С. Р. Насыров

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ПРЕДЕЛЫ И НЕПРЕРЫВНОСТЬ.

Казанский государственный университет им. В. И. Ульянова-Ленина

С. Р. Насыров

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ПРЕДЕЛЫ И НЕПРЕРЫВНОСТЬ.

УЧЕБНОЕ ПОСОБИЕ

Печатается по решению Учебно-методической комиссии механико-математического факультета КГУ

Научный редактор доктор физико-математических наук, профессор А. Н. Шерстнев

Насыров С.Р. Введение в математический анализ. Пределы и непрерывность. — Казань: Казанский государственный университет, 2008. — 88 с.

Настоящее учебное пособие содержит подготовительный материал, необходимый для изучения основ дифференциального и интегрального исчисления функций одной вещественной переменной. В нем систематически излагаются темы, связанные с пределами числовых последовательностей, пределами вещественных функций одной вещественной переменной, непрерывными функциями. Кроме того, даются основы теории множеств и топологии вещественной прямой. Материал соответствует курсу "Математический анализ" для классических университетов (первая половина первого семестра).

1 Множества и функции

1.1 Множества

Множество — это совокупность объектов, которые обладают каким-либо общим свойством.

Замечание. Множество — это базовое понятие в математике, оно не определяется. Можно только пояснить, что оно означает.

Объекты, которые объединены в множество, называются его эле-ментами или точками. Если A — множество, a — объект этого множества, то пишут $a \in A$ и говорят, что элемент a принадлежит множеству A или что a — точка множества A.

Если объект a не принадлежит множеству A, то пишут $a \not\in A$ или $a \overline{\in} A$.

Пусть даны два множества A и B. Будем говорить, что множество A является nodмножеством B или частью множества B, если любой элемент множества A является элементом множества B. При этом пишут $A \subset B$. Если множество A не является подмножеством B, то пишут $A \not\subset B$.

Для наглядности множества изображают на диаграммах в виде кружочков, овалов, прямоугольников или других плоских фигур, содержащихся в некотором прямоугольнике X. Этот прямоугольник также является множеством, которое содержит рассматриваемые множества. Такое множество называется универсумом.

Рис. 1.

Например, если рассматриваются подмножества множества \mathbb{R} , то в качестве универсума X можно взять \mathbb{R} . Подобные диаграммы называют диаграммами Венна по имени их изобретателя — австрийского математика. На рис. 1 изображена диаграмма Венна, иллюстрирующая понятие

подмножества. На этой диаграмме A является меньшим кружочком, а B — бо́льшим.

 \mathcal{A} ва множества A и B совпадают (пишут A=B), если они состоят из одних и тех же элементов. Очевидно, что A=B тогда и только тогда, когда $A\subset B$ и $B\subset A$.

Для удобства вводят понятие $nycmoro\ множесства$. Это такое множество, которое не содержит ни одного элемента. Обозначается пустое множество символом \emptyset .

Если A — множество всех элементов из X, удовлетворяющих свойству \mathcal{C} , то в этом случае пишут $A = \{x \in X \mid x \text{ удовлетворяет } \mathcal{C}\}$. Вместо черты | часто употребляют знак двоеточия. Иногда множества описывают, перечисляя в фигурных скобках через запятую его элементы.

Примеры. 1. $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$ — множество натуральных чисел.

- 2. $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots\}$ множество целых чисел.
- 3. $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z}, n \neq 0\}$ множество рациональных чисел.
- 4. \mathbb{R} множество действительных чисел.
- 5. \mathbb{C} множество комплексных чисел.

Перечислим кванторы (логические значки), которые употребляются для сокращения записи: \forall (любой или для любого), \exists (существует или существует такой, что), \Longrightarrow (следует), \Longleftrightarrow (тогда и только тогда или эквивалентно).

1.2 Числовые промежутки

Числовая прямая — это некоторая прямая, на которой выбрано положительное направление, некоторая начальная точка (начало координат или нуль) и масштаб. Из школьного курса математики известно, что любому числу из \mathbb{R} можно сопоставить единственную точку на этой прямой. Таким образом, числовая прямая — это геометрический образ для более наглядного представления действительных чисел. Впрочем, часто эту прямую отождествляют с множеством действительных чисел и множество \mathbb{R} называют числовой прямой.

Рассмотрим различные виды числовых промежутков на прямой.

1

1. Отрезок или сегмент $[a;b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}.$

Рис. 2

2. $Интервал (a; b) := \{x \in \mathbb{R} \mid a < x < b\}.$

Рис. 3

3. Полуинтервал или полуотрезок, полусегмент $[a;b):=\{x\in\mathbb{R}\mid a\leq x< b\}.$

Рис. 4

4. Полуинтервал $(a; b] := \{x \in \mathbb{R} \mid a < x \le b\}.$

Рис. 5

Промежутки типов 1–4 называются ограниченными числовыми промежутками. Кроме того, есть 5 типов неограниченных.

5.
$$[a; +\infty) := \{x \in \mathbb{R} \mid x \ge a\}$$
.

Рис. 6

6.
$$(a; +\infty) := \{x \in \mathbb{R} \mid x > a\}.$$

Рис. 7

7.
$$(-\infty; b] := \{x \in \mathbb{R} \mid x \le b\}$$
.

Рис. 8

8. $(-\infty; b) := \{x \in \mathbb{R} \mid x < b\}.$

Рис. 9

9.
$$(-\infty; +\infty) =: \mathbb{R}$$
.

1.3 Основные операции над множествами

Пусть X — некоторое множество (универсум), будем рассматривать его подмножества $A,\ B,\ C,\dots$

Рис. 10.

1. Операция объединения. Пусть A, B — два подмножества в X. Объединением этих множеств называется множество

$$A \cup B := \{x \in X \mid x \in A \text{ или } x \in B\}.$$

Рис. 11.

2. Операция пересечения. Пересечением множеств $A, B \subset X$ называется множество

$$A \cap B := \{ x \in X \mid x \in A \text{ и } x \in B \}.$$

Рис. 12.

Свойства операций объединения и пересечения.

- 1) $A \cup B = B \cup A$, $A \cap B = B \cap A$ (коммутативность).
- 2) $(A \cup B) \cup C = A \cup (B \cup C)$ (ассоциативность).
- 3) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (дистрибутивность).

Доказательство. Докажем первое равенство пункта 3) (второе доказать самостоятельно!).

- а) Рассмотрим любой элемент $x \in A \cup (B \cap C)$. По определению, тогда $x \in A$ или $x \in B \cap C$. Если $x \in A$, то тогда $x \in A \cup B$ и $x \in A \cup C$, следовательно, $x \in (A \cup B) \cap (A \cup C)$. Если же $x \in B \cap C$, то $x \in B$ и $x \in C$. Значит, опять-таки $x \in A \cup B$ и $x \in A \cup C$, откуда $x \in (A \cup B) \cap (A \cup C)$. Вывод: $x \in A \cup (B \cap C) \Longrightarrow x \in (A \cup B) \cap (A \cup C)$. Значит, $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$.
- б) Пусть теперь $x \in (A \cup B) \cap (A \cup C)$. Значит, $x \in A \cup B$ и $x \in A \cup C$. Если $x \in A$, то $x \in A \cup (B \cap C)$. Если же $x \not\in A$, то из условий $x \in A \cup B$ и $x \in A \cup C$ следует, что $x \in B$ и $x \in C$. Значит, $x \in B \cap C$, откуда $x \in A \cup (B \cap C)$. Вывод: $x \in (A \cup B) \cap (A \cup C) \Longrightarrow x \in A \cup (B \cap C)$. Это означает, что $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$.

Из а) и б) следует нужное равенство.

3. Операция разности. Пусть $A, B \subset X$. Разностью множеств A и B называется множество

$$A \setminus B := \{ x \in X \mid x \in A \text{ и } x \notin B \}.$$

_

Рис. 13.

Простейшие свойства.

- 1) $A \setminus A = \emptyset$.
- $2) A \setminus \emptyset = A.$
- 3) Если $A \subset B$, то $A \setminus B = \emptyset$.
- 4. Операция дополнения. Пусть $A\subset X$. Дополнением множества A называется множество

$$A^c := \{ x \in X \mid x \notin A \} = X \setminus A.$$

Рис. 14.

Замечание 1. Операция дополнения зависит от универсума X!

Простейшие свойства.

- 1) $\emptyset^c = X \setminus \emptyset = X$.
- $2) X^c = X \setminus X = \emptyset.$
- 3) $(A^c)^c = \{x \in X \mid x \notin A^c\} = \{x \in X \mid x \in A\} = A.$
- 4) $A\setminus B=A\cap B^c$. Доказательство. $x\in A\setminus B\Leftrightarrow x\in A$ и $x\not\in B\Leftrightarrow x\in A$ и $x\in B^c\Leftrightarrow x\in A\cap B^c$.

- 5) $(A \cap B)^c = A^c \cup B^c$. Доказательство. $x \in (A \cap B)^c \Leftrightarrow x \not\in A \cap B \Leftrightarrow \Leftrightarrow$ неверно, что $x \in A$ и $x \in B$ одновременно $\Leftrightarrow x \not\in A$ или $x \not\in B \Leftrightarrow \Leftrightarrow x \in A^c$ или $x \in B^c \Leftrightarrow x \in A^c \cup B^c$.
- 6) $(A \cup B)^c = A^c \cap B^c$. Доказательство. $x \in (A \cup B)^c \Leftrightarrow x \not\in A \cup B \Leftrightarrow \Leftrightarrow$ неверно, что $x \in A$ или $x \in B \Leftrightarrow x \not\in A$ и $x \not\in B \Leftrightarrow x \in A^c$ и $x \not\in B^c \Leftrightarrow x \in A^c \cap B^c$.

Замечание 2. Свойства 5) и 6) называются законами де Моргана. Подумайте и объясните, почему при отрицании "и" меняется на "или", а "или" на "и"!

- 7) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$. Доказательство. $A \setminus (B \cap C) \stackrel{4)}{=} = A \cap (B \cap C)^c \stackrel{5)}{=} A \cap (B^c \cup C^c) \stackrel{\text{дистр.}}{=} (A \cap B^c) \cup (A \cap C^c) \stackrel{4)}{=} (A \setminus B) \cup (A \setminus C)$.
- 8) $A \setminus (A \setminus B) = A \cap B$. Доказательство. $A \setminus (A \setminus B) \stackrel{4)}{=} A \cap (A \cap B^c)^c \stackrel{5)}{=} = A \cap (A^c \cup B^{cc}) = A \cap (A^c \cup B) \stackrel{\text{дистр.}}{=} (A \cap A^c) \cup (A \cap B) = A \cap B$.
- 5. **Произведение двух множеств.** Пусть A, B два множества. *Их произведением (декартовым)* называется множество

$$A\times B:=\{(x,y)\mid x\in A,y\in B\}.$$

Элементами $A \times B$ являются упорядоченные пары элементов (x,y), первый из которых принадлежит A, а второй — B. Рассмотрим два элемента $z_k = (x_k, y_k) \in A \times B$, k = 1, 2. Пары z_1 и z_2 совпадают тогда и только тогда, когда $x_1 = x_2$ и $y_1 = y_2$. Элементы x, y называются компонентами или координатами элемента (пары) z = (x,y).

Примеры. 1) $\mathbb{R} \times \mathbb{R} =: \mathbb{R}^2$ — числовая плоскость.

Рис. 15.

2) Произведение отрезков $[a;b] \times [c;d]$. Если интерпретировать пары действительных чисел как точки плоскости, то произведение $[a;b] \times [c;d]$ является прямоугольником.

Рис. 16.

3) $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$ — целочисленная решетка в \mathbb{R}^2 .

Рис. 17.

6. Произведение конечного числа множеств. Пусть A_1 , A_2, \ldots, A_n — система из n множеств. Декартовым произведением множеств A_1, A_2, \ldots, A_n называется множество $A_1 \times A_2 \times \cdots \times A_n$, состоящее из упорядоченных наборов (x_1, x_2, \ldots, x_n) таких, что $x_1 \in X_1$, $x_2 \in X_2, \ldots, x_n \in X_n$. Если $z = (x_1, x_2, \ldots, x_n)$, то x_i называется i-й компонентой или координатой z.

Если $A_1 = A_2 = \cdots = A_n = A$, то произведение $A \times A \times \cdots \times A$ называется n-й степенью множества A и обозначается A^n . Например,

 $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} = \mathbb{R}^n$ есть вещественное n-мерное евклидово пространство, $\mathbb{C} \times \mathbb{C} \times \cdots \times \mathbb{C} = \mathbb{C}^n$ — комплексное n-мерное евклидово пространство.

1.4 Функции (отображения)

Понятие функции — основное понятие в математике. Пусть X, Y — два множества. Функцией f, определенной на множестве X, со значениями в множестве Y или функцией из X в Y или отображением множества X в множество Y называется соответствие, которое каждому элементу $x \in X$ сопоставляет некоторый элемент $y \in Y$. При этом пишут $f: X \to Y$.

Рис. 18.

Подчеркнем, что элементу x сопоставляется только один элемент y. Этот элемент называется значением функции f в точке x или на элементе x, в свою очередь x называется аргументом функции f. Пишут y = f(x).

1.5 Образ и прообраз множества

Пусть $f:X \to Y$ и $A \subset X$. Образом множества A при отображении f называется множество

$$f(A) := \{ y \in Y \mid \exists x \in X : f(x) = y \} = \{ f(x) \mid x \in X \}.$$

Рис. 19.

Пример. Пусть $f(x) = x^2$, $f: \mathbb{R} \to \mathbb{R}$ и A = [-1; 3]. Тогда образ f(A) = [0; 9].

Пусть множество $B \subset Y$. Прообразом множества B при отображении f называется множество $f^{-1}(B) := \{x \in X \mid f(x) \in B\}$.

Пример. Пусть $f(x)=x^2,\ f:\mathbb{R}\to\mathbb{R},\ B=[0;9]$. Тогда прообраз $f^{-1}(B)=[-3;3]$.

Замечание. Из приведенных примеров следует, что если B = f(A), то не всегда отсюда следует, что $A = f^{-1}(B)$. Тем не менее, для любой функции $f: X \to Y$ справедливы свойства (докажите их самостоятельно!):

- 1) $f(f^{-1}(B)) = B$ для любого множества $B \subset Y$.
- 2) $A \subset f^{-1}(f(A))$ для любого множества $A \subset X$.
- 3) $f(\emptyset) = \emptyset$.
- 4) $f^{-1}(\emptyset) = \emptyset$.

1.6 Типы функций: сюръекции, инъекции, биекции

Пусть $f: X \to Y$. Тогда говорят, что функция действует из множества X **в** множество Y.

Определение 1. Если f(X) совпадает с Y, т. е. для любого $y \in Y$ существует по крайней мере одно $x \in X$ такое, что f(x) = y, то отображение f называют copzekuueu или отображением X на Y. Отображение f сюръективно тогда и только тогда, когда уравнение f(x) = y имеет по крайней мере одно решение для любой правой части $y \in Y$.

Определение 2. Если для любого $y \in Y$ уравнение f(x) = y имеет не более одного решения, то отображение f называется взаимно-однозначным или интекцией. Отображение f инъективно тогда и только тогда, когда для любых $x_1, x_2 \in X$ из равенства $f(x_1) = f(x_2)$ следует, что $x_1 = x_2$.

Определение 3. Отображение f называется биекцией, если f одновременно сюръективно и биективно, т. е. f — взаимно-однозначно отображает X на Y. Отображение f биективно тогда и только тогда, когда для любого $y \in Y$ уравнение f(x) = y имеет одно и только одно решение.

Мы можем схематично изобразить функцию, рисуя два множества X и Y и соединяя для всех $x \in X$ точки x и f(x) = y стрелками.

Рис. 20.

Тогда отображение f сюръективно, если концы стрелок заполняют все множество Y; f инъективно, если концы разных стрелок не совпадают, когда их начала различны; f биективно, если выполнены оба предыдущих условия.

Если f биективно, то определим обратную функцию $f^{-1}: Y \to X$, действующую по правилу: $x = f^{-1}(y)$, если f(x) = y. Эта обратная функция определяется путем "обращения направления стрелок": если для "прямой" функции стрелка идет из точки x в точку y, то для обратной стрелка идет из y в x.

1.7 Сужение отображения

Пусть f(x) — некоторое отображение из X в Y и A является подмножеством X. Сужением отображения f на множество A называется

отображение $f|_A:A\to Y$, действующее по правилу $f|_A(x)=f(x)$, $x\in A$. Таким образом, $f|_A$ действует точно так же, как и f, однако область определения f **ўже**, чем у f. Этим объясняется название понятия "сужение".

Пример. Пусть $f: \mathbb{R} \to [-1;1], \ f(x) = \sin x$. Тогда f является сюръекцией, но не биекцией. Однако если сузить f на отрезок $A = [-\pi/2;\pi/2],$ то $g = f|_A$ — биекция. Обратная к ней функция g^{-1} — это функция arcsin.

1.8 График отображения

Пусть $f: X \to Y$. Графиком функции f называется множество

$$\Gamma_f := \{(x, y) \in X \times Y \mid y = f(x)\}.$$

Таким образом, график состоит из всевозможных пар (x, f(x)), когда x пробегает все множество X.

Рис. 21.

1.9 Суперпозиция отображений (сложная функция)

Пусть даны три множества X, Y Z, и функция f действует из X в Y, а функция g — из Y в Z. Тогда можно определить cynepnosuuuw $g \circ f$ функций f и g или cложную функцию как отображение, действующее по правилу $g \circ f(x) := g(f(x)), \ x \in X$. На диаграмме сложная функция получается объединением (составлением) стрелок: если стрелка для f соединяет x и y, а стрелка для g - y и z, то стрелка для $g \circ f$ соединяет x и z.

Рис. 22.

Пример. Рассмотрим функцию $h: \mathbb{R} \to \mathbb{R}$, действующую по правилу $h(x) = \sqrt{e^x + 2}$. Эта функция является суперпозицией функций $f: \mathbb{R} \to \mathbb{R}_+$, $f(x) = e^x + 2$, и $g: \mathbb{R}_+ \to \mathbb{R}$, $g(x) = \sqrt{x}$. Здесь \mathbb{R}_+ — множество неотрицательных действительных чисел.

2 Последовательности и семейства

2.1 Последовательности

Рассмотрим числа

$$1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots,$$

где знаменатели дробей принадлежат множеству натуральных чисел \mathbb{N} . Это — пример последовательности действительных чисел. Более общий пример получится, если рассмотреть произвольную функцию $x:\mathbb{N}\to\mathbb{R}$ и числа

$$x(1), x(2), x(3), \ldots, x(n), \ldots$$

(Если x(n) = 1/n, то получаем предыдущий пример.) Это дает основание для введения следующего определения, играющего важнейшую роль в математике.

 $\mathit{Последовательностью}$ в множестве X называется отображение $x:\mathbb{N} \to X.$ Таким образом последовательность — это произвольная функция, заданная на множестве натуральных чисел.

Как правило, вместо x(n) пишут x_n , т. е. аргумент n функции x записывается без скобок в виде нижнего индекса. Отметим, что отображение x не обязано быть инъективным!

Последовательность $x: \mathbb{N} \to \mathbb{R}$ называется (вещественной) числовой последовательностью. Для последовательностей используют различные обозначения: $(x_1, x_2, x_3, \dots, x_n, \dots), (x_n)_{n \in \mathbb{N}}, (x_n)_{n=1}^{\infty}, (x_n)$ или даже просто x_n .

Примеры. 1) Рассмотрим числовую последовательность

$$\left(1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \dots, 1, \frac{1}{n}, \dots\right).$$

Множество значений последовательности

$$x(\mathbb{N}) = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots\right\}.$$

2) Для последовательности $(-1,\,1,-1,\,1,\ldots,-1,\,1,\ldots)$ множество значений $x(\mathbb{N})=\{1;-1\}$.

В обоих приведенных примерах функция x не является инъективной.

Пусть $(x_1, x_2, x_3, \ldots, x_n, \ldots)$ — некоторая последовательность элементов в X. Пусть $n_1 < n_2 < n_3 < \cdots < n_k < \cdots$ — возрастающая последовательность натуральных чисел. Тогда последовательность $(x_{n_k})_{k \in \mathbb{N}}$ называется nodnocnedoвamenьностью последовательности $(x_n)_{n \in \mathbb{N}}$.

Пример. Пусть $(1,2,4,8,16,32,\ldots,2^{n-1},\ldots)$ — последовательность степеней двойки. Тогда последовательности

$$(1,4,16,64,\ldots,2^{2n-2},\ldots)$$
 и $(2,4,16,256,\ldots,2^{2^{n-1}},\ldots)$

являются ее подпоследовательностями.

2.2 Семейства элементов. Объединение и пересечение семейства множеств.

Пусть T, X — два множества. Семейством элементов в X, индексированным множеством T, называется любое отображение $x: T \to X$. Семейство обозначается $(x_t)_{t \in T}$ или просто (x_t) . (Как и в случае последовательностей, здесь $x_t = x(t)$.)

Понятие семейства является естественным обобщением понятия последовательности. Последовательность — это семейство, индексируемое множеством натуральных чисел \mathbb{N} . Пусть $(x_t)_{t\in T}$ — некоторое семейство элементов в X и $L\subset T$. Тогда можно рассмотреть сужение $x|_L$. Это сужение, т. е. семейство $(x_t)_{t\in L}$ называется nodcemeäcmeom семейства $(x_t)_{t\in T}$.

Пусть $(A_t)_{t \in T}$ — некоторое семейство множеств. Предполагается, что все A_t являются подмножествами некоторого универсума X.

Объединением семейства множеств $(A_t)_{t\in T}$ называется множество

$$\bigcup_{t \in T} A_t := \{ x \in X \mid \exists t \in T \text{ такое, что } x \in A_t \}.$$

Пересечением семейства множеств $(A_t)_{t\in T}$ называется множество

$$\bigcap_{t \in T} A_t := \{ x \in X \mid x \in A_t \ \forall t \in T \}.$$

Если $T = \{1, 2, 3, \dots, m\}$, то пишут

$$\bigcup_{t \in T} A_t = \bigcup_{n=1}^m A_n = A_1 \cup A_2 \cup \dots \cup A_m,$$

$$\bigcap_{t \in T} A_t = \bigcap_{n=1}^m A_n = A_1 \cap A_2 \cap \dots \cap A_m.$$

Если $T = \mathbb{N}$, то пишут

$$\bigcup_{t \in T} A_t = \bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \cup \cdots \cup A_n \cup \cdots,$$

$$\bigcap_{t \in T} A_t = \bigcap_{n=1}^{\infty} A_n = A_1 \cap A_2 \cap \dots \cap A_n \cap \dots$$

Для семейств справедливы следующие обобщения законов де Моргана:

- 1) $\left(\bigcup_{t\in T} A_t\right)^c = \bigcap_{t\in T} A_t^c$
- $2) \left(\bigcap_{t \in T} A_t\right)^c = \bigcup_{t \in T} A_t^c.$

Доказательство. 1) $x \in \left(\bigcup_{t \in T} A_t\right)^c \Leftrightarrow x \not\in \bigcup_{t \in T} A_t \Leftrightarrow$ неверно, что существует такой индекс $t \in T$, что $x \in A_t \Leftrightarrow$ для всех индексов $t \in T$ имеем $x \not\in A_t \Leftrightarrow \forall t \in T (x \in A_t^c) \Leftrightarrow x \in \bigcap_{t \in T} A_t^c$.

2) $x \in \left(\bigcap_{t \in T} A_t\right)^c \Leftrightarrow x \notin \bigcap_{t \in T} A_t \Leftrightarrow$ неверно, что для любого $t \in T$ выполняется условие $x \in A_t \Leftrightarrow$ существует $t \in T$ такое, что $x \notin A_t \Leftrightarrow \exists t \in T (x \in A_t^c) \Leftrightarrow x \in \bigcup_{t \in T} A_t^c$.

