Simulating Continuous Systems Part 3

CMSC 326 Simulations

Simulating Continuous Systems

Ricker Model of Population Growth

Rotational Motion

Simulating Continuous Systems

Ricker Model of Population Growth

Rotational Motion

Time is modeled by discrete time steps:

$$x(n) = population at step n$$

The Ricker model is:

$$x(n + 1) = r x(n) e^{-x(n)}$$

$$x(n+1) = r x(n) e^{-x(n)}$$

The population time step n+1

$$x(n+1) = r x(n) e^{-x(n)}$$

A calculation including the current population x(n)

$$x(n+1) = r x(n) e^{-x(n)}$$

Growth rate constant

The **population growth** part of the model

$$x(n+1) = r x(n) e^{-x(n)}$$

The **population decline** part of the model

One might expect the sequence

to converge to a "stable" population called an attractor

For each Γ , it seems plausible that we will get a different stable population for large enough n

$$x(n+1) = r x(n) e^{-x(n)}$$

```
# Population grown factor
r = 2
# Initialize population x(0)
x = 1
for n in range(500):
    # Compute the Ricker model formula
    x = r * x * np.exp(-x)
    print(f"n = \{n\}, r = \{r\}, x = \{x:0.4f\}")
```

```
# Population grown factor
# Initialize population x(0)
x = 1
for n in range(500):
    # Compute the Ricker model formula
    x = r * x * np.exp(-x)
    print(f"n = \{n\}, r = \{r\}, x = \{x:0.4f\}")
```

```
# Population grown factor
r = 2
# Initialize population x(0)
x = 1
for n in range(500):
    # Compute the Ricker model formula
    x = r * x * np.exp(-x)
    print(f"n = \{n\}, r = \{r\}, x = \{x:0.4f\}")
```

```
# Population grown factor
r = 2
# Initialize population x(0)
x = 1
for n in range(500):
    # Compute the Ricker model formula
    x = r * x * np.exp(-x)
    print(f"n = \{n\}, r = \{r\}, x = \{x:0.4f\}")
```

```
# Population grown factor
r = 2
# Initialize population x(0)
x = 1
for n in range(500):
    # Compute the Ricker model formula
    x = r * x * np.exp(-x)
    print(f"n = \{n\}, r = \{r\}, x = \{x:0.4f\}")
```

```
# Population grown factor
r = 2
# Initialize population x(0)
x = 1
for n in range(500):
    # Compute the Ricker model formula
    x = r * x * np.exp(-x)
    print(f"n = \{n\}, r = \{r\}, x = \{x:0.4f\}")
```

```
n = 490, r = 2, x = 0.6931
n = 491, r = 2, x = 0.6931
n = 492, r = 2, x = 0.6931
n = 493, r = 2, x = 0.6931
n = 494, r = 2, x = 0.6931
n = 495, r = 2, x = 0.6931
n = 496, r = 2, x = 0.6931
n = 497, r = 2, x = 0.6931
n = 498, r = 2, x = 0.6931
n = 499, r = 2, x = 0.6931
n = 500, r = 2, x = 0.6931
```

```
n = 490, r = 2, x = 0.6931

n = 491, r = 2, x = 0.6931
n = 492, r = 2, x = 0.6931
n = 493, r = 2, x = 0.6931
n = 494, r = 2, x = 0.6931
n = 495, r = 2, x = 0.6931
n = 496, r = 2, x = 0.6931
n = 497, r = 2, x = 0.6931
n = 498, r = 2, x = 0.6931
n = 499, r = 2, x = 0.6931
 n = 500, r = 2, x = 0.6931
```

n = 490,	r = 2, $x = 0.6931$
n = 491,	r = 2, $x = 0.6931$
n = 492,	r = 2, $x = 0.6931$
n = 493,	r = 2, $x = 0.6931$
n = 494	r = 2, $x = 0.6931$
n = 495,	r = 2, $x = 0.6931$
n = 496,	r = 2, $x = 0.6931$
n = 497,	r = 2, $x = 0.6931$
n = 498,	r = 2, $x = 0.6931$
n = 499,	r = 2, $x = 0.6931$
n = 500,	r = 2, $x = 0.6931$

```
n = 490, r = 2, x = 0.6931
n = 491, r = 2, x = 0.6931
n = 492, r = 2, x = 0.6931
n = 493, r = 2, x = 0.6931
n = 494, r = 2, x = 0.6931
n = 495, r = 2, x = 0.6931
n = 496, r = 2, x = 0.6931
n = 497, r = 2, x = 0.6931
n = 498, r = 2, x = 0.6931
n = 499, r = 2, x = 0.6931
n = 500, r = 2, x = 0.6931
```

```
n = 490, r = 4, x = 1.3863
n = 491, r = 4, x = 1.3863
n = 492, r = 4, x = 1.3863
n = 493, r = 4, x = 1.3863
n = 494, r = 4, x = 1.3863
n = 495, r = 4, x = 1.3863
n = 496, r = 4, x = 1.3863
n = 497, r = 4, x = 1.3863
n = 498, r = 4, x = 1.3863
n = 499, r = 4, x = 1.3863
n = 500, r = 4, x = 1.3863
```

```
n = 490, r = 4, x = 1.3863
n = 491, r = 4, x = 1.3863
n = 492, r = 4, x = 1.3863
n = 493, r = 4, x = 1.3863
n = 494, r = 4, x = 1.3863
n = 495, r = 4, x = 1.3863
n = 496, r = 4, x = 1.3863
n = 497, r = 4, x = 1.3863
n = 498, r = 4, x = 1.3863
n = 499, r = 4, x = 1.3863
n = 500, r = 4, x = 1.3863
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 490, r = 8, x = 2.7726
n = 491, r = 8, x = 1.3863
n = 492, r = 8, x = 2.7726
n = 493, r = 8, x = 1.3863
n = 494, r = 8, x = 2.7726
n = 495, r = 8, x = 1.3863
n = 496, r = 8, x = 2.7726
n = 497, r = 8, x = 1.3863
n = 498, r = 8, x = 2.7726
n = 499, r = 8, x = 1.3863
n = 500, r = 8, x = 2.7726
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

