NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA

End Semester Examination, 2018

Subject: Discrete Structures (No. of pages: 2) Full Marks: 50

Subject Code: CS2003

Answer all questions from Section 1 and 10 questions from Section 2. Mere answer without justification will not fetch any mark.

Section 1 - each question carries 2 marks

1. Show that $\exists x P(x) \land \exists x Q(x)$ and $\exists x (P(x) \land Q(x))$ are not logically equivalent.

- 2. Let a, b be two real numbers. Their arithmetic mean is $\frac{a+b}{2}$ and their geometric mean is \sqrt{ab} . Prove (or disprove) that the geometric mean is strictly more than the arithmetic mean.
- 3. Check whether the two graphs in Figure 1 are isomorphic? If so, give the isomorphism.

Figure 1: Isomorphism of graphs in (a) and (b)

4. Find a Eulerian circuit, a Eulerian path and a Hamiltonian circuit (if exists) in graphs given in in Figure 2.

Figure 2: Euler circuits and paths and Hamiltonian circuits in graphs in (a) and (b)

5. Determine the Chromatic number of the graphs given in Figure 3.

Figure 3: Chromatic number of graphs given in (a) and (b)

- 6. Show that $n \log n$ is $O(\log n!)$ (Hint: $n! > n(n-1) \dots \lceil \frac{n}{2} \rceil$).
- 7. Let $A = \{a, b, c\}$. Find the smallest and largest cardinality partial order relation on the set A.
- 8. Let R be a relation on \mathbb{Z} such that $(a, b) \in \mathbf{R}$ if and only if a b is an even integer. Is R and equivalence relation.
- 9. Let $\lfloor x \rfloor$ denotes the largest integer less than or equal to x. Show that (i) $\binom{n}{\lfloor \frac{n}{2} \rfloor} \geq 2^n/n$, (ii) $\binom{n}{k} \leq n^k/2^{k-1}$.
- 10. Construct a connected and a disconnected graph with the following degree sequence. 4,4,4,3,3,2,2

Section 2 - each question carries 3 marks

11. Let $\mathbf{f_n} = \mathbf{f_{n-1}} + \mathbf{f_{n-2}}$, $\mathbf{f_0} = \mathbf{0}$, $\mathbf{f_1} = \mathbf{1}$. Let \mathbf{A} denote the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. Let $\mathbf{A^n}$ denote $\mathbf{A} \times \mathbf{A} \times \dots \mathbf{A}$ (n times), where \times is matrix multiplication. Prove that

$$\mathbf{A^{n-1}} \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} f_n \\ f_{n-1} \end{array} \right].$$

- 12. Prove that the product of any three consecutive integers is divisible by 6.
- 13. A bit string consisting of 0's and 1's is a palindrome if its reversal is same as the original string. For instance, 000111 is not a palindrome where as 1010101 and 101101 are palindromes. How many bit strings of length n are palindromes.
- 14. A DNA sequence consists of a string of four bases, namely, A, T, G and C. How many distinct DNA sequences of length n are possible with (i) only A's and T's but no G's and C's.
- (ii) exactly 2 G's.
- (iii) at least n/2 C's.
- (iv) number of A's + number of C's=number of T's + number of G's.
- 15. How many numbers should be chosen from a set $S = \{1, \dots, n\}$ such that there exists a pair of numbers whose sum is $\frac{n}{2}$.
- 16. Prove the identity $\binom{\mathbf{n}}{\mathbf{r}}\binom{\mathbf{r}}{\mathbf{k}} = \binom{\mathbf{n}}{\mathbf{k}}\binom{\mathbf{n}-\mathbf{k}}{\mathbf{r}-\mathbf{k}}$, whenever n, r, and k are nonnegative integers with $r \leq k \leq n$, (i) using a combinatorial argument.
- (ii) using an argument based on the formula for the number of r-combinations of a set with n elements.
- 17. How many solutions are there to the inequality $x_1 + x_2 + x_3 \le 11$, where x_1, x_2 , and x_3 are nonnegative integers?
- 18. Let total number of ways a board of $3 \times n$ dominos can be filled with 3×1 tiles be denoted as f_n . Find a recurrence relation for f_n . Find the initial conditions and find a closed form formula.
- 19. For any connected bipartite planar graph on n vertices and e edges, prove that $e \le 2n 4$ (Hint: use the fact that for connected planar graphs on n vertices, f faces and e edges, n - e + f = 2).
- 20. Given a graph G(V, E), an edge coloring of the edges of G is a mapping $f: E \to \{1, 2, \dots, k\}$. A subgraph H(V', E') of $G, V' \subseteq V, E' \subseteq E$, is called monochromatic under f if every edge in E has the same color. Show that K_5 , the complete graph on 5 vertices, has a coloring of edges using two colors such that there is no monochromatic K_3 .
- 21. Answer these questions for the poset ({{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, \subset).
- (i) Find the maximal elements.
- (ii) Is there a greatest element?
- (iii) Find all upper bounds of $\{\{2\}, \{4\}\}.$
- (iv) Find the least upper bound of $\{\{2\}, \{4\}\}\$, if it exists.
- (v) Find all lower bounds of $\{\{1, 3, 4\}, \{2, 3, 4\}\}$.
- (vi) Find the greatest lower bound of $\{\{1,3,4\},\{2,3,4\}\}$, if it exists.
- 22. Define a semigroup, monoid, group, ring and field.