Question	Scheme	Marks	
9(a)	$AC = \sqrt{12^2 + 12^2} = \sqrt{288} = 12\sqrt{2}$	M1A1 [2]	
(b)	$12\sqrt{2}$		
	$x = \frac{12\sqrt{2}}{\cos 30^{\circ}} = \sqrt{96} = (4\sqrt{6})^{*}$	M1A1	
		cso [2]	
(c)	$\cos \angle AOB = \frac{96 + 96 - 12^2}{2 \times \sqrt{96} \times \sqrt{96}} \Rightarrow \angle AOB = 75.522^{\circ}$	M1A1	
	Area $\triangle OAB = \frac{1}{2} \times \sqrt{96} \times \sqrt{96} \times \sin' 75.522^{\circ} = (46.4758)$	M1	
	$4 \times 46.4758 + 12^2 = 329.90 \Rightarrow \text{Area} = 330 \text{ [m}^2\text{]}$	M1A1 [5]	
(d)			
	Let Y on OB be the foot of the perpendicular from A to OB $AY = 12\sin 52.239^{\circ} = (9.4868)$	M1 A1	
	$\cos \angle AYC = \frac{'9.4868'^2 + '9.4868'^2 - 288}{2 \times '9.4868' \times '9.4868'} \Rightarrow \angle AYC = 126.87 \approx 127^{[o]}$	M1A1	
		[4]	
	Total 13 mark		

Question	Notes	Marks
9(a)	For using Pythagoras theorem on triangle ABC or triangle ADC	
	$AC = \sqrt{12^2 + 12^2} = \dots$	M1
	For the correct value of AC	A1
	$AC = \sqrt{288} = 12\sqrt{2}$	[2]
(b)	Let the intersection of AC and BD be X	
	Uses any appropriate trigonometry on triangle <i>OAX</i>	
	$12\sqrt{2}$	
	For example; $x = \frac{\overline{2}}{\cos 30^{\circ}} = \dots$	M1
	OR	
	$\frac{\sin 120^{\circ}}{12\sqrt{2}} = \frac{\sin 30^{\circ}}{OA} \Rightarrow OA = \dots \text{ OR } \left(12\sqrt{2}\right)^{2} = x^{2} + x^{2} - 2 \times x \times x \cos 120 \Rightarrow x = \dots$	
	For the correct value of x	
		A1 cso

	$x = \sqrt{96} = \left(4\sqrt{6}\right) *$	[2]
(c)	For using trigonometry to find angle $\angle AOB$	
	$\cos \angle AOB = \frac{96 + 96 - 12^2}{2 \times \sqrt{96} \times \sqrt{96}} = \dots$	M1
	$2 \times \sqrt{96} \times \sqrt{96}$	M1
	$\angle AOB = 75.522^{\circ}$	A1
	Area of triangle <i>OAB</i>	
	Area = $\frac{1}{2} \times \sqrt{96} \times \sqrt{96} \times \sin' 75.522^{\circ} = (46.4758)$	M1
	Total area of the pyramid = $4 \times 46.4758 + 12^2 = (329.90)$	M1
	For the correct final area = awrt 330 (cm ²)	A1
	ATT	[5]
	ALT Height of the triangle of one of the triangular faces:	
		M1
	$h = \sqrt{\left(4\sqrt{6}\right)^2 - 6^2} = \dots$	
	$h = 2\sqrt{15}$	A1
	Area of triangle $OAB = \frac{1}{2} \times 2\sqrt{15} \times 12 = 12\sqrt{15} = (46.4758)$	M1
	Total area of the pyramid = $4 \times 12\sqrt{15} + 144 = (329.903)$	M1
	For the correct final area = awrt 330 (cm ²)	A1
	Allow an exact answer of $48\sqrt{15} + 144$ (cm) ² oe	
(d)	$\cos \angle AOB = \frac{96 + 96 - 12^2}{2 \times \sqrt{96} \times \sqrt{96}} = 75.522^{\circ}$	
	or	
	$\angle OBC = \frac{180^{\circ} - 75.522^{\circ}}{2} = 52.239^{\circ}$	
	Let Y on OB be the foot of the perpendicular from A to OB	
	Length $AY = 12 \sin 52.239^\circ = (9.4868)$	M1A1
	OR	
	Length $AY = 4\sqrt{6} \sin 75.522^{\circ} = (9.4868)$	[M1A1]
	For the appropriate trigonometry on triangle <i>AYC</i> to find angle <i>AYC</i>	
	$\cos \angle AYC = \frac{'9.4868'^2 + '9.4868'^2 - 288}{2 \times '9.4868' \times '9.4868'} \Rightarrow (\angle AYC = 126.87)$	M1
	Angle between plane AOB and plane OBC =awrt 127[°]	A1
		[4]
		Total 13 marks