

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 July 2003 (03.07.2003)

PCT

(10) International Publication Number
WO 03/054228 A2

(51) International Patent Classification⁷:

C12Q 1/68

(74) Agents: **GINZEL, Christian et al.**; c/o Zimmermann & Partner, Postfach 330 920, 80069 Munich (DE).

(21) International Application Number:

PCT/EP02/14578

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:

19 December 2002 (19.12.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/341,757 21 December 2001 (21.12.2001) US

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): **SALASSIDIS, Konstantinos** [GR/DE]; Hauptstrasse 14c, 85386 Eching (DE). **SCHUBART, Daniel** [DE/DE]; Avenue Charles de Gaulle 1c, 13469 Berlin (DE). **GUTBROD, Heidrun** [DE/DE]; Weberhofstrasse 8, 82166 Graefelfing (DE). **MUELLER, Stefan** [DE/DE]; Thalkirchnerstrasse 184, 81371 Munich (DE). **KRAETZER, Friedrich** [DE/DE]; Geisenbrunnerstrasse 51, 81475 Munich (DE). **OBERT, Sabine** [DE/DE]; Bellinzonastrasse 17, 81475 Munich (DE).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HUMAN CELLULAR PROTEIN KINASES, METALLOPROTEASES AND PHOSPHATASES AS TARGETS FOR MEDICAL INTERVENTION AGAINST HEPATITIS C VIRUS INFECTIONS

WO 03/054228 A2

(57) **Abstract:** The present invention relates to human cellular protein kinases, metalloproteases and one phosphatase: beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEKS (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649) as potential targets for medical intervention against Hepatitis C virus (HCV) infections. The present invention relates also to a method for the detection of compounds useful for prophylaxis and/or treatment of Hepatitis C virus infections, a method for detecting Hepatitis C virus infections in an individual or in cells. Mono- or polyclonal antibodies are disclosed effective for the treatment of HCV infections together with methods for treating Hepatitis C virus infections or for the regulation of Hepatitis C virus production and/or replication wherein said antibodies may be used. Finally the present invention relates to a solid support useful for detecting Hepatitis C virus infections or for screening compounds useful for prophylaxis and/or treatment of HCV infections.

**Human cellular protein kinases, metalloproteases and phosphatases
as targets for medical intervention against Hepatitis C virus infections**

5

Specification

The present invention relates to the human cellular protein kinases, metalloproteases and phosphatases:

- 10 1. beta-adrenergic receptor kinase 1 (NM_001619, X61157, ADRBK1, GRK2, BARK1);
2. Mitogen activated protein kinase activated protein kinase 5 (AF032437, MAPKAPK5, PRAK,);
3. Insulin-stimulated protein kinase 1 (U08316, ribosomal protein S6 kinase 3 15 90K);
4. Discoidin domain receptor family, member 1 (NM_013994, DDR1, TRK E, NEP, CAK, X74979);
5. Protein Kinase C, mu (X75756, PKC-mu);
6. Protein Kinase C, theta (L01087, PKC-theta);
- 20 7. AMP-activated protein kinase beta 2 subunit (AJ 224538, AMPK beta 2);
8. JNK2 (U09759, L31951);
9. Human p21-activated protein kinase 2 (U24153, PAK2);
10. cyclin-dependent kinase 4 (U37022, cdk4);
11. MEK5 (U25265, Mitogen-activated protein kinase kinase 5);
- 25 12. MKP-L or DUSP14, formally also named as MKP-1 like tyrosine phosphatase (NM_007026, AF038844);
13. ADAM22 (NM_016351, AF155382; a disintegrin and metalloproteinase domain 22);
14. ADAM17 (U92649, XM_002270; a disintegrin and metalloproteinase domain 30 17);

as potential targets for medical intervention against Hepatitis C virus (HCV) infections. Furthermore, the present invention relates to a method for the detection of compounds useful for prophylaxis and/or treatment of Hepatitis C

virus infections and a method for detecting Hepatitis C virus infections in an individual or in cells. Also mono- or polyclonal antibodies are disclosed effective for the treatment of HCV infections together with methods for treating Hepatitis C virus infections or for the regulation of Hepatitis C virus production wherein said 5 antibodies may be used. Finally the present invention relates to a solid support useful for detecting Hepatitis C virus infections or for screening compounds useful for prophylaxis and/or treatment of HCV infections.

10 **Background of the invention**

Hepatitis C Virus (HCV) infection is a major cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma. The WHO estimates that approximately 3% of the world population, or 170 million people, have been infected with the Hepatitis C Virus. In the U.S., an estimated 3.9 million Americans have been infected (CDC 15 fact sheet Sept. 00). Over 80% of HCV-infected individuals develop chronic hepatitis, which is associated with disease states ranging from asymptomatic carrier states to repeated inflammation of the liver and serious chronic liver disease. Over the course of 20 years, more than 20% of chronic HCV-patients are expected to be at risk to develop cirrhosis or progress to hepatocellular 20 carcinoma. Liver failure from chronic hepatitis C is the leading indicator for liver transplantation. Excluding transplantation, the CDC estimates that medical and work-loss cost for HCV annually are around \$600 million. HCV is transmitted primarily by blood and blood products. Due to routine screening of the blood supplies from mid-1992, new transfusion-related cases are exceedingly rare and 25 have been surpassed by injection drug use as the highest risk factor for acquiring the virus. There is also a sexual, however inefficient, route of transmission, and a 6% rate of transmission from infected mothers to their children, which is higher in case of HIV coinfection. In a certain percentage of infections, the mode of transmission remains unknown. In spite of the significant decline in incidence in 30 the 1990's, the number of deaths (estimated deaths annually at the moment: 8000 to 10,000 in U.S.) and severe disease due to HCV is anticipated to triple in the next 10 to 20 years. (Sources: CDC fact sheet (accessed 12/12/00); Houghton M. Hepatitis C Viruses. In BN Fields, DM Knipe, PM Howley (ed.) Fields Virology.

1996. Lippencott-Raven Pub., Philadelphia; Rosen HR and Gretch DR, Molecular Medicine Today Vol5, 393, Sept. 99; Science 285, 26, July 99: News Focus: The scientific challenge of Hepatitis C; Wong JB et al, Am J Public Health, 90, 1562, Oct 2000: Estimating future hepatitis C morbidity, mortality, and costs in the
5 United States).

According to the Consensus Statement from the EASL (European Association for the Study of the Liver) International Consensus Conference on Hepatitis C (February 26-28, 1999, Paris, France), combination therapy of alpha interferon
10 and ribavirin is the recommended treatment for naive patients. Monotherapy with interferon has also been approved by the FDA, but the sustained response rate (HCV RNA remains undetectable in the serum for more than 6 months after end of therapy) is only 15 to 20%, in contrast to 35 to 45% with combination therapy. Interferons (Intron A, Schering-Plough; Roferon A, Hoffmann-LaRoche; Wellferon,
15 Glaxo Wellcome; Infergen, Amgen) are injected subcutaneously three times a week, ribavirin (Rebetol, Schering-Plough) is an oral drug given twice a day. Recommended treatment duration is 6 to 12 months, depending on HCV genotype. Experimental forms of slow-release pegylated interferons (Pegasys, Hoffmann-LaRoche; PEG-Intron, Schering-Plough) have shown improvements in
20 response rates (42 to 82% in combination with ribavirin) and application (once-weekly injection) in recent clinical studies (Hepatology32:4, Pt 2 of 2. Oct 2000; NEJM 343, 1673. Dec 00; NEJM 343, 1666. Dec 00). Common side effects of interferon therapy include: fatigue, muscle aches, head aches, nausea, fever, weight loss, irritability, depression, bone marrow suppression, reversible hair loss.
25 The most common side effects of ribavirin are anemia, fatigue and irritability, itching, skin rash, nasal stuffiness, sinusitis, cough. More serious side effects of mono-and combination therapy occur in less than two percent of patients (NIDDK information: Chronic Hepatitis C: Current Disease Management. accessed 09.12.99). Some of the contraindications to interferon are psychosis or severe
30 depression; neutropenia and/or thrombocytopenia; organ transplantation except liver; symptomatic heart disease; decompensated cirrhosis; uncontrolled seizures. Contraindications to ribavirin are end-stage renal failure; anemia;

hemoglobinopathies; severe heart disease; pregnancy; no reliable method of contraception (consensus statement EASL).

Experimental treatments that are not new forms of interferon are Maxamine (histamine dihydrochloride, Maxim Pharmaceuticals), which will be combined with Interferon in phase III studies, VX-497 (Vertex Pharmaceuticals), an IMP dehydrogenase inhibitor, as a less toxic ribavirin substitute in phase II, and amantadine (Endo Labs), an approved influenza drug, as the third component in triple therapy (phase II). Inhibitors for HCV enzymes such as protease inhibitors, RNA polymerase inhibitors, helicase inhibitors as well as ribozymes and antisense RNAs are under preclinical development (Boehringer Ingelheim, Ribozyne Pharmaceuticals, Vertex Pharmaceuticals, Schering-Plough, Hoffmann-LaRoche, Immusol, Merck etc.). No vaccine is available for prevention or therapeutic use, but several companies are trying to develop conventional or DNA vaccines or immunostimulatory agents (e.g. Chiron, Merck/Vical, Epimmune, NABI, Innogenetics).

In summary, the available treatment for chronic Hepatitis C is expensive, effective only in a certain percentage of patients and adverse side effects are not uncommon.

Description of the invention

Recent research has revealed how cells communicate with each other to coordinate the growth and maintenance of the multitude of tissues within the human body. A key element of this communication network is the transmission of a signal from the exterior of a cell to its nucleus, which results in the activation or suppression of specific genes. This process is called signal transduction.

An integral part of signal transduction is the interaction of ligands, their receptors and intracellular signal transduction molecules. Ligands are messengers that bind to specific receptors on the surface of target cells. As a result of the binding, the receptors trigger the activation of a cascade of downstream signaling molecules,

thereby transmitting the message from the exterior of the cell to its nucleus. When the message reaches the nucleus, it initiates the modulation of specific genes, resulting in the production of RNA and finally proteins that carry out a specific biological function. Disturbed activity of signal transduction molecules 5 may lead to the malfunctioning of cells and disease processes. Specifically, interaction of HCV with host cells is necessary for the virus to replicate.

The present invention is based upon the discovery of a group of human cellular protein kinases, metalloproteases and one phosphatase which are specifically up- 10 or downregulated as a result of HCV replication in HCV infected host cells. The antiviral therapeutic research approach described herein focuses on discovering the cellular signal transduction pathways involved in viral infections. Identification of the signal transduction molecules, key to viral infection, provides for, among other things, novel diagnostic methods, for example, assays and compositions 15 useful therefore, novel targets for antiviral therapeutics, a novel class of antiviral therapeutics, and new screening methods (e.g. assays) and materials to discover new antiviral agents.

This approach led to the development of a novel microarray platform technology, 20 wherein a microarray of more than 900 signal transduction cDNAs was developed. This unique microarray technology was used to identify changes in RNA expression patterns (e.g. upregulation or downregulation) as a result of HCV infected host cells. Differential display techniques were used to pinpoint those signal transduction molecules useful as targets for drug intervention. Effective 25 manipulation of these virally-controlled intracellular signal transduction pathways can alter (slow or stop altogether) the course of viral growth.

It is object of the present invention to provide novel targets for medical intervention, prophylaxis and/or treatment of Hepatitis C virus infections in 30 mammals, including humans, and cells together with methods for detecting HCV infections in individuals and cells and methods for detecting compounds useful for prophylaxis and/or treatment of HCV infections. The object of the present

invention is solved by the teaching of the independent claims. Further preferred embodiments are disclosed in the dependent claims.

It is now revealed for the first time that the human cellular proteins
5 beta-adrenergic receptor kinase 1 (gene accession number NM_001619, other names: X61157, ADRBK1, GRK2, BARK1),
Mitogen activated protein kinase activated protein kinase 5 (also known as: AF032437, MAPKAPK5, or PRAK),
Insulin-stimulated protein kinase 1 (also known as: U08316, ribosomal protein S6
10 kinase 3 90K),
Discoidin domain receptor family, member 1 (gene accession number NM_013994, other names: X74979, DDR1, TRK E, NEP, or CAK),
Protein Kinase C, mu (also known as: X75756 or PKC-mu),
Protein Kinase C, theta (also known as: L01087 or PKC-theta),
15 AMP-activated protein kinase beta 2 subunit (also known as: AJ 224538 or AMPK beta 2),
JNK2 (also known as: U09759 or L31951),
Human p21-activated protein kinase 2 (also known as: U24153 or PAK2),
cyclin-dependent kinase 4 (also known as: U37022 or cdk4),
20 MEK5 (also known as: U25265 or Mitogen-activated protein kinase kinase 5),
MKP-L (gene accession number: NM_007026; also known as AF038844),
ADAM22 (gene accession number: NM_016351, a disintegrin and metalloproteinase domain 22, also known as AF155382),
ADAM17 (also known as: U92649 or a disintegrin and metalloproteinase domain
25 17 (tumor necrosis factor, alpha, converting enzyme) also known as XM_002270),
are specifically and uniquely up- or downregulated in a cell as a result of HCV infection. These cellular protein kinases, metalloproteases and the phosphatase therefore identify novel diagnostic and therapeutic targets for HCV infection.
30 The only reliable experimental HCV infection studies have been performed with chimpanzees. There is no simple cell culture infection system available for HCV. Although a number of reports have been published describing *in vitro* propagation attempts of HCV in primary cells and cell lines, questions remain concerning

reproducibility, low levels of expression and properly controlled detection methods (reviewed in J. Gen Virol. 81, 1631; Antiviral Chemistry and Chemotherapy 10, 99). Thus, the replicon system described by Bartenschlager and coworkers (Lohmann et al, Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110. 1999) was used for the studies disclosed herein. This replicon system reproduces a crucial part of the HCV replication cycle which is used as a system for simulating HCV infection. Bartenschlager's group produced bicistronic recombinant RNAs, so-called "replicons", which carry the Neomycin-phosphotransferase gene as well as a version of the HCV genome where the sequences for the structural HCV proteins were deleted. After transfection of the subgenomic HCV RNA molecules into the human hepatoma cell line Huh-7, cells supporting efficient RNA-dependent RNA replication of the HCV replicons were selected based on co-amplification of the neo gene and resulting resistance to the antibiotic G418. Integration of coding information into the cellular genome was an exclusion criterium for functional replicons. Several lines were established from G418 resistant clones with autonomously replicating HCV RNAs detectable by Northern blot. Minus-strand RNA replication intermediates were detected by Northern blot or metabolic radio-labeling, and the production of nonstructural HCV proteins was demonstrated by immuno-precipitation after metabolic labeling or Western blot.

Possible influences and/or dependencies of HCV's RNA-dependent RNA replication and nonstructural proteins on host cell transcription are accessible to analysis with the cDNA arrays used in the inventive methods described herein. Expression levels can be confirmed using Northern or Taqman analysis at the RNA and Western blot analysis at the protein level. Huh-pcDNA3 cells are Huh7 cells resistant to G418 by integration of a plasmid and serve as negative control. Three replicon lines were analyzed for changes in cellular RNA expression patterns compared to the control line:

- 30 ▪ Huh-9-13: cell line with persistant replicon I377/NS3-3'/wt, described in Science 1999, 285, 110-113,
- Huh-5-15: cell line with persistant replicon I389/NS3-3'/wt, described in Science 1999, 285, 110-113,
- Huh-11-7: cell line with persistant replicon I377/NS2-3'/wt, described in Science 1999, 285, 110-113.

Based on the discoveries reported herein, one aspect of the present invention is directed to a screening method for detecting compounds useful for the prophylaxis and/or treatment of Hepatitis C virus infections. Specifically, this method involves

5 contacting a test compound with at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein

10 Kinase C, mu (X75756), Protein Kinase C, theta(L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (AF038844, NM_007026), ADAM22 (NM_016351), ADAM17 (U92649) and detecting the human cellular protein kinase, metalloprotease or phosphatase

15 activity.

Another aspect of the present invention is directed to a diagnostic method, an assay for detecting Hepatitis C virus infections in an individual or cells. This method involves providing a sample from the individual or providing cells and detecting

20 activity of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of: beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein

25 Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), ADAM17 (U92649) and detecting the human cellular protein kinase, metalloprotease or phosphatase activity.

30

Accordingly, one aspect of the present invention is directed to novel compounds useful in the above-identified methods. Therefore, the present invention relates to a monoclonal or polyclonal antibody that binds to a human cellular protein kinase,

metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351) and ADAM17 (U92649).

