Natural Language Processing

XLNet: Generalized Autoregressive Pretraining for Language Understanding

Sogang University

Dept. of Artificial Intelligence

Presented by

조유빈

Introduction of XLNet

- Autoregressive (AR) 모델의 문제점
 - Bidirectional context information을 고려하지 못함
- Denoising autoencoding 모델인 BERT의 문제점
 - 마스크 된 단어 간의 종속성을 무시
 - Pretraining 중에만 입력 값에 [MASK] noise를 사용하고, finetuning 시에는 [MASK] noise를 사용하지 않아 pretrain-finetune discrepancy 발생
- Proposed method (XLNet)
 - Permutation Language Modeling
 - 단어들의 모든 순열 조합의 가능성을 고려함으로써 bidirectional contexts 학습 가능
 - Generalized AR language model
 - -Data corruption (i.e. [MASK] noise) 사용 안 함
 - 🤐 Pretrain-finetune discrepancy 발생 안 함

- 길이가 T인 sequence \mathbf{x} 일 때, T! 개의 different orders에 대해 autoregressive 수행
 - ■모델은모든 위치에서 정보를 모으는 방법을 학습하게 됨
 - -Bidirectional context information 추출 가능
- Proposed permutation language modeling objective:

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=1}^{T} \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right].$$

 Z_T : sequence 길이가 T일 때 가능한 모든 permutations

 z_t : t번째 element

 $\mathbf{z}_{< t}$: t-1 elements of a permutation $\mathbf{z} \in Z_T$

- Remark on Permutation
 - Original sequence 순서는 유지하고, attention mask를 통해 permutation 고려
 - -Finetuning시에는 natural order의 sequence만 입력 받기 때문

• Factorization order : $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$

$$p(x) = p(x_3|mem)p(x_2|mem,x_3)p(x_4|mem,x_3,x_2)p(x_1|mem,x_3,x_2,x_4)$$

• Factorization order: $2 \rightarrow 4 \rightarrow 3 \rightarrow 1$

$$p(x) = p(x_2|mem)p(x_4|mem,x_2)p(x_3|mem,x_2,x_4)p(x_1|mem,x_2,x_4,x_3)$$

Attention Mask

- Segment Recurrence Mechanism (from Transformer-XL)
 - 긴 문장을 여러 segment로 분리하고 segment 정보를 저장해 놓은 후 다음 segment에서 이전 segment의 hidden states를 재사용

$$h_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \mathbf{K}\mathbf{V} = \left[\tilde{\mathbf{h}}^{(m-1)}, \mathbf{h}_{\mathbf{z} \leq t}^{(m-1)}\right]; \theta)$$

 $\tilde{\mathbf{x}} = \mathbf{s}_{1:T}$ and $\mathbf{x} = \mathbf{s}_{T+1:2T}$

 \tilde{z} : permutations of [1, ..., T]

 \mathbf{z} : permutations of [T+1,...,2T]

Problem of Standard Parameterization

• Proposed objective의 likelihood 부분에 softmax function을 적용하면 아래와 같음

$$p_{\theta}(X_{z_t} = x | \mathbf{x}_{\mathbf{z}_{< t}}) = \frac{\exp(e(x)^{\mathrm{T}} h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}))}{\sum_{x'} \exp(e(x')^{\mathrm{T}} h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}))}$$

- Hidden representation $h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}})$ 는 현재 target index 이전의 context tokens에만 의존
 - 이렇게 계산된 값은 예측하고자 하는 target index의 position에 관계없이 같은 값을 갖게 되는 문제 발생 Input sequence $[x_1,x_2,x_3,x_4]$ 와 index의 permutation

 $Z_T = [[1,2,3,4],[1,3,2,4],\dots[4,3,2,1]]$ 에 대해 학습을 진행한다고 가정해 보겠습니다.

