

Bu sinyali matematiksel olarak nasıl ifade edeceğiz?

Sinüsoidal Sinyaller

Sinusoidal, sinüs veya kosinis formundaki sinyale verilen addır. Sinusaidal akım genelde alternatif akım (AC) olarak ifade edilir. (AC: Alternating Current)

Sinyalin kendisini tekrar ettiği süre, bu sinyalin 1 periyodudur. Saniye cinsinden ifade edilir.

T: Periyod

Bir saniyede kendini tekrar etme sayısına (çevrim - cycle) frekans denir. Birimi hertzdir. (Hz)

f: frekans

$$f = \frac{1}{T}$$

7/58

Sinüsoidal Sinyaller

- Grafikte gösterilen sinyal $\sin(X)$ veya $\cos(X)$ şeklinde ifade edilebiliir.
- Sinyal sinüs fonksiyonu olsun.
- $\sin(X)$ fonksiyonu max 1 min -1 olabilirken, grafikteki sinyal ise max V_m , min $-V_m$ değerini alıyor.
- Bu durumda grafiğin fonksiyon $V_m \sin(X)$ şeklinde olur.

- f: frekans, 1 saniyede kaç çevrim tamamladığını ifade ediyor.
- t zamanında açı radyan cinsinden $2\pi ft$ olarak ifade edilebilir.
- Yukarıdaki sinyal bir sinüs sinyalidir. t anında sinyalin değeri $v(t) = V_m \sin(2\pi f t)$ ifadesiyle bulunur.
- $\omega = 2\pi f$ açısal frekantır. Birimi rad/san.
- $v(t) = V_m \sin(\omega t)$

9/58

Sinüsoidal Sinyaller

Şekilde görüldüğü üzere v_2 sinyali v_1 sinyalinden ϕ derece öndedir. Bu açıya sinyalin faz açısı denir. Aynı zamanda v_1 sinyali v_2 sinyalinin ϕ derece gerisindedir şeklinde de ifade edilir.

11/58

Sinüsoidal Sinyaller

Örnek: $i_1(t) = 3\sin(100t + 10)$ ve $i_2(t) = 2\cos(100t - 40)$ sinyalleri arasındaki faz farkını bulunuz, hangi sinyalin önde olduğunu belirtiniz.

Örnek: $i_1(t) = 3\sin(100t + 10)$ ve $i_2(t) = 2\cos(100t - 40)$ sinyalleri arasındaki faz farkını bulunuz, hangi sinyalin önde olduğunu belirtiniz.

$$cos(\omega t) = sin(\omega t + 90), sin(\omega t) = cos(\omega t - 90)$$
 $i_1(t) = 3 sin(100t + 10) = 3 cos(100t + 10 - 90) = 3 cos(100t - 80)$
 $i_2(t) = 2 cos(100t - 40)$

 i_2 sinyali i_1 sinyalinden 40 derece öndedir.

13/58

Karmaşık Sayılar

$$x^2 = -1$$
$$i = \sqrt{-1}$$

Elektrik Mühendisliğinde i harfi akım için kullanılmaktadır. Matematikçilerin karmaşık sayılar için kullandığı i yerine j harfi karmaşık sayılarda kullanılacaktır

Örnek: $z_1 = 8 + j3$, $z_2 = 9 - j2$ karmaşık sayıları için

- a. $z_1 + z_2$
- b. $z_1 z_2$
- c. $z_1 z_2$
- d. z_1/z_2

işlem sonuçlarını bulunuz.

15/58

Karmaşık Sayılar

z=x+jy sayısının kompleks eşleniği $\overline{z}=z^*=x-jy$ olarak ifade edilir.

$$(z_1 + z_2)^* = z_1^* + z_2^*$$

$$(z_1 - z_2)^* = z_1^* - z_2^*$$

$$(z_1 z_2)^* = z_1^* z_2^*$$

$$(\frac{z_1}{z_2})^* = \frac{z_1^*}{z_2^*}$$

Örnek: $z_1=4+j3,\ z_2=2-j5$ için aşağıdaki işlem sonuçlarını bulunuz.

$$(z_1+z_2)^*$$
, $(z_1-z_2)^*$, $(z_1z_2)^*$, $(\frac{z_1}{z_2})^*$

Imaginary axis

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

Euler's Formula

$$z = x + jy$$

$$= r\cos(\phi) + jr\sin(\phi)$$

$$= r(\cos(\phi) + j\sin(\phi))$$

$$= re^{j\phi}$$

17/50

Karmaşık Sayılar

Karmaşık Sayıların Gösterimleri:

Kartezyen: z = x + iy

Trigonometrik: $z = r(\sin(\theta) + j\cos(\theta))$

Üstel: $z = re^{j\theta}$

Kutupsal (Polar): $z = r/\theta$

Polar Kartezyen Dönüşümü

z = x + jy karmaşık sayısını $z = r/\phi$ şeklinde ifade edelim.

