Application 10.3

Damping and Resonance Investigations

Here we outline *Maple*, *Mathematica*, and MATLAB investigations of the behavior of the mass-spring-dashpot system

$$mx'' + cx' + kx = F(t), \quad x(0) = x'(0) = 0$$
 (1)

with parameter values m = 25, c = 10, and k = 226 in response to a variety of possible external forces:

1.
$$F(t) \equiv 0$$

This is the case of free damped oscillations, similar to those illustrated in Fig. 5.4.12 in the text.

2.
$$F(t) = 901\cos 3t$$

With this periodic external force you should see a steady periodic oscillation with an exponentially damped transient motion (as illustrated in Fig. 5.6.13 in the text).

3.
$$F(t) = 900e^{-t/5}\cos 3t$$

Now the periodic external force is exponentially damped, and the transform X(s) involves a repeated quadratic factor that signals the presence of a resonance phenomenon. The response x(t) is a constant multiple of that shown in Fig. 10.3.5 in the text.

4.
$$F(t) = 900 t e^{-t/5} \cos 3t$$

We have inserted a *t*-factor to make it a bit more interesting. The response x(t) is plotted in Fig. 10.3.6 in the text.

5.
$$F(t) = 16200t^3 e^{-t/5} \cos 3t$$

Now you'll find that the transform X(s) involves the *fifth* power of a quadratic factor, and its inverse transform by manual methods would be impossibly tedious.

To see the advantage of using Laplace transforms, you might set up the appropriate differential equation **de** for case 5 and take a look at the result of the commands

$$dsolve({de, x(0)=0,D(x)(0)=0}, x(t));$$
 (Maple)

DSolve[{de,
$$x[0]==0,x'[0]==0$$
}, $x[t]$,t] (Mathematica)
dsolve(de, $'x(0)=0$, $Dx(0)=0'$) (MATLAB)

Of course you can substitute you own favorite mass-spring-dashpot parameters for those used above. However, it will simplify the calculations if you choose m, c, and k so that

$$mr^2 + cr + k = (pr + a)^2 + b^2$$
 (2)

where p, a, and b are integers. One way is to select the latter integers first, then use (2) to determine m, c, and k.

Using Maple

First we define the mass-spring dashpot parameters

and the external force function

$$F := 900*t*exp(-t/5)*cos(3*t);$$

for case 4. Then our differential equation is defined by

$$de := m*diff(x(t),t$2) + c*diff(x(t),t) + k*x(t) = F;$$

and the initial conditions are given by

inits :=
$$\{x(0)=0, D(x)(0)=0\}$$
:

Now we apply the Laplace transform to this equation, solve for the transform X(s) of x(t), and substitute the initial conditions.

```
with(inttrans):
DE := laplace(de, t,s);
X(s) := solve(DE, laplace(x(t), t,s));
X(s) := subs(inits, X(s));
```

At this point the command factor (denom(X)) shows that

$$X(s) = \frac{22500(25s^2 + 10s - 224)}{(25s^2 + 10s + 226)^3}.$$

The cubed quadratic factor would be difficult to handle manually, but Maple readily calculates the inverse transform

$$x(t) := 3e^{\left(-\frac{1}{5}t\right)}t^2\sin(3t) + te^{\left(-\frac{1}{5}t\right)}\cos(3t) - \frac{1}{3}e^{\left(-\frac{1}{5}t\right)}\sin(3t)$$

Let's collect the coefficients

Then our solution has the form

$$x(t) = C(t)\cos(3t - \alpha)$$

where the time-varying amplitude function for these damped oscillations is defined by

C(t) := sqrt(A^2 + B^2)*exp(-t/5);
$$C(t) := \frac{1}{3} \sqrt{-9t^2 + 81t^4 + 1} e^{\left(-\frac{1}{5}t\right)}$$

Finally, the command

$$plot([x(t), C(t), -C(t)], t=0..40);$$

produces the plot shown below. The resonance resulting (in effect) from the repeated quadratic factor visible in the Laplace transform of the solution x(t) consists of a temporary buildup before the oscillations are damped out.

Using Mathematica

First we define the mass-spring dashpot parameters

$$m = 25;$$
 $c = 10;$ $k = 226;$

and the external force function

$$F = 900 \text{ Exp}[-t/5] \text{ Cos}[3t];$$

for case 3. Then our differential equation is defined by

$$de = m x''[t] + c x'[t] + k x[t] == F$$

and the initial conditions are given by

inits =
$$\{x[0] -> 0, x'[0] -> 0\};$$

Now we apply the Laplace transform to this equation, solve for the transform X(s) of x(t), and substitute the initial conditions.

Needs["Calculus`LaplaceTransform`"]

DE = LaplaceTransform[de, t, s]

X = Solve[DE, LaplaceTransform[x[t],t,s]]

X = X // Last // Last // Last

X = X /. inits // Simplify

$$\frac{4500(5s+1)}{(25s^2+10s+226)^2}$$

The repeated quadratic factor visible here in the denominator of the Laplace transform X(s) signals a resonance phenomenon. We now inverse transform to get the solution

x = InverseLaplaceTransform[X, s, t] // Expand
$$6e^{-t/5}t\sin(3t)$$

Thus we have a damped oscillation with the time-varying amplitude function

$$c = 6 t Exp[-t/5];$$

When we plot the solution curve and envelope curves,

we see that the "resonance" consists in the buildup in the amplitude of the forced oscillations before the damping prevails.

Using MATLAB

First we define the mass-spring dashpot parameters

$$m = 25;$$
 $c = 10;$ $k = 226;$

and the differential equation

corresponding to case 5.

Now we apply the Laplace transform to this equation, substitute the initial conditions x(0) = x'(0) = 0, and solve for the transform X(s) of x(t).

```
DE = laplace(de);
DE = subs(DE, {'x(0)', 'D(x)(0)'}, {0,0});
DE = subs(DE, 'laplace(x(t), t, s)', 'X')
```

The quintic quadratic factor visible in the denominator of the Laplace transform here would be pretty discouraging if we were working manually, but MATLAB readily finds the inverse transform

```
x = ilaplace(X,s,t)
x =
27*exp(-1/5*t)*t^4*sin(3*t) + 18*t^3*exp(-1/5*t)*cos(3*t)
- 9*exp(-1/5*t)*t^2*sin(3*t) - 3*exp(-1/5*t)*t*cos(3*t)
+ exp(-1/5*t)*sin(3*t)
```

where we see the coefficients

$$A = 18t^3 - 3$$
 and $B = 27t^4 - 9t^2 + 1$

of the damped cos(3t) and sin(3t) terms, respectively. Then our solution has the damped oscillatory form

$$x(t) = C(t) \exp(-t/5) \cos(3t - \alpha)$$

where the time-varying coefficient C(t) is defined by $C = \sqrt{A^2 + B^2}$.

We can therefore proceed to plot this damped oscillation with the commands

```
ezplot(x,0,50)
axis([0 50 -10^5 10^5])
hold on
t = 0 : 0.2 : 60;
A = 18*t.^3 - 3;
B = 27*t.^4 - 9*t.^2 + 1;
C = sqrt(A.^2 + B.^2);
plot(t,C.*exp(-t/5),'k')
plot(t,-C.*exp(-t/5),'k')
```

which produce the lovely plot shown below. The resonance resulting (in effect) from the repeated quadratic factor visible in the Laplace transform of the solution x(t) consists of a temporary buildup before the oscillations are damped out. Note the exceptional "flatness" of the solution curve at the origin, resulting from the t^3 -factor in the external force function, and the consequent high multiplicity of the repeated quadratic.

