

Learning to Integrate

O. G. Ernst, <u>H. Gottschalk</u>, T. Kowalewitz, P. Krüger Institute of Mathematics, TU Berlin CoMINDS Delft | 28. April 2024

Uncertainty Quantification

Technische Universität

Uncertainty Quantification

Mathematics and Challenges of UQ

- You have an input distribution μ on the parameter space Θ that has to be measured/modelled
- ► The simulation code $QoI : \Theta \ni \theta \mapsto \Phi(\theta) = QoI(\theta)$ is computationally expensive as it involves the set-up, solution and post-processing of PDE

QoI
$$\sim \Phi_* \mu$$
 $\Phi_* \mu(A) = \mu(\Phi^{-1}(A)).$

- ▶ The expensive simulation code prohibts the use of straight forward MC Methods
- \blacktriangleright In many cases, the space Θ is infinite diemensional and needs to be discretised.

Numerical Integration of Gaussian Distributions

Let $\mu = N(0,1)$ standard normal distribution,

$$f_{\mu}(\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\theta^2}.$$

 $ightharpoonup H_n(\theta)$ n-the order Hermite polynomial, θ_1,\ldots,θ_n the zeropoints of H_n . Then,

$$\int_{\mathbb{R}} \operatorname{QoI}(\theta) f_{\mu}(\theta) d\theta \approx \sum_{j=1}^{n} \omega_{j} \operatorname{QoI}(\theta_{j}).$$

- \triangleright ω_i are called quadrature weights and θ_i quadrature points.
- Choice of ω_j make approximation exact for polynomials of deg. $\leq n-1$.

Tensor and Sparse Grid Quadratures

- \blacktriangleright $\mu = N(0, 1)$, d-dimensional Normal distribution, $f_{\mu}(\theta) = \frac{1}{\sqrt{2\pi^d}} e^{-\frac{1}{2}\theta^{\top}\theta}$.
- \blacktriangleright We search for a quadrature which is exact on polynomials of degree n-1

$$p(\theta) = \sum_{|\alpha| \leq n-1} a_\alpha \theta^\alpha, \quad \theta^\alpha = \prod_{j=1}^d \theta_j^{\alpha_j}, \quad |\alpha| = \max\{\alpha_j\} \text{ or } |\alpha| = \sum_{j=1}^d \alpha_j.$$

▶ The linear system of equations requires $q(d,n) \sim n^d$ quadrature points for max degree and $q(d,n) \sim n^d/d!$ for the sum degree.

$$\int_{\mathbb{R}^d} p(\theta) f_{\mu}(\theta) d\theta = \sum_{j=1}^{q(d,n)} \omega_j p(\theta_j), \quad \int_{\mathbb{R}^d} \text{QoI}(\theta) f_{\mu}(\theta) d\theta \approx \sum_{j=1}^{q(d,n)} \omega_j \text{QoI}(\theta_j)$$

Error bound for tensor and sparse grid quadrature

- $ightharpoonup \operatorname{QoI} \in C^r \Rightarrow$
- ► For the tensor quadrature rule

$$E(n) = O\left(q(n,d)^{-\frac{r}{d}}\right)$$

For the SG quadrature rule

$$E(n) = O\left(q(n,d)^{-r}\log(q(n,d))^{(d-1)(r+1)}\right)$$

Non Gaussian Distributions, Problem Statement

- ▶ **Q1:** What, if $f_{\mu}(\theta)$ is an involved distribution where quadrature weights ar not known?
- ▶ **Q2:** What, if $f_{\mu}(\theta)$ is even unknown and only i.i.d. samples $\Theta_l \sim f_{\mu}(\theta) d\theta$ are known, l = 1, ..., N?

