

Clasificación y Protección de Datos Empresariales Confidenciales

Javier Díaz Machado David Saavedra Fernández Iván Falcón Monzón

ÍNDICE

- Explicar la importancia de un esquema de clasificación coherente y estandarizado.
- Describir cómo se aplican etiquetas de clasificación en un entorno digital.
- Explicar cómo se aplican las tecnologías de cifrado en un entorno digital.

ESQUEMA DE CLASIFICACIÓN DE DATOS

IMPORTANCIA DE LA CLASIFICACIÓN DE LOS DATOS

La clasificación de datos es una herramienta fundamental en la gestión de la información dentro de una organización que sirve para organizar, proteger y manejar los datos de manera eficiente.

La clasificación de datos puede ayudar a una empresa a:

- Organizar los datos por importancia.
- Proteger los datos de alta sensibilidad.
- Agilizar la búsqueda y recuperación de datos.
- Eliminar datos duplicados.

APLICACIÓN DEL ESQUEMA

La implementación de este esquema afectará al tratamiento de los datos en los siguientes ámbitos:

Acceso.

Almacenamiento.

• Transmisión de datos.

ETIQUETAS DE CLASIFICACIÓN EN UN ENTORNO DIGITAL

PROCESO DE ETIQUETADO

Identificación de Datos Sensibles:

- Análisis de Contenido: Antes de aplicar etiquetas, es fundamental realizar un <u>análisis exhaustivo</u> del conjunto de los datos. Esto puede incluir la revisión de documentos, correos electrónicos, bases de datos...
- Clasificación Inicial: Durante esta fase, se determina qué datos son <u>sensibles</u> y cuáles son <u>públicos</u>.
 Por ejemplo, información personal identificable, datos financieros, secretos comerciales...
- Establecimiento de Políticas: Las empresas deben definir políticas claras sobre cómo y cuándo etiquetar los datos. Esto incluye determinar qué información requiere etiquetas y el nivel de sensibilidad correspondiente.

CRITERIOS DE ETIQUETADO

Categorías de Etiquetas: Las etiquetas pueden ser categorizadas en diferentes niveles de sensibilidad:

- Personal: Información relacionada directamente con individuos que <u>no deben</u> <u>compartirse públicamente</u>.
 Incluye datos como nombres, direcciones, números de teléfono, información médica...
- Público: Información que puede ser compartida sin restricciones.
 Incluye descripciones de productos o servicios en el sitio web, información de contacto público (como el número de atención al cliente)...
- General: Información destinada para uso interno dentro de la empresa.
 Información operativa no confidencial (por ejemplo, agendas de reuniones internas)...
- Confidencial: Información que requiere protección y acceso restringido.
 Datos financieros no públicos (balances, información de clientes o proveedores...

APLICACIÓN DE ETIQUETAS

Métodos Manuales y Automáticos:

- **Etiquetado Manual**: Los empleados pueden aplicar <u>etiquetas manualmente</u> basándose en su conocimiento sobre la sensibilidad de la información. Efectivo pero propenso a <u>errores humanos</u>.
- Etiquetado Automático: Las herramientas de software pueden ser utilizadas para identificar y etiquetar datos automáticamente utilizando algoritmos.

Por ejemplo, un sistema puede escanear documentos en busca de palabras clave o patrones (como números de seguros sociales o datos financieros) para aplicar etiquetas de manera eficiente.

IMPLEMENTACIÓN DE POLÍTICAS DE CONTROL

• Restricciones de Acceso: Las empresas pueden implementar controles de acceso.

Ejemplo; sólo los empleados con la autorización correspondiente pueden acceder a información etiquetada como "Confidencial" o "Secreto".

 Seguimiento y Auditoría: Las etiquetas facilitan el <u>seguimiento</u> del acceso a la información sensible y las <u>auditorías periódicas</u> pueden verificar si las etiquetas se están aplicando correctamente.

ACTUALIZACIÓN Y REVISIÓN DE ETIQUETAS

- **Revisiones Periódicas**: Es importante <u>revisar y actualizar</u> las etiquetas <u>regularmente</u>. Los datos pueden cambiar de categoría con el tiempo (por ejemplo, información que originalmente se considera confidencial puede volverse obsoleta).
- **Eliminación de Etiquetas:** Cuando la información ya no requiere un <u>nivel específico de protección</u>, las etiquetas deben ser retiradas o modificadas.

INTEGRACIÓN DE ETIQUETAS DE CLASIFICACIÓN Y CIFRADO

La **combinación** de etiquetas de <u>clasificación y cifrado mejora la seguridad de la información</u> de varias maneras:

- Protección Basada en Clasificación: Los datos se cifran según su clasificación, mejorando un cifrado más fuerte.
- **Automatización del Proceso:** Las herramientas que utilizan etiquetas pueden integrarse con <u>sistemas de cifrado</u> para cifrar automáticamente la información.
- Cumplimiento Normativo: Ayudan a las organizaciones a cumplir con <u>regulaciones de protección de datos</u>, como el RGPD (Reglamento General de Protección de Datos) o HIPAA (Norma de Privacidad de la Ley de Responsabilidad y Portabilidad del Seguro de Salud), asegurando que los <u>datos sensibles estén protegidos</u>.