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1}(y/x)$$

Örnek: z=3+j4 sayısını polar (kutupsal) forma dönüştürünüz.

$$r = |z| = \sqrt{x^2 + y^2} = \sqrt{3^2 + 4^2} = 5$$

 $\phi = \tan^{-1}(y/x) = \tan^{-1}(4/3) = 53.13$
 $z = 5/53.13^{\circ}$

10/50

Karmaşık Sayılar

Polar Kartezyen Dönüşümü

 $z=r/\phi$ karmaşık sayısını z=x+jy şeklinde ifade edelim.

$$z = r\cos(\phi) + jr\sin(\phi)$$

Örnek: $z=10/36.87^{\circ}$ sayısını kartezyen forma dönüştürünüz.

$$z = r\cos(\phi) + jr\sin(\phi) = 10\cos(36.87) + j10\sin(36.87)$$
$$= 10 \cdot 0.8 + j10 \cdot 0.6 = 8 + j6$$

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

$$z_1 = x_1 + jy_1, \ z_2 = x_2 + jy_2 \Rightarrow$$

 $z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$

$$z_1 = r_1 / \phi_1, \ z_2 = r_2 / \phi_2 \Rightarrow$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 / \phi_1 + \phi_2$$

$$z_1/z_2 = r_1/r_2/\phi_1 - \phi_2$$

Karmaşık Sayılar

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Örnek: $z_1 = 10/53.13^{\circ}$ ve $z_2 = 5/-36.87^{\circ}$ ise $z_1 + z_2$ işleminin sonucunu polar formda bulunuz.

$$z_1 = 10\cos(53.13) + j10\sin(53.13) = 6 + j8$$

$$z_2 = 5\cos(-36.87) + j5\sin(-36.87) = 4 - j3$$

$$z_1 + z_2 = 10 + j5$$

$$r = \sqrt{10^2 + 5^2} = 11.18$$

$$\theta = \tan^{-1}(5/10) = 26.57$$

$$z_1 + z_2 = 10 + j5 = 11.18/26.57^{\circ}$$

21/5

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Örnek:
$$n_1 = 8 + j10$$
, $n_2 = 5 - j4$ ise $n_1 \cdot n_2$ 'yi bulunuz.
 $n_1 n_2 = (8 + j10)(5 - j4) = 40 - j32 + j50 + 40$
 $= 80 + j18$
 $= 82/12.68^{\circ}$.
 $n_1 n_2 = (12.81/51.34^{\circ})(6.40/-38.66^{\circ})$
 $= 82/12.68^{\circ}$

23/58

Karmaşık Sayılar

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

= 80 + i18.

Örnek: $n_1=6+j3$, $n_2=3-j1$ ise n_1/n_2 'yi bulunuz.

$$\frac{n_1}{n_2} = \frac{6+j3}{3-j1} = \frac{(6+j3)(3+j1)}{(3-j1)(3+j1)} \qquad \frac{n_1}{n_2} = \frac{6.71 \cancel{26.57^{\circ}}}{3.16 \cancel{/}-18.43^{\circ}} = 2.12 \cancel{/}45^{\circ}$$

$$= \frac{18+j6+j9-3}{9+1} = 1.5+j1.5$$

$$= \frac{15+j15}{10} = 1.5+j1.5$$

$$= 2.12 \cancel{/}45^{\circ}.$$

24/59

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Örnek: $n_1 = 10/53.13^{\circ}$, $n_2 = 5/-135^{\circ}$ ise $n_1 + n_2$ 'yi bulunuz.

$$n_1 + n_2 = 6 + j8 - 3.535 - j3.535$$

= $(6 - 3.535) + j(8 - 3.535)$
= $2.465 + j4.465 = 5.10 / 61.10^{\circ}$

25/58

Karmaşık Sayılar

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Örnek: $n_1 = 10/53.13^{\circ}$, $n_2 = 5/-135^{\circ}$ ise $n_1 - n_2$ 'yi bulunuz.

$$n_1 - n_2 = 6 + j8 - (-3.535 - j3.535)$$

= 9.535 + j11.535
= 14.966 /50.42°.

Karmaşık Sayılarda Toplama-Çıkarma, Çarpma Bölme

Ödev: Aşağıdaki işlemlerin sonucunu bulunuz.

(a)
$$[(5 + j2)(-1 + j4) - 5/60^{\circ}]$$
*

(b)
$$\frac{10 + j5 + 3/40^{\circ}}{-3 + j4} + 10/30^{\circ} + j5$$

Cevap: (a)
$$-15.5 - j13.67$$
, (b) $8.293 + j7.2$.

27/59

Karmaşık Sayılar

$$j^{2} = -1$$

$$jx = x/90^{\circ}$$

$$-jx = x/-90^{\circ}$$

$$1/j = -j$$

$$(r/\phi)^{n} = r^{n}/n\phi$$