Andrea Mara Weber 2079852

Implementação de um conversor buck usando gate driver

Gatedriver

Simulamos um sinal PWM gerado por microcontrolador, mas usando um gerador de funções, considerando uma tensão de 3VPP, com frequência de 100KHz e offset de 1.5 VDC

Como na implementação do conversor Boost, também usamos um optoacoplador para isolar o sinal PWM (em teoria seria gerado por um microcontrolador) do restante do circuito.

$$Qg \coloneqq 50 \ \textbf{nC}$$

$$\Delta t \coloneqq 150 \ \textbf{ns}$$

$$Ig \coloneqq \frac{Qg}{\Delta t} = 0.333 \ \textbf{A}$$

$$Ic2 := Ig = 0.333 \ A$$

$$Ib2 := \frac{Ic2}{10} = 0.033 \; A$$
 $Vcc := 15 \; V$ $Vg := Vcc = 15 \; V$ $Vpwm := 3 \; V$

$$Ipwm := 5 \text{ } mA \qquad Vbe := 0.7 \text{ } V$$

$$Ib1 \coloneqq Ipwm = 0.005 \; \boldsymbol{A}$$

$$Rg \coloneqq \frac{Vg}{Ig} = 45 \Omega$$

$$R2 \coloneqq \frac{Vcc}{Ic1} = 450 \Omega$$

$$R1 := \frac{(Vpwm - Vbe)}{Ib1} = 460 \ \Omega$$

Os diodos usados para a implementação do gatedriver foram do modelo 1N4148, o opto usado foi um CN137.

		\overline{Vcc}	:=	15	$oldsymbol{V}$
--	--	------------------	----	----	----------------

 $\overline{Ig} = 0.333 A$

$$\overline{Qg} = 50 \, \, nC$$

$$\overline{Vg} = Vcc = 15 \ V$$

$$Vgmin = 10 V$$

$$Dmax = 0.8$$

$$Dmin = 0.1$$

$$Vf = 1 V$$
 *queda de

*queda de tensão no diodo de entrada, de acordo com o datasheet

$$Vcb := Vg - Vgmin - Vf = 4 V$$

$$Cxmin := \frac{Qg}{Vch} = (1.25 \cdot 10^{-8}) F$$

$$Cxmin \coloneqq \frac{Qg}{Vcb} = \left(1.25 \cdot 10^{-8}\right) \textbf{\textit{F}} \qquad Cxmax \coloneqq \frac{Qg}{0.01 \cdot Vg} = \left(3.333 \cdot 10^{-7}\right) \textbf{\textit{F}}$$

$$fs = 100 \ KHz$$

$$Cx = 100 \ \mathbf{nF}$$

*valor escolhido

$$Tlmin := \frac{(1 - Dmax)}{fs} = (2 \cdot 10^{-6}) s$$

$$Rxmin := \frac{Tlmin}{3 Cx} = 6.667 \Omega \qquad Thmax := \frac{(Dmax)}{fs} = (8 \cdot 10^{-6}) s$$

$$Rxmin := \frac{Tlmin}{2} = 6.667$$

$$Thmax := \frac{(Dmax)}{f_S} = (8 \cdot 10^{-6}) \ s$$

Conversor buck

$$Vi = Vcc = 15 \ V$$

$$Vo = 5 V$$

$$Po = 5 W$$

$$Ro = 5 \Omega$$
 10W

$$d = \frac{Vo}{Vi} = 0.333$$

$$Lo = 220 \, \mu H$$

$$Co = 10 \, \mu F$$

Implementação do circuito

