BEST AVAILABLE COPY

Alpha-Methyl-(R)-Tryptophyl-Arylcycloalkylalkylamides as Ligands for Gastrin Receptors

PCT Publication No. WO 94/15917

Summary:

An alpha-methyl-R-tryptophyl-arylcycloalkylalkylamide of formula (I), wherein (B) is methylene or ethylene, (C) is a valency bond or methylene, A is a valency bond or aminocarbonyl, p is 0, 1 or 2, R1 is a 1H-tetrazol-5-yl group, a carbonyl function -CO-R₂ where R₂ is hydroxyl, alkoxy or a cycloalkylamine, and * is the absolute configuration, according to Cahn, Ingold and Prelog, of the carbon atom adjacent thereto. It is useful as a drug for treating gastric and/or central nervous system disorders.

At page 40, lines 154–31 of this document a method of synthesis for (1R)-1-(benzyloxy-carbonylamino)-1-indanyl-carboxylic acid and methyl ester of (1R)-1-(benzyloxy-carbonylamino)-1-indanyl-carboxylic acid are provided. The activity of these intermediate compounds is not discussed in the document.

THIS PAGE BLANK (USPTO)

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

FR

(51) Classification internationale des brevets 5: C07D 209/20, A61K 31/40, C07D 401/12, 403/12

(11) Numéro de publication internationale:

WO 94/15917

(43) Date de publication internationale:

21 juillet 1994 (21.07.94)

(21) Numéro de la demande internationale:

PCT/FR94/00033

A1

(22) Date de dépôt international:

11 janvier 1994 (11.01.94)

(30) Domées relatives à la priorité:

15 janvier 1993 (15.01.93) 93/00331

(74) Mandataires: EIDELSBERG, Albert etc.; Cabinet Flechner, 22, avenue de Friedland, F-75008 Paris (FR).

(81) Etats désignés: AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KP, KR, KZ, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, US, VN, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

(71) Déposant (pour tous les Etats désignés sauf US): INSTITUT DE RECHERCHE JOUVEINAL (I.R.J.) [FR/FR]; Botto postale 100, 3-9, rue de la Loge, F-94265 Presnes Cédex (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): PASCAL, Yves [FR/FR]; 16, rue Georges-Tournier, F-92500 Rueil-Malmaison (FR). CALVET, Alain, Pierre [FR/FR]; Résidence Ronsard, 3, rue Gatine, F-94240 L'Hay-les-Roses (FR). GROUHEL, Agnès [FR/FR]; 2, rue des Peupliers, F-92190 Meudon (FR). JUNIEN, Jean-Louis [FR/FR]; 36, avenue Gustave-Eiffel, F-92310 Sèvres (FR). PASCAUD, Xavier, Bernard, Louis [FR/FR]; 41, rue de Charenton, F-75012 Paris (FR). ROMAN, François, Joseph [FR/FR]; 11, allée Pierre-Fresnay, F-94400 Vitry/Seine (FR). WETTSTEIN, Joseph [FR/FR]; 14, rue Georges-Lafenestre, F-92340 Bourg-la-Reine (FR).

Publiée

Avec rapport de recherche internationale.

ALPHA-METHYL-(R)-TRYPTOPHYL-ARYLCYCLOALKYLALKYLAMIDES AS LIGANDS FOR GASTRIN RECEP-(54) Title: TORS

(54) Titre: ALPHA-METHYL-(R)-TRYPTOPHYL-ARYLCYCLOALKYLALKYLAMIDES COMME LIGANDS AUX RECEPTEURS DES GASTRINES

(57) Abstract

An a-methyl-R-tryptophyl-arylcycloalkylalkylamide of formula (I), wherein (B) is methylene or ethylene, (C) is a valency bond or methylene, A is a valency bond or aminocarbonyl, p is 0, 1 or 2, R₁ is a 1H-tetrazol-5-yl group, a carbonyl function -CO-R₂ where R₂ is hydroxyl, alkoxy or a cycloalkylamine, and * is the absolute configuration, according to Cahn, Ingold and Prelog, of the carbon atom adjacent thereto. It is useful as a drug for treating gastric and/or central nervous system disorders.

(57) Abrégé

 α -méthyl-R-tryptophyl-arylcycloalkylalkylamide de formule (I) dans laquelle, (B) est méthylène ou éthylène, (C) est une liaison de valence ou méthylène, A est une liaison de valence ou aminocarbonyl, p a pour valeur 0, 1 ou 2, R1 est un groupe 1H-tétrazol-5-yl, une fonction carbonyle -CO-R2, R2 étant hydroxyl, alkoxy ou une cycloalkylamine, * représente la configuration absolue selon Cahn, Ingold et Prelog de l'atome de carbone qui lui est adjacent, sont des médicaments utiles au traitement d'affections gastriques et/ou du système

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
ΑŪ	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IB	Irlande	NZ	Nouvelle-Zélande
BJ	Bénia	rr	Italic	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Кепуа	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Suède
CB	Suisse	KR	République de Corée	SI	Slovénic
a	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	Ц	Liechtenstein	SN	Sécégal
CN	Chine	LK	Sri Lanka	TD	Tchad
cs	Tchécoslovaquie	LU	Luxembourg	TG	Togo
CZ	République tchèque	LV	Lettonie	TJ	Tadjikistan
DE	Allemagne	MC	Моцасо	TT	Trinité-ct-Tobago
DK	Danemark	MD	République de Moldova	UA	Ukraine
ES	Espagne	MG	Madagascar	US	Etats-Unis d'Amérique
FI	Finlande	MIL	Mali	UZ	Ouzbekistan
FR	Prance	MN	Mongolie	VN	Vict Nam
GA	Gabon				

743.)

ALPHA-METHYL-(R)-TRYPTOPHYL-ARYLCYCLOALKYLALKYLAMIDES COMME LIGANDS AUX RECEPTEURS DES GASTRINES

La présente invention a pour objet de nouveaux dérivés de σ-méthyl-R-tryptophyl-arylcycloalkylalkylamides, leur procédé de préparation et leur application en thérapeutique notamment pour leur affinité aux récepteurs gastriniques.

De nombreuses fonctions de l'organisme sont régulées par des 10 hormones peptidiques qui, depuis les années soixante, ont été l'objet de recherches visant aussi bien l'élucidation de leur structure que celle de leur mécanisme d'activité. En ce qui concerne les fonctions digestives, plusieurs hormones du tractus gastro-intestinal ont été découvertes, dont particulièrement en 1964 les hormones du groupe des gastrines (Gregory et coll.), puis en 1968 les hormones du groupe des cholecystokinines (Mutt et Jorpes).

Dans chaque groupe coexistent plusieurs peptides correspondant aux dérivés de scissions du peptide dont l'enchaînement est le plus long et qui comprend 34 amino acides pour la gastrine et 33 amino acides pour la cholecystokinine, les composés des deux groupes ayant tous en commun leur séquence tétrapeptidique terminale constituée par l'enchaînement -Trp-Met-Asp-Phe-NH2. Les diverses cholecystokinines (CCK) ont fait l'objet d'études intensives qui ont mis en évidence leur affinité pour des

récepteurs périphériques qui ont été dénommés CCKA et/ou pour

des récepteurs centraux qui ont été dénommés CCK_B ,

récepteurs induisant par interaction avec des composés ligands des effets biologiques différents, majoritairement au niveau du tractus gastro-intestinal pour l'interaction CCK_A et majoritairement au niveau du système nerveux central pour l'interaction CCK_B ("Les récepteurs de la cholecystokinine" - Cl. Nagain, Cl. Rozé -Gastroenterol. Clin. Biol, 1991, <u>15</u>, 735-

35 De par leur tétrapeptide terminal commun les composés peptidiques ligands aux récepteurs CCK peuvent être également

ligands aux récepteurs des gastrines (Dockray, G.J - Quat. J. Exp. Physiol 1988, <u>73</u>, 703-27).

Dans cet état de connaissance, un travail considérable a été réalisé pour obtenir des composés synthétiques, résistants aux peptidases, qui soient des ligands sélectifs, agonistes et/ou antagonistes, aux récepteurs CCK de type A ou B. Un état représentatif de ces travaux et des composés proposés a été établi dès 1989 par Ben E. Evans (Drugs of the Future, 1989, 14 (10) : 971-977) et, plus récemment en ce qui concerne les composés antagonistes aux récepteurs CCKB, par Mark G. Bock (Drugs of the Future, 1991, 16 (7) : 631-640) puis par F. Makovec (Drugs of the Future, 1993, 18 (10) : 919-931).

Les récepteurs de type CCK_B ont été déterminés majoritaires dans de nombreuses régions cérébrales et, à ce niveau, leur implication dans l'effet de la dopamine a été reconnu. Diverses molécules non peptidiques d'affinité antagoniste aux récepteurs CCK_B , appartenant à différentes familles chimiques, ont été proposées pour traiter des affections nerveuses et psychotiques (Mark G. Bock et F. Makovec - déjà cités) et, parmi ces composés, des dérivés de l' α -méthyl-R-tryptophane ont été décrits d'activité remarquable.

Ainsi, à la demande de brevet européen 0405 537 A1, on décrit à l'exemple 20 l'acide :

[R-(R*,R*)-4-[[2-[[3-(1H-indol-3-yl)-2-méthyl-1-oxo-2-25 [[(tricyclo[3.3.1.1^{3,7}]dec-2-yloxy)carbonyl]amino]propyl]amino]-1-phenylethyl]amino]-4-oxobutanoïque de formule :

30

35

15

20

qui, identifié sous les codes PD-134,308 puis CI-988 a fait l'objet d'études pharmacologiques extensives qui ont mis en évidence son affinité antagoniste aux récepteurs CCK_B et gastrine (J. Med. Chem. 1991, $\underline{34}$, 404-414; ibid 1992, 35, 1472-1484, 1572-1577, 2573-2581). Particulièrement l'activité anxiolytique du produit a été montrée et semble être spécifique (Singh et al., Brit. J. Pharmacol. (1991) $\underline{104}$, 239-245).

Egalement, aux demandes publiées WO 92/04045, WO 92/04320 et WO 92/04322, il est décrit des pseudo-peptides dérivés du tryptophane, de structures apparentées au PD-134,308 et pour lesquels il n'est objectivement montré qu'une affinité de type antagoniste aux récepteurs CCKB pour les divers essais

pharmacologiques présentés.

Telles que décrites ces inventions privilégient, en relation

avec cette affinité, l'utilité des produits au traitement de diverses affections directement ou indirectement reliées aux états psychotiques (Singh et al., déjà cité).

Or, il est connu que les gastrines, à travers la stimulation de sécrétion de l'eau et des électrolytes gastriques ont leur 20 propre rôle dans le contrôle des sécrétions gastriques et dans le contrôle de la circulation sanguine intervenant dans le processus de la motilité gastrique.

De plus, le rôle des cellules sécrétant la gastrine est impliqué dans certaines tumeurs gastro-intestinales.

De ce fait, et indépendamment d'une affinité aux récepteurs CCK coexistante, les composés d'affinité antagoniste aux récepteurs des gastrines ont un grand intérêt.

Ainsi, les antagonistes gastriniques sont utiles dans des conditions impliquant une sécrétion acide excessive, pour le traitement et la prévention des désordres gastrine dépendants du système gastro-intestinal humain et animal, comme les ulcères peptidiques, le syndrome de Zollinger-Ellison, l'hyperplasie et les néoplasmes des cellules gastriques.

Différemment de l'état de la technique et pour répondre à cet 35 intérêt, il vient d'être trouvé des composés nouveaux qui possèdent une affinité importante aux récepteurs de la gastrine caractérisée en ce qu'elle est égale sinon notablement supérieure à leur affinité aux récepteurs CCK B.

A ce titre, la présente invention concerne de nouveaux dérivés de l'α-méthyl-R-tryptophyl-arylcycloalkylalkylamides de

5 formule (I)

10

- 15 dans laquelle,
 - (B) représente un groupe méthylène (- CH_2 -) ou éthylène (- CH_2 -),
 - (C) représente une liaison de valence ou un groupe méthylène (- CH_2 -),
- 20 A est une liaison de valence ou un groupe aminocarbonyl (NH-CO),

p a pour valeur 0, 1 ou 2,

 R_1 représente un groupe 1H-tétrazol-5-yl ou bien une fonction carbonyle -CO- R_2 dans laquelle R_2 est hydroxyl, alkoxy 25 inférieur, N-indolinyl ou R_2 représente encore une cycloalkylamine de formule (VIII),

30

35

(VIII)

dans laquelle R₃ est l'hydrogène ou un radical hydroxyle, o a pour valeur 0 ou 1 et R₄ est l'hydrogène ou un atome de chlore, * représente, établie selon la règle de Cahn, Ingold et Prelog, la configuration absolue du carbone en position 1 de la séquence cycloalkyl,

et leurs éventuels sels d'addition avec les bases pharmaceutiquement acceptables.

Pour simplification des formules du texte et des figures qui suivent :

5 - la séquence (tricyclo [3.3.1.1^{3,7}] dec-2-yloxy)carbonyl est dénommée (2-adamantyloxy)carbonyl et représentée par le sigle communément admis 2-Adoc,

- la séquence (1H-indol-3yl) est représentée par le sigle 3Ind, tels que montrés ci-dessous :

10

15

Egalement par alkoxy inférieur on entend des radicaux alkoxy comprenant de 1 à 4 atomes de carbone en chaîne linéaire ou ramifiée.

On distingue dans l'ensemble des composés (I) de l'invention :

- un groupe de composés dans lesquels A et (C) sont une liaison
de valence, p a pour valeur 0 et R₁ est un radical carbonylé

-CO-R₂ qui répond à la formule (I.a).

25

dans laquelle (B), \star et R_2 ont les significations précédemment 30 définies, et

- un groupe de composés préférés dans lesquels (C) est méthylène qui répond à la formule (I.b.)

dans laquelle (B), \star et R_1 ont les significations précédemment définies et p a pour valeur 1 ou 2.

Parmi les composés (I.b), on préfère ceux dans lesquels (B) est
méthylène et p a pour valeur 2 et, plus particulièrement, ceux

5 dont le carbone 1 asymétrique (*) est de configuration (R) et,
à ce titre, l'acide 4-[(1R)-1-[1-[1-[N-[(2adamantyloxy)carbonyl]-α-méthyl-tryptophyl-aminométhyl]indanyl]amino]-4-oxo-butanoïque. (I.b; B = -CH2-, p = 2, R1 =
CO-R2 avec R2 = OH, * = R) et son sel d'addition avec la Nméthyl-D-glucamine.

