

中央處理器 (CPU)

第一節、CPU

第二節、儲存體類型

第三節、CPU如何執行程式

第四節、在記憶體中尋找資料

第五節、資料表示法

第六節、系統單元

第七節、速度和能力

當代計算機的通用架構

- □ 「馮紐曼模式」(von Neumann Model, 1945)
 - 最主要的精神在於「儲存程式」(stored program)的概念

第一節、CPU

- □CPU為將"資料"轉換成→資訊的控制中心
- □執行儲存在記憶體中程式指令的一組電路
- □因此,記憶體為暫時儲存程式執行時所需 的指令和資料,與CPU兩者密不可分。
- □而CPU可分成兩個主要的部分:
 - 一. 控制單元 (CU)
 - 二. 算術邏輯單元 (ALU)

一、控制單元 CU (Control Unit)

- □硬體的一部分,負責控制
- □指示電腦系統去執行程式指令
- □必須負責ALU和記憶體之間的 溝通
- □必要時從輔助儲存體(硬碟)傳 送資料和指令到記憶體中

二、算術邏輯單元 ALU (Arithmetic / Logic Unit)

- □負責執行算術AU運算動作
 - ■加、減、乘、除
- □負責執行邏輯LU運算動作
 - ■評估條件值,進行比較
 - ■可以比較:數字、字母、特別字元

三、暫存器

- □高速的暫時存放指令或資料的地方
- 口位於CPU內的額外儲存區
- □由控制單元直接指揮
 - ■用來接受、保留或搬移指令與資料,記錄下一條 要執行的指令或所需資料存放在記憶體中的位置
- □加快存取資料速度及加速算術運算或邏輯比較
- □不同的暫存器,各有特殊的用途

指令暫存器

儲存目前正在執行的指令

資料暫存器 儲存正等著被處理的資料 儲存處理過後的結果

三、暫存器

- □暫存器儲存的是與目前「正在」執行的 指令有關的資料。
- □主記憶體則儲存「最近」要使用的資料
- □輔助記憶體則儲存「以後」可能會用到 的資料,無論多久後才會用到。
- □如計算某位員工薪水的程式,將員工的 工作時數及時薪放在暫存器中使用
- □而加班加數、紅利及扣減額等則存在主 記憶體中待用。
- □其餘員工個人基本資料則放在硬碟中

CPU 與記憶體

- □CPU無法直接處理從磁碟或輸入裝置而來的資料
 - ■資料必須先存放在記憶體中
 - ■控制單元負責從磁碟擷取資料,並搬移到記憶體
- □資料是傳送到 ALU 來處理
 - ■控制單元負責將資料傳送到 ALU,處理後再傳回 記憶體
- □資料和指令會一直保存在記憶體中,直到被傳 送到輸出或儲存裝置,或是程式執行完畢為止

第二節、儲存體類型

- □輔助儲存體(硬碟)
 - ■儲存以後要用到的資料
 - ■長期儲存在外部媒體中,如磁碟
- □記憶體(主要記憶體)
 - ■儲存最近要使用的資料
 - ■暫時儲存:CPU 在參考程式指令和資料 時都會用到它
 - ■存取速度比輔助儲存體快
- □暫存器
 - ■儲存與目前正執行的指令立即相關的資料
 - ■存取速度記憶體快

記憶體

- □也稱為主要儲存裝置或是主記憶體
 - ■通常是用RAM(Random-Access Memory) 這個名稱來表示 Sequential
 - ■不是CPU的一部分
- □用來存放程式執行中需要用到的指令或資料
- □只要程式正在執行當中就會一直儲存資訊

第三節、CPU如何執行程式

- □ 每一條指令都經過四個步驟
 - 機器循環週期:執行一條指令所需要的時間量
 - 擷取、執行和儲存運算動作所需要的時間
 - 個人電腦可以在不到百萬分之一秒的時間完成
 - 超級電腦則不到兆分之一秒
 - 系統時鐘(system clock) 讓電腦所有的運作同步
- □ 每種 CPU 都有它自己的指令集
 - CPU 所能了解和執行的那些指令

