Package 'tinyarray'

June 13, 2024

Type Package

Title Expression Data Analysis and Visualization

Version 2.4.2

Maintainer Xiaojie Sun <18763899370@163.com>

Description

The Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and The Cancer Genome Atlas (https://portal.gdc.cancer.gov/) are widely used medical public databases. Our platform integrates routine analysis and visualization tools for expression data to provide concise and intuitive data analysis and presentation.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports BiocManager, clusterProfiler, dplyr, limma, stringr, tibble, pheatmap, ggplot2, survival, Hmisc, survminer, patchwork

Suggests testthat, AnnoProbe, GEOquery, Biobase, VennDiagram, FactoMineR, factoextra, knitr, rmarkdown, cowplot, ggpubr, ggplotify, tidyr, labeling, Rtsne, scatterplot3d, ComplexHeatmap, circlize,org.Rn.eg.db,org.Mm.eg.db,org.Hs.eg.db

URL https://github.com/xjsun1221/tinyarray

BugReports https://github.com/xjsun1221/tinyarray/issues

Depends R (>= 4.1.0)

RoxygenNote 7.3.1

NeedsCompilation no

Author Xiaojie Sun [aut, cre]

Repository CRAN

Date/Publication 2024-06-13 14:20:02 UTC

2 Contents

Contents

box_surv
cod
cor.full
cor.one
corheatmap
corscatterplot
deg
deseq_data
double_enrich
draw_boxplot
draw_heatmap
draw_heatmap2
draw_KM
draw_pca
draw_tsne
draw_volcano2
dumd
edges to nodes
exists_anno_list
exprSet_hub1
exp_boxplot
exp_hub1
exp_surv
find_anno
genes
geo_download
get_cgs
get_count_txt
get_deg
get_deg_all
get_gpl_txt
ggheat
hypertest
interaction_to_edges
intersect_all
Inc_anno
Inc_annov23
make_tcga_group
match_exp_cl
metal
mRNA anno
mRNA annov23
multi_deg
multi_deg

box_surv 3

box_:	surv box	c_surv	
Index			61
	union_all		 60
	t_choose		 59
	trans_exp_new		
	trans_exp		 57
	trans_entrezexp		 56
	trans_array		
	surv_KM		 54
	surv_cox		 53
	sam_filter		 52
	risk_plot		 51
	quick_enrich		 50
	point_cut		 49
	plot_deg		 47
	plcortest		 47
	pkg_all		 46

Description

draw box plot for a hub gene expression matrix

Usage

```
box_surv(exp_hub, exprSet_hub, meta)
```

Arguments

exp_hub an expression matrix for hubgenes
exprSet_hub a tumor expression set for hubgenes
meta meta data corresponds to expression set

Value

patchwork result for hub genes boxplot and survival plot

Author(s)

Xiaojie Sun

See Also

```
exp_boxplot;exp_surv
```

4 cor.full

Examples

cod

cod

Description

An expression matrix form TCGA

Usage

cod

Format

An object of class matrix (inherits from array) with 100 rows and 512 columns.

Examples

cod

cor.full

cor.test for all variables

Description

cor.test for all variables(each two columns)

Usage

```
cor.full(x, drop = min(x) - 0.001, min.obs = 10)
```

Arguments

x A numeric matrix or data.frame

drop drop values

min. obs minimum number of observations after dropping

cor.one 5

Value

a data.frame with cor.test p.value and estimate

Author(s)

Xiaojie Sun

See Also

```
cor.one
```

Examples

```
x = iris[,-5]
cor.full(x)
```

cor.one

cor.test for one variable with all variables

Description

cor.test for all variables(each two columns)

Usage

```
cor.one(
 х,
  var,
  drop.var = min(x[, var]) - 0.001,
 drop.other = min(x[, -which(colnames(x) == var)]) - 0.001,
 min.obs = 10
)
```

Arguments

A numeric matrix or data.frame Χ your chosen variable, only one. var drop.var drop values in var

drop values in other columns drop.other

min.obs minimum number of observations after dropping

Value

A data.frame with cor.test p.value and estimate

6 corheatmap

Author(s)

Xiaojie Sun

See Also

```
cor.full
```

Examples

```
x = iris[,-5]
cor.one(x,"Sepal.Width")
```

corheatmap

corheatmap

Description

draw cor heatmap

Usage

```
corheatmap(exp, x, y, color = c("#2fa1dd", "white", "#f87669"))
```

Arguments

exp	A numeric matrix
Х	genes or cells from exp
у	genes or cells from exp
color	color for heatmap

Value

a ggplot object

Author(s)

Xiaojie Sun

```
x = rownames(exprSet_hub1)[1:3]
y = rownames(exprSet_hub1)[4:7]
corheatmap(exprSet_hub1,x,y)
```

corscatterplot 7

corscatterplot

corscatter plot

Description

draw cor scatter plot with density plot by ggplot2

Usage

```
corscatterplot(
  dat,
  x,
  y,
  color_cor = "blue",
  fill_cor = "lightgray",
  fill_x = "#ff820e",
  fill_y = "#0000fe",
  type = "density",
  ...
)
```

Arguments

dat	plot data
x	X
у	у
color_cor	color for cor reg.line
fill_cor	fill for cor reg.line
fill_x	fill for top density plot
fill_y	fill for right density plot
type	whether to use a density plot or a histogram plot for the side panel.
	other paramters for ggscatter

Value

a ggplot object

Author(s)

Xiaojie Sun

8 deseq_data

Examples

deg

deg

Description

limma differential analysis result for GSE42872

Usage

deg

Format

An object of class data. frame with 18591 rows and 10 columns.

Examples

head(deg)

deseq_data

deseq_data

Description

DEseq2 differential analysis result

Usage

deseq_data

Format

An object of class data. frame with 552 rows and 6 columns.

Examples

head(deseq_data)

double_enrich 9

double_enrich

draw enrichment bar plots for both up and down genes

Description

draw enrichment bar plots for both up and down genes, for human only.

Usage

```
double_enrich(deg, n = 10, color = c("#2874C5", "#f87669"))
```

Arguments

deg a data.frame contains at least two columns:"ENTREZID" and "change"

n how many terms will you perform for up and down genes respectively

color color for bar plot

Value

a list with kegg and go bar plot according to up and down genes enrichment result.

Author(s)

Xiaojie Sun

See Also

```
quick_enrich
```

```
## Not run:
if(requireNamespace("org.Hs.eg.db",quietly = TRUE)&
    requireNamespace("labeling",quietly = TRUE)){
    double_enrich(deg)
}else{
    if(!requireNamespace("org.Hs.eg.db",quietly = TRUE)) {
        warning("Package 'org.Hs.eg.db' needed for this function to work.
            Please install it by BiocManager::install('org.Hs.eg.db')",call. = FALSE)
}
if(!requireNamespace("labeling",quietly = TRUE)) {
    warning("Package 'labeling' needed for this function to work.
            Please install it by install.packages('labeling')",call. = FALSE)
}
## End(Not run)
```

10 draw_boxplot

draw_boxplot

draw boxplot for expression

Description

draw boxplot for expression

Usage

```
draw_boxplot(
  exp,
  group_list,
 method = "kruskal.test",
 sort = TRUE,
  drop = FALSE,
 width = 0.5,
 pvalue_cutoff = 0.05,
 xlab = "Gene",
 ylab = "Expression",
 grouplab = "Group",
 p.label = FALSE,
 add_error_bar = FALSE,
 color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#66C2A5", "#FC8D62", "#8DA0CB",
    "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
)
```

Arguments

exp	A numeric matrix
group_list	A factor with duplicated character or factor
method	one of kruskal.test,aov,t.test and wilcox.test
sort	whether the boxplot will be sorted
drop	whether to discard insignificant values
width	width of boxplot and error bar
<pre>pvalue_cutoff</pre>	if drop = TRUE,genes with p-values below the threshold will be drawn
xlab	title of the x axis
ylab	title of the y axis
grouplab	title of group legend
p.label	whether to show p value in the plot
add_error_bar	whether to add error bar
color	color vector
	other parameters from stat_compare_means

draw_heatmap 11

Value

a boxplot according to exp and grouped by group.

