

UNIVERSIDAD NACIONAL DE LA MATANZA

DEPARTAMENTO DE INGENIERÍA E INVESTIGACIONES TECNOLÓGICAS

INGENIERIA EN INFORMATICA

BASE DE DATOS

Normalización

Breve Repaso

Dependencia Funcional

X -> Y

Ejemplo: CUIL -> Apellido, Nombre

33-18987654-5 -> Martínez, Gonzalo

.

33-18987654-5 -> Martínez, Gonzalo

Cualquier CUIL -> Martínez, Gonzalo

Claves

Dado el siguiente R:

Persona (CUIL, TipoDocumento, NúmeroDocumento, Nombre, Apellido, Fec_Nac)

A B C D E F

df?

F={A ->BCDEF, BC ->ADEF}

CC?

 $F=\{A, BC\}$

SK?

F={A, BC, AB, ABC, BCD, BCE, BCDE...}

Clave?

La clave podrá ser A o BC

Atributos primos?

ByC

Ejercicios de la Guía

Dado R(A,B,C,D,E,F) con F={AB \rightarrow C, C \rightarrow D, ABC \rightarrow E, F \rightarrow A, AB \rightarrow FD, A \rightarrow F}

- 1. Obtenga un cubrimiento minimal.
- 2. Normalizar a 3 FN

Dado R(A,B,C,D,E,F) con F={AB \rightarrow C, C \rightarrow D, ABC \rightarrow E, F \rightarrow A, AB \rightarrow FD, A \rightarrow F}

1- Descomponer a Derecha

$$f1=\{AB\rightarrow C, C\rightarrow D, ABC\rightarrow E, F\rightarrow A, AB\rightarrow F, AB\rightarrow D, A\rightarrow F\}$$

2- Atributos redundantes lado Izquierdo

$$f2=\{AB\rightarrow C, C\rightarrow D, AB\rightarrow E, F\rightarrow A, AB\rightarrow D, A\rightarrow F\}$$

3- df Redundantes

AB+ en f2 - {AB->C}	C+ en f2 - {C->D}	AB+ en f2 - {AB->E}	F+ en f2 - {F->A}
AB+=AB E D F	C+=C	AB+=AB C D F	F+=F
Entonces AB->C NO es Redundante!	Entonces C->D NO es Redundante!	Entonces AB->E NO es Redundante!	Entonces F->A NO es Redundante!

 $AB+ en f2 - \{AB->D\}$ $A+ en f2 - \{AB->D, A->F\}$

AB+=AB C D A+=A

Entonces AB->D ES Redundante! Entonces A->F NO es Redundante!

FMIN= $\{AB \rightarrow C, C \rightarrow D, AB \rightarrow E, F \rightarrow A, A \rightarrow F\}$

R(A,B,C,D,E,F) y con FMIN= $\{AB \rightarrow C, C \rightarrow D, AB \rightarrow E, F \rightarrow A, A \rightarrow F\}$

2. Normalizar a 3 FN

R(A,B,C,D,E,F) con F={AB \rightarrow C, C \rightarrow D, AB \rightarrow E, F \rightarrow A, A \rightarrow F} 2- Obtener descomposición en 3FN

0

Claves Candidatas

A+=AF AB+=ABCDEF BCD+=BCD
B+=B BC+=BCD BCE+=BCED
C+=CD BD+=BD BDE+=BDE

E+=E BE+=BE

F+=FA BF+=BFACDE

CC= {AB, BF}

Forma Normal?

Fmin = $\{AB \rightarrow C, C \rightarrow D, AB \rightarrow E, F \rightarrow A, A \rightarrow F\}$

FNBC 2FN FNBC 3FN 3FN

FNBC
3FN
2FN
1FN

Está en 2FN ya que C→D no cumple con 3FN

Dado R(A,B,C,D,E,F) con F={AB \rightarrow C, C \rightarrow D, AB \rightarrow E, F \rightarrow A, A \rightarrow F} 2- Obtener descomposición en 3FN

CC= {AB, BF}

R1 (ABCE)	R2 (CD)	R3 (FA)	R4 (AF)
$df1 \{AB \rightarrow C, AB \rightarrow E\}$	$df2 \{C \rightarrow D\}$	df3 {F→A}	df4 {A→F}
CC: AB	CC: C	CC: F	CC: A
FN? FNBC	FN? FNBC	FN? FNBC	FN? FNBC

G = {df1 U df2 U df3 U df4} ====> F y G resultante son equivalentes (Iguales).

No hubo pérdida de Dependencias!

