Professor: Ekaterina Kostina Tutor: Philip Müller

1 Aufgabe

Die n-te Zahl der Fibonacci-Folge wird rekursiv durch

$$F_n = F_{n-1} + F_{n-2}$$
, für $n \ge 3$

mit den Anfangswerten

$$F_1 = F_2 = 1$$

definiert. Beweisen Sie mit Hilfe vollständiger Induktion

(a)
$$1 + \sum_{k=1}^{n-1} F_k = F_{n+1}, \quad n \in \mathbb{N}, n \ge 2$$

Beweis.

Induktionsanfang: n = 2: $1 + \sum_{k=1}^{1} F_k = 1 + F_1 = F_2$

Induktionsannahme: Für ein beliebiges, aber festes $n \in \mathbb{N}$ mit $n \ge 2$ gelte $1 + \sum_{k=1}^{n-1} F_k = F_{n+1}$

Induktions schluss: $n \to n+1$: $1 + \sum_{k=1}^{n} F_k = 1 + \sum_{k=1}^{n-1} F_k + F_n = F_{n+1} + F_n = F_{n+2}$

(b)
$$F_{n-1}F_{n+1} = F_n^2 + 1$$
, $n \in \mathbb{N}$, $n \text{ gerade}$

Beweis.

Induktionsanfang: n=2: $F_1F_3=1\cdot 2=1^2+1=F_2^2+1$ Induktionsannahme: Für ein beliebiges, aber festes $n\in\mathbb{N},$ n gerade, gelte $F_{n-1}F_{n+1}=F_n^2+1$

Induktionsschluss: $n \rightarrow n + 2$:

$$\begin{split} F_{n+1}F_{n+3} &= (F_{n+2} - F_n)(F_{n+2} + F_{n+1}) \\ &= F_{n+2}^2 + F_{n+2}F_{n+1} - F_{n+2}F_n - F_{n+1}F_n \\ &= F_{n+2}^2 + F_{n+1}^2 + F_{n+1}F_n - F_{n+2}F_n - F_{n+1}F_n \\ &= F_{n+2}^2 + F_{n+1}F_n + F_{n+1}F_{n-1} - F_{n+2}F_n \\ &\stackrel{I.A.}{=} F_{n+2}^2 + F_{n+1}F_n + F_nF_n + 1 - F_{n+2}F_n \\ &= F_{n+2}^2 + 1 + F_n(F_{n+1} + F_n - F_{n+2}) \\ &= F_{n+2}^2 + 1 \end{split}$$

(c) $F_{2n+1} = F_{n+1}^2 + F_n^2$, $n \in \mathbb{N}$

Beweis.

Induktions anfang: n=1: $F_3=2=1^2+1^2=F_2^2+F_1^2$ $F_5=5=2^2+1^2=F_3^2+F_2^2$

Induktionsannahme: Für ein beliebiges, aber festes $n \in \mathbb{N}$, gelte $F_{2n+1} = F_{n+1}^2 + F_n^2$ und

Josua Kugler Analysis 1, Blatt 1

$$F_{2n+3} = F_{n+2}^2 + F_{n+1}^2$$

 $F_{2n+3}=F_{n+2}^2+F_{n+1}^2$ Induktionsschluss: $n\to n+1$: $F_{2n+3}=F_{n+2}^2+F_{n+1}^2$ folgt direkt aus der Induktionsannahme.

$$\begin{split} F_{2n+5} &= F_{2n+4} + F_{2n+3} \\ &= F_{2n+3} + F_{2n+3} + F_{2n+2} \\ &= F_{2n+3} + F_{2n+3} + F_{2n+3} - F_{2n+1} \\ \stackrel{I.A.}{=} 3(F_{n+2}^2 + F_{n+1}^2) - F_{n+1}^2 - F_n^2 \\ &= 2F_{n+2}^2 + (F_{n+1} + F_n)^2 + 2F_{n+1}^2 - F_n^2 \\ &= 2F_{n+2}^2 + F_{n+1}^2 + 2F_{n+1}F_n + 2F_{n+1}^2 + F_n^2 - F_n^2 \\ &= 2F_{n+2}^2 + F_{n+1}^2 + 2F_{n+1}F_n + 2F_{n+1}^2 + F_n^2 - F_n^2 \\ &= 2F_{n+2}^2 + F_{n+1}^2 + 2F_{n+1}(F_n + F_{n+1}) \\ &= F_{n+2}^2 + F_{n+2}^2 + 2F_{n+2}F_{n+1} + F_{n+1}^2 \\ &= F_{n+2}^2 + F_{n+3}^2 \end{split}$$

2 Aufgabe

Zeigen Sie:

