

ESTADO 1: Entrada al compresor

 $P_1 = 101,3 [kPa]$

 $T_1 = 298 [K]$

 $h_1 = h['Hydrogen'; T = T_1; P = P_1]$

 $s_1 = s['Hydrogen'; T = T_1; P = P_1]$

ESTADO 2: Salida del compresor y entrada intercambiador

 $T_2 = 298 [K]$

 $P_2 = 10130 \text{ [kPa]}$

 $h_2 = h['Hydrogen'; T = T_2; P = P_2]$

 $s_2 = s['Hydrogen'; T = T_2; P = P_2]$

ESTADO 3: Salida del intercambiador y entrada válvula de expansión

 $P_3 = 10130 \text{ [kPa]}$

 $\varepsilon = 0.95$

 $h_3 = h_2 - \epsilon \cdot [h_1 - h_5]$

 $s_3 = s['Hydrogen'; T = T_3; P = P_3]$

 $T_3 = T['Hydrogen'; h = h_3; P = P_3]$

ESTADO 4: Salida de la válvula de expansión y entrada al depósito

 $P_4 = 101,3 \text{ [kPa]}$

 $h_4 = h_3$

 $s_4 = s['Hydrogen'; T = T_4; x = 1 - y]$

 $T_4 = T_5$

PRODUCCIÓN:

 $\epsilon_{C} = 0.9$

 $h_f = Enthalpy_{fusion} ['Hydrogen']$

 $y = \frac{\epsilon_C \cdot \left[h_2 - h_1 \right]}{h_1 - h_f}$

ESTADO 5: Salida de vapor del depósito para recomprimir

 $T_5 = T['Hydrogen'; h = h_5; P = P_5]$

 $P_5 = 101,3 \text{ [kPa]}$

$$h_5 = \mathbf{h} ['Hydrogen' ; x = 1 ; P = P_5]$$

$$s_5 = s['Hydrogen'; x = 1; T = T_5]$$

COP =
$$\frac{h_2 - h_1}{T_1 \cdot [s_1 - s_2] - [h_2 - h_1]}$$

$$T_1 = T_1$$

$$T_2 = T_2$$

$$T_3 = T_3$$

$$T_4 = T_4$$

$$T_5 = T_5$$

$$T_6 = T_1$$

$$s_1 = s_1$$

$$s_2 = s_2$$

$$s_3 = s_3$$

$$s_4 = s_4$$

$$s_5 = s_5$$

$$s_6 = s_1$$

SOLUTION

Unit Settings: [kJ]/[K]/[kPa]/[kg]/[degrees]

COP = 0,009151 ϵ_C = 0,9 h_2 = 4249 [kJ/kg] h_4 = 942,4 [kJ/kg] h_f = 59,53 [kJ/kg] P_2 = 10130 [kPa] P_4 = 101,3 [kPa] s_1 = 70,41 [kJ/kg-K] s_3 = 29,58 [kJ/kg-K] s_1 = 70,41 [kJ/kg-K] s_1 = 70,41 [kJ/kg-K] s_1 = 70,41 [kJ/kg-K]

 $\varepsilon = 0.95$

 $h_1 = 4198 [kJ/kg]$

 $h_3 = 942,4 [kJ/kg]$

 $h_5 = 716.8 [kJ/kg]$

 $P_1 = 101,3 [kPa]$

 $P_3 = 10130 \text{ [kPa]}$

D 404.0 [I:Dal

 $P_5 = 101,3 [kPa]$

 $s_2 = 51,34 [kJ/kg-K]$

 $s_4 = 38,82 [kJ/kg-K]$

 $s_6 = 70,41 \text{ [kJ/kg-K]}$

 $s_2 = 51,34 \text{ [kJ/kg-K]}$ $s_4 = 38,82 \text{ [kJ/kg]}$

$s_5 = 39,07 [kJ/kg]$	$T_1 = 298 [K]$
$T_2 = 298 [K]$	$T_3 = 63,73 [K]$
$T_4 = 20,39 [K]$	$T_5 = 20,39 [K]$
$T_6 = 298 [K]$	$T_1 = 298 [K]$
$T_2 = 298 [K]$	$T_3 = 63,73 [K]$
$T_4 = 20,39 [K]$	$T_5 = 20,39 [K]$
y = 0.01121	

Hydrogen

Modelado de un ciclo Linde ideal, utiliza nitrogeno para preenfriar y expandir mediante una valvula J-T para la licuefacción de Hidrógeno.

Para un flujo de 1mol/s de n-H₂ a través del compresor, asumiendo que no hay intercambio de calor con el medio.

Estado 0: Entrada del hidrogeno al compresor. Etapa de obtención y acondicionamiento.

 $T_0 = ConvertTemp[C; K; 20]$

$$P_0 = 1 \quad [atm] \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$h_0 = \mathbf{h} ['Hydrogen' ; T = T_0 ; P = P_0]$$

$$s_0 = s['Hydrogen'; T = T_0; P = P_0]$$

Estado 1: El hidrogeno entra en condiciones T₁ y P₁, despues de una etapa de obtención y acondicionamiento.

 H_2

 $T_1 = ConvertTemp[C; K; 20]$

$$P_1 = 100 \quad [atm] \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$h_1 = \mathbf{h} ['Hydrogen' ; T = T_1 ; P = P_1]$$

$$s_1 = \mathbf{s} ['Hydrogen' ; T = T_1 ; P = P_1]$$

$$\dot{m} = 1 [kg/s]$$

 $\dot{m}^*h_3 = (\dot{m} - \dot{m}_f)^*h_4 + \dot{m}_f^*h_f$

Estado 2:

$$P_2 = 100 \quad [atm] \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$T_2 = 64 [K]$$

$$h_2 = \mathbf{h} ['Hydrogen' ; T = T_2 ; P = P_2]$$

$$s_2 = \mathbf{s} ['Hydrogen' ; T = T_2 ; P = P_2]$$

Estado 3: Salida del intercambiador inundado de N2

Fluido de trabajo: H₂

$$T_3 = \mathbf{T}$$
 ['Hydrogen'; $P = P_3$; $h = h_3$]

$$P_3 = 100 \text{ [atm]} \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$s_3 = s[Hydrogen'; T = T_3; P = P_3]$$

$$h_3 = h_2 - \varepsilon_{N2} \cdot [h_{out;N2} - h_{in;N2}]$$

$$\varepsilon_{N2} = 0.99$$

Proceso 3-4: intercambio isotermo en intercambiador a contraflujo

Estado 4:

 $T_4 = \mathbf{T} ['Hydrogen' ; P = P_4 ; h = h_4]$

$$P_4 = 1 \quad [atm] \cdot \quad 101325 \cdot \frac{Pa}{atm}$$

$$h_4 = h_3 - \varepsilon \cdot [h_5 - h_0]$$

$$s_4 = \mathbf{s} ['Hydrogen' ; T = T_4 ; h = h_4]$$

$$\varepsilon = 0.99$$

Estado 5: Retorno al grupo compresor.

 $T_5 = ConvertTemp[C; K; 15]$

$$P_5 = 1 \text{ [atm]} \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$h_5 = h ['Hydrogen'; T = T_5; P = P_5]$$

$$s_5 = \mathbf{s} ['Hydrogen' ; T = T_5 ; P = P_5]$$

Estado 6: Intercambiador inundado de N_{2,} el hidrogeno a 293 K (20°C) provoca la evaporacion del N₂

Fuido de trabajo: N₂ liquido

 $T_6 = ConvertTemp[C; K; -209,15]$

$$P_6 = 0.144 \text{ [atm]} \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$h_6 = \mathbf{h} [\text{'Nitrogen'}; T = T_6; P = P_6]$$

Estado N^{in}_2 : Entrada de N_2 de reposicion

$$T_{in;N2}$$
 = ConvertTemp [C; K; -185,15]

$$P_{in;N2} = 3 [atm] \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$h_{in;N2} = \mathbf{h} ['Nitrogen'; T = T_{in;N2}; P = P_{in;N2}]$$

