PPAD-hardness for Two-Player Games

CS 598RM

Ruta Mehta

Previous Lecture

Today

Rational solutions

Today

Recall: 2D-Sperner

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Recall: Proof of 2D-Sperner's Lemma

For convenience we introduce an outer boundary, that does not create new trichromatic triangles.

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Lemma: Color the boundary in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle.

2D-Sperner

Lemma: Color the boundary in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle.

Today

PL-Brouwer (Linear-FIXP)

$$F: [0,1]^k \to [0,1]^k$$

Find a fixed Point of F: $x \in [0,1]^k$ s.t. F(x) = x

Continuous piecewise-linear function

PL-Brouwer (Linear-FIXP)

$$(EY'07) F: [0, 1]^2 \rightarrow [0, 1]^2$$

We need only 2-D

Find a fixed Point of F: $x \in [0,1]^k$ s.t. F(x) = x

Continuous piecewise-linear function

Today

2D-Sperner: As a Discrete Function

Given B_g find a trichromatic square.

$$\mathbf{g}(\underline{\mathbf{p}}) = \underline{\mathbf{p}} + \mathbf{D}(\underline{\mathbf{p}})$$

$$D(\bigcirc) = (-1, -1)$$

$$D(\bigcirc) = (1, 0)$$

$$D(\bigcirc) = (0, 1)$$
Boolean
Circuit

2D-Sperner: As a Discrete Function

$$D(\underline{p}) = (a_1 - s_1, a_2 - s_2)$$

Arithmetic Circuit for D

$$\mathbf{g}(\mathbf{p}) = \mathbf{p} + \mathbf{D}(\mathbf{p})$$

$$D(\bigcirc) = (-1, -1)$$

$$D(\bullet) = (1, 0)$$

$$D(\bigcirc) = (0, 1)$$

$g \rightarrow$ Continuous Func. (A possibility)

$$g(\underline{p}) = \underline{p} + I(\underline{p})$$

D(\bigcirc) = (-1, -1), D(\bigcirc) = (1, 0), D(\bigcirc) = (0, 1)

Interpolate:

$$q = \sum_{i} \alpha_{i} p^{i} \Rightarrow g(q) = \sum_{i} \alpha_{i} g(p^{i})$$

$$\therefore g(q) = q + \sum_{i} \alpha_{i} D(p^{i})$$

$$D(q)$$

Claim: q is a fixed point of giff D(q) = 0iff q is center of a trichromatic triangle

To evaluate $D(p^1)$ need bits(|q|)

Floor is a discontinuous function!

Computing bits of [q]

Computing bits($[q_d]$), d = 1,2 when $q \in Z_G$

- 1. Set $a = q_d$
- 2. For i = n 1, ..., 0
 - 1. $b_{di} = \min\{\max\{(a-2^i) * L^2, 0\}, 1\}$
 - 2. $a = a (b_{di} * 2^i)$

$$q = \text{int} + \text{frac}$$

 $\text{frac} \in \left[\frac{1}{L^2}, 1\right]$

Claim: (i) At the start of any iteration if $a \le 2^i \Rightarrow b_{di} = 0$

if
$$a \ge 2^i + \frac{1}{L^2} \Rightarrow b_{di} = 1$$
.

(ii) If $a \in Z_G$ at the start of an iteration, then at the end of it too $a \in Z_G$

Requires O(n) sized arithmetic circuit.

Sampling Lemma (CDT'06)

Given
$$q \in [0, 2^n - 1]^2$$
,
 $q^k = q + \frac{k-1}{L}, 1 \le k \le 16$
 $r^k = D([q^k]) \text{ if } q^k \text{ in } Z_G$,
else $r^k \in [-1, 1]^2$.

If $r = \sum_{k} r^{k} = 0$ then $q \in \text{trichromatic square}$.

Proof: At most two r^ks in Z_B , generating junk $\in [-2, 2]^2$. In $\{r^k, k \in Z_G\}$: If no yellow \Rightarrow all are either (1, 0) or (-1, -1) $\Rightarrow r_2 \leq -1$, or $r_1 \geq 1$ If no red \Rightarrow only (0, 1) or (-1, -1) $\Rightarrow r_1 \leq -1$, or $r_2 \geq 1$ If no blue \Rightarrow only (1, 0) or (0, 1) \Rightarrow max $\{r_1, r_2, r_2, r_3\} \geq 1$

2D-Sperner → PL-Brouwer

2D-Sperner → PL-Brouwer

Theorem 1: 2D-Sperner is polynomial-time reducible to (2D) PL-Brouwer.

