

FCC TEST REPORT for SEANYWELL COMPANY LIMITED

Wi-Fi Module Model No.: XLW-210x

Prepared for : SEANYWELL COMPANY LIMITED

Address : ROOM 09, 27/F, HO KING COMMERCIAL CENTRE, 2-16

FA YUEN STREET, MONGKOK, KOWLOON, HONG KONG

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R011409198E

Date of Test : Sept. 19~ Dec. 12, 2014

Date of Report : Dec. 15, 2014

TABLE OF CONTENT

Description

	Page
Test Report	
1. GENERAL INFORMATION	4
1.1. Description of Device (EUT)	
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	
2. TEST METHODOLOGY	(
2.1. Summary of Test Results	(
2.2. Description of Test Modes.	
2.3. List of channels:	
3. CONDUCTED EMISSION TEST	{
3.1. Block Diagram of Test Setup	
3.2. Power Line Conducted Emission Measurement Limits (15.207)	
3.3. Configuration of EUT on Measurement	
3.4. Operating Condition of EUT	8
3.5. Test Procedure	9
3.6. Test equipment	9
3.7. Power Line Conducted Emission Measurement Results	9
4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION	12
4.1 Test Setup	12
4.2 6dB Bandwidth	12
4.3. Maximum Output Power Test	20
4.4. Band Edges Measurement	33
4.5. Peak Power Spectral Density	6
4.6. Radiated Emissions.	68
5. PHOTOGRAPH	79
5.1. Photo of Conducted Emission Measurement.	79
5.2. Photo of Radiation Emission Test	79
APPENDIX I (EXTERNAL PHOTOS)	80
ADDENINIV II (INTERNAT DITOTOC)	0/

TEST REPORT

Applicant : SEANYWELL COMPANY LIMITED

Manufacturer : SEANYWELL COMPANY LIMITED

EUT : Wi-Fi Module

Model No. : XLW-210x

Serial No. : N.A.
Trade Mark : N.A.

Rating : DC 3.3V

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:	Sept. 19~ Dec. 12, 2014				
Prepared by :	Kebo Zhang				
	(Tested Engineer / Kebo Zhang)				
Reviewer:	Amy Ding				
_	(Project Manager / Amy Ding)				
	Ton Jaen				
Approved & Authorized Signer : _					
	(Manager / Tom Chen)				

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Wi-Fi Module

Model Number : XLW-210x

Test Power Supply: AC 120V, 60Hz for adapter

RF Transmission : 2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))

Frequency

Channels : 11 For (802.11b/802.11g/802.11n(HT20))

Modulation : 802.11b CCK

802.11g OFDM 802.11n MCS

Antenna Gain: : 1dBi

Applicant : SEANYWELL COMPANY LIMITED

Address : ROOM 09, 27/F, HO KING COMMERCIAL CENTRE, 2-16 FA

YUEN STREET, MONGKOK, KOWLOON, HONG KONG

Manufacturer : SEANYWELL COMPANY LIMITED

Address : ROOM 09, 27/F, HO KING COMMERCIAL CENTRE, 2-16 FA

YUEN STREET, MONGKOK, KOWLOON, HONG KONG

Factory : SEANYWELL COMPANY LIMITED

Address : ROOM 09, 27/F, HO KING COMMERCIAL CENTRE, 2-16 FA

YUEN STREET, MONGKOK, KOWLOON, HONG KONG

Date of receipt : Sept. 19, 2014

Date of Test : Sept. 19~ Dec. 12, 2014

1.2. Auxiliary Equipment Used during Test

Adapter : Power Supply

Model:MX12L3-0502000V

Input: AC 100-240V, 50-60Hz, 0.35A

Output: DC 5V, 2A

CE, FCC

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Shenzhen Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.3dB

Conduction Uncertainty : Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	1	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	-	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode isprogrammed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1 Mbps lowest data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6 Mbps lowest data rate (the worst case) are chosen for the final testing.

IEEE802.11n (HT20): Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with MCS 0 Mbps lowest data rate (the worst case) are chosen for the final testing.

