CS2040S

AY20/21 sem 2 by jovyntls

ORDERS OF GROWTH

definitions

$$T(n) = O(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \leq c f(n)$

$$T(n) = \Omega(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \geq cf(n)$

$$T(n) = \Theta(f(n)) \\ \iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))

- addition: T(n) + S(n) = O(f(n) + g(n))
- multiplication: T(n) * S(n) = O(f(n) * g(n))
- composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$
- if/else statements: $cost = max(c1, c2) \le c1 + c2$

notable

- $\sqrt{n} \log n$ is O(n)
- $O(2^{2n}) \neq O(2^n)$
- $O(\log(n!)) = O(n \log n)$

SORTING

overview

Bubble Sort

compare adjacent items and swap

Selection Sort

• takes the smallest element and swaps into place

- \bullet after k iterations: the first k elements are sorted ${\bf Insertion\ Sort}$
- from left to right: swap element leftwards until it's smaller than the next element. repeat for next element
- \bullet tends to be faster than the other ${\cal O}(n^2)$ algorithms

Merge Sort

- divide and conquer algorithm
- $\bullet \ \mathsf{mergeSort} \ \mathsf{first} \ \mathsf{half}; \ \mathsf{mergeSort} \ \mathsf{second} \ \mathsf{half}; \ \mathsf{merge} \\$

Quick Sort

- partition algorithm: O(n)
- take first element as partition. 2 pointers from left to right
- left pointer moves until element > pivot
- right pointer moves until element < pivot
- swap elements until left = right.
- then swap partition and left=right index.

optimisations of QuickSort

- ullet array of duplicates: $O(n^2)$ without 3-way partitioning
- stable if the partitioning algo is stable.
- extra memory allows quickSort to be stable.

choice of pivot

- worst case time of $O(n^2)$
- · first/last/middle element
- worst case (expected) time of $O(n \log n)$:
 - · median/random element
 - split by fractions: O(nlogn)
- · choose at random: runtime is a random variable

quickSelect

- O(n) to find the k^{th} smallest element
- · after partitioning, the partition is always in the correct position

TREES

binary search trees (BST)

- a BST is either empty, or a node pointing to 2 BSTs.
- tree balance depends on order of insertion
- balanced tree: $O(h) = O(\log n)$

BST operations

- height, h(v) = max(h(v.left), h(v.right))
- leaf nodes: h(v) = 0
- · modifying operations
- search, insert O(h)
- delete O(h)
 - · case 1: no children remove the node
 - case 2: 1 child remove the node, connect parent to child
 - case 3: 2 children delete the successor; replace node with successor
- · query operations
- searchMin O(h) recurse into left subtree
- searchMax O(h) recurse into right subtree
- successor O(h)
- if node has a right subtree: searchMin(v.right)
- else: traverse upwards and return the first parent that contains the key in its left subtree

< successor code >

traversal

AVL Trees

- · height-balanced
- \iff |v.left.height v.right.height| ≤ 1
- each node is augmented with its height v.height = h(v)

rebalancing

- insertion: max. 2 rotations
- · deletion: recurse all the way up
- rotations can create every possible tree shape.

[case 1] B is balanced: right-rotate

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

updating nodes after rotation

Trie

- search, insert O(L) (for string of length L)
- space: O(size of text · overhead)

HASH TABLES

- · very fast faster than BST
- disadvantage: no successor/predecessor operation

hashing

Let the m be the table size; let n be the number of items; let cost(h) be the cost of the hash function

- $load(hash table), \alpha = \frac{n}{m}$
- = average number of items per bucket
- = expected number of items per bucket

hashing assumptions

- · simple uniform hashing assumption
 - every key has an equal probability of being mapped to every bucket
 - keys are mapped independently

uniform hashing assumption

- every key is equally likely to be mapped to every permutation, independent of every other key.
- · NOT fulfilled by linear probing

properties of a good hash function

- 1. able to enumerate all possible buckets $h: U \to \{1..m\}$ • for every bucket j, $\exists i$ such that h(key, i) = j
- 2. simple uniform hashing assumption

hashCode

rules for the hashCode() method

- 1. always returns the same value, if the object hasn't changed
- 2. if two objects are equal, they return the same hashCode

rules for the equals method

- reflexive x.equals(x) => true
- symmetric $x.equals(y) \Rightarrow y.equals(x)$
- transitive x.equals(y), y.equals(z) \Rightarrow x.equals(z)
- · consistent always returns the same answer
- null is null x.equals(null) => false

chaining

- · time complexity
- insert(key, value) $O(1 + cost(h)) \Rightarrow O(1)$
- for *n* items: expected maximum cost
 - $\cdot = O(\log n)$
 - $\cdot = \Theta(\frac{\log n}{\log(\log(n))})$
- search(key)
- worst case: $O(n + cost(h)) \Rightarrow O(n)$
- expected case: $O(\frac{n}{m} + cost(h)) \Rightarrow O(1)$ total space: O(m+n)

open addressing - linear probing

- redefined hash function: $h(k, i) = h(k, 1) + i \mod m$ delete(key)
- use a tombstone value DON'T set to null
- performance
- if the table is $\frac{1}{4}$ full, then there will be clusters of size

- $\Theta(\log n)$
- expected cost of an operation, $E[\#probes] \leq \frac{1}{1-\alpha}$ (assume $\alpha < 1$ and uniform hashing)
- advantages
- saves space (use empty slots vs linked list)
- better cache performance (table is one place in memory)
- rarely allocate memory (no new list-node allocation)

disadvantages

- · more sensitive to choice of hash function (clustering)
- more sensitive to load (as $\alpha \to 1$, performance degrades)

double hashing

for 2 functions
$$f, g$$
, define $h(k, i) = f(k) + i \cdot g(k) \mod m$

- if q(k) is relatively prime to m, then h(k,i) hits all buckets
- e.g. for $g(k) = n^k$, n and m should be coprime.

table size

assume chaining & simple uniform hashing let m_1 = size of the old hash table; m_2 = size of the new hash table; n = number of elements in the hash table

- growing the table: $O(m_1 + m_2 + n)$
- rate of growth

table growth	resize	insert n items
increment by 1	O(n)	$O(n^2)$
double	O(n)	O(n), average $O(1)$
square	$O(n^2)$	O(n)

PROBABILITY THEORY

- if an event occurs with probability p, the expected number of iterations needed for this event to occur is $\frac{1}{n}$.
- for random variables: expectation is always equal to the probability
- linearity of expectation: E[A = B] = E[A] + E[B]

sorting

sort	best	average	worst	stable?	memory
bubble	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
selection	$\Omega(n^2)$	$O(n^2)$	$O(n^2)$	×	O(1)
insertion	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
merge	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	O(n)
quick	$\Omega(n \log n)$	$O(n \log n)$	$O(n^2)$	×	?

sorting invariants

sort	invariant (after k iterations)	
bubble	largest k elements are sorted	
selection	smallest k elements are sorted	
insertion	first k elements are in order	
merge	-	
quick	partition is in the right position	

searching

search	average
linear	O(n)
binary	$O(\log n)$
quickSelect	O(n)

data structures (search/insert)

data structure	search	insert	
sorted array	$O(\log n)$	O(n)	
unsorted array	O(n)	O(1)	
linked list	O(n)	O(1)	
tree	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$	
dictionary	$O(\log n)$	$O(\log n)$	
symbol table	O(1)	O(1)	
chaining	O(n + cost(h))	O(1 + cost(h))	
open addressing	O(1)	O(1)	