

計算量を学ぼう!

ぱうえる (けんた)

速いコードが書きたい!

でも速いコードってどうやって評価する??

- 「1,000,000 個のデータに対して 5 秒で終了しました!」
 - データの個数が変わったらどうなる??
 - そもそもPythonで実行するかC言語で実行するかでも変わりそう

「データの大きさ」や「実行する環境」に依存しない評価方法が必要 →計算量の出番

オーダー記法 (1/2)

• n, n^2, n^3 では n が大きくなったと

値が大きく変化する

定数倍を考えないで、nの項だけに 注目すればいいのでは??

→ *O* (ランダウの記号)を用いる

オーダー記法 (2/2)

- 計算量は基本的にオーダー記法で書く
 - 1. 一番大きい項のみ残して表記する $c < \log n < n^c < c^n < n!$ (c は定数)
 - 2. 定数倍は無視する

オーダー記法の例)

$$5n^3+4n^2+100n\longrightarrow O(n^3) \ 2^n+n^{100}+10^9n\longrightarrow O(2^n)$$

コードの計算量の調べ方

- n 回のループをする $\rightarrow O(n)$
- n 回のループの中で n 回のループをする(二重ループ) $\to O(n^2)$
- $\underline{\text{bit}}$ **transfer** $\underline{\text{bit}}$ **bit** $\underline{\text{pred}}$ (n 個の要素について**ある**/**ない**の 2 通りを考える) $\underline{\text{pred}}$ $\underline{\text{pred}}$ $\underline{\text{pred}}$ (n 個の要素について**ある**/**ない**の n の n
- ullet n 個の順列を全て調べる ightarrow O(n!)

ここまでの復習

このコードの計算量は??

```
## 1~n までの数の和を求める
n = int(input())

ans = 0
for i in range(1, n+1):
    ans += i

print(ans)
```


ここまでの復習 (答え)

このコードの計算量は??

```
## 1~n までの数の和を求める
n = int(input())

ans = 0
for i in range(1, n+1):
    ans += i

print(ans)
```

 $\rightarrow O(n)$ (n までのループを1回している)

計算量の使い方

- \bullet 一般的なコンピュータが1秒間に計算できる回数は**約 10^8 回**
- 競プロの実行時間制限は大体 1~3 秒
- 各計算量ごとの、制限時間に間に合う N

O(N) : $N \leqslant 10^7$

 $O(N \log N) : N \leqslant 10^6$

 $O(N^2) \qquad : N \leqslant 10^4$

 $O(N^3)$: $N \leqslant 300$

 $\downarrow n$ の大きさと実際の値は次ページの表のようになります

$\log n$	n	$n \log n$	n^2	n^3	2^n	n!
2	5	12	25	130	30	120
3	10	33	100	1000	1024	3628800
4	15	59	225	3375	32768	_
4	20	86	400	8000	1048576	_
5	25	116	625	15625	_	_
5	30	147	900	27000	_	_
7	100	664	10000	1000000	_	_
8	300	2468	90000	27000000	_	_
10	1000	9966	1000000	_	_	_
13	10000	132877	100000000	_	_	_
16	100000	1660964	_	_	_	_
20	1000000	19931568	_	_	_	_

参考:<u>https://qiita.com/drken/items/872ebc3a2b5caaa4a0d0#1-3-計算量の使い方</u>

計算量を落とすテクニック

今回は代表的なものを3つ紹介します。

- <u>公式を使う</u> 比較的単純な手法
- <u>累積和</u>数列の区間の和を高速に求めるアルゴリズム
- <u>二分探索</u>条件を満たす値があるかを高速に調べるアルゴリズム

先ほどの $1\sim n$ までの数の和を求めるプログラムを高速化してみよう

```
## 1~n までの数の和を求める
n = int(input())

ans = 0
for i in range(1, n+1):
    ans += i

print(ans)
```