Un autre aspect de l'invention concerne un procédé de préparation caractérisé ce qu'il consiste :

15 a) pour préparer un composé (I) dans lequel, A et (C) sont une liaison de valence, p a pour valeur O et R_1 est un radical carbonylé -CO- R_2 qui répond à la formule (I.a)

dans laquelle (B) et \star ont les significations mentionnées pour (I) et R_2 est alkoxy inférieur,

25 - soit, selon le procédé préféré, à condenser dans le tétrahydrofurane un intermédiaire (II.a)

30

20

dans lequel R_2 est alkoxy inférieur, avec le chloroformiate de 2-adamantyle,

7

- soit à faire réagir le N-[(2-adamantyloxy)carbonyl]- α -méthyl-R-tryptophane (VI) avec le fluorure cyanurique pour en obtenir le dérivé intermédiaire fluoré (VI')

10 qui, sans être isolé, est condensé dans le chlorure de méthylène en présence de triéthylamine avec une arylcycloalkylamine (IV.a)

dans laquelle R_2 est alkoxy inférieur, et, pour préparer un composé (I.a) dans lequel R_2 est hydroxyle, à saponifier dans le dioxane par l'hydroxyde de lithium un

saponifier dans le dioxane par l'hydroxyde de lithium un composé (I.a) dans lequel R_2 est alkoxy inférieur puis, éventuellement à faire réagir l'acide ainsi obtenu avec la N-méthyl-D-glucamine qui est la base préférée pour en obtenir le sel d'addition correspondant, et,

b) pour préparer un composé (I) dans lequel,
 A est aminocarbonyle (NH-CO), C est méthylène (-CH₂-), p a pour

valeur 1 ou 2 qui répond à la formule (I.b).

35 dans laquelle (B), *, p et R₁ ont des significations mentionnées pour (I),

25

- soit, selon le procédé préféré, à condenser dans le tétrahydrofurane un intermédiaire (IV.b)

dans lequel 2 est un groupement protecteur de fonction amine 10 comme le groupe benzyloxycarbonyl qui est préféré, avec le chloroformate de 2-adamantyle pour obtenir un intermédiaire (III.b)

dont on élimine le groupement protecteur Z par hydrogénolyse 20 pour obtenir un intermédiaire (II.b)

que l'on acyle, par un réactif (IX) de formule W-OC- $(CH_2)p-R_1$ 30 dans lequel W représente le brome, le chlore ou un radical hydroxyle et R_1 a les significations mentionnées pour (I), excepté lorsque R_2 représente un hydroxyle, pour obtenir un composé (I.b) correspondant, ou,

que l'on acyle par l'anhydride interne d'un diacide comme 35 l'anhydride succinique pour obtenir un composé (I.b) correspondant dans lequel p a pour valeur 2 et R, est un

lequel R_2 est hydroxyle, dans radical -CO-R2 éventuellement à faire réagir l'acide ainsi obtenu avec la Nobtenir le sel d'addition méthyl-D-glucamine pour en correspondant,

5 - soit à condenser le N-[(2-adamantyloxy)carbonyl]-α-méthyl-Rtryptophane (VI) dans le tétrahydrofurane avec une arylcycloalkylamine (VII.b)

dans laquelle Z est un groupement protecteur comme le groupe benzyloxycarbonyl, pour obtenir un intermédiaire (III.b) dont on élimine le groupement Z pour obtenir un composé (II.b) puis que l'on acyle pour obtenir un composé de l'invention (I.b) tel que précédemment décrit.

31 nd
$$\times$$
 COOH + 2HN CO-R₂ \longrightarrow Xoc-HN Me (V) (1V.a) \times Xoc-HN Me (III.a)

SCHEMA 1

WO 94/15917 PCT/FR94/00033

Tels que montrés aux schémas 1 et 2 les procédés préférés font intervenir pour préparer les composés (I.a) et (I.b) de l'invention :

- une réaction iii) de condensation du chloroformate de 2-5 adamantyle avec les intermédiaires aminés (II.a) ou (IV.b), pour préparer les composés (I.a) et (III.b),
 - une réaction iv) d'hydrogénolyse sélective du groupe Nprotecteur benzyloxycarbonyl d'un intermédiaire (III.b), pour préparer les composés (II.b),
- 10 une réaction v) d'acylation des intermédiaire précurseurs (II.b), pour préparer les composés (I.b).

La mise en oeuvre des réactions iii) fait appel à des conditions standard connues de l'homme de l'art qui sont décrites entre autres par Geiger R. et Koenig W. (1980) dans 15 "The peptides" vol. 3, p.3-136 (Gron E. - Meienhofer J., ed.) Academic Press, New-York. Parmi les différentes possibilités, on utilise celle qui consiste à faire réagir dans un solvant neutre et aprotique comme le tétrahydrofurane ou le chlorure de 20 méthylène qui est préféré, des quantités équimoléculaires d'un intermédiaire aminé (II.a) ou (IV.b) avec le chloroformate de 2-adamantyle lui-même préparé à partir de 2-adamantanol comme il est décrit par exemple dans J. of Med. Chem. 1991, vol. 34, N°1 p. 411. Avantageusement, on ajoute au milieu réactionnel un 25 équivalent de triéthylamine, la réaction s'effectuant à une température comprise entre - 10° et 10° C et plus favorablement à 0° C durant 16 heures environ; le produit étant finalement les méthodes isolé par habituelles et purifié chromatographie sur silice.

30

La réaction d'hydrogénolyse iv) des intermédiaires (III.b) est réalisée en solution dans un solvant protique neutre, tel qu'un alcool primaire de point d'ébullition inférieur à 100° C et miscible à l'eau. L'éthanol est le solvant préféré, le catalyseur utilisé étant le charbon palladié à 5 ou 10 % activé de façon appropriée aux décarboxybenzylations. La réaction est complète après un délai de 2 à 24 heures sous une pression

d'hydrogène de 1 à 10 bars à une température comprise entre 20 et 70° C.

De préférence, en utilisant du charbon palladié à 10 % (p/p), on obtient des résultats satisfaisants sous une pression de 5 bars d'hydrogène, à 60° C et ce après 5 heures de réaction.

Egalement la réaction d'acylation v) fait appel à des méthodes connues qui consistent :

- lorsque dans le réactif (IX) W-OC-(CH₂)p-R₁ W est le chlore ou le brome, à faire réagir au reflux d'un solvant neutre aprotique, pour une mole d'intermédiaire (II.b) de 0,8 à 1,5 mole du réactif (IX), en présence de 1 à 3 moles de triéthylamine, à une température comprise entre 0 et 80° C durant 1 à 24 heures.
- Avec le chlorure de méthylène qui est le solvant préféré, pour une mole de l'intermédiaire (II.b) on fait réagir 1,1 mole du réactif halogéné d'acylation en présence de 1,2 mole de triéthylamine, la réaction étant totale après 5 heures au reflux du solvant, et,
- 20 lorsque dans le réactif (IX) W-OC-(CH₂)p-R1, W est hydroxyle, la fonction carboxylique est condensée avec la fonction amine du composé (II.b) selon des techniques bien connues dont on trouvera de nombreux exemples dans, entre autres, l'ouvrage de Houben-Weyl, Methoden der organischen Chemie, Synthese von
- 25 peptide, vol. 15/1, quatrième édition, Georg Thieme Verlag, 1974, pages 533 à 538 et pages 836 à 845.
 - Ainsi, diverses techniques faisant appel à l'activation de la fonction carboxylique sont proposées pour réaliser cette condensation:
- a) utiliser un agent de couplage qui peut être un diimide tel que le N,N'-diisopropylcarbodiimide (DIC), ou le N',N'-dicyclohexylcarbodiimide (DCC) éventuellement en présence d'un additif comme, l'hydroxybenzotriazole (HOBT), le N-hydroxysuccinimide ou le N-hydroxyphtalimide, qui sont destinés à
- 35 éviter les réactions secondaires,
 - b) transformer préalablement la fonction carboxylique en un ester activé avec un phénol substitué comme le

pentafluorophénol, ou bien en un anhydride mixte activé par réaction avec un chloroformate d'alkyle ou d'aryle, le chloroformate d'isobutyle étant préféré,

c) toutefois, la méthode particulièrement préférée consiste à utiliser comme agent de condensation le PyBroP (R) qui est l'hexafluorophosphate de bromo-tris-pyrrolidino-phosphonium. Les conditions opératoires consistent alors à effectuer la réaction dans le tétrahydrofurane à 20 - 25° C en faisant réagir des quantités équimoléculaires d'intermédiaire aminé (II.b) et du réactif acide (IX) en présence d'une quantité équimoléculaire ou un excès pouvant attendre 50 % de PyBrop (R)

La réaction est généralement complète après 16 heures de contact, le produit (I.b) obtenu étant alors isolé puis purifié par chromatographie, et,

et d'un excès (300 %) de triéthylamine.

lorsque le réactif d'acylation est un anhydride d'un diacide comme l'anhydride succinique le mode opératoire préféré consiste à faire réagir dans le tétrahydrofurane, une mole d'amine (II.b) avec une mole d'anhydride succinique en présence
 d'une mole et demi de triéthylamine, la réaction étant complète après 4 à 8 heures de chauffage au reflux.

Egalement, un procédé de préparation des composés de l'invention (I.a) et (I.b) dans lesquels R_2 est hydroxyle consiste à saponifier leurs analogues correspondants dans lesquels R_2 est un radical alkoxy.

A cet effet, la saponification est effectuée en milieu alcalin aqueux et en présence d'un solvant miscible à l'eau. On préfère une solution aqueuse d'hydroxyde de lithium et en utilisant le méthanol ou le dioxane comme solvants. La réaction s'effectue à 0° C sous agitation et durant de 1 à 24 heures selon la réactivité de l'ester à saponifier.

Après réaction totale du produit engagé, le milieu réactionnel est évaporé puis le produit résiduel est purifié généralement par chromatographie sur silice.

Tels qu'ils viennent d'être décrits les précurseurs essentiels qui permettent la préparation des composés de l'invention (I.a)

- et (I.b) sont respectivement les intermédiaires (II.a) et (IV.b) que l'on prépare par des méthodes qui sont représentées aux schémas 1 et 2. Elles consistent à condenser selon la réaction i) un dérivé de l'α-méthyl-R-tryptophane (V) et tel que décrit par exemple dans Eur. J. Med. Chem. (1990) 25, p.57, dans lequel Xoc représente un groupement N-protecteur X-oxycarbonylé dans lequel X est un alkyl, aryl, ou encore polyaralkylalkyl, le radical t.butyl étant toutefois préféré pour donner des groupes protecteurs N-[(t-butyloxy)carbonyl]

 10 (abréviation Boc), avec, soit un amino ester (IV.a) dans lequel R₂ est alkoxy inférieur, soit une diamine (VII.b) intermédiaire afin d'obtenir les pseudo dipeptides respectifs (III.a) et (V.a) puis d'en effectuer selon la réaction ii) la N-déprotection de leur séquence Xoc- milieu trifluoroacétique.

 15 Avantageusement, la réaction de condensation i) est réalisée
- dans un solvant inerte comme le tétrahydrofurane ou le dioxane et en présence d'un agent de condensation comme le dicyclohexylcarbodiimide ou le carbonyldiimidazole ou encore et de préférence le PyBroP (R) précédemment mentionné.
- 20 De façon préférée la réaction de N-déprotection ii) est réalisée par la méthode de Sharp et Coll., JJ. Sharp, A.B. Robinson, M.D. Kamen, J.Am. Chem. Soc., 95, 6097 (1973), ("for the synthesis of Trp centaining fragments, anisole containing 2% EDT (ethane dithiol) was employed during the TFA -N°
- 25 deprotection in order to suppress Indole alkylation")
 pour éliminer sélectivement le groupe Boc en respectant la
 protection Z portée par l'autre partie de la molécule, et ce
 notamment lorsque Z est un groupement benzyloxycarbonyl.

SCHEMA 3

Le schéma 3 montre les voies de préparation des intermédiaires amino esters (IV.a) et des diamines (VII.b) sous leurs formes racémiques et optiquement actives, qui consistent en une succession des synthèses connues de l'homme de l'art.

5

Ainsi, la préparation d'un amino ester (IV.a), à partir d'une cétone (Pr.a) consiste, par réaction avec un cyanure alcalin et le carbonate d'ammonium en milieu éthanolique, à en préparer la spiro-hydantoïne (Pr.b) qui peut être dédoublée en ses 10 énantiomères, par exemple selon le procédé décrit à la demande de brevet WO 92/08702, puis à pratiquer une hydrolyse en milieu aqueux, à une température voisine de 140° C en présence d'hydroxyde de sodium ou de baryum ou encore en présence d'acide sulfurique pour obtenir les α -amino acides (Pr.c) que l'on estérifie par le méthanol en milieu acide pour obtenir les α -amino esters (IV.a) qui, sous leurs formes racémiques, peuvent être dédoublés en leurs énantiomères par formation de (R) - (-) - 4 exemple l'acide diastéréoisomères avec par hydroxydinaphto[2,1-d:1',2'-f][1,2,3]dioxaphosphepin-4-oxyde.

20

35

La préparation des diamines (VII.b) est avantageusement réalisée à partir des α -amino esters (IV.a) qui sont condensés avec un réactif approprié à inactiver temporairement la réactivité de la fonction amine comme par leur réaction avec le 25 chloroformate de benzyle pour préparer un composé (Pr. f) dont saponifie la fonction ester pour obtenir un acide intermédiaire (Pr. d) dont on prépare l'amide correspondant (Pr. g) par réaction d'ammoniac sur un intermédiaire activé de l'acide qui, selon le procédé préféré est un anhydride mixte obtenu par réaction préliminaire avec un chloroformate d'alkyle. Finalement la diamine intermédiaire (VII.b) est fonction carbamide réduction de la par obtenue l'intermédiaire (Pr. g) au moyen d'un complexe d'hydrure métallique comme le borane-diméthylsulfure qui est l'agent réducteur préféré.

WO 94/15917 PCT/FR94/00033

18

La partie expérimentale qui suit décrit à titre non limitatifs les produits de l'invention, leurs intermédiaires, ainsi que leurs procédés de préparation.

Les techniques utilisées sont courantes à l'homme de l'art, 5 ainsi la purification des produits est effectuée par des méthodes conventionnelles comme la cristallisation et/ou la chromatographie préparative sur colonne.

Pour cette dernière méthode (purification par chromatographie dans le texte des exemples) la technique de "chromatoflash" selon W. Clark Still et col., J. Org. Chem., 1978, 43, (14), 2933 est employée en utilisant un support de gel de silice de granulométrie 0,043-0,063 mm et un rapport quantitatif de produit à purifier par rapport au support de 1/20 à 1/100 selon les difficultés des séparations.

- 15 Les méthodes utilisées pour vérifier la pureté et la structure des composés obtenus sont :
 - la chromatographie sur couches minces (CCM) sur plaques de silice prêtes à l'emploi - épaisseur 0,25 mm - indicateur de fluorescence de 254 nm,
- 20 la spectrographie de résonance magnétique nucléaire du proton qui, sauf spécifications, est enregistrée sur un appareil de 90 les produits étant MHz. solubilisés le deutérodiméthylsulfoxyde ou le deutérochloroforme. Les déplacements en ppm des principaux pics par rapport 25 tétraméthylsilane sont rapportés dans les exemples ainsi que leur attribution et la nature des signaux qui est exprimée de façon conventionnelle.

