第二讲 感知器 (Perceptron for Pattern Recognition)

- 2.1 感知器模型假设空间 (Perceptron Hypothesis Set)
- 2.2 感知器算法 (Perceptron Learning Algorithm: PLA)
- 2.3 感知器算法的收敛性 (Guarantee of PLA)
- 2.4 线性不可分情况 (Non-separable Data)

 $\mathcal{H}(\cdot)$ 像什么?

考虑二元分类 (Binary Classification)情况

$$\mathbf{x} = (x_1, x_2, \dots x_d)^T$$

Yes, if $\sum_{i=1}^d w_i x_i > threshold$

No, if $\sum_{i=1}^d w_i x_i < threshold$

$$\hat{\mathcal{Y}} = \{+1(Yes), -1(No)\}, if \hat{\mathcal{Y}} = 0$$
 拒识 $h() \in \mathcal{H}(\cdot)$

$$h(\mathbf{x}) = sign\left(\sum_{i=1}^{d} w_i x_i\right) - threshold$$

用向量形式(Vector Form)来表示感知器模型:

$$h(\mathbf{x}) = sign\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) - threshold\right)$$

$$= sign\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) + \underbrace{\left(-threshold\right) \cdot \left(+1\right)}_{w_{0}} \cdot \underbrace{\left(-threshold\right) \cdot \left(+1\right)}_{x_{0}}\right)$$

$$= sign\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) + \underbrace{\left(-threshold\right) \cdot \left(+1\right)}_{w_{0}} \cdot \underbrace{\left(-threshold\right) \cdot \left(+1\right)}_{x_{0}}\right)$$

$$= sign\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) + \underbrace{\left(\sum_{i=1}^{d} w_{i} x_{i}\right) + \underbrace{\left(\sum_{i=1}^{d} w_{i} x_{i}\right)}_{x_{i}}\right)$$

$$= sign\left(\left(\sum_{i=1}^{d} w_{i} x_{i}\right) + \underbrace{\left(\sum_{i=1}^{d} w_{i$$

将感知器算法用于图像分类(image classification)示例:

将感知器算法用于图像分类(image classification)示例:

$$if: \mathbf{w}^T = (3.2 \quad 1.5 \quad 1.3 \quad 2.1 \quad 0.8)$$

$$\hat{y} = h(\mathbf{x}) = sign(\mathbf{w}^T \mathbf{x}) = sign((3.2 \ 0.5 \ 1.3 \ 2.1 \ 0.8) \begin{pmatrix} 1\\126\\180\\62\\26 \end{pmatrix})$$

$$= sign(451.2) = 1$$
Source: CS1

在二维空间观察感知器的分类面(候选的) $\mathcal{H}(\cdot)$

$$h(\mathbf{x}) = sign(w_0 + w_1x_1 + w_2x_2)$$

标签 *y* → ○ (+1), × (-1)

 $h(\mathbf{x})$ 平面上的线(或者 \mathbf{R}^d 上的超平面)

平面被分成两个区域,分别表示+1类和-1类所在的区域不同的线有可能将同一样本分到不同的类别中去

感知器也被称作二元线性分类器(binary linear classifiers)

用向量几何知识来分析感知器模型

假定 x_1 和 x_2 在分类面上:

$$g(\mathbf{x}_1) = \mathbf{w}^T \mathbf{x}_1 + w_0 = 0$$

$$g(\mathbf{x}_2) = \mathbf{w}^T \mathbf{x}_2 + w_0 = 0$$

$$\mathbf{w}^T (\mathbf{x}_1 - \mathbf{x}_2) = 0$$

$$\mathbf{w} \perp (\mathbf{x}_1 - \mathbf{x}_2)$$

权向量垂直于分类面

用向量几何知识来分析感知器模型

如果 $\mathbf{x} \in D$ 在特征平面上, \mathbf{x}_p 在分类面上

$$r$$
表示 \mathbf{x} 与分类面 $(g(\mathbf{x}_p) = 0)$ 之间的距离

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + w_0$$

$$= \mathbf{w}^T \mathbf{x}_p + w_0 + r \frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= r \|\mathbf{w}\|$$

用向量几何知识来分析感知器模型

$$r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$$

$$\stackrel{\cong}{=} \mathbf{x} = \mathbf{0}$$
, $g(\mathbf{x}) = w_0$ $r = \frac{w_0}{\|\mathbf{w}\|}$

即:原点到分类面的距离为: $r = \frac{w_0}{\|w\|}$

- \ge 当 $w_0 > 0$,原点处于分类面的正区域
- \rightarrow 当 $w_0 < 0$,原点处于分类面的负区域
- \rightarrow 当 $w_0 = 0$,分类面穿过原点

