ЛЕКЦИЯ 1.ВВЕДЕНИЕ В БИОХИМИЮ

I. Биологическая химия как наука. Предмет, задачи, основные направления развития биохимии. II. Биомолекулы и клеточные структуры. III. Белки и пептиды. IV.

Биологическая химия (биохимия) — наука, изучающая химический (молекулярный) состав живых организмов и протекающие в них химические реакции, которые лежат в основе жизнедеятельности.

Объектами изучения биохимии являются различные живые организмы - вирусы, бактерии, растения, животные и организм человека. Совокупность биохимических превращений органических соединений (биомолекул) в живых организмах называется обменом веществ или метаболизмом. Метаболизм, в свою очередь, состоит из процессов биосинтеза веществ, то есть анаболизма, и процессов расщепления веществ, то есть катаболизма.

Биохимия состоит из нескольких разделов:

- **1.Статическая биохимия** изучает химический состав организмов и структуру составляющих их молекул (белков, аминокислот, нуклеиновых кислот, нуклеотидов, углеводов и их производных, липидов, витаминов, гормонов).
- **2.**Динамическая биохимия изучает химические реакции, представляющие обмен веществ (метаболизм), а именно пути превращения молекул и механизмы происходящих между ними реакций. Простые молекулы и их производные (моносахариды, жирные кислоты, аминокислоты, нуклеотиды и др.), образующиеся в процессе метаболизма, называются метаболитами.

Биоэнергетика представляет раздел динамической биохимии, который изучает закономерности образования, аккумуляции и потребления энергии в биологических системах.

- **3.Функциональная биохимия** изучает биохимические реакции, лежащие в основе физиологических функций. Она изучает биохимические основы переваривания питательных веществ в желудочно-кишечном тракте; механизмы мышечного сокращения, проведения нервного импульса, дыхательной функции крови, регуляции кислотно-щелочного равновесия, функции печени и почек, иммунной системы и др.
- **4.Биохимия человека или медицинская биохимия** это раздел биохимии, который изучает закономерности обмена веществ в человеческом организме, в том числе и при заболеваниях. С целью изучения механизмов развития болезней широко используют метод моделирования патологических процессов на животных.

История развития биохимии. Во второй половине XIX века биологическая химия стала выделяться в самостоятельную науку. Во многих университетов были учреждены кафедры медицинской химии (в 1863 г. в Казанском университете А.Я.Данилевским, а в Московском университете А.Д.Булыгинским. Однако наиболее значительные открытия в области биохимии были сделаны в XX веке. В этот период были открыты «гормоны» и «витамины», сведения о которых и легли в основу первых учебников биохимии.

Хроника важных открытий в биохимии: 1904 г. — **Кнооп** открыл механизм окисления жирных кислот.1926 г. — **год рождения энзимологии** - Самнер выделил в кристаллическом виде фермент уреазу. 1930 г. — **Энгельгарт** открыл окислительное фосфорилирование.1930 г. — **Поллинг** открыл вторичную структуру белковой молекулы (Нобелевская премия). **Кребс** — открыл цикл трикарбоновых кислот (ЦТК) и цикл мочевинообразования. **1953 г.** — **Д.Уотсон и Ф.Крик** открыли структуру ДНК. Это открытие стало началом эры молекулярной биологии. 1961 г. — **М.Ниренберг** расшифровал генетический код. 90% Нобелевских премий, которые были присуждены в области химии и биологии касались биохимии.

Научная информация по биохимии очень велика: в мире выходят сотни биохимических журналов. Например, годовой объем J. Biological Chemistry составляет более 50000 страниц.

Украинская история. Академик А.В. Палладин основал институт биохимии в Харькове, который позже был перенесен в Киев. Сейчас директором института является академик С.В. Комисаренко. Первый биохимический журнал (на русском, украинском и английском языках) вышел на Украине. Кафедры биохимии есть в медицинских вузах, университетах, педагогических и сельскохозяйственных институтах.

