BÀI GIẢNG PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN

Mục tiêu: Nắm vững 4 phương trình lượng giác cơ bản và cách giải.

Kiến thức

- + Biết cách áp dụng công thức nghiệm đối với từng phương trình lượng giác cơ bản.
- + Vận dụng để giải những trường hợp mở rộng của 4 phương trình lượng giác cơ bản.

I. LÍ THUYẾT TRỌNG TÂM

1. Phương trình $\sin x = a$

- Nếu |a| > 1: Phương trình vô nghiệm.
- Nếu $|a| \le 1$. Đặt $a = \sin \alpha$ hoặc $a = \sin \beta^{\circ}$, phương trình tương đương với

$$\sin x = \sin \alpha \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

$$\sin x = \sin \beta^{\circ} \Leftrightarrow \begin{bmatrix} x = \beta^{\circ} + k.360^{\circ} \\ x = 180^{\circ} - \beta^{\circ} + k.360^{\circ} \end{bmatrix} (k \in \mathbb{Z}).$$

$$\sin x = a \Leftrightarrow \begin{bmatrix} x = \arcsin a + k2\pi \\ x = \pi - \arcsin a + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Tổng quát:

$$\sin f(x) = \sin g(x) \Leftrightarrow \begin{bmatrix} f(x) = g(x) + k2\pi \\ f(x) = \pi - g(x) + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Các trường hợp đặc biệt

- $\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$
- $\sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$
- $\sin x = 0 \Leftrightarrow x = k\pi \ (k \in \mathbb{Z}).$

2. Phương trình $\cos x = a$

- Nếu |a| > 1: Phương trình vô nghiệm.
- Nếu $|a| \le 1$. Đặt $a = \cos \alpha$ hoặc $a = \cos \beta^{\circ}$, phương trình tương đương với

$$\cos x = \cos \alpha \Leftrightarrow x = \pm \alpha + k2\pi \ \left(k \in \mathbb{Z} \right).$$

$$\cos x = \cos \beta^{\circ} \Leftrightarrow x = \pm \beta^{\circ} + k.360^{\circ} \ (k \in \mathbb{Z}).$$

$$\cos x = a \Leftrightarrow x = \pm \arccos a + k2\pi \ (k \in \mathbb{Z}).$$

Tổng quát:

$$\cos f(x) = \cos g(x) \Leftrightarrow f(x) = \pm g(x) + k2\pi \ (k \in \mathbb{Z}).$$

Các trường hợp đặc biệt

•
$$\cos x = 1 \Leftrightarrow x = k2\pi \ (k \in \mathbb{Z}).$$

•
$$\cos x = -1 \Leftrightarrow x = \pi + k2\pi \ (k \in \mathbb{Z}).$$

•
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z}).$$

3. Phương trình $\tan x = a$

 $Di \hat{e} u \ ki \hat{e} n \ \cos x \neq 0.$

•
$$\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \ (k \in \mathbb{Z}).$$

•
$$\tan x = \tan \beta^{\circ} \Leftrightarrow x = \beta^{\circ} + k.180^{\circ} (k \in \mathbb{Z}).$$

•
$$\tan x = a \Leftrightarrow x = \arctan a + k\pi (k \in \mathbb{Z}).$$

Tổng quát:

$$\tan f(x) = \tan g(x) \Leftrightarrow f(x) = g(x) + k\pi \ (k \in \mathbb{Z}).$$

5. Phương trình $\cot x = a$

•
$$\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \ (k \in \mathbb{Z}).$$

•
$$\cot x = \cot \beta^{\circ} \Leftrightarrow x = \beta^{\circ} + k.180^{\circ} (k \in \mathbb{Z}).$$

•
$$\cot x = a \Leftrightarrow x = arc \cot a + k\pi \ (k \in \mathbb{Z}).$$

Tổng quát:

$$\cot f(x) = \cot g(x) \Leftrightarrow f(x) = g(x) + k\pi \ (k \in \mathbb{Z}).$$

SƠ ĐỒ HỆ THỐNG HÓA

Điều kiện:
$$x \neq \frac{\pi}{2} + k\pi$$
, $k \in \mathbb{Z}$.

Đặt
$$a = \tan \alpha$$
.

$$\alpha$$
 đặc biệt $\Rightarrow x = \alpha + k\pi$.

$$\alpha$$
 không đặc biệt

$$\Rightarrow x = \arctan a + k\pi$$
.

Trường họp 1: |a| > 1.

Phương trình vô nghiệm.

Trường họp 2: $|a| \le 1$.

Đặt
$$a = \sin \alpha$$
.

 α đặc biệt

$$\Rightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{bmatrix}$$

$$(k \in \mathbb{Z})$$

 α không đặc biệt

$$\Rightarrow \begin{bmatrix} x = \arcsin a + k2\pi \\ x = \pi - \arcsin a + k2\pi \end{bmatrix}$$

$$(k \in \mathbb{Z})$$

 $\tan x = a$

$$\sin x = a$$
 Phương trình lượng

giác cơ bản

 $\cos x = a$

Trường hợp 1: |a| > 1.

Phương trình vô nghiệm.

Trường họp 2: $|a| \le 1$.

Đặt
$$a = \cos \alpha$$
.

 α đặc biệt

$$\Rightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = -\alpha + k2\pi \end{bmatrix}$$

$$(k \in \mathbb{Z})$$

 α không đặc biệt

$$\Rightarrow \begin{bmatrix} x = \arccos a + k2\pi \\ x = -\arccos a + k2\pi \end{bmatrix}$$

$$(k \in \mathbb{Z}).$$

Điều kiện $x \neq k\pi$, $k \in \mathbb{Z}$.

