Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

```
Explore(G,u):
     Visited[1..n] \leftarrow FALSE
     Add u to S
     Visited[u] \leftarrow TRUE
     ExploreStep(G,u,Visited, S)
     Output S
ExploreStep(G,x,Visited, S):
     for each edge xy in Adj(x) do
          if (Visited[v] = FALSE)
                Visited[v] \leftarrow TRUE
                ExploreStep(G,x,Visited, S):
     return
```

We said that if <u>ToExplore</u> was a:

- Stack, the algorithm is equivalent to DFS
- Queue, the algorithm is equivalent to BFS

What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

ECE-374-B: Lecture 15 - Directed Graphs (DFS, DAGs, Topological Sort)

Instructor: Nickvash Kani

October 21, 2025

University of Illinois Urbana-Champaign

Pre-lecture brain teaser

Last time we looked at the BasicSearch algorithm:

```
Explore(G,u):
     Visited[1..n] \leftarrow FALSE
     Add u to S
     Visited[u] \leftarrow TRUE
     ExploreStep(G,u,Visited, S)
     Output S
ExploreStep(G,x,Visited, S):
     for each edge xy in Adj(x) do
          if (Visited[v] = FALSE)
                Visited[v] \leftarrow TRUE
                ExploreStep(G,x,Visited, S):
     return
```

We said that if <u>ToExplore</u> was a:

- Stack, the algorithm is equivalent to DFS
- Queue, the algorithm is equivalent to BFS

What if the algorithm was written recursively (instead of the while loop, you recursively call explore). What would the algorithm be equivalent to?

and basic properties

Directed Acyclic Graphs - definition

Directed Acyclic Graphs

Definition

A directed graph G is a <u>directed</u> <u>acyclic graph</u> (DAG) if there is no directed cycle in G.

Is this a DAG?

Is this a DAG?

Sources and Sinks

Definition

- A vertex *u* is a <u>source</u> if it has no in-coming edges.
- A vertex u is a $\underline{\sin k}$ if it has no out-going edges.

Simple DAG Properties

PropositionEvery DAG G has at least one source and at least one sink.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

Topological ordering

Total recall: Order on a set

<u>Order</u> or <u>strict total order</u> on a set X is a binary relation \prec on X, such that

- Transitivity: $\forall x.y, z \in X$ $x \prec y$ and $y \prec z \implies x \prec z$.
- For any $x, y \in X$, exactly one of the following holds: $x \prec v$, $v \prec x$ or x = v.

7

Convention about writing edges

Undirected graph edges:

$$uv = \{u, v\} = vu \in E$$

• Directed graph edges:

$$u \to v \equiv (u, v) \equiv (u \to v)$$

Topological Ordering/Sorting

Topological Ordering of G

Definition

A <u>topological ordering/topological sorting</u> of G = (V, E) is an ordering \prec on V such that if $(u \rightarrow v) \in E$ then $u \prec v$.

Informal equivalent definition: One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m+n) time.

Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

Simple Algorithm:

- 1. Count the in-degree of each vertex
- 2. For each vertex that is source $(deg_{in}(v) = 0)$:
 - 2.1 Add *v* to the topological sort
 - 2.2 Lower degree of vertices v is connected to. ¹

Topological Sort: Example

Adjacency List:

Node	Neighbors	
a	d	е
b	е	
С		
d	f	
е	h	g
f	h	
g h		

Generate $deg_{in}(v)$:

Degree	Vertices
0	a, b, c
1	d, f, g
2	e, h

Topological Sort: Example

Adjacency List:

Node	Neighbors	
а	d	е
b	е	
С		
d	f	
е	h	g
f	h	
g		
h		

Generate $deg_{in}(v)$:

Topological Ordering:

Multiple possible topological orderings

DAGs and Topological Sort

• **Note:** A DAG G may have many different topological sorts.

• Exercise: What is a DAG with the most number of distinct topological sorts for a given number *n* of vertices?

