

BigDFT

project
Wavelet properties

The code now

GPU porting

Evaluating GPU gain

BigDFT

Projects

Perspectives

Messages

5th International ABINIT Developer Workshop

Domaine des Masures - Han-sur-Lesse, Belgium

The BigDFT project: Results, Advancements and Potentialities

Luigi Genovese

L Sim - CEA Grenoble

April 14, 2011

A basis for nanosciences: the BigDFT project

adventure

Wavelet properties

The code now GPU porting

Evaluating GPU

activities Projects

Perspectives

Messages

STREP European project: BigDFT(2005-2008)

Four partners, 15 contributors:

CEA-INAC Grenoble (T.Deutsch), U. Basel (S.Goedecker), U. Louvain-la-Neuve (X.Gonze), U. Kiel (R.Schneider)

Aim: To develop an ab-initio DFT code based on Daubechies Wavelets, to be integrated in ABINIT.

BigDFT 1.0 → January 2008

... why have we done this? Was it worth it?

- Test the potential advantages of a new formalism
- A lot of outcomes and interesting results
 - What can (will) we do starting from present know-how

A DFT code based on Daubechies wavelets

BigDFT adventure

project

Wavelet properties
The code now

GPU porting

Evaluating GPU

BigDFT activities

Perspectives

Messages

BigDFT: a PSP Kohn-Sham code

A Daubechies wavelets basis has unique properties for DFT usage

- Systematic, Orthogonal
- Localised, Adaptive
- Kohn-Sham operators are analytic

Peculiar numerical properties

Real space based, highly flexible

Big & inhomogeneous systems

A new phase for the BigDFT code

BiaDFT adventure

Wavelet properties The code now

GPU porting

Evaluating GPU

activities Projects

Perspectives

Messages

Half of 2009: End of first development phase

Since then (\sim 18 months):

- 8(+4) papers in different fields
 - (Phys. Rev. B, J. Chem. Phys., PCCP)
- 1 Patent, 3 Book chapters, Grand Prix Bull-Fourier 2009

BigDFT has become not only a DFT adventure

The code is an ideal case study for a number scientific and computational questions. Two categories:

- Validation of present-day theoretical approaches in complex situations
- Study of optimisation strategies of High Performance Computing in modern machines

Basis set features

adventure **BigDFT**

project

The code now

GPU porting Evaluating GPU

activities Projects

Perspectives

Messages

BigDFT features in a nutshell

- Arbitrary absolute precision can be achieved Good convergence ratio for real-space approach $(O(h^{14}))$
- Optimal usage of the degrees of freedom (adaptivity) Optimal speed for a systematic approach (less memory)
- Hartree potential accurate for various boundary conditions
 - Free and Surfaces BC Poisson Solver (present also in CP2K, ABINIT, OCTOPUS)
- Data repartition is suitable for optimal scalability Simple communications paradigm, multi-level parallelisation possible (and implemented)

Improve and develop know-how

Optimal for advanced DFT functionalities in HPC framework

Exploration of configuration space

BigDFT adventure

BigDFT project

The code now

GPU porting

Evaluating GPU gain

BigDFT activities

Projects

Perspectives Messages

Benefit from high precision

Different methods linked with BigDFT:

- Minima Hopping (S. Goedecker)
- Activation-Relaxation Technique (N. Mousseau)

Applied on different systems

Benefit from high flexibility and performances

BigDFT version 1.5.2: (ABINIT-related) capabilities

BiaDFT adventure

BigDFT project Wavelet properties

The code now

GPU porting Evaluating GPU

activities Projects

Perspectives Messages

http://inac.cea.fr/L Sim/BigDFT

- Isolated, surfaces and 3D-periodic boundary conditions (k-points, symmetries)
- All XC functionals of the ABINIT package (libXC library)
- Hybrid functionals, Fock exchange operator
- Direct Minimisation and Mixing routines (metals)
- Local geometry optimizations (with constraints)
- External electric fields (surfaces BC)
- Born-Oppenheimer MD, ESTF-IO
- Vibrations
- Unoccupied states
- Empirical van der Waals interactions
- Saddle point searches (NEB, Granot & Bear)
- All these functionalities are GPU-compatible

Operations performed

BiaDFT

adventure

BigDFT project

Wavelet properties The code now

Evaluating GPU

BigDFT activities Projects

Perspectives

Messages

The SCF cycle

Orbital scheme:

- Hamiltonian
- Preconditioner

Coefficient Scheme:

- Overlap matrices
- Orthogonalisation

Comput. operations

- Convolutions
- BLAS routines
- FFT (Poisson Solver)

Why not GPUs?

