1	На изготовление 667 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий
	на изготовление 754 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?
2	Двое рабочих, работая вместе, могут выполнить работу за 15 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за 2 дня выполняет такую же часть работы, какую второй — за 3 дня?
3	Каждый из двух рабочих одинаковой квалификации может выполнить заказ за 15 часов. Через 3 часа после того, как один из них приступил к выполнению заказа, к нему присоединился второй рабочий, и работу над заказом они довели до конца уже вместе. Сколько часов потребовалось на выполнение всего заказа?
4	Первый насос наполняет бак за 18 минут, второй — за 24 минуты, а третий — за 36 минут. За сколько минут наполнят бак три насоса, работая одновременно?
5	Плиточник планирует уложить 324 м^2 плитки. Если он будет укладывать на 6 м^2 в день больше, чем запланировал, то закончит работу на 9 дней раньше. Сколько квадратных метров плитки в день планирует укладывать плиточник?
6	Дима, Артем, Никита и Денис учредили компанию с уставным капиталом 100000 рублей. Дима внес 20% уставного капитала, Артем -50000 рублей, Никита $-0,26$ уставного капитала, а оставшуюся часть капитала внес Денис. Учредители договорились делить ежегодную прибыли пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 700000 рублей причитается Денису? Ответ дайте в рублях.
7	Имеется два сплава. Первый содержит 15% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 140 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава была меньше массы второго?
8	Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 56 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?
9	По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 75 км/ч и 60 км/ч. Длина пассажирского поезда равна 400 метрам. Найдите длину скорого поезда, если время, за которое он прошел мимо пассажирского поезда, равно 16 секундам. Ответ дайте в метрах.

1 Вычислить:

1) $2^{\log_2 3}$

3) $5^{\log_{\sqrt[3]{5}}2}$

5) $(\sqrt[3]{5})^{\log_5 8}$

2) 9^{log₃ 5}

4) $(\sqrt{3})^{\log_3 5}$

2 Вычислить:

1) $2^{\log_2 3+1}$

2) $4^{\log_2 3 + \frac{1}{2}}$

3) $8^{\log_4 3 + \log_{16} 729}$

3 Вычислить:

1) log₄ 8

4) $\log_{1/3}^2 27$

6) $\sqrt{\log_3 81}$

- 2) $\log_{1/3} 3\sqrt{3}$
- 3) $\log_{\sqrt[4]{2}} 8$

5) $\log_{6\sqrt{6}} \sqrt[6]{6}$

7) $\log_{1/\sqrt{5}} 25\sqrt[3]{5}$

4 Вычислить:

1)
$$\log_2 3\frac{1}{2} + \log_2 4\frac{4}{7}$$

2) $\log_2 27 - 2\log_2 3 + \log_2 \frac{2}{3}$

- 3) $\log_{1/3} 2 + \frac{1}{2} \log_{1/3} 8 \log_{1/3} 4\sqrt{18}$
- 4) $\log_{\sqrt{3}} 2^{1/3} + \log_{\sqrt[3]{3}} 4^{1/3} \log_3 \sqrt[3]{256}$

5 Решить уравнение:

- 1) $\log_2(4-x) = 7$
- 2) $\log_{1/7}(7-2x) = -2$
- 3) $\log_4(x+3) = \log_4(4x-15)$

- 4) $\log_5(7-x) = \log_5(3-x) + 1$
- 5) $\log_8 2^{8x-4} = 4$
- 6) $\log_5(x^2 + 13x) = \log_5(9x + 5)$

Домашняя работа №1

- 1 Из пункта A в пункт B, расстояние между которыми 75, км одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 6 часов позже автомобилиста. Ответ дайте в км/ч.
- 2 Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 14 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч больше скорости другого?
- 3 Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 420 литров она заполняет на 2 минуты дольше, чем вторая заполняет резервуар объемом 399 литров?
- 4 Первый насос наполняет бак за 20 минут, второй – за 30 минут, а третий – за 1 час. За сколько минут наполнят бак три насоса, работая одновременно?
- 5 Вычислить:
 - 1) $6 \log_7 \sqrt[3]{7}$
- 3) $\log_{\sqrt[5]{\frac{1}{2}}} 8$
- 5) $36^{\log_6 5}$

