Searching

Kecerdasan Buatan

Rio Ariestia Pradipta

Pembahasan

- Sejarah singkat
- Fungsi
- Manfaat
- Jenis

Sejarah Singkat

Latar Belakang

Metode searching (pencarian) dalam Kecerdasan Buatan (Artificial Intelligence / AI) ditemukan karena adanya kebutuhan mendasar dalam menyelesaikan masalah pengambilan keputusan dan pemecahan masalah secara otomatis menggunakan Langkah-Langkah yang sistematis.

Penyelesaian Masalah – tanpa Searching

Sebelum ditemukannya dan diterapkannya metode searching dalam Kecerdasan Buatan (AI), pengambilan keputusan dan pemecahan masalah dilakukan dengan cara-cara yang lebih manual, intuitif, simbolik, atau berbasis aturan tetap (rule-based).

Contoh

- Dokter mendiagnosis pasien berdasarkan pengalaman klinis dan observasi, tanpa sistem penunjang keputusan.
- Pilot menavigasi dengan peta fisik dan pengetahuan geografi, tanpa bantuan sistem pencarian rute otomatis.
- Sistem diagnosa medis awal menyusun ratusan aturan IF-THEN. Jika gejala cocok, maka hasil keluar. Tapi sistem tidak bisa "mencari" solusi bila gejala tidak 100% cocok.
- Banyak masalah diselesaikan dengan rumus matematis, algoritma tetap, atau metode analitik. Cocok untuk masalah yang terdefinisi dengan baik dan deterministic, tidak cocok untuk eksplorasi.

Keterbatasan Metode tanpa Searching

Aspek	Penjelasan (tanpa Searching)
Fleksibilitas	Sangat terbatas (aturan kaku)
Penanganan Ketidakpastian	Lemah
Skalabilitas	Tidak mampu menangani ruang Solusi besar
Kemampuan Belajar	Tidak ada (semua berbasis aturan tetap)
Efisiensi Solusi	Tidak Optimal

Metode pencarian (searching) muncul sebagai **terobosan penting** karena:

- Mengizinkan Al menjelajahi ruang solusi secara sistematis dan cerdas.
- Dapat diterapkan untuk masalah kompleks dan tidak memiliki rumus pasti.
- Menjadikan mesin lebih mirip manusia dalam mempertimbangkan berbagai kemungkinan solusi.

Fungsi

Fungsi

- 1. Menemukan Solusi dari suatu Masalah
- 2. Menjelajahi Ruang Solusi (Search Space)
- 3. Membandingkan Alternatif
- 4. Mengotomatisasi Pemikiran dan Perencanaan

Menemukan Solusi dari Masalah

Menemukan jalur (path) atau urutan tindakan (sequence of actions) yang mengubah keadaan awal (initial state) menjadi keadaan tujuan (goal state).

Q Contoh:

- 1. Mencari rute terpendek dari kota A ke kota B.
- 2. Menyelesaikan teka-teki atau permainan.
- 3. Menentukan langkah dalam perencanaan robot.

Menjelajahi Ruang Solusi (Search Space)

- a) Fungsi searching adalah menjelajahi berbagai kemungkinan solusi yang tersedia.
- b) Dalam bentuk graf atau pohon pencarian, setiap node adalah keadaan, dan edge adalah aksi.

Membandingkan Alternatif

- Dengan metode pencarian (misalnya A*, greedy), AI bisa membandingkan kemungkinan berdasarkan kriteria tertentu (biaya, waktu, risiko).
- Ini memungkinkan pengambilan keputusan yang lebih rasional.

Mengotomatisasi Pemikiran dan Perencanaan

- 1. Fungsi searching meniru cara manusia berpikir secara sistematis dan logis, namun dilakukan oleh komputer;
- 2. Cocok untuk:Perencanaan (planning);
- 3. DiagnosisPermainan strategi;
- 4. Navigasi;
- 5. dll.

Manfaat

Fungsi Utama Searching:

"Membantu sistem cerdas menemukan solusi atau keputusan terbaik dari berbagai alternatif dalam suatu ruang kemungkinan (search space)."

Manfaat untuk Manusia:

"Memberikan kemampuan otomatisasi, efisiensi, dan kecerdasan dalam berbagai aplikasi nyata, dari navigasi hingga diagnosis medis."