Author(s)

Xiaojie Sun

See Also

draw_heatmap;draw_volcano;draw_venn

Examples

```
if(requireNamespace("tidyr",quietly = TRUE)&
   requireNamespace("ggpubr",quietly = TRUE)){
 draw_boxplot(t(iris[,1:4]),iris$Species)
 exp <- matrix(rnorm(60),nrow = 10)</pre>
 colnames(exp) <- paste0("sample",1:6)</pre>
 rownames(exp) <- paste0("gene",1:10)</pre>
 exp[,4:6] = exp[,4:6] +10
 exp[1:4,1:4]
 group_list <- factor(rep(c("A", "B"), each = 3))</pre>
 draw_boxplot(exp,group_list)
 draw_boxplot(exp,group_list,color = c("grey","red"))
 }else{
if(!requireNamespace("ggpubr",quietly = TRUE)) {
warning("Package 'ggpubr' needed for this function to work.
        Please install it by install.packages('ggpubr')")
}
if(!requireNamespace("tidyr",quietly = TRUE)) {
warning("Package 'tidyr' needed for this function to work.
        Please install it by install.packages('tidyr')")
}
}
```

draw_heatmap

draw a heatmap plot

Description

warning a heatmap plot for expression matrix and group by group_list praramter, exp will be scaled.

Usage

```
draw_heatmap(
   n,
   group_list,
   scale_before = FALSE,
   n_cutoff = 3,
```

12 draw_heatmap

Arguments

n A numeric matrix

group_list A factor with duplicated character or factor

scale_before deprecated parameter

n_cutoff 3 by defalut, scale before plot and set a cutoff, usually 2 or 1.6

legend logical, show legend or not show_rownames logical, show rownames or not

annotation_legend

logical, show annotation legend or not

split_column split column by group_list

show_column_title

show column title or not

color color for heatmap

color_an color for column annotation scale logical,scale the matrix or not

main the title of the plot

... other parameters from pheatmap

Value

a heatmap plot according to exp and grouped by group.

Author(s)

Xiaojie Sun

See Also

draw_pca;draw_volcano;draw_venn

draw_heatmap2

Examples

```
#example data
exp = matrix(abs(rnorm(60, sd = 16)), nrow = 10)
exp[,4:6] <- exp[,4:6]+20
colnames(exp) <- paste0("sample",1:6)</pre>
rownames(exp) <- paste0("gene",1:10)</pre>
exp[1:4,1:4]
group_list = factor(rep(c("A", "B"), each = 3))
if(requireNamespace("ggplotify",quietly = TRUE)){
  draw_heatmap(exp,group_list)
  #use iris
  n = t(iris[,1:4]); colnames(n) = 1:150
  group_list = iris$Species
  draw_heatmap(n,group_list)
  draw_heatmap(n,group_list,color = colorRampPalette(c("green","black","red"))(100),
               color_an = c("red","blue","pink") )
}else{
  warning("Package 'ggplotify' needed for this function to work.
    Please install it by install.packages('ggplotify')")
}
```

draw_heatmap2

draw heatmap plots

Description

print heatmap plots for expression matrix and group by group_list paramter

Usage

```
draw_heatmap2(exp, group_list, deg, my_genes = NULL, heat_union = TRUE, ...)
```

Arguments

exp A numeric matrix
group_list A factor with duplicated character or factor
deg a data.frame created by Differential analysis
my_genes genes for pheatmap
heat_union logical ,use union or intersect DEGs for heatmap
other parameters from draw_heatmap

Value

a heatmap plot according to exp and grouped by group.

Author(s)

Xiaojie Sun

14 draw_KM

See Also

draw_pca;draw_volcano;draw_venn

Examples

```
if(requireNamespace("Biobase", quietly = TRUE)&
  requireNamespace("AnnoProbe",quietly = TRUE)){
 gse = "GSE474"
 geo = geo_download(gse,destdir=tempdir())
 geo$exp[1:4,1:4]
 geo$exp=log2(geo$exp+1)
 group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),"MObese",
 ifelse(stringr::str_detect(geo$pd$title,"NonObese"),"NonObese","Obese"))
 group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
 find_anno(geo$gpl)
 ids <- AnnoProbe::idmap(geo$gpl,destdir = tempdir())</pre>
 deg = multi_deg(geo$exp,group_list,ids,adjust = FALSE,entriz = FALSE)
 draw_heatmap2(geo$exp,group_list,deg)
}else{
 if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
   warning("Package 'AnnoProbe' needed for this function to work.
         Please install it by install.packages('AnnoProbe')",call. = FALSE)
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   warning("Package 'Biobase' needed for this function to work.
         Please install it by BiocManager::install('Biobase')",call. = FALSE)
 }
}
## End(Not run)
```

draw_KM

draw_KM

Description

draw KM-plot with two or more group

Usage

```
draw_KM(
    meta,
    group_list,
    time_col = "time",
    event_col = "event",
    legend.title = "Group",
    legend.labs = levels(group_list),
    color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#92C5DE", "#F4A582", "#66C2A5",
```

draw_pca 15

```
"#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"), ...
```

Arguments

meta survival data with time and event column
group_list A factor with duplicated character or factor
time_col colname of time
event_col colname of event
legend.title legend title
legend.labs character vector specifying legend labels
color color vector

... other parameters from ggsurvplot

Value

a KM-plot

Author(s)

Xiaojie Sun

Examples

draw_pca

draw PCA plots

Description

do PCA analysis and warning a PCA plot

Usage

```
draw_pca(
   exp,
   group_list,
   color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#92C5DE", "#F4A582", "#66C2A5",
        "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
   addEllipses = TRUE,
   style = "default",
```

16 draw_pca

```
color.label = "Group",
  title = "",
   ...
)
```

Arguments

exp A numeric matrix group_list A factor with duplicated character or factor color color vector addEllipses logical, add ellipses or not style plot style, "default", "ggplot2" and "3D" color.label color legend label title plot title other paramters from fviz_pca_ind . . .

Value

a pca plot according to exp and grouped by group.