Hybrid Supercomputing nowadays

BiaDFT adventure

BigDFT project Wavelet properties

The code now

Evaluating GPU

activities

Projects

Perspectives

Messages

GPGPU on Supercomputers

- Traditional architectures are somehow saturating More cores/node, memories (slightly) larger but not faster
- Architectures of Supercomputers are becoming hybrid 3 out to 4 Top Supercomputers are hybrid machines
- Extrapolation: In 2015, No. 500 will become petafloppic Most likely it will be a hybrid machine

Codes should be conceived differently

- # MPI processes is limited for a fixed problem size
- Performances increase only by enhancing parallelism
- Further parallelisation levels should be added (OpenMP. GPU)

Does electronic structure calculations codes are suitable?

Using GPUs in a Big systematic DFT code

BiaDFT adventure

BigDFT project

The code now

GPU porting

BigDFT

activities Projects

Perspectives

Messages

Nature of the operations

- Operators approach via convolutions
- Linear Algebra due to orthogonality of the basis
- Communications and calculations do not interfere
- A number of operations which can be accelerated

Evaluating GPU convenience

Three levels of evaluation

- Bare speedups: GPU kernels vs. CPU routines Does the operations are suitable for GPU?
- Full code speedup on one process Amdahl's law: are there hot-spot operations?
- Speedup in a (massively?) parallel environment The MPI layer adds an extra level of complexity

BigDFT in hybrid codes

BigDFT project

Wavelet properties
The code now

adventure

GPU porting

Evaluating GPU

BigDFT activities

Projects

Perspectives

Messages

Acceleration of the full BigDFT code

- Considerable gain may be achieved for suitable systems
 Amdahl's law should always be considered
- Resources can be used concurrently (OpenCL queues)
 More MPI processes may share the same card!

The time-to-solution problem

20

No. of MPI proc

60

80

40

100

The time-to-solution problem

BigDFT project

Wavelet properties The code now

GPU porting

activities Projects

Perspectives

Messages

Concrete examples with BigDFT code

MD simulation, 32 water molecules, 0.5 fs/step

Mixed MPI/OpenMP BigDFT parallelisation vs. GPU case

MPI●OMP	32•1	128•1	32•6	128•6	128+128
s/SCF	7.2	2.0	1.5	0.44	0.3
MD ps/day	0.461	1.661	2.215	7.552	11.02

An example: challenging DFT for catalysis

Multi-scale study for OR mechanism on PEM fuel cells

- Explicit model of H_2O/Pt interface
- Absorbtion properties, reaction mechanisms

Outcomes from the understanding of catalytic mechanism at atomic scale:

- Conception of new active and selective materials
- Fuels cell ageing, more efficient and durable devices

BigDFT project

The code now GPU porting

Evaluating GPU

Projects

Perspectives Messages

BigDFT in L_Sim projects

BigDFT

BigDFT project

Wavelet properties
The code now

GPU porting

Evaluating GPU gain

BigDFT activities

Projects

Perspectives Messages

BigDFT-powered projects at L_Sim

Partner in several development and application projects

- SAMSON, ANR Cosinus
- ABSOR², MEDILEN (CEA)
- ELECMADE, BOLIDE, ANR Blanc
- NEWCASTLE (coord.), ANR Cosinus
- MMM @ HPC, European FP7 Project
- 2 PostDocs + 2 PhD to come

Explore new applications

These projects are based on the peculiarities of BigDFT code

- Heavier calculations and bigger systems (at least one order of magnitude)
 - The code must be more powerful

BigDFT beyond DFT

BiaDFT adventure

BigDFT project

Wavelet properties The code now

GPU porting

Evaluating GPU

activities

Projects

Messages

Casida TDDFT formalism

- B. Natarajan, PhD thesis (M. Casida, T. Deutsch)
 - Uses BigDFT Poisson Solver
 - → Systematic, explicit treatment
 - Comparison with Gaussian basis (DeMon2k)
 - Easier formalism (e.g. no Pulay terms for gradients)

Real-Space approach for GW calculations

I. Duchemin, Post-Doc

Tests on small molecules

- Single-electron transition basis (analytic on ω)
- Number and kind of basis functions Reliability of the choice of the basis
- Influence of the virtual states
 - Various cases under investigation

