

Syllabus

B. Tech Information Technology (Second Year Semester III and IV)

From

Academic Year 2021-22

(Revision-1)

Approved by FOET 08/05/2021 and AC 28/06/2021 SY B. Tech IT Revision 1.0

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

It is notified for information of all concerned that the Board of Studies at its meeting held on May 03,2021, and the subsequent meeting of Faculty of Engineering & Technology held on May 08, 2021 and the Academic Council held on June 28, 2021 amended the syllabus of SY B. Tech IT and same be brought in to force from Academic Year 2021-22 with immediate effect.

K. J. Somaiya College of Engineering, Mumbai -77

(A Constituent College of Somaiya Vidyavihar University)

Preamble

Technology is an integral part of everyday life. An Engineering education in Information Technology

gives broad exposure to various technical subjects that develop skills that are transferable to most

industries such as problem solving, decision making, innovation, project management, team working

and communication which will contribute to a rapidly changing technological environment.

Academic Autonomy conferred by the University of Mumbai from the Academic Year 2014-15, gave

us the freedom to develop and implement our own curriculum KJSCE2014 with features such as

inclusion of choice based Interdisciplinary Course (IDC), Audit Courses, Add on Credit Courses,

Add on Audit Courses, Exposure Courses, etc. Our revision in syllabus KJSCE2018, was introduced

from the academic year 2018-19, has been designed based on the revised AICTE guidelines as well

as various accrediting bodies. Some of the highlights of the KJSCE2018 syllabus are: more focus on

hands on, wide choice for branch specific electives, more number of open or interdisciplinary

electives, streamlined courses based on thrust areas, increased opportunity for internships, etc.

Laboratory courses like Programming labs will enhance the practical skills of the students.

With the formulation of Somaiya Vidyavihar University, the curriculum of SVU 2020 started from

the academic year 2020-2021. Some of the highlights are introduction of Minor degree, Honor

degree. More option for programming Laboratory courses including a course of Competitive

Programming laboratories to prepare the students better in terms of programming skills.

We at IT department of KJSCE endeavor continuously to enable our students to move forward and

confidently embrace change rather than follow; to innovate rather than stagnate and to initiate rather

respond to become efficient technocrats and dynamic entrepreneurs.

Dr. Irfan Siddavatam

Head, Department of Information Technology

Vision

To become a center of excellence for holistic education by preparing world class professionals in the

dynamic field of Information Technology.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Mission

Providing quality education to

- Develop competent IT professionals with ethical values and enable them in lifelong learning.
- Promote conducive ambience for research and creativity.

Program Educational Outcomes (PEO)

A graduate of Information Technology will

PEO1: Excel in professional career and contribute to social needs through Information Technology

PEO2: Pursue higher education, conduct research, demonstrate professionalism and ethics

PEO3: Exhibit innovation, adaptability, team work, leadership and communication skills

Program Outcomes (PO):

Engineering Graduates will be able to:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, cultural, environmental, health, safety and legal issues relevant to the professional engineering practice; understanding the need of sustainable development.

PO7: Multidisciplinary competence: Recognize/ study/ analyze/ provide solutions to real-life problems of multidisciplinary nature from diverse fields.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

PSO 1: Articulate, design, implement reliable, scalable, secure IT based solutions using latest practices and technologies.

PSO 2: Demonstrate competency of data analytics, interpretation, artificial intelligence in design and development of software systems.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Acron	ym for category of courses	Acrony	ms used in syllabus document
Acronym	Definition	Acronym	Definition
BS	Basic Science Course	CA	Continuous Assessment
ES	Engineering Science	ESE	End Semester Exam
HS	Humanities and Social Science	IA	Internal Assessment
	including Management Course		
PC	Professional Core Course	O	Oral
PE	Professional Elective Course	P	Practical
OE	Open Elective Course	P&O	Practical and Oral
LC	Laboratory Course	TH	Theory
PR	Project	TUT	Tutorial
AC	Audit Course	TW	Term work
AOCC	Add on Credit Course	ISE	In Semester Examination
AOAC	Add on Audit Course	СО	Course Outcome
AVAC	Add on Value Audit Course	PO	Program Outcome
EX	Exposure Course	PSO	Program Specific Outcome

Acronyms used in Course code e.g. 116U04C301

Acronym	Definition
Serially as per code	
1	First revision after Somaiya Vidyavihar University
	(First revision SVU 2020)
16	K J Somaiya College of Engineering
U	Undergraduate
04	Department of Information Technology
C	Core Course
L	Laboratory Course
T	Tutorial
E	Elective Course
S	Open Elective
M	Mandatory Non Credit Course
3	3- Semester 3 / 4- Semester 4
01	Course No.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Semester III

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH-P- TUT	Total (Hrs.)	Credits Assigned TH-P- TUT	Total Credits	Course Category
116U04C301	Discrete and Applied Mathematics	3-0-1	04	3-0-1	04	BS
116U04C302	Data Structures ^{\$}	3-0-0	03	3-0-0	03	PC
116U04C303	Database Management Systems	3-0-0	03	3-0-0	03	PC
116U04C304	Digital Systems	3-0-0	03	3-0-0	03	PC
116U04C305	Data Communication and Networking	3-0-0	03	3-0-0	03	PC
116U04 L301	Programming Laboratory I [®]	0 - 2 - 1	03	0-1-1	02	LC
116U04L302	Data Structures Laboratory	0-2-0	02	0-1-0	01	PC
116U04L303	Database Management Systems Laboratory	0 - 2 - 0	02	0-1-0	01	PC
116U04L304	Digital Systems Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
116U04L305	Data Communication and Networking Laboratory	0 - 2 - 0	02	0 - 1 - 0	01	PC
Total		15-10-02	27	15-05-02	22	
116U04A3XX	Audit Course &	02	02	_	_	AC

[@] Students will have a choice of Java Programming or Python Plus Language or C++

^{\$} Course common with Computer Engineering

[&]amp; Completion of the course equivalent to 25 activity points

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Examination Scheme

Course	Course Name			Exa	minat	ion Sc	hem	ie	
Code						arks			
		C	A	ESE	TW	0%	P	P&O #	Total
		ISE	IA						
116U04C301	Discrete and Applied Mathematics	30	20	50	25				125
116U04C302	Data Structures ^{\$}	30	20	50			-		100
116U04C303	Database Management Systems	30	20	50			-		100
116U04C304	Digital Systems	30	20	50			-		100
116U04C305	Data Communication and Networking	30	20	50			-		100
116U04 L301	Programming Laboratory I [@]				50*		-	25	75
116U04L302	Data Structures Laboratory				25		-	25	50
116U04L303	Database Management Systems Laboratory				25		-	25	50
116U04L304	Digital Systems Laboratory				25	25	-		50
116U04L305	Data Communication and Networking Laboratory				25	25	-		50
Total		150	100	250	175	50	-	75	800
116U04A3XX	Audit Course ^{&}	_	_			_	-		_

^{\$} Course common with Computer Engineering

[@] Students will have a choice of Java Programming or Python Plus Language or C++

[%] Oral examination based on entire theory syllabus

[#] Practical and Oral examination based on syllabus

^{*} Term Work based on continuous assessment

[&]amp; Completion of the course equivalent to 25 activity points

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Semester IV

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Course Category
116U04C401	Probability, Statistics and Optimization Techniques \$	3-0-1	04	3-0-1	04	BS
116U04C402	Information Theory and Coding	3-0-1	04	3-0-1	04	PC
116U04C403	Analysis of Algorithms	3-0-0	03	3-0-0	03	PC
116U04C404	Advanced Databases	3-0-0	03	3-0-0	03	PC
116U04L401	Competitive Programming Laboratory	0-2-2	04	0-1-2	03	LC
116U04L402	Web Programming – I Laboratory	0-2-2	04	0 - 1 - 2	03	LC
116U04L403	Analysis of Algorithms Laboratory	0-2-0	02	0-1-0	01	PC
116U04L404	Advanced Databases Laboratory	0-2-0	02	0-1-0	01	PC
Total		12-08-06	26	12-04-06	22	
116U04A4XX	Audit Course &	02	02			AC

^{\$} Course common with Computer Engineering

[&]amp; Completion of the course equivalent to 25 activity points

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Examination Scheme

Course	Course Name		Examination Scheme						
Code			Marks						
		C	A	ESE	TW	0%	P	P&O#	Total
		ISE	IA						
116U04C401	Probability, Statistics and Optimization Techniques ^{\$}	30	20	50	25	_	_	_	125
116U04C402	Information Theory and Coding	30	20	50	25	_	_	_	125
116U04C403	Analysis of Algorithms	30	20	50		_	_	_	100
116U04C404	Advanced Databases	30	20	50		_	_	_	100
116U04L401	Competitive Programming Laboratory				50*		-	50	100
116U04L402	Web Programming – I Laboratory				50*	_	_	50	100
116U04L403	Analysis of Algorithms Laboratory				25	_	-	25	50
116U04L404	Advanced Databases Laboratory				25	_	-	25	50
Total		120	80	200	200			150	750
116U04A4XX	Audit Course ^{&}		_	_	_	_	_		AC

- **\$ Course common with Computer Engineering**
- % Oral examination based on entire theory syllabus
- # Practical and Oral examination based on syllabus
- * Term Work based on continuous assessment
- & Completion of the course equivalent to 25 activity points

Semester III

SY B. Tech. Information Technology (KJSCE SVU 2020)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
116U04C301		Discr	ete and	Applie	ed Math	nematics	
		TH]	P	TUT*	Total
Teaching Scheme(Hrs.)	3			-		1	4
Credits Assigned		3			-	1	4
			_	Mark	S		
	C	CA		TW	0	P&O	Total
Examination Scheme	ISE	IA	ESE	1 77	U	P&O	Total
	30	20	50	25			125

^{*} Batch wise Tutorial

Course prerequisites: Applied Mathematics-I, Applied Mathematics –II

Course Objectives:

The objective of this course is to introduce different methods of finding Laplace Transform and Inverse Laplace transform of given function. The course also familiarizes students with the concepts of Relations, functions and different discrete structures. It will familiarize the students with different concepts of graph.