2.3. List of channels:

√ - available

X - tested

1 tosted			
Number	Frequency(MHz)		802.11 b/g/n (HT20)
1	2412	√	X
2	2417	√	
3	2422	√	
4	2427	√	
5	2432	√	
6	2437	√	X
7	2442	√	
8	2447	\checkmark	
9	2452	\checkmark	
10	2457	√	
11	2462	√	X

3. Conducted Emission Test

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (On) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2003 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1.	Two-Line	Rohde & Schwarz	ENV216	100055	Apr. 22, 2014	1 Year	
	V-network	Ronde & Senwarz	LIV 210	100033	71p1. 22, 2014	1 1 Cai	
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 22, 2014	1 Year	
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 22, 2014	1 Year	

3.7. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room

Operating Condition: On

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

MEASUREMENT RESULT: "011409198101_fin"

9/19/2014 3:	10PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.334500	22.50	20.1	59	36.8	QP	L1	GND
0.487500	20.60	20.1	56	35.6	QP	L1	GND
0.964500	17.00	20.2	56	39.0	QP	L1	GND
1.490500	15.80	20.3	56	40.2	QP	L1	GND
1.666000	15.10	20.3	56	40.9	QP	L1	GND
2.251000	16.00	20.3	56	40.0	OP	L1	GND

MEASUREMENT RESULT: "011409198101 fin2"

/2014 3:10	PM						
requency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dBµV	dB	dΒμV	dB			
0.352500	8.50	20.1	49	40.4	AV	L1	GND
0.442500	10.00	20.1	47	37.0	AV	L1	GND
1.819000	7.50	20.3	46	38.5	AV	L1	GND
3.128500	6.60	20.4	46	39.4	AV	L1	GND
7.934500	6.50	20.5	50	43.5	AV	L1	GND
8.626500	5.20	20.8	50	44.8	AV	L1	GND
		MHz dBμV 0.352500 8.50 0.442500 10.00 1.819000 7.50 3.128500 6.60 7.934500 6.50	requency MHz Level Transd dBμV dB 0.352500 8.50 20.1 0.442500 10.00 20.1 1.819000 7.50 20.3 3.128500 6.60 20.4 7.934500 6.50 20.5	requency MHz dBμV dB dBμV 0.352500 8.50 20.1 49 0.442500 10.00 20.1 47 1.819000 7.50 20.3 46 3.128500 6.60 20.4 46 7.934500 6.50 20.5 50	requency MHz Level Transd Limit Margin dB dBμV dB dBμV dB dBμV dB 0.352500 8.50 20.1 49 40.4 0.442500 10.00 20.1 47 37.0 1.819000 7.50 20.3 46 38.5 3.128500 6.60 20.4 46 39.4 7.934500 6.50 20.5 50 43.5	requency MHz Level Transd Limit Margin Detector dBμV dB dBμV dB Detector dB dBμV dB Detector dB dBμV dB Detector dB dBμV dBμV	requency dBμV dB Limit Margin Detector Line dBμV dB dBμV dB 0.352500 8.50 20.1 49 40.4 AV L1 0.442500 10.00 20.1 47 37.0 AV L1 1.819000 7.50 20.3 46 38.5 AV L1 3.128500 6.60 20.4 46 39.4 AV L1 7.934500 6.50 20.5 50 43.5 AV L1

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room

Operating Condition: On

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.:25°C Hum.:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

MEASUREMENT RESULT: "011409198102 fin"

9,	/19/2014 3	:13PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.294000	22.60	20.1	60	37.8	QP	N	GND
	0.442500	24.70	20.1	57	32.3	QP	N	GND
	1.117000	15.30	20.2	56	40.7	QP	N	GND
	2.651500	15.30	20.4	56	40.7	QP	N	GND
	5.149000	13.10	20.5	60	46.9	QP	N	GND
	29.903500	18.70	20.9	60	41.3	QP	N	GND

MEASUREMENT RESULT: "011409198102 fin2"

9/19/2014 3:	:13PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.334500	10.30	20.1	49	39.0	AV	N	GND
0.442500	13.10	20.1	47	33.9	AV	N	GND
1.360000	8.40	20.2	46	37.6	AV	N	GND
2.264500	7.70	20.3	46	38.3	AV	N	GND
5.194000	6.60	20.5	50	43.4	AV	N	GND
17.357500	5.20	20.8	50	44.8	AV	N	GND

4. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

4.1 Test Setup

4.2 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b.Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

20dB Bandwidth:

C63.10

Occupied Bandwidth (OBW=20dB Bandwidth

- 1. Set RBW=1%~5% OBW
- 2. Set the VBW≥3*RBW
- 3. Set the span range between 2 times and 5 times of the OBW
- 4. Sweep Time= Auto

Detector= Peak

Trace= Max hold

5. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst case (i.e. the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the -20dB levels with respect to the reference level.

