APPLIED DATA SCIENCE - PHASE 3 STOCK PRICE PREDICTION

Team Leader: Supriya . A(211521104163)

Team Members:

Priyadharshini . Y(211521104119)

Srinidhi . E(211521104157)

Getsy Jacinth .S(211521104043)

Saranya . C(211521104143)

TEAM: TG-06

PROBLEM DEFINITION:

- The problem is to build a predictive model that forecasts stock prices based on historical market data.
- The goal is to create a tool that assists investors in making well-informed decisions and optimizing their investment strategies.
- This project involves data collection, data preprocessing, feature engineering, model selection, training, and evaluation.

PROBLEM STATEMENT:

- 1. *Define the Problem*: Clearly articulate the problem you want to address or the question you want to answer with data science. This should include the objectives, goals, and the business or research context.
- 2. *Understand Stakeholder Needs*: Identify and understand the needs and requirements of the stakeholders who are involved or affected by the problem. This may include business managers, end-users, and subject matter experts.
- 3. *Data Availability*: Assess the availability and quality of data. Define what data is needed to address the problem and whether it is accessible.

DESIGN THINKING PROCESS:

1. Empathize:

- Understand the perspective of stakeholders.
- Conduct interviews, surveys, or observations to gather insights.
- Define personas and user stories to represent different stakeholder needs.

2. **Define:**

- Refine the problem statement based on stakeholder insights.
- Clearly state the problem, objectives, and constraints.
- Prioritize and set clear goals for the project.

3. *Ideate*:

- Brainstorm potential solutions.
- Consider various data sources, algorithms, and techniques.
- Encourage creativity and diverse ideas.

4. **Prototype:**

- Develop initial data models or analysis prototypes.
- Test different approaches and data sources.
- Iterate on the design to find the most promising solution.

5. *Test*:

- Evaluate the prototypes for their effectiveness.
- Gather feedback from stakeholders.
- Refine the design and iterate as needed.

PHASES OF DEVELOPMENT (Data Science):

1. **Data Collection and Preparation:**

- Acquire and clean the data needed for analysis.
- Address missing data, outliers, and inconsistencies.
- Explore and understand the data's structure and characteristics.

2. Exploratory Data Analysis (EDA):

- Perform data visualization and statistical analysis to gain insights.
- Identify patterns, trends, and potential relationships in the data.

3. Feature Engineering:

- Create or transform features that are relevant to the problem.
- Normalize, scale, or encode data as necessary for modeling.

4. *Model Building:*

- Select appropriate machine learning or statistical models.
- Train and validate models using the data.
- Optimize model performance through hyperparameter tuning.

5. Model Evaluation:

- Assess model performance using appropriate metrics (e.g., accuracy, precision, recall, etc.).
- Validate the model's ability to solve the problem effectively.

6. **Deployment:**

- Deploy the model or analysis for practical use.
- Integrate it into the relevant business or research processes.

7. Monitoring and Maintenance:

- Continuously monitor the model's performance in a production environment.
- Maintain the model, retraining as needed, and updating for changing data patterns.

8. Communication and Reporting:

- Share findings, insights, and recommendations with stakeholders.
- Present results in a clear and understandable manner.

9. Feedback and Iteration:

- Gather feedback from end-users and stakeholders.
- Iterate on the solution to improve and adapt it over time.

These three components—problem statement, design thinking process, and phases of development—are integral to a successful data science project, ensuring that it aligns with stakeholder needs, leverages data effectively, and delivers valuable insights or solutions.

PROJECT OVERVIEW:

The project employs various tools and technologies, including:

- Python programming language
- Libraries such as NumPy, Matplotlib, SciPy, scikit-learn, TensorFlow, Keras, and Streamlit
- SVR, Random Forest, KNN, LSTM, and GRU models for stock price prediction.

STEP 1: DATA COLLECTION

- Datasets are essential for building and testing machine learning models that can predict the future stock price of the company.
- The current dataset is obtained from Kaggle.
- One well-known dataset from Kaggle is the "Microsoft Lifetime stocks Datset" dataset, which contain Stock history of the company from 1986 to till date.

Dataset Link: https://www.kaggle.com/datasets/prasoonkottarathil/microsoft-lifetime-stocks-dataset

STEP 2: DATA PREPROCESSING

• The quality of your data and how it's prepared can significantly impact the accuracy and effectiveness of your predictions

