Assignment 2

Digital Design Verification

Contents

1		test dynamic array
	1.1	1. Testbench
2	Q2 :	Counter
	2.1	1. Testbench code
	2.2	2. Package code
	2.3	3. Design code
	2.4	4. Bug Fixes
	2.5	5. Verification Plan
	2.6	6. Do File
	2.7	7. Coverage Report
	2.8	8. Waveform
3	Q3 :	ALU
	3.1	1. Testbench code 9 2. Package code 11
	3.2	2. Package code
	3.3	3. Design code
	3.4	4. Bug Fixes
		5. Verification Plan
	3.6	6. Do File
	3.7	7. Coverage Report
		8. Waveform

1 Q1: test dynamic array

1.1 1. Testbench

```
module dyn_array_tb;
3 //-----
4 // dynamic array declaration (with initialization for dyn_arr2)
6 int dyn_arr1 [];
7 int dyn_arr2 [] = '{9,1,8,3,4,4};
10 initial begin
     //----
     // allocate six elements in dyn_arr1
     dyn_arr1 = new[6];
     // initialize array dyn_arr1 with index
     //-----
     foreach (dyn_arr1[i]) begin
         dyn_arr1[i] = i;
23
     //-----
     // display dyn_arr1 elements and size
     display("dyn_arr1_uelements: \y|_vu_size_u: \y|_vu_size_u: \y|_vu_arr1_dyn_arr1_size());
     // delete array dyn_arr1
     $display("After_deleting_dyn_arr1,_Size:_\"0d", dyn_arr1.size());
     // Reverse sort dyn_arr2
     dyn_arr2.reverse();
     $display("After_reverse_dyn_arr2:_\p", dyn_arr2);
     //-----
     // Sort dyn_arr2
     dyn_arr2.sort();
     $display("After_sort_dyn_arr2:_\p", dyn_arr2);
     //----
     // Reverse sort dyn_arr2
     dyn_arr2.rsort();
     display("After_ireverse_isort_idyn_arr2:_i%p", dyn_arr2);
     //-----
     // Shuffle dyn_arr2
     dyn_arr2.shuffle();
     $display("After_shuffle_dyn_arr2:_%p", dyn_arr2);
59 end
60 endmodule
                               # dyn_arrl elements: '{0, 1, 2, 3, 4, 5} , size : 6
                               # After deleting dyn_arrl, Size: 0
                               # After reverse dyn_arr2: '{4, 4, 3, 8, 1, 9}
                               # After sort dyn_arr2: '{1, 3, 4, 4, 8, 9}
                               # After reverse sort dyn_arr2: '{9, 8, 4, 4, 3, 1}
                               # After shuffle dyn_arr2: '{8, 1, 4, 3, 9, 4}
```

Figure 1: Transcript : all test cases passed

2 Q2: Counter

2.1 1. Testbench code

```
bit clk;
               // Clock signal
    bit rst_n;
              // Active-low reset
    bit load_n;  // Load enable (active-low)
    bit up_down; // Direction control: 1 for up, 0 for down
                // Count enable
    logic [TB_WIDTH-1:0] data_load; // Data to load into counter
    wire [TB_WIDTH-1:0] count_out; // Counter output
    wire max_count; // Flag indicating max count reached
                // Flag indicating count is zero
    // Instantiate the DUT (Device Under Test) with overridden WIDTH
    //-----
    counter #(.WIDTH(TB_WIDTH)) dut (
31
      .clk
             (clk),
              (rst n).
      .\, {\tt rst\_n}
             (load_n),
      .load_n
      .up_down (up_down),
          (ce),
      .ce
      .data_load(data_load),
      .count_out(count_out),
      .max_count(max_count),
40
    //----
    // Create an instance of the random config class
45
    counter_cfg cfg;
    //-----
    // Reference model state (golden model for verification)
    //-----
    logic [TB_WIDTH-1:0] golden_count; // Reference count value
51
    wire golden_max; // Reference max count flag
    wire golden_zero; // Reference zero flag
    //-----
    // Clock generator: Generates a 10 ns period clock signal
    initial begin
      clk = 0:
      forever begin
         #5 clk = ~clk; // Toggle clock every 5ns
         cfg.clk = clk; // Update clock in config
62
63
    end
    //-----
    // Task: synchronous reset assertion
    //----
69
    task assert_reset();
        rst_n = 0; // Activate reset (active-low)
71
        @(posedge clk); // wait 1 clock cycle
        @(posedge clk); // wait another clock cycle
        rst_n = 1; // Deactivate reset
74
      end
75
    endtask
    //-----
    // Golden model logic: Simulate expected counter behavior
    always @(posedge clk) begin
      if (!rst_n) begin
        golden_count <= '0; // Reset golden count to zero</pre>
      end else if (!load_n) begin
        golden_count <= data_load; // Load value into golden count</pre>
      end else if (ce) begin
        if (up_down)
         golden_count <= golden_count + 1; // Increment</pre>
         golden_count <= golden_count - 1; // Decrement</pre>
91
    // Calculate golden model outputs
    assign golden_max = (golden_count == {TB_WIDTH{1'b1}});
    assign golden_zero = (golden_count == 0);
    // Task: Compare DUT outputs with golden model
    //-----
100
101
    task check_result();
      if (count_out !== golden_count) begin
102
        $error("[CHECK_RESULT] \( \) Mismatch! \( \) DUT=%0d, \( \) GOLDEN=%0d", count_out, golden_count);
103
104
      if (max_count !== golden_max) begin
105
        $error("[CHECK_RESULT]_\( \text{max_count_mismatch!_\( \text{DUT=\%b,_\( \text{GOLDEN=\%b", max_count, golden_max );}}\);
106
107
108
      if (zero !== golden_zero) begin
        $error("[CHECK_RESULT]_uzero_mismatch!_DUT=%b,_GOLDEN=%b", zero, golden_zero);
109
110
    endtask
112
    //-----
113
    // Main verification process: Drives the testbench flow
114
    //-----
115
    initial begin
116
```

```
// Create config object for randomization
117
118
       cfg = new();
119
       // 1) Assert reset
       assert_reset();
121
122
       // 2) Run random tests
123
       for (int i = 0; i < 40; i++) begin
124
         if (!cfg.randomize()) begin
125
           $error("Randomization if ailed!");
          $finish;
127
128
129
         // Drive signals from random config
130
         rst_n = cfg.rst_n;
131
         load_n = cfg.load_n;
         up_down = cfg.up_down;
133
         ce = cfg.ce;
134
135
         data_load= cfg.data_load;
136
         @(posedge clk); // Wait for clock edge
137
138
         // Compare DUT with golden model
139
140
         check_result();
141
142
       $display("All_done._End_of_simulation.");
143
       $finish; // End simulation
144
145
146
147 endmodule
        2. Package code
   package counter_pkg;
       //----
       // 1) Declare the parameter
       //-----
       parameter int WIDTH = 4;
       //-----
       // 2) Create a class for constrained-random stimulus
       class counter_cfg;
12
           //----
13
          // DUT signals we want to randomize
14
           //----
          bit clk;
                                      // clock signal
                       rst_n;
load_n;
                                      // Active-low reset
// Active-low load
          rand bit
          rand bit
          rand bit up_down; rand bit ce;
                                       // 1 => increment, 0 => decrement
                                       // clock enable
          rand logic [WIDTH-1:0] data_load;
           //----
23
           // Coverage group
           //=========
           covergroup cg @(posedge clk);
            cp1: coverpoint rst_n;
            cp2: coverpoint load_n;
            cp3: coverpoint up_down;
29
            cp4: coverpoint ce;
            cp5: coverpoint data_load;
           endgroup
           //========
34
           // Constructor
35
           //----
           function new();
            cg = new();
           endfunction
           // 3) Constraints to meet the 70\%/30\% guidelines
           // use distribution for probability
           //----
           constraint reset_deactivated_most {
            // Reset low 30% of time, high 70\%
46
            rst_n dist { 1 := 70, 0 := 30 };
48
49
           constraint load_active_70 {
            // load_n=0 is "active" => 70% of time
51
            load_n dist { 0 := 70, 1 := 30 };
52
53
54
           constraint enable_active_70 {
55
            // ce=1 => 70% of time
            ce dist { 1 := 70, 0 := 30 };
57
58
59
           constraint up_down_dist {
60
            // Distribution constraint: 50\% chance of 0, 50\% chance of 1
61
            up_down dist { 0 := 50, 1 := 50 };
62
63
64
           constraint up_down_data_load_c {
65
                if (up_down) {
```

```
// up_down=1 => pick data_load mostly in lower half
                data_load dist {
                  [0 : (1 << (WIDTH-1))-1] := 80,
                   [(1 << (WIDTH-1)) : (1 << WIDTH)-1] := 20
                };
                  } else {
72
                // up_down=0 => pick data_load mostly in upper half
73
                data_load dist {
74
                  [0 : (1 << (WIDTH-1))-1] := 20,
                  [(1 << (WIDTH-1)) : (1 << WIDTH)-1] := 80
                };
77
78
            }
79
80
       {\tt endclass}
81
   endpackage
```