Author(s)

Xiaojie Sun

See Also

draw_heatmap;draw_volcano;draw_venn

```
if(requireNamespace("FactoMineR", quietly = TRUE)&
   requireNamespace("factoextra",quietly = TRUE)){
 draw_pca(t(iris[,1:4]),iris$Species)
 draw_pca(t(iris[,1:4]),iris$Species,style = "ggplot2")
 #change color
 draw_pca(t(iris[,1:4]),iris\$Species,color = c("\#E78AC3", "\#A6D854", "\#FFD92F"))
 if(!requireNamespace("FactoMineR",quietly = TRUE)){
   warning("Package 'FactoMineR' needed for this function to work.
         Please install it by install.packages('FactoMineR')")
 if(!requireNamespace("factoextra",quietly = TRUE)){
   warning("Package 'factoextra' needed for this function to work.
        Please install it by install.packages('factoextra')")
 }
}
if(requireNamespace("scatterplot3d",quietly = TRUE)&
   requireNamespace("FactoMineR",quietly = TRUE)){
```

draw_tsne 17

```
draw_pca(t(iris[,1:4]),iris$Species,style = "3D")
}else{
   if(!requireNamespace("scatterplot3d",quietly = TRUE)){
     warning("Package 'scatterplot3d' needed for this function to work.
        Please install it by install.packages('scatterplot3d')")
   }
   if(!requireNamespace("FactoMineR",quietly = TRUE)){
     warning("Package 'FactoMineR' needed for this function to work.
        Please install it by install.packages('FactoMineR')")
   }
}
```

draw_tsne

draw_tsne

Description

draw tsne plot with annotation by ggplot2

Usage

```
draw_tsne(
   exp,
   group_list,
   perplexity = 30,
   color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#92C5DE", "#F4A582", "#66C2A5",
        "#FC8D62", "#8DA0CB", "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
   color.label = "group",
   addEllipses = TRUE
)
```

Arguments

exp A numeric matrix
group_list A factor with duplicated character or factor
perplexity numeric; perplexity parameter for Rtsne
color color vector
color.label color legend label
addEllipses logical,add ellipses or not

Value

a ggplot object

Author(s)

Xiaojie Sun

18 draw_venn

Examples

draw_venn

draw a venn plot

Description

warning a venn plot for deg result created by three packages

Usage

```
draw_venn(
 Х,
 color = c("#2874C5", "#f87669", "#e6b707", "#868686", "#66C2A5", "#FC8D62", "#8DA0CB",
    "#E78AC3", "#A6D854", "#FFD92F", "#E5C494", "#B3B3B3"),
  imagetype = "png",
  filename = NULL,
 lwd = 1,
 lty = 1,
  col = color[1:length(x)],
  fill = color[1:length(x)],
  cat.col = color[1:length(x)],
  cat.cex = 1,
  cat.dist = -0.15,
  rotation.degree = 0,
 main.cex = 1,
 cex = 1,
  alpha = 0.1,
 reverse = TRUE,
)
```

draw_venn 19

Arguments

x a list for plot

main Character giving the main title of the diagram

color color vector

imagetype Specification of the image format (e.g. tiff, png or svg)

filename Filename for image output, or if NULL returns the grid object itself

lwd width of the circle's circumference

lty dash pattern of the circle's circumference

col Colour of the circle's circumference

fill Colour of the circle's area
cat.col Colour of the category name
cat.cex size of the category name

cat.dist The distance (in npc units) of the category name from the edge of the circle (can

be negative)

rotation.degree

Number of degrees to rotate the entire diagram

main.cex Number giving the cex (font size) of the main title

cex size of the area label

alpha Alpha transparency of the circle's area

reverse logical,reflect the three-set Venn diagram along its central vertical axis of sym-

metry. Use in combination with rotation to generate all possible set orders

... other parameters from venn.diagram

Value

a venn plot according to x, y and z named "name" paramter

Author(s)

Xiaojie Sun

See Also

draw_pca;draw_volcano;draw_heatmap

```
if(requireNamespace("VennDiagram",quietly = TRUE)&
    requireNamespace("ggplotify",quietly = TRUE)&
    requireNamespace("cowplot",quietly = TRUE)){
    x = list(Deseq2=sample(1:100,30),edgeR = sample(1:100,30),limma = sample(1:100,30))
    draw_venn(x,"test")
    draw_venn(x,"test",color = c("darkgreen", "darkblue", "#B2182B"))
}else{
```

20 draw_volcano

```
if(!requireNamespace("VennDiagram",quietly = TRUE)) {
  warning("Package 'VennDiagram' needed for this function to work.
  Please install it by install.packages('VennDiagram')")
}
if(!requireNamespace("ggplotify",quietly = TRUE)) {
  warning("Package 'ggplotify' needed for this function to work.
  Please install it by install.packages('ggplotify')")
}
if(!requireNamespace("cowplot",quietly = TRUE)) {
  warning("Package 'cowplot' needed for this function to work.
  Please install it by install.packages('cowplot')")
}
```

draw_volcano

draw a volcano plot

Description

warning a volcano plot for Differential analysis result in data.frame format.

Usage

```
draw_volcano(
  deg,
  lab = NA,
  xlab.package = TRUE,
  pvalue_cutoff = 0.05,
  logFC_cutoff = 1,
  pkg = 1,
  adjust = FALSE,
  symmetry = FALSE,
  color = c("#2874C5", "grey", "#f87669")
)
```

Arguments

deg a data.frame created by Differential analysis

label for x axis in volcano plot, if NA, x axis names by package

xlab.package whether to use the package name as the x axis name

pvalue_cutoff Cutoff value of pvalue,0.05 by default. logFC_cutoff Cutoff value of logFC,1 by default.

pkg a integer ,means which Differential analysis packages you used,we support three

packages by now, 1,2,3,4 respectively means "DESeq2", "edgeR", "limma(voom)", "limma"

adjust a logical value, would you like to use adjusted pvalue to draw this plot,FAISE

by default.

symmetry a logical value ,would you like to get your plot symmetrical

color color vector

draw_volcano2 21

Value

a volcano plot according to logFC and P.value(or adjust P.value)

Author(s)

Xiaojie Sun

See Also

```
draw_heatmap;draw_pca;draw_venn
```

Examples

```
head(deseq_data)
draw_volcano(deseq_data)
draw_volcano(deseq_data,pvalue_cutoff = 0.01,logFC_cutoff = 2)
draw_volcano(deseq_data,color = c("darkgreen", "darkgrey", "#B2182B"))
```

draw_volcano2

draw_volcano2

Description

print one or more volcano plot for Differential analysis result in data.frame fomat.

Usage

```
draw_volcano2(deg, pkg = 4, lab, ...)
```

Arguments

deg a data.frame created by Differential analysis

pkg a integer ,means which Differential analysis packages you used,we support three
packages by now, 1,2,3,4 respectively means "DESeq2","edgeR","limma(voom)","limma"

label for x axis in volcano plot, if NA, x axis names by package

... other parameters from draw_volcano

Value

one or more volcano plot

Author(s)

Xiaojie Sun

See Also

```
geo_download;draw_volcano;draw_venn
```

22 dumd

Examples

```
## Not run:
if(requireNamespace("Biobase", quietly = TRUE)&
   requireNamespace("AnnoProbe",quietly = TRUE)){
#two group
gse = "GSE42872"
geo = geo_download(gse,destdir=tempdir())
group_list = rep(c("A", "B"), each = 3)
ids = AnnoProbe::idmap('GPL6244',destdir = tempdir())
deg = get_deg(geo$exp,group_list,ids)
draw_volcano2(deg)
#multigroup
gse = "GSE474"
geo = geo_download(gse,destdir=tempdir())
geo$exp[1:4,1:4]
geo$exp=log2(geo$exp+1)
group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),"MObese",
ifelse(stringr::str_detect(geo$pd$title,"NonObese"),"NonObese","Obese"))
group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
find_anno(geo$gpl)
ids <- AnnoProbe::idmap(geo$gpl,destdir = tempdir())</pre>
deg = multi_deg(geo$exp,group_list,ids,adjust = FALSE,entriz = FALSE)
draw_volcano2(deg)
draw_volcano2(deg,color = c("darkgreen","grey","darkred"))
}else{
 if(!requireNamespace("AnnoProbe", quietly = TRUE)) {
    warning("Package 'AnnoProbe' needed for this function to work.
         Please install it by install.packages('AnnoProbe')",call. = FALSE)
 }
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   warning("Package 'Biobase' needed for this function to work.
         Please install it by BiocManager::install('Biobase')",call. = FALSE)
 }
}
## End(Not run)
```

dumd

count unique values in every columns for data.frame

Description

in geo analysis, this function can help you simplify pdata, delete columns with unique values, which can't be used as group vector

Usage

dumd(x)

edges_to_nodes 23

Arguments

Χ

A data.frame.