R(ABCDE) con F ={AB->CD, BDE->C, BC->A, A->E, E->C}

1- Descomponer a Derecha

2- Atributos redundantes lado Izquierdo

AB->C	AB->D	BDE->C	BC->A
A+=AEC	A+=AEC	B+= B	C+=C
B+=B entonces B es redundante	B+=B	D+=D	B+=B
		E+=EC entonces B y D son redundantes	

f2= {A->C, AB->D, E->C, BC->A, A->E}

3- df Redundantes

A+ en f2 - {A->C}	AB+ en f2 - {AB->D, <mark>A->C</mark> }	E+ en f2 - {E->C, <mark>A->C</mark> }	BC+ en f2 - {BC->A, <mark>A->C</mark> }
A+=AEC	AB+=ABDEC	E+=E	BC+=BC
Entonces A->C es Redundante!	Entonces AB->D NO es Redundante!	Entonces E->C NO es Redundante!	Entonces BC->A NO es Redundante!

A+ en f2 - {A->E, A->C} A+=A

Entonces A->E NO es Redundante!

FMIN= {AB->D, E->C, BC->A, A->E}

b- Calcular todas las Claves Candidatas e indicar en qué forma normal se encuentra R. R(ABCDE) con F ={AB->D, E->C, BC->A, A->E}

Claves Candidatas

A+=AEC AB+=ABCDE B+=B BC+=BCAED

BD+=BD

BE+=BECAD

CC= {AB, BC, BE}

Forma Normal?

Fmin = {AB->D, E->C, BC->A, A->E}

FNBC 3FN FNBC 3FN

Está en 3FN

R (ABCDE) y Fmin = $\{AB->D, E->C, BC->A, A->E\}$

c)- Descomponer R en FNBC utilizando el algoritmo correspondiente.

Ejercicio 1 - Opción 1

INFERENCIA

- 1)- E->C
- 2)- BC->A
- 3)- BE->A

PseudoTransitividad entre

1 y 2

R(A,B,C,D,E,F) con $F = \{AB->D, E->C, BC->A, A->E\}$

R1 (EC) R2 (AE) R3 (ABD)

 $df1 \{E \rightarrow C\}$ $df2 \{A \rightarrow E\}$ $df3 \{AB \rightarrow D\}$

CC: E CC: A CC: AB

FN? FNBC FN? FNBC FN? FNBC

G = {df1 U df2 U df3}

Hubo pérdida de Dependencias! (BC→A)

R1 (EC)

 $df1 \{E \rightarrow C\}$

CC: E

FN? FNBC

R2 (AE)

 $df2 \{A \rightarrow E\}$

CC: A

FN? FNBC

R3 (ABD)

df3 $\{AB \rightarrow D\}$

CC: AB

FN? FNBC

G = {df1 U df2 U df3} Hubo pérdida de Dependencias! (BC→A)

Dado el siguiente esquema de relación: R (M, N, O, P, T, X)
Verifique si los siguientes conjuntos de dependencias funcionales son equivalentes: $F (MN \to O, X \to T, O \to PT)$ $G (X \to T, O \to P, MN \to OPT, O \to T)$ $F \equiv G$ $F + = G + F \subseteq G + F$

F⊆G+ G⊆F+

 $MN \rightarrow O=> MN+ EN G+$ $X \rightarrow T=> X+ en F+ X+=XT$

 $\mathsf{MN+=MNOPT} \qquad \qquad \mathsf{O} \to \mathsf{P} \Rightarrow \mathsf{O+=OPT}$

 $X \rightarrow T \Rightarrow XT$ $MN \rightarrow OPT \Rightarrow MN + MNOPT$

 $O \rightarrow PT \Rightarrow OPT$ $O \rightarrow T \Rightarrow O+=OPT$

Ejercicio 1 - Opción 2

INFERENCIA

- 1)- A->E
- 2)- E->C
- 3)- A->C

Transitividad entre

1 y 2

R(A,B,C,D,E,F) con F = {AB->D, E->C, BC->A, A->E}

R1 (AE) R2 (AC) R3 (ABD)

 $df1 \{A \rightarrow E\} \qquad \qquad df2 \{A \rightarrow C\} \qquad \qquad df3 \{AB \rightarrow D\}$

CC: E CC: A CC: AB

FN? FNBC FN? FNBC FN? FNBC

G = {df1 U df2 U df3} Hubo pérdida de Dependencias! (BC→A, E→C)

- 3) Dado el esquema de relación **R(ABCDEF)** $F=\{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$
- a) Indicar en qué forma normal se encuentra
- b) Descomponer R en FNBC utilizando el algoritmo visto en clase.

R(ABCDEF) con F ={BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E}

1- Descomponer a Derecha

$$f1=\{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$$

2- Atributos redundantes lado Izquierdo

 BC->A
 DE->F

 B+=B
 D+=D

 C+=C
 E+=E

 $f2=\{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$

3- df Redundantes

BC+ en f2 - {BC->A} A+ en f2 - {A->B} DE+ en f2 - { DE->F} F+ en f2 - {F->E} BC+=BC A+=A DE+=DE F+=F

Entonces BC->A NO es Redundante! Entonces A->B NO es Redundante! Entonces DE->F NO es Redundante! Entonces F->E NO es Redundante!

