1	2	3	4	5	Total	Nota

APELLIDO Y NOMBRE: CARRERA:

JUSTIFIQUE todas sus respuestas. Todos los ejercicios valen 20 puntos.

- 1. Series numéricas y convergencia
 - a) Determine si la serie

$$\sum_{n=1}^{\infty} \frac{3n+5}{n^2+1}$$

es convergente o divergente. Justifique usando un criterio adecuado.

b) Estudie la convergencia de la serie alternane:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

¿Es absolutamente convergente o condicionalmente convergente?

- 2. Series de potencias y radio de convergencia
 - a) Dada la serie de potencias

$$\sum_{n=0}^{\infty} \frac{(2x)^n}{n!}$$

determine su radio e intervalo de convergencia.

b) Sea

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

Calcule el radio de convergencia y determine si la serie converge en los extremos del intervalo.

- 3. Taylor y aproximaciones
 - a) Calcule el polinomio de Taylor de orden 3 centrado en a=0 de la función

$$f(x) = \ln(1+x)$$

b) Use la fórmula de Lagrange para estimar el error al aproximar ln(1.2) con el polinomio de orden 3 anterior.

- 4. Geometría analítica en \mathbb{R}^2 y \mathbb{R}^3
 - a) Encuentre la ecuación vectorial, paramétrica y cartesiana de la recta que pasa por los puntos A=(1,2) y B=(4,5) en \mathbb{R}^2 .
 - b) En \mathbb{R}^3 , se dan dos planos:

$$\Pi_1: x + 2y - z = 3$$
 y $\Pi_2: 2x + 4y - 2z = 7$

Determine si son paralelos. En caso contrario, calcule el ángulo entre ellos.

- 5. Funciones vectoriales y funciones reales de varias variables
 - a) Sea la curva dada por

$$\vec{r}(t) = (t, \cos t, \sin t)$$

Calcule la ecuación de la recta tangente en el punto correspondiente a t=0.

b) Represente el gráfico de la función

$$f(x,y) = x^2 + 3y^2 - 4$$