Lights Out

Noah Flemens and Reed Williston

Lights Out

Noah Flemens and Reed Williston

12-17-10

The Game

Lights Out

Noah Flemens and Reed

Figure: A picture of the original Tiger Toys game.

The Game

Lights Out

Noah Flemens and Reed

Figure: One of the 2^{25} possible configuations.

Corner Button

Lights Out

Noah Flemens and Reed

Figure: Pressing a corner button toggles adjacent cells.

Edge Button

Lights Out

Noah Flemens and Reed Williston

Figure: Pressing an edge button toggles adjacent cells.

Interior Button

Lights Out

Noah Flemens and Reed Williston

Figure: Pressing an interior button toggles adjacent cells.

Describing the Game with Vectors and Matrices

Lights Out

Noah Flemens and Reed Williston

b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅
b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅
b ₃₁	b ₃₂	b ₃₃	b ₃₄	b ₃₅
b ₄₁	b ₄₂	b ₄₃	b ₄₄	b ₄₅
b ₅₁	b ₅₂	b ₅₃	b ₅₄	b ₅₅

Figure: This shows our scheme for labeling each button on the game board.

Describing the Game with Vectors and Matrices

Lights Out

Noah Flemens and Reed Williston

$$\begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \\ b_{41} & b_{42} & b_{43} & b_{44} & b_{45} \\ b_{51} & b_{52} & b_{53} & b_{54} & b_{55} \end{bmatrix}$$

To describe the game we will use the notation b_{ij} to describe the state of the light in the *i*th row and *j*th column. Arraging these entries into a vector, we have a configuration for the game:

$$\mathbf{b}=(b_{11},b_{12},b_{13}\cdots b_{21},b_{22}\cdots b_{55})$$

We will describe a initial configuration by \mathbf{b} and a solution by \mathbf{x} .

$A\mathbf{x} = \mathbf{b}$

Lights Out

Noah Flemens and Reed Williston We will use a 25×25 matrix A to model the relationship between between the solution \mathbf{x} and the initial configuration \mathbf{b} . A square on the board is affected only by the adjacent squares and thus, the sum of the presses to the adjacent buttons gives the state of a button.

$$b_{11} = x_{11} + x_{12} + x_{21}$$

$$b_{12} = x_{11} + x_{12} + x_{13} + x_{22}$$

$$b_{13} = x_{12} + x_{13} + x_{14} + x_{23}$$

$$b_{14} = x_{13} + x_{14} + x_{15} + x_{24}$$

$$b_{15} = x_{14} + x_{15} + x_{25}$$

$$A\mathbf{x} = \mathbf{b}$$

Lights Out

Noah Flemens and Reed Williston

This matrix describes the relationship between \mathbf{x} and the first five entries of \mathbf{b} . The separation highlights the two very important blocks of the matrix.

What is A?

Lights Out

loah Flemen and Reed Williston If we expand out every **b** and continue A all way down we get this matrix:

$$A = \begin{bmatrix} B & I & O & O & O \\ I & B & I & O & O \\ O & I & B & I & O \\ O & O & I & B & I \\ O & O & O & I & B \end{bmatrix}$$

Where I is a 5x5 identity matrix, O is a 5x5 matrix of zeros and B is:

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Is it Solvable?

Lights Out

loah Flemen and Reed Williston

Note that
$$B = B^T$$
, $I = I^T$, $O = O^T$ so,

$$A^{T} = \begin{bmatrix} B^{T} & I^{T} & O^{T} & O^{T} & O^{T} \\ I^{T} & B^{T} & I^{T} & O^{T} & O^{T} \\ O^{T} & I^{T} & B^{T} & I^{T} & O^{T} \\ O^{T} & O^{T} & I^{T} & B^{T} & I^{T} \\ O^{T} & O^{T} & O^{T} & I^{T} & B^{T} \end{bmatrix} = \begin{bmatrix} B & I & O & O & O \\ I & B & I & O & O \\ O & I & B & I & O \\ O & O & I & B & I \\ O & O & O & I & B \end{bmatrix} = A$$

Thus, A is symmetric. This allows us to get some important information out of it.

Is it Solvable?

Lights Out

Noah Flemens and Reed Williston

Because *A* is symmetric:

- **1** The Column Space of A is equal to the Row Space of A.
- **b** is in the Column Space of *A* only if it is orthogonal to the Null Space of *A*.

Nullspace of A

Lights Out

Noah Flemens and Reed Williston

- We deduce that b can be solved only if its dot product with the elements of N(A) is zero.
- A is a rank 23 matrix so the Nullspace only contains 2 vectors. We will call them n₁ and n₂.
- This gives us a way to check a configuration to see if it is solvable. If one of the dot products is not zero, there is no solution.

The Solutions

Lights Out

Noah Flemens and Reed Williston Assume x is a solution.

$$A(\mathbf{x} + \alpha \mathbf{n_1} + \beta \mathbf{n_2}) = \mathbf{b}$$

$$A\mathbf{x} + A\alpha \mathbf{n_1} + A\beta \mathbf{n_2} = \mathbf{b}$$

$$A\mathbf{x} + \mathbf{0} + \mathbf{0} = \mathbf{b}$$

$$A\mathbf{x} = \mathbf{b}$$

$$lpha,eta=1,0$$
 $\mathbf{n_1},\mathbf{n_2}\in \mathit{N}(\mathit{A})$

We conclude that adding either of the nullspace vectors to a solution still gives us a solution.

The Best Solution

Lights Out

Noah Flemens and Reed Williston

If our winning strategy is **x**. We can see that there are actually 4 winning strategies:

$$\mathbf{x}$$
 $\mathbf{x} + \mathbf{n}_1$
 $\mathbf{x} + \mathbf{n}_2$
 $\mathbf{x} + \mathbf{n}_1 + \mathbf{n}_2$

From these we will chose the shortest solution. This is whatever vector has the least number of nonzero entries.

Finding A Solution

Lights Out

Noah Flemens and Reed Williston

$A\mathbf{x} = \mathbf{b}$

- We use a modified binary RREF program which does not reduce the 26th column, only preforms the same row operations on it.
- Finally to get a solution we simply put A and **b** into an augmented matrix and perform elimination on it.
- After elimination, the 26th column of the augmented matrix is the strategy vector.

Winning the Game

Lights Out

Noah Flemens and Reed Williston

We then take the shortest solution and think of it as a 5x5 matrix again.

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \\ x_{41} & x_{42} & x_{43} & x_{44} & x_{45} \\ x_{51} & x_{52} & x_{53} & x_{54} & x_{55} \end{bmatrix}$$

In each entry of the matrix:

1=push

0= do not push

Once all these are carried out, the game will be solved.

Bibliography

Lights Out

Noah Flemens and Reed Williston

- Marlow Anderson, Todd Feil Turning Lights Out with Linear Algebra, Mathematics Magazine, Vol. 71, No. 4, October 1998
- Oscar Martin-Sanchez, Cristobal Pareja-Flores *Two* Reflected Analyses of Lights Out, Mathematics Magazine, Vol. 74, No. 4, October 2001