CCP PC 2018 – Un corrigé

Partie I : Quelques résultats généraux

Q1 - On a: $U_0 = 1$ et donc $L_0 = 1$; $U_1 = X^2 - 1$ et donc $L_1 = X$ et enfin $U_2 = X^4 - 2X^2 + 1$ et donc: $L_2 = \frac{1}{8} (12X^2 - 4)$ et on retrouve bien $L_2 = \frac{1}{2} (3X^2 - 1)$.

Q2 – On a en un premier temps $\deg(U_n) = 2n$ et en dérivant 2n fois : $\deg(L_n) = n$.

Par ailleurs le terme de plus haut degré de U_n est X^{2n} , donc celui de L_n est $\frac{1}{2^n n!} \frac{(2n)!}{n!} X^n$ et

finalement: $a_n = \frac{(2n)!}{2^n (n!)^2}$.

Q3 – Il résulte de Q2 que la famille $(L_0,...,L_n)$ est échelonnée en degrés, donc libre. C'est une famille libre de n+1 vecteurs de $\mathbb{R}_n[X]$ qui est de dimension n+1: c'est donc une base de $\mathbb{R}_n[X]$.

Q4 – On a $U_n = (X-1)^n (X+1)^n$, ce qui montre que les racines de U_n sont –1 et 1, toutes deux de multiplicité n.

Par suite, pour $n \in \mathbb{N}^*$, 1 et -1 sont racines de multiplicité n-1 de U_n ' et U_n ' se factorise par $(X-1)^{n-1}(X+1)^{n-1}$; comme U_n ' est en outre de degré 2n-1=2(n-1)+1, le quotient de U_n ' par $(X-1)^{n-1}(X+1)^{n-1}$ est de degré 1 et U_n ' peut s'écrire sous la forme U_n ' = $\lambda(X-1)^{n-1}(X+1)^{n-1}(X-\alpha)$ où λ et α sont deux réels.

Par ailleurs U_n est de classe C^1 sur [-1,1] et comme $n \ge 1$: $U_n(1) = U_n(-1) = 0$. De ce fait U_n ' s'annule sur]-1,1[en un réel c. Or on a vu que les racines de U_n ' sont 1, -1 et α . Donc nécessairement $c = \alpha$ et donc $\alpha \in]-1,1[$.

Q5 – Quitte à réindexer, on peut supposer $-1 < \alpha_1 < ... < \alpha_k < 1$; on pose en outre $\alpha_0 = -1$ et $\alpha_{k+1} = 1$. Comme $n-k \ge 1$, $U_n^{(k)}$ s'annule en -1 et 1 ainsi qu'en chaque α_i pour $i \in \llbracket 1, k \rrbracket$. Ainsi pour chaque $i \in \llbracket 0, k \rrbracket$: $U_n^{(k)}$ est de classe C^1 (car polynomiale) sur $[\alpha_i, \alpha_{i+1}]$ avec $U_n^{(k)}(\alpha_i) = U_n^{(k)}(\alpha_{i+1})$. Monsieur Rolle nous indique alors l'existence d'un réel $\beta_{i+1} \in]\alpha_i, \alpha_{i+1}[$ tel que $U_n^{(k+1)}(\beta_{i+1}) = 0$. L'enchevêtrement $\alpha_0 = -1 < \beta_1 < \alpha_1 < \beta_2 < ... < \alpha_k < \beta_{k+1} < \alpha_{k+1} = 1$ montre que les β_i sont deux à deux distincts et appartiennent à]-1,1[.

En outre, 1 et -1 étant racines de multiplicité $n-k \ge 1$ de $U_n^{(k)}$, ils sont alors racines de multiplicité n-k-1 de $U_n^{(k+1)}$. On a trouvé au total k+1+2(n-k-1)=2n-k-1 racines à $U_n^{(k+1)}$ et $\deg \left(U_n^{(k+1)}\right)=2n-k-1$. Ainsi il existe un réel v tel que :

$$U_n^{(k+1)} = \nu (X-1)^{n-k-1} (X+1)^{n-k-1} \prod_{i=1}^{k+1} (X-\beta_i)$$

Q6 – Notons d'abord que $L_1 = X$ et que la propriété à montrer est vraie pour $L_1 : L_1$ a une unique racine à savoir 0, qui est bien dans [-1,1].

On suppose désormais $n \ge 2$ et on procède par récurrence finie : on appelle HR_k la propriété supposée à la question Q5.

- D'après la question Q4, HR₁ est vraie.
- D'après la question Q5, si pour $k \in [1, n-1]$ HR_k est vraie, alors HR_{k+1} est vraie.

Alors par récurrence finie : $\forall k \in [\![1,n]\!]$, HR_k est vraie et en particulier HR_n est vraie. Donc $U_n^{(n)} = 2^n L_n$ s'écrit sous la forme $U_n^{(n)} = v \prod_{i=1}^n (X - x_i)$ où les x_i sont n réels 2 à 2 distincts dans]-1,1[, ce qui constitue le résultat voulu.

