

Дискретная математика

Лекция 5

Комбинаторика

Основные принципы подсчета

1. Правило равенства.

Если A и B – конечные множества и существует биекция из A в B, то |A| = |B|

2. Правило суммы

Имеется 5 сортов мороженого

и 7 видов напитков

Каким числом способов можно выбрать что-нибудь одно?

Правило суммы

?

Если A и B – непересекающиеся конечные множества (то есть $A \cap B = \emptyset$), то $|A \quad B| = |A| + |B|$.

3. Правило произведения

Имеется 5 сортов мороженого

и 7 видов напитков

Каким числом способов можно выбрать и мороженое и напиток?

Правило произведения

Если A и B – конечные множества, то $|A \times B| = |A| \cdot |B|$.

Для обоснования правила произведения рассмотрим два множества

$$A = \{a_1, a_2, \dots, an\}, \quad B = \{b_1, b_2, \dots, bk\}.$$

Построим дерево решений для выбора пары (x,y) $A \times B$.

Корневой узел содержит вопрос "чему равен x?" Из него выходят n стрелок, соответствующих возможным ответам $a_1, a_2, ..., an$. Они ведут в узлы 1-го уровня. Каждый узел 1-го уровня содержит вопрос: "чему равен y?" Из каждого из этих узлов выходят k стрелок, соответствующих возможным ответам $b_1, b_2, ..., bk$. Эти стрелки ведут в узлы 2-го уровня, листья.

Каждый лист соответствует некоторой паре из $A \times B$.

Имеется n 1-го уровня, из каждого из них выходят k стрелок. Значит, в дереве nk листьев.

Имеется взаимно однозначное соответствие между листьями и парами из $A \times B$. Следовательно, число пар равно $nk = |A| \cdot |B|$.

Пример: $A = \{a, b, c, d\}, B = \{0, 1\}$

Оба правила распространяются на любое число множеств.

Если $A_1, A_2, ..., Ak$ – конечные попарно непересекающиеся множества, то

$$|A_1 \cup A_2 \cup ... \cup Ak| = |A_1| + |A_2| + ... + |Ak|$$

Если A_1, A_2, \dots, Ak – конечные множества, то

$$|A_1 \times A_2 \times ... \times A_k| = |A_1| \cdot |A_2| \cdot ... \cdot |A_k|$$
.

Как частный случай правила произведения при $A_1 = A_2 = ... = Ak$ получаем:

Теорема. Число последовательностей длины n, состоящих из элементов множества A мощности k равно k^n .

Принцип последовательного выбора

Пусть набор $(x_1, x_2, ..., x_k)$ образуется путем последовательного выбора элементов $x_1, x_2, ..., x_k$, причем

- элемент x_1 можно выбрать n_1 способами;
- при любом x_1 элемент x_2 можно выбрать n_2 способами;
- при любых x_1 , x_2 элемент x_3 можно выбрать n_3 способами;

...

• при любых $x_1, x_2, ..., x_{k-1}$ элемент x_k можно выбрать n_k способами.

Тогда весь набор можно выбрать $n_1 \cdot n_2 \cdot ... \cdot n_k$ способами.

Доказать можно с помощью дерева решений.

Слова

Алфавит – это множество *букв* (*символов*). Выписывая буквы в некотором порядке, получаем *слово*.

Например, из букв алфавита $A = \{a, b, c\}$ можно образовать слова: acb, aaaa, bab, cca, b, и т.д.

Существует *пустое слово*, не содержащее ни одной буквы. Оно обозначается λ .

Фактически слово есть набор символов, записанный без скобок и запятых.

Иногда вместо термина *слово* употребляют термин *строка*.

Длина слова – это число букв в нем.

Множество всех слов длины n в алфавите A обозначается A^n .

В частности, $A^0 = \{\lambda\}, A^1 = A$.

Число слов длины n в алфавите мощности k равно числу соответствующих наборов, т.е. k^{n} .

Множество всех слов в алфавите A обозначается A^* .

