

PHYSICS Capítulos del 7 al 12

3rd SECONDARY

ASESORÍA

En el gráfico se muestra la vista superior de una puerta. Determine el momento de la fuerza F = 35 N respecto al punto O.

La fuerza \vec{F} , respecto al punto O, ejerce un giro antihorario a la puerta.

Para la puerta:

$$M_O^{\vec{F}} = \pm F.d$$

$$M_O^{\vec{F}} = +35 \text{ N. } 1 \text{ } m$$

$$\therefore M_O^{\vec{F}} = +35 \text{ N.} m$$

Determine el momento resultante respecto del punto O, si la barra homogénea de 10 m tiene una masa de 4 kg. $(g = 10 m/s^2)$

Determinamos el momento resultante

$$M_O^{\vec{R}} = \sum M_O^{\vec{F}}$$
 $M_O^{\vec{R}} = M_O^{R_{\text{cuña}}} + M_O^{F_{\text{g}}} + M_O^{F}$ $M_O^{\vec{R}} = 0 \text{ N.m} - 200 \text{ N.m} + 80 \text{ N.m}$

$$M_O^{\vec{R}} = 0 \text{ N.m} - 40 \text{ N. 5m} + 10 \text{ N. 8 m}$$

RESOLUCIÓN

Realizamos el Diagrama de cuerpo libre.

La barra homogénea de 3 kg se encuentra en equilibrio mecánico. Determine el módulo de la fuerza F sobre la barra, para mantenerla en posición horizontal. ($g = 10 m/s^2$)

Realizamos el Diagrama de cuerpo libre.

Para el equilibrio mecánico: (Consideramos al punto "O" como centro de giro)
Entonces:

$$M_O^{\vec{R}} = \sum M_O^{\vec{F}} = \vec{0}$$

$$M_O^T + M_O^{F_g} + M_O^F = 0$$

$$0 \text{ N.} m - 30 \text{ N.} 2m + \text{F.} 3 \text{ m} = 0 \text{ N.m}$$

$$3 \, m. \, F = 60 \, N. \, m$$

¿Qué distancia estarán separados los móviles con MRU, luego de 10 s, a partir del instante mostrado?

Para el auto de 2 m/s:

$$d = v.t$$

$$d_1 = \frac{2m}{s} \cdot 10 s$$
$$d_1 = 20m$$

Para el auto de 8 m/s:

$$d = v \cdot t$$

$$d_2 = \frac{8m}{s}.10 s$$

$$d_2 = 80m$$

Del gráfico decimos que:

$$d_1 + d_x + d_2 = 150m$$

Reemplazando:

$$20 m + d_x + 80 m = 150m$$

$$d_x = 50m$$

El auto que se muestra realiza un MRUV con aceleración $-6 \,\hat{\imath} \, m/s^2$, determine su rapidez luego de 7 s desde el instante mostrado.

RESOLUCIÓN

Como la \vec{v} y la \vec{a} tienen mismo sentidos; entonces el movimiento es acelerado.

Para el auto:

$$v_f = v_o \pm at$$

$$v_f = 3\frac{m}{s} + 6\frac{m}{s^2}.7s$$

$$v_f = 3\frac{m}{s} + 42\frac{m}{s}$$

$$v_f = 45 \, m/s$$

móviles mostrados parten realizando simultáneamente M.R.U.V. desde el reposo en la posición indicada. Determine cuánto tiempo el móvil (1) alcanza al móvil (2).

RESOLUCIÓN

Ambos auto realiza un MRUV desde el reposo.

