Модули и расслоения

Проективные модули и векторные расслоения

12 февраля 2024 года

Модули над кольцами

ОПРЕДЕЛЕНИЕ: Модулем M над кольцом называется абелева группа с умножением $A \times M \to M$. **Тензорным произведением** модулей $M \otimes_A M'$ называется модуль, порожденный элементами $m \otimes m'$ с соотношениями $ma \otimes m' = m \otimes am'$. Очевидно, $A \otimes_A M = M$. Модуль M называется **обратимым,** если существует такой модуль M', что $M \otimes_A M' \cong A$.

ПРЕДЛОЖЕНИЕ: Модуль обратим тогда и только тогда, когда для каждого простого идеала $\mathfrak{p}\subset A$ изоморфны локализации $M_{\mathfrak{p}}\cong A_{\mathfrak{p}}.$

ПРЕДЛОЖЕНИЕ: Если модуль M обратим, то его обратный изоморфен $\operatorname{Hom}_A(M,A)$.

Модули и расслоения

Геометрическая интерпретация модулей

Кольца — это кольца функций аффинных схем. А что такое модули над кольцами?

Геометрическая интерпретация модулей

Кольца — это кольца функций аффинных схем. А что такое модули над кольцами?

Напомним, что со всяким модулем можно связать симметрическую алгебру $\operatorname{Sym}_A(M)$ (она градуированная, но это неважно). Поскольку существует вложение $A \to \operatorname{Sym}_A(M)$ (как нулевой градуировки), то имеется и отображение $\operatorname{Spec}\operatorname{Sym}_A(M) \to \operatorname{Spec} A$. Каковы его слои? Над точкой $V(\mathfrak{m}) \in \operatorname{Spec} A$ это $\operatorname{Spec}\operatorname{Sym}_{A/\mathfrak{m}}(M/\mathfrak{m})$ — а спектр симметрической алгебры над полем это векторное пространство, причем с отмеченной точкой (соответствующей идеалу аугментации). Если модуль M обратим, эти слои — прямые.

Геометрическая интерпретация модулей

Кольца — это кольца функций аффинных схем. А что такое модули над кольцами?

Напомним, что со всяким модулем можно связать симметрическую алгебру $\operatorname{Sym}_A(M)$ (она градуированная, но это неважно). Поскольку существует вложение $A \to \operatorname{Sym}_A(M)$ (как нулевой градуировки), то имеется и отображение $\operatorname{Spec}\operatorname{Sym}_A(M) \to \operatorname{Spec} A$. Каковы его слои? Над точкой $V(\mathfrak{m}) \in \operatorname{Spec} A$ это $\operatorname{Spec}\operatorname{Sym}_{A/\mathfrak{m}}(M/\mathfrak{m})$ — а спектр симметрической алгебры над полем это векторное пространство, причем с отмеченной точкой (соответствующей идеалу аугментации). Если модуль M обратим, эти слои — прямые.

ОПРЕДЕЛЕНИЕ: (из топологии) Векторным расслоением ранга n над гладким многообразием X называется отображение $E \xrightarrow{\pi} X$ такое, что на каждом слое имеется структура n-мерного векторного пространства, и всякая точка $x \in X$ имеет окрестность $U \subset X$ такую, что $\pi^{-1}(U) \cong U \times \mathbb{R}^n \to U$. Векторное расслоение ранга 1 называется линейным.

Геометрическая интерпретация модулей

Кольца — это кольца функций аффинных схем. А что такое модули над кольцами?

Напомним, что со всяким модулем можно связать симметрическую алгебру $\operatorname{Sym}_A(M)$ (она градуированная, но это неважно). Поскольку существует вложение $A \to \operatorname{Sym}_A(M)$ (как нулевой градуировки), то имеется и отображение $\operatorname{Spec}\operatorname{Sym}_A(M) \to \operatorname{Spec} A$. Каковы его слои? Над точкой $V(\mathfrak{m}) \in \operatorname{Spec} A$ это $\operatorname{Spec}\operatorname{Sym}_{A/\mathfrak{m}}(M/\mathfrak{m})$ — а спектр симметрической алгебры над полем это векторное пространство, причем с отмеченной точкой (соответствующей идеалу аугментации). Если модуль M обратим, эти слои — прямые.

ОПРЕДЕЛЕНИЕ: (из топологии) Векторным расслоением ранга n над гладким многообразием X называется отображение $E \xrightarrow{\pi} X$ такое, что на каждом слое имеется структура n-мерного векторного пространства, и всякая точка $x \in X$ имеет окрестность $U \subset X$ такую, что $\pi^{-1}(U) \cong U \times \mathbb{R}^n \to U$. Векторное расслоение ранга 1 называется линейным.

Для того, чтобы построить аналогичную теорию в алгебраической геометрии, следует найти аналог локальной тривиальности.

Проективные модули

ОПРЕДЕЛЕНИЕ: Модуль P над кольцом A называется проективным, если имеется изоморфизм $P \oplus P' \cong A^{\oplus \infty}$.

ОПРЕДЕЛЕНИЕ: Модуль P называется **проективным,** если для всякой **точной тройки** модулей $0 \to K \to M \to P \to 0$ имеется отображение $P \to M$, обратное последней стрелке.

ОПРЕДЕЛЕНИЕ: Модуль P называется **проективным,** если для всякой **сюръекции** модулей $p\colon N \twoheadrightarrow M$ и отображения $f\colon P \to M$ существует отображение $\tilde{f}\colon P \to N$ такое, что $f=p\circ \tilde{f}$.

Проективные модули

ОПРЕДЕЛЕНИЕ: Модуль P над кольцом A называется **проективным,** если имеется **изоморфизм** $P \oplus P' \cong A^{\oplus \infty}$.

