

Outline

Derivation of production function

Continuous models of business cycles Resilience and performance

Notes:

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 1 / 18

General derivation of production function

- ▶ Consider two Inputs X_1 , X_2 , Output $Y(X_1, X_2)$
- ▶ Homogeneity of degree *n*: $Y(\alpha X_1, \alpha X_2) = \alpha^n Y(X_1, X_2)$
 - ightharpoonup Remember: Returns to scale. Linear homogeneity: n=1

$$1 \cdot Y(X_1, X_2) = X_1 \frac{\partial Y(X_1, X_2)}{\partial X_1} + X_2 \frac{\partial Y(X_1, X_2)}{\partial X_2}$$

► Diminishing returns to scale:

$$\frac{\partial^2 Y(X_1, X_2)}{\partial X_1^2} < 0 \; ; \; \frac{\partial^2 Y(X_1, X_2)}{\partial X_2^2} < 0$$

▶ Separation of variables: $Y(X_1, X_2) = G(X_1)H(X_2)$

$$G(X_1)H(X_2) = X_1 \frac{dG(X_1)}{dX_1}H(X_2) + X_2 \frac{dH(X_2)}{dX_2}G(X_1)$$

$$1 = X_1 \frac{dG(X_1)/dX_1}{G(X_1)} + X_2 \frac{dH(X_2)/dX_2}{H(X_2)}$$

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

► Can only hold if

$$X_1 \frac{dG(X_1)/dX_1}{G(X_1)} = \alpha$$
$$X_2 \frac{dH(X_2)/dX_2}{H(X_2)} = \beta$$
$$\alpha + \beta = 1$$

► Integration:

$$\int \frac{dG(X_1)/dX_1}{G(X_1)} dX_1$$

$$= \int \frac{\alpha}{X_1} dX_1 = \alpha \ln X_1 + C_1$$

► Result with $Y(1,1) = A = e^{(C_1 + C_2)}$

$$Y(X_1,X_2)=AX_1^{\alpha}X_2^{\beta}$$

Prof. Frank Schweitzer — 2 / 18

Alternative derivation: Profit maximization

- **Production function**: Y(K, L), K: capital, L: labor
- **Profit**: price $p \times$ output minus cost for capital, labor

$$\pi = pY(K, L) - rK - wL$$

▶ Profit maximization: $\partial \pi / \partial K = \partial \pi / \partial L = 0$

$$p\frac{\partial Y(K,L)}{\partial L} - w = 0 \; ; \; p\frac{\partial Y(K,L)}{\partial K} - r = 0$$

- ightharpoonup Determines $L^*(r, w, p)$, $K^*(r, w, p)$
- \blacktriangleright Fractions α , β used to pay labor, capital

$$\frac{\alpha p Y(K, L) = w L^* \; ; \; \beta p Y(K, L) = r K^*}{\frac{[\partial Y(K, L) / \partial L]_{K^*, L^*}}{Y(K^*, L^*)}} = \frac{\alpha}{L^*} \; ; \; \frac{[\partial Y(K, L) / \partial L]_{K^*, L^*}}{Y(K^*, L^*)} = \frac{\beta}{K^*}$$

$$\frac{\partial}{\partial L} \ln Y(K, L)_{K^*, L^*} = \frac{\alpha}{L^*}$$

$$\frac{\partial}{\partial K} \ln Y(K, L)_{K^*, L^*} = \frac{\beta}{K^*}$$

$$\begin{aligned} \ln Y(K,L) &= \alpha \ln L + H(K) + C_L \\ \ln Y(K,L) &= \beta \ln K + G(L) + C_K \\ H(K) &= \beta \ln K + C_K \\ G(L) &= \alpha \ln L + C_L \\ Y(K,L) &= AK^{\beta}L^{\alpha} \; ; \; A = C_K + C_L \end{aligned}$$

Constant returns to scale:
$$\alpha + \beta = 1$$

$$Y(\lambda K, \lambda L) = A(\lambda L)^{\alpha} (\lambda K)^{\beta}$$

$$= \lambda^{\alpha+\beta} A L^{\alpha} K^{\beta}$$

$$= \lambda^{\alpha+\beta} Y(K, L)$$

ETH ZÜriCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer $\,-\!$ 3 / 18

Notes:

Rewriting $Y(X_1, X_2)$ in terms of partial derivatives follows the Euler Theorem.

