1. Solution to problem 1

- (a) Straightforward proof by induction.
- (b) This routine requires n additions and n multiplications. Let $n = 2^k$ and consider the polynomial $p(x) = x^n$. This polynomial can be evaluated at x using $\log n$ multiplications only by repeatedly squaring x.

2. Solution to Problem 2

(a) Split the *n*-dimensional vector \mathbf{v} into vectors \mathbf{v}^t and \mathbf{v}^b which consist of the top and bottom n/2 entries of \mathbf{v} , respectively.

Similarly, split the *n*-dimensional vector $H_k \mathbf{v}$ into $(H_k \mathbf{v})^t$ and $(H_k \mathbf{v})^b$. Then

$$(H_k \mathbf{v})^t = H_{k-1} \mathbf{v}^t + H_{k-1} \mathbf{v}^b = H_{k-1} (\mathbf{v}^t + \mathbf{v}^b)$$

$$(H_k \mathbf{v})^b = H_{k-1} \mathbf{v}^t - H_{k-1} \mathbf{v}^b = H_{k-1} (\mathbf{v}^t - \mathbf{v}^b)$$

To compute $H_k \mathbf{v}$ first compute $\mathbf{v}^t + \mathbf{v}^b$ and $\mathbf{v}^t - \mathbf{v}^b$ and then compute the products $H_{k-1}(\mathbf{v}^t + \mathbf{v}^b)$ and $H_{k-1}(\mathbf{v}^t - \mathbf{v}^b)$ recursively.

Running time: Let T(n) be the time to multiply the $n \times n$ matrix H_k by an n-dimensional vector \mathbf{v} . Then $T(n) = cn + 2T(n/2) = O(n \log n)$.

3. **Solution to Problem 3** (Inductive Proof)

- (a) Base case: For n = 1, Pr[sample is the *i*-th item] = $\frac{1}{k} = 1$.
- (b) Hypothesis: Assume that for some $k \ge 1$, the probability of the sample being any of the k elements is $\frac{1}{k}$.
- (c) Step: We will show the statement for k + 1.

Pr[the sample is the
$$(k + 1)$$
-st item] = $\frac{1}{k+1}$

Pr[the sample is a different item from the (k + 1)-st] = $1 - \frac{1}{k+1} = \frac{k}{k+1}$

Pr[the sample is the *i*-th item] =
$$\frac{1}{k} \cdot \frac{k}{k+1} = \frac{1}{k+1}$$
, for $i = 1, ..., k$

Therefore, the probability that any item is the sample is $\frac{1}{k+1}$.

(b) The sample is the i^{th} item with probability =

$$\begin{cases} (\frac{1}{2})^{k-i+1} & i = 2, \dots, k \\ (\frac{1}{2})^{k-1} & i = 1 \end{cases}$$

4. Solution to Problem 4

(a) Use standard algorithm for matrix multiplication to compute AB in $\Theta(n^3)$. Compare with C in $O(n^2)$.

(b) Consider the vector $\mathbf{v} = M\mathbf{x}$. Let v_i be the *i*-th entry of \mathbf{v} . For any fixed $1 \le i \le n$, we have

$$Pr[\mathbf{v} \neq \mathbf{0}] \leq Pr[v_i \neq 0].$$

So it suffices to prove that

$$\Pr[v_i \neq 0] \le \frac{1}{2}.$$

Since M is non-zero, there is at least one entry in M that is not equal to 0; w.l.o.g., say entry $M_{ij} \neq 0$. Since v_i is given by the dot product of the i-th row of M with the vector \mathbf{x} , we have

$$v_i = \sum_{k=1}^{n} M_{ik} \cdot x_k = M_{ij} \cdot x_j + \sum_{k=1 \atop k \neq j}^{n} M_{ik} \cdot x_k$$

It follows that v_i is 0 if and only if

$$M_{ij}x_j = -\sum_{\substack{k=1\\k\neq j}}^n M_{ik}x_k$$

Suppose that all the x_k 's have been set randomly and independently to $\{0,1\}$ with probability 1/2, **except** for x_j .

- If the right hand side above equals 0, then x_j must be set to 0 for v_i to equal 0. This happens with probability 1/2.
- If the right hand side above does not equal zero, then certainly x_j should not be set to 0 for v_i to equal to 0. Again this happens with probability 1/2.