Partie II : Étude des éléments propres de l'endomorphisme ø

Q7 – Pour $P,Q \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$ on a :

$$\phi(P+\lambda Q) = (X^2 - 1)(P"+\lambda Q") + 2X(P'+\lambda Q')$$

$$= (X^2 - 1)P"+2XP'+\lambda [(X^2 - 1)Q"+2XQ']$$

$$= \phi(P) + \lambda \phi(Q)$$

Donc ϕ est linéaire ; par ailleurs, ϕ est clairement à valeurs dans $\mathbb{R}[X]$ ce qui permet d'affirmer que ϕ est un endomorphisme de $\mathbb{R}[X]$.

Q8 – Du fait de la linéarité de ϕ , il nous suffit pour prouver que $\mathbb{R}_n[X]$ est stable par ϕ de prouver que pour tout $k \in [0,n]$ on a : $\phi(X^k) \in \mathbb{R}_n[X]$:

- Si $n \ge 1$: $\phi(X) = 2X \in \mathbb{R}_n[X]$.
- Si $n \ge 2$ et $k \in [2, n]$:

$$\phi(X^{k}) = k(k-1)(X^{2}-1)X^{k-2} + 2kX^{k} = k(k+1)X^{k} - k(k-1)X^{k-2} \in \mathbb{R}_{k}[X].$$

A fortiori : $\phi(X^k) \in \mathbb{R}_n[X]$.

On a bien montré $\forall k \in [0, n], \phi(X^k) \in \mathbb{R}_n[X]$ et ainsi $\mathbb{R}_n[X]$ est stable par ϕ .

Q9 – Il résulte des calculs ci-dessus que la matrice de φ dans la base canonique est :

$$M = \begin{pmatrix} 0 & 0 & -2 & & (0) \\ 2 & 0 & \ddots & & \\ & 6 & \ddots & -n(n-1) \\ (0) & & \ddots & 0 \\ & & & n(n+1) \end{pmatrix}$$

Et les deux résultats voulus s'en trouvent démontrés.

Q10 – Par suite (matrice triangulaire) le polynôme caractéristique de ϕ_n est $\prod_{k=0}^n (X - k(k+1))$

Le spectre de M et de ϕ_n est donc $\{k(k+1), k \in [0,n]\}$. Comme la suite $(k(k+1))_{k \in \mathbb{N}}$ est clairement strictement croissante, ces n+1 valeurs propres sont 2 à 2 distinctes ; comme en outre $\dim(\mathbb{R}_n[X]) = n+1$, ϕ_n est diagonalisable et ses sous-espaces propres sont des droites.

Q11 – Pour $k \ge 1$ on a: $U_k' = 2kX(X^2 - 1)^{k-1}$, donc $(X^2 - 1)U_k' = 2kX(X^2 - 1)^k = 2kXU_k$. L'égalité $(X^2 - 1)U_k' = 2kXU_k$ reste vraie pour k = 0: les deux membres sont nuls et on a bien pour $k \in [0, n]$: $(X^2 - 1)U_k' - 2kXU_k = 0$.

Q12 – Avec la formule de Leibniz, en dérivant k+1 fois la relation ci-dessus lorsque $k \ge 1$:

$$(X^{2} - 1)U_{k}^{(k+2)} + 2(k+1)XU_{k}^{(k+1)} + 2\binom{k+1}{2}U_{k}^{(k)} - 2kXU_{k}^{(k+1)} - 2k(k+1)U_{k}^{(k)} = 0$$

Après rangement on obtient bien :

$$(X^{2}-1)U_{k}^{(k+2)}+2XU_{k}^{(k+1)}-k(k+1)U_{k}^{(k)}=0$$

Par ailleurs cette relation reste vraie pour k = 0 (les trois termes du membre de gauche sont nuls) et on a bien le résultat voulu pour tout $k \in \mathbb{N}$.

Q13 – Or $U_k^{(k)} = 2^k k! L_k$, donc la relation ci-dessus s'écrit en la divisant par $2^k k!$:

$$(X^2-1)L_k$$
"+ $2XL_k$ '- $k(k+1)L_k=0$

Ainsi $\phi_n(L_k) = k(k+1)L_k$. Comme L_k n'est pas nul, on vient de montrer que L_k est vecteur propre de ϕ_n associé à la valeur propre k(k+1).

Q14 – Soit λ une valeur propre de ϕ et P un vecteur propre associé. Soit $n = \deg(P)$; ainsi $n \in \mathbb{N}$ car $P \neq 0$ et $\lambda P = \phi(P) = \phi_n(P)$. Or d'après la question Q10, les valeurs propres de ϕ_n sont les k(k+1) pour k décrivant $\llbracket 0, n \rrbracket$, donc $\operatorname{Sp}(\phi) \subset \{k(k+1), k \in \mathbb{N}\}$.

Réciproquement, soit λ un réel de la forme $\lambda = n(n+1)$ avec $n \in \mathbb{N}$; on sait que λ est alors valeur propre de ϕ_n et donc de ϕ : on vient de montrer que $\mathrm{Sp}(\phi) \subset \{n(n+1), n \in \mathbb{N}\}$.

