

Теория вероятностей и математическая статистика

Урок 2

Дискретные случайные величины. Закон распределения вероятностей. Биномиальный закон распределения. Распределение Пуассона

Что будет на уроке сегодня

- Дискретная случайная величина
- Закон распределения вероятностей
- Биномиальное распределение
- Распределение Пуассона

Случайная величина — та, что в результате испытания принимает только одно возможное значение.

Дискретная случайная величина

принимает отделённые друг от друга значения.

Например

В результате стократного подбрасывания монеты орёл может выпасть 50 или 51 раз, то есть целое число в диапазоне от 0 до 100 включительно, но не 50 с половиной раз.

Примеры дискретной случайной величины

1. Число выпаданий орла при стократном подбрасывании монеты.

Примеры дискретной случайной величины

- 1. Число выпаданий орла при стократном подбрасывании монеты.
- 2. Число дождливых дней лета.

Примеры дискретной случайной величины

- 1. Число выпаданий орла при стократном подбрасывании монеты.
- 2. Число дождливых дней лета.
- 3. Число метеоритов, упавших на Землю за год.

Закон распределения вероятностей дискретной случайной величины — соответствие между возможными значениями указанной величины и вероятностями, которые им соответствуют.

Биномиальное распределение — один из примеров дискретного распределения

Биномиальный закон распределения — это закон

распределения числа $\mathbf{X} = \mathbf{k}$ наступлений события \mathbf{A} в \mathbf{n} независимых испытаниях, в каждом из которых оно может произойти с вероятностью \mathbf{p} .

Биномиальное распределение

Число наступления события — это дискретная величина из отрезка [0, n].

Вероятности возможных значений этой величины определяются по формуле Бернулли:

$$P_n(X=k) = C_n^k p^k q^{n-k}$$

где ${\bf p}$ — это вероятность наступления события ${\bf A}$ в ${\bf n}$ независимых испытаниях, а ${\bf q}$ = ${\bf 1}$ – ${\bf p}$.

Распределение Пуассона

Если проводится много испытаний n, и при этом вероятность p появления события A в отдельном испытании мала, применяется формула Пуассона для вычисления вероятности того, что событие произойдёт m раз в n испытаниях:

$$P_m pprox rac{\lambda^m}{m!} e^{-\lambda}$$

Распределение Пуассона и формула Пуассона часто применяются в теории массового обслуживания (ТМО).

TMO — это раздел теории вероятностей, в котором исследуется рациональный выбор структуры системы обслуживания и его процесса. В основе теории — изучение потоков требований на обслуживание, поступающих в систему и выходящих из неё, длительности ожидания и длины очередей.

Заключение

- Дискретная случайная величина
- Закон распределения вероятностей дискретной случайной величины
- Биномиальное распределение,
 формула Бернулли
- Распределение Пуассона

