

SDS 384 11: Theoretical Statistics

Lecture 1: Introduction

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Manegerial Stuff

- Instructor- Purnamrita Sarkar
- Course material and homeworks will be posted under https://psarkar.github.io/teaching/sds384.html
- Office hours: TBD
- Homeworks are due Biweekly
- Grading 4-5 homeworks (55%), class participation (10%) Final Exam (35%)
- Books
 - Asymptotic Statistics, Aad van der Vaart. Cambridge. 1998.
 - Martin Wainwright's High dimensional statistics: A non-asymptotic view point

Why do theory?

- Say you have estimated $\hat{\theta}_n$ from data X_1, \dots, X_n . How do we know we have a "good" estimation method?
 - Does $\hat{\theta}_n \to \theta$? This brings us to **Stochastic Convergence**.
- How about the rate of convergence?
 - Can we give any guarantees on how quickly our estimate converges?

$$P(|\hat{\theta}_n - \theta| = | \text{large}) = \text{small}$$

2

This class

Your instructor "hopes to cover":

- Consistency of parameter estimates
 - Stochastic Convergence
 - Concentration inequalities
 - Asymptotic normality of estimators
- Empirical processes, VC classes, covering numbers
- Examples of network clustering with a bit of random matrix theory
- Bootstrap, Nonparametric regression and density estimation

Assume that $X_n, n \ge 1$ and X are elements of a separable metric space (S, d).

Definition (Weak Convergence)

A sequence of random variables converge in "law" or in "distribution" to a random variable X, i.e. $X_n \stackrel{d}{\to} X$ if $P(X_n \le x) \to P(X \le x) \ \forall x$ at which $P(X \le x)$ is continuous.

Assume that X_n , $n \ge 1$ and X are elements of a separable metric space (S,d).

Definition (Weak Convergence)

A sequence of random variables converge in "law" or in "distribution" to a random variable X, i.e. $X_n \stackrel{d}{\to} X$ if $P(X_n < x) \to P(X < x) \ \forall x$ at which $P(X \le x)$ is continuous.

Definition (Convergence in Probability)A sequence of random variables converge in "probability" to a random variable X, i.e. $X_n \stackrel{P}{\to} X$ if $\forall \epsilon > 0$, $P(d(X_n, X) > \epsilon) \to 0$.

Assume that $X_n, n \ge 1$ and X are elements of a separable metric space (S, d).

Definition (Almost Sure Convergence)

A sequence of random variables converges almost surely to a random variable X, i.e. $X_n \overset{a.s.}{\to} X$ if $P\left(\lim_{n \to \infty} d(X_n, X) = 0\right) = 1$.

• If you think about a (scalar) random variable as a function that maps events to a real number, almost sure convergence means $P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$

Definition (Convergence in quadratic mean)

A sequence of random variables converges in quadratic mean to a random variable X, i.e. $X_n \overset{q.m}{\to} X$ if $E\left[d(X_n,X)^2\right] \to 0$.

5

- $X_n \stackrel{a.s.}{\to} X$ implies $P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$
- What does convergence mean for a sequence of real numbers?

- $X_n \stackrel{a.s.}{\to} X$ implies $P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$
- What does convergence mean for a sequence of real numbers?
- $\forall \epsilon > 0$, $\exists n$, $\forall m \geq n$, $|X_n(\omega) X(\omega)| < \epsilon$
 - Consider a sequence of events A_1, \ldots, A_n , $A_n = \{|X_n(\omega) X(\omega)| < \epsilon\}$

- $X_n \stackrel{a.s.}{\to} X$ implies $P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$
- What does convergence mean for a sequence of real numbers?
- $\forall \epsilon > 0$, $\exists n$, $\forall m \geq n$, $|X_n(\omega) X(\omega)| < \epsilon$
 - Consider a sequence of events A_1, \ldots, A_n , $A_n = \{|X_n(\omega) X(\omega)| < \epsilon\}$
 - $\forall \epsilon > 0$, $\exists n$, s.t. $\forall m \geq n$, $|X_n(\omega) X(\omega)| < \epsilon$, boils down to:

