Homework 6

108B (1375) Global Positioning System 王傳鈞 0416047

第一題

因為歲差和章動的影響,所以天球座標系的座標軸沒辦法永遠保持固定,會隨著時間推移而旋轉、偏移。為了解決這樣子的問題,我們可以指定一個特定時刻的座標軸當作固定參照,此方法就稱為「協議」慣性坐標系統。目前國際間最常使用「J2000.0」,它代表 terrestrial time 2000/1/1 12:00:00 AM。

天球座標系是一種以通過星體的天球當作參考體、天球赤道面和通過春分點 的子午圈當作參考面的座標系統。在卡氏直角座標定義下,座標原點是地球質 心、X 軸會通過春分點、Z 軸會通過天北極,詳細情形如下圖所示。

0416047 王傳鈞

在任何的座標系統當中,都可以有兩種表示座標的方法:直角座標、球面座標。在天球座標系當值中,我們通常用 (α, δ, R) 來表示一個點的球面座標,關於這兩種座標表示法的換算公式如下。

• 直角座標 → 球面座標:

$$\begin{cases} \alpha = \arctan\left(\frac{y}{x}\right) \\ \delta = \arctan\left(\frac{z}{\sqrt{x^2 + y^2}}\right) \\ R = \sqrt{x^2 + y^2 + z^2} \end{cases}$$

直角座標 ← 球面座標:

$$\begin{cases} x = R \cdot \cos \delta \cdot \cos \alpha \\ y = R \cdot \cos \delta \cdot \sin \alpha \\ z = R \cdot \sin \delta \end{cases}$$

第二題

因為極運動的影響,所以地球座標系的座標軸沒辦法永遠保持固定,會隨著時間推移而旋轉、偏移。為了解決這樣子的問題,我們可以指定一個特定時刻的座標軸當作固定參照,此方法就稱為「協議」地球坐標系統。目前國際間最常使用 conventional terrestrial pole (CTP),它代表西元 1900 到 1905 年,共六年期間的平均地球北極點位置,使用它來當地球座標系的 Z 軸之固定指向。

地球座標系是一種以參考橢球體 (reference ellipsoid) 當作參考體、赤道面和通過格林威治的本初子午圈當作參考面的座標系統。在卡氏直角座標定義下,座標原點是地球質心、X 軸會通過本初子午圈和赤道面的交點、Z 軸會通過CTP,詳細情形如下圖所示。

在任何的座標系統當中,都可以有兩種表示座標的方法:直角座標、球面座標。在天球座標系當值中,我們通常用 (φ, λ, h) 來表示一個點的球面座標,關於這兩種座標表示法的換算公式如下,以下文字 e 代表橢球體離心率、a 代表橢球體半長軸長度。

直角座標 → 球面座標:

$$\begin{cases} \varphi = \arctan\left(\frac{z(N+h)}{\sqrt{x^2 + y^2}[N(1-e^2) + h]}\right) \\ \lambda = \arctan\left(\frac{y}{x}\right) \\ h = \frac{z}{\sin\varphi} - N(1-e^2), \text{ where } N = \sqrt{\frac{a^2}{1 - (e\sin\varphi)^2}} \end{cases}$$

• 直角座標 ← 球面座標:

$$\begin{cases} x = (N + h) \cdot \cos\varphi \cdot \cos\lambda \\ y = (N + h) \cdot \cos\varphi \cdot \sin\lambda \\ z = [N(1 - e^2) + h] \cdot \sin\varphi \end{cases}$$

可以特別注意到上述的公式中,計算 φ 和 h 的過程,並不是 explicit form,造成需要使用疊代法求解。

第三題

- 歲差 (axial precession):又稱「進動」,因為地球不是完美的球體,赤道部分較南北兩極隆起,所以太陽和月亮的引力會對隆起的部分形成力矩,讓地球自轉軸無法保持指向一個固定方位,造成現在可以觀測到每年春分點以約 50.3 角秒的速率向西移動。
- 章動 (nutation):因為太陽和月亮地球的引力不是固定不變的常數,會隨著地球公轉、月球繞地相對位置的不同而有大小變化,所以地球自轉軸在歲差的過程中,不會保持等速而呈顯小幅抖動的現象。
- 極移 (polar motion):又稱「極運動」,因為地球的自轉軸並不與地球最大 慣性軸一致,所以造成南北極點在地球表面的位置會隨時間變化。

從協議慣性坐標系統轉換到協議地球坐標系統的過程,要考慮歲差、章動、極移三種效應帶來的變化量。除此之外,還需要在固定 Z 軸之下,旋轉 X 軸的指向由通過春分點,變成通過本初子午圈與赤道面的交點,意即旋轉 Greenwich apparent sidereal time (GAST) 角度,詳細步驟如下。

第四題

測站地平座標系是一種完全以測站當作原點來看世界的座標系統。在卡氏直角座標定義下,座標原點是測站、X 軸指向測站的正東方、Z 軸指向測站正上方的天頂,詳細情形如下圖所示。

在任何的座標系統當中,都可以有兩種表示座標的方法:直角座標、球面座標。在天球座標系當值中,我們通常用 (A, β, r) 來表示一個點的球面座標,關於這兩種座標表示法的換算公式如下。

