Plasmadiagnostik

Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching

Abbildung: TJ-K, Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, U Stuttgart

Warum Diagnostik?

- Untersuchung des Plasmas, Optimierung für Anwendung
- Regelung von wichtigen Parametern, z.B. Plasmadichte

Plasmadiagnostik

Was wollen wir messen?

- Plasmaströme, Magnetfelder
- Plasmadichte
- Temperatur (Elektronen, Ionen)
- Zusammensetzung (Spezies)
- Plasmaströmung, Turbulenz

• ...

Womit können wir messen?

- Magnetische Sonden
- Langmuir-Sonde (s. vorige Vorlesung)
- Mikrowellen
- Optische Spektroskopie
- . . .

Messung des magnetischen Flusses

 $A \to 0, n \to \infty$: Messung von \vec{B}

Magnetischer Fluß:

$$\Psi = \int \vec{B} \cdot d\vec{A}$$

Induzierte Spannung:

$$U(t) = n \mathrm{d} \psi / \mathrm{d} t$$

(Windungszahl *n*)

Integrator:

$$U_o(t) = -\frac{1}{RC} \int_{t_0}^t U(t') dt'$$

$$U_o(t) = -\frac{n}{RC} (\psi(t) - \psi(t_o))$$

$\textbf{Poloidaler Flu} B \leftrightarrow \textbf{Ringspannung}$

Bei n = 1 Windungen:

$$U_{\text{loop}} = \frac{\mathrm{d}\psi_p}{\mathrm{d}t}$$

- Tokamak: Flußänderung aus "ohm'schem Transformator" (auch im Vakuum)
- Fluß durch
 Plasma-Poloidalfeld und
 externem Vertikalfeld
 - \rightarrow Plasmalageänderungen

$Toroidaler\ Flu\beta \leftrightarrow Diamagnetismus$

In Analogie zum screw pinch:

- $\beta_p > 1$: $\langle R^2 B_{\phi}^2 \rangle < R^2 B_{\phi}^2(a)$ Diamagnetismus
- $\beta_p < 1$: $\langle R^2 B_{\phi}^2 \rangle > R^2 B_{\phi}^2(a)$ Paramagnetismus

Messung durch (kleine) Änderung des toroidalen Flusses (poloidal umlaufende Schleife) $\beta_p \propto W/I_\phi^2 = \text{Messung der im}$ Plasma gespeicherten Energie.

Rogowski-Spule zur Strommessung

Ampère'sches Gesetz:

$$abla imes \vec{B} = \mu_0 \vec{j}$$

Stokes'scher Satz:

$$\int_{S} \left(\nabla \times \vec{B} \right) \cdot dS = \oint_{C} \vec{B} d\ell = \mu_{0} I$$

Spannung an der Rogowski-Spule:

$$U = A \mu_0 \frac{\mathrm{d}I}{\mathrm{d}t} \underbrace{\frac{\mathrm{d}n}{\mathrm{d}\ell}}_{\text{Windungsdichte}}$$

Minimale Tokamak-Diagnostik: "3 Drähte"

Rogowski-Spule:

Toroidaler Plasmastrom I_{ϕ}

Ringspannungs-Schleife: U_{loop}

⇒ Ohm'sche Heizung:

$$P_{\text{heat}} = I_{\phi} \times U_{\text{loop}}$$

dia Diamagnetische Schleife:

 $\beta_p \to W$ (gespeicherte thermische Energie im Plasma)

Energie-Einschlußzeit:

$$au_E = rac{W}{P_{
m heat}}$$

Magnetische Messungen zur Gleichgewichts-Rekonstruktion

Grad-Shafranov-Schlüter-Gleichung für poloidalen magnetischen Fluß ψ_p :

$$\Delta^* \Psi_p = 2\pi \mu_0 R j_{\phi}$$

$$= -4\pi^2 \mu_0 R^2 p' - \mu_0^2 I_p I_p'$$

Mögliche Lösungen sind eingeschränkt durch Randbedingungen, z.B. Poloidalfeldmessungen:

$$B_R = -\frac{1}{2\pi R} \frac{\partial \psi_p}{\partial z}, \quad B_z = \frac{1}{2\pi R} \frac{\partial \psi_p}{\partial R}$$