Dans nombre de cas, la nature amorphe et/ou la forte hygroscopicité des produits rend la détermination de leur point 30 de fusion incertaine. Les températures alors indiquées correspondent, lors de la détermination par la méthode au tube capillaire, au début de la fusion qui est appréciée par un ramollissement du produit et pour la seconde valeur à la fusion totale qui correspond à l'état liquide de l'échantillon.

PARTIE EXPERIMENTALE

COMPOSES DE L'INVENTION

dans l'étape suivante.

- Exemple 1-A : (R,S)[1-[1-[N-(2-adamantyloxy)carbonyl]-α-méthyl-R-tryptophyl]-1-amino]-1-méthoxycarbonyl-indane. (I.a; (B) =-CH₂, R₂ = OCH₃, * = R,S)
 Sous atmosphère d'azote à -15°C, dans une solution agitée de 3,0 g (7,57 mmoles) de N-2Adoc-α-méthyl-R-tryptophane (VI)
 préparé d'après Eur. J. Med. Chem (1990) 25, 53-60 dans 35 ml de chlorure de méthylène, on ajoute 0,6 g (7,57 mmoles) de pyridine, puis, goutte à goutte une solution de 5,1g (111 mmoles) de fluorure cyanurique. On agite encore une heure à -15°C et ajoute un mélange de 50 g de glace et de 50 g chlorure de méthylène. On filtre l'émulsion sur célite et après décantation lave la phase organique par de l'eau. On sèche et évapore in vacuo. On obtient 3,0 g de fluorure de N-2Adoc-α-
- 20 R.M.N.: (DMSO) $\delta = 8,15$ (s large 1H échangeable); 7,8-6,9 (m 6H dont 1H échangeable); 4,7 (m 1H); 3,2 (s 2H); 2,2-1,0 (m 17H dont α méthyl à δ =1,55).

A 0°C, sous atmosphère d'azote, à une solution de 2,12 g (11,1 mmoles) de (R,S) 1-amino-1-méthoxycarbonyl-indane (IV.a; (B) =-

méthyl-R-tryptophane brut qui est employé sans purification

- 25 CH₂-, R₂ = OCH₃) préparé d'après J. Med. Chem. (1988), <u>31</u> (1), 230-43, on ajoute 2,7 g (22,2 mmoles) de triéthylamine, puis goutte à goutte, une solution de 4,3 g (10,8 mmoles) du fluorure brut obtenu ci dessus en solution dans 50 ml de chlorure de méthylène. Après 1h d'agitation, on chauffe le
- mélange 4 heures à la température du reflux, refroidit, lave par une solution N/10 de sulfate acide de potassium puis une solution de bicarbonate de sodium à 5 %.

La phase organique est séchée, évaporée sous vide. Le résidu est chromatographié sur silice en éluant par un gradient d'acétate d'éthyle dans le chlorure de méthylène. On obtient 3,5 g (Rdt = 56 %) de produit purifié. F = 102-115°C.

CCM : $CH_2Cl_2/AcOEt$ 90/10 Rf = 0,62.

R.M.N.: (DMSO) $\delta = 8,40$ (s large 1H échangeable); 7,65-7,45 (m 1H); 7,4-6,8 (m 10H dont 2H échangeables); 5,48 (d 1H); 4,75 (s 1H); 3,85 (d 1H); 3,63 (s 3H); 3,05-2,8 (m 4H); 2,6-1,2 (m 17H).

5 Analyse: $C_{34}H_{39}N_3O_5$, 3/4 H_2O

Calc % : C 70,02 H 7,00 N 7,21 O 15,77

Tr.% : C 70,05 H 7,09 N 7,21 O 15,40

Exemple 1-B: (R) [1-[N-(2-adamantyloxy)carbonyl]-α-méthyl-Rtryptophyl]-1-amino]-1-méthoxycarbonyl-indane.

(I.a; (B) =-
$$CH_2$$
, $R_2 = OCH_3$, * = R)

Le composé est préparé tel que décrit à l'exemple 1-A précédent à partir de N-2Adoc- α -méthyl-R-tryptophane et de (R) 1-amino-1-méthoxycarbonyl-indane (IV.a; (B) =-CH₂-, R₂ = OCH₃) préparé tel que décrit à la préparation 3bis. Le produit brut est purifié par chromatographie sur silice en éluant par un mélange chlorure de méthylène - acétate d'éthyle 90-10 (v/v).

Rdt =
$$70\%$$
 F = $102-115$ °C.

$$[\alpha]^{20}D = +66^{\circ} (c = 1,0; méthanol)$$

20 CCM : $CH_2Cl_2/AcOEt$ 90/10 Rf = 0,25.

R.M.N.: (DMSO) identique à celui de l'exemple 1-A

Analyse: $C_{34}H_{39}N_3O_5$

Calc %: C 71,68 H 6,90 N 7,38 O 14,04

Tr.% : C 71,53 H 6,92 N 7,43 O 13,89

25

15

Exemple 1-C: (S) [1-[1-[N-(2-adamantyloxy) carbonyl]- α -méthyl-R-tryptophyl]-1-amino]-1-méthoxycarbonyl-indane.

(I.a; (B) =-CH₂,
$$R_2 = OCH_3$$
, * = S)

Le composé est préparé tel que décrit à l'exemple 1-B précédent 30 à partir de N-2Adoc- α -méthyl-R-tryptophane et de (S) 1-amino-1-méthoxycarbonyl-indane (IV.a; (B) =-CH₂-, R₂ = OCH₃) préparé tel que décrit à la préparation 3bis.

$$Rdt = 75\%$$
 F = 108-112°C.

$$[\alpha]^{20}_{D} = +23^{\circ} (c = 1,0; méthanol)$$

35 CCM : $CH_2Cl_2/AcOEt$ 90/10 Rf = 0,25.

R.M.N.: (DMSO) identique aux exemples 1-A et 1-B.

Analyse: $C_{34}H_{39}N_3O_5$

Calc %: C 71,68 H 6,90 N 7,38 O 14,04 Tr.%: C 71,79 H 6,93 N 7,28 O 14,14

5 Exemple 2: Acide [1-[1-[N-(2-adamantyloxy)carbonyl]-α-méthyl-R-tryptophyl]-1-amino]-1-indanyl carboxylique.

(I.a; (B) =- CH_2 -, R_2 = OH, * = R, S)

A O°C, sous atmosphère d'azote, à une solution de 1,7 g (3,0 mmoles) de l'ester préparé à l'exemple 1 dans 15 ml de dioxane, on ajoute goutte à goutte une solution de 0,2 g (4,5 mmoles) d'hydroxyde de lithium monohydraté dans 5 ml d'eau. On laisse remonter à la température du laboratoire et agite pendant cinq heures. On évapore le solvant in vacuo et reprend par 50 ml de chlorure de méthylène, lave par une solution N/10 de sulfate acide de potassium puis par une solution de chlorure de sodium saturée. On sèche, évapore sous vide puis chromatographie le résidu sur silice, en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 1,2 g (Rdt = 72 %) de produit purifié.

 $CCM : CH_2Cl_2/MeOH 90/10 Rf = 0.5.$

R.M.N.:(DMSO) $\delta = 11,0$ (s 1H échangeable); 8,38 (s 1H échangeable); 7,55-6,70 (m 9H); 4,7 (s 1H); 4,3-2,8 (m 8H dont 2H échangeables); 2,3-1,0 (m 17H).

25 - Sel de N-méthyl-D-glucamine

A une solution de 1,11 g (2,0 mmoles) de l'acide obtenu ci dessus dans 50 ml d'éthanol anhydre, on ajoute une solution de 0,39 g (2,0 mmoles) de N-méthyl-D-glucamine dans 50 ml d'éthanol. On porte le mélange au reflux puis après refroidissement évapore sous vide.

Le sel amorphe est obtenu sous forme d'une poudre blanche. F= 135-140°C.

Analyse: $C_{40}H_{44}O_{10}N_4$; 4/3 H_2O

35

Calc.%: C 62,00 H 7,37 N 7,23 O 23,39 Tr.%: C 61,98 H 7,46 N 7,24 O 23,32 Exemple 3 : $[1-[N-(2-adamantyloxy)carbonyl]-\alpha-méthyl-R-tryptophyl]-1-amino]-1-méthoxycarbonyl-tétrahydro-1,2,3,4-naphtalène. (I.a; (B) =-CH₂-CH₂, <math>R_2$ = OCH₃, * = R,S)

5 Le composé est préparé selon le protocole décrit à l'exemple 1 à partir de N-2adoc-α-méthyl-R-tryptophane et de (R,S) amino-1-méthoxycarbonyl-1-tétrahydro-1,2,3,4-naphtalène.

Le produit brut est purifié par chromatographie sur colonne de silice en éluant par un gradient de méthanol dans le chlorure

10 de méthylène.

Rendement 93 %.

 $CCM : CH_2Cl_2/MeOH 95/5 Rf = 0,60.$

bicarbonate de sodium à 5 %.

R.M.M. (CDCl₃): $\delta = 8,32$ (s 1H échangeable); 7,7-7,45 (m 1H); 7,45-6,90 (m 10H dont 2 échangeables); 4,70 (s 1H);

15 3,70 (s 3 H); 3,55-3,3 (m 2H); 3,3-2,60 (m 2H); 2,60-2,20 (m 2H); 2,20-1,20 (m 19 H).

Exemple 4: Sel de l'acide 3-[1-[N-[(2-adamantyloxy) carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-3-oxo-propanoïque et de la N-méthyl-D-glucamine. (I.b; (B)=-CH₂-, p = 1, R₁ = CO-R₂ avec R₂ = OH, * = R,S)

- stade 1 : 1-[[N-[(t.butyloxy)carbonyl]-α-méthyl-R-tryptophyl]-aminométhyl]-1-[(benzyloxycarbonyl)-amino]-indane.
- 25 (V.b; X = Boc, (B) =-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S)
 A 0°C, sous atmosphère d'azote, 15,26 g (25,0 mmoles) de N-Boc-R-α-méthyl-R-tryptophane (V; Xoc = Boc) sont dissous dans 150 ml de tétrahydrofurane anhydre, on ajoute 7,58 g (75,0 mmoles) de triéthylamine et 7,41 g (25,0 mmoles) de (R,S)
- 1-aminométhyl-1-(benzyloxycarbonylamino)-indane (VII.b;
 (B) = -CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S). On ajoute ensuite
 goutte à goutte une solution de 11,66 g de PyBrop (25,0 mmoles)
 dans 100 ml de THF. Après 16h d'agitation on évapore sous vide
 et reprend par du chlorure de méthylène, lave par une solution
 N/10 de sulfate acide de potassium puis une solution de

On sèche, évapore sous vide puis chromatographie le résidu sur silice en éluant par un gradient d'acétate d'éthyle dans du chlorure de méthylène. On obtient 6,41 g (Rdt = 43 %) de produit purifié sous forme d'une résine légèrement jaune.

5 CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,7. R.M.N.:(DMSO) δ = 10,85 (d large 1H échangeable); 8,05 (s large 1H échangeable); 7,6-6,7 (m 15H dont 1H échangeable); 5,1 (s 2H); 3,8-2,9 (m 4H); 2,9-2,6 (m 2H); 2,3-1,4 (m 14H dont tBut à δ = 1,50 et α Me à δ = 1,55).

10 Analyse : C₃₆H₄₂N₄O₅

Calc.%: C 71,82 H 7,10 N 7,98 O 13,10

Tr.% : C 71,90 H 7,05 N 7,90 O 13,10

- Stade 2 : 1-[(α -méthyl-R-tryptophyl)-aminométhyl]-1-(benzyloxycarbonylamino)-indane. (IV.b; (B) =-CH₂-, Z = CO-O-

15 $CH_2-C_6H_5$, * = R,S)

A O°C, sous atmosphère d'azote on mélange 4,96 g (10,0 mmoles) de l'intermédiaire obtenu au stade 1 précédent, 6 ml d'anisole et 0,15 ml d'éthane-dithiol.

Sous agitation, on verse peu à peu dans ce mélange 30 ml d'acide trifluoroacétique. Après 90 minutes on évapore sous vide et reprend l'huile jaune résiduelle du chlorure de méthylène. On lave par une solution de bicarbonate à 5% sépare la phase organique, sèche, évapore sous vide. Le résidu est chromatographié sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. on obtient 3,72 g (Rdt = 75 %) de produit purifié sous forme de résine jaune.

CCM : $CH_2Cl_2/Méthanol 90/10 Rf = 0,4$.

R.M.N.: (DMSO) 8,15 (s large 1H échangeable);7,65 (s large 1H échangeable); 7,6-6,7 (m 15H dont 1H échangeable); 4,85 (s 2H); 3,7-2,9 (m 6H dont 2H échangeables); 3,0-2,7 (m 2H); 2,4-1,4 (m 5H).

- Stade 3 : [1-[N-(2-adamantyloxy)carbonyl]- α -méthyl-R-tryptophyl]-aminométhyl]-1-[(benzyloxycarbonyl)-amino]-indane. (III.b; (B) =-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S)
- 35 A 0°C, sous atmosphère d'azote, on ajoute 3,03 g (30 mmoles) de triéthylamine à une solution de 14,9 g (30 mmoles) de produit

obtenu au stade 2 dans 200 ml de chlorure de méthylène. On ajoute ensuite goutte à goutte une solution de 6,4 g (30 mmoles) de chloroformate de 2-adamantyle. Après 16h d'agitation, on lave par une solution N/10 de sulfate acide de potassium puis une solution de bicarbonate de sodium à 5 %.

On sèche, évapore sous vide, chromatographie le résidu sur silice, en éluant par un gradient d'acétate d'éthyle dans du chlorure de méthylène. On obtient 14,0 g (Rdt = 69 %) de produit purifié.

10 CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,5.

R.M.N.: (CDCl₃) δ = 8,15-7,95 (d large 1H échangeable); 7,65-7,45 (m 1H); 7,6-6,7 (m 14H dont 1H échangeable); 6,05 (s 1H échangeable); 5,38 (s 1H échangeable); 5,05 (s 2H); 4,70 (s 1H); 4,0-2,2 (m 6H) 2,2-1,1 (m 19H).

15 - Stade 4 : 1-[1-[N-[(2-adamantyloxy)carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]-indanyl]-amine. (II.b; (B) =-CH₂-, * = R,S)

Dans un petit réacteur étanche et équipé d'un système de chauffage, 8,8 g (11,85 mmoles) de l'intermédiaire du stade 3 20 sont dissous dans 50 ml d'éthanol anhydre et hydrogénés en présence de 0,126 g de charbon palladié à 10%, sous une pression de 5 bars à 60°C pendant 5 heures.