• 直角座標 → 球面座標:

$$\begin{cases} A = \arctan\left(\frac{y}{x}\right) \\ \beta = \arctan\left(\frac{z}{\sqrt{x^2 + y^2}}\right) \\ r = \sqrt{x^2 + y^2 + z^2} \end{cases}$$

• 直角座標 ← 球面座標:

$$\begin{cases} x = r \cdot \cos\beta \cdot \cos A \\ y = r \cdot \cos\beta \cdot \sin A \\ z = r \cdot \sin\beta \end{cases}$$

第五題

總共經過三個步驟的旋轉座標軸,就可以把測站地平座標轉換成 CTS 座標。 為了不混淆名稱,這邊把測站地平座標系的三個座標軸分別叫做 N、E、U 軸, CTS 的三個座標軸還是維持 X、Y、Z 軸的稱呼。

第一步,顛倒 E 軸指向,讓測站地平座標系的三軸合乎 right-hand rule。假設新的 E 軸叫做 E' 軸。第二步,固定 E' 軸的情形下,旋轉座標軸讓 U 軸平行 CTS 的 Z 軸。假設新的 U 軸叫做 U' 軸。第三步,固定 U' 軸的情形下,旋轉座標軸讓 N 軸平行 CTS 的 X 軸且 E 軸平行 CTS 的 Y 軸。

綜合以上的三個步驟,我們可以寫成一個旋轉矩陣,只需要把某一個特定點的測站地平卡氏直角座標乘以旋轉矩陣,就可以輕鬆得到該點相對應的 CTS 的直角座標值,假設測站在 CTS 的 spherical coordinate 是 (φ, λ, h) 。

• 轉換公式: $\Delta \bar{X} = A \Delta X_e$, ΔX_e 代表某點的測站地平座標系之卡氏直角座標

• 其中:
$$A = \begin{bmatrix} -\sin\varphi\cos\lambda & -\sin\lambda & \cos\varphi\cos\lambda \\ -\sin\varphi\sin\lambda & \cos\lambda & \cos\varphi\sin\lambda \\ \cos\varphi & 0 & \sin\varphi \end{bmatrix}$$
,而且不難發現 A 是正交矩陣

第六題

根據題目給定的地心地固經緯度座標 (緯度 24.3333 度、經度 121.5 度),加上我自行撰寫的 python 程式,可以得到以下結果。

```
1
    $ python HW6_0416047_Q6.py
   Enter latitude: (in decimal degrees)
 2
    24.3333
   Enter longitude: (in decimal degrees)
 4
 5
   121.5
    Enter ellipsoidal height: (in meters)
 6
 7
    125.0
 8
 9
   ECEF XYZ coordinates are:
10
    (using GRS80 reference ellipsoid)
11
12
   X : -3038301.9047
13
   Y: 4958058.0892
14
   Z : 2612015.9823
15
16
17
   Reversely conversion for checking correctness:
    Latitude : 24.3333
18
19
   Longitude : 121.5000
           : 125.0000
20
   Height
```

根據上圖 (第 12~14 行) 可知該點的卡氏座標為 x = -3038301.9047、 y = 4958058.0892、z = 2612015.9823。以此數值反推其經緯度座標 (第 18~20行),也可得到與輸入時相同的結果。

第七題

目前我國最新的國家座標系統是 TWD97[2010],採用橫麥卡托二度分帶 (2°TM)投影,參考橢球體是 GRS80。在臺灣本島與周邊離島地區,中央子午線是 東經 121 度、尺度比 0.9999,投影原點向西平移 250 公里;在澎湖、金門、馬祖地區,中央子午線是東經 119 度、尺度比 0.9999,投影原點向西平移 250 公里。若向我國內政部申請某一個點位的精確座標,會得到三種版本:①地心地固座標系的三維卡氏直角座標、②地心地固座標系的球面座標、③2°TM 投影座標與橢球高。

第八題

目前我國最新的國家座標系統是 TWD97[2010],其採用橫麥卡托二度分帶 (2°TM)投影。在臺灣本島與周邊離島地區,中央子午線是東經 121 度、尺度比 0.9999,投影原點向西平移 250 公里;在澎湖、金門、馬祖地區,中央子午線是東經 119 度、尺度比 0.9999,投影原點向西平移 250 公里。

首先,採用此投影方法而非國際間常用的 UTM (即 6°TM),是因為上述地區的地理範圍並不大,使用六度分帶將會有很大的投影誤差,使用比較密的二度分帶將可以減少投影誤差。其次,使用二度分帶且中央子午線尺度比 0.9999,將可以讓臺灣本島的西部沿岸與東部沿岸,恰好落在尺度比接近 1 的位置,滿足多數使用者對於重點城市需要高精度投影座標的需求。最後,投影原點向西平移將可以讓所有的投影座標都呈現正數數值,方便我們做數據的處理。

第九題

根據我自行撰寫的 python 程式,只要在終端機輸入命令

「python HW6_0416047_Q9.py igs20913.sp3」,就可以得到 HW6_Q9_Result.csv 檔案,裡面含有 2020/02/05 08:00:00AM,總共 32 顆 GPS 衛星各自的測站地平 座標,以下表格詳細列出結果。