Estado N^{out}_2 : salida de N_2 en forma gaseosa

$$T_{out;N2} = ConvertTemp[C; K; 15,15]$$

$$P_{out;N2} = 0,144 \text{ [atm]} \cdot \left| 101325 \cdot \frac{Pa}{atm} \right|$$

$$h_{out;N2} = h['Nitrogen'; T = T_{out;N2}; P = P_{out;N2}]$$

Estado 7: Intercambiador inundado de N2, el hidrogeno a 293 K (20aC) provoca la evaporacion del N2

Fluido de trabajo : N₂ en estado vapor

La entalpia que ha perdido el H₂ es la que ha ganado el N₂

Haciendo un balance de masas entre el intercambiador inundado, la valvula J_T y el deposito de liquido, se asume que del grupo de

compresion sale el H₂ sin perdida de calor: m*h₃=(m-m_{f)}*h₄+m_f*h_f

$$y = \frac{h_4 - h_3}{h_4 - h_{fH2}}$$

donde

 $h_{fH2} = Enthalpy_{fusion} ['Hydrogen']$

 h_{fN2} = **Enthalpy**_{fusion} ['Nitrogen']

Y obtenemos los Kg de hidrogeno liquido por cada kilogramo de nitrogeno comprimido

Que cantidad de nitrogeno liquido se consume por cada litro producido de hidrogeno liquido? para obtenerlo se realiza un balance de

masas alrededor de los dos intercambiadores 'calientes' y del baño en nitrogeno liquido

$$h_1+(z^*h_{fN2})+(1-y)^*(h_4)=----->$$
 PENDIENTE

ANALISIS DE LOS DISTINTOS CAMINOS DE COMPRESIÓN

A) Compresión adiabatica reversible

 $W_{sA} = \dot{m} \cdot [h_0 - h_1]$ Valores reales, puesto que surgen de calculos directos con tablas JANAF

B)Compresión adiabatica e isentrópica para un gas ideal

$$W_{\text{sB}} = \left[\frac{R_{\text{H}} \cdot T_{\text{0}} \cdot \gamma}{\gamma - 1} \right] \cdot \left[1 - \left(\frac{P_{\text{1}}}{P_{\text{0}}} \right)^{\left(\frac{\gamma - 1}{\gamma} \right)} \right]$$

$$\gamma = \frac{C_P}{C_V}$$

$$C_P = \mathbf{Cp} ['H2' ; T = T_0]$$

$$C_V = Cv ['H2'; T = T_0]$$

$$R_{H} = \frac{8.31434 \text{ [kJ/kmole-K]}}{\text{MolarMass ['H2']}}$$

B1)Utilizando valores reales:

$$W_{sB1} = \left[\begin{array}{ccc} R_{Hnoideal} & \cdot & T_0 & \cdot & \gamma_{noideal} \\ \hline \gamma_{noideal} & - & 1 \end{array} \right] \cdot \left[\begin{array}{ccc} 1 & - & \left(\frac{P_1}{P_0} \right) & \frac{\gamma_{noideal}}{\gamma_{noideal}} & - & 1 \end{array} \right) \right]$$

$$\gamma_{\text{noideal}} = \frac{C_{\text{Pnoideal}}}{C_{\text{Vnoideal}}}$$

$$C_{Pnoideal} = \mathbf{Cp} ['Hydrogen' ; T = T_0 ; P = P_0]$$

$$C_{Vnoideal} = Cv ['Hydrogen'; T = T_0; P = P_0]$$

$$R_{\text{Hnoideal}} = \frac{8.31434 \text{ [kJ/kmole-K]}}{\text{MolarMass ['Hydrogen']}}$$

$$\phi = \frac{W_{sB1}}{W_{sB}}$$

C)Compresión reversible isoterma

$$W_{sC} = Q_{cDisipado} - [h_0 - h_1]$$

$$Q_{cDisipado} = T_0 \cdot [s_1 - s_0]$$

D)Compresión reversible isoterma para un gas ideal

$$W_{sD} = R_H \cdot ln \left[\frac{P_1}{P_0} \right]$$

E)Compresión politrópica reversible

 $n_E = 7 / 5$ n vale 7/5 para gases diatómicos y 5/3 para gases monoatómicos

$$W_{sE} = P_0 \cdot V_0 \cdot \left[\frac{n_E}{n_E - 1} \right] \cdot \left[1 - \left(\frac{P_1}{P_0} \right)^{\left(\frac{n_E - 1}{n_E} \right)} \right]$$

$$V_0 = \frac{\stackrel{\bullet}{m}}{\rho_{h;2}}$$

$$\rho_{h;2} = \rho ['Hydrogen' ; T = T_0 ; P = P_0]$$

$$s_1 = s_0$$

$$s_2 = s_1$$

$$s_3 = s_3$$

$$s_4 = s_4$$

$$s_5 = s_5$$

$$T_1 = T_0$$

$$T_2 = T_1$$

$$T_3 = T_3$$

$$T_4 = T_4$$

$$T_5 = T_5$$

```
C_{Pnoideal} = 14287 [J/kg-K]
C_P = 14151 [J/kg-K]
C_V = 10027 [kJ/kg-K]
                                                                           C_{Vnoideal} = 10161 [J/kg-K]
                                                                           \varepsilon_{N2} = 0.99
\varepsilon = 0.99
\gamma = 1,411
                                                                           \gamma_{noideal} = 1,406
Gas_{ideal} = 1
                                                                           h_0 = 4,128E+06 [J/kg]
h_1 = 4,179E+06 [J/kg]
                                                                           h_2 = 946552 [J/kg]
h_3 = 551370
                                                                           h_4 = 622041
h_5 = 4,057E+06 [J/kg]
                                                                           h_6 = -244098 [J/kg]
h_{fH2} = 59526 [J/kg]
                                                                           h_{fN2} = 25345 [J/kg]
h_{in,N2} = -409267 [J/kg]
                                                                           h_{out,N2} = -10092 [J/kg]
\dot{m} = 1 [kg/s]
                                                                           n_E = 1.4
\phi = 0.9927
                                                                           P_0 = 101325 [Pa]
P_1 = 1,013E+07 [Pa]
                                                                           P_2 = 1,013E+07
                                                                           P_4 = 101325 [Pa]
P_3 = 1,013E+07 [Pa]
P_5 = 101325 [Pa]
                                                                           P_6 = 14591 [Pa]
                                                                           P_{out,N2} = 14591 [Pa]
P_{in.N2} = 303975 [Pa]
Q_{cDisipado} = -5,592E+06
                                                                           \rho_{h,2} = 0.08375 \text{ [kg/m}^3\text{]}
R_H = 4,124
                                                                           R_{Hnoideal} = 4,124
s_0 = 70174 [J/kg-K]
                                                                           s_1 = 51098 [J/kg-K]
s_2 = 29647 [J/kg-K]
                                                                           s_3 = 21768 [J/kg-K]
s_4 = 34393 \text{ [J/kg-K]}
                                                                          s_5 = 69928 \text{ [J/kg-K]}
T_0 = 293,2 [K]
                                                                           T_1 = 293,2 [K]
T_2 = 64 [K]
                                                                           T_3 = 37,69 [K]
T_4 = 20,39 [K]
                                                                           T_5 = 288,2 [K]
T_6 = 64 [K]
                                                                           T_{in,N2} = 88 [K]
T_{out,N2} = 288,3 [K]
                                                                           V_0 = 11,94 \text{ [m}^3\text{]}
W_{sA} = -50316 [J/kg]
                                                                           W_{sB} = -11728 [J/kg]
W_{sB1} = -11643 [J/kg]
                                                                           W_{sC} = -5,542E+06 [J/kg]
W_{sD} = 18,99 [kJ/kg]
                                                                           W_{sE} = -1,154E+07 [J/kg]
y = 0.1256 [kg H<sub>2</sub> / kg comprimido]
```


El gas de Hidrógeno se licua utilizando un ciclo Claude ideal. El gas entra en un compresor reversible isotermo a 70 °F y a 1 atm. Se comprime a 40 atm.

El gas a alta presión se enfría en un intercambiador hasta los 324 ºR.

En este punto el 50% del caudal másico se separa y se expande a traves de un expansor isentrópico y adiabático hasta 1 atm

El resto del fluido continua a través de dos intercambiadores más y se expande a traves de una válvula de expansión hasta 1 atm

Determinar la produccion de líquido y el trabajo por masa licuada.

