Table of Contents

List of Tables	2
List of Figures	2
Question 1	3
Optimization Calculation	3
Results	∠
Question 2	∠
Part A:	
Nomenclature	∠
Equations Used	2
Results	5
Part B	5
Nomenclature	5
Optimization Calculations	5
Results	θ
Part C	8
Equations Used	8
Results	8
Appendix (MATLAB Code + Output)	10
Part 1	10
Part 2A	11
Part 2B	13
Part 2C	14

List of Tables	
Table 1 - Summary of Results Representing Number of Bonds to Buy to Meet Liabilities	2
Table 2 - Approximate Total Cost of Portfolio	2
Table 3 - Computed Expected Returns	
Table 4 - Computed Standard Deviations	5
Table 5 - Computed Covariances	
Table 6 - MVO with Short Selling Results	6
Table 7 - MVO without Short Selling Results	
Table 8 - Calculated Realized Return of Each Asset for month of February	8
Table 9 - Weight of Portfolio with Short Selling for Expected Return Goal of 0.003%	8
Table 10 - Weight of Portfolio without Short Selling for Expected Return Goal of 0.003%	8
Table 11 - Realized Return of Portfolio	8
List of Figures	
Figure 1 - Efficient Frontier of Portfolio	

Question 1

Optimization Calculation

Nomenclature

$$P_i = Price \ of \ bond \ i$$
 $x_i = Number \ of \ bonds \ i$
 $F_i = Face \ value \ of \ bond \ i$
 $c_i = Coupon \ payment \ of \ bond \ i$
 $z_i = Excess \ cash \ in \ year \ i$
 $L_i = Liability \ in \ year \ i$

Minimize Equation:

$$P_{1}x_{1} + P_{2}x_{2} + P_{3}x_{3} + P_{4}x_{4} + P_{5}x_{5} + P_{6}x_{6} + P_{7}x_{7} + P_{8}x_{8} + P_{9}x_{9} + P_{10}x_{10} + P_{11}x_{11} + P_{12}x_{12} + P_{13}x_{13} + P_{14}x_{14} + P_{15}x_{15} + P_{16}x_{16}$$

Subject To:

$$(F_1+c_1)x_1+c_2x_2+c_3x_3+c_4x_4+c_8x_8+c_9x_9+c_{10}x_{10}+c_{11}x_{11}+c_{12}x_{12}+c_{13}x_{13}+c_{14}x_{14}\\+c_{15}x_{15}-z_1=L_1$$

$$(F_2+c_2)x_2+(F_2+c_2)x_3+c_4x_4+c_8x_8+c_9x_9+c_{10}x_{10}+c_{11}x_{11}+c_{12}x_{12}+c_{13}x_{13}+c_{14}x_{14}\\+c_{15}x_{15}+(1.02)z_1-z_2=L_2$$

$$(F_4+c_4)x_4+(F_5)x_5+c_8x_8+c_9x_9+c_{10}x_{10}+c_{11}x_{11}+c_{12}x_{12}+c_{13}x_{13}+c_{14}x_{14}+c_{15}x_{15}\\+(1.02)z_2-z_3=L_3$$

$$(F_6)x_6+c_8x_8+c_9x_9+c_{10}x_{10}+c_{11}x_{11}+c_{12}x_{12}+c_{13}x_{13}+c_{14}x_{14}+c_{15}x_{15}+(1.02)z_3-z_4=L_4$$

$$(F_7)x_7+(F_8+c_8)x_8+c_9x_9+c_{10}x_{10}+c_{11}x_{11}+c_{12}x_{12}+c_{13}x_{13}+c_{14}x_{14}+c_{15}x_{15}+(1.02)z_4-z_5\\=L_5$$

$$(F_9+c_9)x_9+(F_{10}+c_{10})x_{10}+c_{11}x_{11}+c_{12}x_{12}+c_{13}x_{13}+c_{14}x_{14}+c_{15}x_{15}+(1.02)z_5-z_6=L_6$$

