Calcolo delle Probabilità e Statistica Teorema del Limite Centrale e Stima Parametrica

Ionel Eduard Stan¹

¹Dip. di Matematica e Informatica, Università di Ferrara ioneleduard.stan@unife.it

Discutiamo alcuni problemi fondamentali legati all'andamento assintotico di sequenze di variabili aleatorie. Si consideri una sequenza X_1, X_2, \ldots di variabili aleatorie *indipendenti e identicamente distribuite* (*i.i.d*) con media μ e varianza σ^2 . Sia:

$$S_n = \sum_{i=1}^n X_i,$$

la somma delle prime n di esse. I teoremi limite sono principalmente interessati alle proprietà di S_n e le sue variabili aleatorie relazionate per n crescente.

Dall'indipendenza, abbiamo che:

$$var(S_n) = var(\sum_{i=1}^n X_i)$$

$$= var(X_1 + X_2 + \dots + X_n)$$

$$= var(X_1) + var(X_2) + \dots + var(X_n)$$

$$= \sum_{i=1}^n var(X_i)$$

$$= n \cdot \sigma^2.$$

Dunque, la distribuzione di S_n si diffonde all'aumentare di n, e non può avere un limite significativo. La situazione è differente se consideriamo la *media campionaria*:

$$M_n = \frac{\sum_{i=1}^n X_i}{n}.$$

Calcolando velocemente abbiamo che:

$$E[M_n] = E\left[\frac{\sum_{i=1}^n X_i}{n}\right]$$

$$= \frac{1}{n} \cdot E\left[\sum_{i=1}^n X_i\right]$$

$$= \frac{1}{n} \cdot E[X_1 + X_2 + \dots + X_n]$$

$$= \frac{1}{n} \cdot (E[X_1] + E[X_2] + \dots + E[X_n])$$

$$= \frac{1}{n} \cdot \sum_{i=1}^n E[X_i]$$

$$= \frac{n \cdot \mu}{n}$$

$$= \mu,$$

e

$$var(M_n) = var(\frac{\sum_{i=1}^n X_i}{n})$$

$$= var(\frac{X_1 + X_2 + \dots + X_n}{n})$$

$$= \frac{1}{n^2}(var(X_1) + var(X_2) + \dots + var(X_n)) \quad \text{(indipendenza)}$$

$$= \frac{1}{n^2} \cdot \sum_{i=1}^n var(X_i)$$

$$= \frac{n\sigma^2}{n^2}$$

$$= \frac{\sigma^2}{n}.$$

In particolare, la varianza di M_n va a 0 per n crescente, e la distribuzione di M_n è centrata su μ .

Considereremo anche una quantità intermedia tra S_n e M_n :

$$Z_n = \frac{S_n - n \cdot \mu}{\sigma \cdot \sqrt{n}}.$$

Si può dimostrare che:

$$E[Z_n] = 0$$
, $var(Z_n) = 1$.

Siccome la media e la varianza di Z_n rimangono invariate per n crescente, la sua distribuzione né si diffonde né si riduce ad un punto. Il teorema del limite centrale si focalizza sulla forma assintotica della distribuzione di Z_n e asserisce che diventa la distribuzione normale standard.

Definizione 1 (Campione aleatorio). Se $X_1, X_2, ..., X_n$ sono variabili aleatorie indipendenti tutte con la stessa distribuzione \mathcal{F} , allora diciamo che loro sono un campione aleatorio (random sample, in inglese), o semplicemente campione, dalla distribuzione \mathcal{F} .

I problemi per i cui la forma della distribuzione è nota fino ad un insieme di parametri sconosciuti si dicono problemi di inferenza *parametrica*, mentre quelli in cui non sappiamo nulla sulla distribuzione si chiamano problemi di inferenza *non parametrica*.

Ci interessiamo delle distribuzioni di probabilità di certe statistiche che emergono dal campione, dove una *statistica* è una variabile aleatoria il cui valore è determinato dal campione.

In generale, consideriamo una *popolazione* di elementi, ognuno dei quali hanno un valore numerico (e.g., età, altezza, ecc.).