Mit bekannter Lösung $\psi(R,z)$ $\rightarrow j_{\phi}(R,z) \rightarrow p(\psi_p), I_p I'_p$

Plasmadiagnostik mit Mikro- und Millimeter-Wellen

- Radiometrie der Wärmestrahlung aus dem Plasma \rightarrow Temperatur
- ullet Veränderungen des Brechungsindex o Plasmadichte, Streuung an Turbulenzen
- ullet Doppler-Verschiebung o Rotationsgeschwindigkeit
- Faraday-Rotation → Magnetfeld

•

Radiometrie der Zyklotronstrahlung

Beschleunigte Ladungen strahlen elektromagnetische Wellen ab!

 $Gyrations bewegung \rightarrow Gyro-\ /Zyklotron-\ /Synchrotron-\ Strahlung$

Schott-Trubnikov-Formel

J.D.Jackson, Classical Electrodynamics, ch. 14.6; Landau-Lifshitz II, §74; Hutchinson, Plasmadiagnostics

$$\frac{\mathrm{d}P}{\mathrm{d}\omega\mathrm{d}\Omega} = \frac{e^2\omega^2}{8\pi^2\varepsilon_0c}\sum_{m}^{\infty} \left[\left(\frac{\cos\theta - \beta_{\parallel}}{\sin\theta}\right)^2 J_m^2(\xi) + \beta_{\perp}^2 J_m'(\xi) \right] \times \frac{\delta([1 - \beta_{\parallel}\cos\theta]\omega - m\omega_c)}{1 - \beta_{\parallel}\cos\theta}$$

mit θ : Winkel zwischen Beobachtung und Gyroachse (\vec{B}) und:

$$\xi = rac{\omega}{\omega_c} eta_\perp \sin heta, \qquad eta_\perp = rac{v_\perp}{c}, \qquad eta_\parallel = rac{v_\parallel}{c}, \qquad \omega_c = rac{eB}{m_e}$$

- Strahlung bei ω_c und Harmonischen $m \ge 1$
- $\beta_{\parallel} \neq 0$: Dopplerverschiebung durch Parallelgeschwindigkeit
- m: relativistische Masse

Radiometrie, Schwarzkörperstrahlung

Bei vielen Elektronen (hohe Dichte) $P \rightarrow N \cdot P$, \rightarrow Hohe optische Dichte, Selbstabsorption.

Falls Absorpionstiefe ≪ emittierende Länge: Kirchhoff'sches Gesetz (Emission=Absorption), Schwarzkörperstrahlung.

Planck'sches Strahlungsgesetz:

$$I_{BB} d\omega = \frac{\hbar \omega^3}{8\pi^3 c^3} \frac{1}{(\exp(\hbar \omega/kT_e - 1))} d\omega$$

Sei B = 2.5 T, $\omega = 2\pi \times 70$ GHz, $kT_e = 1$ keV $\Rightarrow \hbar \omega_c / kT_e = 3 \times 10^{-7}$

$$\exp(\frac{\hbar\omega}{kT_e}) = 1 + \frac{\hbar\omega}{kT_e} + \dots$$

Für $\hbar\omega \ll kT_e$: Rayleigh-Jeans Näherung

$$I_{BB} = \frac{\omega^2}{8\pi^3 c^3} k T_e.$$

Gemessene Intensität ∝ Temperatur!

Ortsauflösung der Zyklotronstrahlung

Beobachtung senkrecht zu \vec{B}

$$\omega_{c,e} = eB/m_e$$

Frequenz:

$$f = \omega/(2\pi)$$
 ("28 GHz/Tesla")

Tokamak:

$$B^2 = \left(B_{\phi}^2 + B_p^2\right)^{1/2}$$

 $\approx B_{\phi} \approx B_{\mathrm{vac}} \propto 1/R$

Aber:

Beachte *cut-offs*, die Ausbreitung der Welle zur Antenne behindern!

Elektronen-Zyklotron-Emissions-Diagnostik (ECE)

"Quasi-optische" Übertragung: Gauss'scher Strahl in Vakuum/Luft, (abbildende Spiegel), Linsen, Strahlteiler, Polarisatoren (Drahtgitter) etc.

Wellenlänge bei f = 100 GHz: $\lambda = 3 \text{ mm}$.

