1.1 LINEAR TOPOLOGIES

Fix a ground field *k*. From now on, a vector space will always mean a *k*-vector space.

Definition 1.1. A **linear topology** on a vector space V is a separated (Hausdorff) topology invariant under translations that admits an open local base around zero of vector subspaces. A vector space equipped with a linear topology will be referred as **linearly topologized**.

If we endow k with the discrete topology then V will become a topological vector space. From now on, endow k with the a discrete topology. Linear topologies behave nicely under basic topological operations.

Proposition 1.2. Let V be a linearly topologized vector space. Then

- (a) Any vector subspace of V is linearly topologized under its subspace topology.
- (b) If $W \subseteq V$ is a closed vector subspace then V/W is linearly topologized under its quotient topology.
- (c) If $\{V_{\alpha}\}_{\alpha}$ is a collection of linearly topologized vector spaces its product $\prod_{\alpha} V_{\alpha}$ and its direct sum $\bigoplus_{\alpha} V_{\alpha}$ is linearly topologized under its product topology.
- (d) If W is a vector subspace of V, then its topological closure \overline{W} also is a vector subspace of V.

Finite dimensional vector spaces are meaningless for linear topologies.

Proposition 1.3. A finite dimensional linearly topologized vector space V is discrete.

Proof. Let U be an open vector subspace and $0 \neq x \in U$, since V is separated and linearly topologized there exists an open vector subspace U_x such that $x \notin U_x$ then dim $U_x \cap U < \dim U$, since V is finite dimensional this process can be repeated only a finite amount of times; that is $\{0\}$ is open. It follows that V is discrete.

Commensurability

We introduce a partial order in the set of vector subspaces of a vector space V

Definition 1.4. For vector subspaces A and B of a vector space V we say that $A \prec B$ if the quotient $A/(A \cap B) \cong (A+B)/B$ is finite dimensional (or equivalently $A \subseteq B+W$ where W is some finite dimensional subspace). In addition, we say that A and B are commensurable (denoted $A \sim B$) if $A \prec B$ and $B \prec A$.

Observe that $A \sim B$ if and only if $(A+B)/(A\cap B) \cong A/(A\cap B) \oplus B/(A\cap B)$ is finite dimensional. We will constantly refer to a vector space V being finite dimensional as $V \sim 0$.

Proposition 1.5. Let V be a vector spaces and A, B and C be vector subspaces, then:

(a) If $A \sim B$ and $B \sim C$ then

$$(A+B+C)/(A\cap B\cap C)\sim 0$$

(b) If $A \prec B$ and $B \prec C$ then $A \prec C$. Moreover, commensurability is an equivalence relation.

Proof. Consider the following exact sequences

$$0 \to (A \cap B)/(A \cap B \cap C) \to B/(B \cap C)$$

and,

$$0 \to (A \cap B)/(A \cap B \cap C) \to (A+B)/(A \cap B \cap C) \to (A+B)/(A \cap B) \to 0$$

induced by inclusions. The first inclusion plus the fact that $B \sim C$ imply that $(A \cap B)/(A \cap B \cap C)$ is finite dimensional. Now, since $A \sim B$ it follows that $(A+B)/(A \cap B)$ is finite dimensional. Hence, the second exact sequence concludes that $(A+B)/(A \cap B \cap C)$. A symmetrical argument shows that $(B+C)/(A \cap B \cap C) \sim 0$. These prove (a). For (b), the inclusion

$$0 \rightarrow (A+C)/(A \cap C) \rightarrow (A+B+C)/(A \cap B \cap C)$$

plus (a) implies transitivity.

Now, we state and prove some useful properties on the relation \prec .

Lemma 1.6. (a) If $A \subseteq B$ then $A \prec B$.

- (b) If $A \prec B$ then $f(A) \prec f(B)$ for any k-linear map f
- (c) It holds that

$$\sum_{i=1}^{m} A_i \prec \bigcap_{j=1}^{n} B_j \iff A_i \prec B_j \text{ for all } i \text{ and } j.$$

Proof. First, (a) is immediate from the definition of \prec . Second, for (b) the map f factors

$$A/(A \cap B) \rightarrow f(A)/(f(A) \cap f(B)) \rightarrow 0$$

Finally, for (c), if $\sum_{i=1}^{m} A_i \prec \bigcap_{j=1}^{n} B_j$ holds then by (a) above, for all i and j we have

$$A_i \prec \sum_{i=1}^m A_i \prec \bigcap_{j=1}^n B_j \prec B_j$$

On the other hand, if $A_i \prec B_j$ for all i and j then there exists finite dimensional subspaces W_{ij} such that $A_i \subseteq B_j + W_{ij}$ for all i and j. Therefore,

$$\sum_{i=1}^m A_i \subseteq \bigcap_{j=1}^n B_j + \sum_{i=1}^m \sum_{j=1}^n W_{ij}.$$

Next, we consider another useful lemma.

