Describing Social Networks

Econometric Methods for Networks, CORE, Dec 12th - 14th, 2016

Bryan S. Graham

University of California - Berkeley

Nyakatoke Risk-Sharing Network

Note: node sizes are proportional to household degree

Wealth < 150,000 TSh
 ■ 300,000 TSh Wealth < 600,000 TSh
 ■ 150,000 TSh Wealth < 300,000 TSh
 ■ Wealth ≥ 600,000 TSh

(N = 119, n = 7,021)

Questions

- How do the number, structure and characteristics of an agent's ties influence her behaviors and outcomes?
- How are ties formed? Are externalities involved?
- What configuration of ties would a social planner choose?
 - How does this idealized network compare with the observed one?
 - Are observed networks efficient?

Questions (continued)

- Can we identify "important" agents in the network? Why is this interesting?
- What policies influence network structure (and outcomes)?
- How does network structure influence the diffusion of disease, ideas and new technologies?
- Are there optimal locations on a network in which to intervene?

Applications...

- Buyer-seller networks (Industrial Organization)
- Friendship networks (Education, Labor)
- Criminal networks (Urban)
- Trading networks (Industrial Organization and International Trade)
- Political networks (Political Economy)
- Bank networks (Finance)
- Online networks

...and Funding!

• SBE Directorate of the National Science Foundation (NSF) recently identified network analysis as one of five key "cross cutting themes" with special grant opportunities.

Literatures

- Psychology, sociology, anthropology, political science and economics all have empirical and theoretical literatures on "networks".
 - Wasserman & Faust (1994)
 - Jackson (2008)
- Networks are widely-studied in Physics.
 - Newman (2010)

Literatures

- The mathematical representation of networks as graphs makes discrete math (esp. graph theory), matrix analysis, and computer science highly useful.
- The statistical/econometric literature *very* underdeveloped (cf., Goldenberg *et al.* 2009)
- ...but growing rapidly (e.g., Bickel & Chen, 2009; Bickel, Chen & Levina, 2011; Graham, 2015; de Paula, 2016).

Outline of Course

- Lecture 1 (12/12/16): Describing social networks
 - introduction to network data
 - definition and computation of basic summary network statistics
- Lecture 2 (12/12/16): Nonparametrics
 - graphons, graph limits
 - nonparametric estimation of link probabilities
- Lecture 3 (12/13/16): Inference
 - network moments
 - network subsampling/bootstrap

Outline of Course (continued)

- Lecture 4 (12/13/16): Link formation #1
 - importance sampling from networks w/ fixed degree
 - Dyadic models of link formation
- Lecture 5 (12/14/16): Link formation #2
 - network formation w/ interdepedencies
 - strategic models
- Lecture 6 (12/14/16): Peer effects
 - network structure & peer effects
 - neighborhood effects

Computation

- Computational illustrations in class
- All code is available on the course GitHub repository (https://github.com/bryangraham/ short_courses)
- If you want to follow along (recommend, but not required) use the *Anaconda* distribution of Python v 2.7.12 https://www.continuum.io/downloads
- Includes key packages for data analysis & scientific computing (e.g., numpy, scipy, pandas, networkx)
- Also useful: Graphviz (visualation), Yhat Rodeo (IDE)

Computation (continued)

https://github.com/wesm/pydata-book

http://quant-econ.net/

Basic Terms & Notation

- An undirected graph $G(\mathcal{N}, \mathcal{E})$ consists of a set of nodes $\mathcal{N} = \{1, ..., N\}$ and a list of unordered pairs of nodes called **edges** $\mathcal{E} = \{\{i, j\}, \{k, l\}, ...\}$ for $i, j, k, l \in \mathcal{N}$.
- A graph is conveniently represented by its adjacency matrix $\mathbf{D} = \begin{bmatrix} D_{ij} \end{bmatrix}$ where

$$D_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- ullet No self-ties & unordered edges \Rightarrow D is a symmetric binary matrix with a diagonal of so-called structural zeros.
- vertex: node, agent or player.
- edges: links, friendships, connections or ties.

