Vztah jazyků Chomskeho hierarchie a jazyků TS

Jan Konečný; (přednáší Lukáš Havrlant)

15. října 2013

Rychlé (průběžné) opáčko KMI/FJAA

Definice

Formální gramatika (typu 0, bez omezení) je struktura $\langle \Sigma, N, S, P \rangle$, kde

- ullet N abeceda neterminálních symbolů,
- ullet Σ abeceda terminálních symbolů,
- $S \in N$ startovní symbol,
- P konečná množina odvozovacích pravidel ve tvaru

$$(N \cup \Sigma)^* N (N \cup \Sigma)^* \to (N \cup \Sigma)^*.$$

(tj. generativních pravidel)

Definice

Uvažujme odvozovací pravidlo $\pi=x\to y$ nad $\Sigma\cup N$. Pak řekneme, že řetězec $v\in (\Sigma\cup N)^*$ je přímo odvozen z řetězce $u\in (\Sigma\cup N)^*$ pomocí pravidla π , pokud existují řetězce $p,q\in (\Sigma\cup N)^*$ tak, že u=pxq a v=pyq; označujeme $u\Rightarrow_\pi v$.

Píšeme $u \Rightarrow_P v$ pokud existuje pravidlo $\pi \in P$ tak, že $u \Rightarrow_{\pi} v$.

Definice

Posloupnost řetězců $x_0,\ldots,x_k\ (k\geq 0)$, kde $\{x_0,\ldots,x_k\}\subseteq (\Sigma\cup N)^*$ se nazývá P-derivace (délky k), pokud $x_{i-1}\Rightarrow_P x_i$.

Definice

Pokud pro $u,v\in (N\cup\Sigma)^*$ existuje P-derivace $u=x_0,\ldots,x_k=v$, pak říkáme, že v je odvozen z u pomocí pravidel z Pa píšeme $u\Rightarrow_P^*v$.

Definice

Větná forma je jakýkoli řetězec $x \in (N \cup \Sigma)^*$, pro který $S \Rightarrow_P^* x$.

Větné formy, které se skládají jen z terminálů, se nazývají *věty* gramatiky.

Jazyk L(G) gramatiky G je množina všech vět gramatiky.

Věta

Třída jazyků generovaných gramatikami typu $0 = \check{c}$ ástečně rekurzivní jazyky.

Důkaz.

Ukážeme tak, že

- a) ke každému TS T sestavíme gramatiku G_T , tak že L(T)=L(G).
- b) ke každé gramatice G sestavíme TS T_G , tak že L(T) = L(G).
- ad b) snažší část. Sestrojíme nedeterministický TS T_G k lib. gramatice G:

(dvojpáskový) NTS T_G pro w:

- lacksquare (na první pásce nechá w), na druhou pásku napíše S.
- pokud na druhé pásce není žádný neterminál, srovná obsah první a druhé pásky: pokud jsou stejné, přijme.
- \odot nedeterministicky zvolí pravidlo z P nedeterministicky zvolí výskyt jeho pravé strany na druhé pásce (pokud ho nenajde zamítne).
- o přepíše obsah druhé pásky podle zvoleného pravidla, pokrač. bodem 2.

Důkaz, pokračování.

ad a) sestrojíme gramatiku G_T k lib. TS T:

Víme že k libovolnému TS existuje ekvivalentní TS, který po sobě uklízí. Můžeme tedy předpokládat, že T po sobě uklízí a že

$$T = \langle Q, \Sigma, \Gamma, \delta, q_0, q_+, q_- \rangle.$$

Gramatika bude

$$\langle Q \cup \{ \triangleleft \} \cup \{ N_a \mid a \in \Gamma \}, \Sigma, S, P \rangle$$

s pravidly P:

ullet pro $\delta(q,a)=(q',a',L)$ budou v P přechody

$$q'N_bN_{a'}\Rightarrow N_bqN_a$$
 pro všechna $b\in \Gamma$,

• pro $\delta(q,a)=(q',a',R)$ bude v P přechod

$$N_{a'}q' \Rightarrow qN_a$$
.