BENEFICIOS DEL ETIQUETADO

- **Mejora en la Protección de Datos**: Al etiquetar datos, las empresas pueden aplicar <u>políticas de seguridad</u> más <u>efectivas y personalizadas</u>.
- **Cumplimiento Normativo**: Las etiquetas ayudan a garantizar que la empresa cumplan con las regulaciones de protección de datos, facilitando la identificación y el manejo de la información sensible.
- Conciencia y Cultura de Seguridad: La implementación de un sistema de etiquetado puede aumentar la conciencia sobre la seguridad de la información entre los empleados, fomentando una cultura más proactiva en la protección de datos.

TECNOLOGÍAS DE CIFRADO EN UN ENTORNO DIGITAL

TECNOLOGÍAS DE CIFRADO EN UN ENTORNO DIGITAL

Existen, principalmente, dos métodos para hacer que una información deje de ser legible:

- Cifrado
 - * Cifrado asimétrico
 - * Cifrado simétrico
- Encriptado

CIFRADO SIMÉTRICO

Características:

- Clave única: Utiliza la misma clave para cifrar y descifrar los datos.
- Eficiencia: Es más rápido y consume menos recursos computacionales.
- Seguridad: La seguridad depende de mantener la clave secreta.

- Usos:

- Transmisión de datos sensibles: Ideal para cifrar grandes cantidades de datos, como en redes corporativas.
- Aplicaciones de mensajería: Utilizado en aplicaciones como WhatsApp para proteger mensajes.
- Almacenamiento en la nube: Protege datos almacenados en servicios en la nube.

EJEMPLOS DE CIFRADO SIMÉTRICO

Cifrado césar

(clave: 1) abc -> bcd (clave 12) hola, cómo estás? -> taxm, oóya qefáe?

Cifrado Vigenère

(clave: pass) hola, cómo estás? -> wods, rómg whták?

- Rail Fence

(clave: 2) hola, cómo estás? -> hl,cm sá?oa óoets

CIFRADO ASIMÉTRICO

Características:

- o Dos claves: Utiliza una clave pública para cifrar y una clave privada para descifrar.
- Seguridad: Ofrece un nivel más alto de seguridad debido a la separación de claves.
- o Complejidad: Es más lento y requiere más recursos computacionales.

- Usos:

- Transacciones en línea: Utilizado para asegurar transacciones financieras y comunicaciones en línea.
- Firmas digitales: Permite la verificación de la autenticidad de documentos y mensajes.
- Distribución de claves: Facilita la distribución segura de claves en entornos en línea.

EJEMPLOS DE CIFRADO ASIMÉTRICO

- RSA (Rivest, Shamir y Adleman)
 (tamaño de la clave: 2048) hola, cómo estás? -> b'\x13;A\xd1\xda\x8f\x80E...
- ECC (Eliptic Curve Cryptography)
 (clave generada: SECP256k1) hola, cómo estás? -> 1048b2dfa1ced11e...

CARACTERÍSTICAS DE LAS TECNOLOGÍAS DE ENCRIPTADO

- Determinismo: La misma entrada siempre produce la misma salida.
- Rapidez: Los cálculos de hash son rápidos de realizar.
- Preimagen resistente: Es difícil encontrar la entrada original a partir del hash.
- Resistencia a colisiones: Es improbable que dos entradas diferentes produzcan el mismo hash.
- Difusión: Un pequeño cambio en la entrada produce un cambio significativo en el hash.

USOS DE LAS TECNOLOGÍAS DE ENCRIPTADO

- Verificación de integridad: Para asegurar que los datos no han sido alterados.
- Almacenamiento de contraseñas: Las contraseñas se almacenan como hashes para mayor seguridad.
- Firmas digitales: Para verificar la autenticidad de documentos y mensajes.
- Índices de bases de datos: Para acceder rápidamente a datos en grandes bases de datos.
- Blockchain: Los hashes son fundamentales para la seguridad y la integridad de las cadenas de bloques.

EJEMPLOS DE HASHES

- MD5 hola, cómo estás? -> e7bc817f7dd8002574478e67ddad7b29
- Sha512
 hola, cómo estás? -> d662fc766351478ba1c8...

WEBGRAFÍA

- Cifrado simétrico y asimétrico:

 o Tipos de Cifrado: Explicación de los algoritmos SSL Dragon
- Hashes:

 - ¿Qué es un hash y cómo funciona? | Signaturit Función hash: ¿qué es y cómo se usa en la firma electrónica? (camerfirma.com)
- Ejemplos de cifrado y hashes:

 o CyberChef
- Esquema de clasificación de datos:

 https://www.sealpath.com/es/blog/guia-de-tipos-de-informacion-sensible/
- Importancia de la clasificación de datos:

 Clasificación de Datos: Ejemplos de Políticas + Plantilla | Secureframe
- Etiquetas de clasificación:
 - Información sobre las etiquetas de confidencialidad | Microsoft Learn