CODE:

```
import numpy as np
import pandas as pd
df = pd.read csv('MSFT.csv')
print(df.head())
df['Date'] = pd.to datetime(df['Date'])
df = df.sort values('Date')
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df['Close'] = scaler.fit transform(df['Close'].values.reshape(-1, 1))
def create sequences(data, sequence length):
  sequences = []
  for i in range(len(data) - sequence_length):
     sequences.append(data[i:i+sequence length])
  return np.array(sequences)
sequence length = 10 # Choose an appropriate value
X = create sequences(df['Close'], sequence_length)
train size = int(0.7 * len(X))
valid size = int(0.2 * len(X))
X \text{ train} = X[:train size]
X valid = X[train size:train size+valid size]
```

```
X_test = X[train_size+valid_size:]
y_train = df['Close'].iloc[sequence_length:train_size + sequence_length].values
y_valid = df['Close'].iloc[train_size + sequence_length:train_size + valid_size + sequence_length].values
y_test = df['Close'].iloc[train_size + valid_size + sequence_length:].values
X_train = X_train.reshape(-1, sequence_length, 1)
X_valid = X_valid.reshape(-1, sequence_length, 1)
X_test = X_test.reshape(-1, sequence_length, 1)
OUTPUT:
```

Date Open High Low Close Adj Close Volume

0 1986-03-13 0.088542 0.101563 0.088542 0.097222 0.062549 1031788800

1 1986-03-14 0.097222 0.102431 0.097222 0.100694 0.064783 308160000

2 1986-03-17 0.100694 0.103299 0.100694 0.102431 0.065899 133171200

3 1986-03-18 0.102431 0.103299 0.098958 0.099826 0.064224 67766400

 $4\ 1986-03-19\ 0.099826\ 0.100694\ 0.097222\ 0.098090\ 0.063107\ 47894400$

STEP 3: Feature Engineering

It involves creating and selecting relevant features (input variables) from the available data that can be used to train the model.

COD import pandas as pd

```
data = pd.read_csv('MSFT.csv')
```

```
print(data.head())
data['Date'] = pd.to_datetime(data['Date'])
data['Day'] = data['Date'].dt.day
data['Month'] = data['Date'].dt.month
```

```
data['Year'] = data['Date'].dt.year
data['Daily Return'] = data['Adj Close'].pct change()
data['Lagged Return 1'] = data['Daily Return'].shift(1)
data['Lagged Return 7'] = data['Daily Return'].shift(7)
data['SMA 5'] = data['Adj Close'].rolling(window=5).mean()
data['SMA 30'] = data['Adj Close'].rolling(window=30).mean()
data['EMA 12'] = data['Adj Close'].ewm(span=12, adjust=False).mean()
data['Avg Volume 5'] = data['Volume'].rolling(window=5).mean()
data['Volume Change'] = data['Volume'].pct change()
def calculate rsi(data, window=14):
  delta = data['Adj Close'].diff(1)
  gain = delta.where(delta > 0, 0)
  loss = -delta.where(delta < 0, 0)
  avg gain = gain.rolling(window=window).mean()
  avg loss = loss.rolling(window=window).mean()
  rs = avg gain / avg loss
  rsi = 100 - (100 / (1 + rs))
```

return rsi

data['RSI_14'] = calculate_rsi(data)
print(data.head(100))

OUTPUT:

D	ate Open	High	Low C	lose Adj (Close Vo	olume \	
0	1986-03-13	0.088542	0.101563	0.088542	0.097222	0.062549	1031788800
1	1986-03-14	0.097222	0.102431	0.097222	0.100694	0.064783	308160000
2	1986-03-17	0.100694	0.103299	0.100694	0.102431	0.065899	133171200
3	1986-03-18	0.102431	0.103299	0.098958	0.099826	0.064224	67766400
4	1986-03-19	0.099826	0.100694	0.097222	0.098090	0.063107	47894400
5	1986-03-20	0.098090	0.098090	0.094618	0.095486	0.061432	58435200
6	1986-03-21	0.095486	0.097222	0.091146	0.092882	0.059756	59990400
7	1986-03-24	0.092882	0.092882	0.089410	0.090278	0.058081	65289600
8	1986-03-25	0.090278	0.092014	0.089410	0.092014	0.059198	32083200
9	1986-03-26	0.092014	0.095486	0.091146	0.094618	0.060873	22752000
10	1986-03-27	0.094618	0.096354	0.094618	0.096354	0.061990	16848000
11	1986-03-31	0.096354	0.096354	0.093750	0.095486	0.061432	12873600
12	2 1986-04-01	0.095486	0.095486	0.094618	0.094618	0.060873	11088000
13	3 1986-04-02	0.094618	0.097222	0.094618	0.095486	0.061432	27014400
14	1986-04-03	0.096354	0.098958	0.096354	0.096354	0.061990	23040000
15	5 1986-04-04	0.096354	0.097222	0.096354	0.096354	0.061990	26582400
16	5 1986-04-07	0.096354	0.097222	0.092882	0.094618	0.060873	16560000

