COMPLEX VARIABLES: HOMEWORK DUE MONDAY 1/29/2018

- (1) Describe in geometric terms the effect of the following linear mappings.
 - (a) f(z) = -z + 2 i;
 - (b) $f(z) = (\sqrt{3} i)z;$
 - (c) f(z) = i(z+1);
 - (d) f(z) = (1-i)(z-i) + i.
- (2) Express the following as linear transformations of the complex plane.
 - dilation by a factor of 2, centered at (1,1);
 - counter-clockwise rotation for 60^0 centered at (1,1).
- (3) Express the following as a function of the complex plane.
 - reflection with respect to the y-axis;
 - reflection with respect to the line y = x.
- (4) Let w = f(z) = (1+i)z + i. Find / draw the image, under f, of
 - (a) The disk |z 1| < 1;
 - (b) The half-plane Im(z) > 1.
- (5) Find the linear transformations w = f(z) that satisfy the following conditions:
 - (a) The points $z_1 = 2$ and $z_2 = -3i$ map onto $w_1 = 1 + i$ and $w_2 = 1$.
 - (b) The circle |z| = 1 maps onto the circle |w 3 + 2i| = 5, and f(-i) = 3 + 3i.
- (6) Find / draw the images of the following under the mapping $w=z^2$.
 - (a) The horizontal line Im(z) = 1.
 - (b) The vertical line Re(z) = 2.
 - (c) The rectangle $\{z \in \mathbb{C} \mid 0 < \text{Re}(z) < 2, 0 < \text{Im}(z) < 1\}.$
 - (d) The region in the right half-plane to the right of the hyperbola $x^2 y^2 = 1$.
- (7) Very roughly sketch the regions of the complex plane given by the following. Please don't bother me with equations.
 - (a) $Re(z^2) > 1$;
 - (b) $2 < \text{Im}(z^2) < 6$;
 - (c) $|z^2 2| = 1$;
 - (d) $|z^2 2| = 2$;
 - (e) $|z^2 2| = 4$;
 - (f) $|z^2 2| = r$ as a function of r. (As in: tell me how the shapes change as r changes).

- 2
- (8) Find / draw the images of the following under the mapping $w = P.V z^{\frac{1}{2}}$.
 - (a) The horizontal line Im(z) = 1.
 - (b) The vertical line Re(z) = 2.
 - (c) The rectangle $\{z \in \mathbb{C} \mid 0 < \operatorname{Re}(z) < 2, \ 0 < \operatorname{Im}(z) < 1\}.$
- (9) Very roughly sketch the regions of the complex plane given by the following. Please don't bother me with equations.
 - (a) $\text{Re}(P.V z^{\frac{1}{2}}) > 1$;
 - (b) $2 < \text{Im}(P.V z^{\frac{1}{2}}) < 6;$
 - (c) $|P.V z^{\frac{1}{2}} 2| = 1;$
 - (d) $|P.V z^{\frac{1}{2}} 2| = 2;$
 - (e) $|P.V z^{\frac{1}{2}} 2| = 4;$
 - (f) $|P.Vz^{\frac{1}{2}}-2|=r$ as a function of r, as r changes from 0 to 2. (Don't go beyond 2 it gets confusing.)
- (10) Consider the region R of the complex plane given by

$$\frac{1}{2} \le |z| \le 2, \quad \frac{\pi}{4} \le \text{Arg}(z) \le \frac{3\pi}{4}.$$

Find / draw the image of R under the following mappings:

- (a) $f(z) = 2z^2 1$;
- (b) $f(z) = (1 i)z^3$;
- (c) $f(z) = P.V(iz)^{\frac{1}{2}}$.
- (11) Examine the existence of the following limits; justify any claims you make.
 - (a) $\lim_{z \to -1} P.V z^{\frac{1}{3}};$
 - (b) $\lim_{z\to 0} \frac{\bar{z}}{z}$;
 - (c) $\lim_{z \to 1} P.V z^{\frac{1}{3}};$
 - (d) $\lim_{z \to i} \frac{\bar{z}}{z}$.
- (12) Examine the continuity of the function f(z) = Arg(z); justify any claims you make.