PARTIEL ANALYSE DES SIGNAUX ET DES IMAGES

Les réponses seront clairement rédigées et il sera tenu compte de la rédaction. Les résultats seront justifiés et encadrés.

Exercice 1:

Pour réaliser une transmission de données à l'aide d'un système sans fil, un ingénieur opte pour un système à base de modulations.

1. L'information à transmettre est en fait un sinus de fréquence 7 kHz et d'amplitude 1 volt.

Pour la transmission, l'ingénieur opte pour une modulation d'amplitude analogique consistant à multiplier l'information ci-dessus par un signal porteur qui sera ici un cosinus d'amplitude 2 volts, à la fréquence 60,5kHz.

Calculer et représenter la transformée de Fourier de ce signal transmis x(t).

- 2. Un autre ingénieur, recevant ce signal x(t), souhaite le traiter de façon numérique.
 - a. Quelles consignes détaillées lui donneriez-vous pour numériser ce signal ? justifiez vos conclusions
 - b. Représenter précisément le spectre d'amplitude de ce signal numérisé.
- 3. Ce second ingénieur souhaite traiter 3 millisecondes de ce signal reçu et numérisé qu'il va enregistrer. Sous Matlab il souhaite en visualiser la Transformée de Fourier Discrète avec une résolution de 0,2 kHz.
 - a. Son approche pour calculer et représenter une TFD facilement lisible et interprétable de ce signal vous semble-t-elle correcte par rapport au cahier des charges ? Si ce n'est pas le cas que proposez-vous de modifier ? Toutes vos réponses seront ici expliquées
 - b. En supposant qu'il tienne compte de vos éventuelles remarques, représenter le module de la TFD.
 - c. Hélas, l'ingénieur doit se contenter de ses premières spécifications.
 - i. Représenter l'allure du module de sa TFD avec un axe fréquentiel en Hertz.
 - ii. Quelle sera la précision de son analyse fréquentielle ?
 - iii. Quelle possibilité reste-t-il pour améliorer la lisibilité de la TFD ? expliquer en détails.
- 4. Dans la suite de son analyse et <u>indépendamment de l'analyse spectrale réalisée à la question 3</u>, ce second ingénieur reprend le signal analogique x(t) qu'il a reçu et le remultiplie par un cosinus d'amplitude 1 volt, à la fréquence 60,5kHz. Il obtient un signal que nous noterons y(t).
 - a. Calculer l'expression temporelle de y(t)
 - b. Représenter le spectre d'amplitude de y(t)

c. Expliquer l'intérêt de cette opération.

Exercice 2:

Un phénomène acoustique génère un signal s(t) correspondant à une impulsion de type porte et donc d'amplitude constante valant 9 V.

Ce signal est perturbé lors de sa propagation par un bruit additif blanc et gaussien b(t) de moyenne 5 V et de variance 4.

- 1. Un capteur acoustique enregistre ce phénomène et le numérise. Donner les caractéristiques probabilistes précises d'un échantillon en sortie du capteur.
- 2. Pour détecter la présence de s(t) qui en théorie se produit 1 fois toutes les 3 mesures, on met en place un système de détection à base de comparateur avec un seuil fixé à 11V. Si l'amplitude de l'échantillon dépasse ce seuil, le phénomène est supposé présent.

Calculer la probabilité de commettre l'erreur suivante :

« On décide que le phénomène n'est pas présent et en réalité il l'est »

INFORMATIONS ET FORMULAIRE

2	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.5040	.5080	.5120	.51€0	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.575
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.651
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.687
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722
0.6	.7258	7291	:7324	.7357	.7389	.7422	.7454	.7486	.7518	.754
0.7	.7580	7612	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785
0.8	.7881	.7910	.7939	.7967	.7996	.8023	.8051	.8078	.8106	.813
0.9	.8159	.3186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.883
.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
.3	9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9163	.917
.4	.9192	.9207	.9222	.9236	.9251	.9265	,9279	.9292	.9306	.931
.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
.6	.9452	.9463	.9474	,9484	.9495	.9505	.9515	.9525	.9535	.954
.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
0.1	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
1.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	,985
.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	,9949	.9951	.995
.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.3962	.9963	.996
.7	.9965	.9966	.9967	.9968	.9969	.2370	.9971	.9972	.9973	.997
.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.999
.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.999
.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.999
.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.999
.5	,9998	.9998	.9998	,9998	.9998	.9998	.9998	.9998	.9998	.999
.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.999
.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000 -	1.0000	1.000