- 2) $\log_{1/3} \sqrt[4]{243}$
- 4) $36^{\log_6 2}$
- 6) $3^{\log_{\sqrt{3}}7}$
- 8) $6^{\log \sqrt[3]{6}}$

- Вычислить: 6
 - 1) $\log_5 60 \log_5 12$
 - 2) $\frac{\log_3 18}{2 + \log_3 2}$

- 3) $\frac{\log_2 3, 2 \log_2 0, 2}{3\log_2 25}$
- 4) $\log_{\sqrt{5}} \sqrt{5} + \log_{\sqrt{27}} \sqrt[3]{9}$

- 7 Вычислить:
 - 1) $\log_{(2-\sqrt{5})^2}^3 \frac{1}{9-4\sqrt{5}}$
 - 2) $\log_{1/3}^2 27$

- 3) $\log_9(\log_4 \sqrt[3]{4})$

- 8 Вычислить:
 - 1) $2^{\frac{3}{\log \sqrt[3]{6}}}$

- 2) $\frac{\log_2 3, 2 \log_2 0, 2}{\log_2 25}$
- 3) $32^{\log_4 3 0.5 \log_2 3}$

- 9 Решить уравнение:
 - 1) $\frac{(3x-4)^2}{5} + \frac{(2x-5)(x-1)}{2} = 1 + \frac{(x+2)^2}{5}$ 4) $\log_{3/4} \frac{2x-1}{x+2} = 1$
 - 2) $\frac{1,5x^2}{9x^2-1} \frac{3x+1}{3-9x} \frac{3x-1}{6x+2} = 0$
 - 3) $\sqrt{34-3x} = x-2$

- 5) $\log_{\frac{1}{2}}(x+12) = -2$
- 6) $\log_{\frac{1}{2}}(x^2 17x + 9) = -3$
- 7) $2^{\log_8(5x-3)} = 8$

Решить уравнение:

1)
$$\left(\frac{1}{8}\right)^{-3+x} = 512$$

2)
$$\left(\frac{16}{9}\right)^{x^2+2x} = \left(\frac{3}{4}\right)^{x-3}$$

3)
$$3^x - 3^{2-x} = 8$$

4)
$$8 \cdot 64^{\frac{1}{x}} - 3 \cdot 2^{\frac{3x+3}{x}} + 16 = 0$$

5)
$$2^{3+x} = 0.4 \cdot 5^{3+x}$$

6)
$$\log_5(x^2 + 2x) = \log_5(x^2 + 10)$$

7)
$$\log_{x-5} 49 = 2$$

2 Решить уравнение:

1)
$$\arcsin \frac{1}{2}$$

4) $arctg \sqrt{3}$

7)
$$\arcsin\left(-\frac{2}{2}\right)$$
 9) $\operatorname{arcctg}(-1)$ 10) $\operatorname{arcctg}\left(-\sqrt{3}\right)$

$$2) \quad \arccos \frac{\sqrt{2}}{2}$$

2)
$$\arccos \frac{\sqrt{2}}{2}$$
 5) $\arccos \left(-\frac{\sqrt{3}}{2}\right)$

6) $\arcsin(-1)$

8)
$$\operatorname{arctg}\left(-\frac{\sqrt{3}}{3}\right)$$

3

Решить уравнение:

1)
$$\sin x = \frac{1}{2}$$

$$2) \quad \cos x = \frac{\sqrt{2}}{2}$$

3)
$$\sin x = -\frac{\sqrt{3}}{2}$$

4)
$$tg x = \frac{\sqrt{3}}{3}$$

5)
$$\operatorname{ctg} x = 1$$

6)
$$\sin x = \frac{\sqrt{2}}{2}$$

Решить уравнение:

1)
$$\sin 2x = \frac{\sqrt{2}}{2}$$

$$3) \quad \cos 4x = 0$$

5)
$$tg 0, 5x = 1$$

2)
$$\sin 5x = -1$$

4)
$$\sin \frac{2}{3}x = -\frac{1}{2}$$

6)
$$ctg(-2x) = -1$$

5 Решить уравнение:

$$1) \quad \sin\left(x + \frac{\pi}{2}\right) = \frac{\sqrt{3}}{2}$$

$$2) \quad \cos\left(2x - \frac{3\pi}{2}\right) = 1$$

$$3) \quad \sin\left(\frac{1}{2}\pi - x\right) = 1$$

4)
$$\operatorname{tg}\left(3x - \frac{5}{4}\pi\right) = -1$$

Решить уравнение:

1)
$$\sin x = \frac{4}{5}$$

2)
$$\cos x = \frac{5}{4}$$

3)
$$\cos 2x = \frac{1}{3}$$

7 Решить уравнение
$$\cos \frac{\pi(x-7)}{3} = \frac{1}{2}$$
. В ответ запишите наибольший отрицательный корень.

8 Решить уравнение
$$\operatorname{tg} \frac{\pi x}{4} = \frac{1}{2}$$
. В ответ запишите наибольший отрицательный корень.

Решить уравнение:

1)
$$\left(\frac{1}{2}\right)^{2x-1} - 5^{1-2x} = 0$$

$$2) \quad \sqrt[7]{36^{x-5}} = \frac{6}{\sqrt[5]{6}}.$$

3)
$$(0,5)^{5x} = 8^{-3}$$
.

4)
$$7 \cdot 49^x - 13 \cdot 7^x = 2$$
.

5)
$$\log_3(2x - 11) = 2$$

6)
$$\log_5(x^2 + 13x) = \log_5(9x + 5)$$

Решить уравнение:

1)
$$\arcsin \frac{\sqrt{2}}{2}$$

3) arcsin 0

5)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right)$$
 7) $\operatorname{arctg}(-1)$
6) $\operatorname{arccos}(-1)$ 8) $\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right)$

7)
$$\operatorname{arctg}(-1)$$

2)
$$\arccos \frac{\sqrt{3}}{2}$$

4) $\operatorname{arcctg} \sqrt{3}$

6)
$$\operatorname{arccos}(-1)$$

8)
$$\operatorname{arcctg}\left(-\frac{\sqrt{3}}{3}\right)$$

3 Решить уравнение:

$$1) \quad \cos x = \frac{1}{2}$$

$$3) \quad \sin x = -\frac{\sqrt{2}}{2}$$

$$5) \quad \operatorname{ctg} x = -1$$

$$2) \quad \sin x = \frac{\sqrt{2}}{2}$$

4)
$$tg x = \frac{-\sqrt{3}}{3}$$

6)
$$\cos x = \frac{\sqrt{2}}{2}$$

Решить уравнение:

1)
$$\sin 3x = \frac{\sqrt{2}}{2}$$

3)
$$tg 4x = 0$$

5)
$$tg \frac{1}{5}x = -1$$

2)
$$\cos 2x = -1$$

4)
$$\sin 2, 5x = -\frac{1}{2}$$

6)
$$ctg 3x = \sqrt{3}$$

5 Решить уравнение:

1)
$$\sin\left(x+\frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}$$

$$3) \quad \cos\left(\frac{\pi}{4} - x\right) = \frac{\sqrt{3}}{2}$$

$$2) \quad \sin\left(2x - \frac{3\pi}{2}\right) = -1$$

4)
$$\operatorname{ctg}\left(2x - \frac{3\pi}{4}\right) = -1$$

6 Решить уравнение:

1)
$$\sin x = \frac{1}{3}$$

2)
$$\sin x = \frac{3}{2}$$

3)
$$tg 2x = \frac{1}{2}$$

7 Решить уравнение
$$\cos \frac{\pi(x-4)}{2} = \frac{3}{2}$$
. В ответ запишите наибольший отрицательный корень.

8 Решить уравнение
$$\sin \frac{2\pi x}{3} = \frac{1}{2}$$
. В ответ запишите наибольший отрицательный корень.