$$(F_{11}+c_{11})x_{11}+(F_{12}+c_{12})x_{12}+c_{13}x_{13}+c_{14}x_{14}+c_{15}x_{15}+(1.02)z_6-z_7=L_7$$

$$(F_{12}+c_{12})x_{12}+(F_{13}+c_{13})x_{13}+c_{15}x_{15}+(1.02)z_7-z_8=L_8$$

$$(F_{15}+c_{15})x_{15}+(F_{16})x_{16}+(1.02)z_9=L_9$$

$$x_n\geq 0\ n=1,\dots, 16$$

$$z_n\geq 0\ z=1,\dots, 9$$

Results

Table 1 - Summary of Results Representing Number of Bonds to Buy to Meet Liabilities.

Bond Number	Number of units to buy (raw	Number of units to buy
	number)	
$1\left(x_{1}\right)$	147521.250613925	147522
2 (x ₂)	175819.320962204	175820
$3\left(x_{3}\right)$	2.24109781532533e-06	0
4 (x ₄)	7.93877611560134e-06	0
5 (x ₅)	204170.738707665	204171
6 (x ₆)	204170.738691806	204171
$7(x_7)$	4.88213955651684e-07	0
8 (x ₈)	184170.738707680	184171
$9(x_9)$	224760.556176796	224761
10 (<i>x</i> ₁₀)	4.86881365890923e-06	0
11 (<i>x</i> ₁₁)	270212.844413869	270213
12 (x ₁₂)	6.82249421579684e-06	0
13 (<i>x</i> ₁₃)	1.09071407927708e-06	0
14 (<i>x</i> ₁₄)	298114.445359939	298115
15 (<i>x</i> ₁₅)	322274.881508539	322275
16 (<i>x</i> ₁₆)	6.52174533133376e-06	0

Table 2 - Approximate Total Cost of Portfolio

Total Cost (\$)	204673367.57

Question 2

Part A:

Nomenclature

$$r_i = Return\ of\ assest\ i$$
 $\mu_i = Expected\ return\ of\ asset\ i$ $\sigma_i = Standard\ deviation\ of\ asset\ i$ $\sigma_{ij} = Corvariance\ between\ asset\ i\ and\ j$

Equations Used

$$r_{iT} = \frac{(end\ of\ month\ adj\ price - beginning\ of\ month\ adj\ price)}{beginning\ of\ month\ adj\ price}\ i = asset, T = month\ (1, ..., 24)$$

$$\bar{r}_i = \frac{1}{24} \sum_{T=1}^{24} r_{iT}$$

$$\mu_{i} = \left(\prod_{T=1}^{24} (1 + r_{iT})\right)^{\frac{1}{24}} - 1$$

$$\sigma_{ij} = \frac{1}{24} \sum_{T=1}^{24} (r_{iT} - \overline{r}_{i})(r_{jT} - \overline{r}_{j})$$

$$\sigma_{i} = \sqrt{\sigma_{ii}}$$

Results

Table 3 - Computed Expected Returns

ETF	Value	
$SPY\left(\mu_{1}\right)$	0.00361373099239737	
GOVT (μ_2)	0.001219991841418	
EEMV (μ_3)	-0.00401165508692958	

Table 4 - Computed Standard Deviations

ETF	Value
$SPY\left(\sigma_{1} ight)$	0.030122977518631
GOVT (σ_2)	0.011788466120886
EEMV (σ_3)	0.033383166756711

Table 5 - Computed Covariances

σ_{12}	-0.000122444785495764
σ_{13}	0.000500223863055122
σ_{23}	0.000107725243220972

