FUNCTIONAL DEPENDENCY THEORY II

CS121: Introduction to Relational Database Systems Fall 2014 – Lecture 20

Last Time: Canonical Cover

- □ Last time, introduced concept of canonical cover
- \square A canonical cover F_c for F is a set of functional dependencies such that:
 - \Box F logically implies all dependencies in F_c
 - $\Box F_c$ logically implies all dependencies in F
 - \blacksquare Can't infer any functional dependency in F_c from other dependencies in F_c
 - \blacksquare No functional dependency in F_c contains an extraneous attribute
 - \blacksquare Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \to \beta_1$ and $\alpha_2 \to \beta_2$ in F_c such that $\alpha_1 = \alpha_2$

Extraneous Attributes

- □ Given a set F of functional dependencies
 - \blacksquare An attribute in a functional dependency is <u>extraneous</u> if it can be removed from F without affecting closure of F
- \square Formally: given F, and $\alpha \rightarrow \beta$
 - □ If $A \subseteq \alpha$, and F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$, then A is extraneous
 - □ If $A \subseteq \beta$, and $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies F, then A is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \to \beta$ with $\alpha \to (\beta A)$
 - See if F' logically implies F

Testing Extraneous Attributes

- Given relation schema R, and a set F of functional dependencies that hold on R
- \square Attribute A in $\alpha \rightarrow \beta$
- □ If $A \subseteq \alpha$ (i.e. A is on left side of the dependency), then let $\gamma = \alpha \{A\}$
 - \blacksquare See if $\gamma \rightarrow \beta$ can be inferred from F
 - \square Compute γ^+ under F
 - lacksquare If $eta\subseteq\gamma^+$ then A is extraneous in lpha

Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- \square Attribute A in $\alpha \rightarrow \beta$
- □ If $A \subseteq \beta$ (on right side of the dependency), then try the <u>altered</u> set F'
 - $\blacksquare F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$
 - \square See if $\alpha \rightarrow A$ can be inferred from F'
 - $lue{}$ Compute $lpha^+$ under F'
 - lacksquare If $lpha^+$ includes A then A is extraneous in eta

Computing Canonical Cover

 \square A simple way to compute the canonical cover of F

```
repeat apply union rule to replace dependencies in F_c of form \alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1\beta_2 find a functional dependency \alpha \to \beta in F_c with an extraneous attribute /* Use F_c for the extraneous attribute test, not F !!! */ if an extraneous attribute is found, delete it from \alpha \to \beta until F_c stops changing
```

Canonical Cover Example

- \square Functional dependencies F on schema (A, B, C)
 - $\blacksquare F = \{ A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C \}$
 - \blacksquare Find F_c
- \square Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$
 - □ Left with: $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- \square A is extraneous in AB \rightarrow C
 - \square B \rightarrow C is logically implied by F (obvious)
 - □ Left with: $\{A \rightarrow BC, B \rightarrow C\}$
- \Box C is extraneous in $A \rightarrow BC$
 - □ Logically implied by $A \rightarrow B$, $B \rightarrow C$
- $\square F_c = \{ A \rightarrow B, B \rightarrow C \}$

Canonical Covers

- A set of functional dependencies can have multiple canonical covers
- Example:
 - $\square F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \}$
 - Has several canonical covers:
 - $\blacksquare F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \}$
 - $\blacksquare F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \}$
 - $\blacksquare F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \}$
 - $\blacksquare F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \}$
 - $F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \}$

Another Example

- \square Functional dependencies F on schema (A, B, C, D)
 - $\blacksquare F = \{ A \rightarrow B, BC \rightarrow D, AC \rightarrow D \}$
 - \blacksquare Find F_c
- \square In this case, it may look like $F_c = F...$
- □ However, can infer $AC \rightarrow D$ from $A \rightarrow B$, $BC \rightarrow D$ (pseudotransitivity), so $AC \rightarrow D$ is extraneous in F
 - Therefore, $F_c = \{ A \rightarrow B, BC \rightarrow D \}$
- \square Alternately, can argue that D is extraneous in $AC \rightarrow D$
 - With $F' = \{ A \rightarrow B, BC \rightarrow D \}$, we see that $\{AC\}^+ = ACD$, so D is extraneous in $AC \rightarrow D$
 - (If you eliminate the entire RHS of a functional dependency, it goes away)

Lossy Decompositions

- Some schema decompositions lose information
- Example:

```
employee(emp_id, emp_name, phone, title, salary, start_date)
```

Decomposed into:

```
emp_ids(emp_id, emp_name)
emp_details(emp_name, phone, title, salary, start_date)
```

- □ Problem:
 - emp_name doesn't uniquely identify employees
 - This is a lossy decomposition

Lossless Decompositions

- □ Given:
 - \square Relation schema R, relation r(R)
 - Set of functional dependencies F
- \square Let R_1 and R_2 be a decomposition of R
 - $\square R_1 \cup R_2 = R$
- □ The decomposition is lossless if, for <u>all</u> legal instances of r:

$$\Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) = r$$

□ A simple definition...

