acc.)

QEMU-SC Results

QBox Test System

QBox Results

- > No acc.
 - No acc. w/ drivers
- > QEMU style 1 acc.
- > SystemC 1 acc.
- P QEMU style 2 acc.
- SystemC 2 acc.
- SystemC skel. (1 acc.)
 - SystemC skel. (2 acc.)

QBox Results

QBox Test System

Complex QBox system

Conclusions – SystemC

- Joined SystemC to two Virtual Platforms
- Tested two different strategies for joining two simulators
 - QEMU-SC
 - QBox
- Minor performance impact SystemC bridge
- Published as open-sourced projects www.greensocs.com

Conclusions – SystemC

	Simulation Manager	Penalty	System for
QEMU-SC	Yes	10%	SW
QBox	No	25~30%	HW

Future Work

- Automagic configuration of QBox systems
 - Manage map-address in QEMU, Router, BIOS, etc.
- Enhance QEMU time management
 - Hard to measure virtual time in QEMU
- Add multiple instances from QEMU
 - Current QBox library allows one
- Explore QEMU user mode
 - Simplified version, only ISS, run applications

Future Work

- Merge SystemC methods into QEMU kernel
 - Remove OSCI simulator and write an API SystemC <-> QEMU
- Merge QEMU functionality into OSCI kernel
 - Make QEMU a truly SystemC ISS
- Both merges increase simulation speed due to removed synchronization

Proposal

- Join efforts and teams to develop
 - just one QEMU & SystemC virtual platform

Thank you!

Questions?