Mikrowellentechnik: Hohlleiter (einmodig oder "übermodet"), f = 20...200 GHz

Hochfrequenztechnik: Koaxialleitungen (bis ca. 60 GHz), aktive Bauelemente (Verstärker, Mischer, Detektoren)

Heterodyne-Empfänger

Millimeterwellensignal wird mit Lokaloszillator-Signal gemischt.

Mischerdiode (nicht-linear!) erzeugt Differenzfrequenz (= Zwischenfrequenz, ZF)

ZF wird verstärkt, gefiltert und detektiert.

Beispiel: ECE-Radiometer (ASDEX Upgrade)

rechts: Mikrowellen-Empfänger

 $f_{\rm HF} = 87 - 187 \; {\rm GHz}, f_{\rm ZF} = 2 \dots 20 \; {\rm GHz}, 60 \; {\rm Kan\"ale}$

unten: Quasioptische Antenne – Polyäthylen-Linse, "übermodete" Hohlleiter zum Empfänger

Beispiele für Temperaturmessungen

Hohe Wärmeleitfähigkeit entlang \vec{B}

$$\rightarrow T_e = const.$$
 auf Flußfächen, $T_e = T_e(\psi_p)$

Diagnostiken mit unterschiedlichen Sichtlinien werden verglichen, indem Profile gegen ψ_p aufgetragen werden.

Normierter Flußflächenradius:

$$\rho_p = \left(\frac{\psi_p - \psi_{\text{mag}}}{\psi_{\text{sep}} - \psi_{\text{mag}}}\right)^{1/2}$$

sep: Separatrix / Plasmarand

mag: Magnetische Achse

ECE:

Horizontale Sichtlinie ($B \propto 1/R$)

Thomson Streuung:

Vertikale Sichtlinie (tangential zu Flußflächen)

Temperaturprofile am Plasmarand

Sehr steile Temperaturprofile am Plasmarand!

Hoher Gradient = niedriger Transport (Transportbarriere)

Erhöhte Auflösung möglich durch radiale Verschiebung des Plasmas → Akkumulation aller aufgenommenen Profilpunkte zu verschiedenen Zeiten.

Außerhalb des eingeschlossenen Plasmas $(\rho_p > 1)$:

- Niedrige Plasmadichte, keineSchwarzkörper-Emission (ECE)
- → frequenzverschobene Strahlung aus dem Plasma wird sichtbar
- Starke Fluktuation, sichtbar durchThomson-Streuung

Wellenausbreitung

Ampère'sches Gesetz:

$$abla imes ec{B} = \mu_0 \left(ec{j} + arepsilon_0 \dot{ec{E}}
ight)$$

 \vec{j} : Ströme im Material

Vakuum: $\vec{j} = 0$.

Faraday-Gesetz:

$$abla imes ec{E} = -\dot{ec{B}}$$

 $\nabla \times$ FG; darin AG einsetzen:

$$\nabla \times \left(\nabla \times \vec{E}\right) = -\mu_0 \varepsilon_0 \ddot{\vec{E}} = -\frac{1}{c^2} \ddot{\vec{E}}$$

Wellengleichung!

Phasengeschwindigkeit $c = 1/\sqrt{\mu_0 \varepsilon_0}$.

Plasma: \vec{j} durch Bewegung von Elektronen und Ionen im Feld

Def. Leitfähigkeitstensor $\overline{\overline{\sigma}}$:

$$\vec{j} = \overline{\overline{\sigma}}\vec{E}$$

⇒ Dielektrizitäts-Tensor:

$$\overline{\overline{\epsilon}} = \varepsilon_0 \left(\overline{\overline{1}} + \frac{i}{\varepsilon_0 \omega} \overline{\overline{\sigma}} \right) = \varepsilon_0 \overline{\overline{\varepsilon}}_r$$

Materialeigenschaften sind in $\bar{\bar{\epsilon}}$ absorbiert:

$$\nabla \times \vec{B} = \mu_0 \varepsilon_0 \overline{\bar{\varepsilon}}_r \cdot \dot{\vec{E}}$$

Wellengleichung im Plasma:

$$\nabla \times \left(\nabla \times \vec{E} \right) = -\frac{1}{c^2} \, \bar{\bar{\epsilon}}_r \cdot \ddot{\vec{E}}$$

Berechnung von ϵ

Bei hohen Frequenzen sind i.w. nur die Elektronen beweglich.

