NIH.AI Workshop: Predicting Drug Function Using Small-Molecule Structure Information

(this effort is part of the NCI-DOE Capability transfer project)

Part 1: Generating Descriptor Data and Analysis

S.Ravichandran, Ph.D. BIDS, FNLCR

Preliminary Information

Please <u>click on this link (Supp-files/preliminary-information.md)</u> to view the preliminary information about the workshop.

Software-setup Information

Please <u>click on this link (Supp-files/software-setup.md)</u> here to see how to install the software needed this tutorial on your own system.

Molecular/Chemical information

Please <u>click on this link (Supp-files/molecular-information.md)</u> to read about the basics of molecular/chemical information (SMILES/SDF/PDB etc.). To visualize small molecules, we need atomic information. This can be obtained from different sources and formats (PubChem/DrugBank etc.; Formats: SMILES, PDB, Mol, sdf etc.). We will use SMILES strings for molecular information. There are many sources (check the last section, Supporting pages for details).

PubChem (https://pubchem.ncbi.nlm.nih.gov/ (h

Load the libraries

```
In [2]: import os, warnings
import numpy as np
import pandas as pd

from IPython.core.display import Image
from rdkit import Chem
from rdkit.Chem import AllChem, Draw, rdDepictor, PandasTools
from rdkit.Chem.Draw import IPythonConsole
from rdkit.Chem.Draw.MolDrawing import MolDrawing, DrawingOptions
from concurrent import futures

warnings.filterwarnings('ignore')
IPythonConsole.molSize = (450,200)
```

RDKit WARNING: [06:01:22] Enabling RDKit 2019.09.3 jupyter extensions

Chemoinformatics library, rdkit, for small-molecule feature generation/analysis

Go to the following link, https://www.rdkit.org/ (<a href

Please note that rdkit is a powerful chemoinformatics software. It can be used to read, compute (energy-minimization), visualize, create quality-figures and analyze both small molecule and protein sequences/structures. Please visit my github repo to learn about how to use rdkit for these tasks, https://github.com/ravichas/SRWkshp1 (https://github.com/ravichas/SRWkshp1)

Let us display proteins/small-molecules before computing properties

PubChem is one of the good sources for small molecule related information. You can get SMILES strings for compounds from PubChem.

Out[3]:

```
In [4]: import py3Dmol

# The crystal structure of COVID-19 main protease in complex with an inhibitor
N3

# The main protease (enzyme that catalyses/cuts proteins into smaller fragment
s) of coronavirus makes most of these cuts. The one shown here
# (PDB entry 6lu7) is from the SARS-CoV-2 (or 2019-nCoV) coronavirus that is c
urrently posing dangers in Wuhan

view = py3Dmol.view(query='pdb:6lu7')
view.setStyle({'cartoon':{'color':'spectrum'}})
```


Out[4]: <py3Dmol.view at 0x27d78e3b850>

Generating molecular properties

For this section, we will be using cdkit and Mordred (a molecular descriptor calculator) to generate molecular descriptors. Follow the links shown below for information on mordred calculator:

- https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0258-y
 (https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0258-y)
- https://github.com/mordred-descriptor/mordred (https://github.com/mordred-descriptor/mordred)

Molecular fingerprints

"Molecular fingerprints are a way of encoding the structure of a molecule. The most common type of fingerprint is a series of binary digits (bits) that represent the presence or absence of particular substructures in the molecule." (quote from OpenBabel documentation)

We will use Morgan Fringerprints. You can read about the details here,

https://www.ncbi.nlm.nih.gov/pubmed/20426451 (https://www.ncbi.nlm.nih.gov/pubmed/20426451) and here, https://www.daylight.com/dayhtml/doc/theory/theory.finger.html (https://www.daylight.com/dayhtml/doc/theory/theory.finger.html)

Note most of the ideas are based on examples from cdkit manual. In a nutshell, each fragment in a molecule correspond to a bit. Two similar molecular fingerprints will have many common bits.