NOTA: Suponer que el trabajo de la expansion se utiliza en la compresion.

$$\dot{m} = 1 [kg/s]$$

$$\dot{m}_T = 0.5 \cdot \dot{m}$$

$$h_f = Enthalpy_{fusion}$$
 ['Nitrogen']

Se considera un rendimiento de los intercambiadores de 95%:

$$\varepsilon = 0.95$$

Estado 1: Entrada del compresor

$$T_1 = ConvertTemp[F; K; 70]$$

$$P_1 = 1 \quad [atm] \cdot \quad \left| 101,325 \cdot \frac{kPa}{atm} \right|$$

$$h_1 = \mathbf{h} [\text{'Nitrogen'}; T = T_1; P = P_1]$$

$$s_1 = s[Nitrogen'; T = T_1; P = P_1]$$

Estado 2 : Salida del compresor y entrada intercambiador intermedio 1

$$T_2 = ConvertTemp[R; K; 324]$$

$$P_2 = 40 \text{ [atm]} \cdot \left| 101,325 \cdot \frac{\text{kPa}}{\text{atm}} \right|$$

$$h_2 = \mathbf{h} ['Nitrogen' ; T = T_2 ; P = P_2]$$

$$s_2 = s[Nitrogen'; T = T_2; P = P_2]$$

Estado 3 : Salida intercambiador intermedio 3_i y entrada a turbina expansión 3_T

$$T_3 = ConvertTemp[R; K; 324]$$

$$P_3 = 40 \quad [atm] \cdot \left| 101,325 \cdot \frac{kPa}{atm} \right|$$

$$h_3 = \mathbf{h} [\text{'Nitrogen'}; T = T_3; P = P_3]$$

$$s_3 = s[Nitrogen'; T = T_3; P = P_3]$$

Estado 4: Entrada intercambiador intermedio 2

NOTA: El caudal másico es del 50%

$$T_4 = 273,15 + T [Nitrogen'; h = h_4; P = P_4]$$

$$P_4 = 40 \quad [atm] \cdot \quad 101,325 \cdot \frac{kPa}{atm}$$

$$s_4 = \mathbf{s} ['Nitrogen' ; T = T_4 ; P = P_4]$$

Estado 5 : Salida de los intercambiadores y entrada de válvula de expansión

$$T_5 = 273,15 + T ['Nitrogen'; h = h_6; P = P_5]$$

$$P_5 = 40 \text{ [atm]} \cdot \left| 101,325 \cdot \frac{\text{kPa}}{\text{atm}} \right|$$

$$s_5 = \mathbf{s} [\text{'Nitrogen'}; h = h_6; P = P_5]$$

Estado 6: Salida de válvula de expansión

Temperatura iqual que estado 5

$$P_6 = 1 \quad [atm] \cdot \left| 101,325 \cdot \frac{kPa}{atm} \right|$$

$$T_6 = 273,15 + T ['Nitrogen' ; x = 0 ; P = P_6]$$

$$h_6 = \mathbf{h} ['Nitrogen' ; P = P_6 ; x = 0]$$

$$s_6 = s[Nitrogen'; x=0; P=P_6]$$

Estado 7_{T:} Salida de la turbina siguiendo un proceso isentrópico

$$T_7 = 273,15 + T ['Nitrogen'; s = s_3; P = P_7]$$

$$P_7 = 1 \quad [atm] \cdot \quad \left| 101,325 \cdot \frac{kPa}{atm} \right|$$

$$h_7 = \mathbf{h} [\text{'Nitrogen'}; T = T_7; P = P_7]$$

$$s_7 = s_3$$

Estado 8: Entrada intercambiador 1

$$T_8 = T ['Nitrogen'; h = h_8; P = P_8]$$

$$P_8 = 1 \quad [atm] \cdot \quad \left| 101,325 \cdot \frac{kPa}{atm} \right|$$

$$s_8 = \mathbf{s} [\text{'Nitrogen'}; T = T_8; P = P_8]$$

Para el intercambiador 1:

$$h_8 = h_1 - \varepsilon \cdot [h_3 - h_2]$$

Para el intercambiador 2:

$$h_4 = h_3 - \varepsilon \cdot [h_8 - h_7]$$

Para el intercambiador 3:

$$h_5 = h_4 - \epsilon \cdot [h_7 - h_6]$$

IMPORTANTE: Trabajo de expansión generado por la turbina:

$$w_T = \dot{m}_T \cdot [h_3 - h_7]$$

Trabajo interno realizado por la válvula de expansión:

$$W_e = \begin{bmatrix} 1 - \dot{m}_T \end{bmatrix} \cdot \begin{bmatrix} h_5 - h_6 \end{bmatrix}$$

la producción resulta:

$$x = 0.5 \cdot \dot{m}$$

$$y = \frac{h_1 - h_2}{h_1 - h_f} + x \cdot \left[\frac{h_3 - h_7}{h_f - h_1} \right]$$

$$W = T_1 \cdot [s_1 - s_2] - [h_1 - h_2] - x \cdot w_T$$

 $T_1 = ConvertTemp[K; C; T_1]$

 $T_2 = ConvertTemp[K; C; T_2]$

 $T_3 = ConvertTemp[K; C; T_3]$

 $T_4 = ConvertTemp[K; C; T_4]$

 $T_5 = ConvertTemp[K; C; T_5]$

 $T_6 = ConvertTemp[K; C; T_6]$

 $T_7 = ConvertTemp[K; C; T_7]$

 $T_8 = ConvertTemp[K; C; T_8]$

 $T_9 = ConvertTemp[K; C; T_1]$

 $s_1 = s_1$

 $s_2 = s_2$

 $s_3 = s_3$

 $s_4 = s_4$

 $s_5 = s_5$

 $s_6 = s_6$

 $S_7 = S_7$

 $s_8 = s_8$

 $s_9 = s_1$

SOLUTION

Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]

 $\varepsilon = 0.95$

 $h_2 = 159,5 [kJ/kg]$

 $h_1 = 283 [kJ/kg]$

 $h_3 = 159,5 [kJ/kg]$

 $h_5 = -519,3 \text{ [kJ/kg]}$ $h_7 = 138,1 [kJ/kg]$ $h_f = 25,35 [kJ/kg]$ $\dot{m}_T = 0.5 \text{ [kg/s]}$ $P_2 = 4053$ [kPa] $P_4 = 4053$ [kPa] $P_6 = 101,3 [kPa]$ $P_8 = 101,3 [kPa]$ $s_2 = -0.6676 [kJ/kg-K]$ $s_4 = -0.3669 [kJ/kg-K]$ $s_6 = -4,003 \text{ [kJ/kg-K]}$ $s_8 = 0.675 [kJ/kg-K]$ $T_2 = 180 [K]$ $T_4 = 325,7$ [K] $T_6 = 77,35$ [K] $T_8 = 294,3$ [K] $W_e = -43,89 \text{ [kW/kg]}$ x = 0.5 [kg/s]

INSTALACIÓN CRIOGÉNICA DE BAJA CAPACIDAD

INFORME DEL PROYECTO DE FIN DE CARRERA 1

Abraham Fernández Del Rey

Ingenieria Tecnica Industrial Esp. Mecanica

1. OBJETIVO

El objetivo del presente proyecto es elaborar una instalación de frio que trabaja en los rangos de temperatura más alejados de los valores convencionales. Su función en un planteamiento inicial es licuar gases permanentes. Pero su objetivo principal, y el que no debe perderse de vista es el de desarrollar una instalación criogénica de baja capacidad a un mínimo coste.

Con este objetivo en el punto de mira, buscaremos el acercar los materiales y elementos más convencionales a las temperaturas de fusión de los denominados "gases permanentes". Para ello tendremos que ser muy cuidadoso, pues todas las propiedades que a temperatura ambiente nos son familiares, comienzan a tener matices. Tanto en propiedades de fluidos, como de sólidos. (Problemas de adsorción, fatiga.....)

Merece una mención especial las propiedades de transmisión de calor y la formulación de las leyes que lo rigen.

Uno de los puntos más delicados, y enlazado con el siguiente, será la elección de la técnica. Todas las técnicas que conocemos actualmente, y nos son convencionales, resultan de largo insuficientes para los objetivos que perseguimos. Realizaremos un pequeño estudio de todas ellas y justificaremos la elección.

