

PRACTICE

COMPET

OBS LEADERBOARD

Q Search

Statistics

Difficulty: Hard

Publish Date: Apr 30 2017

pruthvishalcodi1 >

All Contests > ALCoding Summer Weekly Contest 3 > AND xor OR

Problem

Submissions

Leaderboard

Discussions

Editorial

H

Editorial by Omar Khaled

Pre-requisites: Bit Manipulation, Data Structure, Stack.

Difficulty Level: Hard.

Hints: Make a stack that maintains a strictly increasing sub-sequence and simplify the giving expression for S_i .

Editorial:

Firstly: it is needed to simplify the given expression

 $S_i=(((M_1\wedge M_2)\oplus (M_1\vee M_2))\wedge (M_1\oplus M_2))$. Let M_1 consists of i bits (a_1,a_2,\ldots,a_i) and M_2 consists of j bits (b_1,b_2,\ldots,b_j) .

Let $res_1=(M_1\wedge M_2)$ = a number which have bits of value 1 at the positions where $a_i=b_j=1$ and i=j.

Let $res_2 = (M_1 \lor M_2)$ = a number which have bits of value 1 at the positions where $a_i = 1$ or $b_i = 1$ and i = j.

Let $res_3=(M_1\oplus M_2)$ = a number which have bits of value 1 at the positions where $a_i=1$ or $b_i=1$, but not both, and i=j.

Let $res_4=((M_1\wedge M_2)\oplus (M_1\vee M_2))$ = a number which have bits of value 1 at the positions where $a_i=1$ or $b_j=1$, but not both, and i=j. Let

 $S_i = res_5 = (((M_1 \land M_2) \oplus (M_1 \lor M_2)) \land (M_1 \oplus M_2))$ = a number which have bits of value 1 at the positions where $a_i = 1$ or $b_i = 1$, but not both, and i = j.

So after simplifying the expression, $S_i = M_1 \oplus M_2$.

Secondly: to find S_i in every possible interval, it is needed to have a stack (st). This stack will ensure that S_i in every interval will be calculated using the correct M_1 and M_2 . (st) should have always a strictly increasing sub-sequence. Now push A_1 and A_2 in (st) and set $S_i = A_1$ xor A_2 . After that loop over the input values (A_i) starting from i >= 3. Then 2 cases will be considered.

Case 1#:

If A_i > the top (T) of the stack, then push A_i in the stack. $M_1=T, M_2=A_i$, so $S_i=T\oplus A_i$.

Case 2#:

If $A_i <= T$, then keep popping from the stack (st) until either the stack is empty or $A_i > T$. Whenever you pop a number with value (V) from (st), maximize between the old S_i and the current S_i which equals $V \oplus A_i$. This is done because when $A_i <= T$, that means A_i could be M_1 or M_2 in longer intervals so we keep popping from (st) and calculating S_i in the new interval using A_i .

For more clarification, consider this example:

5 36957

```
So push A_1 and A_2 in (st) and set S_i=A1\oplus A_2. Now loop over the input values A_i from i>=3. As (A_3=9>T=6), so apply case 1 and set M_1=T, M_2=A_i, S_i=max(s_i,T\oplus A_3). At (i=4) these are the values ((A_4=5)<=(T=9)), so apply case 2 and keep popping from the stack and maximize S_i. Now S_i=max(S_i,(T=9)\oplus A_4) then pop from (st) so T will be updated and S_i=max(S_i,(T=6)\oplus A_4) then pop from (st) so T will be updated and S_i=max(S_i,(T=3)\oplus A_4). Now A_4>T, so stop popping from (st). At (i=5) these are the values (A_5=7>T=5), so apply case 1 and set M_1=T=5, M_2=A_5=7, S_i=max(S_i,T\oplus A_5).
```

Note: There is no need to use long integers as the result of $A_i \oplus A_j$ will never exceeds 10^9 where $A_i, A_j <= 10^9$.

Time Complexity: O(N). Memory Space Complexity: O(N).

Solution#:

```
#include <bits/stdc++.h>
using namespace std;
#define MAXN 1000000
int a[MAXN + 1];
void solve(int n) {
    stack<int> s;
    int result = INT_MIN, cur;
    for (int i = 0; i < n; ++ i) {
       while (!s.empty() && s.top() >= a[i]) {
          int tmp = s.top(); s.pop();
          result = max(result, tmp ^ a[i]);
       if (!s.empty()) result = max(result, a[i] ^ s.top());
       s.push(a[i]);
    printf("%d\n", result);
int main() {
    int N;
    scanf("%d", &N);
    for (int i = 0; i < N; ++ i) scanf("%d", &a[i]);
    solve(N);
    return 0;
```

Contest Calendar | Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature