Just in case anybody does both grad and undergrad for number 4, give grads 3 extra points and undergrads 6 extra points.

1. (6 points) What is the power set of a, b, c,d?

$$\{\}, \{a\}, \{b\}, \{c\}, \{d\}, \{ab\}, \{ac\}, \{ad\}, \{bc\}, \{bd\}, \{cd\}, \{abc\}, \{abd\}, \{acd\}, \{bcd\}, \{abcd\}, \{abc$$

Note: a fast check is for 16 items. If there aren't 16 it's wrong.

2. (6 points) Suppose $A \subset B$. Show that $2^A \subset 2^B$.

Let
$$X \in 2^A$$

 $X \subset A \subset B$
 $X \subset B$ as shown in class $X \in 2^B$

3. (6 points) Let $A = \{2,4,6,8,10,12\}$, $B = \{1,3,6,9,12\}$ and then $\Omega = \{1,2,3,4,5,6,7,8,9,10,11,12\}$. What are:

What are each of the following:

•
$$\Omega \setminus (A \cup B)$$

$$\{5, 7, 11\}$$

•
$$A \cap B$$

$$\{6, 12\}$$

 \bullet $A \cup B$

$$\{1, 2, 3, 4, 6, 8, 9, 10, 12\}$$

- (7 points)
 - Undergrad: Show $A^C \cap B^C = (A \cup B)^C$
 - * Let $x \in A^C \cap B^C$
 - * x is in both A^C and B^C so $x \notin A$ and $x \notin B$
 - $* x \notin A \cup B$
 - * Therefore $x \in (A \cup B)^C$
 - * Therefore $A^C \cap B^C \subset (A \cup B)^C$
 - * Let $y \in (A \cup B)^C$
 - * Then $y \notin A \cup B$ so $y \notin A$ and $y \notin B$
 - * Then $y \in A^C$ and $y \in B^C$
 - $*\ y\in A^C\cap B^C$

- * Therefore $(A \cup B)^C \subset A^C \cap B^C$
- * Therefore $A^C \cap B^C = (A \cup B)^C$
- Grad: Show $A^C = (A^C \cap B) \cup (A^C \cap B^C)$
 - $* (A^C \cap B) \cup (A^C \cap B^C) = (A^C \cup (A^C \cap B^C)) \cap (B \cup (A^C \cap B^C))$
 - $* = (A^C \cup A^C \cap A^C \cup B^C) \cap (B \cup A^C \cap B \cup B^C)$
 - $* = (A^C \cap A^C \cup B^C) \cap (B \cup A^C \cap \phi)$
 - $* = (A^C) \cap (B \cup A^C)$
 - $* = A^C$