Intégration - Résumé

October 25, 2023

THEVENET Louis

Table des matières

1.	Estimation	1
	1.1. Modèle statistique, estimateurs	1
	1.2. Inégalité de Cramér Rao	1
	1.3. Maximum de vraisemblance	2
	1.4. Méthode des moments	2
	1.5. Estimation Bayésienne	2
	1.6. Intervalles de confiance	3
2.	Tests Statistiques	3

TD1: Maximum & méthode des moments

1. Estimation

Qualités d'un estimateur

1.1. Modèle statistique, estimateurs

Définition 1.1.1:

On note $\hat{\theta}(X_1,...,X_n),\,\hat{\theta}_n$ ou $\hat{\theta}$ l'estimateur lié aux n VA $iid~X_1,...,X_n$ elles-mêmes liées aux n observations $x_1, ..., x_n$

- Biais : $b_n(\theta) = E(\hat{\theta}_n) \theta \in \mathbb{R}^p$ Variance : $v_n(\theta) = E\left[\left(\hat{\theta}_n E(\hat{\theta}_n)\right)^2\right]$ Matrice de covariance : $E\left[\left(\hat{\theta}_n E(\hat{\theta}_n)\right)\left(\hat{\theta}_n E(\hat{\theta}_n)\right)^T\right]$ Erreur quadratique moyenne (MSE) : $e_n(\theta) = E\left[\left(\hat{\theta}_n \theta\right)^2\right] = v_n(\theta) + b_n^2(\theta)$
- un estimateur $\hat{\theta}_n$ est convergent si $\lim_{n\to +\infty} b_n(\theta) = \lim_{n\to +\infty} v_n(\vec{\theta}) = 0$

1.2. Inégalité de Cramér Rao

Théorème 1.2.1:

$$\mathrm{Var}\Big(\hat{\theta}_n\Big) \geq \frac{\big[1 + b_n'(\theta)\big]^2}{(-E\Big\lceil \frac{\partial^2 \ln(L(X_1,\dots,X_n;\theta))}{\partial \theta^2}\Big)]}) = \mathrm{BCR}(\theta)$$

- BCR : Borne de Cramér-Rao
- $L(X_1,...,X_n;\theta)$: vraisemblance
- Hypothèses:
 - 1. log-vraisemblance deux fois dérivable
 - 2. suport de la loi indépendant de θ

1.3. Maximum de vraisemblance

Définition 1.3.1: Maximum de vraisemblance

$$\hat{\theta}_{\text{MV}} = \arg\max_{\theta} L(X_1, ..., X_n; \theta)$$

Théorème 1.3.1: Recherche de $\hat{\theta}_{\text{MV}}$

- Cherche les points fixes de la vraisemblances ou de la log-vraisemblances
- Tableau de variations pour vérifier ou alors étudier $\frac{\partial^2 \ln L(X_1,...,X_n;\hat{\theta}_{\text{MV}})}{\partial \theta^2} < 0$

Définition 1.3.2: Régularité

Comment construire un estimateur

1.4. Méthode des moments

1.5. Estimation Bayésienne

Définition 1.5.1: Estimation Bayésienne

On va estimer un paramètre inconnu $\theta \in \mathbb{R}^p$ à l'aide de l'estimation paramétrée par θ , et θ une loi à priori $p(\theta)$. Pour celà on minimise une fonction de coût $c(\theta, \hat{\theta})$ qui représente l'erreur entre θ et $\hat{\theta}$. Deux estimateurs principaux :

- MMSE : moyenne de la loi à posteriori $\hat{\theta}_{\text{MSEE}} = E(\theta(X_1,...,X_n))$
- MAP : estimateur du maximum à posteriori de θ est définie par $\hat{\theta}_{\text{MAP}} = \argmax_{\theta} p(\theta \mid X_1,...,X_n)$

Théorème 1.5.1: MMSE

L'estimateur MMSE minimise l'erreur quadratique moyenne (Root Mean Square) On a

$$c \! \left(\boldsymbol{\theta}, \boldsymbol{\hat{\theta}} \right) = E \! \left[\left(\boldsymbol{\theta} - \boldsymbol{\hat{\theta}} \right)^T \! \left(\boldsymbol{\theta} - \boldsymbol{\hat{\theta}} \right) \right]$$

Théorème 1.5.2: MAP

à vérifier si ça minimise la moyenne ou la f° de coût tout court On a :

• L'estimateur MAP minimise la fonction de coût $E\left[c\left(\theta,\hat{\theta}\right)\right]$ avec

$$c \Big(\theta, \hat{\theta} \Big) = \begin{cases} 1 \text{ si } \left\| \theta - \hat{\theta} \right\| > \delta \\ 0 \text{ si } \left\| \theta - \hat{\theta} \right\| < \delta \end{cases}$$

1.6. Intervalles de confiance

2. Tests Statistiques

Définition 2.1:

- Risque de première espèce (fausse alarme) : $\alpha = \text{PFA} = P[\text{Rejeter } H_0 \mid H_0 \text{ vraie}]$
- Risque de seconde espèce (non détection) : $\beta = PND = P[Rejeter \ H_1 \ | \ H_1 \ vraie]$
- Puissance du test (proba de détection) : $\pi = 1 \beta$

Pour faire un test, on a H_0, H_1 etc bien posées

Statistique du test ? $T(x_1,...,x_n)$

Règle du test $: \equiv$ zone critique

ex
1 : si
$$T(x_1,...,x_n) {>S_\alpha: \ \text{rejet} \ H_0 \atop < S_\alpha: \ \text{accepte} \ H_0}$$