CS11-747 Neural Networks for NLP

Structured Prediction with Local Dependencies

Antonis Anastasopoulos

Carnegie Mellon University

Language Technologies Institute

https://phontron.com/class/nn4nlp2019/

With Slides by Graham Neubig and Xuezhe Ma

An Example Structured Prediction Problem: Sequence Labeling

Sequence Labeling

- One tag for one word
- e.g. Part of speech tagging

• e.g. Named entity recognition

Sequence Labeling as Independent Classification

Problems:

Independent classification models:

- Strong independence assumptions
- No guarantee of valid or consistent structures

Recurrent Net

Problems

Independent classification models:

- Strong independence assumptions
- No guarantee of valid or consistent structures

History-based/sequence-to-sequence models

- No independence assumptions
- Cannot calculate exactly! Require approximate search
- Exposure bias, label bias

Exposure Bias

Teacher Forcing:

The system has only been receiving the correct input during training.

At inference time, it receives the previous predictions, which could be wrong!

Teacher Forcing

Label Bias

The transitions leaving a state are only normalised against each other, and not against all the transitions in the model

Effectively, states with low entropy transition distributions, end up ignoring their observations.

Models w/ Local Dependencies

- Some independence assumptions, but not entirely independent (local dependencies)
- Exact and optimal decoding/training via dynamic programs

Conditional Random Fields! (CRFs)

Reminder: Globally Normalized Models

 Each output sequence has a score, which is not normalized over a particular decision

$$P(Y|X) = \frac{\exp(S(Y,X))}{\sum_{Y'} \exp(S(Y',X))} = \frac{\psi(Y,X)}{\sum_{Y'} \psi(Y',X)}$$

where $\psi(Y,X)$ are potential functions.

Conditional Random Fields

General form of globally normalized

$$P(Y|X) = \frac{\psi(Y,X)}{\sum_{Y'} \psi(Y',X)}$$

First-order linear CRF

$$P(Y|X) = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{\sum_{Y'} \prod_{i=1}^{L} \psi_i(y'_{i-1}, y'_i, X)}$$

Potential Functions

"Transition"

"Emission"

•
$$\psi_i(y_{i-1}, y_i, X) = \exp(W^T T(y_{i-1}, y_i, X, i) + U^T S(y_i, X, i) + b_{y_{i-1}, y_i})$$

BiLSTM-CRF for Sequence Labeling

Training & Decoding of CRF: Viterbi/Forward Backward Algorithm

CRF Training & Decoding

•
$$P(Y|X) = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{\sum_{Y'} \prod_{i=1}^{L} \psi_i(y_{i-1}, y_{i}, X)} = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{Z(X)}$$

Interactions

$$Z(X) = \sum_{Y} \prod_{i=1}^{L} \psi_{i}(y_{i-1}, y_{i}, X)$$

Step: Initial Part

 First, calculate transition from <S> and emission of the first word for every POS

```
natural
          1:NN | score["1 NN"] = T(NN|<S>) + S(natural | NN)
0:<S>
           1:JJ | score["1 JJ"] = T(JJ|<S>) + S(natural | JJ)
           1:VB | score["1 VB"] = T(VB|<S>) + S(natural | VB)
          1:LRB score["1 LRB"] = T(LRB < S>) + S(natural | LRB)
          1:RRB|score["1 RRB"] = T(RRB|<S>) + S(natural | RRB)
```

. . .

Step: Middle Parts

For middle words, calculate the scores for all possible previous POS tags

```
natural
           language
                       score["2 NN"] = log sum exp(
 1:NN
                        score["1 NN"] + T(NN|NN) + S(language | NN),
                        score["1 JJ"] + T(NN|JJ) + S(language | NN),
                        score["1 VB"] + T(NN|VB) + S(language | NN),
              2:JJ
                        score["1 LRB"] + T(NN|LRB) + S(language | NN),
                        score["1 RRB"] + T(NN|RRB) + S(language | NN),
 1:VB
              2:VB
                        ...)
                       score["2 JJ"] = log_sum_exp(
 1:LRB
                        score["1 NN"] + T(JJ|NN) + S(language | JJ),
                        score["1 JJ"] + T(JJ|JJ) + S(language | JJ),
                        score["1 VB"] + T(JJ|VB) + S(language | JJ),
 1:RRB
             2:RRB
                               log sum exp(x, y) = log(exp(x) + exp(y))
```

Forward Step: Final Part

Finish up the sentence with the sentence final symbol

```
science
                         score["I+1 "] = log sum exp(
             /+1:
                           score["/ NN"] + T(|NN),
                           score["/JJ"] + T(|JJ),
                           score["/VB"] + T(|VB),
                           score["/ LRB"] + T(|LRB),
                           score["/ NN"] + T(|RRB),
 I:LRB
 I:RRB
```