Вклад ученых Украины в развитие биохимии. Данилевский — открыл пептидную связь. Палладин — впервые установил, что первым этапом тканевого дыхания является реакция дегидрования. Бах (из Золотоноши Черкасской области) в Москве основал Институт биохимии и биохимический журнал и изучал процессы биологического окисления (теория «активного» кислорода). Горбачевский (из Тернопольщины) — основатель чешской биохимии (открыл мочевую кислоту). Грабар — во Франции основал биохимический институт, открыл метод иммуноэлектрофореза. Парнас (львовский биохимик) - открыл механизм гликолиза. Чаргафф (Черновцы) открыл принцип комплементарности нуклеотидов ДНК.

Преподавание биохимии на кафедре включает чтение лекций, проведение практических занятий, самостоятельной работы студентов, выполнение контрольных работ, проведение экзаменов. Формы обучения: курсовые работы, олимпиады, научный кружок.

Научная работа кафедры. У преподавателей 60% времени отводится на педагогическую работу, а 40% - на научную. Научная работа кафедры связана с изучением ферментных систем биотрансформации чужеродных веществ (ксенобиотиков). Заведующий кафедрой, профессор А.А.Пентюк является ведущим специалистом в Украине в этой области. Второе направление — изучение обмена гомоцистеина (серосодержащей аминокислоты) в норме и патологии. Повышение уровня гомоцистеина в крови является фактором риска сердечнососудистой патологии, инфарктов, инсультов. На кафедре функционирует лаборатория Института химии поверхности НАН Украины, которая занимается разработкой лекарственных веществ (сорбентов). В аптеке можно купить препарат СИЛИКС созданный в лаборатории.

Значение биохимии. Современная биология и медицина невозможна без знаний молекулярной биологии и генетики. На их основе возникла генная инженерия и биотехнология, которые изучают возможности направленных изменений генетического аппарата. Создаются различные рекомбинантные ДНК, которые используют для синтеза физиологически активных соединений и лекарственных веществ - антибиотиков, гормонов, ферментов и других.

Биохимические методы исследования широко используются для диагностики заболеваний, контроля эффективности лечения. Благодаря использованию моноклональных антител и использования цепной полимеразной реакции для исследования ДНК был осуществлен научный прорыв в диагностике многих заболеваний, включая - СПИД, туберкулез, вирусные гепатиты. Развитие иммуноферментных методов исследования сделало доступным определение гормонов, антител, маркеров опухолевого роста и других веществ, которые содержатся в организме в очень низких количествах, практически в любой больнице.

II. Биомолекулы и клеточные структуры. Биосфера Земли насчитывает около 1,2 млн. видов животных, в том числе и человека, а также более 500 тыс. видов растений. В живых организмах содержится около 40 различных химических элементов.

99% элементного состава живых организмов представляют такие элементы как углерод (С), кислород (О), водород (Н), азот (N), фосфор (Р) и сера (S). Из этих химических элементов (биоэлементов или органогенов) образуется весь спектр биоорганических соединений,. Некоторые элементы входят в состав живых организмов в свободном состоянии в качестве макроэлементов (например, ионы Na, K, Ca, Mg, Cl), или микроэлементов (Fe, Cu, Zn, Mn, Co, Se, F, Mo, V и др.), выполняя важные структурные и регуляторные функции.

Первое место среди химических соединений занимает вода. В организме человека вода составляет около 60% массы тела. Основная часть макро- и микроэлементов находится в виде водных растворов и в большинстве случаев – в комплексе с органическими соединениями.

Биомолекулы — органические соединения, входящие в состав организмов, образующие клеточные структуры и участвующие в биохимических реакциях обмена веществ.

Функции биомолекул в живых организмах.