También explotar al máximo las cualidades de los sistemas y técnicas de producción, pues también hemos de optimizar el sistema energéticamente.

Con todo lo anteriormente mencionado, se obtendrá una pequeña instalación, ejecutable en la medida de lo posible y limitada solo por la falta de experimentación en ella. Y como se dice al comienzo de esta explicación, a un coste mínimo.

2. MOTIVACIÓN

En la actualidad, puede dar la sensación de estar todo descubierto en ciertas áreas técnicas. El motivo de este proyecto es mostrar un área de la termotecnia muy desconocida y poco extendida.

Rara es la facultad en la que se muestra, siquiera por encima, alguna pincelada de esta ingeniería sin mercado, la ingeniería criogénica.

Con la revolución del hidrogeno cada vez más cerca, la necesidad de ingenieros con conocimientos capaces de licuar gases permanentes se hace patente.

Se debe tener presente que es una rama de la mecánica, surgida hace (relativamente) muy poco del laboratorio. No es objeto de este proyecto, colmar las páginas de numerosos estudios y formulas, sino ejecutar una instalación concreta que represente una aplicación criogénica de forma austera sin dejar de lado el estado del arte.

Con las posibilidades existentes ahora mismo en el mercado, se buscará llegar a ejecutar la instalación, ya que el fin máximo es ese, obtener una aplicación real que facilite la comprensión, aprendizaje y desarrollo de las técnicas criogénicas disponibles en la actualidad.

3. ORDENES DE MAGNITUD

A la hora de ejecutar una instalación de producción de frio, la elección del refrigerante suele venir determinado por la aplicación. Según las condiciones de temperatura en el evaporador y condensador, y las presiones de trabajo, así se elige un refrigerante u otro.

¿Hasta dónde se puede llegar, en órdenes de temperatura, utilizando ciclos de compresión?

Se comenzara explicando, sin entrar en mucha profundidad los siguientes conceptos:

Punto triple, es el punto en el diagrama de fase, en el que pueden coexistir los estados sólido, líquido y gaseoso en equilibrio.

Viene definido por una temperatura y una presión de vapor.

La **presión de vapor** (o presión de saturación) es la presión a una temperatura dada, en la que podemos encontrar en equilibrio líquido y vapor. Es una propiedad intensiva, es decir, es independiente de la masa, mientras ambas se encuentren en equilibrio (sistema cerrado).

El **punto crítico**, es aquel en el que ¿la densidad de liquido y vapor se iguala?. La sustancia se encuentra por encima de la temperatura crítica y presión critica.

Un **fluido supercrítico** tiene propiedades "hibridas" entre un liquido y un gas. Se difunde como un gas, es decir, tiene la tendencia a ocupar todo el volumen de su continente. Capacidad de disolución como un líquido.

La **densidad** de una sustancia, está íntimamente ligada a la temperatura y la presión de dicha sustancia. Si bien la tendencia es que al aumentar la presión, aumenta la densidad y al aumentar la temperatura la densidad decrece, hay excepciones.

Pequeños cambios de presión y temperaturas supercríticas, producen grandes cambios de densidad.

Cuando se produce un cambio de estado, este va asociado a un cambio brusco de entalpia y densidad. Por encima del punto crítico, no se produce. Es decir, aumenta la presión pero no se da cambio de estado. No hay licuefacción al presurizar, ni evaporación al calentar.

En resumen:

- No existe interfase gas-liquido
- La compresibilidad isoterma, es infinitamente positiva.
- El coeficiente de expansión térmica es infinito y positivo.
- La entalpia de vaporización es o.

Si la densidad se mantiene constante e igual a la densidad critica, la capacidad calorífica a volumen constante tiende a infinito.

La densidad por encima del punto crítico, depende de la presión y temperatura, pero realmente es más cercana a los líquidos que a los gases. (La densidad aumenta si lo hace la presión a temperatura constante).

La viscosidad es mucho más baja que la de los líquidos, lo hidrodinámicamente es favorable.

Alta penetrabilidad a través sólidos porosos.

Mayores coeficiente de difusión que en líquidos, por lo que la transferencia de materia es más favorable.

La introducción de los conceptos punto triple y punto crítico, viene motivada porque son los limitantes en la utilización de gases para la producción de frío a temperaturas criogénicas.

Ilustración 1. Diagrama de Fase y estados según zona

Ilustración 2.Región de trabajo posible de acuerdo a las limitaciones expresadas

Gráfico 1. Ordenes de magnitud de refrigerantes según temperatura

REFRIGERANTE	FORMULA	TEMP MIN (°C)	TEMP MIN (K)	TEMPERATURA CRITICA (°C)	TEMPERATURA CRITICA (K)	PRESION	PRESION	PRESION MINIMA	APLICACIONES RECOMENDADA S
R-11	CCl3F	-70	203,15	198,01	471,16	44,026	75	0,00575393	AIRES ACONDICIONADOS DE EDIFICIOS
R-113	CCl2FCClF2	-35	238,15	214,1	487,25	34,37	200	0,0198985	
R-114	CClF2CClF2	-94	179,15	145,7	418,85	32,59	200	0,0020535	AIRES ACONDICIONADOS MARINOS Y AVIACION
R-1150	CH2CH2	-169	104,15	9,5	282,65	50,75	200	0,00156214	
R-12	CCl2F2	-90	183,15	112	385,15	41,576	75	0,0284233	AIRES ACONDICIONADOS DE EDIFICIOS
K-123	CHCl2CF3	-60	213,15	183,68	456,83	36,68	30	0,0092768	SUSTITUYE A R-11
R-1270	CH3CHCH2	-185	88,15	91,75	364,9	46,13	200	1,77E-05	
R-13	CClF3	-181	92,15	28,8	301,95	38,65	200	4,27E-06	REFRIGERACION MUY BAJA TEMPERATURA
R-134a	CII2FCF3	-103,3	169,85	101,1	374,25	40,67	75	0,00455144	SUSTITUYE A R-12
R-14	CF4 CH3CHF2	-184,9	88,25	-45,7	227,45	37,41	200 34	0,000830035	
R-152a		-118,59	154,56	113,5	386,65	44,95	200	0,00156531	
R-170 R-21	CH3CH3 CHCl2F	-183	90,15	32,73 178,5	305,88	50,102 51,68		8,16E-06	
R-21	CHCl2F2	-135	138,15	96	451,65		25 300	1,87E 06 2,43	AIRES ACONDICIONADOS DE EDIFICIOS
R-22	CHC12F2	-1 ₀ 0 -100	123,15		369,15	49,774 48,3	100	0,317048	SUSTITUYE R-13
_	CH ₃ CH ₂ CH ₃		173,15	25,9 96,67	299,05 369,32		75	0,00106495	35311101E N-13
R-290 R-401A	R22 (53 %) + R152 (13 %) + R124 (34 %)	-130 -100	143,15	108,01	381,16	43,3593 46,038	60	0,00639667	
R-401B	R22 (61 %) + R152 (11 %) + R124 (28 %)	-100	173,15 173,15	103,68	376,83	46,4705	30	0,00735685	SUSTITUTO R-12 SEGÚN APLICACIÓN
R-401C	R22 (33 %) + R152 (15 %) + R124 (52 %)	-100	173,15	110,07	383,22	43,4812	25	0,00458756	303111310 N-12 3E00N AFEICACION
R-402A	R125 (60%) + R290 (2%) + R22 (38%)	-100	173,15	75,5	348,65	41,347	50	0,0298877	RECONVERSION APLICACIONES R-502
R-402B	R125 (38%) + R290 (2%) + R22 (60%)	-100	173,15	87,05	360,2	45,3164	35	0,0262054	RECONVERSION APLICACIONES 8-502
R-402C	-	-100	173,15	0,,00	273,15	43,3234		.,	
R-404A	R125 (44 %) - R143a (52 %) + R134a (4 %)	-100	173,15	72,07	345,22	37,315	40	0,0282034	SUSTITUTO R-502
R-406A	-	-90	183,15	114,49	387,64	45,81	30	0,0165175	
R-407A	R32 (20 %) + R125 (40 %) + R134a (40 %)	-100	173,15	82,36	355,51	45,3215	30	0,0136217	
R-407B	R32 (10 %) + R125 (70 %) + R134a (20 %)	-100	173,15	75,36	348,51	41,3029	30	0,0183222	
R-407C	R32 (23 %) + R125 (25 %) - R134a (52 %)	-100	173,15	86,74	359,89	46,191	55	0,0117622	SUSTITUYE A R-22
R-408A	R22 (44 %) + R143a (4 %) + R125 (52 %)	-100	173,15	83,68	356,83	43,4183	54	0,0266076	RECONVERSION APLICACIONES R-502
R-409A	R22 (60 %) + R124 (25 %) + R124b (15 %)	-100	173,15	106,8	379,95	46,2176	32	0,00707533	SUSTITUYE R-12 Y R-22 SEGÚN APLICACIÓN
R-410A	R32(50%) + R125 (50%)	-100	173,15	74,67	347,82	51,737	40	0,0436503	SUSTITUYE A R-22 Y R-13 SEGÚN APLICACIÓN
R-410B	R32(45%) + R125 (55%)	-100	173,15	71,03	344,18	47,795	40	0,0366019	
R-50	CH4	-182,2	90,95	-82,59	190,56	45,988	500	0,121567	
R-500	R12 (73,8%) + R152a(26,2%)	-159	114,15	105,5	378,65	44,23	200	4,22E-06	REFRIGERACION MEDIA TEMPERATURA
R-502	-	-70	203,15	82,2	355,35	40,818	75	0,275669	ALMACENAMIENTO ALIMENTOS A -18°C
R-507	R125 (50 %) + R143 (50 %)	-100	173,15	70,9	344,05	37,9356	27	0,0261173	SUSTITUTO R 502
R-508A	R23(46%) + R116b(54%)	-100	1/3,15	23	296,15	40,6	20	0,415618	
R-600	CH3CH2CH2CH3	-138,29	134,86	150,8	423,95	37,181	50	2,28E-06	
R-600a	CH(CH ₃) ₃	-159,6	113,55	135,92	409,07	36,8455	50	3,19E-08	
R-717	NH ₃	-77,66	195,49	132,35	405,5	113,53	200	0,0608458	
R-718	H2O	-210	63,15	374,14	647,29	220,89	1200	1,41E-08	
R-728	N2	-205,18	66,97	-146,95	126,2	34	400	0,125362	
R-729	AIRE N2(76%)+O2(23%)+Ar(1%)	-206,18	66,97	-140,65	132,5	37,7436	300	0,0999715	
R-732	02	-218,8	54,35	-118,57	154,58	50,429	500	0,00145846	
R-740	Ar CO2	-189,3	83,85	-122,45	150,7	48,6492	500	0,691156	
R-744		-56,57	215,58	31,06	304,21	73,834	200	5,18168 0,17763	
RC-318	C4F8	-41,4	231,75	115,3	388,45	27,81	200	0,17763	