2.3 Равномощные множества

Два множества A, B называются равномощными, если существует биекция $f:A\to B$. Если A и B равномощны, то пишем $A\sim B$. Отметим свойства введеного отношения \sim .

- 1) $A \sim A$ для любого множества A (рефлексивность). В качестве биекции $f: A \to A$ можно взять тождественное отображение id_A , которое определено следующим образом: $\mathrm{id}_A(x) = x, \ x \in A$.
- 2) Для любых множеств A и B если $A \sim B$, то $B \sim A$ (симметричность). Для доказательства достаточно заметить, что если $f:A \to B$ биекция, то $f^{-1}:B \to A$ также биекция.
- 3) Для любых трех множеств $A,\ B$ и C, если $A\sim B$ и $B\sim C,$ то $A\sim C$ (транзитивность).

Доказательство. Если $f:A\to B$ и $g:B\to C$ — биекции, то $g\circ f:A\to C$ — также биекция.

Множество A называется *конечным*, если оно равномощно множеству $\{1,2,3,\ldots,m\}$. При этом число m называется *количеством элементов* в A.

По определению количество элементов в \emptyset полагается равным нулю. Множество называется бесконечным, если оно не пусто и не конечно.

Множество называется *счетным*, если оно равномощно множеству \mathbb{N} , т. е. существует биекция $f:\mathbb{N}\to A$. Счетное множество A можно отождествить с последовательностью с попарно различными членами, т. е. $A=\{a_1,a_2,a_3,\ldots,a_n,\ldots\}$.

2.4 Теоремы о счетных множествах

Теорема 1. У любого бесконечного множества существует счетное подмножество.

Доказательство. Пусть A — бесконечное множество. Так как $A \neq \emptyset$, то существует элемент $a_1 \in A$. Множество $A \setminus \{a_1\} \neq \emptyset$, так как A — бесконечное множество. Значит, существует элемент $a_2 \in A \setminus \{a_1\}$. Множество $A \setminus \{a_1, a_2\} \neq \emptyset$, так как A — бесконечное множество. Поэтому существует $a_3 \in A \setminus \{a_1, a_2\}$. Продолжая этот процесс по индукции строим последовательность (a_n) такую, что $a_n \in A \setminus \{a_1, a_2, a_3, \ldots, a_{n-1}\}$. Тогда

все a_n попарно различны и $B = \{a_1, a_2, a_3, \ldots\}$ — счетное подмножество множества A. Теорема доказана.

Теорема 2. Если A — счетное множество и B — его бесконечное подмножество, то B также счетно.

Доказательство. Пусть $A=\{a_1,a_2,a_3,\ldots,a_n,\ldots\}$. Найдем минимальный номер n_1 такой, что $a_{n_1}\in B$. Далее найдем минимальный номер n_2 такой, что $n_2>n_1$ и $a_{n_2}\in B$. Продолжим этот процесс. По индукции строим последовательность $(n_k)_{k\in\mathbb{N}}$. Если n_k определен, то n_{k+1} определим как минимальный номер такой, что $n_{k+1}>n_k$ и $a_{n_{k+1}}\in B$. В результате, перебирая все натуральные n, мы встретим среди a_n все элементы из B. Таким образом, $B=\{a_{n_1},a_{n_2},a_{n_3},\ldots,a_{n_k},\ldots\}$. Значит элементы множества B совпадают с членами некоторой последовательности, которые попарно различны. Следовательно, B счетно. Теорема доказана.

Теорема 3. Если A_1 , A_2 ,..., A_k — счетные множества, то их объединение $\bigcup_{i=1}^k A_i$ также счетно.

Доказательство. Так как A_i — счетные множества, то можно записать их в виде $A_i = \{a_{1i}, a_{2i}, a_{3i}, \dots a_{ni}, \dots\}, \ 1 \leq i \leq k$. Запишем элементы всех множеств A_i в виде бесконечной таблицы с k строками:

$$a_{11}$$
 a_{21} a_{31} ... a_{n1} ... a_{12} a_{22} a_{32} ... a_{n2} ... a_{n2} ... a_{1k} a_{2k} a_{3k} ... a_{nk} ...

Будем пересчитывать элементы множества $B = \bigcup_{i=1}^k A_i$ следующим образом. Любой элемент этого множества встречается по крайней мере один раз в этой таблице. Если множества A_i между собой не пересекаются, то элементы множества B можно представить в виде членов последовательности, выписывая элементы таблицы в том порядке, в котором они встречаются, если двигаться вниз по столбцам, сначала по первому, затем — по второму и т. д.:

$$B = \{a_{11}, a_{12}, \dots, a_{1k}, a_{21}, a_{22}, \dots, a_{2k}, \dots, a_{n1}, a_{n2}, \dots, a_{nk}, \dots\}.$$

Если же некоторые множества между собой пересекаются, то может оказаться, что некоторое из a_{ii} уже встречалось ранее при обходе таблицы описанным выше образом. В этом случае мы не выписываем его дважды и просто пропускаем этот элемент. Ясно, что множество B бесконечно, поэтому процесс никогда не закончится. Таким образом, B счетно. Теорема доказана.

Теорема 4. Если A_1 , A_2 , A_3 ,..., A_n ,... — счетное семейство счетных множеств, то множество $\bigcup_{k=1}^{\infty} A_k$ также счетно.

Доказательство. Как и при доказательстве предыдущей теоремы выпишем элементы множеств $A_1, A_2, A_3, \ldots, A_n, \ldots$ в виде бесконечной таблицы, однако теперь у этой таблицы и число строк и число столбцов будут бесконечными:

$$a_{11}$$
 a_{21} a_{31} ... a_{n1} ... a_{12} a_{22} a_{32} ... a_{n2} ... a_{n2} ... a_{1k} a_{2k} a_{3k} ... a_{nk} ...

Элементы таблицы можно выписать в виде последовательности $(a_{11}, a_{12}, a_{21}, a_{13}, a_{22}, a_{31}, \ldots)$. Порядок расположения элементов a_{ji} следующий. Сначала выписываем элементы a_{ji} , у которых сумма j+i равна 2, затем 3, 4 и т. д. по возрастанию. Если у элементов a_{ji} a_{kl} одинаковая сумма индексов: j+i=k+l, то раньше выписываем элемент, у которого меньше первый индекс. Таким образом мы выпишем все элементы таблицы. Как и при доказательстве теоремы 3, если какойлибо элемент уже встречался ранее, его второй раз не выписываем. В результате элементы множества $\bigcup_{k=1}^{\infty} A_k$ представлены как элементы последовательности с попарно различными членами, значит это множество счетно. Теорема доказана.

Теорема 5. Если A_1 , A_2 , A_3 ,..., A_k — конечное число счетных множеств, то их произведение $A = A_1 \times A_2 \times \cdots \times A_k$ также счетно.

Доказательство. По определению $A = A_1 \times A_2 \times \cdots \times A_k$ состоит из упорядоченных наборов (a_1, a_2, \dots, a_k) таких, что $a_i \in A_i$, $1 \le i \le k$. Докажем индукцией по числу множеств k, что $A_1 \times A_2 \times \cdots \times A_k$ счетно.

Пусть k=1. Тогда $A=A_1$ по условию теоремы счетно.

Предположим, что теорема доказана для любых счетных (k-1)

множеств. Тогда $A_1 \times A_2 \times \cdots \times A_{k-1}$ счетно. Представим A в виде

$$A = A_1 \times A_2 \times \dots \times A_k = \bigcup_{a_k^* \in A_k} B(a_k^*), \tag{1}$$

где $B(a_k^*) = \{(a_1, a_2, \dots, a_{k-1}, a_k^*) \mid a_i \in A_i, 1 \le i \le k-1\}.$

Для любого $a_k^* \in A_k$ множество $B(a_k^*) \sim A_1 \times A_2 \times \cdots \times A_{k-1}$. Биекция между $B(a_k^*)$ и $A_1 \times A_2 \times \cdots \times A_{k-1}$ осуществляется по правилу: $f: (a_1, a_2, \ldots, a_{k-1}, a_k^*) \mapsto (a_1, a_2, \ldots, a_{k-1})$. Так как по предположению индукции множество $A_1 \times A_2 \times \cdots \times A_{k-1}$ счетно, то и $B(a_k^*)$ также счетно. Таким образом, в силу (1) и теоремы 4 множество A счетно. Теорема доказана.

2.5 Примеры счетных и несчетных множеств

- 1) Множество \mathbb{Z} счетно. Действительно, представим это множество в виде $\mathbb{Z} = \mathbb{N} \cup \mathbb{N}'$, где $\mathbb{N}' = \{0, -1, -2, -3, \ldots\}$. Множество \mathbb{N}' счетно (постройте биекцию \mathbb{N} на \mathbb{N}' !). По теореме 3 множество \mathbb{Z} счетно.
- 2) Множество $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z}, n \neq 0\}$ счетно. Построим инъективное отображение $\varphi : \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$. Для любого ненулевого числа $q \in \mathbb{Q}$ выберем его представление в виде несократимой дроби q = m/n, где n > 0. Сопоставим q пару $\varphi(q) := (m, n)$. По определению полагаем $\varphi(0) = (0, 1)$. Ясно, что φ —инъекция, поэтому $\mathbb{Q} \sim \varphi(\mathbb{Q})$. Докажем, что $\varphi(\mathbb{Q})$ счетно. Так как \mathbb{Q} бесконечно, то и равномощное ему множество $\varphi(\mathbb{Q})$ также бесконечно. По теореме 5 множество $\mathbb{Z} \times \mathbb{Z}$ счетно. Значит, $\varphi(\mathbb{Q})$ является бесконечным подмножеством счетного множества $\mathbb{Z} \times \mathbb{Z}$. По теореме 2 множество $\varphi(\mathbb{Q})$ счетно. Поэтому и \mathbb{Q} счетно.
 - 3) Множества \mathbb{N}^n , \mathbb{Z}^n , \mathbb{Q}^n счетны для любого $n \in \mathbb{N}$ по теореме 5.
- 4) Множество A многочленов $a_0 + a_1t + a_2t^2 + \cdots + a_kt^k$ с рациональными коэффициентами a_k счетно. Действительно, $A = \bigcup_{k=1}^{\infty} A_k$, где A_k множество многочленов с рациональными коэффициентами, степень которых равна k. Множество A_k равномощно \mathbb{Q}^{k+1} . Биекция между этими множествами строится по правилу:

$$a_0 + a_1 t + a_2 t^2 + \dots + a_k t^k \mapsto (a_0, a_1, a_2, \dots, a_k).$$

Значит, A_k — счетные множества, и по теореме 4 множество A счетно.

Множество называется *несчетным*, если оно бесконечно и не является счетным.

5) Множество действительных чисел \mathbb{R} несчетно.

Доказательство. Известно, что любое действительное число однозначно представимо в виде бесконечной десятичной дроби, у которой отсутствует период (9), если число рациональное. При этом допускается период (0).

Предположим, что \mathbb{R} счетно. Тогда по теореме 1 множество [0;1) —также счетное множество. Занумеруем его элементы натуральными числами, т. е. представим [0;1) в виде $[0;1)=\{x_1,x_2,x_3,\ldots\}$. Для каждого x_k запишем указанное выше десятичное представление этого числа:

$$\begin{array}{rclcrcl}
x_1 & = & 0, & a_1^{(1)} & a_1^{(2)} & a_1^{(3)} & \dots & a_1^{(k)} & \dots \\
x_2 & = & 0, & a_2^{(1)} & a_2^{(2)} & a_2^{(3)} & \dots & a_2^{(k)} & \dots \\
\dots & \dots \\
x_n & = & 0, & a_n^{(1)} & a_n^{(2)} & a_n^{(3)} & \dots & a_n^{(k)} & \dots \\
\dots & \dots \\
\dots & \dots \\
\end{array}$$

Построим дробь, которая соответствует числу x из множества [0;1), в записи которой отсутствует период (9) и которая не встречается среди x_k . Пусть $b^{(1)}$ — любая цифра, отличная от $a_1^{(1)}$ и 9, $b^{(2)}$ — любая цифра, отличная от $a_2^{(2)}$ и 9, и т. д., $b^{(n)}$ — любая цифра, отличная от $a_n^{(n)}$ и 9. Тогда $x=0,b^{(1)}b^{(2)}b^{(3)}\dots b^{(k)}\dots$ является искомым числом. С одной стороны, $x\in[0;1)$, с другой стороны, x не совпадает ни с одним элементом x_n из этого множества. Полученное противоречие доказывает несчетность \mathbb{R} .

6) Любой числовой промежуток, отличный от точки, является несчетным множеством.

3 Числовая прямая

3.1 Аксиоматическое построение числовой прямой

Для более точного представления о числовой прямой \mathbb{R} следует более четко определить это понятие. Рассмотрим свойства числовой прямой, которые кладутся в основу ее аксиоматического определения.

- 1) \mathbb{R} поле (характеристики 0), т. е. на \mathbb{R} введены две бинарные операции сложение "+" и умножение "·", причем \mathbb{R} является коммутативной группой по сложению, а $\mathbb{R}\setminus\{0\}$ коммутативной группой по умножению (0 нейтральный элемент относительно операции сложения). При этом имеет место дистрибутивность сложения относительно умножения.
- 2) На \mathbb{R} определено отношение порядка "<", удовлетворяющее условиям:
 - а) $\forall x, y \in \mathbb{R}$ выполняется одно и только одно из условий:

$$x < y, y < x$$
 или $x = y$.

- б) $\forall x, \ y, \ z \in \mathbb{R}$ из условий $x < y, \ y < z$ следует, что x < z (транзитивность).
- 3) Согласованность отношения порядка с арифметическими операциями.
 - a) $\forall x, y, c \in \mathbb{R} \ (x < y \Rightarrow x + c < y + c.)$
 - б) $\forall x, y, c \in \mathbb{R} \ (x < y \ и \ c > 0 \ \Rightarrow \ cx < cy.$
- 4) Аксиома Архимеда. Обозначим через 1 единичный элемент группы $\mathbb{R}\setminus\{0\}$. Этот элемент является образующим циклической группы \mathbb{Z} (по сложению). Поскольку характеристика поля равна 0, группа бесконечна. Она содержит элементы 1, 1+1=:2, $2+1=:3,\ldots,(n-1)+1=:n$ и т. д. . Обратные к ним элементы (относительно операции умножения) обозначим 1/n. Пусть $\mathbb{N}=\{1,2,3,\ldots\}$.

Аксиома Архимеда. Для любого $\varepsilon>0$ существует $n\in\mathbb{N}$ такое, что $1/n<\varepsilon$.

5) Существование точной верхней грани.

Приведем несколько необходимых определений. Пусть $A \subset \mathbb{R}$. Элемент $a \in A$ называется наибольшим элементом множества A, если $x \leq a$ для любого $x \in A$. Элемент $a \in A$ называется наименьшим элементом множества A, если $x \geq a$ для любого $x \in A$.

Пример. Рассмотрим множество A = [0; 1). Наименьший элемент множества A — это точка 0. Наибольшего элемента в A не существует.

Итак, не всегда множество обладает минимальным и максимальным элементами. Однако можно определить понятие точной верхней (нижней)

грани, которое в некотором смысле заменяет понятие максимального (минимального) элемента.

Пусть $A \subset \mathbb{R}$. Точка $y \in \mathbb{R}$ называется мажорантой множества A, если $x \leq y$ для любого $x \in A$. Множество A называется ограниченным сверху, если существует по крайней мере одна мажоранта множества A.

Если среди мажорант множества существует наименьшая c, то говорят, что c — это точная верхняя грань или супремум множества A. Пишут $c=\sup A$ или $c=\sup_{x\in A} x$.

Аналогично точка $y \in \mathbb{R}$ называется минорантой множества A, если $x \geq y$ для любого $x \in A$. Множество A называется ограниченным снизу, если существует по крайней мере одна миноранта множества A.

Если среди минорант множества существует наибольшая d, то говорят, что d — это точная ниженяя грань или инфимум множества A. Пишут $d = \inf A$ или $d = \inf_{x \in A} x$.

Пример. Рассмотрим множество A = [0; 1). Множество его мажорант — это $[1; +\infty)$. Оно содержит наименьший — точку 1. Таким образом, $\sup A = 1$. Множество минорант — $(-\infty; 0]$. Значит, $\inf A = 0$.

Упражнение. Доказать, что множество мажорант (минорант) любого непустого множества либо пусто, либо является бесконечным числовым промежутком.

Следующее условие аксиоматизируется, т. е. кладется в основу модели числовой прямой.

Существование точной верхней грани. Любое непустое ограниченное сверху множество обладает точной верхней гранью.

Справедлива

Теорема. Пусть $(\mathbb{R}_1, <_1, +_1, \cdot_1)$ и $(\mathbb{R}_2, <_2, +_2, \cdot_2)$ — две модели числовой прямой, удовлетворяющие аксиомам 1)-5). Тогда существует биекция $\varphi : \mathbb{R}_1 \to \mathbb{R}_2$ такая, что

- 1) φ является изоморфизмом полей, т. е. для любых $x, y \in \mathbb{R}_1$ $\varphi(x+_1 y) = \varphi(x) +_2 \varphi(y), \quad \varphi(x \cdot_1 y) = \varphi(x) \cdot_2 \varphi(y);$
- 2) φ сохраняет отношение порядка, т. е. для любых $x, y \in \mathbb{R}_1$ если $x <_1 y$, то $\varphi(x) <_2 \varphi(y)$.

Таким образом, фактически аксиомы 1)-5) определяют \mathbb{R} единственным образом.

Отметим, что можно использовать вместо аксиомы 5) другие эквивалентные ей условия. Например, можно заменить 5) условием

5') Если $A, B \subset R$ — два непустых множества и для любых $x \in A$, $y \in B$ имеет место неравенство $x \leq y$, то $\exists c : \forall x \in A, y \in B \ (x \leq c \leq y)$.

Теорема. $A\kappa cuombox{ } 5) \ u \ 5') \ {\it > } \kappa {\it eubanehmhb} u.$

Доказательство. 5) \Rightarrow 5'). Предположим, что у любого непустого ограниченного сверху множества существует точная верхняя грань. Пусть $A,\ B \neq \emptyset$ и $\forall x \in A,\ y \in B\ (x \leq y)$. Тогда любое $y \in B$ является мажорантой множества A. Пусть $c = \sup A$. Тогда $\forall x \in A\ (x \leq c)$, т. к. c — мажоранта множества A. С другой стороны $\forall y \in B\ (c \leq x)$, т. к. y — мажоранта множества A, а c — наименьшая мажоранта множества A. Значит, имеет место 5).

 $5')\Rightarrow 5$). Пусть A — непустое ограниченное сверху множество в \mathbb{R} . Тогда множество B его мажорант непусто и $\forall x\in A,\ y\in B\ (x\leq \leq c\leq y)$. В силу 5') имеем: $\exists c: \forall x\in A,\ y\in B\ (x\leq c\leq y)$. Из левого неравенства следует, что c — мажоранта множества A, а из правого — что c — наименьшая мажоранта. Таким образом, существует $\sup A=c$. Теорема доказана.

3.2 Характеристические свойства супремума и инфимума

Теорема 1 (характеристическое свойство точной верхней грани). Пусть A — непустое ограниченное сверху множество и c — некоторая мажоранта множества A. Следующие два условия эквивалентны:

- 1) $c = \sup A$;
- 2) $\forall \varepsilon > 0 \ \exists y \in A \ (y > c \varepsilon).$

Доказательство. 1) \Rightarrow 2). Пусть $c = \sup A$. Так как $\varepsilon > 0$, то $c - \varepsilon < c$. Значит, $c - \varepsilon$ не является мажорантой A, т. к. c — наименьшая мажоранта. Это означает, что не для всех $x \in A$ выполняется неравенство $x \leq c - \varepsilon$. Поэтому $\exists y \in A \ (y > c - \varepsilon)$.

 $1)\Rightarrow 2)$. Предположим, что c — мажоранта A и имеет место 2). Покажем, что c — наименьшая мажоранта. Предположим противное. Тогда существует такая мажоранта d множества A, что d < c. Обозначим $\varepsilon = c - d$. Тогда для любого $x \in A$ выполняется неравенство $x \leq d$, т. е. $x \leq c - \varepsilon$. Это противоречит 2). Теорема доказана.

Теорема 2. Если A — непустое ограниченное снизу множество B, то существует инфимум множества A.

Доказательство. Рассмотрим множество

$$-A = \{x \in A \mid -x \in A\}.$$

Это множество непусто и ограничено сверху. Значит, существует $\inf(-A) = y$. Тогда $-y = \sup A$. Теорема доказана.

Теорема 3 (характеристическое свойство точной нижней грани). Пусть A — непустое ограниченное снизу множество u d — некоторая мажоранта множества A. Следующие два условия эквивалентны:

- 1) $d = \sup A$:
- 2) $\forall \varepsilon > 0 \ \exists y \in A \ (y < d + \varepsilon).$

Упражнение. Докажите теорему 3.

3.3 Расширенная числовая прямая

В математическом анализе часто бывает удобно рассматривать расширение числовой прямой. Как правило, это расширение осуществляется добавлением одной или двух точек, которые называются бесконечно удаленными или просто бесконечностями. Мы рассмотрим модель, в которой добавляется две бесконечно удаленные точки — $+\infty$ и $-\infty$. При этом расширенную числовую прямую можно представлять как отрезок бесконечной длины, концами которого являются точки $+\infty$ и $-\infty$.

Итак, расширенная числовая прямая $\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty; -\infty\}$.

На $\overline{\mathbb{R}}$ можно определить арифметические операции (не для всех комбинаций точек) и отношение порядка:

1) Операция сложения (вычитания). Для любого $x \in \mathbb{R}$ полагаем

$$x + (+\infty) = x - (-\infty) = (+\infty) + (+\infty) = (+\infty) - (-\infty) = +\infty,$$

$$x + (-\infty) = x - (+\infty) = (-\infty) + (-\infty) = (-\infty) - (+\infty) = -\infty.$$

Операция сложения коммутативна.

2) Операция умножения. Если x > 0, то по определению

$$x \cdot (+\infty) = (+\infty) \cdot x = +\infty, \quad x \cdot (-\infty) = (-\infty) \cdot x = -\infty.$$

Если x < 0, то полагаем

$$x \cdot (+\infty) = (+\infty) \cdot x = -\infty, \quad x \cdot (-\infty) = (-\infty) \cdot x = +\infty.$$

Кроме того, определим произведение бесконечно удаленных точек:

$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty, \quad (+\infty) \cdot (-\infty) = -\infty.$$

Операция умножения также коммутативна.

- 3) Операция деления. По определению $x:(+\infty)=x:(-\infty)=0$ для любого $x\in\mathbb{R}$.
- 4) Отношение порядка. Для любого $x \in \mathbb{R}$ полагаем по определению $-\infty < x < +\infty$.

Для некоторых точек арифметические операции не определены, например, неопределенностями являются $(+\infty) - (+\infty)$, $(+\infty) + (-\infty)$, $0 \cdot (+\infty)$, $0 \cdot (-\infty)$, $\pm \infty/\pm \infty$ и некоторые другие. Почему это так, можно понять после ознакомления со свойствами пределов числовых последовательностей и функций.

Будем говорить, что непустое множество $A \subset \mathbb{R}$ ограничено сверху, если $\exists y \in \mathbb{R} \colon \forall x \in A \ (x \leq y)$. Как и в случае множеств в \mathbb{R} обозначим через $\sup A$ наименьшую мажоранту. Если непустое множество A ограничено сверху, $A \neq \{-\infty\}$, то в силу аксиомы 5) модели числовой прямой существует конечный $\sup A$. Если $A = \{-\infty\}$, то полагаем $\sup A = -\infty$. Наконец, если A не ограничено сверху, то по определению полагаем $\sup A = +\infty$.

