SUPERVISED MACHINE LEARNING: CLASSIFICATION

MODULE 3:

SUPPORT VECTOR MACHINES

TABLE OF CONTENTS

Overview	2
Concept and Intuition	2
Cost Function	
Comparison: Logistic Regression vs SVM	
Kernel Trick	
Regularization and Parameters	5
Implementation in Python	5
Kernel Approximation	6
Model Selection Guideline	7
Key Takeaways	7

Overview

- **Support Vector Machine** is a supervised learning algorithm used for classification and sometimes regression.
- The main goal is to find a **hyperplane** (siêu phẳng) that best separates the classes by **maximizing the margin** (khoảng cách biên).
- Only the **support vectors** the data points closest to the decision boundary determine this hyperplane.

Concept and Intuition

- SVM seeks the decision boundary that **maximizes the distance** between classes, not just minimizes misclassification.
- The model avoids being overly sensitive to nearby points or outliers.
- The **margin** is defined by dotted lines equidistant from the hyperplane and nearest support vectors.

Mathematical Formulation

• Decision boundary (in linear SVM):

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

• Margin distance:

$$\mathsf{margin} = \frac{2}{\|\mathbf{w}\|}$$

• Prediction rule:

$$\hat{y} = \mathsf{sign}(\mathbf{w} \cdot \mathbf{x} + b)$$

Cost Function

SVM minimizes the **hinge loss** plus a regularization term:

$$\min_{\mathbf{w},b} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)) + \lambda ||\mathbf{w}||^2$$

- **Hinge Loss** (Hàm mất mát bản lề) penalizes misclassified points and those inside the margin.
- **Regularization** (Chuẩn hóa / Điều chuẩn) prevents overfitting and controls complexity.
- Controlled by parameter CCC:
 - \circ Small CCC \rightarrow stronger regularization \rightarrow simpler boundary.
 - \circ Large CCC \rightarrow weaker regularization \rightarrow tighter fit.

Comparison: Logistic Regression vs SVM

Aspect	Logistic Regression	SVM
Cost Function	Log loss (smooth)	Hinge loss (piecewise linear)
Output	Probability	Class label
Regularization	L1/ L2	Controlled by C
Sensitivity	More to outliers	Ignores well-separated points

Kernel Trick

- **Purpose:** Extend SVM to handle **non-linear** boundaries by mapping data to higher-dimensional space.
- Achieved using **Kernel functions (hàm nhân)** that compute similarity without explicitly transforming data.
- Common kernels:
 - o Linear:

$$K(x_i, x_j) = x_i^T x_j$$

o Polynomial:

$$K(x_i, x_j) = (x_i^T x_j + c)^d$$

o RBF/ Gaussian:

$$K(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2)$$

• RBF kernel adds flexibility but is **computationally expensive** for large datasets.

Regularization and Parameters

- C: controls trade-off between margin width and classification error.
- γ: in RBF kernel, controls the "reach" of each support vector.
 - \circ Low γ : smoother boundary.
 - \circ High γ : tighter boundary, may overfit.

Implementation in Python

```
from sklearn.svm import SVC

# RBF Kernel SVM
model = SVC(kernel='rbf', C=1.0, gamma='scale')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

• For SVM, use:

```
from sklearn.svm import LinearSVC
model = LinearSVC(C=1.0, penalty='12')
model.fit(X_train, y_train)
```

Use GridSearchCV for tuning C, gamma, and kernel.

Kernel Approximation

- When data is large, direct kernel computation becomes slow.
- Use **approximation techniques** to map data into higher dimensions efficiently:
 - o Nystroem method
 - o RBF Sampler

from sklearn.kernel_approximation import
Nystroem

```
feature_map = Nystroem(kernel='rbf',
n_components=100)
X_train_trans =
feature_map.fit_transform(X_train)
X_test_trans = feature_map.transform(X_test)
```

• Then apply a linear classifier (LinearSVC, LogisticRegression) on X_train_trans.

Model Selection Guideline

Feature	Dataset Size	Recommended Model
Many features (>10,000)	Small dataset	Linear SVC/ Logistic Regression
Few features (<100)	Medium dataset (~10k rows)	SVC with RBF Kernel
Few features	Large dataset	Kernel Approximation + Linear Model

Key Takeaways

- SVMs find maximum-margin hyperplanes separating classes.
- **Hinge loss** penalizes only misclassified or marginal points.
- Regularization (C) balances accuracy and simplicity.
- **Kernels** enable non-linear separation by mapping to higher-dimensional space.
- **RBF kernels** improve flexibility but slow for large data.
- **Approximation methods** (Nystroem, RBF Sampler) provide scalable alternatives.
- SVMs outperform Logistic Regression when classes are separable but may lose probability interpretability.