10 Furthermore, the present invention discloses a method for treating Hepatitis C virus infection in an individual comprising the step of administering a pharmaceutically effective amount of an agent which inhibits at least partially the activity of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

Another object of the present invention is to provide a method for regulating the production of Hepatitis C virus in cells comprising the step of administering a pharmaceutically effective amount of an agent to said cells wherein said agent inhibits at least partially the activity of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L

(NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649). The above-mentioned monoclonal or polyclonal antibodies directed against these targets may be used as pharmaceutically active agents within said methods.

5 In order to identify HCV infections and new inhibitors and new pharmaceutically active compounds against Hepatitis C viruses a further aspect of the present invention is directed to a solid support useful for detecting Hepatitis C virus infections in an individual or in cells comprising an immobilized oligonucleotide, wherein said oligonucleotide is capable of detecting activity of at least one human
10 cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated
15 protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649). Said solid support is also useful to screen compounds for the prophylaxis and/or treatment of Hepatitis C virus infections in an individual comprising at least one immobilized
20 oligonucleotide, wherein said oligonucleotide encodes one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein
25 Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649) or comprising at least one immobilized human cellular protein kinase, metalloprotease or
30 phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein

Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

5

Yet another aspect of the present invention is directed to a novel therapeutic composition useful for the prophylaxis and/or treatment of an individual afflicted with Hepatitis C virus comprising at least one agent capable of inhibiting activity of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

20

Detailed description of the invention

Utilizing microarray technology, a unique microarray of more than 900 signal transduction cDNAs was developed. This array was used to compare signal transduction mRNA expression patterns (e.g. upregulation or downregulation) from HCV Replicon cells Huh-9-13, Huh-5-15, and Huh-11-7 with Huh-pcDNA control cells which do not contain HCV Replicons. These HCV Replicon cells serve as a system for simulation of HCV infected cell systems, especially for simulating HCV infected mammals, including humans. Interference of HCV with the cellular signaling events is reflected in differential gene expression when compared to cellular signaling in control cells. Results from this novel signal transduction microarray analysis revealed significant up- or downregulation of human cellular protein kinases, metalloproteases and one phosphatase. Radioactively labeled complex cDNA-probes from HCV Replicon cells Huh-9-13, Huh-5-15, and Huh-11-7 were hybridized to cDNA-arrays and compared to

hybridizations with cDNA-probes from Huh-pcDNA control cells which did not contain HCV Replicons. Surprisingly it was found that the following cellular targets are significantly up- or downregulated:

	beta-adrenergic receptor kinase 1 (NM_001619):	2.7 – 3.5 fold stronger
5	Mitogen activated protein kinase activated protein kinase 5 (AF032437):	2.2 – 3.0 fold stronger
	Insulin-stimulated protein kinase 1 (U08316):	2.2 – 3.1 fold stronger
	TRK E (NM_013994):	3.2 -10.3 fold stronger
	Human p21-activated protein kinase 2 (U24153):	1.8 – 2.7 fold stronger
10	PKC-mu (X75756):	2.3 – 3.2 fold weaker
	PKC-theta (L01087):	2.6 – 3.3 fold weaker
	AMP-activated protein kinase beta 2 subunit (AJ 224538):	1.9 – 2.2 fold weaker
	JNK2 (U09759):	2.6 – 4.1 fold weaker
15	cdk4 (U37022)	1.8 – 3.3 fold stronger
	MEK5 (U25265)	0.9 – 3.6 fold stronger
	MKP-L (NM_007026):	2.1 – 2.3 fold weaker
	ADAM22 (NM_016351):	2.5 – 3.8 fold weaker
20	ADAM17 (U92649):	3.4 – 3.8 fold weaker

Disclosed herein is the first report describing the role of human cellular proteins beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein

kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), ADAM17 (U92649) in the signal transduction of the HCV infection process. As a result of these discoveries, novel compounds and inhibitors against the above-mentioned human cellular protein kinases, metalloproteases and phosphatases may be found by the use of the inventive methods disclosed herein.

ADAM17 and ADAM22 are proteins of the ADAM family (proteins containing a disintegrin and metalloprotease domain). ADAM17 is also known as "Homo sapiens a disintegrin and metalloproteinase domain 17" and ADAM22 is known as "Homo sapiens metalloprotease-like, disintegrin-like, cysteine-rich protein 2 epsilon".

As used herein, the term "inhibitor" refers to any compound capable of downregulating, decreasing, suppressing or otherwise regulating the amount and/or activity of the human cellular proteins beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649). Generally, human cellular protein inhibitors may be proteins, oligo- and polypeptides, nucleic acids, small chemical molecules, or other chemical moieties.

As used herein, the term "regulating expression and/or activity" generally refers to any process that functions to control or modulate the quantity or activity (functionality) of a cellular component. Static regulation maintains expression and/or activity at some given level. Upregulation refers to a relative increase in expression and/or activity. Accordingly downregulation refers to a relative decrease in expression and/or activity. In the present invention, regulation is preferably downregulation of a cellular component. As used herein,

downregulation is synonymous with inhibition of a given cellular component's activity.

Therapeutics, pharmaceutically active agents or inhibitors, respectively, may be
5 administered to cells from an individual *in vitro*, or may involve *in vivo*
administration to the individual. The term "individual" preferably refers to
mammals and most preferably to humans. Routes of administration of
pharmaceutical preparations to an individual may include oral and parenteral,
including dermal, intradermal, intragastral, intracutan, intravasal, intravenous,
10 intramuscular, intraperitoneal, intranasal, intravaginal, intrabuccal, percutan,
rectal, subcutaneous, sublingual, topical or transdermal application, but are not
limited to these ways of administration. For instance, the preferred preparations
are in administratable form which is suitable for oral application. These
15 administratable forms, for example, include pills, tablets, film tablets, coated
tablets, capsules, powders and deposits. Administration to an individual may be in
a single dose or in repeated administrations, and may be in any of a variety of
physiologically acceptable salt forms, and/or with an acceptable pharmaceutical
carrier, binder, lubricant, excipient, diluent and/or adjuvant. Pharmaceutically
acceptable salt forms and standard pharmaceutical formulation techniques are
20 well known to persons skilled in the art.

As used herein, a "pharmaceutical effective amount" of a human cellular protein
kinase, metalloprotease or phosphatase inhibitor is an amount effective to achieve
the desired physiological result, either in cells treated *in vitro* or in a subject
25 treated *in vivo*. Specifically, a pharmaceutically effective amount is an amount
sufficient to inhibit, for some period of time, one or more of the clinically defined
pathological processes associated with the viral infection. The effective amount
may vary depending on the specific human cellular protein kinase,
metalloprotease or phosphatase inhibitor selected, and is also dependent on a
30 variety of factors and conditions related to the subject to be treated and the
severity of the infection. For example, if the inhibitor is to be administered *in vivo*,
factors such as the age, weight and health of the patient as well as dose response
curves and toxicity data obtained in pre-clinical animal work would be among

those considered. If the inhibitor is to be contacted with the cells *in vitro*, one would also design a variety of pre-clinical *in vitro* studies to assess such parameters as uptake, half-life, dose, toxicity, etc. The determination of a pharmaceutically effective amount for a given agent is well within the ability of
5 those skilled in the art.

It is also apparent to a person skilled in the art that detection includes any method known in the art useful to indicate the presence, absence, or amount of a detection target. Such methods may include, but are not limited to, any molecular
10 or cellular techniques, used singularly or in combination, including, but not limited to: hybridization and/or binding techniques, including blotting techniques and immunoassays; labeling techniques (chemiluminescent, colorimetric, fluorescent, radioisotopic); spectroscopic techniques; separations technology, including precipitations, electrophoresis, chromatography, centrifugation, ultrafiltration, cell
15 sorting; and enzymatic manipulations (e.g., digestion).

The present disclosure teaches for the first time the up- or downregulation of a group of human cellular protein kinases, metalloproteases and a phosphatase specifically involved in the viral infection of Hepatitis C virus. Thus, the present
20 invention is also directed to a method useful for detecting novel compounds useful for prophylaxis and/or treatment of HCV infections.

Methods of the present invention identify compounds useful for prophylaxis and/or treatment of HCV infections by screening a test compound, or a library of test
25 compounds, for its ability to inhibit any one or more of the group of human cellular protein kinases, metalloproteases or phosphatases identified herein as characteristically up- or downregulated during HCV growth and RNA replication inside a cell. A variety of assay protocols and detection techniques are well known in the art and easily adapted for this purpose by a skilled practitioner. Such
30 methods include, but are not limited to, high throughput assays (e.g., microarray technology, phage display technology), and *in vitro* and *in vivo* cellular and tissue assays.

In a related aspect, the present invention provides, in view of the discovery of human cellular protein kinases, metalloproteases and phosphatases specifically involved in the HCV infection process, an assay component specially useful for detecting HCV in an individual or in cells. Preferably the assay component

5 comprises oligonucleotides immobilized on a solid support capable of detecting activity of one or more of the human cellular protein kinases, metalloproteases or phosphatase comprising:

the kinases beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5

10 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1

(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265);

15 the metalloproteases ADAM22 (NM_016351), ADAM17 (U92649) and

the phosphatase MKP-L (NM_007026).

20 Preferably the solid support would contain oligonucleotides of sufficient quality and quantity to detect all of the above-mentioned human cellular proteins (e.g., a nucleic acid microarray).

Similarly, it is an object of the present invention to provide an assay component
25 specially useful for screening compounds useful for the prophylaxis and/or treatment of HCV infections. One preferred assay component comprises oligonucleotides that encode one or more human cellular protein kinases: beta-adrenergic receptor kinase (X61157), Mitogen activated protein kinase activated protein kinase (AF032437), Insulin-stimulated protein kinase 1 (U08316), TRK E (X74979), PKC-mu (X75756), PKC-theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (L31951), Human p21-activated protein kinase, and PAK2 (U24153); or metalloproteases: ADAM22 (AF155382) and ADAM17

(XM_002270); or the Phosphatase MKP-L, (NM_007026) immobilized on a solid support.

In another embodiment, the assay component comprises peptide fragments of
5 one or more of the above-identified human cellular proteins immobilized on a solid support. Once again the most preferred solid support embodiment would contain polymers of sufficient quality and quantity to detect all of the above-mentioned human cellular protein kinases, metalloproteases and the phosphatase (e.g., a nucleic acid or a peptide microarray). A variety of supports and constructions of
10 the same for the methods disclosed herein are well known in the art and easily adapted for this purpose by a skilled practitioner (cf., for example: Marschall, 1999 "Do-it-yourself gene watching" Science 286, 444-447; Service 2000 "Protein arrays step out of DNA's shadow" Science 289, 1673).

15 It is preferred that mRNA is measured as an indication of expression. Methods for assaying for mRNA include, but are not limited to, Northern blots, slot blots, dot blots, and hybridization to an ordered array of oligonucleotides. Nucleic acid probes useful for assay of a sample are preferably of sufficient length to specifically hybridize only to appropriate, complementary transcripts. Typically the
20 oligonucleotide probes will be at least 10 to 25 nucleotides in length. In some cases longer probes of at least 30, 40, or 50 up to 2500 nucleotides will be desirable.

The polypeptide product of gene expression may be assayed to determine the
25 amount of expression as well. Methods for assaying for a protein include, but are not limited to, western blot, immuno-precipitation, radioimmuno assay, and peptide immobilization in an ordered array. It is understood, however, that any method for specifically and quantitatively measuring a specific protein or mRNA product can be used.

30

A variety of supports upon which nucleic acids or peptides can be immobilized are known in the art, for example filters, or polyvinyl chloride dishes. Any solid surface to which oligonucleotides or peptides can be bound, either directly or indirectly,

either covalently or non-covalently, can be used. A preferred solid support is a microarray membrane filter or a "biochip". These contain particular polymer probes in predetermined locations on the array. Each predetermined location may contain more than one molecule of the probe, but each molecule within the 5 predetermined location has an identical sequence.

The present invention incorporates by reference in their entirety techniques well known in the field of molecular biology. These techniques include, but are not limited to, techniques described in the following publications:

10 Ausubel, F.M. et al. eds., "Short Protocols In Molecular Biology" 4th Ed. 1999, John Wiley & Sons, NY (ISBN 0-471-32938-X);
Old, R.W. & S.B. Primrose "Principles of Gene Manipulation: An Introduction To Genetic Engineering" 3rd Ed. 1985, Blackwell Scientific Publications, Boston.
Studies in Microbiology: V.2, 409 pp. (ISBN 0-632-01318-4);

15 Miller, J.H. & M.P. Calos eds., "Gene Transfer Vectors For Mammalian Cells" 1987, Cold Spring Harbor Laboratory Press, NY. 169 pp. (ISBN 0-87969-198-0);
Mayer, R.J. & J.H. Walker eds. "Immunochemical Methods In Cell and Molecular Biology" 1987, Academic Press, London. 325 pp. (ISBN 0-12480-855-7);
Sambrook, J. et al. eds., "Molecular Cloning: A Laboratory Manual" 2nd Ed. 1989,
20 Cold Spring Harbor Laboratory Press, NY. Vols. 1-3. (ISBN 0-87969-309-6);
Winnacker, E.L. "From Genes To Clones: Introduction To Gene Technology" 1987
VCH Publishers, NY. (translated by Horst Ibelgauf) 634 pp. (ISBN 0-89573-614-4).

25 The present invention further incorporates by reference in their entirety techniques well known in the field of microarray construction and analysis. These techniques include, but are not limited to, techniques described in the following patents and patent applications describing array of biopolymeric compounds and methods for their fabrication:

30 U.S. Pat. Nos. 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186;
5,429,807; 5,436,327; 5,445,934; 5,472,672; 5,527,681; 5,529,756;
5,545,531; 5,554,501; 5,556,752; 5,561,071; 5,559,895; 5,624,711;

5,639,603; 5,658,734; 5,807,522; 6,087,102; WO 93/17126; WO
95/11995; WO 95/35505; EP 742 287; and EP 799 897.

Techniques also include, but are not limited to, techniques described in the following
5 patents and patent application describing methods of using arrays in various
applications:

U.S. Pat. Nos. 5,143,854; 5,288,644; 5,324,633; 5,432,049;
5,470,710; 5,492,806; 5,503,980; 5,510,270; 5,525,464; 5,547,839;
5,580,732; 5,661,028; 5,994,076; 6,033,860; 6,040,138; 6,040,140;
10 WO 95/21265; WO 96/31622; WO 97/10365; WO 97/27317;
EP 373 203; and EP 785 280

It is readily apparent to those skilled in the art that other suitable modifications and
adaptations of the compositions and methods of the invention described herein are
15 evident and may be made without departing from the scope of the invention or the
embodiments disclosed herein. Having now described the present invention in
detail, the same will be more clearly understood by reference to the following
examples, which are included for purposes of illustration only and are not intended
to be limiting of the invention.

20

Examples

Materials and Methods

25

1. Generation of cDNA-arrays on membranes

In order to manufacture cDNAs-arrays on membranes, the following strategy was
pursued: cDNAs encoding parts of or full length proteins of interest – in the
following referred to as “target cDNAs” – were cloned into the plasmid Bluescript II
30 KS⁺ (Stratagene, USA). Large scale purifications of these plasmids were
performed according to standard techniques and 200 µl aliquots (1 µg/µl plasmid
concentration) were transferred into appropriate 96 well plates. Plates were
closed with sealing tape and chilled on ice for 5 minutes after incubation for 10
minutes at 95°C. 10 µl of 0.6N NaOH were added and the mix was stored for 20

minutes at room temperature before addition of 10 µl 2.5M Tris-HCl pH 7.1 and 20 µl 40x SSC. Target cDNAs were spotted onto Nylon or Nitrocellulose membranes using a BioGrid (BioRobotics, UK) equipped with a 0.7 mm pintoil. In this way, between 200 ng and 350 ng of plasmids encoding target cDNAs were transferred 5 onto the membranes and crosslinked to the membranes by ultraviolet light ($1.2 \times 10^5 \mu\text{J}/\text{cm}^2$). The arrays were stored for use in subsequent experiments at at 4°C.

2. Cellular HCV RNA replication system

10 Huh-pcDNA3, Huh-9-13, Huh-5-15 and Huh-11-7 cells were grown in DMEM supplemented with 10% FCS, 2 mM Glutamine, Penicillin (100 IU/ml) / Streptomycin (100 µg/ml) and 1x nonessential amino acids in the presence of 1 mg/ml G418. Cells were routinely passaged three times a week at a dilution of 1:3 or 1:2.

