Elliptic Curve Cryptography

Tim Shaffer

Elliptic Curves and Their Applications in Cryptography

Tim Shaffer¹

Youngstown State University

MathFest 2014

¹Advisor: Dr. Jacek Fabrykowski

Fermat's Last Theorem

Elliptic Curve Cryptography

Tim Shaffer

Pierre de Fermat:

It is impossible to write a cube as the sum of two cubes, a fourth power as the sum of two fourth powers, and, in general, any power beyond the second as the sum of two similar powers. For this I have discovered a truly wonderful proof but the margin is too small to contain it

1995—Andrew Wiles published the first successful proof.

Elliptic Curve Factorization

Elliptic Curve Cryptography

Tim Shaffer

Definition:

Affine Space Projective Space Algebraic Curve Singular Points Elliptic Curves

Group

Additive
Operation
ECDLP
Order of $\mathcal{E}(\mathbb{F})$ Schoof's
Algorithm

Cryptography ECDH

ECDH Elgamal Tripartite Ke Exchange ID-based

References

Pollard's p-1 algorithm can find prime factors p of a composite integer for which p-1 is smooth.

Elliptic curve factorization is a generalization of Pollard's p-1 algorithm using random elliptic curve groups over $\mathbb{Z}/p\mathbb{Z}$.

Elliptic Curve Cryptography

Tim Shaffer

Definitions

Definition

An elliptic curve is a projective algebraic curve with affine coordinates given by

$$y^2 = x^3 + \alpha x + \beta$$

where

$$4\alpha^3 + 27\beta^2 \neq 0.$$

Elliptic curves over finite fields (usually $\mathbb{Z}/p\mathbb{Z}$) are of particular interest in cryptography.

Elliptic Curves

Elliptic Curve Cryptography

Tim Shaffer

Definitions

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Elliptic Curves

Properties Additive

Additive Operatio

Order of &

Schoof's Algorithm

Cryptography ECDH

Tripartite Ke Exchange ID-based

References

Elliptic Curve on $\mathbb{Z}/61\mathbb{Z}$

Elliptic Curve Cryptography

Tim Shaffer

Definitions

Affine Space Projective Space Algebraic Curve Singular Points Elliptic Curves

Group Propertie

Additive Operation

Order of $\mathcal{E}(\mathbb{F})$ Schoof's
Algorithm

Cryptography

ECDH Floamal

Tripartite Ke Exchange ID-based Encryption

Reference

Affine Space

Elliptic Curve Cryptography

Tim Shaffer

Affine Space

Definition

Given a finite field with q elements, \mathbb{F}_q , affine n-space over \mathbb{F}_q , denoted $A^n(\mathbb{F}_q)$, is the set of *n*-tuples $(a_0, a_1, \dots, a_{n-1})$ with $a_i \in \mathbb{F}_a$.

Definition

A **point** in $A^n(\mathbb{F}_q)$ is an *n*-tuple $(a_0, a_1, \dots, a_{n-1})$ for $a_i \in \mathbb{F}_q$.

Projective Space

Elliptic Curve Cryptography

Tim Shaffer

Affine Space
Projective Space
Algebraic Curves
Singular Points

Group Proper

Additive Operation ECDLP Order of $\mathcal{E}(1)$ Schoof's

Schoof's Algorithm Pairings

ECDH Elgamal

Elgamal Tripartite Key Exchange ID-based Encryption

References

Definition

Projective *n*-space over \mathbb{F}_q , denoted $P^n(\mathbb{F}_q)$, is the set of equivalence classes of nonzero elements of $A^{n+1}(\mathbb{F}_q)$ under the equivalence relation

$$(a_0,a_1,\ldots,a_n)\sim(b_0,b_1,\ldots,b_n)$$

iff there exists a $0
eq \lambda \in \mathbb{F}_q$ such that

$$a_i = \lambda b_i$$

for all
$$i = 0, 1, ..., n$$
.

Projective Space

Elliptic Curve Cryptography

Tim Shaffer

Definitions

Projective Space Algebraic Curves Singular Points Elliptic Curves

Group

Additive Operation ECDLP

Order of $\mathcal{E}(\mathbb{F}_q)$ Schoof's Algorithm Pairings

Cryptography ECDH

Elgamal
Tripartite Key
Exchange
ID-based
Encryption

References

Definition

A **point** in $P^n(\mathbb{F}_q)$, denoted $[a_0, a_1, \ldots, a_n]$, is the equivalence class containing (a_0, a_1, \ldots, a_n) .