- а) участие в реакциях обмена веществ в роли промежуточных продуктов (метаболитов). Например, аминокислоты, моносахариды, жирные кислоты и др.
- б) участие в образовании сложных молекул (белков, нуклеиновых кислот, липидов, полисахаридов) или биологических структур (мембран, рибосом, ядерного хроматина и др.).

в) участие в регуляции биохимических процессов и функций отдельных клеток и организма в целом (витамины, гормоны, циклические нуклеотиды цАМФ, цГМФ и др.).

Основные классы биомолекул:

<u>Белки и аминокислоты</u>. Белки – протеины (protos - первый, значимый), важнейший класс биомолекул, с наличием которых связывают существование жизни в условиях Земли. Белки являются молекулами, в состав которых входят 20 аминокислот. Совокупность белков в организме составляет его **протеом.**

<u>Нуклеиновые кислоты и нуклеотиды</u>. Дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты — биополимеры, состоящие из пуриновых и пиримидиновых нуклеотидов. Они являются носителями генетической информации у всех живых организмов. Последовательность мононуклеотидов в составе нуклеиновых кислот детерминирует (кодирует) последовательность аминокислотных остатков в белках. Последовательность из трех нуклеотидов (триплет или кодон) в молекуле ДНК соответствует одной из 20 аминокислот. Таким образом, генетический код определяет порядок включения аминокислот в полипептидную цепь в процессе синтеза белка на рибосомах. Совокупность генов в организме составляет его **геном**.

Нуклеиновые кислоты впервые обнаружил в ядрах клеток Фридрих Мишер (1869 г.). Приблизительно через 100 лет (в 1953 г) Д.Уотсон и Ф.Крик сделали фундаментальное открытие, описав структуру ДНК. Это позволяло раскрыть главную загадку жизни — обеспечение наследственности путем копирования наследственных признаков. Изучение функций РНК позволили сформулировать основную догму молекулярной биологии, которая определяет направление передачи генетической информации у всех живых организмов:

ДНК \rightarrow РНК \rightarrow Белок

Совокупность информационных РНК в организме составляет его транскриптом.

<u>Углеводы</u> – молекулы, состоящие из моносахаридов и их производных (дисахаридов, гомо- и гетерополисахаридов). В животных организмах моносахариды и гомополисахарид гликоген в основном исполняют энергетические функции, а гетерополисахариды принимают участие в образовании мембран, гликокаликса, соединительной ткани и т.д..

<u>Липиды</u> – молекулы, особенностью которых является гидрофобная природа. Липиды выступают как энергетический материал (нейтральные жиры), являются структурными компонентами мембран (фосфолипиды, гликолипиды) и биорегуляторами (стероидные гормоны, эйкозаноиды, жирорастворимые витамины).

<u>Витамины</u> – соединения с различным химическим строением, не синтезирующиеся в животных организмах, но необходимые для их жизнедеятельности. Они должны постоянно поступать в организм с продуктами питания, обеспечивая нормальное течение метаболических процессов, так как являются компонентами ферментных систем.

<u>Гормоны и медиаторы</u> – молекулы, передающие химические сигналы. Благодаря регуляторному действию гормонов и медиаторов нервной системы происходит интеграция отдельных анатомо-физиологических систем в целостный многоклеточный организм.

Кроме того в организме имеются свободные аминокислоты, азотистые соединения, нуклеотиды, низкомолекулярные моно-, ди- и трикарбоновые кислоты, спирты, амины, являющиеся промежуточными продуктами метаболизма (метаболитами или интермедиатами). Совокупность всех метаболитов в организме составляет его метаболом.

Клетка – структурная, функциональная и генетическая единица живого организма. Все клетки способны к размножению путем деления, передавая потомкам свои биологические признаки. Клетки делятся на прокариотические (безядерные) и эукариотические (ядерные). Они отличаются по химическому составу и обмену веществ.

Клеточные компоненты постоянно обновляются. Для тела человека период полуобновления белков ($T_{1/2}$) составляет в среднем 12 недель, белков печени меньше – 2 недели, белков мышц - 27 недель, белков костной ткани – много месяцев.

