Cloud Fundamentals

- Infraastructure as a Service:
 - Computing deployment category in which the cloud provider delivers infrastructure through the cloud
 - Delivery of IT infrastructure resources like web servers, DB servers, compute storage, networking, computing data centers as service
 - Buy pizza at the store and bake it at home
- Platform as a Service:
 - Cloud model where users can create, build, and deploy applications on the cloud without worrying about IT infrastructure behind it
 - Provides computing services, development, and monitoring tools for application development
 - Provider takes care of physical infrastructures, data centers, hardware, OS
 - User only needs to write and deploy application code on the platform
 - Pizza delivery
- Software as a Service:
 - Software-on-demand cloud model where cloud provider give access to a fully developed application
 - Enables users to access and use applications online without installation
 - Accessible through web browser or servers
 - Pay for the service on a subscription basis
 - Order pizza at a restaurant
- Containers as a Service:
 - Deploy applications in containers (containerization)
 - Container: runtime that contains essential computing resources needed to run an application, including the core part of the host OS (kernel) and its shared resources like storage across a host
- Serverless:
 - Backend services are provided by a cloud service provider
 - Third-party provider manages the infrastructure and automatically provisions and scales resources as needed
 - Provider handles server infrastructure, OS and other low-level components \rightarrow no need to manage underlying infrastructure

MS Azure Fundamentals

Services

- Compute Services:
 - Provide quickly available and on-demand resources like OS, networking, disks, processors, and memory
 - Enables to build web and mobile applications, deploy and manage VMs, build apps in containers in the cloud, create batch jobs, etc.
- Core Azure Storage Services:
 - AZ Blobs: Store scalable binary data, text, or Data Lake Storage Gen2 big data analytics

- AZ Files: Fully manageable file shares for deployments on-premise or cloud. Accessible anywhere through Server Message Block (SMB) protocol
- AZ Queues: Collect large messages that are accessed via authenticated HTTP calls
- AZ Managed Disks: Store block-level volumes for AZ vmS

• Core Azure DB Services:

- AZ SQL DB: Cloud-hosted SQL databases that are fully managed, intelligent, and secure
- AZ Cosmos DB: Create and migrate NoSQL workloads to the cloud like Cassandra, MongoDB, and other NoSQL databases
- AZ Cache for Redis DB: Build fast and scalable applications with Redis in-memory data store
- AZ DB for PostgreSQL, MySQL, and MariaDB: Create fully managed and scalable databases for PostgresSQL, MySQL, and MariaDB
- AZ SQL Edge: Build IoT edge-optimized SQL database engine with built-in AI

Core Architecture and Resource Management Concepts

• Management groups:

- Top level of the core structure
- Administrators manage everything about user access, compliance, and policies for subscriptions
- Subscriptions within a management group automatically inherit settings, conditions, and restrictions added in the group
- AZ RBAC for all resources and role definitions is supported in the root management group

• Azure subscriptions:

- Are like a big container for all user accounts and resources they have accessed or used within the subscription
- Every subscription has a limit of resources that a certain user can create and use
- Use subscriptions to control monthly bill and resource costs

• Resource groups:

- Group services or resources using resource groups
- Acts as a logical container where resources like servers, web apps, DBs, storage, and monitoring are deployed, managed, and stored

• Resources:

- DBs, servers, VMs, or web apps
- All resources or services must be added to a resource group, which acts like a logical container

• Resource Manager:

- Management and deployment service that provides users the capability to add, edit, and delete resources in AZ
- By using ARM, an organization can manage user access control and organize resources securely even after deployment
- ARM templates are commonly used to automate deployments and implement infrastructure as Code
- IaC creates a great advantage, nd enables deployment automation of the infrastructure in the cloud

 Using IaC, you can automate deployments by generating templates for the same environment every time

User Identities, Roles, and Active Directories

- Role-Based Access Control:
 - Helps in authorization and user access management of resources
 - Management of identity using RBAC helps in controlling what users can do and cannot do

• Roles:

- Security principal:
 - * Object that represents a security identity that can be authenticated and authorized to access resources
 - * Used to grant ar deny resource permissions
 - * Can be authenticated as user, security group, or process
 - * When assigning roles to a security principal, you're granting or denying permissions to access specific resources in AZ
- Role definition:
 - * Sets permissions for users or security principals to utilize resources
 - * Each role definition has a set of access controls, or actions, which helps determine which resource activities are permissable

- Scope:

- * Determines the level at which the role assignment applies
- * Defines the set of resources the role assignment applies to and can be set at various levels in resource hierarchy (management group, subscription, resource group, and individual resource level)