15

3. Lysis of cells, and isolation of total RNA

Huh-pcDNA3, Huh-9-13, Huh-5-15 and Huh-11-7 cells were seeded at 5×10^5 cells per 10 cm plate in medium without G148. The medium was changed 3 days after plating and cells were harvested 5 days after plating by lysing the cells 20 directly on the plate with 4 ml of Tri reagent (Molecular Research Center, Inc., USA). The lysates were stored at room temperature for 5 minutes and then centrifuged at 12000xg for 15 minutes at 4°C. The supernatant was mixed with 0,1 ml of 1-Bromo-3-chloropropane per 1 ml of Tri reagent and vigorously shaken. The suspension was stored for 5 minutes at room temperature and then 25 centrifuged at 12000xg for 15 minutes at 4°C. The colorless upper phase was transferred into new tubes, mixed with 5 µl of polyacryl-carrier (Molecular Research Center Inc., USA) and with 0.5 ml of isopropanol per 1 ml of Tri reagent and vigorously shaken. The samples were stored at room temperature for 5 minutes and then centrifuged at 12000xg for 8 minutes at 4°C. The supernatant 30 was removed and the RNA pellet washed twice with 1 ml of 75% Ethanol. The pellet was dried and resuspended in 25 µl of RNase-free buffer per initial 1 ml lysate.

4. Preparation of radioactively labelled cDNA probes from RNA

In order to obtain a radioactively labeled cDNA probe, RNA was transcribed into a cDNA-probe in the presence of radioactively labeled dATP. 12 µl bidestilled DEPC treated H₂O containing 1 µg of primer TXN (5'-TTT TTT TTT TTT TTT TXN-3' with T → dTTP; N → dATP, dCTP, dGTP or dTTP; X → dATP, dCTP or dGTP) and total RNA (6 µg) were shaken between 5 and 15' at 60°C and then 5 incubated at 4°C for 2 to 10 minutes. After centrifugation (30 seconds, 10000xg) 7 µl of a mix consisting of 100 µCi dATP-P³³ (Amersham, UK) which were dried under vacuum previously and resuspended in 4 µl first strand buffer (Life 10 Technologies, USA), 2 µl 0.1M DTT and 1 µl labeling solution (4mM dCTP, dGTP, dTTP each and 80 µM dATP final concentration) were added. Following the addition of 1 µl Superscript II reverse transcriptase (Life Technologies, USA) the reaction was incubated for 10 minutes at room temperature and then for 60 minutes at 38°C. Subsequently, the reaction was vigorously shaken for 30 15 minutes at 68°C after adding 5 µl 0.5M EDTA and 25 µl 0.6M NaOH.

Unincorporated nucleotides were removed from the labeling reaction using ProbeQuant G-50 columns (Amersham, UK). The column was vigorously shaken and centrifuged for 1 minute at 735xg in an appropriate reaction tube after bottom 20 closure and lid were removed. The column was placed into a new reaction tube, the probe was applied onto the center of the column material and the column was centrifuged for 2 minutes at 735xg. The flow-trough was transferred into new reaction tubes and filled up to a volume of 100 µl with 10mM Tris, pH 7.4, 1 mM EDTA. The probe was precipitated by centrifugation for 15 minutes at 12000xg 25 after 4 µl of 5M NaCl, 1 µl polyacryl-carrier (Molecular Research Center Inc., USA) and 250µl Ethanol were added. The supernatant was discarded and the pellet dried before starting with the hybridisation.

30

5. Hybridisation of radioactively labeled cDNA-probes to cDNA-arrays

The pellet was resuspended in 10 µl C₀T DNA (1 µg/µl, Roche Diagnostics, Germany), 10 µl yeast tRNA (1 µg/µl Sigma, USA) and 10 µl polyA (1 µg/µl, Roche

Diagnostics, Germany). Herring sperm DNA was added to a final concentration of 100 µg/ml and the volume was filled up to 100 µl with 5 µl 10% SDS (Sodiumdodecylsulfat), 25 µl 20x SSPE and bidestilled H₂O. The mix was put on 95°C for 5 minutes, centrifuged for 30 seconds at 10000xg and vigorously shaken
5 for 60 minutes at 65°C. A 1 µl aliquot of the probe was used to measure the incorporation of radioactive dATP with a scintillation counter. Probes with at least a total of 20x10⁶ cpm were used. The arrays were prehybridised for at least 3 hours at 65°C in hybridisation solution in a roller bottle oven. After
10 prehybridisation the radioactively labeled probe was added into the hybridisation solution and hybridisation was continued for 20 hours. The probe was discarded and replaced with wash solution A (2xSSC). The arrays were washed twice in wash solution A at room temperature in the roller oven. Afterwards, wash solution A was replaced by wash solution B (2x SSC, 0.5% SDS) preheated to 65°C and arrays were washed twice for 30 minutes at 65°C. Then, wash solution B was
15 replaced by wash solution C (0.5x SSC, 0.5% SDS) preheated to 65°C and arrays were washed twice for 30 minutes at 65°C. The moist arrays were wrapped in airtight bags and exposed for 8 to 72 hours on erased phosphoimager screens (Fujifilm, Japan).

20 **6. Analysis of cDNA-arrays**

The exposed phosphoimager screens were scanned with a resolution of 100 µ and 16bits per pixel using a BAS-1800 (Fujifilm, Japan). Files were imported into the computer program ArrayVision (Imaging Research, Canada). Using the program's features, the hybridisation signals of each target cDNA were converted
25 into numbers. The strength of the hybridisation signals reflected the quantity of RNA molecules present in the probe. Differentially expressed genes were selected according to the ratio of their signal strength after normalization to the overall intensity of the arrays.

30

7. Analysis of expression levels by Northern blot experiment

Huh-pcDNA3, Huh-9-13, Huh-5-15 and Huh-11-7 cells were seeded at 5 x 10⁵ cells per 10 cm plate in medium without G148. Cells were harvested after 3 days

by lysing the cells directly on the plate with 4 ml of Tri reagent (Molecular Research Centre, Inc., USA). The lysates were stored at room temperature for 5 minutes and then centrifuged at 12000xg for 15 minutes at 4°C. The supernatant was mixed with 0,1 ml of 1-bromo-3-chloropropane per 1 ml of Tri reagent and 5 vigorously shaken. The suspension was stored for 5 minutes at room temperature and then centrifuged at 12000xg for 15 minutes at 4°C. The colourless upper phase was transferred into new tubes, mixed with 5 µl of poly-acryl-carrier (Molecular Research Centre, Inc., USA) and with 0.5 ml of isopropanol per 1 ml of Tri reagent and vigorously shaken. The samples were stored at room temperature 10 for 5 minutes and then centrifuged at 12000xg for 8 minutes at 4°C. The supernatant was removed and the RNA pellet washed twice with 1 ml of 75% Ethanol. The pellet was dried and resuspended in 25 µl of RNase-free water per initial 1 ml lysate. 8 µg of total RNA per sample was loaded onto formaldehyde-containing agarose gels (Sambrook et al. Cloning manual, CSHL press, 1989) and 15 transferred to HYbond NX membranes (Amersham) overnight in 20x SSC (3M NaCl, 300mM C₆H₅Na₃O₇ x 2 H₂O, pH 7.0) by capillary transfer. RNA was immobilized to the filter using UV-crosslinking (120mJ/cm² for 25 seconds). Filters were hybridized to oligonucleotide probes or random-primed probes specific for the genes in question. Quantitation of signals was performed with a Fuji 20 phosphoimager.

8. Verification of de-regulated genes by quantitative Real-Time PCR

Quantitative RT-PCR was used to verify hits resulting from DNA macroarray experiments by exploiting the 5'-exonuclease of Taq DNA polymerases to cleave 25 the 5' fluorescent label of an oligonucleotide. Total RNA was extracted from cell lines (Qiagen RNeasy Mini Kit, QIAGEN, Hilden) and was reverse transcribed with Superscript II (Invitrogen, Karlsruhe) according to the manufacturer's protocol with 5 µg of RNA as a template and oligodT primers. Subsequently, the cDNA was analysed on a ABI PRISM 7000 Sequence Detection System (Applied 30 Biosystems, Darmstadt) with the 5'exonuclease assay by using the TaqMan Universal PCR Master Mix (#4324018, Applied Biosystems, Darmstadt) and non-extendible oligonucleotides. Gene-specific TaqMan probes were labelled with the reporter dye FAM™ at the 5'-end and the quencher dye TAMRA™ at the 3' end of

the probe. GAPDH and 18SrRNA were used as reference genes with TaqMan probes that were labelled with VICTM and TAMRATM accordingly.

Experimental conditions were 2 minutes 50°C, 10 minutes 95°C, followed by 40 cycles with 15 seconds at 95°C and 1 minute at 60°C. Primer Express software

5 was used to design primers with a melting temperature of 58 - 60°C amplifying an amplicon of a maximum length of 150 bp.

9. Analysis of expression levels by Western blot experiments

Huh-pcDNA3, Huh-9-13, Huh-5-15 and Huh-11-7 cells were seeded at 5 x 10⁵

10 cells per 10 cm plate in medium without G148. Cells were harvested after 3 days by the addition of 500 µl of 1x SDS sample buffer (62.5 mM Tris-HCl pH 6.8, 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.01% bromphenol blue) or RIPA lysis buffer. Lysates were separated on SDS-poly acrylamide gels and proteins transferred to nitrocellulose. Western blotting was performed with the appropriate
15 antibodies according to the manufacturers instructions.

Claims

1. A method for detecting compounds useful for the prophylaxis and/or treatment of Hepatitis C virus infections, the method comprising the following steps:
 - a) contacting a test compound with at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), ADAM17 (U92649); and
 - b) determining the activity of said human cellular protein kinase, metalloprotease or phosphatase.
2. A method for detecting Hepatitis C virus infections in an individual, the method comprising the following steps:
 - a) providing a sample from said individual; and
 - b) determining the activity in said sample of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4

(U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

3. A method for detecting Hepatitis C virus infections in cells, the method
5 comprising the following steps:

a) providing said cells; and
b) determining the activity in said cells of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

4. An antibody that binds to a human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

5. The antibody of claim 4, wherein said antibody is a monoclonal or polyclonal antibody.

30
6. A method for treating Hepatitis C virus infection in an individual, the method comprising the step of administering a pharmaceutically effective amount of an

agent which inhibits at least partially the activity of at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026),
10 ADAM22 (NM_016351), and ADAM17 (U92649).

7. A method for regulating the production of Hepatitis C virus in cells, the method comprising the step of administering a pharmaceutically effective amount of an agent to said cells wherein said agent inhibits at least partially the activity of at
15 least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026),
20 ADAM22 (NM_016351), and ADAM17 (U92649).
- 25 8. The method according to claim 6 or 7, wherein the agent is an antibody which binds to at least one human cellular protein kinase, metalloprotease or phosphatase selected from the group consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein
30

kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

9. The method according to claim 8, wherein said antibody is a monoclonal or
5 polyclonal antibody.
10. A solid support useful for detecting Hepatitis C virus infections in an individual,
the solid support comprising an immobilized oligonucleotide, wherein said
oligonucleotide is capable of detecting activity of at least one human cellular
protein kinase, metalloprotease or phosphatase selected from the group
10 consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen
activated protein kinase activated protein kinase 5 (AF032437), Insulin-
stimulated protein kinase 1 (U08316), Discoidin domain receptor family,
member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C,
15 theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538),
JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-
dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026),
ADAM22 (NM_016351), and ADAM17 (U92649).
- 20 11. A solid support useful for detecting Hepatitis C virus infections in cells, the
solid support comprising an immobilized oligonucleotide, wherein said
oligonucleotide is capable of detecting activity of at least one human cellular
protein kinase, metalloprotease or phosphatase selected from the group
consisting of beta-adrenergic receptor kinase 1 (NM_001619), Mitogen
activated protein kinase activated protein kinase 5 (AF032437), Insulin-
25 stimulated protein kinase 1 (U08316), Discoidin domain receptor family,
member 1(NM_013994), Protein Kinase C, mu (X75756), Protein Kinase C,
theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538),
JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-
30 dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026),
ADAM22 (NM_016351), and ADAM17 (U92649).

12. A solid support useful for screening compounds useful for the prophylaxis
and/or treatment of Hepatitis C virus infections in an individual, the solid
support comprising at least one immobilized oligonucleotide, wherein said
oligonucleotide encodes one human cellular protein kinase, metalloprotease or
phosphatase selected from the group consisting of beta-adrenergic receptor
5 kinase 1 (NM_001619), Mitogen activated protein kinase activated protein
kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin
domain receptor family, member 1(NM_013994), Protein Kinase C, mu
(X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase
10 beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein
kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265),
MKP-L (NM_007026), ADAM22 (NM_016351), and ADAM17 (U92649).

13. A solid support useful for screening compounds useful for the prophylaxis
15 and/or treatment of Hepatitis C virus infections in an individual, the solid
support comprising at least one immobilized human cellular protein kinase,
metalloprotease or phosphatase selected from the group consisting of beta-
adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase
activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1
20 (U08316), Discoidin domain receptor family, member 1(NM_013994), Protein
Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated
protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-
activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022),
MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and
25 ADAM17 (U92649).

14. A composition useful for the prophylaxis and/or treatment of an individual
afflicted with Hepatitis C virus, the composition comprising at least one agent
capable of inhibiting activity of at least one human cellular protein kinase,
30 metalloprotease or phosphatase selected from the group consisting of beta-
adrenergic receptor kinase 1 (NM_001619), Mitogen activated protein kinase
activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1
(U08316), Discoidin domain receptor family, member 1(NM_013994), Protein

Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEK5 (U25265), MKP-L (NM_007026), ADAM22 (NM_016351), and
5 ADAM17 (U92649).

10. Nucleic acid and amino acid sequences of human cellular proteins:

DEFINITION Homo sapiens adrenergic, beta, receptor kinase 1 (ADRBK1), mRNA.

5 ACCESSION NM_001619
EC number = "2.7.1.126"

10 DEFINITION Homo sapiens mitogen activated protein kinase activated protein kinase gene, complete cds.

15 ACCESSION AF032437
VERSION AF032437.1 GI:3133290
FEATURES Location/Qualifiers
source 1..1968
/organism="Homo sapiens"
/db_xref="taxon:9606"

20 CDS 192..1607
/note="MAPK-activated protein kinase; PRK"
/codon_start=1
/product="mitogen activated protein kinase activated protein kinase"
/protein_id="AAC39863.1"
/db_xref="GI:3133291"

25 /translation="MSEESDMDKAIKETSILEEYSINWTQKLGAGISGPVRVCVKKST

30 QERFALKILLDRPKARNEVRLHMMCATHPNIVQIIIEVFANSVQFPHESSPRARLLIVM
EMMEGGELFHRISQHRHFTEKQASQVTQKQIALALRHCHLLNIAHRDLKPENLLFKDNS
LDAPVKLCDGFRAKIDQGDLMTQPQFTPYYVAPQVLEAQRRHQKEKSGIIPSTSPTPYTY

35 NKSCDLWSLGVIYVMLCGYPPFYSKHHSRTIPKDMRRKIMTGSFEFPEEEWSQISEM
AKDVVRKLLKVKPERRLTIEGVLDHPWLNSTEALDNVLPSAQLMMDKAVVAGIQQAHA

40 EQLANMRIQDLKVSLSKPLHSVNNPILRKRKLLGTPKDKDSVYIHDHENGAEDSNVALEK
LRDVIAQCILPQAGENEDEKLNEVMQEAWKYNRECKLLRDTLQSFSWNGRGFTDKVDR
LKLAEVKQVIEEQTTSHESQ"

45 BASE COUNT 571 a 445 c 485 g 467 t
ORIGIN

1 ccagcctaga gcccggccgc gaagcagagc cggcgccggg gtcctcatcc ccaccgggtcc
61 cgaggggcgg ctgctgcccg tcggcacag gcccaggggc ccgagtgccg agccctttgc
121 tccctccggcc gcgcggggac agggtctgtg agcagcctcc gcctctcccg gctgtggggg
181 cccccacttag tatgtcgagg gagagcgaca tggacaaagc catcaaggaa acttccattt
241 tagaagaata cagtatcaat tggactcaga agctgggagc tggaaattgt ggtccagtt
301 gagtctgtgt aaagaaaatct actcaagaac ggtttgcgt gaaaattctt cttgatgtc
361 caaaaagctag aatgagggtt cgtctgcaca tgatgtgtgc cacacaccca aacatagttc
421 agattattga agtgtttgt aacagtgtcc agtttccccca tgagtccagc cctagggccc
481 gactcttaat tggatggag atgatggaa ggggagagct atttcacaga atcagccagc
541 accggcactt tacagagaag caagccagcc aagtaacaaa gcagatagct ttggctctgc
601 ggcactgtca cttgttaaac attgcgcaca gagacctcaa gcctgaaaaat ctgcctttta
661 aggataactc tttggatgcc ccagtgaagt tgtgtgactt tggatttgcc aagattgacc
721 aagggtgactt gatgacaccc caggcaccc cttattatgt agcacccccag gtactggagg
781 cgcaaagaag gcatcagaag gagaatctg gcatcatacc tacctcaccc acgcacctaca
841 cttacaacaa gagctgtgac ttgtggtccc taggggtgat tatctatgtg atgcgtgcg
901 gataccctcc ttttactcc aaacaccaca gccggactat cccaaaggat atgcgaagaa
961 agatcatgac aggcagttt gagttcccg aggaagagt gагtсагате tcagagatgg
1021 ccaaaggatgt tggatggaa ctctgaagg tcaaaccgg aaggagactc accatcgagg
1081 gagtgctgga ccaccctgg ctcaattcca ccgaggccct ggataatgtg ctgccttctg

