Programming Languages

ML

CSCI-GA.2110-001 Fall 2013

ML overview

- originally developed for use in writing theorem provers
- functional: functions are first-class values
- garbage collection
- strict evaluation (applicative order)
- no coercion
- strong and static typing; powerful type system
 - parametric polymorphism
 - structural equivalence
 - all with type inference!
- advanced module system
- exceptions
- miscellaneous features:
 - datatypes (merge of enumerated literals and variant records)
 - pattern matching
 - ref type constructor (like "const pointers" (not "pointers to const"))

Sample SML interactive session

```
- val k = 5;
                               user input
val k = 5 : int
                               system response
- k * k * k;
                            'it'— last computation
val it = 125 : int
- [1, 2, 3];
val\ it = [1,2,3]: int\ list
- ["hello", "world"];
val it = ["hello", "world"] : string list
- 1 :: [ 2, 3 ];
val it = [1,2,3] : int list
- [ 1, "hello"];
error
```

Operations on lists

```
- null [1, 2];
val it = false : bool
- null [];
val it = true : bool
- hd [1, 2, 3];
val it = 1 : int
- tl [1, 2, 3];
val it = [2, 3] : int list
- [];
val it = [] : 'a list this list is polymorphic
```

Simple functions

A function *declaration*:

```
- fun abs x = if x \ge 0.0 then x = x
val abs = fn : real -> real
```

A function *expression*:

```
- fn x => if x >= 0.0 then x else \tilde{x} val it = fn : real -> real
```

Functions, II

```
- fun length xs =
     if null xs
    then 0
     else 1 + length (tl xs);
val\ length = fn : `a list -> int
'a denotes a type variable; length can be applied to lists of any element type
The same function, written in pattern-matching style:
- fun length [] = 0
      \mid length (x::xs) = 1 + length xs
val\ length = fn : 'a \ list -> int
```

Type inference and polymorphism

Advantages of type inference and polymorphism:

- frees you from having to write types.
 A type can be more complex than the expression whose type it is, e.g.,
 flip
- with type inference, you get polymorphism for free:
 - no need to specify that a function is polymorphic
 - no need to "instantiate" a polymorphic function when it is applied

Multiple arguments?

- All functions in ML take exactly one argument
- If a function needs multiple arguments, we can
 - 1. pass a tuple:

```
- (53, "hello"); (* a tuple *)

val it = (53, "hello") : int * string

We can also use tuples to return multiple results.
```

2. use currying (named after Haskell Curry, a logician)

The tuple solution

Another function; takes two lists and returns their concatenation

Currying

The same function, written in curried style:

```
- fun append2 [ ] ys = ys
     | append2 (x::xs) ys = x :: (append2 xs ys);
val\ append2 = fn: 'a\ list -> 'a\ list -> 'a\ list
Note: \alpha \to \beta \to \delta means \alpha \to (\beta \to \delta).
- append2 [1,2,3] [8,9];
val \ it = [1,2,3,8,9] : int \ list
- val app123 = append2 [1,2,3];
val\ app123 = fn : int \ list \rightarrow int \ list
- app123 [8,9];
val \ it = [1,2,3,8,9] : int \ list
```

More partial application

But what if we want to provide the other argument instead, i.e., append [8,9] to its argument?

here is one way: (the Ada/C/C++/Java way)

```
fun appTo89 xs = append2 xs [8,9]
```

here is another: (using a higher-order function)

```
val appTo89 = flip append2 [8,9]
```

flip is a function which takes a curried function f and returns a function that works like f but takes its arguments in the reverse order.

In other words, it "flips" f's two arguments.

We define it on the next slide...

Type inference example

fun flip f y x = f x y

The type of flip is $(\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma$. Why?

Consider (f x). f is a function; its parameter must have the same type as x.

 $f: A \rightarrow B$ x: A (f x): B

Now consider (f x y). Because function application is left-associative, $f x y \equiv (f x) y$. Therefore, (f x) must be a function, and its parameter must have the same type as y:

(f x) : $C \rightarrow D$ y : C (f x y) : D

- Note that B must be the same as $C \to D$. We say that B must unify with $C \to D$.
- The return type of flip is whatever the type of $f \times y$ is. After renaming the types, we have the type given at the top.