Домашняя работа №2

1 Решить уравнение:

1)
$$3^{2x} = (\sqrt{3})^{x^2}$$

2)
$$3^x - 18 \cdot 3^{-x} = 7$$

3)
$$64^{\frac{x}{2}} \cdot 3^x = 576$$

4)
$$729^{\frac{x}{3}} = \frac{1}{9}$$
.

5)
$$\log_{\frac{1}{2}}(x+12) = -2$$

6)
$$\log_{666}(x^2+1,5x)=0$$

7)
$$\log_2(x^2 - 9) = \log_2(2 - x) + 1$$

2 Вычислить:

1)
$$4\sqrt{3}\cos 150^{\circ} \cdot \sin 210^{\circ}$$

2)
$$\frac{15\cos 395^{\circ}}{\cos 35^{\circ}}$$

3)
$$\cos 240^{\circ} (\sin 45^{\circ} + \sin 135^{\circ}) - \sin 60^{\circ} (\cos 180^{\circ} + \cot 45^{\circ})$$

3 Вычислить:

1)
$$\left(\frac{4 \operatorname{tg} 120^{\circ} \cdot \cos 210^{\circ} - \sin 270^{\circ}}{2 \cos 240^{\circ} - 3\sqrt{3} \sin 210^{\circ}}\right) \cdot \frac{5}{3\sqrt{3} + 2} - \frac{1}{23}$$

2)
$$\frac{\sqrt{8}\sin\left(-\frac{\pi}{4}\right) + \sqrt{27}\cos\left(\frac{\pi}{3}\right) - 4\sin\left(-\frac{\pi}{6}\right)}{6\sqrt{3}}$$

3)
$$4\cos\left(\frac{2\pi}{3}\right) - \left(\sqrt{3} + 1\right)\left(\cot\left(\frac{7\pi}{6}\right) - 1\right)$$

4)
$$\left(4-\sin\left(-\frac{10\pi}{3}\right)\right)^2+4\tan\left(\frac{\pi}{3}\right)$$

4 Вычислить:

1)
$$4\sqrt{2} \operatorname{tg} \frac{\pi}{4} \cos \frac{7\pi}{3} + 11$$

$$2) \quad \frac{8}{\sin\left(-\frac{27\pi}{4}\right)\cos\left(\frac{31\pi}{4}\right)}$$

5 Вычислить:

1)
$$\frac{4 \sin 22^{\circ} \cos 22^{\circ}}{\cos 66^{\circ}} + \frac{\sin 100}{4 \sin 50^{\circ} \cos 50^{\circ}}$$

2)
$$\frac{22(\sin^2 16^\circ - \cos^2 16^\circ)}{\cos 32^\circ} + 5$$

Найдите значение выражения $5 \operatorname{tg}(5\pi - x) - \operatorname{tg}(-x)$, если $\operatorname{tg} x = 7$

7 Вычислить:

1)
$$\log_9(\log_4 \sqrt[3]{4})$$

2) $\log_{6.6} \sqrt[6]{6}$

3)
$$\log_3 72 - \log_3 8$$

1)
$$\log_9(\log_4 \sqrt[3]{4})$$
 3) $\log_3 72 - \log_3 8$ 4) $\frac{\log_3 18}{2 + \log_3 2}$

5)
$$\log_2 3\frac{1}{2} + \log_2 4\frac{4}{7}$$

8 Расстояние между городами A и B равно 435 км. Из города A в город B со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города В выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся? Ответ дайте в километрах.

1 Вычислить:

$$1) \quad 4\sqrt{2}\cos\frac{\pi}{4}\cos\frac{7\pi}{3}$$

$$2) \quad \frac{8}{\sin\left(-\frac{27\pi}{4}\right)\cos\left(\frac{31\pi}{4}\right)}$$

3)
$$-18\sqrt{2}\sin(-135^{\circ})$$

4)
$$\frac{12}{\sin^2 27^\circ + \cos^2 207^\circ}$$

2 Решить уравнения

$$1) \quad \sin\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$$

2)
$$tg\left(3x - \frac{12\pi}{7}\right) = -1$$

1)
$$\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$$
 2) $\tan\left(3x - \frac{12\pi}{7}\right) = -1$ 3) $2\cos\left(\frac{5\pi}{8} + x\right) = \sqrt{2}$

Решить уравнение $\cos \frac{\pi(2x-1)}{3} = \frac{1}{2}$. В ответ запишите наименьший положительный корень.