Đặt
$$a = \cot \alpha$$
.

$$\alpha$$
 đặc biệt $\Rightarrow x = \alpha + k\pi$.

 α không đặc biệt

$$\Rightarrow x = arc \cot a + k\pi$$
.

II. CÁC DẠNG BÀI TẬP

Dạng 1: Phương trình $\sin x = a$

 ♣
 Ví dụ mẫu

Ví dụ 1. Giải phương trình $2\sin\left(3x + \frac{\pi}{4}\right) = \sqrt{3}$. (1)

Hướng dẫn giải

$$(1) \Leftrightarrow \sin\left(3x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \Leftrightarrow \sin\left(3x + \frac{\pi}{4}\right) = \sin\frac{\pi}{3}$$

$$\Leftrightarrow \begin{bmatrix} 3x + \frac{\pi}{4} = \frac{\pi}{3} + k2\pi \\ 3x + \frac{\pi}{4} = \pi - \frac{\pi}{3} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} 3x = -\frac{\pi}{4} + \frac{\pi}{3} + k2\pi \\ 3x = \pi - \frac{\pi}{3} - \frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{36} + k\frac{2\pi}{3} \\ x = \frac{5\pi}{36} + k\frac{2\pi}{3} \end{bmatrix} (k \in \mathbb{Z}).$$

Ví dụ 2. Giải phương trình $\sin\left(3x + \frac{2\pi}{3}\right) + \sin\left(x - \frac{7\pi}{5}\right) = 0$. (2)

Hướng dẫn giải

$$(2) \Leftrightarrow \sin\left(3x + \frac{2\pi}{3}\right) - \sin\left(x - \frac{2\pi}{5}\right) = 0 \Leftrightarrow \sin\left(3x + \frac{2\pi}{3}\right) = \sin\left(x - \frac{2\pi}{5}\right)$$

$$\Leftrightarrow \begin{bmatrix} 3x + \frac{2\pi}{3} = x - \frac{2\pi}{5} + k2\pi \\ 3x + \frac{2\pi}{3} = \pi - \left(x - \frac{2\pi}{5}\right) + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = -\frac{8\pi}{15} + k\pi \\ x = \frac{11\pi}{60} + \frac{k\pi}{2} \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = -\frac{8\pi}{15} + k\pi$ $x = \frac{11\pi}{60} + \frac{k\pi}{2} \quad (k \in \mathbb{Z}).$

Ví dụ 3. Tìm số nghiệm nguyên dương của phương trình $\sin \left[\frac{\pi}{4} \left(3x - \sqrt{9x^2 - 16x - 80} \right) \right] = 0$.

Hướng dẫn giải

Ta có
$$\sin \left[\frac{\pi}{4} \left(3x - \sqrt{9x^2 - 16x - 80} \right) \right] = 0 \Leftrightarrow \frac{\pi}{4} \left(3x - \sqrt{9x^2 - 16x - 80} \right) = k\pi$$

$$\Leftrightarrow 3x - \sqrt{9x^2 - 16x - 80} = 4k \Leftrightarrow \sqrt{9x^2 - 16x - 80} = 3x - 4k$$

$$\Leftrightarrow \begin{cases} 3x \ge 4k \\ 9x^2 - 16x - 80 = 9x^2 - 24kx + 16k^2 \end{cases} \Leftrightarrow \begin{cases} 3x \ge 4k \\ x = \frac{2k^2 + 10}{3k - 2} \end{cases}.$$

Xét
$$x = \frac{2k^2 + 10}{3k - 2} \Rightarrow 9x = \frac{18k^2 + 90}{3k - 2} = \frac{2(9k^2 - 4) + 98}{3k - 2} = 2(3k + 2) + \frac{98}{3k - 2}$$
.

Vì $x \in \mathbb{N}^*$ nên $9x \in \mathbb{N}^* \Rightarrow 3k - 2 \in U'(98) = \{\pm 1; \pm 2; \pm 7; \pm 14; \pm 49; \pm 98\}$

Lại có
$$\begin{cases} x \in \mathbb{N}^* \\ 2k^2 + 10 > 0 \\ (k \in \mathbb{Z}) \end{cases} \Rightarrow 3k - 2 > 0 \Rightarrow 3k - 2 \in \{1; 2; 7; 14; 49; 98\} \Leftrightarrow k \in \{1; 3; 17\}.$$

- Với k = 1 thì x = 12 (thỏa mãn $3x \ge 4k$).
- Với k = 3 thì x = 4 (thỏa mãn $3x \ge 4k$).
- Với k = 17 thì x = 12 (không thỏa mãn $3x \ge 4k$).

Vậy phương trình đã cho có hai nghiệm nguyên dương là $x \in \{4;12\}$.

♣ Bài tập tự luyện dạng 1

Câu 1: Cho phương trình $\sin(x+\pi) = \frac{m+2}{m-1}$, m là tham số. Với giá trị nào của m thì phương trình có nghiệm?

A.
$$m \le -\frac{1}{4}$$
.

B.
$$m \le -\frac{1}{2}$$
.

C.
$$\forall m \in \mathbb{R}$$
.

Câu 2: Phương trình $\sin x = \frac{1}{2}$ có nghiệm thỏa mãn $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$ là

A.
$$x = \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \frac{\pi}{6}$$
.

C.
$$x = \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

D.
$$x = \frac{\pi}{3}$$
.

Câu 3: Số nghiệm của phương trình $\frac{\sin 2x}{1-\cos x} = 0$ trên đoạn $[0;3\pi]$ là

A. 8.

B. 7.

C. 4.

D. 5.

Câu 4: Cho phương trình $\sin \frac{x}{3} = m^2 + 9$, m là tham số. Với giá trị nào của m thì phương trình vô nghiêm?

