Paysages de recherche

Surfaces linéaires ou quadratiques

Il existe des méthodes optimales spécialisées : méthode Quasi-Newton, gradients conjugués.

Surfaces unimodales

Méthodes de type « grimpeurs »

Surfaces linéaires ou quadratiques

Il existe des méthodes optimales spécialisées : méthode Quasi-Newton, gradients conjugués.

Surfaces unimodales

Méthodes de type « grimpeurs »

Surfaces multimodales simples

Caractérisées par un rapport

volume du bassin d'attraction de l'extremum/volume de l'espace de recherche relativement grand (>5%)

Plusieurs grimpeurs en parallèle permettent d'obtenir avec une fiabilité suffisamment grande l'extremum.

Surfaces multimodales mais « unimodales à gros grains »

Surface pouvant être considérée comme une surface unimodale bruitée.

Filtrer le relief.

Grimpeurs stochastiques qui permettent occasionnellement des solutions intermédiaires moins bonnes au cours de la recherche (ex: recuit simulé). Permettent de « sauter » les optima locaux à condition que le soit ne soit pas trop haut (température dans le recuit simulé).

Surfaces multimodales à « structure combinative »

Surfaces qui conservent une certaine structure : les extrema locaux ne sont pas disposés n'importe comment. Ils contiennent une information sur la position des autres optima et en particulier sur l'optimum global.

Les algorithmes génétiques ou une hybridation des AG avec des grimpeurs peuvent donner de bons résultats en exploitant la structure combinative.

A Problème avec les AG

Problème unidimensionel

Surfaces délicates pour les grimpeurs

Algorithmes génétiques

Pic de Dirac

Bonne chance!

Optimisation combinatoire

Problème du voyageur de commerce : recherche d'un cycle hamiltonien

? Caractéristiques de la surface de l'espace de recherche

Stratégie

Construire une suite $x_0, x_1, ..., x_k, ...$ qui converge vers une condition d'optimisation

Cas continu

$$X_{k+1} = X_{k+1} + S_k d_k$$

où d_k est une « direction de descente » et s_k un réel positif choisis de sorte que $f(x_{k+1}) \le f(x_k)$

Les différentes approches dépendent du choix de d_k et s_k

Exemple : descente de gradient $d = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|}$

Cas discret

Choisir
$$x_{k+1} = Voisinage(x_k)$$

de sorte que $f(x_{k+1}) \le f(x_k)$

Les différentes approches dépendent du choix du Voisinage

 $Voisinage(2) = \{1, 3, 6\}$

Convergence uniquement vers un optimum local