Value

The simple data.frame of columns unique values count in x

Examples

```
dumd(iris)
data(ToothGrowth)
x = ToothGrowth
dumd(ToothGrowth)
```

edges_to_nodes

edges_to_nodes

Description

get nodes from edges

Usage

```
edges_to_nodes(edges)
```

Arguments

edges

data.frame

Value

nodes data.frame

Author(s)

Xiaojie Sun

See Also

```
interaction_to_edges
```

```
df = data.frame(a = c("gene1", "gene2", "gene3"),
b = c("d,f,a,b",
  "c,e,g",
  "a,b,d"))
edges = interaction_to_edges(df)
nodes = edges_to_nodes(edges)
```

24 exprSet_hub1

exists_anno_list

exists_anno_list

Description

AnnoProbe supported GPLs

Usage

```
exists_anno_list
```

Format

An object of class character of length 175.

Examples

```
exists_anno_list
```

exprSet_hub1

exprSet_hub1

Description

An cpm expression matrix from TCGA,tumor samples only

Usage

```
exprSet_hub1
```

Format

An object of class matrix (inherits from array) with 8 rows and 177 columns.

```
exprSet_hub1[1:4,1:4]
```

exp_boxplot 25

exp_boxplot

exp_boxplot

Description

draw box plot for a hub gene expression matrix

Usage

```
exp_boxplot(exp_hub, color = c("#2fa1dd", "#f87669"))
```

Arguments

exp_hub an expression matrix for hubgenes

color color for boxplot

Value

box plots list for all genes in the matrix

Author(s)

Xiaojie Sun

See Also

```
exp_surv;box_surv
```

26 exp_surv

exp_hub1 exp_hub1

Description

An expression matrix from TCGA and Gtex

Usage

exp_hub1

Format

An object of class matrix (inherits from array) with 8 rows and 350 columns.

Examples

```
exp_hub1[1:4,1:4]
```

exp_surv exp_surv

Description

draw surv plot for a hub gene expression matrix for tumor samples

Usage

```
exp_surv(exprSet_hub, meta, cut.point = FALSE, color = c("#2874C5", "#f87669"))
```

Arguments

exprSet_hub a tumor expression set for hubgenes meta data corresponds to expression set

cut.point logical, use cut_point or not, if FALSE,use median by defult

color color for boxplot

Value

survival plots list for all genes

Author(s)

Xiaojie Sun

find_anno 27

See Also

```
exp_boxplot;box_surv;draw_venn
```

Examples

```
tmp = exp_surv(exprSet_hub1,meta1)
patchwork::wrap_plots(tmp)+patchwork::plot_layout(guides = "collect")
tmp2 = exp_surv(exprSet_hub1,meta1,cut.point = TRUE)
patchwork::wrap_plots(tmp2)+patchwork::plot_layout(guides = "collect")
```

find_anno

find annotation package or files

Description

find gpl annotation package or files

Usage

```
find_anno(gpl, install = FALSE, update = FALSE)
```

Arguments

gpl a gpl accession

install whether to install and library the package

update whether to update the package

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

geo_download

```
find_anno("GPL570")
```

28 geo_download

genes genes

Description

some gene entriz ids

Usage

genes

Format

An object of class character of length 511.

Examples

genes

geo_download

geo_download

Description

download gse data and get informations

Usage

```
geo_download(
   gse,
   by_annopbrobe = TRUE,
   simpd = TRUE,
   colon_remove = FALSE,
   destdir = getwd(),
   n = 1
)
```

Arguments

gse gse assession number

by_annopbrobe download data by geoquery or annoprobe

simpd get simplified pdata, drop out columns with all same values

colon_remove whether to remove duplicated columns with colons

destdir The destination directory for data downloads.

n For data with more than one ExpressionSet, specify which one to analyze

get_cgs 29

Value

a list with exp,pd and gpl

Author(s)

Xiaojie Sun

See Also

find_anno

Examples

```
## Not run:
if(requireNamespace("Biobase",quietly = TRUE)&
  requireNamespace("AnnoProbe",quietly = TRUE)){
 gse = "GSE42872"
 a = geo_download(gse,destdir=tempdir())
}else{
 if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
   print("Package 'AnnoProbe' needed for this function to work.
        Please install it by install.packages('AnnoProbe')"print)
 }
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   print("Package 'Biobase' needed for this function to work.
        Please install it by BiocManager::install('Biobase')"print)
 }
}
## End(Not run)
```

get_cgs

get_cgs

Description

extract DEGs from deg data.frame

Usage

```
get_cgs(deg)
```

Arguments

deg

a data.frame created by Differential analysis

Value

a list with upgenes, downgenes, diffgenes.

30 get_count_txt

Author(s)

Xiaojie Sun

See Also

geo_download;draw_volcano;draw_venn

Examples

```
## Not run:
#two group
gse = "GSE42872"
geo = geo_download(gse,destdir=tempdir())
group_list = rep(c("A", "B"), each = 3)
ids = AnnoProbe::idmap('GPL6244',destdir=tempdir())
deg = get_deg(geo$exp,group_list,ids)
cgs = get_cgs(deg)
#mutigroup
gse = "GSE474"
geo = geo_download(gse,destdir=tempdir())
geo$exp[1:4,1:4]
geo$exp=log2(geo$exp+1)
group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),"MObese",
ifelse(stringr::str_detect(geo$pd$title,"NonObese"),"NonObese","Obese"))
group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
find_anno(geo$gpl)
ids = AnnoProbe::idmap(geo$gpl,destdir = tempdir())
deg = multi_deg(geo$exp,group_list,ids,adjust = FALSE)
cgs = get_cgs(deg)
## End(Not run)
```

get_count_txt

get count from GEO

Description

get RNA-seq count file from GEO database

Usage

```
get_count_txt(gse, destdir = getwd(), download = FALSE)
```

Arguments

gse gse assession number

destdir The destination directory for data downloads.

download download the txt file or not

get_deg 31

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

```
geo_download
```

Examples

```
get_count_txt("GSE162550",destdir = tempdir())
```

get_deg

get_deg

Description

do differential analysis according to expression set and group information

Usage

```
get_deg(
  exp,
  group_list,
  ids,
  logFC_cutoff = 1,
  pvalue_cutoff = 0.05,
  adjust = FALSE,
  entriz = TRUE,
  species = "human"
)
```