We are going to use fingerprint as features that define molecule. To explain the idea, let us use the two pain-killer drugs, paracetamol and pheacetin (withdrawn) as an example. First let us visualize, compute and analyze both the molecule and its fingerprint.

```
In [6]: IPythonConsole.molSize = (450,200)

# fever reducer
paracetamol = 'CC(=0)NC1=CC=C(0)C=C1'
paracetamol_m = Chem.MolFromSmiles(paracetamol)
rdDepictor.Compute2DCoords(paracetamol_m)

# withdrawn fever reducer
phenacetin = 'CCOC1=CC=C(NC(C)=0)C=C1'
phenacetin_m = Chem.MolFromSmiles(phenacetin)
rdDepictor.Compute2DCoords(phenacetin_m)

# save the molecules as a list
mols = [paracetamol_m, phenacetin_m]
```

We can convert fingerprint to bits and view them

```
In [8]: # instantiate a dictionary
bi1 = {}

fp1 = AllChem.GetMorganFingerprintAsBitVect(paracetamol_m, radius=2, bitInfo=b
i1)
bits1 = fp1.ToBitString()
print(len(bits1))
bits1
```

2048

Out[8]:

In [11]: # In its simplest form, the new code lets you display the atomic environment t
 hat sets a particular bit. Here we will look at bit 191:
 Draw.DrawMorganBit(paracetamol_m,191,bi1)

Out[11]:

Let us check whether Phencetin have the same fragment?

In [12]: bi2 = {}
 fp2 = AllChem.GetMorganFingerprintAsBitVect(phenacetin_m, radius=2, bitInfo=bi
 2)
 bits2 = fp2.ToBitString()

In its simplest form, the new code lets you display the atomic environment t
 hat sets a particular bit. Here we will look at bit 191:
 Draw.DrawMorganBit(phenacetin_m,191,bi2)

Out[12]:

- In [13]: # Let us find common bits based on Dr. Jan Jensen's tutorial
 # you use set operation by saving the result not as a list

 common_bits = set(fp1.GetOnBits()) & set(fp2.GetOnBits())

 combined_bits = set(fp1.GetOnBits()) | set(fp2.GetOnBits())
- In [14]: print('Common_bits between Paracetamol and Phenacetin: ', common_bits,'\n')
 print('Combined_bits between Paracetamol and Phenacetin: ', combined_bits)

Common_bits between Paracetamol and Phenacetin: {1152, 1057, 1380, 807, 650, 843, 849, 530, 1873, 1077, 1750, 245, 1816, 1017, 1917, 191}

Combined_bits between Paracetamol and Phenacetin: {1152, 650, 530, 1816, 105 7, 1313, 294, 807, 1452, 1077, 695, 191, 1602, 322, 69, 843, 718, 80, 849, 18 73, 1750, 1238, 1380, 102, 745, 237, 1778, 245, 1017, 1917}

2D similarity

$$ext{Tanimoto} = rac{N_{AB}}{N_A + N_B - N_{AB}}$$

For 3D functionality in the RDKit, refer to this link, http://rdkit.org/docs_temp/Cookbook.html (http://rdkit.org/docs_temp/Cookbook.html). For today, we are going to stay with 2D fingerprints.

Mordred: For computing descriptors

We will be using a python package called mordred for generating descriptors. Mordred Github Page: https://github.com/mordred-descriptor/mordred and click here to see the complete list of mordred descriptors, https://mordred-descriptor.github.io/documentation/master/descriptors.html (https://mordred-descriptor.github.io/documentation/master/descriptors.html)

```
In [17]: # code credit from mordred manual
    from mordred import Calculator, descriptors
    n_all = len(Calculator(descriptors, ignore_3D=False).descriptors)
    n_2D = len(Calculator(descriptors, ignore_3D=True).descriptors)

print("2D: {:5}\n3D: {:5}\n----\ntotal: {:5}".format(n_2D, n_all - n_2D, n_all))

2D: 1613
    3D: 213
    ------
    total: 1826
```