Происхождение биомолекул. Фундаментальной проблемой биохимии является возникновение жизни на Земле. Согласно существующим представлениям, образование биомолекул

и первых примитивных живых клеток происходило на Земле под действием физических факторов атмосферы приблизительно 3 млрд. лет тому назад по схеме:

Неорганические молекулы первичной атмосферы и океана - метан, аммиак, вода — Первичные биомолекулы: — Протоклетки (первичные клетки)

Стенли Миллер (1953г.), обнаружил возможность образования аминокислот при действии электрических разрядов на смесь метана, аммиака, водорода и водяного пара. В этих реакциях синтеза центральное место занимает цианистый водород — HCN, который может образовываться в реакции: $\mathbf{CH_4 + NH_3 \rightarrow HCN + 3H_2}$

В дальнейшем цианистый водород превращается в цианамид, нитрит и цианоацетилен – предшественники аминокислот, пуринов, пиримидинов, порфиринов.

Пока необъяснимой проблемой в вопросе происхождения жизни является происхождение первичных информационных молекул.

Принципы организации живой материи:

- 1. Принцип молекулярной экономии комбинация небольшого числа молекул дает бесконечное множество макромолекул. Например, миллионы белков составлены из набора в 20 аминокислот, а в состав ДНК входят в основном 4 азотистых основания.
- 2. Принцип простой сложности все биомолекулы состоят из нескольких элементов органогенов (C, H, O, N, S, P).
- 3. Принцип комплементарности необходимость пространственного соответствия отдельных частей биомолекул при их образовании (например, для ДНК это расположение азотистых оснований по правилам Чаргаффа), а также при взаимодействии макромолекул (например, комплексы антиген-антитело, фермент-субстрат и т.д.) по типу «ключ-замок».

Принципы функционирования живой материи

- 1. Все реакции в живых организмах подчиняются II закону термодинамики и происходят по закону действующих масс
- 2. Большинство реакций в живых организмах являются ферментативными, то есть протекают при участии ферментов катализаторов белковой природы
- 3. Все реакции в живых организмах протекают в водной среде, в том числе и реакции окисления, при относительно невысоких температурах.
- 4. Энергия в организмах выделяется при окислении питательных веществ (углеводов, белков, жиров) и значительная ее часть аккумулируется в виде макроэргических связей АТФ.

Методы используемые в биохимии: химические; физические; ферментативные методы — есть только в биохимии; молекулярно-генетические и другие. Материал для биохимических исследований - кровь, моча, желудочный сок, спинномозговая жидкость, синовиальная жидкость, слюна, биоптаты органов.

III. Белки и пептиды. Белки – протеины (protos - первый, значимый) Белки и пептиды – это биополимеры, состоящие из аминокислот. Белки имеют молекулярную массу больше 6-10 тысяч дальтон, а пептиды меньше этих величин.

Элементный состав белков: C - 50-55%; H - 6-7%; O - 21-23%; N - 15-18% ($\approx 16\%$); S - 0-1,5% Количество белка можно рассчитать по количеству азота, т.к. его содержание в белках является практически постоянной величиной - 16 г азота в 100 г белка. Поэтому коэффициент пересчета по азоту равняется 6,25 (100:16=6,25).

Количество белка изменяется с возрастом, также несколько меняются и физикохимические свойства некоторых белков. В разных органах количество белка в пересчете на сухую массу различно, в мозге -45%, легких -82%, селезенке -84%, сердце -20%.