2.3 3. Design code

```
2 // Author: Kareem Waseem
_{
m 3} // Course: Digital Verification using SV & UVM
4 //
5 // Description: Counter Design
6 //
8 module counter (clk ,rst_n, load_n, up_down, ce, data_load, count_out, max_count, zero);
9 parameter WIDTH = 4;
input clk;
input rst_n;
  input load_n;
input up_down;
14 input ce;
input [WIDTH-1:0] data_load;
output reg [WIDTH-1:0] count_out;
output max_count;
output zero;
  always @(posedge clk) begin
20
     if (!rst_n)
21
         count_out <= 0;
22
      else if (!load_n)
23
         count_out <= data_load;</pre>
24
      else if (ce) begin
25
         if (up_down)
            count_out <= count_out + 1;</pre>
27
         else
28
            count_out <= count_out - 1;</pre>
29
30
      end
31 end
assign max_count = (count_out == {WIDTH{1'b1}})? 1:0;
34 assign zero = (count_out == 0)? 1:0;
36 endmodule
```

2.4 4. Bug Fixes

missing (begin and end) for "else if (ce)"

2.5 5. Verification Plan

Label	Design Requirement Description	Stimulus Generation	Functional Coverage	Functionality Check
			<u> </u>	ū
COUNTER_1	When reset (rst_n) is asserted, the out-	Directed at the start of	Coverage point to track	A checker in the testbench
	put count_out should be zero.	the simulation, followed	how many times reset	ensures count_out is 0
		by randomization with a	is asserted and confirm	when $rst_n == 0$.
		constraint to keep reset	count_out == 0.	
		active for 30% of the time.		
COUNTER_2	When load (load_n) is asserted,	Randomization of load_n	Coverage point to track	A checker in the test-
	count_out should take the value of	with a 70% probability	how many times load_n is	bench verifies count_out
	data_load.	of being active (low) and	asserted and the range of	== data_load when
		randomized data_load	data_load values.	load_n == 0.
		values.		
COUNTER_3	When ce is enabled, the counter	Randomization with 70%	Coverage point to cap-	A checker compares
	should increment or decrement based	chance for ce being high,	ture the toggling of	count_out with the
	on up_down.	and a 50-50 distribution	up_down and transitions	expected increment
		for up_down.	of count_out.	or decrement, verified
		_		against the golden model.
COUNTER_4	max_count should be asserted when	Random tests allowing	Coverage point to check	A checker validates
	count_out reaches its maximum value.	the counter to reach its	how often max_count is	max_count == 1 when
		maximum possible value	triggered.	count_out == max
		$(\{WIDTH\{1'b1\}\}).$		value.
COUNTER_5	zero should be asserted when	Directed reset tests and	Coverage point for how of-	A checker verifies zero ==
	count_out is zero.	decrement tests pushing	ten zero is asserted.	1 only when count_out
		count_out to zero.		== 0.

Table 1: Verification Plan for Counter Design

```
2.6
    6. Do File
vlib work
vlog counter_pkg.sv counter.v counter_tb.sv +cover -covercells
vsim -voptargs=+acc work.counter_tb -cover
add wave *
coverage\ save\ counter\_tb.ucdb\ -onexit
run —all
# to run do file
#— do run.txt
# to execute coverage report (one for code coverage and other fuctional coverage)
\# — vcover report counter_tb.ucdb -details -annotate -all -output coverage_rpt.txt -du=counter
\# — vcover report -details -cvg -output counter_coverage_report.txt counter_tb.ucdb
2.7 7. Coverage Report
Coverage Report by DU with details
= Design Unit: work.counter
Branch Coverage:
    Enabled Coverage
                                  Bins
                                             Hits
                                                     Misses Coverage
    Branches
                                    10
                                               10
                                                              100.00\%
                               ==Branch Details===
```

Line	${\rm Item}$	Count	Source
File c	ounter.v		
		IF Branch	
21		42	Count coming in to IF
21	1	18	if (!rst_n)
23	1	15	$else if (!load_n)$
25	1	5	else if (ce) begin
		4	All False Count
Branch t	otals: 4 hits of 4 bran	iches = 100.00%	
		IF Branch	
26		5	Count coming in to IF
26	1	2	if (up_down)
28	1	3	else
Branch t	otals: 2 hits of 2 bran	iches = 100.00%	
		IF Branch	
33		25	Count coming in to IF
33	1	4	assign $max_count = (count_out = \{WIDTH\{1'b1\}\})? 1:0;$
33	2	21	assign $max_count = (count_out = \{WIDTH\{1'b1\}\})? 1:0;$
Branch t	otals: 2 hits of 2 bran	iches = 100.00%	
		IF Branch	
34		25	Count coming in to IF
34	1	8	assign zero = $(count_out == 0)$? 1:0;
34	2	17	assign zero = $(count_out == 0)$? 1:0;
Branch t	otals: 2 hits of 2 bran	100.00%	

Branch totals: 2 hits of 2 branches = 100.00%

Condition Coverage:

Enabled Coverage	$_{ m Bins}$	$\operatorname{Covered}$	${ m Misses}$	Coverage
Conditions	2	2	0	100.00%

Condition Details

Condition Coverage for Design Unit work.counter —

```
File counter.v
               -Focused Condition View-
       33 Item 1 (count_out = \{4\{\{1\}\}\}\))
Condition totals: 1 of 1 input term covered = 100.00\%
```

Input Term Covered Reason for no coverage Hint $(count_out = \{4\{\{1\}\}\})$ Y

```
Hits FEC Target
                                                    Non-masking condition(s)
   Rows:
                   1 (count_out == \{4\{\{1\}\}\}\})_0
Row
      1:
Row
      2:
                   1 (count_out = \{4\{\{1\}\}\})_1
```

-Focused Condition View- $34 \text{ Item} \quad 1 \quad (\text{count_out} = 0)$ Condition totals: 1 of 1 input term covered = 100.00%

Input Term Covered Reason for no coverage $_{
m Hint}$ Y $(count_out = 0)$

Rows: Hits		FEC Target	Non-masking condition(s)			
Row 1:	1	$(count_out == 0)_0$				
Row 2: 1		(count_out == 0)_1	_			
atement Cov	erage:					
	0					
Enabled C	overage	Bins	$_{ m Hits}$	Misses	Coverage	

Statement Coverage for Design Unit work.counter

Line	Item		Count	Source
File counter	. v	-		
8				module counter (clk ,rst_n , load_n , up_down , ce , data_load , count_out , max_count
9				parameter WIDTH = 4;
10				input clk;
11				input rst_n;
12				input load_n;
13				$input up_down;$
14				input ce;
15				input [WIDTH-1:0] data_load;
16				output reg [WIDTH-1:0] count_out;
17				output max_count;
18				output zero;
19				
20	1		42	always @(posedge clk) begin
21				$if (!rst_n)$
22	1		18	<pre>count_out <= 0;</pre>
23				$else if (!load_n)$
24	1		15	<pre>count_out <= data_load;</pre>
25				else if (ce) begin
26				$if (up_down)$
27	1		2	<pre>count_out <= count_out + 1;</pre>
28				${ m else}$
29	1		3	$count_out \le count_out - 1;$
30				end
31				end
32				
33	1		26	$assign max_count = (count_out == \{WIDTH\{1'b1\}\})? 1:0;$
34	1		26	assign zero = $(count_out == 0)$? 1:0;
Toggle Coverag	e:			
Enabled Co	overage	$_{ m Bins}$	Hits	Misses Coverage
Toggles		30	30	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

Toggle Details

Toggle Coverage for Design Unit work.counter

Node	1H–> $0L$	0L–> $1H$	"Coverage"
ce	1	1	100.00
clk	1	1	100.00
$\operatorname{count}_{\mathtt{out}}[0-3]$	1	1	100.00
$\operatorname{data_load}[0-3]$	1	1	100.00
load_n	1	1	100.00
\max_count	1	1	100.00
$rst_{-}n$	1	1	100.00
$\mathrm{up_down}$	1	1	100.00
zero	1	1	100.00

Total Node Count 15 Toggled Node Count 15Untoggled Node Count =

100.00% (30 of 30 bins) Toggle Coverage

Total Coverage By Design Unit (filtered view): 100.00%

Coverage Report by instance with details

=== Instance: /counter_pkg === Design Unit: work.counter_pl	kg							
Covergroup Coverage:								
Covergroups	1	na	na	100.00%)			
Coverpoints/Crosses	5	na	$_{ m na}$	na	l			
Covergroup Bins	24	24	0	100.00%)			
Covergroup			Metr	ic	Goal	Bins	Status	

