Nils Marc Joeal Plähn

Bern, Switzerland

in linkedin.com/in/nils-plähn-a331b421b • Website: www.nilsplaehn.com

Professional Experience

PhD candidate in Biomedical Sciences

Quantitative MRI, Department of Radiology, University Bern Swiss National Science Foundation (SNF) (grant number: PCEFP2 194296)

Supervisor of Masterstudent

Al driven MRI image segmentation and classification using bSSFP data

Teaching Assistant

Introduction to Medical Imaging (Master module)

Teaching Assistant

Tutor in Physics of Complex Systems (Master module)

Teaching Assistant

Supervisor in Physics Laboratory Course (Bachelor module)

Bern, Switzerland

Feb 2022 - Present

Bern, Switzerland

Mar 2024 - Dec 2024

Bern, Switzerland

Sep 2024 – Jan 2025

Würzburg, Germany

Sep 2020 - Feb 2021

Würzburg, Germany

Aug 2017 - Feb 2021

Key Skills

Analytical & Strategic Problem-Solving: Proven ability to analyze abstract and complex problems, extract key insights, and develop data-driven solutions in interdisciplinary contexts.

Quantitative & Data Analysis: Experience in applying mathematical modeling, statistical analysis, and computational methods to solve real-world challenges.

Collaborative Leadership & Project management: Coordinated multi-disciplinary research projects with diverse teams.

Intellectual Property & Innovation: Experienced in scientific innovation and intellectual property development, bridging research and legal frameworks to secure a patent.

Programming: Proficient in Python, MATLAB, C/C++, and LaTeX

Effective Communication: Delivered presentations at national and international conferences, engaging multidisciplinary audiences.

Languages & Cross-Cultural Competence: English (Fluent), German (Native), French (Basic); accustomed to working in international environments.

Education

PhD candidate in Biomedical Sciences

Bern, Switzerland

Feb 2022 - Present

Quantitative MRI, Department of Radiology, University Bern Title: Development of simultaneous and robust multi-parameter

quantification in magnetic resonance imaging

Swiss National Science Foundation (SNF) (grant number: PCEFP2 194296)

Master Thesis Würzburg, Germany

Development of Novel Methods for Exchange Rate Quantification (A^+)

Apr 2021 - Jan 2022

Master of Science in Physics

University of Würzburg, Final Grade: A⁺

Würzburg, Germany Apr 2019 - Jan 2022

Bachelor Thesis The holographic Weyl semimetal (A^+) Würzburg, Germany Sep 2018 - Mar 2019

Bachelor of Science in Physics

Würzburg, Germany

University of Würzburg, Final grade: B

Sep 2014 - Mar 2019

Awards

2022: Wilhelm-Conrad-Röntgen Studienpreis, Würzburg, Germany

2024: ISMRM trainee stipend for conference attendance, Singapore

2023: ISMRM trainee stipend for conference attendance, Toronto, Canada

2022: ISMRM trainee stipend for conference attendance, London, United Kingdom

Patents

Nov 2024: Off-resonant encoded analytical parameter quantification using multi-dimensional linearised equations, Publication Number: WO2024/231819

Conferences

May 2024: Analytical T1, T2, proton density, and magnetic field inhomogeneity quantification in the brain using phase-cycled bSSFP

ISMRM 2024, Poster Presentation Singapore

June 2024: Single Shot Exchange Rate Quantification using Turbo PS-WEX

International CEST workshop 2024, Oral presentation

Nürnberg, Germany

June 2023: Decoding the phase-cycled BSSFP signal for maximized parameter quantification-T1, T2, proton density and magnetic field inhomogeneity

ISMRM 2023, Oral presentation

Toronto, Canada

June 2023: Decoding of 3T and 7T BSSFP profile asymmetries for T1, T2, and fraction quantification in two-compartment systems