2D-PL-Brouwer

$$F: [0,1]^2 \to [0,1]^2$$

Find a fixed Point of F: $x \in [0,1]^k$ s.t. F(x) = x

No Max Gate

Example on board.

r,

No Max Gate

$$O_1$$
: = $a_1\lambda_1 + b_1\lambda_2 + c_1$
 O_2 : = $a_2\lambda_1 + b_2\lambda_2 + c_2$

Fixed-point: $O_1 = \lambda_1$ $O_2 = \lambda_2$

$$\begin{array}{ccc}
L & R \\
\hline
\text{max} & y \ge L, & y \ge R \\
(y - L)(y - R) = 0
\end{array}$$

Modeling max Gates

Ordering among max gates: $g_1, ..., g_n$

■ L_1 - Linear in $\lambda_1 \& \lambda_2$ $x_1 \ge 0 \perp x_1 \ge L_1$

Modeling max Gates

■ L_i - Linear in $x_1, ..., x_{i-1}, \lambda_1, \lambda_2$

$$x_i \geq 0 \perp x_i \geq L_i$$

n: #max gates

Lemma 1: Given $(\lambda_1, \lambda_2), (x_1, ..., x_n)$ satisfy the following

$$S: x_i \ge 0 \perp x_i \ge L_i(x_1, ..., x_{i-1}, \lambda_1, \lambda_2), \forall i \le n$$

$$F(\lambda_1, \lambda_2) = (x_{n-1}, x_n)$$

- **Proof:** (\Rightarrow) By construction, x_i has to be the output of i^{th} max gate when input to the circuit is (λ_1, λ_2) .
 - (\Leftarrow) Evaluate the circuit of F at given (λ_1, λ_2) . Set x_i to output of i^{th} max gate, then $(x_1, ..., x_n)$ has to satisfy S, because two of the inputs of this max gate are '0' and expression L_i .

S:
$$x_i \ge 0 \perp x_i \ge L_i(x_1, ..., x_{i-1}, \lambda_1, \lambda_2), \forall i \le n$$

$$\underline{x} \ge 0 \perp A\underline{x} \ge \lambda_1 \underline{d} + \lambda_2 \underline{e} + \underline{b}$$

Fixed Point $\Rightarrow \lambda_1 = x_{n-1}, \lambda_2 = x_n$

 $A \in \mathbb{R}^{n \times n}$ lowertriangular with 1s on diagonal

Ш

$$\underline{x} \ge 0 \perp A\underline{x} \ge x_{n-1}\underline{d} + x_n\underline{e} + \underline{b}$$

$$A' = A - [\underline{0}, \dots, \underline{0}, \underline{d}, \underline{e}]$$

LCP:
$$\underline{x} \ge 0 \perp A'\underline{x} \ge \underline{b}$$

LCP = LinearComplemetarity Problem

Lemma 2: x is a solution of the LCP iff it is a solution of S, (then using Lemma 1) iff (x_{n-1}, x_n) is a fixed point.

м

$LCP \rightarrow Game$

LCP:
$$\underline{x} \ge 0 \perp A' \underline{x} \ge \underline{b}$$

$$Z = \begin{bmatrix} -A' & \underline{b} + \underline{1} \\ \underline{0} & 1 \end{bmatrix}$$

Symmetric Game: (Z, Z^T)

Recall: Nash Eq. of (A, B)

$$y \in \Delta_n$$
 $\underline{x} \in \Delta_m$

Complementarity:

$$\forall i, x_i \ge 0 \perp \left(A \underline{y} \right)_i \le \alpha$$

$$\forall j, y_j \ge 0 \perp \left(\underline{x}^T B \right)_j \le \beta$$

$$\updownarrow$$

- 1. $(\underline{x}, \underline{y})$ is a NE
- 2. α and β are the payoffs

Symmetric Nash Eq. of (Z, Z^T)

$$m = n$$
 $\underline{x} \in \Delta_m$ $\underline{x} = \underline{y}$

Complementarity:

$$\forall i, x_i \ge 0 \perp (Z\underline{x})_i \le \alpha$$

$$\forall i, x_i \ge 0 \perp (\underline{x}^T Z^T)_i \le \beta$$

$$\uparrow$$

- 1. $(\underline{x}, \underline{x})$ is a Symm. NE
- 2. α and β are the payoffs

Symmetric Nash Eq. of (Z, Z^T)

$$\underline{x} \in \Delta_m$$

Complementarity:
$$\forall i, x_i \geq 0 \perp (Z\underline{x})_i \leq \alpha$$

- 1. (x, x) is a Symm. NE
- 2. α is the payoff to both

м

$LCP \rightarrow Game$

LCP:
$$\underline{x} \ge 0 \perp A' \underline{x} \ge \underline{b}$$

Claim: A' is strictly semi-monotone.

$$Z = \begin{bmatrix} -A' & \underline{b} + \underline{1} \\ \underline{0} & 1 \end{bmatrix}$$
 Symmetric Game: (Z, Z^T)

Theorem 2: If (\underline{x}, t) is a symmetric NE (both play the same), then $\frac{x}{t}$ is the LCP solution.