Lossless Decompositions (2)

- Can define with functional dependencies:
 - \square R_1 and R_2 form a lossless decomposition of R if at least one of these dependencies is in F^+ :

$$R_1 \cap R_2 \rightarrow R_1$$

 $R_1 \cap R_2 \rightarrow R_2$

- \square $R_1 \cap R_2$ forms a superkey of R_1 and/or R_2
 - Test for superkeys using attribute-set closure

Decomposition Examples (1)

- The employee example:
 employee(emp_id, emp_name, phone, title, salary, start_date)
- Decomposed into:emp_ids(emp_id, emp_name)
 - emp_details(emp_name, phone, title, salary, start_date)
 - emp_name is not a superkey of emp_ids or emp_details, so the decomposition is lossy

Decomposition Examples (2)

- The bor_loan example:bor_loan(<u>cust_id</u>, <u>loan_id</u>, amount)
- Decomposed into:

```
borrower(cust_id, loan_id)
loan(<u>loan_id</u>, amount) (loan_id → loan_id, amount)
```

loan_id is a superkey of loan, so the decomposition is lossless

BCNF Decompositions

- □ If R is a schema not in BCNF:
 - There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R
 - $lue{}$ For simplicity, also require that $\alpha \cap \beta = \emptyset$
 - \blacksquare (if $\alpha \cap \beta \neq \emptyset$ then $(\alpha \cap \beta)$ is extraneous in β)
- Replace R with two schemas:

$$R_1 = (\alpha \cup \beta)$$

$$R_2 = (R - \beta)$$

- (was $R (\beta \alpha)$, but $\beta \alpha = \beta$, since $\alpha \cap \beta = \emptyset$)
- BCNF decomposition is lossless
 - $\square R_1 \cap R_2 = \alpha$
 - \square α is a superkey of R_1
 - $lue{}$ lpha also appears in R_2

Dependency Preservation

- Some schema decompositions are not dependencypreserving
 - Functional dependencies that span multiple relation schemas are hard to enforce
 - e.g. BCNF may require decomposition of a schema for one dependency, and make it hard to enforce another dependency
- Can test for dependency preservation using functional dependency theory

Dependency Preservation (2)

- □ Given:
 - \square A set F of functional dependencies on a schema R
 - \square $R_1, R_2, ..., R_n$ are a decomposition of R
- □ The <u>restriction</u> of F to R_i is the set F_i of functional dependencies in F^+ that only has attributes in R_i
 - \blacksquare Each F_i contains functional dependencies that can be checked efficiently, using only R_i
- Find all functional dependencies that can be checked efficiently

 - □ If $F'^+ = F^+$ then the decomposition is dependency-preserving

Third Normal Form Schemas

- Can generate a 3NF schema from a set of functional dependencies F
- Called the <u>3NF synthesis algorithm</u>
 - Instead of decomposing an initial schema, generates
 schemas from a set of dependencies
- □ Given a set F of functional dependencies
 - \square Uses the canonical cover F_c
 - Ensures that resulting schemas are dependency-preserving

3NF Synthesis Algorithm

Inputs: set of functional dependences F, on a schema R let F_c be a canonical cover for F; i := 0;**for each** functional dependency $\alpha \rightarrow \beta$ in F_c **do** if none of the schemas R_i , i = 1, 2, ..., i contains ($\alpha \cup \beta$) then i := i + 1; $R_i := (\alpha \cup \beta)$ end if done if no schema R_i , i = 1, 2, ..., i contains a candidate key for R then i := i + 1; $R_i :=$ any candidate key for R end if return (R_1, R_2, \ldots, R_i)

BCNF vs. 3NF

- Boyce-Codd Normal Form:
 - Eliminates more redundant information than 3NF
 - Some functional dependencies become expensive to enforce
 - The conditions to enforce involve multiple relations
 - Overall, a very desirable normal form!
- Third Normal Form:
 - All [more] dependencies are [probably] easy to enforce...
 - Allows more redundant information, which must be kept synchronized by the database application!
 - Personal banker example:

```
works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)
```

Branch names must be kept synchronized between these relations!