感知器模型的可视化:

感知器模型的可视化:

感知器模型的可视化:

感知器模型的可视化:

感知器模型的可视化:

第二讲 感知器 (Perceptron for Pattern Recognition)

- 2.1 感知器模型假设空间 (Perceptron Hypothesis Set)
- 2.2 感知器算法 (Perceptron Learning Algorithm: PLA)
- 2.3 感知器算法的收敛性 (Guarantee of PLA)
- 2.4 线性不可分情况 (Non-separable Data)

算法 \mathcal{A} 的目的是在 $\mathcal{H}(h(\cdot))$ 中找到最优结果

作为分类器的模型 g

▶ 最优结果: g ≈ f

▶ 挑战:
ƒ 未知

学习的资源:在训练集D上,如果每一个样本都有: $g(\mathbf{x}_n) = y_n = f(\mathbf{x}_n)$,则在训练集D上做到了 $g \approx f$

 \rightarrow 困难: $\mathcal{H}(h(\cdot))$ 的候选模型无穷多

算法思路

- ightharpoonup 设置初始分类面 $(权重)w_0$
- 如果有样本分错, 就修正权重

算法思路

- ightharpoonup 设置初始分类面 $(权重)w_0$
- 如果有样本分错, 就修正权重

- 对样本的特征向量x和权向量w 增广化
- 初始化权向量 \mathbf{w}_0 (例如: $\mathbf{w}_0 = \mathbf{0}$)
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 进行到第t 次迭代时权向量为 w_t ,它对样本 $(\mathbf{x}_{n(t)}, y_{n(t)})$ 错分 $\operatorname{sign}(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n$
 - ② 通过下式对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} = \mathbf{w}_t + y_n \mathbf{x}_{n(t)}$
- …直到所有样本均能被正确分类,此时的 w_{t+1} 作为学到的g

算法思路

- ightharpoonup 设置初始分类面 $(权重)w_0$
- 如果有样本分错, 就修正权重

算法迭代示例

算法迭代示例

算法迭代示例

算法迭代示例

算法迭代示例

算法迭代示例

训练样本集中所有样本都分类正确,算法停止

问题1: 算法会收敛吗?

结果与输入样本顺序是否有关?

问题2: 能学到 *g* ≈ *f* 吗?

- \triangleright 在**D**上,如果 $L_{in}=0$, $g \approx f$?
- \blacktriangleright 不在**力**上时, $L_{out}=0$? $g \approx f$?
- 算法不能收敛时,g≈f?

能否证明在满足什么样的条件下, 感知器算法经过足够次迭代,一 定会收敛

第二讲 感知器 (Perceptron for Pattern Recognition)

- 2.1 感知器模型假设空间 (Perceptron Hypothesis Set)
- 2.2 感知器算法 (Perceptron Learning Algorithm: PLA)
- 2.3 感知器算法的收敛性 (Guarantee of PLA)
- 2.4 线性不可分情况 (Non-separable Data)

线性可分性 (linear separable)

PLA算法收敛

算法停止

w对力上所有样本正确分类

D 上所有样本是线性可分的

线性可分

线性不可分

线性不可分

假设 \mathbf{w}_f 是理想的分类面:

$$\mathbf{D}$$
 是线性可分的 \longleftrightarrow $y_n = sign(\mathbf{w}_f^T \mathbf{x}_n)$

第t次迭代时,任意一个样本 $\mathbf{x}_{n(t)}$ 满足

$$y_{n(t)} \mathbf{w}_f^T \mathbf{x}_{n(t)} \ge \min_n y_n \mathbf{w}_f^T \mathbf{x}_n > 0$$

迭代次数增加

$$w_f^T w_{t+1} = w_f^T (w_t + y_{n(t)} \mathbf{x}_{n(t)}) \ge w_f^T w_t + \min_n y_n w_f^T \mathbf{x}_n > w_f^T w_t + 0$$

结论:随着迭代次数增加, $\mathbf{w}_f^T \mathbf{w}_t$ 随之增加,意味着 \mathbf{w}_t 与 \mathbf{w}_f 越来越接近

假设 \mathbf{w}_t 是第 t 次迭代得到的分类面:

当 \mathbf{x}_n 被分类错误时,才更新 $\mathbf{w}_t \longleftrightarrow sign(\mathbf{w}_t^T \mathbf{x}_n) \neq y_n \longleftrightarrow y_{n(t)} \mathbf{w}_t^T \mathbf{x}_{n(t)} \leq 0$