A. -3 < m < 3.

B. m < 3.

C. $\forall m \in \mathbb{R}$.

D. Không tồn tại giá trị của m.

ĐÁP ÁN

1-B	2-B	3-D	4-C

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Phương trình $\sin(x+\pi) = \frac{m+2}{m-1}$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}, m \neq 1.$

Ta có
$$-1 \le \sin(x+\pi) \le 1 \Leftrightarrow$$

$$\begin{cases}
-1 \le \frac{m+2}{m-1} (1) \\
\frac{m+2}{m-1} \le 1 (2)
\end{cases}$$

Giải (1). Ta có
$$-1 \le \frac{m+2}{m-1} \Leftrightarrow \frac{2m+1}{m-1} \ge 0 \Leftrightarrow \begin{bmatrix} m > 1 \\ m \le \frac{-1}{2} \end{bmatrix}$$
.

Giải (2). Ta có
$$\frac{m+2}{m-1} \le 1 \Leftrightarrow \frac{3}{m-1} \le 0 \Leftrightarrow m-1 < 0 \Leftrightarrow m < 1$$
.

Kết hợp nghiệm ta có $m \le -\frac{1}{2}$.

Câu 2.

Phương trình $\sin x = \frac{1}{2}$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Do
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
 nên $\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{6} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \pi - \frac{\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$

$$Vì -\frac{\pi}{2} \le x \le \frac{\pi}{2} \text{ nên } x = \frac{\pi}{6}.$$

Câu 3.

Phương trình $\frac{\sin 2x}{1-\cos x} = 0$ có nghĩa $\Leftrightarrow 1-\cos x \neq 0 \Leftrightarrow \cos x \neq 1 \Leftrightarrow x \neq k2\pi \Leftrightarrow D = \mathbb{R} \setminus \{k2\pi\}$.

Ta có
$$\frac{\sin 2x}{1-\cos x} = 0 \Leftrightarrow \sin 2x = 0 \Leftrightarrow x = \frac{k\pi}{2} (k \in \mathbb{Z}).$$

Do
$$x \in [0; 3\pi] \Rightarrow x = \frac{\pi}{2}, x = \pi, x = \frac{3\pi}{2}, x = \frac{5\pi}{2}, x = 3\pi.$$

Vậy phương trình có 5 nghiệm.

Câu 4.

Phương trình $\sin \frac{x}{3} = m^2 + 9$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$-1 \le \sin \frac{x}{3} \le 1 \Leftrightarrow -1 \le m^2 + 9 \le 1 \Leftrightarrow -10 \le m^2 \le -8$$
 (vô lí).

Vậy phương trình vô nghiệm với $\forall m \in \mathbb{R}$.

Dang 2: Phương trình $\cos x = b$

♣ Ví du mẫu

Ví dụ 1. Giải phương trình $2\cos\left(2x + \frac{\pi}{6}\right) = \sqrt{2}$. (1)

Hướng dẫn giải

$$(1) \Leftrightarrow \cos\left(2x + \frac{\pi}{6}\right) = \frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos\left(2x + \frac{\pi}{6}\right) = \cos\frac{\pi}{4} \Leftrightarrow 2x + \frac{\pi}{6} = \pm\frac{\pi}{4} + k2\pi\left(k \in \mathbb{Z}\right).$$

$$\Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{6} = \frac{\pi}{4} + k2\pi \\ 2x + \frac{\pi}{6} = -\frac{\pi}{4} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} 2x = \frac{\pi}{12} + k2\pi \\ 2x = \frac{-5\pi}{12} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{24} + k\pi \\ x = \frac{-5\pi}{24} + k\pi \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $\begin{bmatrix} x = \frac{\pi}{24} + k\pi \\ x = \frac{-5\pi}{24} + k\pi \end{bmatrix} (k \in \mathbb{Z}).$

Ví dụ 2. Giải phương trình $\cos\left(2x + \frac{\pi}{3}\right) - \sin 5x = 0$. (2)

Hướng dẫn giải

$$(2) \Leftrightarrow \cos\left(2x + \frac{\pi}{3}\right) = \sin 5x \Leftrightarrow \cos\left(2x + \frac{\pi}{3}\right) = \cos\left(\frac{\pi}{2} - 5x\right)$$

$$\Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{3} = \frac{\pi}{2} - 5x + k2\pi \\ 2x + \frac{\pi}{3} = -\frac{\pi}{2} + 5x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{42} + \frac{k2\pi}{7} \\ x = \frac{5\pi}{18} - \frac{2k\pi}{3} \end{bmatrix} (k \in \mathbb{Z}).$$

Ví dụ 3. Cho phương trình $\cos(x+\pi) = \frac{m+2}{m-1}$, m là tham số. Tìm m để phương trình đã cho có nghiệm.

Hướng dẫn giải

Phương trình $\cos(x+\pi) = \frac{m+2}{m-1}$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$, $m \neq 1$.