$$\bigcup_{i=1}^n \bigcap_{m \ge n} A_m$$

- $X_n \stackrel{a.s.}{\to} X$ implies $P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$
- What does convergence mean for a sequence of real numbers?
- $\forall \epsilon > 0$, $\exists n$, $\forall m \geq n$, $|X_n(\omega) X(\omega)| < \epsilon$
 - Consider a sequence of events A_1, \ldots, A_n , $A_n = \{|X_n(\omega) X(\omega)| < \epsilon\}$
 - $\forall \epsilon > 0$, $\exists n$, s.t. $\forall m \geq n$, $|X_n(\omega) X(\omega)| < \epsilon$, boils down to:

$$\bigcup_{i=1}^n \bigcap_{m \geq n} A_m$$

- Another way of saying this is, A_n happens finitely often. (f.o.)
- $X_n \stackrel{a.s.}{\to} X$ implies $\forall \epsilon > 0$, $P(\{|X_n X| \ge \epsilon \text{ f.o.}\}) = 1$

Theorem

$$X_n \stackrel{a.s.}{\to} X$$
, $X_n \stackrel{q.m.}{\to} X \Rightarrow X_n \stackrel{P}{\to} X \Rightarrow X_n \stackrel{d}{\to} X$
 $X_n \stackrel{d}{\to} c \Rightarrow X_n \stackrel{P}{\to} c$

7

Converses: $X_n \stackrel{d}{\rightarrow} X \not\Rightarrow X_n \stackrel{P}{\rightarrow} X$

- Convergence in law needs no knowledge of the joint distribution of X_n and the limiting random variable X.
- Convergence in probability does.

Example

Consider $X \sim N(0,1)$, $X_n = -X$. $X_n \stackrel{d}{\to} X$. But how about $X_n \stackrel{P}{\to} X$?

Converses: $X_n \stackrel{d}{\rightarrow} X \not\Rightarrow X_n \stackrel{P}{\rightarrow} X$

- Convergence in law needs no knowledge of the joint distribution of X_n and the limiting random variable X.
- Convergence in probability does.

Example

Consider $X \sim N(0,1)$, $X_n = -X$. $X_n \stackrel{d}{\to} X$. But how about $X_n \stackrel{P}{\to} X$?

• $P(|X_n - X| \ge \epsilon) = P(2|X| \ge \epsilon) \not\to 0 \ \forall \epsilon > 0$. So X_n does not converge in probability to X.

Example

Let
$$Z \sim U(0,1)$$
 and for $n = 2^k + m$ for $k \ge 0, 0 \le m < 2^k$
 $X_n = 1(Z \in [m2^{-k}, (m+1)2^{-k}])$, i.e. $X_1 = 1, X_2 = 1(Z \in [0, 1/2))$, $X_3 = 1(Z \in [1/2, 1)), X_4 = 1(Z \in [0, 1/4)), X_5 = 1(Z \in [1/4, 1/2))$.

Example

Let
$$Z \sim U(0,1)$$
 and for $n = 2^k + m$ for $k \ge 0, 0 \le m < 2^k$
 $X_n = 1(Z \in [m2^{-k}, (m+1)2^{-k}])$, i.e. $X_1 = 1, X_2 = 1(Z \in [0, 1/2))$, $X_3 = 1(Z \in [1/2, 1)), X_4 = 1(Z \in [0, 1/4)), X_5 = 1(Z \in [1/4, 1/2))$.

• For any $Z \in (0,1)$, the sequence $\{X_n(Z)\}$ does not converge. So $X_n \overset{a,s}{\to} 0$.

Example

Let $Z \sim U(0,1)$ and for $n = 2^k + m$ for $k \ge 0, 0 \le m < 2^k$ $X_n = 1(Z \in [m2^{-k}, (m+1)2^{-k}])$, i.e. $X_1 = 1, X_2 = 1(Z \in [0, 1/2))$, $X_3 = 1(Z \in [1/2, 1)), X_4 = 1(Z \in [0, 1/4)), X_5 = 1(Z \in [1/4, 1/2))$.

- For any $Z \in (0,1)$, the sequence $\{X_n(Z)\}$ does not converge. So $X_n \overset{a,s}{\to} 0$.
- For any $\epsilon > 0$, $P(\{|X_n| > \epsilon\} \text{ i.o.})$
- X_n are a sequence of bernoulli's with probabilities $p_n = 1/2^k$ where $k = \lfloor \log n \rfloor$.