Part B

Nomenclature

 $x_i = Weight\ of\ asset\ i\ within\ portfolio$

R = expected return goal

Optimization Calculations

Minimize

$$\sum_{i=1}^{3} \sum_{j=1}^{3} x_i x_j \sigma_{ij}$$

Subject To

$$\sum_{i=1}^{3} x_i \mu_i = R$$

$$\sum_{i=1}^{3} x_i = 1$$

$$\sum_{i=1}^{3} x_i = 1$$

Results

Table 6 - MVO with Short Selling Results

Expected Return	SPY Weight (x_1)	GOVT Weight	EEMV Weight	Variance (σ)
Goal (R)		(x_2)	(x_3)	
0.0005	0.2749	0.8681	-0.1430	0.005982
0.001	0.2749	0.8681	-0.1431	0.005982
0.0015	0.2749	0.8681	-0.1430	0.005982
0.002	0.2749	0.8681	-0.1431	0.005982
0.0025	0.2749	0.8682	-0.1432	0.005982
0.003	0.3132	0.8838	-0.1971	0.006074
0.0035	0.3643	0.9047	-0.2691	0.006466
0.004	0.4155	0.9257	-0.3412	0.007121
0.0045	0.4667	0.9466	-0.4133	0.007972
0.005	0.5179	0.9675	-0.4855	0.008964
0.0055	0.5691	0.9885	-0.5576	0.010055
0.006	0.6203	1.0094	-0.6298	0.011217
0.0065	0.6715	1.0303	-0.7019	0.012429
0.007	0.7227	1.0513	-0.7741	0.013679
0.0075	0.7739	1.0722	-0.8462	0.014957
0.008	0.8251	1.0932	-0.9183	0.016255
0.0085	0.8763	1.1141	-0.9905	0.017571
0.009	0.9275	1.1350	-1.0626	0.018899
0.0095	0.9788	1.1560	-1.1348	0.020239
0.01	1.0300	1.1769	-1.2069	0.021586

Table 7 - MVO without Short Selling Results

Expected Return Goal (R)	SPY Weight (x_1)	GOVT Weight (x_2)	EEMV Weight (x_3)	Variance (σ)
0.00025	0.2024	0.7975	1.0077e-06	0.006559
0.0005	0.2024	0.7975	1.6177e-05	0.006559
0.00075	0.2023	0.7974	0.0001056	0.006559
0.001	0.2024	0.7975	1.8513e-07	0.006559
0.00125	0.2024	0.7975	1.4158e-06	0.006559
0.0015	0.2024	0.7975	1.4475e-05	0.006559
0.00175	0.2215	0.7784	5.8054e-07	0.006577
0.002	0.3258	0.6741	1.3183e-08	0.007270
0.00225	0.4303	0.5696	2.8023e-07	0.008748
0.0025	0.5347	0.4652	1.7066e-08	0.010691
0.00275	0.6391	0.3608	9.0388e-13	0.012890
0.003	0.7436	0.2563	1.4129e-07	0.015234
0.00325	0.8480	0.1519	1.0125e-09	0.017666
0.0035	0.9525	0.0474	5.1673e-06	0.020155

Figure 1 - Efficient Frontier of Portfolio

Figure 1 represents the 'risk' associated with each expected return goal. It is evident that the efficient frontier of the scenario without short selling does not return as much as short selling. In fact, it is caped off at 0.0035% because this is the maximum return that these three ETFs can give together. After this point, the added weights of the portfolio surpass 1 which is not possible. As well to get a higher return the calculation recommends that only the SPY asset be invested in. On the other hand, a max value of 0.01% is shown for the efficient frontier with short selling due to aesthetic reasons and it can in fact get a higher expected return goal if desired.