While $A^2(\mathbb{F}_q)$ has q^2 points, $P^2(\mathbb{F}_q)$ has q^2+q+1 points.

The points in $P^2(\mathbb{F}_q)$ can be broken into 2 subsets:

- q^2 finite points of the form $[a_0, a_1, 1]$ that map to $A^2(\mathbb{F}_q)$
- q+1 **points at infinity** of the form $[a_0, a_1, 0]$ with the structure of $P^1(\mathbb{F}_q)$

Algebraic Curves

Elliptic Curve Cryptography

Tim Shaffer

D (...

Projective Space
Algebraic Curves
Singular Points

Singular Points Elliptic Curves

Properties
Additive
Operation

ECDLP
Order of $\mathcal{E}(\mathbb{F}_{\delta})$ Schoof's
Algorithm
Pairings

Cryptography ECDH

Elgamal
Tripartite Key
Exchange
ID-based
Encryption

References

Definition

An affine algebraic curve over \mathbb{F}_q is defined by f(x,y)=0 for an irreducible polynomial $f(x,y)\in \mathbb{F}_q[x,y]$.

Definition

A projective algebraic curve over \mathbb{F}_q is defined by f(x,y,z)=0 for an irreducible homogeneous polynomial $f(x,y,z)\in \mathbb{F}_q[x,y,z]$.

Singular Points

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Group

Additive Operation ECDLP Order of $\mathcal{E}(\mathbb{F}, \mathbb{F})$ Schoof's Algorithm Pairings

Cryptography

Elgamal Tripartite Ke Exchange ID-based

References

Definition

A point P on an affine curve f(x, y) = 0 is called **singular** if

$$\left(\frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)\right) = (0, 0)$$

Definition

An algebraic curve is called **nonsingular** or **smooth** if it contains no singular points.

Elliptic Curves

Elliptic Curve Cryptography

Tim Shaffer

Elliptic Curves

Order of $\mathcal{E}(\mathbb{F}_n)$

The **projective Weierstrass equation** of an elliptic curve is given by

$$y^2z + \alpha_1 xyz + \alpha_3 yz^2 = x^3 + \alpha_2 x^2 z + \alpha_4 xz^2 + \alpha_6 z^3.$$

The affine Weierstrass normal form of an elliptic curve is

$$y^2 - x^3 - \alpha x - \beta = 0$$

with discriminant $\Delta = -16(4\alpha^3 + 27\beta^2)$.

Additive Operation

Elliptic Curve Cryptography

Tim Shaffer

Definitions

Affine Space Projective Space Algebraic Curves Singular Points

Group Propertie

Additive

Operation

Order of E(F Schoof's Algorithm

Cryptography ECDH

Tripartite Ko Exchange ID-based

References

Additive Operation

Elliptic Curve Cryptography

Tim Shaffer

Definition:

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Propertie

Propertie

Additive Operation

Order of $\mathcal{E}(\mathbb{F}_{\delta})$ Schoof's Algorithm

Cryptography ECDH

Elgamal Tripartite Ke Exchange ID-based Encryption

References

Additive Operation

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Propertie

Propertie

Additive Operation

ECDLP

Schoof's Algorithm

Cryptography ECDH

Tripartite Ke Exchange ID-based Encryption

References

Theorem

For an elliptic curve $\mathcal{E}(\mathbb{F}_q)$ and $a,b,c,d\in\mathbb{F}_q$, let P=(a,b) and Q=(c,d) be two points on \mathcal{E} such that $Q\neq -P=(a,-b)$. Define

$$M = \begin{cases} \frac{d-b}{c-a} & \text{if } a \neq c \\ \frac{3a^2 + \alpha}{2b} & \text{if } a = c. \end{cases}$$

Then the point P + Q is given by R = (g, h) where

$$g = M^2 - a - c$$
$$h = Ma - Mg - b.$$

Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Additive Operatio

Order o

Order of E()
Schoof's
Algorithm

ECDH Elgamal Tripartite Key

Elgamal Tripartite Key Exchange ID-based Encryption

References

Given
$$P = (a, b)$$
 on \mathcal{E} , it is possible to efficiently compute $P = (a, b)$, denoted $[n]P$.