Décomposition en série de Fourier réelle et complexe + Relations entre an, bn et cn :

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(2\pi n \frac{t}{T}\right) + b_n \sin\left(2\pi n \frac{t}{T}\right)$$

avec

$$a_0 = \frac{2}{T} \int_T x(t) dt$$

$$a_n = \frac{2}{T} \int_T x(t) \cos\left(2\pi n \frac{t}{T}\right) dt$$

$$bn = \frac{2}{T} \int_{T} x(t) \sin\left(2\pi n \frac{t}{T}\right) dt$$

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n e^{+2\pi i \frac{n}{T}t}$$

 $c_0 = \frac{a_0}{2}$

avec

$$c_n = \frac{1}{2} \left(a_n - j b_n \right)$$

$$c_n = \frac{1}{T} \int_T x(t) e^{-2\pi i \frac{n}{T}t} dt$$

$$c_{-n} = \frac{1}{2} (a_n + jb_n) = c_n^*$$

Définition de la Transformée de Fourier

$$x(t) \xrightarrow{TF} X(v) = \int_{-\infty}^{+\infty} x(t)e^{-2i\pi vt} dt$$

Quelques propriétés liées aux séries de Fourier

<u>Dérivation</u>:

Soit x(t) un signal périodique de période T et Xk ses coefficients de décomposition en série de Fourier complexe alors les coefficients de décomposition en série de Fourier complexe de la fonction :

$$\frac{d^n x(t)}{dt^n}$$
 sont: $\left(2\pi j k \frac{1}{T}\right)^n X_k$

Quelques propriétés de la Transformée de Fourier :

- Changement d'échelle : $x(t) \xrightarrow{TF} X(\upsilon)$ $x(kt) \xrightarrow{TF} \frac{1}{|k|} X\left(\frac{\upsilon}{k}\right)$
- Dualité: $x(t) \leftrightarrow X(v)$ alors $X(t) \leftrightarrow x(-v)$

Par rapport à la fréquence
$$x(t) \xrightarrow{TF} X(\upsilon)$$
$$t^{n}x(t) \xrightarrow{TF} \frac{d^{n}X(\upsilon)}{d\upsilon^{n}} \frac{1}{(-2\pi i)^{n}}$$

Définition de la Transformée de Fourier Discrète (TFD) :

$$X(\nu = \frac{k}{NT_c}) = \sum_{n=0}^{N-1} x(n)e^{-\frac{2j\pi nk}{N}} \equiv X(k) \qquad k \in \{0,1,...,N-1\}$$

Périodique de période N en k donc de période ν_e en ν

Expression matricielle de la TFD :

Formules Trigo:

$$cos(a+b) = cos(a).cos(b) - sin(a).sin(b)$$

 $cos(a-b) = cos(a).cos(b) + sin(a).sin(b)$
 $sin(a+b) = sin(a).cos(b) + sin(b).cos(a)$
 $sin(a-b) = sin(a).cos(b) - sin(b).cos(a)$
 $cos(a).cos(b) = \frac{1}{2} (cos(a+b) + cos(a-b))$
 $sin(a).sin(b) = \frac{1}{2} (cos(a-b) - cos(a+b))$
 $cos(a).sin(b) = \frac{1}{2} (sin(a+b) - sin(a-b))$
 $sin(a).cos(b) = \frac{1}{2} (sin(a+b) + sin(a-b))$

Expression de la fenêtre de Hanning calculée sur N points :

$$h(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{N}\right)\right)$$
 avec n=0,1,...,N-1

Expression de la fenêtre de Hamming calculée sur N points :

$$h(n) = 0.54 - 0.46.\cos\left(\frac{2\pi n}{N}\right)$$
 avec n=0,1,...,N-1

Nom	Représentation temporelle	Représentation fréquentielle	Largeur lob.princ.	Amp. relative lob.princ lob.sec.	
Rectangulaire	, , , , , , , , , , , , , , , , , , ,		$\frac{2}{N}$	-13 dB	
Triangulaire		Hv2	$\frac{4}{N}$	-25 dB	
Hamming			$\frac{4}{N}$	-41 dB	
Blackman			$\frac{6}{N}$	-57 dB	

Table 3 Différents types de fenêtres et leurs caractéristiques