Aufgabe 4

Sei $S^2:=\{x\in\mathbb{R}^3\mid \parallel x\parallel=1\}$ die 2-dimensionale Sphäre, also die "Oberfläche" der Einheitskugel im dreidimensioanlen Raum. Ein Großkreis auf S^2 ist eine Menge G der Form:

$$G = E \cap S^2$$
, wobei $E \subset \mathbb{R}^3$ 2-dimensionaler Untervektorraum ist.

Wir setzen nun $\mathbb{P} \coloneqq S^2$ und $\mathbb{G} \coloneqq \{G \mid G \text{ ist Großkreis auf } S^2\}$ die Menge aller Großkreise.

a)

Zu zwei Punkten $p, q \in \mathbb{P}$ existiert immer ein Großkreis $G \in \mathbb{G}$, so dass $p, q \in G$.

Beweis. Zwei beliebige Vektoren $p,q\neq 0\in S^2\subset \mathbb{R}^3$ bilden eine Basis eines Untervektorraums E. Dieser ist maximal 2-dimensional und mindestens 1-dimensional. Eine eindimensionale Basis können wir um einen Vektor $v\in \mathbb{R}^3\setminus E$ ergänzen und erhalten ebenfalls einen 2-dimensionalen Untervektorraum. Zu desem gibt es stets einen Großkreis, der p und q enthält.

b)

Ein Großkreis G ist genau dann eindeutig ist, wenn $q \notin \{p, -p\}$.

Beweis. " \Rightarrow " Sei ein beliebiger Großkreis $G \in \mathbb{G}$ eindeutig durch $p,q \in G$ bestimmt. Dann bestimmen p,q eindeutig einen 2-dimensionale UVR, d.h. sie sind linear unabhängige Basisvektoren. Angenommen $q \in \{p,-p\}$. Dann ist $q = \lambda p$ mit $\lambda \in \{1,-1\}$. Das ist ein Widerspruch, denn dann wären p und q linear abhängig.

" \Leftarrow " Seien $p,q\in S^2$, wobei $q\notin \{p,-p\}$. Dann sind existiert wie in a) gezeigt ein Großkreis G mit dazugehörigem Untervektorraum E sodass $p,q\in G\subset E$. Angenommen es gäbe einen weiteren Großkreis G' mit dazugehörigem Untervektorraum E'. Die Vektoren p,q sind linear unabhängig, also Basis von E und E'. Also müssen die beiden Untervektorräume und somit die beiden Großkreise bereits gleich gewesen sein.

c)

Sei $p < G : \Leftrightarrow p \in G$. Wir überprüfen welche Inzidenzaxiome diese Relation erfüllt.

I1 "Durch je zwei Punkte geht eine Gerade":

Wurde bereits in a) bewiesen.

I2 "Durch je zwei verschiedene Punkte geht höchstens eine Gerade":

Ist im Allgemeinen falsch.

Beweis. Seien $p \coloneqq e_1, q \coloneqq -p$ Punkte auf S^2 und $E \coloneqq L(p, e_2), E' \coloneqq (p, e_3)$ Untervektorräume mit dazugehörigen Großkreisen G, G'. Dann ist $p \in E, p \in E'$ und $q = 1 \cdot -p + 0 \cdot e_2 \in E$ und $q = 1 \cdot -p + 0 \cdot e_3 \in E'$. Allerdings ist $E \neq E'$, da beispielsweise $E \ni e_2 \notin E'$, also auch $G \neq G'$.

13 "Jede Gerade enthält mindestens zwei verschiedene Punkte":

Ist im Allgemeinen wahr.

Beweis. Sei ein beliebiger Großkreis G und der dazugehörige Untervektorraum E mit Basis $B=(b_1,b_2)$. Dann liegt $p:=b_1\cdot\frac{1}{\|b_1\|}$ auf G, denn $\|p\|=1$ und $p=\frac{1}{\|b_1\|}\cdot b_1+0\cdot b_2$ also $p\in E$. Analog liegt $q:=b_2\cdot\frac{1}{\|b_2\|}$ ebenfalls auf G, wobei $p\neq q$, da b_1 und b_2 linear unabhängig sind.

14 "Es gibt drei Punkte, die nicht auf einer Geraden liegen":

Ist im Allgemeinen wahr.

Beweis. Seien weiterhin p,q,E zu einem beliebigen Großkreis G wie in I3 definiert. Wähle einen beliebigen Punkt $r' \in \mathbb{R}^3 \setminus E$ und setze $r := r' \cdot \frac{1}{\|r'\|}$. Angenommen $r \in G \subset E$, dann wäre $r' = \|r'\| \cdot r \in E$. Dies ist ein Widerspruch also liegt r nicht auf G.