DIOFANTSKE APROKSIMACIJE I PRIMJENE

4. zadaća

- 1. Navedite podskup \mathcal{R}_1 ravnine E^2 koji je konveksan i čija je površina $\mu(\mathcal{R}_1) = 10$, ali \mathcal{R}_1 ne sadrži niti jednu cjelobrojnu točku.
- 2. Navedite podskup \mathcal{R}_2 ravnine E^2 koji je simetričan s obzirom na ishodište i čija je površina $\mu(\mathcal{R}_2)=10$, ali \mathcal{R}_2 ne sadrži niti jednu cjelobrojnu točku.
- 3. Skicirajte podskup \mathcal{R}_3 ravnine E^2 definiran sa

$$\mathcal{R}_3 = \{(x_1, x_2) : x_1, x_2 \in \mathbb{R}, |x_1^2 - 2x_2^2| < 1\}.$$

Je li skup \mathcal{R}_3 simetričan s obzirom na ishodište, je li konveksan, kolika mu je površina, koliko cjelobrojnih točaka sadrži?

4. Neka su α_1 i α_2 realni brojevi, te n prirodan broj. Dokažite da postoje cijeli brojevi p_1, p_2, q takvi da vrijedi:

$$0 < q \le n$$
 i $\left(\alpha_1 - \frac{p_1}{q}\right)^2 + \left(\alpha_2 - \frac{p_2}{q}\right)^2 \le \frac{4}{\pi n q^2}$.

5. Nađite prirodne brojeve q, p_1, p_2 sa svojstvom da je $q > 10^9$, te da vrijedi

$$\left| \sqrt{2} - \frac{p_1}{q} \right| < q^{-3/2}, \quad \left| \sqrt{3} - \frac{p_2}{q} \right| < q^{-3/2}.$$

Andrej Dujella