TYPE /counter_pkg/counter_cfg/cg	100.00%	100	_	Covered
covered/total bins:	24	$\frac{1}{24}$	_	Covered
missing/total bins:	0	$\frac{21}{24}$	_	
% Hit:	100.00%	100	_	
Coverpoint cp1	100.00%	100	_	Covered
covered/total bins:	2	2	_	00,0104
missing/total bins:	0	$\frac{2}{2}$	_	
% Hit:	100.00%	100	_	
bin auto [0]	18	1	_	Covered
bin auto[1]	24	1	_	Covered
Coverpoint cp2	100.00%	100	_	Covered
covered/total bins:	2	2	_	00,0104
missing/total bins:	0	$\frac{1}{2}$	_	
% Hit:	100.00%	100	_	
bin auto[0]	28	1	_	Covered
bin auto[1]	14	1	_	Covered
Coverpoint cp3	100.00%	100	_	Covered
covered/total bins:	2	2	_	00,0104
missing/total bins:	0	$\frac{1}{2}$	_	
% Hit:	100.00%	100	_	
bin auto [0]	26	1	_	Covered
bin auto[1]	16	1	_	Covered
Coverpoint cp4	100.00%	100	_	Covered
covered/total bins:	2	$\frac{1}{2}$	_	00,0104
missing/total bins:	0	$\frac{1}{2}$	_	
% Hit:	100.00%	100	_	
bin auto[0]	16	1	_	Covered
bin auto[1]	26	1	_	Covered
Coverpoint cp5	100.00%	100	_	Covered
covered/total bins:	16	16	_	
missing/total bins:	0	16	_	
% Hit:	100.00%	100	_	
bin auto[0]	2	1	_	Covered
bin auto[1]	2	1	_	Covered
bin auto [2]	1	1	_	Covered
bin auto [3]	1	1	_	Covered
bin auto [4]	$\overline{2}$	1	_	Covered
bin auto [5]	$\bar{3}$	1	_	Covered
bin auto [6]	$\overline{2}$	1	_	Covered
bin auto [7]	1	1	_	Covered
bin auto [8]	3	1	_	Covered
bin auto [9]	4	1	_	Covered
bin auto [10]	2	1	_	Covered
bin auto[11]	5	1	_	Covered
bin auto[12]	4	1	_	Covered
bin auto [13]	$\overset{-}{4}$	$\overline{1}$	_	Covered
bin auto [14]	1	$\overline{1}$	_	Covered
bin auto[15]	3	$\overline{1}$	_	Covered
r 1				
COLUMN COLUMN COLUMN ACE				

COVERGROUP COVERAGE:

Covergroup	Metric	Goal	$_{ m Bins}$	Status
TYPE /counter_pkg/counter_cfg/cg	100.00%	100		Covered
covered/total bins:	24	24	_	
missing/total bins:	0	24	_	
% Hit:	100.00%	100	_	
Coverpoint cp1	100.00%	100	_	Covered
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
bin auto [0]	18	1	_	Covered
bin auto [1]	24	1	_	Covered
Coverpoint cp2	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	$\bar{0}$	$\overline{2}$	_	
% Hit:	100.00%	100	_	
bin auto [0]	28	1	_	$\operatorname{Covered}$
bin auto[1]	14	1	_	Covered
Coverpoint cp3	100.00%	100	_	Covered
covered/total bins:	2	2	_	00,0104
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
bin auto [0]	26	1	_	Covered
bin auto[1]	16	1	_	Covered
Coverpoint cp4	100.00%	100	_	Covered
covered/total bins:	2	2	_	Covered
missing/total bins:	0 = 0	2		
% Hit:	100.00%	100		
bin auto [0]	160.00%	1		Covered
bin auto[0]	26	1	_	Covered
Coverpoint cp5	100.00%	100	_	Covered
covered/total bins:	100.007_0 16	16	_	Covered
missing/total bins:	0	16	_	
% Hit:	100.00%	100	_	
bin auto[0]		100	_	Covered
	$\frac{2}{2}$		_	Covered
bin auto[1]		1	_	
bin auto[2]	1	1	_	Covered
bin auto[3]	1	1	_	Covered
bin auto [4]	$\frac{2}{2}$	1	_	Covered
bin auto[5]	3	1	_	Covered

```
2
bin auto [6]
                                                                        1
                                                                                          Covered
bin auto [7]
                                                           1
                                                                        1
                                                                                          Covered
bin auto [8]
                                                           3
                                                                        1
                                                                                          Covered
bin auto [9]
                                                           4
                                                                                          Covered
                                                                        1
                                                           2
bin auto [10]
                                                                                          Covered
                                                                        1
                                                           5
bin auto [11]
                                                                                          Covered
                                                                        1
bin auto [12]
                                                                                          Covered
                                                           4
                                                                        1
bin auto [13]
                                                                                          Covered
                                                           4
                                                                        1
bin auto [14]
                                                           1
                                                                        1
                                                                                          Covered
bin auto [15]
                                                                                          Covered
                                                                        1
```

TOTAL COVERGROUP COVERAGE: 100.00% COVERGROUP TYPES: 1

Total Coverage By Instance (filtered view): 100.00%

2.8 8. Waveform

Figure 2: simulation waveform

```
# vsim -voptargs="+acc" work.counter_tb -coverage
# Start time: 17:01:59 on Mar 14,2025
# ** Note: (vsim-8009) Loading existing optimized design _opt1
# Loading sv_std.std
# Loading work.counter_pkg(fast)
# Loading work.counter_tb_sv_unit(fast)
# Loading work.counter_tb(fast)
# Loading work.counter(fast)
# All done. End of simulation.
# ** Note: $finish : counter_tb.sv(144)
# Time: 415 ns Iteration: 1 Instance: /counter_tb
# 1
# Break in Module counter_tb at counter_tb.sv line 144
```

