Simple User Manual for Gnuradio 3.1.1

Copyright 2007 Free Software Foundation, Inc.

This document is part of GNU Radio

GNU Radio is free software, you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3, or (at your option) any later version.

GNU Radio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GNU Radio; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301, USA.

This Document Was Last Updated on:

25-November-2007

By:

Firas Abbas

Table of Contents

1)	GNURA	DIO PACKAGE	
1	.1) GNI	URADIO/BLKS SUB PACKAGE	19
	1.1.1)	gnuradio/blksimpl/am_demod.py	19
	1.1.1.1	1) am_demod_cf ()	19
	1.1.1.2	2) demod_10k0a3e_cf ()	19
	1.1.2)	gnuradio/blksimpl/channel_model.py	
	1.1.2.1	i) channel_model ()	20
	1.1.3)	gnuradio/blksimpl/cpm.py	
	1.1.3.1	1) cpm_mod ()	20
	1.1.4)	gnuradio/blksimpl/d8psk.py	21
	1.1.4.1	I) d8psk_mod ()	21
	1.1.4.2	2) d8psk_demod ()	21
	1.1.5)	gnuradio/blksimpl/dbpsk.py	
	1.1.5.1	1) dbpsk_mod ()	22
	1.1.5.2	2) dbpsk_demod ()	23
	1.1.6)	gnuradio/blksimpl/dqpsk.py	23
	1.1.6.1	I) dqpsk_mod ()	23
	1.1.6.2	2) dqpsk_demod ()	24
	1.1.7)	gnuradio/blksimpl/filterbank.py	24
	1.1.7.1	I) synthesis_filterbank ()	25
	1.1.7.2	2) analysis_filterbank ()	25
	1.1.8)	gnuradio/blksimpl/fm_demod.py	
	1.1.8.1	I) fm_demod_cf ()	20
	1.1.8.2	2) demod_20k0f3e_cf ()	20
	1.1.8.3	3) demod_200kf3e_cf ()	20
	1.1.9)	gnuradio/blksimpl/fm_emph.py	
	1.1.9.1	I) fm_deemph ()	2
	1.1.9.2	2) fm_preemph ()	27
	1.1.10)	gnuradio/blksimpl/gmsk.py	
	1.1.10	.1) gmsk_mod ()	28
	1.1.10	.2) gmsk_demod ()	29
	1.1.11)	gnuradio/blksimpl/nbfm_rx.py	
	1.1.11	.1) nbfm_rx ()	29
	1.1.12)	gnuradio/blksimpl/nbfm_tx.py	
	1.1.12	.1) nbfm_tx ()	30
	1.1.13)	gnuradio/blksimpl/ofdm.py	30
		.1) ofdm_mod ()	
	1.1.13	.2) ofdm_demod ()	31
	1.1.14)	gnuradio/blksimpl/ofdm_sync_fixed.py	31

1.	1.14.1) ofdm_sync_fixed ()	31
1.1.1	l5) gnuradio/blksimpl/ofdm_sync_ml.py	31
1.1	1.15.1) ofdm_sync_ml ()	31
1.1.1	l 6) gnuradio/blksimpl/ofdm_sync_pn.py	32
1.1	1.16.1) ofdm_sync_pn ()	32
1.1.1	I7) gnuradio/blksimpl/ofdm_sync_pnac.py	32
1.1	1.17.1) ofdm_sync_pnac ()	32
1.1.1	18) gnuradio/blksimpl/ofdm_receiver.py	32
1.1	1.18.1) ofdm_receiver ()	32
1.1.1	19) gnuradio/blksimpl/pkt.py	33
1.1	1.19.1) mod_pkts ()	33
1.1	1.19.1) demod_pkts ()	33
1.1.2	20) gnuradio/blksimpl/psk.py	34
1.1.2	21) gnuradio/blksimpl/qam.py	34
1.1.2	22) gnuradio/blksimpl/qam8.py	34
1.1	1.22.1) gam8 mod ()	34
1.1	1.22.2) qam8_demod ()	34
1.1.2	23) gnuradio/blksimpl/qam16.py	35
1.1	1.23.1) gam16 mod ()	
1.1	1.23.2) qam16_demod ()	36
1.1.2	24) gnuradio/blksimpl/qam64.py	36
1.1	1.24.1) qam64_mod ()	36
1.	1.24.2) qam64_demod ()	37
1.1.2	25) gnuradio/blksimpl/qam256.py	37
1.	1.25.1) qam256_mod ()	37
1.1	1.25.2) qam256_demod ()	38
1.1.2	26) gnuradio/blksimpl/rational_resampler.py	38
1.1	1.26.1) rational_resampler ()	38
1.1	1.26.2) design_filter ()	39
1.1.2	27) gnuradio/blksimpl/standard_squelch.py	39
1.1	1.27.1) standard_squelch ()	39
1.1.2	28) gnuradio/blksimpl/wfm_rcv.py	39
1.1	1.28.1) wfm_rcv ()	40
1.1.2	29) gnuradio/blksimpl/wfm_rcv_pll.py	40
1.1	1.29.1) wfm_rcv_pll ()	40
1.1.3	30) gnuradio/blksimpl/wfm_tx.py	40
1.1	1.30.1) wfm_tx ()	40
1.1.3	31) gnuradio/blksimpl/cvsd.py	41
1.1	1.31.1) cvsd_encode ()	41
	1.31.2) cvsd_decode ()	
1.2)	GNURADIO/BLKS2 SUB PACKAGE	41
, 1.2.1		
	2.1.1) am_demod_cf ()	
1.4	£. I. I J αιιΙ _ UCIIIUU _ U	42

1.2.1.2	2) demod_10k0a3e_cf()	42
1.2.2)	gnuradio/blks2impl/channel_model.py	42
1.2.2.1	I) channel_model ()	42
1.2.3)	gnuradio/blks2impl/cpm.py	43
1.2.3.1	I) cpm_mod ()	43
1.2.4)	gnuradio/blks2impl/d8psk.py	44
1.2.4.1	I) d8psk_mod ()	44
1.2.4.2	2) d8psk_demod ()	44
1.2.5)	gnuradio/blks2impl/dbpsk.py	45
1.2.5.1	I) dbpsk_mod ()	45
1.2.5.2	2) dbpsk_demod ()	45
1.2.6)	gnuradio/blks2impl/dqpsk.py	46
1.2.6.1	I) dqpsk_mod ()	46
1.2.6.2	2) dqpsk_demod ()	46
1.2.7)	gnuradio/blks2impl/filterbank.py	47
1.2.7.1	I) synthesis_filterbank ()	47
1.2.7.2	2) analysis_filterbank ()	48
1.2.8)	gnuradio/blks2impl/fm_demod.py	48
1.2.8.1	I) fm_demod_cf ()	48
1.2.8.2	2) demod_20k0f3e_cf ()	49
1.2.8.3	3) demod_200kf3e_cf ()	49
1.2.9)	gnuradio/blks2impl/fm_emph.py	49
1.2.9.1	I) fm_deemph ()	49
1.2.9.2	2) fm_preemph ()	50
1.2.10)	gnuradio/blks2impl/gmsk.py	51
1.2.10	.1) gmsk_mod ()	51
1.2.10	.2) gmsk_demod ()	51
1.2.11)	gnuradio/blks2impl/nbfm_rx.py	52
1.2.11.	.1) nbfm_rx ()	52
1.2.12)	gnuradio/blks2impl/nbfm_tx.py	52
1.2.12	.1) nbfm_tx ()	52
1.2.13)	gnuradio/blks2impl/ofdm.py	53
1.2.13	.1) ofdm_mod ()	53
1.2.13	.2) ofdm_demod ()	53
1.2.14)	gnuradio/blks2impl/pkt.py	54
1.2.14	.1) mod_pkts ()	54
1.2.14	.2) demod_pkts ()	54
1.2.15)	gnuradio/blks2impl/psk.py	54
1.2.16)	gnuradio/blks2impl/qam.py	55
1.2.17)	gnuradio/blks2impl/qam8.py	55
1.2.17	.1) qam8_mod ()	55
1.2.17	.2) qam8_demod ()	55
1.2.18)	gnuradio/blks2impl/qam16.py	56
1.2.18	.1) qam16_mod ()	56

<u> </u>		
	2) qam16_demod ()	
1.2.19)	gnuradio/blks2impl/qam64.py	
) qam64_mod ()	
1.2.19.2	?) qam64_demod ()	
1.2.20)	gnuradio/blks2impl/qam256.py	
) qam256_mod ()	
1.2.20.2	?) qam256_demod ()	
1.2.21)	gnuradio/blks2impl/rational_resampler.py	59
) rational_resampler ()	
1.2.21.2	e) design_filter ()	
1.2.22)	gnuradio/blks2impl/standard_squelch.py	60
1.2.22.1) standard_squelch ()	
1.2.23)	gnuradio/blks2impl/wfm_rcv.py	
1.2.23.1) wfm_rcv ()	60
1.2.24)	gnuradio/blks2impl/wfm_rcv_pll.py	60
1.2.24.1) wfm_rcv_pll ()	61
1.2.25)	gnuradio/blks2impl/wfm_tx.py	61
1.2.25.1) wfm_tx ()	61
1.3) GNUI	RADIO/WXGUI SUB PACKAGE	61
1.3.1)	gnuradio/wxgui/fftsink.py	61
•	fft sink x()	
1.3.2)	gnuradio/wxgui/fftsink2.py	
•	fft sink x()	
1.3.3)	gnuradio/wxgui/scopesink.py	
•	scope sink x()	
1.3.4)	gnuradio/wxgui/scopesink2.py	
,	scope sink x()	
•	constellation_sink ()	
1.3.5)	gnuradio/wxgui/form.py	
1.3.6)	gnuradio/wxgui/numbersink.py	
•	number sink x()	
1.3.7)	gnuradio/wxgui/numbersink2.py	
,	number_sink_x()	
1.3.8)	gnuradio/wxgui/waterfallsink.py	
•	waterfall sink x()	
1.3.9)	gnuradio/wxgui/waterfallsink2.py	
,	waterfall_sink_x()	
1.3.10)	gnuradio/wxgui/plot.py	
1.3.11)	gnuradio/wxgui/powermate.py	
1.3.12)	gnuradio/wxgui/silder.py	
1.3.12)	gnuradio/wxgui/stdgui.py	
1.3.14)	gnuradio/wxgui/stdgui2.py	
1.3.14)	gnuradio/wxgui/ra fftsink.py	
1.3.13)	UIIUIAUIU/WXUUI/IA IIISIIIK.DV	0.3

1.3.15.1) ra_fft_sink_x ()	65
1.3.16)	gnuradio/wxgui/ra_fftsink.py	66
1.3.16.1) ra_fft_sink_x ()	66
1.3.17)	gnuradio/wxgui/ra_waterfallsink.py	66
1.3.17.1) waterfall_sink_x ()	66
1.3.18)	gnuradio/wxgui/ra_stripcharsink.py	66
1.3.18.1) stripchar_sink_x ()	67
1.4) GNUF	RADIO/VOCODER SUB PACKAGE	67
1.4.1)	gnuradio/vocoder/gsm_full_rate.py	67
1.4.1.1)	encode_sp()	67
1.4.1.2)	decode_ps()	67
1.4.2)	gnuradio/vocoder/cvsd_vocoder.py	67
1.4.2.1)	encode_sb()	68
1.4.2.2)	decode_bs()	68
1.5) GNUF	RADIO/PAGER SUB PACKAGE	68
1.5.1)	gnuradio/pager/flex_demod.py	68
1.5.1.1)	flex_demod ()	68
1.5.2)	gnuradio/pager/pager_swig.py	68
1.5.3)	gnuradio/pager/aypabtu.py	69
1.5.4)	gnuradio/pager/usrp_flex.py	69
1.5.5)	gnuradio/pager/usrp_flex_all.py	69
1.5.6)	gnuradio/pager/usrp_flex_band.py	
•	RADIO/GRUIMPL SUB PACKAGE	
1.6.1)	gnuradio/ gruimpl /crc.py	70
,	gen and append crc32 ()	
•	check crc32 ()	
1.6.2)	gnuradio/ gruimpl /freqz.py	
•	freqz ()	
1.6.3)	gnuradio/ gruimpl /gnuplot_freqz.py	
,	gnuplot_freqz ()	
1.6.4)	gnuradio/ gruimpl /gnuplot freqz.py	
•	gnuplot_freqz ()	
1.6.5)	gnuradio/ gruimpl /hexint.py	
•	hexint ()	
1.6.6)	gnuradio/ gruimpl /listmsc.py	
•	list revers ()	
1.6.7)	gnuradio/ gruimpl /lmx2306.py	
•	Imx2306 ()	
1.6.8)	gnuradio/ gruimpl /mathmisc.py	
1.6.9)	gnuradio/ gruimpl /os_read_exactly.py	
•	os_read_exactly()	
1.0.9.1)	os_reau_exactiy (/	/ 3

1.6.10) gnuradio/ gruimpl /sdr_1000.py	73
1.6.10.1) sdr_1000 ()	73
1.6.11) gnuradio/ gruimpl /seq_with_cursor.py	74
1.6.12) gnuradio/ gruimpl /socket_stuff.py	74
1.6.12.1) tcp_connect_or_die ()	74
1.6.12.2) udp_connect_or_die ()	74
1.7) GNURADIO/GRU SUB PACKAGE	74
1.8) GNURADIO/GR SUB PACKAGE	74
1.8.1) gnuradio/ gr / basic_flow_graph.py	75
1.8.2) gnuradio/ gr / flow_graph.py	75
1.8.3) gnuradio/ gr / exceptions.py	75
1.8.4) gnuradio/ gr / gnuradio_swig_py_filter.py	75
1.8.4.1) iir_filter_ffd ()	75
1.8.4.2) single_pole_iir_filter_xx ()	76
1.8.4.3) hilbert_fc ()	76
1.8.4.4) filter_delay_fc ()	76
1.8.4.5) fft _filter_xx ()	76
1.8.4.6) fractional_interpolator_xx ()	76
1.8.4.7) goertzel_fc ()	77
1.8.4.8) cma_equalizer_cc ()	77
1.8.4.9) adaptive_fir_ccf ()	77
1.8.4.10) fir_filter_xxx ()	77
1.8.4.11) freq_xlating_fir_filter_xxx ()	78
1.8.4.12) interp_fir_filter_xxx ()	78
1.8.4.13) rational_resampler_base_xxx ()	79
1.8.5) gnuradio/ gr / gnuradio_swig_py_gengen.py	79
1.8.5.1) add_xx ()	79
1.8.5.2) add_vxx ()	79
1.8.5.3) add_const_xx ()	80
1.8.5.4) add_const_vxx ()	
1.8.5.5) argmax_xx ()	
1.8.5.6) chunks_to_symbols _xx()	
1.8.5.7) packed_to_unpacked _xx()	
1.8.5.8) unpacked_to_packed _xx()	
1.8.5.9) divide_xx()	
1.8.5.10) max_xx ()	
1.8.5.11) multiply_xx ()	
1.8.5.12) multiply_vxx ()	
1.8.5.13) multiply_const_xx ()	
1.8.5.14) multiply_const_vxx ()	
1.8.5.15) mute_xx ()	
1.8.5.16) noise_source_x ()	
1.6.5.17) peak_detector_xb ()	83

1.8.5.1	8) sample_and_hold_xx ()	84
1.8.5.1	9) sig_source_x ()	84
1.8.5.2	0) sub_xx ()	85
1.8.5.2	1) vector_sink_x ()	85
1.8.5.2	2) vector_source_x ()	85
1.8.6)	gnuradio/ gr / gnuradio_swig_py_runtime.py	86
1.8.6.1) io_signature ()	86
1.8.6.2) buffer ()	86
1.8.6.3) buffer_reader ()	86
1.8.6.4) basic_block ()	87
1.8.6.5) block ()	87
1.8.6.6) block_detail ()	87
1.8.6.7) hier_block2 ()	88
1.8.6.8) single_threaded_scheduler ()	88
1.8.6.9) message ()	88
1.8.6.9) message_from_string ()	88
1.8.6.1	0) message_handler ()	89
1.8.6.1	1) msg_queue ()	89
1.8.6.1	2) dispatcher ()	89
1.8.6.1	3) error_handler ()	89
1.8.6.1	4) file_error_handler ()	90
1.8.6.1	5) sync_block ()	90
1.8.6.1	6) sync_decimator ()	90
	6) sync_interpolator ()	
1.8.6.1	7) top_block ()	90
1.8.6.1	8) enable_realtime_scheduling ()	91
1.8.7)	gnuradio/ gr / threading.py	91
1.8.8)	gnuradio/ gr / threading_23.py	91
1.8.9)	gnuradio/ gr / threading_24.py	91
1.8.10)	gnuradio/ gr / hier_block2.py	91
1.8.11)	gnuradio/ gr / hier_block.py	91
1.8.12)	gnuradio/ gr / prefs.py	92
1.8.13)	gnuradio/ gr / scheduler.py	92
1.8.14)	gnuradio/ gr / top_block.py	92
1.8.15)	gnuradio/ gr / gnuradio_swig_python.py	
1.8.16)	gnuradio/ gr / gnuradio_swig_io.py	
•	1) file sink base ()	
	2) file_sink ()	
	3) file_source ()	
	4) file descriptor sink ()	
	5) file descriptor source ()	
	6) microtune_xxxx_eval_board ()	
	7) microtune_4702_eval_board()	
	8) microtune_4937_eval_board ()	

10100	1000 ()	
. –	_1000_base ()	
-	ope_sink_f()	
,	io ()	
•	ssage_source()	
-	ssage_sink()	
•	p_sink ()	
	p_source()	
, ,	radio/ gr / gnuradio_swig_general.py	
	()	
,	_sink ()	
1.8.27.3) null_	_source ()	97
1.8.27.4) head	() L() E.	97
1.8.27.5) skip	head ()	97
1.8.27.6) quad	drature_demod_cf ()	97
1.8.27.7) float	t_to_complex ()	98
1.8.27.8) ched	ck_counting_s()	98
1.8.27.9) Ifsr_	_32k_source_s()	98
1.8.27.10) che	eck_lfsr_32k_s ()	98
1.8.27.11) str	eam_to_vector ()	99
1.8.27.12) ved	ctor_to_stream ()	99
1.8.27.13) kee	ep_one_in_n ()	99
1.8.27.14) fft_	vcc ()	99
1.8.27.15) fft_	<u>v</u> fc ()	99
1.8.27.16) floa	at_to_short ()	100
1.8.27.17) floa	at_to_uchar ()	100
1.8.27.18) sho	ort_ to_float ()	100
1.8.27.19) cha	ar_to_float ()	100
1.8.27.20) ucł	nar_to_float ()	100
1.8.27.21) fre	quency_modulator_fc ()	101
1.8.27.22) pha	ase_modulator_fc ()	101
1.8.27.23) byt	es_to_syms()	101
1.8.27.24) sim	nple_framer ()	101
1.8.27.25) sim	nple_correlator ()	101
	gn_on_samplenumbers_ss ()	
1.8.27.27) cor	mplex_to_float ()	102
-	mplex_to_real ()	
·	nplex_to_imag()	
-	nplex_to_mag ()	
·	nplex_to_mag_squared ()	
-	nplex_to_arg()	
·	mplex_to_interleaved_short ()	
-	erleaved_short_to_complex ()	
-	les ()	
•) firdes.low pass ()	
	/ indes.high_pass ()	
	, ···	

1.8.27.35.3) firdes.band_pass ()	104
1.8.27.35.4) firdes.complex_band_pass ()	104
1.8.27.35.5) firdes.band_reject ()	105
1.8.27.35.6) firdes.hilbert ()	105
1.8.27.35.7) firdes.root_raised_cosine ()	105
1.8.27.35.8) firdes.gaussian ()	106
1.8.27.35.9) firdes.window ()	106
1.8.27.36) interleave ()	106
1.8.27.37) deinterleave ()	106
1.8.27.38) delay ()	107
1.8.27.39) simple_sequelch_cc ()	107
1.8.27.40) agc_xx ()	107
1.8.27.41) gri_agc_xx ()	107
1.8.27.42) gri_agc2_xx ()	108
1.8.27.43) rms_xx ()	108
1.8.27.44) nlog10_ff ()	109
1.8.27.45) fake_channel_encoder_pp ()	109
1.8.27.46) fake_channel_decoder_pp ()	109
1.8.27.47) throttle ()	109
1.8.27.48) mpsk_receiver_cc ()	109
1.8.27.49) stream_mux ()	111
1.8.27.50) stream_to_streams ()	111
1.8.27.51) streams_to_stream ()	111
1.8.27.52) streams_to_vector ()	111
1.8.27.53) stream_to_vector ()	111
1.8.27.54) vector_to_ streams ()	112
1.8.27.55) vector_to_stream ()	112
1.8.27.56) conjugate_cc ()	112
1.8.27.57) vco_f ()	112
1.8.27.58) threshold_ff ()	112
1.8.27.59) clock_recovery_mm_xx ()	113
1.8.27.60) dd_mpsk_sync_cc ()	113
1.8.27.61) packet_sink ()	114
1.8.27.62) lms_dfe_xx ()	114
1.8.27.63) dpll_bb ()	114
1.8.27.64) pll_freqdet_cf ()	115
1.8.27.65) pll_refout_cc ()	115
1.8.27.66) pll_carriertracking_cc()	115
1.8.27.67) pn_correlator_cc ()	116
1.8.27.68) probe_signal_f ()	116
1.8.27.69) probe_avg_mag_sqrd_xx ()	116
1.8.27.70) ofdm_correlator ()	117
1.8.27.71) ofdm_cyclic_prefixer ()	117
1.8.27.72) ofdm_bpsk_mapper ()	117
1.8.27.73) ofdm_bpsk_demapper ()	118

1.8.27	7.74)	118
1.8.27	7.75) ofdm_qpsk_mapper ()	118
1.8.27	7.76) ofdm_qam_mapper ()	118
1.8.27	7.77) ofdm_frame_sink ()	119
1.8.27	7.78) ofdm_insert_preamble ()	119
1.8.27	7.79) ofdm_sampler ()	119
1.8.27	7.80) regenerate_bb ()	120
1.8.27	7.81) costas_loop_cc ()	120
1.8.27	7.82) pa_2x2_phase_combiner ()	120
1.8.27	7.83) kludge_copy ()	121
1.8.27	7.84) prefs ()	121
1.8.27	7.85) test ()	121
1.8.27	7.86) unpack_k_bits_bb ()	121
1.8.27	7.87) correlate_access_code_bb ()	122
1.8.27	7.88) diff_phasor_cc ()	122
1.8.27	7.89) constellation_decoder_cb ()	122
1.8.27	7.90) binary_slicer_fb ()	122
1.8.27	7.91) diff_encoder_bb ()	123
1.8.27	7.92) diff_decoder_bb ()	123
1.8.27	7.93) framer_sink_1 ()	123
1.8.27	7.94) map_bb ()	123
1.8.27	7.95) feval ()	123
1.8.27	7.96) feval_xx ()	124
1.8.27	7.97) pwr_squelch_xx ()	124
1.8.27	7.98) squelch_base_xx ()	124
1.8.27	7.99) ctcss_squelch_ff ()	125
1.8.27	7.100) feedforward_agc_cc ()	125
1.8.27	7.101) bin_statistics_f ()	126
1.8.27	7.102) glfsr_source_x ()	126
1.9) GN	NURADIO/ WINDOW.PY	126
1.9) GN	NORADIO/ WINDOW.P1	120
1.9.1)	hamming()	
1.9.2)	hanning()	
1.9.3)	welch()	127
1.9.4)	parzen()	127
1.9.5)	bartlett()	127
1.9.6)	blackman2()	127
1.9.7)	blackman3()	
1.9.8)	blackman4()	
•	V	
1.9.9)	exponential()	
1.9.10)	riemann()	
•	blackmanharris ()	
1.9.12)	nuttall()	
1.9.13)	kaiser()	129

1.10) GNURADIO/ VIDEO_SDL.PY	129
1.10.1) video_sdl_sink_uc()	129
1.10.2) video_sdl_sink_s()	129
1.10.3) sink_uc()	130
1.10.4) sink_s()	130
1.11) GNURADIO/ TRELLIS.PY	130
1.11.1) fsm()	130
1.11.2) interleaver()	131
1.11.3) trellis_permutation ()	131
1.11.4) trellis_siso_f ()	131
1.11.5) trellis_encoder_xx ()	131
1.11.6) trellis_metrics_x ()	132
1.11.7) trellis_viterbi_x ()	132
1.11.8) trellis_viterbi_combined_xx ()	132
1.12) GNURADIO/ SOUNDER.PY	132
1.12.1) sounder_tx ()	134
1.12.2) sounder_rx ()	134
1.12.3) sounder ()	134
1.13) GNURADIO/ RADAR_MONO.PY	134
1.13.1) radar_tx ()	135
1.13.2) radar_rx ()	135
1.13.3) radar ()	135
1.14) GNURADIO/ RA.PY	135
1.15) GNURADIO/ PACKET_UTIL.PY	135
1.15.1) conv_packed_binary_string_to_1_0_string ()	135
1.15.2) conv_1_0_string_to_packed_binary_string ()	
1.15.3) make_packet ()	136
1.15.4) unmake_packet ()	
1.15.5) _npadding_bytes ()	137
1.16) GNURADIO/ OPTFIR.PY	137
1.16.1) low_pass ()	137
1.16.2) high_pass ()	
1.17) GNURADIO/ OFDM_PACKET_UTIL.PY	138
1.17.1) conv_packed_binary_string_to_1_0_string ()	138
1.17.2) conv_1_0_string_to_packed_binary_string ()	
1.17.3) make_packet ()	
1.17.4) unmake_packet ()	

1.17.5) _npadding_bytes ()	139
1.18) GNURADIO/ MODULATION_UTILS.PY	139
1.18.1) type_1_mods ()	139
1.18.2) type_1_demods ()	
1.19) GNURADIO/ LOCAL_CALIBRATOR.PY	
· · · · · · · · · · · · · · · · · · ·	
1.20) GNURADIO/GR_UNITTEST.PY	
1.21) GNURADIO/ENG_OPTION.PY	140
1.22) GNURADIO/ENG_NOTATION.PY	140
1.22.1) num_to_str ()	140
1.22.2) str_to_num ()	141
1.23) GNURADIO/AUDIO_OSS.PY	141
1.24) GNURADIO/AUDIO_ALSA.PY	141
1.25) gnuradio/audio.py	141
1.25.1) source ()	
1.25.2) sink ()	142
1.26) GNURADIO/ATSC.PY	142
1.27) GNURADIO/USRP.PY	142
1.27.1) source_x()	142
1.27.1.1) tune()	
1.27.1.2) has_rx_halfband()	143
1.27.1.3) nddcs()	143
1.27.2) sink_x()	143
1.27.2.1) tune()	143
1.27.2.2) has_tx_halfband()	144
1.27.2.3) nducs()	
1.27.3) determine_rx_mux_value ()	
1.27.4) tune_result ()	
1.27.5) determine_tx_mux_value ()	
1.27.6) selected_subdev ()	
1.27.7) calc_dxc_freq ()	
1.27.8) pick_rx_subdevice()	
1.27.9) pick_tx_subdevice()	
1.27.10) pick_ subdev()	146
1.28) GNURADIO/USRP1.PY	147
1.28.1) source_x()	147
1.28.1.1) set_decim_rate()	147
1.28.1.2) set_nchannels()	148

1.28.1.3)	set_mux()	148
1.28.1.4)	set_rx_freq()	148
1.28.1.5)	set_ddc_phase()	148
1.28.1.6)	set_fpga_mode()	149
1.28.1.7)	set_verbose()	149
1.28.1.8)	set_pga()	149
1.28.1.9)	pga()	149
1.28.1.10)	pga_min()	149
1.28.1.11)	pga_max()	150
1.28.1.12)	pga_db_per_step()	150
1.28.1.13)	fpga_master_clock_freq()	150
1.28.1.14)	converter_rate()	150
1.28.1.15)	decim_rate()	150
1.28.1.16)	nchannels()	151
1.28.1.17)	mux()	151
1.28.1.18)	rx_freq()	151
1.28.1.19)	daughterboard_id()	151
1.28.1.20)	write_aux_dac()	151
1.28.1.21)	read_aux_dac()	152
1.28.1.22)	write_eeprom()	152
1.28.1.23)	read_eeprom()	152
1.28.1.24)	write_i2c()	152
1.28.1.25)	read_i2c()	153
1.28.1.26)	set_adc_offset()	153
1.28.1.27)	set_dac_offset()	153
1.28.1.28)	set_adc_buffer_bypass()	153
1.28.1.29)	serial_number()	154
1.28.1.30)	_write_oe()	154
1.28.1.31)	write_io()	154
1.28.1.32)	read_io()	154
1.28.1.33)	set_dc_offset_cl_enable()	155
1.28.1.34)	set_format()	155
1.28.1.35)	make_format()	155
1.28.1.36)	format()	155
1.28.1.37)	format_width()	156
1.28.1.38)	format_shift()	156
1.28.1.39)	format_want_q()	156
1.28.1.40)	format_bypass_halfband()	156
1.28.1.41)	_write_fpga_reg()	156
1.28.1.42)	_write_fpga_reg_masked()	157
1.28.1.43)	_read_fpga_reg()	157
1.28.1.44)	_write_9862()	157
1.28.1.45)	_read_9862()	157
1.28.1.46)	_write_spi()	158
1.28.1.47)	_read_spi()	158

1.28.2) s	sink_x()	158
1.28.2.1)	set_interp_rate()	159
1.28.2.2)	set_nchannels()	159
1.28.2.3)	set_mux()	159
1.28.2.4)	set_tx_freq()	160
1.28.2.5)	set_verbose()	160
1.28.2.6)	set_pga()	160
1.28.2.7)	pga()	160
1.28.2.8)	pga_min()	161
1.28.2.9)	pga_max()	161
1.28.2.10)	pga_db_per_step()	161
1.28.2.11)	fpga_master_clock_freq()	161
1.28.2.12)	converter_rate()	161
1.28.2.13)	interp_rate()	162
1.28.2.14)	nchannels()	162
1.28.2.16)	tx_freq()	162
1.28.2.17)	daughterboard_id()	163
1.28.2.18)	write_aux_dac()	163
1.28.2.19)	read_aux_dac()	163
1.28.2.20)	write_eeprom()	163
1.28.2.21)	read_eeprom()	164
1.28.2.22)	write_i2c()	164
1.28.2.23)	read_i2c()	164
1.28.2.24)	set_adc_offset()	164
1.28.2.25)	set_dac_offset()	164
1.28.2.26)	set_adc_buffer_bypass()	165
1.28.2.27)	serial_number()	165
1.28.2.28)	_write_oe()	165
1.28.2.29)	write_io()	165
1.28.2.30)	read_io()	166
1.28.2.31)	_write_fpga_reg()	166
1.28.2.32)	_write_fpga_reg_masked()	166
1.28.2.33)	_read_fpga_reg()	166
1.28.2.34)	_write_9862()	167
1.28.2.35)	_read_9862()	167
1.28.2.36)	_write_spi()	167
1.28.2.37)	_read_spi()	168
1.29) GNURA	NDIO/USRP_MULTI.PY	168
1.29.1) r	nulti_source_align ()	169
1.29.1.1)	get_master_usrp ()	169
1.29.1.2)	get_slave_usrp ()	169
1.29.1.3)	get_master_source_c ()	169
1.29.1.4)	get_slave_source_c ()	170
1.29.1.5)	sync ()	

Simple Gnuradio Use	er Manual	Page 16 of 208
1.29.1.6)	print_db_info ()	
1.29.1.7)	tune_all_rx ()	170
1.29.1.8)	set_gain_all_rx ()	171
1.30) GNUR	ADIO/TX_DEBUG_GUI.PY	
1.31) GNUR	ADIO/FLEXRF_DEBUG_GUI.PY	
1.32) GNUR	ADIO/DB_BASE.PY	171
1.33) GNUR	ADIO/DB_BASIC.PY	171
1.33.1)	db_basic_tx ()	172
1.33.1.1)	dbid ()	172
1.33.1.2)	name ()	172
1.33.1.3)	side_and_name ()	172
1.33.1.4)	freq_range ()	173
1.33.1.5)	set_freq ()	173
1.33.1.6)	gain_range ()	
1.33.1.7)	set_gain ()	
1.33.1.8)	is_quadrature ()	173
1.33.2)	db_basic_rx ()	174
1.33.2.1)	dbid ()	174
1.33.2.2)	name ()	174
1.33.2.3)	side_and_name ()	174
1.33.2.4)	freq_range ()	175
1.33.2.5)	set_freq ()	175
1.33.2.6)	gain_range ()	175
1.33.2.7)	set_gain ()	175
1.33.2.8)	is_quadrature ()	176
1.33.3)	db_lf_rx ()	176
1.33.3.1)	dbid ()	176
1.33.3.2)	name ()	176
1.33.3.3)	side_and_name ()	176
1.33.3.4)	freq_range ()	177
1.33.3.5)	set_freq ()	177
1.33.3.6)	gain_range ()	177
1.33.3.7)	set_gain ()	177
1.33.3.8)	is_quadrature ()	178
1.33.4)	db If tx ()	
1.33.4.1)	"	178
1.33.4.2)	U	178
1.33.4.3)	··	179
1.33.4.4)	"	179
1.33.4.5)	• "	179
1.33.4.6)		179
1.33.4.7)	-	179
1.33.4.8)		180
•		

1.34) GNURA	DIO/DB_DBS_RX.PY	180
1.34.1) d	lb_dbs_rx ()	180
1.34.1.1)	dbid ()	180
1.34.1.2)	name ()	180
1.34.1.3)	side_and_name ()	181
1.34.1.4)	freq_range ()	181
1.34.1.5)	set_freq ()	181
1.34.1.6)	gain_range ()	181
1.34.1.7)	set_gain ()	182
1.34.1.8)	is_quadrature ()	182
1.34.1.9)	set_bw ()	182
1.35) GNURA	DIO/DB_FLEXRF.PY	182
GNURADIO/DR I	FLEXRF_MIMO.PY	182
_		
•	lb_flexrf_xxxx_tx ()	
	xxx_tx_mimo_x()	
1.35.1.1)	dbid ()	
1.35.1.2)	name ()	
1.35.1.3)	side_and_name ()	
1.35.1.4)	freq_range ()	
1.35.1.5)	set_freq ()	
1.35.1.6)	is_quadrature ()	
1.35.1.7) 1.35.1.8)	set_auto_tr ()set_enable ()	
•	lb flexrf xxxx rx ()	
•	xxx rx mimo x()	
	dbid ()	
1.35.2.1)	name ()	
1.35.2.2)	side and name ()	
1.35.2.4)	freq_range ()	
1.35.2.5)	set freq ()	
1.35.2.6)	gain_range ()	
1.35.2.7)	set gain ()	
1.35.2.8)	is quadrature ()	
1.35.2.9)	set auto tr ()	
1.35.2.10)	— — v	
1.35.2.11)	i_and_q_swapped ()	189
1.36) GNURA	DIO/DB INSTANTIATOR.PY	189
•	 .DIO/DB_TV_RX.PY	
•		
•	lb_tv_rx ()	
1.37.1.1)	dbid ()	
1.37.1.2)	name ()	
1.37.1.3)	side_and_name ()	190

1.37.1.4)	freq_range ()	191
1.37.1.5)	set_freq ()	191
1.37.1.6)	gain_range ()	191
1.37.1.7)	set_gain ()	191
1.37.1.8)	is_quadrature ()	191
1.38) GNURA	NDIO/DB_WBX.PY	192
1.38.1) DB_	WBX_LO_RX ()	192
1.38.1.1)	dbid ()	
1.38.1.2)	name ()	
1.38.1.3)	side_and_name ()	193
1.38.1.4)	freq_range ()	
1.38.1.5)	set_freq ()	
1.38.1.6)	gain_range ()	
1.38.1.7)	set_gain ()	
1.38.1.8)	is_quadrature ()	
1.38.1.9)	set_auto_tr ()	
1.38.1.10)		
1.38.1.11)		
•	lb_wbx_lo_tx ()	
1.38.2.1)	dbid ()	196
1.38.2.2)	name ()	196
1.38.2.3)	side_and_name ()	
1.38.2.4)	freq_range ()	
1.38.2.5)	set_freq ()	
1.38.2.6)	is_quadrature ()	
1.38.2.7)	set_auto_tr ()	
1.38.2.8)	set_enable ()	198
2) USRPM PA	CKAGE	198
2.1) USRPM	I/USRP_DBID.PY	198
2.2) USRPM	I/USRP_PRIMS.PY	199
2.3) USRPM/US	RP_FPGA_REGS.PY	199
INDEX		202

Page 19 of 208

1) gnuradio package

Description	The main package. All gnuradio stuff are here

1.1) gnuradio/blks sub package

Type	Folder
Description	Semi-hideous kludge to import everything in the blksimpl directory into the gnuradio.blks
	namespace. This keeps us from having to remember to manually update this file.

