

Introduction to data Science and Machine Learning

MISSING VALUES

- Quiz
- Use of dropout layers
- Handling of missing values
- (Support Vector Machines)

QUIZ

NEURONAL NET WITH DROPOUT LAYER

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer, Dense, BatchNormalization, Dropout
from tensorflow.keras.optimizers import Adam
model = Sequential([
  InputLayer(input shape=(training features.shape[1], )),
  BatchNormalization(),
  Dense(10, activation='relu'),
  Dropout(.3),
  Dense(4, activation='relu'),
  Dense(1)
7 \
```

Layer (type)	Output Shape	Param #
batch_normalization (Batch Normalization)	(None, 34)	136
dense (Dense)	(None, 10)	350
dropout (Dropout)	(None, 10)	0
dense_1 (Dense)	(None, 4)	44
dense_2 (Dense)	(None, 1)	5

Total params: 535 (2.09 KB)

Trainable params: 467 (1.82 KB)

Non-trainable params: 68 (272.00 Byte)

DROPOUT LAYER CHARACTERISTICS

- Sets individual activations in the previous layer to zero at each iteration step with the defined dropout probability.
- Introduces redundancy into the network.
- Helps to prevent overfitting.
- Is only applied during training; during inference, all neurons are always used.

HANDLING OF MISSING VALUES

REASONS FOR MISSING VALUES

Missing responses in surveys

 Merging data from different sources with varying variable categories or time steps

- Technical issues in data collection or recording

TYPES OF MISSING VALUES

- Missing Completely at Random (MCAR)

- Missing at Random (MAR)

Missing not at Random (MNAR)

BREAKOUT

Discuss solutions for the following possible cases in the weather dataset:

Temperature data for a month with missing data for two days:

[20, 19, 23, 19, 17, 17, NA, 24, 16, 20, 22, 21, 20, 19, 17, 22, 24, 21, 23, 15, 18, 18, 21, 19, 19, 21, 21, 19, 23, NA]

Temperature data for a month with missing data for a week:

[18, 15, 21, 15, 24, 16, 21, 16, 22, 18, 17, 25, 22, 21, 16, 19, 17, 23, NA, NA, NA, NA, NA, NA, NA, NA, 21, 20, 20, 16, 15]

Weather code data for 20 days with missing data for one day:

[10, 60, NA, 95, 61, 1, 29, 81, 21, 25, 25, 80, 80, 63, 81, 80]

HANDLING OF MISSING VALUES

- Listwise deletion of affected cases
- Simple donor-based imputation:
 - Mean imputation (or median or mode)
 - Based on "similarity" (hot-deck imputation)
 - By minimal distance (k-nearest neighbors)

- Simple model-based imputation
 - Iterative regression
- Multiple imputation

HOT-DECK IMPUTATION

By Domains

By Correlation

K-NEAREST NEIGHBORS (KNN)

Search for the k cases with the minimal distance

- Different distance measurements depending on the variable type
- Aggregation of distances using a sum function

Various approaches to calculate the imputation value:

- The value with the minimal distance is taken (1NN)
- Random selection from the k cases
- Calculation from the k cases using the (weighted mean)

1) Prediction of missing values in A

A	В	С	D
5	34	NA	1
1	22	NA	4
NA	65	55	2
4	87	27	2
NA	23	10	1

1) Prediction of missing values in A

A	В	С	D
5	34	NA	1
1	22	NA	4
5	65	55	2
4	87	27	2
2	23	10	1

2) Prediction of missing values in C using the imputed values from A

A	В	С	D
5	34	NA	1
1	22	NA	4
5	65	55	2
4	87	27	2
2	23	10	1

2) Prediction of missing values in C using the imputed values from A

A	В	С	D
5	34	32	1
1	22	16	4
5	65	55	2
4	87	27	2
2	23	10	1

3) Prediction of missing values in A using the imputed values from C

A	В	С	D
5	34	32	1
1	22	16	4
NA	65	55	2
4	87	27	2
NA	23	10	1

→ Repeat until no further changes occur

- 1) Go through all variables of the dataset step by step.
- 2) For each variable, build a regression model based on all other variables.
- 3) Predict all missing values.
- Now repeat steps 1) to 3) again and re-estimate the missing values—this time using the already imputed missing values.
- Repeat this process until the imputed values no longer change.

IMPUTATION EXAMPLES

BREAKOUT

- Perform an initial imputation on your dataset.

 Use the code provided in the example notebook to assist you.

CALCULATION OF THE IMPUTATION ERROR

- 1. Creating a complete dataset ("reference dataset")
- 2. Randomly removing data
- 3. Imputing the missing data using the chosen method (possibly several methods for comparison)
- 4. Comparing the imputed data with the original data, e.g., by calculating
 - the mean squared error (MSE) or
 - the absolute error
- 5. Evaluating the error (and adjusting the imputation method if needed)

LEARNING RESOURCES

 Watch <u>this video</u> (5 minutes) on analyzing time series data.

TASKS

 Choose one (or several) methods to replace the missing values in your dataset.

Divide the tasks well within your team: Who will work on data optimization, and who on model optimization?