1

Show that the following two statements are equivalent:

(1.a)

- 1. $f: B \to C$ is injective.
- 2. For any set A and any two functions $g, h : A \to B$ such that $f \circ g = f \circ h$, we must have g = h.

(1.b)

- 1. $f: A \to B$ is surjective.
- 2. For any set C and any two functions $g, h : B \to C$ such that $g \circ f = h \circ f$, we must have g = h.

2

Let $f: A \to B$ and $g: B \to C$ be two bijective functions. Show $g \circ f$ is bijective.

3

Let $f: A \to B, C, D \subset A$, and $P, Q \subset B$. In lecture, you learned

$$f(C \cup D) = f(C) \cup f(D). \tag{1}$$

Show

$$f(C \cap D) \subset f(C) \cap f(D); \tag{2}$$

$$f^{-1}(P \cup Q) = f^{-1}(P) \cup f^{-1}(Q); \tag{3}$$

$$f^{-1}(P \cap Q) = f^{-1}(P) \cap f^{-1}(Q). \tag{4}$$

4

Let $f: X \to Y$ be a function between sets. Let $A, B \subset X$ be subsets.

(4.a) Show

$$f(A)/f(B) \subset f(A/B).$$
 (5)

(4.b) Give an example function that shows the other direction is false.

5

Let $f: X \to Y$ be a function between sets and $U \subset A$ and $V \subset B$.

(5.a) Show that

$$f(f^{-1}(V)) \subset V$$
 and $U \subset f^{-1}(f(U))$. (6)

(5.b) Give an example that shows the above relation cannot be equality.

6

If two sets A and B have the same cardinally, we write $A \sim B$. Show that \sim is an equivalence relation on sets.

7

Decide for which natural numbers the inequality $2n > n^2$ is true. Prove your claim using induction.