17 1986-04-08	0.094618	0.097222	0.094618	0.095486	0.061432	10252800
18 1986-04-09	0.095486	0.098090	0.095486	0.097222	0.062549	12153600
19 1986-04-10	0.097222	0.098958	0.095486	0.098090	0.063107	13881600
20 1986-04-11	0.098958	0.101563	0.098958	0.099826	0.064224	17222400
21 1986-04-14	0.099826	0.101563	0.099826	0.100694	0.064783	12153600
22 1986-04-15	0.100694	0.100694	0.097222	0.100694	0.064783	9302400
23 1986-04-16	0.100694	0.105035	0.099826	0.104167	0.067016	31910400
24 1986-04-17	0.104167	0.105035	0.104167	0.105035	0.067575	22003200
25 1986-04-18	0.105035	0.105035	0.100694	0.101563	0.065341	21628800
26 1986-04-21	0.101563	0.102431	0.098958	0.101563	0.065341	22924800
27 1986-04-22	0.101563	0.101563	0.099826	0.099826	0.064224	15552000
28 1986-04-23	0.099826	0.100694	0.098958	0.100260	0.064503	15609600
29 1986-04-24	0.100260	0.111979	0.099826	0.110243	0.070926	62352000
30 1986-04-25	0.111111	0.121962	0.111111	0.117188	0.075393	85795200
31 1986-04-28	0.117188	0.118924	0.116319	0.118056	0.075952	28886400
32 1986-04-29	0.118056	0.118056	0.113715	0.114583	0.073718	30326400
33 1986-04-30	0.114583	0.115451	0.109375	0.111979	0.072043	30902400
34 1986-05-01	0.111979	0.111979	0.108507	0.110243	0.070926	54345600
35 1986-05-02	0.110243	0.111979	0.109375	0.110243	0.070926	20246400
36 1986-05-05	0.110243	0.110243	0.109375	0.109375	0.070367	3254400
37 1986-05-06	0.110243	0.111979	0.110243	0.110243	0.070926	9734400
38 1986-05-07	0.110243	0.111111	0.108507	0.110243	0.070926	5155200
39 1986-05-08	0.110243	0.111111	0.109375	0.111111	0.071484	3542400
40 1986-05-09	0.111111	0.111111	0.110243	0.110243	0.070926	6076800
41 1986-05-12	0.110243	0.113715	0.110243	0.111111	0.071484	10483200

42 1986-05-13 0.111111 0.112847 0.111111 0.111979 0.072043 3830400 43 1986-05-14 0.111979 0.111979 0.111111 0.111111 0.071484 9302400 44 1986-05-15 0.111111 0.112847 0.111111 0.111111 0.071484 3801600 45 1986-05-16 0.111111 0.114583 0.111111 0.111979 0.072043 11952000 46 1986-05-19 0.111979 0.111979 0.109375 0.110243 0.070926 11001600 47 1986-05-20 0.110243 0.110243 0.108507 0.109375 0.070367 61977600 48 1986-05-21 0.109375 0.110243 0.107639 0.107639 0.069250 8092800 49 1986-05-22 0.107639 0.108507 0.107639 0.107639 0.069250 4406400 50 1986-05-23 0.107639 0.109375 0.107639 0.107639 0.069250 4089600 51 1986-05-27 0.107639 0.111111 0.107639 0.111111 0.071484 13881600 52 1986-05-28 0.111111 0.114583 0.111111 0.114583 0.073718 15523200 53 1986-05-29 0.114583 0.118924 0.113715 0.117188 0.075393 45676800 54 1986-05-30 0.118056 0.123264 0.118056 0.121528 0.078186 27072000 55 1986-06-02 0.121528 0.121528 0.118056 0.118056 0.075952 19728000 56 1986-06-03 0.118056 0.118056 0.116319 0.118056 0.075952 5011200 57 1986-06-04 0.118056 0.118924 0.116319 0.117188 0.075393 4723200 58 1986-06-05 0.117188 0.118924 0.116319 0.118924 0.076510 13708800 59 1986-06-06 0.118924 0.118924 0.117188 0.118924 0.076510 3427200

RSI 14 Day Month Year Daily Return Lagged Return 1 \ NaN 0 NaN 13 3 1986 NaN 3 1986 1 NaN 14 0.035716 NaN 2 NaN 17 3 1986 0.017227 0.035716 3 NaN 18 3 1986 -0.025418 0.017227 3 1986 NaN 19 -0.017392 -0.025418

5	NaN 20)	3 19	986	-0.026542	-0.017392
6	NaN 2	1	3 19	986	-0.027282	-0.026542
7	NaN 24	4	3 19	986	-0.028031	-0.027282
8	NaN 2:	5	3 19	986	0.019232	-0.028031
9	NaN 20	5	3 19	986	0.028295	0.019232
10	NaN 2	7	3 1	986	0.018350	0.028295
11	NaN 3	1	3 1	986	-0.009001	0.018350
12	NaN 1	1	4 19	986	-0.009099	-0.009001
13	46.666269	2	4	1986	0.009183	-0.009099
14	48.385420	3	4	1986	0.009083	0.009183
15	40.737547	4	4	1986	0.000000	0.009083
16	33.333333	7	4	1986	-0.018019	0.000000
17	40.001432	8	4	1986	0.009183	-0.018019
18	48.001719	9	4	1986	0.018183	0.009183
19	56.520047	10	4	1986	0.008921	0.018183
20	68.183298	11	4	1986	0.017700	0.008921
21	80.000000	14	4	1986	0.008704	0.017700
22	77.77778	15	4	1986	0.000000	0.008704
23	78.946376	16	4	1986	0.034469	0.000000
24	77.77778	17	4	1986	0.008341	0.034469
25	66.663825	18	4	1986	-0.033060	0.008341
26	70.000000	21	4	1986	0.000000	-0.033060
27	61.903138	22	4	1986	-0.017095	0.000000
28	60.974758	23	4	1986	0.004344	-0.017095
29	75.000000	24	4	1986	0.099577	0.004344

