main

Stephen C. Bannister Department of Economics University of Utah Salt Lake City, Utah 84112 USA steve.bannister@econ.utah.edu

Arr B&B 20:30 7/3/13

Trip 7/2-7/3

Dpt SLC 7:10 7/2/13, DL Arr ATL 12:30 7/2/13 Dpt ATL 22:45 7/2/13 DL 10 Arr I HR 12:00 7/3/13 Dpt LHR 12:30 7/3/13 Heathrow Express Arr Paddington 13:00 7/3/13 Dpt Paddington 13:30 7/13/13 Tube Arr Euston 14:00 7/1/13 Dpt Euston 14:43 7/3/13 Virgin Trains Arr BHI 16:00 7/3/13 Dpt BHI 16:08 7/3/13 Arriva Arr Aberystwyth 19:15 7/3/13

#### Met:

- Kerry Pendergrast
- Simon Clifford (EE)
- Robert Cheshire (Producer)
- Horst Eckhardt (Siemens)
- Bernhard
- Nachaat (med researcher?)
- Victor Ricansky
- Dave
- Richard

Evening: Beer Pool Hall, Pier Food dBeer

#### Impressions:

Kerry pretty down to earth, critical of Myron on everything except science

Simon. Very interesting. EE smart, nice. Has met with Alex Hill. Knows the story of Aurelio Hortung. Claims he is the brains, Hill is being pressured to keep quiet by security services. Confirmed Myron consulting with USN on how such a device could work.

main

Kerry background
Nachaat – Human Heart Project, modelling human heart for Dx purposes
My preso very well received – personally and professionally
Simon is an important guy has met with Alex Hill, thinks Hortung is the important one
Doug Lindstrom also has met Alex Hill
Cold current papers

travelled with Victor, Robert Myron is an utterly nice, grounded, brilliant man, "better than Einstein." Hiked through the tips trails Met with him alone He offered to help on my dissertation I invited him to my committee; accepted He said was interested in economics, maybe as much as I am interested in his physics Offered to help me with anything including tensor calc!!!! I felt I was in the presence of a great man

Swansea – Paddington 17:28 – 22:50 7/6/13 Paddington – Heathrow 23:00 –23:15 7/6/13 Heathrow – Sheraton 7/6/13 Sheraton – Heathrow 7/7/13

#### Agenda

- Economics what is it, what are our challenges?
- Intersection of physics and economics
  - Methodologies
  - Thermodynamics
  - Shared people
- South Wales industrial history
- My interests
- Importance of energy in economic systems; hence, the importance of ECE theory in future economic systems
- The role of AIAS in the next great positive supply shock

#### What do economists do?

- Attempt to model complex social systems Macroeconomics – equilibrium-based models
- Attempt to explain individual (consumer/firm) behaviour Microeconomics – constrained optimization
- Attempt to link them microfoundations of macroeconomics, network systems with emergent behaviours, stochastic agent-based models.
  - N.B. the "Fallacy of Composition" makes the emergent properties of network systems (graph theory) a very compelling methodology, at least in economics

#### Challenges of economics

- Macro models do not forecast well
- Macro models (DSGE) tend to have many adjustable parameters, are very complex
- Empirical (statistical) models offer some relief, but . . .
- Few repeatable experiments

- Use maths in several ways (physics envy?)
  - Theory so use mostly the same algebras you do (especially linear), although so far no tensor calculus
  - Applied since difficult to repeat experiments, have evolved a wide set of statistical methods
  - Simulation
- Use scientific methods, processes (publish, etc.)
- Have models with many adjustable parameters Myron's admonitions apply equally well to economics
- Share people Fredrick Soddy, Wall Streen "quants"

#### Similarities/dissimilarities with physics

- Narrow vein of thermodynamicists (Sergei Podolinski, Georgescu-Roegen, Timothy Garrett) to whom economics is a thermodynamic system
- Must incorporate institutions and history
- Again, very little repeatability difficult to "rewind" a macroeconomy since people are involved