BCNF and 3NF vs. SQL

- SQL constraints:
 - Only <u>key</u> constraints are fast and easy to enforce!
 - □ Only easy to enforce functional dependencies $\alpha \rightarrow \beta$ if α is a key on some table!
 - Other functional dependencies (even "easy" ones in 3NF) may require more expensive constraints, e.g. CHECK
- For SQL databases with materialized views:
 - Can decompose a schema into BCNF
 - □ For dependencies $\alpha \rightarrow \beta$ not preserved in decomposition, create materialized view joining all relations in dependency
 - \blacksquare Enforce **unique**(α) constraint on materialized view
- Impacts both space and performance, but it works...

Multivalued Attributes

- E-R schemas can have multivalued attributes
- 1NF requires only atomic attributes
 - Not a problem; translating to relational model leaves everything atomic
- Employee example:
 employee(emp_id, emp_name)
 emp_deps(emp_id, dependent)
 emp_nums(emp_id, phone_num)

```
employee

emp_id
emp_name
{ phone_num }
{ dependent }
```

What are the requirements on these schemas for what tuples must appear?

Multivalued Attributes (2)

Example data:

emp_id	emp_name
125623	Rick
=	employee

emp_id	dependent
125623	Jeff
125623	Alice
_	emp deps

emp_id	phone_num
125623	555-8888
125623	555-2222
	emn nums

emp_nums

- Every distinct value of multivalued attribute requires a separate tuple, including associated value of emp_id
- □ A consequence of 1NF, in fact!
 - If attributes could be nonatomic, could just store list of values in the appropriate column!
 - 1NF <u>requires</u> extra tuples to represent multivalues

Independent Multivalued Attributes

- Question is trickier when a schema stores several independent multivalued attributes
- Proposed combined schema:
 employee(emp_id, emp_name)
 emp_info(emp_id, dependent, phone_num)
- What tuples must appear in emp_info?
 - emp_info is a relation
 - If an employee has M dependents and N phone numbers, emp_info must contain M × N tuples
 - Exactly what we get if we natural-join emp_deps and emp_nums
 - Every combination of the employee's dependents and their phone numbers

Independent Multivalued Attributes

Example data:

emp_id	emp_name
125623	Rick
	employee

emp_id	dependent	phone_num
125623	Jeff	555-8888
125623	Jeff	555-2222
125623	Alice	555-8888
125623	Alice	555-2222

emp_info

- Clearly has unnecessary redundancy
- Can't formulate functional dependencies to represent multivalued attributes
- Can't use BCNF or 3NF decompositions to eliminate redundancy in these cases

Multivalued Attributes Example

- □ Two employees: Rick and Bob
 - Both share a phone number at work
 - Both have two kids
 - Both have a kid named Alice
- Can't use functional dependencies to reason about this situation!
 - emp_id → phone_num doesn't hold since an employee can have several phone numbers
 - □ phone_num → emp_id doesn't hold either, since several employees can have the same phone number
 - Same with emp_id and dependent...

emp_id	emp_name
125623	Rick
127341	Bob

employee

emp_id	phone_num
125623	555-8888
125623	555-2222
127341	555-2222

emp_nums

emp_id	dependent
125623	Jeff
125623	Alice
127341	Alice
127341	Clara

Dependencies

- Functional dependencies rule out what tuples can appear in a relation
 - □ If $A \rightarrow B$ holds, then tuples cannot have same value for A but different values for B
 - Also called <u>equality-generating dependencies</u>
- Multivalued dependencies specify what tuples must be present
 - To represent a multivalued attribute's values properly, a certain set of tuples must be present
 - Also called tuple-generating dependencies

Multivalued Dependencies

- □ Given a relation schema R
 - \blacksquare Attribute-sets $\alpha \in R$, $\beta \in R$
 - $\square \alpha \longrightarrow \beta$ is a multivalued dependency
 - \blacksquare " α multidetermines β "
- □ A multivalued dependency $\alpha \longrightarrow \beta$ holds on R if, in any legal relation r(R):

For all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, There also exists tuples t_3 and t_4 in r such that:

- $t_1[R \beta] = t_4[R \beta]$ and $t_2[R \beta] = t_3[R \beta]$

Multivalued Dependencies (2)

□ Multivalued dependency $\alpha \longrightarrow \beta$ holds on R if, in any legal relation r(R):

