Package 'rTorch'

October 14, 2022

Title R Bindings to 'PyTorch'

Version 0.4.2

'PyTorch' functions, methods and classes. The key object in 'PyTorch' is the tensor which is in essence a multidimensional array. These tensors are fairly flexible in performing calculations in CPUs as well as 'GPUs' to accelerate tensor operations. License MIT + file LICENSE **Encoding UTF-8** LazyData true **Depends** R (>= 3.1)**Imports** reticulate (>= 1.10), jsonlite (>= 1.2), utils, methods, rstudioapi (>= 0.7), Suggests testthat, knitr, rmarkdown SystemRequirements ``conda (python>=3.6 pytorch torchvision cpuonly numpy (>= 1.14.0) matplotlib pandas -c pytorch); python-minimal, pandoc pandoc-citeproc, qpdf; Python (>=3.6), pytorch (>=1.4), torchvision, cpuonly, numpy (>=1.14.0); pandoc (\geq 2.0), qpdf (\geq 7.0) on Solaris" RoxygenNote 7.1.1 URL https://github.com/f0nzie/rTorch BugReports https://github.com/f0nzie/rTorch/issues VignetteBuilder knitr NeedsCompilation no **Author** Alfonso R. Reyes [aut, cre, cph] Maintainer Alfonso R. Reyes <alfonso.reyes@oilgainsanalytics.com> **Repository** CRAN **Date/Publication** 2020-10-12 15:20:02 UTC

Description 'R' implementation and interface of the Machine Learning platform

environment with 'torch' and 'torchvision' Python packages to provide

'PyTorch' https://pytorch.org/ developed in 'Python'. It requires a 'conda'

29

Index

R topics documented:

*.torch.Tensor	3
+.torch.Tensor	3
torch.Tensor	4
/.torch.Tensor	5
<.torch.Tensor	5
<=.torch.Tensor	6
==.torch.Tensor	7
>.torch.Tensor	7
>=.torch.Tensor	8
all.torch.Tensor	9
all_dims	0
any.torch.Tensor	0
as_boolean	1
dataset_mnist_digits	2
dim.torch.Tensor	2
install_pytorch	3
is_tensor	4
length.torch.Tensor	4
log.torch.Tensor	5
log10.torch.Tensor	6
log2.torch.Tensor	6
logical_and	7
logical_not	7
logical_or	8
make_copy	9
not_equal_to	9
one_tensor_op	0
rTorch	0
shape	1
tensor_ops	1
torch	2
torch_extract_opts	3
torch_size	4
[.torch.Tensor	5
%.*%	7
%%.torch.Tensor	7
%**%	8

*.torch.Tensor

*.torch.Tensor

Tensor multiplication

Description

This generic is similar to torch\$mul(a, b)

Usage

```
## S3 method for class 'torch.Tensor' a \star b
```

Arguments

```
a tensorb tensor
```

Value

Another tensor representing the multiplication of two tensors.

Examples

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))
b <- torch$Tensor(list(2, 2, 2))
s <- 2.0
a * b
## End(Not run)</pre>
```

+.torch.Tensor

Add two tensors

Description

This generic is similar to applying torch\$add(a, b)

Usage

```
## S3 method for class 'torch.Tensor'
a + b
```

4 -.torch.Tensor

Arguments

```
a tensor b tensor
```

Value

Another tensor representing the addition of two tensors.

Examples

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))
b <- torch$Tensor(list(2, 2, 2))
s <- 2.0
a + b
## End(Not run)</pre>
```

-.torch.Tensor

Subtract two tensors

Description

This generic is similar to applying torch\$sub(a, b)

Usage

```
## S3 method for class 'torch.Tensor'
a - b
```

Arguments

a tensor b tensor

Value

Another tensor representing the subtraction of two tensors.