c. Test Setup See 4.1

d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 08, 2014	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 08, 2014	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 22, 2014	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 04, 2014	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 24, 2014	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Aug. 08, 2014	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

e. Test Results

Pass.

f. Test Data 6dB Bandwidth

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	10.16	, ,	Pass
Mid	2437	10.16	>500	Pass
High	2462	10.16		Pass

Test mode: IEEE 802.11g

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	16.40	(MIZ)	Pass
Mid	2437	16.32	>500	Pass
High	2462	16.32		Pass

Test mode: IEEE 802.11n (HT20)

Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Low	2412	16.64	,	Pass
Mid	2437	16.64	>500	Pass
High	2462	16.96		Pass

Test Plots See the following page.

Test Mode: 802.11b---Mid

Center 2.462 GHz

4 MHz/

Span 40 MHz

Test Mode: 802.11g---High

Test Mode: 802.11n (HT20)---Mid

Test Mode: 802.11n (HT20)---High

20dB Bandwidth

Test mode: IEEE 802.11b

Channel	Frequency	Bandwidth	Results
Chamie	(MHz)	(MHz)	Resuits
Low	2412	18.00	Pass
Mid	2437	18.00	Pass
High	2462	18.00	Pass

Test mode: IEEE 802.11g

Channel	Frequency	Bandwidth	Results
Chamici	(MHz)	(MHz)	Results
Low	2412	25.44	Pass
Mid	2437	25.32	Pass
High	2462	23.64	Pass

Test mode: IEEE 802.11n (HT20)

Channel	Frequency	Bandwidth	Results
Chamie	(MHz)	(MHz)	Resuits
Low	2412	28.56	Pass
Mid	2437	28.68	Pass
High	2462	26.64	Pass

Test Plots See the following page.

Center 2.412 GHz

6 MHz/

Span 60 MHz

Test Mode: 802.11g---Low

Test Mode: 802.11g---High

4.3. Maximum Output Power Test

a. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

EUT	DC block	ATT.		Test receiver
-----	----------	------	--	---------------

c. Data Rates

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1 Mbps data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6 Mbps data rate (the worst case) are chosen for the final testing.

IEEE802.11n (HT20: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6.5Mbps data rate (the worst case) are chosen for the final testing.

d. Test Procedure

This test was according the kDB 558074 9.2.2:

- 1. Set span to at least 1.5 times the OBW.
- 2. Set the RBW = $1\sim5\%$ of the OBW, not to exceed 1MHz.
- 3. Set VBW≥3*RBW.
- 4. Detector = Average.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

e. Test Equipment

Same as the equipment listed in 4.2.

f. Test Results

Pass.

g. Test Data

Test mode: IEEE 802.11b

Channel	Frequency	Maximum transmit power Limit		mit	D ogult	
Channel	(MHz)	(dBm)	(dBm)	(watts)	Result	
Low	2412	3.03			Pass	
Mid	2437	3.10	30	1	Pass	
High	2462	3.30			Pass	

Test mode: IEEE 802.11g

1 000 1110 0001 12	**				
Channal	Frequency	Maximum transmit power	Limit		D agult
Channel	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2412	-0.36			Pass
Mid	2437	-0.13	30	1	Pass
High	2462	-0.24			Pass

Test mode: IEEE 802.11n (HT20)

Channel	Frequency	Maximum transmit power	Limit		Result	
Channel	(MHz)	(dBm)	(dBm)	(watts)	Resuit	
Low	2412	0.36			Pass	
Mid	2437	-0.04	30	1	Pass	
High	2462	-0.12			Pass	

Test Mode: 802.11b---Mid

Test Mode: 802.11g---High

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---Mid

4.4. Band Edges Measurement

a. Limit

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100KHz, VBW=300KHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.
- 2. Radiated Method:
- 1) The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) For PK measurement: RBW=1MHz, VBW=3MHz, SWT=AUTO, peak detector For Average measurement: RBW=1MHz, VBW=10Hz, SWT=AUTO, peak detector The EUT is tested in 9*6*6 Chamber.
- 5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Results

Pass.

e. Test Plots

See the following page.

