Project Overview

Problem Statement: Predict heroin usage / addiction.

Proposed Solution: Apply machine learning models to analyze substance use and demographic data.

Potential Impact: Inform targeted interventions and public health strategies.

Models Comparison

Target: Heroin usage

	Hyperparameter	Training Accuracy	Test Accuracy	Notes
Logistic regression	none	97.85%	97.85%	good performance but identifying non-users cor
BorderlineSMOTE	C=1	93%	89%	balanced performance with good test accuracy
SMOTEN	C=1	96%	96%	excellent performance, best among the variations
SVMSMOTE	C=10	94%	90%	good balance of precision and recall
KMeansSMOTE	C=0.1	nan	96%	handled imbalanced data well, though cross-val
ADASYN	C=10	88%	83%	focused on difficult cases, moderate test accu
Decision Tree (Base)	None	100%	95.93%	performance is excellent as expected
Decision Tree	max_depth=5, min_impurity_decrease=0.0, min_sa	97%	97%	high cross-validation and test accuracy
Random Forest	max_depth=20, min_samples_leaf=2, min_samples	97%	97%	high cross-validation and test accuracy

Evaluation Metrics comparison

ADASYN (Adaptive Synthetic Sampling) and SVMSMOTE (Support Vector Machine and Synthetic Minority Over-sampling Technique) are the most effective methods for identifying individuals likely to get addicted to heroin due to their higher true positive rates.

Coefficient Analysis

- ❖ Without Hyperparameter Tuning: High coefficients like Crack (10.37), Coke (3.49) and USA (2.68) indicate strong associations.
- With ADASYN (Adaptive Synthetic Sampling) SMOTE: Coefficients are balanced; USA (11.90), Age 25-34 (5.52) and Age 18-24 (4.77) stand out.

Decision Tree vs Random Forest Evaluation

Decision Tree and Random Forest demonstrate consistent performance, each correctly identifying 1 true positive, alongside achieving 97% test accuracy for negative cases.

Next Steps

- Fit different drugs as a target variable using the same pipeline
- Compare the models and results
- Coefficient analysis
- Feature Selection analysis based on the results
- Focus on Personality type analysis

Thank you!!!