Figure 3: Transcript : all test cases passed

3 Q3: ALU

3.1 1. Testbench code

```
'timescale 1ns/1ps
   import ALSU_pkg::*;
   module ALSU_tb;
     // Testbench signals
     logic clk;
     logic rst;
     logic cin;
     logic red_op_A;
13
     logic red_op_B;
14
     logic bypass_A;
15
     logic bypass_B;
16
     logic direction;
     logic serial_in;
18
     logic signed [2:0] A;
19
20
     logic signed [2:0] B;
     logic [2:0]
                         opcode;
21
     wire [15:0]
                         leds;
22
     wire signed [5:0] out;
24
25
     // DUT instantiation
26
27
28
       .INPUT_PRIORITY("A"),
29
       .FULL_ADDER("ON")
30
     ) dut (
31
       .clk
                    (clk),
32
       .rst
                    (rst),
```

```
.cin
                   (cin),
       .red_op_A
                   (red_op_A),
                   (red_op_B),
       .red_op_B
       .bypass_A
                   (bypass_A),
       .bypass_B
                   (bypass_B),
       .direction (direction),
39
       .serial_in (serial_in),
       . A
                   (A),
                   (B),
       .opcode
                   (opcode),
       .leds
                   (leds),
44
       .out
                   (out)
45
     // -----
     // Create an object for random stimulus
     // -----
50
     alsu_rand_class stim;
51
     // Clock & reset generation
54
     initial begin
56
57
           clk = 0;
           forever begin
             #5 clk = clk;
59
              stim.clk = clk;
           end
      end
62
63
     // reset task
64
     task do_reset();
       rst = 1;
       #10;
68
       // Check result against a golden model
69
70
         golden_model(
           rst, A, B, cin, serial_in, red_op_A, red_op_B, bypass_A, bypass_B,
71
           direction, opcode
73
         );
       #10;
74
       rst = 0;
     endtask
     // -----
     // Golden model for reference
79
     // -----
80
   task golden_model(
       input logic rst,
       input logic signed [2:0] A, B,
83
       input logic cin, serial_in, red_op_A, red_op_B,
       input logic bypass_A, bypass_B, direction,
85
        input logic [2:0] opcode
86
87 );
       logic signed [5:0] expected_out;
       logic [15:0] expected_leds;
91
       logic invalid_red_op, invalid_opcode, invalid;
92
93
       // Invalid condition handling
94
       invalid_red_op = (red_op_A | red_op_B) & (opcode[1] | opcode[2]);
       invalid_opcode = opcode[1] & opcode[2];
       invalid = invalid_red_op | invalid_opcode;
97
98
       if(rst) begin
99
          expected_out = 0;
100
          expected_leds = 0;
       end else begin
102
         if (invalid)
103
           expected_leds = ~expected_leds;
104
         else
105
           expected_leds = 0;
106
108
109
110
       if (bypass_A && bypass_B)
       expected_out = ("A" == "A") ? A : B; // INPUT_PRIORITY is "A"
112
       else if (bypass_A)
        expected_out = A;
       else if (bypass_B)
114
       expected_out = B;
115
       else if (invalid)
116
       expected_out = 0;
117
       else begin
118
       case (opcode)
119
           3'hO: begin // OR or Reduction OR
120
               if (red_op_A && red_op_B)
121
                   expected_out = ("A" == "A") ? |A : |B;
122
               else if (red_op_A)
123
124
                   expected_out = |A;
               else if (red_op_B)
125
                   expected_out = |B;
126
               else
127
                   expected_out = A | B;
128
           end
129
           3'h1: begin // XOR or Reduction XOR
130
               if (red_op_A && red_op_B)
131
                   expected_out = ("A" == "A") ? ^A : ^B;
132
133
               else if (red_op_A)
```

```
expected_out = ^A;
134
                 else if (red_op_B)
135
                     expected_out = ^B;
136
137
                     expected_out = A ^ B;
138
             end
139
             3'h2: expected_out = A + B; // ADD
140
             3'h3: expected_out = A * B; // MUL
141
             3'h4: begin // SHIFT
142
                 if (direction)
                     expected_out = {expected_out[4:0], serial_in};
144
145
146
                      expected_out = {serial_in, expected_out[5:1]};
147
             end
             3'h5: begin // ROTATE
148
                 if (direction)
149
                      expected_out = {expected_out[4:0], expected_out[5]};
150
151
152
                      expected_out = {expected_out[0], expected_out[5:1]};
             end
153
             default: expected_out = 0;
154
155
        endcase
        end
156
157
158
         // Wait another clock so the output is stable
        @(posedge clk);
159
        #1;
160
161
        if ( (out != expected_out) && (leds != expected_leds)) begin
162
             $error("[ALSU]_\Mismatch_\with_golden_model:\_opcode=%0b.\_\out=%0d,\_expected_out=%0d",
163
164
                     opcode, out, expected_out);
        end
165
    endtask
166
167
168
169
      // Test/Stimulus
170
171
172
      initial begin
173
        stim = new();
174
175
        do_reset(); // start in reset
176
177
178
        for (int i = 0; i < 200; i++) begin</pre>
179
180
181
           // Randomize with constraints
           if(!(stim.randomize())) begin
182
              $error("Randomization ifailed!");
183
184
              $finish;
185
186
          // Drive signals
187
                    = stim.rst;
188
          rst
                      = stim.cin;
189
          red_op_A = stim.red_op_A;
190
                      = stim.red_op_B;
          red_op_B
191
                      = stim.bypass_A;
192
           bypass_A
                      = stim.bypass_B;
193
           bypass_B
           direction = stim.direction;
194
           serial_in = stim.serial_in;
195
196
          opcode
                      = stim.opcode;
                      = stim.A;
197
198
                      = stim.B;
199
           // Wait a clock for inputs to be sampled
200
          @(posedge clk);
202
           // Check result against a golden model
203
           golden_model(
204
             rst, A, B, cin, serial_in, red_op_A, red_op_B, bypass_A, bypass_B,
205
             direction, opcode
206
          );
208
209
210
        $display("ALSU_test_completed");
211
        $finish;
212
      end
214
215 endmodule
    3.2 2. Package code
    package ALSU_pkg;
      // -----
      // 1) Define the opcodes (including invalids)
      // -----
      typedef enum logic [2:0] {
               = 3'h0, // 000
= 3'h1, // 001
= 3'h2, // 010
        OR_O
        XOR_1
        ADD_2
                    = 3'h3, // 011
        MUL_3
        SHIFT_4
                  = 3'h4, // 100
        ROTATE_5 = 3'h5, // 101
INVALID_6 = 3'h6, // 110
INVALID_7 = 3'h7 // 111
 12
 13
      } opcode_e;
 14
```

```
// 2) 3-bit signed range is -4 .. +3
// -----
localparam logic signed [2:0] MAXNEG = -4; // 3'b100
localparam logic signed [2:0] ZERO = 0;
localparam logic signed [2:0] MAXPOS = 3; // 3'b011
  class alsu_rand_class;
   // Randomizable DUT inputs
   // -----
   bit
                          clk;
   rand bit
                          rst;
   rand bit
                          cin;
   rand bit
                         red_op_A;
   rand bit
                         red_op_B;
   rand bit
                          bypass_A;
   rand bit
                           bypass_B;
   rand bit
                           direction;
   rand bit
                           serial_in;
   rand opcode_e
                           opcode;
   rand logic signed [2:0] A;
   rand logic signed [2:0] B;
    // Constraints from specification
    // -----
    // (a) Make RESET happen with a low probability
    constraint c_reset_low_prob {
     rst dist { 0 := 95, 1 := 5 };
   // (b) For ADD or MUL, pick corner values of A,B more often
          (MAXNEG, ZERO, MAXPOS) than the other possibilities.
          Weighted distribution is used here.
    constraint c_adder_mult_corner {
      if (opcode inside {ADD_2, MUL_3}) {
          A dist { MAXNEG := 5, ZERO := 5, MAXPOS := 5, [-3:-1] := 1, [1:2] := 1 };
          B dist { MAXNEG := 5, ZERO := 5, MAXPOS := 5, [-3:-1] := 1, [1:2] := 1 };
   }
   // (c) If opcode=0R or XOR and red_op_A=1, then A has exactly one bit set
    // and B is 0 .
    constraint c_red_opA_onebit {
     if ((opcode==OR_O || opcode==XOR_1) && red_op_A==1) {
       // Force B to be 0 or near 0
       B == 0;
       // A has exactly 1 bit set in its 3 bits:
       A dist \{1:=5, 2:=5, MAXNEG:=5, MAXPOS:=1, [-3:0]:=1\};
     }
   // (d) Similarly, if opcode=OR or XOR and red_op_B=1, then B has exactly one bit set
    // and A is 0.
    constraint c_red_opB_onebit {
     if ((opcode==OR_O || opcode==XOR_1) && red_op_B==1) {
       A == 0;
       B dist \{1:=5, 2:=5, MAXNEG:=5, MAXPOS:=1, [-3:0]:=1\};
     }
   // (e) Invalid cases (opcode=6 or 7, or red_op_X=1 for non-OR/XOR)
          should occur *less* frequently.
          Weighted distribution on opcode:
    constraint c_opcode_distribution {
      opcode dist {
       INVALID_6 := 1,
       INVALID_7 := 1,
                 := 5,
       OR_O
       XOR_1
                  := 5,
       ADD 2
                  := 5.
       MUL_3
                  := 5,
       SHIFT_4
                  := 5,
       ROTATE_5 := 5
    // (f) For red_op_A/B, require them to be 0 if opcode in {ADD_2, MUL_3, SHIFT_4, ROTATE_5}
    // except for a small chance to produce the invalid scenario:
    constraint c_red_op_non_orxor {
      if (opcode inside {ADD_2, MUL_3, SHIFT_4, ROTATE_5}) {
        (red_op_A == 0) dist \{0:=95, 1:=5\};
        (red_op_B == 0) dist \{0:=95, 1:=5\};
   }
    constraint c_red_op_orxor {
     if (opcode inside {XOR_1, OR_0}) {
            {red_op_A, red_op_B} dist {2'b00 :/ 5, 2'b01 :/ 10, 2'b10 :/ 10, 2'b11 :/ 75};
     }
   }
    // (g) bypass_A and bypass_B should be disabled most of the time
    constraint c_bypass_dist {
        bypass_A dist {0:=3,1:=1};
       bypass_B dist {0:=3,1:=1};
```