Compute molecular descriptors for a library of small-molecules

```
In [18]:
         from rdkit import Chem
         from mordred import Calculator, descriptors
         # create descriptor calculator with all descriptors
         calc = Calculator(descriptors, ignore 3D=True)
         IPythonConsole.molSize = (800,800)
         dasatinib = CC1=C(C(=CC=C1)C1)NC(=0)C2=CN=C(S2)NC3=CC(=NC(=N3)C)N4CCN(CC4)CC
         dasatinib_m = Chem.MolFromSmiles(dasatinib)
         rdDepictor.Compute2DCoords(dasatinib m)
         gnf5 = 'C1=CC(=CC(=C1)C(=0)NCC0)C2=CC(=NC=N2)NC3=CC=C(C=C3)OC(F)(F)F'
         gnf5 m = Chem.MolFromSmiles(gnf5)
         rdDepictor.Compute2DCoords(gnf5 m)
         dph = 'C1=CC=C(C=C1)N2C=C(C(=N2)C3=CC=C(C=C3)F)C4C(=0)NC(=0)N4'
         dph m = Chem.MolFromSmiles(dph)
         rdDepictor.Compute2DCoords(dph_m)
         molecules = [ imatinib m, dasatinib m, gnf5 m, dph m ]
         Draw.MolsToGridImage(molecules, molsPerRow = 2, subImgSize=(400, 250), legends
         = ['Imatinib', 'Dasatinib', 'GNF', 'DPH'])
```

Out[18]:

Please inspect the descriptor table before you use them in other calculations. Especially when you are generating all the descriptors, some of the columns may contain NA or Nan etc.

```
# calculate multiple molecule
          mols = [Chem.MolFromSmiles(smi) for smi in [imatinib, dasatinib, gnf5, dph]]
          # as pandas
          df = calc.pandas(mols)
          100%| 4/4 [00:03<00:00,
                                                 1.16it/s]
In [20]:
Out[20]:
                 ABC
                         ABCGG nAcid nBase
                                              SpAbs_A SpMax_A SpDiam_A
                                                                             SpAD_A SpMAD_A
           0 29.198227 19.516970
                                    0
                                           2 49.161634
                                                        2.372244
                                                                  4.744487 49.161634
                                                                                      1.328693
             25.731643 19.151718
                                    0
                                              42.312870
                                                        2.394767
                                                                  4.762938 42.312870
                                                                                      1.282208
             23.132682 16.941805
                                    0
                                              38.063201
                                                        2.370962
                                                                  4.741923 38.063201
                                                                                      1.268773
             19.924959 16.140292
                                    0
                                             32.867760
                                                                  4.828813 32.867760
                                                                                      1.314710
                                                        2.498596
          4 rows × 1613 columns
```

Please <u>visit (https://github.com/ravichas/SRWkshp1)</u> GitHub repository to see additional examples and takehome exercises.

Part 2: Machine Learning for Predicing Drug Function Using Molecular Structures

Please check out a detailed version of this project from https://github.com/ravichas/SRWkshp1a)

(https://github.com/ravichas/SRWkshp1a)

Preliminary Information

We will use the following manuscript as a testcase to explain the Machine-Learning concepts:

https://www.ncbi.nlm.nih.gov/pubmed/31518132 (https://www.ncbi.nlm.nih.gov/pubmed/31518132)

Overview of the work:

- Chemical structures with MeSH derived therapeutic drug classes are the inputs.
- Random Forest (RF) Machine-Learning (ML) method and Convolution Neural Network was used for classification. For this workshop, we fill focus on RF for this workshop.

Here is a schematic overview of the modeling procedure

To create drug function classifier models, we need two things:

- · Chemical structures and their associated class labels
- Descriptors (Fingerprints)

How to construct the SMILES drug dataset?

Input dataset can be constructed using PubChem (https://pubchem.ncbi.nlm.nih.gov/). Please note that Meyer et al paper provides a broad summary of input data construction. In this tutorial, I have given the details of the process. Please note due to database updates, search results might be different. Please citechem.ncbi.nlm.nih.gov/)). Please note that Meyer et al paper provides a broad summary of input data construction. In this tutorial, I have given the details of the process. Please note due to database updates, search results might be different. Please citechem.ncbi.nlm.nih.gov/)).

```
In [22]: ## Preliminary library setup
import os, random, time, numpy as np
import matplotlib.pyplot as plt
from collections import Counter
from rdkit import Chem, DataStructs
from rdkit.Chem import Draw
from sklearn import preprocessing
from sklearn.ensemble import RandomForestClassifier
```

