Grundlagen der Kanalcodierung

Seminar "Nachrichtentechnische Systeme"

Dominik Gedon

20. Januar 2017

Inhalt

- 1. Motivation
- 2. Verfahren der Kanalcodierung
- 3. Grundbegriffe
- 4. Blockcodes
- 5. Zyklische Blockcodes
- 6. Ausblick
- 7. Zusammenfassung

Was ist Kanalcodierung?

- Bei Übertragung und Speicherung von Daten muss mit Störungen gerechnet werden
- · Sicherung der Nachricht gegen Fehler
 - ⇒ Sendeseitiges Hinzufügen von **Redundanz**
- Empfänger nutzt diese Redundanz, um Fehler zu erkennen/korrigieren

Aufgabe: Fehlererkennung und ggf. Fehlerkorrektur anhand von Redundanz

Was ist Kanalcodierung?

Figure 1: Übersicht Kanalcodierung [2]

Wo wird Kanalcodierung angewendet?

- · Mobile Kommunikation (GSM, UMTS, LTE, WLAN)
- Satellitenkommunikation
- Netzwerk (LAN, WAN)
- Speicherung (CD, DVD, Blu-ray Disk, HDDs)
- · QR Codes, Barcodes, ISBN, IBAN

Verfahren der Kanalcodierung

2. Verfahren der Kanalcodierung

ARQ (Automatic Repeat Request)

- Signal wird durch ausschließlich fehlererkennenden Code geschützt.
- · Bei Fehlerdetektion Wiederholung des fehlerhaften Blocks
- · Existenz eines Rückkanals erforderlich

FEC (Forward Error Correction)

- Einsatz fehlerkorrigierender Codes
- · Höhere Redundanz auch bei guten Übertragungsbed.
- konstanter Datendurchsatz unabhängig vom aktuellen Kanalzustand

2. Verfahren der Kanalcodierung

3. Grundbegriffe: Hamming-Distanz d

Anzahl der Stellen, in denen sich 2 Codewörter unterscheiden

- Fehlererkennung: $t = d_{min} 1$
- Fehlerkorrektur: $t_{corr} = \lfloor \frac{d_{min}-1}{2} \rfloor$
- Wichtiges Maß zur Beurteilung der Leistungsfähigkeit eines Codes

 $d_{min} \Leftrightarrow$ Fähigkeit Fehler zu erkennen und zu korrigieren

3. Grundbegriffe: Blockcodierung: (n,k)-Blockcodes

Figure 2: Prinzip des (n,k)-Blockcodes [2]

- Block u aus k Infobits ⇒ Codewort a aus n Symbolen
- · Von 2ⁿ möglichen Wörtern nur 2^k als Codewörter
- · Hard-Decision vs. Soft-Decision

3. Grundbegriffe: Decodierprinzipien

- Maximum-Likelihood-Decodierung (MLD)
- Bounded Distance Decodierung (BDD)
- Bounded Minimum-Distance Decodierung (BMD)

Figure 3: Veranschaulichung von MLD, BDD und BMD [3]

4. Lineare Blockcodes

- · Gruppeneigenschaft für Codewörter gefordert
- · Einfache Codierbarkeit/Decodierbarkeit
- Binärcodes $a_i \in \{0, 1\}$
- Systematische Encodierung

Figure 4: Systematische Encodierung [6]

4. Lineare Blockcodes: Encodierung

Generatormatrix

$$\underbrace{(a_0,\ldots,a_{n-1})}_{\text{Codewortvektor \bar{a}}} = \underbrace{(u_0,\ldots,u_{n-1})}_{\text{Informationsvektor \bar{u}}} \cdot \underbrace{\begin{bmatrix}g_{0,0}&\ldots&g_{0,n-1}\\\vdots&&\vdots\\g_{k-1,0}&\ldots&g_{k-1,n-1}\end{bmatrix}}_{\text{Generatormatrix G}}$$

