Série 6

Exercice supplémentaire

On considère la suite (a_n) définie par $a_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}^*$.

- **1.** Montrer que $a_n = 1 + \sum_{k=1}^n \frac{1}{k!} \cdot (1 \frac{1}{n}) \cdots (1 \frac{k-1}{n})$.
- 2. En déduire que cette suite est croissante et majorée.
- **3.** Soit (e_n) la suite définie par $e_n = \sum_{k=0}^n \frac{1}{k!}$. Elle converge vers e.

Montrer que la suite (a_n) converge aussi vers e.

1. On utilise le développement du binôme de Newton :

$$a_{n} = \left(1 + \frac{1}{n}\right)^{n}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^{k}$$

$$= 1 + \sum_{k=1}^{n} \frac{n(n-1)\cdots(n-k+1)}{k!} \cdot \frac{1}{n^{k}}$$

$$= 1 + \sum_{k=1}^{n} \frac{1}{k!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n}$$

$$= 1 + \sum_{k=1}^{n} \frac{1}{k!} \cdot (1 - \frac{1}{n}) \cdots (1 - \frac{k-1}{n}).$$

2. i) On montre que la suite (a_n) est croissante en explicitant a_{n+1} à l'aide de la relation établie au point **1.** et en le comparant à l'expression de a_n .

$$a_{n+1} = 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \cdot \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{k-1}{n+1}\right)$$

$$> 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$$

$$= 1 + \sum_{k=1}^{n} \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$$

$$= a_{n}.$$

Pour tout $n \in \mathbb{N}^*$, on a $a_{n+1} > a_n$, la suite (a_n) est strictement croissante.

ii) Montrons que (a_n) est majorée par e.

$$a_n = 1 + \sum_{k=1}^n \frac{1}{k!} \cdot \underbrace{\left(1 - \frac{1}{n}\right)}_{\leq 1} \cdots \underbrace{\left(1 - \frac{k-1}{n}\right)}_{\leq 1} < 1 + \sum_{k=1}^n \frac{1}{k!} = \sum_{k=0}^n \frac{1}{k!} < e,$$

car la suite (e_n) définie par $e_n = \sum_{k=0}^n \frac{1}{k!}$ est strictement croissante et converge vers e.

iii) La suite (a_n) est croissante et majorée, elle est donc convergente. On note a sa limite :

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = a.$$

3. On a montré que la suite (a_n) est majorée par e. Pour montrer que a=e, il suffit donc de montrer que $\lim_{n\to\infty} a_n \geq e$.

La suite (a_n) est strictement croissante et converge vers a, donc $a > a_N$, $\forall N \in \mathbb{N}^*$.

Or
$$a_N = 1 + \sum_{k=1}^{N} \frac{1}{k!} \cdot \left(1 - \frac{1}{N}\right) \cdots \left(1 - \frac{k-1}{N}\right)$$

et en diminuant le nombre de termes (positifs) de la somme, on a pour tout n < N:

$$a_N > 1 + \sum_{k=1}^n \frac{1}{k!} \cdot \left(1 - \frac{1}{N}\right) \cdots \left(1 - \frac{k-1}{N}\right).$$

Cette somme dépend de n et de N, $(n, N \in \mathbb{N}^*, n < N)$, on la note $S_n(N)$ et on a :

$$\lim_{N \to \infty} S_n(N) = 1 + \lim_{N \to \infty} \sum_{k=1}^n \frac{1}{k!} \cdot \underbrace{\left(1 - \frac{1}{N}\right)}_{j_1} \cdots \underbrace{\left(1 - \frac{k-1}{N}\right)}_{j_1} = 1 + \sum_{k=1}^n \frac{1}{k!} = \sum_{k=0}^n \frac{1}{k!} = e_n,$$

avec $\lim_{n\to\infty} e_n = e$. On en déduit que $a = \lim_{n\to\infty} a_n \ge e$.

En conclusion:

$$\begin{array}{l} (a_n) \text{ est major\'ee par } e: \quad a_n < e \,, \ \forall \, n \in \mathbb{N}^* \\ \text{et} \quad \lim_{n \to \infty} \, a_n \geq e \end{array} \right\} \ \Rightarrow \ \lim_{n \to \infty} \, a_n = e \,,$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \,.$$