Функции белков:

- 1. Ферментативная (каталитическая) функция. Большинство ферментов являются белками.
- 2. Структурная функция. Белки являются структурными компонентами мембран, основой цитоскелета и межклеточного матрикса.
- 3. Регуляторная функция. Большая часть гормонов и других регуляторов являются белками.
- 4. Рецепторная функция. Белки рецепторы обеспечивают восприятие клетками регулирующих сигналов со стороны организма (например, гормонов, нейромедиаторов)
- 5. Транспортная функция. Белки связывааются с различными веществами (билирубин, жирные кислоты, ксенобиотики, кислород и др.) и транспортируют их.
- 6. Белки осуществляют сократительную функцию в мышцах (актин и миозин).
- 7. Защитная функция. Белки (иммуноглобулины, цитокины и др.) осуществляют функцию иммунитета, а также предотвращают потерю крови, благодаря образованию тромбов (белки свёртывающей и антисвёртывающей системы крови).

Аминокислоты — это производные карбоновых кислот, в которых атом водорода в α -положении замещён на амино (-NH₂) группу. Аминокислоты, входящие в состав белков и пептидов (протеиногенные) имеют общее строение: 1) аминогруппа находится в α -положении относительно карбоксильной группы; 2) все протеиногенные аминокислоты являются стерео-изомерами L-ряда

Классификация протеиногенных аминокислот

- І. В зависимости от химического строения бокового радикала различают:
- 1. **Ациклические аминокислоты**, которые в свою очередь в зависимости от количества амино- и карбоксильных групп делятся на: а) моноаминомонокарбоновые (например, глицин, валин и др.); б) моноаминодикарбоновые (аспарагиновая, глутаминовая кислоты); диаминомонокарбоновые (лизин, аргинин).
- 2. **Циклические аминокислоты**, которые в зависимости от химического строения циклической структуры, делятся на: а) карбоциклические (фенилаланин, тирозин); б) гетероциклические: а) имеющие первичную аминогруппу в боковой цепи (триптофан, гистидин) и б) иминокислоты (пролин)
- II. Рациональная классификация основывается на полярности и зарядах радикала R: а). Аминокислоты с неполярными (гидрофобными) R группами (аланин, триптофан, метионин и дргие); б) Аминокислоты с полярными (гидрофильными) R группами (глицин, серин, треонин, тирозин и др.); в) Аминокислоты с негативно заряженными R группами –кислые аминокислоты (аспарагиновая, глутаминовая кислоты); г) Аминокислоты с позитивно заряженными R группами основные аминокислоты (лизин, гистидин, аргинин). Формулы см. учебник

Строение белков. Аминокислоты способны вступать в реакции полимеризации: одна аминокислота за счёт гидроксила —ОН своей карбоксильной группы соединяется с азотом аминогруппы другой аминокислоты. При этом образуется пептидная связь.

инстеин глипин цистеинил-глипин
$$\mathrm{CH}_2\text{-CH-COOH} + \mathrm{H.NH-CH}_2\text{-COOH} \longrightarrow \mathrm{CH}_2\text{-CH-CO-NH-CH}_2\text{-COOH}$$
 SH NH_2 пептидная связь

Если соединяются 2 аминокислоты, то образуются дипептиды, если 3 аминокислоты – трипептиды и т.д. Называются пептиды таким образом: 1) первой указывается аминокислота, которая имеет свободную -NH₂ группу; 2) в названиях аминокислот, реагирующих своей карбоксильной группой, окончание «ин» меняется на «ил»; 3) аминокислота, сохраняющая свободную карбоксильную группу, своего окончания не меняет.

В белках имеются различные типы связей: **Ковалентные связи**: 1) пептидная связь; 2) дисульфидная (-S-S-) связь. **Нековалентные связи**: 1) водородные связи (>N-H^{...}O=C<); 2) ионные связи; 3) дипольные связи; 4) электростатического притяжения; 5) гидрофобного взаимодействия; 6) Ван-дер-Ваальсовы силы

Молекулы белков имеют сложное строение, уровень которого усложняется в зависимости от молекулярной массы и биологического значения. Условно выделяют 4 уровня структурной организации белковых молекул.