Course Outcomes

- CO1. Apply Different methods to find Laplace Transform and Inverse Laplace Transform of a function
- CO2. Find Fourier series, Fourier Integral and Fourier Transform of functions.
- CO3. Apply Relations, Functions and different discrete structures to solve Engineering problems.
- CO4. Apply various concepts of Graph theory to solve Engineering problems.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Lapla	ce Transform	12	CO 1
	1.1	Definition of Laplace Transform, Laplace Transform of sin(at), cos(at), sinh(at), cosh(at), erf(t), Heavi-side unit step, dirac-delta function, Laplace Transform of periodic function		
	1.2	Properties of Laplace Transform (without proof): Linearity, first shifting theorem, second shifting theorem, multiplication by t, division by t, Laplace Transform of derivatives and integrals, change of scale.		
	1.3	Inverse Laplace Transform: Partial fraction method, convolution theorem, Application of Laplace Transform: Solution of ordinary differential equations		
2	Fouri	er Series	12	CO2
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae		
	2.2	Fourier Series of Functions: Exponential, trigonometric functions, even and odd functions, half range sine and cosine series.		
	2.3	Complex form of Fourier series.		
3	Relati	ons and Functions	9	CO 3
	3.1	Pigeon hole principle		
	3.2	Relations: Definition, Types of relations, Equivalence relations, Partial ordering relations		
	3.3	Functions: Definition, Types of functions: Injective, Surjective, Bijective, Invertible function, Composite function.		
4	Algeb	raic Structure	6	CO 3
	4.1	Operations, Semi-groups, Groups, Rings, Integral Domains and Fields .		
	4.2	Isomorphism and Homomorphism of groups .		
5	Grapl	Theory	8	CO 4
	5.1	Introduction to graphs, graph terminology, representing graphs and graph isomorphism, connectivity.		
	5.2	Euler and Hamilton paths .		
	5.3	Introduction to Planar graphs .		
	5.4	Introduction to trees, Isomorphism of trees, Prefix code, application of trees to coding and decoding of a message		
		Total	45	
VII2020 R1	0	SV R Tach IT AC 28/06/2021		13 of 50

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	B. S. Grewal	Higher Engineering Mathematics	Khanna Publications, India	43 rd Edition 2014
2.	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley Eastern Limited, India	10 th Edition 2015
3.	N.P. Bali and Manish Goyal	A Textbook of Engineering Mathematics	Laxmi Publications LTD, India	9 th Edition 2016
4.	P. N. Wartikar and J. N. Wartikar	A text book of Applied Mathematics Vol I & II	Pune VidyarthiGruha , India	6 th Edition 2012

Term-Work will consist of Tutorials covering entire syllabus of "Discrete and Applied Mathematics" (116U04C301). Students will be graded based on continuous assessment of their term work. At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116U04C302		Data Structures ^{\$}								
		TH]	P	TUT	Total			
Teaching Scheme(Hrs.)		3			-	-	3			
Credits Assigned		3			-	-	3			
		Marks								
	CA		ECE	TPXX7		De O	T-4-1			
Examination Scheme	ISE	IA	ESE	TW	О	P&O	Total			
	30	20	50				100			

^{\$} Course Common with Computer Engineering

Course prerequisites: Programming Language

Course Objectives:

The objective of this course is to introduce different types of data structure and how user can use data structure in software development. The course also familiarizes students with the concepts of advanced data structures such as balanced search trees, hash tables, priority queues, sorting and searching. Students will be master in the implementation of linked data structures such as linked lists and binary trees using any preferable language. Course mainly focuses on choosing the appropriate data structure for a specified application.

Course Outcomes

- CO1. Explain the different data structures used in problem solving.
- CO2. Apply linear and non-linear data structure in application development.
- CO3: Describe concepts of advance data structures like set, map & dictionary.
- CO4. Demonstrate sorting and searching methods.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module No.	Unit No.	Details	Hrs.	CO
1	Intro	duction to Data Structures	04	CO 1
	1.1	Defining Data structure, Types of Data Structures, Abstract Data Type (ADT), Static and Dynamic Implementations		
	1.2	Applications of data structures.		
2	Linke	ed List, Stack and Queue	16	CO 2
	2.1	Introduction and Representation of Linked List, Linked List v/s Array, Implementation of Linked List, Circular Linked List, Doubly Linked List, Application – Polynomial Representation and Addition, Other additional applications/Case study. #Self-learning - Sparse matrix addition		
	2.2	The Stack as an ADT, Stack operations, Array Representation of Stack, Linked Representation of Stack, Application of stack – Polish Notation, Recursion and other applications/Case study. #Self-learning - Application of stack in evaluation of postfix and prefix expression.		
	2.3	The Queue as an ADT, Queue operation, Array Representation of Queue, Linked Representation of Queue, Circular Queue, Priority Queue, Double ended queue, Application of Queues – Simulation and other applications/Case study. #Self-learning - Application of queue in Josephus's Problem.		
3	Tree	and Graph	10	CO 2
	3.1	Basic tree terminologies, Types of trees, Binary tree representation, Binary tree operation, Binary tree traversal, Binary search tree implementation, Threaded binary trees. Different Search Trees -AVL tree, Multiway Search Tree, B Tree, B+ Tree, and Trie, Applications/Case study of trees. #Self-learning Learning – Red-Black and Splay Trees.		
	3.2	Introduction to graph as a data structure, Terminologies, Representation, Traversals – Depth First Search (DFS) and Breadth First Search (BFS). Applications/Case study of Graphs		
4	Set, N	Tap and Dictionary	7	CO 3
	4.1	Set ADT, Set Implementation, Partitions with Union-Find operations, Tree based partition implementation.		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

	4.2	Map ADT, Implementation, Hash Tables Application of Maps		
	4.3	Dictionary ADT, Implementation, Application of Dictionaries		
	#Self-dictio			
5	Searc	thing and Sorting	8	CO 4
	5.1	Sort Concept, Sort Stability, Bubble Sort, Shell Sort, Counting Sort		
		#Self-learning - Bucket and Radix sort		
	5.2	Search concept, Linear Search, Binary Search, Hashed List Search, Comparison of searching Techniques		
	•	Total	45	

[#] Self-learning topics may be evaluated through IA and/or Lab.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Michael T Goodrich Roberto Tamassia David Mount	Data Structure and Algorithm in C++	Wiley	Second Edition 2011
2.	Richard F. Gilberg & Behrouz A. Forouzan	Data Structures A Pseudocode Approach with C	CENGAGE Learning	Second Edition 2005
3.	Aaron M Tanenbaum Yedidyah Langsam Moshe J Augentstein	Data structure Using C	Pearson	Twelfth Impression 2013
4.	Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed	Fundamentals Of Data Structures In C	University Press	Second Edition 2008
5.	Jean Paul Tremblay, Paul G. Sorenson	An introduction to data structures with applications	Tata McGraw- Hill Education	Second Edition 1984

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
116U04C303		Data	abase M	[anager	nent Sy	stems	
		TH]	?	TUT	Total
Teaching Scheme(Hrs.)		3			-	-	3
Credits Assigned		3		-		-	3
	Marks						
				Marks			
	CA		FCF			D&O	Total
Examination Scheme	CA ISE	IA	ESE	Marks TW	0	P&O	Total
Examination Scheme			ESE 50			P&O	Total

Course prerequisites: Nil

Course Objectives:

This course is imparting knowledge of database management system and its use in enterprise business. It enables students to perform entity-relationship modeling and relational database design Student will learn and use Structured Query Language (SQL). It gives knowledge of applying normalization techniques to the database. Along with it, students are also introduced to the concept of transactions and query processing.