17

18

19

20

21 22 23

24

26

27 28

29

30

32

33

34

35

36

38 39

41

42

43 44

45 46

47

49

50

51

52

53

55

56

58 59

61

62

63

64

65

67

68

69 70 71

73

74

75

76

77

78 79

81

82

84

85

87

88

90

91

92

93 94

97 98

99

100

101

102 103

104 105 106

107

108

109

110

112

113

114 115

```
}
116
117
          // (h) If SHIFT or ROTATE, do not constrain A,B.
118
                  (No explicit constraint needed => they can be anything.)
119
120
121
122
123
          // -----
124
           // Coverage points
125
126
           covergroup cg @(posedge clk);
127
128
             coverpoint rst;
             coverpoint cin;
129
             coverpoint red_op_A;
130
             coverpoint red_op_B;
131
132
             coverpoint bypass_A;
             coverpoint bypass_B;
133
134
             coverpoint opcode;
                 coverpoint direction;
135
                 coverpoint serial_in;
136
                 coverpoint A;
                 coverpoint B;
138
           endgroup
139
               // constructor
141
           function new();
142
143
             cg = new();
           endfunction
144
145
146
        endclass
147
148
150 endpackage
         3. Design code
 module ALSU(A, B, cin, serial_in, red_op_A, red_op_B, opcode, bypass_A, bypass_B, clk, rst, direction, leds, out);
 parameter INPUT_PRIORITY = "A";
 3 parameter FULL_ADDER = "ON";
 4 input clk, cin, rst, red_op_A, red_op_B, bypass_A, bypass_B, direction, serial_in;
 5 input [2:0] opcode;
 6 input signed [2:0] A, B;
 output reg [15:0] leds;
 8 output reg signed [5:0] out;
 \label{eq:reg_approx} \textbf{reg} \ \ \textbf{red\_op\_A\_reg}, \ \ \textbf{red\_op\_B\_reg}, \ \ \textbf{bypass\_A\_reg}, \ \ \textbf{bypass\_B\_reg}, \ \ \textbf{direction\_reg}, \ \ \textbf{serial\_in\_reg};
reg signed cin_reg;
reg [2:0] opcode_reg;
reg signed [2:0] A_reg, B_reg;
wire invalid_red_op, invalid_opcode, invalid;
17 //Invalid handling
 assign invalid_red_op = (red_op_A_reg | red_op_B_reg) & (opcode_reg[1] | opcode_reg[2]);
 assign invalid_opcode = opcode_reg[1] & opcode_reg[2];
    assign invalid = invalid_red_op | invalid_opcode;
//Registering input signals
 23 always @(posedge clk or posedge rst) begin
      if(rst) begin
 24
 25
         cin_reg <= 0;</pre>
         red_op_B_reg <= 0;</pre>
         red_op_A_reg <= 0;</pre>
         bypass_B_reg <= 0;</pre>
28
         bypass_A_reg <= 0;</pre>
         direction_reg <= 0;</pre>
 30
         serial_in_reg <= 0;
 31
         opcode_reg <= 0;
         A_reg <= 0;
33
         B_reg <= 0;
      end else begin
         cin_reg <= cin;</pre>
 37
         red_op_B_reg <= red_op_B;</pre>
         red_op_A_reg <= red_op_A;</pre>
         bypass_B_reg <= bypass_B;</pre>
         bypass_A_reg <= bypass_A;</pre>
         direction_reg <= direction;
         serial_in_reg <= serial_in;</pre>
 42
         opcode_reg <= opcode;</pre>
43
         A_reg <= A;
44
         B_reg <= B;
45
47 end
48
49 //leds output blinking
    always @(posedge clk or posedge rst) begin
50
      if(rst) begin
51
         leds <= 0;
      end else begin
 53
          if (invalid)
54
            leds <= ~leds;</pre>
 55
           else
 56
             leds <= 0;
 57
 58
      end
59 end
 60
 61 //ALSU output processing
 ^{62} always O(posedge clk or posedge rst) begin
```

```
if(rst) begin
        out <= 0;
      end
      else begin
        if (bypass_A_reg && bypass_B_reg)
          out <= (INPUT_PRIORITY == "A")? A_reg: B_reg;</pre>
        else if (bypass_A_reg)
          out <= A_reg;
        else if (bypass_B_reg)
          out <= B_reg;
        else if (invalid)
            out <= 0;
        else begin
            case (opcode)
              3'h0: begin
                if (red_op_A_reg && red_op_B_reg)
                   out <= (INPUT_PRIORITY == "A")? |A_reg: |B_reg;</pre>
                 else if (red_op_A_reg)
                   out <= |A_reg;
                 else if (red_op_B_reg)
                  out <= |B_reg;
                else
                   out <= A_reg | B_reg;
              3'h1: begin
                if (red_op_A_reg && red_op_B_reg)
                  out <= (INPUT_PRIORITY == "A")? ^A_reg: ^B_reg;</pre>
                else if (red_op_A_reg)
                   out <= ^A_reg;
                 else if (red_op_B_reg)
                  out <= ^B_reg;
                else
                   out <= A_reg ^ B_reg;</pre>
              end
              3'h2: out <= A_reg + B_reg;
              3'h3: out <= A_reg * B_reg;
              3'h4: begin
                if (direction_reg)
                   out <= {out[4:0], serial_in_reg};</pre>
                else
                   out <= {serial_in_reg, out[5:1]};</pre>
              end
              3'h5: begin
                if (direction_reg)
                   out <= {out[4:0], out[5]};
                else
                   out <= {out[0], out[5:1]};</pre>
              end
            endcase
     end
114 end
116 endmodule
```

3.4 4. Bug Fixes

63

64

65

66

67

68

69

71 72

73

74 75

76

77

79

80

81

82

83

85 86

88

89

90

91

92

93

94

97 98

99

100 101

102

103 104

105

106

107

108

109 110

112 113

115

no bugs except cin_reg is one bit not two bits

3.5 5. Verification Plan

Label	Description	Stimulus Generation	Functional Coverage	Functionality Check
$ALSU_{-1}$	When the reset is as-	- Directed reset at the start	- Covergroup in	- The testbench checks that
	serted, the outputs	of simulation via do_reset()	alsu_rand_class tracks	when rst is high, out is
	should be low.	Randomized afterward using	rst transitions Ensures	driven to 0 and leds is 0
		constraint c_reset_low_prob (5%	we observe enough reset	(or blinking is suppressed).
		chance of reset=1).	assertions for coverage.	- Invokes golden_model() to
				confirm.
ALSU_2	In the absence of in-	- Randomize opcode under	- The coverage group	- After each random trans-
	valid cases, when op-	c_opcode_distribution so that	tracks opcode, A, B, and	action, the testbench calls
	code is ADD, the output	ADD (3'h2) appears frequently.	cin to ensure corner cases	golden_model() to confirm
	should perform addition	- Corner-case inputs for A and	(MAXNEG, ZERO, MAX-	out == A + B (plus cin)
	on ports A and B, tak-	B under c_adder_mult_corner	POS) are exercised	if relevant) Errors are
	ing cin if FULL_ADDER	(favor $-4,0,3$) red_op_A and	Also measures how often	flagged if out differs from
	is on.	red_op_B are mostly 0 to avoid	ADD vs. other operations	the expected sum.
		invalid conditions.	appear.	

Table 2: Verification Plan

3.6 6. Do File

```
vlib work
vlog \ ALSU\_pkg.sv \ ALSU\_v \ ALSU\_tb.sv \ +cover \ -covercells
vsim\ -voptargs\!\!=\!\!+acc\ work.ALSU\_tb\ -cover
add wave *
coverage \ save \ ALSU\_tb.ucdb - on exit
\operatorname{run} \ -\mathrm{all}
# to run do file
— do run.txt
```

to execute coverage report

 $-- \ \ vcover \ \ report \ \ \overline{ALSU_tb.ucdb} \ -details \ -annotate \ -all \ \ -output \ \ coverage_rpt.txt \ \ -du\!\!=\!\!ALSU$

 $-- \ \ vcover \ \ report \ -details \ -cvg \ -output \ \ ALSU_coverage_report.txt \ \ ALSU_tb.ucdb$

3.7 7. Coverage Report

Coverage Report by DU	with details			_
— Design Unit: work	ALSU			_
Branch Coverage: Enabled Coverage	Bins	Hits	Misses Coverage	=
Branches	32		0 100.00%	
	Branch	Details		
Branch Coverage for D	esign Unit work.A	LSU		
$\begin{array}{ccc} \text{Line} & & \text{Item} \\ \hline & & & \end{array}$		Count	Source	
File ALSU.v	IF	Branch		_
$ \begin{array}{ccccccccccccccccccccccccccccccccc$		$ \begin{array}{r} 402 \\ 28 \\ 374 \end{array} $	Count coming in to IF if (rst) begin end else begin	
Branch totals: 2 hits	of 2 branches $=$	100.00%	O	
51 51 1	IF	Branch————————————————————————————————————	Count coming in to IF if (rst) begin	_
53 1 Branch totals: 2 hits		374 100.00% Branch———	end else begin	_
54 54 1 56 1		$374 \\ 279 \\ 95$	Count coming in to IF if (invalid) else	_
Branch totals: 2 hits	of 2 branches =	100.00%		
63 63 66 1 Branch totals: 2 hits		Branch————————————————————————————————————	Count coming in to IF if(rst) begin else begin	_
67 67 1 69 1 71 1 73 1 75 1 Branch totals: 5 hits	IF	Branch 356 15 77 46 156 62	Count coming in to IF if (bypass_A_reg && byp else if (bypass_A_reg) else if (bypass_B_reg) else if (invalid) else begin	$ \mathrm{pass}_{-}\mathrm{B}_{-}\mathrm{reg}$)
	CA	SE Branch——		
76 77 1 87 1 97 1 98 1 99 1 105 1		62 17 18 6 7 5	Count coming in to CASE 3'h0: begin 3'h1: begin 3'h2: out <= A_re 3'h3: out <= A_re 3'h4: begin 3'h5: begin	
Branch totals: 7 hits	of 7 branches =	1	All False Count	
78 78 1 80 1 82 1 84 1 Branch totals: 4 hits		Branch————————————————————————————————————	Count coming in to IF if (red_op_A_re) else if (red_op) else if (red_op) else	
	IF	Branch		_
88 88 1 90 1 92 1		18 1 5 5	Count coming in to IF if (red_op_A_reg else if (red_op else if (red_op	
94 1		7	else	0/

 $1 \quad ((red_op_A_reg \mid red_op_B_reg) \& (opcode_reg[1] \mid opcode_reg[2]))$ Line 18 Item Expression totals: 4 of 4 input terms covered = 100.00%