このコードは、 $1 \sim n$ の和を求めるために O(n) の計算をしています (n = 100,000,000 で2.6秒くらい必要) →間に合わない!

```
In [6]: %timeit
...: # 1~n までの数の和を求める
...: n = 100_000_000
...:
...: ans = 0
...: for i in range(1, n+1):
...: ans += i
...:
2.61 s ± 3.82 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
```


等差数列の和の公式を使えば...

$$\sum_{i=1}^n=rac{1}{2}n(n+1)$$

```
## 1~n までの数の和を求める
n = int(input())
ans = n * (n + 1) // 2
print(ans)
```



```
In [9]: %timeit
...: # 1~n までの数の和を求める
...: n = 100_000_000
...: ans = n * (n + 1) // 2
...:
53.7 ns ± 3.87 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)
```

なんと、53.7**ナノ**秒で終了!!

- → 約**5億倍**の高速化(ちょっと極端な例ではあるけど)
- → もちろん余裕で間に合う

あるたい焼き屋さんでは毎日、売れた個数を記録しています。営業開始から7日目までの売り上げは以下の通りでした。

1日目	2日目	3日目	4日目	5日目	6日目	7日目
20	50	30	10	30	0	40

2日目から5日目までの売り上げの合計はいくらでしょうか?

$$\rightarrow 50 + 30 + 10 + 30 = 120$$
 (個)

あるたい焼き屋さんでは、N 日間毎日売り上げを記録しています。 営業開始から i 日目の売り上げは A_i 円でした。 このとき、以下の Q 個のクエリ(質問)に答えて下さい。 a 日目から b 日目までの売り上げの合計はいくらでしょうか?

- $1 \leqslant a \leqslant b \leqslant N \leqslant 10^5$
- $0 \le A_i \le 10^9$
- $1 \leqslant Q \leqslant 10^5$

各項を毎回足していくと、毎回のクエリで $A_a+A_{a+1}+\cdots+A_b$ という足し算をすることになる。 \to 最大で O(N) 回よって、 Q 個のクエリを処理すると、計算量は O(NQ) !! \to 間に合わない!

A_1	A_2	A_3	A_4	A_5	A_6	A_7
20	50	30	10	30	0	40

そこで、 $S_k = \sum_{i=0}^k A_i$ を満たす S_i を考える。(**累積和**) このとき、 $S_b - S_{a-1}$ が求める区間の和になる。

証明)

$$S_b = A_1 + A_2 + \cdots + A_{a-1} + A_a + \cdots + A_b$$
 $-) S_{a-1} = A_1 + A_2 + \cdots + A_{a-1}$
 $S_b - S_{a-1} = A_a + \cdots + A_b$

つまり??

$$oxed{50} + oxed{30} + oxed{10} + oxed{30} + oxed{30} = oxed{140} - oxed{20} = 120$$

i	0	1	2	3	4	5	6	7
$oxedsymbol{A}_i$		20	50	30	10	30	0	40
$oxed{S_i}$	0	20	70	100	110	140	140	180

累積和配列の計算方法

$$S_0 = 0 \ S_i = A_i + S_{i-1} \quad (1 \leqslant i \leqslant N)$$

i	0	1	2	3	4	5	6	7
$oxedsymbol{A}_i$		20	50	30	10	30	0	40
$oxed{S_i}$	0 -	20	70	100	110	140	140	180

累積和の計算量は?

- ullet S を求めるのに O(N) : S_0 から S_N まで N 回計算する
- クエリの計算に O(1) A_a から A_b までの和は S_b-S_{a-1} という引き算1回で求まる
- このクエリを Q 回繰り返す

$$\rightarrow O(N+Q)$$

よって $N=10^5, Q=10^5$ 程度なら、余裕で間に合います。

二分探索

参考

• 計算量オーダーの求め方を総整理! ~どこからlogが出て来るか~ https://qiita.com/drken/items/872ebc3a2b5caaa4a0d0