Первичная структура белков. Под первичной структурой понимают последовательность расположения аминокислотных остатков в полипептидной цепи

Вторичная структура белков – это пространственное расположение отдельных участков полипептидной цепи, образование которой обусловлено водородными связями между отдельными участками полипептидной цепи или разными пептидными цепями. Выделяют 2 типа вторичной структуры:

 α -спираль — это молекулярная структура, которая образуется при закручивании полипептидной цепи вправо (в природных белках имеется правая α -спираль). Геометрические параметры её: радиус — 0,25 нм; шаг спирали — 0,54 нм; на один поворот α -спирали приходится 3,6 аминокислотных остатков. Отдельные аминокислоты (про, гли, глу, асп, арг и др.) препятствуют образованию α -спирали или дестабилизируют её. Поэтому могут образовываться спирали, которые по геометрическим параметрам отличаются от α -спирали.

Примером может служить спираль белка коллагена - компонента соединительной ткани, в составе которого содержится 33% глицина и 21% пролина и гидроксипролина.

β-структура образуется из зигзагоподобно развёрнутых полипептидных цепей, расположенных рядом. β-структуры образуются за счёт межцепочечных водородных связей, объединяющих группы C=O и N-H. Во многих природных белках имеются как αспирализированные участки, так и β-структуры. Например, в молекуле химотрипсина 14% аминокислотных остатков входят в состав α-спирали, 45% - в состав β-структур, 61% - участки с неупорядоченной структурой. В молекуле миоглобина 80% аминокислотных остатков образуют α-спираль, а вмолекуле тропомиозина – все 100%

Третичная структура белков представляет пространственное расположение полипептидной цепи с определённой вторичной структурой. в образовании и стабилизации её принимают участие водородные, ионные, гидрофобные связи и взаимодействия. В зависимости от пространственной формы выделяют глобулярные и фибриллярные белки.

<u>Глобулярные</u> белки имеют округлую или эллипсоидную форму. К ним относятся: альбумин сыворотки крови, миоглобин мышц, гемоглобин, большинство ферментов. Глобулярные белки построены из одной или нескольких полипептидных цепей, связанных дисульфидными мостиками и свёрнутых в шароподобную форму (глобулу). Глобула стабилизируется за счёт водородных связей между боковыми радикалами аминокислот. У большинства глобулярных белков полярные (гидрофильные) остатки аминокислот расположены на поверхности глобулы, а неполярные радикалы - во внутренней гидрофобной фазе молекулы.

<u>Фибриллярные</u> белки имеют вытянутую форму молекул. Они образуют ниткообразные комплексы — фибриллы, состоящие из нескольких параллельных полипептидных цепей. Фибриллярные белки являются структурными компонентами соединительной и других опорных тканей организма. К фибриллярным белкам относятся: коллаген, эластин, а -кератин,

Фибриллярные белки формируются путём образования супервторичных (суперспирализированных) структур (образование тропоколлагена, α -кератинов и др.).

Четвертичная структура белков образуется при объединении (агрегации) нескольких полипептидных цепей или протомеров, каждый из которых имеет свою характерную упорядоченную конформацию. Отдельные субъединицы (протомеры) объединены нековалентными связями, что объясняет их диссоциацию при изменениях физико-химических условий среды. Вместе с тем, диссоциация приводит к потере биологической активности. Примерами белков четвертичной структуры являются: гемоглобин (М.м. 68 кД), белки-ферменты и другие олигомерные белки с М.м. больше 50 кД,

<u>Доменные белки</u> содержат в своей структуре домены (структурные участки молекул с третичной структурой). Некоторые домены являются функционально автономными образованиями в составе белковых молекул. Отдельные домены связаны между собой пептидными фрагментами («шарнирными» участками). Примерами доменных белков являются ферменты

– глицеральдегидфосфатдегидрогеназа и фосфоглицераткиназа. В их составе отдельные домены реализуют разные этапы сложного каталитического пути.

