01211433

Vision and Control of Industrial Robots

Controller Implementation

Dr. Varodom Toochinda Dept. of Mechanical Engineering, Kasetsart University

Topics

- hybrid systems
- Sampling of analog signal
 - aliasing
 - sampling theorem
- Discrete-time System Description
 - Approximation of continuous-time transfer function
 - forward difference
 - backward difference
 - bilinear transformation
 - Stability of discrete-time feedback system
 - Relationship between approximation and stability
- Discrete-time system implementation

Hybrid Feedback Systems

Sampling of analog signal

aliasing problem

Sampling Theorem

 Signal can be reconstructed without aliasing problem with sampling frequency twice the signal bandwidth, called Nyquist rate

Discrete-time system description

Difference equation

Discrete-time
Transfer function

Continuous-discrete relationships

Approximation of continuoustime transfer function

Consider $\dot{u}(t) = e(t)$

$$C(s) = \frac{U(s)}{E(s)} = \frac{1}{s}$$

Solution

$$u(t) = u(t_0) + \int_{t_0}^t e(\tau)d\tau$$

At sampling instant

$$u((k+1)T) = u(kT) + \int_{kT}^{(k+1)T} e(\tau)d\tau$$

3 methods of integrator approximation

$$u((k+1)T) = u(kT) + \int_{kT}^{(k+1)T} e(\tau)d\tau$$

Forward difference

Backward difference

Bilinear transform

$$u(k+1) \approx u(k) + e(k)T$$

$$u(k+1) \approx u(k) + e(k+1)T$$

$$u(k+1) \approx u(k) + \frac{e(k+1) + e(k)}{2}T$$

3 methods of integrator approximation

Forward difference

Backward difference

Bilinear transform

$$u(k+1) \approx u(k) + e(k)T$$

$$u(k+1) \approx u(k) + e(k+1)T$$

$$u(k+1) \approx u(k) + \frac{e(k+1) + e(k)}{2}T$$

Discrete-time Transfer Function

$$C(z) = U(z) / E(z)$$

Forward difference

Backward difference

Bilinear transform

$$C(z) = \frac{T}{z-1} = \frac{Tz^{-1}}{1-z^{-1}}$$

$$C(z) = \frac{Tz}{z-1} = \frac{T}{1-z^{-1}}$$

$$C(z) = \frac{T}{2} \frac{z+1}{z-1} = \frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}}$$

Transformation of C(s) to C(z)

Forward difference

Backward difference

Bilinear transform

$$C(z) = C(s)|_{s \to \frac{z-1}{T}}$$

$$C(z) = C(s)\Big|_{s \to \frac{z-1}{Tz}}$$

$$C(z) = C(s)\Big|_{s \to \frac{2}{T} \frac{z-1}{z+1}}$$

Scilab commands: cls2dls

Stability of discrete-time transfer function

Closed-loop pole location

Pole/zero plot by plzr

Stability region relationship from approximations

Discrete-time implementation

Hybrid system simulation

HW#4

Convert your controller from HW#3 to discrete-time, and simulate with the plant

$$P(s) = \frac{1}{s(7s+0.05)}$$

Compare the responses between continuous and discretetime.

This homework can be done with either Python or Julia. There is no Jupyter or Pluto notebook prepared for you. Students must create your notebooks.