Course Outcomes

- CO1. Realize the features of Relational database management systems.
- CO2. Apply data models to real world scenario.
- CO3. Illustrate the concept of security, Query processing, indexing and Normalization for Relational database.
- CO4. Apply the concept of transaction, concurrency control and recovery techniques

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module No.	Unit No.	Details	Hrs.	СО
1	Datab	6	CO1	
	1.1	Introduction, Purpose of Database Systems, DBMS system architecture, Data Models, Data independence		
	1.2	Database languages, Database Users and Administrator		
	1.3	Different types of Database Systems		
2	• Data	abase Models and SQL	9	CO 2
	2.1	Database design phases, E-R Model		
	2.2	Constraints, E-R Diagrams, E-R design issues		
	2.3	Entity set, Extended E-R features		
	2.4	Relational model concepts, Constraints		
	2.5	Relational Algebra, Unary, Binary and Set theory relational operations		
	2.6	Data definition commands, attribute constraints, SET operations, Aggregate functions, Null Values, Nested sub queries, complex queries, Views Data control commands		
	2.7	Data manipulation commands, Insert, Update, Joined relations		
	2.8	Integrity and security, Domain constraints, Referential integrity, Triggers; Security and Authorization in SQL		
3	Relati	onal Database Design	10	CO 3
	3.1	Design guidelines for relational schemas, Functional dependencies		
	3.2	First Normal form, Second Normal form, Third normal form.		
	3.3	Decomposition using functional dependencies, Boyce Codd normal form; decomposition using multivalued dependencies, fourth normal form.		
	3.4	The database design and implementation process		
4	• Ind	exing, Hashing, Query processing and Optimization	10	CO 3
	4.1	Basic concepts, ordered indices: dense and sparse, multilevel indices, secondary indices		
	4.2	Hashing: Static hashing, dynamic hashing, comparison of ordered indexing and hashing		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

	4.3	Query processing: Steps involved in query processing, measures of query cost, algorithms for SELECT and PROJECT operations.				
	4.4	Query Optimization: Overview, Transformation of relational expressions, Estimating statistics, Choice of evaluation plan				
5	1					
	5.1	Transaction Concepts, Transaction state, ACID properties, concurrent executions, Serializability, Recoverability.				
	5.2	Concurrency control, Lock based, Timestamp based, validation based protocol, Deadlock Handling				
	5.3	Recovery System, Failure classification, Recovery and Atomicity, Log based recovery, Shadow paging				
	•	Total	45			

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Elmasri and Navathe	Fundamentals of Database Systems	Pearson Education	7th Edition 2015
2.	Korth, Slberchatz,Sudarshan	Database System Concepts	McGraw – Hill	6 th Edition 2010
3.	Raghu Ramakrishnan and Johannes Gehrke	Database Management Systems	McGraw Hill	3 rd Edition 2002
4.	Paulraj Ponniah,	Data Warehousing Fundamentals: A Comprehensive Guide for IT Professionals	Wiley India	2 nd Edition 2009
5.	McCreary, D., and Kelly	Making sense of No SQL	Manning Press	2014

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
116U04C304			Dig	gital Sy	stems		
		TH]	P	TUT	Total
Teaching Scheme(Hrs.)		3				-	3
Credits Assigned		3		-		-	3
	Marks						
	CA		EGE	(E) X X 7	0	D.O.O.	T-4-1
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total
	30	20	50				100

Course prerequisites: Nil

Course Objectives:

This course lays the foundation for understanding the basics of digital Logic Design as well as Computer Organization and Architecture.

Course Outcomes

- CO 1. Solve problems on various number systems, Boolean algebra and graphical techniques.
- CO 2. Understand the basic building blocks, techniques used in digital logic design.
- CO 3. Design the combinational and sequential circuits using basic building blocks.
- CO 4. Understand the basic concepts of memory elements.
- CO 5. Understand the fundamental concepts of microprocessors.

Module	Unit No.	Details	Hrs.	CO
No.				
1	Number S Techniqu	Systems, Codes, Logic gates and Simplification es	13	CO1
	1.1	Introduction to digital Systems, Number systems- Binary, octal, and hexa-decimal number systems, Codes- Binary code, BCD code, excess-3 code, gray code, ASCII code		
	1.2	Binary Arithmetic, Binary Addition and Subtraction (1's and 2's complement method)		
	1.3	Basic Digital Circuits: NOT, AND, OR, NAND, NOR, EXOR, EX-NOR		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

2.1 Introduction to combinational logic design, Half and Full Adder, Half and Full Subtractor, Ripple carry Adder, Magnitude comparator 2.2 Multiplexers and De-multiplexers/Decoder, Binary Encoder, Priority Encoder, Code Conversion. 2.3 Design of combinational logic systems using Logic gates , Multiplexer, Demultiplexer, Encoder and Decoder 3 Sequential Logic Design 3.1 Flip Flops: SR, D, JK, JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion 3.2 Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086				
2.1 Introduction to combinational logic design, Half and Full Adder, Half and Full Subtractor, Ripple carry Adder, Magnitude comparator 2.2 Multiplexers and De-multiplexers/Decoder, Binary Encoder, Priority Encoder, Code Conversion. 2.3 Design of combinational logic systems using Logic gates , Multiplexer, Demultiplexer, Encoder and Decoder 3 Sequential Logic Design 3.1 Flip Flops: SR, D, JK, JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion 3.2 Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	1	SOP and POS form. Simplification of expressions, K-map		
Adder, Half and Full Subtractor, Ripple carry Adder, Magnitude comparator 2.2 Multiplexers and De-multiplexers/Decoder, Binary Encoder, Priority Encoder, Code Conversion. 2.3 Design of combinational logic systems using Logic gates , Multiplexer, Demultiplexer, Encoder and Decoder 3 Sequential Logic Design 3.1 Flip Flops: SR, D, JK, JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion 3.2 Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM — architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	2 Cor	binational Logic Design	09	CO2
Encoder, Priority Encoder, Code Conversion. 2.3 Design of combinational logic systems using Logic gates , Multiplexer, Demultiplexer, Encoder and Decoder 3 Sequential Logic Design 3.1 Flip Flops: SR, D, JK, JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion 3.2 Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	2	Adder, Half and Full Subtractor, Ripple carry Adder,		
Sequential Logic Design 10 CO3	2	1 1 /		
3.1 Flip Flops: SR, D, JK, JK Master Slave and T Flip Flop, Truth Tables and Excitation Tables, Flip-flop conversion 3.2 Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	2			
Truth Tables and Excitation Tables, Flip-flop conversion 3.2 Counters: Design of Asynchronous and Synchronous Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM — architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	3 Seq	iential Logic Design	10	CO3
Counters, Modulo Counters, Up- Down counter. 3.3 Shift Registers: Bidirectional Shift Register, Ring and Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	3			
Johnson Counter. 4 Functional Units of Digital Systems 4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	3			
4.1 Von Neumann architecture, Functional units of Computer, Basic Instruction Cycle, Interrupts 4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	3			
4.2 Memory sub-system-Typical architecture of RAM and ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	4 Fun	ctional Units of Digital Systems	07	CO4
ROM, SRAM and DRAM – architecture and comparison, Memory hierarchy 5 Introduction to Microprocessors 06 CO5 5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	4			
5.1 Introduction to Functional Block diagram of microprocessor 8086 5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	4	ROM, SRAM and DRAM – architecture and		
5.2 MOV Instruction Formats, Addressing modes of microprocessor 8086 5.3 Segmented memory and interleaved memory architecture in 8086	5 Inti	oduction to Microprocessors	06	CO5
5.3 Segmented memory and interleaved memory architecture in 8086	5			
in 8086	5	,		
T 4 1 45	5	, ,		
Total 45		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1	R. P. Jain	Modern Digital Electronics	Tata McGraw	4th Edition,
			Hill	2009
2	Donald P Leach,	Digital principles and	Tata McGraw	8 th Edition,
	Albert Paul Malvino	Applications	Hill	2014
3	William Stallings	Computer Organization and	Pearson	10th Edition,
		Architecture	Education India	2016
4	D. V. Hall,	Microprocessor and	Tata McGraw	2nd Edition,
		Interfacing Programming	Hill	2006
		Hardware		
5	Shibu K. V.	Introduction to embedded	McGraw Hill	2nd edition,
		Systems	Education India	July 2017
			Private Limited	-

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
116U04C305		Data C	Commun	ication	and No	etworkin	g
		TH]	P	TUT	Total
Teaching Scheme(Hrs.)		3			•	-	3
Credits Assigned		3		-		-	3
	Marks						
	CA	1	ECE	(E) X X /		De O	TD : 4 : 1
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total
	30	20	50				100

Course prerequisites: Fundamentals of Computer Programming

Course Objectives:

This course provides an understanding of the concepts and mechanisms underlying the telecommunications and networking. Starting with the basics of data communication and types of networks, it introduces the transmission media. It also explains how two public networks, telephones and cable TV can be used for data transfer. A thorough background of the ISO- OSI model and the TCP/IP model will be given. The Application layer, Transport layer, Internet layer, Data link layer and Physical layers are covered in detail along with the protocols used. Top-down approach is used for this course will give students a better perception in terms of both usefulness and ease of understanding.