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))
b <- torch$Tensor(list(2, 2, 2))
s <- 2.0
a - b
## End(Not run)</pre>
```

/.torch.Tensor 5

/.torch.Tensor

Divide two tensors

Description

This generic is similar to torch\$div(a, b)

Usage

```
## S3 method for class 'torch.
Tensor' a / b \,
```

Arguments

a tensor b tensor

Value

Another tensor representing the division of two tensors.

Examples

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))
b <- torch$Tensor(list(2, 2, 2))
s <- 2.0
a / b
## End(Not run)</pre>
```

<.torch.Tensor

Is a tensor less than another tensor

Description

This generic is similar to torch\$lt(a, b)

Usage

```
## S3 method for class 'torch.
Tensor' a < b
```

Arguments

```
a tensor b tensor
```

6 <=.torch.Tensor

Value

A tensor of booleans representing the logical result of the comparison. False to represent 0, and True to represent 1 in a tensor of data type torch\$uint8.

Examples

```
## Not run:
A <- torch$ones(28L, 28L)
C <- A * 0.5
A < C
## End(Not run)</pre>
```

<=.torch.Tensor

Is a tensor less or equal than another tensor

Description

This generic is similar to torch\$le(a, b)

Usage

```
## S3 method for class 'torch.Tensor'
a <= b</pre>
```

Arguments

a tensor b tensor

Value

A tensor of booleans representing the logical result of the comparison. False to represent 0, and True to represent 1 in a tensor of data type torch\$uint8.

```
## Not run:
A <- torch$ones(5L, 5L)
C <- torch$as_tensor(np$random$randint(2L, size=c(5L, 5L)), dtype=torch$float32)
A <= C
C <= A
## End(Not run)</pre>
```

==.torch.Tensor

==.torch.Tensor

Compares two tensors if equal

Description

This generic is approximately similar to torch\$eq(a, b), with the difference that the generic returns a tensor of booleans instead of a tensor of data type torch\$uint8.

Usage

```
## S3 method for class 'torch.Tensor' x == y
```

Arguments

```
x tensor
y tensor
```

Value

A tensor of booleans, where False corresponds to 0, and 1 to True in a tensor of data type torch\$bool.

Examples

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))
b <- torch$Tensor(list(2, 2, 2))
a == b
## End(Not run)</pre>
```

>.torch.Tensor

A tensor greater than another tensor

Description

This generic is similar to torch\$gt(a, b)

Usage

```
## S3 method for class 'torch.Tensor' a > b
```

8 >=.torch.Tensor

Arguments

a tensorb tensor

Value

A tensor of booleans representing the logical result of the comparison. False to represent 0, and True to represent 1 in a tensor of data type torch\$uint8.

Examples

```
## Not run:
A <- torch$ones(5L, 5L)
C <- torch$as_tensor(np$random$randint(2L, size=c(5L, 5L)), dtype=torch$float32)
A > C
C > A
## End(Not run)
```

>=.torch.Tensor

Is a tensor greater or equal than another tensor

Description

This generic is similar to torch\$ge(a, b)

Usage

```
## S3 method for class 'torch.Tensor'
a >= b
```

Arguments

a tensorb tensor

Value

A tensor of booleans representing the logical result of the comparison. False to represent 0, and True to represent 1 in a tensor of data type torch\$uint8.

all.torch.Tensor

Examples

```
## Not run:
A <- torch$ones(5L, 5L)
C <- torch$as_tensor(np$random$randint(2L, size=c(5L, 5L)), dtype=torch$float32)
A >= C
C >= A

## End(Not run)

all.torch.Tensor all
```

Description

Returns True if all elements in the tensor are non-zero, False otherwise.

Usage

```
## S3 method for class 'torch. Tensor' all(x, dim, ...)
```

Arguments

```
x tensor
dim dimension to reduce
... other parameters (yet to be developed)
```

Value

A tensor of type torch.uint8 representing the boolean result: 1 for TRUE and 0 for FALSE.

10 any.torch.Tensor

all_dims

All dims

Description

This function returns an object that can be used when subsetting tensors with [.] If you are familiar with Python, this is equivalent to the Python Ellipsis ..., (not to be confused with ... in R). In Python, if x is a numpy array or a torch tensor, in x[..., i] the ellipsis means "expand to match number of dimension of x". To translate the above Python expression to R, write: $x[all_dims(), i]$.

Usage

