Capítulo 8 - Introdução à trigonometria

1. Construa a tabela do seno, cosseno e tangente dos ângulos mais usados 30º, 45º e 60º:

	300	450	60°
Seno			
Cosseno			
Tangente			

2. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas **x** e **y** dos lados desse terreno.

3. Na figura temos PA = 24 cm.

4. (UFRJ) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento da sombra x do poste, mas, para isso, ela informa que o sen $\alpha = 0.6$. Calcule o comprimento da sombra x.

- **5.** Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e BC = 6.
 - a) 6
 - b) 8
 - c) 14
 - d) 2
 - e) 16

- **6. (Vunesp)** Uma pessoa, no nível do solo, observa o ponto mais alto de uma torre vertical, à sua frente, sob o ângulo de 30°. Aproximando-se 40 metros da torre, ela passa a ver esse ponto sob o ângulo de 45°. A altura aproximada da torre, em metros, é
 - a) 44,7.
 - b) 48,8.
 - c) 54,6.
 - d) 60,0.
 - e) 65,3.
- **7. (PUC-Camp)** Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

Se ela caminhar 90 metros em linha reta, chegará a um ponto B, de onde poderá ver o topo C do prédio, sob um ângulo de 60°. Quantos metros ela deverá se afastar do ponto A, andando em linha reta no sentido de A para B, para que possa enxergar o topo do prédio sob um ângulo de 30°?

- a) 150
- b) 180
- c) 270
- d) 300
- e) 310
- **8. (PUC-Camp)** A figura a seguir é um corte vertical de uma peça usada em certo tipo de máquina. No corte aparecem dois círculos, com raios de 3cm e 4cm, um suporte vertical e um apoio horizontal. A partir das medidas indicadas na figura, conclui-se que a altura do suporte é
- a) 7 cm
- b) 11 cm
- c) 12 cm

- d) 14 cm
- e) 16 cm
- **9. (Unirio)** Um disco voador é avistado, numa região plana, a uma certa altitude, parado no ar. Em certo instante, algo se desprende da nave e cai em queda livre, conforme mostra a figura. A que altitude se encontra esse disco voador?

Considere as afirmativas:

I - a distância d é conhecida;

II - a medida do ângulo α e a tg do mesmo ângulo são conhecidas.

Então, tem-se que:

- a) a l sozinha é suficiente para responder à pergunta, mas a ll, sozinha, não.
- b) a ll sozinha é suficiente para responder à pergunta, mas a l, sozinha, não.
- c) l e ll, juntas, são suficientes para responder à pergunta, mas nenhuma delas, sozinha, não é:
- d) ambas são, sozinhas, suficientes para responder à pergunta.
- e) a pergunta não pode ser respondida por falta de dados.
- **10. (UFRS)** Um barco parte de A para atravessar o rio. A direção de seu deslocamento forma um ângulo de 120° com a margem do rio.

Sendo a largura do rio 60 m, a distância, em metros, percorrida pelo barco foi de

- a) 40 $\sqrt{2}$
- b) 40 $\sqrt{3}$
- c) 45 $\sqrt{3}$
- d) 50 $\sqrt{3}$
- e) 60 $\sqrt{2}$

11. Determine a medida **x** indicada no triângulo acutângulo abaixo:

12. Determine o valor de **x** no triângulo abaixo:

13. Num triângulo ABC, o ângulo $\hat{\mathbf{A}}$ mede 60° e o lado oposto mede 7 cm. Se um dos lados adjacentes ao ângulo $\hat{\mathbf{A}}$ mede 3 cm, qual a medida do outro lado do triângulo?

14. Utilizando a lei dos cossenos no triângulo ABC, determine o valor de \mathbf{x} :

15. Construa a tabela dos polígonos inscritos numa circunferência:

	- · ^ · · · · · · · · · · · · · · · · ·	<u> </u>	,
1	Triângulo equilátero	Quadrado	Hexágono regular
i			

Lado		
Apótema		

16. Determine as medidas do lado e do apótema de cada um dos polígonos regulares abaixo:

a)

b)

c)

17. Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3 cm. A medida do diâmetro dessa circunferência é:

- a) 6 cm.
- b) 10 cm.
- c) 12 cm.
- d) 42 cm.
- e) 36 cm.

18. O apótema de um triângulo equilátero inscrito numa circunferência mede 8 cm. O lado do hexágono regular inscrito nessa circunferência mede:

- a) 8 cm.
- b) $8\sqrt{2}$ cm.
- c) 16 cm.
- d) $16\sqrt{2}$ cm.

19. Observe a figura abaixo: o perímetro do hexágono regular inscrito na circunferência é $18\sqrt{3}$ cm. O perímetro do triângulo equilátero circunscrito a essa mesma circunferência é:

- a) 36.
- b) 90.
- c) 54.
- d) 72.

20. O lado de um quadrado inscrito em uma circunferência mede $10\sqrt{2}$ cm. A medida do lado do triângulo equilátero inscrito na mesma circunferência é:

- a) $10\sqrt{3}$.
- b) $30\sqrt{2}$.
- c) $10\sqrt{2}$.
- d) $15\sqrt{3}$.

GABARITO

1.

	30°	450	60°
Seno	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2
Tangente	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

3.
$$r = 8\sqrt{3}$$

4.
$$x \approx 13,33 \text{ m}$$

- **5.** c
- **6.** c
- **7.** c
- **8.** b
- **9.** c
- **10.** b
- **11.** $4\sqrt{6}$
- **12.** $2\sqrt{3}$
- **13.** 8

14.
$$x = \sqrt{13}$$

15.

 	Triângulo equilátero	Quadrado	Hexágono regular
Lado	R √3	R√2	R
Apótema	$\frac{R}{2}$	$\frac{R\sqrt{2}}{2}$	$\frac{R\sqrt{3}}{2}$

16. a) L = 1,5
$$\sqrt{2}$$
 e Ap = 1,5 $\frac{\sqrt{2}}{2}$

b) L = 8 e Ap =
$$4\sqrt{3}$$

c) L = 12 e Ap =
$$2\sqrt{3}$$

- **17.** c
- **18.** c
- **19.** c
- **20.** a