Таким образом, у любого $A \neq \emptyset$ существует конечный или бесконечный супремум. Аналогично определяется инфимум непустых множеств в $\overline{\mathbb{R}}$. (Дайте строгое определение!) На расширенной числовой прямой он всегда существует.

Примеры. 1) sup $\mathbb{N} = +\infty$, inf $\mathbb{N} = 1$.

2)
$$\sup \mathbb{R} = +\infty$$
, $\inf \mathbb{R} = -\infty$.

Замечание. Существует еще одна модель расширенной числовой прямой, когда к \mathbb{R} подсоединяется одна бесконечно удаленная точка, обозначаемая ∞ .

4 Предел числовой последовательности

4.1 Окрестности точек в $\mathbb R$

Пусть $a\in\mathbb{R}$ и $\varepsilon>0$. Окрестностью или ε -окрестностью точки a называется множество $O_{\varepsilon}(a):=\{x\in\mathbb{R}:|x-a|<\varepsilon\}=(a-\varepsilon,a+\varepsilon)$. Итак, ε -окрестность точки a — это интервал с центром в точке a ширины 2ε .

Теорема. У любых двух различных точек $a, b \in \mathbb{R}$ существуют окрестности $O_{\varepsilon}(a)$ и $O_{\varepsilon}(b)$, которые не пересекаются.

Доказательство. Пусть $a \neq b$ и $\varepsilon = |a-b|/2$. Тогда пересечение $O_{\varepsilon}(a) \cap O_{\varepsilon}(a) = \emptyset$. Предположим противное. Тогда $\exists c \in O_{\varepsilon}(a) \cap O_{\varepsilon}(a)$, и справедливы неравенства $|c-a| < \varepsilon$, $|c-b| < \varepsilon$. В силу неравенства треугольника $|a-b| \leq |a-c| + |c-b| < \varepsilon + \varepsilon = 2\varepsilon = |a-b|$. Получаем, что |a-b| < |a-b| — противоречие. Теорема доказана.

4.2 Определение предела числовой последовательности

Определение предела числовой последовательности является важнейшим понятием математического анализа и требует хорошего осознания. Без знания и глубокого понимания этого понятия невозможно понять определения предела функции в точке, производной и интеграла.

Начнем с примера. Рассмотрим последовательность

$$(1, 1/2, 1/3, \ldots, 1/n, \ldots).$$

Возьмем маленькую окрестность $O_{\varepsilon}(0)$ точки 0, например, пусть $\varepsilon=10^{-6}$. Мы видим, что первые члены этой последовательности не лежат в $O_{\varepsilon}(0)$, однако, начиная с номера 1000001, все члены последовательности находятся в этой окрестности. Число ε можно взять другим, можно его уменьшить, но все равно все члены последовательности лежат в $O_{\varepsilon}(0)$, начиная с некоторого номера. Приведем примеры. Если $\varepsilon=10^{-9}$, то $x_n\in O_{\varepsilon}(0)$ при $n\geq 10^9+1$. Если $\varepsilon=10^{-k}$, $k\in\mathbb{N}$ то $x_n\in O_{\varepsilon}(0)$ при

 $n \geq 10^k + 1$. Наконец, для произвольного $\varepsilon > 0$ имеем $x_n \in O_{\varepsilon}(0)$ при $n \geq N$, где N — любое натуральное число, большее $1/\varepsilon$. Таким образом, последовательность x_n неограниченно приближается к точке 0 по мере возрастания номеров n.

Теперь дадим определение предела последовательности.

Определение. Пусть (x_n) — числовая последовательность и точка $a \in \mathbb{R}$. Говорят, что последовательность (x_n) сходится к a или предел последовательности (x_n) равен a, если для любого $\varepsilon > 0$ существует номер $N \in \mathbb{N}$ такой, что для любого $n \geq N$ выполняется неравенство $|x_n - a| < \varepsilon$, т. е. $x_n \in O_{\varepsilon}(a)$.

Замечание. Номер N определяется не единственным образом. Ясно, что если существует N такое, что для любого $n \geq N$ выполняется неравенство $|x_n - a| < \varepsilon$ и натуральное число M > N, то для любого $n \geq M$ также выполняется это неравенство. Отсюда следует, что если множество \mathcal{N} таких номеров N непусто, то в \mathcal{N} существует наименьший элемент $N^* = N^*(\varepsilon)$ и $\mathcal{N} = \{N^*, N^* + 1, N^* + 2, \ldots\}$. Нетрудно также показать, что если $0 < \varepsilon_1 < \varepsilon_2$, то $N^*(\varepsilon_1) \geq N^*(\varepsilon_2)$. Иногда этот факт описывают словами, говоря, что чем меньше ε , тем труднее выбрать номер N^* . Отметим также, что во многих доказательствах ниже в качестве числа $N = N(\varepsilon)$ берется какой-нибудь из элементов бесконечного множества \mathcal{N} , не обязательно наименьший, т. е. $N^*(\varepsilon)$.

Если предел последовательности (x_n) равен a, то говорят также, что $nocnedoвameльность <math>(x_n)$ cxodumcs κ a и пишут $\lim_{n\to\infty} x_n = a$ или $x_n \to a$, $n \to \infty$.

Примеры. 1) Пусть $x_n = 1/n^2$. Покажем, что $x_n \to 0$, $n \to \infty$. Для этого покажем, что $|1/n^2 - 0| = 1/n^2 < \varepsilon$ при $n \ge N(\varepsilon)$ для некоторого $N(\varepsilon)$. Множество решений неравенства $1/n^2 < \varepsilon$ — это объединение двух промежутков $(-\infty; -1/\sqrt{\varepsilon})$ и $(1/\sqrt{\varepsilon}; +\infty,)$. Поскольку это множество содержит бесконечный промежуток вида $(a; +\infty)$, то искомое $N(\varepsilon)$ существует. В качестве $N(\varepsilon)$ можно взять любое натуральное число, большее $1/\sqrt{\varepsilon}$, например, $[1/\sqrt{\varepsilon}] + 1$. Здесь [x] означает целую часть числа x, т. е. наибольшее целое число, не превосходящее x.

2) Пусть $x_n=1/a^n,\ a>1.$ Покажем, что $x_n\to 0,\ n\to \infty.$ Имеем $\left|\frac{1}{a^n}-0\right|=\frac{1}{a^n}<\varepsilon\Longleftrightarrow a^n>\frac{1}{\varepsilon}\Longleftrightarrow n>\log_a\frac{1}{\varepsilon},$

так как a > 1. Следовательно,

$$\left| \frac{1}{a^n} - 0 \right| = \frac{1}{a^n} < \varepsilon$$

при $n \geq N(\varepsilon)$, где $N(\varepsilon) = [\log_a \frac{1}{\varepsilon}] + 1$, если $\varepsilon < 1$. При $\varepsilon \geq 1$ можно положить $N(\varepsilon) = 1$.

4.3 Простейшие свойства пределов последовательностей

Теорема 1 (единственность предела). Если числовая последовательность сходится и к точке a, и к точке b, то a = b.

Доказательство. Предположим противное, т. е. что

$$\lim_{n \to \infty} x_n = a, \quad \lim_{n \to \infty} x_n = b,$$

но $a \neq b$. Выберем ε настолько малым, что $O_{\varepsilon}(a) \cap O_{\varepsilon}(b) = \emptyset$. Так как $x_n \to a$, то $\exists N' \in \mathbb{N} \colon x_n \in O_{\varepsilon}(a)$ при $n \geq N'$. Аналогично, так как $x_n \to b$, то $\exists N'' \in \mathbb{N} \colon x_n \in O_{\varepsilon}(b)$ при $n \geq N''$. Пусть $N = \max(N', N'')$. Если $n \geq N$, то $n \geq N'$ и $n \geq N''$, значит, $x_n \in O_{\varepsilon}(a) \cap O_{\varepsilon}(a)$. Это противоречит тому, что пересечение $O_{\varepsilon}(a) \cap O_{\varepsilon}(a)$ пусто. Теорема доказана.

Теорема 2. Если последовательность x_n сходится к некоторому пределу a, то она ограничена.

Доказательство. Пусть $(x_n) \to a, n \to \infty$. Выберем $\varepsilon = 1$. По определению предела последовательности существует номер N_1 такой, что $\forall n \geq N_1$ выполняется неравенство $|x_n - a| < 1$. Тогда

$$|x_n| \le |x_n - a| + |a| \le |a| + 1, \quad n \ge N_1.$$

Пусть C — максимальное из чисел $|a|+1, |x_1|, |x_2|\dots, |x_{N_1}|$. Тогда $|x_n| \leq C, n \geq 1$. Теорема доказана.

Теорема 3. Если последовательность $x_n \to a$, то любая ее подпоследовательность x_{n_k} сходится κ a.

Докажите самостоятельно.

Теорема 4. Если из любой подпоследовательности (x_{n_k}) последовательности (x_n) можно выделить подпоследовательность $(x_{n_{k_j}})$, сходящуюся к точке a, то и вся последовательность (x_n) сходится κ a.

Доказательство. Предположим противное. Тогда неверно, что $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \colon \forall n \geq N \; (|x_n - a| < \varepsilon) \;$. Значит, $\exists \varepsilon > 0 \colon \forall N \in \mathbb{N} \; \exists n \geq N \; (|x_n - a| \geq \varepsilon) \;$. Пусть N = 1. Тогда $\exists n_1 \geq 1 \colon (|x_{n_1} - a| \geq \varepsilon) \;$. Пусть $N = n_1 + 1$. Тогда $\exists n_2 \geq n_1 + 1 \colon (|x_{n_2} - a| \geq \varepsilon) \;$. По индукции строим последовательность $n_k \geq n_{k-1} + 1 \colon (|x_{n_k} - a| \geq \varepsilon) \;$. Таким образом, мы построили подпоследовательность (x_{n_k}) , удовлетворяющую условию: все ее члены лежат вне $O_{\varepsilon}(a)$. Поэтому никакая ее подпоследовательность $(x_{n_{k_i}})$ не может сходиться к a. Теорема доказана.

Упражнение. Запишем определение предела последовательности с использованием кванторов:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \ge N \ |x_n - a| < \varepsilon.$$

Что получится, если изменить некоторые из кванторов \forall на \exists , а \exists — на \forall ? Что получится, если заменить знак < на \geq ? Рассмотрите все возможные варианты расстановки кванторов и знаков неравенства (всего возможно 16 различных вариантов). Что означают эти варианты? Пример одного из возможных случаев:

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} : \ \exists n \ge N \ |x_n - a| \ge \varepsilon.$$

4.4 Принцип стягивающихся отрезков

Теорема. $\Pi ycmb$

$$[a_1;b_1]\supset [a_2;b_2]\supset\cdots\supset [a_n;b_n]\supset\cdots$$

— последовательность вложенных друг в друга отрезков.

Рис. 23.

Если их длины $b_n - a_n \to 0$ при $n \to \infty$, то существует единственная точка c, принадлежащая всем отрезкам, m. e.

$$\bigcap_{n=1}^{\infty} [a_n; b_n] = \{c\}.$$

Доказательство. 1) Существование с. Имеем

$$a_1 \le a_2 \le a_3 \le \dots \le a_n \le \dots$$

$$b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_n \geq \cdots$$
.

Рассмотрим множества $A = \bigcup_{n=1}^{\infty} \{a_n\}, \ B = \bigcup_{n=1}^{\infty} \{b_n\}.$ Для любых $a_k \in A, \ b_l \in B$ имеем неравенство $a_k \leq b_l$. Действительно, выберем наибольшее из чисел $k, \ l$. Пусть, например, $k \leq l$. тогда $a_k \leq b_k \leq b_l$. По аксиоме 5') модели числовой прямой существует точка $c \in \mathbb{R}$ такая, что для любых $k, \ l \in \mathbb{N}$ имеет место неравенство $a_k \leq c \leq b_l$. В частности, для любого $k \in \mathbb{N}$ ($a_k \leq c \leq b_k$). Значит точка c принадлежит всем отрезкам $[a_k, b_k]$.

2) Единственность c. Предположим, что таких точек две, и они между собой не совпадают, т. е. $c, c' \in \bigcap_{n=1}^{\infty} [a_n; b_n], c \neq c'$. Тогда отрезок с концами c, c' содержится в отрезке $[a_n; b_n]$ для всех n. Значит, $\delta = |c - c'| \leq b_n - a_n \ \forall n \in \mathbb{N}$.

Пусть $\varepsilon=\delta/2$. По определению предела для этого ε существует номер N такой, что при $n\geq N$ выполняется неравенство $b_n-a_n<\varepsilon$. Тогда при $n\geq N$

$$\delta \le b_n - a_n < \varepsilon = \delta/2,$$

т. е. $\delta < \delta/2$. Это противоречит тому, что $\delta > 0$. Теорема доказана.

Второе доказательство несчетности \mathbb{R} . Применим принцип стягивающихся отрезков для обоснования другого доказательства несчетности \mathbb{R} . Достаточно доказать, что [0;1] — несчетное множество. Предположим противное. Тогда точки [0;1] можно занумеровать, т. е. представить [0;1] в виде $[0;1]=\{a_1,a_2,a_3,\ldots,a_n,\ldots\}$. Разобьем [0;1] на три части [0;1/3], [1/3;2/3] и [2/3;1]. Существует по крайней мере один

из этих отрезков, который не содержит точки a_1 . Обозначим его через $[c_1;d_1]$. Разобьем это отрезок на три равные части и выберем ту из них, которая не содержит точки a_2 . Обозначим эту часть через $[c_2;d_2]$. Продолжая этот процесс по индукции построим последовательность отрезков такую, что $[c_n;d_n]\subset [c_{n-1};d_{n-1}],\ a_n\not\in [c_n;d_n]$ и $d_n-c_n\to 0,\ n\to\infty$.

По принципу стягивающихся отрезков существует точка $x \in \bigcap_{n=1}^{\infty} [c_n;d_n]$. Ясно, что $x \in [0;1]$. Значит, существует такое n, что $x = a_n$. С другой стороны, по построению $a_n \notin [c_n;d_n]$. Это противоречит тому, что $a_n = x$ и $x \in [c_n;d_n]$. Несчетность $\mathbb R$ доказана.

4.5 Теорема Больцано-Вейерштрасса

По теореме 2 о пределе последовательностей любая сходящаяся последовательность ограничена. Обратное неверно: существуют ограниченные последовательности, которые не сходятся.

Пример. Последовательность $x_n = (-1)^n$, $n \in \mathbb{N}$, ограничена, т. к. $|x_n| \le 1$, $n \ge 1$. Однако x_n не сходится, так как у нее существуют подпоследовательности, сходящиеся к различным пределам $(x_{2n} \to 1, x_{2n-1} \to -1)$.

Тем не менее, справедлива следующая

Теорема Больцано-Вейерштрасса. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство. Пусть x_n — ограниченная последовательность. Тогда существует константа C такая, что $|x_n| \leq C$, $n \geq 1$. Значит, $\forall n \geq 1$ ($x_n \in \Delta_1$), где $\Delta_1 = [-C;C]$). Разобьем Δ_1 на две равные отрезка. По крайней мере один из этих отрезков содержит бесконечное число членов последовательности x_n . Обозначим этот отрезок через Δ_2 (если оба отрезка содержат бесконечное число членов x_n , то в качестве Δ_2 берем любой из отрезков). Отрезок Δ_2 разбиваем точно так же на два равных отрезка, из которых выбираем тот, который содержит бесконечное число членов последовательности. Обозначим его через Δ_3 . Продолжая этот процесс по индукции строим последовательность вложенных отрезков $\Delta_1 \supset \Delta_2 \supset \cdots \supset \Delta_n \supset \cdots$ таких, что каждый отрезок Δ_n содержит бесконечное число членов x_n . Длины отрезков Δ_n равны $l(\Delta_n) = C/2^{n-2}$.

При $n \to \infty$ $l(\Delta_n) \to 0$ (докажите это, исходя из определения предела последовательности!). По принципу стягивающихся отрезков существует точка $a \in \bigcap_{n=1}^{\infty} \Delta_n$.

5 Топология вещественной прямой

Граница множества, открытые и замкнутые множества, внутренность и замыкание

При рассмотрении различных множеств на прямой $\mathbb R$ важную роль играет понятие границы множества. Граница множества A разбивает $\mathbb R$ на две части — внутренность A и внешность A. К внутренности относятся все точки A, не являющиеся граничными. Внешность A — это все те точки из $\mathbb R$, которые не являются ни граничными, ни внутренними. Граница множества A делится на два подмножества — множество граничных точек, которые принадлежат множеству A, и множество граничных точек, которые не принадлежат A. Одно из этих множеств может оказаться пустым. Если все граничные точки A принадлежат множеству A, то множество A называется замкнутым, если же ни одна граничная точка A не принадлежит A, то A называется открытым. Таким образом, все множества на прямой делятся на три типа: замкнутые, открытые и множества, которые не являются ни открытыми, ни замкнутыми.

Заметьте, что мы до сих пор не дали строгого определения границы. Для того, чтобы лучше понять это определение, представим себе множество A на диаграмме Венна (в качестве универсума удобно взять не

прямоугольник, а всю плоскость) и попытаемся провести географическую интерпретацию. Будем представлять A как некоторую страну на географической карте, а дополнение A^c — как территорию остальных стран (чужая территория). По аналогии со случаем вещественной прямой можно ввести понятие ε -окрестности $O_{\varepsilon}(a)$ точки a на диаграмме (карте). По определению, это круг с центром в точке a радиуса ε . (Как можно будет убедиться далее, это определение имеет строгий математический смысл!) Какая же точка a на карте является граничной точкой множества (страны) A? Нетрудно сообразить, что в любой окрестности граничной точки a содержатся как точки страны A (своей территории), так и точки из A^c (чужой территории), т. е.

$$\forall \varepsilon > 0 \quad O_{\varepsilon}(a) \cap A \neq \emptyset \text{ if } O_{\varepsilon}(a) \cap A^{c} \neq \emptyset. \tag{1}$$

Рис. 24.

Утверждение "a — не граничная точка множества A" означает, что $\exists \varepsilon > 0 \colon O_{\varepsilon}(a) \cap A = \emptyset$ или $O_{\varepsilon}(a) \cap A^c = \emptyset$. Если $\exists \varepsilon > 0 \colon O_{\varepsilon}(a) \cap A = \emptyset$, то $O_{\varepsilon}(a) \subset A^c$. В этом случае ε -окрестность точки a состоит из точек "чужой" территории. Такая точка называется внешней. Если же $\exists \varepsilon > 0 \colon O_{\varepsilon}(a) \cap A^c = \emptyset$, то $O_{\varepsilon}(a) \subset A$. В этом случае ε -окрестность точки a состоит из точек своей территории. Такие точки называется внутренними.

На рис. 24 точка a является граничной, точка b внутренней, а точка c — внешней.

Теперь можно дать строгие определения для множеств **на вещественной прямой.**

Пусть $A \subset \mathbb{R}$. Точка $a \in A$ называется граничной точкой множества A, если имеет место (1).

Точка a называется внутренней точкой множества A, если $\exists \varepsilon > 0 \colon O_{\varepsilon}(a) \subset A$, и внешней точкой A, если $\exists \varepsilon > 0 \colon O_{\varepsilon}(a) \subset A^{c}$.

Множество граничных точек A называется границей множества A и обозначается A^{Γ} или ∂A . Множество внутренних точек A называется внутренностью A и обозначается A° .

Упражнения. 1) Доказать, что $A^{\Gamma} = (A^c)^{\Gamma}$.

2) Доказать, что $\mathbb{R} = A^{\Gamma} \cup A^{\circ} \cup (A^{c})^{\circ}$. Из каких точек состоит $(A^{c})^{\circ}$?

Множество A называется $\mathit{открытым}$, если оно не содержит ни одной свой граничной точки:

$$A$$
 открыто $\Leftrightarrow A \cap A^{\Gamma} = \emptyset \Leftrightarrow A = A^{\circ}$.

Множество A называется $\mathit{замкнутым},$ если оно содержит все свои граничные точки, т. е. $A^{\Gamma} \subset A$.

Примеры. 1) Множество $\mathbb R$ является одновременно открытым и замкнутым, так как $\mathbb R^\Gamma=\emptyset$.

- 2) Пустое множество \emptyset является одновременно открытым и замкнутым, так как $\emptyset^{\Gamma} = \emptyset$.
- 3) Отрезок [a;b] (a < b) является замкнутым множеством, т. к. его граница $[a;b]^\Gamma = \{a,b\} \subset [a;b].$
- 4) Интервал (a;b) (a < b) является открытым множеством, т. к. его граница $(a;b)^{\Gamma} = \{a,b\}$ не пересекается с (a;b).
- 5) Числовые промежутки [a;b), (a;b] не являются ни открытыми, ни замкнутыми, так как их граница $\{a,b\}$ пересекается и с ними, и с их дополнениями.

Упражение. Объясните, почему кроме \mathbb{R} и \emptyset на прямой не существует множеств, которые одновременно являются открытыми и замкнутыми.

Замыканием множества $A \subset \mathbb{R}$ называется множество $A \cup A^{\Gamma}$. Замыкание A обозначается \overline{A} или A^- . Из определений вытекает, что $a \in \overline{A} \Leftrightarrow \forall \varepsilon > 0 \ (O_{\varepsilon}(a) \cap A \neq \emptyset)$. Точки множества \overline{A} называются точками прикосновения множества A. Ясно, что $A \subset A \cup A^{\Gamma} = \overline{A}$.

Теорема. Следующие условия эквивалентни:

- 1) A замкнуто;
- $2) A = \overline{A};$
- 3) A^c omkpumo.

Доказательство. 1) \Rightarrow 2). Множество A замкнуто $\Rightarrow \overline{A} = A \cup A^{\Gamma} \subset A \cup A = A$, следовательно, $\overline{A} \subset A$. Так как всегда $A \subset \overline{A}$, то $\overline{A} = A$.

- $2)\Rightarrow 1)$. Пусть $A=\overline{A}=A\cup A^{\Gamma}$. Тогда $A^{\Gamma}\subset \overline{A}=A$, т. е. $A^{\Gamma}\subset A$. Значит, A замкнуто.
- $1)\Rightarrow 3)$. Пусть A- замкнутое множество, т. е. $A^{\Gamma}\subset A$. Докажем, что A^c открыто. Рассмотрим любую точку a множества A^c . Так как $A^{\Gamma}\subset A$, то $A^c\subset (A^{\Gamma})^c$, значит, $a\in (A^{\Gamma})^c$, т. е. $a\not\in A^{\Gamma}$. Но $A^{\Gamma}=(A^c)^{\Gamma}$, поэтому $a\not\in (A^c)^{\Gamma}$. Итак, ни одна точка a множества A^c не является его граничной точкой. Значит, A^c- открытое множество.
- $3)\Rightarrow 1)$. Пусть A^c открыто. Тогда множество A^c не содержит ни одной граничной точки, т. е. $(A^c)^\Gamma\cap A^c=\emptyset$. Значит $(A^c)^\Gamma\subset A$. Но $(A^c)^\Gamma=A^\Gamma$, поэтому $A^\Gamma\subset A$. Это означает, что A замкнуто. Теорема доказана.

5.2 Свойства открытых множеств

Теорема 1. Если $(A_i)_{i \in I}$ — семейство открытых множеств в \mathbb{R} , то их объединение $\bigcup_{i \in I} A_i$ также открыто.

