Programme de la semaine 15 (du 22/01 au 28/01).

Introduction aux développements limités

Reprise.

Ensembles et applications

- Ensembles, parties d'un ensemble, notation $\mathcal{P}(E)$. Opérations : réunion, intersection, complémentaire, différence. Quelques propriétés élémentaires sur ces opérations. Ensembles disjoints, recrouvrements disjoints, partitions. Produit cartésien d'un nombre fini d'ensembles.
- Applications. Composition, cas de la composition avec une application identité. Restrictions, prolongements. Images directes, images réciproques.
- Injectivité, surjectivité, bijectivité. Traduction en termes d'équations. Définition de la réciproque d'une application bijective, théorème faisant le lien avec la composition. Réciproque de $g \circ f$ lorsque f et g sont bijectives. Si f et g sont injectives (respectivement surjectives) alors $g \circ f$ est injective (respectivement surjective).

Limites de fonctions

- Notion de voisinage d'un point. Définitions d'une limite (finie/ $+\infty/-\infty$) en un point a de l'intervalle I ou une extrémité de I (a fini/ $+\infty/-\infty$). Limite à gauche, limite à droite, extension de la définition de la limite lorsque f est définie sur I privé de a.
- Unicité de la limite; si f a une limite finie en a alors f est bornée au voisinage de a; si $f(x) \underset{x \to a}{\longrightarrow} \ell$ et si $u_n \underset{n \to +\infty}{\longrightarrow} a$ $((u_n)$ à valeurs dans I) alors $f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$, utilisation pour montrer qu'une fonction n'a pas de limite. Opérations usuelles sur les limites.
- Passage à la limite dans une inégalité. Théorème d'encadrement, de minoration, de majoration.
- Théorèmes sur les fonctions monotones (existence d'une limite finie ou infinie selon la situation).

La continuité n'est pas encore au programme.

Questions de cours

${\bf Demander}:$

- une définition ou un énoncé du cours;
- et l'une des démonstrations suivantes :
 - $\bullet \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
 - Soit $f: E \to F$. S'il existe $g: F \to E$ telle que $g \circ f = \mathrm{id}_E$ et $f \circ g = \mathrm{id}_F$, alors f est bijective (démontrer uniquement la bijectivité).
 - Si f et g (à introduire) sont injectives alors $g \circ f$ est injective; si f et g sont surjectives alors $g \circ f$ est surjective.
 - Si $f(x) \xrightarrow[x \to a]{} b$ et si $g(y) \xrightarrow[y \to b]{} \ell$ alors $g \circ f(x) \xrightarrow[x \to a]{} \ell$: preuve dans le cas où a, b, ℓ sont finis.

Semaine suivante : nsembles et applications, limite d'une fonction, continuité, début de la dérivation.