IV. Строение мембран

Мембраны – это надмолекулярные структуры, отделяют клетку от окружающей среды и делят ее на компартменты. Различают внешнюю (плазматическую) и внутриклеточные мембраны органелл (ядра, митохондрий, лизосом и т.д.).

Состоят мембраны из белков и липидов. Белков до 60 – 85% от массы, а в миелиновых мембранах (окружают нервы) больше липидов. Основу липидного слоя составляют фосфолипиды: фосфатидилхолин, фосфатидилэтаноламин, холестерин.

Фосфолипиды амфипатические соединения: гидрофильная головка (Рн. + глицерол), гидрофобный хвост — радикалы жирных кислот. В состав фосфолипидов входят ненасыщенные жирные кислоты. Образуется двуслойная мембрана, липидный бислой, в который встроены белки: поверхностные (располагаются на поверхности мембраны) и интегральные (пронизывают мембрану насквозь). Липидный слой находится в текучем состоянии. Молекулы фосфолипидов и белков двигаются вдоль поверхности мембраны. Поэтому говорят о латеральной диффузии компонентов мембран. Холестерин уплотняет липидный бислой мембран, делает его более прочным и уменьшает текучесть мембранных липидов. Ассиметрия мембраны — на внешней поверхности белков больше чем на внутренней.

Функции мембраны:

І.Барьерная – мембрана отделяет клетку от внешней среды и делит ее на компартменты, предохраняя от вытекания ионов и веществ, от проникновения токсинов вирусов и т.д.

II.Транспортная функция. Мембраны имеют избирательную проницаемость. Через нее в клетку поступают необходимые ей вещества и выделяются продукты обмена.

Виды транспорта:

- 1.**Простая (пассивная)** д**иффузия** осуществляется за счет градиента концентрации (так переносятся O_2 , CO_2 , H_2O и другие небольшие молекулы). Лучше диффундируют те вещества, которые растворяются в липидах мембран. Например, диэтиловый эфир человек вдыхает через легкие, а уже через секунды эфир проникает в клетки мозга.
- 2. **Облегченная диффузия** осуществляется по градиенту концентрации, но с более высокой скоростью. Она обусловлена:
- а) **белками-переносчиками** транслоказы. Белки-транслоказы соединяются с веществом на одной стороне мембраны, переносят его через мембрану и отдают на другой. Так, транспортер глюкозы в эритроцитах ускоряет транспорт глюкозы в 10–100 млн. раз. Кальций-переносящий белок, который обеспечивает всасывание ионов кальция в кишечнике.
- б) ионными каналами. Ионные каналы это белковые образования, которые обеспечивают транспорт ионов Na^+ , K^+ , Ca^{2+} . Например, натриевый канал в нервных клетках состоит из двух белков. Один белок образует ионную пору, которая имеет селективный фильтр для Na^+ , а другой белок выполняет функцию ворот закрывает или открывает вход в канал. Ворота канала открываются за счет электрического импульса. Некоторые токсины блокируют натриевые каналы. Например, тетрадотоксин рыбы фугу. Он закрывает вход в канал (аналогично как бутылка закрывается пробкой).
- в) **ионофорами**. Ионофоры это антибиотики, имеющие циклическую структуру, в середине кольца есть полость, через которую избирательно могут проходить ионы. Например, валиномицин избирательно пропускает K^+ (встраиваясь в мембрану, он образует канал, через который происходит утечка K^+); амфотерицин избирательно пропускает анионы.
- 3. **Активный транспорт** осуществляется против градиента концентрации за счет энергии ATФ:
- а) Перенос Na^+ , K^+ , Ca^{2+} , анионов и протонов за счет **транпортных АТФ-аз**. Хорошо изучена Na^+ , K^+ -АТФ-аза Na^+ , K^+ -насос, обеспечивает перенос 3-х ионов натрия из клетки наружу в обмен на поступление внутрь клетки двух ионов калия, при этом гидролизуется 1 молекула АТФ. Имеется протонная АТФ-аза, которая за счет энергии АТФ создает градиент концентрации ионов водорода, обеспечивая синтез кислоты в желудочном соке.

