

FARFETCH

Index

- Problem Presentation and Motivation
- Baseline Solution
- Framework
- Participation
- First steps

FARFETCH

FARFETCH

a platform with over

2.0M

active consumers

a fast growing database of customers spending an average of

\$608

per order

orders shipped to more than

190

countries worldwide

Farfetch partners with over

1,200

of the world's best brands, boutiques and department stores

approximately

50%

of traffic comes from iOS devices

over

4532

highly qualified and multilingual staff in 14 locations worldwide

High-end customers expect a high-end experience

iFetch

Multimodal conversational agent for the online fashion marketplace

Vision

To make a step change in the online high-fashion marketplace by advancing conversational AI with multimodal capabilities.

Goal

Through conversation, iFetch aims to provide targeted advice and "physical store-like" experience while maintaining user engagement.

iFetch

Multimodal conversational agent for the online fashion marketplace

iFetch will have the capability of suggesting products that "goes well with".

The challenge

Fashion outfit complementary product retrieval

Fill in the Blank (FITB) task

Dataset

NOTE that the VISUM challenge dataset is a subset of this FARFETCH dataset!

	FARFETCH dataset
	Image;
Product	Category;
representation	Name;
	Description
# outfits	128398
	1.2000
# unique products	149944
min/max/avg #	2 / 14 / 4.5
products per outfit	271474.0
# categories	133

An outfit example:

Paradigm for Complementary Product Retrieval

Follow a deep metric learning approach

To **learn a "style" embedding space**, where complementary products are close to each other and products that do not fit are far apart.

From Vasileva et al in <u>Learning Type-Aware Embeddings for</u>
<u>Fashion Compatibility</u>

Baseline model

Image encoder:

- Maps from a product image X to a feature representation h.
- <u>ResNet-50</u> + <u>Projection block</u> (with additional trainable layers).

Text encoder:

- Maps from a text description *T* to a latent textual representation *f*.
- <u>DistilBERT</u> + <u>Projection block</u>.
- CLS hidden representation is used to summarize the entire product description.

Multimodal encoder:

- Maps from both h and f to a multimodal complementary feature space.
- Merge layer + Projection block.

Training

Training objective

ullet Model parameters are optimized via a ranking loss, i.e., triplet loss $\mathcal{L}_{triplet}$:

Forces the distance between non-complementary product embeddings (anchor and negative samples) to be larger than the distance of complementary product embeddings (anchor and positive samples) by a margin.

Training

Triplet mining process

Anchor and positive pairs sampling:

- Randomly selected products from the same outfit (o), but from a different category (c), i.e. $o_p = o_i$, $c_p \neq c_i$

Negative sampling:

- A randomly selected product of the same semantic category of the *positive*, but from a different outfit, i.e. $c_n = c_p$, $o_n \neq o_p$,

However, this may lead to a **large number of false** *negative* **products**, especially when the outfits in the training dataset share a large number of products.

Training

Triplet mining process

Negative sampling with the Louvain constrain:

- We further constrained the *negative* sampling process on the product communities (*l*), obtained by applying the Louvain method on the product's graph.

- A negative product should be not only from a different outfit but also from a different community graph than the anchor and the positive, i.e. $l_n \neq l_p$, $l_n \neq l_i$

Product graph for 7 outfits

Generated Louvain communities (each color represents a community)

Inference

Given a FITB test query*:

- 1. Compute the embedding distance between each candidate and every query product;
- 2. Return the candidate product with the lowest sum of the distances.

*comprises of a set of query products and a set of candidate products:

- 1 Positive: a randomly selected product from a given test outfit;
- 3 Negatives: randomly sampled products of the same category as the positive from other test outfits.

Results

The impact of different modalities and the Louvain constraint

Modelity	Best Valid loss		Test FITB acc		
Modality	w/o Louvain	w/ Louvain	w/o Louvain	w/ Louvain	
Image	0.791	0.760	0.442	0.454	
Text	0.831	0.792	0.433	0.471	
Multimodal	0.751	0.715	0.472	0.483	

Results

Correct predictions (violet box)

Results

Wrong predictions (violet box) along with ground-truth (green box)

[Some ideas for improvement]

- Learn multiple embedding subspaces;
- Capture interactions of all products in an outfit.

Ideas for improvement

1) Learn multiple embedding subspaces

Lin et al, Fashion Outfit Complementary Item Retrieval, CVPR 2020.

Other important refs:

Tan et al, *Learning Similarity Conditions Without Explicit Supervision*, ICCV 2019. Vasileva et al, *Learning Type-Aware Embeddings for Fashion Compatibility*, ECCV 2018.

- To encode different notions of product complementary.
- Learn category-aware subspaces to learn category-specific notions of complementary.

Ideas for improvement

2) Capture interactions of all products in an outfit

Lin et al, Fashion Outfit Complementary Item Retrieval, CVPR 2020.

2.1 Outfit ranking loss:

 considers the similarities among all existing items in the outfit.

Ideas for improvement

2) Capture interactions of all products in an outfit

Chen et al, <u>POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion</u>, KDD 2019.

2.2 Transformer-based models (e.g., BERT)

- Product compatibility modeled via self-attention (each product attends to all other products);
- Outfit represented as a set (by removing the positional encoding as well as the next sentence task);
- Trained to predict the masked product in the outfit.