Covered Reason for no coverage Input Term HintY red_op_A_reg red_op_B_reg Y

```
opcode_reg[1]
                         Y
                         Y
  opcode_reg[2]
                        FEC Target
                  Hits
                                                Non-masking condition(s)
     Rows:
                        red_op_A_reg_0
                                                                   opcode_reg[2]) && ~red_op_B_reg)
 Row
        1:
                     1
                                                ((opcode_reg[1]
                                                                   opcode_reg[2]) && ~red_op_B_reg)
                                                ((opcode_reg[1]
                        red_op_A_reg_1
 Row
        2:
                                                                   opcode_reg[2]) && ~red_op_A_reg)
                        red_op_B_reg_0
                                                ((opcode_reg[1]
        3:
 Row
                                                                   opcode_reg[2]) && ~red_op_A_reg)
                                                ((opcode_reg[1]
 Row
        4:
                        red_op_B_reg_1
                     1
                        opcode_reg[1]_0
                                                ((red_op_A_reg)
                                                                  red_op_B_reg) && ~opcode_reg[2])
 Row
        5:
                     1
                        opcode_reg[1]_1
                                                                  red_op_B_reg) && ~opcode_reg[2])
        6:
                                                ((red_op_A_reg
 Row
                                                                  red_op_B_reg) && ~opcode_reg[1])
                        opcode_reg[2]_0
                                                ((red_op_A_reg
 Row
        7:
                     1
                                                                  red_op_B_reg) && ~opcode_reg[1])
                        opcode_reg[2]_1
                                                ((red_op_A_reg
 Row
        8:
                     1
                -Focused Expression View-
           19 Item
                      1 (\operatorname{opcode\_reg}[1] \& \operatorname{opcode\_reg}[2])
Line
Expression totals: 2 of 2 input terms covered = 100.00\%
                            Reason for no coverage
     Input Term
                   Covered
                                                       Hint
  opcode_reg[1]
                         Y
  opcode_reg[2]
                         Y
     Rows:
                  Hits
                        FEC Target
                                                Non-masking condition(s)
 Row
        1:
                     1
                        opcode_reg[1]_0
                                                opcode_reg[2]
                                                opcode_reg[2]
 Row
        2:
                        opcode_reg[1]_1
                        opcode_reg[2]_0
 Row
        3:
                                                opcode_reg[1]
                     1
                        opcode_reg[2]_1
 Row
        4:
                     1
                                                opcode_reg[1]
                -Focused Expression View-
                      1 (invalid_red_op | invalid_opcode)
Line
           20 Item
Expression totals: 2 of 2 input terms covered = 100.00%
      Input Term
                    Covered Reason for no coverage
                                                        Hint
  invalid_red_op
                          Y
  invalid_opcode
                          Y
                        FEC Target
                                                Non-masking condition(s)
     Rows:
                  Hits
 Row
        1:
                     1
                        invalid_red_op_0
                                                ~invalid_opcode
                        invalid_red_op_1
                                                ~invalid_opcode
 Row
        2:
                                                ~invalid_red_op
 Row
        3:
                        invalid_opcode_0
 Row
        4:
                        invalid_opcode_1
                                                ~invalid_red_op
Statement Coverage:
    Enabled Coverage
                                    Bins
                                               Hits
                                                                Coverage
                                                       _{
m Misses}
    Statements
                                      48
                                                 48
                                                            0
                                                                 100.00\%
                                 =Statement Details=
Statement Coverage for Design Unit work.ALSU —
```

Line	Item	Count	Source
File ALSU.v			
1			module ALSU(A, B, cin, serial_in, red_op_A, red_op_B, opcode, bypass_A, bypass_B, c
2			parameter INPUT_PRIORITY = "A";
3			parameter FULL_ADDER = "ON";
4			input clk, cin, rst, red_op_A, red_op_B, bypass_A, bypass_B, direction, serial_in;
5			input [2:0] opcode;
6			input signed [2:0] A, B;
7			$\operatorname{output} \operatorname{reg} [15:0] \operatorname{leds};$
8			output reg signed [5:0] out;
9			
10			reg_red_op_A_reg, red_op_B_reg, bypass_A_reg, bypass_B_reg, direction_reg, serial_ir
11			reg signed cin_reg;
12			$\operatorname{reg} \ [2:0] \ \operatorname{opcode_reg};$
13			$\operatorname{reg-signed} \ [2:0] \ A_{\operatorname{reg}}, \ B_{\operatorname{reg}};$
14			
15			wire invalid_red_op , invalid_opcode , invalid;
16			
17			//Invalid handling
18	1	177	$assign\ invalid_red_op = (red_op_A_reg\ \ red_op_B_reg)\ \&\ (opcode_reg\ [1]\ \ opcode_reg$
19	1	167	assign invalid_opcode = opcode_reg[1] & opcode_reg[2];
20	1	89	assign invalid = invalid_red_op invalid_opcode;
21			
22			//Registering input signals
23	1	402	always @(posedge clk or posedge rst) begin
24			if (rst) begin
25	1	28	$\operatorname{cin}_{-\operatorname{reg}} = 0;$
26	1	28	$red_op_B_reg <= 0;$
27	1	28	$red_op_A_reg <= 0;$
28	1	28	$bypass_B_reg \le 0;$
29	1	28	$bypass_A_reg \le 0;$
30	1	28	$direction_reg \le 0;$
31	1	28	serial_in_reg <= 0;
32	1	28	opcode_reg <= 0;
33	1	28	$A_{reg} \leq 0;$

```
1
                                                   28
                                                                 B_reg \ll 0;
    34
                                                              end else begin
    35
    36
                      1
                                                  374
                                                                 cin_reg <= cin;
                                                  374
                                                                 red_op_B_reg <= red_op_B;</pre>
    37
                      1
                                                                 red_op_A_reg <= red_op_A;</pre>
                                                  374
    38
                      1
                                                  374
                                                                 bypass_B_reg <= bypass_B;
    39
                      1
                                                  374
                                                                 bypass_A_reg <= bypass_A;
    40
                      1
                                                  374
                                                                 direction_reg <= direction;</pre>
    41
                      1
                      1
                                                  374
                                                                 serial_in_reg <= serial_in;</pre>
    42
                                                  374
                      1
                                                                 opcode_reg <= opcode;
    43
                                                  374
                      1
                                                                 A_reg \ll A;
    44
                                                  374
                      1
                                                                 B_reg \ll B;
    45
    46
                                                              end
                                                           end
    47
    48
                                                            //leds output blinking
    49
                      1
                                                  417
                                                            always @(posedge clk or posedge rst) begin
    50
                                                              if (rst) begin
    51
                      1
                                                                 leds \ll 0;
    52
                                                   43
                                                              end else begin
    53
                                                                  if (invalid)
    54
                      1
                                                  279
                                                                    leds \ll ~leds;
    55
    56
                                                                  else
                      1
                                                   95
    57
                                                                     leds \ll 0;
                                                              end
    58
    59
                                                           end
    60
    61
                                                            //ALSU output processing
                      1
                                                  384
                                                            always @(posedge clk or posedge rst) begin
    62
    63
                                                              if (rst) begin
                      1
                                                   28
                                                               out \leq 0;
    64
    65
                                                              end
    66
                                                              else begin
    67
                                                                if (bypass_A_reg && bypass_B_reg)
                                                                  out <= (INPUT_PRIORITY == "A")? A_reg: B_reg;
    68
                      1
                                                   15
                                                                else if (bypass_A_reg)
    69
    70
                      1
                                                   77
                                                                  out \leq A_reg;
                                                                else if (bypass_B_reg)
    71
    72
                      1
                                                   46
                                                                  out \leq B_reg;
                                                                else if (invalid)
    73
    74
                      1
                                                  156
                                                                    out \leq 0;
                                                                else begin
    75
    76
                                                                    case (opcode)
    77
                                                                       3'h0: begin
                                                                         if (red_op_A_reg && red_op_B_reg)
    78
                                                                           out <= (INPUT_PRIORITY == "A")? | A_reg: | B_reg;
    79
                      1
                                                    3
                                                                         else if (red_op_A_reg)
    80
                      1
                                                                           out \leq |A_reg|;
    81
                                                    5
                                                                         else if (red_op_B_reg)
    82
                      1
                                                    2
                                                                           out \leq |B_reg|;
    83
    84
                                                                         else
                      1
                                                     7
                                                                           out <= A_reg | B_reg;
    85
    86
                                                                       end
    87
                                                                       3'h1: begin
                                                                         if (red_op_A_reg && red_op_B_reg)
    88
    89
                      1
                                                    1
                                                                           out <= (INPUT_PRIORITY == "A")? ^A_reg: ^B_reg;
    90
                                                                         else if (red_op_A_reg)
    91
                      1
                                                    5
                                                                           out \leq ^A_reg;
                                                                         else if (red_op_B_reg)
    92
    93
                      1
                                                    5
                                                                           out \leq ^B_reg;
    94
                                                                         else
    95
                      1
                                                    7
                                                                           out \leq A_reg \hat{} B_reg;
    96
    97
                      1
                                                    6
                                                                       3'h2: out \ll A_reg + B_reg;
    98
                      1
                                                     7
                                                                       3'h3: out \ll A_reg * B_reg;
    99
                                                                       3'h4: begin
    100
                                                                         if (direction_reg)
    101
                      1
                                                    1
                                                                           out \ll \{out[4:0], serial_in_reg\};
    102
                                                    4
                                                                           out \leq \{ serial_in_reg, out [5:1] \};
    103
                      1
    104
    105
                                                                       3'h5: begin
    106
                                                                         if (direction_reg)
                                                    2
    107
                      1
                                                                           out \le {out [4:0], out [5]};
    108
    109
                      1
                                                     6
                                                                           out \leq \{ \text{out} [0], \text{ out} [5:1] \};
Toggle Coverage:
    Enabled Coverage
                                      Bins
                                                 Hits
                                                          _{
m Misses}
                                                                   Coverage
                                                                    100.00\%
                                                                0
    Toggles
                                       118
                                                  118
```