Доказательство. Пусть $a \in \bigcup_{i \in I} A_i$. Докажем, что a — внутренняя точка множества $\bigcup_{i \in I} A_i$. Так как $a \in \bigcup_{i \in I} A_i$, то $\exists j \in I : a \in A_j$. Множество A_j открыто, поэтому a — внутренняя точка множества A_j , т. е. $\exists \varepsilon > 0$ такое, что $O_{\varepsilon}(a) \subset A_j$. Значит, $O_{\varepsilon}(a) \subset \bigcup_{i \in I} A_i$. Таким образом, a — внутренняя точка множества $\bigcup_{i \in I} A_i$. Теорема доказана.

Замечание. Пересечение бесконечного семейства открытых множеств может не быть открытым. Например, пересечение

$$\bigcap_{n=1}^{\infty} \left(-1 - \frac{1}{n}; 1 + \frac{1}{n} \right) = [-1; 1]$$

не открыто, хотя все интервалы $\left(-1-\frac{1}{n};1+\frac{1}{n}\right)$ открыты. Однако для конечных семейств справедлива

Теорема 2. Если множества A_1, A_2, \dots, A_n открыты, то $\bigcap_{i=1}^n A_i$ — открытое множество.

Доказательство. Пусть точка $a \in \bigcap_{i=1}^n A_i$. Тогда $\forall i=1,\ldots,n \ (a \in A_i)$. Так как множества A_i открыты, то $\forall i=1,\ldots,n \ \exists \varepsilon_i>0$ такое, что $O_{\varepsilon_i}(a) \subset A_i$. Пусть $\varepsilon = \min\{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\}$. Тогда $\varepsilon>0$ и так как $\varepsilon \leq \varepsilon_i$, то $O_{\varepsilon}(a) \subset O_{\varepsilon_i}(a) \subset A_i \ \forall i=1,\ldots,n$. Следовательно, $O_{\varepsilon}(a) \subset \bigcap_{i=1}^n A_i$, откуда следует, что a — внутренняя точка множества $\bigcap_{i=1}^n A_i$. Таким образом, $\bigcap_{i=1}^n A_i$ открыто, и теорема доказана.

Отметим без доказательства следующую теорему о структуре открытых множеств на числовой прямой.

Теорема 3. Пусть A — непустое открытое множество в \mathbb{R} . Тогда существует не более чем счетное число попарно непересекающихся интервалов A_i , $i \in I$ (ограниченных или неограниченных) таких, что $A = \bigcup_{i \in I} A_i$.

5.3 Свойства замкнутых множеств

Теорема 1. Если $(A_i)_{i \in I}$ — семейство замкнутых множеств в \mathbb{R} , то их пересечение $\bigcap_{i \in I} A_i$ также замкнуто.

Доказательство. Достаточно доказать, что дополнение множества $\bigcap_{i\in I}A_i$ открыто. В силу законов двойственности $\left(\bigcap_{i\in I}A_i\right)^c=\bigcup_{i\in I}A_i^c$. Множества A_i^c открыты, так как A_i замкнуты. Значит, множество $\bigcup_{i\in I}A_i^c$ открыто по теореме 1 предыдущего пункта. Теорема доказана.

Замечание. Объединение произвольного семейства замкнутых множеств не обязано быть замкнутым. Например,

$$\bigcup_{n=2}^{\infty} \left[-1 + \frac{1}{n}; 1 - \frac{1}{n} \right] = (-1; 1)$$

не является замкнутым множеством, хотя все множества $[-1+\frac{1}{n}\,;1-\frac{1}{n}]$ замкнуты.

Теорема 2. Если множества $A_1, A_2, ..., A_n$ — замкнутые множества, то $\bigcup_{i=1}^n A_i$ — замкнутое множество.

Доказательство. В силу закона двойственности де Моргана для семейств $\left(\bigcup_{i=1}^n A_i\right)^c = \bigcap_{i=1}^n A_i^c$. Так как множества A_i^c открыты, то по теореме 2 об открытых множествах $\bigcap_{i=1}^n A_i^c$ — открытое множество. Значит, множество $\bigcup_{i=1}^n A_i$ замкнуто. Теорема доказана.

5.4 Характеризация точек прикосновения и предельных точек через последовательности

Точка прикосновения множества A — это точка из замыкания $\overline{A} = A \cup A^{\Gamma}$. Другими словами, точка a является точкой прикосновения множества A тогда и только тогда, когда $\forall \varepsilon > 0$ пересечение $O_{\varepsilon}(a) \cap A$ непусто.

Теорема 1. Точка а является точкой прикосновения множества A тогда и только тогда, когда существует последовательность x_n точек множества A, сходящаяся к точке a.

Доказательство. Heoбxoдимость. Пусть a — точка прикосновения множества A. Тогда $\forall \varepsilon > 0$ $(O_{\varepsilon}(a) \cap A \neq \emptyset)$. Пусть $\varepsilon = 1/n$. Тогда $O_{1/n}(a) \cap A \neq \emptyset$. Выберем $x_n \in O_{1/n}(a) \cap A$. Последовательность x_n лежит в A и $|x_n - a| < 1/n$. Значит, $x_n \to a$ (расписать подробнее, почему).

 \mathcal{A} остаточность. Пусть x_n — последовательность элементов из множества A, которая сходится к точке a. Докажем, что a — точка прикосновения множества A. По определению предела $\forall \varepsilon > 0 \ \exists N_{\varepsilon}$: $\forall n \geq N_{\varepsilon} \ (|x_n - a| < \varepsilon)$. Пусть n — произвольный фиксированный номер, больший N_{ε} . Тогда $x_n \in A$ и $x_n \in O_{\varepsilon}(a)$, откуда следует, что $O_{\varepsilon}(a) \cap A \neq \emptyset$. Теорема доказана.

Точка a называется изолированной точкой множества A, если $\exists \varepsilon > 0 \colon (O_{\varepsilon}(a) \cap A = \{a\})$. Очевидно, что любая изолированная точка A принадлежит множеству A.

Точка a называется npedenbhoй точкой множества <math>A, если $\forall \varepsilon > 0$ в ε -окрестности точки a содержится по крайней мере одна точка, отличная от a, т. е. $\overset{\lor}{O}_{\varepsilon}(a) \cap A \neq \emptyset$, где $\overset{\lor}{O}_{\varepsilon}(a) = O_{\varepsilon}(a) \setminus \{a\} - npoкoлomas$ окрестность точки a. Отметим, что предельная точка множества не обязана принадлежать этому множеству.

Примеры.

- 1) Любая точка множества натуральных чисел N— изолированная.
- 2) Пусть A=(a;b). Тогда $\overline{A}=[a;b]$. Любая точка из \overline{A} является предельной, причем точки a и b не принадлежат A.

Упражнение. Приведите несколько примеров множеств, которые содержат и изолированные, и предельные точки.

Из определений следует, что множество точек прикосновения является объединением двух непересекающихся множеств — множества изолированных и множества предельных точек.

Теорема 2. Точка а является предельной точкой множества A тогда и только тогда, когда существует последовательность попарно различных точек множества A, сходящаяся к точке a.

Доказательство. Необходимость. Пусть a является предельной точкой множества A. Положим $\varepsilon=1$. По определению $\exists x_1 \in A \cap O_\varepsilon(a)$ такое, что $x_1 \neq a$. Выберем положительное $\varepsilon_1 < 1/2$ настолько малым, что $x_1 \notin O_{\varepsilon_1}(a)$. Тогда $\exists x_2 \in A \cap O_{\varepsilon_1}(a)$ такое, что $x_2 \neq a$. Выберем положительное $\varepsilon_2 < 1/3$ таким, чтобы $x_2 \notin O_{\varepsilon_2}(a)$. Тогда найдем $\exists x_3 \in A \cap O_{\varepsilon_2}(a)$ такое, что $x_3 \neq a$. Продолжая этот процесс по индукции построим последовательность x_n , удовлетворяющую условиям: $x_n \in A \cap O_{\varepsilon_{n-1}}(a)$, x_1 , $x_2, \ldots, x_{n-1} \notin O_{\varepsilon_{n-1}}(a)$. Значит, $x_n \to a$, $x_i \neq x_j$, $i \neq j$, и необходимость доказана.

Достаточность. Пусть существует последовательность x_n из попарно различных точек множества A такая, что $x_n \to a, n \to \infty$. Тогда $\forall \varepsilon > 0$ окрестность $O_{\varepsilon}(a)$ содержит бесконечное число членов этой последовательности. Значит, $\exists x_n \in A \cap \overset{\circ}{O}_{\varepsilon}(a)$.

Из теоремы 2 и ее доказательства вытекает

Следствие 1. Точка а является предельной точкой множества A тогда и только тогда, когда в любой окрестности точки A содержится бесконечное число точек множества A.

Напомним, что A замкнуто $\Leftrightarrow A = \overline{A}$. Из этого факта сразу выводится

Следствие 2. *Множество замкнуто тогда и только тогда, когда* оно содержит все свои предельные точки.

Доказательство. Множество \overline{A} состоит из изолированных и предельных точек. Так как изолированные точки всегда принадлежат A, $A = \overline{A} \Leftrightarrow$ любая предельная точка принадлежит множеству A.

Следствие 3. Множеество A замкнуто тогда и только тогда, когда предел любой сходящейся последовательности элементов множества A принадлежит A.

Доказательство. По теореме 1 точка $a \in \overline{A} \Leftrightarrow \exists$ последовательность x_n элементов множества A, которая сходится к a. Так как замкнутость A равносильна равенству $A = \overline{A}$, то отсюда следует утверждение следствия 3.

Следствие 4. Непустое замкнутое ограниченное сверху (снизу) множество A содержит свою точную верхнюю (нижнюю грань).

Доказательство. Пусть, к примеру, множество A ограничено сверху. Если $a=\sup A$, то по характеристическому свойству точной верхней грани $\forall \varepsilon>0 \ \exists x\in A: \ (x>a-\varepsilon)$. Тогда $a-\varepsilon< x\leq a$, следовательно, $x\in O_{\varepsilon}(a)\cap A$. Итак, $\forall \varepsilon>0 \ (O_{\varepsilon}(A)\cap A\neq\emptyset)$, откуда $a\in \overline{A}=A$. Следствие доказано.

Упражнение. Приведите подробное доказательство следствия 4 для случая, когда множество ограничено снизу.

5.5 Компактные множества на числовой прямой

Определение. *Мноэкество* $A \subset \mathbb{R}$ называется *компактным*, если для любой последовательности x_n точек множества A существует подпоследовательность x_{n_k} , сходящаяся к некоторому элементу из A.

Теорема 1. Множество A компактно тогда и только тогда, когда оно ограничено и замкнуто.

Доказательство. Необходимость. Пусть A компактно. Докажем, что оно ограничено. Предположим, противное. Тогда A не ограничено сверху

или снизу. Предположим для определенности, что A не ограничено сверху. Тогда $\forall n \in \mathbb{N} \ \exists x_n \in A$ такое, что $x_n > n$. Значит, последовательность x_n не ограничена и любая ее подпоследовательность x_{n_k} также не ограничена. Поэтому x_{n_k} не может сходиться ни к какому конечному пределу. Это противоречит компактности A.

Теперь установим, что A замкнуто, т. е. что любая точка из \overline{A} лежит в A. Если $a \in \overline{A}$, то по теореме 1 существует последовательность $x_n \in A$, которая сходится к a. Так как A компактно, то из последовательности x_n можно выделить подпоследовательность x_{n_k} , сходящуюся к некоторому $b \in A$. Но предел подпоследовательности совпадает с пределом последовательности, поэтому a = b. Значит, $a \in A$.

Достаточность. Пусть A ограничено и замкнуто. Покажем, что A компактно. Пусть x_n — некоторая последовательность в A. Так как A ограничено, то x_n также ограничена. По теореме Больцано-Вейерштрасса существует подпоследовательность x_{n_k} , сходящаяся к некоторой точке $a \in \mathbb{R}$. Так как A замкнуто, то по следствию 3 предел последовательности x_{n_k} , лежащей в A, принадлежит множеству A. Итак, $a \in A$ и теорема доказана.

Следствие 1. $Ecnu\ A$ компактно и замкнутое множество $B\subset A$, то B компактно.

Следствие 2. *Непустое компактное множество содержит свои* точные верхнюю и нижнюю грани.

Следствие 3. Объединение конечного числа компактных множеств компактно.

Примеры. 1) Любой отрезок [a;b] ограничен и замкнут, поэтому компактен.

2) Конечное объединение отрезков $\cup_{i=1}^{n} [a_i; b_i]$ компактно.

Упражнение. Приведите еще несколько примеров компактных множеств в \mathbb{R} .

Пусть $X \subset \mathbb{R}$ и $X \subset \bigcup_{i \in I} U_i$. Тогда говорят, что семейство $(U_i)_{i \in I}$ образует $no\kappa pumue$ множества X. Если все U_i — открытые множества, то $no\kappa pumue$ называют $om\kappa pumuм$.

Если $X \subset \bigcup_{i \in I} U_i$, множество J является подмножеством I и $X \subset \bigcup_{i \in J} U_i$, то говорят, что покрытие $(U_i)_{i \in J}$ является $nodno\kappa pumuem$ покрытия $(U_i)_{i \in I}$.

Если $(U_i)_{i\in I}$ — покрытие X и множество I конечно, то говорят, что $(U_i)_{i\in I}$ — конечное покрытие X.

Теорема 2. Множество A компактно тогда и только тогда, когда из любого открытого покрытия множества A можно выделить конечное подпокрытие.

Доказательство. Необходимость. Пусть A компактно, тогда по теореме 1 множество A ограничено. Значит, существует отрезок [a;b] такой, что $A \subset [a;b]$.

Предположим противное, т. е. что существует открытое покрытие $(U_i)_{i\in I}$ множества A, которое не содержит конечного подпокрытия A. Разобъем [a;b] на две равные части [a;c] и [c;b]. Рассмотрим пересечения A с этими частями $A' = A \cap [a;c]$ и $A'' = A \cap [c;b]$. Семейство $(U_i)_{i\in I}$ образует покрытие обоих этих множеств и по крайней мере для одного из этих множеств из него нельзя выделить конечное подпокрытие.

Пусть, к примеру, для A' не существует конечного подпокрытия. Обозначим $\Delta_1=[a;c]$. Как и выше, разобъем отрезок Δ_1 на две равные части и выделим ту из них — Δ_2 , для которой не существует конечного подпокрытия множества $A\cap\Delta_2$. Продолжая этот процесс по индукции строим последовательность вложенных отрезков

$$\Delta_1 \supset \Delta_2 \supset \cdots \supset \Delta_n \supset \cdots$$
,

длина которых стремится к нулю, обладающих свойством: для любого $n \in \mathbb{N}$ из покрытия $(U_i)_{i \in I}$ множества $A \cap \Delta_n$ нельзя выделить конечного подпокрытия.

По принципу стягивающихся отрезков существует точка $x \in \bigcap_{n=1}^{\infty} \Delta_n$. Утверждается, что $x \in A$. Действительно, так как длины l_n отрезков Δ_n стремятся к нулю, то $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geq N \ (l_n < \varepsilon)$. Поскольку $x \in \Delta_n$, из последнего неравенства следует, что $\Delta_n \subset O_{\varepsilon}(x)$ $\forall n \geq N$. Так как отрезок Δ_n содержит точки множества A, то $\forall \varepsilon > 0$ $(A \cap O_{\varepsilon}(x) \neq \emptyset)$. Значит, x — точка прикосновения множества A, а так как A компактно, то по теореме 1 A замкнуто, следовательно $x \in A \subset \bigcup_{i \in I} U_i$.

Так как $x \in \bigcup_{i \in I} U_i$, то существует $j \in I$: $x \in U_j$. Множество U_j открыто, следовательно, $\exists \delta > 0 : O_\delta(x) \subset U_j$. Так как длины l_n отрезков Δ_n стремятся к нулю, то существует n такое, что $l_n < \delta$. Поскольку $x \in \Delta_n$, из последнего неравенства следует, что $\Delta_n \subset O_\delta(x) \subset U_j$. Следовательно часть A, лежащая в Δ_n , покрывается одним множеством U_j , т. е. допускает конечное подпокрытие — противоречие.

Для доказательства достаточности докажем лемму.

Лемма. Пусть $x_n - n$ оследовательность с попарно различными членами и $B = \{x_n \mid n \in \mathbb{N}\}$. Точка а является предельной точкой множества B тогда и только тогда, когда $\exists x_{n_k} \to a$.

Доказательство. Достаточность очевидна. Докажем необходимость. Пусть a — предельная точка B. Тогда существует последовательность попарно различных элементов y_k множества B, сходящаяся к a. Для любого k существует n=n(k) такое, что $y_k=x_{n(k)}$, при этом $k\neq l\Rightarrow n(k)\neq n(l)$. Пусть $n_1=n(1)$. Так как множество натуральных чисел, не превосходящих n_1 , конечно, то существует k_1 такое, что $n(k_1)>n(1)$. Положим $n_2=n(k_1)$, $n_2>n_1$. Аналогично для любого $j\in\mathbb{N}$ выбираем такие k_j , что $n_{j+1}=n(k_j)>n_j$. Тогда $x_{n_k}\to a$ и лемма доказана.

Продолжение доказательства теоремы 2. Достаточность. Предположим, что из любого открытого покрытия множества A можно выделить конечное подпокрытие, но A не компактно. Тогда существует последовательность x_n элементов множества A, никакая подпоследовательность которой не сходится ни к какой точке $a \in A$. Отсюда следует, что множество $B = \{x_n \mid n \in \mathbb{N}\}$ бесконечно, иначе существовала бы стационарная подпоследовательность a, a, a, \ldots последовательности (x_n) , сходящаяся к $a \in A$. Можно считать, что последовательность x_n состоит из попарно различных членов, так как повторяющиеся члены можно просто выкинуть. В силу доказанной леммы никакая точка множества A не является предельной точкой множества B. Значит, a либо изолированная точка B либо a не является точкой прикосновения B, т. е. $a \notin \overline{B}$.

В первом случае существует $O_{\varepsilon}(a)$, которая содержит только одну точку множества B, во втором — ни одной точки из B (ε зависит от a). Очевидно, что $A \subset \bigcup_{a \in A} O_{\varepsilon}(a)$. В силу компактности A это открытое покрытие содержит конечное подпокрытие, т. е. $A \subset \bigcup_{i=1}^n O_{\varepsilon}(a_i)$ для

некоторых точек $a_i \in A$. Так как $B \subset A$ и $A \subset \bigcup_{i=1}^n O_{\varepsilon}(a_i)$, то множество B покрывается конечным числом окрестностей $O_{\varepsilon}(a_i)$, каждая из которых содержит не более одной точки множества B. Значит, B содержит не более n точек — противоречие. Теорема доказана.

Теорема Кантора (обобщенный принцип стягивающихся отрезков). Пусть $A_1 \supset A_2 \supset A_3 \supset \cdots \supset A_n \supset \cdots -$ последовательность непустых компактных множеств. Тогда $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Доказательство. От противного. Предположим, что $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Тогда $(\bigcap_{n=1}^{\infty} A_n)^c = \bigcup_{n=1}^{\infty} A_n^c = \mathbb{R}$. Пусть $D = \bigcup_{n=2}^{\infty} A_n^c$. Тогда $A_1^c \cup D = \mathbb{R}$ и $A_1 = A_1 \cap \mathbb{R} = A_1 \cap (A_1^c \cup D) = (A_1 \cap A_1^c) \cup (A_1 \cap D) = A_1 \cap D$. Таким образом, $A_1 = A_1 \cap D$, откуда $A_1 \subset D$, т. е. $A_1 \subset \bigcup_{n=2}^{\infty} A_n^c$. Множества A_n замкнуты, поэтому A_n^c открыты. Из открытого покрытия $A_1 \subset \bigcup_{n=2}^{\infty} A_n^c$ компактного множества A_1 можно выделить конечное подпокрытие: $A_1 \subset \bigcup_{n=2}^N A_n^c$. Так как $A_2^c \subset A_3^c \subset \cdots \subset A_n^c \subset \cdots$, то $\bigcup_{n=2}^N A_n^c = A_N^c$. Таким образом, $A_1 \subset A_N^c$. Из этого вытекает, что $A_N = A_N \cap A_1 \subset A_N \cap A_N^c = \emptyset$, значит, $A_N = \emptyset$ — противоречие. Теорема Кантора доказана.

6 Свойства пределов числовых последовательностей

6.1 Теоремы о пределах числовых последовательностей

Предварительно докажем вспомогательное утверждение.

Лемма 1. Если $y_n \to b \neq 0$, то $\exists N : \forall n \geq N \ (|y_n| \geq |b/2|)$. В частности, $\exists N : \forall n \geq N \ (y_n \neq 0)$.

Доказательство. Возьмем $\varepsilon=|b/2|$. Из определения предела следует, что $\exists N: \, \forall n\geq N \, \, (|y_n-b|<\varepsilon)$. Тогда при $n\geq N$

$$|y_n| \ge |b| - |b - y_n| > |b| - |b/2| = |b/2|.$$

Лемма доказана.

Теорема 1. Пусть даны две числовые последовательности x_n , y_n и существуют пределы $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$. Тогда:

- 1) cywecmbyem $\lim_{n\to\infty}(x_n+y_n)=a+b$;
- 2) $cywecmeyem \lim_{n\to\infty} (x_n \cdot y_n) = a \cdot b;$

- 3) ecsu $y_n \neq 0$, $n \geq 1$ u $b \neq 0$, mo cywyecmsyem $\lim_{n \to \infty} (1/y_n) = 1/b$;
- 4) cywecmeyem $\lim_{n\to\infty} |x_n| = |a|$.

Доказательство. 1) В силу неравенства треугольника

$$|(x_n + y_n) - (a+b)| = |(x_n - a) + (y_n - b)| \le |x_n - a| + |y_n - b|.$$
 (1)

Фиксируем $\varepsilon > 0$. Так как $x_n \to a$, то $\exists N_1 \colon \forall n \ge N_1 \ (|x_n - a| < \varepsilon/2)$. Так как $y_n \to b$, то $\exists N_2 \colon \forall n \ge N_2 \ (|y_n - b| < \varepsilon/2)$. Пусть $N = \max\{N_1, N_2\}$. Если $n \ge N$, то $n \ge N_1$ и $n \ge N_2$ и тогда в силу (1)

$$|(x_n + y_n) - (a+b)| \le |x_n - a| + |y_n - b| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Значит, $\lim_{n\to\infty}(x_n+y_n)=a+b$.

2) Имеем

$$|x_n y_n - ab| = |x_n y_n - x_n b + x_n b - ab| = |x_n (y_n - b) + (x_n - a)b| \le$$

$$\le |x_n (y_n - b)| + |(x_n - a)b| = |x_n||y_n - b| + |x_n - a||b|.$$
(2)

Так как последовательность x_n сходится, то она ограничена, т. е. $\exists C>0\colon \forall n\geq 1\ (|x_n|\leq C)$. Можно считать, что $C\geq b$, иначе просто увеличим константу C. Фиксируем $\varepsilon>0$. Как и в при доказательстве 1), найдем номера N_1 и N_2 такие, что $|x_n-a|<\varepsilon/(2C)$ при $n\geq N_1$, $|y_n-b|<<\varepsilon/(2C)$ при $n\geq N_2$. Если $n\geq N=\max\{N_1,N_2\}$, то из неравенства (2) следует, что $|x_ny_n-ab|< C\cdot \varepsilon/(2C)+C\cdot \varepsilon/(2C)=\varepsilon$. Таким образом, $\lim_{n\to\infty}(x_n\cdot y_n)=a\cdot b$.

