FICHE 04-04: CNS sur uv = 0 et $u + v \in \mathcal{GL}_n(E)$: ALG1-01 6.13

Yvann Le Fay

Juillet 2019

Enoncé

Soit $u \in \mathcal{L}(E)$, E un K-ev de dimension finie, n. Enoncer une condition nécessaire et suffisante pour qu'il existe $v \in \mathcal{GL}_n(E)$ telle que $u + v \in \mathcal{GL}_n(E)$ et uv = 0.

Solution

Nécessairement, im $v \subset \ker u$, d'où rg $v \leq n - \operatorname{rg} u$. De plus, $\operatorname{rg}(u+v) = n \leq \operatorname{rg} u + \operatorname{rg} v$. On en déduit que rg $u + \operatorname{rg} v = n$. Par l'inclusion et l'égalité des dimensions, on obtient que rg $v = \ker u$, aussi, la somme im $u + \ker u$ est directe (car $\operatorname{rg}(u+v) = \operatorname{rg} u + \operatorname{rg} v$). On en déduit finalement que

$$\ker u \oplus \operatorname{im} u = E$$

Supposons que $E = \ker u \oplus \operatorname{im} u$, introduisons p le projecteur dans la direction de $\ker u$ parallèlement à $\operatorname{im} u$, alors p convient.