

SWM19SCBT7-50

TFT-LCD 驱动演示板 应用和注意事项 (MPU-LCM I8080 16bit 接口)

目录

一、	SWM19x 型号资源描述	4
_,	最小系统板介绍	5
	2.1、SWM19SCBT7-50 v3.0 最小系统板板框预览图	5
	2.2、SWM19SRET6-50 v3.0 最小系统板板接口描述和配置	6
	2.3、SWM19SCBT7-50 v3.0 最小系统板原理图	7
	2.4、3.5'- JLT35002A 模组规格	8
	2.5、2.8'- FW-TFT028-V40 模组规格	9
	2.6、2.4'- LCM-UE024QV-RB30-L022B 模组规格	10
	2.7、表 1.1、LCDC 端口分布 MPU I8080-16bit	
	2.8、表 1.2、SpiFlash 端口分布	
	2.9、表 1.3、SDIO 端口分布	11
	2.10、表 1.4、CTP 触摸 端口分布	11
	2.11、表 1.5、其它端口分布	12
三、	硬件设计及调试	12
3.1、	TFT-LCD 接口要求	12
	3.2、Demo 板上 SpiFlash 可以放置多少张 320x240 的整图	
	3.3、ISP 烧写方式的应用	12
	3.4、IO 端口数量	12
	3.5、TFT-LCD 调试中常见问题	
	3.6、SpiFlash 中 UI 图片数据如何存储	12
四、	软件设计	
	4.1、TFT-LCD 的初始化	
	4.2、TFT-LCD 驱动的设置	15
	4.3、SPI_Flash 设置	
	4.4、SPI_DMA 读取 Flash	
五、	辅助工具的应用	
	5.1、转换工具为 Img2Lcd.exe 软件,可以将 BMP 文件转换成 bin 格式。	
	5.2、UI 素材的 bin 文件的合并。	
六、	如何更改其它分辨率 TFT-LCD 模组的应用	20

一、SWM19x 资源状况

I 产品特点 Product Features

◆ 32位ARM®Cortex™-M0 内核

时钟源

- ◆ 20MHz、48MHz 精度可达 1%的片内时钟源
- ◆ 32KHz片内时钟源片外2-32MHz 片外晶振
- ◆ 通过片上PLL,最高支持 60MHz 时钟

内置存储器

• FLASH 120KB、20KB SRAM

内置LDO

◆ 供电电压范围2.3V-3.6V

串行接口

- ◆ 4*UART模块
- ◆ 2*SPI模块
- ◆ 2*I²C模块

PWM控制模块

◆ 独立8通道 28 位 PWM 产生器,互补模式下可扩 展为 16 通道

定时器模块

- ◆ 24位系统定时器
- ◆ 4 路 32 位加强定时器
- ◆ 1 路支持 HALL 接口
- 4路24位基础定时器
- ◆ 32 位看门狗定时器 内置低功耗定时器模块

DMA模块

◇ 共计 4 通道 , 支持 UART/SPI/ADC 模块及存储模块之间 数据交互

GPIO

- ◇ 最多可达51个GPIO
- ◆ 非模拟复用IO支持5V输入

- ◆ 2 路 12 位 8 通道, 采样率高达 1MSPS高精度 SAR ADC
- ◇ 3 路模拟比较器
- ◆ 4 路运算放大器

◆ 支持欠压中断和复位选择

正常模式:19mA@48MHz

◆ 浅睡眠: 90uA

ISP/IAP

◆ 可自定义BOOT程序

工作温度

◆ -40°C-105°C

LQFP64 LQFP48 LQFP32

◆ 仪器仪表、工业控制、电机驱动、白色家电、可穿戴设备

二、最小系统板介绍

2.1、SWM19SCBT7-50 v3.0 最小系统板板框预览图

2.2、SWM19SCBT7-50 v3.0 最小系统板板接口描述和配置

2.8' ---- SWM19S_7789V_16bit_202101111127.rar 2.4' ---- SWM19S_GC9307_16bit_202101111127.rar

