656. Пусть $x \to +\infty$. Выделить главный член вида Cx^n и определить порядки роста относительно бесконечно большой x следующих функций:

a)
$$x^3 + 100x + 10000$$
; 6) $\frac{2x^5}{x^3 - 3x + 1}$;

B)
$$\sqrt[3]{x^2-x} + \sqrt{x}$$
; r) $\sqrt{1+\sqrt{1+\sqrt{x}}}$.

657. Пусть $x \to +\infty$. Выделить главный член вида $C\left(\frac{1}{x}\right)^n$ и определить порядки малости относительно

бесконечно малой $\frac{1}{x}$ следующих функций:

a)
$$\frac{x+1}{x^4+1}$$
; 6) $\sqrt{x+1} - \sqrt{x}$;

B)
$$\sqrt{x+2} - 2\sqrt{x+1} + \sqrt{x}$$
; r) $\frac{1}{x} \sin \frac{1}{x}$.

658. Пусть $x \to 1$. Выделить главный член вида $C\left(\frac{1}{x-1}\right)^n$ и определить порядки роста относительно бесконечно большой $\frac{1}{x-1}$ следующих функций:

a)
$$\frac{x^2}{x^2-1}$$
; 6) $\sqrt{\frac{1+x}{1-x}}$; B) $\frac{x}{\sqrt[3]{1-x^3}}$;
r) $\frac{1}{\sin \pi x}$; A) $\frac{\ln x}{(1-x)^2}$.

659. Пусть $x \to +\infty$ и $f_n(x) = x^n (n = 1, 2, ...)$. Доказать, что 1) каждая из функций $f_n(x)$ растет быстрее, чем предшествующая функция $f_{n-1}(x)$; 2) функция e^x растет быстрее, чем каждая из функций $f_n(x)$ (n = 1, 2, ...).

660. Пусть $x \to + \infty$ и

$$f_n(x) = \sqrt[n]{x}$$
 $(n = 1, 2, ...)$

Доказать, что 1) каждая из функций f_n (x) растет медленнее, чем предшествующая функция f_{n-1} (x); 2) функция $f(x) = \ln x$ растет медленнее, чем каждая из функций f_n (x) $(n = 1, 2, \ldots)$.