- r: capital rental rate (i.e. interest rate), w: wage rate, p: price level
- G(L): a constant of integration that may depend on L, here it is $\alpha \ln L$
- H(K): a constant of integration that may depend on K, here it is $\beta \ln K$
- More information: Cobb, C. W. and P. H. Douglas (1928), A theory of production. American Economic Review 18(1):139-165.
- A: Total factor productivity (TFP): Accounts for effects in total output not caused by inputs. For example, a year with
 unusually good weather will tend to have higher output, because bad weather hinders agricultural output. A variable
 like weather does not directly relate to unit inputs, so weather is considered a total-factor productivity variable.

Outline

Derivation of production function

Continuous models of business cycles

Resilience and performance

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 4 / 18

Formalizing the Kaldor model

▶ Remember Kaldor's model: Dynamics of production:

$$\dot{Y}(I,S) = F(Y,K) = \alpha \left[I(Y,K) - S(Y,K) \right]$$
$$\dot{K} = G(Y,K) = I(Y,K) - \kappa K$$

- Nonlinear functions for investment I(Y, K), savings S(Y, K)
- ightharpoonup Capital K accumulates from investment, κ : depreciation rate
- ▶ Equilibrium: $\dot{Y} = \dot{K} = 0 \rightarrow (Y^*, K^*), \kappa = 0$
- ► Taylor expansion gives the following Jacobian matrix:

$$J = \begin{bmatrix} \frac{\partial F}{\partial Y} & \frac{\partial G}{\partial Y} \\ \frac{\partial F}{\partial K} & \frac{\partial G}{\partial K} \end{bmatrix} = \begin{bmatrix} F_Y & G_Y \\ F_K & G_K \end{bmatrix} = \begin{bmatrix} \alpha(I_Y - S_Y) & \alpha(I_K - S_K) \\ I_Y & I_K \end{bmatrix}$$

$$\tau := \operatorname{tr}(\mathbf{J}) = (F_Y + G_K) = \alpha(I_Y - S_Y) + I_K$$

$$\Delta := \det(\mathbf{J}) = (F_Y G_K - F_K G_Y)$$

$$= \alpha(I_Y - S_Y)I_K - \alpha I_Y(I_K - S_K)$$

$$= \alpha(I_Y S_K - I_K S_Y) > 0$$

▶ Roots of the characteristic polynomial

$$\det(\mathbf{J} - \lambda \mathbf{I}) = \lambda^2 - \tau \lambda + \Delta$$

Solution

$$\lambda_{1,2} = rac{1}{2} \left(au \pm \sqrt{ au^2 - 4\Delta}
ight)$$

► Stability for real negative parts

$$\tau < 0 \rightarrow \alpha (I_Y - S_Y) + I_K < 0$$

▶ When is $(I_Y - S_Y) < 0$??? (A,C)

Prof. Frank Schweitzer -

Notes:

- κ: constant depreciation rate
- ullet α : adjustment speed in the market of goods

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

K: capital stock

Example from Gabisch/Lorenz p 158

Transitional dynamics

► Curve: $\dot{K} = 0 \rightarrow G_Y dY + G_K dK = 0$

$$\left. \frac{dK}{dY} \right|_{\dot{K}=0} = -\frac{G_Y}{G_K} = -\frac{I_Y}{I_K} > 0$$

- $\dot{K} = 0$: Upward sloping curve
- Above: $I_K < 0$, therefore $\dot{K} < 0$
- ▶ Below: $I_K > 0$, therefore $\dot{K} > 0$
- ► Curve: $\dot{Y} = 0 \rightarrow F_Y dY + F_K dK = 0$

$$\left. \frac{dK}{dY} \right|_{\dot{Y}=0} = -\frac{F_Y}{F_K} = -\frac{I_Y - S_Y}{I_K - S_K} \stackrel{\leq}{=} 0$$