Location

Droduct

Cuctomor

#### Industrial history of South Wales

Company

Contury

| Century                                 | Company                     | Location         | Product                   | Customer            |
|-----------------------------------------|-----------------------------|------------------|---------------------------|---------------------|
| 16 <sup>th</sup> -17 <sup>th</sup>      | Mineral and Battery Company | Tintern          | brass, wire               | woolcards           |
|                                         | Mines Royal                 | Cornwall         | copper mining             |                     |
|                                         |                             | Neath            | copper smelting (coal)    |                     |
|                                         | various                     | Swansea, Tenby   | coal mining               | export              |
|                                         | various                     | Brecon, Monmouth | iron (charcoal)           |                     |
| 18 <sup>th</sup> (1 <sup>st</sup> half) | various                     | Pontypool        | tinplate                  |                     |
|                                         | Humphrey Mackworth          | Melincryddan     | lead,copper               |                     |
|                                         | John Lane                   | Landore          | copper smelting           |                     |
|                                         | various                     | Swansea          | copper smelting           |                     |
|                                         | various                     | Taibach          | copper smelting           |                     |
|                                         | various (16)                | various (small)  | iron (charcoal)           |                     |
| 1750–1850                               | Powicke Forge               | Hirwaun          | iron (coal)               | Seven Years' War    |
|                                         | Llanishen                   | Merthyr          | mineral lease (iron)      | Merthyr Furnace     |
|                                         | Merthyr Furnace             | Dowalis          | iron (coal)               | war                 |
|                                         | Cyfarthfa                   | Merthyr          | mineral lease (iron)      | war                 |
|                                         | Pennydarren                 | Merthyr          | mineral lease (iron)      | war                 |
|                                         | Plymouth Works              | Merthyr          | mineral lease (iron)      | war                 |
|                                         | Cyfartha Works              | Merthyr          | cannon                    | US Revolution       |
|                                         | Cyfartha Works              | Merthyr          | puddlling process         | wrought iron        |
|                                         | various (4)                 | various          | tramroad canals           | transport           |
|                                         | Pen-y-Darren Ironworks      | Merthyr Tydfil   | steam engine              | hammer              |
|                                         | Richard Trevithick (1804)   |                  | locomotive                | transport           |
| 1815-1850                               | various                     | various          | iron,tinplate,copper,coal |                     |
| 1727-                                   | Robert Morris, others       | Swansea          | non-ferrous smelting      | input story         |
|                                         |                             |                  |                           | cheap coal near ore |

## Pen-y-darren engine replica, National Waterfront Museum, Swansea



## Blast furnaces 1709 (coke), Blists Hill, Coalbrookdale, Shropshire



#### My interests

Trip 7/2-7/3

Long time background physics interest, bemusement over great divide

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

#### My interests

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}.

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion . . .
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}. Along the way, I learned to "surrender" to the maths

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion ...
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}. Along the way, I learned to "surrender" to the maths
- Last year I "came out of the heterodox closet" by writing Myron on cold fusion; I am humbled by the response and truly feel I am on the sidelines of a revolution

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

- Long time background physics interest, bemusement over great divide
- Inet surfing ("unified field theory" or "TOE") on ↑ led me to Myron's site at least seven years ago
- The details on spacetime resonance energy (UFT87) completely hooked me as it fed my other passion ...
- Instead of retirement, I decided to complete my Ph.D. in economics to pursue {energy, development, growth}. Along the way, I learned to "surrender" to the maths
- Last year I "came out of the heterodox closet" by writing Myron on cold fusion; I am humbled by the response and truly feel I am on the sidelines of a revolution
- So, onto the importance of energy in economic systems: <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>A note on the University of Utah: one of the most heterodox economic programs in the world; also the home of Fleischmann and Pons experiments

