Algebra Qualifying Exam August 31, 1999

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet.

Note: All rings on this exam are associative and have multiplicative identity 1. All all integral domains are assumed to be commutative.

- 1. Let P be a p-Sylow subgroup of the finite group G. Prove that $N_G(N_G(P)) = N_G(P)$.
- 2. Let G be a finite group and let \mathcal{C} be a conjugacy class of elements in G. If $|\mathcal{C}| = \frac{1}{2}|G|$, show that every element of \mathcal{C} is an involution (i.e., an element of order 2).
- 3. Let x be an element of p-power order in the finite group G, where p is prime. Assume that $|\{g^{-1}xg|\ g\in G\}|=p$. Show that x lies in a normal p-subgroup of G.
- 4. Prove, or give a counterexample to the assertions below:
 - (a) $\mathbb{Z}[x]$ is a principal ideal domain.
 - (b) If I is a maximal ideal of \mathbb{Z} , then I[x] is a maximal ideal of $\mathbb{Z}[x]$.
- 5. Consider the commutative ring $R = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. Show that the element $1 + 2\sqrt{-5}$ is irreducible but not prime in R.
- 6. Let R be a ring and let M be an irreducible left R-module. If K is the kernel of the action of R on M (i.e., $K = \ker(R \to \operatorname{End}_{\mathbb{Z}}(M))$), prove that R/K is semisimple, i.e., the Jacobson radical is trivial. (Hint: the problem itself is trivial.)

7. Let \mathbb{F} be a field and let

$$0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow 0$$

be an exact sequence of finite dimensional vector spaces over \mathbb{F} . Prove that

$$\dim V_1 - \dim V_2 + \dim V_3 - \dim V_4 = 0.$$

- 8. Let \mathbb{F} be a field and let $T: V \to V$ be a linear transformation on V. Assume that T has elementary divisors $x-a, (x-a)^2, (x-a)^2, (x-b)^2, x-c, x-c$, where $a,b,c \in \mathbb{F}$ are distinct elements of \mathbb{F} .
 - (i) What is the dimension of V?
 - (ii) What is the minimal polynomial of T?
 - (iii) What are the invariant factors of T?
 - (iv) Compute the Jordan canonical form of T.
- 9. Let $\mathbb{F} \subseteq \mathbb{K}$ be fields such that the extension degree $[\mathbb{K} : \mathbb{F}] < \infty$. Prove that every element of \mathbb{K} is algebraic over \mathbb{F} .
- 10. Let G be a finite Hamiltonian group, i.e., one such that every subgroup of G is normal. Now assume that $f(x) \in \mathbb{Q}[x]$ is an irreducible polynomial whose Galois group is isomorphic to G. Prove that deg f(x) = |G|.