However, given P and [n]P, it can be *very* difficult to compute the value of n.

Efficient Computation of [n]P

Elliptic Curve Cryptography

Tim Shaffer

ECDLP

Algorithm

- Write n in its binary form, i.e. $n = n_0 + 2n_1 + 2^2n_2 + \cdots + 2^tn_t$, with $n_i \in \{0, 1\}$ and $n_t = 1$.
- 2 Let $P_0 = P$.
- **3** For i = 1, ..., t, compute $P_i = [2^i]P = [2]P_{i-1}$ recursively.
- 4 Then, $[m]P = \sum_{i=0}^{t} [n_i]P_i$.

While naïve application of the group operator requires nadditions, this algorithm can be carried out in $2t < 2 \log n$ additions.

Order of $\mathcal{E}(\mathbb{F}_q)$

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Spac Algebraic Curve Singular Points Elliptic Curves

Group

Additive Operation

ECDLP Order of $\mathcal{E}(\mathbb{F}_q)$

Schoof's

Pairings

Cryptography ECDH

Elgamal Tripartite Ke Exchange ID-based Encryption

References

A curve with a small number of points would be vulnerable to cryptanalysis.

If an elliptic curve on \mathbb{F}_p has exactly p points, the ECDLP can be transformed into addition in \mathbb{Z}_p .

Definition (Hasse-Weil Bound)

Let N be the number of points in \mathbb{F}_q on an elliptic curve \mathcal{E} .

$$q+1-2\sqrt{q} \leq N \leq q+1+2\sqrt{q}.$$

Schoof's Algorithm

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curve Singular Points Elliptic Curves

Group

Additive Operation ECDLP

Order of E(F,
Schoof's
Algorithm

Cryptograph ECDH Elgamal Tripartite Key Exchange

References

The number of points on an elliptic curve can be calculated efficiently using a deterministic polynomial time algorithm.

Schoof's Algorithm works by computing $q+1-N\pmod p$ for a large number of primes whose product is greater than $4\sqrt q$, then calculating q+1-N by the Chinese Remainder Theorem.

With improvements by Atkin and Elkies, Schoof's Algorithm runs in $O(\log^4 q)$ time.

Pairings on Elliptic Curves

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Prope

Additive Operation ECDLP

Order of $\mathcal{E}(1)$ Schoof's

Pairings

ECDH
Elgamal
Tripartite Key
Exchange
ID-based

References

Definition

Given abelian groups G_1 , G_2 , G_3 , a pairing $\omega: G_1 \times G_2 \to G_3$ maps every pair of elements in $G_1 \times G_2$ to some element in G_3 .

A cryptographically useful pairing is also

- bilinear: if $g_1, g_1' \in G_1$ and $g_2, g_2' \in G_2$ then $\omega(g_1g_1', g_2) = \omega(g_1, g_2)\omega(g_1', g_2)$ and $\omega(g_1, g_2g_2') = \omega(g_1, g_2)\omega(g_1, g_2')$.
- nondegenerate: if $\omega(g_1, g_2) = 1$ for all $g_2 \in G_2$ then it follows that $g_1 = 1$.

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Group

Properties
Additive
Operation
ECDLP
Order of &

Order of $\mathcal{E}(\mathbb{F}, Schoof's Algorithm Pairings$

Cryptography

ECDH Elgamal Tripartite Ke Exchange ID-based

References

Assume that all parties agree in advance on a choice of elliptic curve \mathcal{E} on finite field \mathbb{F}_p , $P \in \mathcal{E}(\mathbb{F}_p)$, and paring ω on \mathcal{E} .

The chosen parameters are assumed to be public knowledge and to possess the properties appropriate for security.

Let $M \in \mathcal{E}(\mathbb{F}_p)$ be a message (encoded as a point on $\mathcal{E}(\mathbb{F}_p)$) that Alice would like to send to Bob.

Elliptic Curve Diffie-Hellman Exchange

Elliptic Curve Cryptography

Tim Shaffer

Definitio

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Group

Propertie

Operation
ECDLP
Order of E(F)
Schoof's
Algorithm
Pairings

Cryptography

ECDH

Elgamal Tripartite Key Exchange ID-based Encryption

References

Setup

- Alice chooses a random secret $a \in \mathbb{Z}$ and sends A = [a]P to Bob over an insecure channel.
- In the same way, Bob chooses a random secret $b \in \mathbb{Z}$ and sends B = [b]P to Alice.