El. Stromdichte: $\vec{j} = -en_eu_e$

Bewegungsgleichung im \vec{E} -Feld:

$$m_e \frac{\partial \vec{u}_e}{\partial t} = -e\vec{E}$$

Einsetzen, $\partial/\partial t \rightarrow -i\omega$

$$\vec{j} = i \frac{e^2 n_e}{m_e \omega} \vec{E}$$

Def. "Plasmafrequenz"

$$\omega_p^2 \equiv \frac{n_e e^2}{\varepsilon_0 m_e}$$

$$\Rightarrow \ \bar{\bar{\epsilon}} = \epsilon = \epsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right)$$

Hier ist ε isotrop (skalar)

(i.a., mit Magnetfeld, nicht mehr!)

Phasengeschwindigkeit im Plasma:

$$v_{\rm ph}^2 = c^2/\varepsilon_r = c^2/N^2$$

N: Brechungsindex

$$N = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{1/2}$$

Bemerkungen:

- 1. $N < 1 \Rightarrow v_{ph} > c$ (aber $v_g < c$)
- 2. $\omega < \omega_p \Rightarrow N$ imaginär Evaneszentes (abfallendes) Feld anstatt Wellenausbreitung

Plasmafrequenz

$n_e [{\rm m}^{-3}]$	$f_p = \omega_p/2\pi$	$\lambda_{\rm vac} = c/f$	Bemerkungen
10 ¹¹	2.8 MHz	105 m	KW
10^{12}	9 MHz	33 m	
10^{13}	28 MHz	10.5 m	
10^{14}	90 MHz	3.3 m	VHF
10^{15}	280 MHz	1.05 m	UHF
10^{16}	900 MHz	33 cm	
10^{17}	2.8 GHz	10.5 cm	Mikrowellen
10^{18}	9 GHz	3.3 cm	
10^{19}	28 GHz	1.05 cm	
10^{20}	90 GHz	3.3 mm	mm-Wellen

Dichtemessung im Plasma

 $\omega \leq \omega_p$: Reflektometrie

Eingestrahlte Welle wird im Plasma reflektiert. Solange reflektierte Welle detektiert wird, ist

$$n_e > n_c \equiv \frac{\omega^2 \varepsilon_0 m_e}{e^2}$$

Option: Dichteprofilmessung. Frequenz wird langsam angehoben und Laufzeit der reflektierten Welle gemessen.

 \Rightarrow Rekonstruktion des Abstands als Funktion der Frequenz (bzw. $n_e(x)$)

Grenzen: Beugung, wenn nicht $L \gg \lambda$.

 $\omega \gg \omega_p$: Interferometrie

$$N = \left(1 - \frac{\omega_p^2}{\omega^2}\right)^{1/2} \approx 1 - \frac{1}{2} \frac{\omega_p^2}{\omega^2} = 1 - \frac{n_e}{2n_c}$$

Phasenverschiebung (gegenüber Vakuum) bei Durchgang durch ein Plasma:

$$\Delta \phi = \frac{\omega}{c} \int \Delta N \, dl = \frac{\omega}{c} \frac{1}{2n_c} \int_0^L n_e \, dl$$

⇒ Messung des Dichte-Linienintegrals

Vorteil: Wg. hoher Frequenz gute Fokussierung und geringe Empfindlichkeit gegen Strahlbeugung und Brechung.

Signalquellen für Dichtemessungen

Mikrowellen-, mm-Quellen

Halbleiter:

Gunn-Oscillatoren, HF-Oscillatoren mit Vervielfachern, mit oder ohne Phasenstabilisierung (bis ca. 200 GHz)

Elektronenstrahl-Röhren:

Klystron, Magnetron, Gyrotron (bis ca. 200 GHz)

Laser:

Alkohol-, HCN-, DCN-Laser ($\lambda = 195 \,\mu\text{m}$), CO₂ (10.6 μm) Nd:YAG (1.04 μm), . . .