Test Mode: 802.11b --- High

Stop 2.425 GHz

Start 2.31 GHz

11.5 MHz/

Test Mode: 802.11n (HT20)---High

Test Mode: 802.11b

2412MHz

Horizontal-PEAK:

Horizontal-AV:

Test Mode: 802.11b

2412MHz Vertical-PEAK:

Vertical-AV:

Test Mode: 802.11b

2462MHz

Horizontal-PEAK:

Horizontal-AV:

Test Mode: 802.11b

2462MHz Vertical-PEAK:

Vertical-AV:

Test Mode: 802.11g

2412MHz

Horizontal-PEAK:

Horizontal-AV:

Test Mode: 802.11g

2412MHz Vertical-PEAK:

Vertical-AV:

Test Mode: 802.11g

2462MHz

Horizontal-PEAK:

Horizontal-AV:

Test Mode: 802.11g

2462MHz Vertical-PEAK:

Vertical-AV:

Test Mode: 802.11n (HT20)

2412MHz

Horizontal-PEAK:

Horizontal-AV:

Test Mode: 802.11n (HT20)

2412MHz Vertical-PEAK:

Vertical-AV:

Test Mode: 802.11n (HT20)

2462MHz

Horizontal-PEAK:

Horizontal-AV:

Test Mode: 802.11n (HT20)

2462MHz Vertical-PEAK:

Vertical-AV:

4.5. Peak Power Spectral Density

a. Limit

- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS BW, Sweep=500s
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Setup

See 4.1

e. Test Results

Pass

f. Test Data

Please refer to the following data.

g. Test Plot See the following pages

Test mode: IEEE 802.11b

Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Σ PPSD (dBm/3KHz)	Limit (dBm)	Result
Low	2412	-14.28	-		Pass
Mid	2437	-12.31	-	8.00	Pass
High	2462	-13.26	-		Pass

Test mode: IEEE 802.11g

Channel	Frequency	PPSD (dDm)	$\Sigma PPSD$	Limit	Result
	(MHz)	(dBm)	(dBm)	(dBm)	
Low	2412	-17.53	-		Pass
Mid	2437	-18.25		8.00	Pass
High	2462	-18.37	-		Pass

Test mode: IEEE 802.11n (HT20)

Channel	Frequency (MHz)	PPSD (dBm/3KHz)	Σ PPSD (dBm/3KHz)	Limit (dBm)	Result
Low	2412	-17.59	-	(uDiii)	Pass
Mid	2437	-17.48	_	8.00	Pass
High	2462	-17.81	-		Pass

802.11 b CH--Mid

802.11g CH--High

802.11n (HT20) CH-Mid

802.11n (HT20) CH—High

4.6. Radiated Emissions

4.6.1.1. Test Limits (< 30 MHZ)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meter)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

4.6.1.2. Test Limits (≥ 30 MHZ)

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m
@3M			
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBμV/m @3m	54 dBμV/m @3m	ABOVE 960 MHz	54dBuV/m

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Equipment

	Test Equipment						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 08, 2014	1 Year	
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 08, 2014	1 Year	
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 22, 2014	1 Year	
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 04, 2014	1 Year	
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 24, 2014	1 Year	
6.	Pre-amplifier	SONOMA	310N	186860	Aug. 08, 2014	1 Year	
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A	

4.6.2. Test Configuration: 4.6.2.1. 9k to 30MHz emissions:

4.6.2.2. 30M to 1G emissions:

4.6.2.3. 1G to 40G emissions:

4.6.3. Test Procedure

The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Measurements are made on 9KHz to 30MHz and 30MHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels.

All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz.

The EUT is tested in 9*6*6 Chamber.

The test results are listed in Section 4.6.4.

4.6.4. Test Results

Please refer to the following pages.

Job No.: 011409198E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: On Distance: 3m

Job No.: 011409198E Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: On Distance: 3m

Job No.: 011409198E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2412MHz) Distance: 3m

Job No.: 011409198E Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2412MHz) Distance: 3m

Job No.: 011409198E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2437MHz) Distance: 3m

Job No.: 011409198E Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2437MHz) Distance: 3m

Job No.: 011409198E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2462MHz) Distance: 3m

Job No.: 011409198E Polarization: Vertical

Standard: (RE)FCC PART15 C _3m Power Source: AC 120V, 60Hz for adapter

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 802.11b(2462MHz) Distance: 3m

5. PHOTOGRAPH

5.2. Photo of Radiation Emission Test

APPENDIX I (EXTERNAL PHOTOS)

Figure 1

The EUT is placed in the host.

Figure 2
The PCB-Front View (on the Evaluation Kit)

The module is placed on the Evaluation Kit.

$\textbf{APPENDIX} \quad \text{$ \coprod$ (INTERNAL PHOTOS)$ }$

Figure 4
The EUT-Front View

Figure 5
The EUT-Back View

