목 차

- 1 빅데이터 저장, 계획 수립하기
- 2 빅데이터 저장 모델 설계하기

3 빅데이터 저장 관리 시스템 구성하기

- 3-1 fault-tolerance(결함 감내 시스템)
- 3-2 scale-out (수평적 확장성)
- 3-3 DBMS 인기 순위

- 4 빅데이터 적재하기
- 5 빅데이터 운영하기

3-1 Fault tolerant system

가. 결함 감내 시스템(Fault tolerant system)

A. 시스템을 구성하는 부품의 일부에 서 결함(falut) 또는 고장(failure) 이 발생하여도 정상적 혹은 부분 적으로 기능을 수행하는 시스템.

3-1 빅데이터 저장 관리시스템

- 가. 빅데이터 저장 관리시스템이란? 대용량 데이터 집합을 저장하고 관리하는 시스템이다.
- 나. 두 가지 저장 방식 분산 파일 시스템 방식과 데이터 베이스 방식
- 다. 데이터 베이스 방식
 RDBMS방식과 NoSQL 방식

3-2 scale-out(수평적 확장성)

가. Scale-out(스케일 아웃)

A. 서버를 운영시에 갑작스런 이용자의 증가, 사업 확장 등의 이유로 더 많은 서버 용량과 성능이 필요하다. 이중에 시스템을 확장시키는 방법으로 두가지가 있다.
 Scale-out, Scale-up

3-2 scale-out(수평적 확장성)

가. Scale-out(스케일 아웃)

A. 서버를 여러 대 추가하여 시스템을 확장하는 방법

나. Scale-up(스케일 업)

- A. 1의 처리 능력을 가진 서버 한대를 '5'의 처리 능력이 있는 서버로 업그레이드 시킨다.
- B. [단점] 서버 한 대에 모든 부하가 집중된다

3-3 DBMS 인기 순위

가. DBMS 인기 순위(2016년)

<표 1-8> DBMS 인기 순위 (출처: Solid IT. (2016. 08). DB-Engines Ranking. Solid IT. http://db-engines.com/en/ranking)

	순 위		DRMS	데이터베이스 모델		
2016년 8월	2016년 7월	2015년 8월	DDIVIO			
1.	1.	1.	Oracle	관계형 데이터베이스		
2.	2.	2.	MySQL	관계형 데이터베이스		
3.	3.	3.	Microsoft SQL Server	관계형 데이터베이스		
4.	4.	4.	MongoDB	Document 데이터베이스		
5.	5.	5.	PostgresSQL	관계형 데이터베이스		
6.	6.	6.	DB2	관계형 데이터베이스		
7.	7.	8.	Cassandra	Column-oriented 데이터베이스		
8.	8.	7.	Microsoft Access	관계형 데이터베이스		
9.	9.	9.	SQLite	관계형 데이터베이스		
10.	10.	10.	Redis	Key-value 데이터베이스		

3-3 DBMS 인기 순위

가. DBMS 인기 순위

342 systems in ranking, May 2018

			5 12 Systems in running, ridy 2016						
	Rank		DRMC	Databasa Madal	Score				
May 2018	Apr 2018	May 2017	DBMS	Database Model	May 2018	Apr 2018	May 2017		
1.	1.	1.	Oracle 🖶	Relational DBMS	1290.42	+0.63	-63.90		
2.	2.	2.	MySQL 🔠	Relational DBMS	1223.34	-3.06	-116.69		
3.	3.	3.	Microsoft SQL Server 🖶	Relational DBMS	1085.84	-9.67	-127.96		
4.	4.	4.	PostgreSQL 🚹	Relational DBMS	400.90	+5.43	+34.99		
5.	5.	5.	MongoDB 🖶	Document store	342.11	+0.70	+10.53		
6.	6.	6.	DB2 🔠	Relational DBMS	185.61	-3.34	-3.23		
7.	1 9.	1 9.	Redis 🛨	Key-value store	135.35	+5.24	+17.90		
8.	4 7.	4 7.	Microsoft Access	Relational DBMS	133.11	+0.89	+3.24		
9.	4 8.	1 11.	Elasticsearch 🖶	Search engine	130.44	-0.92	+21.62		
10.	10.	4 8.	Cassandra 🛨	Wide column store	117.83	-1.26	-5.28		
11.	11.	4 10.	SQLite 🖶	Relational DBMS	115.45	-0.53	-0.61		
12.	12.	12.	Teradata	Relational DBMS	74.41	+0.74	-1.91		
13.	13.	1 6.	Splunk	Search engine	65.09	+0.04	+8.40		
14.	14.	1 8.	MariaDB 🔠	Relational DBMS	64.99	+0.44	+14.01		
15.	15.	4 14.	Solr	Search engine	61.51	-1.70	-2.26		
16.	16.	4 13.	SAP Adaptive Server 😷	Relational DBMS	61.51	-0.12	-6.24		
17.	17.	4 15.	HBase 🛅	Wide column store	59.95	+0.26	+0.44		
18.	18.	1 20.	Hive 🖶	Relational DBMS	56.97	-0.43	+13.49		
19.	19.	4 17.	FileMaker	Relational DBMS	54.67	-0.33	-1.81		

3-4 MongoDB

가. MongoDB

- ◆ MongoDB는 문서(document)기반 데이터베이스의 쉬운 개발과 확장성 확보를 위해 설계된 오픈 소스 DBMS이다.
- ◆ 높은 성능
- ◆ 높은 가용성
- ◆ 자동 확장성(Auto Scaling)