Tabla 1. Resumen de propiedades para refrigerantes comunes

4. INDICE

Capítulo 1: Descripción, objetivo y motivación

- 1.1. Objetivo
- 1.2. Motivación
- 1.3. Descripción

Capítulo 2: Baja temperatura

- 2.1. Nomenclatura y variables
- 2.2. Fundamentos
 - 2.2.1. Marco Histórico
 - 2.2.1.1. Siglo XVII
 - 2.2.1.2. Siglo XVIII
 - 2.2.1.3. Siglo XIX
 - 2.2.1.4. Siglo XX
 - 2.2.1.5. Siglo XXI
 - 2.2.2. Conceptos previos
 - 2.2.2.1. Breve introducción a los fundamentos termodinámicos
 - 2.2.2.2. Sistemas termodinámicos
 - 2.2.2.2.1. Tipología de los sistemas termodinámicos
 - 2.2.2.2.2. Principios termodinámicos
 - 2.2.2.2.1. Principio cero de la termodinámica
 - 2.2.2.2.2. Primer principio de la termodinámica
 - 2.2.2.2.3. Segundo principio de la termodinámica
 - 2.2.2.2.4. Tercer principio de la termodinámica
 - 2.2.2.3. Propiedades de una sustancia pura, simple y compresible
 - 2.2.2.3.1. Principio de estado
 - 2.2.2.3.2. Relación p-v-T
 - 2.2.2.3.3. Diagramas de propiedades
 - 2.2.3. Aplicaciones actuales
 - 2.2.3.1. Aplicaciones espaciales
 - 2.2.3.2. Aplicaciones medicas
 - 2.2.3.3. Aplicaciones industriales
 - 2.2.3.4. Aplicaciones físicas y de investigación
 - 2.2.4. Propiedades de las sustancias
 - *2.2.4.1.* Conceptos fundamentales
 - 2.2.4.2. Propiedades en líquidos y sólidos
 - 2.2.4.3. Propiedades en gases ideales
 - 2.2.4.4. Relaciones termodinámicas para sistemas de baja temperatura
 - 2.2.4.4.1. Expansión Joule Thompson
 - 2.2.4.5. Fluidos criogénicos o Gases Permanentes
 - 2.2.4.5.1. Oxigeno
 - 2.2.4.5.2. Nitrógeno

- Argón 2.2.4.5.3.
- 2.2.4.5.4. Hidrogeno
- 2.2.4.5.5.
 - Helio
- Neón 2.2.4.5.6.
- Aire2.2.4.5.7.
- Flúor 2.2.4.5.8. 2.2.4.5.9. Metano
- Refrigerantes criogénicos 2.2.4.6.
 - Freones tradicionales 2.2.4.6.1.
 - Freones criogénicos 2.2.4.6.2.

Capítulo 3: Transmisión de calor

- Nomenclatura y variables 3.1.
- Propiedades de transferencia de calor en ámbito criogénico 3.2.
 - Calor especifico 3.2.1.
 - Gases 3.2.1.1.
 - Líquidos 3.2.1.2.
 - Sólidos 3.2.1.3.
 - Conductividad 3.2.2.
 - 3.2.2.1. Gases
 - Líquidos 3.2.2.2.
 - Sólidos 3.2.2.3.
 - Conducción 3.2.3.
 - 3.2.4. Convección
 - Transferencia en flujos bifásicos 3.2.5.
 - Radiación 3.2.6.
 - 3.2.7. Aislamiento criogénico
 - 3.2.7.1. Expanded close-cell Foam (ECCF)
 - Gas-filled Powders (GFP) 3.2.7.2.
 - Evacuated Powders (EP) 3.2.7.3.
 - Opacified Powder Insulation (OPI) 3.2.7.4.
 - 3.2.7.5. Microsphere Insulation (MI)
 - *Multilayer insulation (MLI)* 3.2.7.6.
 - Intercambiadores de calor criogénicos 3.2.8.
 - Tipología 3.2.8.1.
 - 3.2.8.1.1. *Intercambiadores tubulares*
 - 3.2.8.1.2. Intercambiadores Giauque-Hampson
 - 3.2.8.1.3. Intercambiadores Plate-Fin
 - Intercambiadores Perforated-Plate 3.2.8.1.4.
 - Intercambiadores de metales sinterizados 3.2.8.1.5.