Toggle Details—

Toggle Coverage for Design Unit work.ALSU

Node	1H->0L	0L->1H	"Coverage"
$\overline{\mathrm{A}[0\!-\!2]}$	1	1	100.00
$A \operatorname{reg}[0-2]$	1	1	100.00
B[0-2]	1	1	100.00
$\mathrm{B} \operatorname{\mathtt{_reg}} \left[0 - 2 \right]$	1	1	100.00

$bypass_A$	1	1	100.00
bypass_A_reg	1	1	100.00
bypass_B	1	1	100.00
bypass_B_reg	1	1	100.00
cin	1	1	100.00
cin_reg	1	1	100.00
clk	1	1	100.00
direction	1	1	100.00
$\operatorname{direction_reg}$	1	1	100.00
invalid	1	1	100.00
invalid_opcode	1	1	100.00
invalid_red_op	1	1	100.00
leds[0-15]	1	1	100.00
$\operatorname{opcode}\left[0-2\right]$	1	1	100.00
$\operatorname{opcode}_{-\operatorname{reg}}[0-2]$	1	1	100.00
out $[0-5]$	1	1	100.00
red_op_A	1	1	100.00
red_op_A_reg	1	1	100.00
$red_{-}op_{-}B$	1	1	100.00
red_op_B_reg	1	1	100.00
rst	1	1	100.00
serial_in	1	1	100.00
serial_in_reg	1	1	100.00

 $Toggle\ Coverage \qquad = \qquad 100.00\%\ (118\ of\ 118\ bins)$

Total Coverage By Design Unit (filtered view): 100.00%

Coverage Report by instance with details

== Instance: /ALSU_pkg == Design Unit: work.ALSU_pkg

— Besign Chit. work. NESC-pkg

Covergroup Coverage:

YPE /ALSU_pkg/alsu_rand_class/cg covered/total bins: missing/total bins: % Hit: Coverpoint rst covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A covered/total bins:	100.00% 40 0 $100.00%$ $100.00%$ 2 0 $100.00%$ 377 26 $100.00%$ 2 0 $100.00%$ 207 196 $100.00%$ 2 0 $100.00%$ 2 0 $100.00%$	100 40 40 100 100 2 2 100 1 1 100 2 2 100 1 1 100 2 2 100 1 1 1 100 2 2 1 1		Covered Covered Covered Covered Covered Covered Covered Covered
<pre>covered/total bins: missing/total bins: % Hit: Coverpoint rst covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint cin covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: missing/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A</pre>	$0 \\ 100.00\% \\ 100.00\% \\ 2 \\ 0 \\ 100.00\% \\ 377 \\ 26 \\ 100.00\% \\ 2 \\ 0 \\ 100.00\% \\ 207 \\ 196 \\ 100.00\% \\ 2 \\ 0 \\ 100.00\% \\ 81 \\ 322$	$\begin{array}{c} 40 \\ 100 \\ 100 \\ \\ 2 \\ 2 \\ 100 \\ \\ 1 \\ 100 \\ \\ 2 \\ \\ 100 \\ \\ 2 \\ \\ 100 \\ \\ 1 \end{array}$		Covered Covered Covered Covered Covered Covered
<pre>% Hit: Coverpoint rst covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A</pre>	100.00% $100.00%$ 2 0 $100.00%$ 377 26 $100.00%$ 2 0 $100.00%$ 207 196 $100.00%$ 2 0 $100.00%$ 2 0 $100.00%$	100 100 2 2 100 1 1 100 2 2 100 1 1 100 2 2 100 1 1 100 2 2 100 1		Covered Covered Covered Covered Covered Covered
<pre>% Hit: Coverpoint rst covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A</pre>	100.00% 2 0 $100.00%$ 377 26 $100.00%$ 2 0 $100.00%$ 207 196 $100.00%$ 2 0 $100.00%$ 2 0 $100.20%$ 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	100 2 2 100 1 1 100 2 2 100 1 1 100 2 2 100 1 1 100 2 2 100 1	 	Covered Covered Covered Covered Covered Covered
covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto [0] bin auto [0] bin auto [0] bin auto [0] bin auto [1] Coverpoint bypass_A	$\begin{array}{c} 2\\0\\100.00\%\\377\\26\\100.00\%\\2\\0\\100.00\%\\207\\196\\100.00\%\\2\\0\\100.00\%\\81\\322\\\end{array}$	$\begin{array}{c} 2 \\ 2 \\ 100 \\ 1 \\ 1 \\ 100 \\ 2 \\ 2 \\ 100 \\ 1 \\ 100 \\ 2 \\ 2 \\ 100 \\ 1 \end{array}$	 	Covered Covered Covered Covered Covered Covered
missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[0] bin auto[0] bin auto[0] bin auto[1] Coverpoint bypass_A	$0 \ 100.00\% \ 377 \ 26 \ 100.00\% \ 2 \ 0 \ 100.00\% \ 207 \ 196 \ 100.00\% \ 2 \ 0 \ 100.00\% \ 81 \ 322$	$\begin{array}{c} 2\\ 100\\ \\ 1\\ \\ 1\\ 100\\ \\ 2\\ \\ 2\\ 100\\ \\ 1\\ \end{array}$	 	Covered Covered Covered Covered Covered
% Hit: bin auto[0] bin auto[1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[0] bin auto[0] bin auto[0] bin auto[1] Coverpoint bypass_A	100.00% 377 26 $100.00%$ 2 0 $100.00%$ 207 196 $100.00%$ 2 0 $100.00%$ 81 322	100 1 1 100 2 2 100 1 100 2 2 100 1	 	Covered Covered Covered Covered Covered
bin auto [0] bin auto [1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto [0] bin auto [0] bin auto [1] Coverpoint bypass_A	377 26 $100.00%$ 2 0 $100.00%$ 207 196 $100.00%$ 2 0 $100.00%$ 81 322	$ \begin{array}{c} 1\\ 1\\ 100\\ 2\\ 2\\ 100\\ 1\\ 1\\ 100\\ 2\\ 2\\ 100\\ 1 \end{array} $	 	Covered Covered Covered Covered Covered
bin auto [1] Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto [0] bin auto [0] bin auto [1] Coverpoint bypass_A	$26 \\ 100.00\%$ $2 \\ 0$ 100.00% 207 196 100.00% 2 0 100.00% 81 322	$ \begin{array}{c} 1\\100\\2\\2\\100\\1\\1\\100\\2\\2\\100\\1\end{array} $	- - - - - - - - - -	Covered Covered Covered Covered Covered
Coverpoint cin covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[0] bin auto[1] Coverpoint bins:	100.00% 2 0 $100.00%$ 207 196 $100.00%$ 2 0 $100.00%$ 81 322	100 2 2 100 1 1 100 2 2 100 1	- - - - - - - - -	Covered Covered Covered Covered
<pre>covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1]</pre> Coverpoint red_op_B	$\begin{array}{c} 2\\0\\100.00\%\\207\\196\\100.00\%\\2\\0\\100.00\%\\81\\322\\\end{array}$	$egin{array}{c} 2 \\ 2 \\ 100 \\ 1 \\ 1 \\ 100 \\ 2 \\ 2 \\ 100 \\ 1 \\ \end{array}$	- - - - - - - -	Covered Covered Covered
missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[0] coverpoint bypass_A	$0 \\ 100.00\% \\ 207 \\ 196 \\ 100.00\% \\ 2 \\ 0 \\ 100.00\% \\ 81 \\ 322$	$egin{array}{cccc} 2 \\ 100 \\ & 1 \\ & 1 \\ 100 \\ & 2 \\ & 2 \\ 100 \\ & 1 \\ \end{array}$	- - - - - - -	Covered Covered
missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[0] coverpoint bypass_A	100.00% 207 196 $100.00%$ 2 0 $100.00%$ 81 322	100 1 1 100 2 2 100 1	- - - - - - -	Covered Covered
% Hit: bin auto[0] bin auto[1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A	207 196 $100.00%$ 2 0 $100.00%$ 81 322	$egin{array}{c} 1 \\ 100 \\ 2 \\ 2 \\ 100 \\ 1 \\ \end{array}$	- - - - - -	Covered Covered
bin auto [1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint bypass_A	$196 \\ 100.00\%$ $2 \\ 0 \\ 100.00\%$ $81 \\ 322$	$1 \\ 100 \\ 2 \\ 2 \\ 100 \\ 1$	- - - - -	Covered Covered
bin auto [1] Coverpoint red_op_A covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint bypass_A	$196 \\ 100.00\%$ $2 \\ 0 \\ 100.00\%$ $81 \\ 322$	$100 \\ 2 \\ 2 \\ 100 \\ 1$	- - - - -	Covered Covered
Coverpoint red_op_A	100.00% 2 0 $100.00%$ 81 322	$\begin{matrix}2\\2\\100\\1\end{matrix}$	- - - -	$\operatorname{Covered}$
covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A	$\begin{array}{c} 2 \\ 0 \\ 100.00\% \\ 81 \\ 322 \end{array}$	$\begin{matrix}2\\2\\100\\1\end{matrix}$	_ _ _ _	
missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A	$0 \\ 100.00\% \\ 81 \\ 322$	$\begin{array}{c}2\\100\\1\end{array}$	_ _ _	
% Hit: bin auto[0] bin auto[1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A	$\begin{array}{c} 81 \\ 322 \end{array}$	1		
bin auto [0] bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint bypass_A	$\begin{array}{c} 81 \\ 322 \end{array}$	1	_	
bin auto [1] Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto [0] bin auto [1] Coverpoint bypass_A	322			
Coverpoint red_op_B covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A			_	$\operatorname{Covered}$
covered/total bins: missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A		100	_	Covered
missing/total bins: % Hit: bin auto[0] bin auto[1] Coverpoint bypass_A	2	$\frac{1}{2}$	_	
% Hit: bin auto[0] bin auto[1] Coverpoint bypass_A	0	$\frac{-}{2}$	_	
bin auto [0] bin auto [1] Coverpoint bypass_A	100.00%	100	_	
bin auto [1] Coverpoint bypass_A	71	1	_	Covered
Coverpoint bypass_A	332	1	_	Covered
- v -	100.00%	100	_	Covered
	2	2	_	00,0104
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
bin auto [0]	297	1	_	Covered
bin auto [1]	106	1	_	Covered
Coverpoint bypass_B	100.00%	100	_	Covered
covered/total bins:	2	2	_	Covered
missing/total bins:	0	$\frac{2}{2}$	_	
% Hit:	100.00%	100	_	
bin auto [0]	325	1	_	Covered
bin auto [1]	78	1	_	Covered
Coverpoint opcode	100.00%	100	_	Covered
covered/total bins:	8	8	_	Covered
missing/total bins:	0	8	_	
% Hit:	100.00%	100	_	