Après filtration et évaporation on reprend par du chlorure de méthylène et chromatographie sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient après purification 5,4 g (Rdt = 84 %) de produit.

CCM : acétate d'éthyle/méthanol 95/5 Rf = 0,25

R.M.N.: (CDCl₃) δ = 8,55 (s 1H échangeable); 7,2-6,9 (m 9H); 6,80-6,55 (t large 1H échangeable); 5,36 (s 1H échangeable); 30 4,82 (s 1H); 3,70-2,60 (m 6H); 2,2 (s large 2H échangeables);

2,1-1,2 (m 19H).

- Stade 5 : Ester éthylique de l'acide $3-[1-[1-[N-[(2-adamantyloxy)carbonyl]-\alpha-méthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-3-oxo-propanoïque. (I.b; (B) =-CH₂-, p = 1,$
- 35 $R_1 = CO-R_2 \text{ avec } R_2 = C_2H_5, * = R,S)$

A 0°C, sous atmosphère d'azote, on dissout 1,87 g (3,46 mmoles) de l'intermédiaire du stade 4 et 0,42 g (4,15 mmoles) de triéthylamine dans 50 ml de chlorure de méthylène. On ajoute goutte à goutte 0,57 g (3,8 mmoles) de l'ester éthylique du monochlorure de malonyle dans 20 ml de chlorure de méthylène. On laisse agiter une heure à cette température et chauffe 5 heures à la température de reflux du mélange, refroidit, lave par de l'acide chlorhydrique normal, puis par de la soude normale et finalement par une solution saturée de chlorure de sodium.

On sèche, évapore sous vide, on chromatographie le résidu sur silice, en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 1,5 g (Rdt = 65%) de résine incolore purifiée.

15 CCM: $CH_2Cl_2/MeOH$ 98/2 Rf = 0,3. R.M.N.: (CDCl₃) δ = 8,45 (s 1H échangeable); 7,7-6,9 (m 11H dont 2H échangeables); 5,40 (d 1H échangeable); 4,80 (s 1H); 4,35-4,40 (s 2H); 3,95-3,05 (m 6H); 3,05-2,6 (m 2H); 2,6-1,35 (m 19H); 1,25 (t dédoublé 3H).

20 - Stade 6 : Acide 3-[1-[1-[N-[(2-adamantyloxy)carbonyl]-αméthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-3-oxopropanoïque. (I.b; (B) =-CH₂-, p = 1,

 $R_1 = CO-R_2 \text{ avec } R_2 = OH, * = R,S)$

A O°C, sous atmosphère d'azote, 1,5 g (2,3 mmoles) de l'ester éthylique obtenu au stade 5 précédent sont dissous dans 60 ml de THF anhydre. On ajoute goutte à goutte une solution d'hydroxyde de lithium hydraté N/10 et agite 5 heures à O°C. On laisse remonter à température ambiante et acidifie par de l'acide citrique N. On évapore le solvant in vacuo et reprend par de l'acétate d'éthyle, lave la phase organique par une solution saturée de chlorure de sodium, sèche, évapore sous vide. On chromatographie pour purification le résidu sur silice, en éluant par un gradient de méthanol dans du chlorure de méthylène.

35 On obtient 0,85 g (Rdt = 59%) de meringue incolore. CCM : $CH_2Cl_2/MeOH$ 90/10 Rf = 0,05.

R.M.N.: (DMSO) $\delta = 10,95$ (s 1H échangeable); 8,65 (s 1H échangeable); 8,4-7,9 (d large 1H échangeable); 7,6-6,6 (m 1OH dont 1H échangeable); 4,70 (s 1H); 3,75-2,6 (m 8H); 2,4-1,0 (m 19H).

5 - Sel de N-méthyl-D-glucamine

A une solution de 0,9 g (1,436 mmoles) de l'acide obtenu précédemment dans 30 ml d'éthanol anhydre, on ajoute une solution de 0,280 g (1,436 mmoles) de N-méthyl-D-glucamine dans 25 ml d'éthanol. On porte le mélange à l'ébullition et après refroidissement on évapore sous vide. On obtient le sel désiré sous la forme d'une poudre blanche. F= 115-120°C.

Analyse: $C_{43}H_{59}O_{11}N_5, H_2O$

Calc.* : C 61,48 H 7,32 N 8,34 O 22,86 Tr.* : C 61,13 H 7,86 N 8,11 O 22,90.

15

10

Exemple 5 : Sel de l'acide 4-[1-[1-[N-[(2-adamantyloxy)] carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-4-oxo-butanoïque et de la N-méthyl-D-glucamine. (I.b; (B) =-CH₂-, p = 2, R₁ = -CO-R₂ pour R₂ = OH, * = R,S)

20

Sous atmosphère d'azote, on agite pendant seize heures un mélange de 3,5 g (6,47 mmoles) de 1-[1-[N-[(2-adamantyloxy)]]carbonyl]-α-méthyl-R-tryptophyl-aminométhyl]-indanyl]-amine (exemple 3, stade 4), de 0,98 g (9,7 mmoles) de triéthylamine et de 0,97 g (9,7 mmoles) d'anhydride succinique dans 75 ml de tétrahydrofurane. On chauffe ensuite à la température de reflux du mélange pendant 5 heures, puis évapore sous vide et reprend par de l'acétate d'éthyle, lave par une solution N/10 de sulfate acide de potassium, sèche, évapore sous vide. Le 30 produit est purifié par chromatographie sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 2,70 g (Rdt = 65%) d'acide 4-[1-[N-[(2adamantyloxy) carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]indanyl]-amino]-4-oxo-butanoïque sous forme d'une poudre blanche. 35

CCM: $CH_2Cl_2/MeOH/NH_4OH 90/9/1 Rf = 0,6$.

CCM: $CH_2Cl_2/MeOH 90/10 Rf = 0,1$.

R.M.N.: (DMSO) & = 10,65 (d 1H échangeable); 8,98 (s large 1H échangeable); 7,65-6,9 (m 10H dont 1 échangeable); 6,75 (s large 1H échangeable); 5,72 (s large 1H échangeable); 4,72 (s 1H); 3,65-3,05 (m 4H); 3,05-2,65 (m 2H); 2,6-2,1 (m 6H); 2,1-1,1 (m 17H).

- Sel de N-méthyl-D-glucamine

A une solution de 1,92 g (3,0 mmoles) de l'acide obtenu dans 75 ml d'éthanol anhydre, on ajoute une solution de 0,585 g (3,0 mmoles) de N-méthyl-D-glucamine dans 75 ml d'éthanol. On porte le mélange à l'ébullition et après refroidissement on évapore sous vide.

On obtient le sel sous la forme d'une poudre blanche. F= 115-120°C.

15 Analyse: C₄₄H₆₁O₁₁N₅; 2H₂O

Calc.%: C 60,60 H 7,51 N 8,03 O 23,85 Tr.%: C 60,97 H 7,43 N 8,01 O 23,59

Exemple 6: sel de l'acide 4-[(1R)-1-[1-[N-[(2-adamantyloxy) carbonyl]-α-méthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-4oxo-butanoïque et de la N-méthyl-D-glucamine. (I.b; (B) =-CH₂-,
p = 2, R₁ = -CO-R₂ pour R₂ = OH, * = R)

- Stade 1: 1-[[N-[(t.butyloxy)carbonyl]-α-méthyl-R-tryptophyl]aminométhyl]-(1R)-1-(benzyloxycarbonylamino)-indane. (V.b; X = 25 Boc, (B) =- CH_2 -, 2 = $CO-O-CH_2-C_6H_5$, * = R) Le composé est préparé comme décrit à l'exemple 4 - stade 1 à partir de 3,75 g (9,45 mmoles) de N-Boc-α-méthyl-R-tryptophane (25 mmoles) de (1R)-1-aminométhyl-1-2,8 g (benzyloxycarbonylamino)-indane (VII.b; (B) =- CH_2 -, Z = CO-O-30 $CH_2-C_6H_5$, * = R). On purifie le produit brut par chromatographie sur silice, en éluant par un gradient d'acétate d'éthyle dans du chlorure de méthylène. On obtient 2,2 g (Rdt = 34 %) de résine légèrement jaune.

35 CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,7.

10 C_6H_5 , * = R)

g (Rdt = 75 %) de résine.

R.M.N.: (DMSO) $\delta = 10,85$ (d large 1H échangeable); 8,05 (s large 1H échangeable); 7,85 (s large 1H échangeable); 7,6-6,7 (m 15H dont 1H échangeable); 5,1 (s 2H); 3,8-2,9 (m 4H); 2,9-2,6 (m 2H); 2,3-1,4 (m 14H dont tBut à $\delta = 1,50$ et α Me à $\delta = 1,55$). Analyse : $C_{36}H_{42}N_4O_5$

Calc%: C 71,82 H 7,10 N 7,98 O 13,10

Tr.% : C 71,90 H 7,05 N 7,90 O 13,10

- Stade 2 : 1-[(α -méthyl-R-tryptophyl)-aminométhyl]-(1R)-1-(benzyloxycarbonylamino)-indane.(IV.b; (B) =-CH₂-, Z = CO-O-CH₂-
- Le composé est préparé par traitement du produit obtenu au stade précédent selon le mode opératoire décrit à l'exemple 4 stade 2. Après purification chromatographique on obtient 1,24
- 15 CCM : CH_2Cl_2/M éthanol 90/10 Rf = 0,4. R.M.N.: (DMSO) δ = 8,15 (s large 1H échangeable);7,65 (s large 1H échangeable); 7,6-6,7 (m 15H dont 1H échangeable); 4,85 (s 2H); 3,7-2,9 (m 6H dont 2H échangeables); 3,0-2,7 (m 2H); 2,4-1,4 (m 5H).
- 20 Stade 3 : $1-[N-[(2-adamantyloxy)carbonyl]-\alpha-méthyl-R-tryptophyl]-aminométhyl]-(1R)-1-(benzyloxycarbonylamino)-indane. (III.b; (B) =-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R)$
 - A 0°C, sous atmosphère d'azote, à partir de 2,34 g (4,71 mmoles) de composé du stade précédent que l'on traite selon le
- mode opératoire de l'exemple 4 stade 3 on obtient après purification chromatographique 2,2 g (Rdt = 69 %) de produit. CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,5.
 - R.M.N.: (CDCl₃) δ =8,15-7,95 (d large 1H échangeable); 7,65-7,45 (m 1H); 7,6-6,7 (m 14H dont 1H échangeable); 6,05 (s 1H
- 30 échangeable); 5,38 (s 1H échangeable); 5,05 (s 2H); 4,70 (s 1H); 4,0-2,2 (m 6H) 2,2-1,1 (m 19H).
 - Stade 4 : (1R)-1-[1-[N-[(2-adamantyloxy)carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]-indanyl]-amine. (II.b; (B) =-CH₂-, * = R)
- 35 Dans un petit réacteur on hydrogène 2,2 g (3,26 mmoles) du composé obtenu au stade 3 précédent dans des conditions

identiques à celles décrites à l'exemple 4 - stade 4. On obtient finalement 1,3 g (Rdt = 96 %) de produit.

CCM : acétate d'éthyle/méthanol 95/5 Rf = 0,25

R.M.N.: (CDCl₃) $\delta = 8,55$ (s 1H échangeable); 7,2-6,9 (m 9H);

- 5 6,80-6,55 (t large 1H échangeable); 5,36 (s 1H échangeable); 4,82 (s 1H); 3,70-2,60 (m 6H); 2,2 (s large 2H échangeables); 2,1-1,2 (m 19H).
 - Stade 5 : Acide 4-[(1R)-1-[1-[N-[(2-adamantyloxy) carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-4-oxo-
- 10 butanoïque. (I.b; (B) =- CH_2 -, p = 2, R_1 = -CO- R_2 pour R_2 = OH, \star = R)

Sous atmosphère d'azote, on agite pendant seize heures un mélange de 1,7 g (3,14 mmoles) de l'amine obtenue au stade 4 précédent, de 0,477 g (4,71 mmoles) de triéthylamine et de 0,47

- 15 g (4,71 mmoles) d'anhydride succinique dans 60 ml de tétrahydrofurane. On chauffe ensuite à la température de reflux du mélange pendant 6 heures, on ajoute alors 0,200 g (1,6 mmoles) de 4-diméthylaminopyridine puis évapore sous vide et reprend par de l'acétate d'éthyle, lave par une solution N/10
- de sulfate acide de potassium, sèche, évapore sous vide. Le produit est purifié par chromatographie sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 1,30 g (Rdt = 65%) de produit purifié sous forme de poudre blanche.
- 25 CCM : $CH_2Cl_2/MeOH/NH_4OH$ 90/9/1 Rf = 0,6.

 $CCM : CH_2Cl_2/MeOH 90/10 Rf = 0,1.$

R.M.N.:(DMSO) $\delta = 10,65$ (d 1H échangeable); 8,98 (s large 1H échangeable); 7,65-6,9 (m 10H dont 1 échangeable); 6,75 (s large 1H échangeable); 5,72 (s large 1H échangeable); 4,72 (s

- 30 1H); 3,65-3,05 (m 4H); 3,05-2,65 (m 2H); 2,6-2,1 (m 6H); 2,1-1,1 (m 17H).
 - Sel de N-méthyl-D-glucamine
 - A une solution de 1,2 g (2,0 mmoles) de l'acide précédent dans 50 ml d'éthanol anhydre, on ajoute une solution de
- 35 0,390 g (2,0 mmoles) de N-méthyl-D-glucamine dans 75 ml d'éthanol. On porte le mélange à l'ébullition et après

refroidissement on évapore sous vide. Le sel est obtenu sous forme d'une poudre blanche. F= 90-97°C.

Analyse: $C_{44}H_{61}O_{11}N_5; 2H_2O$

Calc.% : C 60,60 H 7,51 N 8,03 O 23,85

5 Tr.% : C 60,97 H 7,43 N 8,01 O 23,59

Exemple 7: Sel de l'acide 4-[1-[1-[N-[(2adamantyloxy) carbonyl]- α -méthyl-R-tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amino-4-oxo-butanoïque et de la N-méthyl-D-glucamine. (I.b; (B) = -CH₂-CH₂-, p = 2, R₁ = -CO-R₂, pour R₂ = OH, * = R,S)

- Stade i: 1-[-[N-[(t.butyloxy)carbonyl]-α-méthyl-tryptophyl]aminométhyl]-1-[(benzyloxycarbonyl)-amino]-tétrahydro-1,2,3,4
15 naphtalène.(V.b; X = Boc, (B) =-CH₂-CH₂-, Z = CO-O-CH₂-C₆H₅, *
= R,S)

La réaction est réalisée selon le mode opératoire de l'exemple
4 - stade 1 à partir de 15,26 g (25,0 mmoles) de N-Boc-αméthyl-R-tryptophane et 9,96 g (25 mmoles) de (R,S) 120 aminométhyl-1-[(benzyloxycarbonyl)-amino]-tétrahydro-1,2,3,4naphtalène (VII.b; (B) =-CH₂-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S).
On obtient 10,23 g (Rdt = 67 %) de résine incolore.

CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,75.

R.M.N.: (DMSO) $\delta = 10,65$ (d large 1H échangeable); 8,15 (s large 1H échangeable); 7,80 (s large 1H échangeable); 7,6-6,7 (m 15H dont 1H échangeable); 4,8 (s 2H); 3,7-2,9 (m 6H); 2,9-2,6 (m 2H); 2,3-1,4 (m 16H dont tBut à $\delta = 1,42$ et α Me à $\delta = 1,5$). Analyse : $C_{36}H_{42}N_4O_5$

Calc%: C 71,82 H 7,10 N 7,98 O 13,10

30 Tr.% : C 71,90 H 7,05 N 7,90 O 13,10

- Stade 2 : 1-[(α -méthyl-R-tryptophyl)-aminométhyl]-1-(benzyloxycarbonylamino)-tétrahydro-1,2,3,4-naphtalène.(IV.b; (B) =-CH₂-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S).

La réaction est réalisée selon le mode opératoire de l'exemple 4 - stade 2 à partir de 12,2 g (20 mmoles) du composé préparé au stade précédent. On obtient après purification 8,17 g (Rdt = 80 %) de résine transparente légèrement jaune.

CCM: $CH_2Cl_2/M\acute{e}thanol 90/10 Rf = 0.4.$

- R.M.N.:(DMSO) 8,05 (s large 1H échangeable);7,75 (s large 1H échangeable); 7,6-6,7 (m 15H dont 1H échangeable); 4,85 (s 2H); 3,7-2,9 (m 6H dont 2H échangeables); 2,9-2,6 (m 2H); 2,3-1,2 (m 7H).
- Stade 3 :[1-[N-[(2-adamantyloxy)carbonyl]-α-méthyl-R-tryptophyl]-aminométhyl]-1-[(benzyloxycarbonyl)-amino] tétrahydro-1,2,3,4-naphtalène. (III.b; (B) =-CH₂-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S)

La réaction est réalisée selon l'exemple 4 - stade 3 à partir de 1,53 g (3,0 mmoles) de l'intermédiaire obtenu au stade précédent. On obtient 1,59 g (Rdt = 77 %) de produit purifié.

- 15 CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,8.
 - R.M.N.:(DMSO) $\delta = 10.85$ (d large 1H échangeable); 8.05 (s large 1H échangeable); 7.75 (s large 1H échangeable); 7.6-6.7 (m 14H); 4.9 (s 2H); 4.72 (s 1H); 3.7-2.9 (m H dont 1H échangeable à $\delta = 3.3$); 2.9-2.6 (m 2H); 2.3-1.2 (m 21H).
- 20 Stade 4 : [1-[1-[N-[(2-adamantyloxy)carbonyl]-α-méthyltryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amine.
 (II.b; (B) =-CH₂-CH₂-, * = R,S)
 - 3,5 g (5,08 mmoles) de l'intermédiaire obtenu au stade 3 précédent sont hydrogénés comme décrit à l'exemple 4 stade 4.
- 25 On obtient 1,69 g (Rdt = 60 %) de produit purifié.

CCM : acétate d'éthyle/méthanol 90/10 Rf = 0,5.

- R.M.N.: (DMSO) $\delta = 10.84$ (s 1H échangeable); 7,6-6,7 (m 10H dont 1H échangeable); 4,7 (s 1H); 4,3 (s large 2H échangeables); 3,6-2,55 (m 6H); 2,2-1,2 (m 21H).
- Stade 5 : Acide 4-[1-[1-[N-[(2-adamantyloxy)carbonyl]-αméthyl-tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl]-1amino]-4-oxo-butanoïque.(I.b; (B) =-CH₂-CH₂-, R₁ = -CO-R₂, pour
 R₂ = OH, p = 2, * = R,S)
- Le produit est préparé tel que décrit à l'exemple 5 à partir de 35 1,68 g (3,03 mmoles) de l'intermédiaire préparé au stade 4 précédent, de 0,46 g (4,54 mmoles) de triéthylamine et de 0,303

g (3,03 mmoles) d'anhydride succinique dans 15 ml de tétrahydrofurane. On obtient 0,84 g (Rdt = 42%) de produit sous forme de mousse incolore.

 $CCM : CH_2Cl_2/MeOH/NH_4OH 80/18/2 Rf = 0.8.$

- 5 R.M.N.: (DMSO) δ = 10,85 (d large 1H échangeable); 8,0 (t large 1H échangeable); 7,5-6,7 (m 10H 1 échangeable); 6,55 (s large 1H échangeable); 4,85 (s large 1H échangeable); 4,65 (s 1H); 3,6-2,9 m 6H); 2,3-2,1 (m 4H); 2,1-1,1 (m 21H).
 - Sel de N-méthyl-D-glucamine
- 10 A une solution de 0,65 g (1 mmole) de l'acide précédent, dans 25 ml d'éthanol anhydre, on ajoute une solution de 0,195 g (1 mmole) de N-méthyl-D-glucamine dans 25 ml d'éthanol. On porte le mélange à l'ébullition et après refroidissement on évapore sous vide. Le sel désiré est obtenu sous forme d'une poudre blanche. F = 145-150°C.

Analyse: $C_{45}H_{63}O_{11}N_5$; 2, $5H_2O$

Calc.%: C 60,39 H 7,67 N 7,82 O 24,15 Tr.%: C 60,62 H 7,71 N 7,56 O 24,11

- Exemple 8: Sel de l'acide 4-[(1R)-1-[1-[N-[(2-adamantyloxy) carbonyl]-α-méthyl-R-tryptophyl] -aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amino-4-oxo-butanoïque et de la N-méthyl-D-glucamine. (I.b; (B) = -CH₂-CH₂-, p = 2, R₁ = -CO-R₂ pour R₂ = OH, * = R)
 - Stade 1 : (1R) 1-[N-[(2-adamantyloxy)carbonyl]- α -méthyl-R-tryptophyl-aminométhyl]-1-[(benzyloxycarbonyl)-amino]-1,2,3,4-tétrahydro-naphtalène.(III.b ; (B) = -CH₂-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R)
- 30 Le composé est préparé selon le mode opératoire décrit à l'exemple 4 stade 1 à partir de 6,0 g (15,15 mmoles) de N-2Adoc-α-méthyl-R-tryptophane (VI) et de 4,7 g (15,15 mmoles) de (R)-1-aminométhyl-1-(benzyloxycarbonylamino)-1,2,3,4-tétrahydro-naphtalène (VII.b; (B) = -CH₂-CH₂-, Z = CO-O-CH₂-35 C₆H₅, * = R). On obtient après purification par chromatographie

sur silice en éluant par un gradient d'acétate d'éthyle dans le chlorure de méthylène 3,6 g (Rdt = 35 %) de composé.

CCM : CH_2Cl_2/Ac étate d'éthyle 80/20 Rf = 0,80

- Stade 2: (1R) [1-[1-[N-[(2-adamantyloxy)carbonyl]- α -méthyl-5 tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amine (II.b; (B) = -CH₂-CH₂-, * = R).

On soumet à l'hydrogénolyse 3,6 g (5,23 mmoles) du composé obtenu au stade précédent selon le mode opératoire décrit à l'exemple 4 - stade 4. On obtient 2,9 g (Rdt = 100 %) de 10 composé)

CMM : $CH_2Cl_2/MeOH 95/5 Rf = 0.25$

- Stade 3 : Acide 4-[(1R)-1-[1-[N-[(2-adamantyloxy) carbonyl]-α-méthyl-R-tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amino-4-oxo-butanoïque. (I.b;

15 (B) = $-CH_2-CH_2-$, p = 2, R_1 = $-CO-R_2$ pour R_2 OH, * = R) On fait réagir le composé obtenu au stade précédent avec 0,79 g (7,85 mmoles) d'anhydride succinique selon le mode opératoire de l'Exemple 7 - stade 5.

Après purification par chromatographie sur silice en éluant par 20 un gradient de méthanol dans le chlorure de méthylène, on obtient 1,95 g (Rdt = 57 %) de produit.

CMM : $CH_2Cl_2/MeOH/NH_4OH 90/10/2$ Rf = 0,10

R.M.N.: identique au composé racémique correspondant (exemple7 - stade 5).

25 - Sel de N-méthyl-D-glucamine

Le composé est préparé tel que décrit à la salification effectuée à l'exemple 7 - stade 5.

Analyse : C_{45} H_{63} N_5 O_{11} , $4H_2O$

Calc.% : C 58,62 H 7,76 N 7,60 O 26,03

30 Tr.% : C 58,67 H 7,69 N 7,38 O 26,26

Exemple 9 : $[4-[1-[N-[(2-adamantyloxy)carbonyl]-\alpha-méthyl]-R-tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl]-1-amino]-4-oxo]-[1-[N-[1-(4-benzyl)pipéridyl]]]-butanoyle$

35 (I.b; (B) = $-CH_2-CH_2$, p = 2, * = R,S, $R_1 = -CO-R_2$ pour $R_2 = \frac{1}{2} \left(\frac{1}{2} \right)^{-1}$ Dans un réacteur protégé de l'humidité on mélange dans 60 ml de tétrahydrofurane anhydre 4,0 g (7,20 mmoles) de l'amine intermédiaire II-b préparée à l'exemple 7 - stade 4, avec 2,2 g (21,60 mmoles) de triéthylamine, 1,99 g (7,20 mmoles) d'acide [1-(4-benzyl)pipéridyl]-4-oxo-butanoïque et 3,36 g (8,65 mmoles) de PyBrop.

Le mélange est agité 16 h à 20-25° C puis évaporé sous vide. Le résidu est repris par 100 ml de chlorure de méthylène, lavé par une solution saturée de bicarbonate de sodium. La phase organique est séchée, évaporée puis le résidu est purifié par chromatographie sur silice. On obtient 6,5 g (Rdt = 65 %) de produit purifié sous forme amorphe.

CCM : Acétate d'éthyle/MeOH Rf = 0,80

CCM : Acétate d'éthyle Rf = 0.65

15 R.M.M. : (DMSO) $\delta = 9.75$ (s 1H échangeable); 7.75-7.45 (m 2H échangeables); 7.45-6.9 (m 14H); 5.78 (s 1H échangeable); 4.8 s 1H, 4.7-3.7 m 2H; 3.6-2.15 (m 14H); 2.15-0.8 (m 26H)

Analyse: C_{50} H_{61} N_5 O_5 , CH_3COOCH_3 , $\frac{1}{2}$ H_2O

Calc. %: C 71,34 H 7,76 N 7,70 O 13,20

20 Tr. % : C 71,45 H 7,64 N 7,85 O 13,06

Exemple 10: [4-[1-[N-[(2-adamantyloxy)carbonyl]-α-méthyl]-R-tryptophyl]-aminométhyl-1,2,3,4-tétrahydronaphtyl]-1-amino]-4-oxo]-[1-[N-[1-(4-p.chlorophényl-4-hydroxy)pipéridyl]]]-25 butanoyle (I.b; (B) = -CH₂-CH₂, p = 2, * = R,S,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

$$R_1 = -CO - R_2$$
 pour $R_2 = -CO - R_2$ pou

Le produit est préparé selon le mode opératoire de l'exemple 9
30 précédent à partir de 5,0 g (9,0 mmoles) d'amine (exemple 7 stade 4) et de 2,8 g (9,0 mmoles) d'acide [1-(4-p.chlorophényl4-hydroxy)-pipéridyl]-butanoïque. On obtient après purification
3,5 g de produit (Rdt = 46 %)

CCM: Acétate d'éthyle. Rf = 0,39

R.M.N.: (DMSO) $\delta = 9,45$ (s 1H échangeable); 7,75-7,5 (m 2H échangeables); 7,5-6,8 (m 13H) 5,13 (s/1H échangeable); 4,70 (s 1H); 4,5-2,95 (m 6H); 2,9-2,1 (m 9H); 2,1 -1,1 (m 25H). Analyse: C_{49} C_{10} C_{10}

5 Calc. % : C 68,28 H 6,96 N 8,12 O 12,53 Cl 4,11 Tr % : C 68,24 H 7,05 N 7,89 O 12,78 Cl 4,06

Exemple 11: $4-[1-[N-[(2adamantyloxy)carbonyl]-\alpha-méthyl-R-10$ tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amino-4-oxo-butanoate d'éthyle. (I.b; (B) = $-CH_2-CH_2-$, p = 2, $R_1 = -CO-R_2$ pour $R_2 = C_2H_5$, * = R,S)

Dans un réacteur de 500 ml on dissout 4,7 g (8,48 mmoles) de [1-[1-[N-[(2-adamantyloxy)carbonyl]-α-méthyl-R-tryptophyl] -15 aminométhyl]-1,2,3,4-tétrahydro-naphtyl-]-1-amine, préparé à l'exemple 7 - stade 4, dans 200 ml de chlorure de méthylène anhydre. On ajoute à la solution 1,4 ml de triéthylamine puis, qoutte à goutte à t < 5°C 1,4 g (8,47 mmoles) de chlorure de 20 succinate d'éthyle en solution dans 20 ml de chlorure de méthylène. Le mélange est porté 4 heures au reflux puis refroidi et extrait successivement par 100 ml de solution HCl N, 100 ml de solution NaOH N, puis avec une solution saturée en NaCl et finalement séchée sur Na2SO4. Après élimination du (Rdt 66%) 25 solvant on obtient 3,8 q de composé chromatographiquement pur.

CCM : chorure de méthylène-MeOH 98-2 v/v . Rf = 0,39 $\left[\alpha\right]^{20}$ D = +13° (c = 1,0; MeOH)

R.M.N.: (DMSO) $\delta = 10.9$ (s 1H échangeable); 8,1 (m large 3H échangeables); 7,6-6,9 (m 9H); 4,74 (s 1H échangeable); 4,10 (s 2H); 3,70-2,90 (m 6H); 2,9-2,2 (m 4H); 2,2-1,2 (m 24H).

Analyse : C_{40} H_{50} N_4 O_6 , 0,5 H_2O

Calc. % : C 69,44 H 7,43 N 8,10 O 15,03 Tr % : C 69,41 H 7,50 N 8,14 O 14,87 Exemple 12: $[4-[1-[N-[(2-adamantyloxy)carbonyl]-\alpha-méthyl]-R-tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl]-1-amino]-4-oxo]-(N-indolyl)-butanoyle (I.b; (B) = -CH₂-CH₂, p = 2, * = R,S, R₁ = -CO-R₂ pour R₂ = N-indolinyl)$

5

10

Le composé est préparé en présence de PyBrop tel que décrit à l'exemple 9 à partir de l'amine intermédiaire II-b préparée à l'exemple 7 - stade 4 et d'acide (1-indoly1)-4-oxo-butanoïque préparé par réaction de l'indoline avec l'anhydride succinique dans le THF. Après chromatographie et élution par le mélange AcoEt-MeOH on obtient 91% de produit purifié.

CCM : Acétate d'éthyle/MeOH 90-10 v/v Rf = 0,90 $[\alpha]^{20}_D$ = +4 (c = 1,0; MeOH)

R.M.M. : (DMSO) $\delta = 10.9$ (s 1H échangeable); 8,10 (m 3H échangeables); 7,60-6,9 (m 13H); 4,75 (s 1H); 4,05 m 2H; 3,7-2,9 m 8H; 2,9-2,2 (m 4H); 2,2-1,2 (m 21H)

Analyse : $C_{46} H_{53} N_5 O_5$, $0,75CH_3COOC_2H_5$

Calc. % : C 71,60 H 7,23 N 8,92 O 12,65 Tr. % : C 71,35 H 7,47 N 8,97 O 12,61

20

Exemple 13: [N-[1-[1-[N-[(2-adamantyloxy)carbonyl]- α -méthyl]-R-tryptophyl]-aminométhyl]-1,2,3,4-tétrahydro-naphtyl]-[2-(5-1H-tétrazolyl)]-acétamide.(I.b; (B) = -CH₂-CH₂-, p = 1, * = R,S, R₁ = 1 H-tétrazol-5-yl)

25

35

Le composé est préparé selon le mode opératoire de l'exemple 9 à partir de 4,0 g (7,2 mmoles) d'amine (Exemple 7 - stade 4) et de 1,1 g (8,65 mmoles) d'acide -1H-tétrazole-acétique préparé selon Nucleic Acids Research (1985) Vol 13, 23 8525-26.

30 On obtient après purification chromatographique 2,8 g de produit (Rdt = 58 %)

CCM: Acétate d'éthyle/MeOH 90/10 Rf = 0,62

R.M.N.: (DMSO) $\delta = 10.9$ (s 1H échangeable); 8,20 (s 1H échangeables); 8,05 (s 1H échangeables); 7,2-6,8 (m 9H); 5,80 (s 1H échangeable); 5,30 (s 1H échangeable); 4,65 (s 1H); 3,95-

3,05 (m 6H); 3,0-2,6 (m 2H); 2,55-1,1 (m 21 H)

PREPARATIONS

Préparation 1

- Stade 1: Acide 1-(benzyloxycarbonylamino)-indanyl-1carboxylique. (Pr.d; (B) =-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S)

 Sous atmosphère d'azote et à une température toujours
 inférieure à 2°C, on dissout 30 g (169,3 mmoles d'acide
 1-amino-1-indanyl-carboxylique (Pr.c; B =-CH₂-, * = R,S) dans
 une solution de 300 ml de dioxane et 150 ml d'eau en ajustant
 le pH à 10,2 au moyen de soude normale. Dans cette solution on
 ajoute goutte à goutte 57,8 g (338,6 mmoles) de chloroformate
 de benzyle dans 100 ml de dioxane, en maintenant le pH entre
 7,8 et 8,2 à l'aide de soude normale ajoutée au moyen d'un
 pHstat. L'addition dure 4 heures.
- On acidifie par 250 ml d'acide chlorhydrique normal et extrait par de l'acétate d'éthyle (2 fois par 250 ml), lave par une solution saturée de chlorure de sodium sèche puis évapore sous vide.
- Le résidu est chromatographié sur silice en éluant par un 20 gradient de méthanol dans du chlorure de méthylène. On obtient 26,5 g (Rdt = 50 %) de poudre blanche.

 $CCM : CH_2Cl_2/MeOH 95/5 Rf = 0,4.$

- R.M.N.: (DMSO) $\delta = 8,3$ (s large 1H échangeable); 7,4-7,0 (m 9H); 6,62 (s large 1H échangeable); 5,10 (s 2H); 3,2-2,2 (m 4H).
- 25 stade 2 : (R,S) 1-carbamoyl-1-(benzyloxy-carbonylamino)-indane. (Pr.g; (B) =-CH₂-, Z = CO-O-CH₂-C₆H₅, * = R,S)

A -15°C et sous atmosphère d'azote, 26,5 g (85 mmoles) de l'acide obtenu au stade précédent sont dissous dans 400 ml de chlorure de méthylène. On ajoute 17,2 g (170 mmoles) de N-30 méthylmorpholine et agite pendant 30 minutes. On ajoute ensuite, goutte à goutte 23,25 g (85 mmoles) de chloroformate d'isobutyle en solution dans 80 ml de chlorure de méthylène. On agite à -20°C pendant 2 heures et fait barboter un courant d'ammoniac gazeux dans la solution. On laisse encore 1 heure 30 minutes sous agitation à -15°C. et laisse remonter à

35 minutes sous agitation à -15°C, et laisse remonter à température ambiante.

On lave la phase organique par une solution N/10 de sulfate acide de potassium puis une solution de bicarbonate de sodium à 5 %. On sèche, évapore sous vide, chromatographie le résidu sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 22,1 g (Rdt = 85 %) de poudre blanche.

CCM : $CH_2Cl_2/MeOH$ 95/5 Rf = 0,60.

R.M.N.: (CDCl₃) $\delta = 7,4-7,0$ (m 9H); 6,18 (s large 1H échangeable); 6,0-5,5 (s large 2H échangeables); 5,20 (s 2H); 10 3,2-2,3 (m 4H).

- Stade 3: (R,S) 1-aminométhyl-1-(benzyloxycarbonylamino)-indane. (VII.b; (B) =-CH₂-, Z = CO-O-CH₂- C_6H_5 , * = R,S)

A O°C et sous atmosphère d'azote, 24,8 g (80 mmoles) de l'amide obtenu au stade précédent sont dissous dans 350 ml de THF anhydre. On ajoute goutte à goutte 20,23 g (26,6 mmoles) de borane-diméthylsulfure en solution dans 30 ml de THF anhydre. On laisse revenir à la température ambiante et on chauffe trois heures à la température de reflux du mélange.

La réaction est refroidie, et on ajoute goutte à goutte 250 ml de méthanol. On porte au reflux 1 heure, refroidit et ajoute 100 ml d'éther chlorhydrique 4N. On agite pendant deux heures et évapore, chromatographie le résidu sur silice, en éluant par un gradient de méthanol dans du chlorure de méthylène.

On obtient (Rdt = 59 %) de résine incolore.

25 CCM : $CH_2Cl_2/MeOH$ 95/5 Rf = 0,2.

R.M.N.: (DMSO) $\delta = 7,59$ (s large 1H échangeable); 7,4-7,0 (m 9H); 5,62 (s large 2H échangeables); 4,95 (s 2H); 3,4-3,2 (m 2H); 3,05-2,6 (m 2H); 2,6-2,0 (m 2H).

30 Préparation 2

- Stade 1 : Acide (R,S) 1-(1-(benzyloxy-carbonylamino)-1,2,3,4-tétrahydro-naphtyl)-carboxylique. (Pr.d; (B) = -CH₂-CH₂-, Z = CO-O-CH₂-C₆H₅ * = R,S)

Le composé est préparé selon le mode opératoire décrit à la 35 préparation 1 - stade 1 à partir d'acide 1-amino-1,2,3,4tétrahydronaphtalène-1-carboxylique (Rdt = 50% - huile) $CCM : H_2Cl_2/MeOH 95/5 Rf = 0,35.$

R.M.N.: (DMSO) $\delta = 8.3$ (s large 1H échangeable); 7,4-7,0 (m 9H); 6,62 (s large 1H échangeable); 5,10 (s 2H); 3,2-2,2 (m 4H).

- Stade 2: (R,S) 1-carbamoyl-1-(benzyloxycarbonylamino)5 tetrahydro-1,2,3,4-naphtalène. (Pr.g; (B) -CH₂-CH₂,

 $Z = CO-O-CH_2-C_6H_5$, * = R,S)

Le composé est préparé à partir de l'acide obtenu au stade précédent, avec un rendement de 71% en utilisant le mode opératoire de la préparation 1 - stade 2.

- 10 CCM : $CH_2Cl_2/AcOEt$ 80/20 Rf = 0,60.
 - R.M.N.:(DMSO) $\delta = 7,6-6,7$ (m 11H dont 2H échangeable); 6,6-6,3 (s 1H échangeable); 4,95 (s 2H); 2,9-2,6 (m 2H); 2,4-1,6 (m 4 H).
- stade 3: (R,S) (1-aminométhyl-1-(benzyloxy carbonyl amino)-15 tétrahydro-1,2,3,4-naphtalène. (VII.b; (B) = -CH₂-CH₂, Z = CO-O- CH_2 -C₆H₅, * = R,S)

Produit préparé par réduction de l'amide obtenu au stade précédent en utilisant le mode opératoire de la préparation 1 - stade 3. Rdt = 44%.

20 CCM : $CH_2Cl_2/MeOH 95/5 Rf = 0,2$.

R.M.N.: (DMSO) $\delta = 7,5-7,0$ (m 9H); 6,9 (s 1H échangeable); 4,9 (s 2H); 3,7(s large 3H dont 2 échangeables); 2,9-2,45 (m 3H); 2,4-1,5 (m 4H).

25 Préparation 3

- Stade 1: (R)-1-(1-méthoxycarbonyl)-indanyl-amine. (IV.a) (B) = $-CH_2-$, * = R)

Dans 320 ml de n-propanol on dissout d'une part 16,0 g (83,7 mmoles) de (R,S)-1-(1-méthoxycarbonyl)-indanyl-amine et d'autre part 29,0 g (83,7 mmoles) d'acide (R)-(-)-4-hydroxydinaphto[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-oxyde sont mis en suspension dans 320 ml de n-propanol. La solution et la suspension sont chauffées à la température du reflux et sont mélangées. L'acide incomplètement dissous passe en solution. On laisse refroidir puis amorce la cristallisation

par les moyens habituels et le cas échéant avec une amorce du diastéréoisomère préparé dans un essai précédent.

Au refroidissement il se forme un précipité que l'on filtre puis que l'on redissout dans 1,5 litre de n-propanol bouillant.

- On laisse refroidir, filtre. On échange l'anion sur une colonne IRA 400 sous forme Cl (5 moles). On obtient 5,50 g de chlorhydrate de l'énantiomère de l'amine (Rdt = 58 %).
- On a déterminé la chiralité absolue par hydrolyse de l'α-chymotrypsine, à 37°C. L'isomère obtenu est transformé en son amide correspondant par réaction avec le chlorure de camphanyle, qui est caractérisé sur plaque, l'éluent étant un mélange de cyclohexane et d'acétate d'éthyle 60/40 (Rf = 0,36 isomère R) (Rf = 0,45 isomère S).
- Stade 2: Ester méthylique de l'acide (1R)-1-(benzyloxy-15 carbonylamino)-1-indanyl-carboxylique. (Pr.f; (B) = -CH₂-, Z = CO-O-CH₂-C₆H₅, * = R)

A 0°C, sous atmosphère d'azote, à une solution de 4,6 g (24 mmoles) de l'ester méthylique précédent et de 7,3 g (72,18 mmoles) de triéthylamine dans 100 ml de THF, on ajoute en agitant une solution de 2,83 g (26,5 mmoles) de chloroformate de benzyle dans 50 ml de toluène. On laisse 20 heures à température ambiante. Après refroidissement la solution est filtrée puis lavée rapidement par une solution N/10 de sulfate acide de potassium puis une solution de bicarbonate de sodium 25 à 5 %.

On sèche, évapore sous vide puis chromatographie le résidu sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 5,6 g (Rdt = 72 %) de résine incolore. CCM : $CH_2Cl_2/MeOH$ 98/2 Rf = 0,85.

- 30 R.M.N.: (CDCl₃) $\delta = 7,5-6,95$ (m 9H); 5,72 (s 1H échangeable); 5,2 (s 2H); 3,65 (s 3H); 3,0-2,6 (m 2H); 2,4-1,8 (m 2H).
 - Stade 3: Acide (1R)-1-(benzyloxy-carbonylamino)-indanyl-1-carboxylique.(Pr.d; (B) = $-CH_2$ -, Z = $CO-O-CH_2-C_6H_5$, * = R)
- A O°C, sous atmosphère d'azote, 5,6 g (17,2 mmoles) d'ester méthylique obtenu au stade précédent sont dissous dans 25 ml de dioxane. On ajoute goutte à goutte 13 ml d'une solution de

1,08 g (25,75 mmoles) d'hydroxyde de lithium hydraté et agite 5 heures à 100°C. On laisse remonter à température ambiante et évapore sous vide. On reprend par du chlorure de méthylène, lave par une solution de sulfate acide de potassium N/5, sèche 5 et évapore le solvant in vacuo.

Le résidu est chromatographié sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 4,05 g (Rdt = 75 %) de résine incolore.

CCM : $H_2Cl_2/MeOH$ 95/5 Rf = 0,25.

10 R.M.N.: (DMSO) δ = 8,3 (s large 1H échangeable); 7,4-7,0 (m 9H);
6,62 (s large 1H échangeable); 5,10 (s 2H); 3,2-2,2 (m 4H).
- Stade 4: (1R)-1-carbamoyl-1-(benzyloxycarbonylamino)-indane
(Pr.g; (B) = -CH₂-, Z = CO-O-CH₂-C₆H₅, * = R)

Le produit est obtenu selon le mode opératoire de la préparation 1 - stade 2 à partir de l'acide obtenu au stade précédent. Rdt = 97%.

 $CCM : CH_2Cl_2/MeOH 95/5 Rf = 0,60.$

R.M.N.: (CDCl₃) $\delta = 7.4-7.0$ (m 9H); 6,18 (s large 1H échangeable); 6,0-5,5 (s large 2H échangeables); 5,20 (s 2H); 20 3,2-2,3 (m 4H).

- Stade 5: (1R)-1-aminométhyl-1-(benzyloxycarbonylamino)-indane. (VII.b; (B) = $-CH_2$ -, Z = $CO-O-CH_2-C_6H_5$, * = R)

A O°C et sous atmosphère d'azote, 4,0 g (12,9 mmoles) de (1R)1-carbamoyl-1-(benzyloxy-carbonylamino)-indane sont dissous
dans 20 ml de THF anhydre et ajoutés goutte à goutte dans une
solution de 38 mmoles d'hydrure d'aluminium préparée dans 40 ml
d'éther anhydre. On chauffe au reflux pendant 4 heures puis
laisse revenir à la température ambiante.

Le mélange est refroidi, et on ajoute goutte à goutte 50 ml de 30 d'acétate d'éthyle puis 50 ml de soude normale. On extrait par de l'acétate d'éthyle, sèche, évapore puis chromatographie le résidu sur silice en éluant par un gradient de méthanol dans du chlorure de méthylène. On obtient 2,8 g (Rdt = 74 %) de résine incolore.