1.1.1) gnuradio/blksimpl/am_demod.py

Type	Python file
Description	AM demodulation block
Examples	
Note	

1.1.1.1) am_demod_cf ()

Туре	Function
Description	Generalized AM demodulation block with audio filtering. This block demodulates a band-
	limited, complex down-converted AM channel into the original baseband signal, applying
	low pass filtering to the audio output. It produces a float stream in the range [-1.0, +1.0].
Usage	blks.am_demod_cf (fg, channel_rate, audio_decim, audio_pass, audio_stop)
Parameters	fg: flowgraph
	channel_rate: incoming sample rate of the AM baseband
	type channel_rate: integer
	audio_decim: input to output decimation rate
	type audio_decim: integer
	audio_pass: audio low pass filter passband frequency
	type audio_pass: float
	audio_stop: audio low pass filter stop frequency
	type audio_stop: float

1.1.1.2) demod_10k0a3e_cf ()

Type	Function
Description	AM demodulation block, 10 KHz channel. This block demodulates an AM channel
	conformant to 10K0A3E emission standards, such as broadcast band AM transmissions.
Usage	blks.demod_10k0a3e_cf(fg, channel_rate, audio_decim)
Parameters	fg: flowgraph
	channel_rate: incoming sample rate of the AM baseband
	type channel_rate: integer
	audio_decim: input to output decimation rate
	type audio_decim: integer

1.1.2) gnuradio/blksimpl/channel_model.py

Type	Python file
Description	Creates a channel model
Examples	
Note	

Page 20 of 208

1.1.2.1) channel_model ()

Туре	Function
Description	Creates a channel model that includes:
	- AWGN noise power in terms of noise voltage
	- A frequency offset in the channel in ratio
	- A timing offset ratio to model clock difference (clock rate ratio) (epsilon). It is sample
	rate difference between tx and rx
	- Multipath taps
Usage	blks.channel_model(fg, noise_voltage=0.0, frequency_offset=0.0, epsilon=1.0,
	taps=[1.0,0.0])
Parameters	
Sub Function 1	blks.channel_model.set_noise_voltage(noise_voltage)
Sub Function 2	blks.channel_model.set_frequency_offset(frequency_offset)
Sub Function 3	blks.channel_model.set_taps(taps)

1.1.3) gnuradio/blksimpl/cpm.py

Туре	Python file
Description	Continuous Phase modulation.
Examples	See gnuradio-examples/python/digital for examples
Note	

1.1.3.1) cpm_mod ()

Туре	Function
Description	Hierarchical block for Continuous Phase Modulation.
Description	The input is a byte stream (unsigned char) representing packed bits and the output is
	the complex modulated signal at baseband.
	See Proakis for definition of generic CPM signals:
	$s(t)=\exp(j phi(t))$
	phi(t)= 2 pi h int_0^t f(t') dt'
	f(t)=sum_k a_k g(t-kT)
Here	(normalizing assumption: int_0^infty g(t) dt = 1/2)
Usage	blks.cpm_mod(fg,samples_per_symbol=2,bits_per_symbol=1,
	h_numerator=1, h_denominator=2,
	cpm_type=0,bt=_def_bt,symbols_per_pulse=1, generic_taps
_	numpy.empty(1), verbose=False, log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per baud >= 2
	type samples_per_symbol: integer
	bits_per_symbol: bits per symbol
	type bits_per_symbol: integer
	h_numerator: numerator of modulation index
	type h_numerator: integer
	h_denominator : denominator of modulation index (numerator and denominator must
	be relative primes)
	type h_denominator: integer
	cpm_type : supported types are: 0=CPFSK, 1=GMSK, 2=RC, 3=GENERAL
	type cpm_type: integer
	bt : bandwidth symbol time product for GMSK
	type bt: float
	symbols_per_pulse: shaping pulse duration in symbols
	type symbols_per_pulse: integer
	generic_taps : define a generic CPM pulse shape (sum = samples_per_symbol/2)

 <u> </u>
type generic_taps: array of floats
verbose: Print information about modulator?
type verbose: bool
debug: Print modulation data to files?
type debug: bool

1.1.4) gnuradio/blksimpl/d8psk.py

Туре	Python file
Description	differential 8PSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.1.4.1) d8psk_mod()

Туре	Function , D8PSK modulator
Description	Hierarchical block for RRC-filtered QPSK modulation. The input is a byte stream (unsigned
	char) and the output is the complex modulated signal at baseband.
Usage	blks.d8psk_mod(fg,
	samples_per_symbol=3,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.1.4.2) d8psk_demod ()

Туре	Function , D8PSK demodulator
Description	Differentially coherent detection of differentially encoded 8psk. Hierarchical block for RRC-
	filtered DQPSK demodulation. The input is the complex modulated signal at baseband. The
	output is a stream of bits packed 1 bit per byte (LSB)
Usage	blks.d8psk_demod(fg,
	samples_per_symbol=3,
	excess_bw=.35,
	costas_alpha=.175,
	gain_mu=.175,
	mu=0.5,
	omega relative limit=.005,
	gray_code=True,
	verbose=False,
	log=False)

Cimple cinaracie	·6· · · ·
Parameters	fg: flow graph type fg: flow graph samples_per_symbol: samples per symbol >= 2 type samples_per_symbol: float excess_bw: Root-raised cosine filter excess bandwidth type excess_bw: float costas_alpha: loop filter gain type costas_alpha: float gain_mu: for M&M block type gain_mu: float mu: for M&M block type mu: float omega_relative_limit: for M&M block type omega_relative_limit: float gray_code: Tell modulator to Gray code the bits type gray_code: bool verbose: Print information about modulator?
	71 0 7=

1.1.5) gnuradio/blksimpl/dbpsk.py

Туре	Python file
Description	differential BPSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.1.5.1) dbpsk_mod()

Туре	Function , DBPSK modulator
Description	Hierarchical block for RRC-filtered BPSK modulation. The input is a byte stream (unsigned
	char) and the output is the complex modulated signal at baseband.
Usage	blks.dbpsk_mod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per baud >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	log: Log modulation data to files?
	type log: bool

Page 23 of 208

1.1.5.2) dbpsk_demod ()

Туре	Function , DBPSK demodulator
Description	Differentially coherent detection of differentially encoded BPSK. Hierarchical block for RRC-
	filtered DBPSK demodulation. The input is the complex modulated signal at baseband. The
	output is a stream of bits packed 1 bit per byte (LSB).
Usage	blks.d8psk_demod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=.1,
	gain_mu=None,
	mu=0.5,
	omega_relative_limit=.005,
	gray_code=True,
	verbose=False,
Parameters	log=False)
Farameters	fg: flow graph type fg: flow graph
	samples_per_symbol: samples per symbol >= 2
	type samples per symbol: float
	excess bw: Root-raised cosine filter excess bandwidth
	type excess bw: float
	costas alpha: loop filter gain
	type costas alpha: float
	gain mu: for M&M block
	type gain mu: float
	mu: for M&M block
	type mu: float
	omega_relative_limit: for M&M block
	type omega_relative_limit: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print demodulation data to files?
	type debug: bool

1.1.6) gnuradio/blksimpl/dqpsk.py

Туре	Python file
Description	differential QPSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.1.6.1) dqpsk_mod ()

Туре	Function , DQPSK modulator
Description	Hierarchical block for RRC-filtered QPSK modulation. The input is a byte stream (unsigned
	char) and the output is the complex modulated signal at baseband.
Usage	blks.dqpsk_mod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph

type fg: flow graph	
<pre>samples_per_symbol: samples per symbol >= 2</pre>	
type samples_per_symbol: integer	
excess_bw: Root-raised cosine filter excess bandwid	lth
type excess_bw: float	
gray_code: Tell modulator to Gray code the bits	
type gray_code: bool	
verbose: Print information about modulator?	
type verbose: bool	
debug : Print modulation data to files?	
type debug: bool	

1.1.6.2) dqpsk_demod ()

Туре	Function , DQPSK demodulator
Description	Differentially coherent detection of differentially encoded QPSK. Hierarchical block for RRC-
	filtered DQPSK demodulation. The input is the complex modulated signal at baseband. The
	output is a stream of bits packed 1 bit per byte (LSB)
Usage	blks.d8psk_demod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=.15,
	gain_mu=None,
	mu=0.5,
	omega_relative_limit=.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	<pre>samples_per_symbol: samples per symbol >= 2</pre>
	type samples_per_symbol: float
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	costas_alpha: loop filter gain
	type costas_alpha: float
	gain_mu: for M&M block type gain mu: float
	mu: for M&M block
	type mu: float
	omega relative limit: for M&M block
	type omega_relative_limit: float
	gray_code: Tell modulator to Gray code the bits
	type gray code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool
	I type debug, bee

1.1.7) gnuradio/blksimpl/filterbank.py

Type	Python file
Description	Include Both Filter Synthesis and Analysis
Examples	See gnuradio-examples/python/usrp folder
Note	

Simple Gnuradio User Manual Page 25 of 208

1.1.7.1) synthesis_filterbank ()

Туре	Function
Description	Uniformly modulated polyphase DFT filter bank: synthesis
	See http://cnx.rice.edu/content/m10424/latest
	Takes M complex streams in, produces single complex stream out that runs at M times the
	input sample rate
	The channel spacing is equal to the input sample rate.
	The total bandwidth and output sample rate are equal the
	input sample rate * nchannels. Output stream to frequency mapping:
	channel zero is at zero frequency.
	charmer zero is at zero frequency.
	if mpoints is odd:
	Channels with increasing positive frequencies come from
	channels 1 through (N-1)/2.
	Channel (N+1)/2 is the maximum negative frequency, and
	frequency increases through N-1 which is one channel lower than the zero frequency.
	if mpoints is even:
	Channels with increasing positive frequencies come from channels 1 through (N/2)-1.
	Channel (N/2) is evenly split between the max positive
	and negative bins.
	Channel (N/2)+1 is the maximum negative frequency, and
	frequency increases through N-1 which is one channel lower
	than the zero frequency.
	Channels near the frequency extremes end up getting cut
	off by subsequent filters and therefore have diminished
11	utility.
Usage	blks.synthesis_filterbank (fg, mpoints, taps=None)
Parameters	<pre>fg: flow_graph mpoints: number of freq bins/interpolation factor/subbands</pre>
	taps: filter taps for subband filter
Example	See ayfabtu.py

1.1.7.2) analysis_filterbank ()

Туре	Function
Description	Uniformly modulated polyphase DFT filter bank: analysis
	See http://cnx.rice.edu/content/m10424/latest
	Takes 1 complex stream in, produces M complex streams out that runs at 1/M times the
	input sample rate. Same channel to frequency mapping as described in filter synthesis.
Usage	blks.analysis_filterbank (fg, mpoints,taps)
Parameters	fg: flow_graph
	mpoints: number of freq bins/interpolation factor/subbands
	taps: filter taps for subband filter
Examples	See test dft analysis

Page 26 of 208

1.1.8) gnuradio/blksimpl/fm_demod.py

Туре	Python file
Description	FM demodulation block
Examples	
Note	

1.1.8.1) fm_demod_cf ()

Туре	Function
Description	Generalized FM demodulation block with deemphasis and audio filtering. This block demodulates a band-limited, complex down-converted FM channel into the original baseband signal, optionally applying deemphasis. Low pass filtering is done on the resultant signal. It produces an output float stream in the range of [-1.0, +1.0].
Usage	blks.fm_demod_cf (fg, channel_rate, audio_decim, deviation,
_	audio_pass, audio_stop, gain=1.0, tau=75e-6)
Parameters	fg: flowgraph
	channel_rate: incoming sample rate of the FM baseband
	type sample_rate: integer
	deviation : maximum FM deviation (default = 5000)
	type deviation: float
	audio_decim: input to output decimation rate
	type audio_decim: integer
	audio_pass: audio low pass filter passband frequency
	type audio_pass: float
	audio_stop: audio low pass filter stop frequency
	type audio_stop: float
	gain: gain applied to audio output (default = 1.0)
	type gain: float
	tau: deemphasis time constant (default = 75e-6), specify 'None' to prevent deemphasis

1.1.8.2) demod_20k0f3e_cf ()

Туре	Function
Description	NBFM demodulation block, 20 KHz channels
Usage	blks.demod_20k0f3e_cf(fg, channel_rate, audio_decim)
Parameters	fg: flowgraph
	sample_rate: incoming sample rate of the FM baseband
	type sample_rate: integer
	audio_decim: input to output decimation rate
	type audio_decim: integer

1.1.8.3) demod_200kf3e_cf ()

Туре	Function
Description	WFM demodulation block, mono. This block demodulates a complex, down converted, wideband FM channel conforming to 200KF3E emission standards, outputting floats in the range [-1.0, +1.0].
Usage	blks.demod_200kf3e_cf(fg, channel_rate, audio_decim)
Parameters	fg: flowgraph sample_rate: incoming sample rate of the FM baseband type sample_rate: integer audio_decim: input to output decimation rate type audio_decim: integer

Page 27 of 208

1.1.9) gnuradio/blksimpl/fm_emph.py

Туре	Python file
Description	FM deemphasis and preemphasis IIR filter
Examples	
Note	

1.1.9.1) fm_deemph ()

Туре	Function
Description	FM Deemphasis IIR filter.
	1
	H(s) =
	1 + S
	tau is the RC time constant.
	critical frequency: w_p = 1/tau
	We prewarp and use the bilinear z-transform to get our IIR coefficients.
	See "Digital Signal Processing: A Practical Approach" by Ifeachor and Jervis
Usage	blks.fm_deemph(fg, fs, tau=75e-6)
Parameters	fg: flow graph
	type fg: gr.flow_graph
	fs: sampling frequency in Hz
	type fs: float
	tau: Time constant in seconds (75us in US, 50us in EUR)
	type tau: float

1.1.9.2) fm_preemph ()

Туре	Function
Description	FM Preemphasis IIR filter.
	1 + s*t1
	H(s) =
	1 + s*t2
	I think this is the right transfer function.
	This fine ASCII rendition is based on Figure 5.15
	This fine ASCII rendition is based on Figure 5-15 in "Digital and Analog Communication Systems", Leon W. Couch II
	lin Digital and Analog Communication Systems , Leon W. Coden in
	R1
	++
	00
	R1 + 0+ ++0 C1 +////+ \
	+/\/\/+ \
) DO
	\R2
	00
	f1 = 1/(2*pi*t1) = 1/(2*pi*R1*C)

1.1.10) gnuradio/blksimpl/gmsk.py

Туре	Python file
Description	differential QPSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.1.10.1) gmsk_mod()

Туре	Function , GMSK modulator	
Description	Hierarchical block for Gaussian Minimum Shift Key (GMSK) modulation. The input is a byte	
-	stream (unsigned char) and the output is the complex modulated signal at baseband.	
Usage	blks.gmsk_mod(fg, samples_per_symbol =2,	
	bt=.35,	
	verbose=False,	
	log=False)	
Parameters	fg: flow graph	
	type fg: flow graph	
	samples_per_symbol: samples per baud >= 2	
	type samples_per_symbol: integer	
	bt: Gaussian filter bandwidth * symbol time	
	type bt: float	
	verbose: Print information about modulator?	
	type verbose: bool	

debug: Print modulation data to files?
type debug: bool

1.1.10.2) gmsk_demod ()

Type	Function , GMSK demodulator
Description	Hierarchical block for Gaussian Minimum Shift Key (GMSK) demodulation. The input is the
	complex modulated signal at baseband. The output is a stream of bits packed 1 bit per byte
	(the LSB)
Usage	blks.gmsk_demod(fg,
	samples_per_symbol=2,
	gain_mu=None,
	mu=0.5,
	omega_relative_limit=0.005,
	freq_error=0.0,
	verbose=False,
Parameters	log=False)
Farameters	fg: flow graph type fg: flow graph
	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?
	type log: bool
	Clock recovery parameters. These all have reasonable defaults.
	gain_mu: controls rate of mu adjustment
	type gain_mu: float
	mu: fractional delay [0.0, 1.0]
	type mu: float
	omega_relative_limit: sets max variation in omega
	type omega_relative_limit: float, typically 0.000200 (200 ppm)
	freq_error: bit rate error as a fraction
	type freq_error :float

1.1.11) gnuradio/blksimpl/nbfm_rx.py

Туре	Python file
Description	Narrow Band FM Receiver
Examples	
Note	

1.1.11.1) nbfm_rx ()

Type	Function
Description	Narrow Band FM Receiver. Takes a single complex baseband input stream and produces a
	single float output stream of audio sample in the range [-1, +1].
Usage	blks.nbfm_rx(fg, audio_rate, quad_rate, tau=75e-6, max_dev=5e3)
Parameters	fg: flow graph
	<pre>audio_rate: sample rate of audio stream, >= 16k</pre>
	type audio_rate: integer
	quad_rate: sample rate of output stream, quad_rate must be an integer multiple of
	audio_rate.
	type quad_rate: integer
	tau: preemphasis time constant (default 75e-6)
	type tau: float
	max_dev: maximum deviation in Hz (default 5e3)
	type max_dev: float

Simple Gnuradio User Manual Page 30 of 208

1.1.12) gnuradio/blksimpl/nbfm_tx.py

Туре	Python file
Description	Narrow Band FM Transmitter
Examples	
Note	

1.1.12.1) nbfm_tx ()

Туре	Function
Description	Narrow Band FM Transmitter. Takes a single float input stream of audio samples in the
	range [-1,+1] and produces a single FM modulated complex baseband output.
Usage	blks.nbfm_tx (fg, audio_rate, quad_rate, tau=75e-6, max_dev=5e3)
Parameters	fg: flow graph
	<pre>audio_rate: sample rate of audio stream, >= 16k</pre>
	type audio_rate: integer
	quad_rate: sample rate of output stream, quad_rate must be an integer multiple of
	audio_rate
	type quad_rate: integer
	tau: preemphasis time constant (default 75e-6)
	type tau: float
	max_dev: maximum deviation in Hz (default 5e3)
	type max_dev: float

1.1.13) gnuradio/blksimpl/ofdm.py

Туре	Python file
Description	OFDM mod/demod with packets as i/o
Examples	
Note	

1.1.13.1) ofdm_mod ()

Type	Function
Description	Modulates an OFDM stream. Based on the options fft_length, occupied_tones, and
	cp_length, this block creates OFDM symbols using a specified modulation option. Send
	packets by calling send_pkt Hierarchical block for sending packets. Packets to be sent are
	enqueued by calling send_pkt. The output is the complex modulated signal at baseband.
Usage	blks.ofdm_mod (fg, options, msgq_limit=2, pad_for_usrp=True)
Parameters	fg: flow graph
	type fg: flow graph
	options: pass modulation options from higher layers (fft length, occupied tones, etc.)
	msgq_limit: maximum number of messages in message queue
	type msgq_limit: int
	<pre>pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples</pre>
Sub Function	Blks.ofdm_mod.send_pkt(payload, eof=False)
Description	Send the payload
Parameters	payload: data to send
	type payload: string
	eof: To signal end of transmission
	Type eof: Bool True or False

Page 31 of 208

1.1.13.2) ofdm_demod ()

Type	Function	
Description	Demodulates a received OFDM stream. Based on the options fft_length, occupied_tones, and cp_length, this block performs synchronization, FFT, and demodulation of incoming OFDM symbols and passes packets up the a higher layer. The input is complex baseband. When packets are demodulated, they are passed to the app via the callback. Hierarchical block for demodulating and deframing packets. The input is the complex modulated signal at baseband. Demodulated packets are sent to the handler.	
Usage	blks.ofdm_demod (fg, options, callback=None)	
Parameters	fg: flow graph type fg: flow graph options: pass modulation options from higher layers (fft length, occupied tones, etc.) callback: function of two args: ok, payload type callback: ok: bool; payload: string	

1.1.14) gnuradio/blksimpl/ofdm_sync_fixed.py

Туре	Python file
Description	OFDM synchronizer
Examples	

1.1.14.1) ofdm_sync_fixed ()

Type	Function
Description	Use a fixed trigger point instead of sync block
Usage	blks.ofdm_sync_fixed(fg, fft_length, cp_length, snr)
Parameters	
Note	Needs more documentaion

1.1.15) gnuradio/blksimpl/ofdm_sync_ml.py

Type	Python file
Description	Maximum Likelihood OFDM synchronizer
Examples	

1.1.15.1) ofdm_sync_ml ()

Туре	Function
Description	Maximum Likelihood OFDM synchronizer:
	J. van de Beek, M. Sandell, and P. O. Borjesson, "ML Estimation
	of Time and Frequency Offset in OFDM Systems," IEEE Trans.
	Signal Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
Usage	blks.ofdm_sync_ml(fg, fft_length, cp_length, snr, logging)
Parameters	
Note	Needs more documentation

Page 32 of 208

1.1.16) gnuradio/blksimpl/ofdm_sync_pn.py

Туре	Python file
Description	OFDM synchronization using PN Correlation
Examples	

1.1.16.1) ofdm_sync_pn()

Туре	Function
Description	OFDM synchronization using PN Correlation:
	T. M. Schmidl and D. C. Cox, "Robust Frequency and Timing
	Synchonization for OFDM," IEEE Trans. Communications, vol. 45, no. 12, 1997. Signal
	Processing, vol. 45, no. 7, pp. 1800-1805, 1997.
Usage	blks.ofdm_sync_pn(fg, fft_length, cp_length, logging=False)
Parameters	
Note	Needs more documentation

1.1.17) gnuradio/blksimpl/ofdm_sync_pnac.py

Туре	Python file
Description	OFDM synchronization using PN Autocorrelation
Examples	

1.1.17.1) ofdm_sync_pnac()

Туре	Function
Description	OFDM synchronization using Autocorrelation PN
Usage	blks.ofdm_sync_pnac(fg, fft_length, cp_length, ks)
Parameters	
Note	Needs more documentation

1.1.18) gnuradio/blksimpl/ofdm_receiver.py

Туре	Python file
Description	OFDM Receiver
Examples	
Note	Needs more documentation

1.1.18.1) ofdm_receiver ()

Туре	Function
Description	
Usage	blks.ofdm_receiver(fg, fft_length, cp_length, occupied_tones, snr, ks, logging=False)
Parameters	
Note	Needs more documentation

Page 33 of 208

1.1.19) gnuradio/blksimpl/pkt.py

Туре	Python file
Description	mod/demod with packets as i/o (sending packets and demodulating /deframing packets)
Examples	
Note	

1.1.19.1) mod_pkts ()

Туре	Function
Description	Wrap an arbitrary digital modulator in our packet handling framework. Send packets by calling send_pkt. Hierarchical block for sending packets. Packets to be sent are enqueued by calling send_pkt. The output is the complex modulated signal at baseband.
Usage	blks.mod_pkts(fg, modulator, access_code=None, msgq_limit=2, pad_for_usrp=True, use_whitener_offset=False)
Parameters	fg: flow graph type fg: flow graph modulator: instance of modulator class (gr_block or hier_block) type modulator: complex baseband out access_code: AKA sync vector type access_code: string of 1's and 0's between 1 and 64 long msgq_limit: maximum number of messages in message queue type msgq_limit: int pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples use_whitener_offset: If true, start of whitener XOR string is incremented each packet see gmsk mod for remaining parameters
Sub Function	blks.mod_pkts.send_pkt(payload, eof=False)
Description	Send the payload
Parameters	payload: data to send type payload: string eof: To signal end of transmission Type eof: Bool True or False

1.1.19.1) demod_pkts ()

Туре	Function
Description	Wrap an arbitrary digital demodulator in our packet handling framework. The input is complex baseband. When packets are demodulated, they are passed to the app via the callback. Hierarchical block for demodulating and deframing packets. The input is the complex modulated signal at baseband. Demodulated packets are sent to the handler.
Usage	blks.demod_pkts(fg,demodulator,access_code=None,callback=None, threshold=-1)
Parameters	fg: flow graph type fg: flow graph demodulator: instance of demodulator class (gr_block or hier_block) type demodulator: complex baseband in access_code: AKA sync vector type access_code: string of 1's and 0's callback: function of two args: ok, payload type callback: ok: bool; payload: string threshold: detect access_code with up to threshold bits wrong (-1 -> use default) type threshold: int

Page 34 of 208

1.1.20) gnuradio/blksimpl/psk.py

Туре	Python file
Description	Define different kinds of constellations for Tx and Rx for the PSK (BPSK, QPSK, 8PSK)
Examples	
Note	Needs more Documentation

1.1.21) gnuradio/blksimpl/qam.py

Туре	Python file
Description	Define different kinds of constellations for Tx and Rx for the QAM (QAM4,QAM8,QAM16,QAM64,QAM256)
Examples	
Note	Needs more Documentation

1.1.22) gnuradio/blksimpl/qam8.py

Туре	Python file
Description	QAM8 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.1.22.1) qam8_mod ()

Type	Function QAM8 modulator
Description	Hierarchical block for RRC-filtered QAM8 modulation. The input is a byte stream (unsigned
•	char) and the output is the complex modulated signal at baseband.
Usage	blks.qam8_mod(fg, samples_per_symbol =2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.1.22.2) qam8_demod ()

Туре	Function , QAM8 demodulator
Description	Hierarchical block for QAM8 demodulation. The input is the complex modulated signal at

	8
	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks.qam8_demod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=None,
	gain_mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray_code=True,
	verbose=False,
D	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per baud
	type samples_per_symbol: integer verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?
	type log: bool
	gain_mu: controls rate of mu adjustment
	type gain_mu: float
	mu: fractional delay [0.0, 1.0]
	type mu: float
	omega_relative_limit: sets max variation in omega
	type omega_relative_limit: float, typically 0.000200 (200 ppm)

1.1.23) gnuradio/blksimpl/qam16.py

Type	Python file
Description	QAM16 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.1.23.1) qam16_mod ()

Туре	Function QAM16 modulator
Description	Hierarchical block for QAM16 modulation. The input is a byte stream (unsigned char) and the
·	output is the complex modulated signal at baseband.
Usage	blks.qam16_mod(fg, samples_per_symbol =2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	<pre>samples_per_symbol: samples per symbol >= 2</pre>
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

Simple Gnuradio User Manual Page 36 of 208

1.1.23.2) qam16_demod ()

Туре	Function , QAM16 demodulator
Description	Hierarchical block for QAM16 demodulation. The input is the complex modulated signal at
	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks.qam16_demod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=None,
	gain_mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?
	type log: bool
	gain_mu: controls rate of mu adjustment
	type gain_mu: float
	mu: fractional delay [0.0, 1.0]
	type mu: float
	omega_relative_limit: sets max variation in omega
	type omega_relative_limit: float, typically 0.000200 (200 ppm)

1.1.24) gnuradio/blksimpl/qam64.py

Туре	Python file
Description	QAM64 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.1.24.1) qam64_mod ()

Type	Function QAM64 modulator
Description	Hierarchical block for QAM64 modulation. The input is a byte stream (unsigned char) and the
-	output is the complex modulated signal at baseband.
Usage	blks.qam64_mod(fg, samples_per_symbol =2,
•	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess bw: float

gray_code: Tell modulator to Gray code the bits
type gray_code: bool
verbose: Print information about modulator?
type verbose: bool
debug: Print modulation data to files?
type debug: bool

1.1.24.2) qam64_demod ()

Туре	Function , QAM64 demodulator
Description	Hierarchical block for QAM64 demodulation. The input is the complex modulated signal at
•	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks.qam64_demod(fg,
	samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=None,
	gain_mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?
	type log: bool
	gain_mu: controls rate of mu adjustment
	type gain_mu: float
	mu: fractional delay [0.0, 1.0]
	type mu: float omega_relative_limit: sets max variation in omega
	type omega_relative_limit: float, typically 0.000200 (200 ppm)
	type omega_relative_innit. noat, typically olooozoo (200 ppm)

1.1.25) gnuradio/blksimpl/qam256.py

Type	Python file
Description	QAM256 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.1.25.1) qam256_mod ()

Туре	Function QAM256 modulator	
Description	Hierarchical block for QAM256 modulation. The input is a byte stream (unsigned char) and the output is the complex modulated signal at baseband.	
Usage	blks.qam256_mod(fg, samples_per_symbol =2, excess_bw=.35, gray_code=True, verbose=False, log=False)	
Parameters	fg: flow graph	

 · ·
type fg: flow graph
samples_per_symbol: samples per symbol >= 2
type samples_per_symbol: integer
excess_bw: Root-raised cosine filter excess bandwidth
type excess_bw: float
gray_code: Tell modulator to Gray code the bits
type gray_code: bool
verbose: Print information about modulator?
type verbose: bool
debug: Print modulation data to files?
type debug: bool

1.1.25.2) qam256_demod ()

Туре	Function , QAM256 demodulator
Description	Hierarchical block for QAM256 demodulation. The input is the complex modulated signal at
2 occupation	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks.qam256 demod(fg,
Coago	samples_per_symbol=2,
	excess bw=.35,
	costas_alpha=None,
	gain mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray code=True,
	verbose=False,
	log=False)
Parameters	fg: flow graph
	type fg: flow graph
	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?
	type log: bool
	gain_mu: controls rate of mu adjustment
	type gain_mu: float
	mu: fractional delay [0.0, 1.0]
	type mu: float
	omega_relative_limit: sets max variation in omega
	type omega_relative_limit: float, typically 0.000200 (200 ppm)

1.1.26) gnuradio/blksimpl/rational_resampler.py

Туре	Python file
Description	Rational resample polyphase FIR filter
Examples	
Note	

1.1.26.1) rational_resampler ()

Туре	Function
Description	rational_resampler_fff :Rational resampling polyphase FIR filter with float input, float output
	and float taps.
	rational_resampler_ccf: Rational resampling polyphase FIR filter with complex input,
	complex output and float taps.

		U	
	rational_resampler_ccc : Rational resampling polypcomplex output and complex taps.	hase FIR filter with comple	ex input,
Usage	blks.rational_resampler_xxx(fg,interpolation, fractional_bw=None)	decimation,	taps=None,
Parameters	fg: flow graph interpolation: interpolation factor type interpolation: integer > 0 decimation: decimation factor type decimation: integer > 0 taps: optional filter coefficients see blks.filter_design type taps: sequence fractional_bw: fractional bandwidth in (0, 0.5), meas type fractional_bw: float		
Note	Either taps or fractional_bw may be specified, but not If neither is specified, a reasonable default, 0.4, is use		

1.1.26.2) design_filter ()

Туре	Function
Description	Given the interpolation rate, decimation rate and a fractional bandwidth, design a set of taps. returns: sequence of numbers
Usage	blks.design_filter(design_filter(interpolation,decimation, fractional_bw)
Parameters	interpolation: interpolation factor
	type interpolation: integer > 0
	decimation: decimation factor
	type decimation: integer > 0
	fractional_bw: fractional bandwidth in (0, 0.5) 0.4 works well.
	type fractional bw: float

1.1.27) gnuradio/blksimpl/standard_squelch.py

Туре	Python file
Description	Implement the squelch function
Examples	
Note	Needs more Documentation

1.1.27.1) standard_squelch ()

Туре	Function	
Description	Implement the squelch function with 100msec time constant.	
Usage	blks.standard_squelch(fg, audio_rate)	
Parameters	fg: flow graph	
	audio_rate : Sample rate of audio stream	
Sub Function 1	blks. standard_squelch.set_threshold(threshold)	
Description	Set Squelch Threshold value	
Sub Function 2	blks. standard_squelch.threshold()	
Description	Return Squelch Threshold value	
Sub Function 3	blks. standard_squelch_squelch_range()	
Description	Return Squelch range	

1.1.28) gnuradio/blksimpl/wfm_rcv.py

Type	Python file
Description	Demodulating a broadcast FM signal with a deemphasis

Examples	
Note	

1.1.28.1) wfm_rcv ()

Туре	Function
Description	Hierarchical block for demodulating a broadcast FM signal. The input is the down converted
-	complex baseband signal (gr_complex). The output is the demodulated audio (float).
Usage	blks.wfm_rcv(fg, quad_rate, audio_decimation)
Parameters	fg: flow graph.
	type fg: flow graph
	quad_rate: input sample rate of complex baseband input.
	type quad_rate: float
	audio_decimation: how much to decimate quad_rate to get to audio.
	type audio_decimation: integer

1.1.29) gnuradio/blksimpl/wfm_rcv_pll.py

Туре	Python file
Description	Stereo demodulating a broadcast FM signal with a deemphasis
Examples	
Note	

1.1.29.1) wfm_rcv_pll ()

Type	Function
Description	Hierarchical block for demodulating a broadcast FM signal. The input is the down converted complex baseband signal (gr_complex). The output is two streams of the demodulated audio (float) 0=Left, 1=Right.
Usage	blks.wfm_rcv_pll(fg, demod_rate, audio_decimation)
Parameters	fg: flow graph. type fg: flow graph demod_rate: input sample rate of complex baseband input. type demod_rate: float audio_decimation: how much to decimate demod_rate to get to audio. type audio_decimation: integer

1.1.30) gnuradio/blksimpl/wfm_tx.py

Туре	Python file
Description	Wide Band FM Transmitter with a preemphasis
Examples	
Note	

1.1.30.1) wfm_tx()

Туре	Function
Description	Wide Band FM Transmitter. Takes a single float input stream of audio samples in the range [-
	1,+1]and produces a single FM modulated complex baseband output.
Usage	blks. wfm_tx(fg, audio_rate, quad_rate, tau=75e-6, max_dev=75e3)

Parameters	fg: flow graph
	<pre>audio_rate: sample rate of audio stream, >= 16k</pre>
	type audio_rate: integer
	quad_rate: sample rate of output stream, quad_rate must be an integer multiple of
	audio_rate.
	type quad_rate: integer
	tau: preemphasis time constant (default 75e-6)
	type tau: float
	max_dev: maximum deviation in Hz (default 75e3)
	type max_dev: float

1.1.31) gnuradio/blksimpl/cvsd.py

Туре	Python file
Description	CVSD encoder and decoder
Examples	
Note	Needs more documentation

1.1.31.1) cvsd_encode ()

Туре	Function
Description	This is a wrapper for the CVSD encoder that performs interpolation and filtering necessary to work with the vocoding. It converts an incoming float (+-1) to a short, scales it (to 32000; slightly below the maximum value), interpolates it, and then vocodes it. The incoming sampling rate can be anything, though, of course, the higher the sampling rate and thehigher the interpolation rate are, the better the sound quality. When using the CVSD vocoder, appropriate sampling rates are from 8k to 64k with resampling rates from 1 to 8. A rate of 8k with a resampling rate of 8 provides a good quality signal.
Usage	blks2. cvsd_encode(resample=8, bw=0.5)
Parameters	

1.1.31.2) cvsd_decode ()

Туре	Function
Description	This is a wrapper for the CVSD decoder that performs decimation and filtering necessary to work with the vocoding. It converts an incoming CVSD-encoded short to a float, decodes it to a float, decimates it, and scales it (by 32000; slightly below the maximum value to avoid clipping). The sampling rate can be anything, though, of course, the higher the sampling rate and the higher the interpolation rate are, the better the sound quality. When using the CVSD vocoder, appropriate sampling rates are from 8k to 64k with resampling rates from 1 to 8. A rate of 8k with a resampling rate of 8 provides a good quality signal.
Usage	blks2. cvsd_decode(resample=8, bw=0.5)
Parameters	

1.2) gnuradio/blks2 sub package

Туре	Folder
Description	Semi-hideous kludge to import everything in the blk2simpl directory into the gnuradio.blks2
	namespace. The blocks were implemented using hier_block2.

Page 42 of 208

1.2.1) gnuradio/blks2impl/am_demod.py

Туре	Python file
Description	AM demodulation block
Examples	
Note	

1.2.1.1) am_demod_cf ()

Туре	Function
Description	Generalized AM demodulation block with audio filtering. This block demodulates a band-limited, complex down-converted AM channel into the the original baseband signal, applying low pass filtering to the audio output. It produces a float stream in the range [-1.0, +1.0].
Usage	blks2.am_demod_cf (channel_rate, audio_decim, audio_pass, audio_stop)
Parameters	channel_rate: incoming sample rate of the AM baseband type sample_rate: integer audio_decim: input to output decimation rate type audio_decim: integer audio_pass: audio low pass filter passband frequency type audio_pass: float audio_stop: audio low pass filter stop frequency type audio_stop: float

1.2.1.2) demod_10k0a3e_cf()

Туре	Function
Description	AM demodulation block, 10 KHz channel. This block demodulates an AM channel conformant
	to 10K0A3E emission standards, such as broadcast band AM transmissions.
Usage	blks2.demod_10k0a3e_cf(channel_rate, audio_decim)
Parameters	channel_rate: incoming sample rate of the AM baseband
	type sample_rate: integer
	audio_decim: input to output decimation rate
	type audio_decim: integer

1.2.2) gnuradio/blks2impl/channel_model.py

Туре	Python file
Description	Creates a channel model
Examples	
Note	

1.2.2.1) channel_model ()

Туре	Function
Description	Creates a channel model that includes:
	- AWGN noise power in terms of noise voltage

	A frequency offset in the channel in ratio A timing offset ratio to model clock difference (clock rate ratio) (epsilon). It is sample rate difference between tx and rx Multipath taps
Usage	blks2.channel_model(noise_voltage=0.0, frequency_offset=0.0, epsilon=1.0, taps=[1.0,0.0])
Parameters	
Sub Function 1	blks2.channel_model.set_noise_voltage(noise_voltage)
Sub Function 2	blks2.channel_model.set_frequency_offset(frequency_offset)
Sub Function 3	blks2.channel_model.set_taps(taps)

1.2.3) gnuradio/blks2impl/cpm.py

Туре	Python file
Description	Continuous Phase modulation.
Examples	See gnuradio-examples/python/digital for examples
Note	

1.2.3.1) cpm_mod ()

-	Tellis
Туре	Function
Description	Hierarchical block for Continuous Phase Modulation.
	The input is a byte stream (unsigned char) representing packed bits and the output is
	the complex modulated signal at baseband.
	See Proakis for definition of generic CPM signals:
	s(t)=exp(j phi(t))
	$phi(t) = 2 pi h int_0^t f(t') dt'$
	$f(t)=sum_k a_k g(t-kT)$
	(normalizing assumption: int_0^infty g(t) dt = $1/2$)
Usage	blks2.cpm_mod(samples_per_symbol=2,bits_per_symbol=1,
	h numerator=1, h denominator=2,
	cpm_type=0,bt=_def_bt, symbols_per_pulse=1, generic_taps
	numpy.empty(1), verbose=False, log=False)
Parameters	samples per symbol: samples per baud >= 2
- aramotoro	type samples per symbol: integer
	bits_per_symbol: bits per symbol
	type bits per symbol: integer
	h numerator: numerator of modulation index
	type h numerator: integer
	h denominator: denominator of modulation index (numerator and denominator must
	be relative primes)
	type h denominator: integer
	cpm type: supported types are: 0=CPFSK, 1=GMSK, 2=RC, 3=GENERAL
	type cpm_type: integer
	bt: bandwidth symbol time product for GMSK
	type bt: float
	symbols_per_pulse: shaping pulse duration in symbols
	type symbols_per_pulse: integer
	generic_taps : define a generic CPM pulse shape (sum = samples_per_symbol/2)
	type generic_taps: array of floats
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

Simple Gnuradio User Manual Page 44 of 208

1.2.4) gnuradio/blks2impl/d8psk.py

Туре	Python file
Description	differential 8PSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.2.4.1) d8psk_mod()

Туре	Function, D8PSK modulator
Description	Hierarchical block for RRC-filtered QPSK modulation. The input is a byte stream (unsigned
·	char) and the output is the complex modulated signal at baseband.
Usage	blks2.d8psk_mod(samples_per_symbol=3,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files!
	type debug: bool

1.2.4.2) d8psk_demod ()

Type	Function , D8PSK demodulator
Description	Differentially coherent detection of differentially encoded 8psk. Hierarchical block for RRC-
	filtered DQPSK demodulation. The input is the complex modulated signal at baseband. The
	output is a stream of bits packed 1 bit per byte (LSB)
Usage	blks2.d8psk_demod(samples_per_symbol=3,
	excess_bw=.35,
	costas_alpha=.175,
	gain_mu=.175,
	mu=0.5,
	omega_relative_limit=.005,
	gray_code=True,
	verbose=False, log=False)
Parameters	samples per symbol: samples per symbol >= 2
Farameters	type samples per symbol: float
	excess bw: Root-raised cosine filter excess bandwidth
	type excess bw: float
	costas alpha: loop filter gain
	type costas alpha: float
	gain mu: for M&M block
	type gain_mu: float
	mu: for M&M block
	type mu: float
	omega_relative_limit: for M&M block
	type omega relative limit: float
	gray_code: Tell modulator to Gray code the bits

type gray_code: bool verbose: Print information about modulator?
type verbose: bool
debug: Print demodulation data to files?
type debug: bool

1.2.5) gnuradio/blks2impl/dbpsk.py

Type	Python file
Description	Differential BPSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.2.5.1) dbpsk_mod ()

Туре	Function , DBPSK modulator
Description	Hierarchical block for RRC-filtered BPSK modulation. The input is a byte stream (unsigned
	char) and the output is the complex modulated signal at baseband.
Usage	blks2.dbpsk_mod(samples_per_symbol=2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per baud >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	log: Log modulation data to files?
	type log: bool

1.2.5.2) dbpsk_demod ()

Туре	Function , DBPSK demodulator
Description	Differentially coherent detection of differentially encoded BPSK. Hierarchical block for RRC-
	filtered DBPSK demodulation. The input is the complex modulated signal at baseband. The
	output is a stream of bits packed 1 bit per byte (LSB).
Usage	blks2.d8psk_demod(samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=.1,
	gain_mu=None,
	mu=0.5,
	omega_relative_limit=.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: float
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	costas_alpha: loop filter gain
	type costas_alpha: float

_=	
	gain_mu: for M&M block
	type gain_mu: float
	mu: for M&M block
	type mu: float
	omega_relative_limit: for M&M block
	type omega relative limit: float
	gray_code: Tell modulator to Gray code the bits
	type gray code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print demodulation data to files?
	type debug: bool

1.2.6) gnuradio/blks2impl/dqpsk.py

Туре	Python file
Description	differential QPSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.2.6.1) dqpsk_mod ()

Туре	Function , DQPSK modulator
Description	Hierarchical block for RRC-filtered QPSK modulation. The input is a byte stream (unsigned
	char) and the output is the complex modulated signal at baseband.
Usage	blks2.dqpsk_mod(samples_per_symbol=2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.2.6.2) dqpsk_demod ()

Туре	Function , DQPSK demodulator
Description	Differentially coherent detection of differentially encoded QPSK. Hierarchical block for RRC-filtered DQPSK demodulation. The input is the complex modulated signal at baseband. The
	output is a stream of bits packed 1 bit per byte (LSB)
Usage	blks2.d8psk_demod(samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=.15,
	gain_mu=None,

	mu=0.5,
	omega_relative_limit=.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: float
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	costas_alpha: loop filter gain
	type costas_alpha: float
	gain mu: for M&M block
	type gain_mu: float
	mu: for M&M block
	type mu: float
	omega_relative_limit: for M&M block
	type omega relative limit: float
	gray code: Tell modulator to Gray code the bits
	type gray code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool
	Type debug. been

1.2.7) gnuradio/blks2impl/filterbank.py

Type	Python file
Description	Include Both Filter Synthesis and Analysis
Examples	See gnuradio-examples/python/usrp folder
Note	

1.2.7.1) synthesis_filterbank ()

Туре	Function
Description	Uniformly modulated polyphase DFT filter bank: synthesis
	See http://cnx.rice.edu/content/m10424/latest
	Takes M complex streams in, produces single complex stream out that runs at M times the input sample rate
	The channel spacing is equal to the input sample rate.
	The total bandwidth and output sample rate are equal the
	input sample rate * nchannels.
	Output stream to frequency mapping:
	channel zero is at zero frequency.
	if mpoints is odd:
	Channels with increasing positive frequencies come from channels 1 through (N-1)/2.
	Channel (N+1)/2 is the maximum negative frequency, and
	frequency increases through N-1 which is one channel lower
	than the zero frequency.
	if mpoints is even:

	Channels with increasing positive frequencies come from channels 1 through (N/2)-1. Channel (N/2) is evenly split between the max positive and negative bins. Channel (N/2)+1 is the maximum negative frequency, and frequency increases through N-1 which is one channel lower than the zero frequency. Channels near the frequency extremes end up getting cut
	off by subsequent filters and therefore have diminished utility.
Usage	blks2.synthesis_filterbank (mpoints, taps=None)
Parameters	mpoints: Number of freq bins/interpolation factor/subbands
	taps: Filter taps for subband filter
Example	See ayfabtu.py

1.2.7.2) analysis_filterbank ()

Туре	Function
Description	Uniformly modulated polyphase DFT filter bank: analysis.
	See http://cnx.rice.edu/content/m10424/latest
	Takes 1 complex stream in, produces M complex streams out that runs at 1/M times the
	input sample rate. Same channel to frequency mapping as described in filter synthesis.
Usage	blks2.analysis_filterbank (mpoints,taps)
Parameters	mpoints: number of freq bins/interpolation factor/subbands
	taps: filter taps for subband filter
Examples	See test_dft_analysis

1.2.8) gnuradio/blks2impl/fm_demod.py

Туре	Python file
Description	FM demodulation block
Examples	
Note	

1.2.8.1) fm_demod_cf ()

Туре	Function
Description	Generalized FM demodulation block with deemphasis and audio filtering. This block
	demodulates a band-limited, complex down-converted FM channel into the original baseband
	signal, optionally applying deemphasis. Low pass filtering is done on the resultant signal. It
	produces an output float stream in the range of [-1.0, +1.0].
Usage	blks2.fm_demod_cf (channel_rate, audio_decim, deviation,
	audio_pass, audio_stop, gain=1.0, tau=75e-6)
Parameters	channel_rate: incoming sample rate of the FM baseband
	type sample_rate: integer
	deviation : maximum FM deviation (default = 5000)
	type deviation: float
	audio_decim: input to output decimation rate
	type audio_decim: integer
	audio_pass: audio low pass filter passband frequency
	type audio_pass: float
	audio_stop: audio low pass filter stop frequency
	type audio_stop: float
	gain: gain applied to audio output (default = 1.0)
	type gain: float
	tau : deemphasis time constant (default = 75e-6), specify 'None' to prevent deemphasis

Page 49 of 208

1.2.8.2) demod_20k0f3e_cf ()

Type	Function
Description	NBFM demodulation block, 20 KHz channels
Usage	blks2.demod_20k0f3e_cf(channel_rate, audio_decim)
Parameters	sample_rate: incoming sample rate of the FM baseband
	type sample_rate: integer
	audio_decim: input to output decimation rate
	type audio_decim: integer

1.2.8.3) demod_200kf3e_cf ()

Туре	Function
Description	WFM demodulation block, mono. This block demodulates a complex, down converted, wideband FM channel conforming to 200KF3E emission standards, outputting floats in the range [-1.0, +1.0].
Usage	blks2.demod_200kf3e_cf(channel_rate, audio_decim)
Parameters	sample_rate: incoming sample rate of the FM baseband
	type sample_rate: integer
	audio_decim: input to output decimation rate
	type audio_decim: integer

1.2.9) gnuradio/blks2impl/fm_emph.py

Type	Python file
Description	FM deemphasis and preemphasis IIR filter
Examples	
Note	

1.2.9.1) fm_deemph ()

Туре	Function
Description	FM Deemphasis IIR filter.
	1
	H(s) =
	1 + s
	tau is the RC time constant.
	critical frequency: w_p = 1/tau
	We prewarp and use the bilinear z-transform to get our IIR coefficients.
	See "Digital Signal Processing: A Practical Approach" by Ifeachor and Jervis
Usage	blks2.fm_deemph(fs, tau=75e-6)
Parameters	fs: sampling frequency in Hz
	type fs: float
	tau: Time constant in seconds (75us in US, 50us in EUR)
	type tau: float

1.2.9.2) fm_preemph ()

Туре	Function
Description	FM Preemphasis IIR filter.
	4 +14
	1 + s*t1 H(s) =
	1 + s *t2
	I think this is the right transfer function.
	This fine ASCII rendition is based on Figure 5-15 in "Digital and Analog Communication Systems", Leon W. Couch II
	R1 + +
	O
	f1 = 1/(2*pi*t1) = 1/(2*pi*R1*C)
	1 R1 + R2 f2 = 2*pi*t2 2*pi*R1*R2*C
	t1 is 75us in US, 50us in EUR f2 should be higher than our audio bandwidth.
	The Bode plot looks like this:
	// / < slope = 20dB/decade / / f1 f2
	We prewarp and use the bilinear z-transform to get our IIR coefficients. See "Digital Signal Processing: A Practical Approach" by Ifeachor and Jervis
Usage	blks2.fm_deemph(fs, tau=75e-6)
Parameters	fs: sampling frequency in Hz
	type fs: float tau: Time constant in seconds (75us in US, 50us in EUR)
	type tau: float
	I Alt a second control of the second control

Page 51 of 208

1.2.10) gnuradio/blks2impl/gmsk.py

Туре	Python file
Description	differential QPSK modulation and demodulation
Examples	See gnuradio-examples/python/digital for examples
Note	

1.2.10.1) gmsk_mod ()