Teorema 1 (Legge "debole" dei grandi numeri). *Siano* X_1, X_2, \ldots *variabili aleatorie i.i.d. con media* μ . *Per ciascuno* $\epsilon > 0$, *abbiamo che*:

$$P(|M_n - \mu| \ge \epsilon) = P(|\frac{X_1 + X_2 + \dots + X_n}{n} - \mu| \ge \epsilon) \to 0,$$

$$per \ n \to \infty.$$

Intuitivamente, il teorema precedente asserisce che la media campionaria M_n di un numero grande di variabili aleatorie i.i.d. è molto vicina alla vera media, con alta probabilità.

Teorema 2 (Teorema del limite centrale). Sia $S_n = X_1, X_2, ..., X_n$ una sequenza di n variabili aleatorie i.i.d. ciascuna con media μ e varianza σ^2 . Allora, per n tendente ad infinito, la distribuzione di S_n è approssimatamente una normale con media $n \cdot \mu$ e varianza $n \cdot \sigma^2$.

Dal Teorema 1, la distribuzione della media campionaria $M_n=(X_1+X_2+\cdots+X_n)/n$ si centra sempre di più nella vera media μ . In particolare, la varianza tende a 0. Dall'altra parte, la varianza della somma S_n non converge. Un risultato intermedio è di considerare la deviazione $S_n-n\cdot\mu$ di S_n dalla sua media $n\cdot\mu$, e scalare tale valore con un fattore proporzionale a $1/\sqrt{n}$. La cosa interessante di questa scalatura è che tiene la varianza ad un livello costante. Dal Teorema 2 sappiamo che la distribuzione di questa variabile aleatoria scalata si avvicina ad una normale. Sia, dunque, X_1, X_2, \ldots una sequenza di variabili aleatorie i.i.d. con media μ e varianza σ^2 , e definiamo:

$$Z_n = \frac{X_1 + X_2 + \dots + X_n - n \cdot \mu}{\sigma \cdot \sqrt{n}}.$$

Allora, la CDF di Z_n converge ad una CDF normale standard, nel senso che:

$$\lim_{n\to\infty} P(Z_n \le z) = \Phi(z),$$

per ciascun z.

Il Teorema del Limite Centrale ci permette di calcolare le probabilità di Z_n come se Z_n fosse una normale. Siccome le trasformazioni lineari preservano la normalità, questo è equivalente a trattare S_n come una variabile normale con media $n \cdot \mu$ e varianza $n \cdot \sigma^2$.

Abbiamo una procedura per l'approssimazione ad una normale basandoci sul Teorema del Limite Centrale. Sia $S_n = X_1 + X_2 + \cdots + X_n$, dove le X_i sono variabili aleatorie i.i.d. con media μ e varianza σ^2 . Se n è sufficentemente grande, la probabilità $P(Z_n \leq c)$ può essere approssimata trattando S_n come una normale:

- 1. Calcolare la media $n \cdot \mu$ e la varianza $n \cdot \sigma^2$ di S_n .
- 2. Calcolare il valore normalizzato $z = (c n \cdot \mu)/(\sigma \cdot \sqrt{n})$.
- 3. Usare l'approssimazione

$$P(S_n \leq c) \approx \Phi(z),$$

dove $\Phi(z)$ è disponibile nella tabella della CDF delle normali standard.

La legge "forte" dei grandi numeri è simile a quella "debole" per quanto riguarda la convergenza della media campionaria alla vera media. È differente, tuttavia, perché fa riferimento ad un altro tipo di convergenza.