Course Outcomes

- CO1 . Understand the data communication systems, network topologies and network devices
- CO2. Enumerate the layers of the OSI model and TCP/IP model, their functions and Protocols.
- CO3. Build the skills of sub-netting and routing mechanisms.
- CO4. Execute their knowledge of computer communication principles, including Error detection and correction, multiplexing, flow control, and error control.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs	CO
No.	No.		•	
1	Introduct	tion	05	CO 1
	1.1	Data Communications, Networks, The Internet , Protocols		
		and Standards, Uses of Computer networks		
	1.2	Network Models: Layered tasks ,The OSI Model, Layers in the OSI Model, TCP/IP Protocol Suite		
2	The Appl	lication Layer	09	CO 2
_				
	2.1	Providing services, Application layer paradigms: Client		
		Server and Peer to Peer paradigm.		
		Client Server paradigm: Application programming Interface, Using services of the Transport layer.		
		Peer to Peer Paradigm: P2P networks, Protocols, A		
		popular P2P Network (BitTorrent).		
	2.2	Standard client server applications: Domain Name System		
		(DNS), Hyper Text Transfer Protocol (HTTP), Remote		
		Logging(Telnet),Email(SMTP,MIME,POP3),File		
		Transfer(FTP) and SNMP		
3	The Tran	sport Layer	07	CO 2
	3.1	The Transport Layer Services, Protocols: UDP, TCP		
	3.2	User datagram protocols: User datagram, services and UDP application		
	3.3	TCP features and services, Flow control, Error Control, Congestion Control, TCP segment, TCP Connection Establishment, Data transfer, TCP Connection Release		
4	•The Ne	twork Layer	08	CO 3
	4.1	Network Layer Design Issues, IP Addressing, Sub-netting		
	4.2	The Network Layer In The Internet: The IP Protocol, IPv4 header, IPv6 header, Routing Algorithms, Congestion Control Algorithms, Quality Of Service		
		# Self learning: Internet Control protocols, Routing protocols (Intra-domain-RIP,OSPF and Inter-domain-BGP)		
5	The Data	Dink Layer & Physical layer (Host layer)	16	CO4
	5.1	Error detection and correction: Types of errors, redundancy, detection versus correction, forward error correction versus retransmission, Error detection, Error correction, Hamming Code ,CRC, Checksum		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5.2	Data Link Control: Framing, Fixed size and variable size framing; Flow and Error control, Protocols for Noiseless and Noisy Channels, Piggybacking, HDLC, PPP. Multiple Access: Random Access, Controlled Access, Channelization.		
5.3	Data and Signals: Analog and Digital Signals, Transmission impairments, Data Rate Limits, Performance. Digital transmission: Digital –to-Digital Conversion, Analog –to-Digital Conversion. Analog transmission: Digital –to-Analog Conversion, Analog –to-Analog Conversion.		
5.4	Transmission Media: Guided Media, Unguided Media, Switching and Multiplexing.		
	Total	45	

Self-learning topics may be evaluated through IA and/or Lab.

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. A. Forouzan and	Computer Networks A Top	Tata McGraw	1st Edition,
	Firouz Mosharraf	down Approach	Hill,India	2011
2.	James F. Kurose	Computer Networking: A top	Pearson, India	5 th Edition,
	and	down approach		2012
	Keith W. Ross			
3.	A. S. Tanenbaum	Computer Networks	Prentice Hall,	5 th Edition,
			India	2014
4.	B. F. Ferouzan	TCP/IP Protocol Suite	Tata McGraw	4 th
			Hill,India	Edition,2010
5.	Williams Stallings	Data & Computer	Pearson	9 th Edition,
		Communications		2017

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
116U04L301	Programming Laboratory-I®						
		TH]	P	TUT	Total
Teaching Scheme(Hrs.)				2		1	3
Credits Assigned				1	1	1	2
	Marks						
	CA	T	ESE	TW	O	P&O	Total
Examination Scheme	ISE	IA					
				50		25	75

@Java Programming

Course prerequisites: Knowledge of Object Oriented Programming language(116U06L108)

Course Objectives:

The objective of the course is to impart knowledge of Java Programming language. The course introduces the implementation of Object Oriented Methodology concepts to solve problem using Java Programming. Further the course also covers concepts of Packages, Multithreading, Collection classes, GUI programming with JDBC and Functional Programming in java

Course Outcomes

- CO1. Apply fundamental Object Oriented Methodology concepts using java programming.
- CO2. Apply String manipulation functions ,inheritance and polymorphism using Java programming.
- CO3. Demonstrate the concept of packages, multithreading and exception handling in java.
- CO4. Illustrate the use of collection classes ,functional programming and GUI programming with java.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module No.	Unit No.	Details	Hrs.	CO
0	Introduct	ion to Test Case Driven Development	01	
	0.1	Testing a code, Manual and Automated Testing, Basic		
		structure of Test Case, Writing Test Cases		
1	Classes, C	Objects and Arrays	03	CO1
	1.1	Features of Java programming Language, JDK and		
		JVM, Classes Object, Method, Member, Dot Operator,		
		Command Line Argument, Input using Scanner Class		
	1.2	Constructor, Constructor Overloading, Garbage Collection		
	1.3	1D Array, 2D Array, Jagged Array, Array of Objects		
2	String Ha	ndling and Inheritance	03	CO2
	2.1	String Class and Methods, String Buffer Class and Methods		
	2.2	Types of Inheritance, Polymorphism – method overloading, method overriding		
	2.3	Final class and method, Abstract class, Interface		
3	Exception	Handling, Packages and Multithreading in Java	03	CO3
	3.1	Types of Exception, try-catch-finally, throw, throws Input using BufferedReader Class		
	3.2	User Defined Exception		
	3.3	Creating and Using User Defined Package		
	3.4	Introduction to Multithreading, Thread Life Cycle, Creating Threads using Runnable Interface and Thread Class		
4	Collection	Classes and Functional Programming	03	CO4
	4.1	Collection classes- ArrayList, HaspMap, HashTable		
	4.2	Introduction to functional programming, lambda expressions, method references, predefined functional interfaces, Streams API		
5	5 GUI Programming with Java		02	CO4
	5.1	Introduction to GUI Programming		
	5.2	Introduction to JDBC,CRUD operation in JDBC		
		#Self Learning : Classes of swing package		
	•	Total	15	

Module 0 is to introduce the concepts of software testing in the syllabus. It will have no weightage in End-semester examination. It may be evaluated through IA and/or Lab.

Self-learning topics may be evaluated through IA and/or Lab.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Herbert Schildt	Java: The Complete	Tata McGraw-	Tenth
		Reference	Hill Publishing	Edition,
			Company	2017
			Limited	
2.	Sachin Malhotra,	Programming in Java	Oxford	Second
	Saurab		University	Edition,
	Choudhary		Press	2018
3.	D.T. Editorial	Java 8 Programming Black	Dream tech	Edition 2015
	Services	Book	Press	

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus of Programming Laboratory-I" (116U04L301) with Java Programming. Students will be graded based on continuous assessment of their term work.
- \bullet Practical and Oral examination will be based on tutorial work, laboratory work and entire syllabus of Programming Laboratory-I" (116U04L301) with Java Programming.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code				Course	se Title			
116U04L301		Programming Laboratory-I®						
		TH			P		Total	
Teaching Scheme(Hrs.)					02		3	
Credits Assigned			01		01	2		
	Marks							
Examination Scheme		CA		/DXX/		D.O.O.	TD - 4 - 1	
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total	
				50		25	75	

@Python Plus

Course prerequisites: Basics of Python Programming

Course Objectives:

The objective of this laboratory course is to impart knowledge of testing python applications, multithreading, scientific and mathematical computing, database handling, GUI design and networking based applications using various python libraries.

Course Outcomes

- CO1. Understanding the usage of multithreading.
- CO2. Inculcate the knowledge of python libraries like numpy, pandas, matplotlib for scientific-computing and data visualization.
- CO3. Designing a graphical interface for python applications
- CO4. Demonstrate handling database with python and to understand network programming with Python scapy.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module No.	Unit No.	Details	Hrs.	СО
0	Introdu	action to Unit Testing	01	
	0.1	Testing a python code, Automated vs Manual Testing, Unit Testing vs Integration Testing, Test case writing, Basic Test structure, Test Runners, Writing Assertions		
1	Multith	reading in Python	02	CO1
	1.1	Multithreading in Python, Process vs Thread, Lifecycle of a Thread, Thread Class, Methods of thread object		
		# Self Learning: Thread Synchronization, Locking Mechanism, Semaphore		
2	Introdu	ection to Numpy for data computing	02	CO2
	2.1	Introduction to modules, Packages and Exploratory Data Analysis, Reading different data formats in Python		
	2.2	Numpy in Python for data computing, array creation, array attributes, array manipulation methods, Shaping and transposition, mathematical operations, indexing and slicing, broadcasting		
		#Self Learning: Data reading and cleansing using numpy		
3	Scientif Matplo	ic computing using Pandas and visualization using	04	CO2
	3.1	Pandas for data computing, series and data frames, Data reading using Pandas		
	3.2	Analyzing dataset with Pandas, statistical functions		
	3.3	Use of Matplotlib for data Visualization, Bar graphs, Pie charts, area plots, pivot table, scatter plots, histograms, sub plot function, boxplot		
4	GUI de	sign using Tkinter	02	CO3
	4.1	Introduction to Tkinter, Labels, widget, Buttons, check box, sliders, Layout management, Event Creation # Self Learning: Python Date and Time		
5	Databas	se connectivity and Networking in Python	04	CO4
	5.1	SQL Relational Databases Connection: Exception handling, Cursor, Row Objects, CRUD operations accomplishment using python, Transactions and Rollbacks		
	5.2	Introduction to Socket Programming, Scapy for Network Analysis # Self Learning: Python network scanner, Telnet connection using python		
		Total	15	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module 0 is to introduce the concepts of software testing in the syllabus. It will have no weightage in End-semester examination. It may be evaluated through IA and/or Lab.