- 1. [2,3,1,4]의 경우 $p(x_1 \mid x_2,x_3)$ 을 계산하기 위해 $h_{\theta}(x_2,x_3)$ 과 같은 representation을 이용합니다.
- 2. [2,3,4,1]의 경우에도 $p(x_4 \mid x_2,x_3)$ 을 계산하기 위해 $h_{\theta}(x_2,x_3)$ 과 같은 representati on을 이용합니다.
- 3. 결과적으로 **같은 representation을 이용하여** x_4 과 x_1 을 예측해야 하는 문제가 발생합니다.
- 이를 해결하기 위해 이전의 context tokens($\mathbf{x}_{\mathbf{z}_{< t}}$) 뿐만 아니라 target index의 position 정보(z_t)도 함께 이용하는 Target Position-Aware Representation 제안 : $h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}) \rightarrow g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)$

Two-Stream Self-Attention

- g_{θ} 수식화 조건
 - Token x_{z_t} 와 $g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)$ 을 예측하기 위해서 position z_t 와 이전의 content $\mathbf{x}_{\mathbf{z}_{< t}}$ 만 사용해야함. 현재시점의 content x_{z_t} 는 사용하면 안됨.
 - j > t일 때, 다른 token x_{z_j} 를 예측하려면 완전한 context information을 제공하기 위해 $g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)$ 가 content x_{z_t} 를 인코딩 해야함
- 위 조건을 만족하기 위해 두 hidden representations를 사용
 - Content representation $h_{\theta}(\mathbf{x}_{\mathbf{z}_{\leq t}})$ 는 standard hidden state와 비슷한 역할 이전 시점과 현재 시점 content 모두 이용
 - Query representation $g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)$ 는 이전 content와 현재시점의 position 정보만을 이용하여계산됨

Two-Stream Self-Attention

• 각각의 layer m = 1, ..., M의 경우

```
• g_i^{(0)} = w: trainable vector, h_i^{(0)} = e(x_i): word embedding g_{z_t}^{(m)} \leftarrow \operatorname{Attention}(Q = g_{z_t}^{(m-1)}, \operatorname{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta), (query stream: use z_t but cannot see x_{z_t}) h_{z_t}^{(m)} \leftarrow \operatorname{Attention}(Q = h_{z_t}^{(m-1)}, \operatorname{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta), (content stream: use both z_t and x_{z_t}).
```

• Finetuning 중에는 query stream을 제거

Two-Stream Self-Attention-Query Stream

 $g_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = g_{z_t}^{(m-1)}, \mathbf{K} \mathbf{V} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta), \quad (\text{query stream: use } z_t \text{ \underline{but cannot see }} x_{z_t})$

예) 나는 어제 축구를 봤다

Split View of the Query Stream (Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$) 지금까지 '어제', '축구를', '봤다'라는 단어를 봤다. 이번에 맞춰야 할 단어는 원래 문장에서 첫번째 위치에 있다. 그렇다면 이 단어는 무엇일까?

Two-Stream Self-Attention-Content Stream

 $h_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \mathbf{K}\mathbf{V} = \mathbf{h}_{\mathbf{z} \leq t}^{(m-1)}; \theta),$ (content stream: use both z_t and x_{z_t}).

(Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$)

Two-Stream Self-Attention

Figure 1: (a): Content stream attention, which is the same as the standard self-attention. (b): Query stream attention, which does not have access information about the content x_{z_t} . (c): Overview of the permutation language modeling training with two-stream attention.

Partial Prediction

- Permutation language modeling은 순열로 인해 최적화가 어렵고 수렴이 오래 걸림
 - 이를 해결하기 위해 특정 순서에서 마지막 몇 개만 예측하는 방법 사용

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\log p_{\theta}(\mathbf{x}_{\mathbf{z}_{>c}} \mid \mathbf{x}_{\mathbf{z}_{\leq c}}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=c+1}^{|\mathbf{z}|} \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right].$$

 $z_{\leq c}$: non-target subsequence

 $z_{>c}$: target subsequence

c: cutting point

$$p(x) = p(x_3|mem)p(x_2|mem,x_3)p(x_4|mem,x_3,x_2)p(x_1|mem,x_3,x_2,x_4)$$
$$\rightarrow p(x_4|mem,x_3,x_2)p(x_1|mem,x_3,x_2,x_4)$$

■ Hyperparameter K는 예측을 위해 1/K개의 token을 선택하기 위해 사용됨

$$-즉, |z|/(|z|-c) \approx K$$