Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 21.04.2015r	Dzień: Wtorek			
Grupa: VII	Godzina: 12:15-15:00			
Temat ćwiczenia:				
Przerzutnik astabilny "555"				
Dane projektowe:				
$T=0.50 \ \mu s$				
C=4.7 nF				
$R_a=10k \Omega$				
l.p	Nazwisko i imię	Oceny		
1	Arkadiusz Ziółkowski			
2	Jakub Koban			

1 Zadanie projektowe

Zaprojektować przerzutnik monostabilny w oparciu o uład scalony "555" dla T=50 μs

1.1 Obliczenia projektowe

$$T = R_A \cdot C \cdot ln\left(\frac{V_{CC}}{V_{CC} - \frac{2}{3}V_{CC}}\right) \approx 1.1 \cdot R_A \cdot C = 1.1 \cdot 10k\Omega \cdot 47nF = 51.7\mu s \quad (1)$$

1.2 Schemat projektowy

Rysunek 1: Schemat projektowanego układu

1.3 Wyniki symulacji

Rysunek 2: Wyniki symulacji

- 1. Niebieski napięcie wyzwalające
- 2. Zielony napięcie na wyjściu układu
- 3. Czerwony napięcie na kondensatorze

2 Część laboratoryjna

2.1 Tabele pomiarowe

	r1	
$T[\mu \text{ s}]$	V_{cc} [V]	Odchylenie [%]
52.31	2.61	2.41
51.62	3.03	1.06
51.26	3.50	0.35
51.14	3.99	0.12
51.10	4.50	0.04
51.08	5.02	0.00
51.07	5.50	-0.02
51.06	5.99	-0.04
51.06	6.54	-0.04
51.07	7.02	-0.02
51.07	7.57	-0.02
51.08	7.99	0.00
51.09	8.49	0.02
51.11	9.07	0.06
51.12	9.57	0.08
51.14	10.01	0.12
51.16	10.53	0.16
51.17	11.09	0.18
51.19	11.49	0.22
51.20	12.08	0.23
51.21	12.50	0.25
51.22	13.06	0.27
51.23	13.52	0.29
51.23	14.07	0.29
51.23	14.52	0.29
51.24	14.92	0.00

$T[\mu s]$	$U_{\text{mod}}[V]$
17.51	0.97
18.14	1.48
20.92	1.76
24.80	2.05
27.46	2.22
32.37	2.52
36.09	2.72
42.66	2.99
46.86	3.21
54.60	3.50
60.99	3.70
71.96	4.00
82.09	4.21
92.35	4.56
99.19	4.70
121.30	4.98

2.2 Czas trwania impulsu a napięcie zasilające

Czas trwania impulsu jako funkcja odchylenia od napięcia zasilającego

Rysunek 3:

Na podstawie rys. 3 możemy wnioskować, iż czas trwania impulsu utrzymuje się na względnie stałym poziomie - maksymalne pojedyncze odchylenie wynosi 2.41%, natomiast dla napiecia zasilania większego od ok. $3.5\mathrm{V}$ odchylenie nie przekracza 0.5%.

2.3 Czas trwania impulsu a napięcie modulujące

Rysunek 4:

Na podstawie rysunku nr.4 możemy wnioskować, iż wraz ze wzrostem napięcia modulującego długość impulsów rośnie, ponieważ zmieniamy polaryzacje wejść wewnętrznych komparatorów układu (czas ładowania kondensatora wzrasta)

3 Wnioski

- 1. Czas trwania impulsu charakteryzuje się małym odchyleniem od wartości nominalnej (dla 5V-napięcia zasilania), zgodnie z rysunkiem nr 3 układ doskonale utrzymuje zadany czas trwania impulsu na przedziale napięcia zasilania od ok. 3.5V do 15V, ponieważ odchyłka od oczekiwanego czasu jest mniejsza od 0.5%.
- 2. Wraz ze wzrostem napięcia modulującego długość impulsów wzrasta, na rys. 4 widać, że zadaną wartość długosci impulsów (50us) otrzymujemy dla napięcia modulujcego będącego w przedziale od 3.25V do 3.5V.
- 3. Układ monostabilny charakteryzuje się jednym stanem stabilnym, drugi stan trwa tylko przez określony czas, zależny od wartości elementów układu. Po upływie tego stanu samoczynnie wraca do stanu stabilnego.