

Causal Information Splitting:

Engineering Proxy Features for Robustness to Distribution Shifts

POSTER

science amazon

Bijan Mazaheri 1,2 Atalanti Mastakouri 2 Dominik Janzing 2 Michaela Hardt ²

²Amazon Causality Lab, Tübingen Germany ¹California Institute of Technology

Transportability

Distribution Shift

We want to train models to minimize an error function within a testing distribution ($\mathbf{X}_{TEST}, Y_{TEST}$).

If $(\mathbf{X}_{\text{TRAIN}}, Y_{\text{TRAIN}}) \sim (\mathbf{X}_{\text{TEST}}, Y_{\text{TEST}})$, we can do empirical risk minimization:

$$f = \arg\min_{f} \mathbb{E}_{\mathbf{x} \sim \mathbf{X}_{\text{TRAIN}}, y \sim Y_{\text{TRAIN}} | \mathbf{X}_{\text{TRAIN}} [\text{Err}(f(\mathbf{x}), y)]$$
 (1)

If $(\mathbf{X}_{\text{TRAIN}}, Y_{\text{TRAIN}}) \not\sim (\mathbf{X}_{\text{TEST}}, Y_{\text{TEST}})$, we have distribution/dataset shift.

Covariate shift re-weighting techniques require invariance in the label function (Shimodaira, 2000; Sugiyama et al., 2008)

$$Pr(Y_{TEST} \mid \mathbf{X}_{TEST}) = Pr(Y_{TRAIN} \mid \mathbf{X}_{TRAIN})$$
 (2)

This is not always true! We can instead search for an invariant set with respect to the label function. (Magliacane et al., 2018; Muandet, Balduzzi, and Schölkopf, 2013; Rojas-Carulla et al., 2018)

Selection Diagrams (Pearl and Bareinboim, 2011)

 $X = \{Career Interests, Employment\}$ is an invariant set because it dseparates Pandemic and Income.

No invariant set if **Career Interests** and **Employment** are unobserved.

Stable Paths (Subbaswamy and Saria, 2018)

Subbaswamy and Saria, 2018 suggest restricting to stable paths. Career Interests → Education is not stable (unless Career Interests are included in **X**). But it still helps!

Proxy-Based Transportability

Problem Setup

Visible downstream proxies V

Goals:

We want to find X that generally:

1) Minimizes a quantitative notion of robustness, called *context sensitivity*: $\mathcal{I}(\mathbf{M}:Y\mid\mathbf{X})$

2) Maximizes predictive potential, called *relevance*: $\mathcal{I}(Y : \mathbf{X})$.

Proxy Classification

Good proxies decrease context sensitivity: $\mathcal{I}(\mathbf{M}:Y\mid\mathbf{X}\cup\{V\})\leq\mathcal{I}(\mathbf{M}:Y\mid\mathbf{X})$ Bad proxies increase context sensitivity: $\mathcal{I}(\mathbf{M}:Y\mid\mathbf{X}\cup\{V\})>\mathcal{I}(\mathbf{M}:Y\mid\mathbf{X})$ Ambiguous proxies could do either.

We develop one setting with both graphical and functional constraints where we have clean definitions for these concepts.

Techniques

Post-selecting on Y

Key Idea: Conditioning on Y d-Separates **good proxies** and **bad proxies**.

This allows for proxy bootstrapping, which determines good vs bad proxies.

Causal Information Splitting

We want to use $\mathbf{X} = \{V_G, V_A^{(G)}\}$ but $V_A^{(G)}$ is mixed in as a component of V_A , which is ambiguous. We use auxiliary training tasks predicting good proxies using ambiguous proxies.

Real World Data

 $\mathbf{X} = \{V_G, \tilde{F}_{\mathrm{ISO}(V_G)}(V_A)\}$ where $\tilde{F}_{\mathrm{ISO}(V_G)}(V_A)$ predicts V_G using V_A under constant Y.

Experimental Results

Synthetic Data Varying $\sigma(M_G)$ Varying $\sigma(M_B)$ 0.92 0.94^{-1} 0.90 0.93 0.88 0.92 Accuracy 0.00 Accuracy 98.0 48.0 0.89 0.82 $\hat{Y}^{(3)}(V_G, \tilde{F}_{ISO(V_G|Y=0)}(V_A), \tilde{F}_{ISO(V_G|Y=1)}(V_A))$ 0.88 0.80 $\hat{Y}^{(4)}(V_G, V_A^{(G)})$ 0.87 0.78 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 $\sigma(M_G)$ $\sigma(M_B)$

Y =Income Medicaid Eligibility Employment Career Interests Residence Medicaid Statu Commute All Features: $\mathbf{X} = \{E, C, MS\}$ Engineered Features: $\mathbf{X} = \{E, F_{\mathrm{ISO}(E)}(C, MS)\}$

Limited Features: $\mathbf{X} = \{E\}$

Table: Comparison of out-of-domain (2021) performance via mean of accuracy.

State	All Features	Engineered Features	Limited Features
CA	0.712 ± 0.0011	0.711 ± 0.0014	0.692 ± 0.0014
FL	0.683 ± 0.0012	0.678 ± 0.0018	0.68 ± 0.0013
GA	0.689 ± 0.0025	0.707 ± 0.0055	0.709 ± 0.0029
ΙL	0.662 ± 0.0026	0.689 ± 0.0033	0.684 ± 0.0019
NY	0.707 ± 0.0022	0.702 ± 0.0025	0.687 ± 0.008
NC	0.691 ± 0.0031	0.684 ± 0.0034	0.683 ± 0.003
OH	0.689 ± 0.0022	0.703 ± 0.004	0.696 ± 0.0029
PA	0.672 ± 0.0017	0.695 ± 0.0023	0.688 ± 0.0022
TX	0.69 ± 0.0029	0.712 ± 0.0028	0.712 ± 0.0027
avg	0.688	0.698	0.692

References

Magliacane, Sara et al. (2018). ``Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions." In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. NIPS'18. Montréal, Canada: Curran Associates Inc., pp. 10869–10879. Muandet, Krikamol, David Balduzzi, and Bernhard Schölkopf (2013). ``Domain generalization via invariant feature representation." In: International conference on machine learning. PMLR, pp. 10-18. Pearl, Judea and Elias Bareinboim (2011). ``Transportability of causal and statistical relations: A formal approach." In: Twenty-fifth AAAI conference on artificial intelligence.

Shimodaira, Hidetoshi (2000). ``Improving predictive inference under covariate shift by weighting the log-likelihood function." In: Journal of statistical planning and inference 90.2, pp. 227-244.

Subbaswamy, Adarsh and Suchi Saria (2018). ``Counterfactual Normalization: Proactively Addressing Dataset Shift Using Causal Mechanisms.." In: UAI, pp. 947-957. Sugiyama, Masashi et al. (2008). ``Direct importance estimation for covariate shift adaptation." In: Annals of the Institute of Statistical Mathematics 60.4, pp. 699-746.

Rojas-Carulla, Mateo et al. (2018). ``Invariant models for causal transfer learning." In: The Journal of Machine Learning Research 19.1, pp. 1309-1342.