

TENSILE	TESTING
	160111101

0	Objective: To perform the tensile test and measure the following
	material properties to compare with data obtained directly from
00 00 00 00 00 00 00 00 00 00 00 00 00	the Universal Yesting Machine
1	a) Young's Modulus (grom curve)
	b) upper and dower yield point
	e) Percentage of elongation
-	d) witimate strength
	e) Breaking strength
	f) Modulus of toughness.
	g) Modulus of vusilience (from zewwe)
<u>@</u>	apparatus: 600 KN hydraulic controlled Universal Testing Machine
	(Tinius Olsen), Vernier Callipers, scale.
	Theory: Engineering strain is the viatio of the deformation to the
	initial dimension of the material body which undergoes
	a force application.
	$e = L_{f} - L_{0} = \Delta L$ $e = engineering normal$ $e = L_{f} - L_{0} = \Delta L$ $t = t$
PIOREEER®	Engineering stress is calculated by dividing the load P
	by the cross-sectional area Ao measured before any
	deformation has taken place
	$S = \frac{P_0}{A}$
·	

Scanned by CamScanner

EXPT. NO.	June stress is instantaeneous in nature and is defined using
1	the instantaneous values of length / dimension and infinitesi-
	$= \int \frac{dL}{L} = \ln \frac{L_f}{L_0}$
	Lo
`	After necking $d\tilde{\epsilon} = -\frac{dA}{A}$ or $\tilde{\epsilon} = \ln \frac{A_0}{A_f}$
	True stress is $\sigma = f$, where $A_{\pm} = instantaneous$ wear the
	difference in engineering and true atress becomes apparent
	in ductile material after yield point.
	$\overline{\sigma} = k \overline{\epsilon}^n$
	This is the power law expression approximated from true
	strass - true strain curve.
	$\bar{\epsilon} = ln(1+e)$; $e = exp(\bar{\epsilon}) - 1$
	since, total mass is constant in specimen
	$A_0 L_0 = A_t L_t \Rightarrow \underline{A_0} = \underline{L_t}$ $A_t L_0$
	Now, term steads, $\overline{\sigma} = \frac{P}{A_t} = \frac{P_0}{A_0} \cdot \frac{\Lambda_0}{A_t} = \frac{SL_t}{L_0} = S(1+e)$
	$=$ $S(exp(\overline{\epsilon}))$
	> Modulus of Resilience:
PIONEER®	strain energy that gives on index of the material's ability
	to store or absorb energy without permanent deformation

13.1870 136.6 195500 59.3 435 303 41400 43100 316

Biswajit

Indian Institute of Technology

Kharagpur Dept of Mechanical Eng India

Metals Tensile w/ Ext.

Metal Tensile round bar (with extensometer) 09/29/2016

Modulus, N/mm²: Ultimate, kN: Ultimate, N/mm²: Yield, MPa: Yield, N:

MPa

STRAIN, %

Diameter, mm: Sample No.: Lot Number Operator **Test Setting** Area, mm²: Test Date Sample: 0.4922 0.4375 0.2734 0.2188 GRAPH-1 0.1641 0.0547 200 200 22

Material of the ead: Mild steel

Scanned by CamScanner

16

NO.

Siameter of the rod: 13.187 mm Initial gauge length: 197-6 mm Final gauge length: 240.3 mm

Material Proporties	Ferom Machine	Flam Surve
Young's Modulus	1.955 x10 ⁵ N/mm ²	1.95 × 105 N/mm²
upper Yield Point	303 MPa	305. 27 MPol
Lower Yield Point		296.48 MPa
% of elongation	21.609 %	21-609%
Ultimate strength	435 N/m/m²	435.578 N/mm²
Breaking Strength	316 N/mm²	318.228 N/mm2
Modulus of Toughness	4564 .55 MPa	4552.88 MPa
Modulus of Resilience	234.805 KPa	238.948 KPa

Discussions:

At helps us ito have a clear idea about the classicity, clongation, stress, strain, modulus of clasticity and their co-velation with

It has many applications in several fields of technology like

Automotive Industry, shear and tensile strength testing of fostners after at had fractured (the specimen), the surfaces of the metal

were evough, the two halves being in the shape of "cup and

cone"

EER®

Describe materials fractive due to sheving, this is the reason necking occurs as the crack formation is transverse to the axis.