Důkaz, pokračování.

pravidlo

$$S \Rightarrow q_{+} \triangleleft$$

Neterminál ⊲ reprezentuje konec uvažovaného úseku pásky, bude zajišťovat přidávání a odebírání prázdných políček (symbolů); pomocí následujících pravidel:

• pravidla na přidávání a odebírání volných políček

$$\triangleleft \Rightarrow N_{\lrcorner} \triangleleft$$

$$N_{\rm J} {\lhd} \Rightarrow {\lhd}$$

pravidla pro finalizaci

$$N_a\Rightarrow a\quad {\sf pro\ v\check{s}echna}\ a\in \Sigma \qquad {\vartriangleleft}\Rightarrow \varepsilon \qquad q_0\Rightarrow \varepsilon.$$

Tato gramatika G_T bude generovat stejný jazyk jako T; sleduje výpočet pozpátku

Rychlé (průběžné) opáčko KMI/FJAA

Definice

Kontextově závislá gramatika je formální gramatika, pro jejíž množinu pravidel P platí:

ullet P – konečná množina odvozovacích pravidel ve tvaru

$$\alpha N\beta \to \alpha\gamma\beta$$
,

kde $|\gamma| \geq 1$ s vyjímkou, že je možno mít v P i pravidlo

$$S \Rightarrow \varepsilon$$
,

pokud se S nevyskytuje na pravé straně žádného pravidla.

Definice

Nezkracující gramatika je formální gramatika, pro jejíž množinu pravidel P platí:

ullet P – konečná množina odvozovacích pravidel ve tvaru

$$\alpha \to \beta$$

kde $|\alpha| \leq |\beta|$ s vyjímkou, že je možno mít v P i pravidlo

$$S \Rightarrow \varepsilon,$$

pokud se S nevyskytuje na pravé straně žádného pravidla.

Věta

Každá kontextová gramatika je nezkracující.

Věta

Ke každé nezkracující gramatice existuje ekvivalentní kontextově závislá gramatika.

Věta

Jazyky generované kontextové závislými gramatikami = jazyky přijímané LBA.

Idea důkazu.

- a) ke každému LBA T sestavíme kontextovou gramatiku G_T , tak že L(T) = L(G).
- b) ke každé kontextové gramatice G sestavíme LBA T_G , tak že L(T) = L(G).

V podstatě totožné s předchozím. Využijeme toho, že jsou nezkracující.

Důkaz.

ad a) sestrojíme gramatiku G_T k lib. TS T:

Víme že k libovolnému TS existuje ekvivalentní TS, který po sobě uklízí. Můžeme tedy předpokládat, že T po sobě uklízí a že

$$T = \langle Q, \Sigma, \Gamma, \delta, q_0, q_+, q_- \rangle.$$

Gramatika bude

$$\langle Q \cup \{ \triangleleft \} \cup \{ N_a \mid a \in \Gamma \}, \Sigma, S, P \rangle$$

s pravidly P:

 $\bullet \ \operatorname{pro} \ \delta(q,a) = (q',a',L) \ \operatorname{budou} \ \operatorname{v} \ P \ \operatorname{p\check{r}echody}$

$$q'N_bN_{a'}\Rightarrow N_bqN_a$$
 pro všechna $b\in \Gamma$,

• pro $\delta(q, a) = (q', a', R)$ bude v P přechod

$$N_{a'}q' \Rightarrow qN_a$$
.

Důkaz, pokračování.

pravidlo

$$S \Rightarrow q_{+} \triangleleft$$

Neterminál d reprezentuje konec uvažovaného úseku pásky, bude zajišťovat přidávání a odebírání prázdných políček (symbolů); pomocí následujících pravidel:

pravidla na přidávání a odebírání volných políček

$$\triangleleft \Rightarrow N_{\lrcorner} \triangleleft$$

pravidla pro finalizaci

$$N_a\Rightarrow a\quad {\sf pro\ v\check{s}echna}\ a\in \Sigma \qquad {\vartriangleleft}\Rightarrow {\varepsilon} \qquad q_0\Rightarrow {
hd}.$$

Tato gramatika G_T bude generovat stejný jazyk jako T.

Všimněme si, že pokud je gramatika G nezkracující (resp. kontextově závislá), tak T_G z důkazy první věty nepotřebuje víc políček než |w|, klidně by to mohl být LBA.

Důkaz.

(dvojpáskový) NTS T_G pro w:

- lacksquare (na první pásce nechá w), na druhou pásku napíše S.
- 2 pokud na druhé pásce není žádný neterminál, srovná obsah první a druhé pásky: pokud jsou stejné, přijme.
- \odot nedeterministicky zvolí pravidlo z P nedeterministicky zvolí výskyt jeho pravé strany na druhé pásce (pokud ho nenajde zamítne).
- 1 přepíše obsah druhé pásky podle zvoleného pravidla, pokrač. bodem 2.

Věta

Existuje rekurzivní jazyk, který není generovaný kontextovou gramatikou.

Poznámka

Neboli Typ $1 \subset R$.

ldea důkazu.

Ukážeme, že

$$L_{Gd} = \{ [G] \mid G \text{ je kontextová gramatika, která negeneruje } [G] \}$$

je takový jazyk. Viz následující dvě lemmata.

Lemma

 L_{Gd} je rekurzivní.

ldea důkazu.

