franslation is attached

DEUTSCHES REICH

AUSGEGEBEN AM 21. JANUAR 1922

REICHSPATENTAMT PATENTSCHRIFT

— № 347557 — KLASSE **49**a GRUPPE 20

Emil Pawel in Berlin-Schöneberg.

Drehbankfutter.

BEST AVAILABLE COPY

Para Canadan

Emil Pawel in Berlin-Schöneberg.

Drehbankfutter.

Patentiert im Deutschen Reiche vom 7. März 1920 ab.

Den Gegenstand der vorliegenden Erfindung bildet ein Drehbankfutter derjenigen Art, bei der die Spannbacken durch einen in Richtung der Futterachse mittels Gewindes vorschieb-5 baren Teil gegen das Werkstück verschoben werden. Das Neue des vorliegenden Drehbankfutters gegenüber den bekannten besteht darin, daß durch Einstellung des Spannhebels der Drehbank ein Druckring schwingbar an-10 geordnete Gewindeschalthebel mit dem Gewinde eines Futterhalses in Eingriff und gleichzeitig einen umdreh-, aber achsial verschiebbaren Bremskörper auf einen verschiebbaren Bremsteil zur Wirkung bringt, worauf durch Vor-15 wärtsgang der Hebel auf dem Gewinde der Bremsteil auf ein Drucklager und damit auf die Spannbacken im Spannungssinne einwirkt, während durch Einstellung des Spannhebels in entgegengesetzter Richtung die Entspannung 20 aller genannten Teile erfolgt.

In der Zeichnung ist das neue Backenfutter in Abb. I in einer Schnittansicht beispielsweise veranschaulicht, während Abb. 2 in gleichem Schnitt eine etwas geänderte Ausführungsform 25 darstellt. Abb. 3 ist eine Teilansicht, die Gewindegänge veranschaulichend, Abb. 4 ein Schnitt nach A-B, Abb. 5 ein Schnitt nach C-D der Abb. 1, und Abb. 6 stellt eine Einzelheit dar, während Abb. 7 und 8 eine Spann-30 backe in Seitenansicht und Aufsicht veranschaulichen. Die Abb. 9 bis 12 veranschaulichen die Anordnung des Schalthebels mit

seinen Einzelteilen.

a ist der Futterkörper, der an seinem Kopf-35 ende a', der Anzahl der Spannbacken entsprechend, Schlitze b1 mit prismatischen Führungsnuten besitzt, in denen die Spannbacken bgleiten. Auf dem Futterhalse befindet sich ein Druckgewinde c. in das die Gewindeschalt-

40 hebel d beim Spannen eingreifen.

Die Spannbacken b besitzen den Führungsnuten bi des Futterkopfes a1 entsprechend gestaltete Führungsleisten; sie werden von rechts in den Futterkopf eingeschoben und 45 ragen mit ihrem linken Ende aus ihm heraus. Ihre linksseitige Stirnfläche ist mit achsial gerichteten Führungsnuten und Leisten b² versehen, die in entsprechend gleichgerichteten Nuten der rechten Drucklagerhälfte e geführt

werden. Diese Verbindung der Spannbacken 50 mit der Drucklagerhälfte e gestattet eine Verschiebung der ersteren radial zur Futterachse, andererseits bewirkt sie auch eine Verschiebung der Spannbacken in horizontaler Richtung, d. h. wenn sich Teile nach links 55 verschiebt. Die Bewegung der Spannbacken in horizontaler Richtung wird durch die Anordnung einer Ringmutter f begrenzt. Letztere ist auf dem vorderen Ende des Futterkopfes a aufgeschraubt und wird hier durch eine feste 60 Verbindung der durch Schlitze zur Aufnahme der Spannbacken gespaltenen Futterkopfteile hergestellt. Hierdurch werden einerseits Vibrationen des Futterkopfes verhindert und anderseits seine Stabilität wesentlich erhöht, 65 die ihrerseits wiederum eine größere Beanspruchung des Futterkopfes durch die Spannbacken zulassen.

