Bài giảng 16: Giới thiệu phân tích phương sai (analysis of variance)

Nguyễn Văn Tuấn

Garvan Institute of Medical Research, Australia Đại học Tôn Đức Thắng, Việt Nam

Nồng độ hormone trong 4 nhóm bệnh nhân

Α	В	С	D
8	7	28	26
9	17	21	16
11	10	26	13
4	14	11	12
7	12	24	9
8	24	19	10
5	11		11
	22		17
			15

Có khác nhau giữa các nhóm về nồng độ hormone?

Chi phí (\$1000) khởi đầu cơ sở buôn bán

pizza	bakers	shoes	gifts	pets
80	150	48	100	25
125	40	35	96	80
35	120	95	35	30
58	75	45	99	35
110	160	75	75	30
140	60	115	150	28
97	45	42	45	20
50	100	78	100	75
65	86	65	120	48
79	87	125	50	20
35	90			50
85				75
120				55
				60
				85
				110

Chi phí có khác nhau giữa các cơ sở kinh doanh?

Nội dung

- Khái niệm biến thiên giữa các nhóm và trong mỗi nhóm
- Mô hình phân tích phương sai
- Tóm lược

Between-group variation và Within-group variation

Nghiên cứu về glucose

- Đo nồng độ glucose trong máu của 100 đối tượng gồm 6 nhóm
- So sánh nồng độ glucose giữa các nhóm
- Có (5 x 6)/2 = 15 kiểm định giả thuyết !
- "Nguy cơ" khám phá dương tính giả (false +ve test)

ANOVA – analysis of variance

Ronald A. Fisher, cha đẻ của thống kê hiện đại, nhà di truyền học, triết gia, 1920s

"a genius who almost singlehandedly created the foundations for modern statistical science"

Ronald Fisher (1890 – 1962)

Ý tưởng của ANOVA

- So sánh một biến liên tục giữa các nhóm (trên 2 nhóm)
- Giả thuyết vô hiệu (null hypothesis) H_o : $\mu_1 = \mu_2 = ... = \mu_k$
- Giả thuyết đảo (alternative hypothesis) H_a: tối thiểu một khác biệt

Logic của ANOVA: khái niệm variation

Cho một dãy gồm n giá trị X_i (X₁, X₂, X₃, ...) một deviate được định nghĩa như sau:

$$D = X_i - M$$

Bình phương của D:

$$D^2 = (X_i - M)^2$$

• Tổng bình phương (variation):

$$SS = (X_1 - M)^2 + (X_2 - M)^2 + (X_3 - M)^2 + \dots + (X_n - M)^2$$

$$= \sum_{i=1}^{n} (X_i - M)^2$$

Hai loai variation

 Between-group variation – biến thiên / khác biệt giữa các nhóm

 Within-group variation – biến thiên trong nhóm

"Between-group" variation

Group 1	Group 2	Group 3	Group k
X ₁₁	X ₂₁	X ₃₁	X _{k1}
X ₁₂	X ₂₂	X ₃₂	X _{k2}
X ₁₃	X ₂₃	X ₃₃	X _{k3}
X ₁₄	X ₂₄	X ₃₄	X _{k4}
X ₁₅	X ₂₅	X ₃₅	X _{k5}
X ₁₆	X ₂₆	X ₃₆	X _{k6}
M_1	M_2	M_3	M_k

"Within-group" variation

Group 1	Group 2	Group 3	Group k
X_{11}	X_{21}	X ₃₁	$/X_{k1}$
X ₁₂	X ₂₂	X ₃₂	X _{k2}
X ₁₃	X ₂₃	X ₃₃	X _{k3}
X ₁₄	X ₂₄	X ₃₄	X _{k4}
X ₁₅	X ₂₅	X ₃₅	X _{k5}
X ₁₆	X ₂₆	X ₃₆	X _{k6}
M_1	M_2	M_3	$\stackrel{\smile}{M_{k}}$

Logic của ANOVA

Group 1	Group 2	Group 3	Group k
/ X ₁₁	X ₂₁	/ X ₃₁	/ X _{k1}
X ₁₂	X ₂₂	X ₃₂	X _{k2}
X ₁₃	X ₂₃	X ₃₃	X _{k3}
X ₁₄	X ₂₄	X ₃₄	X _{k4}
X ₁₅	X ₂₅	X ₃₅	X _{k5}
X 16	X ₂₆	X ₃₆	X _{k6}
M ₁	M_2	M ₃	M_{k}

- So sánh between variation (B) với within group variation (W)
- Nếu B > W, đó là tín hiệu cho thấy có khác biệt giữa các nhóm.

