```
In [2]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [11]: from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

```
In [15]: #Reading the dataset
df=pd.read_csv(r"C:\Users\DELL E5490\Downloads\bottle.csv\bottle.csv")
df
```

```
C:\Users\DELL E5490\AppData\Local\Temp\ipykernel_21352\3515022055.py:1: DtypeWarning: Columns (47,73) have mixed typ
es. Specify dtype option on import or set low_memory=False.
    df=pd.read_csv(r"C:\Users\DELL E5490\Downloads\bottle.csv\bottle.csv")
```

Out[15]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1	DIC:
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	 NaN	0	NaN	NaN	NaN
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	 NaN	8	NaN	NaN	NaN
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	 NaN	10	NaN	NaN	Nal
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	 NaN	19	NaN	NaN	NaN
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	 NaN	20	NaN	NaN	NaN
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	 0.18	0	NaN	NaN	Nal

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1	DIC
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	 0.18	2	4.0	NaN	Nal
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	 0.18	5	3.0	NaN	Nah
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	 0.31	10	2.0	NaN	Nan
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.66	 0.61	15	1.0	NaN	Nah

864863 rows × 74 columns

```
In [17]: df=df[['Salnty','T_degC']]
    df.columns=['Sal','Temp']
    df.head(10)
```

Out[17]:

		Sal	Temp
_	0	33.440	10.50
	1	33.440	10.46
:	2	33.437	10.46
;	3	33.420	10.45
•	4	33.421	10.45
,	5	33.431	10.45
(6	33.440	10.45
•	7	33.424	10.24
8	8	33.420	10.06
9	9	33.494	9.86

In [22]: #displaying only the 1st rows along with column name
 #step-3 explaining the data scatter_plotting the data scatter
 sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[22]: <seaborn.axisgrid.FacetGrid at 0x1c0a7363d30>


```
In [23]: df.describe()
Out[23]:
                         Sal
                                    Temp
          count 817509.000000 853900.000000
                    33.840350
                                 10.799677
           mean
                     0.461843
                                  4.243825
            std
                    28.431000
                                  1.440000
            min
           25%
                    33.488000
                                 7.680000
            50%
                    33.863000
                                 10.060000
           75%
                    34.196900
                                 13.880000
           max
                    37.034000
                                 31.140000
In [24]: df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
              Column Non-Null Count
                                        Dtype
               Sal
                       817509 non-null float64
                       853900 non-null float64
              Temp
          dtypes: float64(2)
         memory usage: 13.2 MB
In [27]: #step-4 data cleaning-eliminating non or
         df.fillna(method = 'ffill',inplace = True)
         C:\Users\DELL E5490\AppData\Local\Temp\ipykernel 21352\3028625988.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
         s-a-copy)
           df.fillna(method = 'ffill',inplace = True)
```

```
In [32]: x=np.array(df['Sal']).reshape(-1,1)
         y=np.array(df['Temp']).reshape(-1,1)
In [33]: df.dropna(inplace = True)
         C:\Users\DELL E5490\AppData\Local\Temp\ipykernel 21352\1791587065.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
         s-a-copy)
           df.dropna(inplace = True)
In [35]: #dropna(inplace=True)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
In [37]: #splitting the data into training and testing data
         regr=LinearRegression()
         regr.fit(x train,y train)
         print(regr.score(x test,y test))
```

0.20713334872991773

```
In [38]: #step-6 exploring our results
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [51]: #step-7 working with a smaller dataset
df500=df[:][:500]
sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)
```

Out[51]: <seaborn.axisgrid.FacetGrid at 0x1c0a2933be0>


```
In [52]: df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.2035916087899431


```
In [53]: #step-8 evaluation of the model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
#train the model
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2.score:",r2)

R2.score: 0.2035916087899431
In []:
```