Kevin LE GRAND Harold PETIARD Antoine ANCELIN

DETECTION D'INCENDIE

CONTEXTE:

Les services de secours souhaitent améliorer leur capacité de réponse en cas d'incendie, et pour cela ils ont exprimé le besoin de développer une application IA de détection d'incendie. SOMMAIRE: OO

INTRO / **Organisation**

01

Préparation de données

02

Transfert Learning

Application streamlit

Démonstration

INTRODUCTION

- Labelisation des données.
- Entraînement d'un modèle à reconnaître un incendie (flammes et fumées) via YoloV5.
- Intégration du modèle dans une application Streamlit permettant la détection d'un incendie depuis une image, une vidéo ou bien une webcam.
- Enregistrement en base de données et consultation depuis l'application.

Organisation

Tâches					
Répartition des tâches					
Labellisation					
Entrainement					
Base de données					
App Streamlit					
Test					
Dépôt					

CONCEPTS

Labélisation : selectionner manuellement, sur des images, les zones où apparraissent des flammes et/ou de la fumée.

Outils: makesense.ai

CONCEPTS

Transfert Learning : utiliser un modèle déja entrainer, dans notre cas, YoloV5, afin de continuer son entrainement en lui fournissant les images précédement labélisées.

Utilisation des poids de Yolov5 pour accélérer l'entrainement avec les nouvelles images labélisées.

Possibilité de réutilissation des poids les plus performant lors de l'entrainement pour réaliser nos détections.

Déroulement de l'entrainement

- Uploader YoloV5 sur son ordinateur depuis le depôt github
- Charger nos image dans un dossier datasets
- Créer un fichier .yaml pour definir le chemin de nos images labélisées et les labels
- Utiliser GoogleColab pour accélerer l'entrainement
- Deux solutions possible pour paramétrer l'entrainement :
 - Modifier directement le train.py
 - o Ajouter les paramétres dans la ligne de commande
- Faire un test sur une ou plusieur images

!python yolov5/train.py --data yolov5/data/feu.yaml --epochs 15 --batch-size 16

Validating yolov5/runs/train/exp3/weights/best.pt...
Fusing layers...

Model summary: 157 layers, 7015519 parameters, 0 gradients

ary:	15/ layers,	/015519	parameters,	0 gradients		
	Class	Images	Instances	P	R	mAP50
	all	90	178	0.664	0.635	0.648
	feu	90	123	0.61	0.805	0.716
	fumee	90	55	0.719	0.465	0.581

Amélioration du modèle:

Amélioration du modèle possible :

- o Ajouts de plus d'image avec de la fumée
- Utiliser un autre modèle pré-entrainé de Yolov5 (ici on a utilisé yolov5s.pt)

En utilisant le modèle pré-entrainé supérieur de yolov5 (yolov5m.pt) les performances sont effectivement améliorées:

!python yolov5/train.py --data yolov5/data/feu.yaml --weights yolov5m.pt --epochs 20 --batch-size 16

yolov5s

Validating yold Fusing layers.		in/exp3/ι	weights/best	.pt		
Model summary:	157 layers,	7015519	parameters,	0 gradients		
	Class	Images	Instances		R	mAP50
	all	90	178	0.664	0.635	0.648
	feu	90	123	0.61	0.805	0.716
	fumee	90	55	0.719	0.465	0.581

yolov5m

Validating yolov5/runs/train/exp5/weights/best.pt Fusing layers									
Model summary:	212 layers,	20856975	parameters,	0 gradients,	47.9	GFLOPs			
	Class	Images	Instances	P	R	mAP50			
	all	90	178	0.784	0.707	0.73			
	feu	90	123	0.776	0.862	0.843			
	fumee	90	55	0.792	0.553	0.617			

STRUCTURE DE L'APPLICATION:

- 1. Insertion d'une source dans l'application.
- 2. Réalisation de la détection par l'IA.
- 3. Affichage de la détection dans l'application et stockage en base de données.
- 4. Création d'un onglet archive permettant la visualisation de toutes les détections effectuées dans l'application via l'archivage en base de données.

Schéma de la base de données :

- O Date: datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S")
- Image: image sous format binaire
- imageTransform: idem que image mais avec détections

- Date: datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S")
- Original : Lien vers la vidéo d'origine
- AvecDetection : Lien vers la vidéo avec détections

04 Démonstration

Remerciments – Liens utiles

Merci à Charley et David pour la labélisation des images

Merci à Sylvestre Apetcho pour son tuto sur yoloV5: https://youtu.be/loFtqLbtk6A

Site pour la labélisation : https://www.makesense.ai