Ví dụ

Nồng độ một hormone trong máu của 4 nhóm bệnh nhân

Α	В	С	D
8	7	28	26
9	17	21	16
11	10	26	13
4	14	11	12
7	12	24	9
8	24	19	10
5	11		11
	22		17
			15

Ví dụ: biến thiên giữa 4 nhóm

Α	В	С	D
8	7	28	26
9	17	21	16
11	10	26	13
4	14	11	12
7	12	24	9
8	24	19	10
5	11		11
	22		17
			15
7.4	14.6	21.5	14.3

Mean

Overall mean = 14.2

Ví dụ: biến thiên giữa 4 nhóm

	Α	В	C	D
Mean	7.4	14.6	21.5	14.3
N	7	8	6	9

Overall mean = 14.2

Tổng bình phương giữa các nhóm:

SSB =
$$7*(7.4 - 14.2)^2 + 8*(14.6 - 14.2)^2 + 6*(21.5 - 14.2)^2 + 9*(14.3 - 14.2)^2 = 643.9$$

Ví dụ: biến thiên trong mỗi nhóm

Α	В	С	D
8	7	28	26
9	17	21	16
11	10	26	13
4	14	11	12
7	12	24	9
8	24	19	10
5	11		11
	22		17
			15
7.4	14.6	21.5	14.3

Tổng bình phương trong nhóm A:

Mean

$$SSW_A = (8 - 7.4)^2 + (9 - 7.4)^2 + ... + (5 - 7.4)^2 = 33.7$$

Ví dụ: biến thiên trong mỗi nhóm

Α	В	С	D
8	7	28	26
9	17	21	16
11	10	26	13
4	14	11	12
7	12	24	9
8	24	19	10
5	11		11
	22		17
			15
7.4	14.6	21.5	14.3

 $SSW_A = (8 - 7.4)^2 + (9 - 7.4)^2 + ... + (5 - 7.4)^2 = 33.7$ $SSW_B = 247.9$ $SSW_C = 185.5$

 $SSW_{D} = 214.6$

Mean

Ví dụ: biến thiên trong mỗi nhóm

$$SSW_A = (8 - 7.4)^2 + (9 - 7.4)^2 + ... + (5 - 7.4)^2 = 33.7$$

$$SSW_{R} = 247.9$$

$$SSW_{c} = 185.5$$

$$SSW_{D} = 214.6$$

Bảng phân tích phương sai

Nguồn	Degrees of freedom	Sum of squares (SS)	Mean square (MS)
Giữa 4 nhóm		643.9	
Trong các nhóm		681.6	

Bảng phân tích phương sai

Nguồn	Degrees of freedom	Sum of squares (SS)	Mean square (MS)
Giữa 4 nhóm	3	643.9	214.6
Trong các nhóm	26	681.6	26.2
Tổng số	29	1325.5	

F-test = 214.6 / 26.2 = 8.2

Phân tích bằng R

```
A = c(8, 9, 11, 4, 7, 8, 5)
B = c(7, 17, 10, 14, 12, 24, 11, 22)
C = c(28, 21, 26, 11, 24, 19)
D = c(26, 16, 13, 12, 9, 10, 11, 17, 15)
\mathbf{x} = \mathbf{c}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})
group = c(rep("A", 7), rep("B", 8),
rep("C", 6), rep("D", 9))
data = data.frame(x, group)
data
av = aov(x \sim group)
summary(av)
```

Result

```
> av=aov(x ~ group)
> summary(av)
          Df Sum Sq Mean Sq F value Pr(>F)
group 3 642.3 214.09 8.197 0.000528 ***
Residuals 26 679.1 26.12
Signif. codes: 0 \***' 0.001 \**' 0.01
\.' 0.1 \' 1
```

Có sự khác biệt giữa các nhóm

Tóm lược

- Phân tích phương sai (ANOVA) kiểm định khác biệt giữa nhiều nhóm (>2)
- Hàm R cho ANOVA: aov

```
analysis = aov(y \sim group)
```

Phân tích hậu định (posthoc analysis)

Galactose ở 3 nhóm bệnh nhân

9 bệnh nhân Crohn, 11 bệnh nhân viêm đại tràng, và 19 người trong nhóm chứng

Crohn disease	Colitis	Control
1.343	1.264	1.809 2.850
1.393	1.314	1.926 2.964
1.420	1.399	2.283 2.973
1.641	1.605	2.384 3.171
1.897	2.385	2.447 3.257
2.160	2.511	2.479 3.271
2.169	2.514	2.495 3.288
2.279	2.767	2.525 3.358
2.890	2.827	2.541 3.643
	2.895	2.769 3.657
	3.011	

Câu hỏi nghiên cứu

Có sự khác biệt nào về galactose giữa 3 nhóm bệnh nhân ?