Ta có
$$-1 \le \cos(x+\pi) \le 1 \Leftrightarrow$$

$$\begin{cases}
-1 \le \frac{m+2}{m-1} (1) \\
\frac{m+2}{m-1} \le 1 (2)
\end{cases}$$

Giải (1). Ta có
$$-1 \le \frac{m+2}{m-1} \Leftrightarrow \frac{2m+1}{m-1} \ge 0 \Leftrightarrow \begin{bmatrix} m > 1 \\ m \le \frac{-1}{2} \end{bmatrix}$$
.

Giải (2). Ta có
$$\frac{m+2}{m-1} \le 1 \Leftrightarrow \frac{3}{m-1} \le 0 \Leftrightarrow m-1 < 0 \Leftrightarrow m < 1$$
.

Kết hợp nghiệm ta có $m \le -\frac{1}{2}$.

Vậy với $m \le -\frac{1}{2}$ thì phương trình đã cho có nghiệm.

♣ Bài tập tự luyện dạng 2

Câu 1: Phương trình $2\cos x + \sqrt{2} = 0$ có nghiệm là

A.
$$\begin{bmatrix} x = \frac{\pi}{4} + k2\pi \\ x = \frac{3\pi}{4} + k2\pi \end{bmatrix}, k \in \mathbb{Z}.$$

B.
$$x = \frac{3\pi}{4} + k2\pi$$

$$x = \frac{-3\pi}{4} + k2\pi$$

$$k \in \mathbb{Z}$$
.

C.
$$\begin{cases} x = \frac{5\pi}{4} + k2\pi \\ x = \frac{-5\pi}{4} + k2\pi \end{cases}, k \in \mathbb{Z}.$$

D.
$$\begin{cases} x = \frac{\pi}{4} + k2\pi \\ x = \frac{-\pi}{4} + k2\pi \end{cases}, k \in \mathbb{Z}.$$

Câu 2: Phương trình $2\cos\frac{x}{2} + \sqrt{3} = 0$ có nghiệm là

A.
$$x = \pm \frac{5\pi}{3} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \pm \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z}$$
.

C.
$$x = \pm \frac{5\pi}{6} + k4\pi, k \in \mathbb{Z}$$
.

D.
$$x = \pm \frac{5\pi}{3} + k4\pi, k \in \mathbb{Z}$$
.

Câu 3: Phương trình $\cos 3x = \cos \frac{\pi}{15}$ có nghiệm là

A.
$$x = \pm \frac{\pi}{15} + k2\pi, k \in \mathbb{Z}$$
.

B.
$$x = \pm \frac{\pi}{45} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$
.

C.
$$x = -\frac{\pi}{45} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$
.

D.
$$x = \frac{\pi}{45} + \frac{k2\pi}{3}, k \in \mathbb{Z}$$
.

Câu 4: Phương trình $\cos^2 x = \frac{1}{2}$ có nghiệm là

A.
$$x = \frac{\pi}{4} + k \frac{\pi}{2}, k \in \mathbb{Z}$$
.

B.
$$x = -\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
.

$$\mathbf{C.} \ \ x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \ .$$

D.
$$x = \pm \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$$
.

Câu 5: Phương trình $\cos 2x = \cos x$ có cùng tập nghiệm với phương trình

A. $\sin \frac{3x}{2} = 0$.

B. $\sin x = 1$.

C. $\sin 4x = 1$.

D. $\sin 2x = 1$.

Câu 6: Số nghiệm của phương trình $\sqrt{2}\cos\left(x+\frac{\pi}{3}\right)=1$ với $0 \le x \le 2\pi$ là

A. 1.

B. 0

C. 2

D. 3.

Câu 7: Phương trình $\sin\left(\frac{5\pi}{3}\cos\pi x\right) = \frac{1}{2}$ có bao nhiều họ nghiệm?

A. 1 họ nghiệm.

B. 4 họ nghiệm.

C. 6 họ nghiệm.

D. 2 họ nghiệm.

ĐÁP ÁN

1-B 2-D 3-B 4-A 5-A 6-C 7-C

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Phương trình $2\cos x + \sqrt{2} = 0$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có $2\cos x + \sqrt{2} = 0 \Leftrightarrow \cos x = \frac{-\sqrt{2}}{2}$.

Do
$$\cos \frac{3\pi}{4} = \frac{-\sqrt{2}}{2}$$
 nên $\cos x = \frac{-\sqrt{2}}{2} \Leftrightarrow \cos x = \cos \frac{3\pi}{4} \Leftrightarrow \begin{bmatrix} x = \frac{3\pi}{4} + k2\pi \\ x = \frac{-3\pi}{4} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$

Câu 2.

Phương trình $2\cos\frac{x}{2} + \sqrt{3} = 0$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Ta có $2\cos\frac{x}{2} + \sqrt{3} = 0 \Leftrightarrow \cos\frac{x}{2} = \frac{-\sqrt{3}}{2}$.

Do $\cos \frac{5\pi}{6} = \frac{-\sqrt{3}}{2}$ nên $\cos \frac{x}{2} = \frac{-\sqrt{3}}{2} \Leftrightarrow \cos \frac{x}{2} = \cos \frac{5\pi}{6} \Leftrightarrow x = \pm \frac{5\pi}{3} + k4\pi \ (k \in \mathbb{Z}).$

Câu 3.

Phương trình $\cos 3x = \cos 12^{\circ}$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Do $\cos 12^\circ = \cos \frac{\pi}{15}$ nên $\cos 3x = \cos 12^\circ \Leftrightarrow \cos 3x = \cos \frac{\pi}{15}$

$$\Leftrightarrow \begin{bmatrix} 3x = \frac{\pi}{15} + k2\pi \\ 3x = \frac{-\pi}{15} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{45} + \frac{k2\pi}{3} \\ x = \frac{-\pi}{45} + \frac{k2\pi}{3} \end{bmatrix} (k \in \mathbb{Z}).$$

Câu 4.

