Muchammad Daniyal Kautrar 21/479067/tk/52000

HW2.FFKG

11 mad an the day

An ideal gar (with number of moler n and molar specific heat Cv) inside a sealed container ir expanded following tour different processes shown in the figure above . Exprets only in terms of n, Cu, to, Vo, and R.

A. Retermine the value of PF and TF in these processes!

* Process A.

We will use the PV:nRT equation. Since n and R are constant, we can simply sy and use the P.V equation to compare it with another position.

- For process A, Compare the I and 2 position to Find Tx.

 $\frac{P_1 V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$, since $P_1 = P_0 = P_2$, $V_1 = V_0$, $V_2 = 2 V_0$ and we can let $T_1 = T_0$, $T_2 = T_F$.

Po. Vo = % . 2 Vo

To TF = 2 To . So, TF is equal to 2T. Irobaric process occur in Portion I and 2.

To Find Pf, we can compare the 2 and 3 position.

B2. V2 = P2. V3, since trothermal process occurs. P2 = Po, P3 = Pf, V2 = 2Vo, V9 = 6Vo, T2: 2TO, T3: 2000 To

Po. 246 = PF. 646 =7 PF = Po . So, PF ir equal to Po . But, we contexpress in term of Po.

So, the PF will be expressed by Party Pa. V3 = NRT3., with n and R constant

PF.600: NF 270 => PF: NFTO.

- We can one Position 2 and 3 to find Pf. since that change is isothermal process, The temperature is constant.

To find Tf. we can we the portion I and 2, since that change it iso chosic process, the volume is constant

-s. since PF is expressed in term of Po. We can express it in other form.

B. Determine the ammount of heat & added into therystem.

* PROCUS A.

since the Que position 2 and ? is adiabatic process, there is no charge in heat of the system or DQ = 0.

For the position I and 2. the process it isochoric process which means there is Q = n (CV+R) Bt

 $Q = n(Cv+R).(T_f-T_0)$, since $T_f = 2T_0$, T_f-T_0 is equal to T_0

so, the amount of heat of added to the system is equal to n(Cv+R). To, as shown in the equation orbove.

* Process B

-o the position I and 2 is isocheric process. We know that there is some heat andded

On= n. CV. ST

Q12: n.Cv. (Tf. To), since TF = 3To, Tf-To = 2To.

Qu = n.Cv. 2To

The position 2 and 3 is isothermal process. We can calculate the amount of heat added

Q23 = nRtf In VE, since VF = 300, and Vox and Tp = 3 To

Q23=3n PTP (n 340 Q23:30 FTp In 3.

-o sum of both Que and Que, we get the total amount of heat Q added.

Q=Q12+Q13=nGv.2To+3nRTolns

Q=n.To(2.Cv+ 3Rln3)

Problem 2.

MA, CA, TA MB, CB, TB

Metal block with mous Ma and initial femperature TA touches another metal block with mass Me and initial temperature TB. Suppose that the specific heat of two metal are

- A. Determine the pinal temperature TF of the two metal blocks!
 - when he different metal blocks with their respective mour, initial temperature, and theat specific heat hother, there will be thermal equilibrium with given equation Qn + Qs=0
 - =) MA.CA. DTA + MB.CC.DTB.=0, Where DT is the difference between initial temperature and equilibrium or final temperature.

MA.CA (TF-TA) + MB.CB (TF-TB)=0

MA.CA.TF - MA.CA.TA + MB.CB.TF - MB.CB.TB = 0

TF (MA.CA + MB.CB) = MA.CA.TA + MB. CB. TB

TF = MA. CA. TA * MB. CB. TB MA.CA + MB.CB.

So, the final temperature is $T_F = MA.E_P.T_A + Mc.C_B.T_R$ $MA.E_A + M_B.C_B.$

B. Determine the STA and STO!

* DTA = TF - TA.

We can sublike to prom previous equation.

OTA = MA. CA. TA + MB. CB. TB - TA

MA. CA + MB. CB

= MA.CA.TA + MB.CB.TD - MA.CA.TA - MB.CB.TA My. CA + MB. CB

= MB. CB. TB - MB. CB. (TB-TA)

MA. CA + MB. CB

MA. CA + MB. CB

MA. CA + MB. CB

So, the temperature change of metal A is DTA: MB.CB. (TB-TA)

MA.CA + MB.CO.

* DTO = TF-TB

Also, are can sublighte to From previous equations.

DTB = MA. CA.TA + MB.CQ.TB

MA.CA + MB.CQ

TB

= MA. CA. TA + MB. CB. TB - MA.CA. +B-MB.CB. TB MA. CA + MB. CB

= MA.CA.TA - MA.CA.TC = MA.CA.(TA-TB)

MA.CA + MB.CB = MA.CA.(TA-TB)

MA.CA + MB.CB

To, the temperature change of metal B is ATO: MA.CA (TA-TB) MA. CA + MB. EB.

- C. Let arrune that MA=MB. and ISTAIDIDTOI. Which metal block har higher specific heat?
 - * Since both metal have same mass, we can just compare the temperature change and specific heat.

Quet CO. INTAI: CO. 10TOI

S CB = IDTAI CA IDTAI

Since 1 DTAI > 1 DTBI as the Goods given condition, we know that From that comparison that CO7 CA. To, that the Metal B has higher specific heat. Proved by the sondition above condition.

Problem 3.

Inside the realed container with temperature T, there exist No atoms/moleculer of gar with morrow. The speed durtribution of the gar atoms/moleculet follows

Nv(v) = 4R No. (m 20 KOT) 3/2 V2 e-mv2/2 ROT

Which called ar a Maxwell-Boltzmann distribution. The Sistribution have speed between Vand Vx dv it given by

dN = Nu (v)du

To that when we want to determine the total atom/ molecular that have speed between V. and Vz., we need to perform the equation

Prove the following statement.

Prove the following statement.

The following statement.

The following statement is a statement of the following statement.

a. RMS of speed

VAMS: V3KOT

* VRIW: VII

ν̄² = 5° ν² Νυ(σ) dν , subtituting from the equation above we get

V2 = 5° v2. 4n No. (m 2n KeT) 3/2 v2 e-mv2/2KeT dv

C. Most probable speed of the gas atoms/molecules is given by VMP = /2KBT

of since most probable speed or Vonp is the maximum value of distribution (Nu(v)). We can calculate when the derivative ir egunl to zero.

$$4n\left(\frac{m}{2nKcT}\right)^{\frac{2}{2}}\left(2Ve^{-mv^{2}/2KcT}+V^{2}\left(-\frac{mv}{KcT}\right)e^{-mv^{2}/2KcT}\right)=0$$

$$4n\left(\frac{m}{2nk\sigma T}\right)^{\frac{3}{2}}e^{-mv^{2}/2k_{B}T}$$
 $V\left(2-\frac{m}{k_{B}T}\right)^{2}=0$

thur, we have two possible solution

$$V=0$$
 or $2-\frac{m}{kgr}v^2=0$

Since V=0 is the minimum valve we wrethe 2-m V=0.

Since we calculate the most probable speed, V= VMp, thus, we know that the condition on satirfied and the formula green is proven.