30 84.20978	82 25	4 1986	0.062981	0.099577
31 84.20978	82 28	4 1986	0.007414	0.062981
32 74.99888	81 29	4 1986	-0.029413	0.007414
33 69.04843	31 30	4 1986	-0.022722	-0.029413
34 64.28632	23 1	5 1986	-0.015505	-0.022722
35 63.41442	21 2	5 1986	0.000000	-0.015505
36 61.90313	38 5	5 1986	-0.007881	0.000000
37 58.97530	01 6	5 1986	0.007944	-0.007881
38 57.89473	37 7	5 1986	0.000000	0.007944
39 65.71340	09 8	5 1986	0.007867	0.000000
40 63.88958	80 9	5 1986	-0.007806	0.007867
41 68.5715	75 12	5 1986	0.007867	-0.007806
42 69.01543	34 13	5 1986	0.007820	0.007867
43 51.99828	81 14	5 1986	-0.007759	0.007820
44 29.41548	82 15	5 1986	0.000000	-0.007759
45 29.41548	82 16	5 1986	0.007820	0.000000
46 33.3373	12 19	5 1986	-0.015505	0.007820
47 38.4604	79 20	5 1986	-0.007881	-0.015505
48 38.4604	79 21	5 1986	-0.015874	-0.007881
49 38.4604	79 22	5 1986	0.000000	-0.015874
50 41.6679	10 23	5 1986	0.000000	0.000000
51 53.33013	50 27	5 1986	0.032260	0.000000
52 63.1549	19 28	5 1986	0.031252	0.032260
53 66.66382	25 29	5 1986	0.022722	0.031252
54 75.9954	17 30	5 1986	0.037046	0.022722

55 64.283887 2 6 1986 -0.028573 0.037046 56 62.960016 6 1986 0.000000 -0.028573 3 57 62.960016 6 1986 -0.007360 0.000000 4 58 65.514261 6 1986 0.014816 -0.007360 5 59 64.281604 6 6 1986 0.000000 0.014816

Lagged_Return_7 SMA_5 SMA_30 EMA_12 Avg_Volume_5 Volume_Change

0	NaN	NaN	NaN (0.062549	NaN	NaN
1	NaN	NaN	NaN (0.062893	NaN	-0.701334
2	NaN	NaN	NaN 0	0.063355	NaN	-0.567850
3	NaN	NaN	NaN 0	0.063489	NaN	-0.491133
4	NaN	0.064112	NaN	0.063430	317756160	0.0 -0.293243
5	NaN	0.063889	NaN	0.063123	123085440	0.0 0.220084
6	NaN	0.062884	NaN	0.062605	73451520	.0 0.026614
7	NaN	0.061320	NaN	0.061909	59875200	.0 0.088334
8	0.03571	6 0.060315	NaN	N 0.061492	2 5273856	0.0 -0.508602
9	0.01722	7 0.059868	NaN	N 0.061397	7 4771008	0.0 -0.290844
10	-0.02541	18 0.059980	Na	N 0.06148	8 3939264	40.0 -0.259494
11	-0.01739	0.060315	Na	N 0.06147	9 2996928	80.0 -0.235897
12	-0.02654	12 0.060873	Na	N 0.06138	6 1912896	60.0 -0.138702
13	-0.02728	32 0.061320	Na	N 0.06139	3 1811520	00.0 1.436364
14	-0.02803	31 0.061543	Na	N 0.06148	5 1817280	00.0 -0.147122
15	0.01923	2 0.061543	Na	N 0.06156	3 2011968	30.0 0.153750
16	0.02829	5 0.061432	Na	N 0.06145	7 2085696	60.0 -0.377031
17	0.01835	0.061543	Na	N 0.06145	3 2068992	20.0 -0.380870