Load the data

```
In [23]: import pandas as pd
    df3 = pd.read_csv('Data/3cls_rmsaltol.csv')

# five class dataset
    df5 = pd.read_csv('Data/5cls_rmsaltol.csv')

print("Here are few first/last 5 lines of the df3 data")
    df3.iloc[0:6, [1,2]]
```

Here are few first/last 5 lines of the df3 data

Out[23]:

class		smiles	
0	cns	O=C1CC=CO1	
1	cns	CCC(=O)O[C@@]1(c2cccc2)C[C@H](C)N(C)C[C@H]1C	
2	cns	C=CCC(N)C(=O)O	
3	cns	CC[C@@]12CCN(CC3CC3)[C@@H](C(=O)c3ccc(O)cc31)C2C	
4	cns	c1csc(C2(N3CCCCC3)CCCCC2)c1	
5	cns	O=C([O-])/C=C1\CCCc2cccc2C1O	

Explore the dataset

```
In [24]: # All the data
print('Dimension of 3-class dataset', df3.shape)
print('Dimension of 5-class dataset', df5.shape)
# print('Dimension of 12-class dataset', df12.shape, '\n')

Dimension of 3-class dataset (3104, 3)
Dimension of 5-class dataset (5760, 3)
```

Assign a specific dataset for modeling/analysis?

```
For choosing a 3-class data, use df = df3
```

For choosing a 5-class data, use df = df5

For now, we are going to use 3-class data for modeling.

```
In [25]: ## Assign a dataset for analysis
df = df3
```

Prepare the data for modeling

Encode target labels with value between 0 and n_classes-1.

```
In [26]: # convert the dataframe to numpy ndarray
    x = df['smiles'].values
    mols1 = [Chem.MolFromSmiles(smi) for smi in x]

In [27]: outcome = df['class'].values
    le = preprocessing.LabelEncoder()
    le.fit(outcome);
    print('What labels are available in classes?:', list(le.classes_))
    ys_fit = le.transform(outcome)
    print('transformed outcome: ', ys_fit)

What labels are available in classes?: ['antineoplastic', 'cardio', 'cns']
    transformed outcome: [2 2 2 ... 1 1 1]
```

From the above analysis, for a 3-class, df3a data, we see that

```
0: Antineoplastic Agents (antineoplastic)1: Cardiovascular Agents (cardio)2: Central Nervous System Agents (cns)
```

Data Analysis

Let us answer the following questions:

- · How many Classes/Samples?
- Is this a balanced outcome data?

```
In [28]: bin_count = np.bincount(ys_fit)
    n_classes = len(bin_count)
    print('How many classes? ',n_classes)
    print('How many samples? ', len(ys_fit) )

    print('How many from each class (raw numbers)? ', bin_count )
    print('How many from each class (proportions)?: ', bin_count/(sum(bin_count)))

How many classes? 3
    How many samples? 3104
    How many from each class (raw numbers)? [1177 788 1139]
    How many from each class (proportions)?: [0.37918814 0.25386598 0.36694588]
```

Generate fingeprints:

Read the following paper for details, https://www.ncbi.nlm.nih.gov/pubmed/20426451) (https://www.ncbi.nlm.nih.gov/pubmed/20426451)

Time to generate the Fingerprints: 6.043530225753784 seconds

Let us display the first 11 columns of the top 20 molecular fingerprints

Getting ready to do modeling

First, let us split the data

Explore the proportion of outcomes to answer questions about data imbalance

```
In [33]: # Even outcome for this class
    np.bincount(ys_fit)/len(ys_fit)
Out[33]: array([0.37918814, 0.25386598, 0.36694588])
```

Supervised Learning using Random Forest

We will use Random-Forest based classifier for classification.

