# CS224W Homework 3

Due: November 14, 2024

# 1 GNNs as MLP of eigenvectors [20 points]

# 1.1 Batch Node Update [2 points]

Consider the update for Graph Isomorphism Network:

$$\mathbf{x}_{v}^{(l+1)} = \mathtt{MLP}\left(\left(1 + \epsilon\right)\mathbf{x}_{v}^{(l)} + \sum_{u \in \mathcal{N}(v)} \mathbf{x}_{u}^{(l)}\right),\tag{1}$$

where  $\mathbf{x}_v^{(l)} \in \mathbb{R}^{d_l}$  is the embedding of node v at layer l. Let  $\mathbf{X}^{(l)} \in \mathbb{R}^{N \times d_l}$  be a matrix containing the embeddings of all the nodes in the graph, i.e.,  $\mathbf{X}^{(l)}$  [:, v] =  $\mathbf{x}_v^{(l)}$ . Also, let  $\mathbf{A} \in \{0,1\}^{N \times N}$  represent the adjacency matrix of the graph. Write down the update of  $\mathbf{X}^{(l+1)}$  as a function of  $\mathbf{X}^{(l)}$  and  $\mathbf{A}$ .

### **★** Solution ★

$$\mathbf{X}^{(l+1)} = \mathtt{MLP}\left(\left(\left(1+\epsilon\right)\mathbf{I} + \mathbf{A}\right)\mathbf{X}^{(l)}\right)$$

# 1.2 Single Layer MLP [2 points]

Assume that MLP () represents a single layer MLP with no bias term. Write down the update of  $\mathbf{X}^{(l+1)}$  as a function of  $\mathbf{X}^{(l)}$  and  $\mathbf{A}$ , and the trainable parameters  $\mathbf{W}^{(l)}$  of layer l.

### **★** Solution ★

$$\mathbf{X}^{(l+1)} = \sigma \left( (\mathbf{A} + (1+\epsilon) \mathbf{I}) \mathbf{X}^{(l)} \mathbf{W}^{(l)} \right)$$

# 1.3 Eigenvector Extension [4 points]

Let  $\{\lambda_n, \mathbf{v}_n\}_{n=1}^N$  represent the eigenvalues and eigenvectors of the graph adjacency. Then we can write  $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ , where  $\mathbf{V} \in \mathbb{R}^{N \times N}$  is the matrix of eigenvectors with  $\mathbf{V}[:, n] = \mathbf{v}_n$  and  $\mathbf{\Lambda} \in \mathbb{R}^{N \times N}$  is the diagonal matrix of eigenvalues with  $\mathbf{\Lambda}[n, n] = \lambda_n$ . Show that

$$\mathbf{X}^{(l+1)} = \sigma\left(\mathbf{V}\hat{\mathbf{W}}^{(l)}\right), \quad \hat{\mathbf{W}}^{(l)}\left[n, j\right] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}[i, j] \langle \mathbf{v}_n, \mathbf{X}^{(l)}\left[:, i\right] \rangle,$$

where  $\langle \cdot \rangle$  denotes the dot product. Hint: Use the fact that the eigenvectors are orthonormal. Next, show that each feature across all nodes,  $\mathbf{X}^{(l+1)}[:,i]$ , can be expressed as a linear combination of eigenvectors, followed by a pointwise nonlinearity.

### **★** Solution ★

$$\hat{\mathbf{W}}^{(l)}[n,j] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}[i,j] \langle \mathbf{v}_n, \mathbf{X}^{(l)}[:,i] \rangle$$

$$= (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \langle \mathbf{v}_n, \mathbf{X}^{(l)}[:,i] \rangle \mathbf{W}^{(l)}[i,j]$$

$$= (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \left( \mathbf{v}_n^{\mathbf{T}} \mathbf{X}^{(l)}[:,i] \right) \mathbf{W}^{(l)}[i,j]$$

$$= (\lambda_n + 1 + \epsilon) \mathbf{v}_n^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}[:,j]$$

$$\hat{\mathbf{W}}^{(l)}[n,:] = (\lambda_n + 1 + \epsilon) \mathbf{v}_n^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$\hat{\mathbf{W}}^{(l)} = (\Lambda + (1 + \epsilon)) \mathbf{V}^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{V}\Lambda + \mathbf{V}(1 + \epsilon)) \mathbf{V}^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{V}\Lambda + \mathbf{V}(1 + \epsilon)) \mathbf{V}^{\mathbf{T}} \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{V}\Lambda \mathbf{V}^{\mathbf{T}} + \mathbf{V}\mathbf{V}^{\mathbf{T}}(1 + \epsilon)) \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$= (\mathbf{A} + (1 + \epsilon) \mathbf{I}) \mathbf{X}^{(l)} \mathbf{W}^{(l)}$$

$$\sigma(\mathbf{V}\hat{\mathbf{W}}) = \sigma \left( (\mathbf{A} + (1 + \epsilon) \mathbf{I}) \mathbf{X}^{(l)} \mathbf{W}^{(l)} \right) = \mathbf{X}^{(l+1)}$$

