Categorie esatte

Indrjo Dedej

Università degli Studi di Pavia

Pavia, 28/10/2025

Due categorie...

 Mod_R	Ban
 moduli su <i>R</i> applicazioni lineari	spazi di Banach applicazioni lineari limitate

Richiamo: un'applicazione lineare tra spazi normati $f:(X,\|\cdot\|_X) \to (Y,\|\cdot\|_Y)$ è detta *limitata* se esiste M>0 per cui $\|f_X\| \leq M \|x\|_X$ per ogni $x \in X$.

Kernel e cokernel

Definizione

Sia $\mathcal C$ una categoria con *oggetto zero* che indichiamo con 0.

- Morfismo nullo $0_A^B: A \stackrel{\exists !}{\longrightarrow} 0 \stackrel{\exists !}{\longrightarrow} B$
- Kernel di $f: A \to B$: equalizzatore di $A \xrightarrow[0]{f} B$
- Cokernel di $f: A \to B$: coequalizzatore di $A \xrightarrow[0]{f} B$

Esempi

In \mathbf{Mod}_R :

- kernel di $f: M \to N$: inclusione ker $f \hookrightarrow M$
- cokernel di $f: M \to N$: proiezione canonica $N \to N/\text{im } f$

In Ban:

- kernel di $f: M \to N$: inclusione ker $f \hookrightarrow M$
- cokernel di $f: M \to N$: proiezione canonica $N \to N/\text{im } f$

Richiamo: $(X, \|\cdot\|)$ spazio di Banach e $M \subseteq X$ chiuso $\Longrightarrow (X/M, [\![\cdot]\!])$ spazio di Banach con $[\![x+M]\!] := \inf_{m \in M} \|x+m\|$

Categorie preadditive

Definizione

Una categoria preadditiva è una categoria ${\mathcal C}$ in cui:

1 Per ogni $A, B \in |C|$ la classe C(A, B) è dotata di un'operazione interna

$$+_{A,B}: \mathcal{C}(A,B) \times \mathcal{C}(A,B) \to \mathcal{C}(A,B)$$

e ha un elemento $0_A^B: A \to B$ che lo rendono un gruppo abeliano.

2 Per ogni $A, B, C, D \in |\mathcal{C}|$ e $f : A \to B$ di \mathcal{C} , le funzioni

$$f_* := \mathcal{C}(C, f) : \mathcal{C}(C, A) \to \mathcal{C}(C, B)$$
$$f^* := \mathcal{C}(f, D) : \mathcal{C}(B, D) \to \mathcal{C}(A, D)$$

sono omomorfismi di gruppi abeliani.

Proprietà ed esempi

- Mod_R e Ban sono categorie preadditive.
- Un adagio: in una categoria preadditiva con oggetto zero 0, $f: A \to B$ è monomorfismo se e solo se $0 \xrightarrow{\exists !} A$ è kernel di f.
- Enunciato duale.
- Esempio: caratterizzazione morfismi di Ban

Biprodotti

Definizione

Un biprodotto in una categoria preadditiva consta di oggetti e frecce

$$A \xleftarrow{p_A} C \xleftarrow{p_B} B$$

tali che

$$p_A i_A = 1_A \tag{1}$$

$$p_B i_B = 1_B \tag{2}$$

$$i_A p_A + i_B p_B = 1_C \tag{3}$$

Proposizione

 (p_A, p_B) è un prodotto, (i_A, i_B) è un coprodotto.

Categorie additive

Definizione

Una categoria additiva è una categoria che ha oggetto zero e che per ogni coppia di oggetti A e B possiede biprodotto

$$A \xleftarrow{\rho_A^{AB}} i_A^{AB} \to A \oplus B \xleftarrow{\rho_B^{AB}} i_B^{AB} B$$

Esempio

 \mathbf{Mod}_R e \mathbf{Ban} sono additive.

Richiamo: norma su $X \oplus Y$ in **Ban**: $\|(x,y)\|_{X \oplus Y} \coloneqq \|x\|_X + \|y\|_Y$

Categorie Abeliane

Definizione

Una categoria abeliana è una categoria additiva in cui:

- Ogni morfismo ha un kernel e un cokernel.
- 2 Ogni monomorfismo è un kernel e ogni epimorfismo è un cokernel.

Esempi

- Mod_R è una categoria abeliana.
- Ban è una categoria abeliana?

Categorie Abeliane

Proprietà

- La categorie abeliane sono finitamente complete e cocomplete.
- Nelle categorie abeliane, mono e epi \implies iso.

