f(t)	F(s)
f(t)	$\int_{-\infty}^{\infty} e^{-st} f(t) dt$
af(t) + bg(t)	aF(s) + bG(s)
$e^{at}f(t)$	$F(s-a) = e^{-as}F(s)$
f(t-a)u(t-a)	$\begin{pmatrix} e & F(s) \\ 1 & F(s) \end{pmatrix}$
$f(at) \\ f^{(n)}(t)$	$\frac{1}{a}F(\frac{s}{a})$ $s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0)$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\int_0^t f(au)d au$	$\frac{1}{s}F(s)$
$tf(t)$ $\frac{1}{t}f(t)$	$\int_{-\infty}^{\infty} F'(s)$
ι	$\int_{s}^{\infty} F(\sigma) d\sigma$
$f(t) * g(t) = \int_0^t f(\tau)g(t - \tau)d\tau$	F(s)G(s)
f(0)	$\lim_{s \to \infty} sF(s)$
$f(\infty)$	$\lim_{s \to 0} sF(s)$
$\delta(t)$	1
1 or $u(t)$	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$
t	$\frac{1}{s^2}$
$t^n, n = 0, 1, 2, \dots$	$\frac{n!}{n!}$
e^{at}	$\frac{\overline{s^{n+1}}}{1}$
$\sin \omega t$	$s \overline{\omega} a$
$\cos \omega t$	$s^2 + \omega^2$
	$\overline{s^2 + \omega^2}$
$\sinh \omega t$	$\overline{s^2 - s \omega^2}$
$\cosh \omega t$	$\overline{s^2 - \omega^2}$
u(t-a)	$ \begin{array}{c} \frac{1}{s}e^{-as} \\ s \\ e^{-as} \end{array} $
$\delta(t-a)$	e^{-as} 1
te^{-at}	$\overline{(s+a)^2}$
$t\sin\omega t$	$\frac{2\omega s'}{(s^2+\omega^2)^2}$
$e^{at}\sin\omega t$	$\frac{\overline{(s^2 + \omega^2)^2}}{\omega}$
	$\frac{\overline{(s-a)^2 + \omega^2}}{s-a}$
$e^{at}\cos\omega t$	$\overline{(s-a)^2+\omega^2}$