The multinomial probabilities

- balls of different colors: i = 1, ..., r
- ullet probability of picking a ball of color i is p_i
- \bullet draw n balls, independently
- given nonnegative numbers n_i , with $n_1 + \cdots + n_r = n$
- ullet Find: $\mathbf{P}ig(n_1 \text{ balls of color } 1, \, n_2 \text{ balls of color } 2, \ldots, \, n_r \text{ balls of color } rig)$

• Special case r = 2; colors: "heads", "tails"

$$n_1 \leftrightarrow k \text{ Reads}$$
 $p_1 = p$
 $p_2 = 1-p$
 $p_3 \leftrightarrow n-k \text{ tails}$
 $p_4 = p$
 $p_4 = 1-p$
 $p_5 = p$
 $p_6 = p$
 $p_6 = p$
 $p_6 = p$
 $p_7 = p$
 $p_8 = p$

The multinomial probabilities

$$Y = 3$$
 $m = 7$
 $1 = 1 = 3 = 1 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$
 $1 = 1 = 3 = 1 = 2 = 2 = 1$

$$1 \longrightarrow 2$$

$$3$$

$$4$$

$$5$$

$$6$$

$$7$$

$$\mathbf{P}\big(\text{particular sequence of "type"}\ (n_1,n_2,\ldots,n_r)\big) = p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$$

sequence of type $(n_1, n_2, \dots, n_r) \longleftrightarrow$

partition of $\{1, \ldots, n\}$ into subsets of sizes n_1, n_2, \ldots, n_r

$$\mathbf{P} \big(\text{get type } (n_1, n_2, \dots, n_r) \big) = \frac{n!}{n_1! \, n_2! \, \cdots n_r!} \, p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$