Arguments

exp	A numeric matrix
group_list	A factor with duplicated character or factor
ids	a data.frame with 2 columns,including probe_id and symbol
logFC_cutoff	Cutoff value of logFC,1 by default.
<pre>pvalue_cutoff</pre>	Cutoff value of pvalue, 0.05 by default.
adjust	a logical value, would you like to use adjusted pvalue to draw this plot,FAlSE by default.
entriz	whether convert symbols to entriz ids
species	choose human or mouse, or rat, default: human

32 get_deg_all

Value

a deg data.frame with 10 columns

Author(s)

Xiaojie Sun

See Also

```
multi_deg;get_deg_all
```

Examples

```
## Not run:
if(requireNamespace("Biobase",quietly = TRUE)&
  requireNamespace("AnnoProbe", quietly = TRUE)){
 gse = "GSE42872"
 a = geo_download(gse,destdir=tempdir())
 find_anno(geo$gpl)
 ids <- AnnoProbe::idmap(geo$gpl,destdir = tempdir())</pre>
 Group = rep(c("control","treat"),each = 3)
 Group = factor(Group)
 deg = get_deg(geo$exp,Group,ids,entriz = FALSE)
 head(deg)
}else{
 if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
   warning("Package 'AnnoProbe' needed for this function to work.
        Please install it by install.packages('AnnoProbe')",call. = FALSE)
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   warning("Package 'Biobase' needed for this function to work.
        Please install it by BiocManager::install('Biobase')",call. = FALSE)
}
## End(Not run)
```

get_deg_all

get_deg_all

Description

do diffiencial analysis according to exprission set and group information

get_deg_all 33

Usage

```
get_deg_all(
  exp,
  group_list,
  ids,
  symmetry = TRUE,
  my_genes = NULL,
  show_rownames = FALSE,
  cluster_cols = TRUE,
  color_volcano = c("#2874C5", "grey", "#f87669"),
  logFC_cutoff = 1,
  pvalue_cutoff = 0.05,
  adjust = FALSE,
  entriz = TRUE,
  n_{cutoff} = 2,
  annotation_legend = FALSE,
  lab = NA,
  species = "human"
)
```

Arguments

exp	A numeric matrix	
group_list	A factor with duplicated character or factor	
ids	a data.frame with 2 columns,including probe_id and symbol	
symmetry	a logical value ,would you like to get your plot symmetrical	
my_genes	genes for pheatmap	
show_rownames	logical,show rownames or not	
cluster_cols	boolean values determining if columns should be clustered or hclust object.	
color_volcano	color for volcano	
logFC_cutoff	Cutoff value of logFC,1 by default.	
<pre>pvalue_cutoff</pre>	Cutoff value of pvalue, 0.05 by default.	
adjust	a logical value, would you like to use adjusted pvalue to draw this plot,FAISE by default.	
entriz	logical, if TRUE, convert symbol to entriz id.	
n_cutoff	3 by defalut, scale before plot and set a cutoff, usually 2 or 1.6	
annotation_legend		
	logical,show annotation legend or not	
lab	label for x axis in volcano plot, if NA, x axis names by package	
species	choose human or mouse, or rat, default: human	

Value

a list with deg data.frame, volcano plot ,pca plot ,heatmap and a list with DEGs.

34 get_gpl_txt

Author(s)

Xiaojie Sun

See Also

```
get_deg;multi_deg_all
```

Examples

```
## Not run:
if(requireNamespace("Biobase",quietly = TRUE)&
  requireNamespace("AnnoProbe", quietly = TRUE)){
 gse = "GSE42872"
 geo = geo_download(gse,destdir=tempdir())
 group_list = rep(c("A", "B"), each = 3)
 group_list = factor(group_list)
 find_anno(geo$gpl)
 ids <- AnnoProbe::idmap(geo$gpl,destdir = tempdir())</pre>
 dcp = get_deg_all(geo$exp,group_list,ids,entriz = FALSE)
 head(dcp$deg)
 dcp$plots
}else{
 if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
   warning("Package 'AnnoProbe' needed for this function to work.
        Please install it by install.packages('AnnoProbe')",call. = FALSE)
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   warning("Package 'Biobase' needed for this function to work.
        Please install it by BiocManager::install('Biobase')",call. = FALSE)
 }
}
## End(Not run)
```

get_gpl_txt

get gpl txt from GEO

Description

get gpl annotation txt file from GEO database

Usage

```
get_gpl_txt(gpl, destdir = getwd(), download = FALSE)
```

Arguments

gpl gpl accession from GEO database

destdir The destination directory for data downloads.

download download the txt file or not

ggheat 35

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

```
geo_download
```

Examples

```
get_gpl_txt("GPL23270",destdir = tempdir())
```

ggheat

ggheat

Description

draw heatmap plot with annotation by ggplot2

Usage

Arguments

dat expression matrix for plot group group for expression colnames

cluster logical, cluster in both rows and column or not, default F,now replaced by clus-

ter_rows and cluster_cols.

36 hypertest

color color for heatmap
legend_color color for legend
show_rownames logical,show rown

show_rownames logical,show rownames in plot or not, default T show_colnames logical,show colnames in plot or not, default T

cluster_rows logical, if rows (on the plot) should be clustered, default F cluster_cols logical, if column (on the plot) should be clustered, default F

groupname name of group legend expname name of exp legend

fill_mid use median value as geom_tile fill midpoint

Value

a ggplot object

Author(s)

Xiaojie Sun

Examples

hypertest

hypertest

Description

make hypertest for given lncRNA and mRNA common miRNAs

Usage

```
hypertest(lnc, pc, deMIR = NULL, lnctarget, pctarget)
```

interaction_to_edges 37

Arguments

lnc IncRNA names pc mRNA names

deMIR miRNA names, default NULL

Inctarget a data.frame with two column,lncRNA in the first column,miRNA in the second

column

pctarget a data.frame with two column,mRNA in the first column ,miRNA in the second

column

Value

a data.frame with hypertest result

Author(s)

Xiaojie Sun

See Also

plcortest

Examples

to update

interaction_to_edges interaction_to_edges

Description

split interactions by sep paramter, return edges data.frame

Usage

```
interaction_to_edges(df, a = 1, b = 2, sep = ",")
```

Arguments

df interactions data.frame
a column to replicate
b column to split

sep a character string to separate b column

Value

a new data.frame with two column ,one interaction by one rows

38 intersect_all

Author(s)

Xiaojie Sun

See Also

```
edges_to_nodes
```

Examples

```
df = data.frame(a = c("gene1", "gene2", "gene3"),
b = c("d,f,a,b",
   "c,e,g",
   "a,b,d"))
interaction_to_edges(df)
```

intersect_all

intersect_all

Description

calculate intersect set for two or more elements

Usage

```
intersect_all(...)
```

Arguments

... some vectors or a list with some vectors

Value

vector

Author(s)

Xiaojie Sun

See Also

```
union_all
```

```
x1 = letters[1:4]
x2 = letters[3:6]
x3 = letters[3:4]
re =intersect_all(x1,x2,x3)
re2 = intersect_all(list(x1,x2,x3))
re3 = union_all(x1,x2,x3)
```

lnc_anno 39

lnc_anno

lnc_anno

Description

annotation for TCGA expression matrix(lncRNA),form genecode v22 gtf file.

Usage

1nc_anno

Format

An object of class data. frame with 14826 rows and 3 columns.