Example

Let
$$Z \sim U(0,1)$$
 and for $n = 2^k + m$ for $k \ge 0, 0 \le m < 2^k$
 $X_n = 1(Z \in [m2^{-k}, (m+1)2^{-k}])$, i.e. $X_1 = 1, X_2 = 1(Z \in [0, 1/2))$, $X_3 = 1(Z \in [1/2, 1)), X_4 = 1(Z \in [0, 1/4)), X_5 = 1(Z \in [1/4, 1/2))$.

- For any $Z \in (0,1)$, the sequence $\{X_n(Z)\}$ does not converge. So $X_n \overset{a,s}{\to} 0$.
- For any $\epsilon > 0$, $P(\{|X_n| > \epsilon\} \text{ i.o.})$
- X_n are a sequence of bernoulli's with probabilities $p_n = 1/2^k$ where $k = \lfloor \log n \rfloor$.
- So $X_n \stackrel{P}{\to} 0$ and $X_n \stackrel{qm}{\to} 0$

Example

Example

•
$$P(\lim_{n\to\infty} X_n = X) = P(Z > 0) = 1$$
. So $X_n \stackrel{a.s.}{\to} X$.

Example

- $P(\lim_{n\to\infty} X_n = X) = P(Z > 0) = 1$. So $X_n \stackrel{a.s.}{\to} X$.
- $E|X_n|^2 = 2^{2n}/n \to \infty$. So $X_n \not\to 0$

Example

- $P(\lim_{n\to\infty} X_n = X) = P(Z > 0) = 1$. So $X_n \stackrel{a.s.}{\to} X$.
- $E|X_n|^2 = 2^{2n}/n \to \infty$. So $X_n \overset{qm}{\to} 0$
- $P(|X_n| \ge \epsilon) = P(X_n = 2^n) = P(Z \in [0, 1/n)) = 1/n \to 0$

Borel Cantelli

•
$$X_n \stackrel{a.s.}{\to} X$$
 implies $\exists \epsilon > 0$, $P(\{|X_n - X| \ge \epsilon \text{ i.o.}\}) = 0$

Borel Cantelli

- $X_n \stackrel{a.s.}{\to} X$ implies $\exists \epsilon > 0$, $P(\{|X_n X| \ge \epsilon \text{ i.o.}\}) = 0$
- Consider a sequence of events A_1, \ldots, A_n .
- Infinitely often means $\forall n, \exists m \geq n, \text{ s.t. } A_m \text{ occurs.}$
- More concretely

Theorem

If
$$\sum_{i} P(A_i) < \infty$$
, then $P(\{A_n \text{ i.o.}\}) = 0$.

Example

Let $X_n \sim \text{Bernoulli}(2^{-n})$. Then $X_n \stackrel{a.s.}{\to} 0$.

Check if $X_n = 1$ infinitely often.

Theorem

If
$$\sum_{i} P(A_i) < \infty$$
, then $P(\{A_n \text{ i.o.}\}) = 0$.

• Recall that $\{A_n \text{ i.o.}\}\$ is equivalent to $\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$

Theorem

If
$$\sum_{i} P(A_i) < \infty$$
, then $P(\{A_n \text{ i.o.}\}) = 0$.

- Recall that $\{A_n \text{ i.o.}\}\$ is equivalent to $\bigcap_{n=1}^{\infty} \bigcup_{\substack{m=n \ B_n}}^{\infty} A_m$
- Note that $B_{n+1} \subseteq B_n$, and so we have $B_n \downarrow B := \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$, hence using monotone convergence we have:

$$\lim_{n\to\infty}P(B_n)=P(B)$$

13

Theorem

If
$$\sum_{i} P(A_i) < \infty$$
, then $P(\{A_n \ i.o.\}) = 0$.

$$P(A_i \text{ i.o.}) = \lim_{n \to \infty} P(B_n) \le \lim_{n \to \infty} \sum_{m \ge n} P(A_m) = 0$$

Theorem

If
$$\sum_{i} P(A_i) = \infty$$
 and $\{A_n\}$ are independent then $P(\{A_n \ i.o.\}) = 1$.

