DESIGN AND IMPLEMENTATION OF IMAGE INFORMATION RETRIEVAL

Iker Vázquez López

Images

- How to represent a image?
 - Color histograms.
 - Shape.
 - Texture.
 - Smoothness.
 - Metadata

•

Image features

 We can extract features from the image and create a vector of features.

 Due to the high number of features, this vectors are called high-dimensional spaces.

Matching features

Content Based Information Retrieval

Feature vector database


```
# F1 F2 F3 F4 F5 F6 F7 ... Fn

1
2
...
n
```

Image similarity

- With the feature vectors we can search for similar vectors stored in our database.
 - The use K-Nearest Neighbor algorithm makes this possible.

Image similarity

Distances:

- Manhattan
- Euclidean
- Minkowski
- Maximum

For this application Manhattan distance performs best through empirical evaluations in their previous research.

Indexing all the data

- X-tree structure
 - It is a tree to have the vectors of features stored with a good indexing.
 - The similar vectors are stored in a group, and when the vectors are very different they are stored in another group.

Overview

Results

Results

Applications

Applications