$FMIN = \{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$

a) - Indicar en qué forma normal se encuentra

R(ABCDEF) con Fmin $\{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$

Claves Candidatas

CD+=CD CDAE+=CDAEBF CDFE+=CDFE

CDA+=CDAB CDAF+= CDAFBE

CDB+=CDB CDAB+=CDAB

CDE+=CDEF CDBE+=CDBEAF

CDF+=CDFE CDBF+=CDBFAE

CC= {ACDE, ACDF, BCDE, BCDF}

Forma Normal?

Fmin = $\{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$

3FN 3FN 3FN 3FN

Está en 3FN

R(ABCDEF) con Fmin $\{BC \rightarrow A, A \rightarrow B, DE \rightarrow F, F \rightarrow E\}$

b)- Descomponer R en FNBC utilizando el algoritmo correspondiente.

INFERENCIAS ????

INFERENCIAS????

Dado R(AOIVND) con F={ V \rightarrow D, I \rightarrow A, IV \rightarrow N, A \rightarrow O} Indique si hay pérdida de información si descompone a R en:

2) R1(IVN), R2(IA), R3(VD), R4(IVO)

Dado R(AOIVND) con F={ V \rightarrow D, I \rightarrow A, IV \rightarrow N, A \rightarrow O}

Tableau Inicial

	А	0	I	V	N	D
IVN	b11	b12	а3	a4	а5	b16
IA	a1	b22	a3	b24	b25	b26
VD	b31	b32	b34	a4	b15	a6
IVO	b41	a2	a3	a4	b45	b46

$I \to A$

	A	0	I	V	N	D
IVN	a1	b12	a3	a4	a5	a6
IA	a1	b22	a3	b24	b25	b26
VD	b31	b32	b34	a4	b15	a6
IVO	a1	a2	a3	a4	b45	a6

$\mathsf{V} \to \mathsf{D}$

	Α	0	I	V	N	D
IVN	b11	b12	a3	a4	а5	a6
IA	a1	b22	a3	b24	b25	b26
VD	b31	b32	b34	a4	b15	a6
IVO	b41	a2	a3	a4	b45	a6

$\mathsf{IV} \to \mathsf{N}$

	А	0	1	v /	N	D
IVN	a1	b12	a3	a4	a5	a6
IA	a1	b22	a3	b24	b25	b26
VD	b31	b32	b34	a4	b15	a6
IVO	a1	a2	а3	a4	a5	a6

 $\mathsf{IV} \to \mathsf{N}$

	А	0	1	V /	N	D
IVN	a1	b12	a3	a4	a5	a6
IA	a1	b22	a3	b24	b25	b26
VD	b31	b32	b34	a4	b15	a6
IVO	a1	a2	а3	a4	a5	a6

No hubo pérdida de Información!

Dado R(ABCDEF) con $F = \{EC->A, AE->F, F->C, D->F, B->A, CF->B\}$

Verificar si la descomposición de R en R1(EF), R2(ACD) y R3(BDE) es sin pérdida de información.

	Т	ableau	Inicial				
		А	В	O	D	Е	F
R1(EF) R2(ACD)	R1	b11	b12	b13	b14	а5	а6
R3(BDE)	R2	a1	b22	а3	a4	b25	b26
	R3	b31	a2	b33	a4	а5	b36
,	Itera	ción 2					

		А	В	O	D	E	F
F = { EC->A AE->F	R1	b11	b12	b13	b14	а5	а6
F->C D->F	R2	a1	b22	а3	a4	b25	b26
B->A CF->B	R3	b31	a2	b33	a4	а5	b26
J							

Iteración 1

F = {

EC->A

AE->F

F->C

D->F

B->A

CF->B

		Α	В	С	D	E	F
F = {	D1	h11	h10	h12	b14	05	
EC->A	R1	b11	b12	b13	b14	а5	а6
AE->F			/				
F->C	R2	a1 [а3	a4	b25	b26
D->F			a2				
B->A					_	_	
CF->B	R3	b31	a2		a4	а5	b26
}				a3 /			

Iteración 3								
	Α	В	С	D	Ш	F		
R1	b11	b12	b13	b14	a5	а6		
R2	a1	a2	а3	a4	b25	b26		
R3	a1	a2	а3	a4	а5	b26		

Iteración 4

F = {
 EC->A
 AE->F
 F->C
 D->F
 B->A
 CF->B
}

	А	В	С	D	E	F
R1	b11	b12	b13	b14	а5	а6
R2	a1	a2	а3	a4	b25	b26
R3	a1	a2	а3	a4	а5	b26

Iteración completa y no se producen cambios. No se encuentra fila completa con variables distinguidas

HAY PÉRDIDA DE INFORMACIÓN