3) Фиксируем $\varepsilon>0$. Покажем, что $\exists N\colon \forall n\geq N\ |1/y_n-1/b|<\varepsilon$. Преобразуем

$$\left|\frac{1}{y_n} - \frac{1}{b}\right| = \frac{|y - b_n|}{|y_n||b|}.\tag{3}$$

Так как $y_n \to b \neq 0$, то в силу леммы 1 $\exists N_1 \colon \forall n \geq N_1 \ |y_n| \geq |b/2|$. Кроме того, по определению предела $\exists N_2 \colon \forall n \geq N_2 \ |y_n - b| < \varepsilon b^2/2$. Пусть $n \geq N = \max\{N_1, N_2\}$. Тогда из (3) следует, что

$$\left| \frac{1}{y_n} - \frac{1}{b} \right| < \frac{\varepsilon b^2 / 2}{|b/2||b|} = \varepsilon.$$

4) Утверждение сразу следует из оценки $||x_n| - |a|| \le |x_n - a|$. Теорема доказана.

Из теоремы 1 сразу вытекают

Следствие 1. Если $x_n \to a$, c = const, mo $c \cdot x_n \to c \cdot a$.

Следствие 2. Если $x_n \to a$, $y_n \to b$, $y_n \neq 0$, $n \geq 1$ и $b \neq 0$, то существует

 $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b} \,.$

Следствие 3. $Ecnu \ x_n \to a, \ y_n \to b, \ mo \ x_n - y_n \to a - b.$

Теорема 2 (переход к пределу в неравенствах). *Если* $x_n \le y_n$, $n \ge 1$ u $x_n \to a$, $y_n \to b$, mo $a \le b$.

Доказательство от противного. Предположим, что a>b. Возьмем $\varepsilon=(a-b)/2>0$. Тогда $\exists N_1:\ \forall n\geq N_1$

$$a - \varepsilon < x_n < a + \varepsilon; \tag{4}$$

 $\exists N_2: \forall n \geq N_2$

$$b - \varepsilon < y_n < b + \varepsilon. \tag{5}$$

Пусть $n \ge N = \max\{N_1, N_2\}$. Тогда имеют место оба неравенства (4) и (5), и $x_n > a - \varepsilon = b + \varepsilon > y_n$ — противоречие. Теорема 2 доказана.

Замечание. Если в условиях теоремы 2 $x_n < y_n$, $n \ge 1$, то возможна ситуация, когда $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$. Таким образом, строгое неравенство в пределе переходит в нестрогое!

$$x_n < y_n, \ n \ge 1 \implies \lim_{n \to \infty} x_n < \lim_{n \to \infty} y_n,$$

$$x_n < y_n, \ n \ge 1 \implies \lim_{n \to \infty} x_n \le \lim_{n \to \infty} y_n.$$

Пример: 0 < 1/n, но $\lim_{n \to \infty} 0 = 0 = \lim_{n \to \infty} (1/n)$.

Теорема 3 ("теорема о двух милиционерах"). Пусть $x_n \le y_n \le z_n$, $n \ge 1$. Если $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = a$, то существует $\lim_{n\to\infty} y_n = a$.

Доказательство. Фиксируем $\varepsilon > 1$. Тогда $\exists N_1: \forall n \geq N_1 \ (a - \varepsilon < < x_n < a + \varepsilon); \ \exists N_2: \ \forall n \geq N_2 \ (a - \varepsilon < z_n < a + \varepsilon)$. При $n \geq \max\{N_1, N_2\}$ имеем $a - \varepsilon < x_n \leq y_n \leq z_n < a + \varepsilon$. Следовательно, $a - \varepsilon < y_n < a + \varepsilon$ при $n \geq N$. Значит, $\lim_{n \to \infty} y_n = a$. Теорема доказана.

Замечание. Шутливое название теоремы вызвано тем, что "милиционеры" x_n и z_n ведут "задержанного" y_n , который находится между ними. Если оба милиционера придут в пункт a, то и задержанный придет также в a.

Теорема 4. Если последовательность x_n ограничена, а последовательность y_n стремится к нулю, то последовательность $(x_n \cdot y_n)$ также стремится к нулю.

Доказательство. По условию, существует C>0 такое, что $|x_n|\leq C$, $n\geq 1$. Тогда для любого n имеем $|x_n\cdot y_n|\leq C|y_n|$, т. е.

$$-C|y_n| \le x_n y_n \le C|y_n|.$$

Так как $y_n \to 0$, то $|y_n| \to 0$ и по теореме 1 $C|y_n| \to 0$, $-C|y_n| \to 0$. По теореме 3 $(x_n \cdot y_n) \to 0$, $n \to \infty$. Теорема 4 доказана.

Примеры. 1. Пусть $x_n = \sin n/n = \sin n \cdot (1/n)$. Так как $(1/n) \to 0$, $n \to \infty$, а $|\sin n| \le 1$, то по теореме $4 \lim_{n \to \infty} (\sin n/n) = 0$.

2. Пусть

$$x_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}.$$

Так как

$$\frac{n}{\sqrt{n^2 + n}} \le x_n \le \frac{n}{\sqrt{n^2 + 1}},$$

ТО

$$\frac{1}{\sqrt{1+(1/n)}} \le x_n \le 1.$$

При $n \to \infty$ имеем $\frac{1}{\sqrt{1+(1/n)}} \to 1$. По теореме 3 тогда $\lim_{n \to \infty} x_n = 1$.

6.2 Фундаментальные последовательности, критерий Коши

Определение. Последовательность x_n называется фундаментальной или последовательностью Коши, если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall m, n \geq N \ (|x_n - x_m| < \varepsilon).$

Иными словами, x_n фундаментальна, если расстояние между членами последовательности x_n и x_m стремится к нулю, когда номера n и m стремятся к бесконечности.

Лемма. Если последовательность x_n фундаментальна, то она ограничена.

Доказательство. Фиксируем $\varepsilon=1$. Тогда $\exists N\in\mathbb{N}: \forall m,\ n\geq N$ ($|x_n-x_m|<1$). Значит, при любых $n\geq N$ выполняется неравенство $|x_n-x_N|<1$, откуда $|x_n|\leq |x_n-x_N|+|x_N|<1+|x_N|,\ n\geq N$. Пусть $C=\max(|x_1|,|x_1|,\ldots,|x_{N-1}|,1+|x_N|)$. Тогда $|x_n|\leq C,\ n\geq 1$, т. е. последовательность x_n ограничена. Лемма доказана.

Одним из основных свойств последовательностей является следующая теорема, имеющая выдающееся значение.

Теорема (критерий Коши для последовательностей). 4ucловая последовательность x_n имеет предел в \mathbb{R} тогда и только тогда, когда x_n фундаментальна.

Доказательство. Необходимость. Пусть x_a сходится к некоторому пределу a. Фиксируем $\varepsilon>0$. Тогда $\exists N\in\mathbb{N}: \, \forall n\geq N \,\,\, (|x_n-a|<\varepsilon/2)$. Если $m,\,n\geq N,$ то в силу неравенства треугольника

$$|x_n - x_m| \le |x_n - a| + |a - x_m| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Итак, последовательность x_n фундаментальна.

Достаточность. Пусть x_n фундаментальна. Фиксируем $\varepsilon>0$. Тогда $\exists N_1$:

$$\forall m, \ n \ge N_1 \quad (|x_n - x_m| < \varepsilon/2). \tag{1}$$

В силу леммы последовательность x_n ограничена. По теореме Больцано-Вейерштрасса существует подпоследовательность x_{n_k} , которая сходится к некоторой точке a при $k \to \infty$. По определению предела $\exists N_2$:

$$\forall k \ge N_2 \quad |x_{n_k} - a| < \varepsilon/2. \tag{2}$$

Пусть $N=\max\{N_1,N_2\}$ и $n\geq N$. Выберем номер k настолько большим, чтобы $k\geq N\geq N_2$. Тогда $n_k\geq k\geq N_1$ и в силу (1) и (2) $|x_n-a|\leq |x_n-x_{n_k}|+|x_{n_k}-a|<\varepsilon/2+\varepsilon/2=\varepsilon$. Значит, $x_n\to a$ и теорема доказана.

6.3 Монотонные последовательности

Последовательность x_n называется монотонно возрастающей (убывающей), если

$$x_1 \le x_2 \le x_3 \le \dots \le x_n \le \dots \quad (x_1 \ge x_2 \ge x_3 \ge \dots \ge x_n \ge \dots).$$

Последовательность x_n называется строго монотонно возрастающей (убывающей), если

$$x_1 < x_2 < x_3 < \dots < x_n < \dots \quad (x_1 > x_2 > x_3 > \dots > x_n > \dots).$$

(Строго) монотонно возрастающие и монотонно убывающие *после- довательности* называются *(строго) монотонными*.

Теорема (существование предела монотонной последовательности). Монотонная последовательность сходится тогда и только тогда, когда она ограничена.

Доказательство. Необходимость очевидна. Докажем достаточность. Пусть x_n — ограниченная монотонная последовательность, для определенности возрастающая. Тогда x_n ограничена сверху, т. е. $\exists C>0$: $\forall n\geq 1\ (|x_n|\leq C)$. Рассмотрим множество $B=\{x_n|n\geq 1\}$. Множество B ограничено сверху, так как C — одна из его мажорант. Значит, существует $\sup B$ в \mathbb{R} . Обозначим этот супремум через b. Фиксируем $\varepsilon>0$. Согласно теореме о характеристическом свойстве супремума $\exists x_N\in B$ такое, что $x_N>b-\varepsilon$.

Если $n \geq N$, то $x_n \geq x_N > b - \varepsilon$. Кроме того, $x_n \in B \Rightarrow x_n \leq \sup B = b < b + \varepsilon$. Окончательно имеем $b - \varepsilon < x_n < b + \varepsilon$ при $n \geq N$. Значит, $x_n \to b$. Теорема доказана.

6.4 Число е

Предварительно напомним формулу бинома Ньютона

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^k a^{n-k} b^k + \dots + b^n,$$

или в сокращенном виде

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k,$$
 (1)

где $a, b \in \mathbb{R}, n \in \mathbb{N}$, числа C_n^k , называемые биномиальными коэффициентами, определяются по формулам

$$C_n^k = \frac{n!}{k!(n-k)!},$$

 $n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot n$ (n факториал) — произведение всех натуральных чисел от 1 до n (по определению 0! = 1).

Отметим, что из (1) следует неравенство

$$(1+x)^n \ge 1 + nx, \quad x \ge 0.$$
 (2)

Действительно, при $x \geq 0$

$$(1+x)^n = 1 + C_n^1 x + C_n^2 x^2 + \dots + x^n \ge 1 + C_n^1 x = 1 + nx.$$

Лемма. Последовательность

$$x_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

монотонно убывает и ограничена.

Доказательство. Имеем, с учетом (2),

$$\frac{x_n}{x_{n+1}} = \frac{(n+1)^{2n+3}}{n^{n+1}(n+2)^{n+2}} = \frac{n+1}{n+2} \cdot \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+1} =$$

$$= \frac{n+1}{n+2} \cdot \left(\frac{n^2+2n+1}{n^2+2n}\right)^{n+1} = \frac{n+1}{n+2} \cdot \left(1 + \frac{1}{n(n+2)}\right)^{n+1} \ge$$

$$\ge \frac{n+1}{n+2} \cdot \left(1 + \frac{n+1}{n(n+2)}\right) = \frac{n^3+4n^2+4n+1}{n^3+4n^2+4n} > 1.$$

Таким образом, $x_n > x_{n+1}$, $n \ge 1$, т. е. последовательность x_n монотонно убывает. Кроме того, очевидно, что $1 \le x_n \le x_1 = 4$, $n \ge 1$, т. е. последовательность x_n ограничена. Лемма доказана.

Из доказанной леммы и теоремы о существовании предела монотонной последовательности следует, что существует предел

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-1} = \lim_{n \to \infty} x_n.$$

Константа $e=2,71828\dots$ является основной константой высшей математики и играет такую же важную роль, как константа π в элементарной математике.

Замечание. Очень часто допускается следующая неточность. Поскольку $\lim_{n\to\infty} (1+1/n) = 1$, а $1^n = 1$, то ошибочно полагают, что

 $\lim_{n\to\infty} (1+1/n)^n = 1$. Подобные неточности встречаются при вычислении сходных пределов $\lim_{n\to\infty} a_n^{b_n}$, где $\lim_{n\to\infty} a_n = 1$. Из последнего равенства не следует, что $\lim_{n\to\infty} a_n^{b_n} = 1$. Существование и значение предела зависит не только от a_n , но и от b_n !

6.5 Пределы последовательностей в $\overline{\mathbb{R}}$

Пусть r > 0, $a \in \mathbb{R}$, тогда r-окрестностью точки a называется множество $O_r(a) = (a-r;a+r)$. Если $a = +\infty$, то ее r-окрестность

$$O_r(+\infty) := \{ x \in \overline{\mathbb{R}} \mid r < x \le +\infty \}.$$

$$r + \infty$$
Puc. 25

Если $a=-\infty$, то $O_r(-\infty):=\{x\in\overline{\mathbb{R}}\mid -\infty\leq x<-r\}$.

Рис. 26

Пусть $X \subset \overline{\mathbb{R}}$. Точка $a \in \overline{\mathbb{R}}$ называется npedenbhoй точкой <math>X в $\overline{\mathbb{R}}$, если $\forall r>0$ множество $O_r(a)$ содержит бесконечное число точек множества X. Ясно, что если $X \subset \mathbb{R}$ и точка $a \in \mathbb{R}$ является предельной точкой X в \mathbb{R} , то a является предельной точкой X и в $\overline{\mathbb{R}}$.

Примеры. 1) Множество $\mathbb N$ не имеет предельных точек в $\mathbb R$, однако в $\overline{\mathbb R}$ предельной точкой $\mathbb N$ является $+\infty$.

- 2) Множество $\mathbb Z$ не имеет предельных точек в $\mathbb R$, в $\overline{\mathbb R}$ предельными точками $\mathbb N$ являются $-\infty$ и $+\infty$.
- 3) Пусть $X=(a;+\infty)$. Множество предельных точек X в $\mathbb R$ есть $[a;+\infty)$, а в $\overline{\mathbb R}-[a;+\infty]$.

Пусть x_n — некоторая последовательность в \mathbb{R} и $a \in \mathbb{R}$. Точка a называется $npe denom\ nocnedoв ameльности <math>x_n$ b \mathbb{R} , если $\forall r > 0$ $\exists N$: $\forall n \geq N\ (x_n \in O_r(a))$.

Ясно, что если последовательность x_n состоит точек из $\mathbb R$ и $a\in\mathbb R$, то $x_n\to a$ в $\overline{\mathbb R}$ тогда и только тогда, когда $x_n\to a$ в $\mathbb R$.

Запишем подробнее определение сходимости в случае, когда точка $a=\pm\infty$.

Последовательность x_n сходится к $+\infty$, если

$$\forall r > 0 \ \exists N : \ \forall n \ge N \ (x_n > r).$$

Последовательность x_n сходится к $-\infty$, если

$$\forall r > 0 \ \exists N : \ \forall n \ge N \ (x_n < -r).$$

6.6 Вычисление пределов некоторых последовательностей

1) $\lim_{n\to\infty} a^n = +\infty$, если a > 1; $\lim_{n\to\infty} a^n = 0$, если $a \in [0;1)$.

Пусть $a>1,\ r>0.$ Имеем $a^n>r\Leftrightarrow n>\log_a r.$ Если r<1, то неравенство $a^n>r$ выполняется для всех $n\in\mathbb{N},$ Если $r\geq 1,$ то оно верно при $n\geq N=\lceil\log_a r\rceil+1.$

Другое доказательство. Пусть a>1. Тогда $a=1+\alpha,\ \alpha>0$ и $a^n=(1+\alpha)^n>C_n^2\alpha^2>(n-1)^2\alpha^2/2$. Если $n\geq 1+\sqrt{2r}/\alpha$, то $a^n>r$. Таким образом, в качестве N можно взять $\lceil \sqrt{2r/\alpha} \rceil$.

Случай $a \in [0;1)$ легко сводится к предыдущему.

2) Для любого $a \in \mathbb{R}$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0. (1)$$

Имеем

$$\left|\frac{a^n}{n!}\right| = \frac{|a|}{1} \cdot \frac{|a|}{2} \cdot \dots \cdot \frac{|a|}{m} \cdot \frac{|a|}{m+1} \cdot \dots \cdot \frac{|a|}{n}.$$

Выберем m>|a|. Обозначим $\alpha=|a|/(m+1)$. Тогда при $n\geq m$

$$\left| \frac{a^n}{n!} \right| \le C \alpha^{n-m},$$

где

$$C = \frac{|a|}{1} \cdot \frac{|a|}{2} \cdot \dots \cdot \frac{|a|}{m}.$$

Таким образом, при $n \ge m$

$$\left| \frac{a^n}{n!} \right| \le \frac{C}{\alpha^m} \alpha^n \to 0, \ n \to \infty,$$

так как $0 \le \alpha < 1$. По теореме о двух милиционерах имеем (1).

$$\lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Пусть $\sqrt[n]{n} = 1 + x_n$, тогда $x_n > 0$, т. к. $\sqrt[n]{n} > 1$. Имеем

$$n = (1 + x_n)^n = 1 + C_n^1 x_n + C_n^2 x_n^2 + \dots + x_n^n > C_n^2 x_n^2 = \frac{n(n-1)}{2} x_n^2,$$

 $n \geq 2$, откуда следует, что $x_n^2 \leq 2/(n-1)$. Тогда

$$0 < x_n \le \sqrt{\frac{2}{n-1}} \to 0, \quad n \to \infty.$$

По теореме о двух милиционерах $x_n \to 0$, откуда $\sqrt[n]{n} = 1 + x_n \to 1$, $n \to \infty$.

4)
$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad (a > 0). \tag{2}$$

Если $a \ge 1$, то при $n \ge a$ имеем $1 \le \sqrt[n]{a} \le \sqrt[n]{n}$. В силу примера 3) и по теореме о двух милиционерах получаем (2).

Если 0 < a < 1, то $\alpha = 1/a > 1$, $\lim_{n \to \infty} \sqrt[n]{\alpha} = 1$ и $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \sqrt[n]{1/\alpha} = \lim_{n \to \infty} (1/\sqrt[n]{\alpha}) = 1/\lim_{n \to \infty} \sqrt[n]{\alpha} = 1$.

$$\lim_{n \to \infty} \frac{n}{a^n} = 0 \quad (a > 1).$$
(3)

Пусть $a = 1 + \alpha$, тогда

$$a^n = (1+\alpha)^n > C_n^2 \alpha^2 = \frac{n(n-1)}{2} \alpha^2,$$

откуда

$$0 < \frac{n}{a^n} < \frac{2}{(n-1)\alpha^2} \to 0, \quad n \to \infty.$$

По теореме о двух милиционерах имеем (3).

6)
$$\lim_{n \to \infty} \frac{\log_a n}{n} = 0 \quad (a > 0, \ a \neq 1). \tag{4}$$

Можно считать, что a>1, так как при a<1 имеем $\log_a n=-\log_\alpha n$, где $\alpha=1/a>1$. Применим 5). Фиксируем $\varepsilon>0$, тогда $a^\varepsilon>1$ и

$$\lim_{n \to \infty} \frac{n}{(a^{\varepsilon})^n} = 0.$$

Значит,
 $\exists N: \ \forall n \geq N \ \ n/a^{\varepsilon n} < 1, \ \text{откуда}$

$$n < a^{\varepsilon n} \Rightarrow \log_a n < \varepsilon n \Rightarrow 0 < \frac{\log_a n}{n} < \varepsilon, \quad n \ge N.$$

Из последнего неравенства следует (4).

7 Предел функции в точке

7.1 Элементарные функции

Основными элементарными функциями называются следующие функции: постоянные, степенные $y=x^{\alpha}$, показательные $y=a^{x}$, логарифмические $y=\log_{a}x$, тригонометрические $y=\sin x,\ y=\cos x,\ y=\operatorname{tg}x,\ y=\operatorname{ctg}x,$ обратные тригонометрические $y=\arcsin x,\ y=\operatorname{arccos}x,\ y=\operatorname{arctg}x,\ y=\operatorname{arcctg}x.$ В качестве области определения этих функций берут, как правило, множество всех x, при которых определена соответствующая формула. Например, $\operatorname{arcsin}x$ определен при всех $|x|\leq 1$, поэтому в качестве области определения берут отрезок [-1;1].

Замечание. Строгое определение некоторых основных элементарных функций представляет собой не простую задачу. В этом пособии мы не занимаемся этим и отсылаем читателя к другим учебникам, например, к книге А. Н. Шерстнева [3].

Элементарной функцией называется функция, которая получается из основных элементарных функций путем применения конечного числа арифметических операций и операции суперпозиции.

Пример. Функция $g(x) = \sqrt{\sin x + x e^{\arccos x}}$ является элементарной. Объясните подробно, как именно можно представить ее через основные элементарные функции.

7.2 Определение предела функции в точке

Пусть $a\in\mathbb{R}$ и $\varepsilon>0$. Напомним. что проколотой ε -окрестностью точки a называется множество $\stackrel{\vee}{O}_{\varepsilon}(a):=O_{\varepsilon}(a)\setminus\{a\}$.

Будем рассматривать функцию, определенную на множестве $X \subset \mathbb{R}$, имеющем предельную точку x_0 . Отметим важнейшие частные случаи:

- 1) $X = (a; b) \ni x_0$.
- 2) $X = (a; b) \setminus \{x_0\}, x_0 \in (a, b).$
- 3) $X=(x_0;b)$ или $X=(a;x_0)$. Функция f определена либо слева, либо справа от точки a, которая является предельной точкой X, не принадлежащей X.

Определение 1. Пусть $X \subset \mathbb{R}$, функция $f: X \to \mathbb{R}$ и x_0 — предельная точка X. Число $y_0 \in \mathbb{R}$ называется пределом функции f в точке x_0 , если $\forall \epsilon > 0 \ \exists \delta > 0$ такое, что $\forall x \in X$, удовлетворяющего условию $0 < |x - x_0| < \delta$, выполняется неравенство $|f(x) - y_0| < \varepsilon$.

Приведем эквивалентные формулировки:

- 1) Число $y_0 \in \mathbb{R}$ называется npedeлом функции f в точке x_0 , если $\forall \epsilon > 0 \ \exists \delta > 0 : \ \forall x \in X \ (x \in X \cap \overset{\circ}{O}_{\delta}(x_0) \Rightarrow f(x) \in O_{\varepsilon}(y_0)).$
- 2) Число $y_0 \in \mathbb{R}$ называется npedeлом функции f в точке x_0 , если $\forall \epsilon>0 \ \exists \delta>0: \ f(X\cap \overset{\circ}{O}_{\delta}(x_0))\subset O_{\varepsilon}(y_0).$

Если y_0 является пределом функции f в точке x_0 , то пишут

$$y_0 = \lim_{x \to x_0} f(x)$$

или $f(x) \rightarrow y_0, x \rightarrow x_0.$

Замечание. Поскольку в определении предела функции в точке берется проколотая окрестность точки x_0 , то это определение никак не использует значение функции в этой точке, даже если $x_0 \in X$. Вывод: предел зависит от поведения функции в любой малой проколотой окрестности точки x_0 . При этом значение $f(x_0)$ может быть не определено, а если $f(x_0)$ все же существует, предел от этого значения никак не зависит.

Справедлива

Теорема 1. Если функция $f: X \to \mathbb{R}$ имеет предел $y_0 \in \mathbb{R}$ в точке x_0 , то f ограничена в некоторой окрестности x_0 , т. e.

$$\exists M, \ r > 0: \ \forall x \in X \cap \overset{\vee}{O}_r(x_0) \quad (|f(x)| \le M).$$

Доказательство аналогично доказательству соответствующего утверждения для последовательностей.