Phương trình $\cos^2 x = \frac{1}{2}$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Ta có
$$\cos^2 x = \frac{1}{2} \Leftrightarrow \begin{bmatrix} \cos x = \frac{\sqrt{2}}{2} \\ \cos x = \frac{-\sqrt{2}}{2} \end{bmatrix}$$

Xét
$$\cos x = \frac{\sqrt{2}}{2} \Leftrightarrow \cos x = \cos \frac{\pi}{4} \Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi \ (k \in \mathbb{Z}).$$

Xét
$$\cos x = \frac{-\sqrt{2}}{2} \Leftrightarrow \cos x = \cos \frac{3\pi}{4} \Leftrightarrow x = \pm \frac{3\pi}{4} + k2\pi \ (k \in \mathbb{Z}).$$

Kết hợp nghiệm ta được $x = \frac{\pi}{4} + \frac{k\pi}{2} (k \in \mathbb{Z})$.

Câu 5.

Phương trình $\cos 2x = \cos x$ có nghĩa $\forall x \in \mathbb{R} \iff D = \mathbb{R}$.

Ta có
$$\cos 2x = \cos x \Leftrightarrow \begin{bmatrix} 2x = x + k2\pi \Leftrightarrow x = k2\pi \\ 2x = -x + k2\pi \Leftrightarrow x = \frac{k2\pi}{3} \Leftrightarrow x = \frac{k2\pi}{3} (k \in \mathbb{Z}). \end{bmatrix}$$

$$\sin\frac{3x}{2} = 0 \Leftrightarrow \frac{3x}{2} = k\pi \Leftrightarrow x = \frac{2k\pi}{3} (k \in \mathbb{Z});$$

$$\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi \left(k \in \mathbb{Z} \right);$$

$$\sin 4x = 1 \Leftrightarrow 4x = \frac{\pi}{2} + k2\pi \Leftrightarrow x = \frac{\pi}{8} + \frac{k\pi}{2} \left(k \in \mathbb{Z} \right);$$

$$\sin 2x = 1 \Leftrightarrow 2x = \frac{\pi}{2} + k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi \ (k \in \mathbb{Z}).$$

Vậy phương trình $\sin \frac{3x}{2} = 0$ có cùng tập nghiệm với phương trình $\cos 2x = \cos x$.

Câu 6.

Phương trình $\sqrt{2}\cos\left(x+\frac{\pi}{3}\right)=1$ có nghĩa $\forall x\in\mathbb{R} \Leftrightarrow D=\mathbb{R}$.

Ta có
$$\sqrt{2}\cos\left(x+\frac{\pi}{3}\right)=1 \Leftrightarrow \cos\left(x+\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}} \Leftrightarrow x+\frac{\pi}{3}=\pm\frac{\pi}{4}+k2\pi \Leftrightarrow \begin{bmatrix} x=-\frac{\pi}{12}+k2\pi\\ x=-\frac{7\pi}{12}+k2\pi \end{bmatrix}.$$

Do
$$0 \le x \le 2\pi$$
 nên $x = \frac{23\pi}{12}$; $x = \frac{17\pi}{12}$.

Vậy phương trình có 2 nghiệm thỏa mãn $0 \le x \le 2\pi$.

Câu 7.

Phương trình $\sin\left(\frac{5\pi}{3}\cos\pi x\right) = \frac{1}{2}$ có nghĩa $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

Vì
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
 nên $\sin \left(\frac{5\pi}{3} \cos \pi x \right) = \frac{1}{2} \Leftrightarrow \sin \left(\frac{5\pi}{3} \cos \pi x \right) = \sin \frac{\pi}{6} \Leftrightarrow \begin{bmatrix} \frac{5\pi}{3} \cos \pi x = \frac{\pi}{6} + k2\pi \\ \frac{5\pi}{3} \cos \pi x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$

$$\Leftrightarrow \begin{bmatrix} \cos \pi x = \frac{1}{10} + k\frac{6}{5} \\ \cos \pi x = \frac{1}{2} + k\frac{6}{5} \\ \cos \pi x = \frac{1}{2} - k\frac{6}{5} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \cos \pi x = \frac{1}{10} \\ \cos \pi x = \frac{1}{2} \\ \cos \pi x = \frac{1}{2} \end{bmatrix} \quad (\forall i -1 \le \cos \pi x \le 1).$$

Ta có
$$\cos \pi x = \frac{1}{10} \Leftrightarrow \pi x = \pm arc \cos \frac{1}{10} + k2\pi \ (k \in \mathbb{Z});$$

$$\cos \pi x = \frac{1}{2} = \cos \frac{\pi}{3} \Leftrightarrow \pi x = \pm \frac{\pi}{3} + k2\pi \quad (k \in \mathbb{Z}) \Rightarrow x = \pm \frac{1}{3} + 2k \quad (k \in \mathbb{Z});$$

$$\cos \pi x = \frac{-7}{10} \Leftrightarrow \pi x = \pm arc \cos \frac{-7}{10} + k2\pi \ \left(k \in \mathbb{Z}\right) \Leftrightarrow x = \pm \frac{1}{\pi} arc \cos \frac{-7}{10} + 2k \ \left(k \in \mathbb{Z}\right).$$

Vậy phương trình có 6 họ nghiệm.