ОПРЕДЕЛЕНИЕ: Модуль P называется **проективным,** если для всякой **точной тройки** модулей $0 \to K \to M \to P \to 0$ имеется отображение $P \to M$, обратное последней стрелке.

ОПРЕДЕЛЕНИЕ: Модуль P называется **проективным,** если для всякой **сюръекции** модулей $p\colon N \twoheadrightarrow M$ и отображения $f\colon P \to M$ существует отображение $\tilde{f}\colon P \to N$ такое, что $f=p\circ \tilde{f}$.

ЗАМЕЧАНИЕ: Если A — **кольцо главных идеалов**, всякий проективный модуль свободен.

TEOPEMA: (Капланского о проективных модулях) Всякий проективный модуль над локальным кольцом свободен. ■

ЗАМЕЧАНИЕ: Таким образом, проективные модули действительно соответствуют локально-тривиальным расслоениям.

Проективные модули

ОПРЕДЕЛЕНИЕ: Модуль P над кольцом A называется **проективным,** если имеется **изоморфизм** $P \oplus P' \cong A^{\oplus \infty}$.

ОПРЕДЕЛЕНИЕ: Модуль P называется **проективным,** если для всякой **точной тройки** модулей $0 \to K \to M \to P \to 0$ имеется отображение $P \to M$, обратное последней стрелке.

ОПРЕДЕЛЕНИЕ: Модуль P называется **проективным,** если для всякой **сюръекции** модулей $p\colon N \twoheadrightarrow M$ и отображения $f\colon P \to M$ существует отображение $\tilde{f}\colon P \to N$ такое, что $f=p\circ \tilde{f}$.

ЗАМЕЧАНИЕ: Если A — **кольцо главных идеалов**, всякий проективный модуль свободен.

TEOPEMA: (Капланского о проективных модулях) Всякий проективный модуль над локальным кольцом свободен. ■

ЗАМЕЧАНИЕ: Таким образом, проективные модули действительно соответствуют локально-тривиальным расслоениям.

TEOPEMA: (Квиллена — Суслина) Всякий проективный модуль над $k[x_1, \ldots, x_n]$ свободен. \blacksquare

Доказательство теоремы Капланского

Мы дадим доказательство только в частном случае: а именно, предполагая, что P конечнопорожден.

ДОКАЗАТЕЛЬСТВО: Пусть n — минимальное число образующих P. Имеем: $0 \to K \to A^{\oplus n} \xrightarrow{\pi} P \to 0$. Если $k = \sum_{i=1}^n a_i e_i \in K$, то $\sum_{i=1}^n a_i \pi(e_i) = \pi(k) = 0$, и потому $a_i \in \mathfrak{m}$. Итак, $K \subset \mathfrak{m} A^{\oplus n}$. Выберем разложение $A^{\oplus n} = K \oplus P$. Тогда $\mathfrak{m} A^{\oplus n} = \mathfrak{m} K \oplus \mathfrak{m} P$, и $K \subset \mathfrak{m} K \oplus \mathfrak{m} P$. Но проекция $K \to \mathfrak{m} P$ вдоль $\mathfrak{m} K$ обязана быть нулевой, то есть $K \subset \mathfrak{m} K$ и потому $K = \mathfrak{m} K$. По лемме Накаямы, K = 0 и $P = A^{\oplus n}$.

Расслоения над проективными пространствами

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1} - \mathsf{pаздутиe}$ векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n) - \mathsf{нетривиальное}$ линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется тавтологическим линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

Расслоения над проективными пространствами

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1} - \mathsf{pаздутиe}$ векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n) - \mathsf{нетривиальное}$ линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется тавтологическим линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

ЗАМЕЧАНИЕ: Даже если X проективно, пространство сечений $\Gamma(L,X)$ может быть ненулевым. Так, $\Gamma(\mathfrak{O}_{\mathsf{P}^n}(m),\mathsf{P}^n)=\operatorname{Sym}^m\left(k^{n+1}\right)$ при $m\geqslant 0$.

Расслоения над проективными пространствами

ПРИМЕР: Пусть $B = \mathsf{Bl}_0 k^{n+1} - \mathsf{pаздутиe}$ векторного пространства в нуле. Тогда проекция $B \to \mathsf{P}^n$, $(x_0, x_1, \dots x_n) \mapsto (x_0 : x_1 : \dots : x_n) - \mathsf{нетривиальное}$ линейное расслоение. Оно обозначается $\mathfrak{O}_{\mathsf{P}^n}(-1)$ и называется тавтологическим линейным расслоением на P^n . Двойственное к нему расслоение обозначается $\mathfrak{O}_{\mathsf{P}^n}(1)$, их m-е степени обозначаются $\mathfrak{O}_{\mathsf{P}^1}(\pm m)$.

ЗАМЕЧАНИЕ: Даже если X проективно, пространство сечений $\Gamma(L,X)$ может быть ненулевым. Так, $\Gamma(\mathcal{O}_{\mathsf{P}^n}(m),\mathsf{P}^n)=\operatorname{Sym}^m\left(k^{n+1}\right)$ при $m\geqslant 0$.

ПРИМЕР: Рассмотрим покрытие $\mathsf{P}^1 = \{(z:w)\}$ двумя картами $\{w \neq 0\}$, $\{z \neq 0\}$. На каждой из них всякое линейное расслоение **тривиализуется**. Какие расслоения из них можно склеить? На пересечении $\mathsf{A}^1 \setminus \{0\}$ частное двух тривиализаций — нигде не зануляющаяся алгебраическая функция, **то есть** $(z/w)^m$. Для каждого m получается свое расслоение. Это **то же расслоение** $\mathfrak{O}_{\mathsf{P}^1}(m)$, что определено выше.