1141 ctcagctgat gatggacaag gcagtggttg caggaatcca gcaggctcac gcggaacagt
 1201 tggccaaacat gagaatccag gatctgaaag tcagcctcaa acccctgcac tcagtgaaca
 1261 accccattct gcggaagagg aagttacttg gcaccaagcc aaaggacagt gtctatatcc
 1321 acgaccatga gaatggagcc gaggattcca atgttgctt gaaaaaattc cgagatgtga
 5 1381 ttgctcagtg tattctccc caggctggag agaatgaaga tgagaaaactg aatgaagtaa
 1441 tgcaggaggc ttgaaagtat aaccggaaat gcaaactcct aagagatact ctgcagagct
 1501 tcagctggaa tggtcgtgga ttcacagata aagtagatcg actaaaaactg gcagaaaattg
 1561 tgaagcaggt gatagaagag caaacaccgt cccacgaatc ccaataatga cagctcaga
 1621 ctttgtttt ttaacaattt gaaaaattat tcttaatgt ataaaagtaat tttatgtaaa
 10 1681 ttaataaaatc ataatttcat ttccacattt attaaagctg ctgtatagat ttagggtgca
 1741 ggacttaata atagtatagt tattgtttgt ttttaagaaa agctcagttc tagagacata
 1801 ctattacttt aggactgtgt agttgtatat ttgtaaatgt acagatgtat ctgtcaagca
 1861 atattgtttt attttaataaaatataaa aaatcactt ccagcagtag aaaaaggacc
 1921 gactataccg acctttctga ttagtaaaca gttgaatcaa ggactctg

15

20 DEFINITION Human insulin-stimulated protein kinase 1 (ISPK-1) mRNA,
 complete
 cds.
 ACCESSION U08316
 VERSION U08316.1 GI:475587
 25 FEATURES Location/Qualifiers
 source 1..2260
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="X"
 /map="Xp21.3-22.1"
 30 placenta cDNA /clone_lib="MOLT 4 T-cell leukemia and human
 libraries"
 gene 1..2223
 /gene="ISPK-1"
 35 CDS 1..2223
 /gene="ISPK-1"
 /note="ribosomal protein S6 kinase".
 /codon_start=1
 /product="insulin-stimulated protein kinase 1"
 40 /protein_id="AAA81952.1"
 /db_xref="GI:475588"
 /translation="MPLAQLADPWQKMAVEPSDSAENGQQIMDEPMGEEEINPQTEE
 45 VSIKEIAITHHVKEGHEKADPSQFELLKVLGQGSFGKVFLVKKISGSDARQLYAMKVL
 KKATLKVDRVRVTKMERDILVEVNHPFIVKLHYAFQTEGKLYLILDFLRGGDLFTRL
 KEVMFTEEDVKFYLAELALALDHLHSLGIIYRDLKPENILLDEEGHIKLTDGLSKES
 50 IDHEKKAYSFCGTVEYMAPEVVNRGHTQSADWWSFGVLMFEMLTGTLPFQGKDRKET
 MTMILKAKLGMPQFLSPEAQSLRLMLFKRNPANRLGAGPDGVVEIKRHSFFSTIDWNK
 55 LYRREIHPPFKPATGRPEDTFYFDPEFTAFTPDKDSPGIPPSANAHQFLRGFSFVAITS
 DDESQAMQTGVGVHSIVQQLHRNSIQFTDGYEVKEDIGVGSYSVCKRCIHKATNMEFAV
 KIIDKSKRDPTEEIEILLRYGQHPNIITLKDVYDDGKYVYVVTELKGGEELLDKILRQ
 60 KFFSEREASAVLFTITKTVEYLHAQGVVHRDLKPSNILYVDESGNPESIRICDFGFAK
 QLRAENGLLMTPCYTANFVAPEVLKRQGYDAACDIWSLGVLLYTMLTGYTPFANGPDD

TPEEILARIGSGKFSLSGGYWNSVSDTAKDLVSKMLHVDPHQRLTAALVLRHPWIVHW

DQLPQYQLNRQDAPHLVKGAMAATYSALNRNQSPVLEPVGRSTLAQRGIKKITSTAL

5

BASE COUNT 704 a 417 c 510 g 629 t

ORIGIN

10

1 atgccgctgg cgccagctggc ggacccgtgg cagaagatgg ctgtggagag cccgtccgac
 61 agcgctgaga atggacagaca aattatggat gaacctatgg gagaggagga gattaaccca
 121 caaactgaag aagtcatgtat caaaagaaatt gcaatcacac atcatgtaaa ggaaggacat
 181 gaaaaggcag atccctccca gtttgaactt taaaaggat tagggcaggg atcatttgg
 241 aaggtttct tagttaaaaa aatctcaggc tctgatgcta ggcagctta tgccatgaag
 301 gtattgaaga aggccacact gaaagttcg aaccgagtc ggacaaaaat ggaacgttat
 361 atcttggttag aggttaatca tcctttatt gtcaagttgc attatgtttt tcaaactgaa
 421 gggaaagtgt atcttatttt ggattttctc aggggaggag attgtttac acgcttatcc
 481 aaagaggtga tggcacaga agaagatgtc aaattctact tggctgaact tgcacttgct
 541 tttagaccatc tacatagctt gggataatt tatagagact taaaaccaga aaataactt
 601 cttgatgaag aaggctcactt caagttaca gatttggcc taagtaaaa gtctattgac
 661 catgaaaaga aggcatatcc ttttggta actgtggagt atatggctcc agaagtagt
 721 aatcgctcgag gtcactactca gagtgctgac tggtggttctt ttgggtgtt aatgtttgaa
 781 atgcttaactg gtacactccc ttccaagga aagatcgaa aagaaacaat gactatgatt
 841 cttaaagcca aacttggaaat gcccacagttt tgagtcctg aagcgcagag tctttacga
 901 atgctttca agcggaaatcc tgcaaacaga ttaggtgcag gaccagatgg agttgaagaa
 961 attaaaagac attcatttt ctcaacgata gactggaata aactgtataa aagagaaatt
 1021 catccgccccat taaaacctgc aacggggcagg cctgaagata cattctattt tgatcctgag
 1081 tttactgcaa aaactcccaa agattcacct ggcattccac ctatgtctaa tgcacatcag
 1141 cttttcggg gtttagttt tgttctattt acctcagatg atgaaagccca agctatgcag
 1201 acagtgggtg tacattcaat tgttcagcag ttacacagga acagtattca gtttactgat
 1261 ggatatgaag taaaagaaga tattggagtt ggctcctact ctgtttgcaa gagatgtata
 1321 cataaagcta caaacatggg gtttgcagtg aagattattt ataaaagcaa gagagaccca
 1381 acagaagaaa ttgaaattct tcttcgttat ggacagcatc caaacattat cactctaaag
 1441 gatgtatatg atgatggaaa gtatgtgtat gtagtaacag aacttatgaa aggaggtgaa
 1501 ttgctggata aaattcttag acaaaaaattt ttctctgaac gagaggccag tgctgtcctg
 1561 ttcactataa ctaaaacccgt tgaatatctt cacgcacaag ggttggttca tcgagacttg
 1621 aaaccttagca acattctta tgtggatgg tctgttaatc cggaatctat tcgaattttgt
 1681 gattttggct ttgcaaaaca gctgagagcg gaaaatggtc ttctcatgac tccttggttac
 1741 actgcaaattt ttgttgcacc agaggttta aaaagacaag gctatgtgc tgcttggat
 1801 atatggagtc ttgggtgtctt actctataca atgcttaccg gtacactcc atttgc当地
 1861 ggtccctgatg atacaccaga gggaaatattt gcacgaatag gtacggaaa attctactc
 1921 agtgggtgggtt actggaaatc ttgttgcac gac acagcaaaagg acctgggtgc aaagatgtctt
 1981 catgttagacc ctcatcagag actgactgtct gctttgtgc tcagacatcc ttggatcg
 2041 cactgggacc aactgccaca ataccaacta aacagacagg atgcaccaca tctagtaaag
 2101 ggtgcctatgg cagctacata ttctgcattt aaccgtatc agtaccagg tttggaaacca
 2161 gtagggccgtt ctactcttgc tcagcggaga ggtattaaaa aatcacccctc aacagccctg
 2221 tgaagtgacc tcagttagat atttggatcc atgggttaaa

50

DEFINITION Homo sapiens discoidin domain receptor family, member 1 (DDR1), transcript variant 3, mRNA.

ACCESSION NM_013994

VERSION NM_013994.1 GI:7669484

55 EC number = "2.7.1.112"

60

DEFINITION H.sapiens mRNA for protein kinase C mu.

ACCESSION X75756

VERSION X75756.1 GI:438372

FEATURES Location/Qualifiers

source 1..3742
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /tissue_type="placenta"
 5 CDS 236..2974
 /codon_start=1
 /product="protein kinase C mu"
 /protein_id="CAA53348.1"
 /db_xref="GI:438373"
 10 /db_xref="SWISS-PROT:Q15139"

 /translation="MSAPPVLRPPSPILLPVAAAAAAALVPGSGPGPAPFLAPVAA
 PVGGISFHLQIGLSREPVLLQDSSGDYSLAHVREMACSIVDQKFPECFYGYDKIL
 15 LFRHDPTSENILQLVKAASDIQEGDLIEVVLRSATFEDFQIRPHALFVHSYRAPAFC
 DHCGEMLWGLVRQGLKCEGCGLYHKRCAFKIPNNCSGVRRRLSNVSLTVSTIRTS
 20 SAEIESTSAPDEPLLQKSPSESFIGREKRSNSQSYYGRPIHLDKILMSKVVKVPTFVIH
 SYTRPTVCQYCKLLKGFLRQGLQCKDCRFNCHKRCAPKVPNNCLGEVTINGDLLSPG
 AESDVVMEEGSDDNDSERNSGLMDDMEEAMVQDAEMAMAECQNDSGEMQDPDPDHEDA
 25 NRTISPSTSNNIPLMRVVQSVKHTKRKSSTVMKEGWMVHYTSKDTLKRHYWRLDSC
 ITLFQNDTGSRYYKEIPLSEILSLEPVKTSALIPNGANPHCFEITTANVYYYGENVV
 30 NPSSPSPNNSVLTSGVGADVARMWEIAIQHALMPVTPKSSVGTGTNLHRDISVSISV
 SNCQIQENVDISTVYQIFPDEVLGSGQFGIVYGGKHRKTGRDVAIKIIDKLRFPTKQE
 SQLRNEVAILQNLHHPGVVNLECMFETPERVFVUMEKHLGDMLEMILSSEKGRPEHI
 35 TKFLITQILVALRHLHFKNIVHCDLKPNVLLASADPPFPQVKLCDFGFARIIGEKSFR
 RSVVGTPAYLAPEVLRNKGYNRSIDMWSVGVIIVVSLSGTFPFNEDEDIHDQIQNAAF
 40 MYPPNPWKEISHEAIDLINNLLQVKMRKRYSDKFLSHPWLQDYQTWLDLRELECKIG
 ERYITHESDDLWEEKYAGEQRQLQYPTHLINPSASHSDTPETEETEMKALGERVSIL"
 BASE COUNT 1015 a 897 c 865 g 965 t

 45 ORIGIN
 1 gaattcccttc ttcctccctc ctgcggccccc tccctcgccct ctcctccctc ctgcggccccc
 61 cctcccgatc ctcatccccct tgccctcccc cagccccaggg acttttcggg aaagttttta
 121 tttccgtct gggctctcgg agaaaagaagc tccctggctca gcggctgcaa aactttctgg
 181 ctgcggccccc gccagcccccc gcctcccgct gcccggccct gcgcggccccc gagcgatgag
 241 cgccccctccg gtccctggcc cgcccagtcc gctgctcccc gtggccggccgg cagctgccgc
 301 agcgccggcc gcactgggcc cagggtccgg gcccggggcc ggcggcttct tggctccctgt
 361 cgcggccccc gtcgggggca ttcgttcca tctgcagatc ggcctgagcc gtgagccgg
 421 gctgctgctg caggactcgt ccggggacta cagcctggcg cacgtcccg agatggcttg
 481 ctccattgtc gaccagaatg tccctgaatg tggtttctac ggaatgtatg ataagatcct
 541 gcttttcgc catgacccta cctctgaaaa catccttcag ctggtaaaag cggccagtga
 601 tatccaggaa ggcgatctta ttgaagtggg cttgtcacgt tccgccacact ttgaagactt
 661 tcagattcgt ccccacgctc tctttttca ttcatatacaga gctccagctt tctgtatca
 721 ctgtggagaa atgctgtggg ggctggtagc tcaaggctt aaatgtgaag ggtgtggct
 781 gaattaccat aagagatgtg cattaaaat acccaacaat tgcagcgggt tgaggcggag
 841 aaggctctca aacgtttccc tcactgggt cagcaccatc cgcacatcat ctgctgaact
 901 ctctacaagt gcccctgtatg agccccttct gaaaaaatca ccatcagagt cgttattgg
 961 tcgagagaag aggtcaaatt ctcacatata cattggacga ccaattcacc ttgacaagat
 1021 tttatgtct aaagttaaag tgccgcacac atttgtatc cactcctaca cccggcccac
 1081 agtgtgccag tactgcaaga agcttctgaa ggggctttc aggcagggt tgcagtgc当地

1141 agattgcaga ttcaactgcc ataaaacgttg tgcacccgaaa gtaccaaaca actgccttgg
 1201 cgaagtgacc attaatggag atttgccttag ccctggggca gagtctgatg tggcatgga
 1261 agaaggaggat gatgacaatg atatgtggaaag gaacagtggg ctcatggatg atatggaaga
 1321 agcaatggtc caagatgcag agatggcaat ggcagagtgc cagaacgaca gtggcgagat
 5 1381 gcaagatcca gacccagacc acgaggacgc caacagaacc atcagtccat caacaagcaa
 1441 caatatccc ctcatgaggg tagtgcagtc tgtcaaacac acgaagagga aaagcagcac
 1501 agtcatgaaa gaaggatgga tggtccacta caccagcaag gacacgctgc ggaaacggca
 1561 ctattggaga ttggatagca aatgtattac cctctttag aatgacacag gaagcaggta
 1621 ctacaaggaa attcccttat ctgaaaatttt gtctctggaa ccagtaaaaaa cttcagctt
 10 1681 aattcctaattt ggggccaatc ctcattgttt cgaaatcact acggcaatag tagtgttata
 1741 tgtgggagaa aatgtggtca atccttccag cccatcacca aataacagtg ttctcaccag
 1801 tggcgttggt gcagatgtgg ccaggatgtg ggagatagcc atccagcatg cccttatgcc
 1861 cgtcattccc aagggctcct ccgtgggtac aggaaccaac ttgcacagag atatctgt
 1921 gagtatttca gtatcaaattt gccagattca agaaaatgtg gacatcagca cagtatatca
 15 1981 gattttcctt gatgaagtac tgggttctgg acagtttggaa attgtttatg gaggaaaaca
 2041 tcgtaaaaca ggaagagatg tagtattaa aatcatgac aaattacgat ttccaaacaaa
 2101 acaagaaaagc cagcttcgtt atgagggtgc aattctacag aaccttcatc accctgggt
 2161 tgtaaaatttgc gagtgtatgt ttgagacgccc tgaaagagtg ttgttggta tggaaaact
 2221 ccatggagac atgctggaaa tgatcttgc aagtggaaaag ggcagggtgc cagagcacat
 20 2281 aacgaagttt ttaattactc agataactcg ggcttgcgg caccttcatt taaaaaatat
 2341 cgttcaactgt gacctcaaaac cagaaaatgt tttgcattgc tcagctgatc ctttctca
 2401 ggtgaaactt tttgttgcgtt gttttggcccg gatcatggaa gagaagtctt tccggagggtc
 2461 agtgggtgggt acccccggctt acctggctcc tgaggcttca agaaacaagg gctacaatcg
 2521 ctctcttagac atgtggtctg tgggttcat catctatgtt agcctaagcg gcacattccc
 25 2581 atttaatgaa gatgaagaca tacacgacca aattcagaat gcagcttca tttatccacc
 2641 aaatccctgg aaggaaatattt ctcatgaagg cattgatctt atcaacaatt tgctgcaagt
 2701 aaaaatgaga aagcgctaca gtgtggataa gaccttggc cacccttggc tacaggacta
 2761 tcagacctgg ttagatttgc gagagctgaa atgcaaaatc ggggagcgct acatcacc
 2821 tgaaagtgtt gacctgaggt ggggagaatg tgcaggcgag cagcggctgc agtacccac
 30 2881 acacctgatc aatccaatgt ctggccacag tgacacttctt gagactgaag aaacagaaaat
 2941 gaaaaggccctc ggtgagctgt tcagcatctt ctgagttcca ttcctataa tctgtcaaaa
 3001 cactgtggaa ctaataaaata catacggtca ggtttaacat ttgccttgcga gaactgccc
 3061 tattttctgt cagatgagaa caaagctgtt aaactgttag cactgttcat gtatctgat
 3121 tgccaagaca aatcaacaga agcatttgc tttgtgtga ccaactgtgt tttatcaca
 35 3181 aaagtccctt gaaacacgaa acttggattt gtgaatgttatt catgttataat ttaatgcatt
 3241 aaacctgtctt ccactgtgcc tttgcaaaatc agtgttttc ttactggagc ttcatgggg
 3301 taagagacag aatgtatctg tgaagtagtt ctgtttgggt tgcccttgc tatgttgc
 3361 tgtaaaacaaa ctcttgaaga gtcgattttt ccactgttc tatgaacaac tccaaaaccc
 40 3421 atgtggaaa aaaatgaatg aggagggttag ggaataaaat cctaagacac aaatgcatt
 3481 acaaggtttta atgtatagtt ttgaatccctt tgcctgcctg gtgtgcctca gtatattaa
 3541 actcaagaca atgcacccatg ctgtgcaaga cctagtgc ttaaggctaa atgccttgc
 3601 aatgtaaaact gccatataata acagatacat ttcccttctt ctataataac tctgttgc
 3661 tatggaaaat cagctgctca gcaacccccc acctttgtgt attttcaat aataaaaaat
 3721 attcttgcataaaaaaaaaaa aa
 45