第三節、CPU如何執行程式

- □ 機器循環週期= I-time + E-time
- □ 指令時間(Instruction-Time):需要的資料和 指令需先存入記憶體中
 - 1.控制單元從記憶體中撷取指令放至→暫存器
 - 2. 控制單元將此指令解碼(辨識此指令),並決定所 需資料在記憶體的位置
- □ 執行時間(Execution-Time)
 - 3. 控制單元將資料從記憶體搬至算術邏輯單元內的 暫存器中,由ALU執行算術或邏輯指令
 - 4.控制單元將運算結果儲存在記憶體或暫存器

第四節、在記憶體中尋找資料

- □記憶體中的每個位置都會被標示一個獨一 無二的位址(address),如同信箱一般
 - ■而位址不會改變、但內容可能會改變
- □程式設計師會使用符號位址來記錄。
- □每個記憶體位置只可以保存一條指令或一 個資料。
- □當此記憶體位置被放入新的指令或資料 時,原來的內容就被覆蓋了。

第五節、資料表示法

開 /關 (On/Off)

使用二進位系統來 表示雷路的狀態

1 O DN OFI

十進位數字0-15 轉換成二進位的對照表					
十進位	二進位				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
8	1000				
9	1001				
10	1010				
12	1100				
13	1101				
14	1110				
15	1111				

第四節、在記憶體中尋找資料

位元、位元組、字組

□位元(BIT)

- Binary DigIT
- 電路開或關 (On/off)、1 (開)或 O(關)
- 電腦記憶體中儲存資料的基本單位
- □位元組 (BYTE)
 - ■8個bit、每一個位元組可儲存一個字元
 - ■記憶體與儲存裝置是以位元組的個數來衡量
- □字組 (WORD)
 - ■暫存器的大小
 - CPU在處理時當做一個單位的位元個數
 - ■位元數愈大電腦功能愈強,如8位元電腦、 16位元、32位元、64位元電腦...

儲存體容量的測量單位KMGT

KB - kilobyte

少 ≥ 1024 個位元組

・有些磁片

· 快取記憶體Cache

MB - megabyte

· 約百萬個位元組 · RAM 2²⁰ = (1024)²

· RAM

GB - gigabyte

· 約十億個位元組

・硬碟

 $9^{30} = (10 \ge 4)^{3}$

· CD 和 DVD

TB - terabytes

· 約一兆個位元組

• 大型硬碟

2 + 0 = (024)4

編碼機制

- □位元組能用來表示字元的資料?然 後這些位元代表什麼字元?
- □由於我們必須和其他電腦通訊,故 須協議訂定採用共同的格式資料。
- □編碼機制,就是將這些組合值個別 指派給某個特定字元的方式。
- 口如ASCII、EBCDIC、Unicode... 等

儲存體容量的測量單位KMGT

術語	原文	縮寫	大約的位	精確的
			元組個數	位元組個數
千位元組	Kilobyte	KB	一千	2'= 1,024
百萬位元組	Megabyte	MB	一百萬	1,048,576
十億位元組	Gigabyte	GB	十億	1,073,741,824
一兆位元組	Terabyte	ТВ	一兆	1,099,511,627,776
千兆位元組	Petabyte	РВ	千兆	1,125,899,906,842,624

編碼機制

- □ ASCII(美國資訊交換標準碼)最被廣泛使用
 - 使用一個包含8個位元的位元組
 - 28 = 256 種可能的組合或字元
 - ■用在幾乎所有的 PC 和許多較大型的電腦
- □ EBCDIC(擴增二進式十進交換碼)
 - 使用一個包含8個位元的位元組
 - 28 = 256種可能的組合或字元
 - ■主要用在 IBM 相容的大型主機
- □ Unicode(萬國碼)
 - ■使用兩個包含8個位元的位元組(16 個位元)
 - 216 = 65.536 種可能的組合或字元
 - ■可支援世界上所有語言所需要的字(2倍空間)
 - ■與 ASCII 回溯相容,會認得ASCII字元
 - ■大多數新的作業系統和套裝軟體都支援