Part C

Equations Used

Realized Return =
$$\sum_{i=1}^{3} x_i \mu_i$$

Results

Table 8 - Calculated Realized Return of Each Asset for month of February

ETF	Realized Return
$SPY\left(\mu_{1}\right)$	0.03888
GOVT (μ_2)	0.00521
EEMV (μ_3)	0.01951

Table 9 - Weight of Portfolio with Short Selling for Expected Return Goal of 0.003%

Asset	Weight
$SPY\left(x_{1}\right)$	0.3132
GOVT (x_2)	0.8838
$EEMV\left(x_{3}\right)$	-0.1971

Table 10 - Weight of Portfolio without Short Selling for Expected Return Goal of 0.003%

Asset	Weight
$SPY\left(x_{1}\right)$	0.7436
GOVT (x_2)	0.2563
$EEMV\left(x_{3}\right)$	1.4129e-07

Table 11 - Realized Return of Portfolio

Realized Return (With Short Selling)	0.01293
Realized Return (Without Short Selling)	0.03024

To determine the performance of the portfolio created in Part B it had to be used for a data set outside of Jan 2015 – Dec 2016. Therefore, it was used for Feb 2017 and Table 8 summarizes the realized return for each of the three assets used in the portfolio for this month. These returns were than multiplied by the weights in Table 9 and Table 10. Note that with these weights the expected return goal was 0.003%. However, evidently from Table 11 this goal was surpassed and thus the portfolio performed well. The realized return with short selling for the portfolio was 0.01293% which is about four times more than the expected. As well, the return for the portfolio is between the smallest and largest return values of the three assets. Compared to the individual asset returns the overall return of the portfolio is low but this is mainly because the majority of the portfolio consists of the GOVT ETF which had the lowest return for the month of February. On the other hand, the return of the portfolio without short selling had better success and was closer to the higher return asset. This was because three quarters of the portfolio is made up of SPY asset which had the highest return. However, the portfolio without short selling had a higher variance

and therefore is riskier. This is evident from these results because it depends so much on how one asset performs whereas the portfolio with short selling depends a little more on the other two ETFs. Nevertheless, the portfolio performed well as it gives a profitable return but it is important to consider that the month could be an anomaly because of how well the SPY and EEMV performed relative to the previous months.

Appendix (MATLAB Code + Output)

Part 1

```
% Initial Conditions
Liability = [24e6; 26e6; 28e6; 26e6; 29e6; 32e6; 33e6; 34e6];
Price = [102.44 99.95 100.02 102.66 87.90 85.43 83.42 103.82 110.29 ...
    108.85 109.95 107.36 104.62 99.07 103.78 64.66 0 0 0 0 0 0 0 0 0];
% Note Price includes reinvestment for later use
Coupon_payments = [5.625 4.75 4.25 5.25 0 0 0 5.75 6.875 6.5 6.625 ...
    6.125 5.265 4.75 5.5 0]';
Maturity_year = [1 2 2 3 3 4 5 5 6 6 7 7 8 8 9 9]';
reinvestment_rate = 0.02;
% Calculating Face Value
n = 0;
Face_Value = zeros(16,1);
while n < 16
    n = n + 1;
    Face_Value(n,1) = 100 + Coupon_payments(n,1);
end
% Seting up LP calculation
cp = Coupon_payments;
F = Face_Value;
% Bond Matrix
A = zeros(9,16);
A(1,:)=[F(1,1) cp(2,1) cp(3,1) cp(4,1) cp(5,1) cp(6,1) cp(7,1) ...
    cp(8,1) cp(9,1) cp(10,1) cp(11,1) cp(12,1) cp(13,1) cp(14,1) ...
    cp(15,1) cp(16,1);
A(2,2:16) = [F(2,1) F(3,1) cp(4,1) cp(5,1) cp(6,1) cp(7,1) cp(8,1) ...
    cp(9,1) cp(10,1) cp(11,1) cp(12,1) cp(13,1) cp(14,1) cp(15,1) ...
    cp(16,1);
A(3,4:16) = [F(4,1) F(5,1) cp(6,1) cp(7,1) cp(8,1) cp(9,1) cp(10,1) ...
    cp(11,1) cp(12,1) cp(13,1) cp(14,1) cp(15,1) cp(16,1)];
A(4,6:16) = [F(6,1) cp(7,1) cp(8,1) cp(9,1) cp(10,1) cp(11,1) cp(12,1) ...
    cp(13,1) cp(14,1) cp(15,1) cp(16,1)];
A(5,7:16) = [F(7,1) F(8,1) cp(9,1) cp(10,1) cp(11,1) cp(12,1) cp(13,1) ...
    cp(14,1) cp(15,1) cp(16,1)];
A(6,9:16) = [F(9,1) F(10,1) cp(11,1) cp(12,1) cp(13,1) cp(14,1) cp(15,1) ...
    cp(16,1);
A(7,11:16) = [F(11,1) F(12,1) cp(13,1) cp(14,1) cp(15,1) cp(16,1)];
A(8,13:16) = [F(13,1) F(14,1) cp(15,1) cp(16,1)];
A(9,15:16) = [F(15,1) F(16,1)];
% Reinvestment Matrix
R = zeros(9,9);
R(1,1) = -1;
R(2,1:2) = [1.02 -1];
R(3,2:3) = [1.02 -1];
R(4,3:4) = [1.02 -1];
R(5,4:5) = [1.02 -1];
R(6,5:6) = [1.02 -1];
R(7,6:7) = [1.02 -1];
R(8,7:8) = [1.02 -1];
R(9,8:9) = [1.02 0];
```

```
B = zeros(9,25);
B(:,1:16) = A;
B(:,17:25) = R;
% LP Function
c = Price;
b = [];
A = [];
Aeq = B;
beq = Liability;
lb = zeros(25,1);
ub = (lb+1)*inf;
[x_part1,cost] = linprog(c, A, b, Aeq, beq, lb, ub)
```