Hence $Pr[v_i = 0] \le \frac{1}{2}$ in either case.

- (c) Set M = AB C.
 - If AB = C, then M is the all-zeros matrix. Hence for any \mathbf{x} , $\Pr[M\mathbf{x} = \mathbf{0}] = 1$.
 - If $AB \neq C$, then M is a non-zero matrix. By part (b),

$$\Pr[AB\mathbf{x} = C\mathbf{x}] = \Pr[M\mathbf{x} = 0] \le \frac{1}{2}.$$

Hence the randomized test for checking whether AB = C is as follows:

Algorithm 1

VerifyMatrixProduct(A, B, C, n, k)

- 1: **for** iteration i from 1 to k **do**
- 2: Generate a random **x** as in part (b)
- 3: Compute $C\mathbf{x}$, $B\mathbf{x}$, $A(B\mathbf{x})$
- 4: Compute $\mathbf{v}_i = AB\mathbf{x} C\mathbf{x}$
- 5: **if** $\mathbf{v}_i \neq \mathbf{0}$ then
- 6: return no
- 7: end if
- 8: end for
- 9: **return yes** // that is, return **yes** iff $\mathbf{v}_i = \mathbf{0}$ for every $1 \le i \le k$

Fix an *i*. Line 2 inside the for loop takes O(n) time; line 3 takes $O(n^2)$ time if we first compute $C\mathbf{x}$, $B\mathbf{x}$ and finally $A(B\mathbf{x})$; lines 4 and 5 take time O(n). Hence, the running time of one iteration of the randomized algorithm is $O(n^2)$. Hence the total running time is $O(kn^2)$.

Success probability of the randomized test:

- If AB = C, then \mathbf{v}_i is always $\mathbf{0}$. Hence the algorithm *succeeds*—that is, it always returns the correct answer—with probability 1.
- If $AB \neq C$, then the algorithm *fails* —that is, outputs the wrong answer— with probability at most $\left(\frac{1}{2}\right)^k$. Thus the algorithm succeeds with probability at least $1 \left(\frac{1}{2}\right)^k$.

1. Solution to recommended exercise 1

f	g	0	0	Ω	ω	Θ
$\log^5 n$	$10\log^3 n$	n	n	у	y	n
$n^2 \log (2n)$	$n \log n$	n	n	y	y	n
$\sqrt{\log n}$	log log n	n	n	y	y	n
$n^2 + n^{1/3}$	$n^2 \log n + n^{5/2}$	У	у	n	n	n
$\sqrt{n} + 1500$	$n^{1/3} + \log n$	n	n	y	y	n
$\frac{3^n}{n^2}$	$2^n \log n$	n	n	y	y	n
$n^{\log n}$	2^n	y	у	n	n	n
2^n	$\frac{3^n}{n^{\log n}}$	у	у	n	n	n
n^n	n!	n	n	у	y	n
$\log n^n$	$\log n!$	y	n	у	n	у

2. Solution to recommended exercise 2

Give tight asymptotic bounds for the following recurrences.

• According to master theorem, a = 4, b = 2, k = 2. Thus $a = b^k$ and $T(n) = O(n^k \log n)$, hence

$$T(n) = O(n^2 \log n)$$

• According to master theorem, a = 8, b = 2, k = 3. Thus $a = b^k$ and $T(n) = O(n^k \log n)$, hence

$$T(n) = O(n^3 \log n)$$

• According to master theorem, a = 11, b = 4, k = 2. Thus $a < b^k$ and $T(n) = O(n^k)$, hence

$$T(n) = O(n^2)$$

• According to master theorem, a = 7, b = 3, k = 1. Thus $a > b^k$ and $T(n) = O(n^{\log_b a})$, hence

$$T(n) = O(n^{\log_3 7})$$

3. Solution to recommended exercise 3

The recurrence for this algorithm is

$$T(n) = 3T(2n/3) + \Theta(1) = \Theta(n^{\log_{3/2} 3}) = \Theta(n^{\frac{\log 3}{\log 1.5}}) = \omega(n^2)$$

Hence both insertion sort and merge Sort are faster than this algorithm.