ISMRM 2023, Poster presentation *Toronto, Canada*

June 2022: An Alternative to WEX: T1-Independent Exchange Rate Quantification using Phase Sensitive Water Exchange Spectroscopy

ISMRM 2024, Oral Presentation London, United Kingdom

June 2022: T1 and T2 to be filled german ISMRM 2022, Oral presentation *Achen, Germany*

- 2024: ORACLE: An analytical approach for T1, T2, proton density, and off-resonance mapping with phase-cycled balanced steady-state free precession
- N. M. J. Plähn, Y. Safarkhanlo, B. C. Açikgöz, A. L. C. Mackowiak, P. Radojewski, et al. *Magnetic Resonance in Medicine*, DOI: 10.1002/mrm.30388
- 2024: Getting the phase consistent: The importance of phase description in balanced steady-state free precession MRI of multi-compartment systems

N. M. J. Plähn, S. Poli, E. S. Peper, B. C. Açikgöz, R. Kreis, Č. Ganter, et al. *Magnetic Resonance in Medicine*, DOI: 10.1002/mrm.30033

2022: T1-independent exchange rate quantification using saturation-or phase sensitivewater exchange spectroscopy

N. M. J. Plaehn, S. Mayer, P. M. Jakob, F. T. Gutjahr. Journal of Magnetic Resonance, DOI: 10.1016/j.jmr.2021.107141

2024: Analytical T1, T2, proton density, and magnetic field inhomogeneity quantification in the brain using phase-cycled bSSFP

N. M. J. Plähn, Y. Safarkhanlo, G. Bonanno, A. Mackowiak, B. Açikgöz, E. Peper, et al., *Abstract #2172, ISMRM2024, Singapore*

2023: Decoding the phase-cycled BSSFP signal for maximized parameter quantification-T1, T2, proton density and magnetic field inhomogeneity

N. M. J. Plähn, A. Mackowiak, B. C. Açıkgöz, E. S. Peper, G. Rossi, J. Bastiaansen., *Abstract #1349, ISMRM2023, Toronto*

2023: Decoding of 3T and 7T BSSFP profile asymmetries for T1, T2, and fraction quantification in two-compartment systems

N. M. J. Plähn, A. Mackowiak, B. C. Açıkgöz, J. Bastiaansen., *Abstract #2200, ISMRM2023, Toronto*

2023: Rapid T1, T2 and fraction quantification in two-compartment systems using bSSFP profile asymmetries

N. Plähn, B. Açikgöz, J. Bastiaansen, A. Mackowiak., Abstract #4768, ISMRM2024, Toronto

2022: An Alternative to WEX: T1-Independent Exchange Rate Quantification using Phase Sensitive Water Exchange Spectroscopy

N. M. J. Plaehn, S. Mayer, P. Albertová, P. M. Jakob, F. T. Gutjahr., Abstract #0292, ISMRM2022, London

2024: Simultaneous brain susceptibility, T1, and T2 quantification at 7T with phase-cycled balanced steady-state free precession

B. C. Acikgoz, C. S. Martinez, A. L. C. Mackowiak, N. M. J. Plähn, Y. Safarkhanlo, et al., *Abstract* #3715, *ISMRM2024*, *Singapore*

2023: Cluster Based Sparse Variational Minimization for Multi-Compartment Dictionary Fitting to BSSFP Signal Profiles

B. C. Āçıkgöz, A. L. C. Mackowiak, N. M. J. Plähn, Y. Safarkhanloo, E. S. Peper, et al., Abstract #4613, ISMRM2023, Toronto

2023: Low Rank Subspace-Constrained Compressed Sensing Reconstruction of Highly Accelerated Phase-Cycled BSSFP MRI for Fat Fraction Quantification

E. S. Peper, A. L. C. Mackowiak, B. C. Açıkgöz, N. Plähn, Y. Safarkhanlo, L. Feng, et al., *Abstract #4963, ISMRM2023, Toronto*