Lemma 1.7. Let A, B, A', B' be vector subspaces of a vector space V and suppose that $A \sim A'$ and $B \sim B'$. Then $A + B \sim A' + B'$ and $A \cap B \sim A' \cap B'$.

Proof. The following exact sequence

$$0 \to (A + A' + B + B')/(A \cap A') \cap (B \cap B') \to (A + A')/(A \cap A') \oplus (B + B')/(B \cap B') \to (A + A' + B + B')/(A \cap A') + (B \cap B') \to 0$$

plus $A \sim A'$ and $B \sim B'$ imply that both spaces

$$(A + A' + B + B')/(A \cap A') \cap (B \cap B')$$
 and,
 $(A + A' + B + B')/((A \cap A') + (B \cap B'))$

are finite dimensional. Since, $(A + A' + B + B')/(A + A') \cap (B + B')$ is a quotient of the second space and $((A \cap A') + (B \cap B'))/((A \cap A') \cap (B \cap B'))$ is a subspace of the first space we can conclude $A + B \sim A' + B'$ and $A \cap B \sim A' \cap B'$.

If we consider the set of equivalence classes $\mathcal{L}(V)$ of \sim on a vector space V then \prec is a partial order on it and by Lemma 1.7 above $\mathcal{L}(V)$ inherits operations \cap and +.

Linear compactness

Definition 1.8. Let V be a linearly topologized vector space. A closed subset $C \subseteq V$ is **linearly compact** (respectively **linearly cocompact**) if for every open vector subspace U we have $\dim C/(C \cap U) < \infty$ (respectively $\dim V/(C + U) < \infty$).

Linear compactness behaves just as compactness if one uses the correct words.

Proposition 1.9. *Let V be a linearly compact vector space, then*

- (a) If $A \subseteq V$ is a vector subspace such that for every open U vector subspace of V we have $\dim W/(W \cap U) < \infty$ then \overline{A} is linearly compact.
- (b) If $\varphi: V \to W$ is a continuous linear homomorphism then $\overline{\varphi(V)}$ is linearly compact.
- (c) If E is discrete then E must be finite dimensional.

- (d) Every closed vector subspace of E is linearly compact.
- (e) (Tychonov) If $\{E_{\alpha}\}_{\alpha}$ is a collection of linearly compact vector spaces then its product $\prod_{\alpha} E_{\alpha}$ and its direct sum $\bigoplus_{\alpha} E_{\alpha}$ are linearly compact.

Proof. Let $U \subseteq F$ be an open vector subspace, then since φ is linear a continuous $\varphi^{-1}(U)$ is an open vector subspace of E. Consider the surjective induced map

$$E/\varphi^{-1}(U) \twoheadrightarrow \varphi(E)/\varphi(E) \cap U$$

as E is linearly compact it follows that $\dim \varphi(E)/\varphi(E) \cap U < \infty$. We get (a). If E is discrete, then $\{0\}$ is an open vector subspace of E, (b) follows. For (c), let $G \subseteq E$ be a closed vector subspace and take any open vector subspace U of E, then the inclusion $G \hookrightarrow E$ induces

$$G/G \cap U \hookrightarrow E/U$$

where the latter is finite dimensional (E is linearly compact). Finally, for (d), it is enough proving for open vector subspaces $U = \prod_{\beta} U_{\beta} \times \prod_{\gamma} E_{\gamma}$ where β ranges over a finite set, γ ranges over $\alpha \neq \beta$ and U_{β} is an open vector subspace of E_{β} . Then, the quotient

$$\prod_{\alpha} E_{\alpha}/U \cong \prod_{\beta} E_{\beta}/U_{\beta}$$

where \cong is a topological and algebraic isomorphism. Since E_{α} is linearly compact for all α and β ranges over a finite set we conclude that $\prod_{\alpha} E_{\alpha}/U$ is finite dimensional; therefore, $\prod_{\alpha} E_{\alpha}$ is linearly compact. The proof is analogous for $\bigoplus_{\alpha} E_{\alpha}$.

