Répondez directement sur l'énoncé en détaillant vos calculs et faisant des schémas des régions d'intégration.

Nom: CORRIGÉ

1. Évaluer le volume du solide situé sous le paraboloïde d'équation $z = x^2 + y^2$ et au-dessus du triangle \mathcal{T} de sommets (0,0), (0,2) et (1,1) dans le plan Oxy.

En appliquant Fubini en coupant en tranches verticales :

$$V = \int_0^1 \int_x^{2-x} (x^2 + y^2) \, \mathrm{d}y \, \mathrm{d}x$$

ou en tranches horizontales :

$$V = \int_0^1 \int_0^y (x^2 + y^2) dx dy + \int_1^2 \int_0^{2-y} (x^2 + y^2) dx dy.$$

Dans les deux cas, on trouve en évaluant les intégrales itérées $V = \frac{4}{3}$.

2. Tracer le domaine d'intégration et évaluer $\int_0^1 \int_{x^2}^x \frac{x}{y} e^y dy dx$.

Le domaine d'intégration est la région simple comprise entre les courbes $y=x^2$ et y=x, pour $0\leqslant x\leqslant 1$. Puisque l'on ne sait pas intégrer $\frac{e^y}{y}$ directement, changeons l'ordre d'intégration :

$$\int_0^1 \int_{x^2}^x \frac{x}{y} e^y \, dy \, dx = \int_0^1 \int_y^{\sqrt{y}} \frac{x}{y} e^y \, dx \, dy$$

$$= \int_0^1 \frac{e^y}{y} \frac{x^2}{2} \Big|_y^{\sqrt{y}} \, dy$$

$$= \frac{1}{2} \int_0^1 (e^y - ye^y) \, dy$$

$$= \frac{1}{2} (2e^y - ye^y) \Big|_0^1 = \frac{e - 2}{2}.$$

3. Évaluer $\iint_{\mathcal{D}} y \, dA$, où \mathcal{D} est le parallélogramme de sommets (0,0), (1,3), (3,2) et (2,-1).

Le domaine d'intégration est le parallélogramme engendré par $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ et $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, il pourrait donc être intéressant de travailler en coordonnées par rapport à cette base, *i.e.* utiliser le changement de variables

$$\varphi: \begin{bmatrix} u \\ v \end{bmatrix} \mapsto \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}.$$

On a alors

$$\iint_{\mathcal{D}} y \, \mathrm{d}A = \iint_{\mathcal{D}'} (-u + 3v) \left| \mathrm{jac}(\varphi) \right| \, \mathrm{d}A' = \int_0^1 \int_0^1 (-u + 3v) \, 7 \, \mathrm{d}u \, \mathrm{d}v = -7 \, \frac{u^2}{2} \bigg|_0^1 \, v \bigg|_0^1 + 21 \, u \bigg|_0^1 \, \frac{v^2}{2} \bigg|_0^1 = \frac{14}{2} = 7.$$

4. Calculez l'hypervolume de $\mathcal{B} = \{(x, y, z, w) \in \mathbf{R}^4 \mid x^2 + y^2 + z^2 + w^2 \leqslant 1\}$, l'hyperboule unité dans \mathbf{R}^4 .

Une façon de procéder est de découper \mathcal{B} en tranches « horizontales » $w=\mathrm{c^{te}}$: celles-ci sont des boules (tridimensionnelles) de rayon $\sqrt{1-w^2}$. On peut donc exprimer l'hypervolume de \mathcal{B} en intégrant le volume de ces tranches auxquelles on donne une épaisseur infinitésimale dw:

$$H = \int_{-1}^{1} \frac{4\pi}{3} (1 - w^2)^{\frac{3}{2}} dw.$$

Pour évaluer l'intégrale, le plus simple est de poser $w=\sin\theta$ de façon à avoir

$$\begin{split} H &= \frac{8\pi}{3} \int_0^{\pi/2} \cos^4 \theta \, \mathrm{d}\theta = \frac{8\pi}{3} \int_0^{\pi/2} \left(\frac{1 + \cos 2\theta}{2} \right)^2 \mathrm{d}\theta \\ &= \frac{8\pi}{3} \int_0^{\pi/2} \left(\frac{1 + 2\cos 2\theta + \frac{1 + \cos 4\theta}{2}}{4} \right) \mathrm{d}\theta \\ &= \frac{8\pi}{3} \cdot \frac{1}{4} \left(1 + \frac{1}{2} \right) \frac{\pi}{2} = \frac{\pi^2}{2}. \end{split}$$

Étonnant, non?