Self-learning topics may be evaluated through IA and/or Lab.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Daniel Arbuckle	Learning Python Testing	Packt Publishing	1 st Edition, 2014
2.	Wesly J Chun	Core Python Applications Programming	Pearson Publications	3 rd Edition, 2015
3.	Wes McKinney	Python for Data Analysis	O'Reilly	1st edition, 2017
4.	Albert Lukaszewsk	MySQL for Python	Packt Publishing	1 st Edition, 2010
5.	Eric Chou	Mastering Python Networking	Packt Publishing	2nd edition, 2017

- $\hbox{$\bullet$ Term-Work will consist of Tutorials and laboratory work covering entire syllabus of Programming Laboratory-I" ($116U04L301$) with Python Programming. Students will be graded based on continuous assessment of their term work. }$
- Practical and Oral examination will be based on tutorial work, laboratory work and entire syllabus of Programming Laboratory-I" (116U04L301) with Python Programming.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title						
116U04L301	Programming Laboratory I [®]						
	ТН			P		TUT	Total
Teaching Scheme(Hrs.)	0			2		1	3
Credits Assigned	0			1		1	2
	Marks						
Examination Scheme	CA		ECE	TEXX/	0	D.C.	TD : 4 : 1
Examination Scheme	ISE	IA	ESE	TW	O	P&O	Total
	-	_	-	50		25	75

@ C++ Programming

Course prerequisites: Programming in C

Course Objectives:

The major objective of the course is to introduce fundamental concept of Object Oriented Programming (OOP) using C++. Students will be able to develop the skills with the comprehensive capabilities that are required for the efficient programming. Develop applications for a range of problems using object-oriented programming techniques.

Course Outcomes

- CO1. Inculcate fundamental concepts of Object Oriented Programming.
- CO2. Implement the principles of Data Abstraction Inheritance & Polymorphism.
- CO3. Understand the concepts of streams and templates.
- CO4. Implement exception handling and test driven development using C++.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module No.	Unit No.	Details	Hrs.	СО
0	Introduc	ction to Test Case Driven Development	01	
	0.1	Testing a code, Manual and Automated Testing, Basic structure of Test Case, Writing Test Cases		
1	•Introd	uction C++ fundamentals	02	CO1
	1.1	C Vs. C++, C++ Basics: I/O in C++, Object-Oriented Thinking: Different paradigms for problem solving, need for OOP paradigm, differences between OOP and Procedure oriented programming, Overview of OOP concepts Abstraction, Encapsulation, Inheritance and Polymorphism.		
	1.2	Pointers, Dynamic memory allocation and de-allocation using calloc, malloc and realloc and free, Pointers and functions		
2	•Classes	, Data Abstraction & Operator Overloading	03	CO2
	2.1	Introduction, Class Scope and accessing Class Members, Separating Interface from Implementation, Controlling Access Function And Utility Functions		
	2.2	Initializing Class Objects: Constructors, Using Default Arguments With Constructors, Using Destructors, Classes: Const(Constant) Object And Const Member Functions, Object as Member of Classes, Friend Function and Friend Classes, Using This Pointer, Dynamic Memory Allocation with New and Delete, Pointers to objects, Static Class Members, Container Classes And Integrators, Proxy Classes, Function overloading.		
	2.3	Fundamentals of Operator Overloading, Restrictions On Operators Overloading, Operator Functions as Class Members vs. as Friend Functions, Overloading, <<, >> Overloading Unary Operators, Overloading Binary Operators.		
3	•Inherit	ance, Virtual Functions and Polymorphism	03	CO2
	3.1	Introduction to Inheritance, Base Classes And Derived Classes, Protected Members, Casting Base- Class Pointers to Derived- Class, Using Member Functions, Overriding Base – Class Members in a Derived Class, Public, Protected and Private Inheritance, Using Constructors and Destructors in		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

4	3.2	derived Classes, Implicit Derived –Class Object To Base-Class Object Conversion, Composition Vs. Inheritance. Introduction to Virtual Functions, Abstract Base Classes And Concrete Classes, Polymorphism, New Classes And Dynamic Binding, Virtual Destructors, Pointers to virtual functions reams, files and Templates	03	CO3
4	4.1	Concept of streams, cin and cout objects, C++ stream classes, Unformatted and formatted I/O, manipulators, File stream, C++ File stream classes, File management functions,	03	C03
	4.2	Templates, Exceptions and STL: What is template? function templates and class templates, Overview and use of Standard Template Library,		
5	•Except	tion Handling and Test Driven Development	03	CO4
	5.1	Introduction, Basics of C++ Exception Handling: Try Throw, Catch, Throwing an Exception, Catching an Exception, Rethrowing an Exception, Exception specifications, Processing Unexpected Exceptions, Stack Unwinding, Constructors, Destructors and Exception Handling, Exceptions and Inheritance.		
	5.2	Test Driven Development using C++		
		Total	15	

Module 0 is to introduce the concepts of software testing in the syllabus. It will have no weightage in End-semester examination. It may be evaluated through IA and/or Lab.

Self-learning topics may be evaluated through IA and/or Lab.

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher	Edition and Year of
			with country	Publication
1.	B. Stroutstrup	The C++ Programming	Pearson	3rd Edition
		Language	Education	1 January
			India	2002
2.	E Balagurusamy	Object oriented	Tata McGraw-	8th Edition
		<i>Programming with C++</i>	Hill	24 September
				2020
3.	Robert Lafore	Object Oriented	Pearson	4th edition
		Programming C++	Education	1 January
			India	2008
4.	Herbert Schildt	C++: The Complete	McGraw Hill	4th edition
		Reference	Education	1 July 2017
5.	Jeff Langr	Modern C++ Programming	O'Reilly	1st edition
		with Test-Driven		5th
		Development : Code Better,		November
		Sleep Better		2013

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus of Programming Laboratory-I" (116U04 L301) with C++ Programming. Students will be graded based on continuous assessment of their term work.
- $\hbox{\bf Practical and Oral examination will be based on tutorial work, laboratory work and entire syllabus of Programming Laboratory-I" (116U04~L301) with C++ Programming \\$

Course Code	Course Title								
116U04L302	Data Structures Laboratory								
	TH			P		TUT	Total		
Teaching Scheme(Hrs.)		-		2		-	2		
Credits Assigned		-		1		-	1		
	Marks								
Examination Scheme	C	A	- ESE	TW		D.O.O.	Total		
Examination Scheme	ISE	IA	ESE	1 //	О	P&O	Total		
	-	-	-	25	-	25	50		

- Term-Work will consist of practical covering entire syllabus of "Data Structures" (116U04C302). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Data Structures" (116U04C302).

Course Code		Course Title								
116U04L303	Ι	Database Management Systems Laboratory								
	TH			P		TUT	Total			
Teaching Scheme(Hrs.)	-			2		-	2			
Credits Assigned	-		1		-	1				
	Marks									
Examination Scheme	C	CA		(DXX)		D.C.	Total			
Examination Scheme	ISE	IA	ESE	TW	0	P&O	Total			
	-	-	_	25	-	25	50			

- Term-Work will consist of practical covering entire syllabus of "Database Management Systems" (116U04C303). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Database Management Systems" (116U04C303).

Course Code	Course Title								
116U04L304		Digital Systems Laboratory							
	TH			P)	TUT	Total		
Teaching Scheme(Hrs.)	-			2		•	2		
Credits Assigned		-		1		•	1		
				N	Aark	s			
Examination Scheme	CA	4	TOT	TXX		De O	Total		
Danimation Scheme	ISE	IA	ESE	TW	0	P&O	Total		
	-	_	_	25	25	_	50		

- Term-Work will consist of practical covering entire syllabus of "Digital Systems" (116U04C304). Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and entire theory syllabus of "Digital Systems" (116U04C304).

Course Code		Course Title								
116U04L305	Dat	Data Communication and Networking Lab								
	ТН			P		TUT	Total			
Teaching Scheme(Hrs.)		-		2		-	2			
Credits Assigned		-		1		-	1			
	Marks									
Examination Scheme	CA		ECE	TXX/		D.O.O.	TD 4.1			
Zammavon seneme	ISE	IA	ESE	TW	О	P&O	Total			
	-	_	_	25	25	-	50			

- Term-Work will consist of practical covering entire syllabus of "Data Communication and Networking" (116U04C305). Students will be graded based on continuous assessment of their term work.
- Oral Examination will be based on laboratory work and entire theory syllabus of "Data Communication and Networking" (116U04C305).

Semester IV

SY B. Tech. Information Technology (KJSCE SVU 2020)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title						
116U04C401	Pro	obabi	lity, Sta	atistics	and	l Optim i	ization Techniques	
		TH		P		TUT	Total	
Teaching Scheme(Hrs.)		3		-		1	4	
Credits Assigned		3		-		1	4	
	Marks							
	C	4	ECE	TXX/		DO O	Total	
Examination Scheme	ISE	IA	ESE	TW	O	P&O	Total	
	30	20	50	25			125	

\$ Course Common with Computer Engineering

Course prerequisites: Basics of Statistics and Probability, Introductory Linear programming problems

Course Objectives:

This course Exposes students to the concepts of Correlation, Regression for given bivariate data. Students are made familiar with different discrete and continuous probability distributions. The course acquaints students with concepts of Large sample test, Small sample test and Chi – Square test. The course familiarizes students with different methods of solving Linear and Non Linear Programming problems. Some basic queuing theory models are also discussed in the course. Using these methods it will be possible to analyze and interpret a given real life situation and think of possible solutions.