Para el auto negro:

$$d = v_o.t \pm \frac{1}{2}a.t^2$$

$$d_1 = (0).t + \frac{1}{2}(6).(t)^2$$

$$d_2 = (0).t + \frac{1}{2}(2).(t)^2$$

$$d_3 = 3t^2$$

$$d_4 = v_o.t \pm \frac{1}{2}a.t^2$$

$$d_4 = v_o.t \pm \frac{1}{2}a.t^2$$

$$d_5 = (0).t + \frac{1}{2}(2).(t)^2$$

$$d_6 = t^2$$

Para el auto rojo:

$$d = v_0 \cdot t \pm \frac{1}{2} a \cdot t^2$$

$$d_2 = (0) \cdot t + \frac{1}{2} (2) \cdot (t)^2$$

$$d_2 = t^2$$

Del gráfico:

$$10 m + d_2 = d_1$$

$$10 + t^2 = 3t^2$$

$$10 = 2t^2 \longrightarrow 5 = t^2$$

$$\therefore t = \sqrt{5} s$$

Un cuerpo es lanzado verticalmente hacia arriba, con una rapidez de 40 m/s. Determine su rapidez luego de 6 s de haberlo lanzado en caída libre. $(g = 10 m/s^2)$.

RESOLUCIÓN

Para cuerpo subir):

$$t_{\rm sub} = \frac{v_{\rm sub}}{g}$$

$$t_{\rm sub} = \frac{40 \, m/s}{10 \, m/s^2}$$

$$t_{\rm sub} = 4s$$

Observaremos que de los 6 s, solo 4s le tomo en subir.

Por tanto; consideramos 2 s en la bajada

Para el cuerpo (al bajar):

$$v_f = v_o \pm g.t$$

$$v_f = 0\frac{m}{s} + 10\frac{m}{s^2}.2s$$

$$\therefore v_f = 20 \frac{m}{s}$$

Un objeto es lanzado con una velocidad de $+50\hat{j}$ m/s. Determine su altura máxima que logra despreciando la resistencia del aire. (g = $10 m/s^2$).

RESOLUCIÓN

$altura\ m\'axima \rightarrow v = 0$

Para el objeto:

$$v_f^2 = v_o^2 \pm 2g.h$$

$$(0\frac{m}{s})^2 = (50\frac{m}{s})^2 - 2(10\frac{m}{s^2}).h$$

$$0 = 2500\frac{m^2}{s^2} - 20\frac{m}{s^2}.h$$

$$20\frac{m}{s^2}.h = 2500\frac{m^2}{s^2}$$

 $\therefore h = 125 m$

Se lanza un esfera como se muestra; experimenta un MPCL. Determine con qué rapidez llega a B. $(g = 10 m/s^2)$

RESOLUCIÓN

En "A"; descomponer:

△Notable 37° y 53°

$$5k = 100 \frac{m}{s} \rightarrow k = 20 \frac{m}{s}$$

$$v_x^A = 3k = 60 \text{ m/s}$$

$$v_y^A = 4k = 80 \text{ m/s}$$

$$v_x = constante$$

$$\overrightarrow{B} \overrightarrow{v_x^B} = n \quad v_x^A = v_x^B = 60 \frac{m}{s}$$

En "B"; descomponer:

⊿Notable 45°

$$n = 60 \frac{m}{s} \rightarrow v_y^B = 60 \frac{m}{s}$$
$$v = 60\sqrt{2} \, m/s$$

Un estudiante de las aulas de Saco Oliveros para medir el alcance horizontal que logra al lanzar una esfera; genera lanzamientos desde la azotea de un edificio, tal como se muestra. Si su lanzamiento lo realiza con una rapidez de 14 m/s de tal manera que el tiempo que le toma llegar al suelo es de 5 s, ¿qué alcance obtuvo la esfera?. $(g = 10 m/s^2)$

RESOLUCIÓN

En la horizontal

$$v_{x} = 14 \, m/s$$

 $Si \ x \rightarrow alcance \ horizontal$

❖ Del M.R.U.

$$d = v_x \cdot t$$

$$x = 14 \frac{m}{s}.5s$$

$$\therefore x = 70 m$$

Se agradece su colaboración y participación durante el tiempo de la clase.