2.3、SWM19SCBT7-50 v3.0 最小系统板原理图

2.4、3.5' – JLT35002A **模组规格**

2.5、2.8'-FW-TFT028-V40 **模组规格**

3. Interface signals

Pin No.	Symbol	Description
1	GND	GROUND
2	DB1	
3	DB2	
4	DB3	
5	DB4	
6	GND	GROUND
7	VDD	Power spply
8	CS	Chip select input pin("Low"enable).
9	RS	This pin is used to select "Data or Command" in the parallel
10	WR	
11	RD	
12	NC	NC
13	NC	NC(YU)
14	NC	NC(XL)
15	NC	NC(YD)
16	NC	NC(XR)
17	LEDA	
18-21	LEDKI-LEDK4	NC
22	NC	
23	DB5	
24-31	DB10-DB17	
32	RESET	RESET
33	VDD	
34	VDD	
35	GND	
36	DB6	
37	DB7	
38	DB8	
39	GND	
40	GND	

2.6、2.4' – LCM-UE024QV-RB30-L022B **模组规格**

2.7、表 1.1、LCDC 端口分布 MPU I8080-16bit

序号	名称	SWM19SCRET7-50	备注
		LQFP48	
1	LCD_D0(DB0)	Pin1-B0	】1、"B0~B15"用于 I8080-16bit 的数据端口,可以提高数据
2	LCD_D1(DB1)	Pin48- B1	通讯的效率不建议调整。
3	LCD_D2(DB2)	Pin47- B2	2、"LCD CS"\"LCD RS"\"LCD WR"\"LCD RD"\
4	LCD_D3(DB3)	Pin46- B3	"LCD BL"\"LCD RST" 等端口,用户根据实际产品进
5	LCD_D4(DB4)	Pin45- B4	行调整。 建议不做调整。
6	LCD_D5(DB5)	Pin44- B5	3、Pin1(B0/ISP)也是 ISP 触发引脚。此引脚当在芯片上电后
7	LCD_D6(DB6)	Pin43- B6	一检测到持续 1ms 以上的高电平,将会进入 ISP 模式,此时
8	LCD_D7(DB7)	Pin42- B7	
9	LCD_D8(DB8)	Pin41- B8	可以通过 E5(RX), E7(TX)进行串口方式通讯, 做在线编程。
10	LCD_D9(DB9)	Pin39- B9	
11	LCD_D10(DB10)	Pin38- B10	
12	LCD_D11(DB11)	Pin37- B11	
13	LCD_D12(DB12)	Pin36- B12	
14	LCD_D13(DB13)	Pin35- B13	
15	LCD_D14(DB14)	Pin33- B14	
16	LCD_D15(DB15)	Pin32- B15	
17	LCD_CS	Pin18-E4	
18	LCD_RS	Pin11- A0	
19	LCD_WR	Pin27-D0	
20	LCD_RD	Pin26- D1	
21	LCD_BL	Pin30-C3	
22	LCD_RST	Pin31-C2	
	Total	22	

2.8、表 1.2、SpiFlash 端口分布

->- 17	1	CVID #100 CD PET #0	5.55
序号	名称	SWM19SCRET7-50	备注
, , ,		LQFP48	
1	S0_SSEL	Pin8-A8 /SPI0CS	S0_MI2 / S0_MI3 为 SpiFlash 四线 QSPI 方式的另外一对接
2	S0_SCLK	Pin5-A11 / SPI0CLK	口,如产品对 SpiFlash 的速度没有要求,也可以普通模式
3	S0_MOSI	Pin6-A10 / SPI0MOSI	读取。此对端口可做其对应的其它功能使用。
4	S0_MISO	Pin7-P9 /SPI0MISO	
5	S0_MI2	Pin3-E3/SPI0MI2	
6	S0_MI3	Pin4-E2/SPI0MI3	
	Total	6	

2.9、表 1.3、SDIO 端口分布

序号	名称	SWM19SCRET6-50 LQFP48	备注
1	SD_CS	Pin29- C4/SPI1CS	SD 卡的 Spi 通讯接口,此处只做硬件参考。软件例程中此
2	SD_CLK	Pin24- C7/SPI1CLK	」功能,由于资源和速度原因,未做应用。
3	SD_MOSI	Pin25- C6/SPI1MOSI	
4	SD_MISO	Pin28- C5/SPI1MISO	如无 SDIO 应用,此 4 个 IO 端口可做其对应的其它功能使
			用。
	Total	4	

2.10、表 1.4、CTP 触摸 端口分布

序号	名称	SWM19SCRET7-50 LQFP48	备注					
1	CT_SCL	Pin19- A15 / I2C1CLK	如无触摸应用,此 4 个 IO 端口可做其对应的其它功能使					
2	TP_SDA	Pin20- A14 / I2CDAT	用。					
3	TP_INT	Pin21- A13/						
4	TP_RST	Pin22- A12 /						
	Total	4						