4 Решить уравнения

1)
$$\frac{1}{5-\frac{1}{x}} = \frac{2}{7}$$

2)
$$\frac{7-5x}{x+2} + \frac{2x-21}{x-2} + 8\frac{2}{3} = 0$$

3)
$$x^2 + 3x + \sqrt{x^2 + 3x} = 6$$

4)
$$\sqrt{5x^2+3x-1}-2x=1$$

5)
$$3 \operatorname{tg}^2 x + 2 \operatorname{tg} x - 1 = 0$$

6)
$$4\cos^2 x - 2\sin^2 x - 5\cos x - 4 = 0$$

Решить уравнения 5

1)
$$2\cos^2 x + 19\sin x + 8 = 0$$

2)
$$\cos 2x + 3\sin x - 2 = 0$$

3)
$$1 - 2\cos^2 x = \sin(\pi - x)$$

4)
$$\sin x \cdot (2\sin x - 1) + \sqrt{3}\sin x + \sin\frac{4\pi}{3} = 0$$

На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что

	ему попадется выученный вопрос.
2	На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.
3	На борту самолёта 12 кресел расположены рядом с запасными выходами и 18— за перегород- ками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
4	Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 10, но не дойдя до отметки 1.
5	За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.
6	За круглый стол на 201 стул в случайном порядке рассаживаются 199 мальчиков и 2 девочки. Найдите вероятность того, что между девочками будет сидеть один мальчик.
7	В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
8	В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
9	Какова вероятность того, что случайно выбранный телефонный номер оканчивается двумя чётными цифрами?
10	Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.
11	Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в на 1 час раньше, чем велосипедист приехал в A , а встретились они через 40 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?
12	Смешали некоторое количество 18-процентного раствора некоторого вещества с таким же количеством 14-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?
13	Имеется два сплава. Первый сплав содержит 5% меди, второй – 12% меди. Масса второго сплава больше массы первого на 9 кг. Из этих двух сплавов получили третий сплав, содержащий 10%

меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Подготовка к проверочной работе

1 Вычислить:

1)
$$12 \sin 150^{\circ} \cdot \cos 120^{\circ}$$

2)
$$\frac{12\sin 407^{\circ}}{\sin 47^{\circ}}$$

$$3) \quad \frac{5\sin 10^{\circ} \cdot \cos 10^{\circ}}{\sin 20^{\circ}}$$

4)
$$\frac{2\sqrt{3}\sin 60^{\circ} \cdot \cos 60^{\circ}}{\cos^2 30^{\circ} - \sin^2 30^{\circ}}$$

2 Вычислить:

1)
$$\frac{3\cos 39^{\circ}}{\sin 51^{\circ}} + \frac{2\cos 31^{\circ}}{\sin 59^{\circ}}$$

$$2) \quad \frac{2\sin 388^{\circ}}{\cos 242^{\circ}}$$

3)
$$\frac{6 \sin 33^{\circ} \cos 33^{\circ}}{\sin 66^{\circ}} + \frac{\sin 88^{\circ}}{6 \sin 44^{\circ} \cos 44^{\circ}}$$

4)
$$\frac{10(\sin^2 32^\circ - \cos^2 32^\circ)}{-4\cos 64^\circ} + 11$$

3 Вычислить:

$$1) \quad -4\sqrt{3}\sin\left(-\frac{7\pi}{3}\right)$$

$$2) \quad 2\sqrt{3} \operatorname{tg} \left(-\frac{13\pi}{6} \right)$$

3)
$$(3\sqrt{3})^2 \operatorname{tg}\left(\frac{\pi}{12}\right) \cdot \operatorname{tg}\left(\frac{7\pi}{12}\right)$$

