

 $c_3 = 0.00624 \text{ kg/m}^3$ or $c_3 = 6.24 \text{ mg/L}$

Lake Examples

Example 1

A lake has the following characteristics:

Volume = $50,000 \text{ m}^3$

Mean depth = 2 m

 $Inflow = outflow = 7500 \ m^3 \ d^{-1}$

The lake receives the input of a pollutant from three sources: a factory discharge of 50 kg d⁻¹, a flux from atmosphere of 0.6 g m⁻² d⁻¹, and the inflow stream that has a concentration of 10 mg L⁻¹. If the pollutant decays at the rate of 0.25 d⁻¹, determine the steady-state concentration.

Example 1 – Analytical Solution

Factory discharge, $W_1 = 50 \text{ kg/d}$

Atmospheric flux, $W_2 = 0.6 \text{ g m}^{-2} \text{ d}^{-1} \times \frac{50000}{2} \text{m}^2 = 15000 \text{ g/d} = 15 \text{ kg/d}$

Inflow input $W_3 = 10 \text{ mg/L} \times 7500 \text{ m}^3/\text{d} = 0.01 \text{ kg/m}^3 \times 7500 \text{ m}^3/\text{d} = 75 \text{ kg/d}$

Loading, $\overline{W} = 50 + 15 + 75 = 140 \text{ kg/d}$

Assimilation factor, $a = Q + \gamma V = (7500 + 0.25 \times 5 \times 10^4) \text{ m}^3 \text{d}^{-1} = 2 \times 10^4 \text{ m}^3 \text{d}^{-1}$

Steady-state concentration, $C = \frac{\overline{W}}{a} = \frac{140}{2 \times 10^4} \left(\frac{\text{kg}}{\text{d}} \times \frac{\text{d}}{\text{m}^3}\right) = 0.007 \text{ kg/m}^3 = 7 \text{ mg/L}$

Example 2

A pond with a single inflow stream has the following characteristics:

Mean depth = 3 m ; Surface area = 2×10^5 m² ; Residence time = 2 weeks ; Inflow BOD = 4 mg L⁻¹

A subdivision housing 1000 people will discharge raw sewage into this system. Each individual contributes about 150 gal capita $^{-1}$ d $^{-1}$ of wastewater and 0.25 lb capita $^{-1}$ d $^{-1}$ of BOD. If the BOD decays at a rate of 0.1 d $^{-1}$ and settles at a rate of 0.1 m d $^{-1}$, Determine the steady-state concentration for the lake with and without the subdivision.

Example 2

Determine the steady-state concentration for the lake with and without the subdivision.

Steady-state concentration for the lake without subdivision,

$$C = \frac{Q_{in}C_{in}}{a}$$

Steady-state concentration for the lake with subdivision,

$$C = \frac{Q_{in}C_{in} + \mu}{q}$$

Example 2 – Without Subdivision

Steady-state concentration for the lake without subdivision,

$$C = \frac{Q_{in}C_{in}}{a}$$
 Inflow BOD = 4 mg L⁻¹ \Rightarrow $C_{in} = 0.004$ kg/m³

Pond residence time,
$$\tau_{w} = V/Q$$

$$Q_{in} = 0.429 \times 10^5 \text{ m}^3/\text{d}$$

$$\Rightarrow 2 \text{ week} = \frac{2 \times 10^5 \times 3 \text{ m}^3}{Q} \Rightarrow Q = 3 \times 10^5 \text{ m}^3/\text{week} = 0.429 \times 10^5 \text{ m}^3/\text{d}$$

Decay, $k = 0.1 \text{ d}^{-1}$ Settling velocity, $v = 0.1 \text{ m}^{-1} \text{d}^{-1}$

Surface area, $A_s = 2 \times 10^5 \text{ m}^2$

Assimilation factor, $a = Q + kV + vA_s$

=
$$0.429 \times 10^5 + 0.1 \times (6 \times 10^5) + 0.1 \times (2 \times 10^5) \text{ m}^3/\text{d}$$

= $(0.429 + 0.6 + 0.2) \times 10^5$

 $a = 1.229 \times 10^5 \text{ m}^3/\text{d}$

Steady-state concentration for the lake with subdivision,

Example 2 – With Subdivision

$$C = \frac{Q_{in}C_{in} + \mu}{q}$$

Reset 1 Add

Wastewater BOD loading

$$Q_{in} = 0.429 \times 10^5 \text{ m}^3/\text{d} = 0.25 \left(\frac{\text{lb}}{\text{capita d}}\right) \times 1000 \text{ capita}$$

$$C_{in} = 0.004 \text{ kg/m}^3$$
 = 2.5×10² lb/d
 $a = 1.229 \times 10^5 \text{ m}^3/\text{d}$ ≈ 113.6 kg/d

$$\therefore C = \frac{Q_{in}C_{in}}{a} = 2.32 \times 10^{-3} \text{ kg/m}^3 = 2.32 \text{ mg/L}$$

Example 2 – Without Subdivision

 $C_{in} = 0.004 \text{ kg/m}^3$

 $a = 1.229 \times 10^5 \text{ m}^3/\text{d}$

 $\therefore C = \frac{Q_{in}C_{in}}{a} = 1.4 \times 10^{-3} \text{ kg/m}^3 = 1.4 \text{ mg/L}$

Steady-state concentration for the lake without subdivision, $C = \frac{Q_{in}C_{in}}{Q_{in}} = 0.429 \times 10^5 \text{ m}^3/\text{d}$