Categorie Abeliane

Proprietà

- La categorie abeliane sono finitamente complete e cocomplete.
- Nelle categorie abeliane, mono e epi \implies iso.

Esempio

Quindi, no, Ban non è abeliana.

$$C_c^0[a,b] \hookrightarrow L^p[a,b]$$

è mono ed epi, ma non iso.

Verso le categorie esatte

Proposizione

In una categoria abeliana, i pushout preservano i kernel e i pullback preservano i cokernel.

$$\begin{array}{ccccc}
A & \xrightarrow{i} & B & & B' & \xrightarrow{p'} & C' \\
f \downarrow & PO & \downarrow & & \downarrow & PB & \downarrow g \\
A' & \xrightarrow{i'} & B' & & B & \xrightarrow{p} & C
\end{array}$$

Verso le categorie esatte

Proposizione

In una categoria abeliana, i pushout preservano i kernel e i pullback preservano i cokernel.

Ma...

Anche in Ban vale!

Categorie quasi-abeliane

Definizione

Una categoria quasi-abeliana è una categoria additiva in cui:

- 1 Ogni morfismo ha kernel e cokernel.
- ② I pushout preservano i kernel e i pullback preservano i cokernel.

Esempio

Ban è quasi-abeliana.

Proposizione

Abeliana \Longrightarrow quasi-abeliana.

12 / 23

Definizione categorie esatte, I

Definizione

Una *struttura esatta* per una categoria additiva $\mathcal C$ è una classe $\mathcal E$ di coppie ker-coker di $\mathcal C$ in cui:

- Chiamiamo monomorfismi ammissibili le frecce $i: A \to B$ per le quali esiste $p: B \to C$ tale che $A \xrightarrow{i} B \xrightarrow{p} C$ appartiene ad \mathcal{E} .
- Chiamiamo *epimorfismi ammissibili* le frecce $p: B \to C$ per le quali esiste $i: A \to B$ tale che $A \xrightarrow{i} B \xrightarrow{p} C$ appartiene ad \mathcal{E} .

tale che...

Definizione categorie esatte, II

Definizione

... tale che:

- \mathcal{E} è chiusa per isomorfismo, cioè se $A \xrightarrow{i} B \xrightarrow{p} C$ è in \mathcal{E} ed è isomorfo a $A' \xrightarrow{i'} B' \xrightarrow{p'} C'$ come oggetto di $\mathcal{C}^{\to \to}$, allora anche quest'ultima coppia di frecce è in \mathcal{E} .
- $1_A : A \to A$ è un monomorfismo ammissibile per ogni $A \in |\mathcal{C}|$.
- $1_A : A \to A$ è un epimorfismo ammissibile per ogni $A \in |C|$.
- La composizione di due monomorfismi ammissibili è un monomorfismo ammissibile.
- La composizione di due epimorfismi ammissibili è un epimorfismo ammissibile.

...

Definizione categorie esatte, III

Definizione

• •

- Il pushout di un monomorfismo ammissibile lungo un qualsiasi morfismo di $\mathcal C$ esiste ed è un monomorfismo ammissibile.
- Il pullback di un epimorfismo ammissibile lungo un qualsiasi morfismo di $\mathcal C$ esiste ed è un epimorfismo ammissibile.

$$\begin{array}{cccc}
A & \xrightarrow{i} & B & & B' & \xrightarrow{p'} & C' \\
f \downarrow & PO & \downarrow & & \downarrow & PB & \downarrow g \\
A' & \xrightarrow{j'} & B' & & B & \xrightarrow{p} & C
\end{array}$$

Una categoria esatta è una coppia (C, \mathcal{E}) come sopra e gli elementi di \mathcal{E} si chiamano successioni esatte corte.

DI PAVIA

Alcune osservazioni

 Una categoria è esatta perché viene munita di una struttura, mentre per le categorie abeliane e quasi-abeliane gli assiomi sulla struttura sono proprietà interne.

Alcune osservazioni

 Una categoria è esatta perché viene munita di una struttura, mentre per le categorie abeliane e quasi-abeliane gli assiomi sulla struttura sono proprietà interne.

Proposizione

Per una categoria quasi-abeliana $\mathcal C$ ci sono diverse strutture esatte:

- ullet la classe $\mathcal{E}_{\mathsf{max}}$ di tutte le coppie ker-coker di \mathcal{C}
- ullet la classe $\mathcal{E}_{\mathsf{split}}$ delle coppie ker-coker

$$A \stackrel{i_A}{\longrightarrow} A \oplus B \stackrel{p_B}{\longrightarrow} B$$

e coppie ker-coker isomorfe.

