Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction

Dr Ansamma John, Abhishek MC, Ananthu S Ajayan, Sanoop S and Vishnu R Kumar

Présenté par : Philippe SAVARD - Gaspard PETITCLAIR

Plan de présentation

- I. Contexte applicatif
- II. Objectifs du projet
- III. Méthodologie
- IV. Configuration
- V. Analyse et résultats
- VI. Conclusion

Contexte applicatif

Contexte applicatif

- Détection en temps réel des émotions
- Amélioration des méthodes traditionnelles par CNN
 - o Points clés du visage
 - Histogramme des orientations du gradient

Objectifs du projet

Objectifs du projet

- Implémenter la méthodologie proposée
 - Implémenter et entraîner des réseaux CNN
 - Tester différents prétraitements
- Comparer les résultats obtenus avec ceux de l'article afin d'en faire l'analyse
- Évaluer la précision pour différents prétraitements
 - CNN uniquement
 - CNN + points clés
 - o CNN + points clés + HOG

Méthodologie

Méthodologie

1. Hors ligne

- a. Détection de la région d'intérêt du visage
- b. Extraction et sauvegarde des features
- c. Entraînement et enregistrement des réseaux

2. En ligne

- a. Démarrage de la caméra
- b. Image par image:
 - i. Détection de la région d'intérêt du visage
 - ii. Extraction des features
 - iii. Classification par CNN

Détection du visage et prétraitement

Conversion de l'image en tons de gris avec OpenCV

Recadrage et détection des points clés avec la librairie DLIB

Extraction du HOG

Dataset FER2013

Banque d'images étiquetées avec 7 émotions :

- 1. Colère
- 2. Dégoût
- 3. Peur
- 4. Joie
- 5. Tristesse
- 6. Neutre
- 7. Surprise

Extraction des éléments clés avec dlib

Figure 1. - Points clés du visage extraits par dlib [1]

Extraction du HOG avec skimage

Structure des réseaux de neurones utilisés

Figure 2. - Architecture du CNN proposée par l'article [2]

Structure des réseaux de neurones utilisés

Analyse et résultats

Analyse des performances

Précision atteinte après 15 epochs:

<u>CNN</u>: 56,05%

CNN + Landmarks : 53,37%

CNN + Landmarks + HOG : 53,82%

ACCURACY WHEN FEATURE DESCRIPTORS ARE INCLUDED

Experiments	Accuracy	
	JAFFE	FER2013
CNN (on raw data)	90.698%	73.5%
CNN + Facial landmarks	91.2%	74.4%
CNN + Facial landmarks + HOG	90.698%	73.2%

Figure 3. - Résultats de l'article [2]

Conclusion

Limitations

- Détails de l'implémentation des réseaux CNN insuffisants pour reproduire les résultats intégralement
- Base de données plutôt subjective
- > JAFFE non disponible pour le public
- Temps d'entraînement très grand pour un obtenir les résultats présentés dans l'article

Apprentissages

- Apprendre comment entraîner un réseau de neurones avec Tensorflow
- Happy

- Comprendre les impacts des paramètres sur la performance du réseau
- Utiliser un réseau CNN dans une application multimédia concrète

Références

[1] Adrian Rosebrock. (Avril 2017). *Detect eyes, nose, lips, and jaw with dlib, OpenCV, and Python.* pyimagesearch.

https://www.pyimagesearch.com/2017/04/10/detect-eyes-nose-lips-jaw-dlib-opencv-python/

[2] A. John, A. MC, A. S. Ajayan, S. Sanoop and V. R. Kumar, "Real-Time Facial Emotion Recognition System With Improved Preprocessing and Feature Extraction," 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 2020, pp. 1328-1333, doi: 10.1109/ICSSIT48917.2020.9214207.