Теорема 2 (Гейне). Число y_0 является пределом функции $f: X \to \mathbb{R}$ в точке x_0 тогда и только тогда, когда для любой последовательности $x_n \in X \setminus \{x_0\}$, сходящейся к x_0 , последовательность $f(x_n)$ сходится к y_0 .

Доказательство. Необходимость. Пусть $y_0 = \lim_{x \to x_0} f(x)$. Фиксируем $\epsilon > 0$. Тогда $\exists \delta > 0$:

$$x \in X \cap \overset{\vee}{O}_{\delta}(x_0) \Rightarrow f(x) \in O_{\varepsilon}(y_0).$$
 (1)

Рассмотрим последовательность $x_n \in X \setminus \{x_0\}$, сходящуюся к x_0 . Тогда $\exists N \in \mathbb{N} : \forall n \geq N \ (|x_n - x_0| < \delta)$. Таким образом, $x_n \in \overset{\circ}{O}_{\delta}(x_0), \ n \geq N$, откуда, в силу (1), $f(x_n) \in O_{\varepsilon}(y_0), \ n \geq N$. Из определения предела последовательности следует, что $\lim_{n \to \infty} f(x_n) = y_0$.

Достаточность. Пусть для любой последовательности $x_n \in X \setminus \{x_0\}$, сходящейся к x_0 , последовательность $f(x_n)$ сходится к y_0 . Докажем, что $\exists \lim_{x \to x_0} f(x) = y_0$. Предположим противное. Тогда

$$\exists \varepsilon: \ \forall \delta > 0 \ \exists x = x(\delta): \quad x \in X \cap \overset{\vee}{O}_{\delta}(x_0) \quad \text{if} \quad |f(x) - y_0| \geq \varepsilon.$$

Пусть $\delta=1/n,\ n\in\mathbb{N}$. Обозначим для краткости $x(1/n)=x_n$. В силу выбора x_n имеем $x_n\in X\setminus\{x_0\}$ и $|x_n-x_0|<1/n$, т. е. справедливо неравенство $-1/n< x_n-x_0<1/n$, откуда (по теореме о двух милиционерах) $x_n\to x_0,\ n\to\infty$. По предположению тогда $f(x_n)$ должна сходиться к y_0 . Но $|f(x_n)-y_0|\geq \varepsilon$, откуда следует, что $f(x_n)$ не может сходиться к y_0 . Противоречие доказывает теорему.

Из теоремы 2 следует, что можно дать определение предела функции в точке на языке последовательностей.

Определение 2. Число $y_0 \in \mathbb{R}$ называется npedenom функции f в точке x_0 , если для любой последовательности $x_n \in X \setminus \{x_0\}$, сходящейся к x_0 , последовательность $f(x_n)$ сходится к y_0 .

Примеры. 1)

$$\lim_{x \to 0} \frac{x^2 + x}{x} = 1.$$

Действительно, функция $f(x) = (x^2 + x)/x$ определена на множестве $X = \mathbb{R} \setminus \{0\}$, 0 — предельная точка X, причем f(x) = x + 1 на X. Если $x_n \to 0$, $x_n \neq 0$, $n \geq 1$, то $f(x_n) = x_n + 1 \to 1$. По определению $2 \lim_{x \to 0} f(x) = 1$.

2) Рассмотрим функцию

$$f(x) = \operatorname{sign} x = \begin{cases} 1, & x > 0, \\ -1, & x < 0, \\ 0, & x = 0. \end{cases}$$

Покажем, что не существует предела этой функции в точке 0.

Рассмотрим последовательность $x_n \to 0$. Если все члены последовательности положительны, то $f(x_n) = 1 \to 1$, $n \to \infty$. Если же все $x_n < 0$, то $f(x_n) = -1 \to -1$, $n \to \infty$. Значит, по различным последовательностям пределы различны, т. е. не существует предела $\lim_{x\to 0} f(x)$.

7.3 Предел функции в бесконечно удаленных точках

Пусть функция f определена на множестве X, $X \subset \mathbb{R}$, и точка x_0 , равная $+\infty$ или $-\infty$, является предельной точкой множества X. Число y_0 называется npedenom функции f в точке x_0 , если $\forall \varepsilon > 0$ $\exists r > 0$ такое, что $\forall x \in X \cap O_r(x_0)$ имеет место неравенство $|f(x) - y_0| < \varepsilon$ или по-другому: $f(x) \in O_{\varepsilon}(y_0) \ \forall x \in X \cap O_r(x_0)$.

Распишем более подробно это определение в частных случаях.

1) Пусть $x_0 = +\infty$. Тогда $\lim_{x \to +\infty} f(x) = y_0 \in \mathbb{R}$, если $\forall \varepsilon > 0$ $\exists r > 0$: $\forall x \in X$, удовлетворяющего неравенству x > r, выполнено неравенство $|f(x) - y_0| < \varepsilon$.

Аналогично $\lim_{x\to\infty} f(x)=y_0\in\mathbb{R}$, если $\forall \varepsilon>0$ $\exists r>0$: $\forall x\in X$, удовлетворяющего неравенству x<-r, имеет место неравенство $|f(x)-y_0|<\varepsilon$.

Теорема (свойства предела функции в точке). Пусть функции f, g u h определены на множестве $X \subset \mathbb{R}$ u точка $x_0 \in \overline{\mathbb{R}}$ является предельной точкой множества X. Пусть существуют пределы $\lim_{x \to x_0} f(x)$ u $\lim_{x \to x_0} g(x)$. Тогда

- 1) $cyu_i ecme yem \lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x);$
- 2) $cywecmsyem \lim_{x\to x_0} [f(x)g(x)] = \lim_{x\to x_0} f(x) \cdot \lim_{x\to x_0} g(x);$
- 3) существует

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)},$$

если $g(x) \neq 0$ в некоторой проколотой окрестности точки x_0 и $\lim_{x \to x_0} g(x) \neq 0$;

- 4) $cywecmeyem \lim_{x\to x_0} |f(x)| = |\lim_{x\to x_0} f(x)|;$
- 5) если $f(x) \leq g(x)$ в некоторой проколотой окрестности точки x_0 , то $\lim_{x\to x_0} f(x) \leq \lim_{x\to x_0} g(x)$;

6) (теорема о двух милиционерах) Если $f(x) \leq h(x) \leq g(x)$ в некоторой проколотой окрестности точки x_0 и $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$,
то существует $\lim_{x\to x_0} h(x) = \lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x)$.

Доказательство. Докажем для примера 3). Заметим, что определение 2 предела функции в точке справедливо и для точек $x_0=\pm\infty$ (проверьте это!).

Пусть последовательность $x_n \in X \setminus \{x_0\}$ сходится к x_0 при $n \to \infty$. Пусть $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$. Тогда согласно определению 2 предела функции в точке имеем $f(x_n) \to a$, $g(x_n) \to b$, $n \to \infty$. При достаточно больших n точки x_n попадают в проколотую окрестность точки x_0 , в которой функция g не обращается в нуль. Следовательно, можно считать, что $g(x_n) \neq 0$. По свойствам предела последовательностей существует предел частного:

$$\lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \frac{a}{b}.$$

По определению 2 предела функции в точке существует

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}.$$

Упражнение. Приведите подробные доказательства остальных утверждений теоремы.

Теорема (критерий Коши существования предела функции в точке). Пусть функция f определена на множестве $X \subset \mathbb{R}$ и точка $x_0 \in \overline{\mathbb{R}}$ является предельной точкой множества X. Предел функции f в точке x_0 существует тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists r > 0$: $\forall x', x'' \in X \cap \overset{\vee}{O}_r(x_0)$ выполняется неравенство $|f(x') - f(x'')| < \varepsilon$.

Доказательство. Необходимость. Предположим, существует $\lim_{x\to x_0} f(x) = y_0$. Тогда $\forall \varepsilon > 0 \ \exists r > 0$: $\forall x \in X \cap \overset{\vee}{O}_r(x_0)$ выполняется неравенство $|f(x)-y_0|<\varepsilon/2$. Пусть $x',\ x''\in X \cap \overset{\vee}{O}_r(x_0)$. Тогда $|f(x')-y_0|<\varepsilon/2$, $|f(x'')-y_0|<\varepsilon/2$ и с помощью неравенства треугольника получаем $|f(x')-f(x'')|\leq |f(x')-y_0|+|y_0-f(x')|<\varepsilon/2+\varepsilon/2=\varepsilon$.

Достаточность. Рассмотрим любую последовательность x_n из множества $X \setminus \{x_0\}$, которая сходится к x_0 . По условию $\forall \varepsilon > 0 \ \exists r > 0$: $\forall x', x'' \in X \cap \overset{\circ}{O}_r(x_0)$ выполняется неравенство $|f(x') - f(x'')| < \varepsilon$.

Так как $x_n \to x_0$, то существует такой номер N = N(r): $\forall n \geq N$ $(x_n \in X \cap \overset{\circ}{O}_r(x_0))$. Если $m, n \geq N$, то $|f(x_n) - f(x_m)| < \varepsilon$. Это означает, что последовательность $f(x_n)$ фундаментальна. По критерию Коши для последовательностей $f(x_n)$ сходится к некоторому числу y_0 .

Осталось показать, что y_0 не зависит от выбора последовательности. Пусть x_n' — другая последовательность в $X \setminus \{x_0\}$, которая сходится к x_0 . Рассмотрим перемешанную последовательность

$$x_1, x'_1, x_2, x'_2, \ldots, x_n, x'_n, \ldots$$

Ясно, что эта последовательность сходится к x_0 . По доказанному выше последовательность образов

$$f(x_1), f(x_1'), f(x_2), f(x_2'), \dots, f(x_n), f(x_n'), \dots$$

сходится. Поскольку ее подпоследовательность $f(x_n)$ сходится к y_0 , то и вся последовательность сходится к y_0 . Поэтому и другая ее подпоследовательность $f(x'_n)$ сходится к тому же пределу y_0 .

Теперь, применяя определение 2 предела функции в точке, получаем, что $\lim_{x\to x_0}f(x)=y_0$. Теорема доказана.

Замечание. В следующем пункте дается определение бесконечных пределов функции в точке. Для них доказанная теорема неверна! В теореме существенно, что $y_0 \in \mathbb{R}$.

7.4 Бесконечные пределы

Мы уже определили $\lim_{x\to x_0} f(x) = y_0$ в случаях, когда $y_0 \in \mathbb{R}$, $x_0 \in \overline{\mathbb{R}}$. Теперь определим понятие предела в случае, когда y_0 может равняться $+\infty$ или $-\infty$.

Пусть функция f определена на множестве $X \subset \mathbb{R}$ и точка $x_0 \in \overline{\mathbb{R}}$ — предельная точка множества X. Пусть $y_0 \in \overline{\mathbb{R}}$. Говорят, что npeden функции f в точке x_0 равен y_0 , если $\forall s > 0 \ \exists r > 0 : \ \forall x \in X \cap \overset{\circ}{O}_r(x_0)$ выполняется условие $f(x) \in O_s(y_0)$ или, что то же самое, $f(X \cap \overset{\circ}{O}_r(x_0)) \subset O_s(y_0)$.

Возможны следующие частные случаи: $x_0 \in \mathbb{R}$, $x_0 = +\infty$, $x_0 = -\infty$; $y_0 \in \mathbb{R}$, $y_0 = +\infty$, $y_0 = -\infty$, итого 9 случаев. Распишем подробно один из частных случаев: $x_0 = +\infty$, $y_0 = -\infty$.

Предел
$$\lim_{x\to +\infty} f(x)=-\infty$$
, если $\forall s>0\ \exists r>0:\ \forall x\in X$ $x>r\Longrightarrow f(x)<-s.$

Упражнение. Распишите аналогично на языке s-r определение предела функции в остальных частных случаях.

Примеры. 1) Покажем, что $\lim_{x\to 0} 1/x^2 = +\infty$. Зададим любое s>0. Имеем

$$\frac{1}{x^2} > s \iff x^2 < \frac{1}{s} \iff |x| < \frac{1}{\sqrt{s}}.$$

Пусть $r = r(s) = 1/\sqrt{s}$. Если |x| < r, то $f(x) = 1/x^2 > s$. Таким образом, $\lim_{x \to 0} f(x) = +\infty$.

2) $\lim_{x\to-\infty}x^3=-\infty$. Действительно, $x^3<-s\Longleftrightarrow x<-\sqrt[3]{s}$. Следовательно, для любого s>0 существует $r=r(s)=\sqrt[3]{s}$ такое, что $x<-r(s)\Longrightarrow x^3<-s$.

Можно дать определение предела в случае, когда $x_0, y_0 \in \overline{\mathbb{R}}$, на языке последовательностей аналогично тому, как это делалось в случае $x_0, y_0 \in \mathbb{R}$.

Пусть функция f определена на множестве $X \subset \mathbb{R}$ и точка $x_0 \in \overline{\mathbb{R}}$ — предельная точка множества X. Пусть $y_0 \in \overline{\mathbb{R}}$. Говорят, что npeden функции f в точке x_0 равен y_0 , если для любой последовательности точек $x_n \in X \setminus \{x_0\}$

$$x_n \to x_0, n \to \infty \Longrightarrow f(x_n) \to y_0, n \to \infty.$$

Упражнение. Как и в теореме Гейне для случая конечных точек x_0 и y_0 , докажите эквивалентность двух определений предела.

7.5 Предел сложной функции, замена переменных в пределах

Теорема. Пусть X, Y, Z — некоторые числовые множества, x_0 — предельная точка X, y_0 — предельная точка Y (x_0 , $y_0 \in \mathbb{R}$). Пусть $f: X \to Y$, $g: Y \to Z$ u

$$\lim_{x \to x_0} f(x) = y_0, \quad \lim_{y \to y_0} g(y) = z_0.$$

Пусть существует $\delta > 0$ такое, что $f(x) \neq y_0 \ \forall x \in \mathring{O}_{\delta}(x_0) \cap X$. Тогда существует предел сложной функции:

$$\lim_{x \to x_0} g \circ f(x) = z_0.$$

Доказательство. Фиксируем s>0. Так как $\lim_{y\to y_0}g(y)=z_0$, то существует t=t(s)>0 такое, что $g(y)\in O_s(z_0)$ для любой точки $y\in Y\cap \overset{\circ}{O}_t(y_0)$.

Так как $\lim_{x\to x_0} f(x) = y_0$, то существует r = r(t) > 0 такое, что $f(x) \in O_t(y_0)$ для любого $x \in X \cap \overset{\vee}{O}_r(x_0)$. Можно считать, что $r < \delta$. Тогда $\forall x \in X \cap \overset{\vee}{O}_r(x_0)$ имеем $f(x) \in Y \cap \overset{\vee}{O}_t(y_0)$ и тогда $g(f(x)) \in O_s(z_0)$.

Итак, $\forall s>0 \; \exists r=r(t(s))>0: \; \forall x\in X\cap \overset{\circ}{O}_r(x_0)$ выполнено условие $g(f(x))\in O_s(z_0)$. Это означает, что $\lim_{x\to x_0}g\circ f(x)=z_0$.

Замечание. Утверждение теоремы можно записать в виде

$$\lim_{x \to x_0} g \circ f(x) = \lim_{y \to y_0} g(y) = z_0, \quad y = f(x).$$

Переход от предела $\lim_{x\to x_0} g \circ f(x)$ к пределу $\lim_{y\to y_0} g(y)$ называется заменой переменных y=f(x) в пределе $\lim_{x\to x_0} g \circ f(x)$.

7.6 Односторонние пределы

Пусть функция f определена на множестве $X \subset \mathbb{R}$ и $x_0 \in \overline{\mathbb{R}}$ является предельной точкой множества $X_{x_0}^+ := \{x \in \mathbb{R} : x \in X \text{ и } x > x_0\}$. Обозначим $f_{x_0}^+ = f|_{X_{x_0}^+}$. Если существует $\lim_{x \to x_0} f_{x_0}^+(x) = y_0$, то говорят, что существует $npe \partial e n$ сnpa a функции f в точке x_0 и пишут $y_0 = \lim_{x \to x_0 + 0} f(x)$ или $y_0 = \lim_{x \to x_0 + 0} f(x)$ ил

$$\lim_{x \to x_0 - 0} f(x) = \lim_{x \to x_0 - 1} f(x) = f(x_0 - 0) := \lim_{x \to x_0} f|_{X_{x_0}^-}(x),$$

где $X_{x_0}^- := \{x \in \mathbb{R} : x \in X \text{ и } x < x_0\}.$

Примеры. 1) Пусть $f(x) = \operatorname{sign} x$.

Рис. 27.

Тогда $\lim_{x\to 0+} f(x) = 1$, $\lim_{x\to 0-} f(x) = -1$.

2) Пусть f(x) = 1/x. Тогда

$$\lim_{x \to 0+} f(x) = +\infty, \quad \lim_{x \to 0-} f(x) = -\infty.$$

Пределы слева и справа называются *односторонними пределами*. Очевидна

Теорема. Пусть функция f определена на множестве X и x_0 является предельной точкой множеств как $X_{x_0}^+$, так и $X_{x_0}^-$. Предел $\lim_{x\to x_0} f(x)$ существует тогда и только тогда, когда существуют пределы $f(x_0-0)$ и $f(x_0+0)$, причем эти пределы совпадают. При этом $\lim_{x\to x_0} f(x) = f(x_0-0) = f(x_0+0)$.

7.7 Замечательные пределы

Среди многих известных пределов особую роль играют следующие два важных предела, которые принято называть замечательными.

1) Первый замечательный предел.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1. \tag{1}$$

Предварительно установим неравенство

$$\sin x < x < \operatorname{tg} x, \quad 0 < x < \pi/2. \tag{2}$$

Рис. 28.

Рассмотрим рис. 28. Сравним площади равнобедренного треугольника Δ_{OAB} , прямоугольного треугольника Δ_{OAC} и кругового сектора R_{OAB} . Так как $\Delta_{OAB} \subset R_{OAB} \subset \Delta_{OAC}$, то

$$S(\Delta_{OAB}) = \frac{\sin x}{2} \le S(R_{OAB}) = \frac{x}{2} \le S(\Delta_{OAC}) = \frac{\operatorname{tg} x}{2},$$

откуда следует (2).

Запишем (2) по-другому:

$$\sin x < x < \frac{\sin x}{\cos x}$$

ИЛИ

$$\cos x < \frac{\sin x}{x} < 1,\tag{3}$$

 $0 < x < \pi/2$. Поскольку функции $\cos x$ и $\frac{\sin x}{x}$ — четные, неравенство (3) на самом деле справедливо при $0 < |x| < \pi/2$.

Покажем, что $\lim_{x\to 0}\cos x=1$. Действительно, используя левое неравенство в (2) получаем

$$|\cos x - 1| = 1 - \cos x = 2\sin^2\frac{x}{2} < 2\left(\frac{x}{2}\right)^2 = \frac{x^2}{2}, \ 0 < |x| < \frac{\pi}{2}.$$

Таким образом,

$$1 - \frac{x^2}{2} < \cos x < 1 + \frac{x^2}{2}, \quad 0 < |x| < \frac{\pi}{2}.$$

Поскольку $\lim_{x\to 0} (1\pm x^2/2) = 1$, с использованием теоремы о двух милиционерах из последнего неравенства получаем $\lim_{x\to 0} \cos x = 1$.

Теперь, применяя теорему о двух милиционерах к (3), получаем (1).

Замечание. Первый замечательный предел означает, что в начале координат график функции $y=\sin x$ имеет касательную y=x (строгое определение касательной к кривой здесь мы не приводим). В остальных точках графики функций $y=\sin x$ и y=x существенно отличаются, поэтому, конечно, $\lim_{x\to x_0}\frac{\sin x}{x}\neq 1$, если $x_0\neq 0$. Нетрудно доказать, что $\lim_{x\to x_0}\frac{\sin x}{x}=\frac{\sin x_0}{x_0}<1$, $x_0\in\mathbb{R},\ x_0\neq 0$. Кроме того, $\lim_{x\to\pm\infty}\frac{\sin x}{x}=0$, так как $y=\sin x$ — ограниченная функция на всей числовой оси, а $\lim_{x\to\pm\infty}\frac{1}{x}=0$. Числитель и знаменатель дроби $\frac{\sin x}{x}$ стремятся к нулю при $x\to 0$. Таким образом, первый замечательный предел раскрывает неопределенность типа $\frac{0}{0}$. (см. по поводу неопределенностей типа $\frac{0}{0}$ правило Лопиталя).

2) Второй замечательный предел.

Этот предел имеет три формы.

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e,\tag{4}$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e,\tag{5}$$

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e. \tag{6}$$

Часто (4) и (5) записывают в виде одного предела

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \tag{7}$$

 $(x \text{ стремится } \kappa \text{ "бесконечности без знака"!}).$

2а) Докажем справедливость (4). Пусть $x \geq 1$, n = n(x) = [x] (целая часть x). Тогда $n \in \mathbb{N}$ и $n \leq x \leq n+1$. Используя монотонность показательной и степенной функций, получаем

$$\left(1 + \frac{1}{n+1}\right)^n \le \left(1 + \frac{1}{n+1}\right)^x \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n}\right)^x \le \left(1 + \frac{1}{n}\right)^{n+1}$$

или

$$\left(1 + \frac{1}{n(x)+1}\right)^{n(x)} \le \left(1 + \frac{1}{x}\right)^x \le \left(1 + \frac{1}{n(x)}\right)^{n(x)+1}.$$
(8)

При $x \to +\infty$ очевидно $n=n(x) \to +\infty$. Найдем пределы последовательностей

$$\left(1 + \frac{1}{n+1}\right)^n \quad \mathbf{u} \quad \left(1 + \frac{1}{n}\right)^{n+1}.$$
(9)

Используя определение числа e, получаем

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \frac{\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1}}{\lim_{n \to \infty} 1 + \frac{1}{n+1}} = e.$$

Аналогично

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right) = e.$$

Поскольку пределы выражений, стоящих слева и справа в (8), при $x \to +\infty$ совпадают с пределами последовательностей (9), по теореме о двух милиционерах заключаем, что справедливо (4).

Замечание. Докажите следующий факт, который неявно использовался при доказательстве выше. Если n(x) — вещественная функция на числовой прямой, принимающая значения в множестве \mathbb{N} , $\lim_{x\to +\infty} n(x) = +\infty$ и существует предел последовательности $\lim_{n\to\infty} a_n = \alpha$, то существует предел функции $\lim_{x\to +\infty} a_{n(x)} = \alpha$.

26) Делая замены переменных $y=-x,\ z=y-1$ и используя (4), получаем

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to +\infty} \left(1 - \frac{1}{y} \right)^{-y} = \lim_{y \to +\infty} \frac{1}{\left(1 - \frac{1}{y} \right)^y} = \lim_{y \to +\infty} \left(\frac{y}{y - 1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^{-y} = \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac{1}{y - 1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac{1}{z} \right)^y = \lim_{y \to$$

Таким образом, (5) доказано.

2в) Рассмотрим односторонние пределы $\lim_{x\to 0\pm} (1+x)^{\frac{1}{x}}$. После замены переменных t=1/x с использованием (4) и (5) получаем

$$\lim_{x \to 0+} (1+x)^{\frac{1}{x}} = \lim_{t \to +\infty} \left(1 + \frac{1}{t}\right)^t = e,$$

$$\lim_{x \to 0-} (1+x)^{\frac{1}{x}} = \lim_{t \to -\infty} \left(1 + \frac{1}{t}\right)^t = e.$$

Итак, установлено (6).

Замечание. Второй замечательный предел используют для раскрытия неопределенностей типа 1^{∞} . Отметим, что если $f(x) \to 1$, $g(x) \to \pm \infty$, $x \to x_0$, то $f(x)^{g(x)}$ не всегда стремится к 1 при $x \to x_0$. К сожалению, очень часто при вычислении конкретных пределов используют неправильную импликацию:

$$f(x) \to 1 \Longrightarrow f(x)^{g(x)} \to 1$$
. Это, вообще говоря, неверно!!!