18	-0.009001	0.061767	NaN	0.061621	17717760.0	0.185393
19	-0.009099	0.061990	NaN	0.061850	15886080.0	0.142180
20	0.009183	0.062437	NaN	0.062215	14014080.0	0.240664
21	0.009083	0.063219	NaN	0.062610	13132800.0	-0.294314
22	0.000000	0.063889	NaN	0.062945	12942720.0	-0.234597
23	-0.018019	0.064783	NaN	0.063571	16894080.0	2.430341
24	0.009183	0.065676	NaN	0.064187	18518400.0	-0.310469
25	0.018183	0.065900	NaN	0.064364	19399680.0	-0.017016
26	0.008921	0.066011	NaN	0.064515	21553920.0	0.059920
27	0.017700	0.065899	NaN	0.064470	22803840.0	-0.321608
28	0.008704	0.065397	NaN	0.064475	19543680.0	0.003704
29	0.000000	0.066067	0.063210	0.065468	27613440.0	2.994465
30	0.034469	0.068077	0.063638	0.066995	40446720.0	0.375982
31	0.008341	0.070200	0.064010	0.068373	41639040.0	-0.663310
32	-0.033060	0.072098	0.064271	0.069195	44593920.0	0.049850
33	0.000000	0.073606	0.064531	0.069633	47652480.0	0.018993
34	-0.017095	0.073606	0.064792	0.069832	46051200.0	0.758621
35	0.004344	0.072713	0.065108	0.070000	32941440.0	-0.627451
36	0.099577	0.071596	0.065462	0.070057	27815040.0	-0.839260
37	0.062981	0.071038	0.065890	0.070190	23696640.0	1.991150
38	0.007414	0.070814	0.066281	0.070304	18547200.0	-0.470414
39	-0.029413	0.070926	0.066635	0.070485	8386560.0	-0.312849
40	-0.022722	0.070926	0.066933	0.070553	5552640.0	0.715447
41	-0.015505	0.071149	0.067268	0.070696	6998400.0	0.725118
42	0.000000	0.071373	0.067640	0.070903	5817600.0	-0.634615

43	-0.007881	0.071484	0.067975	0.070993	6647040.0	1.428571
44	0.007944	0.071484	0.068292	0.071068	6698880.0	-0.591331
45	0.000000	0.071708	0.068627	0.071218	7873920.0	2.143939
46	0.007867	0.071596	0.068962	0.071173	7977600.0	-0.079518
47	-0.007806	0.071261	0.069260	0.071049	19607040.0	4.633508
48	0.007867	0.070814	0.069483	0.070772	19365120.0	-0.869424
49	0.007820	0.070367	0.069688	0.070538	19486080.0	-0.455516
50	-0.007759	0.069809	0.069855	0.070340	17913600.0	-0.071895
51	0.000000	0.069920	0.070079	0.070516	18489600.0	2.394366
52	0.007820	0.070590	0.070377	0.071009	9198720.0	0.118257
53	-0.015505	0.071819	0.070656	0.071683	16715520.0	1.942486
54	-0.007881	0.073606	0.071009	0.072684	21248640.0	-0.407314
55	-0.015874	0.074947	0.071363	0.073186	24376320.0	-0.271277
56	0.000000	0.075840	0.071717	0.073612	22602240.0	-0.745985
57	0.000000	0.076175	0.072089	0.073886	20442240.0	-0.057471
58	0.032260	0.076399	0.072489	0.074290	14048640.0	1.902439
59	0.031252	0.076063	0.072676	0.074631	9319680.0	-0.750000

STEP 4: MODEL SELECTION

- The LSTM model provides better results when the data set is large and has fewer Nan values.
- •Whereas, despite providing better accuracy than LSTM, the ARIMA model requires more time in terms of processing and works well when all the attributes of the data set provide legitimate values.

Code for lstm:

```
import numpy
as np import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential from keras.layers
import LSTM, Dense, Dropout
# Load historical stock price data (e.g., CSV file with 'Date'
and 'Close' columns) data = pd.read csv('MSFT.csv')
# Extract the 'Close' prices as the target variable prices
= data*'Close'+.values.reshape(-1, 1)
# Normalize the data using Min-Max scaling scaler
= MinMaxScaler(feature range=(0, 1)) prices scaled
= scaler.fit_transform(prices)
# Define a function to create sequences of data for training
the LSTM model def create sequences(data, seq length):
X, y = *+, *+ for i in
range(len(data) - seq length):
X.append(data*i:i+seq length+)
y.append(data*i+seq length+)
return np.array(X), np.array(y)
# Set the sequence length and split the data into training and
testing sets sequence length = 10
```

```
X, y = \text{create sequences}(\text{prices scaled}, \text{sequence length}) \text{ train size}
= int(len(X) * 0.8)
X train, X test = X^*:train size+, X^*train size:+ y train,
y test = y*:train size+, y*train size:+ # Create an
LSTM model model
= Sequential()
model.add(LSTM(units=50, return sequences=True,
input shape=(X train.shape*1+, 1)))
model.add(LSTM(units=50)) model.add(Dense(1))
# Compile the model model.compile(optimizer='adam',
loss='mean squared error')
# Train the model
model.fit(X train, y train, epochs=50, batch size=64)
# Make predictions on the test set predictions
= model.predict(X test)
# Inverse transform the predictions to get actual price values
predictions actual = scaler.inverse transform(predictions)
y test actual = scaler.inverse transform(y test)
# Plot the actual vs. predicted prices plt.figure(figsize=(12,
6))
plt.plot(predictions actual, label='Predicted Prices', color='red')
plt.plot(y test actual, label='Actual Prices', color='blue')
plt.title('Stock Price Prediction with LSTM')
plt.xlabel('Time')
plt.ylabel('Price')
```

```
plt.legend()
plt.show()
```

