1 Modeling - Upper Level Model

Decision vector $X_{DSO} = \{P_{ij,t}, P_{i,t}^S, P_{g,t}^{DG}, P_{s,t}^{EES,dc}, P_{s,t}^{EES,ch}, SOC_{s,t}, u_{s,t}^{EES}, F_{g,t}, u_{s,t}^{DG}, Q_{ij,t}, Q_{i,t}^S, Q_{g,t}^{DG}, I_{ij,t}^{sqr}, V_{ij,t}^{sqr}\}$

Objective Function

$$\min_{X_{DSO}} \quad \Delta T \sum_{t \in \Omega_T} \sum_{ij \in \Omega_l} c_t^{DR} R_{ij,a(d_{ij})} I_{ij,t}^{sqr}$$
s.t. (2) - (18), (21)

Nodal Power Balance

$$\sum_{ij \in \Omega_{l}|_{j=k}} P_{ij,t} + \sum_{p \in \Omega_{PV}|_{p=k}} P_{p,t}^{PV} + \sum_{\omega \in \Omega_{WT}|_{\omega=k}} P_{\omega,t}^{WT} + \sum_{s \in \Omega_{EES}|_{s=k}} P_{s,t}^{EES,dc} + \sum_{g \in \Omega_{DG}|_{g=k}} P_{g,t}^{DG} + P_{i,t}^{S} = P_{i,t}^{D} + \sum_{ij \in \Omega_{l}|_{i=k}} (P_{ij} + R_{ij,a(d_{ij})} I_{ij,t}^{sqr}) + \sum_{s \in \Omega_{EES}|_{s=k}} P_{s,t}^{EES,ch} \quad \forall k \in \Omega_{b}, \forall t \in \Omega_{T}$$
(2)

$$\sum_{ij \in \Omega_{l}|_{j=k}} (Q_{ij,t} + \frac{B_{jj,a(d_{jj})}}{2} V_{j}^{sqr}) + \sum_{p \in \Omega_{PV}|_{p=k}} Q_{p,t}^{PV} + \sum_{\omega \in \Omega_{WT}|_{\omega=k}} Q_{\omega,t}^{WT} + \sum_{g \in \Omega_{DG}|_{g=k}} Q_{g,t}^{DG} + Q_{i,t}^{S} = Q_{i,t}^{D} + \sum_{ij \in \Omega_{l}|_{i=k}} (Q_{ij} + X_{ij,a(d_{ij})} I_{ij,t}^{sqr} + \frac{B_{ii,a(d_{ii})}}{2} V_{i}^{sqr}) \quad \forall k \in \Omega_{b}, \forall t \in \Omega_{T}$$
(3)

Network Constraints

$$V_{i,t}^{sqr} - V_{j,t}^{sqr} = 2(R_{ij,a(d_{ij})}P_{ij,t} + X_{ij,a(d_{ij})}Q_{ij,t}) + Z_{ij,a(d_{ij})}^{2}I_{ij,t}^{sqr} \qquad \forall ij \in \Omega_{l}, \forall t \in \Omega_{T}$$
 (4)

$$V_{j,t}^{sqr}I_{ij,t}^{sqr} \ge P_{ij,t}^2 + Q_{ij,t}^2 \qquad \forall ij \in \Omega_l, \forall t \in \Omega_T \qquad (5)$$

$$\underline{V}^2 \le V_{i,t}^{sqr} \le \overline{V}^2$$
 $\forall i \in \Omega_b, \forall t \in \Omega_T$ (6)

$$0 \le I_{ij,t}^{sqr} \qquad \forall ij \in \Omega_l, \forall t \in \Omega_T \qquad (7)$$

Energy Storage System

$$SOC_{s,t} = SOC_{s,t-1} + \frac{\Delta T}{\overline{SOE}_s} (\eta_s P_{s,t}^{ch} - \frac{P_{s,t}^{dc}}{\eta_s}) \qquad \forall s \in \Omega_{EES}, \forall t \in \Omega_T$$
 (8)

$$\underline{SOC}_s \le SOC_{s,t} \le \overline{SOC}_s \qquad \forall s \in \Omega_{EES}, \forall t \in \Omega_T$$
 (9)

$$P_{s,t}^{EES,ch} \le \overline{P}_s^{EES} u_{s,t}^{EES} \qquad \forall s \in \Omega_{EES}, \forall t \in \Omega_T$$
 (10)

$$P_{s,t}^{EES,dc} \le \overline{P}_s^{EES} (1 - u_{s,t}^{EES}) \qquad \forall s \in \Omega_{EES}, \forall t \in \Omega_T$$
 (11)

$$u_{s,t}^{EES} \in \{0,1\}$$
 $\forall s \in \Omega_{EES}, \forall t \in \Omega_T$ (12)

Distributed Generation

$$-P_{g,t}^{DG}\tan\left[\cos^{-1}\left(pf_{g}\right)\right] \leq Q_{g,t}^{DG} \leq P_{g,t}^{DG}\tan\left[\cos^{-1}\left(pf_{g}\right)\right] \qquad \forall g \in \Omega_{DG}, \forall t \in \Omega_{T}$$
 (13)

$$(P_{g,t}^{DG})^2 + (Q_{g,t}^{DG})^2 \le (\overline{S}_g^{DG})^2$$
 $\forall g \in \Omega_{DG}, \forall t \in \Omega_T$ (14)

$$R_g^d \le P_{g,t}^{DG} - P_{g,t-1}^{DG} \le R_g^u \qquad \forall g \in \Omega_{DG}, \forall t \in \Omega_T \qquad (15)$$

$$F_{g,t} = F_{g,t-1} - \frac{\Delta T P_{g,t}^{DG}}{\eta_g^f F C_g H_g} \qquad \forall g \in \Omega_{DG}, \forall t \in \Omega_T \qquad (16)$$

$$F_{g,t} \ge \underline{F}_g$$
 $\forall g \in \Omega_{DG}, \forall t \in \Omega_T$ (17)

$$u_{g,t}^{DG} \in \{0,1\}$$
 $\forall g \in \Omega_{DG}, \forall t \in \Omega_T$ (18)

2 Modeling - Lower Level Model $(\forall i \in \Omega_b)$

Decision vector $X_{AGG} = \{P_{i,t}^D, Q_{i,t}^D, P_{i,m,t}^D\}$

Objective Function

$$\max_{X_{AGG}} \sum_{t \in \Omega_T} \left[U_{i,t}(P_{i,t}^D) - \Delta T c_t^{DR} P_{i,t}^D \right]$$
(19)

$$U_{i,t}(P_{i,t}^{D}) = \Delta T \sum_{m \in \Omega_M} u_{i,m,t}^{DR} P_{i,m,t}^{D}$$
(20)

$$\begin{aligned} & \underset{X_{AGG}}{\min} & \Delta T \sum_{t \in \Omega_T} \left[c_t^{DR} P_{i,t}^D - \sum_{m \in \Omega_M} u_{i,m,t}^{DR} P_{i,m,t}^D \right] \\ & \text{s.t.} & (22) - (27) \end{aligned} \tag{21}$$

Demand Response

$$P_{i,t}^{D} = \sum_{m \in \Omega_{t}} P_{i,m,t}^{D} \qquad \forall t \in \Omega_{T} \quad (\lambda_{i,t}^{1})$$
 (22)

$$P_{i,m,t}^{D} \leq \overline{P}_{i,m,t}^{D} \qquad \forall m \in \Omega_{M}, \forall t \in \Omega_{T} \quad (\mu_{i,m,t}^{2})$$
 (23)

$$\Delta T \sum_{t \in \Omega_T} P_{i,t}^D \ge E_i^D \tag{24}$$

$$P_{i,t}^D \ge \underline{P}_{i,t}^D \qquad \forall t \in \Omega_T \quad (\mu_{i,t}^4) \tag{25}$$

$$R_i^d \le P_{i,t}^D - P_{i,t-1}^D \le R_i^u \qquad \forall t \in \Omega_T \quad (\mu_{i,t}^5) \tag{26}$$

$$Q_{i,t}^{D} = P_{i,t}^{D} \tan \left(\arccos \left(p f_{i}\right)\right) \qquad \forall t \in \Omega_{T} \quad (\lambda_{i,t}^{2})$$
 (27)

3 KKT - Lower Level Model $(\forall i \in \Omega_b)$

Lagrangian of Aggregators

$$L_{i} = \Delta T \sum_{t=1} \left[c_{t}^{DR} P_{i,t}^{D} - \sum_{m=1} u_{i,m,t}^{DR} P_{i,m,t}^{D} \right] + \sum_{t=1} \lambda_{i,t}^{1} \left(P_{i,t}^{D} - \sum_{m=1} P_{i,m,t}^{D} \right) + \sum_{t=1} \sum_{m=1} \mu_{i,m,t}^{1} (P_{i,m,t}^{D} - \overline{P}_{i,m,t}^{D})$$

$$+ \sum_{t=1} \sum_{m=1} \mu_{i,m,t}^{2} (-P_{i,m,t}^{D}) + \mu_{i}^{3} \left(E_{i}^{D} - \Delta T \sum_{t=1} P_{i,t}^{D} \right) + \sum_{t=1} \mu_{i,t}^{4} (\underline{P}_{i,t}^{D} - P_{i,t}^{D})$$

$$+ \sum_{t=1} \mu_{i,t}^{5} (P_{i,t}^{D} - P_{i,t-1}^{D} - R_{i}^{U}) + \sum_{t=1} \mu_{i,t}^{6} (R_{i}^{D} - P_{i,t}^{D} + P_{i,t-1}^{D})$$

$$+ \sum_{t=1} \lambda_{i,t}^{2} \left[Q_{i,t}^{D} - P_{i,t}^{D} \tan \left(\arccos \left(pf_{i} \right) \right) \right]$$

$$(28)$$

Stationarity

$$\frac{\partial L_i}{\partial P_{i,t}^D} = \Delta T c_t^{DR} + \lambda_{i,t}^1 - \Delta T \mu_i^3 - \mu_{i,t}^4 + \mu_{i,t}^5 - \mu_{i,t}^6 - \mu_{i,t+1}^5 + \mu_{i,t+1}^6 - \lambda_{i,t}^2 \zeta_i = 0 \qquad \forall t < NT$$
(29)

$$\frac{\partial L_i}{\partial P_{i,t}^D} = \Delta T c_t^{DR} + \lambda_{i,t}^1 - \Delta T \mu_i^3 - \mu_{i,t}^4 + \mu_{i,t}^5 - \mu_{i,t}^6 - \lambda_{i,t}^2 \zeta_i = 0$$

$$t = NT$$
(30)

$$\frac{\partial L_i}{\partial Q_{i,t}^D} = \lambda_{i,t}^2 = 0 \tag{31}$$

$$\frac{\partial L_i}{\partial P_{i,m,t}^D} = -\Delta T u_{i,m,t}^{DR} - \lambda_{i,t}^1 + \mu_{i,m,t}^1 - \mu_{i,m,t}^2 = 0 \qquad \forall t \in \Omega_T$$

$$(32)$$

Where $\tan(\arccos(pf_i)) = \zeta_i$

Primal Feasibility $(h(x) = 0, g(x) \le 0)$

$$P_{i,t}^D - \sum_{m=1} P_{i,m,t}^D = 0 \qquad \forall t \in \Omega_T \quad (\lambda_{i,t}^1)$$
 (33)

$$P_{i,m,t}^{D} - \overline{P}_{i,m,t}^{D} \le 0 \qquad \forall m \in \Omega_{M}, \forall t \in \Omega_{T} \quad (\mu_{i,m,t}^{1})$$
 (34)

$$-P_{i,m,t}^{D} \le 0 \qquad \forall m \in \Omega_{M}, \forall t \in \Omega_{T} \quad (\mu_{i,m,t}^{2})$$
 (35)

$$E_i^D - \Delta T \sum_{t=1} P_{i,t}^D \le 0 \tag{36}$$

$$\underline{P}_{i,t}^{D} - P_{i,t}^{D} \le 0 \qquad \forall t \in \Omega_{T} \quad (\mu_{i,t}^{4})$$
 (37)

$$P_{i,t}^D - P_{i,t-1}^D - R_i^u \le 0$$
 $\forall t \in \Omega_T \quad (\mu_{i,t}^5)$ (38)

$$R_i^d - P_{i,t}^D + P_{i,t-1}^D \le 0$$
 $\forall t \in \Omega_T \quad (\mu_{i,t}^6)$ (39)

$$Q_{i,t}^D - P_{i,t}^D \tan(\arccos(pf_i)) = 0 \qquad \forall t \in \Omega_T \quad (\lambda_{i,t}^2)$$
(40)