```
all_dims()
```

Examples

any.torch.Tensor

any

Description

Returns True if any elements in the tensor are non-zero, False otherwise.

Usage

```
## S3 method for class 'torch. Tensor' any(x, dim, ...)
```

as_boolean 11

Arguments

```
x tensordim dimension to reduce... other params (yet to be developed)
```

Value

A tensor of type torch.uint8 representing the boolean result: 1 for TRUE and 0 for FALSE.

Examples

as_boolean

Convert tensor to boolean type

Description

Convert a tensor to a boolean equivalent tensor

Usage

```
as_boolean(x)
```

Arguments

a torch tensor

```
## Not run:
uo <- torch$ones(3L)
as_boolean(uo)  # tensor([True, True, True], dtype=torch.bool)
## End(Not run)</pre>
```

12 dim.torch.Tensor

Description

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a test set of 10,000 images.

Usage

```
dataset_mnist_digits(ntrain = 60000L, ntest = 10000L, onehot = TRUE)
```

Arguments

ntrain number of training samples ntest number of test samples

onehot boolean

dim.torch.Tensor

Dimensions of a tensor

Description

Get the dimensions of a tensor displaying it as a vector.

Usage

```
## S3 method for class 'torch.Tensor'
dim(x)
```

Arguments

tensor

Value

a vector of integers with the dimensions of the tensor

```
## Not run:
uo = torch$ones(3L, 5L) # it is a 3x5 tensor
dim(uo)
## End(Not run)
```

install_pytorch 13

install_pytorch

Install PyTorch and its dependencies

Description

Install PyTorch and its dependencies

Usage

```
install_pytorch(
  method = c("conda", "virtualenv", "auto"),
  conda = "auto",
  version = "default",
  envname = "r-torch",
  extra_packages = NULL,
  restart_session = TRUE,
  conda_python_version = "3.6",
  pip = FALSE,
  channel = "stable",
  cuda_version = NULL,
  dry_run = FALSE,
  ...
)
```

Arguments

The path to a conda executable. Use "auto" to allow reticulate to automatically find an appropriate conda binary. See Finding Conda for more details. version PyTorch version to install. The "default" version is 1.4. You can specify a specific PyTorch version with version="1.2", or version="1.6". envname Name of Python or conda environment to install within. The default environment name is r-torch. extra_packages Additional Python packages to install along with PyTorch. If more than one package use a character vector: c("pandas", "matplotlib"). restart_session Restart R session after installing (note this will only occur within RStudio). conda_python_version the Python version installed in the created conda environment. Python 3.4 is installed by default. But you could specify for instance: conda_python_version="3.7".	method	Installation method. By default, "auto" automatically finds a method that will work in the local environment. Change the default to force a specific installation method. Note that the "virtualenv" method is not available on <i>Windows</i> (as this isn't supported by <i>PyTorch</i>). Note also that since this command runs without privillege the "system" method is available only on <i>Windows</i> .	
specific PyTorch version with version="1.2", or version="1.6". envname Name of Python or conda environment to install within. The default environment name is r-torch. extra_packages Additional Python packages to install along with PyTorch. If more than one package use a character vector: c("pandas", "matplotlib"). restart_session Restart R session after installing (note this will only occur within RStudio). conda_python_version the Python version installed in the created conda environment. Python 3.4 is in-	conda	1	
ment name is r-torch. extra_packages Additional Python packages to install along with PyTorch. If more than one package use a character vector: c("pandas", "matplotlib"). restart_session Restart R session after installing (note this will only occur within RStudio). conda_python_version the Python version installed in the created conda environment. Python 3.4 is in-	version	· · ·	
package use a character vector: c("pandas", "matplotlib"). restart_session Restart R session after installing (note this will only occur within RStudio). conda_python_version the Python version installed in the created conda environment. Python 3.4 is in-	envname	•	
Restart R session after installing (note this will only occur within RStudio). conda_python_version the <i>Python</i> version installed in the created <i>conda</i> environment. Python 3.4 is in-	extra_packages		
conda_python_version the <i>Python</i> version installed in the created <i>conda</i> environment. Python 3.4 is in-	restart_session		
the Python version installed in the created conda environment. Python 3.4 is in-		Restart R session after installing (note this will only occur within RStudio).	
·	conda_python_version		
		•	
pip logical	pip	logical	

14 length.torch.Tensor

nightly.

cuda_version string for the cuda toolkit version to install. For example, to install a specific CUDA version use cuda_version="10.2".

conda channel. The default channel is stable. The alternative channel is

dry_run logical, set to TRUE for unit tests, otherwise will execute the command.

... other arguments passed to reticulate::conda_install() or reticulate::virtualenv_install().

Description

channel

Determine if the object is a tensor by looking inheritance

Usage