Systematische Encodierung

$$G = \begin{bmatrix} 1 & \dots & 0 & P_{0,0} & \dots & P_{0,n-1} \\ 0 & \ddots & 0 & \vdots & & \vdots \\ 0 & \dots & 1 & P_{k-1,0} & \dots & P_{k-1,n-1} \end{bmatrix} = [I_{n-k}|P]$$

4. Lineare Blockcodes: Decodierung

1. Berechnung des Syndroms s

$$\mathbf{S} = \underbrace{\mathbf{y}}_{\text{Empfangswort}} \cdot \mathbf{H}^{\text{T}} = (\underbrace{\mathbf{a}}_{\text{Codewort}} + \underbrace{\mathbf{e}}_{\text{Fehlerwort}}) \cdot \mathbf{H}^{\text{T}} = \mathbf{e} \cdot \mathbf{H}^{\text{T}}$$

Prüfmatrix
$$\mathbf{H} = [P^T | I_{n-k}]$$

- Es gilt $a \cdot H^T = 0$
- Übertragung fehlerfrei: s = 0
- 2. Das Syndrom markiert die Fehlerpositionen i_0, \ldots, i_n
- Korrektur des empfangenen Binärwortes an den Stellen i₀,..., i_n

4. Lineare Blockcodes: Beispiel (7,4)-Hamming-Code

- · 1-Fehler korrigierend und 2-Fehler erkennend
- Verwendung mehrerer Paritätsbits
- $\cdot d_{min} = 3$
- 2^4 = 16 Codewörter

```
Informationswort \mathbf{u} = (u_1 \quad u_2 \quad u_3 \quad u_4),
Codewort \mathbf{a} = (a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_6 \quad a_7)
```

4. Lineare Blockcodes: Beispiel (7,4)-Hamming-Code

$$\underbrace{(1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1)}_{\text{Codewort a}} = \underbrace{(1 \quad 0 \quad 0 \quad 1)}_{\text{Infowort u}} \cdot \underbrace{\begin{bmatrix} 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \\ 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \\ 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \\ 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \end{bmatrix}}_{\text{Generator matrix G}}$$

4. Lineare Blockcodes: Beispiel (7,4)-Hamming-Code

$$s = y \cdot H^{T} = (1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1) \cdot \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = (0 \quad 1 \quad 0)$$

5. Zyklische Blockcodes

• Zyklische Verschiebung eines Codewortes ist wiederum ein Codewort $(a_0, \ldots, a_{n-2}, a_{n-1}) \Rightarrow (a_{n-1}, a_0, \ldots, a_{n-2})$

Beschreibung durch Polynome

- · Zeichen des Codeworts sind Koeffizienten des Polynoms
- Sehr einfach Encodierung/Decodierung durch Filteroperationen in Schieberegistern

5. Zyklische Blockcodes: Encodierung

Systematische Encodierung

$$a(x) = (\underbrace{p_0, \dots, p_{n-k-1}}_{\text{n-k Prüfbits}}, \underbrace{u_0, \dots, u_{k-1}}_{\text{k Infosymbole}})$$

$$a(x) = \underbrace{u(x)}_{\text{k Infosymbole}} \qquad a(x) = \underbrace{p(x)}_{\text{k Infosymbole}}$$

$$\underbrace{a(x)}_{\text{Codewortpol.}} = \underbrace{u(x)}_{\text{Infowortpolynom}} \cdot \underbrace{g(x)}_{\text{Generatorpol.}} = \underbrace{p(x)}_{\text{Prüfpolynom}} + \underbrace{x^{n-k} \cdot u(x)}_{\text{System. Teil}}$$

 \cdot p(x) so bestimmen, dass a(x) ohne Rest durch g(x) teilbar

$$\Rightarrow$$
 Rest : $\mathbf{p}(\mathbf{x}) = R_{g(\mathbf{x})} \{ x^{n-k} u(\mathbf{x}) \} = x^{n-k} u(\mathbf{x}) \mod g(\mathbf{x})$