Manfaat dalam Kehidupan Sehari-hari

Aplikasi	Manfaat
Google Maps	Menemukan rute tercepat atau terpendek
Pencarian di Google/Search Engine	Menemukan informasi paling relevan
Sistem Rekomendasi (Netflix, YouTube)	Mencari konten yang paling cocok untuk pengguna
Game Al	Komputer dapat bermain catur, strategi, atau board game
Robotika dan Drones	Navigasi otomatis ke tujuan tanpa tabrakan

Dunia Profesional dan Industri

Bidang	Manfaat Searching
Medis	Mendiagnosis penyakit berdasarkan gejala (AI diagnostic tools)
Manufaktur	Merancang urutan produksi optimal
Cybersecurity	Menemukan pola serangan dan solusi pertahanan
Teknologi Finansial	Mencari strategi investasi terbaik
Pendidikan	Menyediakan tutor cerdas yang bisa menyesuaikan materi berdasarkan kemajuan siswa

Kriteria Pencarian

Kriteria

- Completeness Komplit
 - Apakah metode menjamin penemuan Solusi, jika ada?
- Time Complexity Waktu
 - Berapa lama waktu yang diperlukan untuk menemukan Solusi?
- Space Complexity Ruang Memori
 - Berapa banyak memori yang diperlukan?
- Optimatlity Optimal
 - Apakah metode tersebut menjamin menemukan Solusi yang tepat jika ada beberapa Solusi berbeda?

A = 4 liter

B = 3 liter

Mendapatkan air sebanyak 2 liter

pada galon A?

Persyaratan untuk mencari solusi

- Initial State Keadaan Awal
- Goal State Tujuan
- Operator/Rule Usaha yang dilakukan

Penerapan pada Kasus Galon

1. Identifkasi ruang keadaan (State Space)

Permasalahan ini dapat digambarkan sebagai himpunan pasangan bilangan bulat:

X = jumlah air yang diisikan ke ember 4 liter (galon A)

Y = jumlah air yang diisikan ke ember 3 liter (galon B)

- Ruang keadaan = (x,y) sedemikian hingga $X \in \{0,1,2,3,4\}$ dan $y \in \{0,1,2,3\}$
- 2. Keadaan awal dan tujuan

Keadaan awal: kedua galon kosong = (0,0)

Tujuan galon A berisi 2 liter air = (2,0) dengan sembarang n

3. Keadaan ember (cont....)

Penerapan pada Kasus Bejana

3. Keadaan Ember bisa digambarkan sebagai berikut:

4. Aturan-aturan

- Diasumsikan kita dapat mengisi ember air itu dari pompa air,
- membuang air dari ember ke luar,
- menuangkan air dari ember yang satu ke ember yang lain.
- Kita buat beberapa aturan-aturan yang dapat digambarkan sebagai berikut :

Aturan	Jika	Maka
ke-		
1	(x,y)	(4,y)
	x < 4	Isi ember A
2	(x,y)	(x,3)
	y < 3	Isi ember B
3	(x,y)	(x-d,y)
	x > 0	Tuang sebagian air keluar dari ember A
4	(x,y)	(x,y-d)
	y > 0	Tuang sebagian air keluar dari ember B
5	(x,y)	(0,y)
	x > 0	Kosongkan embel A dengan membuang airnya
6	(x,y)	(x,0)
	y > 0	Kosongkan ember B dengan membuang airnya
7	(x,y)	(4,y-(4-x))
	$x+y \ge 4 \text{ dan } y > 0$	Tuang air dari ember B ke ember A sampai ember A
		penuh
8	(x,y)	(x-(3-y),3)
	$x+y \ge 3 \operatorname{dan} x > 0$	Tuang air dari ember A ke ember B sampai ember B
		penuh
9	(x,y)	(x+y,0)
	$x+y \le 4 \text{ dan } y > 0$	Tuang seluruh air dari ember B ke ember A
10	(x,y)	(0,x+y)
	$x+y \le 3 \text{ dan } x > 0$	Tuang seluruh air dari ember A ke ember B
11	(0,2)	(2,0)
		Tuang 2 galon air dari ember B ke ember A

- 5. Representasi Ruang keadaan dengan pohon pelacakan
- Pencarian suatu solusi dapat dilukiskan dengan menggunakan pohon.
- Tiap-tiap node menunjukkan satu keadaan.
- Jalur dari parent ke child ,menunjukkan 1 operasi.
- Tiap node memiliki node child yg menunjukkan keadaan yg dapat dicapai oleh parent.