Toujours pour $\lambda = n(n+1)$, soit P un vecteur propre associé, et $N = \max(n, \deg(P))$. Alors $P \in \ker(\phi_N - n(n+1)\operatorname{Id}_{\mathbb{R}_N[X]})$ et on a vu à la question Q10 que $\ker(\phi_N - n(n+1)\operatorname{Id}_{\mathbb{R}_N[X]})$ est

une droite, qui contient L_n d'après Q13. Donc $P \in \text{Vect}(L_n)$ la réciproque étant immédiate. Donc le sous-espace propre associé à n(n+1) est $\text{Vect}(L_n)$.

Partie III : Distance au sous-espace vectoriel $\mathbb{R}_n[X]$

Q15 – Soient $P, Q, R \in \mathbb{R}_n[X]$ et $\lambda \in \mathbb{R}$.

On a clairement : $\langle P + \lambda Q | R \rangle = \langle P | R \rangle + \lambda \langle Q | R \rangle$, $\langle P | Q \rangle = \langle Q | P \rangle$ et $\langle P | P \rangle \ge 0$.

De plus, si $\langle P|P\rangle = 0$, alors $\int_{-1}^{1} P^2(x) dx = 0$, et P^2 est une fonction positive et continue sur [-1,1]. Donc $\forall x \in [-1,1], P^2(x) = 0$ et le polynôme P s'annule une infinité de fois. Donc P = 0 Il résulte de tous ces points que $(P,Q) \mapsto \langle P|Q\rangle$ est un produit scalaire sur $\mathbb{R}_n[X]$.

Q16 – Partons du membre de gauche et réalisons une intégration par parties :

$$-\int_{-1}^{1} (t^{2} - 1) P'(t) Q'(t) dt = \left[-(t^{2} - 1) P'(t) Q(t) \right]_{-1}^{1} + \int_{-1}^{1} (2t P'(t) + (t^{2} - 1) P''(t)) Q(t) dt$$
$$= \int_{-1}^{1} \phi(P)(t) Q(t) dt$$

En d'autres termes : $\langle \phi(P)|Q\rangle = -\int_{-1}^{1} (t^2 - 1)P'(t)Q'(t)dt$.

En échangeant les rôles de P et de Q on a également : $\langle \phi(Q)|P\rangle = -\int_{-1}^{1} (t^2 - 1)Q'(t)P'(t)dt$ et par commutativité du produit : $\langle \phi(P)|Q\rangle = \langle \phi(Q)|P\rangle$.

Q17 - Soit *n* et *m* deux entiers naturels distincts. Alors :

$$n(n+1)\langle L_n|L_m\rangle = \langle \phi(L_n)|L_m\rangle = \langle L_n|\phi(L_m)\rangle = m(m+1)\langle L_n|L_m\rangle$$

Or $n(n+1) \neq m(m+1)$ donc $\langle L_n | L_m \rangle = 0$. La famille $(L_n)_{n \in \mathbb{N}}$ est bien orthogonale.

Q18 – Pour $n \ge 1$, on a vu à la question Q3 que $\left(L_0, ..., L_{n-1}\right)$ est une base de $\mathbb{R}_{n-1}\big[X\big]$ or il résulte de la question Q17 que L_n est orthogonal à chacun des vecteurs de cette base. Donc L_n est orthogonal à $\mathbb{R}_{n-1}\big[X\big]$ et : $\forall P \in \mathbb{R}_{n-1}\big[X\big], \left\langle P\big|L_n\right\rangle = 0$.

Q19 – On a $Q_n = \frac{L_n}{\|L_n\|}$ et la famille $(L_n)_{n\in\mathbb{N}}$ est orthogonale, donc $(Q_n)_{n\in\mathbb{N}}$ est une famille orthonormale.

Q20 – $\mathbb{R}_n[X]$ étant un sous-espace vectoriel de dimension finie de $\mathbb{R}[X]$, le projeté orthogonal T_n de P sur $\mathbb{R}_n[X]$ est bien défini et est l'unique vecteur de $\mathbb{R}_n[X]$ vérifiant $d(P,\mathbb{R}_n[X]) = d(P,T_n)$.

En outre, comme $(Q_0,...,Q_n)$ est une base orthonormale de $\mathbb{R}_n[X]$, on a $T_n = \sum_{k=0}^n c_k(P)Q_k$ et $\|T_n\|^2 = \sum_{k=0}^n (c_k(P))^2$. Enfin T_n et $P - T_n$ sont orthogonaux et d'après notre ami Pythagore, $\|T_n\|^2 + \|P - T_n\|^2 = \|P\|^2$ et en recollant tous les bouts on obtient bien :

$$d(P, \mathbb{R}_n[X])^2 = ||P||^2 - \sum_{k=0}^n (c_k(P))^2$$

Q21 – Par suite on a pour tout $n: \sum_{k=0}^{n} (c_k(P))^2 \le \|P\|^2$. Donc la série à termes positifs $\sum_{n} (c_n(P))^2$ a ses sommes partielles majorées par $\|P\|^2$. Donc elle converge et on a la majoration (parfois appelée inégalité de Bessel) : $\sum_{n=0}^{\infty} (c_n(P))^2 \le \|P\|^2$.

