

L2: Basics of Supervised Learning

Shan Wang
Sun Yat-sen University

教育部产学合作协同育人项目-面向数字经济的新商科建设教改课程 2022 Data Mining and Machine Learning LN3125

https://wang-shan.gitee.io/dm-ml/

https://tianchi.aliyun.com/ailab/course/detail/981

Last lecture

- What is machine learning
- Machine learning applications
- History of machine learning
- Classifications of machine learning

Types of Machine Learning

This lecture

- Basics of supervised learning
 - Learning process
 - Discriminative models and generative models
 - Machine learning three elements
 - Model
 - Strategy
 - Algorithm
 - Model evaluation
 - Model selection & Regularization
 - Cross validation

Reference: CS420, Weinan ZHANG (SJTU); 10-601, Mary MCGLOHON (CMU)

Supervised learning

 Learning a function that maps an input to an output based on example input-output pairs

Learning process

How supervised learning works

Supervised learning process

 Basic assumption: there exist same patterns across training, test and new data

Discriminative models and generative models

判别模型与生成模型

What is discriminative model

- Modeling the dependence of unobserved variables on observed ones
- a.k.a. conditional models
- Directly estimate: $p_{\theta}(y|x)$

What is generative model

- Modeling the joint probabilistic distribution of data
- i.e., modeling $p_{\theta}(x, y)$
- Then do conditional inference

•
$$p_{\theta}(y|x) = \frac{p_{\theta}(x,y)}{p_{\theta}(x)} = \frac{p_{\theta}(x,y)}{\sum_{y'} p_{\theta}(x,y')}$$

Discriminative vs. generative

	Discriminative model	Generative model	
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$	
What's learned	Decision boundary	Probability distributions of the data	
Illustration			
Examples	Regressions, SVMs	GDA, Naive Bayes	

ML THREE elements

Model

Model

- Spaces
 - Input space (feature space) X, output space (labeled space) Y
- Training data
 - Sample S of size N drawn i.i.d. from $X \times Y$ according to distribution D:
 - $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
- Hypothesis set: $F \subseteq Y^X$ (mappings from X to Y)
 - Space of possible models, e.g. all linear functions
 - Depends on feature structure and prior knowledge about the problem

ML THREE elements

Strategy

Strategy

- Objective
 - Find a good hypothesis $f \in F$
- What is a good f
 - A f with small generalization error (泛化误差)
- Loss function: $L: Y \times Y \to \mathbb{R}$
 - $L(\hat{y}, y)$: loss of predicting \hat{y} when the true output is y
 - Binary classification: $L(\hat{y}, y) = 1_{\hat{y} \neq y}$
 - Regression: $L(\hat{y}, y) = \frac{1}{2}(\hat{y} y)^2$
- Generalization error
 - $R(f) = \mathbb{E}_{(x,y)\sim D}[L(f(x),y)]$
- Empirical error (经验误差)
 - $\widehat{R}(f) = \frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_i), y_i)$

Generalization error bound

- Finite hypothesis set F
- Generalization error bound
 - For any function $f \in F$, with probability no less than 1δ , it satisfies

$$R(f) \le \hat{R}(f) + \epsilon(d, N, \delta)$$

Where

$$\epsilon(d, N, \delta) = \sqrt{\frac{1}{2N}} (\log d + \log \frac{1}{\delta})$$

- *N*: number of training instances
- *d*: number of functions in *F*

Bonus question: How to prove it?

Hint: Hoeffding Inequality

Generalization error bound - Hint

Lemma: Hoeffding Inequality

Let $X_1, X_2, ..., X_n$ be bounded independent random variables $X_i \in [a, b]$, the average variable Z is

$$Z = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Then the following inequalities satisfy:

$$P(Z - \mathbb{E}[Z] \ge t) \le \exp\left(\frac{-2nt^2}{(b-a)^2}\right)$$
$$P(\mathbb{E}[Z] - Z \ge t) \le \exp\left(\frac{-2nt^2}{(b-a)^2}\right)$$

Maximum likelihood estimation

- Maximum likelihood estimation
 - We know $x_1, x_2, ..., x_N \sim N(\mu, \sigma^2)$, how to know μ ?
 - Set up likelihood equation: $P(x|\mu,\sigma^2)$, and find μ to maximize it.