3.2.8.2. Regeneradores

Capítulo 4: Propiedades en el ámbito criogénico

- 4.1. Nomenclatura y variables
- 4.2. Propiedades físicas y mecánicas
- 4.3. Flujo bifásico
- 4.4. Propiedades por debajo de 4K

Capítulo 5: Ciclos de producción de frio

- 5.1. Nomenclatura y variables
- 5.2. Ciclos de refrigeración estándar
 - 5.2.1. Ciclo ideal de Carnot
 - 5.2.2. Ciclo real de compresión simple
 - 5.2.3. Variaciones sobre el ciclo simple
 - 5.2.4. Compresión múltiple
 - 5.2.4.1. Compresión múltiple con inyección directa
 - 5.2.4.2. Compresión múltiple con inyección indirecta
 - 5.2.4.3. Ciclo múltiple en cascada
 - 5.2.5. Otros ciclos de refrigeración estándar
- 5.3. Ciclos de refrigeración criogénicos
 - 5.3.1. Ciclos abiertos
 - 5.3.1.1. Expansión Joules-Thomson
 - 5.3.2. Ciclos cerrados
 - 5.3.2.1. Ciclo Claude
 - 5.3.2.2. Ciclo Claude Multietapa (Dual Pressure Claude)
 - 5.3.2.3. Ciclo Ficket-Jackobs
 - 5.3.2.4. Ciclo Gifford-McMahon
 - 5.3.2.5. Ciclo Hirn
 - 5.3.2.6. Ciclo Humpfrey
 - 5.3.2.7. Ciclo Siemens
 - 5.3.2.8. Ciclo Hampson-Linde
 - 5.3.2.9. Ciclo Linde Multietapa (Dual Pressure Linde Cycle)
 - 5.3.2.10. Ciclo Heylandt
 - 5.3.2.11. Ciclo Kleemenko

Capítulo 6: Equipos tipo para la producción criogénica de baja capacidad

- 6.1. Equipos de producción de nitrógeno/oxigeno
- 6.2. Equipos de producción de metano
- 6.3. Equipos de producción de hidrogeno
- 6.4. Equipos de producción de helio (*)
- 6.5. Columnas de destilación

- 6.6. Coldbox de separación para aire
- 6.7. Almacenamiento
- 6.8. Valvulería

Capítulo 7: Calculo de cargas

- 7.1. Descripción del equipo
- 7.2. Calculo de flujo másico y cargas
- 7.3. Diseño preliminar y concepto
- 7.4. Dimensionado de los elementos de compresión
- 7.5. Dimensionado de los intercambiadores de calor
- 7.6. Dimensionado de los dispositivos de expansión
- 7.7. Dimensionado de las líneas de transferencia
- 7.8. Dimensionado del almacenaje
- 7.9. Descripción del sistema de control e instrumentación
- 7.10. Elementos de seguridad

Capítulo 8: Análisis energético

- 8.1. Comparativa de consumos según método
- 8.2. Coste energético y litro según tamaño de instalación
- 8.3. Optimización energética del sistema

Capítulo 9: Análisis económico

- 9.1. Inventario de componentes del sistema
- 9.2. Valoración económica del sistema

Capítulo 10: Conclusiones

Capítulo 11: Bibliografía

- 11.1. Principios básicos
- 11.2. Ingeniería Criogénica
- 11.3. Compresores criogénicos
- 11.4. Fluidos criogénicos
- 11.5. Expansores
- 11.6. Intercambio y transferencia de calor
- 11.7. Ingeniería fluido mecánica
- 11.8. Propiedades de materiales a baja temperatura
- 11.9. Instrumentación a baja temperatura
- 11.10. Líneas de transferencia
- 11.11. Flujo bifásico
- 11.12. Valvulería
- 11.13. Aislamiento
- 11.14. Compresores
- 11.15. Elementos mecánicos
 - 11.15.1. Rodamientos
 - 11.15.2. Juntas
 - 11.15.3. Lubricación
- 11.16. Seguridad
- 11.17. Artículos y Papers

5. DESCRIPCIÓN

La instalación que se lleva a cabo en este proyecto, es una instalación de baja capacidad enfocada a la licuefacción de gases permanentes. Se ha elegido el nitrógeno por ser el gas que marca la separación entre la refrigeración convencional y la criogénica.

En una primera parte del proyecto se revisa los conceptos de termodinámica y termotecnia. Como se comprobará a lo largo de estos primeros capítulos, las propiedades que se conocen y utilizan con normalidad en el ámbito de la refrigeración convencional, se vuelven extrañas y nuevas para el ámbito criogénico. Por lo tanto, se debe repasar los conceptos para diseñar una instalación de frio y contemplar las matizaciones necesarias.

En una segunda parte, se realiza el análisis de una instalación tipo. Existen sistemas criogénicos de multitud de tamaños. Para este proyecto se elige una instalación como las utilizadas por los pioneros de esta rama. Una instalación que no debe ser grande y que debe cumplir con un estricto criterio de producción para una baja demanda. Por lo tanto, su capacidad no es tan exigente como pudiera ser la de un sistema crítico para hospitales o investigación física. Se ha prescindido de la robustez necesaria en aceleradores de partículas. No habrá redundancia de sistemas, ni costosos sistemas de

seguridad. Tan solo lo estricto y necesario para el funcionamiento correcto y adecuado de la instalación.

Ilustración 3. Diagrama T-s de un ciclo criogénico con regeneración

En cuanto a los componentes que constituyen esta instalación, dependen estrechamente método de producción elegido. Y a su vez, el método es dependiente del tipo de ciclo. Si el ciclo es abierto, la tipología de ciclos es limitada y además, se añade la problemática del almacenamiento. Si el ciclo es cerrado, el abanico de posibilidades es muy amplio. En la ilustración numero 6 se muestra un mapa de métodos según sean de ciclo abierto o cerrado.

Como se ha dicho en la exposición de objetivos, la finalidad de esta instalación es producir nitrógeno líquido, que pueda ser utilizado en investigación. Este es un punto de partida, un mínimo.

A continuación, se ha realizado un

diagrama de flujo, para enmarcar las posibilidades del propio proyecto.

Téngase presente que se está limitado por la técnica, en cuanto que el proyecto debe ser una instalación ejecutable en la medida de lo posible o de lo contrario se trataría de una instalación experimental. Estamos limitados por los conocimientos ingenieriles que de esta materia se dispone. Al no disponer de una literatura de técnica aplicada excesivamente extensa ni actualizada, hemos de recurrir a literatura reciente y con poca experiencia, en comparación con el frio industrial.

Estamos limitados también por la eficiencia energética. Cuando se realiza una primera aproximación a la materia, se puede observar que un crio-refrigerador de baja capacidad, rara vez pasa de los 10 W de potencia frigorífica. A presiones y temperaturas tan bajas, los flujos másicos que trasiega el compresor son muy pequeños. Por lo tanto, el COP se desmorona hasta cifras que rondan el 4% de la eficiencia de un ciclo de Carnot.

Se debe adaptar la costumbre con las nuevas magnitudes. A continuación podemos ver una representación de la potencia en vatios (préstese especial atención a las unidades, hablamos de vatios, NO de kilowatios) en contraposición a la relación entre la eficiencia de un ciclo de Carnot y el método elegido:

Ilustración 4. Grafico potencia - relación de eficiencias

Ilustración 5. Diagrama de flujo sobre la elección del contenido del proyecto

A la vista del anterior diagrama de flujo, vemos que se ofrece cinco posibilidades que contemplan las limitaciones establecidas:

Si se elige *producir nitrógeno u otro gas permanente*, la fuente más barata es el aire atmosférico. Una vez limpio, el aire se enfría hasta licuar. Según el método, el aire precisa de una columna de destilación fraccionada para separar el nitrógeno del resto de componentes del aire. Por un lado es una desventaja, porque requiere de una *columna de destilación* con las complicaciones que conlleva y están fuera del ámbito de este proyecto. Como ventaja se debe observar, que el nitrógeno junto al argón es el componente del aire con más bajo punto de fusión. La energía empleada se invierte en obtener nitrógeno liquido (finalidad de la aplicación), oxigeno liquido (fácilmente utilizable en aplicaciones de laboratorio y soldadura), Argón (creación de atmosferas inertes en soldadura). El resto se devuelve a la atmosfera, sin ser considerado contaminante porque el balance de estos elementos se mantiene nulo.

En caso de no ser necesaria una columna de destilación, el proyecto es factible y se desarrolla.

En caso de elegir como sujeto de la *licuefacción al aire*, se debe valorar la dificultad de mantener la composición del aire durante y después del cambio de estado. Es frecuente que se produzca separación de componentes por los distintos puntos de fusión.

Si la aplicación elegida es factible, pero está en el límite *entre la alta y baja capacidad*, por ejemplo, la refrigeración de un imán para investigación o una aplicación laser para formación académica. No es una instalación descartable, pues la capacidad es más alta de lo pretendido, pero es ejecutable sin excesiva dificultad añadida.

Una ultima vía, es la posibilidad de utilizar un ciclo cerrado, para refrigerar un sistema sea del tipo que sea. En este caso, no se tiene porque elegir nitrógeno como refrigerante. Según la aplicación se puede llegar a emplear incluso metano o helio. El abanico de criogenos es amplio. No hay problema de almacenamiento y trasvase.