Partie IV : Fonction génératrice

Q22 – Soit $x \in [-1,1]$, fixé. On appelle HR_n la propriété : $|L_n(x)| \le r^n$.

- On a $0 \le L_0(x) = 1 \le r$ car $r = 1 + \sqrt{2}$, donc HR_0 est vraie.
- On a $|L_1(x)| = |x| \le 1 \le r$ donc HR_1 est vraie.
- Soit $n \in \mathbb{N}^*$ tel que HR_n et HR_{n-1} soient vraies. On sait que $L_{n+1}(x) = \frac{2n+1}{n+1}xL_n(x) \frac{n}{n+1}L_{n-1}(x)$ et donc $\left|L_{n+1}(x)\right| \le 2\left|L_n(x)\right| + \left|L_{n-1}(x)\right|$, puis avec l'hypothèse de récurrence : $\left|L_{n+1}(x)\right| \le 2r^n + r^{n-1} = r^{n-1}(2r+1)$. Or on sait que $r^2 2r 1 = 0$ donc 2r+1=r et $\left|L_{n+1}(x)\right| \le r^{n+1}$ et HR_{n+1} est vraie.

On vient de démontrer par récurrence avec deux prédécesseurs que : $\forall n \in \mathbb{N}, |L_n(x)| \le r^n$.

Q23 – Soit t un réel vérifiant $|t| < \frac{1}{r}$. Alors pour tout entier $n : |L_n(x)t^n| \le |rt|^n$; or |rt| < 1 donc la série géométrique $\sum_n |rt|^n$ converge et par suite la série $\sum_n L_n(x)t^n$ converge pour tout réel t vérifiant $|t| < \frac{1}{r}$. Ceci montre que $R(x) \ge \frac{1}{r}$.

Q24 – Pour $|t| \le R(x)$ et a fortiori pour $|t| < \frac{1}{r}$ on a :

$$(1-2tx+t^{2})S_{x}'(t)+(t-x)S_{x}(t)$$

$$=(1-2tx+t^{2})\sum_{n=1}^{\infty}nL_{n}(x)t^{n-1}+(t-x)\sum_{n=0}^{\infty}L_{n}(x)t^{n}$$

$$=\sum_{n=0}^{\infty}(n+1)L_{n+1}(x)t^{n}-2x\sum_{n=1}^{\infty}nL_{n}(x)t^{n}+\sum_{n=2}^{\infty}(n-1)L_{n-1}(x)t^{n}$$

$$+\sum_{n=1}^{\infty}L_{n-1}(x)t^{n}-x\sum_{n=0}^{\infty}L_{n}(x)t^{n}$$

$$=\sum_{n=2}^{\infty}\left[(n+1)L_{n+1}(x)-(2n+1)xL_{n}(x)+nL_{n-1}(x)\right]t^{n}$$

$$+L_{1}(x)+2L_{2}(x)-2xL_{1}(x)+L_{0}(x)-xL_{0}(x)-xL_{1}(x)$$

$$=x+(3x^{2}-1)-2x^{2}+1-x-x^{2}$$

Et finalement on a bien pour tout $t \in]-R(x), R(x)[$ et a fortiori pour $t \in]-\frac{1}{r}, \frac{1}{r}[$: $(1-2tx+t^2)S_x'(t)+(t-x)S_x(t)=0$

Q25 – Cette équation différentielle s'écrit : $y' = \frac{x-t}{1-2tx+t^2}y$. Notons que le discriminant du dénominateur est $4(x^2-1)$, et donc soit le dénominateur ne s'annule pas, soit il s'annule en 1 lorsque x=1, soit il s'annule en -1 lorsque x=-1. Dans tous les cas, il ne s'annule pas sur $\left]-\frac{1}{r},\frac{1}{r}\right[$ et la solution générale de l'équation sur cet intervalle est : $y = A\exp\left(-\frac{1}{2}\ln\left(1-2tx+x^2\right)\right)$, $A \in \mathbb{R}$, ce qui peut aussi s'écrire : $y = \frac{A}{\sqrt{1-2tx+x^2}}$. Comme S_x est solution de l'équation sur $\left]-\frac{1}{r},\frac{1}{r}\right[$ et vérifie en outre $S_x(0)=L_0(x)=1$ on a : $\forall x \in [-1,1], \forall t \in \left]-\frac{1}{r},\frac{1}{r}\right[S_x(t)=\frac{1}{\sqrt{1-2tx+x^2}}$

Q26 – Il ne s'agit pas ici de mener à bout le calcul mais juste d'indiquer une méthode. D'après les formules de Taylor MacLaurin et de Taylor-Young, le développement limité à l'ordre 2 de S_x est : $S_x(t) = L_0(t) + tL_1(t) + t^2L_2(t) + o(t^2)$. Il suffit alors de réaliser le développement limité à l'ordre 2 de $t \mapsto \frac{1}{\sqrt{1-2tx+x^2}}$ et d'identifier ces deux expressions d'après l'unicité du DL à l'ordre 2.