DEFINITION Human protein kinase C-theta (PRKCT) mRNA, complete cds.
 50 ACCESSION L01087
 VERSION L01087.1 GI:558098
 FEATURES Location/Qualifiers
 source 1..2754
 /organism="Homo sapiens"
 55 /db_xref="taxon:9606"
 /cell_line="HEL"
 /cell_type="erythroleukemia"
 /tissue_lib="HEL cell lambda-gt11 library of M.
 Poncz"
 60 gene 95..2215
 /gene="PRKCT"
 CDS 95..2215
 /gene="PRKCT"
 /codon_start=1

```
/product="protein kinase C-theta"
/protein_id="AAA75571.1"
/db_xref="GI:558099"
```

5 /translation="MS PFLRIGLSNFDCGSCQSCQGEAVNPYCAVLVKEYVESENGQM
 YIQKKPTMYPFWDSTFDAHINKGRVMQIIVKGKNVDLISSETTVELYSLAERCRKNNGK
 TEIWLELKPOGRMLMNARYFLEMSTKDMNEFETEGFFALHQRRGAIKQAKVHHVKCH
 10 EFTATFFFQOPTFCSVCHEFVWGLNKQGYQCRQCNAAIHKKCIDKVIAKCTGSAINSRE
 TMFHKERFKIDMPHRFKVYNKSPTFCEHCGTLLWGLARQGLKDACGMNVHRCQTK
 15 VANLCGINQKLMAEALAMIESTQQARCLRDTEQIFREGPVEIGLPCSIKNEARLPCLP
 TPGKREPQGISWESPLDEVDKMCHLPEPELNKERPSLQIKLKIEDFILHKMLGKGSFG
 KVFLAEFKKTQNFFAIKALKDVVLMDDVCTMVEKRVLSLAWEHPFLTHMFCTFQT
 20 KENLFFVMEYLNGGDLMYHIQSCHKFDLSRATFYAAEIIILGLQFLHSKGIVYRDLKLD
 NILLDKDGHIKIADFGMCKENMLGDAKTNTFCGTPDYIAPEILLGQKYNHSVDWWWSFG
 25 VLLYEMLIGQSPFHGQDEEELFHSIRMDNPFYPRWLEKEAKDLLVKLFRPEKRLGV
 RGDIRQHPLFREINWEELERKEIDPPFRPKVKSPFDSCNFDEKPRLSFADRAL
 INSMIDQNMFRNFSFMNPRMERLIS"

	BASE COUNT	764 a	657 c	686 g	647 t		
30	ORIGIN						
	1	gaattccgcc	agccccgcca	gtccccgcgc	agtcccccg	cagtcccaggc	gccaccgggc
	61	agcagcggcg	ccgtgctcgc	tccagggcgc	aaccatgtcg	ccatttcttc	ggattggctt
	121	gtccaaactt	gactgcgggt	cctgccagtc	ttgtcagggc	gaggctgtta	acccttactg
	181	tgctgtgctc	gtcaaagagt	atgtcaatc	agagaacggg	cagatgtata	tccagaaaaaa
	241	gcctaccatg	tacccaccct	ggcacagcac	ttttgatgcc	catatcaaca	aggaaagagt
	301	catgcagatc	atttgtaaaag	gcaaaaaacgt	ggacctcatc	tctgaaaacca	ccgtggagct
	361	ctactcgctg	gctgagaggt	gcaggaagaa	caacgggaag	acagaaatat	gttagagct
	421	gaaacctcaa	ggccgaatgc	taatgaatgc	aagatactt	ctggaaatga	gtgacacaaa
	481	ggacatgaat	gaatttgaga	cggaaggctt	ctttgcittg	catcagcgcc	gggggtccat
	541	caagcaggca	aagggtccacc	acgtcaagtgc	ccacgagttc	actgcccac	tcttccacaca
	601	gcccacattt	tgctctgtct	gccacgagtt	tgtctggggc	ctgaacaaac	agggttacca
	661	gtgcccacaa	tgcaatgcag	caattcaca	gaagtgtatt	gataaaagtta	tagcaaagt
	721	cacaggatca	gctatcaata	gccgagaaaac	catgttccac	aaggagagat	tcaaaattga
	781	catgccacac	agatttaaaag	tctacaatta	caagagcccg	accttctgtg	aacactgtgg
	841	gaccctgctg	tggggactgg	cacggcaagg	actcaagtgt	gatgcatgt	gcatgaatgt
	901	gcatcataga	tgccagacaa	aggtggccaa	cctttgtggc	ataaaaccaga	agctaataggc
	961	tgaagcgctg	gccatgattt	agagactca	acaggctcgc	tgtttaagag	atactgaaca
	1021	gatcttcaga	gaagggtccgg	ttgaaattgg	tctccatgc	tccatcaaaa	atgaagcaag
	1081	gctgccatgt	ttaccgcac	cgggaaaaaaag	agagcctcag	ggcatttcct	gggagtctcc
	1141	gttggatgag	gtggataaaa	tgtgccatct	tccagaacct	gaactgaaca	aagaaagacc
	1201	atctctgcag	attaaactaa	aaattgagga	ttttatcttgc	cacaaaatgt	tggggaaagg
	1261	aagttttggc	aaggcttcc	tggcagaatt	caagaaaaacc	aatcaatttt	tcgcaataaa
	1321	ggccttaaag	aaagatgtgg	tcttgcatttgc	cgatgatgtt	gagtgcacga	tggtagagaa
	1381	gagagttctt	tccttggcct	gggagcatcc	gtttctgacg	cacatgtttt	gtacatttca
	1441	gaccaaggaa	aaccttcttt	ttgtgcatttgc	gtacctaacc	ggaggggact	taatgtacca
	1501	catccaaagc	tgccacaagt	tcgaccccttc	cagagcgacg	ttttatgtcg	ctgaaatcat
	1561	tcttggctcg	cagttcccttc	attccaaagg	aatagtctac	aggacactga	agctagataa
	1621	catccgttta	gacaaagatg	gacatataaa	gatcgccgat	tttggaaatgt	gcaaggagaa
	1681	catgttagga	gtgcacaa	cgaataccctt	ctgtggacca	cctgactaca	tcgccccaga
	1741	gatcttgctg	ggtcagaat	acaaccactc	tgtggactgg	tgtccttcg	gggtttctcc
	1801	ttatgaaatg	ctgattggtc	agtgccttc	ccacgggcag	gatgaggagg	agcttccca
	1861	ctccatccgc	atggacaatc	ccttttaccc	acggtggctg	gagaaggaa	caaaggaccc
	1921	tctggtgaag	ctcttcgtgc	gagaacctga	gaagaggctg	ggcgtgagggg	gagacatccg
	1981	ccagcaccct	ttgtttcggg	agatcaactg	ggaggaactt	gaacggaagg	agattgaccc

2041 accgttccgg ccgaaaagtga aatcaccatt tgactgcagc aatttcgaca aagaattctt
 2101 aaacgagaag ccccggtctgt catttgcga cagagcactg atcaacagca tggaccagaa
 2161 tatgttcagg aacttttcct tcataaacc cggatggag cggctgatcat cctgaatctt
 2221 gcccctccag agacaggaaa gaatttgcct tgcacttggg aactggtca agagacactg
 5 2281 cttgggttcc ttttcaact tggaaaaaga aagaaacact caacaataaa gactgagacc
 2341 ctgcggcccc catgtgactt ttatctgttag cagaaaccaa gtctacttca ctaatgacga
 2401 tgccgtgtgt ctcgtctcct gacatgtctc acagacgctc ctgaagtttag gtcattacta
 2461 accatagtta ttacttgaa agatgggtct cgcacttgg aaaggttca agacttgata
 2521 ctgcaataaaa ttatggctct tcacctggc gccaactgct gatcaacgaa atgcttgg
 10 2581 aatcaggggc aaacggagta cagacgtctc aagactgaaa cggcccccatt gcctggctca
 2641 gtagcggatc tcactcagcc gcagacaagt aatcaactaac ccgtttattt ctattcctat
 2701 ctgtggatgg gtaaatgctg gggccagcc ctggataggt tttatggga attc

15

DEFINITION Homo sapiens mRNA for AMP-activated protein kinase beta 2 subunit.

ACCESSION AJ224538

VERSION AJ224538.1 GI:2916801

FEATURES Location/Qualifiers

source 1..819
 /organism="Homo sapiens"
 /db_xref="taxon:9606"

25 gene 1..819
 /gene="AMPK beta 2"

CDS 1..819
 /gene="AMPK beta 2"
 /function="regulatory subunit"
 /codon_start=1
 /evidence=experimental
 /product="AMP-activated protein kinase beta 2
 subunit"
 /protein_id="CAA12030.1"
 /db_xref="GI:2916802"
 /db_xref="SWISS-PROT:O43741"

30

35

/translation="MGNNTTSDRVSGERHGAKAARSEGAGGHAPGKEHKIMVGSTDDPS
 40 VFSLPDSKLPGDKEFVSWQQDLEDSVKPTQQARPTVIRWSEGGKEVFISGSFNNWSTK
 IPLIKSHNDFVAILDLPEGEHQYKFFVDGQWVHDPEPVVTSQLGTINNLHVKKSDF
 EVFDALKLDSMESSETSCRDLSSEPPGPYQEMYAFRSEERFKSPPILPPHLLQVILN
 45 KDTNISCDPALLPEPNHVMLNHLYALSIKDSVMVLSATRYKKYVTTLLYKPI"
 BASE COUNT 208 a 215 c 197 g 199 t

ORIGIN

50 1 atggaaaaca ccaccagcga cgggtgtcc ggggagcgcc acggcgccaa ggctgcacgc
 61 tccgagggcg caggcgccca tgccccgggg aaggagcaca agatcatggt ggggagtagc
 121 gacgacccca gcgtgttcag cttccctgac tccaagctcc ctggggacaa agagtttgta
 181 tcatggcagc aggatttgg aactccgt aagcccacac agcaggcccg gcccactgtt
 241 atccgctggt ctgaaggagg caaggaggc ttcatctctg ggtctttcaa caattggagc
 301 accaagattc cactgattaa gagccataat gactttgtt ccattctggc ctccttgag
 361 ggagagcacc aatacaagtt ctttgttat ggacagtggg ttcatgatcc atcagagcc
 421 gtggttacca gtcagcttgg cacaattaac aatttgcattt atgtcaagaa atctgatttt
 481 gaggtgttcg atgctttaaa gtttagattt atggaaagt ctgagacatc ttgttagagac
 541 cttccagct caccggcagg gccttatggt caagaaatgt atgcgtttcg atctgaggaa
 60 601 agattcaaat ccccacccat cttccctctt catctactt aagttatttt taacaaagac
 661 actaatattt cttgtgaccc agcctactc cctgagccca accatgttat gctgaaccat
 721 ctctatgcattt tgcattaa ggacagtgtt atggcctta ggcgcaaccat tcgctacaag
 781 aagaagtatg ttactactt gctataacaag cccatttga

DEFINITION Human protein kinase (JNK2) mRNA, complete cds.
ACCESSION U09759
VERSION U09759.1 GI:607785
FEATURES
 source Location/Qualifiers
 1..1873
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 10 gene 152..1426
 /gene="JNK2"
 CDS 152..1426
 /gene="JNK2"
 /codon_start=1
 /product="protein kinase"
 /protein_id="AAA74740.1"
 /db_xref="GI:607786"
 15
 20 /translation="MSDSKCDSQFYSVQVADSTFTVLKRYQQLKPIGSGAQGIVCAAF
 DTVLGINVAVKKLSRPFQNQTHAKRAYRELVLLKCVNHKNIISLLNVFTPQKTLEEFQ
 DVYLVMELMMDANLCQVIHMELDHERMSYLLYQMLCGIKHLHSAGIIHRDLKPSNIVVK
 25 SDCTLKILDGLARTACTNFMMTPYVVTRYRAPEVILGMGYKENVDIWSVGCIMGEL
 VKGCVIFQGTDHIDQWNKVIEQLGTPSAEFMKKLOPTVRNYVENRPKYPGIKFEELFP
 30 DWIFPSESERDKIKTSQARDLLSKMLVIDPDKRISVDEALRHPYITVWYDPAEAEAPP
 PQIYDAQLEEREHAIEEWKELIYKEVMDWEERSKNGVVKDQPPDAAVSSNATPSQSSS
 INDISSMSTEQTLASDTDSSLADASTGPLEGCR"
 35 BASE COUNT 562 a 388 c 427 g 496 t
 ORIGIN
 1 caaaactacgt gctgtacagc tgcatcagct gctcgtagac atgtccagca gctggtcgag
 61 gtccacgccc cggttaggtga agttgcgaa ggccccggcga gggatctgaa acttgcacct
 121 tacccttcgg gatattgcag gacgtctgcat catgagcgcac agtaaatgtg acagtcatg
 181 ttatagtgtc caagtggcag actcaacctt cactgtctta aaacgttacc agcagctgaa
 241 accaatggc tctggggccc aaggaggatgt ttgtctgcata tttgatcacatg ttcttgggat
 301 aaatgtgtca gtcagaaaaac taagccgtcc ttttcagaac caaactcatg caaagagagc
 361 ttatcgaaa cttgtctct taaaatgtgt caatcataaa aatataatta gtttggatt
 421 tttgtttaca ccacaaaaaa ctctagaaga atttcaagat gtgtatgg ttatggatt
 481 aatggatgtc aacttatgtc aggttattca catggagctg gatcatgaaa gaatgtcata
 541 ctttctttac cagatgtttt gtggatattaa acatctgcat tcagctggta taattcatag
 601 agatttgaag cctagcaaca ttgttgtgaa atcagactgc accctgaaga tccttgactt
 661 tggcctggcc cggacagcgt gcaactaactt catgtatgacc cttacgtgg tgacacgta
 721 ctaccgggccc cccgaagtca tcctgggtat gggctacaaa gagaacgtt atatctgtc
 781 agtgggttgc atcatggag agctggtaa aggttgtgtg atattccaag gcactgacca
 841 tattgatcag tggataaaag ttattgagca gctggaaaca ccatcagcag agttcatgaa
 901 gaaacttcag ccaactgtga ggaattatgt cgaaaacaga ccaaagtatc ctgaaatcaa
 961 atttgaagaa ctctttccag attggatatt cccatcagaa tctgacgtc acaaaaataaa
 1021 aacaagtcaa gccagagatc tggttatcaaa aatgttagt attgatcctg acaagcgtat
 1081 ctctgttagac gaagctctgc gtcacccata catcaactgtt tggatgacc cccggaaagc
 1141 agaagccccca ccacccataaa ttatgtatgc ccagttggaa gaaagagaac atgaaatgt
 1201 agaatggaaa gagctaattt acaaaaagat catggatgg gaagaaagaa gcaagaatgg
 1261 tttgttaaaa gatcagcctc cagatgcgc agtaagttag aacggcactt cttctcgt
 1321 ttcatcgatc aatgacattt catccatgtc cactggacgac agctggcct cagacacaga
 1381 cagcagttt gatcagcctc cggggacccct tgaaggctgt cgatgatagg ttagaaatag
 1441 caaacctgtc agcattgaag gaactctcac ctccgtggc ctgaaatgtc tggaggttga
 1501 tggaaacaaa tagaaaaact ccatgttctg catgtaaagaa acacaatgcc ttgcctact
 1561 cagacctgtat aggattgcct gcttagatga taaaatgagg cagaatatgt ctgaaagaaaa
 1621 aaatttgcac ccacacttct agagattttt ttcagatca tttcgttgc gcaagtttagag
 1681 taggtqaatt tttcaatttq tactgtqac aqttctcat catctgttaac ttttggatgt

1741 attgtgcatt tgaccacaaa tgcttgcttg gacttgccta tctagcactt tggaaatcag
 1801 tatttaaatg ccaaataatc ttccaggtag tgctgcttct gaagttatct cttaatcctc
 1861 ttaagtaatt tgg

5

DEFINITION Human p21-activated protein kinase (Pak2) gene,
 complete cds.

