### **Coordinate Conversion Formulas**

| RECTANGULAR       | RECTANGULAR                      | CYLINDRICAL TO       |
|-------------------|----------------------------------|----------------------|
| $x = r\cos\theta$ | $x = \rho \sin \phi \cos \theta$ | $r = \rho \sin \phi$ |

$$x = r \cos \theta$$
  $x = \rho \sin \phi \cos \theta$   $r = \rho \sin \phi$   
 $y = r \sin \theta$   $y = \rho \sin \phi \sin \theta$   $z = \rho \cos \phi$   
 $z = z$   $z = \rho \cos \phi$   $z = \theta$ 

Corresponding formulas for dV in triple integrals:

$$dV = dx dy dz$$

$$= dz r dr d\theta$$

$$= \rho^2 \sin \phi d\rho d\phi d\theta$$

# **Equations Relating Spherical Coordinates to Cartesian and Cylindrical Coordinates**

$$r = \rho \sin \phi, \qquad x = r \cos \theta = \rho \sin \phi \cos \theta,$$

$$z = \rho \cos \phi, \qquad y = r \sin \theta = \rho \sin \phi \sin \theta,$$

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{r^2 + z^2}.$$
(1)

#### TABLE 15.2 Moments of inertia (second moments) formulas

## THREE-DIMENSIONAL SOLID

About the x-axis: 
$$I_x = \iiint (y^2 + z^2) \, \delta \, dV \qquad \delta = \delta(x, y, z)$$

About the y-axis: 
$$I_y = \iiint (x^2 + z^2) \delta dV$$

About the z-axis: 
$$I_z = \iiint (x^2 + y^2) \delta dV$$

About a line L: 
$$I_L = \iiint r^2(x, y, z) \, \delta \, dV \qquad \qquad \begin{array}{c} r(x, y, z) = \text{distance from the} \\ \text{point } (x, y, z) \text{ to line } L \end{array}$$

## TWO-DIMENSIONAL PLATE

About the x-axis: 
$$I_x = \iint y^2 \delta dA$$
  $\delta = \delta(x, y)$ 

About the y-axis: 
$$I_y = \iint x^2 \delta dA$$

About a line L: 
$$I_L = \iint r^2(x, y) \, \delta \, dA \qquad r(x, y) = \text{distance from } (x, y) \text{ to } L$$

About the origin (polar moment): 
$$I_0 = \iint (x^2 + y^2) \, \delta \, dA = I_x + I_y$$

#### TABLE 15.1 Mass and first moment formulas

#### THREE-DIMENSIONAL SOLID

**Mass:** 
$$M = \iiint \delta dV$$
  $\delta = \delta(x, y, z)$  is the density at  $(x, y, z)$ .

First moments about the coordinate planes:

$$M_{yz} = \iiint_D x \, \delta \, dV, \qquad M_{xz} = \iiint_D y \, \delta \, dV, \qquad M_{xy} = \iiint_D z \, \delta \, dV$$

Center of mass: 
$$\bar{x} = \frac{M_{yz}}{M}$$
,  $\bar{y} = \frac{M_{xz}}{M}$ ,  $\bar{z} = \frac{M_{xy}}{M}$ 

## TWO-DIMENSIONAL PLATE

**Mass:** 
$$M = \iint_R \delta dA$$
  $\delta = \delta(x, y)$  is the density at  $(x, y)$ .

**First moments:** 
$$M_y = \iint_R x \, \delta \, dA, \quad M_x = \iint_R y \, \delta \, dA$$

Center of mass: 
$$\bar{x} = \frac{M_y}{M}$$
,  $\bar{y} = \frac{M_x}{M}$ 

# Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

**Average value** of *F* over 
$$D = \frac{1}{\text{volume of } D} \iiint_D F dV$$
. (2)

If f(x, y) and g(x, y) are continuous on the bounded region R, then the following properties hold.

**1.** Constant Multiple: 
$$\iint_R cf(x, y) dA = c \iint_R f(x, y) dA$$
 (any number c)

2. Sum and Difference:

$$\iint\limits_R \big(f(x,y)\ \pm\ g(x,y)\big)\,dA\ =\ \iint\limits_R f(x,y)\,dA\ \pm\ \iint\limits_R g(x,y)\,dA$$

**3.** Domination:

(a) 
$$\iint\limits_R f(x, y) dA \ge 0 \quad \text{if} \quad f(x, y) \ge 0 \text{ on } R$$

**(b)** 
$$\iint\limits_R f(x,y) dA \ge \iint\limits_R g(x,y) dA \quad \text{if} \quad f(x,y) \ge g(x,y) \text{ on } R$$

**4.** Additivity: If R is the union of two nonoverlapping regions  $R_1$  and  $R_2$ , then

$$\iint\limits_R f(x, y) \, dA = \iint\limits_{R_1} f(x, y) \, dA + \iint\limits_{R_2} f(x, y) \, dA$$