Example

Consider
$$Z \sim U[0,1]$$
, $A_n := \{Z \le 1/n\}$, and $X_n = 1(A_n)$. $\sum_i P(A_n) \to \infty$.

But we know that $X_n \stackrel{a.s.}{\to} 0$.

- Does BC II apply?
- If not, how do you prove it?

• Start with the complement – we will show $P((A_i \text{ i.o.})^c) = 0$.

• Start with the complement – we will show $P((A_i \text{ i.o.})^c) = 0$.

$$P((A_i \text{ i.o.})^c) = P\left(\bigcup_{n} \bigcap_{m \ge n} A_m^c\right)$$

$$= \lim_{n \to \infty} P\left(\bigcap_{m \ge n} A_m^c\right)$$

$$= \lim_{n \to \infty} \prod_{m \ge n} P\left(A_m^c\right)$$

$$= \lim_{n \to \infty} \prod_{m \ge n} (1 - P(A_m))$$

$$\leq \lim_{n \to \infty} \exp(-\sum_{m \ge n} P(A_m)) = 0$$

Continuous Mapping Theorem

Theorem

Let g be continuous on a set C where $P(X \in C) = 1$. Then,

$$X_{n} \xrightarrow{d} X \Rightarrow g(X_{n}) \xrightarrow{d} g(X)$$
$$X_{n} \xrightarrow{P} X \Rightarrow g(X_{n}) \xrightarrow{P} g(X)$$
$$X_{n} \xrightarrow{a.s.} X \Rightarrow g(X_{n}) \xrightarrow{a.s.} g(X)$$

Let $X_n \stackrel{d}{\to} X$ where $X \sim N(0,1)$. Then $X_n^2 \stackrel{d}{\to} ?$

Let $X_n \stackrel{d}{\to} X$ where $X \sim N(0,1)$. Then $X_n^2 \stackrel{d}{\to} ?$

• Use $g(x) = x^2$.

Let $X_n \stackrel{d}{\to} X$ where $X \sim N(0,1)$. Then $X_n^2 \stackrel{d}{\to} ?$

- Use $g(x) = x^2$.
- Use $\chi^2 \sim \chi_1^2$.

Let $X_n \stackrel{d}{\to} X$ where $X \sim N(0,1)$. Then $X_n^2 \stackrel{d}{\to} ?$

- Use $g(x) = x^2$.
- Use $X^2 \sim \chi_1^2$.
- So $X_n^2 \stackrel{d}{\rightarrow} \chi_1^2$

Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . We have $\bar{X}_n - \mu \stackrel{d}{\to} 0$. Consider $g(x) = 1_{x>0}$. Then $g((\bar{X}_n - \mu)^2) \stackrel{d}{\to} ?$

Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . We have $\bar{X}_n - \mu \stackrel{d}{\to} 0$. Consider $g(x) = 1_{x>0}$. Then $g((\bar{X}_n - \mu)^2) \stackrel{d}{\to} ?$

• Using Continuous Mapping Theorem, $(\bar{X}_n - \mu)^2 \stackrel{d}{\to} 0$

Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . We have $\bar{X}_n - \mu \stackrel{d}{\to} 0$. Consider $g(x) = 1_{x>0}$. Then $g((\bar{X}_n - \mu)^2) \stackrel{d}{\to} ?$

- Using Continuous Mapping Theorem, $(\bar{X}_n \mu)^2 \stackrel{d}{\to} 0$
- Can we use Continuous Mapping Theorem to claim that $g(\bar{X}_n \mu)^2 \stackrel{d}{\to} 0$?

Let $X_1, ..., X_n$ be i.i.d. with mean μ and variance σ^2 . We have $\bar{X}_n - \mu \stackrel{d}{\to} 0$. Consider $g(x) = 1_{x>0}$. Then $g((\bar{X}_n - \mu)^2) \stackrel{d}{\to} ?$

- Using Continuous Mapping Theorem, $(\bar{X}_n \mu)^2 \stackrel{d}{\to} 0$
- Can we use Continuous Mapping Theorem to claim that $g(\bar{X}_n \mu)^2 \stackrel{d}{\to} 0$?
- NO. Because, 0 is a random variable whose mass is at 0, where g is discontinuous.