For all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, There also exists tuples t_3 and t_4 in r such that:

Pictorially:

	α	β	$R - (\alpha \cup \beta)$
t_1	a ₁ a _i	a _{i+1} a _j	a _{j+1} a _n
t_2	a_1a_i	$b_{i+1}b_j$	$b_{j+1}b_n$
		<i>a_{i+1}…a_j</i>	$b_{j+1}b_n$
t_4	a_1a_i	$b_{i+1}b_j$	$a_{j+1}a_n$

Multivalued Dependencies (3)

Multivalued dependency:

	α	β	$R - (\alpha \cup \beta)$
t_1	a ₁ a _i	a _{i+1} a _j	a _{j+1} a _n
t_2	a ₁ a _i	$b_{i+1}b_j$	$b_{j+1}b_n$
$\overline{t_3}$	a ₁ a _i	a _{i+1} a _j	$b_{j+1}b_n$
t_4	<i>a</i> ₁ <i>a</i> _i	$b_{i+1}b_j$	a _{j+1} …a _n

- \square If $\alpha \longrightarrow \beta$ then $R (\alpha \cup \beta)$ is independent of this fact
 - Every distinct value of β must be associated once with every distinct value of $R (\alpha \cup \beta)$
- \square Let $\gamma = R (\alpha \cup \beta)$
 - If $\alpha \longrightarrow \beta$ then also $\alpha \longrightarrow \gamma$
 - $\alpha \longrightarrow \beta$ implies $\alpha \longrightarrow \gamma$
 - □ Sometimes written $\alpha \longrightarrow \beta \mid \gamma$

Trivial Multivalued Dependencies

- $\alpha \longrightarrow \beta$ is a trivial multivalued dependency on R if <u>all</u> relations r(R) satisfy the dependency
- □ Specifically, $\alpha \Longrightarrow \beta$ is trivial if $\beta \subseteq \alpha$, or if $\alpha \cup \beta = R$
- Employee examples:
 - For schema emp_deps(emp_id, dependent),
 emp_id ->> dependent is trivial
 - For emp_info(emp_id, dependent, phone_num),
 emp_id ->> dependent is not trivial

Inference Rules

- Can reason about multivalued dependencies, just like functional dependencies
 - □ There is a set of complete, sound inference rules for MVDs
- Example inference rules:
 - Complementation rule:
 - If $\alpha \longrightarrow \beta$ holds on R, then $\alpha \longrightarrow R (\alpha \cup \beta)$ holds
 - Multivalued augmentation rule:
 - If $\alpha \longrightarrow \beta$ holds, and $\gamma \subseteq R$, and $\delta \subseteq \gamma$, then $\gamma \alpha \longrightarrow \delta \beta$ holds
 - Multivalued transitivity rule:
 - If $\alpha \longrightarrow \beta$ and $\beta \longrightarrow \gamma$ holds, then $\alpha \longrightarrow \gamma \beta$ holds
 - Coalescence rule:
 - If $\alpha \longrightarrow \beta$ holds, and $\gamma \subseteq \beta$, and there is a δ such that $\delta \subseteq R$, and $\delta \cap \beta = \emptyset$, and $\delta \to \gamma$, then $\alpha \to \gamma$ holds

Functional Dependencies

- Functional dependencies are also multivalued dependencies
- Replication rule:
 - \blacksquare If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \beta$ too
 - Note there is an <u>additional</u> constraint from $\alpha \rightarrow \beta$: each value of α has at most one associated value for β
- Usually, functional dependencies are not stated as multivalued dependencies
 - The extra caveat is important, but not obvious in notation
 - Also, functional dependencies are easier to reason about!

Closures and Restrictions

- For a set D of functional and multivalued dependencies, can compute closure D⁺
 - Use inference rules for both functional and multivalued dependencies to compute closure
- \square Sometimes need the restriction of D^+ to a relation schema R, too
- \square The restriction of D to a schema R_i includes:
 - $lue{}$ All functional dependencies in D^+ that include only attributes in R_i
 - □ All multivalued dependencies of the form $\alpha \longrightarrow \beta \cap R_i$, where $\alpha \subseteq R_i$, and $\alpha \longrightarrow \beta$ is in D^+

Fourth Normal Form

- □ Given:
 - Relation schema R
 - Set of functional and multivalued dependencies D
- \square R is in 4NF with respect to D if:
 - For all multivalued dependencies $\alpha \longrightarrow \beta$ in D^+ , where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\blacksquare \alpha \longrightarrow \beta$ is a trivial multivalued dependency
 - lacksquare lpha is a superkey for $\it R$
 - Note: If $\alpha \rightarrow \beta$ then $\alpha \rightarrow \beta$
- A database design is in 4NF if all schemas in the design are in 4NF