Таким образом, $A^* = A^0 \cup A^1 \cup A^2 \cup ... \cup A^n \cup ...$

Представление бинарных слов

Слова в алфавите {0,1} (бинарные слова) можно представлять с помощью бинарного дерева. Буквы 0, 1 сопоставляются двум стрелкам, выходящим из узла.

Левая стрелка – всегда 0, правая – 1. Двигаясь вдоль пути из корня в какой-нибудь узел, Можно прочитать некоторое слово. Это слово представляется данным узлом.

Множество всех бинарных слов представляется бесконечным бинарным деревом. Для каждого слова в дереве имеется единственный узел, представляющий это слово. 16

С помощью дерева можно представлять слова в любом алфавите. Если алфавит состоит из k букв, то используется k-арное дерево, в котором из каждого узла выходят k стрелок, помеченных различными буквами.

$$A = \{a, b, c\}$$

17

Лексикографический порядок

Почему в списке стран мира Австралия располагается раньше, чем Австрия?

Потому что список составлен в алфавитном порядке.

Что это значит?

Пусть A — конечный алфавит с заданным на нем линейным порядком (алфавитный порядок на A). Этот порядок будем обозначать \leq .

Если $x \le y$ и x y, то пишем x < y.

Пексикографический порядок — это распространение алфавитного порядка на множество A^* .

Для лексикографического порядка применяем те же обозначения \leq , <.

Сначала определим лексикографический порядок для слов одинаковой длины.

Пусть $\alpha = a_1 a_2 \dots an$ и $\beta = b_1 b_2 \dots bn$ – слова из A^n .

Слово α лексикографически меньше слова β ,

$$\alpha < \beta$$
,

если для некоторого
$$i$$
 $a_1 = b_1, \dots, a_{i-1} = b_{i-1,}$ $a_i < b_i.$

Доказательство транзитивности: $\alpha \le \beta$, $\beta \le \gamma \implies \alpha \le \gamma$

Если $\alpha=\beta$ или $\beta=\gamma$, утверждение очевидно. Пусть $\alpha\neq\beta$ и $\beta\neq\gamma$.

Пусть
$$\alpha = a_1 a_2 ... a_n$$
, $\beta = b_1 b_2 ... b_n$, $\gamma = c_1 c_2 ... c_n$.

Тогда

$$\alpha \leq \beta \Rightarrow$$
 существует такое i , что $a_1 a_2 ... a_{i-1} = b_1 b_2 ... b_{i-1}$ и $a_i < b_i$,

$$eta \leq \gamma \implies$$
 существует такое k , что $b_1b_2...b_{k-1} = c_1c_2...c_{k-1}$ $b_k < c_k$.

Рассмотрим два случая: $i \le k$ и i > k.

•
$$i \le k$$
:
$$a_1 = b_1 = c_1,$$

$$\vdots$$

$$a_{i-1} = b_{i-1} = c_{i-1},$$

таким образом, $a_1 = c_1, ..., a_{i-1} = c_{i-1}, a_i < c_i,$ следовательно, $\alpha < \gamma$.

 $a_i < b_i \le c_i$

 $a_{k} = b_{k} < c_{k}$

•
$$i > k$$
 аналогично:
$$a_1 = b_1 = c_1,$$

$$\vdots$$

$$a_{k-1} = b_{k-1} = c_{k-1},$$

и опять $\alpha < \gamma$.

Лексикографический порядок является линейным.

Перечислим бинарные слова длины 3 в лексикографическом порядке:

Слово	Номер	
000 001	0 1	
010	2	$H_{\text{obs}}(a, a, a) - Aa + 2a + a$
011	3	$Homep(a_1 a_2 a_3) = 4a_1 + 2a_2 + a_3$
100	4	$= 2^2 a_1 + 2^1 a_2 + 2^0 a_3$
101	5	
110	6	
111	7	

Общий случай: бинарные слова длины п

Со словом $\alpha = a_1 a_2 ... a_n$ ассоциируем целое число

$$N(\alpha) = 2^{n-1}a_1 + 2^{n-2}a_2 + \dots + 2^{n-1}a_{n-1} + 2^{n-1}a_n = \sum_{i=1}^{n} 2^{n-i}a_i.$$

Наименьшее значение есть

$$N(00...0) = 0,$$

а наибольшее

$$N(11...1) = 2^{n-1} + 2^{n-2} + ... + 2^{0} = 2^{n} - 1.$$

Теорема. Функция N является биекцией из $\{0,1\}^n$ в $\{0,1,...,2^n-1\}.$

Доказательство. Докажем сначала инъективность.