Examples

head(lnc_anno)

lnc_annov23

 $lnc_annov23$

Description

annotation for TCGA and gtex expression matrix(lncRNA),form genecode v23 gtf file.

Usage

lnc_annov23

Format

An object of class data.frame with 14852 rows and 3 columns.

Examples

head(lnc_annov23)

40 match_exp_cl

make_tcga_group

make_tcga_group

Description

make tcga group for given tcga expression matrix

Usage

```
make_tcga_group(exp)
```

Arguments

exp

TCGA or TCGA_Gtex expression set from gdc or xena

Value

a group factor with normal and tumor ,correspond to colnames for expression matrix

Author(s)

Xiaojie Sun

See Also

```
sam_filter;match_exp_cl
```

Examples

```
k = make_tcga_group(exp_hub1);table(k)
```

 ${\sf match_exp_cl}$

match_exp_cl

Description

match exp and clinical data from TCGA

Usage

```
match_exp_cl(exp, cl, id_column = "id", sample_centric = TRUE)
```

meta1 41

Arguments

exp	TCGA expression set
cl	TCGA clinical data.frame

id_column which column contains patient ids, column number or column name.

sample_centric logical,deault T,keep all samples from the same patients.if FALSE,keep only

one tumor sample for one patient.

Value

a transformed clinical data.frame with sample ids.

Author(s)

Xiaojie Sun

See Also

```
make_tcga_group;sam_filter
```

Examples

```
a = match_exp_cl(exp_hub1,meta1[,2:4],"X_PATIENT")
exp_matched = a[[1]]
cl_matched = a[[2]]
b = match_exp_cl(exp_hub1,meta1[,2:4],"X_PATIENT",sample_centric = FALSE)
exp_matched = b[[1]]
cl_matched = b[[2]]
```

meta1

meta1

Description

clinical messages for some TCGA patients, correspond to exprSet_hub1

Usage

meta1

Format

An object of class data. frame with 177 rows and 4 columns.

Examples

head(meta1)

42 mRNA_annov23

mRNA_anno

mRNA_anno

Description

annotation for TCGA and gtex expression matrix(mRNA), form genecode v22 gtf file.

Usage

mRNA_anno

Format

An object of class data. frame with 19814 rows and 3 columns.

Examples

head(mRNA_anno)

mRNA_annov23

 $mRNA_annov23$

Description

annotation for TCGA and gtex expression matrix(mRNA), form genecode v23 gtf file.

Usage

mRNA_annov23

Format

An object of class data.frame with 19797 rows and 3 columns.

Examples

head(mRNA_annov23)

multi_deg 43

multi_deg multi_deg

Description

do diffiential analysis according to expression set and group information

Usage

```
multi_deg(
   exp,
   group_list,
   ids,
   logFC_cutoff = 1,
   pvalue_cutoff = 0.05,
   adjust = FALSE,
   species = "human",
   entriz = TRUE
)
```

Arguments

exp A numeric matrix

group_list A factor with duplicated character or factor

ids a data.frame with 2 columns,including probe_id and symbol

logFC_cutoff Cutoff value of logFC,1 by default.
pvalue_cutoff Cutoff value of pvalue,0.05 by default.

adjust a logical value, would you like to use adjusted pvalue to draw this plot,FAISE

by default.

species choose human or mouse, or rat, default: human

entriz whether convert symbols to entriz ids

Value

a deg data.frame with 10 columns

Author(s)

Xiaojie Sun

See Also

```
get_deg;multi_deg_all
```

44 multi_deg_all

Examples

```
## Not run:
if(requireNamespace("Biobase",quietly = TRUE)&
   requireNamespace("AnnoProbe", quietly = TRUE)){
 gse = "GSE474"
 geo = geo_download(gse,destdir=tempdir())
 geo$exp[1:4,1:4]
 geo$exp=log2(geo$exp+1)
 group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),
  "MObese", ifelse(stringr::str_detect(geo$pd$title,"NonObese"),
  "NonObese", "Obese"))
 group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
 find_anno(geo$gpl)
 ids <- AnnoProbe::idmap(geo$gpl,destdir = tempdir())</pre>
 deg = multi_deg(geo$exp,group_list,ids,adjust = FALSE,entriz = FALSE)
 names(deg)
 head(deg[[1]])
 head(deg[[2]])
 head(deg[[3]])
}else{
 if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
   warning("Package 'AnnoProbe' needed for this function to work.
         Please install it by install.packages('AnnoProbe')",call. = FALSE)
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   warning("Package 'Biobase' needed for this function to work.
         Please install it by BiocManager::install('Biobase')",call. = FALSE)
 }
}
## End(Not run)
```

multi_deg_all

multi_deg_all

Description

do diffiencial analysis according to exprission set and group information

Usage

```
multi_deg_all(
   exp,
   group_list,
   ids,
   symmetry = TRUE,
   my_genes = NULL,
   show_rownames = FALSE,
   cluster_cols = TRUE,
```

multi_deg_all 45

```
color_volcano = c("#2874C5", "grey", "#f87669"),
pvalue_cutoff = 0.05,
logFC_cutoff = 1,
adjust = FALSE,
entriz = TRUE,
annotation_legend = FALSE,
lab = NA,
species = "human"
)
```

Arguments

exp A numeric matrix

group_list A factor with duplicated character or factor

ids a data.frame with 2 columns,including probe_id and symbol symmetry a logical value ,would you like to get your plot symmetrical

my_genes genes for pheatmap

show_rownames boolean specifying if column names are be shown.

cluster_cols boolean values determining if columns should be clustered or hclust object.

color_volcano color for volcano

pvalue_cutoff Cutoff value of pvalue,0.05 by default. logFC_cutoff Cutoff value of logFC,1 by default.

adjust a logical value, would you like to use adjusted pvalue to draw this plot,FAISE

by default.

entriz whether convert symbols to entriz ids

annotation_legend

boolean value showing if the legend for annotation tracks should be drawn.

label for x axis in volcano plot, if NA, x axis names by package

species choose human or mouse, or rat, default: human

Value

a list with deg data.frame, volcano plot and a list with DEGs.

Author(s)

Xiaojie Sun

See Also

```
geo_download;draw_volcano;draw_venn
```

pkg_all

Examples

```
## Not run:
if(requireNamespace("Biobase", quietly = TRUE)&
   requireNamespace("AnnoProbe", quietly = TRUE)){
gse = "GSE474"
geo = geo_download(gse,destdir=tempdir())
geo$exp[1:4,1:4]
geo$exp=log2(geo$exp+1)
group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),"MObese",
ifelse(stringr::str_detect(geo$pd$title,"NonObese"),"NonObese","Obese"))
group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
find_anno(geo$gpl)
ids = AnnoProbe::idmap(geo$gpl,destdir = tempdir())
dcp = multi_deg_all(geo$exp,
group_list,ids,adjust = FALSE,entriz = FALSE)
dcp[[3]]
}else{
  if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
    warning("Package 'AnnoProbe' needed for this function to work.
         Please install it by install.packages('AnnoProbe')",call. = FALSE)
  if(!requireNamespace("Biobase",quietly = TRUE)) {
    warning("Package 'Biobase' needed for this function to work.
         Please install it by BiocManager::install('Biobase')",call. = FALSE)
  }
}
## End(Not run)
```

pkg_all

pkg_all

Description

bioconductor annotation packages for GPLs

Usage

pkg_all

Format

An object of class data. frame with 82 rows and 3 columns.

```
head(pkg_all)
```

plcortest 47

plcortest

plcortest

Description

make cor.test for given lncRNA and mRNA

Usage

```
plcortest(lnc_exp, mRNA_exp, cor_cutoff = 0)
```

Arguments

lnc_exp lncRNA expression set

mRNA_exp mRNA expression set which nrow equal to lncRNA_exp

cor_cutoff cor estimate cut_off, default 0

Value

a list with cor.test result,names are lncRNAs, element are mRNAs

Author(s)