Туре	Function , GMSK modulator
Description	Hierarchical block for Gaussian Minimum Shift Key (GMSK) modulation. The input is a byte
	stream (unsigned char) and the output is the complex modulated signal at baseband.
Usage	blks2.gmsk_mod(samples_per_symbol =2,
	bt=.35,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per baud >= 2
	type samples_per_symbol: integer
	bt : Gaussian filter bandwidth * symbol time
	type bt: float
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.2.10.2) gmsk_demod ()

Туре	Function , GMSK demodulator
Description	Hierarchical block for Gaussian Minimum Shift Key (GMSK) demodulation. The input is the complex modulated signal at baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks2.gmsk_demod(samples_per_symbol=2, gain_mu=None, mu=0.5, omega_relative_limit=0.005, freq_error=0.0, verbose=False, log=False)
Parameters	samples_per_symbol: samples per baud type samples_per_symbol: integer verbose: Print information about modulator? type verbose: bool log: Print modulation data to files? type log: bool Clock recovery parameters. These all have reasonable defaults. gain_mu: controls rate of mu adjustment type gain_mu: float mu: fractional delay [0.0, 1.0] type mu: float omega_relative_limit: sets max variation in omega

type omega_relative_limit: float, typically 0.000200 (200 ppm)
freq error: bit rate error as a fraction
type freq error:float

1.2.11) gnuradio/blks2impl/nbfm_rx.py

Туре	Python file
Description	Narrow Band FM Receiver
Examples	
Note	

1.2.11.1) nbfm_rx ()

Туре	Function
Description	Narrow Band FM Receiver. Takes a single complex baseband input stream and produces a
-	single float output stream of audio sample in the range [-1, +1].
Usage	blks2.nbfm_rx(audio_rate, quad_rate, tau=75e-6, max_dev=5e3)
Parameters	<pre>audio_rate: sample rate of audio stream, >= 16k</pre>
	type audio_rate: integer
	quad_rate: sample rate of output stream, quad_rate must be an integer multiple of
	audio_rate.
	type quad_rate: integer
	tau: preemphasis time constant (default 75e-6)
	type tau: float
	max_dev: maximum deviation in Hz (default 5e3)
	type max dev: float

1.2.12) gnuradio/blks2impl/nbfm_tx.py

Type	Python file
Description	Narrow Band FM Transmitter
Examples	
Note	

1.2.12.1) nbfm_tx()

Туре	Function
Description	Narrow Band FM Transmitter. Takes a single float input stream of audio samples in the
	range [-1,+1] and produces a single FM modulated complex baseband output.
Usage	blks2.nbfm_tx (audio_rate, quad_rate, tau=75e-6, max_dev=5e3)
Parameters	<pre>audio_rate: sample rate of audio stream, >= 16k</pre>
	type audio_rate: integer
	quad_rate: sample rate of output stream, quad_rate must be an integer multiple of
	audio_rate.
	type quad_rate: integer
	tau: preemphasis time constant (default 75e-6)
	type tau: float
	max_dev: maximum deviation in Hz (default 5e3)
	type max dev: float

Page 53 of 208

1.2.13) gnuradio/blks2impl/ofdm.py

Type	Python file
Description	OFDM mod/demod with packets as i/o
Examples	
Note	

1.2.13.1) ofdm_mod ()

Туре	Function
Description	Modulates an OFDM stream. Based on the options fft_length, occupied_tones, and cp_length, this block creates OFDM symbols using a specified modulation option. Send
	packets by calling send_pkt Hierarchical block for sending packets. Packets to be sent are enqueued by calling send_pkt. The output is the complex modulated signal at baseband.
Usage	blks2.ofdm_mod (options, msgq_limit=2, pad_for_usrp=True)
Parameters	options: pass modulation options from higher layers (fft length, occupied tones, etc.)
	msgq_limit: maximum number of messages in message queue
	type msgq_limit: int
	<pre>pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples</pre>
Sub Function	blks.ofdm_mod.send_pkt(payload, eof=False)
Description	Send the payload
Parameters	payload: data to send
	type payload: string
	eof: To signal end of transmission
	Type eof : Bool True or False

1.2.13.2) ofdm_demod ()

Туре	Function
Description	Demodulates a received OFDM stream. Based on the options fft_length, occupied_tones, and cp_length, this block performs synchronization, FFT, and demodulation of incoming OFDM symbols and passes packets up the a higher layer. The input is complex baseband. When packets are demodulated, they are passed to the app via the callback. Hierarchical block for demodulating and deframing packets. The input is the complex modulated signal at baseband. Demodulated packets are sent to the handler.
Usage	blks2.ofdm_demod (options, callback=None)
Parameters	options: pass modulation options from higher layers (fft length, occupied tones, etc.)
	callback: function of two args: ok, payload
	type callback: ok: bool; payload: string

1.2.14) gnuradio/blks2impl/pkt.py

Туре	Python file
Description	mod/demod with packets as i/o (sending packets and demodulating /deframing packets)
Examples	
Note	

1.2.14.1) mod_pkts ()

Туре	Function
Description	Wrap an arbitrary digital modulator in our packet handling framework. Send packets by
	calling send_pkt. Hierarchical block for sending packets. Packets to be sent are enqueued by
	calling send_pkt. The output is the complex modulated signal at baseband.
Usage	blks2.mod_pkts(modulator, access_code=None, msgq_limit=2, pad_for_usrp=True,
	use_whitener_offset=False)
Parameters	modulator: instance of modulator class (gr_block or hier_block)
	type modulator: complex baseband out
	access_code: AKA sync vector
	type access_code: string of 1's and 0's between 1 and 64 long
	msgq_limit: maximum number of messages in message queue
	type msgq_limit: int
	<pre>pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples</pre>
	use_whitener_offset: If true, start of whitener XOR string is incremented each packet
	see gmsk_mod for remaining parameters
Sub Function	blks.mod_pkts.send_pkt(payload, eof=False)
Description	Send the payload
Parameters	payload: data to send
	type payload: string
	eof: To signal end of transmission
	Type eof : Bool True or False

1.2.14.2) demod_pkts ()

Туре	Function
Description	Wrap an arbitrary digital demodulator in our packet handling framework. The input is complex
	baseband. When packets are demodulated, they are passed to the app via the callback.
	Hierarchical block for demodulating and deframing packets. The input is the complex
	modulated signal at baseband. Demodulated packets are sent to the handler.
Usage	blks2.demod_pkts(demodulator,access_code=None,callback=None, threshold=-1)
Parameters	demodulator: instance of demodulator class (gr_block or hier_block)
	type demodulator: complex baseband in
	access_code: AKA sync vector
	type access_code: string of 1's and 0's
	callback: function of two args: ok, payload
	type callback: ok: bool; payload: string
	threshold: detect access code with up to threshold bits wrong (-1 -> use default)
	type threshold: int

1.2.15) gnuradio/blks2impl/psk.py

Type	Python file
Description	Define different kinds of constellations for Tx and Rx for the PSK (BPSK, QPSK, 8PSK)
Examples	
Note	Needs more Documentation

Page 55 of 208

1.2.16) gnuradio/blks2impl/qam.py

Туре	Python file
Description	Define different kinds of constellations for Tx and Rx for the QAM
-	(QAM4,QAM8,QAM16,QAM64,QAM256)
Examples	
Note	Needs more Documentation

1.2.17) gnuradio/blks2impl/qam8.py

Type	Python file
Description	QAM8 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.2.17.1) qam8_mod()

Туре	Function QAM8 modulator
Description	Hierarchical block for RRC-filtered QAM8 modulation. The input is a byte stream (unsigned
-	char) and the output is the complex modulated signal at baseband.
Usage	blks2.qam8_mod(samples_per_symbol =2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.2.17.2) qam8_demod ()

Туре	Function , QAM8 demodulator
Description	Hierarchical block for QAM8 demodulation. The input is the complex modulated signal at
	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks2.qam8_demod(samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=None,
	gain_mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?

type log: bool
gain_mu: controls rate of mu adjustment
type gain_mu: float
mu: fractional delay [0.0, 1.0]
type mu: float
omega relative limit: sets max variation in omega
type omega relative limit: float, typically 0.000200 (200 ppm)

1.2.18) gnuradio/blks2impl/qam16.py

Type	Python file
Description	QAM16 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.2.18.1) qam16_mod()

Туре	Function QAM16 modulator
Description	Hierarchical block for QAM16 modulation. The input is a byte stream (unsigned char) and the
-	output is the complex modulated signal at baseband.
Usage	blks2.qam16_mod(samples_per_symbol =2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.2.18.2) qam16_demod ()

Туре	Function , QAM16 demodulator
Description	Hierarchical block for QAM16 demodulation. The input is the complex modulated signal at
	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks2.qam16_demod(samples_per_symbol=2,
	excess bw=.35,
	costas_alpha=None,
	gain_mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?
	type log: bool
	gain_mu: controls rate of mu adjustment

 <u> </u>
type gain_mu: float
mu: fractional delay [0.0, 1.0]
type mu: float
omega_relative_limit: sets max variation in omega
type omega_relative_limit: float, typically 0.000200 (200 ppm)

1.2.19) gnuradio/blks2impl/qam64.py

Туре	Python file
Description	QAM64 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.2.19.1) qam64_mod ()

Туре	Function QAM64 modulator
Description	Hierarchical block for QAM64 modulation. The input is a byte stream (unsigned char) and the
	output is the complex modulated signal at baseband.
Usage	blks2.qam64_mod(samples_per_symbol =2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.2.19.2) qam64_demod ()

Туре	Function , QAM64 demodulator
Description	Hierarchical block for QAM64 demodulation. The input is the complex modulated signal at baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks2.qam64_demod(samples_per_symbol=2, excess_bw=.35, costas_alpha=None, gain_mu=0.03, mu=0.05, omega_relative_limit=0.005, gray_code=True, verbose=False, log=False)
Parameters	samples_per_symbol: samples per baud type samples_per_symbol: integer verbose: Print information about modulator? type verbose: bool log: Print modulation data to files?

t
type log: bool
gain_mu: controls rate of mu adjustment
type gain_mu: float
mu : fractional delay [0.0, 1.0]
type mu: float
omega_relative_limit: sets max variation in omega
type omega relative limit: float, typically 0.000200 (200 ppm)

1.2.20) gnuradio/blks2impl/qam256.py

Туре	Python file
Description	QAM256 modulation and demodulation.
Examples	See gnuradio-examples/python/digital for examples
Note	Needs more Documentation

1.2.20.1) qam256_mod ()

Туре	Function QAM256 modulator
Description	Hierarchical block for QAM256 modulation. The input is a byte stream (unsigned char) and
	the output is the complex modulated signal at baseband.
Usage	blks2.qam256_mod(samples_per_symbol =2,
	excess_bw=.35,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per symbol >= 2
	type samples_per_symbol: integer
	excess_bw: Root-raised cosine filter excess bandwidth
	type excess_bw: float
	gray_code: Tell modulator to Gray code the bits
	type gray_code: bool
	verbose: Print information about modulator?
	type verbose: bool
	debug: Print modulation data to files?
	type debug: bool

1.2.20.2) qam256_demod ()

Туре	Function , QAM256 demodulator
Description	Hierarchical block for QAM256 demodulation. The input is the complex modulated signal at
-	baseband. The output is a stream of bits packed 1 bit per byte (the LSB)
Usage	blks2.qam256_demod(samples_per_symbol=2,
	excess_bw=.35,
	costas_alpha=None,
	gain_mu=0.03,
	mu=0.05,
	omega_relative_limit=0.005,
	gray_code=True,
	verbose=False,
	log=False)
Parameters	samples_per_symbol: samples per baud
	type samples_per_symbol: integer
	verbose: Print information about modulator?
	type verbose: bool
	log: Print modulation data to files?

type log: bool
gain_mu: controls rate of mu adjustment
type gain_mu: float
mu: fractional delay [0.0, 1.0]
type mu: float
omega_relative_limit: sets max variation in omega
type omega_relative_limit: float, typically 0.000200 (200 ppm)

1.2.21) gnuradio/blks2impl/rational_resampler.py

Type	Python file
Description	Rational resample polyphase FIR filter
Examples	
Note	

1.2.21.1) rational_resampler ()

Туре	Function
Description	rational_resampler_fff :Rational resampling polyphase FIR filter with float input, float output and float taps.
	rational_resampler_ccf: Rational resampling polyphase FIR filter with complex input, complex output and float taps.
	rational_resampler_ccc: Rational resampling polyphase FIR filter with complex input, complex output and complex taps.
Usage	blks2.rational_resampler_xxx(interpolation, decimation, taps=None,
	fractional_bw=None)
Parameters	interpolation: interpolation factor
	type interpolation: integer > 0
	decimation: decimation factor
	type decimation: integer > 0
	taps: optional filter coefficients see blks2.design_filter
	type taps: sequence
	fractional_bw : fractional bandwidth in (0, 0.5), measured at final freq (use 0.4)
	type fractional_bw: float
Note	Either taps or fractional_bw may be specified, but not both.
	If neither is specified, a reasonable default, 0.4, is used as the fractional_bw.

1.2.21.2) design_filter ()

Туре	Function
Description	Given the interpolation rate, decimation rate and a fractional bandwidth, design a set of taps.
-	returns: sequence of numbers
Usage	blks2.design_filter(design_filter(interpolation,decimation, fractional_bw)
Parameters	interpolation: interpolation factor
	type interpolation: integer > 0
	decimation: decimation factor
	type decimation: integer > 0
	fractional_bw: fractional bandwidth in (0, 0.5) 0.4 works well.
	type fractional bw: float

1.2.22) gnuradio/blks2impl/standard_squelch.py

Туре	Python file
Description	Implement the squelch function
Examples	
Note	Needs more Documentation

1.2.22.1) standard_squelch ()

Туре	Function
Description	Implement the squelch function with 100msec time constant
Usage	blks2. standard_squelch(audio_rate)
Parameters	audio_rate : Audio rate
Sub Function 1	blks2. standard_squelch.set_threshold(threshold)
Description	Set Squelch Threshold value
Sub Function 2	blks2. standard_squelch.threshold()
Description	Return Squelch Threshold value
Sub Function 3	blks2. standard_squelch.squelch_range()
Description	Return Squelch range

1.2.23) gnuradio/blks2impl/wfm_rcv.py

Type	Python file
Description	Demodulating a broadcast FM signal with a deemphasis
Examples	
Note	

1.2.23.1) wfm_rcv ()

Туре	Function
Description	Hierarchical block for demodulating a broadcast FM signal. The input is the down converted complex baseband signal (gr_complex). The output is the demodulated audio (float).
Usage	blks2.wfm rcv(quad rate, audio decimation)
Usage	
Parameters	quad_rate: input sample rate of complex baseband input.
	type quad_rate: float
	audio_decimation: how much to decimate quad_rate to get to audio.
	type audio_decimation: integer

1.2.24) gnuradio/blks2impl/wfm_rcv_pll.py

Туре	Python file
Description	Stereo demodulating a broadcast FM signal with a deemphasis
Examples	
Note	

1.2.24.1) wfm_rcv_pll()

Type	Function
Description	Hierarchical block for demodulating a broadcast FM signal. The input is the down converted complex baseband signal (gr_complex). The output is two streams of the demodulated audio (float) 0=Left, 1=Right.
Usage	blks2.wfm_rcv_pll(demod_rate, audio_decimation)
Parameters	demod_rate: input sample rate of complex baseband input.
	type demod_rate: float
	audio_decimation: how much to decimate demod_rate to get to audio.
	type audio_decimation: integer

1.2.25) gnuradio/blks2impl/wfm_tx.py

Туре	Python file
Description	Wide Band FM Transmitter with a preemphasis
Examples	
Note	

1.2.25.1) wfm_tx()

Туре	Function
Description	Wide Band FM Transmitter. Takes a single float input stream of audio samples in the range [-
	1,+1]and produces a single FM modulated complex baseband output.
Usage	blks2. wfm_tx(audio_rate, quad_rate, tau=75e-6, max_dev=75e3)
Parameters	audio_rate: sample rate of audio stream, >= 16k
	type audio_rate: integer
	quad_rate: sample rate of output stream, quad_rate must be an integer multiple of
	audio_rate.
	type quad_rate: integer
	tau: preemphasis time constant (default 75e-6)
	type tau: float
	max_dev: maximum deviation in Hz (default 75e3)
	type max_dev: float

1.3) gnuradio/wxgui sub package

Туре	Folder
Description	Wxpython based gnuradio extension

1.3.1) gnuradio/wxgui/fftsink.py

Туре	Python file
Description	Gnuradio spectrum analyzer
Examples	
Note	

1.3.1.1) fft_sink_x()

Туре	Function
Description	FFT sink block.
-	fft_sink_c (): fft sink block for complex data samples.

	fft_sink_f (): fft sink block for real floating data samples.
Usage	fftsink.fft_sink_x(fg, parent, baseband_freq=0,
	y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None,
	title=", size=(640,240), peak_hold=False)
Parameters	

1.3.2) gnuradio/wxgui/fftsink2.py

Туре	Python file
Description	Gnuradio spectrum analyzer using stdgui2 and heir_block2
Examples	
Note	

1.3.2.1) fft_sink_x()

Туре	Function
Description	FFT sink block.
	fft_sink_c () : fft sink block for complex data samples.
	fft_sink_f (): fft sink block for real floating data samples.
Usage	fftsink2.fft_sink_x(parent, baseband_freq=0,
	y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None,
	title=", size=(640,240), peak_hold=False)
Parameters	

1.3.3) gnuradio/wxgui/scopesink.py

Туре	Python file
Description	Building block for python oscilloscope module.
Examples	
Note	

1.3.3.1) scope_sink_x()

Туре	Function
Description	Oscilloscope sink block.
	scope_sink_c () : scope sink block for complex data samples.
	scope_sink_f (): scope sink block for real floating data samples. Accepts 1 to 16 float
	streams.
Usage	scopesink.scope_sink_x(fg, parent, title=", sample_rate=1,
	size=(640,240), frame_decim=1,
	v_scale=1000, t_scale=None)
Parameters	

1.3.4) gnuradio/wxgui/scopesink2.py

Туре	Python file
Description	Gnuradio Oscilloscope using stdgui2 and heir_block2
Examples	
Note	

1.3.4.1) scope_sink_x()

Туре	Function
Description	Scope sink block.
	scope_sink_c (): scope sink block for complex data samples.
	scope_sink_f (): scope sink block for real floating data samples. Accepts 1 to 16 float
	streams.
Usage	scopesink2.scope_sink_x(parent, title=", sample_rate=1,
	size=default_scopesink_size, frame_decim=1,
	v_scale=1000, t_scale=None, num_inputs=1)
Parameters	

1.3.4.2) constellation_sink()

Туре	Function	
Description	Constellation sink block.	
Usage	scopesink2.constellation_sink(parent,title='Constellation', size=(640,240), frame_decim=1)	sample_rate=1,
Parameters		

1.3.5) gnuradio/wxgui/form.py

Туре	Python file
Description	Gnuradio wxgui form
Examples	
Note	

1.3.6) gnuradio/wxgui/numbersink.py

Туре	Python file
Description	Gnuradio Number Sink
Examples	
Note	

1.3.6.1) number_sink_x()

Type	Function
Description	Number sink block.
	number_sink_c () : number sink block for complex data samples.
	<pre>number_sink_f () : number sink block for real floating data samples.</pre>
Usage	numbersink.number_sink_x(fg, parent, unit=",base_value=0,minval=-
	100.0,maxval=100.0,factor=1.0,
	decimal_places=10, ref_level=50, sample_rate=1,
	number_rate=15, average=False, avg_alpha=None,
	label=", size=(640,240), peak_hold=False)
Parameters	

1.3.7) gnuradio/wxgui/numbersink2.py

Type	Python file
Description	Gnuradio Number Sink using hier_block2

Examples	
Note	

1.3.7.1) number_sink_x ()

Type	Function
Description	Number sink block.
	number_sink_c () : number sink block for complex data samples.
	<pre>number_sink_f () : number sink block for real floating data samples.</pre>
Usage	numbersink2.number_sink_x(fg, parent, unit=",base_value=0,minval=- 100.0,maxval=100.0,factor=1.0,
	decimal_places=10, ref_level=50, sample_rate=1,
	number_rate=15, average=False, avg_alpha=None,
	label=", size=(640,240), peak_hold=False)
Parameters	

1.3.8) gnuradio/wxgui/waterfallsink.py

Type	Python file
Description	Gnuradio Waterfall Sink
Examples	
Note	

1.3.8.1) waterfall_sink_x()

Type	Function
Description	Waterfall sink block.
•	waterfall_sink_c (): waterfall sink block for complex data samples.
	waterfall_sink_f (): waterfall sink block for real floating data samples.
Usage	waterfallsink.number_sink_x(fg, parent, baseband_freq=0,
	y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None,
	title=", size=(640,240))
Parameters	

1.3.9) gnuradio/wxgui/waterfallsink2.py

Туре	Python file
Description	Gnuradio Waterfall Sink using hier_block2
Examples	
Note	

1.3.9.1) waterfall_sink_x()

Type	Function
Description	Waterfall sink block.
	waterfall_sink_c (): waterfall sink block for complex data samples.
	waterfall_sink_f (): waterfall sink block for real floating data samples.
Usage	waterfallsink2.number_sink_x(fg, parent, baseband_freq=0,
	y_per_div=10, ref_level=50, sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None,
	title=", size=(640,240))
Parameters	

1.3.10) gnuradio/wxgui/plot.py

Туре	Python file
Description	This is a simple light weight plotting module that is used with gnuradio.
Examples	
Note	

1.3.11) gnuradio/wxgui/powermate.py

Туре	Python file
Description	Handler for Griffin PowerMate, Contour ShuttlePro & ShuttleXpress USB knobs.This is Linux and wxPython specific
Examples	
Note	Needs more documentation

1.3.12) gnuradio/wxgui/silder.py

Туре	Python file
Description	Return a wx.Slider object
Examples	
Note	Needs more documentation

1.3.13) gnuradio/wxgui/stdgui.py

Туре	Python file
Description	A simple wx gui for GNU Radio applications
Examples	
Note	Needs more documentation

1.3.14) gnuradio/wxgui/stdgui2.py

Туре	Python file
Description	A simple wx gui for GNU Radio applications using hier_block2
Examples	
Note	Needs more documentation

1.3.15) gnuradio/wxgui/ra_fftsink.py

Туре	Python file
Description	Radio astronomy gnuradio spectrum analyzer
Examples	
Note	

1.3.15.1) ra_fft_sink_x()

Туре	Function
Description	FFT sink block.
·	ra_fft_sink_c () : fft sink block for complex data samples.

	<u> </u>
	ra_fft_sink_f (): fft sink block for real floating data samples.
Usage	ra_fftsink.ra_fft_sink_x(fg, parent, baseband_freq=0,
	y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40, ref_level=50,
	sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None, title=",
	size=(640,140), peak_hold=False, ofunc=None,
	xydfunc=None)
Parameters	

1.3.16) gnuradio/wxgui/ra_fftsink.py

Туре	Python file
Description	Radio astronomy gnuradio spectrum analyzer
Examples	
Note	

1.3.16.1) ra_fft_sink_x()

Туре	Function
Description	FFT sink block.
	ra_fft_sink_c () : fft sink block for complex data samples.
	ra_fft_sink_f (): fft sink block for real floating data samples.
Usage	ra_fftsink.ra_fft_sink_x(fg, parent, baseband_freq=0,
	y_per_div=10, sc_y_per_div=0.5, sc_ref_level=40, ref_level=50,
	sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None, title=",
	size=(640,140), peak_hold=False, ofunc=None,
	xydfunc=None)
Parameters	

1.3.17) gnuradio/wxgui/ra_waterfallsink.py

Туре	Python file
Description	Radio Astronomy gnuradio Waterfall Sink
Examples	
Note	

1.3.17.1) waterfall_sink_x()

Туре	Function
Description	Waterfall sink block.
	waterfall_sink_c (): waterfall sink block for complex data samples.
	waterfall_sink_f (): waterfall sink block for real floating data samples.
Usage	ra_waterfallsink.number_sink_x(fg, parent, baseband_freq=0,
	ref_level=0, sample_rate=1, fft_size=512,
	fft_rate=15, average=False, avg_alpha=None,
	title=", size=(640,240), report=None, span=40, ofunc=None, xydfunc=None)
Parameters	

1.3.18) gnuradio/wxgui/ra_stripcharsink.py

Туре	Python file
Description	Radio Astronomy gnuradio ?????????????????
Examples	
Note	Needs more documentation

Page 67 of 208

1.3.18.1) stripchar_sink_x()

Type	Function
Description	????????????
Usage	ra_stripcharsink.stripchart_sink_f(fg, parent,
	y_per_div=10, ref_level=50, sample_rate=1,
	title=", stripsize=4,
	size=(640,140),xlabel="X",
	ylabel="Y", divbase=0.025,
	parallel=False, scaling=1.0, autoscale=False)
Parameters	

1.4) gnuradio/vocoder sub package

Туре	Folder
Description	GSM and CVSD blocks

1.4.1) gnuradio/vocoder/gsm_full_rate.py

Туре	Python file
Description	GSM 6.10 Full rate encoder decoder blocks
Examples	
Note	Needs more documentation

1.4.1.1) encode_sp()

Туре	Function
Description	GSM 06.10 Full Rate Vocoder Encoder block input type is short, output type packets.
Usage	gsm_full_rate.encode_sp()
Parameters	shorts in
	33 byte packets out

1.4.1.2) decode_ps()

Туре	Function
Description	GSM 06.10 Full Rate Vocoder Decoder block input type is packets, output type short.
Usage	gsm_full_rate.decode_ps()
Parameters	33 byte packets in
	shorts out

1.4.2) gnuradio/vocoder/cvsd_vocoder.py

Type	Python file
Description	CVSD encoder decoder blocks
Examples	
Note	Needsmore documentation

Page 68 of 208

1.4.2.1) encode_sb()

Туре	Function
Description	This block performs CVSD audio encoding. Its design and implementation is modeled after
	the CVSD encoder/decoder specifications defined in the Bluetooth standard.
	CVSD Vocoder Encoder block input type is shorts, output type bytes.
Usage	cvsd_vocoder.encode_sb()
Parameters	shorts in
	bytes out

1.4.2.2) decode_bs()

Туре	Function
Description	This block performs CVSD audio decoding. Its design and implementation is modeled after
	the CVSD encoder/decoder specifications defined in the Bluetooth standard
	CVSD Vocoder Decoder block input type is bytes, output type shorts.
Usage	cvsd_vocoder.decode_bs()
Parameters	Bytes in
	shorts out

1.5) gnuradio/pager sub package

Туре	Folder
Description	Radio Pager receiver blocks

1.5.1) gnuradio/pager/flex_demod.py

Type	Python file
Description	This GNU Radio component implements a FLEX radio pager receiver/demodulator. FLEX pager towers are between 929 MHz and 932 MHz at 25 KHz centers. Current status (7/16/07): FLEX receiving is completed except for addition of BCH error correction.
Examples	See /gnuradio/gr-pager
Note	Needs more documentaion

1.5.1.1) flex_demod()

Туре	Function
Description	FLEX pager protocol demodulation block. This block demodulates a band-limited, complex
	down-converted baseband channel into FLEX protocol frames.
Usage	pager.flex_demod(queue, freq=0.0, verbose=False, log=False)
Parameters	

1.5.2) gnuradio/pager/pager_swig.py

Туре	Python file
Description	This file was automatically generated by SWIG. It contains all the necessary
	software components to implement pager flex demodulation block.

Examples	
Note	Needs more documentation
Sub Function 1	pager_flex_deinterleave()
Sub Function 2	pager_flex_frame()
Sub Function 3	pager_flex_parse()
Sub Function 4	pager_flex_sync()
Sub Function 5	pager slicer fb()

1.5.3) gnuradio/pager/aypabtu.py

Туре	Python file
Description	All your pager applications belong to us. This is a general program that uses the USRP to demodulate any pager bandwidth. Program options are:upper-freq", type="eng_float", help="lower Rx frequencylower-freq", type="eng_float", help="upper Rx frequencyrx-board", type="subdev", help="select USRP Rx side A or B (default=first daughterboard found)"calibration", type="eng_float", default=0.0, help="set frequency offset to Hz"
	gain", type="int", help="set RF gain"
Examples	See gnuradio/gr-pager/README
Note	

1.5.4) gnuradio/pager/usrp_flex.py

Description	This example application demonstrates receiving and demodulating the FLEX pager protocol.
Examples	See gnuradio/gr-pager/README
Note	

1.5.5) gnuradio/pager/usrp_flex_all.py

Туре	Python file
Description	This application demonstrates receiving and demodulating the FLEX pager protocol for the entire 3 MHz band.
Examples	See gnuradio/gr-pager/README
Note	

1.5.6) gnuradio/pager/usrp_flex_band.py

Туре	Python file
Description	This application demonstrates receiving and demodulating the FLEX pager protocol for 1 MHz band.
Examples	See gnuradio/gr-pager/README
Note	

1.6) gnuradio/gruimpl sub package

Type	Folder
Description	Gnuradio Utility implementation package

1.6.1) gnuradio/ gruimpl /crc.py

Туре	Python file
Description	This GNU Radio component implements CRC generation and checking
Examples	
Note	Needs more documentation

1.6.1.1) gen_and_append_crc32()

Type	Function
Description	Generate CRC
Usage	gru.gen_and_append_crc32(s)
Parameters	s: String

1.6.1.2) check_crc32()

Туре	Function
Description	Generate CRC
Usage	gru.check_crc32(s)
Parameters	s: String

1.6.2) gnuradio/ gruimpl /freqz.py

Type	Python file
Description	Compute frequency response of a digital filter
Examples	
Note	Needs more documentation

1.6.2.1) freqz()

Туре	Function
Description	Given the numerator (b) and denominator (a) of a digital filter compute its frequency response.
	jw -jw -jmw jw B(e) b[0] + b[1]e + + b[m]e H(e) = =
	H(e) = =
	Inputs:
	b, a the numerator and denominator of a linear filter. worN If None, then compute at 512 frequencies around the unit circle. If a single integer, the compute at that many frequencies. Otherwise, compute the response at frequencies given in worN whole Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole is non-zero compute frequencies from 0 to 2*pi.

	Outputs: (h,w)
	h The frequency response.
	w The frequencies at which h was computed.
Usage	gru.freqz(b, a, worN=None, whole=0, plot=None)
Parameters	b , a : The numerator and denominator of a linear filter.
	worN: If None, then compute at 512 frequencies around the unit circle. If a single integer,
	the compute at that many frequencies. Otherwise, compute the response at frequencies
	given in worn
	whole: Normally, frequencies are computed from 0 to pi (upper-half of unit-circle. If whole
	is non-zero compute frequencies from 0 to 2*pi.

1.6.3) gnuradio/ gruimpl /gnuplot_freqz.py

Туре	Python file
Description	Plot the frequency response of a digital filter using Gnuplot
Usage	gru.gnuplot_freqz(taps, sample_rate)
Parameters	taps: taps generated by gru.freqz sample_rate:??????
Examples	See ayfabtu.py
Note	Needs more documentation

1.6.3.1) gnuplot_freqz()

Туре	Function
Description	Plot the frequency response of a digital filter using Gnuplot. Returns a handle to the gnuplot graph. When the handle is reclaimed the graph is torn
	down
Usage	gru.gnuplot_freqz (hw, Fs=None, logfreq=False)
Parameters	 hw: is a tuple of the form (h, w) where h is sequence of complex freq responses, and w is a sequence of corresponding frequency points. Plot the frequency response using gnuplot. Fs: If Fs is provided, use it as the sampling frequency, else use 2*pi.

1.6.4) gnuradio/ gruimpl /gnuplot_freqz.py

Туре	Python file
Description	Plot the frequency response of a digital filter using Gnuplot
Examples	
Note	Needs more documentation

1.6.4.1) gnuplot_freqz ()

Туре	Function
Description	Plot the frequency response of a digital filter using gnuplot.
	Returns a handle to the gnuplot graph. When the handle is reclaimed the graph is torn
	down
Usage	gru.gnuplot_freqz (hw, Fs=None, logfreq=False)
Parameters	hw: is a tuple of the form (h, w) where h is sequence of complex freq responses, and w is
	a sequence of corresponding frequency points. Plot the frequency response using
	gnuplot.
	Fs: If Fs is provided, use it as the sampling frequency, else use 2*pi.

1.6.5) gnuradio/ gruimpl /hexint.py

Type	Python file
Description	Convert unsigned masks into signed integers
Examples	
Note	

1.6.5.1) hexint ()

Туре	Function
Description	Convert unsigned masks into signed integets. This allows us to use hex constants like 0xf0f0f0f2 when talking to our hardware and not get screwed by them getting treated as python longs.
Usage	gru.hexint(mask)
Parameters	mask: hex string

1.6.6) gnuradio/ gruimpl /listmsc.py

Type	Python file
Description	Return a copy of x that is reverse order
Examples	
Note	

1.6.6.1) list_revers()

Туре	Function
Description	Return a copy of x that is reverse order
Usage	gru.list_revers(x)
Parameters	x: list

1.6.7) gnuradio/ gruimpl /lmx2306.py

Туре	Python file
Description	"Control National LMX2306 based frequency synthesizer using PC Parallel port
Examples	
Note	

1.6.7.1) lmx2306()

Туре	Function
Description	Control the National LMX2306 PLL
Usage	gru.lmx2306(fosc, step_size, which_pp = 0)
Parameters	fosc: is the frequency of the reference oscillator,
	step_size : is the step between valid frequencies,
	which_pp : specifies which parallel port to use

1.6.8) gnuradio/ gruimpl /mathmisc.py

Туре	Python file
Description	Some Math functions like GCD, LCM, Log2
Examples	
Note	
Sub Function 1	gru.gcd(a.b)
Sub Function 2	gru.lcm(a.b)
Sub Function 3	gru.log2(x)

1.6.9) gnuradio/ gruimpl /os_read_exactly.py

Туре	Python file
Description	Replacement for os.read that blocks until it reads exactly nbytes.
Examples	
Note	

1.6.9.1) os_read_exactly()

Type	Function
Description	Replacement for os.read that blocks until it reads exactly nbytes.
Usage	gru.os_read_exactly(file_descriptor, nbytes)
Parameters	

1.6.10) gnuradio/ gruimpl /sdr_1000.py

Туре	Python file
Description	Control the DDS on the SDR-1000
Examples	
Note	

1.6.10.1) sdr_1000()

Туре	Function
Description	Control the DDS on the SDR-1000
Usage	gru.sdr_1000(pport=0)
Parameters	
Sub Function 1	gru.sdr_1000.write_reg(addr, data)
Sub Function 2	gru.sdr_1000.set_freq(freq)
Sub Function 3	gru.sdr_1000.set_band(freq)
Sub Function 4	gru.sdr_1000.set_bit (reg, bit, state)
Sub Function 5	gru.sdr_1000.set_tx(on=1)
Sub Function 6	gru.sdr_1000.set_rx()
Sub Function 7	gru.sdr_1000.set_gain (high)
Sub Function 8	gru.sdr_1000.set_mute (mute = 1)
Sub Function 9	gru.sdr_1000.set_unmute ()
Sub Function 10	gru.sdr_1000.set_external_pin (pin, on = 1)

Page 74 of 208

1.6.11) gnuradio/ gruimpl /seq_with_cursor.py

Туре	Python file	
Description	??????????, I think it is like a loopup table item selector.	
	Return a list item indexed by cursor	
Usage	gru.seq_with_cursor(list_array, cursor)	
Parameters	list_array : list holds data ?????????	
	cursor: list index ???????	
Examples		
Note	Needs more documentation	

1.6.12) gnuradio/ gruimpl /socket_stuff.py

Type	Python file
Description	Setup sockets for TCP/UDP connections
Examples	
Note	

1.6.12.1) tcp_connect_or_die()

Type	Function
Description	Setup sockets for TCP connections.
	returns: socket or exits
Usage	gru.tcp_connect_or_die(sock_addr)
Parameters	sock_addr: (host, port) to connect to
	type sock_addr: tuple

1.6.12.2) udp_connect_or_die()

Туре	Function
Description	Setup sockets for UDP connections.
	returns: socket or exits
Usage	gru.udp_connect_or_die(sock_addr)
Parameters	sock_addr: (host, port) to connect to
	type sock_addr: tuple

1.7) gnuradio/gru sub package

Туре	Folder
Description	Semi-hideous kludge to import everything in the gruimpl directory into the gnuradio.gru
	namespace.

1.8) gnuradio/gr sub package

Туре	Folder
Description	This is the main GNU Radio python module. We pull the swig output and the other
	modules into the gnuradio.gr namespace

Page 75 of 208

1.8.1) gnuradio/ gr / basic_flow_graph.py

Type	Python file
Description	Constructs the basic flow graph and provides basic operations on the graph.
Examples	
Note	
Sub Function 1	connect (): Connect blocks. connect requires two or more arguments that can be
	coerced to endpoints
Sub Function 2	disconnect (): Disconnect blocks. disconnect requires two arguments
Sub Function 3	disconnect_all(): disconnect all graph blocks.

1.8.2) gnuradio/ gr / flow_graph.py

Туре	Python file
Description	Add physical connection info to basic_flow_graph and play
Examples	
Note	
Sub Function 1	start(): Start graph, forking thread(s), return immediately
Sub Function 2	stop(): Tells scheduler to stop and waits for it to happen
Sub Function 3	wait(): Waits for scheduler to stop.
Sub Function 4	run(): Start graph, wait for completion
Sub Function 5	is_running(): Check if the graph is still running

1.8.3) gnuradio/ gr / exceptions.py

Туре	Python file
Description	Exception handling
Examples	
Note	
Sub Function 1	NotDAG (Exception):Not a directed acyclic graph
Sub Function 2	CantHappen (Exception):Can't happen

1.8.4) gnuradio/ gr / gnuradio_swig_py_filter.py

Туре	Python file
Description	This file was automatically generated by SWIG. All digital IIR and FIR filter blocks implemented here.
Examples	
Note	

1.8.4.1) iir_filter_ffd()

Туре	Function
Description	IIR filter with float input, float output and double taps. This filter uses the Direct Form I implementation, where fftaps contains the feed-forward taps, and fbtaps the feedback ones.
Usage	gr.iir_filter_ffd(fftaps,fbtaps)
Parameters	Fftaps: contains the feed-forward taps

	fbtaps : the feedback taps
Sub Function 1	gr.iir_filter_ffd.set_taps(fftaps,fbtaps)
Example	See hfx2.py in apps

1.8.4.2) single_pole_iir_filter_xx()

Туре	Function
Description	Used to do averaging for input vector
	single_pole_iir_filter_ff: single pole IIR filter with float input, float output
	single_pole_iir_filter_cc: single pole IIR filter with complex input, complex output.
	When alpha =1, no averaging is done.
	The input and output satisfy a difference equation of the form :
	$y(n)=alpha^* x(n)+(1-alpha)y(n-1)$
Usage	gr. single_pole_iir_filter_xx(alpha,vlen)
Parameters	alpha: double, time costant.
	vlen: unsigned integer, vector length
Sub Function 1	gr. single_pole_iir_filter_xx.set_taps(alpha)

1.8.4.3) hilbert_fc()

Type	Function
Description	Hilbert transformer FIR filter. Real output is input appropriately delayed. Imaginary output is hilbert filtered (90 degree phase shift) version of input.
Usage	gr. hilbert_fc(ntaps)
Parameters	ntaps: unsigned integer, number of taps (odd)

1.8.4.4) filter_delay_fc()

Туре	Function
Description	Filter-Delay Combination Block. The block takes one or two float stream and outputs a complex stream. If only one float stream is input, the real output is a delayed version of this input and the imaginary output is the filtered output. If two floats are connected to the input, then the real output is the delayed version of the first input, and the imaginary output is the filtered output. The delay in the real path accounts for the group delay introduced by the filter in the imaginary path. The filter taps needs to be calculated before initializing this block.
Usage	gr. filter_delay_fc (taps)
Parameters	taps: vector of float taps

1.8.4.5) fft _filter_xx ()

Туре	Function
Description	fft_filter_ccc: Fast FFT filter with complex input, complex output and complex taps.
	fft_filter_fff: Fast FFT filter with float input, float output and float taps
Usage	gr. fft_filter _xx(decimation, taps)
Parameters	decimation : integer
	taps: float
Sub Function 1	gr. fft_filter _xx.set_taps(taps)

1.8.4.6) fractional_interpolator_xx ()

Type	Function
Description	fractional_interpolator_cc: Interpolating mmse filter with complex input, complex

	output fractional_interpolator_ff: Interpolating mmse filter with float_input, float_output.
Usage	gr. fractional_interpolator(phase_shift,inter_ratio)
Parameters	phase_shift :float
	inter_ratio : float
Sub Function 1	gr. fractional_interpolator_xx.mu(): return mu (phase shift) as a float number
Sub Function 2	gr. fractional_interpolator_xx.inter_ratio(): return interpolation ratio as a float number
Sub Function 3	gr. fractional_interpolator_xx.set_mu(mu) : set float mu (phase shift)
Sub Function 4	gr. fractional interpolator xx.set inter ratio(inter ratio) : set float interpolation ratio

1.8.4.7) goertzel_fc()

Туре	Function
Description	Do the Goertzel single-bin DFT calculation.
Usage	gr. goertzel_fc (rate, len, freq)
Parameters	rate :integer
	len :integer
	freq: float

1.8.4.8) cma_equalizer_cc()

Туре	Function
Description	Implements constant modulus adaptive filter on complex stream
Usage	gr. cma_equalizer_cc(num_taps, modulus,mu)
Parameters	num_taps :integer
	modulus: float
	mu: float (phase shift)

1.8.4.9) adaptive_fir_ccf()

Туре	Function
Description	Adaptive FIR filter with gr_complex input, gr_complex output and float taps.
Usage	gr. adaptive_fir_ccf (name, decimation, taps)
Parameters	name : string
	decimation :integer
	taps :list of float
Sub Function 1	gr. adaptive_fir_ccf.set_taps(taps): set a float filter taps
Note	Needs more documentation

1.8.4.10) fir_filter_xxx ()

Туре	Function
Description	fir_filter_ccc: FIR filter with gr_complex input, gr_complex output and gr_complex taps
·	fir_filter_ccf: FIR filter with gr_complex input, gr_complex output and float taps
	fir_filter_fcc: FIR filter with float input, gr_complex output and gr_complex taps
	fir_filter_fff: FIR filter with float input, float output and float taps
	fir_filter_fsf: FIR filter with float input, short output and float taps
	fir_filter_scc: FIR filter with short input, gr_complex output and gr_complex taps
Usage	gr. fir_filter_xxx (decimation, taps)
Parameters	decimation :integer
	taps: depends on function

Sub Function 1	gr.fir_filter_xxx.set_taps(taps): set filter taps
Note	Needs more documentation

1.8.4.11) freq_xlating_fir_filter_xxx ()

Туре	Function
Description	Software frequency (DDC or DUC) translation filter. This class efficiently combines a
•	frequency translation (typically "down conversion") with a FIR filter (typically low-pass)
	and decimation. It is ideally suited for a "channel selection filter" and can be efficiently
	used to select and decimate a narrow band signal out of wide bandwidth input. Uses a
	single input array to produce a single output array. Additional inputs and/or outputs are ignored.
	freq xlating fir filter ccc: FIR filter combined with frequency translation with
	gr complex input, gr complex output and gr complex taps
	freq_xlating_fir_filter _ccf: FIR filter combined with frequency translation with
	gr_complex input, gr_complex output and float taps
	freq_xlating_fir_filter_fcc: FIR filter combined with frequency translation with float
	input, gr_complex output and gr_complex taps
	freq_xlating_fir_filter _fcf: FIR filter combined with frequency translation with float
	input, complex output and float taps
	freq_xlating_fir_filter _scf: FIR filter combined with frequency translation with short
	input, complex output and float taps
	freq_xlating_fir_filter _scc: FIR filter combined with frequency translation with short
	input, gr_complex output and gr_complex taps
Usage	gr. freq_xlating_fir_filter _xxx (decimation, taps, center_freq, sampling_freq)
Parameters	decimation :integer
	taps: depends on function
	center_freq : double
	sampling_freq : double
Sub Function 1	gr. freq_xlating_fir_filter_xxx.set_taps(taps): set filter taps
Sub Function 2	gr. freq_xlating_fir_filter_xxx.set_center_freq(center_freq): set (type double)
	center_frequency

1.8.4.12) interp_fir_filter_xxx ()

Туре	Function
Description	interp_fir_filter_ccc: Interpolating FIR filter with gr_complex input, gr_complex output
	and gr_complex taps
	interp_fir_filter_ccf: Interpolating FIR filter with gr_complex input, gr_complex output
	and float taps
	interp_fir_filter_fcc: Interpolating FIR filter with float input, gr_complex output and
	gr_complex taps
	interp_fir_filter_fff: Interpolating FIR filter with float input, float output and float taps
	interp_fir_filter_fsf: Interpolating FIR filter with float input, short output and float taps
	interp_fir_filter_scc: Interpolating FIR filter with short input, gr_complex output and
	gr_complex taps
Usage	gr. interp_fir_filter _xxx (interpolation, taps)
Parameters	interpolation :integer
	taps: depends on function
Sub Function 1	gr. interp_fir_filter _xxx.set_taps(taps): set filter taps
Note	

1.8.4.13) rational_resampler_base_xxx ()

Туре	Function
Description	rational_resampler_base_ccc: Rational Resampling Polyphase FIR filter with
·	gr_complex input, gr_complex output and gr_complex taps
	rational_resampler_base_ccf: Rational Resampling Polyphase FIR filter with
	gr_complex input, gr_complex output and float taps
	rational_resampler_base_fcc: Rational Resampling Polyphase FIR filter with float
	input, gr_complex output and gr_complex taps
	rational_resampler_base_fff: Rational Resampling Polyphase FIR filter with float input,
	float output and float taps
	rational_resampler_base_fsf: Rational Resampling Polyphase FIR filter with float input,
	short output and float taps
	rational_resampler_base_scc: Rational Resampling Polyphase FIR filter with short
	input, gr_complex output and gr_complex taps
Usage	gr. rational_resampler_base _xxx (interpolation, decimation, taps)
Parameters	interpolation :unsigned
	decimation : unsigned
	taps: depends on function
Sub Function 1	gr rational_resampler_base _xxx.set_taps(taps): set filter taps
Sub Function 2	gr rational_resampler_base _xxx.intrpolation(): return interpolation value
Sub Function 1	gr rational_resampler_base _xxx.decimation(): return decimation value
Note	

1.8.5) gnuradio/ gr / gnuradio_swig_py_gengen.py

Туре	Python file
Description	This file was automatically generated by SWIG. Some mathematical, source and sink blocks are defined here.
Examples	
Note	

1.8.5.1) add_xx ()

Туре	Function
Description	<pre>add_cc : output = sum (input_0, input_1,). Add across all input complex streams. add_ii : output = sum (input_0, input_1,). Add across all input integer streams. add_ss : output = sum (input_0, input_1,). Add across all input short streams. add_ff : output = sum (input_0, input_1,). Add across all input float streams.</pre>
Usage	gr.add _xx ()
Parameters	
Note	

1.8.5.2) add_vxx ()

Туре	Function
Description	<pre>add_vcc : output = sum (input_0, input_1,). Add across all input complex vectors. add_vii : output = sum (input_0, input_1,). Add across all input integer vectors. add_vff : output = sum (input_0, input_1,). Add across all input float vectors. add_vss : output = sum (input_0, input_1,). Add across all input short vectors.</pre>
Usage	gr.add _vxx()
Parameters	
Note	

Simple Gnuradio User Manual Page 80 of 208

1.8.5.3) add_const_xx ()

Туре	Function
Description	<pre>add_const_cc : output = input + complex constant. Add constant to input complex streams. add_const_ii : output = input + integer constant. Add constant to input integer streams. add_const_ss : output = input + short constant. Add constant to input short streams. add_const_ff : output = input + float constant. Add constant to input float streams.</pre>
	add_const_sf: output = input + float constant. Add constant to input short streams.
Usage	gr.add_const _xx (k)
Parameters	k: constant value, type depends on the function type
Note	
Sub Function 1	gr.add_const_xx.set_k(k): set the constant value on the fly.