十進位	十六進位	ASCII 字元									
0	00	NULL	48	30	0	65	41	Α	97	61	α
1	01	SOH	49	31	1	66	42	В	98	62	b
2	02	STX	50	32	2	67	43	С	99	63	С
3	03	ETX	51	33	3	68	44	D	100	64	d
4	04	EOT	52	34	4	69	45	Ε	101	65	e
5	05	ENQ	53	35	5	70	46	F	102	66	f
6	06	ACK	54	36	6	71	47	G	103	67	9
7	07	BEL	55	37	7	72	48	Н	104	68	h
8	08	BS	56	38	8	73	49	I	105	69	i
9	09	НТ	57	39	9	74	4 <i>A</i>	J	106	6 <i>A</i>	j
10	0 <i>A</i>	LF	58	3 <i>A</i>	:	75	4B	K	107	6B	k
11	OB	VT	59	3B	;	76	4 <i>C</i>	L	108	6C	1
12	0 <i>C</i>	FF	60	3 <i>C</i>	<	77	4D	M	109	6D	m
13	OD	CR	61	3D	=	78	4E	Ν	110	6E	n
14	0E	50	62	3E	>	79	4F	0	111	6F	o
15	0F	SI	63	3F	?	80	50	Р	112	70	р
:	:	:	:	:	:	:	:	:	:	:	:

- 口放置電腦元件 黑盒子
 - ■主機板
 - ■儲存設備
 - ■連線
- □有些Apple Macintosh電腦則是把系統單元放

第六節、系統單元

- □ 放置電腦元件
 - 一. 主機板(Motherboard)
 - 二.儲存設備(軟碟、硬碟)
 - 三. 中央處理器CPU
 - 四. 記憶體元件(半導體)
 - 五. 匯流排(系統匯流排、擴充匯流排)

第六節、系統單元

- 一、主機板包含:
- □微處理器晶片
- □記憶體晶片
- □與其它硬體部分的連線
- □其它可能加入的晶片— 如數學輔助處理器

黑盒子

- □ 放置電腦元件
 - 一. 主機板(Motherboard)
 - 二. 儲存設備(軟碟、硬碟)
 - 三. 中央處理器CPU
 - 四. 記憶體元件(半導體)
 - 五. 匯流排(系統匯流排、擴充匯流排)

黑盒子

二、儲存設備

硬碟機 軟碟機 CD-ROM 光碟機 DVD-ROM光碟機

三、微處理器的組成元件

- □控制單元 CU
- □算術邏輯單元 ALU
- □暫存器
- □系統時鐘

三、微處理器

- □CPU是蝕刻在一個晶片上
- □晶片大小是 ¼ × ¼ 吋
- □由砂元素組成
- □包含數百萬個電晶體

- □如果電流能通過,表示電閘是開的,則代 表位元1
- □否則就表示電閘是關的,此時代表位元0

三、發明出更好的微處理器

- □將整間電腦的電路→放進一片微晶片中
 - ■價錢更便宜
 - ■速度更快
- □執行先前由其他硬體所負責的功能
 - ■數學輔助處理器現在是微處理器的一部分
 - ■多媒體指令現在也成了微處理器的一部分

三、發明出更好的微處理器

合併到微處理器上的功能越多:

- □電腦跑得更快
- □造價更便宜
- □更穩定

三、微處理器的種類

- 3. Power PC 晶片家族
 - ■由 Apple、IBM 和 Motorola 所合作設計
 - ■主要是用在Macintosh個人電腦家族上
 - ■它也可以用在伺服器與內嵌式系統中
- 4. Alpha (α)微處理器
 - ■由Compaq (康柏) 所製造
 - ■用在高階伺服器與工作站上

