Chapter 9

레이블 부족 문제 다루기

2024.01.30 이상민

목차

- 1. 깃허브 이슈태거
- 2. 레이블링된 데이터가 없는 경우
- 3. 레이블링된 데이터가 적은 경우
- 4. 레이블링되지 않은 데이터 활용

1.1 데이터 준비

데이터 다운로드

```
import pandas as pd

dataset_url = "https://git.io/nlp-with-transformers"

df_issues = pd.read_json(dataset_url, lines=True)

print(f"데이터프레임 크기: {df_issues.shape}")

데이터프레임 크기: (9930, 26)
```

불필요한 데이터 제거

1.2 EDA

이슈별 태그 개수 확인

df_issues["labels"].apply(lambda x: len(x)).value_counts().to_frame().T

index	0	1	2	3	4	5
labels	6440	3057	305	100	25	3

전체 태그 개수 확인

```
df_counts = df_issues["labels"].explode().value_counts().to_frame()
print(f"레이블 개수: {len(df_counts)}")
df_counts.head(8).T
```

레이블 개수: 65

inde	wontf	model	Core:	New	Core:	Help	Good First	Usag
x		card	Tokenization	model	Modeling	wanted	Issue	e
label s	2284	649	106	98	64	52	50	46

1.3 데이터 필터링

- 필터링 코드

inde	tokenizati	new	model	usag	pipeli	tensorflow	pytorc	documentat	exampl
x	on	model	training	e	ne	or tf	h	ion	es
label s	106	98	64	46	42	41	37	28	24

- 필터링 결과

2. 레이블링된 데이터가 없는 경우

2.1 zero-shot classification

사전학습 된 모델이 이전에 볼 수 없었던 클래스에서 분류할 수 있는 작업

2.2 자연어 추론

전제조건과 가설이 주어질 때 조건에 대해 가설이 일치하는지를 분류하는 작업

전제	가설	레이블
His favourite color is blue	He is into heavy metal music	neutral
She finds the joke hilarious	She thinks the joke is not funny at all	contradiction
The house was recently	The house is new	entailment

2.3 적용방법

이슈의 내용과 제목을 전제로 아래와 같은 예시를 가설로 정의해 모델에 입력

"This example is about {label}"

2. 레이블링된 데이터가 없는 경우

2.4 코드 구현

추론할때 다중 레이블 분류를 위해 multi_label = True로 설정

```
#모델 불러오기
from transformers import pipeline
pipe = pipeline("zero-shot-classification", device = 0)

#추론
sample = ds["train"][0]
print(f"레이블: {sample['labels']}")
output = pipe(sample["text"], all_labels, multi_label = True)#다중레이블 분류를 위해 multi_labe
print(output["sequence"][:400])
print("\n 예측:")

#결과 출력
for label, score in zip(output["labels"],output["scores"]):
    print(f"{label}, {score:.2f}")
```

2.5 출력 결과

```
레이블: ['new model']
Add new CANINE model
# 🙀 New model addition
## Model description
Google recently proposed a new **C**haracter **A**rchitecture with **N**o
tokenization **I**n **N**eural **E**ncoders architecture (CANINE). Not only the
title is exciting:
> Pipelined NLP systems have largely been superseded by end-to-end neural
modeling, yet nearly all commonly-used models still require an explicit tokeni
예측:
new model, 0.98
tensorflow or tf, 0.37
examples, 0.34
usage, 0.30
pytorch, 0.25
documentation, 0.25
model training, 0.24
tokenization, 0.17
pipeline, 0.16
```

3. 레이블링된 데이터가 적은 경우

3.1 Data Augmentation

데이터 증식(Data augmentation)은 갖고 있는 데이터 셋을 여러가지 방법으로 **늘리는 기법**

- 역 번역

원본 언어로 된 텍스트를 기계 번역을 사용해 **다른** 언어로 번역한다. 그 다음 번역된 언어를 다시 원본 언어로 번역

- 토큰 섞기

훈련 세트의 한 텍스트에서 **동의어 교체, 단어추가, 교환, 삭제** 같은 **간단한 변환**을 임의로 선택해 **수행**

3. 레이블링된 데이터가 적은 경우

3.2 Data Augmentation 코드

NlpAug의 wordembeding을 이용한 동의어 교체 코드

```
from transformers import set_seed import nlpaug.augmenter.word as naw set_seed(3) aug = naw.ContextualWordEmbsAug(model_path="distilbert-base-uncased", device="cpu", action="substitute") text = "Transformers are the most popular toys" print(f"원본 텍스트: {text}") print(f"원본 텍스트: {aug.augment(text)}")
```

3.3 Data Augmentation 결과

원본 텍스트: Transformers are the most popular toys 증식된 텍스트: ['transformers — the most coveted toys']

4.1 도메인 적응

하나의 도메인의 데이터에 대해 훈련된 모델을 다른 관련 도메인의 데이터에 대해 잘 수행하기 위해 적응시키는 과정

- 토큰화

- fine tuning

```
training_args = TrainingArguments(
    output_dir = f"{model_ckpt}-issues-128", per_device_train_batch_size=32,
    logging_strategy="epoch", evaluation_strategy="epoch", save_strategy="no",
    num_train_epochs=16, push_to_hub=True, log_level="error", report_to="none")

trainer = Trainer(
    model=AutoModelForMaskedLM.from_pretrained("bert-base-uncased"),
    tokenizer=tokenizer, args=training_args, data_collator=data_collator,
    train_dataset=ds_mlm["unsup"], #ds_mlm["unsup"]: 레이블(토큰)이 없는 데이터
    eval_dataset=ds_mlm["train"])

trainer.train()
```

4.2 UDA (비지도 데이터 증식)

UDA는 Labeled 데이터와 Unlabeled 데이터를 함께 학습에 활용하는 Semi-supervised Learning 방법

4.2 UDA (비지도 데이터 증식)

- Supervised Loss 일반적인 분류학습에 사용하는 cross entropy

- Consistency Loss

unlabeled 데이터의 문장 x와 x에 augmentation을 적용한 x^* 을 **분류 모델**에 넣어 두 개의 **확률 분포**를 추출한 뒤 두 확률분포의 차이인 KL-Divergence를 계산하여 consistency loss로 활용한다.

4.3 UST (불확실성 인지 자기훈련)

- Labeled 데이터와 Unlabeled 데이터를 함께 학습에 활용하는 Semi-supervised Learning 방법
- labeled된 데이터에서 teacher모델을 학습

- teacher모델을 사용해 레이블링 되지 않은 데이터에서 pseudo-label을 만들고 pseudo-label을 이용해 student 학습

Questions

- UDA에서 원본 데이터와 증강 데이터의 두 확률분포 차이를 최소화 하는 것이 왜 학습에 도움이될까? 현업에서 사용하는 semi supervised learning기법이 뭘까?

