A High Throughput Two-Stage Die-to-Wafer Thermal Compression Bonding Scheme for Heterogeneous Integration

Krutikesh Sahoo, Haoxiang Ren, Zoe Chen & Subramanian S. Iyer | UCLA CHIPS

Introduction

Cu-Cu thermal compression bonding (TCB) for die to wafer (D2W) assemblies

- First ever demonstration of a functional multichiplet assembly at sub-10 μm Cu-Cu bonding pitch using foundry supplied dielets^[1-4].
- Key enabler for Cu-Cu TCB is the in-situ formic acid vapor cleaning process^[1] which takes place within the bonding chamber.

Several functional dielet assemblies on Silicon Interconnect Fabric [1-3].

Building a graph processor on a 300 mm wafer by scaling down and scaling out TCB

Scaling down:

- Chiplet size (< 100 mm²)
- Inter-chiplet spacing
- Bonding pitch (< 10μm)

Scaling Out:

- Processor Architecture to waferscale
- Memory architecture to Shared & Unified memory

*dielet designed jointly by UCLA and UIUC and fabricated at TSMC, and the Si-IF substrate fabricated at UCLA

Lessons from prototyping

Small-scale prototyping

Small-scale prototype of graph processor

 240 passive dielet prototype on 100 mm wafer to identify challenges with Scale out of thermal compression bonding:

120 dielets: 3.5x2.5 mm²
120 dielets: 3.5x1.5 mm²

 All Interconnected on Silicon interconnect Fabric • Eight dielets per tile built in TSMC 40LP process:

<u>4 Compute dielets</u> – **14** ARM CORTEX-M3 per dielet

4 Memory dielets -- 640KB SRAM per dielet

Gap between tiles for testing and front-side TSV-less power delivery [1]

Prototype 100 mm Si-IF populated with compute and memory dielets.

Learnings from Small-scale prototyping

- Sequential single step TCB of dielets results in low throughput (30 seconds/dielet) and combines both placement and temperature/pressure induced grain growth.
- Bonding time of 30 40 seconds/die => 2 2.5 hours to populate a wafer-scale sample.
- Scaling this process to 300 mm wafers requires long assembly times leading to recontamination of the Cu pillars on the substrate and requires periodic recleaning of the surface.
- A higher throughput process is therefore desirable.

Two step TCB process for higher throughput

• Step 1: dielet placement (≤ 10s) includes alignment, cleaning and tacking.

Silicon

Back end of line (BEOL)

Back end of line (BEOL)

Silicon

• Step 2: batch annealing under pressure

Multiple Daisy Chain Samples

onunative distribution of the sistance (Ω)

JEDEC test of 72000 Cu-Cu connections using two-step TCB for 500 hours^[5].

Cumulative resistance distribution of 40 daisy chains^[5] before and after Unbiased Highly Accelerated Stress Tests (UHAST)

A comparison with Hybrid bonding

A companson with Hybrid bonding		
	Hybrid Bonding	Direct thermal compression bonding
CMP process Development	Strict dielectric flatness (6σ roughness ≤ 1 nm) and metal recess requirements	Relaxed metal roughness requirements (6σ roughness ~10nm acceptable)
Dicing process	Mandatory particle-free dicing.	Cu pads/pillars are recessed so, blade dicing with standard wet cleaning is feasible.
Bonding environment & activation	ISO-4 or below	ISO-8 and above, even outside cleanroom.
Dielet size	Almost any size due to less tacking pressure requirements.	Limited by max. bond-head pressure during tacking.
Throughput	1000+ units-per-hour (UPH) due to fast dielectric tacking	1000+ UPH possible with optimized tack and anneal process .
Conclusion	 TCB has low process development cost & operation cost compared to HB. TCB is less sensitive to particles during dicing and bonding. Therefore, we believe TCB should be used for bonding pitches up-to 7 μm. 	

References: [1] S. Jangam and S. S. Iyer, TCPMT 2021, [2] K. Sahoo et al., ECTC 2022, [3] S. Nagi et al., JSSC 2022 [4] U. Rathore et al., ISSCC 2022, [5] Sahoo et al., ECTC 2023

Acknowledgements: The Authors thank SRC JUMP 2.0 CHIMES and UCLA CHIPS Consortium for supporting this work.

