Problem 3 Analyze the performance of the following algorithms theoretically:

Statements		S/E	Freq.	Total	
1	public void func1(int n) {		-	-	
2	for (int i = 0; i < n * log(n); i++) {	1	$n \log n + 1$	$n \log n + 1$	
3	System.out.println(i);	1	$n \log n$	$n \log n$	
4	for (int j = 2; j < n; j++)	1	$n\log n(n-2+1)$	$n^2 \log n - n \log n$	
5	System.out.println(j);	1	$n \log n (n-2)$	$n^2 \log n - 2n \log n$	
6	}	0	-	-	
7	System.out.println("Goodbye!");	1	1	1	
8	}	0	-	-	
	Total		$2n^2\log n - n\log n + 2$		
	Big Oh	$O(n^2 \log n)$			

Statements		S/E	Freq.	Total	
1	public void func2(int n) {		-	-	
2	for (int i = 0; i < n * n; i++) {		$n^2 + 1$	$n^2 + 1$	
3	System.out.println(i);	1	n^2	n^2	
4	for (int j = 2 * n; j > n; j)	1	$n^2(2n-n+1)$	$n^3 + n^2$	
5	System.out.println(j);	1	$n^2(2n-n)$	n^3	
6	}	0	-	-	
7	System.out.println("Goodbye!");	1	1	1	
8	}	0	-	-	
Total			$2n^3 + 3n^2 + 2$		
	Big Oh	$O(n^3)$			

Statements		S/E	Freq.	Total
1	public void func3(int n) {	0	-	-
2	for (int i = n; i > 0; i) {	1	n+1	n+1
3	System.out.println(i);	1	n	n
4	for (int j = 0; j < i; j++)	1	$\frac{(n+1)(n+2)}{2}-1$	$\frac{n^2 + 3n}{2}$
5	System.out.println(j);	1	$\frac{n(n+1)}{2}$	$\frac{n^2+n}{2}$
6	}	0	-	-
7	System.out.println("Goodbye!");	1	1	1
8	}	0	-	-
	Total	$n^2 + 4n + 2$		
	Big Oh	$O(n^2)$		

• In order to find the frequency of line number 4 and 5, we will trace them assuming n = 3:

i	j	Loop Checking Step	Loop Internal Step	
	0			
3	1	Executed 4 times	Executed 3 times	
3	2			
	3			
	0		Executed 2 times	
2	1	Executed 3 times		
	2			
1	0	Executed 2 times	Executed 1 times	
1	1			

• Line 4: from above tracing, the minimum number of checking is 2 and the maximum is 4 which is *n+1*. By applying the summation formula:

$$\sum_{i=min}^{max} i = \frac{\max(max+1)}{2} - \frac{\min(min-1)}{2} = \sum_{i=2}^{n+1} i = \frac{(n+1)(n+2)}{2} - \frac{2(2-1)}{2}$$

$$\sum_{i=2}^{n+1} i = \frac{n^2 + 3n + 2}{2} - 1 = \frac{n^2 + 3n}{2}$$

• Line 5: from above tracing, the minimum number of loop internal steps execution is 1 and the maximum is 3 which is n. By applying the summation formula:

$$\sum_{i=min}^{max} i = \frac{\max(max+1)}{2} - \frac{\min(min-1)}{2} = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} - \frac{1(1-1)}{2}$$
$$\sum_{i=1}^{n} i = \frac{n^2 + n}{2}$$

• IMPORTANT: there is no need to multiply the summation result by n (from the outer loop) since summation formula takes that into consideration.

	Statements	S/E	Freq.	Total
1	<pre>public void func4(int n) {</pre>	0	-	-
2	int m = 1;	1	1	1
3	while (m <= n) {	1	n-1+1+1	n+1
4	system . out . println (m);	1	n	n
5	i = n;	1	n	n
6	while (i > 0) {	1	$n(\lfloor \log n \rfloor + 1 + 1)$	$n[\log n] + 2n$
7	system .out . println (i);	1	$n(\lfloor \log n \rfloor + 1)$	$n[\log n] + n$
8	i = i / 2;	1	$n(\lfloor \log n \rfloor + 1)$	$n[\log n] + n$
9	}	0	1	-
10	m++;	1	n	n
11	}	0	-	-
12	}	0	-	-
	Total	$3n\log n + 8n + 2$		
Big Oh $O(n \log n)$			n)	