statistical tests

statistics and data analysis (chapter 6)

Björn Malte Schäfer

Graduate School for Fundamental Physics
Fakultät für Physik und Astronomie, Universität Heidelberg

May 29, 2016

outline

- 1 theory of tests
- 2 likelihoods
- 3 t-test
- 4 F-test
- **6** KS-test

theory of tests likelihoods t-test F-test KS-test KS-test

repetition

- · description of random distributions
- Gaussians
- weak non-Gaussianities: Gram-Charlier series
- linear regression, polynomial models
- central limit theorem

numerical exercise

fit a linear model $y = ax^2 + bx + c$ to data (y_i, x_i) with noise superimposed. generate new noise realisations and derive the distribution of the parameters a, b and c. what's the shape of the distributions and how do they depend on the amount of noise?

(theory of tests) likelihoods t-test F-test KS-test

theory of statistical tests

- aim: statistical tests are used to find out whether hypotheses are to be rejected or can be accepted. In this context, hypotheses need to be mathematically formulated
- a hypothesis makes a statement about a statistically measurable quantity, concerning a moment, or a functional shape
- the hypothesis to be tested is referred to as the null-hypothesis H₀,
 H₀ is accepted or rejected in comparison to an alternative hypothesis H₁
- we assign a likelihood to data, if the model behind the data is explained by a hypothesis H

please notice

that we try to find the best (true) explanation for already existing data. the random experiment has already been carried out. we suspect the true random experiment to be the one with the

theory of tests likelihoods t-test F-test KS-test

classification: (non-)parametric, simple/composite

- a parametric hypothesis makes a quantitative statement for a given model, and a non-parametric hypothesis investigates the truth of a general class of models
- a simple hypothesis makes a statement about the complete parameter set of a random process, a composite hypothesis makes a simultaneous statement about a subset

question: classify the following hypotheses

- each day of the year is equally likely as a birthday among students
- photon arrival times in a detector follow a Poisson distribution
- heights of people in this lecture hall are drawn from a Gaussian distribution with mean 175cm
- heights of people in this lecture hall are drawn from a Gaussian with mean 175 cm and standard deviation 10cm

theory of tests likelihoods t-test F-test KS-test

acceptance regions and critical regions

- x is a random variable with a certain property, described by the hypothesis H₀
- for x, a number of samples are available, so that the property can be estimated
- a subset ω of Ω is defined such that
 - events $x \in \Omega \setminus \omega$ provide support for accepting the hypothesis H_0
 - events $x \in \omega$ provide support for rejecting the hypothesis H_0
- test problem: find for a given value α a suitable ω such that

$$P(x \in \omega | H_0) = \alpha$$

 α is called **size** and is the probability of rejecting H_0 even though it is correct. $1 - \alpha$ is called the level of confidence

acceptance and critical region

 ω is called the critical region, $\Omega \setminus \omega$ is the acceptance region

theory of tests likelihoods t-test F-test KS-test

types of error

- 2 types of error are usually interesting

 - H_1 is accepted (instead of H_0) but in reality it is false (type 2-error: false positive)
- probability of error type 1 is α
- probability of error type 2 is β , **depends** on alternative hypothesis
- power of the test: if $P(x \in \Omega \setminus \omega | H_1) = \beta$, then

$$P(x \in \omega | H_1) = 1 - \beta$$

is called the power of the test for H_0 against the hypothesis H_1

don't you find it weird, that

we are **not** trying to find out, which hypothesis is true (or at least "more true", in the sense of being a better description of Nature)?

(theory of tests) likelihoods t-test F-test KS-test

visualisation of α and β

$$\omega = [2, \dots, \infty]$$
, and therefore $\Omega \setminus \omega = [-\infty, \dots, 2]$