Type rules

The type system is defined in terms of inference rules. For example, here is the rule for variables:

$$\frac{(x:\tau) \in E}{E \vdash x:\tau}$$

and the one for function calls:

$$\frac{E \vdash e_1 : \tau' \to \tau \quad E \vdash e_2 : \tau'}{E \vdash e_1 \ e_2 : \tau}$$

and here is the rule for if expressions:

$$\frac{E \vdash e : \texttt{bool} \quad E \vdash e_1 : \tau \quad E \vdash e_2 : \tau}{E \vdash \texttt{if} \ e \ \texttt{then} \ e_1 \ \texttt{else} \ e_2 : \tau}$$

Passing functions

- pred is a predicate : a function that returns a boolean
- exists checks whether pred returns true for any member of the list

```
- exists (fn i => i = 1) [2, 3, 4];
val it = false : bool
```

Applying functionals

```
- exists (fn i => i = 1) [2, 3, 4];
val it = false : bool

Now partially apply exists:
- val hasOne = exists (fn i => i = 1);
val hasOne = fn : int list -> bool
- hasOne [3,2,1];
val it = true : bool
```

Functionals 2

```
fun all pred [ ] = true
  | all pred (x::xs) = pred x andalso all pred xs
fun filter pred [ ] = [ ]
  | filter pred (x::xs) = if pred x
                                    then x :: filter pred xs
                                    else filter pred xs
                  all: (\alpha \rightarrow bool) \rightarrow \alpha list \rightarrow bool
                filter: (\alpha \rightarrow bool) \rightarrow \alpha list \rightarrow \alpha list
```

Block structure and nesting

let provides local scope:

Quicksort in functional form

```
fun quickSort op< [] = []</pre>
  \mid quickSort op < [x] = [x]
  | quickSort op< (a::bs) =
    let fun partition (left, right, []) =
              (left, right) (* done partitioning *)
           | partition (left, right, x::xs) =
              (* put x to left or right *)
              if x < a
             then partition (x::left, right, xs)
              else partition (left, x::right, xs)
         val (left, right) = partition ([], [a], bs)
    in
         quickSort op < left @ quickSort op < right
    end
           quickSort: (\alpha * \alpha \rightarrow bool) \rightarrow \alpha list \rightarrow \alpha list
```

A variant of Quicksort

```
fun quickSort op< [] = []</pre>
  \mid quickSort op < [x] = [x]
  | quickSort op< (a::bs) =
    let fun deposit (x, (left, right)) =
              if x < a
              then (x::left, right)
              else (left, x::right)
         val (left, right) = foldr deposit ([], [a]) bs
     in
         quickSort op < left @ quickSort op < right
    end
            quickSort: (\alpha * \alpha \rightarrow bool) \rightarrow \alpha list \rightarrow \alpha list
```

The type system

- primitive types: bool, int, char, real, string, unit
- constructors: list, array, product (tuple), function, record
- "'datatypes": a way to make new types
- structural equivalence (except for datatypes)
 - ◆ as opposed to name equivalence in e.g., Ada
- an expression has a corresponding type expression
- the interpreter builds the type expression for each input
- type checking requires that type of functions' parameters match the type of their arguments, and that the type of the context matches the type of the function's result

ML records

Records in ML obey structural equivalence (unlike records in many other languages).

A type declaration: only needed if you want to refer to this type by name

```
type vec = { x : real, y : real }
```

A variable declaration:

$$val v = \{ x = 2.3, y = 4.1 \}$$

Field selection:

```
#x v
```

Pattern matching in a function:

```
fun dist \{x,y\} = sqrt (pow (x, 2.0) + pow (y, 2.0))
```

Tuples

Tuples are actually records.

```
("I", "Love", "Programming", "Languages")
is actually...
{1="I", 2="Love", 3="Programming", 4="Languages"}
```

Expression #2 extracts the second element of the tuple. Or, "Love" above.

Datatypes

A datatype declaration:

- defines a new type *that is not equivalent to any other type* (name equivalence)
- introduces data constructors
 - data constructors can be used in patterns
 - they are also values themselves

Datatype example

tree is a type constructor.

Leaf and Node are data constructors:

- lacksquare Leaf : int ightarrow tree
- lacktriangle Node : tree * tree ightarrow tree

We can define functions by pattern matching:

```
fun sum (Leaf t) = t
| sum (Node (t1, t2)) = sum t1 + sum t2
```

Or:

```
fun sum x = case x of Leaf t => t
| Node(t1,t2) => sum t1 + sum t2
```

More on datatypes

Functions accepting data constructors as arguments must provide an exhaustive definition (cover every data constructor for the datatype). Consider again:

Parameterized datatypes

fun flatten (Leaf t) = [t]

```
| flatten (Node (t1, t2)) =
    flatten t1 @ flatten t2
                  flatten: tree \rightarrow int list
datatype 'a gentree =
    Leaf of 'a
  | Node of 'a gentree * 'a gentree
val names = Node (Leaf "this", Leaf "that")
                   names: string gentree
```

The rules of pattern matching

Pattern elements:

- integer literals: 4, 19
- character literals: #'a'
- string literals: "hello"
- data constructors: Node (···)
 - depending on type, may have arguments, which would also be patterns
- variables: x, ys
- wildcard: _

Convention is to capitalize data constructors and structure names. Also, start variables and type constructors with lower-case.