10 ACCESSION U24153
 VERSION U24153.1 GI:780807
 FEATURES source Location/Qualifiers
 1..2019
 /organism="Homo sapiens"
 15 /db_xref="taxon:9606"
 /clone="212"
 /cell_type="EBV-transformed peripheral lymphocytes"
 /clone_lib="lambdaYESR human lymphocyte cDNA
 library;
 20 gene Elledge and Spottswood, EMBO 10:2653 (1991) "
 40..1617
 /gene="Pak2"
 40..1617
 /CDS /gene="Pak2"
 25 /codon_start=1
 /product="p21-activated protein kinase"
 /protein_id="AAA65442.1"
 /db_xref="GI:780808"
 30
 EEKKPRHKIISIFSGTEKGSKKEKERPEISPPSDFEHTIHVGFDAVTGEFTGMPEQW
 ARLLQTSNITKLEQKKNPQAVLDVLKFYDSNTVKQKYLFTPPEKDGLPSGTPALNAK
 35 GTEAPAVVTEEDDEETAPPVIAPRPDHTKSIYTRSVIDPVPAVGDSHVGDAAKSL
 DKQKKKPMTDEEIMEKLRTIVSIGDPKKKYTRYEKIGQGASGTVFATDVALGQEVA
 40 IKQINLQKQPKELIINEILVMKELKNPNIVNFLDSYLVGDELFFVUMEYLAGGS LTDV
 VTETACMDEAQIAAVCRECLQALEFLHANQVIHRDIKSDNVLLGMEGSVKLTDFGFCA
 QITPEQSQRSTMVGT PYWMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPL
 45 RALYLIATNGTPELQNPEKSPIFRDFLNRCLEMDVEKRGSAKELLQHPFLKLAKPLS
 SLTPLIMAACEAMKSNR"
 BASE COUNT 615 a 413 c 481 g 510 t

50 ORIGIN
 1 gaccttggct tgcccggggc catttcataa ttctgaatca tgtctgataa cggagaactg
 61 gaagataagg ctccagcacc tcctgtgcga atgagcagca ccatctttag cactggaggc
 121 aaagaccctt tgtcagccaa tcacagtttgc aaaccttgc cctctgttcc agaagagaaaa
 181 aagcccaggc ataaaatcat ctccatattc tcaggcacag agaaagggaa taaaaagaaaa
 241 gaaaaggaac ggccagaaat ttctcctcca tctgattttg agcacaccat ccatgttggc
 301 tttgatgctg ttactggaga attcactggc atgccagaac agtgggctcg attactacag
 361 acctccaata tcaccaaact agagcaaaag aagaatcctc aggctgtgt ggatgtccta
 421 aagtcttacg actccaacac agtgaagcag aaatatctga gctttactcc tcctgagaaaa
 481 gatggccttc ttctggaaac gccagcactg aatgccaagg gaacagaagc acccgccagta
 541 gtgacagagg aggaggatga tgatgaagag actgctcctc ccgttattgc cccgcgaccg
 601 gatcatacga aatcaattt cacacggctc gtaattgacc ctgttctgc accagttggt
 661 gattcacatg ttgtatggc tgccaaatgtct ttagacaac agaaaaagaa gcctaagatg
 721 acagatgaag agattatgga gaaattaaga actatcgtga gcataggtga ccctaagaaaa

781 aaatatacaa gatatgaaaa aattggacaa ggggcttctg gtacagttt cactgctact
 841 gacgttgcac tgggacagga gggttctatc aaacaaatta attacagaa acagccaaag
 901 aaggaaactga tcattaacga gattctggtg atgaaagaat tgaaaatcc caacatcggt
 961 aacttttgg acatgtacct ggttaggat gaattgtttg tggcatgga ataccttgct
 5 1021 ggggggtcac tcactgatgt ggtaaacagaa acagcttgc tggatgaagc acagattgt
 1081 gctgtatgca gagagtgtt acaggcattt gagttttac atgctaatac agtgatccac
 1141 agagacatca aaagtgcacaa tgtactttt ggaatgaaag gatctgttaa gtcactgac
 1201 tttggttct gtgcccagat caccctgag cagagcaac gcagtaccat ggtcgaaacg
 1261 ccatactgga tggcaccaga ggtggttaca cgaaaagctt atggccctaa agtgcacata
 10 1321 tggtctctgg gtatcatggc tattggatgt gtagaaggag agcctccata cctcaatgaa
 1381 aatcccttga gggccttgc cctaatacgca actaatgaa ccccagaact tcagaatcca
 1441 gagaaacttt ccccaatatt tcgggattt ttaaatcgat gttggaaat ggatgtggaa
 1501 aaaagggtt cagccaaaga attattacag catccttcc tgaaaactggc caaacgtta
 1561 tctagcttgc caccactgtat catggcagct aaagaagcaa tgaagagtaa ccgttaacat
 1621 cactgctgtg ggctcataact ctttttcca ttttctacaa gaagcctttt agtataatgaa
 1681 aatgatgact ctgttggggg tttaaagaaa tggtctgcat aacctgaatg aaagaaggaa
 1741 atgactattc tctgaagaca accaagagaa aattggaaaa gacaaggat gactttgtt
 1801 tgaacccttg cttttagggg tccaggaagg gatttggggg acttgaattc actaggctt
 1861 ggtctttcag gaaacaggtt atcaggggca ttatcatgt gtgagattgg attctacttg
 20 1921 ggtgatttgg tggatagacc catgaatggc ccctgggggt tttcaatctt ggattggagg
 1981 tgggggttgc agagtgttgc cacgtcttagc tcctctccc

25

DEFINITION Human cyclin-dependent kinase 4 (CDK4) gene,
complete cds.

ACCESSION U37022

VERSION U37022.1 GI:1353415

30 FEATURES Location/Qualifiers

source 1..4233
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="12"
 /map="12q13"
 /clone="24C7"

mRNA

join(85..291,729..965,1123..1258,1376..1543,1701..1810,
 2949..2999,3135..3270,3836..4233)

40 exon /gene="CDK4"
 /product="cyclin-dependent kinase 4"

exon 85..291

/gene="CDK4"

gene 85..4233

/gene="CDK4"

exon 729..965

/gene="CDK4"

CDS

join(748..965,1123..1258,1376..1543,1701..1810,2949..2999,
 3135..3270,3836..3928)

50 gene /gene="CDK4"
 /codon_start=1
 /product="cyclin-dependent kinase 4"
 /protein_id="AAC50506.1"
 /db_xref="GI:1353416"

/translation="MATSRYEPVAEIGVGAYGTVYKARDPHSGHFVALKSVRVPNGGG

GGGGLP1STVREVALLRRLEAFLHPNVRLMDVCATSRTDREIKVTLVFEHVDQDLRT

YLDKAPPPGLPAETIKDLMRQFLRGLDFLHANCIVHRDLKPENILVTSGGTVKLADFG

LARIYSYQMALTPVVVTLWYRAPEVLLQSTYATPVDMWSVGCIFAFEMFRRKPLFCGNS

60

EADQLGKIFDLIGLPEDDWPRDVLSPRGAFPPRGPRPVQSVVPEMEESGAQLLLEML
 TFPNPHKRISAFRALQHSYLNHKDEGNPE"

	BASE COUNT	945 a	1050 c	1101 g	1124 t	13 others	
5	ORIGIN						
1	ccctcctccc	agtcaagca	ccttcgtcc	gcccctcagc	gcattgggtgg	cggtcacgtg	
61	cccagaacgt	ccggcggtcg	ccccgcctc	ccagttccg	cgcccttctt	tggcagctgg	
121	tcacatggtg	agggtggggg	tgagggggcc	tctctagtt	gcccctgtg	tctatggtcg	
181	ggccctctgc	gtccagctgc	tccggaccga	gctcgggtgt	atggggccgt	aggaaccggc	
10	241	tccggggccc	cgataacggg	ccgccccccac	agcaccggg	gctggcgtga	ggtaagtgc
301	gtcccttccc	aggaatgaga	accagtgc	gccccctca	cagtttcca	cgcgttcgtt	
361	tcgcgagctg	gttatggaa	ggtcgctcaa	gggcggaa	ttgggcctt	gtggcatgg	
421	gaaaatataa	tttagggac	tgaggtgtag	gatcttcgt	gcaaggcatg	tgtcatgtgt	
15	481	gatcttgtg	cggggcgcga	ttgtcccaa	ggaaaaagcg	ttttctattg	cagggcctca
541	cgtggctgga	gggggttggt	ttgagtatt	gtgttatctc	ttggggccggc	cccaaggaag	
601	actgggagcg	ggggatggg	tgctgggtgg	gttctttcg	ttttttttt	gggagtcct	
661	ttgttgctgc	aggtcatacc	atccatactc	tgtaaagcgac	ttttgggtat	aggagtctgt	
721	gatttaggg	tctccctgt	tctgagaatg	gctacccctc	gatatgagcc	agtggctgaa	
20	781	attgggtgtcg	gtgcctatgg	gacagtgtac	aaggccctgt	atccccacag	tggcacttt
841	gtggccctca	agagtgtgag	agtcggcaat	ggaggaggag	gtggaggagg	ccttccatc	
901	agcacatgc	gtgaggtggc	ttttaggtagg	cgactggagg	ctttagagca	tcccaatgtt	
961	gtccgggtgag	aaagggtggg	agggtgggc	gtggggagta	aaggggaaaag	acagccata	
1021	ggtgggtgt	gatgatctgt	agagaagtgg	ggacccttag	gaaataatga	gaggccatgt	
1081	tgggttaaag	gggattgaaa	agttagcatt	tactctggc	aggctgtatgg	acgtctgtgc	
25	1141	cacatcccga	actgaccggg	agatcaaggt	aaccctggt	ttttagcatg	tagaccagga
1201	cctaaggaca	tatctggaca	aggcaccccc	accaggctt	ccagccgaaa	cgatcaaggt	
1261	gagtgggtt	ggtaggcatt	gagaggtgg	ttgggacett	tgttagtagaa	ccttctggg	
1321	tttcaggtat	ggtgccctgt	ttccagtgca	tctgtaccc	cccttttggaa	actaggatct	
1381	gatgcgccag	tttctaagag	gcctagattt	ctttcatgcc	aattgcatcg	ttcaccgaga	
30	1441	tctgaagcca	gagaacatcc	ttgtgacaag	ttgtgaaaca	gtcaagctgg	ctgactttgg
1501	cctggccaga	atctacagct	accagatggc	acttacaccc	gtggtcagta	gaaagatgg	
1561	accaaaatgg	gttctgggt	ggaataggag	agtgattgcc	cgtagcaatt	gagaagtcat	
1621	gtgcttcatg	tgttcagtc	agcaagttgt	gtttcatgtt	aaccatggg	gtccccatcc	
1681	attcttcata	ttccctttag	gtttagtacac	tctggtaccg	agctcccgaa	gttcttctgc	
35	1741	agtccacata	tgcaacacct	gtggacatgt	ggagtgtgg	ctgtatctt	gcagagatgt
1801	ttcgtcgaaa	gtatgggacc	cacataccct	ggactaccc	gaattcccca	aatcgcttgc	
1861	tcataaaacca	catccatacc	ttggccattc	ttttttttt	agaccagggc	ttgctgtgtt	
1921	gcccaggctg	gattgcaatg	gcatgatcac	agctcaactgc	agttcaacc	tcctggctc	
1981	aagtgtatcc	cccatctcag	ctttccaaact	agtgacact	acaggcacgc	acctccatgc	
40	2041	ttggctagtt	tgttaatatt	ttttagagaa	ttgggcttc	gtatattggc	caggctggc
2101	ttgtaacttct	gcactcaagc	aatctccca	ccccttactc	ccaaagtagc	ataagctact	
2161	gcatctggcc	ccattctttt	acttgcgtac	tacttaattt	cccatagcag	aaagctctga	
2221	aatgttctgg	aatttaggaac	ttcatatccc	tttattttct	tttattttt	tttattttt	
2281	tatttattta	tttattttatt	gagataaggt	ttcactctgn	naccaggct	ggagtnccat	
45	2341	ggcccaatta	nagctcaactg	tancctctac	ctccctggct	aaagmaatcc	tcccatctca
2401	gccccttgag	tanctgagac	taaagggtgc	cgccaccatg	actggctttt	ttttttttt	
2461	gatggagct	tgctctgtcg	ccaggctgg	gtgcagtagt	gegatctctg	ctcaactgca	
2521	cctccacctc	ccagattcaa	gcaattctct	tgactcagcc	tcccaagtag	ctgggaccac	
50	2581	aggtgcacgc	caccatgtc	agctaatttt	tgtactttt	gtaatgacag	gtttcaccat
2641	gttggccagg	atggctcga	tctttgacc	tcatgatcca	cccacatcag	actccaaag	
2701	tgcttaggatt	acaggcgta	gcnnnngcac	ctggcatttc	ttttttttt	aaaaaaagaga	
2761	caaggtcttg	cttgcccaagg	ctgatctaga	actcctggc	tcaagcagtc	ctctcacctc	
2821	agcatcccaa	agtgctggaa	ttgttggcct	ttattcccta	tacttcctat	tttgagccac	
2881	taagcagtaa	ccattcaact	aagatactt	tgtttttt	tgttacccat	tatcccttct	
55	2941	cacccatggc	ctctcttctg	ttggaaactct	gaagccgacc	agttgggcaa	aatctttgag
3001	taagtgcacca	acatgggaga	aaaagattt	ctattctgag	tcctctttct	gctgaaccca	
3061	ggatggcaac	tggctctgc	atggggatgg	gaactggagg	accctctgt	ccagagttct	
3121	cctgtcccccc	acagctgtat	tgggctgcct	ccagaggatg	actggctctg	agatgtatcc	
3181	ctggccctgt	gagccttcc	ccccagagg	ccccggccat	tgcagtcgt	ggtacactgag	
60	3241	atggaggagt	cgggagcaca	gctgtctgt	gttaactggag	atggctgtgg	gcacaggaa
3301	agaaatagag	actggggaaa	aaaatagagc	agtatgcagg	gcccctggcca	ctgtggttaa	
3361	tgaaacttgg	ttggtagatg	gtctgtatgt	tttattacag	ctgcaaatag	ccaccacac	
3421	agaaggatata	agaagagaac	ccatcctggc	tgggcacgg	ggctcacgccc	tgtatccca	
3481	gcactttggg	aggccaaggt	gggcgtatca	cctgaggtca	ggagttcag	accagccctgg	

3541 ccaacatgggt gaaacctcgct ctctactaaa agtacaaaaa taagccgggg gtggggcac
 3601 acgcctgtaa ttcagctac ttggaggcct gagataggag aatcaattca actcaggagg
 3661 cggagggtgc agtgagctga gatcatacca ttggcactcc agcctgggtg atagagcgag
 3721 actccgtctn caaaaaaaaaaaa aaaaaagaaa aaagaagaaa gctcatccca ggtattgttg
 5 3781 tgggtggcag aagctgtttt cttcatggtt ttctgacctt tgccctccc ctcagaaat
 3841 gctgactttt aaccacaca agcgaatctc tgccttcga gctctgcagc actcttatct
 3901 acataaggat gaaggtaatc cgaggatgac aatggagtgg ctgccatgga aggaagaaaa
 3961 gctgccattt cccttctgga cactgagagg gcaatcttg cctttatctc tgaggctatg
 4021 gagggtcctc ctccatctt ctacagagat tactttgctg ccttaatgac attccctcc
 10 4081 cacctctcctt ttgaggcctt ctccctctcc ttcccatttc tctacactaa ggggtatgtt
 4141 ccctctgtc cttttcccta ctttatatt tggggctt tttatacag gaaaacaaaa
 4201 accaaaaagaa awaatggccc ttttttttt ttt

15

DEFINITION Human MEK5 mRNA, complete cds.

