# Chaos and Logistic Map: part2 モデリングとシミュレーション特論

2019年度

只木進一

### Period doubling to chaos

- Trajecctories are doubled repeatedly by increasing λ
- Period becomes infinite at λ ≈ 0.893



- For  $\lambda > 0.893$ , trajectories show band structure.
  - Not periodic, not random
  - Non-uniform density of trajectories

### Period-3 region





- Period-3 trajectories near  $\lambda \sim 0.96$ 
  - Period doubling to period-6 trajectories

#### chaotic motions



- small difference in initial values expands
- finally two
   trajectories
   seem to
   behave
   independently

## Non-uniform density of trajectories



$$f_{\lambda}^{[k]} \left(\frac{1}{2}\right)$$

### bands of trajectories



- Bands of trajectories are expended and folded.
- This is the origin of chaotic motion.

### Uniform initial points are absorbed into two bands



Two point , which are initially close each other, separate and behave almost independently.

### Super-stable point

$$f_{\lambda}(x) = 4\lambda x (1-x)$$

$$f_{\lambda}'(x) = 4\lambda (1-2x)$$

$$\frac{d}{dx} f_{\lambda}^{[2]}(x) = f_{\lambda}'(f_{\lambda}(x)) \cdot \frac{d}{dx} f_{\lambda}(x)$$

$$\frac{d}{dx} f_{\lambda}^{[n]}(x) = f_{\lambda}'(f_{\lambda}^{[n-1]}(x)) \cdot \frac{d}{dx} f_{\lambda}^{[n-1]}(x)$$

### Super-stable point

$$f_{\lambda}'\left(\frac{1}{2}\right) = 4\lambda \left(1 - 2\frac{1}{2}\right) = 0$$

$$\frac{d}{dx} f_{\lambda}^{[2]}(x) \Big|_{x = x_0 = 1/2} = f_{\lambda}'(x_1) \cdot \frac{d}{dx} f_{\lambda}(x) \Big|_{x = x_0 = 1/2}$$

$$= f_{\lambda}'(x_1) f_{\lambda}'(x_0) = 0$$

$$\frac{d}{dx} f_{\lambda}^{[n]}(x) \Big|_{x = x_0 = 1/2} = f_{\lambda}'(x_{n-1}) \cdot \frac{d}{dx} f_{\lambda}^{[n-1]}(x) \Big|_{x = x_0 = 1/2}$$

$$= \prod_{k=0}^{n-1} f_{\lambda}'(x_k) = 0$$

### Trajectories of x = 1/2 are keys to understand band structure



### Tangent Bifurcation

- $\rightarrow \lambda_C$ : period-3 trajectories emerges
- $\blacksquare$  A little bit lower  $\lambda$  than  $\lambda_C$





Trajectories (per 3 times) stays long time at the narrow corridor



### Intermittency

After staying the narrow corridor, trajectories varies widely.