1.8.5.4) add_const_vxx ()

Туре	Function
Description	add_const_vcc : output vector = input complex vector + constant complex vector.
•	add_const_vii : output vector = input integer vector + constant integer vector.
	<pre>add_ const_vss : output vector = input short vector + constant short vector.</pre>
	<pre>add_ const_vff : output vector = input float vector + constant float vector.</pre>
Usage	gr.add_const _vxx (k)
Parameters	k: constant value, type depends on the function type
Note	
Sub Function 1	gr.add_const_vxx.set_k (k): set the constant value on the fly.
Sub Function 2	gr.add_const_vxx.k(): return the constant vector

1.8.5.5) argmax_xx ()

Туре	Function
Description	argmax_fs: ?????????????
	argmax_is : ?????????????
	argmax_ss: ?????????????
Usage	gr.argmax _xx (vlen)
Parameters	vlen: vector length
Note	Needs more documentation

1.8.5.6) chunks_to_symbols _xx()

Туре	Function
Description	Map a stream of symbol indexes (unpacked bytes or shorts) to stream of float or complex onstellation points.in D dimensions (D = 1 by default). out[n D + k] = symbol_table[in[n] D + k], k=0,1,,D-1 The combination of gr_packed_to_unpacked_XX followed by gr_chunks_to_symbols_XY handles the general case of mapping from a stream of bytes or shorts into arbitrary float or complex symbols. chunks_to_symbols_bf: input: stream of unsigned char; output: stream of float chunks_to_symbols_bc: input: stream of unsigned char; output: stream of gr_complex chunks_to_symbols_sf: input: stream of shorts; output: stream of float chunks_to_symbols_sc: input: stream of shorts; output: stream of gr_complex chunks_to_symbols_if: input: stream of integers; output: stream of float chunks_to_symbols_ic: input: stream of integers; output: stream of gr_complex
Usage	gr.chunks_to_symbols_xx(symbol_table, D)

Parameters	symbol_table : ??????????
	D : dimensions, const integer
Note	
Sub Function 1	gr. chunks_to_symbols_xx.symbol_table(): return symbol table
Sub Function 2	gr. chunks to symbols xx.D(); return dimension

1.8.5.7) packed_to_unpacked _xx()

Туре	Function
Description	Convert a stream of packed bytes or shorts to stream of unpacked bytes or shorts. This is the inverse of gr_unpacked_to_packed_XX. The bits in the bytes or shorts input stream are grouped into chunks of bits_per_chunk bits and each resulting chunk is written right- justified to the output stream of bytes or shorts. All b or 16 bits of the each input bytes or short are processed. The right thing is done if bits_per_chunk is not a power of two. The combination of gr_packed_to_unpacked_XX_ followed by gr_chunks_to_symbols_Xc handles the general case of mapping from a stream of bytes or shorts into arbitrary float or complex symbols. packed_to_unpacked_bb: input: stream of unsigned char; output: stream of unsigned char packed_to_unpacked_ii: input: stream of integers; output: stream of intergers packed_to_unpacked_ss: input: stream of shorts; output: stream of shorts
Usage	gr. packed to unpacked xx(bits per chunk, endianness)
Parameters	bits_per_chunk :unsigned int endianness : GR_MSB_FIRST, GR_LSB_FIRST
Note	

1.8.5.8) unpacked_to_packed _xx()

Type	Function
Description	Convert a stream of unpacked bytes or shorts into a stream of packed bytes or shorts. This is the inverse of gr_packed_to_unpacked_XX. The low bits_per_chunk bits are extracted from each input byte or short. These bits are then packed densely into the output bytes or shorts, such that all 8 or 16 bits of the output bytes or shorts are filled with valid input bits. The right thing is done if bits_per_chunk is not a power of two. The combination of gr_packed_to_unpacked_XX followed by gr_chunks_to_symbols_Xf or gr_chunks_to_symbols_Xc handles the general case of mapping from a stream of bytes or shorts into arbitrary float or complex symbols. unpacked_to_packed_bb: input: stream of unsigned char; output: stream of unsigned char unpacked_to_packed_ii: input: stream of integers; output: stream of intergers
	unpacked_to_packed _ss: input: stream of shorts; output: stream of shorts
Usage	gr. unpacked_to_packed _xx(bits_per_chunk, endianness)
Parameters	bits_per_chunk :unsigned int endianness : GR_MSB_FIRST, GR_LSB_FIRST
Note	

1.8.5.9) divide_xx()

Туре	Function
Description	divide_cc : output = input_0 / input_1 / input_x) .Divide across all input complex
	streams.
	divide_ss : output = input_0 / input_1 / input_x) .Divide across all input short streams.
	divide_ii : output = input_0 / input_1 / input_x) .Divide across all input integer streams.
	divide_ff : output = input_0 / input_1 / input_x) .Divide across all input float streams.
Usage	gr.divide_xx()
Parameters	
Note	

Page 82 of 208

1.8.5.10) max_xx ()

Туре	Function
Description	max_ff:?????????????
•	max_ii:?????????????
	max_ss: ?????????????
Usage	gr.max _xx (vlen)
Parameters	vlen: Vecter length
Note	Needs more documentation

1.8.5.11) multiply_xx ()

Туре	Function
Description	multiply_cc : output = prod (input_0, input_1,). Multiply across all input complex
	streams.
	multiply _ii : output = prod (input_0, input_1,). Multiply across all input integer
	streams.
	multiply _ss : output = prod (input_0, input_1,). Multiply across all input short
	streams.
	multiply _ff: output = prod (input_0, input_1,). Multiply across all input float streams.
Usage	gr.multiply _xx ()
Parameters	
Note	

1.8.5.12) multiply_vxx ()

Туре	Function
Description	<pre>multiply_vcc : output = prod (input_0, input_1,). Element-wise multiply across all input complex vectors multiply _vii : output = prod (input_0, input_1,). Element-wise multiply across all input integer vectors multiply _vss : output = prod (input_0, input_1,). Element-wise multiply across all input short vectors multiply _vff : output = prod (input_0, input_1,). Element-wise multiply across all input float vectors.</pre>
Usage	gr.multiply_vxx ()
Parameters	
Note	

1.8.5.13) multiply_const_xx ()

Туре	Function
Description	<pre>multiply_const_cc : output = input * complex constant. Multiply constant by input complex streams. multiply_const_ss : output = input * short constant. Multiply constant by input short streams. multiply_const_ii : output = input * integer constant. Multiply constant by input integer streams. multiply_const_ff : output = input * float constant. Multiply constant by input float</pre>
Usage	gr.multiply const xx (k)
Parameters	k: constant value, type depends on the function type
Note	
Sub Function 1	gr.multiply_const_xx.set_k(k): set the constant value on the fly.

Page 83 of 208

1.8.5.14) multiply_const_vxx ()

Туре	Function
Description	multiply_const_vcc : output vector = input complex vector * constant complex vector
	(element-wise)
	multiply_const_vii : output vector = input integer vector * constant integer vector
	(element-wise)
	multiply_const_vss : output vector = input short vector * constant short vector
	(element-wise)
	multiply_const_vff : output vector = input float vector * constant float vector (element-
	wise)
Usage	gr.multiply_const _vxx (k)
Parameters	k : constant value, type depends on the function type
Note	
Sub Function 1	gr.multiply_const_vxx.set_k (k): set the constant value on the fly.
Sub Function 2	gr.multiply_const_vxx.k(): return the constant vector

1.8.5.15) mute_xx ()

Туре	Function
Description	<pre>mute_cc: output = input or zero if muted ,input is complex, output is complex</pre>
	<pre>mute_ss: output = input or zero if muted ,input is short, output is short</pre>
	mute_ii: output = input or zero if muted ,input is integer, output is integer
	<pre>mute_ff: output = input or zero if muted ,input is float, output is float</pre>
Usage	gr.mute_xx (mute)
Parameters	mute: bool, True or False
Note	
Sub Function 1	gr.mute_xx.set_mute(mute): set mute on the fly.
Sub Function 2	gr.mute_xx.mute(): return mute status, True or false

1.8.5.16) noise_source_x ()

Туре	Function
Description	noise_source_c : complex random number source with predefined distribution
	<pre>noise_source_f : float random number source with predefined distribution</pre>
	noise_source_i : integer random number source with predefined distribution
	noise_source_s : short random number source with predefined distribution
Usage	gr.noise_source_x(type, ampl, seed)
Parameters	type: GR_UNIFORM, GR_GAUSSIAN, GR_LAPLACIAN, GR_IMPULSE
	ampl: float, max signal amplitude
	seed : long, random function seed value
Note	Noise types should be used as follows:
	gr.GR_UNIFORM
	gr.GR_GAUSSIAN
	gr.GR_LAPLACIAN
	gr.GR_IMPULSE
Sub Function 1	gr.noise_source_x.set_type(type): set noise type.
Sub Function 2	gr.noise_source_x.set_amplitude(ampl): set float amplitude

1.8.5.17) peak_detector_xb ()

Туре	Function
Description	Detect the peak of a signal. If a peak is detected, this block outputs a 1, or it outputs 0's.
	peak_detector_fb : Float input stream.
	peak_detector_ib : Integer input stream.

- 1	1. 2.1.
	peak_detector_sb : Short input stream.
Usage	gr.peak_detector_xb(threshold_factor_rise, threshold_factor_fall, look_ahead,
	alpha)
Parameters	threshold_factor_rise: The threshold factor (float) determines when a peak has started.
	An average of the signal is calculated and when the value of the signal goes over
	threshold_factor_rise*average, we start looking for a peak.
	threshold_factor_fall :The threshold factor (float) determines when a peak has ended.
	An average of the signal is calculated and when the value of the signal goes bellow
	threshold_factor_fall*average, we stop looking for a peak.
	look_ahead: The look-ahead (integer) value is used when the threshold is found to look
	if there another peak within this step range. If there is a larger value, we set that as the
	peak and look ahead again. This is continued until the highest point is found with This
	look-ahead range.
Nata	alpha: The gain value (float) of a moving average filter (Time Constant in sec)
Note	
Sub Function 1	gr.peak_detector_xb.set_threshold_factor_rise(thr): Set the threshold factor value for the rise time.
Sub Function 2	gr.peak detector xb.set threshold factor fall(thr): Set the threshold factor value for the
	gr.peak_detector_xb.set_tirresrioid_factor_fail(tirr). Set the tirresrioid factor value for the fall time.
Sub Function 3	gr.peak_detector_xb.set_look_ahead(look): Set the look ahead factor value
Sub Function 4	gr.peak_detector_xb.set_alpha(alpha): Set the running average alpha
Sub Function 5	gr.peak_detector_xb.threshold_factor_rise(): return the threshold factor value for the rise
	time.
Sub Function 6	gr.peak_detector_xb.threshold_factor_fall():return the threshold factor value for the fall
	time.
Sub Function 7	gr.peak_detector_xblook_ahead():return the look ahead factor value
Sub Function 8	gr.peak_detector_xb.alpha():return the running average alpha

1.8.5.18) sample_and_hold_xx ()

Туре	Function
Description	Sample and hold circuit. Samples the data stream (input stream 0) and holds the value if
	the control signal is 1 (intput stream 1).
	sample_and_hold_bb : input stream is unsigned char
	sample_and_hold_ff: input stream is float
	sample_and_hold_ii : input stream is integer
	sample_and_hold_ss: input stream is short
Usage	gr.sample_and_hold_xx()
Parameters	
Note	

1.8.5.19) sig_source_x ()

Туре	Function
Description	sig_source_c : signal generator with gr_complex output.
	<pre>sig_source_f : signal generator with float output.</pre>
	sig_source_i : signal generator with integer output.
	<pre>sig_source_s : signal generator with short output.</pre>
Usage	gr.sig_source_x(sampling_freq, waveform, frequency, ampl, offset)
Parameters	sampling_freq : double
	waveform: GR_CONST_WAVE GR_SIN_WAVE GR_COS_WAVE
	GR_SQR_WAVE GR_TRI_WAVE GR_SAW_WAVE
	frequency: double, signal frequency
	ampl: double, signal max amplitude
	offset : DC offset, value type depends on signal type
Note	Waveform types should be used as follows:
	gr.GR_CONST_WAVE
	gr.GR_SIN_WAVE
	gr.GR_COS_WAVE

	gr.GR_SQR_WAVE gr.GR_TRI_WAVE
	gr.GR_SAW_WAVE
Sub Function 1	gr.sig_source_x.set_sampling_freq(sampling_freq): set sampling frequency
Sub Function 2	gr.sig_source_x.set_waveform(waveform): set signal waveform
Sub Function 3	gr.sig_source_x.set_frequency(frequency): set signal frequency
Sub Function 4	gr.sig_source_x.set_amplitude(ampl): set signal amplitude
Sub Function 5	gr.sig_source_x.set_offset(offset): set DC offset
Sub Function 6	gr.sig_source_x.sampling_freq(): return sampling frequency
Sub Function 7	gr.sig_source_x.set_waveform(waveform): return signal waveform
Sub Function 8	gr.sig_source_x.set_frequency(frequency): return signal frequency
Sub Function 9	gr.sig_source_x.set_amplitude(ampl): return signal amplitude
Sub Function 10	gr.sig_source_x.set_offset(offset): return DC offset

1.8.5.20) sub_xx ()

Туре	Function
Description	<pre>sub _cc : output = sub (input_0, input_1,). Subtruct across all input complex streams. sub _ii : output = sub (input_0, input_1,). Subtruct across all input integer streams. sub _ss : output = sub (input_0, input_1,). Subtruct across all input short streams. sub _ff : output = sub (input_0, input_1,). Subtruct across all input float streams.</pre>
Usage	gr.sub _xx ()
Parameters	
Note	

1.8.5.21) vector_sink_x ()

Туре	Function
Description	vector_sink_f : Float sink that writes to a vector.
	vector_sink_c : Complex sink that writes to a vector.
	vector_sink_i : Integer sink that writes to a vector.
	vector_sink_s : Short sink that writes to a vector.
	vector_sink_b : unsigned char sink that writes to a vector.
Usage	gr.vector _sink_x ()
Parameters	
Note	
Sub Function 1	gr.vector_sink_x .data() : Give us the stored vector data

1.8.5.22) vector_source_x ()

Type	Function
Description	vector_source_f: Source of float that gets its data from a vector
•	vector_source_c : Source of complex that get its data from a vector
	vector_source_i : Source of integer that gets its data from a vector
	vector_source_s: Source of short that gets its data from a vector
	vector_source_b : Source of unsigned char that gets its data from a vector
Usage	gr.vector _source_x (data, repeat=false)
Parameters	data: data to be used to form the vector, type depends on function type.
	repeat: bool True, or False, keep the source running by cyclicly repeating the data
Note	

Page 86 of 208

1.8.6) gnuradio/ gr / gnuradio_swig_py_runtime.py

Туре	Python file
Description	This file was automatically generated by SWIG. Some mathematical, source and sink blocks are defined here.
Examples	
Note	

1.8.6.1) io_signature ()

Туре	Function
Description	Create an i/o signature for input and output ports.
Usage	gr.io_signature(min_streams, max_streams, sizeof_stream_item)
Parameters	min_streams: specify minimum number of streams (>= 0)
	max_streams: specify maximum number of streams (>= min_streams or -1 -> infinite)
	sizeof_stream_items: specify the size of the items in the streams
Note	
Sub Function 1	gr.io_signature.min_streams(): return min number of streams
Sub Function 2	gr.io_signature.max_streams(): return max number of streams
Sub Function 3	gr.io_signature.sizeof_stream_item(): return stream size

1.8.6.2) buffer ()

Туре	Function
Description	Single writer, multiple reader fifo. Allocate a buffer that holds at least nitems of size sizeof_item. The total size of the buffer will be rounded up to a system dependent boundary. This is typically the system page size, but under MS windows is 64KB.
Usage	gr.buffer(nitems, sizeof_item)
Parameters	nitem: Integer, number of items sizeof_item: 8 if the data is complex, 4 if the data isinteger, 4 if the data is float, 2 if the data is short, 1 if the data is unsigned character.
Note	
Sub Function 1	gr.buffer.space_availaible () :Integer, return number of items worth of space available for writing
Sub Function 2	gr.buffer.write_pointer (): return pointer to write buffer.
Sub Function 3	gr.buffer.update_write_pointer():tell buffer that we wrote nitems into it
Sub Function 4	gr.buffer.set_done(true or false)
Sub Function 5	gr.buffer.done(): return True or false

1.8.6.3) buffer_reader ()

Туре	Function
Description	Used to let us keep track of the readers of a gr_buffer.
Usage	gr.buffer_reader(buf, nzero_preload)
Parameters	buf : gr_buffer pointer
	nzero_preload : number of zero items to "preload" into buffer
Note	
Sub Function 1	gr.buffer_reader.items_availaible () :Integer, Return number of items available for
	reading
Sub Function 2	gr.buffer_reader.buffer ():Return buffer this reader reads from.
Sub Function 3	gr.buffer_reader.maximum_possible_items_available():Return maximum number of
	items that could ever be available for reading. This is used as a sanity check in the

	scheduler to avoid looping forever.
Sub Function 4	gr.buffer_reader.read_pointer(): return pointer to read buffer
Sub Function 5	gr.buffer_reader.update_read_pointer(nitems) : integer
Sub Function 6	gr.buffer_reader.set_done(true or false)
Sub Function 7	gr.buffer_reader.done() : return True or false

1.8.6.4) basic_block ()

Туре	Function
Description	The abstract base class for all signal processing blocks. Basic blocks are the bare abstraction of an entity that has a name and a set of inputs and outputs. These are never instantiated directly; rather, this is the abstract parent class of both gr_hier_block, which is a recursive container, and gr_block, which implements actual signal processing functions.
Usage	
Parameters	
Note	Needs more documentation
Sub Function 1	
Sub Function 2	

1.8.6.5) block ()

Туре	Function
Description	The abstract base class for all 'terminal' processing blocks. A signal processing flow is constructed by creating a tree of hierarchical blocks, which at any level may also contain terminal nodes that actually implement signal processing functions. This is the base class for all such leaf nodes. Blocks have a set of input streams and output streams. The input_signature and output_signature define the number of input streams and output streams respectively, and the type of the data items in each stream. Although blocks may consume data on each input stream at a different rate, all outputs streams must produce data at the same rate. That rate may be different from any of the input rates. User derived blocks override two methods, forecast and general_work, to implement their signal processing behavior. forecast () is called by the system scheduler to determine how many items are required on each input stream in order to produce a given number of output items. general_work () is called to perform the signal processing in the block. It reads the input items and writes the output items.
Usage	
Parameters	
Note	Needs more documentation
Sub Function 1	
Sub Function 2	

1.8.6.6) block_detail ()

Туре	Function
Description	Implementation details to support the signal processing abstraction. This class contains implementation detail that should be "out of sight" of almost all users of GNU Radio. This decoupling also means that we can make changes to the guts without having to recompile everything.
Usage	
Parameters	
Note	Needs more documentation
Sub Function 1	
Sub Function 2	

1.8.6.7) hier_block2 ()

Type	Function
Description	New Hierarchical container class for gr_block's.
Usage	
Parameters	
Note	Needs more documentation
Sub Function 1	
Sub Function 2	

1.8.6.8) single_threaded_scheduler ()

Type	Function
Description	Simple scheduler for stream computations.
Usage	
Parameters	
Note	Needs more documentation
Sub Function 1	
Sub Function 2	

1.8.6.9) message ()

Туре	Function
Description	Creat Message
Usage	gr.message (type, arg1, arg2, length)
Parameters	type :Long, message type usually =0
	arg1: Double, any numeric argument
	arg2: Double, any numeric argument
	length: Message length in bytes
Note	Needs more documentation
Sub Function 1	gr.message.type(): return long
Sub Function 2	gr.message.arg1(): return double
Sub Function 3	gr.message.arg2(): return double
Sub Function 4	gr.message.set_type(type)
Sub Function 5	gr.message.set_arg1(arg1)
Sub Function 6	gr.message.set_arg2(arg2)
Sub Function 7	gr.message.length(): return message length
Sub Function 8	gr.message.msg (): Put the message here. Return the msg
Sub Function 9	gr.message.to_string(): Return the body of message as string

1.8.6.9) message_from_string ()

Туре	Function
Description	??????? Generate message from string
Usage	gr.message_from_string(s, type, arg1, arg2)
Parameters	s : String
	type :long
	arg1: Double, any numeric argument
	arg2: Double, any numeric argument
Note	Needs more documentation
Sub Function 1	gr.message from_string.type() : return long
Sub Function 2	gr.message from_string.arg1(): return double
Sub Function 3	gr.message from_string.arg2() : return double
Sub Function 4	gr.message from_string.set_type(type)

Sub Function 5	gr.message from_string.set_arg1(arg1)
Sub Function 6	gr.message from_string.set_arg2(arg2)
Sub Function 7	gr.message from_string.msg(): return pointer of type unsigned char to the message
Sub Function 8	gr.message from string.to string(): return string

1.8.6.10) message_handler ()

Туре	Function
Description	??????? Abstract class of message handlers
Usage	gr.message_handler.handle(msg)
Parameters	msg: handle
Note	Needs more documentation

1.8.6.11) msg_queue ()

Туре	Function
Description	Thread-safe message queue.
	Retuen a pointer to the created message queue
Usage	gr.msg_queue(limit)
Parameters	limit: Set the number of holded messages in the queue
Note	Needs more documentation
Sub Function 1	gr.msg_queue.handle (msg): Generic msg_handler method: insert the message.
Sub Function 2	gr.msg_queue.insert_tail (msg): Insert message at tail of queue.
Sub Function 3	gr.msg_queue.delete_head (): Delete message from head of queue and return it. Block
	if no message is available.
Sub Function 4	gr.msg_queue.delete_head_nowait (): If there's a message in the queue, delete it and
	return it. If no message is available, return 0.
Sub Function 5	gr.msg_queue.flush (): Delete all messages from the queue.
Sub Function 6	gr.msg_queue.empty_p (): is the queue empty?
Sub Function 7	gr.msg_queue.full_p (): is the queue full?
Sub Function 8	gr.msg_queue.count(): return (unsigned integer) number of messages in queue
Sub Function 9	gr.msg_queue.limit (): return (unsigned integer) limit on number of message in queue. 0
	means unbounded

1.8.6.12) dispatcher ()

Туре	Function
Description	Invoke callbacks based on select.
Note	Needs more documentation
Sub Function 1	gr.dispatcher.loop (timeout=10): Event dispatching loop.
	Enter a polling loop that only terminates after all gr_select_handlers have been removed.
	timeout sets the timeout parameter to the select() call, measured in seconds.
	timeout: maximum number of seconds to block in select.
Sub Function 2	gr.dispatcher.add_handler(handler):
Sub Function 3	gr.dispatcher.del_handler(handler):
Sub Function 4	gr.dispatcher.del_handler(handler):

1.8.6.13) error_handler ()

Туре	Function
Description	Abstract for error handler
Note	Needs more documentation
Sub Function 1	

Sub Function 2	
Sub Function 3	
Sub Function 4	

1.8.6.14) file_error_handler ()

Туре	Function
Description	File error handler
Note	Needs more documentation

1.8.6.15) sync_block ()

Type	Function
Description	Synchronous 1:1 input to output with history .Override work to provide the signal
	processing implementation.
Note	Needs more documentation

1.8.6.16) sync_decimator ()

Type	Function
Description	Synchronous N:1 input to output with history. Override work to provide the signal
	processing implementation.
Note	Needs more documentation

1.8.6.16) sync_interpolator ()

Туре	Function
Description	Synchronous 1:N input to output with history. Override work to provide the signal
	processing implementation.
Note	Needs more documentation

1.8.6.17) top_block()

Туре	Function
Description	Top-level hierarchical block representing a flowgraph.
Usage	gr.top_block(name)
Parameters	name : string
Note	Needs more documentation
Sub Function 1	gr.top_block.run (): The simple interface to running a flowgraph.
	Calls start () then wait () . Used to run a flowgraph that will stop on its own, or to run a
	flowgraph indefinitely until SIGINT is received.
Sub Function 2	gr.top_block.start (): Start the contained flowgraph. Creates one or more threads to
	execute the flow graph. Returns to the caller once the threads are created.
Sub Function 3	gr.top_block.stop (): Stop the running flowgraph. Notifies each thread created by the
	scheduler to shutdown, then returns to caller.
Sub Function 4	gr.top_block.wat (): Wait for a flowgraph to complete. Flowgraphs complete when either
	(1) all blocks indicate that they are done (typically only when using gr.file_source, or
	gr.head, or (2) after stop has been called to request shutdown.
Sub Function 5	gr.top_block.is_running(): Returns true if flowgraph is running

1.8.6.18) enable_realtime_scheduling ()

Туре	Function
Description	If possible, enable high-priority "real time" scheduling.
	Return gr.RT_Ok if successful,
Usage	gr.enable_realtime_scheduling()
Parameters	
Note	The possible Return values are: RT_NOT_IMPLEMENTED,RT_NO_PRIVS, RT_OTHER_ERROR

1.8.7) gnuradio/ gr / threading.py

Туре	Python file
Description	Choose load gr_threading_23.py or gr_threading_24.py
Examples	
Note	

1.8.8) gnuradio/ gr / threading_23.py

Type	Python file
Description	Threading module for version 2.3
Examples	
Note	

1.8.9) gnuradio/ gr / threading_24.py

Туре	Python file
Description	Threading module for version 2.4
Examples	
Note	

1.8.10) gnuradio/ gr / hier_block2.py

Туре	Python file
Description	Construct new hierarchical blocks for flowgraph
Examples	
Note	

1.8.11) gnuradio/ gr / hier_block.py

Туре	Python file
Description	Simple concrete class for building hierarchical blocks. This class assumes that there is at most a single block at the head of the chain and a single block at the end of the chain. Either head or tail may be None indicating a sink or source respectively. It can compose one or more blocks (primitive or hierarchical) into a new hierarchical block.
Usage	gr.hier_block(fg, head_block, tail_block)
Parameters	fg: The flow graph that contains this hierarchical block.
	type fg: flow_graph
	head_block: the first block in the signal processing chain.
	type head block: None or subclass of gr.block or gr.hier block base

	tail_block: the last block in the signal processing chain. type tail block: None or subclass of gr.block or gr.hier block base
Examples	
Note	

1.8.12) gnuradio/ gr / prefs.py

Туре	Python file
Description	Base class for representing user preferences in the windows INI files.
·	The real implementation is in Python, and is accessable from C++ via the magic of SWIG
	directors. Derive our 'real class' from the stubbed out base class that has support for
	SWIG directors. This allows C++ code to magically and transparently invoke the
	methods in this python class.
Sub Function 1	gr.prefs ().has_section (section) : Does section exist? Section is string, return bool
	True or False
Sub Function 2	gr.prefs ().has_option (section, option): Does option exist? option is string, return
	bool True or False
Sub Function 3	gr.prefs().get_string (section,option, default_val) : If option exists return associated
	value; else return the string default_val.
Sub Function 4	gr.prefs().get_bool (section,option, default_val): If option exists and value can be
	converted to bool, return it; else return the bool default_val.
Sub Function 5	gr.prefs().get_long (section,option, default_val): If option exists and value can be
	converted to long, return it; else return the long default_val.
Sub Function 6	gr.prefs().get_double (section,option, default_val) : If option exists and value can be
	converted to double, return it; else return the double default_val.
Examples	See usrp_spectrum_sense.py
Note	Needs more documenation

1.8.13) gnuradio/ gr / scheduler.py

Туре	Python file
Description	Schedule the threads.Invoke the single threaded scheduler's run method Note that we're in a new thread, and that sts_pyrun releases the global interpreter lock. This has the effect of evaluating the graph in parallel to the main line control code.
Examples	
Note	

1.8.14) gnuradio/ gr / top_block.py

Туре	Python file
Description	This hack forces a 'has-a' relationship to look like an 'is-a' one. It allows Python classes to subclass this one, while passing through method calls to the C++ class shared pointer from SWIG.It also allows us to intercept method calls if needed. This allows the 'run_locked' methods, which are defined in gr_top_block.i, to release the Python global interpreter lock before calling the actual method in gr_top_block
Examples	
Note	Needs more documentation

1.8.15) gnuradio/ gr / gnuradio_swig_python.py

Туре	Python file
Description	This file implements the old gnuradio_swig_python namespace
Examples	
Note	

Page 93 of 208

1.8.16) gnuradio/ gr / gnuradio_swig_io.py

Type	Python file
Description	This file implements many sink and source blocks
Examples	
Note	

1.8.16.1) file_sink_base ()

Туре	Function
Description	Common base class for file sinks.
Usage	gr.file_sink_base(filename, is_binary)
Parameters	filename: File Name
	is_binary : bool True or False
Note	
Sub Function 1	gr.gr_file_sink_base.open (filename) : Open filename and begin output to it.
Sub Function 2	gr.gr_file_sink_base.close (): Close current output file. Closes current output file and
	ignores any output until open is called to connect to another file.
Sub Function 3	gr.gr_file_sink_base.do_update (): if we've had an update, do it now.

1.8.16.2) file_sink ()

Type	Function
Description	Write a stream to a binary file.
Usage	gr.file_sink(itemzize,filename)
Parameters	itemsize : one of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char filename : File name
Note	

1.8.16.3) file_source ()

Туре	Function
Description	Read stream from binary file.
Usage	gr.file_source(itemzize,filename, repeat)
Parameters	itemsize: gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char filename: File name repeat : Bool True, or False, repeat file reading when EOF reached.
Note	
Sub Function 1	gr.file_source.seek (seek_point,whence) : seek file to seek_point relative to whence seek_point : sample offset in file whence : one of gr.SEEK_SET, gr.SEEK_CUR, gr.SEEK_END

1.8.16.4) file_descriptor_sink()

Туре	Function
Description	Write stream to file descriptor.
Usage	gr.file_descriptor_sink(itemzize, fd)
Parameters	itemsize: one of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
	fd: File descriptor, integer
Note	Needs more documenation

1.8.16.5) file_descriptor_source ()

Туре	Function
Description	Read stream from file descriptor.
Usage	gr.file_descriptor_source(itemzize,fd, reapeat)
Parameters	itemsize: gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char fd: File descriptor, integer repeat : Bool True, or False repeat file reading when EOF reached.
Note	Needs more documenation

1.8.16.6) microtune_xxxx_eval_board ()

Type	Function
Description	Abstract class for controlling microtune xxxx eval board
Usage	
Parameters	
Note	Needs more documentation

1.8.16.7) microtune_4702_eval_board ()

Туре	Function
Description	Control microtune 4702 eval board
Usage	
Parameters	
Note	Needs more documentation

1.8.16.8) microtune_4937_eval_board ()

Туре	Function
Description	Control microtune 4937 eval board
Usage	
Parameters	
Note	Needs more documentation

1.8.16.8) sdr_1000_base()

Туре	Function
Description	Very low level interface to SDR 1000 xcvr hardware. See sdr_1000.py for a higher level
	interface.
Usage	
Parameters	
Note	

1.8.16.9) oscope_sink_f ()

Type	Function
Description	Building block for python oscilloscope module. Accepts 1 to 16 float streams.
Usage	gr.oscope_sink_f(sampling_rate,msgq)
Parameters	sampling_rate : Double represent sampling rate
	msgq : Message queue
Note	Needs more documentation

1.8.16.10) ppio ()

Туре	Function
Description	Abstract class that provides low level access to parallel port bits.
Usage	
Parameters	
Note	Needs more documentation

1.8.16.11) message_source ()

Туре	Function
Description	Turn received messages into a stream.
Usage	gr.message_source(itemsize,msgq_limit)
Parameters	itemsize: Size of data
	msgq_limit: Integer, number of messages to hold in the queue
Note	Needs more documentation

1.8.16.12) message_sink ()

Type	Function
Description	Gather (convert) the received items into messages and insert into a message queue. Message type is 0, msg.arg1 will hold the itemsize, and msg.arg2 will hold number of items in the message.
Usage	gr.message_sink(itemsize,msgq,dont_block)
Parameters	itemsize: Size of data
	msgq : Message queue
	don't_block : bool True or False
Note	Needs more documentation

1.8.16.13) udp_sink()

Туре	Function
Description	Write stream to an UDP socket.
Usage	gr.udp_sink(itemsize, src, port_src, dst, port_dst, payload_size)
Parameters	itemsize: The size (in bytes) of the item datatype
	src: The source address as either the host name or the 'numbers-and-dots' IP address
	<pre>port_src : Destination port to bind to (0 allows socket to choose an appropriate port)</pre>
	dst: The destination address as either the host name or the 'numbers-and-dots' IP
	address
	port_dst : Destination port to connect to
	payload_size: UDP payload size by default set to 1472 = (1500 MTU - (8 byte UDP
	header) - (20 byte IP header))
Note	
Sub Function 1	gr.udp_sink.open(): open a socket specified by the port and ip address info
	Opens a socket, binds to the address, and makes connectionless association over UDP.
	If any of these fail, the fuction retuns the error and exits.
Sub Function 2	gr.udp_sink.close (): Close current socket. Shuts down read/write on the socket
Sub Function 3	gr.udp_sink.payload_size(): return the PAYLOAD_SIZE of the socket

1.8.16.14) udp_source ()

Туре	Function
Description	Read stream from UDP socket.
Usage	gr.udp_source(itemsize, src, port_src, payload_size)
Parameters	itemsize: The size (in bytes) of the item datatype
	<pre>src : The source address as either the host name or the 'numbers-and-dots' IP address port_src : Destination port to bind to (0 allows socket to choose an appropriate port) payload_size : UDP payload size by default set to 1472 = (1500 MTU - (8 byte UDP header) - (20 byte IP header))</pre>
Note	
Sub Function 1	gr.udp_source.open(): open a socket specified by the port and ip address info Opens a socket, binds to the address, and makes connectionless association over UDP. If any of these fail, the fuction returns the error and exits.
Sub Function 2	gr.udp_source.close (): Close current socket. Shuts down read/write on the socket
Sub Function 3	gr.udp_source.payload_size(): return the PAYLOAD_SIZE of the socket

1.8.17) gnuradio/ gr / gnuradio_swig_general.py

Туре	Python file
Description	This file implements the general gnuradio blocks
Examples	
Note	

1.8.17.1) nop ()

Туре	Function
Description	Does nothing. Used for testing only.
Usage	gr.nop(sizeof_stream_item)

Parameters	sizeof_stream_item : One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
Note	

1.8.27.2) null_sink()

Туре	Function
Description	Null sink block.
Usage	gr.null_sink (sizeof_stream_item)
Parameters	sizeof_stream_item: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float
	,gr_sizeof_char
Note	

1.8.27.3) null_source ()

Туре	Function
Description	Null source block. A source of zeros.
Usage	gr.null_source (sizeof_stream_item)
Parameters	sizeof_stream_item: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float
	,gr_sizeof_char
Note	

1.8.27.4) head ()

Туре	Function
Description	Copies the first N items to the output then signals done.
Usage	gr.head (sizeof_stream_item, nitems)
Parameters	sizeof_stream_item: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float
	,gr_sizeof_char
	nitems: Integer, number of samples to collect.
Note	

1.8.27.5) skiphead ()

Туре	Function
Description	Skips the first N items, from then on copies items to the output. Useful for building test
	cases and sources which have metadata or junk at the start
Usage	gr.skiphead (sizeof_stream_item, nitems_to_skip)
Parameters	sizeof_stream_item: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float
	,gr_sizeof_char
	nitems_to_skip: Integer, number of samples to skip
Note	

1.8.27.6) quadrature_demod_cf ()

Туре	Function
Description	Quadrature demodulator: complex in, float out. This can be used to demod FM, FSK, GMSK, etc. The input is complex baseband.
	awork, etc. The input is complex baseband.
Usage	gr.quadrature_demod_cf(gain)

Parameters	gain: float
Note	Needs more documenation

1.8.27.7) float_to_complex ()

Туре	Function
Description	Convert 1 or 2 streams of float to a stream of gr_complex.
Usage	gr.float_to_complex()
Parameters	
Note	

1.8.27.8) check_counting_s ()

Туре	Function
Description	Sink that checks if its input stream consists of a counting sequence. This sink is typically used to test the USRP "Counting Mode" or "Counting mode 32 bit".
Usage	gr.check_counting_s(do_32bit)
Parameters	do_32bit: Bool True or False, expect an interleaved 32 bit counter in stead of 16 bit counter (default false)
Note	

1.8.27.9) Ifsr_32k_source_s ()

Туре	Function
Description	LFSR pseudo-random source with period of 2^15 bits (2^11 shorts). This source is typically used along with gr_check_lfsr_32k_s to test the USRP using its digital loopback mode.
Usage	gr.lfsr_32k_source_s()
Parameters	
Note	

1.8.27.10) check_lfsr_32k_s ()

Туре	Function
Description	Sink that checks if its input stream consists of a lfsr_32k sequence. This sink is typically used along with gr_lfsr_32k_source_s to test the USRP using its digital loopback mode.
Usage	gr.check_lfsr_32k_s()
Parameters	
Note	
Sub Function 1	gr.check_lfsr_32k_s.ntotal(): Return long represent total number of elements
Sub Function 2	gr.check_lfsr_32k_s.nright(): Return long represent correct number of elements
Sub Function 3	gr.check lfsr 32k s.runlength (): Return long represent ??????????