- $P(x \in \omega | H_0) = \int_{\omega} dx \mathcal{L}(x | H_0) = \alpha$ determines ω for a given α
- $P(x \in \Omega \setminus \omega | H_1) = \int_{\Omega \setminus \omega} dx \mathcal{L}(x | H_1) = \beta$ for the alternative hypothesis

chain of definitions

choose size $\alpha \to \text{rejection } \omega \to \text{acceptance } \Omega \setminus \omega \to \text{power } 1 - \beta$

likelihoods

- if samples x_i for a random variable x are available, and if the
 properties of the random variable are described by a hypothesis H₀,
 it makes sense to ask if it would have been likely to obtain these x_i
- likelihood is the probability that a set of samples has been obtained
- if each sample originates independently from a random distribution p(x)dx described by a hypothesis H₀, then the likelihood for a set x_i

$$\mathcal{L}(x_i|H_0) = \prod_i p(x_i)$$

- the likelihood would be different if one assumes a different hypothesis, even for the **same** data! $\mathcal{L}(x_i|H_0) \neq \mathcal{L}(x_i|H_1)$
- likelihood: model is variable, but data is fixed

theory of tests (likelihoods) t-test F-test KS-test

difference between likelihood and probability???

improbable or unlikely?

- both are probabilities in the mathematical sense, obeying the Kolmogorov-axioms
- probability: fixed model, makes a statement about the future
- likelihood: data is there, interpret data with different models

likelihood ratios

• the likelihood ratio is the quotient between the likelihood of H_0 explaining data x_i and the likelihood of the alternative hypothesis H_1

$$q = \frac{\mathcal{L}(x_i|H_1)}{\mathcal{L}(x_i|H_0)}$$

- ln q > 0 prefers the explanation H₁ over H₀ for explaining the data x_i, ln q < 0 vice versa
- the test problem is then reduced to finding a number c such that the hypothesis H₀ is accepted if q < c and rejected if q > c
- we will discuss 3 specific types of tests
 - t-test: tests for the mean of an assumed Gaussian distribution
 - F-test: tests whether the mean values obtained in different types of experiment can be considered equal
 - Kolmogorov-Smirnov test: tests whether two samples can be considered as drawn from the same distribution

Neyman-Pearson lemma

- theoretical justification for the definition of a likelihood ratio
- Neyman-Pearson lemma: the likelihood ratio,

$$q = \frac{\mathcal{L}(x_i|H_1)}{\mathcal{L}(x_i|H_0)} \le c$$
 with $P(q < c|H_0) = \alpha$

is the **most powerful** test with **size** α at the threshold c

proof of the Neyman-Pearson lemma: idea

compare the likelihood ratio q with another test between two hypotheses H_0 and H_1 and show that the **rejection region of another test is smaller**, meaning that the probability of getting a q inside the rejection region is smaller and the test weaker.

proof of the Neyman-Pearson lemma

rejection region for H₀ under the likelihood ratio

$$R_{NP} = \left\{ x : q = \frac{\mathcal{L}(x|H_0)}{\mathcal{L}(x|H_1)} \le c \right\}$$

while any other test has the rejection region R_A

probability of data falling in R under the hypothesis H

$$P(R,H) = \int_{R} \mathcal{L}(x|H)$$

- assume: both tests have the same size α : $P(R_{NP}|H_0) = P(R_A|H_0) = \alpha$
- decompose

$$P(R_{NP} \cap R_A|H) + P(R_{NP} \cap CR_A|H) = P(R_{NP}|H)$$

$$P(R_{NP} \cap R_A|H) + P(CR_{NP} \cap R_A|H) = P(R_A|H)$$

proof of the Neyman-Pearson lemma

equate: equal probabilities of accepting H₀

$$P(R_{NP} \cap CR_A|H_0) = P(CR_{NP} \cap R_A|H_0)$$

advantage of likelihood ratio over any other test for H₁

$$P(R_{NP}|H_1) \ge P(R_A|H_1)$$
 if $P(R_{NP} \cap CR_A|H_1) \ge P(CR_{NP} \cap R_A|H_1)$

because

theory of tests

$$P(R_{NP} \cap CR_A|H_1) = \int_{R_{NP} \cap CR_A} \mathcal{L}(x|H_1) \ge \frac{1}{c} \int_{R_{NP} \cap CR_A} \mathcal{L}(x|H_0)$$

$$= \frac{1}{c} P(R_{NP} \cap CR_A|H_0) = \frac{1}{c} P(CR_{NP} \cap R_A|H_0)$$

$$= \frac{1}{c} \int_{CR_{NP} \cap R_A|H_0} \mathcal{L}(x|H_0) \ge \int_{CR_{NP} \cap R_A|H_0} \mathcal{L}(x|H_1)$$

