Nmap Cheatsheet

Contents

1		sic Nmap Commands	2
	1.1	Service and Version Detection (-sV)	2
	1.2	Default Script Scan (-sC)	3
		OS Detection (-O)	
		Aggressive Scan (-A)	
2	Hos	st Discovery	6
	2.1	ARP Scan (-PR)	6
	2.2	ICMP Scans	7
		2.2.I Echo Scan (-PE)	7
		2.2.II Timestamp Scan (-PP)	8
		2.2.III Address Mask Scan (-PM)	
	2.3	TCP/UDP Host Discovery	
		2.3.I TCP SYN Scan (-PS)	
		2.3.II TCP ACK Scan (-PA)	
		2.3.III UDP Scan (-PU)	
3	Bas	sic Port Scanning	1

This document shall contain everything I have learned so far about nmap. I must keep it up-to-date because I feel a bit inundated in this cybersecurity journey to be frank.

1 Basic Nmap Commands

1.1 Service and Version Detection (-sV)

This is the Service Detection flag (yes; $\neg sV$ is a single flag, not a combination of both s AND V), which will tell you the name and description of the identified services.

```
Service and Version Detection
$ sudo nmap -sV {target_IP}
Starting Nmap 7.80 (https://nmap.org) at 2025-03-28 06:27 GMT
Nmap scan report for 10.10.171.202
Not shown: 994 closed ports
                        VERSION
7/tcp
        open echo
        open tcpwrapped
        open daytime?
17/tcp
        open
             qotd?
                          OpenSSH 9.6p1 Ubuntu 3ubuntu13.5 (Ubuntu
22/tcp
       open ssh
8008/tcp open
                          lighttpd 1.4.74
2 services unrecognized despite returning data. If you know the
   service/version, please submit the following fingerprints at
   https://nmap.org/cgi-bin/submit.cgi?new-service :
# [Detailed fingerprint data omitted for brevity]
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results
   at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 14.00 seconds
```

1.2 Default Script Scan (-sC)

I sometimes use this one instead of $\neg sV$ because it runs $default\ scripts^1$, which can give out additional information depending on the services running on the target. You can see a comparison in outputs between the two flags in the two boxes below.

```
Default Script Scan
Nmap scan report for 10.10.219.233 Host is up (0.00024s latency).
Not shown: 65526 closed ports
25/tcp open smtp
| Not valid before: 2021-08-10T12:10:58
|_Not valid after: 2031-08-08T12:10:58
  bind.version: 9.18.28-1~deb12u2-Debian
110/tcp open pop3
|_pop3-capabilities: PIPELINING SASL UIDL STLS AUTH-RESP-CODE RESP-CODES CAPA TOP
111/tcp open rpcbind
                       111/tcp rpcbind
    100000 2,3,4
100000 2,3,4
100000 3,4
143/tcp open
|_imap-capabilities: more LOGIN-REFERRALS have IDLE post-login STARTTLS listed
    ENABLE capabilities LOGINDISABLEDA0001 Pre-login SASL-IR OK ID LITERAL+
    IMAP4rev1
993/tcp open imaps
_imap-capabilities: LOGIN-REFERRALS more IDLE capabilities OK post-login ENABLE
    listed have Pre-login SASL-IR AUTH=PLAINA0001 ID LITERAL+ IMAP4rev1
995/tcp open pop3s
|_pop3-capabilities: PIPELINING SASL(PLAIN) UIDL USER AUTH-RESP-CODE RESP-CODES
| Not valid before: 2021-08-10T12:10:58
```

¹Default NSE Scripts, Nmap.org

Service Version Detection for Comparison Starting Nmap 7.80 (https://nmap.org) at 2025-03-28 09:21 GMT Not shown: 991 closed ports PORT STATE SERVICE VERSION OpenSSH 9.2p1 Debian 2+deb12u3 (protocol 22/tcp open ssh 25/tcp open smtp Postfix smtpd 53/tcp open domain ISC BIND 9.18.28-1~deb12u2 (Debian Linux) 80/tcp open http nginx 1.22.1 110/tcp open pop3 Dovecot pop3d 111/tcp open rpcbind 2-4 (RPC #100000) 143/tcp open imap Dovecot imapd 993/tcp open ssl/imap Dovecot imapd 995/tcp open ssl/pop3 Dovecot pop3d MAC Address: 02:DD:7B:88:3D:75 (Unknown) Service Info: Host: debra2.thm.local; OS: Linux; CPE: cpe:/o: linux:linux kernel Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 13.00 seconds

1.3 OS Detection (-O)

Nmap sends a series of TCP and UDP packets to the remote host and examines practically every bit in the responses.