```
is_tensor(obj)
```

Arguments

obj an object

length.torch.Tensor *Length of a tensor.*

Description

This function is equivalent to torch\$numel()

Usage

```
## S3 method for class 'torch.Tensor'
length(x)
```

Arguments

x tensor

Value

the number of elements of a tensor as an integer

log.torch.Tensor

Examples

```
## Not run:
uo = torch$ones(3L, 5L)  # tensor with 15 elements
length(uo)
## End(Not run)
```

log.torch.Tensor

Logarithm of a tensor given the tensor and the base

Description

Logarithm of a tensor given the tensor and the base

Usage

```
## S3 method for class 'torch.Tensor'
log(x, base = exp(1L))
```

Arguments

```
x a tensor
base the base of the logarithm
```

```
## Not run:
x <- torch$tensor(c(512, 1024, 2048, 4096))  # tensor([ 9., 10., 11., 12.])
base <- 2
log(x, base)

x <- torch$tensor(c(1, 10, 100, 1000))  # tensor([0., 1., 2., 3.])
log(x, 10)

## End(Not run)</pre>
```

log2.torch.Tensor

log10.torch.Tensor

Logarithm of a tensor in base 10

Description

Logarithm of a tensor in base 10

Usage

```
## S3 method for class 'torch.Tensor'
log10(x)
```

Arguments

Χ

a tensor

Examples

```
## Not run:
x <- torch$tensor(c(1, 10, 100, 1000)) # tensor([0., 1., 2., 3.])
## End(Not run)</pre>
```

log2.torch.Tensor

Logarithm of a tensor in base 2

Description

Logarithm of a tensor in base 2

Usage

```
## S3 method for class 'torch.Tensor' log2(x)
```

Arguments

Х

a tensor

```
## Not run:
x <- torch$tensor(c(512, 1024, 2048, 4096)) # tensor([ 9., 10., 11., 12.])
## End(Not run)</pre>
```

logical_and 17

logical_and

Logical AND of two tensors

Description

There is not equivalent function in PyTorch for this generic. To generate this generic we use the function np\$logical_and().

Usage

```
## S3 method for class 'torch.Tensor'
x & y
```

Arguments

```
x tensor
y tensor
```

Value

A tensor of booleans representing the logical result of the comparison. False to represent 0, and True to represent 1 in a tensor of data type torch\$uint8.

Examples

```
## Not run:
A <- torch$BoolTensor(list(0L, 1L))
B <- torch$BoolTensor(list(1L, 0L))
C <- torch$BoolTensor(list(1L, 1L))
A & B
C & A
B & C
## End(Not run)</pre>
```

logical_not

Logical NOT of a tensor

Description

There is not equivalent function in PyTorch for this generic. To generate This generic we use the function nplogical_not(x)$.

Usage

```
## S3 method for class 'torch.Tensor' !x
```

logical_or

Arguments

x tensor

Value

A tensor of booleans, where False corresponds to 0, and 1 to True in a tensor of data type torch\$bool.

Examples