4NF and BCNF

- Main difference between 4NF and BCNF is use of multivalued dependencies instead of functional dependencies
- Every schema in 4NF is also in BCNF
 - If a schema is not in BCNF then there is a nontrivial functional dependency $\alpha \to \beta$ such that α is not a superkey for R
 - □ If $\alpha \rightarrow \beta$ then $\alpha \rightarrow \beta$

4NF Decompositions

- Decomposition rule very similar to BCNF
- □ If schema R is not in 4NF with respect to a set of multivalued dependencies D:
 - There is some nontrivial dependency $\alpha \longrightarrow \beta$ in D^+ where $\alpha \subseteq R$ and $\beta \subseteq R$, and α is not a superkey of R
 - Also constrain that $\alpha \cap \beta = \emptyset$
 - Replace R with two new schemas:
 - $\mathbf{R}_1 = (\alpha \cup \beta)$
 - $R_2 = (R \beta)$

Employee Information Example

Combined schema:

```
employee(emp_id, emp_name)
emp_info(emp_id, dependent, phone_num)
```

- Also have these dependencies:
 - \blacksquare emp_id \rightarrow emp_name
 - emp_id → dependent
 - emp_id ->> phone_num
- emp_info is not in 4NF
- □ Following the rules for 4NF decomposition produces:

```
(emp_id, dependent)
(emp_id, phone_num)
```

Note: Each relation's candidate key is the entire relation. The multivalued dependencies are trivial.

Lossless Decompositions

- Can also define lossless decomposition with multivalued dependencies
 - \blacksquare R_1 and R_2 form a lossless decomposition of R if at least one of these dependencies is in D^+ :

$$R_1 \cap R_2 \longrightarrow R_1$$

$$R_1 \cap R_2 \longrightarrow R_2$$

Beyond Fourth Normal Form?

- Additional normal forms with various constraints
- □ Example: join dependencies
- □ Given R, and a decomposition R_1 and R_2 where $R_1 \cup R_2 = R$:
 - The decomposition is lossless if, for all legal instances of r(R), $\Pi_{R_2}(r) \bowtie \Pi_{R_2}(r) = r$
- □ Can state this as a join dependency: $*(R_1, R_2)$
 - This is actually identical to a multivalued dependency!
 - $\blacksquare *(R_1, R_2)$ is equivalent to $R_1 \cap R_2 \longrightarrow R_1 \mid R_2$

Join Dependencies and 5NF

- Join dependencies (JD) are a generalization of multivalued dependencies (MVD)
 - \square Can specify JDs involving N relation schemas, N ≥ 2
 - \square JDs are equivalent to MVDs when N = 2
 - $lue{}$ Can easily construct JDs where N > 2, with no equivalent set of MVDs
- Project-Join Normal Form (a.k.a. PJNF or 5NF):
 - □ A relation schema R is in PJNF with respect to a set of join dependencies D if, for all JDs in D^+ of the form $*(R_1, R_2, ..., R_n)$ where $R_1 \cup R_2 \cup ... \cup R_n = R$, at least one of the following holds:
 - \blacksquare * $(R_1, R_2, ..., R_n)$ is a trivial join dependency
 - \blacksquare Every R_i is a superkey for R

Join Dependencies and 5NF (2)

- If a schema is in Project-Join Normal Form then it is also in 4NF (and thus, in BCNF)
 - Every multivalued dependency is also a join dependency
 - (Every functional dependency is also a multivalued dependency)
- One small problem:
 - □ There isn't a complete, sound set of inference rules for join dependencies!
 - Can't reason about our set of join dependencies D...
 - This limits PJNF's real-world usefulness

Domain-Key Normal Form

- Domain-key normal form (DKNF) is an even more general normal form, based on:
 - **Domain constraints:** what values may be assigned to attribute A
 - Usually inexpensive to test, even with CHECK constraints
 - **Key constraints:** all attribute-sets K that are a superkey for a schema R (i.e. $K \rightarrow R$)
 - Almost always inexpensive to test
 - General constraints: other predicates on valid relations in a schema
 - Could be very expensive to test!
- A schema R is in DKNF if the domain constraints and key constraints logically imply the general constraints
 - An "ideal" normal form difficult to achieve in practice...