```
n = 489, r = 14, x = 0.4270
n = 490, r = 14, x = 3.9005
n = 491, r = 14, x = 1.1048
n = 492, r = 14, x = 5.1239
n = 493, r = 14, x = 0.4270
n = 494, r = 14, x = 3.9005
n = 495, r = 14, x = 1.1048
n = 496, r = 14, x = 5.1239
n = 497, r = 14, x = 0.4270
n = 498, r = 14, x = 3.9005
n = 499, r = 14, x = 1.1048
n = 500, r = 14, x = 5.1239
```

What we'll do:

- 1. For a given r, run the sequence and compute a histogram of all the x(n) values obtained
- 2. If the sequence does in fact stabilize, we should see a single convergence point show up in the histogram
- 3. Plot any convergence point that shows up more than once, after ignoring x(1), ..., x(50) (to allow convergence)

Thus, we will have a collection of attractor points for any fixed r

Plot the attractors for different values of r

```
# Loop through values of r
r = 1.0
while r < r_lim:
    # Initial population x(0)
    x = 1
    # Iterate
    for n in range(500):
        x = r * x * np.exp(-x)
        if n > 50: # Ignore transient behavior
            x_vals.append(x)
            r_vals.append(r)
    r = r + delta_r # Increment r
```

```
# Loop through values of r
r = 1.0
while r < r_lim:
    # Initial population x(0)
    x = 1
    # Iterate
    for n in range(500):
        x = r * x * np.exp(-x)
        if n > 50: # Ignore transient behavior
            x_vals.append(x)
            r_vals.append(r)
    r = r + delta_r # Increment r
```

```
# Loop through values of r
r = 1.0
while r < r_lim:
    # Initial population x(0)
    x = 1
    # Iterate
    for n in range(500):
        x = r * x * np.exp(-x)
        if n > 50: # Ignore transient behavior
            x_vals.append(x)
            r_vals.append(r)
    r = r + delta_r # Increment r
```