Algorithm

- Alice computes Q = [a]B = [ab]P.
- Bob computes Q = [b]A = [ba]P.

Elgamal Encryption

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Group

Additive Operation

ECDLP
Order of $\mathcal{E}(\mathbb{F}_q)$ Schoof's
Algorithm
Pairings

Cryptography ECDH

Elgamal Tripartite Ke Exchange ID-based

References

Setup

Bob chooses a private key $b \in \mathbb{Z}$ and computes his public key B = [b]P. Bob is free to publish B.

Encryption

Alice chooses a random $k \in \mathbb{Z}$ and computes $C_1 = [k]P$, $C_2 = M + [k]B$ and sends (C_1, C_2) to Bob.

Decryption

Bob computes $M = C_2 - [a]C_1$.

Tripartite Key Exchange

Elliptic Curve Cryptography

Tim Shaffer

Tripartite Key Exchange

Setup

Alice, Bob, and Carl each choose a random secret a, b, $c \in \mathbb{Z}$, respectively. They compute and share A = [a]P, B = [b]P, and C = [c]P over insecure channels.

Algorithm

Each computes the shared secret as follows using his/her respective secret:

- Alice: ω(B, C)^a
- Bob: $\omega(A,C)^b$
- Carl: $\omega(A, B)^c$

Identity-based Encryption

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curve Singular Points Elliptic Curves

Group

Additive
Operation
ECDLP
Order of $\mathcal{E}(\mathbb{F})$

Algorithm Pairings

ECDH Elgamal Tripartite Key Exchange

Exchange ID-based Encryption

References

Let Trent act as the trusted authority.

Setup

- ① Trent chooses a master secret $s \in \mathbb{Z}$ and publishes S = [s]P.
- ② Bob encodes his identity (e.g. username, email, etc.) as $b \in \mathbb{Z}$. Anyone can compute Bob's public key B = [b]P.
- **3** Bob requests his private key E = [s]B = [sb]P from Trent.

Identity-based Encryption

Elliptic Curve Cryptography

Tim Shaffer

Definition

Affine Space Projective Space Algebraic Curve Singular Points Elliptic Curves

Group

Propertie Additive Operation

ECDLP
Order of $\mathcal{E}(\mathbb{F}_{n})$ Schoof's

Pairings

Cryptography ECDH

Elgamal Tripartite Ke

ID-based Encryption

References

Encryption

Alice chooses a random secret $t \in \mathbb{Z}$ and sends $(U, V) = ([t]P, M + \omega(B, S)^t)$ to Bob.

Decryption

Bob computes $M = V - \omega(E, U)$.

References

Elliptic Curve Cryptography

Tim Shaffer

Definitions

Affine Space Projective Space Algebraic Curves Singular Points Elliptic Curves

Prope

Additive Operation ECDLP Order of $\mathcal{E}(\mathbb{F}_q)$ Schoof's Algorithm Pairings

Cryptograph: ECDH Elgamal Tripartite Key Exchange ID-based

References

- Baker, Alan. A Comprehensive Course in Number Theory.
 New York: Cambridge UP, 2012. Print.
- Boutet, Emmanuel. Example Elliptic Curves. Digital image. Wikimedia Commons. Wikimedia Foundation, 25 Oct. 2007. Web. 16 July 2014. (CC BY-SA 3.0)
- Ireland, Kenneth F., and Michael I. Rosen. A Classical Introduction to Modern Number Theory. Vol. 84. New York: Springer-Verlag, 1990. Print. Graduate Texts in Mathematics.
- Ling, San, Huaxiong Wang, and Chaoping Xing. Algebraic Curves in Cryptography. Boca Raton: CRC, 2013. Print.
- Menezes, Alfred J., Paul C. Van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography. Boca Raton: CRC, 1997. Print.

Elliptic Curve Cryptography

Tim Shaffer

Definition

Projective Space
Algebraic Curves
Singular Points
Elliptic Curves

Group

Additive Operation ECDLP

Order of $\mathcal{E}(\mathbb{F}$ Schoof's
Algorithm

Cryptography ECDH

Elgamal Tripartite Ke Exchange ID-based

References

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.