假设 \mathbf{x}_n 在样本集中模值最大,随着迭代次数增加, $\|\mathbf{w}_t\|$?

$$\begin{aligned} \|\mathbf{w}_{t+1}\|^2 &= \left\|\mathbf{w}_t + y_{n(t)}\mathbf{x}_{n(t)}\right\|^2 \\ &= \left\|\mathbf{w}_t\right\|^2 + 2y_{n(t)}\mathbf{w}_t^T\mathbf{x}_{n(t)} + \left\|y_{n(t)}\mathbf{x}_{n(t)}\right\|^2 \\ &\leq \left\|\mathbf{w}_t\right\|^2 + 0 + \left\|y_{n(t)}\mathbf{x}_{n(t)}\right\|^2 \leq \left\|\mathbf{w}_t\right\|^2 + \max_n \|y_n\mathbf{x}_n\|^2 \end{aligned}$$

结论:随着迭代次数增加, w_t 模值增长不会太快,意味着 w_t 与 w_f 的接近是方向上在靠近,而非模值的贡献

课后证明:

- (1): 针对线性可分训练样本集,PLA算法中,当 $\mathbf{w}_0 = \mathbf{0}$,在对分错样本进行了T次修正后,下式成立: $\frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \frac{\mathbf{w}_T}{\|\mathbf{w}_T\|} \ge \sqrt{T} \cdot constant$
- (2) ,针对线性可分训练样本集,*PLA*算法中,假设对分错样本进行了*T*次修正后得到的分类面不再出现错分状况,定义:

$$R^2 = \max_{n} \|\mathbf{x}_n\|^2$$
, $\rho = \min_{n} y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$, 证明: $T \leq \frac{R^2}{\rho^2}$

第二讲 感知器 (Perceptron for Pattern Recognition)

- 2.1 感知器模型假设空间 (Perceptron Hypothesis Set)
- 2.2 感知器算法 (Perceptron Learning Algorithm: PLA)
- 2.3 感知器算法的收敛性 (Guarantee of PLA)
- 2.4 线性不可分情况 (Non-separable Data)

算法收敛性保证:

D 是线性可分的

 $w_f^T w_t$ 随t增加而增加

 \mathbf{x}_n 被分类错误时才更新 \mathbf{w}_t

 w_t 模值增长不会太快

算法学习的分类面与 w_f 越来越接近

算法收敛

| 算法的长处:

- > 实现简单
- > 运行快速
- ➤ 适用于任意 维数d

算法的不足:

- $T \leq \frac{\max_{n} \|\mathbf{x}_{n}\|^{2}}{(\min_{n} y_{n} \frac{\mathbf{w}_{f}^{T}}{\|\mathbf{w}_{f}\|} \mathbf{x}_{n})^{2}}, \quad T有界$

 $--W_f$ 未知,实际无法得到T

如果 D 是线性不可分的,算法不收敛,如何处理?

线性可分

- ightharpoonup 设置初始分类面 $(权重)w_0$
- 如果有样本分错, 就修正权重

Pocket 算法 - 为处理线性不可分情况而对PLA算法的修正

- 对样本的特征向量x和权向量w 增广化
- 初始化权向量 \mathbf{w}_0 (例如: $\mathbf{w}_0 = \mathbf{0}$), 并任意选一个"Pocket"向量 $\hat{\mathbf{w}}$
- for t = 0,1,2,... (t 代表迭代次数)
 - ① 进行到第t 次迭代时权向量为 w_t ,它对样本($\mathbf{x}_{n(t)}, y_{n(t)}$)错分

$$\operatorname{sign}(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n$$

- ② 通过下式对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} = \mathbf{w}_t + y_n \mathbf{x}_{n(t)}$
- ③ 如果 \mathbf{w}_{t+1} 在所有样本集上错分的样本少于 $\hat{\mathbf{w}}$,则用 \mathbf{w}_{t+1} 代替 $\hat{\mathbf{w}}$,并在错分样本中随机选一个对权向量进行更新
- ...达到指定的迭代次数

返回此时的 "Pocket"向量 \hat{w} 作为算法学到的g

第二讲 感知器 (Perceptron for Pattern Recognition)

2.1 感知器模型假设空间

在Rd空间的超平面的线性分类面

2.2 感知器算法 (PLA)

通过迭代的方式对错分样本的分类面进行修正

2.3 感知器算法的收敛性

如果训练样本集是线性可分的,算法能对所有的样本正确分类并停止

2.4 线性不可分情况

通过 "Pocket" 算法在设置的迭代次数下寻找相对最佳的分类面