Using Transport Maps (Q1)

A transport map $\phi: \mathbb{R}^d \to \mathbb{R}^d$ transports the source measure ν to the target measure μ is

$$\phi_*\nu=\mu.$$

▶ Taking $\nu = N(0, 1)$, we obtain for any transport map ϕ

$$\int_{\mathbb{R}^d} \operatorname{QoI}(\theta) f_{\mu}(\theta) d\theta = \int_{\mathbb{R}^d} \operatorname{QoI}(\phi(\theta)) e^{-\frac{1}{2}\theta^{\top}\theta} d\theta \approx \sum_{j=1}^{q(n,d)} \omega_j \operatorname{QoI}(\phi(\theta_j)).$$

- Poblems:
 - a) ϕ is hard to compute
 - b) The error bound depend on the nonlinearity (sup-norms of derivatives) of ϕ .

Technische Universität Berlin

Existence of Transport Maps

- lackbox (Optimal) Transport Theory: ϕ exists as a bijective map if f_μ is atom free, e.g. as the Rosenblatt-Knothe map
- As the solution of the OT problem

$$\phi \in \operatorname{arg\,min}_{\phi * \nu = \mu} \int_{\mathbb{R}^d} |x - \phi(x)|^2 d\nu(x)$$

lacktriangle As a flow endpoint ϕ_1 of the time-temepdent vector field $v: \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$,

$$\dot{\phi}^v(t,\theta) = v(\phi_t(\theta),t), \quad \phi_{t=0}(\theta) = \theta.$$

▶ The regularity of ϕ^v depends on the regularity og $f_\mu(\theta)$

Technische Universität Berlin

Approximation of Flow Endpoints with Neural ODE

- Let v be the vector field such that ϕ_1^v is a transport map from ν to μ
- Let $\xi_w:\mathbb{R}^d\to [0,1]$ be a deep neural network depending on wights w and ϕ_1^ξ its flow endpoint

$$\dot{\phi}^{\xi}(t,\theta) = \xi_w(\phi_t(\theta),t), \quad \phi_{t=0}(\theta) = \theta.$$

lacktriangle From the general theory of ODE we have with L lipshitz constent for v

$$\sup_{\theta \in K} \left| \phi_1^v(\theta) - \phi_2^{\xi}(\theta) \right| \le \frac{1}{L} \left(e^L - 1 \right) \|v - \xi_w\|_{\infty}$$

For regular $v \in C^1$ or better, the right hand side can be made small by universal approximation if one incrases the arcitecture size and optimizes w.

Numerical solutions to the ODE

- ▶ The flow enpoints of NeuralODE ϕ_1 themselves are not neural networks.
- ▶ **But:** the numerical solutions rto the neuralODE with Rungge-Kutta scheme are ResNet like neural networks.

How to Learn a Transport Map?

Express the log-likelihood of flow endpoints via Liouville's formula

$$\log \left(f_{\phi_{1*}^{\xi}\nu}(\theta) \right) = -\frac{1}{2} \| (\phi_1^{\xi})^{-1}(\theta) \|^2 + \int_0^1 \operatorname{div}_{\theta'} \xi_w(\theta', t) |_{\theta' = \phi_t(\theta)} \, \mathrm{d}t + \operatorname{cst.}$$

lacktriangle Then train with the negative log likelihood of the observed data points $\{\Theta_j\}$

$$\hat{w} \in \operatorname{arg\,min}_w \left\{ -\frac{1}{n} \sum_{l=1}^N \log \left(f_{\phi_{1*}^{\xi_w} \nu}(\Theta_l) \right) \right\}$$

▶ The set $\hat{\phi} = \phi_1^{\xi_w}$ and dicretize.

Flow Matching (Lipman et al 2022)

Training with Flow Matching

- ▶ Build a trivial probability path that transports a small gaussioan arounf the data Point Θ_j to a standard normal vector distribution. Each such probability pathh comes from a vector field $v(\theta|\Theta_j)$
- ▶ Train ξ_w as the vector field that minimizes (in w)

$$\mathbb{E}_{\Theta \sim f_{\mu}} \left[\| \xi_w \circ \phi^{v(\cdot|\Theta)} - v(\Theta) \circ \phi^{v(\cdot|\Theta)} \|_{L^2} \right] \approx \sum_{k=1}^{Q} \frac{1}{Q} \frac{1}{N} \sum_{l=1}^{N} \left| v(\phi_{k/Q}^{v(\cdot|\Theta_j)} | \Theta_j) - \xi_w(\phi_{k/Q}^{v(\cdot|\Theta_j)}) \right|^2$$

lacktriangle The linear stationary diffusion problem on bounded domain $D \subseteq \mathbb{R}^d$

$$-\nabla \cdot (a\nabla u) = f, \quad u|_{\partial D_d} = 0, \qquad n \cdot \nabla u = g_n|_{\partial D_n}.$$

