Graph Traversal

Graphs

Department of Computer Science

HCMC University of Technology, Viet Nam

05, 2020

Outline

Introduction

Terminology

Representations of graphs

Graph Traversal

Graph Problems

Outline

Introduction

Introduction •00

Graph

Introduction O O

 Each node may have multiple predecessors as well as multiple successors.

Graph

Introduction 0.00

- Each node may have multiple predecessors as well as multiple successors.
- Graphs are used to represent complex networks and solve related problems.

000

Applications

 Modeling connectivity in computer and communication networks.

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations

000

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations
- Modeling flow capacities in transportation networks.

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations
- Modeling flow capacities in transportation networks.
- Finding a path from a starting condition to a goal condition

000

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations
- Modeling flow capacities in transportation networks.
- Finding a path from a starting condition to a goal condition
- Modeling computer algorithms, showing transitions from one program state to another

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations
- Modeling flow capacities in transportation networks.
- Finding a path from a starting condition to a goal condition
- Modeling computer algorithms, showing transitions from one program state to another
- Finding an acceptable order for finishing subtasks in a complex activity, such as constructing large buildings.

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations
- Modeling flow capacities in transportation networks.
- Finding a path from a starting condition to a goal condition
- Modeling computer algorithms, showing transitions from one program state to another
- Finding an acceptable order for finishing subtasks in a complex activity, such as constructing large buildings.
- Modeling relationships such as family trees, business or military organizations, and scientific taxonomies.

Applications

- Modeling connectivity in computer and communication networks.
- Representing a map as a set of locations with distances between locations
- Modeling flow capacities in transportation networks.
- Finding a path from a starting condition to a goal condition
- Modeling computer algorithms, showing transitions from one program state to another
- Finding an acceptable order for finishing subtasks in a complex activity, such as constructing large buildings.
- Modeling relationships such as family trees, business or military organizations, and scientific taxonomies.

• ...

Introduction

Outline

Vertex (vertices)

0

- Vertex (vertices)
- Edge

- Vertex (vertices)
- Edge
- Sparse Dense Complete

- Vertex (vertices)
- Edge
- Sparse Dense Complete

- Vertex (vertices)
- Edge
- Sparse Dense Complete

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- **Directed Undirected**

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle
- Subgraph

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle
- Subgraph
- Connected Connected Components

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle
- Subgraph
- Connected Connected Components

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle
- Subgraph
- Connected Connected Components
- Acyclic Acyclic Directed Graph

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle
- Subgraph
- Connected Connected Components
- Acyclic Acyclic Directed Graph

Terminology

- Vertex (vertices)
- Edge
- Sparse Dense Complete
- Directed Undirected
- Labeled Weighted
- Adjacent vertices Neighbors
- Path Simple Length Cycle
- Subgraph
- Connected Connected Components
- Acyclic Acyclic Directed Graph
- Free tree

Outline

Adjacency matrix

- Adjacency matrix
 - Use a matrix for vertices and edges

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - Waste memory for sparse graph

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - Waste memory for sparse graph
 - Higher asymptotic cost

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - Waste memory for sparse graph
 - Higher asymptotic cost
- Adjacency list

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - · Waste memory for sparse graph
 - · Higher asymptotic cost
- Adjacency list
 - Use linked lists for vertices ans edges

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - · Waste memory for sparse graph
 - · Higher asymptotic cost
- Adjacency list
 - Use linked lists for vertices ans edges
 - Pros

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - · Waste memory for sparse graph
 - Higher asymptotic cost
- Adjacency list
 - Use linked lists for vertices ans edges
 - Pros
 - O(|V|+|E|) for space

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - · Waste memory for sparse graph
 - Higher asymptotic cost
- Adjacency list
 - Use linked lists for vertices ans edges
 - Pros
 - O(|V|+|E|) for space
 - · Suitable for sparse graph

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - · Waste memory for sparse graph
 - Higher asymptotic cost
- Adjacency list
 - Use linked lists for vertices ans edges
 - Pros
 - O(|V|+|E|) for space
 - Suitable for sparse graph
 - Cons

- Adjacency matrix
 - Use a matrix for vertices and edges
 - Pros
 - Suitable for dense graph
 - No overhead for pointers
 - Cons
 - Waste memory for sparse graph
 - Higher asymptotic cost
- Adjacency list
 - Use linked lists for vertices ans edges
 - Pros
 - O(|V|+|E|) for space
 - Suitable for sparse graph
 - Cons
 - Overhead for pointers

Adjacency Matrix Representations of Graph

Adjacency Matrix Representations of Graph

	0	1	2	3	4
0		1			1
1	1			1	1
2				1	1
2		1	1		
4	1	1	1		

Adjacency Matrix Representations of Graph

Adjacency List Representation of Graph

Adjacency List Representation of Graph

Outline

Introduction

Terminology

Representations of graphs

Graph Traversal

Graph Problems

Graph Traversal

• Depth-first search (DFS): all of a vertex's **descendents** are processed before an adjacent vertex

Graph Traversal

- Depth-first search (DFS): all of a vertex's descendents are processed before an adjacent vertex
- Breadth-first search (BFS): all adjacent vertices of a vertex are processed **before** the **descendents** of the vertex

Depth-first search implementation

Depth-first search implementation

Depth-first search implementation

Topological Sort

Topological Sort

g

е

а

Topological Sort

g

g

f

е

C

d

b

а

Outline

Graph Problems

Single-source shortest path problem

What?

Given Vertex S in Graph G, find a shortest path from S to every other vertex in G.

Why?

Find the cheapest way for one computer to broadcast a message to all other computers on the computer network.

How?

Dijkstra's algorithm

Dijkstra's algorithm

 Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree

Dijkstra's algorithm

- 1. Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree
- 2. Assign a distance value (0 for first, ∞ for others) to all vertices in the input graph.

- Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree
- 2. Assign a distance value (0 for first, ∞ for others) to all vertices in the input graph.
- 3. While sptSet doesn't include all vertices

- Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree
- 2. Assign a distance value (0 for first, ∞ for others) to all vertices in the input graph.
- 3. While sptSet doesn't include all vertices
 - 3.1 Pick a vertex $u \notin sptSet$ and has minimum distance value.

- 1. Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree
- 2. Assign a distance value (0 for first, ∞ for others) to all vertices in the input graph.
- 3. While sptSet doesn't include all vertices
 - 3.1 Pick a vertex u ∉ sptSet and has minimum distance value.
 - 3.2 Include u to sptSet.

- 1. Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree
- 2. Assign a distance value (0 for first, ∞ for others) to all vertices in the input graph.
- 3. While sptSet doesn't include all vertices
 - 3.1 Pick a vertex $u \notin sptSet$ and has minimum distance value.
 - 3.2 Include u to sptSet.
 - 3.3 For every adjacent vertex v of u, if sum of distance value of u (from source) and weight of edge u-v, is less than the distance value of v, then update the distance value of v.

	a	b	С	d	e	f
Initial		∞	∞	∞	∞	∞
Proc.a	0	7	∞	5	∞	∞

	a	b	С	d	e	f
Initial	0	∞	∞	∞	∞	∞
Proc.a	0	7	∞	5	∞	∞
Proc.d	0	6	∞	5	20	11

	a	b	С	d	е	f
Initial	0	∞	∞	∞	∞	∞
Proc.a	0	7	∞	5	∞	∞
Proc.d	0	6	∞	5	20	11
Proc.b	0	6	14	5	8	11

	a	b	С	d	е	f
Initial	0	∞	∞	∞	∞	∞
Proc.a	0	7	∞	5	∞	∞
Proc.d	0	6	∞	5	20	11
Proc.b	0	6	14	5	8	11
Proc.?	0	6		5		
Proc.?	0	6		5		
Proc.?	0	6		5		

Graph Problems

What?

• Spanning tree: tree that contains all of the vertices in a connected graph.

Why?

What?

- Spanning tree: tree that contains all of the vertices in a connected graph.
- Minimum spanning tree: spanning tree such that the sum of its weights are minimal.

Why?

Graph Problems

What?

- Spanning tree: tree that contains all of the vertices in a connected graph.
- Minimum spanning tree: spanning tree such that the sum of its weights are minimal.

Why?

Communication

What?

- Spanning tree: tree that contains all of the vertices in a connected graph.
- Minimum spanning tree: spanning tree such that the sum of its weights are minimal.

Why?

- Communication
- Water supply

Graph Problems

What?

- Spanning tree: tree that contains all of the vertices in a connected graph.
- Minimum spanning tree: spanning tree such that the sum of its weights are minimal.

Why?

- Communication
- Water supply
- Electricity Transmission

What?

- Spanning tree: tree that contains all of the vertices in a connected graph.
- Minimum spanning tree: spanning tree such that the sum of its weights are minimal.

Why?

- Communication
- Water supply
- Electricity Transmission

How?

· Prim's algorithm

What?

- Spanning tree: tree that contains all of the vertices in a connected graph.
- Minimum spanning tree: spanning tree such that the sum of its weights are minimal.

Why?

- Communication
- Water supply
- Electricity Transmission

- Prim's algorithm
- Kruskal's algorithm

Prim's Algorithm

- Create a set mstSet that keeps track of vertices already included in MST.
- 2. Assign a key value (0 for first,∞ for others) to all vertices in the input graph.
- 3. While mstSet doesn't include all vertices
 - 3.1 Pick a vertex $u \notin mstSet$ and has minimum key value.
 - 3.2 Include u to mstSet.
 - 3.3 For every adjacent vertex v of u, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v

Kruskal's Algorithm

1. Sort all the edges in non-decreasing order of their weight.

Kruskal's Algorithm

- 1. Sort all the edges in non-decreasing order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.

Kruskal's Algorithm

- 1. Sort all the edges in non-decreasing order of their weight.
- 2. Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step #2 until there are (V-1) edges in the spanning tree.

Summary

- Terminology
- Graph Representations: Adjacent Matrix, Adjacent List
- Graph Traversal: DFS, BFS
- Topological Sort
- Graph Problems: Shortest-Path, MST