Xiaojie Sun

See Also

hypertest

Examples

to update

plot_deg

plot_deg

Description

plot pca plot,volcano plot,heatmap,and venn plot for Differential analysis result

48 plot_deg

Usage

```
plot_deg(
  exp,
  group_list,
  deg,
  symmetry = TRUE,
  my_genes = NULL,
  show_rownames = FALSE,
  cluster_cols = TRUE,
  color_volcano = c("#2874C5", "grey", "#f87669"),
  pvalue_cutoff = 0.05,
  logFC_cutoff = 1,
  adjust = FALSE,
  annotation_legend = FALSE,
  lab = NA,
  species = "human"
)
```

Arguments

exp A numeric matrix

group_list A factor with duplicated character or factor deg result of multi_deg or get_deg function

symmetry a logical value ,would you like to get your plot symmetrical

my_genes genes for pheatmap

show_rownames boolean specifying if column names are be shown.

cluster_cols boolean values determining if columns should be clustered or hclust object.

color_volcano color for volcano

pvalue_cutoff Cutoff value of pvalue,0.05 by default. logFC_cutoff Cutoff value of logFC,1 by default.

adjust a logical value, would you like to use adjusted pvalue to draw this plot,FAISE

by default.

annotation_legend

boolean value showing if the legend for annotation tracks should be drawn.

label for x axis in volcano plot, if NA, x axis names by package

species choose human or mouse, or rat, default: human

Value

plots

Author(s)

Xiaojie Sun

point_cut 49

Examples

```
## Not run:
if(requireNamespace("Biobase",quietly = TRUE)&
  requireNamespace("AnnoProbe",quietly = TRUE)){
gse = "GSE474"
geo = geo_download(gse,destdir=tempdir())
geo$exp[1:4,1:4]
geo$exp=log2(geo$exp+1)
group_list=ifelse(stringr::str_detect(geo$pd$title,"MObese"),"MObese",
ifelse(stringr::str_detect(geo$pd$title,"NonObese"),"NonObese","Obese"))
group_list=factor(group_list,levels = c("NonObese","Obese","MObese"))
find_anno(geo$gpl)
ids = AnnoProbe::idmap(geo$gpl,destdir = tempdir())
deg = get_deg(geo$exp,group_list,ids,adjust = FALSE,entriz = FALSE)
plot_deg(geo$exp,group_list,deg)
}else{
 if(!requireNamespace("AnnoProbe",quietly = TRUE)) {
   warning("Package 'AnnoProbe' needed for this function to work.
         Please install it by install.packages('AnnoProbe')",call. = FALSE)
 if(!requireNamespace("Biobase",quietly = TRUE)) {
   warning("Package 'Biobase' needed for this function to work.
         Please install it by BiocManager::install('Biobase')",call. = FALSE)
 }
}
## End(Not run)
```

point_cut

point_cut

Description

calculate cut point for multiple genes

Usage

```
point_cut(exprSet_hub, meta)
```

Arguments

```
exprSet_hub a tumor expression set for hubgenes
meta meta data corresponds to expression set
```

Value

a vector with cutpoint for genes

50 quick_enrich

Author(s)

Xiaojie Sun

See Also

```
surv_KM;surv_cox
```

Examples

```
point_cut(exprSet_hub1,meta1)
```

quick_enrich

quick_enrich

Description

do diffiencial analysis according to exprission set and group information, for human only

Usage

```
quick_enrich(
  genes,
  kkgo_file = "kkgo_file.Rdata",
  destdir = getwd(),
  species = "human"
)
```

Arguments

genes a gene symbol or entrizid vector

kkgo_file Rdata filename for kegg and go result

destdir destdir to save kkgofile

species choose human or mouse, or rat, default: human

Value

enrichment results and dotplots

Author(s)

Xiaojie Sun

See Also

```
double_enrich
```

risk_plot 51

Examples

risk_plot

risk_plot

Description

draw risk plot

Usage

```
risk_plot(
  exprSet_hub,
  meta,
  riskscore,
  cut.point = FALSE,
  color = c("#2fa1dd", "#f87669"),
  n_cutoff = 3
)
```

Arguments

exprSet_hub a tumor expression set for hubgenes

meta meta data corresponds to expression set

riskscore a numeric vector of riskscore

cut.point logical, use cut_point or not, if FALSE,use median by defult

color color for boxplot

3 by defalut, scale before plot and set a cutoff,usually 2 or 1.6

Value

risk plot

52 sam_filter

Author(s)

Xiaojie Sun

See Also

```
exp_boxplot;box_surv;draw_venn
```

Examples

```
risk_plot(exprSet_hub1,meta1,riskscore = rnorm(nrow(meta1)))
```

sam_filter

sam_filter

Description

drop duplicated samples from the same patients

Usage

```
sam_filter(exp)
```

Arguments

exp

TCGA or TCGA_Gtex expression set from gdc or xena

Value

a transformed expression set without duplicated samples

Author(s)

Xiaojie Sun

See Also

```
make_tcga_group;match_exp_cl
```

```
cod[1:4,1:4]
dim(cod)
cod2 = sam_filter(cod)
dim(cod2)
g = make_tcga_group(cod);table(g)
library(stringr)
table(!duplicated(str_sub(colnames(cod[,g=="tumor"]),1,12)))
```

surv_cox 53

surv_cox

surv_cox

Description

calculate cox p values and HR for genes

Usage

```
surv_cox(
  exprSet_hub,
  meta,
  cut.point = FALSE,
  pvalue_cutoff = 0.05,
  HRkeep = "all",
  continuous = FALSE,
  min_gn = 0.1
)
```

Arguments

exprSet_hub a tumor expression set for hubgenes meta data corresponds to expression set

cut.point logical, use cut_point or not, if FALSE,use median by defult

 $\begin{array}{ll} \mbox{pvalue_cutoff} & \mbox{p value cut off ,} 0.05 \mbox{ by defult} \\ \mbox{HRkeep} & \mbox{one of "all","protect"or"risk"} \end{array}$

continuous logical, gene expression or gene expression group

min_gn Depending on the expression of a gene, there may be a large difference in the

number of samples between the two groups, and if a smaller group of samples

is less than 10 percent (default) of all, the gene will be discarded

Value

a matrix with gene names, cox p value and HR

Author(s)

Xiaojie Sun

See Also

```
point_cut;surv_KM
```

```
surv_cox(exprSet_hub1,meta1)
surv_cox(exprSet_hub1,meta1,cut.point = TRUE,continuous = TRUE)
surv_cox(exprSet_hub1,meta1,cut.point = TRUE,continuous = TRUE,pvalue_cutoff = 1)
```