2.11、表 1.5、其它端口分布

序号	名称	SWM19SCRET7-50 LQFP48	备注			
1	SWDIO	Pin9-A8/ SWDIO	可按实际项目需求进行设置。演示板作为 SWDIO 应用。			
			如需要设置为普通 IO 应用,设计中要考虑如何再激活为 SWD			
			应用作为程序的调试或下载。			
2	SWCLK	WCLK Pin10-A3/SWDCLK 可按实际项目需求进行设置。演示板作为SWDCLK				
			如需要设置为普通 IO 应用,设计中要考虑如何再激活为			
			SWD 应用作为程序的调试或下载。			
3	XI	Pin12-C1 / XI0	可按实际项目需求进行设置。演示板无应用			
4	XO	Pin13-C0/ XO0	可按实际项目需求进行设置。演示板无应用			
5	M_KEY/TX	Pin16-E7/ UART1TX	可按实际项目需求进行设置。演示板作为按键或串口 TX 应用			
6	RT_CS# /RX	Pin17-E5/ UART1RX	可按实际项目需求进行设置。演示板作为按键或串口 RX 应用			
	Total	6				

三、硬件设计及调试

3.1、TFT-LCD 接口要求

接口要求为 I8080-16 bit。

建议在原理图设计中,每个数据线的连接预留串接电阻33欧姆,作为抗干扰作用。

3.2、Demo 板上 SpiFlash 可以放置多少张 320x240 的整图

MPU I8080-16bit LCM 以 320x240 分辨率居多,以 320x240 为例。

Demo 板上的 SpiFlash 是 W25Q128, 是 128M bit, 即 16M Byte, 16x1024 BYTE; 一张 320x240 的图片 是 480x272x2=153600 Byte。 (16 x 1024 x 1024) / 153600 = 109 张整图。

3.3、ISP 烧写方式的应用

B0 端口是 ISP 方式的触发条件,在正常工作状态应该接下拉电阻,有效过滤外界的干扰导致系统上电后进入 ISP 模式。当需要 ISP 烧写是,通过外围接入高电平,系统上电过程检测 B0 端口位高电平进入 ISP 状态,配合 E5/E7 端口 和 PC 上位机软件 "SYNWIT_ISP_V3.1.2.exe",可以进行程序的下载烧写。

3.4、IO 端口数量

如果产品只需要用到显示,根据最小系统板 IO 端口表格的描述,最多可以有 14 个 IO 端口提行其对应功能进行应用。

3.5、TFT-LCD 调试中常见问题

1)、显示白屏

调试过程中出现白屏现象,通常为 LCM COG 芯片(如 ILI9488)初始化不成功。按照例程 或 LCM 供应商提供的平初始化程序,确认复位情况、分辨率等参数符合,重点可以查看硬件上两两引脚上是否存在短路、短路的现象。

3.6、SpiFlash 中 UI 图片数据如何存储

- 1)、通过通用烧写器方式,进行 UI 图片数据的存储编程写入。
- 2)、通过 JLINK 方式。 通过 SEGGER 集成软件中"J-LINK SPI"工具软件进行存储编程写入。 JLINK V9 或 DAP-JLINK PRO 支持 SPI 协议,可以进行 SpiFlash 的编程烧写。 硬件连接方式如下:

JLINK 的 20PIN 管脚定义如下:

Jlink接口的Jtag和SWD接口定义

下面是标准的接口排列:

vcc	1		2	VCC (optional)	vcc	1		2	VCC (optional)
TRST	3		4	GND	N/U	3		4	GND
TDI	5		6	GND	N/U	5		6	GND
TMS	7		8	GND	SWDIO	7		8	GND
TCLK	9		10	GND	SWCLK	9		10	GND
RTCK	11		12	GND	N/U	11		12	GND
TDO	13		14	GND	swo	13		14	GND
RESET	15		16	GND	RESET	15		16	GND
N/C	17		18	GND	N/C	17		18	GND
N/C	19		20	GND	N/C	19		20	GND

JTAG

JTAG/JLINK 管脚序号和定义	SpiFlash 管脚序号和定义
5TDI	Pin5MOSI
7TMS	Pin1NSS/CS
9TCK	Pin6SCK
13TDO	Pin2MISO

除了 SPI 接口外,还要连接 JLINK 和目标板的 VCC 和 GND,否则也识别不到芯片。硬件连接完成后,就可以打开 J-Flash SPI.exe 测试烧录。