м

LCP → Game (Proof)

LCP:
$$\underline{x} \ge 0 \perp A' \underline{x} \ge \underline{b}$$

$$Z = \begin{bmatrix} -A' & \underline{b} + \underline{1} \\ \underline{0} & 1 \end{bmatrix} \begin{bmatrix} \underline{x} \\ \underline{t} \end{bmatrix} \quad \begin{array}{c} Game: (Z, Z^T) \\ (\underline{x}, t) \text{ be a symmetric Nash} \end{array}$$

$$\forall i, \qquad x_i \ge 0 \perp \left(-A'\underline{x} \right)_i + b_i t + t \le \alpha$$
$$t \ge 0 \perp t \le \alpha$$

LCP → Game (Proof)

LCP:
$$\underline{x} \ge 0 \perp A' \underline{x} \ge \underline{b}$$

$$\forall i, x_i \ge 0 \perp (-A'\underline{x})_i + b_i t + t \le \alpha$$

$$t \ge 0 \perp t \le \alpha$$

Claim 1: If t > 0 then $\frac{x}{t}$ is a soln of the LCP.

Proof:

$$t > 0 \Rightarrow t = \alpha \Rightarrow \left(A'\left(\frac{x}{t}\right)\right)_i \ge b_i$$

LCP → Game (Proof)

LCP:
$$\underline{x} \ge 0 \perp A' \underline{x} \ge \underline{b}$$

$$\forall i, x_i \ge 0 \quad \bot \quad (-A'\underline{x})_i + b_i t + t \le \alpha$$

$$t \ge 0 \quad \bot \quad t \le \alpha$$

Claim 2: t > 0, if A' is strictly semi-monotone.

$$\underline{x} \ge 0, \underline{x} \ne 0 \text{ then}$$

 $\exists i, x_i > 0, (A'x)_i > 0$

Proof:
$$t = 0 \Rightarrow \alpha \geq 0$$

$$x_i > 0$$
 and $(-A'x)_i < 0 \le \alpha$.

Contradiction!

Main Result

Theorem 3: Given circuit of function F, construct game (Z, Z^T) . (\underline{x}, t) is a symmetric NE of this game iff $(\frac{x_{n-1}}{t}, \frac{x_n}{t})$ is a fixed-point of F.

(Recall) Theorem 1: $\left(\frac{x_{n-1}}{t}, \frac{x_n}{t}\right)$ is a fixed-point of F iff it is in trichromatic triangle of the 2D-Sperner problem.

Main Theorem: 2D-Sperner is polynomial-time reducible to symmetric NE in symmetric 2-player game.

Symmetric 2-Nash --- 2-Nash

$$(Z, Z^T) \longrightarrow (I, Z)$$

$$(\underline{x}, \underline{x}) \longleftarrow (\underline{x}, \underline{y})$$

"Imitation Games"
(McLennan and Tourky'10)

Recall: The PPAD Class

Suppose that an exponentially large graph with vertex set $\{0,1\}^n$ is defined by two circuits:

END OF A LINE: Given P and N, and unbalanced node 0^n , find another unbalanced node.

Recall: END OF A LINE

Recall: 2D-Sperner

Can also be thought of as poly-time procedure

Proof of Sperner's Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

$$K=2^n-1$$

$$v_0 \rightarrow v_2$$
 $\rightarrow v_1$

$$\rightarrow v_1$$

$$\rightarrow v_3$$

Extra cycles

But no extra **End-points**

Coloring?

Constant Blow-up

Poly-time Procedure for Coloring?

- Every row uniquely correspond to a vertex in/out
- Every column uniquely correspond to $v_i \rightarrow v_j$
 - □ For every grid point of the initial grid, can use circuit N and P of PPAD to check if a line is passing through it and in what direction.

Even further subdivision in constantly many cells is predetermined.

- What about crossings?
 - ☐ Again checking and uncrossing are locally possible.