Page 99 of 208

1.8.27.11) stream_to_vector ()

Туре	Function
Description	Convert a stream of items into a stream of blocks containing nitems_per_block
Usage	gr.stream_to_vector(item_size,nitems_per_block)
Parameters	item_size: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
	nitems_per_block : vector length
Note	

1.8.27.12) vector_to_stream ()

Туре	Function
Description	Convert a stream of blocks of nitems_per_block items into a stream of items
Usage	gr.vector_to_stream(item_size,nitems_per_block)
Parameters	item_size: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
	nitems_per_block : vector length
Note	

1.8.27.13) keep_one_in_n ()

Туре	Function
Description	Decimate a stream, keeping one item of size (itemsize) out of every n.
Usage	gr.keep_one_in_n(item_size, n)
Parameters	item_size: Item size we wish to keep
	n : integer
Note	
Sub Function 1	gr.keep_one_in_n.set_n(n)

1.8.27.14) fft_vcc ()

Туре	Function
Description	Compute forward or reverse FFT, complex vector in / complex vector out.
Usage	gr.fft_vcc(fft_size,forward, window, shift=false)
Parameters	fft_size : integer forward : bool True for forward FFT, False for inverse FFT window : window vector, shift : bool True or false
Note	
Sub Function 1	gr.fft_vcc.set_window(window)
Example	See usrp_spectrum_sense.py

1.8.27.15) fft_vfc ()

Туре	Function
Description	Compute forward or reverse FFT, float vector in / complex vector out.
Usage	gr.fft_vfc(fft_size,forward, window)
Parameters	fft_size : integer

	forward : bool True for forward FFT, False for inverse FFT window vector
Note	
Sub Function 1	gr.fft_vfc.set_window(window)

1.8.27.16) float_to_short ()

Туре	Function
Description	Convert stream of float to a stream of short.
Usage	gr.float_to_short()
Parameters	
Note	

1.8.27.17) float_to_uchar ()

Туре	Function
Description	Convert stream of float to a stream of unsigned character.
Usage	gr.float_to_uchar()
Parameters	
Note	

1.8.27.18) short_ to_float ()

Туре	Function
Description	Convert stream of short to a stream of float.
Usage	gr.short_to_float()
Parameters	
Note	

1.8.27.19) char_to_float ()

Туре	Function
Description	Convert stream of characters to a stream of float.
Usage	gr.char_to_float()
Parameters	
Note	

1.8.27.20) uchar_to_float ()

Type	Function
Description	Convert stream of unsigned characters to a stream of float.
Usage	gr.uchar_to_float()
Parameters	
Note	

1.8.27.21) frequency_modulator_fc ()

Туре	Function
Description	Frequency modulator block. float input; complex baseband output
Usage	gr.frequency_modulator_fc(sensitivity)
Parameters	sensitivity : double
Note	

1.8.27.22) phase_modulator_fc ()

Туре	Function
Description	Phase modulator block. output=complex(cos(in*sensitivity),sin(in*sensitivity))
Usage	gr.phase_modulator_fc(sensitivity)
Parameters	sensitivity : double
Note	

1.8.27.23) bytes_to_syms ()

Туре	Function
Description	Convert stream of bytes to stream of +/- 1 symbols (Turn it to NRZ data format). Input is a stream of bytes; output: stream of float. The combination of gr_packed_to_unpacked_bb followed by gr_chunks_to_symbols_bf or gr_chunks_to_symbols_bc handles the general case of mapping from a stream of bytes into arbitrary float or complex symbols.
Usage	gr.bytes_to_syms()
Parameters	
Note	

1.8.27.24) simple_framer ()

Туре	Function
Description	add sync field, seq number and command field to payload
Usage	gr.simple_framer(payload_bytesize)
Parameters	payload_bytesize : Integer
Note	Needs more documenation

1.8.27.25) simple_correlator ()

Туре	Function
Description	Inverse of gr_simple_framer (more or less).
Usage	gr.simple_framer(payload_bytesize)
Parameters	payload_bytesize : Integer
Note	Needs More documenation

Page 102 of 208

1.8.27.26) align_on_samplenumbers_ss ()

Туре	Function
Description	Align several complex short (interleaved short) input channels with corresponding unsigned 32 bit sample_counters (provided as interleaved 16 bit values). Pay attention on how you connect this block. It expects a minimum of 2 usrp_source_s with nchan number of channels and FPGA_MODE_COUNTING_32BIT enabled. This means that the first complex_short channel on every input is an interleaved 32 bit counter. The samples are aligned by dropping samples untill the samplenumbers match.
Usage	gr.align_on_samplenumbers_ss(nchan, align_interval)
Parameters	nchan: of complex_short input channels (including the 32 bit counting channel) align_interval: is after how much samples (minimally) the sample-alignement is refreshed. Default is 128. A bigger value means less processing power but also requests more buffer space, which has a maximum. Decrease the align_interval if you get an error like: "sched: <gr_block (0)="" align_on_samplenumbers_ss=""> is requesting more input data than we can provide. ninput_items_required = 32768 max_possible_items_available = 16383 If this is a filter, consider reducing the number of taps."</gr_block>
Note	Needs More documenation

1.8.27.27) complex_to_float ()

Type	Function
Description	Convert a stream of gr_complex to 1 or 2 streams of float
Usage	gr.complex_to_float(vlen)
Parameters	vlen :vector len (default 1)
Note	

1.8.27.28) complex_to_real ()

Туре	Function
Description	Complex in, real part out (float)
Usage	gr.complex_to_real(vlen)
Parameters	<i>vlen</i> :vector len (default 1)
Note	

1.8.27.29) complex_to_imag ()

Туре	Function
Description	Complex in, imaginary part out (float)
Usage	gr.complex_to_imag(vlen)
Parameters	vlen :vector len (default 1)
Note	

1.8.27.30) complex_to_mag ()

Туре	Function
Description	Complex in, magnitude out (float)
Usage	gr.complex_to_mag(vlen)
Parameters	vlen :vector len (default 1)
Note	

Page 103 of 208

1.8.27.31) complex_to_mag_squared()

Туре	Function
Description	Complex in, magnitude squared out (float)
Usage	gr.complex_to_mag_squared(vlen)
Parameters	<i>vlen</i> :vector len (default 1)
Note	

1.8.27.32) complex_to_arg ()

Туре	Function
Description	complex in, angle out (float)
Usage	gr.complex_to_arg(vlen)
Parameters	vlen :vector len (default 1)
Note	

1.8.27.33) complex_to_interleaved_short()

Type	Function
Description	Convert stream of complex to a stream of interleaved shorts.
Usage	gr.complex_to_interleaved_short()
Parameters	
Note	

1.8.27.34) interleaved_short_to_complex ()

Type	Function
Description	Convert stream of interleaved shorts to a stream of complex.
Usage	gr.interleaved_short_to_ complex ()
Parameters	
Note	

1.8.27.35) firdes ()

Type	Function
Description	Finite Impulse Response (FIR) filter design functions.
Note	

1.8.27.35.1) firdes.low_pass ()

Туре	Sub Function
Description	Design low pass FIR filter by using "window method"
Usage	gr.firdes. low_pass (gain,sampling_freq,cutoff_freq, transition_width, window = WIN_HAMMING,beta = 6.76)
Parameters	gain: overall gain of filter (typically 1.0) sampling_freq: sampling freq (Hz) cutoff_freq: center of transition band (Hz)

	<u> </u>
	transition_width: width of transition band (Hz). The normalized width of the transition
	band is what sets the number of taps required. Narrow> more taps
	window: What kind of window to use. Determines maximum attenuation and passband
	ripple. Available window types are:WIN_HAMMING, WIN_HANN ,
	WIN_BLACKMAN ,WIN_RECTANGULAR ,WIN_KAISER
	beta: parameter for Kaiser window (used only for Kaiser)
Note	See firdes.window for windowing information

1.8.27.35.2) firdes.high_pass ()

Туре	Sub Function
Description	Design high pass FIR filter by using "window method"
Usage	gr.firdes. high_pass (gain,sampling_freq,cutoff_freq, transition_width, window = WIN_HAMMING,beta = 6.76)
Parameters	gain: overall gain of filter (typically 1.0) sampling_freq: sampling freq (Hz) cutoff_freq: center of transition band (Hz) transition_width: width of transition band (Hz). The normalized width of the transition band is what sets the number of taps required. Narrow> more taps window: What kind of window to use. Determines maximum attenuation and passband ripple. Available window types are:WIN_HAMMING, WIN_HANN WIN_BLACKMAN,WIN_RECTANGULAR, WIN_KAISER beta: parameter for Kaiser window (used only for Kaiser)
Note	See firdes.window for windowing information

1.8.27.35.3) firdes.band_pass ()

Туре	Sub Function
Description	Design band pass FIR filter by using "window method"
Usage	gr.firdes.band_pass (gain,sampling_freq,low_cutoff_freq, high_cutoff_freq,
	transition_width, window = WIN_HAMMING,beta = 6.76)
Parameters	gain: overall gain of filter (typically 1.0)
	sampling_freq: sampling freq (Hz)
	low_cutoff_freq: center of low transition band (Hz)
	high_cutoff_freq: center of high transition band (Hz)
	transition_width: width of transition band (Hz). The normalized width of the transition
	band is what sets the number of taps required. Narrow> more taps
	window: What kind of window to use. Determines maximum attenuation and passband
	ripple. Available window types are:WIN_HAMMING, WIN_HANN ,
	WIN_BLACKMAN ,WIN_RECTANGULAR ,WIN_KAISER
	beta : parameter for Kaiser window (used only for Kaiser)
Note	See firdes.window for windowing information

1.8.27.35.4) firdes.complex_band_pass ()

Туре	Sub Function
Description	Design complex band pass FIR filter by using "window method"
Usage	gr.firdes.complex_band_pass (gain,sampling_freq,low_cutoff_freq,
	high_cutoff_freq, transition_width, window = WIN_HAMMING,beta = 6.76)
Parameters	gain: overall gain of filter (typically 1.0)
	sampling_freq: sampling freq (Hz)

	<u> </u>
	low_cutoff_freq: center of low transition band (Hz)
	high_cutoff_freq: center of high transition band (Hz)
	transition_width: width of transition band (Hz). The normalized width of the transition
	band is what sets the number of taps required. Narrow> more taps
	window: What kind of window to use. Determines maximum attenuation and passband
	ripple. Available window types are:WIN HAMMING, WIN HANN
	WIN BLACKMAN, WIN RECTANGULAR , WIN KAISER
	beta: parameter for Kaiser window (used only for Kaiser)
Note	See firdes.window for windowing information

1.8.27.35.5) firdes.band_reject ()

Type	Sub Function
Description	Design band reject FIR filter by using "window method"
Usage	gr.firdes.band_reject (gain,sampling_freq,low_cutoff_freq, high_cutoff_freq,
	transition_width, window = WIN_HAMMING,beta = 6.76)
Parameters	gain: overall gain of filter (typically 1.0)
	sampling_freq: sampling freq (Hz)
	low_cutoff_freq: center of low transition band (Hz)
	high_cutoff_freq: center of high transition band (Hz)
	transition_width: width of transition band (Hz). The normalized width of the transition
	band is what sets the number of taps required. Narrow> more taps
	window: What kind of window to use. Determines maximum attenuation and passband
	ripple. Available window types are:WIN_HAMMING, WIN_HANN ,
	WIN_BLACKMAN ,WIN_RECTANGULAR ,WIN_KAISER
	beta: parameter for Kaiser window (used only for Kaiser)
Note	See firdes.window for windowing information

1.8.27.35.6) firdes.hilbert ()

Type	Sub Function
Description	Design Hilbert Transform FIR filter by using "window method"
Usage	gr.firdes.hilbert (ntaps=19, windowtype = WIN_ RECTANGULAR,beta = 6.76)
Parameters	ntaps: Number of taps, must be odd
	windowtype: What kind of window to use. Determines maximum attenuation and
	passband ripple. Available window types are:WIN_HAMMING, WIN_HANN ,
	WIN_BLACKMAN ,WIN_RECTANGULAR ,WIN_KAISER
	beta: parameter for Kaiser window (used only for Kaiser)
Note	See firdes.window for windowing information

1.8.27.35.7) firdes.root_raised_cosine ()

Туре	Sub Function
Description	Design a root raised cosine FIR filter
Usage	gr.firdes.root_raised_cosine (gain, sampling_freq, symbol_rate, alpha, taps)
Parameters	gain: overall gain of filter (typically 1.0) sampling_freq: sampling freq (Hz) symbol_rate: symbol rate NOT bitrate (unless BPSK), must be a factor of sample rate alpha: excess bandwidth factor ntaps: number of taps
Note	

Page 106 of 208

1.8.27.35.8) firdes.gaussian ()

Туре	Sub Function
Description	Design a gaussian FIR filter
Usage	gr.firdes.gaussian (gain, spb, bt, ntaps)
Parameters	 gain: overall gain of filter (typically 1.0) spb: symbols per bit, symbol rate, must be a factor of sample rate bt: Bandwidth to bit rate ratio (bandwidth * symbol time) ntaps: number of taps
Note	

1.8.27.35.9) firdes.window ()

Туре	Sub Function
Description	Window taps maker
Usage	gr.firdes.window (type, ntaps, beta)
Parameters	type: window type, one of :
	WIN_HAMMING : Maximum Attenuation 53dB
	WIN_HANN : Maximum Attenuation 44dB
	WIN_BLACKMAN : Maximum Attenuation 74dB
	WIN_RECTANGULAR,
	WIN_KAISER: max attenuation a function of beta, google it
	ntaps: number of taps
	beta: parameter for Kaiser window (used only for Kaiser)
Note	The usage of these window types is as followes:
	gr.firdes. WIN_HAMMING
	gr.firdes. WIN_HANN
	gr.firdes. WIN_BLACKMAN
	gr.firdes. WIN_RECTANGULAR ,
	gr.firdes. WIN_KAISER

1.8.27.36) interleave ()

Type	Function
Description	Interleave N inputs to a single output
Usage	gr.interleave(item_size)
Parameters	Item_size: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
Note	

1.8.27.37) deinterleave ()

Туре	Function
Description	Deinterleave a single input into N outputs
Usage	gr.deinterleave(item_size)
Parameters	Item_size: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
Note	

Page 107 of 208

1.8.27.38) delay ()

Туре	Function
Description	Delay the input by a certain number of samples
Usage	gr.delay(itemsize, delay)
Parameters	Itemsize: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
	delay: Integer, number of samples
Note	
Sub Function 1	gr.delay.set_delay (delay) : Set block delay.
Sub Function 2	gr.delay.delay (): Return block delay.

1.8.27.39) simple_sequelch_cc ()

Type	Function
Description	Simple squelch block based on average signal power and threshold in dB. Output equal
	input if not muted.
Usage	gr.simple_squelch_cc(threshold_db, alpha)
Parameters	threshold_db : double
	alpha: Double, the gain value of a moving average filter (Time Constant in sec)
Note	Needs more documenation
Sub Function 1	gr.simple_sequelch_cc.set_threshold(decibels)
Sub Function 2	gr.simple_sequelch_cc.set_alpha(alpha)
Sub Function 3	gr.simple_sequelch_cc.threshold(): Return block threshold
Sub Function 4	gr.simple_sequelch_cc.unmuted(): Return bool True or False
Sub Function 5	gr.simple_sequelch_cc.squelch_range(): Return float vector represents sequelch range

1.8.27.40) agc_xx ()

Туре	Function
Description	High performance Automatic Gain Control class.
-	agc_cc: The Power is calculated by the absolute value of the complex number.
	<pre>agc_ff : Power is approximated by absolute value.</pre>
Usage	gr.agc_xx (rate, refrence, gain, max_gain)
Parameters	rate :float (Time Constant in Sec)
	refrence : float refrence power
	gain: float Initial gain
	max_gain : float maximum gain
Note	Needs more documentation

1.8.27.41) gri_agc_xx ()

Туре	Function
Description	High performance Automatic Gain Control class
	gri_agc_cc: The Power is calculated by the absolute value of the complex number.
	<pre>gri_agc_ff : Power is approximated by absolute value</pre>
Usage	gr.gri_agc_xx(rate=1e-4, refrence=1.0, gain=1.0, max_gain=0.0)
Parameters	rate :float (Time Constant in Sec)
	refrence : float refrence power
	gain: float Initial gain
	max_gain : float maximum gain

	-
Note	Needs more documentation
Sub Function 1	gr.gri_agc_xx.rate() : Return rate
Sub Function 2	gr.gri_agc_xx.refrence() : Return refrence
Sub Function 3	gr.gri_agc_xx.gain(): Return gain
Sub Function 4	gr.gri_agc_xx.max_gain(): Return max gain
Sub Function 5	gr.gri_agc_xx.set_rate() : Set rate
Sub Function 6	gr.gri_agc_xx.set_refrence() : Set refrence
Sub Function 7	gr.gri_agc_xx.set_gain(): Set gain
Sub Function 8	gr.gri_agc_xx.set_max_gain() : Set max gain
Sub Function 9	gr.gri_agc_xx.scale (input): ??????????
Sub Function 10	gr.gri_agc_xx.scaleN (output [], input [], n): ??????????

1.8.27.42) gri_agc2_xx ()

Туре	Function
Description	High performance Automatic Gain Control class
	gri_agc2_cc: For Power the absolute value of the complex number is used.
	gri_agc2_ff: Power is approximated by absolute value
Usage	gr.gri_agc2_xx(attack_rate=1e-1, decay_rate=1e-2,refrence=1, gain=1,
	max_gain=0.0)
Parameters	attack_rate :float
	decay_rate : float
	refrence : float refrence power
	gain: float initial gain
	max_gain : float
Note	Needs more documentation
Sub Function 1	gr.gri_agc_xx.attack_rate(): Return attack_rate
Sub Function 2	gr.gri_agc_xx.refrence(): Return refrence
Sub Function 3	gr.gri_agc_xx.gain(): Return gain
Sub Function 4	gr.gri_agc_xx.max_gain(): Return max gain
Sub Function 5	gr.gri_agc_xx.set_attack_rate() : Set attack_rate
Sub Function 6	gr.gri_agc_xx.set_refrence(): Set refrence
Sub Function 7	gr.gri_agc_xx.set_gain(): Set gain
Sub Function 8	gr.gri_agc_xx.set_max_gain() : Set max gain
Sub Function 9	gr.gri_agc_xx.scale (input): ??????????
Sub Function 10	gr.gri_agc_xx.scaleN (output [], input [], n): ???????????
Sub Function 11	gr.gri_agc_xx.decay_rate(): Return decay_rate
Sub Function 12	gr.gri_agc_xx.set_decay_rate(): Set decay_rate

1.8.27.43) rms_xx ()

Туре	Function
Description	RMS average power.
	rms_cf: Input is complex, output is float
	rms_ff: Input is float, output is float.
Usage	gr.rms_xx(alpha)
Parameters	alpha: Double, the gain value of a moving average filter (Time Constant in sec)
Note	Needs more documentation
Sub Function 1	gr.rms_xx.unmuted(): Return bool True or False
Sub Function 2	gr.rms_xx_set_alpha(alpha) : Set alpha

1.8.27.44) nlog10_ff ()

Type	Function
Description	Output = $n*log10(input) + k$
Usage	gr.nlog10_ff(n, vlen, k)
Parameters	n: Float
	vlen: Unsigned Integer vector length
	k: float
Note	

1.8.27.45) fake_channel_encoder_pp ()

Туре	Function
Description	Pad packet with alternating 1,0 pattern. Input: stream of byte vectors; output: stream of
	byte vectors
Usage	gr.fake_channel_encoder_pp(input_vlen, output_vlen)
Parameters	input_vlen : Integer
	output_vlen : Integer
Note	

1.8.27.46) fake_channel_decoder_pp ()

Type	Function
Description	Remove fake padding from packet. Input: stream of byte vectors; output: stream of byte vectors
Usage	gr.fake_channel_decoder_pp(input_vlen, output_vlen)
Parameters	input_vlen : Integer output_vlen : Integer
Note	

1.8.27.47) throttle ()

Type	Function
Description	Throttle flow of samples such that the average rate does not exceed samples_per_sec. Input: one stream of itemsize; output: one stream of itemsize
Usage	gr.throttle(item_size, samples_per_sec)
Parameters	<pre>itemsize: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char samples_per_sec : Double</pre>
Note	

1.8.27.48) mpsk_receiver_cc ()

Туре	Function
Description	This block takes care of receiving M-PSK modulated signals through phase, frequency,

Usage Parameters	and symbol synchronization. It performs carrier frequency and phase locking as well as symbol timing recovery. It works with (D) BPSK, (D)QPSK, and (D)8PSK as tested currently. It should also work for OQPSK and PI/4 DQPSK. The phase and frequency synchronization are based on a Costas loop that finds the error of the incoming signal point compared to its nearest constellation point. The frequency and phase of the NCO are updated according to this error. There are optimized phase error detectors for BPSK and QPSK, but 8PSK is done using a brute-force computation of the constellation points to find the minimum. The symbol synchronization is done using a modified Mueller and Muller circuit from the paper: G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller algorithm," Electronics Letters, Vol. 31, no. 13, 22 June 1995, pp. 1032 - 1033. This circuit interpolates the downconverted sample (using the NCO developed by the Costas loop) every mu samples, then it finds the sampling error based on this and the past symbols and the decision made on the samples. Like the phase error detector, there are optimized decision algorithms for BPSK and QPKS, but 8PSK uses another brute force computation against all possible symbols. The modifications to the M&M used here reduce self-noise. gr.mpsk_receiver_cc(M, theta, alpha, beta, fmin, fmax, mu, gain_mu, omega, gain_omega, omega_rel) M: Modulation order of the M-PSK modulation. The constructor also chooses which phase detector and decision maker to use in the work loop based on the value of M. theta: Any constant phase rotation from the real axis of the constellation alpha gain parameter to adjust the phase in the Costas loop (~0.01) beta: Gain parameter to adjust the frequency in the Costas loop (~alpha^2/4) fmin: Minimum normalized frequency value the loop can achieve fmax: Maximum normalized frequency value the loop can achieve fmax: Initial parameter of the M&M error signal to adjust mu (~0.05)
	omega :Initial value for the number of symbols between samples (~number of samples/symbol)
	gain_omega: Gain parameter to adjust omega based on the error (~omega^2/4) omega_rel: Sets the maximum (omega*(1+omega_rel)) and minimum (omega*(1+omega_rel)) omega (~0.005)
Note	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Sub Function 1	ar mask receiver, co mu() : (M&M) Potures ourrent value of mu
	gr.mpsk_receiver_cc.mu(): (M&M) Returns current value of mu
Sub Function 2	gr.mpsk_receiver_cc.omega(): (M&M) Returns current value of omega
Sub Function 3	gr.mpsk_receiver_cc.gain_mu(): M&M) Returns mu gain factor
Sub Function 4	gr.mpsk_receiver_cc.gain_omega() : (M&M) Returns omega gain factor
Sub Function 5 Sub Function 6	gr.mpsk_receiver_cc.set_mu() : (M&M) Set value of mu
Sub Function 6	gr.mpsk_receiver_cc. set_omega(): (M&M) Set_value of omega
	gr.mpsk_receiver_cc. set_gain_mu() : M&M) Set mu gain factor
Sub Function 8	gr.mpsk_receiver_cc. set_gain_omega() : (M&M) Set omega gain factor
Sub Function 9	gr.mpsk_receiver_cc.alpha() : (CL) Returns the value for alpha (the phase gain term)
Sub Function 10 Sub Function 11	gr.mpsk_receiver_cc.beta() : (CL) Returns the value of beta (the frequency gain term)
	gr.mpsk_receiver_cc.freq() : (CL) Returns the current value of the frequency of the NCO in the Costas loop
Sub Function 12	gr.mpsk_receiver_cc.phase() : (CL) Returns the current value of the phase of the NCO in the Costal loop
Sub Function 13	gr.mpsk_receiver_cc.set_alpha(): (CL) Sets the value for alpha (the phase gain term)
Sub Function 14	gr.mpsk_receiver_cc. set_beta() : (CL) (CL) Setss the value of beta (the frequency gain term)
Sub Function 15	gr.mpsk_receiver_cc. set_freq() : (CL) (CL) Sets the current value of the frequency of the NCO in the Costas loop
Sub Function 16	gr.mpsk_receiver_cc. set_phase() : (CL) Setss the current value of the phase of the NCO in the Costal loop

1.8.27.49) stream_mux ()

Туре	Function
Description	Creates a stream muxing block to multiplex many streams into one with a specified format. Muxes N streams together producing an output stream that contains N0 items from the first stream, N1 items from the second, etc. and repeats:[N0, N1, N2,, Nm, N0, N1,]
Usage	gr.stream_mux(item_size, lengths)
Parameters	itemsize: The item size of the stream lengths: A vector (list/tuple) specifying the number of items from each stream the mux together. Warning: this requires that at least as many items per stream are available or the system will wait indefinitely for the items.
Note	

1.8.27.50) stream_to_streams ()

Туре	Function
Description	Convert a stream of items into a N streams of items. Converts a stream of N items into N streams of 1 item. Repeat and infinitum
Usage	gr.stream_to_streams(item_size, nstreams)
Parameters	itemsize : The item size of the stream
	nstreams : Number of streams
Note	

1.8.27.51) streams_to_stream ()

Туре	Function
Description	Convert N streams of 1 item into a 1 stream of N items. Convert N streams of 1 item into 1 stream of N items. Repeat and infinitum.
	i stream of Nitems. Repeat and infinitum.
Usage	gr.streams_to_stream(item_size, nstreams)
Parameters	itemsize : The item size of the stream
	nstreams: Number of streams
Note	

1.8.27.52) streams_to_vector ()

Туре	Function
Description	Convert N streams of items to 1 stream of vector length N
Usage	gr.streams_to_vector(item_size, nstreams)
Parameters	itemsize: The item size of the stream
	nstreams: Number of streams
Note	

1.8.27.53) stream_to_vector ()

Туре	Function
Description	Convert a stream of items into a stream of blocks containing nitems_per_block
Usage	gr.stream_to_vector(item_size, nitems_per_block)
Parameters	itemsize: The item size of the stream

	nitems_per_block : Number of items in the vector
Note	

1.8.27.54) vector_to_ streams ()

Туре	Function
Description	Convert 1 stream of vectors of length N to N streams of items.
Usage	gr.vector_to_streams(item_size, nstreams)
Parameters	itemsize : The item size of the stream
	nstreams: Number of streams
Note	

1.8.27.55) vector_to_stream ()

Туре	Function
Description	Convert a stream of blocks of nitems_per_block items into a stream of items
Usage	gr. vector_to_stream(item_size, nitems_per_block)
Parameters	itemsize : The item size of the stream
	nitems_per_block : Number of items in the vector
Note	

1.8.27.56) conjugate_cc ()

Type	Function
Description	output = complex conjugate of input
Usage	gr. conjugate_cc()
Parameters	
Note	

1.8.27.57) vco_f ()

Туре	Function
Description	VCO - Voltage controlled oscillator. input: float stream of control voltages; output: float
	oscillator output
Usage	gr. vco_f(sampling_rate, sensitivity, amplitude)
Parameters	sampling_rate: sampling rate (Hz)
	sensitivity: units are radians/sec/volt
	amplitude : output amplitude
Note	

1.8.27.58) threshold_ff ()

Type	Function
Description	?????????????????

Usage	gr. threshold_ff(lo,hi,initial_state)
Parameters	lo: Low threshold value
	hi: High threshold value
	initial_state: ????????????
Note	Needs more documentation
Sub Function 1	gr.threshold_ff.lo():
Sub Function 2	gr.threshold_ff.hi():
Sub Function 3	gr.threshold_ff.last_state():
Sub Function 4	gr.threshold_ff.set_lo():
Sub Function 5	gr.threshold_ff.set_hi():
Sub Function 6	gr.threshold_ff.set_last_state():

1.8.27.59) clock_recovery_mm_xx ()

Type	Function
Description	This implements the Mueller and Müller (M&M) discrete-time error-tracking synchronizer. The clock recovery block trucks the symbol clock and resamples as needed. The output of the block is a stream of soft symbols. The complex version here is based on: Modified Mueller and Muller clock recovery circuit Based: G. R. Danesfahani, T.G. Jeans, "Optimisation of modified Mueller and Muller algorithm," Electronics Letters, Vol. 31, no. 13, 22 June 1995, pp. 1032 - 1033. clock_recovery_mm_cc: Mueller and Müller (M&M) based clock recovery block with complex input, complex output.
	clock_recovery_mm_ff: Mueller and Müller (M&M) based clock recovery block with float input, float output.
Usage	gr. clock_recovery_mm_xx(omega, gain_omega, mu, gain_mu, omega_relative_limit)
Parameters	 omega :initial value for the number of symbols between samples (~number of samples/symbol) gain_omega : Gain parameter to adjust omega based on the error mu : Initial parameter for the interpolator gain_mu : Gain parameter of the M&M error signal to adjust mu omega_relative_limit :Sets the maximum and minimum omega
Note	Needs more documentation
Sub Function 1	gr. clock_recovery_mm_xx.omega(): Return omega
Sub Function 2	gr. clock_recovery_mm_xx.mu(): Return mu
Sub Function 3	gr. clock_recovery_mm_xx.gain_omega(): Return gain_omega
Sub Function 4	gr. clock_recovery_mm_xx.gain_mu(): Return gain_mu
Sub Function 5	gr. clock_recovery_mm_xx.set_omega(omega) : Set omega
Sub Function 6	gr. clock_recovery_mm_xx.set_mu(mu) : Set mu
Sub Function 7	gr. clock_recovery_mm_xx.set_gain_omega(gain_omega) : Set gain_omega
Sub Function 8	gr. clock_recovery_mm_xx.set_gain_mu(gain_mu) : Set gain_mu
Sub Function 9	gr. clock_recovery_mm_xx.set_verbose(verbose) : Set printing

1.8.27.60) dd_mpsk_sync_cc ()

Туре	Function
Description	Decision directed M-PSK synchronous demod This block performs joint carrier tracking and symbol timing recovery. Input: complex baseband; output: properly timed complex samples ready for slicing. At this point, it handles only QPSK.
Usage	gr.dd_mpsk_sync_cc(alpha, beta, max_freq, min_freq, ref_phase, omega,
	gain_omega,mu, gain_mu)
Parameters	alpha: Gain parameter to adjust the phase in the Costas loop
	beta: Gain parameter to adjust the frequency in the Costas loop

Omple analade cool	1 480 111 01 200
	<pre>min_freq: Minimum normalized frequency value the loop can achieve max_freq: Maximum normalized frequency value the loop can achieve ref_phase: ???????????? mu: Initial parameter for the interpolator gain_mu: Gain parameter of the M&M error signal to adjust mu omega: Initial value for the number of symbols between samples (~number of samples/symbol) gain_omega: Gain parameter to adjust omega based on the error</pre>
Note	Needs more documentation
Sub Function 1	gr.mpsk_ sync _cc.mu() : (M&M) Returns current value of mu
Sub Function 2	gr.mpsk_ sync_cc.omega(): (M&M) Returns current value of omega
Sub Function 3	gr.mpsk_ sync _cc.gain_mu() : M&M) Returns mu gain factor
Sub Function 4	gr.mpsk_ sync _cc.gain_omega() : (M&M) Returns omega gain factor
Sub Function 5	gr.mpsk_ sync _cc.set_mu() : (M&M) Set value of mu
Sub Function 6	gr.mpsk_ sync _cc. set_omega() : (M&M) Set value of omega
Sub Function 7	gr.mpsk_ sync _cc. set_gain_mu() : M&M) Set mu gain factor
Sub Function 8	gr.mpsk_ sync _cc. set_gain_omega() : (M&M) Set omega gain factor

1.8.27.61) packet_sink ()

Туре	Function
Description	Process received bits looking for packet sync, header, and process bits into packet
Usage	gr.packet_sink(sync_vector, target_queue, threshold)
Parameters	sync_vector: vector of unsigned charaters.
	target_gueue : message queue
	threshold: Integer
Note	Needs more documentation
Sub Function 1	gr.packet_sink.carrier_sensed() : Return true if we detect carrier

1.8.27.62) lms_dfe_xx ()

Type	Function
Description	Least-Mean-Square Decision Feedback Equalizer.
	Ims_dfe_cc : complex in/out
	Ims_dfe_ff : float in/out
Usage	gr.lms_dfe_xx(lambda_ff, lambda_fb, num_fftaps, num_fbtaps)
Parameters	
Note	Needs more documentation

1.8.27.63) dpll_bb ()

Туре	Function
Description	Detect the peak of a signal. If a peak is detected, this block outputs a 1, else it outputs
	0's.
Usage	gr.dpll_bb(period, gain)
Parameters	period: ????????
	gain: ???????
Note	Needs more documentation

Simple Gnuradio User Manual Page 115 of 208

1.8.27.64) pll_freqdet_cf ()

Туре	Function
Description	Implements a PLL which locks to the input frequency and outputs an estimate of that frequency. Useful for FM Demod. input: stream of complex; output: stream of floats. This PLL locks onto a [possibly noisy] reference carrier on the input and outputs an estimate of that frequency in radians per sample. All settings max_freq and min_freq are in terms of radians per sample, NOT HERTZ. Alpha is the phase gain (first order, units of radians per radian) and beta is the frequency gain (second order, units of radians per sampl per radian)
Usage	gr.pll_freqdet_cf(alpha, beta, max_freq, min_freq)
Parameters	alpha: beta: max_freq: min_freq:
Note	Needs more documentation

1.8.27.65) pll_refout_cc ()

Туре	Function
Description	Implements a PLL which locks to the input frequency and outputs a carrier.
	input: stream of complex; output: stream of complex. This PLL locks onto a [possibly
	noisy] reference carrier on the input and outputs a clean version which is phase and
	frequency aligned to it.
	All settings max_freq and min_freq are in terms of radians per sample, NOT HERTZ.
	Alpha is the phase gain (first order, units of radians per radian) and beta is the frequency
	gain (second order, units of radians per sample per radian)
Usage	gr.pll_refout_cc(alpha, beta, max_freq, min_freq)
Parameters	alpha:
	beta :
	max_freq:
	min_freq :
Note	Needs more documentation
	2) If alpha = x, it was suggested that beta = 0.25 * x * x
Example	See hfx2.py in apps

1.8.27.66) pll_carriertracking_cc()

Usage	gain (second order, units of radians per radian) gr.pll_carriertracking_cc(alpha, beta, max_freq, min_freq)
	All settings max_freq and min_freq are in terms of radians per sample, NOT HERTZ. Alpha is the phase gain (first order, units of radians per radian) and beta is the frequency
	This PLL locks onto a [possibly noisy] reference carrier on the input and outputs that signal, downconverted to DC
Description	Implements a PLL which locks to the input frequency and outputs the input signal mixed with that carrier. input: stream of complex; output: stream of complex
Туре	Function

Note	Needs more documentation
Sub Function 1	gr.pll_carriertracking_cc.lock_detector(): Return bool True or False
Sub Function 2	gr.pll_carriertracking_cc.set_lock_threshold(value) : Set threshold value
Sub Function 3	gr.pll carriertracking cc.squelch enable(on): Set /reset squelch

1.8.27.67) pn_correlator_cc ()

Type	Function
Description	PN code sequential search correlator. Receives complex baseband signal, outputs complex correlation against reference PN code, one sample per PN code period
Usage	gr.pn_correlator_cc(degree, mask, seed)
Parameters	degree:
	mask:
	seed:
Note	Needs more documentation

1.8.27.68) probe_signal_f ()

Туре	Function
Description	Sink that allows a samples ruuning in stream to be grabbed from Python.
Usage	gr.probe_signal_f()
Parameters	
Note	Needs more documenation
Sub Function 1	gr.probe_signal_f.level(): Return probed signal level
Example	See radio.py in apps

1.8.27.69) probe_avg_mag_sqrd_xx ()

Type	Function
Description	Sink that allows a samples ruuning in stream to be grabbed from Python. It computes avg magnitude squared. Compute a running average of the magnitude squared of the the input. The level and indication as to whether the level exceeds threshold can be retrieved with the level and unmuted accessors. probe_avg_mag_sqrd_c: input: gr_complex probe_avg_mag_sqrd_f: input: float probe_avg_mag_sqrd_cf: input: gr_complex, output: gr_float
Usage	gr.proble_avg_mag_sqrd_xx(threshold_db, alpha)
Parameters	threshold_db : The threshold value in dB
	alpha: The gain value (float) of a moving average filter (Time Constant in sec)
Note	Needs more documenation
Sub Function 1	gr.probe_avg_mag_sqrd_xx.level(): Return double represent the probed_level
Sub Function 2	gr.probe_avg_mag_sqrd_xx.thresholdl(): Return double represent block threshold
Sub Function 3	gr.probe_avg_mag_sqrd_xx.unmuted(): Return bool True or False
Sub Function 4	gr.probe_avg_mag_sqrd_xx.set_thresholdl(): Set_threshold
Sub Function 5	gr.probe_avg_mag_sqrd_xx.set_alpha() : Set alpha
Example	See receive-path.py in digital folder

Simple Gnuradio User Manual Page 117 of 208

1.8.27.70) ofdm_correlator ()

Type	Function
Description	Build an OFDM correlator and equalizer. Take a vector of complex constellation points in
	from an FFT and performs a correlation and equalization. blocks
	This block takes the output of an FFT of a received OFDM symbol and finds the start of a
	frame based on two known symbols. It also looks at the surrounding bins in the FFT
	output for the correlation in case there is a large frequency shift in the data. This block
	assumes that the fine frequency shift has already been corrected and that the samples
	fall in the middle of one FFT bin.
	It then uses one of those known symbols to estimate the channel response over all
	subcarriers and does a simple 1-tap equalization on all subcarriers. This corrects for the
	phase and amplitude distortion caused by the channel.
Usage	gr.ofdm_correlator(occupied_carriers, fft_length, cplen, known_symbol1,
	known_symbol2, max_fft_shift_len)
Parameters	occupied_carriers The number of subcarriers with data in the received symbol
	fft_length The size of the FFT vector (occupied_carriers + unused carriers)
	known_symbol1 A vector of complex numbers representing a known symbol at the start
	of a frame (usually a BPSK PN sequence)
	<i>known_symbol2</i> A vector of complex numbers representing a known symbol at the start
	of a frame after known_symbol1 (usually a BPSK PN sequence). Both of these start
	symbols are differentially correlated to compensate for phase changes between symbols.
	max_fft_shift_len Set's the maximum distance you can look between bins for
	correlation
Note	Needs more documenation
Sub Function 1	gr. ofdm_correlator.snr (): Return an estimate of the SNR of the channel.
Example	

1.8.27.71) ofdm_cyclic_prefixer ()

Туре	Function
Description	Adds a cyclic prefix vector to an input size long ofdm symbol (vector) and converts vector
	to a stream output_size long.
Usage	gr.ofdm_cyclic_prefixer(input_size, output_size)
Parameters	input_size: ?????????
	output_size: ??????????
Note	Needs more documenation
Example	

1.8.27.72) ofdm_bpsk_mapper ()

Туре	Function
Description	Take a message in and map to a vector of complex constellation points suitable for IFFT
	input to be used in an ofdm modulator. Simple BPSK version.
Usage	gr.ofdm_bpsk_mapper (msgq_limit, occupied_carriers, fft_length)
Parameters	msgq_limit: maximum number of messages in message queue
	occupied_carriers: ????????
	fft_length: FFT length
Note	Needs more documentation
Sub Function 1	gr.ofdm_bpsk_mapper.msgq(): Return a pointer to msg queue
Example	

Page 118 of 208

1.8.27.73) ofdm_bpsk_demapper ()

Type	Function
Description	Take a vector of complex constellation points in from an FFT and demodulate to a stream of bits. Simple BPSK version.
Usage	gr.ofdm_bpsk_demapper (occupied_carriers)
Parameters	occupied_carriers: ????????
Note	Needs more documentation
Example	

1.8.27.74) ofdm_ mapper_bcv ()

Туре	Function
Description	Take a stream of bytes in and map to a vector of complex constellation points suitable for
	IFFT input to be used in an ofdm modulator. Abstract class must be subclassed with
	specific mapping.
Usage	gr.ofdm_mapper_bcv (constellation, msgq_limit, occupied_carriers, fft_length)
Parameters	constellation : vector of complex data
	msgq_limit: maximum number of messages in message queue
	occupied_carriers:???????
	fft_length: FFT length
Note	Needs more documentation
Sub Function 1	gr.ofdm_mapper_bcv.msgq(): Return a pointer to msg queue
Example	

1.8.27.75) ofdm_qpsk_mapper ()

Туре	Function
Description	Take a message in and map to a vector of complex constellation points suitable for IFFT input to be used in an ofdm modulator. Simple QPSK version.
Usage	gr.ofdm_qpsk_mapper (msgq_limit, occupied_carriers, fft_length)
Parameters	msgq_limit: maximum number of messages in message queue
	occupied_carriers: ????????
	fft_length : FFT length
Note	Needs more documentation
Sub Function 1	gr.ofdm_qpsk_mapper.msgq(): Return a pointer to msg queue
Example	

1.8.27.76) ofdm_qam_mapper ()

Туре	Function
Description	Take a message in and map to a vector of complex constellation points suitable for IFFT input to be used in an ofdm modulator. Simple QAM version.
Usage	gr.ofdm_qam_mapper (msgq_limit, occupied_carriers, fft_length, m)
Parameters	<pre>msgq_limit: maximum number of messages in message queue occupied_carriers : ???????? fft_length : FFT length m : ?????????</pre>
Note	Needs more documentation
Sub Function 1	gr.ofdm_qam_mapper.msgq(): Return a pointer to msg queue
Example	

Simple Gnuradio User Manual Page 119 of 208

1.8.27.77) ofdm_frame_sink ()

Туре	Function
Description	Takes an OFDM symbol in, demaps it into bits of 0's and 1's, packs them into packets,
	and sends to to a message queue sink.
	NOTE: The mod input parameter simply chooses a pre-defined demapper/slicer.
	Eventually, we want to be able to pass in a reference to an object to do the demapping
	and slicing for a given modulation type.
Usage	gr.ofdm_frame_sink (sym_position, sym_value_out, target_queue,
	occupied_tones)
Parameters	sym_position : vector of complex
	sym_value_out : vector of unsigned characters
	target_queue : point to message queue
	occupied_tones : Integer
Note	Needs more documentation
Example	

1.8.27.78) ofdm_insert_preamble ()

Туре	Function
Description	Insert "pre-modulated" preamble symbols before each payload.
	Input 1: stream of vectors of gr_complex [fft_length]. These are the modulated symbols of the payload.
	Input 2: stream of char. The LSB indicates whether the corresponding symbol on input 1 is the first symbol of the payload or not. It's a 1 if the corresponding symbol is the first symbol; otherwise 0. This implies that there must be at least 1 symbol in the payload. Output 1: stream of vectors of gr_complex [fft_length] These include the preamble symbols and the payload symbols.
	Output 2: stream of char. The LSB indicates whether the corresponding symbol on input
	1 is the first symbol of a packet (i.e., the first symbol of the preamble.) It's a 1 if the corresponding symbol is the first symbol, otherwise 0.
Usage	gr.ofdm_insert_preamble(fft_length, preamble)
Parameters	fft_length : FFT length
	preamble: vector of complex vectors
Note	Needs more documentation
Example	

1.8.27.79) ofdm_sampler ()

Туре	Function
Description	Does the rest of the OFDM stuff ??????????
Usage	gr.ofdm_sampler(fft_length, symbol_length)
Parameters	fft_length : FFT length
	symbol_length: ??????????????
Note	Needs more documentation
Example	

1.8.27.80) regenerate_bb ()