```
## Not run:
A <- torch$ones(5L)
!A

Z <- torch$zeros(5L)
!Z

## End(Not run)</pre>
```

logical_or

Logical OR of two tensors

Description

There is not equivalent function in PyTorch for this generic. To generate this generic we use the function np\$logical_or().

Usage

```
## S3 method for class 'torch.
Tensor' x | y
```

Arguments

x tensory tensor

Value

A tensor of booleans representing the logical result of the comparison. False to represent 0, and True to represent 1 in a tensor of data type torch\$uint8.

make_copy 19

Examples

```
## Not run:
A <- torch$BoolTensor(list(OL, 1L))
B <- torch$BoolTensor(list(1L, OL))
C <- torch$BoolTensor(list(1L, 1L))
A | B
C | A
B | C
## End(Not run)</pre>
```

make_copy

Make copy of tensor, numpy array or R array

Description

A copy of an array or tensor might be needed to prevent warnings by new PyTorch versions on overwriting the numpy object

Usage

```
make_copy(object, ...)
```

Arguments

object a torch tensor or numpy array or R array additional parameters

not_equal_to

Compare two tensors if not equal

Description

This generic is approximately similar to torch\$ne(a, b), with the difference that the generic returns a tensor of booleans instead of a tensor of data type torch\$uint8.

Usage

```
## S3 method for class 'torch.Tensor' x != y
```

Arguments

```
x tensor
y tensor
```

20 rTorch

Value

A tensor of booleans, where False corresponds to 0, and 1 to True in a tensor of data type torch\$bool.

Examples

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))
b <- torch$Tensor(list(2, 2, 2))
a != b
## End(Not run)</pre>
```

one_tensor_op

One tensor operation

Description

One tensor operation

Usage

```
one_tensor_op(x)
## S3 method for class 'torch.Tensor'
exp(x)
```

Arguments

Х

tensor

Methods (by class)

• torch. Tensor: Exponential of a tensor

Examples

```
## Not run:
A <- torch$ones(c(60000L, 1L, 28L, 28L))
dim(A)
## End(Not run)</pre>
```

rTorch

PyTorch for R

Description

PyTorch bindings for R

shape 21

shape

Tensor shape

Description

Tensor shape

Usage

```
shape(...)
```

Arguments

... Tensor dimensions

tensor_ops

Two tensor operations

Description

Two tensor operations

Usage

```
tensor_ops(a, b)
## S3 method for class 'torch.Tensor'
a ^ b
```

Arguments

a tensorb tensor

Methods (by class)

• torch. Tensor: A tensor 'a' to the power of 'b'

22 torch

Examples

```
## Not run:
a <- torch$Tensor(list(1, 1, 1))</pre>
b <- torch$Tensor(list(2, 2, 2))</pre>
s <- 2.0
a + b
b - a
a * b
a / s
a == b
a == a
a != a
x \leftarrow torch\Tensor(list(list(2, 2, 2), list(4, 4, 4)))
y \leftarrow torch$Tensor(list(list(1, 2, 1), list(3, 4, 5)))
x > y
x < y
x >= y
y <= x
diag <- torch$eye(3L)</pre>
zeros <- torch$zeros(c(3L, 3L))</pre>
diag & zeros
diag & diag
diag | diag
zeros | zeros
zeros & zeros
diag & zeros
diag | zeros
## End(Not run)
## Not run:
x <- torch$arange(1,11)</pre>
                          x^(2)
torch$pow(x, 2)
torch$pow(x, -2)
                   #
                          x^(1/2)
## End(Not run)
```

torch

Main PyTorch module

Description

Interface to main PyTorch module. Provides access to top level classes

Interface to numpy module.