需要注意:在进行 J-Flash SPI 烧写过程中,需要停止 SWM19SCBT7-50 与 SpiFlash 的通讯,否则 J-Flash SPI 与 SpiFlash 的通讯不成功。可以先擦除整片 SWM19SCBT7-50 的程序,采用"SYNWIT-上位机_v3.1.2"软件中"Jlink"

J-Flash SPI 图标

1)点击连接

2)成功连接后显示状态

3)打开要扫写的 bin 文件

4)选择烧写 bin 文件

5)选择起始地址为0开始

6)打开 bin 文件后的状态

7)选择擦除整片 Flash

8)擦除等待过程

9)成功擦除后的显示

10)选择编程和校验

11)编程和校验的过程

12)数据成功烧写后的显示

四、软件设计

4.1、TFT-LCD 的初始化

所有8080接口的LCD的应用需要先通过8080并口写入初始化指令的写入8080并口通讯的每个参数需要了解,TFT-LCD模组厂或驱动IC的ApplicationNote提供初始化参数。

4.2、TFT-LCD 驱动的设置

8080 驱动时序可以通过 I0 口模拟,需要初始化对应的 I0 口。而且由于是 GPI0 模拟,需要提高 I0 速度和效率,所以模拟时序时用到的 I0 操作,大多数通过位带和宏定义预编译的方式,提高 I0 的速度,从而减少刷图需要的时间。

```
#define PORT_UNR GPIOD
#define PORT_CS GPIOE
#define PORT_CS GPIOE
#define PORT_RST GPIOC

#define PORT_RST GPIOC

#define PORT_RST GPIOC

#define PIN_RR PING
#define PIN_RR PING
#define PIN_RS PING
#define PIN_RS PING
#define PIN_RS PING
#define PIN_RS PING
#define RIN_RS PING
#define
```


4.3、SPI Flash 设置

需要使能 DMA 和二分频模式,加快 SPI_Flash 的数据搬运,并且 DMA 每次搬运 LCD_HOR 数量的数据,LCD_HOR 即 LCD 一行的数据量 320*2=640Byte。并且 SWM19S 不挂载文件系统 FatFS,图片文件均以二进制的 bin 文件格式线性存储于 FLASH,并根据文件大小和偏移地址来读写 SPI_Flash。

```
oid SPI_Flash_Init(void)
SPI_InitStructure SPI_initStruct;
PORT_Init(PORTE, PIN2, PORTE_PIN3_SPI0_DAT2, 1); //IO2
PORT_Init(PORTE, PIN3, PORTE_PIN2_SPI0_DAT3, 1); //IO3
GPIO_Init(GPIOA, PIN8, 1, 0, 0,0);
PORT_Init(PORTA, PIN11, PORTA_PIN11_SPI0_SCLK, 0);
PORT Init(PORTA, PIN10, PORTA PIN10 SPI0 MOSI, 1)
PORT_Init(PORTA, PIN9, PORTA PIN9 SPI0 MISO, 1);
SPI_initStruct.clkDiv = SPI_CLKDIV_2
SPI_initStruct.FrameFormat = SPI_FORMAT_SPI;

SPI_initStruct.SampleEdge = SPI_FIRST_EDGE;

SPI_initStruct.IdleLevel = SPI_LOW_LEVEL;
SPI_initStruct.WordSize = 8;
SPI initStruct.Master
SPI_initStruct.RXThresholdIEn = 0;
SPI_initStruct.TXThresholdIEn =
SPI_initStruct.TXCompleteIEn
SPI_Init(SPI_PORT_W25X, &SPI_initStruct);
SPI_Open(SPI_PORT_W25X);
oid SPI_DMA_init(void)
   DMA_InitStructure SPI_RX_DMA_initStruct;
   uint32_t txdata = 0x
DMA->EN = 1;
DMA_CH_Close(DMA_CH0); //关闭后配置
DMA->CH[DMA_CH0].CR = (DMA_MODE_SINGLE << DMA_CR_AUTORE_Pos) |</pre>
                      (((LCD_HOR * 2)- 1) << DMA_CR_LEN_Pos);
DMA->CH[DMA_CH0].SRC = (uint32_t)&txdata;
DMA->CH[DMA_CH0].DST = (uint32_t)&SPI0->DATA;
DMA->CH[DMA_CH0].AM = (0 << DMA_AM_SRCAM_Pos)
                           (0 << DMA_AM_DSTAM_Pos)
                           (DMA_UNIT_BYTE << DMA_AM_SRCBIT_Pos) |
(DMA_UNIT_BYTE << DMA_AM_DSTBIT_Pos);
SPI_DMA_PICREAD(Base_Addr, 0, 0, 320, 240);
for(uint32_t i=0;i<5000000;i++);
SPI_DMA_PICREAD(Base_Addr+IMG_SIZE, 0, 0, 320, 240);
for(uint32_t i=0;i<50000000;i++);
SPI_DMA_PICREAD(Base_Addr+IMG_SIZE*2,0,0,320,240);
for(uint32_t i=0;i<50000000;i++);
SPI_DMA_PICREAD(Base_Addr+IMG_SIZE*3,0,0,320,240);
for(uint32_t i=0;i<5000000;i++);
SPI_DMA_PICREAD(Base_Addr+IMG_SIZE*4,0,0,320,240);
for(uint32_t i=0;i<50000000;i++);
```


