A. Déterminer complètement un triangle à partir d'au moins 3 informations

Dans toute cette partie on considère un triangle ABC. Pour abréger, on utilise les notations suivantes : $\alpha = BC$, b = AC, c = AB, $\alpha = \widehat{BAC}$, $\beta = \widehat{ABC}$, $\gamma = \widehat{ACB}$

Théorème, Loi des cosinus, ou formule d'Al-Kashi

 $a^2 = b^2 + c^2 - 2bc \cos \alpha$ Dans un triangle ABC on a par exemple :

 $b^2 = a^2 + c^2 - 2ac \cos \beta$ Par symétrie, les lettres peuvent être permutées :

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

Théorème. Loi des sinus. Dans un triangle ABC on a : $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \nu}$

Théorème. Somme des angles. Dans un triangle ABC on a : $\alpha + \beta + \gamma = \pi$ rad = 180°.

Méthode générale. Pour déterminer complètement un triangle à partir de 3 informations, on utilise ces 3 théorèmes.

i) A partir de la longueur de deux côtés et de l'angle situé entre eux

Méthode. Si on connait par exemple b, c et α :

- Pour trouver a on utilise la loi des cosinus faisant intervenir α et on applique $\sqrt{}$.
- Pour trouver β on isole $\sin \beta$ dans $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$ puis on applique arcsin .
- Pour trouver γ on résout $\alpha + \beta + \gamma = \pi$

Exercice A1. Soit un triangle ABC tel que AB = 8 cm, AC = 4 cm et $\widehat{BAC} = \frac{\pi}{3}$ rad. Déterminer BC. c=8; b=4; $\alpha=\frac{\pi}{3}$. On cherche $\alpha=BC$

Soit un triangle DEF tel que DE=8, EF=10 et $\widehat{DEF}=\frac{\pi}{5}$ rad. Déterminer la longueur DF. Exercice A2.

ii) A partir de la longueur de deux côtés et d'un autre angle

Méthode. Si on connaît par exemple b, c et β :

- Pour trouver γ , on isole $\sin \gamma$ dans $\frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$ puis on applique arcsin
- Pour trouver α , on utilise $\alpha + \beta + \gamma = \pi$
- Pour trouver a, on peut utiliser $\frac{b}{\sin \beta} = \frac{a}{\sin \alpha}$. (Ou la loi des cosinus)

Exercice A3. Soit un triangle ABC tel que AB=5 cm, AC=7 cm et $\widehat{ABC}=\frac{\pi}{4}$. Déterminer BC.

On sait que c=5 ; b=7 ; $\beta=\frac{\pi}{4}$. On cherche a=BC.

Soit un triangle *DEF* tel que DE = 7 cm, DF = 9 cm. $\widehat{DEF} = 50^{\circ}$. Déterminer *EF*. **Exercice A4.**

iii) A partir des longueurs des 3 côtés

Méthode.

• Pour trouver un angle α du triangle, on utilise la loi des cosinus, on isole $\cos \alpha$ puis on applique \arccos

Exercice A5. Soit un triangle ABC tel que AB=3, BC=4 et AC=6. Déterminer l'angle \widehat{BAC} en °. On sait que C=3; C=4; C=40. On cherche C=40.

Exercice A6. Soit un triangle IJK tel que IJ = 5, JK = 6, KI = 7. Déterminer l'angle \widehat{IJK} en °.

iv) A partir de la longueur d'un côté et de deux angles

Méthode. Si on connaît par exemple α , β et α

- Pour trouver γ , on utilise $\alpha + \beta + \gamma = \pi$
- Pour trouver b, on utilise $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$
- Pour trouver c, on utilise $\frac{a}{\sin \alpha} = \frac{c}{\sin \gamma}$

Exercice A7. Soit un triangle ABC tel que AB = 10, $\widehat{ABC} = \frac{\pi}{3}$ et $\widehat{BAC} = \frac{\pi}{4}$. Déterminer BC et AC.