More rules of pattern matching

Special forms:

```
(), {} — the unit value
[] – empty list
[p1, p2, ···, pn]
 means (p1 :: (p2 :: \cdots (pn :: [])\cdots))
(p1, p2, \cdots, pn) - a tuple
(p1, _, ···, pn)

    a partially specified tuple using a wildcard.

\{field1, field2, \cdots fieldn\} – a record
 {field1, field2, ··· fieldn, ...}

    a partially specified record using a wildcard.

 v as p

    v is a name for the entire pattern p

 Example: M as x::xs binds M to the pattern x::xs.
```

Common idiom: option

option is a built-in datatype:

```
datatype 'a option = NONE | SOME of 'a
```

Defining a simple lookup function:

Is the type of lookup:

$$(\alpha * \alpha \rightarrow bool) \rightarrow \alpha \rightarrow (\alpha * \beta) list \rightarrow \beta option?$$

No! It's slightly more general:

$$(\alpha_1 * \alpha_2 \to bool) \to \alpha_1 \to (\alpha_2 * \beta)$$
 list $\to \beta$ option

Another lookup function

We don't need to pass two arguments when one will do:

The type of this lookup:

$$(\alpha \to \mathtt{bool}) \to (\alpha * \beta) \mathtt{list} \to \beta \mathtt{option}$$

Useful library functions

- map: $(\alpha \rightarrow \beta) \rightarrow \alpha \operatorname{list} \rightarrow \beta \operatorname{list}$ map (fn i => i + 1) [7, 15, 3] \Longrightarrow [8, 16, 4]
- foldl: $(\alpha * \beta \to \beta) \to \beta \to \alpha \text{ list} \to \beta$ foldl (fn (a,b) => "(" ^ a ^ "+" ^ b ^ ")") "0" ["1", "2", "3"] ⇒ "(3+(2+(1+0)))"
- foldr: $(\alpha * \beta \to \beta) \to \beta \to \alpha \text{ list} \to \beta$ foldr (fn (a,b) => "(" ^ a ^ "+" ^ b ^ ")") "0" ["1", "2", "3"] ⇒ "(1+(2+(3+0)))"
- **filter**: $(\alpha \rightarrow bool) \rightarrow \alpha list \rightarrow \alpha list$

Overloading

Ad hoc overloading interferes with type inference:

```
fun plus x y = x + y
```

Operator '+' is overloaded, but types cannot be resolved from context (defaults to int).

We can use explicit typing to select interpretation:

```
fun mix1 (x, y, z) = x * y + z : real
fun mix2 (x: real, y, z) = x * y + z
```

Parametric polymorphism/generics

- a function whose type expression has type variables applies to an infinite set of types
- equality of type expressions means structural not name equivalence
- all applications of a polymorphic function use the same body: no need to instantiate

```
let val ints = [1, 2, 3];
  val strs = ["this", "that"];
in
  len ints + (* int list -> int *)
  len strs (* string list -> int *)
end;
```

ML signature

An ML signature specifies an interface for a module.

```
signature STACKS =
sig
    type stack
    exception Underflow
    val empty : stack
    val push : char * stack -> stack
    val pop : stack -> char * stack
    val isEmpty : stack -> bool
end
```

ML structure

```
structure Stacks : STACKS =
struct
   type stack = char list
   exception Underflow
   val empty = [ ]
   val push = op::
    fun pop (c::cs) = (c, cs)
      pop [] = raise Underflow
    fun isEmpty [] = true
      | isEmpty _ = false
end
```

fun B x y z = x (y z)

What type is this?

```
fun B x y z = x (y z)

val it = fn : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
```

```
fun B x y z = x (y z)

fun B = fn x => fn y => fn z => x (y z)

fun B = fn (x : T1) => fn(y : T2) => fn(z : T3) = x (y z) : T4

TR = T1 -> T2 -> T3 -> T4

(y z) :: T2 = T3 -> T5

x (y z) :: T1 = T5 -> T6

T4 = T6
```

```
fun B x y z = x (y z)

fun B = fn x => fn y => fn z => x (y z)

fun B = fn (x : T1) => fn(y : T2) => fn(z : T3) = x (y z) : T4

TR = T1 -> T2 -> T3 -> T4

(y z) :: T2 = T3 -> T5

x (y z) :: T1 = T5 -> T6

T4 = T6
```

Now put it together: