IN THE CLAIMS:

A complete listing of all the claims is now presented.

Claim 1. (Cancelled).

Claim 2. (Cancelled).

Claim 3. (Previously Presented).

The method according to claim 17,

wherein the exchange of the catalysts or the variation of the amount of mass or exchange and variation in the sections (d), (g), and (j) takes place using a numerical random-check generator.

Claim 4. (Withdrawn).

The method according to claim 3, wherein the program codes GOSCAF, GOSDYF, GOSDZF and GOSCCF of the NAG Library (NAG FORTRAN Workstation Library, NAG Group Ltd., 1986) of a numerical random-check generator are used.

Claim 5. (Previously Presented).

The method according to claim 17, wherein the number n_1 varying in their quantitative

d composition or chemical composition or quantitative and chemical composition ranges from 5 to 100.

Claim 6. (Previously Presented).

The method according to claim 17,

wherein the selection number n_2 , n_3 , or n_{n+1} measures 5 to 30% of the number n_1 .

Claim 7. (Previously Presented).

The method according to claim 17,

wherein the main components are selected from the group comprised of Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce and Nd.

Claim 8. (Previously Presented).

The method according to claim 17,

wherein the mole fractions b_1 .. b_j range from 0 to 50 mole-%.

Claim 9. (Previously Presented).

The method according to Claim 17,

wherein catalyst mixtures are prepared by mixing salt

solutions of elements of components $A^1 \dots A^i$, $B^1 \dots B^j$, $D^1 \dots D^k$ and $T^1 \dots T^l$ followed by thermal treatment in the presence of a reactive or inert gas phase (tempering) or by jointly precipitating sparingly soluble compounds followed by tempering or by exposing support component $T^1 \dots T^l$ to salt solutions or gaseous compounds of the components $A^1 \dots A^i$, $B^1 \dots B^j$, $D^1 \dots D^k$ followed by tempering,

wherein the employed salts are nitrates, sulfates, phosphates, carbonates, halogenides, oxalates, carboxylates, or mixtures thereof or carbonyl compounds or as acetyl acetonates.

Claim 10 (Previously Presented).

The method according to claim 17,

wherein the catalytic reaction is carried out with liquid, evaporated, or gaseous reactants.

Claim 11. (Withdrawn).

The method according to claim 17,

wherein the reactants for the catalytic reaction are supplied to several reactors and the product stream exiting the reactors is separately analyzed for each individual reactor.

Claim 12. (Withdrawn).

The method according to claim 11,

wherein the catalytic reaction is performed by seriesconnecting or arraying 5 to 1,000 reactors comprised of spaces with catalytically active material,

wherein the diameter of these spaces measures 100 μm to 10 $\,$ mm, and the lengths measure 1 mm to 100 mm.

Claim 13. (Withdrawn).

The method according to claim 11,

wherein the throughput of reactants is selected for a preset reactor length in such a way as to achieve the desired degree of conversion.

Claim 14. (Withdrawn).

The method according to claim 11,

wherein the reactor is a monolithic block with several parallel channels, which can be closed selectively at the inlet or outlet side individually or in a larger number even during the catalytic reaction, or a porous module having channels extending preferably parallel to the flow direction of the reaction mixture, whose channels can be closed at the inlet or outlet side individually or in a large number even during the catalytic reaction.

Claim 15. (Withdrawn).

The method according to claim 17,

wherein the reactants for the catalytic reaction are supplied to the reactors and wherein the composition of the product streams exiting the reactors is analyzed by a measuring sensor, wherein the measuring sensor is guided two-dimensionally across the exit cross-section of all reactors or the reactors are moved two-dimensionally relative to the measuring sensor and the portion of the product streams received by the measuring sensor is supplied to the analytical device.

Claim 16. (Cancelled).

Claim 17. (Currently Amended).