5. Zyklische Blockcodes: Beispiel (7,4)-Hamming-Code

$$g(x) = 1 \oplus x \oplus x^3$$
Infowort u = (0 0 0 1) $\leftrightarrow u(x) = x^3$

$$p(x) = R_{1 \oplus x \oplus x^3} \{x^3 x^3\}$$

$$= R_{1 \oplus x \oplus x^3} \{(1 \oplus x)(1 \oplus x)\}$$

$$= R_{1 \oplus x \oplus x^3} \{1 \oplus x^2\}$$

$$= 1 \oplus x^2$$

Codewortpol. a(x) = $p(x) \oplus x^3 u(x) = 1 \oplus x^2 \oplus x^3 x^3 = 1 \oplus x^2 \oplus x^6$

5. Zyklische Blockcodes: Beispiel (7,4)-Hamming-Code

Step i	u_{k-i}	$u_{k-i} \oplus z_2^{(i)}$	$z_0^{(i+1)}$	$z_1^{(i+1)}$	$z_2^{(i+1)}$	c_{j}	j
Init		- ,,	0	0	0		
1	1	1	1	1	0	1	6
2	0	0	0	1	1	0	5
3	0	1	1	1	1	0	4
- 4	0	1	1	0	1	0	3
5		q(x)	0	1	0	1	2
6		$\text{ with } x^{n-k}u(x) =$	0	0	1	0	1
7		$q(x)g(x)\oplus p(x)$	0	0	0	1	0

Figure 5: Schieberegisterschaltung Encodierung [1] Grundlagen der Kanalcodierung | Dominik Gedon

5. Zyklische Blockcodes: Decodierung

Berechnung des Syndroms $s = R_{g(x)}\{y(x)\}$

$$y(x) = a(x) + e(x) = u(x) \cdot g(x) + e(x)$$

$$S(x) = \underbrace{R_{g(x)}\{u(x) \cdot g(x)\}}_{=0} + R_{g(x)}\{e(x)\} = R_{g(x)}\{e(x)\}$$

 \Rightarrow Syndrom hängt nur vom Fehlerpolynom e(x) ab

5. Zyklische Blockcodes: Decodierung

Fehlererkennung:

- · Berechnung des Syndroms
- $\cdot \Rightarrow$ Übertragung fehlerfrei, falls s(x) = 0

Fehlerkorrektur:

- 1. Berechnung des Syndroms
- Fehlermuster des Syndroms bestimmen Decoder enthält wahrscheinlichste Fehlermuster in Syndromtabelle
- 3. Korrektur des empfangenen Polynoms

5. Zyklische Blockcodes: Decodierung

Korrektur des empfangenen Polynoms mit Hilfe von Schieberegister

Figure 6: Schieberegisterschaltung Decodierung [4]

Ausblick

BCH-Codes

· Gut zur Korrektur von Einzelfehlern

RS-Codes

- Spezielle BCH-Codes
- · Keine Binären Symbole
- · Codewörter besitzen spezielle spektrale Eigenschaften
- Hervorragend zur Korrektur von Bündelfehlern

Faltungscodes

- · blockfreie Codes
- Redundanz durch Faltung der Information in Kanalcodefolge
- Encoder besitzt Gedächtnis

Zusammenfassung

- · Sicherung der Nachricht gegen Fehler
 - ⇒ Redundanz
- Fehlererkennung und ggf. Fehlerkorrektur
- Konstruktion geeigneter Codes

Anforderung: Gute Fehlererkennungs- und Fehlerkorrektureigenschaften mit möglichst geringer Redundanz

Quellen i

- [1] Huber, Fischer, Stierstorfer Fundamentals of Channel Coding
- [2] Bernd Friedrichs Kanalcodierung
- [3] Volker Kühn Vorlesungsskript Kanalcodierung I SoSe 2016
- [4] Markus Hufschmid Information und Kommunikation
- [5] Martin Bossert Kanalcodierung
- [6] Johannes Huber Vorlesungsskript Nachrichtentechnische Systeme WS 2016/17