OUTPUT:

Epoch 1/50 107/107 *==========	+	- 7s 20ms/step -
loss: 0.0011 Epoch 2/50 107/107 *=====		====+ - 2s
19ms/step - loss: 3.8592e-05 Epoch 3/50 10		
*		: 3.8419e-05
Epoch 4/50 107/107 *======		
loss: 3.7421e-05 Epoch 5/50 107/107 *====		
- 1s 13ms/step - loss: 3.6841e-05 Epoch 6/50		
*		: 3.6274e-05
Epoch 7/50 107/107 *=========	=====+	05 - 2s 2s
22ms/step loss: 3.6100e Epoch 8/50 107/107		
*		: 3.6038e-05
Epoch 9/50 107/107 *=======		
loss: 3.4980e-05 Epoch 10/50 107/107		•
*	+ - 2s 21ms/step - loss:	: 3.3884e-05
Epoch 11/50 107/107 *========	-	
loss: 3.1855e-05 Epoch 12/50 107/107		•
*	+ - 2s 21ms/step - loss:	: 3.1442e-05
Epoch 13/50 107/107 *=======		
- loss: 3.2507e-05 Epoch 14/50 107/107		-
*	+ - 2s05 - 2s 107/10	7
*	+ 18ms/step - loss: 3.1:	582e-05 Epoch
15/50 14ms/step loss: 2.8938e Epoch 16/50		-
*		: 2.6421e-05
Epoch 17/50 107/107 *=======		
- loss: 2.6747e-05 Epoch 18/50 107/107		
*	+ - 2s 19ms/step - loss:	: 2.4096e-05
Epoch 19/50 107/107 *======	=======================================	+ - 2s 18ms/step
- loss: 2.5314e-05 Epoch 20/50 107/107		-
*		
Epoch 21/50 107/107 *========		+05 - 2s

```
107/107 *=====+ - 2s 23ms/step - loss:
2.2405e-05 Epoch 22/50 107/107 *========+
22ms/step - loss: 2.4915e-05 Epoch 23/50 1s 14ms/step loss: 2.1624e Epoch 24/50
107/107 *=====+ - 2s 19ms/step - loss:
2.1545e-05 Epoch 25/50 107/107 *=======+ - 2s
22ms/step - loss: 2.2694e-05 Epoch 26/50 107/107
*=====+ - 2s 22ms/step - loss: 2.0566e-05
Epoch 27/50 107/107 *========+ - 2s 19ms/step
- loss: 2.2009e-05 Epoch 28/50 107/107
*=====+ - 2s - -05 - 2s 107/107
*====+ - 2s 18ms/step - loss: 2.2940e-05
Epoch 29/50 107/107 *=========+ - 2s 15ms/step
- loss: 2.0115e-05 Epoch 30/50 107/107
*=====+ 22ms/step - loss: 1.8910e-05 Epoch
31/50 23ms/step loss: 2.3294e Epoch 32/50 107/107
*=====+ - 2s 19ms/step - loss: 1.8463e-05
Epoch 33/50 107/107 *===========++ - 2s 19ms/step
- loss: 2.0214e-05 Epoch 34/50 107/107
*=====+ - 2s 22ms/step - loss: 1.8284e-05
Epoch 35/50 107/107 *=======+ - - -05 - 2s 107/107 *======+ - 2s 23ms/step - loss:
21ms/step - loss: 1.8360e-05 Epoch 37/50 107/107
*=====+ - 2s 19ms/step - loss: 1.7240e-05
Epoch 38/50 107/107 *=======++ 21ms/step -
loss: 1.6853e-05 Epoch 39/50 3s 24ms/step loss: 1.5736e Epoch 40/50 107/107
*=====+ - 2s 22ms/step - loss: 1.5684e-05
Epoch 41/50 107/107 *=======+ - 2s 15ms/step
- loss: 1.7331e-05 Epoch 42/50 107/107
*=====+ - 2s - -05 - 2s 107/107
*=====+ - 2s 23ms/step - loss: 1.6515e-05
Epoch 43/50 107/107 *============+ - 2s 21ms/step
- loss: 1.6822e-05 Epoch 44/50 107/107
*=====+ - 2s 16ms/step - loss: 1.4114e-05
Epoch 45/50 107/107 *========+ - 2s 23ms/step
- loss: 1.4346e-05 Epoch 46/50 107/107
*=====+ 21ms/step - loss: 1.5537e-05 Epoch
```

```
47/50 2s - -05 19ms/step loss: 1.4485e Epoch 48/50 107/107

*=========+ - 2s 23ms/step - loss: 1.4945e-05

Epoch 49/50 107/107 *=======+ - 2s 22ms/step

- loss: 1.3325e-05 Epoch 50/50 107/107

*=========+ - 2s 19ms/step - loss: 1.2995e-05

54/54 *=========+ - 1s 3ms/step Process finished with exit code 0
```


STEP 5: MODEL TRAINING

• Train the model using the training data. Use the fit() method, specifying the training data, target values, batch size, and the number of training epochs.