Basic Terms & Notation (continued)

- Agent 1 is connected to agents 2 and 5.
- Agent 2 is connected to agent 1.
- Agent 3 is connected to no one.
- Agent 4 is connected to agent 5.

Basic Terms & Notation (continued)

- Agent 5 is connected to agents 1 and 4.
- Agents 2 and 5 are indirectly connected through agent 1 (i.e., share her as a common friend).
- Agents 2 and 4 are indirectly connected through agents 1 and 5.
- 3 out of 10 possible ties are present in the network.

Agents, Dyads and Triads

- A network consists of
 - -N agents
 - $-\binom{N}{2}=\frac{1}{2}N\left(N-1\right)=O\left(N^2\right)$ pairs of agents or **dyads.**
 - $-\binom{N}{3} = \frac{1}{6}N\left(N-1\right)\left(N-2\right) = O\left(N^3\right) \text{ triples}$ of agents of **triads**.
 - $-\binom{N}{4} = \frac{1}{24}N(N-1)(N-2)(N-3) = O(N^4)$ triples of agents of **tetrads**.
- In summarizing a network adjacency matrix it is convenient to conceptualize statistics as measures of agent-, dyad-, triad- or psubgraph-level attributes.

Agent-level Statistics: Degree

- The total number of links belonging to agent i, or her **degree** is $D_{i+} = \sum_{j} D_{ij}$.
- The **degree sequence** of a network is $D_+ = (D_{1+}, \dots, D_{N+})'$.
- The **degree distribution** gives the frequency of each possible agent-level degree count $\{0, 1, \ldots, N\}$ in the network.

Degree (continued)

- Some researchers take the degree distribution as their primary object of interest (e.g., Barabási and Albert, 1999).
 - Other key topological features of a network are fundamentally constrained by its degree distribution.
- Some datasets report agent degrees with no other network information

Dyad-level Statistics: Density

- Dyads are either linked or unlinked.
- The density of a network equals the frequency with which any randomly drawn dyad is linked:

$$P_N = {N \choose 2}^{-1} \sum_{i=1}^{N} \sum_{j < i} D_{ij}.$$
 (2)

- Note that $\lambda_N = (N-1) P_N$ coincides with average degree.
- The density of the Nyakatoke network is 0.0698.
- Low density and skewed degree distributions (with fat tails) are common features of real world social networks.

Paths

$$\mathbf{D}^{2} = \begin{pmatrix} D_{1+} & \sum_{i} D_{1i} D_{2i} & \cdots & \sum_{i} D_{1i} D_{Ni} \\ \sum_{i} D_{1i} D_{2i} & D_{2+} & \cdots & \sum_{i} D_{2i} D_{Ni} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i} D_{1i} D_{Ni} & \sum_{i} D_{2i} D_{Ni} & \cdots & D_{N+} \end{pmatrix}$$

- The i^{th} diagonal element of ${\bf D}^2$ equals the number of agent i's links or her degree.
- The $\{i,j\}^{th}$ element of \mathbf{D}^2 gives the number of links agent i has in common with agent j (i.e., the number of "friends in common").

Paths (continued)

- graph theory: the $\{i, j\}^{th}$ element of \mathbf{D}^2 gives the number of **paths** of length two from agent i to agent j.
- if i and j share the common friend k, then a length two path from i to j is given by $i \to k \to j$.

Paths (continued)

$$\mathbf{D}^{3} = \begin{pmatrix} \sum_{i,j} D_{1i} D_{ij} D_{j1} & \cdots & \sum_{i,j} D_{1i} D_{ij} D_{jN} \\ \vdots & \ddots & \vdots \\ \sum_{i,j} D_{1i} D_{ij} D_{jN} & \cdots & \sum_{i,j} D_{Ni} D_{ij} D_{jN} \end{pmatrix}$$

- $\{i,j\}^{th}$ element gives the number of paths of length 3 from i to j.
- If both i and j are connected to k as well as to each other, then the $\{i, j, k\}$ triad is transitive (i.e., "the friend of my friend is also my friend").

Paths (continued)

- The i^{th} diagonal element \mathbf{D}^3 is a count of the number of transitive triads or **triangles** to which i belongs (with i-j-k and i-k-j counted separately).
 - If $\{i, j, k\}$ is a closed triad it is counted twice each in the i^{th} , j^{th} and k^{th} diagonal elements of \mathbf{D}^3 .
 - $\text{Tr}\left(\mathbf{D}^3\right)/6$ equals the number of *unique* triangles in the network.

K-Length Paths

- The $\{i,j\}^{th}$ element of \mathbf{D}^K gives the number of paths of length K from agent i to agent j.
- Let $D_{ij}^{(K)}$ denote the $\{i,j\}^{th}$ element of \mathbf{D}^K .
- $\mathbf{D}^0 = I_N$, the only zero length walks in the network are from each agent to herself.
- Under the maintained hypothesis, $D_{ij}^{(K)}$ equals the number of K-length paths from i to j. The number of K+1 length paths from i to j then equals

$$\sum_{k=1}^{N} D_{ik}^{(K)} D_{kj},$$

which equals the $\{i, j\}^{th}$ element of \mathbf{D}^{K+1} . The claim follows by induction.

Distance

- The **distance** between agents *i* and *j* equals the minimum length path connecting them.
- If there is no path connecting i to j, then the distance between them is infinite.
- We can use powers of the adjacency matrix to calculate these distances:

$$M_{ij} = \min_{k} \left\{ k : D_{ij}^{(k)} > 0 \right\}$$

 If the network consists of a single, giant, connected component, we can compute average path length as

$$\overline{M} = {N \choose 2}^{-1} \sum_{i=1}^{N} \sum_{j < i} M_{ij}.$$
 (3)

Small World Problem

Frequency of minimum path lengths in the Nyakatoke network

	1	2	3	4	5
Count	490	2666	3298	557	10
Frequency	0.0698	0.3797	0.4697	0.0793	0.0014

Source: de Weerdt (2004) and author's calculations.

- Less than 7 percent of all *pairs* of households are directly connected in Nykatoke.
- ...but over 40 percent dyads are no more than two degrees apart.
- ..and over 80 percent are separated by three or fewer degrees.

Small World Problem (continued)

- diameter: largest distance between two agents.
- The diameter of the Nyakatoke network is
 5.
- Small-world problem: why do we see sparsity and low diameter together (Milgram, 1967)?

Triad Census

- Triads, a set of three unique agents, come in four types:
 - no connections or empties
 - * one connection or **one-edges**
 - * two connections or **two-stars**
 - * three connections or **triangles**
 - A complete enumeration of them into their four possible types constitutes a triad census.

Triad Census: Triangles

Each agent can belong to as many as

$$(N-1)(N-2)$$

triangles.

- The counts of these triangles are contained in the N diagonal elements of \mathbf{D}^3 .
- However each such triangle appears 6 times in these counts: as $\{i,j,k\}$, $\{i,k,j\}$, $\{j,i,k\}$, $\{j,k,i\}$, $\{k,i,j\}$ and $\{k,j,i\}$. Thus

$$T_T = \frac{\operatorname{Tr}\left(\mathbf{D}^3\right)}{6} \tag{4}$$

equals the total number of unique triangles in the network.

Triad Census: Two-Stars

- ullet Each dyad can share of up to N-2 links in common.
- These counts are contained in the lower (or upper) off-diagonal elements of ${\bf D}^2$.
- Each triad appears three times in these counts: as $\{i,j,k\}$, $\{i,k,j\}$ and $\{j,k,i\}$. If it is a
 - two star, then only one of $D_{ji}D_{ki}$, $D_{ij}D_{kj}$, or $D_{ik}D_{jk}$ quantities will equal one,
 - triangle, then all three will equal one.