Nếu có khác biệt, nhóm nào khác với nhóm nào?

Nhập dữ liệu trực tiếp

Colitis	Control
1.264	1.809 2.850
1.314	1.926 2.964
1.399	2.283 2.973
1.605	2.384 3.171
2.385	2.447 3.257
2.511	2.479 3.271
2.514	2.495 3.288
2.767	2.525 3.358
2.827	2.541 3.643
2.895	2.769 3.657
3.011	
	1.264 1.314 1.399 1.605 2.385 2.511 2.514 2.767 2.827 2.895

```
crohn = c(1.343, 1.393, 1.420, 1.641, 1.897, 2.160, 2.169,
2.279, 2.890)
colitis = c(1.264, 1.314, 1.399, 1.605, 2.385, 2.511, 2.514,
2.767, 2.827, 2.895, 3.011)
control = c(1.809, 1.926, 2.283, 2.447, 2.479, 2.495, 2.525,
2.541, 2.769, 2.850, 2.964, 2.973, 3.171, 3.257, 3.271,
3.288, 3.358, 3.643, 3.657)
```

Nhập dữ liệu trực tiếp

```
crohn = c(1.343, 1.393, 1.420, 1.641, 1.897, 2.160, 2.169,
2.279, 2.890)
colitis = c(1.264, 1.314, 1.399, 1.605, 2.385, 2.511, 2.514,
2.767, 2.827, 2.895, 3.011)
control = c(1.809, 1.926, 2.283, 2.447, 2.479, 2.495, 2.525,
2.541, 2.769, 2.850, 2.964, 2.973, 3.171, 3.257, 3.271,
3.288, 3.358, 3.643, 3.657)
gal = c(crohn, colitis, control)
group=c(rep("Crohn", 9), rep("Colitis",11), rep("Control",
19))
dat = data.frame(group, gal)
dat
```

Thẩm định số liệu

```
boxplot(gal ~ group, col="Blue")
require(psych)
describe.by(gal, group, skew=F)
qqnorm(gal); qqline(gal)
```

Phân tích ANOVA

```
model = aov(gal ~ group)
summary(model)
```

Post-hoc analysis (Phân tích hậu định)

Phương pháp phân tích hậu định

- LSD (least significance difference) or Fisher's method
- Bonferroni's method
- Duncan's mutiple range test
- Scheffé
- Tukey's Honest Significant Difference
- Dunnett's test

Phương pháp Tukey's HSD

HSD = Honestly Significant Difference

$$Q = \frac{\bar{X}_{j} - \bar{X}_{k}}{\sqrt{MSW/\bar{n}}}$$

n là số đối tượng (trung bình) cho mỗi nhóm

• Nếu Q lớn hơn trị số Q lí thuyết (theoretical Tukey' s Studentized critical value) thì sự khác biệt có ý nghĩa thống kê

Phương pháp Tukey's studentized

Studentized range statistic

$$Q_{k,n-k,\alpha} = \frac{\max \bar{X}_i - \min \bar{X}_i}{\sqrt{WMS}} \sqrt{N}$$

• Khác biệt giữa X_1 và X_2 có ý nghĩa nếu:

$$Q_{ij} = \frac{\left| \bar{X}_i - \bar{X}_j \right| \sqrt{N}}{\sqrt{WMS}} > Q_{k,n-k,\alpha}$$

Khi cỡ mẫu không bằng nhau thì

$$N = 2n_i n_j / (n_i + n_j)$$

Phương pháp nào thích hợp?

Phương pháp nào cho ra kết quả với khoảng tin cậy ngắn nhất là phương pháp tối ưu nhất

R code - Tukey's Method

```
model = aov(gal ~ group)
TukeyHSD (model)
> TukeyHSD (model)
 Tukey multiple comparisons of means
   95% family-wise confidence level
Fit: aov(formula = gal ~ group)
$group
                                lwr
                    diff
                                      upr padj
Control-Colitis 0.6000861 0.06658647 1.1335858 0.0245717
Crohn-Colitis -0.3163232 -0.94923629 0.3165898 0.4483908
```

Crohn-Control

-0.9164094 -1.48621614 -0.3466026 0.0010497

plot(TukeyHSD(model), ordered=T)

Điều chỉnh cho nhiều so sánh

```
#Bonferroni
pairwise.t.test(gal, group,
p.adjust="bonferroni", pool.sd=T)

# Benjamin-Hochberg
pairwise.t.test(gal, group, p.adjust="BH",
pool.sd=T)
```

Tóm lược

- Có nhiều phương pháp phân tích hậu định (posthoc)
- Phương pháp với khoảng tin cậy ngắn nhất là tối ưu nhất -> TukeyHSD ?