A method for <u>selecting components for the preparation of</u> preparing active or selective solid catalysts or <u>of</u> inorganic or organometallic materials or mixtures thereof by selecting a certain number of solid catalysts varying in terms of chemical composition or different weight composition or different chemical and different weight composition and determining of essential catalyst properties, comprising arbitrarily or randomly newly structuring by means of crossing and mutation <u>of steps (d), (g)</u> and (j), selected among the stochastic methods of <u>numerical</u> random-check generators, throwing dice, and/or performing

drawings,

(a) a number n_1 of solid catalysts are prepared in the form of compounds of the formula (I)

wherein A¹ .. Aⁱ is a number i of different main components which are selected from the elements of the PTE, Periodic Table of Elements excluding trans uranium and noble gas elements, and the number i is between 1 and 10,

B¹ .. B^j is a number j of different minor components selected from the group of the elements Li, Na, Ka, Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, C, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce and Nd, and the number j is between 1 and 10,

D¹ .. Dk is a quantity k of different doping elements selected from the group of the elements Li, Na, Ka, Mg, Ca, Sr, Ba, Y, La, Ti, Zr, V, Nb, Cr, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, Si, Sn, Pb, N, P, As, Sb, Bi, S, Se, Te, F, Cl, Ce and Nd and the number k is between 1 and 10,

 T^1 .. T^1 is a number 1 of different support components which are comprised of oxides, carbonates, carbides, nitrides, borides of the elements Mg, Ca, Sr, Ba, La, Zr, Ce, Al, Si or a mixed phase of two or more thereof, and the number 1 is between 1 and 10, and 0 is oxygen, $a_1 \dots a_i$ are identical or different mole fractions of 0 to 100 mole-% with the provision that the mole fractions $a_1 \dots a_i$ cannot all [at the

same time] be 0 at the same time,

 b_1 .. b_i are mole fractions of 0 to 90 mole-%,

 d_1 ... d_k are mole fractions of 0 to 10 mole-%,

 $t_1 \dots t_1$ are mole fractions of 0 bis 99.99 mole-%,

p is a mole fraction of 0 to 75 mole-%, wherein the sum of all mole fractions

 $a_i + b_j + d_k + t_1$ may be not greater than 100 %, and the number n_i of catalysts with different quantitate composition or different chemical composition or different weight and chemical compositions is in the range of 5 to 100,000;

- (b) the activity or selectivity or activity and selectivity of the $1^{\rm st}$ generation of n_1 solid catalysts prepared according to (a) of the first generation is determined experimentally for a catalytic reaction in a reactor or in several series connected reactors;
- (c) a number of 1 50 % of the number n_1 of the 1^{st} generation of catalysts with the highest activities for a specific reaction or highest selectivities for the desired product or product mixture of the catalytic reaction or activity and selectivity is selected as number n_2 ;
- (d) the catalyst components contained in the number n_2 of the catalysts with a pre-set probability W, which results from the corresponding equations

$$W_A = \frac{1}{i \cdot n_2} \cdot 100\%, W_B = \frac{1}{j \cdot n_2} \cdot 100\%, W_D = \frac{1}{k \cdot n_2} \cdot 100\%, W_T = \frac{1}{l \cdot n_2} \cdot 100\%$$

for each of the components A^1 .. A^i , B^1 .. B^j , D^1 .. D^k and T^1 .. T^1 are exchanged between a respective two catalysts selected from the number n_2 with a probability of $W_{cat} = 1/n_2$. 100%, or that the substance amounts a_1 .. a_i , b_1 .. b_j , d_1 .. d_k and t_1 .. t_1 of the catalyst components A^1 .. A^i , B^1 .. B^j , D^1 .. D^k and T^1 .. T^1 are varied for some of the catalysts selected with a probability of

 $W_{cat} = 1/n_2$. 100% by determining new values for the mole fractions $a_1 \dots a_i$, $b_1 \dots b_j$, $d_1 \dots d_k$ and $t_1 \dots t_l$ within the limits defined under (a), or that exchange and variation are performed;

new catalysts of the general formula (I) A, B, D, T, a, b, d, and t and p as defined under (a) are produced in this way in a number y_2 that forms the 2^{nd} generation of catalysts;