б) Симпорт и антипорт — это транспорт одного вещества за счет градиента концентрации другого вещества. Симпорт — однонаправленный перенос одного вещества за счет градиента концентрации другого. Например, перенос Na^+ через мембрану сопровождается транспортом в том же направлении глюкозы или аминокислот (так всасывается глюкоза и аминокислоты в кишечнике).

Антипорт — противоположное движение ионов, вхождение одного вещества вызывает выброс другого. Например, вхождение в клетку Na^+ сопровождается выбросом Ca^{2+} .

- **4.Эндоцитоз** перенос веществ вместе с частью плазматической мембраны путем образования пузырьков:
 - пиноцитоз перенос пузырьков жидкости;
 - фагоцитоз перенос твердых нерастворимых веществ.

III.Ферментативная функция — большинство ферментов в клетке связаны с мембранами. Например, в мембранах митохондрий сосредоточены ферменты дыхательной цепи, в мембранах эндоплазматического ретикулума — ферменты обмена ксенобиотиков, синтеза белка и т.д.

IV.Рецепторная функция. На поверхности клеточных мембран имеются рецепторы (для гормонов и других регуляторов). Благодаря наличию рецепторов организм получает возможность регулировать функцию клеток, благодаря рецепторам клетки обмениваются информацией. По химической природе рецепторы являются белками — чаще гликопротеинами. Многие заболевания связаны с патологией рецепторов. Например, если жировые клетки имеют мало рецепторов для адреналина, то это вызывает накопление жира (поскольку адреналин активирует липолиз). Если клетки утрачивает рецепторы для веществ-регуляторов, которые тормозят их размножение, то такие клетки стают злокачественными и бесконтрольно размножаются. Механизм действия многих микробных токсинов связан с тем, что они взаимодействуют с клеточными рецепторами. Например, холерный токсин, связывается с рецепторами на эпителиальных клетках слизистой кишечника; активируя транспорт воды в кишечник, обуславливая понос.

Многие лекарственные вещества действуют на клеточные рецепторы. Например, морфин соединяется с рецепторами в нервных клетках мозга. В обычных условиях эти рецепторы связывают нейрогормоны, которые регулируют эмоциональное состояние человека. То есть морфин имитирует действие нейрогормонов.

V.Антигенная функция. Все многоклеточные организмы имеют неповторимую химическую индивидуальность, которая закреплена генетически, а генетическая чистота контролируется системой иммунитета. Поверхность всех клеток содержит множество антигенов. Например на мембране эритроцитов имеется более 250 антигенов, которые определяют группы крови, трансплантационный иммунитет. Антигенами эритроцитов являются мембранные белки — гликопротеины, а специфику антигена определяет состав углеводной цепочки. В эритроцитах группы крови В эта цепочка заканчивается глюкозой, а в эритроцитах группы крови А цепочка длиннее на один остаток N- ацетилгалактозамина, отщепив который можно превратить эритроцит группы крови А в эритроцит группы крови В.

VI.Специализированные функции мембран:

- 1. Электрическая возбудимость это передача информации с помощью изменения заряда мембран. Характерна для нервной и мышечной ткани.
- 2. Синаптическая передача преобразование электрического импульса в химический в синаптических мембранах.
- 3. Фоторецепция мембраны с помощью специального белка родопсина превращают световую энергию в химическую, а потом в электрический импульс.
- 4. Энергоспрягающая функция мембраны митохондрий превращают энергию градиента концентрации протонов в энергию связей АТФ.
 - 5. Функция подвижности обусловлена выростами мембраны: жгутиками, ворсинками.

6. Функция межклеточных контактов. Благодаря щелевым контактам осуществляется переход веществ и гормонов из одной клетки в другую, что обеспечивает синхронность работы клеток. Межклеточные контакты — обеспечивается белком фибронектином.