- $lackbox{ } a(x,\omega)=T(Z(x,\omega))>0 \ {
 m random \ coeff., \ eg \ } T(z)=\exp(z).$
- $ightharpoonup Z(x) = Z(x,\omega)$ random field

lacktriangle The linear stationary diffusion problem on bounded domain $D \subseteq \mathbb{R}^d$

$$-\nabla \cdot (a\nabla u) = f, \quad u|_{\partial D_d} = 0, \qquad n \cdot \nabla u = g_n|_{\partial D_n}.$$

- $lackbox{ } a(x,\omega)=T(Z(x,\omega))>0 \ {
 m random \ coeff., \ eg \ } T(z)=\exp(z).$
- $ightharpoonup Z(x) = Z(x,\omega)$ random field

lacktriangle The linear stationary diffusion problem on bounded domain $D \subseteq \mathbb{R}^d$

$$-\nabla \cdot (a\nabla u) = f, \quad u|_{\partial D_d} = 0, \qquad n \cdot \nabla u = g_n|_{\partial D_n}.$$

- $lackbox{ } a(x,\omega)=T(Z(x,\omega))>0 \ {
 m random \ coeff., \ eg \ } T(z)=\exp(z).$
- $ightharpoonup Z(x) = Z(x,\omega)$ random field

lacktriangle The linear stationary diffusion problem on bounded domain $D\subseteq\mathbb{R}^d$

$$-\nabla \cdot (a\nabla u) = f, \quad u|_{\partial D_d} = 0, \qquad n \cdot \nabla u = g_n|_{\partial D_n}.$$

- $lacktriangledown a(x,\omega) = T(Z(x,\omega)) > 0$ random coeff., eg $T(z) = \exp(z)$.
- $ightharpoonup Z(x) = Z(x,\omega)$ random field

QoI: Flow Modeling for a Waste Deposit Facility

Physical Interpretation of the Poisson Equation

- ightharpoonup u(x) is ground pressure at location $x \in D$
- ightharpoonup a(x) is conductivity of ground material at location x
- ▶ Thus, the flow velocity q(x) at location x is

$$q(x) = -a(x)\nabla u(x).$$

▶ Qol is e.g. first exit time from restricted region $D' \subseteq D$ around pollution location $x_0 \in D'$

$$\dot{X}(t) = q(X(t)), \quad X(0) = x_0, \quad \text{QoI} = \inf\{t > 0 : X(t) \notin D'\}.$$

ightharpoonup As q(x) is random through a(x), also the QoI becomes a random variable!

Generalized Random Fields

- Generalized random fields do not have ordinary functions as pathes, but generalized functions, i.e. (tempered) distributions.
- Definition: A generalized random field over a real topological vector space of functions V fulfills
 - $Z(f) = \int_{\mathbb{R}^d} Z(x) f(x) dx$ " is a random variable $\forall f \in V$;
 - $Z(\gamma f + \beta g) = \gamma Z(f) + \beta Z(g)$ holds a.s. $\forall g, f \in V, \ \gamma, \beta \in \mathbb{R}$;
 - $f_n \to f$ in $V \Rightarrow Z(f_n) \to Z(f)$ in distribution.