Completeness

If *E* is linearly topologized it admits a fundamental system of neighborhoods consisting of open vector subspaces

$$E \supseteq U_0 \supseteq U_1 \supseteq \ldots \supseteq U_{\alpha} \supseteq \ldots$$

Definition 1.10. In the previous context, we say that *E* is **complete** if

$$E\cong \hat{E}:=\varprojlim_{\alpha}E/U_{\alpha}$$

where \cong is an isomorphism of topological vector spaces.

1.2 TATE SPACES

Definition 1.11. Let *E* be a linearly topologized vector space. An open linearly compact subspace of *E* is called a **c-lattice** if it is open; dually, a **d-lattice** is a discrete linearly cocompact subspace of *E*. We say that *E* is a **Tate space** or **Tate vector space** if it contains a c-lattice.

Proposition 1.12. A linearly topologized vector space E has a c-lattice if and only if it has a d-lattice.

Proof. Suppose C is a c-lattice in E, choose any direct complement D of C, that is, $E = C \oplus D$. Since C is open, then D is discrete as $D \cap C = 0$, thus 0 is open in D. Moreover, D is closed as it is the fiber of 0 under the projection $E \to C$. Finally, we check that D is linearly cocompact: let U be any open vector subspace of E, the composition $C \hookrightarrow E \twoheadrightarrow E/(D+U)$ induces a surjection

$$C/(C \cap U) \twoheadrightarrow E/(D+U)$$

thus, since dim $C/(C \cap U) < \infty$ we conclude dim $E/(D+U) < \infty$.

Now, suppose D is a d-lattice, again, choose C a direct complement for D. Analogous as the proof for D being discrete and closed in the previous paragraph it follows the one for C being open and closed. We just check that C is linearly compact. Let U be any open vector subspace, the composition $E woheadrightarrow C / (C \cap U)$ induces a surjection

$$E/(D+(C\cap U)) \twoheadrightarrow C/(C\cap U)$$

since both *C* and *U* are open, also $C \cap U$, thus dim $E/(D+(C \cap U)) < \infty$. It follows, dim $C/(C \cap U) < \infty$ and *C* linearly compact.

Remark 1.13. Note that in the proof of Proposition 1.12 it is not strictly necessary to choose a direct complement, one can choose a direct complement up to finite dimension; that is, C + D = E and $\dim C + D < \infty$. We used a direct complement to facilitate the proof.

Duality

If E is a Tate space we consider the following topology on the dual space E^* (where by dual space we mean topological dual). Open vector subspaces are given by

$$N(C) = \{ \phi \in E^* : \phi |_C = 0 \}$$

where C is linearly compact subspace. Equivalently, one can define open vector subspaces in E^* to be D^* where D a direct complement of a linearly compact vector subspace C in E (in this case $D^* \hookrightarrow E^*$ using the decomposition $C \oplus D$).

First, we prove that the word *dually* in Definition 1.8 actually makes sense.

Proposition 1.14. Duality interchanges discrete and linearly compact spaces. *Proof.*

Theorem 1.15. For a Tate space A the canonical map $A \to A^{**}$ is an isomorphism.

finish this

Morphisms

A **morphism** of Tate spaces is a continuous linear homomorphism between Tate spaces.

Definition 1.16. A morphism $f: A \to B$ of Tate spaces is said to be **linearly compact** if the closure of fA is linearly compact in B. Dually, it is **discrete** if ker f is open in A.

Proposition 1.17. A morphism $f: A \to B$ of Tate spaces is linearly compact if and only if f^* is discrete.

Proof. If its linearly compact then

2.1 FINITEPOTENT MAPS AND THEIR TRACE

Let k be a fixed ground field and V a vector space over k. In this section we will expand the notion of trace of a linear endomorphism to include certain operators even when V is infinite dimensional.

Finitepotent maps

Definition 2.1. We will say a linear map $f: V \to V$ is **finitepotent** if

$$\dim f^n V < \infty$$

for sufficiently large n.

We characterize finitepotent maps as follows.

Lemma 2.2. A linear map $f: V \to V$ is finite potent if and only if there exists a subspace $W \subseteq V$ such that

- (i) dim $fW < \infty$,
- (ii) $fW \subseteq W$,
- (iii) the induced map $\bar{f}: V/W \to V/W$ is nilpotent.

Proof. If f is finitepotent choose $W=f^nV$ for sufficiently large n. The first condition follows from definition. Also, $fW=f^{n+1}V\subseteq f^nV=W$. In addition, $\bar{f}^n=0$. On the other hand, if such W exists, note that condition (ii) assures that \bar{f} is well defined. Moreover, as \bar{f} is nilpotent, $f^nV\subseteq W$ for sufficiently large n and by condition (i) above $\dim f^nV<\infty$.