Туре	Function
Description	Make a regenerate block. Detect the peak of a signal and repeat every period samples. If a peak is detected, this block outputs a 1 repeated every period samples until reset by detection of another 1 on the input or stopped after max_regen regenerations have occurred. Note that if max_regen= (-1)/ULONG_MAX, then the regeneration will run forever.
Usage	gr.regenerate_bb(period, max_regen)
Parameters	<pre>period : The number of samples between regenerations max_regen : The maximum number of regenerations to perform; if set to ULONG_MAX, it will regenerate continuously.</pre>
Note	Needs more documentation
Sub Function 1	gr.regenerate_bb.set_max_regen (regen): Reset the maximum regeneration count; this will reset the current regen.
Sub Function 2	gr.regenerate_bb.set_period (period): Reset the period of regenerations; this will reset the current regen.
Example	

1.8.27.81) costas_loop_cc ()

Туре	Function
Description	A Costas loop carrier recovery module. Carrier tracking PLL for QPSK. Input: complex; output: complex .The Costas loop can have two output streams: stream 1 is the baseband I and Q; stream 2 is the normalized frequency of the loop order must be 2 or 4. The Costas loop locks to the center frequency of a signal and downconverts it to baseband. The second (order=2) order loop is used for BPSK where the real part of the output signal is the baseband BPSK signal and the imaginary part is the error signal. When order=4, it can be used for quadrature modulations where both I and Q (real and imaginary) are outputted. More details can be found online: J. Feigin, "Practical Costas loop design: Designing a simple and inexpensive BPSK Costas loop carrier recovery circuit," RF signal processing, pp. 20-36, 2002. http://rfdesign.com/images/archive/0102Feigin20.pdf
Usage	gr.costas_loop_cc(alpha, beta, max_freq, min_freq, order)
Parameters	alpha: The loop gain used for phase adjustment beta: The loop gain for frequency adjustments max_freq: The maximum frequency deviation (normalized frequency) the loop can handle min_freq: The minimum frequency deviation (normalized frequency) the loop can handle order: The loop order, either 2 or 4
Note	Needs more documentation
Example	

1.8.27.82) pa_2x2_phase_combiner ()

Туре	Function
Description	pa_2x2 phase combiner. Anntenas are arranged like this: 2 3 0 1
	dx and dy are lambda/2.
Usage	gr.pa_2x2_phase_combiner()
Parameters	
Note	Needs more documentation
Sub Function 1	gr.pa_2x2_phase_combiner.theta(): Return theta
Sub Function 2	gr.pa_2x2_phase_combiner.set_theta(theta) : Set theta (float)
Example	

Page 121 of 208

1.8.27.83) kludge_copy ()

Type	Function
Description	output[i] = input[i] .This is a short term kludge to work around a problem with the hierarchical block impl.
Usage	gr.kludge_copy(itemsize)
Parameters	itemsize: One of gr.sizeof_short, gr.sizeof_gr_complex, gr.sizeof_float ,gr_sizeof_char
Note	
Example	

1.8.27.84) prefs ()

Туре	Function
Description	Base class for representing user preferences in windows INI files. The real implementation is in Python, and is accessable from C++ via the magic of SWIG directors.
Usage	
Parameters	
Note	Needs more documentation
Example	

1.8.27.85) test ()

Туре	Function
Description	Test class for testing runtime system (setting up buffers and such.). This block does not do any usefull actual data processing. It just exposes setting all standard block parameters using the contructor or public methods. This block can be usefull when testing the runtime system. You can force this block to have a large history, decimation factor and/or large output_multiple. The runtime system should detect this and create large enough buffers all through the signal chain.
Usage	
Parameters	
Note	Needs more documentation
Example	

1.8.27.86) unpack_k_bits_bb ()

Туре	Function
Description	Converts a byte with k relevent bits to k output bytes with 1 bit in the LSB.
Usage	gr.unpack_k_bits_bb(k)
Parameters	
Note	Needs more documentation
Example	

Page 122 of 208

1.8.27.87) correlate_access_code_bb ()

Туре	Function
Description	Examine input for specified access code, one bit at a time. Input: stream of bits, 1 bit per input byte (data in LSB), output: stream of bits, 2 bits per output byte (data in LSB, flag in next higher bit). Each output byte contains two valid bits, the data bit, and the flag bit. The LSB (bit 0) is the data bit, and is the original input data, delayed 64 bits. Bit 1 is the flag bit and is 1 if the corresponding data bit is the first data bit following the access code. Otherwise the flag bit is 0.
Usage	gr.correlate_access_code_bb(access_code, threshold)
Parameters	<pre>access_code : is string represented with 1 byte per bit, e.g., "010101010111000100" threshold : maximum number of bits that may be wrong</pre>
Note	Needs more documentation
Sub Function 1	gr.correlate_access_code_bb.set_access_code(access_code)
Example	

1.8.27.88) diff_phasor_cc ()

Туре	Function
Description	????????????????
Usage	
Parameters	
Note	Needs more documentation
Example	

1.8.27.89) constellation_decoder_cb ()

Туре	Function
Description	????????????????
Usage	gr. constellation_decoder_cb(sym_position, sym_value_out)
Parameters	sym_position : vector of complex
	sym_value_out : vector of unsigned charaters
Note	Needs more documentation
Sub Function 1	gr. constellation_decoder_cb.set_constellation(sym_position, sym_value_out)
Example	

1.8.27.90) binary_slicer_fb ()

Туре	Function
Description	Slice float binary symbol outputting 1 bit output (the LSB of the output byte) per sample.
•	If $x < 0$ then output 0. If $x >= 0$ then output 1
Usage	gr. binary_slicer_fb()
Parameters	
Note	
Example	

Page 123 of 208

1.8.27.91) diff_encoder_bb ()

Туре	Function
Description	Differential encoder.y[0] = $(x[0] + y[-1]) \% M$
Usage	gr. diff_encoder_bb(modulus)
Parameters	
Note	
Example	

1.8.27.92) diff_decoder_bb ()

Type	Function
Description	Differential decoder.y[0] = $(x[0] - x[-1]) \% M$
Usage	gr. diff_decoder_bb(modulus)
Parameters	
Note	
Example	

1.8.27.93) framer_sink_1 ()

Туре	Function
Description	Given a stream of bits and access_code flags, assemble packets. Input: stream of bytes from gr_correlate_access_code_bb, output: none. Pushes assembled packet into target queue. The framer expects a fixed length header of 2 16-bit shorts containing the payload length, followed by the payload. If the 2 16-bit shorts are not identical, this packet is ignored. Better algs are welcome. The input data consists of bytes that have two bits used. Bit 0, the LSB, contains the data bit. Bit 1 if set, indicates that the corresponding bit is the the first bit of the packet. That is, this bit is the first one after the access code.
Usage	gr. framer_sink_1(target_queue)
Parameters	target_queue : pointer to message queue
Note	Needs more documenation
Example	

1.8.27.94) map_bb ()

Туре	Function
Description	output[i] = map[input[i]]
Usage	gr. map_bb(map)
Parameters	map : a vector of intgers
Note	Needs more documenation
Example	

1.8.27.95) feval ()

Type	Function
Description	Base class for evaluating a function: void -> void This class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. It's slow. Don't use it in

	a performance critical path. Override eval to define the behavior. Use calleval to invoke eval (this kludge is required to allow a python specific "shim" to be inserted.
Usage	gr. feval()
Parameters	
Sub Function 1	ge.feval.calleval()
Note	Needs more documenation
Example	

1.8.27.96) feval_xx ()

Туре	Function
Description	Base class for evaluating a function. This class is designed to be subclassed in Python or C++ and is callable from both places. It uses SWIG's "director" feature to implement the magic. It's slow. Don't use it in a performance critical path. Override eval to define the behavior. Use calleval to invoke eval (this kludge is required to allow a python specific "shim" to be inserted. feval_cc: complex to complex feval_dd: double to double feval_II: long to long
Usage	gr. feval_xx()
Parameters	
Sub Function 1	ge.feval_xx.calleval()
Note	Needs more documenation
Example	

1.8.27.97) pwr_squelch_xx ()

Туре	Function
Description	Gate or zero output when input power below threshold.
	pwr_squelch_cc : complex input, complex output
	pwr_squelch_ff : float input, float output
Usage	gr. pwr_squelch_xx(db, alpha, ramp, gate)
Parameters	db: threshold value
	alpha: The gain value (float) of a moving average filter (Time Constant in sec)
	ramp : integer represents rise/fail time im msec
	gate: bool True or False
Sub Function 1	gr.pwr_squelch_xx.threshold(): Return threshold
Sub Function 2	gr.pwr_squelch_xx.set_threshold(db) : Set threshold
Sub Function 3	gr.pwr_squelch_xx.set_alpha(alpha) : Set alpha
Sub Function 4	gr.pwr_squelch_xx.ramp(): Return ramp
Sub Function 5	gr.pwr_squelch_xx.set_ramp(ramp) : Set ramp
Sub Function 6	gr.pwr_squelch_xx.gate(): Return bool True or False
Sub Function 7	gr.pwr_squelch_xx.set_gate(on) : Set threshold
Sub Function 8	gr.pwr_squelch_xx.unmuted(): Return bool True or False
Note	Needs more documenation
Example	

1.8.27.98) squelch_base_xx ()

Туре	Function
Description	????????????????????????
·	squelch_base_cc : complex input, complex output

	8
	squelch_base_ff: float input, float output
Usage	gr. squelch_base_xx(name, ramp, gate)
Parameters	name : ?????
	ramp : integer represents rise/fail time im msec
	gate: bool True or False
Sub Function 1	gr.squelch_base_xx.squelch_range(): Return range
Sub Function 2	gr. squelch_ base_xx.ramp() : Return ramp
Sub Function 3	gr. squelch_ base_xx.set_ramp(ramp) : Set ramp
Sub Function 4	gr. squelch_ base_xx.gate(): Return bool True or False
Sub Function 5	gr. squelch_ base_xx.set_gate(on) : Set threshold
Sub Function 6	gr. squelch_ base_xx.unmuted() : Return bool True or False
Note	Needs more documenation
Example	

1.8.27.99) ctcss_squelch_ff ()

Туре	Function
Description	Gate or zero output if ctcss tone not present
Usage	gr. ctcss_squelch_ff(rate, freq, level, len, ramp, gate)
Parameters	rate: sampling rate
	freq: tone frequency
	level : tone level
	ramp: integer represents rise/fail time im msec
	gate: bool True or False
Sub Function 1	gr.ctcss_squelch_ff.level() : Return level
Sub Function 2	gr.ctcss_squelch_ff.set_level(level) : Set level
Sub Function 3	gr.ctcss_squelch_ff.len(): Return length
Sub Function 4	gr.ctcss_squelch_ff.squelch_range(): Return squelch range
Sub Function 5	gr.ctcss_squelch_ffr_amp() : Return ramp
Sub Function 6	gr.ctcss_squelch_ff.set_ramp(ramp) : Set ramp
Sub Function 7	gr.ctcss_squelch_ff.gate(): Return True or False
Sub Function 8	gr.ctcss_squelch_ff.set_gate(gate) : Set Gate
Sub Function 9	gr.ctcss_squelch_ff.unmuted() : Return True or False
Note	Needs more documenation
Example	

1.8.27.100) feedforward_agc_cc ()

Туре	Function
Description	Non-causal AGC which computes required gain based on max absolute value over
	nsamples.
Usage	gr. feedforward_agc_cc(nsamples, refrence)
Parameters	nsamples : number of samples
	refrence : refrence value
Note	
Example	

1.8.27.101) bin_statistics_f ()

Туре	Function
Description	Sink block that controls frequency scanning and record frequency domain statistics.
Usage	gr. bin_statistics(vlen, msgq, tune, tune_delay, dwell_delay)
Parameters	vlen: vector length (fft size) msgq: pointer to msg queue tune: python callback function (tune type is gr.feval_dd()) tune_delay: Time to delay (in number of samples) after changing frequency dwell_delay: Time to dwell (in number of samples) at a given frequency
Note	Needs more documenation
Example	See usrp_spectrum_sense.py

1.8.27.102) glfsr_source_x ()

Туре	Function
Description	glfsr_source_f: Galois LFSR pseudo-random source generating float outputs -1.0 - 1.0.
	glfsr_source_b : Galois LFSR pseudo-random source generating 0 or 1.
Usage	gr. glfsr_source_x(degree, repeat, mask, seed)
Parameters	degree :
	repeat: bool True or False
	mask :
	seed :
Sub Function 1	gr. glfsr_source_x.period(): Return period
Sub Function 2	gr. glfsr_source_x.mask() : Return mask
Note	Needs more documenation
Example	

1.9) gnuradio/ window.py

Туре	Python file
Description	Routines for designing window functions for FFT.
Examples	
Note	

1.9.1) hamming()

Туре	Function
Description	Design Hamming window
Usage	window.hamming(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.2) hanning()

Туре	Function
Description	Design Hanning window
Usage	window.hanning(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.3) welch()

Туре	Function
Description	Design Welch window
Usage	window.welch(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.4) parzen()

Туре	Function
Description	Design Parzen window
Usage	window.parzen(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.5) bartlett()

Туре	Function
Description	Design Bartlett window
Usage	window.bartlett(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.6) blackman2()

Type	Function
Description	Design Blackman2 window
Usage	window.blackman2(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.7) blackman3()

Туре	Function
Description	Design Blackman3 window
Usage	window.blackman3(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.8) blackman4()

Туре	Function
Description	Design Blackman4 window
Usage	window.blackman4(fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.9) exponential()

Type	Function
Description	Design Exponential window
Usage	window.exponential (fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.10) riemann()

Туре	Function
Description	Design Riemann window
Usage	window.riemann (fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.11) blackmanharris ()

Туре	Function
Description	Design Blackmanharris window
Usage	window.blackmanharris (fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.12) nuttall()

Туре	Function
Description	Design Nuttall window
Usage	window.nuttal (fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.9.13) kaiser()

Туре	Function
Description	Design Kaiser window
Usage	window.kaiser (fft_size)
Parameters	fft_size : number of window taps
Examples	
Note	

1.10) gnuradio/ video_sdl.py

Туре	Python file
Description	Simple Direct Media Layer (SDL) routines for displaying video.
Examples	
Note	

1.10.1) video_sdl_sink_uc()

Туре	Function
Description	Video sink using SDL. Input signature is one, two or three streams of unsigned char. One stream: stream is grey (Y) two streems: first is grey (Y), second is alternating U and V Three streams: first is grey (Y), second is U, third is V Input samples must be in the range [0,255].
Usage	video_sdl.video_sdl_sink_uc(framerate, width, height, format, dst_width, dst_height)
Parameters	framerate : double width : integer height : integer format : unsigned integer dst_width : integer dst_height : integer
Examples	
Note	

1.10.2) video_sdl_sink_s()

Туре	Function
Description	Video sink using SDL. Input signature is one, two or three streams of signed shorts. One stream: stream is grey (Y) two streems: first is grey (Y), second is alternating U and V Three streams: first is grey (Y), second is U, third is V Input samples must be in the range [0,255].
Usage	video_sdl.video_sdl_sink_s(framerate, width, height, format, dst_width,
	dst_height)
Parameters	framerate : double width : integer (640) height : integer (480) format : unsigned integer dst_width : integer dst_height : integer
Examples	
Note	

Page 130 of 208

1.10.3) sink_uc()

Туре	Function
Description	Video sink using SDL. Input signature is one, two or three streams of unsigned char. One stream: stream is grey (Y) two streems: first is grey (Y), second is alternating U and V Three streams: first is grey (Y), second is U, third is V Input samples must be in the range [0,255].
Usage	video_sdl.sink_uc(framerate, width, height, format, dst_width, dst_height)
Parameters	framerate : double width : integer height : integer format : unsigned integer dst_width : integer dst_height : integer
Examples	
Note	

1.10.4) sink_s()

Туре	Function
Description	Video sink using SDL. Input signature is one, two or three streams of signed shorts. One stream: stream is grey (Y) two streems: first is grey (Y), second is alternating U and V Three streams: first is grey (Y), second is U, third is V Input samples must be in the range [0,255].
Usage	video_sdl. sink_s(framerate, width, height, format, dst_width, dst_height)
Parameters	framerate : double width : integer height : integer format : unsigned integer dst_width : integer dst_height : integer
Examples	
Note	

1.11) gnuradio/ trellis.py

Туре	Python file
Description	Trellis coding ???????????????
Examples	
Note	

1.11.1) fsm()

Туре	Function
Description	Finite state machine ??????????
Usage	trellis.fsm()
Parameters	
Examples	
Note	Needs more documentation

1.11.2) interleaver()

Туре	Function
Description	????????
Usage	trellis.interleaver()
Parameters	
Examples	
Note	Needs more documentation

1.11.3) trellis_permutation ()

Туре	Function
Description	Permutation ??????????
Usage	trellis.trellis_permutation()
Parameters	
Examples	
Note	Needs more documentation

1.11.4) trellis_siso_f ()

Туре	Function
Description	????????????
Usage	trellis.trellis_siso_f()
Parameters	
Examples	
Note	Needs more documentation

1.11.5) trellis_encoder_xx ()

Туре	Function
Description	????????????
	trellis_encoder_bb
	trellis_encoder_bi
	trellis_encoder_bs
	trellis_encoder_ii
	trellis_encoder_si
	trellis_encoder_ss
	trellis_encoder_bb
	trellis_encoder_bb
Usage	
Parameters	
Examples	
Note	Needs more documentation

1.11.6) trellis_metrics_x ()

Туре	Function
Description	???????????
-	trellis_metrics_c
	trellis_metrics_f
	trellis_metrics_i
	trellis_metrics_s
Usage	
Parameters	
Examples	
Note	Needs more documentation

1.11.7) trellis_viterbi_x ()

Туре	Function
Description	?????????????
	trellis_viterbi_b
	trellis_viterbi_i
	trellis_viterbi_s
Usage	
Parameters	
Examples	
Note	Needs more documentation

1.11.8) trellis_viterbi_combined_xx ()

Туре	Function
Description	????????????
	trellis_viterbi_combined_cb
	trellis_viterbi_combined_ci
	trellis_viterbi_combined_cs
	trellis_viterbi_combined_fb
	trellis_viterbi_combined_fi
	trellis_viterbi_combined_fs trellis_viterbi_combined_ib
	trellis viterbi combined ii
	trellis viterbi combined is
	trellis viterbi combined sb
	trellis viterbi combined si
	trellis_viterbi_combined_ss
Usage	
Parameters	
Examples	
Note	Needs more documentation

1.12) gnuradio/ sounder.py

Type	Python file
Description	This is a work-in-progress implementation of a m-sequence based channel sounder for GNU Radio and the USRP. In typical use, the user would run the sounder as a transmitter on oneUSRP, and a receiver on another at a different location. The receiver will determine the impulse response of the RF channel in between.

The sounder uses a custom FPGA bitstream that is able to generate and receive a sounder waveform across a full 32 MHz wide swath of RF spectrum; the waveform generation and impulse response processing occur in logic in the USRP FPGA and not in the host PC. This avoids the USB throughput bottleneck entirely. Unfortunately, there is still roll-off in the AD9862 digital up-converter interpolation filter that impacts the outer 20% of bandwidth, but this can be compensated for by measuring and subtracting out this response during calibration.

The sounder is based on sending a maximal-length PN code modulated as BPSK with the supplied center frequency, with a chip-rate of 32 MHz. The receiver correlates the received signal across all phases of the PN code and outputs an impulse response vector. As auto-correlation of an m-sequence is near zero for any relative phase shift, the actual measured energy at a particular phase shift is related to the impulse response for that time delay. This is the same principle used in spread-spectrum RAKE receivers such as are used with GPS and CDMA.

The transmitter is designed to work only with the board in side A. The receiver may be in side A or side B. The boards may be standalone LFTX/LFRXs or RFX daughterboards.

To use, the following script is installed into \$prefix/bin:

Usage: usrp_sounder.py [options]

Options:

```
-h, --help show this help message and exit
```

-R RX_SUBDEV_SPEC, --rx-subdev-spec=RX_SUBDEV_SPEC select USRP Rx side A or B

-f FREQ, --frequency=FREQ

set frequency to FREQ in Hz, default is 0.0

-d DEGREE, --degree=DEGREE

set sounding sequence degree (2-12), default is 12,

-t, --transmit enable sounding transmitter -r, --receive enable sounding receiver

-I, --loopback
 -v, --verbose
 -D, --debug
 enable digital loopback, default is disabled
 enable verbose output, default is disabled
 enable digital loopback, default is disabled

-F FILENAME, --filename=FILENAME

log received impulse responses to file

To use with an LFTX board, set the center frequency to 16M:

\$ usrp_sounder.py -f 16M -t

The sounder receiver command line is:

\$ usrp_sounder.py -f 16M -r -F output.dat

You can vary the m-sequence degree between 2 and 12, which will create sequence lengths between 3 and 4095 (128 us). This will affect how frequently the receiver can calculate impulse response vectors.

The correlator uses an O(N^2) algorithm, by using an entire PN period of the received signal to correlate at each lag value. Thus, using a degree 12 PN code of length 4095, it takes 4095*4095/32e6 seconds to calculate a single impulse response vector, about a half a second. One can reduce this time by a factor of 4 for each decrement in PN code degree, but this also reduces the inherent processing gain by 6 dB as well.

The impulse response vectors are written to a file in complex float format, and consist of the actual impulse response with a noise floor dependent on the PN code degree in use.

There is a loopback test mode that causes the sounding waveform to be routed back to the receiver inside the USRP:

	\$ usrp_sounder.py -r -t -l -F output.dat
	The resulting impulse response will be a spike followed by a near zero value for the rest of the period.
	Synchronization at the receiver is not yet implemented, so the actual impulse response may be time shifted an arbitrary value within the the impulse response vector. If one assumes the first to arrive signal is the strongest, then one can circularly rotate the vector until the peak is at time zero.
Examples	
Note	

1.12.1) sounder_tx ()

Type	Function
Description	Sounder_tx function
Usage	sounder.sounder_tx (loopback=False, ampl=4096,verbose=False, debug=False)
Parameters	
Examples	
Note	Needs more documentation

1.12.2) sounder_rx ()

Туре	Function
Description	Sounder_rx function
Usage	sounder.sounder_rx(subdev_spec=None,gain=None,length=1,alpha=1.0,msgq=Non
	e,loopback=False,verbose=False,debug=False)
Parameters	
Examples	
Note	Needs more documentation

1.12.3) sounder ()

Туре	Function
Description	
Usage	sounder.sounder(transmit=False,receive=False,loopback=False,rx_subdev_spec=N one,ampl=0x1FFF,frequency=0.0,rx_gain=None,degree=12,length=1,alpha=1.0,msgq =None,verbose=False,debug=False)
Parameters	
Examples	
Note	Needs more documentation

1.13) gnuradio/ radar_mono.py

Type	Python file
Description	This GNU Radio component implements a monostatic radar transmitter and receiver. It uses a custom FPGA build to generate a linear FM chirp waveform directly in the USRP. Echo returns are recorded to a file for offline analysis. The LFM chirp can be up to 32 MHz in width, whose center frequency is set by which transmit daughter board is installed. This gives a range resolution of approximately 5 meters.
Examples	
Note	

1.13.1) radar_tx ()

Туре	Function
Description	Transmitter object. Uses usrp_sink, but only for a handle to the FPGA registers.
Usage	radar_mono.radar_tx(options)
Parameters	
Examples	
Note	

1.13.2) radar_rx ()

Туре	Function
Description	Receiver object. Uses usrp_source_c to receive echo records.
Usage	radar_mono.radar_rx(options,callback)
Parameters	
Examples	
Note	

1.13.3) radar ()

Туре	Function
Description	???????
Usage	radar_mono.radar(options,callback)
Parameters	
Examples	
Note	

1.14) gnuradio/ ra.py

Type	Python file
Description	Radio astronomy. This file was automatically generated by SWIG
Examples	
Note	Needs more documentation

1.15) gnuradio/ packet_util.py

Type	Python file
Description	Utilities for packet handling
Examples	
Note	

1.15.1) conv_packed_binary_string_to_1_0_string ()

Туре	Function
Description	'\xAF'> '10101111'

Usage	packet_util.conv_packed_binary_string_to_1_0_string(s)
Parameters	s: string
Examples	
Note	

1.15.2) conv_1_0_string_to_packed_binary_string ()

Туре	Function
Description	'10101111' -> ('\xAF', False)
	Basically the inverse of conv_packed_binary_string_to_1_0_string, but also returns a
	flag indicating if we had to pad with leading zeros to get to a multiple of 8.
Usage	packet_util. conv_1_0_string_to_packed_binary_string (s)
Parameters	s: string
Examples	
Note	

1.15.3) make_packet ()

Type	Function
Description	Build a packet, given access code, payload, and whitener offset. Packet will have access code at the beginning, followed by length, payload and finally CRC-32.
Usage	packet_util. make_packet(payload, samples_per_symbol, bits_per_symbol, access_code=default_access_code, pad_for_usrp=True, whitener_offset=0, whitening=True)
Parameters	payload: Packet payload, len [0, 4096] samples_per_symbol: samples per symbol (needed for padding calculation) type samples_per_symbol: int bits_per_symbol: (needed for padding calculation) type bits_per_symbol: int access_code: string of ascii 0's and 1's pad_for_usrp: If true, packets are padded such that they end up a multiple of 128 samples whitener_offset: offset into whitener string to use [0-16) whitening: Turn whitener on or off type whitening: bool
Examples	
Note	

1.15.4) unmake_packet ()

Туре	Function
Description	Return (ok, payload)
Usage	packet_util. unmake_packet(whitened_payload_with_crc, whitener_offset=0, dewhitening=True)
Parameters	whitened_payload_with_crc: string whitener_offset: offset into whitener string to use [0-16) dewhitening: Turn whitener on or off type dewhitening: bool
Examples	
Note	

1.15.5) _npadding_bytes ()

Туре	Function
Description	Generate sufficient padding such that each packet ultimately ends up being a multiple of 512 bytes when sent across the USB. We send 4-byte samples across the USB (16-bit I and 16-bit Q), thus we want to pad so that after modulation the resulting packet is a multiple of 128 samples. Returns number of bytes of padding to append.
Usage	packet_utilnpadding_bytes(pkt_byte_len, samples_per_symbol, bits_per_symbol)
Parameters	ptk_byte_len: len in bytes of packet, not including padding. samples_per_symbol: samples per bit (1 bit / symbolwidth GMSK) type samples_per_symbol: int bits_per_symbol: bits per symbol (log2(modulation order)) type bits_per_symbol: int
Examples	
Note	

1.16) gnuradio/ optfir.py

Type	Python file
Description	Routines for designing optimal FIR filters. For a great intro to how all this stuff works, see section 6.6 of "Digital Signal Processing: A Practical Approach", Emmanuael C. Ifeachor and Barrie W. Jervis, Adison-Wesley, 1993. ISBN 0-201-54413-X.
Examples	
Note	

1.16.1) low_pass ()

Type	Function
Description	Low pass filter design.
Usage	optfir.low_pass (gain, Fs, freq1, freq2, passband_ripple_db, stopband_atten_db, nextra_taps=0)
Parameters	
Examples	See ayfabtu.py
Note	Needs more documentation

1.16.2) high_pass ()

Туре	Function
Description	High pass filter design.
Usage	optfir.high_pass (Fs, freq1, freq2, stopband_atten_db, passband_ripple_db, nextra_taps=0)
Parameters	
Examples	
Note	FIXME : The high_pass is broken Needs more documentation

1.17) gnuradio/ ofdm_packet_util.py

Туре	Python file
Description	Utilities for OFDM packet handling
Examples	
Note	

1.17.1) conv_packed_binary_string_to_1_0_string ()

Type	Function
Description	'\xAF'> '10101111'
Usage	ofdm_packet_util.conv_packed_binary_string_to_1_0_string(s)
Parameters	s: string
Examples	
Note	

1.17.2) conv_1_0_string_to_packed_binary_string ()

Туре	Function
Description	'10101111' -> ('\xAF', False)
	Basically the inverse of conv_packed_binary_string_to_1_0_string, but also returns a
	flag indicating if we had to pad with leading zeros to get to a multiple of 8.
11	afalor market will some 4 O string to marked binome string (a)
Usage	ofdm_packet_util. conv_1_0_string_to_packed_binary_string (s)
Parameters	s: string

1.17.3) make_packet ()

Туре	Function
Description	Build a packet, given access code, payload, and whitener offset. Packet will have access
	code at the beginning, followed by length, payload and finally CRC-32.
Usage	ofdm_packet_util. make_packet(payload, samples_per_symbol, bits_per_symbol,
	pad_for_usrp=True, whitener_offset=0, whitening=True)
Parameters	payload: packet payload, len [0, 4096]
	samples_per_symbol: samples per symbol (needed for padding calculation)
	type samples_per_symbol: int
	bits_per_symbol: (needed for padding calculation)
	type bits_per_symbol: int
	whitener_offset: offset into whitener string to use [0-16)
	<pre>pad_for_usrp: If true, packets are padded such that they end up a multiple of 128</pre>
	samples
	whitening: Turn whitener on or off
	type whitening: bool
Examples	
Note	

1.17.4) unmake_packet ()

Туре	Function
Description	Return (ok, payload)
Usage	ofdm_packet_util. unmake_packet(whitened_payload_with_crc, whitener_offset=0,
	dewhitening=True)

Parameters	whitened_payload_with_crc: string
	whitener_offset : offset into whitener string to use [0-16)
	dewhitening: Turn whitener on or off
	type dewhitening: bool
Examples	
Note	

1.17.5) _npadding_bytes ()

Туре	Function
Description	Generate sufficient padding such that each packet ultimately ends up being a multiple of
	512 bytes when sent across the USB. We send 4-byte samples across the USB (16-bit I
	and 16-bit Q), thus we want to pad so that after modulation the resulting packet is a
	multiple of 128 samples.
	Returns number of bytes of padding to append.
Usage	ofdm_packet_utilnpadding_bytes(pkt_byte_len, samples_per_symbol,
	bits_per_symbol)
Parameters	<pre>ptk_byte_len: len in bytes of packet, not including padding.</pre>
	samples_per_symbol: samples per bit (1 bit / symbolwidth GMSK)
	type samples_per_symbol: int
	bits_per_symbol: bits per symbol (log2(modulation order))
	type bits_per_symbol: int
Examples	
Note	

1.18) gnuradio/ modulation_utils.py

Туре	Python file
Description	Miscellaneous utilities for managing modulations and demodulations, as well as other items useful in dealing with generalized handling of different modulations and demods.
Examples	
Note	

1.18.1) type_1_mods ()

Туре	Function
Description	Type 1 modulators accept a stream of bytes on their input and produce complex baseband output
Usage	modulation_utils.type_1_mods()
Parameters	ino a anima n_ameny po_ :_ mo a e (/
Examples	See tunnel.py
Note	Needs more documentation

1.18.2) type_1_demods ()

Туре	Function
Description	Type 1 demodulators accept complex baseband input and produce a stream of bits, packed1 bit / byte as their output. Their output is completely unambiguous. There is no Needsto resolve phase or polarity ambiguities.
Usage	modulation_utils.type_1_demods()

Parameters	
Examples	See tunnel.py
Note	Needs more documentation

1.19) gnuradio/ local_calibrator.py

Type	Python file
Description	Simple class for allowing local definition of a calibration function for raw samples coming from the RA detector chain. Each observatory is different, and rather than hacking up the main code in usrp_ra_receiver we define the appropriate function here. For example, one could calibrate the output in Janskys, rather than dB.
Examples	
Note	NO LONGER USED

1.20) gnuradio/gr_unittest.py

Туре	Python file
Description	Add support for unit testing
Examples	
Note	

1.21) gnuradio/eng_option.py

Туре	Python file
Description	Add support for engineering notation to optparse.OptionParser
Examples	
Note	

1.22) gnuradio/eng_notation.py

Туре	Python file
Description	Change engineering notation (example 5e-9 <==> 5n)
Examples	
Note	

1.22.1) num_to_str ()

Туре	Function
Description	Convert a number to a string in engineering notation. E.g., 5e-9 -> 5n
Usage	eng_notation.num_to_str(n)
Parameters	
Examples	
Note	

1.22.2) str_to_num ()

Туре	Function
Description	Convert a string in engineering notation to a number. E.g., '15m' -> 15e-3
Usage	eng_notation.str_to_num(value)
Parameters	
Examples	
Note	

1.23) gnuradio/audio_oss.py

Type	Python file
Description	Open Sound System (oss) sound interface for audio sink and source. This file was automatically generated by SWIG
Examples	
Note	

1.24) gnuradio/audio_alsa.py

Type	Python file
Description	Advanced Linux Sound Architecture (ALSA) sound interface for audio sink and source. This file was automatically generated by SWIG
Examples	
Note	

1.25) gnuradio/audio.py

Туре	Python file
Description	This is the 'generic' audio or soundcard interface. known_modules = ('audio_alsa', 'audio_oss', 'audio_osx', 'audio_jack', 'audio_portaudio'). The behavior of this module is controlled by the [audio] audio_module configuration parameter. If it is 'auto' we attempt to import modules from the known_modules list, using the first one imported successfully. If [audio] audio_module is not 'auto', we assume it's the name of an audio module and attempt to import it.
Examples	
Note	

1.25.1) source ()

Туре	Function
Description	Audio source. Output signature is one or two streams of floats. Output samples will be in
	the range [-1,1].
Usage	audio.source(sampling_rate, device_name="", ok_to_block=true)
Parameters	sampling_rate : integer
	device_name : string
	ok_to_block : bool
Examples	
Note	

1.25.2) sink ()

Туре	Function
Description	Audio sink. Input signature is one or two streams of floats. Input samples must be in the
	range [-1, 1].
Usage	audio.sink(sampling_rate, device_name="", ok_to_block=true)
Parameters	sampling_rate : integer
	device_name : string
	ok_to_block : bool
Examples	<pre>sink = audio.sink(sample_rate, "plughw:0,0")</pre>
Note	

1.26) gnuradio/atsc.py

Туре	Python file
Description	Support for ATSC signal handling. This file was automatically generated by SWIG.
Examples	
Note	Needs more documentation

1.27) gnuradio/usrp.py

Туре	Python file
Description	Configuration interface for the USRP
Examples	
Note	

1.27.1) source_x()

Туре	Function
Description	interface to Universal Software Radio Peripheral Rx path
	source_c(): complex data source
	source_s(): short interleaved data source
Usage	usrp.source_x(which=0, decim_rate=64, nchan=1, mux=0x32103210, mode=0,
	fusb_block_size=0, fusb_nblocks=0,
	fpga_filename="", firmware_filename="")
Parameters	
Examples	
Note	

1.27.1.1) tune()

Туре	Sub Function
Description	Set the center frequency we're interested in.
	Tuning is a two step process. First we ask the front-end to tune as close to the desired
	frequency as it can. Then we use the result of that operation and our target_frequency to
	determine the value for the digital down converter.
	Returns False if failure else tune_result
Usage	usrp.source_x.tune(u, chan, subdev, target_freq)
Parameters	u: instance of usrp.source_*
	chan: DDC number

	<u> </u>
	type chan: int subdev: daughterboard subdevice target_freq: frequency in Hz
Examples	
Note	

1.27.1.2) has_rx_halfband()

Туре	Sub Function
Description	To check if the FPGA implement a final Rx half-band filter? If it doesn't, the maximum decimation factor with proper gain is 1/2 of what it would otherwise be.
Usage	usrp.source_x.has_rx_halfband()
Parameters	
Examples	
Note	

1.27.1.3) nddcs()

Туре	Sub Function
Description	Return number of Digital Down Converters implemented in FPGA, this will be 0, 1, 2, or
	4.
Usage	usrp.source_x.nddcs()
Parameters	
Examples	
Note	

1.27.2) sink_x()

Туре	Function
Description	Interface to Universal Software Radio Peripheral Tx path
	sink_c(): complex data source
	sink _s(): short interleaved data source
Usage	usrp.sink _x(which=0, interp_rate=128, nchan=1, mux=0x98,
	fusb_block_size=0, fusb_nblocks=0,
	fpga_filename="", firmware_filename="")
Parameters	
Examples	
Note	

1.27.2.1) tune()

Туре	Sub Function
Description	Set the center frequency we're interested in. Tuning is a two step process. First we ask the front-end to tune as close to the desired frequency as it can. Then we use the result of that operation and our target_frequency to determine the value for the digital down converter. Returns False if failure else tune_result
Usage	usrp.sink_x.tune(u, chan, subdev, target_freq)
Parameters	<pre>u: instance of usrp.sink_* chan: DUC number</pre>

	· · · · · · · · · · · · · · · · · · ·
	type chan: int subdev: daughterboard subdevice target_freq: frequency in Hz
Examples	
Note	Needs more documentation

1.27.2.2) has_tx_halfband()

Туре	Sub Function
Description	To check if the FPGA implement a final Tx half-band filter?
Usage	usrp.sink_x.has_tx_halfband()
Parameters	
Examples	
Note	

1.27.2.3) nducs()

Type	Sub Function
Description	Return number of Digital up Converters implemented in FPGA, this will be 0,1,or 2,.
Usage	usrp.sink_x.nducs()
Parameters	
Examples	
Note	

1.27.3) determine_rx_mux_value ()

Туре	Function
Description	A utility to determine appropriate Rx mux value as a function of the subdevice choosen and thecharacteristics of the respective daughterboard. Returns: the Rx mux value
	Figure out which A/D's to connect to the DDC. Each daughterboard consists of 1 or 2 subdevices. (At this time, all but the Basic Rx have a single subdevice. The Basic Rx has two independent channels, treated as separate subdevices). subdevice 0 of a daughterboard may use 1 or 2 A/D's. We determine this by checking the is_quadrature() method. If subdevice 0 uses only a single A/D, it's possible that the daughterboard has a second subdevice, subdevice 1, and it uses the second A/D. If the card uses only a single A/D, we wire a zero into the DDC Q input. (side, 0) says connect only the A/D's used by subdevice 0 to the DDC. (side, 1) says connect only the A/D's used by subdevice 1 to the DDC.
Usage	usrp.determine_rx_mux_value(u, subdev_spec)
Parameters	u: Instance of USRP source
	<pre>subdev_spec: Tuple represent (side, subdev).</pre>
	type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0 or 1
Examples	
Note	

1.27.4) tune_result ()

Type	Function	
Description	Container for intermediate tuning information. Return tunning informations	
Usage	tune_result.baseband_freq: Return the resultant baseband frequency	
	tune_result .dxc_freq : Return the used DDC or DUC frequency	
	tune_result.residual_freq: Return the residual frequency after tunning	
	tune_result .inverted : Return True if the spectrum is inverted, otherwise return False	
Parameters		
Examples		
Note		

1.27.5) determine_tx_mux_value ()

Туре	Function	
Description	A utility to determine the appropriate Tx mux value as a function of the subdevice	
	choosen.	
	Returns: The Tx mux value	
	This is simpler than the rx case. Either you want to talk to side A or side B. If you want	
	to talk to both sides at once, determine the value manually.	
Usage	usrp.determine_tx_mux_value(u, subdev_spec):	
Parameters	u: instance of USRP sink	
	<pre>subdev_spec: Tuple represent (side, subdev)</pre>	
	type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0	
Examples		
Note		

1.27.6) selected_subdev ()

Type	Function	
Description	A utility to return the user specified daughterboard subdevice.	
-	Returns: An instance derived from db_base.	
Usage	usrp.selected_subdev (u, subdev_spec)	
Parameters	u: Instance of USRP sink or source	
	subdev_spec: Tuple represent (side, subdev)	
	type subdev_spec: (side, subdev), where side is 0 or 1 and subdev is 0 or 1	
Examples		
Note		

1.27.7) calc_dxc_freq ()

Туре	Function	
Description	A utility to calculate the frequency to be used for setting the digital up or down converter.	
	Return : 2-tuple (ddc_freq, inverted) where ddc_freq is the value for the ddc and inverted	
	is True if we're operating in an inverted Nyquist zone	
Usage	usrp.calc_dxc_freq(target_freq, baseband_freq, fs)	

Parameters	target_freq: desired RF frequency (Hz) type target_freq: number baseband_freq: The RF frequency that corresponds to DC in the IF. type baseband_freq: number fs: converter sample rate type fs: number
Examples	
Note	

1.27.8) pick_rx_subdevice()

Туре	Function
Description	If the user didn't specify an rx subdevice on the command line, try for one of these, in order: FLEX_400, FLEX_900, FLEX_1200, FLEX_1800, FLEX_2400, TV_RX, DBS_RX, and BASIC_RX, whatever's on side A . Return a subdev_spec
Usage	usrp.pick_rx_subdevice(u)
Parameters	u: Instance of USRP source
Examples	
Note	

1.27.9) pick_tx_subdevice()

Туре	Function
Description	If the user didn't specify a tx subdevice on the command line, try for one of these, in order: FLEX_400, FLEX_900, FLEX_1200, FLEX_1800, FLEX_2400, BASIC_TX, whatever's on side A. Return a subdev_spec
Usage	usrp.pick_rx_subdevice(u)
Parameters	u: Instance of USRP source
Examples	
Note	

1.27.10) pick_ subdev()

Туре	Function
Description	Pick whatever in side A
	Return: subdev specification
Usage	usrp.pick_subdev(u, candidates)
Parameters	u: usrp instance sink or source
	candidates: list of usrp dbids which are :
	usrp_dbid.BASIC_TX = 0x0000
	usrp_dbid.BASIC_RX = 0x0001
	$usrp_dbid.DBS_RX = 0x0002$
	$usrp_dbid.TV_RX = 0x0003$
	$usrp_dbid.FLEX_400_RX = 0x0004$
	usrp_dbid.FLEX_900_RX = 0x0005
	usrp_dbid.FLEX_1200_RX = 0x0006
	usrp_dbid.FLEX_2400_RX = 0x0007
	usrp_dbid.FLEX_400_TX = 0x0008
	usrp_dbid.FLEX_900_TX = 0x0009
	usrp_dbid.FLEX_1200_TX = 0x000a
	usrp_dbid.FLEX_2400_TX = 0x000b
	usrp_dbid.TV_RX_REV_2 = 0x000c usrp_dbid.DBS_RX_REV_2_1 = 0x000d
	usip_ubia.bb3_n^_nev_2_i = 0x0000

Simple Gnuradio User Manual	Page 147 01 200
usrp_dbid.LF_TX = 0x000e	
$usrp_dbid.LF_RX = 0x000f$	
usrp_dbid.FLEX_400_RX_MIMO_A = 0x0014	
usrp_dbid.FLEX_900_RX_MIMO_A = 0x0015	
usrp_dbid.FLEX_1200_RX_MIMO_A = 0x0016	
usrp_dbid.FLEX_2400_RX_MIMO_A = 0x0017	
usrp_dbid.FLEX_400_TX_MIMO_A = 0x0018	
usrp_dbid.FLEX_900_TX_MIMO_A = 0x0019	
usrp_dbid.FLEX_1200_TX_MIMO_A = 0x001a	
usrp_dbid.FLEX_2400_TX_MIMO_A = 0x001b	
usrp_dbid.FLEX_400_RX_MIMO_B = 0x0024	
usrp_dbid.FLEX_900_RX_MIMO_B = 0x0025	
usrp_dbid.FLEX_1200_RX_MIMO_B = 0x0026	
usrp_dbid.FLEX_2400_RX_MIMO_B = 0x0027	
usrp_dbid.FLEX_400_TX_MIMO_B = 0x0028	
usrp_dbid.FLEX_900_TX_MIMO_B = 0x0029	
usrp_dbid.FLEX_1200_TX_MIMO_B = 0x002a	
usrp_dbid.FLEX_2400_TX_MIMO_B = 0x002b	
$usrp_dbid.FLEX_1800_RX = 0x0030$	
usrp_dbid.FLEX_1800_TX = 0x0031	
usrp_dbid.FLEX_1800_RX_MIMO_A = 0x0032	
usrp_dbid.FLEX_1800_TX_MIMO_A = 0x0033	
usrp_dbid.FLEX_1800_RX_MIMO_B = 0x0034	
usrp_dbid.FLEX_1800_TX_MIMO_B = 0x0035	
usrp_dbid.TV_RX_REV_3 = 0x0040	
$usrp_dbid.WBX_LO_TX = 0x0050$	
usrp_dbid.WBX_LO_RX = 0x0051	
Examples	
Note	

1.28) gnuradio/usrp1.py

Туре	Python file
Description	Configuration interface for the USRP Rev 1 and later
Examples	
Note	

1.28.1) source_x()

Туре	Function	
Description	Interface to Universal Software Radio Peripheral Rx path	
	source_c() : complex data source	
	source_s(): short interleaved data source	
Usage	usrp.source_x(which=0, decim_rate=64, nchan=1, mux=0x32103210, mode=0,	
	fusb_block_size=0, fusb_nblocks=0,	
	fpga_filename="", firmware_filename="")	
Parameters		
Examples		
Note		

1.28.1.1) set_decim_rate()

Туре	Sub Function	
Description	Set decimator rate. Rate must be EVEN and in [8, 256]. The final complex sample rate	
	across the USB is adc_freq () / decim_rate () *nchannels()	

Usage	usrp.source_x.set_decim_rate(rate)
Parameters	rate: unsigned integer represents the decimation rate
Examples	
Note	

1.28.1.2) set_nchannels()

Туре	Sub Function
Description	Set number of active ddc channels. Nchannels must be 1, 2, 3 or 4.
Usage	usrp.source_x.set_nchannels(nchan)
Parameters	nchan: integer
Examples	
Note	

1.28.1.3) set_mux()

Туре	Sub Function
Description	This determines which ADC (or constant zero) is connected to each DDC input. There are 4 DDCs. Each has two inputs. Mux value:
	3 2 1
	10987654321098765432109876543210
	+++++++
	Q3 I3 Q2 I2 Q1 I1 Q0 I0
	++
	Each 4-bit I field is either 0,1,2,3
	Each 4-bit Q field is either 0,1,2,3 or 0xf (input is const zero)
	All Q's must be 0xf or none of them may be 0xf
Usage	usrp.source_x.set_mux(mux)
Parameters	mux : integer
Examples	
Note	To specify an integer value using hex format using gru.hexint() function

1.28.1.4) set_rx_freq()

Туре	Sub Function
Description	Set the center frequency of the digital down converter. Channel must be in the range [0,3]. freq is the center frequency in Hz. freq may be either negative or postive. The frequency specified is quantized. Use rx_freq to retrieve the actual value used.
Usage	usrp.source_x.set_rx_freq(channel,freq)
Parameters	channel: which ddc channel [0, 3] freq: double, the frequency
Examples	The state of the s
Note	

1.28.1.5) set_ddc_phase()

Туре	Sub Function
Description	Set the digital down converter phase register.
Usage	usrp.source_x.set_ddc_phase(channel,phase)
Parameters	channel: which ddc channel [0, 3]
	<i>phase</i> : 32-bit integer phase value.