На самом деле, предел может не существовать, равняться нулю, бесконечности или положительному числу. Все зависит от скоростей роста показателя g(x) к бесконечности и основания f(x) к единице.

7.8 О-символика (символы Ландау), эквивалентные функции

Пусть функции f и g определены на множестве $X \subset \mathbb{R}$ и $x_0 \in \overline{\mathbb{R}}$ является предельной точкой множества X. Пусть существует такое r > 0,

что имеет место равенство

$$f(x) = \varphi(x)g(x) \quad \forall x \in \overset{\vee}{O}_r(x_0) \cap X$$
 (1)

для некоторой функции φ . Отметим, что $\varphi(x) = f(x)/g(x)$ в точках, где $g(x) \neq 0$. Если же в некоторой точке x имеет место равенство g(x) = 0, то f(x) = 0, и равенство (1) в точке x справедливо при любом значении $\varphi(x)$. Таким образом, функция $\varphi(x)$ не всегда определяется однозначно.

Определение 1. Если для некоторого r>0 и для некоторой ограниченной в $\stackrel{\vee}{O}_r(x_0)\cap X$ функции φ имеет место (1), то говорят, что функция f является ограниченной по сравнению c g при $x\to x_0$ и пишут

$$f(x) = O(g(x)), \quad x \to x_0.$$

Если g не обращается в нуль для точек X, лежащих в некоторой проколотой окрестности точки x_0 , то это условие означает, что существуют константы $r,\ C>0$ такие, что

$$\left| \frac{f(x)}{g(x)} \right| \le C \quad \forall x \in \overset{\vee}{O}_r(x_0) \cap X.$$

Пример. Неравенство $|\sin x| \le 1$ справедливо $\forall x \in \mathbb{R}$, поэтому $\sin x = O(1), \ x \to x_0,$ для любой точки $x_0 \in \mathbb{R}$.

Определение 2. Если для некоторого r > 0 и для некоторой функции φ такой, что $\lim_{x\to x_0} \varphi(x) = 0$ имеет место (1), то говорят, что $\phi y n x - y n x + y n x - y n x + y n x -$

$$f(x) = o(g(x)), \quad x \to x_0.$$

Если g не обращается в нуль для точек X, лежащих в некоторой проколотой окрестности точки x_0 , то это условие означает, что

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

Определение 3. Если для некоторого r>0 и для некоторой функции φ такой, что $\lim_{x\to x_0} \varphi(x)=1$ имеет место (1), то говорят, что ϕy нкция f эквивалентна g при $x\to x_0$ и пишут

$$f(x) \sim g(x), \quad x \to x_0.$$

Если g не обращается в нуль для точек X, лежащих в некоторой проколотой окрестности точки x_0 , то это условие означает, что

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$$

Упражнение. Докажите, что отношение $f(x) \sim g(x), x \to x_0,$ определяет отношение эквивалентности на множестве всех функций, определенных на множестве X.

В частности, если $f(x) \sim g(x)$, $x \to x_0$, то $g(x) \sim f(x)$, $x \to x_0$. Если $f(x) \sim g(x)$, $x \to x_0$, и $g(x) \sim h(x)$, $x \to x_0$, то $f(x) \sim h(x)$, $x \to x_0$.

Справедлива следующая

Лемма. Пусть функции f и g определены на множестве $X \subset \mathbb{R}$ и $x_0 \in \overline{\mathbb{R}}$ является предельной точкой множества X. Эквивалентность $f(x) \sim g(x), \ x \to x_0$ имеет место тогда и только тогда, когда $f(x) = g(x) + o(g(x)), \ x \to x_0$.

Доказательство. $f(x) \sim g(x), \ x \to x_0,$ тогда и только тогда, когда $\exists r>0: \ \forall x\in X\cap \overset{\lor}{O}_r(x_0)$ справедливо представление

$$f(x) = \varphi(x)g(x) \quad \forall x \in \overset{\vee}{O}_r(x_0) \cap X,$$

где $\lim_{x\to x_0} \varphi(x)=1$. Последнее имеет место тогда и только тогда, когда

$$f(x) = g(x) + \psi(x)g(x) \quad \forall x \in \overset{\circ}{O}_r(x_0) \cap X,$$

где $\psi(x) = \varphi(x) - 1$. При этом

$$\lim_{x \to x_0} \varphi(x) = 1 \Longleftrightarrow \lim_{x \to x_0} \psi(x) = 0.$$

Условие $\lim_{x\to x_0} \psi(x) = 0$ означает, что $\psi(x)g(x) = o(g(x)), x \to x_0$, т. е. $f(x) = g(x) + o(g(x)), x \to x_0$.

Теперь установим практически важный способ вычисления пределов произведения (частного) двух функций путем замены сомножителей (числителя и знаменателя) на эквивалентные функции.

Теорема. Пусть функции f, g, h и k определены на множестве $X \subset \mathbb{R}$ и $x_0 \in \overline{\mathbb{R}}$ является предельной точкой множества X. Пусть $f(x) \sim h(x) \ g(x) \sim k(x), \ x \to x_0$.

1) Если существует $\lim_{x\to 0}(h(x)k(x))$, то существует $\lim_{x\to 0}(f(x)g(x))$ и

$$\lim_{x \to 0} (f(x)g(x)) = \lim_{x \to 0} (h(x)k(x)).$$

2) Пусть g не обращается в нуль для всех $x \in X$, лежащих в некоторой проколотой окрестности точки x_0 . Если существует $\lim_{x\to 0} \frac{h(x)}{k(x)}$, то существует $\lim_{x\to 0} \frac{f(x)}{g(x)}$ и

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{h(x)}{k(x)}.$$

Доказательство. Докажем 2) (утверждение 1) докажите самостоятельно). Пусть выполняются условия теоремы. В силу леммы $f(x) = h(x) + o(h(x)), \ g(x) = k(x) + o(k(x)), \ x \to x_0$. Значит, существует проколотая окрестность точки x_0 такая, что для любого $x \in X$, лежащего в этой окрестности, $f(x) = h(x) + \varphi(x)h(x), \ g(x) = k(x) + \psi(x)k(x),$ где $\lim_{x\to x_0} \varphi(x) = \lim_{x\to x_0} \psi(x) = 0$.

Следовательно,

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{h(x) + \varphi(x)h(x)}{k(x) + \psi(x)k(x)} = \lim_{x \to x_0} \frac{h(x)}{k(x)} \cdot \lim_{x \to x_0} \frac{1 + \varphi(x)}{1 + \psi(x)} = \lim_{x \to x_0} \frac{h(x)}{k(x)}.$$

Теорема доказана.

Отметим некоторые эквивалентности, которые часто используются при вычислении пределов.

- 1) $\sin x \sim x$, $x \to 0$.
- 2) $\operatorname{tg} x \sim x, \ x \to 0.$
- 3) $1 \cos x \sim x^2/2, x \to 0.$
- 4) $\ln(1+x) \sim x, x \to 0$.
- 5) $e^x 1 \sim x, x \to 0$
- 6) $\sqrt[n]{1+x} 1 \sim x/n, x \to 0 \ (n \in \mathbb{N}).$

Доказательство. 1) Это — непосредственное следствие первого замечательного предела.

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1.$$

3)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2/2} = \lim_{x \to 0} \frac{2\sin^2(x/2)}{x^2/2} = \lim_{t \to 0} \frac{\sin^2 t}{t^2} = 1.$$

4) Воспользуемся непрерывностью функции $y = \ln x$ (см. далее раздел "Непрерывные функции" или докажите непосредственно с помощью $(\varepsilon - \delta)$ —определения): $\lim_{t\to e} \ln t = \ln e = 1$.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \Longrightarrow \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = 1 \Longrightarrow \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

5) В силу предыдущего пункта $\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$. Сделаем замену переменных $t=\ln(1+x)$. Тогда $x=e^t-1$. При $x\to 0$ в силу непрерывности логарифмической функции $t\to 0$. Значит,

$$\lim_{t \to 0} \frac{t}{e^t - 1} = \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1,$$

откуда

$$\lim_{t \to 0} \frac{e^t - 1}{t} = \left(\lim_{t \to 0} \frac{t}{e^t - 1}\right)^{-1} = 1.$$

6) Докажем, что

$$\lim_{x \to 0} \frac{\sqrt[n]{1+x} - 1}{x/n} = 1.$$

Сделаем замену переменных $t = \sqrt[n]{1+x} - 1$. Тогда

$$x = (1+t)^n - 1 = 1 + nt + C_n^2 t^2 + \dots + t^n - 1 = nt + C_n^2 t^2 + \dots + t^n.$$

При $x \to 0$ имеем $t \to 0$ (докажите это!). Окончательно получаем

$$\lim_{x \to 0} \frac{\sqrt[n]{1+x} - 1}{x/n} = n \lim_{t \to 0} \frac{t}{nt + C_n^2 t^2 + \dots + t^n} = \lim_{t \to 0} \frac{n}{n + C_n^2 t + \dots + t^{n-1}} = 1.$$

8 Непрерывные функции

8.1 Непрерывность функции в точке

Определение 1. Пусть функция f определена на некотором числовом множестве X и $x_0 \in X$. Функция f называется непрерывной в точке x_0 , если $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in X$

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon.$$

Последнюю импликацию можно записать по-другому:

$$f(X \cap O_{\delta}(x_0)) \subset O_{\varepsilon}(f(x_0)).$$

Таким образом, непрерывность означает, что если x близко к x_0 , то f(x) близко к $f(x_0)$.

Рис. 29.

Если x_0 — изолированная точка множества X, то существует такая окрестность $O_{\delta}(x_0)$ точки x_0 , что $X \cap O_{\delta}(x_0) = \{x_0\}$. Тогда

$$f(X \cap O_{\delta}(x_0)) = \{f(x_0)\} \subset O_{\varepsilon}(f(x_0)) \quad \forall \varepsilon > 0.$$

Значит, функция непрерывна в любой изолированной точке.

Если x_0 — предельная точка X, то из непрерывности функции в точке x_0 и определения предела следует, что $\exists \lim_{x \to x_0} f(x) = f(x_0)$.

Из определений предела следует, что:

- 1) Функция f непрерывна в точке x_0 тогда и только тогда, когда для любой последовательности точек x_n , лежащей в X и сходящейся к точке x_0 , последовательность $f(x_n)$ сходится к $f(x_0)$.
- 2) Функция f непрерывна в предельной точке x_0 множеств $X_{x_0}^+$ и $X_{x_0}^-$ тогда и только тогда, когда существуют односторонние пределы $f(x_0-0), f(x_0+0)$ и $f(x_0-0)=f(x_0+0)=f(x_0)$.

Теорема 1. Пусть функции f и g определены на множестве X и непрерывны в точке $x_0 \in X$. Тогда в точке x_0 непрерывны функции f+g, f-g, fg и, если g не обращается в нуль на X, частное f/g.

Доказательство. Докажем для примера непрерывность произведения. Пусть функции f и g непрерывны в точке x_0 . Рассмотрим любую последовательность $x_n \in X$, сходящуюся к точке x_0 . В силу непрерывности функций f и g в точке x_0 имеем $f(x_n) \to f(x_0)$, $g(x_n) \to g(x_0)$ при

 $n \to \infty$. Из арифметических свойств пределов последовательностей последовательность $(f+g)(x_n) = f(x_n) + g(x_n) \to f(x_0) + g(x_0) = (f+g)(x_0)$, $n \to \infty$. Это означает, что функция f+g непрерывна в точке x_0 . Теорема 1 доказана.

Теорема 2. Пусть $f: X \to Y$, $g: Y \to Z$, $x_0 \in X$ и $f(x_0) = y_0$. Если функция f непрерывна в точке x_0 , а g непрерывна в точке y_0 , то суперпозиция $g \circ f$ непрерывна в точке x_0 .

Доказательство. Пусть выполняются условия теоремы. Рассмотрим любую последовательность x_n элементов множества X, сходящуюся к точке x_0 . В силу непрерывности функции f в точке x_0 последовательность $y_n = f(x_n) \to f(x_0) = y_0$. Так как $y_n \to y_0$, то в силу непрерывности функции g в точке y_0 имеем $g \circ f(x_n) = g(y_n) \to g(y_0) = g \circ f(x_0)$. Это означает непрерывность функции $g \circ f$ в точке x_0 . Теорема 2 доказана.

Определение 2. Пусть функция f определена на множестве X. Φ ункция f называется непрерывной на множестве X, если f непрерывна в любой точке множества X.

Из определений и теорем 1 и 2 следует

Теорема 3. 1) Если функции f и g непрерывны на множестве X, то на множестве X непрерывны функции f+g, f-g, fg и, если g не обращается в нуль на X, частное f/g.

2) Пусть $f: X \to Y, \ g: Y \to Z$. Если функция f непрерывна на множестве X, а g непрерывна на множестве Y, то суперпозиция $g \circ f$ непрерывна на множестве X.

8.2 Точки разрыва

Пусть f определена на множестве X и $x_0 \in X$ является предельной точкой множества X. Функция f называется разрывной в точке x_0 , если функция f не является непрерывной в точке x_0 , т. е. либо не существует $\lim_{x\to x_0} f(x)$, либо $\lim_{x\to x_0} f(x)$ существует, но $\lim_{x\to x_0} f(x) \neq f(x_0)$.

Если в точке разрыва x_0 существует $\lim_{x\to x_0} f(x)$, то x_0 называется устранимой точкой разрыва.

Примеры. 1) Пусть

$$f(x) = \begin{cases} x^2, & x \neq 0, \\ 1, & x = 0. \end{cases}$$

Имеем $\lim_{x\to 0} f(x) = \lim_{x\to 0} x^2 = 0 \neq 1 = f(0)$. Таким образом x=0 — точка устранимого разрыва.

Если функцию f переопределить в точке x=0, т. е. положить f(0)=0, то получим непрерывную функцию.

2) Пусть $f(x) = \frac{x^2 - 1}{x - 1}, x \neq 1$. Существует

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (x+1) = 2.$$

Функция не определена в точке x=1, но если доопределить ее в этой точке: f(1)=2, то получим непрерывную функцию. Если положить $f(1)=a\neq 2$, то новая функция будет разрывной в точке x=1.

Пусть x_0 — точка разрыва функции f. Точка x_0 называется mov- $\kappa o \ddot{u}$ разрыва первого рода, если в точке x_0 существуют конечные односторонние пределы $f(x_0-0)$ и $f(x_0+0)$. В этом случае разность $f(x_0+0)-f(x_0+0)$ называется $c\kappa a \nu \kappa o M$ функции в точке x_0 .

Точка разрыва называется *точкой разрыва второго рода*, если она не является точкой разрыва первого рода.

Примеры. 1) $f(x) = \operatorname{sign} x$. Существуют $\lim_{x\to 0+} f(x) = 1$, $\lim_{x\to 0-} f(x) = -1$. Скачок f в точке разрыва первого рода x=0 равен 2.

- 2) Пусть $f(x) = 1/x^2$, $x \neq 0$. Определим f в точке x = 0, полагая f(0) = 1. Существуют $f(0+0) = f(0-0) = +\infty$. Точка x = 0 является точкой разрыва второго рода, хотя односторонние пределы существуют и равны (но бесконечны!).
- 3) Пусть $f(x)=1/x,\ x\neq 0$. Определим f в точке x=0, полагая f(0)=0. Существуют $f(0+0)=+\infty,\ f(0-0)=-\infty$. Точка x=0 является точкой разрыва второго рода.
- 4) Пусть $f(x)=\sin(1/x),\ x\neq 0.$ Определим функцию f в точке x=0, полагая f(0)=0. Односторонние пределы f в точке x=0 не существуют. Действительно, покажем, например, что не существует f(0+0). Для этого рассмотрим две последовательности $x_n'=1/(\pi n)$,

 $x_n'' = 2/(\pi + 4\pi n)$. Тогда $\lim_{n\to\infty} x_n' = \lim_{n\to\infty} x_n'' = 0$, x_n' , $x_n'' \neq 0$, $n\geq 1$. Но $f(x_n')=0\to 0$, $n\to\infty$, $f(x_n'')=1\to 1$, $n\to\infty$. Поскольку по разным положительным последовательностям, стремящимся к нулю, получаются разные пределы, то не существует предел справа f(0+0). Таким образом, точка x=0 является точкой разрыва второго рода.

Замечание. Иногда в точки разрыва функции f включают все предельные точки области определения X, не принадлежащие X. Так, в примерах 2)–4) можно не определять значение функции в точке x=0, поскольку независимо от этого значения односторонние пределы бесконечны (примеры 2)-3)) или не существуют (пример 4)).

8.3 Теорема Вейерштрасса о непрерывных функциях

Пусть функция f определена на множестве X. Функция f называется ограниченной сверху (снизу) на X, если множество f(X) ограничено сверху (снизу). Функция f называется ограниченной на X, если она ограничена на X и сверху и снизу.

По-другому:

- 1) Функция является ограниченной сверху на X, если существует константа C>0 такая, что $f(x)\leq C,\ x\in X\ (C-$ мажоранта множества f(X)).
- 2) Функция является ограниченной снизу на X, если существует константа C>0 такая, что $f(x)\geq -C,\ x\in X\ (-C$ миноранта множества f(X)).
- 3) Функция является ограниченной на X, если существует константа C>0 такая, что $|f(x)|\leq C, x\in X$ (множество $f(X)\subset [-C,C]$).

$$\sup_{x \in X} f(x) := \sup f(X) \quad \left(\inf_{x \in X} f(x) := \inf f(X)\right).$$

Теорема Вейерштрасса. Пусть функция f непрерывна на ком- пактном множестве X . Тогда

1) образ f(X) является компактным множеством,

2) функция f ограничена и принимает на X свои наибольшее и наименьшее значения, m. e. существуют точки x', $x'' \in X$ такие, что

$$f(x') = \sup_{x \in X} f(x), \quad f(x'') = \inf_{x \in X} f(x).$$
 (1)

Доказательство. 1) Докажем, что f(X) компактно, то есть из любой последовательности y_n в f(X) можно выделить подпоследовательность, сходящуюся к некоторой точке $y_0 \in f(X)$. Так как $y_n \in f(X)$, то существует $x_n \in X$ такое, что $y_n = f(x_n)$. Множество X компактно, поэтому существует подпоследовательность x_{n_k} , сходящаяся к некоторой точке $x_0 \in X$. В силу непрерывности функции f имеем $y_{n_k} = f(x_{n_k}) \to f(x_0) = y_0 \in f(X)$. Таким образом, 1) установлено.

2) Множество f(X) компактно, следовательно, ограничено. Это означает ограниченность функции f(X) на X. Кроме того, f(X) как любое компактное множество содержит свои точную верхнюю и нижнюю грани, т. е. существуют точки y', $y'' \in f(X)$ такие, что $y' = \sup f(X)$, $y'' = \inf f(X)$. Поэтому существуют точки x', $x'' \in X$ такие, что y' = f(x'), y'' = f(x''). Тогда справедливо (1). Теорема Вейерштрасса доказана.

8.4 Равномерная непрерывность функции на множестве, теорема Кантора

Пусть функция f непрерывна на множестве X. Это означает, что $\forall x_0 \in X \ \forall \varepsilon > 0 \ \exists \delta > 0$ такое, что $\forall x \in X$ из неравенства $|x - x_0| < \delta$ следует, что $|f(x) - f(x_0)| < \varepsilon$. В этом случае величина δ выбирается в зависимости от $x_0 \in X$ и ε .

Если величину δ можно выбрать одинаковой сразу для всех $x_0 \in X$, то функция называется равномерно непрерывной. Более точно, функция f называется равномерно непрерывной на множестве X, если $\forall \varepsilon > 0$ $\exists \delta > 0$ такое, что $\forall x', \ x'' \in X$ из неравенства $|x' - x''| < \delta$ следует, что $|f(x') - f(x'')| < \varepsilon$.

Ясно, что любая равномерно непрерывная функция на множестве X является непрерывной на X. Обратное неверно, как показывает следующий

Пример. Пусть функция f(x) = 1/x, $x \in X = \mathbb{R} \setminus \{0\}$. Покажем, что функция f не является равномерно непрерывной на $\mathbb{R} \setminus \{0\}$, т. е. $\exists \varepsilon > 0 : \forall \delta > 0 \ \exists x', \ x'' \in X : |x' - x''| < \delta$ и $|f(x') - f(x'')| \geq \varepsilon$. Возьмем $\varepsilon = 1$. Для любого $\delta > 0$ найдем натуральное n такое, что $n > 1/\delta$. Пусть x' = 1/n, x'' = 1/(2n). Тогда $|x' - x''| = 1/(2n) < \delta$ и $|f(x') - f(x'')| = n \geq 1 = \varepsilon$.

Отметим, что чем меньше δ , тем больше n и тем ближе x', x'' к точке 0, которая является граничной точкой области определения X. Следовательно, равномерная непрерывность нарушается "вблизи" предельной точки множества X, не принадлежащей X. Это не случайно, как показывает следующая

Теорема (Кантор). Функция f, непрерывная на компактном множестве X, равномерно непрерывна.

Доказательство. Предположим, что функция f непрерывна на компактном множестве X, но не равномерно непрерывна. Тогда $\exists \varepsilon > 0$: $\forall \delta > 0 \ \exists x'_\delta, \ x''_\delta \in X: \ |x'_\delta - x''_\delta| < \delta$ и

$$|f(x_{\delta}') - f(x_{\delta}'')| \ge \varepsilon. \tag{1}$$

Поскольку в качестве δ можно взять любое положительное число, положим $\delta=1/n,\ n\in\mathbb{N}$. Обозначим $x'_{\delta}=x'_{n},\ x''_{\delta}=x''_{n}$. Последовательность x'_{n} лежит в компактном множестве X, поэтому существует такая ее подпоследовательность $x'_{n_{k}}$, что $x'_{n_{k}}$ сходится к некоторой точке $x_{0}\in X$. Докажем, что $x''_{n_{k}}$ также сходится к x_{0} . Действительно, $|x''_{n_{k}}-x_{0}|\leq |x''_{n_{k}}-x'_{n_{k}}|+|x'_{n_{k}}-x_{0}|\leq 1/n_{k}+|x'_{n_{k}}-x_{0}|\to 0,\ k\to\infty$. Значит, $|x''_{n_{k}}-x_{0}|\to 0,\ k\to\infty$, откуда следует, что $x''_{n_{k}}\to x_{0},\ k\to\infty$.

Функция f непрерывна в точке x_0 . Значит, $\exists \sigma > 0: \forall x \in X$ $|x-x_0| < \sigma \Rightarrow |f(x)-f(x_0)| < \varepsilon/2$. Так как $x'_{n_k}, \ x''_{n_k} \to x_0, \ k \to \infty$, то $\exists N: |x'_{n_k}-x_0| < \sigma, \ |x''_{n_k}-x_0| < \sigma \ \forall k \geq N$. В силу выбора σ тогда $|f(x'_{n_k})-f(x_0)| < \varepsilon/2, \ |f(x''_{n_k})-f(x_0)| < \varepsilon/2 \ \forall k \geq N$. Применяя неравенство треугольника, получаем

$$|f(x'_{n_k}) - f(x''_{n_k})| \le |f(x'_{n_k}) - f(x_0)| + |f(x_0) - f(x''_{n_k})| < \varepsilon/2 + \varepsilon/2 = \varepsilon,$$
 $k \ge N$. Это противоречит (1). Теорема Кантора доказана.

8.5 Теорема Больцано-Коши о промежуточном значении

Теорема (Больцано-Коши). Пусть функция f непрерывна на отрезке [a;b] и $M=\sup_{x\in[a;b]}f(x)$, $m=\inf_{x\in[a;b]}f(x)$. Тогда для любого $\gamma\in[m;M]$ существует по крайне мере одна точка $x_0\in[a;b]$ такая, что $f(x_0)=y_0$.