Zwischen dem Futterkopf a' einerseits und der rechten Drucklagerhälfte e anderseits sind 70 Druckfedern g angeordnet, welche die Drucklagerhälfte e und mit dieser die Spannbacken b stets nach links drücken und somit das Futter

geöffnet halten.

Der rechten Drucklagerhälfte e gegenüber 75 liegt die linke Drucklagerhälfte h, die beispielsweise aus einer kreisförmigen Druckplatte besteht. Zwischen beiden ist ein Kugelhalterring mit Laufkugeln i angeordnet. Der Drucklagerteil h ruht in einer Eindrehung des inneren 80 Bremskörpers h1, dessen konischer Flansch die Bremsfläche bildet. An dem entgegengesetzten Ende sind in der Wandung des schwächeren zylindrischen Teiles h^1 zwei längliche Schlitze h^2 vorgesehen, in welchen die mit Gewinde ver- 85 sehenen Arme d1 der Schalthebel ruhen. Diese Schalthebel sind winkelförmig gestaltet und in einem Ringe n um Zapfen o drehbeweglich gelagert. Der Ring n, der gegenüber dem hinteren Ende des Bremsteiles h1 verschiebbar 90 angeordnet ist, besitzt Ausfräsungen r, in denen die nach außen gerichteten Arme d des Schalthebels liegen. Die Verschiebung des Ringes n in achsialer Richtung erfolgt beim Spannen des Futters durch die Schalthebel, und zwar 95 nach rechts, und beim Entspannen durch den Teil m nach links.

Zwischen dem Ringe n und dem Brems-

teile k^1 ist über den Futterhals der äußere Bremskörper k geschoben. Letzterer besitzt zwei Lagerzapfen k', um die ein Spannhebel greift, so daß der Körper k an der Drehung 5 gehindert wird.

Auch der Druckring m ist auf dem inneren Bremsteile h1 gelagert. Er besitzt eine sich nach rechts erweiternde konische Bohrung, welche notwendig ist, um bei nach links ge-10 drücktem Druckringe für die auseinandergespreizten Schalthebelarme d aus dem Gewinde des Futterhalses Platz zu schaffen. Auf der äußeren Mantelfläche ist der Druckring m mit einer eingedrehten Nut m' versehen. Der Spann-15 hebel s (Abb. II und I2) ist schellenartig ausgebildet und besitzt an seinem Umfange je zwei gegenüberliegende Bohrungen t, t', von denen die Bohrungen t zur Aufnahme der Lagerzapfen k' dienen, während die Bohrun-20 gen t' zur Aufnahme von Zapfen u bestimmt sind, die sich auf dem äußeren Umfange der Segmente v befinden. Die Segmente v ruhen lose in der Nut m' des Druckringes m und hindern letzteren in keiner Weise an einer 25 Drehbewegung. Dadurch, daß der Spannhebel s sowohl die Zapfen u der Segmente v als auch die Zapfen k' des Bremskörpers k mit den Bohrungen t, t' einschließt, ist auch eine Verbindung zwischen dem Druckringe m 30 und dem Bremskörper k hergestellt.

Die Wirkungsweise ist folgende:

Wenn das Futter das Material spannen soll, so wird die Maschine in Gang gesetzt. Dann wird der Spannhebel der Drehbank nach rechts 35 bewegt, wodurch der Druckring m und mit diesem der Bremsteil k nach rechts bewegt wird. Durch seine konische Ausdrehung drückt hierbei der Druckring m. die Gewindeschalthebel d^1 in das Gewinde c des Futterhalses a40 hinein. Infolgedessen bremst der äußere Bremsteil k, der durch den Spannhebel der Drehbank an der Drehung verhindert wird. den inneren Bremsteil h1. Da aber das Futter a seine Drehung fortsetzt, so bewegen sich jetzt 45 alle auf dem Futterhalse a befindlichen Teile nach rechts. Diese Rechtsbewegung überträgt sich nun über das Drucklager e auf die Spannbacken b, die ihrerseits durch die konische Führung im Futterkopfe a^1 gegeneinanderbe-50 wegt werden. Auf diese Weise wird das Material vom Futter, dem Bremsdruck entsprechend, festgespannt. Nach vollendeter Festspannung wird der Spannhebel der Drehbank ein wenig nach links bewegt, wodurch 55 der innere Bremsteil h1 vom äußeren Bremshohlkegel & freigegeben wird und jetzt mit dem Futter mitläuft.