Examples	
Note	

1.28.1.6) set_fpga_mode()

Туре	Sub Function
Description	Set fpga special modes
Usage	usrp.source_x.set_fpga_mode(mode)
Parameters	mode : one of FPGA_MODE_NORMAL , FPGA_MODE_LOOPBACK, FPGA_MODE_COUNTING, FPGA_MODE_COUNTING_32BIT
Examples	
Note	

1.28.1.7) set_verbose()

Туре	Sub Function
Description	Print usrp configuration
Usage	usrp.source_x.set_verbose(verbose)
Parameters	verbose : bool true or false
Examples	
Note	

1.28.1.8) set_pga()

Туре	Sub Function
Description	Set A/D Programmable Gain Amplifier (PGA). Gain is rounded to closest setting supported by hardware. Return true if sucessful
Usage	usrp.source_x.set_pga(which, gain_in_db)
Parameters	which: which A/D [0,3] gain_in_db: double gain value (linear in dB) in range [0.0,20.0]
Examples	
Note	

1.28.1.9) pga()

Туре	Sub Function
Description	Return programmable gain amplifier gain setting in dB.
Usage	usrp.source_x.pga (which)
Parameters	which : which A/D [0,3]
Examples	
Note	

1.28.1.10) pga_min()

Type	Sub Function
Description	Return minimum legal PGA setting in dB.

Usage	usrp.source_x.pga_min()
Parameters	
Examples	
Note	

1.28.1.11) pga_max()

Туре	Sub Function
Description	Return maximum legal PGA setting in dB.
Usage	usrp.source_x.pga_max()
Parameters	
Examples	
Note	

1.28.1.12) pga_db_per_step()

Туре	Sub Function
Description	Return hardware step size of PGA (linear in dB).
Usage	usrp.source_x.pga_db_per_step()
Parameters	
Examples	
Note	

1.28.1.13) fpga_master_clock_freq()

Type	Sub Function
Description	Return fpga master clock frequency
Usage	usrp.source_x.fpga_master_clock_freq()
Parameters	
Examples	
Note	

1.28.1.14) converter_rate()

Туре	Sub Function
Description	Return A/D converter rate
Usage	usrp.source_x.converter_rate()
Parameters	
Examples	
Note	

1.28.1.15) decim_rate()

Туре	Sub Function
Description	Return decimation rate
Usage	usrp.source_x.decim_rate()
Parameters	
Examples	

Note	

1.28.1.16) nchannels()

Туре	Sub Function
Description	Return number of active ddc channels
Usage	usrp.source_x.nchannels()
Parameters	
Examples	
Note	

1.28.1.17) mux()

Туре	Sub Function
Description	Return mux setting
Usage	usrp.source_x.mux()
Parameters	
Examples	
Note	

1.28.1.18) rx_freq()

Type	Sub Function
Description	Return channels ddc frequency
Usage	usrp.source_x.rx_freq(channel)
Parameters	channel: which ddc channel [0,3]
Examples	
Note	

1.28.1.19) daughterboard_id()

Туре	Sub Function
Description	Return daughterboard ID for given Rx daughterboard slot. Slot A =0, Slot B=1.
	daughterboard id >= 0 if successful
	-1 if no daugherboard
	-2 if invalid EEPROM on daughterboard
Usage	usrp.source_x.daughterboard_id(which_dboardl)
Parameters	which_dboard : Which slot o or 1
Examples	
Note	

1.28.1.20) write_aux_dac()

Type	Sub Function
Description	Write auxiliary digital to analog converter.
Usage	usrp.source_x. write_aux_dac (which_dboard, which_dac, value)
Parameters	which_dboard: [0,1] which slot , SLOT_TX_A and SLOT_RX_A share the same AUX

	DAC's. SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. which_dac: [2,3] TX slots must use only 2 and 3. value: in range of [0,4095]
Examples	
Note	

1.28.1.21) read_aux_dac()

Туре	Sub Function
Description	Read auxiliary analog to digital converter.
	Return value in the range [0, 4095] if successful, else READ_FAILED.
Usage	usrp.source_x. read_aux_dac (which_dboard, which_adc)
Parameters	which_dboard: [0,1] which slot
	which_adc: [0,1]
Examples	
Note	

1.28.1.22) write_eeprom()

Type	Sub Function
Description	Write EEPROM on motherboard or any daughterboard.
-	Return true if successful
Usage	usrp.source_x. write_eeprom(i2c_addr, eeprom_offset, buf)
Parameters	i2c_addr: I2C bus address of EEPROM
	eeprom_offset: byte offset in EEPROM to begin writing
	buf : the data to write
Examples	
Note	

1.28.1.23) read_eeprom()

Type	Sub Function
Description	Read bytes from EEPROM on motherboard or any daughterboard.
	Return the data read if successful, else a zero length string.
Usage	usrp.source_x. read_eeprom(i2c_addr, eeprom_offset, len)
Parameters	i2c_addr: I2C bus address of EEPROM
	eeprom_offset: byte offset in EEPROM to begin reading
	buf : number of bytes to read
Examples	
Note	

1.28.1.24) write_i2c()

Туре	Sub Function
Description	Write to I2C peripheral. Writes are limited to a maximum of of 64 bytes.
	Return true ff successful.
Usage	usrp.source_x. write_i2c(i2c_addr, buf)
Parameters	i2c_addr: I2C bus address (7-bits)
	buf : The data to write

Examples	
Note	

1.28.1.25) read_i2c()

Туре	Sub Function
Description	Read from I2C peripheral. Reads are limited to a maximum of of 64 bytes.
•	Return the data read if successful, else a zero length string.
Usage	usrp.source_x.read_i2c(i2c_addr, len)
Parameters	i2c_addr: I2C bus address (7-bits)
	len : number of bytes to read
Examples	
Note	

1.28.1.26) set_adc_offset()

Туре	Sub Function
Description	Set ADC offset correction.
Usage	usrp.source_x.set_adc_offset(which, offset)
Parameters	which: which ADC[0,3]:
	offset: 16-bit value to subtract from raw ADC input.
Examples	
Note	

1.28.1.27) set_dac_offset()

Type	Sub Function
Description	Set DAC offset correction.
Usage	usrp.source_x.set_dac_offset(which, offset, offset_pin)
Parameters	 which: which DAC[0,3] offset: 10-bit offset value (ambiguous format: See AD9862 datasheet). offset_pin: 1-bit value. If 0 offset applied to -ve differential pin; If 1 offset applied to +ve differential pin.
Examples	
Note	

1.28.1.28) set_adc_buffer_bypass()

Туре	Sub Function
Description	Control ADC input buffer.
Usage	usrp.source_x.set_adc_buffer_bypass(which, bypass)
Parameters	which : which ADC [0,3]bypass : if non-zero, bypass input buffer and connect input directly to switched cap SHA input of RxPGA.
Examples	
Note	

Page 154 of 208

1.28.1.29) serial_number()

Type	Sub Function
Description	Return the usrp's serial number. Return non-zero length string iff successful.
Usage	usrp.source_x.serial_number()
Parameters	
Examples	
Note	

1.28.1.30) _write_oe()

Type	Sub Function
Description	Write direction register (output enables) for pins that go to daughterboard. Each d'board has 16-bits of general purpose i/o. Setting the bit makes it an output from the FPGA to the d'board. This register is initialized based on a value stored in the d'board EEPROM. In general, you shouldn't be using this routine without a very good reason. Using this method incorrectly will kill your USRP motherboard and/or daughterboard.
Usage	usrp.source_xwrite_oe(which_dboard, value, mask)
Parameters	<pre>which_dboard : [0,1] which d'board value : value to write into register mask : which bits of value to write into reg</pre>
Examples	
Note	

1.28.1.31) write_io()

Туре	Sub Function
Description	Write daughterboard i/o pin value.
Usage	usrp.source_x.write_io(which_dboard, value, mask)
Parameters	which_dboard: [0,1] which d'board
	value: value to write into register
	mask: which bits of value to write into reg
Examples	
Note	

1.28.1.32) read_io()

Type	Sub Function
Description	Read daughterboard i/o pin value.
-	Return register value if successful, else READ_FAILED
Usage	usrp.source_x.read_io(which_dboard)
Parameters	which_dboard : [0,1] which d'board
Examples	
Note	

Page 155 of 208

1.28.1.33) set_dc_offset_cl_enable()

Туре	Sub Function
Description	Enable/disable automatic DC offset removal control loop in FPGA. If the corresponding bit is set, enable the automatic DC offset correction control loop. The 4 low bits are significant: ADC0 = (1 << 0) ADC1 = (1 << 1) ADC2 = (1 << 2) ADC3 = (1 << 3) By default the control loop is enabled on all ADC's.
Usage	usrp.source_x.set_dc_offset_cl_enable(bits, mask)
Parameters	bits: which control loops to enable
	mask: which bits to pay attention to
Examples	
Note	

1.28.1.34) set_format()

Type	Sub Function
Description	Specify Rx data format. Rx data format control register
	32110987654321098765432109876543210+
	+
	SHIFT specifies arithmetic right shift [0, 15] WIDTH specifies bit-width of I & Q samples
	across the USB [1, 16] (not all valid) Q if set deliver both I & Q, else just I B if set bypass
	half-band filter.
	Right now the acceptable values are:
	B Q WIDTH SHIFT 0 1 16 0 0 1 8 8
	More valid combos to come.
	Default value is 0x00000300 16-bits, 0 shift, deliver both I & Q.
Usage	usrp.source_x.set_format(format)
Parameters	format: unsigned integer format specifier
Examples	See usrp_fft.py
Note	

1.28.1.35) make_format()

Type	Sub Function
Description	Make data format.
Usage	usrp.source_x.makeformat(width=16, shift=0, want_q=true,bypass_halfband=false)
Parameters	width: integer shift: integer want_q: bool true or false, Do you want data Q channel or only the I Channel?. bypass_halfband: bool true or false
Examples	See usrp_fft.py
Note	

1.28.1.36) format()

Type	Sub Function
Description	Return current data format.
Usage	usrp.source_x.format()
Parameters	
Examples	
Note	

1.28.1.37) format_width()

Туре	Sub Function
Description	Retuen format data width
Usage	usrp.source_x.format_width(format)
Parameters	
Examples	
Note	

1.28.1.38) format_shift()

Type	Sub Function
Description	Return format data shift
Usage	usrp.source_x.format_shift(format)
Parameters	
Examples	
Note	

1.28.1.39) format_want_q()

Туре	Sub Function
Description	Return format want_q. Do you want Q samples?!
Usage	usrp.source_x.format_want_q(format)
Parameters	
Examples	
Note	

1.28.1.40) format_bypass_halfband()

Туре	Sub Function
Description	Retuen format bypass halfband filter
Usage	usrp.source_x.format_bypass_halfband(format)
Parameters	
Examples	
Note	

1.28.1.41) _write_fpga_reg()

Type	Sub Function
Description	Write FPGA register.
	Return True if successful
Usage	usrp.source_xwrite_fpga_reg(regno,value)
Parameters	<i>regno</i> : 7-bit register number

	value: 32-bit value
Examples	
Note	

1.28.1.42) _write_fpga_reg_masked()

Туре	Sub Function
Description	Write FPGA register masked.
	Return True if successful
Usage	usrp.source_xwrite_fpga_reg_masked(regno, value, mask)
Parameters	<i>regno</i> : 7-bit register number
	value: 16-bit value
	mask: 16 bit mask
Examples	
Note	

1.28.1.43) _read_fpga_reg()

Type	Sub Function
Description	Read FPGA registers.
	Return register value if successful, else READ_FAILED
Usage	usrp.source_xread_fpga_reg(regno)
Parameters	<i>regno</i> : 7-bit register number
Examples	
Note	READ_FAILED = -99999

1.28.1.44) _write_9862()

Туре	Sub Function
Description	Write AD9862 register.
	Return true if successful
Usage	usrp.source_xwrite_9862(which_codec, regno, value)
Parameters	which_codec : 0 or 1
	<i>regno</i> : 6-bit register number
	value: 8-bit value
Examples	
Note	

1.28.1.45) _read_9862()

Туре	Sub Function
Description	Read AD9862 registers.
	Return register value if successful, else READ_FAILED
Usage	usrp.source_xread_9862(which_codec, regno)
Parameters	which_codec : 0 or 1

	regno: 6-bit register number
Examples	
Note	

1.28.1.46) _write_spi()

Туре	Sub Function
Description	Write data to SPI bus peripheral. SPI == "Serial Port Interface". SPI is a 3 wire bus plus a separate enable for each peripheral. The common lines are SCLK,SDI and SDO. The FX2 always drives SCLK and SDI, the clock and data lines from the FX2 to the peripheral. When enabled, a peripheral may drive SDO, the data line from the peripheral to the FX2. The SPI_READ and SPI_WRITE commands are formatted identically. Each specifies which peripherals to enable, whether the bits should be transmistted Most Significant Bit first or Least Significant Bit first, the number of bytes in the optional header, and the number of bytes to read or write in the body. The body is limited to 64 bytes. The optional header may contain 0, 1 or 2 bytes. For an SPI_WRITE, the header bytes are transmitted to the peripheral followed by the the body bytes. For an SPI_READ, the header bytes are transmitted to the peripheral, then len bytes are read back from the peripheral.(see: usrp_spi_defs.h file). If format specifies that optional_header bytes are present, they are written to the peripheral immediately prior to writing buf.
	Return true if successful. Writes are limited to a maximum of 64 bytes.
Usage	usrp.source_xwrite_spi(optional_header, enables, format, buf)
Parameters	<pre>optional_header: 0,1 or 2 bytes to write before buf. enables: bitmask of peripherals to write. format: transaction format. SPI_FMT_* buf : the data to write</pre>
Examples	
Note	

1.28.1.47) _read_spi()

Туре	Sub Function
Description	Read data from SPI bus peripheral.
	Return the data read if successful, else a zero length string.
Usage	usrp.source_xread_spi(optional_header, enables, format, len)
Parameters	optional_header: 0,1 or 2 bytes to write before buf.
	enables: bitmask of peripherals to write.
	format: transaction format. SPI_FMT_*
	len: number of bytes to read.
Examples	
Note	

1.28.2) sink_x()

Туре	Function
Description	interface to Universal Software Radio Peripheral Rx path
	sink_c(): complex data source
	sink_s(): short interleaved data source

Usage	usrp.sink_x(which=0, interp_rate=128, nchan=1, mux=0x98, fusb_block_size=0, fusb_nblocks=0, fpga_filename="", firmware_filename="")
Parameters	
Examples	
Note	

1.28.2.1) set_interp_rate()

Туре	Sub Function
Description	Set interpolator rate. Rate must be in [4, 512] and a multiple of 4. The final complex sample rate across the USB is dac_freq () / interp_rate () * nchannels ()
Usage	usrp.sink_x.set_interp_rate(rate)
Parameters	rate: unsigned integer
Examples	
Note	

1.28.2.2) set_nchannels()

Туре	Sub Function
Description	Set number of active duc channels, nchannels must be 1 or 2.
Usage	usrp.sink_x.set_nchannels(nchan)
Parameters	nchan: integer
Examples	
Note	

1.28.2.3) set_mux()

Туре	Sub Function
Description	This determines which DAC is connected to each DUC input. There are 2 DUCs. Each has two inputs.
	Mux value:
	3 2 1 1098765432109876543210
	++ DAC3 DAC2 DAC1 DAC0 ++
	There are two interpolators with complex inputs and outputs. There are four DACs.
	Each 4-bit DACx field specifies the source for the DAC and whether or not that DAC is enabled. Each subfield is coded like this:
	3 2 1 0 +-++ E N +-++
	Where E is set if the DAC is enabled, and N specifies which interpolator output is connected to this DAC.
	N which interp output

Page 160 of 208

	E	
Usage	usrp.sink_x.set_mux(mux)	
Parameters	mux : integer	
Examples		
Note		

1.28.2.4) set_tx_freq()

Туре	Sub Function
Description	Set the frequency of the digital up converter, channel must be 0,1 and freq is the center
	frequency in Hz. It must be in the range [-44M, 44M]. The frequency specified is
	quantized. Use tx_freq to retrieve the actual value used.
Usage	usrp.sink_x.set_tx_freq(channel,freq)
Parameters	channel: which duc channel [0, 1]
	<i>freq</i> : double
Examples	
Note	

1.28.2.5) set_verbose()

Туре	Sub Function
Description	Print usrp configuration
Usage	usrp.sink_x.set_verbose(verbose)
Parameters	verbose : bool true or false
Examples	
Note	

1.28.2.6) set_pga()

Type	Sub Function
Description	Set D/A Programmable Gain Amplifier (PGA). Gain is rounded to closest setting supported by hardware. Note that DAC 0 and DAC 1 share a gain setting as do DAC 2 and DAC 3. Setting DAC 0 affects DAC 1 and vice versa. Same with DAC 2 and DAC 3. Return true if sucessful
Usage	usrp.sink_x.set_pga(which, gain_in_db)
Parameters	which : which D/A [0,3]
	gain_in_db: double gain value (linear in dB) in range [0.0,20.0]
Examples	
Note	

1.28.2.7) pga()

Туре	Sub Function
Description	Return programmable gain amplifier gain setting in dB.

Usage	usrp.sink_x.pga(which)
Parameters	which : which D/A [0,3]
Examples	
Note	

1.28.2.8) pga_min()

Type	Sub Function
Description	Return minimum legal PGA setting in dB.
Usage	usrp.sink_x.pga_min()
Parameters	
Examples	
Note	

1.28.2.9) pga_max()

Туре	Sub Function
Description	Return maximum legal PGA setting in dB.
Usage	usrp.sink_x.pga_max()
Parameters	
Examples	
Note	

1.28.2.10) pga_db_per_step()

Туре	Sub Function
Description	Return hardware step size of PGA (linear in dB).
Usage	usrp.sink_x.pga_db_per_step()
Parameters	
Examples	
Note	

1.28.2.11) fpga_master_clock_freq()

Type	Sub Function
Description	Return fpga master clock frequency
Usage	usrp.sink_x.fpga_master_clock_freq()
Parameters	
Examples	
Note	

1.28.2.12) converter_rate()

Туре	Sub Function
Description	Return D/A converter rate
Usage	usrp.sink_x.converter_rate()
Parameters	

Examples	
Note	

1.28.2.13) interp_rate()

Туре	Sub Function
Description	Return interpolation rate
Usage	usrp.sink_x.interp_rate()
Parameters	
Examples	
Note	

1.28.2.14) nchannels()

Туре	Sub Function
Description	Return number of active duc channels
Usage	usrp.sink_x.nchannels()
Parameters	
Examples	
Note	

1.28.2.15) mux()

Type	Sub Function
Description	Return mux setting
Usage	usrp.sink_x.mux()
Parameters	
Examples	
Note	

1.28.2.16) tx_freq()

Туре	Sub Function
Description	Return channels duc frequency
Usage	usrp.sink_x.tx_freq(channel)
Parameters	channel: which duc channel [0,3]
Examples	
Note	

1.28.2.17) daughterboard_id()

Туре	Sub Function
Description	Return daughterboard ID for given Rx daughterboard slot. Slot A =0, Slot B=1.
	daughterboard id >= 0 if successful
	-1 if no daugherboard
	-2 if invalid EEPROM on daughterboard
Usage	usrp.sink_x.daughterboard_id(which_dboardl)
Parameters	which_dboard : o or 1, Slot number
Examples	
Note	

1.28.2.18) write_aux_dac()

Туре	Sub Function
Description	Write auxiliary digital to analog converter.
Usage	usrp.sink_x. write_aux_dac (which_dboard, which_dac, value)
Parameters	<pre>which_dboard : [0,1] which slot , SLOT_TX_A and SLOT_RX_A share the same AUX DAC's. SLOT_TX_B and SLOT_RX_B share the same AUX DAC's. which_dac : [2,3] TX slots must use only 2 and 3. value : in range of [0,4095]</pre>
Examples	
Note	

1.28.2.19) read_aux_dac()

Туре	Sub Function
Description	Read auxiliary analog to digital converter.
	Return value in the range [0,4095] if successful, else READ_FAILED.
Usage	usrp.sink_x. read_aux_dac (which_dboard, which_adc)
Parameters	which_dboard: [0,1] which slot
	which_adc : [0,1]
Examples	
Note	

1.28.2.20) write_eeprom()

Туре	Sub Function
Description	Write EEPROM on motherboard or any daughterboard.
-	Return true if successful
Usage	usrp.sink_x. write_eeprom(i2c_addr, eeprom_offset, buf)
Parameters	i2c_addr: I2C bus address of EEPROM
	eeprom_offset: byte offset in EEPROM to begin writing
	buf : the data to write
Examples	
Note	

1.28.2.21) read_eeprom()

Type	Sub Function
Description	Read bytes from EEPROM on motherboard or any daughterboard.
	Return the data read if successful, else a zero length string.
Usage	usrp.sink_x. read_eeprom(i2c_addr, eeprom_offset, len)
Parameters	i2c_addr: I2C bus address of EEPROM
	eeprom_offset: byte offset in EEPROM to begin reading
	buf : number of bytes to read
Examples	
Note	

1.28.2.22) write_i2c()

Туре	Sub Function
Description	Write to I2C peripheral.
·	Return true ff successful. Writes are limited to a maximum of of 64 bytes.
Usage	usrp.sink_x. write_i2c(i2c_addr, buf)
Parameters	i2c_addr: I2C bus address (7-bits)
	buf : the data to write
Examples	
Note	

1.28.2.23) read_i2c()

Туре	Sub Function
Description	Read from I2C peripheral.
	Return the data read if successful, else a zero length string. Reads are limited to a
	maximum of of 64 bytes.
Usage	usrp.sink_x.read_i2c(i2c_addr, len)
Parameters	i2c_addr: I2C bus address (7-bits)
	len : number of bytes to read
Examples	
Note	

1.28.2.24) set_adc_offset()

Туре	Sub Function
Description	Set ADC offset correction.
Usage	usrp.sink_x.set_adc_offset(which, offset)
Parameters	which: which ADC[0,3]:
	offset: 16-bit value to subtract from raw ADC input.
Examples	
Note	

1.28.2.25) set_dac_offset()

Туре	Sub Function
Description	Set DAC offset correction.
Usage	usrp.sink_x.set_dac_offset(which, offset, offset_pin)
Parameters	which: which DAC[0,3]

	<u> </u>
	offset: 10-bit offset value (ambiguous format: See AD9862 datasheet). offset_pin: 1-bit value. If 0 offset applied to -ve differential pin; If 1 offset applied to +ve differential pin.
Examples	
Note	

1.28.2.26) set_adc_buffer_bypass()

Туре	Sub Function
Description	Control ADC input buffer.
Usage	usrp.sink_x.set_adc_buffer_bypass(which, bypass)
Parameters	which : which ADC [0,3]bypass : if non-zero, bypass input buffer and connect input directly to switched cap SHA input of RxPGA.
Examples	
Note	

1.28.2.27) serial_number()

Type	Sub Function
Description	Return the usrp's serial number. Return non-zero length string iff successful.
Usage	usrp.sink_x.serial_number()
Parameters	
Examples	
Note	

1.28.2.28) _write_oe()

Туре	Sub Function
Description	Write direction register (output enables) for pins that go to daughterboard. Each d'board has 16-bits of general purpose i/o. Setting the bit makes it an output from the FPGA to the d'board. This register is initialized based on a value stored in the d'board EEPROM. In general, you shouldn't be using this routine without a very good reason. Using this method incorrectly will kill your USRP motherboard and/or daughterboard.
Usage	usrp.sink_xwrite_oe(which_dboard, value, mask)
Parameters	<pre>which_dboard : [0,1] which d'board value : value to write into register mask : which bits of value to write into reg</pre>
Examples	
Note	

1.28.2.29) write_io()

Туре	Sub Function
Description	Write daughterboard i/o pin value.
Usage	usrp.sink_x.write_io(which_dboard, value, mask)
Parameters	which_dboard: [0,1] which d'board

	-
	value : value to write into registermask : which bits of value to write into reg
Examples	The state of the s
Note	

1.28.2.30) read_io()

Туре	Sub Function
Description	Read daughterboard i/o pin value.
	Return register value if successful, else READ_FAILED
Usage	usrp.sink_x.read_io(which_dboard)
Parameters	which_dboard : [0,1] which d'board
Examples	
Note	READ_FAILED =-99999

1.28.2.31) _write_fpga_reg()

Туре	Sub Function
Description	Write FPGA register.
	Return True if successful
Usage	usrp.sink_xwrite_fpga_reg(regno,value)
Parameters	<i>regno</i> : 7-bit register number
	value: 32-bit value
Examples	
Note	

1.28.2.32) _write_fpga_reg_masked()

Type	Sub Function
Description	Write FPGA register masked.
-	Return True if successful
Usage	usrp.sink_xwrite_fpga_reg_masked(regno, value, mask)
Parameters	<i>regno</i> : 7-bit register number
	value: 16-bit value
	mask: 16 bit mask
Examples	
Note	

1.28.2.33) _read_fpga_reg()

Туре	Sub Function
Description	Read FPGA registers.
·	Return register value if successful, else READ_FAILED
Usage	usrp.sink_xread_fpga_reg(regno)

Parameters	<i>regno</i> : 7-bit register number
Examples	
Note	

1.28.2.34) _write_9862()

Туре	Sub Function
Description	Write AD9862 registers.
•	Return true if successful
Usage	usrp.sink_xwrite_9862(which_codec, regno, value)
Parameters	which_codec : 0 or 1
	<i>regno</i> : 6-bit register number
	value: 8-bit value
Examples	
Note	

1.28.2.35) _read_9862()

Type	Sub Function
Description	Read AD9862 registers.
	Return register value if successful, else READ_FAILED
Usage	usrp.sink_xread_9862(which_codec, regno)
Parameters	which_codec : 0 or 1
	<i>regno</i> : 6-bit register number
Examples	
Note	

1.28.2.36) _write_spi()

Туре	Sub Function
Type Description	Sub Function Write data to SPI bus peripheral. SPI == "Serial Port Interface". SPI is a 3 wire bus plus a separate enable for each peripheral. The common lines are SCLK,SDI and SDO. The FX2 always drives SCLK and SDI, the clock and data lines from the FX2 to the peripheral. When enabled, a peripheral may drive SDO, the data line from the peripheral to the FX2. The SPI_READ and SPI_WRITE commands are formatted identically. Each specifies which peripherals to enable, whether the bits should be transmistted Most Significant Bit first or Least Significant Bit first, the number of bytes in the optional header, and the number of bytes to read or write in the body. The body is limited to 64 bytes. The optional header may contain 0, 1 or 2 bytes. For an SPI_WRITE, the header bytes are transmitted to the peripheral followed by the the body bytes. For an SPI_READ, the header bytes are transmitted to the peripheral, then len bytes are read back from the peripheral.(see: usrp_spi_defs.h file). If format specifies
	that optional_header bytes are present, they are written to the peripheral immediately prior to writing buf. Return true if successful. Writes are limited to a maximum of 64 bytes.
Usage	usrp.sink_xwrite_spi(optional_header, enables, format, buf)
Parameters	<pre>optional_header : 0,1 or 2 bytes to write before buf. enables : bitmask of peripherals to write. format : transaction format. SPI_FMT_* buf : the data to write</pre>
Examples	
Note	

1.28.2.37) _read_spi()

Type	Sub Function
Description	Read data from SPI bus peripheral.
	Return the data read if successful, else a zero length string.
Usage	usrp.sink_xread_spi(optional_header, enables, format, len)
Parameters	optional_header: 0,1 or 2 bytes to write before buf.
	enables: bitmask of peripherals to write.
	format: transaction format. SPI_FMT_*
	len: number of bytes to read.
Examples	
Note	

1.29) gnuradio/usrp_multi.py

Туре	Python file
Description	With this code you can connect two or more usrps (with a locked clock) and get synchronised samples. You must connect a (flat)cable between a dboard on the master in RXA and a dboard on the slave in RXA. You then put one usrp in master mode, put the other in slave mode.
	Warning, allways FIRST enable the slave before you enable the master This is to be
	sure you don't have two masters connecting to each other Otherwise you could ruin your hardware because the two sync outputs would be connected together.
	You determine which is the master by master_serialno (this is a text string a hexadecimal
	number). If you enter a serial number which is not found it will print the serial numbers
	which are available. If you give no serial number (master_serialno=None), the code will pick a Master for you.
Examples	The gnuradio-examples/python/multi_usrp directory contains examples
Note	To Synchroniza master and slave clocks, connect the 64MHz clocks between the boards with a short sma coax cable.(See the wiki on how to enable clock-out and clock-in http://gnuradio.org/trac/wiki/USRPClockingNotes)
	You Needsone board with a clock out and one board with a clock in. You can choose any of the two boards as master or slave; this is not dependant on which board has the clock-out or in.
	In the experiments, we had fewer problems when the board that has the clock-in will be the master board. You can use a standard 16-pole flatcable to connect tvrx, basic-rx or dbsrx boards. Of this 16pin flatcable only two pins are used (io15 and ground) For all new daughterboards which use up a lot of io pins you have to use a cable with fewer connections. The savest is using a 2pin headercable connected to io15,gnd (a cable like the ones used to connect frontpanel leds to the mainboard of a PC)
	If using basic rx board: Connect a 16-pole flatcable from J25 on basicrx/dbs_rx in rxa of the master usrp to J25 on basicrx/dbsrx in RXA of the slave usrp
	Don't twist the cable (Make sure the pin1 marker (red line on the flatcable) is on the same side of the connector (at io-8 on the master and at io8 on the slave.)) For basic_rx this means the marker should be on the side of the dboard with the sma
	connectors. For dbs_rx this means the marker should be on the side of the dboard with the two little chips. In other words, don't twist the cable; you will burn your board if you do. You can also connect a flatcable with multiple connectors from master-J25 to slave1-J25
	to slave2-J25 to You will however have to think of something to create a common 64Mhz clock for more then two usrps.
	For all other daughterboards, connect a 2wire cable from masterRXA J25 io15, gnd to slaveRXA J25 io15, gnd. Now the hardware is setup.

Page 169 of 208

1.29.1) multi_source_align ()

Type	Function
Description	Align multiple sources (USRPs) using sample numbers in the first channel. Takes two
	ore more sources producing interleaved shorts.
	Produces: nchan * nsources gr_complex output streams.
Usage	usrp_multi.multi_source_align(fg,
	master_serialno,decim,nchan=2,pga_gain=0.0,cordic_freq=0.0,mux=None,align_int
	erval=-1)
Parameters	nchan: number of interleaved channels in source 2 or 4.
	align_interval: number of samples to minimally skip between alignments. default =
	-1 which means align only once per work call.
	master_serial_no: Serial_no of the usrp which should be the MASTER
Examples	
Note	

1.29.1.1) get_master_usrp ()

Type	Sub Function
Description	Get the instance of the master USRP
Usage	usrp_multi.multi_source_align.get_master_usrp()
Parameters	
Examples	
Note	

1.29.1.2) get_slave_usrp ()

Туре	Sub Function
Description	Get the instance of the slave USRP
Usage	usrp_multi.multi_source_align.get_slave_usrp()
Parameters	
Examples	
Note	

1.29.1.3) get_master_source_c ()

Туре	Sub Function
Description	Get the instance of the master USRP source channels. When we connect this instance,
	we can use the port number to get the channels from the master one
	(usrp_multi.multi_source_align.get_master_source_c(),1),
	(usrp_multi.multi_source_align.get_master_source_c(),2),
Usage	usrp_multi.multi_source_align.get_master_source_c()
Parameters	
Examples	
Note	These blocks have multiple outputs.
	output 0 is the sample counter (high bits in I, low bits in Q)
	You normally don't Needsthe samplecounters so you can ignore output 0
	output 1 is the first aligend output channel (if you enable 2 or 4 channels)
	output 2 is the second output channel (only if you enable 4 channels)

Page 170 of 208

1.29.1.4) get_slave_source_c ()

Type	Sub Function
Description	Get the instance of the slave USRP source channels. When we connect this instance, we can use the port number to get the channels from the slave one (usrp_multi_multi_source_align.get_slave_source_c(),1),
	(usrp_multi.multi_source_align.get_slave_source_c(),2),
Usage	usrp_multi.multi_source_align.get_slave_source_c()
Parameters	
Examples	
Note	These blocks have multiple outputs. output 0 is the sample counter (high bits in I, low bits in Q) You normally don't Needsthe samplecounters so you can ignore output 0 output 1 is the first aligend output channel (if you enable 2 or 4 channels) output 2 is the second output channel (only if you enable 4 channels)

1.29.1.5) sync ()

Туре	Sub Function
Description	Called to synchroniza master and slave USRPs. You must call sync() at least once AFTER the flowgraph has started running.(This will synchronise the streams of the two usrps)
Usage	usrp_multi.multi_source_align.sync()
Parameters	
Examples	
Note	

1.29.1.6) print_db_info ()

Туре	Sub Function
Description	Print master and slave daughterboards side and name
Usage	usrp_multi.multi_source_align.print_db_info()
Parameters	
Examples	
Note	

1.29.1.7) tune_all_rx ()

Туре	Sub Function
Description	Tune all master and slave USRP 4 receive daughterboards to certen frequency.
Usage	usrp_multi.multi_source_align.tune_all_rx(target_freq)
Parameters	
Examples	
Note	This will only work reliably when you have all the same daughterboards. Otherwise set all
	freqs and gains individually.

1.29.1.8) set_gain_all_rx ()

Type	Sub Function
Description	Set the gain for all master and slave USRP 4 receive daughterboards.
Usage	usrp_multi.multi_source_align. set_gain_all_rx(gain)
Parameters	
Examples	
Note	This will only work reliably when you have all the same daughterboards. Otherwise set all freqs and gains individually.

1.30) gnuradio/tx_debug_gui.py

Туре	Python file
Description	Debug tool for Tx. Transmit debugger.
usage	<pre>tx_debug_gui.tx_debug_gui(tx_subdev, title="Tx Debug")</pre>
Examples	
Note	To show the frame: debugger = tx_debug_gui.tx_debug_gui(subdev) debugger.Show(True)

1.31) gnuradio/flexrf_debug_gui.py

Type	Python file
Description	Debug tool for flexrf boards.
usage	<pre>flexrf_debug_gui.flexrf_debug_gui(flexrf, title="Flexrf Debug")</pre>
Parameters	flexrf: USRP source instance
Examples	
Note	To show the frame : debugger = flexrf_debug_gui.flexrf_debug_gui(flexrf) debugger.Show(True)

1.32) gnuradio/db_base.py

Туре	Python file
Description	This is the abstract base class for all daughterboards. This defines the required operations and interfaces for all d'boards.
Note	All functions in this file will be mapped into daughterboards details as seen below.