(a)
$$\sum_{k=1}^{n} (2k-1) = n^2$$
, $\forall n \in \mathbb{N}$ (Achtung, geht nicht ab $k=0$)

Induktionsanfang: n = 1: $\sum_{k=1}^{1} (2k - 1) = 1 = 1^2$

Induktionsannahme: Für ein beliebiges, aber festes $n \in \mathbb{N}$, gelte $\sum_{k=1}^{n} (2k-1) = n^2$

Induktionsschluss: $n \rightarrow n + 1$:

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} +(2(n+1) - 1 \stackrel{I.A.}{=} n^2 + 2n + 1 = (n+1)^2$$

(b) $\sum_{k=0}^{n} \binom{n}{k} = 2^n, \quad \forall n \in \mathbb{N}$

Beweis. Laut dem binomischen Lehrsatz gilt: $(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^k \cdot 1^{n-k} = \sum_{k=0}^n \binom{n}{k}$

(c)
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}, \quad \forall n \in \mathbb{N}$$

Analysis 1, Blatt 1 Josua Kugler

Beweis.

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{k+1-k}{k(k+1)}$$

$$= \sum_{k=1}^{n} \left(\frac{k+1}{k(k+1)} - \frac{k}{k(k+1)}\right)$$

$$= \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

Dies ist eine Teleskopsumme und daher

$$=1-\frac{1}{n+1}$$

(d) $\binom{l+1}{k+1} = \sum_{m=k}^{l} \binom{m}{k} \quad \forall k, l \in \mathbb{N} : k \leq l$

Beweis.

Induktionsanfang: l = 1:

$$\binom{2}{k+1} = \binom{2}{2} = 1 = \binom{1}{1} = \sum_{m=k}^{1} \binom{m}{k}$$

Induktionsannahme: Für ein beliebiges, aber festes $l \in \mathbb{N}$ gilt

$$\binom{l+1}{k+1} = \sum_{m=k}^{l} \binom{m}{k} \quad \forall k \in \mathbb{N} : k \le l$$

Induktionsschluss: $l \rightarrow l + 1$:

$$\binom{l+2}{k+1} = \begin{cases} 1 = \binom{l+1}{l+1} = \sum_{m=k}^{l+1} \binom{m}{k} & k = l+1 \quad \checkmark \\ \binom{l+1}{k} + \binom{l+1}{k+1} & k \le l \end{cases}$$

$$\stackrel{I.A.}{=} \binom{l+1}{k} + \sum_{m=k}^{l} \binom{m}{k}$$

$$= \sum_{m=k}^{l+1} \binom{m}{k}$$

Analysis 1, Blatt 1 Josua Kugler

3 Aufgabe

Gegeben die Buchstaben a,b formen wir "Worte" W wie folgt:

$$W_1 := a, \quad W_2 := b, \quad W_{n+1} := W_n W_{n-1}, \quad n \in \mathbb{N}, n \ge 2$$

Das heißt es gilt beispielsweise

$$W_3 = ba$$
, $W_4 = bab$

Zeigen Sie mit Hilfe von vollständiger Induktion:

(a) W_n besteht aus F_n Buchstaben, $n \in \mathbb{N}$. $(F_n = n\text{-te Fibonacci-Zahl})$

Def. 1. Wir bezeichnen mit $L(W_n)$ die Länge des Wortes W_n .

Beweis

Induktionsanfang: n = 2: $L(W_1) = L(a) = 1 = F_1$. $L(W_2) = L(b) = 1 = F_2$ Induktionsannahme: Für ein beliebiges, aber festes $n \in N$ sei $L(W_{n-1}) = F_{n-1}$ und $L(W_n) = F_n$.

Induktionsschluss: $n \to n+1$: Aus der Induktionsannahme folgt unmittelbar $L(W_n) = F_n$. $L(W_{n+1}) = L(W_{n+1}) = L(W_nW_{n-1}) = L(W_n) + L(W_{n-1}) \stackrel{I.A.}{=} F_n + F_{n-1} = F_{n+1}$

(b) Die Buchstabenkombination aa ist kein Bestandteil des Wortes W_n für alle $n \in \mathbb{N}$.

Def. 2. * bezeichne eine Abfolge von as und bs beliebiger Reihenfolge und Länge (auch Länge 0 ist zugelassen).

Lemma 1. Alle W_{2n} beginnen und enden mit b.

Beweis.

Induktionsanfang: n = 1: $W_2 = b$

Induktionsannahme: Für ein beliebiges, aber festes $n \in \mathbb{N}$ sei $W_{2n} = b * b$.