4)
$$\frac{7}{\cos^2\left(\frac{\pi}{16}\right) + \cos^2\left(\frac{9\pi}{16}\right)}$$

5)
$$\sqrt{3} - \sqrt{12}\sin^2\frac{10\pi}{12}$$

6)
$$\frac{25}{\sin^2 \frac{11\pi}{24} + 1 + \sin^2 \frac{23\pi}{24}}$$

4 Вычислить:

2)
$$\log_{1/5} 5\sqrt{5}$$

3)
$$\log_{\sqrt[5]{2}} 32$$

4)
$$\log_{1/7}^2 49$$

5 Вычислить:

1)
$$q(x-3)-q(x+3)$$
, если $q(x)=\frac{x}{3}+2$.

2)
$$p(x) + p(6-x)$$
, если $p(x) = \frac{x(6-x)}{x-3}$ и $x \neq 3$.

- **6** За круглый стол на 17 стульев в случайном порядке рассаживаются 15 мальчиков и 2 девочки. Найдите вероятность того, что девочки будут сидеть рядом.
- 7 В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Проверочная работа

1 Вычислить:

1)
$$2^{\log_2 3}$$

4)
$$\log_{1/3}^2 27$$

6)
$$\frac{\log_2 3, 2 - \log_2 0, 2}{3^{\log_9 25}}$$

2)
$$(\sqrt{3})^{\log_3 5}$$

3)
$$\log_2 27 - 2\log_2 3 + \log_2 \frac{2}{3}$$
 5) $2^{\frac{3}{\log 3/6}2}$

5)
$$2^{\frac{3}{\log \sqrt[3]{6}}}$$

7)
$$\log_{1/\sqrt{5}} 25\sqrt[3]{5}$$

2 Вычислить:

$$1) \quad \frac{16\cos 35^{\circ}}{\sin 55^{\circ}}.$$

$$3) \quad 12\sqrt{2}\cos\left(-\frac{\pi}{3}\right)\sin\left(-\frac{\pi}{4}\right)$$

$$4) \quad 4\sqrt{2}\cos\frac{\pi}{4}\cos\frac{7\pi}{3}$$

3 Вычислить значение:

1)
$$\frac{20 \sin 13^{\circ} \cdot \cos 13^{\circ}}{-\sin 26^{\circ}}$$

2)
$$\frac{13}{4\sin^2 37^\circ + 4\sin^2 127^\circ}$$
 3) $\frac{5\sin 74^\circ}{\cos 37^\circ \cdot \cos 53^\circ}$

3)
$$\frac{5\sin 74^{\circ}}{\cos 37^{\circ} \cdot \cos 53^{\circ}}$$

4 Вычислить:

$$1) \quad -4\sqrt{3}\sin\left(-\frac{4\pi}{3}\right)$$

$$3) \quad \frac{7}{\cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{5\pi}{8}\right)}$$

$$2) \quad (2\sqrt{5})^2 \operatorname{tg}\left(\frac{\pi}{4}\right) \cdot \operatorname{tg}\left(\frac{3\pi}{4}\right)$$

4)
$$\sqrt{3} - \sqrt{12} \sin^2 \frac{7\pi}{12}$$

5 Решить уравнение:

1)
$$\log_{1/7}(5-4x) = -1$$

5)
$$\log_5(x^2 + 13x) = \log_5(9x + 5)$$

2)
$$\log_4(3x+3) = \log_4(2x-11)$$

6)
$$\sin 2x = \frac{\sqrt{2}}{2}$$

3)
$$\log_5(7-x) = \log_5(3-x) + 1$$

$$7) \quad \sin\left(\frac{1}{2}\pi - x\right) = 1$$

4)
$$\log_4 2^{8x-4} = 2$$

6 Найти значение выражения:

$$\operatorname{tg} x$$
, если $\cos x = \frac{\sqrt{10}}{10}$ и $x \in \left(\frac{3\pi}{2}; 2\pi\right)$

7 Решить уравнение
$$\cos \frac{\pi(3x+1)}{3} = \frac{\sqrt{2}}{2}$$
. В ответ запишите наименьший положительный корень.