#### English Industrial Revolution, 1590 - 1876

- Modern economic growth
- Unconstrained quantity of fossil carbon energy an energy revolution (in fact two!) led by a demand revolution
- Little statistical space for institutional or cultural events except to explain structural breaks



### Taxonomy of EIR explanations

| Label                   | Examples                                                          |
|-------------------------|-------------------------------------------------------------------|
| English exceptionalists | Landes (1969), McCloskey (2010), Mokyr (1992,2010)                |
| Partial culturalists    | Cipolla (1966), Pomeranz (2001), Allen (2009)                     |
| Primarily energetic     | Cottrell (1955), Wrigley (1988,2010), Malanima (2010), Nef (1932) |
| Thermodynamicists       | Georgescu-Roegen (1975), Ayres (2003), Garrett (2009)             |

# Author/time-span series of energy consumption, GDP, and population



# English real gross domestic product, levels and per–capita



# English real gross domestic product, log levels and log per-capita



#### Structural break comparison



## Coal and wood energy sources Source: Pearson & Fouquet



#### Energy consumption vs. standarized GDP



#### Scatterplot of energy consumption vs. GDP





Energy consumption, million tonnes of oil equivalent

#### Granger tests of energy/GDP dynamics

| Era                                       | Energy ~ GDP Pr(>F)        | GDP ~ Energy Pr(>F)        | AS/AD regime                                                                                                      |
|-------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1300 – 1500                               | 0.0106                     | 0.0003                     | EMP <sup>2</sup> , Black Death: increasing wages, family income                                                   |
| 1500 – 1600<br>1600 – 1750<br>1750 – 1873 | 0.1939<br>0.3529<br>0.0024 | 0.6126<br>0.5185<br>0.1100 | Positive demand shock<br>Energy supply constraint<br>Positive supply shock:<br>"virtuous" macro<br>feedback cycle |
| 1300 – 1873                               | 0.0002                     | 0.0361                     | Total study period                                                                                                |

<sup>&</sup>lt;sup>2</sup>European marriage pattern (Hajnal)

# Aggregate Supply - Aggregate Demand Four energy/GDP regimes





### Desaguliers manuscript

rection Pp, and a Quantity of the lifted up, and run out at P. This may be done 15 or 16 times in a Minute, because each Man would pull down but 30 Pounds at a time, after the manner that People ring Bells. But as no Time is to be loft, left the Mine be overflow'd by the Springs below, there must be 100 more Men to relieve these when they are weary. Now as it must be a rich Mine indeed whose Profit can afford to keep 200 Men at this Work; 000 2

468

#### FIRE-ENGINE.

Place 36.

Left. XII that Thought must be laid aside. We'll consider therefore what can be done by Horses. As an Horse is equal to five Men, we must work 20 Horses at a time to raise the Water requires; and as Horses must be reliev'd even more than Men, about 50 Hories must be kept to carry on this Work constantly, and bring down the End of the Beam b, 16 times. in a Minute, and make the number of Strokes requir'd in the Pump, the Weight of whose Rod after every Stroke will bring down the Endb 2, by drawing along the Tangent i H. It is plain to any body, that tho' the Horses may be had cheaper than Men, yet that will be a very expensive way. For the next Contrivance, we'll suppose a Philosopher to come, and find a means to bring down the End of the Beam, without Men or Horses, in this manner. To the Chain H L he fixes a

# Real wage to energy ratios Source: Robert Allen (2009)



## Microeconomic theory

$$\frac{\text{Marginal Revenue Product}_{\text{organic energy joule}}}{\text{Price}_{\text{organic energy joule}}} = \frac{\text{Marginal Revenue Product}_{\text{fossil energy joule}}}{\text{Price}_{\text{fossil energy joule}}}$$

## English wood energy supply constraint



 There is no (economic) activity without energy input, it is the only non-substitutable input

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime
- Andrea Rossi may be able to commercialize LENR without theoretical support, but such support will affect the speed of acceptance