- (e) the activities or selectivities or activities and selectivities of the 2^{nd} generation y_2 solid catalysts are determined experimentally for the same specific reaction as in (b) in one or more reactors;
- (f) a number of the 2^{nd} generation n_3 catalysts, having the highest activities for a catalytic reaction or highest selectivities for the desired product and product mixture or activities and selectivities of all 1^{st} and 2^{nd} generation solid catalysts, is selected, wherein the number n_3 is 1 to 50 % of the number n_1 ;
- (g) the catalyst components contained in the number n_3 of the catalysts with a pre-set probability W, which results from the corresponding equations

$$W_A = \frac{1}{i \cdot n_1} \cdot 100\%, W_B = \frac{1}{j \cdot n_2} \cdot 100\%, W_D = \frac{1}{k \cdot n_2} \cdot 100\%, W_T = \frac{1}{l \cdot n_3} \cdot 100\%$$

for each of the components A^1 .. A^i , B^1 .. B^j , D^1 .. D^k and T^1 .. T^1 are exchanged between a respective two catalysts selected from the number n_3 with a probability of $W_{cat} = 1/n_3$. 100%, or that the substance amount a_1 .. a_i , b_1 .. b_j , d_1 .. d_k and t_1 .. t_1 of the catalyst components A^1 .. A^i , B^1 .. B^j , D^1 .. D^k and T^1 .. T^1 are varied for some of the catalysts selected with a probability of $W_{cat} = 1/n_3$. 100% by determining new values for the mole fractions a_1 .. a_i , b_1 .. b_j , d_1 .. d_k and t_1 .. t_1 within the limits defined under (a) or exchange and variation are

new catalysts of the general formula (I) with A, B, D, T, a, b, d and t and p as defined under (a) are produced in this way in a number y_3 that forms the 3^{rd} generation catalysts;

performed;

- (h) the activity or selectivity or activity and selectivity of the new 3^{rd} generation y_3 new solid catalysts prepared according to (g) is determined experimentally for the same specific reaction as in (b) in one or more reactors;
- (i) a number of n^{th} generation n_{n+1} solid catalysts, having the highest activities for a catalytic reaction or the highest selectivities for the desired product and product mixture or the highest activity and selectivity of all 1^{st} to n^{th}

generation solid catalysts, is selected, wherein the number n_{n+1} is 1 to 50 % of the number n_1 ;

(j) the catalyst components contained in the number n_{n+1} of the catalysts with a pre-set probability W, which results from the corresponding equations

$$W_{A} = \frac{1}{i \cdot n_{n+1}} \cdot 100\%, W_{B} = \frac{1}{j \cdot n_{n+1}} \cdot 100\%, W_{D} = \frac{1}{k \cdot n_{n+1}} \cdot 100\%, W_{T} = \frac{1}{l \cdot n_{n+1}} \cdot 100\%$$

for each of the components A^1 .. A^i , B^1 .. B^j , D^1 .. D^k and T^1 .. T^1 are exchanged between a respective two catalysts selected from the number n_{n+1} with a probability of $W_{cat} = 1/n_{n+1}$. 100%, or that the substance amount a_1 .. a_i , b_1 .. b_j , d_1 .. d_k and d_1 .. d_1 of the catalyst components d_1 .. d_1 .. d_2 .. d_3 .. d_4 .. d_4 .. d_5 .. d_7 .. d_8 and d_8 .. d_8 ... d_8 ...

(k) the activity or selectivity or activity and selectivity is of the y_{n+1} solid $(n+1)^{\text{th}}$ generation catalysts prepared according to (g) is determined experimentally for the same specific reaction as in (b) in one or more

reactors;

(1) the selection according to the steps (c) + (f) + (i), preparation of a new catalyst generation according to the steps (d), (g), (j), and activity/selectivity determination according to the steps (e) + (h) + (k) are continued until a catalyst generation is obtained for which the activity or selectivity or activity and selectivity relative to the preceding generations is either not increased, or no longer significantly increased as an arithmetic mean.

Claim 18. (New).

The method according to claim 17,

wherein a single solid catalyst species is $V_{0.19}\ Mn_{0.24}\ Fe_{0.32}\ Ga_{0.25}\ O_{x}.$