Interface to Torchvision module.

torch_extract_opts 23

Usage

torch np

torchvision

Format

PyTorch module numpy module Torchyision module

torch_extract_opts

Tensor extract options

Description

Tensor extract options

Usage

```
torch_extract_opts(
    style = getOption("torch.extract.style"),
    ...,
    one_based = getOption("torch.extract.one_based", TRUE),
    inclusive_stop = getOption("torch.extract.inclusive_stop", TRUE),
    disallow_out_of_bounds = getOption("torch.extract.dissallow_out_of_bounds", TRUE),
    warn_tensors_passed_asis = getOption("torch.extract.warn_tensors_passed_asis", TRUE),
    warn_negatives_pythonic = getOption("torch.extract.warn_negatives_pythonic", TRUE)
)
```

Arguments

one of NULL (the default) "R" or "python". If supplied, this overrides all other options. "python" is equivalent to all the other arguments being FALSE. "R"

is equivalent to warn_tensors_passed_asis and warn_negatives_pythonic

set to FALSE

... ignored

one_based TRUE or FALSE, if one-based indexing should be used

 $\verb|inclusive_stop| TRUE \ or \ FALSE, if slices \ like \ \verb|start:stop| should \ be \ inclusive \ of \ \verb|stop| \\$

disallow_out_of_bounds

TRUE or FALSE, whether checks are performed on the slicing index to ensure it is within bounds.

24 torch_size

```
warn_tensors_passed_asis
```

TRUE or FALSE, whether to emit a warning the first time a tensor is supplied to [that tensors are passed as-is, with no R to python translation

warn_negatives_pythonic

TRUE or FALSE, whether to emit a warning the first time a negative number is supplied to [about the non-standard (python-style) interpretation

Value

an object with class "torch_extract_opts", suitable for passing to [.torch.tensor()

Examples

```
## Not run:

x <- torch$arange(1L, 10L)

opts <- torch_extract_opts("R")
x[1, options = opts]

# or for more fine-grained control
opts <- torch_extract_opts(
    one_based = FALSE,
    warn_tensors_passed_asis = FALSE,
    warn_negatives_pythonic = FALSE
)
x[0:2, options = opts]

## End(Not run)</pre>
```

torch_size

Size of a torch tensor object

Description

Get the size of a torch tensor or of torch.size object

Usage

```
torch_size(obj)
```

Arguments

obj

a torch tensor object

[.torch.Tensor 25

[.torch.Tensor Subset tensors with [

Description

Subset tensors with [

Usage

```
## S3 method for class 'torch.Tensor'

x[
    ...,
    drop = TRUE,
    style = getOption("torch.extract.style"),
    options = torch_extract_opts(style)
]
```

Arguments

```
x a tensor
... slicing specs. See examples and details.
drop whether to drop scalar dimensions
style One of "python" or "R".
options An object returned by torch_extract_opts()
```

```
## Not run:
x <- torch$arange(0L, 15L)$view(3L, 5L)

# by default, numerics supplied to `...` are interpreted R style
x[,1]  # first column
x[1:2,]  # first two rows
x[,1, drop = FALSE]

# strided steps can be specified in R syntax or python syntax
x[, seq(1, 5, by = 2)]
x[, 1:5:2]

# if you are unfamiliar with python-style strided steps, see:
# https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html#basic-slicing-and-indexing
# missing arguments for python syntax are valid, but they must by backticked
# or supplied as NULL
x[, `::2`]
x[, NULL:NULL:2]</pre>
```

