Criterio di stabilità di Bode

Con riferimento allo schema di controllo

con retroazione negativa e anello L(s) = R(s) P(s) caratterizzato da poli p con $Re(p) \le 0$ e dal tipizo andamento in figura del modulo della risposta in frequenza ($|L(i\omega)| \ge 1$ a basse/alte frequenze)

- si definisce pulsazione critica la pulsazione We a cui |L(iwe)| = 1 (e la si supponga unica)
- sidefinisce margine difase l'angolo Pm = arg L(iwc) + T da sottrare a arg L(iwc) per ottenere -T.

Nota: tipreamente arg Lliwe) < 0, non essendoci poli p con Re(p)>0

criterio di stabilità: detto di Bode perche comodamente valutabile sul
diagramma di Bode, ma dovuto a Nyquest, de elabora un criterio grafico
pui generale (senta vincoli su L(s)) basato sul diagr. polare di L(iw).

Nota: quando $\rho_m = 0$, la fet ad anello chiuso $G_{yoy}(s) = L(s)/(1+L(s))$ ha due poli immaginari puri in $s = \pm iw_c$. Pertanto, se al variare di un parametro, per es il juadagno del rejolatore, ρ_m passa de ρ_m la parte reale di due poli complessi coniugati di ρ_m 0 passa de ρ_m 0.

Sia W_{Π} la pulsazione a cui ary $L(iw_{\Pi}) = -T$ e, se definita, le si supponfa un rece con $R_{\Pi} = |L(iw_{\Pi})|$.

Nota: la scelta di -T, e non + TT, e' conventionale, ma per come viene calcolato arg L(iw) | è pui tipico de possa raggiungere -TT.

Quando $W = W_{\text{T}}$ al nodo somme si sommeno sinusoi di mi fase (tenendo conto del segno "-" della retroazione) e quindi si sommono le corrispondenti ampierre. Supponendo il sistema di controllo

estistab., potremmo scrwere

$$1 + ERT = E$$

$$E = \frac{1}{1 - RT}$$

me come verifichious la stab?

Immagnando l'errore e scomposto in ao contributi corrispondenti a 0,1,2,- "gri" della sinusoide in ingresso lungo l'anello, possiamo scrwere $E=1+R_{\pi}+R_{\pi}^2+\cdots$ e quindi concludere che

RT < 1 > serie E converge > sistema di controllo est. stab. RT > 1 > serre E diverge > sistema di controllo instabile

Tenendo conto dell'audamento tipico di IL(iw) e arg L(iw) nell'intorno di Wa (vedi figura) phenieuro il criterio di stabilità di Bode

Indici di robustezta

- Si definisce margine di guadagno le quantità Km=1/RT di ani si deve moltiphicare L(s) per portare il sistema di controllo al limite di stabilità (Km/18 = -RT/d8).
- 9m e Km sono indizi di robustetta delle stabilità del sisteme di controlle. Valori grandi (p.e. 50°-70° e 2-10) garantiscono la stab. anche a fronte di imprecisioni e incertette modellistiche rilevanti.

F.d.t. del sistema di controllo

$$G_{yoy}(s) = \frac{L(s)}{1 + L(s)}$$

Se $\ell_m > 0$ è piccolo, Gyoy(s) ha due poli P1,2 complessi coningati con Re(P1,2) < 0 piccola (smortamento piccolo) e quindi presenta una risonanta nell'intorno di Wc. Una formula approssimata per valutarne lo smortamento è $\xi \cong \ell_m^o /100$ (l'approssimatione è buona per ℓ_m pizcolo!), quindi la risonanta è assente (o trascurabile) per $\ell_m > 70^\circ$.

- Ym > 70° ⇒ B = [0, Wo] banda del sistema di controllo

 le componenti armoniche del riferimento in banda passano
 sostantialmente in alterate sulla variabile controllata.

 C'è quin di buon "inseguimento" dei desideri con spettro in banda.
 - ⇒ Td = 1/wc misura la velocità del controllo tempo di transitorio = 5/wc
 - => itransitori non presentano oscillationi
- (m<70° ⇒ La banda di Gyoy(s) non e' pui di niteresse _L'intervallo di pulsat.

 Ni cui |Gyoy(iw)| = 1 (per avere buon "in segurimento del riferimento)

 e' ridotto dalla risonanta
 - ⇒ Ta = 1/qwc
 - => itransitori presentano os cillationi con smortamento q

$$G_{dy}(s) = \frac{1}{1 + L(s)}$$

$$G_{y^e}(s) = -G_{de}(s) = \frac{1}{1 + L(s)}$$

Pm> 70° => le componenti armoniche del disturbo sono attenuate solo nella banda [0, wo]

> >> Le componenti armoniche di riferimento e disturbo sono attenuate sull'errore solo nella banda [0, Wo]

Un eventuale disturbo sulla misura non e'attenuato nella banda [0, Wo]! (è d solito limite del controllo in anello chiuso)

$$G_{dme}(s) = \frac{L(s)}{1 + L(s)}$$

La presenza di un trasduttore preciso e veloce non altera le considerazioni precedenti.

