1.
$$M = 2^{4} \times 3 + 1 = 49$$

 $M - 1 = 2^{4} \times 3$
 $\Delta = 4$
 $t = 3$

$$b^{2d*t} \equiv -1 \pmod{n}$$
, para algum j tol que $0 \leq j \leq N-1 = 3$

Temos que
$$2^3 \equiv 8 \pmod{m} \not\equiv \pm 1 \pmod{m}$$
 $2^{2\times3} = (2^3)^2 \equiv 8^2 \pmod{49}$
 $\equiv 15 \pmod{49}$
 $\not\equiv -1 \pmod{49}$
 $2^2\times3 = (2^{2\times3})^2 \equiv 15^2 \pmod{49}$
 $\equiv 225 \pmod{49}$
 $\equiv 29 \pmod{49}$

$$= \frac{29}{10000} (10000 + 1)$$

$$= \frac{2^{3} \times 3}{7} = (2^{2} \times 3)^{2} = \frac{29^{2}}{7} (10000 + 1)$$

$$= \frac{891}{7} (10000 + 1)$$

$$= \frac{891}{7} (10000 + 1)$$

$$= \frac{891}{7} (10000 + 1)$$

$$= \frac{10000}{7} (10000 + 1)$$

$$2^2 = 4$$

mdc $(3,77) = 1$

$$7^{3!} = 2^{3\times2} = (2^2)^3 = 64$$

$$M = 7 \times 77$$

$$(M_1 \ell) = (55, 3)$$
 $\ell \in \mathbb{Z}_{\varphi(N)}^*$

$$\varphi(n) = \varphi(5x11) = \varphi(5) \varphi(11) = 4x10 = 40$$

$$3^{4} \equiv 1 \pmod{40} \iff 3 \times 3^{3} \equiv 1 \pmod{40}$$

$$\iff d = 3^{3} \pmod{40} \iff d = 27$$

= 2 (mod 55)

4
$$p = 19$$
 $R = 2$ if rais primitive d 19 me ord $_{19}2 = 9(19) = 18$

Salenco, que ord $_{19}2 \mid 9(19)$. $logo$,

 l

 $= 64 \pmod{19}$ $= 7 \pmod{19}$ $= 1 \pmod{19}$ $2^9 = 2^3 \times 2^6 = 8 \times 7 \pmod{19}$ $= 18 \pmod{19}$ $= 18 \pmod{19}$ $\neq 1 \pmod{19}$

```
Þ = 19
   7=2 rais primitiva de p
 Chave El Gamal
escolher a tol que 15 a & p-1
coluntar
          b= ra (mod p)
a = 9
   r3 = 8 (mod 19)
  24 = -3 (mod 19)
  7^8 = 7^4 \cdot 7^4 \equiv (-3)(-3) \pmod{19}
                = 9 (mod 19)
   29 = 2, 28 = 2x '9 (mod 19)
                = 18 (mod 19) b=18
chave publics (19,2,18) = (p,n,b)
Chave privada 9 = a
cifrar mens = 5
```

cifrar mens = 5

eswher K t.g. $1 \le K \le p-2 = 17$ por $1 \le K \le p-2 = 17$ $0 \le K \le p-2$ $0 \le K \le p-2$ 0

$$\left(\frac{83}{47}\right) = \left(\frac{36}{47}\right) = \left(\frac{6^2}{47}\right) = 1$$

$$83 = 36 \pmod{47}$$

$$\left(\frac{\alpha^2}{n}\right) = 1$$
Assim,
$$\left(\frac{73}{235}\right) = -1 \times 1 = -1$$

$$\Rightarrow p \equiv 1 \pmod{4}$$
 ou $p \equiv 3 \pmod{4}$

$$\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$$

futor,
$$p-1=YK$$
, pare algum $K \in IN$. Nume cano, $\frac{p-1}{2}=\frac{YK}{2}=2K$

$$(-1)^{\frac{p-1}{2}} = 1$$

Entro , p-3=4K , para algum KE/N , pulo que p-1=4K+2 . Nune cono,

$$\frac{b-1}{2} = \frac{4k+2}{2} = 2k+1$$

$$(-1)^{\frac{p-1}{2}} = -1,$$

No CASO1,
$$\left(\frac{-1}{P}\right) \equiv 1 \pmod{p}$$
, pulo que $\left(\frac{-1}{P}\right) = 1$.

No
$$(ASO 2, (-\frac{1}{p}) \equiv -1 \pmod{p}, \operatorname{denoh}(\frac{-1}{p}) \approx -1.$$

F. Salemon que $\# Z_m^* = \varphi(n)$ i que qualquer conjunts de $\varphi(m)$ elementos invertivis um Z_m e incongruentos entre si e^- vm s.r. r.

Consideremos $S = \{x^1, x^2, ..., x^{q(n)}\}$.

Supombanios que existem $i,j \in \{1,..., \varphi(n)\}$ tais que $\Re^i = \Re^j$ (mod m). Sabenios que $\Re^i = \Re^j$ (mod m) \iff i = j (mod $\operatorname{ord}_m \Re^j$) \iff $\lim_{n \to \infty} (\operatorname{mod} \varphi(n)) \iff i = j$. Assim, $\lim_{n \to \infty} (\operatorname{mod} \varphi(n)) \iff \lim_{n \to$