$$= P(CR_{NP} \cap R_A|H_1)$$

statistical testing

- we check, if a hypothesis is true
- this needs the formulation of a null-hypothesis H_0 and an alternative hypothesis H_1
- we define a quantity, the test statistic, which can be measured from data
- then, we figure out the distribution of this test statistic, for being able to quantify, how probable a value for the test statistic is
- for a given probability α we can then determine the acceptance region for the hypothesis H_0 : these would be acceptable values for the test statistic, with total probability α
- in a **right sided test**, we could then simply state a threshold number, such that the integrated probability for the test statistic to be **above the threshold** is equal to α

theory of tests likelihoods (r-test) F-test KS-test

t-test: idea

motivation:

A pasta-producing company checks the length of their spaghetti and wants to see if they conform to the specifications. are spaghetti in a package described by a specified mean length?

- the t-test is a test of identical mean, either of a data set with a specified number, or between two data sets
- we treat a special case of Gaussian distributions of the random numbers, with a certain (unknown) mean and variance
- formulation of hypotheses:
 - null-hypothesis: equal means, $\mu_1 = \mu_2$
 - alternative hypothesis: unequal means, μ₁ ≠ μ₂
- both means and variances are estimated from each of the data sets.

t-test

theory of tests

- naive (but not stupid!): $\bar{x} = \sum_i x_i/n$ is Gaussian-distributed with mean μ_1 and the standard deviation $\sigma_1/\sqrt{n} \to$ any definition if the acceptance region for a given α is easy
- but: we don't know the true σ^2 , which needs to be estimated from data as well
- define the test statistic:

$$t = \sqrt{n} \frac{\bar{x} - \mu_1}{S}$$
 with $S^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$ (1)

- t follows the student-t distribution
- advantage: the definition of t is a common test statistic with a
 distribution which you could derive for a Gaussian with zero mean
 and unit variance, and it maps all problems with an underlying
 Gaussian distribution on the same t-distribution of the test statistic

student-t distribution

- $X = \bar{x}$ is Gaussian distributed, and Y = s(x) is χ_n^2 -distributed (we'll do a detailed derivation next lecture in a different context)
- what's the distribution of $t = X/\sqrt{Y/k}$?
- assume independent random variables X and Y from p_x and p_y
- cumulative distribution of Z:

$$P(Z \le z) = \int \int_{x/y \le z} dx dy \, p_x(x) p_y(y)$$

• define t = x/y, dx = ydt

$$P(Z \le z) = \int_{-\infty}^{z} dt \int_{-\infty}^{+\infty} dy \, y p_x(ty) p_y(y)$$

 with p(z) = ∂P(Z ≤ z)/∂z: student-t distribution with k degrees of freedom

$$p_k(x) = \frac{\Gamma\left(\frac{1+k}{2}\right)}{\Gamma\left(\frac{k}{2}\right)\Gamma\left(\frac{1}{2}\right)} \frac{1}{\sqrt{k}} \left(1 + \frac{x^2}{k}\right)^{-(1+k)/2}$$

theory of tests likelihoods (r-test) F-test KS-test

student-t distribution: visualisation (from wikipedia)

student-t probability density

student-t cumulative distribution

theory of tests likelihoods (r-test) F-test KS-test

student-t distribution

- the test statistic T(x) is distributed according to the student-t distribution with n − 1 degrees of freedom
- for some α we can now figure out the rejection and acceptance regions ω and $\Omega \setminus \omega$ of the test statistic
- if a measured t falls within this acceptance region, $t \in \Omega \setminus \omega$, we would conclude that the hypothesis H_0 , which states that $\bar{x} = \mu_0$, is true
- only in a fraction α of all cases we would have rejected the hypothesis x̄ = μ₀ wrongly, meaning that we would (by chance) obtain t ∈ ω when in reality the means coincide given the variances of the random experiment
- we can not quantify the type-2 error β because for the hypothesis
 x̄ ≠ μ one can not write down a likelihood. this would be different if
 the alternative hypothesis was x̄ = μ₁
- then, we would have accepted the hypothesis H₁ wrongly in a

variant:

