Siemens Logo Here

Lehrstuhl für Hochfrequenztechnik Technische Universität München Prof. Dr.-Ing. Thomas Eibert

Master's Thesis

Object Classification based on Micro-Doppler Signatures

Alexis González Argüello

Munich, 26-10-2017

Faculty: Electro- und Informationstechnik

Matriculation Number: 03640751

Reviewer: Prof. Dr.-Ing. Thomas Eibert **Supervisor:** M. Sc. Dipl.-Ing. Dominic Berges

Beginning of the Thesis: 01-10-2017 **End of the Thesis:** 26-10-2017

Sperrvermerk

Declaration of Authorship

Contents

1.	Introduction	1
2.	Radar Fundamentals 2.1. Radar Definitions 2.2. Signal Model 2.3. Detection Theory 2.4. Ranging 2.5. Doppler Ranging 2.6. MIMO Radars 2.6.1. The Virtual Array Concept 2.6.2. Space-Time Processing 2.6.3. Azimuth-Range Detection	3 3 4 4 4 4 4 4 4 4 4 4
3.	Multi-Target Tracking 3.1. The Kalman Filter 3.2. Gating Techniques 3.3. The Assignment Problem 3.3.1. NN-approach 3.3.2. PDA-approach 3.3.3. JPDA-approach 3.4. Track Life Stages 3.5. Maneuver Detection and Adaptive Filtering	5 5 5 5 5 5 5 5 5
4.	Micro-Doppler Signatures	7
5.	Classification	9
6.	Results	11
7.	Summary and Outlook	13
Αŗ	opendix A. Symbols and Constants	15
Αŗ	opendix B. Mathematical Formulas	17

1. Introduction

2. Radar Fundamentals

Due two its wide spectrum of applications, radars systems have become important measurement instruments since the last century.

This introductory chapter is organized as follows. Section 2.1 explains the basic terminology used in the scientific community of radars. Section 2.2 presents a simple signal model used to explain the signal processing steps that take place to estimate the range (2.4) and doppler-range (2.5) of targets

2.1. Radar Definitions

Range

$$R = \frac{c_0 \Delta t}{2} \tag{2.1}$$

Pulse repetition interval (PRI)

$$f_r = \frac{1}{T} \tag{2.2}$$

Unambiguous range R_u

Figure 2.1.: Illustrating the unambiguous range

2. Radar Fundamentals

- 2.2. Signal Model
- 2.3. Detection Theory
- 2.4. Ranging
- 2.5. Doppler Ranging
- 2.6. MIMO Radars
- 2.6.1. The Virtual Array Concept
- 2.6.2. Space-Time Processing
- 2.6.3. Azimuth-Range Detection

3. Multi-Target Tracking

- 3.1. The Kalman Filter
- 3.2. Gating Techniques
- 3.3. The Assignment Problem
- 3.3.1. NN-approach
- 3.3.2. PDA-approach
- 3.3.3. JPDA-approach
- 3.4. Track Life Stages
- 3.5. Maneuver Detection and Adaptive Filtering

4.	Micro-Doppler Signatures	

5. Classification

6. Results

7.	Summary	and	Out]	look	<

A. Symbols and Constants

General

 \oint Integration over a closed curve

Latin alphabet

R Range

R_u Unambiguous Range

Greek alphabet

 ΔT Delay

Constants

 $c_0 = 299729458 \,\mathrm{m/s}$

D	NALL	ematical	[Coumil	مما
D.	Wiatii	emancai	. FOITHU	las

Bibliography