Mach-Zehnder Interferometer

Aufbau (schematisch):

Plasmazweig: $E_p = E_1 \exp(i\omega t + i\Delta\phi)$

Referenzzweig: $E_r = E_2 \exp(i\omega t)$

Detektor misst Intensität:

$$S \propto |E_p + E_r|^2 =$$

$$= |\exp(i\omega t) [E_1 \exp(i\Delta\phi) + E_2]^2 =$$

$$= [E_1 \exp(i\Delta\phi) + E_2] [E_1 \exp(-i\Delta\phi) + E_2]$$

$$= E_1^2 + E_2^2 + 2E_1E_2 \cos(\Delta\phi)$$

Mehrdeutigkeit der Messung:

- $S(\Delta \phi) = S(\Delta \phi + 2\pi)$ Beim Plasmaaufbau von Dichte Null an Signalperioden ("Fringes") mitzählen!
- $S(\Delta \phi) = S(2\pi \Delta \phi)$ Steigt oder fällt die Dichte?

Interferometer mit Heterodyn-Detektion

Zusätzlicher Referenzzweig,

Frequenz um $\Delta \omega$ verschoben

Detektorsignale nun frequenzabhängig:

$$S_R \propto \cos(\Delta \omega t)$$

$$S_D \propto \cos(\Delta\omega t + \Delta\phi)$$

Vorteile:

- 1. Unabhängig von Signalamplituden
- 2. Richtung der Phasenänderung eindeutig
- 3. Schmalbandige Detektion bei frei wählbarer

Zwischenfrequenz $\Delta\omega$ (geringeres

1/f-Rauschen)

Beispiele für Dichtemessungen

Interferometer-Sichtlinien schneiden Plasma bei verschiedenen Radien \rightarrow gemittelte Liniendichte wird gemessen.

Dichteprofil durch Entfalten und ggf. Kombination mit anderen Diagnostiken.

Dichteprofile am Plasmarand

Sehr steile Dichteprofile am Plasmarand! Hoher Gradient = niedriger Transport (Transportbarriere)

Interferometer-Messungen (\overline{n}_e) hier eingetragen am tangentialen Radius.

Dichteprofile am Plasmarand

Sehr steile Dichteprofile am Plasmarand! Hoher Gradient = niedriger Transport (Transportbarriere)

Interferometer-Messungen (\overline{n}_e) hier eingetragen am tangentialen Radius.

Modellprofil erlaubt "Vorwärtsberechnung" des Linienintegrals

Parameter bestimmt durch Anpassung (minimale quadratische Abweichung)

Wahl der Profilklasse schränkt Zahl der Freiheitsgrade ein

- gut f
 ür die Rechnung
- Gefahr eines unphysikalischen"Vorurteils"

Spektroskopische Messungen

Beispiele:

Neutraler Wasserstoff

$$H_{\alpha} (n = 3 \rightarrow 2): \lambda = 656.3 \text{ nm}$$

Ly_{\alpha}
$$(n=2 o 1)$$
: $\lambda = 121.5$ nm

Wellenlängenbereiche

sichtbar: $\lambda = 400...700 \text{ nm}$

UV (
$$\lambda = 105...400 \text{ nm}$$
)

Vakuum-UV (VUV):

$$\lambda \approx 10...105 \text{ nm}$$

Gitter-Monochromator

Czerny-Turner Monochromator:

Quelle: McPherson

C-T Vakuum-Monochromator

(Abb. o. Gitter)

Detektoren für Spektroskopie

Halbleiter für Detektoren (Band-Band Übergänge)

Detektor	W_0 (eV)	Temperatur (K)	λ_{max} (μ m)
InSb	0.22	77	5.5
PbSb	0.42	193	3
Ge	0.67	103	1.9
Si	1.12	300	1.1
CdSe	1.8	300	0.69
CdS	2.4	300	0.52

Charge Coupled Device (CCD)

Atomare Prozesse im Plasma

a: Atom, a^* angeregtes Atom, i: Ion, e: Elektron

Elektronenstoss - Anregung / - Abregung (Index s: schnell, l: langsam)

$$a + e_s \rightleftharpoons a^* + e_l$$

Ionisation / Dreierstossrekombination

$$a + e_s \rightleftharpoons i + e + e_l$$

Licht-Absorption / -Emission

$$a + hv \rightleftharpoons a^*$$

Photoionisation / strahlende Rekombination

$$a + hv \rightleftharpoons i + e$$

Abgeschwächte Formen des thermischen Gleichgewichts

• Thermisches Gleichgewicht (TE)

Alle Prozesse und Umkehrprozesse stehen separat im Gleichgewicht (Ratengleichheit). Strahlungsgleichgewicht: Strahlung entspricht der Planck'schen Hohlraumstrahlung (fast nie im Plasma der Fall).

