Covariates

INTRODUCTION TO STATISTICAL MODELING IN R

Danny Kaplan
Instructor

Some uses for models

- Making predictions with available data
- Exploring a large, complex data set
- Anticipate outcome of intervention in system

Modeling educational outcomes

head(SAT)

```
state expend ratio salary frac verbal math sat
                   17.2 31.144
                                           538 1029
            4.405
                                  8
                                      491
    Alabama
     Alaska 8.963
                  17.6 47.951 47
                                      445
                                           489 934
    Arizona 4.778 19.3 32.175
                                      448
                               27
                                           496 944
   Arkansas 4.459 17.1 28.934
                                      482
                                           523 1005
5 California 4.992
                   24.0 41.078
                                 45
                                      417
                                           485
                                               902
                                 29
                                       462
   Colorado 5.443
                  18.4 34.571
                                           518
                                                980
```

SAT scores and school expenditures

Modeling SAT as a function of expenditures

```
predict(mod_a, newdata
= data.frame(expend = 7))
     943.0485
predict(mod_a, newdata
= data.frame(expend = 6)
     963.9407
```


Average SAT score vs. fraction taking the test

Covariates

Explanatory variables that are not themselves of interest to the modeler, but which may shape the response variable

Stratifying by fraction taking the test

A model with expend and frac

```
# Train model
mod_b <- lm(sat ~ expend + frac, data = SAT)</pre>
# Modeling experiment with frac constant
predict(mod_b, newdata = data.frame(expend = 7, frac = 0.5))
1078
predict(mod_b, newdata = data.frame(expend = 6, frac = 0.5))
1066
```

Some possible models

- sat ~ frac: Capture state-to-state variation in SAT scores, ignoring expend
- sat ~ expend : See how expend relates to state-to-state variation in SAT scores, ignoring frac
- sat ~ expend + frac : See the role of expend in the context of what's explained by frac

Let's practice!

INTRODUCTION TO STATISTICAL MODELING IN R

Effect size

INTRODUCTION TO STATISTICAL MODELING IN R

Danny Kaplan
Instructor

Measuring effect sizes

- How does changing an input to a model change the output?
 - Ooes the output go up or down?
- How much does the model output change for a given change in the input?
 - Effect size

Cause and effect

- In our model, the inputs cause the output
- Modeler's interest is often in cause and effect
- Doesn't mean the real world system works that way
- For models to give insight into cause and effect, we must build models that are faithful...

Natural units for effect sizes

- Quantitative inputs and outputs have natural units
 - Wages measured in \$/hour
 - Education in years of schooling
- Can quantify effect size as a rate or a difference

Effect size for quantitative input

- Effect size represented as a rate
- Change in response / change in input
- For example: \$/hour per year

Effect size for categorical input

- Units of effect size are those of the response variable
- Categorical variables do not have units
- Effect size represented as a *difference*
 - Numerical difference in output when the input is changed from one category to another

Calculating effect size

Let's practice!

INTRODUCTION TO STATISTICAL MODELING IN R