Точнее, докажем, что из $\alpha < \beta$ следует $N(\alpha) < N(\beta)$.

Действительно, пусть $\alpha=a_1a_2...a_n$, $\beta=b_1b_2...b_n$ и $\alpha<\beta$. Тогда существует такое k, что $a_1a_2...a_{k-1}=b_1b_2...b_{k-1}$, $a_k< b_k$, то есть $a_k=0$, $b_k=1$.

Тогда

$$N(\alpha) - N(\beta) = (2^{n-1}a_1 + \dots + 2^0 a_n) - (2^{n-1}b_1 + \dots + 2^0 b_n) =$$

$$= (2^{n-k-1}a_{k+1} + \dots + 2^0 a_n) - (2^{n-k} + 2^{n-k-1}b_{k+1} + \dots + 2^0 b_n) \le$$

$$\le (2^{n-k-1} + \dots + 2^0) - 2^{n-k} = 2^{n-k} - 1 - 2^{n-k} = -1.$$

Следовательно, $N(\alpha) < N(\beta)$.

Итак, функция N инъективна.

Множества $\{0,1\}^n$ и $\{0,1,...,2^n-1\}$ имеют одинаковую мощность 2^n .

Отсюда следует, что эта функция сюръективна.

Вычисление функции N^{-1}

Как по номеру слова вычислить само слово? Пусть номер слова $\alpha = a_1 a_2 \dots a_n$ равен

$$x = N(\alpha) = 2^{n-1}a_1 + 2^{n-2}a_2 + \dots + 2^{n-1}a_{n-1} + 2^{n-1}a_n$$

Нужно найти $a_1, a_2, ..., a_n$, если известен x.

Фактически речь идет о вычислении двоичного представления числа x.

Начнем с первой буквы a_1 . Если $a_1 = 0$, то

$$N(\alpha) \le 2^{n-2} + \ldots + 2^0 = 2^{n-1} - 1,$$

а если $a_1 = 1$, то

Таким образом, a_1 находим, сравнивая $x \in \mathbb{R}^{n-1}$:

если $x \ge 2^{n-1}$, то $a_1 = 1$, иначе $a_1 = 0$.

Затем вычитаем $a_1 2^{n-1}$ из x и аналогичным образом находим a_2 , сравнивая полученное число с 2^{n-2} , и т.д.

Для n=3 этот алгоритм можно представить в виде дерева решений:

В общем виде его можно описать псевдокодом:

Вход:
$$n \in \mathbb{N}, x \in \mathbb{N}_0, x < 2^n$$
Выход: $a_1, a_2, ..., a_n, a_i \in \{0, 1\}$ для $i = 1, 2, ..., n$

for
$$i = 1$$
 to n do
if $x < 2^{n-i}$
then $a_i := 0$
else $\{a_i := 1; x := x - 2^{n-i}\}$

Пример: x = 11, n = 4

i	вопрос	a_i	\mathcal{X}
1	11 < 8 ?	1	3
2	3 < 4 ?	0	3
3	3 < 2 ?	1	1
4	1 < 1 ?	1	0

Общее определение лексикографического порядка

Для слов произвольной (возможно, различной) длины лексикографический порядок определяется следующим образом.

Слово
$$\alpha=a_1a_2...a_n$$
 лексикографически меньше слова $\beta=b_1b_2...b_m$, если существует такое i , что $a_1=b_1,...,a_{i-1}=b_{i-1},a_i< b_i$ или $n< m$ и $a_1=b_1,...,a_n=b_n$.

Пример: $A = \{a, b, c\}, a < b < c$. Тогда

bcabc < bcccaab, acca < accabca.