Fourier Convergence

Cliff Sun

March 28, 2024

Suppose we define $S_m(x)$ to be following:

$$S_m(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos(\frac{n\pi x}{l} + B_n \sin(\frac{n\pi x}{l}))]$$
 (1)

Theorem 0.1. If $\Psi(x)$ is differentiable at x_0 , then $S_m(x_0) \to \Psi(x_0)$

Theorem 0.2. If $\Psi(x)$ is continuously differentiable (that is $\Psi'(x)$ is continuous), then $S_m(x) \to \Psi(x)$ uniformly on \mathbb{R} .

Theorem 0.3. $S_m(x) \to \Psi(x)$ in L^2 on (-l,l). Moreover:

$$\int_{-l}^{l} |\Psi(x)|^2 dx = l\left[\frac{A_0^2}{2} + \sum_{n=1}^{\infty} (A_n^2 + B_n^2)\right]$$
 (2)

For the heat equation, the Dirichlet boundary condition says that we must use the Sine Fourier Series. The Neumann Boundary Condition states that we must use the Cosine Fourier Series.