Partie V : Expression intégrale des polynômes de Legendre

Q27 – Tout d'abord il convient de voir que la variable de la fonction est u et que t et θ sont des paramètres fixés. On a pour $u \in [-\pi, \pi]$:

$$|v_n(u)| = |t|^n \left(\cos^2(\theta) + \sin^2(\theta)\cos^2(u)\right)^{\frac{n}{2}}$$

$$\leq |t|^n \underbrace{\left(\cos^2(u) + \sin^2(\theta)\right)^{\frac{n}{2}}}_{=1}$$

On a donc la majoration indépendante de $u: |v_n(u)| \le |t|^n$ et la série géométrique $\sum_n |t|^n$ est convergente car |t| < 1. Donc la série de fonctions $\sum_n v_n$ converge normalement sur $[-\pi, \pi]$.

Q28 – On remarque que pour |t| < 1: $w_n(\theta)t^n = \int_{-\pi}^{\pi} \frac{1}{2\pi} v_n(u) du$. Or on vient de voir que la série de fonctions $\sum_n v_n$ converge normalement sur $[-\pi, \pi]$ et il en va de même pour $\sum_n \frac{1}{2\pi} v_n$. Donc la série numérique $\sum_n w_n(\theta)t^n$ converge, de somme :

$$\sum_{n=0}^{\infty} w_n(\theta) t^n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=0}^{\infty} v_n(u) du$$

Reste à calculer la somme de la série qui est en fait une série géométrique :

$$\sum_{n=0}^{\infty} v_n(u) = \frac{1}{1 - t(\cos(\theta) + i\cos(u)\sin(\theta))}$$

Et on obtient bien : $\sum_{n=0}^{\infty} w_n(\theta) t^n = \sum_{n=0}^{\infty} v_n(u) = \int_{-\pi}^{\pi} \frac{\mathrm{d}u}{1 - t(\cos(\theta) + i\cos(u)\sin(\theta))}$

Q29 – Avec le changement de variable proposé :

$$\int_{0}^{\pi} \frac{\cos(u) du}{1 + a^{2} \cos^{2}(u)} = -\int_{\pi}^{0} \frac{-\cos(v) dv}{1 + a^{2} \cos^{2}(v)} = -\int_{0}^{\pi} \frac{\cos(v) dv}{1 + a^{2} \cos^{2}(v)}$$

Et on en déduit : $\int_0^{\pi} \frac{\cos(u) du}{1 + a^2 \cos^2(u)} = 0.$

Q30 – La fonction $v \mapsto \arctan(v)$ est de classe C^1 et bijective et strictement croissante de $\left[0,+\infty\right[$ dans $\left[0,\frac{\pi}{2}\right[$, donc :

$$\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}u}{1+a^{2}\cos^{2}(u)} = \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}u}{1+\frac{a^{2}}{1+\tan^{2}(u)}} = \int_{0}^{+\infty} \frac{\mathrm{d}v}{\left(1+v^{2}\right)\left(1+\frac{a^{2}}{1+v^{2}}\right)} = \int_{0}^{+\infty} \frac{\mathrm{d}v}{1+v^{2}+a^{2}}$$

On continue alors le calcul:

$$\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}u}{1+a^{2}\cos^{2}(u)} = \frac{1}{1+a^{2}} \int_{0}^{+\infty} \frac{\mathrm{d}v}{1+\left(\frac{v}{\sqrt{1+a^{2}}}\right)^{2}} = \frac{1}{\sqrt{1+a^{2}}} \left[\arctan\left(\frac{v}{\sqrt{1+a^{2}}}\right)\right]_{0}^{+\infty}$$

Et on obtient bien : $\int_{0}^{\frac{\pi}{2}} \frac{du}{1 + a^{2} \cos^{2}(u)} = \frac{\pi}{2\sqrt{1 + a^{2}}}$

Q31 - On a:

$$\int_{-\pi}^{\pi} \frac{\mathrm{d}u}{1 - t(\cos(\theta) + i\cos(u)\sin(\theta))} = \int_{-\pi}^{\pi} \frac{1 - t\cos(\theta) + it\cos(u)\sin(\theta)}{(1 - t\cos(\theta))^2 + t^2\cos^2(u)\sin^2(\theta)} du$$
$$= \int_{-\pi}^{\pi} \frac{1 - t\cos(\theta) + it\cos(u)\sin(\theta)}{(1 - t\cos(\theta))^2 + t^2\cos^2(u)\sin^2(\theta)} du$$