- ► Sign/slope of $\dot{Y} = 0$ depends on S_Y and I_Y
- ► Negative: low and high Y, positive: near Y*
- $ightharpoonup d\dot{Y}/dK = \alpha(I_K S_K) > 0 \text{ below } \dot{Y} = 0 \rightarrow Y$
- $\blacktriangleright d\dot{Y}/dK = \alpha(I_K S_K) < 0$ above $\dot{Y} = 0 \rightarrow Y$ decreases

ETH ZÜriCh Chair of Systems Design — www.sg.ethz.ch

Important assumptions:

$$\frac{dI}{dY} = I_Y > 0 ; \quad \frac{dS}{dY} = S_Y > 0$$
$$\frac{dI}{dK} = I_K < 0 ; \quad \frac{dS}{dK} = S_K > 0$$

Result: Limit Cycle

Prof. Frank Schweitzer — 6 / 18

Hysteresis

- Focus on equilibrium points I(Y, K) = S(Y, K)
 - Assume $\kappa = 0$ to simplify equations
- $ightharpoonup \Delta > 0$ because of $I_K < 0$, S_K , S_Y , $I_Y > 0$
- ightharpoonup au < 0 at stable points (A), (C): $I_Y < S_Y$
- ightharpoonup au > 0 at instable point (B): $I_Y > S_Y$
- ▶ Hysteresis
 - \blacktriangleright (C) \rightarrow (D): K rises from K_0 to K_2
 - ▶ (D) \rightarrow (E): Y_C and Y_B merge in (D) \rightarrow unstable \rightarrow jump
 - \blacktriangleright (E) \rightarrow (F): K declines to K_1 , Y_A and Y_B merge in (F), etc.

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 7 / 18

Notes:

Limit cycle

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — 8 / 18

Van-der-Pol oscillator

► Differentiate Kaldor's nonlinear function:

$$\dot{Y} = \alpha \left[I(Y, K) - S(Y, K) \right]$$

$$\ddot{Y} = \alpha \left[I_Y \dot{Y} + I_K \dot{K} - S_Y \dot{Y} - S_K \dot{K} \right]$$

► Substitute function $\dot{K} = 0 = I(Y, K)$:

$$\ddot{Y} - \alpha[I_Y - S_Y]\dot{Y} - \alpha[I_K - S_K]I(Y, K) = 0$$

► **Assumption 1:** Capital determined by savings

$$\dot{Y} \approx 0 \rightarrow I \approx S \rightarrow \dot{K} = S$$

Assumption 2: $(I_K - S_K)$ independent of capital stock

$$I_{K}[1 - (S_{K}/I_{K})] \rightarrow I_{K}[1 + c] \text{ if } S(K) \propto K ; I(K) \propto -K$$
$$\ddot{Y} - \alpha [I_{Y} - S_{Y}] \dot{Y} - \alpha I_{K}S(Y) = 0$$

Chair of Systems Design — www.sg.ethz.ch

► **Assumption 3:** Symmetric shapes of I(Y, K), S(Y, K)

$$S(Y) = a - bY + cY^{3}$$

$$S_{Y} = -b + c_{1}Y^{2}$$

$$I(Y) = -a + bY - cY^{3}$$

$$I_{Y} = b - c_{1}Y^{2}$$

▶ Parabolic function for $[S_Y - I_Y]$

$$\ddot{x} + A(x)\dot{x} + B(x) = 0$$

$$A(x) = \alpha[S_Y - I_Y] = \mu(x^2 - 1)$$

$$B(x) = x$$

► Van-der-Pol equation:

$$\ddot{x} + \mu(x^2 - 1)\dot{x} + x = 0$$

Prof. Frank Schweitzer — 9 / 18

Notes:

Notes:

- A(x): spring force
- $A(x)\dot{x}$: damping factor
- μ : related to adjustment coefficient α of the damping term

This discussion follows: A. Chian, *Complex Systems Approach to Economic Dynamics*, Springer 2007, pp. 13-14. Unfortunately, the book does not explain the model better than the slide.