Haciendo una valoración preliminar, según la cantidad de bibliografía y conocimiento de la técnica, y sin perder de vista que se trata de un proyecto técnico, se puede decir que se abren dos vías: Un sistema de baja capacidad de ciclo cerrado utilizando un criogeno como el argón o helio, o un sistema de baja capacidad de ciclo abierto para producción de nitrógeno liquido pasando por alto gran parte del cálculo y desarrollo del método de separación.

A continuación se puede ver el conjunto de métodos disponibles:

Ilustración 6. Clasificación de los sistemas criogenicos de baja capacidad

6. PLANIFICACIÓN

6.1 PLANIFICACIÓN CUATRIMESTRE DE OTOÑO

	т —	1		Т	Т			Т	Т						_		1	Г	т т	П				Т							1	1			$\overline{}$	$\overline{}$	\neg
	Semana 01	Semana 02	Semana 03	Semana 04	Semana 05	Semana 06	Semana 07	Semana 08	Semana 09	Semana 10	Semana 11	Semana 12	Semana 13	Semana 14	9	Semana 17	Semana 18	Semana 19	Semana 20	Semana 01	Semana 02	Semana 03	Semana 05	Semana 06	0.7	Semana 08	Semana 09	10	Semana 12	Semana 13	Semana 14	Semana 15	Semana 16	Semana 17	Semana 18	19	Semana 20
TAREA	ana	ana	ana	ana	ana	ana	ana I	ana	ana	ana	ä	ana	ans	ana		31 a	l e	ana	ana	ana	ana	Semana	E	ana	Semana	ana	ana	Semana	ang ang	ans	ana	ans	ana	ana	ana	Semana	ana
	l ii	e iii	e li	Ë	emi	e li	e l	E II	em	e l	em	e II	em	en en		en l	l e	en	e iii	l ë	ë	ii ii		emi	em	iii l	E E	e l	E E	en	em	em	e l	eil	en	em	i ii
	Š	S.	Š	Š	Š	Š	SZ.	Š	Š	Š	S.	ς.	S	ν v	9	p o	N.	S ₂	Š	Ñ	v.	vš vš	. v	Š	Š	Š	Š	Š	v s	S S	Ŋ	S	ς.	S	SZ	S ₂	Š
	96	60	00	60	60	99	99	60	99	39	6	96	60	96		10	01	10	10	10	10	10	01	10	10	10	10	10	10	01	10	10	01	10	10	10	10
	11/09/2009	18/09/2009	25/09/2009	02/10/2009	09/10/2009	16/10/2009	23/10/2009	30/10/2009	06/11/2009	13/11/2009	20/11/2009	27/11/2009	04/12/2009	11/12/2009		08/01/2010	15/01/2010	22/01/2010	29/01/2010	19/02/2010	26/02/2010	05/03/2010	19/03/2010	26/03/2010	02/04/2010	16/04/2010	23/04/2010	30/04/2010	07/05/2010	21/05/2010	28/05/2010	04/06/2010	11/06/2010	18/06/2010	25/06/2010	02/07/2010	09/07/2010
	60	60	/60	01	10	0	0	10	11	7	=	=	12/	2 2	ì }	9 1	0.1	01/	01/	2	05	9 3	9 8	03	04	7	9	9	8 8	9	05/	90	/90	90	90	02/	02/
	Ιž	8/8	52/	22/	/60	/91	23/	30/	/90	13/	20/	27/	74	71 8		3 8	12/	22	767	61	/97)2/	9	797)2/	/91	23/) 0 1	2 3	1 3	58/	74	71	81	55/	22/	60
	_	_	-		_	_		_	_	-	_	-	_	_	_		_	_		-			_	_	_					_	_	_	-		-	_	$\overline{}$
	02/00/2000	14/09/2009	21/09/2009	28/09/2009	05/10/2009	12/10/2009	19/10/2009	26/10/2009	02/11/2009	09/11/2009	16/11/2009	23/11/2009	30/11/2009	07/12/2009		04/01/2010	11/01/2010	18/01/2010	25/01/2010	15/02/2010	22/02/2010	01/03/2010	15/03/2010	22/03/2010	29/03/2010	12/04/2010	19/04/2010	26/04/2010	03/05/2010	17/05/2010	24/05/2010	31/05/2010	07/06/2010	14/06/2010	21/06/2010	28/06/2010	05/07/2010
	2	72	2	3/2	2	75	75	2	/20	/30	ĭ .	ĭ.	100	Š Š		2 2	/3	3	2	72	72	2 2	1 2	3/2	3/2	1/2	1/2	. 5	2 2	8	2/2	2/2	5/2	2	2/2	2/2	7/2
	Į Č	o/	ŏ.	0	71/6	77	7	7	7/1	7	른	<u> </u>	1/	2 2			0	0,5	0,	, ë	0/	9 9	2 0	0/3	0/0	o,	o,	<u> </u>	0 0	0	0/3	o,	0/2	0	Ŏ.	0,	9
	07	14	21	58	õ	22	19	36	0.5	ŏ,	¥	લ	36	0 5		0	=	31	S,	15	52	5 S	15	22	25	21	119	56	8 F	1 2	24	31	07	72	21	8	õ
RECOPILACION DOCUMENTACION									\bot	[\perp			\sqcup	\Box		\perp	\perp	4	\Box				\perp	\perp	4	_	\Box		_	— □	_]
INDICE PROVISIONAL											_	\rightarrow			_	_	1		\perp																\rightarrow	\rightarrow	_
INDICE PROVISIONAL (REVISIÓN)						_					_				\perp																			_	\rightarrow	\rightarrow	
BREVE DESCRIPCION						_					_	_			_		_																	\rightarrow	\rightarrow	\rightarrow	
TITULO PROVISIONAL													_		_	_	1		\sqcup	\sqcup		_	_	1							1				\perp		
OBJETIVOS				_		_					_	_			_		_									_	_	_						\rightarrow	\rightarrow	\rightarrow	_
ORDENES MAGNITUD DE TEMPERATURA Y SITUACION PROYECTO						_					_				\perp																			_	\rightarrow	\rightarrow	
PLANIFICACIÓN						_	_		_	_	_	_	_		_		-		\perp			_		_		_	_	_	_	+	-			-	\rightarrow	\rightarrow	_
MARCO HISTORICO	_			_							_	_		_	_		_		\perp					_					_				\Box	\rightarrow	\rightarrow	\rightarrow	
APLICACIONES ACTUALES																							_	_										-	\rightarrow	\rightarrow	_
PROPIEDADES Y FUNDAMENTOS	_			_							_	_	_				_						_				_	_	_					_	\rightarrow	\rightarrow	_
CICLOS ESTANDAR	_	-				_				_	_	_		_	_	_	-		\perp			_	_	-				_						-	\rightarrow	\rightarrow	
CICLOS CRIOGENICOS				_		_	_					_	_		_		1		-			_	_	4					_	_	_				\rightarrow	\rightarrow	-
CLAUDE	+	-	_				-			_		-	_	_	-	_	_		-			_	_	-				_	_	_	_			-+	\rightarrow	\rightarrow	
DUAL PRESSURE CLAUDE	-		_	\rightarrow		\rightarrow	\rightarrow	-	-	_	_	\rightarrow	-	_	+	_	+-		_		_	_	+	+	\vdash	\rightarrow	\rightarrow	-	+	+	+	-		-+	+	\rightarrow	\dashv
DUAL PRESSORE CLAUDE	+		-	\dashv		\rightarrow	-+			_		\dashv	-+	_	+	+	+		\vdash			_	+	+			-+	-	+	+	+	-		-+	+	\rightarrow	\dashv
FICKETT-JACOBS	+		-	\rightarrow	-	\rightarrow	\rightarrow	-	-			\dashv	+	_	+	_	+-		_		-	_	+	+	\vdash	\rightarrow	\rightarrow	+	+	+	+	-		-+	+	\rightarrow	-
TICKEIT WICOBS	_			\rightarrow		-	-			_			-	_	+		1				-		_	+		\rightarrow	_	\dashv	+	+	+			-	+	\dashv	\dashv
GIFFORD-McMAHON				_		_	-					_	_		+		1				_			+		_		_	_	+				-	\dashv	\dashv	\dashv
OH FORD MEMILION	+			_		-	-			_		\dashv	_	_	_								+					_	-	+				-	+	\neg	\dashv
HIRN	+		-			\neg	\neg			-			-		+		1						_	+-		-	-	_	\dashv	+	+			-	\pm	-	\neg
						\neg											1		\vdash				\top						\neg	\top				\neg	\neg	\neg	\dashv
HUMPFREY				\neg		\neg	\neg		\neg										\Box															-	\neg	\rightarrow	\neg
						\neg			\neg			\neg		\top	\top	\top			\Box							\neg	\neg		\neg	\top					\neg	\neg	\neg
SIEMENS																																					\neg
HAMPSON-LINDE																																					
							\rightarrow				\perp		_		\perp															\perp				\rightarrow	\rightarrow	\rightarrow	
DUAL PRESSURE LINDE	1	\perp																													1			\rightarrow	\rightarrow	_	
	_										\perp		_		\perp		1		\sqcup			\perp	_	4					\perp	\perp	1		\sqcup		\rightarrow	\rightarrow	
HEYLANDT	1	\vdash									_	_			_	_	1		\sqcup	\sqcup		_	_	1				_			1	1			\rightarrow	\rightarrow	_
	1														_	_			\perp				_	_											\rightarrow		
KLEEMENKO	_	\vdash	\Box			_		_							_	_													_	\perp			\sqcup	\rightarrow	\rightarrow	\rightarrow	
HACER TABLA CON NOMENCLATURA Y UNIDADES	-	\vdash		_		\rightarrow		_																									\vdash	_	\rightarrow	\rightarrow	\dashv
DESCRIPCIÓN DE EQUIPOS CRIOGENICOS TIPO	+	\vdash		_	_	_		_	_	_	+	\dashv				_	+	_	\vdash	\vdash	_	\perp				_	-	_	+	+	+-	_	\vdash	\rightarrow	\rightarrow	\rightarrow	\dashv
	-			_		_		_	-	_	_	\rightarrow	_	_	+	_	+		\vdash	\vdash		_	+	4	1		-	_	+	+	4	1			\rightarrow	\rightarrow	\dashv
	+	\vdash	\vdash	_		\rightarrow	\rightarrow		_	_	+	\rightarrow	+	_	+	_	1	-	\vdash	\vdash	_	+	+	+	1	\rightarrow	\rightarrow	-	+	+	+-	1	\vdash	\rightarrow	\rightarrow	\rightarrow	-
PREPARACION Y REVISION PFC 1	+										_	_			_								_	+				_	-	+	-			\rightarrow	+	\rightarrow	_
PREPARACION I REVISION PPC 1													L							oxdot													\Box				