Comme |t| < 1 on a $1 - t\cos(\theta) > 0$ et en notant R et I les parties réelles et imaginaires de cette intégrale on a :

$$R = \frac{1 - t\cos(\theta)}{(1 - t\cos(\theta))^2} \int_{-\pi}^{\pi} \frac{du}{1 + a^2\cos^2(u)}, \text{ avec } a^2 = \frac{t^2\sin^2(\theta)}{(1 - t\cos(\theta))^2}$$

Et par parité, on obtient avec le résultat de la question Q30 :

$$R = \frac{\pi}{\left(1 - t\cos(\theta)\right)} \frac{1}{\sqrt{1 + \frac{t^2\sin^2(\theta)}{\left(1 - t\cos(\theta)\right)^2}}} = \frac{\pi}{\sqrt{\left(1 - t\cos(\theta)\right)^2 + t^2\sin^2(\theta)}}$$

Et finalement on obtient : $R = \frac{\pi}{\sqrt{1 - 2t\cos(\theta) + t^2}}$

On regarde maintenant la partie imaginaire : $I = \frac{t \sin(\theta)}{\left(1 - t \cos(\theta)\right)^2} \int_{-\pi}^{\pi} \frac{\cos(u) du}{1 + a^2 \cos^2(u)}$, la valeur de a étant inchangée ; cette intégrale est alors nulle d'après la question Q29, et on obtient finalement : $\int_{-\pi}^{\pi} \frac{du}{1 - t(\cos(\theta) + i \cos(u) \sin(\theta))} = \frac{\pi}{\sqrt{1 - 2t \cos(\theta) + t^2}}$

Q32 – On reprend le résultat de la question25 en posant $x = \cos(\theta)$, ce qui est licite car $\cos(\theta) \in [-1,1]$: $\forall t \in \left] -\frac{1}{r}, \frac{1}{r} \right[, \sum_{n=0}^{\infty} L_n(\cos(\theta))t^n = \frac{1}{\sqrt{t^2 - 2t\cos(\theta) + 1}}$; or en combinant cette

égalité avec les résultats des questions Q21 et Q28 on obtient :

$$\forall t \in \left] -\frac{1}{r}, \frac{1}{r} \right[, \sum_{n=0}^{\infty} L_n(\cos(\theta)) t^n = \sum_{n=0}^{\infty} w_n(\theta) t^n \right]$$

Et par identification (formule de Taylor-MacLaurin) on obtient bien :

$$\forall n \in \mathbb{N}, L_n(\cos(\theta)) = w_n(\theta)$$

Q33 – Soit $x \in [-1,1]$; on pose alors $\theta = \arccos(x)$ de sorte que $x = \cos(\theta)$. Ainsi $\forall n \in \mathbb{N}, L_n(x) = w_n(\theta)$, et en appliquant successivement les résultats des questions Q28 et Q31 on obtient le résultat voulu.

Q34 – Ce dernier résultat montre que $R(x) \ge 1$ puisque la série converge pour tout $t \in]-1,1[$. Posons alors pour z complexe tel que $|z| < R(x) : \varphi(z) = \sum_{n=0}^{\infty} L_n(x) z^n$.

Par produit, la fonction $z \mapsto (1-2xz+z^2)\varphi^2(z)$ est développable en série entière de rayon $\geq R(x)$; soit $\sum c_n z^n$ son développement; ainsi pour tout z complexe vérifiant |z| < R(x) on a: $(1-2xz+z^2)\varphi^2(z) = \sum_{n=0}^{\infty} c_n z^n$ (égalité notée (*) pour la suite). Or le résultat de la question

Q33 montre que $\forall t \in [-1,1], \sum_{n=0}^{\infty} c_n t^n = 1$ et ainsi par unicité du développement en série entière que $c_0 = 1$ et que $c_n = 0$ pour $n \ge 1$. En reportant dans l'égalité (*) on obtient que pour tout z complexe vérifiant |z| < R(x) on a : $(1 - 2xz + z^2) \varphi^2(z) = 1$.

Or le trinôme $1-2xz+z^2$ s'annule en $z=x\pm i\sqrt{1-x^2}$, qui sont tous deux de module 1. Donc si R(x)>1, L'égalité $(1-2xz+z^2)\phi^2(z)=1$ est donc valide pour $z=x\pm i\sqrt{1-x^2}$ et fournit 0=1 ce qui est plutôt ennuyeux ! On a donc $R(x)\le 1$ et on avait montré $R(x)\ge 1$. Finalement R(x)=1.

Partie VI: Applications à l'approximation d'intégrales

Q35 – On montre en un premier temps de façon analogue à la question Q5 que si une application f de classe C^1 s'annule au moins k fois sur \mathbb{R} avec $k \ge 2$, alors sa dérivée f' s'annule au moins k-1 fois sur \mathbb{R} .

Puis en un second temps on montre par récurrence finie en utilisant cette propriété pour l'hérédité que pour tout $k \in [0,2n-1]$, $h^{(k)}$ s'annule 2n-k fois. La propriété au rang 2n-1 fournit alors le résultat voulu.