1.4 Aggressive Scan

What if you can have both OS detection and version detection with a single scan? That's what the aggressive scan is for. It enables OS detection, version detection, script scanning, and traceroute.

```
Aggressive Scan
$ sudo nmap -A {target_IP}
256 b9:bc:8f:01:5f:59:23:d3:3a:a2:2d:04:10:e5:04:2d (ECDSA)
80/tcp open http nginx 1.22.1 |_http-title: Welcome to nginx on Debian!
110/tcp open pop3 Dovecot pop3d |_pop3-capabilities: PIPELINING SASL UIDL STLS AUTH-RESP-CODE RESP-CODES CAPA TOP
                      port/proto service
111/tcp rpcbind
    100000 2,3,4
100000 2,3,4
100000 3,4
                          111/udp rpcbind
111/tcp6 rpcbind
111/udp6 rpcbind
      * OK [CAPABILITY IMAP4rev1 SASL-IR LOGIN-REFERRALS ID ENABLE IDLE LITERAL+ AUTH=PLAIN] Dovecot ready.
      * OK [CAPABILITY IMAP4rev1 SASL-IR LOGIN-REFERRALS ID ENABLE IDLE LITERAL+ AUTH=PLAIN] Dovecot ready.
      BAD Command received in invalid state.
      BAD Command received in invalid state.
      OPTIONS RTSP/1.0
995/tcp open pop3s? | fingerprint-strings:
    6.16 ms 10.10.219.233
```

2 Host Discovery

2.1 ARP Scan (-PR)

The ARP scan, -PR, is what you'd typically use if you're already in the network that you want to scan for live systems. The -sn flag here is necessary because it prevents nmap from scanning for open ports after the ARP scan.

```
ARP Scan
$ sudo nmap -sn -PR 192.168.100.7/24
Starting Nmap 7.95 (https://nmap.org) at 2025-03-29 02:07 +03
Nmap scan report for 192.168.100.1
MAC Address: # This will show for all the live hosts, for all the
upcoming Discovery Host scans in this document, but I'll redact
Nmap scan report for 192.168.100.9
Host is up (0.092s latency).
Nmap scan report for 192.168.100.12
Nmap scan report for 192.168.100.13
Nmap scan report for 192.168.100.15
Nmap scan report for 192.168.100.16
Nmap scan report for 192.168.100.25
Nmap scan report for 192.168.100.28
Host is up (0.061s latency).
Nmap scan report for 192.168.100.7
Host is up.
```


Figure 1: Wireshark capture of ARP scan packets, a network different from the aforementioned by the way.

2.2 ICMP Scans

We'd rarely send these ICMP packets for the discovery of our system's own subnet, ARP Scans would be better in that case since firewalls tend to block ICMP packets a lot.

2.2.I Echo Scan (-PE)

Either way, the -PE scan sends the ICMP Type 8 packets (i.e. same as your ping command).

```
## Starting Nmap -sn -PE 192.168.100.7/24

Starting Nmap 7.95 ( https://nmap.org ) at 2025-03-29 03:06 +03 Nmap scan report for 192.168.100.1 Host is up (0.0039s latency).

Nmap scan report for 192.168.100.12 Host is up (0.33s latency).

Nmap scan report for 192.168.100.13 Host is up (0.74s latency).

Nmap scan report for 192.168.100.15 Host is up (0.072s latency).

Nmap scan report for 192.168.100.16 Host is up (0.32s latency).

Nmap scan report for 192.168.100.25 Host is up (0.11s latency).

Nmap scan report for 192.168.100.28 Host is up (0.73s latency).

Nmap scan report for 192.168.100.7 Host is up.

Nmap done: 256 IP addresses (8 hosts up) scanned in 9.18 seconds
```

Do you notice how it discovered 8 devices, whilst the previous ARP scan discovered 9?

Figure 2: Wireshark capture of Echo Request packets, a network different from the aforementioned by the way.

2.2.II Timestamp Scan (-PP)

Because ICMP echo requests tend to be blocked, you might also consider ICMP Timestamp (ICMP Type 13) to tell if a system is online.

We got "9 hosts up" once again!

Figure 3: Wireshark capture of Timestamp Request packets.

2.2.III Address Mask Scan (-PM)

Similarly, Nmap uses address mask queries (ICMP Type 17) and checks whether it gets an address mask reply (ICMP Type 18).

```
## Starting Nmap -sn -PM 192.168.100.7/24

Starting Nmap 7.95 ( https://nmap.org ) at 2025-03-29 03:53 +03  
Nmap scan report for 192.168.100.1  
Host is up (0.042s latency).  
Nmap scan report for 192.168.100.12  
Host is up (0.21s latency).  
Nmap scan report for 192.168.100.13  
Host is up (0.21s latency).  
Nmap scan report for 192.168.100.15  
Host is up (0.10s latency).  
Nmap scan report for 192.168.100.16  
Host is up (0.19s latency).  
Nmap scan report for 192.168.100.25  
Host is up (0.071s latency).  
Nmap scan report for 192.168.100.28  
Host is up (1.5s latency).  
Nmap scan report for 192.168.100.7  
Host is up.
Nmap done: 256 IP addresses (8 hosts up) scanned in 9.39 seconds
```


Figure 4: Wireshark capture of Address Mask Request packets.