```
# Loop through values of r
r = 1.0
while r < r_lim:
    # Initial population x(0)
    x = 1
    # Iterate
    for n in range(500):
        x = r * x * np.exp(-x)
        if n > 50: # Ignore transient behavior
            x_vals.append(x)
            r_vals.append(r)
    r = r + delta_r # Increment r
```


What do we learn from these examples?

A **changing system** can be mathematically modeled in many ways, the most common of which are:

- 1. Fully continuous (differential equations)
- 2. Fully discrete
- 3. Mixed discrete and continuous (Ricker model)

What do we learn from these examples?

It is very hard to predict the behavior of dynamical systems just by staring at the governing equation

- For some parameters, a system might behave well
- For others, we might get wild oscillations or chaos

What do we learn from these examples?

$$A(t + s) = A(t) + s (K_c C(t) - K_{ab} A(t) B(t))$$

$$B(t+s) = B(t) + s \left(K_c C(t) - K_{ab} A(t) B(t) \right)$$

$$C(t+s) = C(t) + s (K_{ab} A(t) B(t) - K_c C(t))$$

$$X(t+s) = X(t) + s (k_1 X(t) - k_2 X(t) Y(t))$$

$$Y(t + s) = Y(t) + s (k_2 X(t)Y(t) - k_3 Y(t))$$

$$x(n+1) = r x(n) e^{-x(n)}$$

Simulating Continuous Systems

Consider a weight attached to a winch:

Define the following variables for the wheel:

Define the following variables for the cable:

T =tension in the cable

Define the following variables for the wheel:

m = mass of load

y(t) = vertical displacement of load

v(t) = vertical velocity of load

a(t) = vertical acceleration of load

Apply Newton's Laws to Each Component

Let's start with the wheel:

- 1. The wheel has torque generated from the winch's motor: τ
- 2. The tension in the cable pulls the other way, and creates a reverse torque of $T\ R$
- 3. The difference is what determines the angular motion of the wheel:

$$m_w R^2 \mu = \tau - TR$$

Apply Newton's Laws to Each Component

Now the load:

- 1. The upward force is the cable's tension: T
- 2. The downward force is the weight $m\ g$
- 3. The difference explains the motion:

$$m a = T - m g$$

First, the ones relating displacement, velocity, and acceleration for the wheel:

$$\theta'^{(t)} = \omega(t)$$

$$\omega'(t) = \mu(t)$$

The change in angular displacement over time

$$\theta'^{(t)} = \omega(t)$$

$$\omega'(t) = \mu(t)$$

$$\theta'^{(t)} = \omega(t)$$

Angular velocity

$$\omega'(t) = \mu(t)$$

$$\theta'^{(t)} = \omega(t)$$

The change in angular velocity over time

$$\omega'(t) = \mu(t)$$

$$\theta'^{(t)} = \omega(t)$$

$$\omega'(t) = \mu(t)$$

Angular acceleration

The same for the load:

$$y'(t) = v(t)$$

$$v'(t) = a(t)$$

The change in height over time

$$y'^{(t)} = v(t)$$

$$v'(t) = a(t)$$

$$y'^{(t)} = v(t)$$
 load

The velocity of the load

$$v'(t) = a(t)$$

What are the differential equations?

$$y'^{(t)} = v(t)$$

The change in velocity over time

$$v'(t) = a(t)$$

What are the differential equations?

$$y'^{(t)} = v(t)$$

$$v'(t) = a(t)$$
 The acceleration of the

load

Relate the Equations Through Tension

From the wheel:

$$T = \frac{\tau - m_w R^2 \mu}{R}$$

From the load:

$$T = m R \mu - m g$$

Relate the Equations Through Tension

Equating the two and solving for μ :

$$\mu(t) = \frac{\tau - m g R}{m R^2 + m_w R^2}$$

Equations That Describe the System

$$\mu(t) = \frac{\tau - m g R}{m R^2 + m_w R^2}$$

$$\theta'(t) = \omega(t)$$

$$\omega'(t) = \mu(t)$$

$$y(t) = R \, \theta(t)$$

Equations That Describe the System

$$\mu(t) = \frac{\tau - m g R}{m R^2 + m_w R^2}$$

$$\theta'(t) = \omega(t)$$

$$\omega'(t) = \mu(t)$$

The change in height of the load

$$y(t) = R \theta(t)$$

Equations That Describe the System

$$\mu(t) = \frac{\tau - m g R}{m R^2 + m_w R^2}$$

$$\theta'(t) = \omega(t)$$

$$\omega'(t) = \mu(t)$$

$$y(t) = R \theta(t)$$

Radius of the winch times angle of displacement


```
def step():
   # Advance the simulation by one time step
    t = t + delta t
    # Calculate the angular acceleration based tension
    angular_acceleration = (torque - m * g * R) / m * R**2 + mw * R**2
   # Calculate the angular velocity
    angular_velocity = angular_velocity + angular_acceleration * delta_t
    # Convert angular velocity to linear distance
    delta_angle = angular_velocity * delta_t
    y = y + delta_angle * R
```

```
def step():
   # Advance the simulation by one time step
    t = t + delta_t
    # Calculate the angular acceleration based tension
    angular_acceleration = (torque - m * g * R) / m * R**2 + mw * R**2
   # Calculate the angular velocity
    angular_velocity = angular_velocity + angular_acceleration * delta_t
    # Convert angular velocity to linear distance
    delta_angle = angular_velocity * delta_t
    y = y + delta_angle * R
```

```
def step():
    # Advance the simulation by one time step
    t = t + delta t
   # Calculate the angular acceleration based tension
    angular_acceleration = (torque - m * g * R) / m * R**2 + mw * R**2
   # Calculate the angular velocity
    angular_velocity = angular_velocity + angular_acceleration * delta_t
   # Convert angular velocity to linear distance
    delta_angle = angular_velocity * delta_t
    y = y + delta_angle * R
```

```
def step():
   # Advance the simulation by one time step
    t = t + delta t
   # Calculate the angular acceleration based tension
    angular_acceleration = (torque - m * g * R) / m * R**2 + mw * R**2
   # Calculate the angular velocity
    angular_velocity = angular_velocity + angular_acceleration * delta_t
   # Convert angular velocity to linear distance
    delta_angle = angular_velocity * delta_t
    y = y + delta_angle * R
```

```
def step():
    # Advance the simulation by one time step
    t = t + delta_t
    # Calculate the angular acceleration based tension
    angular_acceleration = (torque - m * g * R) / m * R**2 + mw * R**2
   # Calculate the angular velocity
    angular_velocity = angular_velocity + angular_acceleration * delta_t
   # Convert angular velocity to linear distance
    delta_angle = angular_velocity * delta_t
    y = y + delta_angle * R
```