Induktionsschluss: $n \to n+1$. $W_{2n+2} = W_{2n+1}W_{2n} = W_{2n}W_{2n} - 1W_{2n} = b * bW_{2n-1}b * b = b * b$.

Nun zeigen wir die eigentliche Behauptung.

Beweis.

Induktionsanfang: n=2: aa ist offensichtlich weder in W_1 noch in W_2 enthalten

Induktionsannahme: Für ein beliebiges, aber festes $n \in \mathbb{N}$ gelte, dass aa weder in W_{n-1} noch in W_n enthalten ist.

Induktionsschluss: $n \to n+1$: Dass aa nicht in W_n enthalten ist, folgt sofort aus der Induktionsannahme. $W_{n+1} = W_n W_{n-1}$. Weder W_n noch W_{n-1} enthalten aa. Die einzige Möglichkeit, so dass aa in $W_n W_{n-1}$ vorkommen kann, ist dass der letzte Buchstabe von W_n und der erste Buchstabe von W_{n-1} gleich a sind. Entweder n oder n-1 sind aber gerade und fangen nicht nur mit b an, sondern hören auch auf b auf. Also folgt, dass entweder der letzte Buchstabe von W_n oder der erste Buchstabe von W_{n-1} gleich b sind, W_{n+1} enthält aa daher nicht.

Analysis 1, Blatt 1 Josua Kugler

Aufgabe 4

Seien $n, k \in \mathbb{N}$. Zeigen Sie, dass die Anzahl A(n) aller k-Tupel $(a_1, \ldots, a_k) \in \mathbb{N}^k$ mit $(*) \quad 1 \le a_1 \le a_2 \le \dots \le a_k \le n$ gegeben ist durch

$$A(n) = \binom{n+k-1}{k}.$$

Formal ausgedrückt, ist also zu zeigen, dass

$$\binom{n+k-1}{k} = \left| \left\{ (a_1, \dots, a_k) \in \mathbb{N}^k \middle| 1 \le a_1 \le a_2 \le \dots \le a_k \le n \right\} \right|$$

Def. 3.
$$B(n,k) := \left| \left\{ (a_1, \dots, a_k) \in \mathbb{N}^k \middle| 1 \le a_1 \le a_2 \le \dots \le a_k \le n \right\} \right|$$

Lemma 2.

$$\sum_{l=1}^{l=n} \binom{l+k-1}{k} = \binom{n+k}{k+1}$$

Beweis.

Induktionsanfang: n = 1: $\sum_{l=1}^{l=1} {l+k-1 \choose k} = {k \choose k} = {1+k \choose k+1} = {n+k \choose k+1}$ Induktionsannahme: Für ein beliebiges, aber festes $n \in \mathbb{N}$ gelte $\sum_{l=1}^{l=n} {l+k-1 \choose k} = {n+k \choose k+1}$ Induktionsschluss: $n \rightarrow n+1$:

$$\sum_{l=1}^{l=n+1} \binom{l+k-1}{k} = \sum_{l=1}^{l=n} \binom{l+k-1}{k} + \binom{n+k}{k} \stackrel{I.A.}{=} \binom{n+k}{k+1} + \binom{n+k}{k} = \binom{n+k+1}{k+1}$$

 $Z.Z.: B(n,k) = \binom{n+k-1}{k}$

Beweis.

Induktionsanfang: k=1: Es gibt nur ein Element in unserem Tupel, dieses kann folglich $n=\binom{n}{1}=1$ $\binom{n+k-1}{k}$ Werte annehmen.

Induktionsannahme: Für ein beliebiges, aber festes $k \in \mathbb{N}$ sei $\forall n \in \mathbb{N} : B(n,k) = \binom{n+k-1}{k}$ **Induktionsschluss:** $k \to k+1$: Setzt man $a_{k+1} = n$, so gibt es A(n,k) Möglichkeiten, die restlichen a_i $(1 \le i \le k)$ zu wählen. Setzt man $a_{k+1} = n-1$, so gibt es B(n-1,k) Möglichkeiten, die restlichen a_i $(1 \le i \le k)$ zu wählen. Allgemein gilt: Setzt man $a_{k+1} = l \in \mathbb{N}$ mit $l \le n$, so gibt es B(l,k)Möglichkeiten, die restlichen a_i ($1 \le i \le k$) zu wählen. Da für zwei verschiedene l a_k ebenfalls verschieden ist, überschneiden sich keine dieser Möglichkeiten, es gilt:

$$B(n, k+1) = B(n, k) + B(n-1, k) + \dots + B(1, k) = \sum_{l=1}^{l=n} B(l, k) = \sum_{l=1}^{l=n} {l+k-1 \choose k} \stackrel{Lemma}{=} {n+k \choose k+1}$$