

Faculty of Engineering & Technology Electrical & Computer Engineering Department

Digital Integrated Circuits- ENCS3330

Assignment #1

Prepared by:

Maha Maher Mali 1200746

Instructor: Dr. Khader Mohammad

Section: 1

Date: 4-12-2023

Table of Contents

Device Sizes for All Gates	1
Inverter	1
Schematic	1
Layout	2
Discussion	3
3 Input NAND Gate	3
Schematic	3
Layout	4
Discussion	4
3 Input NOR Gate	5
Schematic	5
Layout	6
Discussion	7
One Bit PASS Gate	7
Schematic	7
Layout	8
Discussion	8
Report Rise and fall time	9

Table of Figures

Figure 1: Invertor Schematic	1
Figure 1: Invertor Schematic	2
Figure 3:Invertor Layout	
Figure 4: Invertor Layout Simulation	2
Figure 5:3- input NAND Gate Schematic	3
Figure 4: Invertor Layout Simulation	3
Figure 7: 3- input NAND Gate Layout	4
Figure 8: 3- input NAND Gate Layout Simulation	
Figure 9: 3- input NOR Gate Schematic	5
Figure 10: 3- input NOR Gate Schematic Simulation.	5
Figure 9: 3- input NOR Gate Schematic Figure 10: 3- input NOR Gate Schematic Simulation. Figure 11: 3- input NOR Gate Layout	6
Figure 12: 3- input NOR Gate Layout Simulation	6
Figure 13: One bit PASS gate schematic	7
Figure 14: One bit PASS gate schematic simulation	7
Figure 14: One bit PASS gate schematic simulation	8
Figure 16: One bit PASS gate Layout Simulation	8
Figure 17: Rise and Fall time	9

Table of Tables

Device Sizes for All Gates

Table 1 :Device Size

Gate Name	PMOS Size	NMOS Size
Invertor	10 (Base Size)	10 (Base Size)
NAND Gate	10	30(number of NMOS x Base Size) because the NMOS in parallel connection.
NOR Gate	30(number of PMOS x Base Size) because the PMOS in parallel connection.	10
One Bit Pass Gate	10	10

Inverter Schematic

Figure 1: Invertor Schematic

Figure 2:Invertor Schematic Simulation

Figure 3:Invertor Layout

Figure 4: Invertor Layout Simulation

Discussion

From the simulation of schematic and layout, the invertor work corrects, when **the input is 0 the output is 1, also when input is 1 the output is 0**

3 Input NAND Gate Schematic

Figure 5:3- input NAND Gate Schematic

Figure 6: 3- input NAND Gate Schematic Simulation

Figure 7: 3- input NAND Gate Layout

Figure 8: 3- input NAND Gate Layout Simulation

Discussion

From the simulation of schematic and layout, the 3 input NAND gate work corrects, because in NAND gate the output will be 0 in one case only when three input 111. In other input the output still be 1.

3 Input NOR Gate Schematic

Figure 9: 3- input NOR Gate Schematic

Figure 10: 3- input NOR Gate Schematic Simulation

Figure 11: 3- input NOR Gate Layout

Figure 12: 3- input NOR Gate Layout Simulation

Discussion

From the simulation of schematic and layout, the NOR gate work corrects because in NOR gate the output will be 1 in one case only when three input 000. In other input the output still be 1.

One Bit PASS Gate Schematic

Figure 13: One bit PASS gate schematic

Figure 14: One bit PASS gate schematic simulation

Figure 15: One bit PASS gate Layout

Figure 16: One bit PASS gate Layout Simulation

Discussion

From the simulation of schematic and layout, the one-bit pass gate work as buffer, which mean the output as the same of the input, so if the input is 1 the output also the 1, also if the input is 0 so the output also 0.

Report Rise and fall time

By choosing the correct size of the gates I manage to get the same rise and fall time for all gates as shown in below figure.

```
tf=8.62432e-008 FROM 1.37568e-008 TO 1e-007
tr=8.29527e-008 FROM 1.70473e-008 TO 1e-007

Date: Sat Dec 02 21:45:39 2023
Total elapsed time: 0.058 seconds.

tnom = 27
temp = 27
method = modified trap
totiter = 2116

69% # ^ @ @ 40 ENG 9:49 PM
12/2/2023
```

Figure 17: Rise and Fall time

The aim when we designed the four gate is to get the equal rise and fall time for all gate.so I change the width of the transistors used specified to a certain value. In the invertor gate the width of the transistor (NMOS width = 10, PMOS width = 10) were taken as the base size for the rest of the gates. For the 3 input NAND gate, the width of the PMOS devices were the same as the base widths they are connected in **parallel**. However, the NMOS devices were set to the base width multiplied with their number which means (10*3=30) since they are connected on **series**. In the NOR gate since NMOS devices are connected in parallel (NMOS width =10) and PMOS devices are connected on series (PMOS width =3*10=30). The one-bit pass gate followed the base measurements as the inverter.