HW 1.4.2,4,5

1.4.2. Let (x_n) be a Cauchy sequence with a convergent subsequence $x_{n_k} \to x$. So $\epsilon > 0$, there exists a K such that for k > K, $d(x_{n_k}, x) < \frac{\epsilon}{2}$. Further, since (x_n) is Cauchy, we know that for some N, there exists $n, n_k > N$ such that $d(x_{n_k}, x_n) < \frac{\epsilon}{2}$. So for $\max(N, K)$, we see by the triangle inequality that

$$d(x_n,x) \le d(x_n,x_{n_k}) + d(x_{n_k},x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

So $x_n \to x$.

- **1.4.4.** Let (x_n) be a Cauchy sequence. Thus, for every $\epsilon > 0$, there exists N such that for m, n > N, $d(x_n, x_m) < \epsilon$. Now consider all x_k such that $k \leq N$. Since k is finite, we are looking at a finite number of elements. Let $M = \sup_{x_k, x_j \colon k, j \leq N} d(x_k, d_j)$. We can do this because there are finite elements. Let $B = \max(M, \epsilon)$. Then $\sup_{x_r, x_s \in (x_n)} d(x, y) \leq B < B + 1$. Since B + 1 is finite, (x_n) is bounded. So every Cauchy sequence is bounded.
- **1.4.5.** Boundedness is not necessary for a sequence to be either Cauchy or convergent. Consider the sequence on the real line (0, 1, 0, 1, 0, 1, 0, 1, ...). This sequence is bounded by 1 but it does not converge to any number and the distance between elements does not approach $\epsilon > 0$.