Université de Picardie Jules Verne

UFR sciences. Année 2024-2025.

Master de Mathématiques : M1-Analyse Fonctionnelle

Devoir N.1

Exercice 1

- 1. En vous appuyant sur le TD, traiter les questions 4, 5 et 6 de l'exercice 1 du TD 1.
- 2. En suivant le cheminement abordé en TD, calculer la norme de D définie en B., exercice 1, en prenant pour norme sur E la norme N_3 .

Exercice 2 (d'après partiel 2022)

Soit $I = [a, b] \subset \mathbb{R}$. Soient $C^0(I)$ le \mathbb{R} -espace vectoriel des fonctions continues $f: I \to \mathbb{R}$ et N une norme sur $C^0(I)$. On suppose que :

- a. $(C^0(I), N)$ est un \mathbb{R} -espace de Banach.
- b. Pour toute suite (f_n) qui converge dans $(C^0(I), N)$ vers une limite f, on a (f_n) converge simplement vers f sur I.
- 1. Démontrer que, pour tout $x \in E$, l'application $\delta_x: (C^0(I), N) \to I\!\!R$ définie par

$$\delta_x(f) = f(x) \quad \forall f \in I$$

est linéaire et continue de $(C^0(I), N)$ dans IR et puis que

$$\forall f \in I, \quad \sup_{x \in I} |\delta_x(f)| < +\infty.$$

2. En déduire que

$$\sup_{x\in I} \|\delta_x\|_{(C^0(I),N)'} < +\infty.$$

3. Démontrer que la norme N et la norme $\|.\|_{\infty}$ sont équivalentes sur $C^0(I)$.

Exercice 3

Soient E un espace vectoriel normé et $M \subset E$, un sous-espace vectoriel. E' représente l'ensemble des formes linéaires continues sur E.

On pose $M^{\perp} = \{ f \in E' \mid f(x) = 0, \ \forall x \in M \}$. Pour $N \subset E'$, N sous-espace vectoriel, on pose $N^{\perp} = \{ x \in E \mid f(x) = 0, \ \forall f \in N \}$.

1. Montrer que M^{\perp} (respectivement N^{\perp}) sont des sous-espaces vectoriels

- fermés de E' (respectivement de E). 2. Montrer que $\bar{M} \subset (M^{\perp})^{\perp}$. 3. Démontrer que $(M^{\perp})^{\perp} \subset \bar{M}$ (indication : raisonner par l'absurde et appliquer le théorème de Hahn-Banach).