bin auto [OR_0]	50	1	_	Covered
bin auto [XOR_1]	40	1	_	Covered
bin auto [ADD_2]	66	1	_	Covered
bin auto [MUL_3]	92	1	_	Covered
bin auto [SHIFT ₋ 4]	62	1	_	Covered
bin auto [ROTATE.5]	70	1	_	Covered
bin auto [INVALID_6]	10	1	_	Covered
bin auto [INVALID_7]	10	1	_	Covered
Coverpoint direction	100.00%	100	_	Covered
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
bin auto [0]	227	1	_	Covered
bin auto[1]	176	1	_	Covered
Coverpoint serial_in	100.00%	100	_	Covered
covered/total bins:	2	2	_	00.000
missing/total bins:	0	$\frac{1}{2}$	_	
% Hit:	100.00%	100	_	
bin auto[0]	201	1	_	Covered
bin auto[1]	$\frac{201}{202}$	1	_	Covered
Coverpoint A	100.00%	100	_	Covered
covered/total bins:	8	8		Covered
missing/total bins:	0	8	_	
% Hit:	100.00%	100	_	
	74	100	_	Covered
bin auto $\begin{bmatrix} -4 \end{bmatrix}$			_	Covered
bin auto $[-3]$	16	1	_	
bin auto $\begin{bmatrix} -2 \end{bmatrix}$	30	1	_	Covered
bin auto $[-1]$	30	1	_	Covered
bin auto [0]	110	1	_	Covered
bin auto[1]	36	1	_	Covered
bin auto [2]	38	1	_	Covered
bin auto [3]	66	1	_	Covered
Coverpoint B	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	8	8	_	
missing/total bins:	0	8	_	
% Hit:	100.00%	100	_	
$\operatorname{bin} \ \operatorname{auto} \left[-4 \right]$	68	1	_	Covered
$\operatorname{bin} \ \operatorname{auto}[-3]$	26	1	_	Covered
$\operatorname{bin} \ \operatorname{auto}[-2]$	32	1	_	Covered
$\operatorname{bin} \ \operatorname{auto}[-1]$	24	1	_	Covered
$\operatorname{bin} \operatorname{auto} [0]$	102	1	_	$\operatorname{Covered}$
bin auto[1]	48	1	_	Covered
bin auto [2]	34	1	_	Covered
bin auto [3]	66	1	_	Covered

COVERGROUP COVERAGE:

overgroup	Metric	Goal	Bins	Status
TYPE /ALSU_pkg/alsu_rand_class/cg	100.00%	100		Covered
covered/total bins:	40	40	_	
missing/total bins:	0	40	_	
% Hit:	100.00%	100	_	
Coverpoint rst	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
$\mathrm{bin} \ \mathrm{auto} \left[0 \right]$	377	1	_	$\operatorname{Covered}$
bin auto[1]	26	1	_	$\operatorname{Covered}$
Coverpoint cin	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
bin auto [0]	207	1	_	$\operatorname{Covered}$
bin auto[1]	196	1	_	$\operatorname{Covered}$
$\operatorname{Coverpoint}\ \operatorname{red}_{\mathtt{op}} A$	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
$\mathrm{bin} \ \mathrm{auto} \left[0 \right]$	81	1	_	$\operatorname{Covered}$
bin auto[1]	322	1	_	$\operatorname{Covered}$
$Coverpoint red_op_B$	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
$\mathrm{bin} \ \mathrm{auto} \left[0 \right]$	71	1	_	$\operatorname{Covered}$
bin auto[1]	332	1	_	$\operatorname{Covered}$
Coverpoint bypass_A	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
$\mathrm{bin} \ \mathrm{auto} \left[0 \right]$	297	1	_	$\operatorname{Covered}$
bin auto[1]	106	1	_	$\operatorname{Covered}$
Coverpoint bypass_B	100.00%	100	_	$\operatorname{Covered}$
covered/total bins:	2	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
bin auto [0]	325	1	_	Covered
bin auto[1]	78	1	_	Covered
Coverpoint opcode	100.00%	100	_	Covered
covered/total bins:	8	8	_	

	0	0		
missing/total bins:	100.00%	8	_	
% Hit:	100.00%	100	_	Covered
bin auto [OR_0]	$50 \\ 40$	1	_	
bin auto [XOR_1]	66	1	_	Covered Covered
bin auto [ADD_2]	92	1	_	
bin auto [MUL.3]	$\frac{92}{62}$	1	_	Covered
bin auto [SHIFT_4]	70	1	_	Covered
bin auto [ROTATE_5]		1	_	Covered
bin auto [INVALID_6]	10	1	_	Covered
bin auto [INVALID_7]	100.007	1	_	Covered
Coverpoint direction	100.00%	100	_	Covered
covered/total bins:	$\frac{2}{2}$	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	G 1
bin auto [0]	227	1	_	Covered
bin auto[1]	176	1	_	Covered
Coverpoint serial_in	100.00%	100	_	Covered
covered/total bins:	$\frac{2}{2}$	2	_	
missing/total bins:	0	2	_	
% Hit:	100.00%	100	_	
$ \text{bin auto} \left[0 \right]$	201	1	_	Covered
bin auto[1]	202	1	_	Covered
Coverpoint A	100.00%	100	_	Covered
covered/total bins:	8	8	_	
missing/total bins:	0	8	_	
% Hit:	100.00%	100	_	
$\operatorname{bin} \ \operatorname{auto}[-4]$	74	1	_	Covered
$\operatorname{bin} \ \operatorname{auto}[-3]$	16	1	_	Covered
$\operatorname{bin} \ \operatorname{auto}[-2]$	30	1	_	Covered
$\operatorname{bin} \ \operatorname{auto}[-1]$	30	1	_	$\operatorname{Covered}$
$ \text{bin auto} \left[0 \right]$	110	1	_	Covered
bin auto[1]	36	1	_	Covered
bin auto [2]	38	1	_	Covered
bin auto [3]	66	1	_	Covered
Coverpoint B	100.00%	100	_	Covered
covered/total bins:	8	8	_	
missing/total bins:	0	8	_	
% Hit:	100.00%	100	_	
$\operatorname{bin} \ \operatorname{auto}[-4]$	68	1	_	Covered
bin auto $[-3]$	26	1	_	Covered
$\operatorname{bin} \operatorname{auto}[-2] $	32	1	_	Covered
bin auto $[-1]$	24	1	_	Covered
bin auto [0]	102	1	_	Covered
bin auto[1]	48	1	_	Covered
bin auto [2]	34	1	_	Covered
bin auto [3]	66	1	_	Covered

TOTAL COVERGROUP COVERAGE: 100.00% COVERGROUP TYPES: 1

Total Coverage By Instance (filtered view): 100.00%

3.8 8. Waveform

Figure 4: simulation waveform

```
# Top level modules:
# ALSU_tb
# End time: 17:34:45 on Mar 15,2025, Elapsed time: 0:00:00
# Errors: 0, Warnings: 0
# vsim -voptargs="+acc" work.ALSU_tb -coverage
# Start time: 17:34:45 on Mar 15,2025
# ** Note: (vsim-8009) Loading existing optimized design _opt
# Loading sv_std.std
# Loading work.ALSU_pkg(fast)
# Loading work.ALSU_pkg(fast)
# Loading work.ALSU_tb sv_unit(fast)
# Loading work.ALSU_tb(fast)
# ALSU test completed
# ** Note: $finish : ALSU_tb.sv(212)
# Time: 4026 ns Iteration: 0 Instance: /ALSU_tb
# I
# Break in Module ALSU_tb at ALSU_tb.sv line 212
```

Figure 5: Transcript : all test cases passed