• If $X_n \stackrel{qm}{\to} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f(X_n) \stackrel{qm}{\to} f(X)$?

- If $X_n \stackrel{qm}{\to} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f(X_n) \stackrel{qm}{\to} f(X)$?
- Consider an L- Lipschitz function f(X). $|f(x) f(y)| \le L|x y|$.

- If $X_n \stackrel{qm}{\to} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f(X_n) \stackrel{qm}{\to} f(X)$?
- Consider an *L* Lipschitz function f(X). $|f(x) f(y)| \le L|x y|$.
- $E[|f(X_n) f(X)|^2] \le L^2 E[|X_n X|^2] \to 0$. So for Lipschitz functions quadratic mean convergence goes through.

- If $X_n \stackrel{qm}{\to} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f(X_n) \stackrel{qm}{\to} f(X)$?
- Consider an *L* Lipschitz function f(X). $|f(x) f(y)| \le L|x y|$.
- $E[|f(X_n) f(X)|^2] \le L^2 E[|X_n X|^2] \to 0$. So for Lipschitz functions quadratic mean convergence goes through.
- Can you come up with a non-Lipschitz function and a sequence $\{X_n\}$ where $f(X_n) \not\stackrel{qm}{\rightarrow} 0$?

Portmanteau Theorem

Theorem

The following are equivalent.

- $X_n \stackrel{d}{\rightarrow} X$
- E[f(X_n)] → E[f(X)] for all continuous f that vanish outside a compact set.
- $E[f(X_n)] \to E[f(X)]$ for all bounded and continuous f.
- E[f(Xn)] → E[f(X)] for all bounded measurable functions f s.t.
 P(X ∈ C(f)) = 1, where C(f) = {x : f is continuous at x} is called the continuity set of f.

Consider f(x) = x and

$$X_n = \begin{cases} n & \text{w.p. } 1/n \\ 0 & \text{w.p. } 1 - 1/n \end{cases}$$

Consider f(x) = x and

$$X_n = \begin{cases} n & \text{w.p. } 1/n \\ 0 & \text{w.p. } 1 - 1/n \end{cases}$$

• $X_n \stackrel{d}{\rightarrow} 0$, but $E[X_n] \rightarrow ?$

Consider f(x) = x and

$$X_n = \begin{cases} n & \text{w.p. } 1/n \\ 0 & \text{w.p. } 1 - 1/n \end{cases}$$

- $X_n \stackrel{d}{\rightarrow} 0$, but $E[X_n] \rightarrow ?$
- $E[X_n] = 1$. What went wrong?

Consider f(x) = x and

$$X_n = \begin{cases} n & \text{w.p. } 1/n \\ 0 & \text{w.p. } 1 - 1/n \end{cases}$$

- $X_n \stackrel{d}{\rightarrow} 0$, but $E[X_n] \rightarrow ?$
- $E[X_n] = 1$. What went wrong?
- f(x) = x is not bounded.

Theorem

$$X_n \stackrel{d}{\to} X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Rightarrow Y_n \stackrel{d}{\to} X$$
 (1)

$$X_n \stackrel{d}{\to} X \text{ and } Y_n \stackrel{d}{\to} c \Rightarrow (X_n, Y_n) \stackrel{d}{\to} (X, c)$$
 (2)

$$X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y \Rightarrow (X_n, Y_n) \stackrel{P}{\to} (X, Y)$$
 (3)

Theorem

$$X_n \stackrel{d}{\to} X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Rightarrow Y_n \stackrel{d}{\to} X$$
 (1)

$$X_n \stackrel{d}{\to} X \text{ and } Y_n \stackrel{d}{\to} c \Rightarrow (X_n, Y_n) \stackrel{d}{\to} (X, c)$$
 (2)

$$X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y \Rightarrow (X_n, Y_n) \stackrel{P}{\to} (X, Y)$$
 (3)

 Eq 3 does not hold if we replace convergence in probability by convergence in distribution.

