Funktionalanalysis 1

Übungsaufgaben zu:

"Lecture 04 – Der Satz von der offenen Abbildung"

04/1: Sei X ein Banachraum, und seien M, N zwei abgeschlossene lineare Teilräume von X mit

$$M + N = X, \ M \cap N = \{0\}.$$

Es sind M und N mit der von X vererbten Norm selbst normierte Räume, also können wir den Produktraum $M \times N$ mit der Summennorm betrachten. Zeige, dass die Abbildung

$$\varphi: \left\{ \begin{array}{ccc} M \times N & \to & X \\ (m,n) & \mapsto & m+n \end{array} \right.$$

ein linearer Homöomorphismus ist.

04/2: Sei Ω eine Menge, und X ein linearer Raum dessen Elemente Funktionen von Ω nach $\mathbb C$ sind und dessen lineare Operationen durch punktweise Addition und skalare Multiplikation gegeben sind. Für $w \in \Omega$ bezeichne mit $\chi_w : X \to \mathbb C$ das Punktauswertungsfunktional

$$\chi_w(f) := f(w), \quad f \in X.$$

Dann ist χ_w linear. Zeige, dass es (bis auf Äquivalenz der Normen) höchstens eine Norm $\|.\|$ auf X geben kann, sodass $(X, \|.\|)$ ein Banachraum ist und alle Punktauswertungsfunktionale bzgl. $\|.\|$ stetig sind.

Hinweis. Wende den Satz vom abgeschlossenen Graphen auf die identische Abbildung an.

- 04/3: Analysiere den Beweis des Satzes über die offene Abbildung und zeige folgende allgemeinere Variante: Sei X Banachraum, Y normierter Raum und sei $A: X \to Y$ stetig und linear und A(X) sei von 2.Kategorie (für die Terminologie siehe Bemerkung 4.1.4 im Skriptum) in Y. Dann folgt:
 - (i) A ist offen.
 - (ii) A(X) = Y.
 - (iii) Y ist Banachraum.

04 / 4:*Betrachte $L^2(0,1)$ als Teilmenge von $L^1(0,1)$ und zeige auf drei verschiedene Arten, dass $L^2(0,1)$ von 1.Kategorie (für die Terminologie siehe Bemerkung 4.1.4 im Skriptum) in $L^1(0,1)$ ist:

- (i) Zeige $\{f \in L^2 : \int_0^1 |f(t)|^2 dt \le n\}$ ist abgeschlossen (in L^1) und hat leeres Inneres.
- (ii) Setze

$$g_n(t) := \begin{cases} n & , & 0 \le t \le \frac{1}{n^3} \\ 0 & , & \frac{1}{n^3} < t \le 1 \end{cases}$$

und zeige, dass

$$\int_{0}^{1} f(t)g_n(t) \to 0$$

für jedes $f \in L^2$, aber nicht für jedes $f \in L^1$.

(iii) Bemerke, dass die identische Abbildung

$$\iota: \left\{ \begin{array}{ccc} L^2 & \to & L^1 \\ f & \mapsto & f \end{array} \right.$$

stetig, aber nicht surjektiv ist.

Und argumentiere warum jede dieser Aussagen (i), (ii), (iii), tatsächlich die gewünschte Aussage impliziert!