CODE:

data['Date'] = pd.to_datetime(data.Date,format='%Y/%m/%d %H:%M:%S') data.index = data['Date']

```
plt.figure(figsize=(16,8))
plt.plot(data['Close'], label='Close Price history',color='g')
plt.xlabel('Date',size=20)
plt.ylabel('Stock Price', size=20)
plt.title('Stock Price of Microsoft over the Years', size=25)
def lstm prediction(df):
  shape=df.shape[0]
  df new=df[['Close']]
  df new.head()
  dataset = df new.values
  train=df new[:ceil(shape*0.75)]
  valid=df new[ceil(shape*0.75):]
  print('-----')
  print('----STOCK PRICE PREDICTION BY LONG SHORT TERM
MEMORY (LSTM)-----')
  print('-----')
  print('Shape of Training Set',train.shape)
  print('Shape of Validation Set',valid.shape)
  scaler = MinMaxScaler(feature range=(0, 1))
  scaled data = scaler.fit transform(dataset)
  x train, y train = [], []
  for i in range(40,len(train)):
    x train.append(scaled data[i-40:i,0])
    y train.append(scaled data[i,0])
  x train, y train = np.array(x train), np.array(y train)
```

```
x train = np.reshape(x train, (x train.shape[0],x train.shape[1],1))
  model = Sequential()
  model.add(LSTM(units=50, return sequences=True,
input_shape=(x train.shape[1],1)))
  model.add(LSTM(units=50))
  model.add(Dense(1))
  model.compile(loss='mean squared error', optimizer='adam')
  model.fit(x train, y train, epochs=1, batch size=1, verbose=2)
  inputs = df new[len(df new) - len(valid) - 40:].values
  inputs = inputs.reshape(-1,1)
  inputs = scaler.transform(inputs)
  X \text{ test} = []
  for i in range(40,inputs.shape[0]):
    X test.append(inputs[i-40:i,0])
  X \text{ test} = \text{np.array}(X \text{ test})
  X \text{ test} = \text{np.reshape}(X \text{ test}, (X \text{ test.shape}[0], X \text{ test.shape}[1], 1))
  closing price = model.predict(X test)
  closing price = scaler.inverse transform(closing price)
  rms=np.sqrt(np.mean(np.power((valid-closing price),2)))
  print('RMSE value on validation set:',rms)
  print('-----')
  print('-----')
  valid['Predictions'] = closing price
  plt.plot(train['Close'])
  plt.plot(valid[['Close','Predictions']])
  plt.xlabel('Date', size=20)
```

plt.ylabel('Stock Price',size=20)
plt.title('Stock Price Prediction by Long Short Term Memory (LSTM)',size=20)
plt.legend(['Model Training Data','Actual Data','Predicted Data'])

OUTPUT:

-----STOCK PRICE PREDICTION BY LONG SHORT TERM MEMORY (LSTM)-----

Shape of Training Set (1134, 1)

Shape of Validation Set (377, 1)

1094/1094 - 19s - loss: 4.5201e-04

RMSE value on validation set: Close 9.464954

dtype: float64

STEP 6:EVALUATION

- In stock price prediction, the evaluation of a model's performance is crucial to assess its accuracy and effectiveness. Common evaluation metrics include:
 - Mean Squared Error (MSE)
 - Mean Absolute Error (MAE)
 - Root Mean Squared Error (RMSE)

CODE:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# Load the stock price data
data = pd.read csv('MSFT.csv') # Replace 'stock data.csv' with your dataset
# Select the 'Close' prices as the target variable
prices = data['Close'].values.reshape(-1, 1)
# Normalize the data
scaler = MinMaxScaler(feature range=(0, 1))
prices scaled = scaler.fit transform(prices)
# Split the data into training and test sets
train size = int(len(prices scaled) * 0.8)
train_data = prices_scaled[:train_size]
test data = prices scaled[train size:]
# Create sequences of data for training
def create sequences(data, sequence length):
X, y = [], []
for i in range(len(data) - sequence length):
X.append(data[i:i+sequence length])
y.append(data[i+sequence length])
return np.array(X), np.array(y)
sequence_length = 10 # You can adjust this value
X train, y train = create sequences(train data, sequence length)
X test, y test = create sequences(test data, sequence length)
# Build the LSTM model
model = Sequential()
```