Optimization terminated.

```
x_part1 =
   1.0e+05 *
    1.4752
    1.7582
    0.0000
    0.0000
    2.0417
    2.0417
    1.8417
    2.2476 0.0000
    2.7021
    0.0000
    0.0000
    2.9811
3.2227
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
    0.0000
cost =
   2.0467e+08
```

Part 2A

```
% Import SPY, GOVT, EEMV data into matrix
% SPY
r1 = zeros(48,1);
t = 0;
while t < 47
    t = t + 1;
    r1(t,1) = (SPY((t+1),1) - SPY(t,1))/SPY(t,1); %Calculating
    ... return of asset
end
r1 = r1(1:2:end,:);</pre>
```

```
r1bar = mean(r1); %Average of asset
r1a = 1+r1;
mew1 = (prod(r1a))^{(1/24)} - 1; %Geometric expected return of asset
% GOVT
r2 = zeros(48,1);
t = 0;
while t < 47
   t = t + 1;
    r2(t,1) = (GOVT((t+1),1) - GOVT(t,1))/GOVT(t,1);
end
r2 = r2(1:2:end,:);
r2bar = mean(r2);
r2a = 1+r2;
mew2 = (prod(r2a))^{(1/24)} - 1;
% EEMV
r3 = zeros(48,1);
t = 0;
while t < 47
   t = t + 1;
    r3(t,1) = (EEMV((t+1),1) - EEMV(t,1))/EEMV(t,1);
end
r3 = r3(1:2:end,:);
r3bar = mean(r3);
r3a = 1+r3;
mew3 = (prod(r3a))^{(1/24)} - 1;
% Corivance
sig = zeros(3);
t = 0;
s11 = zeros(24,1);
while t < 24
    t = t + 1;
    s11(t,1) = (r1(t,1) - r1bar) * (r1(t,1) - r1bar);
sig(1,1) = (1/24)*sum(s11);
t = 0;
s22 = zeros(24,1);
while t < 24
   t = t + 1;
    s22(t,1) = (r2(t,1) - r2bar) * (r2(t,1) - r2bar);
end
sig(2,2) = (1/24)*sum(s22);
t = 0;
s33 = zeros(24,1);
while t < 24
   t = t + 1;
    s33(t,1) = (r3(t,1) - r3bar) * (r3(t,1) - r3bar);
end
sig(3,3) = (1/24)*sum(s33);
t = 0;
s12 = zeros(24,1);
while t < 24
   t = t + 1;
   s12(t,1) = (r1(t,1) - r1bar) * (r2(t,1) - r2bar);
```

```
end
sig(1,2) = (1/24)*sum(s12);
t = 0;
s13 = zeros(24,1);
while t < 24
   t = t + 1;
    s13(t,1) = (r1(t,1) - r1bar) * (r3(t,1) - r3bar);
end
sig(1,3) = (1/24)*sum(s13);
t = 0;
s23 = zeros(24,1);
while t < 24
   t = t + 1:
   s23(t,1) = (r2(t,1) - r2bar) * (r3(t,1) - r3bar);
end
sig(2,3) = (1/24)*sum(s23);
```

