### First\_Year\_Project

2023-02-07

#### Question one

Begin with describing and fitting a full model in which the intercepts and slopes of the extinction times versus numbers of pairs may be different in all four combinations of size and migratory status. We start by importing the dataset directly from the csv file and saving it to the data variable:

```
head(data <- read.csv('Factors Affecting Extinction.csv', header=T))</pre>
```

```
##
            Species Time Pairs Size Status
## 1
       Sparrowhawk 3.03
                         1.00
                                  L
## 2
            Buzzard 5.46 2.00
                                  L
                                         R
## 3
            Kestrel 4.10 1.21
                                  L
          Peregrine 1.68 1.13
                                  L
                                         R
## 5 Grey_partridge 8.85 5.17
                                  L
                                         R
              Quail 1.49 1.00
## 6
                                         Μ
```

### (1) Initial Plotting

There are four different combinations of Size and Status, LR, LM, SR and SM. If we want to find the correlation between *extinction time* as a function of *pairs*, we can make a regression line with *pairs* as the predictor value and *extinction time* as the predicted value.

```
ggplot(data, aes(x = Pairs, y = Time)) +
  geom_point() +
  facet_grid(Size ~ Status) +
  theme(legend.position = "top") +
  geom_smooth(method = "lm", formula = y ~ x) +

stat_poly_eq(formula = y ~ x,
  aes(label = paste(after_stat(eq.label), after_stat(rr.label), sep = "~~~")),
  parse = TRUE) +

labs(title = "Raw data") +
  theme_bw()
```

#### Raw data



### (2) Residual plot of raw (not transformed) data

#### Residual Plot (raw data)



### (2) Transformations of time to log\_time, sqrt\_time, inverse\_time

```
data$log_time <- log2(data$Time)
data$sqrt_time <- sqrt(data$Time)
data$inverse_time <- 1/data$Time
head(data)</pre>
```

```
##
           Species Time Pairs Size Status log_time sqrt_time inverse_time
## 1
       Sparrowhawk 3.03 1.00
                                       R 1.5993178 1.740690
                                                                0.3300330
## 2
           Buzzard 5.46 2.00
                                       R 2.4489010 2.336664
                                                                0.1831502
                                L
           Kestrel 4.10 1.21
## 3
                                L
                                       R 2.0356239 2.024846
                                                                0.2439024
         Peregrine 1.68 1.13
                                L
                                       R 0.7484612 1.296148
                                                                0.5952381
## 5 Grey_partridge 8.85 5.17
                                L
                                       R 3.1456775 2.974895
                                                                0.1129944
             Quail 1.49 1.00
                                L
                                       M 0.5753123 1.220656
                                                                0.6711409
## 6
```

### Plotting of log\_time:

## Residual Plot (log\_time)



### Residual plot of log\_time:

# Residual Plot (log\_time)



### Plotting of sqrt\_time:

### Sqrt\_time



### Residual plot of sqrt\_time:

## Residual Plot (sqrt\_time)



### Plotting of inverse\_time:

### Inverse\_time



### Residual plot of inverse\_time:

## Residual Plot (inverse\_time)

