Dados Obtidos:

i	1	2	•••	n
$f(x_i)$	$f(x_1)$	$f(x_2)$	•••	$f(x_n)$
x_i	x_1	x_2	•••	x_n

Função que queremos aproximar:

$$f(x_i) \cong g(x_i)$$

 $f(x_i) \cong a_0 * g_0(x_i) + a_1 * g_1(x_i) + \dots + a_m * g_m(x_i)$

Após vários passos (veja o livro se quiser) chegamos em:

$$\begin{bmatrix} \sum_{i=1}^{n} g_{0}(x_{i})g_{0}(x_{i}) & \sum_{i=1}^{n} g_{0}(x_{i})g_{1}(x_{i}) & \cdots & \sum_{i=1}^{n} g_{0}(x_{i})g_{m}(x_{i}) \\ \sum_{i=1}^{n} g_{1}(x_{i})g_{0}(x_{i}) & \sum_{i=1}^{n} g_{1}(x_{i})g_{1}(x_{i}) & \cdots & \sum_{i=1}^{n} g_{1}(x_{i})g_{m}(x_{i}) \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} g_{m}(x_{i})g_{0}(x_{i}) & \sum_{i=1}^{n} g_{m}(x_{i})g_{1}(x_{i}) & \cdots & \sum_{i=1}^{n} g_{m}(x_{i})g_{m}(x_{i}) \end{bmatrix} * \begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} g_{0}(x_{i})f(x_{i}) \\ \sum_{i=1}^{n} g_{1}(x_{i})f(x_{i}) \\ \vdots \\ \sum_{i=1}^{n} g_{m}(x_{i})f(x_{i}) \end{bmatrix} \rightarrow 0$$

$$\begin{bmatrix} a_0 \sum_{i=1}^n g_0(x_i) g_0(x_i) + a_1 \sum_{i=1}^n g_0(x_i) g_1(x_i) + \dots + a_m \sum_{i=1}^n g_0(x_i) g_m(x_i) \\ a_0 \sum_{i=1}^n g_1(x_i) g_0(x_i) + a_1 \sum_{i=1}^n g_1(x_i) g_1(x_i) + \dots + a_m \sum_{i=1}^n g_1(x_i) g_m(x_i) \\ \vdots \\ a_0 \sum_{i=1}^n g_m(x_i) g_0(x_i) + a_1 \sum_{i=1}^n g_m(x_i) g_1(x_i) + \dots + a_m \sum_{i=1}^n g_m(x_i) g_m(x_i) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n g_0(x_i) f(x_i) \\ \sum_{i=1}^n g_1(x_i) f(x_i) \\ \vdots \\ \sum_{i=1}^n g_m(x_i) f(x_i) \end{bmatrix}$$

Que leva em um sistema com m variáveis

Exemplo:

i	1	2	3	4
$f(x_i)$	0	2	4	6
χ_i	5.3	7.0	9.4	12.3

Função escolhida pra aproximar:

$$f(x_i) \cong g(x_i)$$

$$f(x_i) \cong a_0 * g_0(x_i) + a_1 * g_1(x_i)$$

$$g_0(x_i) = x_i \qquad g_1(x_i) = 1$$

Note:

$$g(x_i) = ax_i + b$$

$$g(x_i) = a_0x_i + a_1$$

$$g(x_i) = a_0 * x_i + a_1 * 1$$

Então:

$$g(x_i) = a_0 * x + a_1 * 1$$

$$g(x_i) = a_0 g_0(x_i) + a_1 g_1(x_i)$$

$$g_0(x_i) = x_i g_1(x_i) = 1$$

Substituindo e Aplicando o método:

$$\begin{bmatrix} a_0 \sum_{i=1}^n g_0(x_i) g_0(x_i) + a_1 \sum_{i=1}^n g_0(x_i) g_1(x_i) \\ a_0 \sum_{i=1}^n g_1(x_i) g_0(x_i) + a_1 \sum_{i=1}^n g_1(x_i) g_1(x_i) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n g_0(x_i) f(x_i) \\ \sum_{i=1}^n g_1(x_i) f(x_i) \end{bmatrix} \rightarrow$$

$$\rightarrow \begin{bmatrix} a_0 \sum_{i=1}^{4} x_i x_i + a_1 \sum_{i=1}^{4} x_i * 1 \\ a_0 \sum_{i=1}^{4} x_i * 1 + a_1 \sum_{i=1}^{4} 1 * 1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{4} x_i * f(x_i) \\ \sum_{i=1}^{4} 1 * f(x_i) \end{bmatrix} \rightarrow \begin{bmatrix} a_0 \sum_{i=1}^{4} x_i^2 + a_1 \sum_{i=1}^{4} x_i \\ a_0 \sum_{i=1}^{4} x_i * 1 \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{4} x_i * f(x_i) \\ \sum_{i=1}^{4} 1 * f(x_i) \end{bmatrix}$$

$$\rightarrow a_0(27,74) = (23,4) \rightarrow a_0(0,84354...)$$

$$\rightarrow a_1 = (3) - a_0(8,5) = 3 - 7,1070... = -4,170151406...$$