Доказательство. Если $y_0 = M$ или $y_0 = m$, то существование точки x_0 следует из теоремы Вейерштрасса. Таким образом, можно считать, что $m < y_0 < M$ (в частности, отсюда следует, что $m \neq M$).

По теореме Вейерштрасса существуют точки $c, d \in [a;b]$ такие, что $f(c) = m, \ f(d) = M$. Так как $m \neq M$, то $c \neq d$. Пусть, для определенности, c < d. Рассмотрим множество $X = \{x \in [c;d] : f(x) \leq y_0\}$.

Рис. 30.

Докажем, что X — замкнутое множество. Пусть x_n — произвольная последовательность точек в X, сходящаяся к некоторой точке x'. Если мы докажем, что $x' \in X$, то тем самым будет установлена замкнутость X. Имеем $c \leq x_n \leq d$ и $f(x_n) \leq y_0$. Так как функция f непрерывна, то $f(x_n) \to f(x')$. По теореме о переходе к пределу в неравенствах получаем $c \leq x' \leq d$ и $f(x') \leq y_0$. Это означает, что $x' \in X$, что и требовалось доказать.

Очевидно, что множество X содержит элемент c, поэтому $X \neq \emptyset$. Так как замкнутое множество $X \subset [c;d]$, то оно ограничено, следовательно, компактно. Отсюда следует, что X содержит максимальный элемент, т. е. $x_0 := \sup X \in X$.

Покажем, что $f(x_0) = y_0$. Действительно, $f(x_0) \le y_0$, так как $x_0 \in X$. С другой стороны, $x_0 \ne d$, так как $f(x_0) \le y_0 < M = f(d)$.

Значит, существует $\varepsilon > 0$ такое, что $[x_0; x_0 + \varepsilon] \subset [c; d]$. Для любого $x \in (x_0; x_0 + \varepsilon)$ имеем $x \in [c; d]$ и $x \notin X$, поэтому $f(x) > y_0$. Переходя к пределу в этом неравенстве при $x \to x_0 +$ получаем $f(x_0) \ge y_0$. Таким образом, $f(x_0) = y_0$ и теорема Больцано-Коши доказана.

Следствие. Если f непрерывна на отрезке [a;b] и значения функции на концах отрезка -f(a) и f(b) имеют разные знаки, то существует точка x_0 , в которой $f(x_0)=0$.

8.6 Монотонные функции

Функция f, определенная на множестве X, называется монотонно возрастающей (убывающей), если для любых $x_1, x_2 \in X$

$$x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2) \ (f(x_1) \ge f(x_2)).$$

Функция f называется *монотонной*, если f либо монотонно возрастает, либо монотонно убывает.

Функция f называется cmporo монотонно возрастающей (убывающей), если для любых $x_1, x_2 \in X$

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2) \ (f(x_1) > f(x_2)).$$

Функция f называется cmporo монотонной, если f либо строго монотонно возрастает, либо строго монотонно убывает.

Теорема 1. Пусть функция f монотонна на числовом промежутке (a;b). Тогда существуют конечные или бесконечные пределы f(a+0), f(b-0). При этом, если f монотонно возрастает, то

$$f(a+0) = \inf_{x \in (a;b)} f(x), \quad f(b-0) = \sup_{x \in (a;b)} f(x).$$

 $E c \pi u
ightharpoonup e f$ монотонно убывает, то

$$f(a+0) = \sup_{x \in (a;b)} f(x), \quad f(b-0) = \inf_{x \in (a;b)} f(x).$$

Доказательство. Рассмотрим для примера случай, когда f монотонно возрастает. Пусть $y_0 := \inf_{x \in (a,b)} f(x)$ — конечное число (случай бесконечного y_0 разобрать самостоятельно!). В силу характеристического свойства точной нижней грани для любого $\varepsilon > 0$ существует $x_1 \in (a;b)$

такое, что $f(x_1) < y_0 + \varepsilon$. Пусть $x \in (a; x_1)$. Тогда $y_0 = \inf_{x \in (a; b)} f(x) \le \le f(x) \le f(x_1) < y_0 + \varepsilon$, значит, $|f(x) - y_0| < \varepsilon \ \forall x \in (a; x_1)$. Таким образом, $\lim_{x \to a+} f(x) = y_0$. Аналогично доказывается, что $\lim_{x \to b-} f(x) = \sup_{x \in (a; b)} f(x)$.

Теорема 2. Пусть функция f монотонна на интервале (a;b) и $x_0 \in (a;b)$. Тогда существуют конечные пределы $f(x_0-0)$ и $f(x_0+0)$. Если функция f монотонно возрастает, то $f(x_0-0) \le f(x_0) \le f(x_0+0)$, а если убывает, то $f(x_0-0) \ge f(x_0) \ge$ $\ge f(x_0+0)$. Если $a < x_1 < x_2 < b$ и функция f монотонно возрастает,
то $f(x_1+0) \le f(x_2-0)$, а если убывает, то $f(x_1+0) \ge f(x_2-0)$.

Доказательство. Рассмотрим для примера случай, когда f монотонно возрастает. Рассмотрим f на интервале $(a;x_0)$. Из теоремы 1 следует, что существует $f(x_0-0)\in \mathbb{R}$. Но так как $f(x)\leq f(x_0)$ для любых $x\in (a;x_0)$, то $\sup_{(a,x_0)}f$ конечен и не превосходит $f(x_0)$. По теореме 1 он совпадает с $f(x_0-0)$, значит, $f(x_0-0)\leq f(x_0)$. Аналогично показывается, что существует $f(x_0+0)\in \mathbb{R}$ и $f(x_0+0)\geq f(x_0)$.

Пусть теперь $x_1 < x_2, \ x_1, \ x_2 \in (a;b)$. Выберем $x', \ x''$ такие, что $x_1 < x' < x'' < x_2$. В силу монотонности функции f получаем $f(x_1) \le f(x') \le f(x'') \le f(x'')$. Устремим x' к x_1 , тогда по теореме о переходе к пределу в неравенствах получаем, что $f(x_1 + 0) = \lim_{x' \to x_1 + 0} f(x') \le f(x'')$. Устремляя x'' к x_2 , по той же теореме получаем, что $f(x_1 + 0) \le f(x'') = f(x_2 - 0)$. Теорема 2 доказана.

Следствие 1. Любая точка разрыва $c \in (a;b)$ монотонной функции f, определенной на интервале (a;b), является точкой разрыва первого рода.

Следствие 2. Число точек разрыва монотонной на (a;b) функции f не более, чем счетно.

Доказательство. Для определенности предположим, что f монотонно возрастает и пусть A — множество точек разрыва функции f на интервале (a;b). Предположим, что множество A бесконечно. Рассмотрим любые две точки $x_1, x_2 \in A$ и пусть $x_1 < x_2$. По теореме 2 имеем $f(x_1+0) \leq f(x_2-0)$, поэтому интервалы $(f(x_1-0), f(x_1+0))$ и $(f(x_2-0), f(x_2+0))$ не пересекаются. Для любой точки $x \in A$ выберем ра-

циональное число q_x из интервала (f(x-0), f(x+0)). В силу доказанного выше $x_1 \neq x_2 \Rightarrow q_{x_1} \neq q_{x_2}$. Таким образом, отображение $q: A \to \mathbb{Q}$, которое сопоставляет x рациональное число q_x , инъективно. Это означает, что множество A равномощно бесконечному подмножеству q(A) счетного множества A. Значит, q(A) счетно, поэтому счетно и множество A.

Пример. f(x) = [x], где [x] — целая часть x. Множество точек разрыва f счетно и совпадает с \mathbb{Z} .

Рис. 31.

Теорема 3. Монотонная функция, определенная на отрезке [a;b], является непрерывной тогда и только тогда, когда образ f([a;b]) является отрезком.

Доказательство. Необходимость условия теоремы следует из теоремы Больцано-Коши о промежуточном значении.

Достаточность. Пусть f([a;b]) — отрезок и для определенности f возрастает на [a;b]. Покажем, что f непрерывна на [a;b]. Предположим, что это не так. Тогда существует точка $x_0 \in [a;b]$, в которой f разрывна.

Рассмотрим случай, когда $x_0 \in (a;b)$ (случаи $x_0 = a$ или $x_0 = b$ рассмотрите самостоятельно!). Тогда

$$f(x') \le f(x_0 - 0) \le f(x_0) \le f(x_0 + 0) \le f(x'') \tag{1}$$

для любых точек $x' \in [a; x_0)$ и $x'' \in (x_0; b]$ в силу монотонного возрастания f, причем $f(x_0 - 0) < f(x_0 + 0)$. Фиксируем y_0 такое, что $f(x_0 - 0) < y_0 < f(x_0 + 0)$ и $y_0 \neq f(x_0)$. В силу (1) имеем $y_0 \notin f([a; b])$.

Так как $f(a) \leq y_0 \leq f(b)$, множество f([a;b]) не может быть отрезком. Теорема 3 доказана.

Замечание. Образ интервала (a;b) при монотонном отображении f может не быть интервалом.

Пример. Пусть

$$f(x) = \begin{cases} 0, & -2 < x < -1, \\ x+1, & -1 \le x \le 1, \\ 2, & 1 < x < 2. \end{cases}$$

Функция f непрерывна, монотонна и f((-2;2)) = [0;2].

Теорема 4. Пусть f строго монотонна на числовом промежутке I. Для того, чтобы функция f была неперывной на I, необходимо и достаточно, чтобы образ J=f(I) был числовым промежутком того же типа.

Доказательство. Если I = [a; b], то это следует из теоремы 3. Рассмотрим случай, когда I = [a; b) и функция f строго монотонно возрастает. Остальные случае рассматриваются аналогично.

Необходимость. Пусть f непрерывна. Фиксируем последовательность $a < b_1 < b_2 < \dots < b_n < \dots$ такую, что $b_n \to b$, $n \to \infty$. Так как f непрерывна, то по теореме 3 $f([a;b_n])$ — это отрезок $[f(a);f(b_n)]$. При этом в силу строгой монотонности функции f имеем $f(b_1) < f(b_2) < \dots < f(b_n) < \dots$. Поэтому

$$f(I) = f(\bigcup_{n=1}^{\infty} [a; b_n]) = \bigcup_{n=1}^{\infty} f([a; b_n]) =$$
$$= \bigcup_{n=1}^{\infty} [f(a); f(b_n)] = [f(a); \lim_{n \to \infty} f(b_n)] = J$$

промежуток того же типа, что и I.

Достаточность. Предположим, что f строго монотонно возрастает, и $f([a;b))=[f(a);\beta)$. Докажем, что f непрерывна. Пусть $x_0\in[a;b)$. Докажем непрерывность функции f в точке x_0 . Фиксируем число $c\in(x_0;b)$. Тогда $f(x)\leq f(c),\ x\leq c$ и $f(x)>f(c),\ x>c$ в силу строгой монотонности f. Значит,

$$f([a; c]) = [f(a); \beta) \cap (-\infty; f(c)] = [f(a); f(c)].$$

Значит, f([a;c]) — отрезок, поэтому по теореме 3 функция f непрерывна на [a;c], следовательно, f непрерывна в точке $x_0 \in [a;c)$. Так как x_0 — любая точка из [a;b), то f непрерывна на [a;b). Теорема 4 доказана.

Теорема 5. Пусть f непрерывна на числовом промежутке I. Для того, чтобы существовала обратная функция $f^{-1}:f(I)\to I$ необходимо и достаточно, чтобы f была строго монотонна.

Доказательство. Достаточность очевидна, так как если f строго монотонна, то она инъективна, следовательно, $f:I\to f(I)$ — биекция.

Необходимость. Пусть f обладает обратной $f^{-1}:f(I)\to I$. Тогда f инъективна.

Предположим, что f не является строго монотонной. Тогда существуют точки $x_1 < x_2 < x_3$ такие, что $f(x_2)$ не лежит между $f(x_1)$ и $f(x_3)$. Предположим, для определенности, что $f(x_1) < f(x_3)$. Возможны два случая: $f(x_2) < f(x_1) < f(x_3)$ или $f(x_1) < f(x_3) < f(x_2)$. Разберем первый случай, второй рассматривается аналогично.

Так как $x_2 < x_3$ и f непрерывна на $[x_2; x_3]$, а $f(x_1) \in [f(x_2); f(x_3)]$ то по теореме Больцано-Коши $\exists x' \in [x_2; x_3]$ такая, что $f(x') = f(x_1)$. Так как $x_1 \not\in [x_2; x_3]$, то $x_1 \neq x'$, но $f(x_1) = f(x')$. Это противоречит инъективности f. Теорема 5 доказана.

Теорема 6. Если функция f непрерывна и строго монотонна на числовом промежутке I, то f^{-1} непрерывна и строго монотонна на J=f(I).

Доказательство. Рассмотрим для определенности случай, когда f строго монотонно возрастает. Предположим противное, т.е. для некоторых $y_1 < y_2$ выполняется неравенство $f^{-1}(y_1) \ge f^{-1}(y_2)$. Тогда в силу монотонного возрастания f имеем $y_1 = f(x_1) \ge f(x_2) = y_2$ — противоречие. Значит, f^{-1} строго монотонно возрастает на J.

Теперь докажем, что f^{-1} непрерывна на J. Так как f непрерывна и строго монотонна на числовом промежутке I, то по теореме 4 промежуток J — того же типа, что и I. Обратная функция f^{-1} строго монотонна на J и отображает его на числовой промежуток I того же типа, следовательно, по теореме 4 функция f^{-1} непрерывна на J. Теорема 6 доказана.

8.7 Непрерывность элементарных функций

Теорема 1. Степенная функция $y = x^{\alpha}$, где $\alpha \in \mathbb{Q}$, является непрерывной в области своего определения.

Доказательство. Рассмотрим несколько случаев.

- 1) Функция y = x непрерывна на \mathbb{R} . Это очевидно.
- 2) Функция $y=x^m,\ m\in\mathbb{N},$ непрерывна на \mathbb{R} как произведение непрерывных функций, так как $x^m=\underbrace{x\cdot x\cdot \cdots\cdot x}_{m,\max}.$
- 3) Функция $y=x^{-m},\ m\in\mathbb{N},$ непрерывна на $\mathbb{R}\setminus\{0\}$ как частное непрерывных функций, так как $y=x^{-m}=1/x^m$.
- 4) Функции $y=x^{1/n}$, $n\in\mathbb{N}$, определены при четных n на $[0;+\infty)$, а при нечетных на \mathbb{R} . Эта функция непрерывна, так как обратна к функции $y=x^n$, которая рассматривается на $[0;+\infty)$ при четных n и на \mathbb{R} при нечетных. При таком выборе области определения функция $y=x^n$ является непрерывной и строго монотонной. Поэтому по теореме 6 предыдущего пункта $y=x^{1/n}$ непрерывна в области своего определения.
- 5) Функция $y=x^{m/n}$, где $m, n\in\mathbb{N}$ и взаимно просты, определена там же, где и $y=x^{1/n}$. Она непрерывна как суперпозиция двух непрерывных функций $y=x^{1/n}$ и $y=x^m$.
- 6) Функция $y=x^{-m/n}$, где $m, n\in\mathbb{N}$ и взаимно просты, определена и непрерывна при четных n на $(0;+\infty)$, а при нечетных на $\mathbb{R}\setminus\{0\}$ как частное двух непрерывных функций: $y=1/x^{m/n}$.

Теорема 1 доказана.

Теорема 2. Показательная функция $y=a^x\ (a>0\ ,\ a\neq 1\)$ непрерывна на $\mathbb R$.

Доказательство. Сначала докажем, что $y=a^x$ непрерывна в точке x=0, т. е. $\lim_{x\to 0}a^x=a^0=1$.

Достаточно рассмотреть случай, когда a>1, так как при 0< a<1 имеем $a^x=1/(1/a)^x$, где 1/a>1.

Ранее было доказано, что $\lim_{n\to\infty}a^{1/n}=\lim_{n\to\infty}\sqrt[n]{a}=1$. Из свойств пределов последовательностей следует, что $\lim_{n\to\infty}a^{-1/n}=1$. Значит, для любого $\varepsilon>0$ существует $N=N(\varepsilon)$ такое, что $a^{1/N}<1+\varepsilon$, $a^{-1/N}>1-\varepsilon$.

Если |x| < 1/N, то -1/N < x < 1/N, откуда

$$1 - \varepsilon < a^{-1/N} < a^x < a^{1/N} < 1 + \varepsilon \Longrightarrow |a^x - 1| < \varepsilon.$$

Это означает, что $\lim_{x\to 0} a^x = a^0 = 1$.

Теперь докажем непрерывность $y=a^x$ в любой точке $x_0\in\mathbb{R}.$ Имеем

$$\lim_{x \to x_0} a^x = \lim_{x \to x_0} (a^{x_0} a^{x - x_0}) = a^{x_0} \lim_{x \to x_0} a^{x - x_0} = a^{x_0} \lim_{t \to 0} a^t = a^{x_0}.$$

Теорема 2 доказана.

Теорема 3. Функция $y = \log_a x \ (a > 0, \ a \neq 1)$ непрерывна на $(0; +\infty)$.

Доказательство. Функция $y = \log_a x$ является обратной к непрерывной строго монотонной функции $y = a^x$, следовательно, по теореме 6 предыдущего пункта она непрерывна.

Теорема 4. Степенная функция $y = x^{\alpha} \ (\alpha \in \mathbb{R})$ непрерывна в области своего определения.

Доказательство. Если $\alpha \in \mathbb{Q}$, то это следует из теоремы 1. Пусть α — иррациональное число. Тогда при $\alpha > 0$ функция $y = x^{\alpha}$ определена на $[0; +\infty)$, а при $\alpha < 0$ — на $(0; +\infty)$. Если x > 0, то $x^{\alpha} = e^{\alpha \ln x}$ непрерывна как суперпозиция непрерывных функций.

Осталось показать, что при $\alpha>0$ функция $y=x^{\alpha}$ непрерывна в точке x=0, т. е. $\lim_{x\to 0+}x^{\alpha}=0$. Но это проверяется непосредственно с помощью определения предела. Действительно, $\forall \varepsilon>0 \;\; \exists \delta=\varepsilon^{1/\alpha}$: $x\in (0,\delta)\Longrightarrow |x^{\alpha}|<\varepsilon$.

Теорема 5. Тригонометрические функции $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$ непрерывны в области своего определения.

Доказательство. Рассмотрим $y = \sin x$. Имеем

$$|\sin x - \sin x_0| = 2 \left| \sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} \right| \le 2 \left| \sin \frac{x - x_0}{2} \right| \le |x - x_0|.$$

Таким образом, если $|x-x_0| < \delta = \varepsilon$, то $|\sin x - \sin x_0| < \varepsilon$. Это означает непрерывность функции $y = \sin x$ в любой точке $x_0 \in \mathbb{R}$.

Функция $y = \cos x = \sin(\pi/2 - x)$ непрерывна как суперпозиция двух непрерывных функций.

Функция $y=\operatorname{tg} x=\sin x/\cos x$ непрерывна как частное двух непрерывных функций в точках, где $\cos x\neq 0$, т. е. $x\neq \pi/2+\pi k,\ k\in\mathbb{Z}$. Аналогично $y=\operatorname{ctg} x$ непрерывна в точках $x\neq \pi k$.

Теорема 6. Обратные тригонометрические функции $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, y =

Доказательство. Рассмотрим для примера функцию $y = \arcsin x$. Эта функция обратна к функции $y = f(x), \ x \in [-\pi/2; \pi/2]$, которая получается сужением функции $y = \sin x$ на отрезок $[-\pi/2; \pi/2]$. Функция f непрерывна и строго монотонно возрастает. Поэтому ее обратная $y = \arcsin x$ является непрерывной по теореме 6 предыдущего пункта.

Теорема 7. Любая элементарная функция является непрерывной в области своего определения.

Действительно, в теоремах 1–6 установлена непрерывность основных элементарных функций в областях их определения. Любая элементарная функция получается их основных элементарных с помощью арифметических операций и операции суперпозиции, которые не нарушают непрерывности.

Содержание

1	Мн	ожества и функции	9		
	1.1	Множества	Ś		
	1.2	Числовые промежутки	4		
	1.3	Основные операции над множествами	6		
	1.4	Функции (отображения)	11		
	1.5	Образ и прообраз множества	11		
	1.6	Типы функций: сюръекции, инъекции, биекции	12		
	1.7	Сужение отображения	13		
	1.8	График отображения	14		
	1.9	Суперпозиция отображений (сложная функция)	14		
2	Последовательности и семейства				
	2.1	Последовательности	15		
	2.2	Семейства элементов. Объединение и пересечение			
		семейства множеств	16		
	2.3	Равномощные множества	18		
	2.4	Теоремы о счетных множествах	18		
	2.5	Примеры счетных и несчетных множеств	21		
3	Числовая прямая				
	3.1	Аксиоматическое построение числовой прямой	22		
	3.2	Характеристические свойства супремума и инфимума	25		
	3.3	Расширенная числовая прямая	26		
4	Предел числовой последовательности				
	4.1	Окрестности точек в \mathbb{R}	28		
	4.2	Определение предела числовой последовательности	28		
	4.3	Простейшие свойства пределов последовательностей	3(
	4.4	Принцип стягивающихся отрезков	31		
	4.5	Теорема Больцано-Вейерштрасса	33		
5	Топология вещественной прямой				
	5.1	Граница множества, открытые и замкнутые множества,			
		внутренность и замыкание	34		
	5.2	Свойства открытых множеств	37		

	5.3	Свойства замкнутых множеств	38		
	5.4	Характеризация точек прикосновения и предельных точек			
		через последовательности	39		
	5.5	Компактные множества на числовой прямой	41		
6	Сво	ойства пределов числовых последовательностей	45		
	6.1	Теоремы о пределах числовых последовательностей	45		
	6.2	Фундаментальные последовательности, критерий Коши	48		
	6.3	Монотонные последовательности	49		
	6.4	Число е	50		
	6.5	Пределы последовательностей в $\overline{\mathbb{R}}$	52		
	6.6	Вычисление пределов некоторых последовательностей	53		
7	Пре	едел функции в точке	55		
	7.1	Элементарные функции	55		
	7.2	Определение предела функции в точке	55		
	7.3	Предел функции в бесконечно удаленных точках	58		
	7.4	Бесконечные пределы	60		
	7.5	Предел сложной функции, замена переменных в пределах	61		
	7.6	Односторонние пределы	62		
	7.7	Замечательные пределы	63		
	7.8	О-символика (символы Ландау), эквивалентные функции .	66		
8	Непрерывные функции 70				
	8.1	Непрерывность функции в точке	70		
	8.2	Точки разрыва	72		
	8.3	Теорема Вейерштрасса о непрерывных функциях	74		
	8.4	Равномерная непрерывность функции на множестве,			
		теорема Кантора	75		
	8.5	Теорема Больцано-Коши о промежуточном значении	77		
	8.6	Монотонные функции	78		
	8.7	Непрерывность элементарных функций	83		

Список литературы

- [1] Никольский С.М. Курс математического анализа, т. 1. М.: Наука, 1973.
- [2] Зорич В.А. Математический анализ, ч. І. М.: Наука, 1981.
- [3] Шерстнев А.Н. Конспект лекций по математическому анализу. Казань: КГУ, 2005.
- [4] Кудрявцев Л.Д. Математический анализ, т.1. М.: Высшая школа, 1973.
- [5] Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, т. 1. М.: Физматлит, 2000.
- [6] Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: АСТ, 2007.
- [7] Гелбаум Б., Олмстед Дж. Контрпримеры в анализе. М,: Мир, 1967.