Part 2B

```
R = 0.0;
Q = [sig(1,1) \ sig(1,2) \ sig(1,3);...
    sig(1,2) sig(2,2) sig(2,3); ...
    sig(1,3) sig(2,3) sig(3,3)];
c = [0 \ 0 \ 0]';
A = -[mew1 mew2 mew3];
b = -R;
Aeq = [1 \ 1 \ 1];
beq = [1];
ub = [inf inf inf]';
lb = -ub; %Short selling
lb_without = c; %without short selling
[x, fval] = quadprog(Q,c,A,b,Aeq,beq,lb_without,ub) %Solving MVO
var = sqrt(fval) %Getting Variance
% Constructing points for graph (R with short selling)
iterations = 20
R_graph = zeros(iterations,1);
sigf = zeros(iterations,1);
weight = zeros(iterations,3)
i = 0;
while i < 20
   R = R + 0.0005;
   i = i + 1;
   R_{graph(i,1)} = R;
    b = -R;
   [x, fval] = quadprog(Q,c,A,b,Aeq,beq,lb,ub);
    sigf(i,1) = fval;
    weight(i,1) = x(1,1);
    weight(i,2) = x(2,1);
    weight(i,3) = x(3,1);
end
risk = sqrt(sigf);
\% Constructing points for graph (R without short selling)
R = 0;
```

```
i = 0;
iterations_wo = 14;
R_graph_wo = zeros(iterations_wo,1);
sigf_wo = zeros(iterations_wo,1);
weight_wo = zeros(iterations_wo,3);
while i < 14
    R = R + 0.00025;
    i = i + 1;
    R_{graph_wo(i,1)} = R;
    b = -R;
    [x, fval] = quadprog(Q,c,A,b,Aeq,beq,lb_without,ub);
    sigf_wo(i,1) = fval;
    weight\_wo(i,1) = x(1,1);
    weight_wo(i,2) = x(2,1);
    weight_wo(i,3) = x(3,1);
risk_wo = sqrt(sigf_wo);
%Plotting Graph
figure; hold on
a1 = plot(risk,R_graph);
a2 = plot(risk_wo,R_graph_wo,'--');
title('The Efficient Frontier (MVO)');
xlabel('Variance (\sigma)');
ylabel('Expected Return Goal (R)');
M1 = ('Short Selling');
M2 = ('Without Short Selling');
legend([a1;a2],M1,M2);
hold off
```

Part 2C

```
realized_return = zeros(3,1);
% Calculating realized return for Feb 2017
SPY_rr = (235.4457 - 226.634)/226.634;
GOVT_rr = (25.022 - 24.8923)/24.8923;
EEMV_rr = (51.71 - 50.72)/50.72;
realized_return(1,1) = SPY_rr;
realized_return(2,1) = GOVT_rr;
realized_return(3,1) = EEMV_rr;
R = 0.003; %Picked weights for expected return goal of 0.003
ham = weight(6,:);
ham_wo = weight_wo(12,:);
rr = dot(realized_return,ham); %Realized return of portfolio with ss
rr_wo = dot(realized_return,ham_wo); %without ss
```

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

0.2024 0.7976 0.0000

fval =

4.3023e-05

var =

0.0066