Theorem

$$X_n \stackrel{d}{\to} X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Rightarrow Y_n \stackrel{d}{\to} X$$
 (1)

$$X_n \stackrel{d}{\to} X \text{ and } Y_n \stackrel{d}{\to} c \Rightarrow (X_n, Y_n) \stackrel{d}{\to} (X, c)$$
 (2)

$$X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y \Rightarrow (X_n, Y_n) \stackrel{P}{\to} (X, Y)$$
 (3)

- Eq 3 does not hold if we replace convergence in probability by convergence in distribution.
- Example: $X_n \sim N(0,1), Y_n = -X_n$. $X \perp Y$ and X, Y are independent standard normal random variables.

Theorem

$$X_n \stackrel{d}{\to} X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Rightarrow Y_n \stackrel{d}{\to} X$$
 (1)

$$X_n \stackrel{d}{\to} X \text{ and } Y_n \stackrel{d}{\to} c \Rightarrow (X_n, Y_n) \stackrel{d}{\to} (X, c)$$
 (2)

$$X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y \Rightarrow (X_n, Y_n) \stackrel{P}{\to} (X, Y)$$
 (3)

- Eq 3 does not hold if we replace convergence in probability by convergence in distribution.
- Example: $X_n \sim N(0,1), Y_n = -X_n$. $X \perp Y$ and X, Y are independent standard normal random variables.
- Then $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$. But $(X_n, Y_n) \stackrel{d}{\to} (X, -X)$, not $(X_n, Y_n) \stackrel{d}{\to} (X, Y)$.

Theorem (Slutsky's theorem)

$$X_n \stackrel{d}{\rightarrow} X$$
 and $Y_n \stackrel{d}{\rightarrow} c$ imply that

$$X_n + Y_n \stackrel{d}{\rightarrow} X + c$$

$$X_n Y_n \stackrel{d}{\rightarrow} cX$$

$$X_n / Y_n \stackrel{d}{\rightarrow} X / c$$

Theorem (Slutsky's theorem)

 $X_n \stackrel{d}{\rightarrow} X$ and $Y_n \stackrel{d}{\rightarrow} c$ imply that

$$X_n + Y_n \stackrel{d}{\to} X + c$$

$$X_n Y_n \stackrel{d}{\to} cX$$

$$X_n / Y_n \stackrel{d}{\to} X / c$$

• Does $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ imply $X_n + Y_n \stackrel{d}{\to} X + Y$?

Theorem (Slutsky's theorem)

 $X_n \stackrel{d}{\rightarrow} X$ and $Y_n \stackrel{d}{\rightarrow} c$ imply that

$$X_n + Y_n \xrightarrow{d} X + c$$

$$X_n Y_n \xrightarrow{d} cX$$

$$X_n / Y_n \xrightarrow{d} X / c$$

- Does $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ imply $X_n + Y_n \stackrel{d}{\to} X + Y$?
- Take $Y_n = -X_n$, and X, Y as independent standard normal random variables. $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ but $X_n + Y_n \stackrel{d}{\to} 0$.

If $X_1, \ldots X_n$ are i.i.d. random variables with mean μ and variance σ^2 , prove that $\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \stackrel{d}{\to} N(0,1)$.

If $X_1, ... X_n$ are i.i.d. random variables with mean μ and variance σ^2 , prove that $\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \stackrel{d}{\to} N(0,1)$.

• First note that $S_n = \frac{1}{n} \sum_i X_i^2 - \bar{X}_n^2$

If $X_1, \ldots X_n$ are i.i.d. random variables with mean μ and variance σ^2 , prove that $\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \stackrel{d}{\to} N(0,1)$.

- First note that $S_n = \frac{1}{n} \sum_i X_i^2 \bar{X}_n^2$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \stackrel{P}{\to} E[X^{2}]$ and $X_{n} \stackrel{P}{\to} \mu$.

If $X_1, \ldots X_n$ are i.i.d. random variables with mean μ and variance σ^2 , prove that $\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \stackrel{d}{\to} N(0,1)$.

- First note that $S_n = \frac{1}{n} \sum_i X_i^2 \bar{X}_n^2$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \stackrel{P}{\to} E[X^{2}]$ and $X_{n} \stackrel{P}{\to} \mu$.
- So $(\frac{\sum_{i} X_{i}^{2}}{n}, X_{n}) \stackrel{P}{\to} (E[X^{2}], \mu)$ and now using the continuous mapping theorem, $S_{n}^{2} \stackrel{P}{\to} \sigma^{2}$.