Teorema 3 (Legge "forte" dei grandi numeri). *Sia* X_1, X_2, \ldots *una sequenza di variabili aleatorie i.i.d con media* μ . *Allora, la sequenza della media campionaria* $M_n = (X_1 + \cdots + X_n)/n$ *converge a* μ *, con probabilità* 1, *nel senso che*:

$$P\Big(\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=\mu\Big)=1.$$

Per interpretare il teorema precedente, dobbiamo tornare alla descrizione dei modelli probabilistici in termini di spazi campionari. L'esperimento considerato è infinitamente lungo e genera una sequenza di valori, uno per ciascuna variabile aleatoria della sequenza X_1, X_2, \ldots Dunque, possiamo immaginare lo spazio campionario come un'insieme di sequenze infinite (x_1, x_2, \ldots) di numeri reali: ogni sequenza di questo tipo è il risultato dell'esperimento. Consideriamo adesso l'insieme A delle sequenze (x_1, x_2, \ldots) la cui media nel lungo termine è μ , cioè:

$$(x_1, x_2, \ldots) \in A \iff \lim_{n \to \infty} \frac{x_1 + \cdots + x_n}{n} = \mu.$$

La legge "forte" dei grandi numeri dice che tutta la probabilità si concentra su questo sottoinsieme particolare dello spazio campionario. Equivalentemente, la collezione dei risultati che non appartengono ad *A* hanno probabilità 0.

La differenza tra la legge "debole" e quella "forte" dei grandi numeri è sottile e merita un'attenta esaminazione. La legge "debole" dice che la probabilità $P(|M_n-\mu|\geq \epsilon)$ va a zero per $n\to\infty$. Tuttavia, per qualsiasi n finito, questa probabilità può essere positiva ed è concepibile che una volta ogni tanto, anche se poco frequente, M_n devia significatamente da μ . La legge "debole" non fornisce nessuna informazione conclusiva sul numero di queste deviazioni, ma la legge "forte" sì. Secondo la legge "forte", e con probabilità 1, M_n converge a μ . Questo implica che per ciascun $\epsilon>0$, la probabilità che la differenza $|M_n-\mu|$ supera ϵ un numero infinito di volte è uguale a zero.

Esempio 1. Prima di giocare alla roulette al casinò, potremmo essere interessati a pregiudizi (*biases*, in inglese) da sfruttare. Dunque, osserviamo 100 partite i cui risultati è un numero tra 1 e 36, e contiamo il numero di partite il cui risultato è dispari. Se il numero è maggiore di 55, allora decidiamo che la roulette non è equa. Assumendo che la roulette sia equa, trovare un'approssimazione alla probabilità che faremo la scelta sbagliata. ◊

Esempio 2. Siano $X_1, Y_1, X_2, Y_2, ...$ variabili aleatorie indipendenti, uniformemente distribuite nell'intervallo unitario [0,1], e sia:

$$W = \frac{(X_1 + \dots + X_{16}) - (Y_1 + \dots + Y_{16})}{16}.$$

Trovare un'approssimazione numerica alla quantità:

$$P(|W - E[W]| < 0.001).$$

Adesso ci preoccupiamo della stima parametrica, usando l'approccio classico dove il parametro θ non è random, ma è visto come una costante sconosciuta.

Definizione 2 (Stimatore). Date le osservazioni $X = (X_1, X_2, ..., X_n)$, uno stimatore (estimator, in inglese) è una variabile aleatoria della forma $\hat{\Theta} = g(X)$, per qualche funzione g.

Si noti che, siccome la distribuzione di X dipende da θ , lo stesso vale anche per $\hat{\Theta}$. Usiamo il termine stima (estimate, in inglese) per fare riferimento ad un valore realizzato di $\hat{\theta}$. In particolare, quando siamo interessati al ruolo delle n osservazioni, usiamo la notazione $\hat{\theta}_n$ per lo stimatore; si può interpretare come una sequenza di stimatori (uno per ciascun valore di n). La media e la varianza di $\hat{\Theta}_n$ si denotano con $E_{\theta}[\hat{\Theta}_n]$ e $var_{\theta}(\hat{\Theta}_n)$, rispettivamente, e sono entrambe funzioni numeriche di θ , ma per semplicità, quando il contesto è chiaro non mostriamo questa dipendenza (da θ).

Abbiamo una terminologia per gli stimatori. Sia $\hat{\Theta}_n$ uno stimatore del valore sconosciuto θ , cioè, una funzione di n osservazioni X_1, X_2, \ldots, X_n la cui distribuzione dipende da θ .