Q36 – Soit
$$(\alpha_1,...,\alpha_n) \in \mathbb{R}^n$$
 tel que $\sum_{k=1}^n \alpha_k \ell_k = 0$. Ainsi pour tout $P \in \mathbb{R}_{n-1}[X]$ on a $\sum_{k=1}^n \alpha_k P(x_k) = 0$. Regardons en particulier pour le polynôme $P_i = \prod_{\substack{j=1 \ j \neq i}}^n (X - x_j)$. On a bien $P_i \in \mathbb{R}_{n-1}[X]$ et pour $k \neq i$: $P_k(x_i) = 0$; on obtient ainsi: $\alpha_i \underbrace{P_i(x_i)}_{\neq 0} = 0$ et donc $\alpha_i = 0$ et ce pour tout $i \in [1, n]$: la famille $(\ell_1, ..., \ell_n)$ est donc libre.

Q37 – Ainsi $(\ell_1,...,\ell_n)$ est une famille libre de n vecteurs de $\mathcal{L}(\mathbb{R}_{n-1}[X],\mathbb{R})$. Or $\dim(\mathcal{L}(\mathbb{R}_{n-1}[X],\mathbb{R})) = \dim(\mathbb{R}_{n-1}[X]) = n$. Donc $(\ell_1,...,\ell_n)$ est une base de $\mathcal{L}(\mathbb{R}_{n-1}[X],\mathbb{R})$ et donc : $\forall \psi \in \mathcal{L}(\mathbb{R}_{n-1}[X],\mathbb{R}), \exists ! (\beta_1,...,\beta_n) \in \mathbb{R}^n, \psi = \sum_{k=1}^n \beta_k \ell_k$.

Q38 – On applique le résultat précédent à l'application $\psi : \begin{cases} \mathbb{R}_{n-1}[X] \to \mathbb{R} \\ P \mapsto \int_{-1}^{1} P \end{cases}$ qui est bien linéaire

de $\mathbb{R}_{n-1}[X]$ dans \mathbb{R} : $\exists !(\beta_1,...,\beta_n) \in \mathbb{R}^n, \psi = \sum_{k=1}^n \beta_k \ell_k$, ce qui s'exprime aussi sous la forme :

$$\exists ! (\beta_1, ..., \beta_n) \in \mathbb{R}^n, \forall P \in \mathbb{R}_{n-1}[X], \int_{-1}^1 P = \sum_{k=1}^n \beta_k P(x_k)$$

Q39 – Soit $P \in \mathbb{R}_{2n-1}[X]$. On appelle Q et R les quotients et restes respectifs de P par L_n . Comme $\deg(L_n) = n$ on a $\deg(Q) = n-1$ et $\deg(R) \le n-1$, ainsi que $P = QL_n + R$.

De là : $\int_{-1}^{1} P = \int_{-1}^{1} Q L_n + \int_{-1}^{1} R$. Or $\int_{-1}^{1} Q L_n = (Q|L_n)$. Or avec la question Q18 on a $(Q|L_n) = 0$ et

il reste avec la question Q38 : $\int_{-1}^{1} P = \int_{-1}^{1} R = \sum_{k=1}^{n} \beta_k R(x_k)$. Or pour $1 \le k \le n$:

$$P(x_k) = \underbrace{L_n(x_k)}_{=0} Q(x_k) + R(x_k) = R(x_k)$$

Et l'égalité $\int_{-1}^{1} P = \sum_{k=1}^{n} \beta_k R(x_k)$ devient $\int_{-1}^{1} P = \sum_{k=1}^{n} \beta_k P(x_k)$. CQFD.

Q40 — Soit φ l'application linéaire proposée par l'énoncé, et soit $P \in \ker(\varphi)$. Alors $\deg(P) \leq 2n-1$ et pour tout $k \in [\![1,n]\!] : P(x_k) = P'(x_k) = 0$. Donc chaque x_k est racine double de P et P a ainsi au moins 2n racines comptées avec multiplicités alors que $\deg(P) \leq 2n-1$. Donc P=0: on vient de montrer que $\ker(\varphi) = \{0\}$. Or $\dim(\mathbb{R}_{2n-1}[X]) = \dim(\mathbb{R}^{2n})$, donc φ est bijective de $\mathbb{R}_{2n-1}[X]$ dans \mathbb{R}^{2n} . Par suite le 2n-uplet $(f(x_1),...,f(x_n),f'(x_1),...,f'(x_n))$ a un unique antécédent H_n par φ , ce qui traduit le résultat voulu.

Q41 – Considérons pour $K \in \mathbb{R}$ fixé la fonction g définie par l'énoncé :

- Pour $k \in [1, n]$, $f(x_n) = H(x_n)$ et $A(x_n) = 0$ donc $g(x_n) = 0$.
- Comme x est distinct des x_i , on a $A(x) \neq 0$ et il est possible de choisir pour K:

$$K = \frac{(2n)!}{A_n(x)^2} (f(x) - H_n(x))$$

Et ainsi on a aussi g(x) = 0.

• $x_1, ..., x_n, x$ sont n+1 nombres distincts de [-1,1]. En les classant on obtient n+1 nombres distincts de [-1,1] notés $y_1 < ... < y_{n+1}$ qui tous annulent g.