Technische Universität Berlin

Minlos Theroem

- ▶ **Definition:** A characteristic functional $\varphi: V \to \mathbb{C}$ fulfills
 - $\varphi(0) = 1;$
 - $\blacksquare \varphi$ is continuous (at zero);
 - φ is positive definite $(\varphi(f_1 f_j))_{i,j=1,\ldots,n} \geq 0$.
- **Theorem:** (Minlos) Let V be a nuclear space, then the random fields are in one-to-one correspondence to the characteristic functionals via

$$\varphi(f) = \mathbf{E}\left[e^{iZ(f)}\right] = \int_{V'} e^{i\omega(f)} \mathrm{d}\mathbf{P}(\omega).$$

► Hence it is enough to write down a characteristic functional to construct a random field

Technische Universität Berlin

Lévy Noise Fields

▶ GWN - Gaussian white noise $(V = \mathscr{S}(\mathbb{R}^d))$

$$\varphi_{\mathrm{GWN}}(f) = \mathbf{E}\left[e^{i\eta(f)}\right] = e^{-\frac{1}{2}\sigma^2 \int_{\mathbb{R}^d} f^2 \,\mathrm{d}x}$$

Lévy noise field

$$\varphi_{\mathrm{LN}}(f) = \mathbf{E}\left[e^{i\eta(f)}\right] = e^{\int_{\mathbb{R}^d} \psi(f) \, \mathrm{d}x}$$

 \blacktriangleright $\psi(t)$ is a Lévy characteristic

$$\psi(t) = ibt - \frac{1}{2}\sigma^2 t^2 + \int_{\mathbb{R}\setminus\{0\}} \left(e^{ist} - 1 - ist \mathbb{1}_{|s|<1} \right) d\nu(s)$$

▶ $b \in \mathbb{R}, \sigma^2 > 0$, ν measure s.t. $\int_{\mathbb{R} \setminus \{0\}} \min(1, |s|^2) d\nu(s) < \infty$. (b, σ^2, ν) Lévy triplet.

Examples for Lévy Noise Fields

We assume that $\int_{0<|s|<1}|s|\mathrm{d}\nu(s)<\infty$. We can reparametrize $b'=b-\int_{|s|<1}s\mathrm{d}\nu(s)$.

$$\psi(t) = ib't - \frac{1}{2}\sigma^2t^2 + \int_{\mathbb{R}\setminus\{0\}} \left(e^{ist} - 1\right) d\nu(s)$$

- $b' = 0, \ \nu = 0 \text{ GWN}$
- b'=0, $\sigma^2=0$ compound Poisson noise / Poisson point process
 - $\int_{0<|s|<1} d\nu(s) < \infty$ finite activity, e.g. $\nu = \delta_1$ Poisson noise

Smoothed Lévy Noise Fields

lacktriangle The natural generalization from GWN to LN for random fields Z(x) is via the SPPDE

$$(-\Delta + m^2)^{\alpha/2} Z(x) = \eta(x).$$

- ▶ When is this a conventional random field?
- ▶ Theorem: Let $\alpha > d + \max\{0, \frac{3d-12}{8}\}$, then Z(x) has a.s. continuous paths.
- ▶ Thus for a(x) = T(Z(x)) with T(z) > 0 continuous, the solution u(x) to the diffusion equation exists a.s. .

Examples for Smoothed Lévy Coefficient Fields

Gaussian random field

Poisson random field

bi-gamma random field

- ▶ All fields have exactly the same covariance function!
- ▶ Does this thus have any effect on the distribution of the Qol?

Numerical Simulation

- ► Generate noise field on a grid
- FFT noise field
- ► Multiply with symbol $\frac{1}{(|k|^2+m^2)^{\alpha}}$
- ► FFT back
- Interpolate to FE grid quadrature points
- Set up FE with random coefficients and solve
- Postprocess Qol

Qol Distributions from 10000 MC Simulations

Gaussian Qol-distribution

Poisson Qol-distribution

bi-gamma Qol-distribution

- ▶ Differences are not dramatic, but bi-gamma has a thicker lower tail as compared with the normal distribution (i.e. to the risky side)
- ▶ Poisson noise has clear cut-off on the 'risky' tail

Results from the Learned Quadrature (9 modes)

Conclusion

Problems

- ▶ Uncertainty Quantification is a necessity in simulation of real life problems
- Distributions are rarely Gaussian
- Distribtions often are only given by data

Towards a solution

- One can learn transport maps using invertible normalizing flows
- One can thus learn quadrature rules
- ▶ But: the non-linearity of the transport map matters!
- Flow matching is an excellent candidate to keep derivatives low.