## 1.4 GraphSAGE [4 points]

Perform the same analysis for the GraphSAGE update when the aggregation function is sum pooling. Recall that the GraphSAGE update function is

$$\begin{aligned} \mathbf{x}_{v}^{(l+1)} &= \sigma \left( \mathbf{W}^{(l)} \cdot \text{CONCAT} \left( \mathbf{x}_{v}^{(l)}, \mathbf{x}_{N(v)}^{(l)} \right) \right) \\ &= \sigma \left( \mathbf{W}_{1}^{(l)} \mathbf{x}_{v}^{(l)} + \mathbf{W}_{2}^{(l)} \text{AGG} \left( \mathbf{x}_{u}^{(l)}, \forall u \in N(v) \right) \right) \end{aligned}$$

#### **★** Solution ★

$$\mathbf{X}^{(\mathbf{l+1})} = \sigma \left( \mathbf{X}^{(\mathbf{l})} \mathbf{W}_{\mathbf{1}}^{(\mathbf{l})} + \mathbf{A} \mathbf{X}^{(\mathbf{l})} \mathbf{W}_{\mathbf{2}}^{(\mathbf{l})} \right) = \sigma \left( \mathbf{V} \hat{\mathbf{W}} \right)$$

Where

$$\hat{\mathbf{W}}^{(l)}[n,j] = \sum_{i=1}^{d_l} (\mathbf{W}_{\mathbf{1}}^{(l)}[i,j] + \lambda_n \mathbf{W}_{\mathbf{2}}^{(l)}[i,j]) \langle \mathbf{v}_n, \mathbf{X}^{(l)}[:,i] \rangle$$

## 1.5 Eigendecomposition Analysis [8 points]



For graphs  $\mathcal{G}$  and  $\hat{\mathcal{G}}$  instantiate the graph adjacencies in Numpy, PyTorch, or PyG, and compute their eigenvalue decompositions. What do you observe?

### **★** Solution ★

Both graphs have the same eigenvalue decompositions for the adjacency matrix.

Consider a GIN where all nodes start with the same initial color, i.e.,  $\mathbf{x}_v^{(0)} = 1$  for all nodes  $v \in \mathcal{V}$ . This setup is equivalent to having  $\mathbf{X}^{(0)} = \mathbf{1}$ , where  $\mathbf{1}$  denotes the all-one vector. This is the initialization of the WL test. Using the equations in 1.3, derive the expression for  $\mathbf{X}^{(1)}$ .

### **★** Solution ★

$$\mathbf{X}^{(1)} = \sigma\left(\mathbf{V}\hat{\mathbf{W}}^{(0)}\right), \quad \hat{\mathbf{W}}^{(0)}\left[n, j\right] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}\left[i, j\right] \langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle,$$

Observe that each column  $\mathbf{X}^{(1)}[:,j]$  is a linear combination of eigenvectors, followed by a pointwise nonlinearity. What is the weight associated with each eigenvector? What factors determine this weight?

#### **★** Solution ★

The weight associated with the n-th eigenvector in the column j of the new  ${\bf X}$  matrix is equal to:

$$\hat{\mathbf{W}}^{(0)}[n,j] = (\lambda_n + 1 + \epsilon) \sum_{i=1}^{d_l} \mathbf{W}^{(l)}[i,j] \langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle,$$

It is determined by the associated eigenvalue, the  $\epsilon$  parameter, the weight associated with column j in the original layer, and the dot product  $\langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle$ .

Compute the dot product  $\langle \mathbf{v}_n, \mathbf{X}^{(0)} \rangle$ , for each eigenvector across both graphs. What do you observe?

### **★** Solution ★

The dot product is always equal to 1, because all nodes have their feature value equal to 1 and the vector  $\mathbf{v_n}$  has it's norm equal to 1.

What does the previous result suggest about  $\mathbf{X}^{(1)}$  for the graphs  $\mathcal{G}$  and  $\hat{\mathcal{G}}$ ?

#### ★ Solution ★

The result suggests that both graphs will have the same resulting  $\mathbf{X}^{(1)}$  matrix.