35 CCM : $CH_2Cl_2/MeOH$ 95/5 Rf = 0,20

R.M.N.: (DMSO) $\delta = 7,59$ (s large 1H échangeable); 7,4-7,0 (m 9H); 5,62 (s large 2H échangeables); 4,95 (s 2H); 3,4-3,2 (m 2H); 3,05-2,6 (m 2H); 2,6-2,0 (m 2H).

5 <u>Préparation 3 bis</u> (R) et (S) -1-(1-méthoxycarbonyl)-indanylamine. (IV.a) (B) = -CH₂-, * = R ou S)

On procède par salification de la (R,S)-1-(1-méthoxycarbonyl)-indanyl-amine par l'acide <math>(R)-(-)-4-hydroxydinaphto[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-oxyde dans le n-propanol

- comme à la préparation 3 stade 1. Le précipité obtenu après rerepos à la température ambiante est le sel de l'énantiomère (R) qui est filtré. Le filtrat abandonné une nuit permet de récupérer un second précipité qui est constitué par le sel de l'énantiomère (S) qui est également filtré.
- 15 Chaque précipité est traité séparément dans le méthanol par un excès d'acide chlorhydrique pour déplacer l'acide binaphtyl phosphorique qui est récupéré, les filtrats sont évaporés pour obtenir les chlorhydrates respectifs des énantiomères (R) et (S):
- 20 énantiomère (R) Rdt = 53,3 % $[\alpha]^{20}_D$ = + 36,4° (MeOH) énantiomère (S) Rdt = 41,3 % $[\alpha]^{20}_D$ = 35,6° (MeOH) qui, par traitement en milieu alcalin et extraction par l'acétate d'éthyle permettent d'obtenir les deux énantiomères sous forme de base.

25

Préparation 4

- stade 1 : (1R)-1-(1-méthoxycarbonyl)-1,2,3,4-tétrahydronaphtyl-amine (IV.a ; $(B) = -CH_2-CH_2-$, * = R)

Le composé est obtenu par réaction du composé racémique 30 correspondant avec l'acide (R)-(-)4-hydroxydinaphto [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-oxyde dans le n-propanol puis séparation du sel diastéréoisomère et traitements comme il est décrit au mode opératoire préparation 3-stade 1.

L'énantiomère est obtenu sous forme de son chlorhydrate (Rdt =

35 63 %)

CCM : $CH_2Cl_2/MeOH 98/2 Rf = 0.30$

- stade 2: Ester méthylique de l'acide (1R)-1- (benzyloxycarbonylamino) 1 (1,2,3,4 tétrahydronaphtyl)carboxylique (Pr.f; (B) = -CH₂-CH₂-, Z = CO- O-CH₂-C₆H₅, * = R)
- 5 Le composé est préparé selon le protocole de la préparation 3 stade 2 à partir de la base du composé obtenu au stade précédent (Rdt = 63 %)

CMM : CH_2CCl_2 / MeOH 98/2 Rf = 0,95 CH_2CCl_2 / MeOH 95/5 Rf = 0,34

- stade 3: (1R)-1-carbamoyl-1-(benzyloxycarbonylamino-1,2,3,4-tétrahydrophtalène (Pr. g; (B) = $-CH_2-CH_2$, Z = $CO-O-CH_2-C_6H_5$, \star = R)

Le composé obtenu au stade précédent est hydrolysé comme décrit à la préparation 3- stade 3 par l'hydroxyde de lithium puis l'acide obtenu est traité selon l'exemple décrit à la préparation 1 - stade 2 - (Rdt = 68 %)

 $CCM : CH_2Cl_2 / MeOH 95/5 Rf = 0,68$

- stade 4 : (1R)-1-aminométhyl-1-(benzyloxycarbonylamino)1,2,3,4-tétrahydronaphtalène (VII.b; (B) = -CH₂-CH₂-, 2 = CO-O-

20 CH₂-C₆ H₅, * = R)
Le composé est préparé selon le protocole de la préparation 3 stade 5 à partir du composé du stade précédent (Rdt = 58 %)
CCM : CH₂Cl₂ / MeOH 95/5 Rf = 0,36

-

25 <u>Préparation 5</u>: Acide [1-(4-benzyl)pipéridyl]-4-oxo-butanoïque. (IX; W = OH, p = 2, $R_1 = -CO-R_2$ pour $R_2 =$

Dans un réacteur protégé de l'humidité on porte au reflux, sous agitation durant 5 heures, un mélange de 5,0 g (28,5 mmoles) de 4-benzylpipéridine, 2,85 g (2,85 mmoles) d'anhydride succinique et 4,3 g (42,35 mmoles) de triéthylamine dans 200 ml de tétrahydrofurane anhydre.

Après refroidissement à 30-40° C on ajoute 200 ml d'éthanol, 35 extrait par 250 ml d'une solution N/5 de sulfate acide de

potassium - sèche puis évapore la phase organique pour obtenir 7,85 g (Rdt = 100 %) de produit pur.

CCM : CH_2Cl_2 / MeOH 50/10 Rf = 0,53

RMN (CDCl₃): $\delta = 9.9$ (1H échangeable); 7.4-6.95 (m 5H); 4.8-5 4,4 (d 1H); 4.1-3.7 (d 1H); 3.3-2.8 (t 1H); 2.7 (s 1H); 2.7-2.3 (m 3H); 1.95-1.5 (m 3H); 1.5-0.8 (m 2H)

Préparation 6 : Acide [1-(4-p-chlorophényl-4-hydroxy)pipéridyl]-butanoïque. (IX); (W = OH, p = 2,

10 $R_1 = -CO - R_2$ pour $R_2 =$

Le composé est préparé comme décrit à la préparation 5 précédente à partir de 4-(p-chlorophényl)-4-hydroxypipéridine 15 et d'anhydride succinique. (Rdt = 95 %)

C.C.M. : CH_2Cl_2 / MeOH 90/10 Rf = 0,50

RMN (CDCl₃) : $\delta = 7,65-7,15$ (m 4H); 3,1-2,3 (m 5H dont 1 échangeable); 2,3-2,0 (m 4H); 2,0-1,2 (m 4H)

20

TOXICITE ET ETUDES PHARMACOLOGIQUES

Les produits de l'invention, administrés en solution ou en suspension par voie orale chez le rat mâle se montrent peu toxiques.

25 Leur étude pharmacologique "in vitro" a consisté à déterminer leur affinité de liaison aux récepteurs périphériques et centraux de la cholecystokinine (CCK_A/CCK_B) ainsi qu'aux récepteurs gastriniques (gastrine).

"In vivo" les effets biologiques des composés de l'invention 30 ont été montrés par leur aptitude à inhiber chez le rat le syndrome de sevrage aux benzodiazépines et par leur effet anxiolytique chez le rat dans l'essai du labyrinthe dit "elevated + maze".

Essais "in vitro"

On a déterminé pour les composés leur concentration nanomolaire capable :

- d'inhiber 50 % des liaisons de la cholecystokinine marquée à l'iode 125 ([125I]-CCK8 sulfaté fournisseur Amersham), d'une part aux membranes plasmiques de pancréas de rat pour déterminer leur affinité aux récepteurs périphériques CCKA,
 d'autre part aux membranes de cerveaux de cobayes pour déterminer leur affinité aux récepteurs centraux CCKB, et,
 d'inhiber 50 % des liaisons de la gastrine marquée à l'iode 125 ([125I]-gastrine) aux membranes plasmiques purifiées de la muqueuse fundique de cobaye.
- La mise en oeuvre de ces essais consiste dans un premier temps à préparer les membranes à partir des divers tissus précédemment présentés. On utilise à cet effet des techniques décrites qui sont pour les membranes plasmiques de rat celle d'Innis R.B. et Snyder S.M. (Eur. J. Pharmacol. 65, 124, 1980) pour les membranes de cerveaux de cobaye celle de Pélaprat D. et col. (Life Sc. 37, 2483-2490, 1985) et pour les membranes de muqueuse fundique de cobaye celle de Praissman M et Col. (J. Recept. Res., 3, 647-665, 1983).
- Quelque soit le tissu utilisé, le principe de l'essai est celui décrit par INNIS R.B et SNYDER. S.M. (déjà cités). Il consiste à préparer les membranes pour obtenir une solution homogène de cellules dans un tampon d'incubation préparé extemporanément à l'aide de sérum albumine bovine, MgCl₂, bacitracine et Tris-Hcl, puis à incuber une solution du produit à l'essai et du ligand spécifique marqué considéré dans la solution cellulaire. Après détermination de la concentration du ligand marqué non lié, la CI₅₀ nanomolaire (concentration inhibitrice 50 %) des produits à l'essai est calculée avec l'aide informatique de logiciels appropriés comme celui de "Hofstee" pour les récepteurs de la gastrine, ou celui de Tallarida et Muray, (Springer-Verlag, New-York, 1981), pour les récepteurs de la cholecystokinine.

Le tableau ci-dessous indique les résultats obtenus pour les 35 composés de l'invention comparés au composé PD-134,308 inclus dans les essais au titre de référence.

	Liaiso	on aux Réce	pteurs	
	CCKA	сскв	Gastrine	Rapport CCK _B /Gastrine
Exemples	CI ₅₀	CI ₅₀	CI ₅₀	5 - 1.B, 5 - 1.C
4	710	1,30	0,55	2,36
5	4 620	3,30	0,30	11,00
6	2025	0,06	0,02	3,00
référence	2 240	0,05	0,90	0,05

Ces résultats montrent que les produits de l'invention présentent une affinité importante pour les récepteurs CCKB et gastrine, affinité qui s'avère préférentielle pour les récepteurs de la gastrine. Par ailleurs les composés sont pratiquement dénués d'affinité sur les récepteurs périphériques de la cholecystokinine (CCKA).

Notamment, les composés des exemples 5 et 6 sont respectivement 3 et 45 fois plus actifs sur les récepteurs de la gastrine que le Parke-Davis 134.308 produit de référence.

De plus, dans le cas des exemples 5 et 6, le rapport de la CI₅₀ CCK_B / CI₅₀ Gastrine est respectivement de 11 et 3 ce qui signifie que leur affinité aux récepteurs de la gastrine est de 11 et 3 fois plus importante que celle aux récepteurs CCK_B, ce qui permet donc, par ailleurs de l'activité sur le système nerveux central relevant de ces derniers récepteurs, d'obtenir des médicaments traitant préférentiellement les troubles dépendant des récepteurs de la gastrine, et ce inversement au composé de référence qui est 20 fois plus affin aux récepteurs CCK_B qu'à ceux de la gastrine.

Essais "in vivo".

a) - inhibition du syndrome de sevrage aux benzodiazépines. Le principe du test, réalisé chez le rat, consiste à déterminer l'atténuation, par un produit à l'essai administré par voie intrapéritonéale, d'un syndrome aigu induit par le

chlordiazepoxide et précipité par le flumazenil. La mise en oeuvre est réalisé selon une méthode dérivée de celle décrite par R.BOISSE et al. (J. Pharmacol. Exp. Ther. -1986- 239, 775-783) en utilisant une cotation dérivée de celle de G.P.RYAN et al (J. Pharmacol. Exp. Ther. -1983- 239, 100-107).

- Protocole opératoire : on pratique avec des rats mâles Sprague Dawley d'environ 180 grammes qui sont répartis à raison de 4 rats par cage. Ils reçoivent de la nourriture et de l'eau 10 à volonté.
 - Soixante douze heures avant le test, les animaux sont pesés, marqués et reçoivent par voie orale 450 mg/kg de chlordiazepoxide (solution de 2,520 g/ 25 ml d'eau distillée). à raison de 5ml/kg de poids corporel.
- Immédiatement après le gavage, chaque rat est placé dans une cage avec eau et nourriture à volonté. Les animaux sont alors en état de détresse respiratoire et ne doivent pas être manipulés pendant les 2 jours qui suivent cette induction. Ils présentent souvent de la diarrhée, un hyper ballonnement (estomacs hypertrophiés), une hyperthermie, une hypersensibilité à la préhension et au bruit se traduisant par des bonds.
- Le jour du test, les animaux sont pesés puis laissés au calme environ 1h30 avant de débuter l'expérimentation proprement dite durant laquelle les produits (flumazénil, lorazepam et composés à l'essai) sont administrés par voie intrapéritonéale sous un volume de 5 ml/kg sous formes de solutions préparées dans l'eau distillée ou de suspensions dans une solution aqueuse d'hydroxypropylméthylcellulose à 0.2% (p/v) dans de l'eau, le lorazepam servant de référence active dans ce test;
 - à t = -45 min: 4 rats par série d'observation sont placés dans les cages individuelles. Après d'une période d'acclimatation de 30 min environ on commence pendant 15 min. la cotation préalable au sevrage. Cette cotation concerne les modifications comportementales décrites par G.P. Ryan (déjà

5 modifications comportementales décrites par G.P. Ryan (de) a cité) - à t = 0 min: on injecte par voie i.p. le flumazénil (25 mg/kg), et, soit le véhicule (lot témoin), soit le composé à étudier (lots traités) aux doses de 0,3 et 3,0 mg/kg, puis immédiatement après ces traitements, les animaux sont à nouveau observés et scorés pendant 15 minutes.

Expression des résultats: pour chaque rat, le score par symptôme ainsi que le score total correspondant à la cotation avant après le sevrage sont reportés. Les résultats sont regroupés par traitements pour chaque animal et pour chaque symptôme. On calcule la différence entre la cotation avant et après sevrage; la moyenne par symptôme et le score total moyen par groupe sont ensuite calculés à partir de cette différence. L'analyse des résultats entre le groupe témoin et les différents groupes traités est faite et permet de calculer un \(\frac{1}{2} \) de diminution pour chaque groupe traité par rapport au groupe témoin. Les résutats significatifs obtenus avec les composés représentatifs de l'invention sont présentés au tableau qui suit.

20

15

composé à l'essai	inh.% - c = 0,3 mg/kg	inh.% - c = 3,0 mg/kg
Exemple 1-A	- 19%	- 42%
Exemple 1-B	- 25%	- 37%
Exemple 5	- 27%	- 54%

25

35

b) - recherche de l'effet anxiolytique.

Le principe du test, réalisé chez le rat, consiste, après administration des produits à l'essai par voie intrapéritonéale, à déterminer le comportement des animaux placés en situation anxiogène dans un labyrinthe en forme de croix dont les bras sont éclairés ou à l'obscurité (appareil dit "+ maze"). L'activité de l'animal, sa localisation dans les parties éclairées ou obscures permettent d'évaluer l'éventuel effet anxiolytique du composé à l'essai.