54 surv_KM

```
surv_KM surv_KM
```

Description

calculate log_rank test p values for genes

Usage

```
surv_KM(
  exprSet_hub,
  meta,
  cut.point = FALSE,
  pvalue_cutoff = 0.05,
  min_gn = 0.1
)
```

Arguments

exprSet_hub a tumor expression set for hubgenes
meta meta data corresponds to expression set

cut.point logical, use cut_point or not, if FALSE,use median by defult

pvalue_cutoff p value cut off, 0.05 by defult

min_gn Depending on the expression of a gene, there may be a large difference in the

number of samples between the two groups, and if a smaller group of samples

is less than 10 percent (default) of all, the gene will be discarded

Value

a vector with gene names and log_rank p value

Author(s)

Xiaojie Sun

See Also

```
point_cut;surv_cox
```

```
surv_KM(exprSet_hub1,meta1)
surv_KM(exprSet_hub1,meta1,pvalue_cutoff = 1)
surv_KM(exprSet_hub1,meta1,cut.point = TRUE)
```

trans_array 55

trans_array	trans_array
-------------	-------------

Description

transform rownames for microarray or rnaseq expression matrix

Usage

```
trans_array(exp, ids, from = "probe_id", to = "symbol")
```

Arguments

exp	microarray expression matrix with probe_id as rownames
ids	data.frame with original rownames and new rownames
from	colname for original rownames
to	colname for new rownames

Value

a transformed expression set with new rownames

Author(s)

Xiaojie Sun

See Also

```
trans_exp
```

56 trans_entrezexp

trans_entrezexp

trans_entrezexp

Description

transform rownames of expression set from "entrez" to "symbol", according to the bitr function.

Usage

```
trans_entrezexp(entrezexp, species = "human")
```

Arguments

entrezexp expression set with entrezid as rownames

species choose human or mouse, or rat, default: human

Value

a transformed expression set with symbol

Author(s)

Xiaojie Sun

See Also

```
trans_exp
```

trans_exp 57

|--|--|

Description

transform rownames of TCGA or TCGA_Gtex expression set from gdc or xena,from ensembl id to gene symbol

Usage

```
trans_exp(exp, mrna_only = FALSE, lncrna_only = FALSE, gtex = FALSE)
```

Arguments

exp TCGA or TCGA_Gtex expression set from gdc or xena

mrna_only only keep mrna rows in result
lncrna_only only keep lncrna rows in result

gtex logical, whether including Gtex data

Value

a transformed expression set with symbol

Author(s)

Xiaojie Sun

See Also

```
trans_array
```

```
exp = matrix(rnorm(1000),ncol = 10)
rownames(exp) = sample(mRNA_annov23$gene_id,100)
colnames(exp) = c(paste0("TCGA",1:5),paste0("GTEX",1:5))
k = trans_exp(exp)
```

58 trans_exp_new

trans_exp_new trans_exp_new

Description

transform rownames of expression set from "ensembl" to "symbol", according to the new information from ensembl database.

Usage

```
trans_exp_new(exp, mrna_only = FALSE, lncrna_only = FALSE, species = "human")
```

Arguments

exp expression set with ensembl as rownames

mrna_only only keep mrna rows in result
lncrna_only only keep lncrna rows in result

species choose human or mouse, or rat, default: human

Value

a transformed expression set with symbol

Author(s)

Xiaojie Sun

See Also

```
trans_exp
```

t_choose 59

t_choose

 t_choose

Description

choose differential expressed genes by simple t.test

Usage

```
t_choose(
  genes,
  exp,
  group_list,
  up_only = FALSE,
  down_only = FALSE,
  pvalue_cutoff = 0.05
)
```

Arguments

```
genes a vector with some genes

exp A numeric matrix

group_list A factor with duplicated character or factor

up_only keep up genes in the result only

down_only keep down genes in the result only

pvalue_cutoff p value cut off ,0.05 by defult
```

Value

a vector with differential expressed genes

Author(s)

Xiaojie Sun

```
exp = matrix(rnorm(1000),ncol = 10)
rownames(exp) = sample(mRNA_annov23$gene_id,100)
colnames(exp) = c(paste0("TCGA",1:5),paste0("GTEX",1:5))
exp2 = trans_exp(exp)
exp2[,1:5] = exp2[,1:5]+10
group_list = rep(c("A","B"),each = 5)
genes = sample(rownames(exp2),3)
t_choose(genes,exp2,group_list)
```

60 union_all

union_all

union_all

Description

calculate union set for two or more elements

Usage

```
union\_all(...)
```

Arguments

... some vectors or a list with some vectors

Value

vector

Author(s)

Xiaojie Sun

See Also

```
intersect_all
```

```
x1 = letters[1:4]
x2 = letters[3:6]
x3 = letters[3:4]
re =intersect_all(x1,x2,x3)
re2 = intersect_all(list(x1,x2,x3))
re3 = union_all(x1,x2,x3)
```

Index

* datasets	exists_anno_list, 24
cod, 4	exp_boxplot, 3, 25, 27, 52
deg, 8	exp_hub1, 26
deseq_data, 8	exp_surv, 3, 25, 26
exists_anno_list, 24	exprSet_hub1, 24
	expr Set_nub1, 24
exp_hub1, 26	find_anno, 27, 29
exprSet_hub1, 24	111a_a11110, 27, 25
genes, 28 1nc_anno, 39	genes, 28
1nc_annov23, 39	geo_download, 21, 27, 28, 30, 31, 35, 45
	get_cgs, 29
metal, 41	get_count_txt, 30
mRNA_anno, 42 mRNA_annov23, 42	get_deg, 31, 34, 43
	get_deg_all, 32, 32
pkg_all, 46	get_gpl_txt, 34
box_surv, 3, 25, 27, 52	ggheat, 35
box_sur v, 3, 23, 27, 32	, , , , , , , , , , , , , , , , , , ,
cod, 4	hypertest, 36, 47
cor.full, 4, 6	
cor.one, 5, 5	interaction_to_edges, 23, 37
corheatmap, 6	intersect_all, 38, 60
corscatterplot, 7	
corsedeter proc, 7	lnc_anno, 39
deg, 8	lnc_annov23, 39
deseq_data, 8	40 41 52
double_enrich, 9, 50	make_tcga_group, 40, 41, 52
draw_boxplot, 10	match_exp_cl, 40, 40, 52
draw_heatmap, 11, 11, 16, 19, 21	meta1, 41
draw_heatmap2, 13	mRNA_anno, 42
draw_KM, 14	mRNA_annov23, 42
draw_pca, 12, 14, 15, 19, 21	multi_deg, 32, 43
draw_tsne, 17	multi_deg_all, 34, 43, 44
draw_venn, 11, 12, 14, 16, 18, 21, 27, 30, 45,	pkg_all, 46
52	plcortest, <i>37</i> , 47
draw_volcano, 11, 12, 14, 16, 19, 20, 21, 30,	plot_deg, 47
45	point_cut, 49, 53, 54
draw_volcano2, 21	point_cut, 49, 33, 34
dumd, 22	quick_enrich, 9, 50
,	4
edges_to_nodes, 23, 38	risk_plot,51

62 INDEX

```
sam_filter, 40, 41, 52
surv_cox, 50, 53, 54
surv_KM, 50, 53, 54

t_choose, 59
trans_array, 55, 57
trans_entrezexp, 56
trans_exp_55, 56, 57, 58
trans_exp_new, 58
union_all, 38, 60
```