이혜람

[Session 0] 인과추론 온라인 세미나 소개

Why Does Research Methodology Matter?

The Right Tool for the Right Question

	Layer (Symbolic)	Typical Activity	Typical Question	Example
\mathcal{L}_1	Associational $P(y x)$	Seeing	What is? How would seeing <i>X</i> change my belief in <i>Y</i> ?	What does a symptom tell us about the disease?
\mathcal{L}_2	Interventional $P(y do(x),c)$	Doing	What if? What if I do X?	What if I take aspirin, will my headache be cured?
L ₃	Counterfactual $P(y_x x',y')$	Imagining	Why? What if I had acted differently?	Was it the aspirin that stopped my headache?

Korea Summer Session on Causal Inference 2021

Table 1.1: Pearl's Causal Hierarchy.

THE BOOK OF WHY THE NEW SCIENCE

JUDEA PEARL AND DANA MACKENZIE

3. COUNTERFACTUALS OUESTIONS: What if I had done ...? Why?
(Was it X that caused Y? What if X had no occurred? What if I had acted differently?) 2. INTERVENTION QUESTIONS: What if I do ...? How?
(What would Y be if I do X?
How can I make Y happen?) EXAMPLES: If I take aspirin, will my headache be cured? What if we ban cigarettes? 1. ASSOCIATION QUESTIONS: What if 1 ree ...?
(How are the variables related?
How would seeing X change my belief in Y?) FIGURE 1.2. The Ladder of Causation

이혜람

End of Document

[Session 1-1] 인과추론의 다양한 접근법

데이비드 흄 - 관념적인 확신의 반복 ,연결고리 (먹구름 \rightarrow 비) / (무릎 쑤심 \rightarrow 비?) , 인과론 부정

칸트의 철학 - 흄이 자신에게 큰 영향을 미쳤다고 얘기함

실증주의, 인과관계 프레임워크: 모든 사람들이 공통적으로 인과 관계를 파악/검증할 수 있는 공통의 이해의 틀이 필요하다는 것

이 프레임워크는 공통적으로 합의된 것이 아직 없기 때문에 연사분께서 임의로 작성해 보심

Various Approaches to Causation

(2) Statistics-Based Approach

- The goal of causal inference is seeking unbiasedness.

- (3) Design-Based Approach
 - The goal of causal inference is removing selection bias.
- (4) Structure-Based Approach
 - The goal of causal inference is estimating causal structures.

Logic/Theory-Oriented

Data/Evidence-Oriented

1) 이론 기반 : 논리적 명령

2) 통계 기반: unbiasedness 비편향적 추론 / 모수,표본

3) 연구 디자인 기반 : removing selection bias

4) 구조 기반: 전형적인 실증주의 approach

어떤 것이 더 우월하고, 대체 가능한 것은 아님, 서로 상호 보완적으로 작용함

각 3개의 장단점

	통계 기반	디자인 기반	구조 기반
장점	내생성(Endogeneity) 를 평가하고 통계 지표를 계산 하는 데에 유용하다.	인과 추론에 대한 깊 은 이해 없이도 어느 정도 추론할 수 있다. ex) 아스피린	casual structures나 underlying 메커니즘에 대 해 직접적으로 설명함
단점	실제로 데이터 분석 관점에 서, '어떻게'에 대한 구체적 인 가이드를 주지 못한다. 반면, 디자인,구조 기반은 어느정도 데이터 분석에 대 한 전략을 제시해 준다.	casual structures나 underlying 메커니즘 에 대해 설명하지 않 음	casual structures에 기반 하고 있기 때문에 이를 잘 못 산정하면 완전히 잘못 된 결과를 얻을 수 있음 → casual structures에 대한 검증이 중요함

따라서 상호 보완적

[Session 1-2] 잠재적결과 프레임워크 (Potential Outcomes Framework)

디자인 베이스 접근 : 복잡한 통계 방법이 데이터에 적용되어있는가가 아닌, 데이터가 수집 되기 전에 얼마나 연구 디자인 설계가 잘 되어있는지에 따라 성공적 인과 추론이 가능하다는 관점

- Causal effect of the treatment = (Actual outcome for treated if treated) (Potential outcome for treated if not treated)
- ATE on the ATT =실제 결과 껄 결과 (Counterfactual)

potential outcome은 모두 관찰할 수 없다.

따라서 우리는 그 '껄'을 안한 사람과 한 사람의 집단을 비교할 수 밖에 없다.

그래서 control group을 최대한 counterfactual과 가깝게 만들 수 밖에 없다.

이혜람 4

- But, in reality, we can only observe:
 - = (Actual outcome for treated if treated) (Actual outcome for untreated if not treated)

책을 읽은 사람과 책을 읽지 않은 사람간에 집안,성격,학벌 등 다양하게 다른 요인이 있다면,이 차이가 책을 읽었고/읽지 않았고의 차이라고 할 수 있을까?

- · Decomposition of causal effect and selection bias

이 남는 것이 선택 편향 (Selection bias)

만약 이 선택 편향을 무시할 수 있을 정도로 적다면, 이 값을 구할 수 있음

이것이 causal mindset 비교 가능한 control group 을 고안하도록 연구를 설계하는 것이 중 요하다는 것

[Session 1-3] 인과적 사고방식

이혜람 5

Casual Mindset

1) 사회제도가 경제 성장에 미치는 영향

쌍둥이 도시로 Institution and Economic Growth를 비교

2) 1995 시카고 폭염

노스론데일,사우스론데일은 서로 비교 가능했음

어떤 통계적 방법도 없지만 훌륭한 인과 추론 사례

→ potention outcome 프레임워의 관점에서 인과 추론은 비교 가능한 대을 찾고, 비교가능한 통제 그룹이 있는 리서치 그룹을 보완하는 것이다.

3) 교육

미국 12월에 태어난 아이와 1월에 태어난 아이를 비교해 학교 교육과 미래 소득을 비교, 이 처럼 연구 설계가 중요함