ACCESSION U25265

VERSION U25265.1 GI:1255719

20 FEATURES Location/Qualifiers
 source 1..2083
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /clone="3-2"
 25 /tissue_type="brain"
 /clone_lib="cDNA Lambda ZAP (Invitrogen)"
 /dev_stage="fetal"
 CDS 297..1613
 /codon_start=1
 /product="MEK5"
 /protein_id="AAA96146.1"
 /db_xref="GI:1255720"

35
 LDVIGQVLPEATTTAFEYEDEDGDRITVRSDEEMKAMLSYYYSTVMEQQVNGQLIEPL
 QIFPRACKPPGERNIHGLKVNRAGPSQHSSPAVSDSLPSNSLKKSSAELKKILANGQ
 40 MNEQDIRYRDTLGHGNNGTVYKAYHVPSGKILAVKVILLIDITLELQKQIMSELEIILYK
 CDSSYIIGFYGAFFVENRISICTEFDGGSLDVYRKMPHEVLGRIAVAVVKGLTYLWS
 LKILHRDVVKPSNMLVNTRGQVKLCDFGVSTQLVNSIAKTYVGTNAYMAPERISGEQYG
 45 IHSDVWSLGISFMEIQKNQGSLMPLQLLQCIVDEDSPVLPVGEFSEPFVHFITQCMRK
 QPKERPAPEELMGHPFIVQFNDGNAAVSMWVCRALEERRSQQGPP"
 BASE COUNT 518 a 532 c 512 g 521 t
 ORIGIN
 50 1 agcgttcgct caactccaga acctccgac ctccgttagt tcctgcgggc ctttgcggc
 61 ttcccggtgc accctccccg ggagacacct cagacccccc acagcctggg caggcctcggt
 121 gcctgcgggt gcgttcctga tcacccctcc cctcttcctt cccctctatc ctccattccc
 181 ttgtttcac cctctgtct ctgcggcgtca ctccccctgt cacctcttgg agccccctcc
 241 taaccagcgg ccagtgggtt tcccataccc caggatgtga gcctctttaa cctgtatgc
 301 tgtggctagc ctttggcccc ttctctgcca tggagaacca ggtgtctggta attcgtatca
 361 agatccaaa tagtggcgccg gtggactgga cagtgcactc cgggcccgcag ttactttca
 421 gggatgtgt ggtatgtata ggccagggttc tgcctgaagc aacaactaca gcatttgaat
 481 atgaagatga agatgggtat cgaattacag tgagaagtga tgaggaaatg aaggcaatgc
 541 tgtcatatta ttattccaca gtaatggAAC agcaagtaaa tgacagttt atagagcctc
 60 601 tgcagatatt tccaagagcc tgcaagcctc ctggggAAC gAACATACAT ggcctgaagg
 661 tgaatactcg gcccggaccc tctcaacaca gcagcccagc agtctcagat tcacttcaa
 721 gcaatagctt aaagaagtct tctgtgtac tgaaaaaat actagccat ggcagatga
 781 atgaacaaga catacgatat cgggacactc ttggcatgg caacggaggg acagtctaca
 841 aagcatatca tgtcccgagt gggaaaatat tagctgtaaa ggtcataacta ctagatatta

901 cactggaaact tcagaagcaa attatgtctg aattggaaaat tctttataaag tgcgattcat
 961 catatatcat tggatttat ggagcatttt ttgttagaaaa caggattca atatgtacag
 1021 aattcatgga tgggggatct ttggatgtat ataggaaaat gccagaacat gtccttgaa
 1081 gaattgcagt agcagttgtt aaaggccta cttattgtg gagtttaaag atttacata
 5 1141 gagacgtgaa gccctccaat atgctagtaa acacaagagg acaggttaag ctgtgtgatt
 1201 ttggagttag cactcagctg gtgaattcta tagccaagac gtatgttgg acaaattgtt
 1261 atatggcgcc tgaaaggatt tcaggggagc agtatgaaat tcattctgtat gtctggagct
 1321 taggaatctc ttttatggag attcagaaaa accaggatc ttaatgcct ctccagctc
 1381 tgcagtgcatt tggtgatgag gattcgccc tccttcagg tggagagttc tcggagccat
 10 1441 ttgtacattt catcaactcag tgtatgcgaa aacagccaa agaaaggcca gcacctgaag
 1501 aattgtatggg ccacccgttc atcgtgcagt tcaatgatgg aatgccgccc gtgggtgtcca
 1561 tgtgggtgtg cggggcgctg gaggagaggc ggagccagca gggggcccccc tgaggctgccc
 1621 gcagggcact gaaagcccag gaccagtaac caaggagaac aacccaccccg tcgccttct
 1681 ccgtatgctg cctgcgccc aagagcttg ctggccctg gcttccctgc cctgccttc
 15 1741 acctctgtca gcagggtggcc ttgcctgggg agccccatgt gtggccacc ccaccaggcc
 1801 atccccatac cttctgttta gaaggcgctg acactggcag agaggtaaag ggtggggcat
 1861 tgagaatgga ggctcccagg gtccctgccc acttctgtt tcttaatgtt ttctctata
 1921 aagggtcagg cccgtcagca tcactgtatgg gaataaaaagt attaatgtt tggacagcc
 1981 tctgcctgaa aactggacag aaggacccag aggtgttctt tcattttctc tcttacctcc
 20 2041 aatcttcccc ctttcaagct acaggtaaag gctctaccac cat

25 DEFINITION Homo sapiens a disintegrin and metalloproteinase
 domain 22
 (ADAM22), transcript variant 3, mRNA.
 ACCESSION NM_016351
 VERSION NM_016351.2 GI:11497041
 30 FEATURES Location/Qualifiers
 source 1..3314
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="7"
 /map="7q21"
 35 gene 1..3314
 /gene="ADAM22"
 /note="MDC2"
 /db_xref="LocusID:53616"
 /db_xref="MIM:603709"
 40 CDS 47..2659
 /gene="ADAM22"
 /note="isoform 3 is encoded by variant 3"
 /codon_start=1
 45 /db_xref="LocusID:53616"
 /db_xref="MIM:603709"
 /product="a disintegrin and metalloproteinase domain
 22,
 isoform 3 preproprotein"
 50 /protein_id="NP_057435.1"
 /db_xref="GI:7706613".
 /translation="MQAAAVAVSVPFLLLGVLCPPARCGQAGDASLMELEKRKENRF
 55 VERQSIVPLRLIYRSGGEDESRHDALDTRVRGDLGGRQLTHVDQASFQVDAFGTSFIL
 DVVLNHDLLSSEYIERHIEHGGKTVEVKGGEHCYYQGHIRGNPDSFVALSTCHGLHGM
 FYDGNHTYLIEPEENDTTQEDFHFSVYKSRLFEFSLDDLPSEFQQVNITPSKFLKP
 60 RPKRSKRQLRRYPRNVEEETKYIELMIVNDHLMFKKHRLSVVHTNTYAKSVVNADLI
 YKDQLKTRIVLVAMETWATDNKFAISENPLITLREFMKYRRDFIKEKSDAVHLFSGSQ

FESSRSGAAYIGGICSLIKGGGVNEFGKTDLMAVTIQAQSLAHNIGIISDKRKLASGEC
 KCEDTWSGCIMGDTGYYLPKKFTQCNIEEYHDFLNSGGACLFNKPSKLDPPECNG
 5 FIETGEEDCGTPAECVLEGAECCKKCTLTQDSQCSDGLCCKCKFQPMGTVCREAVN
 DCDIRETCGNSSQCAPNIHKMDGYSCDGVQGICFGGRCKTRDRQCKYIWGQKVTA
 10 KYCYEKLNIEGTEKGNCGKDWTIQCNCNRDVLCGYLLCTNIGNIPRLGELDGEITST
 LVVQQGRTLNCSGGHVKEEDVLDGYVEDGTPCGPQMMCLEHRCLPVASFNFSTCLSS
 KEGTICSGNGVCSNELKCVCNRHWIGSDCNTYFPHNDDAKTGITLSGNGVAGTNIIIG
 15 IIAGTILVLALILGITAWGYKNYREQRSNGLSHSWSERIPDTKHISDICENGRPRSNS
 WQGNLGGNKKKIRGKRFRPRSNSTETLSPAKSPSSSTGSIASSRKYPYPMPPLPDEDK
 KVNRQSARLWETSI"
 20 BASE COUNT 1000 a 641 c 779 g 891 t 3 others
 ORIGIN

1	catgaggagc	tgagcgtctc	gggcgaggcg	ggctgacggc	agcaccatgc	aggcggcagt
61	ggctgtgtcc	gtgcccttct	tgctgctctg	tgtcctgggg	acctgcctc	cggcgccgt
121	cggccaggca	ggagacgcct	cattgatgg	gctagagaag	aggaaggaaa	accgccttcgt
181	ggagcgccag	agcategtgc	cactgcgcct	catctaccgc	tcggggcggcg	aagacaaag
241	tcggcacgac	gchgctcgaca	cgcgggtgcg	gggcgacotc	ggtggccggc	agttgactca
301	tgttgaccaa	gcaagcttcc	aggttgatgc	cttttggaaac	tcatttcatc	tcgatgtcg
361	gctaaatcat	gatttgcgt	cctctgaata	catagagaga	cacattgaac	atggaggcaa
421	gactgtggaa	gttaaaggag	gagacactg	ttactaccag	ggccatatcc	gaggaaaccc
481	tgactcattt	gttgcatttg	caacatgcca	cggaacttcat	gggatgttct	atgacgggaa
541	ccacacatata	ctcatttgc	cagaagaaaa	tgacactact	caagaggatt	tccatattca
601	ttcagtttac	aaatccagac	tgtttgaatt	ttccttggat	gatcttccat	ctgaatttca
661	gcaagtaaac	attactccat	caaaatttat	tttgaagcca	agacaaaaaa	ggagtaaacg
721	gcagcttcgt	cgatatacctc	gtaatgtaga	agaagaaacc	aaatacattt	aactgatgtat
781	tgtgaatgat	caccttatgt	ttaaaaaaaca	tcggcttcc	gttgtacata	ccaataaccta
841	tgcgaaatct	gtgggtgaaca	tggcagattt	aatatataaa	gaccaactta	agaccaggat
901	agtattggtt	gctatggaaa	cctggggcgcac	tgacaacaag	tttgcataat	ctgaaaatcc
961	attgatcacc	ctacgtgagt	ttatgaaata	caggaggat	tttatcaaaag	agaaaagtga
1021	tgcagttcac	cttttttccg	gaagtcaatt	tgagagtagc	cgagcgggg	cagcttat
1081	tggtggggat	tgctcggttc	tgaaggagg	aggcgtgaat	gaatttggga	aaactgattt
1141	aatggctgtt	acacttgc	agtcatgtc	ccataatatt	ggttattatct	cagacaaaag
1201	aaatgttagca	agtgggtgaat	gtaatgtcga	ggacacgtgg	tccgggtgc	taatgggaga
1261	cactggctat	tatcttccat	aaaagttcac	ccagtgtat	atttgaagat	atcatgactt
1321	cctgaatagt	ggaggtgggt	cctgccttt	caacaaacct	tctaagcttc	ttgatctcc
1381	tgagtgtggc	aatggcttca	ttgaaactgg	agaggagtgt	gattgtggaa	ccccggccga
1441	atgtgtcattt	gaaggagcag	agtgttgtaa	gaaatgcacc	ttgactcaag	actctcaatg
1501	cagtgcacgt	ctttgctgt	aaaagtgc当地	gtttcagcct	atgggcactg	tgtccgaga
1561	agcagtaaat	gattgtgata	ttcgtgaaac	gtgctcagga	aattcaagcc	agtgtgcccc
1621	taatattcat	aaaatggatg	gatattcatg	tgtatgggtt	cagggaaattt	gtttggagg
1681	aagatgcaaa	accagagata	gacaatgcaa	atacatttgg	ggccaaaagg	tgacagcatc
1741	agacaaatata	tgctatgaga	aactgaatata	tgaaggacg	gagaagggtt	actgtggaa
1801	agacaaagac	acatggatac	agtgc当地	acgggatgtg	cttgggtt	acctttgtg
1861	taccaatatt	gcaatatacc	caaggcttgg	agaactcgat	ggtgaaatca	catctacttt
1921	agttgtgcag	caaggaagaa	cattaaactg	cagtgggtgg	catgttaagc	ttgaagaaga
1981	tgttagatctt	ggctatgtgg	aagatggac	accttgggt	ccccaaatga	tgtgtttaga
2041	acacaggtgt	cttcctgtgg	cttctttca	cttttagtact	tgccttgc	gtaaaagg
2101	cactatttgc	ttaggaaatg	gagtttgcag	taatgagctg	aagtgtgtgt	gtaacagaca
2161	ctggataggt	tctgattgca	acacttactt	ccctcacaat	gatgtgc当地	agactgttat
2221	cactctgtct	ggcaatgggt	ttgtgtggcac	caatatata	ataggcataa	ttgtgtggcac
2281	catttttagt	ctggccctca	tatttaggaat	aactgcgtgg	ggttataaaa	actatcgaga
2341	acagaggtca	aatggggctt	ctcatttctt	gagtgaaagg	attccagaca	caaaaacat
2401	ttcagacatc	tgtgaaaatg	ggcgacctcg	aagtaactct	tggcaaggta	acctgggagg
2461	caacaaaaag	aaaatcagag	gcaaaagatt	tagacctcgg	tctaattcaa	ctgagacttt
2521	atctctgccc	aagtctcctt	cttcatcaac	tgggtctatt	gcctccagca	gaaaataccc

2581 ttacccaatg cctccacttc ctgatgagga caagaaagtg aaccgacaaa gtgcaggct
 2641 atgggagaca tccatttaag atcaactgtt tacatgtat acatcgaaaa ctgtttactt
 2701 caactttat agaaaacctt gctcatggaa tcactgcaaa tctatctgct cttcagacaa
 2761 tacgaagacc ctctgagatg ctacagagga gaggaagccg agtttccat ctggttacca
 5 2821 ttttctttt gtcattggct taggatttaa ctaaccatga aaagaactac tgaaatatta
 2881 cactataaca tggacaataa aaggtaactgg tatgttaatg gataatccgc atgacagata
 2941 atatgttagaa atattcataa agttaactca catgacccaa atgttagcaag tttcctaagg
 3001 tacaatagtg gattcagaac ttgacgttct gaggcacatc ctcactgtaa acagtaatgc
 3061 tataatgcatt aagcttctgt ttattgtttt ccattttaa ggaaacaaca tcccataata
 10 3121 gaaatgagca tgcagggcta aggcatatag gattttctg caggactta aagcttgaa
 3181 aggccaatat cccataggct aactttaaac atgtatTTTt atttttgtt tgnttttac
 3241 ttttcatatt tatattagca tacaaggaca attgnatata tgtAACATTt taaaatTTT
 3301 aaaaaaaaaaaa aaaa

15

DEFINITION Homo sapiens a disintegrin and metalloproteinase domain 17
 (tumor
 20 transcript necrosis factor, alpha, converting enzyme) (ADAM17),
 variant 1, mRNA.
 ACCESSION NM_003183
 VERSION NM_003183.3 GI:11497003
 25 FEATURES Location/Qualifiers
 source 1..3523
 /organism="Homo sapiens"
 /db_xref="taxon:9606"
 /chromosome="2"
 30 gene 1..3523
 /gene="ADAM17"
 /note="TACE; CSV; CD156b"
 /db_xref="LocusID:6868"
 35 CDS 165..2639
 /db_xref="MIM:603639"
 /gene="ADAM17"
 /note="isoform 1 is encoded by transcript variant 1;
 TNF-alpha converting enzyme; snake venom-like
 40 protease"
 /codon_start=1
 /db_xref="LocusID:6868"
 /db_xref="MIM:603639"
 /product="a disintegrin and metalloproteinase domain
 45 17,
 isoform 1 preproprotein"
 /protein_id="NP_003174.2"
 /db_xref="GI:11497004"
 50 /translation="MRQSLLFLTSVVPFVLAPRPPDDPGFGPHQRLEKLDSSLSDYDI
 LSLSNIQQHSVRKDLQQTSTHVETLLTFSALKRHFKLYLTSSTERFSQNFKVVVVDGK
 NESEYTAKWQDFFTGHVVGEPSRVLAHIRDDDVIIRINTDGAEYNIEPLWRFVNNDTK
 55 DKRMLVYKSEDIKNVSRLQSPKVCGYLKDNEELLPKGVLVDREPPPEELVHRVKRRADP
 DPMKNTCKLLVVADHRFYRYMGRGEESTTNYLIELIDRVDDIYRNTSWDNAGFKGYG
 60 IQIEQIRILKSPQEVPGEKHYNMAKSYPNEEKDAWDVKMLLEQFSFDIAEEASKVCL
 AHLFTYQDFDMGTLGLAYVGSPRANSHGVCVKAYSPVGKKNIYLNGLTSTKNYGK
 TILTKEADLVTTHELGHNFGAEHDPDGLAECAPNEDQGGKYVMYPIAVSGDHENNKM