Zum Entspannen braucht man nur den Spannhebel der Drehbank nach links zu drükken. Hierbei wirkt der Druckring m mit seiner 60 linken Stirnseite auf die Gewindeschaltarme d,d, so daß sie ausschwingen und die Arme d¹ in die konische Aussparung des Druckringes m gelangen und von dem Gewinde c des Futterhalses a freikommen. Nunmehr kann man 65 alle Teile auf dem Futterhalse nach links bewegen. Die Druckfedern g drücken dann auch die rechte Drucklagerhälfte e mit den Backen b nach links, worauf sich das Futter öffnet.

Um die Öffnung dem jeweiligen Durchmesser 70 des zu verarbeitenden Materials entsprechend zu begrenzen, braucht man ganz links auf den Futterhals a nur einen Anschlagring

aufzuschrauben.

Vorgenannter Vorgang wiederholt sich, so- 75 oft das Futter gespannt oder entspannt wird.

Der Spannhebel der Drehbank kann von Hand oder automatisch durch die Maschine selbst gesteuert werden, wodurch ein vollkommen automatisches Arbeiten des Futters 80 erzielt wird.

Abb. 2 zeigt eine etwas abgeänderte Vorrichtung, bei der die Spannbacken rechtwinklig gegen das Material bewegt werden.

Die Spannbacken b werden durch Spann- 85 hebel p bewegt, die ihrerseits durch die rechte Drucklagerhälfte e, deren rechte Seite als Spankonus e' ausgebildet ist, auseinandergepreßt werden. Im übrigen geschieht das Spannen und Entspannen dieses Futters in 90 genau der gleichen Weise wie vorbeschrieben.

PATENT-ANSPRUCH:

Drehbankfutter, bei dem die Spann- 95 backen durch einen in Richtung der Futterachse mittels Gewindes verschiebbaren Teil gegen das Werkstück verschoben werden, dadurch gekennzeichnet, daß durch Einstellung des Spannhebels 100 der Drehbank ein Druckring (m) schwingbar angeordnete Gewindeschalthebel (d1) mit dem Gewinde (c) eines Futterhalses (a) in Eingriff und gleichzeitig einen umdreh-, aber achsial verschiebbaren Bremskörper (k) 105 auf einen verschiebbaren Bremsteil (h1) zur Wirkung bringt, worauf durch Vorwärtsgang der Hebel (d1) auf dem Gewinde (c) der Bremsteil (h1) auf ein Drucklager (e) und damit auf die Spannbacken (b) im 110 Spannungssinne einwirkt, während durch Einstellung des Spannhebels in entgegengesetzter Richtung die Entspannung aller genannten Teile erfolgt.

Hierzu 1 Blatt Zeichnungen.

Zu der Patentschrift 347557 Kl. 49a Gr. 20

September 17, 2004

<u>DECLARATION</u>

The undersigned, Dana Scruggs, having an office at 8902B Otis Avenue, Suite 204B, Indianapolis, Indiana 46216, hereby states that she is well acquainted with both the English and German languages and that the attached is a true translation to the best of her knowledge and ability of Prior Art Reference (INV.: HOFFMANN, E., ET AL.).

The undersigned further declares that the above statement is true; and further, that this statement was made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or document or any patent resulting therefrom.

Dana Scruggs

1	THE GERMAN EMPIRE
2	
3	Issued on January 21, 1922
4	
. 5	IMPERIAL PATENT OFFICE
6	\cdot
7	PATENT
8	
9	No. 347557
10	
11	Class 49a Group 20
12	
13	
14	Emil Pawel, living in Berlin-Schöneberg.
15	
16	Lathe Chuck.