PRN	Azimuth	Altitude	Distance	PRN	Azimuth	Altitude	Distance
G01	174.602	-48.382	30753.281	G17	247.631	-30.195	29302.521
G02	326.966	-22.705	27808.507	G18	164.213	-33.453	29186.203
G03	77.549	-72.574	32556.599	G19	270.532	-30.162	29222.541
G04	8.545	-66.311	32258.859	G20	148.513	49.392	21300.327
G05	300.799	8.423	24999.477	G21	76.417	52.615	21544.598
G06	311.546	-47.016	30806.772	G22	110.578	-60.363	31816.938
G07	211.992	-55.235	31351.721	G23	2.167	-67.705	32023.705
G08	149.088	-15.087	27588.325	G24	239.453	80.806	19996.724
G09	311.981	-64.207	32183.283	G25	357.244	5.971	25193.045
G10	137.71	19.826	23818.475	G26	62.175	-37.635	30065.741
G11	169.917	-28.974	28766.421	G27	121.25	-6.995	26662.532
G12	323.344	18.328	23849.692	G28	215.054	-5.486	26870.93
G13	236.416	10.262	24630.291	G29	19.355	0.471	25733.61
G14	74.392	-7.504	26657.417	G30	215.239	-31.101	29233.006
G15	225.476	38.043	22006.616	G31	37.509	-21.949	28205.943
G16	87.062	-41.907	30686.165	G32	88.659	9.813	24808.256

仔細觀察上面的表格,就可以發現只有編號為 G05、G10、G12、G13、G15、G20、G21、G24、G25、G29、G32 共十一顆衛星,具有大於零的仰角角度。因此,我們可以推得:如果在題目給定的座標點設置觀測站,則該時間點只能觀測到至多以上列出的十一顆 GPS 衛星。

第十題

TWD67

在民國 69 年公布的我國國家座標系統,又稱「虎子山座標系統」,目前已經被 TWD97 所取代。TWD67 使用 GRS67 的橢球體當作參考橢球體,測量原點位於南投縣虎子山的一等三角點,使用橫麥卡托二度分帶 (2°TM) 投影。TWD67 的座標被拆分為平面和高程兩個部分,因此 TWD67 不是真正的三維空間系統。

• TWD97 (Taiwan Datum 1997)

在西元 1997 年公布的我國國家座標系統,目前仍持續使用當中。作為TWD67 的進階改良版本,TWD97 不設立測量原點,而是使用八個位於我國境內的 GNSS 衛星追蹤站,建立 ITRF97 框架來取代。GRS80 當作參考橢球體,並且為了最小化 2°TM 的投影誤差,在臺灣本島及周圍離島的投影中央子午線是東經121 度,在澎湖、金門、馬祖地區的投影中央子午線是東經119 度。因為結合了GNSS 定位系統,所以 TWD97 是一個原生的三維空間系統,其高程採用橢球高。另外,因為上述地區的地殼變動頻繁,所以大約每個 10 年,TWD97 就會做小幅度的修改,以因應劇烈的地殼變動。

- TWVD2001 (Taiwan Vertical Datum 2001)
 在西元 2001 年公布的我國國家高程系統。採用以鉛垂線為依據的正高系統,並以基隆潮位站 1957~1991 年的平均潮汐資料,來訂出水準原點。
- WGS84 (World Geodetic System 1984)

GPS 衛星定位所採用的座標系統,是一種地心地固座標系。X 軸通過 BIH 1984 本初子午圈與赤道面的交點,Z 軸通過 BIH 1984 CTP,座標原點則是地球質心。WGS84 使用的參考橢球體參數與 GRS80 有些許不同,只差在扁率的倒數小數點下第五位以後的數值,其餘皆與 GRS80 相同。

• ITRF (International Terrestrial Reference Frame)

0416047 王傳鈞

是一種 ITRS 的實現,由 IERS 負責制訂與維護。概念是利用遍布全球的地理觀測站組成測量網路,把觀測資料綜合計算並推得一個地心地固座標系統。因為在這個框架哩,座標點是透過與各個觀測站之間的相對位置,與運動方向來定義出來,所以 ITRF 並沒有參考橢球體,但其維護組織 IERS 建議可在普通應用時使用 GRS80,或直接套用 ITRF transformation parameters 來進行 ITRF 與其他座標系統之間的轉換作業。

第十一題

GPS time 永遠與 TAI 相差 19 秒鐘,TDT 永遠與 TAI 相差 32.184 秒鐘。因為 UTC 是一個會考量到地球自轉因素的時間標準,而地球的自轉並非均勻等速,所以 UTC 會隨著時間的流逝而可能超前或是落後地球目前的自轉情形,這時就需要加上一些修正量來保持 UTC 的一致性。因此,與永遠保持均勻等速增加的 TAI 比起來,UTC 與 TAI 之間的差距就稱為潤秒 (leap second);截至 2020 年六月 為止,UTC 與 TAI 之間總共差距 37 秒鐘。