三、微處理器的種類

1.Intel 2.Intel 相容

□Pentium(主力) □Cyrix

□Celeron(低價) □AMD (Athlon)

□Xeon 和 Itanium (伺服器)

□ Centrino、Pentium M (筆記型電腦)

雙核心

雙CPU

第六節、系統單元

黑盒子

- □ 放置電腦元件
 - 一. 主機板(Motherboard)
 - 二. 儲存設備(軟碟、硬碟)
 - 三. 中央處理器CPU
 - 四. 記憶體元件(半導體)
 - 五. 匯流排(系統匯流排、擴充匯流排)

四、半導體記憶體

- □記憶體元件是從早期的真空管演進到 今日最新的半導體。
- □可靠度高、體積小、低價位、低功率
- □可大量製造→價錢較廉價
- □屬揮發性(Volatile)→需有電力才能保留資料,電源關掉後資料也跟著消失
- □應用在CMOS、RAM、ROM等記憶體

四、半導體記憶體 1.CMOS

- □互補金氧半導體 (Complementary metal oxide semiconductor, CMOS)
- □用在PC上儲存電腦在開機過程所需要的 硬體設定資訊,如時間、硬體組態資料
- □只耗用一點點電力,藉由電池的電力使 它在電腦關機後仍然保存著資料
- □CMOS 可以被更新→開機時按Del

電腦的核心記憶體

這些線材組成的網狀和圓圈型鐵環可以紀錄256位元記憶體,但目前最新的記憶體晶片利用與這個舊型記憶體同樣空間,卻可以記錄超過十億位元的資料。

四、半導體記憶體 2.RAM

- □ 隨機存取記憶體(Random-Access Memory)
- □使用者通常是指這種記憶體
- □保存目前執行中程式的指令與資料
- □記憶體裡的資料可以被隨機存取及修改
- □ 具揮發性: 需要電流才能保持資料,電源關閉後 RAM 上的資料就會消失
- 1. SRAM (静態, Static RAM)
- 2. DRAM (動態, Dynamic RAM)

bu-Her

Pentium III 450的SRAM(L2 Cache on die)

Maxtox硬碟上面使用 Samsung出廠的SRAM(disk cache)

四、半導體記憶體 2.RAM的種類

- 、SRAM(静態RAM, Static RAM)
- □ 用在特殊用途上,第二級快取記憶體
- □ 速度比 DRAM 快,但比較貴(較少用)
- □ 只要有電力,儲存內容就會依舊存在
 - 1.ASRAM(非同步, Async SRAM)
 - 2.SSRAM(同步, Sync SRAM)
 - 3.PB SRAM(管線爆發靜態隨機存取記憶體, Pipeline Burst SRAM)

四、半導體記憶體 2.RAM的種類

- 一. SRAM (静態, Static RAM)
- 二. DRAM (動態, Dynamic RAM)
 - 1. SDRAM (同步, Synchronous DRAM)
 - 2. RDRAM (Rambus DRAM)
 - 3. ECC DRAM (Error Correction Code DRAM)

二、DRAM(動態RAM, Dynamic RAM)

- □必須持續充電,因為它的體積與價格的優勢,大多數的 PC 記憶體都使用它
- □ Rambus DRAM:速度更快、但價格更貴
- □SDRAM:(同步)比較快的一種 DRAM
 - DDR SDRAM: 會在每個時鐘滴答 (tick) 送出雨次資料,因此是同速度SDRAM的兩倍快。
 - ■DDR2 SDRAM:它在每個時鐘滴答可送出 SDRAM四倍的資料量,而且耗電量只有一半, 是目前桌上型PC最常見的RAM。
 - DDR3 SDRAM:每個時鐘滴答可送出SDRAM 八倍的資料量,速度也提升、電壓也減至1.5V。

<168pin的SDRAM>

<184 -pin Rambus>

DRAM

<DDR2 SDRAM外觀圖 >

四、半導體記憶體 2.RAM的種類

二、DRAM(動態RAM, Dynamic RAM)