Procházíme do šířky strom derivací gramatiky G a hledáme, jestli negeneruje [G]. Stačí jít jen do určité hloubky, protože díky nezkracujícímu charakteru gramatiky nemá smysl procházet větve, kde je větná forma delší, než [G]. Navíc větných forem s délkou $\leq |[G]|$ je jen konečně mnoho. \square

Lemma

 L_{Gd} není generován kontextově závislou gramatikou.

Důkaz je nápadně podobný důkazu toho, že L_d není přijímán TS.

Důkaz.

Protože gramatiky lze zakódovat do řetězců a řetězce lze očíslovat,, můžu seřadit gramatiky podle jejich kódů.

Můžu tedy uvažovat tabulku, jejíž řádky budou gramatiky, sloupce budou kódy gramatik, tak aby když je v i-tém řádku G_i , tak v i-tém sloupci $[G_i]$.

	$[G_1]$	$[G_2]$	$[G_3]$	$[G_4]$	
G_1	1				
G_2		1	1		
G_1 G_2 G_3 G_4		_		1	
:					

Tabuka obsahuje 1 na pozici $\langle i,j \rangle$ pokud G_i generuje $[G_i]$. Pokud existuje TS G_d generující L_{Gd} , musí být někde v té tabulce, řekněme na řádku x. Co ale bude na pozici $\langle x, x \rangle$?

Ta hodnota se musí sama od sebe lišit. SPOR

Shrnutí

$$\mathsf{Typ}\ 3\ \subset\ \mathsf{Typ}\ 2\ \subset\ \mathsf{Typ}\ 1\ \subset\ \mathsf{R}\ \subset\ \mathsf{Typ}\ 0\ =\ \check{\mathsf{C}}\mathsf{R}$$

Problémy z PŘEDNÁŠKY 1

Z PŘEDNÁŠKY 1 známe pár příkladů (zatím tomu jenom věříme).

Ekvivalence KA

Věta

Jazyk

$$L_{eqKA} = \{[A_1,A_2] \mid A_1,A_2 \text{ jsou KA, } L(A_1) = L(A_2)\}$$

je rekurzivní.

Pomocné tvrzení:

Lemma

Jazyk $L_{KA\emptyset} = \{[A] \mid A \text{ je KA, } L(A) = \emptyset\}$ je rekurzivní.

ldea důkazu.

Stačí zjistit jestli je aspoň jeden koncový stav dostupný z počátečního.

Důkaz.

Z KMI/FJAA víme, že regulární jazyky jsou uzavřené na průnik, sjednocení, doplněk (mj.). A umíme sestavit příslušné KA (nedeterministické, s ε -přechody.

 $\mathsf{M\'ame}\ L_1 = L_2\ \mathsf{p.k.}\ (L_1 \cap \neg L_2) \cup (\neg L_1 \cap L_2) = \emptyset.$

Sestavíme TS M, který rozhoduje L_{eqKA} .

 $\mathsf{TS}\ M\ \mathsf{pro}\ [A_1,A_2]$

- Sestaví KA A, který rozhoduje $(L_1 \cap \neg L_2) \cup (\neg L_1 \cap L_2)$.
- 2 Zjistí, jestli $[A] \in L_{KA\emptyset}$.

Ekvivalenci a nonekvivalenci gramatik ještě odložíme, potřebujeme Postův problém přiřazení (PŘEDNÁŠKA 6)

Další problémy/jazyky

Věta

Jazyk $REG_{TS} = \{\langle T \rangle \mid T \text{ je TS a } L(T) \text{ je regulární} \}$. není rekurzivní.

Důkaz.

(sporem), Nechť R je TS, který rozhoduje REG_{TS} a zkonstruujeme TS U, který rozhoduje L_U .

 $\mathsf{TS}\ U$ pro vstup [T,w], kde T je $\mathsf{TS}\ \mathsf{a}\ w$ je vstup

lacktriangle Sestrojí následující stroj M

 $TS\ M$ pro x:

- pokud x má tvar 0^n1^n , přijmi
- pokud x nemá tento tvar, spust M pro w, přijmi, pokud M přijme.
- ② Spustí R pro $[M_2]$.
- $oldsymbol{\circ}$ pokud R přijme, U přijme; pokud R zamítne, U zamítne.

Věta

Jazyk

$$L_{LBA\emptyset} = \{[B] \mid B \text{ je LBA a } L(B) = \emptyset \}$$

není rekurzivní.

ldea důkazu.

(sporem) Ukážeme, že pokud by $L_{LBA\emptyset}$ byl rekurzivní tak L_U bude taky rekurzivní. Pro TS T a slovo w sestavíme LBA B, jehož jazykem bude jazyk všech přijímajících historií výpočtu TS T nad slovem w.

DODELAT JAKO CVIČENÍ.