- L'errore della stima (estimation error, in inglese), denotato con $\tilde{\Theta}_n$, è definito come $\tilde{\Theta}_n = \hat{\Theta}_n \theta$.
- Il *bias* di uno stimatore, denotato con $b_{\theta}(\hat{\Theta}_n)$, è il valore atteso dell'errore della stima: $b_{\theta}(\hat{\Theta}_n) = E_{\theta}[\hat{\Theta}_n] \theta$.
- Diciamo che $\hat{\Theta}_n$ è *unbiased* se $E_{\theta}[\hat{\Theta}_n] = \theta$, per ciascun valore di θ .
- Diciamo che $\hat{\Theta}_n$ è assintoticamente unbiased se $\lim_{n\to\infty} E_{\theta}[\hat{\Theta}_n] = \theta$, per ciascun valore di θ .
- Diciamo che $\hat{\Theta}_n$ è *consistente* se la sequenza $\hat{\Theta}_n$ converge al vero valore di θ , in probabilità, per ciascun valore di θ .

Definizione 3 (Massima verosomiglianza). Sia $X = (X_1, X_2, ..., X_n)$ un vettore di osservazioni descritto dalla PMF congiunta $p_X(x;\theta)$ la cui forma dipende da θ . Supponiamo di osservare un valore particolare $x = (x_1, x_2, ..., x_n)$ di X. Allora, una stima di massima verosomiglianza (maximum likelihood, in inglese) è un valore del parametro che massimizza la funzione numerica $p_X(x_1, ..., x_n; \theta)$

su tutti i valori di θ :

$$\hat{\theta}_n = \arg\max_{\theta} p_X(x_1,\ldots,x_n;\theta).$$

Se X è continua, allora la PMF congiunta $p_X(x;\theta)$ è sostituita dalla PDF congiunta $f_X(x;\theta)$, tale che:

$$\hat{\theta}_n = \arg\max_{\theta} f_X(x_1,\ldots,x_n;\theta).$$

Diciamo che $p_X(x;\theta)$ (oppure $f_X(x;\theta)$, se X è continua) è la funzione di verosomiglianza.

In molte applicazioni, le osservazioni X_i si assumono indipendenti, e, in tal caso, la funzione di verosomiglianza ha la forma:

$$p_X(x_1,\ldots,x_n;\theta)=\prod_{i=1}^n p_{X_i}(x_i;\theta),$$

se X_i sono discrete. In questo caso, è spesso analiticamente oppure computazionalmente conveniente massimizzare il suo logaritmo, cioè la *funzione della log-verosomiglianza*:

$$\log p_X(x_1,\ldots,x_n;\theta) = \log \prod_{i=1}^n p_{X_i}(x_i;\theta) = \sum_{i=1}^n \log p_{X_i}(x_i;\theta),$$

su θ . Se X_i sono continue, un ragionamento simile viene applicato.

Il termine "verosomiglianza" deve essere propriamente interpretato. In particolare, avendo il valore osservato x di X, $p_X(x;\theta)$ non è la probabilità che il parametro sconosciuto sia uguale a θ , però è la probabilità che x venga osservato quando il parametro è uguale a θ . Dunque, nel massimizzare la verosomiglianza, ci domandiamo: "Qual'è il valore di θ tale per cui le osservazioni viste hanno più probabilità di risultare?"

Esempio 3. Alice modella il tempo che lei investe ciascuna settimana facendo i compiti come una variabile aleatoria esponenziale con parametro sconosciuto θ . I tempi dedicati per ciascuna settimana sono indipendenti. Dopo aver speso 10, 14, 18, 8 e 20 ore nelle prime 5 settimane, qual'è il suo stimatore di massima verosomiglianza di θ ?

Esempio 4. Si consideri una sequenza di lanci indipendenti di una moneta, e sia θ la probabilità che esca testa in ciascun lancio. Fissare qualche $n \in \mathbb{N}$ e sia K il numero di teste osservate negli n lanci. Trovare lo stimatore di massima verosomiglianza di θ basandoci su K.