• Lokales Thermisches Gleichgewicht (LTE)

Die Besetzungswahrscheinlichkeiten können durch eine lokal definierte Temperatur beschrieben werden. Die Saha-Gleichung gilt. Beispiel: Thermischer Lichtbogen. (erfordert Gradienten ≪ freie Weglänge, Zeitskala lang gegen Stoßzeit)

• Partielles Lokales Thermisches Gleichgewicht (PLTE)

Stösse zwischen den Atomen im angeregten Zustand sind weit häufiger als im Grundzustand (grösserer Bahnradius).

Angeregte Zustände werden durch LTE beschrieben, Grundzustand nicht. Ausserdem $T_e \neq T_i, T_a$.

Korona-Modell

Bei niedriger Plasma-Dichte gilt auch nicht PLTE:

- Geringe Besetzung der angeregten Zustände
- Kaum abregende Stösse (da wenige Stosspartner)

Vereinfachtes Ratengleichgewicht:

$$\dot{N}_{1,m} = n_1 n_e X_{1,m}(T_e) = \sum_k \dot{N}_{m,k} = n_m \sum_{k < m} A_{m,k}$$

 n_1 (n_m): Dichte der Atome im Grundzustand (Zustand m),

 $X_{1,m} = \langle v_{th,e} \sigma_{1,m} \rangle = f(T_e)$: Ratenkoeffizient Elektronenstoss-Anregung,

 $A_{m,k}$: Übergangswahrscheinlichkeit von Zustand m in Zustand k.

Anregungsratenkoeffizient

Korona-Modell (2)

Intensität einer Spektrallinie $m \to j$ (Übergangswahrsch. $A_{m,j}$)

$$\varepsilon_{m,j} = \frac{h \nu}{4 \pi} n_m A_{m,j} = \frac{h \nu}{4 \pi} n_1 n_e X_{1,m} \frac{A_{m,j}}{\sum_{(k < m)} A_{m,k}}$$

wobei n_m aus Ratengleichgewicht eingesetzt wurde.

Def. Verzweigungsverhältnis (engl. branching ratio)

$$B_{m,j} = rac{A_{m,j}}{\sum_{(k < m)} A_{m,k}}$$

Anzahl der emittierten Photonen pro Zeit:

$$\dot{N}_{m,j} = n_1 n_e X_{1,m} B_{m,j}$$

Besetzungsdichte ("Massenwirkungsgesetz"):

$$\frac{n_m}{n_1 n_e} = f(T_e) \neq f(n_e)$$

Ionisationsgleichgewicht

Wie zuvor, jedoch Ratengleichgewicht

$$\dot{N}_{Z,Z+1} = n_Z n_e S_{Z,Z+1}(T_e) = \dot{N}_{Z+1,Z} = n_e n_{Z+1} \alpha(T_e)$$

Ionisationsgrad

$$\frac{n_{Z+1}}{n_Z} = \frac{S(T_e)}{\alpha(T_e)} = f(T_e) \neq f(n_e)$$

Vergleich mit (L)TE, Saha-Gleichung (s. 1. Vorlesung)

$$\frac{n_e^2}{n_0} = 2\frac{g_i}{g_0} \frac{(2\pi m_e k_B T)^{3/2}}{(2\pi \hbar)^3} \exp\left(-E_{ion}/k_B T\right) \quad \Rightarrow \quad \frac{n_e}{n_0} = \frac{1}{n_e} f(T_e)$$

Verwende einfachste Stoss-Strahlungs-Modelle für $n_e \leq 10^{19} \text{ m}^{-3}$,

LTE (Saha-Gl.) für $n_e \ge 10^{23} \text{ m}^{-3}$,

Übergangsbereich erfordert (numerische) Lösung mehrerer Ratengleichungen.