Van-der-Pol oscillator: Dynamics

$$\ddot{x} + \mu(x^2 - 1)\dot{x} + x = 0$$

- ightharpoonup control parameter $\mu < 0$: decaying spiral
- \blacktriangleright $\mu > 0$: oscillations of different size/shape

Hopf bifurcation

- ▶ Non-linear damping term: $\mu(x^2-1)\dot{x}$
 - Positive for |x| > 1: large amplitude oscillations decay
 - Negative for |x| < 1: oscillations grow if become too small
- **Control parameter** μ
 - ▶ Hopf bifurcation at $\mu = 0$
 - ▶ Stable limit cycle for $\mu > 0$
 - lacktriangle Varying cycle shape and size dependent on μ
- ► Hopf bifurcation
 - ► Eigenvalues are complex conjugates
 - ▶ Pass through the imaginary axis at bifurcation
 - ► Analytical criteria difficult
 - **Example:** 2d oscillations with frequency ω

$$\dot{r} = \mu r - r^3$$
; $\dot{\theta} = \omega + br^2$

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 11 / 18

Notes:

Forced Van-der-Pol oscillator

$$\ddot{x} + \mu(x^2 - 1)\dot{x} + x = I(t)$$

- \blacktriangleright $I(t) \rightarrow$ autonomous investment
- **Exogenous force:** $I(t) = a \sin(\omega t)$
- ► Amplitude a: Control parameter
- ► **Result:** Period doubling scenario

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

From linear to nonlinear accelerator-multipliers

- Model
 - **Capital** *K*: Fixed fraction of income $\rightarrow K = \nu Y$
 - ▶ **Investment** *I*: Change of capital $\rightarrow I = \dot{K} = \nu \dot{Y}$
 - **Savings**: Fixed fraction of income $\rightarrow S = sY$
- **▶** Dynamics:
 - ▶ **Assumption 1:** $\dot{Y} \propto (I S) \rightarrow \text{Remember Kaldor}$
 - ► Assumption 2: $\dot{I} \propto (\dot{K} I) = (\nu \dot{Y} I) \rightarrow \text{delayed}$
 - ► Unify adjustment speeds (suitable time unit)

$$\dot{Y} = I - sY$$
: $\dot{I} = \nu \dot{Y} - I$

▶ Differentiate, using : $I = \dot{Y} + S = \dot{Y} + sY$

$$\ddot{Y} = \dot{I} - s\dot{Y} = (\nu - s)\dot{Y} - I = (\nu - s)\dot{Y} - \dot{Y} - sY$$

$$\ddot{Y} - (\nu - 1 - s)\dot{Y} + sY = 0$$

► Replace linear accelerator

$$u\dot{Y}
ightarrow
u (\dot{Y} - \frac{1}{3}\dot{Y}^3)$$

 \blacktriangleright Make I(t) exogenous:

 \rightarrow autonomous investment

$$\ddot{Y} - (\nu - 1 - s)\dot{Y} + \frac{\nu}{3}\dot{Y}^3 + sY = I(t)$$

► Existence of **limit cycles**

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 13 / 18

Notes:

The pictures are taken from A. Chian (2007), p. 17, 19

The bifurcation diagram does not allow us to conclude a chaotic dynamics. In fact, the maximum Liapunov exponent is zero for 0 < a < 1 and negative for a > 1. Only at about a = 1 it becomes slightly larger than zero. Lorenz (1987) and Lorenz and Nusse (2002) have considered the generalization of this oscillator equation in an economic

• Periodic and chaotic time series. (a) A periodic time series x(t) for a = 0.983139, (b) two chaotic time series for a=0.9877 with slightly different initial conditions:x=0.2108 and $\dot{x}=0.0187$ for the solid line x=0.2100 and $\dot{x} = 0.0187$ for the dashed line

Notes:

The adjustment equations assume different speeds for the two adaptive processes. Samuelson and Hicks assumed identical speed for all kind of adjustments \rightarrow Unify.

The basic equation is capable of producing damped or explosive oscillations, depending on the sign of $(\nu - 1 - s)$, but nothing else. The boundary case $\nu=(1+s)$ produces a standing cycle, but its probability is small, and it is structurally

Source: Puu(1997), Nonlinear economic dynamics.