Esempio 5. Delle particelle instabili vengono emesse da una sorgente e decadono a distanza X, che è esponenzialmente distribuita con parametro sconosciuto θ . Un dispositivo speciale è usato per individare i primi n eventi delle decadute che occorrono in un intervallo $[m_1, m_2]$. Supponiamo che questi eventi siano registrati a distanze $X = (X_1, X_2, \ldots, X_n)$. Dare la forma della funzione di verosomiglianza e della sua versione logaritmica.

Adesso discutiamo il problema semplice, ma importante, nel stimare la media e la varianza di una distribuzione di probabilità. Supponiamo che le osservazioni X_1, \ldots, X_n siano i.i.d. con media sconosciuta θ . Lo stimatore più naturale di θ è la media campionaria:

$$M_n = \frac{X_1 + \dots + X_n}{n}.$$

Lo stimatore è non biased, siccome $E_{\theta}[M_n] = E_{\theta}[X] = \theta$. Il suo errore quadratico medio è uguale alla sua varianza, che è v/n, dove v è la varianza comune delle X_i ; si noti che non dipende da θ . Inoltre, dalla legge "debole" dei grandi numeri, questo stimatore converge in probabilità a θ , ed è dunque consistente.

Si supponga che oltre allo stimatore della media θ :

$$M_n = \frac{X_1 + \dots + X_n}{n}.$$

siamo interessati anche nello stimare la varianza v. Una scelta naturale è:

$$\bar{S}_n^2 = \frac{1}{n} \cdot \sum_{i=1}^n (X_i - M_n)^2,$$

che coincide con lo stimatore di massima verosimiglianza sotto l'ipotesi della normalità. Usando i fatti:

$$E_{(\theta,v)}[M_n] = \theta$$
, $E_{(\theta,v)}[X_i^2] = \theta^2 + v$, $E_{(\theta,v)}[M_n^2] = \theta^2 + \frac{v}{n}$

abbiamo che:

$$E_{(\theta,v)}[\bar{S}_{n}^{2}] = \frac{1}{n} \cdot E_{(\theta,v)} \left[\sum_{i=1}^{n} X_{i}^{2} + 2M_{n} \cdot \sum_{i=1}^{n} X_{i} + nM_{n}^{2} \right]$$

$$= E_{(\theta,v)} \left[\frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}^{2} - 2M_{n}^{2} + M_{n}^{2} \right]$$

$$= E_{(\theta,v)} \left[\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - M_{n}^{2} \right]$$

$$= \theta^{2} + v - (\theta^{2} - \frac{v}{n})$$

$$= \frac{n-1}{n} \cdot v.$$

Dunque \bar{S}_n^2 non è uno stimatore non biased per v, anche se è assintoticamente non biased. Possiamo ottenere uno stimatore non biased per la varianza:

$$\hat{S}_n^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - M_n)^2 = \frac{n}{n-1} \bar{S}_n^2.$$

Il calcolo precedente ci mostra che $E_{(\theta,v)}[\hat{S}_n^2]=v$, cioè che \hat{S}_n^2 è uno stimatore non biased per v, per tutte le n. Tuttavia, per n ragionevolmente grande, gli stimatori \hat{S}_n^2 e \bar{S}_n^2 sono essenzialmente lo stesso.

Esempio 6. Una sorgente emette un numero aleatorio di fotoni *K* ciascuna volta che è innescata. Assumiamo che la PMF di *K* sia:

$$p_K(k;\theta) = c(\theta) \cdot e^{-\theta \cdot k},$$

per $k=0,1,2,\ldots$, dove θ è la temperatura inversa della sorgente e $c(\theta)$ è un fattore di normalizzazione. Assumiamo anche che l'emissione di ciascun fotone sia indipendente. Vogliamo stimare la temperatura della sorgente innescando ripetutamente e contando il numero di fotoni emessi.

- *i*) Determinare $c(\theta)$.
- *ii*) Trovare E[K] e var(K) del numero K di fotoni emessi se la sorgente è innescata solo una volta.
- iii) Derivare l'estimatore di massima verosomiglianza logaritmica, sulla base di K_1, K_2, \ldots, K_n , cioè il numero di fotono emessi dalla sorgente innescata n volte.

 \Diamond