theory of tests

- two sets of random numbers from two random experiments with unknown means and variances
- test for equal mean, irrespective of the variance
- difference to the previous case: both variances and both means are estimated
- formulate hypotheses
 - null-hypothesis: $\mu_x = \mu_y$
 - alternative hypothesis: $\mu_x \neq \mu_y$
- · define the test statistic

$$t = \frac{x - y}{S\sqrt{\frac{1}{n} + \frac{1}{m}}}\tag{2}$$

variance

$$S^{2} = \frac{(n-1)S_{x}^{2} + (m-1)S_{y}^{2}}{n+m-2}$$
 (3)

likelihoods t-test F-test

KS-test

F-test

theory of tests

motivation:

one has survey data for studying physics at different universities: Two universities have equal mean study times, but do the students finish with the same variance?

- the F-test is a test of identical variance of a number of data sets
- some of the argumentation will remind you of the CLT
- we treat a special case where the random numbers follow a Gaussian distribution, of which we try to decide, if the mean values are statistically equal
- formulation of hypotheses:
 - null-hypothesis: equal variances, $\sigma_1^2 = \sigma_2^2$
 - alternative hypothesis: unequal variances, $\sigma_1^2 \neq \sigma_2^2$
- where the variances and the means are estimated from each of the sets

F-test

define the test statistic:

$$F = \frac{\frac{1}{n_2 - 1} \sum_{i}^{n_2} (x_{2,i} - \bar{x}_2)^2}{\frac{1}{n_1 - 1} \sum_{i}^{n_1} (x_{1,i} - \bar{x}_1)^2}$$
(4)

- means x

 ₁ and x

 ₂ are estimated from the data x

 _{1,i} and x

 _{2,i}
- if the value of F is too large, the idea that both variances are equal is rejected
- F is distributed according to the F-distribution $F(n_2 1, n_1 1)$, with

$$F_{m,n}(x) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)} m^{m/2} n^{n/2} \frac{x^{m/2-1}}{(n+mx)^{(m+n)/2}}$$
(5)

• this is related to the the χ^2 -distribution because of

$$F_{m,n}(x) = \frac{\chi_m^2/m}{\chi_n^2/n} \tag{6}$$

theory of tests likelihoods t-test F-test KS-test KS-test

F-distribution: visualisation (from wikipedia)

student-t probability density

student-t cumulative distribution

theory of tests likelihoods t-test F-test (KS-test)

Kolmogorov-Smirnov test

motivation:

2 successful TV-series among students are *Breaking Bad* (chemistry) and *The Big Bang Theory* (physics). a survey gives ages of watchers for a limited number of people. Are the distributions identical?

- KS-test is nonparametric: it tests (entire) distributions for equality
- N sample points x_i are given. then, S_N(x) is the fraction of data points with x_i < x
- $S_N(x)$ is an estimate of the cumulative distribution, and $0 \le S_N(x) \le 1$
- test statistic D: 2 variants
 - test, if a set of events conforms to a given distribution
 - · test, if two sets of events are statistically equivalent

Kolmogorov-Smirnov test

• test, if a set of events conforms to a given distribution P(x)

$$D = \sup_{x} |S_N(x) - P(x)|$$

test, if two sets of events are statistically equivalent

$$D = \sup_{x} |S_{N_1}(x) - S_{N_2}(x)|$$

• the distribution of D can be computed: in the limit of sufficiently many data points, $N_e = N$ for one sample and $N_e = N_1 N_2 / (N_1 + N_2)$, the probability of D being larger than a threshold c is

$$\lim_{N_e \to \infty} P(D > c/\sqrt{N_e}) = 2\sum_{j=1}^{\infty} (-1)^{j-1} \exp(-2j^2 z^2)$$

theory of tests likelihoods t-test F-test (KS-test)

summary

- formulation of hypotheses
- critical regions and acceptance regions
- types of error
- likelihood and likelihood ratio for comparing hypotheses
- 3 specific examples
 - t-test
 - F-test
 - Kolmogorov-Smirnov test
- this was the most complicated lecture!

data fitting

is a particular type of statistical test: we will look for a model y(x) which provides the largest likelihood for explaining data y_i and will make statements about the model parameters p_μ such as confidence intervals