If $X_1, ... X_n$ are i.i.d. random variables with mean μ and variance σ^2 , prove that $\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \stackrel{d}{\to} N(0,1)$.

- First note that $S_n = \frac{1}{n} \sum_i X_i^2 \bar{X}_n^2$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \stackrel{P}{\to} E[X^{2}]$ and $X_{n} \stackrel{P}{\to} \mu$.
- So $(\frac{\sum_{i} X_{i}^{2}}{n}, X_{n}) \stackrel{P}{\to} (E[X^{2}], \mu)$ and now using the continuous mapping theorem, $S_{n}^{2} \stackrel{P}{\to} \sigma^{2}$.
- Finally, $\sqrt{n}(\bar{X}_n \mu) \stackrel{d}{\to} N(0, \sigma^2)$ using CLT.

If $X_1, \ldots X_n$ are i.i.d. random variables with mean μ and variance σ^2 , prove that $\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \stackrel{d}{\to} N(0,1)$.

- First note that $S_n = \frac{1}{n} \sum_i X_i^2 \bar{X}_n^2$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \stackrel{P}{\to} E[X^{2}]$ and $X_{n} \stackrel{P}{\to} \mu$.
- So $(\frac{\sum_{i} X_{i}^{2}}{n}, X_{n}) \stackrel{P}{\to} (E[X^{2}], \mu)$ and now using the continuous mapping theorem, $S_{n}^{2} \stackrel{P}{\to} \sigma^{2}$.
- Finally, $\sqrt{n}(\bar{X}_n \mu) \stackrel{d}{\to} N(0, \sigma^2)$ using CLT.
- Now using Slutsky's lemma, $\sqrt{n}(\bar{X}_n \mu)/S_n \stackrel{d}{\to} N(0,1)$ using CLT.

Uniformly tight

Definition

X is defined to be "tight" if $\forall \epsilon > 0 \ \exists M$ for which,

$$P(||X|| > M) < \epsilon$$

 $\{X_n\}$ is defined to uniformly tight if $\forall \epsilon > 0 \ \exists M$ for which,

$$\sup_{n} P(\|X_n\| > M) < \epsilon$$

Prohorov's theorem

Theorem

- $X_n \stackrel{d}{\rightarrow} X \Rightarrow \{X_n\}$ is UT.
- $\{X_n\}$ is UT implies that, there exists a subsequence $\{n_j\}$ such that $X_{n_j} \stackrel{d}{\to} X$.

Notation for rates, small oh-pee and big oh-pee

Definition

The small o_P:

$$X_n = o_P(1) \Leftrightarrow X_n \stackrel{P}{\to} 0$$

 $X_n = o_P(R_n) \Leftrightarrow X_n = Y_n R_n \text{ and } Y_n = o_P(1)$

 X_n is vanishing in probability

• The big O_P :

$$X_n = O_P(1) \Leftrightarrow \{X_n\} \text{ is UT}$$

 $X_n = O_P(R_n) \Leftrightarrow X_n = Y_n R_n \text{ and } Y_n = O_P(1)$

 X_n is likely to lie within a ball of finite radius

How do they interact

$$o_{P}(a_{n}) + o_{P}(b_{n}) = o_{P}(\max(a_{n}, b_{n})).$$

$$o_{P}(a_{n}) + O_{P}(b_{n}) = O_{P}(\max(a_{n}, b_{n})).$$

$$O_{P}(a_{n})o_{P}(b_{n}) = o_{P}(a_{n}b_{n}).$$

$$1 + O_{P}(1) = O_{P}(1).$$

$$(1 + o_{P}(1))^{-1} = 1 + o_{P}(1).$$

$$o_{P}(O_{P}(1)) = o_{P}(1).$$

Be careful:

$$e^{o_P(1)}
eq o_P(1)$$
 $O_P(1) + O_P(1)$ Can actually be $o_P(1)$ because of cancellation.

 $X_n = o_D(a_n), |X_n|^r = o_D(a_n^r)$