NOTATIONS AND SYMBOLS

 \mathbb{R} field of real numbers

 $\mathbb{R}^{m \times n}$ set of all real matrices of order $m \times n$ $\mathbb{C}^{m \times n}$ set of complex matrices of order $m \times n$

 \mathbb{C} field of complex numbers

 ϵ belongs to

> (≥) positive definiteness (semi-definiteness)

 $Re(\alpha)$ real part of $\alpha \in \mathbb{C}$ $Im(\alpha)$ imaginary part of $\alpha \in \mathbb{C}$

 $\delta(t)$ unit impulse

 $\Omega(M)$ spectrum of the matrix M controllability matrix O_M observability matrix C_G controllability Grammian O_G observability Grammian Ker(A), N(A) Kernel and nullspace of A orthogonal subspace of S

end of proof

 I_s Idenity matrix of order s (Default for

an $n \times n$ identity matrix is I)

 A^T transpose of A

 A^* complex conjugate transpose of A

 A^{-1} inverse of A In(A) inertia of A

 $\beta(A)$ distance of A to a set of unstable matrices $\mu(A, B)$ distance of (A, B) to uncontrollability

 $||G||_{\infty}$ H_{∞} - norm of the stable transfer function G(s)

 $diag(d_1, ..., d_n)$ an $n \times n$ diagonal matrix with $d_1, ..., d_n$ on the diagonal

SVD singular value decomposition

QR QR factorization trace (A) trace of the matrix A

$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$	state space realization: $C(SI - A)^{-1}B + D$
G(s)	transfer function matrix
A	2-norm of A
$ A _F$	Frobenius norm of A
$\sigma_{\min}(A)$	smallest singular value of A
$\sigma_{\max}(A)$	largest singular value of A
\simeq	approximately equal to
R(A)	range of A
$\bar{\sigma}(A)$	largest singular value of A
$\sigma_i(A)$	ith singular value of A
\sum	diagonal matrix containing singular values
CARE	continuous-time algebraic Riccati equation
DARE	discrete-time algebraic Riccati equation