4.4、SPI DMA 读取 Flash

调用 DMA 实现双 Buff 乒乓缓存。读取 LCD_Buf1 的时候,LCD_Buf2 用于刷图。读取 LCD_Buf2 的时候,LCD_Buf1 用于刷图。如此往复,直到读取完一张图的数据。

- 1. 初始化DMA控制器,数据宽度为32位,使能传输完成中断,配置DMA从Flash读第1&2行像素(960字节)保存到缓存RAM1中 2.等传输完成后,配置DMA读下两行到RAM2,通过并口写RAM1到LCD
- 3. 等传输完成后,配置DMA读下两行到RAM1,通过并口写RAM2到LCD
- 4. 重复2和3, 直到所有数据写到LCD。

```
SPI DMA PICREAD(uint32 t ReadAddr, uint16 t StartX, uint16 t StartY, uint16 t Display HOR, uint16 t Display VER)
uint16_t line = 0;
uint16_t c=0x0
SPI_FLASH_LCDFastRead(ReadAddr + (Display_HOR *line*2)-1, (uint16_t*)LCD_buf_1);
adderset(0, Display_HOR-1,0, Display_VER-1
  rile(line < LCD_VER)
         tch(status_lcd)
              status_lcd1:
             CS CLR;
             RS SET
             RD SET
              for(uint16_t i=0;i<Display_HOR;i++)</pre>
               PINs_out(GPIOB) = (uint16_t)LCD_buf_1[i];
               WR_SET;
             CS_SET
             RS SET
       while(spi_dma_finish == 0)
             NOP()
       spi_dma_finish = 0;
       line++;
        f(line < LCD_VER /*&& status_lcd!=status_lcdstop*/)
            switch(status_lcd)
                case status_lcd1:
                    status_lcd = status_lcd2;
                    SPI_FLASH_LCDFastRead(ReadAddr+ (Display_HOR * line*2)-1, (uint16_t*)LCD_buf_2);
                     status_1cd2
                    status_lcd = status_lcd1;
                    SPI_FLASH_LCDFastRead(ReadAddr+ (Display_HOR * line*2)-1, (uint16_t*)LCD_buf_1);
```


五、辅助工具的应用

5.1、转换工具为 Img2Lcd.exe

转换工具为 Img2Lcd.exe 软件,可以将 BMP 文件转换成 bin 格式。

参考上图设置❶❷❸❹❺选项,再点击"保存",储存为转换工具默认的"*.ebm"文件格式后,可以直接更改文件后缀名为"*.bin"

5.2、UI素材的bin文件的合并。

采用"SYNWIT_ISP_V3.1.2.exe"工具软件

图 2.1 启动界面

图 2.2 bin 文件合并工具

如图 2.2 所示,将需要合并 UI 素材 bin 文件打开导入"Step1-请选择文件 1"、"Step2-请选择文件 2",同时选择合并输出的文件名称"Step3-请选择输出路径",然后点击"合并",生成"文件 1"和"文件 2"的"文件 3"。以此类推,将"文件 3"和"文件 4"合并生产"文件 5"。。。。。。。。

将 UI 素材文件合并成一个文件后,通过"3.6"中描述,将 Bin 文件编程存储到 SpiFlash 中。

六、如何更改其它分辨率 TFT-LCD 模组的应用

根据 LCM 供应商提供的规格书,查阅确认 COG 芯片的对应的水平和垂直显示点数的参数设置。

编写记录

日期	版本	描述	备注
2021-01-18	20210125	整理 SWM19SCBT7-50	Liuze yinfe rk
2021-01-29	20210129	整理 J-Flash SPI 烧写的内容。更新最小系统板原理图和 板框描述	rk