- 1. FPM DRAM (Fast Page Mode DRAM)早期
- 2. EDO DRAM (Extended Data Out DRAM)前期
- 3. SDRAM(同步,Synchronous DRAM)
- 4. RDRAM (Rambus DRAM)
- 5. DDR SDRAM (Double Data Rate DRAM)
- 6. DDR2 SDRAM (Double Data Rate DRAM)主流
- 7. DDR3 SDRAM (Double Data Rate DRAM)
- 8. ECC DRAM (Error Correction Code DRAM)

四、半導體記憶體 2.RAM的種類

一、SRAM(静態RAM, Static RAM)

- 1. ASRAM (非同步, Async SRAM)
- 2. SSRAM (同步, Sync SRAM)
- 3. PB SRAM (管線爆發SRAM, Pipeline Burst SRAM)

二、DRAM(動態RAM, Dynamic RAM)

- 4. FPM DRAM (Fast Page Mode DRAM)
- 5. EDO DRAM (Extended Data Out DRAM)
- 6. RDRAM (Rambus DRAM)
- 7. ECC DRAM (Error Correction Code DRAM)
- 8. SDRAM(同步,Synchronous DRAM)
 - 1. DDR SDRAM (Double Data Rate SDRAM)
 - 2. DDR2 SDRAM (Double Data Rate SDRAM)
 - 3. DDR3 SDRAM (Double Data Rate SDRAM)

2.RAM的種類

A S RAM S S RAM PB S RAM

FPM D RAM
EDO D RAM
R D RAM
ECC D RAM
S D RAM
DDR S D RAM
DDR2 S D RAM
DDR3 S D RAM

四、半導體記憶體

3.ROM(Read-Only, 唯讀記憶體)

- □ 非揮發性(Non-volatile)→在關機後料不會消失
- □ 儲存開機(作業系統之核心程式)所需的開機程序
- □裡面的指令和資料可讀取、使用,但不能修改
- □這些指令通常是在工廠裡燒錄進去的
- □在工廠製造時便燒錄了永久的程式和資料
- □當電腦電源開啟時,儲存在ROM晶片裡的一個小程式,會進行內部硬體元件的測試動作,然後將核心程式從硬碟中載入。

四、半導體記憶體 2.擴充RAM

- □購買封裝在電路板上的記憶體模組
- □SIMM 晶片是安裝在電路板的一邊
- □DIMM 晶片是安裝在電路板的雨邊
- □你能安裝的RAM數量最多是多少,取 決於主機板的設計→考慮可擴充性
- □現在PC軟體會要求相當大量的記憶體
- □尤其是同時執行多個應用程式時

四、半導體記憶體

3.ROM(Read-Only, 唯讀記憶體)

- □可程式化(Programmable ROM)
 - ♥可燒錄資料或程式,但寫入後無法修改
- □可消除性可程式化(Erasable PROM)
 - ♥利用紫外線照射消除,可重複使用修改
- □電子式可消除性可程式化(EEPROM→電壓)
- □快閃式唯讀記憶體(Flash ROM)
 - ⇒速度快,常用於儲存主機板上的BIOS資料
- □遮罩式唯讀記憶體(Mask ROM)→成本低

快閃記憶體

□非揮發性的記憶體

- ■被使用在行動電話、數位相機和某些 手持式電腦上
- ■速度比一般ROM快很多
- ■逐漸被用來取代ROM來記錄系統資訊
- ■比磁碟機小而且需要的電力少得多

記憶卡的種類

MS Pro Duo 🛨

SD (Secured Digital Card)卡

ard)卡 SDHC (SD High Capacity)卡

CF (Compact Flash)☆

XD (eXtreme Digital)卡

Microdrive 微型硬碟

快閃記憶體卡

筆記型電腦可透過PCMCIA介面連接CD-RW

PCMCIA介面的無線網路卡

CF卡可以插入PCMCIA Adapter然後再插入筆記型電腦的PCMCIA插槽

IC卡與智慧卡(IC Card/Smart Card)