Dạng 3: Phương trình $\tan x = m$

♣ Ví dụ mẫu

Ví dụ 1. Giải phương trình
$$3\tan\left(5x + \frac{\pi}{4}\right) = \sqrt{3}$$
. (1)

Hướng dẫn giải

Điều kiện
$$\cos\left(5x + \frac{\pi}{4}\right) \neq 0 \Leftrightarrow 5x + \frac{\pi}{4} \neq \frac{\pi}{2} + k\pi \Leftrightarrow x \neq \frac{\pi}{20} + \frac{k\pi}{5}, (k \in \mathbb{Z}).$$

$$(1) \Leftrightarrow \tan\left(5x + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{3} \Leftrightarrow \tan\left(5x + \frac{\pi}{4}\right) = \tan\frac{\pi}{6}$$

$$\Leftrightarrow 5x + \frac{\pi}{4} = \frac{\pi}{6} + k\pi \Leftrightarrow 5x = -\frac{\pi}{12} + k\pi \Leftrightarrow x = -\frac{\pi}{60} + k\frac{\pi}{5}, (k \in \mathbb{Z})$$

Vậy phương trình đã cho có nghiệm là $x = -\frac{\pi}{60} + k\frac{\pi}{5}$, $(k \in \mathbb{Z})$.

Ví dụ 2. Giải phương trình
$$\tan\left(2x - \frac{\pi}{4}\right) = \cot x$$
. (2)

Hướng dẫn giải

Điều kiện
$$\begin{cases} \cos\left(2x-\frac{\pi}{4}\right)\neq 0 \\ \sin x\neq 0 \end{cases} \Leftrightarrow \begin{cases} 2x-\frac{\pi}{4}\neq\frac{\pi}{2}+k\pi \\ x\neq l\pi \end{cases} \Leftrightarrow \begin{cases} x\neq\frac{3\pi}{8}+\frac{k\pi}{2} \\ x\neq l\pi \end{cases} \left(k;l\in\mathbb{Z}\right).$$

$$(2) \Leftrightarrow \tan\left(2x - \frac{\pi}{4}\right) = \tan\left(\frac{\pi}{2} - x\right) \Leftrightarrow 2x - \frac{\pi}{4} = \frac{\pi}{2} - x + k\pi \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{3}, \ (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = \frac{\pi}{4} + \frac{k\pi}{3}, (k \in \mathbb{Z})$.

♣ Bài tập tự luyện dạng 3

Câu 1: Nghiệm của phương trình $\tan(x+15^\circ)=1$ với $90^\circ < x < 270^\circ$ là

A.
$$x = 210^{\circ}$$
.

B.
$$x = 135^{\circ}$$
.

C.
$$x = 60^{\circ}$$
.

D.
$$x = 120^{\circ}$$
.

Câu 2: Phương trình $\sqrt{3} \tan x + 3 = 0$ có nghiệm là

A.
$$x = \frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

B.
$$x = -\frac{\pi}{3} + k2\pi$$
, $k \in \mathbb{Z}$.

$$\mathbf{C.} \ \ x = \frac{\pi}{6} + k\pi \ , k \in \mathbb{Z} \ .$$

D.
$$x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

Câu 3: Phương trình $\tan^2 x = 3$ có nghiệm là

A.
$$x = -\frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

B.
$$x = \pm \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

D.
$$x = \frac{\pi}{3} + k\pi$$
, $k \in \mathbb{Z}$.

Câu 4: Nghiệm của phương trình $\tan x = -\tan \frac{\pi}{5}$ trong khoảng $\left(\frac{\pi}{2}; \pi\right)$ là

A.
$$\frac{4\pi}{5}$$
.

B.
$$\frac{2\pi}{3}$$
.

C.
$$\frac{3\pi}{5}$$
.

D.
$$\frac{2\pi}{5}$$
.

Câu 5: Phương trình $\tan\left(\frac{\pi}{4}\sin 4x\right) = \frac{3}{2}$ có bao nhiều họ nghiệm?

- A. 2 họ nghiệm.
- **B.** 6 họ nghiệm.
- C. Vô nghiêm.
- D. 4 họ nghiệm.

Câu 6: Phương trình lượng giác $\sqrt{2} \tan \left(\frac{\pi}{4} - 2x \right) - \sqrt{2} = 0$ có nghiệm là

A.
$$x = k \frac{\pi}{2}, k \in \mathbb{Z}$$
.

B.
$$x = \frac{\pi}{2} + k \frac{\pi}{2}, k \in \mathbb{Z}$$
.

C.
$$x = k\pi$$
, $k \in \mathbb{Z}$.

D.
$$x = -\frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

ĐÁP ÁN

1-A 2-D 3-B 4-A 5-C	6-A
---------------------	-----

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Ta có $\tan 45^\circ = 1 \Leftrightarrow \tan(x+15^\circ) = \tan 45^\circ \Leftrightarrow x+15^\circ = 45^\circ + k.180^\circ \Leftrightarrow x = 30^\circ + k.180^\circ (k \in \mathbb{Z}).$

Với $90^{\circ} < x < 270^{\circ} \Leftrightarrow 90^{\circ} < 30^{\circ} + k.180^{\circ} < 270^{\circ} \Rightarrow k = 1 \Rightarrow x = 210^{\circ}$.

Câu 2.

Phương trình $\sqrt{3}$. $\tan x + 3 = 0$ có nghĩa $\Leftrightarrow \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \Leftrightarrow D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$.