Bonus: if you were to NOT specify one of the techniques above, just used **nmap** -sn with no other flags, Nmap's default behaviour would be to reverse-DNS online hosts. And to skip that, you can use -n flag.

TCP/UDP Host Discovery 2.3

TCP SYN Scan (-PS) 2.3.I

Nmap will send TCP SYN packets and won't complete the TCP 3-way handshake even if the port is open, as shown in the figure below the terminal's output. By default, Nmap will send the SYN packet to port 80.

```
TCP SYN Scan (-PS)
$ sudo nmap -PS -sn 10.10.68.220/24
Starting Nmap 7.92 ( https://nmap.org ) at 2021-09-02 13:45 EEST
Nmap scan report for 10.10.68.52
{\tt Nmap \ scan \ report \ for \ 10.10.68.121}
Nmap scan report for 10.10.68.125
Nmap scan report for 10.10.68.134
Nmap scan report for 10.10.68.220
```

```
SYN
     SYN, ACK
        RST.
Case: TCP port is open.
```

nmap -PS -sn TARGET

Figure 1: SYN Packet sent for Host Discovery, the user has root privileges.

```
nmap-PS-sn-openvpn.pcapng
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
- 1
!openvpn
              Destination
                           Protocol Info
10.11.35.214
                                   61429 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
             10.10.68.2
10.11.35.214 10.10.68.3
                           TCP
                                   61429 \rightarrow 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214
              10.10.68.4
                                   61429 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
                           TCP
10.11.35.214 10.10.68.5
                           TCP
                                   61429 \rightarrow 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214 10.10.68.6
                          TCP
                                  61429 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
                          TCP
10.11.35.214 10.10.68.7
                                   61429 \rightarrow 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460-
10.11.35.214
              10.10.68.8
                           TCP
                                   61429 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214 10.10.68.9
                           TCP
                                   61429 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214 10.10.68.10 TCP
                                   61429 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214 10.10.68.1 TCP
                                   61431 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214
              10.10.68.2
                           TCP
                                   61431 \rightarrow 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214 10.10.68.3
                           TCP
                                   61431 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
                                   61431 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10.11.35.214 10.10.68.4 TCP
                                   61431 → 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
              10.10.68.5
                           TCP
10.11.35.214
10.11.35.214
              10.10.68.6
                           TCP
                                   61431 \rightarrow 80 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10 11 25 214
                                           00 [CVN] Cod=0 Min=1004 Lon=0 MCC=1460
OpenVPN Protocol: Protocol
                                           Packets: 1147 · Displayed: 623 (54.3%) Profile: Default
```

Figure 2: Do you notice how Nmap is sending the SYN packets to port 80? Twice? For each IP in the specified subnet.

TCP ACK Scan (-PA)

2.3.II

As you have guessed, this sends a packet with an ACK flag set. Again, by default, Nmap will send the ACK packet to port 80.

```
TCP ACK Scan (-PA)
$ sudo nmap -PA -sn 10.10.68.220/24
Starting Nmap 7.92 ( https://nmap.org ) at 2021-09-02 13:46 EEST
Nmap scan report for 10.10.68.52
Nmap scan report for 10.10.68.121
Nmap scan report for 10.10.68.125
Nmap scan report for 10.10.68.134
Nmap scan report for 10.10.68.220
Host is up (0.10s latency).
```


nmap -PA -sn TARGET

ACK-

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help - 1

X - +

```
!openvpn
                                    Destination
                                                 Protocol Info
                                     10.10.68.1
                                                         45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                                 TCP
                                     10.10.68.2
                                                TCP
                      10.11.35.214 10.10.68.3
                                                         45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                                                         45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214 10.10.68.4
                                                TCP
                      10.11.35.214
                                    10.10.68.5
                                                 TCP
                                                         45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                                         45492 \rightarrow 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                                    10.10.68.6
                                                 TCP
                                                         45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                                TCP
                                    10.10.68.7
                      10.11.35.214 10.10.68.8 TCP
                                                        45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                    10.10.68.9
                                                 TCP
                                                         45492 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                    10.10.68.10 TCP
                                                         45492 \rightarrow 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214 10.10.68.1 TCP
                                                        45494 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                    10.10.68.2 TCP
                                                        45494 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                    10.10.68.3
                                                 TCP
                                                         45494 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214
                                    10.10.68.4
                                                 TCP
                                                         45494 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                      10.11.35.214 10.10.68.5 TCP
                                                      45494 → 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                                                TCP
                      10.11.35.214
                                    10.10.68.6
                                                         45494 \rightarrow 80 [ACK] Seq=1 Ack=1 Win=1024 Len=0
                    nmap-PA-sn-openvpn.pcapng
                                                               Packets: 1079 · Displayed: 557 (51.6%) Profile: Default
          UDP Scan (-PU)
Finally, we can use UDP to discover if the host is online. Contrary to TCP SYN ping, sending a UDP packet to
```

that's exactly why Nmap will be sending to uncommon UDP ports, so that an ICMP destination unreachable is triggered.