A formalism continuously improved

BigDFT adventure

BigDFT project

Wavelet properties
The code now

GPU porting Evaluating GPU

gain

activities

Perspectiv

Messages

Pseudopotentials used

BigDFT uses HGH Norm-Conserving pseudopotentials:

- Transferable, reliable for a number of quantities
- ✓ Well known technique, almost all Periodic Table
- Hard pseudopotentials, require high precision
- Terms like Non-Linear core correction absent
- HGH PSP generator is under improvement (libXC, NLCC)

Example: Atomization energy of the O₂ molecule (kcal/mol)

AE (G ₀₃)	PAW (VASP)	HGH-K	HGH	HGH+ NLCC
144.0*	143.3*	130.39	130.4	145.4

- * From Paier et al. J. Chem. Phys. 122, 234102 (2005)
- A delicate quantity (e.g. PAW (ABINIT) → 137.5 kcal/mol)

Develop new solutions for large scale DFT calculations

A formalism continuously improved

BigDFT adventure

BigDFT project

Wavelet properties
The code now

GPU porting

Evaluating GPU gain

BigDFT activities Projects

Perspecti

Messages

Pseudopotentials used

BigDFT uses HGH Norm-Conserving pseudopotentials:

- ✓ Transferable, reliable for a number of quantities
- ✓ Well known technique, almost all Periodic Table
- Hard pseudopotentials, require high precision
- Terms like Non-Linear core correction absent
- HGH PSP generator is under improvement (libXC, NLCC)

Introducing PAW formalism in BigDFT

Work starting after summer (T. Rangel, M. Torrent)

- Modularize PAW ABINIT routines Identify basis-independent sections
- ✓ Define strategies to express PAW projectors
- ✓ Insert first wavelet PAW calculation within ABINIT

Develop new solutions for large scale DFT calculations

O(N) approach (traditional $O(N^3)$)

BigDFT project

Wavelet properties
The code now

GPU porting Evaluating GPU

gain GPU

BigDFT activities

Perspectiv

Messages

P. Boulanger, S. Mohr

- Use locality of wavelets
- Localization regions
- Better flexibility
- Different schemes to localise wavefunctions

Where are we?

- A prototype version validated since 2007
- New localisation schemes already tested with cubic paradigm
- Underlying infrastructure under preparation

A look in near future

BiaDFT adventure

project

Wavelet properties The code now

GPU porting

Evaluating GPU

activities Projects

Messages

A concerted set of actions

- Improve BigDFT functionalities for present L Sim projects (ABSOR², ELECMADE, NEWCASTLE)
- Provide BigDFT implementations of TDDFT and GW
- Insert BigDFT code in new workflows (MMM@HPC)

Enhancing DFT functionalities

- PAW formalism Should further reduce computational overhead
- \circ O(N) approach, production code Possible thanks to wavelets localisation and orthogonality
- New parallelisation scheme suitable for very large platforms
- Further refine formalims for Quantum Chemistry Systematic basis set extension for accurate treatment

Conclusions

BiaDFT adventure

BigDFT project Wavelet properties

The code now

GPU porting Evaluating GPU

activities Projects

Perspectives

BigDFT: solid state physics meets quantum chemistry

- ✓ Flexible, reliable formalism (wavelet properties)
- Easily fit with massively parallel architecture
- ✓ Open a path toward the diffusion of Hybrid architectures

Messages from GPU experience with BigDFT

- ✓ GPU allow a significant reduction of the time-to-solution
- ✓ Require a well-structured underlying code which makes multi-level parallelisation possible
- ✓ To be taken into account while evaluating performances Parallel efficiency \Leftarrow system dimensioning wrt architecture

CECAM BigDFT tutorial next October

A tutorial on BigDFT code is scheduled! Grenoble, 19-21 October 2011

Acknowledgments

BigDFT adventure

BigDF I project

Wavelet properties
The code now

GPU porting

Evaluating GPU gain

BigDFT activities

Projects

Perspectives

CEA Grenoble – Group of Thierry Deutsch

LG, D. Caliste, B. Videau, M. Ospici, I. Duchemin, P. Boulanger, E. Machado-Charry, B. Natarajan

Basel University - Group of Stefan Goedecker

S. A. Ghazemi, A. Willand, M. Amsler, S. Mohr, A. Sadeghi, N. Dugan, H. Tran

And other groups

- Montreal University:
 L. Béland, N. Mousseau
- European Synchrotron Radiation Facility:
 Y. Kvashnin, A. Mirone