- Par un raisonnement déjà vu (encore Rolle), il existe n réels $c_1,...,c_n$ vérifiant d'une part l'enchevêtrement $-1 \le y_1 < c_1 < y_2 ... < c_n < y_{n+1} \le 1$ et d'autre part $g'(c_1) = ... = g'(c_n) = 0$.
- Pour $k \in [1, n]$, on a: $g'(x_k) = \underbrace{f'(x_k) H_n'(x_k)}_{=0} \frac{2}{(2n)!} A'(x_k) \underbrace{A(x_k)}_{=0} K$, donc g' s'annule 2n fois sur [-1,1]: en chaque x_k pour $k \in [1,n]$ et en chaque c_k pour $k \in [1,n]$, ces valeurs étant bien deux à deux distinctes.
- g étant en outre C^{2n} sur [-1,1], g' est C^{2n-1} sur cet intervalle et g' vérifie les hypothèses de la question Q35 en adaptant l'intervalle de définition (changer \mathbb{R} en [-1,1] dans la question Q35); on en déduit qu'il existe un $c \in [-1,1]$ tel que $(g')^{(2n-1)}(c) = 0$ ou encore $g^{(2n)}(c) = 0$. Or H_n étant polynomiale de degré $\leq 2n-1$ on a $H_n^{(2n)} = 0$. Par ailleurs A_n^2 est polynomiale de degré 2n, de coefficient dominant égal à 1, donc $(A_n^2)^{(2n)} = (2n)!$ et finalement : $0 = g^{(2n)}(c) = f^{(2n)}(c) K$, puis $f^{(2n)}(c) = K$. En remplaçant K par sa valeur on obtient : $f(x) H_n(x) = \frac{A_n(x)^2}{(2n)!} f^{(2n)}(c)$.

Q42 – On vient de voir que le résultat voulu est vrai pour tout $y \in [-1,1]$ distinct des x_i . Reste à regarder lorsque y est l'un des x_i . Il nous faut trouver un $c \in [-1,1]$ tel que $f(x_i) - H_n(x_i) = \frac{A_n(x_i)^2}{(2n)!} f^{(2n)}(c)$. Les deux membres de l'égalité sont nuls, donc tout réel $c \in [-1,1]$ convient, et le résultat est confirmé pour tout $y \in [-1,1]$.

Q43 -f est de classe C^{2n} sur [-1,1] donc $f^{(2n)}$ est continue sur le <u>segment</u> [-1,1] et il en va de même de $\left|f^{(2n)}\right|$, donc $\left|f^{(2n)}\right|$ est bornée et atteint ses bornes sur [-1,1]; par suite on a bien l'existence de $M_{2n}(f) = \max_{t \in [-1,1]} \left|f^{(2n)}(t)\right|$.

Avec la question Q40 on a : $\sum_{k=1}^{n} \alpha_k f(x_k) = \sum_{k=1}^{n} \alpha_k H_n(x_k)$. Or $\deg(H_n) \le 2n-1$ donc avec la question Q38 : $\sum_{k=1}^{n} \alpha_k H_n(x_k) = \int_{-1}^{1} H_n$. Ainsi :

$$\left| \int_{-1}^{1} f - \sum_{k=1}^{n} \alpha_{k} f(x_{k}) \right| = \left| \int_{-1}^{1} (f - H_{n}) \right| \le \int_{-1}^{1} \left| f - H_{n} \right|$$

On utilise alors la question Q42

$$\left| \int_{-1}^{1} f - \sum_{k=1}^{n} \alpha_{k} f(x_{k}) \right| \leq \frac{1}{(2n)!} \int_{-1}^{1} \left| A_{n}(y)^{2} \right| M_{2n}(f) dy = \frac{M_{2n}(f)}{(2n)!} \int_{-1}^{1} A_{n}(t)^{2} dt$$

Q44 – Avec la question Q6:

$$\int_{-1}^{1} A_n(t)^2 dt = \frac{1}{a_n^2} \int_{-1}^{1} L_n(t)^2 dt$$

Or il a été vu à la question Q2 que $a_n = \frac{(2n)!}{2^n (n!)^2}$ et l'énoncé nous invite à admettre à la question

Q19 que
$$\int_{-1}^{1} L_n(t)^2 dt = \frac{2}{2n+1}$$
. Donc $\int_{-1}^{1} A_n(t)^2 dt = \frac{2}{2n+1} \left(\frac{2^n (n!)^2}{(2n)!} \right)^2$. On utilise alors la

formule de Stirling:

$$\frac{(n!)^2}{(2n)!} \underset{n \to \infty}{\sim} \frac{(2\pi n) n^{2n} e^{-2n}}{\sqrt{4\pi n} (2n)^{2n} e^{-2n}} = \frac{\sqrt{\pi n}}{2^{2n}}$$

Donc:

$$\int_{-1}^{1} A_n(t)^2 dt \sim \frac{\pi}{2^{2n}}$$