• If
$$x_1, x_2, \dots, x_n$$
 are independent
$$\mathcal{L}(\mathbf{x}) = P(\mathbf{x}|\mu, \sigma^2) = \prod_{i=1}^{N} P(x_i|\mu, \sigma^2) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

• Taking the log likelihood (we get to do this since log is monotonic) and removing some constants:

$$\log(\mathcal{L}(\mathbf{x})) \propto \sum_{i=1}^{N} -(x_i - \mu)^2$$

FOC:

$$\mu = \frac{1}{N} \sum x_i$$

About MLE

Maximum likelihood estimator:

$$\theta = \operatorname{argmax} P(\mathbf{x}|\theta)$$

where

- $P(x|\theta)$ is the joint **probability density function** of observations $\mathbf{x} = (x_1, x_2, ..., x_N)$
- Frequentist: only believe the data
- It is almost unbiased
- If we have enough data, it is great

Maximum A Posterior

- What if you have some ideas about your parameter?
- Bayes' Rule

$$P(\theta|\mathbf{x}) = \frac{P(\mathbf{x}|\theta)P(\theta)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|\theta)P(\theta)}{\sum_{\Theta} P(\theta,\mathbf{x})} = \frac{P(\mathbf{x}|\theta)P(\theta)}{\sum_{\Theta} P(\mathbf{x}|\theta)P(\theta)}$$

Maximum A Posterior

$$\theta = \operatorname{argmax} P(\theta | \mathbf{x}) = \operatorname{argmax} \frac{P(\mathbf{x}|\theta)P(\theta)}{\sum_{\mathbf{\Theta}} P(\mathbf{x}|\theta)P(\theta)}$$

- Equivalent to maximize the numerator $P(x|\theta)P(\theta)$
- Different from MLE:
 - Assume there is a **prior** distribution $P(\theta)$
 - We have some knowledge about the parameter

About MAP

- Example
 - There are two bags
 - Bag A: 50% Green balls+ 50% Red balls
 - Bag B: 100% Red balls
 - If you consecutively pick two red balls from one bag, which bag is most likely?
 - MLE
 - A: $P(x|\theta) = 0.25$; B: $P(x|\theta) = 1$; so B
 - MAP we know get bag A with 0.9, get bag B with 0.1
 - A: $P(x|\theta)P(\theta) = 0.25 * 0.9 = 0.225$
 - B: $P(x|\theta)P(\theta) = 1 * 0.1 = 0.1$
 - So A
- If the prior is uniform distribution
 - We do not have knowledge about the parameter
 - MAP=MLE

ML THREE elements

Algorithm

Algorithm

- Objective
 - Find a good hypothesis $f \in F$ with small generalization error
- Solve $\min_{f} \hat{R}(f)$
 - An optimization problem
 - Analytical solution
 - Gradient method
 - Heuristics

Model evaluation

Confusion matrix

- Confusion Matrix
 - TP True Positive ; FP False Positive
 - FN False Negative; TN True Negative

	Predicted class		
Actual class		Class=yes	Class=no
	Class=yes	TP	FN
	Class=no	FP	TN

$$\frac{Accuracy}{TP + FN + FP + TN}$$

Any limitation?

Accuracy measure

- Limitation of accuracy
 - Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
 - If a "stupid" model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- The accuracy is misleading because the model does not detect any example in class 1

Other measures

Cost-sensitive measures

	Predicted class		
		Class=yes	Class=no
Actual class	Class=yes	TP	FN
	Class=no	FP	TN

$$Precision(p) = \frac{TP}{TP + FP}$$

$$Recall(r) = \frac{TP}{TP + FN}$$

$$F1 - measure(F) = \frac{2rp}{r+p} = \frac{2TP}{2TP + FP + FN}$$

• F1 measure is best if there is some sort of balance between precision (p) & recall (r)

Example

- A school is running a machine learning COVID-19 test on all students
 - Infected (+) / Healthy (-)
 - False positive
 - a false alarm
 - False negative
 - Predict a infected student as a healthy student
 - Worse!
- Precision
 - How many of those who we labeled as infected are actually infected?
- Recall
 - Of all the students who are infected, how many of those we correctly predict?