SNC SKQ SIYKTIESKAQECFQERSNKVCGNSRVDEGE ECDPGIMYLNNNDCCNSDCTL

KEGVQCSDRNSPCKNCQFETAQKKCQEAINATCKGVSYCTGNSSEC PPPGNAENDTV

5

CLDLGKCKDGK CIPFCEREQQLESACNETDNSCKVCCRDLSGRCVPYVDAEQKNLFL

RKGKPCTVGFCDMNGKCEKRVQDVIERFWDFIDQLSINTFGKFLADNIVGSVLVFSLI

10

FWIPFSILVHCVDKLDKQYESLSLFHPSNVEMLSSMDSAVR II KPFPA PQT PGRLO

PAPVIPSAPA APKLDHQRMDTIQEDPSTD SHMDEDGF EKDPFPNSSTA AKSF ED LTDH
PVAR SEKAASFKLQRQNRVNSKETEC"

BASE COUNT 1025 a 685 c 845 g 968 t

15

ORIGIN

1 tcgaggcctgg cggtagaatc ttcccagtag gcggcgccgg agggaaaaga ggattgaggg
 61 gctaggccgg gcggatcccg tcctccccgg atgtgagcag tttccgaaa ccccgtcagg
 121 cgaaggctgc ccagagaggt ggagtccgta gcggggccgg gaacatgagg cagtctcc
 181 tattcctgac cagcgtggg ccttcgtgc tggcccgccg acctccggat gaccgggct
 241 tcggccccca ccagagactc gagaagctt attcttgct ctcagactac gatattctct
 301 cttaatctaa tatccagcag cattcggtaaaaaagaga tctacgact tcaacacatg
 361 tagaaacact actaacttt tcagatggaa aaggcattt taattatac ctgacatcaa
 421 gtactgaacg ttttccacaa aatttcaagg tcgtgggtt ggtggtaaaa aacgaaagcg
 481 agtacactgc aaaatggcag gacttctca ctggacacgt gttggtagg cctgactcta
 541 gggttcttagc ccacataaga gatgatgatg ttataatctaaatcaacaca gatggggccg
 601 aatataacat agagccacctt tgtagatgg ttaatgatac caaagacaaa agaatgttag
 661 tttataaattc tgaagatatc aagaatgttt cacgtttgca gtc tccaaa gtgtgtgg
 721 atttaaaaatg ggataatgaa gagttctcc caaaagggtt agtagacaga gaaccacctg
 781 aagagcttgt tcatcgagtg aaaagaaagag ctgaccacaga tcccatgaa aacacgtgt
 841 aattatttgtt ggtacgatg catcgcttct acagatacat gggcagaggg gaagagagta
 901 caactacaaa ttacttaata gagtaattt acagaggatgatc tgcacatctat cgaaacactt
 961 catggataaa tgcagggttt aaaggctatg gaatacagat agagcagatt cgcattctca
 1021 agtctccaca agaggtaaaa cctggtaaaa agcactacaa catggcaaaa agttacccaa
 1081 atgaagaaaa ggatgcttgg gatgtgaaatg ttttgatatacgttgcata gcaatttgc
 1141 ctgaggaagc atctaaagg ttgttggcac acctttcac ataccaagat ttgatatgg
 1201 gaactcttgg attagcttat gttggctctc ccagagcaaa cagccatgga ggtgtttgtc
 1261 caaaggctta ttatagccca gttgggaaga aaaatatcta ttgaatagt ggtttgacga
 1321 gcacaaagaa ttatggtaaa accatcctta caaaggaaagc tgacctgggtt acaactcatg
 1381 aattgggaca taattttggc gcagaacatg atccggatgg tctagcagaa tttgatatgg
 1441 atgaggacca gggaggggaaa tatgtcatgt atcccatagc tttgatggc gatcagcaga
 1501 acaataagat gtttcaaac tgcagtttcc aatcaatcta taagaccatt gaaagtaagg
 1561 cccagagtg ttttccagaa cgcagcaata aagtttgg gaaactcgagg gtggatgaa
 1621 gagaagagtg tgatcctggc atcatgtatc tgaacaacga cacctgctgc aacagcgact
 1681 gcacgttggaa ggaagggttc cagtcagtg acaggaacag tccttgcgt aaaaactgtc
 1741 agttttagac tgcccagaag aagtgcaggc aggcattaa tgctacttgc aaggcgtgt
 1801 cctactgcac aggttaatagc agtgagtgcg cgcctccagg aatgctgaa aatgacactg
 1861 tttgcttggc tcttggcaag tgtaaggatg gaaaatgc cctttctgc gagagggaa
 1921 agcagcttggc gtcctgtgca tgtaatgaaa ctgacaactc ctgcaagggt tgctgcagg
 1981 acctttctgg cccgtgtgt ccctatgtcg atgctgaaca aaaaacttta tttttgagga
 2041 aaggaaagcc ctgtacagta ggattttgtg acatgaatgg caaatgttag aacagactac
 2101 aggatgtat tgaacgattt tggatttca ttgaccagct gacatcaat acttttggaa
 2161 agtttttagc agacaacatc gttgggtctg tcctgggtt ctccttgcata ttttgattc
 2221 ctttcagcat tcttgcatt tggtggata agaaatggtaaaacagtat gaatctctgt
 2281 ctctgttca ccccaacttgc gtcgaaatgc tgacgttgc gatattctgc tcgggtcgca
 2341 ttatcaaacc ctttcctgca ccccaacttgc caggccgcct gcaagcctgcc cctgtatcc
 2401 ctgcggcc accagctcca aactggacc accagagaat ggacaccatc caggaagacc
 2461 ccagcacaga ctccccatag gacgaggatg gtttggagaa ggaccccttc ccaaatacgca
 2521 gcacactgc caagtcttgc gaggatctca cggaccatcc ggtccggaga agtggaaaagg
 2581 ctgccttgc taaacttgc gtcgaaatgc gtgttaacag caaagaaaca gagtgcataat
 2641 ttatgttca gtccttgc cttaagtgtg caaaaatattt ttatgattt gacccatcaaaa
 2701 tcaatcacag ttgttattttt gtaagactg ggaagtact tagcagatgc tggtcatgtg
 2761 tttgaatctc ctgcaggtaa acatgttgc tttgggttgg cccttctctt tttgaaaagg
 2821 taaggtaaaa gtaatctac ttatgttgc gcttccagg tttatgtttt aaaaatctt
 2881 ttgactgtg gtcggatgg gttatgataa tttacgtttt

2941 tgtaaaattaa tcctttatata tgataaacgc actgactagg gaaatgatca gtttttttt
3001 atacactgta atgaaccgct gaatatgaag catttggcat ttatttgtga gaaaagtgga
3061 atagttttt tttttttttt ttttttttgc cttcaactaa aaacaaagga gataaattta
3121 gtatacattg tatctaaattt gtgggtctat ttctagttat tacccagagt ttttatgttag
5 3181 caggaaaaat atatatctaa atttagaaat catttgggtt aatatggctc ttcataattc
3241 taagactaat gctcagaacc taaccactac cttacagtga gggctataca tggtagccag
3301 ttgaatttt ggaatctacc aactgtttag ggccctgatt tgctggcag ttttctgtta
3361 ttttataagt atcttcatgt atccctgtta ctgataggga tacatgtctt agaaaattca
3421 ctattggctg ggagtggctt ctcatgcctg taatcccagc acttggagag gctgaggttg
10 3481 cgccactaca ctccagcctg ggtgacagag tgagatctgc ctc

Accession number: NM_007026

Definition: DUSP14, MKP-L

15 GTGGCCCGCAGGAGGACGGAGGCCCTAACCGCAACCCGCCGCCGCCGCCGATTTGATTGTATCCAC
TGTCACCAGCACTGCTCACTTAGGACTTTCTGGATCCAGACCCAGGCAGCGCACACTGGACTCTTGAGGA
AGAAGGAGACTCTAATTTGGATTCTTGGTGGAGGAAAATAAAACACTCTGGTCTGCCGCCAACGATG
CAAGTGTGACTGCTGGCGTCTCATGAGCTCAGAGGTACAGCACGCTACCAAGGACTCTCATGCCGCC
TCGGATGATTCCGAGGGAGACATAGGAGGCATTGCTCAAATCACCTCTCTATTCTGGCAGAGGC
20 AGTGTGGCCTCCAATCGGCACCTCCTCCAGGCTCGTGGCATCACCTGCATTGTTAATGCTACCATTGAGA
TCCCTAATTCACTGGCCCCAATTGAGTATGTTAAAGTGCCTCTGGCTGACATGCCCATGCCCAT
TGGACTGTACTTGACACCCTGGCTGACAAGATCCACAGTGTGAGCAGGAAGCACGGGCCACCTGGT
CACTGTGCTGCAGGGGTGAGCCGCTCAGCCACGCTGTGATCGCTACCTGATGAAATTCCACAACGTG
GCCTGCTGGAGGCATACAACACTGGGTGAAAGCCCAGCAGCTGTGATCAGGCCAACGTAGGCTTCTGGAG
25 GCAACTGATAGACTACGAGCGCCAGCTCTTGGGAAGTCGACAGTTAAATGGTACAGACACCTTATGGC
ATAGTTCCGACGTCTATGAGAAGGAGTCCGACACCTGATGCCTTACTGGGGATTAGTGCCTGAA
GCCTGCGTCAGCAGCCGAGCAGGGCCGACCTGTGATCAGGCCAACGTAGGCTTCTGGAG
AAATGGCTGACTCTGGTCTCCCTCAAGTGTAAAAACTGGGTGTTCAAATTATTTAAGAGATAG
GGAGGGAGGGGACATAAAGGAATGCATACATTGCTAGTCACATTAAACATTGGAAATAGT
30 GTTTATGGAAATCTTAGCTTTAATCATTTCACCAATTGAAACAGTTAATAAAACTGGTCTGCTCTC
TTCTGAATCTCATGCCTTGGCACCTTGGTAGGTGCAGGAGGAGCTAGTGCACAAATCACTTGGGCC
TCATTAACCCCTTAGAGACAAGCTTGCCCCAGGCTGCGGACCAGACAGATGCTTAGGAAAGGTTGATAC
CAGCTTCAGTCTACTGGATTAGCCCTACTCTTCCCTCCATTATTTAGTGAACAGCTGCTGAA
AGTTAAATACACCCATTATTTAGCTGTTAAGTAACATATAATGAAATCTGCTGCAAAATCTCTGGAA
35 ATCCATGTGCCAGGATTATATTAGCATTATTTAATAAAATCTATATGCTAAAAAAAAAAAAAA
A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
3 July 2003 (03.07.2003)

PCT

(10) International Publication Number
WO 2003/054228 A3

(51) International Patent Classification⁷: C12Q 1/42, 1/48, 1/37, 1/68, C07K 16/00, A61K 39/42

(74) Agents: GINZEL, Christian et al.; c/o Zimmermann & Partner, Postfach 330 920, 80069 Munich (DE).

(21) International Application Number:
PCT/EP2002/014578

(22) International Filing Date:
19 December 2002 (19.12.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/341,757 21 December 2001 (21.12.2001) US

(71) Applicant (for all designated States except US): AXXIMA PHARMACEUTICALS AG [DE/DE]; Max-Lebsche-Platz 32, 81377 München (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SALASSIDIS, Konstadinos [GR/DE]; Hauptstrasse 14c, 85386 Eching (DE). SCHUBART, Daniel [DE/DE]; Avenue Charles de Gaulle 1c, 13469 Berlin (DE). GUTBROD, Heidrun [DE/DE]; Weberhofstrasse 8, 82166 Graefelfing (DE). MUELLER, Stefan [DE/DE]; Thalkirchnerstrasse 184, 81371 Munich (DE). KRAETZER, Friedrich [DE/DE]; Geisenbrunnerstrasse 51, 81475 Munich (DE). OBERT, Sabine [DE/DE]; Bellinzonastrasse 17, 81475 Munich (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
15 January 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

(54) Title: HUMAN CELLULAR ENZYME AS TARGETS AGAINST HEPATITIS C VIRUS INFECTIONS

(57) Abstract: The present invention relates to human cellular protein kinases, metalloproteases and one phosphatase: beta-adrenergic receptor kinase 1 (NM 001619), Mitogen activated protein kinase activated protein kinase 5 (AF032437), Insulin-stimulated protein kinase 1 (U08316), Discoidin domain receptor family, member 1(NM 013994), Protein Kinase C, mu (X75756), Protein Kinase C, theta (L01087), AMP-activated protein kinase beta 2 subunit (AJ 224538), JNK2 (U09759), Human p21-activated protein kinase 2 (U24153), cyclin-dependent kinase 4 (U37022), MEKS (U25265), MKP-L (NM 007026), ADAM22 (NM 016351), and ADAM17 (U92649) as potential targets for medical intervention against Hepatitis C virus (HCV) infections. The present invention relates also to a method for the detection of compounds useful for prophylaxis and/or treatment of Hepatitis C virus infections, a method for detecting Hepatitis C virus infections in an individual or in cells. Mono- or polyclonal antibodies are disclosed effective for the treatment of HCV infections together with methods for treating Hepatitis C virus infections or for the regulation of Hepatitis C virus production and/or replication wherein said antibodies may be used. Finally the present invention relates to a solid support useful for detecting Hepatitis C virus infections or for screening compounds useful for prophylaxis and/or treatment of HCV infections.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 02/14578

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7	C12Q1/42	C12Q1/48	C12Q1/37	C12Q1/68	C07K16/00
	A61K39/42				

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12Q C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, EMBASE, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	BRANCH ANDREA D ET AL: "The coming impact of gene expression profiling on the diagnosis and treatment of HCV-associated liver disease." ANTIVIRAL RESEARCH, vol. 52, no. 2, November 2001 (2001-11), pages 173-179, XP002249604 ISSN: 0166-3542 the whole document ----	1-14
X	BIGGER CATHERINE B ET AL: "DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection." JOURNAL OF VIROLOGY, vol. 75, no. 15, August 2001 (2001-08), pages 7059-7066, XP002249605 ISSN: 0022-538X the whole document ----	1-14
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the International search

30 July 2003

Date of mailing of the International search report

21/08/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Niemann, F

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 02/14578

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>YAMASHITA TARO ET AL: "Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 282, no. 2, 30 March 2001 (2001-03-30), pages 647-654, XP002249606 ISSN: 0006-291X the whole document</p> <p>---</p>	1-14
X	<p>HUANG YING ET AL: "A human hepatoma cell line expressing hepatitis C virus nonstructural proteins tightly regulated by tetracycline." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 281, no. 3, 2 March 2001 (2001-03-02), pages 732-740, XP002249607 ISSN: 0006-291X the whole document</p> <p>-----</p>	1-14

INTERNATIONAL SEARCH REPORT

...nternational application No.
PCT/EP 02/14578

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 2, 3, are directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Although claims 6-9 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition

Continuation of Box I.2

Present claims 6-7, 14 relate to an agent defined by reference to a desirable characteristic or property, namely inhibiting at least partially the activity of at least one of the enzymes cited in claim 1.

The claims cover all agents having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such agent. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the agent by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to antibody which binds to at least one of the enzymes cited in claim 1 (see claim 8).

Present claims 10-11 relate to an oligonucleotide defined by reference to a desirable characteristic or property, namely being capable of detecting activity of at least one of the enzymes cited in claim 1.

The claims cover all oligonucleotides having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such oligonucleotide. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the oligonucleotide by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible. Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to oligonucleotides encoding one of the enzymes cited in claim 1 (see claim 12).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1 : 1-14 (all partially)

method for detecting compounds useful for the prophylaxis and/or treatment of Hepatitis C virus infection, the method comprising contacting a test compound with at least beta-adrenergic receptor kinase 1
method for detecting Hepatitis C virus infection

Inventions 2-14 : 1-14 (all partially)

method for detecting compounds useful for the prophylaxis and/or treatment of Hepatitis C virus infection, the method comprising contacting a test compound with at least one of the enzymes mentioned in claim 1
method for detecting Hepatitis C virus infection

THIS PAGE LEFT BLANK