Solusi yang ditemukan

Isi ember A	Isi ember B	Aturan yg dipakai
0	0	1
4	0	8
1	3	6
1	0	10
0	1	1
4	1	8
2	3	Solusi

Solusi yang ditemukan

Isi ember A	Isi ember B	Aturan yg dipakai
0	0	2
0	3	9
3	0	2
3	3	7
4	2	5
0	2	9
2	0	Solusi

Solusi 1

Isi ember A	Isi ember B	Aturan yg dipakai
0	0	1
4	0	8
1	3	6
1	0	10
0	1	1
4	1	8
2	3	Solusi

Solusi 2

Isi ember A	Isi ember B	Aturan yg dipakai
0	0	2
0	3	9
3	0	2
3	3	7
4	2	5
0	2	9
2	0	Solusi

Dari hasil Solusi yang didapatkan bisa kita gambarkan representasi
ruang keadaan untuk kasus galon sebagai berikut

- Seorang petani akan menyeberangkan seekor kambing, seekor serigala, sayuran dengan sebuah perahu yg melalui sungai.
- Perahu hanya bisa memuat petani & satu penumpang yg lain (kambing, serigala, atau sayuran).
- Jika ditinggalkan petani tersebut, maka sayuran dimakan kambing dan kambing akan dimakan serigala.

Persyaratan untuk mencari solusi

- Initial State Keadaan Awal
- Goal State Tujuan
- Operator/Rule Usaha yang dilakukan

1. Identifikasi ruang keadaan

- Permasalahan ini dapat dilambangkan dengan (jumlah kambing, jumlah serigala, jumlah sayuran, jumlah perahu).
- Contoh : daerah asal (0,1,1,1) = daerah asal tidak ada kambing, ada serigala, ada sayuran, ada perahu.

2. Keadaan awal dan tujuan

• <u>Keadaan awal</u>, pada kedua daerah:

```
Daerah asal = (1,1,1,1)
Daerah Seberang = (0,0,0,0)
```

• <u>Keadaan tujuan</u>, pada kedua daerah:

```
Daerah asal = (0,0,0,0)
Daerah Seberang = (1,1,1,1)
```

• Aturan

Aturan ke-	Aturan
1	Kambing menyeberang
2	Sayuran menyeberang
3	Serigala menyeberang
4	Kambing kembali
5	Sayuran kembali
6	Serigala kembali
7	Perahu kembali

• Solusi

Daerah asal	Daerah seberang	Aturan yg dipakai
(1,1,1,1)	(0,0,0,0)	1
(0,1,1,0)	(1,0,0,1)	7
(0,1,1,1)	(1,0,0,0)	3
(0,0,1,0)	(1,1,0,1)	4
(1,0,1,1)	(0,1,0,0)	2
(1,0,0,0)	(0,1,1,1)	7
(1,0,0,1)	(0,1,1,0)	1
(0,0,0,0)	(1,1,1,1)	Solusi

• Aturan dan Solusi

Aturan ke-	Aturan
1	Kambing menyeberang
2	Sayuran menyeberang
3	Serigala menyeberang
4	Kambing kembali
5	Sayuran kembali
6	Serigala kembali
7	Perahu kembali

Daerah asal	Daerah seberang	Aturan yg dipakai
(1,1,1,1)	(0,0,0,0)	1
(0,1,1,0)	(1,0,0,1)	7
(0,1,1,1)	(1,0,0,0)	3
(0,0,1,0)	(1,1,0,1)	4
(1,0,1,1)	(0,1,0,0)	2
(1,0,0,0)	(0,1,1,1)	7
(1,0,0,1)	(0,1,1,0)	1
(0,0,0,0)	(1,1,1,1)	Solusi

Jenis

Jenis Pencarian

- Blind (Uninformed) Search
- Heurisic (Informed) Search

• Dijelaskan pada pertemuan selanjutnya

Pertanyaan!?