Course Outcomes

- CO1. Apply concepts of Binomial, Poisson, Exponential and Normal distribution to solve Engineering problems.
- CO2. Apply concepts of correlation, regression for given bivariate data.
- CO3. Apply Large sample test and small sample test to analyze collected data.
- CO4. Apply concepts of Linear and Nonlinear programming methods to solve problems.
- CO5. Apply the methods of single server limited queue and single server unlimited queue models to analyze and interpret the data.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Proba	ability and Probability Distribution	Hrs. 12 06 07	CO 1
	1.1	Conditional Probability, Bayes' theorem, Joint Probability		
	1.2	Discrete and Continuous Probability Distribution		
	1.3	Binomial Distribution, Poisson Distribution		
	1.4	Uniform Distribution, Normal Distribution, Exponential Distribution		
2	Corre	elation and Regression	06	CO 2
	2.1	Correlation, Co-variance, Karl Pearson Coefficient of Correlation & Spearman's Rank Correlation Coefficient.		
	2.2	Regression Coefficients, lines of regression& logistic regression.		
3	Samp	ling Theory	07	CO 3
	3.1	Sampling distribution. Test of Hypothesis. Level of significance, critical region. One tailed and two tailed tests. Interval Estimation of population parameters. Large and small samples.		
	3.2	Difference between sample mean and population means for large samples, Test for significance of the difference between the means of two large samples.		
	3.3	Student's t-distribution: Test for significance of the difference between sample mean and population means, Test for significance of the difference between the means of two Samples, paired t-test.		
	3.4	Chi-square distribution as a Test of Independence, Test of the Goodness of fit and Yate's correction.		
	3.5	Fisher's z-test		
4	Optin	nization Techniques	13	CO 4
	4.1	Types of solution, Standard and Canonical form of LPP, Basic and feasible solutions, simplex method.		
	4.2	Artificial variables, Big –M method (method of penalty).		
	4.3	Duality and Dual Simplex method		
	4.4	Unconstrained optimization, problems of two or three variables with one equality constraint using Lagrange's Multiplier method.		
	4.5	Problems of two or three variables with one inequality constraint using Kuhn-Tucker conditions		
5	Queu	ing Theory	07	CO5
	5.1	Introduction, Features of Queuing , solution of Queuing Models.M/M/1(Single Server ,Unlimited Queue Model)		
	5.2	M/M/1 Single Server ,limited Queue Model		
	ı	Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Edition and Year of Publication	
1	B. S. Grewal	Higher Engineering Mathematics	Khanna Publications, India	43 rd Edition 2014
2	Erwin Kreyszig	Advanced Engineering Mathematics	Wiley Eastern Limited, India	10 th Edition 2015
3	J. K. Sharma	Operation research: Theory and Applications	Laxmi Publications, India	6th Edition 2017
4	S.C.Gupta and V.K.Kapoor	Fundamentals of Mathematical Statistics	Sultan Chand & Sons	11 th Edition 2009
5	Ronald E.Walipole, Raymond H.Myers	Probabilities & Statistics for Engineers & Scientists	Pearson Education	9 th Edition 2010
6	P. N. Wartikar and J. N. Wartikar	A text book of Applied Mathematics Vol I & II	Pune VidyarthiGruha, India	6 th Edition 2012

Term-Work will consist of Tutorials covering entire syllabus of "Probability, Statistics and Optimization Techniques" (116U04C401). Students will be graded based on continuous assessment of their term work. At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116U04C402	Information Theory and Coding									
		P		TUT	Total					
Teaching Scheme(Hrs.)			-		1	4				
Credits Assigned		3				1	4			
	Marks									
	CA	1	ESE	(DXX)		P&O	/D. 4 . 1			
Examination Scheme	ISE	IA	ESE	TW	О		Total			
	30	20	50	25			125			

Course prerequisites: Basic concepts of Discrete Mathematics, Data Communication and Networking

Course Objectives:

The objective of the course is to impart knowledge of foundation of Information theory – the theory that provides quantitative measures of information and allows us to analyze and characterize the fundamental limits of communication systems. It includes detailed knowledge of compression techniques and error control methods . The Course also covers concept of basic number theory which forms the foundation for the cryptography

Course Outcomes

- CO 1. Understand basics of Information Theory, Information Source and Channel.
- CO 2. Illustrate different Data Compression algorithms.
- CO 3. Demonstrate the concepts and techniques for error detection and correction.
- CO 4. Apply basic number theory concepts for securing information.

Module	Unit	Details	Hrs.	CO
No.	No.		_	
1		of Information Theory	6	CO 1
	1.1	Introduction, Measure of Information, Entropy, Information Rate.		
	1.2	Joint and Conditional Entropies, Mutual Information for two		
		discrete random variables.		
	1.3	Channel models, Channel Capacity, Shannon's Theorem	- 10	
2		e Codes	10	CO 2
	2.1	Introduction, Coding Parameters, Source coding Theorem		
	2.2	Classification of Codes, Shannon-Fano coding, Huffman coding, Arithmetic coding		
	2.3	LZW coding, Run Length Encoding, Image Compression		
3	Error	Control Code :Linear block code	10	CO 3
	3.1	Introduction, Types of codes, Types of Errors, Error Control Strategies, Modular Arithmetic, Use of Galois field and Primitive root for generator polynomial		
	3.2	Linear block codes-Introduction, Generator matrices, Parity check matrices.		
	3.3	Error syndrome, Error detection, Error detecting and error correcting capability.		
	3.4	Standard Array and Syndrome, Decoding, Hamming Code.		
4	Error	Control Code: Cyclic code and Convolution code	09	CO 3
	4.1	Cyclic codes- Introduction, Generation, Syndrome computation and error detection, Decoding.		
	4.2	Hamming code- Error syndrome, Error Detection and correction, Decoding, Extended Hamming Code, Golay code, Error detection using Cyclic Redundancy check		
	4.3	Convolution codes- Introduction, Tree and Trellis Codes		
	4.4	Encoding, Decoding, Applications		
5		of Number Theory and Cryptography	10	CO4
	5.1	Prime Number Generation, Random Number Generation. Congruences, Solving Linear Congruences ax+by=d.		
	5.2	Chinese Remainder Theorem, Fermat's Little and Euler Theorem, Quadratic Residue, Legendre and Jacobi Symbols		
	5.3	Shannon's characteristics of good cipher, confusion and diffusion, concepts of encryption, decryption.		
	5.4	Historical background, Transposition: row key and column key, Substitution: Ceaser cipher (additive), Affine cipher (additive and multiplicative), Polyalphabetic and Monoalphabetic Ciphers: Vignere cipher.	A.F.	
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and Year of
No.			Publisher	Publication
			with country	
1.	ArijitSaha,Nilotpal	Information Theory	Pearson	First Edition
	Manna,Surajit	Coding and	Education,	2013
	Mandal	Cryptography	India	
2.	Ranjan Bose	Information Theory	TMH, India	Third Edition
	-	Coding and		2016
		Cryptography		
3.	Khalid Sayood	Introduction to	Elsevier	Fourth Edition,
	-	Data Compression		2013
4.	Trappe and	Introduction to	Pearson	Second Edition
	Washington	Cryptography with	Education,	2006
	_	Coding theory	India	
5.	S Gravano	Introduction to	Oxford	First Edition 2007
		Error Control	University	
		Codes	Press	
6.	William Stallings	Data and Computer	Pearson	Eighth Edition, 2007
		Communications	Education,	
			India	

• Term-Work will consist of tutorial covering entire syllabus of "Information Theory Coding" (116U04C402). Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title							
116U04C403		Analysis of Algorithms							
	TH			P	P TUT		Total		
Teaching Scheme(Hrs.)		3		-		-	3		
Credits Assigned		3		-		-	3		
	Marks								
	C	A	ECE	TPXX7		P&O	Total		
Examination Scheme	ISE	IA	ESE	1 77	U		1 otal		
	30	20	50	-			100		

Course prerequisites: Data Structures and Programming concepts

Course Objectives:

The objective of the course is to introduce the fundamentals of analysis of algorithms. The Specifications and process for algorithm analysis is covered using sample algorithms. The course helps understanding efficiency of algorithms and comparison of algorithms based on Efficiency. The course also covers different algorithm design strategies, along with examples.

Course Outcomes

- CO 1. Analyze time and space complexity of basic algorithms
- CO 2. Implement Greedy and Dynamic Programming algorithms
- CO 3. Implement Backtracking and Branch-and-bound algorithms
- CO4. Understand NP-Completeness concept

Module No.	Unit No.	Details	Hrs.	СО
1	Introd	luction to Algorithms	12 12 08	CO1
	1.1	Algorithms as a Technology, Analyzing and Designing Algorithms, Rate of growth of functions, Asymptotic notations and order of growth. Common running times: Linear, quadratic, logarithmic etc. and its examples.		
	1.2	Recurrence relations and methods to solve them: Recursion tree, Substitution and Master Method. Probabilistic Analysis, The Hiring Problem, Indicator Random Variables, Randomized Algorithms		
2	Analy	sis of Basic Algorithms	12	CO1
	2.1	Insertion sort, Selection sort, Heap sort, Sorting in Linear Time, Lower bounds for sorting, Counting Sort, Radix Sort		
	2.2	Medians and Order Statistics: Minimum and Maximum, Selection in expected Linear time, Selection in worst-case Linear Time.		
	2.3	Divide and Conquer: Quick sort, randomized Quick sort, Merge sort, Strassen's Matrix Multiplication Algorithm		
3	Greed	12	CO2	
	3.1	The Greedy Approach, Kruskal's algorithm for Minimum Spanning Tree, Dijkstra's algorithm Single Source Shortest Path, Job Sequencing: With and Without Deadlines, Knapsack Problem: 0/1 Knapsack		
		#Self-learning topic: Prim's Algorithm for Minimum Spanning Trees, Huffman Algorithm		
	2.3 Divide and Conquesort, Strassen's Market Str	Dynamic Programming and Optimization problems, Optical Binary Search Trees, Floyd-Warshall Algorithm for All Pair Shortest Path, Longest Common Subsequence, Travelling Salesman Problem		
		#Self-learning topic: Travelling Salesman Problem using Greedy Approach and Dynamic Programming		
4	Backt	racking and Branch and Bound Algorithms		CO3
	4.1	The Backtracking Technique, N-Queens Problem, Hamiltonian Circuit Problems, Sum of Subsets Problem,		
	4.2	Travelling Salesman Problem, 15 Puzzle Problem and 0/1 Knapsack using Branch and Bound		
	D1 0	CV D TL IT AC 20/06/2021	l	L

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5	Computability Theory						
	5.1	NP and NP complete					
	5.2	NP reducibility					
	•	Total	45				

Self-learning topics will be evaluated through IA and/or Lab.