• Exercise: What is a DAG with the least number of distinct topological sorts for a given number *n* of vertices?

Direct Topological ordering - code

```
TopSort(G):
     Sorted ← NIIII
     dea_{in}[1..n] \leftarrow -1
     Tdeg_{in}[1..n] \leftarrow NULL
     Generate in-degree for each vertex
     for each edge xy in G do
          dea_{in}[v] + +
     for each vertex v in G do
          Tdeg_{in}[deg_{in}[v]].append(v)
     Next we recursively add vertices
      with in-degree = 0 to the sort list
     while (Tdeg<sub>in</sub>[0] is non-empty) do
          Remove node x from Tdeg_{in}[0]
          Sorted.append(x)
          for each edge xy in Adj(x) do
               deg_{in}[v] - -
               move y to Tdeq<sub>in</sub>[deq<sub>in</sub>[y]]
     Output Sorted
```

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then
$$u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$$

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered \implies G is a DAG.

Proof.

Proof by contradiction. Suppose G is not a DAG and has a topological ordering \prec . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1.$$

Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$

$$\implies u_1 \prec u_1$$
.

A contradiction (to \prec being an order). Not possible to topologically order the vertices.

An explicit definition of what topological ordering of a graph is

For a graph G = (V, E) a <u>topological ordering</u> of a graph is a numbering $\pi : V \to \{1, 2, ..., n\}$, such that

$$\forall (u \rightarrow v) \in E(G) \implies \pi(u) < \pi(v).$$

(That is, π is one-to-one, and n = |V|)

Example...

Example...

Assuming:

$$V = \{a, \dots w\}$$

 $\pi = \{1, \dots 23\}$

Depth First Search (DFS)

Depth First Search (DFS) in

Undirected Graphs

Depth First Search

- DFS special case of Basic Search.
- DFS is useful in understanding graph structure.
- **DFS** used to obtain linear time (O(m+n)) algorithms for
 - Finding cut-edges and cut-vertices of undirected graphs
 - Finding strong connected components of directed graphs
- ...many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \quad \mathsf{for} \ \mathsf{all} \ u \in V(G) \ \mathsf{do} \\ \quad \quad \mathsf{Mark} \ u \ \mathsf{as} \ \mathsf{unvisited} \\ \quad \mathsf{Set} \ \mathsf{pred}(u) \ \mathsf{to} \ \mathsf{null} \\ \quad \mathcal{T} \ \mathsf{is} \ \mathsf{set} \ \mathsf{to} \ \emptyset \\ \quad \mathsf{while} \ \exists \ \mathsf{unvisited} \ u \ \mathsf{do} \\ \quad \quad \mathsf{DFS}(u) \\ \quad \mathsf{Output} \ \mathcal{T} \end{array}
```

```
DFS(u)

Mark u as visited

for each uv in Out(u) do

if v is not visited then

add edge uv to T

set pred(v) to u

DFS(v)
```

Implemented using a global array *Visited* for all recursive calls.

T is the search tree/forest.

Example

Edges classified into two types: $uv \in E$ is a

• tree edge: belongs to T

Example

Edges classified into two types: $uv \in E$ is a

• tree edge: belongs to T

DFS with pre-post numbering

DFS with Visit Times

Keep track of when nodes are visited.

```
\begin{aligned} & \mathsf{DFS}(G) \\ & & \mathsf{for} \ \mathsf{all} \ u \in V(G) \ \mathsf{do} \\ & & & \mathsf{Mark} \ u \ \mathsf{as} \ \mathsf{unvisited} \\ & & & \mathsf{T} \ \mathsf{is} \ \mathsf{set} \ \mathsf{to} \ \emptyset \\ & & & & \mathsf{time} = 0 \\ & & & \mathsf{while} \ \exists \ \mathsf{unvisited} \ u \ \mathsf{do} \\ & & & & & \mathsf{DFS}(u) \\ & & & & \mathsf{Output} \ T \end{aligned}
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each uv in Out(u) do
        if v is not marked then
            add edge uv to T
            DFS(v)
    post(u) = ++time
```

Animation

vertex	[pre, pos
1	[1,]
2	[2,]

CICCX	[prc,pos
1	[1,]
2	[2,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]

CITITO	
vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,]
	,

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18,]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18, 19]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17, 20]
10	[18, 19]

vertex	[pre, post]	
1	[1, 16]	$\bigcirc 1 \qquad \boxed{7}$
2	[2, 15]	
4	[3, 14]	<u>(2)</u>
5	[4, 13]	
6	[5, 6]	(4)—(5)
3	[7, 12]	
7	[8, 11]	6
8	[9, 10]	
9	[17, 20]	
10	[18, 19]	

$\mathrm{pre} \; and \; \mathrm{post} \; numbers$

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

 pre and post numbers useful in several applications of $\operatorname{\textbf{DFS}}$

DFS in Directed Graphs

DFS in Directed Graphs

```
 \begin{aligned} & \mathsf{DFS}(G) \\ & & \mathsf{Mark} \ \mathsf{all} \ \mathsf{nodes} \ u \ \mathsf{as} \ \mathsf{unvisited} \\ & & \mathit{T} \ \mathsf{is} \ \mathsf{set} \ \mathsf{to} \ \emptyset \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

```
DFS(u)
   Mark u as visited
   pre(u) = ++time
   for each edge (u,v) in Out(u) do
      if v is not visited
        add edge (u,v) to T
        DFS(v)
   post(u) = ++time
```

Example of DFS in directed graph

Example of DFS in directed graph

Generalizing ideas from undirected graphs:

• **DFS**(G) takes O(m+n) time.

- **DFS**(G) takes O(m + n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output of** *DFS*(*G*) depends on the order in which vertices are considered.

- **DFS**(G) takes O(m+n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output of** *DFS*(*G*) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$

- **DFS**(G) takes O(m+n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output of** *DFS*(*G*) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

- **DFS**(G) takes O(m+n) time.
- Edges added form a <u>branching</u>: a forest of out-trees. **Output of** *DFS*(*G*) depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if $v \in rch(u)$
- For any two vertices x, y the intervals $[\operatorname{pre}(x), \operatorname{post}(x)]$ and $[\operatorname{pre}(y), \operatorname{post}(y)]$ are either disjoint or one is contained in the other.

DFS tree and related edges

Edges of *G* can be classified with respect to the **DFS** tree *T* as:

- Tree edges that belong to T
- A <u>forward edge</u> is a non-tree edges (x, y) such that y is a descendant of x.
- A <u>backward edge</u> is a non-tree edge (x, y) such that y is an ancestor of x.
- A <u>cross edge</u> is a non-tree edges (x, y) such that they don't have a ancestor/descendant relationship between them.

DFS tree and related edges

Edges of *G* can be classified with respect to the **DFS** tree *T* as:

- Tree edges that belong to T
- A <u>forward edge</u> is a non-tree edges (x, y) such that $\operatorname{pre}(x) < \operatorname{pre}(y) < \operatorname{post}(y) < \operatorname{post}(x)$.
- A backward edge is a non-tree edge (x, y) such that .
- A <u>cross edge</u> is a non-tree edges (x, y) such that

Types of Edges

Types of Edges

- · Back edges:
- · Forward edges:
- · Cross edges:

DFS and cycle detection: Topological

sorting using DFS

Cycles in graphs

Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Cycles in graphs

Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

Cycle detection in directed graph using topological sorting

Question Given G, is it a DAG?

If it is, compute a topological sort.

If it fails, then output the cycle *C*.

Topological sort a graph using DFS

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Topological sort a graph using DFS

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
 DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Topological sort a graph using DFS

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
 DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time. Correctness is not so obvious. See next two propositions.

Example

Example

Listing out the vertices in post-number decreasing gives:

c,b,a,e,g,d,f,h

Remind you of anything?

Example

Back edge and Cycles

Proposition

G has a cycle \iff there is a back-edge in **DFS**(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v_1$.