```
model.add(LSTM(units=50, return sequences=True,
input shape=(X train.shape[1], 1)))
model.add(LSTM(units=50))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss='mean squared error')
# Train the model
model.fit(X train, y train, epochs=10, batch size=32)
# Evaluate the model
train loss = model.evaluate(X train, y train, verbose=0)
test loss = model.evaluate(X test, y test, verbose=0)
print(f"Train Loss: {train loss:.4f}, Test Loss: {test loss:.4f}")
# Make predictions
train predictions = model.predict(X train)
test predictions = model.predict(X test)
# Inverse transform the predictions to the original scale
train predictions = scaler.inverse transform(train predictions)
test predictions = scaler.inverse transform(test predictions)
# Plot the results
plt.figure(figsize=(12, 6))
plt.plot(prices, label='Actual Prices', color='b')
plt.plot(range(sequence length, train size), train predictions, label='Train
Predictions', color='g')
plt.plot(range(train size + sequence length, len(prices)), test predictions,
label='Test Predictions', color='r')
plt.legend()
```

plt.show()

OUTPUT:

Epoch 1/10 213/213 [======] - 8s 14ms/step - loss: 5.6418e-04
Epoch 2/10 213/213 [=====] - 3s 13ms/step - loss: 4.2065e-05
Epoch 3/10 213/213 [======] - 3s 15ms/step - loss: 4.1125e-05
Epoch 4/10 213/213 [=====] - 6s 27ms/step - loss: 4.0485e-05
Epoch 5/10 213/213 [=========] - 6s 27ms/step - loss: 4.4396e-05
Epoch 6/10 213/213 [========] - 5s 26ms/step - loss: 3.7652e-05
Epoch 7/10 213/213 [======] - 3s 14ms/step - loss: 3.3948e-05
Epoch 8/10 213/213 [======] - 3s 13ms/step - loss: 3.4644e-05
Epoch 9/10 213/213 [======] - 3s 14ms/step - loss: 3.2606e-05
Epoch 10/10 213/213 [======] - 4s 18ms/step - loss: 2.8910e-05
Train Loss: 0.0000, Test Loss: 0.0008 213/213 [===================================

EXECUTIVE SUMMARY:

The Stock Price Prediction Project aimed to develop a predictive model to forecast the future prices of selected stocks. The analysis was conducted using historical stock data, various machine learning algorithms, and statistical techniques. This report presents key findings, insights, and recommendations based on the analysis.

KEY FINDINGS:

1. Data Collection and Preprocessing:

- ✓ Collected historical stock data for the selected companies.
- ✓ Preprocessed the data, including handling missing values, scaling, and feature engineering.

2. Feature Importance:

- ✓ Conducted feature importance analysis to identify the most influential variables affecting stock prices.
- ✓ Identified key factors such as volume, moving averages, and financial indicators as significant contributors.

3. Model Selection and Performance:

- ✓ Evaluated multiple machine learning models including Linear Regression, Random Forest, and LSTM Neural Network.
- ✓ Found that LSTM Neural Network outperformed other models in terms of predictive accuracy.

4. Time Series Analysis:

- ✓ Conducted time series analysis to understand the temporal patterns in stock prices.
- ✓ Observed the presence of seasonality and trends that could impact future predictions.

5. Evaluation Metrics:

✓ Utilized metrics such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) to assess model performance.

✓ Achieved a low MAE and RMSE, indicating the model's effectiveness in making accurate predictions.

INSIGHTS:

1. Volatility and Market Sentiment:

- ✓ Identified that market sentiment and volatility play a significant role in stock price movements.
- ✓ Recommendations: Consider incorporating sentiment analysis and market volatility indices as additional features.

2. External Factors Impact:

- ✓ Recognized the influence of external factors (e.g., economic indicators, geopolitical events) on stock prices.
- ✓ Recommendations: Monitor and incorporate relevant external factors for enhanced predictive accuracy.

3. Model Generalization:

- ✓ Acknowledged the need for ongoing model retraining and adaptation to evolving market conditions.
- ✓ Recommendations: Implement a continuous learning process to ensure the model remains effective over time.

RECOMMENDATIONS:

1. Model Deployment and Monitoring:

- ✓ Deploy the LSTM Neural Network model in a production environment to generate real-time stock price predictions.
- ✓ Implement regular monitoring to detect and address any performance degradation.

2. Feature Updates:

➤ Continuously update and expand the feature set to incorporate relevant information and improve model accuracy.

3. External Data Integration:

➤ Integrate external data sources such as news sentiment analysis and economic indicators to enhance predictive capabilities.

4. Risk Management:

➤ Implement robust risk management strategies to mitigate potential losses in case of unexpected market shifts.

CONCLUSION:

The Stock Price Prediction Project successfully developed an accurate predictive model using LSTM Neural Network. By considering the insights and recommendations provided in this report, the model can be deployed in a production environment to support informed decision-making in stock trading and investment strategies.