Trace

If f is a finitepotent map and W is as above, $\operatorname{tr}_V(f) \in k$ may be defined as $\operatorname{tr}_W(f)$ where $\operatorname{tr}_W(f)$ is the ordinary trace of f viewed as a endomorphism of W. First, we will check that this definition does not depend on the choice of W. Suppose $W_1, W_2 \subseteq V$ suffice the properties on Lemma 2.2, then $W = W_1 + W_2$ suffices them too. Hence, as the induced maps on W/W_1 and W/W_2 are nilpotent, they have have zero ordinary trace and since

$$\operatorname{tr}_{W}(f) = \operatorname{tr}_{W_{1}}(f) + \operatorname{tr}_{W/W_{1}}(f)$$

 $\operatorname{tr}_{W}(f) = \operatorname{tr}_{W_{2}}(f) + \operatorname{tr}_{W/W_{2}}(f)$

we obtain $tr_{W_1}(f) = tr_{W_2}(f)$, our desired result.

This definition extends some of the properties of the ordinary trace.

Lemma 2.3. (a) If dim $V < \infty$, any endomorphism f is finite potent and $\operatorname{tr}_V(f)$ coincides with the ordinary trace.

(b) If f is nilpotent, then it is finite potent and $tr_V(f) = 0$.

(c) If f is finitepotent and U is a subspace such that $fU \subseteq U$ then the induced maps on U and V/U are finitepotent and satisfy

$$\operatorname{tr}_{V}(f) = \operatorname{tr}_{U}(f) + \operatorname{tr}_{V/U}(f)$$

Proof. Both (a) and (b) are immediate. For (c) if W suffices the properties in Lemma 2.2 for f then $W \cap U$ and (W+U)/U suffice them for the induced maps, that is, they're finitepotent. Since $W/(W \cap U) \cong W + U/U$, the diagram

$$W/(W \cap U) \xrightarrow{\cong} (W+U)/U$$

$$\downarrow f \qquad \qquad \downarrow f$$

$$W/(W \cap U) \xrightarrow{\cong} (W+U)/U$$

commutes and trace is invariant under conjugation, we get $\operatorname{tr}_{W/(W\cap U)}(f) = \operatorname{tr}_{(W+U)/U}(f)$. Hence

$$\operatorname{tr}_{V}(f) = \operatorname{tr}_{W}(f) = \operatorname{tr}_{W \cap U}(f) + \operatorname{tr}_{(W+U)/U}(f) = \operatorname{tr}_{U}(f) + \operatorname{tr}_{V/U}(f)$$

Definition 2.4. A subspace F of $\operatorname{End}_k(V)$ is said to be a **finitepotent subspace** if there exists an n such that for any family of n elements $f_1, \ldots, f_n \in F$, the space $f_1 f_2 \cdots f_n V$ is finite dimensional.

The following is the natural linearity property for tr.

Proposition 2.5. *If* F *is a finite potent subspace then* $\operatorname{tr}_V \colon F \to k$ *is* k-linear

Proof. It is enough to prove it in the case that *F* is finite dimensional. Let $W = F^n V$ for *n* as in the definition of finitepotent subspace, thus dim $W < \infty$. Hence, for all $f \in F$, W suffices the conditions in Lemma 2.2. It follows that $\operatorname{tr}_V(f) = \operatorname{tr}_W(f)$ which is linear. □

add note in "general" linearity of trace when .bib is ready

Proposition 2.6. *If* f, $g \in \text{End}_k(V)$ *and* fg *is finite potent then* gf *is also finite potent and*

$$\operatorname{tr}_V(fg) = \operatorname{tr}_V(gf).$$

Proof. Since fg is finitepotent let $W=(fg)^nV$ for sufficiently large n has finite dimension. On the other hand, $(gf)^{n+1}V=g(fg)^nfV\subseteq gW$, therefore, gf is also finitepotent. Let $W'=(gf)^nV$, then $gW'\subseteq W$ and $fW\subseteq W'$. Thus,

$$\dim W' < \dim gW < \dim W$$
 and, $\dim W < \dim fW < \dim W'$,

which implies that $W \cong W'$ and that g and f induce mutually inverse isomorphism between W and W'. Moreover, the diagram

$$\begin{array}{ccc}
W & \xrightarrow{fg} & W \\
\downarrow g & & \downarrow g \\
W' & \xrightarrow{gf} & W'
\end{array}$$

commutes. We conclude $\operatorname{tr}_W(fg) = \operatorname{tr}_{W'}(gf)$ and it follows $\operatorname{tr}_V(fg) = \operatorname{tr}_V(gf)$.