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	T.H. Coreman , C.E. Leiserson,R.L. Rivest, and C. Stein	Introduction to algorithms	Prentice Hall India Publication	3rd Edition 2009
2	Richard E. Neapolitan	Foundation of Algorithms	Jones & Bartlett Students Edition	5th Edition 2016
3	Harsh Bhasin	Algorithms : Design & Analysis	Oxford Higher education, India	1st Edition 2013
4	Jon Kleinberg, Eva Tardos	Algorithm Design	Pearson India Education Services Pvt. Ltd.	10th Edition 2013
5	Jeffrey J. McConnell	Analysis of Algorithms : An Active Learning Approach	Jones and Bartlett Student Edition	2nd Edition 2017

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code 116U04C404				Adv		urse Tit	
	TH		P		TUT	Total	
Teaching Scheme(Hrs.)	3			-		-	3
Credits Assigned		3		-		-	3
	Marks						
	C	A	TOT	TXX7		De-O	Total
Examination Scheme	ISE	IA	ESE	TW	О	P&O	Total
	30	20	50	-			100

Course prerequisites: Knowledge of Database Management systems

Course Objectives:

The course will impart the skills that can help design and develop advanced database models. Students will be able to select appropriate advanced database model depending on the application requirement. This course will also make them aware of challenges and limitations while implementing the models. Further, the student will learn that how enterprise can organize and analyze large amounts of data by creating a data warehouse.

Course Outcomes

- CO 1. Design advanced database systems using Parallel, Distributed and In-memory databases and its implementation.
- CO 2. Design advanced database systems using Object relational, Spatial and NOSQL databases and its implementation.
- CO 3. Understanding of data warehouse and its multi-dimensional modeling.
- CO 4. Apply ETL processing and Online Analytical Processing on the warehouse data.

Module No.	Unit No.	Details	Hrs.	CO
1	• Para			
	1.1	Parallel Database Concepts, Parallel Query Evaluation		
	1.2	Parallelizing Individual Operations-Sorting, Join		
	1.3	Distributed Database - Concepts, Types , Architecture		
	1.4	Distributed Database Design - Data Fragmentation, Replication, and Allocation Techniques	10	CO 1
	1.5	Query Processing and Optimization in Distributed Databases.		
	1.6	Concurrency Control and Recovery in Distributed Databases In-memory Databases: Architecture, in-memory database vs disk		
	1.7	In-memory Databases: Architecture, in- memory database vs disk residence database, practical applications of in-memory databases, challenges of in-memory database.		
2	• Obj	ect Based, Spatial Databases and NOSQL Databases		
	2.1	Features Of Object based DBMS		
	2.2	Database Design concepts for an ORDBMS		
	2.3	Nested Relations and Collections		
	2.4	Spatial Database Components, Spatial Objects		CO 2
	2.5	Spatial Database Components, Spatial Objects Spatial Dimensions, Spatial Relations, Spatial SQL Queries		
	2.6	NOSQL databases: What is NOSQL?, NOSQL business drivers		
	2.7	NOSQL data architectural patterns: Document type, Key-Value, Graph and Column family		
3	•Intro	oduction to Data Warehousing and multi-dimensional Modeling		
	3.1	Operational Vs Decisional Support System ,The Need for Data Warehousing		
	3.2	Data Warehouse Definition, Features , The Information Flow Mechanism, Architecture , Role of Metadata, Classification of Metadata	10	CO 3
	3.3	Data Warehouse Vs Data Marts, Data Warehousing Design Strategies, Data Warehouse Modeling Vs Operational Database Modeling		
	3.4	The Star Schema - Fact Tables and Dimension Tables, The Fact less Fact Table, Keys in the Data Warehouse Schema- Primary		

	Keys, Surrogate Keys & Foreign Keys, The Snowflake Schema, Fact Constellation Schema(Family of Stars)		
3.5	Updates To Dimension Tables - Slowly Changing Dimensions, Type 1, Type 2 and Type 3 Changes, Large Dimensions, Rapidly Changing Dimensions, Junk Dimensions, Aggregate Fact Tables		
3.6	Data lake, Architecture of Data lake, Data Warehouse Vs Data lake		
ETL	A Process		
4.1	Introduction to ETL Process		
4.2	Data Extraction - Identification of Data Sources, Types - Immediate Data Extraction and Deferred Data Extraction	09	CO4
4.3	Data Transformation: Tasks Involved in Data Transformation		
4.4	Data Loading: Techniques, Loading the Fact Tables and Dimension Tables		
4.5	Data Quality, Issues in Data Cleansing		
Inline	e analytical processing (OLAP)	06	CO4
5.1	Need for Online Analytical Processing; OLTP Vs OLAP, OLAP and Multidimensional Analysis		
5.2	OLAP Operations in Multidimensional Data Model - Rollup, Drill-down, Dice, Slice and Pivot		
5.3	OLAP Models: MOLAP, ROLAP, HOLAP		
	Total	45	
	3.6 ETI 4.1 4.2 4.3 4.4 5.1 5.2	Fact Constellation Schema(Family of Stars) Updates To Dimension Tables - Slowly Changing Dimensions, Type 1, Type 2 and Type 3 Changes, Large Dimensions, Rapidly Changing Dimensions, Junk Dimensions, Aggregate Fact Tables 3.6 Data lake, Architecture of Data lake, Data Warehouse Vs Data lake ETL Process 1.1 Introduction to ETL Process 1.2 Data Extraction - Identification of Data Sources, Types - Immediate Data Extraction and Deferred Data Extraction 1.3 Data Transformation: Tasks Involved in Data Transformation 1.4 Data Loading: Techniques, Loading the Fact Tables and Dimension Tables 1.5 Data Quality, Issues in Data Cleansing 1.6 Data Quality, Issues in Data Cleansing 1.7 Need for Online Analytical Processing; OLTP Vs OLAP, OLAP and Multidimensional Analysis 1.8 OLAP Operations in Multidimensional Data Model - Rollup, Drill-down, Dice, Slice and Pivot 1.8 OLAP Models: MOLAP, ROLAP, HOLAP	Fact Constellation Schema(Family of Stars) 3.5 Updates To Dimension Tables - Slowly Changing Dimensions, Type 1, Type 2 and Type 3 Changes, Large Dimensions , Rapidly Changing Dimensions, Junk Dimensions, Aggregate Fact Tables 3.6 Data lake, Architecture of Data lake, Data Warehouse Vs Data lake ETL Process 4.1 Introduction to ETL Process 4.2 Data Extraction - Identification of Data Sources, Types - Immediate Data Extraction and Deferred Data Extraction 4.3 Data Transformation: Tasks Involved in Data Transformation 4.4 Data Loading: Techniques, Loading the Fact Tables and Dimension Tables 4.5 Data Quality, Issues in Data Cleansing Inline analytical processing (OLAP) 5.1 Need for Online Analytical Processing; OLTP Vs OLAP, OLAP and Multidimensional Analysis 5.2 • OLAP Operations in Multidimensional Data Model - Rollup, Drill-down, Dice, Slice and Pivot 5.3 OLAP Models: MOLAP, ROLAP, HOLAP

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher	Year of
			with country	Publication
1.	Elmasri and Navathe	Fundamentals of Database	Pearson	7th Edition
		Systems	Education	2015
2.	Korth,	Database System Concepts	McGraw -	6 th Edition
	Slberchatz,Sudarshan		Hill	2010
3.	Raghu Ramakrishnan and	Database Management	McGraw Hill	3rd Edition
	Johannes Gehrke	Systems		2002
4.	Paulraj Ponniah,	Data Warehousing	Wiley India	2 nd Edition 2009
		Fundamentals: A		
		Comprehensive Guide for		
		IT Professionals		
5.	McCreary, D., and Kelly	Making sense of NoSQL	Manning	2014
			Press	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title							
116U04L401		(Competitive Programming Laboratory						
		TH		P		TUT	Total		
Teaching Scheme(Hrs.)		-		2		2	4		
Credits Assigned		-		1		1		2	3
	Marks								
Examination Scheme	ISE	IA	ESE	TW	o	P&O	Total		
	-	-	-	50	-	50	100		

Course prerequisites: Knowledge about any of the programming language, Data Structures

Course Objectives:

The major objective of the course is to develop the programmer with the comprehensive capabilities required for the efficient software development. It covers best practices required for the quick and optimized development of the most frequently used operations and algorithms belonging to different application domains.

