XR/17032 Processor Specification Draft 11

April 1, 2023

SPECIFICATION COPYRIGHT

BSD 3-Clause License

Copyright (c) 2023, TomAwezome

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

REGISTERS

The XR/17032 processor architecture contains 32 GPRs (general-purpose registers), and 16 CRs (control registers).

Control Registers

For control registers, there are 2 instructions, MTCR and MFCR, that alter the control registers, and for these 2 instructions the control registers are encoded in 4 bits of the opcode. The TBLO and TBINDEX control registers specifically are modified by the TBRD and TBFN instructions.

Encoding	Description
0000	Processor Status
0010	TLB Entry
0011	Exception Program Counter
0100	Exception Vector
0101	Page Table Base
0110	TLB Index
0111	Bad Address
1000	TLB Miss Handler
1001	Firmware Call Vector
1010	TLB Miss Scratch
1011	ASID & TLB Miss Address
1100	
1101	
1110	
1111	
	0000 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1110 1111

General Purpose Registers

General purpose registers are encoded with 5 bits in instruction opcodes using registers.

Name	Encoding	Description
ZERO	00000	Zero Register: always reads zero, ignores writes.
T0	00001	, 8
T1	00010	
T2	00011	
Т3	00100	
T4	00101	
T5	00110	
A0	00111	
A1	01000	
A2	01001	
A3	01010	
S0	01011	
S1	01100	
S2	01101	
S3	01110	
S4	01111	
S5	10000	

Name	Encoding	Description
S6	10001	
S7	10010	
S8	10011	
S9	10100	
S10	10101	
S11	10110	
S12	10111	
S13	11000	
S14	11001	
S15	11010	
S16	11011	
S17	11100	
S18 / TP	11101	AISIX: Scratch register 18.
,		MINTIA: Thread Local
		Storage Pointer
SP	11110	Stack Pointer
LR	11111	Link Register

MEMORY

The memory layout of the address space of the $\rm XR/17032$ architecture are discussed here. TODO:

• finish writing this section

OPCODES

Example - EX imm16

Encoding

nnnn nnnn nnnn nnnn ssss sddd dd11 1100

This is where the full English explanation of an opcode goes.

Implementation

// put the exact code of how its implemented in xremu here. md.py adds backticks.

Notes

Any auxiliary notes (such as referring to other opcodes or document sections) goes here.

This is the only optional opcode toml key.

Example 2 - EX2 imm16

Encoding

nnnn nnnn nnnn nnnn ssss sddd dd11 1111

This is where the full English explanation of an opcode goes.

Implementation

// put the exact code of how its implemented in xremu here. md.py adds backticks.

Notes

Any auxiliary notes (such as referring to other opcodes or document sections) goes here.

This is the only optional opcode toml key.