Ta có
$$\sqrt{3} \tan x + 3 = 0 \Leftrightarrow \tan x = -\sqrt{3} \Leftrightarrow \tan x = \tan \frac{-\pi}{3} \Leftrightarrow x = -\frac{\pi}{3} + k\pi \ (k \in \mathbb{Z})$$
.

Câu 3.

Phương trình $\tan^2 x = 3$ có nghĩa $\Leftrightarrow \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \Leftrightarrow D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}.$

Ta có
$$\tan^2 x = 3 \Leftrightarrow \begin{bmatrix} \tan x = \sqrt{3} \\ \tan x = -\sqrt{3} \end{bmatrix}$$
.

Xét
$$\tan x = \sqrt{3} \Leftrightarrow \tan x = \tan \frac{\pi}{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi \ (k \in \mathbb{Z}).$$

Xét
$$\tan x = -\sqrt{3} \Leftrightarrow \tan x = \tan \frac{-\pi}{3} \Leftrightarrow x = \frac{-\pi}{3} + k\pi \ (k \in \mathbb{Z}).$$

Vậy
$$x = \pm \frac{\pi}{3} + k\pi \ (k \in \mathbb{Z}).$$

Câu 4.

Phương trình $\tan x = -\tan \frac{\pi}{5}$ có nghĩa $\Leftrightarrow \cos x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k\pi \Leftrightarrow D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}.$

Ta có
$$\tan x = -\tan \frac{\pi}{5} \Leftrightarrow \tan x = \tan \frac{-\pi}{5} \Leftrightarrow x = \frac{-\pi}{5} + k\pi \ (k \in \mathbb{Z}).$$

Do
$$x \in \left(\frac{\pi}{2}; \pi\right)$$
 nên $x = \frac{4\pi}{5}$.

Câu 5.

Ta có
$$\frac{-\pi}{4} \le \frac{\pi}{4} \sin 4x \le \frac{\pi}{4} \Rightarrow \cos \left(\frac{\pi}{4} \sin 4x\right) \ne 0, \ \forall x \in \mathbb{R}.$$

Phương trình xác định với $\forall x \in \mathbb{R} \Leftrightarrow D = \mathbb{R}$.

$$\tan\left(\frac{\pi}{4}\sin 4x\right) = \frac{3}{2} \Leftrightarrow \frac{\pi}{4}\sin 4x = arc\tan\frac{3}{2} + k\pi \Leftrightarrow \sin 4x = \frac{4}{\pi}arc\tan\frac{3}{2} + 4k.$$

Với
$$k \ge 0$$
 thì $\frac{4}{\pi} arc \tan \frac{3}{2} + 4k > 1 \Rightarrow \sin 4x > 1$ (vô lí).

Với
$$k \le -1$$
 thì $\frac{4}{\pi} arc \tan \frac{3}{2} + 4k < -1 \Rightarrow \sin 4x < -1$ (vô lí).

Vậy đã cho phương trình vô nghiệm.

Câu 6.

Phương trình
$$\sqrt{2} \tan \left(\frac{\pi}{4} - 2x\right) - \sqrt{2} = 0$$
 có nghĩa

$$\Leftrightarrow \cos\left(\frac{\pi}{4}-2x\right)\neq 0 \Leftrightarrow \frac{\pi}{4}-2x\neq \frac{\pi}{2}+k\pi \Leftrightarrow x\neq \frac{-\pi}{8}+\frac{k\pi}{2} \Leftrightarrow D=\mathbb{R}\setminus\left\{\frac{-\pi}{8}+\frac{k\pi}{2}\right\}\left(k\in\mathbb{Z}\right).$$

Ta có
$$\sqrt{2} \tan \left(\frac{\pi}{4} - 2x\right) - \sqrt{2} = 0 \Leftrightarrow \tan \left(\frac{\pi}{4} - 2x\right) = 1 \Leftrightarrow \frac{\pi}{4} - 2x = \frac{\pi}{4} - k\pi \Leftrightarrow x = k\frac{\pi}{2} \left(k \in \mathbb{Z}\right).$$

Dang 4: Phương trình $\cot x = n$

¥ Ví dụ mẫu

Ví dụ 1. Giải phương trình $\cot\left(2x - \frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$. (1)

Hướng dẫn giải

Điều kiện
$$\sin\left(2x - \frac{\pi}{6}\right) \neq 0 \Leftrightarrow 2x - \frac{\pi}{6} \neq k\pi \Leftrightarrow x \neq \frac{\pi}{12} + \frac{k\pi}{2}, (k \in \mathbb{Z}).$$

$$(1) \Leftrightarrow \cot\left(2x - \frac{\pi}{6}\right) = \cot\frac{\pi}{3} \Leftrightarrow 2x - \frac{\pi}{6} = \frac{\pi}{3} + k\pi$$

$$\Leftrightarrow 2x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{4} + k\frac{\pi}{2}, (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = \frac{\pi}{4} + k \frac{\pi}{2}$, $(k \in \mathbb{Z})$.