Why we are focussing on Random Forest?

```
In [34]: Image('Img/PaperSummary1.png')
Out[34]: Although there are several chemistry problems where DNNs outperform other shallow machine learning methods<sup>49,59,60</sup>, here the MFP+RF performed best with the small dataset of 676 molecules in the 5- and 12-class predictions. However, in the 3-class task with the small dataset, and all the tasks with the large dataset, the two
In [35]: # get a random forest classifiert with 100 trees seed = 1123 rf = RandomForestClassifier(n_estimators=50, random_state=seed)
```

```
In [36]: from pprint import pprint
         # View the parameters of the random forest
         print('Parameters will be used for this model:\n')
         pprint(rf.get params())
         Parameters will be used for this model:
         {'bootstrap': True,
           'ccp alpha': 0.0,
          'class weight': None,
          'criterion': 'gini',
          'max depth': None,
           'max_features': 'auto',
          'max leaf nodes': None,
          'max samples': None,
          'min impurity decrease': 0.0,
          'min_impurity_split': None,
           'min_samples_leaf': 1,
          'min samples split': 2,
          'min weight fraction leaf': 0.0,
          'n_estimators': 50,
          'n jobs': None,
          'oob_score': False,
          'random_state': 1123,
           'verbose': 0,
          'warm start': False}
In [37]: # train the random forest
         rf.fit(train_X, train_y);
In [38]: from sklearn import metrics
         from sklearn.metrics import balanced_accuracy_score
         pred y = rf.predict(test X)
         acc = metrics.accuracy score(test y, pred y)
         print("Test set accuracy: {:.2f}".format(acc))
         balanced_acc_score = balanced_accuracy_score(test_y, pred_y)
         print("Balanced set Accuracy Score: {:.2f}".format(balanced_acc_score))
         Test set accuracy: 0.87
         Balanced set Accuracy Score: 0.86
```

Normalized confusion matrix [[0.901 0.014 0.085] [0.076 0.756 0.168] [0.081 0.011 0.909]]

Inference

- 0: Antineoplastic Agents (antineoplastic)
- 1: Cardiovascular Agents (cardio)
- 2: Central Nervous System Agents (cns)

Questions

- Can molecular fingerprints inherently capture molecular chemical features (Ex. Mol Wt., # of Hydrogen Bond Donors, # of Hydrogen Bond Acceptors)?
- Few drugs have similar fingerprints for CNS and Cardio class. What functional groups/fragments in the misclassified compounds are common?
- · What about 3D features?

In the paper, https://pubmed.ncbi.nlm.nih.gov/31518132/), the Authors using the 5-label dataset model had identified drugs that were misclassified and upon inspection seems to have structures similar to that of the misclassified class.

Pubchem CID, 121878, is classified as a cardiovascular drug, but in the Authors' 5-class model, misclassified as a respiratory system drug. A closely related compound called, cromokalim, is shown to be a potassium channel modulating vasodilator known to act as a brochodilator

Out[41]:

Final thoughts and questions to ponder!

- Can the model misclassification be due to lack of training and nothing to do with repurposing?
- What about bioactive conformations?

How can we improve the models?

There are several parametes (number of estimators, maximum features etc.) that could be assigned different values. These parameters are commonly referred to as Hyperparameters. Choosing the right combination is called HyperParameter Optimization (HPO).

Hyperparameter values (HP) and HP Optimization (HPO)

For ScikitLearn implementation of RandomForest, we can adjust several HP values. Here is the complete list:

```
{'bootstrap': True,
 'ccp_alpha': 0.0,
 'class_weight': None,
 'criterion': 'gini',
 'max depth': None,
 'max features': 'auto',
 'max_leaf_nodes': None,
 'max_samples': None,
 'min impurity decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min samples split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n_estimators': 50,
 'n_jobs': None,
 'oob score': False,
 'random_state': 1123,
 'verbose': 0,
 'warm start': False}
```

Where do we start? The best option is to read the documentation, https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html). We have adopted the following choices based on the manuscript.

Values	Parameter
50, 250, 1000, 4000, 8000, 16000	n_estimators
sqrt, log2	max_features
1, 10, 100, 1000	min_samples_leaf
None, balanced_subsample, balanced	class_weight

A HPO RandomizedSearchCV run was carried out in NIH HPC with the list shown in the table and found the following best combination.

Parameter	Values
n_estimators	8000
max_features	log2
min_samples_leaf	1
class_weight	balanced

Acknowledgements: Drs. George Zaki, Andrew Weisman, Randy Johnson, Hue Reardon, Anney Che and Jaume Reventos for attending the mockup talks and suggestions. I would also like to thank FNLCR BIDS colleagues for reviewing the materials.