In the Claims:

1-23. (Canceled)

- 24. (Currently amended) A method of reducing or moderating a postprandial rise in plasma glucose in a mammal comprising administering to said mammal an amylin or an amylin agonist in an amount effect to reduce or moderate a postprandial rise in plasma glucose.
- 25. (Currently amended) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr\underline{^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-G_{1}y-^{25}Pro-I_{1}-Leu-Pro-J_{1}-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or Hydrogen;

B₁ is Ala, Set or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu;

 J_1 is Ser, Pro or Thr;

K₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val, J₁ is Pro, and K₁ is Asn; then one or more A₁ to K₁ is a D-amino acid and Z is selected from

the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

26. (Currently amended) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr[,];

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

 I_1 is Ile, Val, Ala or Leu;

J₁ is Ser, Pro, Leu, Ile or Thr;

 K_1 is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy, and provided that when

- (a) A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Pro and K_1 is Asn; or
- (b) A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Val, J_1 is Ser and K_1 is Asn;

then one or more of A₁ to K₁ is a D-amino acid and Z is selected from the group consisting of

alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

27. (Previously presented) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}I_{1}-J_{1}-Leu-Pro-Pro-^{30}Thr-K_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

 G_1 is Asn, Gln or His;

H₁ is Phe, Leu or Tyr;

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

 K_1 is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Pro, J₁ is Val and K₁ is Asn; then one or more of A₁ to K₁ is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

28. (Currently amended) The method of claim 24 wherein the amylin agonist is an amylin

agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-'Ihr-Y-Ala-Thr-^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}=^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}Pro-I_{1}-Leu-Pro-Pro-^{30}Thr-J_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser or hydrogen;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

 D_1 is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr;

I₁ is Ile, Val, Ala or Leu

 J_1 is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Val and J₁ is Asn; then one or more of A₁ to J₁ is a D-amino acid and Z is selected from the group consisting of alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy.

29. (Previously presented) The method of claim 24 wherein said amylin agonist is any one of ¹⁸Arg^{25,28}Pro-h-amylin, des-¹Lys¹⁸Arg^{25,28}Pro-h-amylin, ^{25,28,29}Pro-h-amylin, des-¹Lys^{25,28,29}Pro-h-amylin, des-¹Lys¹⁸Arg^{25,28,29}Pro-h-amylin, ²⁵Pro²⁶Val^{28,29}Pro-h-amylin, or des-¹Lys²⁵Pro²⁶Val^{28,29}Pro-h-amylin.

- 30. (Previously presented) The method of claim 24 wherein the amylin agonist is ^{25,28,29}Pro-h-amylin.
 - 31-37. (Canceled)
 - 38. (Previously presented) The method of claim 24 wherein the mammal has diabetes.
 - 39. (Previously presented) The method of claim 38 wherein the diabetes is type 1.
 - 40. (Previously presented) The method of claim 38 wherein the diabetes is type 2.
 - 41. (Previously presented) The method of claim 25 wherein the mammal has diabetes.
 - 42. (Previously presented) The method of claim 41 wherein the diabetes is type 1.
 - 43. (Previously presented) The method of claim 41 wherein the diabetes is type 2.
 - 44. (Previously presented) The method of claim 26 wherein the mammal has diabetes.
 - 45. (Previously presented) The method of claim 44 wherein the diabetes is type 1.
 - 46. (Previously presented) The method of claim 44 wherein the diabetes is type 2.
 - 47. (Previously presented) The method of claim 27 wherein the mammal has diabetes.
 - 48. (Previously presented) The method of claim 47 wherein the diabetes is type 1.
 - 49. (Previously presented) The method of claim 47 wherein the diabetes is type 2.

- 50. (Previously presented) The method of claim 28 wherein the mammal has diabetes.
- 51. (Previously presented) The method of claim 50 wherein the diabetes is type 1.
- 52. (Previously presented) The method of claim 50 wherein the diabetes is type 2.
- 53. (Previously presented) The method of claim 30 wherein the mammal has diabetes.
- 54. (Previously presented) The method of claim 53 wherein the diabetes is type 1.
- 55. (Previously presented) The method of claim 53 wherein the diabetes is type 2.
- 56. (Currently amended) The method of claim 24 wherein the amylin agonist is an amylin agonist analogue having the following amino acid sequence:

 $^{1}A_{1}-X-Asn-Thr-^{5}Ala-Thr-X-Ala-Thr\underline{^{10}Gln-Arg-Leu-B_{1}-Asn-^{15}Phe-Leu-C_{1}-D_{1}-E_{1}-^{20}F_{1}-G_{1}-Asn-H_{1}-Gly-^{25}I_{1}-J_{1}-Leu-K_{1}-L_{1}-^{30}Thr-M_{1}-Val-Gly-Ser-^{35}Asn-Thr-Tyr-Z$ wherein

A₁ is Lys, Ala, Ser, Hydrogen or acetylated Lys;

B₁ is Ala, Ser or Thr;

C₁ is Val, Leu or Ile;

D₁ is His or Arg;

E₁ is Ser or Thr;

F₁ is Ser, Thr, Gln or Asn;

G₁ is Asn, Gln or His;

 H_1 is Phe, Leu or Tyr,

I₁ is Ala or Pro;

J₁ is Ile, Val, Ala or Leu;

K₁ is Ser, Pro, Leu, Ile or Thr;

 L_1 is Ser, Pro or Thr;

M₁ is Asn, Asp or Gln;

X and Y are independently selected residues having side chains which are chemically bonded to each other to form an intramolecular linkage, wherein said intramolecular linkage comprises a disulfide bond, a lactam or a thioether linkage; and Z is an amino, alkylamino, dialkylamino, cycloalkylamino, arylamino, aralkylamino, alkyloxy, aryloxy or aralkyloxy; and provided that

- (a) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Phe, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Ser, and M_1 is Asn;
- (b) when A_1 is Lys, B_1 is Ala, C_1 is Ile, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn;
- (c) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is Arg, E_1 is Thr, F_1 is Ser, G_1 is Asn, H_1 is Leu, I_1 is Ala, J_1 is Ile, K_1 is Ser, L_1 is Pro, and M_1 is Asn;
- (d) when A₁ is Lys, B₁ is Ala, C₁ is Val, D₁ is Arg, E₁ is Ser, F₁ is Ser, G₁ is Asn, H₁ is Leu, I₁ is Pro, J₁ is Val, K₁ is Pro, L₁ is Pro, and M₁ is Asn;
- (e) when A_1 is Lys, B_1 is Ala, C_1 is Val, D_1 is His, E_1 is Ser, F_1 is Asn, G_1 is Asn, H_1 is Leu, I_1 is Pro, J_1 is Val, K_1 is Ser, L_1 is Pro and M_1 is Asn; or
- (f) when A_1 is Lys, B_1 is Thr, C_1 is Val, D_1 is Arg, E_1 is Ser, F_1 is Ser, G_1 is His, H_1 is Leu, I_1 is Ala, I_2 is Ala, I_3 is Leu, I_4 is Pro and I_4 is Asp; then one or more of any of I_4 to I_4 is not an L-amino acid and I_4 is not amino.
 - 57. (Previously presented) The method of claim 56 wherein the mammal has diabetes.
 - 58. (Previously presented) The method of claim 57 wherein the diabetes is type 1.
 - 59. (Previously presented) The method of claim 57 wherein the diabetes is type 2.
 - 60-69. (Canceled)