Computing the Partition Function

• $\pi_t(y|X)$ is the partition of sequence with length equal to t and end with label y:

$$\pi_{t}(y|X) = \sum_{y_{i},\dots,y_{t-1}} \left(\prod_{i=1}^{t-1} \psi_{i}(y_{i-1}, y_{i}, X) \right) \psi_{t}(y_{t-1}, y_{t} = y, X)$$

$$= \sum_{y_{t-1}} \psi_{t}(y_{t-1}, y_{t} = y, X) \sum_{y_{i},\dots,y_{t-2}} \left(\prod_{i=1}^{t-2} \psi_{i}(y_{i-1}, y_{i}, X) \right) \psi_{t-1}(y_{t-2}, y_{t-1}, X)$$

$$= \sum_{y_{t-1}} \psi_{t}(y_{t-1}, y_{t} = y, X) \pi_{t-1}(y_{t-1}|X)$$

• Computing partition function $Z(X) = \sum_{y} \pi_L(y|X)$

Decoding and Gradient Calculation

- Decoding is performed with similar dynamic programming algorithm
- Calculating gradient: $l_{ML}(X,Y;\theta) = -\log P(Y|X;\theta)$ $\frac{\partial l_{ML}(X,Y;\theta)}{\partial \theta} = F(Y,X) E_{P(Y|X;\theta)}[F(Y,X)]$
 - Forward-backward algorithm (Sutton and McCallum, 2010)
 - Both $P(Y|X;\theta)$ and F(Y,X) can be decomposed
 - Need to compute the marginal distribution:

$$P(y_{i-1} = y', y_i = y | X; \theta) = \frac{\alpha_{i-1}(y'|X)\psi_i(y', y, X)\beta_i(y|X)}{Z(X)}$$

Not necessary if using DNN framework (auto-grad)

Case Study

BiLSTM-CNN-CRF for Sequence Labeling

Case Study: BiLSTM-CNN-CRF for Sequence Labeling (Ma et al, 2016)

- Goal: Build a truly end-to-end neural model for sequence labeling task, requiring no feature engineering and data preprocessing.
- Two levels of representations
 - Character-level representation: CNN
 - Word-level representation: Bi-directional LSTM

CNN for Character-level representation

 We used CNN to extract morphological information such as prefix or suffix of a word

Bi-LSTM-CNN-CRF

- We used Bi-LSTM to model word-level information.
- CRF is on top of Bi-LSTM to consider the corelation between labels.

Training Details

- Optimization Algorithm:
 - SGD with momentum (0.9)
 - Learning rate decays with rate 0.05 after each epoch.
- Dropout Training:
 - Applying dropout to regularize the model with fixed dropout rate 0.5
- Parameter Initialization:
 - Parameters: Glorot and Bengio (2010)
 - Word Embedding: Stanford's GloVe 100-dimentional embeddings
 - Character Embedding: uniformly sampled from $\left[-\sqrt{\frac{3}{dim}},+\sqrt{\frac{3}{dim}}\right]$, where dim=30

Experiments

	PC)S	NER					
	Dev	Test		Dev			Test	
Model	Acc.	Acc.	Prec.	Recall	F1	Prec.	Recall	F1
BRNN	96.56	96.76	92.04	89.13	90.56	87.05	83.88	85.44
BLSTM	96.88	96.93	92.31	90.85	91.57	87.77	86.23	87.00
BLSTM-CNN	97.34	97.33	92.52	93.64	93.07	88.53	90.21	89.36
BLSTM-CNN-CRF	97.46	97.55	94.85	94.63	94.74	91.35	91.06	91.21

Minimum Risk Training: Considering Rewards in Globally Normalized Models

Reward Functions in Structured Prediction

- POS tagging: token-level accuracy
- NER: F1 score
- Dependency parsing: labeled attachment score
- Machine translation: corpus-level BLEU

Do different reward functions impact our decisions?

- Data1: $(X, Y) \sim P$
- Task1: predict Y given X i.e. $h_1(X)$
- Reward1: $R_1(h_1(X), Y)$
- Data2: $(X, Y) \sim P$
- Task2: predict Y given X i.e. $h_2(X)$
- Reward2: $R_2(h_2(X), Y)$

$$h_1(X) = h_2(X)?$$

Reward is the amount of money we get

Reward is the amount of money we get

Previous Methods to Consider Reward

- Max-Margin (Taskar et al., 2004)
- REINFORCE (e.g. Ranzato et al. 2016)
- Reward-augmented Maximum Likelihood (Norouzi et al., 2016)

Minimizing Risk by Enumeration

 Simple idea: directly calculate the risk of *all* hypotheses in the space

$$\mathcal{L}_{risk}(X,Y) = \sum_{Y'} P(Y' \mid X) error(Y,Y')$$

Use this as a loss function

Enumeration + Sampling (Shen+ 2016)

- Enumerating all hypotheses is intractable!
- Instead of enumerating over everything, only enumerate over a sample, and re-normalize

$$\mathcal{L}_{risk}(X, Y) = \sum_{Y' \in \mathcal{S}} \frac{P(Y' \mid X)}{\sum_{Y'' \in \mathcal{S}} P(Y'' \mid X)} error(Y, Y')$$

Token-wise Minimum Risk

 If we can come up with a decomposable error function, we can calculate risk for each word

Questions?