- Le f.d.t
$$Gy_u(s) = -G_{du}(s) = \frac{R(s)}{1+L(s)}$$

sono responsabili delle solleatazioni miposte dal controllo sul processo. Èquindi opportuno che il repolatore sta un sistema proprio.

t: tempo [min]

u(t): comando di accelerazione / freno (p.e. alimentazione in cm³/s

c(t): coppia motrice all'albero motore con frenomotore se u < 0)

y(t): velocità dirotatione dell'albero [RPM]

d(t): relocità del vento [m/s] in direzione opposta al moto (hdt) è la coppia di attrito all'albero dovuta al vento)

$$M(s) = M_{\frac{1}{5}} \frac{1-sT}{(1+sT_{1})(1+sT_{2})}$$

$$T_{1} \approx \frac{10}{5\cdot60} \approx 0,033 \,\text{min}, T_{2} = 0,01 \,\text{min}$$

$$\dot{c}(0) = -5\cdot60 \,\frac{N_{min}}{min} = -\frac{5T}{T_{1}T_{2}} \rightarrow T \approx 0,02 \,\text{min}$$

$$T_{1} \approx \frac{10}{5\cdot60} \approx 0,033 \,\text{min}, T_{2} = 0,01 \,\text{min}$$

$$\dot{c}(0) = -5\cdot60 \,\frac{N_{min}}{min} = -\frac{5T}{T_{1}T_{2}} \rightarrow T \approx 0,02 \,\text{min}$$

$$T_{1} = \frac{1}{(0,01h)} \approx \frac{20}{1+0.2} \,\frac{1}{(0,01h)} \approx \frac{20}{1+0.2} \,\frac{1}{$$

puntodilavoro: velanto = 60 km/ = 20 m/s

a y = 2000 RPM ≥ vento apparente di

20m/s guando y=2000

Precisione statica (più propriamente "a regime")

h=5 kgm/s, J=6 kgm2

- con un integratore in R(s) (garantendopoi l'est. stabilità del sistema di controllo), elt) -> o a fronte di riferimento e disturbo costanti.

- altriments My'e = 1/(1+100MR) & Mde = (100-100 C(0))/(1+100MR) quindi con c(0)=1 si elimina (compensa) l'effetto di regime (sue, ma quindi an che su y) di un disturbo costante.

- con $Qm > 70^{\circ}$, y m seguirà bene riferimenti y con spettro nelle banda [0, wo]. Essendo la cost. di tempo dominante del processo pari a 0.2 min (quella meccanica dell'auto), quindi transitori in anello aperto d'arca 1 min, potremmo cercare di ottenere transitori puù rapidi ad anello chiiso, ave we > 5 rad/min
- Attentione: la presenta di uno tero z con T=-0.02 < 0 (fe/z) >0, processo a sfasamento non minimo) pone un limite a 1/|T|=50 rad/min alle bande. Se infatti $W_c=1/|T|$, e tenendo conto de |L(iw)| he pendenta negativa per $w=W_c$ e che non si può "cancellare" lo tero con un polo nel regolatore (ao renderebbe il sisteme di controllo instabile anche se est. stab.), si ottiene approssimativamente

e quindi un morgine di fase non soddisfacente

Stabilità del sistema di controllo

$$P(s) = 100 \frac{1 - 0.02s}{(1 + 0.2s)(1 + 0.033s)(1 + 0.01s)}, \quad R(s) = \frac{0.1}{s} \frac{1 + 0.2s}{1 + 0.005}$$

$$L(s) = R(s) P(s)$$

- C'é l'integratore in R(s)
- We = 10 rad/min ⇒ durata transitori = 0,5 min
- É "tipico" cancellore poli stabili del processo con zeri nel regolatore Ciò rende il sistema di controllo non c.r./c.o. (anche se in pratico la cancellazione non è mai perfetta), ma permette di plasma re ILIIIII.
- $4m = 51,7^{\circ}$ $arg L(i10) = -90^{\circ} - atan(10.9033) - atan(10.902) - atan(10.901) - atan(10.9005) = 18,4^{\circ}$ $18,4^{\circ}$ $18,4^{\circ}$ $18,4^{\circ}$ $18,4^{\circ}$ $18,4^{\circ}$ $18,4^{\circ}$ $18,4^{\circ}$
- zeriepolis con IsI>> Wesfasano poco. Se IsI << We sfasano ±90°.

Politecnico di Milano Dipartimento di Elettronica e Informazione

Esempio 2: controllo di posizione di una testina di lettura

t: tempo [ms]

u'(t): riferimento di posizione angolare per la puleggia 1.

y(t): positione radrale della testina [mm]

- Il sistema di controllo di posizione ang. della pulesgia 1 va a regime (a fronte di riferimento castante) in circa 100 µs con errore e oscillazioni trascurabili
- L'encoder di positione he errore trascurabile ecost. di tempo dominante (di natura elettrice) inferiore a 1 Ms.
- La risposta ad uno scalino di positione angola re d'ampierra O.1 rad del sistemo di pulegge è riportato in figura (assieme ad un ingrandimento dei primi istanti di tempo).

