Proof Homework

Parker Whaley

March 28, 2016

1

Theorem.

If a is a non zero integer then a|a.

Proof.

Assume a is some non zero integer. Since one is the multiplicative identity we can say $1 \cdot a = a$. Note that one is an integer. Thus by definition a|a.

2

Theorem.

If a, b, and c are non zero integers such that a|b and b|c, then a|c

Suppose a, b, and c are non zero integers such that a|b and b|c. By definition $a \cdot m = b$ for some integer m. By definition $b \cdot n = c$ for some integer n. Note that $a \cdot m \cdot n = c$. Also note that the multiple of two in integers is a integer thus $m \cdot n$ is a integer. By definition a|c.