Binary representation of the fuzzy measures (Choquet integrals)

- In order to represent the fuzzy measures, Binary ordering can be used.
- Binary ordering uses the form of a binary number to decide which elements are in the set at a given position.
- For example, let us consider that we want to represent the following 8 fuzzy measures (with three variables 1, 2, and 3).
 - $v(\emptyset)$, $v(\{1\})$, $v(\{2\})$, $v(\{3\})$, $v(\{1,2\})$, $v(\{1,3\})$, $v(\{2,3\})$, $v(\{1,2,3\})$
 - In order to represent these 8 fuzzy measures, we need three digit binary number (hence it has 8 possibilities). The binary numbers are:
 - 000, 001, 010, 011, 100, 101, 110, 111.
- We look at where the "1" occurs from the far "right" in order to decide which element/variable is included in the set. See the diagrams below

The below table shows the full binary representation of the 8 fuzzy measures.

Remember that we look at where the "1" occurs from the far "right" in the binary representation

Number	Binary number	Fuzzy measures
0	000	$v(\emptyset)$
1	001	$v(\{1\})$
2	010	v({2})
3	011	v({1,2})
4	100	v({3})
5	101	v({1,3})
6	110	v({2,3})
7	111	$v(\{1,2,3\})$