Besetzung vs. Elektronendichte

Beispiel:

einiger Besetzung angeregter Niveaus des Stickstoffatoms mit Hilfe eines Stoß-Strahlungs-Modells. Bei den verschiedenen Positionen z unterscheidet sich das Plasma in der optischen Dicke (in den Escape-Faktoren) der Resonanzlinien. Das ⁴P-Niveau 3sist über eine Resonanzlinie mit dem Grundzustand 2p³ ⁴S verbunden, die anderen Übergänge sind verboten $(p \rightarrow p)$. Die zum Grundzustand verbotenen Übergänge erfahren nur durch die Umverteilung von der optischen Dicke der Resonanzlinien.

Anwendungen Plasma-Spektroskopie

Beispiele:

- 1. Messung von Zuflüssen einer Spezies von der Wand ins Plasma
- 2. Teilchendichtemessung ("Aktinometrie")
- 3. Elektronentemperaturmessung
- 4. (Gastemperaturmessung)

Zufluss-Messung

Meist erodiert das Wandmaterial.

Ann.: Anregungsrate = Emissionsrate

Messe emittierten Photonenfluss in einer Linie
(Element *k*):

$$L = \int n_k n_e X_k B \, \mathrm{d}x$$

X_k: Ratenkoeffizient für die Anregung

B: Verzweigungsverhältnis für diese Linie Neutralenfluss von der Wand:

Wand

$$\nabla \cdot \Gamma_k = \frac{\mathrm{d}}{\mathrm{d}x} \Gamma_k = -n_k n_e S_k$$

 S_k : Ionisations-Ratenkoeffizient

$$\Gamma_k(0) = \frac{\int n_k n_e S_k dx}{\int n_k n_e X_k B dx} L \approx \frac{S_k}{X_k B} L$$

Bei Eintritt ins Plasma:

- teilweise Anregung
- teilweise Ionisation

S/XB-Verhältnis

Teilchendichtemessung

Um absolute Teilchendichte aus Spektren zu gewinnen, muss die Empfindlichkeit des Spektrometers absolut kalibriert sein.

Trick: Relative Messung im Vergleich mit Spezies bekannter Konzentration

Beispiel: Messung der atomaren Wasserstoffdichte

Intensität: $L_H = \int n_H n_e X_H dx$.

Mische Ar mit bekannter Dichte zu.

$$\frac{L_H}{L_{Ar}} = \frac{\int n_H n_e X_h dx}{\int n_{Ar} n_e X_{Ar} dx} \approx \frac{n_H}{n_{Ar}} \frac{\overline{X}_H}{\overline{X}_{Ar}}$$

Elektronentemperaturmessung

Benutze 2 nahe Linien unterschiedlicher Anregungsenergie, z.B. Ar I, 667.728 nm, $W \approx 12 \; \text{eV}$

He I, 667.815 nm, $W \approx 24 \text{ eV}$

 \rightarrow "Van Regemorter-Formel" [Astrophys. J. 136, 906 (1962)] für $k_BT \ll W$:

$$\frac{\dot{N}_{He}}{\dot{N}_{Ar}} = \frac{n_{He} f_{He} g_{He} W_{He}}{n_{Ar} f_{Ar} g_{Ar} W_{Ar}} \exp\left(-\frac{W_{He} - W_{Ar}}{k_B T_e}\right)$$

Beispiel Temperaturmessung

Zusammenfassung - Ausgewählte Diagnostiken

- Magnetische Messungen
 - Magnetischer poloidaler Fluß → Ringspannung
 - Magnetischer toroidaler Fluß \rightarrow diamagnetischer Efferk \rightarrow thermische Energie
 - Rogowski-Spule → Plasmastrom
- Hochfrequenz-Diagnostiken
 - Elektronen-Zyklotron-Emission (ECE) $\rightarrow T_e$ (Profile)
 - Interferometer $\rightarrow \overline{n}_e$ (Linienintegral)
 - Reflektometrie $\rightarrow n_e$ (Profile)
- Passive Spektroskopie
 - Linienintensität nahe Wand → Verunreiningszufluß
 - Verhältnis Linienintensität zweier Spezies → Verunreinigungsdichte
 - Verhältnis zweier Linien der gleichen Spezies → Elektronentemperatur