1.33) gnuradio/db_basic.py

Туре	Python file
Description	Handler for Basic Tx, Basic Rx, Low frequency TX, and Low frequency RX daughterboards
Note	

1.33.1) db_basic_tx ()

Туре	Function
Description	Handler for Basic Tx daughterboards
Usage	db_basic.db_basic_tx(usrp,which)
Parameters	usrp: instance of usrp.sink
	which: which side: 0 or 1 corresponding to TX_A or TX_B respectively
Examples	
Note	Board Technical specifications :
	Min gain: 0 dB
	Max gain :20 dB
	Gain steps: 0.08 dB
	Min frequency: -1e09 Hz
	Max frequency: 1e09 Hz
	Frequency Step: 1e-6 Hz

1.33.1.1) dbid ()

Type	Sub Function
Description	Return daughter board ID
Usage	db_basic.db_basic_tx.dbid()
Parameters	
Examples	
Note	

1.33.1.2) name ()

Type	Sub Function
Description	Return daughter board name
Usage	db_basic.db_basic_tx.name()
Parameters	
Examples	
Note	

1.33.1.3) side_and_name ()

Type	Sub Function
Description	Return daughter board side and name
Usage	db_basic.db_basic_tx.side_and_name()
Parameters	
Examples	
Note	

1.33.1.4) freq_range ()

Type	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
	Returns (min_freq, max_freq, step_size), return type is tuple.
Usage	db_basic.db_basic_tx.freq_range()
Parameters	
Examples	
Note	

1.33.1.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
•	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	db_basic.db_basic_tx.set_freq(target_freq)
Parameters	taget_freq: target RF frequency in Hz
	type target_freq: float
Examples	
Note	

1.33.1.6) gain_range ()

Туре	Sub Function
Description	Return range of gain that can be set by this d'board.
	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	db_basic.db_basic_tx.gain_range()
Parameters	
Examples	
Note	

1.33.1.7) set_gain ()

Туре	Sub Function
Description	Set the gain.
•	Returns True/False
Usage	db_basic.db_basic_tx.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	

1.33.1.8) is_quadrature ()

Type	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is,
	return True if this board requires both I & Q analog channels.
	For this board, return True
Usage	db_basic.db_basic_tx.is_quadrature()

Parameters	
Examples	
Note	

1.33.2) db_basic_rx ()

Туре	Function
Description	Handler for Basic Rx daughterboards
Usage	db_basic.db_basic_rx(usrp,which,subdev)
Parameters	usrp: instance of usrp.source
	which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
	subdev: which analog i/o channel: 0 or 1
Examples	
Note	Board Technical specifications :
	Min gain: 0 dB
	Max gain :20 dB
	Gain steps: 1 dB
	Min frequency: -1e09 Hz
	Max frequency: 1e09 Hz
	Frequency Step: 1e-6 Hz

1.33.2.1) dbid ()

Type	Sub Function
Description	Return daughter board ID
Usage	db_basic.db_basic_rx.dbid()
Parameters	
Examples	
Note	

1.33.2.2) name ()

Туре	Sub Function
Description	Return daughter board name
Usage	db_basic.db_basic_rtx.name()
Parameters	
Examples	
Note	

1.33.2.3) side_and_name ()

Туре	Sub Function
Description	Return daughter board side and name
Usage	db_basic.db_basic_rx.side_and_name()
Parameters	
Examples	
Note	

Page 175 of 208

1.33.2.4) freq_range ()

Туре	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
	Returns (min_freq, max_freq, step_size), return type tuple.
Usage	db_basic.db_basic_rx.freq_range()
Parameters	
Examples	
Note	

1.33.2.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	db_basic.db_basic_rx.set_freq(target_freq)
Parameters	target_freq: target RF frequency in Hz
	type target_freq: float
Examples	
Note	

1.33.2.6) gain_range ()

Туре	Sub Function
Description	Return range of gain that can be set by this d'board.
	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	db_basic.db_basic_rx.gain_range()
Parameters	
Examples	
Note	

1.33.2.7) set_gain ()

Type	Sub Function
Description	Set the gain.
•	Returns True/False if successful.
Usage	db_basic.db_basic_rx.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	

1.33.2.8) is_quadrature ()

Туре	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return False.
Usage	db_basic.db_basic_rx.is_quadrature()
Parameters	
Examples	
Note	

1.33.3) db_lf_rx ()

Туре	Function
Description	Handler for Low frequency Rx daughterboards
Usage	db_basic.db_lf_rx(usrp,which,subdev)
Parameters	<pre>usrp: instance of usrp.source which: which side: 0 or 1 corresponding to RX_A or RX_B respectively subdev: which analog i/o channel: 0 or 1</pre>
Examples	
Note	Board Technical specifications: Min gain: 0 dB Max gain: 20 dB Gain steps: 1 dB Min frequency: -32e06 Hz Max frequency: 32e06 Hz Frequency Step: 1e-6 Hz

1.33.3.1) dbid ()

Type	Sub Function
Description	Return daughter board ID
Usage	db_basic.db_ If _rx.dbid()
Parameters	
Examples	
Note	

1.33.3.2) name ()

Type	Sub Function
Description	Return daughter board name
Usage	db_basic.db_ If _rtx.name()
Parameters	
Examples	
Note	

1.33.3.3) side_and_name ()

Type	Sub Function
Description	Return daughter board side and name
Usage	db_basic.db_ If _rx.side_and_name()

Parameters	
Examples	
Note	

1.33.3.4) freq_range ()

Туре	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
	Returns (min_freq, max_freq, step_size), return type tuple.
	We cover the first nyquist zone only
Usage	db_basic.db_ If _rx.freq_range()
Usage Parameters	db_basic.db_ if _rx.freq_range()
	db_basic.db_ if _rx.freq_range()

1.33.3.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	db_basic.db_ lf _rx.set_freq(target_freq)
Parameters	target_freq: target RF frequency in Hz
	type freq: float
Examples	
Note	

1.33.3.6) gain_range ()

Туре	Sub Function
Description	Return range of gain that can be set by this d'board.
	returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	db_basic.db_ If _rx.gain_range()
Parameters	
Examples	
Note	

1.33.3.7) set_gain ()

Туре	Sub Function
Description	Set the gain.
	Returns True/False if successful.
Usage	db_basic.db_ lf _rx.set_gain(gain)
Parameters	<i>gain</i> : gain in decibels
Examples	
Note	

1.33.3.8) is_quadrature ()

Туре	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return False
Usage	db_basic.db_ If _rx.is_quadrature()
Parameters	
Examples	

1.33.4) db_lf_tx ()

Туре	Function
Description	Handler for Low frequency Tx daughterboards
Usage	db_basic.db_lf_tx(usrp,which)
Parameters	usrp: instance of usrp.sink
	which: which side: 0 or 1 corresponding to TX_A or TX_B respectively
Examples	
Note	Board Technical specifications :
	Min gain: 0 dB
	Max gain :20 dB
	Gain steps: 0.08 dB
	Min frequency: -32e06 Hz
	Max frequency: 32e06 Hz
	Frequency Step: 1e-6 Hz

1.33.4.1) dbid ()

Туре	Sub Function
Description	Return daughter board ID
Usage	db_basic.db_ lf _tx.dbid()
Parameters	
Examples	
Note	

1.33.4.2) name ()

Туре	Sub Function
Description	Return daughter board name
Usage	db_basic.db_ If _tx.name()
Parameters	
Examples	
Note	

1.33.4.3) side_and_name ()

Type	Sub Function
Description	Return daughter board side and name
Usage	db_basic.db_ If _tx.side_and_name()
Parameters	
Examples	
Note	

1.33.4.4) freq_range ()

Type	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
	Returns (min_freq, max_freq, step_size), return type tuple.
Usage	db_basic.db_ lf _tx.freq_range()
Parameters	
Examples	
Note	

1.33.4.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
·	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	db_basic.db_ If _tx.set_freq(target_freq)
Parameters	target_freq: target RF frequency in Hz
	type freq: float
Examples	
Note	

1.33.4.6) gain_range ()

Type	Sub Function
Description	Return range of gain that can be set by this d'board.
	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	db_basic.db_ If _tx.gain_range()
Parameters	
Examples	
Note	

1.33.4.7) set_gain ()

Туре	Sub Function
Description	Set the gain.
	Returns True/False if successful.
Usage	db_basic.db_ lf _tx.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	

Page 180 of 208

1.33.4.8) is_quadrature ()

Type	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return True
Usage	db_basic.db_ If _tx.is_quadrature()
Parameters	
Examples	
Note	

1.34) gnuradio/db_dbs_rx.py

Туре	Python file
Description	Control DBS receiver based USRP daughterboard.
Note	

1.34.1) db_dbs_rx ()

Type	Function
Description	Control DBS receiver based USRP daughterboard.
Usage	db_dbs_rx.db_dbs_rx(usrp,which)
Parameters	<pre>usrp: instance of usrp source which: which side: 0 or 1 corresponding to side A or side B respectively</pre>
Examples	
Note	Board Technical specifications: Min gain: 0 dB Max gain: 104 dB Gain steps: 1 dB Min frequency: 500e06 Hz Max frequency: 2600 e06 Hz Frequency Step: 1e6 Hz

1.34.1.1) dbid ()

Туре	Sub Function
Description	Return daughter board ID
Usage	db_dbs_rx.db_dbs_rx.dbid()
Parameters	
Examples	
Note	

1.34.1.2) name ()

Туре	Sub Function
Description	Return daughter board name
Usage	db_ dbs_rx.db_ dbs _rtx.name()
Parameters	
Examples	

Ν	lote	

1.34.1.3) side_and_name ()

Type	Sub Function
Description	Return daughter board side and name
Usage	db_dbs_rx.db_dbs_rx.side_and_name()
Parameters	
Examples	
Note	

1.34.1.4) freq_range ()

Type	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
	Returns (min_freq, max_freq, step_size), return type tuple.
Usage	db_dbs_rx.db_dbs_rx.freq_range()
Parameters	
Examples	
Note	

1.34.1.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
-	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	db_dbs_rx.db_dbs_rx.set_freq(target_freq)
Parameters	taget_freq: target RF frequency in Hz
	type freq: float
Examples	
Note	

1.34.1.6) gain_range ()

Туре	Sub Function
Description	Return range of gain that can be set by this d'board.
	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	db_dbs_rx.db_dbs_rx.gain_range()
Parameters	
Examples	
Note	

1.34.1.7) set_gain ()

Type	Sub Function
Description	Set the gain.
·	Returns True/False if successful
Usage	db_dbs_rx.db_dbs_rx.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	

1.34.1.8) is_quadrature ()

Туре	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return True.
Usage	db_dbs_rx.db_dbs_rx.is_quadrature()
Parameters	
Examples	
Note	

1.34.1.9) set_bw ()

Туре	Sub Function
Description	Set the bandwidth for the receive channel. Bandwidth should be more than or equal 1MHz and less than 33 MHz
Usage	db_dbs_rx.db_dbs_rx.set_bw(bw)
Parameters	
Examples	
Note	

1.35) gnuradio/db_flexrf.py gnuradio/db_flexrf_mimo.py

Type	Python files
Description	Interface functions for all flexrf USRP daughter boards
Note	

1.35.1) db_flexrf_xxxx_tx () db_flexrf_xxxx_tx_mimo_x()

Туре	Function
Description	Handler for flexrf Tx daughterboards :
•	flex_400_tx
	flex_900_tx
	flex_1200_tx
	flex_1800_tx
	flex_2400_tx
	flex_400_tx_mimo_a
	flex_900_tx_mimo_a
	flex 1200 tx mimo a

Simple Gnuradio User Manual			rage 16	33 01 208
Usage	flex_1800_tx_mimo_flex_2400_tx_mimo_flex_400_tx_mimo_flex_900_tx_mimo_flex_1200_tx_mimo_flex_1800_tx_mimo_flex_2400_tx_mimo_flex_2400_tx_mimo_flex_1800_tx_m	a o o _b _b	C	200
	or	(,	
		_xxxx_tx_mimo_x(u	srp,which)	
Parameters	usrp: instance of us			
E l	which: which side: (or 1 corresponding	to TX_A or TX_B resp	pectively
Examples				
Note	DE TV :	Min Francisco	Mari Francisco	
Dboard	RF TX power	Min Frequency	Max Frequency	Frequency Step
flex_400_tx	100mW (20 dBm)	400 MHz	500 MHz	1 MHz
flex_900_tx	200 mW (23 dBm)	750 MHz	1050 MHz	4 MHz
flex_1200_tx	200 mW (23 dBm)	1150 MHz	1450 MHz	4 MHz
flex_1800_tx	100 mW (20 dBm)	1500 MHz	2100 MHz	4 MHz
flex_2400_tx	50 mW (17 dBm)	2300 MHz	2900 MHz	4 MHz
flex_400_tx_mimo_a	100mW (20 dBm)	400 MHz	500 MHz	1 MHz
flex_900_tx_mimo_a	200 mW (23 dBm)	750 MHz	1050 MHz	4 MHz
flex_1200_tx_mimo_a	200 mW (23 dBm)	1150 MHz	1450 MHz	4 MHz
flex_1800_tx_mimo_a	100 mW (20 dBm)	1500 MHz	2100 MHz	4 MHz
flex_2400_tx_mimo_a	50 mW (17 dBm)	2300 MHz	2900 MHz	4 MHz
flex_400_tx_mimo_b	100mW (20 dBm)	400 MHz	500 MHz	1 MHz
flex_900_tx_mimo_b	200 mW (23 dBm)	750 MHz	1050 MHz	4 MHz
flex_1200_tx_mimo_b	200 mW (23 dBm)	1150 MHz	1450 MHz	4 MHz
flex_1800_tx_mimo_b	100 mW (20 dBm)	1500 MHz	2100 MHz	4 MHz
flex_2400_tx_mimo_b	50 mW (17 dBm)	2300 MHz	2900 MHz	4 MHz

1.35.1.1) dbid ()

Туре	Sub Function
Description	Return daughter board ID
Usage	subdev.dbid()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.1.2) name ()

Туре	Sub Function
Description	Return daughter board name
Usage	subdev.name()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by:
	subdev = usrp.selected_subdev(u, subdev_spec)

_	
	where :
	u : is the USRP sink instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.35.1.3) side_and_name ()

Type	Sub Function					
Description	Return daughter board side and name					
Usage	subdev.side_and_name()					
Parameters						
Examples						
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)					

1.35.1.4) freq_range ()

Туре	Sub Function				
Description Return range of frequencies in Hz that can be tuned by this d'board.					
	Returns (min_freq, max_freq, step_size), return type tuple.				
Usage	subdev.freq_range()				
Parameters					
Examples					
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u: is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)				

1.35.1.5) set_freq ()

Туре	Sub Function				
Description	Set the frequency.				
	Returns (ok, actual_baseband_freq)				
	where:				
	ok :bool True or False and indicates success or failure,				
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.				
Usage	subdev.set_freq(target_freq)				
Parameters	target_freq: target RF frequency in Hz				
	type freq: float				
Examples					
Note	subdev is the flexrf daughterboard and can be get by :				
	subdev = usrp.selected_subdev(u, subdev_spec)				
	where:				
	u: is the USRP sink instance.				
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)				

1.35.1.6) is_quadrature ()

Туре	Sub Function			
Description Return True if this daughterboard does quadrature up or down conversion				
	Return True if this board requires both I & Q analog channels.			
	For this board, return True			
Usage	subdev.is_quadrature()			
Parameters				
Examples				
Note	subdev is the flexrf daughterboard and can be get by:			
	subdev = usrp.selected_subdev(u, subdev_spec)			
	where:			
	u : is the USRP sink instance.			
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and			
	subdev is 0 (Input I) or 1 (input Q)			

1.35.1.7) set_auto_tr ()

Туре	Sub Function
Description	Enable automatic Transmit/Receive switching (ATR).
Usage	subdev.set_auto_tr(on)
Parameters	on: bool True or False
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.1.8) set_enable ()

Туре	Sub Function			
Description Enable /Disable RF Transmitter				
Usage	subdev.set_enable(on)			
Parameters on : bool True or False				
Examples				
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u:is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)			

1.35.2) db_flexrf_xxxx_rx () db_flexrf_xxxx_rx_mimo_x()

Туре	Function			
Description	Handler for flexrf Rx daughterboards :			
	flex_400_rx			
	flex_900_rx			

Simple Gnuradio User Manual				Page 18	6 01 208
	flex_1200)_rx			
	flex_180	0_rx			
	flex_2400)_rx			
	flex_400_	_rx_mimo_a	a		
	flex_900_	_rx_mimo_a	a		
	flex_1200	_rx_mimo	_a		
		_rx_mimo_			
		_rx_mimo_			
		_rx_mimo_l			
		_rx_mimo_l			
		_rx_mimo			
		_rx_mimo			
		_rx_mimo			
Usage		f.db_flexrf	_xxxx_rx(usrp,whicl	า)	
	or		. ,		
_			_xxxx_rx_mimo_x(u	srp,which)	
Parameters		tance of us			
	which: w	hich side: (or 1 corresponding t	to RX_A or RX_B resp	pectively
Examples					
Note					
Dboard	Max	Gain	Min Frequency	Max Frequency	Frequency Step
	Gain	Step	(00.14)	500.1411	
flex_400_rx	65	.035	400 MHz	500 MHz	1 MHz
flex_900_rx	90	.05	750 MHz	1050 MHz	4 MHz
flex_1200_rx	90	.05	1150 MHz	1450 MHz	4 MHz
flex_1800_rx	90	.05	1500 MHz	2100 MHz	4 MHz
flex_2400_rx	90	.05	2300 MHz	2900 MHz	4 MHz
flex_400_rx_mimo_a	65	.035	400 MHz	500 MHz	1 MHz
flex_900_rx_mimo_a	90	.05	750 MHz	1050 MHz	4 MHz
flex_1200_rx_mimo_a	90	.05	1150 MHz	1450 MHz	4 MHz
flex_1800_rx_mimo_a	90	.05	1500 MHz	2100 MHz	4 MHz
flex_2400_rx_mimo_a	90	.05	2300 MHz	2900 MHz	4 MHz
flex_400_rx_mimo_b	65	.035	400 MHz	500 MHz	1 MHz
flex_900_rx_mimo_b	90	.05	750 MHz	1050 MHz	4 MHz
flex_1200_rx_mimo_b	90	.05	1150 MHz	1450 MHz	4 MHz
flex_1800_rx_mimo_b	90	.05	1500 MHz	2100 MHz	4 MHz
flex_2400_rx_mimo_b	90	.05	2300 MHz	2900 MHz	4 MHz

1.35.2.1) dbid ()

Туре	Sub Function
Description	Return daughter board ID
Usage	subdev.dbid()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u:is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.2.2) name ()

Туре	Sub Function			
Description	Return daughter board name			
Usage	subdev.name()			
Parameters				

Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.35.2.3) side_and_name ()

Туре	Sub Function
Description	Return daughter board side and name
Usage	subdev.side_and_name()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.2.4) freq_range ()

Type	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
-	Returns (min_freq, max_freq, step_size), return type tuple.
Usage	subdev.freq_range()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by :
	subdev = usrp.selected_subdev(u, subdev_spec)
	where:
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.35.2.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	subdev.set_freq(target_freq)
Parameters	target_freq: target RF frequency in Hz
	type freq: float
Examples	
Note	subdev is the flexrf daughterboard and can be get by:
	subdev = usrp.selected_subdev(u, subdev_spec)
	where:
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.2.6) gain_range ()

Type	Sub Function
Description	Return range of gain that can be set by this d'board.
	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	subdev.gain_range()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by :
	subdev = usrp.selected_subdev(u, subdev_spec)
	where:
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.35.2.7) set_gain ()

Type	Sub Function
Description	Set the gain.
	Returns True/False if successful.
Usage	subdev.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	subdev is the flexrf daughterboard and can be get by :
	subdev = usrp.selected_subdev(u, subdev_spec)
	where :
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.35.2.8) is_quadrature ()

Туре	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return True
Usage	subdev.is_quadrature()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.2.9) set_auto_tr ()

Туре	Sub Function
Description	Enable automatic Transmit/Receive switching (ATR).
Usage	subdev.set_auto_tr(on)

Parameters	on : bool True or False
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.2.10) select_rx_antenna ()

Туре	Sub Function
Description	Specify which antenna port to use for reception. Choose either 'TX/RX' or 'RX2'
Usage	subdev.select_rx_antenna(which_antenna)
Parameters	which_antenna: either 'TX/RX' or 'RX2'
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.35.2.11) i_and_q_swapped ()

Type	Sub Function
Description	Return True if this is a quadrature device and ADC 0 is Q.
Usage	subdev.i_and_q_swapped()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u: is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.36) gnuradio/db_instantiator.py

Туре	Python files
Description	Instantiator for accessing USRP daughter boards
Note	

1.37) gnuradio/db_tv_rx.py

Type	Python file
Description	Control Microtune 4937 based USRP daughterboard
Note	

1.37.1) db_tv_rx ()

Туре	Function
Description	Control Microtune 4937 based USRP daughterboard. Three version are invented so far, TV_RX, First IF = 43.75 MHz, second IF = 5.75e6 MHz with second downconversion. TV_RX_REV_2, First IF =44 MHz, second IF = 20 MHz without second downconversion TV_RX_REV_3, First IF = 44 MHz, second IF = 20 MHz without second downconve The The TV_RX 43.75 MHz version has inverted spectrum
Usage	db_tv_rx.db_tv_rx(usrp,which,first_IF,second_IF)
Parameters	<pre>usrp: instance of usrp source which: which side: 0 or 1 corresponding to side A or side B respectively</pre>
Examples	
Note	Board Technical specifications: Min gain: 0 dB Max gain: 115 dB Gain steps: 1 dB Min frequency: 50e06 Hz Max frequency: 860 e06 Hz Frequency Step: 10e03 Hz

1.37.1.1) dbid ()

Type	Sub Function
Description	Return daughter board ID
Usage	db_tv_rx.db_tv_rx.dbid()
Parameters	
Examples	
Note	

1.37.1.2) name ()

Туре	Sub Function
Description	Return daughter board name
Usage	db_tv_rx.db_tv_rtx.name()
Parameters	
Examples	
Note	

1.37.1.3) side_and_name ()

Туре	Sub Function
Description	Return daughter board side and name
Usage	db_tv_rx.db_tv_rx.side_and_name()
Parameters	
Examples	
Note	

1.37.1.4) freq_range ()

Туре	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this d'board.
·	Returns (min_freq, max_freq, step_size), return type tuple.
Usage	db_tv_rx.db_tv_rx.freq_range()
Parameters	
Examples	
Note	

1.37.1.5) set_freq ()

Туре	Sub Function
Description	Set the frequency.
-	Returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	db_tv_rx.db_tv_rx.set_freq(target_freq)
Parameters	targhet_freq: target RF frequency in Hz
	type freq: float
Examples	
Note	

1.37.1.6) gain_range ()

Туре	Sub Function
Description	Return range of gain that can be set by this d'board.
	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	db_tv_rx.db_tv_rx.gain_range()
Parameters	
Examples	
Note	

1.37.1.7) set_gain ()

Туре	Sub Function
Description	Set the gain.
•	Returns True/False if successful
Usage	db_tv_rx.db_tv_rx.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	

1.37.1.8) is_quadrature ()

Туре	Sub Function
Description	Return True if this daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return False
Usage	db_tv_rx.db_tv_rx.is_quadrature()

Parameters	
Examples	
Note	

1.38) gnuradio/db_wbx.py

Туре	Python file
Description	This board is half-duplex. I.e., transmit and receive are mutually exclusive. There is a single LO for both the Tx and Rx sides. The shared control signals are hung off of the Rx side. The shared io controls are duplexed onto the Rx side pins. The wbx_high d'board always needs to be in 'auto_tr_mode'
Note	

1.38.1) db_wbx_lo_rx ()

Туре	Function
Description	Handlers for db_wbx_lo_rx dboard
Usage	db_wbx. db_wbx_lo_rx (usrp,which)
Parameters	usrp: instance of usrp source
	which: which side: 0 or 1 corresponding to side A or side B respectively
Examples	
Note	Board Technical specifications :
	Min gain: 0 dB
	Max gain :65 dB
	Gain steps: .05dB
	Min frequency: 50e06 Hz
	Max frequency: 1000 e06 Hz
	Frequency Step: 16e03 Hz

1.38.1.1) dbid ()

Туре	Sub Function
Description	Return db_wbx_lo_rx daughter board ID
Usage	subdev.dbid()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.38.1.2) name ()

Type	Sub Function
Description	Return db_wbx_lo_rx daughter board name
Usage	subdev.name()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.38.1.3) side_and_name ()

Туре	Sub Function
Description	Return db_wbx_lo_rx daughter board side and name
Usage	subdev.side_and_name()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.38.1.4) freq_range ()

Type	Sub Function
Description	Return range of frequencies in Hz that can be tuned by this db_wbx_lo_rx d'board.
	Returns (min_freq, max_freq, step_size), return type tuple.
Usage	subdev.freq_range()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by :
	subdev = usrp.selected_subdev(u, subdev_spec)
	where:
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.38.1.5) set_freq ()

Туре	Sub Function
Description	Set the db_wbx_lo_rx frequency.
	returns (ok, actual_baseband_freq)
	where:
	ok :bool True or False and indicates success or failure,
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
Usage	subdev.set_freq(target_freq)

Parameters	target_freq: target RF frequency in Hz
	type freq: float
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.38.1.6) gain_range ()

Туре	Sub Function
Description	Return range of gain that can be set by this db_wbx_lo_rx d'board.
•	Returns (min_gain, max_gain, step_size), where gains are expressed in decibels
Usage	subdev.gain_range()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by :
	subdev = usrp.selected_subdev(u, subdev_spec)
	where :
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.38.1.7) set_gain ()

Туре	Sub Function
Description	Set the gain of db_wbx_lo_rx.
	Returns True/False if successful.
Usage	subdev.set_gain(gain)
Parameters	gain: gain in decibels
Examples	
Note	subdev is the flexrf daughterboard and can be get by :
	subdev = usrp.selected_subdev(u, subdev_spec)
	where :
	u : is the USRP source instance.
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and
	subdev is 0 (Input I) or 1 (input Q)

1.38.1.8) is_quadrature ()

Type	Sub Function
Description	Return True if this db_wbx_lo_rx daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels.
	For this board, return True
Usage	subdev.is_quadrature()
Parameters	
Examples	
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u: is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

Page 195 of 208

1.38.1.9) set_auto_tr ()

Type	Sub Function
Description	Enable automatic Transmit/Receive switching (ATR).
Usage	subdev.set_auto_tr(on)
Parameters	on : bool True or False
Examples	
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u: is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.38.1.10) select_rx_antenna ()

Туре	Sub Function
Description	Specify which antenna port to use for reception. Choose either 'TX/RX' or 'RX2'
Usage	subdev.select_rx_antenna(which_antenna)
Parameters	which_antenna: either 'TX/RX' or 'RX2'
Examples	
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)

1.38.1.11) i_and_q_swapped ()

Туре	Sub Function			
Description	Return True if this is a quadrature device and ADC 0 is Q.			
Usage	subdev.i_and_q_swapped()			
Parameters				
Examples				
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP source instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)			

1.38.2) db_wbx_lo_tx ()

Туре	Function			
Description	Handlers for db_wbx_lo_tx dboard			
Usage	db_wbx. db_wbx_lo_tx (usrp,which)			
Parameters	usrp: instance of usrp source			

	which: which side: 0 or 1 corresponding to side A or side B respectively		
Examples			
Note	Board Technical specifications: Min gain: -56 dB Max gain: 0 dB Gain steps: .1dB Min frequency: 50e06 Hz		
	Max frequency: 1000 e06 Hz Frequency Step: 16e03 Hz		

1.38.2.1) dbid ()

Type	Sub Function				
Description	Return db_wbx_lo_tx daughter board ID				
Usage	subdev.dbid()				
Parameters					
Examples					
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u:is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)				

1.38.2.2) name ()

Type	Sub Function				
Description	Return db_wbx_lo_tx daughter board name				
Usage	subdev.name()				
Parameters					
Examples					
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u: is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)				

1.38.2.3) side_and_name ()

Туре	Sub Function			
Description	Return db_wbx_lo_tx daughter board side and name			
Usage	subdev.side_and_name()			
Parameters				
Examples				
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)			

Page 197 of 208

1.38.2.4) freq_range ()

Type	Sub Function			
Description	Return range of frequencies in Hz that can be tuned by this db_wbx_lo_tx d'board.			
-	Returns (min_freq, max_freq, step_size), return type tuple.			
Usage	subdev.freq_range()			
Parameters				
Examples				
Note	subdev is the flexrf daughterboard and can be get by :			
	subdev = usrp.selected_subdev(u, subdev_spec)			
	where:			
	u: is the USRP sink instance.			
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and			
	subdev is 0 (Input I) or 1 (input Q)			

1.38.2.5) set_freq ()

Туре	Sub Function			
Description	Set the frequency of db_wbx_lo_tx. Returns (ok, actual_baseband_freq)			
	where:			
	ok :bool True or False and indicates success or failure,			
	actual_baseband_freq is the RF frequency that corresponds to DC in the IF.			
Usage	subdev.set freq(target freq)			
Parameters	target_freq: target RF frequency in Hz			
	type freq: float			
Examples				
Note	subdev is the flexrf daughterboard and can be get by :			
	subdev = usrp.selected_subdev(u, subdev_spec)			
	where:			
	u: is the USRP sink instance.			
	subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)			

1.38.2.6) is_quadrature ()

Type	Sub Function			
Description	Return True if this db_wbx_lo_tx daughterboard does quadrature up or down conversion. That is, return True if this board requires both I & Q analog channels. For this board, return True			
Usage	subdev.is_quadrature()			
Parameters				
Examples				
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)			

1.38.2.7) set_auto_tr ()

Туре	Sub Function				
Description	Enable automatic Transmit/Receive switching (ATR).				
Usage	subdev.set_auto_tr(on)				
Parameters	on: bool True or False				
Examples					
Note	subdev is the flexrf daughterboard and can be get by : subdev = usrp.selected_subdev(u, subdev_spec) where : u : is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)				

1.38.2.8) set_enable ()

Туре	Sub Function			
Description	Enable /Disable RF Transmitter			
Usage	subdev.set_enable(on)			
Parameters	on: bool True or False			
Examples				
Note	subdev is the flexrf daughterboard and can be get by: subdev = usrp.selected_subdev(u, subdev_spec) where: u: is the USRP sink instance. subdev_spec: is the tuple (side, subdev), where side is 0 (Side A) or 1 (Side B) and subdev is 0 (Input I) or 1 (input Q)			

2) usrpm package

Descrip	otion		

2.1) usrpm/usrp_dbid.py

Type	Python file
Description	This file contains all USRP daughter boards ID's invented yet. These are :
	$BASIC_TX = 0x0000$
	$BASIC_RX = 0x0001$
	$DBS_RX = 0x0002$
	$TV_RX = 0x0003$
	$FLEX_400_RX = 0x0004$
	FLEX 900 RX = 0x0005
	FLEX 1200 RX = 0x0006
	$FLEX_{2400}RX = 0x0007$
	FLEX 400 TX = 0x0008
	$FLEX_{900} TX = 0x0009$
	$FLEX_{1200} TX = 0x000a$
	FLEX 2400 TX = 0x000b
	TV \overrightarrow{RX} \overrightarrow{REV} 2 = 0x000c
	DBS RX REV 2 1 = 0×000 d

```
LF TX
                              = 0x000e
                  LF RX
                              = 0x000f
                  FLEX 400 RX MIMO A = 0x0014
                  FLEX 900 RX MIMO A = 0x0015
                  FLEX_1200_RX_MIMO_A = 0x0016
                  FLEX 2400 RX MIMO A = 0x0017
                  FLEX_400_TX_MIMO_A = 0x0018
                  FLEX_{900}TX_{MIMO}A = 0x0019
                  FLEX 1200 TX MIMO A = 0x001a
                  FLEX 2400 TX MIMO A = 0x001b
                  FLEX 400 RX MIMO B = 0x0024
                  FLEX 900 RX MIMO B = 0x0025
                  FLEX\_1200\_RX\_MIMO\_B = 0x0026
                  FLEX_2400_RX_MIMO_B = 0x0027
                  FLEX_400_TX_MIMO_B = 0x0028
                  FLEX_900_TX_MIMO_B = 0x0029
                  FLEX_1200_TX_MIMO_B = 0x002a
                  FLEX_2400_TX_MIMO_B = 0x002b
                  FLEX_1800_RX
                                 = 0x0030
                  FLEX_1800_TX
                                  = 0x0031
                  FLEX 1800 RX MIMO A = 0x0032
                  FLEX 1800 TX MIMO A = 0x0033
                  FLEX 1800 RX MIMO B = 0x0034
                  FLEX 1800 TX MIMO B = 0x0035
                  TV RX REV 3
                                 = 0x0040
                  WBX_LO_TX
                                 = 0x0050
                  WBX LO RX
                                 = 0x0051
                  EXPERIMENTAL TX = 0xfffe
                  EXPERIMENTAL RX = 0xffff
Note
```

2.2) usrpm/usrp_prims.py

Туре	Python file
Description	This file was automatically generated by SWIG
Note	

2.3) usrpm/usrp_fpga_regs.py

Туре	Python file
Description	This file contains all USRP fpga registers. These are :
	FR_TX_SAMPLE_RATE_DIV
	FR_RX_SAMPLE_RATE_DIV
	FR_MASTER_CTRL
	bmFR_MC_ENABLE_TX
	bmFR_MC_ENABLE_RX
	bmFR_MC_RESET_TX
	bmFR_MC_RESET_RX
	FR_OE_0
	FR_OE_1
	FR_OE_2
	FR_OE_3
	FR_IO_0
	FR_IO_1
	FR_IO_2
	FR IO 3

```
FR MODE
bmFR MODE NORMAL
bmFR MODE LOOPBACK
bmFR_MODE_RX_COUNTING
bmFR_MODE_RX_COUNTING_32BIT
FR DEBUG EN
bmFR DEBUG EN TX A
bmFR_DEBUG_EN_RX_A
bmFR DEBUG EN TX B
bmFR DEBUG EN RX B
FR DC OFFSET CL EN
FR_ADC_OFFSET_0
FR_ADC_OFFSET_1
FR_ADC_OFFSET_2
FR_ADC_OFFSET_3
FR_ATR_MASK_0
FR_ATR_TXVAL_0
FR_ATR_RXVAL_0
FR_ATR_MASK_1
FR_ATR_TXVAL_1
FR ATR RXVAL 1
FR ATR MASK 2
FR_ATR_TXVAL_2
FR ATR RXVAL 2
FR ATR MASK 3
FR_ATR_TXVAL_3
FR ATR RXVAL 3
FR ATR TX DELAY
FR_ATR_RX_DELAY
FR_INTERP_RATE
FR DECIM RATE
FR_RX_FREQ_0
FR_RX_FREQ_1
FR_RX_FREQ_2
FR_RX_FREQ_3
FR_RX_MUX
FR_TX_MUX
FR_TX_A_REFCLK
FR_RX_A_REFCLK
FR_TX_B_REFCLK
FR_RX_B_REFCLK
bmFR REFCLK EN
bmFR_REFCLK_DIVISOR_MASK
FR RX PHASE_0
FR RX PHASE 1
FR RX PHASE 2
FR_RX_PHASE_3
FR TX FORMAT
bmFR_TX_FORMAT_16_IQ
FR RX FORMAT
bmFR RX FORMAT SHIFT MASK
bmFR_RX_FORMAT_SHIFT_SHIFT
bmFR_RX_FORMAT_WIDTH_MASK
bmFR_RX_FORMAT_WIDTH_SHIFT
bmFR_RX_FORMAT_WANT_Q
bmFR_RX_FORMAT_BYPASS_HB
FR_USER_0
FR_USER_1
FR_USER_2
FR_USER_3
FR_USER_4
FR_USER_5
FR USER 6
FR USER 7
```

Simple Gnuradio User Manual	Page 201 of 208
FR USER 8	
FR_USER_9	
FR USER 10	
FR USER 11	
FR_USER_12	
FR USER 13	
FR USER 14	
FR_USER_15	
FR_USER_16	
FR_USER_17	
FR_USER_18	
FR_USER_19	
FR_USER_20	
FR_USER_21	
FR_USER_22	
FR_USER_23	
FR_USER_24	
FR_USER_25	
FR_USER_26	
FR_USER_27	
FR_USER_28	
FR_USER_29	
FR_USER_30	
FR_USER_31	
FR_RX_MASTER_SLAVE	
bmFR_RX_SYNC	
bmFR_RX_SYNC_MASTER	
bmFR_RX_SYNC_SLAVE	
bmFR_RX_SYNC_INPUT_IOPIN	
bmFR_RX_SYNC_OUTPUT_IOPIN	
FR_RB_IO_RX_A_IO_TX_A	
FR_RB_IO_RX_B_IO_TX_B	
FR_RB_CAPS	
bmFR_RB_CAPS_NDDC_MASK	
bmFR_RB_CAPS_NDDC_SHIFT	
bmFR_RB_CAPS_RX_HAS_HALFBAND	
bmFR_RB_CAPS_NDUC_MASK	
bmFR_RB_CAPS_NDUC_SHIFT	
bmFR_RB_CAPS_TX_HAS_HALFBAND	
Note	

<u>Index</u>

A

adaptive_fir_ccf	77
add_const_vxx	
add_const_xx	80
add_vxx	
add_xx	
agc_xx	
align_on_samplenumbers_ss	
am_demod_cf	
analysis_filterbank	
argmax_xx	80
В	
bartlett	
basic_block	
bin_statistics_f	
binary_slicer_fb	
blackman2	
blackman3	
blackman4	
blackmanharris	
block	
block_detail	
buffer	
buffer_reader	
bytes_to_syms	101
\mathbf{C}	
and a draw form	1.45
calc_dxc_freq	
channel_modelchar to float	
check counting s	
check_counting_scheck_crc32	
check Ifsr 32k s	
chunks_to_symbols_xx	
clock recovery mm xx	
cma_equalizer_cc	
complex_to_arg	
complex_to_float	
complex to imag	
complex to interleaved short	
complex to mag	
complex to mag squared	
complex to real	
conjugate cc	
constellation decoder cb	
constellation sink	
conv 1 0 string to packed binary string	136, 138
conv_packed_binary_string_to_1_0_string	135, 138
converter_rate	
correlate access code bb	122
costas loop cc	120
cpm_mod	
ctcss_squelch_ff	125
cvsd_decode	
cvsd_encode	
-	
D	
υ	
d8psk_demod	21. 44
d8psk mod	
daughterboard id	

db_basic_rx	
db_basic_tx	
db_dbs_rx	
db_flexrf_xxxx_rx	
db_flexrf_xxxx_rx_mimo_x db_flexrf_xxxx_tx	
db_flexrf_xxxx_tx_mimo_x	
db If rx	
db If tx	
db_tv_rx	190
db_wbx_lo_rx	
db_wbx_lo_tx	
dbid	
dbpsk_demoddbpsk mod	•
dd mpsk sync cc	
decim rate	
decode bs	
decode_ps	
deinterleave	
delay	
demod_10k0a3e_cf	
demod_200kf3e_cfdemod_20k0f3e_cf	
demod_zukutse_ct	
design filter	
determine rx mux value	
determine_tx_mux_value	
diff_decoder_bb	123
diff_encoder_bb	
diff_phasor_cc	
dispatcher	
divide_xxdpll bb	
dqpsk demod	
dqpsk_mod	
dqpsk_mod	23, 46
dqpsk_mod E enable_realtime_scheduling	
dqpsk_mod	
enable_realtime_scheduling encode_sb encode_sp error_handler	
enable_realtime_scheduling encode_sb encode_sp	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp	
dqpsk_mod E enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx	
dqpsk_mod E enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx	
dqpsk_mod E enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc file_descriptor_sink	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc file_descriptor_sink file_descriptor_source	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc file_descriptor_sink file_descriptor_source file_error_handler file_sink file_sink_base	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc fille_descriptor_sink fille_descriptor_source fille_eink fille_sink_base fille_source	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc fille_descriptor_sink fille_descriptor_source fille_descriptor_source fille_sink fille_sink_base fille_source fille_source fille_source fille_source fille_source fille_glescriptor_fille fille_source fille_source fille_glescriptor_fille	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc file_descriptor_sink file_descriptor_source file_sink_base file_sink_base file_source filter_delay_fc fir_filter_xxx	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x. fft_vcc fft_vfc file_descriptor_sink. file_descriptor_source file_sink_base file_sink_base file_source filter_delay_fc fir_filter_xxx firdes.band_pass	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x. fft_vcc fft_vcc fft_vcc fft_vcc file_descriptor_sink file_descriptor_source. file_error_handler file_sink_base file_sink_base file_sink_base file_source filter_xxx ffrd_filter_xxx fft_filter_xxx fft_sink_s file_sink_base file_source filter_delay_fc fir_filter_xxx firdes.band_pass firdes.band_reject	23, 46
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc fille_descriptor_sink fille_descriptor_source fille_error_handler fille_sink_base fille_source fille_sink_base fille_source fille_rexx firdes.band_pass firdes.band_pass firdes.complex_band_pass	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x. fft_vcc fft_vcc fft_vcc fft_vcc file_descriptor_sink file_descriptor_source. file_error_handler file_sink_base file_sink_base file_sink_base file_source filter_xxx ffrd_filter_xxx fft_filter_xxx fft_sink_s file_sink_base file_source filter_delay_fc fir_filter_xxx firdes.band_pass firdes.band_reject	
enable_realtime_scheduling encode_sb encode_sp error_handler exponential F fake_channel_decoder_pp fake_channel_encoder_pp feedforward_agc_cc feval feval_xx fft_filter_xx fft_sink_x fft_vcc fft_vfc file_descriptor_sink file_descriptor_source file_error_handler file_sink file_sink file_sink file_sink file_sink file_source filter_uxx firdes.band_pass firdes.complex_band_pass firdes.gaussian	

firdes.low_pass	
firdes.root_raised_cosine	
firdes.window	
flex_demod	
float_to_complex	
float_to_shortfloat_to_uchar	
fm_deemph	
fm demod cf	
fm_preemph	
format	
format bypass halfband	
format_shift	
format_want_q	156
format_width	
fpga_master_clock_freq	
fractional_interpolator_xx	
framer_sink_1	
freq_range	
freq_xlating_fir_filter_xxx	
frequency_modulator_fcfreqz	
fsm	
	130
C	
\mathbf{G}	
gain_range	
gen_and_append_crc32	
get_master_source_c	169
get_master_usrp	
get_slave_source_c	
get_slave_usrp	
glfsr_source_x	
gmsk_demod	
gmsk_mod	*
gnuplot_freqz	
goertzel_fcgri agc xx	
gri agc2 xx	
gn_ugoz_^^	100
II	
H	
hamming	126
hanning	
has_rx_halfband	143
has_tx_halfband	144
head	97
hexint	
hier_block2	
high_pass	
hilbert_fc	/0
•	
I	
i and q swapped	180 105
ir filter ffd	
interleave	
interleaved short to complex	103
interleaver	
interp_fir_filter_xxx	78
interp_rate	
io_signature	
is_quadrature	173, 176, 178, 180, 182, 185, 188, 191, 194, 197
K	
kaiser	120
keep_one_in_n	
kludge copy	
	121

L

L	
lfsr_32k_source_s	98
list_revers	
lms_dfe_xx	114
lmx2306	72
low_pass	137
M	
make format	155
make packet	
map bb	
max_xx	
message	
message_from_string	88
message_handler	89
message_sink	
message_source	
microtune_4702_eval_board	
microtune_4937_eval_board	
microtune_xxxx_eval_board	
mod_pkts	
mpsk_receiver_cc	
msg_queuemulti source align	
multi_source_align multiply const vxx	
multiply_const_xx	
multiply vxx	
multiply_xx	
mute xx	
mux	
	,
${f N}$	
name	172, 174, 176, 178, 180, 183, 186, 190, 193, 196
nbfm_rx	29, 52
nbfm_tx	· · · · · · · · · · · · · · · · · · ·
nchannels	· · · · · · · · · · · · · · · · · · ·
nddcs	
nducs	
nlog10_ff	
noise_source_x	
npadding bytes	
null sink	
null source	
num to str	
number_sink_x	
nuttall	
	1-2
0	
0	
ofdm_mapper_bcv	118
ofdm_bpsk_demapper	
ofdm_bpsk_mapper	
ofdm_correlator	117
ofdm_cyclic_prefixer	117
ofdm_demod	31, 53
ofdm_frame_sink	119
ofdm_insert_preamble	
ofdm_mod	
ofdm_qam_mapper	
ofdm_qpsk_mapper	
ofdm_receiver	
ofdm_sampler	
ofdm_sync_fixed	
ofdm_sync_ml	
ofdm_sync_pnofdm sync pnac	

Simple Gridiadio Oser Maridar	1 age 200 of 200
os_read_exactly	73
oscope_sink_f	95
P	
no OvO phone combines	120
pa_2x2_phase_combinerpacked to unpacked xx	
packet sink	
parzen	
peak detector xb	
pga	
pga db per step	
pga_max	
pga_min	149, 161
phase_modulator_fc	101
pick_ subdev	
pick_rx_subdevice	
pick_tx_subdevice	
pll_carriertracking_cc	
pll_freqdet_cf	
pn_correlator_cc	
ppiopi	
prefs	
print db info	
probe_avg_mag_sqrd_xx	
probe signal f	
pwr_squelch_xx	
O	
_	
qam16_demod	
qam16_mod	
qam256_demod	
qam256_mod	
qam64_demod	
qam64_modqam8 demod	
gam8 mod	
quadrature demod cf	· · · · · · · · · · · · · · · · · · ·
44444444	
R	
K	
ra fft sink x	65, 66
radar	•
radar_rx	135
radar_tx	
rational_resampler	
rational_resampler_base_xxx	
read_9862	•
read_aux_dac	•
read_eeprom	·
read_fpga_regread_i2c	
read_io	*
read_spi	,
regenerate bb.	·
riemann	
rms xx	
rx_freq	
\mathbf{S}	
3	
sample and hold xx	84
scope_sink_x	
sdr_1000	
sdr_1000_base	
select_rx_antenna	
selected_subdev	
serial_number	154, 165

set_adc_buffer_bypass1	53,	165
set adc offset		
set_auto_tr		
set bw		
set_dac_offset1		
set_dc_offset_cl_enable	•••••	155
set_ddc_phase		
set decim rate		147
set enable 1		
set format		
set_fpga_mode		
set_freq173, 175, 177, 179, 181, 184, 187, 191, 19	93,	197
set gain	91,	194
set gain all rx		
set_interp_rate		
set_mux1		
set_nchannels1	48,	159
set pga	49.	160
set rx freq		
 ·		
set_tx_freq		
set_verbose1		
short_to_float		
side and name	93.	196
sig source x		
simple correlator		
simple_framer		
simple_sequelch_cc		
single pole iir filter xx		76
single threaded scheduler		
sink		
sink_s		
sink_uc		130
sink x	43,	158
skiphead		
sounder		
sounder_rx		
sounder_tx		134
source		141
source x1		
squelch base xx		
standard_squelch		
str_to_num		
stream mux		111
stream to streams		
= =		
stream_to_vector		
streams_to_stream		
streams_to_vector		111
stripchar sink x		67
sub xx		
sync		
•		
sync_block		
sync_decimatorsync_decimator		
sync_interpolator		90
synthesis filterbank	25	. 47
ojiniooio_moi buili	23	, +/
T		
•		
tcp connect or die		74
test		
threshold_ff		
throttle		109
top block		90
trellis encoder xx		
trellis metrics x		
trellis_permutation		
trellis_siso_f		
trellis viterbi combined xx		132
trellis viterbi x		
tune		
tune_all_rx		
tune_result		145

Simple Gnuradio User Manual	Page 208 of 208		
tx freq			
	139		
	139		
	U		
	100		
•	74		
• —	96		
•=	96		
	121		
unpacked_to_packed _xx	81		
	\mathbf{V}		
	112		
	85		
video_sui_siiik_dc	129		
	\mathbf{W}		
waterfall sink v	64, 66		
-			
– –			
-			
– •			
	158, 167		