Dai dati sopra riportati si ricava:

$$U(s) = \frac{1}{1+0,025}, T(s) = \frac{1}{1+0,0015}$$

$$G(s) = 10 \frac{1+s\tau}{1+2\xi \frac{s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

durata transitorio $\cong 2.5 \text{ ms} \Rightarrow \text{Re}(P_{1,2}) = -2$ periodo di oscillatione $\cong 0.5 \text{ ms}$ $\Rightarrow \text{Im}(P_{1/2}) \cong .12$ $\Rightarrow W_h \cong \sqrt{2^2 + 12^2} \cong 12 \text{ rad/ms}$ $\Rightarrow \S \cong 2/12 \cong 0.167$ pendenta initiale $\cong 3.5/0.2 = 17.5$

> 10 TWn20.1=17.5 > T ≈ 0,1

- La realimatione digitale del regolatore

introduce un ritardo (spesso trascurabile) dovuto al tempo di calcolo (elaborazione) Te e el periodo di campionamento To. Il convertitore DIA e'tipicamente un mantenitore (ZOH - zero-order holder) + un filtro passa basso che attenua le alte frequenze dovute alle discontinuità del segnale mantenuto.

=> ritardo complessoro t = Te+Tc/2

 \Rightarrow supponiamo $T = 10 \mu s$ e pertanto $P(s) = U(s)G(s)e^{-0.01s}$

Precisione statiza

- Inseriamo un integratore nel regolatore > Myy = 1, Myoe = 0

Precisione dinamica

- Cerchiemo di ottenere (m > 70° (per evitare oscillazioni) e Wc> 2 ral/ms (durata trausitori ≤ 2,5 ms)
- Attentione: la presenta d'un ritardo τ nell'anello pone un limite a $1/\tau$ alla banda. Il ritardo non altera il diagramma di | L(iw)| una riduce $(f_{rm}, rispetto al valore ottenuto senta considerare il ritardo, di <math>w_c \tau$ 180% se $w_c = 1/\tau = 100 \, rad/ms$ tale riduzione visulta di τ urca 60° !

- Seuta voler caucellare i poli complessi coningati del processo (con opportuni teri nel regolatore), operatione sconsipliata vista la stima spesso non precisa di tali poli, we non può superare 5-10 rad/ms (erchiomo di ottenere Wc=10 rad/ms, quid transitori di arca 0,5 ms.

$$P(s) = 10 \frac{1+s\tau}{(1+0.02s)(1+25\frac{s}{\omega_n}+\frac{s^2}{\omega_n^2})}, R(s) = \frac{MR}{s}, MR = 1$$

$$L(s) = R(s) P(s) T(s)$$

$$- \varphi_{m} = 75,1^{\circ}$$

$$avg L(i5) = -20^{\circ} - atan \left(25\frac{10}{w_{n}}/(1-\frac{10^{2}}{w_{n}^{2}})\right) + atan (10.0,1) - atan (10.0,02)$$

$$- atan (10.0,001) - 10.0,01 \cdot \frac{180}{11} = -104,9$$

$$0,6$$

$$5,7$$

- tenendo conto del diagramme non approssimato di IL(iw) si otterrà we leggermente > 10 rub/ms e quindi 4m < 75,1°. E'quindi consigliabile un valore di MR leggermente inferiore a 1 ele realisti, stando al diapramme non approssimato, we = 10 rab/ms o leggermente inferiore

			. ,		-, ,					Q.	rs e	1000						001	1	1 2 2	-	30		11.1
		-	- 1		1 1					-	11	100							1		9	1	1 1	
		- 1	-				-	1000				Ŧ	are.		ul	-								
			- 1	: :	1 :			:		1								!!	1				- i - i	
			- 3			! !		•	1 1	-		-	 						<u> </u>				. 4 - 4	-11
4			-	1 1								1			=		1 ;	. .	1				1	
 			+	++	+	i		<u> </u>	-	-	++		 					++					+-	-++
	i			1 !	-								 						1				+-	-::
L				1 1				7					 							i			- -	-
	-							:		1.0		-	 				; -;		ļ				1 1	- <u> -</u>
			- 1		1 1			-		. ;	11	1		11	-	-								
	¥0 3	1		1.3	101	1						 -	 					11	;	 -				:
	<u> </u>	Ĺ.,		11	1.1	j					$\rightarrow \rightarrow$	→÷-	 						: 				- ‡ - ‡	_::
						l l		ا ــــــــــــــــــــــــــــــــــــ			++	44-	 					- ‡ ‡	:					
	 			1.1	+			- -			1.1	#	 					- † †						

Politecnico di Milano Diparumento di Eleuronica e Informazione

			4 1 4 10		
		020 6		= =	
	· -				
1				1 1	
	TERRET				
	<u> </u>			 	
	+++++	5 5	1 1 1 1 1 1		
					4444
				 T I	+++++