2.3.III

UDP Scan (-PU) \$ sudo nmap -PU -sn 10.10.68.220/24

an open port is not expected to lead to any reply. However, if we send a UDP packet to a closed UDP port, we expect to get an ICMP port unreachable packet; this indicates that the target system is up and available, and

```
{\tt Nmap \ scan \ report \ for \ 10.10.68.121}
Nmap scan report for 10.10.68.134
Host is up (0.096s latency).
Nmap scan report for 10.10.68.220
Nmap done: 256 IP addresses (5 hosts up) scanned in 9.20 seconds
                                   nmap -PU -sn TARGET
                                         UDP Packet
                                      Case: UDP port is open.
```

nmap -PU -sn TARGET UDP Packet

ICMP Type 3, Code 3

Case: UDP port is closed. This leads to ICMP

Figure 4: UDP Packet sent for Host Discovery, port is open and we don't get any reply.

```
Destination Unreachable (Port Unreachable)
Figure 5: UDP Packet sent for Host Discovery, port is closed and we get a port unreachable packet.
                                        nmap-PU-sn-openvpn.pcapng
            File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
            Q « » » » « »
                                                                                 ₩ 🖚 🕶 💠
            !openvpn
             Source
                          Destination
                                      Protocol Info
```

57190 → 40125 Len=40

57190 → 40125 Len=40

57190 → 40125 Len=40

 $57190 \rightarrow 40125 \text{ Len=}40$

57190 → 40125 Len=40

UDP

UDP

UDP

UDP

UDP

10.10.68.2

10.10.68.4

10.10.68.5

10.11.35.214 10.10.68.3

10.11.35.214 10.10.68.6

10.11.35.214

10.11.35.214

10.11.35.214

address in the specified subnet?

10.11.35.214 10.10.68.7 UDP $57190 \rightarrow 40125 \ Len=40$ 10.11.35.214 10.10.68.8 UDP 57190 → 40125 Len=40 10.11.35.214 10.10.68.9 UDP 57190 → 40125 Len=40 10.11.35.214 10.10.68.10 UDP 57190 → 40125 Len=40 10.11.35.214 10.10.68.1 UDP $57192 \rightarrow 40125 \text{ Len=40}$ 10.11.35.214 10.10.68.2 UDP $57192 \rightarrow 40125 \text{ Len=40}$ 10.11.35.214 10.10.68.3 UDP 57192 → 40125 Len=40 10.11.35.214 10.10.68.4 UDP $57192 \rightarrow 40125 \text{ Len=40}$ 10.11.35.214 10.10.68.5 UDP 57192 → 40125 Len=40 57192 → 40125 Len=40 10.11.35.214 10.10.68.6 UDP

10 11 05 014 nmap-PU-sn-openvpn.pcapng Packets: 1118 · Displayed: 602 (53.8%) Profile: Default

Figure 6: Do you notice how Nmap is sending the UDP packets to uncommon ports multiple times for each IP

4 Basic Port Scanning

So far when we scanned ports we've seen only the **Open** state, but here's what Nmap also considers:

- Open: indicates that a service is listening on the specified port.
- Closed: indicates that no service is listening on the specified port, although the port is accessible. By accessible, we mean that it is reachable and is not blocked by a firewall or other security appliances/programs.
- Filtered: means that Nmap cannot determine if the port is open or closed because the port is not accessible. This state is usually due to a firewall preventing Nmap from reaching that port. Nmap's packets may be blocked from reaching the port; alternatively, the responses are blocked from reaching Nmap's host.
- **Unfiltered**: means that Nmap cannot determine if the port is open or closed, although the port is accessible. This state is encountered when using an ACK scan -sA.
- Open|Filtered: This means that Nmap cannot determine whether the port is open or filtered.
- Closed|Filtered: This means that Nmap cannot decide whether a port is closed or filtered.

Figure 1: A closed TCP port responds to a SYN packet with RST/ACK to indicate that it is not open.

Figure 2: SYN scan does not need to complete the TCP 3-way handshake; instead, it tears down the connection once it receives a response from the server.

Figure 3: the UDP ports that don't generate any response are the ones that Nmap will state as open.

Figure 4: ICMP port unreachable message indicates the UDP port is closed.