FLOATING POINT OPERATIONS

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- □ This lecture
 - Floating point operations
 - Addition
 - Multiplication
 - Floating point instructions

Numbers maintain only 4 decimal digits and 2 exponent digits

```
\blacksquare 9.999 x 10<sup>1</sup> + 1.610 x 10<sup>-1</sup>
```

- Numbers maintain only 4 decimal digits and 2 exponent digits
 - \blacksquare 9.999 x 10¹ + 1.610 x 10⁻¹
 - Convert to the larger exponent
 - $= 9.999 \times 10^{1} + 0.016 \times 10^{1}$

- Numbers maintain only 4 decimal digits and 2 exponent digits
 - \blacksquare 9.999 x 10¹ + 1.610 x 10⁻¹
 - Convert to the larger exponent
 - \blacksquare 9.999 x 10¹ + 0.016 x 10¹
 - Add
 - 10.015 x 10¹

- Numbers maintain only 4 decimal digits and 2 exponent digits
 - \blacksquare 9.999 x 10¹ + 1.610 x 10⁻¹
 - Convert to the larger exponent
 - \blacksquare 9.999 x 10¹ + 0.016 x 10¹
 - Add
 - \blacksquare 10.015 x 10¹
 - Normalize
 - \blacksquare 1.0015 x 10²
 - □ Check for overflow/underflow
 - Round
 - \blacksquare 1.002 x 10²
 - Re-normalize

- Numbers maintain only 4 decimal digits and 2 exponent digits
 - \blacksquare 9.999 x 10¹ + 1.610 x 10⁻¹
 - Convert to the larger exponent
 - \blacksquare 9.999 x 10¹ + 0.016 x 10¹
 - Add
 - \blacksquare 10.015 x 10¹
 - Normalize
 - \blacksquare 1.0015 x 10²

If we had more fraction bits,

- Check for overflow/underflow these errors would be minimized
- Round
 - \blacksquare 1.002 x 10²
- Re-normalize

- Numbers maintain only 4 binary digits and 2 exponent digits
 - \blacksquare 1.010 x 2¹ + 1.100 x 2³
 - Convert to the larger exponent
 - $0.0101 \times 2^3 + 1.100 \times 2^3$
 - Add
 - \blacksquare 1.1101 x 2³
 - Normalize
 - 1.1101 x 2³
 - □ Check for overflow/underflow

- Numbers maintain only 4 binary digits and 2 exponent digits
 - \blacksquare 1.010 x 2¹ + 1.100 x 2³
 - Convert to the larger exponent
 - $0.0101 \times 2^3 + 1.100 \times 2^3$
 - Add
 - \blacksquare 1.1101 x 2³
 - Normalize
 - 1.1101 x 2³
 - □ Check for overflow/underflow
 - IEEE 754 format (32-bit)

0 10000010 110100000000000000000000

 Example: add the following two single-precision floating point numbers.

A: 010000001100000000000000000000000

B: 010000110101100000000000000000

Steps:

- 1. Convert to larger exponent
- 2. Add
- 3. Normalize
- 4. Round

 Example: add the following two single-precision floating point numbers.

A: 010000001100000000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$

$$E_B = 131$$
 $M_B = 1.010011_{two}$

 Example: add the following two single-precision floating point numbers.

A: 010000001100000000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$ $E_B = 131$ $M_B = 1.010011_{two}$

$$E_A = 131$$
 $M_A = 0.00111_{two}$ $E_B = 131$ $M_B = 1.010011_{two}$

 Example: add the following two single-precision floating point numbers.

A: 010000001100000000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$ $E_B = 131$ $M_B = 1.010011_{two}$

$$E_A = 131$$
 $M_A = 0.00111_{two}$ $E_B = 131$ $M_B = 1.010011_{two}$

$$E_A = E_B = 131$$
 $M_A + M_B = 0.00111_{two} + 1.010011_{two} = 1.100001_{two}$

 Example: add the following two single-precision floating point numbers.

A: 0100000011000000000000000000000000

B: 01000001101010011000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$ $E_B = 131$ $M_B = 1.010011_{two}$

$$E_A = 131$$
 $M_A = 0.00111_{two}$ $E_B = 131$ $M_B = 1.010011_{two}$

$$E_A = E_B = 131$$
 $M_A + M_B = 0.00111_{two} + 1.010011_{two} = 1.100001_{two}$

A + B: 01000001110000100000000000000

- Similar steps are required for multiplication
 - Compute exponent
 - Need to remove bias
 - Multiply significands
 - May end up unnormalized
 - Normalize
 - Shift the point
 - Round
 - Fit in the number of bits
 - Assign sign
 - Compute sign

 Example: multiply the following two single-precision floating point numbers.

B: 010000011010011000000000000000000

Steps:

- 1. Compute exponent
- 2. Multiply significands
- 3. Normalize
- 4. Round
- 5. Compute sign

 Example: multiply the following two single-precision floating point numbers.

A: 110000000110000000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$

$$E_B = 131$$
 $M_B = 1.010011_{two}$

 Example: multiply the following two single-precision floating point numbers.

A: 11000000011000000000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$

$$E_B = 131$$
 $M_B = 1.010011_{two}$

$$E_{AxB} = 128 + 131 - 127 = 132$$
 $M_{AxB} = 10.01000101_{two}$

 Example: multiply the following two single-precision floating point numbers.

A: 1100000011000000000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$

$$E_B = 131$$
 $M_B = 1.010011_{two}$

$$E_{AxB} = 128 + 131 - 127 = 132$$
 $M_{AxB} = 10.01000101_{two}$

$$E_{AxB} = 133$$

$$M_{AxB} = 1.001000101_{two}$$

Example: multiply the following two single-precision floating point numbers.

A: 1100000011000000000000000000000000

B: 010000110101011000000000000000000

$$E_A = 128$$
 $M_A = 1.11_{two}$

$$E_B = 131$$
 $M_B = 1.010011_{two}$

$$E_{AxB} = 128 + 131 - 127 = 132$$

$$M_{AxB} = 10.01000101_{two}$$

$$E_{AxB} = 133$$

$$M_{AxB} = 1.001000101_{two}$$

Floating Point Instructions

- MIPS employs separate registers for floating point
 - 32-bit registers: \$f0, \$f1, ..., \$f31.
 - Each register represents a single-precision number
 - Register pairs are used for double-precision
 - Example: \$f0 refers to {\$f0, \$f1}

Example	Meaning	Comments
add.s \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (single precision)
sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)
mul.s \$f2,\$f4,\$f6	$$f2 = $f4 \times $f6$	FP multiply (single precision)
div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)
add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)
sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)
mul.d \$f2,\$f4,\$f6	$$f2 = $f4 \times $f6$	FP multiply (double precision)
div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (double precision)

Floating Point Instructions

- □ Load/Store instructions by coprocessor 1 (c1)
 - Still use integer registers for address computation
- Comparison instructions
 - Set an internal bit (cond) to be inspected by branch instructions

	Example	Meaning	Comments
lwc1	\$f1,100(\$s2)	f1 = Memory[\$s2 + 100]	32-bit data to FP register
swc1	\$f1,100(\$s2)	Memory[$$s2 + 100$] = $$f1$	32-bit data to memory
bc1t	25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.
bc1f	25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.
c.lt.s	\$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision
c.lt.d	\$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision

Code Example

Convert a temperature in Fahrenheit to Celsius

```
float f2c(float fahr) {
  return ((5.0/9.0)*(fahr-32.0));
}
```

■ Assume that constants are stored in global memory

Code Example

Convert a temperature in Fahrenheit to Celsius

```
float f2c(float fahr) {
  return ((5.0/9.0)*(fahr-32.0));
}
```

■ Assume that constants are stored in global memory

Code Example

Convert a temperature in Fahrenheit to Celsius

```
float f2c(float fahr) {
  return ((5.0/9.0)*(fahr-32.0));
}
```

Assume that constants are stored in global memory