Which to choose?

- Accuracy
 - FN & FP counts are close
 - FN & FP have similar costs
- F1 measure
 - costs of FP and FN are different
 - uneven class distribution
- Recall
 - FP is far better than FN
 - e.g., diabetes
- Precision
 - FN is far better than FP
 - e.g., spam emails

Correlation

Pearson

measures the linear association between continuous variables

$$r_{XY} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

Correlation (cont.)

Correlation (cont.)

- Pearson correlation
 - measures the linear association between continuous variables

$$r_{XY} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

Any limitation?

Correlation (cont.)

- Limitation of Pearson correlation
 - Only linear correlation can be detected.
 - Clearly, there are some relationship between x and y, but the correlation is only 0.02.

R-squared

- Coefficient of determination (R^2)
 - measures how much of the residue can be explained by the regression line

Total Sum of Squares $TSS = \sum (y_i - \bar{y})^2$ (Total variance)

Explained Sum of Squares $ESS = \sum (f_i - \bar{y})^2$ (Explained variance)

Residual Sum of Squares $RSS = \sum (f_i - y_i)^2$ (Unexplained variance)

$$R^2 = \frac{explained\ variance}{total\ variance} = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} \quad \text{intercept}$$

R-Squared Explanation

Model selection and regularization

Model selection criteria

- Maximize accuracy? (i.e., minimize error rate)
 - Error rate =1 accuracy
- Which one?

Bias

• Bias= $y - E[\hat{y}]$

High bias → underfitting

Variance

• Variance= $E[(\hat{y} - E[\hat{y}])^2]$

High variance → overfitting

Bias vs. Variance

Bias – variance decomposition

$$E[S] = E[(y - \hat{y})^{2}]$$

$$E[(y - \hat{y})^{2}] = (y - E[\hat{y}])^{2} + E[(E[\hat{y}] - \hat{y})^{2}]$$

$$= [Bias]^{2} + Variance.$$

Bias – variance trade-off

Over-fitting and under-fitting

Fitting

Occam's Razor

- Principle of Occam's Razor
 - Suppose there exist two explanations for an occurrence.
 - The one that requires the least assumptions is usually correct.

How regularization works

- Regularization
 - Add a penalty term of the parameters to prevent the model from overfitting the data
- Recall empirical risk minimization(ERM):
 - $f = \operatorname{argmin}_{h \in H} \widehat{R}(f)$
 - It can be over-optimized (overfitting)
- With regularization
 - $f = \operatorname{argmin}_{f \in F} \widehat{R}(f) + \lambda \Omega(f)$

Regularization parameter O data — target — fit

(a) without regularization

Complexity of f

(b) with regularization

 \boldsymbol{x}

L1-norm and L2-norm regularization

- L2-norm (Ridge):
 - $\Omega(f = ax + b) = a^2 + b^2$

- L1-norm (Lasso):
 - $\Omega(f = ax + b) = |a| + |b|$

Cross validation

Supervised learning process

 Basic assumption: there exist the same patterns across training, test and new data

k-fold Cross Validation

- k-fold Cross Validation
 - Given the training set, split into k pieces ("folds")
 - Use (k-1) folds to estimate a model, and test model on remaining one-fold (which acts as a validation set) for each candidate parameter value
 - Repeat for each of the k folds
 - ullet For each candidate parameter value, calculate average accuracy over the k folds, or validation sets

k-fold Cross-Validation Graphically

Assume five folds (k = 5)

Continue to predict Fold 2 and Fold 1...

Lecture 2 wrap-up

- Basics of supervised learning
 - ✓ Learning process
 - ✓ Discriminative models and generative models
 - ✓ Machine learning three elements
 - ✓ Model
 - √ Strategy
 - ✓ Algorithm
 - ✓ Model evaluation
 - ✓ Model selection & Regularization
 - √ Cross validation

Next lecture

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA, SVM
 - EM

Questions?

Shan Wang (王杉)

https://wang-shan.gitee.io/