

J.R. Esteban

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, GRUPO 721, 2018-2019

Ejercicios 15 a 18

- 15. Sea (X, d) un espacio métrico.
- A. Demostrar que para todo par $a\,,b\in X$ con $a\neq b$ existen entornos de a y de b que son disjuntos.
 - B. Demostrar que todo subconjunto finito de X es cerrado en (X, d).
- C. Sean $A\subset X$ y a un punto de acumulación de A. Demostrar que para todo entorno U de a el conjunto $U\cap A$ contiene un número infinito de puntos.
- **16.** Dados un espacio métrico $(X,d), a \in X$ y r>0 definimos la bola-abierta de centro a y radio r mediante

$$B(a,r) = \{ x \in X : d(x,a) < r \}$$

y la bola-cerrada mediante

iante
$$C(a\,,r)=\big\{\,x\in X\,:\;d(x,a)\leq r\,\big\}$$

- A. Sea $(E\,,\|\cdot\|)$ un espacio vectorial normado. Demostrar que el conjunto de puntos de adherencia de $B(a\,,r)$ coincide con $C(a\,,r)$.
 - B. En E definimos una métrica mediante

$$\rho(x,y) = \max\{1, ||x-x||\}.$$

- 1. Demostrar que los subconjuntos abiertos de $(E, \|\cdot\|)$ y de (E, ρ) son los mismos.
- \mathbb{Z}^2 . Comprobar que el conjunto de puntos de adherencia de B(a,r) en (E,ρ) es distinto de C(a,r).
 - 17. Sea E un espacio vectorial sobre $\mathbb R$. Decimos que una función

$$p: E \longrightarrow \mathbb{R}$$

es una $seminorma\ en\ E$ cuando satisaface

$$p(x + y) \le p(x) + p(y),$$

$$p(\lambda x) = |\lambda| p(x),$$

8

para todos los $x, y \in E$ y $\lambda \in \mathbb{R}$.

A. Demostrar que toda seminorma satisface:

- 1. p(0) = 0.
- 2. $p(x-y) \ge |p(x)-p(y)|$. En particular $p(x) \ge 0$.
 - B. Dado r > 0, consideramos el conjunto

$$M = \{ x \in E : p(x) \le r \}.$$

Obsérvese que $0 \in M$. Demostrar:

- 1. M es convexo.
- 2. Todos los $x \in M$ y $|\lambda| \le 1$ satisfacen $\lambda x \in M$.
- 3. Para cada $x \in E$ existe $\lambda > 0$ tal que $\frac{1}{\lambda} x \in M$.
- 4.

$$p(x) = \inf \left\{ \, \lambda \, r \ : \quad \lambda > 0 \, , \, \frac{1}{\lambda} \, x \in M \, \right\}.$$

C. Demostrar que $Z=\{\,x\in E\,:\,p(x)=0\,\}$ es un subespacio vectorial de E. Considérese el espacio vectorial cociente E/Z. Para cada clase de equivalencia X en este espacio ponemos

$$N(X) = p(x)$$

donde $x \in E$ es cualquier representante de la clase X. Demostrar que esta función $N(\cdot)$ está bien definida en E/Z y que es una norma en este espacio vectorial.

- 18. Considérese una función $f:[0,+\infty)\longrightarrow \mathbb{R}$ para demostrar:
- 1. Si f es continua en $[0,+\infty)$ y $f(x) \xrightarrow[x \to +\infty]{} L \in \mathbb{R}$ entonces f es uniformemente continua en $[0,+\infty)$.
- 2. Si f es continua en $[0\,,+\infty)$ y tiene una asíntota, entonces f es uniformemente continua en $[0\,,+\infty)$.
- 3. Si f es uniformemente continua en $[0\,,+\infty)$ entonces existen constantes $A\,,B>0$ tales que

$$|f(x)| \le A|x| + B$$
, para todo $x \ge 0$.

4. Si f es acotada, entonces existe una función cóncava $\omega(t)\,,$ de los $t\geq 0\,,$ tal que

$$|f(x) - f(y)| \le \omega(|x - y|)$$
, para todos los $x, y \ge 0$.