Dual Feasibility

$$\mu_{i,m,t}^1 \ge 0, \quad \mu_{i,m,t}^2 \ge 0$$
 $\forall m \in \Omega_M, \forall t \in \Omega_T$ (41)

$$\mu_i^3 \ge 0 \tag{42}$$

$$\mu_{i,t}^4 \ge 0, \quad \mu_{i,t}^5 \ge 0, \quad \mu_{i,t}^6 \ge 0$$
 $\forall t \in \Omega_T$ (43)

$$\lambda_{i,t}^1, \quad \lambda_{i,t}^2 \quad \text{free}$$
 $\forall t \in \Omega_T$ (44)

Complementary Slackness ($(\mu \ge 0) + (g(x) \le 0) + (\mu g(x) = 0) \to \mu(-g(x) \ge 0)$)

$$0 \le \mu \perp -g(x) \ge 0$$

$$0 \le \mu_{i,m,t}^1 \perp (-P_{i,m,t}^D + \overline{P}_{i,m,t}^D) \ge 0 \qquad \forall m \in \Omega_M, \forall t \in \Omega_T$$
 (45)

$$0 \le \mu_{i,m,t}^2 \perp (P_{i,m,t}^D) \ge 0 \qquad \forall m \in \Omega_M, \forall t \in \Omega_T$$
 (46)

$$0 \le \mu_i^3 \perp (-E_i^D + \Delta T \sum_{t=1} P_{i,t}^D) \ge 0 \tag{47}$$

$$0 \le \mu_{i,t}^4 \perp (-\underline{P}_{i,t}^D + P_{i,t}^D) \ge 0 \qquad \forall t \in \Omega_T$$
 (48)

$$0 \le \mu_{i,t}^5 \perp (-P_{i,t}^D + P_{i,t-1}^D + R_i^u) \ge 0 \qquad \forall t \in \Omega_T$$
 (49)

$$0 \le \mu_{i,t}^6 \perp (-R_i^d + P_{i,t}^D - P_{i,t-1}^D) \ge 0 \qquad \forall t \in \Omega_T$$
 (50)

Fortuny-Amat Transformation

$$0 < \mu \perp -q(x) > 0$$

$$0 \le -g(x) \le Mz$$

$$0 < \mu < Mz$$

$$z \in \{0, 1\}$$

Equations in primal and dual feasibility capture lower limit of the Fortuny-Amat transforma-

tion. This leads to set of equations $\mathbf{g}(\mathbf{x}) \geq -\mathbf{M}\mathbf{z}$ and $\mu \leq \mathbf{M}(\mathbf{1} - \mathbf{z})$.

$$-P_{i,m,t}^{D} \ge -M^{2} z_{i,m,t}^{2} \qquad \qquad \mu_{i,m,t}^{2} \le M^{2} (1 - z_{i,m,t}^{2}) \quad \forall m \in \Omega_{M}, \forall t \in \Omega_{T}$$
 (52)

$$E_i^D - \Delta T \sum_{t=1} P_{i,t}^D \ge -M^3 z_i^3 \qquad \mu_i^3 \le M^3 (1 - z_i^3)$$
 (53)

$$\underline{P}_{i,t}^{D} - P_{i,t}^{D} \ge -M^{4} z_{i,t}^{4} \qquad \qquad \mu_{i,t}^{4} \le M^{4} (1 - z_{i,t}^{4}) \quad \forall t \in \Omega_{T}$$
 (54)

$$P_{i,t}^{D} - P_{i,t-1}^{D} - R_i^{u} \ge -M^5 z_{i,t}^5 \qquad \mu_{i,t}^5 \le M^5 (1 - z_{i,t}^5) \quad \forall t \in \Omega_T$$
 (55)

$$R_i^d - P_{i,t}^D + P_{i,t-1}^D \ge -M^6 z_{i,t}^6 \qquad \qquad \mu_{i,t}^6 \le M^6 (1 - z_{i,t}^6) \quad \forall t \in \Omega_T$$
 (56)

$$z_{i,m,t}^1, \quad z_{i,m,t}^2 \qquad \in \{0,1\}$$
 (57)

$$z_i^3 \qquad \qquad \in \{0, 1\} \tag{58}$$

$$z_{i,t}^4, \quad z_{i,t}^5, \quad z_{i,t}^6 \qquad \in \{0,1\}$$
 (59)