Course Outcomes

- CO1. Inculcate the best practices that are essential for competitive programming
- CO2. Understand the fundamental concepts for managing the data using different data structures such as lists, queues, trees etc.
- CO3 . Understand the Graphs, related algorithms, efficient implementation of those algorithms and applications
- CO4. Learn effective computation and programming practices for numeric and string operations and computation geometry

Module	Unit	Details	Hrs.	CO
No.	No.		0.5	001
1	1.1	practices for Competitive programing Mastering the programming language, efficient testing and	05	CO1
		debugging		
	1.2	Quick identifying problem type, Algorithm analysis, time		
		complexity, calculation rules, common time complexities, estimated efficiency, examples		
2	Opti	mization of Data Structures and Algorithms	08	CO2
	2.1	Optimized implementation of Arrays, Dynamic arrays, single, doubly linked list		
	2.2	Optimized implementation of Stack, queue, priority queue, tree, Tree traversal, Optimized binary search tree (OBST), Heap, Hash tables, Set and Map structures, Trie structure		
		Segment Trees using Lazy Propagation, Fenwick Trees or Binary Indexed Trees, Applications of Fenwick and Segment Trees, Heavy light Decomposition, Sparse table algorithm		
	2.3	Basic concepts of Greedy programming, coin problems , scheduling, data compression, knapsack problem		
	2.4	Basic concepts of dynamic programming, coin problems, longest increasing subsequence, knapsack problem		
3	• Strin	ngs, Arithmetic and Algebra operations	08	CO3
	3.1	Introduction to Strings, Arithmetic and Algebra operations and its applications Character codes, representing strings		
	3.2	Searching, Pattern searching, String manipulation, string merging, pruning search, generating subsets, generating permutations		
	3.3	Number theory, primes and factors, modular arithmetic, Program arithmetic operations on rationals, Algebra: square root algorithms – combining algorithms, Logarithm, Basic counting techniques, Other Counting Sequences		
	3.4	Recurrence Relations, Binomial Coefficients, Recursion and Induction Problems		
4	Graj	ohs	05	CO3
	4.1	Introduction to Graph theory and applications, Data structure for graphs, Traversal: Breadth first and Depth first		
	4.2	Dijkstra's Shortest path algorithm, Kruskals algorithm for spanning trees, topological sorting, Cycle detection, all longest paths		
5	Con	nputational Geometry	04	CO4
	5.1	Introduction to Computational Geometry and its applications, Line segment and intersections, Polygon and angle computation		
	5.2	Algorithms on Grids		
		Total	30	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Antti	Guide to Competitive	Springer	2018
	Laaksonen	Programming		
2.	Gayle	Cracking the Coding	CareerCup,	2015
	Laakmann	Interview	LLC	
	McDowell			
3.	Steven S.	Programming	Springer	2006
	Skiena Miguel	challenges The		
	A. Revilla	Programming Contest		
		Training Manual		
4.	Antti	Competitive		Hand book, 2018
	Laaksonen	Programmer's		
		Handbook		
5.	Steven Halim	Competitive		Handbook for ACM ICPC
	and Felix Halim	Programming 3: The		And IOI
		Lower Bounds of		CONTESTANTS 2013
		Programming		
		Contests		

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus and a Mini Project developed incorporating all the technical skills learned in "Competitive Programming Laboratory" (116U04L401), Students will be graded based on continuous assessment of their laboratory work; one of the assessment will be of 10 marks which may be conducted using any of the online platforms available to evaluate the best programming practices such as HackerRank, LeetCode, CodeChef etc.
- Practical and oral Examination will be based on laboratory work and entire syllabus of "Competitive Programming Laboratory" (116U04L401).

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116U04L402			We	b Pro	gra	mming	I Laboratory		
		TH P TUT		Total					
Teaching Scheme(Hrs.)		-		2		2	4		
Credits Assigned		-		1		1		2	3
	Marks								
Examination Scheme	ISE	A IA	ESE	TW	o	P&O	Total		
	-	-	-	50	-	50	100		

Course prerequisites: Knowledge of Programming language

Course Objectives:

The objective of this project-driven course is to acquaint with necessary techniques for developing client/server applications. The course will introduce concept of HTML and CSS to create and maintain Web pages, grid layout and responsive web page. Students will be familiarizing with Document Object Model to learn how browser represents web page. In addition, the course will make students conversant with JavaScript, ReactJS, JSON.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Comprehend basics of web technologies

CO2: Create Web pages using HTML 5 and CSS

CO3: Apply JavaScript and JSON for web application development

CO4: web application using ReactJS

Module	Unit	Details	Hrs.	CO
No. 1	No.	duction to web technologies	02	CO1
1	1.1	Introduction to OSI layers, Web system architecture- 1,2,3 and n tier architecture, URL, domain name system, overview of HTTP	02	COI
	1.2	Planning a Web Site – Objective and Goals, Audience, Organizing contents, Publishing of Web Site, Function of Web Server, Introduction to user interface		
		#Self-learning topic: Working of Web Browser, Introduction to Internet Application Protocols – FTP, Telnet, SMTP		
2	• Web	Page Creation with HTML 5 and CSS3	09	CO2
	2.1	Formatting and Fonts, Anchors, Backgrounds, images, Hyperlinks, Lists, Tables		
	2.2	HTML5, New Element, Forms, Audio and Video, HTML5 Canvas, SVG in HTML5, Google Map, Geolocation, Web storage, Web Worker, Application cache		
	2.3	Understanding the need for CSS, Basic syntax and structure using CSS, Positioning using CSS, Apply styles to Box Model Class and ID		
	2.4	Create a flexible content layout, Implement a layout using multi-column; implement a layout using position floating, implement a layout using grid alignment		
	2.5	Responsive Web page, Web accessibility #Self-learning topic - HTML < Meta Tag>, Introduction to XHTML		
3	Intro	duction to XML	02	CO1
	3.1	Syntax, Document structure, Document type definitions, Namespaces, XML schemas, Displaying raw XML documents, XSLT,XML Parsing		
		#Self-learning topic - Using XML as Database		~~-
4	4.1	king with JavaScript and JSON Introduction to JavaScript with variables, Types, operators, conditions, functions	08	CO3
	4.2	JavaScript Object, Array, Regular Expression, Event Handling		
	4.3	Comprehending advanced Javascript functions-Closures, Callback, Promise and Arrow Functions		
	4.4	The DOM and the Web browser Environment, DOM Manipulation		
	4.5	Data handling with JSON – Data types, Objects, Arrays, JSON Parse, Stringify		
	4.6	Introduction to CBOR, JSON Vs. CBOR		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5	Intro	oduction to ReactJS	09	CO4
	5.1	Evolutiion of React, Classes, ES6 Modules, Functional programming with Javascript		
	5.2	React page setup, React Elements, React components		
	5.3	React elements as JSX, Bable, Recipies as JSX, React Fragments		
	5.4	Working with webpack		
	•	Total	30	

- Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in term work and Laboratory.
- Term-Work will consist of Tutorials and laboratory work covering entire syllabus. Students will be graded based on continuous assessment of their term work. Practical and Oral examination based on laboratory experiments and entire syllabus

Recommended Books:

Sr.	Name/s of	Title of Book	Name of	Edition and	
No.	Author/s		Publisher with	Year of	
			country	Publication	
. 1	Kogent	HTML 5 Black Book: Covers	DreamTech	2 nd Edition,	
	Learning	CSS3, JavaScript, XML,	Press,India	2016	
	Solutions	XHTML, AJAX, PHP and			
	Inc.,	<i>jQuery</i>			
2	Robin Nixon	Learning PHP, MySQL &	O'Reilly Media	5 th Edition,	
		JavaScript: With jQuery, CSS		2018	
		&			
		HTML5			
3	Flanagan,	JavaScript: the definitive guide	O'Reilly	7 th Edition,	
	David		Media, Inc	2020	
4	Kogent	Web Technologies: HTML,	DreamTech	2013	
	Learning	JAVASCRIPT, PHP, JAVA,	Press,India		
	Solutions Inc.,	JSP,			
		ASP.NET, XML and Ajax, Black			
		Book: HTML, Javascript, PHP,			
		Java, Jsp, XML and Ajax, Black			
		Book			
5	Alex Banks,	Learning React	O'Reilly Media	2 nd Edition,	
	Eve Porcello			2020	

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

Course Code	Course Title							
116U04L403	Analysis of Algorithms Laboratory							
	ТН		P		TUT	Total		
Teaching Scheme(Hrs.)		-		2		-	2	
Credits Assigned	-		1		-	1		
	Marks							
	C	A	ESE	TW	o	P&O	Total	
Examination Scheme	ISE	IA						
	-	-	-	25	-	25	50	

- Term-Work will consist of practical covering entire syllabus of "Analysis of Algorithms Laboratory" (116U04C403). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Analysis of Algorithms Laboratory" (116U04C403).

Course Code	Course Title							
116U04L404	Advanced Databases Laboratory							
	TH		P		TUT	Total		
Teaching Scheme(Hrs.)		-					2	
Credits Assigned	Credits Assigned -			1		-	1	
	Marks							
Examination Scheme	CA		ESE	TW	o	P&O	Total	
Diminution Scheme	ISE	IA	ESE	1 44	U	rau	Total	
	-	-	_	25	-	25	50	

- Term-Work will consist of practical covering entire syllabus of "Advanced Databases" (116U04C404). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Advanced Databases" (116U04C404).