26 [.torch.Tensor

```
x[, `2:`]
# Another Python feature that is available is a Python style ellipsis `...`
# (not to be confused with R dots `...`), that in R has been defined as
# all_dims() expands to the shape of the tensor
y <- torch$arange(0L, 3L^5L)$view(3L, 3L, 3L, 3L, 3L)</pre>
as.logical((all(y[all_dims(), 1] == y[,,,,1]))$numpy()) == TRUE
# negative numbers are always interpreted Python style
# The first time a negative number is supplied to `[`, a warning is issued
# about the non-standard behavior.
x[-1,] # last row, with a warning
x[-1,] # the warning is only issued once
# specifying `style = 'python'` changes the following:
# + zero-based indexing is used
# + slice sequences in the form of `start:stop` do not include `stop`
     in the returned value
# + out-of-bounds indices in a slice are valid
# The style argument can be supplied to individual calls of `[` or set
# as a global option
# example of zero based indexing
x[0, , style = 'python'] # first row
x[1, , style = 'python'] # second row
# example of slices with exclusive stop
# run the next options() line before the tensor operations
options(torch.extract.style = 'python')
x[, 0:1] # just the first column
x[, 0:2] # first and second column
# example of out-of-bounds index
x[, 0:10]
options(torch.extract.style = NULL)
# slicing with tensors is valid too, but note that tensors are never
# translated and are always interpreted Python-style.
# A warning is issued the first time a tensor is passed to `[`
# just as in Python, only scalar tensors are valid
# To silence the warnings about tensors being passed as-is and negative numbers
# being interpreted python-style, set
options(torch.extract.style = 'R')
# clean up from examples
options(torch.extract.style = NULL)
## End(Not run)
```

%.*%

%.*%

#' @export "round.torch.Tensor" <- function(input) # round: Returns a new tensor with each of the elements of input rounded to the closest integer. torch\$round(input) Dot product of two tensors

Description

This generic is similar to torch\$dot(a, b)

Usage

```
a %.*% b
```

Arguments

```
a tensor b tensor
```

Value

a scalar

Examples

```
## Not run:
p <- torch$Tensor(list(2, 3))
q <- torch$Tensor(list(2, 1))
p %.*% q
## End(Not run)</pre>
```

%%.torch.Tensor

Remainder

Description

Computes the element-wise remainder of division.

Usage

```
## S3 method for class 'torch.Tensor' a \% b
```

28

Arguments

```
a a tensorb a scalar or a tensor
```

Value

the reminder of the division between tensor by a scalar or tensor

Examples

```
## Not run:
x <- torch$Tensor(list(-3., -2, -1, 1, 2, 3))
y <- torch$Tensor(list(1., 2, 3, 4, 5))
torch$remainder(x, 2)
torch$remainder(y, 1.5)

x %% 2
y %% 1.5

## End(Not run)</pre>
```

%**%

Matrix/Tensor multiplication of two tensors

Description

This generic is similar to torch\$matmul(a, b)

Usage

```
a %**% b
```

Arguments

```
a tensor b tensor
```

Value

a scalar or a tensor

```
## Not run:
p <- torch$randn(3L)
q <- torch$randn(3L)
p %**% q
## End(Not run)</pre>
```

Index

```
!.torch.Tensor(logical_not), 17
                                                make_copy, 19
!=.torch.Tensor(not_equal_to), 19
                                                not_equal_to, 19
* datasets
                                                np (torch), 22
    torch, 22
*.torch.Tensor, 3
                                                one_tensor_op, 20
+.torch.Tensor, 3
-. torch. Tensor, 4
                                                 reticulate::conda_install(), 14
/.torch.Tensor, 5
                                                reticulate::virtualenv_install(), 14
<. torch. Tensor, 5
                                                rTorch, 20
<=.torch.Tensor, 6
==.torch.Tensor, 7
                                                shape, 21
>. torch. Tensor, 7
>=.torch.Tensor, 8
                                                tensor_ops, 21
[.torch.Tensor, 25
                                                 torch, 22
&.torch.Tensor(logical_and), 17
                                                 torch_extract_opts, 23
%**%, 28
                                                torch_size, 24
%.*%, 27
                                                 torchvision (torch), 22
%%. torch. Tensor, 27
^.torch.Tensor(tensor_ops), 21
all.torch.Tensor, 9
all_dims, 10
any.torch.Tensor, 10
as_boolean, 11
dataset_mnist_digits, 12
dim.torch.Tensor, 12
exp.torch.Tensor(one_tensor_op), 20
install_pytorch, 13
is_tensor, 14
length.torch.Tensor, 14
log.torch.Tensor, 15
log10.torch.Tensor, 16
log2.torch.Tensor, 16
logical_and, 17
logical_not, 17
logical_or, 18
```