Exercice A8. Soit un triangle MNO tel que MN = 5, $\widehat{MNO} = 60^{\circ}$ et $\widehat{NOM} = 40^{\circ}$. Déterminer OM et ON.

Produit scalaire géométrique - 3

B. Calculer le produit scalaire de deux vecteurs à partir de leur longueur et de l'angle entre eux.

Rappel. Produit scalaire (définition algébrique). $\vec{u} \cdot \vec{v} = xx' + yy'$

Rappel. (1ère identité remarquable). $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v}$

Rappel. (2ème identité remarquable). $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$

Propriété. Reformulation vectorielle de la loi des cosinus. $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos(\widehat{\vec{u}}; \widehat{\vec{v}})$

La 2^{ème} identité remarquable, et la loi des cosinus, entraînent la conséquence suivante :

Propriété. Produit scalaire (définition géométrique). $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\hat{\vec{u}}; \vec{v})$

Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors: $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{BAC}$

Exemple. Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tels que AB = 2 et AC = 3 et $\widehat{BAC} = 30^\circ$. Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC} = 30^\circ$.

Exercice B1. Soit deux vecteurs \overrightarrow{DE} et \overrightarrow{DF} tels que DE = 3 et DF = 4 et $\widehat{DEF} = \frac{\pi}{3}$ rad. Calculer $\overrightarrow{DE} \cdot \overrightarrow{DF}$

 $\overrightarrow{DE} \cdot \overrightarrow{DF} =$

Exercice B2. Soit un carré ABCD de centre O et de côté 6, calculer les produits scalaires suivants.

 $\overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{DC} \cdot \overrightarrow{AB} =$

 $\overrightarrow{BC} \cdot \overrightarrow{BD} = \overrightarrow{AB} \cdot \overrightarrow{DO} =$

Exercice B3. Soit un triangle équilatéral ABC de côté 6. Calculer les produits scalaires suivants :

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{CA} =$

 $\overrightarrow{AC} \cdot \overrightarrow{BA} =$

Exercice B4. Déterminer $(\overrightarrow{u}; \overrightarrow{v})$ en degrés dans les cas suivants.

i. $\|\vec{u}\| = 2$, $\|\vec{v}\| = \sqrt{3}$ et $\vec{u} \cdot \vec{v} = \sqrt{6}$

ii. $\|\vec{u}\| = 6$, $\|\vec{v}\| = 2$ et $\vec{u} \cdot \vec{v} = -6$

C. <u>Projeter un vecteur dans une direction donnée</u>

Propriété. (Interprétation géométrique)

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AH$ où H est le projeté orthogonal de C sur la droite (AB).

Le signe est + si \overrightarrow{AH} est de même sens que \overrightarrow{AB} , et - sinon.

Ici $\overrightarrow{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans le même sens, donc

$$\vec{u} \cdot \vec{v} = +4 \times 6 = +24$$

Ici $\overrightarrow{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans des sens opposés, donc

$$\vec{u}\cdot\vec{v} = -4\times 5 = -20$$

Methode. Pour calculer la composante d'un vecteur \vec{v} dans une direction \vec{u} , on calcule $\vec{v} \cdot \left(\frac{\vec{u}}{\|\vec{u}\|}\right)$

Si le vecteur \vec{u} est déjà unitaire (de norme 1), on calcule $\vec{v} \cdot \vec{u}$.

Exercice C1. Une piste de ski est représentée par une droite qui descend vers la droite avec une pente de 45°. Un skieur de 70 kg, subit son poids comme une force \vec{F} d'environ 700 N vers le bas, donc $\vec{F} = \begin{pmatrix} 0 \\ -700 \end{pmatrix}$. Calculer la composante du poids du skieur, le long de la pente descendante.

On cherche un vecteur directeur \vec{u} de la pente descendante.

Exercice C2. Un avion situé à une altitude de 0 m, s'envole avec un angle de 20° par rapport à l'horizontale, à une vitesse constante de 300 km/h.

- i. Calculer la vitesse verticale de l'avion.
- ii. Au bout de combien de temps atteint-il une altitude de 2000 m?