Two-Stars (continued)

• \Rightarrow vech $\left(\mathbf{D}^2\right)'\iota$ gives the network count of three times the number triangles plus the number of two-stars, hence

$$T_{TS} = \operatorname{vech}\left(\mathbf{D}^2\right)' \iota - \frac{\operatorname{Tr}\left(\mathbf{D}^3\right)}{2}$$
 (5)

equals the number of two-star triads in the network

Triad Census: One-Edges & Empties

- If *all* triads are empty or have only one edge, then there will be (N-2) vech $(\mathbf{D}) \iota$ one edge triads.
- If some triads are two-stars or triangles this count will be incorrect.
- Subtracting twice the number of two stars and three times the number of triangles gives the correct answer:

$$T_{OE} = (N - 2) \operatorname{vech} (\mathbf{D})' \iota$$

$$- 2 \operatorname{vech} (\mathbf{D}^{2})' \iota + \frac{\operatorname{Tr} (\mathbf{D}^{3})}{2}$$
(6)

• The number of empty triads, T_E , equals $\binom{N}{3}$ minus the total number of other triad types.

Triad Census: Nyakatoke Network

	empty	one-edge	two-star	triangle
Count	221,189	48,245	4,070	315
Proportion	0.8078	0.1762	0.0149	0.0012
Random	0.8049	0.1812	0.0136	0.0003

Transitivity

• The **Transitivity Index**, sometimes called the clustering coefficient, is

TI =
$$\frac{3T_T}{T_{TS} + 3T_T}$$

= $\frac{1}{2} \frac{\text{Tr}(\mathbf{D}^3)}{\text{vech}(\mathbf{D}^2)'\iota}$

- In random graphs TI should be close to network density.
- \bullet For the Nyakatoke network TI = 0.1884 and $P_N = 0.0698$.
- Network transitivity may
 - facilitate risk sharing and other activities which require monitoring (cf., Jackson et al., 2012).

Nyakatoke Degree Distribution

Degree Distribution Redux

- Average degree equals $\lambda_N = \left(\frac{2T_{OE} + 4T_{TS} + 6T_T}{N(N-2)}\right)$.
- Degree variance equals

$$S_N^2 = \frac{2}{N} (T_{TS} + 3T_T) - \lambda_N [1 - \lambda_N].$$

- Knowledge of mean degree, degree variance and the number of triangles is equivalent to knowledge of the triad census.
- The degree distribution constrains other features of the network.
 - models of network formation should allow for arbitrary degree distributions.

Power Laws

 Barabási and Albert (1999) assert that the degree distribution of many networks, at least over some range, follow discrete Pareto or 'power law' distributions:

$$F\left(d_{+}\right)=1-\frac{A}{1-\alpha}d_{+}^{1-\alpha}$$
 for $d_{+}=\underline{d}_{+},\ldots,N$ and $F\left(d_{+}\right)=\Pr\left(D_{i+}\leq d_{+}\right).$

- Here $\underline{d}_{+} > 0$ is some threshold degree level below which the power law distribution may not apply.
- Taking logs yields the linear relationship

$$\ln\left(1 - F\left(D_{i+}\right)\right) = \ln\left(\frac{A}{1 - \alpha}\right) + (1 - \alpha)\ln D_{i+}.$$

The coefficient, $1 - \alpha$, may be estimated by OLS (cf., Clauset, Shalizi and Newman, 2009).

Centrality

- Questions:
 - removal of what agent would reduce crime the most in a criminal network?
 - "where" should a policy-maker introduce new technologies/innovations?
- For some policy questions it is useful to have a measure of an agent's "centrality" in a network.