Framework Overview

- → Best teams in the final leaderboard will be invited to present their work in the last day;
- → Among this a jury will elect the winning team, taking into consideration your solution's accuracy and your presentation;

Virtual Machine - Setup

- → Each Team will be assigned a Google Cloud Virtual Machine and its respective access credentials:
 - user: visum
 - pass: ******
- → The machine has the following specifications:
 - ◆ GPU 1 X NVIDIA Tesla T4
 - ◆ CPU 4 vcpu's (Intel Broadwell)
 - ◆ RAM 15GB
 - ♦ Storage 60GB

Virtual Machine - Software

→ Machines will have useful software installed (CUDA, torch, tensorflow, etc.);

→ You may install python packages using "pip". Do not use virtual environments;

Virtual Machine - Files

- → Each machine will have the baseline solution at:
 - /home/visum
- → Each machine will have a copy of the train data at:
 - /home/master/dataset/train
- → Each machine will have a dummy test folder (same as train) which allows you to verify your submission is valid;

Virtual Machine - Protocol

- → Develop a solution to the FITB problem using python and the provided training data.
 - the main file: "/home/visum/test.py"
 - this file should look at:
 - "/home/master/dataset/test/queries.csv"
 - "/home/master/dataset/test/options.csv"
 - "/home/master/dataset/test/product_images/"
 - "/home/master/dataset/test/df_products.csv"
 - this file should generate:
 - "preds.csv" at the same directory as test.py

Submission Platform

To access the VISUM 2021's submission platform, click the following link: https://visum.inesctec.pt/submissions

*	VISUM	2021	SUB	MISS	ION
Геаm	Name:	7			
Геаm	Secret Token:	_			
Subn	nit				

Submission Platform - two per day

- → Each Team will have two daily test submissions:
 - Daily Individual Submission which consists of an individual request of the Team in the submission platform (from 5.00 am until 11.30 pm, GMT+1)
 - Daily Global Submission which consists of the automatic execution of the test for all the Teams (at 12.00 Midnight, GMT+1)
- → These are run on a subset of the private test data;

Submission Platform - Individual

- → To perform a submission request you need to fill the form with the name of your Team and the Secret Token that will be assigned
- → After submission, the system will:
 - copy your /home/visum to our system;
 - run your test.py on private data;
 - evaluate your accuracy and print it on the leaderboard;

Leaderboard

- → All the results will be updated at our Daily Leaderboard:
 - ◆ Last Accuracy the accuracy obtained for the last submission;
 - Best Accuracy the best accuracy obtained so far;
 - Status the submission status for the Team
 - "Waiting for submission"
 - "Running submission"
 - "Daily submission done"

Position	Team	Last Accuracy	Best Accuracy	Status
1st	VISUM	No data	No data	Running submission
1st	Farfetch	No data	No data	Running submission

Registering your Team

- → Each Team should be composed of 3 people → Find a Team Name and send the information about the Team to
 - visum@inesctec.pt;
- → All team members must have signed the NDA agreement;
- → We will provide you with:
 ◆ A VM machine;
 ◆ A secret token for the submission platform;
- → We will also create (private) text and voice channels in Discord for your Team;

Project Sessions - Discord

- → Mainly autonomous work from the group members on the Discord server;
- → During this time feel free to ask for help either with technical problems, simple questions or to briefly discuss your approach to the problem. For efficiency please post a quick message in #request-help:
 - e.g. "hey, I need assistance understanding the baseline"
- → We will make an effort to check in with the groups to make sure everything is running smoothly.

Brainstorm Sessions

- → You will have the opportunity to participate in the following brainstorm sessions regarding the project:
 - 6th July (14h) Learn multiple embedding subspaces
 - 7th July (14h) Capture interactions of all products in an outfit
 - 7th July (11h30) Al shot on the topic of the project

Bring your own ideas to the discussion!

Project Presentation & Prizes

- → The best Teams in the Final Leaderboard are invited to present their approach on Friday (9th of July)
- → These Teams will be eligible to win the competition along with the following prizes:
 - 3 FARFETCH vouchers (150€ each);
 - 3 VISUM 2022 registrations.

The Competition Repository

https://github.com/visum-summerschool/visum-competition 2021

1) Access the baseline source code

→ Accessing the files already present in your machine;

or

→ Cloning the project repo into your virtual machine:

```
git clone https://github.com/visum-summerschool/visum-competition2021.git
cp -r visum-competition2021/ .
rm -r visum-competition2021
```

2) Mandatory pre-processing steps

→ Create the training and validation splits in /home/visum/processed_data

python3 split_data_nondisjoint.py

→ Generate the louvain communities.

python3 generate_community_prods.py

3) Train the baseline

→ Train the baseline

```
python3 train.py
```

- → Model weights and checkpoints are saved in /home/visum/results/<timestamp>
- → copy your best model (and the tokenizer) into /home/visum by doing:

```
cp -r results/<timestamp>/tokenizer results/.
cp results/<timestamp>/best_model_weights.pth results/.
```

4) Evaluate the baseline

1. Generate queries from your validation split:

python3 generate_test_queries.py

2. Generate predictions with

python3 test.py -t processed_data/valid

3. Evaluate your model

python3 evaluate.py preds.csv processed_data/valid/solutions.csv

5) Verify your submission is valid:

→ Test your model

```
cd /home/visum/
rm preds.csv
python3 test.py
python3 evaluate.py preds.csv /home/master/dataset/test/solutions.csv
```

6) Submit your results

Submit your results by accessing: http://vcmi.inesctec.pt/visum/submissions.html

FARFETCH

