Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Stéphane Le Roux, Ph.D. Sommersemester 2013 10. 06. 2013

Gruppenübung

Aufgabe G4 (Sheffer- und Pierce-Operator)

Definiere die folgenden Junktoren: sei der Sheffer-Operator (auch: NAND) gegeben durch

$$p \uparrow q := \neg (p \land q)$$
 (äquivalent: $\neg p \lor \neg q$)

und der Pierce-Operator (auch: NOR) durch

$$p \downarrow q := \neg (p \lor q)$$
 (äquivalent: $\neg p \land \neg q$).

Beachte: Man kann $p \downarrow q$ lesen als "weder p noch q".

- (a) Geben Sie die Wahrheitstafeln für ↑ und ↓ an.
- (b) Beweisen Sie $p \uparrow q \equiv ((p \downarrow p) \downarrow (q \downarrow q)) \downarrow ((p \downarrow p) \downarrow (q \downarrow q))$ (also kann man \uparrow durch \downarrow ausdrücken).
- (c) Drücken Sie ↓ durch ↑ aus.

Aufgabe G5 (Disjunktive und konjunktive Normalform)

Geben Sie die DNF und KNF für die folgende Formel an:

$$(q \rightarrow p) \land (p \lor \neg r)$$

Aufgabe G6 (DNF vs. KNF)

Für $n \ge 1$ sei

$$\varphi_n(p_1, q_1, p_2, q_2, \dots, p_n, q_n) := \bigwedge_{i=1}^n \neg (p_i \longleftrightarrow q_i)$$

(siehe Beispiel 3.9 im Skript). Zeigen Sie, dass

- (a) φ_n genau 2^n verschiedene Modelle hat (welche?);
- (b) φ_n äquivalent zu einer Formel in KNF ist, welche 2n Konjunktionsglieder besitzt;
- (c) Geben Sie eine zu φ_n äquivalente Formel in DNF an. Wie lange ist diese Formel ausgeschrieben, asymptotisch in n?

Hausübung

- Abgabe am 19.6.-21.6. 2013 in der Übung. Denken Sie daran Ihre Antworten zu begründen. -

Aufgabe H4 (Kommutativität und Assoziativität)

(2 Punkte)

Zeigen Sie, dass \oplus (für die Definition siehe **Aufgabe H1**) kommutativ und assoziativ ist, das heißt, $p \oplus q \equiv q \oplus p$ und $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$ gelten.

Bemerkung: Das bedeutet, dass man in Ausdrücken, wo \oplus der einzige Junktor ist, die Aussagen in beliebiger Reihenfolge und ohne Klammern schreiben kann. (Dasselbe gilt natürlich auch für \land und \lor .)

Aufgabe H5 (Disjunktive und konjunktive Normalform)

(3 Punkte)

Gegeben sei die Boolesche Funktion

$$f(x, y, u, v) := \begin{cases} 1 & \text{wenn genau ein oder genau drei von } x, y, u, v \text{ gleich 1 sind,} \\ 0 & \text{sonst.} \end{cases}$$

- (a) Geben Sie DNF für f(x, y, u, v) an.
- (b) Geben Sie KNF für f(x, y, u, v) an.
- (c) Geben Sie eine Formel φ , sodass $f=f_{\varphi}$ und φ nur den Junktor \oplus benutzt.

Aufgabe H6 (Vollständige Systeme von Junktoren)

(5 Punkte)

Für jede der folgenden Junktorenmengen beweisen oder widerlegen Sie, dass sie vollständige Systeme von Junktoren sind.

- (a) $\{\neg, \rightarrow\}$
- (b) $\{\to, 0\}$
- (c) {↑}
- (d) $\{\leftrightarrow\}$
- (e) $\{\land, \lor\}$

Nachricht: Die Gesellschaft für Informatik (GI) hat zahlreiche Regional- und Studierendengruppen — auch an der TU Darmstadt. Bei Interesse tragen Sie sich in den Mailverteiler ein unter

http://mail.gi-ev.de/mailman/listinfo/sg-darmstadt

Minitest						
Aufgabe M4 (Erfüllbarkeit un Kreuzen Sie alle Aussagen an,	0 0	0	nd.			
(a) Seien φ , ψ zwei erfüllbar	e Formeln. Da	nn ist				
eg arphi		□ erfüllbar,		□ allgemeingültig,		
$\varphi \wedge \psi$		□ erfüllbar,		□ allgemeingültig,		
$\varphi \vee \psi$		□ erfüllbar,		□ allgemeingültig.		
(b) Seien φ,ψ zwei allgemei	ngültige Form	eln. Dann ist				
$\neg \varphi$		□ erfüllbar,		□ allgemeingültig,		
$\varphi \wedge \psi$		□ erfüllbar,		□ allgemeingültig,		
$\varphi \vee \psi$		erfüllbar,		□ allgeme	ingültig.	
(c) Sei φ erfüllbar und ψ all \emptyset	gemeingültig.	Dann ist				
•		□ erfüllbar,		□ allgemeingültig,		
$\varphi \vee \psi$		□ erfüllbar,		□ allgemeingültig.		
Aufgabe M5 (Vollständige Sys Kreuzen Sie die folgenden Mei			steme von	Junktoren s	sind.	
$\square \ \{\neg, \land, \lor\}$	$\square \ \{\neg, \land\}$	$\square \ \{\neg, \lor\}$	$\square\ \{\neg\}$	□ {0}	\square Ø	