Eigenvector Centrality

- Bonacich (1972) recursively defined an agent's **centrality,** power, or importance within a network, $c_i^{\text{EC}}(\mathbf{D}, \phi)$, to be proportional to the sum of her links to other agents, weighted by their own centralities.
- \bullet Letting $\mathbf{c^{EC}}\left(\mathbf{D},\phi\right)$ be the N vector of centrality measures this gives

$$\mathbf{c}^{\mathsf{EC}}(\mathbf{D}, \phi) = \phi \mathbf{D} \mathbf{c}^{\mathsf{EC}}(\mathbf{D}, \phi).$$

- Since $\left(\mathbf{D} \frac{1}{\phi}I_N\right)\mathbf{c}^{\mathsf{EC}}\left(\mathbf{D},\phi\right) = 0$ Bonacich's measure corresponds to a normalized eigenvector of \mathbf{D} .
- Typically $\phi = 1/\lambda_{\text{max}}$, with λ_{max} the largest eigenvalue of \mathbf{D} , is used for normalization (this ensures positive centrality measures).

Katz-Bonacich Centrality

- This measure is increasing in the number of direct friends and indirect friends, with weights discounted according to the degree of separation.
- The $N \times 1$ vector of centrality measures for each agent is:

$$\mathbf{c}^{\mathsf{KB}}(\mathbf{D}, \phi) = \phi \mathbf{D}\iota_{N} + \phi^{2}\mathbf{D}^{2}\iota_{N} + \phi^{3}\mathbf{D}^{3}\iota_{N} + \cdots$$

$$= \left(I_{N} + \phi\mathbf{D} + \phi^{2}\mathbf{D}^{2} + \cdots\right)(\phi\mathbf{D}\iota_{N})$$

$$= \sum_{k=0}^{\infty} \phi^{k}\mathbf{D}^{k} \cdot (\phi\mathbf{D}\iota_{N})$$

Katz-Bonacich Centrality (continued)

 \bullet For $\phi < 1/\lambda_{\rm max}$ the sequence converges that so:

$$\mathbf{c}^{\mathsf{KB}}(\mathbf{D}, \phi) = (I_N - \phi \mathbf{D})^{-1} (\phi \mathbf{D} \iota_N).$$

- For $\phi \to 1/\lambda_{\text{max}}$ from below $\mathbf{c}^{\text{KB}}(\mathbf{D}, \phi) \to \mathbf{c}^{\text{EC}}(\mathbf{D}, \phi)$.
- Related to equilibrium effort in quadratic complementarity games on networks (e.g., Jackson and Zenou (2015)).

Diffusion Centrality

- Consider the following diffusion process (cf., Banerjee et al., 2013):
 - 1. An "idea" is injected at node i.
 - 2. In period 1 i shares this idea with her friends with probability ϕ .
 - 3. In period 2 i again shares with probability ϕ , any friends with knowledge of the idea share with their friends with probability ϕ , etc.

Diffusion Centrality (continued)

• After T periods the expected total number of time all nodes hear about a new idea originating from agent i (including repetitions), is given by the i^{th} element of

$$\mathbf{c}^{\mathsf{DC}}(\mathbf{D}, \phi, T) = \begin{bmatrix} \sum_{t=1}^{T} (\phi \mathbf{D})^{t} \\ \sum_{t=1}^{T-1} (\phi \mathbf{D})^{t} \end{bmatrix} \iota_{N}$$
$$= \begin{bmatrix} \sum_{t=0}^{T-1} (\phi \mathbf{D})^{t} \\ \sum_{t=0}^{T} (\phi \mathbf{D})^{t} \end{bmatrix} (\phi \mathbf{D}) \iota_{N}.$$

• So that as $T \to \infty$, we have $\mathbf{c}^{\mathsf{DC}}(\mathbf{D}, \phi, T) \to \mathbf{c}^{\mathsf{KB}}(\mathbf{D}, \phi)$ for $\phi < 1/\lambda_{\mathsf{max}}$.

Wrapping Up

- Network data, as encapsulated by adjacency matrices are complex
 - rich combinatoric structure
 - strong dependencies across different statistics of ${f D}$
- Researchers have motivated the various statistics reviewed here both formally and heuristically.
-methods of (frequentist) inference associated with the statistics reviewed here are still under development.
 - how do we compute a asymptotic standard error for average degree?