第五章 寻址与路由技术

寻址与路由的关系

第五章 寻址与路由技术

- 5.1 距离矢量路由
- 5.2 链路状态路由
- 5.3 MAC广播生成树
- 5.4 路由表查找算法
- 5.5 标签交换路由

距离矢量(DV)算法

距离矢量算法来源

▶ Bellman-Ford算法

- ∘ 针对加权有向图,计算源点去往一组(即 vector)其他点最短距离和路径;
- 。存在负权回路时,无法解算完成;
- ◎ 仔在负权回路时,尤法解算完成**;** ◎ 存在无穷计数 (count-to-infinity)问题;Aug<u>26,1920-Mar.19, 1</u>984
- ∘ 在RIP(v1,v2)和IGRP被采用。

(1886-1967)

Bellman, Richard. On a routing problem. Quart. Appl. Math., 1958, 16:87–90.

BF算法伪代码, s为源节点

RIP的收敛过程

 $if (d_i > l_i + w_t)$ $d_i = l_i + w_t$

C所知目标,注入A的路由表

RIP消息格式(RFC2453)

节点C组播路由表项

节点A的更新计算

11

问题:链路中断时

无究计数问题V 192.168.5.1/24 D(V) = 1 N 192.168.102.1 V 192.168.5.1/24 D(V) = 1+1 N 192.168.102.1 N 192.168.102.1 V 192.168.5.1/24 D(V) = 1+1 N 192.168.102.1 (Prob]如此循环,以至无穷

DSDV: RIP的MANET扩展

MANET: Mobile Ad hoc Network
(IETF working group)

13

17

MANET示例

不考虑时效性,更新慢

10

Destination-Sequenced Distance-Vector (DSDV)

http://www.cs.virginia.edu/~cl7v/cs851-papers/dsdv-sigcomm94.pdf

时效优先更新

- 5.1 距离矢量路由
- 5.2 链路状态路由
- 5.3 MAC广播生成树
- 5.4 路由表查找算法
- 5.5 标签交换路由

[F100]如此個外, 於主儿

源端产生链路状态

19

链路状态及通告

D 1 0 V F C S 192.168.5.1/24 S 192.168.5.1/24

21

LS(OSPF)计算

A独立计算最短路由

算法

OLSR: LS的MANET扩展

-

MANET路由协议类别

LSA通告

源自C的LSA消息总数为8条

OLSR(优化后LS路由)通告

MPR选择 (以节点C为例)

OLSR消息类型与数据流

第五章 寻址与路由技术

5.1 距离矢量路由

5.2 链路状态路由

5.3 MAC广播生成树

5.4 路由表查找算法

5.5 标签交换路由

局域网广播风暴

L2单播与广播的效率对比

广播以获取L2单播地址

L2风暴路径,以(F,B)为例

重复广播的时间间隔

重复广播的时间间隔

39

重复广播的时间间隔

重复广播的时间间隔

STP/RSTP

Radia Perlman算法

PRESIDENT ON STREET OF STREET ON STREET

Perlman R. An algorithm for distributed computation of a spanning tree in an extended LAN[C]. ACM SIGCOMM Computer Communication Review, 1985, 15(4): 44-53.

STP操作示例,C可能为根

STP操作示例,C不能为根

STP操作示例,成本最低端口

STP操作示例,成本最低端口

STP的广播路径

与Ch4.Prim算法对比

MSTP实现负载均衡

第五章 寻址与路由技术

5.1 距离矢量路由

5.2 链路状态路由

5.3 MAC广播生成树

5.4 路由表查找算法

5.5 标签交换路由

路由表查找的问题

寻址与路由的关系

路由表查找的功能

二叉树查找

根节点度不大于2, 中间节点度不大于3, 叶节点度为1。

二叉构结构,查找和更新均为O(W)

节点结构及树构造C示例

Insert(Node **r, int port, IPPref pref, int of = 0) {
 if (*r == NULL) *r = new Node(0,0,-1);
 if (offset >= pref.len)
 (*r)->portIndex = port;
 else {
 if ((pref.addr << of) >> (32-of))
 r = &((*r)->right);
 else
 r = &((*r)->left);
 Insert(r, port, pref, ++of);
 }
}

查找操作

路压缩二叉树,PATRICIA

路压缩二叉树,增加比特位指示

多比特树

先扩充再并行压缩树

前缀长度分区树

仿真实验结果

Ruiz-Sánchez M Á, Biersack E W, Dabbous W. Survey and taxonomy of IP address lookup algorithms[J]. Network, IEEE, 2001, 15(2): 8-23.

能否满足高吞吐性能

路由器端口数: N~100 端口宽带: BW~10Gb/s 最低吞吐性能: S~1000Gb/s

[Prob] 如何缩小缺口

内容寻址存储器(CAM)

三态CAM(TCAM)

5位长地址、4出口的TCAM逻辑

第五章 寻址与路由技术

5.1 距离矢量路由5.2 链路状态路由5.3 MAC广播生成树5.4 路由表查找算法5.5 标签交换路由

多协议标签交换技术

IP路由选择方式

MPLS转发

74

MPLS的系统组成

ROUTE AT EDGE, SWITCH IN CORE

QoS参数

76

路径Pa(s,t), 成本c, 测度 $m \propto M$

最小跳(红)、最小延时(绿)

77

Constrained Shortest Path算法 测度m <M、跳数最小路径

Delay, m <= 5

BW, m>=2

第五章 寻址与路由技术

5.1 对比分析RIP与OSPF协议的异同点。

5.2 如何解决LS路由的无究计数问题?

5.3 实验观测并报告交换机自环前后的网络流量变化。

5.4 设计PATRICIA路由表的更新和查找代码。

5.5 给出Bellman-Ford算法的QoS约束改进思路。

Cavendish D, Gerla M. Internet QoS routing using the Bellman-Ford algorithm[C]//High Performance Networking. Springer US, 1998: 627-646.

0.