- Protocole opératoire : on pratique avec des rats mâles Sprague Dawley d'environ 140 grammes répartis à raison de 5 rats par cage. Ils reçoivent de la nourriture et de l'eau à volonté. Le jour du test les animaux sont introduits dans la pièce qui est équipée de rideaux noirs aux fenêtres et d'un éclairage artificiel sans néon au dessus de l'appareil où a lieu l'expérimentation, les cages contenant les animaux étant maintenues à l'écart de l'appareil.

Les traitements sont administrés par voie intrapéritonéale 30 minutes avant le test à raison de 0,5 ml par 100 grammes de rat, les composés étant soit solubilisés dans l'eau distillée, soit lorsqu'ils sont insolubles, mis en suspensions dans une solution aqueuse d'hydroxypropylméthyl cellulose à 0,2% dans l'eau distillée.

- 15 Le test proprement dit consiste alors à placer l'animal sur le "+ maze" face à un bras ouvert puis durant 5 minutes à noter :
 - 1') chaque passage dans les bras ouverts,
 - 2') chaque passage dans les bras fermés,
- 20 3°) et, essentiellemnt dans cette étude, le temps passé sur les bras ouverts;

La mesure étant faite avec un chronomètre au 1/100ème de minute,

25 <u>Expression des résultats</u>

Dans cette étude on calcule par lot la moyenne et l'erreur type du temps moyen passé sur les bras ouverts. L'analyse statistique des résultats est réalisée par l'analyse de variance, et exprimé soit en pourcentage d'augmentation du 100 temps passé sur les bras ouverts par rapport au lot d'animaux témoins, soit par la DE50 qui est la dose en mg/kg qui augmente de 50% le temps passé sur les bras ouverts. Selon ce protocole le composé de l'invention décrit à l'exemple 9 montre une DE50 de 6,3 mg/kg. Par ailleurs, les résultats obtenus avec les autres composés représentatifs de l'invention testés aux doses de 1,0 - 3,0 - 10,0 mg/kg sont rapportés au tableau qui suit.

	composé à l'essai	aug.% (1,0mg/kg)	aug.% (3,0mg/kg)	aug.% (10mg/kg)
5	Exemple 1-A	ns	35,2%	34,0%
	Exemple 1-B	ns	24,9%	40,4%
10	Exemple 2	59,0%	62,0%	NT
	Exemple 10	. ns	33,7%	38,0%

ns : résultat non significatif; NT : non testé

30

De par leurs propriétés les composés de l'invention sous formes de médicaments sont appropriés aux traitements des troubles du système nerveux central manifestés lors des états psychotiques, des troubles de la mémoire et des états de déclin des facultés

20 cognitives.

Ils sont utiles aux traitements des états de dépendance aux droques ou aux médicaments par exemple lors des périodes de sevrage aux benzodiazépines, à l'alcool, à la nicotine et à la cocaïne. Egalement, ils permettent d'agir sur les troubles 25 d'ordre alimentaire en normalisant la satiété.

Par ailleurs, ils permettent de traiter préventivement ou curativement de façon efficace les troubles gastro-intestinaux. notamment ceux provoqués par une sécrétion excessive de l'acidité gastrique. Parmi ces troubles on cite les gastrites, les ulcères gastro-duodénaux, les inflammations pancréatiques,

le syndrome de Zollinger-Ellison.

Les produits de l'invention sont administrés à l'être humain par des voies appropriées à la nature et à la gravité de l'affection à traiter et sous des formes thérapeutiques compatibles avec la voie d'administration envisagée.

- 5 La faible toxicité des produits permet d'envisager des posologies journalières allant jusqu'à 1 g de produit par jour. Cependant, d'une manière plus habituelle la posologie courante sera comprise entre 10 et 500 mg/jour pouvant être répartis en plusieurs prises.
- Une composition pharmaceutique suivant l'invention comprend une quantité thérapeutique suffisante de 5 à 80 parties en poids de principe actif, constitué par un ou plusieurs composés de formule (I), associée à 195 à 120 parties en poids d'un véhicule pharmaceutiquement acceptable.
- 15 Différentes formes préparées à partir des produits de l'invention ou de leur sel sont préparées par des méthodes connues en soi.

pour exemple de ces préparations, on citera les comprimés, dragées, capsules, poudres, solutions, suspensions, gels et 20 suppositoires et, pour illustrer de façon non limitative leur fabrication, on donne ci-dessous celle des comprimés.

- Formule

	Substance active selon l'exemple 5	5 à 80 mg
	Polyvinylpyrrolidone	2mg
25	Carboxyméthylamidon	8 mg
	Stéarate de magnésium	3 mg
	Lactose	1/3
	Cellulose microcristalline	2/3

Pour un comprimé de 200 mg

30

- Fabrication

Dissoudre la polyvinylpyrrolidone à une concentration comprise entre 0,1 et 1,0 % en poids dans l'eau, ou en alcool de bas poids moléculaire comme l'éthanol ou encore un mélange

35 hydroalcoolique.

Mélanger intimement la substance active, le lactose, la moitié de la quantité de cellulose cristalline et du

WO 94/15917 PCT/FR94/00033

52

carboxyméthylamidon mis en oeuvre puis humidifier ce mélange avec la solution de polyvinylpyrrolidone obtenue précédemment. Granuler la pâte obtenue sur granulateur oscillant, puis sécher les granulés en étuve ou sur un lit d'air fluidisé.

5 Calibrer sur tamis les granulés séchés et ajouter le stéarate de magnésium, le reste de cellulose microcristalline et de carboxyméthylamidon. Mélanger intimement puis comprimer à raison de 200,0 g par comprimé.

REVENDICATIONS

1. α -méthyl-R-tryptophyl-arylcycloalkylalkylamides de 5 formule (I)

10

30

15 dans laquelle,

- (B) représente un groupe méthylène (- CH_2 -) ou éthylène (CH_2 - CH_2 -),
- (C) représente une liaison de valence ou un groupe méthylène (- CH_2 -),
- A est une liaison de valence ou un groupe aminocarbonyl (NH-CO),

p a pour valeur 0, 1 ou 2,

 $\rm R_1$ représente un groupe 1H-tétrazol-5-yl ou une fonction carbonyle -CO-R $_2$ dans laquelle R $_2$ est hydroxyl,

25 alkoxy inférieur, N-indolinyl ou encore R_2 représente une cycloalkylamine de formule (VIII),

. (۷۱۱)

dans laquelle R_3 est l'hydrogène ou un radical hydroxyle, o a pour valeur 0 ou 1 et R_4 est l'hydrogène ou un atome de chlore,

- * représente, établie selon la règle de Cahn, Ingold et Prelog, la configuration absolue du carbone en position 1 de la séquence cycloalkyl,
- et leurs éventuels sels d'addition avec les bases 5 pharmaceutiquement acceptables.
 - 2. α -méthyl-R-tryptophyl-arylcycloalkylalkylamide suivant la revendication 1 caractérisé en ce que A est aminocarbonyl (NH-CO), C est méthylène (-CH₂-) p a pour valeurs 1 ou 2,
- 3. α -méthyl-R-tryptophyl-arylcycloalkylalkylamide suivant les revendications 1 et 2 caractérisé en ce que (B) est méthylène (-CH₂-),
- 4. α -méthyl-R-tryptophyl-arylcycloalkylalkylamide suivant les revendications 2 et 3 caractérisé en ce que R_1 est une fonction carbonyle CO- R_2 dans laquelle R_2 est hydroxyle,
- 5. α-méthyl-R-tryptophyl-arylcycloalkylalkylamide suivant les revendications 1 à 4 caractérisé en ce que le carbone * est de configuration absolue R établie selon la règle de Cahn, Ingold et Prelog,
- acide 4-[(1R)-1-[1-[N-[(2-adamantyloxy)carbonyl]-α méthyl-R-tryptophyl-aminométhyl]-indanyl]-amino]-4-oxo butanoïque et son sel d'addition avec la N-méthyl-D-glucamine.
- 7. Procédé de préparation des α-méthyl-R-tryptophylarylcycloalkylalkylamide définies à la révendication 1
 30 caractérisé en ce qu'il consiste :
 - A. Pour préparer un composé (I) dans lequel,

A et (C) sont une liaison de valence, p a pour valeur O et R_1 est un radical carbonylé -CO- R_2 qui répond à la formule (I.a)

35

30

35

dans laquelle R2 est alkoxy inférieur, à condenser dans le tétrahydrofurane un intermédiaire (II.a)

dans lequel R2 est alkoxy inférieur, avec le chloroformate de 10 2-adamantyle pour obtenir le composé I.a correspondant, et pour préparer un composé (I.a) dans lequel R2 est hydroxyle, à saponifier dans le dioxane par l'hydroxyde de lithium un composé (I.a) dans lequel R2 est alkoxy inférieur, puis à le salifier éventuellement avec la N-méthyl-D-glucamine pour en 15 obtenir le sel d'addition correspondant,

B. Pour préparer un composé (I) dans lequel,

A est aminocarbonyle (NH-CO), C est méthylène (-CH2-), p à pour valeur 1 ou 2 qui répond à la formule (I.b).

25 à condenser dans le tétrahydrofurane un intermédiaire (IV.b)

dans lequel Z est un groupement protecteur de fonction amine comme le groupe benzyloxycarbonyl qui est préféré, avec le chloroformiate de 2-adamantyle pour obtenir un intermédiaire (III.b)

puis à éliminer le groupement protecteur Z par hydrogénolyse pour obtenir un intermédiaire (II.b)

- que l'on acyle, par un réactif (IX) de formule W-OC-(CH₂)p-R₁ dans lequel W représente le brome, le chlore ou un radical hydroxyle et R₁ représente un groupe -CO-R₂ tel que mentionné pour (I), excepté lorsque R₂ représente un hydroxyle, pour obtenir un composé (I.b) correspondant ou,
- 15 que l'on acyle par l'anhydride interne d'un diacide comme l'anhydride succinique pour obtenir un composé (I.b) correspondant dans lequel p a pour valeur 2 et R_1 est un radical $-CO-R_2$ dans lequel R_2 est hydroxyle, que l'on salifie éventuellement avec la N-méthyl-D-glucamine pour en obtenir le sel d'addition correspondant.
 - 8. Médicament, destiné au traitement et à la prévention d'affections gastriques, caractérisé en ce qu'il comprend un α -méthyl-R-tryptophyl-arylcycloalkylalkylamide (I) suivant l'une des revendications 1 à 6.
- 9. Médicament, destiné au traitement des troubles du système nerveux central, caractérisé en ce qu'il comprend un αméthyl-R-tryptophyl-arylcycloalkylalkylamide (I) suivant l'une 30 des revendications 1 à 6.

INTERNATIONAL SEARCH REPORT

Inter nal Application No
PCT/FR 94/00033

CLASSIFICATION OF SUBJECT MATTER IPC 5 C07D403/12 C07D401/12 A61K31/40 C07D209/20 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (dassification system followed by dassification symbols) IPC 5 CO7D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ' Citation of document, with indication, where appropriate, of the relevant passages EP,A,O 405 537 (WARNER-LAMBERT COMPANY) 2 1.8 A January 1991 cited in the application see claims 1,8 WO.A.92 04322 (WARNER-LAMBERT COMPANY) 19 A March 1992 cited in the application * page 24, 34 * Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 20.04.94 7 April 1994 Name and mailing address of the ISA Authorized officer

1

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk To' (+3'-70' 340-2040 Tx. 31 651 epo nl

INTERNATIONAL SEARCH REPORT

Inter nal Application No PCT/FR 94/00033

	PCT/FR 94/00033			
Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Egory * Citation of document, with indication, where appropriate, of the relevant passages Belgins to delivery				
Egory '	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
,Α	CHEMICAL ABSTRACTS, vol. 119, no. 17, 25 October 1993, Columbus, Ohio, US; abstract no. 181214s, CAMPBELL M.M. ET AL. 'Diastereoselective synthesis of cyclopropyl phenylalanines and their incorporation into didpepetides.' see abstract & BIOORG. MED. CHEM. LETT. 1993,3(4), 667-70		1,8	
	·			
	4			
	•			
			••	
	•			
		j		
- 1		1		

INTERNATIONAL SEARCH REPORT

aformation on patent family members

Inte mai Application No
PCT/FR 94/00033

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0405537	02-01-91	AU-B-	644088	02-12-93
		AU-A-	5962890	17-01-91
		CH-A-	1049165	13-02-91
		EP-A-	0479910	15-04-92
		JP-T-	4506079	22-10-92
		WO-A-	9100274	10-01-91
		US-A-	5278316	11-01-94
WO-A-9204322	19-03-92	-A-2U	5244915	14-09-93
NO IL SECTOLL		AU-A-	8866191	30-03-92
		CA-A-	2088996	01-03-92
		EP-A-	0546123	16-06-93
		NZ-A-	239612	25-02-94

RAPPORT DE RECHERCHE INTERNATIONALE

Internationale No PCT/FR 94/00033

A. CLASSEMENT DE L'OBIET DE LA DEMANDE CIB 5 C070209/20 A61K31/4 A61K31/40

C07D401/12 C07D403/12

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 5 CO7D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications vistes
A	EP,A,O 405 537 (WARNER-LAMBERT COMPANY) 2 Janvier 1991 cité dans la demande voir revendications	1,8
A	WO,A,92 04322 (WARNER-LAMBERT COMPANY) 19 Mars 1992 cité dans la demande * page 24, 34 *	1,8

X	Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considèré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité où cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- "T" document uttrieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinsison étant évidente pour une personne du métier
- '&' document qui sait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

Date d'expédition du présent rapport de recherche internationale

7 Avril 1994

20.04 94

Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fonctionnaire autorisé

Van Biilen. H

1

RAPPORT DE RECHERCHE INTERNATIONALE

Derr Internationale No
PCT/FR 94/00033

(suite) D	DOCUMENTS CONSIDERES COMME PERTINENTS				
atégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinent	N .	no. des revendications vistes.		
P,A	CHEMICAL ABSTRACTS, vol. 119, no. 17, 25 Octobre 1993, Columbus, Ohio, US; abstract no. 181214s, CAMPBELL M.M. ET AL. 'Diastereoselective synthesis of cyclopropyl phenylalanines and their incorporation into didpepetides.' voir abrégé & BIOORG. MED. CHEM. LETT. 1993,3(4), 667-70		1,8		
			·		

RAPPORT DE RECHERCHE INTERNATIONALE

Der Internationale No PCT/FR 94/00033

Document brevet cité au rapport de recherche	Date de publication	Membre famille de	(s) de la brevet(s)	Date de publication
EP-A-0405537	02-01-91	AU-B- AU-A- CN-A- EP-A- JP-T- WO-A- US-A-	644088 5962890 1049165 0479910 4506079 9100274 5278316	02-12-93 17-01-91 13-02-91 15-04-92 22-10-92 10-01-91 11-01-94
WO-A-9204322	19-03-92	US-A- AU-A- CA-A- EP-A- NZ-A-	5244915 8866191 2088996 0546123 239612	14-09-93 30-03-92 01-03-92 16-06-93 25-02-94

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
| OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)