Link Layer and Address Resolution Protocol

Richard T. B. Ma

School of Computing
National University of Singapore

CS 3103: Compute Networks and Protocols

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- * physical: bits "on the wire"

Connection between network and link layers

- Virtualization of networks
 - Virtualization of resources: powerful abstraction in systems engineering:
- Computing examples:
 - virtual memory, virtual devices
 - Virtual machines: e.g., java
- Layering of abstractions:
 - don't sweat the details of the lower layer
 - only deal with lower layers abstractly

The Internet: virtualizing networks

1974: multiple unconnected nets ... differing in:

- ARPAnet
 - data-over-cable networks
- packet satellite network (Aloha)
 - · packet radio network

- addressing conventions
- packet formats
- error recovery
- routing

satellite net

[&]quot;A Protocol for Packet Network Intercommunication",

V. Cerf, R. Kahn, IEEE Transactions on Communications, May, 1974, pp. 637-648.

The Internet: virtualizing networks

Gateway: Internetwork layer (IP): "embed internetwork packets in local packet format or extract them" addressing: internetwork appears as single, uniform entity, despite underlying local network heterogeneity route (at internetwork level) to next gateway network of networks gateway satellite net **ARPAnet**

Cerf & Kahn's Internetwork Architecture

What is virtualized?

- two layers of addressing: internetwork and local network
- new layer (IP) makes everything homogeneous at internetwork layer
- underlying local network technology
 - * cable
 - * satellite
 - 56K telephone modem
 - * today: ATM, MPLS
 - ... "invisible" at internetwork layer. Looks like a link layer technology to IP!

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - * LANS
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy:

- trip from NUS to Lausanne
 - limo: NUS to Changi
 - plane: Changi to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Link layer services

- □ framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - * channel access if shared medium
 - * "MAC" addresses used in frame headers to identify source, dest (different from IP!)
- reliable delivery between adjacent nodes
 - * we learned how to do this already (TCP)
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - * Q: why both link-level and end-end reliability?

Link layer services (more)

- □ flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - * receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- □ in each and every host
- □ link layer implemented in "adaptor" (aka *network interface card* NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Adaptors communicating

sending side:

- encapsulates datagram in frame
- adds error checking bits, rdt, flow control, etc.

receiving side

- looks for errors, rdt, flow control, etc
- extracts datagram, passes to upper layer at receiving side

MAC addresses and ARP

- □ 32-bit IP address:
 - * network-layer address for interface
 - used for layer 3 (network layer) forwarding
- □ MAC (or LAN, physical, Ethernet) address:
 - function: used 'locally" to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "number" represents 4 bits)

LAN addresses and ARP

each adapter on LAN has unique LAN address

LAN addresses (more)

- □ MAC addr. allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - * MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address → portability
 - * can move LAN card from one LAN to another
- □ IP hierarchical address not portable
 - depends on IP subnet to which node is attached

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has

- IP/MAC address mappings for some LAN nodes:
- < IP address; MAC address; TTL>
- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 minutes)

ARP protocol: same LAN

- □ A wants to send datagram to B and B's MAC address not in A's ARP table.
- □ A broadcasts ARP query, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - * all nodes on LAN receive
- B receives ARP packet,
 replies to A with its (B's)
 MAC address
 - frame sent to A's MAC address (unicast)

- □ A caches (saves) IPto-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

ARP Packet

Hardware Type		Protocol Type
Hardware length	Protocol length	Operation Request 1, Reply 2
Sender hardware address (For example, 6 bytes for Ethernet)		
Sender protocol address (For example, 4 bytes for IP)		
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)		
Target protocol address (For example, 4 bytes for IP)		

walkthrough: send datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame)
- assume A knows B's IP address
- assume A knows IP address of first hop router, R (how?)
- assume A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

Proxy ARP

- Proxy ARP hides two physical networks from each other and creates a subnetting effect
 - uses a single prefix for two physical networks

- □ Proxy ARP router replies to A's request for dest.s 192.168.0.0/23 with its own MAC address.
- □ Forward packets to the other physical subnet