Model Documentation of the Two Mass Floating Bodies

1 Nomenclature

1.1 Nomenclature for Model Equations

 m_1 mass of the iron ball

 m_2 mass of the brass ball

 k_1 geometry constant

 k_2 air gap of magnet

 k_f spring constant

g acceleration of gravity

I current

 s_1 position of the iron ball in x-direction

 s_2 position of the brass ball in x-direction

 v_1 velocity of the iron ball in x-direction

 v_2 velocity of the brass ball in x-direction

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ x_4)^T = (s_1 \ s_2 \ v_1 \ v_2)^T$$

 $u = u_1 = I$

System Equations:

$$\dot{x}_1 = x_3 \tag{1a}$$

$$\dot{x}_2 = x_4 \tag{1b}$$

$$\dot{x}_3 = g - \frac{k_f}{m_1}(x_1 - x_2) - k_1 \frac{I}{m_1(x_1 + k_2)^2}$$
(1c)

$$\dot{x}_4 = g + \frac{k_f}{m_2}(x_1 - x_2) \tag{1d}$$

(1e)

Parameters: m_1 , m_2 , k_1 , k_2 , k_f , gOutputs: s_2

2.1 Assumptions

- 1. Mass of the iron ball is a pointmass.
- 2. Mass of the brass ball is a pointmass.

2.2 Exemplary parameter values

3 Derivation and Explanation

 $Not\ available$

4 Simulation

Figure 1: Simulation of the Two Mass Floating Bodies.

References

[1] Wang, Xinyu: Erstellung eines Katalogs regelungstechnischer Problemstellungen mit ausführbaren Beispiellösungen, student research project at the Institut für Regelungs- und Steuerungstheorie TU Dresden, 2021. (not publicly accessible)