G	TO	MCQ	Test

All Question are Mandatory. **Time Duration:** 20 mins

No. of Questions:10 questions (1 mark each)

tejas.teju02@gmail.com Switch account

Draft saved

* Indicates required question

Email *

Tejas.teju02@gmail.com

Dijkstra's Algorithm cannot be applied on _____ *

1 point

- Graphs having negative weight function
- Undirected and unweighted graphs
- Unweighted graphs
- O Directed and weighted graphs

Name *

Tejas P R

4/22/23, 5:06 PM GTO MCQ Test

Which one of the following cannot be the sequence of edges added, in that * 1 point order, to a minimum spanning tree using Kruskal's algorithm?

- (a-b),(d-f),(b-f),(d-c),(d-e)
- (a-b),(d-f),(d-c),(b-f),(d-e)
- (d-f),(a-b),(d-c),(b-f),(d-e)
- (d-f),(a-b),(b-f),(d-e),(d-c)

Chromatic number of the graph given below is _____* 1 point Programme and Section (Eg: CSE A-Section) * Your answer Registration Number * Your answer

There _____ between each and every pair of vertices in a tree. * 1 point

O are n number of paths
O are two circuits
O is exactly one path
O is a self-loop

What is the shortest path from node A to node F? *

1 point

- A -> B -> D -> F
- A -> C -> E -> F
- A → F
- A -> C -> B -> E -> F

Floyd Warshall's Algorithm can be applied on* 1 point
O Directed graphs
O Undirected graphs
Acyclic graphs
O Undirected and unweighted graphs
The process takes two nodes as arguments and an edge connecting * 1 point these nodes.
normalization
Shortening
improvement
relaxation
A graph containing 'n' vertices and 'm' edges will have chords. * 1 point
\bigcap $n-1$
\bigcap $n+m+1$
○ m - 1
$\bigcap m-n+1$

4/22/23, 5:06 PM GTO MCQ Test

The minimum number of colours used to obtain a proper colouring of a * 1 po graph is known as	oint			
Order				
Chromatic Polynomial				
Chromatic Number				
Colourability				
Which of the following is false in the case of a spanning tree of a graph G? * 1 point				
It includes every vertex of the G				
O It can be either cyclic or acyclic				
It is tree that spans G				
It is a subgraph of the G				

Page 1 of 1

Submit Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

Google Forms