Clustering for HDLSS using distance vectors

2021311169 서현기

Introduction

- Key of clustering in HDLSS: how to measure the distance between clusters.
- Classical clustering method does not always work well for high dimensional data.
- existing method: MDP clustering label consistency depends on the sample size and variance of two clusters while MDP clustering only focuses on the difference between the mean vectors
 - \rightarrow Poor performance when two clusters have same mean value but different variances
- In order to overcome this, Tereda et al. uses Euclidean distance that contain information regarding the cluster structure in high-dimensional space called distance vector clustering

Preliminaries

- Condition

 - 1. $p^{-1}\sum_{s=1}^p E[X_{ks}]^2 o \mu_k^2$ as $p o \infty$ (mean vector of kth cluster is converge) 2. $p^{-1}\sum_{s=1}^p var[X_{ks}]^2 o \sigma_k^2$ as $p o \infty$ (variance of kth cluster is converge) 3. $p^{-1}\sum_{s=1}^p \{E[X_{ks}]^2 E[X_{ls}]^2\} o \delta_{kl}^2$ as $p o \infty$ (difference of mean values is
 - 4. There exists a permutation of variables which is ρ -mixing for functions that are dominated by quadratics (mild condition for law of large number)
- $ullet \quad \eta_{kl} := \lim_{p o\infty} p^{-1} \sum_{s=1}^p E[X_{ks}] E[X_{ls}]$ (kind of covariance)

Distance vector clustering

Algorithm

- 1. Compute the usual Euclidean distance matrix $D:=(d_{ij}^{(p)})_{N imes N}$ (or inner product matrix S:=XX') from the centered data matrix $X:=(x_{is})_{N\times n}$
- 2. Compute the following distance matrix $\Xi:=(\xi_{ij}^{(p)})_{N imes N}$

$$\xi_{ij}^{(p)} = \sqrt{\sum_{t
eq i,j} (d_{it}^{(p)} - d_{jt}^{(p)})^2}$$

- 3. For the matrix Ξ , apply a usual clustering method (e.g., Ward's method)
- Ξ reflects the difference in distance from all other observations.

Theoretical properties

- K-means type
 - o objective function of the k-means type distance vector clustering method

$$Q(\mathcal{C}_K|K) := \sum_{i=1}^N \min \sum_{j
eq i} (d_{ij}^{(p)} - ar{d}_{ij}^{(p)})^2$$

where C_K is a partition of objects

o Lemma 1

Let K be the true number of clusters, for an arbitrary $K^* \geq K$,

$$egin{aligned} & min Q(\mathcal{C}_{K^*}|K^*) \stackrel{\mathbb{P}}{
ightarrow} 0 & as \ p
ightarrow \infty \end{aligned}$$

Which means K-means clustering by Ξ can make object functions 0 asymptotically

o Lemma 2

If $n_k \geq 2$ and true number of clusters K is given, then

$$if\ orall k, l(k
eq l);\ \delta_{kl}^2>0,$$

then the estimated cluster label vector with the k-means type distance vector based on Ξ converges to the true label vector in probability

$$as~p
ightarrow \infty$$

- Hierarchical clustering type
 - o proposition

Assume that general conditions a) ~ d) hold, $n_k \geq 2$, let $\mathcal{C}_k := \{C_1, \cdots, C_K\}$ be the rue cluster partition, then

$$if orall k, l(k
eq l); \sigma_k
eq \sigma_l \ or \ \delta_{kl}^2 > 0, \ then \ P\left(orall k, l(k
eq l); \max_{i,j \in C_k} \xi_{ik}^{(p)} < \min_{i \in C_k, j \in C_l} \xi_{ik}^{(p)}
ight)
ightarrow 1 \ \ as \ p
ightarrow \infty$$

- Sufficient condition of Distance vector clustering
 - 1. When using Distance matrix ${\cal D}$

$$\sigma_k \neq \sigma_k \text{ or } \delta_{kl} > 0$$

2. when using inner product matrix S

$$\delta_{kl} > 0$$

- \rightarrow those conditions do not depend on the sample size!!
 - \circ When using D, We can capture the clusters whose only difference is variance not mean
 - \circ When using S, We can capture the mean-different clusters regardless of its variance(less susceptible than MDP method)