Let v_i be first node in C visited in DFS.

All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then $(u \to v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G.

Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then $(u \to v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

35

Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then $(u \to v)$ is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

Translation

We just proved:

Proposition

If G is a DAG and post(v) > post(u), then $(u \to v)$ is not in G.

 \implies sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

Topological sorting

Theorem

G = (V, E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n + m) time.

That is, compute a numbering $\pi: V \to \{1, 2, \dots, n\}$, such that

$$(u \to v) \in E(G) \implies \pi(u) < \pi(v).$$

The meta graph of strong connected

components

Strong Connected Components (SCCs)

Algorithmic Problem
Find all SCCs of a given directed graph.

Previous lecture:

Saw an $O(n \cdot (n + m))$ time algorithm.

This lecture: sketch of a O(n+m) time algorithm.

Graph of SCCs

Meta-graph of SCCs

Let $S_1, S_2, ..., S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \dots S_k$
- There is an edge (S_i, S_j) if there is some $u \in S_i$ and $v \in S_j$ such that (u, v) is an edge in G.

The meta graph of SCCs is a DAG...

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G.

To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of G can be computed in O(m+n) time. G^{SCC} gives information on the partition of V into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Linear time algorithm for finding all

SCCs

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output <u>all</u> its strong connected components.

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output <u>all</u> its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited. for each vertex u \in V not visited yet do find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n+m))

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output <u>all</u> its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute \operatorname{rch}(G, u) using DFS(G, u)

Compute \operatorname{rch}(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \Leftarrow \operatorname{rch}(G, u) \cap \operatorname{rch}(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n+m)) Is there an O(n+m) time algorithm?

Structure of a Directed Graph

Graph G

ReminderG^{SCC} is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Linear-time Algorithm for SCCs: Ideas

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- Do **DFS**(u) to compute SCC(u)
- Remove SCC(u) and repeat

Justification

- **DFS**(u) only visits vertices (and edges) in SCC(u)
- · ... since there are no edges coming out a sink!
- **DFS**(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n+m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an $\underline{implicit}$ topological sort of G^{SCC} without computing G^{SCC} ?

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an <u>implicit</u> topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!

Reverse post numbering and the meta graph

Claim

Let v be the vertex with maximum post numbering in DFS(G^{rev}). Then v is in a SCC S, such that S is a sink of G^{SCC} .

Holds even after we delete the vertices of *S* (i.e., the vertex with the maximum post numbering, is in a sink of the meta graph).

The linear-time SCC algorithm itself

Linear Time Algorithm: An Example - Initial steps 1

Graph G:

Pre/Post **DFS** numbering of reverse graph:

Reverse graph G^{rev}:

DFS of reverse graph:

Original graph G with rev post numbers:

Do **DFS** from vertex G remove it.

SCC computed:

{G}

Do **DFS** from vertex G remove it.

SCC computed:

{*G*}

Do **DFS** from vertex H, remove it.

SCC computed:

$$\{G\}, \{H\}$$

Do **DFS** from vertex *H*, remove it.

Do **DFS** from vertex B Remove visited vertices: $\{F, B, E\}$.

$$\{G\}, \{H\}$$

SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}$$

Do **DFS** from vertex FRemove visited vertices: $\{F, B, E\}$.

SCC computed: {*G*}, {*H*}, {*F*, *B*, *E*}

Do **DFS** from vertex *A* Remove visited vertices:

$$\{A,C,D\}.$$

SCC computed:

$$\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$$

SCC computed:

 $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$

Which is the correct answer!

Linear Time Algorithm

Theorem

Algorithm runs in time O(m+n) and correctly outputs all the SCCs of G.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when G is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph *G* by considering the meta graph G^{SCC}?

Summary

Take away Points

- DAGs
- · Topological orderings.
- DFS: pre/post numbering.
- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a **DFS** based linear time algorithm to compute all the SCCs and the meta-graph. Properties of **DFS** crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).