Ví dụ 2. Giải phương trình $\tan\left(\frac{4\pi}{9} + x\right) + 2\cot\left(\frac{\pi}{18} - x\right) = \sqrt{3}$. (2)

Hướng dẫn giải

Điều kiên

$$\begin{cases} \cos\left(\frac{4\pi}{9} + x\right) \neq 0 \\ \sin\left(\frac{\pi}{18} - x\right) \neq 0 \end{cases} \Leftrightarrow \begin{cases} \frac{4\pi}{9} + x \neq \frac{\pi}{2} + k\pi \\ \frac{\pi}{18} - x \neq k\pi \end{cases} \Leftrightarrow \begin{cases} x \neq \frac{\pi}{18} + k\pi \\ x \neq \frac{\pi}{18} - k\pi \end{cases} \Leftrightarrow x \neq \frac{\pi}{18} + k\pi, \ \left(k; m \in \mathbb{Z}\right).$$

Ta có
$$\left(\frac{4\pi}{9} + x\right) + \left(\frac{\pi}{18} - x\right) = \frac{\pi}{2} \Rightarrow \tan\left(\frac{4\pi}{9} + x\right) = \cot\left(\frac{\pi}{18} - x\right).$$

$$(2) \Leftrightarrow \cot\left(\frac{\pi}{18} - x\right) + 2\cot\left(\frac{\pi}{18} - x\right) = \sqrt{3} \Leftrightarrow 3\cot\left(\frac{\pi}{18} - x\right) = \sqrt{3}$$

$$\Leftrightarrow \cot\left(\frac{\pi}{18} - x\right) = \frac{\sqrt{3}}{3} \Leftrightarrow \frac{\pi}{18} - x = \frac{\pi}{3} + k\pi \Leftrightarrow x = -\frac{5\pi}{18} - k\pi, (k \in \mathbb{Z}).$$

Vậy phương trình đã cho có nghiệm là $x = -\frac{5\pi}{18} + k\pi$, $(k \in \mathbb{Z})$.

♣ Bài tập tự luyện dạng 4

Câu 1: Phương trình $3 \cot x - \sqrt{3} = 0$ có nghiệm là

A.
$$x = \frac{\pi}{6} + k\pi$$
, $k \in \mathbb{Z}$.

B.
$$x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$$
.

$$\mathbf{C.} \ \ x = \frac{\pi}{3} + k2\pi \ , k \in \mathbb{Z} \ .$$

Câu 2: Cho phương trình $\cot\left(x+\frac{3\pi}{4}\right)=m^2-4$, m là tham số. Với giá trị nào của m thì phương trình trên vô nghiêm?

A.
$$m \neq \pm 2$$
.

B.
$$-2 < m < 2$$
.

C. $\forall m \in \mathbb{R}$.

D. Không tồn tại giá trị của m.

Câu 3: Phương trình $\cot x \cdot \cot 2x - 1 = 0$ có nghiệm là

$$\mathbf{A.} \ \ x = \frac{\pi}{4} + k\pi \ , k \in \mathbb{Z} \ .$$

B.
$$x = \frac{\pi}{6} + k\pi$$

$$x = \frac{5\pi}{6} + k\pi$$
 $k \in \mathbb{Z}$.

$$\mathbf{C.} \ \ x = \frac{\pi}{6} + k\pi \ , k \in \mathbb{Z} \ .$$

D.
$$x = \frac{\pi}{2} + k \frac{\pi}{3}, k \in \mathbb{Z}$$
.

ĐÁP ÁN

1-B 2-D 3-B	
-------------	--

HƯỚNG DẪN GIẢI CHI TIẾT

Câu 1.

Phương trình $3 \cot x - \sqrt{3} = 0$ có nghĩa $\sin x \neq 0 \Leftrightarrow x \neq k\pi \Leftrightarrow D = \mathbb{R} \setminus \{k\pi\} \ (k \in \mathbb{Z})$.

Ta có
$$3 \cot x - \sqrt{3} = 0 \Leftrightarrow \cot x = \frac{\sqrt{3}}{3} \Leftrightarrow \cot x = \cot \frac{\pi}{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi \ (k \in \mathbb{Z}).$$

Câu 2.

Tập giá trị $y = \cot\left(x + \frac{3\pi}{4}\right) = \mathbb{R}$ nên với $\forall m \in \mathbb{R}$ phương trình luôn có nghiệm.

Vậy không tồn tại giá trị m để phương trình vô nghiệm.

Câu 3.

Phương trình
$$\cot x \cdot \cot 2x - 1 = 0$$
 có nghĩa $\Leftrightarrow \begin{cases} \sin x \neq 0 \\ \sin 2x \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq k\pi \\ 2x \neq k\pi \end{cases} \Leftrightarrow x \neq \frac{k\pi}{2}.$

Tập xác định
$$D = \mathbb{R} \setminus \left\{ x \neq \frac{k\pi}{2} \right\}$$
.

Ta có cot x. cot
$$2x - 1 = \frac{\cos x}{\sin x} \cdot \frac{\cos 2x}{\sin 2x} - 1 = \frac{\cos x}{\sin x} \cdot \frac{1 - 2\sin^2 x}{2\sin x \cos x} - 1 = \frac{1 - 2\sin^2 x}{2\sin^2 x} - 1 = \frac{1}{2\sin^2 x} - 2$$
.

$$\cot x \cdot \cot 2x - 1 = 0 \Leftrightarrow \frac{1}{2\sin^2 x} - 2 = 0 \Leftrightarrow \sin^2 x = \frac{1}{4} \Leftrightarrow \begin{bmatrix} \sin x = \frac{1}{2} \\ \sin x = \frac{-1}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin x = \sin \frac{\pi}{6} \\ \sin x = \sin \frac{-\pi}{6} \end{bmatrix}.$$

Nếu
$$\sin x = \sin \frac{\pi}{6} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{bmatrix}$$

Nếu
$$\sin x = \sin \frac{-\pi}{6} \Leftrightarrow \begin{bmatrix} x = \frac{-\pi}{6} + k2\pi \\ x = \frac{7\pi}{6} + k2\pi \end{bmatrix}$$