6.2 PLANIFICACIÓN DEL CUATRIMESTRE DE PRIMAVERA

TAREA	Semana of	Semana 02	Semana 03	Semana 04	Semana 05	Semana 06	Semana 07	Semana 08	Semana 09	Semana 10	Semana 11	Semana 12	Semana 13	Semana 14	Semana 15	Semana 16	Semana 17	Semana 18	Semana 19	Semana 20	Semana or	Semana 02	Ѕетапа 03	Semana 04	Semana 05	Semana 06	Semana 07	Semana 08	Semana 09	Semana 10	Semana 11	Semana 12	Semana 13	Semana 14	Semana 15	Semana 16	Semana 17	Semana 18	Semana 19 Semana 20
	11/09/2009	18/09/2009	25/09/2009	02/10/2009	09/10/2009	16/10/2009	23/10/2009	30/10/2009	06/11/2009	13/11/2009	20/11/2009	27/11/2009	04/12/2009	11/12/2009	18/12/2009	25/12/2009	08/01/2010	15/01/2010	22/01/2010	29/01/2010	19/02/2010	26/02/2010	05/03/2010	12/03/2010	19/03/2010	26/03/2010	02/04/2010	16/04/2010	23/04/2010	30/04/2010	07/05/2010	14/05/2010	21/05/2010	28/05/2010	04/06/2010	11/06/2010	18/06/2010	25/06/2010	02/07/2010
	07/09/2009	14/09/2009	21/09/2009	28/09/2009	05/10/2009	12/10/2009	19/10/2009	26/10/2009	02/11/2009	09/11/2009	16/11/2009	23/11/2009	30/11/2009	07/12/2009	14/12/2009	21/12/2009	04/01/2010	11/01/2010	18/01/2010	25/01/2010	15/02/2010	22/02/2010	01/03/2010	08/03/2010	15/03/2010	22/03/2010	29/03/2010	12/04/2010	19/04/2010	26/04/2010	03/05/2010	10/05/2010	17/05/2010	24/05/2010	31/05/2010	07/06/2010	14/06/2010	21/06/2010	28/06/2010
EQUIPOS TIPO DE PRODUCCION DE NITROGENO / OXIGENO															\neg																								
EQUIPOS TIPO DE LICUEFACCION DE METANO															\neg																								
EQUIPOS TIPO DE PRODUCCION DE HIDROGENO															一																								
EQUIPOS DE PRODUCCION DE HELIO																																							
COLUMNAS DE DESTILACION				\neg		\neg									\neg																							\neg	
CALCULO DE CARGAS																	П																						
CALCULO DE FLUJO MASICO															一					\neg																			
DISEÑO PRELIMINAR Y CONCEPTO															十	\neg							\neg																\neg
COMPARATIVA DE RESULTADO - METODOS				\neg		\neg	\neg								\neg	\neg			\neg										\neg									\neg	\neg
EVALUACION DE METODOS Y ELECCIÓN JUSTIFICADA				\neg		\neg					-			\neg	\neg	-																						\neg	\neg
BAJA TEMPERATURA (REVISIÓN Y AMPLIACIÓ DE CONCEPTOS)				\neg		\neg					\neg	_		\neg	\neg	\neg			-			_																\neg	\neg
DIMENSIONADO DE ELEMENTOS DE COMPRESION				\neg	_	\neg	\neg	_	_		-	\neg	_		\dashv	\neg	_	_	\neg	_	\neg	_																\neg	-
DIMENSIONADO DE ELEMENTOS DE INTERCAMBIO DE CALOR															\neg																								-
DIMENSIONADO DE DISPOSITIVOS DE EXPANSION				\neg		\neg									\neg	\neg			\neg										\neg										\neg
DIMENSIONADO DE LAS LINEAS DE TRANSFERENCIA				\neg		\neg	_				\neg	\neg		-	\neg	\neg			\neg			_																\neg	\neg
DIMENSIONADO DE ALMACENAJE				\neg		\neg	\neg								\neg	\neg			\neg										\neg									\neg	\neg
DESCRIPCION DEL SISTEMA DE CONTROL E INSTRUMENTACION				\neg	\neg		_						\neg		\neg	\neg		\dashv										\neg	-									\neg	\neg
ELEMENTOS DE SEGURIDAD				\neg		\neg						<u>_</u> _	\neg		\neg	\neg			\neg			t																\neg	\neg
ANALISIS ENERGETICO : COMPARATIVA DE CONSUMO POR METODO				\neg		\neg			_				\dashv		\neg	\neg			\neg										\neg									-	\neg
ANALISIS ENERGETICO ; COSTE ENERGETICO POR LITRO				\neg		\neg		_			-	-	\neg	-	$^{+}$	\neg																						\neg	-
MEJORAS ENERGETICAS DEL SISTEMA				\neg	\neg	\neg	\neg	\neg	-		\neg	\neg	\dashv	\neg	\dashv	\neg	\neg	\dashv	\neg		\neg	\neg						\neg	\neg									\neg	-
ANALISIS ECONOMICO : INVENTARIO DE COMPONENTES	1			\neg		_	_	_	_		_	_	\dashv		\neg	\neg		_																					\neg
ANALISIS ECONOMICO : VALORACION ECONOMICA DEL SISTEMA	1			_		\neg					_	_	\neg		\neg	\neg																							\neg
ANALISIS ECONOMICO : TIEMPO DE RETORNO				\neg		\neg		-	\neg				\neg		\neg	\neg		_																					\neg
REVISION Y PREPARACION PF2				_		_	_	_	_		-	-	-	-	\rightarrow	\rightarrow		_	\rightarrow		\rightarrow	\rightarrow	_				_	_	-										