Two coupled economies

Dynamics: $\dot{Y}_i = I_i - S_i$ (i = 1, 2)

▶ **Import:** $M_i = m_i Y_i \rightarrow \text{Increase of } S_i$

Export: $X_i = m_i Y_i \rightarrow \text{Increase of } I_i$

► Linear multiplier-accelerator model

$$\dot{Y}_i = I_i - s_i Y_i$$

▶ Savings: $S_i = s_i Y_i$, investments I_i

► Savings growth: $\dot{S}_i = s_i \dot{Y}_i + m_i Y_i$

► Investment dynamics: $\dot{I}_i = \nu_i \dot{Y}_i - I_i + m_i Y_i$

► nonlinear replacement

$$u\,\dot{Y}
ightarrow
uig(\dot{Y}-rac{1}{3}\dot{Y}^3ig)$$

▶ Differentiate, using $I_i = \dot{Y}_i + S_i = \dot{Y}_i + s_i Y_i$:

$$\ddot{Y}_i + (s_i + m_i)Y_i - m_jY_j = (\nu_i - 1 - s_i)\dot{Y}_i - \frac{\nu_i}{3}\dot{Y}_i^3$$

Coupled oscillations

Dynamics: Periodic solutions of a ${\rm common\ period\ }\omega$

$$Y_i = A_i(t)\cos\omega t + B_i(t)\sin\omega t$$

- \triangleright A_i and B_i :slowly varying functions of $\mathsf{time} \to \textbf{Quasiperiodic solution}$
- ► NO cycle is repeated

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 15 / 18

Notes:

Notes:

• The phase diagrams for both regions are displayed in the second and fourth quadrants with Lissajou figures in the first and third showing the covariation of the two oscillators

Driven oscillations of a small economy

- System 1: Small economy, System 2: Rest of the world
- ▶ World economy oscillates at its own amplitude, frequency
- System 2 \rightarrow driving force with amplitude K/ω

$$\ddot{Y}_1 + (s_1 + m_1)Y_1 - m_2Y_2 = (\nu_1 - 1 - s_1)\dot{Y}_1 - \frac{\nu_1}{3}\dot{Y}_1^3$$

► Set phase lead equal to zero, rescale

$$\ddot{Y}_1 + Y_1 = 5\dot{Y}_1 - \frac{5}{3}\dot{Y}_1^3 + \frac{K}{\omega}\cos\omega t$$

► Differentiate:

$$\ddot{Y}_1 + \dot{Y}_1 = 5(1 - \dot{Y}_1^2)\ddot{Y}_1 - K \sin \omega t$$

▶ Define $X = \dot{Y}_1 \rightarrow$ **Forced Van-der-Pol oscillator**:

$$\ddot{X} + X = 5(1 - X^2)\dot{X} - K\sin\omega t$$

▶ Period doubling scenario \rightarrow **Chaos** for K = 5, $\omega \in (2.457, 2.463)$

ETHZÜRICH Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 16 / 18

Questions

- What are the three main assumptions to derive a Cobb-Douglas production function?
- 2 Recall the conditions to obtain stable/unstable oscillations and fixed points.
- 3 Why do we observe a hysteresis in the Kaldor model?
- What is a van-der-Pol oscillator? Why is it relevant for economic dynamics?
- 6 Why is the existence of limit cycles a sign of business cycles?
- Recall the definition of deterministic chaos. Should we always expect chaotic business cycle dynamics?
- Describe the relation between models of coupled systems and and models of forced oscillations.

ETH ZÜRİCh Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer - 17 / 18

Notes:

Kapitaniak, following Parlitz and Lauterborn, has demonstrated that the above equation has solutions that go through a period doubling cascade to chaos when k=5 and ω takes values in the interval from 2.457 to 2.463.

B 1				
- IN	n	ıt.	ρ	s.

Outline

Derivation of production function

Continuous models of business cycles

Resilience and performance

ETH ZÜRİCİN Chair of Systems Design — www.sg.ethz.ch

Prof. Frank Schweitzer — — 18 / 18