Distribution	Parameters	PMF/PDF	E[X]	Var(X)	Support
Binomial (n, p)	$n \in \{0, 1, 2, \ldots\}$ $p \in [0, 1]$	$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$	np	np(1-p)	$x \in \{0, 1, 2, \ldots\},$ # of successes
$\operatorname{Poisson}(\lambda)$	$\lambda > 0$ (rate)	$P(X=x) = \frac{\lambda^x e^{-x}}{x!}$	λ	λ	$x \in \{0, 1, 2, \ldots\},$ counts
Uniform (a,b)	$a < b \in \mathbb{R}$	$f_X(x) = \frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$x \in (a, b)$
$Normal(\mu, \sigma^2)$	$\mu \in \mathbb{R}$ $\sigma^2 > 0$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{1}{2\sigma^2}(x-\mu)^2\}$	μ	σ^2	$x \in \mathbb{R}$
$\mathrm{Beta}(lpha,eta)$	$\alpha > 0$ $\beta > 0$	$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$x \in [0, 1]$
$\operatorname{Gamma}(\alpha,\beta)$	$\alpha > 0$ (shape) $\beta > 0$ (rate)	$f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$	$rac{lpha}{eta}$	$rac{lpha}{eta^2}$	$x \in \mathbb{R}^+$
Exponential(λ)	$\lambda > 0$ (rate)	$f_X(x) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$x \in [0, \infty)$
Student's t_{ν}	$\nu > 0 \; (\text{d.f.})$	$f_X(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}$		$\frac{\nu}{\nu-2}, \text{ if } \nu > 2$ $\infty, \text{ if } 1 < \nu \le 2$ DNE o.w.	$x \in \mathbb{R}$
Chi-Squared (k)	$k \in \{1, 2, \ldots\}$ (d.f)	$f_X(x) = \frac{1}{\Gamma(k/2)} x^{k/2 - 1} e^{-x/2}$	k	2k	$x \in (0, \infty)$, if $k = 1$ $x \in [0, \infty)$ o.w.