Successioni esatte corte, I

Proposizione

Sia $(\mathcal{C},\mathcal{E})$ una categoria esatta e sia

$$A \xrightarrow[i_A]{\rho_A} A \oplus B \xrightarrow[i_B]{\rho_B} B$$

un biprodotto. Allora

$$A \xrightarrow{i_A} A \oplus B \xrightarrow{p_B} B$$
$$B \xrightarrow{i_B} A \oplus B \xrightarrow{p_A} A$$

sono successioni esatte corte, cioè coppie ker-coker in ${\mathcal E}.$

Successioni esatte corte, II

Proposizione

"In una categoria esatta la somma di successioni esatte corte è esatta corta". Vale a dire: in una categoria esatta $(\mathcal{C}, \mathcal{E})$, se

$$A \xrightarrow{f} B \xrightarrow{g} C$$
$$A' \xrightarrow{f'} B' \xrightarrow{g'} C'$$

sono successioni esatte corte, allora lo è anche

$$A \oplus A' \xrightarrow{f \oplus f'} B \oplus B' \xrightarrow{g \oplus g'} C \oplus C'$$

Successioni esatte corte, III

Proposizione

In una categoria esatta consideriamo il diagramma commutativo

$$\begin{array}{ccc}
A & \xrightarrow{i} & B \\
f \downarrow & & \downarrow f' \\
A' & \xrightarrow{i'} & B'
\end{array}$$

Sono equivalenti:

- Il quadrato è di pushout.
- $A \xrightarrow{\binom{i}{f}} B \oplus A' \xrightarrow{(f'-i')} B'$ è esatta corta.
- ...

Pavia, 28/10/2025

Successioni esatte corte, III

Proposizione

- ..
- Il quadrato è bicartesiano (cioè di pullback e di pushout).
- Il quadrato è parte del diagramma commutativo

dove (i, p) e (i', p') sono successioni esatte corte.

Pavia, 28/10/2025

Ancora un risultato

Teorema di Noether, " $C/B \cong (C/A)/(B/A)$ "

In una categoria esatta, sia il diagramma commutativo

in cui le prime due righe orizzontali e la colonna centrale sono esatte corte. Allora la terza colonna esiste, è esatta corta e è unicamente determinata dalla condizione che rende il diagramma commutativo. Inoltre, il quadrato in alto a destra è bicartesiano.

Un teorema di embedding, I

Lemma di Yoneda

Se \mathcal{C} è una categoria localmente piccola, l'embedding di Yoneda $\mbox{$\sharp$}:\mathcal{C}\to [\mathcal{C}^{op},\mathbf{Set}]$ è un funtore pieno e fedele.

Un teorema di embedding, I

Lemma di Yoneda

Se \mathcal{C} è una categoria localmente piccola, l'embedding di Yoneda $\mbox{$\sharp$}:\mathcal{C}\to [\mathcal{C}^{op},\textbf{Set}]$ è un funtore pieno e fedele.

Domanda

E se C è una categoria additiva?

Possiamo considerare questo embedding di Yoneda:

$$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{\mathcal{L}}}$}}:\mathcal{C}\rightarrow [\mathcal{C}^{op}, \mbox{\bf Ab}]$$

Un teorema di embedding, I

Lemma di Yoneda

Se \mathcal{C} è una categoria localmente piccola, l'embedding di Yoneda $\mbox{$\sharp$}:\mathcal{C} \to [\mathcal{C}^{op}, \textbf{Set}]$ è un funtore pieno e fedele.

Domanda

E se C è una categoria additiva?

Possiamo considerare questo embedding di Yoneda:

Categorie esatte

Teorema di embedding

Indrio Dedei (UNIPV)

Pavia, 28/10/2025

22 / 23

Un teorema di embedding, II

Come $\xi: \mathcal{C} \to [\mathcal{C}^{op}, \textbf{Set}]$ incorpora \mathcal{C} nella categoria dei prefasci $[\mathcal{C}^{op}, \textbf{Set}]...$

Un teorema di embedding, II

Come $\&: \mathcal{C} \to [\mathcal{C}^{op}, \mathbf{Set}]$ incorpora \mathcal{C} nella categoria dei prefasci $[\mathcal{C}^{op}, \mathbf{Set}]$...

