# Robustness Certification of Deep Learning

09/06/2025

Dr. Yi Dong & Prof. Xiaowei Huang





#### Outline

• Probabilistic Verification of Deep Reinforcement Learning

• Reachability Verification of Deep Reinforcement Learning

• Privacy-preserving Distributed Learning





# Deep Reinforcement Learning







#### Case 1: Unknown Environment







#### Our Solutions

Detection:

- 1. Safety Properties:
- Robustness

• Resilience

Detection.

Recovery

number of steps number of steps More resilient: Disturbances less accumulated deviation Negligible-risk  $S_N$  $S_{B1}$  $S_{B2}$ Robustness  $S_{B3}$ K Time - steps

Recovery:



2. DTMC model:

System

System

require-

ments



## Experiments



**EnnCore** 



#### Case 2: White-box Verification

Target: Probability of crash per random initial-condition (pci)



#### Robot Actor Networks:

- Number of Layers
- Number of Neurons
- Weights and Bias

#### **Environment Plant:**

- Transition Probability
- Kinetic Model



























**EnnCore** 

# **Environment Setup**









#### Demo a Safe Route



Docking Cage



Reachable Range of UUV



• World Frame (Static)



# Case 3: Privacy-preserving Distributed Learning







#### Our Solution



- Scalability: K-means clustering to handle the non-IID dataset.
- Accuracy: 4 types of NN models (DNN, LSTM, CNN, WaveNet)
- Robustness: Damaged training data.
- Privacy: Deep Leakage from Gradients.





## Our Solution



Ring Topology



Fully Connected Topology







Markovian Switching Topologies

Distributed Frameworks



#### Agents/MPC parties



(a) MPC parties played by the agents.



(b) MPC parties played by external servers.

Agent secret sharing a gradient  $\phi$  with the MPC parties.



# **Experiment Results**





Recovered data from DLG attack.





## Thank You

- Please refer to our EnnCore project website for more details:
- <a href="https://enncore.github.io/">https://enncore.github.io/</a>
- <u>yi.dong@liverpool.ac.uk</u>



