Image Generation with Diffusion Models

Lambda

Márk Somorjai Zsombor Szommer Csanád Telbisz

Denoising Diffusion Probabilistic Model

- Adding (Gaussian) noise to image
- Neural network: learns to predict noise at each small step
- Image generation: start from pure noise -> denoise step-by-step

Related Work & Sources:

- [1] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. URL https://arxiv.org/abs/2006.11239
- [2] N. Rogge and K. Rasul. The annotated diffusion model, 2022. URL https://huggingface.co/blog/annotated-diffusion
- [3] A. Béres. Denoising diffusion implicit models, 2022. URL https://keras.io/examples/generative/ddim/
- [4] A. K. Nain. Denoising diffusion probabilistic model, 2022. URL https://keras.io/examples/generative/ddpm/

Neural Network

- Input:
 - noisy image
 - noise level
- Output: predicted noise at the level
- Architecture: U-NET
- Optimizations:
 - Multiple residual blocks per level
 - Group normalization
 - Sinusoidal time (noise level) embedding
 - Exponential moving average for weight update

Source: O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. 2015. URL http://arxiv.org/abs/1505.04597

Datasets

- Oxford 102 Flower Dataset¹
 - 8189 images of various kinds of flowers
- Oxford-IIIT Pet Dataset²
 - 7349 images of cats and dogs
- Scaled down and cropped to 64*64 pixels
- 80%/20% split used for training/validation sets

¹ https://www.robots.ox.ac.uk/~vgg/data/flowers/102/

² https://www.robots.ox.ac.uk/~vgg/data/pets/

Evaluation

- Solution written in Jupyter Notebook, wrapped in Docker container
- Training

- GTX 1070

Smaller, overfit training: 6-8 hours

Training on full dataset: 36 hours

Measured metrics:

- 1000 epochs

- training loss
- validation loss
- Kernel Inception Distance¹ (KID)
- Subjective evaluation: how *flower-like* are the generated images?

¹ M. Bińkowski, D. J. Sutherland, M. Arbel, A. Gretton: Demistifying MMD GANs (https://arxiv.org/abs/1801.01401)

Overfitting the Model

• smaller dataset: 1000-1000 training and validation images

Generation Reconstruction

Training on Full Dataset

Loss measured every epoch

Kernel Inception Distance

measured every 10 epochs

Best KID Model

Generation

Reconstruction

Generated Pets

• smaller dataset: 1000-1000 training and validation images

Best KID Model

Overfit Model

Summary

- Familiarized ourselves with diffusion models
- Implemented denoising diffusion process and U-Net
- Trained the model on 2 datasets
- Evaluated the models based on 2 metrics: loss and KID
- Containerized the solution in Docker
- Created flower generating Gradio demo¹
- Lessons learned: output activation function, group normalization
- Future work: further improve net (attention), complex noise schedule

