Medical Image Seminar

QIU Liangdong

The Chinese University of Hong Kong(ShenZhen)

June 4, 2020

Outline

1 One Network to Segment Them All: A General, Lightweight System for Accurate 3D Medical Image Segmentation (MICCAI 2019)

2 Learning Shape Representation on Sparse Point Clouds for Volumetric Image Segmentation (MICCAI 2019)

One Network to Segment Them All: A General, Lightweight System for Accurate 3D Medical Image Segmentation (MICCAI 2019)

- Often not clear how the resulting pipeline transfers to different tasks
- Proposed method requires no task-specific information
- Took part in Medical Segmentation Decathlon 2018

Pipeline

- i Planar slices (i=6)
- fuse 6 probability maps

Apply random rotation set minimum angle

Experiment on Medical Segmentation Decathlon and another 3 tasks

Dataset	Modality	Segmentation target(s)	Classes	Size	F1 score
MICCAI	MRI	Whole-Brain	135	35	0.74 ± 0.03
HarP	MRI	L+R Hippocampus	3	135	0.85 ± 0.03
OAI	MRI	Knee Cartilages	7	176	0.87 ± 0.06
2018 Medical Segmentation Decathlon					
Task 1	MRI	Brain Tumours	4	750	0.60 ± 0.24
Task 2	MRI	Cardiac, Left Atrium	2	30	0.89 ± 0.09
Task 3	CT	Liver & Tumour	2	201	0.76 ± 0.18
Task 4	MRI	Hippocampus ROI	2	394	0.89 ± 0.04
Task 5	MRI	Prostate	3	48	0.78 ± 0.10
Task 6	CT	Lung Tumours	2	96	0.59 ± 0.23
Task 7	CT	Pancreas & Tumour	3	420	0.48 ± 0.21
Task 8	CT	Hepatic Ves. & Tumour	3	443	0.49
Task 9	CT	Spleen	2	61	0.95
Task 10	CT	Colon Cancer	2	190	0.28

Conclusion

- Simple mechanism for obtaining accurate segmentation
- Consider the drawback of 2D convolution
- No bells and whistles

Learning Shape Representation on Sparse Point Clouds for Volumetric Image Segmentation (MICCAI 2019)

- Sparsity of point clouds allows processing of entire image volumes
- Balance highly imbalanced segmentation problems
- Build upon PointCNN

Peripheral Nerve: Tubular-like anatomical shape

PointCNN

N: number of points, C: number of features, K: number of neighbor points, D: dilation rate, FC: fully-connected layer

Result Visualization

Ablation study

Conclusion

- Overcome common challenges in CNN-based segmentation
- Point cloud representation