- ■IC智慧卡內部不必使用太高檔的CPU,通常實際 採用的是微控制器(Microcontroller;又稱為單晶 片)的核心,例如Intel的8x51系列
 - □由於IC智慧卡具有運算及執行程式的能力,因此可以 進行資料的加密與解密,對於卡片進行深一層的保護。
 - □未來IC智慧卡將取代現有的各種卡片、證件,例如身分證、學生證、駕照、提款卡、信用卡、現金卡等等都 將改為IC智慧卡。

RE-ID

捷運悠遊卡(感應式IC智慧卡)

黑盒子

- □ 放置電腦元件
 - 一. 主機板(Motherboard)
 - 二.儲存設備(軟碟、硬碟)
 - 三. 中央處理器CPU
 - 四. 記憶體元件(半導體)
 - 五. 匯流排(系統匯流排、擴充匯流排)

五、匯流排(BUS)

- 1. 系統匯流排(System Bus)
- □負責在 CPU 與記憶體之間傳送資料
- □匯流排寬度(Bus Width)
 - ■電腦一次可以傳輸的資料位元數(32位元)
 - ■寬度愈大,一次所能傳輸的資料也愈多
 - ■資料傳輸的速度就愈快,根據CPU設計
 - ■通常會和 CPU 的字組 (word) 大小一致
- □速度是用MegaHertz (MHz)來衡量

五、匯流排(BUS)

- □匯流排(bus)為一種傳輸的工具
- □是一組平行的電路可以傳送電子訊號
- 口系統匯流排(System Bus)
 - ♥負責在 CPU 與記憶體之間傳送資料
- 口擴充匯流排(Expansion Bus)
 - ♥將擴充電路板(介面卡)插入擴充槽裡

五、匯流排(BUS) 1.系統匯流排

五、匯流排(BUS) 2.擴充匯流排

- □連接到主機板的擴充槽
 - ■用來將各種不同的週邊裝置與電腦相連接
- □將擴充電路板(介面卡)插入擴充槽裡
- □提供外部的連接端→連接埠(Port)
 - ■序列埠(Serial Port):滑鼠、鍵盤(較慢)
 - ■平行埠(Parallel Port):印表機、掃描器

PC 匯流排與連接埠

ISA/EISA	用在慢速的裝置如滑鼠和數據機上
PCI / PCI Express	適用於連接高速的裝置如硬碟和網路卡上
AGP	連接記憶體與圖形卡提供更快速的視訊效能
USB	省去需要多張擴充卡的麻煩;可以"熱切換"(hot-swappable),不必關電源即可切換
IEEE 1394 (FireWire)	一種高速的匯流排,通常是用在連接視訊設 備到你的電腦上(新的Fire Wire匯流排)
PC Card	信用卡般大小的 PC Card 裝置,通常是用在筆記型電腦上

常見的連接埠

- □外部的連接頭,可以讓如印表機之類的週 邊裝置插上
- □序列埠:一次傳輸一個位元,適用於慢速 的裝置,如滑鼠和鍵盤
- □平行埠 :一次傳送一群位元,適用於比較 快的週邊裝置,如印表機和掃描器
- □USB連接埠:目前正快速的成為最常用的連接埠,無論是硬碟、滑鼠、印表機、數位相機都可以透過USB連接埠與電腦連接

常見的連接埠

- □網路埠:功用是將PC連上區域網路
- □FireWire連接埠:用來連接視訊設備到電腦
- □ IrDA連接埠:透過紅外線在兩個裝置間傳輸 資料,速度不快,距離要夠近且不能有障礙物
- □MIDI連接埠:用來連接MIDI裝置到電腦上
- □Bluetooth連接埠:使用無線電波在短距離內(30英呎)傳輸資料

第七節、速度和運算能力

何因素讓某台電腦比其他電腦更快?