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime
- Andrea Rossi may be able to commercialize LENR without theoretical support, but such support will affect the speed of acceptance
- At the moment, I am trying to be the economic historian who best explains the EIR, on my way to being the economist of space-energy economics

- There is no (economic) activity without energy input, it is the only non-substitutable input
- Spacetime energy, essentially unlimited and free, will propel us into a new economic regime
- Andrea Rossi may be able to commercialize LENR without theoretical support, but such support will affect the speed of acceptance
- At the moment, I am trying to be the economic historian who best explains the EIR, on my way to being the economist of space-energy economics
- What can I do to help?

#### Figure: Standardized English energy intensity of GDP



#### Figure: Log of GDP, with structural breaks



#### Figure: Log of population, with structural breaks



### **Data Sources**

| Data series            | Year range  | Geography     | Source                  |  |  |
|------------------------|-------------|---------------|-------------------------|--|--|
| Energy consumption     | 1300 – 1873 | England/Wales | Roger Fouquet (2008)    |  |  |
| Gross domestic product | 1300 – 1700 | England       | Graeme Snooks (1994)    |  |  |
|                        | 1741 – 1873 | England/Wales | Lawrence Officer (2009) |  |  |
| Population             | 1300 – 1540 | England       | Graeme Snooks (1994)    |  |  |
|                        | 1541 – 1800 | England       | B. R. Mitchell (1988)   |  |  |
|                        | 1801 – 1873 | England/Wales | B. R. Mitchell (1988)   |  |  |
|                        |             |               |                         |  |  |

#### Table: growth rates by century

| Year                 | 1300      | 1400     | 1500     | 1600     | 1700      | 1801  | 1873   | Total  |
|----------------------|-----------|----------|----------|----------|-----------|-------|--------|--------|
| GDP Million          |           |          |          |          |           |       |        |        |
| 2005 GBP             | 3114.7541 | 815.1288 | 994.4571 | 6031.953 | 8361.5911 | 18110 | 102811 |        |
| Century-over-century |           |          |          |          |           |       |        |        |
| rate of growth       |           | -0.738   | 0.220    | 5.066    | 0.386     | 1.166 | 4.677  | 32.008 |
| Compounded annual    |           |          |          |          |           |       |        |        |
| rate of growth       |           | -0.013   | 0.002    | 0.018    | 0.003     | 0.008 | 0.024  | 0.006  |
| Energy consumption   | 1.7       | 1        | 1.3      | 2.2      | 3.6       | 11.6  | 66.1   |        |
| Century-over-century |           |          |          |          |           |       |        |        |
| rate of growth       |           | -0.412   | 0.300    | 0.692    | 0.636     | 2.222 | 4.698  | 37.882 |
| Compounded annual    |           |          |          |          |           |       |        |        |
| rate of growth       |           | -0.005   | 0.0026   | 0.005    | 0.005     | 0.012 | 0.024  | 0.006  |
| Per-capita GDP       |           |          |          |          |           |       |        |        |
| 2005 GBP             | 542       | 329      | 421      | 1,484    | 1,663     | 1,999 | 4,392  |        |
| Century-over-century |           |          |          |          |           |       |        |        |
| rate of growth       |           | -0.393   | 0.282    | 2.521    | 0.121     | 0.202 | 1.198  | 7.108  |
| Compounded annual    |           |          |          |          |           |       |        |        |
| rate of growth       |           | -0.005   | 0.002    | 0.013    | 0.001     | 0.002 | 0.011  | 0.004  |
|                      |           |          |          |          |           |       |        |        |

#### Table: Energy and GDP fit tests

| Test                  | Statistic | p-value   |
|-----------------------|-----------|-----------|
| Pearson's correlation | 0.998     |           |
| Paired t-test         | 5.592     | 4.991e-07 |
| Chi-square            | 2864      | 0.0004998 |