.

.

l	Emil Pawei, living in Berlin-Schoneberg.
2	Lathe Chuck.
3	Patented in the the German Empire on March 7, 1920
4	
5	
6	
7	The object of the present invention is a lathe chuck, in the case of which the
8	clamping jaws are moved against the work piece by a part which is displaceable
9	in the direction of the chuck axis using a thread. The novelty of the present lathe
10	chuck compared to the known lathe chuck is that, by moving the clamping lever
11	of the lathe, a thrust collar causes a pivotably arranged thread operating lever to
12	engage with the thread of a chuck neck and simultaneously causes a rotatably
13	and axially displaceable braking device to act on a displaceable brake part; as a
14	result, the forward motion of the lever on the thread causes the brake part to act
15	on a thrust bearing and, therefore, on the clamping jaws in the interior of the
16	clamping, while moving the clamping lever in the opposite direction releases all
17	of the parts mentioned above.
18	
19	In the drawing, the new jaw chuck is shown as an example in a side view in
20	Figure 1, while Figure 2 shows the same sectional drawing in a somewhat
21	modified configuration. Figure 3 is a partial view which shows the threads. Figure
22	4 is a sectional drawing along the line A-B. Figure 5 is a sectional drawing along
23	the line C-D in Figure 1, and Figure 6 is a detailed view. Figures 7 and 8 show a
24	clamping jaw in a side view and a top view . Figures 9 through 12 show the
25	arrangement of the operating lever with its individual parts.
26	
27	a is the chuck body. Located on head end a' of said chuck body are a number of
28	slots b1 with prismatic guide grooves corresponding to the number of clamping
29	jaws, in which said slots the clamping jaws b glide. A thrust thread c is located on
30	the chuck neck, into which said thrust thread the thread operating lever d
31	engages during clamping.

Clamping jaws b have guide strips configured to match guide grooves b^1 of chuck head a1; they are pushed from the right into the chuck head and extend 2 out of it with their left end. Their left end face is provided with axially oriented 3 guide grooves and strips b^2 , which are guided in identically-oriented grooves of 4 5 right thrust bearing half e. This connection of the clamping jaws with thrust 6 bearing half e allows the clamping jaw to be displaced radially to the chuck axis, 7 and it brings about a displacement of the clamping jaws in the horizontal 8 direction, i.e., when part e moves to the left. The motion of the clamping jaws in 9 the horizontal direction is limited by the arrangement of a ring nut f. Said ring nut 10 is screwed onto the front end of chuck head a; it is produced via a fixed connection of chuck head parts which are sectioned by slots for accommodating 11 12 the clamping jaws. Vibrations of the chuck head are prevented as a result, and its 13 stability is increased substantially which, in turn, enables the chuck head to 14 handle a greater load by the clamping jaws. 15 16 Compression springs g are located between chuck head a' and right thrust 17 bearing half e, which said compression springs continually press thrust bearing 18 half e—and, with this, clamping jaw b—to the left and thereby hold the chuck 19 open. 20 21 Left thrust bearing half h is located opposite right thrust bearing half e; said left 22 thrust bearing half being composed of a circular thrust plate, for example. 23 Located between the two is a ball cage with bearings i. Thrust bearing part h rests in a turned groove of inner braking device h^1 , the conical flange of which 24 forms the braking surface. On the opposite end, two longitudinal slots h^2 are 25 26 provided in the wall of the weaker cylindrical part h^1 , in which said slots the threaded arms d^1 of the operating levers rest. These operating levers are angular 27 28 in configuration and are supported in a collar n, which is capable of rotating 29 around peg o. Collar n, which is arranged such that it is displaceable relative to the rear end of brake part h^1 , has milled-out areas r, in which the outwardly 30

directed arms d of the operating lever are lie. Collar n is displaced in the axial

