Отчёт по лабораторной работе 6

Супонина Анастасия Павловна

Содержание

Цель работы	
Задание	1
Вычислить	
Выполнение работы	2
Предел	
частичные суммы	
Сумма ряда часть 1	
Вычисление интеграллов	7
Аппроксимирование суммами	
Выволы	

Список иллюстраций

Элементы списка иллюстраций не найдены.

Список таблиц

Элементы списка иллюстраций не найдены.

Цель работы

Ознакомиться с вычислением пределов, последовательностей и рядов в Octave.

Задание.

Вычислить

- Предел
- Частичные суммы
- Сумму ряда
- Интеграллы
- Аппроксимирование суммами

Выполнение работы

Предел

Записываю функцию f и @ обозначаю переменую данной функции, которую мы можем отдельно задавать и позднее изменять

```
>> f = @(n) (1+1./n) .^n
f =
@(n) (1 + 1 ./ n) .^ n
>> k = [0:1:9]
k =
 0 1 2 3 4 5 6 7 8 9
>> k = [0:1:9]'
k =
 0
  1
  2
  3
  6
 8
>> format long
>> n = 10.^k
n =
          1
         10
        100
        1000
       10000
      100000
     1000000
    10000000
   100000000
  1000000000
```

Заднаю переменную и выполняю функцию с этой переменной

Частичные суммы

Записываю значения вектора а

```
>> a = 1./(n.*(n+2))

a =

1.2500e-01

6.6667e-02

4.1667e-02

2.8571e-02

2.0833e-02

1.5873e-02

1.2500e-02

1.0101e-02

8.3333e-03
```

И в цикле от одного до десяти, суммирую і - значений

```
>> for i = 1:10
s(i) = sum(a(1:i))
end
s = 0.1250
s =
0.1250 0.1917
0.1250 0.1917 0.2333
0.1250 0.1917 0.2333 0.2619
s =
0.1250 0.1917 0.2333 0.2619 0.2827
0.1250 0.1917 0.2333 0.2619 0.2827 0.2986
0.1250 0.1917 0.2333 0.2619 0.2827 0.2986 0.3111
0.1250 0.1917 0.2333 0.2619 0.2827 0.2986 0.3111 0.3212
s =
0.1250 0.1917 0.2333 0.2619 0.2827 0.2986 0.3111 0.3212 0.3295
 0.1250 0.1917 0.2333 0.2619 0.2827 0.2986 0.3111 0.3212 0.3295 0.3365
```

Отобразила результат на графике

Сумма ряда часть 1

Генерирую матрицу n, созначениями от 1 до 1000

>> n = [: n =	1:1	:1000	1							
Columns	1 1	throu	gh 13:							
1		2	3	4	5	6	7	8	9	10
Columns	14	thro	ugh 26:							
14		15	16	17	18	19	20	21	22	23
Columns	27	thro	ugh 39:							
27		28	29	30	31	32	33	34	35	36
Columns	40	thro	ugh 52:							
40		41	42	43	44	45	46	47	48	49
Columns	53	through 65:								
53		54	55	56	57	58	59	60	61	62
Columns	66	thro	ugh 78:							
66		67	68	69	70	71	72	73	74	75
Columns	79	thro	ugh 91:							
79		80	81	82	83	84	85	86	87	88
Columns	92	thro	ugh 104:							

Генерирую матрицу а

>> a = 1./n a =									
Columns 1 thre	ough 7:								
1.0000e+00	5.0000e-01	3.3333e-01	2.5000e-01	2.0000e-01	1.6667e-01	1.4286e-01			
Columns 8 through 14:									
1.2500e-01	1.1111e-01	1.0000e-01	9.0909e-02	8.3333e-02	7.6923e-02	7.1429e-02			
Columns 15 through 21:									
6.6667e-02	6.2500e-02	5.8824e-02	5.5556e-02	5.2632e-02	5.0000e-02	4.7619e-02			
Columns 22 through 28:									
4.5455e-02	4.3478e-02	4.1667e-02	4.0000e-02	3.8462e-02	3.7037e-02	3.5714e-02			
Columns 29 through 35:									
3.4483e-02	3.3333e-02	3.2258e-02	3.1250e-02	3.0303e-02	2.9412e-02	2.8571e-02			
Columns 36 th	rough 42:								
2.7778e-02	2.7027e-02	2.6316e-02	2.5641e-02	2.5000e-02	2.4390e-02	2.3810e-02			
Columns 43 th	rough 49:								
2.3256e-02	2.2727e-02	2.2222e-02	2.1739e-02	2.1277e-02	2.0833e-02	2.0408e-02			
Columne 50 th	rough 56.								

Считаю сумму и вывожу результат

```
>> sum(a)
ans = 7.4855
>> |
```

Вычисление интеграллов

Создаю функцию f и при помощи quad получаю значение интеграла от данной функции

```
>> function y = f(x)
y = \exp(x.^2) \cdot \cos(x)
end
>> quad('f',0,pi/2)
y = 1.3103
y = 1.0002
y = 0.2267
y = 0.2267
y = 1.0056
y = 0.9042
y = 1.0319
y = 1.4191
y = 1.1003
y = 1.5288
y = 1.2269
y = 1.3991
y = 1.0000
y = 0.039792
y = 1.0015
y = 0.5458
y = 1.0149
y = 1.2115
y = 1.0595
y = 1.5188

y = 1.1560
y = 1.4792
ans = 1.8757
```

Аппроксимирование суммами

Создаю файл для вычисления аппроксимации первым способом

Сохраняю файл под названием midpoint и запускаю, чтобы в консоли увидеть результат выполнения

```
>> midpoint
a = 0
b = 1.5708
n = 100
dx = 0.015708
msum = 0
                        m = 1.5472
m1 = 7.8540e - 03
                        y = 0.2581
m = 7.8540e - 03
                        msum = 119.33
y = 1.0000
msum = 1.0000
                        m = 1.5629
m = 0.023562
                        y = 0.090360
                        msum = 119.42
y = 1.0003
msum = 2.0003
                        approx = 1.8758
```

Создаю ещё один файл для вычисления аппроксимации вторым способом

```
midpoint_v.m 

a = 0

b = pi/2

n = 100

dx = (b-a)/n

function y = f(x)

y = exp(x.^2) .* cos(x)

end

m = [a+dx/2:dx:b-dx/2]

M = f(m)

approx = dx * sum(M)
```

Сохраняю файл под названием midpoint_v и запускаю, чтобы в консоли увидеть результат выполнения

```
>> midpoint v
a = 0
b = 1.5708
n = 100
dx = 0.015708
m =
Columns 1 through 7:
  7.8540e-03 2.3562e-02 3.9270e-02 5.4978e-02 7.0686e-02
 Columns 8 through 14:
  1.1781e-01 1.3352e-01 1.4923e-01 1.6493e-01 1.8064e-01
 Columns 15 through 21:
  2.2777e-01 2.4347e-01 2.5918e-01 2.7489e-01 2.9060e-01
 Columns 22 through 28:
Columns 97 through 100:
 0.546827 0.409843
approx = 1.8758
(i-search) `':
```

Использую tic и toc, чтобы узнать время выполнения каждого файла и сравниваю результаты

```
>> tic; midpoint; toc
a = 0
b = 1.5708
n = 100
dx = 0.015708
msum = 0
m1 = 7.8540e - 03
m = 7.8540e - 03
y = 1.0000
msum = 1.0000
m = 0.023562
y = 1.0003
msum = 2.0003
m = 0.039270
                               -----
y = 1.0008
                              Elapsed time is 0.109516 seconds.
mcum - 3 0011
```

```
>> tic; midpoint_v; toc
a = 0
b = 1.5708
n = 100
dx = 0.015708
m =

Columns 1 through 7:

7.8540e-03  2.3562e-02  3.9270e

Columns 8 through 14:

1.1781e-01  1.3352e-01  1.4923e

Elapsed time is 0.0540252 seconds.
```

Исходя из результатов мы можем сделать заключение, что второй способ для нахождения аппроксимации является более быстрым.

Выводы

В процессе выполнения работы, я научилась вычислять пределы, последовательности и ряды в Octave.