Σημειακές Λειτουργίες (Μετασχηματισμοί)

Τύποι Λειτουργιών

Οι λειτουργίες που μπορούν να εφαρμοσθούν σε ψηφιακές εικόνες για να μετασχηματίσουν την αρχική εικόνα ![",#] στην τελική εικόνα \$[",#] (ή κάποια άλλη αναπαράσταση) ανήκουν σε 3 κατηγορίες:

Λειτουργία	Χαρακτηρισμός	Γραφική αναπαράσταση
σημειακή	η τελική τιμή στο (x, y) εξαρτάται μόνο από την αρχική τιμή στο (x, y). Πολυπλοκότητα / pixel : %&#'(</td><td>a b</td></tr><tr><td>τοπική</td><td>η τελική τιμή στο (x, y) εξαρτάται από τις αρχικές τιμές μιας /*x / γειτονιάς γύρω από το (x, y). Πολυπλοκότητα / pixel : /+</td><td>a b</td></tr><tr><td>καθολική</td><td>η τελική τιμή στο (x, y) εξαρτάται από όλες τις τιμές της αρχικής , x , εικόνας. Πολυπλοκότητα / pixel: , +</td><td>a b</td></tr></tbody></table>	

Σημειακές Λειτουργίες

Οι σημειακές λειτουργίες μετασχηματίζουν την τιμή γκρίζου ενός pixel (x, y) ως συνάρτηση της τιμής αυτής και μόνο:

$$g(x, y) = T[f(x, y)]$$

ή

$$s = T(r)$$

όπου r = f(x, y) είναι η αρχική τιμή γκρίζου και s = g(x, y) η τελική τιμή γκρίζου στο ίδιο pixel.

Οι μετασχηματισμοί αυτοί ονομάζονται - . /012345*/062 - 7. /261 - /45 ή /062 - 7. /261 - /45* - . /0548.

Παραδείγματα Σημειακών Λειτουργιών

- Διόρθωση φωτεινότητας
- Ρύθμιση χρωματικής αντίθεσης (contrast)
- Διόρθωση συντελεστή γάμμα (gamma correction)
- Ισοστάθμιση ιστογράμματος
- Χρωματική διόρθωση

Μετατροπή ψηφιακής εικόνας σε δυαδική

$$s = sgn(r - r^*)$$

Μ/Τ μετατροπής σε δυαδική εικόνα.

Αρνητικό εικόνας

$$s = 255 - r$$

Ενίσχυση Χρωματικής Αντίθεσης

$$\begin{split} s &= (s_1/r_1) \ r & \forall i\alpha \ 0 < r \le r_1 \\ s &= s_1 + ((s_2 - s_1)/(r_2 - r_1)) \ (r - r_1) \\ & \forall i\alpha \ r_1 < r \le r_2 \\ s &= s_1 + ((255 - s_2)/(255 - r_2)) \ (r - r_2) \\ & \forall i\alpha \ r_2 < r \le 255 \end{split}$$

Συμπίεση Δυναμικής Περιοχής

Συμπίεση της περιοχής των τιμών ενός 2Δ πίνακα όταν αυτές είναι εκτός 255 του διαστήματος [0, 255] με γραμμικό ή λογαριθμικό μετασχηματισμό ώστε να εμφανισθεί ως εικόνα.

Λογαριθμικός μετασχηματισμός.

Ιστόγραμμα Μονοχρωματικής Εικόνας

Έστω μονοχρωματική εικόνα f(x, y) με βάθος χρώματος 8 bits.

- Το ιστόγραμμα h της f(x, y) είναι ένα διάνυσμα 256 στοιχείων.
- Τα στοιχεία h(r) για r = 0, 1, ..., 255 είναι ακέραιοι αριθμοί.
- Το h(r) αναπαριστά το πλήθος των pixels της εικόνας που έχουν τιμή γκρίζου ίση με r.

Ιστόγραμμα Μονοχρωματικής Εικόνας

εικόνα 16 επιπέδων γκρίζου

με μαύρο εμφανίζονται τα pixels που έχουν τιμή γκρίζου g

πλήθος pixels με τιμή γκρίζου g

Ιστόγραμμα Μονοχρωματικής Εικόνας

Γραφική παράσταση ιστογράμματος

Ιστόγραμμα Μονοχρωματικής Εικόνας

Ιστόγραμμα Έγχρωμης Εικόνας

Ένα ιστόγραμμα για κάθε χρωματικό κανάλι R, G, B και ένα για τη φωτεινότητα (R+G+B)/3.

Ιστόγραμμα Έγχρωμης Εικόνας

Υλοποίηση Σημειακού Μ/Τ με Πίνακα Αναζήτησης

π.χ.

r s

δείκτης	τιμή
•••	•••
101	64
102	68
103	69
104	70
105	70
106	71
•••	•••

είσοδος έξοδος

Πίνακας Αναζήτησης (Look-up Table)

Παράδειγμα Δημιουργίας Πίνακα Αναζήτησης

For example:

Let
$$a = 2$$
.

Let
$$x \in \{0, ..., 255\}$$

$$\sigma(x;a) = \frac{255}{1 + e^{-a(x-127)/32}}$$

Or in Matlab:

$$a = 2;$$

 $x = 0:255;$
 $LUT = 255 ./ (1+exp(-a*(x-127)/32));$

τελική εικόνα αρχική εικόνα

Αύξηση Φωτεινότητας

$$s_k = r_k + g$$
, $\alpha v r_k + g \le 255$

$$s_k = 255$$
, $\alpha v r_k + g > 255$

όπου k = 1, 2 ή 3 είναι ο δείκτης του χρωματικού καναλιού και <math>g > 0.

Μείωση Φωτεινότητας

$$s_k = r_k - g$$
, $\alpha v r_k - g \ge 0$

$$s_k = 0$$
, $\alpha v r_k - g < 0$

όπου k = 1, 2 ή 3 είναι ο δείκτης του χρωματικού καναλιού και <math>g > 0.

Μείωση συντελεστή γάμμα

 $s_k = 255 (r/255)^{\gamma}$ $\kappa \alpha i$ $\gamma < 1.0$

όπου k = 1, 2 ή 3 είναι ο δείκτης του χρωματικού καναλιού.

Αύξηση συντελεστή γάμμα

όπου k = 1, 2 ή 3 είναι ο δείκτης του χρωματικού καναλιού.

Μετασχηματισμοί ύψωσης σε δύναμη

Plots of $s = cr^{\gamma}$ for various values of γ (c = 1 in all cases)

$$s = cr^{\gamma}$$

- c and γ are positive constants
- Power-law curves with fractional values of γ map a narrow range of dark input values into a wider range of output values, with the opposite being true for higher values of input levels.
 - c = γ = 1 ⇒ Identity function

Διόρθωση συντελεστή γ σε οθόνες CRT

- Cathode ray tube (CRT) devices have an intensity-to-voltage response that is a power function, with γ varying from 1.8 to 2.5
- The picture will become darker.
- Gamma correction is done by preprocessing the image before inputting it to the monitor with s = cr^{1/y}

Βιβλιογραφία

Οι παρούσες διαφάνειες έχουν δημιουργηθεί από τον Καθηγητή κ. Ν. Βασιλά για το μάθημα «Επεξεργασία Εικόνας», ακαδημαϊκό έτος 2017-2018.