direction by the operating lever when the chuck is clamped, and in fact, to the 2 right. When the chuck is released, said collar is displaced to the left by part m. 3 4 Outer braking device k is pushed across the chuck neck between collar n and brake part h^1 . Said braking device has two pivot pins k^1 , around which a clamping 5 6 lever grips, so that body k is prevented from rotating. 7 8 Thrust collar m is also supported on inner brake part h^1 . Said thrust collar has a 9 conical bore extending to the right; this is necessary to create space on the thread of the chuck neck for the spread-apart operating lever arms d when the 10 11 thrust collars are pushed to the left. Thrust collar m is provided with a turned groove m' on the outer jacket surface. Clamping lever s (Figures 11 and 12) is 12 13 configured in the shape of a bracket and has two diametrically opposed bores t, t' each on its circumference. Bores t are used to accommodate pivot pin k', and 14 15 bores t' are used to accommodate pegs u, which are located on the outer 16 circumference of segments v. Segments v rest loosely in groove m' of thrust 17 collar m and prevent it from rotating at all. Due to the fact that clamping lever s 18 presses pegs u of segments v and pegs k' of braking device k in bores t, t', a 19 connection is also established between thrust collar m and braking device k. 20 21 The mode of operation is as follows: 22 23 To utilize the chuck to clamp the material, the machine is first started up. The 24 clamping lever of the lathe is then moved to the right, which causes thrust collar m and, with this, brake part k, to move to the right. By way of its turned-out 25 section, thrust collar m presses thread operating lever d¹ into thread c of chuck 26 27 neck a. As a result, the outer brake part k—which is prevented from rotating by the clamping lever of the lathe—brakes inner brake part h¹. Since chuck a 28 29 continues rotating, however, all parts located on chuck neck a now move to the

right. This motion to the right is now transmitted via thrust bearing e to clamping

iaws b, which are moved toward each other by the conical guide in chuck head

30

1 ' a¹. The material is clamped tightly in this manner by the chuck in accordance with 2 the braking pressure. Once the material is clamped tightly, the clamping lever of

3 the lathe is moved slightly to the left, which releases the inner brake part h^1 from

the outer brake hollow cone h, and said inner brake part now moves with the

5 chuck.

6

4

To release, simply press the clamping lever of the lathe to the left. When this is carried out, thrust collar *m* acts via its left end face on thread operating arms *d*, *d*¹ such that they swing outwardly, and arms *d*¹ reach the conical recess of thrust collar *m* and are released from thread *c* of chuck neck *a*. All parts on the chuck neck can now be moved to the left. Compression springs *g* then also press the

right thrust bearing half e with jaws b to the left, which causes the chuck to open.

1213

14

To limit the opening to the particular diameter of the material to be machined, the only step required is to screw a stop ring onto the far left end of chuck neck a.

1516

17

The procedure described above is repeated at any time to clamp or release the chuck.

18 19

The clamping lever of the lathe can be controlled manually or automatically by the machine itself, by way of which fully automatic operation of the chuck is attained.

23

24

25

Figure 2 shows a somewhat modified device with which the clamping jaws are moved at a right angle against the material.

2627

28

29

Clamping jaws *b* are moved by clamping lever *p*, the clamping jaws being spread apart by the right thrust bearing half *e*, the right side of which is configured as a clamping cone *e'*. Otherwise, the clamping and release of this chuck is carried out exactly as described above.

31

2 3 Lathe chuck, with which the clamping jaws are moved against the work piece by a part capable of being displaced in the direction of the chuck axis via a thread, 4 wherein, by moving the clamping lever of the lathe, a thrust collar (m) engages a 5 pivotably arranged thread operating lever (d^1) with the thread (c) of a chuck neck 6 (a) and simultaneously causes a rotatably and axially displaceable braking 7 device (k) to act on a displaceable brake part (h^1) ; as a result, the forward motion 8 of the lever (d^1) on the thread (c) causes the brake part (h^1) to act on a thrust 9 bearing (e) and, therefore, on the clamping jaws (b) in the interior of the 10 11 clamping, while moving the clamping lever in the opposite direction releases all 12 of the parts mentioned above. 13

Claim:

1 '

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.