4 Mixed-integer Linear Programming (MILP) Model

Decision vector $X = \{X_{DSO}, X_{AGG}, \lambda_{i,t}^{(1-2)}, \mu_{i,m,t}^{(1-2)}, \mu_i^3, \mu_{i,t}^{(4-6)}, z_{i,m,t}^{(1-2)}, z_i^3, z_{i,t}^{(4-6)}\}$

$$\min_{X} \quad \Delta T \sum_{t \in \Omega_{T}} \sum_{ij \in \Omega_{l}} c_{t}^{DR} R_{ij,a(d_{ij})} I_{ij,t}^{sqr}
\text{s.t.} \quad (2) - (18), (29) - (44), (51) - (59)$$

5 Nomenclature

Sets

 Ω_a Set of conductor types Ω_b Set of buses (nodes).

Set of nodes with distributed generation. Ω_{DG} Ω_{EES} Set of nodes with energy storage systems.

 Ω_l Set of lines.

 Ω_{PV} Set of nodes with photo-voltaic (PV) systems.

 Ω_T Set of time periods.

Set of nodes with wind parks. Ω_{WT}

Parameters

 $B_{ij,a(d_{ij})}$ Shunt susceptance of node i of cable type a with length d [mS]. Resistance of line ij of cable type a with length d $[m\Omega]$. $R_{ij,a(d_{ij})}$ Reactance of line ij of cable type a with length d $[m\Omega]$. $X_{ij,a(d_{ij})}$ Impedance of line ij of cable type a with length d $[m\Omega]$. $Z_{ij,a(d_{ij})}$

Length of line ij [km].

 d_{ij} R_g^d R_g^u FC_g Ramp-down rate of DG unit at node g [kW/h]. Ramp-up rate of DG unit at node g [kW/h]. Fuel capacity of DG unit at node g $[m^3]$.

 H_g Calorific value of DG unit at node g [kWh/ m^3]. \underline{F}_g^g Minimum fuel of DG unit at node g $[m^3]$.

Minimum power factor of DG unit at node g. Active power supplied by PV at node p in period t [kW].

Active power demand at node i in period t [kW].

Active power supplied by wind park at node ω in period t [kW]. Maximum charging/discharging power of the EES at node s [kW].

Reactive power supplied by PV at node p in period t [kvar].

Reactive power supplied by wind park at node ω in period t[kvar].

Reactive power demand a node i in period t [kvar].

Maximum capacity of DG at node g [kVA] Maximum substation capacity at node i [kVA]

Maximum voltage magnitude [V]. \underline{V} Minimum voltage magnitude [V].

 \overline{SOE}_s Maximum state-of-energy of the EES at node s [kWh]. \overline{SOC}_s Maximum state-of-charge of the EES at node s [%]. SOC_s Minimum state-of-charge of the EES at node s [%].

 η_q^f

Charging/discharging of EES at node s. η_s

 ΔT Time step [h].

Variables

I_{\cdots}^{sqr}	Squared current magnitude at line ij in period t $[A^2]$.
$I_{ij,t}^{sqr} \\ V_i^{sqr}$	Squared voltage magnitude at node i in period t $[V^2]$.
$P_{ij,t}^{i}$	Active power flow at line ij in period t [kW].
$P_{ij,t}$ $P_{i,t}^{S}$ $P_{i,t}^{DG}$ $Q_{i,t}^{S}$	Active power injection at node i in period t [kW].
$P_{q,t}^{DG}$	Active power supplied by DG unit at node g in period t [kW].
$Q_{i,t}^S$	Reactive power injection at node i in period t [kW].
$Q_{ij,t}$	Reactive power flow at line ij in period t [kvar].
$Q_{q,t}^{DG}$	Reactive power supplied by DG unit at node g in period t [kvar].
$Q_{g,t}^{DG} \ P_{s,t}^{EES,ch} \ P_{s,t}^{EES,dc}$	Charging power of EES at node s in period t [kW].
$P_{s,t}^{\dot{E}ES,dc}$	Discharging power of EES at node s in period t [kW].
$SOC_{s,t}$	Sate-of-charge of EES at node s in period t [kWh].
$u_{s,t}^{EES}$	Binary variable associated to the charging (1) or discharging (0)
	operation of EES at node s in period t.
$u_{g,t}^{DG}$	Commitment status of DG unit at node g in period t.