- □ 微處理器(CPU)的速度及數量→P4-2G*2
- □記憶體的大小→512MB、1GB的RAM
- □硬碟轉速快慢→7200、9000轉(存取速度)
- □硬碟的傳輸介面→ SCSI、EDI、SATA
- □匯流排的大小→32位元、64位元電腦
- □有沒有快取(cache)→256K、512K
- □RISC 電腦→精簡指令技術→較快
- □平行處理(Parallel Processing)→較快

影響處理速度的因素

一、電腦運算速度

完成指令執行所需要的時間

- □ Ms千分之一秒 (Millisecond)
- □μ百萬分之一秒 (Microsecond)
- □ns十億分之一秒 (Nanosecond)
 - ■目前新型的電腦
- □ psec兆分之一秒 (Picosecond)
 - ■未來的電腦

二、微處理器的速度

- □時鐘速度(每秒幾百萬個機器循環)
- □通常是以十億赫茲 (gigahertz, GHz) 來表示
 - 每秒多少十億個機器循環(Gigahertz, GHz)
 - 有些老PC以百萬赫茲 (megahertz, MHz) 為單位
- □直接比較時鐘速度只對相同的微處理器有意義
- □每秒完成的一百萬個指令(百萬指令個數, MIPS)通常要比測量系統時鐘速度來得準確
- □電腦處理複雜數學計算的能力
 - 每秒一百萬個浮點運算 (Megaflop)

三、快取 (Cache)

- □它是一塊小但非常快速的暫存記憶體
- □目的為了加速內部資料和軟體指令的傳輸
- □存放最近用過或最常被用到的資料和指令
- □存在於CPU和RAM之間,因CPU速度比 RAM快,故先將資料放在Cache較易存取
 - ■若不在快取裡,控制單元會改從記憶體擷取
 - ■在快取中越常成功找到,系統效能就越快

三、快取的種類

- □內部快取
 - ■第一級(L1)、內建在微處理器中
 - ■最多到128KB
- □外部快取(L2→L3)
 - ■第二級 (L2)、在單獨晶片上
 - ■256KB 或 512 KB、SRAM 技術
 - ■比L1快取便宜但較慢;比記憶體快但較貴
 - ■第三級 (L3)通常介於2-4MB之間
 - ■有些新款的微處理器晶片,已經把L2也納入處理器晶片中(進階傳輸快取)

三、快取的種類

四、指令集

- □CISC 技術(複雜指令集)
 - ■複雜指令集計算模式
 - ■一般傳統電腦
 - ■其中許多指令很少用到
- □RISC 技術(精簡指令集)
 - ■精簡指令集計算模式(Power PC)
 - ■只提供一小組指令、速度增快四到十倍,但遇到複雜運算則變慢
 - ■適合很少用到複雜指令的程式
 - □繪圖領域、工程領域

	RISC	CISC
指令種類	少,通常低於100道	多,通常在2 00~300 道以上
指令功能	簡單	複雜
控制單元	硬體拉線控制	微程式控制
指令格式	固定且可平行解碼, 速度快	不固定,必須循序解碼
指令長度	固定	不固定
管線	單純	複雜
應用領域	特定領域,如工作站	非特定,如個人電腦
產品	PowerPC · Sun SPARC · DLX	Intel x86 · Motorola 680x0

五、運算處理的種類

□循序處理

- ■每次只執行一項指令
- ■擷取、解碼、執行、儲存

□管線處理

- 擷取、解碼、執行、儲存等指令的動作並 不需要在下一個指令開始運作前完成。
- ■當指令1正在解碼的同時就擷取指令2

□平行處理

- ■同一時間有多個處理器同時工作
- ■有能力處理每秒鐘數兆個浮點數運算指令
- ■例如網路伺服器與超級電腦

運算處理的種類

網格運算

- □是近年來新發展的一種分散式運算
- □將大量PC處理能力集合一起共同處理資料
- □其中最為人熟知的例子是SETI@Home, 也就是將全世界志願者的PC,透過 Internet結合成一個虛擬的超級電腦
- □將來也許網格運算不會只侷限於分享處理 能力,而會擴展成新的Internet模式